WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/31, C07K 14/315, 16/12, C12Q 1/68

(11) International Publication Number:

WO 98/18931

(43) International Publication Date:

7 May 1998 (07.05.98)

(21) International Application Number:

PCT/US97/19588

(22) International Filing Date:

30 October 1997 (30.10.97)

(30) Priority Data:

60/029,960

31 October 1996 (31.10.96)

.10.96) US

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUNSCH, Charles, A. [US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FANNON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A. [US/US]; 708 Meadow Field Court, Mount Airy, MD 21771 (US).

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

The present invention provides polynucleotide sequences of the genome of Streptococcus pneumoniae, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer—based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad .	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TТ	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	ĴΡ	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			1
СМ	Cameroon		Republic of Korea	PL	Poland			7
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			

WO 98/18931 PCT/US97/19588

Streptococcus pneumoniae Polynucleotides and Sequences

FIELD OF THE INVENTION

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Streptococcus pneumoniae*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

5

10

20

25

BACKGROUND OF THE INVENTION

Streptococcus pneumoniae has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., et al., J. Exp. Med., 79:137-157 (1944)).

In spite of the vast number of publications on *S. pneumoniae* many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after *Haemophilus influenzae* type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for *H. influenzae* type b, pneumococcal meningitis is likely to become increasingly prominent. *S. pneumoniae* is the most important etiologic agent of community-

15

20

25

30

35

acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind *Neisseria meningitidis*.

The antibiotic generally prescribed to treat *S. pneumoniae* is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist. Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., *et al.*, *J. Med. Microbiol.* 28:237-248 (1989).

S. pneumoniae is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disaccharide receptor on fibronectin, present on human pharyngeal epithelial cells. (Anderson, B.J., et al., J. Immunol. 142:2464-2468 (1989). The mechanisms by which pneumococci translocate from the nasopharynx to the lung, thereby causing pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991).

Various proteins have been suggested to be involved in the pathogenicity of S. pneumoniae, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., et al., Rev. Inf. Dis. 3:521-534 (1981). S. pneumoniae also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell et al., reported that peptide permeases can modulate

10

15

20

25

pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions. (DeVelasco, E.A., et al., Micro. Rev. 59:591-603 (1995). A better understanding of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by S. pneumoniae, infection involves the programmed expression of S. pneumoniae genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S. pneumoniae genes and genomic organization would improve our understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S. pneumoniae would provide reagents for, among other things, detecting, characterizing and controlling S. pneumoniae infections. There is a need to characterize the genome of S. pneumoniae and for polynucleotides of this organism.

15

20

25

30

35

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-391.

The present invention provides the nucleotide sequence of several hundred contigs of the *Streptococcus pneumoniae* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-391.

The present invention further provides nucleotide sequences which are at least 95% identical to the nucleotide sequences of SEQ ID NOS:1-391.

The nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computerbased systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Streptococcus pneumoniae* genome.

Another embodiment of the present invention is directed to fragments of the Streptococcus pneumoniae genome having particular structural or functional attributes. Such fragments of the Streptococcus pneumoniae genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs, and fragments which can be used to diagnose the

10

15

20

25

30

presence of *Streptococcus pneumoniae* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORFs in fragments of the Streptococcus pneumoniae genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Streptococcus pneumoniae* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as

15

20

25

30

a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the abovedescribed antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b) determining whether the agent binds to said protein.

The present genomic sequences of *Streptococcus pneumoniae* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Streptococcus pneumoniae* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Streptococcus pneumoniae* researchers

10

15

20

25

30

35

and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Streptococcus pneumoniae genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Streptococcus pneumoniae relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading

frames (ORFs) is accomplished by processing contigs with zorf or GenMark. The ORFs are searched against *S. pneumoniae* sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul *et al.*, *J. Mol. Biol. 215*: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

10

15

20

25

30

35

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-391. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Streptococcus pneumoniae* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-391, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-391" refers to any portion of the SEQ ID NOS:1-391 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Streptococcus pneumoniae* open reading frames (ORFs), expression modulating fragment (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in sample (DFs). A non-limiting identification of preferred representative fragments is provided in Tables 1-3. As discussed in detail below, the information provided in SEQ ID NOS:1-391 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Streptococcus pneumoniae* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-391 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a

15

20

25

30

35

nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-391. However, once the present invention is made available (i.e., once the information in SEQ ID NOS:1-391 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-391 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-391 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of Streptococcus pneumoniae strains that can be used to prepare S. pneumoniae genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the S. pneumoniae strain that provided the DNA of the present Sequence Listing, Strain 7/87 14.8.91, has been deposited in the ATCC, as a convenience to those of skill in the art. As a further convenience, a library of S. pneumoniae genomic DNA, derived from the same strain, also has been deposited in the ATCC. The S. pneumoniae strain was deposited on October 10, 1996, and was given Deposit No. 55840, and the cDNA library was deposited on October 11, 1996 and was given Deposit No. 97755. The genomic fragments in the library are 15 to 20 kb

10

15

20

25

30

35

fragments generated by partial Sau3A1 digestion and they are inserted into the BamHI site in the well-known lambda-derived vector lambda DASH II (Stratagene, La Jolla, CA). The provision of the deposits is not a waiver of any rights of the inventors or their assignees in the present subject matter.

The nucleotide sequences of the genomes from different strains of *Streptococcus pneumoniae* differ somewhat. However, the nucleotide sequences of the genomes of all *Streptococcus pneumoniae* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-391. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-391 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-391. Such a manufacture provides a large portion of the *Streptococcus pneumoniae* genome and parts thereof (*e.g.*, a *Streptococcus pneumoniae* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using

10

15

20

25

30

35

means not directly applicable to examining the *Streptococcus pneumoniae* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-

20

25

30

35

391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-391 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Streptococcus pneumoniae genome which contain homology to ORFs or proteins from both Streptococcus pneumoniae and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Streptococcus pneumoniae genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computerbased systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Streptococcus pneumoniae* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage

15

20

25

35

means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Streptococcus pneumoniae* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

15

20

25

Streptococcus pneumoniae genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990), is used to identify open reading frames within the Streptococcus pneumoniae genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

10

15

20

30

35

BIOCHEMICAL EMBODIMENTS

Other embodiments of the present invention are directed to isolated fragments of the *Streptococcus pneumoniae* genome. The fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to fragments which encode peptides and polypeptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Streptococcus pneumoniae* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-391, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, Streptococcus pneumoniae DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a Streptococcus pneumoniae library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS:1-391. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or Streptococcus pneumoniae genomic DNA. Thus, given the availability of SEQ ID NOS:1-391, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-391 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

10

15

20

25

30

35

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2, and 3 list ORFs in the Streptococcus pneumoniae genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

Table 1 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in October, 1997.

Table 2 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in October, 1997.

Table 3 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in October, 1997.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the first nucleotide of the ORF (actually the first nucleotide of the stop codon immediately preceding the ORF), counting from the 5' end of the contig strand; and the fourth column, "stop (nt)" indicates the last nucleotide of the stop codon defining the 3'end of the ORF.

In Tables 1 and 2, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the gene name of the matching sequence; column seven provides the BLAST identity score and column eight the BLAST similarity score from the

comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

10

20

25

30

Each ORF described in the tables is defined by "start (nt)" (5') and "stop (nt)" (3') nucleotide position numbers. These position numbers refer to the boundaries of each ORF and provide orientation with respect to whether the forward or reverse strand is the coding strand and which reading frame the coding sequence is contained. The "start" position is the first nucleotide of the triplet encoding a stop codon just 5' to the ORF and the "stop" position is the last nucleotide of the triplet encoding the next in-frame stop codon (i.e., the stop codon at the 3' end of the ORF). Those of ordinary skill in the art appreciate that preferred fragments within each ORF described in the table include fragments of each ORF which include the entire sequence from the delineated "start" and "stop" positions excepting the first and last three nucleotides since these encode stop codons. Thus, polynucleotides set out as ORFs in the tables but lacking the three (3) 5' nucleotides and the three (3) 3' nucleotides are encompassed by the present invention. Those of skill also appreciate that particularly preferred are fragments within each ORF that are polynucleotide fragments comprising polypeptide coding sequence. As defined herein, "coding sequence" includes the fragment within an ORF beginning at the first in-frame ATG (triplet encoding methionine) and ending with the last nucleotide prior to the triplet encoding the 3' stop codon. Preferred are fragments comprising the entire coding sequence and fragments comprising the entire coding sequence, excepting the coding sequence for the N-terminal methionine. Those of skill appreciate that the N-terminal methionine is often removed during post-translational processing and that polynucleotides lacking the ATG can be used to facilitate production of N-termainal fusion proteins which may be benefical in the production or use of genetically engineered proteins. Of course, due to the degeneracy of the genetic code many polynucleotides can encode a given polypeptide. Thus, the invention further includes polynucleotides comprising a nucleotide sequence encoding a polypeptide sequence itself encoded by the coding sequence within an ORF described in Tables 1-3 herein. Further, polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence to the foregoing polynucleotides, are contemplated by the present invention.

20

25

30

Polypeptides encoded by polynucleotides described above and elsewhere herein are also provided by the present invention as are polypeptide comprising a an amino acid sequence at least about 95%, preferably at least 97% and even more preferably 99% identical to the amino acid sequence of a polypeptide encoded by an ORF shown in Tables 1-3. These polypeptides may or may not comprise an N-terminal methionine.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the percent identity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Streptococcus pneumoniae* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

10

15

20

25

30

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the Streptococcus pneumoniae genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the Streptococcus pneumoniae genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Streptococcus pneumoniae* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Streptococcus pneumoniae* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers

15

20

25

30

35

consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferrably at least 99% and most at least preferably 99.9% identical to SEQ ID NOS:1-391, with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Streptococcus pneumoniae origin isolated by using part or all of the fragments in question as a probe or primer.

Preferred DFs of the present invention comprise at least about 17, preferrably at least about 20, and more preferrably at least about 50 contiguous nucleotides within an ORF set out in Tables 1-3. Most highly preferred DFs specifically hybridize to a polynucleotide containing the sequence of the ORF from which they are derived. Specific hybridization occurs even under stringent conditions defined elsewhere herein.

Each of the ORFs of the Streptococcus pneumoniae genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly Streptococcus pneumoniae. Especially preferred in this regard are ORFs such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Streptococcus pneumoniae. Also particularly preferred are ORFs that can be used to distinguish between strains of Streptococcus pneumoniae, particularly those that distinguish medically important strain, such as drug-resistant strains.

20

25

30

35

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG

10

15

20

25

30

(available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the Streptococcus pneumoniae genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF. The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs and subfragments thereof depicted in Tables 2 and 3 which encode proteins.

WO 98/18931 PCT/US97/19588

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

10

15

20

25

30

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

WO 98/18931 PCT/US97/19588

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

5

10

15

20

30

35

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Streptococcus pneumoniae* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express

20

25

30

35

heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas* and *Streptomyces*. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell 23:*175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

15

20

25

30

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

15

20

25

30

35

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Streptococcus pneumoniae, of the fragments of the Streptococcus pneumoniae genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Streptococcus pneumoniae is defined as a homolog of a fragment of the Streptococcus pneumoniae fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Streptococcus pneumoniae genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-391 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ

15

20

25

35

ID NOS:1-391 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR Protocols, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-391 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-391, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Streptococcus pneumoniae*.

30 ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the

15

20

25

30

35

polypeptide. Such identifications permit one skilled in the art to use the Streptococcus pneumoniae ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper et al., Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Streptococcus pneumoniae* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-391.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al.,

15

20

25

Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of Streptococcus pneumoniae. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger et al., Biotechnology 6(Å), Rhine et al., Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

10

15

20

25

30

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other

hand, has been described in detail by Bud et al., Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology 136*:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

10

15

20

25

35

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques In Biochemistry And Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983), pgs. 77-96 of Cole et al., in Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc. (1985)). Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods

10

15

25

30

35

include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175:109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308

10

15

20

25

(1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W., J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for in vitro, in vivo, and in situ assays to identify cells or tissues in which a fragment of the Streptococcus pneumoniae genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and

10

15

20

25

Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Trisbuffers, etc.), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

10

15

20

25

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Streptococcus pneumoniae* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Streptococcus* pneumoniae genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides," in Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

10

15

20

25

30

35

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Streptococcus pneumoniae*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Streptococcus pneumoniae or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer

WO 98/18931 PCT/US97/19588

surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

10

15

20

25

30

35

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may

10

15

20

25

30

be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s)

10

15

20

25

30

35

serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose. carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-

10

15

20

25

30

35

microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random

15

20

25

30

35

sequence has been determined can be calculated by the equation $P = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Streptococcus pneumoniae DNA is prepared by phenol extraction. A mixture containing 200 μ g DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 μ l TE buffer.

To create blunt-ends, a 100 μ l aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 μ l BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 μ l TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the

15

20

25

30

35

DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 µg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with Small and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 ul TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 µl TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) containing the v+I linears, 500 µM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50 µl reaction containing 5 µl of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 µl aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 µl aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 µl aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and

placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl (1 M), and 1 ml MgSO /100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

10

15

20

25

30

35

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams et al., Science 252:1651 (1991); Adams et al., Nature 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two *Streptococcus pneumoniue* lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, *Streptococcus pneumoniae* DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 µg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One µl of fragments is used with 1 µl of DASHII vector (Stratagene) in the recommended ligation reaction. One µl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage

15

20

25

30

35

are plated directly without amplification from the packaging mixture (after dilution with 500 μ l of recommended SM buffer and chloroform treatment). Yield is about 2.5x10³ pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x10⁴ pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x10⁹ pfu/ml.

Liquid lysates ($100 \,\mu$ l) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards et al., Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of both-end sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are

done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

5

10

15

20

25

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

30

35

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing

10

15

sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

25

30

35

20

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 10⁴ fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching

10

20

25

30

fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library).

The process resulted in 391 contigs as represented by SEQ ID NOs:1-391.

3. Identifying Genes

The predicted coding regions of the *Streptococcus pneumoniae* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (October, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Streptococcus pneumoniae Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al., Basic Methods in Molecular Biology, Elsevier, New York. Section 21-2 (1989).

10

15

20

25

20

25

30

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi- quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Streptococcus pneumoniae* genome; such as those of Tables 1-3 and SEQ ID NOS:1-391 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

10

15

20

5. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the Streptococcus pneumoniae genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U. S. Patent No. 5,082,767, incorporated herein by this reference.

WO 98/18931 PCT/US97/19588

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Streptococcus pneumoniae genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Streptococcus pneumoniae DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Streptococcus pneumoniae DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BglII at the 5' end of the corresponding Streptococcus pneumoniae DNA 3' primer, taking care to ensure that the Streptococcus pneumoniae DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BgIII, purified and ligated to pXT1, now containing a poly A addition sequence and digested BglII.

5

10

15

20

25

30

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Streptococcus pneumoniae* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Streptococcus pneumoniae* DNA.

10

15

20

Alternatively and if antibody production is not possible, the Streptococcus pneumoniae DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the Streptococcus pneumoniae DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using in vitro translation systems such as in vitro ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

S. pneumoniae - Coding regions containing known sequences

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
		437	1003	gb u41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	95	200	567
7	5	6919	5720	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	9	450	450
~	9	6592	6167	emb 283335 SPZ8	S.pneumoniae dexB, capllA,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	88	426	426
m	<u> </u>	9770	9147	emb 283335 SP28	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H.I.J,K) genes, dTDP-rhamnose biosynthesis genes and alla gene	\$6	624	624
е .	2	10489	1696	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	16	819	819
m	2	11546	112019	95 043526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	474	474
•		12017	13375	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	1359	1359
r.	2	13421	14338	95 043526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, end neuraminidase (nanA) gene, partial cds	66	918	916.
r.	91	14329	15171	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	843	843
r.	-11	15132	17282	gb U43526 	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	2151	2151
"	18	17267	18397	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	56	1069	1131
4	-	46	1188	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORP3 and ORF5	66	1143	1143
4	- 2	1198	2529	emb Y11463 SPDN	Streptococtus pneumoniae dnaG, rpoD, cpoA genes and ORF3	99	876	1332
S.	<u></u>	11297	111473	95 041735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	83	175	771
٠	7	7125	7364	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	93	238	240
9		7322	1570	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	95	160	249
vo	6	7533	7985	emb z77725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	66	453	453
•	2	20197	19733	emb 283335 SP28	S.pneumoniae dexB. cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	96	465	465
,	2	8305	7682	emb 283335 SP28	S.pneumoniae dexB. cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	95	624	624
		1				•	• ! ! ! ! ! ! ! !	• • • • • • • • • • • • • • • • • • • •

S. pneumoniae - Coding regions containing known sequences

enes enes enes enes enes enes enes finding protein 2x inding prote	Start (nt)	Stop (nt)	match ecession	match gene name	percent	HSP nt length	ORF nt length
9P [J2923] Streptococcus preumoniae methyl transferase (atri gene cluster, complete emb 27963 [SOOK S. preumoniae yorf(A.B.C.D.E], Ital., DppX and regk genes emb 27963 [SOOK S. preumoniae yorf(A.B.C.D.E], Ital., DppX and regk genes emb 27963 [SOOK S. preumoniae yorf(A.B.C.D.E], Ital., DppX and regk genes emb 27963 [SOOK S. preumoniae yorf(A.B.C.D.E], Ital., DppX and regk genes emb 27963 [SOOK S. preumoniae yorf(A.B.C.D.E], Ital., DppX and regk genes emb 27963 [SOOK S. preumoniae yorf(A.B.C.D.E], Ital., DppX and regk genes emb 27963 [SOOK S. preumoniae yorf(A.B.C.D.E], Ital., DppX and regk genes emb 27967 [Sope Streptococcus pneumoniae pbX gene for penticillin binding protein 2X gb 1911296 Streptococcus pneumoniae pbX gene for penticillin binding protein 2X gb 1911296 Streptococcus pneumoniae transposase, (cond and comb) and SAICAR synthetase biosynthesis genes and all A. gene cond and comb) and salid gene, poptin (pps) 19120-1916 Streptococcus pneumoniae transposase, (cond and comb) and side gene, poptin (pps) 19120-1916 Streptococcus pneumoniae transposase, (cond and comb) and sequence gb 107721 Spris S. pneumoniae DNA for insertion sequence ISI118 (812 bp) emb 277772 Spris Streptococcus pneumoniae attachment site (atta). DNA sequence gb 107751 Streptococcus pneumoniae attachment site (atta). DNA sequence gb 107751 Streptococcus pneumoniae attachment site (atta). DNA sequence gb 107751 Streptococcus pneumoniae orfu genes complete cds. tRNA-xg and translating speptide precursor (comb) genes. Complete potein kinase (comb) and response regulator (comb) genes. Complete potein kinase (comb) and response poptide precursor (comb) genes. Complete potein kinase (comb) and response poptide precursor (comb) genes. Complete potein kinase (comb) and response poptide precursor (comb) genes. Complete potein kinase (comb) and response popt	9024 8206		emb 28333	dexB, capl A, B, C, D, E, F, G, H, I, J, K genes, genes and aliA gene	56	819	819
emb 279691 Stook S. pneumoniae yorf(1A, B, C, D, E), Ital., pppx and regR genes emb 279691 Stook S. pneumoniae yorf(1A, B, C, D, E), Ital., pppx and regR genes emb 279691 Stook S. pneumoniae yorf(1A, B, C, D, E), Ital., pppx and regR genes emb 279691 Stook S. pneumoniae yorf(1A, B, C, D, E), Ital., pppx and regR genes emb 279691 Stook S. pneumoniae yorf(1A, B, C, D, E), Ital., pppx and regR genes emb 279691 Stook S. pneumoniae yorf(1A, B, C, D, E), Ital., pppx and regR genes emb 279691 Stook S. pneumoniae pppx gene for penicillin binding protein 2x emb 27967 Stook S. pneumoniae recP gene, complete cds blosynthesis genes and all Ag D, E, P, G, H, I, J, KI genes, dTOP-rhamnose blosynthesis genes and all Ag D, E, P, G, H, I, J, KI genes, dTOP-rhamnose blosynthesis genes and all Ag D, E, P, G, H, I, J, KI genes, dTOP-rhamnose pb 279735 Streptococcus pneumoniae type 19F capular polysaccharide biosynthesis operon, (cps) 94 ABCDEFGHIAKHWO) genes, complete cds gb 277726 SPPS Streptococcus pneumoniae type 19F capular polysaccharide biosynthesis genes partial cds Streptococcus pneumoniae attachment site (attB), DNA sequence gb 277727 SPPS Streptococcus pneumoniae attachment site (attB), DNA sequence gb 277727 Streptococcus pneumoniae attachment site (attB), DNA sequence gb 277727 Streptococcus pneumoniae attachment site (attB), DNA sequence gb 277727 Streptococcus pneumoniae attachment site (attB), DNA sequence gb 277727 Streptococcus pneumoniae orti. gene. partial cds competence stimulating pp 277727 Streptococcus pneumoniae orti. gene. partial cds competence stimulating pp 277727 Streptococcus pneumoniae orti. gene. partial cds competence stimulating pp 277721 Streptococcus pneumoniae orti. gene. partial cds competence stimulating peptide preumoniae orti. gene. partial cds competence stimulating preumoniae paptide preumoniae partial preumoniae paptide preumoniae competence stimulating	9304 8078			gene cluster,	93	513	1227
cmb 279591 SOOR S. pneumoniae yorf(A, B, C, D, E) ftst, pbpX and resk genes cmb 279591 SOOR S. pneumoniae yorf(A, B, C, D, E) ftst, pbpX and resk genes cmb 279591 SOOR S. pneumoniae yorf(A, B, C, D, E) ftst, pbpX and resk genes cmb 279591 SOOR S. pneumoniae yorf(A, B, C, D, E) ftst, pppX and resk genes cmb 279591 SOOR S. pneumoniae yorf(A, B, C, D, E) ftst, pppX and resk genes cmb 279591 SOOR S. pneumoniae yorf(A, B, C, D, E) ftst, pppX and resk genes cmb 279591 Soor cmb 279591 Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X cmb 2791315 Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X cmb 2791315 Streptococcus pneumoniae transposas. (conA and comB) and SAICAR synthetase cmb 279135 Streptococcus pneumoniae transposas. (conA and comB) and sAICAR synthetase cmb 279135 Streptococcus pneumoniae trype 19F capular polyaaccharide blosynthesis operon. (cps) pneumoniae trype 19F capular polyaaccharide blosynthesis cmb 27972715F1S S. pneumoniae blA for insertion sequence 19118 (1372 bp) cmb 27972715F1S S. pneumoniae blA for insertion sequence 19118 (1372 bp) cmb 27972715F1S Streptococcus pneumoniae attachment site (attB). DNA sequence cmb 27972715F1S Streptococcus pneumoniae attachment site (attB). DNA sequence cmb 27972715F1S Streptococcus pneumoniae cuft gene, partial cds, competence stimulating cmb 279735 Streptococcus pneumoniae cuft gene, partial cds, competence stimulating cmb 279735 streptococcus pneumoniae orti gene, partial cds, competence stimulating cmb 279735 cmb 27972715F1S Streptococcus pneumoniae orti gene, partial cds, competence stimulating cmb 279735 cmb 2797275 c	548 919		emb 279691 SOOR	yorf(A, B, C, D, E), ftsL, pbpx and	66	316	372
cmb 279691 SOOR S. pneumoniae yorf(A.B.C.D.E], ftal, pbpX and regR genes cmb 279691 SOOR S. pneumoniae yorf(A.B.C.D.E], ftal, pbpX and regR genes cmb 279691 SOOR S. pneumoniae yorf(A.B.C.D.E], ftal, pbpX and regR genes cmb 279691 SOOR S. pneumoniae yorf(A.B.C.D.E], ftal, pbpX and regR genes cmb 279691 SOOR S. pneumoniae pbpX gene for penicillin binding protein 2X cmb 279691 Soor Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X cmb 279191 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase cpb 279115 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase cpb 279115 Streptococcus pneumoniae transposase, (comA and comB) and aliA gene cpc 279116 Streptococcus pneumoniae type 19F capuular polyaaccharide blosynthesis operion, (cpp) 19FABCDEFGHIJKLANO) genee, complete cds, and aliA gene, operion, (cpp) 19FABCDEFGHIJKLANO) genee, complete cds, and aliA gene, operion, (cpp) 19FABCDEFGHIJKLANO) genee, complete cds, and aliA gene, operion, (cpp) 19FABCDEFGHIJKLANO) genee, complete cds, and aliA gene, operion, (cpp) 19FABCDEFGHIJKLANO) genee, complete cds, and aliA gene, operion, (cpp) 19FABCDEFGHIJKLANO) genee, complete cds, and aliA gene, operion operion, cpp, 19FABCDEFGHIJKLANO) genee, complete cds, and aliA gene, operion operio	892 1980		emb{279691	ftst, pbpx and regR	66	1089	1089
emb 279691 SOOR S.pneumoniae yorf(A.B.C.D.E), ftel, pbpx and regR genes emb 279691 SOOR S.pneumoniae yorf(A.B.C.D.E), ftel, pbpx and regR genes emb 279691 SOOR S.pneumoniae yorf(A.B.C.D.E), ftel, pbpx and regR genes emb 279691 SOOR S.pneumoniae pbpx gene for penicillin binding protein 2X emb 27057 SPPB Streptococcus pneumoniae pbpx gene for penicillin binding protein 2X emb 27037 SPPB Streptococcus pneumoniae pbpx gene for penicillin binding protein 2X emb 27037 SPPB Streptococcus pneumoniae transposses (comA and comB) and SAICAR synthetase (purC) genes, complete cds emb 270727 SPPB Streptococcus pneumoniae transposses (comA and comB) and SAICAR synthetase (purC) genes, complete cds emb 277727 SPPB Streptococcus pneumoniae type 19F capsular polysaccharide blosynthesis partial cds partial cds partial cds pneumoniae pbA for insertion sequence 181118 (1372 bp) emb 277727 SPPB S.pneumoniae DBA for insertion sequence 18118 (1372 bp) emb 277727 SPPB Streptococcus pneumoniae attachment site (attB), DBA sequence gb 107723 Streptococcus pneumoniae attachment site (attB), DBA sequence gb 107723 Streptococcus pneumoniae attachment site (attB), DBA sequence regulator (comC), hittidine pretrial cds, competence atimilating peptial pretrial of sequence pab 107731 Streptococcus pneumoniae orfL gene, partial cds, competence atimilating peptial pretrial ords, compete	3040 347	-	emp 279691	, ftst, pbpx and regR	66	259	438
emb 279691 SOOR S.pneumoniae yorf(A.B.C.D.E), ftsi, pbpX and ragR genes emb 279691 SOOR S.pneumoniae yorf(A.B.C.D.E), ftsi, pbpX and ragR genes emb 1057 SPPB Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X emb 1057 SPPB Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X emb 203135 SPPB Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X emb 203135 SPPB Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase gb M35180 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase gb U09219 Streptococcus pneumoniae type 19F capsular polysaccharide blosynthesis operon, (cps195ABCDEFCHIMMANO) genes, complete cds, and aliA gene, partial cds spneumoniae DNA for insertion sequence 151118 (833 bp) emb 277726 SPIS S.pneumoniae DNA for insertion sequence 151118 (833 bp) emb 277725 SPIS S.pneumoniae BNA for insertion sequence 151118 (833 bp) emb 277725 SPIS S.pneumoniae attachment site (attB), DNA sequence 19b L07723 Streptococcus pneumoniae attachment site (attB), DNA sequence rimulating peptide precursor (comS) genes completence stimulating peptide precursor (comS) perticile precursor comS) and response peptide precursor comS) and response peptide precursor comS) and sexponse peptide precursor comS peptide precursor	3480 324	~ 1	emb 279691	yorf(A,B,C,D,E), ftsL, pbpx and	66	234	234
emb X16367 SPPB Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X emb X16367 SPPB Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X emb X16367 SPPB Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X emb X16367 SPPB Streptococcus pneumoniae cas SPPB Streptococcus pneumoniae transposase ComA and comB) and SAICAR synthetase SPPB Streptococcus pneumoniae transposase ComA and comB) and SAICAR synthetase SPPB Streptococcus pneumoniae transposase ComA and comB) and SAICAR synthetase GpL X16180 Streptococcus pneumoniae type 197 capsular polysaccharide biosynthesis operon Cps197ABCDEFCHIXKLMO) genes, complete cds and s11A gene gpL L077726 Streptococcus pneumoniae type 197 capsular polysaccharide biosynthesis emb Z77777 SPIS S. pneumoniae DNA for insertion sequence 18118 (1372 bp) emb Z77776 Streptococcus pneumoniae attachment site (attB). DNA sequence gpL L07752 Streptococcus pneumoniae attachment site (attB). DNA sequence gpL L07752 Streptococcus pneumoniae attachment site (attB). DNA sequence stimulating Streptococcus pneumoniae orfu gene, partial cds, competence stimulating Streptococcus pneumoniae orfu gene, partial competence stimulating Streptococcus pneumoniae orfu gene, partial competence stimulating Streptococcus pne	3601 455		emb 279691	ftst, pbpX and regR	86	957	957
emb X16367 SPPB Streptococcus pneumoniae pbpX gene for penicillin binding procein 2X emb X16367 SPPB Streptococcus pneumoniae pbpX gene for penicillin binding procein 2X gb H31296 S.pneumoniae recP gene, complete cds gene Z83135 SPZB S.pneumoniae dxal. complete cds gb H36180 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase gp H36180 Streptococcus pneumoniae transposase, (comA and comB) and AICAR synthetase gp H36180 Streptococcus pneumoniae transposase, (comA and comB) and AICAR synthetase gp H36180 Streptococcus pneumoniae transposase, (comA and comB) and aliA gene, gph H36180 Streptococcus pneumoniae transposase, (comA and comB) and fesponse gph L07722 SPIS S.pneumoniae DAA for insertion sequence IS1318 (823 bp) gph L07722 SPIS S.pneumoniae DAA for insertion sequence IS1318 (823 bp) gph L07722 SPIS Streptococcus pneumoniae attachment site (attB), DNA sequence gph L07722 Streptococcus pneumoniae attachment site (attB), DNA sequence regulating peptide precursor (comE) genes, complete cds, tNNA-Arg and tRNA-Gin genes regulator (comE) genes, complete cds, tNNA-Arg and tRNA-Gin genes regulator (comE) genes complete cds, tNNA-Arg and trasponse regulator (comE) preptide precursor (comC) histidine protein kinase (comD) and response regulator (comE) genes complete cds, tNNA-Arg and trasponse regulator (comE) preptide precursor (comC) histidine protein kinase (comD) and response regulator (comE) preptide precursor (comC) histidine protein kinase (comD) and response	4506 48	98	emb 279691	ftsi, pbpX and regR	66	381	381
4 (emb X16367 SPPB Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X 6 (gb M31356 SPPB Streptococcus pneumoniae tecP gene, complete cds 8 emb Z83135 SP28 S.pneumoniae dexB, capilA,B,C,D,E,F,G,M,I,J,K genes, dTDP-rhamnose 8 (gb M36180 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase 1 (purC) genes, complete cds 1 (purC) genes, complete cds 2 (purC) genes, complete cds 2 (purC) genes, complete cds 3 (partial cds) Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 8 (emb Z77726 SP1S S.pneumoniae DNA for insertion sequence 181318 (823 bp) 9 (partial cds) Spreumoniae DNA for insertion sequence 181318 (823 bp) 9 (partial cds) Streptococcus pneumoniae attachment site (attB), DNA sequence 9 (partial cds) Streptococcus pneumoniae attachment site (attB), DNA sequence 9 (partial coccus pneumoniae off gene, partial cds, competence stimulating 9 (partial coccus pneumoniae off gene, partial cds, competence stimulating 9 (partial coccus pneumoniae off gene, partial cds, competence stimulating 9 (partial coccus pneumoniae off gene, partial cds, competence stimulating 9 (partial coccus pneumoniae off gene, partial cds, competence stimulating 9 (partial coccus pneumoniae off gene, partial cds, competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial coccus pneumoniae off gene, partial competence stimulating 9 (partial	4884 71	42	emb x16367	gene for penicillin binding protein	66	2259	2259
6 9b	7132 81	124	emb x16367	protein	86	70	993
Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase	53 11	26	- ;	gene,	66	437	1074
gb W35180 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds (purC) genes, complete cds partial cds operon, (cps19fABCDEFGHIJKLANO) genes, complete cds, and alia gene, partial cds paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC) and protein kinase (comD) and response paptide precursor (comC) and protein kinase (comD) and response paptide precursor (comC) and protein kinase (comD) and response paptide precursor (comC) and protein kinase (comD) and response paptide precursor (comC) and protein kinase (comD) and response paptide precursor (comC) and protein kinase (comD) and response paptide precursor (comC) and protein kinase (comD) and preponse paptide precursor (comC) and protein kinase (comD) and preponse paptide precursor (comC) and protein kinase (comC) and protein kinase (comD) and paptide precursor (comC) and protein kinase (comD) and preponse paptide protein kinase (comD) and preponse paptide protein kinase (comD) and paptide protein kinase (comD) and paptide protein kinase (comD) and paptide comP paptide protein kinase (comD) and paptide protein kinase (comC) and paptide protein kinase (comD) and paptide protein kinase (comC) and paptide protein kinase (comC) and paptide protein	1837 2	148	:	dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes,	8	96	312
gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLANO) genes, complete cds, and aliA gene, partial cds paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), histidine protein kinase (comD) and response paptide precursor (comC), paptide precursor (comC), paptide precursor (comC) and response paptide precursor (comC) and paptide paptide precursor (comC) and paptide precursor (comC) and paptide cds and	2518 2	108	:	Streptococcus pneumonise transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	=	411
emb 277726 SPIS S.pneumoniae DNA for insertion sequence SI118 (1372 bp) emb 277727 SPIS S.pneumoniae DNA for insertion sequence SI118 (823 bp) emb 277727 SPIS S.pneumoniae iga gene gb L07752 Streptococcus pneumoniae attachment site (attB), DNA sequence gb L07752 Streptococcus pneumoniae attachment site (attB), DNA sequence gb U031315 Streptococcus pneumoniae orff gene, partial cds, competence stimulating gb U031315 Streptococcus pneumoniae orff gene, partial cds, competence stimulating gb U33115 Streptococcus pneumoniae orff gene, partial cds, competence stimulating gb U33115 Streptococcus pneumoniae orff gene, partial cds, competence stimulating peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine protein kinase (comD) and response peptide precursor (comC) Mistidine pr	8942	3		pneumoniae type 19F capsular polysaccharide biosynthesi 19fABCDEFGHIJKLANO) genes, complete cds, and aliA gene,	68	340	432
emb x371727 SPIS S. pneumoniae DNA for insertion sequence ISI318 (823 bp) emb x94909 SPIG S. pneumoniae iga gene gb L07752 Streptococcus pneumoniae attachment site (attB), DNA sequence gb L07752 Streptococcus pneumoniae attachment site (attB), DNA sequence gb U33315 Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gln genes gb U33315 Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response peptide precursor (comC), histidine protein kinase (comD) and response peptide precursor (comC), histidine protein kinase (comD) and response peptide precursor (comC), histidine protein kinase (comD) and response peptide precursor (comC), histidine protein kinase (comD) and response peptide precursor (comC), histidine protein kinase (comD) and response peptide precursor (comC) ones complete cds, trNA-Arg and trNA-CDD) and response peptide precursor (comC) ones complete cds, trNA-Arg and trNA-CDD) and response peptide precursor (comC) ones complete cds, trNA-Arg and trNA-CDD) and response peptide precursor (comC) ones complete cds, trNA-Arg and trNA-CDD) and response peptide precursor (comC) ones complete cds, trNA-Arg and trNA-CDD) and response peptide precursor (comC) ones complete cds, trNA-Arg and trNA-CDD ones complete cds, trNA-CDD ones complete cds, trNA-CDD ones complete cds, trNA-CDD ones cd.	3910 3	458	emb 277726	DNA for insertion sequence ISI318 (1372	86	453	453
gb L07752 Streptococcus pneumoniae attachment site (attB), DNA sequence gb L07752 Streptococcus pneumoniae attachment site (attB), DNA sequence gb U33315 Streptococcus pneumoniae orff, gane, partial cds, competence stimulating gp U33315 Streptococcus pneumoniae orff, gane, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gin genes gb U33315 Straptococcus pneumoniae orff, gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gin genes, partial cds, competence stimulating peptide precursor (comC) histidine protein kinase (comD) and response	4304 3	873	emb 277727	DNA for insertion sequence ISI318	96	382	432
gb L07752 Streptococcus pneumoniae attachment site (attB), DNA sequence gb L07752 Streptococcus pneumoniae attachment site (attB), DNA sequence gb U33315 Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes. complete cds, RNA-Arg and tRNA-Gln genes gb U33315 Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comE) mistidine protein kinase (comD) and response regulator (comE) genes. complete cds, RNA-Arg and tesponse	41 5	62			1 25	368	489
gb L07752 Streptococcus pneumoniae attachment site (attB), DNA sequence gb U33315 Streptococcus pneumoniae orfi. gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gln genes gb U33315 Streptococcus pneumoniae orfi. gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, partial cds, competence stimulating regulator (comE) genes complete cds, partial cds, partia	554 7	5	[gb[L07752]	DNA	66	167	204
9b U33315 Streptococcus pneumoniae orfi, gane, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gln genes 9b U33315 Streptococcus pneumoniae orfi, gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, protein kinase (comD) and response	-	827	_	site (attB),	94	1001	882
gb[U3]315 Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes complete de remains and and response		2	96 033315	pneumoniae orft gene, parrial cds, orsor (comc), histidine protein kina omE) genes, complete cds, tRNA-Arg s	66	756	756
GOUDD HID ATULED TO STORE THE STORE	2271 93	_	95/033315/	Streptococcus pneumoniae orfi, gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gin genes	86	1341	1341

S. pneumoniae - Coding regions containing known sequences

Cont ig	OR TO	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
50		3175	2684	gb[U76218]	Streptococcus pneumoniae competence stimulating peptide precursor ComC (comC), histidine kinase homolog ComD (comD), and response regulator homolog ComE (comE) genes, complete cds	66	492	492
50	4	3322	4527	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphrra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genea, complete cds	66	1206	1206
02	5	4573	5343	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putalive setine protease (sphtra), SSSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	111	177
50	9	5532	6917	95 AF000658		66	1386	1386
20		5669	8212	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	1218	1218
20		8214	8471	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphrea), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	86	258	258
20	6	8534	9670	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative setine procease (sphra), SPSpoJ (spspoJ), initiator protein (spdmas) and beta subunit of DNA polymerase III (spdman) genes, complete cds	66	134	1137
22	=	111887	112267	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	66	226	381
22	115	12708	12256	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	353	453
22	116	13165	12662	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	96	504	504
22	23	18398	18910	emb 286112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence [S1515]	95	463	513
22	24	18829	19299	emb 286112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 181515	- 66	443	471
23		5624	4203	emb x52474 SPPL	S.pneumoniae ply gene for pneumolysin	99	1422	1422
23	9	6063	5629	др н17717	S.pneumoniae pneumolysin gene, complete cds	86	197	435
26	-	5500	7	emb x94909 SPIG	S. pneumoniae iga gene	87	3487	5499
56	~	5823	5584	95 047687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete	66	151	240
26		6878	\$685	95 047687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete	100	80	1194

TABLE 1

S. pneumonise - Coding regions containing known sequences

	percent HSP at 1 Joseph 1 Jose	Capil(A.B.C.D.E.F.G.H.I.J.K] genes, dTDP-rhamnose 99 338	JexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose 100 94 162 genes and aliA gene	pneumoniae SS2 dextran glucosidase gene and insertion 97 242 252 02 transposase gene, complete cds	[A, B, C, D, E, E	neumoniae SSZ dextran glucosidase gene and insertion 97 450 450	dextra gene,	Streptococcus pneumoniae maltose/maltodextrin uptake (malx) and two 99 1317 1317 maltodextrin permease (malc and malb) genes, complete cdx	1	cds: malk dens. Complete ade	gene, complete cds: malk game complete cds:	Complete other transfer constants	ptide methionine sulfox		92 238 306	not capital S.C. U. E. F. G. H. I. J. K. genes, dTDP-rhamnose 87 248 264 ines and all A gene	occus pneumoniae type 19F capsular polysaccharide biosynthesis 98 264 504 (cps19fABCDEFGHIJKLMNO) genes, complete cds, and aliA gene,	S.pneumoniae dexB. cpsi4A, cpsi4B, cpsi4C, cpsi4D, cpsi4E, cpsi4F, cpsi4G, 97 696 696 cpsi4H, cpsi4J, cpsi4L, tasA ganes	E. F. G. H.	ccus pneumoniae type 19F capsular polysaccharide biosynthesis
	match gene name	pneumoniae dexB, biosynthesis genes	S.pneumoniae dexB, biosynthesis genes	Streptococcus pneumoniae SS2 sequence ISI202 transposase	S.pneumoniae dexB, capl	Streptococcus pneumoniae SSZ sequence IS1202 transposase	Streptococcus pneumoniae SS2 sequence IS1202 transposase	treptococcus pneum	Streptococcus pneum	Streptococcus pneumo	Streptococcus pneumoniae malA	Streptococcus pneumo	aptococcus pneumo	nomoserine kinase homolog	4	genes	Streptococcus pneumo operon, (cps19fABCE partial cds	pneumoniae dexB, c	S.pneumoniae dexB, c	Streptococcus pneumo
***************************************	match match	emb[283335 SP28 S.	emb[z83335 SP28 5.1	gb 004047 St	emb 283335 SP28 S.p	gb U04047 Str	9b 004047	gb L08611	9b 1.08611 Str	9b L21856 Str	9b L21856 Str	9b L21856 Str	gb U41735 Str	emb[x63602{SPBO S.m.	1335 SP28	-	gb U09239 Str	emb{X85787 SPCP S.pr	emb 283335 SP28 S.pr	9b u09239 Stre
-	(ut)	14854	14924	15173	205	952	1298	1523	2367	3420	2647	4416	7507	10257	1-		1961	15477	16170	16871
-	(nt)	14498	14763	14922	80	503	.780	207	1477	2593	2790	3418	7764	10562	1176		1458	16172	16961	17620
900	91		6	2_		7		-	~	_	-	5		92	-	- i		17	82	61
27 400	e	56	56	56	28	28	28	34	34	34	34	5	7	34	35	1	35	35	35	35

pneumoniae - Coding regions containing known sequences

	i	-			•			
ID ID	2 0	(nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
35	20	19061	17604	emb x85787 SPCP	S.pneumoniae dexB. cps14A, cps14B, cps14C, cps14D, cps14E, cps14G, cps14H, cps14I, cps14I, cps14K, cps14C, tasA genes	96	1458	1458
36	61	18960	18352	95 040786	Streptococcus pneumoniae surface antigen A variant precursor (psaA) and 18 kba protein genes, complete cds, and ORF1 gene, partial cds	66	609	609
36	50	19934	18966	96/053509	Streptococcus pneumoniae surface adhesin A precursor (psaA) gene, complete cds	66	696	696
7.5	-	2743	179	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	66	25.65	
7.6	~	2985	2824	emb 267739 SPPA	S. pneumoniae parc, parE and transposase genes and unknown orf			COCY
37	-	5034	1 3070	emb 267739 SPPA	parc, parE and transposase genes and untrolem	007	162	162
33	-	1.5134	1 5790	emb 267739 SPPA	transposase genes and unknown	66	1965	1965
37	2	1719	5833	emb 267739 SPPA	genes and unknown	66	/50	657
38	119	12969	13268	[gb]H28679			655	339
93		1256	2137	gb U41735 	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete ds	66	882	882
39	m	2405	3370	gb U41735	Streptococcus pneumoniae peptide methlonine suffoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete ds	66	996	996
40	6	5253	1208	gb H29686	S.pneumoniae mismatch repair (hexB) gene, complete cds	66	3001	7000
7	-	6	1037	emb 217307 SPRE	S. pneumoniae rech gene encoding Rech	1 66	1027	200
.	7	1328	2713	emb 234303 SPCI	Streptococcus pneumoniae cin operon encoding the cinA, recA, dinF, lytA genes, and downstream sequences	66	1386	1386
41		3083	4045	9b H13812	S.pneumoniae autolysin (lytA) gene, complete cds			
7	-	3272	3096	8b H13812	(S.pneumoniae autolysin (lyth) gene, complete cds	901		2
7	5	3603	3860	gb M13812	S.pneumoniae autolysin (lytA) gene, complete cds	200		177
41	9	4755	5162	85 13660	Streptococcus pneumoniae ORF, complete cds	c	909	007
7		5270	5716	32 136660	Streptococcus pneumoniae ORF, complete cds	60	442	
41	8	6112	6918	ap r3660	Streptococcus pneumoniae ORP, complete cds	- 86	431	1 208
7	6	6916	7119	ab 136660	Streptococcus pneumoniae ORF, complete cds	100	204	.1 400
41	2	7082	7660	gb L36660	Streptococcus pneumoniae ORF, complete cds	97	552	579
	= j :	7680			Streptococcus pneumoniae ORF, complete cds	1 86	81 +	300
- 1	7	9169	8717	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	353	453
					4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			44.000000000000000000000000000000000000

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	metch	match gene name	percent	HSP nt	ORF nt length
41	2	9533	9132	emb 277725 SPIS	S. pneumoniae DNA for insertion sequence 151381 (966 bp)	1 86	160	402
7	7	6996	9475	emb 282001 SP28	S. pneumoniae pcpA gene and open reading frames	100	189	195
**	5	7190	7555	emb 282001 SP28	S. pneumoniae pcpA gene and open reading frames	1 66	366	366
44	9	8059	7607	7726 SPIS	S. pneumoniae DNA for insertion sequence IS1318 (1372 bp)	1 66	453	453
4	-	8423	8022	emb[277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	95	1 091	402
4	8	8559	8365	emb 282001 SPZ8	S. pneumoniae pcpA gene and open reading frames	100	189	195
48	6	6480	4687	gb L39074	Streptococcus pneumoniae pyruvate oxidase (spxB) gene, complete cds	- 66	1794	1794
49	~	231	2603	gb L20561	Streptococcus pneumoniae Exp7 gene, partial cds	100	216	2373
<u></u>	9	2407	2156	95 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	- 6	242	252
23		2566	2405	emb 283335 SP28	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose blosynthesis genes and alia gene	100	94	162
53		2831	2475	emb 283335 SP28	S.pneumoniae dexB; capilA,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
54	=_	12409	11105	emb 283335 SP28	S. preumoniae daxb, capilA, B.C.D.E, F.G.H, I.J.K genes, dTDP-rhamnose biosynthesis genes and alia gene	67	591	1305
55	22	20488	19949	emb 284379 HS28	S.pneumoniae dfr gene (isolate 92)	- 66	540	540
1 61	Ξ	11864	9900	emb 216082 PNAL	Streptococcus pneumoniae aliB gene	1 86	1965	1965
63	_		239	gb M18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	100	237	237
63	~	233	2611	gb H18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	66	2330	2379
63		2557	2823	gb H18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	- 66	266	267
63	7	2958	4664	gb M18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	- 56	1 69	17071
1 67	9	3770	3399	gb L20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	1 96	372	372
1 67	-	7161	1714	gb \u20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	- 66	2938	2991
70	-	-	702	gb H14340	S.pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds	1000	693	702
0,	~	678	1160	gb H14340	S.pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds	100	483	483
1 70		2490	1210	gb M14339	S.pneumoniae DpnII gene region encoding dpnM, dpnA, dpnB, complete cds	1 86	462	1281
1 70		4230	4424	gb J04234	S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds	- 66	147	198
70	8	1 618	4316	gb J04234	S. pneumoniae exodeoxyribonuclease (exoA) gene, complete cds	66	881	882
				,		•	•	+

S. pneumonise - Coding regions containing known sequences

· - - - - - - - - - - - - - - - - - - -	Cont ig ID	100 E	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt
2 1994 1911 1912 1915 191	20	2	8108	9874	gb L20562	gene, partial	93	234	1767
1 471 133 seab 22650 280th St. promomoniae max-box 13 13 13 13 13 13 13 1	11	722	27964	28341		S. pneumoniae mmsA-Box	93	233	378
1 131	ננ	~	4607	3552		a subunit, ATPase	97	102	1056
1 1552 1379 9h 151810 Streetococcus promonites of transposase, (comb and come) and SNICAR synthetese 98 318 2 2622 1399 emb 283315 5728 Streetococcus promonite decreased (comb and come) and SNICAR synthetese 98 318 3 2622 1399 emb 283315 5728 Streetococcus promonite decreased (comb and come) and SNICAR synthetese 99 319 4 3341 3233 emb 283315 5728 Streetococcus promonite decreased (comb and come) and SNICAR synthetese 99 319 5 1311 3 emb 77729 5786 Streetococcus promonite signal peptidase (spil) gene, complete cds 99 319 6 1312 1320 1314 gb 193376 Streetococcus promonite signal peptidase (spil) gene, complete cds 99 319 8 1320 1318 1320 gb 193376 Streetococcus promonite signal peptidase (scal) gene, complete cds 99 319 9 1328 1320 gb 193376 Streetococcus promonite signal peptidase (scal) gene, complete cds 99 319 9 2324 2325 gb 193380 Streetococcus promonite signal peptidase (scal) gene, complete cds 99 319 10 4652 631 gb 193378 Streetococcus promonite signal peptidase (scal) gene, complete cds 99 319 10 4652 631 gb 193378 Streetococcus promonite signal peptidase (scal) gene, complete cds 99 319 10 4652 4318 gb 193378 Streetococcus promonite signal peptidase (scal) gene, complete cds 99 318 10 4328 1307 gb 135301 Streetococcus promonite signal peptidase (scal) gene, complete cds 99 318 12 2326 2346 2318 gb 135331 Streetococcus promonite bita-N-acetylhaxosaminidase (attri) gene, complete cds 99 3324 12 1325 1335 1335 1355	13	-	471	133	emb x63602 SPB0	S. pneumoniae mmsA-Box	91	193	339
4 3464 2373 seb Z831315 ST28 Sprenumentiae transposses, (com. And ComB) and SMICAR synthetise 96 318 318 3262 3199 seb Z831315 ST28 Sprenumentiae dext, cptl.A.B.C.D.E.F.C.A.I.J.K.I genes, dTOP-Thamose 93 624 318 3233 seb Z73131 ST28 Sprenumentiae dext, cptl.A.B.C.D.E.F.C.A.I.J.K.I genes, dTOP-Thamose 91 319	٤٢	-	1 3658	7.6	[gb]J04479]	gene,	66	2682	2682
4 3341 2333 cmm 28333515F28 S. pneumoniae dexb. capill, B.C.D.E.F.G.H.I.J.Ki genes, dTDP-rhamose	۲,	œ ——	4864	5379	gb M36180	transposase, (comA and comB) and	86	318	516
4 1341 1353 emb ZA3135 8728 S.pneumonilae dasB. capillA.B.C.D.E.F.G.H.I.J.K.J genes. dTDP-rhamose 91 819	77	<u>-</u> -	3622	1999		cap1(A, B, C, D, E, F, G, H, I, J, K) genes, s and alla gene	95	624	624
1 141 3 1240 125 1258 6mb X77249 SPR6 S.pneumoniae [R6] CiaR/Cial genes 191 191 191 191 191 191 192	"		3341	2523			91	819	819
10 11346 10016 991 991 991 991 991 991 991 992 993 994 995 9	78	-	34)	7		S. pneumoniae (R6) claR/claH genes	1 66	339	339
11 12402 11414 49b 193776 Streptococcus pneumoniae riganal paptidase (spi) gene, complete cds 97 621 621 112 12381 112704 49b 193576 Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds 98 953 951 951 951 952 95	78	7	1095	325	emb x77249 SPR6	S. pneumoniae (R6) claR/claH genes	1 . 66	177	177
11 12402 11414 qp U93576 Streptococcus pneumonide Tibonuclease HII (rnhb) gene, complete cds 95 951 1 1 1 1 1 1 1 1 1	82	0	111436	10816	112/060/96	pneumoniae signal peptidase I (spi) gene, complete	1 6	621	621
12 12381 12704 gb u93576 Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds 100 51 290 10	85	=	12402	111434	gb U93576	gene, complete	1 86	953	696
10 4662 6851 gb H36180 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase 99 2190	82	112	112381	112704	195[093576]	gene, complete	100	51	324
10 4662 6831 gb H36180	63		3212	3550	emb 277727 SPIS		97	290	339
11 6849 8213 gb M36180 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase 99 1365 1268 13017 gb H36180 Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase 99 855 13017 gb L15190 Streptococcus pneumoniae SAICAR synthetase (purC) gene, complete cds 100 107 107 108 113017 gb L15923 Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete 98 172 172 17350 gb L15923 Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete 99 3826 175 1750 1	83	<u></u>	4662	6851	gb M36180 		66	2190	2190
12 9283 13017 90 90 90 90 90 90 90 9	8	=	6849	8213	gb M36180	pneumoniae transposase, (comA and comB) complete cds	66	1365	1365
13 9283 13017	8	115	8236	0606	95 H36180	pneumoniae transposase, complete cds	66	855	858
23 22147 23313 gb L36923 Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete 98 218 21268 23450 gb L36923 Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete 98 172 23505 gb L36923 Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete 99 3826 27527 23505 gb L36923	83	=	9283	13017	gb L15190	pneumoniae SAICAR synthetase (purC) gena,	1001	107	3735
24 23268 23450 gb L36923 Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete 98 172 23505 gb L36923 Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete 99 3826 cds	83	=	22147	23313	gb L36923	Straptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete	86	218	1167
25 [27527 [23505 gb L36923] Streptococcus pneumoniae beta-N-acetylhexosaminidase (strii) gene, complete 99 3826 cds	83	- 54	23268	23450		gene,	86	172	183
	83	52	727527	23505			66	3826	4023

TABLE 1 S. pneumoniae - Coding regions containing known sequences

			10000					
Contig	10	Start (nt)	Stop (nt)	metch	match gene name	percent	HSP nt length	ORF nt length
83	56	28472	17772	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete	66	416	702
88		4554	6173	emb 283335 SP28	S.pneumoniae dexB, capl[A, B, C, D, E, F, G, H, I, J, K] genes, dTDP-rhamnose biosynthesis genes and alia gene	86	697	1620
87	9	1 5951	5316	emb 277725 SPIS	S. Dneumoniae DNA for insertion sequence IS1381 (966 bp)	96	439	969
88	<u>~</u> _	2957	3511	gb M36180	Streptococcus pneumoniae transposase, (comA and comb) and SAICAR synthetase (purC) genes, complete cds	94	555	555
88	-	3466	4269	[gb[H36180]	Streptococcus pneumoniae transposase, (comA and comB) aqd SAICAR synthetase (purC) genes, complete cds	94	804	804
89	2_	9878	10093	95 1136180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	211	216
89		10062	10412	emb 283335 SP28	S.pneumoniae dexB. capilA, B.C.D.E.F.G.H.I.J.Kl genes. dTDP-rhamnose biosynthesis genes and aliA gene	97	335	351
93	2	5303	4941	emb x63602 SPBO	S. pneumoniae mmsA-Box	89	237	363
97		1708	1520	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msra) and homoserine kinase homolog (thrB) genes, complete cds	91	140	189
66		68	700	emb 283335 SPZ8	S.pneumoniae dexB. capila, B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	93	592	612
66	~	1773	277	emb x17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	1 66	966	666
96	-	2794	1712	emb x17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	1 66	1083	1083
66	-	3732	2788	emb x17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	1001	945	945
66	5	5249	3714	SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	1000	1536	1536
66	9	1 7262	7725	emb X17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	1 66	1986	1986
101		216	1538	emb x54225 SPEN	S. pneumoniae epuk and endA genes for 7 kDa protein and membrane endonuclease	66	146	1323
101	~	1492	1719	emb x54225 SPEN	S.pneumoniae epuk and genes for 7 kDa protein and membrane endonuclease	66	228	228
101		1694	1855	emb X54225 SPEN	S.pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease	100	162	162
101	4	1701	2582	emb x54225 SPEN	S.pneumoniae epuk and endA genes for 7 kDa protein and membrane endonuclease	100	882	882
103		5556	5041	emb 295914 SP29	Streptococcus pneumoniae sodA gene	1001	396	516
104	2	1347	1556	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	83	206	210
						-+	.+	+

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
105		5381	5028	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	98	353	354
105	9	6809	5379	emb[267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	- 86	8.4	711
107	-	2785	1880	emb X16022 SPPE	S. pneumoniae penA gene	98	72	906
100	- 2	2913	4988	emb x16022 SPPE	S. pneumoniae penA gene	66	1692	2076
107	9	4981	5888	emb x13136 SPPE	Streptococcus pneumoniae penA gene for penicillin binding protein 28 lacking N-term. (penicillin resistant strain)	12	107	615
108	6	8906	8718	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	95	342	351
108	21	11308	10922	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	- 66	199	387
109	~	2768	2241	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence 151381 (966 bp)	96	61	528
109	-	2688	1 2855	emb 277726 SPIS	S.pneumoniae DWA for insertion sequence IS1318 (1372 bp)	96	148	168
1 109	<u>د</u>	2862	3269	emb 277727 spis	S.pneumoniae DNA for insertion sequence IS1118 (823 bp)	97	353	408
109	9	5320	3584	gb H18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	100	371	7671
a		431	m	ab m36180 	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	26	429	429
113	01	9788	8532	emb x99400 SPDA	S. pneumoniae dack gene and ORF	66	1257	1257.
113	Ξ	9870	10985	emb x99400 SPDA	S.pneumoniae dack gene and ORF	66	1116	1116
314		2530	2030	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	95	481	501
115	=_	11303	10932	gb U04047	Streptococcus pneumoniae SSz dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	372	372
117	-	897	3302	emb x72967 SPNA	S. pneumoniae nanA gene	1 66	2402	2406
1117	7	13277	3833	emb x72967 SPNA	S. pneumonise nank gene	66	237	555
711	m	4327	3899	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	86	429	429
121	7	1369	1941	95 U72720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	202	573
121	<u></u>	2412	4253	95 U72720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	1842	1842
122		3066	5587	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	64	451	522
•						•		• 1 1 1 1 1 1 1 1 1

S. pneumoniae - Coding regions containing known sequences

Cont ig ID	ORF TD	Start (nt)	Stop (nt)	acession	match gene name	percent ident	HSP nt length	ORF nt Jength
125		1811	189	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	92	66	1623
128	5	12496	11204	emb 283335 SP28	S. pneumoniae dexB, capilA, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and alia gene	91	705	1293
134	_	-	492	emb Y10818 SPY1	S.pneumoniae spsA gene	66	203	492
134	~	556	2652	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	986	685	2097
134		1160	837	emb Y10818 SPY1	S. pneumoniae spsA gene	98	324	324
134	-	3952	2882	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	86	215	101
134	60	7992	9848	gb U12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	66	285	1857
134	6	9846	10622	95 012567	Streptococcus pneumoniae Pl3 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds. and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	66	570	111
134	9	10805	11122	95 012567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	001	318	318
137	2	7970	8443	gb u09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLMNO) genes, complete cds, and aliA gene, partial cds	06	420	474
137	14	8590	8775	emb z83335 sP28	S.pneumoniae dexB, cep1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	94	174	186
137	115	8773	8967	emb 283335 SP28	S.pneumoniae dexB. cap1[A,B,C,D,E,P,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	195	195
137	16	9223	9687	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	96	446	465
137	11	9641	10051	emb 277777 SPIS	S.pnewmoniae DNA for insertion sequence IS1318 (823 bp)	96	293	411
139	01	12998	12702	emb x63602 SPBO	S. pneumoniae mmsA-Box	06	234	297
141	8	7805	8938	emb 249988 SPMM	Streptococcus pneumoniae mmsA gene	66	338	1134
141	6	8936	10972	emb 249988 SPMN	Streptococcus pneumoniae mmsA gene	66	2037	2037
141	01	111472	12467	етр 249988 ЗРИМ	Streptococcus pneumoniae mmsA gene	100	1 94	966
142	2	257	814	gb #80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	86	174	558
142	_ 	787	957	gb H80215	Streptococcus pneumoniae uva402 protein gene, complete cds	100	142	171
142	-	980	3022	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	95	1997	2043
						•	+	+

S. pneumoniae - Coding regions containing known sequences

1				*************				
Contig	ID	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
142	5	3020	3595	gb H80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	153	576
145	-	-	219	emp 232132 SPAL	S. pneumonise aliA gene for amiA-like gene A	- 6	185	219
145	7	171	1994	ap 120556	Streptococcus pneumoniae plpA gene, partial cds	66	1811	1824
145	-	2287	7599	emb 247210 SPDE	S.pneumoniae dexB, caplA, caplB and caplC genes and orfs	66	1052	5313
145		9934	7766	gb H90527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete	66	2169	2169
145	s	10488	9922	gb H90527	Streptococcus pneumoniae penicillin-binding protein (pdnA) gene, complete	66	512	567
146	-	159	~	emb 282002 SP28	S. pneumoniae pcp8 and pcpC genes	86	156	156
146	~	344	06	emb 282002 SP28	S. pneumoniae pcp8 and pcpC genes	86	255	255
146	91	11795	110794	emb 282002 SP28	S.pneumoniae pcpB and pcpC genes	85	276	1002
147	=	10678	10202	emb 221702 SPUN	S.pneumoniae ung gene and mut.K genes encoding uracil-DNA glycosylase and 8-oxoddTP nucleoside triphosphatase	86	477	477
147	7	11338	10676	emb 221702 SPUN	S. pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- oxodoTP nucleoside triphosphatase	66	663	663
148		6006	8815	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductese (msrA) and homoserine kinase homolog (thrB) genes, complete cds	90	180	195
156	-	1154	1402	emb x63602 SPBO	S. pneumoniae masA-Box	94	185	249
159	13	9048	8521	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	526	528
160		-	147	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit.	100	142	147
160	~	179	868	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	66	720	720
160		906	1406	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	95	501	501
160	-	1373	1942	emb[226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	87	306	570
161	-	-	984	emb(X77249 SPR6	S. pneumoniae (R6) claR/claH genes	1 66	984	984
161		6910	7497	emb x83917 SPGY	S. pneumoniae orflgytB and gyrB gene encoding DNA gyrase B subunit	1 66	437	588
161	-	7443	1	emb x83917 SPGY	S. pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit	86	1912	1944
163	-	~	2155	[gb[L20559]	Streptococcus pneumoniae Exp5 gene, partial cds	1 86	327	2154
						********	+	+

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	: ~ =	match gene name	percent	HSP nt	ORF nt
165		32	1618	gb J01796	S.pneumoniae malX and malH genes encoding membrane protein and amylomaltase, complete cds, and malP gene encoding phosphorylase	66	1587	1587
165	~	1608	3902	gb J01796 	S.pneumoniae malX and malM genes encoding membrane protein and amylomaltase, complete cds, and malP gene encoding phosphorylase	100	280	2295
166	-	378	-	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	100	375	375
166	-	1507	320	emb Y11463 SPDN	Streptococcus pneumoniae dhaG, rpoD, cpoA genes and ORF3 and ORF5	66	1188	1188
166	-	3240	1432	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	66	563	1809
1 167	-	1 1077	328	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	96	155	750
167	7	1844	666	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	86	405	846
167	-	2714	1842	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	97	604	873
167	-	3399	2641	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	- 66	703	759
168	-	-	2259	gb L20558	Streptococcus pneumoniae Expd gene, partial cds	1 66	282	2259
170	92	7338	7685	emb 277726 SPIS	S pneumoniae DNA for insertion sequence IS1318 (1372 bp)	95	315	348
172	9	2462	4981	95 047625	Streptococcus pneumoniae formate acetyltransferese (exp72) gene, partial cds	97	365	2520
175	-	373	50	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	68	353	354
175	-	1843	3621	emb 247210 SPDE	S.pneumoniae dexB, caplA, caplB and caplC genes and orfs	95	89	6771
176	5	3984	2980	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	100	573	1005
178	-	3	425	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	95	423	423
179	-	426	70	emb z83335 SP28	S.pneumoniae dexb. capif, B.C.D.E.F.G.H.I.J.Kl genes, dTDP-rhamnose biosynthesis genes and alia gene	66	338	357
180		1 3084	1855	emb x95718 SPGY	S. pneumoniae gyrk gene	1 66	381	1230
186	-	714	-	emb 279691 SOOR	S. pneumoniae yorf[A, B, C, D, E], ftsl., pbpX and regR genes	86	- 65	1117
186	~	2254	809	[emb 279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	98	315	1647
186		1 707	880	emb 279691 SOOR	S. pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	98	174	174
189	-	2	259	db U72720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	258	258
189	~	009	385	95 072720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	86	204	216
						4 4 4 4 6 6 6 6	4	•

S. pneumoniae. - Coding regions containing known sequences

189 3 1018 851 gb U72720 191 9 7829 7524 emb x6360 194 1 1 729 gb H36180 199 2 1117 881 emb 28333 199 4 1499 1762 emb 28333 199 4 1499 1762 emb 28333 199 4 1499 1762 emb 28333 199 2456 2123 emb 28333 2456 2123 emb 28333 2456 2123 emb 28333 2456 2327 gb H28678 222 1 417 4 emb 28333 2236 4238 emb 28333 2237 gb H28678 2237 gb H28678 2237 gb H28678 2237 gb H28678 2237 gb H38678 2237 g	9b U72720 9b U72720 emb X63602 SPBO 9b H36180	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	168	
4 1012 2154	372720 X63602 SPB0				168
9 7829 7524 1	x63602 SPB0	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	1062	1163
1 1 729 1762 4 1499 1762 1761 2284 1 1977 337 1 1145 3 1 1 1 1 1 1 1 1 1	198196	S.pneumoniae mmsA-Box	95	234	306
2 1117 881 1762 1761 2284 1762 1761 2284 1762 1761 1762	_	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	91	728	729
4 1499 1762 1781 2284 1 1977 337 1 1145 3 1 1 1 1 1 1 1 1 1	283335 SP28	S.pneumoniae dexB, capl(A.B.C.D,E.P.G.H.I.J.K) genes, MTDP-rhamnose blosynthesis genes and aliA gene	96	211	237
1 1977 337 1 1145 3 1 1 1 1 1 1 1 1 1	5 SP28	S.pneumoniae dexB. cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	88	248	264
1 1977 337 1 59 2296 3 2455 2123 1 368 12 1 417 4 1 417 4 1 1 804 1 1 625 1807	5 SP28	S.pneumoniae dexB. capilA,B,C,D,E,F,G,H,1,J,K genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	504	504
1 1145 3 3 2455 2123 1 168 12 3 2650 2327 1 417 4 1 417 4 1 1 804 1 1625 1807	_	Streptococcus pneumoniae Exp9 gene, partial cds	- 66	342	1641
3 2455 2123 1 368 12 1 417 4 1 417 4 1 1 1 804 1 1625 1807	_	Streptococcus pneumoniae expl0 gene, complete cds, recA gene, 5' end	66	1143	1143
3 2455 2123 1 368 12 3 2650 2327 1 417 4 1 1 1 804 1 1 1 804	_	Streptococcus pneumoniae pneumococcal surface protein A PspA (pspA) gene, complete cds	06	471	2238
3 2650 2327 1 417 4 1 417 4 3 5266 4238 1 1 804	8245 5	S.pneumoniae dexB, capilA,B,C,D,E,F,G,H,I,J,K genes, drDP-rhamnose biosynthesis genes and aliA gene	96 .	332	333
3 2650 2327 1 417 4 3 5266 4238 1 1 804 1 1 1 804	emb 283335 SP28	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, drDP-rhamnose biosynthesis genes and aliA gene	66	338	357
3 5266 4238 1 1 804 3 1625 1807		S.pneumoniae promoter sequence DNA	86	98	1 456
3 5266 4238 1 1 804 3 1625 1807	emb 283335 SP28	S.pneumoniae dexB, capl(A.B.C.D.E.P.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	8	414	414
3 1625 1807	36 SP	Streptococcus pneumoniae 1dh gene	- 66	1029	1024
3 1625 1807	_	S. pneumoniae recP gene, complete cds	95	484	1 408
		Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	96	178	183
249 3 921 1364 emb 283335	S 824S 5EE82	.pneumoniee dexB. capi(A,B.C,D.E,P.G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	96	643	444
253 1 362 3 gb M36180		Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	360	360
253 5 1238 2050 emb 283335	SPZB	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	95	420	813

sedneuces
known
containing
regions
Coding
pneumoniae -
si.

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
253	9	2069	2572	emb z83335 SP28	S.pneumoniae dexB. cap1(A,B,C,D,E,P,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	1dent	S04	length 504
255	-	-	800	emb 282002 SP28	S.pneumoniae pcpB and pcpC genes	97	12.5	905
255	7	798	1841	2820	S. prieumoniae pcpB and pcpc genes		672	1 1044
255	-	2493	1969	emb 267739 SPPA	Spheumonise parc, park and transposase genes and unknown orf	65	435	363
257	- 2	985	07.7	emb[X17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin	96	211	
257	<u>-</u>	1245	907	95 136180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete ds	-6	339	339
267	7	495	1208	gb U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetese (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	66	8	714
267	n	1291	7722	95 016156	Streptococcus pneumoniae dihydroptercate synthase (sulA), dihydrofolate synthetase (sulB), quanosine triphosphate cyclohydrolase (sulD) genes complete cds	- 6	755	987
267	4	2261	3601	95 016156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthatese (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	86	1341	1341
267	5	3561	4136	95 016156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthatase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	66	576	576
267	9	4164	4949	95 016156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthatase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	66	748	786
267		5544	5140	95 016156	Streptococcus pneumoniae dihydropteroate synthase (aulA), dihydrofolate synthetese (aulB), gannosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	100	186	405
268	7	1793	1990	emb x63602 SPBO	S. pneumoniae mmsA-Box	- 68	194	
271	-	562	104	gb H29686	S. pneumoniae mismatch repair (hexB) gene, complete cds	6	160	454
291	-	75	524	95 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 1S1202 transposase gene, complete cds	96	450	450
291	7	1001	525	emb[283335 SP28	S.pneumoniae dexB, capi(A,B,C,D,B,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	87	205	77.9
291		807	559	emb 283335 SP28	S.pneumoniae dayB, cap1 (A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and alia gene		170	249
291		1374	1099	9Ы/ИЗ6180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	85	264	276
	•					-	-	-

S. pne	
-	
TABLE	

Contig ORF	ORF.			match	match gene name			*	
	2	(30)	(100)	acession		dent	HSP nt	ORF of	
293		6	1 1673	emb 267740 SPGY	S.pneumoniae gyrB gene and unknown orf		and and	rengru	
296	-	1434	151	emb 247210 SPDB		96	553	1671	
1 317	-	157	510	emb 267739 SPPA	S.pneumoniae parC, parE and transnowns nones and units	66	430	1284	
325	~	1237	485	emb 283335 SP28	S. pneumoniae dexB, cepi (A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose	91	299	354	
326	-	-	462	emb 282001 SP28	S. pneumonlae pcpA gene and open reading (rames				
327	-	603	94	emb 283335 SP28	S. pneumonise dexB. capilA, B.C. D.E.F. G, H.I.J, K. genes, 4TDP-rhamnose blosynthesis. genes and alia gene	94	233	540	
334	-	153	545	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) ganes, complete cds	87	91	393	
336		308	93	emb 226850 SPAT	S.pneumoniae (H222) genes for ATPase a subunit. ATPase b subunit and ATPase c subunit	- 16	102	216	
360	-	-	519	emb 267739 SPPA	39 SPPA S.pneumoniae parC, parE and transposase genes and unknown orf	- : -	- •		
360	-	1598	1960	emb 283335 SP28	S. pneumoniae dexB. capilA.B.C.D.E.P.G.H.I.J.K] genes, dTDP-rhamnose biosynthesis genes and alla gene	2 2	353	363	
362	-	673	~	emb 283335 SP28	S. pneumonise dexB. cap1(A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and alia gene	96	63	672	
362	7	1169	728	gb U04047	Streptococcus pneumonlae SS2 dextran gucosidase gene and insertion sequence iS1202 transposase gene. complexe As	96	441	441	
384	-	347		emb x85787 SPCP	S. pneumoniae dexB. cps14A, cps14B, cps14C, cps14D, cps14E, cps14G, cps14G, cps14T, cps14T, cps14T, cps14C, cp		- 54	237	
	++	+		**************************************	the same of the sa	-	-		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	•		٠.					
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	# sim	1 ident	length (nt)
228	- 5	1760	1942	pir F60663 F606	translation elongation factor Tu - Streptococcus oralis	100	100	183
319	-	2	205	gi 984927	neomycin phosphotransferase (Cloning vector pBSL99)	100	100	204
260		2	1138	pir F60663 F606	translation elongation factor Tu - Streptococcus orelis	66	86	1137
25	7	486	1394	gi 1574495	hypothetical (Haemophilus influentae)	86	96	606
94		685	1002	91 310627	phosphoenolpyruvate:sugar phosphotransferase system HPr (Streptococcus mutans)	86	93	318
312	-	190	7	gi 347999	ATP-dependent protease proteolytic subunit (Streptococous salivarius)	86	98	189
329	-	1	807	91 924848	inosine monophosphate dehydrogenase (Streptococcus pyogenes)	86	96	807
336	~	1,290	589	gi 987050	lac2 gene product (unidentified cloning vector)	86	98	300
181	6	5948	7366	191 153755	phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]	97	94	1419
312	- 2	1044	361	gi 347998	uracil phosphoribosyltransferase [Streptococcus salivarius]	97	88	684
32	8	6575	7486	Sp P37214 ERA_S	GTP-BINDING PROTEIN ERA HOMOLOG.	96	16	912
\$	<u> </u>	951	2741	gi 153615	phosphoenolpyruvate:sugar phosphotransferase system enzyme I [Streptococcus salivarius]	96	92	1791
127	-	-	168	gi 581299	initiation factor IF-1 (Lactococcus lactis)	96	89	168
128	2	10438	11154	91 1276873	DeoD (Streptococcus thermophilus)	96	93	717
181	-	1362	1598	191 46606	lacD polypeptide (AA 1-126) [Staphylococcus aureus]	96	80	237
218	-	1	834	91 1743856	intrageneric coaggregation-relevant adhesin (Streptococcus gordonii)	96	93	834
319	~	115	\$	91 208225	heat-shock protein 82/neomcyn phosphotransferase fusion protein (hsp82-neo) [unidentified cloning vector]	96	96	327
24	2	8622	10967	gn1 PID d100972	Pyruvate formate-lyase (Streptococcus mutans)	95	- 68	2346
181	~	909	1289	gi 149396	lacb (Lactococcus lactis)	95	1 68	684
46	_	3410	3045	gi 1850606	YixM (Streptococcus mutans)	1 96	86	366
89	2	1 2797	7337	gi 703442	thymidine kinase [Streptococcus gordonii]	94	98	636
148	6	6431	7354	191 995767	UDP-glucose pyrophosphorylase (Streptacoccus pyogenes)	76	85	924
160		4430	5848	91 153573	H+ ATPase (Enterococcus faecalis)	96	87	1419
2		4598	3513	gi 153763	plesmin receptor (Streptococcus pyogenes)	- 66	98	1086
12	- i	787	6204	91 1103865	formyl-tetrahydrofolate synthetase (Streptococcus mutans)	93	84	1674
							*	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	08.F	Start (nt)	Stop (nt)	match	match gene name	E is	* ident	length (nt)
69	Ξ	4734	5120	91 40150	L14 protein (AA 1-122) [Bacillus subtilis]	66	87	387
89	-	53	1297	91 47341	antitumor protein (Streptococcus pyogenes)	1 93	87	1245
80	-	3	299	gn1 PID d101166	ribosomal protein S7 (Bacillus subtilis)	66	84	297
127	-	695	1093	91 142462	ribosomal protein S11 (Bacillus subtilis)	1 93	98	399
160	2	1924	3462	191 1773264	ATPase, alpha subunit (Streptococcus mutans)	66	85	1539
211	5	3757	3047	91 535273	aminopeptidase C (Streptococcus thermophilus)	66	82	1117
292	-	16	564	91 149394	lacB [Lactococcus lactis]	66	- 06	.549
366	-	197	-	(91 295259	Lryptophan synthase beta subunit (Synechocystis sp.)	- 63	91	195
25	-	1392	1976	91 1574496	hypothetical (Haemophilus influentae)	92	80	585
36	121	120781	19927	gi 310632	hydrophobic membrane protein (Streptococcus gordonii)	92	86	855
181	7	1 1265	1534	gi 149396	lacD [Lactococcus lactis]	92	83	270
181	_	3662	4060	91 149410	entyme III [Lactococcus lactis]	92	83	399
32	-	5631	3937	gn1 PID e294090	[fibronectin-binding protein-like protein A [Streptococcus gordonii]	16	85	1695
96	~	3054	1462	gi 1850607	signal recognition particle Ffh (Straptococcus mutans)	16	84	1593
65	9	4442	4726	pir S17865 S178	ribosomal protein S17 - Bacillus stearothermophilus	16	80	285
77	~	260	1900	gi 287871	groEL gene product (Lactococcus lactis)	16	82	1641
84	-	2	2056	91 871784	Clp-like ATP-dependent protesse binding subunit (Bos taurus)	91	1 61	2055
66	8	110750	9272	gi 153740	sucrose phosphorylase (Streptococcus mutans)	16 1	94	1479
66	6	111947	11072	g1 153739	membrane protein (Streptococcus mutans)	16 1	78	876
127	5	2065	2469	pir 507223 R5BS	ribosomal protein L17 - Bacillus stearothermophilus	91	78	405
132	9	9539	9390	gi 143065	hubst [Bacillus stearothermophilus]	16	89	150
137	8	4765	6153	gn1 P1D d100347	Na+ -ATPase beta subunit (Enterococcus hirae)	16	1 67	1389
151		11119	9734	91 1815634	Glutamine synthetase type 1 (Streptococcus agalactiae)	16	82	1386
201	7	1798	278	91 2208998	dextran glucosidase DexS Streptococcus suis	91	1 61	152I
222	2	673	1839	[91]153741	ATP-binding protein (Streptococcus mutans)	91	85	1167
293	5	4113	4400	gi 1196921	unknown protein [Insertion sequence [5861]	91	1 1	288
32		6166	6570	pir A36933 A369	diacylglycerol kinase homolog - Streptococcus mutans	06	- 11	405
					◆ 8 8 8 8 9 7 1 1 4 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	ari	(nt)	(nt)	acession		ais —	1 ident	length (nt)
33	~	841	527	. 60 1	unknown protein (Insertion sequence [3861]	06	70	315
48	[27	120908	19757	gn1 P1D e274705	lactate oxidase (Streptococcus iniae)	06	80	1152
55	121	19777	(18515	gn1 PID e221213	Clpx protein [Bacillus subtilis]	06	75	1263
26	7	111	7.6	gi 1710133	[flagellar filament cap (Borrella burgdorferi)	06	05	261
9	-	7	909	gi 1165303	[13 (Bacillus subtilis)	06	75	909
P17	-	~	988	91 153562	aspartate beta-semialdehyde dehydrogenase (EC 1.2.1.11) [Streptococcus mutans]	06	08	987
120	-	1345	1 827	191 407880	ORF1 (Streptococcus equisimilis)	- 06	75	519
159	12	0694	8298	gi 143012	GMP synthetase [Bacillus subtilis]	06	84	609
166	4	4076	3282	91 1661179	high affinity branched chain amino acid transport protein (Streptococcus mutans)	06	78	795
183	-	28	1395	91 308858	ATP:pyruvate 2-0-phosphotransferase [Lactococcus lactis]	06	196	1368
161		1 2891	1662	91 149521	tryptophan synthase beta subunit [Lactococcus lactis]	1 06 1	78	1230
198	~	1551	436	91 (2323342	(AF014460) CcpA (Streptococcus mutans)	1 06 1	76	1116
305	-	37	783	91 1573551	asparagine synthetase A (asnA) (Haemophilus influenzae)	06	80	747
	_	2285	3343	91 149434	putative [Lectococcus lactis]	69	1 86	1059
46	8	757	7362	pir A45434 A454	ribosomal protein L19 - Bacillus stearothermophilus	89	1 94	216
49	6	8363	10342	91 153792	recP peptide (Streptococcus pneumoniae)	68	83	1980
21	14	18410	19447	gi 308857	ATP: D-fructose 6-phosphate 1-phosphotransferase [Lactoccccus lactis]	89	81	1038
57	=	9896	10669	gn1 P1D d100932	H2O-forming NADH Oxidase (Streptococcus mutans)	1 68 1	1 44	984
65	5	2418	2786	91 1165307	S19 (Bacillus subtilis)	1 68 1	81	369
65	8	3806	4225	sp P14577 RL16_	50S RIBOSOMAL PROTEIN L16.	1 68 1	82	420
65	18	8219	8719	91 143417	ribosomal protein SS [Bacillus stearothermophilus]	1 68 1	1 94	501
13	6	6337	5315	gi 532204	prs (Listeria monocytogenes)	1 68 1	0,4	1023
76	3	3360	1465	gn1 PID e200671	lepA gene product (Bacillus subtilis)	89	1 9/	1896
66	9	12818	11919	91 153738	membrane protein (Streptococcus mutans)	89	1 65	900
120	~	3552	1300	gi 407881	stringent response-like protein (Streptococcus equisimilis)	- 68	1 62	2253
122	5	4512	2791	gn1 PID e280490	unknown (Streptococcus pneumoniae)	- 68	81	1722

S. pneumoniae - Putative coding regions of novel proteins similar to known orn

1 669 4 91 6 3050 3934 91 8 4033 5751 91 1 431 838 91 1 431 838 91 1 11839 10535 5p 1 13 5497 6669 pir 2 611 1468 91 3 3636 1108 91 4 1770 2885 94 4 1770 2885 94 5 2387 2398 94 6 4140 3613 94 6 4140 3613 94 7 800 957 91 8 800 957 91 9 800 957 91 1 80 957 91 1 80 957 91 1 80 957 91 1 80 957 91 1 80 957 91 1 80 957 91 1 80 957 91 1 6 2017 3375 91 1 6 2017 3375 91 1 6 2017 3375 91 1 658 337 91 1 658 951 91 1 658 951 91 1 658 951 91 1 658 951 91 1 658 951 91 1 658 951 91 1 658 951 91 1 658 951 91 1 658 951 91 1 1 1 1 1 1 1 1	Contig	ID	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
6 1000 30.34 [4] [191243.] Directive (Increasedous lacita) 100 8 4.033 59.35 [5] [1915421.] Increasedous lacital 10.99 10.99 10.99 1 1.19 2.79 [5] [191522.23 Indicator (Streptococcus proceduil) 69 70 1 4.11 9.03 [6] [190593.4 Indicator-rank symitted in the contract of the cont	176	-	699	7	gi 47394	S-oxoprolyl-peptidase (Streptococcus pyogenes)	68	1.87	999
4 1119 2273 191154211 Introduce 1811 Introduce 1811 1812 1812 1813 18	177	9	3050	13934	gi 912423.	putative (Lactococcus lactis)	88	112	885
4 1149 2193 [ali13932] Inclinated Ideas C (Brespicoccus themsephilas) 69 209 200 11 431 638 [ali119532] Inchination protein (Insection sequence 13841) 69 70 12 1183 10553 [apiploso)] Strike (British Strike) A 10 1183 10553 [apiploso)] Strike (British Strike) A 10 1183 10553 [apiploso)] Strike (British Strike) A 10 1184 1185 1185 [apiploso)] Strike (British Strike) A 10 1185 1185 1185 [apiploso)] Strike (British Strike) A 10 1185 1185 1185 [apiploso)] Strike (British Strike) A 10 1185 1185 1185 [apiploso)] Strike (British Strike) A 10 1185 1185 [apiploso)] Strike (British Strike) A 10 1185 1185 [apiploso)] Strike (British Strike) A 10 1185 [apiploso) A 10 1185 [apiploso) <td>181</td> <td></td> <td>1 4033</td> <td>15751</td> <td></td> <td>entyme III [Lactococcus lactis]</td> <td></td> <td>08</td> <td>1719</td>	181		1 4033	15751		entyme III [Lactococcus lactis]		08	1719
11 431 638 [1] [1395922 Unabformor protein Insertion sequence 1981 1 70 17 11839 10335 sp 20053 SFNL-S HISTORY-TRAM SPATHERARG (EC 6.11.21) (HISTORY-TRAM LIGARS) 88 78 18 16.66 2027 sp 20053 SFNL-S HISTORY-TRAM SPATHERARG (EC 6.11.21) (HISTORY-TRAM LIGARS) 88 78 19 16.66 2027 sp 10704 Secular secularists 88 75 11 5497 6004 pir/10704 Sinitary and character Liberarch control secularists 88 75 12 611 1468 pir/10704 Sinitary activities Liberarch control secularists 88 75 12 1604 pir/10704 Sinitary Liberarch control secularists 160 77 77 12 1605 pir/10704 Sinitary Liberarch control secularists 160 77 77 12 1606 pir/10704 Sinitary Liberarch control secularists 160 77 77 12 1607 1607 1607 1607 1607 160 160 160 160 160 160 <td>211</td> <td>-</td> <td>3149</td> <td>2793</td> <td>[91 535273</td> <td>(Streptococcus</td> <td>89</td> <td>69</td> <td>357</td>	211	-	3149	2793	[91 535273	(Streptococcus	89	69	357
17 1189 10535 90 2003 5744.5 MINTETONL-TRANA STRATEGINSE (RC 6.11.12) HISTORNE-PRONA LIGAGES (HISROS) 88 78 78 78 78 78 78 7	361	-	1 431	838	91 1196922	unknown protein (Insertion sequence 18861)	68	70	408
11 1346 2623 [94] [2058344 Decentive ABC transporter subunit CearA [StreepCooccous goodenii] 88 78 11 13 227 [91] [PD][610339 Nogul [Bacillise subtilis] 68 73 12 511 1466 [91] [PD][610339 Nogul [Bacillise subtilise] 68 73 13 550 [91] [AA9102] [SSS] [Tobocoas] protein LiS [Staphylococcus areas] 88 72 13 550 [91] [AA9102] [SSS] [Tobocoas] protein LiS [Staphylococcus areas] 88 72 14 1356 [1004] [91] [PD][6107315 [AA017221] puteit ve heat abook protein Ripk [Streepcoccus goodenii] 88 72 15 1305 [101] [PD][6107315 [AA017221] puteit ve heat abook protein Ripk [Streepcoccus goodenii] 88 74 16 1305 [101] [PD][611468 [MA007122] puteit ve heat abook protein Ripk [Streepcoccus goodenii] 88 74 1 134 252 [91] [910] [911463 [91] [910] [910] [910] [910] [91] [910] [910] [910] [91] [910] [910] [91] [910] [910] [91] [910] [91] [910] [91] [910] [91] [910] </td <td>34.</td> <td>117</td> <td>111839</td> <td>110535</td> <td> sp P30053 SYH_S</td> <td>(EC 6.1.1.21) (HISTIDINETRNA LIGASE)</td> <td>88</td> <td>78</td> <td>1305</td>	34.	117	111839	110535	sp P30053 SYH_S	(EC 6.1.1.21) (HISTIDINETRNA LIGASE)	88	78	1305
1 3.5 27.7 Gnil First all 2013 Vegot Bactilian subtiliar 66 75 2 61.1 146.6 Int First all 2013 State Putative reductase I Saccharcopyce cerevisite 68 75 1.1 549.7 666.9 Dir[A23102] Rass Putative reductase I Sectharcopyce Cerevisite 88 75 1.0 500.0 5910 State All 2013 State Putative reductase Intercent Last State Sta	38	_	1646	2623	91 2058544	transporter subunit	88	78	978
2 611 1468 onl PtD[e13943] putative reductase I Saccharcaycea creevisiaej 75 13 5497 6668 piri Aps072 ASBS Liboscamal protein LiS Staphylococcus aurewal 78 75 20 9300 9500 quil 2078383 Liboscamal protein LiS Staphylococcus aurewal 88 75 1 3516 1106 onl PrD[d100731] lysyl-selinopeptidase (Lactococcus lactis) 88 77 1 1246 12054 dil 1407313 Involvative beat subunit [Bacillus aubtilis] 88 74 2 1296 962 onl PrD[e313468 Quil Applementation aubtilis] 88 74 1 1346 355 onl PrD[e313468 M. Anthenace bea-subunit [Bacillus aubtilis] 74 1 1346 355 onl PrD[e313468 M. Anthenace bea-subunit [Bacillus aubtilis] 88 74 1 1346 355 onl PrD[e313468 M. Anthenace predicted coding region Hi0559 [Raescophilus Influentase] 88 74 4 1222 3493 dil 1331677 Arrase. epal	54	-		1 227		(Bacillus	- 88	99	225
13 5497 6069 Dir A23102 R585 Tibosceal protein L5 Eacillus stearchtermophilus F89	57	- 2	611	1468	1	putative reductase 1 (Saccharomyces cerevisiae)	88 -	75	828
120 9010 9500 916 2018 1108 1108 1108 1108 1109 1100781 1108 1108 1108 1109 1100781 1109 1109 1100781 1109 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 1109 1100781 110078 110078 110078 110078 110078 110078 110078 110078 110078	65	=	5497	6909		protein LS	88	75	573
12 13965 1108 9m Pip di 000 1 1 1 1 1 1 1 1	65	120	9030	9500	91 2078381		88	83	471
12 112965 12054 ggi 2407115 (AF017421) putative heat shock protein HpX Streptococcus gooddonii) 88 75 12 219 962 gnil Projestive acylemetrate lysee (Clostridium tertium) 88 74 18 14073 10420 glilotosa RNA polymerase beta-subunit (Bacillus subtilis) 86 74 19 11096 11062 gnil Projestive Bacillus subtilis 88 74 17 1914 19874 ggi 1573659 H. Influenzae predicted coding region H10659 (Haemophilus influenzaei) 88 61 17 1914 19874 ggi 1773267 ArPasse. epsilon subunit (Streptococcus mutans) 88 72 1 255 ggi 1773267 ArPasse. epsilon subunit (Streptococcus mutans) 88 74 4 1770 2885 gi 149426 putative (Lactococus lacits) 88 74 4 1770 2885 gi 149426 putative (Lactococus thermophilus) 88 74 6 1740 2865 gi 140486 homologous to E coli ri	78	ě	3636	1108		lysyl-aminopeptidase [Lactococcus lactis]	- 88 -	80	2529
2 119 962 gnil PID[e339862 [putative acylneuraminate lysee [Clostridium tartium] 88 74 8 14073 10020 gil 402363 [RNA polymenase beta-ubunit [Bacillus subtliis] 88 74 17 119143 18874 gil 1970 [e311468] unknown [Bacillus subtliis] 88 74 17 119143 18874 gil 1573659 [H. influenae predicted coding region H10659 [Hachmococcus jannachii] 88 75 1 1344 555 gmil[PID[e274702] [Lactate oxidase [Streptococcus intent 88 75 4 2723 3493 gil 1591672 phosphate transport system ATP-binding protein [Hethanococcus jannachii] 88 72 6 4 1770 2885 gil 149426 putative [Lactococcus thermophilus] 88 74 6 4 1770 2885 gil 149426 putative [Lactococcus thermophilus] 88 74 6 4 1770 2885 gil 149426 homologous to E. coli ribosomal protein [Lactation sequence 15861] 88 74 7 2998 gil 1196922 unknown protei	106	==	12965	12054	191 2407215	Streptococcus	88	72	912
9 14073 10420 91 1402163 RNA polymerase beta-subunit (Bacillus subtilis) 88 74 14 15 1366 1366 1366 91 1913 18874 91 1573659 H. influenzae predicted coding region HI0659 (Haemophilus influenzae) 88 75 17 1914 18874 91 1573659 H. influenzae predicted coding region HI0659 (Haemophilus influenzae) 88 75 17 1872	107	7	1 219	962		putative acylneuraminate lyase (Clostridium tertium)	- 88	75	744
9 13096 12062 gan PID e311466 unknown Bacillus subtilis 1343 18874 gil 1571659 H. Anfluenzae predicted coding region HIO659 (Haemophilus influenzae) 88 61 17 19143 18874 gil 1571659 H. Anfluenzae predicted coding region HIO659 (Haemophilus influenzae) 88 75 18874 gil 1571672 phosphate transport system ATP-binding protein Methanococcus jannaschii) 88 65 68 68 68 68 68 68	111	8	114073	10420	191 402363		88	1 1/	3654
1 1914 18874 91 1573659 H. influenzae predicted coding region H10659 (Haemophilus influenzae) 88 61 1 1 1 1 1 1 1 1	126	6	13096	12062			88	1 2/	1035
1 394 555 gml PID e274705 lactate oxidase (Streptococcus iniee)	140	12	19143	118874	91 1573659	H. influenzae predicted coding region H10659 (Haemophilus influenzae)	88	61	270
4 2723 3493 91 1591672 Phosphate transport system ATP-binding protein [Methanococcus jannaschii] 88 68 8 5853 6278 91 1773267 ATPase, apsilon subunit [Streptococcus mutans] 88 72 4 1770 2885 91 149426 putative [Lactococcus lactis] 88 72 6 4140 3613 91 515273 aminopeptidase C [Streptococcus thermophlius] 88 74 7 580 957 91 40186 homologous to B.coli ribosomal protein L27 Bacillus subtilis] 88 74 8 5187 298 91 1196922 unknown protein [Insertion sequence 18861] 88 75 9 4 588 317 91 603578 serine/threonine kinase [Phytophthora capsici] 88 75 9 4353 4514 91 153672 lactose repressor [Streptococcus mutans] 87 56	144	-	394	555			88	75	162
8 5853 6278 91 173267 ATPase, opsilon subunit (Streptococcus mutans) 88 65 65	148	-	2723	3493	91 1591672	phosphate transport system ATP-binding protein (Methanococcus Jannaschii)	88	68	171
4 1770 2885 gi 149426 [putative (Lectococcus lactis] 88 72 6 4140 3613 gi 535273 [aminopeptidase C (Streptococcus thermophilus) 88 74 4 580 957 gi 40186 [homologous to E.coli ribosomal protein L27 [Bacillus subtilis] 88 78 5 2387 2398 gi 1196922 [unknown protein (Insertion sequence 15861) 88 75 6 2017 3375 gnl PID d100571 adenylosuccinate synthetase [Bacillus subtilis] 88 75 6 2017 3375 gnl PID d100571 adenylosuccinate kinase (Phytophthora capsici) 88 88 6 4358 337 gi 603578 [aerine/threonine kinase (Phytophthora capsici) 88 88	160	8	5853	6278	191 1773267	ATPase, epsiion subunit (Streptococcus mutans)	88	1 59	926
6 4140 1613 91 515273 aminopeptidase C Streptococcus thermophilus 88 74 74	177	4	1770	2885	191 (149426	putative (Lactococcus lactis)	- 88 -	127	1116
4 580 957 91 40186 homologous to E.coli ribosomal protein L27 [Bacillus subtilis] 88 78 78 5 2387 2998 91 1196922 unknown protein [Insertion sequence IS861] 88 69 6 2017 3375 91 PID d100571 adenylosuccinate synthetase [Bacillus subtilis] 88 75 4 658 337 91 603578 aerine/threonine kinase [Phytophthora capsici] 88 88 88 5 4353 4514 91 153672 lactose repressor [Streptococcus mutans] 5 4550	211	9	4140	1613	[91[535273	ٰ ن	88	7.4	528
5 2387 2998 gi 196322 unknown protein [Insertion sequence 15861] 88 69 69 6 2017 3375 gn1 PID d100571 ddenylosuccinate synthetase [Bacillus subtilis] 88 75 6 658 317 gi 603578 aerine/threonine kinase [Phytophthora capsici] 88 88 88 69 60 60 60 60 60 60 60	231	4	580	957	91 40186	E.coli	88	187	378
6 2017 1375 gnl PID d100571 adenylosuccinate synthetase [Bacillus subtilis] 88 75 4 658 317 gi 603578 serine/threonine kinase (Phytophthora capsici) 88 88 88	260	2	2387	2998	91 1196922	unknown protein (Insertion sequence 15861)	88	1 69	612
4 658 317 91 603578 serine/threonine kinase (Phytophthora capsici) 88 88 88	291	9	1 2017	3375		adenylosuccinate synthetase [Bacillus subtilis]	88	75	1359
5 4353 4514 gi 153672 lactose repressor [Streptococcus mutans] 87 56	319	-	658	317	91 603578	serine/threonine kinase (Phytophthora capsici)	88	88	342
	40	2	4353	4514	91 153672	lactose repressor [Streptococcus mutans]	87	- 95	162

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig 0	ORF Star		Stop	match	match gene name	E ju	* ident	l length
49 1	10 10660	! - !	10929	91 1196921	unknown protein (Insertion sequence IS861)	1 87	72	270
69	7 3140	-	3808	91 1165309	S3 [Bacillus subtilis	1 87	73	699
65 1	15 6623	-	7039	91 1044978	ribosomal protein S8 (Bacillus subtilis)	87	1 73	417
1 25	8 5411	-	6625	91 1877422	galactokinase (Streptococcus mutans)	1 87	78	1215
° 1 08 1	°2 703		2805	gn1 PID d101166	elongation factor G (Bacillus subtilis)	1 87	94	2103
82	1 541	_	248	91 1196921	unknown protein (Insertion sequence IS861)	1 87	69	294
140 2	23 25033		23897	gn1 PID e254999	phenylalany-tRNA synthetase beta subunit (Bacillus subtilis)	1 87	74	1137
214	14 10441		8516	91 2281305	glucose inhibited division protein homolog GidA (Lectococcus lactis	-89	75	1926
1 220	2 2742	-	874	gn1 PID e324358	product highly similar to elongation factor EF-G (Bacillus subtilis)	1 87	62	1869
1 260	4 2096	-	2389	91 1196921	unknown protein (Insertion sequence 15861)	1 87	72	294
323	1 27	-	650	gi 897795	30S ribosomal protein [Pediococcus acidilactici]	87	73	624
357	1 154	-	570	gi 1044978	ribosomal protein S8 (Bacillus subtilis)	1 87	73	417
49 11	11 10927	111445	_	91(1196922	unknown protein (Insertion sequence 15861)	986	63	519
59 (12	2 7461	-	9224	91 951051	relaxase [Streptococcus pneumoniae]	98	89	1764
1 65	4 1553	-	2401	pir A02759 R5BS	ribosomal protein L2 - Bacillus stearothermophilus	986	77	849
65 23	3 (10957	_;	11610	gi 44074	adenylate kinase [Lactococcus lactis]	98	76	654
82	4 4374	-	4856	91 153745	mannitol-specific enzyme III (Streptococcus mutans)	86	72	483
102	4 4270	-	4986	gn1 PID 6264705	OMP decarboxylase [Lactococcus lactis]	98	76	711
106	6 7824	-	6880	gn1 PID e137598	aspartate transcarbamylase (Lactobacillus leichmannil).	98	89	945
107	1 - 1	1 27	273 6	862	putative acylneuraminate lyase (Clostridium tertium)	98	1.17	273
	7 10432		6710	gn1 PID e228283	DNA-dependent RNA polymerase [Streptococcus pyogenes]	98	80	3723
131	9 5704	-	4892 9	91 1661193	polipoprotein diacylglycerol transferase (Streptococcus mutans)	98	111	813
134	7 6430	-	7980 9	91 2388637	glycerol kinase (Enterococcus faecalis)	86	73	1551
146 11	1 1 7473	-	6583 9	91 11591731	melvalonate kinase (Methanococcus jannaschil)	98	72	891
153	2 595	-	2010 9	91 2160707	dipeptidase [Lactococcus lactis]	98	78	1416
154 1	1 2	77	1435 g	1435 91 1857246	6-phosphogluconate dehydrogenase [Lactococcus lactis]	98	74	1434
	•			***********				

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	200	Start (nt)	Stop (nt)	match	match gene name	# sim	1 ident	length (nt)
161	5	5025	6284	gi 47529	Unknown (Streptococcus salivarius)	98	99	1260
184			1483	91 642667	NADP-dependent glyceraldehyde-l-phosphate dehydrogenase (Streptococcus mutans)	86	23	1482
210	8	1 3659	16571	91 (153661	translational initiation factor IF2 (Enterococcus faecium)	1 86	94	2913
250	-	2	187	[91 1573551	asparagine synthetase A (asnA) (Haemophilus influenzae)	98	89	186
36	-	2644	3909	[91 [2149909		88	23	1266
38	-	2475	1 3587	91 2058545	putative ABC transporter subunit ComYB (Streptococcus gordonii)	1 85	72	1113
38	5	1 3577	3915	91 2058546	ComYC Streptococcus gordonii	88	80	339
53	<u> </u>	1. 2797	3789	gn1 P1D d101316	YqfJ (Bacillus subtilis)	85	72	993
82	- 2	4915	6054	191 153746	mannitol-phosphate dehydrogenase (Streptococcus mutans)	88	68	1140
8	115	114690	15793	gi 143371	phosphoribosyl aminoimidazole synthetase (PUR-M) (Bacillus subtilis)	88	69	1104
87	~	1417	2388	gi 1184967	ScrR Streptococcus mutans	88	69	972
108	-	1 2666	3154	91 153566	ORF (19K protein) (Enterococcus faecalis)	88	69	489
127	-	312	692	91 1044989	ribosomal protein S13 (Bacillus subtilis)	88	27	381
128	_	1534	2409	91 1685110	tetrahydrofolate dehydrogenase/cyclohydrolase (Streptococcus thermophilus)	88	11	876
137	-	2962	4767	gn1 PID d100347	Na+ -ATPase alpha subunit (Enterococcus hirae)	88	74	1806
170	~_	2622	709	gn1 (P1D d102006	(ABO01488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND NEISSERIA MENINGITIDIS. (Bacillus subtilis)	85	70	1914
187	5	3760	4386	1911727436	[putative 20-kba protein [Lactococcus lactis]	1 85	69	627
233	~	728	1873	91 1163116	ORF-5 (Streptococcus pneumonlae)	85	67	1146
234	-	962	1255	[g1 2293155	(AF006220) YtiA (Bacillus subtilis)	1 88	61	294
240	-	309	1931	gi 143597	CTP synthetase [Bacillus subtilis]	88	70	1623
9	-	199	1521	91 508979	GTP-binding protein (Bacillus subtilis)	84	72	1323
91	-	4375	3443	gn1 P1D e339862	putative acylneuraminate lyase [Clostridium tertium]	84	1 04	933
14	-	63	2093	gi 520753	DNA topoisomerase I [Bacillus subtilis]	84	69	2031
19	4	1 1793	2593	91 2352484	(AF005098) RNAseH II (Lactococcus lactis)	84	1 89	801
20		117720	19687	gn1 PID d100584	[cell division protein (Becillus subtilis]	84	111	1968
22	- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	21723	20884	91 299163	alanine dehydrogenase (Bacillus subtilis)	84	1 89	840
					Abbetication			

S. pneumonise - Putative coding regions of novel proteins similar to known proteins

Contig	ID	Start (nt)	Stop (nt)	match acession	match gene name	# sim	* ident	length
30	2	1 7730	6792		[fructokinase [Streptococcus mutans]	84	75	930
33	.6	5650	5300	91/147194	phnA protein (Escherichia coli)	84	71	351
36	22	121551	120772	191 310631	ATP binding protein (Streptococcus gordonii)	84	72	780
48	-	2837	2505	91 882609	(6-phospho-beta-glucosidase [Escherichia coli]	84	69	
28	-	41	1516	91 450849	amylase (Streptococcus bovis)	84		1474
59	01	6715	7116	gi 951053	ORF10, putative [Streptococcus pneumoniae]	84	7.4	403
62	-	1 21	644	[gi 806487	ORF211; putative (Lactococcus lactis)	88	99	624
65	117	9777	8207	91 1044980	ribosomal protein Lis [Bacillus subtilis]	98		428
65	121	9507	10397	gi 44073	Secy protein (Lactococcus lactis)	8.6	89	108
106	-	5474	2262	gn1 PID e199387	carbamoyl-phosphate synthase [Lectobacillus plantarum]	98	23	1213
159	-	147	•	gi 806487	ORF211; putative [Lactococcus lactis]	84		444
163	~	4690	5910	91 2293164	(AF008220) SAM synthase (Bacillus subtilis)	84	69	1221
192	-	46	1308	91 495046	tripeptidase (Lactococcus lactis)	84	73	1261
348		671	۰	91 1787753	(AE000245) [346, 79 pct identical to 336 amino acids of ADH1_ZYMMO SW: P20368 but has 10 additional N-ter residues (Escherichia coli)	84	11	999
-	4	1572	3575	91 143766	(thrSv) (EC 6.1.1.3) [Bacillus subtilis]	83	65	2004
6	9	3893	3417	9n1 PID d100576	single strand DNA binding protein (Bacillus subtilis)	83	1 89	477
17	115	7426	8457	91 520738	comA protein (Streptococcus pneumoniae)	83	66.1	1632
20	12	13860 14144	14144	gn1 P1D d100583	unknown (Bacillus subtilis)	83	19	285
23		3358	2606	91 1788294	(AE000290) o238; This 238 as orf is 40 pct identical (5 gaps) to 231 residues of an approx. 248 as protein YEBC_ECOLI SW: P24237 (Escherichia coli)	83	4	753
28	9	3304	3005	91 1573659	H. influenzae predicted coding region HI0659 (Haemophilus influenzae)	83	57	300
35	-	5108	3867	91 311707	hypothetical nucleotide binding protein (Acholeplasma laidlawii)	83	63	1242
55	119	17932	17528	91 537085	ORF_f141 [Escherichia coli]	83	59	405
55	120	18539	17919	91 496558	orfX [Bacillus subtilis]	83 -	1 69	621
65	9	2795	3142	19111165308	L22 (Bacillus subtilis)	83	1 19	348
99	9 !	6877	6683	19111213494	immunoglobulin Al protease (Streptococcus pneumonlae)	83	54 -	195
			•	•		-	•	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

87 15		(00)	- {			1 ident	length
	15112	114771	gn1 PID e323522	putative rpo2 protein (Becillus subtilis)	83	54	342
96 12	8963	1 9611	91 (47394	5-oxoproly1-peptidase (Streptococcus pyagenes)	83	73	699
98 1	•	263	91 1183885	[glutamine-binding subunit (Bacillus subtilis)	83	55	261
120 4	0717	-	gi{310630	zinc metalloprotesse (Streptococcus gordonii)	83	72	1938
127 7	1 2998	4347	91 1500567	M. jannaschii predicted coding region MJ1665 [Methanococcus jannaschii]	83	72	1350
137 1	-	440	gi 472918	v-type Na-ATPase (Enterococcus hirae)	83	09	4.8
160 6	3466	1 4356	gi 1773265	Affese, gamma subunit (Streptococcus mutans)	83	63	100
214 4	2278	2964	gi 663279	transposase (Streptococcus pneumoniae)		33	
226 3	1 2367	2020	91 142154	thiaredoxin Symechococcus PCC6301	3		
303 1		1049	91 40046	phosphoglucose isomerase A (AA 1-449) (Bacillus stearothermonhillus)	3 6	3	9 1 6
303 2	1155	1931	91 289282			à 5	7007
6 17	115370	114318	91 633147	ribose-phosphate pyrophosphokinase [Bacillus caldolyticus]		6	
1	1 299	96	91 143648		6		FEOT
9	1 1479	1 1090	91 385178	(unknown (Bacillus subtilis)	82	34	
9 7	4213	1 3899	gn1 P1D d100576	ribosomal protein S6 [Bacillus subtilis]	83	9	267
12 6	4688	3942	gn1 PID d100571	unknown [Bacillus subtilis]	- 68		
22 17	13422	114837	91 520754	putative Bacillus subtilis	6		
22 18	14897	115658	gn1 P1D d101929	uridine monophosphate kinase (Synechocystis sp. 1			0141
33 16	11471	10641	gn1 PID d101190		70	70	70/
35 9	1400	6255	gi 1881543	UDP-N-acetylglucosamine-2-epimerase (Streptococcus pneumoniae)	3 6	8	831
40 10	8003	1 7533	1173519	riboflavin synthase beta subunit [Actinobacillus pleuropneumoniae]		80	1146
48 32	123159	123437	91 1930092				7/0
52 14	113833	114765	91 142521	deoxyribodipyrimidine photolyase [Bacillus subtilis]	6		
60 4	1 4737	1849	gn1 PID d102221	(AB001610) uvra (Deinococcus radiodurans)			556
62 4	1 2131	1457	91 2246749	(AF009622) thioredoxin reductase [Listeria monocytogenes]	82	8 5	6997
11 11	16586	1	gn1 P1D e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	68		
_	9222	1837		unknown (Bacillus subtilis)		3	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ID OR	Start (nt)	Stop (nt)	match	match gene name	e is	1 ident	length (nt)
7.4	-	-	1171	gn1 PID d101199	alkaline amylopullulanase (Bacillus sp.)	82	89	3771
83	6	3696	3983	gn1 PID e305362	unnamed protein product (Streptococcus thermophilus)	82	52	288
98	11	110776	9394	191 683583	5-enolpyruvylshikimate-3-phosphate synthase [Lactococcus lactis]	82	67	1383
88	21	8295	9752	91/40025	homologous to E.coli 50k (Bacillus subtilis)	82	99	1458
3115	6	110347	8812	gn1 PID d102090	(AB001927) phospho-beta-galactosidase 1 (Lactobacillus gasseri)	82	74	1536
118	-		1332	gn1 P10 d1,00579	seryl-tRNA synthetase (Bacillus subtilis)	83	11	1332
151	_	4657	6246	pir 506097 5060	type I site-specific deoxyribonuclease (EC 3.1.21.3) CfrA chain S	83	99	1590
571	9	4183	1 3503	91/2313836	[AE000584] conserved hypothetical protein [Helicobacter pylori]	82	89	681
7.1	21	5481	7442	gn1 P10 d101999	(AB001341) NcrB (Escherichia coll)	82	88	1965
193	7	178	576	pir S08564 R3BS	ribosomal protein S9 - Bacillus stearothermophilus	82	70	399
245	7	1 258	845	[gi 146402	EcoA type I restriction-modification enzyme S subunit [Escherichia coli]	62	89	888
6	s	3400	3146	gn1 P1D d100576	ribosomal protein S18 (Bacillus subtilis)	81	99	255
16	۲ ا	7484	8413	gi 1100074	[tryptophany]-tRNA synthetase [Clostridium longisporum]	81	70	930
20	=	10308	13820	gn1 PID d100583	transcription-repair coupling factor (Bacillus subtilis)	81	63	3513
88	~	1232	1606	gi 2058543	putative DNA binding protein (Streptococcus gordonii)	18	63	375
45	7	1 3061	1751	91 460259	enolase [Bacillus subtilis]	81	67	1311
46	-	2	1267	91 431231	uracil permease (Bacillus caldolyticus)	81	61	1266
88	<u> </u>	2453	1440	gn1 P1D d100453	Mannosephosphate Isomerase [Streptococcus mutans]	81	70	1014
54	7	1106	336	91 154752	transport protein (Agrobacterium tumefaciens)	81	99	171
9	122	10306	10821	191 44073	SecY protein [Lactococcus lactis]	81	99	516
89	•	3874	2603	91 556886	serine hydroxymethyltransferase (Bacillus subtilis)	18	69	1272
66	116	19126	18929	91/2313526	(AE000557) H. Fylori predicted coding region HP0411 [Helicobacter pylori]	91	75	198
106	7	8373	7822	_ '	pyrR (Lactobacillus plantarum)	81	61	552
108	9	5054	6877	gi 1469939	group B oligopeptidase PapB (Streptococcus agalactiae)	81	99	1824
113	115	15899	18283	pir S09411 S094	spoiliß protein - Bacillus subtilis	91	65	2385
128	s	3359	3634	101 1685111	orf1091 [Streptococcus thermophilus]	8	69	276
		1					*	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

01 4000	500							•
a l	9	(nt)	(nt)	acession	match gene name	e is	* ident	length (nt)
151	-	830	13211	gi 304896	ScoE type I restriction-modification enzyme R subunit (Escherichia coli)	1 81	65.	2382
159	Ξ	6722	7837	91 2239288	GMP synthetase [Bacillus subtilis]	18	69	1116
170	-	739	458	gn1 PID d102006	(ABOO1488) FUNCTION UNKNOWN. (Bacillus subtilis)	1 81	55	282
161	7	1759	893	gi 149522	tryptophan synthase alpha subunit (Lactococcus lactis)	81	9	867
214	_	2290	1994	gi 157587	reverse transcriptase endonuclease [Drosophila virilis]	18	6	297
217	-	4415	4008	91 466473	cellobiose phosphotransferase enzyme II' (Bacillus stearothermophilus)	18	- 65	408
262	7	695	868	191 153675	tagatose 6-P kinase (Streptococcus mutans)	81	. 89	300
1 299	-	1.663	7	gn1 PID e301154	StySKI methylase (Salmonella enterica)	18	09	1 099
1 366	7	376	83	gi 149521	tryptophen synthase beta subunit (Lactococcus lactis)	18	65	294
12	9	8766	9242	91 1216490	OMA/pantothenate metabolism flavoprotein (Streptococcus mutans)	80	64	1- 1.1
11	Ξ	0509	5748	gn1 PID e305362	unnamed protein product (Streptococcus thermophilus)	08		303
17	91	9455	9906	91 703126	leucocin A translocator (Leuconostoc gelidum)	80	89	612
18	-	2440	1613	[g1[1591672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	80	88	828
72		4248	1579	91 452309	valyi-tRNA synthetase (Bacillus subtilis)	80	69	2670
28	-	12671	3288	191 1573660	H. Influenzae predicted coding region H10660 (Haemophilus influenzae)	80	63	384
32	2	905	1933	gn1 P1D e264499	[dihydroorotate dehydrogenase B [Lactococcus lactis]	80	99	1032
39	-	-	1266	gn1 PID e234078	hom (Lactococcus lactis)	- 08	63	1266
52	5	4363	3593	91 1183884	ATP-binding subunit (Bacillus subtilis)	80	57	1111
54	- 2	4550	4744	91 2198820	(AF004225) Cux/CDP(1B1); Cux/CDP homeoprotein [Mus musculus]	80	09	195
	Ξ	7109	7486	191 951052	ORF9, putative (Streptococcus pneumoniae)	80	68	378
59	-	1230	1550	pir A02815 R5BS	ribosomal protein L23 - Bacillus stearothermophilus	80	69	321
65	112	5174	5503	pir A02819 R5BS	ribosomal protein L24 - Bacillus stearothermophilus	80	1 04	330
99	6	9884	10687	91 2313836	(AE000584) conserved hypothetical protein [Helicobacter pylori]	80	99	804
82	1 2	648	2438	91 [622991	mannitol transport protein (Bacillus stearothermophilus)	80	9	1791
85		950	630	gi 528995	polyketide synthase (Bacillus subtilis)	80	1 99	321
89	8	6870	5779	91 853776	peptide chain release factor 1 (Bacillus subtilis)	- 08	1 69	1092
93	22	8718	7438	gn1 P10 d101959	hypothetical protein (Synechocystis sp.)	- 08	1 09	1281
					◆ 6 1 7 1 4 6 6 6 6 6 6 6 6 6 7 7 7 1 1 1 1 1 1 1 1	•	*	+

S. pnaumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	E .	* ident	length (nt)
106	2	6854	5751	gn1 PID e199386	glutaminase of carbamoyl-phosphate synthase [Lactobacillus plantarum]	80	65	1104
109	7	2160	1450	191 40056	phoP gene product (Bacillus subtilis)	80	59	111
124	6	4246	1 3953	gn1 P1D d102254	30S ribosomal protein S16 [Bacillus subtilis]	80	9	294
128	8	5148	6428	gi 2281308	phosphopentomutase [Lactococcus lactis cremoris]	80	99	1281
137	119	112665	111376	gi 159109	NADP-dependent glutamate dehydrogenase [Glardia intestinalis]	08	1 89	1290
140	119	119699	119457	191 517210	putative transposase (Streptococcus pyogenes)	08	70	243
158	7	2474	984	gi 1877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	- 80	1 59	1491
171	0.	1 7474	1728	gi 397800	[cyclophilin C-associated protein [Nus musculus]	08	09	255
181	_	2	619	gi 149395	lacC (Lactococcus lactis)	80	99	618
313	-	27	539	gi 143467	ribosomal protein S4 (Bacillus subtilis)	08	70	513
329	7	1652	888	91 533080	Recf protein (Streptococcus pyogenes)	80	63	295
371	-	2	958	91 442360	ClpC adenosine triphosphatase [Bacillus subtilis]	80	58	957
8	-	4312	5580	gi 149435	putative (Lactococcus lactis)	64	99	1269
23	-	11175	135	gi 1542975	AbcB (Thermoanserobacterium thermosulfurigenes)	1 64	61	1041
33	14	9244	8201	gn1 PID e253891	[UDP-glucose 4-epimerase [Bacillus subtilis]	64	62	1044
36	-	1242	2633	gn1 PID e324218	[ftsA [Enterococcus hirae]	67	88	1392
38	=	7155	8378	91 405134	acetate kinase [Bacillus subtilis]	64	85	1224
55		100	8229	91 1146234	dihydrodipicolinate reductase (Bacillus subtilis)	1 66 1	95	783
9	139	8661	8915	91 2078380	ribosomal protein L30 (Staphylococcus aureus)	62	89	255
69	7	3678	2128	gn1 PID e311452	unknown (Bacillus subtilis)	6/	64	1551
69	6	7881	1279	91,677850	hypothetical protein (Staphylococcus aureus)	64	- 65	603
72	01	8491	9783	gn1 PTD d101091	hypothetical protein (Symechocystis sp.)	66	62	1293
80		2906	7300	91 143342	polymerase III (Bacillus subtilis)	1 66	65	4395
82	2	13326	15689	gn1 P1D e255093	hypothetical protein (Bacillus subtilis)	1 64	1 59	2364
986	=	12233	11118	91 683582	prephenate dehydrogenase (Lactococcus lactis)	79	58	1116
92	E .	940	1734	91 537286	triosephosphate isomerase [Lactococcus lactis]	1 96	9	795
96		4023	4742	gn1 P1D d100262	LivG protein (Salmonella typhimurium)	19	63	720
						•		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	I D	Start (nt)	Stop (nt)	match	match gene name	sia -	1 ident	length (nt)
66	Ì	16315	14150	191 153736	a-galactosidase (Streptococcus mutans)	64	64	2166
107	-	5684	6406	gi 460080	D-alanine:D-alanine ligase-related protein (Enterococcus faecalis)	66	88	723
=	6	6858	8303	91 466882	pps1; B1496_C2_189 (Mycobacterlum leprae)	64 1	64	1446
151	0.	13424	112213	[gi 450686	3-phosphoglycerate kinase (Thermotoga maritima)	62	1 09	1212
162	7	1158	1 3017	191 506700	CapD [Staphylococcus aureus]	62	67	1860
177	- 2	2876	3052	91 912423	putative [Lactococcus lactis]	- 62	61	171
177		4198	4563	91 149429	putative Lactococcus lactis	62	61	366
187	-	8272,	2907	gn1 PID d102002	(ABOO1488) FUNCTION UNKNOWN. (Bacillus subtilis)	197	53	180
189	_	3589	4350	gn1 PID e183449	putative ATP-binding protein of ABC-type (Bacillus subtilis)	66	61	762
191	2	4249	3449	91 149519	indoleglycerol phosphate synthase (Lactococcus lactis)	62	99	801
211	_	1805	75.72	91 147404	mannose permease subunit II-M-Man (Escherichia coli)	92	57	933
212	_	3863	3621	gn1 PID e209004	[gluteredoxin-like protein [Lactococcus lactis]	- 62	58	243
215	-	987	115	[gi 2293242	(AF008220) arginine succinate synthase (Bacillus subtilis)	66	64	273
323	7	530	781	gi 897795	[30S ribosomal protein [Pediococcus acidilactici]	62	1 49	252
380	-	694	2	91 1184680	[polynuclectide phosphorylase (Bacillus subtilis)	- 62	64	693
384	- 5	655	239	fgi 143328	phoP protein (put.); putative (Bacillus subtilis)	96	59	417
٠		2820	4091	191 853767	UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus subtilis]	78	, 62	1272
	-	- 50	1786	91/149432	putative (Lactococcus lactis)	78	63	1737
6	-	1351	124	91 897793	1998 gene product (Pediococcus acidilactici)	78	1 65	228
15	8	7364	8314	gn1 P1D d100585	cysteine synthetase A [Bacillus subtilis]	1 87	63	951
20	01	.9738	10310	gn1 PID d100583	stage V sporulation (Bacillus subtilis)	1 86	88	573
50	116	17165	[1771]	gi 49105	hypoxanthine phosphoribosyltransferase [Lactococcus lactis]	78	59	549
22	22	17388	18416	gn1 PID d101315	YqfE (Bacillus subtilis)	78	- 09	1029
22	[2]	20971	20612	91 299163	alanine dehydrogenase [Bacillus subtilis]	78	59	360
34		7407	7105	gi 41015	aspartate-tRNA ligase (Escherichia coli)	18.	- 55	303
35	8	6257	5196	91 1657644	Cap8E Staphylococcus aureus	78	- 09	1062
						*	•	•

S. pneumoniae - Putative coding regions of novel proteins Bimilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sin	1 ident	length (nt)
0	=_	9287	8001	91/1173518	GTP cyclohydrase II/ 3,4-dihydroxy-2-butanone-4-phosphate synthase [Actinobacillus pleuropneumoniae]	82	28	1287
48	31	22422	23183	91 2314330	(AE000623) glutamine ABC transporter, ATP-binding protein (glnQ) (Helicobacter pylori)	8	88	762
25	7	2101	1430	91 1183887	integral membrane protein (Bacillus aubtilis)	78	- 54	672
55	-	113605	112712	gn1 PID d102026	(AB002150) YbbP [Bacillus subtilis]	78	88	894
55	11	16637	115612	gn1 PID e313027	hypothetical protein (Bacillus subtilis)	78	21	1026
12	77	119756	19598	91 179764	calcium channel alpha-1D subunit (Homo sapiens)	78	57	159
74	=	15031	14018	91 1573279	Holliday junction DNA helicase (ruvB) [Haemophilus influenzae]	78	52	1014
1 75	6	6623	1972	[91 1877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	78	62	1350
8	112	112125	113906	91 1573607	[L-fucose isomerase (fuc!) [Haemophilus influenzae]	186	99	1782
- 82	_	2423	4417	91 153744	ORF X; putative (Streptococcus mutans)	78	64	1995
£	=-	16926	18500	91 143373	phosphoribosyl aminoimidazole carboxy formyl formyltransfersse/inosine monophosphate cyclohydrolase (PUR-H(J)) (Bacillus subtilis)	18	63	1575
83	02	20212	120775	gi 143364	phosphoribosyl aminoimidazole carboxylase I (PUR-E) (Bacillus subtilis)	78	64	564
92	7	165	878	gn1 P1D d101190	ORF2 (Streptococcus mutans)	78	62	714
86		5863	6069	gi 2331287	(AF013188) release factor 2 (Bacillus subtilis)	78	63	1047
113	-	1071	2741	gi 580914	dna2X (Bacillus subtilis)	78	79	1671
127	-	1133	1 2071	gi 142463	RNA polymerase alpha-core-subunit [Bacillus subtilis]	18	1 65	939
132	-	2782	497	191 1561763	pullulanase (Bacteroides thetaiotaomicron)	78	28	2286
135	7	2698	3537	91/1788036	(AE000269) NH3-dependent NAD synthetase (Escherichia coli)	78	99	840
140	24	26853	25423	gi 1100077	phospho-beta-glucosidase (Clostridium longisporum)	78	64	1431
150	- 5	4690	4514	91 149464	amino peptidase [Lactococcus lactis]	1 92	42	1771
152	-	-	795	gi 639915	NADM dehydrogenase subunit (Thunbergia alata)	184	43	195
162	-	4997	4110	PID 6323528	[putative YhaP protein [Bacillus subtilis]	78	64	888
181	2	8651	1947	gi 149402	[lactose repressor (lacR; alt.) [Lactococcus lactis]	187	8	705
200	-	19627	4958	gn1 P1D d100172	invertase (Zymomonas mobilis)	7.9	61	1332
203	-	3230	3015	91 1174237	Cyck [Pseudomonas fluorescens]	78	57	216
						*****		+=+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF TO	Start (nt)	Stop (nt)	match	match gene name	s im	1 ident	length (nt)
210		6789	2717	gi 580902	ORF6 gene product (Bacillus subtilis)	78	42	384
214	φ	3810	2797	gn1 P1D d102049	P. haemolytica o-sialoglycoprotein endopeptidase; P36175 (660) transmembrane (Bacillus subtilis)	78	09	1014
214	113	6322	8163	191 1377831	unknown (Bacillus subtilis)	78	62	1842
217	-	6	12717	191 488430	alcohol dehydrogenase 2 [Entamoeba histolytica]	78	99	2709
222	e	2316	3098	91 1573047	spore germination and vegetative growth protein (gerC2) [Haemophilus influenzae]	78	65	783
268	-	742	8	91/517210	putative transposase (Streptococcus pyogenes)	78	9	735
376	-	223	153	gn1 P10 d100306	ribosomal protein L1 (Bacillus subtilis)	78	9	531
312	6	1 1567	1079	91 289261	comE ORF2 [Bacillus subtilis]	78	25	489
339	-	1117	794	91 1916729	Cadb (Staphylococcus aureus)	78	53	678
342	-	1 762	265	91 1842439	phosphatidylglycerophosphate synthase (Bacillus subtilis)	78	59	864
383	-	1 737		91 1184680	polymucleotide phosphorylase (Bacillus subtilis)	78	99	735
,	115	111923	111018	91 1399855	carboxyltransferase beta subunit Symechococcus PCC7942	11	63	906
·œ	- 2	1698	2255	191 149433	putative (Lactococcus lactis)	7.6	59	558
17		6948	7550	91 520738	comA protein (Streptococcus pneumoniae)	ננ	9	603
20	112	1 9761	1 8967	191 1000451	TreP [Bacillus subtilis]	7.	63	795
36	=	111421	12131	91 1573766	phosphoglyceromutase (gpmA) [Haemophilus influenzae]	11	99	117
53	_	3836	4096	91 1708640	YeaB (Bacillus subtilis)	77	55	261
19	-	1 8377	8054	91 1890649	multidrug resistance protein LarA (Lactococcus lactis)	7.7	51	324
65	7	1 607	1254	91 40103	ribosomal protein L4 (Bacillus stearothermophilus)	7.6	63	648
89		1 7509	7240	gi 47551	MRP (Streptococcus suis)	77	99	270
69	-	1083	118	[gn] PID e311493	unknown (Bacillus subtilis)	11	57	996
۲۲	5	4583	4026	gn1 PID e281578	hypothetical 12.2 kd protein (Bacillus subtilis)	11	1 09	558
83	7	13104	14552	gi 1590947	amidophosphoribosyltransferase [Methanococcus jannaschii]		95	1449
96	-	3006	5444	gn1 P1D e329895	(AJ000496) cyclic nucleotide-gated channel beta subunit [Rattus norvegicus]	77	99	2439
96	=	8518	8880	gi 551879	ORF 1 [Lactococcus lactis]	7.	62	363
99	Ξ	14082	i6 66/21	91 153737	sugar-binding protein (Streptococcus mutans)	7.	61	1284

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	A QI	Start (nt)	Stop (nt)	match	match gene name	e sia	* ident	length (nt)
106	7	361	1176	gi 148921	LicD protein (Haemophilus influenzae)	77	51	816
108	7	3152	4030	gi 1574730	tellurite resistance protein (tehB) [Haemophilus influenzae]	77	28	879
118	-	3520	3131	91 1573900	D-alanine permease (dagA) [Haemophilus influenzae]	7.	57	390
124	-	1796	101	gi 1573162	LRMA (guanine-N1)-methyltransferase (trmD) [Haemophilus influenzae)	77	88	726
126	-	5909	4614	[gn1 PID d101163	Srb (Bacillus subtilis	77	62	1296
128	7	630	1373	gn1 PID d101328	rqiz (Bacillus subtilis)	77	88	744
130	-		1287	gn1 PID e325013	hypothetical protein (Bacillus subtilis)	1.4	61	1287
139		4388	3639	91 2293302	(AF008220) YtqA (Bacillus subtilis]		- 65	750
140	=	10601	9582	gi 289284	cysteinyl-tRNA synthetase (Bacillus subtilis)	7.	64	1350
140	118	19451	19263	91 517210	[putative transposase (Streptococcus pyogenes]	77	99	189
141	~	976	1683	gn1 PID e157887	URF5 (as 1-573) (Drosophila yakuba)	72	20	1 807
141	4	2735	5293	91 556258	secA [Listeria monocytogenes]	1 77	- 65	2559
144	7	671	2173	gn1 PID d100585	lysyl-tRNA thynthetase [Bacillus subtilis]	1 44	61	1503
1 163	\$	6412	7398	gi 511015	dihydroorotate dehydrogenase A [Lactococcus lactis]	1 44	62	987
164	10	7841	1074	gn1 P1D d100964		-	52	1 894
191	80	7257	5791	91 149516	anthranilate synthase alpha subunit [Lactococcus lactis]	1,4	57	1467
198		5377	5177	91 1573856	hypothetical (Haemophilus influenzae)	77	99	201
213	-	202	462	91 1743860	Brca2 [Mus'musculus]	1.7.	20	261
1 250	7	231	509	4776	[YlbH protein (Bacillus subtilis]	1 11	09	279
289	_	1737	1276	gn1 PID d100947	Ribosomal Protein L10 (Bacillus subtilis)	1,4	62	462
292	7	1399	899	gi 143004	transfer RNA-Gin synthetase (Bacillus stearothermophilus)	1.44	88	732
,	_	2734	1166	gn1 PID d101824	peptide-chain-release factor 3 (Synachocystis sp.)	96	53	1869
,	23	18474	118235	[g1 455157	acyl carrier protein (Cryptomonas phil	16	57	240
6	8	5706	4342	gi 1146247	esparaginyl-tRNA synthetase (Bacilius subtilis)	1 94	61	1365
10	5	4531	4385	gn1 P10 e314495	hypothetical protein (Clostridium perfringens)	1 96	53	147
18	7	1615	842	91 1591672	phosphate transport system ATP-binding protein (Methanococcus jannaschii)	1 96	36	774

i. pneumoniae - Putative coding regions of novel proteins similar to known

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	e sin	1 Ident	length (nt)
22	137	27796	[28173	gn1 PID e13389	translation initiation factor IF3 (AA 1-172) [Bacillus stearothermophilus]	92	64	378
35	9	1869	2682	gi 1773346	Cap5G (Staphylococcus aureus)	9,	61	1188
80	78	21113	21787	91 2314328	(AE00063) glutamine ABC transporter, permease protein (glnP) [Helicobacter pylori]	76	52	675
52	112	12881	13786	gi 142521	decxyribodipyrimidine photolyase (Bacillus subtilis)	92	85	906
\$\$	120	11521	10571	gn1 PID e283110	[femD [Staphylococcus aureus]	94	61	951
57	8	7824	6559	91 290561	o188 [Escherichia coll]	92	47	1266
62	5	2406	2095	gn1 PID e313024	- :	92	65	312
65	6	(4223	4441	gi 40148	L29 protein (AA 1-66) (Bacillus subtilis]	96	58	219
89	~	1328	1752	gn1 P1D e284233	enabolic ornithine carbamoyltransferase [Lactobacillus plantarum]	94	61	1044
69	8	7297	6005	gn1 P1D d101420	Pyrimidine nucleoside phosphorylasa (Bacillus stearothermophilus)	92	61	1293
13	112	7839	1267	gn1 PID e243629	143629 [unknown [Mycobacterium tuberculosis]	94	53	573
74	2	8433	7039	gn1 P1D d102048	C. thermocellum beta-glucosidase; P26208 (985) (Bacillus subtilis)	94	09	1395
80	5	7643	7936	191 2314030	(AE000599) conserved hypothetical protein (Helicobacter pylori)	96	61	294
82	51	16019	16996	91 11573900	[D-alanine permease (dagA) (Raemophilus influenzae]	1 94	98	978
83	6	18616	19884	91 143374	phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) (Bacillus subtilis)	92	99	1269
98	=	13409	112231	91 143806	Arof (Bacillus subtilis)	1 94	88	6711
83	-	F	1442	1911153804	sucrose-6-phosphate hydrolase (Streptococcus mutans)	1 94	65	1440
87	91	15754	15110	gn1 P1D e323500	putative Gmk protein (Bacillus subtilis)	1 94	95	645
93	-	1769	1539	91 1574820	1,4-alpha-glucan branching enzyme (glgB) (Haemophilus influenzae)	1 90	1 99	231
9.4	-	51	365	91 144313	6.0 kd ORF [Plasmid ColEI]	1 9/	73	1 216
116	~	2151	1678	91 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	1 92	59	474
123	9	3442	5895	gi 1314297	CipC ATPase [Listeria monocytogenes]	1 92	65	2454
126	~	2156	2932	gn1 Pr0 d101328	YqiZ (Bacillus subtilis)	76	61	1 111
128	<u> </u>	6973	197	gi 944944	purine nucleoside phosphorylase (Bacillus subtilis)	1 94	1 09	825
121	=	6186	5812	91 1674310	(AE000058) Mycoplasma pneumoniae, MG085 homolog, from M. genitalium [Mycoplasma pneumoniae]	9,	42	375

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ID	Start (nt)	Stop (nt)	match	match gene name	sin	* ident	length (nt)
139	-	1 3641	3192	91 2293302	[AF008220] YtqA [Bacillus subtilis]	1 94	53	450
140	77	14872	112536	91 1184680	polynucleotide phosphorylase (Bacillus subtilis)	76	62	2337
143	7	1 2583	3905	191 143795	transfer RNA-Tyr synthetase (Bacillus subtilis)	76	61	1323
170	9	5095	6114	gn1 P1D d100959	ycg0 (Bacillus subtilis)	76	**	1020
180	7	1927	557	gi 40019	ORF 821 (aa 1-821) [Bacillus subtilis]	76	53	1371
161	7	1 5815	5228	91 551880	anthranilate synthase beta subunit (Lactococcus lactis)	76	61	588
195	~	3829	2444	91 2149905	D-glutamic acid adding enzyme [Enterococcus faccalis]	76	09	1386
200		1914	3629	91 431272	lysis protein (Bacillus subtilis)	76	58	1716
1 201	-	431	207	91 2208998	dextran glucosidase DexS Streptococcus suis	76	57	225
214	7	1 1283	2380	91 663278	transposase (Streptococcus pneumonlae)	76	\$5	1098
1225	3	2338	3411	[g1 1552775	ATP-binding protein (Escherichia coli)	76	1 98	1074
233	_	~	724	191 1163115	neuraminidase B (Straptococcus pneumoniae)	76	9	723
347	7	523	38	191 537033	ORF_1356 [Escherichia coli]	76	1 09	486
356	7	842	165	91 2149905	D-glutamic acid adding enzyme [Enterococcus faecalis]	76	61	678
366	6	734	348	91 149520	[phosphoribosy] anthranilate isomerase [Lactococcus lactis]	76	69	387
2	8	12599	11484	gi 1574293	[fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae]	75	9	1116
9	=	12553	111894	gn1 PID d102050	ydin (Bacillus subtilis)	75	51	1 099
6	2	7282	6062	91 142538	aspartate aminotransferase (Bacillus sp.)	75	55	1221
01	12	1 8080	7940	gi 149493	SCRFI methylase [Lactococcus lactis]	75	26 1	141
18	5	4266	3301	gn1 Pr0 d101319	YqgH (Bacillus subtilis)	75	52	996
22		1838	2728	91 1373157	orf-X; hypothetical protein: Method: conceptual translation supplied by author [Bacillus subtilis]	- 27	62	891
30	=	9015	7828	191 153801	enzyme scr-11 [Streptococcus mutans]	75	64	1188
- n	\$	2362	2030	91 2293211	(AFO08220) putative thioredoxin [Bacillus subtilis]	75	53	333
32	6	7484	8359		[Cormamidopyrimidina-DNA glycosylase [Streptococcus mutans]	75	61	876
33	-	1735	1448	91 413976	Ipa-52r gene product (Bacillus subtilis)	75	53	288
33	2	0449	5769	gi 533105	unknown (Bacillus subtilis)	75	98	702
						+	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	e sin	* ident	length (nt)
33	112	6878	1 7183	pir A00205 FECL	ferredoxin (4Fe-4S) - Clostridium thermaceticum	75	98	306
36		181	7	91 2088739	(AF001141) strong similarity to the FABP/P2/CRBP/CRABP family of transporters (Caenorhabditis elegans)	75	\$	081
38	22	14510	15379	91 1574058	hypothetical (Haemophilus influenzae)	75	95	870
48	133	23398	24066	[91 1930092	outer membrane protein (Campylobacter jejuni)	25	56	1 699
15	-	2	319	91 43985	inifS-like gene [Lactobacillus delbrueckiii	75	55	318
15	10	8318	11683	91 537192	CG Site No. 620; alternate gene names hs, hsp. hsr, rmx apparent frameshift in GenBank Accession Number X06545 [Escherichia colli	75	950	3366
54	118	19566	20759	191 666069	orf2 gene product [Lactobacillus leichmannii]	75	95	1194
57	6	8448	7822	91 290561	ol88 (Escherichia coli)	75	1 05	627
9	=	6072	9329	91 606241	30S ribosomal subunit protein S14 (Escherichia coli)	75	64	285
0,	7	1 3071	2472	91 1256617	adenine phosphoribosyltransferase (Bacillus subtilis)	75	57	009
1, 1	24	130399	29404	91 1574390	C4-dicarboxylate transport protein [Haemophilus influenzae]	75	57	966
13	-	910	455	gn1 PID e249656	Yner (Bacillus subtilis)	75	57	456
- 79		1810	491	91 1146219	[28.2% of identity to the Escherichia coli GTP-binding protein Era; putative Bacillus subtilis)	75	29	1320
82	9	6360	6536	91 1655715	BrtD (Rhodobacter capsulatus)	75	55	771
63	9	1938	2975	gn1 PID e323529	putative Plsk protein (Bacillus subtilis)	75	95	1038
93	=	1. 7368	5317	gi 39989	methionyl-tRNA synthetase [Bacillus stearothermophilus]	75	58	202
93	=	9409	8699	gi 1591493	glutamine transport ATP-binding protein Q (Methanococcus jannaschii)	1 5′	54	711
95	-	1795	47	gn1 PID e323510	Ylov protein (Bacillus subtilis)	75	57	1749
103	~	362	1186	gn1 PID e266928	unknown (Mycobacterium tuberculosis)	75	1 99	825
104	-	691	915	gi 460026	repressor protein (Streptococcus pneumoniae)	1 51	54	225
113	2	2951	3883	gni Pro dioiii9	ABC transporter subunit (Synechocystis sp.)	75	55	933
121	-	320	1390	91 2145131	repressor of class I heat shock gene expression HrcA (Streptococcus mutans)	75	88	101
127	9	2614	3000	91 1500451	H. Jannaschii predicted coding region MJ1558 [Methanococcus Jannaschii]	75	44	387
137	82	110082	10687	91(393116	P-glycoprotein 5 (Entamoeba histolytica)	75	52	909
149	Ξ	8499	9338	gn1 P10 d100582	unknown (Bacillus subtilis)	75	55	840
						+ 1511111	+	•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	I ORF	Start (nt)	Stop (nt)	match	match gene name	* sin	1 1dent	l length
151	9	9100	1 7673	91 40467	HsdS polypeptide, part of CfrA family (Citrobacter freundii)	27	57	1428
158	-	986	m	gn1 PID e253891	UDP-glucose 4-epimerase (Bacillus subtilis)	75	63	984
172	*	5653	6774	gi 142978	glycerol dehydrogenese [Bacillus stearothermophilus]	75		1122
172	6	1 7139	01.70	gn1 P1D e268456	unknown (Mycobacterium tuberculosis)	27	88	2592
173	-	261	67	gn1 PID e236469	C10C5.6 [Caenorhabditis elegans]	25	20	183
185		3066	2014	91 1574806	spermidine putrescine transport ATP-binding protein (potA) [Haemophilus influenzae]	75	26	1053
191	9	5235	4213	91 149518	phosphoribosyl anthranilate transferase (Lactococcus lactis)	1 75	61	1023
226	~	1.1774	1181	91/2314588	(AE000642) conserved hypothetical protein [Helicobacter pylori]	25	65	594
231	-	-	153	gi 40173	homolog of E.coli ribosomal protein L21 [Bacillus subtilis]	75	52	153
234	-	2	418	91 2293259	(AF008220) Ytq1 (Bacillus subtilis)	27	65	417
279	-	552	151	gi 1119198	[unknown protein (Bacillus subtilis)	27	05	405
291	-	3558	1 3827	191 40011	ORF17 (AA 1-161) (Bacillus subtilis]	75	48	270
375	~	1 137	628	191 410137	ORFX13 (Bacillus subtilis)	75	88	492
9	20	116721	117560	gi 2293323	(AF008220) YtdI (Bacillus subtilis)	74	53	840
-	9	4682	6052	91 1354211	PET112-like protein (Bacillus subtilis)	74	09	1371
18	-	3341	1 2427	gni (Pib/dioi319	YqqI (Bacillus subtilis)	14	54	915
~	9	5885	4800	191 1072381	glutamyl-aminopeptidase (Lactococcus lactis)	74	- 65	1086
24	- 5	139	548	gi 2314762	(AE000655) ABC transporter, permease protein (yaeE) [Helicobacter pylori]	74	46	192
25	-	2	1 367	gn1 PID d100932	[H20-forming NADH Oxidase [Streptococcus mutans]	1 1/2	63	366
38	118	111432	112964	gi 537034	ORF_0488 (Escherichia coli)	74	57	1533
48	202	8924	6999	91 1513069	P-type adenosine triphosphatese [Listeria monocytogenes]	74	53	2256
55	Ξ	11964	111401	gn1 PID e283110	[temD (Staphylococcus aureus)	74	799	564
75	2	1782	427	gi 2293216	(AF008220) putative UDP-N-acetylmuramate-alanine ligase (Bacillus subtilis)	74	55	1356
76	100	9414	8065	gn1 PID d101325	YqiB (Bacillus subtilis)	74	54	1350
8	7	999	926	pir C33496 C334	hisC homolog - Bacillus subtilis	1 42	55	261
96	6	8988	8080	91 683585	prephenate dehydratase (Lactococcus lactis)	74	55	906
						4		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont 1g ID	I D	Start (nt)	Stop (nt)	metch	match gene name	* sim	* ident	length
102	5	5005	5652	91 143394	OMP-PRPP transferase (Bacillus subtilis)	74	57	648
103	2	4364	3267	gn1 P1D e323524	YloW protein (Bacillus subtilis)	7.4	62	1098
108	-	6864	7592	gn1 PID e257631	methyltransferase (Lactococcus lactis)	74	56	729
131	~	478	146	gn1 P1D d101320	Yqg2 [Bacillus subtilis]	24	45	333
133	~	1380	919	gn1 PID e313025	hypothetical protein [Bacillus subtilis]	74	09	462
137	6	6167	6787	gn1 P1D d100479	gn PID d100479 Na+ -AFPase subunit D (Enterococcus hirae)	74		169
149	*	3008	3883	gn1 P1D d100581	high level kasgamycin resistance (Bacillus subtilis)	74	\$5	876
157	~	243	824	gi (1573373	methylated-DNAprotein-cysteine methyltransferase (dat1) (Haemophilus influenzae)	74	84	582
164	9	3515	4249	911410131	ORFX7 (Bacillus subtilis)	74	8.8	316
167	7	5446	5201	191 413927	Ipa-3r gene product (Bacillus subtilis]	74	3.5	346
171	-		1818	gn1 PID d102251	beta-galactosidase (Bacillus circulans)	74	62	8181
172	-	1064	2392	91 466474	callobiose phosphotransferase enzyme II'' (Bacillus steerothermophilus)	74	30	1329
185	-	326	ſ	91 1573646	Mg(2+) transport ATPase protein C (mgtC) (SP:P22037) [Haemophilus	74	89	324
188	2	1089	2018	91 1573008	ATP dependent translocator homolog (msbA) [Haemophilus influenzae]	74	44	930
189	=	6491	7174	91 1661199	sakacin A production response regulator (Streptococcus mutans)	74	1 09	684
210	7	520	1287	91 2293207	(AF008220) Ytmc (Bacillus subtilis)	74	09	768
261	-	836	192	91 666983	putative ATP binding subunit (Bacillus subtilis)	74	55	645
263		1619	3655	91 663232	Similarity with S. cerevisiae hypothetical 137.7 kD protein in subtelomeric Y' repeat region (Saccharomyces cerevisiae)	74	42	2037
265	-	844	1227	91 49272	Asparaginase (Bacillus licheniformis)	74	64 1	184
368	-	-	942	91 603998	unknown (Sacharomyces cerevisiae)	74	96	942
_	16	13357	11921	Bn1 P1D d101324	Yqhx (Bacilius subtilis)	73	1 65	1 641
17	01	5706	5449	gn1 PID e305362	unnamed protein product (Streptococcus thermophilus)	73	47	258
31	~	522	244	gn1 PID d100576	single strand DNA binding protein (Bacillus subtilis)	1 87	55	279
_!	-	5667	6194	gni (Profetorats	YqfG (Bacillus subtilis)	73	- 88	528
34	115	10281	9790	gn1 P1D d102151	(AB001684) ORF42c (Chlorella vulgaris)	13	1 97	492
					<u> </u>			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match yene name	a sim	• ident	length (nt)
-	112	9876	9226	gi 1173517	riboflavin synthase alpha subunit [Actinobacillus pleuropneumoniae]	7.3	88	651
25	~	13592	839	gn1 PID d101887	cation-transporting ATPase PacL (Synachocystis sp.)	73	09	2754
22	118	17494	16586	gn1 PID e265580	unknown (Mycobacterium tuberculosis)	5.	52	606
69	116	1213	1767	gi 143419	ribosomal protein L6 (Bacillus stearothermophilus)	73	09	555
99	_	3300	3659	gn1 PID e269883	Lace (Lactobacillus casei)	13	52	360
0.	9	5557	5733	191 857631	envelope protein (Human immunodeficiency virus type 1)	73	09	177
11	-	6133	8262	gn1 P1D e322063	ss-1,4-galactosyltransferase Streptococcus pneumoniae	73	\$	2130
72	-	- -	851	91 2293177	(AF008220) transporter (Bacillus subtilis)	73	20	849
1 76	٠,	1 7019	6195	gn1 PID d101325	rqif (Bacillus subtilis)	73	99	825
1 76		10009	9533	91 1573086	uridine kinase (uridine monophosphokinase) (udk) (Haemophilus influenzae)	73	54	477
80	7	8113	9372	191 1377823	aminopeptidase [Bacillus subtilis]	73	09	1260
97	2	3389	8991	gn1 PID d101954	dihydroxyacid dehydratase (Symechocystis sp.)	73	54	1722
86	6	6912	7619	[gn1 PID e314991	FtsE [Mycobacterium tuberculosis]	23	54	108
108	=	10928	10440	191 388109	regulatory protein (Enterococcus faecalis)	73	54	489
128		3632	4222	[91[1685111	orf1091 (Streptococcus thermophilus)	73	63	591
138	~	1575	394	gi 147326	transport protein (Escherichia coli)		09	1182
140	13	112538	11903	pir E53402 E534	serine O-acetyltransferase (EC 2.3.1.30) - Bacillus stearothermophilus	23	25	636
162	5	5701	4991	gn1 P1D e323511	putative YhaQ protein (Bacillus subtilis)	£7	20	711
164	-	2323	2790	gi 1592076	hypothetical protein (SP.P25768) [Methanococcus jannaschii]	<u>Ε</u> τ	52	468
164	80.	4815	5546	g1 410137	ORFX13 (Bacillus subtilis)	. ET	36	732
170	2	4394	5302	gn1 P10 d100959	homologue of unidentified protein of E. coli [Bacillus subtilis]	73	46	1 606
178	-	3893	4855	91 46242	nodulation protein B, 5'end (Rhizobium loti)	73	95	963
204	9	9605	4278	gn1 P1D e214719	PicR protein (Bacillus thuringiensis)	73	- 17	819
213	~	832	2037	91 1565296	ribosomal protein Si homolog; sequence specific DNA-binding protein [Leuconostoc lactis]	52	95	1206
162	7	84	287	91 40173	homolog of E.coli ribosomel protein L21 (Bacillus subtilis)	73	61: 1	204
237	-	2	505	91,1773151	adenine phosphoribosyltransferase (Escherichia coli)	73	51	504
							A	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	; —	Start	Stop	- match	match gene name	mis 4	# ident	length 1
9	2 ;	(uc)	(ut)	acession				(uc)
269	-	7	691	gn1 P10 d101328	Yqix [Bacillus subtilis]	23	36	1 069
289	~	1272	832	pir A02771 R7MC	ribosomal protein L7/L12 - Micrococcus luteus	23	99	441
343		7	484	91 1788125	(AR000276) hypotherical 30.4 kD protein in man2-cspC intergenic region [Escherichia coll]	23	47	471
356	-	222	v	gi 2149905	D-glutamic acid adding enzyme (Enterococcus faecalis)		05	219
,	s	3165	1 4691	gn1 P1D d101833	amidase Synechocystis sp.	22	52	1527
,	6	1 7195	7647	191 146976	nusB [Escherichia coli]	72	54	453
	71	13743	13300	gn1 P1D e289141	similar to hydroxymyristoyl-(acyl carrier protein) dehydratese (Bacillus subtilis)	22	65	444
22	-19	15637	116224	gn1 PID d101929	ribosome releasing factor (Synechocystis sp.)	72	51	588
1 33	=	112111	111425	gn1 PID d101190	ORP3 (Streptococcus mutane)	72	55	687
34	-	7147	1 5627	[91] 196501	aspartyl-tRNA synthetase [Thermus thermophlius]	72	52	1521
38	- 53	15372	16085	pir H64108 H641	L-ribulose-phosphate 4-epimerasa (araD) homolog - Haemophilus influenzae (strain Rd KW20)	72	54	714
39	5	5094	6905	gn1 P1D e254877	unknown (Mycobacterium tuberculosis)	72	36	1812
40	9	4469	4636	[gi 153672	[lactose repressor (Streptococcus mutans)	72	28	168
48	7	1459	1253	91 310380	Inhibin beta-A-subunit [Ovis aries]	72	33	207
80	- 2	21729	22424	91 2314329	(AE000623) glutamine ABC transporter, permesse protein (glnp) (Hellcobacter pylori)	72	49	969
05	- 5	4529	3288	9111750108	[Ynba (Bacillus subtilis]	72	54	1242
51	-	1044	2282	g1 2293230	(AF008220) YtbJ [Bacillus subtilis]	72	54	1239
52	=	13681	113938	gi 142521	deoxyribodipyrimidine photolyase [Bacillus subtilis]	72	45	258
1 55	-	841	35	91 882518	ORF_0304; GTG start [Escherichia coli]	72	59	807
75	5	2832	3191	gn1 PID e209886	mercuric resistance operon regulatory protein [Bacillus subtilis]	72	7	360
9/	9	6229	1772	91 142450	lahrC protein (Bacillus subtilis)	72	53	459
92	5	5905	4592	gi 2293279	(AF008220) YtcG [Bacillus subtilis]	72	97	1 747
87	=	14726	12309	gn1 P1D e323502	[putative PriA protein [Bacillus subtilis]	72	52	2418
91	-	444	662	gi 500691	MYO1 gene product (Saccharomyces cerevisiae)	72	05	219
91		4516	4764	91 829615	skeletal muscle sodium channel alpha-subunit [Equus caballus]	72	38	249
						+	•	+

pneumoniae - Putative coding regions of novel proteins similar to known proteins

		1111111						
Contig	10RF	Start (nt)	Stop (nt)	metch	match gene name	a is	1 Ident	length (nt)
95	- 2	2004	7171	gn1 P1D e323527	[putative Asp23 protein [Bacillus subtilis]	22	40	286
109	-	1452	118	[91 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	72	52	1335
126	-	-	2192	gn1 PID d101831	glutamine-binding periplesmic protein (Symechocystis sp.)	72	46	2190
130	-	1735	1 2478	91 2415396	(AF015775) carboxypeptidase [Bacillus subtilis]	72	53	744
137	9	2585	2929	gi 472922	v-type Na-ATPase [Enterococcus hirae]	72	46	345
140	92	9601	9203	91 49224	URF 4 (Synechococcus sp.)	72	48	399
146	- 5	1906	1247	gn1 PID e324945	hypothetical protein (Bacillus subtilis)	72	45	099
147	-	2084	1083	gn1 PID e325016	hypothetical protein (Bacillus subtilis)	72	95	1002
147	5	6156	5146	gi 472327	TPP-dependent acetoin dehydrogenase beta-subunit [Clostridium magnum]	72	1 95	1011
148	-	5381	6433	g1 974332	NAD(P)H-dependent dihydroxyacatone-phosphate reductase (Bacillus subtilis)	72	54	1053
148	-	10256	9675	gnl PID d101319	YqqN (Bacillus subtilis)	72	1 05	582
159	œ .	4005	4949	91 1788770	(AE000330) 0463; 24 pct identical (44 gaps) to 338 residues from penicillin-binding protein 4., PBPE_BACSU SW: P32959 (451 aa) [Escherichia coll)	72	5	945
172	9	1 9907	110620	191 (763387	unknown (Saccharomyces cerevisiae)	72	55	714
220	-	2862	3602	91/1574175	hypothetical (Maemophilus influenzae)	127	- 05	141
267	-	-	449	1911290513	[610 [Escherichia coli]	1 27	48	447
281	~	899	540	gn1 P1D d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis	72	45	360
290		1018	7	91 474195	This ORP is homologous to a 40.0 kd hypothetical protein in the htrB 3' region from E. coli, Accession Number X61000 [Mycoplasma-like organism]	27	54	1005
300	-	63	587	[gi 746399	transcription elongation factor [Escherichia coli]	72	80	525
316	-	1326	*	gi 158127	protein kinase C (Drosophila melanogaster)	72	40	1323
342	-	227	~	gn1 P1D d101164	unknown {Bacillus subtilis}	72	54	225
354	-	-	1005	gn1 PID d102048	C. thermocellum beta-glucosidase; P26208 (985) [Bacillus subtilis]	72	52	1005
9	2	8134	10467	gn1 PID e264229	unknown (Mycobacterium tuberculosis)	11,	57	2334
,	50	i	15464	91 1 1 8 0 4 6	3-0x0acy1-(acy1-carrier protein) reductase (Cuphea lanceolata)	111	52	1 892
15	-	1297	2	gn1 PID d100571	replicative DNA helicase (Bacillus subtilis)	17	51	1296
15	-	4435	1 3869	91 499384	orf189 (Bacillus subtilis)	111	47	567
						•	+	*********

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	* sim	* ident	length (nt)
18	9	5120	4218		YagG (Bacillus subtilis)	יי	51	903
29	-	-	540	91 1773142	similar to the 20.2kd protein in TETB-EXOA region of B. subtilis [Escherichia coli]	71	26	540
38	- 50	13327	13830	91 537036	ORF_0158 [Escherichia coli]	71.	48	204
51	71	15015	12676	gi 149528	dipeptidyl peptidase IV (Lactococcus lactis)	7.1	55	2340
55	[2]	21040	20585	91 2343285	[AF015453] surface located protein [Lactobacillus rhamnosus]	11.	88	456
09	~	705	265	gn1 PID d101320	Yqg2 (Bacillus subtilis)	11,	44	441
7.1	118	24679	26226	gi 580920	rodD (gtaA) polypeptide (AA 1-673) [Bacillus subtilis]	71	44	1548
נג	25	30587	30360	91 606028	ORF_0414; Geneplot suggests frameshift near start but none found [Escherichia coli]	71	20	228
7.2	9	5239	6729	91 580835	lysine decarboxylase [Bacillus subtilis]	71	48	1491
2		11991	12878	91 624085	similar to rat beta-alanine synthetase encoded by GenBank Accession Number \$27881; contains ATP/GTP binding motif (Paramecium bursaria Chlorella virus 1)	12	54	8888
7.3	Ξ	7269	1 7033	191 1906594	PNI (Rattus norvegicus)	11	42	237
74	9	10385	8517	91 1573733	prolyl-tRNA synthetase (proS) [Haemophilus influenzae]	111	52	1869
181	6	5772	6578	91 147404	mannose permease subunit II-M-Man (Escherichia coli)	11	45	807
98	- 5	4602	3604	gn1 PID e322063	ss-1,4-galactosyltransferase [Streptococcus pneumoniae]	11	53	666
105	-	3619	4707	[91 2323341	(AF014460) PepQ (Streptococcus mutans)	71	88	1089
106	5	13557	12955	91 1519287	LemA [Listeria monocytogenes]	17	48	603
114	7	1029	1979	[gi[310303	mosA (Rhizobium mellioti)	17	55	951
122	-	564	1205	[g1 1649037	glutamine transport ATP-binding protein GLNQ (Salmonella typhimurium)	יי	50	642
132	٥.	9018	7063	gn1 PID d102049	H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]	7	51	1956
140		1141	227	91 1673788	(AE000015) Mycoplasma pneumonies, fructose-bisphosphate aldolase; similar to Swiss-Prot Accession Number P11243, from B. subtilis (Mycoplasma pneumoniae)	17	64	915
40	'n	5635	4973	gn1 P1D d100964	homologue of hypothetical protein in a rapamytin synthesis gene cluster of Streptomyces hygroscopicus [Bacillus subtills]	1,	89	663
141		7369	7845	gn1 P10 d102005	(ABD01488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E. COLI AND MYCOPLASHA PNEUMONIAE. (Bacillus subtilis)	17	51	477
		!	! ! ! ! ! ! ! !				•	•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contin	Tabl	0.00	0000					
9	7	(ag)	;	acession	morcu gene name	e sin	• ident	length (nt)
193	-	-	165	91 46912	ribosomal protein L13 (Staphylococcus carnosus)	12	- 65	165
194	-	2205	1594	[g1 535351	Cody (Bacillus subtilis	12.	\$2	612
199		1510	1319	91 2182574	(AE000090) Y4pE [Rhizobium sp. NGR234]	12	45	192
208		2616	3752	[91]1787378	(AE000213) hypothetical protein in purB 5' region (Escherichia coli)	12	57	1137
209	~	2022	1141	gi 41432	[fepC gene product [Escherichia coli]	12	97	882
210	- 2	1161	3071	91 49316	ORF2 gene product (Bacillus subtilis)	1 12	45	1161
210	9	1 3069	3386	91 580900	ORF3 gene product (Bacillus subtilis)	111	48	318
212	~	3561	1381	91 557567	ribonucleotide reductase R1 subunit [Mycobacterium tuberculosis]	114	53	2181
233	~	2003	2920	gn1 P1D d101320	YqgR [Bacillus subtilis]	111	20	916
244		£1	1053	gn1 P1D d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis	1,	55	1043
251	7	1008	1 1874	91 755601	unknown [Bacillus subtilis]	1 12	46	867
282	7	906	1 712	lg1 1353874	unknown (Rhodobacter capsulatus)	1 4	46	195
312	-	2137	1565	gn1 PID d102245	(AB005554) yxbF (Bacillus subtilis)	1 12	34	573
338	-	6	683	91 1591045	hypothetical protein (SP:P31466) (Methanococcus jannaschii)	1 12	48	681
346	-	_	164	91 1591234	hypothetical protein (SP:P42297) (Methanococcus jannaschii)	1 11	36	162
374		619	2	91 397526	clumping factor (Staphylococcus aureus)	1,1,	23	618
77.	-	688		gi 397526	clumping factor Staphylococcus aureus	1,1,	23	687
3	8	1 7419	6958	gn1 PID e269486	Unknown (Bacillus subtilis)	1 02	42	462
•	2	8395	9075	gn1 P1D e255543	putative iron dependant repressor (Staphylococcus epidermidis)	1 01	99	681
7	=	111024	10254	[gn] [PID] d100290	undefined open reading frame [Bacillus stearothermophilus]	70	55	1 11/1
,	- 18	14213	61/61	gn1 PID d101090	biotin carboxyl carrier protein of acetyl-CoA carboxylase [Synechocystis sp.]	2	95	495
6	~	1057	287	gn1 PID d100581	unknown (Bacillus subtilis)	. 04	52	1111
2	-	2610	1789	gn1 PID d101195	yycd (Bacillus subtilis)	70	52	822
21	2 -	2586	1846	91 2293447	(AF008930) ATPase (Bacillus subtilis)	1.04	24	741
22	=	110955	111512	91 1165295	Ydr540cp (Saccharomyces cerevistae)	0,	05	558
30	9	4315	3980	91 39478	ATP binding protein of transport ATPases (Bacillus firmus)	70	51	336
					• 1 1 2 4 4 4 4 4 4 4 4 4		*********	+========

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1 1 1 1 1 1 1 1 1 1	match match gene name acession	a is	ident Jer	length (nt)
15 10619 9521 91 116119 homolgous 6 3812 4312 91 2058847 ComyD Strate 125 17986 18477 91 537033 ORF_f156 It 12 722 1954 91 1173516	single-stranded DNA binding protein (unidentified eubacterium)	1 07	36	258
6 1812 4112 91 5058547 ComyD Street 125 17986 18477 91 517033 ORF_61356 18 11054 9846 91 1173516 Fiboflavin-ComyD 13 12173 1612 91 11054 91 111054 91 111054 91 1110516 Fiboflavin-Computed 13 2373 1612 91 110 110 955 956 91 110 110 955 956 91 110 110 927646 aminopeptic 13 1874 795 91 110 120 926 91 1257037 Cystathionic 14 5553 2437 91 110 927646 aminopeptic 17 7314 6602 91 1257037 Cystathionic 18 19 1253037 Cystathionic 17 1126 6962 91 1251044 emml 8.1 gen 17 1726 6962 91 1251044 emml 8.1 gen 12 10081 10911 91 91 91 91 91 91	-	70 -	50	1119
13 11054 18477 941 537033 ORP_f1356 IT 2 722 1954 91 11146183 putative It 3 2373 1612 91 110610305 subunit of 4 5553 2437 gml PID e276466 aminopeptic 7 7914 6802 91 1573037 cystathion 7 7914 6802 91 1573037 cystathion 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9	_	1 04	48	501
13 11054 9846 94 1173316 Fiboflavin 1 2 722 1954 94 11146183 putative File 1 1154 94 1154183 glutamine to 1 1 1 1 1 1 1 1 1		70	58	492
2 722 1954 9i 1146183 putative 3 2373 1612 9i 1591493 glutamine 2 567 956 gn PID d100302 neopullularical 3 1874 795 gn PID e276466 aminopeption 4 5553 2437 gn PID e276466 aminopeption 7 7914 6802 gi 1573037 Cystathion 8 7 7326 gn PID d100974 unknown 9 1088 8124 gi 1253034 10 7888 8124 gi 1253034 10 9369 7324 gn PID e323506 putative Pk 10 9369 7324 gn PID e325330 yorfE (Streellarical Ph Ph 10 9369 932 gn PID e325330 yorfE Streellarical Ph 10 9369 932 gn PID e325330 yorfE Streellarical Ph 10 9369 932 gn PID e325330 yorfE Streellarical Ph 10 9369 932 gn PID e325330 yorfE Streellarical Ph 10 9360 932 gn PID e325330 yorfE Streellarical Ph 10 9360 932 gn PID e325330 yorfE Streellarical Ph 10 9360 932 gn PID e325330 yorfE Streellarical Ph 10 9360 932 gn PID e329330 yorfE Streellarical Ph 10 9360	friboflavin-specific deaminase [Actinobacillus pleuropneumoniae]	1 04	52	1209
3 2373 1612 gi 1591493 glutamine to 2 567 956 gn PID d100302 neopullular of 3 1874 795 gn PID e276466 aminopeptic 4 5553 2437 gn PID e276466 aminopeptic 7 7914 6802 gi 1573037 cystathion 7 7372 7222 gn PID d100974 unknown Bacilia 8 10081 10911 gi 12313093 (AE000524) 9 10 7888 8124 gi 1877423 galactose-1 10 7888 8124 gi 1877423 galactose-1 10 7888 8124 gi 1877423 galactose-1 10 7888 gi 1573209 tRNA-guanin 10 9369 7324 gn PID e333506 putative Pk 10 11788 gi 1573209 tRNA-guanin 10 8369 7324 gn PID d103585 unknown Bacilia 10 5600 3454 gn PID d100585 unknown Bacilia 10 5608 1394 gi 12293312 (AF008220) 10 438 932 gi 1729399 v-type Na-A	-	1 04	51	1233
8 9197 8049 gail PiD diocold subunit of 2 567 956 gail PiD diocold neopullular 3 1874 795 gail PiD e275074 SNP Eacillular 7 7914 6802 gill573037 Cystathioni 17 7126 6962 gill257037 Cystathioni 18 17 7126 6962 gill251014 enmi8.1 gen 17 7126 6962 gill251014 enmi8.1 gen 18 18 18 18 18 18 18 1	_	1 04	48	762
2 567 956 911 P10 41001002 1 1874 795 911 P10 6276466 7 7914 6802 91 157037 7 7914 6802 91 157037 7 7126 6962 91 1265014 10 7888 8124 91 1211093 10 7888 8124 91 1877423 10 9369 7324 911 P10 632506 14 10640 11788 91 1573209 2 574 1086 91 433630 5 4500 3454 911 P10 6276474 5 4500 3454 911 P10 625530 1 420 662 911 P10 625530 1 438 932 91472219 1 438 932 91472219	subunit	1 01	54	1149
3 1874 795 gnl P10 e276466 4 5553 2437 gnl P10 e275074 7 7914 6602 gi 1573037 7 7126 6962 gi 1263014 12 10081 10911 gi 12313093 13 1424 2525 gi 1877423 14 10640 11788 gi 1573209 15 2901 3461 gnl P10 e233506 5 4593 4282 gnl P10 e276474 5 4500 3454 gnl P10 e276474 5 4500 3454 gnl P10 e276474 6 450 3454 gnl P10 e276530 7 730 662 gnl P10 e265530 8 438 932 gi 4772919 9 438 932 gi 4772919 1 438 932 gi 4772919 1 438 932 gi 4772919		1 0′	42	390
4 5553 2437 gn1 PID e275074 7 7914 6802 gi 1573037 7 5372 7222 gn1 PID d100974 17 7126 6962 gi 1255014 10 7888 8124 gi 1877423 10 7888 8124 gi 1877423 10 9369 7324 gn1 PID e32506 14 10640 11788 gi 1573209 2 574 1086 gi 433530 3 2501 3461 gn1 PID d100585 5 4593 4282 gn1 PID d101314 5 4500 3454 gn1 PID d101314 1 4260 662 gn1 PID e265530 3 438 932 gi 472219 3 438 932 gi 472219	aminopeptidase P (Lactococcus	1 0/	48	1080
7 7914 6802 gi 1573037 75372 7222 gn1 PrD d100974 7 7126 6962 gi 1263014 7 7 7 7 7 7 7 7 7		1 04	51	3117
7 7372 7222 gn1 PID d100974 unknown [Bacillus subtilis] 7 7126 6962 gi 1263014 enmm18.1 gene product [Streptococcus 12 10081 10911 gi 2313093 (AE000524) carboxymorspermidine dec 12 10081 10911 gi 1877423 galactose-1-P-uridyl transferse (S 3 3424 2525 gi 39831 ORF 311 (AA 1-311) [Bacillus subtilis 10 9369 7324 gn1 PID e323506 putative Pkn2 protein [Bacillus subtilis 2 574 1086 gi 1573209 tRNA-guanine transglycosylase (tgt) 2 574 1086 gi 433530 A180 (Saccharomyces cerevisiae) 5 4593 4282 gn1 PID d100585 unknown [Bacillus subtilis] 5 4500 3454 gn1 PID d1001314 Yqer (Bacillus subtilis) 1 420 662 gn1 PID e265530 YorfE (Streptococcus pneumoniae) 3 438 932 gi 477219 V-type Na-Affese [Entercoccus phrea	/ cystathionine gamma-synthase (metB) [Haemophilus influenzae]	1 04	52	1113
7 7126 6962 91 1263014 emm18.1 gene product (Streptococcus 12 10081 10911 91 21313093 (AE000524) carboxymorepermidine dec 10 7888 8124 93 1877423 93 actose-1-P-uridyl transferase (S 3 3424 2525 91 39891 ORF 311 (AA 1-311) (Bacillus subtill 10 9369 7324 91 PID		1 07	54	1881
12 10081 10911 91 2313093 (AE000524) carboxynorgpermidine dec 10 7888 8124 91 1877423 92 actose-1-P-uridyl transferase 13 1424 2525 91 39891 ORF 311 (AA 1-311) [Bacillus subtil 10 9369 7324 91 1573209 tRNA-guanine transglycosylase (tgt) 14 10640 11788 91 1573209 tRNA-guanine transglycosylase (tgt) 2 574 1086 91 433630 A180 (Saccharomyces cerevisiae) 5 2901 3461 91 PID 0100585 unknown [Bacillus subtilis] 5 4500 3454 91 PID 0101314 Yqer (Bacillus subtilis) 1 420 662 91 PID 0265530 YorfE (Streptococcus pneumoniae) 1 420 662 91 477219 V-type Na-Affese [Encerococcus hire]		70	37	165
10 7888 8124 91 1877423 931accose-1-P-uridyl transferse (S 3 3424 2525 91 39831 10RF 311 (AA 1-311) [Bacillus subtili 10 9369 7324 911 513209 148NA-guanine transglycosylese (tgt) 14 10640 11788 91 1573209 148NA-guanine transglycosylese (tgt) 2 574 1086 91 433330 1480 Saccharomyces cerevisiee 5 2901 3461 911 PID 4100585 unknown Pacillus subtilis 5 4593 4282 911 PID 6276474 capacitative calcium entry channel 5 4500 3454 911 PID 6101314 YqeT (Bacillus subtilis 1 420 662 911 PID e265530 YorfE (Streptococcus pneumoniae 1 438 932 931 4772919 V-type Na-ATPese (Entercocccus hirea	-	- 02		831
3 1424 2525 gi 39881 ORF 311 (AA 1-311) [Bacillus aubtill 100 9369 7324 gnl PID e323506 putative Pkn2 protein [Bacillus subtill 110640 11788 gi 1573209 ERNA-guanine transglycosylase (tgt) 2 574 1086 gi 433630 A180 (Saccharomyces cerevisiae) 5 4591 3461 gnl PID e10685 unknown (Bacillus subtilis) 5 4500 3454 gnl PID e276474 capacitative calcium entry channel 5 4500 3454 gnl PID e101314 YqeT (Bacillus subtilis) 1 2608 1394 gi 229332 (AF008220) Ytff (Bacillus subtilis) 1 420 662 gnl PID e265530 Yorff (Streptococcus pneumoniae) 3 438 932 gi 477219 V-type Na-ATPese [Eneerococcus hire-		70 -	59	237
10 9369 7324 gni PiD e333506 putative Pkn2 protein [Bacillus sub		1 02	47	900
14 10640 11788 gi 1573209 tRNA-guanine trangglycosylase (tgt) 2 574 1086 gi 43330 A180 Saccharomyces cerevisiae 5 2901 3461 gn PID d100585 unknown Bacillus subtilis 5 4593 4282 gn PID d1001314 qer (Bacillus subtilis 5 4500 3454 gn PID d101314 qer (Bacillus subtilis 1 420 662 gn PID e265530 yorfE (Sreptococcus pneumonlae 3 438 932 gi 4772919 v-type Na-Affese Eneerococcus hira	- 1	7.0 -	52	2046
2 574 1086 91 413630 A180 [Saccharomyces cerevisiae] 5 2901 3461 gnl PID 4100585 unknown [Bacillus subtilis] 5 4593 4282 gnl PID e276474 capacitative calcium entry channel 1 5 4500 3454 gnl PID 4101314 YqeT Bacillus subtilis 3 4508 1394 gi 2293312 (AF008220) YtfP (Bacillus subtilis) 1 420 662 gnl PID e265530 yorfE (Streptococcus pneumoniae) 3 438 932 gi 472919 V-type Na-ATPase Enterococcus hirse)	tRNA-guanine	1 04	52	1149
5 2901 3461 gnl PID d100585 unknown [Bacillus subtilis] 5 4593 4282 gnl PID e276474 capacitatioe calcium entry channel 1 5 4500 3454 gnl PID d101314 YqeT (Bacillus subtilis) 1 2608 1394 gi 2293312 (AF008220) YtfP (Bacillus subtilis) 1 420 662 gnl PID e265530 yorfE (Streptococcus pneumoniae) 3 438 932 gi 472919 V-type Na-ATPase (Enterococcus hirae)	A180 (Saccharomyces ceravisiae)	1 04	59	513
5 4593 4282 gnl PID e276474 capacitative calcium entry channel 1		70 -	45	561
5 4500 3454 gnl PID d101314 YqeT (Bacillus subtilis) 3 2608 1394 gi 2293312 (AF008220) YtfP (Bacillus subtilis) 1 420 662 gnl PID e265530 yorfE (Streptococcus pneumoniae) 3 438 932 gi 472919 V-type Na-ATPase (Enerococcus hir.		70	35	312
3 2608 1394 g1 2293312 (AF000220) YEEP (Bacillus subtilis	_	70 [1 4	1047
1 420 662 gnl PID e265530 yorfE Streptococcus pneumoniae 3 438 932 gi 472919 v-type Na-ATPase Enterococcus him	_	1 0,	50	1215
3 438 932 gi 472919 v-type Na-ATPase (Enterococcus him		70	47	243
1 1 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	v-type Na-ATPase (Enterococcus hirae)	1 02	57	495
138 1 440 3	transmembrane protein (Escherichia coli)	1 02	- 23	438

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont 1g 1D	<u>용</u> 급	Start (nt)	Stop (nt)	match	match gene name	eis 1	1 ident	length (nt)
140	10	18796	16364	91 976441	NS-methyltetrahydrofolate homocysteine methyltransferase (Saccharomyces cerevisiae)	07.	53	2433
167	2	8263	5699	g1 149535	[D-elanine activating enzyme [Lactobecillus casei]	1 70	52	1569
204	-	3226	2747	gn1 P1D d102049	E. coli hypothetical protein; P31805 (267) (Bacillus subtilis)	0,	125	480
207	-	2627	2869	gn1 PID e309213	[racGAP [Dictyostelium discoideum]	07	45	243
282	-	1136	982	91 1353874	unknown (Rhodobacter capsulatus)	02	05	255
9	121	17554	18453	gn1 PID e233879	[hypothetical protein [Bacillus subtilis]	69	*	900
9	22	18482	119471	{gi 580883	[pa-88d gene product [Bacillus subtilis]	69	53	066
22	9	1.4682	5824	91 2209379	(AF006720) ProJ (Bacillus subtilis)	69	48	1143
22	6	7992	8651	gn1 P1D d100580	unknown (Bacillus subtilis)	69	15	099
22	112	9871	10767	[gn1 P1D d100581	unknown (Bacillus subtilis)	69	51	1897
72	-	1 5857	5348	gn1 P10 d102012	(ABO01488) FUNCTION UNKNOWN. (Bacillus subtilis)	69	28	510
36	07	7294	10116	gi 437916	isoleucyl-tRNA synthetase (Staphylococcus aureus)	69	83	2823
38	-	2	1 1090	91 141900	alcohol dehydrogenase (EC 1.1.1.1) [Alcaligenes eutrophus]	69	48	1089
\$ 0	=	11333	11944	191 1573280	Holliday junction DNA helicase (ruvA) (Haemophilus influenzae)	69	44	612
40	115	11942	112517	91 1573653	DNA-3-methyladenine glycosidase I (tagl) [Haemophilus influenzae]	69	\$0	576
45	9	6947	5490	91 580887	starch (bacterial glycogen) synthase (Bacillus subtilis)	69	47	1458
8	34	24932	24153	gn1 P1D e233870	hypothetical protein (Bacillus subtilis)	69	36	780
6	9	6183	6521	gi 396297	similar to phosphotransferase system enzyme II (Escherichia coli)	69	50	339
64		7586	8338	91 396420	similar to Alcaligenes eutrophus pHG1 D-ribulose-5-phosphate 3 epimerase [Escherichia coli]	69	69	753
55	9	8262	7033	91 1146238	poly(A) polymerase (Bacillus subtilis)	69	95	1230
59		954	2333	gn1 PID e313038	hypothetical protein [Bacillus subtilis]	69	24	1380
29		1170	1418	gn1 P1D d101915	hypothetical protein (Symechocystis sp.)	1 69	49	249
63	8	7298	7762	91 293017	ORF3 (put.); putative [Lactococcus lactis]	69 1	42	465
99	7	3657	5081	gi 153755	phospho-beta-D-galactosidase (EC 1.2.1.85) [Lactococcus lactis cremoris]	69	49	1425
99	5	5126	6829	91 433809	entyme II (Streptococcus mutans)	69	46	1704
12	9	10017	10664	gn1 PID e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	- 69	39	648
						*		1,

S. pneumoniee - Putative coding regions of novel proteins similar to known proteins

	-							
Contig	I D	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
7.1	121	27730	127966	gn1 PID d100649	DE-cadherin (Drosophila melanogaster)		30,	23.2
	-		237	91 287870	groES gene product (Lactococcus lactis)	69	44	21,2
28	5	3622	4101	91 1573605	fucose operon protein (fucU) (Haemophilus influenzae)	69	52	480
83	-	40	714	pir (033496 0334	hisC homolog - Bacillus subtilis	69	46	579
83	16	15742	16335	[91 143372	phosphoribosyl glycinamide formyltransferase (FUR-N) [Bacillus subtilis]	69	97	294
88	2	1212	916	91 194097	IFN-response element binding factor 1 [Mus musculus]	69	89	292
91	2	3678	4274	91 1574712	anserobic ribonuleoside-triphosphate reductase activating protein (nrdG)	69	9	597
86	2	3247	4032	gn1 P10 d100262	Live protein (Salmonella typhimurium)	69	51	786
108	- 5	4085	9505	gn1 PID e257629	transcription factor [Lactococcus lactis]	69	69	472
126	-	3078	4568	gn1 PID d101329	Yq13 [Bacillus subtilis]	69	67	1491
131	9	4121	2889	gn1 P10 d101314	YqeR [Bacillus subtilis]	69	1 47	1233
136	~	1505	2299	[gn1 P10 d100581	unknown (Bacillus subtilis)	69		795
149	5	3852	4763	gn1 P10 e323525	YloQ protein (Bacillus subtilis)	69	05	912
149		9336	10655	gi 151571 	Homology with B.coli and P.setuginosa lysk gene; product of unknown function; putative (Pseudomonas syringes)	69	52	1320
153	-	3191	3829	191 [1710373	BrnQ (Bacillus subtilis]	69	44	639
169	-	849	2324	gn1 PID d100582	temperature sensitive cell division (Bacillus subtilis)	69	49	1476
180	-	999	-	gi 488339	alpha-amylase (unidentified cloning vector)	69	1 50 1	564
212	-	1196	231	gi 1395209	ribonucleotide reductase R2-2 small subunit [Mycobacterium tuberculosis]	69	53	996
226	-	2	199	pir JQ2285 JQ22	nodulin-26 - soybean	69	- 17	999
233	-	3249	4766	91 472918	v-type Na-AfPase (Enterococcus hirae)	69	95	1518
235	-	,660	1766	91 148945	methylase (Haemophilus influenzae)	69	43	1107
243	~	865	2361	gn1 PID d100225	ORF5 (Barley yellow dwarf virus)	69	69	1497
251	-	2899	1967	91 2289233	macrolide-efflux protein Streptococcus agalactiae	69	51	933
310	-	-	282	gn1 P1D e322442	peptide deformylase (Clostridium beljerinckii)	69	55	282
369	- †	898	~	91 397526	clumping factor Staphylococcus aureus	69	22	867
370	-	749	•	[gi 397526	clumping factor (Staphylococcus aureus)	69	21	747
					◆ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	********	- Vacanta	

pneumoniae - Putative coding regions of novel proteins 'similar to known proteins

Contig	<u>8</u> 0	Start (nt)	Stop (nt)	match	match gene name	E is	1 ident	length (nt)
379	-	44	280	gn1 PID d100649	d100649 DE-cadherin Drosophila melanogaster	69	30	237
388		260	27	91 1787524	(AE000225) hypothetical 32.7 kD protein in trpL-btuR intergenic region [Escherichia coli]	69	**	189
-	~	2006	3040	gn1 PID d101809	ABC transporter (Synechocystis sp.)	68	43	1035
12	5	3958	2600	91 2182992	histidine kinase [Lactococcus lactis cremoris]	1 89	45	1359
15	7	1790	1311	pir S16974 R5BS	ribosomal protein L9 - Bacillus stearothermophilus	68	26	480
91	9	7353	5701	91 1787041	(AE000184) o530; This 530 aa orf is 33 pct identical (14 gaps) to 525 residues of an approx. 640 aa protein YHES_HAEIN SW: P44808 [Escherichia coll)	89	48	1653
1.	112	6419	6805	91 553165	acetylcholinesterase (Homo sapiens)	89	68	327
20	13	14128	14505	gi 142700	P competence protein (ttg start codon) (put.); putative (Bacillus subtilis)	89	- 07	378
22	132	24612	25397	91 289262	comE ORP3 Bacillus subtilis	1 89	36	786
30	_	4548	4288	91/311388	ORF1 (Azorhizobium caulinodans)	68	1 94	261
36	5	1166	4585	91 1573041	hypothetical [Haemophilus influenzae]	68	54	675
46	9	5219	6040	161 1790131	(AE000446) hypothesical 29.7 kD protein in ibpA-gyrB intergenic region [Escherichia coli]	89	47	822
54	2	6235	7086	gi 882579	CC Site No. 29739 (Escherichia coli)	89	55	852 1
55	5	7069	5165		ABC transporter [Symechocystis sp.]	68	45	1905
1,	_	6134	5613	91 1573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]	89	20	522
11	2	15342	16613	1911580866	ipa-12d gene product [Bacillus subtilis]	- 89		1272
1,	122	17560	18792	91 44073	Secy protein [Lactococcus lactis]	89	35	1233
11.	=	22295	24703	91 1762349	involved in protein export (Bacillus subtilis)	1 89	20 -	2409
2	91	10208	9729	_	dUTPase (Bacteriophage rit)	- 89	51 –	480
98	81	17198	16011	91 413943	ipa-19d gene product (Bacillus subtilis)	- 89	53	1188
87	11	17491	15866	91 150209	ORF 1 (Mycopla::ma mycoides)	- 89	43	1626
89	9	5139	4354	91 1498824	M. Jannaschii predicted coding region MJ0062 (Methanococcus Jannaschii)	- 89	40 +	786
89	=	8021	8242	91 150974	4-oxalocrotonate tautomerase [Pseudomonas putida]	- 89	43	222
76		6755	5394	91 2367358	(AECOG491) hypothetical 53.9 kD protein in aidB-rpsF intergenic region [Escherichia coll]	89	7	1362
			1					

S. pneumonise - Putative coding regions of novel proteins similar to known proteins

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15621441		•			
Cont ig	103	Start (nt)	Stop (nt)	match	match gene name	ais *	1 ident	length
98	_	1418	1 2308		Liva protein (Salmonella typhimurium)		_	(nt)
66	13	116414	117280	gi 455363	regulatory protein (Streptococcus mutane)	8	40	1 891
115	_	5054	1 3693	gi 466474		89	20	1 967
124	_	1 3394	3221	lan lerolation	the state of the s	69	44	1362
125	-	2023			Irura piocein (Schizosaccharomyces pombe)	89	99	174
	- -		7767		transmembrane protein (Bacillus subtilis)	89	50	1002
?	7	4858	2888	gn1 PID d101732	DNA ligase (Synechocystis sp.]	1 68	65	
140		7765	7580	191 1209711	unknown (Saccharomyces cerevisiae)		;	
150	-	539	_	91 402490	ADP-ribosylarginine hydrolase [Mus musculus]	000	4	186
164	-	88	1 867	gn1 PID 6255114	(glutamate racemase (Bacillus subtlifs)		6	537
164	~	819	1835	gn1 PID e255117	hypothetical protein (Bacillus subtilia)	8	49	810
169	-	3946	4104	pir B54545 B545	[hypothetical protein	89	20	1017
170	-	4247	4396		special property to the state of the state o	1 68	0	159
171	8	6002	7054	lai (1872)	Septime 1	1 69	52	150
901	-		•		Precutsol (aa -/0 to 381) [Acinetobacter calcoaceticus]	89	54	1053
	2	6/67	!	gn1 PID e313075	hypothetical protein (Bacillus subtilis)	89	99	603
211	~	696	1802	91 1439528	Elic-man [Lactobacillus curvatus]	9	3,	
214	8	4926	4231	gn1 PID d102049	H. influenzae hypothetical protein: P41990 (182) (Barillian mark)		6	838
217	9	4955	5170	gn1 PID e326966	Similar to B wildarie Organization	89	05	969
		_	Ĭ			89	36	216
218		3930	4745	91 2293198	(AF008220) YtgP (Bacillus subtilis)	1 89		210
220	9	4628	4338	gn1 PID e325791	(AJ00005) orfl (Bacillus magaterium)	68		
236		746	108	91 410137	ORPX13 [Bacillus subtilis]		;	491
737	2	675	1451	gi 396348	homoserine transsuccinylase (Escherichia coli)		•	629
250	4	17.1	1229	91 310859	ORP2 (Synechococcus an I	89	49	'''
254	-	517	155	4		89	20	489
				501,011	(AEUUU199) o648 was o669; This 669 as orf is 40 pct identical (1 gaps) to 217 residues of an approx. 232 as protein YBBA_HAEIN SW: P45247 [Escherichia coli]	89	7	363
337	- i		774	gn1 PID e261990	putative orf (Bacillus subtilis)	68	47	705
345	- 		653	91 149513	thymidylate synthase (EC 2.1.1.45) [Lactococcus lactis]	1 89		
						-	7	700

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF TD	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	langth (nt)
386	7	417	4	[91]1573353	outer membrane integrity protein (tolh) [Haemophilus influenzae]	1 89	51	414
7	4	5722	4697	91 1592141	M. jannaschii predicted coding region MJ1507 [Methanococcus jannaschii]	67	56	1026
	9	5397	4591	19112293175	(AF008220) signal transduction regulator (Bacillus subtilis)	67	7	807
2	7	2301	574	91 (2313385	(AE000547) para-aminobenzoate synthetase (pabB) (Helicobacter pylori)	67	6	1728
9	- 61	16063	16758	[91 413931	ipa-7d gene product (Bacillus subtilis)	1 69		1 969
22	8	7094	7897	91 1928962	pyrroline-5-carboxylate reductase (Actinidia deliciosa)	69	51	804
29	120	8335	9072	91 468745	gtcR gene product [Bacillus brevis]	1 69	41	738
31		1379	585	91 2425123	[AF019986] PksB [Dictyostellum discoideum]	1 69 1	49	795
32	Ξ	8849	10150	gi 42029	ORF1 gene product [Escherichia coli]	1 69 1	47	1302
36		14830	15546	191 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschiil	1 69 1	43	1 111
38	6	4958	5392	gn1 PID e214803	[72283.3 (Caenorhabditis elegans)	1 69 1	47	435
38	171	13775	14512	191 537037	ORF_0216 (Escherichia coli)	1 69	52	738
45	6	10428	9181	191 551710	branching enzyme (glgB) (EC 2.4.1.18) (Bacillus stearothermophilus)	1 69	51	1248
48	23	:	17514	91 413949	ipa-25d gene product (Bacillus subtilis)	69	20	831
20	7	1773	952	gn1 P1D d101330	YqjQ (Bacillus subtilis)	1 69	55	822
53		431	~	g1 1574291	[fimbrial transcription regulation repressor (pilB) (Haemophilus influenzae]	1 69	40	429
55			11946	gn1 PID e252990	ORF YDL037c (Saccharomyces cerevisiae)	1 69	51	795
63	6	9210	8329	gn1 PID e264711	ATP-binding cassette transporter A (Staphylococcus aureus)	1 69	- 05	882
1,1	-	5614	6117	gi 1197667	vitellogenin (Anolis pulchellus)	1 . 69	36	504
8		4489	4983	91 1142714	phosphoenolpyruvate:mannose phosphotransferase element 11B [Lactobacillus curvatus]	67	42	495
83	_	2957	3214	91 1276746	Acyl carrier protein (Porphyra purpurea)	69	37	258
98	8	8140	6809	gi 1147744	PSR (Enterococcus hirae)	1 69 1	45	1332
97		986	1366	gn1 PID d102235	(AB000631) unnamed protein product (Streptococcus mutans)	1 69	43	381
102	-	601	1413	191 682765	mccB gene product (Escherichia coli)	67	36	813
106		1109	1987	gi 148921	LicD protein (Haemophilus influenzae)	67	E.	879
115	-	5982	5656	gi 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	67	7	327
							•	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	PR CI	Start (nt)	Stop (nt)	match	match gene name	e is	* ident	length (nt)
115	_	8421	6077	191 466473	cellobiose phosphotransfarase enzyme II' (Bacillus stearothermophilus)	69	51	345
127	Ξ	8127	7021	91 147326	transport protein (Escherichia coli)	69	45	1107
1 136	_	1 2215	2859	gn1 P1D d100581	unknown [Bacillus subtilis]	69	67	645
140	12	123317	20906	gn1 P10 d101912	phenylalanyl-tRNA synthetase (Synechocystis sp.)	69	43	2412
146	9	2894	1893	gi 2182994	histidine kinase (Lactococcus lactis cremoris)	62	77	1002
151	8	111476	11117	gn1 P1D d100085	ORF129 [Bacillus cereus]	69	48	360
160	0	7453	8646	91 2281317	orfB: similar to a Strepcocccus pneumoniae putative membrane protein encoded by GenBank Accession Number X99400; inactivation of the OrfB gene leads to UV-sensitivity and to decrease of homologous recombination (plasmidic test) [Lactococcus 1	67	9	1194
163		1 3099	4505	gn1 PID d101317	YqfR (Bacillus subtilis)	69	47	1407
167	8	6704	5454	[91[1161933	DitB [Lactobacillus casel]	69	45	1251
169	-	2322	2879	gn1 PID d101331	YqkG (Bacillus subtilis)	63	41	558
171	=	7656	8384	91 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	67	20	729 [
188	_	1930	3723	gi 1542975	AbcB (Thermoanaerobacterium thermosulfurigenes)	69	46	1794
189	۰	3599	3141	gn1 PID e325178	Hypothetical protein (Bacillus subtilis)	67	52	459
205	-	1663	1 2211	191 606073	ORF_o169 [Escherichia coli]	69	47	549
207	-	2896	3456	gi 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	69	64	561
217	_	4086	3703	gi 895750		67	42	384
246	7	291	299	9111842438	unknown (Bacillus subtilis)	67	43	372
252	-	~	745	191 2351768	PspA (Streptococcus pneumoniae)	69	-	744
265	_	1134	1811	91 2313847	(AE000585) L-asparaginase II (ansB) (Helicobacter pylori)	67	42	678
295	-	-	375	91 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	67	43	375
-	_	4898	5146	gn1 P10 e255179	unknown (Mycobacterium tuberculosis)	99	26	249
	-	389	_	gn1 PID e269548	Unknown (Bacillus subtilis)	99	48	387
-	20	19267	120805	91 39956	[IIGlc (Bacillus subtilis]	99	20	1539
-	_	2545	2718	gi 1787564	(AE000228) phage shock protein C (Escherichia coli)	99	36	174
2	6	76161	12592	91 1574291	[timbrial transcription regulation repressor (pll8) (Haemophilus influenzae)	99	99	909

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	Sin	1 ident	length (nt)
6	-	2872	1451	gn1 PID e266928	unknown (Mycobacterium tuberculosis)	99	43	1422
12	~	1469	1200	91 520407	orf2; GTG start codon (Bacillus thuringiensis)	99	42	270
1 15	71	10979	9897	91 2314738	(AE000653) translation elongation factor EF-Ts (tsf) [Helicobacter pylori]	99	49	1083
16	~	1312	734	gn1 PID d102245	(AB005554) yxbF (Bacillus subtilis)	99	35	579
22	-	1372	1851	191 1480916	signal peptidase type II [Lactococcus lactis]	99	38	480
22	7	5828	7096	gn1 PID e206261	gamma-glutamyl phosphate reductase (Streptococcus thermophilus)	99	51	1269
22	02	16194	17138		Yith (Bacillus subtilis)	99	20	945
£	~	. 530	976	91 2314379	AE000627 ABC transporter, ATP-binding protein (yhcG) [Helicobacter pylori]	99	9	447
32	-	199	984	91 312444	ORF2 (Bacillus caldolyticus)	99	49	786
8	2	8352	7234	91 1387979	44% identity over 302 residues with hypothetical protein from Synechocystis sp. accession D64006_CD; expression induced by environmental stress; some similarity to glycosyl transferases; two potential membrane-spanning helices [Bacillus subtil	99	7	1119
34	9	5658	4708	gn1 PID e250724	orf2 (Lactobacillus sake)	99	39	951
34	1.4	9792	9574	gi 1590997	M. Jannaschii predicted coding region MJ0272 (Methanococcus Jannaschil)	99	1 84	219
35		15163	14501	91 1773352	Cap5M Staphylococcus aureus	99	9.7	663
36	6	6173	9269	91 1518680	minicell-associated protein Diviva (Bacillus subtilis)	99	35	804
36	Ξ_	10396	10824	bbs 155344	Insulin activator factor, INSAF (human, Pancreatic insulinoma, Peptide Partial, 744 aa] (Homo saplens)	99	7	429
48	-	28	1419	gn1 PID e325204	hypothetical protein (Bacillus subtilis)	99	20	1392
48	_	3810	4112	gi 2182574	(AE000009) Y4pE (Rhizobium sp. MGR234)	99	9	303
52	-	3595	2789	91 388565	major cell-binding factor (Campylobacter jejuni)	99	52	807
54	_	2992	1076	gn1 PrD d101831	glutamine-binding periplasmic protein [Synechocystis ap.]	99	43	1587
61	2	9740	9183	gn1 PID e154144	mdr gene product (Staphylococcus aureus)	99	P P	858
72	=	10893	11993	91 2313129	(AEG00526) H. pylori predicted coding region HP0049 [Helicobacter pylori]	99	44	11011
74	6	13267	12476	gi 1573941	hypothetical (Haemophilus influenzae)	99	£3	792
27	_	~	898	91 1574631	nicotinamide mononucleotide transporter (pnuC) (Haemophilus influenzae)	99	48	867
75		5303	4275	91 41312	put. EBG repressor protein [Escherichie coli]	99	- 04	1029

S. pneumonise - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	E	* ident	length
82	-	6813	1 8123	gn1 PID e255128	trigger factor (Bacillus subtilis)	99	53	1311
68		908	1219	pir C33496 C334	hisC homolog - Bacillus subtilis	99	44	315
98	2	9407	8925	191 683584	shikimate kinase [Lactococcus lactis]	99	41	483
88	0.	7001	0909	91 2098719	putative fimbrial-associated protein (Actinomyces naeslundii)	99	52	942
68	-	951	.	91 410118	ORFX19 [Bacillus subtilis]	99	41	948
6		3661	2711	91 1787936	(AR000260) £298; This 298 as orf is 51 pct identical (5 gaps) to 297 residues of an approx. 304 as protein YCSN_BACSU SW: £42972 (Escherichia coli)	99	64	951
104		1805	3049	gi 1469784	putative cell division protein ftsW (Enterococcus hirae)	99	48	1245
1 106	=	13576	14253	91 40027	homologous to E.coli gid8 (Bacillus subtilis)	99	52	678
107	3	965	1864	91 144858	ORF A [Clostridium perfringens]	99	49	006
1112	_	5718	6593	91 609332	DorA [Haemophilus influenzae]	99	£3	928
115	-		302	1911727367	Hyrlp (Saccharomyces cerevisiae)	99	95	300
122	-		995	gn1 PID d101328	YqiY (Bacillus subtilis)	99	36	564
126	8	11759	11046	gn1 P1D d101163	ORF3 (Bacillus subtilis)	99	48	714
128	Ξ	8201	8431	91 72 6288	growth associated protein GAP-43 (Xenopus laevis)	99	17	231
131	8	4894	4508	91 486661	TWnm related protein (Saccharomyces cerevisiae)	99	39	387
140	<u>~</u>	3236	2574	91 40056	phoP gene product [Bacillus subtilis]	99	36	663
1 140	115	16318	15434	91 1658189	5,10-methylenetetrahydrofolate reductase (Erwinia carotovora)	99	48	885
146	122	7926	7636	gnl PID dioi140	transposase (Symechocystis sp.)	99	42	291
147	9	7137	6154	gi 472326	TPP-dependent acetoin dehydrogenase alpha-subunit (Clostridium magnum)	99	48	984
149	9	4435	5430	gn1 P1D d101887	pentose-5-phosphate-3-epimerase (Synachocystis sp.)	99	1 94	966
1 149	113	10754	11575	191 42371	pyruvate formate-lyase activating enzyme (AA 1-246) [Escherichia coli]	99	42	822
186	-	2578	2270	gn1 P1D d101199	ORF11 (Enterococcus faecalis)	99	14	309
207	7	2340	2597	gn1 PID e321893	envelope glycoprotein gp160 (Human immunodeficiency virus type 1)	99	46	258
210	_	3358	3678	gi 49318	ORF4 gene product (Bacillus subtilis)	99	46	321
217	8	5143	5355	91 49538	thrombin receptor (Cricetulus longicaudatus)	99	38	213
220	*	3875	3642	91 466648	alternate name ORFD of L23635 [Escherichia colij	99	33	234
							•	

. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1864 2460 91 1705399 patestive AMC transporces publies 65 61 61 62 63 63 64 64 64 64 64 64	Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e is	• ident	length (nt)
1 13 184 1840 1911/191399 journitive abolt tenspooteter askunit (Etaphylococcus opidemoldis) 66 64 65 65 65 65 65 65	223	-	1070	138	gn1 P1D e247187	zinc finger protein [Bacteriophage phigle]	99	45	933
1 3 58.2 deb Jackbooks17.2 Association and Processing Progression 6.6 6.0 1 8.9 5.66 juli	224	7	1864	2640	91 1176399		99	5	1 111
1 2 643 546 51 51210 Operative transpoorase (Extractoroccus proposed) 64 640 61 1499956 Incompanie of Extraction (Extraction of Extraction o	243	-	6	872		(AB000617) Ycdis (Bacillus subtilis)	99	45	870
11 2 643 9411999816 In processe (Methanococcus Januacabillia influence) 66 40 10 11399 11316 6111572223 Myochetical (Mesmophilus influence) 65 34 11 10465 1130 611123424 Accoli rade general methalis influences (Mesmophilus influences) 65 46 12 647 649 Pir (Cdid(CG4) (Myochetical procein into)29 * Newcophilus influences (Mesmophilus influences) 65 54 13 641 641 Myochetical procein lacellus subtilis 65 54 14 642 641 Myochetical procein lacellus subtilis 65 54 15 642 641 Myochetical procein lacellus subtilis 65 54 16 643 641 Myochetical procein lacellus subtilis 65 54 17 644 641 Myochetical procein lacellus subtilis 65 54 18 744 641 Myochetical procein lacellus subtilis 65 45 18 644 644 644 <	1 268	- 2	1 891	568	91 517210	transposase	99	09	324
10 1350 13119 pi 1574292 Phypothetical Heamophilus Influenced 65 24 65 1119 pi 14284 Recomplosus to & control rand gane process and to unidentified protein from 65 64 65 1119 pi 14284 Recomplosus to & control rand gane process and to wild minister 65 65 65 65 65 65 65 6	322	-	7	643	91 1499836		99	0.0	642
11 10465 11190 gil 147854 broam concent and the aubtilliant bubblished protein from 65 42 42 42 42 42 42 42 4	s	1	13909	13178	gi 1574292	[hypothetical (Heemophilus influenzae]	65	34	732
1 647 695 plr/Ged146[GG41] Mypothetical protein N10239 - Hesemophilus influenzase istrain Rd Ma20) 653 42 1 6246 6821 gmil/Piol/d101322 Topothetical protein lascillus subtilisi 653 54 55 56	۰		10465	11190	gi 142854 		\$9	87	726
1 6346 6821 gent Pio diolicity reput/lebecillus subtilis] 1 1873 1377 gent Pio elicity reput/lebecicus procession 65 54 67 74 1 1428 2222 gent Pio elicity Procession Residence of the control	۲ ا	7	647	405	pir C64146 C641		65	42	243
1 1873 1197 94 1151111 ONF-1 (Streptococcue pneumoniae) 6 1873 1197 94 1151111 ONF-1 (Streptococcue preumoniae) 6 6 6 6 6 6 6 6 6 6	۲	_	6246	6821	d101323	Yahu (Bacillus subtilis)	65	20	576
4 1812 1222 gni PirD e3123010 hypothetical protein Bacillus subtilis] 65 67 67 68 68 68 68 68 68	10	7	1873	1397	11163111163	ORF-1 (Streptococcus pneumoniae)	9	54	477
4 1815 1357 Gnal PtD[e314910 hypothetical protein [Staphy]ococcus sciuri] 65 40 14 25776 [5584] gi 1024826 [F1455.1] [Caenorhabditis elegana] 65 42 12 1648 230 gi 104836 [F1455.1] [Caenorhabditis elegana] 65 45 13 10662 10656 gi 1573390 hypothetical [Haemophilus influenze] 65 45 12 17521 16683 gi 1573390 hypothetical [Haemophilus influenze] 65 33 122 17521 16683 gi 1573390 hypothetical [Haemophilus influenze] 65 33 12 17521 16683 gi 150423 putative transcriptional regulator [Bacillus scarothermophilus] 65 42 1 1 14728 gi 1469745 hrinanschil predicted coding region MY0912 [Mathanococcus Januaschil] 65 42 1 1 14728 gi 149514 loff zeta [Streptococcus pyogenes] 65 42 1 1 14728 gi 14887824 loff zeta [Streptoc	16	-	1428	1 2222		hypothetical protein (Bacillus subtilis)	65	45	195
14 19576 26384 94 1123030 Cpxx Actinobacillus pleuropneumoniae 65 65 18 18 18 18 18 18 18 1	23	.4	3815	3357	gn1 PID e314910	hypothetical protein (Staphylococcus sciuri)	65	40	459
1 10062 10856 gil 1004826 P14ES.1 Gemochabditis elegans 65 15 15 16 10 10062 10856 gil 1173390 Phypothetical Haemophilus influenzee 65 37 37 38 31 31 31 31 31 31 31	22	. :	25776	26384	91 1123030	[CpxA [Actinobacillus pleuropneumoniae]	65	42	609
13 10062 10856 gi 1573390 hypothetical Haemophilus influenzee 65 37 37 38 38 38 38 38 38	Ç	- 5	1648	290	gi 1044826	[F14E5.1 [Caenorhabditis elegans]	9	38	1359
12 17521 1883 91 1573191 hypothetical Haemophilus influenzee 65 37 1863 91 1573191 hypothetical Haemophilus influenzee 65 31 31 1862 91 1499429 putative transcriptional regulator Hachanococcus jannaschii 65 42 42 47 4519 91 171963 Harmaschii predicted coding region MV0912 Hachanococcus jannaschii 65 46 47 47 47 91 499745 Harmaschii predicted coding region MV0912 Hachanococcus jannaschii 65 46 47 47 47 47 47 47 47	48		110062	10856	191 1573390	hypothetical (Haemophilus influenzae)	65	45	195
13 1856 5314 91 1400429 Putative transcriptional regulator [Bacillus stearothermophilus] 65 13 14 15 14728 15588 91 1499745 H. jannaschii predicted coding region MJ0912 [Methanococcus jannaschii] 65 42 46 47 47 47 47 47 47 47	84	!	17521	16883	gi 1573391		65	37	639
3 1856 5334 gi 1480429 putative transcriptional regulator [Bacillus stearothermophilus] 65 32 32 15 14728 15588 gi 1499745 H. jannaschil predicted coding region MJ0912 [Methanococcus jannaschil] 65 46 15 14728 15588 gi 1499745 H. jannaschil predicted coding region MJ0912 [Methanococcus jannaschil] 65 46 1 3 2500 3483 gi 887824 ORF_ollO [Escherichia coll] 65 46 1 3 2171 1077 gil 887824 ORF_ollUs subtilis] 65 65 66 1 6029 5325 gi 880560 decoxyribose-phosphate aldolase [Bacillus subtilis] 65 65 65 1 6029 5325 gi 880560 decoxyribose-phosphate aldolase [Bacillus subtilis] 65 65 65 1 6029 5325 gi 880560 decoxyribose-phosphate aldolase [Bacillus subtilis] 65 65 65 1 6029 5325 gi 880560 decoxyribose-phosphate aldolase [Bacillus subtilis] 65 65 65 2 836 9783 gi 1573224 gilycosyl transferase light (GP:U14556_40) [Heemophilus influenzee] 65 65 65 8 7664 8527 gil PID[e267589 Unknown, highly similar to several spermidine synthases [Bacillus subtilis] 65 65 65 65 65 65 65 6	48	- 125	119027	118533		YCR020c, len:215 (Saccharomyces cerevisiae)	65	38	495
6 5337 4519 94 94	49		3856	5334	gi 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	9	32	1479
13 14728 19588 91 1499745 H. jannaschil predicted coding region MJ0912 [Methanococcus jannaschil] 65 46	05		1 5337	4519	[91 171963	[tRNA isopenteny] transferase (Saccharomyces cerevisiae)	9	42	819
7 3963 4745 gi 496514 Orf_cale [Streptococcus pyogenes] 65 42 46 46 47 483 gi 887824 ORF_cale [Escherichia cali) 65 46 46 47 47 47 47 47 47	\$2	112	14728	115588	91 1499745		9	46	198
3 2500 3483	65	-	1 3963	4745	91 496514	orf seta (Streptococcus pyogenes)	65	42	783
3 2171 1077 gnl PID e311453 unknown [Bacillus subtilis] 6029 5325 gi 809660 deoxyribose-phosphate aldolase [Bacillus subtilis] 65 55 55	89	-	2500	3483	91 887824	ORF_0310 (Escherichia coli)	65	46	984
7 6029 5325 gi 809660 deoxyrlbose-phosphate aldolase [Bacillus subtilis] 65 55 55	69	-	12171	1077		unknown [Bacillus subtilis]	65	42	1095
5 8536 9783 91 1573224 glycosyl transferase lgtC (GP:U14554_4) [Heemophilus influenzae] 65 42 8827 gnl PID e267589 [Unknown, highly similar to several spermidine synthases (Bacillus subtilis) 65 39	69	-	6029	5325		deoxyribose-phosphate aldolase (Bacillus subtilis)	65	55	705
8 7664 8527 gnl PID e267589 Unknown, highly similar to several spermidine synthases (Bacillus subtilis) 65 39	1,1		8536	9783	91 1573224	transferase lgtC (GP:U14554_4)	69	42	1248
	72	8	7664	8527			65	39	864

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	a sim	1 ident	length (nt)
96	.5	5773	4097	gn1 PID d101723	DNA REPAIR PROTEIN RECN (RECOMBINATION PROTEIN N). [Escherichia coli]	9	99	1677
94	6	8099	7875	191 1574276	exodeoxyribonuclease, small subunit (xseB) [Haemophilus influenzae]	65	38	225
1 84	~	2870	2352	gi 2313188	(AE000511) conserved hypothetical protein (Helicobacter pylori)	65	41	519
98	115	14495	13407	laral	13-dehydroquinate synthase (Synechocystis sp.)	65	44	1 6801
6 1	_	9026.	2423	91 151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii]	65	51	1284
88	_	2425	2736	91 1098510	unknown [Lactococcus lactis]	65	30	312
68	~	1627		gn1 PID d102008	[AB001488] SIMICAR TO ORFIA OF ENTEROCOCCUS FAECALIS TRANSPOSON TN916.	69	41	621
111	9	6635	6186	gn1 PID e246063	NM23/nucleoside diphosphate kinase (Kenopus laevis)	65	50	450
116	~		1016	gn1 P1D d101125	queuosine biosynthesis protein QueA (Synechocystis sp.)	65	44	1014
123	-	69	1 389	91 49839	ORF2 (Clostridium perfringens)	65	36	321
123	-	6522	7190	lgi (1575577	DNA-binding response regulator (Thermotoga maritima)	65	39	699
125	-	3821	2859	gn1 PID e257609	sugar-binding transport protein (Anaerocellum thermophilum)	65	47	963
137	122	8015	7818	91 2182574	(AEGO0099) Y4pE (Rhizobium sp. NGR234)	9	41	198
147	7	5021	3885	91 472329	dihydroliposmide acetyltransferase (Clostridium magnum)	65	1 44	1137
148	7	1 1053	1931	gn1 P1D d101319	YqgH (Bacillus subtilis)	9	42	879
151	7	3212	4687	91 304897	EcoE type I restriction modification enzyme M subunit [Escherichia coli]	65	50	1476
156	7	730	437	91 310893	nembrane protein (Theileria parva)	65	47	294
164	_	4256	4837	91 410132	ORFX8 (Bacfilus subtilis)	65	48	582
169	9	3192	3914	91 1552737	similar to purine nucleoside phosphorylase (deoD) [Escherichia coli)	65	41	723
176	-	2951	2220	gn1 PID e339500	oligopeptide binding lipoprotein (Streptococcus pneumoniae)	65	\$	732
195	-	4556	1900	91 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	65	- 07	657
196	7	160	1572	gn1 P1D d102004	ABGO1488 PROBABLE UDP-N-ACETYLAURANOYLALANYL-D-GLUTAHYL-2, 6- DIAMINOLIGASE (EC 6.3.2.15). (Bacillus subtilis)	9	51	1413
204	- 2	2246	1215	91 143156	membrane bound protein (Bacillus subtilis)	65	37	1032
210	-	1544	1891	91 49315	ORF1 gene product (Bacillus subtilis)	65	48	348
242	~	1625	723	gi 1787540	(AED000226) f249; This 249 as orf is 32 pct identical (8 gaps) to 244 residues of an approx. 272 as protein AGAR_ECOLI SW: 842902 [Escherichia coli]	59	42	903
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	•		*			•	•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	98. 01	Start (nt)	Stop (nt)	match	match gene name	e is	f ident	length (nt)
284	7	-	006	gi 559861	clyM [Plasmid pAD1]	99	36	006
304	-	7	574	gn1 PID e290934	unknown [Mycobacterium tuberculosis]	9	52	573
315	-	2	1483	191 790694	mannuronan C-5-epimerase (Atotobacter vinelandii)	69	57	1482
320		c	898	gn1 PID d102048	K. aerogenes, histidine utilization repressor; P12380 (199) DNA binding [Becillus subtilis]	9	46	567
358	-	-	309	gn1 PID e323508	YloS protein (Bacillus subtilis)	9	55	309
7	-	17571	9699	gi 1498753	nicotinate-nucleotide pyrophosphorylase [Rhodospirillum rubrum]	79	42	976
9	9	5924	6802	Igni Projdioiiii	methionine aminopeptidase (Synechocystis sp.)	64	52	879
60	•	3417	3686	gi 1045935	DNA helicase II (Mycoplasma genitalium)	1 64	28	270
=	7	3249	2689	gn1 PID e265529	orf8 (Streptococcus pneumoniae)	64	46	561
- 15	-	6504	7145	gi 1762328	Yer59c/Yig2 homolog (Bacillus subtilis)	99	45	642
22	11	9548	9895	gn1 P1D d100581	unknown (Bacillus subtilis)	99	38	348
22	20	122503	23174	gi 289260	comE ORF1 [Bacillus subtilis]	64	7	672
56	-	14375	14199	gi 409286	baru (Bacillus subtilis)	64	30	1771
27	- 2	1510	1334	g1 40795	DdeI methylase (Desulfovibrio vulgaris)	79	51	1 771
56	7	614	297	91 2326168	type VII collagen (Mus musculus)	99	20	318
35	~_	368	121	 	hypothetical 20.3K protein (insertion sequence [5]]]]] - Agrobacterium tumefaciens (strain PO22) plasmid Ti	30	05	354
69	7	3	449	191 46970	epiD gene product (Staphylococcus epidermidis)	99.	41	447
40	-	4683	4976	gn1 PID e325792	(AJ000005) glucose kinase (Bacillus megaterium)	99	45	294
42	_	8068	6920	gn1 PID d102036	subunit of ADP-glucose pyrophosphorylase (Bacillus stearothermophilus)	64	- 0\$	1149
15	7	1301	1059	gi 43985	inifS-like gene (Lactobacillus delbruackii)	64	54	759
15	-	15251	18397	lgi 2293260	(AF008220) DWA-polymerase III alpha-chain (Bacillus subtilis)	64	46	3147
53		1157	555	gi 1574292	hypothetical [Raemophilus influenzae]	99	47	603
88	-	4236	1606	gi 1573826	alanyl-tRNA synthetase (alaS) [Haemophilus influenzae]	64	51	2631
99	-	3	1259	91 895749	putative cellobiose phosphotransferase enzyme II'' [Bacillus subtilis]	64	42	1257
99	5	5213	6556	gi 436965	[malk] gene products (Bacillus stearothermophilus)	64	47	1344
69	9	5356	4949	gn1 P1D d101316	d101316 Cdd [Bacillus subtilis	99	52	408
					•			

S. pneumoniae - Putative coding regions of novel proteins Bihilar to known proteins

4 6948 5038 91 126480 133 1283 1465 bbs 133 139 131 131 14016 14331 91 143 155 133 1465 bbs 133 139 131 1300 gml Pro e323505 1 2 22090 gml Pro e320520 1 2 22090 gml Pro e320520 1 2 22090 gml Pro e320520 1 2 2090 gml Pro e320520 1 2 2090 gml Pro e320520 1 2 2090 gml Pro e33031 2 2 2 2 2 2 2 2 2	Contig ID	ORF	Start (nt)	Stop (nt)	metch	match gene name	mis *	1 ident	length
1 1283 1465 bbs 133379 13 14016 14231 gi 143175 12 21851 22090 gm1 P1D e233805 1 5032 5706 gm1 P1D e233806 1 2 1276 gi P1D e233806 1 2 1297 gm1 P1D e2320520 1 2 1297 gm1 P1D e253284 1 2 1297 gm1 P1D e1011114 1 2 1298 gm1 P1D e102050 1 2 1218 gm1 P1D e102050 1 2 1218 gm1 P1D e100892 1 2 1214 gm1 P1D e100864 1 2 1299 gm1 P1D e100864 1 3 3707 8769 gm1 P1D e100864 1 4 1299 2114 gm1 P1D e100864 1 5 3906 6562 gm1 P1D e100864 1 6154 6507 gm1 F100860 1 2 2007 gm1 F100800 2 2007 gm1 F100800 3 2008 6562 gm1 F100800 4 2007 gm1 F100800 5 2006 6562 gm1 F100800 6 5880 6562 gm1 F100800 7 2006 6562 gm1 F100800 8 8 8 8 8 8 8 8 8	1 74		6948	5038	1911726480	L-glutamine-D-fructose-6-phosphate amidotransferase (Bacillus subtilis)	64	20	1911
13 14016 14231 gi 143175 12 21853 22090 gm1 PTD G123505 7 5032 5706 gm1 PTD G233880 1 2 1276 gi 1657503 1 2 1276 gm1 PTD G131880 1 2 1276 gm1 PTD G13184 1 2 1297 gm1 PTD G13184 1 125 2156 gm1 PTD G13184 1 125 2156 gm1 PTD G13184 1 125 2156 gm1 PTD G101314 1 125 2156 gm1 PTD G101314 1 125 2156 gm1 PTD G101314 1 125 2156 gm1 PTD G101313 1 2 1018 gm1 PTD G102050 1 2 1018 gm1 PTD G102050 2 4 1299 2114 gm1 PTD G100892 3 5880 6462 g1 517204 4 1299 2114 gm1 PTD G100864 5 3906 6458 g1 534045 6 5880 6458 g1 534045 7 4313 5653 g1 5883307 8 5653 G1 5883307 9 5653 G1 5883307 9 6 6553 G1 61883307 9 6 6553 G1 61883307 10 6154 6507 G1 5883307 10 6154 6507 G1 6154 6155 10 6154 6507 G1 6155 10 6154 6507 G1 6155 10 6154 6507 G1 6155 10 6154 6155 10 6154 6155 10 6154 6155 10 6154 6507 10 6154 6155 10 6154 6155 10 6154 6155 10 6154 6507 10 6154 6155 10 6154 6155 10 6154 6155 10 6154 6507 10 6154 10 6154 10 6154 10 6154 10 6154 10 6154 10 6154 10 6154 10 6154 10 6154 10 6154 10 6154 10 6154 10 6154 1	25	-	1283	1465	bbs 133379	TLS-CHOP-fusion protein (CHOP-c/ESP transcription factor, TLS-nuclear RNA-binding protein) (human, myxoid liposarcomas cells, Peptide Hutant, 462 as] (Homo sapiens)	4	52	183
12 21851 22090 gn1 P1D G131505 7 5032 5706 gn1 P1D G131806 7 5032 5706 gn1 P1D G131806 7 5136 G410 gn1 P1D G131806 7 5136 G410 gn1 P1D G130520 7 7 7 7 7 7 7 7 7	81	13	14016	14231	gi 143175	methanol dehydrogenase alpha-10 subunit (Bacillus sp.)	64	35	216
11 10046 9300 gml Pro e333805 7 5032 5706 gml Pro e233806 7 5136 6410 gml Pro e233806 1 2 1297 gml Pro e320520 3 1135 2156 gml Pro e320520 3 1135 2156 gml Pro e320520 4 3467 2709 gml Pro e320520 4 3467 2709 gml Pro e320520 4 3226 2651 gil 2293301 1 2 1018 gml Pro e137033 1 2 1018 gml Pro e137033 1 2 1018 gml Pro e137033 1 2 1018 gml Pro e137030 4 1299 2114 gml Pro e102050 4 1299 2114 gml Pro e1000802 6 5880 6362 gil 517204 6 5880 6362 gil 517204 6 5880 6362 gil Fro e1000802 6 5880 6362 gil Fro e1000804 6 5880 6362 gil Fro e1000804 6 5880 6362 gil Fro e1000804 6 6507 gil Fro e1000804 6 6507 gil 581307 6 6 6 6 6 6 6 6 6	83	22	21851	22090	gn1 PID d101315	YqfA (Becillus subtilis)	99	77	240
7 5032 5706 gn1 P1D e233880 1 2 1276 gn1 P1D e353284 1 2 1276 gn1 P1D e353284 2 135 gn1 P1D e353284 3 135 2356 gn1 P1D e353284 3 135 2 2356 gn1 P1D e1353284 3 135 2 2 2 2 2 2 2 2 2	87		10046	: :	gn1 PID e323505	putative Ptcl protein [Bacillus subtilis]	64	43	747
1 2 1276 91 1657503 1 2 1297 9n1 P1D 61205101 1 2 1297 9n1 P1D 6120520 1 1 2 1297 9n1 P1D 6120520 1 125 2156 9n1 P1D 6101884 4 3467 2709 9n1 P1D 6101314 1 152 3 91 1377841 1 152 3 91 1377841 1 1 2 3 91 1377841 1 1 2 3 3 91 1317841 1 3 3 2 2 3 3 3 3 3 3	9.8	_	5032			hypothetical protein (Bacillus subtilis)	64	38	675
7 5136 6410 gn1 P10 613119 1 2 1297 gn1 P10 623284 5 2131 1780 gn1 P10 613284 1 152 3 g1 P10 G101884 1 152 3 g1 J77841 1 152 3 g1 J77841 1 152 3 g1 J77841 1 2 1018 gn1 P10 6137033 1 2 1018 gn1 P10 6137033 1 2 1018 gn1 P10 6137033 1 2 1018 gn1 P10 6102050 4 1299 2114 gn1 P10 6100892 6 5880 6362 g1 S17204 13 3707 8769 gn1 P10 G100864 14 154 6507 g1 S81307	105	-	2	1276	91 1657503	similar to S. aureus mercury(II) reductase (Escherichia coli)	64	45	1275
1 2 1297 gn1 P1D e320520 3 1125 2156 gn1 P1D e1253284 4 3467 2709 gn1 P1D e1101314 1 152 3 gi 1377841 1 7196 7549 pir JC1151 JC11 1 2 1018 gn1 P1D e137033 1 2 1018 gn1 P1D e137033 1 8430 8783 gi 2130630 4 1299 2114 gn1 P1D e137039 6 5880 6462 gi S17204 6 5880 6462 gi S17204 7 3418 5663 gi S17204 8769 gn1 P1D d100364 10 6154 6507 gi S81307	113	_	5136	: ;		NifS (Symechocystis sp.)	64	0\$	1275
3 1125 2156 gn1 P10 e253284 4 3467 2709 gn1 P10 d10 B14 1 152 3 g1 137841 1 2 1018 gn1 P10 e137033 1 2 1018 gn1 P10 e137033 1 2 1018 gn1 P10 e137033 1 2 1018 gn1 P10 e130650 1 4 1299 2114 gn1 P10 e100892 6 5880 6562 g1 517204 1 3 9707 8769 gn1 P10 e100864 1 5 3906 4598 g1 534045 1 6 5867 g1 581307 1 6 5867 g1 581307 1 6 5867 g1 581307 1 6 6567 g1 65850 1 6 6587 g1 65850 1 6 6587 g1 65850 1 6 6585 6585 65850 1 6 6585 6585 6585 1 6 6585 6585 6585 1 6 6585 6585 6585 1 6 6585 6585 6585 1 6 6585 6585 6585 1 6 6585 6585 6585 1 6 6585 6585 6585 1 6 6585 6585 6585 1 6 6585 6585 6585 1 6 6585 6585 1 6 6585 6585 1 6 6585 6585 1 6 6585 6585 1 6 6585 6585 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1	119	-	2	1297	gn1 PID e320520	hypothetical protein (Natronobacterium pharaonis)	64	37	1296
5 2331 1780 gn1 PID d101884 4 3467 2709 gn1 PID d101314 1 152 3 gri J77841 1 152 3 gri J77841 1 196 7549 pir JC1151 JC11 1 2 1018 gn1 PID e13703 1 2 1018 gn1 PID e13703 1 2 1018 gn1 PID e13703 1 4 1299 2114 gn1 PID d100892 4 1299 2114 gn1 PID d100892 6 5880 6 162 gri PID d100864 1 3 3 3 3 3 3 3 3 3	123		11125	!!	gn1 PID e253284	ORF YDL244w (Saccharomyces cerevisiae)	64	40	1032
4 3467 2709 gn1 P1D d101314 1 152 3 gr J177841 1 7196 7549 pir JC1151 JC11 3 3226 2651 gr Z293301 1 2 1018 gn1 P1D e137033 1 8430 8783 gr P1D e137033 4 1299 2114 gn1 P1D d100892 4 1299 2114 gn1 P1D d100892 6 5880 6462 gr P1D d100864 13 9707 8769 gn1 P1D d100964 14 5418 5418 G507 gr P1D d100964 15 3906 4598 gr P1D d100964 16 6154 6507 gr P1B d100964 17 6154 6507 gr P1B d100964 18 6165 gr P1D d100964 19 6154 6507 gr P1B d100964 10 6154 6507 gr P1B d100964 11 6154 6507 gr P1B d100964 12 6154 6507 gr P1B d100964 13 8168 6507 gr P1B d100964 14 8168 6507 gr P1B d100964 15 8168 6507 gr P1B d100964 16 6154 6507 gr P1B d100964 17 6154 6507 gr P1B d100964 18 6154 6507 gr P1B d100000000000000000000000000000000000	124	2	2331	, ;	gn1 PID d101884	hypothetical protein (Synechocystis sp.)	64	20	552
1 152 3 94 1377841 11 7196 7549 pfr JC1151 JC11 JC1151 JC11 JC1151 JC11 JC1151 JC11 JC1151 JC11 JC1151 JC11 JC1151 JC11511 JC1151 JC11511 JC1151 JC11511 JC1151 JC11511 JC11511 JC11511 JC1151 JC1151	129	*	3467	' ¦	4101314	YqeU (Bacillus subtilis)	64	52	1 657
11 7196 7549 pir JC1151 JC11 3 3226 2651 gi 2293301 10 6730 5648 gi 1322245 11 2 1018 gin Pip e137033 11 8430 8783 gi [1130630 7 4313 3612 gin Pip d102050 4 1299 2114 gin Pip d100892 6 5880 6 662 gi 517204 6 5880 6 662 gi 517204 6 5880 6 652 gi 517204 6 5880 6 652 gi 517204 7 7 7 7 7 7 7 7 7	131	-	152		91 1377841	unknown (Bacillus subtilis)	64	42	150
3 3226 2651 91 2293301 1 2 1018 91 132245 1 2 1018 91 110 2245 1 2 1018 91 110 23033 4 129 2114 91 P10 4100892 4 1299 2114 91 P10 4100892 6 5880 6462 91 517204 13 9707 8769 91 P10 4100964 5 3906 4598 91 534045 10 6154 6507 91 581307	137	===	7196	7549		hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid fi	64	05	354
10 6730 5648 g1 1122245 1 2 1018 gn1 P1D 6137033 1 1 113 3612 gn1 P1D 6100892 4 1299 2114 gn1 P1D 6100892 6 5880 6362 g1 517204 13 9707 8769 gn1 P1D 6100964 13 9707 8769 gn1 P1D 6100964 10 6154 6507 g1 581307 615	139	_	3226	2651	91 2293301	(AF008220) YtqB (Bacillus subtilis)	64	44	576
1 2 1018 gn1 P1D e137033 11 8430 8783 g1 2130630 7 4313 3612 gn1 P1D d100892 6 5880 6362 g1 P1D d100892 6 5880 6362 g1 P1D d100964 6 5880 6362 g1 P1D d100964 6 5880 6362 g1 S14045 6 6 6 6 6 6 6 6 6	146	110	6730	•	91 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	64	45	1083
11 8430 8783 91 2130630 7 4313 3612 9n1 PID d102050 4 1299 2114 9n1 PID d102050 6 5880 6462 91 F1D d102050 13 9707 8769 9n1 PID d100964 5 3906 4598 91 534045 10 6154 6507 91 581307	147	-	7	1018		unknown gene product (Lactobacillus leichmennii)	. 64	1 97	1017
7 4313 3612 gn1 P1D d100892 6 5880 6162 g1 S17204 13 9707 8769 gn1 P1D d100964 5 3906 4598 g1 S14045 10 6154 6507 g1 581307	148	=	8430	8783	gi 2130630	(AF000430) dynamin-like protein (Homo sapiens)	64	28	354
4 1299 2114 901 PID d100892 6 5880 6162 91 517204 13 9707 8769 901 PID d100964 5 3906 4598 91 534045 10 6154 6507 91 581307	156	_	4313	3612	gn1 PID d102050	[transmembrane [Bacillus subtilis]	64	31	702
6 5880 6162 91 517204 13 9707 8769 9n1 P1D d100964 5 3906 4598 91 534045 10 6154 6507 91 581307	157	-	1299			homologous to Gln transport system permease proteins [Bacillus subtills]	64	43	816
13 9707 8769 gn1 P1D d100964 5 3906 4598 g1 534045 10 6154 6507 g1 581307 4 3519 2653 G1 140650	162	9	5880	. !	01	ORF1, putative 42 kDa protein (Streptococcus pyogenes)	64	58	483
5 3906 4598	164	2_	9707	8769		homologue of ferric anguibactin transport system permerase protein FatD of V. anguillarum [Bacillus subtilis]	64	9	939
110 6154 6507 91 581307	175	5	3906	4598	gi 534045	antiterminator [Bacillus subtilis	64	39	69
ן ענשמיון יין נשטרן מושנ ן אין	189	01	6154	:	91 581307	response regulator (Lactobacillus plantarum)	64	33	354
+	191	-	3519	2863	91 149520	phosphoribosyl anthranilate isomerase [Lactococcus lactis]	64	46	657

S. pneumoniae - Putative coding regions of novel proteins Mailar to known proteins

Contig	ORF TD	Start (nt)	Stop (nt)	match	match gene name	e sin	• ident	length (nt)
202	-	76	1140	gn1 PID e293806	O-acetylhomoserine sulfhydrylase [Leptospira meyeri]	99	47	1065
224	-	234	1571	gi 1573393	collagenase (prtC) [Haemophilus influenzae]	99	42	1338
231	_	291	647	191 40174	ORF X (Bacillus subtilis)	1 64	\$	357
253	m	709	1089	pir (JC1151 (JC11	hypothetical 20.3K protein (insertion sequence [S1131) - Agrobacterium tumefaciens (strain P022) plasmid Ti	64	05	361
365	-	820	~	91 1377832	unknown (Bacillus subtills)	64	33	819
297	_	1	099	191 1590871	collagenase [Methanococcus jannaschil]	1 64	87	099
328	-	263	21	91 992651	Gintp (Saccharomyces cerevisiae)	64	41	243
S	-	8730	8608	91 556885	Unknown (Bacillus subtilis)	63	48	633
01	9	5178	4483	191 (1573101	hypothetical (Haemophilus influenzae)	63	0.0	969
12	=	9324	9902	91 806536	membrane protein (Bacillus acidopullulyticus)	63	42	579
15	<u>0</u>	8897	9187	gi 722339	unknown (Acetobacter xylinum)	63	40	291
17	7	1031	309	gn1 P10 e217602	PinU (Lactobacillus plantarum)	69	32	723
81	-	8777	6975	9111377843	unknown [Bacillus subtilis]	63	45	804
26	7	9780	8.07	gi 142440	ATP-dependent nuclease [Bacillus subtilis]	63	46	2703
29	2	3488	4192	91 1377829	unknown (Bacillus subtilis]	63	35	207
34	Ξ	8830	7988	gn1 P1D d101198	ORF8 (Enterococcus faecalis)	63	\$	843
35	-	1187	876	gi 722339	unknown (Acetobacter xylinum)	63	39	312
48	115	12509	11691	[gi 1573389	hypothetical (Haemophilus influenzae)	63	41	819
15	=	12719	12189	gi 142450	ahrC protein (Bacillus subtilis)	69	35	531
35	-	1979	5022	9111708640	YeaB (Bacillus subtilis)	69	7	1044
55	115	13669	14670	gn1 PIO e311502	thioredoxine reductase [Bacillus subrilis]	69	7	1002
68	01	9242	8919	¥	HYPOTHETICAL 40.2 KD PROTEIN IN AVTA-SELB INTERGENIC REGION (F382).	63	0.7	324
86	_	6554	5685	gi 1574382	lic-1 operon protein (licD) [Haemophilus influenzae]	63	‡	870
88	8	6085	5180	91 2098719	putative fimbrial-associated protein (Actinomyces naeslundii)	63	43	906
96	8	5858	6484	g1 1052803	orflyyrb gene product (Streptococcus pneumoniae)	63	38	627
100	-	240	1940	17171	[tucosidase [Dictyostellum discoideum]	63	36	1701

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	sin .	f ident	length (nt)
104	-	1 3063	5765	91 144985	phosphoenolpyruvate carboxylase (Corymebacterium glutamicum)	63	46	2703
106	8	9189	8554	[g1[533099	endonuclease III (Bacillus subtilis)	63	45	636
122	9	4704	4886	gn1 PID d101139	transposase (Synechocystis sp.)	63	66	183
128	١ ،	4517	5203	PID	orf2 (Methanobacterium thermosutotrophicum)	63	05	687
137	-	1 963	1547	gi 472920	v-type Na-ATPase (Enterococcus hirae)	63	72	585
142	7	4100	4585	gn1 PID e313025	hypothetical protein (Bacillus subtilis)	69	77	486
159	s	1741	2571	91 1787043	(AE000184) £271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 (Escherichia coli)	63	6	831
171	7.	8803	14406	gn1 P1D e324918	[IgAl protease [Streptococcus sanguls]	63	48	5604
7.1	-		347	91,1773150	hypothetical 14.8kd protein (Escherichia coli)	63	34	345
178	7	1 423	1 917	191 722339	unknown (Acetobacter xylinum)	63	7	495
178	3	1 794	1012	gi 1591582	cobalamin biosynthesis protein N (Methanococcus jannaschil)	63	36	219
195	-	1377	271	gn1 PID e324217	[tsQ (Enterococcus hirae)	63	33	1203
234	2	1739	1527	91 1591582	[cobalamin biosynthesis protein N (Methanococcus jannaschii)	63	36	213
249	-	81	257	gi 1000453	TreR (Bacillus subtilis)	63	41	1771
283	-	127	1347	gi 396486	ORF8 (Bacillus subtilis)	63	77	1221
293		2804	3466	gi 722339	unknown (Acetobacter xylinum)	69	37	663
311	-	905	486	gi 1877424	UDP-galactose 4-epimerase [Streptococcus mutans]	63	46	420
324	7	2	556	91 1477741	histidine periplasmic binding protein P29 (Campylobacter jajuni)	63	36	\$55
365	-	219	=	gi 2252843	(AF013293) No definition line found (Arabidopsis thaliana)	63	33	207
382	7	88	378	gi 722339	unknown (Acetobacter xylinum)	63	40	291
385	-	364	158	gi 2252843	(AF013293) No definition line found (Arabidopsis thaliana)	63	33	207
7	-	2495	288	gn1 PID e325007	penicillin-binding protein [Bacillus subtilis]	62	42	2208
	23	23374	24231	gn1 P10 e254993	hypothetical protein (Bacillus subtilis)	62	35	858
9	116	14320	13193	gn1 PID e349614	nifS-like protein (Mycobacterium leprae)	62	37	1128
7	-	6819	7232	gn1 PID d101324	YqhY (Bacillus subtilis)	62	32	414
7	61	15466	14207	gn1 P1D d101804	beta ketoacyl-acyl carrier protein synthase (Synechocystis sp.)	62	43	1260
				-				

pneumoniae - Putative coding regions of novel proteing bimilar to known protein

Contig	JORF	Start	Stop		match dene name			
2	91	(nt)	(nt)	acession		E 19	1 dent	length (nt)
7.	- 131	117155	116229	gn1 PID e323514	putative FabD protein (Bacillus subtilis)	62	46	927
7	124	19526	118519		beta-ketoacyl-ACP synthase III (Cuphea wrightii)	62	37	1008
12	-	5904	4702	91 1573768	A/G-specific adenine glycosylase (mutY) (Haemophilus influenzae)	62	43	1203
12	6	8032	8793	gi 1591587	pantothenate metabolism flavoprotein (Methanococcus jannaschii)	62	33	762
15	=-	9678	9328	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	62	43	351
11	-	2609	2442	91 1591081	H. Jannaschii predicted coding region NJ0374 (Methanococcus jannaschii)	62	43	168
11	<u>.</u>	3053	2835	91 149570	role in the expression of lactacin F, part of the laf operon (Lactobacillus ap.)	62	44	219
22	2	8627	9538	gn1 P1D d100580	١.	62	43	912
90		865	2043	91 2314379	(AE000627) ABC transporter, ATP-binding protein (yhcG) (Helicobacter pylori)	62	43	1179
33	5-1	2235	1636	91 413976	ipa-52r gene product (Bacillus subtilis)	62	44	009
38	Ξ	5689	6123	91 148231		62	34	435
40	11	114272	13328	gn1 PID d101904	hypothetical protein (Symechocystis sp.)	62	43	945
42	-	£	311	91 1146182	putative (Bacillus subtilis)	62	41	309
4	~	1267	4005	91 1786952	[AE000176] 0877; 100 pct identical to the first 86 residues of the 100 as hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli]	62	5	2739
88	112	9732	9304	gi 662920	repressor protein (Enterococcus hirae)	62	32	429
18	8	1 5664	7181	gn1 PID e301153	StySKI methylase (Salmonella enterica)	62	44	1518
52	-	2791	2099	91 1183886	integral membrane protein (Bacillus subtilis)	62	=======================================	693
55	116	115702	14704	gn1 PID e313028	hypothetical protein (Bacillus subtilis]	62	- 0\$	1 666
59	9	3418	3984	91 2065483	unknown (Lactococcus lactis)	62	32	567
63	5	4997	4809	91 149771	pilin gene inverting protein (PivML) (Moraxella lacunata)	62	28	189
0,	=	10002	10739	91 992977	bplG gene product (Bordetella pertussis)	62	45	738
=	2	18790	20382	91 1280135	coded for by C. elegans cDNA cm21e6; coded for by C. elegans cDNA cm01e2; similar to melibiose carrier protein (thiomethylgalactoside permease II) [Ceenorhabditis elegans]	62	62	1593
17.	28	132217	32768	gn1 PID d101312	YqeG (Bacillus subtilis)	62	35	552
74	-	11666	10363	91 1552753	hypothetical (Escherichia coli)	62	38	1284
			1		•	+	-	*

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	1							
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sim	• ident	length (nt)
ÓB		9370	6096	gn1 PID d102002	(ABO01488) FUNCTION UNKNOWN. (Bacillus subtilis)	62	46	240
97	20	8906	7041	91 882463	protein-N(pi)-phosphohistidine-sugar phosphotransferase [Escherichia coli]	62	42	2028
86	7	2306	3268	gn1 PID d101496	BraE (integral membrane protein) [Pseudomonas aeruginosa]	62	42	963
102	<u></u>	2823	3539	gn1 PID e313010	hypothetical protein (Bacillus subtilis)	62	24	717
103	~	2795	1242	gnl PID d102049	H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]	62	41	1554
111	7	2035	3462	91 581297	Nisp [Lactococcus lactis]	29	4	1428
112	-	3154	4080	91 1574379	lic-1 operon protein (licA) (Haemophilus influenzae)	62	39	927
112	9	4939	5649	[gi 1574381	lic-1 operon protein (licC) (Haemophilus influentae)	62	39	117
124	e -	1137	721	gi 1573024 	anaerobic ribonucleoside-triphosphate reductase (nrdb) (Haemophlius	62	45	417
124	9	3162	2329	ai 609076	[leucyl aminopeptidase [Lactobacillus delbrueckii]	62	07	834
126	_	11073	7516	[gn1 PID d101163	ORF4 (Bacillus subtilis)	62	38	3558
129	9	4983	4540	pir S41509 S415	zinc finger protein EF6 - Chilo iridescent virus	62	8	444
131	_	4510	4103	gi 1857245	inknown [Lactococcus lactis]	62	42	408
149	7	1923	2579	gi 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschil)	62	41	657
149	_	5360	6055	gn1 PID e323508	[YloS protein (Bacillus subtilis]	62	0.0	969
156	-	450	238	gn] PID e254644	membrane protein (Streptococcus pneumoniae)	62	07	213
156	9	3606	2935	gn1 P1D d102050	transmembrane (Bacillus subtilis)	62	37	672
171	2	1779	2291	gi 43941	EIII-B Sor PTS (Klebsiella pneumoniae)	62	35	513
172	7	385	123	191 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	62	39	339
173		2599	893	gi 1591732	cobalt transport ATP-binding protein O [Methanococcus jannaschii]	62	42	1707
179	~	492	1754	gi 1574071	H. influenzae predicted coding region HI1038 (Haemophilus influenzae)	62	38	1263
181	9	2856	3707	[gi 1777435	LacT (Lactobacillus casei)	62	42	852
185	7	2074	311	91/2182397	(AE000073) YAEN (Rhizobium sp. NGR234)	62	- 17	1764
200	7	1901	1984	g1 450566	transmembrane protein [Bacillus subtilis]	62	37	924
202		2583	3473	g1 42219	P35 gene product (AA 1 - 314) [Escherichia coli]	62	41	891
210	-	1374	!	gi 49315	ORF1 gene product (Bacillus subtilis)	62	45	192

S. pneumoniae - Putative coding regions of novel proteins slailar to known proteins

Contig	ORF	Start	Stop	match acession	match gene name	* sim	1 ident	length
211	-	-	176	91 147402	mannose permease subunit III-Man (Escherichia coli)			1 090
223	~	1495	1034	gn1 PID d101190	ORF2 (Streptococcus mutans)	62	41	462
228	-	34	606	91 530063	glycerol uptake facilitator Streptococcus pneumoniae	62	*	976
234	~	06	1 917	191 2293259	[AF008220] YtqI [Becillus subtilis]	62	38	828
282	2	1765	1487	gn1 PID e276475	galactokinase (Arabidopsis thaliana)	62	33	279
375	-		159	91 1674231	(AE000052) Mycoplesma pneumoniae, hypothetical protein homolog; similar to SWiss-Prot Accession Number P35155, from B. subtilis (Mycoplesma pneumoniae)	29	40	159
385	- 5	584	1357	91 1573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]	62	47	228
	6	18550	19269	91 606162	ORF_[229 Escherichia coli]	19	41	720
~	-	2725	3225	91 211,4425	elmilar to Symechocystis sp. hypothetical protein, encoded by GenBank Accession Number D64006 (Bacillus subtilis)	61	42	501
11	9	3326	3054	gi 149569		61	43	273
7	-	4061	4957	gn1 PID d101068	xylose repressor (Symechocystis sp.	61	38	897
54	Ξ	8388	17234	[gn1 PID d101329	YqjH (Bacillus subtilis)	61	42	1155
1 57	9	3974	6037	gn1 PID d101316	Yqfk (Bacillus subtilis)	61	42	2064
85	2	7356	6565	sp P45169 POTC_	SPERHIDINE/PUTRESCINE TRANSPORT SYSTEM PERHEASE PROTEIN POTC.	61	34	792
1 67	-	2	692	91 537108	ORF_[254 (Escherichia coli]	61	96	069
89	6	8816	7890	191 19501	PPLZ12 gene product (AA 1-184) [Lupinus polyphyllus]	61	7	927
10	115	10737	12008	191 992976	bplF gene product [Bordetella pertussis]	61	*	1272
72	Ξ	9759	10202	gn1 PID d101833	carboxynorspermidine decarboxylase (Symechocystis sp.)	61	36	444
96	8	7881	7003	gn1 PID d100305	[farnesyl diphosphate synthase [Bacillus stearothermophilus]	61	45	879
1 87	-	4914	3697	191 528991	unknown (Bacillus subtilis)	61	42	1218
87	13	112311	11361	gi 1789683	(AE000407) methionyl-tRNA formyltransferase [Escherichia coli]	1 19	3	951
16	- 5	187	2989	91 537080	ribonucleoside triphosphate reductase [Escherichia coli]	61	45	2259
105	_	2711	3499	gn1 P10 d101851	hypothetical protein (Synechocystis sp.)	61	-	789
115	9	1 7968	6478	91 895747	putative cel operon regulator (Bacillus subtilis)	61	36	1491
123	8	7181	8518	91 1209527	protein histidine kinase (Enterococcus faecalis)	61	9	1338
						+	+	

S. pneumoniae - Putative coding regions of novel proteins similar to known pre-

Cont ig	ORF ID	Start (nt)	Stop (nt)	match	match gene name	e sim	• ident	length (nt)
126	9	7525	6725	gi 1787043	(AE000184) £271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 [Escherichia coli]	61	38	801
128	-	-	639	gn1 P1D d101328	YqiY (Bacillus subtilis)	- 61	17	689
139	_	4794	5054	91 1022726	unknown (Staphylococcus haemolyticus)	61	43	261
139	6	12632	5913	gn1 PID e270014	beta-galactosidase [Thermoanaerobacter ethanolicus]	15	41	6720
143	-	2552	5	91 520541	penicillin-binding proteins 1A and 1B (Bacillus subtilis)	19	42.	2511
148	91	112125	11424	91 1552743	tetrahydrodipicolinate N-succinyltransferase (Escherichia coli)	19	42	702
162	<u>.</u>	1 4112	3456	gn1 P1D d101829	phosphoglycolate phosphatase (Symechocystis sp.)	19	30	657
27.1	~	727	1077	gn1 PTD d102048	B. subtilis, cellobiose phosphotransferase system, celA; P46318 (220)	61	**	351
177	_	1101	2771	gn1 P10 d100574	[unknown (Bacillus subtilis)	19	43	672
202	~	1278	1 2585	gi 1045831	hypothetical protein (GB:L18965_6) [Mycoplasma genitalium]	61	36	1308
224		2782	3144	91 159 1144	M. Jannaschii predicted coding region MJ0440 [Methanococcus Jannaschii]	- 19	000	363
225	-	3395	3766	gi 1552774	hypothetical [Escherichia coli]	19	9	372
249	-	212	802	gi 1000453	TreR (Bacillus subtilis)	19	62	591
254	7	843	484	gn1 P1D d100417	ORF120 [Escherichia coli]	19	36	360
257	-		350	gn1 P1D e255315	unknown (Mycobacterium tuberculosis)	19	42	348
293	7	3971	3657	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence ISIIII) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	19	45	315
301	-	949	12	gi 2291209	(AF016424) contains similarity to acyltransferases (Caenorhabditis elegans)	61	33	933
373	-	1066	1287	191 393396	Tb-192 membrane associated protein (Trypanosoma brucei subgroup)	1 61	38	780
•	24	24473	24955	[gi 537093	ORF_0153b [Escherichia coli]	09	27	483
9	5	4636	5739	91 2293258	(AF008220) YtoI (Bacillus subtilis)	1 09	35	1104
9	112	11936	11187	91 293017	ORF3 (put.); putative [Lactococcus lactis]	1 09 1	44	750
1.	2	6708	6484	91 149569	lactacin F (Lactobacillus sp.)	- 60	32	225
18		6977	5670	91 1788140	(AE000278) 0481; This 481 as orf is 35 pct identical (19 gaps) to 309 residues of an approx. 856 as protein NOLL_HUHAN SM: P46087 [Escherichia coli)	09	6	1308
20	115	15878	17167	gn1 PID d100584	unknown (Bacillus subtilis)	09	*	1290
		1 1 2 1				+	+	1

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1	Contig	980 01	Start (nt)	Stop (nt)	match acession	match gene name	e is	1 Ident	length (nt)
15 8837 9857 914 91033 Barabillia genes repai, raph. 308d. gidd, and gidd (Becillus aubtilis) 60 15 8817 9857 914 91033 Barabillia genes repai, raph. 308d. gidd, and gidd (Becillus aubtilis) 60 18 8810 9549 914 910 914 915 914 915 914 915 914 915 914 915 915 914 915 914 915 914 915 914 915 914 915 914 915 914 915 914 915 914 915	22	- -	-	243		transmembrane (Bacillus subtilis)	09	36	243
15 8450 5844 54 [101787] Procedin Hinase [Sacchacoayees cerevisias] 60 1	32	01	8296	8964	gi 2293275	[AF008220) YtaG (Bacillus subtilis]	9	37	699
1 1 1259 971 Procedin kinase [Sochascenteranyces peake] 60 61 61 61 61 61 61 61	38	51	8837	1 9697	91 40023	50kd, gidA and gidB	09	35	861
1 1 139 971 P10 e239833 Unknown (Schisosacchkroeves peabe) 10 1118 1036 971 P10 e239833 U.4-alpha-clucan benething eatyme (Bactillus abbtillis) 1036 141378 14531 1931 P10 e2091313 Oct (I (Lactobacillus helveticus) 60 131 132 14531 1931 P10 e209131 Okr286 protein (Pseudomonas stutismi) 60 13 1413 1413 1415 P10 e20913 Okr286 protein (Pseudomonas stutismi) 60 13 13 13 13 13 13 13 1	43	9	8610	5944	191111187	protein kinase 1 (Saccharomyces cerevisiae)	09	36	2667
19 1176 1478 91 First 201511 14.4-lpha-glucen beaching entype [Becillus subtilis] 60 60 60 60 60 60 60 6	**	-		1269		unknown (Schizosaccharomyces pombe)	9	77	1269
19 15766 14379 control con	45	2	111138	110368	91 397488	1.4-alpha-glucan branching enzyme (Bacillus subtilis)	09	63	111
1 2 6938 join PID di02041 (AB002668) unnammed protein product (Hammophilus actinomycetemcomitans) 60 2 638 1177 join PID di02057 Unknown Hacillus subtilis] 60 3 638 1177 join PID di02057 Unknown Hacillus subtilis] 60 4 1350 3203 join PID di02057 Unknown Hacillus subtilis] 61 5 643 8133 join PID di02057 Unknown Hacillus subtilis] 62 8 11701 14137 join PID di02057 Hacillus subtilis] 62 9 11701 14137 join PID di02057 Hacillus subtilis] 60 1 4 4116 3167 join PID di02057 Hacillus subtilis] 60 4 4116 3167 join PID di02057 Hacillus subtilis] 60 5 4073 4552 join PID di02057 Hacillus subtilis] 60 6 4073 4552 join PID di03057 Hacillus subtilis] 60 7 7165 1176420 Hacillus subtilis 60 8 1177 1185 Hacillus subtilis 60 9 1186 4073 4116	48	61	115766	114378		orf1 (Lactobacillus helveticus)	9	39	1389
1 2 898 gni PiD 6246537 ORP286 protein (Pseudomonas stutzeril) 60 60 60 60 60 60 60 6	48	72	16727	116951		(AB002668) unnamed protein product [Haemophilus actinomycetemcomitans]	09	32	225
1 1358 1177 gml PiD di00587 unknown [Bacillus subtilis] 60 60 60 60 60 60 60 6	05	<u>-</u>	7	868			09	31	897
4 1359 5203 gil 1573583 H. influences predicted coding region H10594 [leasephllue influences] 60 11 5781 6182 gin PrD[d102014 1A8001488] STHILAR TO YDER GENE PRODUCT OF THIS EMTRY (YOFF_BACSU). 60 12 6343 8113 gin PrD[d102014 IA8001488] STHILAR TO YDER GENE PRODUCT OF THIS EMTRY (YOFF_BACSU). 60 8 11701 14157 gil 580866 Ipp-12d gene product [Bacillue subtilis] 60 9 12509 11664 gin PrD[d101832 phosphetical a cytldylyltransferase [Symechocystis sp.] 60 9 11509 11664 gin PrD[d101832 phosphetical a cytldylyltransferase [Symechocystis sp.] 60 9 1357 14157 gil 235096 orf. similar to serine/threonine protein phosphasase [Fervidobacterium 60 1 137 7665 gil 1786420 IEBerberichia coli Escherichia coli Escherichia coli Escherichia coli Escherichia coli 15 15 15 15 15 15 15	62	-	638	1111		unknown (Bacillus subtilis)	09	42	540
11 5781 5182 Gal PID GIO2014 (AB001488) SIMILAR TO YDPR GENE PRODUCT OF THIS EMTRY [YDPR_BACSU). 60 12 5443 8133 Gal PID GI-224970 hypothetical protein [Bacillus subtilis] 60 8 11701 14157 94 S8066 19a-12d gene product [Bacillus subtilis] 60 9 12509 11664 Gan PID GIO1832 phosphatidate cytldylylteensferase [Synachocystis sp.] 60 9 1350 11664 Gan PID GIO1832 phosphatidate cytldylylteensferase [Synachocystis sp.] 60 1 1372 7665 Gal 1786420 (AB00011) field in pet identical to GB: ECODIN_6 ACCESSION: D38582 60 1 1372 7665 Gal 1786420 (AB00011) field in pet identical to GB: ECODIN_6 ACCESSION: D38582 60 1 1372 9410 1555 94 44377 puterive [Bacillus subtilis] 60 1 1372 9410 1555 94 44377 puterive [Bacillus subtilis] 60 1 1382 9410 1555 94 44377 puterive [Bacillus subtilis] 60 1 1382 94 4444 94 4444 94 444 94 4444 94 444 94 4444 94 444 94 444 94 4444 94 4444 94 44444 94 4	89	-	1 3590	5203	91 1573583	H. influenzae predicted coding region H10594 (Haemophilus influenzae)	09	36	1614
12 6443 8113 911 PID e124970 hypothetical protein [Bacillus subtilis] 60 60 60 60 60 60 60 6	0,	<u> </u>	5781	6182			9	33	402
8 11701 14157 94 580866 1pa-12d gene product Bacillus subtilis 60 60 60 60 60 60 60	70	173	6343	1 8133		hypothetical protein (Bacillus subtilis)	9	38	1791
8 12509	11	8	11701	14157	91 580866	Ipa-12d gene product (Bacillus subtilis)	9	33	2457
4 4116 3367 gi 2352096 orf; similar to serine/threonine protein phosphatase [Fervidobacterium] 60 4 7372 7665 gi 1786420 (AE000111) [86; 100 pct identical to GB: ECODINJ_6 ACCESSION: D38582 60 6 4073 4522 gi 1786420 [AEcherichia coli] 60 1 940 155 gi 147402 mamnose permease subunit III-Man [Escherichia coli] 60 1 1 192 gi 143177 putative [Bacillus subtilis] 60 1 1 192 gi 396346 homoserine transsuccinylase [Escherichia coli] 60 14 10619 9384 gi 396346 homoserine transsuccinylase [Escherichia coli] 60 14 10619 9384 gi 396346 homoserine transsuccinylase [Escherichia coli] 60 14 10619 9384 gi 396346 homoserine transsuccinylase [Escherichia coli] 60 15 5548 8121 gnl PID e329895 (AJ000496) cyclic nucleotide-gated channel beta subunit [Rattus norvegicus] 60 1 5396 4533	.74	8	12509	111664		phosphatidate cytidylyltransferase (Symechocystis sp.)	09	45	846
4 7372 7665 gi 1786420 (AEODO0131) f86: 100 pct identical to GB: ECODINJ_6 ACCESSION: D38582 60 150 4522 gi 1747402 mannose permease subunit III-Man [Escherichia coli] 60 155 gi 143177 putative [Bacillus subtilis] 60 15 1940 155 gi 1788389 (AEODO277) o664; This 464 as orf is 31 pct identical (9 gaps) to 331 60 1961 1961 1961 1962 1962 1963 196	76		4116	3367	gi 2352096 	orf; similar to serine/threonine protein phosphatase (Fervidobacterium islandicum)	09	39	750
6 4073 4522 gi 47402 mannose permease subunit III-Man [Escherichia coli] 60 60 60 60 60 60 60 6	80	-	1372	7665	91 1786420	(AEGOGI31) f86; 100 pct identical to GB: ECODINJ_6 ACCESSION: D38582 Escherichia coli!	09	00	294
1 940 155 gi 143177 putative (Bacillus subtills) 60 60 60 60 60 60 60 6	-8	9	4073	4522	gi 147402	mannose permease subunit III-Man (Escherichia coli)	9	35	450
1 192 gi 196346 homoserine transsuccinylase [Bacherichia coli] 60 14 10619 9384 gi 1788389 (AE000297) o464; This 464 aa orf is 33 pct identical (9 gaps) to 331 60 1 10619 9384 gi 1788389 (AZ000496) cyclic nucleotide-gated channel beta subunit [Rattus norvegicus] 60 2 5396 4533 gi 1591396 transketolase* [Methanococcus jannaschii] 60 2 2081 2833 gn PID e320929 hypothetical protein [Mycobacterium tuberculosis] 60	98	-	940	155	191 143177	[putative (Bacillus subtilis)	09	36	786
14 10619 9384 gi 788389 (AE000297) o464, This 464 aa orf is 31 pct identical (9 gaps) to 311 residues of an approx. 416 aa protein HTRC_NEIGO SW: P43505 [Escherichia coli coli	92	-	-	192	91 396348		9	45	192
5 5548 8121 gnl PID e329895 (AJ000496) cyclic nucleotide-gated channel beta subunit (Rattus norvegicus) 60 7 5396 4533 gi 1591396 transketolase' (Methanococcus jannaschill) 2 2081 2833 gnl PID e320929 hypothetical protein (Mycobacterium tuberculosis)	6	<u> </u>	10619	9384	91 1788389	od64; This d64 aa orf is 33 pct identical (9 gaps) of an approx. 416 aa protein MTRC_NEIGO SW: P43505	09	27	1236
7 5396 4533 gi 1591396 transketolase' (Methanococcus jannaschil) 2 2081 2833 gn PID e320929 hypothetical protein (Mycobacterium tuberculosis)	94	~	5548	8121		(AJ000496) cyclic nucleotide-gated channel beta subunit (Rattus norvegicus)	09	80	2574
2 2081 2833 gnl PID e320929 hypothetical protein [Mycobacterium tuberculosis]	1 97	~	5396	4533	lgi 1591396	[transketolase' [Methanococcus jannaschil]	09	43	864
	102.	7	2081	2833	gn1 P1D e320929	hypothetical protein [Mycobacterium tuberculosis]	09	43	753

S. pneumoniae - Putative coding regions of novel proteins withlar to known proteins

106 9 9773 9183 9101 Projectives protein [Bacillus subtilis] 113 8 6184 6203 9418 94	Stop match match gene name (nt) acession	sia .	1 ident 1	length (nt)
8 6361 6837 gil 466875 2755 524 gil Pro el328143 7 4763 5068 gil Pro el328143 4 3082 2672 gil Pro el328196 1 177 4 gil Pro el328196 1 1 1 1 1 1 1 1 1	gn1 PID e334782	- 09	31	165
2 2755 524 gn1 P10 g128143 4 3082 2672 gn1 P10 G101876 1 177 4 gn1 P10 G10680 1 177 4 gn1 P10 G10080 2 2592 1249 g1 463181 3 3667 4278 g1 145362 4 1413 748 g1 1293322 3 3116 2472 gn1 P10 G10690 3 3116 2472 gn1 P10 G10690 4 3 2440 2135 g1 18664 4 2145 1268 g1 475112 4 2145 2263 g1 66820 5 16930 10439 g1 66820 6 157445 2363 g1 66820 7 745 746 G11 G11 G11 6 157447 G11 G11 G11 7 11930 110439 g1 668520 8 2145 2363 g1 668520 8 1068320 G16 G16 G16 8 2145 2363 g1 668820 9 10643 G16 G16 G16 1 1 1 1 1 1 1 1 1	gi 466875 nifU; B1496_C1_157 (Mycobacterium	60	43	477
7 4763 5068 gn1 PID d101876 4 3082 2672 gn1 PID d101876 1 177 4 gn1 PID d100680 1 177 4 gn1 PID d100680 2 2592 1249 g1 120527 2 2592 1249 g1 120527 3 5168 6405 g1 120527 4 210 1049 g1 120527 5 5368 6405 g1 120527 6 3558 4049 g1 2104504 7 1113 748 g1 2104504 8 3 316 2472 gn1 PID d100872 9 1143 748 g1 2104504 1 1413 748 g1 1574179 1 130 2688 g1 157427 1 139 1083 g1 413862 1 139 1083 g1 413862 1 139 1083 g1 475112 1 1455 2363 g1 608320 1 1455 2363 g1 608320 1 2145 2363 g1 608320 1 1455 1556 g1 157440 1 1455 2363 g1 608320 1 1455 1455 2363 g1 608320 1 1455 1455 1455 1 1455 1455 1455 1 1455 1455 1455 1 1455 1455 1455 1 1455 1455 1455 1 1455 1455 1455 1 1455 1455 1455 1 1455 1455 1455 1 1455 1455 1 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455	(AJ000332) Glucosidase II (Homo	09	32	2232
8 4510 5283 91 1777938 1 177 4 91 1777938 1 177 4 91 17791690 1 1 177 4 91 170916327 1 1 14520 13009 91 1209527 1 2 2 5 2 2 2 2 2 2 2	gn1 PID d101876 transposase (Symechocystis sp.	09	39	306
4 3082 2672 gn1 P1D e325196 1 14520 13009 g1 53745 2 2592 1249 g1 120527 1 210 1049 g1 463181 5 5368 6405 g1 145362 1 210 1049 g1 600111 5 3667 4278 g1 2293322 1 1413 748 g1 2293322 3 3116 2472 gn1 P1D e308090 3 316 2472 gn1 P1D e308090 4 3130 2688 g1 1574179 5 3440 2135 g1 413664 6 139 1083 g1 415644 7 4717 5901 g1 606076 8 2440 2135 g1 4136462 9 1444 8428 g1 415112 1 1930 10439 g1 608520 1 145 2263 g1 608520 1 145 1254 g1 608520 1 145 1554 g1 608520 1 145 1455 1554 1 145 1455 1554 1 145 1455 1455 1 145 1455 1455 1 145 1455 1455 1 145 1455 1455 145 1455 1455 1455 145 1455 1455 1455 145 1455 1455 1455 145 1455 1455 1455 145 1455 1455 1455 145 1455 1455 145 1455 1455 145 1455 1455 145 1455 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1455 145 1	9111777938	09	36	774
1 177 4 gn1 PID d100680 11 14520 13009 g1 537145 12 2592 1249 g1 1209527 12 2592 1249 g1 1209527 12 210 1049 g1 1453181 10 7742 8713 gn1 PID e313022 5 3667 4278 g1 229332 1 1413 748 g1 229332 1 1413 748 g1 229332 1 1413 748 g1 2104504 1 1413 748 g1 1574179 1 1 1 1 1 1 1 1 1	gnl PID e325196 hypothetical protein [Bacillus subtilis]	09	36	411
1	ORP [Thermus thermophilus]	- 09	39	174
2 2592 1249 94 1209327 1 210 1049 94 145362 6 3558 6405 94 145362 6 3558 6405 94 145362 6 3558 64049 94 1600111 10 7742 8713 971 PID 6313022 5 3667 4278 94 2104504 1 1413 748 94 2104504 1 1413 2472 971 PID 64101313 1 1413 2440 2135 94 1606076 1 139 1083 94 44 8428 94 44562 1 139 1083 94 445112 1 139 1043 94 445 1928 94 445112 1 139 1043 94 445 94 60820	ORP_f437 (Escherichia coli)	09	30	1512
1 210 1049 g1 463181 6 3558 4049 g1 600711 1 1413 748 g1 2293322 3 3156 4272 gn1 P1D 6100872 3 3156 2472 gn1 P1D 6100872 3 778 1386 gn1 P1D 6101313 3 2440 2135 g1 187427 1 139 1083 g1 413664 1 139 1083 g1 438462 1 139 1083 g1 475112 1 10930 10439 g1 608520	protein histidine kinase (Enterococcus faecalis)	09	37	1344
5 5368 6405 gi 145362 6 3558 4049 gi 600711 10 7742 8713 gn1 PID e313022 3 3116 2472 gn1 PID d100872 3 3116 2472 gn1 PID d100872 3 3116 2472 gn1 PID d100872 4 4717 5901 gi 606076 5 444 8428 gi 143862 6 139 1083 gi 413646 7 4717 5901 gi 413646 8 139 1043 gi 415112 9 144 8428 gi 415112 1 139 1043 gi 60820 4 2145 2363 gi 60820 6 1455 2363 gi 60820 7 4 2145 2363 gi 60820 7 745 2363 gi 60820 8 1858 1958 gi 60820 9 1044 8458 gi 60820 1 1 1 1 1 1 1 1 1	gi 463181 E5 ORF from bp 3842 to 4081; putative (Human papillomavirus type 33	60 1	34	840
6 3558 4049 91 600711 10 7742 8713 971 P10 e313022 5 3667 4278 91 2293322 5 3667 4278 91 2293322 5 3716 2472 971 P10 e308090 7 8049 8468 971 P10 e308090 7 4717 5901 91 606076 7 4717 5901 91 606076 7 4717 5901 91 606076 7 4717 5901 91 606076 7 4717 5901 91 475112 7 4717 5901 91 475112 7 4717 5901 91 475112 7 4717 7 8428 91 475112 7 4714 7 7 8428 91 475112 7 4714 7 7 7 7 7 7 7 7 7	gi 145362 tyrosine-sensitive DAHP synthase (arof) [Escherichia coli]	- 09	41	1038
10 7742 8713 gn1 P1D e311022	g1 600711 putative (Bacillus subtilis)	60	37	492
5 3667 4278 94 2293322 3 1413 748 94 2104504 3 3116 2472 9n PID 6100872 3 778 1386 9n PID 6101313 7 4717 5901 91 606076 7 4717 5901 91 606076 8448 94 1877427 9444 8428 91 413664 1 139 1083 91 438462 1 139 1043 91 475112 1 10930 10439 91 60820	gnl PID e313022 hypothetical protein (Bacillus subtilis)	- 09	27	972
1 1413 748 91 2104504 3 3116 2472 9n1 PID 6100872 3 778 1386 9n1 PID 6101313 3 4130 2688 91 1574179 7 4717 5901 91 606076 3 2440 2135 91 187427 10 9444 8428 91 41564 1 139 1083 91 475112 1 139 10439 91 475112 1 1455 2363 91 60820	gi 2293322 (AF008220) branch-chain amino acid transporter (Bacillus subtills)	09	42	612
3 3116 2472 gml PID d100872 3 778 1386 gml PID e308090 7 8049 8468 gml PID d101313 3 4130 2688 gfl PID d101313 3 2440 2135 gfl 877427 10 9444 8428 gfl 43862 1 139 1083 gfl 43862 1 145 1258 gfl 475112 4 2145 2363 gfl 60820 6 1455 2363 gfl 60820 7 8049 8428 gfl 843862 8 8 8 8 8 8 8 9 16 16 8 8 1 1 1 1 1 1 1 1 1	4 putative UDP-glucose dehydrogenase [Escherichia coli]	60 1	40	999
3 778 1186 gn1 P1D e308090 7 8049 8468 gn1 P1D d101313 7 4717 5901 g1 606076 1 4717 5901 g1 606076 1 139 1083 g1 413664 1 139 1083 g1 438462 1 139 1083 g1 475112 1 10930 10439 g1 60820 4 2145 2263 g1 60820	gnl PID d100872 a negative regulator of pho regulon (Pseudomonas aeruginosa)	09	37	645
7 8049 8468 gn1 PID d101313 3 4130 2688 g1 1574179 7 4717 5901 g1 606076 3 2440 2135 g1 1877427 10 9444 8428 g1 415644 1 139 1083 g1 438462 3 3895 1928 g1 475112 4 2145 2363 g1 60820	gnl PiD e108090 product highly similar to Bacillus anthracis CapA protein [Bacillus			609
3 4130 2688 91 1574179 1 1 1 1 1 1 1 1 1	gnl PID d101313 YqeN (Bacillus subtilis	- 09	38	420
7 4717 5901 gi 606076 ORF_0384 Ess 3 2440 2115 gi 1871427 repressor Si 10 9444 8428 gi 415664 catabolite co 1 139 1083 gi 415112 enzyme liaboo 3 3895 1928 gi 475112 enzyme liaboo 15 10930 10439 gi 1573407 hypothetical	gi 1574179 H. influenzae predicted coding region HI1244 (Haemophilus influenzae)	09	39	1443
3 2440 2135 gi 1877427 repressor Si 10 9444 8428 gi 185664 catabolite c 1 139 1083 gi 438462 transmembran 1 139 1928 gi 43812 transmembran 1 10930 10439 gi 1573407 hypothetical 4 2145 2363 gi 608520 myosin heavy	g1 606076 ORF_0384 [Escherichia coli]	09	90	1185
10 9444 8428 gi 415664 catabolite c 1 139 1083 gi 438462 transmembran 3 3895 1928 gi 475112 enzyme Ilabc 15 10930 10439 gi 1573407 hypothetical 4 2145 2363 gi 608520 myosin heavy	gi 1877427 repressor Streptococcus pyogenes phage Til)	09	38	306
1 139 1083 gi 438462 trensmembran 3 3895 1928 gi 475112 enzyme IIabc 15 10930 10419 gi 1573407 hypothetical 4 2145 2363 gi 608520 myosin heavy	gi 415664 catabolite control protein (Bacillus megaterium)	09	42	1017
3 3895 1928 91 475112 enzyme Ilabo 15 10930 10439 91 1573407 hypothetical 4 2145 2363 91 608520 myosin heavy	g1 438462 transmembrane protein [Bacillus subtilis]	09	37	945
15 10930 10439 gi 1573407 hypothetical 4 2145 2363 gi 608520 myosin heavy	gi 475112 enzyme Ilabc Pediococcus pentosaceus	09	39	1968
4 2145 2363 gi 608520 myosin heavy	gi 1573407 hypothetical [Haemophilus influenzae]	- 09	39	492
	[myosin heavy chain kinase A [Dictyostellum discoideum]	- 09	31	219

S. pneumoniae - Putative coding regions of novel proteins'sfallar to known proteins

Contig	ORP	Start (nt)	Stop (nt)	match	match gene name	E 70	* ident	length (nt)
226	4	2518	2351	91 437705	hyaluronidase (Streptococcus pneumoniae)	09	53	168
242	-	725	~	191 43938	Sor regulator (Klebsiella pneumoniae	09	7	723
245	-	-	288	gi 304897	EcoE type I restriction modification enzyme H subunit (Escherichia coli)	09	99	288
251	-	908	45	91 671632	unknown (Staphylococcus aureus)	09	36	861
259	-	969	83	91 153794	rgg (Straptococcus gordonii)	09	32	888
260	1 2	1492	1662	pir (531840 5318	probable transposase - Bacillus stearothermophilus	09	26	171
274	-	836	.96	191 (1592173	N-ethylammeline chlorohydrolase (Methanococcus jannaschii)	09	0.4	741
308	7	463	2	191 1787397	(AE000214) o157 (Escherichia coli)	09	43	462
318	-		308	gn1 PID e137594	xerC recombinase [Lactobacillus leichmennii]	09	42	306
344	-	1.3	522	191 509672	repressor protein (Bacteriophage Tuc2009)	09	32	450
s	-	576	-	gi 2293147	(AF008220) YtxH [Bacillus subtilis]	65	31	573
7	22	118140	17142	gn1 P1D e280724	unknown (Mycobacterium tuberculosis)	1 65	39	666
10	-	1413	7	91 1353880	stalidase L (Macrobdella decora)	65	2	1410
15	9	6463	5156	91 580841	F1 (Bacillus subtilis)	65	35	1308
22	~	679	1393	91 142469	als operom regulatory protein (Bacillus subtilis)	- 65	34	915
22	5	2698	4614	gn1 PID e280623	PCPA (Streptococcus pneumonise)	65	4	1917
30	-	208	558	gn1 PID e233868	hypothetical protein (Bacillus subtilis)	- 65	37	351
20	-	3678	2455	gn1 PID e202290	unknown (Lactobacilius sake)	- 89	33	1224
35	2	112201	11071	gn1 P1D e238664	hypothetical protein (Bacillus subtilis)	65	35	1131
35	=	13288	12182	91/1657647	Cap8H Staphylococcus aureus	89	39	1107
36	81	18076	117897	91 1500535	[N. jannaschii predicted coding region MJ635 [Methanococcus jannaschii]	65	ä	180
38	22	6172	7137	gi 2293239	(AF008220) YtxK (Bacillus subtilis)	65	7	996
42		1952	3361	91 1684845	pinin (Canis familiaris)	65	9	1410
80		2678	1728	gn1 PID d101329	Yqjk (Bacillus subtilis)	89	41	951
98	5	1870	2388	gn1 P1D e137594	xerC recombinase (Lectobacillus leichmannii)	65	7	\$19
61	9	6812	5628	gn1 PID e311516	aminotransferase (Bacillus subtilis)	59	0,	1185
67		2382	3023	gi 1146190	[2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)	59	36	642
					***************************************			•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	01 10	Start (nt)	Stop (nt)	match	match gene name	e sim	* ident	length (nt)
69	2	6567	8899	91 1573628	antothenate kinase (coaA) [Haemophilus influenzee]	59	38	333
1 87		11383	10055	gn1 PID e323504	3323504 putative Fmu protein (Bacillus subtilis)	89	9 4	1329
<u> </u>	-	13927	15894	91 1673731	(AE000010) Mycoplasma preumoniae, fructose-permesse IIBC component; similar to Swiss-Prot Accession Number P20966, from E. coll (Mycoplasma pneumoniae)	65	Ş	1968
115	80	8766	8521	gi 1590886	M. Jannaschii predicted coding region NJ0110 (Methanococcus jannaschii)	65	38	246
611	~	1966	1526	gn1 PID e209005	erons of E.coli and	89	43	441
128	71	13438	13178	gn1 PID e279632	unknown (Mycobacterium tuberculosis)	- 65	38	261
140	72	23903	23388	91 482922	protein with homology to pail repressor of B.subtills (Lactobacillus delbrueckii)	29	Ç	516
	2_	9697	9014	gn1 P10 d102005	(ABOO1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN H. INFLUENZAE AND SYNECHOCYSTIS. (Bacillus subtilis)	88	32	684
149	2	7213	8244	91 710422	cap-binding-factor 1 (Staphylococcus aureus)	59	40	1032
164	6	6993	6013	gn1 P1D d100965	ferric anguibactin-binding protein precusor FatB of V. anguillarum [Becillus subtilis]	. 59	41	981
164	12	8836	7823	gn1 PID d100964	homologue of ferric anguibactin transport system permerase protein FatC of V. anguillarum (Bacillus subtilis)	89	35	1014
7.11	7	401	1072	gi 289759	coded for by C. alegans cDNA CE2G3 (GenBank:Z14728); putative (Caenorhabditis elegans)	59	0.7	672
721		3841	4200	91 2313445	(AE000551) H. pylori predicted coding region HP0342 (Helicobacter pylori)	65	38	360
183	-	2768	2508	91 509672	repressor protein (Bacteriophage Tuc2009)	59	20	261
186	9	3398	2820	91 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	89	38	579
190		3120	1171	91 1613768	histidine protein kinase (Streptococcus pneumoniae)	- 29	32	1410
194	7	1621	1 1019	gn1 PID d100579	unknown (Bacillus subtilis)	89	0.0	603
198	,	5205	4306	gn1 P1D e313073	hypothetical protein (Bacillus subtilis)	59	38	900
220	5	4362	3958	gn1 PID d101322	Yqhr (Bacillus subtilis)	89	46	405
242	٠	1573	2367	91 1787045	(AE000184) £108; This 308 as orf is 35 pct identical (35 gaps) to 305 residues of an approx. 296 as protein PFLC_ECOLI SW: P32675 (Escherichia coli)	29	42	795
247	2 115	1154	1480	91 40073	ORFIO7 (Bacillus subtilis)	59	39	327

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

2 911 P10 4101924 hemotystn Synechocystis sp. 820 91 2246532 OMF 73, Contains large complex repeat 1126 911 910 41002092 YffB Bacillus subtilis 166 91 666062 putative Lactococcus lactis 168 91 666062 putative Lactococcus lactis 1894 91 91208 gastric mucin Give scrofa 84 91 91208 gastric mucin Give scrofa 1894 91 910	Contig ID	ORF ID	Start (nt)	Stop (nt)	match	match gene name	sia -	* ident	length (nt)
1 865 820 g1 2246532 DRF 73, Contains large Complex repeat 1 386 1126 g1 10 0100292 YffBE [Bacillus subtilis] 1 352 166 g1 66662 putative [Lactococcus lactis] 1 3 479 g1 05679 yaiH [Eacherichia coli] 2 485 84 g1 150671 S antigen precursor [Plasmodium falcit of li123 10465 gn1 PID 0101812 LumO [Symechocystis sp.] 4 2096 3513 gn1 PID 0101812 LumO [Symechocystis sp.] 4 2096 3513 gn1 PID 0101812 LumO [Symechocystis sp.] 5 4056 3513 gn1 PID 0101812 LumO [Symechocystis sp.] 5 4056 3931 2210 gn1 PID 010184 unknown [Bacillus subtilis] 5 4056 3931 gn1 PID 0101771 thiamin biosynthetic bifunctional enzy 1 1722 11066 gn1 PID 0101771 thiamin biosynthetic bifunctional enzy 1 1722 11066 gn1 PID 0101771 thiamin biosynthetic bifunctional enzy 1 1729 3 gn1 PID 0101771 thiamin biosynthetic bifunctional enzy 4 6586 5448 g1 147122 transport protein [Scherichia coli] 5 4934 3907 gn1 PID 0101291 transport protein [Scherichia coli] 5 4934 31277 g1 229122 (AP000320) Ymo [Bacillus subtilis] 1 1 1 1 1 1 1 1 1	256	-	898	2	01924	hemolysin (Symechocystis sp.)	65	39	867
1 386 1126 91 66602 Putative [Lactococcus lacits] 1 352 166 91 66602 Putative [Lactococcus lacits] 1 3 479 91 405879 yaiH [Bacherithla coll] 1 2 1894 91 915208 gasaric mucin [Sus scrota] 2 425 84 91 915208 gasaric mucin [Sus scrota] 4 2098 3513 91 Pip[di01812 Lumo [Synechocystis sp.] 4 2098 3513 91 Pip[di01812 Lumo [Synechocystis sp.] 4 2098 3513 91 Pip[di01812 Lumo [Synechocystis sp.] 5 4058 3551 91 Pip[di01812 Lumo [Synechocystis sp.] 6 179 91 Pip[di01812 Lumo [Synechocystis sp.] 8 3104 5210 91 Pip[di01812 Lumo [Synechocystis sp.] 8 3104 5221 91 Pip[di01812 Lumo [Synechocystis sp.] 91 Pip[di01812 Lumo [Synechocystis sp.] 91 Pip[di0171 Hilamin biosynthetic bicunctional enzyme [Synechocystis sp.] 91 Pip[di0172 Hilamin biosynthetical protein [Schinoaccharomyces pomb 4 5586 3882 91 Pip[di0172 Hypothetical protein [Schinoaccharomyces pomb 4 4594 3422 91 217999 9187 9187000000000000000000000000000000000000	258	-	9	820	91 2246532	! =	65	50	756
1 552 166 91 666622 putative [Lactococcus lacits] 1 3 479 91 405879 yail [Bacherichla coll] 1 2 1894 91 915208 gastric mucin [Gus scrota] 2 425 84 91 160671 S antigen precursor [Plasmodium falciparum] 6 1123 10465 gall [Pip]dio0479 Nat. ArPase subunit J [Entercocccus hize] 6 2981 2210 gall [Pip]dio10479 Nat. ArPase subunit J [Entercocccus hize] 6 2983 2210 gall [Pip]dio1044 unknown [Bacillus subtilis] 8 5316 6179 gill [Si8679 Orf [Bacillus subtilis] 1720 1966 gall [Pip]dio1077 [AB000278] protease [I [Escherichla coll] 1 1722 11066 gall [Pip]dio1077 [Abmin biosynthetic bifunctional enzyme [Symethy 10 4 5586 5498 gill [Pip]dio1077 [Abmin biosynthetic bifunctional enzyme [Symethy 10 4 5586 5498 gill [Pip]dio1077 [Abmin biosynthetic bifunctional enzyme [Symethy 10 4 5586 5498 gill [Pip]dio1077 [Abmin biosynthetic bifunctional enzyme [Symethy 10 4 5586 5498 gill [Pip]dio1279 [reductase [Procein [Escherichla coll] 1 1327 gill [Sig0014 hypothetical protein [Schizosaccharomyces pomber 4 5586 2882 gill [Sig0014 hypothetical protein [Schizosaccharomyces pomber 5 4594 3422 gill [Sig011 exonuclease V alpha-subunit [Escherichla coll] 1 15607 [Sig101 gill [Sig2011 exonuclease V alpha-subunit [Escherichla coll] 1 1 1 1 1 1 1 1 1	270	7	1 386	1126	02092	YfnB (Bacillus subtilis)	65	40	741
1 3 479	281	1	552	166	gi 666062	[putative [Lactococcus lactis]	65	- T	387
1 2 1894 91 915208	309	~	3	479	gi 405879	yeit [Escherichia coli]	65	38	477
2 425 84 91 160671 S antigen precursor [Plasmodium falciperum] 6 11123 10465 9m1 PtD 4100812 Lumo [Synechocystis sp.] 4 2098 3513 9m1 PtD 4100812 Lumo [Synechocystis sp.] 5 4058 3651 9m1 PtD 41001164 unknown [Bacillus subtilis] 6 2983 2210 9m1 PtD 4101164 unknown [Bacillus subtilis] 5 5926 3971 9m1 PtD 4101164 unknown [Bacillus subtilis] 5 3704 5221 9m1 PtD 4267329 Onknown [Bacillus subtilis] 5 3704 5221 9m1 PtD 4101771 thlamin biosynthetic bifunctional enzyme [Syneckin [2007 3007 412 9m1 PtD 4101771 thlamin biosynthetic bifunctional enzyme [Syneckin [2007 3007 412 9m1 PtD 4101771 thlamin biosynthetic bifunctional enzyme [3007 412 9m1 PtD 4101771 thlamin biosynthetic bifunctional enzyme [3007 412 9m1 PtD 4101291 transport protein [Secherichia colli] 5 4934 3807 9m1 PtD 4311432 unknown [Bacillus subtilis] 12277 9m1 PtD 4311432 unknown [Bacillus subtilis] 13286 3882 9m1 PtD 4311432 unknown [Bacillus subtilis] 1368 3882 9m1 PtD 4311432 unknown [Bacillus subtilis] 1368 3882 9m1 PtD 431192 unknown [Bacillus subtilis] 1368 1312 9m1 PtD 43118 exceptioneccus pneumoniae 1368 1313 9m1 PtD 4311 excnuclease V alpha-submit [Escherichia colli] 131 1313 9m1 PtD 4311 1409	363	-	2	1894	91 915208	gastric mucin (Sus scrofs)	65	16	1893
6 11723 10465 gn1 PID d101812 Lum@ ISynachocystis sp. 4 2098 3513 gn1 PID d100479 Ma+ -ArPase subunit J Enterococcus hirse 5 4058 3651 gi 39478 ArP binding protein of transport ArPases Bacil 6 2983 2210 gn1 PID d101164 Lunknown [Bacillus subtilis] 8 5316 6179 gi 1188850 AE000778 protease II Escherichia colii 9 5321 gn1 PID d101771 Hilamin biosynthetic bifunctional enzyme Synach 1 1722 11066 gn1 PID d101771	387	~	425	84	191 160671	S antigen precursor (Plasmodium falciperum)	65	7	342
4 2098 3513 gni PiD d100479 Na+ -ArPase subunit J (Enterococcus hirse) 5 4058 1651 gi 1948 ArPahaling protein of transport ArPases (Bacil S 2881 2210 gni PiD d101164 unknown (Bacillus subtilis) 8 5316 6179 gi 1518679 orf (Bacillus subtilis) 9 5316 6179 gi 1788150 (AE000278) protease II (Escherichia coli) 1 11722 11066 gni PiD d101771 thiamin biosynthetic bifunctional enzyme (Synectic Material Synectic Ma	5		111223	10465	gn1 P1D d101812	LumQ [Symechocystis sp.]	88	29	759
5 4088 3651 gi 19478 Mar binding process of transport Affesses [Baciles 2981 2210 gii 1910 10164 unknown (Bacillus subtilis) 8 5316 3971 gi 1518679 orf (Bacillus subtilis) 9 5326 3971 gi 1788150 (AE000278) processe II (Escherichia coli) 1 11722 11066 gii 1910 1010711 thiamin biosynthetic bifunctional enzyme (Symenty of the coli) 1 11229 3 gii 1910 10101291 reductasse Pseudomonas aeruginosal 1 1229 3 gii 1910 10101291 reductasse Pseudomonas aeruginosal 2 702 412 gi 12313357 (AE000545) cytochrome c biogenesis protein (Coccession Ganterion G	53	•	2098	3513	gn1 PID d100479		88	39	1416
6 2983 2210 gnl PID d101164 unknown (Becillus subtilis) 5 526 3771 gi 1518679	30	2	4058	1651	91 39478	ATPases (Bacillus	88	34	408
8 5316 6179 91 1518679 Oxf (Bacillus subtilis) 5 5926 1971 91 1788150 (AE000278) processe II (Escherichia coli) 5 3704 5221 911 91267329 Unknown (Bacillus subtilis) 1 11722 11066 911 91267329 Unknown (Bacillus subtilis) 1 1229 3 911 9120131357 (AE000545) cytochrome c biogenesis protein (cc 4 6586 5498 91 147329 transport protein (Escherichia coli) 1 1327 13277 91 120014 hypothetical protein (Schizosaccharomyces pombe 4 3586 2882 91 18694 hodulin-21 (AA 1-201) (Glycine mex] 1 4594 3422 91 1217989 ORF3 (Streptococcus pneumoniae) 1 4595 8171 91 882711 exonuclease V alpha-subunit (Escherichia coli) 1 16017 15337 91 47642 5-dehydroquinate hydrolyase (1-dehydroquinase) 2 931 560 91 153794 rqq Streptococcus gordoniii	33	9	2983	2210	gn1 PID d101164	unknown (Bacillus subtilis)	88	45	174
5 5926 3971 91 1788150 AE000278	36	6	5316	6119	91 1518679	orf (Bacillus subtilis)	.88	32	864
5 3704 5221	Ç	2	5926	3971	91 1788150	(AE000278) protease II (Escherichia coli)	88	37	1956
14 11722 11066 gnl PID d101771 thiamin biosynthetic bitunctional enzyme Symestrian 1229 3 gnl PID d101291 reductase Pseudomonas seruginosa ccc 4 6586 5498 gl 23131357 (AE000545) cytochrome c biogenesis protein (ccc 4 6586 5498 gl 147329 transport protein Escherichia colli ccc 131357 13277 gi 2408014 hypothetical protein Schizosaccharomyces pombe 4 3586 2882 gi 18694 nodulin-21 (AA 1-201) Glycine max ccc	46	5	3704	5221	gn1 P1D e267329	Unknown (Bacillus subtilis)	88	42	1518
1 1229 3	48		11722	11066	gn1 P1D d101771	thiamin biosynthetic bifunctional enzyme (Symechocystis sp.)	28	34	657
2 702 412 91 21113157 (AE000545) cytochrome c biogeneals protein (acc 4 6586 5498 91 147329 transport protein (Escherichia coll) 5 4934 3807 91 2108014 hypothetical protein (Schizosaccharomyces pombe 4 3586 2882 91 18694 hodulin-21 (AA 1-201) Glycine max 4 3586 2882 91 18694 hodulin-21 (AA 1-201) Glycine max 5 4594 3422 91 1217989 ORF3 (Streptococcus pneumoniae) 6 10585 8171 91 82771 exonuclease V alpha-subunit (Escherichia coll) 17 16017 15337 91 47642 5-dehydroquinate hydrolyase (3-dehydroquinase) 2 931 560 91 153794 rqq Streptococcus gordoniii	52	-	1229	_	gn1 P1D d101291	reductase [Pseudomonas aeruginosa]	88	35	1227
4 6586 5498 91 147329	53	7	702	412	191 (2313357		95	25	291
5 4934 3807	58	4	9859	5498	91 147329	transport protein (Escherichia coli)	88	4	1089
13 1357 12277	69	5	4934	3807	gn1 PID e311492	unknown (Bacillus subtilis)	88	41	1128
4 3586 2882	12		_	7,226	91 2408014	hypothetical protein (Schizosaccharomyces pombe)	88	33	921
3 4937 4230 gi 2293252 (AF008220) YtmO (Bacillus subtilis) 4 4594 3422 gi 1217989 ORF3 Streptococcus pneumoniae 8 10585 8171 gi 882711 exonuclease V apha-subunit Escherichia coli 17 16017 15337 gi 47642 5-dehydroquinate hydrolyase (3-dehydroquinase) 2 931 560 gi 153794 frqq Streptococcus gordoniii	72	7	3586	2882	91 18694	nodulin-21 (AA 1-201) [Glycine max]	88	34	705
4 4594 3422 91 1217989 10RF3 Streptococcus pneumoniae 8 10585 8171 91 882711 exonuclease V alpha-subunit Escherichia coli 17 16017 15337 91 47642 5-dehydroquinate hydrolyase (3-dehydroquinase) 2 931 560 91 133794 1799 Streptococcus gordonial	74	-	4937	4230	91 2293252	YtmO	88	33	708
8 10585 8171 91 882711 exonuclease V alpha subunit (Escherichia coli) 116017 15337 91 47642 5-dehydroquinate hydrolyase (3-dehydroquinase) 2 931 560 92 153794	97	-	4594	3422	91 1217989	ORF3 (Streptococcus pneumoniae)	85	44	1173
17 16017 15337 gi 47642 5-dehydroquinate hydrolyase (3-dehydroquinase) 2 931 560 gi 153794 rqq (Streptococcus gordonii)	82	_	10585	1719	91 882711	exonuclease V alpha-subunit (Escherichia coli)	- 88	38	2415
2 931 560 gi[153794	96	_ ī	:	15337	91 47642	5-dehydroquinate hydrolyase (1-dehydroquinase) (Salmonella typhi)	58	32	681
	97	7	931	260	gi 153794	rgg (Streptococcus gordonii)	88	32	372

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	OR ITD	Start (nt)	Stop (nt)	match	match gene name	e is i	* ident	length (nt)
108	7	358	[2724	91 537020	vac8 gene product [Escherichia coli]	95	37	2367
111	5	4593	5240	gi 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	88	36	648
120	_	4421	5110	gn1 P1D d101320	Yqgx (Bacillus subtilis)	- 58	47	069
128	116	13131	12673	91 662919	ORP U (Enterococcus hiras)	1 58	42	459
132	-	6174	4939	91 1800301	[macrolide-efflux determinant (Streptococcus pneumoniae)	88	35	1236
133	-	1111	890	gn1 PID e269488	Unknown (Bacillus subtilis)	88	36	780
160	Ξ	9615	9865	gi 473901	ORF1 [Lactococcus lactis]	85	39	1251
161	9	6268	6849	gn1 P1D d101024	DJ-1 protein (Homo sapiens)	85	32	582
169	-	214	7	gn1 P1D d100447	translation elongation factor-1 (Chlorella virus)	88	31	213
187	-	487	7	gi 475114	regulatory protein (Pediococcus pentosaceus)	88	38	486
187	9	4384	4620	gi 167475	dessication-related protein (Craterostigma plantagineum)	88	55	237
190	~	1464	1640	gn1 PID e246727	competence pheromone [Streptococcus gordonil]	85,	38	177
192	~	2012	1344	gn1 PID d100556	rat GCP360 [Rattus rattus]	88	7	699
206	-	1292	969	6	product similar to WrbA [Lactobacillus sake]	88	35	597
216	~	2333	555	gn1 P1D e325036	hypothetical protein (Bacillus subtilis)	88	33	1779
217	5	5250	4321	91 466474	cellobiose phosphotransferase enzyme II'' (Bacillus stearothermophilus)	88	38	930
217		5636	5106	gn1 PID d102048	B. subtilis celloblose phosphotransferase system celB; P46317 (998) transmembrane [Bacillus subtilis]	88	4	531
232	-	7	811	lgi 1573777	cell division ATP-binding protein (ftsE) [Haemophilus influenzae]	85	39	810
264	-	2	715	191 973330	Nath (Bacillus subtilis)	88	32	714
280		33	767	91 1786187	(A8000111) hypothetical 29.6 kD protein in thrC-talB intergenic region	88	31	735
306	-	845	-	gn1 PID e334780	[YlbL protein [Bacillus subtilis]	28	47	843
360	_	1556	1092	sp P46351 YZGD_	HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I 5'REGION.	85	32	465
363	5	2160	1867	91 160671	S antigen precursor (Plasmodium falciperum)	88	51	294
372	_	806	_	91 393394	Tb-291 membrane associated protein (Trypanosoma brucei subgroup)	- 88	37	804
382	~	749	519	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid fi	85	4	231
					**************************************	+	•	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig 10	ORF	Start (nt)	Stop (nt)	match acession	match gene name	# stm	1 ident	length (nt)
n	6	8409	7471	91 1499745	H. jannaschii predicted coding region MJ0912 [Methanococcus jannaschii]	57	38	939
10	10	7674	7507	91 (1737169	homologue to SKP1 (Arabidopsis thaliana)	57	30	168
	-	7	412	gn1 P1D d100139	ORF (Acetobacter pasteurianus)	52	42	411
31	4	2032	1388	[91 2293213	(AF008220) YtpR (Bacillus subtilis)	57	37	645
33	=	1669	6449	gn1 PID e324949	hypothetical protein (Bacillus subtilis;	52	36	483
45	s	5446	5060	91 1592204	phosphoserine phosphatase (Methanococcus jannaschii)	57	44	387
49	-	6523	7632	91 155369	PTS enzyme-II fructose [Xanthomonas campestris]	57	35	1110
52	9	4520	6850	gi 1574144	single-stranded-DNA-specific exonuclease (recJ) (Haemophilus influenzae)	57	35	2331
53	s	2079	1795	191 1843580	replicase-associated polyprotein (oat blue dwarf virus)	57	94	285
63	9	5312	4995	191 2182608	[AE000094] Y4rJ [Rhizobium sp. NGR234]		39	318
22	51	113883	13059	[gn1 PID d100892	homologous to SwissProt:YIDA_ECOLI hypothetical protein [Bacillus subtilis]	57	40	825
61	7	2561	1815	gn1 P1D d1 00965	homologue of NADFH-flavin oxidoreductase Frp of V. harveyi [Bacillus subtilis]	52	44	747
82	6	9596	9763	91 1206045	short region of similarity to glycerophosphoryl diester phosphodiesterases [Caenorhabditis elegans]	52	38	168
98	16	15371	14493	gi 1787983	(AE000264) o288; 92 pct identical (1 gaps) to 222 residues of fragment YDIB_ECOLI SW: P28244 (223 aa) [Escherichia coli)	. 22	34	628
93		1695	7711	91 1500003	mutator mutT protein [Mathanococcus annaschii]	57	33	519
96	9	3026	4519	91 559882	threonine synthase [Arabidopsis thallana]	57	43	1494
66	114	11271	18212	gi 773349	BirA protein (Bacillus subtilis)	57	7	1002
112	8	7448	7903	191 1591393	M. Jannaschii predicted coding region MJ0678 (Methanococcus jannaschil)	57	30	456
113	91	18627	18328	pir A45605 A456	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium falciparum	57	22	300
123	2	343	1110	pir F64149 F641	hypothetical protein H10355 - Maemophilus influenzae (strain Rd KW20)	57	38	768
123	7	2108	2884	gn1 PID d102148	(AB001684) sulfate transport system permease protein (Chlorella vulgaris)	57	39	111
127	0.	6477	5587	191 1573082	nitrogenase C (nifC) (Haemophilus influenzae	57	35	891
i	113	9251	9790	gi 153692	pneumolysin (Streptococcus pneumonise)	57	38	540
131	*	2139	1363	gi 42081	nagD gene product (AA 1-250) (Escherichia coli)	57	36	ררר
	1		1 1 1 1		P11531111111111111111111111111111111111		A	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF TD	Start (nt)	Stop (nt)	match	match gene name	mis *	* ident	length (nt)
136		214	1221	bbs 148453	SpaA=endocarditis immunodominant antigen [Streptococcus sobrinus, MUCOB 263, Peptide; 1566 aa] [Streptococcus sobrinus]	57	44	1008
140	125	28701	26851	gi 505576	beta-glucoside permease (Bacillus subtilis	1 57	38	1851
141	9	6395	7438	91 995560	unknown (Schizosaccharomyces pombe)	57.	41	1044
144		3231	2785	gn1 PID d100139	ORF (Acetobacter pasteurianus)	1 57	42	447
155	-	5454	4564	91 (600431	glycosyl transerase [Erwinia amylovora]	57	34	891
159	6	1 4877	5854	91 290509	o307 [Escherichia coli]	57	35	978
167	Ξ	9710	9249	gn1 PID d100139	ORF Acetobacter pasteurianus	57	42	. 462
171	9	4023	4436	91 147402	mannose permease subunit III-Man [Escherichia coli]	57	29	414
178	-	2170	1076	gn1 PtD d102004	(ABGO1488) ATP-DEPENDENT RNA HELICASE DEAD HOHOLOG. (Bacillus subtilis)	52	39	1095
190	-	145	1455	gi 149420	export/processing protein [Lactococcus lactis]	57	30	1311
198	-	298	95	91 522268	unidentified ORF22 [Bacteriophage bIL67]	57	36	204
203	7	1 3195	2110	gn1 P10 e283915	orf c01003 [Sulfolobus solfataricus]	52	41	1086
205	-	40	507	gi 1439527	[EIIA-man (Lactobacillus curvatus)	57	28	468
214		4243	3797	gn1 PID d102049	H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189)	52	48	447
268		1767	1276	gi 43979	L.curvatus small cryptic plasmid gene for rep protein (Lactobacillus curvatus)	52	36	492
351	-	324	×	gn1 PID e275871	T03F6.b Caenorhabditis elegans	57	31	291
386	-	226	7	gi 160671	S antigen precursor (Plasmodium falciparum)	57	45	225
2	5	10486	7778	91 405857	yebU (Escherichia coli)	95	33	1710
80	2	3674	3910	gi 467199	pksC; L518_F1_2 [Mycobacterium leprae]	95	39	237
10	-	3442	1874	gn1 PID d101907	sodiun-coupled permease (Synechocystis sp.)	95	36	1569
21	-	1880	333	91 2313949	(AE000593) osmoprotection protein (proWX) [Helicobacter pylori]	56	33	1548
22	129	21968	22456	gn1 P1D d102001	[ABG01488] PROBABLE ACETYLTRANSFERASE. (Bacillus subtilis]	99	37	489
22	-	1361	6	91 215132	[ea59 (525) [Bacteriophage lambda]	56	30	1359
28	6	4667	4278	gi 1592090	DNA repair protein RAD2 (Methanococcus jannaschii)	26	29	390
2	-	3	386	gn1 PrD d100139	ORF (Acetobacter pasteurianus)	95	41	384
					◆ \$\$\$\$\$T1111857345563755511435524645454646664875111755555555555		*********	

S. pneumoniae - Putative coding regions of novel proteins Bimilar to known proteins

Cont ig	ORF	Start (nt)	Stop (nt)	match	match gene name	# sim	1, ident	length (nt)
36		5122	5397	pir PQ0053 PQ00	hypothetical protein (proC 3' region) - Pseudomonas aeruginosa (strain PAO) (fragment)	26	28	276
40	4	3137	4318	fgi 1800301	macrolide-efflux determinant (Streptococcus pneumoniae)	95	72	1182
40	116	12511	13191	gn1 PID e217602	PlnU [Lactobacillus plantarum]	95	38	681
8.4	1	13775	13023	gi[143729	transcription activator (Bacillus subtilis)	95	35	753
25	4	1674	2594	gn1 PID d102036	membrane protein (Bacillus stearothermophilus)	95	25	921
98	3	1842	1459	[gn1 P1D d100139	ORF (Acetobacter pasteurlanus)	95	41	384
89		5815	4940	gi 853777	product similar to E.coli PRFA2 protein (Bacillus subtilis)	95	42	876
105	7	1360	2718	gn1 PID d101913	hypothetical protein (Synechocystis sp.)	95	37	1359
112		2151	3194	[gi 537201	ORF_0345 (Escherichia coll)	95	31	1044
113	-	2754	2963	gn1 P1D d100340	ORF (Plum pox virus)	95	28	210
122	_	1203	2054	91 1649035	high-affinity periplasmic glutamine binding protein [Salmonella typhimurium]	95	30	852
124	8	3939	3694	gn1 PID e248893	unknown (Mycobacterium tuberculosis)	95	27	246
125	7	4403	4107	gn1 PID d100247	human non-muscle myosin heavy chain (Homo sapiens)	95	32	297
721	=	8099	6405	91 2182397	(AE000073) Y4fN (Rhizobium sp. NGR234)	96	35	204
134	5	4769	3849	gn1 PID d101870	hypothetical protein (Synechocystis sp.)	36	39	921
137	01	6814	7245	gi 1592011		95	34	432
142	8	5019	4582	pir A47071 A470	orfl immediately 5' of nifS - Bacillus subtilis	95	29	438
146	8	4676	3660	gn1 Pr0 d101911	hypothetical protein (Symechocystis sp.)	96	32	1017
148		1906	2739	gn1 PID d101099	phosphate transport system permease protein PstA (Symechocystis sp.)	26	36	834
150	-	4449	2743	gn1 P1D e304628	probbly site-specific recombinase of the resolvase family of enzymes Bacteriophage TP21	26	27	1707
271		7	208	91 1787791	(AE000249) (117; This 317 as orf is 27 pct identical (16 gaps) to 301 residues of an approx. 320 as protein YXXC_BACSU SW: P39140 [Escherichia colii]	98	34	207
172		4979	5668	gi 396293 	similar to Bacillus subtilis hypoth. 20 kDa protein, in ter 3' region [Escherichia coli]	26	40	069
186	-	3732	3367	gi 1732200	PTS permease for mannose subunit IIPMan [Vibrio furnisali]	1 95	36	366
187	~	2402	819	pir SS7904 SS79	virR49 protein - Streptococcus pyogenes (strain CS101, serotype M49)	56	35	1584
	•				***************************************	*******	*	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORP	Start (nt)	Stop (nt)	match	match gene name	e is	• ident	length (nt)
204	_	2772	2239	191 606376	[ORF_o162 [Escherichia coli]	95	35	534
206	~	1 3342	1633	.[gi 559861	ClyM Plasmid pAD1	95	38	1710
219	-	1689	1096	gi 1146197	[putative [Bacillus subtilis]	95	27	594
230	~_	409	1485	pir C60328 C603	hypothetical protein 2 (sr 5' region) - Streptococcus mutans (strain OM2175, serotype f)	98	40	1077
233	-	2930	3268	gi 1041785	rhoptry protein [Plasmodium yoelii]	26	24	339
273	- 2	1543	2724	91 143089	lep protein (Bacillus subtilis)	26	32	1182
353	-	1	516	[gn] PID e325000	hypothetical protein (Bacillus subtilis)	26	41	516
359	-	87	641	gi 1786952 	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 aa hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coll]	98	9 9	555
363	- 7	4482	4198	gi 1573353	outer membrane integrity protein (tola) (Haemophilus influenzae)	96	38	285
376	-	2	808	gn1 PID e325031	hypothetical protein (Bacillus subtilis)	26	33	507
18	-	836	117	gn1 PID d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	55	31	999
28	-	1824	1618	gn1 PID e316518	STAT protein (Dictyostellum discoideum)	55	40	207
59	9	4496	5041	91 1088261	unknown protein [Anabaena sp.]	55	31	546
38	91	9696	10702	gi 580905	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB (Bacillus subtilis)	55	31	1008
49	s -	5727	6182	191 1786951	(AEGO0176) heat-responsive regulatory protein (Escherichia coli)	55	29	456
- 51	-	2381	3241	gn1 P1D d101293	YbbA (Bacillus subtilis)	55	42	861
52	6	9640	10866	91 153016	ORF 419 protein (Staphylococcus aureus)) ss	23	1227
53	-	1 1813	1349	gi 896042	OspF Borrelia burgdorferi	55	30	465
09	5	4794	5756	91 1499876	magnesium and cobalt transport protein (Methanococcus jannaschil)	- 88	38	963
11	6	14176	15408	191 1857120	glycosyl transferase (Neisseria meningitidis)	85	43	1233
27	9	3389	4229	gn1 P1D e209890	NAD alcohol dehydrogenase (Bacillus subtilis)	85	99	1041
108	01	10488	9820	gn1 PID e324997	hypothetical protein (Bacillus subtilis)	55	36	699
113	12	12273	113037	gn1 P1D e311496	unknown (Bacillus subtilis)	55	34	765
113	Ξ		113945	~ 1	[1-phosphofructokinase (fruK) [Haemophilus influenzae]	55	66	939
126	2	6764	5907	191 1790131	(AE000446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region [Escherichia coli]	55	37	858
						·	+	+

S. pneumoniae - Putative coding regions of novel protein& similar to known proteins

1.2 2.15 2.25 2	Contig	08F	Start (nt)	Stop (nt)	match	natch gene name	E is	* ident	length (nt)
1 2533 1810 [81] [81	129	n	2719	905	gn1 P1D d101425		55	35	1818
6 5916 5831 2831 2011 110 10	138	~	2593	1610	91 142833	ORF2 (Becillus subtilis)	55	37	984
10 10204 893 2115 91 710 71070 910 71070 910 71070 910 710 71070 910 710 71070 910 710 71070 910 710 71070 910 710 71070 910 710 71070 910 710 71070 910 710 71070 910 710 71070 910 710 71070 910 710 710 710 710 710 710 710	140	•	6916	5633	gn1 P1D d100964	protein in a rapamycin synthesis gene cluster is [Bacillus subtilis]	55	56	1284
10 10204 6931 GmillPiol(\$7006 Glibhodicococaee (Lactobacillus laicheantii) 55 510 6115 GmillPiol(\$7006 GmillPiol(\$7006	147	<u> </u>	3854	2136	91 472330	dehydrogenase (Clostridium	55	39	1719
6 4121 4650 91 692769 Ctransposase (Anthobacter autocrophicas) 55 29 29 20 20 20 20 20 20	167	_	10204	8921	gn1 P10 e73078	dihydroorotase [Lactobacillus leichmannii]	55	38	1284
14 12564 11550 301 5151539	148	5	3430	4119	gi 290572	protein U (Escherichia	55	29	1 069
11 1254 11550 gni PD d101129 VrgG Bacillus subtilis 1111 550 gni PD d101129 VrgG Bacillus subtilis 1111 550 gni PD d101129 VrgG Magnockis Conjacent to our operon; similar to gnth class of 55 73 74 75 75 75 75 75 75 75	148	9	4171	4650	91 695769	transposase (Xanthobacter autotrophicus)	55	1 76	480
1111 550 gil 2010 10	149	_		11650	[gn1 PID d101329	YqjG (Bacillus subtills)	55	32	915
10 6622 5897 91 2905331 Stanliar to E. coli ORF adjacent to suc operon; similar to gniR class of 55 29 29 20 20 20 20 20 20	156		1113	550			58	76	564
1784 2312 gml ProjectS118 Pypochetical protein Bacillus subtilis 5 2772 3521 gil 40248 pur. resolvase Trp I (AAI - 284] Bacillus thuringlensis 55 35 35 35 36 31 32 32 32 34 32 32 32 32	159	01	6625	5897	91 290533	E. coli ORF adjacent to suc operon; similar to gntR class r proteins [Escherichia coll]	55	29	729
5 2772 3521 91 40348 put. resolvase Tmp I (AA I - 284) [Bacillus thuringlensis] 55 38 11 7428 7216 gni FPD[e249407] [unknown [Mycobacterium tuberculosis] 55 38 5 3860 3345 gil55502 [involved in protein secretion [Bacillus subtilis] 55 38 5 2880 2563 gil 60600 [ORF_c230; Geneplot suggests frameshift linking to 0267, not found 55 35 35 35 37 1 8 4311 5396 gni PID e1804505 hypothetical EcsB protein [Bacillus subtilis] 55 33 33 31 31 2 2454 1384 gil1374693 [Ternsferase, peptidoglycan synthesis (murG) [Haemophillus influences] 55 33 33 31 1 2 2454 1384 gil1374693 [Ternsferase, peptidoglycan synthesis (murG) [Haemophillus influences] 55 33 33 1 3 2434 1384 gil12801 [April PiD d10174] [Arangerese (Synechocystis ep.) 55 33 33	164		1784	2332		hypothetical protein (Bacillus subtilis)	55	37	549
11 7428 7216 gni PiD e249407 unknown (Mycobacterium tuberculosis) 5 3860 3345 gil 606080 ORF_0290; Ganeplot suggests frameshift linking to 0267, not found 55 28 35 35 35 35 35 35 35 3	164	5	2772	3521			55	35	750
5 3860 3345 91 535052 involved in protein secretion Bacillus subtilis 55 288 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 37 36 311 3346 91 100 100 <td>164</td> <td>Ξ</td> <td>7428</td> <td>7216</td> <td> gn1 PID e249407</td> <td>unknown (Mycobacterium tuberculosis)</td> <td>58</td> <td>38</td> <td>213</td>	164	Ξ	7428	7216	gn1 PID e249407	unknown (Mycobacterium tuberculosis)	58	38	213
5 2880 2563 gi 606080	167		3860	3345	191 535052	involved in protein secretion [Bacillus subtilis]	55.	28	516
8 4311 5396 gni PID ei83450 hypothetical EcsB protein (Bacillus subtilis) 536 gni PID ei83450 hypothetical EcsB protein (Bacillus subtilis) 55 33 38 31 32 33 32 33 33 33 33	186	5	2880	2563	91 606080	Geneplot suggests frameshift linking to 0267, not chia colij	55	35	318
5 3270 3079 gi 1196504 vitellogenin convertase [Aedes aegypti] 55 38 38 38 39 39 39 39 39	189	8	4311	!			55	32	1086
2 2454 1384 gi 1574693 transferase, peptidoglycan synthesis (murG) [Haemophilus influenzae] 55 33 1 1 1 1 1 1 1 1	192	5	3270	3079	191 1196504	vitellogenin convertase (Aedes aegypti)	55	38	192
1 3013 2471 [an] [PID] e3113074 [hypothetical protein [Bacillus subtilis]] 55 29 1 1 373 744 [gni] PID] e101741 [transposase [Synechocystis sp.]] 55 33 2 1115 456 [gi] 288101 [ORF2 gene product [Bacillus megaterium]] 55 30 7 3742 3443 [gi] 18137 [cgcr-4 product [Chlamydomonas reinhardtii]] 55 40 1 2 829 [gni] [sin] [s	195	7	2454	1384	91 1574693		55	33	101
1 373 744 gn1 PID d101741 transposase [Synechocystis sp.] 55 31 31 31 31 31 31 31	198	-	3013	2471	e313074	hypothetical protein (Bacillus subtilis)	55	29	543
2 1115 456 gi 288301 ORF2 gene product (Bacillus megaterium) 55 30	214	-	373	744	gn1 PrD d101741	transposase (Symechocystis sp.)	55	33	372
7 3742 3443 91 18137 cgcr-4 product (Chlamydomonas reinhardtii) 55 46	219	1 2	1115	456	91 288301	ORF2 gene product (Bacillus megaterium)	55	30	1 099
1 2 829 gnl PID d100974 unknown (Bacillus subtilis) 1 650 249 gi 396844 ORF (18 kDa) (Vibrio cholerae) 2 1229 1696 gi 150848 prtC (Porphyromonas gingivalis)	263		3742	3443	91 18137		55	48	300
1 650 249 91 396844 ORF (18 kDe) (Vibrio cholerae] 2 1229 1696 91 150848 prtC (Porphyromonas gingivalis) 55 39	285	-	7	829	-	unknown (Bacillus subtilis)	55	40	828
2 1229 1696 gi 50848 prtC (Porphyromonas gingivalis)	286		650	249	91 396844	ORF (18 kDa) (Vibrio cholerae)	55	31	402
	297	7	_;	:		prtC (Porphyromonas gingivalis)	55	39	468

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

•		110000						
Contig	J ORF	Start (nt)	Stop (nt)	match	match gene name	S S I	1 ident	length (nt)
309	2	218	1 982	[gi 1574491	hypothetical [Haemophilus influenzae]	- 55	35	765
328	~	646	224	91 571500	probibitin (Saccharomyces cerevisiae)	55	27	423
330	-	1340	474	91 396397	soxS [Escherichia coli]	55	29	1 498
364	-	2538	1546	91 393394	Tb-291 membrane associated protein (Trypanosoma brucei subgroup)	55	36	1 666
368		941	105	[91 160671	S antigen precursor [Plasmodium falciparum]	55	0.	837
	-	4604	3624	91 2293176	(AF008220) signal transduction protein kinase (Bacillus subtilis)	54	26	981
6	=	7746	7246	91 1146245	putative (Bacillus subtilis)	54	38	501
38	124	116213	17937	gi 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	54	72	1725
9	e !	5076	4882	91 39989	methionyl-tRNA synthetase (Bacillus stearothermophilus)	54	35	195
43	-	3980	1 2367	gn1 P1D e148611	ABC transporter (Lactobacillus helveticus)	54	25	1614
52	01	110844	12103	gi 1762962	Fem.A (Staphylococcus simulans)	54	29	1260
52	-	-	512	gi 558177	endo-1,4-beta-xylanase (Cellulomonas fimi)	54	36	510
88	-	4749	4246	gn1 P10 d101237	hypothetical (Bacillus subtilis)	54	29	504
11	-	110684	11703	91 510255	orf3 (Escherichia coli)	54	31	1020
12	120	127546	ונררב	91 202543	serotonin receptor [Rattus norvegicus]	54	31	192
12	7	844	1098	91 148613	srnB gene product (Plasmid F)	54	37	255
72	-	7438	6695	gi 1196496	[recombinase [Horaxella bovis]	54	38	744
74	0 -	14043	13465	gi 1200342	ORF 3 gene product (Bradyrhizoblum japonicum)	54	32	1 678
1 74	112	116483	15995	191 2317798	maturase-related protein (Pseudomonas alcaligenes)	5.4	30	489
98	-	1 2877	2155	91 46988	orf9.6 possibly encodes the O unit polymerase (Salmonella enterica)	54	34	723
89	5	4433	13921	gi 147211	phnO protein (Escherichia coli)	54	41	513
06	-	3	464	gi 2317798	maturase-related protein (Pseudomonas alcaligenes)	54	30	462
96	=_	8058	8510	gn1 PID d102015	(AB001488) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. (Bacillus subtilis)	54	32	453
97	9	4662	3604	gi 1591394	[transketolase'' [Methanococcus jannaschii]	54	30	1059
106	Ξ	10406	112010	lgi 606286	ORF_0637 [Escherichia coli]	54	32	1605
147		8663	7404	 	ORF_ID:031917; similar to (SwissProt Accession Number P37340) (Escherichia coli)	28	35	1260
					→	400000000000000000000000000000000000000	400000000000000000000000000000000000000	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont 1g ID	<u>8</u> 0	Start (nt)	Stop (nt)	match	match gene name	E S P	1 ident	length
171	7	2477	3223	91 1439528	EliC-man (Lactobacillus curvatus)	54	36	747
174	2	2068	1787	gn1 PID d100518	motor protein [Homo sapiens]	54	35	282
188	-	526	1188	gn1 PID e250352	unknown [Mycobacterium tuberculosis]	54	31	663
198	2	3582	2884	gn1 PID e313074	hypothetical protein (Bacillus subtilis)	54	33	909
207	-	-	1641	gn1 PtD d101813	hypothetical protein (Synechocystis ap.)	54	24	1641
210	-	2	655	91 2293206	(AF008220) Ythe (Bacillus subtilis)	54	29	654
225	~	996	2357	gn1 PID e330194	R11H6.1 (Caenorhabditis elegans)	54	39	1392
241	-	1681	347	gn1 P1D d101813	hypothetical protein (Synechocystis sp.)	54	26	13.15
263	- 5	1 907	1395	gn1 PID d101886	transposase (Synechocystis sp.)	54	30	489
263	9	3450	7.62	gi 160671	S antigen precursor (Plasmodium falciparum)	54	47	474
772	-	12517	1363	91 1196926	Unknown protein (Streptococcus mutans)	54	0.0	1155
307	-	828	7	91 (2293198	(AF008220) YtgP (Bacillus subtilis)	54	28	825
325	-	19	1 768	191 2182507	(AE000083) Y41H [Rhizobium sp. NGR234]	54	37	750
332	2	898	290	91 1591815	ADP-ribosylglycohydrolase (draG) [Methanococcus jannaschil]	54	32	309
385	*	240	479	gi 530878	amino acid feature: N-glycosylation sites, aa 41 . 43, 46 . 48, 51 . 53, 72 . 74, 107 . 199, 128 . 130, 132 . 134, 158 . 160, 163 . 165; amino acid feature: Rod protein domain, aa 169 . 340; amino acid feature: golobular protein domai	24	64	240
,	125	19702	19493	gn1 P1D e255111	hypothetical protein (Bacillus subtilis)	53	32	210
23		2497	2033	gn1 P1D d102015	(ABBO1488) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. (Bacillus subtilis)	S	25	465
59	=	9042	12101	91 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	53	31	1080
2	-	1479	1009	pir S10655 S106	hypothetical protein X - Pyrococcus woesei (fragment)	53	33	471
36	9	4583	5134	gn1 P10 e316029	unknown (Mycobacterium tuberculosis)	53	30	552
38	14	8521	8898	91 580904	homologous to E.coli rnpA (Bacillus subtilis)	53	30	378
52	-	7007	9898	91 1377831	unknown (Bacillus subtilis)	53 –	29	1680
	12	17555	19564	di 666069	orf2 gene product [Lactobacillus leichmannii]	53	36	2010
56	- -	7	681	91/1592266	restriction modification system S subunit [Methanococcus jannaschii]	53	32	681
						+		•

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	acession	match gene name	e sin	* ident	length
57	01	9431	8 48 7	91 1788543	(AE000310) f351; Residues 1-121 are 100 pct identical to YOJL_ECOLI SW: P33944 (122 as) and as 152-351 are 100 pct identical to YOJK_ECOLI SW: P33943 [Escherichia coli]	53	116	945
61	-	429	~	gn1 PtD e236467	B0024.12 Caenorhabditis elegans	53		767
71	-	5772	-	gi 393394	Tb-291 membrane associated protein (Trypanosoma brucei subgroup)	53	33	2769
72		894	2840	91 (2293178	(AF008220) YtsD (Bacillus subtilis)		33	
	=	9793	9212	91/1778556	putative cobalamin synthesis protein (Escherichia coli!		; ;	1964
88	_	5217	4342	91 2098719	putative fimbrial-associated protein Actinomyces naeslundii	5		700
93	8	2395	1688	gi 563366	gluconate oxidoreductase (Gluconobacter oxydans)	23	3 5	9,0
96	6	6632	7762	[gi 517204	ORF1, putative 42 kDa protein (Streptococcus pyogenes)		6	
108	8	7629	8600	91 149581	maturation protein [Lactobacillus paracasei]	5	:	
128	6	6412	6972	gn1 P1D e317237	unknown Mycobacterium tuberculosis	5	35	21.6
	112	8429	9253	911311070	pentraxin fusion protein (Xenopus laevis)	53	2	
148	-	۳	950	pir A61607 A616	probable hemolysin precursor - Streptococcus agalactise (strain 74-360)	65	96	446
163	~	2162	3022	91 1755150	nocturnin (Xenopus laevis)	53	5	170
171	-	2304	2624	91/1732200	PTS permease for mannose subunit 11PHan [Vibrio furniss]]			
182	5	3785	3051	0572	unknown (Bacillus subtilis)			350
209	_	2948	1935	91/178505	ferric enterobactin transport protein (Escherichia coli)			
218	5	3884	2406	91 40162	murE gene product (Bacillus subtilis)	5	2	*101
250	_	473	790	gn1 PID e334776	YIbH protein (Bacillus subtilis)	53	Ş	915
275	-	-	1611	gn1 PID d101314	YqeW (Bacillus subtilis)	1 65	35	
332	-	544	~	gi 409286	baru (Bacillus subtilis)			
~	~	2543	3445	gn1 PID e233879	hypothetical protein (Bacillus subtilis)			600
<u> </u>	22 2	22402	23376	gi 38969	lacF gene product (Agrobacterium radiobacter)	, , ,		506
2	_	8094	2356	gn1 PID e324915	IgAl protease (Streptococcus sanguis)	3 5		6/6
22	26 1	19961	20212	91 152901	ORF 3 (Spirochaeta aurantia)	3 3	70	65/6
22	-	23140		91 289262	comE ORF3 [Bacillus subtilis]	- 65		767
27	9	5397	4803	91139573	P20 (AA 1-178) (Bacillus licheniformis)	52	- 52	1 605
							1	:

pneumonise - Putative coding regions of novel proteins Similar to known proteins

Contig	I OSE	Start (nt)	Stop (nt)	match	match gene name	s in	* ident	length (nt)
35	10	8604	7357	gi 508241	putative O-antigen transporter [Escherichia col1]	52	27	1248
\$		4801	3662	gn1 PID d102243	(AB005554) homologs are found in E. coli and H. influenzae; see SWISS_PROT ACC0: P42100 [Bacillus subtilis]	25	36	1140
8	118	114385	113726	gn1 PID e205174	orf2 [Lactobacillus helveticus]	52	25	099
6.0	-	5321	5755	91 2317740	(AF013987) nitrogen regulatory IIA protein (Vibrio cholerae)	52	19	435
54	-	2773	4668	91 1500472	M. jannaschil predicted coding region MJ1577 [Methanococcus jannaschil]	52	36	1896
54	9	5250	4969	[91 2182453	[AE000079] Y410 [Rhizobium sp. NGR234]	52	\$	282
99	9	8400	6955	91 43140	TrkG protein (Escherichia coli)	52	30	1446
1,	92	130659	31312	gn1 PID e314993	unknown (Mycobacterium tuberculosis)	52	23	654
75	- 5	1673	1035	gn1 PID d102271	(AB001683) FarA (Streptomyces sp.)	52	27	639
81	-	1439	1.2893	gn1 PtD e311458	rhamulose kinase (Bacillus subtilis)	52	32	1455
18		4987	5781	gi 147403	mannose permease subunit II-P-Man (Escherichia coli)	52	37	795
2	-51	20687	21853	91 143365	phosphoribosyl aminoimidazole carboxylase II (PUR-K; ttg start codon)	\$2	33	1167
86	9	5785	4592	91 1276879	EpsF (Streptococcus thermophilus)	55	26	1194
98	120	19390	17861	191 454844	ORF 3 (Schistosome manson)	52	26	1530
96	113	10540	9659	91 288299	ORF1 gene product (Bacillus megaterium)	52	33	882
===	-	7	2026	91 148309	cytolysin 8 transport protein (Enterococcus faecalis)	52	27	2025
112	7	1457	2167	91 471234	orf1 (Haemophllus influenzae)	52	33	711
118		2931	2365	bbs 151233	Mip=24 kda macrophage infectivity potentiator protein [Legionella pneumophila, Philadelphia-1, Peptide, 184 as] [Legionella pneumophila]	52	33	567
122	6	5646	1 5951	91 8214	myosin heavy chain (Drosophila melanogaster)	52	36	306
122	=	6159	6374	91 434025	dihydroliposmide acetyltransferase [Pelobacter carbinolicus]	52	52	216
134	9	4880	6313	g1 153733	M protein trans-acting positive regulator (Streptococcus pyogenes)	52	43	1434
135		1238	2716	gn1 P1D e245024	unknown Hycobacterium tuberculosis	52	35	1479
141		1681	2319	gn1 P1D d100573	unknowm (Bacillus subtilis)	52	32	639
191	!	2562	5024	91 1146243	22.4% Identity with Escherichia coli DNA-damage inducible protein; putative (Bacillus subtilis)	52	36	2463
173	1 2 1	896	183	91 1215693	putative orf; G19_orf434 [Mycoplasma pneumoniae]	52	30	786
					+ r - 2 = 4 = 4 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5	+	*	

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

198	· ·	(ut)	3	acession		_		(nt)
	9	4400	3567	gn1 PID e313010	hypothetical protein (Bacillus subtilis)	52	26	834
210	122	8844	9107	gi 497647	DNA gyrase subunit B (Mycoplasma genitalium)	52	38	264
214	9	5264	5431	gi 550697	envelope protein (Human immunodeficiency virus type 1)	52	36	168
225	_	15	884	[gi [1552773	hypothetical (Escherichia coli)	52	34	870
230	-	39	362	gn1 PID d100582	unknown (Bacillus subtilis)	52	28	324
287	-	871	~	gn1 PID e335028	protease/peptidase [Mycobacterium leprae]	52	29	870
363	2	1305	J	gi 393394	Tb-291 membrane associated protein (Trypanosoma brucel subgroup)	52	32	1302
23		2048	1173	gn1 PID e254943	Unknown (Mycobacterium tuberculosis)	51	30	876
29	-	742	1521	gi 929900	5'-methylthicadenosine phosphorylase [Sulfolobus solfataricus]	1 15	31	780
45	-	410	1597	191 1877429	integrase (Streptococcus pyogenes phage T12)	15	32	1188
48	126 11	19227	18946	gi 2314455	(AE000633) transcriptional regulator (tenA) (Helicobacter pylori)	- 51	33	282
٤٢	<u>~</u>	4276	4016	191 474177	alpha-D-1, 4-glucosidase (Staphylococcus xylosus)	51	31	261
81	=	8935	12057	1911311070	pentraxin fusion protein (Xenopus laevis)	15	33	3123
83		1195	1986	gn1 PrD d101316	YqfI (Bacillus subtilis)	15	33	792
86	- 01	1531	8538	[gi 41500	ORF 3 (AA 1-352); 38 kD (put. ftsx) (Escherichia coli)	15	28	1008
113	9	3908	5173	91 466882	pps1; B1496_C2_189 [Mycobacterium leprae]	15	27	1266
124	-	326	57	[gi[2191168	(AF007270) contains similarity to myosin heavy chain [Arabidopsis thaliana]	15	32	270
6	<u>01</u>	7286	6816	[91 1046241	orf14 Bacteriophage HP1	18	30	471
143		4963	3983	gi 1354935	probable copper-transporting atpase (Escherichia coli)	15	56	981
148	115	11359	10226	91 [2293256	(AF008220) putative hippurate hydrolase (Bacillus subtilis)	51	36	1134
149	 	6003	1313	91 1633572	Herpesvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like	51	21	1311
151	6	12092	11550	gn1 P1D e281580	hypothetical 40.7 kd protein (Bacillus subtilis)	51	34	543
159	- 9	2555	3208	91 146944	CMP-N-acetylneuraminic acid synthetase [Escherichia coli]	51	36	654
174	-	1797	•	gi 1773166	probable copper-transporting atpase (Escherichia coli)	51	28	1794
265	-	2231	1773	gn1 P1D e256400	lanti-P. falciparum antigenic polypeptide (Saimiri sciureus)	51	18	459
7.7		643	1311	pir 532915 5329	pilD protein - Neisseria gonorrhoeae	51	33	699

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	•				•	*	•	1 1 1 1 1
Contig	<u> </u>	Start (nt)	Stop (nt)	match	match gene name	mis •	1 ident	length
350	-	890	<u> </u>	91 290509	0307 [Escherichia coli]	1 21	30	888
363	-	1228	1 4485	gi 1707247	partial CDS [Caenorhabditis elegans]	51	23	3258
1 367	-	1001	~	gi 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	51	32	1698
15	- 3	5174	4497	gn1 PID e58151		- 05	38	678
16	-	2220	2582	gn1 PID e325010	hypothetical protein (Bacillus subtilis)	- 05	29	363
19	2	1 2591	4159	[91 [1552733	similar to voltage-gated chloride channel protein (Escherichia coli)	20	30	1569
25	7	2701	1997	gi 887849	ORF_f219 (Escherichia coli)	20	27	1 207
35	-	211	417	gn1 PID e236697	unknown Saccharomyces cerevisiae	20	33	207
39	-	3416	5152	gn1 PID d100974	unknown (Bacillus subtilis)	50	27	1 7871
52		4000	5181	gi 1592027	Carbamoyl-phosphate synthase, pyrimidine-specific, large subunit [Hethanococcus jannaschii]	05	27	1182
51	۰	9717	8303	gi 1591847	type I restriction-modification enzyme, S subunit (Methanococcus	20	28	1125
52	8	8740	9534	91 144297	acetyl esterase (XynC) [Caldocellum saccharolyticum]	80	34	1967
52	116	16591	115770	191 2108229	basic surface protein (Lactobacillus fermentum)	50	34	822
1 57	-	1 6031	6336	91 2275264	60S ribosomal protein L78 (Schizosaccharomyces pombe)	20	40	306
17	123	29348	28383	gn1 P10 d101328	YqjA (Bacillus subtilis	20	30	996
98	112	11155	110769	gn1 PID e324964	hypothetical protein (Bacillus subtilis)	20 -	24	387
- 63	7	1205	330	91 1066016	similar to Escherichia coli pyruvate, water dikinase, Swiss-Prot Accession Number P23538 [Pyrococcus furiosus]	05	24	876
96	5	1673	1 2959.	[gn] [PID]e322433	[gamma-glutamylcysteine synthetase [Brassica juncea]	05	29	1287
86	~	218	1171	91 151110	[leucine-, isoleucine-, and valine-binding protein [Pseudomonas aeruginosa]	20	30	954
103	4	3303	2785	191 154330	O-antigen ligase (Salmonella typhimurium)	80	31	519
1115	2	6480	1 5980	91 895747	putative cel operon regulator (Bacillus subtilis)	- 05	26	501
129	Ξ	7559	7305	gi 1216475	skeletal muscle ryanodine receptor [Homo sapiens]	05	32	255
129	=	8192	7965	91 152271	319-kDA protein (Rhizobium meliloti)	05	30	228
151	5	7634	6819	gi 40348	put. resolvase Tnp I (AA 1 - 284) [Bacillus thuringiensis]	20	35	816
1 153	-	-	597	fgn1 PID d102015	(ABB001488) SIMILAR TO NITROREDUCTASE. (Bacillus subtilis)	- 05	29	1 65
						•	***	+

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	ORF	Start (nt)	Stop (nt)	match	match gene name	E is	* ident	length (nt)
155	ν.	5986	5432	gi 1276880 ·	EpsG (Streptococcus thermophllus)		28	555
160	6	7390	6323	91 1786983	(AED00179) 0331: 92 pct identical to the 333 aa hypothetical protein YBHE_ECOLI SW: P52697; 26 pct identical (7 gaps) to 167 residues of the 373 aa protein HLE_TRICU SW: P46057; SW: P52697 [Escherichia coli)	20	30	1068
163	9	7396	8091	gn1 PID d101313	Yden (Bacillus subtilis)	05	22	969
167	9	5232	3940	gi 413926	ipa-2r gene product (Bacillus subtilis)	05	27	1293
169	~	807	130	gn1 PID e304540	endolysin (Bacteriophage Bastille)	05	35	678
. 171	\$	3168	4025	91 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coll]	05	27	858
210	Ξ	8151	8414	191 330038	HRV 2 polyprotein (Human rhinovirus)	05	25	264
364	-	1538	135	91 393396	Tb-292 membrane associated protein [Trypanosoma bruce! subgroup]	05	31	1404
01	_	5911	1 5090	91 144859	ORF B (Clostridium perfringens)	69	24	822
56	5	10754	9768	gi 142440	ATP-dependent nuclease [Bacillus subtilis]	67	31	786
99		7776	8398	91 414170	trkA gene product (Methanosarcina mazeii)	49	26	1380
11	9	5364	4648	[gn1 PID e285322	Reck protein (Mycobacterium smegmatis)	49	28	717
82	E .	12689	113249	gn1 PID e255091	hypothetical protein (Bacillus subtilis)	64	20	561
93	6	4866	4531	gi 40067	X gene product (Bacillus sphaericus)	49	26	336
112	- 2	4019	4948	gi 1574380	lic-1 operon protein (licB) (Haemophilus influenzae)	49	27	930
129	-	6058	4949	gn1 P1D e267587	Unknown (Bacillus subtilis)	49	35	1110
135	-	3875	4438	gi 39573	P20 (AA 1-178) [Bacillus licheniformis]	49	25	564
154	7	1423	1953	gn1 PID d101102	regulatory components of sensory transduction system [Symechocystis sp.]	69	29	531
156	2	2878	1637	gn1 P1D d101732	hypothetical protein (Synechocystis sp.)	49	25	1242
173	5	3500	2940	91 490324	LORF X gene product [unidentified]	49	30	561
182	-	1057	7	gi 331002	first methionine codon in the ECLF1 ORF (Saimiriine herpesvirus 2)	49	25	1056
192	9	5352	3667	gi 2394472	(AF024499) contains similarity to homeobox domains Caenorhabditis elegans	69	23	1686
253	-	1129	1350	91 531116	SIR4 protein (Saccharomyces cerevisiae)	67	23	222
772		909	136	91 396844	ORF (18 kDa) [Vibrio cholerae]	69	32	465
327		1435	887	887 g1 733524	phosphatidylinositol-4,5-diphosphate 3-kinase [Dictyostellum discoideum]	64	24	549
					***************************************	+	•	111111111

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORP	Start	Stop	match	match gene name		4 6 6 6 6 6	44000
2	=	(nt)	(nt)	acession				(nt)
365	-	1436	132	gi 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	49	16	1305
133		4461	13277	91 145644	codes for a protein of unknown function [Escherichia coli]	48	56	1185
Q	-2	652	1776	gn1 PID e290649	ornithine decarboxylase (Nicotiana tabacum)	87	29	1125
67	4	1377	2384	gi 1772652	[2-keto-3-deoxygluconate kinase [Haloferax allcantel]	48	30	1008
74	7	4269	3871	91 2182678	(AEG00101) Y4vJ (Rhizobium sp. NGR234)	48	27	399
81	- 2	1326	541	[91 153672	lactose repressor (Streptococcus mutans)	48	33	786
81	-	2981	3646	91 146042	fuculose-1-phosphate aldolase (fucA) (Escherichia coli)	89	30	999
97	-	602	51	gi 153794	rgg (Streptococcus gordonii)	48	29	552
110	-	-	3132	91 1381114	prtB gene product (Lactobacillus delbrueckii)	48	23	3132
131	5	2914	1 2147	PID e183811	Acyl-ACP thioesterase (Brassica napus)	48	27	768
133	-	3494	2628	gn1 PID e261988	putative ORF (Bacillus subtilis)	48	27	867
139	9	4231	4599	91 1049388	ZK470.1 gene product (Caenorhabditis elegans)	48	23	369
139	8	5036	5995	91 1022725	unknown (Staphylococcus haemolyticus)	848	55	630
140	7	11936	11007	gn1 P1D d102049 	H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189) [Bacillus subtilis]	88	27	930
146	6	5670	4654	[91]1591731	melvalonate kinase [Methanococcus jannaschii]	48	24	1017
161		1280	2374	gn1 PID d101578	Collagensse precursor (EC 3.4). [Escherichia coli]	8,	24	1095
271	Ξ	10581	111048	gn1 PID d101132	hypothetical protein (Symechocystis sp.)	48	27	468
1 182	-	2930	2586	gi 40067	X gene product (Bacillus sphaericus)	87	1.6	345
210	51	10786	11196	[sp P13940 LE29_	LATE EMBRYOGENESIS ABUNDANT PROTEIN D-29 (LEA D-29).	- 48	30	411
214	112	6231	6482	lgi [40389	non-toxic components (Clostridium botulinum)	- 48	7 92	252
221	-	704		gi 1573364	H. influenzae predicted coding region HI0392 [Haemophilus influenzae]	48	27	702
227	7	647	3928	91 1673693	(AE000005) Mycoplasma pneumoniae, C09_off718 Protein [Mycoplasma pneumoniae]	48	30	3282
253	~	480	758	gn1 PID e236697	unknown (Saccharomyces cerevisiae)	48	31	279
363	2	1874	1122	gi 18137	cgcr-4 product (Chlamydomonas reinhardtii)	48	40	153
389	_	505	7	gi 18137	cgcr-4 product (Chlamydomonas reinhardtii)	84	38	504
3	121	120879	122258	gn1 PtD e264778	putative maltose-binding pootein (Streptomyces coelicolor)	47	33	1380
					· · · · · · · · · · · · · · · · · · ·			********

neumoniae - Putative coding regions of novel proteins sīmilar to known proteins

51 15 13 14 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3547 17516 110154 1753 1753	1 4658	10,110571		47		*
 	13736 14516 13547 110154 1753	1760	1164118	P20 (AA 1-178) [Bacillus licheniformis]		- 67	570
	14516 13547 10154 1753 5589		gn1 P1D d100572	unknown (Bacillus subtilis)	47	25	1977
	10154 110154 11753 5589	13263	91 1773351	Cap5L (Staphylococcus aureus)	47	20	1254
	10154	4002	pir A37024 A370	32K antigen precursor - Mycobacterium tuberculosis	47	38	456
	1753	9273	91 39848	U) (Bacillus subtilis)	47	792	882
	5589	3276	gn1 P1D e280611	PCPC (Streptococcus pneumoniae)	47	35	1524
	-	5386	91 1786458	(AE000114) [120; This 120 as orf is 76 pct identical (0 gaps) to 42 residues of an approx. 48 as protein Y127_HAEIN SW: P41949 [Escherichia colii]	47	32	204
1 130 2	1 1232	1759	gn1 P1D e266555	unknown (Mycobacterium tuberculosis)	47	23	528
140	4951	3542	gn1 PtD d100964	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	ţ.	24	1410
151 4	6814	6200	gi 1522674	H. jannaschii predicted coding region MJECL41 [Methanococcus jannaschii]	47	27	615
1 157 3	803	1174	un PID d101320	Yqg2 (Bacillus subtilis)	42	25	372
178	3267	2155	91 2367190	(AE000390) o334; sequence change joins ORFs ygjR & ygjS from earlier version (YGJR_ECOLI SW: P42600) [Escherichia coli]	47	90	1113
273 1	7	1549	gn1 PID e254973	autolysin sensor kinase (Bacillus subtilis)	47	32	1548
300 2	880	644	91 1835755	zinc finger protein Png-1 (Mus musculus)	47	22	237
=	114182	12638	pir S43609 S436	rofA protein - Streptococcus pyogenes	46	24	1545
88 1	2	1 1018	gn1 PID e223891	xylose repressor (Anserocellum thermophilum)	46	27	1017
96	4553	5860	gn1 P1D d101652	ORF_ID:0347#5; similar to [SwissProt Accession Number P45272] [Escherichia coli]	46	23	1308
112	1127	~	91 2209215	(AF004325) putative oligosaccharide repeat unit transporter (Streptococcus	9	24	1125
122 13	1 7308	7982	gi 1054776	hr44 gene product (Homo sapiens)	46	34	675
127 14	9168	8125	91 1469286	afuk gene product (Actinobacillus pleuropneumoniae)	46	28	1074
132 4	7093	6197	[gi 153794	rgg (Streptococcus gordonii)	46	76	897
-	8220	17723	gi 1235795	pullulanase (Thermoanaerobacterium thermosulfurigenes)	46	21	498
140 9	9205	8315	91 407878	leucine rich protein (Streptococcus equisimilis)	46	27	891

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	ID	Start (nt)	Stop (nt)	match	match gene name	. sim	• ident	length (nt)
162	7	-	1125	gi 1143209	ORF7; Method: conceptual translation supplied by author [Shigella sonnel]	46	25	1125
199	-	-	585	91 1947171	[AF000299] No definition line found [Caenorhabditis elegans]	46	28	585
223	2	1971	1477	sp P02562 MYSS_	MYOSIN HEAVY CHAIN, SKELETAL MUSCLE (FRAGMENTS).	96	22	495
232	7	760	1608	[91]1016112	ycf38 gene product (Cyanophora paradoxa)	46	28	849
292	-	687	220	91 1673744	(AE000011) Mycoplasma pneumoniae, cytidine deaminase; similar to GenBank Accession Number C53312, from M. pirum (Mycoplasma pneumoniae)	9	29	468
90	ω	5843	6472	91 1788049	(AE000270) 0335; This 235 as orf is 29 pct identical (NO gaps) to 198 residues of an approx. 216 as protein YTXB_BACSU SW: P06568 (Escherichia coli)	45	24	630
8.8	9	3461	3868	91 722339	unknowm [Acetobacter xylinum]	45	29	408
09	-	307	~	gi 1699079	coded for by C. elegans cDNA yk11h4.]; coded for by C. elegans cDNA yk148g10.5; coded for by C. elegans cDNA yk15g5.5; coded for by C. elegans cDNA yk5g5.5; coded for by C. elegans cDNA yk5ga10.5; coded for by C. elegans cDNA yk41h4.5; coded for by C. elegans cDNA cm20g10; coded	\$	36	306
72	911	14371	114874	[gi 1321900	NADH dehydrogenase (ubiquinone) (Artemia franciscana)	45	25	504
66	^	9158	7941	91 152192	mutation causes a succinculuran-minus phenotype; Exco is atransmembrane protein; third gene of the exoYPO operon;; putative [Rhizobium melliloti]	45	28	1218
127	12	7046	9099	bhs 153689	HitB-iron utilization protein (Haemophilus influenzae, type b, DL42, NTHI TN106, Peptide, 506 as] (Haemophilus influenzae)	45	24	441
137	2	1 1561	2619	91 472921	v-type Na-ATPase [Enterococcus hirae]	45	33	1059
209	-	174	364	gi 304141	restriction endonuclease beta subunit (Bacillus coagulans)	45	28	411
314	-	604	7	91 1480457	latex allergen (Hevea brasiliensis)	45	31	603
20	118	19782	20288	gi 433942	ORF [Lactococcus lactis]	44	7 7 7 9	507
87	_	7030	6452	91 537207	ORF_(277 Escherichia coli)	44	56	579
166	5	4909	4037	[gn] PID e308082	membrane transport protein (Bacillus subtilis)	4	25	873
247	-	818	75	gn1 PID d100718	ORF1 (Bacillus sp.)	4	20	744
32	-	1 1885	3876	91 2351768	PspA (Streptococcus pneumoniae)	\$	24	1992
36	17	115467	18256	gi 1045739	H. genitalium predicted coding region MGO64 (Mycoplasma genitalium)	43	26	2790
54	115	14656	17343	gi 520541	penicillin-binding proteins 1A and 1B (Bacillus subtills)	43	27	2688
67	~	969	1352	91 536934	yicA gene product (Escherichia coli)	43	29	657
139	~	2416	338	91 396400	similar to eukaryotic Na+/H+ exchangers [Escherichia coli	43	24	2079
					P111111111111111111111111111111111111			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

		111111				+	1	*********
Cont ig	10 G	Contig ORF Start ID (nt)	Stop (nt)	match	match gene name	a sin	1 ident	length (nt)
862	-	~	809	91 413972	[1pa-48r gene product (Bacillus subtilis]	43	24	807
1 387	-	47	427	91 2315652	(APO16669) No definition line found (Caenorhabditis elegans)	43	30	381
185	4	4221	3127	3127 (91/2182399	(AE000073) Y4fP (Rhizobium sp. NGR234)	43	25	1095
340	-	582	٥,	gn PID	e218681 CDP-diacylglycerol synthetase (Arabidopsis thallana)	41	20	513
1 363	9	6 4205	1914	1 1914 91 1256742	R27-2 protein [Trypanosoma cruzi]	41	27	2292
368	7	7	943	91/21783	LMM glutenin (AA 1-356) [Triticum aestivum]	41	34	942
155		4489		2861 91 42023	member of ATP-dependent transport family, very similar to mdr proteins and hemolysin B, export protein [Escherichia coli)	40	18	1629
365	2	56	1438	1438 91 1633572	Herposvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like virus)	9	21	1344
~	_	2979	3860	3 2979 3860 gn1 PID d101908	d101908 hypothetical protein (Synechocystis sp.)	39	26	882
-	s	3814	4647	5 3814 4647 gn1 PID d101961	d101961 hypothetical protein (Synechocystis sp.)	39	19	834
1 26	9	14035	10724	6 14035 10724 91 142439	ATP-dependent nuclease (Bacillus subtilis)	38	20	3312
47	-		4916	4916 gi 632549	NP-180 (Petromyzon marinus)	36	23	4914

known proteins
ಭ
Ylar
S
not.
proteins
novel
ŏ
regions
coding
Putative
•
pneumoniae
ŝ

;			· ·	, ;	. –	;	, - .		, –	-	-	; —	. –	; —	. –	-	· ·	-	; – :	. – ·	-	; — ·	: —	. – ·	: – :	<u> </u>	. –
2 5	3009	4964	994	1574	6497	25396	26317	1689	12618	12841	15390	9419	9910	4280	5704	6298	6888	7672	-	1456	1434	243	3087	7	1050	4465	15893
Sta		4611	818	1182	5382	25046	25625	1519	12875	13215	15977	9955	10161	3915	6024	6069	7136	8962	1140	1779	1913	-	5675	324	1451	4890	14544
ORF ID	-	9	7	-	-	25	126	7	7	115	138	2	13	9	6	8	6	-	_	<u> </u>	7	-	- 5	-	_	<u> </u>	14
Contdg	-	-	m			~		9	9	v	. –	7	1	œ	6	91	01	01	12	12	21	16	16	17	17	17	50

er.
m proteins
7
ij
2
٥
_
ž
ĕ
×
٥
u
×
9
=
E
8
o t
ء
80
c
7
يَ
S
protein
-
A)
⋧
č
s of nove
ю
ç
_0
0
regions o
2
₹
ጆ
e coding
•
t į
7
-
4
4
i
e - Putat
å
7
E C
Ĕ
eun
Š
3

<u> </u>	· — ·	• – •	• -	• – •	·	٠.	· –	•	٠	•	• —	• –	• —	• —	•		• —	• —	•	• – •	• —	•-	•				4
Stop (nt)	2589	4482	17362	19982	15764	6218	17572	6032	6653	518	2641	4223	4956	1797	3850	4597	5072	4919	5518	8207	6263	2344	5538	4668	7740	8641	9377
Start	3359	4802	6604	19467	5540	6388	6382	6655	132	36	3009	4819	4789	3017	4272	5028	5746	9655	5039	5595	6511	2664	5203	5327	8024	9360	9667
ORF	m	- ·	12	135	33	135 2	36 2	-	8	-	5	-		5		2	=	-	8	_	6	9		- -	100	112	1
Contig	21		77	77	22	22	22	23	23	24	25	7.2	72	78	88	28	28	29	29	53	e	31	32	£	34	34	P.
•	•		. —	•	• —	• —	-	 .	• —	-		-	-	• —			• — ·		. — .	. — .	•	•	: —	_	· — ·	. — {	: — :

known proteins
Known
to x
\$ tfal las
200
proteins
novel
٥ŧ
regions of novel
ång
e - Putative cod
٠
pneumoniae

	• -	•	. —	• - -	•	•	•		• - •			•		•	.												
Stop (nt)	11902	8288	9670	1041	10893	11388	14595	4577	5001	5711	11376	3143	2	8732	9071	6831	3665	3468	7081	3582	4229	8922	12494	15764	18351	21776	-
Start (nt)	13104	9896	11073	334	11120	10993	27121	4269	4480	5517	10732	1728	172	8884	9568	4831	3204	3875	6074	3196	4579	9323	3042	6342	1767	1979	209
ORF	118	Ξ	12	7	122	3	115	-	=	2	1		-	-		-	<u> </u>	-	_	- 5	8	=	91	120	124	30 2	-
Contig	34	35	38	36	36	36	36	38	38	38	38	40	\$	4 3	÷	7	45	46	9	48	4 8	8	48	48	8.	48	49
 -			-	-	-	-	-	-			! :		. _ ·	-				\ \		! — .	-		_	_			

ë
بر
ŭ
٥
E
ő
Š
0
Similar t
proteins not similar
_
76
15
1
7
č
100
5
4
ě
-
4
5
ဥ
g regions of novel
ë
2
ō
2
_
Ę
Ŧ
eding:
U
ō
stative
ř
ű
Z
•
ě
pneumoni
ğ
2
Ĕ
ц
'n

; ·	. – .	<u>. </u>	<u>.</u>	<u>. </u>	<u>. </u>	÷ —	• —	• —·	• - -	· —	• –	• –	•	.		٠	• -	• – •	 .	· —	· —	• —	• - -	•	• —	•	• •
Stop (nt)	2672	3598	12883	5187	5459	6210	17506	10123	12141	1387	1939	2130	2501	7335	430	2736	3063	5549	5929	6451	1772	3176	2	3147	9495	1182	980
Start (nt)	i mil	3239	12146	5588	6013	6004	17685	10515	11947	935	1496	1624	2100	7541	~	2416	2734	4743	5459	5741	2395	3316	2722	1180	9082	1343	1165
ORF	7	- 5	Ξ.	_	8	6	91]	6	2	~	-	<u> </u>	4	9	-	-	- ·	-	6	9		5	-	~	8	_	7
Contig	20	21	52	54	54	25	54	55	55	95	98	57	57	58	65	65	59	65	89	9	61	19	64	99	99	67	69
·				_		: — :	. _ ·				. :	.		! — ·	-	! — ·	-	_	_		: —	! — .	! — !				! -

pheumoniae - Putative coding regions of novel proteins not similar to known proteins	
- Putative coding regions of novel proteins not similar to kno	teins
- Putative coding regions of novel proteins not similar to kno	pro
- Putative coding regions of novel proteins	known
- Putative coding regions of novel proteins	ů
- Putative coding regions of novel proteins	lar
- Putative coding regions of novel proteins	stat.
- Putative coding regions of novel p	a not
- Putative coding regions of novel p	teins
- Putative coding	il pro
- Putative coding	nove
- Putative coding	5
- Putative coding	regions
- Putative	ding
- Putative	Š
ı	5
ı	uta L
pneumoniae	
	pneumontae

•																											
Stop (nt.)	3922	4057	5504	21901	22338	27556	8081	4216	4582	4773	6428	8996	195	535	9210		~	8931	1150	16460	2929	1092	2875	7114	2000	6001	7006
Start (nt)	4029	4215	5268	20351	21859	26204	8458	3815	4214	4369	7183	9462	524	867	8602	7924	244	6631	1872	16810	4464	2147	3606	1 2929	5326	6459	7224
ID TD	S	v	6	15	191	19	6	-	9	-	2	15	-	~	=	9	-	10	-	-	-	~	_	13			6
Contig ID		70	70	11	1.1	1,1	72	23	73	73	73	73	76	76	76	80	81	81	63	83	84	98	98	86	9.7	87	87
• •														-							-						

proteins
known
ů
slmilar
5
proteins
novel
o
regions
coding
Putative
1
pneumoniae
œ.

	-		-	-	-	-	-	-		-	-	-			-	-	-		-	-	-	-	 	-	 -	-	-
Stop (nt)	ゖゔゖ	792	1840	2878	6016	1621	6868	2395	52	•	69	iin	•	2379		82	632	1147	1420	6753	18692	19541	1980	299	4373	6735	6517
Start (nt)	17930	827	1619	2711	6252	2634	ורנר	899	911	2959	3170	4253	16	2648		~	4	1 4	25	7043	18522	71761	4094	6.0	4924	6142	8609
S G	81	19	7	7	6	<u> </u>	6	~	_	2	-	9	-	9	8	-	~		4		15	- 2	7	-	9	5	-
Contig ID	87	87	80	88	88	89	88	06	96	91	91	91	93	93	93	96	96	96	96	97	66	66	100	103	103	iõi	105
	•					_	. — .	: —	-	_	: ·			. — -	-			: — ·	. —		. —	. — .	-		-		-

2
teln
٥
င္မ
ä
Ε
ő
5
2
ŭ
Ŋ.
2
2
stitular to known proteins
40
regions of novel proteins not a
c
õ
5
9
9
۵
_
9
ò
-
7
m
Ĕ
ž
regions
н
ē
≟
8
Ų
é
ź
ä
7
Σ,
oniae - Putative coding re
0
Ş
Ĕ
Ĕ
5
pneumoniae
_
ŝ

								•												
Stop (nt)	363	10212	268	3788	4606	10438	2121	1357	2333	6199	7416	069	3368	102	724	9509	6277	7621	756	5673	11209	1140	3830	134	14521	14532	14875
Start (nt)	-	9832.	7	3417	3809	10854	2873	2274	2698	5858	6301	346	2544	689	1011	6454	6540	7809	1433	5972	11838	625	2913	325	14027	14840	15363
98. 01	-	10	-	-	-	2	_	~	-	2	2	~	7	_	7	8	6	2	m	91	=	7	7	~	12	12	3
Contig	106			111	111	115	116	118	122	122	122	124	128	129	129	129	129	129	131	131	134	135	136	137	139	139	139
•	•	•	• ·	•	• —	+ ·	• —	-	•	-	• —	•	•	•-	-	-	• —	• —	• —	, —		•-	• —	-		•	

	n proteins
	known
	Ç
	similar
	not
	proteins
	novel
	ŏ
	regions
	coding
	Putative
	ı
•	. pneumoniae
	(C)

·	· ·	. —	• — •	• — •	. —	. —	• - -	• - -	 .		• —	•		. _	•		•	•	• —	.		.					
Stop (nt)	20838	285	479	778	2885	9401	10676	9750	7276	8647	4765	1936	2880	6070	579	1909	2642	1741	1411	4311	294	780	1722	4017	1018	4945	4972
Start (nt)	i co		760	1149	3604	8223	9399	10052	7488	8913	5298	~	2557	6258	1355	2556	2061	1953	2181	4550	37	631	1384	3271	1332	5535	5406
98 U	120	-	e .	-	_	2	14	115	_	6	7	7	_	6	~	-		m	~		-	~	-	-	7	m	9
Contig	140	142	146	146	146	146	146	146	147	147	148	149	149	149	150	150	153	154	155	156	157	159	159	159	161	165	166
+ — <u>—</u> :					_	_			-				-	-			: :	! — !	-	_	-	: — :	! —				

FABLE 3

wn proteins
kno
ü
similar
ä
proteins
novel
ö
regions
coding
Putative
1
pneumoniae

Contig OAP Start Stop 167 9 6075 6395 169 5 2828 3205 170 7 6485 6243 170 7 6485 6243 170 8 6964 6362 170 9 7303 6962 170 9 7303 7476 171 9 7150 7476 171 9 7150 7476 175 3 893 1746 175 3 1487 546 175 3 1789 1777 176 3 2200 1466 4925 177 10 4923 5177 177 11 5111 5347 177 11 5111 5347 181 5 1853 2473 182 2 212 2006 182 2 <t< th=""><th><u>•</u> .</th><th>· — ·</th><th></th><th></th><th> .</th><th>· —</th><th>. –</th><th>. •</th><th>. ند ،</th><th>• —</th><th>. —</th><th>•</th><th> .</th><th></th><th>• — ·</th><th>• - •</th><th>•</th><th>•</th><th>• -</th><th>. – .</th><th>• – ·</th><th></th><th>• — ·</th><th>. –</th><th>• -</th><th>-</th><th>. – .</th><th>• •</th></t<>	<u>•</u> .	· — ·			 .	· —	. –	. •	. ند ،	• —	. —	•	 .		• — ·	• - •	•	•	• -	. – .	• – ·		• — ·	. –	• -	-	. – .	• •
Concig ORF Start 167 9 6075 169 5 2828 170 6 6075 170 6 6646 170 6 6646 170 6 6646 170 6 703 170 11 8790 171 9 7150 171 9 7150 172 1 659 173 4 2913 174 3 2200 177 13 7396 177 11 5111 177 13 7394 182 2 185 183 3 2 184 6 1468 185 5 4683 187 4 1686 188 4 1686 188 4 1686 188 5 4183	Stol	6	2		im	் வ	iō	7476	1948	2677	imi		546		4925	5177	5347	i 7	3724	2473			2320	1 7	i m̃	3557	4363	1 23 1
Concig OR 167 169 167 170	tart nt)	6	8	8	iã		Ę			2913	629	893	8	1 8	1 89	92	5111		3452	1853	2112	2617	12	89	i 🖷	1 8	ião	181
Cont. 167 110 110 110 110 110 110 110 110 110 11	8 2	6	- S	-	8	6	=	6	\$	-	~	_	~	-	6	01	=		9	5		_	7	'n	•	-	-	5
	ID ID	167	9		-	, F		171						176	771	7.1	177	177	178				7		185		00	1 00 1

proteins
known
Ç
similar.
not
proteins
[nove]
0
regions
coding 1
Putative
1
pneumoniae
Ġ

· ·	· ·	· —	• – ·	•	• – •	 .	. —	• —		. —	. _	. —			•									
Stop (nt)	6493	2844	5564	-	10001	2268	2878	5331	839	2127	4543	6231	1849	861	6644	5769	6595	3276	1709	2460	2692	8230	10441	10705	2330	5277	5754
Start (nt)	5882	3143	5956	618	10357	2861	3081	0089	997	2315	6249	6620	1553	-	6844	5329	5993	3914	447	2038	2458	07.67	9029	10439	2581	5905	5996
OR D	9	s	6	-	=	6	-	_	_	-	S	9	7	-	6	5	9	5	7	-	5	97	2	7	5	6	=
Contig 1D	188	189	189	191	191	192	192	192	193	194	195	195	196	197	198	200	200	204	205	209	209	210	210	210	214	214	214
+		-	•	. — .		• — •	. —	•	•	• —	• —	• —	• •	•	• —	• —	• —	•	• —	• —	· —	• —	•	·	• —·	· ·	i i

8
7
ě
ã
Ě
ž
ç
10
듣
1
not
8
1
ĕ
ā
ē.
6
Jo
28
gions
reg
5
귷
ũ
2
ä
ž
ı
96
Ē
Ĕ
ě
۵

•			•	•	.																						
Stop (nt)	194	1432	1972	3821	39	009	1964	510	1312	1838	312	687	64	270	362	1222	792	1616	2123	177	1900	2973	342	1022	1681	186	2295
Start (nt)	541	914	1430	3639	458	869	2617		1539	2116	25	310	999	~		443	2789	1179	1770	653	2244	3569	-	177	1124	857	1684
ORP	~	7	_	٠	-	-	-	-	-	9	-	7	-	-	-	~	-	7	-	-	-	- S			~	-	~
Contig	712	218	218	218	219	220	223	227	234		235	235	238	246	248	248	254	258	260	263	263	263	366	266	270	272	275
· —— .	•			• •	• •	-	• •			\					-	-		. _ ·	. — :				! —		! — !	· 4	

proteins
known
ñ
4 Thylar
not
proteins
novel
ō
regions
coding
Putative
•
pneumoniae

Contig ORF Start Stop 282 1 2 406 282 1 714 391 282 4 1463 1134 287 2 1119 826 288 1 540 4 289 1 684 4 291 2 1569 1858 294 1 21 608 296 3 670 843 302 1 261 510 309 3 559 1818 310 2 2494 700 309 3 559 1818 310 2 249 1818 311 2 2087 1818 312 2 2087 1818 313 2 465 82 331 1 2 535 341 1 1 705 345 2 895 701 346 2 750 198	·	· — ·	• -	• - •		•	. —	.	•	.		. —		• —	• —	. _	• – •	.	 .	• -	•	• - -	•	•	· ·	. —	. — .	
278 1 2 278 1 2 278 1 2 278 1 2 278 278 2 278 2 278 2 278 2 2 278 2 2 2 2 2 2 2 2 2	1 3 2 1		391	1134		4	-	8	1 6	809		. •	ı 🖳	i	i oo	iä	584	ררר	133		. .	535		1 47	i 0 i		iõi	iãi
Doncig One 1	tar nt)	8	ì		1119	540	684	1589	2539	12	494	1 7		i	1 4	8	3	-	477	٠ 🗝	-	1 (%	1 00	in			()	-
10 10 10 10 10 10 10 10 10 10 10 10 10 1	ORF	-	-	-	7	-	-	s	~	_	~	-	-			~	7	~	_	~	-	-	7	E .	i i	r i	7	-
	I C			1 00 1		i 660	i 60				iõ	0 1						—	919	327	331	333	333	333		4	4	i 🐳 i

S. pneumonise - Putative coding regions of novel proteins not binilar to known proteins

	• —	• - -	. –	. — .			.			
Stop (nt)	413	973	448	628	1265	1004	510	693	-	200
Start (nt)	18	\$	636	948	1639	345	683	109	150	269
03. 15	2	-	~	7	~	-	7	-	-	7
Contig	350	355	358	360	364	378	379	381	385	385
	,	,						_		_

TABLE 3

(1) GENERAL INFORMATION:

(i) APPLICANT: Charles Kunsch

Gil H. Choi

Patrick S. Dillon

Craig A. Rosen

Steven C. Barash

Michael R. Fannon

Brian A. Dougherty .

- (ii) TITLE OF INVENTION: Streptococcus pneumoniae Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 391
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: HP Vectra 486/33
 - (C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
- (A) NAME: Brookes, A. Anders
 - (B) REGISTRATION NUMBER: 36,373
 - (C) REFERENCE/DOCKET NUMBER: PB340P1

(vi) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (301) 309-8504
- (B) TELEFAX: (301) 309-8512

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5625 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CCAAGCAAAA	CCAGCTACAG	CTAAAGGAAC	TTACGTAACA	AACTTGACTA	TCACAACTAC	60
TCAAGGTGTT	GGTATCAAAG	TTGACGTAAA	CTCACTTTAA	TCAGTAGTTA	AAGTAATGTA	120
AAAAAGTTGA	AGACGCTATG	TCTCAACTTT	TTTTGATGTA	CGACGGGCAT	GTTGTATAGT	180
AGATGTGTAC	TATTCTAGTT	TCAATCTACT	ATAGTAGCTC	AGAAGTCGGT	ACTTAAACGT	240
GCTATATCAA	AACCAGTCCT	TGAAAAACGT	GGACTGGTTT	CGTGTTTGGA	TTATTACCTT	300
GAACGACATG	CGTTAAAAGT	TAGTTGAACC	GCCGTATGCC	GAACGGACGT	ACGGTGGTGT	360
GAGAGGGGCT	AGAGATTATC	CCCTACTCGA	TTTCGAAATC	TAGTGGAATG	AATCTGGAAT	420
AGTCCATCGA	GCTTTCTAAT	ACTCTTCGAA	AATCTCTTCA	AACCACGTCA	ACGTCGCCTT	480
GCCGTGCGTA	TGGTTACTGA	CTTCGTCAGT	TCTATCCACA	ACCTCAAAAC	AGTGTTTTGA	540
GCTGACTACG	TCAGTTCCAT	CTACAACCTC	AAAACAGTGT	TTTGAGCAAC	CTGCGGCTAG	600
TTTCCTAGTT	TGCTCTTTGG	TTTTCATTGA	GTATAACACA	TTGTTAGAAG	TTGGTTTAAA	660
TTTCCTAATC	AGTTTGTTCA	CATTTACCTT	CGATATATTA	TATCCCATAG	TTAAGGTTGG	720
TCATACAGAT	GATTATAGTC	ATGGAGCCGT	AAAACTTAGT	GTTTCTTTAG	TTGACAAAGA	780
TGCCATGAAA	AAAATATTTG	TAACTGTAAT	AGGATATTTT	GAAATAAATA	TAGATGAAAA	840
TATCACCGAT	ATTCTATACG	TAAATGGTAC	TGCTATTCTT	TATCTTTATT	TACGTTCAAT	900
TGTTTCAATA	GTTTCGGCAA	TTGATAGCAG	TGAAGCAATG	TTGCTACCTA	TCATTAATGT	960
TTTAGAGTTA	CTAGATAAAT	CTCAACCTTT	TGAAGAAGAA	TAATTTATTA	GCTCACTAAA	1020
TTGAGGGTAA.	GGAAAAGTAA.	AAGCAGTAAG.	AAAAATGTCT	TGCATTATAC.	AGCAACCTTT	1080
TGGGAATGAG	TGGATGGATT	GAATAAAATT	TGATTAAGAG	TGGATGATTT	ATCTGTAGAT	1140
TATTATTGGA	CAGTTAGTCT	TGAAGTAGTC	TAAGAATTAG	GTTATAATCA	GTAGAAGCCT	1200
TGCTAATAAT	GAGGAGGTTA	GTTTATGTAT	AGTAGACTGA	АТСТААААТА	GTACGAAACA	1260
ATTGCTAAAA	CATTTATAGA	AATTAATTTT	ACTTTCCCAA	TCGATTTGTT	CTCATCTTAT	1320
TTCAATCCGC	ТАТАТАТТАТ	GGTATCGAAT	CTTCATCAGA	ATGATAAAAT	TAATCAATTG	1380
ATATCTGATT	ACAAACAGAA	TATGAAAGCT	TTTTATATCA	CTATTGAAAA	ATTTATACGA	1440

Gatgatgaaa	GCCTTAAGTG	TTATTTTATA	AAGGTTATTT	CAAGTCGTTC	CAAGGTAACA	1500
AGTCTAGATC	AGATTGAAGC	TGATAAAACG	ATACAAAGAA	AATATTCAAG	TGAGCTAAAA	1560
aaatttattg	GATTTTATAA	TGAGATTATT	TGTGAGGAAA	ATAGTTTCCT	ACATGTACGA	1620
AAGAGGTGGT	CGAGTTGGTT	TAGGTAGTCG	ATGCGTGAGT	TGATAATTCT	CAGGGTATGG	1680
ACTTCTTTTT	CATGAATGAG	GTAAAAGAGC	AGGTATTGTT	TAGAGACAAT	CATTCTGAGC	1740
ATATTTTCTG	GATAGAGGGA	GTATCCGATT	TTATGATCAA	AGTTAATACC	GCCCTCTGGT	1800
GAGAAGATGA	GTAGGTTGGT	AATTTAAACT	ATTAAACAGA	ATTTTTGATT	AAAAGTATTA	1860
TTTCATGAGA	GAAATCCTAA	TTTCACAATC	CATAGGCAAA	CGCTTGCATT	TCGTTTTTTA	1920
TTGGACTATA	ATAGGTTGGT	ATAAAGCCTT	CTGTAGTAAT	AAAATGTAGA	AGGTGTAGAA	1980
AGTAAGGATT	TAGAATATTT	GTAGTTAAAA	ACACAATGTT	GCTATTCCTT	ACGATAGGGA	2040
GATAGATATG	GCAATGATAG	AAGTGGAACA	TCTTCAGAAA	AATTTTGTGA	AGACTGTTAA	2100
GGAACCGGGC	TTGAAGGGGG	CTTTGCGCTC	CTTTATTCAT	CCTGAAAAGC	AGACCTTTGA	2160
AGCGGTCAAG	GATTTGACCT	TTGAGGTTCC	AAAAGGGCAG	ATTTTAGGAT	TTATCGGGGC	2220
AAATGGTGCT	GGGAAGTCGA	CAACCATTAA	AATGCTGACA	GGAATTTTGA	AACCAACATC	2280
TGGTTTTTGT	CGGATTAACG	GCAAGATTCC	CCAGGACAAT	CGGCAAGATT	ATGTCAAAGA	2340
TATTGGCGTA	GTCTTTGGAC	AACGCACCCA	GCTATGGTGG	GATTTGGCTC	TGCAAGAGAC	2400
CTACACTGTC	TTAAAAGAGA	TTTATGATGT	GCCAGACTCG	CTCTTTCATA	AGCGTATGGA	2460
CTTTTTGAAT	GAAGTCTTGG	ATTTGAAGGA	CTTTATCAAG	GATCCCGTGC	GGACTCTTTC	2520
ACTGGGACAA	CGGATGCGGG	CGGATATTGC	GGCCTCCTTG	CTCCACAATC	CCAAGGTTCT	2580
TTTTTTAGAT	GAGCCGACCA	TTGGTTTGGA	CGTTTCGGTT	AAGGATAATA	TTCGTCGGGC	2640
AATTACTCAG	ATCAATCAAG	AGGAAGAAAC	TACCATTCTT	TTGACCACTC	ACGATTTGAG	2700
TGATATTGAG	CAACTTTGTG	ATCGGATTTT	CATGATTGAC	AAGGGGCAAG	AGATTTTTGA	2760
TGGAACGGTG	AGCCAACTCA	AGGAGACCTT	TGGTAAGATG	AAGACTCTCT	CTTTTGAACT	2820
GCTACCAGGT	CAAAGTCATC	TCGTCTCTCA	CTATGACGGT	CTGTCTGATA	TGACCATTGA	2880
TAGACAAGGA	AACAGCCTCA	ACATTGAATT	TGATAGTTCT	CGCTACCAGT	CAGCTGACAT	2940
TATCAAGCAA	ACCCTGTCTG	ATTTTGAAAT	CCGCGATTTG	AAGATGGTGG	ATACGGATAT	3000
TGAGGATATT	ATCCGTCGCT	TCTACCGAAA	GGAGCTCTAG	GATGATCAAA	TTGTGGAGAC	3060
GTTATAAACC	CTTTATCAAT	GCAGGGGTTC	AGGAGTTGAT	TACTTACCGA	GTCAACTTTA	3120
TTCTCTATCG	GATTGGCGAT	GTCATGGGGG	CTTTTGTGGC	CTTTTATCTC	TGGAAGGCTG	3180

			152			
TCTTTGATTC	TTCGCAAGAG	TCTTTGATTC	AGGGCTTCAG	TATGGCGGAT	ATCACCCTCT	3240
ACATCATCAT	GAGTTTTGTG	ACCAATCTTC	TGACTAGATC	CGATTCGTCC	TTTATGATTG	3300
GGGAGGAGGT	CAAGGATGGC	TCCATTATCA	TGCGTTTGTT	GCGACCAGTG	CATTTTGCGG	3360
CCTCCTATCT	TTTCACCGAG	CTTGGTTCCA	AGTGGTTGAT	TTTTATCAGC	GTTGGCCTTC	3420
CATTTTTAAG	TGTCATTGTC	TTGATGAAAA	TCATATCGGG	TCAAGGTATT	GTAGAGGTGC	3480
TAGGATTAAC	TGTCATTTAT	CTTTTTAGCT	TAACGCTCGC	CTATCTGATT	AACTTTTTCT	3540
ТТААТАТТ ТС	CTTTGGATTT	TCAGCCTTTG	TGTTTAAAAA	TCTTTGGGGT	TCCAACCTAC	3600
TTAAGACTTC	CATAGTGGCT	TTTATGTCGG	GGAGTTTGAT	TCCCTTGGCA	TTTTTTCCAA	3660
AGGTTGTTTC	AGATATTCTC	TCCTTTTTGC	CTTTTTCATC	CTTGATTTAT	ACTCCAGTTA	3720
TGATCATTGT	TGGAAAATAC	GATGCCAGTC	AGATTCTTCA	GGCACTCCTT	TTGCAGTTCT	3780
TCTGGCTCTT	AGTGATGGTG	GGATTGTCTC	AGTTAATTTG	GAAACGGGTC	CAGTCCTTTA	3840
TCACCATTCA	AGGAGGTTAG	TATGAAAAAA	TATCAACGAA	TGCATCTGAT	TTTTATCAGA	3900
CAATACATCA	AACAAATCAT	GGAATATAAG	GTAGATTTTG	TGGTTGGTGT	CTTGGGAGTC	3960
TTTCTGACTC	AAGGCTTGAA	TCTCTTGTTT	CTCAATGTCA	TCTTTCAACA	TATTCCATTC	4020
CTAGAAGGCT	GGACCTTTCA	AGAGATAGCT	TTCATTTATG	GATTTTCCTT	GATTCCCAAG	4080
GGAATGGACC	ATCTCTTTTT	TGACAATCTC	TGGGCACTAG	GGCAACGCCT	AGTCCGAAAA	4140
GGGGAGTTTG	ACAAGTATCT	GACTCGTCCC	ATCAATCCTC	TCTTTCACAT	CCTAGTTGAA	4200
ACCTTTCAGA	TTGATGCCTT	GGGTGAACTC	TTAGTCGGTG	GTATTTTATT	GGGAACAACA	4260
GTGACCAGCA	TTGTTTGGAC	TCTTCCAAAA	TTCCTGCTTT	TCCTAGTTTG	TATTCCTTTT	4320
GCGACCTTGA	TTTATACTTC	TCTTAAAATC	GCAACAGCCA	GTATCGCCTT	TTGGACTAAG	4380
CAGTCAGGCG	CCATGATTTA	CATCTTCTAT	ATGTTCAATG	ACTTTGCTAA	GTATCCGATT	4440
ТСТАТТТАСА	ATTCTCTTCT	TCGTTGGTTG	ATTAGCTTTA	TCGTGCCTTT	CGCCTTTACA	4500
GCCTACTATC	CAGCTAGCTA	TTTCTTACAG	GAAAAGGATG	TGTTCTTTAA	CGTAGGAGGT	4560
TTGATGTTGA	TTTCTCTGGT	TTTCTTTGTT	ATTTCCCTTA	AACTTTGGGA	TAAGGGCTTA	4620
GATTCCTACG	AAAGTGCGGG	TTCGTAAAAG	CTAAAGTAAG	ACTAAAATCA	AGAAAGAAAC	4680
TTATGATGTT	TGTAATTGAA	GAAGTCAAGG	ATGAAAATCA	AAAAAAGGCA	GTTGTCGCTG	4740
AGGTTTTGAA	GGATTTGCCA	GAATGGTTTG	GAATCCCAGA	AAGCACACAA	GCCTATATAG	4800
AAGGAACCAC	GACACTGCAA	GTTTGGACCG	CCTATCAGGA	GAGTGATTTG	ACTAGATTTG	4860
TAAGCTTATC	CTATTCGAGT	GAAGATTGTG	CAGAGATTGA	TTGTCTCGGC	GTAAAAAAGC	4920
TTATCAAGGT	AGAAAAATTG	GGAGCCAATT	GCTTGCTACT	TTAGAGAGTG	AAGCTCGTAA	4980

153

AAAAGTTG	GT	TATCTGCAGG	TCAAAACAGT	GGCAGAAGGT	TCTAATAAAG	ATTATGATCG	5040
AACAAATG	AC	TTTTATCGAG	GTCTTGGCTT	TAAAAAGTTA	GAGATTTTC	CTCAACTATG	5100
GAATCCGC	AA	AATCCTTGTC	AGATTTTGAT	TAAAAAGCTT	GAATAATATT	ACTTGACATC	5160
TATTCTCA	.GA	GTGCTATACT	GTAAGTGTAA	TCGCCGATTT	AGCTTAGTTG	GTAGAGCAAG	5220
GCACTCGT	AA	AGCCTAGGTT	ATAGGTAGAT	AAACGACTGA	GGATTTGAAA	AAATAGATAG	5280
GTAGAAGA	TA	ACCGTTAAGC	CTTACTCTTA	GCGGTTATTT	ATATTGTTTA	ATAGCGCTAA	5340
TATTTTAT	CA	ATTATGCCTG	TTTTCGTGTT	TCTGGTAGTT	GTTCAAGTTT	ATTGCTACTA	5400
TTTTTGAT	GG	TATGAATGTG	CTTATAATGT	ATCCCGGTTA	ACGAAAGTTT	TGGACTTATA	5460
CTCTTCGA	AA	ATCTCTTCAA	ACCACGTCAA	CGTCGCCTTG	CCGTGCGTAT	GGTTATGACT	5520
TCGTCAGT	TC	TATCCACAAC	CTCAAAACAG	TGTTTTGAGT	GACTACGTCA	GTTCCATCTA	5580
CAACCTCA	AA	ACACTGTTTT	GCCCAATCTG	CGGCTAGTTT	CCTAG		5625

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7571 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

CT	CTCCAGCT	TTCCTTGCGA	GTTGGCCATG	TTGTGTCTTT	AAGAAGTCTA	AAAATATCTC	60
CA	ATAAAACG	CATCGCTCTC	TCCTATCTCG	TTTCTCTGTG	TGTAGTGTAC	TTGCCACAAT	120
GC	TTACAAAA	TTTATTTACT	TCTAGTCGTG	TAGGCTTGAG	GTTTCCGCTG	ATCTTGATTG	180
AΑ	TAGTTTCT	CGAACCACAA	ACCGCACAAG	CTAGGCTTGC	TTTTTTTAGT	GCCATAACGC	240
CT	CCATCTTA	TCCATTATAA	CAAGAAAGCT	AGGCTTTGAC	AAGCATCTTA	GCGAAATAGA	300
TT	GACTATCG	AATCCCATAT	TGTTTGAGCC	TTTTCCTTAA	TCTTCGCATC	TGAGATAGCC	360
CG	GCTAGCCT	CATCTACTAG	ACTTTGCGCA	CGCCCTCGAA	TATCAGACAA	ATTATCATCT	420
GT	CTGGCTAT	TATCATTGGT	TTGTACTTGT	CTTTTTGTAT	TGGCTGGTGC	AATTCCATTT	480
TG	CTTATAAG	CATTTTCAAC	CGTAAAGGTA	CTTCCTGGCG	TATAAGGTAA	AATGGTATTG	540
GC	AATGTTTC	TAAAGACATG	AGCTGCACCG	TTTGAAGTAG	AGCCAGCTAG	ATAGTGGTTT	600
TC	ATCAGTGG	TCGGAAAGCC	AAGCCAGTGG	CTAATCACTA	CATCCGGAGT	ATAACCAATT	660
AC	CCACTGGT	CACTTGTGTA	CTCCGGATTG	AAAACTGCTT	CAGTTGTTCC	AGTTTTCCCT	720

			154			
GCCATGACAT	AGTCTGCAGG	CGATGAACTA	ATACCGGTAC	CGTTGGTGAA	AGTCCCCAAC	78
ATCATACTGG	TCATCTTGTC	AGCTACAGAC	TTATCAATCA	CCCGTTTTTG	TGAATTTTTA	84
TGACTCGCAA	TAACTTGTCC	ACTAGCATTT	TCAATTCTAC	TAATAAAATG	AGCTTCAGGC	900
АТТАААССТТ	CATTTGCAAA	GGCGGCGTAT	GCTTGAGCCA	TTTGAAGAGG	GTTGGTTTCA	96
ACACCGCTTC	CCAAGGCGAC	ACCAAGAACA	CGGTCGACCT	TTTCCATGTT	GAGTCCGAAT	102
TTTTCGCCTG	CCTCAAAAGC	CTTGTCGACA	CCCAAATCAT	TAACAGTGGC	AACAGCAGGT	1086
AGATTAAGCG	ATTCTGCCAA	GGCTTGATAC	ATAGGAACTT	CTCGACTCGT	TTTGATCCCT	114
GCATAGTTAT	CAACCTTATA	GCTGTCATAC	TGCATGGTAT	GGTTATCCAA	CTGCTTATTC	120
AAAGCCCAGC	TTGCTTCAAC	TGCTGGCGTA	ТАААСААСТА	AAGGCTTAAT	TGTAGAACCA	1260
GGACTACGCT	TTGATTGGGT	TGCATAGTTG	AAATTCCGGA	ATCCAGTTTT	ATCATTGTCA	1320
GCAACTTGAC	CGACAACTCC	ACGAACTCCC	CCTGTTTTCG	GTTCGAGGGC	TACACTTCCT	1380
GATTGAGCAA	ACGTTCCATC	CTCTGCCCTC	GGAAATAGCG	ATGTGTTTTC	АТАААСААТС	1440
TGCATATTTG	CTTGGTAGTT	TTGGTCCAGC	TCTGTGTAAA	TGCGGTAGCC	ATTATTGACA	1500
ATCTCTTCCT	CTGTTAGATT	ATACTTGGAA	ACAGCTTCAT	TAACCACCGC	АТСААААТАА	1560
GAGGGGTAAC	GGTAATCTGA	GATTTTTCCT	TCATACTTAT	CGTGCAATTG	CGAAGTCATA	1620
TCAACTTCAG	CAGCTTTGGT	TTCTTGGTTT	ТТАТСААТАТ	ATCCTGCTGC	AACCATATTC	1680
TGCAAGACAG	TATCGCGCCG	ATTAGTAGAA	TCTTCTACGG	AATTCAAGGG	ATTATACAGT	1740
TCCGGCCCCT	TGAGCATCCC	TGCCAGAGTC	GCAGCTTGAT	CCAGACTCAC	TTCTGATGCA	1800
GAAACTCCAA	AGTATTTCTT	ACTCGCATCT	TCTACACCCC	ACACACCATT	TCCAAAATAA	1860
GCGTTGTTAA	GGTACATGGT	TAGAATTTGC	TCCTTACTAT	ATTTTTTGCT	TAATTCTAAG	1920
GCAAGGAAAA	ATTCTTTCGC	TTTTCTCTCA	ACAGTTTGAT	CCTGCGATAA	ATAGGCGTTT	1980
TTAGCCAGCT	GTTGGGTAAT	GGTAGAGCCA	CCACCTGAAC	GTCCAGCAGT	GACAATAGCC	2040
AAGAAAAAAC	GGCCATAGTT	AATCCCGTCA	TTTTTATAGA	AAGAACGGTC	TTCTGTCGCA	2100
ATAACAGCAT	TCTGCAAGTT	TTTACTGATG	TCAGTCAGCT	CAACATAGGT	TCCCTTTTGA	2160
CCAGACAAGG	CACCAGCCTC	TTTTTCTTCA	CGGTCAAAAA	TAAGAGTCCG	AGTTTTCAAG	2220
GCATTTTGCA	AATCATTGAC	ATTGGTCGAC	TTGGCTACAG	САААСАААТА	GATTCCAACT	2280
AGCAAGCCTG	CACTCAAACC	TAGTATAAGG	ATAATCTTTG	TTAGATGATA	ACGACGCCAG	2340
AATTTTCGAA	TCGGACCTAC	TTGGGCTAAT	TTTTTTCGAT	CACTACGAGA	GCGACGTAAG	2400
ATAGTAGAAT	CAGAGTCCTC	TAGTTCACTT	GTTTCTTTTT	TAAAAAGAGA	AAGAAATTTC	2460
TTAATAATT	TATCTAATTT	CATGCGTTTA	TTTTATCATC	TTCATCATAG	GAAGACAAGA	. 2520

ATTTAGCTAT	TTCCTATCCA	AATAGGGCTT	TTTTTGTTAC	AATATCTGTA	TGCAATTCAC	2580
ATTTACATTA	CCCGCCTCTC	TACCTCAAAT	GACAGTAAAG	CAATTACTTG	AGGAACAACT	2640
CCTCATCCCT	AGAAAAATCC	GTCATTTTT	GAGAATCAAG	AAACATATTT	TGATAAATCA	2700
AGAAGAAGTC	CACTGGAAGG	AAATCGTAAA	TCCTGGAGAT	GTTTGCCAGT	TGACTTTTGA	2760
CGAGGAAGAT	TATTCCCAAA	AGACGATCCC	TTGGGGCAAC	CCAGACTTAG	TGCAGGAAGT	2820
TTATCAAGAT	CAACACTTGA	TTATTGTAAA	CAAACCAGAG	GGGATGAAAA	CGCATGGTAA	2880
TCAACCAAAC	GAAATTGCCC	TTCTTAACCA	TGTCAGTACC	TATGTTGGCC	AAACCTGCTA	2940
TGTCGTTCAT	CGTCTGGACA	TGGAAACCAG	TGGCTTAGTT	CTCTTTGCCA	AAAATCCTTT	3000
TATCCTGCCC	ATTCTCAATC	GCTTATTGGA	GAAAAAAGAG	ATTTCTAGAG	AATATTGGGC	3060
TCTAGTTGAT	GGAAATATCA	ACAGAAAAGA	ACTTGTTTTC	AGAGACAAAA	TTGGACGTGA	3120
TCGCCATGAT	CGTAGAAAAA	GAATAGTTGA	TGCAAAAAAT	GGGCAATATG	CTGAAACGCA	3180
TGTAAGCAGA	TTAAAGCAAT	TCTCAAACAA	GACTTCCTTG	GCTCATTGCA	AGCTAAAGAC	3240
AGGGCGAACC	CATCAGATTC	GTGTGCACCT	TTCGCATCAT	AATCTTCCTA	TCCTGGGAGA	3300
CCCTCTCTAT	AATAGTAAAT	CAAAGACAAG	CCGGCTTATG	CTTCATGCCT	TCCGACTTTC	3360
CTTTACCCAC	CCACTTACTT	TAGAGAAGCT	AACTTTCACT	ACCCTTTCAA	ATACATTTGA	3420
AAAAGAATTA	AAAAAGAATG	GATGATCGTG	TCATCCATTT	TTCCATATAA	AAAAGCAAGA	3480
CCACAAAGCC	TTGCTTTCTA	TCAACTCAAG	AATTATTTAG	CAATTTTTGC	GAAGTATTCA	3540
AGAGTACGAA	CAAGTTGTGC	AGTGTATGAC	ATTTCGTTGT	CGTACCATGA	TACAACTTTA	3600
ACCAATTGTT	TACCGTCAAC	GTCAAGAACT	TTAGTTTGAG	TTGCGTCAAA	CAATGAACCG	3660
TAAGACATAC	CTACGATATC	TGAAGATACG	ATTGGATCTT	CTGTGTAACC	GTATGATTCG	3720
TTTGAAGCTG	CTTTCATAGC	TGCGTTCACT	TCATCAACAG	TAACGTTCTT	TTCAAGAACT	3780
GCTACCAATT	CAGTAACTGA	TCCAGTTGGA	GTTGGAACGC	GTTGTGCAGA	TCCGTCAAGT	3840
TTACCATTCA	ATTCTGGGAT	TACAAGACCG	ATAGCTTTTG	CAGCACCAGT	TGAGTTAGGA	3900
ACGATGTTTG	CAGCACCAGC	GCGAGCACGG	CGAAGGTCAC	CACCACGGTG	TGGTCCGTCA	3960
AGGATCATTT	GGTCACCAGT	GTAAGCGTGG	ATAGTAGTCA	TCAATCCTTC	AACAACACCA	4020
AAGTTGTCTT	GAAGAGCTTT	AGCCATTGGA	GCCAAGCAGT	TTGTAGTACA	TGAAGCACCT	4080
GAGATAACTG	TTTCAGTACC	GTCAAGAACG	TCGTGGTTAG	TGTTGAATAC	AACTGTTTTA	4140
ACGTCGTTTC	CACCAGGAGC	AGTGATAACA	ACTTTTTTAG	CTCCACCTTT	AAGGTGTTTT	4200
TCAGCTGCTT	CTTTCTTAGC	AAAGAAACCA	GTAGCTTCAA	GAACGATTTC	TACACCGTCA	4260

			156			
GTAGCCCA	GT CGATTTGTTC	TGGATCACGT	TCAGCAGAAA	CTTTGATGAA	TTTACCGTTA	4320
ACTTCAAA!	C CACCTTCTT	AACTTCAACA	GTACCGTCGA	AACGACCTTG	AGTTGTGTCG	4380
TATTTCAA	CA AGTGTGCAAG	CATAACTGGA	TCTGTAAGGT	CGTTGATGCG	TGTAACTTCA	4440
ACACCTTC	TA CGTTTTGGAT	ACGACGGAAA	GCAAGACGAC	CGATACGTCC	GAAACCGTTA	4500
ATACCAACT	TAACTACCAT	TAGTGATTTC	CTCCTTATGA	AAATCATGAA	ATTTTTATTG	4560
rgaaaaga(T AACTTGAATC	ACTACAAATC	ACCTTTCAAC	AAACCTATTA	TACAACTATT	4620
rgagttga <i>i</i>	AT, TGCAAGTATG	GCCATTGTTT	TTCTATGTTA	GTTTCTTTTT	AAGACTGTAA	4680
ACCAAGGA	AT CCCTTACTAI	TCATAGCATA	ACGATTCTAT	AGGATCCATT	ТТАСТААТСТ	4740
PACGCGCCC	G GAAGTAGGCT	GAGACATAAC	CAAGTAATAG	AGCGAAAACT	AGAGTTCCTA	4800
AAACAGATA	AA AAGATTTAAT	TTAAAAACCT	TAGTGATGGA	TGGGTAAAAG	TGACTTACAA	4860
rcgca t tcc	C CAAACTTCCC	ACCCCTTGTG	CAACCAAAAA	TGCCAGCAGC	AAGGCGATGC	4920
CTACAATC	CA GATAGCCTCG	ТАААТААА А	TTCCTTTGAC	ATCACGATTC	TGATAACCAA	4980
CTGCTTTC!	AT GACACCTATI	TCCTTGGAAC	GTTGCATGAT	ATTGATGTAA	ATAATGATAC	5040
CAATCATA	C CGCTGCTACC	ACAATAGCTT	GTGATGAAAG	CACAATCAAT	AATCCCTGAA	5100
raacacga <i>i</i>	AT AAAGGTAATC	: ACAATATCAA	GAACTCTCTG	TTGAGAAAGC	ACAGTATACT	5160
CTTATTT	T CTGTAATTCT	TCTGTTACTA	CTTTTGTCTG	TGATGGATCT	TTGAGTTCCA	5220
AGATAAAA1	TA AGATACAGCT	TTCGTAAATC	CAGCCTCTTT	CAAAATCGTT	TCCATTTGAT	5280
GAGACAGCA	T GAAACTGTTG	CTGTCCTCCA	TGTCATCTTC	ATCATTGATT	ACACGTACAA	5340
rcttcgtt1	G AAATTGAGCA	ATCTTACTAG	TTTCGGCAGC	ACTTTCTACA	ATGCTGGCTG	5400
GACTGATT	T GCCAATAAGA	TCATTAGCTG	тсааатттт	TCCTGTCTGT	TCATTCCAAT	5460
TTTTAGT	A ACTGCTTGGA	ATCGTTAATC	CCTGTTCATT	TGTATCAGTA	TAGAGGGATC	5520
CAGCCAACA	C TTTGTCCGTC	TCATTATTAC	TAACAGAGAT	ACTTGTATCA	TCATAAAGAC	5580
CACTACTI	G AGCATAAGAA	GGCATCGTTT	GACTCAGATC	CATTTCTTGC	CCATCTATAG	5640
PAATATTO	A CATGTTCATC	CCAAAAGGAC	TCTCCAAATA	TTTAATAGCT	TCTTTCCCAA	5700
CTGTATCCC	ST GATATATAGT	CAATTGAAAC	AAGAGCAGGA	TAAAAAAGCC	TCGTAAAAGG	5760
TATTGCAAC	T TGGTAATACC	TTTTTGAGGT	GCTTTTTGAT	ATGAGCCCAT	GTTTTCTCAA	5820
PAGGATTGT	'A CTCAGGCGAG	TAGGGAGGAA	GAGGTAAAAG	TTTATGCCCA	AACTCTTCGC	5880
TAAAAGT1	C TAGCTTCCCC	ATTCTATGGA	ATCTTACATT	АТССАТААТА	ATAACCGATG	5940
STGTGTTTA	A TGTTGGTAAG	AGAAAATTCT	GAAACCAAGC	TTCAAAAAAG	TCGCTCGTCA	6000
CGTCTCTI	C GTAAGTCATT	GGAGCGATTA	ATTCACCATT	TGTTAGACCT	GCAACCAAAG	6060

AAATCCTCT G	ATATCTTCTT	CCAGATACTT	TGCCTCTTAT	TAATTGACCT	TTTAATGAGC	6120
SACCATATTC	TCGATAAAA	TAAGTATCGA	ATCCTGTTTC	GTCAATCTAA	ACAGGTGCTA	6180
GTGCTTTAA	ACTATTAAAA	TTCTTAAGAA	ATAAGGCTAC	TTTTTCTGGG	TCTTGTTCAT	6240
AGTAGGTĢTG	GTTCTTTTTT	CGAGTGTAGC	CCATAGCTTT	GAGCGTATAG	TGGATGGTAG	6300
TGGATGACA	GCCAAATTCA	GAAGCTATTT	CAGTCAAATA	AGCGTCTGGA	TTGTCAGTAA	6360
SATAGTTTTT	AAGTCTATCT	CTATCAACCT	TTCTTGGTTT	TATTCCTTTT	ACTTGGTGGT	6420
TAGCTCTCC	TGTTTTCTCT	TTTAGCTTTA	ACCAGCCATA	AATGGTATTA	CGTGAGATTT	6480
GAAAACGTG	TGATGCTTCT	GTTATACTAC	CTGTTCGCTC	ACAATAAGAG	AGAACTTTTT	6540
CACGAAAATC	TATTGAATAT	GCCATAAAAA	GATTATACCA	CATTGTGTAC	TATTTTTGGT	6600
CATTTTACT	ATATTTGAAG	AGGCGTTTAA	ACTATCTGAC	ATAAAACTCG	TTCTAGAGGA	6660
AGACATCCT	TTAAAAAGTT	AGTTTATTTT	ACAACTTAGA	CATCAAGGTA	GGTTAACCCC	6720
TCATGGAAA	AATCAAGACT	CTTAGCACTA	TGGGTTAAAC	TACCACTGGA	GACGTAATCA	6,780
ATCGCTAAAC	CACGAAAACG	GCTAATAGTG	GTCATATCAA	TATTTCCAGA	ACATTCAATC	6840
GAGAACGTC	CTGCAATTAG	GGTAATGGCC	TGTTCAATCT	GTTCCAATGA	CATATTATCC	6900
ACATGATAA	TATCAGCACC	CGCCGCCGCA	GCTTCTTCGG	CAGCAGCAAG	GCTTTCCACT	6960
CCACCTCGA	CCATTTTCAC	AAAAGGGGCA	TAGGCACGCG	CTTGAGCAAT	TGCCTTTTGA	7020
CACTACCTA	CTGCCGCAAT	GTGATTGTCT	TTTAGCAGGA	TAGCATCTGA	TAAATTAAAG	7080
GATGATTAT	AGCCACCGCC	AACTCTCACG	GCATATTTCT	CAAAAAGACG	TAAATTAGGA	7140
TAGTTTTTC	GAGTATCAAA	TACCTTAATG	CAATCATCGC	CTAAGGCTTC	TACATAAGCA	7200
CTGTCATCG	AAGCAATCCC	TGATAAATGT	TGTAAAAAAT	TCAAGGCAAC	GCGTTCACAT	7260
STTAAGAGAC	TTCTCACCGA	GCCTATGATT	TCTAAAACCA	AATCGCCACT	AGTCAAACGA	7320
CCCCATCCT	TAAATTGATG	AGGATTCTGG	AAGGTCACCT	CGGCATCAAA	TAGGGTAAAA	7380
ACCCTTTGAA	AAACGGTTAG	CCCCGCTAAA	ACACCAGCTT	CCTTGGCAAA	AAGCGACACC	7440
TGGCTTGGC	CATGATGATC	AAAAATGGCA	TTGGTACTGT	AATCTTCGGA	ATGAACATCT	7500
CTCGCAAGG	CTGCTTTCAA	TGTATCATCT	ATTTGAAAAG	GGGTTAAATC	AGTTGAAATG	7560
TTGACATCA	С					7571

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26385 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

158

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

TTTGCTAGTG	GCTTAAATTC	TTCAGGAAAA	TCAGGCGTAT	CTAAAAGTCG	TGTCGTTTTT	60
GTTTCATCTA	TATAAAGACT	TCCTGCTCCC	CCTACAACTA	GAAAACGTGT	CTGTGTTCCA	120
GCAAGAAGCT	GATTAAATAG	TTCGATTGAT	TTGCTGTGGA	GCGGTAGCGT	ATCTGGTGTA	180
TAAGCACCAA	ACGCTGAAAT	AACAGCATCA	AATCCAGTAA	GATCATCTTT	TGTCAACTCA	240
AATAAATCTT	TTTTAATAAT	AGACTCAGCT	TGACTTTTGT	TTTCAGAACG	AACAATAGCC	300
GTTACTTCAT	GTCCTCGTTT	GACTGCTTCT	TCAACAATTG	CTTTCCCCGC	TTGTCCATTT	360
GCTGCAATAA	CTGCTAGTTT	CATTTTTTAT	ACCTCTCTTG	TTGTAATTAT	TTTAGTTACA	420
GAAATTGTGA	CACTCTTAAT	AATCAATGTC	AATAGTCTTG	CTTAATTATT	ATCAAAATAT	480
TTCTACCAAG	AAAACTAACC	ATGATTCTAG	TGAAAAAAA	TCTTCTTTGT	CAACAAATTT	540
ACTTTCTTGT	TTTAAACATG	CTATAATAAT	CATAGCAAGA	GATCTAAGTT	GTCTGTTTTT	600
TTAAAACGAG	GTGATTATCA	TGCGTAGATT	CTATTCCCAT	CTCCCCTACT	ATCTGGTCAT	660
ATTATTCTTT	TATTGGCCAC	TTTATGAGTT	GTTCTTACTA	GTTGTTTCTG	ACCCCCTTAC	720
ACTCAAGGGA	CTCTATATAA	ACAATCTTCT	CTTCTTTACA	CCTCTGGTAA	TCTTGATTGT	780
ATCGTTACTC	TATAGCTACC	GTTTCCGTTT	CTCACTTTGA	TGGTTAGTTG	GTAACGGACT	840
GCTCTTTTAC	TTTACTATCA	TAACCTTTGG	TGAGTTTATA	CTAATTTACT	TGCTAATCTA	900
TGAAACAGTT	GCTCTGGTCG	GCATGGATTC	TGGTATTAGC	ATCAAGCATA	TTCTACAAAA	960
AATGAAAAAC	AAAAAACTTT	CACAAAATCC	TTGAAAAATC	TCACAATCAT	GCTATAATAA	1020
TCCATAGAGA	CAAGTCACTT	AGTCCCTTTC	TACTAGAGAG	TGCGTGGTTG	CTGGAAACGC	1080
ATAGGAAGTC	TAAACTGATA	CTACTCTTGA	GTTTTTTATG	AAAACATAAA	ACGGTGGCCA	1140
CGTTAGAGCC	GATCAGAGGT	GTCCCTCTCT	TTTGAGGTAC	ATAAATGAAG	GTGGAACCAC	1200
GTTGCGACGT	CCTTTCGAGG	ATGTCGCATT	TTTTTATTAG	GATACTAATT	ATGGAGTTGC	1260
AAGAATTAGT	GGAGCGCAGT	TGGGCAATCC	GACAAGCTTA	TCACGAACTG	GAAGTTAAGC	1320
ATCATGATTC	CAAGTGGACG	GTAGAAGAAG	ACCTCTTGGC	TTTATCTAAT	GATATTGGAA	1380
ATTTCCAACG	ACTGGTGATG	ACAAAGCAAG	GACGCTACTA	TGATGAAACA	CCCTACACAC	1440
TGGAACAAAA	ACTTTCAGAA	AATATCTGGT	GGCTATTAGA	ACTTTCTCAA	CGTTTGGATA	1500
TAGACATTCT	GACGGAAATG	GAAAACTTCC	TCTCTGATAA	AGAAAAGCAA	TTGAACGTTA	1560
GGACTTGGAA	GTAGTCTGCT	GATAAAAAAT	CAATGCTTAG	AAAÇTATGAA	ATAATAAAA	1620

AGGAGAACA	T CATGATTAAC	ATTACTTTCC	CAGATGGCGC	TGTTCGTGAA	TTCGAATCTG	1680
GCGTAACAA	C TTTTGAAATT	GCCCAATCTA	TCAGCAATTC	CCTAGCTAAA	AAAGCCTTGG	1740
TGGTAAAT	T CAACGGCAAA	CTCATCGACA	CTACTCGCGC	TATCACTGAA	GATGGAAGCA	1800
PCGAAATTG	T GACACCTGAT	CACGAAGATG	CCCTTCCAAT	CTTGCGTCAC	TCAGCAGCTC	1860
ACTTGTTCG	C CCAAGCAGCT	CGTCGTCTTT	TCCCAGACAT	TCACTTGGGA	GTTGGTCCAG	1920
CCATCGAAG	A TGGTTTCTAC	TACGATACTG	ACAACACAGC	TGGTCAAATC	TCTAACGAAG	1980
CCTTCCTC	G TATCGAAGAA	GAAATGCAAA	AAATCGTCAA	AGAAAACTTC	CCATCTATTC	2040
STGAAGAAG	T GACTAAAGAC	GAGGCACGTG	AAATCTTCAA	AAATĠACCCT	TACAAGTTGG	2100
lattgattg	A AGAACACTCA	GAAGACGAAG	GCGGTTTGAC	TATCTATCGT	CAGGGTGAAT	2160
TGTAGACC	T CTGCCGTGGA	CCTCACGTTC	CATCAACAGG	TCGTATCCAA	ATCTTCCACC	2220
TTCTCCATG	T AGCTGGTGCG	TACTGGCGTG	GAAACAGCGA	CAACGCTATG	ATGCAACGTA	2280
CTACGGTA	C AGCTTGGTTT	GACAAGAAAG	ACTTGAAAAA	CTACCTTCAA	ATGCGTGAAG	2340
AGCTAAGG.	A ACGTGACCAC	CGTAAACTTG	GTAAAGAGCT	TGACCTCTTT	ATGATTTCAC	2400
AGAAGTGG	G ACAAGGTTTG	CCATTCTGGT	TGCCAAATGG	TGCGACTATC	CGTCGTGAAT	2460
GGAACGCT.	A CATCGTAAAC	AAAGAGTTGG	TTTCTGGCTA	CCAACACGTC	TACACTCCAC	2520
ACTTGCTT	C TGTTGAGCTT	TACAAGACTT	CTGGTCACTG	GGATCATTAC	CAAGAAĠACA	2580
GTTCCCAA	C CATGGACATG	GGTGACGGGG	AAGAATTTGT	CCTTCGTCCA	ATGAACTGTC	2640
GCACCACA	P CCAAGTTTTC	AAACACCATG	TTCACTCTTA	CCGTGAATTG	CCAATCCGTA	2700
CGCTGAAA	r cggtatgatg	CACCGTTACG	AAAAATCTGG	TGCCCTCACT	GGCCTTCAAC	2760
TGTACGTG	A AATGTCACTC	AACGACGGTC	ACCTATTCGT	TACTCCAGAA	CAAATCCAAG	2820
AGAATTCC	A ACGTGCCCTT	CAGTTGATTA	TCGATGTTTA	TGAAGACTTC	AACTTGACTG	2880
CTACCGCT	r ccgcctctct	CTTCGTGACC	CTCAAGATAC	TCATAAGTAC	TTTGATAACG	2940
TGAGATGT	G GGAAAATGCC	CAAACCATGC	TTCGTGCAGC	TCTTGATGAA	ATGGGCGTGG	3000
CTACTTTG	A AGCCGAAGGT	GAAGCAGCCT	TCTACGGACC	AAAATTGGAT	ATCCAGATTA	3060
AACTGCCC	T TGGAAAAGAA	GAAACCCTTT	CTACTATCCA	ACTTGATTTC	TTGTTGCCAG	3120
ACGCTTCG	A CCTCAAATAC	ATCGGAGCTG	ATGGCGAAGA	TCACCGTCCA	GTCATGATCC	3180
CCGTGGGG	г татстсааст	ATGGAACGCT	TCACAGCTAT	CTTGATTGAG	AACTACAAGG	3240
GCCTTCC	C AACATGGCTG	GCACCACACC	AAGTAACCCT	CATCCCAGTA	TCTAACGAAA	3300
ACACGTGG	A CTACGCTTGG	GAAGTGGCCA	AGAAACTCCG	TGACCGCGCT	GTCCGTGCAC	3360

			160			
ACGTAGATGA	GCGCAATGAA	AAAATGCAGT	TCAAGATCCG	TGCTTCACAA	ACCAGCAAGA	3420
TTCCTTACCA	ATTAATTGTT	GGAGACAAAG	AAATGGAAGA	CGAAACAGTC	AACGTTCGTC	3480
GCTACGGCCA	AAAAGAAACA	CAAACTGTCT	CAGTTGATAA	TTTTGTTCAA	GCTATCCTAG	3540
CTGATATCGC	CAACAAATCA	CGCGTTGAGA	AATAAGAGTC	TAGCATAAAA	GCCTCCAATC	3600
TGGAGGCTTT	TTCTCATCTA	TTTTTACTCA	AGGACTAAGT	TCACTTGAGC	AAACTGAATC	3660
CGCACTGTCG	TTCCTTTTCC	GACCTCAGAC	TCGATACGAA	TCTGGTGCCC	CAGTTCTTCA	3720
GAAATTTTCT	TAGATAGATA	AAGGCCAAGT	CCAGAGGACT	GCTGGGTCAA	ACGGCCATTG	3780
TATCCTGAAA	AGCCACGTTC	AAATACTCGG	AGGACATCAC	TGTTTTTAT	CCCGATTCCC	3840
GTATCTTTGA	TACAAAGCTC	TTGGTCATCC	ATATAAATCT	CCAGACCACC	TTCCTTGGTG	3900
TACTTGAGAC	TGTTTGAGAT	GATTTGCTCA	ATAACCACTA	GCAGCCACTT	TTTATCCGTC	3960
ACGATTTCTT	TATCAAGGTC	ATGTAGATTG	ACATTTAAGC	CTTTTTGAAT	AAAGAAAAGA	4020
GCATATTTAC	GAATTATTTC	CTTGACCAAG	TCCTCAATTT	GAACCTGCTT	TAAGACCAAA	4080
TCATCATGGA	AACTTTCTAA	ACGCAGGTAC	TGTAAAACTA	GGTTGGTATA	GGAGTCGATT	4140
TTGAAAATTT	CCTGTTCTAG	CTGCTGCTTC	AGTTGGCGGT	CGACCACTTC	TGCAACTAAG	4200
AGTTGACTGG	CTGCAATGGG	GGTCTTTATC	TGATGGACCC	ACAAGGTATA	GTAATCCAGC	4260
AAATCCGTCA	GTTTTCTTTC	TGCTTTTGAC	CTCTGCTGAT	AGAGTTCCAT	CTCACGCGCT	4320
TCTAATTTTT	CTGCTAAAGC	TATTTCCAAA	GGAGACTTGG	CTTCCCTCTC	TCCATAGAGA	4380
AGTTCCTGGC	GATAGACCTG	CGTTTCCACC	AATATGTCCC	AAGTGAAAAA	TAATATGGTT	4440
ACAAAGCAAC	ACAAGAAGAA	AAAGTAGAGG	AAGTAAATTC	CTAGACTGGC	AAATAAAAC	4500
TGAAAGAGTA	AGACAAGAAA	TGCCAAAGAA	AGCAGATAGA	TAAAAAGACG	ACTACGGGAG	4560
CGCAGATAGG	CTAGAAAAA	TTGTTTCCAA	TCAAGCATGC	TTCAATCCGT	ACCCTATTCC	4620
TTTCTTGGTC	TCGATAAATC	CTACCAATCC	CTGCTCCTCC	AACTTTTTAC	GCAAACGAGC	4680
CACATTGACA	GAGAGGGTAT	TATCATCAAT	GAAAAAGTCA	CTGTTCCAAA	GTTCCCGCAT	4740
CAGGTCGTCA	CGTGCTACGA	TGTTGCCTGC	ATGCTCAAAT	AACACGCGTA	AAATCTGGAA	4800
TTCATTCTTG	GTCAAATTCA	AGACTTGCCC	TTGATAATGT	AAATCCATGG	ATTTGGTATT	4860
GAGGATAACA	CCAGCATATT	CCAGCAAACT	CTCATCACGC	CCAAACTCAT	AGGAACGACG	4920
CAACAAGCCC	TGAACCTTAG'	CTAAAAGAAC	CTGCTGGTCA	AAAGGCTTGG	TCACAAAGTC	4980
ATCCGCCCCC	ATATTGATTG	CCATGACAAT	ATCCATAGCC	TGGTCTCTCG	AAGAAAGA'AA	5040
CATGATAGGT	ACCTTGGAAA	TCTTGCGGAT	TTCCTGACAC	CAGTGATAAC	CATTAAACAA	5100
GGGCAAACCA	ATATCCATGA	GGACCAGATG	AGGTTCCGAC	TGAACAAATA	GACTCAAAAC	5160

TTCCATAAAG	TCTTCTACCA	GGACCACTTC	AAATCCCCAT	TCAGAGAGCA	TTTTCCCAAT	5220
CTGTTGACGA	ATGACCTGAT	CATCTTCTAT	TAATAAAATC	TTGTGCATGC	GCTTCTCCTT	5280
TTCCATTATT	ATAACAGATT	TTTCCATGCT	AGATGGTCTG	AAACTGAATT	TGAAATAGCC	5340
TGTTTTAGC	CAGTACAAAC	AGGCTATGCT	ACTAGCTAAT	TTGAGGGAAA	TTTGCTAAGA	5400
TAAATAAAA	GAAAGGAGCT	CTTATGGCCA	ATATTTTTGA	CTATCTGAAA	GATGTCGCAT	5460
ATGATTCTTA	TTACGACCTT	CCCTTGAATG	AGTTAGACAT	TCTAACCTTA	ATAGAAATCA	5520
CCTACCTCTC	CTTTGATAAT	CTGGTCTCCA	CACTTCCTCA	ACGTCTTTTA	GATCTAGCAC	5580
CTCAGGTTCC	AAGAGATCCC	ACCATGCTTA	CTAGCAAAAA	TCGCCTTCAA	TTATTAGATG	5640
AATTGGCTCA	ACACAAGCGC	TTCAAAAATT	GCAAACTCTC	CCATTTTATC	AACGACATCG	5700
ACCCTGAACT	GCAAAAGCAA	TTTGCGGCTA	TGACTTATCG	TGTCAGCCTC	GATACCTATC	5760
TGATTGTCTT	TCGTGGGACA	GATGACAGTA	TCATTGGCTG	GAAGGAAGAT	TTCCACCTGA	5820
CCTATATGAA	GGAAATTCCT	GCTCAAAAGC	ACGCCCTTCG	CTATTTAAAG	AACTTTTTTG	5880
CCCATCATCC	TAAGCAAAAG	GTTATTCTAG	CTGGGCATTC	CAAGGGAGGA	AATCTCGCTA	5940
TCTATGCTGC	TAGCCAAATT	GAGCAAAGTT	TGCAAAATCA	GATCACAGCA	GTTTATACAT	6000
TTGATGCACC	TGGTCTCCAT	CAAGAATTGA	CACAGACTGC	GGGTTATCAA	AGGATAATGG	6060
ATAGAAGCAA	GATATTCATT	CCACAAGGTT	CCATTATCGG	TATGATGCTG	GAAATTCCTG	6120
CTCACCAAAT	CATCGTTCAG	AGTACTGCCC	TGGGTGGCAT	CGCCCAGCAC	GATACCTTTA	6180
GTTGGCAGAT	TGAGGACAAG	CACTTCGTCC	AACTGGATAA	GACCAACAGT	GATAGCCAGC	6240
AAGTAGACAC	AACCTTTAAA	GAATGGGTGG	CCACAGTCCC	TGACGAAGAA	CTTCAGCTCT	6300
ACTTCGACCT	CTTCTTTGGC	ACTATTCTTG	ATGCTGGTAT	TAGCTCTATC	AATGACTTGG	6360
CTTCCTTAAA	GGCGCTTGAA	TACATTCATC	ATCTCTTTGT	CCAAGCTCAA	TCCCTCACTC	6420
CAGAAGAAAG	AGAAACCTTG	GGTCGCCTTA	CCCAGTTATT	GATTGATACT	CGTTACCAGG	6480
CATGGAAAAA	TAGATAATAC	TCTTGAAAAT	TAAATGTATA	CAAAACAAAA	GACCTAGAAT	6540
ACATACTTTC	ATGTGCATTC	TAAGTCTTTT	TAAATAGAAT	CTAATAGTCA	ATAAAAATCA	6600
AAGAGCATTG	AGAGATAATG	GGGCTTGGAA	CGTCCCTCTC	GCTTCAACAA	AATGACCCCA	6660
TTATAGATTA	AAAAGATGCC	acttagaaaa	AGCAAAAAAG	GAAGTAAGAC	AAAGGCAAAT	6720
ATATAAAAAG	CTAACTGAAC	ATTCTCGTAT	CCATTTTTAT	AAAAAAGGTA	GGATAGATAA	6780
AAATAACTTG	AAATGAGGGA	TAATAAAAT	AATACTGGAT	TCCACAAACT	TCTATTATCC	6840
TTCCAAAATG	ACACTATAAA	GGCTAATACA	ATTCCTATAA	CGAGATACAT	TTCTTACTCC	6900

162 TTTAATAGCT ACATTTTATC ATAATTATCC AAAGAAAAA GAGGGCATTT ATCCCTCTTA 6960 ATCCTTCATC TGACTCTCTG CATCGGCCAC GACTTTTTCT AGACTGGTTT GACCAAGTTC 7020 TGCCTCCATA GTCAACTGAA TTCTCTCCAA TTTTTGATCC AAAACATCAT GAATATGAGC 7080 TCCTACAGGG CAATTTGGAT TCGGATTGTC ATGGAAACTG AAGAGTTGAC CTGTCTTACC 7140 AAGACATTCG ACCGCCTGAT AAACATCTAA AAGACTAATA TCCTTAAGGT CCTTGACAAT 7200 CTCTGTTCCG CCCGTTCCAC GCGCTACTGA AATCAGCTCT GCCTTCTTCA ACTGGGACAA 7260 GATCTTTCTG ATAATGACAG GATTGACCCC GACACTAGCA GCCAGAAAAT CACTGGTCAC 7320 CTTGCTTTCC TTCCCCTCGA GGGCAATGAT TATCAGCATA.TGAGTCGCAA TGGTAAATCT 7380 ACTTGGAATT TGCATCCTCT TCTCCTTTTT ACGAGGCTAC CCTGCCTCTA CTCTTCTTTT 7440 TCTATTATTA TACCCTTTTT AGTTGTAATG TCAATCGTTA CCACTTTTCA ACCAGTCGTC 7500 TAACTCCCGA TCGCAGCCCT CTTTCTGAGC CAATTCTCTC AAAAATTCCT GATGATGAGT 7560 ATGGTGGATC CCATTGACCA GACTTTCATA GTAAACCTCA AAATAGGGAA GTCTCAGGTC 7620 TTTAGCCAGC TGCAATTCAG CTGCTACATC GTAGTCTACC CGTCGGAAGT CCATATCTAC 7680 CAGGCCTTTG TCATCAAACT CCAAAATCAT ATACTGGGCC CGCAAGTCCT TCCGTAGCTG 7740 AGCGTCCAAA AAGAAAGGTT GGCCAATCGA ACCCGGATTG ACAATCAATT GCCCACCAGT 7800 CCCGTAACGA AGCAACTGCT GGTGAATATG TCCATAAACA GCAATATCAC AGGGAGGATG 7860 AGTCACCAAG CGGTCAAACT CCTCTTGTTT GCCAGTATGA ATCAACTCTC GCCCCCAGTT 7920 CTTATCAGGC AGATGATGGC TAATTCCCAC CGTCAAATCC CCAAACTGAC GATGAATTTG 7980 AAGAGGTTGA TTGTGGAGCA CTTCAATTTC TTCTAGGGAA ATTTCCTCTA AAACATACTG 8040 GCACTGGCGC AAGAGATAGC GTTGACTGGG GCGAGTACTG TCCAATTCCT TACGGACACC 8100 ATGCCAAAGA CTGTCTTCCC AGTTTCCCAA AACTCTAGCC GTAATCGGTA GTTGATCCAA 8160 CAAGTCCAAA ATCCTTCTAC GCCCTGTCCC TGGCATGAGA ATATCTCCCA AAAGCCAGTA 8220 TTCATCCACT CCTATCTGCC GAGCATCTGC CAAAACAGCC TCCAAGGCGG TGGTATTTCC 8280 ATGAATATCT GAAAGAAGAG CTATTTTCGT CATATCCATC TCCTCGTTTT TTCTCTTGCA 8340 ATAAGTATAA CATAAAAAGT CACAGCTAGA GAAATCTAGC TTTTTTTGAT ATACTAGATA 8400 AAGATATTAG ACAAGAGGAA ACGAATGACC CCAAACAAAG AAGACTATCT AAAATGTATT 8460 TATGAAATTG GCATAGACCT GCATAAGATT ACCAACAAGG AAATTGCGGC TCGCATGCAA 8520 GTCTCTCCCC CTGCCGTAAC TGAAATGATC AAACGAATGA AAAGTGAAAA TCTCATCCTA 8580 AAGGACAAGG AATGTGGCTA TCTACTGACT GACCTCGGTC TCAAACTGGT CTCTGAGCTC 8640 TATCGTAAGC ACCGCTTGAT TGAAGTTTTT CTAGTTCATC ATTTAGACTA TACAAGTGAC 8700

CAGATTCACG	AGGAAGCTGA	GGTCTTGGAA	CACACTGTCT	CTGACCTGTT	CGTGGAAAGA	8760
CTAGATAAAC	TGCTAGGTTT	CCCTAAAACC	TGCCCCCACG	GGGGAACTAT	TCCTGCCAAG	8820
GGAGAACTAC	TCGTTGAAAT	CAATAACCTC	CCACTAGCTG	ATATCAAGGA	AGCTGGCGCC	8880
TACCGCCTGA	CTCGGGTGCA	CGATAGTTTT	GACATTCTCC	ATTATCTGGA	CAAGCACTCA	8940
CTTCACATCG	GTGACCAGCT	CCAAGTCAAG	CAGTTTGATG	GCTTCAGCAA	TACCTTCACT	9000
ATCCTCAGTA	ACGACGAGGA	TTTACAAGTG	AATATGGACA	TTGCAAAACA	ACTCTATGTC	9060
GAGAAAATCA	ACTAATTTCT	CAAGTCCCCT	ACCAACCCTG	AAAGTTTTAT	TTTGGCTCTT	9120
TGTCAACTGT	AGTGGGTTGA	AGTCAGCTAA	GCTCGAGAAA	GGACAAATTT	TGTCCTTTCT	9180
TTTTTGATAT	TCAGAGCGAT	AAAAATCCGT	TTTTTGAAGT	TTTCAAAGTT	CCGAAAACCA	9240
AAGGCATTGC	GCTTGATAAG	TTTGATGAGA	TTATTGGTCG	CTTCCAGTTT	GGCATTAGAA	9300
TAGTGTAGTT	GAAGGCCCTT	GACAATCTTT	TCTTTATCTT	TGAGGAAGGT	TTTAAAGACA	9360
GTCTGAAAAA	TAGGATGAAC	CTGCTTTAGA	TTGTCCTCAA	TGAGTCCGAA	AAATTTCTCC	9420
GGTTTCTTAT	TCTGAAAGTG	AAACAGCAAG	AGTTGATAGA	GCTGATAGTG	GTGTTTCAAG	9480
TCTTGTGAAT	AGCTCAAAAG	CTTGTCTAAA	ATCTCTTTAT	TGGTTAAGTG	CATACGAAAA	9540
GTAGGACGAT	AAAATCGCTT	ATCACTCAGT	TTACGGCTAT	CCTGTTGTAT	GAGCTTCCAG	9600
TAGCGCTTGA	TAGCCTTGTA	TTCATGGGAT	TTTCGATCCA	ATTGGTTCAT	AATTTGAACA	9660
CGCACACGAC	TCATAGCACG	GCTAAGATGT	TGTACAATGT	GAAAGCGATC	CAACACGATT	9720
TTAGCATTCG	GGAGTGAAAC	AGTCTGGGAG	ACTGTTTCAG	CCTGAGCCTA	GAAATTTGAA	9780
AGCGAAGCTG	TTTAGCCAAG	TCATAGTAAG	GACTAAACAT	ATCCATCGTA	ATGATTTTCA	9840
CTTGACAACG	AACGGCTCTA	TCGTAGCGAA	GAAAGTGATT	TCGGATGACA	GCTTGTGTTC	9900
TGCCTTCAAG	AACAGTGATA	ATATTAAGAT	TATCAAAATC	TTGCGCAATG	AAACTCATCT	9960
TTCCCTTAGT	GAAGGCATAC	TCATCCCAAG	ACATAATCTT	TGGAAGCCGA	GAAAAATCAT	10020
GCTCAAAGTG	AAAGTCATTG	AGCTTGCGAA	TGACAGTTGA	AGTTGAAATG	GCCAGCTGAT	10080
GGGCAATATC	AGTCATAGAA	ATTTTTCAA	TTAACTTTTG	AGCAATYTTT	TGGTTGATGA	10140
TACGAGGGAT	TTGGTGATTT	TTCTTTACCA	GGGGAGTCTC	AGCAACCATC	ATTTTTGAAC	10200
AGTGATAGCA	CTTGAAACGA	CGCTTTCTAA	GGAGAATTCT	AGAAGGCATA	CCAGTCGTTT	10260
CAAGATAAGG	AATTTTAGAA	GGTTTTTGAA	AGTCATATTT	CTTCAATTGG	TTTCCGCACT	10320
CAGGGCAAGA	TGGGGCGTCG	TAGTCCAGTT	TGGCGATGAT	TTCCTTGTGT	GTATCCTTAT	10380
TGATGATGTC	TAAAATCTGG	ATATTAGGGT	CTTTAATGTC	TAGTAATTT	GTGATAAAAT	10440

164 GTAATTGTTC CATATGATTC TTTCTAATGA GTTGTTTTGT CGCTTTTCAT TATAGGTCAT 10500 ATGGGACTTT TTTTCTACAA TAAAATAGGC TCCATAATAT CTATAGTGGA TTTACCCACT 10560 ACAAATATTA TAGAACCGTA AAAATAGAAG GAGATAGCAG GTTTTCAAGC CTGCTATCTT 10620 TTTTTGATGA CATTCAGGCT GATACGAAAT CATAAGAGGT CTGAAACTAC TTTCAGAGTA 10680 GTCTGTTCTA TAAAATATAG TAGATTGAAA TAAGATGTGA ACAACTCTAT CAGGAAAGTC 10740 AAATTAATTT ATAGAATTAT TTTAGCAGTC AAGGTGTACT GTTATAGATT CAATATATTA 10800 TATGACTATT AACCTTGTCT TCTCCTAAAA TTGACTTTCT TGTTTTCTTA TCTTGTCCAC 10860 TCGAAACAAG TATTGTAAGA ATTTGATTAT TTTTGAAAGT ACTTTTAATA TACTTGATAT 10920 AGTTAAAAA GATTTGAAAC TAAATTCCAA ATTAGAAAAA GACTTGAAAT ACTAAAAAAA 10980 AAAAAGTATA CTCTAATTGA AAACGGTAAC AAAACTAATT TAGAGAATGA AATATAGAGT 11040 ATTTCTCTCT TAAAAGTTTT TGGTGAAACG AGATGTAGAA AGGAGATTTA GCCAAAGAGT 11100 CTATTAGTGC TAGAATAATA GATTAGAATT ATTTTAGAAA AACGAAGTGA GCAGCTTATA 11160 AATTCAAGTC CCCAAATAGA TTCATACTAG TATCTTTTGC AAAAAATAAA GGGCGACTTC 11220 CTTCATGAAT ATCAATTTCA TCTATAAGGA AGGTAGCTAA TTGAACTAAC TTATTTATTC 11280 TGTTTGTCGC TAGAAAAATC AGACCTCCTT GTGAAGATTG AGGAGATACT TAATGAAAAT 11340 CAAAGAAGAA ACTAGCAAGC TAGTAGCAGA TTGCCCAAAA CACCGCTTTG AGGTTGTAGA 11400 TAAGACTGAC CTATATAATC CAAGGTGAAG CGACTGTGGT TTGAAGAGAT TTTCAAAGAG 11460 TATAGGCTAG AGAGTAGTGT TTTTATGTCC TTCTAGTAGA AAATGCTAGA CAGAAGAATG 11520 GGGAACTTGG ATAGGAAAAA TAGATTGAGA AAGGAGGTTA GAAGAGATGA TTATTACAAA 11580 AATTAGCCGT TTAGGAACTT ATGTGGGAGT AAATCCACAT TTTGCAACAT TAATAGATTT 11640 TCTAGAAAAA ACAGGACTAG AAAATTTAAC AGAAGGTTCG ATTGCTATCG ATGGTAATCG 11700 ATTGTTTGGG AATTGCTTTA CTTATCTAGC AGATGGTCAA GCAGGGGCTT TCTTTGAAAC 11760 CCACCAAAAA TATTTGGATA TTCATTTAGT TTTGGAAAAC GAAGAGCCA TGGCTGTTAC 11820 ATCGCCGGAA AATGTAAGCG TTACCCAAGA ATATGATGAA GAGAAAGATA TTGAATTATA 11880 CACAGGGAAA GTGGAACAGT TGGTTCATTT GAGAGCTGGC GAATGCCTCA TCACTTTTCC 11940 AGAAGATTTA CATCAACCCA AGGTTCGTAT AAATGATGAA CCTGTGAAAA AAGTTGTCTT 12000 TAAAGTTGCG ATTTCTTAAT GTAGAAAGAG AAGAACGATG AAAAAAATGA GAAAGTTTTT 12060 ATGTCTAGCT GGAATTGCGC TAGCGGCTGT TGCCTTGGTA GCTTGTTCAG GAAAAAAAGA 12120 AGCTACAACT AGTACTGAAC CACCAACAGA ATTATCTGGT GAGATTACAA TGTGGCACTC 12180 CTTTACTCAA GGACCCCGTT TAGAAAGTAT TCAAAAATCA GCAGATGCTT TCATGCAAAA 12240

GCATCCAAAA ACGAAAATCA AGATTGAAAC ATTTTCTTGG AATGACTTCT ATACTAAATG 12300 GACTACAGGT TTAGCAAATG GAAATGTGCC AGATATCAGT ACAGCTCTTC CTAACCAAGT 12360 AATGGAAATG GTCAACTCAG ATGCTTTGGT TCCGCTAAAT GATTCTATCA AGCGTATTGG 12420 ACAAGATAAA TTTAACGAAA CTGCCTTAAA TGAAGCAAAA ATCGGAGATG ATTACTACTC 12480 TGTTCCTCTT TATTCACATG CACAAGTCAT GTGGGTTAGA ACAGATTTGT TAAAAGAACA 12540 TAATATTGAG GTTCCTAAAA CTTGGGATCA ACTCTATGAA GCTTCTAAAA AATTGAAAGA 12600 AGCTGGAGTT TATGGCTTGT CTGTTCCGTT TGGAACAAAT GACTTAATGG CAACACGTTT 12660 CTTGAACTTC TACGTACGTA rTGGTGGAGG AAGCCTCTTA ACAAAAGATC TTAAAGCAGA 12720 CTTGACAAGC CAACTTGCTC AAGATGGTAT TAAATACTGG GTTAAATTGT ATAAAGAAAT 12780 CTCACCTCAA GATTCTTTGA ACTTTAATGT CCTTCAACAA GCTACCTTGT TCTATCAAGG 12840 AAAAACAGCA TTTGACTTTA ACTCTGGCTT CCATATCGGA GGAATTAATG CCAACAGTCC 12900 TCAATTGATT GATTCGATTG ATGCTTATCC TATTCCAAAA ATCAAAGAGT CTGATAAAGA 12960 CCAAGGAATT GAAACCTCAA ACATTCCAAT GGTTGTTTGG AAAAATTCAA AACATCCAGA 13020 AGTTGCTAAA GCATTCTTAG AAGCACTTTA TAATGAAGAA GACTACGTTA AATTCCTTGA 13080 TTCAACTCCA GTAGGTATGT TGCCAACTAT TAAGGGGATT AGCGATTCTG CAGCCTATAA 13140 AGAAAATGAA ACTCGTAAGA AATTTAAACA TGCTGAAGAA GTAATTACTG AAGCTGTTAA 13200 AAAAGGTACT GCTATTGGTT ATGAAAATGG GCCAAGTGTA CAAGCTGGTA TGTTGACTAA 13260 CCAACACT ATTGAACAAA TGTTCCAAGA TATCATTACA AATGGAACAG ATCCTATGAA 13320 AGCAGCAAAA GAAGCAGAAA AACAATTAAA TGATTTATTT GAGGCTGTTC AGTAGATGTA 13380 AAAGACTAGA AAATAGGTGG GATAGTGAGC TGAAAAGCTC TAGCCCAATC TTGTAAAAGA 13440 AGGGAGAAGG AGAATGGTTA AAGAACGTAA TTTAACTCGC TGGATATTTG TTTTGCCAGC 13500 TATGATTATC GTAGGATTAC TCTTTGTTTA TCCGTTTTTC TCGAGTATTT TTTATAGCTT 13560 TACCAATAAG CATTTGATTA TGCCTAATTA TAAATTTGTT GGTTTGGCTA ACTATAAAGC 13620 TGTGCTATCA GATCCCAACT TCTTTAATGC GTTCTTTAAT TCAATTAAGT GGACCGTTTT 13680 CTCATTAGTT GGTCAAGTTT TAGTAGGGTT TGTATTGGCT TTAGCTCTTC ACAGAGTACG 13740 CCACTTCAAG AAATTATATA GGACATTATT GATTGTTCCT TGGGCATTTC CTACCATCGT 13800 13860 CGTAAAATTA GGTTTAATGG AACATACACC TGCATTTTTG ACAGATAGTA CATGGGCATT 13920 CCTATGTTTG GTGTTTATCA ACATTTGGTT TGGAGCACCA ATGATTATGG TTAATGTGCT 13980

166 TTCAGCTTTG CAAACAGTAC CAGAAGAACA ATTTGAGGCT GCTAAGATAG ATGGTGCTTC 14040 AAGTTGGCAG GTGTTCAAGT TTATCGTCTT TCCACATATT AAAGTGGTTG TAGGACTTCT 14100 AGTTGTTTTG AGAACTGTAT GGATCTTTAA TAACTTTGAC ATTATCTACC TCATTACTGG 14160 TGGTGGACCA GCCAATGCTA CAACGACGCT TCCAATTTTT GCTTACAACC TGGGCTGGGG 14220 AACTAAATTG TTGGGTCGTG CTTCAGCAGT TACAGTACTG CTCTTTATCT TCTTGGTGGC 14280 GATTTGCTTT ATCTACTTTG CTATCATCAG TAAGTGGGAA AAGGAGGGTA GAAAATAATG 14340 AAGAAGAAAT CCAGTATTTA TTTAGATATT CTCTCACATG TACTTTTAGT TGGTGCGACC 14400 ATCGTTGCAG TTTTCCCATT GGTATGGATT ATCATATCTT CTGTCAAAGG GAAAGGGGAA 14460 TTAACTCAGT ATCCAACACG ATTTTGGCCT GAACAGTTTA CATTAGATTA TTTCACTCAT 14520 GTTATCAACG ATTTGCACTT CATTGATAAC ATTCGAAACA GTTTAATCAT TGCCTTGGCT 14580 ACAACCCTTA TTGCGATTAT TATTTCTGCT ATGGCAGCCT ATGGTATTGT TCGATTCTTT 14640 CCTAAATTGG GAGCAATCAT GTCGAGACTA CTCGTCATTA CCTACATTTT CCCACCAATT 14700 TTGTTAGCAA TTCCCTATTC AATTGCCATT GCTAAAGTTG GGTTAACAAA TAGTTTATTT 14760 GGCTTGATGA TGGTTTATCT ATCTTTTAGT GTTCCATATG CAGTTTGGCT CTTAGTTGGA 14820 TTTTTCCAAA CAGTTCCAAT TGGAATTGAA GAAGCGGCTA GAATTGATGG TGCAAATAAA 14880 TTTGTTACGT TTTATAAAGT TGTGCTACCG ATTGTAGCAC CAGGTATTGT AGCAACAGCT 14940 ATTTATACAT TTATCAATGC TTGGAATGAA TTCCTGTATG CCTTGATTTT GATTAACAAT 15000 ACAGGAAAGA TGACAGTAGC AGTAGCCCTT CGTTCACTTA ATGGTTCAGA AATACTAGAC 15060 TGGGGAGATA TGATGGCAGC GTCTGTTATT GTAGTTCTTC CATCAATTAT TTTCTTCTCT 15120 ATCATCCAAA ATAAGATTGC AAGTGGATTA TCAGAAGGAT CTGTGAAGTA GACGAAAGAA 15180 GGAAAAAAT GAATAAAAGA GGTCTTTATT CAAAACTAGG AATTTCCGTT GTAGGCATTA 15240 GTCTTTTAAT GGGAGTCCCC ACTTTGATTC ATGCGAATGA ATTAAACTAT GGTCAACTGT 15300 CCATATCTCC TATTTTCAA GGAGGTTCAT ATCAACTGAA CAATAAGAGT ATAGATATCA 15360 GCTCTTTGTT ATTAGATAAA TTGTCTGGAG AGAGTCAGAC AGTAGTAATG AAATTTAAAG 15420 CAGATAAACC AAACTCTCTT CAAGCTTTGT TTGGCCTATC TAATAGTAAA GCAGGCTTTA 15480 AAAATAATTA CTTTTCAATT TTCATGAGAG ATTCTGGTGA GATAGGTGTA GAAATAAGAG 15540 ACGCCCAAAA GGGAATAAAT TATTTATTTT CCAGACCAGC TTCATTATGG GGAAAACATA 15600 AAGGACAGGC AGTTGAAAAT ACACTAGTAT TTGTATCTGA TTCTAAAGAT AAAACATACA 15660 CAATGTATGT TAATGGAATA GAAGTGTTCT CTGAAACAGT TGATACATTT TTGCCAATTT 15720 CAAATATAAA TGGTATAGAT AAGGCAACAC TAGGAGCTGT TAATCGTGAA GGTAAGGAAC 15780

ATTACCTCGC	AAAAGGAAGT	ATTGATGAAA	TCAGTCTATT	TAACAAAGCA	ATTAGTGATC	15840
AGGAAGTTTC	AACTATTCCC	TTGTCAAATC	CATTTCAGTT	AATTTTCCAA	TCAGGAGATT	15900
CTACTCAAGC	TAACTATTTT	AGAATACCGA	CACTATATAC	ATTAAGTAGT	GGAAGAGTTC	15960
TATCAAGTAT	TGATGCACGT	TATGGTGGGA	CTCATGATTC	TAAAAGTAAG	ATTAATATTG	16020
CCACTTCTTA	TAGTGATGAT	AATGGGAAAA	CGTGGAGTGA	GCCAATTTT	GCTATGAAGT	16080
TTAATGACTA	TGAGGAGCAG	TTAGTTTACT	GGCCACGAGA	TAATAAATTA	AAGAATAGTC	16140
AAATTAGTGG	AAGTGCTTCA	TTCATAGATT	CATCCATTGT	TGAAGATAAA	AAATCTGGGA	16200
AAACGATATT	ACTAGCTGAT	GTTATGCCTG	CGGGTATTGG	AAATAATAAT	GCAAATAAAG	16260
CCGACTCAGG	TTTTAAAGAA	ATAAATGGTC	ATTATTATTT	AAAACTAAAG	AAGAATGGAG	16320
ATAACGATTT	CCGTTATACA	GTTAGAGAAA	ATGGTGTCGT	TTATAATGAA	ACAACTAATA	16380
AACCTACAAA	TTATACTATA	aatgataagt	ATGAAGTTTT	GGAGGGAGGA	AAGTCTTTAA	16440
CAGTCGAACA	ATATTCGGTT	GATTTTGATA	GTGGCTCTTT	AAGAGAAAGG	CATAATGGAA	16500
AACAGGTTCC	TATGAATGTT	TTCTACAAAG	ATTCGTTATT	TAAAGTGACT	CCTACTAATT	16560
ATATAGCAAT	GACAACTAGT	CAGAATAGAG	GAGAGAGTTG	GGAACAATTT	AAGTTGTTGC	16620
CTCCGTTCTT	AGGAGAAAA	CATAATGGAA	CTTACTTATG	TCCCGGACAA	GGTTTAGCAT	16680
TAAAATCAAG	TAACAGATTG	ATTTTTGCAA	CATATACTAG	TGGAGAACTA	ACCTATCTCA	16740
TTTCTGATGA	TAGTGGTCAA	ACATGGAAGA	AATCCTCAGC	TTCAATTCCG	TTTAAAAATG	16800
CAACAGCAGA	AGCACAAATG	GTTGAACTGA	GAGATGGTGT	GATTAGAACA	TTCTTTAGAA	16860
CCACTACAGG	TAAGATAGCT	TATATGACTA	GTAGAGATTC	TGGAGAAACA	TGGTCGAAAG	16920
TTTCGTATAT	TGATGGAATC	CAACAAACTT	CATATGGCAC	ACAAGTATCT	GCAATTAAAT	16980
ACTCTCAATT	AATTGATGGA	AAAGAAGCAG	TCATTTTGAG	TACACCAAAT	TCTAGAAGTG	17040
GCCGCAAGGG	AGGCCAATTA	GTTGTCGGTT	TAGTCAATAA	AGAAGATGAT	AGTATTGATT	17100
GGAAATACCA	CTATGATATT	GATTTGCCTT	CGTATGGTTA	TGCCTATTCT	GCGATTACAG	17160
AATTGCCAAA	TCATCACATA	GGTGTACTGT	TTGAAAAATA	TGATTCGTGG	TCGAGAAATG	17220
AATTGCATTT	AAGCAATGTA	GTTCAGTATA	TAGATTTGGA	AATTAATGAT	TTAACAAAAT	17280
AAAGGAGAAA	AACATGGTTA	AATACGGTGT	TGTTGGAACA	GGGTATTTTG	GAGCTGAATT	17340
GGCTCGCTAC	ATGCAAAAGA	ATGATGGAGC	AGAGATTACT	CTTCTCTATG	ATCCAGATAA	17400
TGCAGAGGCG	ATTGCAGAAG	AATTGGGAGC	AAAAGTAGCA	AGTTCCTTAG	ATGAGTTGGT	17460
TTCTAGCGAT	GAAGTAGATT	GTGTTATCGT	CGCAACTCCA	AATAATCTTC	ATAAGGAACC	17520

			168			
GGTTATTAAG	GCTGCACAGC	ATGGTAAAAA	TGTTTTCTGT	GAAAAACCAA	TTGCGCTTTC	17580
TTATCAAGAT	TGTCGCGAGA	TGGTAGATGC	GTGTAAAGAA	AACAATGTAA	CCTTTATGGC	17640
AGGACATATT	ATGAATTTCT	TTAATGGTGT	TCATCATGCA	AAAGAACTCA	TTAATCAAGG	17700
AGTTATCGGA	GACGTTCTAT	ATTGTCATAC	AGCTCGTAAT	GGTTGGGAAG	AACAACAACC	17760
GTCAGTATCA	TGGAAAAAAA	TTCGTGAAAA	ATCAGGTGGT	CACTTGTATC	ACCACATCCA	17820
TGAATTGGAT	TGCGTTCAAT	TCCTTATGGG	GGGCATGCCT	GAAACTGTAA	CCATGACAGG	17880
TGGAAATGTG	GCCCATGAAG	GTGAACATTT	CGGTGATGAA	GATGATATGA	TTTTTGTCAA	17940
TATGGAATTT	TCTAATAAGC	GTTTTGCCTT	GTTAGAATGG	GGTTCAGCTT	ATCGTTGGGG	18000
TGAACATTAT	GTCTTAATCC	AAGGAAGCAA	AGGTGCCATC	CGCTTAGACT	TATTCAACTG	18060
TAAAGGAACT	CTTAAGCTAG	ATGGGCAAGA	AAGCTATTTC	TTGATTCACG	AATCGCAAGA	18120
AGAAGATGAT	GATCGGACTC	GTATCTATCA	TAGTACAGAG	ATGGATGGAG	CAATTGCTTA	18180
TGGTAAACCA	GGTAAACGTA	CTCCATTATG	GCTATCATCT	GTCATTGATA	AAGAAATGCG	18240
CTATCTGCAT	GAGATTATGG	AAGGAGCTCC	AGTATCAGAA	GAATTTGCAA	AACTTTTGAC	18300
AGGTGAAGCT	GCCCTAGAAG	CAATTGCTAC	TGCAGATGCT	TGTACCCAGT	CTATGTTTGA	18360
AGATCGCAAA	GTAAAATTGT	CAGAAATTGT	AAAATAAATT	TTGGTATTCT	ССТАТТТАТА	18420
GGTCGACTTG	CTCCTCTGAA	AGTACTTTTA	GAGGAGCTGT	TTGACTTTGC	TAGTTTTTGA	18480
AACTGAAATC	TATTATACTA	CAAACTATTG	AAAGCGTTTT	AATTTTAAGG	TATAATAATC	18540
TCATAGAAAT	AAAGAAAAGG	AGGAAAGAGG	ATGCCACAGA	TTAGCAAAGA	AGCCTTGATT	18600
GAGCAAATCA	AAGATGGAAT	CATCGTTTCT	TGTCAGGCTC	TTCCTCATGA	ACCGCTTTAT	18660
ACAGAAGCGG	GAGGGGTGAT	TCCCTTGCTG	GTCAAAGCGG	CTGAGCAAGG	TGGAGCAGTC	18720
GGTATCCGAG	CAAACAGTGT	TCGCGATATC	AAGGAAATTA	AGGAAGTCAC	TAAACTTCCA	18780
ATCATTGGGA	TTATCAAACG	TGATTATCCA	CCTCAGGAAC	CCTTCATCAC	GGCTACTATG	18840
AAAGAAGTTG	ATGAATTGGC	AGAACTGGAC	ATCGAGGTGA	TTGCTCTGGA	TTGTACCAAG	18900
CGTGAACGCT	ACGATGGTTT	GGAAATTCAA	GAGTTCATTC	GTCAGGTTAA	GGAGAAATAT	. 18960
CCTAATCAGC	TTTTGATGGC	TGATACTAGT	ATCTTCGAAG	AAGGGCTAGC	AGCTGTAGAA	19020
GCAGGAATTG	ACTITICTCGG	AACAACCTTA	TCAGGCTACA	CATCCTACAG	TCCAAAAGTA	19080
GACGGTCCAG	ATTTTGAATT	GATTAAGAAA	CTCTGTGATG	CTGGTGTAGA	TGTCATTGCA	19140
GAAGGAAAA	TTCATACACC	AGAACAAGCC	AAACAAATCC	TTGAATATGG	AGTGCGAGGC	19200
ATCGTTGTTG	GTGGCGCCAT	TACTAGACCA	AAAGAGATTA	CAGAACGCTT	CGTTGCTAGT	19260
CTTAAATAAG	ATGTGAGGGG	GAGTTTTATG	TTTAAAGTTT	TACAAAAAGT	TGGAAAAGCT	19320

TTTATGTTAC	CTATAGCTAT	ACTTCCTGCA	GCAGGTCTAC	TTTTGGGGAT	TGGTGGTGCA	19380
CTTTCAAACC	CAACCACGAT	AGCAACTTAT	CCAATACTAG	ACAATAGTAT	TTTTCAATCA	19440
ATATTCCAAG	TAATGAGCTC	TGCAGGAGAG	GTTGTATTCA	GTAATTTGTC	ACTACTTCTC	19500
TGTGTGGGAT	TATGTATTGG	CTTAGCGAAA	CGAGATAAAG	GAACCGCTGC	GTTAGCAGGA	19560
GTAACTGGTT	ACTTAGTTAT	GACTGCAACG	ATCAAAGCTT	TGGTAAAACT	TTTTATGGCA	19620
GAAGGATCTG	CAATTGATAC	TGGAGTTATT	GGAGCATTAG	TTGTCGGAAT	AGTTGCCGTA	19680
TATTTGCACA	ACCGATATAA	CAATATTCAA	TTACCTTCCG	CTTTAGGATT	CTTTGGAGGT	19740
TCACGCTTCG	TTCCTATTGT	TACATCGTTC	TCTTCTATCT	TGATTGGCTT	TGTCTTCTTT	19800
GTTATTTGGC	CACCTTTCCA	ACAACTTCTT	GTTTCTACAG	GTGGATATAT	TTCTCAGGCG	19860
GGTCCAATTG	GAACTTTTCT	ATATGGATTT	TTAATGAGAC	TTTCTGGAGC	AGTAGGCTTA	19920
CATCATATAA	TTTACCCTAT	GTTTTGGTAT	ACTGAACTTG	GTGGTGTTGA	AACTGTTGCA	19980
GGACAAACAG	TGGTTGGAGC	TCAAAAAATA	TTTTTTGCTC	AATTAGCCGA	TTTGGCCCAT	20040
TCTGGATTAT	TTACAGAAGG	AACAAGGTTT	TTTGCAGGTC	GTTTCTCAAC	AATGATGTTC	20100
GGTTTACCGG	CTGCCTGTTT	AGCGATGTAC	CATAGTGTTC	CTAAAAATCG	TCGTAAAAAA	20160
TACGCGGGTT	TGTTTTTTGG	AGTTGCTTTA	ACATCTTTTA	TTACCGGTAT	TACAGAACCA	20220
ATTGAATTTA	TGTTTCTATT	CGTCAGTCCG	GTTCTATATG	TTGTTCACGC	ATTCCTTGAT	20280
GGTGTTAGCT	TCTTTATTGC	AGACGTCTTA	AATATTTCAA	TAGGAAACAC	ATTTTCAGGA	20340
GGTGTAATCG	ATTTCACTTT	ATTTGGAATT	TTGCAGGGGA	ACGCTAAGAC	GAATTGGGTT	20400
CTTCAGATTC	CATTTGGACT	TATTTGGAGT	GTTTTGTATT	ATATTATTTT	TAGATGGTTC	20460
ATTACTCAAT	TCAACGTTCT	AACGCCAGGG	CGAGGAGAAG	AAGTAGATTC	TAAAGAAATT	20520
TCTGAATCCG	CAGATTCAAC	TTCAAATACT	GCAGATTATT	TAAAACAGGA	TAGCCTACAA	20580
ATTATCAGAG	CCTTGGGTGG	ATCAAATAAT	ATAGAAGATG	TAGATGCTTG	TGTGACACGT	20640
TTACGTGTAG	CTGTAAAAGA	AGTTAATCAA	GTTGATAAAG	CACTTTTAAA	ACAAATTGGT	20700
GCAGTTGATG	TCTTAGAAGT	GAAGGGTGGC	ATTCAAGCAA	TCTATGGAGC	AAAAGCAATC	20760
ттататаааа	atagtattaa	TGAAATTTTA	GGTGTAGATG	ATTAAGTACT	TACTGACTTA	20820
ATAAAAAACA	GAGGAGAGTG	ATGGATGAGT	AGGATGAAAT	GAAATCGCAT	ACAAGAAATA	20880
AAGAACTCAT	TATCCAAGTT	GGATACGCTT	ATTACATAGG	AGAATACAAA	TGAAATTTAG	20940
AAAATTAGCT	TGTACAGTAC	TTGCGGGTGC	TGCGGTTCTT	GGTCTTGCTG	CTTGTGGCAA	21000
TTCTGGCGGA	AGTAAAGATG`	CTGCCAAATC	AGGTGGTGAC	GGTGCCAAAA	CAGAAATCAC	21060

			170			
TTGGTGGGCA	TTCCCAGTAT	TTACCCAAGA	AAAAACTGGT	GACGGTGTTG	GAACTTATGA	2112
AAAATCAATC	ATCGAAGCGT	TTGAAAAAGC	AAACCCAGAT	ATAAAAGTGA	AATTGGAAAC	2118
CATCGACTTC	AAGTCAGGTC	CTGAAAAAAT	CACAACAGCC	ATCGAAGCAG	GAACAGCTCC	2124
AGACGTACTC	TTTGATGCAC	CAGGACGTAT	CATCCAATAC	GGTAAAAACG	GTAAATTGGC	2130
TGAGTTGAAT	GACCTCTTCA	CAGATGAATT	TGTTAAAGAT	GTCAACAATG	AAAACATCGT	2136
ACAAGCAAGT	AAAGCTGGAG	ACAAGGCTTA	TATGTATCCG	ATTAGTTCTG	CCCCATTCTA	2142
CATGGCAATG	AACAAGAAAA	TGTTAGAAGA	TGCTGGAGTA	GCAAACCTTG	TAAAAGAAGG	2148
TTGGACAACT	GATGATTTTG	AAAAAGTATT	GAAAGCACTT	AAAGACAAGG	GTTACACACC	2154
AGGTTCATTG	TTCAGTTCTG	GTCAAGGGGG	AGACCAAGGA	ACACGTGCCT	TTATCTCTAA	2160
CCTTTATAGC	GGTTCTGTAA	CAGATGAAAA	AGTTAGCAAA	TATACAACTG	ATGATCCTAA	2166
ATTCGTCAAA	GGTCTTGAAA	AAGCAACTAG	CTGGATTAAA	GACAATTTGA	TCAATAATGG	2172
TTCACAATTT	GACGGTGGGG	CAGATATCCA	AAACTTTGCC	AACGGTCAAA	CATCTTACAC	2178
AATCCTTTGG	GCACCAGCTC	AAAATGGTAT	CCAAGCTAAA	CTTTTAGAAG	CAAGTAAGGT	2184
AGAAGTGGTA	GAAGTACCAT	TCCCATCAGA	CGAAGGTAAG	CCAGCTCTTG	AGTACCTTGT	2190
AAACGGGTTT	GCAGTATTCA	ACAATAAAGA	CGACAAGAAA	GTCGCTGCAT	CTAAGAAATT	2196
CATCCAGTTT	ATCGCAGATG	ACAAGGAGTG	GGGACCTAAA	GACGTAGTTC	GTACAGGTGC	22020
TTTCCCAGTC	CGTACTTCAT	TTGGAAAACT	TTATGAAGAC	AAACGCATGG	AAACAATCAG	22080
CGGCTGGACT	CAATACTACT	САССАТАСТА	CAACACTATT	GATGGATTTG	CTGAAATGAG	22140
AACACTTTGG	TTCCCAATGT	TGCAATCTGT	ATCAAATGGT	GACGAAAAAC	CAGCAGATGC	22200
TTTGAAAGCC	TTCACTGAAA	AAGCGAACGA	AACAATCAAA	AAAGCTATGA	AACAATAGTC	22260
CTTAGTTATT	CTATAAAAAG	TAGTTTTTTA	AAGAACCTAA	GAGTGTATAC	CCCCTTTTCC	22320
CTCTACACAG	ATAGTGTAAG	AAAAGGGGGC	TTTTGTTTAA	AATGTAAGAA	ACTGTCACGA	22380
AATTAAAATG	AAGTTCTTAC	ATAAGCGAAT	CATAAAAAAT	TTCATTTTGA	TTTTAAAACA	22440
GTTCAAGAAA	GTCAAAAAAT	TATTCTATTT	GAAAGAGAGG	TGCCGACTGT	GAAAGTCAAT	22500
AAAATCCGTA	TGCGGGAAAC	AGTGATTTCC	TACGCTTTCC	TAGCACCAGT	ATTATTCTTC	22560
TTTGTCATCT	TTGTGTTGGC	TCCGATGGTG	ATGGGCTTCA	TTACAAGTTT	CTTTAACTAC	22620
PCAATGACTA	AATTTGAGTT	TGTAGGCTTG	GATAACTATA	TCCGTATGTT	ТАААСАТССТ	22680
STCTTTACAA	AATCTCTGAT	TAACACAGTT	ATTTTGGTTA	TTGGATCTGT	ACCAGTTGTT	22740
STTCTATTCT	CACTCTTTGT	AGCATCTCAG	ACCTATCATC	AAAATGTCAT	TGCCAGATCC	22800
TTCTACCGTT	TCGTCTTCTT	CCTTCCTGTT	GTAACGGGTA	GTGTTGCCGT	GACAGTTGTT	22860

TGGAAATGGA	TTTATGACCC	ACTATCAGGG	ATTCTAAACT	TTGTCCTTAA	GTCCAGCCAC	22920
ATCATCAGCC	AAAACATTTC	TTGGTTGGGA	GATAAAAACT	GGGCATTGAT	GGCGATTATG	22980
ATTATTCTCT	TGACCACTTC	AGTTGGTCAG	CCCATCATCC	TTTATATCGC	TGCCATGGGG	23040
AATATTGACA	ATTCACTGGT	TGAAGCGGCG	CGTGTTGATG	GTGCAACTGA	GTTTCAAGTT	23100
TTTTGGAAGA	TTAAATGGCC	AAGCCTTCTT	CCAACAACTC	TTTATATTGC	AATCATCACA	23160
ACAATTAACT	CATTCCAGTG	TTTCGCCTTG	ATTCAGCTTT	TGACATCTGG	TGGTCCAAAC	23220
TACTCAACAA	GTACCTTGAT	GTACTACCTT	TACGAAAAAG	CCTTCCAATT	GACAGAATAC	23280
GGCTATGCCA	ACACAATTGG	TGTCTTCTTG	GCAGTCATGA	TTGCTATCGT	AAGCTTTGTT	23340
CAATTTAAAG	TACTTGGAAA	CGACGTAGAA	TACTAAAGAA	AGGAGACAGC	TATGCAATCT	23400
ACAGAAAAA	AACCATTAAC	AGCCTTTACT	GTTATTTCAA	CAATCATTTT	GCTCTTGTTG	23460
ACTGTGCTGT	TCATCTTTCC	ATTCTACTGG	ATTTTGACAG	GGGCATTCAA	ATCACAACCT	23520
GATACAATTG	TTATTCCTCC	TCAGTGGTTC	CCTAAAATGC	CAACCATGGA	AAACTTCCAA	23580
CAACTCATGG	TGCAGAACCC	TGCCTTGCAA	TGGATGTGGA	ACTCAGTATT	TATCTCATTG	23640
GTAACCATGT	TCTTAGTTTG	TGCAACCTCA	TCTCTAGCAG	GTTATGTATT	GGCTAAAAAA	23700
CGTTTCTATG	GTCAACGCAT	TCTATTTGCT	ATCTTTATCG	CTGCTATGGC	GCTTCCAAAA	23760
CAAGTTGTCC	TTGTACCATT	GGTACGTATC	GTCAACTTCA	TGGGAATCCA	TGATACTCTC	23820
TGGGCAGTTA	TCTTGCCTTT	GATTGGATGG	CCATTCGGTG	TCTTCCTCAT	GAAACAGTTC	23880
AGTGAAAATA	TCCCTACAGA	GTTGCTTGAA	TCAGCTAAAA	TCGACGGTTG	TGGTGAGATT	23940
CGTACCTTCT	GGAGTGTAGC	CTTCCCGATT	GTGAAACCAG	GGTTTGCAGC	CCTTGCAATC	24000
TTTACCTTCA	TCAATACTTG	GAATGACTAC	TTCATGCAAT	TGGTAATGTT	GACTTCACGT	24060
AACAATTTGA	CCATCTCACT	TGGGGTTGCG	ACCATGCAGG	CTGAAATGGC	AACCAACTAT	24120
GGTTTGATTA	TGGCAGGAGC	TGCCCTTGCT	GCTGTTCCAA	TCGTCACAGT	CTTCCTAGTC	24180
TTCCAAAAAT	CCTTCACACA	GGGTATTACT	ATGGGAGCGG	TCAAAGGATA	ATACTCTGCG	24240
AAAATCTCTT	CAAACTACGT	CAGCTTCACC	TTGCCATACT	TAAGTATTGC	CTGCGGTTAG	24300
CTTCCTAGTT	TGTTCTTCAA	TTTTCATTGA	GTATAGGAAA	ATCAATCTAT	CAAGATACAG	24360
AAGTATATTT	TATAGATTTA	GAGAATATAG	aggttataag	TGTCTACAAA	ATGGAGGGTA	24420
TGCAGTTACT	TTATGAAGTT	TTGTCAGACA	СТТАТАЛАСТ	TAAGAATGGT	TTTAGTTAAC	24480
TATCAGAAAC	GAAGGAAAGA	GTATGATTTT	TGACGATTTG	АААААСАТСА	CCTTTTACAA	24540
AGGGATTCAT	CCTAATTTAG	ACAAGGCTAT	CGACTATCTC	TACCAACATC	GTAAGGATTC	24600

172 TTTCGAATTA GGAAAGTATG ATATTGATGG AGATAAAGTC TTTCTAGTTG TTCAGGAAAA 24660 TGTCCTCAAT CAAGCTGAAA ATGATCAATT TGAGTATCAT AAGAACTATG CAGATTTGCA 24720 TTTGCTGGTA GAAGGACATG AATATTCGAG CTACGGTTCA CGTATCAAAG ACGAGGCAGT 24780 AGCATTCGAC GAAGCGAGTG ACATTGGCTT TGTTCATTGT CATGAACACT ACCCACTCTT 24840 GTTGGGTTAT CACAATTTTG CGATTTTCTT CCCAGGTGAG CCACATCAGC CAAATGGTTA 24900 TGCAGGCATG GAAGAAAAGG TTCGAAAATA TCTCTTTAAA ATTTTGATTG ATTAAAAATA 24960 GGATGAATTG TTTTTTTGTA AAGCTTTGAT AATACTCTAC CATGAAATTG ATCTTTGTGA 25020 GGTAGAGAAA TGAGAATAAA ATATTTAAAA ATTGGTATCT TCTAAGTATG CTGCAAGAGC 25080 TAGTTTCTTA GATGGACAGG GGATTACAGT TGATGAGATG GCTTGGATAA TTAGGGGCAT 25140 TGTGAATGCA TTGATTGGTA GATACATAAA ATTAGGTACT TATGCGGCTA AGTATGGTAT 25200 TAGTATGGCA CGCTCGATCT TAAGTAGGGT AGCTGCAACT GCAGCAGCAA GAGTAGGATT 25260 ACTGACCAAG ATTTCTGGAT GGATTTTACG AGTAGCTGTG AATGTAGCTG ATGTATATGG 25320 TAATTTTGCC AACAATATTG CTGCAGCTTG GGATGCATAT GATAAAATTC CTAACAATGG 25380 TCGTATAAAC TTTTAAAATG CGAGAATGAA AGCACTTTGT ATTTTTTTAT TGAATATGTT 25440 AGCTTGGACA GTGCTTGCAA TGATAATTCG TGGAGGGCTA GATGGATTTG ATAGGCATAC 25500 TTGGAGTACT ATTTTAATTG CGTCGCTGTT CGGGGTATAT GATTATAAGC CCATAGATAA 25560 AAATAGAAAA AAGTCCAAAA GAAAAAATAG ATTTGTTCAT GGTAGGGACT TATGAAAGCT 25620 TTACTGACAA AAAAGAAAAC AGTTTACAAA GAAAAATGAT GGAGGAGCAA ACATGGCACA 25680 AAAAGGAGTA AGCCTTATCA AGGCAGCATT TGATACAGAT AACTTTCTCA TGCGTTTTAG 25740 TGAGAAGGTC TTGGACATCG TGACAGCCAA TCTTCTTTTT GTCGTCTCTT GTTTACCCAT 25800 CGTGACGATT GGAGTGGCTA AAATCAGCCT CTACGAGACC ATGTTCGAAG TTAAGAAGAG 25860 CAGACGGGTG CCTGTTTTTA AAATCTATCT AAGATCTTTC AAGCAAAATC TGAAACTAGG 25920 TCTTCAGCTG GGTTTAATGG AGTTAGGAAT TGTGTTTCTT ACCCTTTCAG ATCTCTATCT 25980 TTTCTGGGGT CAAACAGCTC TGCCCTTCCA ATTGCTGAAA GCCATTTGTT TAGGTATTCT 26040 GATTTTCTT ACTATCGTGA TGCTGGCTAG TTACCCTATC GCGGCACGTT ATGACCTATC 26100 TTGGAAAGAA ATTCTTCAAA AAGGATTGAT GTTGGCTAGT TTTAACTTTC CTTGGTTCTT 26160 CCTCATGTTA GCCATTCTTG TCCTCATTGT GATGGTTCTT TATCTGTCCG CCTTCAGTCT 26220 ACTCTTAGGT GGCTCAGTCT TCCTACTTTT TGGGTTTGGA CTATTGGTCT TTATCCAGAC 26280 TGGATTGATG GAGAAAATTT TCGCAAAATA CCAATAGGAG CTTTATTTCT GAAACTACTT 26340 TCAAAGGCTC CAAACGCTAT TCTATAAGCG AGAAACTAAA ATCGG 26385

173

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2716 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

CCTGCCCGCA	TTGCCCTAGG	CATTAAGTAA	ACATATAAAA	GCATGTGAGA	GACTGTTGGA	60
AAAGCGAGGA	AATTTCCCCT	CTTTTCCTCT	AGTCTCTCCT	TTCTTTTGCT	GATTTTATTC	120
AAAGAAAATG	ATATAATAGT	AGTTATGGAG	AAAAAGAAAT	TACGCATCAA	TATGTTGAGT	180
TCAAGTGAGA	AAGTAGCAGG	ACAGGGAGTT	TCAGGTGCTT	ACCGTGAATT	AGTTCGTCTT	240
CTTCACCGTG	CTGCCAAGGA	CCAATTGATT	GTTACAGAAA	ATCTTCCAAT	CGAGGCAGAT	300
GTGACTCACT	TTCATACGAT	TGATTTTCCC	TATTATTAT	CAACCTTCCA	AAAGAAACGC	360
TCAGGGAGAA	AGATTGGCTA	TGTGCATTTC	TTGCCAGCTA	CACTTGAGGG	AAGTTTGAAA	420
ATTCCATTTT	TCTTAAAGGG	AATTGTGAAA	CGCTATGTAT	TTTCTTTTTA	CAACCGGATG	480
GAGCACTTGG	TTGTGGTCAA	TCCTATGTTT	ATTGAGGATT	TGGTAGCAGC	TGGTATTCCA	540
CGTGAAAAAG	TGACCTATAT	TCCTAACTTT	GTCAACAAGG	AAAAATGGCA	TCCTCTACCA	600
CAAGAAGAGG	TAGTCAGACT	GCGCACAGAT	CTTGGTCTTA	GTGACAATCA	GTTTATCGTA	660
GTAGGTGCTG	GGCAAGTTCA	GAAACGTAAA	GGGATTGATG	ACTTTATCCG	TCTGGCTGAG	720
GAATTGCCTC	AGATTACCTT	TATCTGGGCT	GGTGGCTTCT	CTTTTGGTGG	TATGACAGAT	780
GGTTATGAAC	ACTATAAGAA	AATTATGGAA	AATCCCCCTA	AAAATTTGAT	TTTTCCAGGC	840
ATTGTATCGC	CAGAGCGGAT	GCGCGAATTG	TATGCTCTAG	CGGATCTTTT	CTTGTTGCCT	900
AGTTACAATG	AGCTCTTTCC	TATGACTATT	TTAGAAGCTG	CGAGTTGTGA	GGCTCCTATT	960
ATGTTGCGTG	ATTTAGATCT	CTATAAGGTG	ATTTTGGAGG	GAAATTATCG	GGCGACAGCG	1020
GGTAGAGAAG	AGATGAAAGA	GGCTATTTTG	GAATATCAAG	CAAATCCTGC	TGTCTTAAAA	1080
GATCTCAAAG	AAAAGGCTAA	GAATATTTCC	AGAGAGTATT	CTGAAGAGCA	TCTGTTACAA	1140
ATCTGGTTGG	ACTITITATGA	GAAACAAGCC	GCTTTAGGGA	GAAAGTAAAA.	AGTGAGGTAA	1200
TCTATGCGAA	TTGGTTTATT	TACAGATACC	TATTTTCCTC	AGGTTTCTGG	TGTTGCGACC	1260
AGTATTCGAA	CCTTGAAAAC	AGAACTTGAA	AAGCAGGGAC	ATGCTGTTTT	TATCTTTACG	1320
ACGACAGATA	AGGATGTCAA	TCGCTACGAA	GATTGGCAAA	TTATCCGCAT	TCCAAGTGTT	1380

CCTTTCTTTG	CTTTTAAGGA	TCGTCGCTTT	174 GCCTACCGAG	GTTTTAGCAA	GGCACTTGAA	1440
ATTGCTAAAC	AGTATCAGCT	AGATATTATC	CATACTCAGA	CAGAATTTTC	TCTTGGCCTG	1500
PTGGGGATTT	GGATTGCGCG	TGAATTGAAA	ATTCCAGTCA	TCCATACCTA	TCACACCCAG	1560
PATGAAGACT	ATGTCCATTA	TATTGCTAAG	GGGATGTTGA	TCCGGCCGAG	TATGGTCAAG	1620
PATCTGGTTA	GAGGTTTCCT	GCATGATGTG	GATGGGGTTA	TTTGCCCTAG	TGAGATTGTC	1680
CGTGACTTGC	TATCTGATTA	TAAGGTCAAG	GTTGAAAAAC	GGGTCATTCC	TACTGGGATT	1740
GAATTAGCCA	AGTTTGAGCG	TCCGGAAATC	AAGCAGGAAA	ATTTGAAAGA	ACTGCGTAGT	1800
AAACTAGGGA	TTCAAGATGG	TGAAAAGACG	TTGCTTAGTC	TTTCGAGAAT	CTCCTATGAA	1860
OTTATAAAAA	AAGCAGTTTT	AGCAGCCTTT	GCTGATGTTC	TGAAAGAGGA	AGACAAGGTT	1920
AAACTGGTAG	TAGCTGGGGA	TGGCCCTTAT	CTGAATGACC	TCAAAGAGCA	AGCCCAGAAC	1980
CTAGAGATTC	AAGACTCAGT	CATCTTTACA	GGGATGATTG	CTCCTAGTGA	GACGGCTCTT	2040
PACTATAAAG	CGGCGGATTT	CTTCATTTCG	GCATCGACAA	GCGAAACGCA	AGGTTTGACC	2100
TACTTGGAAA	GCTTAGCCAG	TGGAACACCT	GTCATTGCTC	ACGGAAATCC	TTATTTGAAC	2160
AACCTCATCA	GTGATAAAAT	GTTTGGAACC	TTGTACTATG	GAGAACATGA	TTTGGCTGGT	2220
GCTATTTTGG	AAGCCCTGAT	TGCAACACCA	GACATGAACG	AGCATACCTT	ATCAGAGAAA	2280
PTGTATGAGA	TTTCAGCTGA	GAACTTTGGG	AAACGAGTGC	ATGAGTTTTA	TCTGGATGCC	2340
ATTATTTCAA	ATAACTTCCA	GAAAGATTTG	GCTAAAGATG	ATACGGTCAG	TCAGCGTATC	2400
				TACCTGTAAA		2460
CGCATGTTGA	AGGCTTCAAA	AACACAGTTG	ATCAGTATGA	GAGACTATTG	GAAAGACCAT	2520
			•	TGAGAAGCGG		2580
				ATATGGATCC		2640
		TACTTGCTGT	TACGGAGCTG	GAATTGTAGC	TTACATTATT	2700
PTATGGATTA	TCGCGA					2716

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 13926 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

· CTTTGGTTTT GCCTTATTCA AGACATGAGG GCCATCAGGA ATGATCTGAA ACTGCGAATC

120	TGCTGCCACA	GGTTTATCTT	ACTAAGATTC	CTTTCATAGA	CTATGGAGAG	TGTTAACAGT
180	GTGTCTTCAA	GTTAAATCAA	TGCTATATCC	GGTAAGTTCC	GTTGGATAAG	aattagtaag
240	ATACTCTTTT	TGTTTTTCAA	GTCTGCTCCC	TAAGAGTCTT	ACTCCGACCA	CTCCTCAGAA
300	CTAATTTAAG	ATATTCCCTG	ATAAAATAGG	GCAATTGAAG	TTAAAAATCA	gggaagtagt
360	AAAGTTCTAG	TCGTAACTGG	ATTTGGTAAA	AAGCTCGAAG	GACAGAATCA	CGGGCATCCT
420	CTTGAGCTAG	GGTTCTGTCT	CAAAACAAAA	ACAATCCAAT	GCACCTAAGG	TGTCAGGGCA
480	GAAATAACTC	ACTCCAGAAG	ATAGTTACTA	TAGCTTGTTG	ACTCGCTCTT	GTGCTGATAA
540	ACTCTGCTGA	TCTTTCCAAG	ATTCCGAACT	CTGTCAGTAG	GAAGGATAAT	GATAGCCTCA
600	TTAATTCATA	TCCTCAAGGC	CATCTAGTTC	ATATTAATTT	CCATGCAAAA	CTGCCCTAAC
660	CTGCCAAGGT	TGGGTTAAÄT	AGCTTCTGCT	AGCCGTAAAT	ACTGCATTAC	CAAGCCTCTC
720	TTCCTGGCAA	TGACGGTAAA	TAGCAAATGC	GTCCTGTTTC	TCTTCTACCT	CAAGACTTTC
780	CCAAATTTCC	ATTTTCAGAA	TTTTCCAGCG	GTGTGTAGAG	CGGATAGGCG	GATTCCAAGT
840	GTTCTCCTAG	ATCTTCTCTT	ATTGTGGTAA	CTCCTGACTT	TCAAGCAGTT	PATAGAGGTT
900	AAGCAGCTTC	GATTGATTCA	GTAGGTAAAG	TGGTTTTAAA	GGTCGGTGAG	GCTCAAATGC
960	CTTGACGATT	GGGGTTAATA	TGTACTGAGA	GACAAAAGCT	ACTTGGGCCT	CTGAAGACAG
1020	GATTAGCTTC	CGGTAATCTC	GATTCGCAAG	TGCTAAGGCT	TCTCCAGATT	GACTTCTATC
. 1080	AAGGAAAAGC	TCTGCATCAA	TCCCAAGTCT	CAATCTTGTG	CACTCTTCCT	ACAATCCTGA
1140	TCAGTTGTTT	TCTTCAAACA	CAGATGTTGT	TCAGCCTTTC	CTAGCTTTTC	AAAATAACGA
1200	AGAGAACTGC	TGTTTACGAT	GAAGCGAGCT	TAATTAATTG	TTTCCAGTTG	TTGGCTGATT
1260	TAATCCCTCC	CTATCCCAAG	TTCCCATGTG	GGTATTCAGA	TGAACCTCTC	rgccttttga
1320	CCACATTAAA	GTACGAATGG	AAGTTGAATG	GACCTTTGTG	TAAATGGCTT	SCCAACTCCA
1380	CACGCGGTTG	CAGTAGACTC	AATCGTTCCA	GCAAGAGACC	CCATTTGGAA	ATCCGTCGT
1440	TTATGGAACC	GGTGCACCCG	CGCAATTTTC	TCTCCATTGT	TCCTTGATAA	AGGCTCCAAG
1500	ACTGACTCTT	TCCTCTCGCA	AAGGTCCACA	AGATTTCAAC	AGTGAGCGGA	CAAGGAAAG
1560	GACGCTCCAC	ACCTGACACA	ATACTGCTCT	AAACAGTTGA	GTCATCTGCC	GATGGTCGAA
1620	CCACAATCAT	CGCAAGAGGT	CATATCATTG	AAATACGGTT	CCAACTTCAG	STGCTCGCTC
1680	CAAGATCTTC	CTGGCCTGTT	TTCCAACCAA	TGGGATCCTG	GAGCGATTTT	CATATTTTCA
1740	ACTCGCGATC	CGTGTTGTCA	CTTCATTGGT	GAGTCGTCCC	ACCCCACGCT	TGGTCAGTT
1900	СУМСФИССУС	СФСАФСФССФ	GGAAATCACT	СТССССТСАТ	AAAAAGAGCT	TTTTGCTCA

			1/0			
TAGGCATTG	TAGCCCGCCT	CCTGCTCTAC	CACCATACGA	TTGTAGATGG	CAAAAGGATT	186
GCATTTAAC	TTTTGCTTAA	GTTGGACGGT	GTAGTTGACC	TGATAGGTAT	CTCCCTGCCG	192
AAATGATGG	TGAATTTGGG	CAATGGCCTT	TTCATAGTCT	GCTGCAGACG	TTACTTCCTG	198
CAATTTGAG	GGCAAATCAA	TATCCTCATA	AGTCAGAGGA	ATAGGGGAAG	TTTCTACGAT	204
TCATGAACA	GTAAAGTAAA	GCAGGTACTC	TCCCAGTAGG	GGATCCTTGT	GAACTGCTAA	210
TTTTCCTCA	AAAGCAGGTG	CAGCCTCGTA	GCTGACATAC	CCCACCACAT	AATAACCTTG	216
TCTTGGTAG	CTTTCCACTT	GTGCCAGCAA	ATCTGCCACT	TCTTCTACAT	TTCTCGTTTT	222
AACTCTTTA	ATAGGCTGGG	TAAAGGTATA	тстстссссс	AAAGTCCTAA	AATCAATCAC	228
GTTTTTCTA	TGCATACCTT	AAGTATAGCA	TAAAATAAGA	AAACCCTCAT	CCGCAAAGCA	2340
ATGAGAGAT	TTCAATTATT	TAAAGATTGA	agttttaaag	CTATTTGTTT	GTTGAAGAAG	240
TTCTTATAA	ACAGCTTCTT	TTAATTTAAC	TGTATTATTC	ATAGATACTG	TTTTATTACC	246
TTTGCTTCT	TGTTTAAGAG	TTTCGGCATC	TTTTTTAACA	GCTTCTTTAA	ACAATGTCAG	2520
AAATCATCG	TATGATGAAA	CGGAAGAACC	ATTTACTTCG	AATGTTGTTA	ATCCTTTCGT	2580
GCTTTATCT	TTAACTTCTT	TGAAGTAAGC	TTTTTTAAAT	TCTTCAATAG	TATTAAATGT	2640
TTGTTAGAT	ATTTTCTTGA	TAATATATTC	ATCACTTAGA	ACAGACTCAC	CATCTGTTTT	2700
Gattgttgt	TTATATTTAT	TTGAAGCATA	ACCTAAGAAC	CCATTTTCGT	ATCCGTAGTA	2760
TAATASSSS	CTAAAAGCAT	TATGTTTGAA	TGAAACAGCT	CCAGGAGCAC	CTTTACTAGT	2820
TTACCTCCG	TAGATACCGG	TCATCATTCT	AACACCTACA	TAAGGTGATT	GATCGTTATA	2880
CTAATTGCT	TCGGGTTTAT	AGATACCATT	ACCTGGATTG	CGATTAGTCA	TTAATTGTTG	2940
TCAACTAAA	TCATTAACAG	ATTGAATATT	TAATTCATTT	TTCTCTTCTT	GACTTAGATT	3000
'CGAATTTTA	TCCCATTGAT	TTAATTTATT	GTTATCACGG	TATTCTCTAT	CTATTTTTT	3060
AACCATGCA	CTATTTAAAT	CTTTATTTTG	TTGAGAAATC	ACAGATTCAG	CCTCAATTTC	3120
TCAAGAAGA	GTTAAAGTGT	CATTATAACC	CTTCATATAT	СТАТТААТАТ	CTTCTCGTGT	3180
TTTAGAGTT	TTTGGATCTG	TAATATACCA	CTGATTCCCA	TCATTTTTGC	GTTTAAATAC	3240
ATATTAATA	CCTAAAGAAC	CAAACTCATC	AAATCCACTA	CCAGTAACAG	GAGTTTGTAG	3300
ATACCCTGA	GCATATGCTT	CAGCATCAGT	ACCTTCACGG	TGTCCAAAGC	CACCTAAGTA	3360
ATCGCACGG	TCGTTGACGT	GTGTTGTTTC	atgtgtgtaa	ACTGAAATAC	CGTATTCACC	3420
ACCATTTCT	AAATGAACAT	ATTTTACATC	AGTTCTAATA	TCATCAGAGT	TAGGATATAT	3480
GCAGCATAA	GCTCCTGTTC	CATTATAATT	ATAATACTTA	TCCATAGGAC	CAAAGAATTC	3540
CTAAGAGGA	GTATATACTT	TGTCGGTATT	ATAGCGGCCA	TATTTTCAA	CCCATCCACC	3600

AGGAGCGTTA	TAACCTTCCC	AAATAGGAAT	AACAGCATCT	CTTAGTAGTC	GTTGTTTAAC	3660
GTTATCAGAC	GCTAGACGAT	ACCAGAAATC	ATAATAGTTT	CTATAACCAT	CTGCAGCTTT	3720
GTTAACGATA	TCTTTAATAT	CTTCTAATGA	TTTTTTACCT	AATCGCTCTG	CACTACCAAA	3780
GGCAATTGCA	TTATAATTTG	ATAAATTAAA	AAGATGTGCT	TTATCAATAT	TCAGTAGTGG	3840
GAGTATAGTA	TTTCTAAGGT	GACTTCGTTT	TAAATTATCG	AATGCACGAT	GTTTAGAATT	3900
TTTAATTTCT	TCGACCTCAG	AAGCGCGTTC	TGCGATGTAG	ACATGGTCTT	CTGTAGCATC	3960
AATAAACCAA	TCGTTCATAT	TGTCTATATT	TGTGAACAAT	TGTCTATTAT	AATTTAAAAA	4020
TGCATCTAAA	TTACCTGATT	TAGTATATTT	AGCCAATACT	TGACCGAATG	CGTCGAATGT	4080
ACGTGAACCT	TTAATGTTGT	TCTCTTTAGA	ACCGATTTCA	ATTAATCTGT	CTAATACGCT	4140
AACTTTTTCA	CCATAGAAAT	CTGGTTTGAA	TAGCATTAAT	TCTTTAATAT	TAACATCACC	4200
АААТТТААСТ	CCATAGTAAC	GATTTAGGTA	AGTTAAACCT	AGTAATAAAG	CTGCTTTGTT	4260
TTTCTCGACT	TTATCACGAA	TCATTTGACG	AGCAGCTGGA	GAATCATTTA	GTTGATGTTC	4320
TTCGTTTTGA	ACTAATTTTG	TGATTAGGTT	TGTTAAGTTT	TCTTTAACAT	CTGTGAAGCT	4380
TTCTTCTAAA	TATAAATCTT	TGATTGCATT	AACTCTATAG	TCACCTAATC	GATTTAGATG	4440
CTGATACATC	GTTTGAGACT	GAAGCTCTAC	TGATTCTAAA	ATAGATTTTA	TATCATTAAC	4500
AAGAGTAGTG	TTATCTTTTT	GAACGATATT	AGGTGTATAT	TTAATTCCTA	AGTCAGTTAT	4560
AGTATATTCT	TTTACATTAC	TTAAACCTTC	ACTGCTAGAA	GACAAGTTAA	AGTAATCTTT	4620
TGTACCGTCC	GCATAGTGAA	CAATAATTTT	ATTAGCTTCA	TCTAGGTTTG	TGATAAACTC	4680
ATTGTTGTTC	ATCGCGGTAA	CAGAAAGAAC	TTCTTTAGTA	TTTAGATGGT	GTTCTTTATT	4740
TAATTTATTA	CCTTGATATA	CAATATAATC	TTTATTGTAG	AATGGTATTA	ATTTTTCAAG	4800
ATTTTTATAG	GCTTGGTTAT	ATTCAGCGTT	ATAATCTTGA	ATACTAGAAT	AGGCTTTTTC	4860
TTCATTAAGT	TTTGCAAGAG	GAGATAGATC	ACTTTCTAAT	TTATCAGCAG	TAATATTGAA	4920
AGTAGTAACT	TTAGCATCAG	CTTGTTCTTT	AGTTAATTTA	GTAAATGTTT	TAGATTTCCT	4980
AAATGATCTA	TTACCTGACG	AATATCCCTC	TACCGCATAT	AAATCTTTTA	TATGAGCACT	5040
AGCATAATCA	GAATCATCAA	CGTCGTTAGA	GCCGAATAAC	TCCTCTCCAC	GGATAATCTT	5100
AGCATAGCTG	ACAGAATTAC	TTACCGTACC	TACAGGCCAA	GTCTTACTTG	CTATTGCTCC	5160
AACTTCTACT	GGATTTGAAA	CATCTATTTT	ACCTTTTACA	ACCGACTCAG	TTAGGAGAGC	5220
TTTTGTACCA	ATAAGATGGT	CTAGAGTTAA	TCCATAATCT	ACTTTAGGAA	CTAACAAGCT	5280
GCCCCTCTT	TTGTTTCCTG	TAATAGTAGC	АТСААСАТАТ	GCTTTTCTAA	CAATTCCTCT	5340

			178			
ATAGTTTGTA	CCTGCAATTC	CCCCTGTATG	AGAGCCATTT	CCACTTGTAG	AGTGTAGTTT	5400
GCCAAAGAAA	GCAACATTTT	CAATACGAGT	TCCATCATTC	ATATTATTTA	CAAATCCAGC	5460
AACATTATTA	CGACCTGAAA	GTGTGCCTGT	AATTTTGACA	тттстаатаа	CTGAAGAACC	5520
TTTCATAGTA	ȚTGGCTAATG	ATGCAATATT	ATCTTGACCA	GAACGTTCTA	TCTCTACATT	5580
TTCAAAATTC	ACATTATTTA	TCGTTGCGTT	TGTTATCACA	TTAAATAATG	GATGTTCCAA	5640
TTCAGTAATA	GCAAATTGTT	TTCCTTCAGA	ACTTAAAAGT	TTTCCTGTGA	ATTCTTTAGT	5700
GATATATGAT	TTTCCATTAG	GAACAACATT	TCTAGCGCTC	ATTGATTGTC	CCAGACGATA	5760
TTCTTTTGAA	GGATCGTTTT	GAATAGCTTC	CACTAATTCT	TTGAAATTAT	AATATACATT	5820
ATCTTCGTGG	ACTTTAGGTT	TTTCAATATA	GTGAACGTAT	TCTTCTTCAA	ATTTATTATC	5880
AGCAGTTCTA	GAGACTAAAT	TGTCTGCGAT	TGCTGTAACT	TTATATACAG	GTGTTCCGTT	5940
AACCGTAGTT	TCTTCTATAT	TTTTAACAGC	TAGTAATGTA	GTTTTCTGAT	TATTTGAAGT	6000
AAATTTTTAT	TAATAATTGC	TCTTATCATC	AGGAATAGTT	GTTATCAGTG	ATTCATTAGT	6060
ттсттттсса	TTTTCGTATT	TGATTAAATC	TGTACGTTTA	ATATTTTAA	GCTCAACTTT	6120
TTTAAGATCT	AATTGAATAT	TTTGATTTTC	TAGAGTTTCA	GTTTCTTCAC	CGTTACCTCT	6180
GTCGTAAATC	ATAGTTGTAG	ATAGGGTGTA	TTCTTTGTAG	TACTCTAGGT	TCTTAAATGC	6240
AGCGCTTATA	GTTTCTGTTG	TTACCTTGTC	ATCTGTAAGG	ACTACAGTAT	TAATAACTTC	6300
TTCTCCTTTT	TTCAATTCAG	CTGTGATTGA	TTTGATTTTT	GTTTTGTTTT	GATTTTCTAG	6360
AGTATACTTA	GCAACAGCTT	CACGTTCCAA	TATTTTCTTA	TCGGTACTAG	TCAATGTTAA	6420
TATTGGCTTT	TCAGATAATT	CAACCAATTT	TTCAATAGTT	GCAGTTAATT	TTTCAACAGC	6480
TTCGTTAACT	TCACTTTGTT	TAGCATCTGT	ATTAGCTGCA	ACTTTTTCAG	CCTTTGTAAC	6540
TTCAGTTTGG	AGGTTTTGCC	AACTTCTATC	ACTGTAATGT	TCTTTTACCT	TTGTTTTTGC	6600
ATCTGCAATC	GTATTGTTTA	ATTCAGTTTT	ATCAACGTTT	AGAGCGTCAA	TAGCCGTTTT	6660
AAGTTTATTT	GTCTCGCTAT	TTACCTCAGG	CTGTTTTACA	GGCTCTGAAG	CATAGACACC	6720
TTTTGCAGTT	TCTAAAACAG	GTCCAAGAGC	ATTGTAACTT	GCTGTAGAAT	AATCAGTAGG	6780
AGAAACTGAA	CTAGCTTTAT	CAATTTGATT	ATTTAACTCA	CTTTTATCAA	CTGGTTCTTT	6840
AGTACCAATA	CCCTTTATTT	TATCTTCTGG	TTTCGGTGTT	TCCTCTACAG	CCTTCTCTTC	6900
TTCAGGAACT	TCTGGTTGCT	TTTCTGGCTC	AACTGGTGCC	GTTGGTGCCT	GTTCGTCTTC	6960
TCTTGGCGCG	ACTGGTTCAC	CTGCTTGTTC	AACTTTTGGT	TCCTCTGTTG	GTTCTGTTTG	7020
TTTTTCTACA	GCAGGCGTTT	CAACTTTTGG	TTGTTCAATA	GATTGATTAA	CAGTCTCCTC	7080
TTTTGGTTCT	ACAGTTTCTT	CAGCCTTGGT	ATCTGGAGTT	GACTCTTCTT	GTTTCGGTGT	7140

TTCCTCTACA	GCCTTCTCTT	CTTCAGGAGC	TTCTGGTTGC	TTTTCTGGCT	CGACTGGTGC	7200
CTTTTCGTCT	TCTCTTGGCG	CGACTGGTTC	ACCTGCTTGT	TCAACTTTTG	ATTCCTCAGC	7260
TGGTTTGTCT	GATGGTTGAC	TTTCTGGCTT	AACTGCTACT	TTTTCCTCTG	GTTTTGACTC	7320
AACTTCTCCA	CCTACTTCTT	CAACTGGAGC	TGGTTCTGCT	GAATCTTCTT	TCCCCTCTTC	7380
TACTTTAGGA	AGGGTGTCGT	CAGTAGGTTT	TACCTCCGAT	TTTGGTTCTT	CCTTTGGACT	7440
TTCTTCTGTT	TTAGGTGCTT	CTTCTTTTGG	AGCTTCCTCT	GTCTCTACTA	CTTGGTTTTC	7500
TGTCCTAGCT	TGCTCCTGAT	TTGTTATTGA	TTGAGGAGTC	TCAACTTCGA	CCACAGTCAC	7560
CTCTCCAGGT	TTTGCTGAGG	тттсттстаа	AACAGTGTCC	AAGCCAAGCG	TTTTGAGGAT	7620
GTCACCTGAT	AGATAACCAA	CATAGCGATA	GCCCTCCATT	TCAACAACAC	CCTCTCGACT	7680
AGCCAGCGCT	AGGGTCGCAA	CTGGGTCTAC	AGCCCCTGCA	CTAGGAAGAA	CTACCAATCC	7740
CATAGCTCCA	ACTAGAAAGA	CGCTAGCAAT	TTTCTTTCTC	TTGTAGATTA	AAAGCAAGCT	7800
CCCAACAGTC	AGCAAACCAA	AAGCTGTCAA	AACAGATGCT	TCTGTCCCTG	TTTGAGGCAA	7860
CTGATCTTTT	TGATACACCA	AACCATATAC	AACTTCATTC	CTGTCAGGCT	TTCCTGTCTG	7920
AATTAAATCT	TTAGCTTCTT	GTGAAATAAT	CTCTTTATTT	ACATAGTGAT	AGGTGGCTGC	7980
GTCCACTACA	GAAGGAGCCA	TCAAAAGGCT	TCCAAGAAAT	ACAGAGCCTA	CAACTCCCTT	8040
AATCTTACGA	ATTGAAAAAC	GGTCTTTTTT	AAACACTTTT	ATCTCCTTTA	TTCATTCTCA	8100
AAAÇTTCCTA	ATAGCATCTT	GCGGATAGTG	CGCACGCGCA	CCTCCGATTA	ATTTTGGACG	8160
ACTAGCCAGT	GCCGTTACAT	GGGCATGACC	AATCTCTCTC	AAAATAGGGC	GAATCGGAAC	8220
CTGAACATGC	TTGACATGCA	TGCCAATTGC	AGTGTCTCCG	ATATCCAATC	CAGCATGAGC	8280
CTTGATAAAT	TCAACCTCAA	CTGGATCCTG	CATAAACTTA	AAGGCTGCCA	ACTGCCCCGA	8340
ACCTCCTGCA	TGAAGAGTAG	GATGGACACT	GACAATTTCC	AGACCAAACT	GCTCTGCCAC	8400
CTGACGTTCA	ACAACGAGAG	CCCGATTGAC	ATGCTCACAA	CCTTGAACTG	CTAAATGGAT	8460
ACCTCTACTA	CCTAGAATAT	CCAAGATAGT	CTCCACTATC	AGCTCACCAA	TCTCTTGACT	8520
GGATTCTTTC	CCAATATGAC	CACCTAGCAC	CTCACTAGAA	GATAGACCTA	AAACAAAAAG	8580
GGCCCCCTGC	TTCAAATTGG	TCTTTTCTAA	AACATCTTCC	ACTACCTGAC	GTGTTTCTCT	8640
TTGAATCTGT	GTCTCGTTCA	TCTCTGTTAC	CTCTGTTGTC	ACTCTTCTAT	CATACCGTTT	8700
TTTCTTGTTT	TTAGCAAGAT	AGACAACCTA	GAAAGTTTGC	CCAATTACGC	ATAAAACTCC	8760
CAGAATTGAC	TGGGAGTTAG	CTAGTTTCTA	TTCTATTTAT	ATATATTTCA	ACTTTCGTCC	8820
CTTTTTGGGG	TCTAGAATCA	ATCTTCATAT	GGTAATTGGC	TCCAAAATGA	AGTTTGAGCC	8880

			180			
8940	CTACTATCAC	TTGACTTTGA	CACGTTTGAG	CCAACTCCCC	ATTTTGAAGA	GTTGATCGAC
900	GAATCCTGTT	GACCAATCCC	CAATACGGAT	CCATCATCCT	GAAGCCAACG	CAGCATCTTG
9060	TGGTAAAGAG	CTTAATGCCA	CTTCCTTTTC	TGGCCCTGAC	AAGTTTAATA	TCTGGACAGA
912	AAGGCAACAT	ТАААТТАТСА	TGGGTAAGAC	AGGACCAGCT	AAGGGGTTGT	CATTTTCTAC
918	AAGAGATACT	TTTCTGGATA	CATAGCGTTG	AGCTTATCTC	TTCGTATTCC	ТТТСАТТАА Т
9240	TTGAGCGCCA	CTTGCCTTGA	AAATCAAGTC	TCAGAGAGAC	ATTGATTTCG	GGCGGACATG
9300	TCATGAAATT	TCGCTGACTA	CCTGCACCAC	GACTTGGTCA	GGTTGCCAAG	AGCGGAAATA
9360	ATCTGGCTCG	ATGTGGATTA	TATAGAGGAA	TCCAAAGTGT	GATGATGGTG	CAGCCATCCA
9420	GCTACCATCA	GCTACGAATA	TTTCTTCCTG	TGACGGGTCG	AAGTTGGTAC	AAAGGGCTTG
9480	AGTTCATAGG	TACTTCTCTC	ATTGGCGAGT	ATAGCATTAA	CTGATCCAAC	ACTGATCAAT
9540	ATGGTTTCTC	AATTTCCAAC	CACCAGAAGC	AGATTTTGAG	CTTGGCACGA	CACCAACTTC
9600	CAGAGACAGA	CCACACTAAG	TAAGACTGAA	ATCCAGCGTT	CAAAGGAGCA	TCAAATCCTT
9660	CGAACCTGGT	GAGCTGACTC	AGGTCCACAA	GCCCCAAGCA	TGTGACACTG	CAAGAAGAGA
9720	ATCTTCTCTT	AGTTCCTGCA	CCGTCCAATC	ACGCCAAGCA	CAATGATGAC	CTAACTTTTC
9780	TAGGGTTTCA	TGTATCGATG	AACCCTGACC	CCAGGAGTAT	GGATTTGTGA	GACTGACGTA
9840	ACAAATTCAT	AGGATGGTAG	CTGTGTGTTG	GAACTATAAA	TTTGCTAGAC	TAGCCTCCAT
9900	TTGAGATAGG	CTGGAGTTGA	GCTGCCCCAA	GCAAAGCCCT	GATAATGAAG	GGTTTTCATT
9960	CCCTTTGCAT	AAGATTGGCT	GAAGCACACC	ATATCCAAAC	TTCATAAGAA	CTTCCAGAGT
10020	GCTGGAGTCA	TGATTTACGA	ACTGACTATC	GAAATGACCC	TTGAGTGACA	CAACAAGTTC
10080	ATCATATCAG	ATCCTCAGCC	TTTGGTACCA	TGAATGGCCT	AGCTCCCTGA	AAACAGGCAT
10140	TTGGTCACCA	CTGACCAGAT	TAGAAATGAC	CTGTCATCTG	CATCTGCACA	AGGAAGTTTT
. 10200	TCTCGGATTC	САААААСААА	TCAAGATGGT	TTATCTGACT	TTTCAAGTCC	GCACAACAGT
10260	TGCTGGGTCA	AACATCCGTC	CATAGGCCAG	GGATTCTCAG	GTCTTGACTG	CCTCGACCTT
10320	CTAGTCTGGC .	AATAAAGTGG	TATAAGACTG	AGTTTTTTGA	GGTGGTTTCT	AACCAGTCGA
10380	CTTGATTGAT	GGCTGAAGAA	TGGCCTCAAT	CCCTCAATGG	TTGGCTGTTG	IGATGGTCGT
10440	GAAATAACCA	CAGAAAGATG	TGAGAAAGAC	GCTAGGAGAA	TCCAACCAGA	AGTAGAAAGT
10500	GACGAGGTGT	TTCTTAAACT	GTCTTCTCCC	CGCTTCATCG	AAGAGAAGAA	ГТСТААСТАА
10560	AACCAACCTT	ATATCTTCAA	AAAATAGTTC	AACGTTGGGT	ATCTGCTTAA	CACACCTGCA
10620	CTTGTTTAAC	AAGAGCTTGG	AGTTAAAAGC	TCAGATCTGT	TCATAAATCT	CTCTGCGATC
10680	TCAAGGAACT	TCTTTCTTAA	CAAGCCCAAC	CCTGAAAAGG	ACCAGATAAT	ACGTTCTCTC

CAGATAGGTC	GGACTAAAAC	CTAAGTCACT	GGCTAAAGAC	тттааастаа	ATTGGCTATC	10740
AGCCAGATGA	GACTGGATTT	TCTGGGCCAT	GTTTCCTTCA	AACCTATTAG	TCAATAAATC	10800
TTGTAACTGC	TCTTCTTTCT	CTTCCTTGTC	TAGTTTTTGT	TTGATTTTCC	CCAACATTTC	10860
CTCAATATCC	TGACGAGAAA	AGGGTTTGAG	CAGGTAGTCG	TCCACACCTA	GTTTGACAGC	10920
AGACAAGGCA	TAATCAAAAT	CATCGTAACC	TGTTAAAAAG	ACCAAATGAA	CCTGAGGATA	10980
GGTTTCTCGT	ACCAGACTGG	CCAACTGGAT	GCCATTTAGA	TGAGGCATGT	TGATATCGGT	11040
TAAAATGATA	TCTGGCACCT	GCTTTTGGAT	CAATTCCCAA	GCCTGCCTTC	CATTTTCAGC	11100
CTGACCGATG	ATTTCCATAT	CGTAGGCTGC	TACATTGACC	AGTTTAGTCA	AACCTTGTCT	11160
TACCAGATAT	TCATCTTCTA	CGATTAAGAT	TGTGTAGGTC	ATGCTCTGCT	CCTTTACCAC	11220
TTACTAGTAT	CAGTATAGCA	AAATTCTCCT	CTAACTGCTT	AGGAAAGACC	TCTTATACTC	11280
AATAAAAATC	AAAAAGTAAA	CTAGGAAGAT	AGCCACAGGT	TTCTCAAAGT	ACCGCTTTGA	11340
GGTTGTAAAT	AAAACTGACG	AAGTCGACTC	AAAGTATAGC	TTTGAGGTTG	TAGATAAAAC	11400
TGACGAAGTC	GATAACCCTA	CATACGGTAA	GGCGACGCTG	ACGTGGTTTG	AAGAGATTTT	11460
CGAAGAGTAT	TAATCAACAT	AATCTAGTAA	ATAAGCGTAc	CTTTTTCTTC	CATTTGGTCT	11520
TTGGGAATAA	AGCGGATAGA	GAGGCTATTG	ATACAGTAAC	GTAAGCCGCC	CTTGTCCTGT	11580
GGACCATCCG	TAAAGACATG	CCCAAGGTGA	GAATCTCCTA	CTCGGCTCCG	CACTTCCATA	11640
CGCGTCATAT	TGTAGGACTT	ATCTTCCTTG	TAGGTGACAA	CATCTGGACT	GATGGGTTGG	11700
GTAAAACTAG	GCCAGCCACA	ACCAGACTCA	AATTTGTCTT	TTGATGAAAA	GAGAGGTTCC	11760
CCAGTTGCTA	TATCCACATA	GATACCGGAT	TCAAATTTAT	CCCAGTAACG	GTTTGAGAAA	11820
GCTCGTTCTG	TTTGATTTTC	CTGGGTAACT	GCATACTCCT	CAGGTGACAG	GGTCTTTTTC	11880
AATTCCTCAT	CACTTGGTTT	TGGATATTTG	CTGGCATCAA	TGACAGGATA	GGCCGCCTGA	11940
TTAACATTGA	TATGGCAGTA	GCCATTTGGA	TTTTTCTTGA	GATAGTCTTG	ATGGTAATCC	12000
TCAGCCACCA	CAAAATTCTT	CAAGTTTTCC	TTTTCAACTG	CTAGAGGTTG	ATCGTATTTC	12060
TTAGCCACCT	CATCAAAGAC	TTGGTTAATC	ACTTCCAAAT	CCTTGTCATC	TGTGTAATAA	12120
ACACCAGTAC	GGTACTGGGT	CCCCACATCA	TTTCCTTGTT	TATTTTTGCT	GGTTGGATTG	12180
ATAATGCGGA	AATAGTGAAG	CAGGATTTCC	TTGAGAGAAA	TTTGCTTGGC	ATCATAGGTG	12240
ACATGGACGG	TTTCTGCATG	ACCTGTTTGG	TTAATCAATT	CGTACTTGGT	TGTTTCTCCT	12300
CTACCATTTG	CATAGCCTGA	AACGGCATCC	GTCACCCCGG	GAACACGTGA	GAAATATTCC	12360
TCCACTCCCC	AGAAACAACC	TCCAGCTAGA	TAAATTTCGT	GCAAGTCTGC	GTCTTTACTA	12420

ATTTCTGTTT	TTTTCACTGC	TTTTCCTCCT	182 TGGCTAACTG	CCGCCTTTTC	AATTTGCGAG	12480
SCATCTGTCT	GCCCTGCATT	TCGTATCAAT	AGAACATAGA	AACCGGTTAT	GGCTAGAAAA	12540
ААТАСТССТА	GCAACAAGAA	GATTTTTAAC	TTATCATTCA	TAAGACGCCT	CCTAGGCTAA	12600
ГТССТТСААА	GTTTGCAAAA	TTGCATCTTT	TTCCATGAAT	CCTGGATGTG	TTTTGACCAG	12660
CTTGCCTTCT	TTGTCTATAA	AGGCTTGGGT	TGGGTAAGAA	CGGACACCAT	AAGTTTCCAA	12720
AAGTTTGCCT	GATGGGTCAA	CTAGGACTGG	GAGATTTTTA	TAATCCAATC	CCTTATACCA	12780
ATTCTTAAAG	TCCGCTTCAG	ATTGCTCTCC	CTTATGTCCT	GGTGACACTA	CTGTCAAGAC	12840
CACATAGTCA	TCACCAGCTT	CTTTAGCAAT	CTCATCCGTA	TCTGGAAGAC	TAGCCAGACA	12900
GATGGAACAC	CAAGAAGCCC	AGAATTTGAG	ATAGACTTTC	TTGCCCTTGT	AATCAGATAA	12960
ACGGTAGGTC	TTGCCATCTA	CTCCCATCAA	TTCAAAATCA	GCCACCTCTT	TCCCTTTAGC	13020
IGCGCTTGTT	TTACTAGCTG	TCTGCTCCGT	CTTCATTTCA	TCTTTCGTTT	GGTGTTCACT	13080
AGTCACGGAC	TTGCCTGAAC	AAGCCGTCAA	ACAAAGGAGC	GAACCTGCTC	CAAGAACACA	13140
TGTTTGCCAT	TTTTTCATAT	TGATATTCCT	TTCCATTTTA	TTCAAATAAT	TGACTTAAAA	13200
ITGAAGCATT	TCCAAACAGA	ACCAAGAAGC	CCATCACAAT	AATGAGAAAA	CCACCCACTT	13260
TTTTGAGGAT	TCCGAGATAG	GGATGAAGTT	TTCGGAAATG	TTTCAAAACA	TAACTAGAGG	13320
PCAGAGCTAG	AAGCAAGAAT	GGTAGCGCCA	AGCCCAGCGT	ATACACCAAC	ATGAGACCAG	13380
CTCCCTGCCA	AGCTCCTGAA	CCACCTGAAG	CCGCCAAGGC	CAAAACAGAC	CCCAGAACCG	13440
GCCCCACGCA	AGGCGTCCAA	GCAAAACTAA	AGGTCAAGCC	CAATAAAAAT	GCCTGACTAT	13500
AGCCCTTACC	ATTTTGCCCC	TGTCCTTGCA	GTTGTAGCCT	CTTTTCCTTA	TAAAGCCCCT	13560
TAAAGTGTAG	AATCTCCATT	TGGTGCAAAC	CAAGAAGGAT	AATAATTGCC	CCAGTAAGAT	13620
ATTGGAACCA	AGAAGCATAA	AGCAAATCGC	CTAAAAAACC	AGCTCCATAG	CCCAACAAAA	13680
AAATATAA	GGAAATTCCT	GCTATAAAGG	CCAGAGTTCG	ТААТАААСТА	GTAACTGAGA	13740
PTGAAAATTT	GCCGCTAGAA	GCCTGAGCAC	CATCCTTATC	ATCTAGTAAC	ACTCCTGTAT	13800
AGACCGGTAA	CAAAGGTAAG	ATACAAGGAG	AAAAGAAGGA	TAGAATCCCT	GCCAAAAAGA	13860
CACTTAGAAA	AAAGAAAATA	TGACCCATAA	AGTTCCTCCT	ATCATTTTAT	TGATAGATTT	13920
Απταπα			•			1392

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20199 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CCCAGCAGAA	AAATGGCATT	TGGAGATAAT	GGAAATCGTA	AAAAAACTAT	GTTTGAGAAA	60
ATAACCTTGT	TTATCGTGAT	TATCATGCTA	GTAGCAAGTT	TATTGGGAAT	TTTTGCAACT	120
GCAATTGGTG	CCCTCAGTAA	TCTATAAAAT	AGATTCAAGA	AAATTTAGTG	ACTGGGATTT	180
CCCAGCCCTT	TTTTAAAGTG	AGAAGAAATA	ATGAGTATGT	TTTTAGATAC	AGCTAAGATT	240
AAGGTCAAGG	CTGGTAATGG	TGGCGATGGT	ATGGTTGCCT	TTCGTCGTGA	AAAATATGTC	300
CCTAATGGAG	GCCCTTGGGG	TGGTGATGGT	GGTCGTGGAG	GCAATGTGGT	CTTCGTTGTA	360
GACGAAGGAC	TACGTACCTT	GATGGATTTC	CGCTACAATC	GTCATTTCAA	GGCTGATTCT	420
GGTGAAAAAG	GGATGACCAA	AGGGATGCAT	GGTCGTGGTG	CTGAGGACCT	TAGAGTTCGA	480
GTACCACAAG	GTACGACTGT	TCGTGATGCG	GAGACTGGCA	AGGTTTTAAC	AGATTTGATT	540
GAACATGGGC	AAGAATTTAT	CGTTGCCCAC	GGTGGTCGTG	GTGGACGTGG	AAATATTCGT	600
TTCGCGACAC	CAAAAAATCC	TGCACCGGAA	ATCTCTGAAA	ATGGAGAACC	AGGTCAGGAA	660
CGTGAGTTAC	AATTGGAACT	AAAAATCTTG	GCAGATGTCG	GTTTAGTAGG	ATTCCCATCT	720
GTAGGGAAGT	CAACACTTTT	AAGTGTTATT	ACCTCAGCTA	AGCCTAAAAT	TGGTGCCTAC	780
CACTTTACCA	CTATTGTACC	AAATTTAGGT	ATGGTTCGCA	CCCAATCAGG	TGAATCCTTT	840
GCAGTAGCCG	ACTTGCCAGG	TTTGATTGAA	GGGGCTAGTC	AAGGTGTTGG	TTTGGGAACT	900
CAGTTCCTCC	GTCACATCGA	GCGTACACGT	GTTATCCTTC	ACATCATTGA	TATGTCAGCT	960
AGCGAGGGCC	GTGATCCATA	TGAGGACTAC	CTAGCTATCA	ATAAAGAGCT	GGAGTCTTAC	1020
AATCTTCGCC	TCATGGAGCG	TCCACAGATT	ATTGTAGCTA	ATAAGATGGA	CATGCCTGAG	1080
AGTCAGGAAA	ATCTTGAAGA	CTTTAAGAAA	AAATTGGCTG	AAAATTATGA	TGAATTTGAA	1140
GAGTTACCAG	CTATCTTCCC	AATTTCTGGA	TTGACCAAGC	AAGGTCTGGC	AACACTTTTA	1200
GATGCTACAG	CTGAATTGTT	AGACAAGACA	CCAGAATTTT	TGCTCTACGA	CGAGTCCGAT	1260
ATGGAAGAAG	AAGCTTACTA	TGGATTTGAC	GAAGAAGAAA	AAGCCTTTGA	AATTAGTCGT	1320
GATGACGATG	CGACATGGGT	ACTTTCTGGT	GAAAAACTCA	TGAAACTCTT	TAATATGACC	1380
AACTTTGATC	GTGATGAATC	TGTCATGAAA	TTTGCCCGTC	AGCTTCGTGG	TATGGGGGTT	1440
GATGAAGCCC	TTCGTGCGCG	TGGAGCTAAA	GATGGGGATT	TGGTCCGCAT	TGGTAAATTT	1500
GAGTTTGAAT	TTGTAGACTA	GGAGACTGGT	ATGGGAGATA	AACCGATATC	TTTCCGAGAT	1560
GCGGATGGTA	ATTTTGTTTC	CGCCGCAGAC	GTTTGGAATG	AAAAGAAATT	GGAAGAACTA	1620

184 TTTAATCGTC TCAATCCAAA TCGTGCCTTG AGATTGGCAC GAACTAAAAA GGAAAATCCA 1680 TCTCAGTAAA GAAGCTAAAA AATCCCGTGC CTCATCAGAC ACGGGATTTT GTGGTACGAC 1740 AGGCATGTAT AGCAAACTGA ATCTGGAATA GCACAGCATA TCTTCTAAAA TATAGTAAAA 1800 TGAAATGAGA ACAGGACAAA TCGATCAGGA CAGTAAAATC GATTTCTAAC AATGTTTTAT 1860 AAGCAGAGAT GTACTATTCT AGTTTCAATC AACTATATTG TTATAAATTG ATTTGAATTT 1920 CAAAATTAAA TTGTTTGATT CTTATTTCAA TTTGTTATAG TATATCTGAT GTCAAAGTTC 1980 TCGGCGAGTC AAATAGCGAT TCCCAAGCCT GACTATCGTG AGGTAGCGGA TTAAAATGGT 2040 CTGGGGATAG ACCGTTTTAA GTCTGACGCT GGAAATAAGA ATTGTCAGAA GAAGGGATAG 2100 CGAAATCGTG GCTCTACGAA CAGGAACGTG ATAATAAGGC GTATATAGCG GATAAGAGGG 2160 CATCAAACTC TAAAGTCCAA AAAGGTAGTC GTAACCTATA TGCGTAAATC ACGAGAGTAA 2220 TTGAATTCGT ACTAAGATTT TCTATTTTCA CTGTAACCTT TTAACGCCCT TATATCTTGT 2280 ATACACGAGG AAAGATGTAC GACTTATCCC GTGAGGTCTA TCACTATAAA GAGAAAACGA 2340 CAGATAGAAG TGATCCTGAG TCACGGTTAT CTGTCTGATA GGACGGTATG TATAAAACGC 2400 TTCTGTGAAC TGAGAGAAGG GGGAGAAGTT CTTGCTAAAA TTTAGTTGAA CAGCCGTATT 2460 CCGATACTTA GATAAGAGAT CTAGTCTTAG CTCCTACTCA GTTTTAGGGG ATAAAAAAGG 2520 GGCAATAGCG ATTCGAGAAA GATTATACTC TTCGAAAATC TCTTCAAATC ACGTCAATAT 2580 CGCCTTGTCG TATGTGTAGG ATACTGACTA CGTCAGTTCC ATCTACAACC TCAAAACAGT 2640 GTTTTGAGCA ACCTGCGGCT AGTTTCCTAG TTTGATCTTT GATTTTCATT GAGTATTAGT 2700 AATTCAGTTA CTAACTCGTC AACTCTGATT TATCCAATAA AATTGAAAAG GATGGAAAAA 2760 AGGATAAATT TATGATATAC TTTATTTTGA AGACCTTATT AGAAATCTTG AAAGAGTATT 2820 GAAAACTTAG AATGAGAAAA ATTGTTATCA ATGGTGGATT ACCACTGCAA GGTGAAATCA 2880 CTATTAGTGG TGCTAAAAAT AGTGTCGTTG CCTTAATTCC AGCTATTATC TTGGCTGATG 2940 ATGTGGTGAC TTTGGATTGC GTTCCAGATA TTTCGGATGT AGCCAGTCTT GTCGAAATCA 3000 TGGAATTGAT GGGAGCTACT GTTAAGCGTT ATGACGATGT ATTGGAGATT GACCCAAGAG 3060 GTGTTCAAAA TATTCCAATG CCTTATGGTA AAATTAACAG TCTTCGTGCA TCTTACTATT 3120 TTTATGGGAG CCTCTTAGGC CGTTTTGGTG AAGCGACAGT TGGTCTACCG GGAGGATGTG 3180 ATCTTGGTCC TCGTCCGATT GACTTACACC TTAAGGCGTT TGAAGCTATG GGTGCCACTG 3240 CTAGCTACGA GGGAGATAAC ATGAAGTTAT CTGCTAAAGA TACAGGACTT CATGGTGCAA 3300 GTATTTACAT GGATACGGTT AGTGTGGGAG CAACGATTAA TACGATGATT GCTGCGGTTA 3360 AAGCAAATGG TCGTACTATT ATTGAAAATG CAGCCCGTGA ACCTGAGATT ATTGATGTAG 3420

CTACTCTCTT	GAATAATATG	GGTGCCCATA	TCCGTGGGGC	AGGAACTAAT	ATCATCATTA	3480
PTGATGGTGT	TGAAAGATTA	CATGGGACAC	GTCATCAGGT	GATTCCAGAC	CGCATTGAAG	3540
CTGGAACATA	TATATCTTTA	GCTGCTGCAG	TTGGTAAAGG	AATTCGTATA	AATAATGTTC	3600
TTACGAACA	CCTGGAAGGG	TTTATTGCTA	AGTTGGAAGA	AATGGGAGTG	AGAATGACTG	3660
PATCTGAAGA	CAGCATTTTT	GTCGAGGAAC	AGTCTAATTT	GAAAGCAATC	AATATTAAGA	3720
CAGCTCCTTA	CCCAGGCTTT	GCAACTGATT	TGCAACAACC	CCTTACCCCT	CTTTTACTAA	3780
GAGCGAATGG	TCGTGGTACA	ATTGTCGATA	CGATTTACGA	AAAACGTGTA	AATCATGTTT	3840
PTGAACTAGC	AAAGATGGAT	GCGGATATTT	CGACAACAAA	TGGTCATATT	TTGTACACGG	3900
GTGGACGTGA	TTTACGTGGG	GCCAGTGTTA	AAGCGACCGA	CTTAAGAGCT	GGGGCTGCAC	3960
PAGTCATTGC	TGGGCTTATG	GCTGAAGGTA	AAACTGAAAT	TACCAATATC	GAGTTTATCT	4020
PACGTGGTTA	TTCTGATATT	ATCGAAAAAT	TACGTAATTT	AGGAGCGGAT	ATTAGACTTG	4080
PTGAGGATTA	AACCGTAGAG	GTGTTTATGA	ATATTTGGAC	CAAATTAGCA	ATGTTTTCTT	4140
FTTTTGAAAC	GGATCGCTTG	TATTTGCGTC	CTTTCTTTTT	TAGTGATAGT	CAGGACTTCC	4200
GCGAGATAGC	TTCAAATCCA	GAAAATCTTC	AATTTATTTT	CCCAACGCAG	GCAAGTCTGG	4260
AAGAAAGTCA	ATATGCACTG	GCCAATTACT	TTATGAAGTC	CCCTTTGGGA	GTGTGGGCAA	4320
PTTGTGACCA	GAAAAATCAA	CAAATGATTG	GTTCTATTAA	ATTTGAGAAG	TTAGATGAAA	4380
r caaaaaaga	AGCTGAGCTT	GGCTATTTTT	TGAGAAAAGA	TGCTTGGTCG	CAAGGATTTA	4440
rgacagaggt	TGTTAGAAAA	ATTTGTCAGC	TTTCTTTTGA	GGAATTTGGC	ТТААААСААТ	4500
ГАТТТАТСАТ	TACCCACCTT	GAAAATAAAG	CTAGCCAAAG	AGTTGCTCTT	AAGTCTGGAT	4560
TAG TT TGTT	CCGTCAGTTT	AAGGGAAGTG	ATCGTTACAC	AAGAAAAATG	CGGGATTATC	4620
PTGAATTTCG	GTATGTAAAA	GGAGAGTTCA	ATGAGTAAGC	ATCAGGAAAT	TCTAAGCTAT	4680
TTGGAGGAAT	TACCAGTAGG	TAAAAGGGTC	AGTGTTCGTA	GCATTTCGAA	TCATCTAGGA	4740
STTAGTGATG	GAACAGCCTA	TCGGGCTATT	AAAGAAGCTG	AAAACCGTGG	AATTGTGGAG	4800
ACCCGTCCTA	GAAGTGGAAC	AATTCGTGTT	AAATCCCAGA	AAGTTGCTAT	AGAGAGATTA	4860
ACGTTTGCTG	AAATTGCAGA	AGTGACTTCT	TCTGAGGTTC	TGGCTGGGCA	AGAAGGTTTA	4920
BAGAGAGAAT	TTAGTAAGTT	TTCAATTGGT	GCCATGACTG	ААСААААТАТ	CTTGTCTTAC	4980
CTTCATGATG	GGGGGCTCTT	GATTGTCGGA	GACCGAACCC	GTATTCAGTT	GCTAGCCTTG	5040
GAAAATGAAA	ATGCAGTTCT	GGTTACAGGG	GGATTTCAGG	TTCATGATGA	TGTGCTTAAA	5100
TGGCCAATC	AAAAAGGGAT	TCCTGTTCTA	AGAAGTAAGC	ATGATACCTT	TACCGTCGCG	5160

			186			
ACCATGATCA	ATAAAGCCTT	GTCAAATGTC	CAAATCAAGA	CTGATATTCT	GACAGTTGAG	5220
AAACTTTATC	GCCCTAGTCA	TGAGTATGGT	TTTCTGAGAG	AGACAGATAC	AGTTAAAGAT	5280
TATTTGGACT	TGGTTCGTAA	GAATCGTAGC	AGCCGTTTCC	CTGTTATCAA	TCAACATCAG	5340
GTCGTTGTTG	GTGTTGTAAC	CATGAGAGAC	GCTGGTGATA	AATCACCAAG	CACGACAATT	5400
GATAAGGTTA	TGTCTCGTAG	TCTATTTTTG	GTTGGATTAT	CGACAAATAT	TGCCAATGTG	5460
AGTCAACGGA	TGATCGCAGA	AGACTTTGAA	ATGGTACCAG	TTGTTCGAAG	CAATCAAACT	5520
TTGCTTGGCG	TTGTGACGCG	ACGAGATGTC	ATGGAGAAGA	TGAGCCGTTC	CCAAGTTTCG	5580
GCTCTACCAA	CTTTTTCTGA	GCAGATTGGA	CAAAAGCTCT	CTTATCACCA	TGATGAAGTA	5640
GTCATTACAG	TGGAACCCTT	TATGCTAGAA	AAAAATGGAG	TTTTGGCTAA	TGGTGTATTG	5700
GCAGAAATTC	TGACCCACAT	GACCCGATTT	AGTTGTTAAT	AGTGGTCGCA	ATCTCATTAT	5760
CGAGCAGATG	CTGATCTACT	TTTTGCAGGC	TGTTCAGATA	GATGATATAT	TGCGCATTCA	5820
GGCACGGATT	ATTCATCATA	CGAGACGGTC	AGCTATAATT	GATTACGATA	TTTATCATGG	5880
TCACCAGATT	GTTTCAAAAG	CAAATGTGAC	TGTTAAAATT	AATŢAGAAAC	TAGGAGAAAA	5940
GATGATAACA	TTAAAATCAG	CTCGTGAAAT	CGAAGCTATG	GACAAGGCTG	GTGATTTTCT	6000
AGCAAGTATT	CATATAGGCT	TACGTGATTT	GATTAAGCCA	GGCGTAGATA	TGTGGGAAGT	6060
TGAAGAATAT	GTCCGCCGTC	GTTGTAAAGA	AGAAAATTTC	CTTCCACTTC	AGATTGGGGT	6120
TGACGGTGCC	ATGATGGACT	ATCCTTATGC	TACCTGTTGC	TCTCTTAACG	ATGAAGTGGC	6180
TCACGCTTTC	CCTCGTCATT	ATATCTTGAA	AGATGGTGAT	TTGCTCAAAG	TTGATATGGT	6240
TTTGGGAGGT	CCCATTGCTA	AATCTGACCT	AAATGTCTCA	AAATTAAACT	TCAACAATGT	6300
TGAACAAATG	AAAAAATACA	CTCAGAGCTA	TTCTGGTGGT	TTAGCAGACT	CATGTTGGGC	6360
TTATGCTGTT	GGTACACCGT	CCGAAGAAGT	CAAAAACTTG	ATGGATGTAA	CCAAAGAAGC	6420
TATGTACAAG	GCTATTGAGC	AAGCTGTTGT	TGGAAATCGT	ATCGGTGATA	TCGGTGCGGC	6480
TATTCAAGAA	TACGCTGAAA	GTCGTGGTTA	CGGTGTAGTG	CGTGATTTGG	TTGGTCATGG	6540
TGTTGGCCCA	ACTATGCACG	AAGAACCAAT	GGTTCCTAAC	TATGGTATTG	CAGGTCGTGG	6600
ACTCCGTCTT	CGTGAAGGAA	TGGTCTTAAC	CATTGAACCA	ATGATCAATA	CAGGCGATTG	6660
GGAAATTGAT	ACAGATATGA	AAACTGGTTG	GGCGCATAAG	ACCATTGACG	GTGGATTGTC	6720
ATGTCAGTAT	GAACACCAAT	TTGTCATTAC	GAAAGATGGA	CCTGTTATCT	TGACTAGCCA	6780
aggtgaagaa	GGAACTTATT	AATAAAAAGT	GAAAAGACTA	CTGGAAGTTT	ATTTTGATAA	6840
AAAATCCAGT	AGATCTTTTC	ATAATAAAAC	GCATTGTATC	AAGTGTTAGG	GGCTGATATC	6900
ATGCGTTTTT	CTGCTTTTAA	GATTTTTTCC	AACTCTGTTT	GTAAGCGCAT	CATAACAAAG	6960

PCT/US97/19588

GGTCTAGGAT	TCAGGGCTCT	CCTCCTATAT	ACTATTAGTA	AAGTAAAACT	AAGGGAGGAT	7020
ATTTTAGTGT	CGCAGTCTAT	TGTTCCTGTA	GAGATTCCAC	AATATTGTCG	TTTTGATTCT	7080
AAAAAGAGAA	ATGGAATTCT	GTTTAATGTT	CGTATTGCCA	ATCTTAAATT	TACTTTTTTA	7140
таттатастт	CCTGCGAAAC	AAAATATGGT	ATAGTAGTTC	TATGAATGAT	GAAGCAAGTA	7200
AACAACTAAC	TGATGCACGA	TTTAAGCGTC	TTGTTGGTGT	TCAGCGTACC	ACTTTTGAAG	7260
AGATGTTAGC	TGTATTAAAA	ACAGCTTATC	AACTTAAACA	CGCAAAAGGT	GGACGAAAAC	7320
CTAAATTAAG	CCTAGAAGAC	CTTCTTATGC	CCACTCTTCA	ATAGTGCGAG	AATATCGAAC	7380
TTATGAAGAA	ATTGCGGCTG	ATTTTGGTAT	TCACGAAAGC	AACTTTATCC	GTCGGAGCCA	7440
atgggttgaa	ATAACTCTTG	TTCAAAGTGG	TTTTACGGTT	TCAAGAACTC	CTCTCAGTTC	7500
TGAGGACACG	GTAATGATTG	ATGCGACGGA	AGTAAAAATC	AATCGCCCTA	AAAAAACAAT	7560
TAGCGAATGA	TTCTGGTAAA	AAGAAATTTC	ACGCTATGAA	GGCTCAAGCG	ATTGTCACAA	7620
GTCAAGGGAG	AATTGTTTCT	TTGGATATCG	CTGTGAACTA	TAGTCATGAT	ATGAAGTTGT	7680
TCAAAATGAG	TCGTAGAAAT	ATCGAACAAG	CTGGTAAAAT	CTTGGCTGAC	AGTGGTTATC	7740
AAGGGCTCAT	GAAGATATAT	CCTCAAGCAC	AAACTCCACG	TAAATCCAGC	AAACTCAAGC	7800
CGCTAACAGC	TGAAGATAAA	GCCTATAACC	ATGCGCTATC	TAAGGAAAGA	AGCAAGGTTG	7860
AGAACATCTT	TGCCAAAGTA	AAAACGTTTA	AAATATTTTC	AACAACCTAT	CGAAATCATC	7920
GTAAACGCTT	CGGATTACGA	ATGAATTTGA	GTGCTGGTAT	TATCAATCAT	GAACTAGGAT	7980
TCTAGTTTTG	CAGGAAGTCT	ATTGAGGTAT	TGAGCTAGTT	TATGAAAAA	TTGGGTGAAA	8040
AGTCGAGTGT	TTTAGAAACC	CACAGTGTAG	TATTCTAGTT	TCAATCCACT	ATATTTTGCT	8100
ACTCCCCGTA	AAGTTTCTAT	TTTCCCTGAT	TTCTGATATA	ATAGAAATAT	TGACTTCAAG	8160
agtaaggaag	AGAAGATGAA	CGCATTATTA	AATGGAATGA	ATGACCGTCA	GGCTGAGGCG	8220
GTGCAAACGA	CAGAAGGTCC	CTTGCTAATC	ATGGCAGGGG	CTGGTTCTGG	AAAGACTCGT	8280
GTTTTGACCC	ACCGTATCGC	TTATTTGATT	GATGAAAAGC	TGGTCAATCC	TTGGAATATC	8340
TTGGCCATTA	CCTTTACCAA	CAAGGCTGCG	CGTGAGATGA	AAGAGCGTGC	TTATAGCCTC	8400
AATCCAGCGA	CTCAGGACTG	TCTGATTGCG	ACCTTCCACT	CCATGTGTGT	GCGTATTTTG	8460
CGTCGCGATG	CGGACCATAT	TGGCTACAAT	CGTAATTTTA	CAATTGTGGA	TCCTGGTGAA	8520
CAGCGAACGC	TCATGAAACG	TATTCTCAAA	CAGTTGAACT	TGGACCCTAA	AAAATGGAAT	8580
GAACGAACTA	TTTTGGGGAC	CATTTCCAAT	GCTAAGAATG	ATTTGATTGA	TGATGTTGCT	8640
TATGCTGCCC	AAGCTGGCGA	TATGTATACG	CAAATTGTGG	CCCAGTGTTA	TACAGCCTAT	8700

			188			•
CAAAAAGAAC	TTCGTCAGTC	TGAATCCGTT	GACTTTGATG	ATTTGATTAT	GCTGACCTTG	8760
CGTCTCTTTG	ATCAAAATCC	TGATGTTTTG	ACCTACTACC	AGCAAAAATT	CCAATACATC	8820
CACGTTGATG	AGTACCAAGA	TACCAACCAC	GCTCAGTACC	AATTGGTCAA	ACTCTTGGCT	8880
TCCCGTTTTA	AAAATATCTG	TGTGGTTGGG	GATGCGGACC	AGTCTATCTA	CGGTTGGCGT	8940
GGTGCTGATA	TGCAGAATAT	CTTGGACTTT	GAAAAGGATT	ACCCCAAAGC	CAAGGTTGTT	9000
TTGTTGGAGG	AAAATTACCG	CTCAACCAAA	ACCATTCTCC	AAGCGGCCAA	CGAGGTTATT	9060
AAAAATAATA	AAAATCGCCG	TCCTAAAAAT	CTCTGGACTC	AAAACGCTGA	TGGGGAGCAA	9120
ATCGTTTACT	ATCGTGCCGA	TGATGAGCTG	GATGAGGCTG	TATTTGTAGC	CAGAACCATC	9180
GATGAACTTA	GTCGCAGTCA	AAACTTCCTT	CATAAGGATT	TTGCAGTTCT	CTATCGGACT	9240
AATGCCCAGT	CCCGTACAAT	TGAGGAAGCC	CTGCTCAAGT	CTAACATTCC	TTATACCATG	9300
GTTGGCGGAA	ССАААТТСТА	CAGCCGTAAG	GAAATTCGCG	ATATTATTGC	TTATCTCAAC	9360
CTTATTGCTA	ATTTGAGTGA	CAATATTAGT	TTTGAGCGTA	TTATCAACGA	GCCTAAACGT	9420
GGAATTGGTC	TAGGTACAGT	TGAGAAAATC	CGTGATTTTG	CAAATTTGCA	AAATATGTCT	9480
ATGCTGGATG	CTTCTGCTAA	TATTATGTTG	TCTGGTATCA	AGGGTAAGGC	AGCCCAATCT	9540
ATCTGGGATT	TTGCCAATAT	GATGCTTGAT	TTGCGGGAGC	AGCTAGACCA	CTTAAGCATT	9600
ACAGAGTTGG	TTGAGTCCGT	CCTAGAAAAA	ACAGGTTATG	TCGATATTCT	TAACTCCCAA	9660
GCGACTCTAG	AAAGCAAGGC	ACGGGTTGAA	AATATCGAAG	AGTTTCTTTC	TGTTACGAAG	9720
AACTTTGATG	ACACCACGGA	TGTGACAGAA	GAGGAAACTG	GTCTGGACAA	ACTGAGTCGT	9780
TTCTTAAATG	ACTTGGCTTT	GATTGCCGAC	ACAGATTCAG	GTAGTCAGGA	GACATCAGAA	9840
GTGACCTTGA	TGACCCTGCA	TGCTGCCAAA	GGTCTCGAAT	TTCCAGTTGT	CTTTTTGATT	9900
GGGATGGAAG	AAAATGTCTT	TCCACTTAGT	CGTGCGACTG	AAGATTCAGA	TGAATTAGAA	9960
GAAGAGCGCC	GTCTAGCCTA	TGTAGGTATC	ACGCGTGCAG	AGAAAATTCT	CTATCTGACC	10020
AATGCCAACT	CACGCTTGCT	TTTTGGTCGT	ACCAATTATA	ACCGTCCGAC	TCGTTTTATT	10080
AACGAAATCA	GTTCAGACTT	GCTTGAGTAT	CAAGGTCTGG	СТССТССТСС	AAATACAAGC	10140
TTTAAGGCAT	CATATAGCAG	TGGTAGTATT	TCCTTTGGTC	AAGGTATGAG	TTTGGCTCAG	10200
GCTCTTCAAG	ACCGTAAACG	CGCTGCTGCC	CCAAAATCAA	TCCAGTCAAG	CGGTCTTCCA	10260
TTTGGTCAAT	TTACAGCTGG	CGCAAAACCA	GCATCTAGCG	AGGCAAATTG	GTCCATTGGT	10320
GATATTGCTC	TCCACAAGAA	ATGGGGAGAG	GGAACCGTTC	TGGAAGTTTC	AGGTAGCGGT	10380
GCTAGGCAGG	AATTGAAAAT	CAATTTCCCA	GAAGTAGGTT	TGAAAAAACT	TTTAGCCAGT	10440
GTGGCTCCA A	ттсасааааа	ልልጥ ር ጥልልጥጥጥ	ጥሮሮልጥሮሮ ጥጥሮ	тсассаатаа	TAAAGTGAGG	10500

AGGATTTTTA	TGTACAGTAT	TTCATTCCAA	GAAGATTCAC	TATTACCAAG	AGAAAGGCTG	10560
GCCAAGGAAG	GAGTTGAAGC	GCTTAGTAAC	CAAGAGTTGC	TAGCTATTTT	ACTCAGGACA	10620
GGAACACGTC	AAGCTAGCGT	TTTTGAAATT	GCCCAAAAAG	TCTTGAACAA	TCTTTCAAGC	10680
CTAACGGATT	TGAAAAAAT	GACCCTGCAG	GAATTGCAGA	GTTTGTCTGG	TATTGGGCGT	10740
GTTAAGGCCA	TAGAATTACA	AGCTATGATT	GAACTGGGGC	ATCGTATTCA	CAAACACGAG	10800
ACTCTTGAAA	TGGAAAGTAT	TCTCAGCAGT	CAAAAGTTGG	CCAAGAAGAT	GCAGCAGGAA	10860
TTAGGGGATA	AAAÄACAAGA	GCACCTGGTG	GCACTCTATC	TCAATACTCA	AAATCAAATC	10920
ATCCATCAGC	AGACCATTTT	TATCGGGTCT	GTAACTCGTA	GTATCGCTGA	ACCGCGAGAG	10980
ATTCTTCACT	ATGCAATCAA	GCATATGGCG	ACTTCTCTTA	TCTTGGTCCA	CAATCATCCT	11040
TCAGGAGCGG	TAGCGCCTAG	CCAAAATGAT	GATCATGTCA	CTAAACTTGT	TAAAGAAGCC	11100
TGCGAATTGA	TGGGGATTGT	TCTCTTGGAC	CATTTGATTG	TCTCTCATTC	TAATTACTTT	11160
AGTTATCGTG	AAAAGACAGA	TTTAATCTAA	AGTTCATTAA	CGACATAGTC	AAAGAGTTTT	11220
TTATCTTTGG	GACGATTTTC	AAAAAGAAGT	TCTGGATGCC	ATTGGACACC	GAGAAAGGCG	11280
ACATCATCCG	TACTCATGAC	AGCCTCAATG	ATACCATCTT	TAGGATCATG	AGCCACAACT	11340
TTTAAATTTG	GTGCTAAGTC	CTTGATGCTC	TGGTGGTGGA	AGGAGTTGAT	ATGAGAGATT	11400
TCTCCATAGA	TTTCTTGGAG	AACGGTATCT	GGTTCTGTTA	CCAAGCGTTG	AGTTGTGTAC	11460
TCAACAGAAG	AATCCTGCCA	ATGGTCTTCG	ATATCTTGGT	ACAAAGTTCC	ACCCATGGCA	11520
ACGTTAAAGA	GTTGGGTACC	ACGGCAGACA	GAGAAAATGG	GCTTTTTCTG	TTTAATAGCT	11580
TCCTTGATGA	GGGCCAGTTC	GAAGATATCT	CTTTGAAGGT	GATAGTCATC	ACTATCAATG	11640
GTTTTGGGTT	CGCCATAAAA	TTTTGGATCG	ACATTTTGCC	CACCTGTCAA	GATGAGCTTG	11700
TCAATCAAAC	TGATATAGTG	GCAGGCCATT	TCTTGATCAC	CAATCGGTAG	GATGATGGGA	11760
ATCCCTCCAG	CATCTTTAAC	GCCTTCAACA	AAGCCTTTTG	CTGCGTAGCT	CATCATGATG	11820
TCATCATCTG	GATGAGTTTT	TTCGTTTCCT	GTAATCCCAA	TAACTGGTTT	TTTCATAAAA	11880
TGATTTTCGC	TTTCTAATCC	TCTTTTCGCA	TGAAGTAGAG	GAGGGTTTGG	AGTTCACTTG	11940
TCAAATCGAC	ATACTGAACG	ACCACGTCTT	TTGGTAAATG	CAGATGGACT	GGTGAAAAAC	12000
TGAGAATTCC	TTTCACACCA	GCATCAACCA	AGAGATTAGC	AACCTCTTGT	GACTTGACGC	12060
TGGGAACAGT	TAGGATAGCA	GTCTTCACAT	CAGCATCCTT	GATTTTATCC	TTGATCTGAG	12120
AAATCCCGTA	AATGGGAATC	CCGTCAGGAG	TTTGGGTACC	GACTTCAGGA	TGGTCGTCTA	12180
GGTCAAAGGC	CATGATAATC	TTCATCTTGT	TACGTTCGTG	GAAGCGGTAG	TGGAGAAGGG	12240

190 CATGGCCCAT ATTTCCAATA CCAACCAGCA TGACATTGGT AATAGAGTTG TCATTGAGCA 12300 AATCGGCAAA AAATGTCATT AGTTTTTTGA CATCATAGCC AAAACCACGA CGACCAAGTT 12360 CACCAAAATA GGAAAAATCA CGACGTACGG TCGCTGAATC AATACCGATA GCCTCTGCAA 12420 TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT 12480 AGAGAGAG TCTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT 12540 CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA 12600 AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG AAAACGGTAG 12660 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA 12720 AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA 12780 TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT 12840 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 12900 TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 12960 CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG 13020 GAAGCCTTCA CCGCTGTTTG GCACTTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 13080 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 13140 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTTCA AATGCCATAT GGCTAACCTC 13200 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 13260 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 13320 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13380 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 13440 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 13500 CCAGAAAGGC AGTITCTAGA TITTGTACAT GITGAAAATG ITCTTCTTGT TITTCTAGGT 13560 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGUT 13620 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13680 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13740 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980 GAACCAAGTA ATCAATTGTT TCAAGGACAG CATGGTGCTC GATGGCAGTT GTGATGATAT 14040

GTTTTCCTTG	TTCTTGGTGA	CGAAGACAGT	AGCCAATGAT	GGTAGTATTA	TTGCCTTCAG	14100
TCCCACCAGA	AGTGAAAAAG	ATATGTTGAG	GTTTTGTCCT	TAGTAACTGG	GCTAGTTCCT	14160
GACGGGCTTC	TCGCAAGAGT	TTGCCAGCTT	GACGACCATG	ACCATGAATA	CTAGAAGGAT.	14220
TTCCGTGGGT	TTCTTGCATA	ACCTTGGTCA	TAGCTGAAAT	AGCAACTGCT	GACATAGGAG	14280
TCGTTGCAGC	ATTGTCCAAA	TAAATCAAAG	AATCACCTTA	TTTCTTTTTA	TTGTAGGCAA	14340
AGAGTGGGCT	GACTGGTTTT	CTTTCGTGAA	TACGGACGAT	AGCATCACCA	ATTAACTCAC	14400
TAGCAGTGAT	GTAGCATACA	TTTTTAGGAG	TTTTTTCTTT	TGTTGCTACT	GAATCAGTCA	14460
CAAGAATTTC	TTTAATATTA	GTATTGTCAA	GAAGCTCAGC	AGCTCCCTCG	ACGAAGAGAC	14520
CGTGGCTAGA	AACAGCATAA	ATTTCTGTAG	CTCCTTCACG	TTCAACGATT	TTAGAAGCTT	14580
CAGAGAAGGT	ACGTCCTGTA	TATAAAATAT	CATCAATCAA	GATAGCTTTC	TTACCTTCAA	14640
CATCACCAAT	AATATAACCT	TCGTTACGAG	TTGCATCGTC	TTGAGGGTAG	TCGATAATGG	14700
CGATAGGAGC	ATCAAGATAT	TCAGCCAGGC	TACGCGCACG	TTTGACACCT	GAATTTTTAG	14760
GGCTAACGAC	AACAACATCT	GAACCAAGCA	ATCCTTTATC	GCAGTAATGT	TTTGCGAATA	14820
GGGGAACAGT	GAAAAGATTA	TCCACTGGAA	TATCAAAGAA	ACCTTGAACC	TGAACGGCAT	14880
GCAAATCAAG	AGTCAGGATA	CGATCAACTC	CAGCCTTAAC	CAGCATATTG	GCAACTAGTT	14940
TTGCTGTAAG	TGGCTCACGA	GGACAAGCAA	TGCGGTCTTG	ACGTGCATAG	CCAAAATATG	15000
GAAGGACAAC	GTTGATACTG	TGGGCACTTG	CACGCACACA	AGCATCGACC	ATGATTAACA	15060
ATTCCATTAG	GTGGTTGTTG	ACAGGGAAAC	TTGTTGATTG	GATGATGTAA	ACATCATAAC	15120
CACGGACACT	TTCTTCGATA	TTTACTTGGA	TTTCTCCGTC	TGAAAATTGA	CGTGATGATA	15180
GTTTTCCAAG	TGGGACACCA	ACAGCTTGGG	CAATTTTTTG	TGCAATCTCT	TGGTTAGAGT	15240
TGAGTGCGAA	AAGTTTCATG	TTTTTTCTAT	CTGACATTAT	AGACCGTCCT	CTGTAAACTT	15300
TATAAATCCT	AGTTATATTT	ACCTTACATA	TATGAACTGG	GATTTGTGTA	TTTTTATCTT	15360
TTCTATTTTA	CCAAAAAATG	GAGATTATTT	CAGCTATTTT	TCATACTTTT	GACAAATCGA	15420
ACCAATTTTG	AAGGAGCTTT	TTGATAGGAA	ATCTGATTTT	TCTCTAAAAA	TTGTCGAAAA	15480
TCCTGTTTGC	CTTGCTCATG	ATTTTCCACT	TCAAGCTCCA	ATTCGTAATC	TGTTATATCA	15540
AAGTATCGGC	TCTGATCCAG	TGCCATGAGA	CCAATAGCTG	TTTTCATTTC	ATAGCGAAGC	15600
GTTGTTAGAC	AACCAAGAAC	CTGCCAGTTC	TTACTTTGGA	TACCATGTTT	CGCCAATTCA	15660
TCCAGTACTA	GCCCTTGAGG	AAGTTCTTCC	TTACTCAGAT	AGTTCTCAGC	ATCTTTTAGT	15720
TGCAATTTTT	GGTTGTATTC	CATGTTTCCA	ACACTCTGCG	GGACTTTGAG	TGTCAACTCA	15780

192 GCCCAGTCTT CAAAGGTTCG AATGCGCATA GCGACTTTCT TTTCTCGCAG TTCAAAATCA 15840 GGCGTGTCGA TGTAGTAATT TGTTTGAAGA ACAGGAGTGA CACCTGTGAA CTGGTCTTTT 15900 AGACGATTGT ATTCATCTTT TTTCAATAGT GTTTTCAATT CAATTTCTAA ATGTTTCATT 15960 TITCTTACCT TTTTTTATCG TTGAAAGCGG ATTTATGGTA TAATAAGCAT TGTATTTATT 16020 GTATATGAAT CTGGAGAAAA AATCAAAGAT ATTTTTGACG GATAATATGA GAACAAGGGA 16080 GAATATATGA CCTTAGAATG GGAAGAATTT CTAGATCCTT ACATTCAAGC TGTTGGTGAG 16140 TTAAAGATTA AACTTCGTGG TATTCGTAAG CAATATCGTA AGCAAAATAA GCATTCTCCA 16200 ATTGAGTTTG TGACCGGTCG AGTCAAGCCA ATTGAGAGCA TCAAAGAAAA AATGGCTCGT 16260 CGTGGCATTA CTTATGCGAC CTTGGAACAC GATTTGCAGG ATATTGCTGG CTTACGTGTG 16320 ATGGTTCAGT TTGTAGATGA CGTCAAGGAA GTAGTGGATA TTTTGCACAA GCGTCAGGAT 16380 ATGCGAATCA TACAGGAGCG AGATTACATT ACTCATAGAA AAGCATCAGG CTATCGTTCC 16440 TATCATGTGG TAGTAGAATA TACGGTTGAT ACCATCAATG GAGCTAAGAC TATTTTGGCA 16500 GAAATTCAAA TTCGTACTTT GGCCATGAAT TTCTGGGCAA CGATAGAACA TTCTCTCAAC 16560 TACAAGTACC AAGGGGATTT CCCAGATGAG ATTAAGAAGC GACTGGAAAT TACAGCTAGA 16620 ATCGCCCATC AGTTGGATGA AGAAATGGGT GAAATTCGTG ATGATATCCA AGAAGCCCAG 16680 GCACTTTTTG ATCCTTTGAG TAGAAAATTA AATGACGGTG TAGGAAACAG TGACGATACA 16740 GATGAAGAAT ACAGGTAAAC GAATTGATCT GATAGCCAAT AGAAAACCGC AGAGTCAAAG 16800 GGTTTTGTAT GAATTGCGAG ATCGTTTGAA GAGAAATCAG TTTATACTCA ATGATACCAA 16860 TCCGGATATT GTCATTTCCA TTGGCGGGGA TGGTATGCTC TTGTCGGCCT TTCATAAGTA 16920 CGAAAATCAG CTTGACAAGG TCCGCTTTAT CGGTCTTCAT ACTGGACATT TGGGCTTCTA 16980 TACAGATTAT CGTGATTTTG AGTTGGACAA GCTAGTGACT AATTTGCAGC TAGATACTGG 17040 GGCAAGGGTT TCTTACCCTG TTCTGAATGT GAAGGTCTTT CTTGAAAATG GTGAAGTTAA 17100 GATTTTCAGA GCACTCAACG AAGCCAGCAT CCGCAGGTCT GATCGAACCA TGGTGGCAGA 17160 TATTGTAATA AATGGTGTTC CCTTTGAACG TTTTCGTGGA GACGGGCTAA CAGTTTCGAC 17220 ACCGACTGGT AGTACTGCCT ATAACAAGTC TCTTGGCGGT GCTGTTTTAC ACCCTACCAT 17280 TGAAGCTTTG CAATTAACGG AAATTGCCAG CCTTAATAAT CGTGTCTATC GAACACTGGG 17340 CTCTTCCATT ATTGTGCCTA AGAAGGATAA GATTGAACTT ATTCCAACAA GAAACGATTA 17400 TCATACTATT TCGGTTGACA ATAGCGTTTA TTCTTTCCGT AATATTGAGC GTATTGAGTA 17460 TCAAATCGAC CATCATAAGA TTCACTTTGT CGCGACTCCT AGCCATACCA GTTTCTGGAA 17520 CCGTGTTAAG GACGCCTTTA TCGGCGAGGT GGATGAATGA GGTTTGAATT TATCGCAGAT 17580

G.	AACATGTCA	AGGTTAAGAC	CTTCTTAAAA	AAGCACGAGG	TTTCTAAGGG	ATTGCTGGCC	17640
A	AGATTAAGT	TTCGAGGTGG	AGCTATTCTG	GTCAATAATC	AACCGCAAAA	TGCAACGTAT	17700
C	TATTGGACG	TTGGAGACTA	CGTTACCATT	GACATTCCCG	CTGAGAAAGG	CTTTGAAACC	17760
T	TGGAGGCTA	TTGAGCTTCC	ATTAGATATT	CTCTATGAGG	ATGACCACTT	TCTAGTCTTG	17820
A.	ATAAACCCT	ATGGAGTGGC	TTCTATTCCT	AGTGTCAATC	ACTCTAATAC	CATTGCCAAT	17880
T	TTATCAAGG	GTTACTATGT	CAAGCAAAAT	TATGAAAATC	AGCAGGTTCA	CATTGTTACC	17940
A	GACTAGATA	GGGATACTTC	TGGCTTGATG	CTCTTTGCCA	AGCACGGTTA	TGCCCATGCA	18000
C	GATTAGACA	AGCAGTTGCA	GAAGAAATCT	ATCGAGAAAC	GCTACTTTGC	TTTGGTTAAG	18060
G	GAGATGGAC	ATTTGGAGCC	AGAAGGGGAA	ATTATTGCTC	CGATTGCGCG	TGATGAAGAT	18120
T	CCATTATTA	CCAGACGAGT	GGCTAAAGGC	GGAAAGTATG	CCCATACTTC	ATACAAGATT	18180
G'	TAGCTTCTT	ATGGAAATAT	TCACTTGGTC	TATATTCACC	TGCACACTGG	TCGAACCCAT	18240
C.	AAATCCGAG	TCCATTTTTC	TCATATCGGT	TTTCCTTTGC	TGGGAGATGA	TTTGTATGGT	18300
G	GTAGTCTGG	AAGATGGTAT	TCAACGTCAG	GCTCTGCATT	GCCATTACCT	ATCCTTTTAT	18360
C	ATCCATTTT	TAGAGCAAGA	CTTGCAGTTA	GAAAGTCCCT	TGCCGGATGA	TTTTAGTAAC	18420
C	TTATTACCC	AGTTATCAAC	TAATACTCTA	TAAAAACTGT	CTCAGAGTAT	AATTATTATC	18480
T	TAAAGGAGA	AAACTCATGG	AAGTTTTTGA	AAGTCTCAAA	GCCAACCTTG	TTGGTAAAAA	18540
T	GCTCGTATC	GTTCTCCCTG	AAGGGGAAGA	GCCTCGTATT	CTTCAAGCAA	CAAAACGCTT	18600
A	GTAAAAGAA	ACAGAAGTGA	TTCCTGTTTT	GCTTGGAAAT	CCTGAAAAA	TTAAAATTTA	18660
T	CTTGAAATT	GAAGGAATCA	TGGATGGTTA	TGAGGTCATC	GACCCTCAAC	ATTATCCTCA	18720
A:	PTTGAAGAA	ATGGTTTCTG	CCTTGGTGGA	GCGTCGCAAG	GGCAAAATGA	CTGAAGAAGA	18780
T	GTACGCAAG	GTTTTGGTTG	AAGATGTCAA	CTACTTTGGT	GTGATGTTGG	TTTACTTGGG	18840
C:	PTGGTTGAT	GGAATGGTGT	CAGGAGCGAT	TCACTCAACA	GCTTCAACAG	TTCGCCCAGC	18900
T	CTACAAATC	ATCAAAACTC	GTCCAAATGT	AACTCGTACT	TCAGGAGCCT	TCCTCATGGT	18960
T	CGTGGTACG	GAACGTTACC	TATTTGGAGA	CTGTGCCATT	AACATCAATC	CAGATGCAGA	19020
A	CCTTGGCT	GAAATTGCCA	TCAACTCAGC	AATCACAGCT	AAGATGTTTG	GCATCGAACC	19080
T	AAAATTGCC	ATGTTGAGCT	ATTCTACTAA	AGGTTCAGGG	TTTGGTGAAA	GCGTTGATAA	19140
G	GTCGTTGAA	GCAACTAAAA	TTGCTCACGA	CTTGCGTCCT	GACCTTGAAA	TCGATGGTGA	19200
G?	TTGCAATTT	GATGCAGCCT	TTGTTCCTGA	AACTGCAGCT	CTGAAAGCTC	CTGGAAGTAC	19260
G	GTAGCTGGT	CAAGCAAATG	TCTTCATCTT	CCCAGGTATC	GAGGCAGGAA	ATATTGGTTA	19320

CAAGATGGCT	GAACGCCTGG	GTGGCTTTGC	194 GGCTGTAGGA	CCTGTTTTGC	AAGGTTTAAA	19380
CAAGCCAGTT	AATGATCTTT	CTCGTGGATG	TAATGCAGAT	GATGTTTACA	AGTTGACCCT	19440
CATCACAGCA	GCTCAAGCAG	ТТСАТСААТА	GTGAAAACTA	TAAAGTGATA	TACTATGCTA	19500
TACTGTAGTT	ATGAAACTAT	GTACGAAAAG	CACTGCCATT	AATTCCTGAG	ААСТАААТТА	19560
CTGATTGGTG	TCAAAAAGGA	AAACTTCCAA	GCGATGATAT	CCTGTCTATA	CACGACCTAT	19620
AGAAATCTGT	AATATACATA	TCCGTAAAAC	GATAAATTCC	CTTTTTGATT	TTAAATGAGT	19680
ATGAAAAGAG	AATTTTTGG	CTCTTTGTCA	ACTGTAGTGG	GTTGAAGAAA	AGCTAAGCTC	19740
GAGAAAGGAC	AAATTTCATC	CTTTCTTTTT	TGATATTCAG	AGCGATAAAA	ATCCGTTTTT	19800
TGAAGTTTTC	AAAGTTCCGA	AAACCAAAGG	CATTGCGCTT	GATAAGTTTG	ATGAGATTAT	19860
TGGTCGCTTC	CAGTTTGGCG	TTAGAATAGT	GTAGTTGAAG	GGCGTTGATA	ATCTTTTCTT	19920
TATCTTTGAG	GAAGGTTTTA	AAGACAGTCT	GAAAAATAGG	ATGAACCTGC	TTAAGATTGT	19980
CCTCAATAAG	TCCGAAAAAT	TTCTCTGGTT	CCTTATTCTG	GAAGTGAAAA	AGCAAGAGTT	20040
GATAGAGCTG	ATAGTGGTGT	TTCAAGTCTT	CCGAATAGCT	CAAAAGCTTG	TTTAAAATCT	20100
CTTTATTGGT	TAAGTGCATA	CGAAAAATAG	GACGATAAAA	TCGCTTATCA	CTCAGTTTAC	20160
GGCTATCCTG	TTGAATGAGT	TTCCAGTAGC	GCTTGATAG			20199
(2) INFORM	ATION FOR SE	EQ ID NO: 7:	: '			
	EQUENCE CHAF (A) LENGTH: (B) TYPE: nu	19702 base cleic acid	pairs			
	(C) STRANDEL		Le			•
1	(D) TOPOLOGY	: linear				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

AC	CCGATGTA	TCAGCGGATA	TTTACTCTAT	TTTTCAAACG	ATGTTATACC	CACAATAAAA	60
G₽	AAAAA GAC	CCTAAGGTCT	CCTTTGCTTT	TATTATTAAA	CGCGTTCAAC	TTTACCTGAT	120
T	CAAAGCAC	GAGCTGAAGC	CCAAACTTTT	TTAGGTTTAC	CATCGATAAG	AACAGTAACT	180
T	TTGAAGGT	TTGGTTTTAC	GGCACGTTTT	GTTTGGTTCA	TCGCGTGTGA	ACGGTTGTTT	240
CC	TGATACAG	TCTTACGACC	TGTAAAGTAA	CATACTTTAG	CCATTGTGTT	TTCCTCCTAT	300
T,	GATCTAAT	ATAGCGGATG	TGCTAGCACC	ACATACCGTA	CTATGTTATC	ACATTTTCTT	360
GI	TTTTTGCA	AGGGAATTGG	AAGATTTTTT	ATTTGTGTCT	TAAATCAGGT	CTTGCGTGAC	420
ΑΊ	TTCTGCTC	TCCACATGCC	ATCGTTGATT	AACAGAACAC	CAGAATTAAA	ATTATGTGTA	480
TÃ	AAAATCAT	CTCTAACTGC	AGCTAAGGGT	ATAGCCGTCA	AGTCCAAATC	CCACAGCTCA	540

FCTATCGATT	TTCTTACAAC	AATATCTGAA	TCCAAATACA	GTACACGAGA	CTCGCTTACA	600
PACTTTGGAA	TAAAATACCT	AAAAAAGCCG	CATATGAAAG	TCCCTCAAAG	GGGAGACGAT	660
AACCTTTCAG	AATATTACTG	TCAATCTAAA	CATTCACAAT	CTCACTATTC	AAAGTCTCTA	720
GTCTTTTTTC	CATCAATTGG	AACCATTCTC	GCGGAAGGTC	ATCATTAAAA	ACATAAAACT	780
TAAGATTATA	ATGATGAACA	CAAAGAGATT	TTATTGTTGT	TTCAACTTTA	TCCATATAAG	840
CATTATCTGC	ACCTAAGACA	ATCGCTTTTT	TCTCTTCTTT	CACTTTTTAT	CTCATTTCTT	900
PTTATTCCCA	TCATATTATT	CCCATCATAT	GTTTCCCATC	ATATGTTTCT	ACGTAACCAT	960
PATTTTCGCC	TATTCGTTCG	TAAAACCATA	CCAGTGGAGA	TTTTAGATGA	AGTCCCATTA	1020
CGGTTTACAA	TTTTTACATT	ACGACACGGA	GTTTTACAAA	TCGATTTCAT	TTGCCAAACG	1080
Pagttagtga	GGCAGTTAGC	TAGTTCGCCA	AATAGCGACT	AGCGTCCAAC	AATTTGGAAC	1140
FTTAGTTCCA	ATTGTTGGTA	CTGAGTCACA	TCTTCTCCTC	TAACTCTACG	TCTGGATACT	1200
PGTCCGCAAA	CCAGCGGAGG	GCAAAGTCAT	TTTCAAAGAG	AAAGACTGGT	TGGTCAAAAC	1260
GCTCTTTGGC	TAAGATATTG	CGACTTGACG	ACATCCGTTC	ATCCAAGTCC	TCAGGCTTGA	1320
CCAACGAAC	GGTCTTTTTA	CCCATTGGGT	TCATAACTAC	TTCCGCATTG	TACTCGCCTT	1380
CCATGCGGTG	TTTAAAGACT	TCAAACTGGA	GTTGACCTAC	AGCGCCTAGC	ATGTACTCAC	1440
CTGTTTGGTA	ATTCTTATAA	AGCTGAACGG	CTCCTTCTTG	CACCAATTGC	TCAATCCCCT	1500
rgtggaagga	TTTTTGCTTC	ATAACATTCT	TAGCAGAAAC	TTTCATGAAA	ATCTCAGGTG	.1560
PAAAGGTTGG	CAGGGGTTCA	AATTCAAACT	TGTTTTTTCC	AACCGTCAAG	GTATCCCCAA	1620
CTGATAAGT	ACCGGTATCG	TAAACCCCGA	TAATATCACC	TGCCACGGCA	TTGGTCACAT	1680
CTCACGACT	CTCCGCCATA	AACTGGGTAA	CATTAGATAG	TTTAGCCCCC	TTACCAGTAC	1740
SAGGGAGATT	GACACTCATG	CCGCGCTCAA	ATTCGCCAGA	TACGATACGG	ACAAAGGCAA	1800
PACGGTCACG	GTGACGAGGG	TCCATGTTGG	CTTGGATTTT	AAAGACAAAG	CCTGAGAAAT	1860
CTTGTCATA	AGGATCCACA	ATTTCACCGT	CTGTTTTCTT	GTGACCATGT	GGTTCTGGAG	1920
CAAACTTGAG	GAAGGTTTCA	AGGAAGGTCT	GCACACCAAA	GTTTGTCAGG	GCTGAACCGA	1980
AAAGACAGG	CGTCAATTCT	CCAGCCAGAA	TAGCTTCCTC	TGAAAACTCA	TTCCCGGCTT	2040
ATTTAAAAG	CTCAATGTCA	TCCTTGACTT	GCTCGTAGAA	AGGATTGCTA	CCAAAGAGTT	2100
CTCCCCGTC	TTCTAGACTG	GCAAAACGCT	CATCCCCTTT	GTAAAGCTCT	AAACGTTGGT	2160
TATAGAGGTC	ATACAAGCCC	TCAAAGGCTT	TCCCCATCCC	GATAGGCCAG	TTCATAGGGT	2220
GCTAGCAAT	GCCCAAGATT	ТСТТССААТТ	CTTGCAAGAG	ATCCAAAGGC	TCACGACCGT	2280

CACGGTCCAG	CTTGTTCATA	aaggtaaaga	CTGGAATGCC	ACGATGTTTC	ACAACCTCAA	234
ACAATTTCTT	GGTTTGAGCC	TCGATCCCCT	TGGCAGAGTC	CACGACCATG	ACCGCAGCAT	240
CCACCGCCAT	CAAGGTACGA	TAGGTATCTT	CTGAGAAGTC	CTCGTGCCCT	GGCGTGTCTA	246
AGATATTCAC	GCGCTTGCCG	TCGTAGTCAA	ATTGCATAAC	AGATGAAGTA	ACAGAAATCC	252
CACGTTGCTT	CTCGATATCC	ATCCAGTCAG	ATTTAGCAAA	AGTCCCTGTT	TTCTTCCCTT	258
TTACCGTACC	AGCCTCACGA	ATCTCACCCC	CAAAGTAGAG	TAACTGCTCA	GTGATGGTTG	264
TTTTCCCCGC	GTCCGGGTGG	GAGATAATGG	CAAAGGTACG	ACGTTTCTTA	ATTTCTTCTT	270
GAATATTCAT	AAGTTCTCTT	TCTTTGATTC	TCTATTTTTC	TTGTTTCAAT	AGCTGAGAAT	276
GATTTTTACA	TTGGATTTTA	CCATTCCTTT	CAACACTCCA	TTATATCGGA	TTTTAGCATT	282
TTTTTCAATT	TCTATTTCTT	TTCACTTCCC	CCTCCCTTAT	TTATAGGAAA	ATATGGTAAA	288
ATAGAACAGA	СТАААААТСА	TCATTTCACG	AAAGGATGCA	AGATGAAAAT	TACGCAAGAA	294
GAGGTAACAC	ACGTTGCCAA	TCTTTCAAAA	TTAAGATTCT	CTGAAGAAGA	AACTGCTGCC	300
TTTGCGACCA	CCTTGTCTAA	GATTGTTGAC	ATGGTTGAAT	TGCTGGGCGA	AGTTGACACA	306
actggtgtcg	CACCTACTAC	GACTATGGCT	GACCGCAAGA	CTGTACTCCG	CCCTGATGTG	312
GCCGAAGAAG	GAATAGACCG	TGATCGCTTG	TTTAAAAACG	TACCTGAAAA	AGACAACTAC	318
TATATCAAGG	TGCCAGCTAT	CCTAGACAAT	GGAGGAGATG	CCTAATGACT	ТТТААСААТА	3240
AAACTATTGA	AGAGTTGCAC	AATCTCCTTG	TCTCTAAGGA	AATTTCTGCA	ACAGAATTGA	330
CCCAAGCAAC	ACTTGAAAAT	ATCAAGTCTC	GTGAGGAAGC	CCTCAATTCA	TTTGTCACCA	3360
TCGCTGAGGA	GCAAGCTCTT	GTTCAAGCTA	AAGCCATTGA	TGAAGCTGGA	ATTGATGCTG	3420
ACAATGTCCT	TTCAGGAATT	CCACTTGCTG	TTAAGGATAA	CATCTCTACA	GACGGTATTC	3480
TCACAACTGC	TGCCTCAAAA	ATGCTCTACA	ACTATGAGCC	AATCTTTGAT	GCGACAGCTG	3540
TTGCCAATGC	AAAAACCAAG	GGCATGATTG	TCGTTGGAAA	GACCAACATG	GACGAATTTG	3600
CTATGGGTGG	TTCAGGTGAA	ACTTCACACT	ACGGAGCAAC	TAAAAACGCT	TGGAACCACA	3660
GCAAGGTTCC	TGGTGGGTCA	TCAAGTGGTT	CTGCCGCAGC	TGTAGCCTCA	GGACAAGTTC	3720
GCTTGTCACT	TGGTTCTGAT	ACTGGTGGTT	CCATCCGCCA	ACCTGCTGCC	TTCAACGGAA	3780
TCGTTGGTCT	CAAACCAACC	TACGGAACAG	TTTCACGTTT	CGGTCTCATT	GCCTTTGGTA	3840
GCTCATTAGA	CCAGATTGGA	CCTTTTGCTC	CTACTGTTAA	GGAAAATGCC	CTCTTGCTCA	3900
ACGCTATTGC	CAGCGAAGAT	GCTAAAGACT	CTACTTCTGC	TCCTGTCCGC	ATCGCCGACT	3960
PTACTTCAAA	AATCGGCCAA	GACATCAAGG	GTATGAAAAT	CGCTTTGCCT	AAGGAATACC	4020
TAGGCGAAGG	AATTGATCCA	GAGGTTAAGG	AAACAATCTT	AAACGCGGCC	AAACACTTTG	4080

–							
			GAAGAAGTCA				4140
TTTATT	ACAT	CATCGCTTCA	TCAGAAGCTT	CATCAAACTT	GCAACGCTTC	GACGGTATCC	4200
GTTACG	GCTA	TCGCGCAGAA	GATGCAACCA	ACCTTGATGA	AATCTATGTA	AACAGCCGAA	4260
GCCAAG	GTTT	TGGTGAAGAG	GTAAAACGTC	GTATCATGCT	GGGTACTTTC	AGTCTTTCAT	4320
CAGGTT.	ACTA	TGATGCCTAC	TACAAAAAGG	CTGGTCAAGT	CCGTACCCTC	ATCATTCAAG	4380
ATTTCG	AAAA	AGTCTTCGCG	GATTACGATT	TGATTTTGGG	TCCAACTGCT	CCAAGTGTTG	4440
CCTATG	ACTT	GGATTCTCTC	AACCATGACC	CAGTTGCCAT	GTACTTAGCC	GACCTATTGA	4500
CCATAC	CTGT	AAACTTGGCA	GGACTGCCTG	GAATTTCGAT	TCCTGCTGGA	TTCTCTCAAG	4560
GTCTAC	CTGT	CGGACTCCAA	TTGATTGGTC	CCAAGTACTC	TGAGGAAACC	ATTTACCAAG	4620
CTGCTG	CTGC	TTTTGAAGCA	ACAACAGACT	ACCACAAACA	ACAACCCGTG	ATTTTTGGAG	4680
GTGACA	ACTA	ATGAACTTTG	AAACAGTCAT	CGGACTTGAA	GTCCACGTAG	AGCTCAACAC	4740
CAATTC.	AAAA	ATCTTCTCAC	CTACTTCTGC	CCACTTTGGA	AATGACCAAA	ATGCCAACAC	4800
FAACGT	GATT	GACTGGTCTT	TCCCAGGAGT	TCTACCAGTT	CTCAATAAAG	GGGTTGTTGA	4860
rgccgg	TATC	AAGGCTGCTC	TTGCCCTCAA	CATGGACATC	CACAAAAAGA	TGCACTTTGA	4920
CCGCAA	GAAC	TACTTCTATC	CTGATAACCC	CAAAGCCTAC	CAAATTTCTC	AGTTTGATGA	4980
ACCAAT	CGGA	TATAATGGCT	GGATTGAAGT	CAAACTAGAA	GACGGTACGA	CCAAGAAAAT	5040
CGGTAT	CGAA	CCTCCCCACC	TAGAGGAAGA	CGCTGGTAAA	AACACCCATG	GTACAGATGG	5100
CTACTC	TTAT	GTTGACCTCA	ACCGCCAAGG	GGTTCCCTTG	ATTGAGATTG	TATCTGAGGC	5160
AGATAT	GCGT	TCTCCTGAAG	AAGCCTATGC	TTATCTGACA	GCCCTCAAGG	AAGTTATCCA	5220
STACGC	TGGC	ATTTCTGACG	TTAAGATGGA	GGAAGGTTCG	ATGCGTGTGG	ATGCCAACAT	5280
CTCCCT	TCGT	CCTTATGGTC	AAGAGAAATT	CGGTACCAAG	ACTGAATTGA	AGAACCTCAA	5340
CTCCTT	CTCA	AACGTTCGTA	AAGGTCTTGA	ATACGAAGTC	CAACGCCAGG	CTGAAATTCT	5400
regete	AGGT	GGTCAAATCC	GCCAAGAAAC	ACGCCGTTAC	GATGAAGCGA	ATAAAGCAAC	5460
CATCCT	CATG	CGTGTCAAGG	AAGGGCTGC	TGACTACCGC	TACTTCCCAG	AACCAGACCT	5520
ACCCCT	CTTT	GAAATTTCTG	ACGAGTGGAT	TGAGGAAATG	CGGACTGAGT	TGCCAGAGTT	5580
rccaaa.	AGAA	CGTCGTGCGC	GTTATGTATC	TGACCTTGGT	TTATCAGACT	ACGATGCTAG	5640
CAGTT	GACT	GCTAATAAAG	TCACTTCTGA	CTTCTTTGAA	AAAGCTGTTG	CCCTAGGTGG	5700
rgatge	CAAA	CAAGTCTCTA	ACTGGCTCCA	AGGGGAAGTC	GCTCAGTTCT	TGAATGCTGA	5760
AGGTA A	4744	СТССААСАА	тесааттсае	ACCAGAAAAC	ጥጥርርጥጥር à à à	ጥርልጥጥርርርልጥ	5920

			198			
CATCGAAGAC	GGTACTATTT	CATCTAAGAT	TGCCAAGAAA	GTCTTTGTCC	ATCTAGCTAA	5880
AAATGGCGGT	GGCGCGCGTG	AATACGTGGA	AAAAGCAGGT	ATGGTTCAAA	TTTCAGATCC	5940
AGCTATCTTG	ATCCCAATCA	TCCACCAAGT	CTTTGCCGAT	AACGAAGCTG	CTGTTGCCGA	6000
CTTCAAGTCA	GGCAAACGTA	ACGCCGACAA	GGCtTTACAG	GATTCCTTAT	GAAGGCAACC	6060
AAAGGCCAAG	CCAACCCACA	AGTTGCCCTT	AAACTACTTG	CACAGGAATT	GGCGAAGTTG	6120
AAAGAAAACT	AGACAGAACA	AAACCAGCCC	TAAGGTTGGT	TTTTTCTTCT	CTACCAACTC	6180
ССААТААСТА	TTTTGGCTTT	ATTTCCAGAG	TATTTTATGG	TAAAATGAAG	AGTAATAATA	6240
PTTATTAAAG	AGGTAAAAAC	ATGATTGAAG	CAAGTACCTT	AAAAGCTGGT	ATGACCTTTG	6300
AAACAGCTGA	CGGCAAATTG	ATTCGCGTTT	TGGAAGCTAG	TCACCACAAA	CCAGGTAAAG	6360
GAAACACGAT	CATGCGTATG	AAATTGCGTG	ATGTCCGTAC	TGGTTCTACA	TTTGACACAA	6420
GCTACCGTCC	AGAGGAAAAA	TTTGAACAAG	CTATTATCGA	GACTGTCCCA	GCTCAATACT	6480
PGTACAAA AT	GGATGACACA	GCATACTTCA	TGAATACAGA	AACTTATGAC	CAATACGAAA	6540
PCCCTGTAGT	CAATGTTGAA	AACGAATTGC	TTTACATCCT	TGAAAACTCT	GATGTGAAAA	6600
PCCAATTCTA	CGGAACTGAA	GTGATCGGTG	TCACCGTTCC	TACTACTGTT	GAGTTGACAG	6660
TGCTGAAAC	TCAACCATCT	ATCAAAGGTG	CTACTGTTAC	AGGTTCTGGT	AAACCAGCAA	6720
CGATGGAAAC	TGGACTTGTC	GTAAACGTTC	CAGACTTCAT	CGAAGCAGGA	CAAAAACTCG	6780
TATCAACAC	TGCAGAAGGA	ACTTACGTTT	CTCGTGCCTA	ATCTCTAGAA	AGAGGTCATT	6840
TATGGGAAT	TGAAGAACAA	CTTGGCGAAA	TCGTTATCGC	CCCACGTGTA	CTTGAAAAA	6900
CATTGCTAT	CGCTACTGCA	AAGGTAGAGG	GTGTTCACTC	TTTTTCAAAC	AGATCAGTGT.	6960
TGATACCCT	TTCAAAACTT	TCACTCGGCC	GTGGCATTTA	TCTTAAAAAC	GTGGACGAAG	7020
ACTCACAGC	AGATATCTAT	CTCTACCTTG	AGTACGGAGT	AAAAGTTCCT	AAGGTAGCGG	7080
TTGCTATCCA	GAAAGCTGTC	AAAGATGCCG	TCCGTAATAT	GGCTGATGTA	GAACTCGCTG	7140
татсаатат	TCACGTTGCA	GGTATCGTCC	CAGATAAAAC	ACCAAAACCA	GAATTGAAAG	7200
TCTATTTGA	CGAGGACTTC	CTCAATGACT	AGTCCACTAT	TAGAATCTAG	ACGCCAACTC	7260
GTAAATGCG	CTTTTCAAGC	TCTCATGAGC	CTTGAGTTCG	GTACGGATGT	CGAAACTGCT	7320
GTCGTTTCG	CCTATACTCA	TGATCGTGAA	GATACGGATG	TACAACTTCC	AGCCTTTTTG	7380
TAGACCTCG	TTTCTGGTGT	TCAAGCTAAA	AAGGAAGAAC	TAGATAAGCA	AATCACTCAG	7440
CATTTAAAAG	CAGGTTGGAC	CATTGAACGC	TTAACGCTCG	TGGAGAGAAA	CCTCCTTCGC	7500
TGGGAGTCT	TTGAAATCAC	TTCATTTGAC	ACTCCTCAGC	TGGTTGCTGT	TAATGAAGCT	7560
TCGAGCTTG	CAAAGGACTT	CTCCGATCAA	AAATCTGCCC	GTTTTATCAA	TGGACTGCTC	7620

AGCCAGTTTG	TAACAGAAGA	ACAATAAGGC	TCTTTGTCAA	CTGTAGTGGG	TTGAAAAAA	7680
GCTAAGCTCG	AGAAAGGACA	AATTTCGTCC	TTTCTTTTTT	GATGTTCAAA	GCGATAAAAA	7740
TCCGTTTTTT	GAAGTTTTCA	AAGTTTCGAA	AACCAAAGGC	ATTGCGCTTG	ATAAGTTTGA	7800
TGAGATTATT	GCTCGCTTCC	AGTTTGGCAT	TAGAATAGTG	TAGTTGAAGG	GCGTTGACAA	7860
TCTTTTCTTT	ATCTTTGAGG	AAGGTTTTAA	AGACAGTCTG	AAAAATAGGA	TGAGCCTGCT	7920
TAAGATTGTC	CTCAATAAGT	CCGAAAAATT	TCTCTGGTTC	CTTATTCTGG	AAGTGAAACA	7980
GCAAGAGCTG	ATAGAGCTGA	TAGTGGTGTT	TCAAGTCTTG	TGAATGGCTC	AAAAGCTTGT	8040
СТААААТСТС	TTTATTGGTT	AAGTGCATAC	GAAAAGTAGG	ACGATAAAAT	CGCTTATCAC	8100
TCAGTCTACG	GCTATCCTGT	TGAATGAGTT	TCCAGTAGCG	CTTGATATCC	TTGTATTCAT	8160
GGGATTTTCG	ATGAAACTGA	TTCATGATTT	GGACACGCAC	ACGACTCATG	GCACGGCTAA	8220
GATGTTGTAC	AATGTGAAAG	CGATCAAGAA	CGATTTTAGC	ATTCGGGAGT	GAAACAGTCT	8280
GGGAGACTGT	TTCAGCCTGA	GCCTAGGAAT	TTGAAAGCGA	AGCTGTTTAG	CCAAGTCATA	8340
GTAAGGGCTA	AACATATCCA	TAGTAATAAT	TTTGACGCGA	CATCGGACAA	CTCTATCGTA	8400
GCGAAGAAAG	TGATTTCGAA	TGATAGCTTG	TGTTCTACCC	TCAAGAACAG	TGATGATATT	8460
GAGATŤGTTA	AAATCTTGCG	CAATGAAGCT	CATCTTTCCC	TTTGTAAAAG	CATACTCATC	8520
CCAAGACATA	ATCTCAGGAA	GACAAGAAAA	ATCATGTTTA	AAGTGAAAAT	CATTGAGCTT	8580
ACGAATAACA	GTTGAAGTTG	AGATGGAAAG	CTGATGGGCA	ATATCAGTCA	TAGAAATCTT	8640
TTCAATCAAC	TTTTGAGCAA	TCTTTTGGTT	GATGATACGA	GGGATTTGGT	GATTTTTCTT	8700
GACGATAGAA	GTTTCAGCGA	CCATCATTTT	TGAACAGTGA	TAGCACTTGA	ATCGACGCTT	8760
TCTAAGGAGA	ATTCTAGTAG	GCATACCAGT	CGTTTCAAGA	TAAGGAATTT	TAGAAGGTTT	8820
TTGAAAGTCA	TATTTCTTCA	ATTGGTTTCC	GCACTCAGGG	CAAGATGGGG	CGTCGTAGTC	8880
CAGTTTGGCG	ATGATTTCCT	TGTGTGTATC	CTTATTGATG	ATGTCTAAAA	TCTGGATATT	8940
AGGGTCTTTA	ATGTCTAGTA	ATTTTGTGAT	AAAATGTAAT	TGTTCCATAT	GAATCTTTCT	9000
AATGAGTTGT	TTTGTCGCTT	TTCATTATAG	GTCATATGGG	ACTTTTTTTC	TACAATAAAA	9060
TAGGCTCCAT	AATATCTATA	GGGGATTTAC	CCACTACAAA	TATTATAGAG	CCAACAATAA	9120
AAAGAAAAAG	TGTTTGATAG	ATATCAAACA	CTTTTTTCTT	TGCCTCCCAC	TATCTAAAAA	9180
AATGATAATA	GATATAATTG	TAAACAAAAA	TCCAGATAGG	TTTTGCATGA	TTGAGAAAGT	9240
TAAAAAAACT	ATGGCAGAGA	ATCGTTAATC	TCAGATTGTC	GGTAGAACGA	TAAACAAGGG	.9300
CAAAAAAGAA	ACCAATCAGA	CTATAATATA	ATAAACTAAT	TGGATCTCTG	TGAGATAGTA	9360

200 TCAAATGGCT AATCCCAAAG ATGATAGCAG ATAGGATAAC ATCCAAATAG TACTTGGACT 9420 AGGGAAAGAA GGTATTCATA AAATACCCTC TATCAAGAGT CTCCTCAAAA ACAGGACCGA 9480 TGATTACAGG CAGGACAAAA GATAAGATAG TCGATAAAAA GGTTGGTTGT CCATTTGAAA 9540 AAAGCACGGT AAAATACTCA TCATGAATAT TCCTATGATT AATCAAATGA GCATAGCGTG 9600 CCCAAAAATT ACCGAGAATC TGATAAACCA CATAAGTTGC AAATAAGTAG AAGACAAATG 9660 ACCAGTTCCA GCTCTTTTTC TCAAAGATAA AGAGCATCTT TTTCTTTTTT AACCTCCAAA 9720 TTAATAGAAG GAAACTTCCC ACTAATCCCA TTGTTAAAAT AAGAGAATAG ACATCAGCTC 9780 CTAACCCTAA AATGATCGTC ACATACAATC CAATTGTTTG TGGTAAATAG GTAGATAGTA 9840 AAATAATAAG CAAAAATATT CCAAATTGTC TTAGTTTTTT TGTGTTTCTC ATCGTACTTT 9900 TTTGAAAGAT TACCCTGCTC GGAAGCCGTA CTTCCAAGCA TCTATATAAG AATTAAGTGC 9960 CCCTTGCCTC ATATAGGGAG CAAATTCTCT ATAATATAAC CATCTACTAT ATCCATCTTC 10020 CCAAACAGCA AGACCACCTG AAGTTTGCTC CAAGTCCTCA GTTGAAAGAA CTGTAAATGT 10080 ATTTGTACCT GTCATTGCAA GTACCTTCTT AAAATAGATT GTTGTAGGCT CACATTTATA 10140 GTATATTCT TTTTTGTCT ATTTTATAGC CCATCTCCTC AACTGGCAAT TTTTCGACCT 10200 GAATTACATT TTTCCATAAA AAATGAGACC TTTCTAGTCT CATTTAGTCA TTCTTAGTAT 10260 TTTCTAAATC GTTGATAGCG TTCTTCCAGC AACTCTTCTA GCGGTTTTTG TGAAAGTCTA 10320 GCCAGCTCCG TTTGGAGTTC TTTTTTGACA CTCTTAATCA GTTCTTTACT AGAAAGTCCT 10380 ATTTCAGAAA TCACCTTATC CACCACGTCC ATTTCTAACA GTTCATGCGA AGTGATTTTC 10440 ATCAGTTCTG CTGCTTCCAT AGCGCGAGTA CCGTCCTTCC ATAAAATGGA AGCAAAGCCT 10500 TCTGGACTGA GAATGGCATA GATAGAATTT TCCAGCATCC AGACACGGTC CGCGACAGCT 10560 AGAGCCAGAG CCCCGCCTGA ACCACCTTCA CCGATAATAA TGGCGATAAT AGGAACTTTC 10620 AGGTCACTCA TTTCCATGAG ATTGCGAGCG ATAGCTTCCC CTTGACCACG TTCTTCCGCT 10680 CCGACACCAG GATAAGCACC TGCTGTATTG ATAAAGGTCA CAACTGGACG GCCAAATTTC 10740 TCAGCCTGTT TCATCAACCG CAGTGCCTTT CGGTAGCCTT CTGGATGTGG TTGGCCAAAA 10800 TTCCGTTTGA GGTTGTCTTG CAAACTCTTG CCTTTTTGGA TACCAACCAC TGTTACAGCT 10860 TGGTCTCCAA GCCAACCAAT ACCACCAACA ACTGCACCAT CATCACGAAA AGAACGGTCA 10920 CCATGTAATT GGATAAATTC ATCAAAAATG CCTGTCGCAA AGTCCAAGGT TGTCAAGCGA 10980 CTCTGCTCAC GCGCTTCTCT GACTATTTTT GCAATATTCA TCTAGGACTC CCTCCATGCA 11040 ATCTGACTAG GCTAGCAATC GTATCTGGTA AGTCTCTTCT TTTGACAATA GCATCCACAA 11100 AGCCATGTTC TAATAGGAAT TCTGCCTTTT GGAAATCCTC AGGCAAGCTT TCACGAACCG 11160

TATTTTCAAT	CACACGACGC	CCAGCAAAAC	CAACCAAGCT	CTGTGGTTCA	GCCAGAATGA	11220
TATCGCCTTC	CATAGCGAAA	GAAGCTGTCA	CACCACCAGT	CGTTGGATCT	GTCAAAATGG	11280
TCAGGTAAAA	GAGACCAGCA	TTTGAATGGC	GTTTAACCGC	CGCAGAGATC	TTAGCCATCT	11340
GCATGAGACT	CATGATTCCT	TCCTGCATAC	GGGCTCCACC	AGAGGCTGTG	AATAGGACAA	11400
CTGGCAATTT	TTCGACAGTC	GCATACTCAA	ACAAACGAGT	GATTTTTTCA	CCTACAACCG	11460
TACCCATAGA	AGCCATGATA	AAGTTAGAAT	CCATAATCCC	AAGAGCCACA	GTCTGACCTT	11520
TAATAAGAGC	AGTTCCTGTC	ACAACGGCTT	CATGCAGACC	TGTTTTTCA	CGCATAGATG	11580
CCAGTTTCTT	TTGGTAACCA	GGGAAATGCA	AGGGATCCTT	GCTTTCAATC	CCTGTAAACA	11640
ATTCTTTGAA	GGTTCCCATA	TCAATCGTCA	AAGCCAAGCG	TTCTTGGGCA	GAAATACGAA	11700
AGGTATAGCT	ACAGTGCGGA	CAGATACGTT	CACTTCCCAG	ATCCTTCTGA	TAGATGGTAT	11760
GCTTACAGCC	TGGACACTGG	GAAAATAATT	CATCTGGAAC	CTCTGGCTTA	GCTTGAGGTT	11820
TTTCCCTAAC	CGAACGATTG	GGATTGATTC	GAATATACTT	ATCTTTTTTA	CTAAATAGAG	11880
CCATTGATTC	CCCTTTTCGG	TTTAAACTCT	TAAAGTCATT	TTATTCTTTT	TCTTGATATT	11940
TAGGTAAGAA	GGTTTCCATC	AAGAAGGAAG	TATCATAATC	CCCAGCAATG	ACATTGCGAT	12000
CTGAAATGAG	GTCAAGCTGG	AAATCTGCAT	TGGTCTGCAC	TCCTTCAATT	TCTAATTCAT	12060
AGAGGGCACG	TTGCATTTTC	ATCAAGGCGT	CAAAACGATT	TTCGCCGTGT	ACTATGATTT	12120
TGGCAATCAT	ACTATCATAA	TAAGGCGGAA	TGGTATAACC	TGGATAAACT	GCTGAATCCA	12180
CGCGCAAGCC	AACTCCACCA	CTTGGCAGAT	AGAGATTAGT	AATCTTACCT	GGACTTGGAG	12240
CAAAGTTAAA	GGCTGGGTTT	TCTGCATTGA	TACGACACTC	GATGGCATGA	CCGCGTAGGA	12300
CAATATCTTC	TTGCTTAACA	GACAAAGGCT	GACCTGCCGC	AATGCAAATC	TGTTCCTTAA	12360
CGATATCAAC	ACCTGAAACA	AACTCTGTTA	CTGGATGTTC	TACCTGAACA	CGAGTATTCA	12420
TCTCCATGAA	ATAGAAATTG	CTACTTGCTT	CATCAAGAAG	AAATTCAATG	GTTCCTGCAT	12480
TCTCATAGCC	AACAAACTCT	GCCGCTCGAA	CAGCAGCAGC	ACCTATTTCA	TGACGCAGCG	12540
TTTTTCCGAT	TGCAATCGAG	GGACTTTCTT	CCAAAACCTT	TTGGTTATTC	CTTTGAAGAG	12600
AACAATCCCG	TTCACCCAAG	TGAATCACAT	GTCCATGCTC	ATCACCTAGG	ATTTGAACCT	12660
CAATGTGCCG	AGCTGGATAG	ATAACCCGTT	CTATGTACAT	GGCACCATTG	CCATAATTGG	12720
CCTTGGCCTC	ACTAGAGGCA	GTTTCAAAGG	CAGAAACGAG	GTCATCTGGT	TTTTCAACCT	12780
TACGAATCCC	TTTACCACCT	CCACCTGCTG	AAGCCTTGAG	CATAACAGGA	TAGCCAATTT	12840
TTTCAGCAAC	AATCAAAGCT	TCTTCAGAGT	TATGCACTTC	TCCATCTGAA	CCTGGTATAA	12900

CAGGCACACC TGCTTTAATC ATCTGAGCAC GCGCATTGAT CTTATCCCCC ATCATATCCA 12960 TAACATGACC AGATGGACCG ATAAACTTGA TACCTACTTC TTCACACATG GTCGCAAATT 13020 TGGAATTTTC ACTGAGAAAT CCAAAACCAG GGTGAATAGC TTCTGCCTCA GTCAAGACTG 13080 CAGCTGATAG AACTGCATTA ATATTGAGAT AAGACTCTGT TGCCTTGCCA GGACCAATAC 13140 AAACTGCTTC ATCTGCCAAA AGCGTATGAA GAGCTTCCTT ATCAGCAGTT GAATAAACCG 13200 CTACCGTCGC AATCCCCAAT TCACGTGCCG CACGGATAAT ACGAACCGCA ATTTCACCAC 13260 GATTGGCAAT TAAAATTTTT CGAAACATGG AGAACCTCCT TAGTTCCCAA TTGCAAAAGT 13320 AAGGGTACCA CTGGCTGCAA GCTTGCCATC CACTTCAGCC TTTGCTTCAA CCACAGCTAT 13380 GGTGCCACGA CGTTTTACAA AAGTCGCTGT CATAACCAAT TGGTCGCCTG GTACAACTTG 13440 CTTCTTGAAC TTAACCTTGT CCATACCAGC GTAAAAGACC AGTTTTCCTT TATTTTCAGG 13500 TTTTGATAAC TCCAACACAC CGGCAGTTTG CGCCAAGGCT TCCATAATCA CAACACCTGG 13560 CATAACTGGG TATTGAGGAA AGTGGCCGTT AAAGAAAGGC TCGTTGATGG TCACATTTTT 13620 GATAGCAACA ATGGTATCCT CGCTCACTTC CAAGACACGG TCCACTAGAA GCATAGGATA 13680 ACGGTGGGGA AGAGCTTCTT TGATTCCTTG AATATCGATC ATTTGATACG TACCAATCCT 13740 TTACCAAACT CAACCATTC TTCGTTAGAG ACGAGAATTT CCGTTACCAC ACCATCCTTA 13800 GGAGCTGGGA TTTCATTCAT GACTTTCATG GCTTCGATAA TTACCAATGT TTGACCTTTT 13860 TTGACACTAT CACCAACTGT AACGAAGGCA GGTTTATCTG GTCCAGCAGC CAAGTAAACC 13920 ACTCCAACAA GTGGACTCTC TACAAGATTT CCCTCAGTAG CCACACTTGC TTCAGCTGGA 13980 GCTGGAACTT CTTCTGCTAC AGTCTCTGCT GGAGCAGATG TAGGAGCTAC TGGACTCGGT 14040 GTTGCTAGAA CGGGTGCTGG AGCGACTTGA GTTGCAACTT CAGGCACAGG TCTTGCTTCA 14100 TTCTTGCTAA ACTGCAACTC ATCCGTCCCA TTTTTATAAG AAAATTCTCT CAAACTTGAC 14160 TGGTCAAATT GAGTCATCAA GTCTTTAATA TCGTTTAAAT TCATACTTAT CTATTCTCCC 14220 AACGTTTGAA AGCAAGAACT GCATTGTGGC CTCCAAAACC AAAAGTATTT GAAATAGCGT 14280 ATGGAATTTC TTTCTCCAAG CCTTGTCCAT AAACGACATT AGCTTCGATA TAATCTGATA 14340. CTTCACTTGT CCCAGCTGTC ATTGGTACAA AGTTATGACG CATAGCTTCG ATGGTGACGA 14400 TAGCTTCTAC TGCACCCGCA GCCCCCAGCA AATGTCCTGT AAAAGACTTG GTTGATGATA 14460 CAGGTACTTC CTTACCAAGA ACAGCTACGA TAGCACCACT TTCTCCTTTT TCATTGGCAG 14520 GAGTTGACGT TCCGTGAGCA TTGACATAGG CTACTTGCTC TGGAGAAATC TCAGCTTCTT 14580 CCAAGGCTAG TTTGATGGCC TTGATAGCTC CCTGACCTTC TGGATGTGGA GAAGTCATGT 14640 GGTAGGCATC ACAAGTATTT CCGTAACCAA CCACTTCAGC CAGGATAGTA GCTCCACGTT 14700

PCT/US97/19588

TTTCAGCGTG	TTCAAGACTT	TCTAGAACCA	ACATCCCTGA	ACCTTCACCC	ATAACAAACC	14760
CATTGCGATC	СТТАТСАААТ	GGGATCGAAG	CACGAGTTGG	ATCCTCTGTA	GTAGAGAGAG	14820
CTGTTAAGGC	TTGGAAACCA	GCGATGGCAA	AAGGTGTGAT	AGAAGCTTCT	GTTCCTCCCA	14880
CCAACATCAC	ATCTTGGAAA	CCAAACTTAA	TGGAGCGGAA	GGCATCCCCA	ATCGCATCAT	14940
TTGATGAAGA	GCAGGCAGTA	TTGATAGATT	TACAAACACC	GTTTGCACCA	AAACGCATGG	15000
CTACATTCCC	AGAAGCCATA	TTTGGTAAAG	CTTTTGGAAG	AGTCATTGGT	TTGACACGTT	15060
TGGGTCCTTT	TTCATGAAGG	CGAAGTACCT	GATCTTCAAT	TTCCTTGATT	CCACCAATAC	15120
CAGATGCAAC	GATAACACCA	AAACGATCCC	TATTAAGAGC	CTCTACATCA	AGATTGGCAT	15180
GATTTACAGC	CTCTTGGGCT	GCATACAAGG	CATATAAAGA	ATAGTTATCA	AAACGGTTGG	15240
TATCTTTTTT	TACAAAGTAT	TTATCGAACG	GAAAATCTTG	GATTTCTGCC	GCATTATGCA	15300
CATCAAAGTC	ACTATGATCA	AATTTTGTAA	TGCCACCAAT	GCCGATTTTC	CCAGTTGCTA	15360
AACTATTCCA	AAATTCTTCT	GGTGTATTTC	CGATTGGAGA	TGTTACTCCA	TAACCTGTTA	15420
CCACTACTCG	ATTTAGTTTC	ATTCTTTTCA	CCTCTAGCTT	TCGCTACAȚA	CTTAAGCCAC	15480
CATCAATGGC	AACCACTTGT	CCAGTTAGAT	AATCTTGGCC	ТССТАААААТ	ACTGTCAAAT	15540
CTGCAACCTG	CTCTGCCTGC	CCAAATTCTT	TCATCGGAAT	CTGAGCTAGT	GTAGCTTCCT	15600
TAATCTTATC	TGACAGGATA	GCGGTCATAT	CAGACTCAAT	CATTCCTGGA	GCAATCACAT	15660
TGACTCGTAT	ATTCCGACTA	GCGACCTCGC	GTGCCACAGA	CTTGGTAAAG	CCAATCAAGC	15720
CAGCCTTAGA	AGCAGCATAA	TTAGCTTGAC	CAATATTCCC	CATCAAACCA	ACAACACTAG	15780
ACATATTAAT	GATAGCACCT	TCTCTGGCTT	TCATCATCGG	TTTCAAGACT	GATTGTGTCA	15840
TATTAAAGGC	ACCAGTCAGA	TTGACCTTGA	GCACTTTTTC	AAAATCTGCT	TCTGTCATCT	15900
TGAGCATAAG	AGTATCTTGG	GTAATCCCTG	CATTGTTGAC	CAAAACATCT	ACTGAACCCA	15960
GTTCTGCAAT	AGCTTGATCA	ATCATACGCT	TAGCGTCTGC	AAAATCTGAT	ACATCTCCTG	16020
AAATGGGAAC	CACCTTGATA	CCATAGTTTG	AAAACTCAGC	GAGCAATTCT	TCTGAGATTG	16080
CCCCACGACT	GTTTAAGACA	ATGTTGGCTC	CTGCTTGAGC	AAACTTGTGG	GCGATGGCAA	16140
GACCAATTCC	ACGACTCGAA	CCTGTAATAA	AGATATTTT	ATGTTCTAGT	TTCATTTTTT	16200
TCCTTTCAAA	ACTTCTACTT	ATTTTAGTCT	ATTTTTCTAA	AAGTGCTACT	AAACTCGCTT	16260
GATCTTCCAC	ATGAGCTAAG	TGAGCAGTTT	GATCAATTTT	TTTAACAAAA	CCTGACAAGA	16320
CTTTCCCCGG	TCCAATCTCG	ATAAAGTTGC	TTATGCCTGC	TTCTTGCATG	ACCCCAATAC	16380
TTTCATAGAA	ACGAACGGGT	TCCTTGACCT	GACGCGTCAA	GAGCTGAGCA	ATGTCCTCTT	16440

			204			
TTTGCATCAC	AGCAGCTTCT	GTATTGCCGA	CTAGGGGACA	AGTAAAATCT	GAAAAACTTA	16500
CCTGAGCTAG	AGTTTCAGCT	AGTTTCTGGC	TAGCAGGTTC	AAGGAGAGCG	GTGTGAAAGG	16560
GACCTGACAC	CTTAAGAGGA	ATCAAGCGTT	TGGCACCTGC	TTCTTGCAAA	AGTTCAACCG	16620
CTCGATCAAC	TGCAACCACT	TCTCCAGCAA	TGACGATTTG	TGCAGGTGTG	TTATAGTTGG	16680
CTGGAGTAAC	CACTCCAAGT	TCAGAAGCTT	TTTGACAGGC	TTCTTCAATG	ACCTCTACTG	16740
GCGTATTGAG	AACTGCTACC	ATCTTGCCAG	AGTCAGCAGG	AGCCGCTTCT	TCCATATAGG	16800
CTCCACGCTT	AGCTACCAAG	GCAACCGCAT	CTTCAAAATC	CAAGGCGCCA	CTTGCCACCA	16860
AGGCAGAGTA	TTCTCCAAGA	GACAAACCAG	CAACCATATC	AGGCTGATAG	CCCTTTTCTT	16920
GCAATAAACG	GTAGATAGCA	ACCGAAGTCG	CTAGAATGGC	TGGTTGCGTA	TAGCGGGTCT	16980
GATTGAGTTT	GTCTTCTTCC	GTATCGATGA	GATAACGCAA	ATCATAACCG	AGCACCTGGC	17040
TCGCTCGATC	AATCGTTTCT	TTAACAATCG	GATACTGATC	ATAGAAATCC	CGTCCCATCC	17100
CTAGATACTG	GGCACCTTGA	CCAGCAAATA	AAAAGGCTGT	TTTAGTCATT	TCTTACAACT	17160
CCTGTCCAGC	GAGAGGCTTC	TTCTTGAATT	TTCTTAGCGG	CTCCGTAATA	CAAATCTTTT	17220
AGGATTTCTT	CAGCTGTTTC	TTCTTTAGAA	ACAAGCCCTG	CGATTTGACC	TGCCATAACA	17280
GAGCCACCAT	CCACATCACC	GTGAACAACT	GCTTTGGCTA	GAGCACCTGC	TCCCATTTGT	17340
TCAAAGATTT	CTAAATCAGG	ATCTTCTTGC	TTAAAGGCAT	CTTTTTCAGC	CAGTTCAAAA	17400
TCTCTAGTCA	ACTGATTTTT	AATAGCACGA	ACAGCATGAC	CAAAGTGCTG	AGCTGAAATC	17460
GTAGTATCAA	TATCCCTTGC	TTTAAAATT	TTCTCCTTGT	AGTTTGGATG	GGCATTCGAC	17520
TCTTTTGCAA	CTACAAACCG	TGTCCCCACC	TGTACAGCCT	CTGCACCTAG	CATAAAGCCA	17580
GCCGCAGCAC	CTTCACCATC	CGCAATTCCT	CCTGCAGCAA	TAACAGGAAT	AGATATAGCT	17640
GTGGCTACCT	GTCGCACCAA	GGTCATGGTT	GTTAATTTAC	CGATATGCCC	CCCAGCTTCC	17700
ATTCCTTCTG	CAATAACAGC	GTCTGCACCG	ATTTTTTCCA	TGCGTTTAGC	TAAAGCGACA	17760
CTAGGAACAA	CAGGAATAAC	GATTATCCCA	GCTTCATGGA	AACGTTCCAT	ATACTTGCTT	17820
GGATTTCCTG	CTCCTGTTGT	GACAACTTTA	ACACCTTCTT	CAATAACGAG	ATCCACGATG	17880
TCTTCCACAA	AGGGAGATAA	GAGCATGATG	TTGACCCCAA	AGGGTTTATC	AGTCAATGAT	17940
TTGATTTTAT	CAATATTGGC	CTTGACAACT	TCTTTCGGGG	CATTTCCCCC	ACCGATAATT	18000
CCTAATCCTC	CAGCCTTGGA	AACAGCCCCT	GCCAAATCAC	CATCAGCAAC	CCAGGCCATC	18060
CCTCCTTGGA	AAATAGGATA	ATCAATCTTC	AATAATTCTG	TAATACGCGT	TTTCATAGTG	18120
CCTCCAACCT	TCCTTGCTTA	CGTAATAGTT	CGATTTCACC	ATAATTTGAC	AGTCAAACTA	18180
TTACCTAAAC	AAGAGGGAGT	GGGTTTCTCC	CTACTCCTTC	TACTAATATT	CTGCTTATTT	18240

TGCTTGCTCT	TCAACGTAAG	CAACCAAGTC	ACCAACTGTT	TTCAAGTCAT	TTTCTGCTTC	18300
GATTTGGATA	TCAAAAGCAT	CTTCGATTTC	TGAGATTACT	TGGAACAAGT	CCAATGAATC	18360
TGCGTCCAAA	TCATCAAAAG	TTGATTCAAG	TGTTACTTCT	GATGCGTCTT	TTCCAAGTTC	18420
TTCAACGATA	ATTTCTTGTA	CTTTTTCAAA	TACTGCCATG	ATAGGACTCC	TTTAAAATAA	18480
ATAGTTTTT	TATAACAATG	TGTTCACCAC	ATGATTACCT	AAATTGTAAG	AATGAGCGTG	18540
CCCCAGGTCA	AGCCTCCACC	GAAGCCTGAT	AGAAGAACAG	TCTGGCTACC	ATCTAAAGGG	18600
ATGAGACCTT	GTTCTACACA	CTCTGAAAGT	AAAATCGGGA	TACTGGCTGC	ACTGGTATTG	18660
CCATATTCCA	TCATATTGGC	TGGAAGTTTG	GCTCGGTCAA	CACCAATTTT	TCTAGCCATC	18720
TTATCCAAAA	TACGGTCATT	GGCTTGATGA	AGTAGCAGAT	AATCCAAGTC	TGTCACCTCT	18780
ATAGGAGATT	CATCAATAGT	CTGCTTGATA	GACTTGGCTA	CATCTCGAAT	GGCAAAATCA	18840
AAGACTGTGC	GTCCATCCAT	CTTCAAAAAC	GAATCTGCAC	TTTCTTGATC	TGAAAATGGA	18900
GAATGTAAAC	CTGAATGCCC	ATAAGTTAAA	CACTCGCTGC	GACTTCCATC	GCTATTGAGA	18960
CTCTCAGCTA	AGAAATGCTC	TTGCTCGCTA	GCTTCTAACA	AGACACCACC	AGCACCATCT	19020
CCAAACAACA	CAGCTGTTGA	TCGATCCGAC	CAATCGACTG	CCTTAGAGAG	GGTTTCACTA	19080
CCAATCACCA	AGCCTTTTTG	AAAGCGACCA	GAAGCGATAA	ACTTTTCAGC	AGTTGAAAGA	19140
GCAAATACAA	ATCCACTGCA	AGCCGCGGTT	AAGTCAAAAG	CAAAGGCTTT	ATTAGCACCA	19200
ATATTAGCTT	GAACACGAGC	AGCTGTAGAG	GGCATCATCG	AATCTGGAGT	AATGGTAGCT	19260
AGGATGATAA	AATCCAGTTC	TTCTCCTGTT	ATTCCAGCTT	TTGCCATCAG	TTTCTTAGCA	19320
ACCTCTGTAG	CCAAATCACT	GGTAGATTCT	GTTCTTGAAA	TATGCCTTTG	TCGTATTCCC	. 19380
GTTCGACTTG	AAATCCACTC	ATCATTGGTA	TCCATAATCT	GAGCCAAGTC	GTGATTTGTA	19440
ACCACTTGCT	CTGGCACATA	ATGAGCAACC	TGACTTATTT	TTGCAAAAGC	CATTATTTCA	19500
AATCCTCCAA	AAATTGGTAA	AGATTAGTCA	AACCTTTACC	CATGACAGCA	ATTTCTTCCT	19560
CGCTCATGCC	ATCAATAATT	TTTTCTACCA	TGGCCTTGTG	GAAGCGTTTA	TGCAGTCTAT	19620
GAATCAAGCG	ACCCTTCTTT	GTCAAATGCA	GATGCACCAC	ACGACGATCC	TGTTCTGACC	19680
GAACTCGCTC	AATGTAGCCC	GG				19702

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6211 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

TTTTAAGAGG AAAGAAAGGG GAATAATGGA GAAAATCAGT TTAGAATCTC CTAAGACGGG GTCGGACCTA GTTTTGGAAA CACTTCGTGA TTTAGGAGTT GATACCATCT TTGGTTATCC TGGTGGTGCG GTTTTGCCTT TTTATGATGC GATATATAAT TTTAAAAGGCA TTCGCCACAT TCTAGGGCGC CATGAGCAAG GTTGTTTGCA TGAAGCTGAA GGTTATGCCA AATCAACTGG AAAGTTGGGT GTTGCCGTCG TCACTAGTGG ACCAGGAGCA ACAAATGCCA TTACAGGGAT TGCGGATGCC ATGAGCGATA GCGTTCCCCT TTTGGTCTTT ACAGGTCAGG TGGCGCGAGC AGGGATTGGG AAGGATGCCT TTCAGGAGGC AGACATCGTG GGAATTACCA TGCCAATCAC TAAGTACAAT TACCAAGTTC GTGAGACAGC TGATATTCCG CGTATCATTA CGGAAGCTGT CCATATCGCA ACTACAGGCC GTCCAGGGCC AGTTGTAATT GACCTACCAA AAGACATATC TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC TCTTGAGCCG AATGATAGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGG AGGCATCCC CGTTTCGATC CAGCAAATAT TGCTATGACC GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCA GTGCAGACAT TCCTGTAGTT GGAACAGCTT AGACAGCCTT TGGAAATGGC AAGAATTACA GTGCAGACAT TCCTGTAGTT GGAACAGCTA AGAAGGCCTT TGGAAATGGC AAGAATTACA CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAACAGACT CACTAAAAGAC AAGAATCTG TTCGTTCTTA TGGTAGAAAA GAGCGTTTA AGAAGGCCTT TCAACCAGAAAAAAAAAAAAAAAAAAAAA	120 180 240 300 360 420 480 540 660 720 780
TGGTGGTGCG GTTTTGCCTT TTTATGATGC GATATATAAT TTTAAAGGCA TTCGCCACAT TCTAGGGCGC CATGAGCAAG GTTGTTTGCA TGAAGCTGAA GGTTATGCCA AATCAACTGG AAAGTTGGGT GTTGCCGTCG TCACTAGTGG ACCAGGAGCA ACAAATGCCA TTACAGGGAT TGCGGATGCC ATGAGCGATA GCGTTCCCCT TTTGGTCTTT ACAGGTCAGG TGGCGCGAGC AGGGATTGGG AAGGATGCCT TTCAGGAGGC AGACATCGTG GGAATTACCA TGCCAATCAC TAAGTACAAT TACCAAGTTC GTGAGACAGC TGATATTCCG CGTATCATTA CGGAAGCTGT CCATATCGCA ACTACAGGCC GTCCAGGGCC AGTTGTAATT GACCTACCAA AAGACATATC TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTCC CACATTGATA TTGACCCAGC TGAGAATGCC AAGACTTCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGCCCTT TGAGGATTGC CAACAATCC CTAAGAATGC TAAGGTTCC CACATTGATA AGAAGCCCTT TGAGGATTGC CAACAATCC CAACAACACCT GAAAAGTGGA TTGAGCAAAGT CACTAAAAGAC AAGAATCCTG TTCGTTCTTA TGATAAGAAA GAGCGTTTGG TTCAACCGCA	240 300 360 420 480 540 660 720
TCTAGGGCGC CATGAGCAAG GTTGTTTGCA TGAAGCTGAA GGTTATGCCA AATCAACTGG AAAGTTGGGT GTTGCCGTCG TCACTAGTGG ACCAGGAGCA ACAAATGCCA TTACAGGGAT TGCGGATGCC ATGAGCGATA GCGTTCCCCT TTTGGTCTTT ACAGGTCAGG TGGCGCAGC AGGGATTGGG AAGGATGCCT TTCAGGAGGC AGACATCGTG GGAATTACCA TGCCAATCAC TAAAGTACAAT TACCAAGTTC GTGAGACAGC TGATATTCCG CGTATCATTA CGGAAGCTGT CCATATCGCA ACTACAGGCC GTCCAGGGCC AGTTGTAATT GACCTACAA AAGACATATC TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTTCG CTAAGAATGC TAAGGTTGCC CACCATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAAGTGGA TTGAGAAAGT CACTAAAAGAC AAGAATCCTG TTCGTTCTTA TGATAAGAAA GAGCCGTGTGG TTCAACCGCA	300 360 420 480 540 600 660 720
AAAGTTGGGT GTTGCCGTCG TCACTAGTGG ACCAGGAGCA ACAAATGCCA TTACAGGGAT TGCGGATGCC ATGAGCGATA GCGTTCCCCT TTTGGTCTTT ACAGGTCAGG TGGCGCGAGC AGGGATTGGG AAGGATGCCT TTCAGGAGGC AGACATCGTG GGAATTACCA TGCCAATCAC TAAGTACAAT TACCAAGTTC GTGAGACAGC TGATATTCCG CGTATCATTA CGGAAGCTGT CCATATCGCA ACTACAGGCC GTCCAGGGCC AGTTGTAATT GACCTACCAA AAGACATATC TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTGC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAAGTGGA TTGAGCAAGC CACCTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	360 420 480 540 600 660 720
TGCGGATGCC ATGAGCGATA GCGTTCCCCT TTTGGTCTTT ACAGGTCAGG TGGCGCAGC AGGGATTGGG AAGGATGCCT TTCAGGAGGC AGACATCGTG GGAATTACCA TGCCAATCAC TAAGTACAAT TACCAAGTTC GTGAGACAGC TGATATTCCG CGTATCATTA CGGAAGCTGT CCATATCGCA ACTACAGGCC GTCCAGGGCC AGTTGTAATT GACCTACCAA AAGACATATC TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGCAGAC CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	420 480 540 600 660 720
AGGGATTGGG AAGGATGCCT TTCAGGAGGC AGACATCGTG GGAATTACCA TGCCAATCAC TAAGTACAAT TACCAAGTTC GTGAGACAGC TGATATTCCG CGTATCATTA CGGAAGCTGT CCATATCGCA ACTACAGGCC GTCCAGGGCC AGTTGTAATT GACCTACCAA AAGACATATC TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGCAGCA CACCTAAAGGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	480 540 600 660 720
TAAGTACAAT TACCAAGTTC GTGAGACAGC TGATATTCCG CGTATCATTA CGGAAGCTGT CCATATCGCA ACTACAGGCC GTCCAGGGCC AGTTGTAATT GACCTACCAA AAGACATATC TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	540 600 660 720
CCATATCGCA ACTACAGGCC GTCCAGGGCC AGTTGTAATT GACCTACCAA AAGACATATC TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGCAGCA CACCTAAAGGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	600 660 720
TGCTTTAGAA ACAGACTTCA TTTATTCACC AGAAGTGAAT TTACCAAGTT ATCAGCCGAC TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGAATGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGCAAGC CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	660 720
TCTTGAGCCG AATGATATGC AAATCAAGAA AATCTTGAAG CAATTGTCCA AGGCTAAAAA GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	720
GCCAGTCTTG TTAGCTGGTG GTGGAATTAG TTATGCTGAG GCTGCTACGG AACTAAATGA ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	
ATTTGCAGAA CGCTATCAAA TTCCAGTGGT AACCAGTCTT TTGGGACAAG GAACGATTGC AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	780
AACGAGTCAC CCACTCTTC TTGGAATGGG AGGCATGCAC GGGTCATTCG CAGCAAATAT TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	
TGCTATGACG GAAGCGGACT TTATGATTAG TATTGGTTCT CGTTTCGATG ACCGTTTGAC GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	840
GGGGAATCCT AAGACTTCG CTAAGAATGC TAAGGTTGCC CACATTGATA TTGACCCAGC TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	900
TGAGATTGGC AAGATTATCA GTGCAGACAT TCCTGTAGTT GGAGATGCTA AGAAGGCCTT GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	960
GCAAATGTTG CTAGCAGAAC CAACAGTTCA CAACAACACT GAAAAGTGGA TTGAGAAAGT CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	1020
CACTAAAGAC AAGAATCGTG TTCGTTCTTA TGATAAGAAA GAGCGTGTGG TTCAACCGCA	1080
	1140
ACCACHINATIO CAACCAATING CHICAATINGAG CAATICGAGATI COOLINGOTOG DAACAC	1200
AGCAGITATT GAACGAATTG GTGAATTGAC GAATGGAGAT GCCATTGTGG TAACAGACGT	1260
TGGTCAACAC CAAATGTGGA CAGCTCAGTA TTATCCCTAC CAAAATGAAC GTCAGTTAGT	1320
GACTTCAGGT GGTTTGGGAA CAATGGGCTT TGGAATTCCA GCAGCAATCG GTGCTAAAAT	1380
TGCTAACCCA GATAAGGAAG TAGTCTTGTT TGTTGGGGAT GGTGGTTTCC AAATGACCAA	1440
CCAGGAGTTG GCTATTTTGA ATATTTACAA GGTGCCAATC AAGGTGGTTA TGCTGAACAA	1500
TCATTCACTT GGAATGGTTC GCCAGTGGCA GGAATCCTTC TATGAAGGCA GAACATCAGA	1560
GTCGGTCTTT GATACCCTTC CTGATTTCCA ATTGATGGCG CAGGCTTATG GTATTAAAAA	1620
CTATAAGTTT GACAATCCTG AGACCTTGGC TCAAGACCTT GAAGTCATCA CTGAGGATGT	

TCCTATGCTA	ATTGAGGTAG	ATATTTCTCG	TAAGGAACAG	GTGTTACCAA	TGGTACCGGC	1740
TGGTAAGAGT	AATCATGAGA	TGTTGGGGGT	GCAGTTCCAT	GCGTAGAATG	TTAACAGCAA	1800
AACTACAAAA	TCGTTCAGGA	GTCCTCAATC	GCTTTACAGG	TGTCCTATCT	CGTCGTCAGG	1860
TTAATATTGA	AAGCATCTCT	GTTGGAGCAA	CAGAAGATCC	GAATGTATCG	CGTATCACTA	1920
TTATTATTGA	TGTTGCTTCT	CATGATGAAG	TGGAGCAAAT	CATCAAACAG	CTCAATCGTC	1980
AGATTGATGT	GATTCGCATT	CGAGATATTA	CAGACAAGCC	TCATTTGGAG	CGCGAGGTGA	2040
TTTTGGTTAA	GATGTCAGCG	CCAGCTGAGA	AGAGAGCTGA	GATTTTAGCG	ATTATTCAAC	2100
CTTTCCGTGC	AACAGTAGTA	GACGTAGCGC	CAAGCTCGAT	TACCATTCAG	ATGACGGGAA	2160
ATGCAGAAAA	GAGCGAAGCC	CTATTGCGAG	TCATTCGCCC	ATACGGTATT	CGCAATATTG	2220
CTCGAACGGG	TGCAACTGGA	TTTACCCGCG	АТТАААААТС	CAACTTAAAT	TTATTAAACC	2280
AGCCTAAAAG	GCAATAAATA	ATAGAAAAGA	GAGAAAAGCT	ATGACAGTTC	AAATGGAATA	2340
TGAAAAAGAT	GTTAAAGTAG	CAGCACTTGA	CGGTAAAAAA	ATCGCCGTTA	TCGGTTATGG	2400
TTCACAAGGG	CATGCGCATG	CTCAAAACTT	GCGTGATTCA	GGTCGTGACG	TTATTATCGG	2460
TGTACGTCCA	GGTAAATCTT	TTGATAAAGC	AAAAGAAGAT	GGATTTGATA	CTTACACAGT	2520
AGCAGAAGCT	ACTAAGTTGG	CTGATGTTAT	CATGATCTTG	GCGCCAGACG	AAATTCAACA	2580
AGAATTGTAC	GAAGCAGAAA	TCGCTCCAAA	CTTGGAAGCT	GGAAACGCAG	TTGGATTTGC	2640
CCATGGTTTC	AACATCCACT	TTGAATTTAT	CAAAGTTCCT	GCGGATGTAG	ATGTCTTCAT	2700
GTGTGCTCCT	AAAGGACCAG	GACACTTGGT	ACGTCGTACT	TACGAAGAAG	GATTTGGTGT	2760
TCCAGCTCTT	TATGCAGTAT	ACCAAGATGC	AACAGGAAAT	GCTAAAAACA	TTGCTATGGA	2820
CTGGTGTAAA	GGTGTTGGAG	CGGCTCGTGT	AGGTCTTCTT	GAAACAACTT	ACAAAGAAGA	2880
AACTGAAGAA	GATTTGTTTG	GTGAACAAGC	TGTACTTTGT	GGTGGTTTGA	CTGCCCTTAT	2940
CGAAGCAGGT	TTCGAAGTCT	TGACAGAAGC	AGGTTACGCT	CCAGAATTGG	CTTACTTTGA	3000
AGTTCTTCAC	GAAATGAAAT	TGATCGTTGA	CTTGATCTAC	GAAGGTGGAT	TCAAGAAAAT	3060
GCGTCAATCT	ATTTCAAACA	CTGCTGAATA	CGGTGACTAT	GTATCAGGTC	CACGTGTAAT	3120
CACTGAACAA	GTTAAAGAAA	ATATGAAGGC	TGTCTTGGCA	GACATCCAAA	ATGGTAAATT	3180
TGCAAATGAC	TTTGTAAATG	ACTATAAAGC	TGGACGTCCA	AAATTGACTG	CTTACCGTGA	3240
ACAAGCAGCT	AACCTTGAAA	TTGAAAAAGT	TGGTGCAGAA	TTGCGTAAAG	CAATGCCATT	3300
CGTTGGTAAA	AACGACGATG	ATGCATTCAA	AATCTATAAC	TAATTAGAAA	TATATAGCGC	3360
TGGAGATGAT	TTTATGAAAA	AGATTATGAG	AAAAATTGCA	TCGTTATTAT	TGGTTCTAGT	3420

			208			
TGTATAATGT	AATTACACCG	TCGGTAATAG	TGCTAGCAGA	CCAAAATAAA	GCAGATTGGT	3480
CGTATGATGA	AAATGCTGTA	ATTAACATTT	ATGATGATGC	TAATTTTGAA	GATGGTAGGT	3540
TGCATATGAA	CTTTGAACAA	TTCTTCAAAT	TGGCACAAAT	AGCTAGAGAA	GAAGGTCTTG	3600
AAATTCATTC	TCCGTTTGAG	AGAGCTGGTG	CGACTAAATC	TGCTCGTTAT	ATAGCGAAAT	3660
GGATTTTGAG	AAATAAAA	CATTAACAAA	TATAGTTGGT	AAATCATTAG	GACCTAAATC	3720
AGCTGTTAGA	TTCGGAGAAG	СТТТАТССТА	TATTGAAGGT	CCTCTTCGCA	GAATAAATGA	3780
GACGATAGAT	GGCGGTTTAT	ATCAAATAGA	GCAAATTATT	GCATCTGGAT	TGAAAGAATC	3840
GGGTTTAAAT	GACTGGACTG	CGAAAACTTT	AGCTTCAGCT	ATTCGTGGGA	TATTAGATGT	3900
ACTTATTTAG	GGGTTGAAAT	CATATGAATA	TTACCAATTT	GTTTTCTATC	AAGACAGGAT	3960
GTGATGAAAC	TGATAGGCAA	CTGCAAAAAC	TATTTTTCA	GTTGGATTTA	CAATTGGGAG	4020
AATTGACAGA	TCAACTAAGA	AAATTAGATT	CTAATTTTGT	TCCTCGTAGT	CAATTTGTAG	4080
acacgttgga	TTTGAATGAT	GTAGAATATA	AAGAAATTTT	AAACTATTTT	ATCTTCCATC	4140
GTAATGATAG	TGAAGAAAGT	TTGGTAGAAT	GGTTATATGA	TTGGATTTCC	ACAAATCGTT	4200
ATGAACTTCC	TAAAGAGTTT	TCGATTCGTA	TGGCTCATAA	ATACCATGAA	AGTGTTACTG	4260
AAGTTTTCGG	AGATGAATAA	CTAAAAAACA	GTCATTAGTG	ACTGTTTTT	ATAGAAAAAG	4320
AGGTTTTATA	TGTTAAGTTC	AAAAGATATA	ATCAAGGCTC	ACAAGGTCTT	GAACGGTGTG	4380
GTTGTGAATA	CTCCACTGGA	TTACGATCAT	TATTTATCGG	AGAAGTATGG	TGCTAAGATT	4440
TATTTGAAAA	AAGAAAATGC	CCAGCGTGTT	CGCTCCTTTA	AAATTCGTGG	TGCCTATTAT	4500
GCCATTTCCC	AGCTCAGCAA	GGAAGAACGT	GAACGTGGGG	TAGTCTGCGC	TTCTGCGGGA	4560
AATCATGCGC	AGGGAGTAGC	CTATACTTGT	AATGAAATGA	AAATTCCTGC	TACTATCTTT	4620
ATGCCCATTA	CTACGCCACA	ACAAAAGATT	GGTCAGGTTC	GCTTTTTTGG	TGGGGATTTT	4680
GTAACTATTA	AACTAGTTGG	AGATACCTTT	GATGCCTCAG	CCAAAGCAGC	TCAAGAATTT	4740
ACAGTCTCTG	AAAATCGTAC	CTTTATTGAT	CCTTTTGATG	ATGCTCATGT	TCAAGCAGGT	4800
CAAGGAACAG	TTGCTTATGA	GATTTTAGAA	GAAGCTCGAA	AAGAATCGAT	TGATTTTGAT	4860
GCTGTCTTGG	TTCCTGTTGG	TGGTGGCGGT	CTCATTGCCG	GGGTTTCTAC	CTATATCAAG	4920
GAAACAAGTC	CAGAGATTGA	GGTTATCGGA	GTAGAGGCGA	ATGGAGCGCG	TTCCATGAAA	4980
GCTGCCTTTG	AGGCTGGAGG	TCCAGTAAAA	CTCAAGGAAA	TTGATAAATT	TGCTGATGGG	5040
ATTGCTGTGC	AAAAGGTAGG	TCAGTTGACC	TATGAAGCAA	CTCGTCAACA	TATTAAAACT	5100
TTGGTAGGTG	TCGATGAGGG	ATTGATTTCT	GAAACCTTGA	TTGACCTTTA	CTCTAAGCAA	5160
GGGATAGTCG	CAGAACCTGC	TGGAGCGGCT	AGTATCGCCT	CTTTAGAGGT	TTTAGCTGAA	5220

209

TATATTAAGG GGAAAACCAT TTGTTGTATC ATTTCTGGAG GAAATAATGA TATCAACC	GT 5280
ATGCCAGAAA TGGAAGAGCG TGCCTTGATT TATGATGGTA TCAAACATTA CTTTGTGG	STC 5340
AATTTCCCAC AACGTCCAGG AGCTTTGCGT GAGTTTGTAA ATGATATCCT GGGGCCAA	AT 5400
GATGATATCA CACGTTTTGA GTATATCAAA CGAGCTAGCA AGGGAACAGG CCCAGTAT	TA 5460
ATTGGGATCG CTTTAGCAGA TAAGCATGAT TATGCAGGTT TGATTCGTAG AATGGAAG	GT 5520
TTTGATCCAG CTTATATTAA CTTAAATGGT AATGAAACGC TTTATAATAT GCTTGTCT	GA 5580
GGACTAATAA AAAAATATCA TACCTTCATT TTGATTTCCT ATCTATTGAC AAGCATAG	STC 5640
ACACTGTCTT TAATACTCTT CGAAAATCTC TTCAAACCAC GTTAGCTCTA TCTGCAAC	CT 5700
CAAAACAGTG TTTTGAGCAA CTTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTCAT	TG 5760
AGTATAAGGT ATGATTTGAT TTCTTTTTGT TGACAAATAT ACTATATTAA AAAGATAT	'AT 5820
AAGTAATTAA CTGAGCTTAT CTGTCTTGTC ATCTCTATTA AGGATGGTTT AGATAATC	:GG 5880
GTGTCTGCTT CTAGGCTAGC ACCTCAATAT CCAAAGGAGT GATGAATTTG AAGGACAT	'AA 5940
GGAATACCTA TCTCTCAGAT GATTTATTGA GGAAGAAAGA TAGGAGTTTT TGAGCTAG	TG 6000
AAGGCTTGGA TTTCTAAAGG TTAGAACTAT CATCTTCAGT TCTTAAATCG AAGAAATA	AG 6060
CTATCTTACG GAAATAGAGA AGCATTTTTT AAGAACTTGA ATAATTTCGC ACCTTAAG	AG 6120
GGTAATAATA CAGTATTTTT ÄTTAGCAAAT ATTTATGGTG TAGAGGCTAG CAAAACCT	'AT 6180
ATATTATCGG ATTTAAAAAG GAAGTAAGAA A	6211
(2) INFORMATION FOR SEQ ID NO: 9:	
(i) SEQUENCE CHARACTERISTICS:	

- (A) LENGTH: 7939 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

60	TTTCAGATAT	CTATCTTGAT	GAGTATATTT	CAAAATAACT	CACGATTCTT	CCGGACTCCC
120	CATGGCTTCT	GCTTCTCCGA	CTTGAGAAGA	TCTTCTTACG	TTCTGTGGCC	AAATTCTTCC
180	CTCTTGTATA	GGCAAGCGTG	AAGTTTGACT	GAGCATAGAT	GCAAAACCTT	TCCTTACTGA
240	TCGTATAGCC	CTCATATCAG	GAGGCGTCTT	TGTGGATAGC	TTCCCACTAT	TTTGGCTCCC
300	GATCCATAAT	TAAGCCTTAT	AACGTACATA	GACACTCCAG	GATCCATCAC	TATATAGTAG
360	AAAGGAGGTA	GTGGACAATC	CATCATCATT	GTATAAGAGC	GATTTCGGGC	AAATCTCTTC

			210			
AGACCTTAAA	GCCACTTGTT	GAGCCATCCT	TGATCGCCTC	AATCAAAAGC	ATATTGGCTT	42
CCTTTTCTCT	TTTTGGATAA	ACAAACTGCA	GGCGCTTAGG	GGCTAGATTA	TGTCGTTTTA	48
ACGTATCCAA	AATATCCAGA	AGTCGATCAG	GACGATGAAC	CATGGCCAAA	CGCCCATTAG	54
ACTTGAGAAT	ACTCTGGGCA	CTACGACAGA	TTTCTTCCAA	ATTAGTCGTG	ATTTCGTGTC	60
GAGCCAAGAG	ATAATGTTCA	CTCTCGTTCA	GATTAGAATA	AGGATTCACC	TTGAAATAGG	66
GTGGATTACA	СААААТСАТА	TCCACCTTAC	TCCCCTGAAT	GTGAGCAGGC	ATATTTTCA	72
AATCATCGCA	GATGACCTGC	ATTTGCTCCT	CTAATCCATT	CAAACGGACA	GAGCGTTCAG	78
CCATATCCGC	CAAACGCTCC	TGAATCTCAA	CAGACAATAT	CTGTGCTTGA	GTACGAGTGC	84
TAGCAAAAAG	CCCCACTGCT	CCATTCCCAG	CACAGAAATC	CACAATCAAC	CCCTTCTTAG	90
GAAAACGTGG	AAATCGTGAT	AAGAGAACAC	TATCCACCGA	ATAGCTAAAA	ACCTCTCTAT	96
TTTGAATGAT	TTTGATATCT	GTCGAAAAGA	GCTGGTTAAT	GCGCTCTCCT	GATTTTAATA	102
ATTGTTCTTC	TTCCATGGTC	CTATTATAGC	AAATTCATAT	TAACATTACA	AAAAATATAA	108
AACTCTAAAC	TACTTCTTCT	TTTTTAAATG	GTGCAGGGCT	TCTCCAGTCC	AGATTGGTAG	114
CATTCGTCGA	AAGGGAGCAA	AGCCGTAGTT	AAAGCGGTCG	CTTGAAAAGC	GTCTCCGTCT	120
AGGAAACTGG	TACTTTTCTT	CCTCCAAAGT	GCGGATAGAA	AGACTGGCTT	TCCCTGTAAA	126
TTCATCTAAA	TCCACTACCT	GAACTTGAAC	CTCTTCATCG	ACTTTCAAGG	TTTCATGAAT	132
ATTTTCAATA	AATCCTGTCC	GAATCTCTGA	AATGTGAATC	AGCCCCGTAT	CACCCGTCTC	138
TAACTCAACA	AAGGCACCGT	AGGGCTGAAT	CCCTGTAATA	CGCCCCTTTA	GCTTATCACC	144
GATTTTCATC	TTAGTCCTCG	ATTTCAATAG	TTTCAATTAC	AACATCTTCA	ACTGGCTTGT	150
CCATAGCTCC	TGTCTCAACA	GCAGCAATGG	CATCCAAGAC	AGCGTAAGAT	GCTTCATCAG	156
CTAACTGACC	AAAAACCGTG	TGACGGCGGT	CTAGGTGAGG	TGTCCCACCT	TGATTGGCAT	162
AGATTTCTGC	AATCGGTTCT	GGCCAACCAC	CACGAGTAAT	TTCTTTCTTA	GAATAAGGTA	168
GGTGTTGGTT	TTGCACGATA	AAGAACTGGC	TGCCGTTGGT	ATTTGGACCA	GCATTTGCCA	174
TGGAAAGAGC	ACCACGGATA	TTGTAAAGCT	CTTCTGAGAA	TTCATCCTCA	AAAGATTCGC	180
CGTAGATTGA	CTCGCCACCC	ATACCAGTTC	CAGTTGGGTC	TCCACCTTGG	ATCATAAAGT	186
CCTTGATAAT	acggtggaaa	ATGACACCAT	CATAGTAGCC	ATCTTTTGAA	AGAGATACAA	192
AGTTAGCCAC	TGTTTTAGGA	GCATGTTCAG	GGAAAAGCTT	GATACGTAAG	TCTCCGTGAT	198
TGGTCTTAAT	AGTCGCAAGA	GGACCTTCTA	CTGTTTCAAT	GTCTACTTGT	GGAAAATGCA	204
ATTCTTTTTC	TACCATACCA	AATACTTCTA	AGGCAGCAAA	AATGCCATCT	TCTTCTAATG	210
TTTTTGTAAT	ATAATCTGCT	TTTTCTTTGA	TTTTATCATG	AGAAATTCCC	ATGGCAACGC	216

TGATTCCAGC	ATAATCAAAG	AGTTCCAAGT	CGTTGAGACC	АТСТССАААА	ACCATGACCT	2220
TCTCTGGTTT	CAAGCCAAGG	TGTTCCACAA	CCTTTTCCAC	CCCCGTCGCT	TTGGAGCCTG	2280
AAATCGGCAC	AATATCAGAC	GAATGTTGAT	GCCAACGAAC	CATGCGAAGT	TTGTCTGAGA	2340
GACTGTCAGG	CAAGTGCAAG	TCATCTCCCT	ТАТСТТСААА	AGTCCACATC	TGATAGATAT	2400
CTTCTTTTTC	ATGGAAATCG	GGATCTACAT	CTAAGTCGGG	ATAAATTGGA	TTGATAGCTT	2460
CACTCATCAT	ATCGGTGCGA	GTCGACAACT	TGGCATCATG	ACTCCCAACC	AAGCCATACT	2520
CAATTCCTTC	TTGCTTAGCC	CAAGAGATAT	ACTCCTCAAC	ATCTGACTTT	TCAATCTGAT	2580
GCTGATAAAT	GACCTGACCT	TTTTTATCTT	CGATATAAGC	CCCATTCAAA	GTTACAAAAA	2640
AGTCAGGCTT	GAGATCACGA	ATCTCTGGAA	CAACACCAAA	AATGCCACGT	CCAGAGGCGA	2700
TTCCTGTTAA	AATTCCTTTT	TCACGCAACT	GTTTAAAAAC	AGTGGGAATT	GTAGTTGGAA	2760
TAAACCCTGT	CTTTGAATTC	CGCAATGTAT	CATCAATATC	AAAAAAGACA	ATCTTGATCT	2820
TCTTTGCCTT	GTATCTTAAT	TTCGCGTCCA	TCTCACTACC	TCTTTCAATC	TAACTCTTTC	2880
CATTATATCA	TAAAGTAGGC	AAATCCCCTA	TTTTCAAAAA	GTTTATCATT	TTTATTTTAA	2940
TTTCTTGGAT	GAGAAAAGAG	ACATATTTAT	GAAAAAGCTC	CATCGTGCTT	TTAATGTGTT	3000
CTCTTGTTTT	CAAACTCGTA	AAAAGGGAGC	CACTGATCCT	AACTCGCTCT	CTCATTTCAA	3060
AGCTTGTGAA	AAAAGACCCG	TTGGGGTCTT	AATTCGCTTT	CTTGTTTTCA	AGCTCATGAA	3120
AAAGAGACCC	AACTGGGTCT	TTTCTTTAAT	CTTCGTTTAC	GAAAGGCATC	AAAGCCATTA	3180
CGCGAGCGCG	TTTGATAGCT	GTTGTTACTT	TACGTTGGTT	TTTAGCTGAA	GTTCCTGTTA	3240
CACGACGAGG	AAGGATTTTC	CCACGTTCTG	AAACGAAACG	GCTAAGAAGC	TCAGTATCTT	3300
TGTAATCAAC	ATATTCAATT	TTGTTTGCTG	CGATGTAATC	AACTTTTTTA	CGGCGTTTGA	3360
ATCCGCCACG	ACGTTGTTGA	GCCATGTTTT	TTCTCCTTTA	TAAGTTTAGT	TGTCCATTAG	3420
AATGGTAAAT	CATCATCTGA	AATATCCAAT	GGGTTTGTTG	CTCCAAATGG	ATTTTCATTA	3480
CGTGAAAAGT	CTGGTACTGA	ATTTGTAGGT	GCTGAATAGT	TTGCAGTTGG	TGCAGAGTAA	3540
GCTCCACCTG	TGTGACCCTC	ACGCACACTA	CGGCTTTCCA	ACATTTGGAA	ATTCTCAGCC	3600
ACGACCTCTG	TCACGTAGAC	ACGTTGTCCT	TGCTGGTTAT	CGTAACTACG	AGTCTGGATA	3660
CGACCTGTCA	CCCCGATAAG	TGAGCCTTTT	TTAGCCCAGT	TAGCAAGATT	TTCAGCCTGT	3720
TGGCGCCACA	TAACGACATT	GATAAAATCA	GCCTCACGTT	CACCATTTTG	ACTCTTAAAT	3780
GTACGGTTTA	CTGCAAGAGT	AAAAGTCGCA	ACTGCTACAT	TTGATGGGGT	ATAACGCAAC	3840
TCAGCGTCAC	GTGTCATACG	CCCTACAAGT	ACAACATTGT	TAATCATAGT	TTACCTTCTT	3900

			212			
ACGCGTCAAT	TTTGACGATC	ATGTGACGAA	GAATGTCAGC	GTTGATTTTT	GAAAGACGGT	3960
CAAACTCTTT	AAGAGCTGCA	TCGTCATTTG	CTTCAACGTT	AACGATGTGG	TAAAGTCCTT	4020
CACGGAAATC	TTGGATTTCG	TATGCAAGAC	GACGTTTTTC	CCAAGTTTTT	GATTCAACAA	4080
CAGTTGCACC	GTTGTCAGTC	AAAATAGAGT	CAAAACGTGC	TACCAAAGCG	TTTTTAGCTT	4140
CTTCTTCAAT	GTTTGGACGA	ATGATATAAA	GAATTTCGTA	TTTAGCCATT	GATATGTTCC	4200
TCCTTTTGGT	CTAATGACCC	CAAGACTTTG	CAAGGGGTAA	GTGAGGTTCG	CTCACAATAA	4260
ACTATTATAC	TAGAAAAAAT	TTTTTTACGC	AAGTAAAAAC	ACTAGAATTC	GAAAAAACGC	4320
CACATGGGCG	TTTTCCTGTT	CTTATGGTTT	GATACGGTGC	AACATACGTG	GGAATGGAAT	4380
AGCTTCACGG	ATATGTTTTG	TTCCTGCTGC	GAAGGTTACC	ATACGTTCGA	TACCGATACC	4440
AAATCCTCCG	TGTGGAACTG	TACCGTATTT	ACGAAGGTCA	AGGTAGAATT	CATATTCTGT	4500
ACGATCCATG	CCAAGTTCAT	CCATCTTAGC	GACAAGGGCA	TCGTAATCTT	CCTCACGCAT	4560
AGACCCACCG	ATAATTTCTC	CATAGCCTTC	TGGAGCAAGC	AAGTCTGCAC	AAAGCACGCG	4620
CTCTGGATTT	CCAGGAACTG	GTTTCATGTA	GAAGGCCTTG	ATGGCTGCTG	GATAGTTCAT	4680
GACAAATGTT	GGCACACCAA	AGTGGTTTGA	AATCCAAGTT	TCGTGTGGTG	ACCCAAAGTC	4740
ATCACCATGC	TCAAGATGCT	CGTAGTCAGC	ATCTTCATCA	TTTTCATGCT	CTTGCAAGAG	4800
GTCAATGGCT	TGATCGTAAG	TGATACGTTT	GAATGGCTCT	GCAATGTAGC	GTTTCAAGAG	4860
TTCTGTATCA	CGTTCCAAGG	TTTCCAAGGC	TTGAGGCGCG	CGGTCAAGAA	CACCTTGTAG	4920
AAGAGCTTTC	ACATAAGCTT	CTTGCAAGTC	AAGCGACTCA	TCATGTGTCA	AGTATGAGTA	4980
CTCAGCATCC	ATCATCCAGA	ACTCAGTCAA	GTGACGGCGT	GTTTTTGATT	TTTCAGCACG	5040
GAAAACTGGA	CCAAAGTCAA	AGACACGACC	AAGAGCCATA	GCCCCTGCTT	CTAGGTAAAG	5100
CTGACCTGAT	TGGCTCAAGT	AGGCTGGCGT	TCCGAAGTAG	TCAGTTTCAA	AGAGTTCTGT	5160
AGAATCTTCT	GCCGCATTTC	CTGAAAGAAT	TGGGCTGTCA	AACTTCATAA	AACCGTTCTT	5220
GTCAAAGAAC	TCATAAGTTG	CATAGATAAT	AGCGTTACGG	ATTTGCAACA	CAGCTACTTG	5280
CTTACGAGAG	CGTAgCCACA	AGTGACGGTT	ATCCATCAAA	AAGTCTGTTC	CGTGTTCTTT	5340
TGGTGTGATT	GGGTAGTCTT	GAGATTCACC	GATCACTTCG	ATGTCTGTGA	TGTCCAACTC	5400
ATAGCCAAAT	TTAGAACGTT	CGTCCTCTTT	GACAATACCT	GTCACATAAA	CAGACGTTTC	5460
TTGGCTCAAG	CGTTTGATAA	CATCAAACTT	CTCAAGTCCC	ACTTCTTCAC	CAAATTTTTC	5520
GACAAAGTTT	GGTTTAAAAG	CCACACCTTG	AAAGAAGGCT	GTTCCATCAC	GCAATTGTAA	5580
GAAAGCGATT	TTTCCTTTTC	CTGATTTGTT	GGCAACCCAA	GCGCCAATCG	TCACTTCCTG	5640
ACCAACATAG	TCTTTTACGT	CAATAATCGT	TACACGTTTT	GTCATTATTT	TTCCTTTTCT	5700

ТТТТТАТТСТ	TTATGGCAAA	CCACCTCTAT	ATTGTTCCCA	TCCAGGTCAA	TCATAAAAGC	5760
AGCATAGTAA	ATCGGATGCT	CACTTCGATA	ACCAGGAGCC	CCATTGTCTC	GCCCACCTGC	5820
CTCTAAGCCA	GCCTCATAAC	AAGCCTGAAC	TTCTTCCTTA	TTTTCTGCTA	AAAAAGCAAA	5880
NTGAACAGGA	TCTTGTGTTC	CCTGAGTCAG	CCAAAAATCA	CCACCAGGAT	GAGGGCTGTT	5940
GGGGATAGA	AAACTAATTA	GAGAACTAGT	CTTAAAAGCC	AATTTATAGT	CCAAAGGAGC	6000
GAGAAAACTC	CTATAAAATC	CTTATGAAAT	TTGTAAATCC	TTTACCTTAA	TCTCAAAATG	6060
ATCAATCATT	CTCACTACCC	ATAAATGCTT	TCAAGCGTTC	GACTGCTTCT	TTAAGCGTGT	6120
CTAGGTCTGT	CGCATAGCTG	AGGCGGACAT	TTTCTGGTGC	TCCAAATCCA	GCTCCTGTTA	6180
CAAGGCCAC	TTCGGCTTCT	TCTAAGATAA	CAGTTGTAAA	GTCTGTCACA	TCCGTGTAGC	6240
TTTCATCTC	CATGGCCTTT	TTGACATTTG	GGAAGAGATA	GAAGGCCCCT	TGCGGTTTGA	6300
CACTTCAAA	TCCTGGTACC	TCTGCAAGGA	GGGGATAGAT	GGTATTAAGA	CGTTCCTCAA	6360
AGGCCTGACG	CATGCTTTCT	ACAGTATCTT	GCTCACCTGA	TAGAGCCTCA	ACTGCTGCAT	6420
TTGGGCTAC	TGCTGACGGA	TTCGAAGTTG	TTTGACCTGC	AATCTTGGAC	ATGGCAGCGA	6480
PAATGTCTGC	TTCTCCAACG	GCATAACCAA	TCCGCCAACC	AGTCATGGCA	TAAGTTTTAG	6540
ACACACCATT	GATGACCACT	GTTTGCTTGC	GAATCGCTTC	CGATAGGCTA	GAAATCGGTG	6600
GAACTCATG	ACCATTATAA	ACCAAGCGGC	CATAGATATC	GTCTGCTAGG	ATGAGAATAT	6660
CATTTTCTAC	AGCCCAGTTT	CCAATTGCCA	AGAGTTCCTC	ACGGGTGTAA	ATCATACCTG	6720
rgggattaga	TGGCGAATTC	AGCACCAAAA	CCTTGGTCTT	GTCAGTGCGA	GCTGCTTCTA	6780
CTGCTCTAC	GGTCACCTTA	AAGTGATTGT	CTTCCTTAGC	AGAAACAAAG	ACGGGAACGC	6840
CTTCTGCCAT	CTTGACCTGA	TCTCCATAGC	TAACCCAGTA	TGGGGTTGGG	ATGATGACTT	6900
CATCACCTGG	ATTGACCACA	GCCATAAAGA	AGGTATAGAG	AGAATATTTG	GCTCCCGCAG	6960
CGACTGTCAC	TTGATTTGAC	GCTACAGAAT	AGCCGTAAAA	GCGCTCAAAG	TAGCTATTGA	7020
CCCCCCCTT	AAGCTCTGGC	AGACCTGAGG	TTACTGTATA	AAAAGAAGCA	CGCCCATCTC	7080
SAATCGATGC	AATGGCGGCA	TCTTGGATAT	TTTTGGGAGT	AGTGAAATCT	GGCTCACCCA	7140
AGGTTAGAGA	СААААТАТСТ	CTACCCTCAG	CCTTCAGTGC	TTTGGCACGG	GCTCCAGCAG	7200
CAAAGTCAC	ACTTTCTTCC	ATTTCTAAAA	CACGGTTGGA	TAGTTTCATA	GGCCCTCCTT	7260
STTGACCAAT	GCTCCTGTTT	CAAAATCTAC	TAGATAAAAA	TCAGATCCTG	ACTTAACTTC	7320
CAGATTGGC	TTATCTTGAT	AACGGCCAAA	GGTTATCTTG	TCAATCTCGC	CAGCTCCCTT	7380
MCCMMAC » »	*CCCMMMCMC	CONTRACTOR	TO A A A CA COC	mc ammin a com	CAMAAACCMA	7440

	•		214			
AATCTTATGG	TCATCTTTAC	CAATCAGGAC	AGCAAGCGCT	TCTTGCTGTT	TGTTACGACC	7500
AAGAACGCTG	TAATAAGATT	CCAAGCCATT	GTATAAATCA	ACCTGATCAG	CCTGCTCTAA	7560
TCCTGCATAC	TGCTGAGCTA	ATTTTTCTCC	TTCACTTTTA	GCTGTTTGAT	AGGGTTTCAT	7620
GCTAAGAGAA	ACCATATACA	GAAAGGAACC	ACTGATAACC	ACAAACAAAA	TCGTCATCCC	7680
TAGACCATAC	TGCCACAGTA	GATTATTTTT	TGCTTTGTTT	TGTCTTTTTT	TCACTCGTCT	7740
ATTTTACCAT	CTATTAAGCT	TTATTACAAG	TGAATATAAG	AATACTCTTC	GAAAATCTCT	7800
TCAAACCACG	TCAGCTTTAT	CTGCAGACCT	CAAAGCTGTG	CTTTGAGCAA	CCAATTCTAT	7860
TTCTCCCTTC	AAACAAAACC	GATTTTGAAA	GTGAAACAGT	TCTTACTTTT	TCAGTCACAA	7920
ATGATTAGAG	TTTGCCGGG		•			7939

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9897 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCGCTCTACC GTCAAATAAT TACCATTTTG TTTAATACCG AAATTTTTAT CTACTGAAAA 60 TTCAGTTGGT CTGTTGGTAC GATCGTCGTA TACAGTACCA TTCTCACGAA TAGTATAATT 120 GTAATCAGTA TCACCTTGTT TCCTTAATTT AAGGTAATAA TTACCATCAA TTTGTTTATA 180 ACCTGAATCT TTTCTAGTTG CTTCTCTAAA ACTTACTCCA GCAGGCATCA CATCAGCAAA 240 CATGAGTACT TGTTTGTTCT TTTTTTCAAC AATAACAGAG TCAATATAGG TTGCACCACC 300 GCTGATTTGT AAGTCACGTC CACCAACTTC ACGAGGCCAT TCTAATGGTA CTGGCGCAAA 360 ATCATCGAAT GCCAATGTTA ATTTTGGTTT AGTCCATGTC TTACCATTAT CATCACTATA 420 ACTTGTAGCA ATATTAATTT TATTCAAGAA ATCATGAGTT CCACCGTAAC GAGCGTCAAT 480 GCTTGAAAAT ACCCGACCAT TGCTAAAAGT ATACAGAACT GGAATACGGA AATAGTTAGA 540 ACCTGTTGTA TCATTAGCCG TATAAATTAA ATGTCCAGTA ACAGCGTTTG TTGTCATCTT 600 TTTAACAGTT TCTTCATCCA ATGCACTATT AAAGAATTTG ATATTTTCTA GTGTTCCGTT 660 AAAACCAAAC GCCGTTTTTC CTGCACGTTT CACTCCCCCA AGCATATAGT AATCAATACC 720 TTTAATATCC TTGATGTTTA GGAAATTATC CACTTTCTTT TCTACTACTT TTGTACCATT 780 TGCGTATAAA GAATATGTTT TTTTGACTGA ATCTGCTACT ACTGCAACAG TGTTAGTCAC 840 AGCCTCTTGT TTGTACTTAC CCCAAACTGA AGCAGGTCTG GATACTAGGT TATTTTTATT 900

GGAAGAAGTA	TCACGCGCTT	CCATCCCCAA	CTCACCATTG	TCTCTAAGGA	ACACATCTAC	960
ATAACTATTT	TGTTGACCGG	GTTTGGAATT	AGATATTCCA	AACAGAGCTT	GTAAGCCTTT	1020
CTCACTTGAC	TGATTGTACT	TAATCACTAC	AGTAAAGTCA	CCGCTAGTAA	ATTTATCCTT	1080
ТААСТСТТТА	GTAACATTTT	CTCCGCCCCC	TGTTAAAGTA	ACATTATTT	TTTCTAAGAC	1140
AGGAGTTTCT	TCCGCTGTAG	AAGATGGATC	CTTAACAGTA	GTTTCAACTG	TTCGAGGTTG	1200
TACAGTAACT	TCCGAAGAGT	TATCCGATGT	AGGTTGTACT	TCCGAAATCG	CACTCGTTGG	1260
TGCAACAGGT	TGCACCAACT	TTGGTGTTGA	TACTTCAGAA	GTTTCAGTCT	CCTGAGCTGC	1320
AACTGAGTTA	GCAACAAATG	CTGATAATAC	CACTACAGTA	CCTAAGGTTA	CATATTGTTT	1380
AATATTTTTT	TTCATTTTAT	TTTTCCTCGT	ТТААААСТТТ	GATAACAAGT	TTTTTAACAG	1440
TTTCATCATT	GCAATGAATC	TTTGGTTGGT	GAAGATCTTC	TTCAAAAGTC	ACCAACATAT	1500
TCCCTGGAAG	CAATTCAACA	ATTTGATAGT	CTTTGCTATC	GTAAAAAGCA	ATATCCTTCT	1560
CTTCGCTAAA	AGGTACACGT	GACTGGGCAC	GAACTGGGGA	AGTTACTGCC	ATTTTTTCAG	1620
TATTTTCAAC	AACAATATGA	ATATCTAAAT	ATTTCTTATG	AGTTTCAAAA	ATATCTCCTG	1680
GAACTCCATC	AGCTAGATAA	GTCATACAAT	TTGCAAAAAC	ATTTTCCCCG	TCAATATCAA	1740
TTTTTCCATC	AACTAAATCT	GTCAAATTTG	TATTTTCTAA	AAAATCACAG	ACTTTTGAAA	1800
AATATTTATT	GACAGAAGCA	TATCGTTTAA	AATCAGATTG	TTCAGAAATA	ATCATATTAT	1860
TTTCTCTTTT	CTATTAGTGA	CGAACTTCCC	AACTTGAATC	CGCTTTAATT	TCTGTAATAT	1920
CATGAATCGT	TGTATATTTA	GGTGCAGATA	CTTTATTTCC	AGTAAGAACA	GATACAATAT	1980
AACCTGAAAC	TACTGATACA	GAGATTGAAA	TCAATGAATA	TGCCCAGTAG	CTAACAGCTG	2040
TTGGAGGAAG	GAAGTATTTA	ATAAATACCA	TGACGATGGT	TGATACAATC	AGCGCTGCAT	2100
AAGCACCTTG	TTTATTTGCT	TTTTTAGAAA	CAAATCCAAG	AATAAATACA	CCACCAAGTA	2160
GACCAAGTAC	AAGTCCCATG	AAACTATTGA	ACCATTCGTA	TGCAGATTTA	ATATCTGAGT	2220
GAGCCATGAC	AATGGAAACA	CCAATTGAGA	ATAAACCTAC	TGCTAGAGAT	ACGAATTGTG	2280
CAATTTTCGT	ACGACGATTG	TCTGACATAT	TTTTAGAAAT	GACATCTTGA	ATATCCAATG	2340
TCCATGAAGT	TGCAACAGAG	TTCAAACCTG	TTGAAATAGT	TGATTGAĞAT	GCTGCATAAA	2400
TCGCTGCCAA	GATCAAACCT	GTGATACCTA	CTGGTAACTG	GTATGCAATA	AAGTACATAA	2460
AGATTTGGTC	TTGAGGGATA	TTGCTAGCTG	CACTATCTGC	ATTTTGTACT	TGATAGAATA	2520
CGTACAAGCC	TGTACCAATC	AAGTAAAAGA	CTGTTGCAGT	TGCAAGTGAC	AAAACACCGT	2580
TTGTGAACAA	CATCTTATTA	AGTTTCTTAA	TATTTTGTGT	TGTAGTAAAA	CGTTGAACCA	2640

			216			
AATCTTGAGA	TGAAGCATAG	GAAGACAAGA	TTGTAAAGCC	TGAACCCATC	ACAATTAAAA	2700
AGATGGAGTT	TGAAAGCAAG	TTAGGATCGA	AAAGTTTTTC	ATTTGCAGCA	AGGAATTTCC	2760
CGTTTGCTAA	TGTTTCTGCT	ACTGCACCAA	AGCCACCTTT	AATATTAGCA	ATCAGTACAA	2820
ATAAAGCTAA	AACGACACCA	CTAATCAGAA	TCACACCTTG	AATAAAGTCT	GTCCATAATA	2880
CGGATTTTAG	ACCACCAGTA	TAAGAATAAA	CAATTGCAAC	TACACCCATC	AAAATAATCA	2940
AAATATTGAT	GTCAATTCCT	GTCAATACTG	ATAAACCAGC	TGATGGGAGG	TACATAATGA	3,000
PAGACATACG	TCCCAATTGA	TAAATAATAA	ACAAGAGTGC	TGAAATAATA	CGAAGTGCTT	3060
Pagaattaaa	ACGTTTATCC	AAGTAATCAT	ATGCCGTATC	GATGTCTATC	CGTGCAAAGA	3120
PAGGTAAGAT	AAAACGAATT	GTCAGTGGAA	TAGCTACTAC	CATCCCTAAT	TGAGCAAACC	3180
АТААААТССА.	GCTACCTGCA	TAAGAGCTAC	CAGCGAGTCC	CAAGAAGGAA	ATCGGACTGA	3240
GCATTGTGGC	AAAAATGGAT	ACCGAAGTAA	CATACCAAGG	AACCGAACCA	TCTCCTTTAA	3300
AGAACTCTTT	TCCTTTCATC	TCTTTTTTAG	AGAAATAGAT	ACCTGCAACC	AACACCGCAA	3360
ЭТАЛАТАААС	AATCAAGATA	ATTAAGTCAA	TTATTGTAAA	TCCTGTTGTG	CCCATAACAT	3420
ATCTCCATAT	TGATTTTATT	TATTATAAAA	ATTCTTTTCG	TGCTTGTTGA	ATAAGTTCTG	3480
CTGCTTGTTT	TGCAACTTCC	AAGTCACCTT	CTGCCAATGC	TTCTAAAGGT	TGACGAACAG	3540
AACCTAAATC	AAGTTTTTCA	TTTAGACGCA	AAACTTCTTT	TGCTACAGCA	TACATATTTG	3600
CCTTACCTGA	TATCATCTTA	TAGATAACTT	CATTGATAGC	ATATTGAAGT	TTTTTAGCTG .	3660
ГАТСТАААТС	TCGTTCTTGA	ATCAAACTTT	CCAATTTCAA	GAACAAATCT	GGCATAACGC	3720
CATAAGTACC	ACCAATACCA	GCTTCTGCTC	CCATCAAGCG	ACCACCAAGA	TATTGTTCAT	3780
CTGGACCATT	GAATACAATG	TAATCTTCTC	CACCTGCAGC	TACAAACATT	TGAATATCTT	3840
GTACAGGCAT	AGAAGAATTT	TTAACTCCAA	TCACACGAGG	ATTTTGACGC	ATTGTTGCAT	3900
ACAAACTACC	AGTCAACGCA	ACCCCTGCCA	ATTGTGGAAT	ATTATAGATA	ATAAAATCTG	3960
PATTTGACGC	AGCTTCACTC	ATTGCATTCC	AATATGCTGC	GATTGAATAC	TCTGGCAATT	4020
TGAAATAAAT	AGGTGGGATA	GCTGCAATAG	CATCGACTCC	AACACTTTCT	GAATGTTTTG	4080
CCAATTCGAT	ACTATCTTTC	GTGTTATTAC	ATGCAATATG	GTTGATAACT	GTTAATTTAC	4140
CTTTAGCAAC	TTCCATAACA	GCTTCAATAA	TTTGTTTACG	ATCTTCTACA	CTTTGGTAAA	4200
CACATTCACC	TGAAGAACCA	TTTACATAGA	TACCTTTTAC	ACCTTTGTCA	ATGAAATATT	4260
STACCAGAGA	TTTTACACGA	TCTTGGCTAA	TTTCACCATT	TTCATCATAG	CAAGCATAAA	4320
ATGCAGGGAT	AACGCCTTTG	TATTTAGTTA	AATCTTTCAT	CAGATTTCTC	CTTTATATTG	4380
TTTTATTT	GATGACATTA	ATAAATCGCT	GAGCAATTTC	TTTTGGACGT	GTAATCGCTC	4440

CAC	CAATGAC	TACACTGGTA	ACACCTAAAC	TATAAGCTTT	TTTTAATTGT	TCTGGATAAT	4500
GA/	ATTTTTCt	TCGGCAATTA	CCGGAATATT	AAAATCAGCC	AATTTTTTCA	TTAGTTCAAA	4560
ATC	CAGGCTCA	TCTGATTGTA	CACTTGTACT	TGTGTAACCT	GATAATGTTG	TACCAACAAA	4620
AT(CAACGCCT	GATTTAAATG	CATAGAGACC	ТТСАТСТААА	TTACTTACAT	CCGCCATCAG	4680
CAZ	ATTGATTC	GGÄTATTTT	CTTTTATTT	TTTGATAAAT	TCACTGACAA	CTAAGCCATC	4740
AT?	ATCTTGGT	CTTAAAGTTG	CATCAAATGC	AATGACTGTT	GTTCCGCATT	CTACAAGTTC	4800
ATC	CTACTTCT	TTCATCGTAG	CAGTAATATA	TGGTTCTTGA	GGTGGATAAT	CCCTTTTGAT	4860
AA!	TTCCAATT	ATTGGTAAAT	CTACTACTTT	CTGAATTGCT	TTAATATCAC	GCACAGAATT	4920
rgo	GCGAATG	CCCACTGCTC	CTGCCTCTAA	AGCTGCTTTA	GCCATAAAAG	GCATCAAGCT	4980
\AA	ATTCTTCA	TTATAAAGGG	CTTCACCAGG	TAAAGCTTGA	CAAGAAACAA	TGACTCCACC	5040
PTC	SAACTTGG	CTTATAAATT	TTTCTTTAGT	CCAAATTTGG	CTCATTTAT	TATTCCTCCT	5100
ran	rggataat	AGTTTGATTG	TAATAATATT	GTCTCTCTGG	ACTTTCCAGA	TAATTAGAGA	5160
AT/	AGCAGTC	TGTAATTAAA	AGTATTGGAA	ACTGAGGTGA	TATGCGATTG	CCATACGAGA	5220
GAT	GATCGGT	CGAAGCTAAT	AACAATAGTT	CATCAAAGAA	ACAATCTTCT	TCGTCAAATT	5280
rtc	CTTGTAGT	CATTAAAACT	GTTTTAGCGC	CTTTATCTGC	AGCTTTTTGT	AGACCTTCTA	5340
GT/	CAATATC	AGTTTGACCT	GAAATGGATG	CTCCAATGAC	AAGGCAATTT	TCATTAAGTA	5400
ST?	AGCTACT	CCACAAAATC	ATATCCTCGT	CTGATAATAC	TTCACCAATC	ACTCCGAGAC	5460
GC#	ТАААТСТ	CATCTTCATT	TCTTGTAAAG	CAAGAACAGA	ACTTCCTTTA	CCGTAGAGAT	5520
AT/	CACGCTC	AGCAGTTTCT	ATCATCTCAG	CAATACGCTC	AAGTTGAACT	TCATCAAGAA	5580
CCC	STGTAAGT	TTTTCTCAAC	ATTTCCTCAT	AGTCGGATAA	AACTTTTTCT	GTTGCCTCTG	5640
ran	TATAATGC	CAACTTTTCT	TTCTCATGAA	TCATCTCTTG	GTATTTGAAA	ATGAATTGTC	5700
ra?	AACCTTT	AAAACCACAT	TTTTTCGCAA	ATCGAGTCAA	TGTTGCTTTG	GATACATTAA	5760
3G1	PATTCGCA	CAATGCTTTA	GATGAATAAT	CATTCAGAGG	TTGCTGTTTT	AAGAAGAATT	5820
PAC	CAATGTC	TTTTTCAGCA	TATGCCATAT	TTGGTAAGTT	AGCTTCTATC	ATTGGAATTA	5880
T	CTTTTTG	CAGTAACATA	TGAGCTCCTT	AGTTGAAGTA	AACGTTTACA	TTCTTTATTT	5940
ra.	CACTTIT	TTTTTTTTC	AATATTTTTC	ATAAATTAGA	AACTAGTTTC	CAATTTCTTT	6000
GI	TTCATAA	CAGAACAACA	AACATAAAAA	TATAATAGTT	TTTATTCTTT	TTATCGTAAT	6060
ľAΊ	ATGTATT	GTAAGAACGT	TTATCACTAA	TAATATGTTC	TAAAATTAAAA	ATTTTAGTAA	6120
ra'ı	TTTATTT	TGGTTTTATT	ATTTCTTTTC	GGAATTTCTA	TATAATATTT	TATTTCTAAA	6180

			218			
LAAATTGAAA	AAATATTTCT	AGTTTCTTTA	TTTTATATAG	GTAATATATT	TTATTTCTAA	6240
\TTAAAAGAG	AATCCCATAA	AAACTACAGA	TTTATGAGAT	AAATCAGGTC	ACCTATTTTA	6300
AAAAGCAGC	AAACTATAAA	CTAAAAAGTT	CCACACCAAA	TGTAACCCCA	TACTTCCCCA	6360
PAAGTCAGAT	TTATAGCGCA	CCATACCTAA	AAACATTCCA	AGTGAAACGT	ACAGACACCA	6420
GCTAGAATG	GTTCCTGGAT	GATGTACTAA	GGCAAATAAA	ACACTTGTCA	AAGCAACTCG	6480
ATATCTAAT	TTTCTAACCA	AGTTCCATAA	AATTTCACGA	TACAGAAATT	CTTCAACCAT	6540
ACTCGCATTG	ATTAAGAACA	ATAAAAATGA	AAACCAAGGA	ACTTGATGTT	GAAGGCCAAT	6600
PAAATTTGTT	TGATTCGTGC	TTCCTTGAGC	ATGAATCAGG	СТААААСАТА	GACTTATAAT	6660
CAGTAGACTA	GCTAGTCCAA	TACCAAGGCA	TTTCATCCTA	GTTTTCATAT	TGACCTTGAC	6720
CACTTGTTTT	CGTTGACCAT	ACATCCATAA	AAAAGAAAAA	AGAGACGCAC	CATAGAGAAC	6780
TGTAGTATA	GTTAACTCAC	CGATACAAAG	AAATTTCAAT	AAGTATAGAG	ATACCAATAG	6840
SACATTTACT	TGTTGGAATA	TATAAACTGG	AATTATTCTT	TTCATAGTTA	CCTCCGAAAT	6900
AAATCTTCAT	AATCTAAATC	TAATATCTGC	ACAATCCTTT	CTACCCATGG	ACTTTGAGGC	6960
ATTCGTTGTT	CCATCTTGTA	GTGGCGAATC	TTTTGATATA	AACGATTCAA	TTCACTTGGA	7020
PAGTGAAACT	CTCCCGCAAA	CATTTTTCTG	GTTAACTCAA	TCCAGCTGAT	ATTTCTTTCA	7080
ССААААТАА	TGGACAAGTT	СТСССААААТ	CGTTCAGCCA	TATTCTTCT	CCTTTAGTTA	7140
TAATAAATA	GTGTTTGyGC	CATGTAAATC	AATTGTTTCG	TATCTCTTGG	CAATAGAGCT	7200
CTAGCCTCTT	CCAAATTCAG	ACTTGGATAA	ACCCGCTTAT	TTGAAACCAC	AAAAGGAAGT	7260
CCGATGGTTA	GTTCAGGATT	TTTTAAAATT	ATCTCAACGA	AATCCGTTAA	TCTTAGATTG	7320
CACGGTTCT	TAAATCGTAA	TAAATTGGGA	GATAAAAACT	CAAAACAATC	TGAAGAATAG	7380
CTCATCATCT	CAATTAATTT	GTCCTTTGTC	ATTTCAGAAA	CTGAATGACA	AGATACCTCA	7440
ATGCCATAGT	TTTGGAAGAA	GTCTAAAAGA	AGTTGÁTTTC	TTTGGCTATT	TTTACTTAGA	7500
TAGAGATCAA	TCATGGGAGA	CCTCCAACAA	ATTTGCTTCC	ATTTGATATT	CTGAGACGAT	7560
PAAGGAATCT	AACAACTTTG	AGAAGTTAAT	CGATTTCTTG	TCTTCATCAT	AAGCTTTTAC	7620
AGTTACTTGG	GTTGTAAGTA	TCCCCTCTTT	TCCCTCGGCT	CGATAGTCTT	GTCAATATAA	7680
AACAAAAACA	AGATTCTGAT	TATCATCTAC	AAAGGCATTA	ACTCCGTTCT	TTATATCCTG	7740
ACTTTCAAGG	AATTCCATAA	CGTTTTGAAG	ATAGGATTCA	TAAAATAGTG	GGTAATTATG	7800
TTTTTTATGG	таатсатста	AAAATGTTAC	CTCAAACTCA	CATGGATAAT	TGGGCATCAA	7860
AAATATTTGT	TCATCCAGCT	GTTTGATTTC	TGCATCATGT	AATTCTGTTT	CTAATTCATC	7920
ACAATCTAGT	ATTGATTCTT	TATTTAATGC	TTTTATCTTT	TTCCTCTATT	TCTTTTAATT	7980

PCTTTGC	GAT	TGCGGCAATC	ACAGGAACGG	TTACACTATT	ACCAACTTGT	TTATAGAGCT	8040
GACTATT	'AAT	AGAGACTTTT	CTAGCAGCTT	CAAAAGCCTA	ATCAGGAAAG	CCATGCAATC	8100
GAAAACA	CTC	TTTAGGAGTG	ATTCGTCGTA	ТТСТСАААСG	GTAAAATTGT	CCATCTATTA	8160
AAACACC	AGC	TACTTGGTAA	ACTTGTTTAT	CTTCTCCTTC	ATAGCTAGCC	ACTACTACTC	8220
CCATTTG	ACC	ACTAGTTGTT	AACGTATTAG	CTATACCTTT	ТССААСТСТА	CCACGACGAT	8280
ACTGAGA	ACT	TGGTCTTTCT	AAATTGATTG	AATCCCCAAT	CTCTGCTTGA	GCATATCCTT	8340
FTTTCGT	TGC	TTCCCGTACT	TTTAGAAATT	GGATTGGTTC	TGGAATTAGT	ATTTTGGGGA	8400
ГТТТАТС	TCC	TCCTTGCATC	GTAGTCAGTG	TTGGAGATAA	GCCCTCACTT	CCATAGACAC	8460
GACCTGT	CTC	CTTAAAGCTA	GTCGGTAAAT	CTCCAACAAC	GACAATGCCA	TAACGATCCT	8520
GAGTATT	TAA	AGTAAACATC	GGCTCTTGAT	TTTCCTTAAA	GCGTCTCCCA	TTTTGTCTCT	8580
IGTCTAA	TCT	ATCTGGTGTC	ATACAAGGAA	TCGCAACTTT	AAATCCTTCT	CCTTTACCAC	8640
GAACTAA	GGT	TGGCGCAAGA	CCTTCTGAAT	AATAGACTTT	ACCGCTCATT	CCACTTCTTG	8700
ATGGATT	CAA	ATTTCCTAGT	GCTTTCAAAG	TCTCAGAGTT	AGTTGCTTGA	CCTTCTCGTC	8760
rgaaagg	AAA	TAAGAGTCTG	GTACCTTTCT	TTCTAGAATG	TCCGATAATA	AACACCCTCT	8820
CTCTGTT	TTT	GGGAACGCCA	AAATCCTTAC	TGTTAAGCAC	CTGCCACTCA	ACATCAAACC	8880
CCAACTC	ATC	AAGTGTGGTA	AGTATTGTGG	TGAACGTCCG	TCCCTTATCG	TGATTGAGTA	8940
GCCTTT.	AAC	ATTTTCAAGA	AAAAGAAAAC	GTGGTTGGAT	TTGTTTGGCC	GCCCGAGCAA	9000
PTTCAAA	GAA	CAAAGTTCCT	CTAGTATCTT	CAAATCCCAA	TCGTCTTCCT	GCGATTGAAA	9060
ATGCTTG.	ACA	AGGGAATCCC	CCACAGATGA	CATCGACTTT	CCCTCTAAGT	TTTTTAAATT	9120
CGTCATC	TGA	AACATCTCGT	ATGTCATGAA	ATTCTATTTC	TCCTTCCGTT	TGAAAAATGG	9180
ACTTATA	AGA	TTTCCTAGCA	AATTTATCAA	TCTCACAAAA	TCCCAAGCAC	TCATGCCCTT	9240
GAGCTTC	CAT	TCCCATCCTA	AAGCCTCCTA	TCCCAGCAAA	ТАААТСТААА	ACCCAAATCA	9300
PTCATAC	CTC	TCTCAACTAG	ATGTAACTTA	CAAAACCCCT	GACCTCATGA	GCCACTTTCT	9360
CCTCCT	CAT	GAGGTCAGTT	TTACTTTCTG	CTGTTCCAGT	ATCGTTTTTC	CTCGCTAGAT	9420
PTCCTCA	AAA	GGGCAGACTC	CTCCCTTGGT	TCGTCACACG	ATTTTTTCAT	CTCGACTGTT	9480
TTTAAT	GCA	TCATTAACGA	CGCTTTTCTT	CTAGGTGGTT	CATAAGGAAC	AGGAAGATTC	9540
AGGTTGA	CTT	TTCTAATCCT	AGAATAAAGT	GCTGAAAACA	ATTCGGAATA	GGCATAGAGA	9600
CTAGACA.	ATT	TGAGGAGCTG	CTTGCGTCCT	GTTCGAACAC	ATTTTCCTAC	CACGTGAAGA	9660
AAAAGAT	GGC	GGAAGCGTTT	GATTGTTAAA	GTTTGGAAGT	CACCTCCAGC	TAGATGTTTG	9720

			220			
AGAAAAAGAT	AGAGATTGTA	GGCGATACAG	CTCATCATCA	TACGAACTCG	TTTTTGATTA	9780
AGGTTGAACT	ATCCGTTTTA	TCGCCAAAAA	ATCCCTCCTT	CATCTCCTTG	ATGAAATTCT	9840
CGGCTTGACC	ACGTCCACGA	TAAAGCTGAA	ACTGGTCTTG	GCTTGTTCCG	GTACCGA	9897
(2) INFORM	ATION FOR S	EO ID NO: 13	1:			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 8148 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CCGTGGAACA	AGCCAAGACC	AGTTTCAGCT	TTATCGTGGA	CGTGGTCAAG	CCGAGAATTT	60
CATCAAGGAG	ATGAAGGAGG	GATTTTTTGG	CGATAAAACG	GATAGTTCAA	CCTTAATCAA	120
AAACGAAGTT	CGTATGATGA	TGAGCTGTAT	CGCCTACAAT	CTCTATCTTT	TTCTCAAACA	180
TCTAGCTGGA	GGTGACTTCC	AAACTTTAAC	AATCAAACGC	TTCCGCCATC	TTTTTCTTCA	240
CGTGGTAGGA	AAATGTGTTC	GAACAGGACG	CAAGCAGCTC	CTCAAATTGT	CTAGTCTCTA	300
TGCCTATTCC	GAATTGTTTT	CAGCACTTTA	TTCTAGGATT	AGAAAAGTCA	ACCTGAATCT	360
TCCTGTTCCT	TATGAACCAC	CTAGAAGAAA	AGCGTCGTTA	ATGATGCATT	AAAGAACAGT	420
CGAGATGAAA	AAATCGTGTG	ACGAACCAAG	GGAGGAGTCT	GCCCTTTTGA	GGAAATCTAG	480
CGAGGAAAAA	CGATACTGGA	ACAGCAGAAA	GTAAAACTGA	CCTCATGAGG	AGGAAGAAAG	540
TGGCTCATGA	GGTCAGGGGT	TTTGTAAGTT	ACATCTAGTT	GAGAGAGGTA	TGAATGATTT	600
GGGTAAATAC	AATGAGCTTG	AAAGAAGTAG	CAAACTCACC	AAGCGCCAAT	TCTTTGAGAA	660
TCAGATGCTG	GATTATACCA	TCATTGCGCA	TGAGAGTTTT	GAAATCATCC	GTCATTCTGT	720
CTACCAGACA	GATGATCGTG	AAGTGGAAAA	TGCTCTGGCT	TTTGAAGTGA	AAAATGATGA	780
AACAGACAAG	CTGATTCTGT	TATTAAGCGA	GGATATTGGT	GTAGGTGAAA	AATTGTGCCT	840
CGTTGACGGA	ACAAAAATGC	GTGGAAAATG	TTTAGTATAT	GATAAAATAA	ATGAGAGAAT-	900
GATTCGCTTG	CAGTGCTAGA	AATAGGCATT	TTGAATAGTG	AATATGTTAT	AATAAGTATT	960
AGTAGGAGGT	GTTTTAGATT	GGAGAAGAAA	CTGACCATAA	AAGACATTGC	GGAAATGGCT	1020
CAGACCTCGA	AAACAACCGT	GTCATTTTAC	CTAAACGGGA	AATATGAAAA	AATGTCCCAA	1080
GAGACACGTG	AAAAGATTGA	AAAAGTTATT	CATGAAACAA	ATTACAAACC	GAGCATTGTT	1140
GCGCGTAGCT	TAAACTCCAA	ACGAACAAAA	TTAATCGGTG	TTTTGATTGG	TGATATTACC	, 1200
AACAGTTTCT	CAAACCAAAT	TGTTAAGGGA	ATTGAGGATA	TCGCCAGCCA	GAATGGCTAC	1260

CAGGTAATGA	TAGGAAATAG	TAATTACAGC	CAAGAGAGTG	AGGACCGGTA	TATTGAAAGC	1320
ATGCTTCTCT	TGGGAGTAGA	CGGCTTTATT	ATTCAGCCGA	CCTCTAATTT	CCGAAAATAT	1380
TCTCGTATCA	TCGATGAGAA	AAAGAAGAAA	ATGGTCTTTT	TTGATAGTCA	GCTCTATGAA	1440
CACCGGACTA	GCTGGGTTAA	AACCAATAAC	TATGATGCCG	TTTATGACAT	GACCCAGTCC	1500
TGTATCGAAA	AAGGTTATGA	ACATTTTCTC	TTGATTACAG	CGGATACGAG	TCGTTTGAGT	1560
ACTCGGATTG	AGCGGGCAAG	TGGTTTTGTG	GATGCTTTAA	CAGATGCTAA	TATGCGTCAC	1620
GCCAGTCTAA	CCATTGAAGA	TAAGCATACG	AATTTGGAAC	AAATTAAGGA	ATTTTTACAA	1680
AAAGAAATCG	ATCCCGATGA	AAAAACTCTG	GTATTTATCC	CTAACTGTTG	GCCCTACCT	1740
CTAGTCTTTA	CCGTTATCAA	AGAGTTGAAT	TATAACTTGC	CACAAGTTGG	GTTGATTGGT	1800
TTTGACAATA	CGGAGTGGAC	TTGCTTTTCT	TCTCCAAGTG	TTTCGACGCT	GGTTCAGCCC	1860
TCCTTTGAGG	AAGGACAACA	GGCTACAAAG	ATTTTGATTG	ACCAGATTGA	AGGTCGCAAT	1920
CAAGAAGAAA	GGCAACAAGT	CTTGGATTGT	AGTGTGAATT	GGAAAGAGTC	GACTTTCTAA	1980
aatgaaggaa	AATGACTTGC	AATCTCTGTT	AAGAAATAAA	ATAATCCCAC	CTAGAACAAG	2040
CTAGGTGGGA	TTATTTGCCT	ATGAAATGAG	AAATTATGGG	AGCAAGCTCC	тааатсааст	2100
GTTTTTGATC	TACTTCTTTA	ACTACTTGAT	AAAAGTTATA	GAAGTAGGCC	AAACTTGAAA	2160
TGATGGTTAC	GACTAGGAAT	ATTGAAAATT	TCCATTGGAC	AGGGTTGGTT	AAAAGTTGTG	2220
GAAAGGATAT	GAGGAGAAAG	AAGAGGGCTG	CGTTGAGGAC	AGGTATCCGT	TTTGATTGTA	2280
TTTTCTCAAG	TCCTTTATTG	AGCGCAGGAA	GAAAGAGGAG	TAGGAGTAGT	AAAACTGTAT	2340
GAGAAATAGC	TCCTGAAGTA	AGGGCGAAGA	AAAGGAAAAT	actgataaaa	ACATGAATGA	2400
TCAGTAGTCT	AGCTAGTGAT	TTCATAAGGC	ACCTCCTAAT	CCTGGTCTTT	TTTAGCTCTT	2460
GCAATACGAA	GTGAGTCGAC	AATATGTATC	ATCACTCCGA	AAAAGAAAGĊ	TCCCAGTATA	2520
GTTTTAAAAA	TATGTTTTGT	ATTTAGAAGA	GAACTGATAA	AATTTGGATT	TTCACTTGTT	2580
AGGGTATCAA	TGAGTGGAAT	TAAAAAAT	ATCACTGTTC	CATAAATCGA	ACCTGCTTTC	2640
AGACCAGGAT	AACGTAACTG	TTTCTTTTCT	TTTTTCATGA	GTTTCCTCCT	AATCCTCATC	2700
TTGATTTTC	TTAGTTTTTG	CAATGCGACG	GGAGATGAGG	AACTGTATGC	TCGCTCCGAA	2760
Gaaaatagaa	CCGAGAATAC	TTGATACACC	ATTTCTTATA	GTGAGAAGAG	AATGAAAATA	2820
GTCCTGACCT	TCATCTATGA	GTATCCTGAG	AAGAGGAGTT	ATAAAAAACA	TCCATAGACC	2880
AAAGAACAAA	CCTGCTTTCA	GACCTGGGTA	GTGTAGTTGC	TTGCTTTCTT	TCTCATTCAG	2940
CATATCTGGŢ	TCAATGACTG	TGATGCCTGT	TTTTTTCATT	TGGTAGGTGA	CATAGCCAGA	3000

			222			
AGCGATGAGG	GCAATCACTA	AAATCAGAGG	AGGATAGATT	AGAGCCACTT	CTTGAGGGTA	3060
TTTATAGGCC	AGAAGGAGTG	GAATAAGATT	TCCGAAAATC	ATCAGATAAA	AGAGGATGAT	3120
AAAGACTTGG	TTCCCAATAC	TATCGGCCTC	ACGCCGTTTG	TATTCGTCAA	GGGGACCAGA	3180
AATACCGTAT	GTGCGTTTGA	TCAGTTTTTC	AGTGAAGGTT	TCTTTTTTCA	TGAGTTTGCT	3240
CCTTTTTTAA	AAATCTTCCT	CCCAAAAGAG	ACTGTTGAGG	TCAGTTTGGA	GGCTGCGGGC	3300
GAGATTGAGA	CAGAGTTCCA	AGGTTGGATT	GTACTTGTCG	TTTTCAATCA	TATTGATAGT	3360
CTGTCTCGAG	ACACCGATAT	CCTTGGCGAG	TTCGAGCTGG	GAAATACCCA	ATTCCTTGCG	3420
AAATTCTTTC	ACACGATTCA	TCTGTTCTCC	TTTCTGATTT	ATGTCGTATA	TATTTGACTA	3480
TATTATAGTC	TTTTAAACAT	AAAGTGTCAA	GTATTTTGA	CATATTTTT	GAAGAAATAG	3540
TAGTCTCCTT	GTCCTATTTG	TCTGACAAGT	GCAAGCTGGT	CGGATTTGTG	GTAAAATAGA	3600
TAAGATATGA	CAAAAGAATT	TCATCATGTA	ACGGTCTTAC	TCCACGAAAC	GATTGATATG	3660
CTTGACGTAA	AGCCTGATGG	TATCTACGTT	GATGCGACTT	TGGGCGGAGC	AGGACATAGC	3720
GAGTATTTAT	TAAGTAAATT	AAGTGAAAAA	GGCCATCTCT	ATGCCTTTGA	CCAGGATCAG	3780
AATGCCATTG	ACAATGCGCA	AAAACGCTTG	GCACCTTACA	TTGAGAAGGG	AATGGTGACC	3840
TTTATCAAGG	ACAACTTCCG	TCATTTACAG	GCATGTTTGC	GCGAAGCTGG	TGTTCAGGAA	3900
attgatggaa	TTTGTTATGA	CTTGGGAGTG	TCTAGTCCTC	AATTAGACCA	GCGTGAGCGT	3960
GGTTTTTCTT	ATAAAAAGGA	TGCGCCACTG	GACATGCGGA	TGAATCAGGA	TGCTAGCCTG	4020
ACAGCCTATG	AAGTGGTGAA	CAATTATGAC	TATCATGACT	TGGTTCGTAT	TTTCTTCAAG	4080
TATGGAGAGG	ACAAATTCTC	TAAACAGATT	GCGCGTAAGA	TTGAGCAAGC	GCGTGAAGTG	4140
AAGCCGATTG	AGACAACGAC	TGAGTTAGCA	GAGATTATCA	AGTTGGTCAA	ACCTGCCAAG	4200
GAACTCAAGA	AGAAGGGGCA	TCCTGCTAAG	CAGATTTTCC	AGGCTATTCG	AATTGAAGTC	4260
AATGATGAAC	TGGGAGCGGC	AGATGAGTCC	ATCCAGCAGG	CTATGGATAT	GTTGGCTCTG	4320
GATGGTAGAA	TTTCAGTGAT	TACCTTTCAT	TCCTTAGAAG	ACCGCTTGAC	CAAGCAATTG	4380
TTCAAGGAAG	CTTCAACAGT.	TGAAGTTCCA	AAAGGCTTGC	CTTTCATCCC	AGATGATCTC-	-4440
AAGCCCAAGA	TGGAATTGGT	GTCCCGTAAG	CCAATCTTGC	CAAGTGCGGA	AGAGTTAGAA	4500
GCCAATAACC	GCTCGCACTC	AGCCAAGTTG	CGCGTGGTCA	GAAAAATTCA	CAAGTAAGAG	4560
GGAAAAAGAT	GGCAGAAAAA	ATGGAAAAA	CAGGTCAAAT	ACTACAGATG	CAACTTAAAC	4620
GGTTTTCGCG	TGTGGAAAAA	GCTTTTTACT	TTTCCATTGC	TGTAACCACT	CTTATTGTAG	4680
CCATTAGTAT	TATTTTTATG	CAGACCAAGC	TCTTGCAAGT	GCAGAATGAT	TTGACAAAAA	4740
TCAATGCGCA	GATAGAGGAA	AAGAAGACCG	AATTGGACGA	TGCCAAGCAA	GAGGTCAATG	4800

AACI	TATTACG	TGCAGAACGT	TTGAAAGAAA	TTGCCAATTC	ACACGATTTG	CAATTAAACA	4860
ATGA	TATAAA	TAGAATAGCG	GAGTAAGATA	TGAAGTGGAC	AAAAAGAGTA	ATCCGTTATG	4920
CGAC	CAAAAA	TCGGAAATCG	CCGGCTGAAA	ACAGACGCAG	AGTTGGAAAA	AGTCTGAGTT	4980
TATI	PATCTGT	CTTTGTTTTT	GCCATTTTT	TAGTCAATTT	TGCGGTCATT	ATTGGGACAG	5040
GCAC	TCGCTT	TGGAACAGAT	TTAGCGAAGG	AAGCTAAGAA	GGTTCATCAA	ACCACCCGTA	5100
CAGT	PTCCTGC	CAAACGTGGG	ACTATTTATG	ACCGAAATGG	AGTCCCGATT	GCTGAGGATG	5160
CAAC	стсста	TAATGTCTAT	GCGGTCATTG	ATGAGAACTA	TAAGTCAGCA	ACGGGTAAGA	5220
TTCI	TTACGT	AGAAAAAACA	CAATTTAACA	AGGTTGCAGA	GGTCTTTCAT	AAGTATCTGG	5280
ACAT	'GGAAGA	ATCCTATGTA	AGAGAGCAAC	TCTCGCAACC	TAATCTCAAG	CAAGTTTCCT	5340
PTG G	BAGCAAA	GGGAAATGGG	ATTACCTATG	CCAATATGAT	GTCTATCAAA	AAAGAATTGG	5400
AAGC	TGCAGA	GGTCAAGGGG	ATTGATTTTA	CAACCAGTCC	CAATCGTAGT	TACCCAAACG	5460
GACA	ATTTGC	TTCTAGTTTT	ATCGGTCTAG	CTCAGCTCCA	TGAAAATGAA	GATGGAAGCA	5520
AGAG	CTTGCT	GGGAACCTCT	GGAATGGAGA	GTTCCTTGAA	CAGTATTCTT	GCAGGGACAG	5580
ACGG	CATTAT	TACCTATGAA	AAGGATCGTC	TGGGTAATAT	TGTACCCGGA	ACAGAACAAG	5640
TTTC	CCAACG	AACGATGGAC	GGTAAGGATG	TTTATACAAC	CATTTCCAGC	CCCCTCCAGT	5700
CCTI	TATGGA	AACCCAGATG	GATGCTTTTC	AAGAGAAGGT	AAAAGGAAAG	TACATGACAG	5760
CGAC	TTTGGT	CAGTGCTAAA	ACAGGGGAAA	TTCTGGCAAC	AACGCAACGA	CCGACCTTTG	5820
ATGC	CAGATAC	AAAAGAAGGC	ATTACAGAGG	ACTTTGTTTG	GCGTGATATC	CTTTACCAAA	5880
GTAA	CTATGA	GCCAGGTTCC	ACTATGAAAG	TGATGATGTT	GGCTGCTGCT	ATTGATAATA	5940
ATAC	CTTTCC	AGGAGGAGAA	GTCTTTAATA	GTAGTGAGTT	AAAAATTGCA	GATGCCACGA	6000
PTCG	AGATTG	GGACGTTAAT	GAAGGATTGA	CTGGTGGCAG	AACGATGACT	TTTTCTCAAG	6060
GTTT	TGCACA	CTCAAGTAAC	GTTGGGATGA	CCCTCCTTGA	GCAAAAGATG	GGAGATGCTA	6120
CCTG	GCTTGA	TTATCTTAAT	CGTTTTAAAT	TTGGAGTTCC	GACCCGTTTC	GGTTTGACGG	6180
ATGA	GTATGC	TGGTCAGCTT	CCTGCGGATA	ATATTGTCAA	CATTGCGCAA	AGCTCATTTG	6240
GACA	AGGGAT	TTCAGTGACC	CAGACGCAAA	TGATTCGTGC	CTTTACAGCT	ATTGCTAATG	6300
ACGG	TGTCAT	GCTGGAGCCT	ATTTATTA	GTGCCATTTA	TGATCCAAAT	GATCAAACTG	6360
CTCG	GAAATC	TCAAAAAGAA	ATTGTGGGAA	ATCCTGTTTC	TAAAGATGCA	GCTAGTCTAA	6420
CTCG	GACTAA	CATGGTTTTG	GTAGGGACGG	ATCCGGTTTA	TGGAACCATG	TATAACCACA	6480
GCAC	AGGCAA	GCCAACTGTA	ACTGTTCCTG	GGCAAAATGT	AGCCCTCAAG	TCTGGTACGG	6540

CTCAGATTGC	TGACGAGAAA	AATGGTGGTT	224 ATCTAGTCGG	GTTAACCGAC	TATATTTTCT	6600
CGGCTGTATC	GATGAGTCCG	GCTGAAAATC	CTGATTTTAT	CTTGTATGTG	ACGGTCCAAC	6660
AACCTGAACA	TTATTCAGGT	ATTCAGTTGG	GAGAATTTGC	CAATCCTATC	TTGGAGCGGG	6720
CTTCAGCTAT	GAAAGACTCT	CTCAATCTTC	AAACAACAGC	TAAGGCTTTA	GAGCAAGTAA	6780
GTCAACAAAG	TCCTTATCCT	ATGCCTAGTG	TCAAGGATAT	TTCACCTGGT	GATTTAGCAG	6840
AAGAATTGCG	TCGCAATCTT	GTACAACCCA	TCGTTGTGGG	AACAGGAACG	AAGATTAAAA	6900
ACAGTTCTGC	TGAAGAAGGG	AAGAATCTTG	CCCCGAACCA	GCAAGTCCTT	ATCTTATCTG	6960
ATAAAGCAGA	GGAGGTTCCA	GATATGTATG	GTTGGACAAA	GGAGACTGCT	GAGACCCTTG	7020
CTAAGTGGCT	CAATATAGAA	CTTGAATTTC	AAGGTTCGGG	CTCTACTGTG	CAGAAGCAAG	7080
ATGTTCGTGC	TAACACAGCT	ATCAAGGACA	TAAAAAATT	ТАСАТТААСТ	TTAGGAGACT	7140
AATATGTTTA	TTTCCATCAG	TGCTGGAATT	GTGACATTTT	TACTAACTTT	AGTAGAAATT	7200
CCGGCCTTTA	TCCAATTTTA	TAGAAAGGCG	CAAATTACAG	GCCAGCAGAT	GCATGAGGAT	7260
GTCAAACAGC	ATCAGGCAAA	AGCTGGGACT	CCTACAATGG	GAGGTTTGGT	TTTCTTGATT	7320
ACTTCTGTTT	TGGTTGCTTT	CTTTTTCGCC	CTATTTAGTA	GCCAATTCAG	CAATAATGTG	7380
GGAATGATTT	TGTTCATCTT	GGTCTTGTAT	GGCTTGGTCG	GATTTTTAGA	TGACTTTCTC	7440
AAGGTCTTTC	GTAAAATCAA	TGAGGGGCTT	AATCCTAAGC	AAAAATTAGC	TCTTCAGCTT	7500
CTAGGTGGAG	TTATCTTCTA	TCTTTTCTAT	GAGCGCGGTG	GCGATATCCT	GTCTGTCTTT	7560
GGTTATCCAG	TTCATTTGGG	ATTTTTCTAT	ATTTTCTTCG	CTCTTTTCTG	GCTAGTCGGT	7620
TTTTCAAACG	CAGTAAACTT	GACAGACGGT	GTTGACGGTT	TAGCTAGTAT	TTCCGTTGTG	7680
attagtttgt	CTGCCTATGG	AGTTATTGCC	TATGTGCAAG	GTCAGATGGA	TATTCTTCTA	7740
GTGATTCTTG	CCATGATTGG	TGGTTTGCTC	GGTTTCTTCA	TCTTTAACCA	TAAGCCTGCC	7800
AAGGTCTTTA	TGGGTGATGT	GGGAAGTTTG	GCCCTAGGTG	GGATGCTGGC	AGCTATCTCT	7860
ATGGCTCTCC	ACCAAGAATG	GACTCTCTTG	ATTATCGGAA	TTGTGTATGT	TTTTGAAACA	7920
ACTICTGTTA	TGATGCAAGT	CAGTTATTTC	AAACTGACAG	GTGGTAAACG	TATTTTCCGT	7980
ATGACGCCTG	TACATCACCA	TTTTGAGCTT	GGGGGATTGT	CTGGTAAAGG	AAATCCTTGG	8040
AGCGAGTGGA	AGGTTGACTT	CTTCTTTTGG	GGAGTGGGAC	TTCTAGCAAG	TCTCCTGACC	8100
CTAGCAATTT	TATATTTGAT	GTAAGAATGG	CACCCTGATG	TTTCAGGG		8148

(2) INFORMATION FOR SEQ ID NO: 12:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9909 base pairs
(B) TYPE: nucleic acid

WO 98/18931

225

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

TACTCCACCC	TTAATATCCG	TTCCTGTAAA	TACTTTACCG	CTTTTAAGTT	CATAGAATTG	60
aacttttaaa	TGCTTGTCTT	CAAGCATCTT	TTCCATCCAA	TTTTTAGGAG	TTTGACCAGC	120
AAATAAATTT	AACCTTGCTG	GGGTGATTAG	TATAGATTTA	TCTGCGATTT	TATAAGCTTC	180
ATCAATAAAA	TAGTGATATA	TCGGCTCATC	TCTGGCTTCT	CCTGTTTCCT	GATACGGAGG	240
ATTTCCTATC	ACGACATCAA	ATTTCATTTC	ACTTTCCTCG	CTAGATAGGC	GCTCAAAACC	300
TATCATTCTA	TTCTTTTTCC	AGTCTTTGAT	ATGGGTTTTA	GATTCTTCTA	CTTCTTGGAC	360
TTCTAGCTCA	TCCGCAAACA	AACTCAATTG	TTGAGATTGC	TTTTGTTTAG	CTGAATAAGG	420
ACTACTTTTT	TTCAATCCAT	CCATCTGAAA	GACATTGTAA	GAGATAATAG	TCGCAATTTC	480
TTTCTTTTGC	TCTAATGTTG	GTTGATTTCC	AGTCTTAGCT	AGATAATAGT	CCTCAAAAGT	540
TGCCAAAAGA	TTCTCACGCG	CCAAAAGGAG	AGAATCTCCT	TGATACTCAT	AACCATACGA	600
AGCATGATAA	GCATCTTTTA	CAAGTŤTATA	AAATGTGACT	TCATCTGAAA	CCTCACGACT	660
AATCCGTTGC	AGTTTTCTAT	CAACAAAACC	AACTCGCTCA	GATAATGGAA	TTTCCTCACC	720
AGTTACGGTA	TCATATCTCG	TTACCATATA	AGGTGCTTCA	CCACAAGTTA	CCTCTAACCA	780
TCGTAAGTCC	ACATACTCCT	CAAGACTTAA	CGAGCCTAAT	TTCGATTCTA	CATATCCATT	840
TTGCTTTGCG	ACCAACCACG	TTGGTGTAAA	CACTTCTGCC	CTTATTTTTG	TCCGATCTTT	900
TTGTTCATAT	TTGGATTTTT	CAGATCTGGG	CTGAATCAAG	TTGGCAAAGT	TTCCAGTAAC	960
CTTACTTGGA	TTGATGCGAT	CACTTGGAGC	AAATCCCTTT	CCTAACAATT	CATAAGAATG	1020
CGTAnGCCAA	ACAATTGATT	TCTTTGTCGT	TCGATCTTTT	AAAAGAATTT	TTAATAAGTC	1080
AGCCGATTCT	TTAGCCAAAC	TTTCTTCACT	AATATCTATT	GTCATCAGCA	ACCTCTCTTA	1140
TATTGTAAGC	CCTATTATAT	CATATTTTAA	AGAATGAAAA	TTTACTTGAA	AAAAGTAATT	1200
СААТАААТАТ	CTCTCCGATG	ACCAACTTCT	AGAGTAGCAA	CGACTAATTC	ATCATCTACA	1260
ATTTGTACGA	TAACTCGATA	ATTACCAATT	CTATAGCGCC	ATTGACCAAC	GCGATTACCA	1320
ACCAAAGCCT	TTCCGTGTCG	TCTTGGGTCT	TCCAAAACAT	TGGTTTGTAA	ATAGTTTGTA	1380
ATTAGCTTCT	GCGTATAACG	GTCCAATTTT	TTCAATTGCT	TGATAAAACG	TCTTGTTGGA	1440
ACTAATTTAT	ACAAATTATT	CATCCTTCAA	GCCTAAATCA	TGCATCATTT	CTTCCCAAGT	1500
AATGGGTTCA	ACTCCTTTTT	CCAAGTCTTC	тааатастст	TGATAGGCTA	AATCTGCCAC	1560

			226			
ACGAGCATCG	TATTCATCTT	CTAGGGCTTC	AAGAGTTTTG	GTGCGAATAA	GTTCCGAAAG	1620
GGAAACTCCT	TCAAACTTAG	CCATTGCTTT	CATAAATGTT	TTATCAGCTT	CAGAAACTTT	1680
ТААТСТААТА	GTAGTCATCT	TTTGTGCTCC	CTTTTTTAAT	GGTAACACCA	TTGTATTACT	1740
TTTTAGGTGT	TCAGTCAATA	TAAAAAGAAC	ACCTTCTCAG	CGTTCTTTCT	ATATCTCTGT	1800
CAATGGTGTT	GCGGTATCTG	GTGAGGTATC	ATAAACCTTA	AAGTCTACTC	CGACTCCCAG	1860
ATCAGCTTGA	GCCAGCTGAT	TGACCATGGT	CATATGAGCC	AGTTCCTTGA	TATTGTTTTC	1920
CTTAGATAAA	TGCCCAAGGT	AAATCTTCTT	AGTACGATTT	CCTAGCGTCC	GAATCATAGC	1980
TTCAGCACCG	TCCTCGTTAG	AAAGGTGACC	AAGGTCAGAT	AGGATTCGTT	GTTTGAGTCG	2040
CCAAGCGTAA	GAACCTGATC	GCAAAATCTC	TACATCATGG	TTGGCCTCGA	TAAGATAACC	2100
ATCCGCATTT	TCGACAATGC	CCGCCATACG	GTCACTGACA	TAACCTGTAT	CTGTCAAGAG	2160
GACAAAACTC	ттатсатсст	TCATAAAGCG	ATAGAACTGC	GGTGCGACTG	CATCATGGCT	2220
TACACCAAAA	CTCTCGATGT	CGATATCTCC	AAAGGTTTTG	GTTTTACCCA	TTTCAAAAAT	2280
ATGCTTTTGC	GAAGAATCCA	CCTTGCCAAG	ATATTTACTA	TTTTCCATAG	CTTGCCAGGT	2340
CTTTTCATTG	GCATAAAGAT	CCATACCATA	CTTGCGAGCC	AAAACGCCTA	CTCCATGGAT	2400
ATGATCTGAA	TGCTCATGGG	TAATCAAGAT	GGCATCCAGG	TCTTCTGGCT	TACGGTTAAT	2460
TTCAGCTAGC	AGACTGGTAA	TTTTCTTGCC	AGACAAGCCT	GCATCTACTA	AAAGCTTCTT	2520
TTTTGAGGTT	TCCAGATAAA	AAGAATTTCC	ACTGGAACCC	GACGCTAAAA	TACTGTATTT	2580
AAAGCCTATT	TCACTCATTC	TAGTCTTCTA	CTTCATCCTC	CCATACTTCT	TCTTTCACTG	2640
CATCCTTATC	ATAAGGGAGT	ACAATGGTAA	AGGTTGAACC	CTTGCCGTAT	TCACTCTTGG	2700
CCCAAATAAA	GCCCTTATGT	TGTTTGATAA	TTTCTTTAGC	GATAGACAGT	CCTAGACCTG	2760
TACCACCTTG	TGCACGACTT	CTAGCACGAT	CCACACGATA	GAAACGGTCA	AAGATACGTG	2820
GTAAATCCTG	CTTAGGAATC	CCCAAACCGT	GGTCAGAAAT	GGATAAAATC	ATCTGGTCTT	2880
CAGTTGTCTT	CATTCTGACA	GTGATTTTAC	CCCCATCTGG	CGAATACTTA	ATAGCATTAT	2940
ТТААААТАТТ	GTCGACAACC	TGCGTCATCT	TATCTGTATC	AATTTCCATC	CAGATAGAAT	3000
TGATGGGATA	ATCTCTCACC	AACTCATATT	TTTTCTCCTT	TTCCTGTCCT	TTCATCTTGT	3060
CAAAACGATT	GAGGATAAAG	GTAATAAAAG	CAGTGAAGTT	AATCAGTTCC	ACATCTAGGT .	3120
GACTGGTAGC	ATTATCAATA	CGTGAAAGAT	GGAGGAGATC	CGTCACCATG	CGCATCATAC	3180
GGTTGGTCTC	ATCAAGAGAA	ACCTTGATAA	AGTCTGGTGC	TACAGTTTCA	CACAAAGCCC	3240
CCTCATCCAA	GGCTTCAAGA	TAGGATTTTA	CGCTAGTCAG	AGGAGTCCGT	AACTCATGGC	3300
TAACATTGGA	AACAAAGAGT	CTTCGTTCGC	GTTCTTCCTT	CTCCTGCTCC	GTCGTATCAT	3360

GC	AAAACAGC	CACCAAACCT	GAAATAAAGC	CAGACTCTCG	ACGTATCAAG	GCAAAGCGAA	3420
CTO	CGAAGGTT	CAAATATTCG	CCATTGATAT	CTTGGGAATC	TAGCAACAAT	TCTGGACTTT	3480
GG(STAATCAA	ATCACGCAAT	TCATAGTTTT	CTTCTATCTT	GAGCAATTCC	AAAATGCTTC	354
TAT	TTCAGAAC	ATCTTCCTTA	ACCAACCCCA	GTTGCTTCTT	GGCTGTATCG	TTAATCATGA	360
TA	ATCTGACC	CCGACGGTTA	GTCGCAAGAA	CCCCATCTGT	САТАТААААС	AGAATACTAT	366
TT?	AGCCTCTT	ACTCTCTTGT	TCTAGATTTT	CCTGAGTGAG	ACGAATAACC	TCCGACAAGT	372
CAI	TTCAAATT	ATTGGTAATA	TTGGTGATTT	CAGACCCACC	TTGCATATCA	AGAACCTTGG	3780
AA	PAATCTCC	TGCAATCAAA	TCTTTAACCT	TTTGATTGAC	TTGCTTCAAC	TGAATATTAT	3840
CAC	CGTCTATT	TTCCAGTAAT	AAGAGGGTCA	CAACAAGGAT	GAAACCTAAC	AAAATCAGGA	3900
TA	A AGATAAA	ATCTCTGGTA	AAAATGGTTT	GTTTCAGTAA	ATCAAGCATT	ATTTCTCATG	3960
TAZ	ATACCCTA	CACCACGGCG	CGTCAAGATA	TACTCTGGTC	GGCTGGGCGT	ATCTTCAATC	4020
TTC	CTCACGCA	GACGTCGTAC	AGTCACATCA	ACTGTACGGA	CATCACCAAA	ATAGTCATAA	4080
cco	CCAGACAG	TCTCAAGCAA	GTGTTCGCGC	GTGATGACTT	GACCTGTATG	CGATGCTAAA	4140
TG	ATACAAAA	GCTCAAATTC	ACGATGGGTT	AAGTCTAGTT	CTTCGCCATA	TTTTTTAGCC	4200
ACC	STAGGCGT	CTGGAACAAT	TTCTAAATCC	CCAATTTGGA	TAGGTTGAGG	тттастатст	4260
GCT	TCCTGAC	CATCTACTGG	CATAGGTTGA	GAACGACGCA	GAAGAGCTTT	AACACGCGCC	4320
TGC	CAACTCAC	GATTGGAGAA	GGGTTTTGTT	ACATAGTCAT	CTGCCCCAAG	TTCCAAACCG	4380
AT?	ACCTTAT	CAAATTCACT	ATCTTTGGCT	GAAAGCATAA	GAATGGGCAC	ACTGCTTGTC	4440
TT?	ACGAATGG	TCTTAGCAAC	TTCTAAACCA	TCAATTTCTG	GAAGCATCAA	ATCCAGAATA	4500
AT?	ATATCTG	GTTGCTCTGC	TTCAAATTGC	TCTAGCGCTT	CACGACCATT	AAAAGCAGTT	4560
AC?	ACTTCGT	AACCTTCCTT	GGTCATATTA	AACTTGATAA	TATCCGAGAT	TGGTTTCTCA	4620
rc#	TCTACAA	TTAGTATTTT	TTTCATATGT	TCACCTTTTT	CTCTACTATT	ATACCAAAAA	4680
AA7	PAGTCAGA	AGACACAATA	GCTAGTCTTG	GCTACTGTCT	AAGTTGGCTT	GTGCATAAAC	4740
CTC	CCAGATT	TTTTGTTGGG	GTTTGGCAAG	TGGGTAATTC	TTGAATTCTT	CTGGTGAAAG	4800
CCA	GCGAACT	TCCCTATCTG	AAAAATCATG	GAAGTCACTC	ACCTGACCTG	CTACAATCTG	4860
rac	CATGCCAT	TTTCGATGAC	TAAAAACATG	CTGGACTGTA	TCAAAACAAA	CATCAAGCCA	4920
ATC	CAACATCT	AGGTCATAGT	CCTGCTGGAA	ACTCTCTTCT	GGACTGGGAC	CAAAGTTCAC	4980
ACI	TTCTTCC	GCAACCTGAT	GAAAGAGGTC	AAACTGCTCT	TCTTGCGAAA	AGTTATCAAC	5040
PTC	TATAAAG	GGGAAATGCC	AAAAACCTGC	CAAGAGCTTT	TCGCTTTCAT	TTTTTCAAG	5100

TAAAAATTGT	CCTTGAGAAT	TTTTCACAAC	TAAGGCTTTA	AGATAAATAG	GAACCGGCTT	516
TTTCTTAGGA	GATTTAATTG	GATAACGGTC	CATGGTTCCA	TTCTGATATG	CCGCACTAAA	522
GTCCTTGACT	GGGCTTTCTT	CAGGTCTGGG	ATTTACAGGA	GACTCAATAT	CAGACCCTAA	528
GTCCATCAAG	GCTTGATTAA	AATCACCCGG	ACGATCCGGA	TTAATCAAGA	TCTCCATCAT	534
TGCCTGAAAA	ATTTTTCGAT	TACTTGGAAT	CCCAATATCG	TGGTTGACTT	CAAACAGACG	540
CGCCAAGACC	CGCATGACAT	TACCATCTAC	AGCTGGCTCA	GGCAAGTTAA	AAGCAATACT	546
GGAAATGGCT	CCTGCTGTGT	AAGGTCCAAT	CCCTTTCAAG	CTGGAAATTC	CTTCATAGGT	552
АТТТ GGAAAT	TGGCCACCAA	AGTCAGTCAT	AATCTGCTGG	GCTGCAGCCT	GCATATTGCG	558
AACTCGAGAA	TAATAGCCCA	AGCCCTCCCA	AGCTTTCAGT	AAACTCTCCT	CAGGCGCAGT	564
TGCCAGACTT	TCGACAGTTG	GĄAACCAGTC	CAAAAATCTT	TCGTAGTAAG	GGATAACTGT	570
ATCCACCCTG	GTCTGCTGAA	GCATGATTTC	AGATACCCAG	ATGTGATAAG	GATTTTTACT	5760
TCTCCTCCAA	GGCAAATCTC	TTTTGTTTTC	ATCATACCAA	GCGAGAAGTT	TCTCACGGAA	5820
AGAAATGACT	TTCTCCTCCG	GCCACATGAC	GATACCGTAT	TCTTTCAAAT	CTAACATATC	588
TCTAGTATAA	CACAGAAGGT	TTCACCTGTC	TTTGTATCTG	АТТТАТААТА	TTTTCAATAG	5940
ATAGTATATA	ACTTTTCTAT	CTACTTATAC	TCAATGAAAA	TCAAAGAGCA	AACTAGGAAG	6000
CTAGCCGCAG	GTTGCTCAAA	ACACTGTTTT	GAGGTTGTGG	ATAGAACTGA	CAGAGTCAGT	6060
ATCATATACT	ACGGCAAGGT	GAAGCTGACG	TAGTTTGAAG	AGATTTTCGA	AGAGTATAAA	6120
TCTTATTGAT	GAACTGCTTG	CAGTCTGAGA	AAAAATGAGC	TTGGATATTA	TTTCCAAACT	6180
CACTTAAAGT	CAATTTCAAT	CCACTAGAAC	AAGCCTAGTA	CAGTTCCATC	GCTTTCAACA	6240
TCCATGTTGA	GAGCTGCTGG	ACGTTTTGGA	AGACCTGGCA	TGGTCATAAC	ATCACCAGTT	6300
AAGGCAACGA	TGAAGCCTGC	ACCTAATTT	GGTACCAATT	CACGAATGGT	AATTTCAAAG	6360
PTTTCTGGTG	CTCCAAGCGC	ATTTGGATTG	TCTGAGAAAC	TGTATTGAGT	TTTAGCCATA	6420
CAGATTGGCA	ATTTGTCCCA	ACCGTTTTGA	ACGATTTGAG	CAATTTGTGT	TTGAGCTTTC	6480
TTCTCAAAGT	TCACTTTGCT	ACCACGATAG	ATTTCAGTGA	CAATTTTTTC	AATCTTTTCT	6540
TGGACAGAAA	GGTCATTATC	ATACAAACGT	TTATAGTTAG	CTGGATTTTC	AGCAATTGTC	6600
TTAACAACTG	TTTCGGCAAG	TGCTACTCCA	CCTTCTGCTC	CATCAGCCCA	GACACTAGCC	6660
AATTCAACTG	GTACATCGAT	TGAGGCACAG	AGTTCTTTTA	AGGCTGCAAT	TTCAGCTTCT	6720
GTATCAGATA	CAAATTCGTT	AATAGCTACA	actgctggaa	TACCGAACTT	ACGGATATTT	6780
rcaacgtggc	GTTTCAAGTT	AGCAAAACCT	GCACGAACTG	CCTCTACATT	TTCTTCAGTC	6840
AGAGCGTCTT	TAGCCACACC	ACCATTCATC	TTAAGGGCAC	GAAGGGTTGC	GACAATAACA	6900

ACTGCATCTG	GAGATGTTGG	CAAGTTTGGT	GTCTTGATAT	CAAGGAATTT	CTCAGCACCA	6960
AGGTCCGCAC	CAAAACCAGC	TTCAGTAACA	GTGTAATCAG	CCAAGTGAAG	GGCTGTTGTC	7020
GTCGCCAAAA	CAGAGTTACA	GCCATGAGCG	ATATTGGCAA	A7GGACCACC	GTGTACAAAG	7080
GCAGGTGTAC	CGTAAATTGT	CTGAACCAAG	TTTGGCTTAA	TAGCATCCTT	CAAAATCAAA	7140
GCCAAGGCAC	CCTCAACCTG	CAAATCACCT	ACAGAAACAG	GCGTACGGTC	ATAGCGATAA	7200
CCAATAACGA	TATTCGCCAA	ACGACGTTTC	AAGTCCTCGA	TGTCCGTTGC	CAAGCAAAGA	7260
ATTGCCATGA	TTTCTGAAGC	AACTGTAATA	TCAAAACCAT	CCTCACGTGG	AATACCGTTT	7320
AGAGGACCAC	CAAGACCAAC	AGTCACATGG	CGGAGCGTAC	GGTCGTTCAA	GTCCACAACG	7380
CGTTTCCAGA	GGATACGACG	TTGATCAATT	CCCAGCTCAT	TCCCTTGGTG	CAAGTGGTTG	7440
TCAATCAAGG	CAGAAAGGC	ATTGTTGGCA	GTTGTAATAG	CATGCATATC	TCCAGTAAAG	7500
TGGAGGTTGA	TGTCTTCCAT	TGGCAGAACT	TGTGCATACC	CACCACCAGC	AGCACCACCC	7560
TTGATCCCCA	TGACTGGACC	AAGAGACGGT	TCGCGGATAG	CAATCATGGT	TTTCTTGCCA	7620
ATCTTGTTCA	AGGCATCCGC	AAGACCAATG	GTAAGCGTCG	ACTTTCCTTC	ACCTGCAGGT	7680
GTTGGGTTGA	TGGCAGTAAC	CAAGATCAAT	TTACCGACTG	GATTGCTCTC	AACTGCACGA	7740
ATTTTATCAA	AGCTGAGTTT	AGCCTTGTAC	TTTCCGTACA	ACTCCAAATC	GTCATAAGAA	7800
ATACCAAGTT	TCTCTACAAC	ATCAACAATT	GGCTTCAACT	CAATACTCTG	TGCGATTTCA	7860
ATATCTGTTT	TCATTCAAAA	TTCCTCTAAC	CTCTTATATG	ATAATTCATT	ATATCACAAA	7920
ACAAGATTTT	TAACATCCTA	AAACTCTCTA	AACGTTCGTA	AATATCTCTG	TTTTTAAGAC	7980
TTTTAGAGTC	CTTTCTTAAA	TTTTATATGG	CTTTATAGTT	TGAAACTATA	ATAAATCTTC	8040
GTTTTTACCA	AAAATTTATC	ACTTTCATTT	TACTTACCGC	TTATTTTTGT	GTACAATAGT	8100
GCTATGAAAA	TTTTAGTTAC	ATCGGGCGGT	ACCAGTGAAG	CTATCGATAG	CGTCCGCTCT	8160
ATCACTAACC	ATTCTACAGG	TCACTTGGGG	AAAATTATCA	CAGAGACTTT	GCTTTCTGCA	8220
GGGTATGAAG	TTTGTTTAAT	TACGACAAAA	CGAGCTCTGA	AGCCAGAGCC	TCATCCTAAC	8280
CTAAGTATTC	GAGAAATTAC	CAATACCAAG	GACCTTCTAA	TAGAAATGCA	AGAACGTGTT	8340
CAGGATTATC	AGGTCTTGAT	CCACTCAATG	GCTGTTTCTG	ACTACACTCC	TGTTTATATG	8400
ACAGGGCTTG	AGGAAGTTCA	GGCTAGCTCC	AATCTAAAAG	AATTTTTAAG	CAAGCAAAAT	8460
CATCAGGCCA	AGATTTCTTC	AACTGATGAG	GTTCAGGTTT	TGTTCCTTAA	AAAGACACCC	8520
AAAATCATAT	CCCTAGTCAA	GGAATGGAAT	CCTACTATTC	ATCTGATTGG	TTTCAAACTG	8580
CTGGTTGATG	TTACCGAAGA	TCATCTGGTT	GACATTGCAC	GAAAAAGTCT	TATCAAGAAT	8640

			230			
CAAGCAGATT	TAATCATCGC	GAATGACCTG		CAGCAGATCA	GCACCGAGCT	8700
ATATTTGTTG	AGAAAAATCA	GCTTCAAACA	GTCCAGACTA	AAGAAGAAAT	TGCAGAACTC	8760
CTCCTTGAAA	AAATTCAAGC	CTATCATTCT	TAGAAAGGAA	AACTATGGCA	AACATTCTCT	8820
TGGCTGTAAC	GGGTTCAATC	GCCTCTTATA	AGTCGGCAGA	TTTAGTCAGT	тстсталала	8880
AACAAGGCCA	TCAAGTCACT	GTCTTAATGA	CTCAGGCTGC	TACAGAGTTT	ATCCAACCTT	8940
TGACACTACA	GGTACTCTCA	CAGAATCCTG	TCCACTTGGA	TGTCATGAAG	GAACCCTATC	9000
CTGATCAGGT	CAATCATATC	GAACTTGGAA	AAAAAGCAGA	TTTATTTATC	GTGGTACCTG	9060
CAACTGCTAA	CACTATTGCA	AAACTAGCTC	ACGGATTTGC	GGACAACATG	GTAACCAGTA	9120
CAGCTCTAGC	CCTACCAAGT	CATATTCCCA	AACTAATAGC	TCCTGCTATG	AATACAAAAA	9180
TGTATGACCA	TCCAGTAACT	CAGAATAATC	TGAAAACATT	AGAAACTACG	GCTATCAGCT	9240
GATTGCTCCT	AAGGAATCCC	TACTAGCTTG	TGGAGACCAC	GGACGAGGAĢ	CTTTAGCTGA	9300
CCTCACAATT	ATTTTAGAAA	GAATAAAGGA	AACTATCGAT	GAAAAAACGC	TCTAATATTG	9360
CACCCATTGC	TATCTTTTTT	GCTACCATGC	TCGTGATACA	CTTTCTGAGC	TCACTTATCT	9420
TTAACCTTTT	TCCATTTCCA	ATCAAACCGA	CCATTGTTCA	TATTCCTGTC	ATTATTGCCA	9480
GCATTATTTA	TGGTCCACGA	GTTGGGGTTA	CACTTGGATT	TTTGATGGGA	TTACTTAGCT	9540
TGACGGTTAA	CACGATTACG	ATTCTACCGA	CAAGCTACCT	CTTCTCTCCC	TTCGTACCAA	9600
ACGGAAACAT	CTACTCAGCT	ATCATTGCCA	TCGTCCCACG	TATTTTGATT	GGTTTAACTC	9660
CTTACTTAGT	CTATAAACTG	ATGAAAAACA	AGACTGGTCT	GATTTTAGCT	GGAGCCCTTG	9720
GTTCcTTGAC	AAATACTATC	TTTGTCCTTG	GAGGAATCTT	СТТССТАТТТ	GGAAATGTTT	9780
ATAATGGAAA	TATCCAACTT	CTTCTGGCAA	CCGTTATCTC	AACAAATTCA	ATTGCTGAAT	9840
rggtcatttc	TGCAATTCTA	ACCCTAGCCA	TTGTTCCACG	ACTACAAACC	ТТСААААААТ	9900
AAAAACAGG						9909
/21 TNEODMA	TON BOD CE	O TO NO. 17	1.	•		

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1126 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATTTCAT ATAATAGTAA AATAGAATGT GTGATTCAAT AATCACCTCA AATAGAAAGG 60 AAATTCTATG TCAAATCTAT CTGTTAATGC AATTCGTTTT CTAGGTATTG ACGCCATTAA 120 WO 98/18931

231

TAAAGO	CCAAC	TCAGGTCATC	CAGGTGTGGT	TATGGGAGCG	GCTCCGATGG	CTTACAGCCT	180
CTTTAC	CAAAA	CAACTTCATA	TCAATCCAGC	TCAACCAAAC	TGGATTAACC	GCGACCGCTT	240
TATTCI	TTCA	GCAGGTCATG	GTTCAATGCT	CCTTTATGCT	CTTCTTCACC	TTTCTGGTTT	300
TGAAGA	ATGTC	AGCATGGATG	AGATTAAGAG	TTTCCGTCAA	TGGGGTTCAA	AAACACCAGG	360
TCACCO	CAGAA	TTTGGTCATA	CGGCAGGGAT	TGATGCTACG	ACAGGTCCTC	TAGGGCAAGG	420
GATTTC	CAACT	GCTACTGGTT	TTGCCCAAGC	AGAACGTTTC	TTGGCAGCCA	AATATAACCG	480
TGAAGO	STTAC	AATATCTTTG	ACCACTATAC	TTACGTTATC	TGTGGAGACG	GAGACTTGAT	540
GGAAGG	STGTC	TCAAGCGAGG	CAGCTTCATA	CGCAGGCTTG	CAAAAACTTG	ATAAGTTGGT	600
TGTTCI	TATT	GATTCAAATG	ATATCAACTT	GGATGGTGAG	ACAAAGGATT	CCTTTACAGA	660
AAGTGT	TCGT	GACCGTTACA	ATGCCTACGG	TTGGCATACT	GCCTTGGTTG	AAAATGGAAC	720
AGACTI	'GGAA	GCCATCCATG	CTGCTATCGA	AACAGCAAAA	GCTTCAGGCA	AGCCATCTTT	780
Gattga	LAGTG	AAGACGGTTA	TTGGATACGG	TTCTCCAAAC	AAACAAGGAA	CTAATGCTGT	840
ACACGG	CGCC	CCTCTTGGAG	CAGATGAAAC	TGCATCAACT	CGTCAAGCCC	TCGGTTGGGA	900
CTACGA	ACCA	TTTGAAATTC	CAGAACAAGT	ATATGCTGAT	TTCAAAGAAC	ATGTTGCAGA	960
CCGTGG	CGCA	TCAGCTTATC	AAGCTTGGAC	TAAATTAGTT	GCAGATTATA	AAGAAGCTCA	1020
TCCAGA	LACTG	GCTGCAGAAG	TAGAAGCCAT	CATCGACGGA	CGTGATCCAG	TCGAAGTGAC	1080
TCCAGO	CAGAC	TTCCCAGCTT	TAGAAAATGG	TTTTtCTCAA	GCAACT		1126

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2520 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CCGGC	AACAA	AAAAGAAAAA	ATCAACAGTT	AAAAAAAATC	TAGTCATCGT	GGAGTCGCCT	60
GCTAAG	CCAA	GACGATTGAA	AAATATCTAG	GCAGAAACTA	CAAGGTTTTA	GCCAGTGTCG	120
GGCATA	ATCCG	TGATTTGAAG	AAATCCAGTA	TGTCCGTCGA	TATTGAAAAT	AATTATGAAC	180
CGCAA	TATAT	TAATATCCGA	GGAAAAGGCC	CTCTTATCAA	TGACTTGAAA	AAAGAAGCTA	240
AAAAA	CTAA	TAAAGTTTTT	CTCGCGAGTG	ACCCGGACCG	TGAAGGAGAA	GCGATTTCTT	300
GGCATT	TGGC	CCATATTCTC	AACTTGGATG	AAAATGATGC	CAACCGTGTG	GTCTTCAATG	360

			232			
AAATCACCAA	GGATGCAGTC	AAAAATGCTT	TTAAAGAACC	TCGTAAGATC	GATATGGACT	420
TGGTCGATGC	CCAACAAGCT	CGTCGGATCT	TGGATCGCTT	GGTAGGGTAT	TCGATTTCGC	480
CTATTTTGTG	GAAGAAGGTC	AAGAAGGGCT	TGTCAGCAGG	TCGCGTTCAG	TCCATTGCCC	540
ТТАААСТСАТ	CATTGACCGT	GAAAATGAAA	TCAATGCCTT	CCAGCCAGAA	GAATACTGGA	600
CAGTTGATGC	TGTCTTTAAA	AAGGGAACCA	AACAATTTCA	TGCTTCCTTC	TATGGAGTAG	660
ATGGTAAAAA	GATGAAACTG	ACCAGCAATA	ACGAAGTCAA	GGAAGTCTTG	TCTCGTCTGA	720
CGAGTAAAGA	CTTTTCAGTA	GATCAGGTGG	ATAAGAAAGA	GCGCAAGCGC	AATGCTCCTT	780
TACCCTATAC	CACTTCATCT	ATGCAGATGG	ATGCTGCCAA	TAAAATCAAT	TTCCGTACTC	840
GAAAAACCAT	GATGGTTGCC	CAACAGCTCT	ATGAAGGAAT	TAATATCGGT	TCTGGTGTTC	900
AAGGTTTGAT	TACCTATATG	CGTACCGATT	CGACTCGTAT	CAGTCCTGTA	GCGCAAAATG	960
AGGCGGCAAG	CTTCATTACG	GATCGTTTTG	GTAGCAAGTA	TTCTAAGCAC	GGTAGCAAGG	1020
TCAAAAACGC	ATCAGGTGCT	CAGGATGCCC	ATGAGGCTAT	TCGTCCGTCA	AGTGTCTTTA	1080
ATACACCAGA	AAGCATCGCT	AAGTATCTGG	ACAAGGATCA	GCTTAAGCTA	TATACCCTTA	1140
TCTGGAATCG	TTTTGTGGCT	AGCCAGATGA	CAGCGGCCGT	TTTTGATACC	ATGGCTGTTA	1200
AATTGTCTCA	AAAAGGGGTT	CAATTTGCTG	CCAATGGTAG	TCAGGTTAAG	TTTGATGGTT	1260
ATCTTGCCAT	TTATAATGAT	TCTGACAAGA	ATAAGATGTT	ACCGGACATG	GTTGTTGGAG	1320
ATGTGGTCAA	ACAGGTCAAT	AGCAAACCAG	AGCAACATTT	CACCCAACCG	CCTGCCCGTT	1380
ATTCTGAAGC	AACACTGATT	AAAACCTTAG	AGGAAAATGG	GGTTGGACGT	CCATCAACCT	1440
ACGCGCCAAC	CATTGAAACC	ATTCAGAAAC	GTTATTATGT	TCGCCTGGCA	GCCAAACGTT	1500
TTGAACCGAC	AGAGTTGGGA	GAAATTGTCA	ATAAGCTCAT	CGTTGAATAT	TTCCCAGATA	1560
TCGTAAACGT	GACCTTCACA	GCTGAAATGG	AAGGTAAACT	GGATGATGTC	GAAGTTGGAA	1620
AAGAGCAGTG	GCGACGGGTC	ATTGATGCCT	TTTACAAACC	ATTCTCTAAA	GAAGTTGCCA	1680
AGGCTGAAGA	AGAAATGGAA	AAAATCCAGA	TTAAGGATGA	ACCAGCTGGA	TTTGACTGTG	1740
aagtgtgtgg	CAGTCCAATG	GTCATTAAAC	TTGGTCGTTT	TGGTAAATTC	TACGCTTGTA	1800
GCAATTTCCC	AGATTGCCGT	CATACCCAAG	CAATCGTGAA	AGAGATTGGT	GTTGAGTGTC	1860
CAAGCTGTCA	TCAGGGACAA	ATTATTGAGC	GAAAAACCAA	GCGTAATCGC	CTATTCTATG	1920
GTTGCAATCG	CTATCCAGAA	TGTGAATTTA	CCTCTTGGGA	CAAGCCTGTT	GGTCGTGACT	1980
GTCCAAAATG	TGGCAACTTC	CTCATGGAGA	AAAAAGTCCG	TGGTGGTGGC	AAGCAGGTTG	2040
TTTGTAGCAA	AGGCGACTAC	GAGGAAGAAA	AGATGGCTCT	TTGTCAACTG	TAGTGGGTTG	2100
AAGTCAGCTA	AGCTCGAGAA	AGGACAAATT	TTGTCCTTTC	TTTTTTGATA	TTCAGAGCGA	2160

233

TAAAAATCCG	TTTTTTGAAG	TTTTCAAAGT	TCCGAAAACC	AAAGGCATTG	CGCTTGATAA	2220
GTTTGATGAG	ATTATTGGTC	GCTTCCAATT	TGGCGTTAGA	ATAGTGTAGT	TGAAGGCCT	2280
TGACGATTTT	CTCTTTGTCC	TTTAGAAAGG	TTTTAAAGAC	AGTCTGAAAA	AGAGGATGAA	- 2340
CCTGCTTTAG	ATTGTCCTCA	ATGAGTCCGA	AAAATTTCTC	CGGTTCCTTA	TTCTGAAAGT	2400
GAAACAGCAA	GAGTTGATAG	AGCTGATAGT	GATGTTTCAA	GTCTTGTGAA	TAGCTCAAAA	2460
GCTTGTTTAA	AATCTCTTTA	TTGGTTAAAT	GCATACGAAA	AGTAGGGCGA	TAAAAATGTT	2520

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10993 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTTCTCGAT AATAACTTCC ACCTTATTAT TTGGGATACC CTCCTCTTCT TCACCACCAC 60 GTTCATAGTA GTCATCGCGA TAGAGAAAAG CTACGATATC AGCGTCCTGC TCAATAGACC 120 CAGATTCACG AATATCAGAC AAGACCGGTC TCTTGTCCTG ACGTTGTTCT ACACCACGAG 180 AAAGCTGACT CAGAGCGATT ACTGGAACCT TCAATTCCTT GGCTAGTATT TTCAACTGAC 240 GAGAAATTTC AGAAACTTCT TGTTGACGAT TTTCTCGACC AGTTCCCGTG ATAAGTTGCA 300 AATAGTCTAT CAAAATCAAA CCAAGATTTC CAGTTTCTTG AGCCAATTTA CGAGAACGAG 360 AACGAATCTC TGTAATCCGA ATACCTGGCG TATCATCGAT ATAGATACTG GCGTTAGCTA 420 GATTACCCTG AGCAATAGTA TATTTTTGCC ACTCCTCATC TGTCAATTGC CCTGTACGGA 480 TAGAATGTGA CTCCACTAAG CCTTCTGCAG CTAACATACG ATCTACCAAG CTTTCCGCAC 540 CCATTTCGAG TGAAAAAATA GCAACCGTTT TGTCCAACTT AGTCCCAATG TTCTGAGCGA 600 TATTCAAGGC AAATGCTGTC TTACCAACTG CTGGACGAGC TGCTAAGATA ATCAACTCCT 660 CCTCATGAAG TCCTGTTGTC ATATGATCCA AATCACGATA ACCTGTCGCA ATACCTGTAA 720 TATCGGTCGT TTGTTGCGAG CGAGCTTCCA GATTTCCAAA GTTGAGATTC AACACATCTC 780 GAATGTTCTT AAACCCGCTT CGATTTGCAT TTTCACTGAC ATCAATCAAC CCTTTTTCTG 840 CCTGAGCAAT AATTTCATCA GCTGGTTGTG ACGCTTCGTA AGCTTGGTTG ACAGACTCTG 900 TCAACTTGGC AATTAAACGA CGTAGCATTG CTTTTTCTGC AACAATCTTA GCATAATACT 960 CCGCATTAGC AGAAGTTGGC ACAGAATTAA CAATCTCAAC CAAGTAAGAC AAGCCACCAA 1020

			234			
TATTCTGTAA	ATCACCTTGA	TTATCAAGGA	TAGTACGAAC	CGTTGTTGCA	TCTATGGCAT	1080
CACCACGATC	GGATAAATCG	ACCATGGCTT	GGAAAATCAA	ACGATGGGCA	TACTTAAAAA	1140
AGTCCCGAGA	CTCAATGTAT	TCTCGCACAA	AAACAAGTTT	ACTCTCATCA	ATAAAGATAG	1200
CCCCTAAAAC	GGATTGCTCA	GCTAAGATAT	CTTGAGGTTG	TACTCGTAAC	TCTTCTACTT	1260
CTGCCATCAG	ACTTCCCTTC	CTTTTACAAT	CTTGTCAAGA	AGGTGTAAAC	TTATCCTTCT	1320
ITCACACGAA	GATTGATTAC	ACTTGTGATA	TCTTGATAGA	TTTTCACTGG	CACATCAATC	1380
AAACCAACCG	CTCGAATCGG	AGCTTGTACT	TGAATATGAC	GTTTATCAAT	CTTAATTCCA	1440
AATTGCTTTT	GCAATTCTTC	TGCAATCTTC	TTATTGGTAA	TAGAACCAAA	GGTACGACCA	1500
PCTGGACCAA	CTTTTTCAAC	AAATTCTACA	ACAGTTTCTT	CTGCTTCAAG	TTGTGCTTTA	1560
ATTGCTTTTC	CTTCTGCAAT	CATCTCAGCG	TGAGCTTTTT	CTTCCGATTT	TTGTTTACCA	1620
CGAAGTTCAC	CTACAGCTTG	AGCAGTCGCT	TCTTTGGCTA	GATTCTTTTT	GATAAGAAAG	1680
ITTTGCGCAT	ACCCTGTTGG	TACTTCCTTA	ATTTCGCCTT	TTTTACCTTT	TCCTTTAACA	1740
CTGCTAAAA	AGATTACTTT	CATTCTTCTT	TCTCCTTTTC	CTTCATTTCA	TTTAATACAA	1800
PTTCTGTCAG	TTTTTCACCT	GCTTCTGACA	AGGTTACATC	TTTAATTTGA	GCTGCTGCCA	1860
ATTAAA GTG	GCCTCCACCG	CCTAACTCTT	CCATAATCCG	TTGTACATTC	AGTTTACTAC	1920
GACTTCGAGC	TGAGATAGAG	ATAAATCCTT	GTĠTATTCTT	CGCAAGAACA	AAACTCGCTT	1980
CAATACCTGA	CATGGCTAAC	ATGGCATCTG	CTGCCTTACT	AATAACAACT	GTATCATAGC	2040
ATTTCATGTC	CTTAGCCTCT	GCTATTAGTA	CATCTGAACC	TAATTTACGC	CCCTGTAAAA	2100
PAAGTTCATT	GACCTCACGA	TATTCTTCAA	AATCTGTCGC	AGCGATTTCC	TGGATAGCAA	2160
PACTATCACT	TCCGCGCGTT	CTGAGATAGC	TAGCAACATC	AAATGTCCGA	CTAGTTACTC	2220
CGAGGTGAA	ATTTTTAGTA	TCCAACATCA	TACCAGCCAT	CAAGACACTT	GCTTGCATAC	2280
ACTCAAACG	ATTTTTCTTA	GAATTCTGGA	ACTGAATCAA	TTCCGTTACC	AACTCACTGG	2340
CACTACTTGC	ACCACTTTCG	ATATAAGTAA	TAACCGCATT	ATCTGGAAAA	TCCTGATCCC	2400
TCTATGGTG	GTCAATAACA	ATGGTTTGGG	TAAATAAATC	ATAAAATTCT	TTTGATAATG	2460
TAAGGCTGT	CTTTGAATGG	TCTACAAGAA	TCAACAAAGA	ACGATTGGTC	ACCATCCCCA	2520
TGCATCCTT	AACAGACAAC	AACTTCGTAA	CTCCTTCTTT	TTCTATGAAT	GAAACAGCTC	2580
TTCAATATC	TGGAGACATT	TGTTCTTCAT	CATAAAGAGC	ATAGCTATTT	TCAATCACAT	2640
GCTGGCGAA	CAACTGCATA	CCTACAGCAG	AGCCCAAAGC	ATCCATGTCT	AAATTTTTGT	2700
ACCGACTAC	AAAAACCTGA	TCTACACTCC	GAATCTTATC	TGAAATAGCT	GTCATCATAG	2760
GCGCGTACG	AGTCCGTGTA	CGCTTGATTG	AAGCAGCAGA	CCCACCACCA	AAATAAACTG	2820

GATTTTTCGT	TTCGTCGTTT	TCCTTAACAA	CCACCTGGTC	GCCACCACGT	ACTTCAGCCA	2880
AGTTCAAATT	GAGCAAAGCA	ACTTTCCCTA	TCTCATCATG	ATTTCCATCG	CCATAAGAAA	2940
ATCCCATACT	TAAGGTCAAG	GGCAACTGTC	TCTGTTTCGA	CTCTTCTCTG	AAAGCATCAA	3000
TAACAGAAAA	TTTATCATTC	ATCAAGCCCT	CAAGCACCGT	GTAGTCAGTA	AATAGATAAA	3060
ATCGATCCAT	ACTTACCCGA	CGAGAAAACA	TCATGTGTTT	TTCTGAAAAC	TCTGATATAA	3120
AATTAGCTAC	AAAACTATTG	ATTTGACTAA	TATCTGACTC	AGAAGTTTCA	TCCTCCAAAT	3180
CATCATAATT	ATCCACAGAG	ACAATCCCAA	TCACTGGTCT	ACTTGTTACC	AATTCATCTG	3240
TTATGGCTTG	TTCCCTGGAT	ACATCTACAA	AATACAAAAC	ACCGGAAGAA	GCATCCATAT	3300
GAACAGCATA	ACGCTTCTCA	CCAAGCTTGG	CATAAGTAGA	CGGATTTCCT	ACTGAAGCCT	3360
TGATAATCGT	TTGAACAGCT	TCTAAATCAA	AATCACCATC	TTCCTTGGTC	AAAATCAATT	3420
CAGCATAGGG	ATTAAACCAC	TCAACCTCTC	CAGAAGATAA	ATTCAATTTC	АТААСАССТА	3480
CAGGCATCTG	TTCCAATAGA	GCTGTCAAAC	TTTCTTCCGC	TTGGTGGTTT	ACATACTGTA	3540
TCTGTTCTAC	ATCACTCCTT	GTATAATGCA	CTCTCAGTTT	СТТАААТААА	AAAACATAGC	3600
CTCCTACAAA	AAGAAACAAA	ATTAAAACCG	TCAACAGATT	ATTATTAACA	AAAATAATGA	3660
AAGTGGATAA	GACTCCAAAC	GCAATCAATC	CTACTAGAAT	AGGAAAAATT	GGACTTACAT	3720
AAAATTTTTT	CATTCAAAAC	CTCTTGGCAC	CCATTATACC	ATAATACCCC	TCAAAAAGCG	3780
ACTTTTTAAA	AGTGTAATCA	GTAATTCTAT	CAATTATAAG	AAAAAGGTAG	TTTACAATTC	3840
AGTAAACCTA	CCTTTACACA	TATTGAAATT	AAGATTCTTT	AACCTCTAAC	AAACCAATTT	3900
CGCCATCCTC	ACGACGATAA	ATCACATTGG	TTGTCTGATC	TTCAACATCC	ACATAGATAA	3960
AGAAATCATG	CCCCAATAAA	TCCATTTGTA	GAATTGCTTC	TTCCAAATCC	ATTGGTTTTA	4020
Aatcaattțg	TTTTGAACGA	ACAACTTTAG	ACTGGACAAT	ATTTGAATCT	TCCACCAAAG	4080
CATCTGTAAA	TAATTGACCA	GTTGCTACCT	TATTTTTATT	TTTACGCTCG	ATTTTTGTTT	4140
TATTTTACG	AATCTGACGT	TCAATTTTAT	CAGTTACAAG	GTCAATTGAA	CCATACATAT	4200
CTTGAGATAC	ATCTTCTGCG	CGGAGAGTAA	TAGATCCAAG	CGGAATCGTT	ACTTCCACTT	4260
TAGCCGTTTT	TTCACGATAA	ACTTTTAAGT	TAATTCGGGC	ATCCAACTCT	TGTTCTGGTT	4320
GGAAGTACTT	TTCGATCTTT	TCGAGTTTAG	AAACTACATA	ATCACGAATT	GCTTCTGTTA	4380
CTTCTAGGTT	TTCACCACGG	ATACTATATT	TAATCATATG	AGTACCTTCT	TTCTAAACAT	4440
TTTTGTTTT	ATGATTTTAT	TATAACGCTT	TCATTCTATT	TTTGCAAATT	TTTTCCTCAT	4500
CTTACAAGGG	AAAATGTTTT	TACATCCTTA	GCACCAGCTT	CTTCCAACAG	TTTCTTAACA	4560

	•		236			
CGATTTATAG	TTGCTCCTGT	AGTATAGATA	TCATCTATAA	GTAGGATTTT	TTTAGGAATA	462
GTGACTCCAC	TTTTAATAAA	GAAAGGAAGT	TCTGTCCCCA	AGCGCTCTGA	ACGATTTTTA	4680
GAAGAACTGG	CTCTCTCTTC	TCTTTTCTCT	AATAAATCCA	GATACTCAAA	GCCTGCTGCC	4740
TCTACCAAGC	CCTCAACCTG	ATTAAATCCT	CTATTAGCAT	ATCTATCAGG	ACTTAGGGGA	4800
ATTACAACAA	ATTGATACTC	TTTGTACTTT	TTCAACTCCT	CACTTAAAAA	TGAAGCGAAA	4860
ACTTTTCTTA	ACAGGAAGTC	TCCATCAAAC	TTATACCGAC	TGAAAAAATC	CTTCATAGCT	4920
TGATTGTAAG	TAAAAATCGC	TCTATGACTG	ACTTCAACTC	CCTCTTTACA	CCAAAGTTGA	4980
CAATCTTGAC	ACTTTGTTGA	CAACTCTGTT	TTCATACAAT	TTGGACAGTT	CTCTTCCCCA	5040
ATTCTTTCAA	AAGTAGAATC	ACAGTCTGAA	CAAAGACAAG	AGTCATCATT	CCTCAGAAGT	5100
AAGAGACTAC	TAAAAGTTAA	AACAGTCTTC	ATAGTCTGCC	CACATAACAA	GCACTTCATA	5160
GACCAGCCTC	CTTATTCATC	ATCTGAATTT	CCTTAATCGC	CTTCTTGATT	GAAGCATTTA	5220
ACCCATCATG	GAAGAAAAGC	AAATCTCCTG	TCGGTCTATC	CATGCTTCGT	CCAACTCGTC	5280
CACCAATCTG	AATCAAACTA	GACTTGGTAA	ACAAACGATG	ATTGGCCTCT	ACTACGAAAA	5340
CATCCACACA	AGGGAAGGTA	ACTCCGCGCT	CCAAGATTGT	CGTACTGATA	AGTATTGTCA	5400
GTTCTCCATC	TCGAAAAGCT	TGTACTTGCT	CTAATCGATC	CTCTGTTACA	GAAGATACAA	5460
AGCCAATTTT	CTCATTTGGA	AATTGCTCCT	GTAAGATTTC	TGCTAACTGC	TCCCCTTTCT	5520
TAATTTCTGA	AGCAAAAATG	AGTAACGGAT	AAGCTGTCTT	TCTCTGCTTC	TCAATATAGG	5580
ACTTŢAACTT	TGGTGACAAA	CGATTCTTGT	CTAAGTAGCG	ATTAAAATCC	GATAACCAAA	5640
PTGGTTTTGG	AATAATCAAC	GGATTTCCAT	GAAACCGTCT	CGGTAAATTC	AGTCTTTTTA	5700
GTTCTCCTAA	ACGGACCTTT	TTATCTAACT	CATTGGTCGA	AGTCGCTGTT	AAAAAGATTC	5760
PCAATCCATT	CTCCTTTACA	CTATTCTTGA	CAGCGTGGTA	AAGCATGGGA	TTATCAACAT	5820
AAGGAAAAGC	ATCTACTTCA	TCCACTATCA	GCAAATCAAA	AGCTTGATAA	AACTTCAATA	5880
ACTGATGGGT	TGTTGCAACA	ACTAGTGGTG	TTCGAAAATA	AGGTTCCGAT	TCTCCATGTA	5940
CAAAGCTAT	CCCGCAAGAA	AAATCCTGTT	GCAGGCGCTT	GTACAGCTCC	АААСАААСАТ	6000
CTATGCGAGG	ACTAGCCAAA	CACACTGCAC	CACCCGCATT	GATCACTTTA	GCCACTACTT	6060
GATAAATCAT	TTCTGTCTTT	CCAGCTCCTG	TTACCGCATG	AACTAAGGTT	GGCTTTTGCT	6120
PGTCTACTAC	TTGAAGCAAT	CCCTCTGACA	CCTTCTCTTG	AAAAGGAGTT	AATTGGCCGC	6180
CCATTTGAG	AACATCTTGC	TTTGGAAAAT	CCTCCTGCGG	AAAATAGTAT	AAAGTTTGAT	6240
CACTTCTGAC	TCGCTTCATC	AGCAAGCACT	CTCGACAATA	GTAAGCACCG	ATGGGCAAAT	6300
ACCATTCTTC	TAGAATAGTA	CTATTACAGC	GTTGACAGAA	AAGTTTCCCC	TTCTCCTTTC	6360

PCA	TTGCTGG	AAGTTTCTCC	GCCAACTGAC	GTTCTTCTTC	TGTTAATTCA	TTCTCAGTAA	6420
ATA	AACGACC	GAGATAATCT	AAATTTACTT	TCATACTTCT	TTATTCGTAA	AAACTAGCAC	6480
TT	'AGATGAT	TTTTTAGTAC	AATTAAATCA	TGGAATTTAG	GACAATTAAA	GAGGACGGTC	6540
AAG	TCCAAGA	AGAAATCAAA	AAATCTCGCT	TTATCTGCCA	TGCCAAGCGT	GTTTATAGCG	6600
AAG	AAGAGGC	TCGTGACTTC	ATTACTGCCA	TCAAAAAAGA	ACACTACAAA	GCGACACATA	6660
ACT	GCTCTGC	CTTCATTATT	GGAGAACGTA	GTGAAATTAA	ACGTACAAGT	GATGATGGTG	6720
AGC	CTAGTGG	TACTGCTGGT	GTTCCCATGC	TTGGGGTACT	AGAAAATCAC	AATCTCACCA	6780
ATG	TCTGTGT	GGTCGTGACA	CGCTACTTTG	GTGGTATTAA	ACTAGGCGCT	GGAGGACTAA	6840
FTC	GTGCTTA	CGCCGGCAGT	GTCGCCTTAG	CTGTCAAAGA	AATTGGTATT	ATTGAAATAA	6900
AAG	AACAGGC	TGGCATTGCT	ATTCAAATGT	CTTATGCTCA	GTACCAAGAG	TACAGTAACT	6960
rcc	TTAAAGA	ACATGGTCTC	ATGGAGCTGG	ATACAAACTT	TACAGATCAA	GTCGATACGA	7020
rga	TTTATGT	TGATAAAGAA	GAAAAAGAAA	CTATTAAAGC	TGCACTTGTG	GAGTTTTTTA	7080
ATG	GAAAAGT	CACTTTAACT	GACCAAGGTT	TACGAGAGGT	TGAAGTTCCT	GTAAACTTAG	7140
rgt	AAACAAT	GAATAATACA	GCGTTTCGTT	GACATTCTCA	CAACTACTTT	AGCGAGCAAA	7200
ATA	AAAAGAG	GCGTACCAAA	ATATACTAGA	AAATGAAGCA	ATTCAAACGA	AACCTGATAT	7260
CGT	TTTCCTT	CACACCTATT	TACTAGAATT	AGCTGAACGC	AATCACTTGA	AAATTAATGA	7320
TT	TGATCTA	TGATATATAG	AAATGGTATG	GATAGCGTTA	TACTAAAGAT	ATCTTATACA	7380
AAG	AGGTATT	CATATGTCTA	TTTATAACAA	CATTACTGAA	TTAATCGGTC	AAACACCGAT	7440
ľĠŦ	TAAACTT	AACAACATCG	TGCCAGAAGG	TGCTGCAGAC	GTCTATATAA	AGCTTGAAGC	7500
\TT	TAATCCT	GGTTCATCTG	TAAAAGACCG	TATTGCCCTT	AGCATGATTG	AAAAAGCTGA	7560
ACA	AGATGGT	ATTCTGAAAC	CTGGTTCTAC	TATTGTTGAA	GCAACAAGTG	GAAACACCGG	7620
TAT	TGGACTT	TCATGGGTAG	GTGCTGCTAA	AGGGTATAAA	GTCGTCATCG	TTATGCCTGA	7680
AAC	TATGAGT	GTAGAACGAC	GTAAAATTAT	CCAAGCTTAT	GGTGCTGAAC	TCGTCCTAAC	7740
rcc	TGGTAGC	GAGGGAATGA	AAGGTGCTAT	TGCTAAGGCT	CAAGAAATCG	CTGCTGAACG	7800
ľGA	TGGTTTC	CTTCCTCTTC	AATTTGACAA	TCCAGCTAAT	CCAGAAGTAC	ACGAAAGAAC	7860
AAC	AGGAGCT	GAGATACTAG	CTGCTTTCGG	TAAAGATGGA	TTAGATGCCT	TTGTTGCTGG	7920
\GT	AGGTACT	GGTGGAACGA	TTTCTGGTGT	TTCTCATGCA	CTCAAATCAG	AAAATTCTAA	7980
TAC	TCAAGTT	TTTGCAGTAG	AAGCAGATGA	ATCTGCTATT	CTATCTGGTG	AAAAACCTGG	8040
rcc	TCACAAA	ATTCAAGGTA	TCTCAGCTGG	ATTTATTCCT	GATACACTTG	ATACTAAAGC	8100

238 CTATGATGGT ATCGTTCGTG TAACATCAGA TGACGCTCTT GCACTCGGAC GTGAAATTGG 8160 TGGAAAAGAA GGCTTCCTTG TAGGGATTTC CTCAGCTGCA GCTATCTACG GAGCCATCGA 8220 GGTTGCCAAA AAATTAGGTA CAGGTAAAAA AGTCCTTGCC CTAGCACCAG ATAACGGTGA 8280 ACGTTATCTC TCTACAGCAC TTTATGAATT GTAACCGTCC AATAACGAAG TCTATTGAAA 8340 AATCTCCAGA CTAGAGAACT CACGGATAGT TCCTAATCTG GAGATTTCTT ATTTGCACTT 8400 TTCTTGTACA ACTTTAGTCC ATGGTAAATA GGCCTCTAAA ACCTCTTTGT TTACGAGAGT 8460 TTCCACGTTT GGAAGACATT CTAGAAGATA GGATAGATAT TTCTCACTAT TTATAATGGA 8520 TTGAAATAAG ATATGAACAA ATCGATTAGA ACATGATGGT AAAGCGTAAT CCCTTGTTTC 8580 TCAGCTTTCC CAGACAAAAA AGTCCAATAG TAAGTCAGCT GACTATCACT CTCTAGCACC 8640 CTATAAGAAG TTTCATCCGC ATGAAGTAAG GGCTGAGTCA ATAGTCTCTC TCGCAAGAGG 8700 TTATAAAGGG GCTCCAAATA GTATTGACTC GTCTTGATAT GCCAATTAGA GATTTCCTTA 8760 CGTGTGATTG GTAAACCCAT CCTAGCCCAA TCTTCTTCTT GGCGATAATT GGGTACCTTC 8820 AGATTAAACT TCTGATGGAT GGTGTGAGCG ATAATAGAAG CTGAGCCAAA GTTATGCGCT 8880 AAAGGGGCTT TAGGAATAGG AGCTTTCACA AGCTTATCCA GATGATTATC TTTTACTCGT 8940 TATGGACAAT GCTATATGGC ATAAATCAAG TACCTTAAAG ATTCCGACTA ATATTGGCTT 9000 TGCATTTATT CCTCCATACA CACCAGAGAT GAACCCCATT GAACAAGTGT GGAAAGAGAT 9060 TCGTAAACGT GGATTTAAGA ATAAAGCCTT TCGAACTTTG GAAGATGTCA TACAAGGACT 9120 GGAGAAGGAG GTGATAAAGT CCATCGTTAA TCGGAGACGG ACTAGAATGC TTTTTGAAAA 9180 CAGATGAGTA TAAAAAGAAA GTCCTCATTT CAATAGAAAT CACGACTTTC TGATGAATTT 9240 ATAGTAAAAT GAAATAAGAA CAGGATAGTC AAATCGATTT CTAACAATGT TTTAGAAGCA 9300 GAGGTGTACT ATTCTAGTTT AAATCCACTA TATTTGGGGA GTGATAGAAA AGCCCTTCAT 9360 CAGCCAATCT ACTTGTTCAG GTGCGAGAGC TTTGACATCC TTTTCTGTAC TGGACCAAGT 9420 CAGTTTTCCG TTCTCAAAGC GTTTATATAA TATCCAAAAT CCTTGACCAT CCCAGTAAAG 9480 AACTTTAAAG CGGTCTTTAC GTCCACCACA AAAGAGAAAG ACTTGATCGG AGAAAGGATC CAATTCAAAG TGGGTTTTAA CTACATAGGC TAATGAGTCT ATTCCCTGCC TCATATCTGT 9600 CTTGCCACAA ACAAGGTGAA CTTGACCTAA ATCACTTAGT TGAATTATCA TAGTACAATA 9660 CCTTTCCTCC GATAATTATT TTTTATCTGG TATACTGGAA GTTGGGGAAT TAGGATAGAT 9720 ACCTTGTTAT GACGCGCTTA CTATGAATTT GAAGTATAGT CTCCTAAATG CACTTAGCCC 9780 TTATTATAGG GCTTTTTGTT TTAATTATTC TAATCGAGTG AGACTGGGGA AAAAACAATT 9840 TCAGGAAAAA TCTAAGCCCT ATACAAAAAA GGAAGCAATT TGCTTCCTTT CTATTATTAG 9900

239

TTATTCAAGG	CTGCTGCCAT	TGTAGCTGCA	ACTTCAGCTT	CGAAGTCGTT	TGCAGCTTTC	9960
TCGATACCTT	CACCAACTTC	AAAGCGAGCA	AACTCAACTA	CCGAAGCGTT	AACTGATTCA	10020
AGGTATGCTT	CAACTGTCTT	GCTGTCATCC	ATGATGTAAA	CTTGTGCAAG	AAGTGTGTAA	10080
GCTTGGTCAA	CTTTAGTGTT	ATCAAGCATG	AAGCGATCCA	TTTTACCTGG	AATAATTTTG	10140
TCCCAGATTT	TTTCTGGTTT	GCCTTCTGCA	GCCAATTCAG	CTTTGATGTC	AGCTTCAGCT	10200
TGAGCAATAA	CATCATCAGT	TAATTGAGCT	TTTGATCCAT	ACTTCAAGTG	TGGAAGAGCT	10260
GGTTTATTAA	CCATTGCACG	GCTTTCGTTG	TCTTGGTCGA	TAACGTGATT	CAATTGTGCC	10320
AACTCATCTT	TAACGAATTG	CTCATCCAAT	TCTTTGTAAG	AAAGAACTGT	TGGTTTCATC	10380
GCTGCGATGT	GCATTGACAA	TTGTTTAGCA	AGTGCTTCGT	CTCCACCTTC	AACAACTGAA	10440
ATAACACCGA	TACGTCCACC	GTTATGTTGG	TATGCTCCAA	AGTGTTGTGC	GTCTGTTTTT	10500
TCAATCAATG	CAAAGCGACG	GAATGAGATT	TTCTCTCCGA	TAGTTGCTGT	TGCAGATACG	10560
TATGCAGCTT	CAAGAGTTTC	ACCTGAAGGC	ATTATCAAAG	CAAGAGCTTC	TTCGTTGTTA	10620
GCAGGTTTTC	CTTCAGCAAT	GACTTTAGCT	GTAGTATTTA	CCAATTCAAC	GAATTGAGCG	10680
TTTTTTGCAA	CGAAGTCAGT	TTCAGCGTTT	ACTTCAATAA	CTGCTGCAAC	ATTACCGTTA	10740
ACATAAACAC	CAGTCAAACC	TTCTGCAGCA	ACACGGTCAG	CTTTCTTAGC	TGCCTTAGCC	10800
ATACCTTTTT	CACGAAGCAA	TTCAATCGCT	TTTTCGATGT	CACCGTCTGT	TTCTACAAGC	10860
GCTTTTTTAG	CGTCCATAAC	ACCGGCACCA	GATTTTTCAC	GCAACTCTTT	TACAAGTTTA	10920
GCTGTAATTT	CTGCCATTTT	AATTCTCCTA	TATTTTTTGA	AAATAGGAGA	GCGCGGCTAA	10980
GCCCCGCCTC	CGG					10993

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8411 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CGACGGGGAG GTTTGGCACC TCGATGTCGG CTCGTCGCAT CCTGGGGCTG TAGTCGGTCC 60 CAAGGGTTGG GCTGTTCGCC CATTAAAGCG GCACGCGAGC TGGGTTCAGA ACGTCGTGAG ACAGTTCGGT CCCTATCCGT CGCGGGCGTA GGAAATTTGA GAGGATCTGC TCCTAGTACG 180 AGAGGACCAG AGTGGACTTA CCGCTGGTGT ACCAGTTGTC TTGCCAAAGG CATCGCTGGG

•			240			
30	ACCTCAAGAT	TGTGAAACCC	AGCATCTAAG	AAACGCTGAA	GGGAAGGGAT	FAGCTATGTA
36	AGATAGGTTA	ATGATCAGGT	GCCCTGAGAG	ATCAGTAAGA	ATGATTATAT	GAGATTTCCC
42	GACTTATCCA	ATAGCTCGAG	ACTAATACTA	CATGTAGCGG	TGTGGCGACA	GAAGTGGAAG
48	TCAATTTTGA	GAATAGATAT	TTCTTAAATT	GCGAACGGTT	GAATATGAAA	aagtaactga
54	CCCATGCCGA	TACACCTGTA	GCCTAGGAGA	AGTGACGATA	CTCAGAGTTA	GTAGGTATTA
60	GTGAGATAGG	GTTGCCCCCT	GTAGTTGGGG	AACGCCGGAA	TAAGCCCTAG	ACACAGAAGT
66	CTGTTAATCA	TAGCGCATGA	CAGTTGGTAG	CGCCATAGCT	AGCTTTAATC	GAAGTCGCTT
72	ACAGCTGTGT	AAAAGGGaAC	AGTAATtGAT	CTACTGGCGG	GGTTCGAGTC	PGATGTCGTA
786	GTTATTTCTT	AAGGAAGTCT	GCATTTTCAT	GTATCACCAA	GTATCAATTT	PCCTCTTTTT
840	AGTGCATGAG	GACACCAAAA	AAGTTTGGCA	TGTGCAATCC	TTTTTTTCCA	GAGAACTTTC
900	ATAAATCGCT	ATTCAGTTGC	TGGTATTTAG	TCTAATTCAG	GCTACTATAT	PTAGATAGAT
960	TGGATTTCTT	TAAGAAATTT	GTTTATTTCG	ATGATATGAA	TGTACTAAGC	TTTGTAAATC
1020	TATTCAAAAA	TGACTCTAGA	GAAGTGGTTC	AGGGCAGCCA	TTCAGAAAGA	PAGTCCCATT
1086	TCAAATGTAT	TATATAAAAA	CATGTTTTTG	TTGTGATGAG	AGCGTCTCTT	СТТСТААААТ
1140	TGAGTATAGA	ATCCTTATAG	TATCATACTT	TGCTCAATCA	GCTTTGATAG	GAATAGCTT
1200	TTATCAAATG	AGTAGAAATT	CTAATTTGAC	GCTTTTTCTA	ACTAATTCCG	AGCTGGAACG
1260	TTTAAGCGTT	TCGCTTTGTT	TTTCAATAGT	ACCATAGCAT	CAGTAATTGT	GCTGTTCCAT
1320	TAAAAATAGA	ACTATATGTC	AACAAATTAG	CCTCCTTGTA	TTGCATATTT	TGTTACTTTC
. 1380	ATTTTAGACA	ТТАТАТСААА	GTATAATCTA	ATTTTTTAAT	TGTAATTTAG	TTTTTTATCT
1440	AAAAAACCAA	AGCAATTTAA	AAGAATGGAA	ACTAAGTTTA	AAAAGGAGAA	ATATGTTTAA
1500	ATCATATTT	TCTGTACAAT	TTATTCCAGA	GGGATTTCTC	TGTCATGATC	СТТТАТТАТ
1560	GTTGTAAATA	ACCTGTGGCA	TGTCTGACTT	TATGGGCAAT	GTGGGATCCA	GTCATCAAT
1620	ATGGTGTCCA	AGGAAAAGAC	CTATGGCAAT	AATGGTAATA	GGCTTCCTAT	NTGATAAAGA
1680	.GGAAAGAAGG	TGAAGAGGAA.	ATTTTGTAGA	TTGGATTTTC	AAATAAAACC	TTTAAAAGA
1740	TCTGAAAAAA	AAGTGATTTA	TGACTTTACC	TATATGGTAG	TGGCGATTAC	ATTGGAAGA
1800	AGTGAGCAAC	ATCATTGACA	CAGCTTATCA	CAATCGACAG	ATCCAATATT	CAACTACATT
1860	TCGGCTCAGT	TAGTATTCAA	ATTCAACTGA	GTATCTCAAA	AAGTGATTCT	AACTGAGAT
1920	AATCAATCTT	AAACTTACAA	GAAGTTTAGA	GATTTACAGG	TTTAGTACAA	CAATTGTAGC
1980	TCTACTTCTT	ACCTATTACT	ATCAAGTATC	AATCAATCTA	Gactttaaaa	TAATCTTTC
2040	AAATTAGTTC	TGTTACTAGC	TACAAGGAGA	TTAACAGAGA	GTCAAGTGGA	GATAGGATT

TGCCAGT	CA	GTCGATTGCA	TCAGGTGTAA	ACGCATATAC	TACAGGTGTT	GATAAAGTTT	2100
CTCAGGGC	GC	AAGTCAACTA	agtgaaaaa	ATGCCACCTT	GACAGGTAGT	TTGGATAAAC	2160
ragtttca	GG	CTCAAACACC	TTGACACAAA	AATCTTCTAG	ATTGACAGCA	GGAGTTGGTT	2220
ATTACAA	TC	AGGATCTGGG	CAATTAGCAG	ACAAATCCAG	TCAGTTACTT	TCAGGTGCTT	2280
CTCCATTA	GA	GAATAGAGCT	AATAAATTGG	CAGATGGATC	TGGGAAACTA	GCAGAAGGTG	2340
GAACAAAG	ТT	AACTTCTGGA	TTGGAAGATT	TACAGACAGG	ACTTGCTTCT	TTAGGACAAG	2400
GACTAGGT	AA	TGCTAGTGAT	CAACTCAAAT	CAGTATCAAC	AGAATCTAAA	AATGCAGAGA	2460
TTTGTCA	AA	TCCACTCAAT	СТТТСААААА	CAGACAATGA	TCAAGTTCCT	GTAAATGGAA	2520
CGCAATA	GC	TCCTTATATG	ATATCAGTTG	CTCTTTTTT	GCAGCAATAT	СААСАААТАТ	2580
SATATTTG	CG	AAATTGCCTT	CAGGACGTCA	TCCAGAGAGC	CGTTGGGCTT	GGTTGAAATC	2640
TGAGCTG	AΑ	ATAAATGGTA	TTATAGCTGT	TTTGGCAGGA	ATTTTGGTAT	ATGGAGGAGT	2700
CAGCTTA	TT	GGTTTAACTG	CTAATCATGA	GATGAGAATA	TTTATTCTCA	TCATCCTAAC	2760
\AGTTTAG	TA	TTCATGTCTA	TGGTGACCAC	TTTAGCAACG	TGGAATAGCC	GTATAGGAGC	2820
TTTTTCT	CA	CTTATTTTGC	TTTTACTACA	GTTAGCATCA	AGTGCAGGTA	CTTATCCACT	.2880
GCTTTGA	CA	AATGATTTCT	TTAGATCTAT	TAATCCCTGG	TTACCAATGA	GCTATTCAGT	2940
TCGGGAT	TA	CGACAAACAA	ТСТСТАТСАА	CAAGTCATTT	TCCTAGCTGT	CATACTAGTT	3000
TATTTAC	TA	GTTTAGGTAT	GCTAGCCTAT	CAACATAAGA	AAATGGAAGA	AGATTAAAAA	3060
ATCGACC	GA	TTAACTGGTC	GATTTTTAT	GCCTTAGATG	ACTTTCGTCT	GTGATTATAG	3120
TTCCAAA'	ΤA	GTAAGAGAGA	AGTAAAGGAA	CAGATTGCTC	CAGTAATAAA	ACCATTGGGA	3180
TGAAGGA	AA	GTGTAATAGT	TCCTTTCCCC	TTGGGAATGT	CAACTTTCAT	AAATCCAGTT	3240
GAGCTTG	ГT	TAATTTCTAT	TTTCTTACCA	TCTTGGTAGG	CAGACCAACC	TTTGTCATAA	3300
GAATGGT	GΑ	agaaaataga	TGTATCTTGT	TGGACATCAT	ATGTAGCAAA	AACCTTGTTT	3360
TAGAAGT	ľG	ATACTGTGAC	AGGTTGTTCT	TTAATTTTTT	GAATTGCCTC	GGTGAAAGTT	3420
TGGTATC	ГA	AĀCĠATAGAA	GGTAGGAGAT	TCAAATGATA	CTTGTGAATT	TCCAGGGAAA	3480
TAACATT	GΑ	TATTGAAAGT	TTTTTTCTCT	TTAGTATATC	CTAGATTAAA	GAAGGAGAAG	3540
CATTATC	AG	TTGTAAAAGT	CTTTTTTCA	CCATTTACAA	GGATGTCAAC	CTTCTTTTGT	3600
TATCGTT	AG	AAAAGTGAAG	GTTTATGAAA	GAGAGATAAA	CTTGGCTGTT	TTCTGGAACT	3660
CAATTTG	ΑT	ACTGGATTGC	TGCATCTTCA	TTTGAAGAAC	TTGTGACACT	AATCAAATCA	3720
TAGTATTI	ГT	CTATTTTTC	TGTTTTTCA	TAAGGTATTG	GAGAAAAATA	ATCAAAATTG	3780

			242			
ACGTTAGCAA	GTTGATTTAA	AAATGAGGCC	TGATTATCCA	AGGTATGTTC	ATTGAACTTG	3840
ACATCATTGT	AAACAGATTG	ACTCGCAACT	GCAATCGGAA	GAGAGTATTG	ATTTTCATAT	3900
AGGGTAAGAT	TATCTTTTTG	ATAGATATCT	TTAAAGCCAT	ACTTATCAAT	AGGACTGTCT	3960
GAGATATTGT	ACTGGATACC	AAATAAACTA	TCAGCCAAAA	TACTATTATT	TGCATATCGG	4020
AGATTGAGAT	TAGTCCCAGA	GGATTTAAAA	CCAAGTTTAT	CTAAAGTAGA	GCTTGATGAA	4080
CGATTTCGAA	CAGATGAAAA	TTGAGAGATT	CCATTGTAGT	TGAATTTCAT	ACTGTCATTT	4140
CCTGTCTGAG	TTTGTAGTTT	TTCAGTACGA	GTAAATTGAT	TTCCAATATA	TCTTGAGAAA	4200
GATTCCATAG	CTGGGATATC	TCGACTATAA	GCACTTCGAG	AAGCAAATCC	CCATTCCTTA	4260
GCAATTCCGT	CCATTTGAGA	TGAAGCATTT	AAACTCATTT	CAACCAGTAT	AAATAAAGAG	4320
Attagaatgg	CAAATAGATT	CACAGATATA	AACTTTTTGA	TAACTGCAAG	GAGTAAAAGA	4380
GAATAGACAA	CCAAAAATTC	AAGAGTAAGC	AGAATATTCA	AATCTGTTAA	AAAAGAATAA	4440
TGCGATTTTA	GATAGATGGT	AGCTAAAAAT	CCTGCTACTA	CAAGAAAAAG	CGAAACTAAA	4500
AAATTCCAGA	CTTTAAGTTC	TTTCAGACGC	TTTAAGACTT	CTGCTGCTGT	GTAAATTAAC	4560
AAGGTAGAGA	AAATCCAAGC	ATAGCGATGT	AAAAACATGT	TTGGAGTATG	CATGCCTTGC	4620
CAAAATAAGT	CAAGAGCTTC	TATGTAAAAG	CTTGCAATTA	GAAATGCAAA	GAATATTACA	4680
TATATGAGTT	TCACGTGAAA	CTTAATAGAT	TTCAGCGTAA	ТААААТАААА	GGTCAAAATA	4740
AAGGGAAATA	GTCCAACAAA	AATCATTGGG	ATGGCCCCAT	ACTTTGTTGT	GTCAAAGGAA	4800
CCAATGAATT	GCTTAGCAAA	GAGATCAAGA	TACCAGCTAC	TTTCAGTTTG	AAACTTTGTA	4860
ACTTCAGTCA	ATTTTTCCCC	ATGTGTCTGT	АААТСАААТА	GAGTGGGAAG	AGTCATAATC	4920
AAACTAGCCA	TACCAGCTAA	AAAGGAGATA	ACTATGAAAT	CAAGAACAGA	TGATTTTCGA	4980
GTCTTAAAGT	CCCACGAAAT	TTGACAGAGA	TACCAGAAAA	TAAGAAACAA	TACTGTCATA	5040
TATCCAAAAT	AATAATTTTG	AATAAATAAG	ATTGACAGAC	TTGTAAAGTA	CAATAGGAGT	5100
TTCTTTTCAG	TTATCAGTAG	ATGTAAACCA	GTTATAATTA	AAGGAATCAA	GATAAAAACA	5160
TCTAGCCAGG	TTTTTATCTC	TAATTGACTG	ACAGTGAAAC	TCATCAGAGC	ATAGGAAGTA	5220
GATAAGGCTA	GTTTTAAAAT	CTGAGGGATA	GATTGAAACA	ATTTATTCAA	ACTAAAAAAG	5280
GTTGACAGAC	CAATCAATCC	AAATTTTAAG	AGAGTTGTCA	GATAGATAGC	ATCTGGCATA	5340
TTCGTTAGAT	CAAAAAAGTA	AACCAGAGGC	GCGAGAAAAC	TACCCAAGTA	ATAACTAGAT	5400
AGGGCATAGA	AGTTTAGCCC	TAGACCACTT	GTAAAGGTGT	AAAACAGATT	ACTATTTCCA	5460
TGTAGGATAT	TTCGTAAGGC	TACATCAAAA	ATAACGTATT	GATGAAAGCC	ATCTCCTAAT	5520
AGAGGAGAGT	TGTCGCTATT	CCAGTAGATA	CTTTGAGATA	GATATACTCC	AGACATAATC	5580

ACTACA	AGGAA	TGATGAAAGA	AATAAAATAG	GTTCGATATG	TTTTTAAAAA	TGATTTCATG	5640
TACC	rcgta	Gaatgataga	AAACTCAGTT	GGTTAACCCA	ACTGAGTTTT	GAAGTTTTAT	5700
TAGT	TTTC	CAAAGTTCTT	TAACTTTTGC	TTGTACTTCT	GCATTTTCTA	GGAATTCATC	5760
TAGG	TTCA	TCGATACGGT	CAATGACGCC	ATTTTTAGAT	AAGACAATGA	TATGGTTAGC	5820
CAAAG	TTGA	ATAAATTCGT	GGTCATGGCT	GGCAAAGATG	ATTGATTCTT	TAAAGTTTTT	5880
AATC	CATCA	TTCAAGCTTG	AGATAGATTC	CAAGTCCAAG	TGATTTGTTG	GATCATCAAG	5940
PACAAC	GACA	TTTGATTTTA	AGAGCATGAG	TTTTGAAAGC	ATGACACGAA	CTTTTTCTCC	6000
CCTG	ACAAG	ACATTTACAG	GTTTGTTAAC	TTCATCTCCA	GAGAAGAGCA	TACGGCCGAG	6060
AAGC	CACGT	AGGAAAGTAT	TGTCATCTTC	TTCTTTACTT	GCGAATTGAC	GCAACCAGTC	6120
AGAAT	PTGAT	TCTCCTCCTG	CAAAATCAGC	TGAGTTATCT	TTTGGTAGGT	AAGATTGACT	6180
GTTGT	PAACT	CCCCACTTGA	CAGTTCCTTC	ATAGTCAATA	TCTCCCATGA	TTGCACGAAT	6240
AATGO	CAGTC	GTTTGAATAT	CATTTTGTCC	AATAAGTGCT	GTCTTATCAT	CTGGACGCAA	6300
ATGA	ACTA	ATATTATCCA	AGATAGTTTC	ACCATCAATC	TTTACAGTTA	AATTTTCTAC	6360
GTCA	AGAGA	TCATTACCAA	TCTCACGTTC	CGCTTTAAAG	TTGATAAATG	GATATTTACG	6420
CTAGA	ATGGC	ACAATCTCTT	CTAGCTCAAT	CTTATCAAGC	ATTCTCTTAC	GTGATGTTGC	6480
TGCCT	TGAC	TTAGAAGCAT	TGGCAGAGAA	ACGAGCAACA	AATTCTTGCA	ATTGTTTAAT	6540
'TT'T'I'C	TTCT	GCTTTAGCAT	TACGGTCTGC	TAGCAATTTA	GCAGCAAGCT	CAGAAGATTC	6600
TTCCA	GAAG	TCGTAGTTTC	CGACATAGAG	TTTGATTTTT	CCAAAGTCAA	GGTCGGCCAT	6660
TGAGT	ACAA	ACTTTGTTTA	AGAAGTGACG	GTCGTGGGAT	ACTACGATAA	CTGTGTTATC	6720
AAGTC	CAATC	AAGAAGTCTT	CTAACCAAGT	AATCGATTGG	ATATCCAAAC	CGTTAGTAGG	6780
TCGTC	CAAG	AGAAGAACAT	CTGGTTTACC	AAAAAGTGCT	TTGGCGAGGA	GAACCTTTAC	6840
TTTC	ACCG	TTGGCCAATT	CGCTCATGTT	TTGGTAGTGT	AATTCTTCTG	GAATGTTTAG	6900
TTTTG	AAGT	AGTTGAGAGG	CTTCACTCTC	TGCTTCCCAA	CCTCCAAGTT	CGGCAAACTC	6960
CCTTC	GAGT	TCGGCAGCAC	GAACCCCGTC	CTCGTCTGAG	AAATCTTCCT	TCATGTAGAT	7020
GCATC	TTTC	TCTTTCATGA	TGCTATAAAG	TTTTTCATTT	CCCATGATAA	CGACATCAAT	7080
GCACG	TTCA	TCTTCGTAGT	CAAAGTGATT	TTGACGAAGA	ACAGAGAGAC	GTTCATCTGG	7140
CCAAG	AGAG	ATGTGACCAG	TAGTAGGTTC	GATATCTCCA	GCTAAAATTT	TTAAAAAGGT	7200
GATTT	TCCG	GCACCATTAG	CACCGATTAA	TCCGTAAGTA	TTTCCTTCTG	TAAATTTGAT	7260
TTGAC	ATCA	TCAAAAAGTT	TGCGATCACT	AAAACGTAGT	GAAACATCAG	ATACTGTAAG	7320

			244			
CAATGTTTTT	CTCCTATATG	TGTAATATAT		AGAAAATACA	GAAATATTCA	7380
AATTTTTATT	TGTCAATTTT	GTGTAAATTA	TATTTACAGT	ATCCTTTACA	CAAATCTGTA	7440
AAAAGCAAGG	CTGATTTATT	TTGATAAATT	ACGGTTATTT	САТТАААААА	ATGCTATAAT	7500
TGAAAGGACT	ATATCGAAGG	AGAACAAAAT	GACTAAACCC	ATTATTTTAA	CAGGAGACCG	7560
TCCAACAGGA	AAATTGCATA	TTGGACATTA	TGTTGGAAGT	CTCAAAAATC	GAGTATTATT	7620
ACAGGAAGAG	GATAAGTATG	ATATGTTTGT	GTTCTTGGCT	GACCAACAAG	CCTTGACAGA	7680
TCATGCCAAA	GATCCTCAAA	CCATTGTAGA	GTCTATCGGA	AATGTGGCTT	TGGATTATCT	7740
TGCAGTTGGA	TTGGATCCAA	ATAAGTCAAC	TATTTTTATT	CAAAGCCAGA	TTCCAGAGTT	7800
GGCTGAGTTG	TCTATGTATT	ATATGAATCT	AGTTTCGTTA	GCACGTTTGG	AGCGAAATCC	7860
AACAGTCAAG	ACAGAGATTT	CTCAGAAAGG	ATTTGGAGAA	AGCATTCCGA	CAGGATTCTT	7920
GGTCTATCCA	ATCGCTCAAG	CAGCTGATAT	CACAGCTTTC	AAGGCTAATT	ATGTTCCTGT	7980
TGGGACAGAT	CAGAAACCAA	TGATTGAGCA	AACTCGTGAA	ATTGTTCGTT	CTTTTAACAA	8040
IGCATATAAC	TGTGATGTCT	TGGTAGAGCC	GGAAGGTATT	TATCCAGAAA	ATGAGAGAGC	8100
AGGGCGTTTG	CCTGGTTTAG	ATGGAAATGC	TAAAATGTCT	AAATCACTAA	ATAATGGTAT	8160
PTATTTAGCT	GATGATGCGG	ATACTTTGCG	TAAAAAAGTA	ATGAGTATGT	ATACAGATCC	.8220
AGATCATATC	CGCGTTGAGG	ATCCAGGTAA	GATTGAGGGA	AATATGGTTT	TCCATTATCT	8280
AGATGTTTTT	GGTCGTCCAG	AAGATGCTCA	AGAAATTGCT	GATATGAAAG	AACGTTATCA	8340
ACGAGGTGGT	CTTGGTGATG	TGAAGACCAA	GCGTTATCTA	CTTGAAATAT	TAGAACGTGA	8400
ACTGGGTCCG	G .					8411
/21 THEODIE	MION BOD CE	O TO NO. 15	1 -			

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9064 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

TG	CCGTACTC	AAGTACAGCC	TGCGCTAAGT	TTCCTAGTTT	GCTCTTTGAT	TTTCATTGAG	60
TA!	PTAGTAAC	CAAAATCCGA	CCACATAGCC	AGCCCCTATG	AATATAGCCA	TTAAAGCTAG	120
CA	rggaattt	AGGAAATTAA	AAACCACCGC	AGATACAAAG	GTTAGCACAA	AAACATTAAA	180
AG	CAATGGTG	TCAGAAGCCA	AGACTAGAAT	ATAGGGTGTC	AACCGATCTA	AAGTTTTGGA	240
ATO	TAGGAAA	AATAAGTGTT	TATACATGAT	GACCTCCTCT	ATGGCTGAAA	AGCAAGCCTT	300

PTGTTTTTT	ACCCCAAGAC	CCTATGTAGA	AAAGTGAGCA	AAAACGGGAA	GGTCGCTACA	360
ATATTATTGA	TCACATGCAC	CGCATAGGAT	GGATAAATGC	TCTTGGTATA	GCGGGTCAAA	420
CCAGCAAAGA	TGATTCCAAC	TGTTGCAAAG	ACGAAGATAT	CTAACAGACT	AGGCAGGCTT	480
GAAAAATGAG	GGAGAGCAAA	TAAAATAGAA	GGAAGAAGCA	AATCAAGACC	AAATCGCGAA	540
PGCTTAAAGA	AAGCATGTTG	CAGTAATCCT	СТАТАААТСА	ATTCTTCCAT	CAGTGGAACC	600
AGAAAGAACA	GGGCTATATA	AATACCTAGC	TCTGCAAAGT	TAGTCCCACT	ATAACCAATC	660
AATACAGCCC	AACCTTCCGC	AGTTGACTGA	ACATGTTTAG	CTGTCTGAAC	GTTAAAAGAG	720
ATCTGGAACA	CTAGCACTAA	TACTGTCAAA	ATCGAATACC	AAAGCCATTT	TTTTCTTGGA	780
ATGCGGAAGA	GATAACCATG	GCCTGTCTTA	ACAAGAACCA	CAATCATGAC	TCCAATAAAA	840
AGTAAACTCA	AGATATTTTG	AATCCAGAAT	AAATTGCCTA	TCTGAGAAGA	AAATTGCCAA	900
Pagttttgga	CGATAAGCGT	CAGCTGAGAA	AGACTAAATA	CGAAAAATAA	GTAAGAGAAG	960
ACTGCACTTA	TTTTGAATAG	AAGTTGATAC	TTTTTCATAG	AAATCCTCCC	TACTATGACC	1020
PCACCTTGTC	AGGCTCTACT	GCTGTAAGAT	TAAGAAGACA	GTTTGTTTTT	TTTAAGGCTA	1080
ACCTGACTAC	TAGATAATAG	ATACATTAAG	GCATTAAAGA	CAATGAAAAT	ATGTCCATAG	1140
AATAAAATC A	ACCTCGCATC	CAAACCAAGA	TAAAGTTTGA	ттатсааааа	GATGAGCAAA	1200
AGAATTTGAA	ACCATAAGGT	TTTTCCAAAA	ATAAATTTAA	AGCGATTTCG	AATATCTACT	1260
PCCTTGATTT	TTACCGCCAC	CCCTTTATTA	GCAAGAAGGA	AAACTCCTGC	TTCAAACAAA	1320
CCACTGTAAA	GAACAAGCCA	CCCAATAGAT	ACGATAGAGA	TTTGTAAAAA	TGTCCCTAAA	1380
AGAATATCCA	ACACACTACT	CAAGAAAATA	АСААААААТА	ATCTGTATTT	CATATTAAAT	1440
ACCTCCATTC	ATTTATTTCA	CTAACAATTT	AATAGAGCCT	TCTACTCAAA	TATCCTGTCA	1500
GAAAAGGATA	GAAAGCTACT	TTTTATAATA	CTTCAAGCCC	CACATGAGCA	GAAGCGTGAT	1560
AAACAAGCAG	AGAATACACC	TATATAAGCG	ATTAGTTGTT	GATAGAATTC	TGTTTCTGAA	1620
ATACCTCTAT	ACAAACAAAT	GACAAACATA	AAATCTGCCA	AGCCGATAAA	CATAAGTTGA	1680
PTGGTTCTAG	GACTAACCAA	ATCATCATTT	ACTTATATTT	AAGAGTATCT	CTTTTATTTT	1740
AATGTATGTT	AGCACTGAAA	AGCAAGACAG	GCCAATAATA	TTTAAAATGA	ACAGTAACGG	1800
GGTTAAGTCT	СТАААААААТ	TATCTACTGA	CACTACAAGA	AATACTATAC	ATATTATAGT	1860
CGAAACTATC	TTTTTCTTAT	CCATAATTAT	TTACTCCTTT	CCTAACAAAT	CCAGCTTATC	1920
AATCAAGAGC	GATTTTTAAC	ATAATGTAGC	AGCACCCGTT	GCAACTTTGA	CAAGTTTAGT	1980
ATATCATTGT	ттттаааат	TTTTCATCCA	AATCTTGAAT	TGTCATCGAA	ACATCTTGAA	2040

WO 98/18931

			240			
PTGTTAAAAA	ATTTAAAAAG	TAAGCATTAA	AAACATACTT	TCCTCTTTAT	ATTGTATTGA	210
PACCAACTTG	TTTGTAGACT	TTTCATCCTG	CTATCACATA	TCATTTTGAC	AGGCGAAACA	216
ATATTAAAGA	AACTCCCCTG	TAAATTAAGC	TAGCAAATAC	AGGGGAGAAA	TTTATTTTT	2220
AGAGAGTACT	ATCCGTATCC	TTTTTGGAAG	ATTTTGAAAA	ТАТТТТТСТА	ATTAAGTCAT	2280
CATATAAGG	ACCAAATATA	ССААСТАСТА	AACCAATAAT	AAAACTTTTA	AAATCCATAA	2340
PTACCACCAA	CATATTGCTG	CATAGGCTAC	ACCTCCAAGT	ATAGCTCCAC	CTGCAGCACC	2400
AGTTACACCT	ATTCCTATAG	CAAATGGTCC	CAATAGAAAT	GTCAAACCGT	TGTTGCACAC	2460
CATCAATTG	CGCCATATGC	AACCCCTGCT	GCACAACTAA	TTTTTCTTCC	ССААТСААТА	2520
TCTCCACCTT	CAACGCAAGC	AAGCATTTCA	TTATCCATAA	CTGCAAATTG	TGACATCATT	2580
TTGTATCCA	TATAGTGTAT	CACTTTTCAG	TTACGGAACA	AGTTTAATAT	AAAAATTATC	2640
AAAAAACAT	AGGCAATAAA	GAGAAAAATT	AATTTATCAT	AGATTAGAAA	TAATATGACA	2700
AACAATTCA	ATGATGTTAA	TTCAATAGTC	TTTTGTTTTT	TATCGGAGAT	ACTTATGGAT	2760
AGATAAATAA	GATAGGTTTG	AAAAGCGAAG	AGAATAATAA	AGAATATAGC	CTTCATAAAA	2820
TTAGCTTTC	ATTTTTATGA	TGTAGCGGTA	TAGGCTAAAT	ATCCACAAAC	CACTGCTCCT	2880
CAATTCCTC	CTATTGCAGC	GCCCCATGGT	CCTAGAAGTC	TCCCATATTT	CACTCCACCC	2940
GCTGCACAAC	CTAAAGCAGC	AACTACAGCT	GCTCCTCCGG	AATTACCTCC	ATAAACCTCA	3000
TCAGCATTG	TTTCATTTAT	ATTACAATAA	GTATTCATAC	AAGTCTCCTT	TTATTAAAAT	3060
CACCCGTTG	CCCCTGTTAC	TCCTGCCCAA	AGATCCACAC	CAAATTTAGC	TCCTATGTAT	3120
CACATGCTC	CCATAAATGG	TGCTCCAACA	CCACTCGCAG	CACAAATAGC	TGTCCCTAGC	3180
CCCAGCCAC	CAAAAGCAGC	ACCACCACCT	TCTAAGACAT	$\mathbf{TAGTTTGCCA}^{^{\backprime}}$	ATTATTCTTG	3240
CTCCTTCAA	TACTAGATAA	CATAGTTATA	TCCATTTCAT	GAAATTGTTC	CATAATTTTT	3300
TATCCATGA	CAAATACTCT	TTTTTATTTT	TAATTTTTGT	CTTGTTGTAA	CTTTGACAAG	3360
TTAGTATAT	CATCGTTTTT	TAAAATTTTT	CATCCAGATT	TTGAATAGTC	ATCGAAACGT	3420
TTGAATTGC	AAAAATTACA	TTAGACTTCC	TGCAAAACTA	GAATCCTAGT	TCATGATTGA	3.480
PARTACCAGC	ACTCAAATTC	ATTCGTAATC	CGAAGCGTTT	ACGATGACTT	CGATAGGTTG	3540
TGAAAACAT	TTTAAACGTT	TTTACTTTGG	CAAAGATGTT	CTCAACCTTG	CTTCTCTCCT	3600
AGATAGCGC	ATGGTTACAG	GCTTTATCTT	CAACTGTTAG	CGGTTTGAGT	TTGCTGGATT	3660
'ACGTGAAGT	TTGTGCTTGA	GGATATATCT	TCATGAGCCC	TTGATAACCA	CTGTCAGCCA	3720
GATTTTACC	AGCTTGTCCG	ATATTTCTGC	GACTCATTTT	GAACAACTTC	ATATCATGAC	3780
ATAGTTCAC	AGTGATATCC	аладаласал	TTCTCCCTTG	ACTTGTGACA	ATCGCTTGAG	3840

PCTTCATAGC	GTGAAATTTC	TTTTTACCAG	AATCATTCGC	TAATTCTTTT	TTTAGGGCGA	390
PTGATTTTTA	CTTCCGTCGC	ATCAATCATT	ACCGTGTCCT	CAGAACTGAG	AGGAGTTCTT	3966
GAAATCGTAA	CACCACTTTG	AACAAGAGTT	ACTTCAACCC	ATTGGCTCCG	ACGGAGTAAG	, 4020
PTGCTTTCGT	GAACACCAAA	ATCAGCCGCA	ATTTCTTCAT	AAGTGCGGTA	TTCTCGCACA	4080
PATTGAAGAG	TGGCCATAAG	AAGGTCTTCT	AGGCTTAATT	TAGGTTTTCG	TCCACCTTTT	4140
GCGTGTTTAA	GTTGATAAGC	TGTTTTTAAT	ACAGCTAGCA	TCTCTTCAAA	AGTCGTGCGC	4200
rgaacaccaa	CAAGACGCTT	AAATCGTGCA	TCAGTTAGTT	GTTTACTTGC	TTCATAATTC	4260
ATAGAACTAT	AGTAAAATGA	AATAAGAACA	GGATAAATCG	ATCAGGACAG	TCAAATCGAT	4320
ГТСТААСААТ	GTTTTAGAAG	TAGAGGCGTA	CTATTCTAGT	TTCAATCTAC	TATACTATAC	4380
CATATTTTGT	TTCGCAGGGA	ATCTATTATA	AAAGGGTAAG	TATTGCAAAA	ACACTTACCC	4440
ГТТТСТТТТА	TACTTCATTA	AGCTCTACTT	TTTATAATAC	TTCAAGCCCC	ACATGAGCAG	4500
AGCATGATG	ATTAAGCAGA	GAACAGCGCC	AATATAAGCG	ATTATTTGTT	GGTAGGATTC	4560
CCTGCTGTG	ATACCTCTAT	ACAAACAAAT	AATAGACATA	AAACCTGTCA	AGCCGATGAA	4620
CATAAGTTGA	TTGGTTCTAG	GACTAACCAA	ATCATCATCT	TCAAACTCTC	TTATCCTCAT	4680
TCCCTAGTG	AGATAAACAG	TAACCAAAAT	AGAAGCCAAG	ТТААТААСТА	CTAAAAGAAA	4740
TGGAAAACT	ACGGAAAAAT	TTAAAAACTG	ACGAGATAGA	AATAGATAAG	TAGAAACAAG	4800
CAAGGGCAAC	TGACCTAAGA	ACAATCTCGC	AAGGAAGATG	TTCCGTTTTT	TAGCAAGAAA	4860
GTTTTCATT	TCTTTTCTCC	TTTCTTTTTA	TTGATAGCAA	AATAGATCAT	AACTGCAATC	4920
CATAGGCTA	TGGTATAAAA	TAGCTGATAC	CAAGCACTCT	CCCTAAGCGG	ATATAGAAAG	4980
TGGACATGA	TTAGATACAG	AACGAAAATA	ATCAGTATTT	TTTTCTTCAT	AAGATTTCCT	5040
CTAAATGTG	CGATTTATCT	TAGTTGAGCA	AGAACATTTA	CACTGCTAGT	ATAGCACTTA	5100
TTTGACCTT	GGATCACTCA	AATCATAAAT	GGTCATCAAA	ACCTCTTGAA	TTGTAAAAAT	5160
'AAAAAAGCA	AGCATGAAAA	ACATACTTTC	CTCTTTATAT	TGTATTGATA	CCAACTTGTT	5220
GTAGACTTT	TCATCCTGCT	ATCACATATC	ATTTTGACAG	GCGAAACAAT	ATTAAAGAAA	5280
TCCCCTGTA	AATTAAGCTA	GCAAATACAG	GGGAGAAATT	TATTTTTAG	AGAGTACTAT	5340
CGTATCCTT	TTTGGAAGAT	TTTGAAAATA	TTTTTCTAAT	TAAGTCATCC	ATATAAGGAC	5400
АААТАТАСС	ААСТАСТААА	CCAATAATAA	AACTTTTAAA	ATCCATAATT	ACCACCAACA	5460
GTTGCTGCA	TAGGCTACAC	CTCCAAGTAT	AGCTCCACCC	GCAGCACCAG	TTGCTGCACC	5520
TGCCATGTT	CCTGTTTTAA	TGCCTAGTTG	AAGACCTCTT	GCTGCTCCTC	CTCCAACACC	5580

			248			
TGCTTTGGCA	AAATCTCCCC	AATTGCATCC	GCCACCTTCA	ACGCAAGCAA	GCATTTCAGT	5640
ATCCATAACA	GAAAATTGTG	ACATCATTTT	TGTATCCATG	ACAAATACTC	СТТТТТТААА	5700
AAACTAAAAT	AAATCAGAAT	AGAATCCTCA	TAATTTTACT	ATAAGTCTTA	CCAACTTAGT	5760
CCCAATTTAT	CACCAACCAT	ACCTCCTAAG	CATGTTAATC	CACCCCCAAT	TGCACCAATG	5820
TGTGCTCCAA	CAAATGCACC	AGCAAGTCCA	GCTACTCCTA	AAGTGGCCAA	ACCTGCTCCA	5880
GTTCCACCAG	TTATAATTCC	CGTAGTGACT	CCTGTAATCA	GTGCATTTTG	ACAATCAGTG	5940
GAGCTATACC	CCCCTTCAAC	TTTCGCAAGC	ATTTCAGTAT	CCATAACCTC	TAACTGTGAC	6000
AACATTTTG	TATTCATGAT	GAATACCTCC	TTTTTATTT	CAATTTGTTA	CCAAAGTCTT	6060
AAATTCAATA	AACAAATAGA	TTTTTTATAG	TATCTTTTTG	ATTTTCTTAA	AAAAGTATAT	6120
ACGTCTACTA	TCTTCTTAAA	GGTAGCAGTA	CCTATTTTTT	AGTCTAAGAT	TTCAATAATC	6180
TTGAGTATCT	AAAATATCTT	AATTTCGTTA	TTCTCCTTGC	Aataaaagt	TTTACTATAC	6240
TATTTATTAA	CTTGCAGAAA	GCAAAAAATA	TTAGTAAATA	ATAGTTTATA	GTTAAGTTTT	6300
TTATTCCTAC	CAATCCATCA	ACTAAGTAAA	GCATCAACGA	TTACATAAAC	GATTGATAAT	6360
AAAATTAATA	TTTTGCTAAC	TATCTTATTC	TCATCATTCT	TAGATAACTT	TGATATTTTG	6420
TAAGTAAGTA	AATAAGACAG	ATAATTAATA	GCGATAATAA	TACTATATTT	AAGAATCATA	6480
ATCTTACAAA	GAGGACATAA	TTCCTGAACC	TACACAAATA	AGTGTTGCTG	CTCCCCCAGT	6540
TATCGGACCA	GTCGCAGCAG	CTAATAGTAC	TGCTCCAATA	CAACCACCGA	TTGCAGATCC	6600
TAAATTGCCT	CTTCCTCCAC	TAACTATTTC	GAGTTCTTCA	TTATCCATAA	CAGAAAATTG	6660
TTCCATCATT	TTTGTATTCA	TGACAAATAC	TCCTTTTTTC	TTTTTTTATT	TTTGTCTTGT	6720
TGTAACTTTG	ATAAGTTTAG	TATATCATCG	TTTTTTAAAA	TTTTTCATCC	AGATCTTGAA	6780
TTGTCATCGA	AACGTCTTGA	ATTAGCTTTT	TTATTTCAAG	CCACCTCTAA	ATGTTTAAAA	6840
AAAATAATTT	CTAATCACTT	TTTTACCATT	CAGGAAGTTT	TAATGACTAT	TCAAGATTTC	6900
ATAAAATATG	AACTTAGTTT	TATGACATAA	TAGACCTATC	CACTATATGA	AAGGAATTGC	6960
CAATGACTTC	TTATAAACGT	ACATTTGTTC	CTCAAATAGA	TGCGAGAGAC	TGTGGTGTCG	7020
CTGCCTTAGC	CTCGATTGCT	AAATTCTATG	GTTCAGATTT	TTCTCTAGCT	CACTTGAGAG	7080
AACTTGCAAA	GACCAATAAA	GAAGGGACGA	CTGCTCTTGG	CATTGTAAAA	GCCGCTGATG	7140
AAATGGGCTT	TGAAACAAGA	CCTGTTCAAG	CAGATAAAAC	GCTCTTTGAC	ATGAGTGATG	7200
TCCCCTATCC	ATTTATCGTT	CACGTTAACA	AAGAAGGAAA	ACTCCAACAT	TACTATGTTG	7260
TCTATCAAAC	AAAGAAAGAC	TATCTGATTA	TTGGTGATCC	TGACCCTTCT	GTAAAAATCA	7320
CTAAAATGTC	AAAAGAACGC	TTTTTCTATG	AATGGACTGG	AGTAGCTATT	ТТТСТАССТА	7380

CCAAACCCAG	CTATCAACCC	CATAAAGATA	AAAAGAATGG	TCTACTAAGC	AAGCTTCCTT	7440
CCTCTGATTT	TCAAACAAAA	ATCTCTCATT	GCTTACATTG	TTCTCTCAAG	CTTATTGGTC	7500
ACTATTATCA	ATATAGGTGG	TTCTTACTAT	CTCCAAGGAA	TCTTGGATGA	ATACATTCCA	7560
AATCAGATGA	AATCAACTTT	AGGAATCATC	TCAGTTGGTC	TGGTTATCAC	CTATATCCTC	7620
CAACAAGTCA	TGAGCTTCTC	CAGAGATTAT	CTCCTAACCG	TTCTGAGTCA	GAGATTAAGT	7680
attgatgtga	TTTTATCCTA	TATTCGCCAT	ATTTTTGAAC	TTCCCATGTC	TTTCTTTGCG	7740
ACACGTCGTA	CAGGAGAAAT	CATTTCACGA	TTCACAGATG	СТААСТСТАТ	TATAGATGCC	7800
TTGGCTTCTA	CCATTCTTTC	TCTTTTTCTG	GATGTTTCTA	TTCTGATTCT	TGTAGGAGGC	7860
GTCTTACTGG	CACAAAACCC	TAATCTCTTC	CTTCTTTCTC	TTATTTCCAT	TCCTATATAC	7920
ATGTTCATCA	TCTTTTCTTT	TATGAAACCT	TTCGAAAAAA	TGAACCATGA	TGTCATGCAA	7980
AGTAATTCTA	TGGTTAGCTC	TGCCATTATC	GAAGATATCA	ACGGGATTGA	AACTATAAAG	8040
TCGCTCACGA	GTGAAGAAAA	TCGCTATCAA	AATATAGACA	GCGAATTTGT	AGATTATTTG	8100
GAAAAATCCT	TTAAGCTCAG	ТАААТАТТСТ	ATTTTACAAA	CGAGTTTAAA	GCAGGGAACA	8160
AAATTAGTTC	TGAATATCCT	TATCCTATGG	TTTGGCGCTC	AATTAGTCAT	GTCAAGTAAA	8220
ATTTCTATCG	GTCAGCTGAT	TACCTTTAAC	ACACTTTTTT	CTTACTTTAC	AACTCCTATG	8280
GAAAATATTA	TCAACCTCCA	AACCAAACTC	CAATCTGCGA	AGGTCGCTAA	TAACCGTTTG	8340
AACGAAGTCT	ATCTAGTCGA	ATCTGAATTT	CAAGTTCAAG	AAAACCCTGT	TCATTCACAT	8400
ITTTTGATGG	GCGATATTGA	ATTTGATGAC	СТТТСТТАТА	AGTATGGTTT	TGGATGAGAT	8460
ACCTTAACAG	ATATTAATCT	CACGATTAAA	CAAGGAGATA	AGGTTAGCCT	AGTTGGAGTT	8520
AGTGGTTCTG	GTAAAACAAC	TTTAGCCAAA	ATGATTGTCA	ATTTCTTTGA	ACCCTACAAA	8580
GGCATATTT	CCATCAATCA	TCAGGATATT	AAAAACATTG	ATAAAAAAGT	CTTGCGCCGT	8640
CATATTAATT	ACCTACCCCA	ACAAGCCTAT	ATCTTTAATG	GCTCTATTTT	GGAAAACTTA	8700
ACCTTGGGCG	GTAATCATAT	GATTAGTCAA	GAAGATATTC	TAAAAGCTTG	TGAAGTAGCT	8760
SAAATCCGTC	AAGACATTGA	AAGAATGCCT	ATGGGCTATC	AAACTCAGCT	CTCTGATGGA	8820
CTGGTCTAT	CAGGAGGACA	GAAGCAACGA	ATCGCTCTCG	CTCGTGCTCT	ТТТААСТААА	8880
rctcctgttt	TAATACTAGA	TGAAGCTACT	AGCGGTCTTG	ATGTCTTGAC	TGAGAAAAAG	8940
STTATAGATA	ATCTTATGTC	TCTAACTGAT	AAAACCATTC	TCTTTGTAGC	CCATCGTCTC	9000
AGTATAGCCG	AACGAACCAA	CCGTGTCATT	GTTCTTGACC	AGGGGAAAAT	CATTGAAGTT	9060
GTA						9064

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7780 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

CTCCATTTTT	TTGATTTCAT	АААТАААСАА	CCTCTCTGTT	AATTTTGTAT	AATTATAACG	60
ATATCCAAGT	TACTTGTCAA	GTGTTTTTTA	AATTTTTATC	TCAAAAATAT	TTTTTCGTTC	120
AAAAAAAGGA	GCCATCAGTT	GATTTCAAGC	TCCCTTTTAT	ACAGAATTAA	ACTATTTTAT	180
AGTTCGACAA	TCTTACCTGT	TTCAAAGTAG	ACAACCCATT	CACAGATATT	TTTAGCATAG	240
TCACCGATAC	GCTCCAAGTA	GGAAATAACT	TGGAAATAAT	CACGACCCGT	AACAATGGCT	300
TCTGGATTTT	TCTTAATCTC	TTCAGTCGCA	AGGTCACGGA	TAGTTTCAAA	ATAGTGGTTA	360
ATTTGCTCAT	CCATGGAGGC	CACCCGGTAT	GCGTCGTCAA	CAGAACCATT	AAGATAAAGA	420
TCAAGTGCTG	CTTCCACAAC	GCTTTTAACT	TCACGTCCCA	TTTTTTTAAT	TTCTTCCTCT	480
ACAGCTGGAA	TGCGCTCTTC	CCCCTTCATA	CGGATGGTTG	CCTGGGCAAT	GGCTACAGCG	540
TGATCCCCCA	TACGCTCCAC	ATCTGATACA	GCCTTAAGGA	CAGTCAAGAC	TGTACGCAAA	600
TCTTGAGAGA	CTGGTTGTTG	GAGTGCGATC	ATTTCAAATG	ATTTCTTTTC	CAGTTTCACT	660
TCGTATTCAT	TTACTTCTGC	ATCATCTTCG	ATGACCTCTT	TTGCCAGGTC	ACGGTCATGC	720
GTGACAAAAG	CACGTACCGT	ACGATTGATT	TGTGAGAGCA	CTTCTTGTCC	CATAGCGTAG	780
AACTGGTTAT	GTAATTTCTC	TAAATCTTCT	TCAAATTGAG	ATCGTAACAT	CTTTCATCTC	840
CTTATCCAAA	TTTTCCTGTA	ATATAGTCTT	CCGTTTCCTT	GTGTTGGGGA	TCAAGGAACA	900
TCTGCTTGGT	ATCATTAAAT	TCAATCAAAT	CTCCATCTAG	GAAAAATCCT	GTCTTATCAG	960
AGATACGŤGA	AGCTTGCTGC	ATGGAACGGG	TTACCAGAAG	CATGGTGTAC	TTGTCTTTTA	1020
GACCATACAA	GGTTTCCTCA	ATTTTACCAG	CTGAAATCGG	ATCCAAAGCC	GAAGTTGGCT	1080
CATCCAAGAG	GATGATTTTA	GGACTAGTTG	CCAAGACACG	GGCCACGCAG	ACACGCTGCT	1140
GTTGACCACC	TGACAATCCA	ATAGCTGAAT	CATATAGACG	ATCCTTGACC	TCATCCCAGA	1200
TAGAGGCACC	TTGCAAGGCT	TTTTCTACGG	CTTCATCCAG	AACCTGCTTA	TCCTTAATŤC	1260
CATTGATACG	AAGCCCGTAG	ACAACATTCT	CATAGATAGT	CATAGGGAAA	GGATTAGGTT	1320
GTTGGAAAAC	CATTCCGATT	TCCTTACGTA	ATTCAACCGT	ATCTGTACGC	GGACTGTAGA	1380
TGTTGTGACC	ATTGTACACC	ACGGATCCAG	TTGTGGTCAC	CTCTGGATTG	AGATCTCCCA	1440

TGCGGTTGAG	AGACTTGAGG	AGGGTTGACT	TCCCTGATCC	AGATGGACCA	ATCAAGGCTG	1500
TAATTTCCTT	AGGTTGGAAA	GATAGGGAAA	CACTATTCAA	AGCCTTCTTT	TTATTATAAT	1560
AAACGGACAG	GTCTGATACC	TGTAAAATCG	CATCTGTCAT	ACGGTTTCCT	TTCTAACCAA	1620
agtgaccaga	TACATAGTCA	TTGGTGGACT	GTAGCTTGGC	ATTTTGGAAA	ATAGTTGCAG	1680
PCTTGTCATA	CTCAATCAAA	TCACCCAAGT	AAAAGAAGCC	TGTATAGTCA	CTTGCACGAG	1740
CAGCCTGCTG	CATATTATGC	GTTACAATGA	TGATGGTAAA	GTTTTTCTTG	AGCTCAAACA	1800
PGGTCTCTTC	TAGTTGCATG	GTCGCAATCG	GATCCAAGGC	TGAGGCTGGC	TCATCCATTA	1860
AGAGGATATC	TGGCTTAACA	GAGATGGCAC	GAGCGATACA	GAGACGTTGT	TGCTGACCAC	1920
CTGATAAGGT	CAAGGCTGAC	TTGTGGAGAT	CGTCTTTAAC	CTGATCCCAG	AGGGCAGCCT	1980
GACGAAGGGA	GGTTTCTACG	ATTTCATCTA	GGACTTGCTT	ATCCTTAACT	CCAGCACGTT	2040
CATGCGCAAA	GGTAATATTA	CGGTAAATTG	ACTTAGCAAA	TGGATTGGGA	CGTTGAAAAA	2100
CCATTCCAAT	GTGTTTACGC	ATTTCATAAA	CGTTGATTTC	TGGACGGTTG	ACATCAATTC	2160
CACGATAGAG	AATCTGCCCA	GTTACTTTAG	CAATATCAAT	AGTATCATTC	ATGCGATTGA	2220
GACTGCGTAA	GTAGGTAGAT	TTCCCCGATC	CCGACGGGCC	AATCAAAGCT	GTAATTTTAT	2280
PTCTTTCAAA	TTGCATATCA	ATCCCCTTAA	TGGATTCATT	TTTACCATAG	TAAACATGGA	2340
CATCCTTAGT	AGAAAGGGCT	ACTTTTTCTT	CAGGAAAGGT	AAGGATATGC	TTCTCATCCC	2400
AGTTATATGT	TGACATGGCT	TCTCCTTTAG	GCAGCGGTTA	ATTTCTTGTG	TAGATAGCTT	2460
CCGAACTTAC	GAGCTCCAAA	GTTAAAAATC	AGGATAAAGA	TCAGGAGCAC	AGCGGCAGAA	2520
CCTGCTGATA	CAATGGTTCC	ATCTGGAATA	GTGCCTTCAC	TATTGACTTT	CCAGATATGG	2580
ACAGCCAAGG	TTTCTGCTTG	ACGGAAGATA	GAGATGGGGC	TAGTCACACT	GAGGATATTC	2640
CAGTTAGACC	AGTCAAGAGC	TGGCGCCGAT	TGCCCTGCTG	TATAGATCAG	AGCTGCAGCT	2700
rcgccaaaga	TACGACCAGA	TGCCAAGACG	ACACCCGTTA	CAATACCTGG	AAGCGCTTCC	2760
GAATAACAA	CATGAACCAC	TGTCTCCCAG	CGAGAAATCC	CAAGAGCCAG	ACCAGCCTCA	2820
CGTTGGGTAT	GGTGAACGTG	TTTCAAACTA	TCCTCTACAT	TACGCGTCAT	CTGAGGCAAG	2880
PTAAAGACTG	TCAAGGCCAA	GGCACCTGAA	ATGATTGAAA	ATCCATACTC	AAACTGGACT	2940
ACAAAGATCA	AGTAACCAAA	GAGACCCACC	ACCACTGATG	GTAAAGAGGA	CAAAATTTCA	3000
ATACAAGTCC	GCACAAAGTT	GGTAACAGGA	CCTTTTTTAG	CATATTCAGC	CAAGTAAATC	3060
CAGCTCCCA	TAGAAAGAGG	TACAGAAATA	ATCAAGGTAA	TGACCAATAG	GAAAAAGGAA	3120
TTGTAAAGCT	GAATGCCAAT	CCCACCACCT	GCTTGAAAAG	CAGAAGACCT	TCCAGTCAAG	3180

			252			
AAAGACCAAG	AGATATGGGG	CAAGCCCCGA	ACCAAGATAT	AGAGAATCAA	GGAAGCCAAG	3240
ATTGTCACAA	TGATGCTAGC	AATCGTATAG	AGGACAGCTG	TTGCAAGTTT	ATCTAATTTC	3300
TTAGCGCGCA	TAATTTTTCT	TTCCTCTTTC	TTTCGTAATC	AATTTAATCA	CACTGTTAAA	3360
AACTAAGCTC	ATCAAGAGCA	GTACCAAGGC	CAGTGACCAG	AGAACATTAT	TATTTACAGT	3420
TCCCATGACA	GTGTTCCCAA	TTCCCATAGT	TAATATAGAA	GTTAAAGTTG	CAGCTGGTGT	3480
GGTCAAGGAA	GTTGGGATAA	CAGCTGAGTT	TCCGACAACC	ATCTGGATAG	CTAGAGCCTC	3540
ACCAAAGGCA	CGCGCCATCC	CAAAGACCAC	TGCAGTGAAA	ATACCAGAAC	GGCCGCCTT	3600
CAAGATCACA	CGCCAGATAG	TCTGCCAGCG	AGTGGCTCCC	ATAGCGAAAC	TGGCTTCACG	3660
ATAATAACGA	GGAACCGCAC	GCAAGCTATC	CGTTGTCATA	AAGGTTACGG	TCGGCAAAAT	3720
CATGACAAAG	AGGACGGAAA	TCCCTGACAA	AATCCCAAAA	CCAGTCCCAC	CAAAGACACT	3780
GCGAACAAAG	GGAACGACGA	CTTGCAAGCC	AATAAATCCG	TACACTACTG	AAGGAATCCC	3840
AACCAGGAGT	TCAATAGCTG	GTTGCAAAAT	CTTCGCCCCT	TTTGGTGATA	CTTCGGTCAT	3900
AAAAACTGCT	GCACCAATAG	CAAAGGGTGT	TGCGÄTAAGG	GCTGAGAGAA	TGGTAACGAT	3960
AAAGGAACCC	AAAATCATAG	GAAGGGCACC	AAATTCTTTA	CTAGAAGGAT	TCCAAGTTCC	4020
PCCCAAAAGA	AAGTCAAAGA	TATTCACACC	ATTGACAAAG	AAGGTCGACA	AGCCTTTTTG	4080
CGCTACGAAA	ACCAAAATCA	TGGCCACAAG	GATGACTATC	AAAGAAAGAC	AGGCAAAGGT	4140
CAAACCTTTT	CCTAATTTCT	CCAGACGAGA	ATTCTTTGAT	GGAAGCAACA	TTTTCTTAGC	4200
PAATTCTTCT	TGATTCATTA	TTGTCTCCCT	TCCAACACTG	TCACAGTTCC	GGCAGCATCT	4260
TTTCAACCT	TCATTTCCTT	AATCGGAATA	TACTTCAATC	CTTTGACAAT	CCCTTCTTGG	4320
GTCTCATCCG	AGAGAACAAA	ATTGAGAAAT	TCTGCAGCCA	ACTCATTGGG	CTGCCCCAAT	4380
GTATACATAT	GCTCATAAGA	CCACAAGGGC	CAATTATTGC	TACTTATATT	TTCTGGACTT	4440
AAGTCATAGC	CATTCAACTT	CATGCTTTTG	ACCGAATCAT	CTATATAGGT	AAGAGATAAA	4500
Paagagatag	CTCCTGGACT	TTTTGATACG	ATTGATTTTA	CCGCTCCATT	TGAATCCTGC	4560
PCCTGACTTT	GCATGGCAGA	CTGACCTTCC	ATAATGACAG	TATCAAAGGT	AGCACGAGAG	4620
CCAGAGCCGG	CTGCCCGATT	GATAACAGAG	ATGGGTAAGT	CCTTACCACC	AACCTCTTTC	4680
CAATTGGTTA	CCTCACCTAT	GAAGATTTGA	CGAAGTTGCT	CTGTCGTTAG	GTTATCAACA	4740
TCAACCTCCT	TATTGACAAT	CAGAGCCAAG	CCAGCTACCG	CGACCTTGTG	GTCAACAAGA	4800
GCAGAAGCAT	CAATTCCGTC	TTTTTCCTCA	GCAAATACAT	CTGAGTTTCC	TATATCAACT	4860
GCCCCAGACT	GAACCTGGGA	CAAGCCTGTA	CCAGAACCTC	CCCCTTGGAC	ATTGACCGTT	4920
PTTÇCAACAT	GGATCGTGCC	AAATTCATCT	GCCGCTACTT	CAACCAAGGG.	TTGCAAGGCA	4980

GTTGAGCCAA	CAGCCGTTAT	GGATTCTCCA	CGATCAATCC	AGCTAGCACA	GCCTACTAAA .	5040
CAAGCCGTCA	GCCAAAAAGC	GATAAGAGAC	AGAGCAAGCT	TTTTTCTTTT	TTTCACTGTT	5100
TTTCTCCTCG	ATTAATAAAA	TGAATACTGT	GAATTTTTA	AGTAGTTCTT	TATGAGTTGA	5160
CGCATGAATT	CTTACCAAAT	TTCTGCGCAA	TTGATTATTT	ATATAATATA	GGCTATATTA	5220
CTCTTTCCTA	ACCTCCTTTT	TTCATATGTG	GATAAAATCT	CTTGTCTATC	CCTTCCCCCA	5280
TTGTCACCCA	TTATAGTCAT	TTCGTGTCTC	TTTTTCCCCT	TTTTAATGCA	AGGGAAATTA	5340
CTCTCCTTAG	ATGATAATCC	AAAAGCTAGA	AAGGTATCTC	AAACCTCTCT	ACTCTCCCAG	5400
ACTAGTTTAC	AACTAAAAGG	AAAAGATTCT	ATTTTATGAG	AAATCTAGTT	TACAAGCGGT	5460
AAGAACGCTA	ATAACTAAAC	TTCTTGTACT	CTTTGAAAAT	CTCTTCAAAC	CAGTGTTTTG	5520
AGCTATCTAT	GGCTAGCTTC	CTAGTTTGCT	CTTTGATTTT	CATTGAGTAG	TAAAACTACA	5580
TGTAATGGCA	ATCAAGATAT	CAAGAATCAT	ССТАСТАААА	AAATCCATAC	ТТТСАСТАТА	5640
ACATAGAATA	AGATATTTGA	CTAGCATTTT	CATTTGAATC	TGAGGCCTTT	TGGAAAATAA	5700
TTTTTCAAAA	CATTTCCAGT	AACCTTTGCA	AAGCCCAAGC	CATTGCCTTT	AACCAAAACT	5760
TGGTACCAAC	CATTTGGCAG	ACTTTCTGCC	AGCTGAACGG	TTTCTCCAGC	CGCATACTTG .	5820
ACAAACGCTT	CTTGGCCAAT	TTCAACCGAC	TGTTCGACCT	GACTCGGTTT	CAAGGCTAAA	5880
CCAAGAGCGA	AACTGGGCTC	AAAGCGTTTC	TTCTTAAAAG	TACCCAGATG	CAGTCCATTG	5940
CGAGCAATCT	TGAGCTTCCA	TAAATCTGGC	AAAAGTTCTG	GCAAGAGATA	AAGCTGGTCT	6000
CCAAAAATCT	GCAAGATACC	CGGTAGATTG	ACCTTCAAAT	GGTTTTGGGC	AAATTCCTGC	6060
CACAAGGCAA	CTTGTTCACG	GCTGAGGTTA	CTCTTACTTG	CCTTAAATTT	AGGAGCTGGA	6120
TTGTTACCCT	TAAACTGTAG	ATGGGCAACA	AACTGACCCT	CTCCCTTAAA	CTGATGAGGA	6180
TACATCCGAG	CCGTTTCTGG	CAGGTCAATA	CCAGCTACCA	TTCCATTGAT	ATGCTCTACT	6240
GGCAACAAGT	CAAAATCATA	CTCTTCCAGC	AACCAATTGA	CAATCTCTTC	GTTTTCCTCG	6300
GGTGCCCAGG	TACAGGTCGA	ATAAACCAGA	TGACCACCTT	CAGCTAACAT	GGTCACTGCA .	6360
PCCTCCAGAÀ	TTTCTCTTTG	CAAGCTAGCA	CATTGACTCG	GATAATCTAA	GCTCCAATAG	6420
TCCATAGCAT	CAGGTTGCTT	ACGAAACATT	CCTTCACCAG	AGCAAGGGGC	ATCAAGAACG	6480
attaagtcaa	AATAGCCTTT	AAAGACCTTG	ACCAAGCGGT	CGGCAGATTC	ATTGGTCACC	6540
ACGACATTTG	TCGCTCCAAA	ACGCTCCATG	TTTTCAACCA	AAATCTTAGC	CCGTTTGCTT	6600
GAAATTTCAT	TGGAAnCAAG	TAGCCCCTCC	CCTGCTAGAT	AGGCTGCCAG	TTGAGTTGAT	6660
TTGCCCCCCG	GTGCAGCAGC	CAAGTCCAAG	ACCTTCATAC	CAGGACTGGG	TTGGGCTACT	6720

TGA	GCCACCA	TTTGAGCAGC	AGGTTCTTGC	254 GAATAAACTA	AACCTGTAGC	ATGCTCAGGC	6780
GAT	TTCCCTG	AAACCTTCCC	ATAGTGGCCC	CAAGGGGTTT	GAGTAATGGC	ATCAGAAAAG	6840
GAA	AGTTGCT	СТТСТТТТАА	GGGATTGACC	CGAAAGGCCG	AAACCGCTTC	СТССТСАААА	6900
GAG	GCAAGAA	AATCTCTTGC	СТСАТСТССТ	AGTATCTCTT	TATATTTTTC	AACAAATCCT	6960
rct	'GGAAATT	GCATTTAAGT	TCTTTTCCTT	TCGTAAATAT	AGGACTGAAT	TTCCTCCTGC	7020
ATC	TCAAGAG	GCACCATCAT	GACCGGCTGT	CTGGTTTGAA	AATCAGGAGC	TTCACCAAAA	7080
AGG	GTCACAA	CCCGATAGCC	CAGACTTTCC	CCTAAAATAC	TAGCTGCGGC	ATAATCCCAT	7140
GT	TGCAGAT	AAGTGAGATA	GGTCAACAAA	CGCCCTGACA	AAATCTTGGC	AAAACTAATG	7200
3CC	GCACTTC	CATAGACACG	AACACCAAGA	ACCGCTCGGC	TCAAATCAGC	CAGCCCCCAT	7260
rca	TTGGTTT	CCAGCATACC	ACTATTCCCT	GCAATGAGAA	AATCTCCAAG	TGGTTTAGTT	7320
ГТA	AAAGGAG	CTAGGGACCT	ATCATTTAGA	CAAACTGGAA	ATTCCCCACC	ACCGTGGTAA	7380
CAA	TCCCCTT	TGACCACATC	ATAAATCAGA	CCAAACTGTC	CCTGACCATT	ттсаааатаа	7440
3CC	ATCATAA	CAGCAAAATC	TTCCTGCTGG	GCTACAAAAT	TATTGGTACC	ATCAATGGGA	7500
ГСА	ATGACCC	AAACCTTGCC	CTCTTGAACC	GAGGCTCGCA	GACAACCTTC	TTCAGCACAA	7560
ATC	TTATCCT	CAGGATAACG	GGACAAAATC	TCACCAACCA	AGAGTTCCTG	AACTTCTTTG	7620
rcc	AGTCTGG	TCACCAAATC	TGTTGGAGAG	GACTTGGTTT	CAACACGCAA	GTCTTCCTGC	7680
ATA	TGGTCAA	GAATGTACTG	ACCTGCTTTC	TTAACAAGCT	CTTTAGCAAA	TTCAAATTTA	7740
		GAAATCTTTC	CTTCCCCTTT	TTCTTTGGGG			7780
	T1150511						

(2) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4820 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

GTAATGATAT	AGGAACACCA	GGTGACCTGA	TGGGACGTCG	TAAGCCTATG	AACTACTAGC	60
TGCTAAAGGC	TTTAAAGATG	GTATGGTACC	ATATATCTCA	AACCAATACG	AAGAAGAAGC	120
CAAACAAAAG	GGCAAGACAA	TCAATCTCTA	CGGTAAAACA	AGAGGTTTGG	TTACAGATGA	180
CTTGGTTTTG	GAAAAGGTAT	ТТААТААССА	ATATCATACT	TGGAGTGAGT	TTAAGAAAGC	240
TATGTATCAA	GAACGACAAG	ATCAGTTTGA	TAGATTGAAC	AAAGTTACTT	TTAATGATAC	300
AACACAGCCT	TGGCAAACAT	TTGCCAAGAA	AACTACAAGC	AGTGTAGATG	AATTACAGAA	360

ATTAATGGAC	GTTGCTGTTC	GTAAGGATGC	AGAACACAAT	TACTACCATT	GGAATAACTA	420
CAATCCAGAC	ATAGATAGTG	AAGTCCACAA	GCTCAAGAGA	GCAATCTTTA	AAGCCTATCT	480
rgaccaaaca	AATGATTTTA	GAAGTTCAAT	TTTTGAGAAT	AAAAAATAGT	GTCTACTATT	540
AGGAAATAAA	GTTTAAAAAG	GTGATGAAGA	ACAAACCAAG	ATTCAAGCAG	GAATTCCTAC	600
rgataatgaa	GTAAGTTATG	ATCTTATTTA	TCAGCAGGAA	ACTCTTCCTG	CAACAGGTTC	660
ЧТСААСТТСТ	GAGCTTACAG	CTTTAGGCCT	ATTAGCTGTT	GGTAGTTTAG	TTCTTTTGGT	720
rcataatatg	ACGGGAACAG	TTTTTTGCTC	CCTCTGAAAA	GTCATCATTT	GATGGCTTTT	780
PTCTATATAG	GGTAAAAGAT	AGGGTAAAAG	GCTATCATCG	GACAAAATAA	AGAAGGCATG	840
АТАТААТАТ А	AAGTAGATTT	CTATGTCATA	AAACAAGAAC	TGTTTGGACA	TCATTCATTT	900
SAAAACTCTC	TATGTTCAAA	CAATAGTAAA	ATAAAATAGG	GGATCTAAAT	CCTTGCTATG	960
AAAGGAAAAA	ACTCAATGGC	TACTATTCAA	TGGTTTCCTG	GTCACATGTC	TAAAGCTCGT	1020
CGACAGGTGC	AGGAGAATTT	AAAATTTGTT	GATTTTGTGA	CGATTTTAGT	AGATGCACGC	1080
ГТGCСТСТАТ	CTAGTCAAAA	TCCTATGTTG	ACCAAGATTG	TTGGTGATAA	ACCAAAACTC	1140
TGATTTTAA	ACAAGGCCGA	CTTGGCTGAT	CCAGCAATGA	CCAAGGAATG	GCGTCAGTAT	1200
TTGAATCAC	AAGGAATCCA	GACGCTAGCT	ATCAACTCCA	AAGAGCAAGT	GACTGTAAAA	1260
STTGTAACAG	ATGCGGCCAA	GAAGCTCATG	GCTGATAAGA	TTGCTCGCCA	GAAAGAACGT	1320
GGATTCAGA	TTGAAACCTT	GCGTACTATG	ATTATCGGGA	TTCCAAACGC	TGGTAAATCA	1380
CTCTGATGA	ACCGTTTGGC	TGGTAAAA AG	ATTGCTGTTG	TTGGAAACAA	GCCAGGGGTC	1440
CAAAAGGTC	AACAATGGCT	TAAAACCAAT	AAAGACCTGG	AAATCTTGGA	TACACCGGGG	1500
TTCTCTGGC	CTAAGTTTGA	GGATGAAACT	GTTGCACTTA	AGTTGGCATT	GACTGGAGCT	1560
TCAAAGACC	AGTTGCTTCC	TATGGATGAG	GTTACCATTT	TTGGTATCAA	ТТАТТТСААА	1620
BAACATTATC	CAGAAAAGCT	GGCTGAACGC	TTCAAACAAA	TGAAAATTGA	AGAAGAAGCG	1680
CTGTGATTA	TTATGGATAT	GACCCGCGCC	CTCGGTTTCC	GTGATGACTA	TGACCGTTTT	1740
ACAGTCTCT	TCGTGAAGGA	AGTCCGTGAT	GGCAAACTCG	GTAACTATAC	CTTAGATACA	1800
TGGAAGACC	TCGATGGCAA	CGATTAAAGA	aatcaaagaa	TTCCTTGTGA	CAGTCAAGGA	1860
TTAGAAAGC	CCTATTTTTT	TAGAGCTTGA	aaaggatäat	CGCTCAGGAG	TTCAAAAGGA	1920
ATCAGCAAG	CGTAAAAGAG	CCATTCAAGC	TGAATTAGAT	GAAAATTTGC	GCTTGGAATC	1980
ATGCTTTCT	TATGAAAAAG	AACTTTATAA	GCAAGGATTG	ACCTTAATTG	CAGGTATTGA	2040
GAGGTTGGT	CGTGGTCCTC	TTGCTGGTCC	TGTAGTCGCT	GCGGCCGTTA	ТТТТАТСТАА	2100

			256			
AAATTGTAAG	ATTAAAGGTC	TCAACGACAG	CAAGAAAATT	CCTAAAAAGA	AACATCTGGA	2160
GATTTTCCAA	GCCGTTCAAG	ACCAAGCCTT	GTCGATTGGA	ATTGGTATCA	TAGATAATCA	2220
GGTCATCGAC	CAAGTCAACA	TCTATGAAGC	AACCAAACTA	GCCATGCAAG	AAGCAATCTC	2280
CCAGCTCAGC	CCTCAACCAG	AGCACCTTTT	GATTGATGCC	ATGAAACTGG	ACTTGCCCAT	2340
TTCACAAACC	TCCATTATCA	AAGGAGATGC	CAACTCCCTC	TCTATCGCAG	CAGCATCTAT	2400
AGTAGCCAAG	GTAACACGTG	ATGAATTGCT	GAAAGAATAC	GATCAGCAGT	TCCCTGGCTA	2460
TGATTTCGCT	ACTAATGCAG	GATATGGCAC	AGCTAAACAT	CTGGAAGGCC	TCACAAAACT	2520
AGGAGTTACC	CCAATTCACC	GAACCAGCTT	TGAACCCGTT	AAATCACTGG	TTTTAGGTAA	2580
AAAAGAAAGT	TAATTGAAAG	GÄAATAACAT	GGAGGAACAG	TCGGAAATAG	TCCGTTCTAA	2640
GAAAGAATTC	GCCTTTGCAT	CCAGCACTAT	ACTATCCCAA	GTTGGTCGAG	GAATCATTGT	2700
CGGCCTCATC	GTTGGAATTA	TCGTCGGATC	CTTTCGTTTC	TTAATTGAAA	AGGGCTTCCA	2760
CCTGATACAA	GGAGTTTATC	AAGATCAAGG	GTACTTAGTG	CGCAATCTTT	TTGTACTGGT	2820
TTTGTTTTAT	ATACTCATCT	GTTGGCTCAG	TGCCAAACTA	ACACGGTCAG	AAAAAGATAT	2880
TAAAGGCTCA	GGAATTCCTC	AAGTCGAAGC	CGAACTGAAA	GGCCTCATGT	CCCTCAACTG	2940
GTGGGGCATT	CTTTGGAAAA	AATATGTGCT	AGGTATTCTT	GCTATTGCCA	GTGGACTCAT	3000
GCTGGGTCGA	GAGGGACCCA	GCATTCAACT	TGGAGCAGTT	GGTGGTAAAG	GAATTGCCAA	3060
GTGGCTCAAA	TCCAGTCCAG	TAGAGGAACG	TTCCTTGATT	GCCAGTGGAG	CTGCAGCAGG	3120
TTTAGCCGCA	GCCTTTAATG	CTCCTATTGC	AGCACTTCTC	TTTGTTGTAG	AAGAAGTCTA	3180
TCACCATTTT	TCGCGCTTTT	TCTGGGTCTC	AACTCTAGCA	GCCAGCATCG	TAGCAAACTT	3240
TGTGTCTCTA	CTCATGTTCG	GTTTGACACC	AGTATTGGAT	ATGCCAGATA	ACATTCCTCC	3300
CATGACCCTA	GATCAGTATT	GGATATATCT	CGTCATGGGA	ATTTTCCTTG	GATTTTCAGG	3360
TTTTCTCTAT	GAGAAAGCTG	TATTAAACGT	TGGAAGAGTT	TATGACTTGA	TTGGTCAAAA	3420
AATCCATTTG	GATAGGGCTT	ATTATCCCAT	CTTGGCTTTT	ATCCTTATCA	TACCAGTCGG '	3480
AATCTTCTTA	CCTCAAATCA	TTGGTGGCGG	AAATCAGCTT	GTCCTTTCTT	TAACTGAACA	3540
Aaattttagt	TTCCAAGTTT	TATTAGCTTA	CTTTTTAATC	CGCTTTATTT	GGAGTATGAT	3600
PAGCTATGGA	AGTGGACTGC	CAGGAGGAAT	TTTCCTCCCC	ATTTTAGCTC	TTGGTTCTTT	3660
GCTTGGTGCC	TTAGTTGGTG	TTATCTGTGT	CAATCTTGGA	CTTGTCAGTC	AAGAGCAATT	3720
CCCTATATTT	GTCATTCTAG	GAATGAGTGG	CTATTTTGGA	GCCATATCAA	AAGCTCCCTT	3780
AACCGCTATG	ATCCTCGTAA	CTGAGATGGT	AGGAGATATT	CGCAACCTTA	TGCCACTTGG	3840
דירייווינייירי א רייי	COOK COOK	2020020020	001000000	*******	01.00001.00	

257

AGC	CATGCTG	GAAAAAATGC	TTCCAGAAGA	AGTATCTAGC	GAAGGAGAAG	TTACACTTAT	3960
CGA	AATACCA	GTTTCTGATA	AAATTGCTGG	GAAACAAGTT	CATGAACTCA	ACTTACCACA	4020
CAA	CGTCCTC	ATCACAACTC	AAGTCCATAA	TGGCAAGAGC	CAAACAGTTA	ACGGCTCAAC	4080
CAG	SAATGTAT	CTGGGTGATA	TGATTCACCT	GGTTATTCCA	AAAAGTGAAA	TTGGAAAAGT	4140
CAA	lagatttg	TTGTTGTAGT	ATGAGTATTT	ACATAATTTA	TGTTATGTAA	ATGATCAGTT	4200
TG#	TTTATTT	AGAAAACCGA	TTCTCAGGAA	TGAGATCGGT	TATTTTTTAC	TGATGAGGAA	4260
I-I-I	ТАСАТАТ	AAATAATTGA	ACTTTATTAA	AAATAAGACT	ATAATTAAGT	TAGAAATGAT	4320
AAA	GTATAAA	GCTAGAAAGG	AGTTTACTGT	ATCAAATCTG	TACAGTAAGA	TTAAAATCAT	4380
GAA	AAAGAAA	ACAATAGCAA	TTATATAGAG	AAATGAAATA	GAAATAGGAT	AAAACAATCA	4440
GG#	CAATCAA	ATCAATTTCT	AGCAATGTTT	TAGAAGTCCA	GATGTACTAT	TCTAGTTTCA	4500
ATC	TATTATA	CAATGTGTTT	TGTATCTCAT	AGCTCCTTAT	ATAGCTCTTC	AGTTATGTAG	4560
TAT	TAACAGA	AGTTTAGTGG	GTGAGATTTT	TATTATTTTC	CTTATTCTGT	TTTGTTTGTA	4620
GGI	CTAAGTC	TTTTTATCAC	TTTGAAAAAC	TCCTATAACA	TCTTTCCGAA	AAACTATAAT	4680
TTI	CTTGAAA	AATATACAAG	TCTATGCTAT	ACTACTAGTA	TACTTACTTA	TGGAGAAAAT	4740
ACA	TGAAACG	TGAGATTTTA	CTGGAACGAA	TCGACAAACT	AAAACAACTC	ATGCCCTGGT	4800
AAG	TTCTGGA	ATACTACCAA					4820

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21338 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CTACGACATC	ATGATTAACA	GTCATGCGCT	ACTACCAACT	GAGCTATGGC	GGATAAAATA	60
GTCCGTACGG	GATTCGAACC	CGTGTTACCG	CCGTGAAAAG	GCGGTGTCTT	AACCCCTTGA	120
CCAACGGACC	TTCTATCTGT	AGCAGATATA	ACCATTATAT	CAATTTCTTG	CTAATTGTCA	180
ATCACTTTTG	AGATTTTTTC	TCTAAAATAT	CTTTTAATTT	TCTAATTTTT	AATCTTGAAA	240
TAGGACAACG	ATGGTCTTCA	TAGAAAACAA	TTTCTAAGTT	TTTTCGATCA	ATTTCTCTGA	300
TATTACCTAT	ATTTACCAAA	AATGACTTGT	GAGGAGAATA	AAATCGCTGA	GTATGTTTGT	360
CCTTTTCCTG	AATATCTGTC	ATGGTACCAT	AAAACTCTTT	TGCAAAATTC	TTACCAATAA	420

230	
ATATA	.(

480	TAAGGAATTT	AATATCATGG	CAATATACAA	CCTGTTGTTT	ATGAGATACC	TGCGCAATTT
540	TTTTCAAGTA	AACATCTTCA	AATAATCTAC	TTGTAGTCGA	TCCCTTGTAA	TTAAATCATT
600	TCATCATTGA	CTTAAACATC	CAATTCTCTT	ATATTTTGCT	CGTGTAGAAG	ACATACTCTT
660	GTCGCAAACT	ATAGGTTAGA	CCTGGTATTT	AGGGCTGATA	AACAAAATCT	TATCCTTATC
720	ATGAGCTGAG	GTAATGACGA	CGTAAGGATT	ACGATAATAG	AGTGATAAAG	CTGATCGACT
780	TAAAGCTGAT	ATCTAGGAAA	GAATATCGAT	TCAATTCCAT	TCCCTTTTTC	CCACTTCAAA
840	GTCTTGTATG	TTTTCCCGTT	ATTCACGGAC	TATTCTTCAA	ATTTTCAATG	TTACTTCATC
900	CTCACTTGAT	TCTCTCTAGT	CATCCAATAT	TTCGAAATTT	ATTCGATTCT	Atattggaat
960	ATCTAATGAT	ТСССТСТТАА	TCATTCAAAT	ATTAAAACTT	ATCTTCTAAA	GTTCAATAAC
1020	ACTTATCTAG	ATATTGTTGT	ттстаааата	CCATCTCTGT	GTACTGCCTT	гтстстааат
1080	AGAATCCTAA	CCCTTAGTGG	GCGATTTCTT	ATCCGACTCC	ACATTATTTA	PAGTTCTTTC
1140	TCACAATAAC	GAATTCTGAA	CATTTTACAT	GAGTCATCGT	TCTCCTGAAG	GCAAATAGA
1200	TATCAGCCGA	TTTTTATAGC	TTCCATCTGC	TAACTGCTAC	TCCATCTTAA	IGTTTCAGTT
1260	ATAGTTCAAT	ACCAAATCCA	CATGATACGA	ATAAAACGCT	GCATTATTCA	rccttcgaca
1320	TATTTCGAGC	TCTACACCAT	CAGTGTAAAC	CTTTTACTTC	GTAATCGTAT	PGGAAGCTTG
1380	TGTTCAAATC	TCTTCTATGT	TAAAGCTGAG	CCAAACTTCG	GACTGAGCAA	ATAGACAATT
1440	CTTCATTGTA	TTGACTAAAA	ATGATTTGCT	AACGCAATTT	TACTTATCTG	DTDAATDAAA
1500	TGACAAGCAT	ATCTGCATGC	GTCAATTGCC	AATTACCACT	ATTTCCTGTA	ATTCTGTCA
1560	TTTCATCTGT	AGACCAACAA	TTCATTATAC	AACCACGGAT	TCATGTCGAA	CCAGCATAA
1620	CTTTCTCCAT	AAAGCAATCT	CTTCTGCTTC	GTTCAAATTT,	AAATGTTTCT	TAATTCTGT
1680	AGACAATAGA	AGAGAGATAA	GGTCAAAAGG	TTGCAAAGAA	TGAGAATTCA	TGAACTTTA
1740	CTGAAACGAA	CTTACCATAT	TTTAATCGTA	TATTCAAATG	CTTCCAAAAC	GACAAAATA
1800	GATAAAGGTA	TTCAAGAAAG	AAATACTTTT	GTAAAGCAAA	TGTAGCAATA	GATACAATA
1860	ATGTAACAAA	ATGATTTTA	GAAATAGTAA	GTTCCAAATG	AAATAGGCTA	TCCTTGTCA
1920	СААААТТАТС	TATTGTAAAA	TGGGAAATGA	CGAAAAAGAA	ACCGTCACAA	TAGGTTAAC
1980	ATAAAAGAGA	GTGCTCTCAT	Aaagttatga	TTACGGACAG	GAGGAGAAAA	CCTGTTATA
2040	ATCGAAAATA	TGTTTCATCC	CCTCTCATAC	GTCCTCTATC	CTTAGGAATA	'AGTAGTAAA
2100	AATATAGAAG	АТТТТАТСТА	TTCAATCCCT	ATAAAAATCT	CCCAAAGGAA	Gaatataag
2160	AAACGTATAA	TAAGCACCAA	TAGTAATGTA	CTATTTCAGT	AATTCAAGTA	TAAAAGGAA
2220	ТААТТАААА	CTGTGACTAA	TAAACGGTAA	CTTTACAAAT	TTTATTCGAC	тсттттста

ATGAACAATA	ACTGTCCCAA	ATCCAAGTAA	ATCCATTACT	CTTTCTCCTT	ATTTCATTAC	228
TTTTTTCGTA	GGAAAAGAAA	ATCAAGGATG	ATTCTTGAAA	TCCTCATCTC	CCCACCTTTA	2340
ATCTTTTGTA	AGTCTTTTTC	CTTCAAAGCT	ACAAACTGTT	CCAATTTAAC	TGTGTTTTTC	2400
Атаатааат	СТССТААААТ	GTTTTTCTT	GTAAGCTAAC	TTACAAAAAC	CATTATACAA	2460
Aatggaattt	CGTTTTAGAT	AAAATTCTCT	CAACTGTCAT	TTTTTTCTCC	CAAAGTGTAC	2520
TTTTTTAAGA	AAAAAGCCGG	GAAAATTCCC	AGCTTTGCTA	TTATATTGAT	CCCAGCAGGA	2580
TTCGAACCTG	CGACCGTTCG	CTTAGAAGGC	GAATGCTCTA	TCCAGCTGAG	CTATGAGACC	2640
TAATACAATT	ATTCTACCAA	AAATTCAATT	AAAAGTCAAT	TTTCTATTTA	TGGTAGGGGA	2700
ATCCCTGCTG	AATCGTAAAA	GCGCGATAGA	TTTGTTCAAC	AAGAACTAGT	CTCATTAACT	2760
GATGGGGTAA	GGTTAGGCGA	CCAAAACTGA	CAGAAAGATT	GGCTCTATTT	TTTACAGATG	2820
ATGATAATCC	TAAACTTCCC	ССААТААТАА	AAGTAAGAGT	AGAAAATCCT	TTTATAGAAG	2880
PTTCTTCTAA	CTGCTTACTA	AATTCTTCTG	AGAAGAAAGT	TTTCCCTTCA	ATGGCTAACA	2940
CAATAACGAA	ATCACGGTCA	GCAATTTTTG	ATAAAATTCT	CTGACCTTCT	АТТТСТАААА	3000
PCTTTTGATT	TTCTGATTCA	CTGGCCTTAT	CTGGTGTTTT	TTCATCTGAT	AACTCAATCA	3060
TTCAAACTT	AGCAAATCTA	GAAATTCGTT	TTGAATACTC	TGCGATACCA	TCTTTTAAAT	3120
ACTTTTCTTT	CAGTTTCCCA	ACTGTTACAA	CTTTAATTTT	CATGACTCTA	TTCTAACATA	3180
PTCTCTATTT	TTTCACATCT	TATTCACAAA	АТАААААТА	GATTTCAATT	AAGAAAATCA	3240
CAATTTCAAA	AGAGTTATCC	ACAGTTTGTG	TAAAACTTTT	GTGTTTAAGT	TATAATTAAG	3300
TAGTCAGTT	TATACTTTCA	GTAATTCAAA	CATATGGAGG	CAAATATGAA	ACATCTAAAA	3360
CATTTTACA	AAAAATGGTT	TCAATTATTA	GTCGTTATCG	TCATTAGCTT	TTTTAGTGGA	3420
CCTTGGGTA	GTTTTTCAAT	AACTCAACTA	ACTCAAAAAA	GTAGTGTAAA	CAACTCTAAC	3480
ACAATAGTA	CTATTACACA	AACTGCCTAT	AAGAACGAAA	ATTCAACAAC	ACAGGCTGTT	3540
ACAAAGTAA	AAGATGCTGT	TGTTTCTGTT	ATTACTTATT	CGGCAAACAG	ACAAAATAGC	3600
TATTTGGCA	ATGATGATAC	TGACACAGAT	TCTCAGCGAA	TCTCTAGTGA	AGGATCTGGA	3660
ATATTTATT	AAAAGAATGA	TAAAGAAGCT	TACATCGTCA	CCAACAATCA	CGTTATTAAT	3720
GCGCCAgCA	AAGTAGATAT	TCGATTGTCA	GATGGGACTA	AAGTACCTGG	AGAAATTGTC	3780
GAGCTGACA	CTTTCTCTGA	TATTGCTGTC	GTCAAAATCT	CTTCAGAAAA	AGTGACAACA	3840
TAGCTGAGT	TTGGTGATTC	TAGTAAGTTA	ACTGTAGGAG	AAACTGCTAT	TGCCATCGGT	3900
GCCCGTTAG	GTTCTGAATA	TGCAAATACT	GTCACTCAAG	GTATCGTATC	CAGTCTCAAT	3960

			260			
AGAAATGTAT	CCTTAAAATC	GGAAGATGGA	CAAGCTATTT	CTACAAAAGC	CATCCAAACT	402
GATACTGCTA	TTAACCCAGG	TAACTCTGGC	GGCCCACTGA	TCAATATTCA	AGGGCAGGTT	4080
ATCGGAATTA	CCTCAAGTAA	AATTGCTACA	AATGGAGGAA	CATCTGTAGA	AGGTCTTGGT	4140
TTCGCAATTC	CTGCAAATGA	TGCTATCAAT	ATTATTGAAC	AGTTAGAAAA	AAACGGAAAA	4200
GTGACGCGTC	CAGCTTTGGG	AATCCAGATG	GTTAATTTAT	CTAATGTGAG	TACAAGCGAC	4260
ATCAGAAGAC	TCAATATTCC	AAGTAATGTT	ACATCTGGTG	TAATTGTTCG	TTCGGTACAA	4320
AGTAATATGC	CTGCCAATGG	TCACCTTGAA	AAATACGATG	ТААТТАСААА	AGTAGATGAC	4380
AAAGAGATTG	CTTCATCAAC	AGACTTACAA	AGTGCTCTTT	ACAACCATTC	TATCGGAGAC	4440
ACCATTAAGA	ТААССТАСТА	TCGTAACGGG	AAAGAAGAAA	СТАССТСТАТ	CAAACTTAAC	4500
AAGAGTTCAG	GTGATTTAGA	ATCTTAATTG	ACATCTATGT	AAAGAAAGCT	TTACATAAGA	4560
GAAAAGATGT	GTTAGTGTAG	AATCATGGAA	AAATTTGAAA	TGATTTCTAT	CACAGATATA	4620
СААААААТС	CCTATCAACC	CCGAAAAGAA	TTTGATAGAG	AAAAACTAGA	TGAACTAGCA	4680
CAGTCTATCA	AAGAAAATGG	GGTCATTCAA	CCGATTATTG	TTCGTCAATC	TCCTGTTATT	4740
GGTTATÇAAA	TCcTTGCAGG	AGAGAGACGC	TATCGGGCTT	CACTTTTAGC	TGGTCTACGG	4800
TCTATCCCAG	CTGTTGTTAA	ACAGATTTCA	GACCAAGAGA	TGATGGTCCA	GTCCATTATT	4860
GAAAATTTAC	AGAGAGAAAA	TTTAAACCCA	ATAGAAGAAG	CACGCGCCTA	TGAATCTCTC	4920
GTAGAGAAAG	GATTCACCCA	TGCTGAAATT	GCAGATAAGA	TGGGCAAGTC	TCGTCCATAT	4980
ATCAGCAACT	CCATTCGTTT	ACTTTCCTTG	CCAGAACAGA	TTCTTTCAGA	AGTAGAAAAT	5040
GGCAAACTAT	CACAAGCCCA	TGCGCGTTCC	CTAGTTGGGT	TAAATAAGGA	ACAACAAGAC	5100
TATTTCTTTC	AACGGATTAT	AGAAGAAGAT	ATTTCTGTAA	GGAAATTAGA	AGCTCTTCTG	5160
ACAGAGAAAA	AACAAAAGAA	ACAGCAAAAA	ACTAATCATT	TCATACAAAA	TGAAGAAAA	5220
CAGTTAAGAA	AACTACTCGG	ATTAGATGTA	GAAATTAAAC	ТАТСТААААА	AGACAGTGGA	5280
AAAATCATTA	TTTCTTTTTC	AAATĊAAGAA	GAATATAGTA	GAATTATCAA	CAGCCTGAAA	5340
TAAGGCTGTT	CTTTTATTTT	TTTATCTCAC	AAGGTTATCC	ACTATGTTTT	TCGATAAAAA	5400
GCTTAATAAA	TCAATAATTT	CTTCTTTTAT	CCCCAACCTG	TGGATAAAGT	TTGGTAACAT	5460
TGTGGATTAT	TTTTCACAGC	TTGTGGAAAA	TTCTTGCTAT	CTATGGTAAA	ATATCTCTAG	5520
TATTAAACTT	TTAAATAGTA	AAGGAGGAGA	aaggattgaa	AGAAAAACAA	TTTTGGAATC	5580
GTATATTAGA	ATTTGCACAA	Gaaagactga	CTCGATCCAT	GTATGATTTC	TATGCTATTC	5640
AAGCTGAACT	CATCAAGGTA	GAGGAAAATG	TTGCCACTAT	ATTTCTACCT	CGCTCTGAAA	5700
TGGAAATGGT	CTGGGAAAAA	CAACTAAAAG	ATATTATTGT	AGTAGCTGGT	TTTGAAATTT	5760

ATG	ACGCTGA	AATAACTCCC	CACTATATTT	TCACCAAACC	TCAAGATACG	ACTAGCTCAC	5820
AAG	TTGAAGA	AGCTACAAAT	TTAACTCTTT	ATAACTATAG	TCCAAAGTTA	GTATCTATTC	5880
CTI	'ATTCAGA	TACGGGATTA	Aaagaaaagt	ATACCTTTGA	TAACTTTATT	CAAGGGGATG	5940
GAA	atgtttg	GGCTGTATCA	GCCGCTTTAG	CTGTCTCTGA	AGATTTGGCT	CTGACCTATA	6000
ACC	CTCTTTT	TATCTATGGA	GGACCAGGCC	TTGGTAAGAC	TCACTTATTA	AACGCTATTG	6060
GAA	ATGAAAT	TCTAAAAAAT	ATTCCTAATG	CGCGTGTTAA	ATATATCCCT	GCCGAAAGCT	6120
ГТA	TTAATGA	CTTTCTTGAT	CACCTAAGAC	TTGGGGAAAT	GGAAAAGTTT	AAAAAGACCT	6180
ATC	GTAGTCT	TGATCTTTTG	TTAATCGATG	ATATCCAGTC	ACTCAGCGGA	AAAAAAGTCG	6240
CAA	CTCAGGA	AGAATTTTTC	AATACCTTTA	ACGCCCTTCA	TGACAAGCAA	AAACAGATTG	6300
rcc	TAACGAG	TGATCGTAGT	CCAAAACATC	TAGAAGGGCT	CGAGGAGAGG	CTTGTCACGC	6360
3TT	TTAGTTG	GGGATTGACA	CAAACTATCA	CCCCCCTGA	CTTTGAAACA	CGTATTGCCA	6420
rrr	TACAAAG	TAAGACGGAA	CATTTAGGCT	ACAATTTCCA	AAGTGATĄCT	CTAGAATACC	6480
ľAG	CTGGGCA	ATTTGATTCA	AATGTTCGAG	ATCTTGAGGG	AGCCATCAAC	GACATCACTT	6540
raa	TTGCCAG	AGTAAAAAA	ATCAAGGATA	TCACTATTGA	TATTGCTGCA	GAAGCCATTA	6600
GAG	CCCGCAA	ACAAGATGTT	AGCCAAATGC	TCGTCATCCC	AATTGATAAA	ATCCAAACTG	6660
AAG	TTGGTAA	CTTTTATGGT	GTTAGTATCA	AAGAAATGAA	GGGAAGTAGA	CGCCTTCAAA	6720
ATA	TTGTTTT	GGCCCGTCAA	GTAGCCATGT	ATTTATCTAG	AGAACTAACA	GATAATAGTC	6780
TC	САААААТ	TGGGAAGGAA	TTTGGGGGAA	AAGATCATAC	CACAGTCATT	CATGCCCATG	6840
CA	AAATAAA	ATCTTTGATT	GATCAAGACG	$\underset{(}{\mathbf{ATAATTTACG}}$	TTTAGAAATT	GAATCAATCA	6900
AA/	AGAAAAT	CAAATAATTT	GTGGATAACT	TTTAGTTTTT	TATCTTTTTT	ATCCACATTT	6960
TT	AAACAAG	СТААААААСТ	TGATATGACT	TGTTTAAAGG	CTGTTTTCCA	CAGATTTCAC	7020
AGA	CTCTATT	ATTACTATTA	TCTTTCTAAT	ACTAAAAATA	AATAAAGGAG	AATCCATGAT	7080
CA	TTTTTCA	ATTAATAAAA	ATTTATTTCT	ACAAGCATTA	AATACTACTA	AGAGAGCTAT	7140
AG	TTCTAAA	AATGCCATTC	CTATTTTATC	ĀACAGTAAAA	ATTGACGTGA	CCAATGAAGG	7200
'AT	TACTTTA	ATTGGTTCAA	ATGGTCAAAT	TTCAATTGAA	TTTTATTTAA	СТСАААААА	7260
GA	AGATGCT	GGTTTGTTAA	TTACTTCTTT	AGGTTCGATC	CTTCTTGAAG	CTTCTTTCTT	7320
'AT	Caatgta	GTATCTAGTT	TACCTGATGT	AACTCTTGAT	TTTAAAGAAA	TTGAACAAAA	7380
'CA	AATTGTT	TTAACCAGTG	GCAAATCAGA	AATTACCCTA	AAAGGAAAAG	ATAGCGAACA	7440
TA	TCCACGA	ATCCAAGAAA	TTTCAGCAAG	CACTCCTTTA	ATACTTGAAA	СААААТТАСТ	7500

			262			
CAAGAAAATT	ATTAATGAAA	CAGCCTTTGC	TGCAAGTACA	CAAGAGAGTC	GTCCGATTTT	7560
AACAGGTGTC	CACTTCGTAT	TGAGTCAACA	CAAAGAGTTA	AAAACAGTTG	CAACAGACTC	7620
TCATCGCCTA	AGCCAGAAAA	AATTGACTCT	TGAAAAAAT	AGTGATGATT	TTGATGTCGT	7680
AATTCCTAGC	CGTTCTCTAC	GCGAATTTTC	AGCGGTATTT	ACAGATGATA	TCGAAACTGT	7740
AGAGATTTTC	TTTGCCAATA	ACCAAATCCT	CTTTAGAAGC	GAAAATATTA	GCTTCTATAC	7800
TCGTCTCCTA	GAAGGAAACT	ATCCTGATAC	AGATCGCTTG	ATTCCAACAG	ACTTTAACAC	7860
TACTATTACT	TTTAATGTGG	TAAACTTACG	CCAGTCAATG	GAGCGTGCCC	GTCTTTTATC	7920
AAGTGCGACT	CAAAATGGTA	CTGTGAAACT	TGAAATTAAG	GATGGGGTTG	TTAGCGCCCA	7980
TGTTCACTCT	CCAGAAGTTG	GTAAAGTAAA	CGAAGAAATC	GATACTGATC	AGGTTACTGG	8040
TGAAGATTTG	ACCATTAGTT	TCAACCCAAC	TTACTTGATT	GATTCTCTTA	AAGCTTTAAA	8100
TAGCGAAAAG	GTGACTATTA	GCTTTATCTC	AGCTGTTCGT	CCATTTACTC	TTGTGCCAGC	8160
AGATACTGAC	GAAGACTTCA	TGCAGCTCAT	TACACCAGTT	CGTACAAATT	AAGTGAAAGA	8220
GGTTGAGCCT	GGCTCGCCTC	TTTTATGATA	TAATCGAAAA	AGAAAAGGAG	AGTAGTATGT	8280
ATCAAGTTGG	AAATTTTGTT	GAGATGAAAA	AATCACACGC	TTGTACAATC	AAGTCGACTG	8340
GTAAAAAGGC	TAATCGTTGG	GAAATTACAC	GTGTAGGAGC	AGATATCAAA	ATAAAATGTA	8400
GTAATTGTGA	GCATGTTGTC	ATGATGGGGC	GATATGATTT	TGAGCGAAAA	ATGAATAAAA	8460
TTATTGACTG	AGAACCCTTA	GTTAGAGGGT	TAGCACTTTA	TCCCTTTTTG	TGTTATAATA	8520
TTAGGGATTG	AAATGAAAAC	GGAGAATGAG	AAATATGGCT	TTGACAGCAG	GTATCGTTGG	8580
TTTGCCAAAC	GTTGGTAAAT	CAACACTATT	TAATGCAATT	ACAAAAGCAG	GAGCAGAGGC	8640
AGCAAACTAC	CCATTTGCGA	CGATTGATCC	AAATGTTGGA	ATGGTGGAAG	TTCCAGATGA	8700
ACGCCTACAA	AAACTAACTG	AAATGATAAC	TCCTAAAAAG	ACAGTTCCCA	CAACATTTGA	8760
ATTTACAGAT	ATTGCAGGGA	TTGTAAAAGG	AGCTTCAAAA	GGAGAGGGGC	TAGGGAATAA	8820
ATTCTTGGCC	AATATTCGTG	AAGTAGATGC	GATTGTTCAC	GTAGTTCGTG	CTTTTGATGA	8880
TGAAAATGTA	ATGCGCGAGC	AAGGACGTGA	AGACGCCTTT	GTAGATCCAC	TTGCAGATAT	8940
TGATACCATT	AATCTGGAAT	TGATTCTTGC	TGACTTAGAA	TCAGTGAACA	AACGATATGC	9000
GCGTGTAGAA	AAGATGGCAC	GTACGCAAAA	AGATAAAGAA	TCAGTAGCAG	AATTCAATGT	9060
TCTTCAAAAG	ATTAAACCAG	TCCTAGAAGA	CGGGAAATCA	GCTCGTACCA	TTGAATTTAC	9120
AGATGAGGAA	CAAAAGGTTG	TCAAAGGTCT	TTTCCTTTTG	ACGACTAAAC	CAGTTCTTTA	9180
TGTAGCTAAT	GTGGACGAGG	ATGTGGTTTC	AGAACCTGAC	TCTATCGACT	ATGTCAAACA	9240
AATTCGTGAA	TTTGCAGCGA	CAGAAAATGC	TGAAGTAGTC	GTTATTTCTG	CGCGTGCTGA	9300

9360	CCATTGGTTT	TTTCTTGAAG	TAAAAAAGAG	ATGATGAAGA	TCTGAATTGA	GGAAGAAATT
9420	GATTGGGAAC	CACTTGCTTG	TGCAGCTTAC	AGTTGACGCG	GGTGTAGATA	GACAGAATCA
9480	GTATGAAGGC	TTCAAACGTG	CGCTTGGACT	AAGAAGTTCG	GCTGGTGAAA	ттасттсаса
9540	GTGCAGTAAC	GGCTTTATTC	CTTTGAAAAA	TCCACTCAGA	GCTGGTATTA	TCCTCAAGCA
9600	AAGCTGGACG	GCCGTAAAAG	ATCTGAAAAG	TGAAATACGG	GAAGATCTAG	CATGTCATAT
9660	AATTCCGCTT	GATATCATGG	TCAAGATGGC	AATATATCGT	GAAGGAAAAG	CTTGCGTGAA
9720	AACCCTTTTG	AAAAAATTCC	TTAGGTTGGA	ATGGTGTCAA	AAATTAATAA	TAATGTCTAA
9780	CCAGGGGATA	CTTGGGAAAT	TACTTGTAGG	ATGACCAAAT	GGAAAAATAA	GCTTTTGAAA
9840	GCGAAGAAAC	тдатсааста	TTATGTTGAT	AATGTTGGTT	AACAAAACAC	AATATTTTGA
9900	TTTTTCCTAA	CCTAGCATCC	TTCAAGCTGA	GATAAGATAT	TTTTACACAC	AGAATGTCAC
9960	GGAAAAGCAG	GAATGAAAGT	CGACCTTTAT	GTTAAACCAA	AATTTATCTG	ATGGAGAAAA
10020	ATTTACGATG	TTTACTTATC	ATATTGACGA	TATGGTTTGG	ATTAACTTAC	TTCATGCTTT
10080	GGTGGTCATA	AGGCTCAGCA	TAAGAGCAAA	AAAATTCGTT	GGAAGTTGGG	ATCTTGACAT
10140	GTTAAGATTG	CTTTAACCGT	GAACTCAGGT	CAACATATAG	GTCTATTATT	ATGGTATCAA
10200	AAGTTTGACA	TGTTTTGAGT	TTGTTCATCA	GGTATGTCAG	ACCTAAAAAT	Gaattggaag
10260	GTAAACTACT	TGACGATTCT	TTGACAAAGT	TTACAGTCTG	TATCGGTATT	GGGATGATTA
10320	ATGGTGACCT	TAACGGATAA	TGCAGAGGTA	GAGAAAACAA	GAAAAATTTT	ATTTACAAGA
10380	TTAACAGATA	GCATCAAAAT	TTAAAAAATG	AATGATCAGA	ATTCTCAGAA	TATTAGATTT
10440	ATTGCAAGCA	GGCTCTTGCA	CATCTACTAA	GGTTTATCAA	ACTAATACTT	AGAAAAGACA
10500	GCAGAAGGAC	TTATGGAGAA	TGACGTCAAC	ATTGTGTTAT	AGAAGATAGG	GTTTAGAAAA
10560	TTGGTAGATG	CTATCCATTT	AGGAACTCGT	ATCTTGGGTG	TCTTATTTCT	TTGTTAGTGA
10620	CGGGTTGAAG	AATTATTTCA	CACAGGAAAA	TTGATGTCTT	GGTGGAGTTT	ATGCTCCTAT
10680	ATCGCAGCAA	AGTTTGTAAT	AAGGGATTTT	TCATCTAAGA	TTTGACTGAT	CCTTGCGTTT
10740	ATCTCAGTTG	TATTGTAAAA	TCAAAGATAG	CCCAATGCAT	TTTACCGTCT	GTCGATTGAT
10800	TATCGAAAAG	GGAAAATGGC	ATCAGTTAAA	GCGTTTATCC	TGATCAACAC	GTGAAGAATA
10860	GATATTTTTG	AGATATTTTA	GTCTTCGAGG	GGCGAATTTA	ACAAACTCAG	TTACTCAAGT
10920	GATGGTATCA	TGATGAAATT	AGTTTTTTGG	TGTCGAATTG	GTTAGAACCT	AAATATCCCA
10980	ACTATCTTTC	GACAGAACTC	AAGAAAATAA	CAATTATCGA	AGTAGAAACA	GGTCATTTGA
11040	CCTTTAGAAA	AGGACAGTCA	ATTATCABCG	AGAGAAAAGG	тапестиче	CAGCTAGTGA

			264			
AACAAATTTC	AAAAACTTTA	TCACCTATTT	ТСАЛАТСАТА	CCTAGAAGAA	ATTCTTTCAA	11100
GTTTTCACCA	AAAACAAAGT	CATGCAGACT	CTCGGAAGTT	TTTATCTTTG	TGCTATGATA	11160
AGACATGGAC	TGTCTTTGAT	TATATTGAAA	AAGATACTCC	AATATTCTTT	GATGATTATC	11220
AAAAATTGAT	GAATCAGTAT	GAAGTCTTTG	AAAGAGACTT	AGCGCAGTAC	TTTACAGAAG	11280
AATTACAGAA	TAGTAAAGCA	TTTTCTGATA	TGCAGTATTT	TTCTGATATT	GAACAAATCT	11340
АТААААААСА	AAGTCCAGTG	ACCTTTTTCT	CTAATCTTCA	AAAGGGTTTA	GGAAATCTCA	11400
AATTTGACAA	AATTTATCAA	TTCAATCAAT	ATCCTATGCA	GGAATTTTTC	AATCAGTTTT	11460
CTTTTCTAAA	AGAAGAAATT	GAACGATATA	AAAAAATGGA	TTACACCATT	ATTCTGCAGT	11520
CTAGCAATTC	AATGGGAAGT	AAAACATTGG	AGGATATGTT	AGAGGAATAT	CAGATTAAAT	11580
TGGATTCTAG	AGATAAGACA	AATATCTGTA	AAGAATCTGT	AAACTTAATA	GAGGGTAATC	11640
TCAGACATGG	TTTTCATTTT	GTAGATGAAA	AGATTTTATT	GATAACTGAA	CATGAGATTT	11700
TTCAAAAGAA	ATTAAAGCGT	CGTTTTCGAA	GACAACATGT	TTCAAATGCA	GAGAGATTAA	11760
AAGATTACAA	TGAACTTGAA	AAAGGGGACT	ATGTTGTCCA	TCATATCCAT	GGGATTGGTC	11820
AATATCTAGG	AATTGAAACC	ATTGAAATCA	AGGGAATTCA	TCGCGATTAT	GTCAGTGTCC	11880
AATACCAAAA	TGGTGATCAA	ATTTCTATCC	CCGTGGAACA	GATTCATCTA	CTGTCCAAAT	11940
ATATTTCAAG	TGATGGTAAA	GCTCCAAAAC	TCAATAAATT	AAATGACGGT	САТТТТАААА	12000
AGGCCAAGCA	AAAGGTTAAG	AACCAGGTAG	AGGATATAGC	TGATGATTTA	ATCAAACTCT	12060
ACTCTGAACG	TAGTCAGTTG	AAGGGTTTTG	CTTTCTCAGC	TGATGATGAT	GATCAAGATG	12120
CCTTTGATGA	TGCTTTCCCT	TATGTTGAAA	CGGATGATCA	ACTTCGTAGT	ATTGAGGAAA	12180
TCAAGAGGGA	TATGCAGGCT	TCTCAGCCAA	TGGATCGACT	TTTAGTTGGG	GATGTTGGTT	12240
TTGGAAAGAC	TGAAGTTGCT	ATGCGTGCAG	CCTTTAAAGC	AGTCAATGAT	CACAAACAGG	12300
TTGTCATTCT	AGTTCCGACG	ACGGTTTTAG	CGCAACAGCA	CTATACGAAT	TTTAAGGAAC	12360
GATTCCAAAA	TTTTGCAGTT	AATATTGATG	TGTTGAGTCG	CTTTAGAAGT	AAAAAAGAGC	12420
AGACTGCAAC	ACTTGAAAAA	TTGAAAAACG	GTCAAGTCGA	TATTTTGATT	GGAACACATC	12480.
GTGTTTTGTC	AAAAGATGTT	GTGTTTGCTG	ATTTGGGCTT	GATGATTATT	GATGAGGAAC	12540
AGCGATTTGG	TGTCAAGCAT	AAGGAAACTT	TGAAAGAACT	GAAGAAACAA	GTGGATGTCC	12600
TAACCTTGAC	CGCTACGCCA	ATCCCTCGTA	CCCTCCATAT	GTCTATGCTG	GGAATCAGAG	12660
ATTTATCTGT	TATTGAAACT	CCGCCGACTA	ATCGCTATCC	TGTTCAGACC	TATGTTTTGG	12720
AAAAGAATGA	TAGTGTCATT	CGTGATGCTG	TCTTGCGTGA	AATGGAGCGT	GGAGGTCAAG	12780
TTTATTATCT	TTACAACAAA	GTTGACACAA	TTGTTCAGAA	GGTTTCAGAA	TTACAGGAGT	12840

TGATTCCGGA	GGCTTCGATT	GGATATGTTC	ATGGTCGAAT	GAGTGAAGTC	CAGTTGGAAA	12900
ATACTCTATT	AGACTTTATT	GAGGGACAAT	ACGATATCTT	GGTGACGACT	ACTATTATTG	12960
AGACAGGGGT	GGACATTCCA	AATGCTAATA	CTTTATTTAT	TGAAAATGCG	GACCATATGG	13020
GCTTGTCAAC	CTTATATCAG	TTAAGAGGAA	GAGTCGGTCG	TAGTAATCGT	ATTGCTTATG	13080
CTTATCTCAT	GTATCGTCCA	GAAAAATCAA	TCAGTGAAGT	CTCTGAAAAG	AGATTAGAAG	13140
CGATTAAAGG	ATTTACAGAA	TTGGGCTCTG	GCTTTAAGAT	TGCAATGCGA	GATCTTTCGA	13200
TTCGTGGAGC	AGGAAATCTT	TTAGGAAAAT	CCCAGTCTGG	ТТТСАТТСАТ	TCTGTTGGTT	13260
TTGAATTGTA	TTCGCAGTTA	TTAGAGGAAG	CTATTGCTAA	ACGAAACGGT	AATGCTAACG	13320
CTAACACAAG	AACCAAAGGG	AATGCTGAGT	TGATTTTGCA	AATTGATGCC	TATCTTCCTG	13380
АТАСТТАТАТ	TTCTGATCAA	CGACATAAGA	TTGAAATTTA	CAAGAAAATT	CGTCAAATTG	13440
ACAACCGTGT	CAATTATGAA	GAGTTACAAG	AGGAGTTGAT	AGACCGTTTT	GGAGAATACC	13500
CAGATGTAGT	AGCCTATCTG	TTAGAGATTG	GTTTGGTCAA	ATCATACTTG	GACAAGGTCT	13560
TTGTTCAACG	TGTGGAAAGA	AAAGATAATA	AAATTACAAT	TCAATTTGAA	AAAGTCACTC	13620
AACGACTGTT	TTTAGCTCAA	GATTATTTTA	AAGCTTTATC	CGTAACGAAC	TTAAAAGCAG	13680
GCATCGCTGA	GAATAAGGGA	TTAATGGAGC	TTGTATTTGA	TGTCCAAAAT	AAGAAAGATT	13740
ATGAAATTTT	AGAAGGTTTG	CTGATTTTTG	GAGAAAGTTT	ATTAGAGATA	AAAGAGTCTA	13800
AGGAAGAAAA	TTCCATTTGA	TATTTTTCTT	СТАТААААТА	GATAAAAATG	GTACAATAAT	13860
AAATTGAGGT	AATAAGGATG	AGATTAGATA	AATATTTAAA	AGTATCGCGA	ATTATCAAGC	13920
GTCGTACAGT	CGCAAAGGAA	GTAGCAGATA	AAGGTAGAAT	CAAGGTTAAT	GGAATCTTGG	. 13980
CCAAAAGTTC	AACGGACTTG	AAAGTTAATG	ACCAAGTTGA	AATTCGCTTT	GGCAATAAGT	14040
TGCTGCTTGT	AAAAGTACTA	GAGATGAAAG	ATAGTACAAA	AAAAGAAGAT	GCAGCAGGAA	14100
TGTATGAAAT	TATCAGTGAA	ACACGGGTAG	AAGAAAATGT	СТАААААТАТ	TGTACAATTG	14160
AATAATTCTT	TTATTCAAAA	TGAATACCAA	CGTCGTCGCT	ACCTGATGAA	AGAACGACAA	14220
AAACGGAATC	GTTTTATGGG	AGGGGTATTG	ATTTTGATTA	TGCTATTATT	TATCTTGCCA	14280
ACTTTTAATT	TAGCGCAGAG	TTATCAGCAA	TTACTCCAAA	GACGTCAGCA	ATTAGCAGAC	14340
TTGCAAACTC	AGTATCAAAC	TTTGAGTGAT	GAAAAGGATA	AGGAGACAGC	ATTTGCTACC	14400
aagttgaaag	atgaagatta	TGCTGCTAAA	TATACACGAG	CGAAGTACTA	TTATTCTAAG	14460
TCGAGGGAAA	AAGTTTATAC	GATTCCTGAC	TTGCTTCAAA	GGTGATAAAA	TGGAAAATTT	14520
ATTAGACGTA	ATAGAGCAAT	TTTTGAGTTT	GTCAGATGAA	AAGCTGGAAG	AATTGGCTGA	14580

			266			
ТАААААТСАА	TTATTGCGTT	TACAAGAAGA	AAAGGAAAGG	AAGAATGCGT	AAATTCTTAA	14640
TTATTTTGTT	GCTACCAAGT	TTTTTGACCA	TTTCAAAAGT	CGTTAGCACA	GAAAAAGAAG	14700
TCGTCTATAC	TTCGAAAGAA	ATTTATTACC	TTTCACAATC	TGACTTTGGT	ATTTATTTTA	14760
GAGAAAAATT	AAGTTCTCCC	ATGGTTTATG	GAGAGGTTCC	TGTTTATGCG	AATGAAGATT	14820
TAGTAGTGGA	ATCTGGGAAA	TTGACTCCCA	AAACAAGTTT	TCAAATAACC	GAGTGGCGCT	14880
TAAATAAACA	AGGAATTCCA	GTATTTAAGC	TATCAAATCA	TCAATTTATA	GCTGCGGACA	14940
AACGATTTTT	ATATGATCAA	TCAGAGGTAA	CTCCAACAAT	aaaaaagta	TGGTTAGAAT	15000
CTGACTTTAA	ACTGTACAAT	AGTCCTTATG	ATTTAAAAGA	AGTGAAATCA	TCCTTATCAG	15060
CTTATTCGCA	AGTATCAATC	GACAAGACCA	TGTTTGTAGA	. AGGAAGAGAA	TTTCTACATA	15120
TTGATCAGGC	TGGATGGGTA	GCTAAAGAAT	CAACTTCTGA	AGAAGATAAT	CGGATGAGTA	15180
AAGTTCAAGA	AATGTTATCT	GAAAAATATC	AGAAAGATTC	TTTCTCTATT	TATGTTAAGC	15240
AACTGACTAC	TGGAAAAGAA	GCTGGTATCA	ATCAAGATGA	AAAGATGTAT	GCAGCCAGCG	15300
TTTTGAAACT	CTCTTATCTC	TATTATACGC	AAGAAAAAAT	AAATGAGGGT	CTTTATCAGT	15360
TAGATACGAC	TGTAAAATAC	GTATCTGCAG	TCAATGATTT	TCCAGGTTCT	TATAAACCAG	15420
AGGGAAGTGG	TAGTCTTCCT	AAAAAAGAAG	ATAATAAAGA	ATATTCTTTA	AAGGATTTAA	15480
TTACGAAAGT	ATCAAAAGAA	TCTGATAATG	TAGCTCATAA	TCTATTGGGA	ТАТТАСАТТТ	15540
CAAACCAATC	TGATGCCACA	TTCAAATCCA	AGATGTCTGC	CATTATGGGA	GATGATTGGG	15600
ATCCAAAAGA	AAAATTGATT	TCTTCTAAGA	TGGCCGGGAA	GTTTATGGAA	GCTATTTATA	15660
ATCAAAATGG	ATTTGTGCTA	GAGTCTTTGA	CTAAAACAGA	TTTTGATAGT	CAGCGAATTG	15720
CCAAAGGTGT	TTCTGTTAAA	GTAGCTCATA	AAATTGGAGA	TGCGGATGAA	TTTAAGCATG	15780
ATACGGGTGT	TGTCTATGCA	GATTCTCCAT	TTATTCTTTC	TATTTTCACT	AAGAATTCTG	15840
ATTATGATAC	GATTTCTAAG	ATAGCCAAGG	ATGTTTATGA	GGTTCTAAAA	TGAGGGAACC	15900
AGATTTTTTA	AATCATTTTC	TCAAGAAGGG	ATATTTCAAA	AAGCATGCTA	AGGCGGTTCT	15960
AGCTCTTTCT	GGTGGATTAG	ATTCCATGTT	TCTATTTAAG	GTATTGTCTA.	CTTATCAAAA	16020
AGAGTTAGAG	attgaattga	TTCTAGCTCA	TGTGAATCAT	AAGCAGAGAA	TTGAATCAGA	16080
TTGGGAAGAA	aaggaattaa	GGAAGTTGGC	TGCTGAAGCA	GAGCTTCCTA	TTTATATCAG	16140
CAATTTTTCA	GGAGAATTTT	CAGAAGCGCG	TGCACGAAAT	TTTCGTTATG	ATTTTTTCA	16200
AGAGGTCATG	AAAAAGACAG	GTGCGACAGC	TTTAGTCACT	GCCCACCATG	CTGATGATCA	16260
GGTGGAAACG	ATTTTTATGC	GCTTGATTCG	AGGAACTCGC	TTGCGCTATC	TATCAGGAAT	16320
TAAGGAGAAG	CAAGTAGTCG	GAGAGATAGA	AATCATTCGT	CCCTTCTTGC	ATTTTCAGAA	16380

AAAAGACTTT	CCATCAATTT	TTCACTTTGA	AGATACATCA	AATCAGGAGA	ATCATTATTT	16440
TCGAAATCGT	ATTCGAAATT	CTTACTTACC	AGAATTGGAA	AAAGAAAATC	CTCGATTTAG	16500
GGATGCAATC	TTAGGCATTG	GCAATGAAAT	TTTAGATTAT	GATTTGGCAA	TAGCTGAATT	16560
ATCTAACAAT	ATTAATGTGG	AAGATTTACA	GCAGTTATTT	TCTTACTCTG	AGTCTACACA	16620
AAGAGTTTTA	CTTCAAACTT	ATCTGAATCG	TTTTCCAGAT	TTGAATCTTA	CAAAAGCTCA	16680
GTTTGCTGAA	GTTCAGCAGA	TTTTAAAATC	TAAAAGCCAG	TATCGTCATC	CGATTAAAAA	16740
TGGCTATGAA	TTGATAAAAG	AGTACCAACA	GTTTCAGATT	TGTAAAATCA	GTCCGCAGgC	16800
TGATGAAAAG	GAAGATGAAC	TTGTGTTACA	CTATCAAAAT	CAGGTAGCTT	ATCAAGGATA	16860
TTTATTTTCT	TTTGGACTTC	CATTAGAAGG	TGAATTAATT	CAACAAATAC	CTGTTTCACG	16920
TGAAACATCC	ATACACATTC	GTCATCGAAA	AACAGGAGAT	GTTTTGATTA	AAAATGGGCA	16980
TAGAAAAAA	CTCAGACGTT	TATTTATTGA	TTTGAAAATC	CCTATGGAAA	AGAGAAACTC	17040
TCCTCTTATT	ATTGAGCAAT	TTGGTGAAAT	TGTCTCAATT	TTGGGAATTG	CGACCAATAA	17100
TTTGAGTAAA	AAAACGAAAA	ATGATATAAT	GAACACTGTA	CTTTATATAG	AAAAAATAGA	17160
TAGGTAAAAA	ATGTTAGAAA	ACGATATTAA	AAAAGTCCTC	GTTTCACACG	ATGAAATTAC	17220
AGAAGCAGCT	AAAAAACTAG	GTGCTCAATT	AACTAAAGAC	TATGCAGGAA	AAAATCCAAT	17280
CTTAGTTGGG	ATTTTAAAAG	GATCTATTCC	TTTTATGGCT	GAATTGGTCA	AACATATTGA	17340
TACACATATT	GAAATGGACT	TCATGATGGT	TTCTAGCTAC	CATGGTGGAA	CAGCAAGTAG	17400
TGGTGTTATC	AATATTAAAC	AAGATGTGAC	TCAAGATATC	AAAGGAAGAC	ATGTTCTATT	17460
TGTAGAAGAT	ATCATTGATA	CAGGTCAAAC	TTTGAAGAAT	TTGCGAGATA	TGTTTAAAGA	17520
AAGAGAAGCA	GCTTCTGTTA	AAATTGCAAC	CTTGTTGGAT	AAACCAGAAG	GACGTGTTGT	17580
AGAAATTGAG	GCAGACTATA	CTTGCTTTAC	TATCCCAAAT	GAGTTTGTAG	TAGGTTATGG	17640
TTTAGACTAC	AAAGAAAATT	ATCGTAATCT	TCCTTATATT	GGAGTATTGA	AAGAGGAAGT	17700
GTATTCAAAT	TAGAAAGAAT	AATCTTTAAT	GAAAAAACAA	AATAATGGTT	TAATTAAAA	17760
TCCTTTTCTA	TGGTTATTAT	TTATCTTTTT	CCTTGTGACA	GGATTCCAGT	ATTTCTATTC	17820
TGGGAATAAC	TCAGGAGGAA	GTCAGCAAAT	CAACTATACT	GAGTTGGTAC	AAGAAATTAC	17880
CGATGGTAAT	GTAAAAGAAT	TAACTTACCA	ACCAAATGGT	AGTGTTATCG	AAGTTTCTGG	17940
TGTCTATAAA	AATCCTAAAA	CAAGTAAAGA	AGAAACAGGT	ATTCAGTTTT	TCACGCCATC	18000
TGTTACTAAG	GTAGAGAAAT	TTACCAGCAC	TATTCTTCCT	GCAGATACTA	CCGTATCAGA	18060
ATTGCAAAAA	CTTGCTACTG	ACCATAAAGC	AGAAGTAACT	GTTAAGCATG	AAAGTTCAAG	18120

			268			
TGGTATATGG	ATTAATCTAC	TCGTATCCAT	TGTGCCATTT	GGAATTCTAT	TCTTCTTCCT	18180
ATTCTCTATG	ATGGGAAATA	TGGGAGGAGG	CAATGGCCGT	AATCCAATGA	GTTTTGGACG	18240
TAGTAAGGCT	AAAGCAGCAA	ATAAAGAAGA	ТАТТАААСТА	AGATTTTCAG	ATGTTGCTGG	18300
AGCTGAGGAA	GAAAAACAAG	AACTAGTTGA	AGTTGTTGAG	TTCTTAAÂAG	ATCCAAAACG	18360
АТТСАСАААА	CTTGGAGCCC	GTATTCCAGC	AGGTGTTCTT	TTGGAGGGAC	CTCCGGGGAC	18420
AGGTAAAACT	TTGCTTGCTA	AGGCAGTCGC	TGGAGAAGCA	GGTGTTCCAT	TCTTTAGTAT	18480
CTCAGGTTCT	GACTTTGTAG	AAATGTTTGT	CGGAGTTGGA	GCTAGTCGTG	TTCGCTCTCT	18540
TTTTGAGGAT	GCCAAAAAAG	CAGCACCAGC	TATCATCTTT	ATCGATGAAA	TTGATGCTGT	18600
TGGACGTCAA	CGTGGAGTCG	GTCTCGGCGG	AGGTAATGAC	GAACGTGAAC	AAACCTTGAA	18660
CCAACTTTTG	ATTGAGATGG	ATGGTTTTGA	GGGAAATGAA	GGGATTATCG	TCATCGCTGC	18720
GACAAACCGT	TCAGATGTAC	TTGACCCTGC	CCTTTTGCGT	CCAGGACGTT	TTGATAGAAA	18780
AGTATTGGTT	GGTCGTCCTG	ATGTTAAAGG	TCGTGAAGCA	ATCTTGAAAG	TTCACGCTAA	18840
GAATAAGCCT	TTAGCAGAAG	ATGTTGATTT	GAAATTAGTG	GCTCAACAAA	CTCCAGGCTT	18900
TGTTGGTGCT	GATTTAGAGA	ATGTCTTGAA	TGAAGCAGCT	TTAGTTGCTG	CTCGTCGCAA	18960
TAAATCGATA	ATTGATGCTT	CAGATATTGA	TGAAGCAGAA	GATAGAGTTA	TTGCTGGACC	19020
TTCTAAGAAA	GATAAGACAG	TTTCACAAAA	AGAACGAGAA	TTGGTTGCTT	ACCATGAGGC	19080
AGGACATACC	ATTGTTGGTC	TAGTCTTGTC	GAATGCTCGC	GTTGTCCATA	AGGTTACAAT	19140
TGTACCACGC	GGCCGTGCAG	GCGGATACAT	GATTGCACTT	CCTAAAGAGG	ATCAAATGCT	19200
TCTATCTAAA	GAAGATATGA	AAGAGCAATT	GGCTGGCTTA	ATGGGTGGAC	GTGTAGCTGA	19260
AGAAATTATC	TTTAATGTCC	AAACCACAGG	AGCTTCAAAC	GACTTTGAAC	AAGCGACACA	19320
AATGGCACGT	GCAATGGTTA	CAGAGTACGG	TATGAGTGAA	AAACTTGGCC	CAGTACAATA	19380
TGAAGGAAAC	CATGCTATGC	TTGGTGCACA	GAGTCCTCAA	AAATCAATTT	CAGAACAAAC	19440
AGCTTATGAA	attgatgaag	AGGTTCGTTC	TAAATTATTA	GAGGCACGAA	ATAAAGCTGC	19500
TGAAATTATT	CAGTCAAATC	GTGAAACTCA	CAAGTTAATT	GCAGAAGCAT	TATTGAAATA	19560
CGAAACATTG	GATAGTACAC	AAATTAAAGC	TCTTTACGAA	ACAGGAAAGA	TGCCTGAAGC	19620
AGTAGAAGAG	GAATCTCATG	CACTATCCTA	TGATGAAGTA	AAGTCAAAAA	TGAATGACGA	19680
AAAATAACCC	TGAGAGAGGC	TGGAGCCTCT	CTTTTTTGTG	CAGTTTAGGA	GCTAAAGGGA	19740
ACAGAATGGA	GAAAATGGAA	CAAATGTGTT	TTCTAATCTG	TTAGACTGTA	TCTAGAAAGG	19800
GGAAAATTAT	GATTAAAGAA	TTGTATGAAG	AAGTCCAAGG	GACTGTGTAT	AAGTGTAGAA	19860
ATGAATATTA	ССТТСАТТТА	TGGGAATTGT	CGGATTGGGA	GCAAGAAGGC	ATGCTCTGCT	19920

TACATGAATT	GATTAGTAGA	GAAGAAGGAC	TGGTAGACGA	TATTCCACGT	TTAAGGAAAT	19980
ATTTCAAGAC	CAAGTTTCGA	AATCGAATTT	TAGACTATAT	CCGTAAACAG	GAAAGTCAGA	20040
AGCGTAGATA	CGATAAAGAA	CCCTATGAAG	AAGTGGGTGA	GATCAGTCAT	CGTATAAGTG	20100
AGGGGGGTCT	CTGGCTAGAT	GATTATTATC	TCTTTCATGA	AACACTAAGA	GATTATAGAA	20160
ACAAACAAAG	TAAAGAGAAA	CAAGAAGAAC	TAGAACGCGT	CTTAAGCAAT	GAACGATTTC	20220
GAGGGCGTCA	AAGAGTATTA	AGAGACTTAC	GCATTGTGTT	TAAGGAGTTT	ACTATCCGTA	20280
CCCACTAGTA	AGTCATGCAA	AAAAAATGAA	AAAAATTAGA	AAAAGTAGTT	GACAAAGTTT	20340
GAAAAGGCTG	TATAATAGTA	AGAGTTGAAA	ATAACAACTC	AGGTCCGTTG	GTCAAGGGGT	20400
TAAGACACCG	CCTTTTCACG	GCGGTAACAC	GGGTTCGAAT	CCCGTACGGA	CTATGGTATG	20460
TTGCGTCAGG	ACCACTTGAT	GAAAAAAAGT	TTAAAAAAAC	TTAAAAATCT	TCAAAAAAGT	20520
GTTGACAAGC	GAAAGCAGTT	GTGATATACT	AATATAGTTG	TCGCTTGAGA	GAAGCAAGTG	20580
ACAAAGACCT	TTGAAAACTG	AACAAGACGA	ACCAATGTGC	AGGGCGCTAC	AACGTAAGTT	20640
GTAGTACTGA	ACAATGAAAA	AAACAATAAA	TCTGTCAGTG	ACAGAAATGA	GTAAGAACTC	20700
AAACTTTTŢA	ATGAGAGTTT	GATCCTGGCT	CAGGACGAAC	GCTGGCGGCG	TGCCTAATAC	20760
ATGCAAGTAG	AACGCTGAAG	GAGGAGCTTG	CTTCTCTGGA	TGAGTTGCGA	ACGGGTGAGT	20820
AACGCGTAGG	TAACCTGCCT	GGTAGCGGGG	GATAACTATT	GGAAACGATA	GCTAATACCG	20880
CATAAGAGTA	GATGTTGCAT	GACATTTGCT	TAAAAGGTGC	ACTTGCATCA	CTACCAGATG	20940
GACCTGCGTT	GTATTAGCTA	GTTGGTGGGG	TAACGGCTCA	CCAAGGCGAC	GATACATAGC	21000
CGACCTGAGA	GGGTGATCGG	CCACACTGGG	ACTGAGACAC	GGCCCAGACT	CCTACGGGAG	21060
GCAGCAGTAG	GGAATCTTCG	GCAATGGACG	GAAGTCTGAC	CGAGCAACGC	CGCGTGAGTG	21120
AAGAAGGTTT	TCGGATCGTA	AAGCTCTGTT	GTAAGAGAAG	AACGAGTGTG	AGAGTGGAAA	21180
GTTCACACTG	TGACGGTATC	TTACCAGAAA	GGGACGGCTA	ACTACGTGCC	AGCAGCCGCG	21240
GTAATACGTA	GGTCCCGAGC	GTTGTCCGGA	TTTATTGGGC	GTAAAGCGAG	CGCAGGCGGT	21300
TAGATAAGTC	TGAAGTTAAA	GGCTGTGGCT	TAACCATA			21338
_						

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 6273 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TGTTTTTAAA GAGCCGTGTC TGGATAGACT TTCGGACGCA ACGCTCTATT AGATAATGAA 60 CTGCCTATAC ACAAGATTTC TAACCTTAGT CGACATGAGC TGAAACCTCT TATTTGTTAA 120 GTAGTTCACA AAATATTATA CACCTATTTT ATGAATAGTC AACTGTCTTT ACAGTAAAAT 180 TTTAGAAAAT CATGAAAATT TTCTCTTTCT TTCCATTTTA AGTGACATTC AGTCATTCTC 240 ACATCAAAAA AGCCCAGACG AAATTGTCTG AGCATTCTTT TATCTAGTCG TTTAAGGAAG 300 TTGAGTTCAG TATGTTTAAA GTCTCTGTCC CATCATTTCT TCAACAAACC TTGTTCTTGG 360 AGAAACTCCT TGGCTACTTG CTTTGCTGAC TTGCCTTCAA CACCGACTTG GTAGTTGAGC 420 TGGCTCATCT GGCTTTCTGT AATCTTACCA GCCAATGTAT TAAGAACTCT TTCCAACTCT 480 GGGTGTTTCT TGAGAAGAGC TTCTTTCATG AGTGGAGCCC CTTGATAAGG TGGGAAGAGT 540 TGCTTGTCAT CTTCCAAGAC CTGTAAATCA TAACGCTCCA ATTCCGCATC AGTCGAATAG 600 GCATCCGTGA TTTGAATATC CCCTGACTGA ATAGCCTGAT AGCGAAGGGC TGGCTCAATG 660 GTCGCTACAT TGAGATTGAG ACCATACATT GATTGCAAGC CCTTATTTCC ATCTTCACGG 720 TCGTTAAACT CGAGTGTAAA ACCTGCCTTC AACTGCCCTT CCACTTTTTT CAAGTCTGAA 780 ATGGTCTTCA AGCCATATTC TTGAGCAATC TTTTTCGGAA CAGCTACAGC ATAGGTGTTT 840 TGATAAGACA TGGGTTTGAG ATAGGCTAGA TGATCCTGCT TAGCAATGCC ATCACGCGCC 900 ACCTGATAAA CCTGTTCTGG TTCATGACTC ACCTTGGGTG ATGGTTGAAG CAAACTTTCA 960 GTCACCGTAC CAGTAAATTC AGGATAGATG TCAATATCGC CTTTTTTCAG AGCTTCATAA 1020 AGGAAGCTTG TCTTCCCAAA ATTCGGTTTA ACAGTCGCAG TCATGCTGGT ATTTTCTTCA 1080 ATCAGCAACT TATACATATT GGCCAAAATT TCTGGTTCTG GACCTATTTT CCCAGCAATA 1140 ACCAAGTTTT CCTTCTCTT TTGAACCAAA AGAGCTGGAC TATAAGACAG ACCCAGTAAT 1200 AAAGCCACCA AGGCAAAACC TGAGAAAATC GTCCGTAATT TTGCTTTTTC CATCACTTTT 1260 AGTAGGAAGT TAAAGGCAAT GGCTAGCACT GCAGAAGAAA GTGCCCCAAT CAAAATCAAA 1320 CTGGCATTAT TACGGTCAAT TCCCAAAAGA ATAAAGGAAC CTAGTCCCCC TGCACCAATC 1380 AAGGCCGCCA AGGTTGCCGT ACCGATAATC AAAACAGCTG CCGTCCGAAT CCCAGACATG 1440 ATAACAGGCA TGGCGAGTGG AATTTCAAAT TTCTTGAGAC GTTCCCATCT GGTCATCCCA 1500 AAGGCAATCC CAGCCTCTTG CAGGTTCGGA TCAATTCCCT TCAGCCCAGT GATAGTATTT 1560 TGCAAAATAG GGAAAATCGC ATAAATCACT AGAGCTGTCA AAGCCGGCAA GGTCCCAATT 1620 CCCATCAAAG GGATAAAGAG CCCCAACAAG GCCAGAGACG GGATGGTCTG GAAAATACCT 1680 GCAATCTGCA AGACCCAGTC GGCCAGCTTC TCATGATAGC GAAGAAAAAC AGCCAAGGGA 1740

ATCGCAAGC	A AAATAGCTAG	TAACAAGGTC	AAAAGCGACA	ACTGCAAATG	TTGAGATAGA	1800
GCTGTCAAC	AATCACTAAA	ACGATCCTGA	AAAGTTGCAA	TTAAATTAGT	CATGAACACT	1860
ACCTCCAAA	C AAGTCTGCTA	CAAAGTCTGT	TGCAGGCGCT	TTTAAAATTG	TCTCGGGATT	1920
CGCTACCTG	G CGAATTTCTC	CATCCTGCAA	GACAGCAATA	CGGTCCGCCA	ACTTCAAGGC	1980
TCATCCGT1	* TCATGGGTTA	CAAAAATCGT	TGTCATCCCA	AACTCTTTAT	GCAATTCTTT	2040
rgtcagaaco	TGCAACTGTT	TTCTCGAAAT	AGCATCCAAG	GCCGAAAAGG	GTTCATCCAT	2100
GAGGAAAAT	TTGGGCTGAC	CAATCATAGC	TCGGACAATA	CCGACCCGTT	GCTGTTCTCC	2160
ACCAGATAA	TCACTAGGTA	AGCGATGCCC	ATACTCGGCT	ACTGGTAAAC	CAACCTTAGC	2220
CAAAAGCTC	TCTGTTTTCT	TCGTAATTTC	TTCCTTGCTC	CACCCCTTCA	TTTCAGGAAT	2280
GAGAGCAAT?	TTTTCCGCAA	CTGTTAGATT	TGGAAAAAGA	GCAATAGCCT	GTAAAACATA	2340
ACCAGTAGA.	AGACGAAGTT	CACGCTCATC	ATAGTCTTTG	ATGCGCTTCC	CATCCATATA	2400
\ATATTTCC/	TCAGTTGGTT	CCAAAAGACG	GTTAATCATC	TTGAGCATGG	TCGTCTTACC	2460
rgacccagai	GGCCCTACTA	AAACCATAAA	TTCCCCATCC	TCAATCTGTA	AGTTGACATC	2520
rctcaagaci	TCCTTTTCTG	TGTAGCGCAG	TGCTACATTT	TTGTATTCAA	TCATTCTTTG	2580
CCTCAATT	AAAACTTCCC	TCGATTGGTC	AAGTCTTCTA	CCTTAGGCAT	AACTTCCTTA	2640
PTATCCCAAT	GCTCCACAAT	TTTCCCGTTC	TCTAAACGGA	AGATATCGTA	CTGGGCATAA	2700
CAACGCCA1	CAATCTGAGT	CTGACCATAG	CTAACCACAT	AGTTTCCTTG	TCCTAAGAGT	2760
'GGAAAACA?	AGTCAAAAGT	GACACTATAT	TCAGCCACAT	AGTTTTTATA	AGCAGCACTT	2820
CTTGTCCA	TATCATGATT	ATGCTGAATC	AAATCGTCTG	CCACATAATC	ACTCCACTGC	2880
CTAGCTCCC	CATTTTGGAA	AATTTCTGTC	AAGAAACGGC	GAACCAGCTT	TTTATTTTCT	2940
CTTTCTTAT	CCAAATCCTT	GATTTCAAAA	TCTCCAAAAA	TTTGATCTAG	TTGGTCATTT	3000
CAGGTGTTC	GATAGTAGTC	AATGACATCC	CAATGCTCAA	CAATACAACC	ATTCTCATCC	3060
CACGGAAAC	TATCCGTCGT	CACCCATTGA	GCTTCTCCAC	CATTCAGATA	TTGATGAACA	3120
GAACAAAGA	CCAGATTGCC	ATCCTCAATG	GTGCGGACAA	TCTTAATCTG	ACGCTCTGGA	3180
GACGCTCA	AGAAATCTGC	AAAGAAGGCT	GCAAATCCTT	CTTTCCCGTC	AGGAACACCT	3240
TCGAATGTT	GGATATAGGT	ATCCCCTACA	GACTGGGCTT	GAGCCTCAGC	AACTCGTCCG	3300
CTTGAATGC	CATGGATGTA	TAGGTTGTGA	GCATTTTTCA	CTTGTTGTGA	CATATTCTAA	3360
CCTCATTTC	CCTTCTCTTT	CAGATTCGCC	AAAATTCTTT	CTTGAAAACC	TTCAAATTGG	3420
GAATTTCTI	CCTCTGAAAA	TCCTTTGTAA	AAGATAGTAT	CCAATTTCTG	ACTGACACGA	3480

			272			
TGCCCCACTT	CTTTCTGGGA	CTTGCCTAAC	TCCGTTAAAA	СТАААТАСТТ	CTTACGCTTG	3540
TCTTTTCCAC	ACGGACTAAC	AATTACAAGC	TTTTGTTCCT	CTAGCTTTTT	TATCATAGTC	3600
GTCAGCGTAT	TATTCGCAAG	TCCAGTCGCA	AGCGCGATAT	CTGTCGCAGT	TGCGCAGCCA	3660
GTTTCACTAT	TCCATAAAAC	CGCTAAAATC	TTGCCCTGTT	CACCCCTATA	AAGAGCCTCA	3720
GGATCTTGAC	TCAGTAACTT	TTGAAAAATC	CGCCCATTCA	ACAAACGAAT	ATGATGGGCT	3780
AGCAAATGAC	CATCTTTCAT	AACACCTCCA	ATTTATTTCG	ATATCGAAAT	GAATAAAACA	3840
ATTGTAACAC	TCATCGTTCT	AACTGTCAAC	TATTTCGATT	TAGAAATAAT	TTTTGATAAT	3900
TATCCACACC	ACCATACTCC	GGCTCAACTA	ACTTTTAACG	AGAGTTTCTA	AACTCCTTCG	3960
TCCTCCAGTC	TACAAAAGCC	TTCCATTCGT	ACTATCCTAT	ATTTTATGAG	GGGACACATT	4020
TTTCCTATCA	GACCATTTAT	TTTAAAGATA	GAAGTAAATC	ATAATTGCTT	CCATCTGTTC	4080
TTTTATAGTA	TATTGAAGTT	AGACTAGAGC	ACTGTATCTT	CTAAAACATT	GATAGAAAGC	4140
GATTTGAATT	TCCCAATCAA	TTTGTTCGTA	TTTATAGCAT	TTCGAAACTG	GAATAGGACA	4200
CCATGACTGC	TAAAAGATTT	CTATAAATTC	ATTTAATTTC	CTCAATCAAT	TTGTTCATAT	4260
CTTATTTCAT	TCCGCTATAA	TTTCACCTTA	CCCTATCTTT	TTCGTAGCAC	CCTTCAAACA	4320
GCCTATCCCC	TACCGTTTGA	CGATTCCTCA	CTTCGCTCCA	CTTCCATTAC	AGAAGTTTCT	4380
TCACTACTAT	GGGCTCGGCT	GACTTCTCAT	GATTCCTTGT	TACTÀCTATT	TGAACGCTCA	4440
CGAGATAGAT	CTTACAAAAA	ATGCTTTGAT	CCACAATGGA	ATCAAAGCAT	TTTAAAGAGT	4500
TCCTCATACA	TAAGCGCAGA	AGTCGCAGTT	CCTCTGTACT	TGGCTTCTTC	TCTTTTGACA	4560
AAGCGAGCCA	AGTTGAGCAA	CTCAGGTGCT	GGATGTTTGG	GATTTAGGAG	CAATTCACGA	4620
TTGACCAGGC	CTGAGAGACG	AACTGCCTGC	AATTGCTCAT	TTGTAGTAGG	CAGTTTTTTA	4680
GTAGTCTCTA	GGAGAGCAGC	AACTAAATCT	TCACTCAAAT	CATGTCGAGC	ATGATTGTAA	4740
AGATCTTTTA	TAAGGCTTTC	TAGGTTTGGT	TCTACCATCC	CTACCACCTC	CCTTATGGTT	4800
TAATAATGTT	TAATCAAATC	AACCGTTGAA	CGATCCAATT	TCTTCACCAA	GGCTTGTAAG	4860
AAAGCTTGCG	CTTCTAGGAA	GTCATCCATT	GCATAGAGGG	TTTGGTGAGA	ATGGATATAA	4920
CGAGCGCAGA	CACCGATAGT	TGTTGATGGG	ACACCACCAT	TTTTCAGATG	AGCTGCACCT	4980
GCATCTGTTC	CGCCTTTACC	ACAGTAGTAT	TGGTACTTGA	TACCAGCTTC	TTCAGCCGTT	5040
GTCAAAAGGA	AATCCTTCAT	CCCTGGGAGA	AGCAAGTGAC	CTGGATCATA	GAAACGAATC	5100
AAGGTTCCAT	CTCCAATCTT	GCCTTGACCA	CCGTAGACAT	CACCTGCTGG	TGAGCAATCA	5160
ACTGCGAGGA	AGACTTCTGG	GTCAAACTTG	GTTGTAGAGG	TATGAGCGCC	ACGCAGACCA	5220
ACTTCTTCTT	GGACGTTAGA	ACCCAGATAG	AGTTCATTGC	CGAGTTTTTG	ACCCGATAAA	5280

WO 98/18931

273

GCTTCAGCT	A GCTCGCTTAC	CATGAGGACA	CCGTAGCGGT	TATCCCAAGC	TTTTGAGATG	5340
ATATTTTTT	T CATTGGCTGT	CAAAATTGCA	GAACTATCTG	GTACAATGGT	ATCACCAGGA	5400
CGGATGCCA	A AACTTTCTGC	CTCAGCCTTG	TCCGCAAAAC	CACCATCAAA	AACGATATCG	5460
GCAATGGCT	G GCATGGTTGG	TCCCCCCTTT	CCACGAGTCA	AATGCGGAGG	AACAGAACCT	5520
GAAATCACA	G GAATTTCATG	ACCATCACGA	GTCAAGAGTT	TGAAACGTTG	GCTGCTAACC	5580
ACCATGGGG	TCCAGCCACC	GATTTCTACG	ACACGGAAGG	TACCATCTGG	CTTGATTTCG	5640
CTGACCATA	A AACCAACTTC	GTCCATATGA	GAAGCGACCA	AGACGCGCGG	TGCATCCACA	5700
GCTTCTGAA	T GTTTGATACC	AAAAATACCA	CCCAAGCCAT	CTGTCACCAC	TTCATCCACA	5760
TGCGGTGTC	A ACTTTTCACG	AAGATAAGCA	CGGACAGGCG	CTTCATGACC	TGAGACTGCA	5820
GCAAGTTCT	G TTACTTCTTT	AATTTTTGAA	AATAATGTTG	TCATTTCAGT	TCCTTCTTTC	5880
TTTCATCCA	T TTTACCACTT	TTTATAGGAG	AAGGATAGTG	GGAAGGTGGA	TTTCTAAGTT	5940
AGTATCTTA	G TCCTGCTCTA	TCTTAGAAAA	GGATAGTATT	CTCTTGCATG	TAGTGCAAAA	6000
тстастала	C ATTCCAAAAT	TAACTCGAAT	ATTTATTTCC	ааасаааааа	ACAATACACC	6060
ATCAAAGTT	G TTTGGATTTT	TCATGAAATT	TACAGAAAAT	AGTTGACTTC	CCTTTCTTCT	6120
ТТСТТТААА	DOTTDATATA TA	TTGAGTTTGG	AATAGTACGC	TGTAGCTGCT	AAAACATTTC	6180
TAGAAATTA	A TTTGACTTTC	CTAATAGAGT	TGTTCATATC	TTATTTCAAT	TTACTATAGT	6240
ACAAAACTA	G AAAAGGAAAA	AATCATGACC	AGG			6273
/21 THEOD	WARTON DOD O					

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 28171 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

F	CAACCTTTT	TCAAAAACTC	ACCTTGGTAC	GGAGATGTTT	TGCTTTCTGC	TATTATTTTC	60
¢	GTTATATTC	ATATCAATTT	TGCTTTAACT	CCTCTTGCTT	TTTTCATTTA	TGCTAGTGGA	120
C	GTCTTATTT	TAGCTCTATT	GTATCGCATG	ACTAAAAATC	TCTACTATCC	AATACTAGTT	180
C	ATATTCTCA	TTAATATCAC	TGCCTTCTGG	GATGTGTGGT	TGCTCCTATT	TTCAGGAAGT	240
7	AGCTTACTA	AAATAATGTC	GGAACTTTCC	GGCATTTTCT	TTTTTCACAA	ATAGTCAACG	300
1	TTTTCTTT	CGATATTGTA	GTGGTGTGTA	TCCAGTTATT	TTTTTGAATT	GATTTTGAAA	360

			274			
ATAAGGTTGA	CTTGAGAAAG	GCAGATAGTG	AAGATAGTTA	AGAAGAATAG	GATGTTCTTT	420
TTTCCTTTTT	GGAAAACTTC	TAAAATATGG	TATAATGAAA	AGATAAAGAA	GTTGGGGGTA	480
GAAGATGAAC	ATTCAACAAT	TACGCTATGT	TGTGGCTATT	GCCAATAGTG	GTACTTTTCG	540
TGAAGCTGCT	GAAAAGATGT	ATGTTAGTCA	GCCGAGTCTG	TCTATTTCTG	TTCGTGATTT	. 600
GGAAAAAGAG	TTGGGCTTTA	AGATTTTCCG	TCGGACCAGC	TCAGGGACTT	TCTTGACCCG	660
TCGTGGGATG	GAATTTTATG	AAAAATCGCA	AGAATTGGTT	AAAGGATTTG	ATATTTTTCA	720
AAATCAGTAT	GCCAATCCTG	AAGAAGAAAA	AGATGAATTT	TCTGTTGCTA	GCCAGCACTA	780
TGACTTCTTG	CCACCAACTA	TTACGGCCTT	TTCAGAGCGC	TATCCTGACT	ATAAGAACTT	840
CCGTATTTT	GAATCAACTA	CTGTTCAAAT	ATTAGATGAA	GTGGCGCAAG	GGCATAGTGA	900
GATTGGGATT	ATCTACCTCA	ACAATCAAAA	TAAAAAGGGG	ATTATGCAAC	GGGTTGAAAA	960
ATTAGGTCTG	GAGGTCATCG	AATTGATTCC	TTTCCATACC	CATATTTATC	TCCGTGAGGG	1020
TCATCCTTTA	GCCCAGAAAG	AGGAATTAGT	CATGGAGGAT	TTAGCGGATT	TACCAACGGT	1080
TCGTTTCACT	CAAGAGAAAG	ACGAGTACCT	TTATTATTCA	GAGAACTTTG	TCGATACCAG	1140
CGCTAGCTCA	CAGATGTTTA	ATGTGACAGA	CCGTGCCACC	TTGAATGGTA	TTTTGGAGCG	1200
GACGGACGCC	TATGCGACAG	GTTCTGGATT	TTTAGATAGT	GACAGTGTTA	ATGGCATTAC	1260
AGTTATTCGT	CTCAAGGATA	ACCTAGATAA	CCGCATGGTC	TATGTTAAAC	GTGAAGAAGT	1320
GGAGCTTAGT	CAAGCTGGGA	CTCTCTTCGT	AGAAGTCATG	CAAGAATATT	TTGATCAAAA	1380
GAGGAAATCA	TGAAAAAAAG	AGCAATAGTG	GCAGTCATTG	TACTGCTTTT	GATTGGGCTG	1440
GATCAGTTGG	TCAAATCCTA	TATCGTCCAG	CAGATTCCAC	TGGGTGAAGT	GCGCTCCTGG	1500
ATCCCCAATT	TCGTTAGCTT	GACCTACCTG	CAAAATCGAG	GTGCAGCCTT	TTCTATCTTA	1560
CAAGATCAGC	AGCTGTTATT	CGCTGTCATT	ACTCTGGTTG	TCGTGATAGG	TGCCATTTGG	1620
TATTTACATA	AACACATGGA	GGACTCATTC	TGGATGGTCT	TGGGTTTGAC	TCTAATAATC	1680
GCGGGTGGTC	TTGGAAACTT	TATTGACAGG	GTCAGTCAGG	GCTTTGTTGT	GGATATGTTC	1740
CACCTTGACT	TTATCAACTT	TGCAATTTTC	AATGTGGCAG	ATAGCTATCT	GACGGTTGGA	1800
GTGATTATTT	TATTGATTGC	AATGCTAAAA	GAGGAAATAA	ATGGAAATTA	AAATTGAAAC	1860
TGGTGGTCTG	CGTTTGGATA	AGGCTTTGTC	AGATTTGTCA	GAATTATCAC	GTAGTCTCGC	1920
GAATGAACAA	ATTAAATCAG	GCCAGGTCTT	GGTCAATGGT	CAAGTCAAGA	AAGCTAAATA	1980
CACAGTCCAA	GAGGGTGATG	TCGTCACTTA	CCATGTGCCA	GAACCAGAGG	TATTAGAGTA	2040
TGTGGCTGAG	GATCTTCCGC	TAGAAATAGT	CTACCAAGAT	GAGGATGTGĞ	CTGTCGTTAA	2100

GCCCTCAT	G TATCATATTA	AGGACTTGTC	GGGTATCAAT	GGGGTTCTGC	GTCCAGGGAT	2220
GTTCACCG	T ATTGATAAGG	ATACGTCAGG	TCTTCTCATG	ATTGCTAAAA	ACGATGATGC	2280
CATCTAGC	A CTTGCCCAAG	AACTCAAGGA	TAAAAAGTCT	CTCCGCAAAT	ATTGGGCGAT	2340
GTTCATGG	A AATCTACCTA	ATGATCGTGG	TGTAATTGAA	GCGCCGATTG	GCCGGAGTGA	2400
AAAGACCG	T AAGAAACAGG	CTGTAACTGC	TAAAGGGAAG	CCTGCAGTGA	CGCGTTTTCA	2460
CGTCTTGGA	A CGCTTTGGCG	ATTATAGCTT	AGTAGAGTTG	CAACTGGAGA	CAGGGCGCAC	2520
САТСАААТ	C CGTGTCCACA	TGGCTTATAT	CGGCCATCCA	GTCGCTGGTG	ATGAGGTCTA	2580
rggtcctcg	C AAGACTTTGA	AAGGACATGG	ACAATTTCTT	CATGCCAAGA	CTTTAGGTTT	2640
PACTCATCC	G AGAACAGGTA	AGACCTTGGA	ATTTAAAGCA	GATATCCCAG	AGATTTTTAA	2700
GAAACCTT	G GAGAGATTGA	GAAAGTAAGA	ATGAAAAAGA	AATTAACTAG	TTTAGCACTT	2760
STAGGCGCT	T TTTTAGGTTT	GTCATGGTAT	GGGAATGTTC	AGGCTCAAGA	AAGTTCAGGA	2820
ATAAAATC	C ACTTTATCAA	TGTTCAAGAA	GGTGGCAGTG	ATGCGATTAT	TCTTGAAAGC	2880
AATGGACAT	T TTGCCATGGT	GGATACAGGA	GAAGATTATG	ATTTCCCAGA	TGGAAGTGAT	2940
rctcgctat	C CATGGAGAGA	AGGAATTGAA	ACGTCTTATA	AGCATGTTCT	AACAGACCGT	3000
STCTTTCGT	C GTTTGAAGGA	ATTGGGTGTC	CAAAAACTTG	ATTTTATTTT	GGTGACCCAT	3060
ACCCACAGT	G ATCATATTGG	AAATGTTGAT	GAATTACTGT	CTACCTATCC	AGTTGACCGA	3120
STCTATCTT	'A AGAAATATAG	TGATAGTCGT	ATTACTAATT	CTGAACGTCT	ATGGGATAAT	3180
CTGTATGGC	T ATGATAAGGT	TTTACAGACT	GCTGCAGAAA	AAGGTGTTTC	AGTTATTCAA	3240
AATATCACA	C AAGGGGATGC	TCATTTTCAG	TTTGGGGACA	TGGATATTCA	GCTCTATAAT	3300
Taaaadtat	G AAACTGATTC	ATCGGGTGAA	ттааадаааа	TTTGGGATGA	CAATTCCAAT	3360
rccttgatt	'A GCGTGGTGAA	AGTCAATGGC	AAGAAAATTT	ACCTTGGGGG	CGATTTAGAT	3420
aatgttcat	G GAGCAGAAGA	CAAGTATGGT	CCTCTCATTG	GAAAAGTTGA	TTTGATGAAG	3480
ГАЭТААТТ	C ACCATGATAC	CAACAAATCA	AATACCAAGG	ATTTCATTAA	AAATTTGAGT	3540
CCGAGTTTC	A TTGTTCAAAC	TTCGGATAGT	CTACCTTGGA	AAAATGGTGT	TGATAGTGAG	3600
ratgttaat	T GGCTCAAAGA	ACGAGGAATT	GAGAGAATCA	ACGCAGCCAG	CAAAGACTAT	3660
GATGCAACA	G TTTTTGATAT	TCGAAAAGAC	GGTTTTGTCA	ATATTTCAAC	ATCCTACAAG	3720
CCGATTCCA	A GTTTTCAAGC	* TGGTTGGCAT	AAGAGTGCAT	ATGGGAACTG	GTGGTATCAA	3780
CCCCTGAT	T CTACAGGAGA	GTATGCTGTC	GGTTGGAATG	AAATCGAAGG	TGAATGGTAT	3840
PACTTTAAC	C AAACGGGTAT	CTTGTTACAG	AATCAATGGA	AAAAATGGAA	CAATCATTGG	3900

			276			
TTCTATTTGA	CAGACTCTGG	TGCTTCTGCT	AAAAATTGGA	AGAAAATCGC	TGGAATCTGG	3960
TATTATTTA	ACAAAGAAAA	CCAGATGGAA	ATTGGTTGGA	TTCAAGATAA	AGAGCAGTGG	4020
TATTATTTGG	ATGTTGATGG	TTCTATGAAG	ACAGGATGGC	TTCAATATAT	GGGGCAATGG	4080
TATTACTTTG	CTCCATCAGG	GGAAATGAAA	ATGGGCTGGG	TAAAAGATAA	AGAAACCTGG	4140
TACTATATGG	ATTCTACTGG	TGTCATGAAG	ACAGGTGAGA	TAGAAGTTGC	TGGTCAACAT	4200
TATTATCTGG	AAGATTCAGG	AGCTATGAAG	CAAGGCTGGC	ATAAAAAGGC	AAATGATTGG	4260
ТАТТТСТАСА	AGACAGACGG	TTCACGAGCT	GTGGGTTGGA	TCAAGGACAA	GGATAAATGG	4320
TACTTCTTGA	AAGAAAATGG	TCAATTACTT	GTGAACGGTA	AGACACCAGA	AGGTTATACT	4380
GTGGATTCAA	GTGGTGCCTG	GTTAGTGGAT	GTTTCGATCG	AGAAATCTGC	TACAATTAAA	4440
ACTACAAGTC	ATTCAGAAAT	AAAAGAATCC	AAAGAAGTAG	TGAAAAAGGA	TCTTGAAAAT	4500
AAAGAAACGA	GTCAACATGA	AAGTGTTACA	AATTTTTCAA	CTAGTCAAGA	TTTGACATCC	4560
TCAACTTCAC	AAAGCTCTGA	AACGAGTGTA	AACAAATCGG	AATCAGAACA	GTAGTAGAAA	4620
AGAAGGTTTT	AGGGCCTTCT	TTTTCCTATC	AACTCTTTTC	TATTTCCTGT	TATTCATGTT	. 4680
ATAATGGATA	AATATGAATA	ATCGGAGTGA	GACTATGAAA	TACAAACGGA	TTGTCTTTAA	4740
GGTGGGTACT	TCTTCTCTGA	CAAATGAGGA	TGGAAGTTTA	TCACGTAGTA	AGGTAAAGGA	4800
TATTACCCAG	CAGTTGGCTA	TGCTGCACGA	GGCTGGTCAT	GAGTTGATTT	TGGTGTCTTC	4860
AGGTGCCATT	GCGGCTGGTT	TTGGAGCCTT	AGGATTTAAA	AAGCGTCCGA	CTAAGATTGC	4920
TGATAAACAG	GCTTCAGCAG	CGGTAGGGCA	GGGGCTTTTG	TTGGAAGAAT	ATACAACCAA	4980
TCTTCTCTTG	CGTCAAATCG	TTTCTGCACA	AATCTTGCTG	ACCCAAGATG	ACTTTGTGGA	5040
TAAGCGTCGT	TATAAAAATG	CCCATCAGGC	TTTGTCGCTT	TTGCTCAACC	GTGGGGCAAT	5100
TCCTATCATC.	AATGAGAATG	ATAGTGTCGT	TATTGATGAG	CTCAAGGTTG	GGGACAATGA	5160
CACTCTAAGT	GCTCAAGTAG	CGGCGATGGT	CCAAGCAGAC	CTTTTAGTTT	TCTTGACAGA	5220
TGTGGACGGT	CTCTATACTG	GAAATCCTAA	TTCAGATCCA	AGAGCCAAAC	GCTTGGAGAG	5280
AATCGAGACC	ATCAATCGTG	AGATTATTGA	TATGGCTGGT	GGAGCTGGTT	CGTCAAACGG	. 5340
AACTGGGGGT	ATGTTAACCA	AAATCAAGGC	TGCAACTATC	GCGACGGAAT	CAGGAGTTCC	5400
PGTTTATATC	TGCTCATCCT	TGAAATCAGA	TTCCATGATT	GAGGCGGCAG	AGGAGACCGA	5460
GGATGGTTCT	TACTTTGTTG	CTCAAGAGAA	GGGGCTTCGT	ACCCAGAAAC	AATGGCTTGC	5520
CTTCTATGCT	CAGAGTCAAG	GTTCTATTTG	GGTTGATAAA	GGGGCTGCGG	AAGCTCTCTC	5580
PCAATATGGA	AAGAGTCTTC	TCTTATCTGG	TATCGTTGAA	GCAGAAGGAG	TCTTTTCTTA	5640
CGGTGATATC	GTGACAGTAT	TTGACAAGGA	AAGTGGAAAA	TCACTTGGAA	AAGGACGCGT	5700

GCAATTTGGA	GCATCTGCTT	TGGAGGATAT	GTTGCGTTCT	CAAAAAGCCA	AGGGTGTCTT	5760
GATTTACCGT	GACGACTGGA	TTTCCATTAC	TCCTGAAATC	CAACTACTTT	TTACAGAATT	5820
TTAGAGGTAA	ACTATGGTGA	GTAGACAAGA	ACAATTTGAA	CAGGTACAGG	CTGTTAAAAA	5880
ATCGATTAAC	ACAGCTAGTG	AAGAAGTGAA	AAACCAAGCC	TTGCTAGCCA	TGGCTGATCA	5940
CTTAGTGGCT	GCTACTGAGG	AAATTTTAGC	GGCTAATGCC	CTCGATATGG	CAGCGGCTAA	6000
GGGGAAAATC	TCAGATGTGA	TGTTGGATCG	TCTTTATTTG	GATGCAGATC	GTATAGAAGC	6060
GATGGCAAGA	GGAATTCGTG	AAGTGGTTGC	CTTACCAGAT	CCAATCGGTG	AAGTTTTAGA	6120
AACAAGTCAG	CTTGAAAATG	GTTTGGTTAT	САСААААААА	CGTGTAGCTA	TGGGTGTCAT	6180
CGGTATTATC	TATGAAAGCC	GTCCAAATGT	GACGTCTGAT	GCGGCTGCTT	TGACTCTTAA	6240
GAGTGGAAAT	GCGGTTGTTC	TTCGTAGTGG	TAAGGATGCC	TATCAAACAA	CCCATGCCAT	6300
TGTCACAGCC	TTGAAGAAGG	GCTTGGAGAC	GACTACTATT	CATCCAAATG	TGATTCAACT	6360
GGTGGAGGAT	ACTAGCCGTG	AAAGTAGTTA	TGCTATGATG	AAGGCCAAGG	GCTATCTAGA	6420
CCTTCTCATT	CCTCGTGGAG	GAGCTGGCTT	GATCAATGCA	GTGGTTGAGA	ATGCGATTGT	6480
ACCTGTTATC	GAGACAGGGA	CTGGGATTGT	CCATGTCTAT	GTGGATAAGG	ATGCAGACGA	6540
AGACAAGGCG	CTGTCTATCA	TCAACAATGC	TAAAACCAGT	CGTCCTTCTG	TTTGTAATGC	6600
CATGGAGGTT	CTGCTGGTTC	ATGAAAACAA	GGCAGCAAGC	TTCCTTCCTC	GCTTGGAGCA	6660
AGTGTTGGTT	GCAGAGCGTA	AGGAAGCTGG	ACTGGAACCA	ATTCAATTCC	GCCTAGATAG	6720
CAAAGCAAGC	CAGTTTGTTT	CAGGTCAAGC	AGCTGAGACC	CAAGACTTTG	ACACCGAGTT	6780
TTTAGACTAT	GTCCTTGCTG	TTAAGGTTGT	GAGCAGTTTA	GAAGAAGCGG	TTGCGCACAT	6840
TGAATCCCAC	AGCACCCATC	ATTCGGATGC	TATTGTGACG	GAAAATGCTG	AAGCTGCAGC	6900
ATACTTTACA	GATCAAGTGG	ACTCTGCAGC	GGTGTATGTT	AATGCCTCAA	CTCGTTTCAC	6960
AGATGGAGGA	CAATTTGGTC	TTGGTTGTGA	AATGGGGATT	TCTACTCAGA	AATTGCACGC	7020
GCGTGGTCCC	ATGGGCTTGA	AAGAGTTGAC	CAGCTACAAG	TATGTGGTTG	CCGGTGATGG	7080
GCAGATAAGG	GAGTAAGAGA	TGAAGATTGG	ATTTATCGGT	TTGGGGAATA	TGGGTGCTAG	7140
CTTGGCAAAA	TCTGTCTTGC	AGACTAGGAC	GTCAGATGAG	ATTCTCCTTG	CCAATCGTAG	7200
TCAAGCTAAG	GTAGATGCTT	TCATTGCAGA	CTTTGGTGGT	CAGGCTTCCA	GCAATGAAGA	7260
AATGTTTGCA	GAAGCAGATG	TGATTTTTCT	aggagttaag	CCTGCTCAGT	TTTCTGAACT	7320
GCTTTCTCAA	TACCAGACCA	TCCTTGAAAA	AAGAGAAAGT	CTTCTTTTGA	TTTCGATGGC	7380
ACCTCC ATTC	ስርርምሞስር! እ	A A CTR CCA A C	memma meces	3 CMC 3 3 C 3 C C	CARMANMOC	2440

			278			•
TATGATGCCT	AATACCCCTG	CTTCTATCGG	GCAAGGAGTG	ATTAGTTATG	CCTTGTCTCC	7500
TAATTGCAGG	GCTGAGGACA	GTGAGCTCTT	TTATCAGCTT	TTAGCCAAGG	CTGGTCTCTT	7560
GGTTGAACTA	GGAGAAAGTT	TAATCGATGC	AGCGACAGGT	CTTGCAGGTT	GTGGACCAGC	7620
CTTTGTCTAT	CTTTTTATCG	AGGCCTTGGC	AGATGCAGGT	GTTCAGACAG	GATTACCACG	7680
AGAAATAGCA	TTGAAAATGG	CAGCACAAAC	TGTGGTAGGA	GCTGGGCAAT	TGGTCCTTGA	7740
AAGTCAGCAA	CATCCTGGAG	TATTGAAAGA	CCAAGTCTGT	AGCCCAGGCG	GTTCGACTAT	7800
CGCTGGTGTA	GCAAGCCTAG	AAGCGCATGC	TTTCCGAGGA	ACAGTCATGG	ATGCAGTTCA	7860
TCAAGCCTAC	AAACGAACAC	AAGAACTAGG	TAAATAAGAG	GTAGTTTTGA	CTGCCTCTTT	7920
TATGGTGGCT	GAAATGAGAA	GACACAAAAA	GATTGTCACA	AACCCCTATT	TTTTTGATAG	7980
AATAGAAGTA	GTAAAAAAGA	AATGAGTTAG	ACATGTCAAA	AGGATTTTTA	GTCTCTCTTG	8040
AGGGACCAGA	GGGAGCAGGC	AAGACCAGTG	TTTTAGAGGC	TCTGCTACCA	ATTTTAGAGG	8100
AAAAAGGAGT	AGAGGTGTTG	ACGACCCGTG	AACCTGGCGG	AGTCTTGATT	GGGGAGAAGA	8160
TTCGGGAAGT	GATTTTGGAT	CCAAGTCATA	CTCAGATGGA	ТССТАЛАЛСА	GAGCTACTTC	8220
TCTATATTGC	CAGTCGCAGA	CAGCATTTGG	TGGAAAAAGT	TCTTCCAGCC	CTTGAAGCTG	8280
GCAAGTTGGT	CATCATGGAT	CGTTTTATCG	ATAGTTCTGT	TGCCTATCAG	GGATTTGGTC	8340
GTGGCTTAGA	TATTGAAGCC	ATTGACTGGC	TCAATCAGTT	TGCGACAGAT	GGCCTCAAAC	8400
CCGATTTGAC	ACTCTATTTT	GACATCGAGG	TGGAAGAAGG	GCTGGCTCGT	ATTGCTGCTA	8460
ATAGTGACCG	CGAGGTTAAT	CGTTTGGATT	TGGAAGGGTT	GGACTTGCAT	AAAAAAGTTC	8520
GTCAAGGCTA	CCTTTCTCTT	CTGGATAAAG	AGGGAAATCG	CATTGTCAAG	ATTGATGCTA	8580
GTCTCCCTTT	GGAGCAAGTT	GTGGAAACTA	CCAAGGCTGT	CTTGTTTGAC	GGAATGGGCT	8640
TGGCCAAATG	AAACAAGATC	AACTAAAGGC	TTGGCAACCA	GCTCAGTTTG	ACCGTTTTGT	8700
CCGTATCTTA	GAACAAGACC	AGCTCAATCA	CGCCTATCTC	TTTTCAGGTT	TCTTTGAAAG	8760
CTTGGAAATG	GCGCAATTTT	TAGCTAAGAG	CCTCTTTTGT	ACGGATAAAG	TTGGCGTCTT	8820
ACCATGTGAG	AAATGCCGAA.	GTTGCAAGCT	GATTGAACAG	GGAGAATTTC	CCGATGTCAC	8880
CTTGATTAAA	CCAGTTAATC	AGGTCATTAA	GACGGAACGC	ATTCGAGAAT	TGGTGGGTCA	8940
GTTTTCTCAA	GCAGGGATTG	AAAGCCAGCA	ACAGGTCTTT	ATCATCGAGC	AAGCGGATAA	9000
AATGCATCCC	AACGCAGCCA	ATTCTCTGCT	CAAGGTCATC	GAAGAACCCC	AGAGTGAAGT	9060
TTATATTTC	TTCTTGACTA	GCGATGAGGA	AAAGATGTTA	CCGACAATCC	GAAGTCGGAC	9120
TCAGATCTTC	CACTTTAAAA	AGCAAGAAGA	AAAACTTATC	TTACTCTTAG	AACAAATGGG	9180
ACTTGTTAAG	AAAAAAGCGA	CTCTTTTAGC	TAAGTTTAGT	CAATCGCGAG	CTGAAGCAGA	9240

AAAGTTGGCT	AATCAGGCAA	GTTTTTGGAC	CTTGGTCGAT	GAAAGTGAAC	GCCTGCTGAC	9300
TTGGTTAGTA	GCTAAGAAAA	AAGAAAGTTA	TCTACAGGTT	GCCAAATTAG	CCAACTTGGC	9360
AGATGATAAG	GAAAAACAGG	ATCAGGTTTT	ACGGATTCTT	GAAGTTCTCT	GTGGGCAGGA	9420
CCTCTTGCAG	GTAAGAGTAA	GAGTGATTCT	ACAAGATTTA	CTAGAAGCTA	GAAAAATGTG	9480
GCAAGCTAAT	GTCAGCTTTC	AAAATGCCAT	GGAATATCTG	GTCTTGAAAG	AAATATAAAC	9540
TCAAAAATGA	ATGATAAAGA	AAGGAAAGGG	CTGTTTTATG	GACAAAAAAG	AATTATTTGA	9600
CGCGCTGGAT	GATTTTTCCC	AACAATTATT	GGTAACCTTA	GCCGATGTGG	AAGCCATCAA	9660
GAAAAATCTC	AAGAGCCTGG	TAGAGGAAAA	TACAGCTCTT	CGCTTGGAAA	ATAGTAAGTT	9720
GCGAGAACGC	TTGGGTGAGG	TGGAAGCAGA	TGCTCCTGTC	AAGGCCAAGC	ATGTTCGTGA	9780
AAGTGTCCGT	CGCATTTACC	GTGATGGATT	TCACGTATGT	AATGATTTT	ATGGACAACG	9840
TCGAGAGCAG	GACGAGGAAT	GTATGTTTTG	TGACGAGTTG	CTATACAGGG	AGTAGGCATG	9900
CAGATTCAAA	AAAGTTTTAA	GGGGCAGTCT	ÇCCTATGGCA	AGCTGTATCT	AGTGGCAACG	9960
CCGATTGGCA	ATCTAGATGA	TATGACTTTT	CGTGCTATCC	AGACCTTGAA	AGAAGTGGAC	10020
TGGATTGCTG	CTGAGGATAC	GCGCAATACA	GGGCTTTTGC	TCAAGCATTT	TGACATTTCC	10080
ACCAAGCAGA	TCAGTTTTCA	TGAGCACAAT	GCCAAGGAAA	AAATTCCTGA	TTTGATTGGT	10140
TTCTTGAAAG	CAGGGCAAAG	TATTGCTCAG	GTCTCTGATG	CCGGTTTGCC	TAGCATTTCA	10200
GACCCTGGTC	ATGATTTAGT	TAAGGCAGCT	ATTGAGGAAG	AAATTGCAGT	TGTGACAGTT	10260
CCAGGTGCCT	CTGCAGGAAT	TTCTGCCTTG	ATTGCCAGTG	GTTTAGCGCC	ACAGCCACAT	10320
ATCTTTTACG	GTTTTTTACC	GAGAAAATCA	GGTCAGCAGA	AGCAATTTTT	TGGCTTGAAA	10380
AAAGATTATC	CTGAAACACA	GATTTTTAT	GAATCACCTC	ATCGTGTAGC	AGACACGTTG	10440
GAAAATATGT	TAGAAGTCTA	CGGTGACCGC	TCCGTTGTCT	TGGTCAGGGA	ATTGACCAAA	10500
ATCTATGAAG	AATACCAACG	AGGTACTATC	TCTGAGTTAT	TAGAAAGCAT	TGCTGAAACG	10560
CCACTCAAGG	GCGAATGTCT	TCTCATTGTT	GAGGGTGCCA	GTCAGGGTGT	GGAGGAAAAG	10620
GACGAGGAAG	ACTTGTTCGT	AGAAATTCAA	ACCCGCATCC	AGCAAGGTGT	GAAGAAAAAC	10680
CAAGCTATCA	AGGAAGTCGC	TAAGATTTAC	CAGTGGAATA	AAAGTCAGCT	CTACGCTGCC	10740
TACCACGACT	GGGAAGAAAA	ACAATAAAGG	GAGACAGGAT	GTAATAATTC	TGTCTGTTTC	10800
TGTTTAACTT	AATTAGTGAT	GATAATATAA	AGATGTATCA	CTTGGTATAG	AAGCTTTGGT	10860
ATTAAGTTTT	TTATTAAGCC	CATACGGAAT	ACCGATGGTT	GGAGCAGCAG	TTATAGCGTT	10920
CTTAGAAGGT	ATAAATAGAA	AAATAAGGTC	ATTTTAAATC	AAAGGATTGA	TAAATCAGAA	10980

280 AGAAGGTGAT TTTTTGCGAA CATACGAAAA TAAAGAAGAA CTAAAAGCTG AGATAGAGAA 11040 AACATTTGAG AAATATATTT TAGAATTTGA TAATATTCCA GAAAATTTAA AAGATAAGAG 11100 AGCTGATGAA GTTGACAGAA CTCCAGCAGA AAACCTTGCT TATCAGGTTG GTTGGACCAA 11160 CTTGGTTCTT AAATGGGAAG AAGATGAAAG AAAGGGGCTT CAAGTAAAAA CACCATCGGA 11220 TAAATTTAAA TGGAATCAAC TTGGTGAATT ATATCAGTGG TTCACAGATA CCTACGCTCA 11280 TTTATCTCTG CAAGAGTTGA AAGCAAAATT AAATGAAAAT ATTAATTCTA TCTCTGCAAT 11340 GATTGATTCG TTGAGTGAGG AAGAATTATT TGAACCGCAT ATGAGAAAGT GGGCTGATGA 11400 AGCGACTAAA ACAGCGACTT GGGAAGTGTA TAAGTTTATT.CATGTAAATA CGGTTGCACC 11460 TTTTGGAACT TTCAGAACTA AAATCAGAAA ATGGAAGAAG ATAGTATTAT AAATTATATT 11520 TTTAACTTTA AAAAATTTCA TAAAAATGGT TACCAAAGGC GATAGAAGAA AAACTATCGT 11580 CTTTTCTTT GCAAATTTTT AAGAAGGGAG GTGATCTTGC ATGGACTTTG AATATTTTTA 11640 TAACAGAGAA GCGGAAAGAT TTAACTTCTT AAAAGTACCG GAGATATTAG TTGATAGAGA 11700 AGAATTTCGG GGCTTATCAG CAGAAGCAAT TATCCTTTAT TCCATACTTC TTAAACAGAC 11760 AGGAATGTCA TTTAAGAATA ACTGGATAGA CAAGGAAGGC AGAGTATTTA TCTATTTTAC 11820 TGTCGAAGAA ATTATGAAAA GAAGAAATAT CTCAAAGCCA ACTGCCATAA AAACATTAGA 11880 TGAGCTTGAT GTAAAAAAGG AATAGGACTG ATCGAAAGAG TAAGGCTTGG ACTTGGTAAG 11940 CCGAACATCA TTTATGTTAA AGACTTTATG AGTATATTTC AGGTAAAAGA AAATGACTTA 12000 CAGAAGTCAA AAAACTTAAC TTCAGAAGTA AAAGATTTTA ACCTCAGAAG TAAAGAAAAT 12060 GAACTTCAAG AGGTTAAGAA CCTTGACTCT AACTATATAG AGAATAATAA GAGTAAGTAT 12120 AGTAAGAGAG AATATAGTTT TGGTGAAAAC GGACTTGGAA CATTTCAAAA TGTGTTTTTA 12180 GCTGCTGAAG ATATATCGGA TTTACAAATC ATAATGAACT CACAGCTTGA GAATTACATT 12240 AGACTTCCTG CAAAACTAGA ATCCTAGTTC ATGATTGATA ATGCCAGCAA TCAAATTCAT 12300 TCGTAATCCG AAGCGTTTAC GATGATTTCG ATAGATTGTT GAAAACATTT TAAACGTTTT 12360 TACTTTGGCA AAGATGTTCT CAATCTTGCT TCTCTCTTG GATAGCGCAT GGTTACAGGC 12420 TTTATCTTCA GCTGTTAGCG GCTTGAGTTT GCTGGATTTA CGTGGAGTTT GTACTTGAGG 12480 ATATATCTTC ATGAGCCCTT GATAACCACT GTCAGACAAG ATTTTACCAG CTTGTCCGAT 12540 ATTTCTGCGA CTCATTTTGA ACAACTTCAT ATCACGACAA TAGTTCACAG CGATATCCAA 12600 AGAAACAATT CTCCCTTGAC TTGTGACAAT CGCTTGAGCC TTCATAGCGT GAAATTTCTT 12660 TTTACCAGAA TGATTCGCTA ATTCTTTTTT TAGGGCGATT GATTTTACT TCCGTCGCAT 12720 CAATCATTAC CGTGTCCTCA GAACTGAGAG GAGTTCTTGA AATCGTAACA CCACTTTGAA 12780

CAAGAGTTAC	TTCAACCCAT	TGGCTCCGAC	GGATTAAGTT	GCTTTCGTGA	ATACCAAAAT	12840
CAGCCGCAAT	TTGTTCATAA	GTTCGATATT	CTCGCACATA	TTGAAGAGTG	GCCATAAGAA	12900
GGTCTTCTAG	GCTTAATTTA	GGTTTTCGTC	CACCTTTTGC	GTGTTTAAGT	TGATAAGCTG	12960
TTTTTAATAC	AGCTAATATC	TCTTCAAAAG	TCGTGCGCTG	AACACCAACA	AGACGCTTAA	13020
ATCGTGCATC	AGTTAGTTGT	TTACTTGCTT	CATCATTCAT	AGAACTACTA	TACCATATTT	13080
TGTTTCGCAG	GAAGTCTATT	GGAAAGTAAG	AAATATTGAA	GCTGAGGCTA	TTAGAAGAAA	13140
TTGTGAGCGT	GGTGCTATTT	TTTCAGGTAA	AATAAAATAT	CACGAAGATT	CACAGTTTAA	13200
AGGAGATCAC	TATGTTGAAT	GTTATGCTGT	TTTAGATAAT	ACGGTTATAG	CAAGAGATAG	13260
AATAACAGTC	CCTATCGATC	CGTTATGTGG	AAAAGATTTT	ATAGAGTAGC	ATATAATTGA	13320
TTCTTAACTG	GAATACTCAC	TATCTCTTTA	CATCAAGAAA	ATGACTAAAC	AGGGAAGTTT	13380
GCCTTCTTCC	CTTTTTTGT	TATACTAGTA	GAAGAAAAA	TTAGAAAGAT	TTGTGGGTGT	13440
CAAACAGCCC	AGTGGGGTGT	TTTAATATGG	ACTTAGGTCC	CACCCAAAGA	GGTATTAGTG	13500
TCGTGTCTCA	ATCTTATATC	AATGTTATCG	GTGCTGGTTT	GGCAGGTTCT	GAAGCAGCTT	13560
ACCAAATCGC	AGAGCGTGGT	ATTCCAGTTA	AACTATATGA	AATGCGTGGT	GTCAAGTCTA	13620
CACCCCAGCA	TAAAACAGAC	AATTTTGCTG	AGTTGGTTTG	TTCCAATTCT	TTGCGTGGGG	13680
ATGCTTTGAC	AAATGCAGTT	GGTCTTCTCA	AGGAAGAAAT	GCGTCGCTTG	GGTTCTGTTA	13740
TCTTGGAATC	TGCTGAGGCT	ACACGTGTTC	CTGCAGGTGG	TGCCCTTGCA	GTGGACCGTG	13800
ATGGTTTCTC	TCAAATGGTG	ACCGAAAAAG	TTGCCAACCA	CCCCTTGATT	GAAGTGGTTC	13860
GTGATGAAAT	TACAGAATTG	CCGACAGATG	TTATTACGGT	TATCGCTACT	GGTCCTTTGA	13920
CAAGTGATGC	CTTGGCTGAA	AAGATTCATG	CTCTTAATGA	CGGTGCTGGT	TTTTATTTCT	13980
ACGATGCGGC	AGCGCCTATT	ATCGATGTCA	ACACTATCGA	TATGAGCAAG	GTCTACCTCA	14040
AATCACGTTA	TGATAAGGGA	GAAGCGGCCT	ACCTCAATGC	CCCTATGACC	AAGCAAGAAT	14100
TTATGGATTT	CCATGAAGCT	TTGGTCAATG	CAGAAGAAGC	ACCGCTTAGT	TCTTTTGAAA	14160
AAGAAAAGTA	CTTTGAAGGA	TGTATGCCTA	TCGAAGTCAT	GGCCAAACGT	GGCATTAAAA	14220
CTATGCTTTA	TGGCCCTATG	AAGCCAGTCG	GTCTTGAGTA	CCCAGACGAC	TATACAGGAC	14280
CTCGTGATGG	agaatttaaa	ACACCTTATG	CGGTTGTGCA	ACTTCGTCAG	GATAATGCAG	14340
CTGGTAGCCT	CTACAATATT	GTTGGTTTCC	AGACCCACCT	CAAATGGGGA	GAACAAAAGC	14400
GTGTCTTCCA	AATGATTCCG	GGTCTTGAAA	ATGCGGAGTŢ	TGTCCGTTAT	GGTGTGATGC	14460
ATCGCAATTC	TTACATGGAT	TCACCAAATC	TTCTTGAGCA	GACTTACCGT	TCTAAGAAAC	14520

282 AACCAAATCT CTTCTTTGCT GGTCAAATGA CGGGTGTGGA AGGCTATGTT GAGTCGGCGG 14580 CTTCAGGCTT AGTTGCGGGA ATTAACGCAG CTCGTCTCTT CAAGGAAGAA AGCGAGGCTA 14640 TTTTCCCCGA GACGACAGCG ATTGGAAGCT TAGCTCATTA CATTACCCAT GCCGACAGCA 14700 AACATTTCCA ACCAATGAAT GTCAATTTTG GGATCATCAA GGAGTTGGAA GGCGAGCGTA 14760 TCCGTGATAA GAAGGCTCGT TATGAAAAAA TTGCAGAGCG TGCCCTTGCC GACTTAGAGG 14820 AATTTTTGAC TGTCTAATTT TTTTGAAAGA ATTGCTCATG ATACTATAAA AATCTTAGAA 14880 ATTGTGATAA AATAGGTAGG ATGAAAGAAG GAGAGTGAAA ATGGCGAATC CCAAGTATAA 14940 ACGTATTTTA ATCAAGTTAT CAGGTGAAGC CCTTGCCGGT GAACGTGGCG TAGGGATTGA 15000 TATCCAAACA GTTCAAACAA TCGCAAAAGA GATTCAAGAA GTTCATAGCT TAGGTATCGA 15060 AATTGCCCTT GTTATCGGTG GAGGAAATCT CTGGCGTGGA GAACCTGCAG CAGAAGCAGG 15120 TATGGACCGT GTTCAGGCAG ATTACACAGG AATGCTTGGG ACTGTTATGA ATGCTCTTGT 15180 GATGGCAGAT TCATTGCAAC AAGTTGGGGT TGATACGCGT GTACAAACAG CTATTGCCAT 15240 GCAACAAGTG GCAGAGCCTT ATGTCCGTGG ACGTGCCCTT CGTCACCTTG AAAAAGGCCG 15300 TATCGTTATC TTTGGTGCTG GAATTGGTTC ACCTTACTTC TCGACAGATA CAACAGCGGC 15360 CCTTCGTGCA GCTGAAATCG AAGCAGATGC CATCCTCATG GCTAAAAATG GTGTCGATGG 15420 TGTTTACAAT GCCGATCCTA AGAAAGATAA GACAGCTGTT AAGTTTGAAG AATTGACCCA 15480 CCGTGACGTT ATCAATAAAG GTCTTCGTAT CATGGACTCA ACAGCTTCAA CCCTCTCAAT 15540 GGACAACGAC ATTGACTTGG TTGTATTCAA CATGAACCAA CCAGGCAACA TCAAACGTGT 15600 CGTATTTGGT GAAAATATCG GAACAACAGT TTCAAATAAT ATCGAAGAAA AGGAATAAGA 15660 AAGAATATGG CTAACGCAAT TATTGAAAAA GCTAAAGAGA GAATGACCCA GTCTCACCAA 15720 TCACTTGCTC GTGAATTTGG TGGTATCCGT GCTGGTCGTG CCAATGCAAG CTTGCTTGAC 15780 CGTGTACATG TAGAATACTA TGGAGTCGAA ACTCCTCTTA ACCAAATCGC TTCAATTACG 15840 ATTCCAGAAG CGCGTGTTTT GTTGGTAACA CCATTTGACA AGTCTTCATT GAAAGACATC 15900 GAACGTGCCT TGAACGCTTC TGATATTGGT ATCACACCGG CTAATGACGG TTCTGTGATT 15960 CGCTTGGTTA TCCCAGCTCT TACAGAAGAA ACTCGTCGTG ACCTTGCTAA AGAAGTGAAG 16020 AAGGTCGGCG AAAATGCTAA AGTGGCTGTC CGCAATATCC GTCGCGATGC TATGGACGAA 16080 GCTAAGAAAC GAGAAAAAGC AAAAGAAATC ACTGAAGACG AATTGAAGAC TCTTGAAAAA 16140 GACATTCAAA AAGTAACAGA CGATGCTGTT AAACACATCG ACGACATGAC TGCTAACAAA 16200 GAGAAAGAAC TTTTGGAAGT CTAAAAATAA ACAGAAAAAC TCAGTTGGCA TTGCTGGCTG 16260

AGTTTTATTC GAAAGAAGGA AATATGAATA CAAATCTTGC AAGTTTTATC GTTGGACTGA

TCATCGATGA	AAACGACCGT	TTTTACTTTG	TGCAAAAGGA	TGGTCAAACC	TATGCTCTTG	16380
CTAAGGAAGA	AGGCCAACAT	ACAGTAGGGG	ATACGGTCAA	AGGTTTTGCA	TACACGGATA	16440
TGAAGCAAAA	ACTCCGCCTG	ACAACCTTAG	AAGTGACTGC	CACTCAGGAC	CAATTTGGTT	16500
GGGGACGTGT	CACAGAGGTT	CGTAAGGACT	TGGGTGTCTT	TGTGGATACA	GCCTTCCTG	16560
ACAAGGAAAT	CGTTGTGTCA	CTCGATATTC	TCCCTGAGCT	CAAGGAACTC	TGGCCTAAGA	16620
AGGGCGACCA	ACTCTACATC	CGTCTTGAAG	TGGATAAGAA	AGACCGTATC	TGGGGCCTCT	16680
TGGCTTATCA	AGAAGACTTC	CAACGTCTTG	CTCGTCCTGC	CTACAACAAC	ATGCAGAACC	16740
AAAACTGGCC	AGCCATTGTT	TACCGTCTCA	AGCTGTCAGG	AACTTTTGTT	TACCTACCAG	16800
ААААТААТАТ	GCTTGGTTTT	ATTCATCCTA	GCGAGCGTTA	CGCAGAGCCA	CGTTTGGGGC	16860
Aagtattaga	TGCGCGCGTT	ATTGGTTTCC	GTGAAGTGGA	CCGCACTCTG	AACCTCTCCC	16920
TCAAACCACG	CTCCTTTGAA	ATGTTGGAAA	ACGATGCTCA	GATGATTTTG	ACTTATTTGG	16980
AAAGCAATGG	CGGTTTCATG	ACCTTAAATG	ACAAGTCATC	TCCAGACGAC	ATCAAGGCAA	17040
CCTTTGGCAT	TTCTAAAGGT	CAGTTCAAGA	AAGCTTTAGG	TGGTCTTATG	AAGGCTGGTA	17100
AAATCAAGCA	GGACCAGTTT	GGGACAGAGT	TGATTTAGGG	AGGCTTATGA	GAAAATCATT	17160
TTACACTTGG	CTCATGACCG	AGCGCAATCC	TAAAAGTAAC	AGTCCCAAAG	CAATTTTGGC	17220
AGACCTCGCT	TTTGAAGAGT	CAGCCTTTCC	AAAACACACA	GATGATTTTG	ATGAGGTCAG	17280
TCGCTTTTTG	GAGGAGCATG	CCAGTTTCTC	TTTTAACCTA	GGAGATTTTG	ACAGCATTTG	17340
GCAGGAATAT	CTAGAACACT	AGCATTTATT	CATTGGGTTT	GGGCTAGTAA	TTTCTCCATC	17400
CCTCTGCTAT	AATAAAAAGA	AATAAAAGGA	TTAGAGAGGT	TCTTTATTTG	AAGGAACATT	17460
CAATAGACAT	TCAACTGAGT	CATCCAGATG	ACCTGTTTCA	TCTTTTTGGT	TCCAATGAAC	17520
GCCATCTTCG	TTTGATGGAA	GAAGAGCTTG	ATGTTGTGAT	TCATGCTCGT	ACGGAGATTG	17580
TCCAGGTTTT	GGGAGAAGAG	TCTGCCTGTG	AGGAAGCCCG	TCAAGTTATT	CAGGCTTTGA	17640
TGGTCTTGGT	AAATCGTGGG	ATGACCGTTG	GTACGCCAGA	TGTAGTCACT	GCGATTAGCA	17700
TGGTCAAAAA	TGATGAAATT	GACAAGTTTG	TCGCCCTTTA	CGAAGAAGAA	ATTATCAAGG	17760
ATAATACTGG	GAAACCTATC	CGTGTCAAAA	CCCTAGGGCA	AAAGCTTTAT	GTGGACAGTG	17820
TCAAACAGCA	TGATGTGACC	TTTGGAATTG	GGCCAGCAGG	TACAGGGAAG	ACCTTCCTTG	17880
CAGTGACCTT	GGCAGTGACT	GCCCTTAAAC	GTGGGCAAGT	CAAGCGAATT	ATCCTAACTC	17940
GTCCAGCGGT	GGAAGCGGGA	GAGAGTCTTG	GATTTCTTCC	GGGTGATCTT	AAGGAGAAGG	18000
TGGATCCTTA	CCTTCGTCCT	GTTTACGATG	CCTTGTATCA	AATTCTTGGG	AAAGACCAAA	18060

CGACTCGTCT CATGGAGCGT GAAATTATCG AAATTGCGCC CCTTGCCTAT ATGCGTGGCC 18120 GGACCTTGGA TGATGCCTTT GTCATTCTCG ATGAGGCGCA AAACACGACC ATCATGCAGA 18180 TGAAGATGTT CTTGACGCGT TTAGGTTTTC ATTCTAAGAT GATTGTCAAT GGAGATATTA 18240 GTCAGATTGA CCTGCCACGT AATGTCAAGT CCGGTTTGAT TGATGCTCAA GAGAAACTCA 18300 AGAACATCCA TCAGATTGAC TTTGTTCATT TTTCAGCCAA GGATGTGGTT CGCCATCCTG 18360 TTGTCGCTCA GATTATCCGA GCCTATGAAT ATTCTACTGA AGTTGCACAC GACTGATTTT 18420 GAGGAAGTTC GCCTGCAAAA GAATAGACTT GTTCGGTAAC TGTAAAAAGT GTTATACTAT 18480 TTTTATGGAA ACAGTATACG ACAAAGCACA AAAACTTAAC TCAAAAAACT TCAAACTATT 18540 GATTGGTGTC AAAAAGGAAA CCTTTCAACT CATGCTAGAA CACCTGAATT CAGCCTATCA 18600 GATTCAGCAC CGAAAAGGTG GACGTCCACG TAGTCTGCCC ATGGAAGACC AGCTCATTAT 18660 GACCCTCCGT TACTTGCGAT ATTATCCCAC TCAGCGTCTG CTGGCCTTTG ATTTTGGCGT 18720 CGGTGTAGCT ACGGTAAATG CCATCATCAC TTGGGTGGAG GATACACTTC GTGCGTCAGG 18780 TAGCTTTGAT TTGGACCATT TAGAAGCCCC GAGTGCTGCT GTGGCTATTG ACGTGACCGA 18840 AAGTCCGATT CAGCGTCCAA ACAAAACCAA AGCAAAAATT ATTCTGGTAA AAAGAAACGA 18900 CACACCTTAA AAACTCAAAT TATGCTGGAT TTGACGACAC ATAAAGTCTG TCAAATGGCC 18960 TTTTCTGACG GACATACGCA TGATTTTACT CTCTTCAAAG AAAGTATTGG ACAAAGTTTG 19020 CCTGAAACGA CGCTTGCCTT TGTTGACCTA GGTTATTTAG GCATCTTGAA ATTTCATGAG 19080 AATACTTTCA TTCCTGCTAA AAATTCCAAA AATCGCCGCC TGAGTGAGGA TGATAAGCAG 19140 TTAAATAAAG AGATGTCAGC GATACGAATT GAAATTGAAC ATTTTAACGC TAAATTCAAG 19200 ACCTTCCAAA TCATGTCAGT CCCTTATCGT AACCGCAGAA AACGTTTCGA GTTACGGGCG 19260 GAATTAATTT GTGCCATCAT CAATTATGAA GTGAACTAGA TTCCGAACAA GTCTAATATA 19320 CTTTTGAGAG AGGAAAATCC AGTTGTATAG GCTAAAGGTT TTATCCAAAG GTCTGAGACA 19380 ACGATTAGGC ACGATGGAAA GAACTTTTAT GTGGCTGATG ACGATCAGTG CATCTTCCTG 19440 TGTCATAATC ACAGGGCACA AGAAAGTAGG AATTTGAAAA GATGATTGAC CAACTATCTA 19500 AGTATTACAG TTGTAGGATA CTAACTGAAA AGGATATTCC AAGTATTTTA TCTTTATATG 19560 AAAGTAATCC TCTGTATTTT CAGCATTGTC CACCAGAGCC AAATTTTGCA ACTGTAAAAG 19620 AGGACATGCT TTGTCTACCT GAAGGTAAAG CTAAGGCTGA TAAGTTTTTT GTTGGATTTT 19680 GGAATGGATC TGACCTTGTG GCTGTTATGG ATTTTGTCTA TGCATATCCT GATGAGGAGA 19740

CTGTTTTAT TGGTTGTTT ATGGTTGATC AAGCCTATCA GAGAAAAGGG ATTGGTAGTC

ATATTGTGAC AGAAGCACTA GCTTATTTTG CTAAGAACTT TCGAAAGGCA CGTTTGGCTT

19800

ATGTTAAGGG	AAATCCGCAA	TCTCAGCATT	TTTGGGAAAA	GCAGGGCTTT	AAATCAATTG	19920
GATGCGAGGT	TAAGCAAGAA	CTCTATACGG	TTGTTATCGC	TGAACAGAGC	CTAGAAGATT	19980
AGAAATGGCA	TCAAGTAAGA	ACTATTTGGA	ATTTGTTTTG	GAACAATTAT	CAGGATTAGA	20040
TGATGTGACT	TACCGTTCCA	TGATGGGGGA	GTATATTCTT	TACTTCCGCG	GCAAGATTAT	20100
TGGCGGCATT	TATGACGATC	GCTTTTTAGT	TAAACCCGTG	CAAGCAGTCT	TAGATAAGAT	20160
TGACCAATCT	TCTTTTGAGT	TTCCATACAA	AGGTGCCAAA	GAAATGATTT	GAGTGGAAGA	20220
ACTTGATAAT	AAGATGTTTC	TATAAGACCT	AATTTTAGCT	ATGTATAACC	AACTGCCAAC	20280
GCCCAAACCT	AAAAAGAAAA	AGCAAGGGTG	AACGAAGTAA	AAAAGAAGTC	TGCTAAGGCC	20340
CTGTCTTTGC	ACGGGTAAAA	TTTTATATAT	AAAAAGAAGC	TGGGACTAAA	GAGCTCAGCT	20400
TCCTTTGGTT	TATATAATTG	TCATTACAAG	ACGAAGTGGT	TGGGCGAAAC	TCTGTTGACT	20460
TTATTCAATT	TAGAGTTTCT	TATGCACAAT	TGAGTCTGGA	ACGAAAGTCT	CCAGTTGCAA	20520
AGTATACAGT	ACAATAAACC	AACGATGTAA	TAGCTGATGA	CACAAAGCAC	AGTGGGTAGG	20580
ACTTGCGAAG	TCACCCTTTT	CTTTTCAAAA	ТТТАТАСТАА	ATCATTGATA	TCAGTGTAGT	20640
CACGATTAAG	TCCTTGAGCA	ACTGGTAGGT	TAGTCAAGTA	ACCTTGATAA	GTAGTCACAC	20700
CTTGACGCAA	GCCTTCATCT	TCAGAGATTG	CTTGTGCGAA	TCCTTTGCCA	GCCAAAGCTT	20760
CGATATAAGG	AAGAGTGACA	TTGGTTAGGG	CGATGGTTGA	AGTGCGAGCA	ACCGCACCAG	20820
GGATATTGGC	AACGGCATAG	TGGAGAACAC	CGTGTTTTTC	ATAGACGGGT	TCATCGTGCG	20880
TTGTCACACG	GTCAGCTGTT	TCGATAACGC	CACCTTGGTC	AACAGCAACG	TCAACGATAC	20940
AGAGCCTGGA	CGCATTTGTT	TGACCATCTC	ATCTGTCACC	AATTCCGGTG	CTTTTGCACC	21000
AGGGATGAGA	ATGGCTCCAA	TCACCACATC	AGCATCTCTC	ACACTTGCTT	CAATGTTGAA	21060
TGAATTAGAC	ATAAGAGTTT	GAATTTGACT	TCCAAAGACT	TCTTCTAGAA	CTGAGAGACG	21120
CTTGGAACTA	ATATCTAAAA	TAGTCACTTG	AGCACCAAGA	CCAAGGGCGA	TGCGGGCAGC	21180
ATGTGTACCG	ACGACACCAC	CACCGATGAT	AGTTACTTTT	CCTTTTGGAA	CACCTGGTAC	21240
ACCACCAAGT	AGAACACCAG	AGCCACCAGC	TTGCTTAGTA	AGGAAGTGAG	CTCCGATTTG	21300
AACAGCCATA	CGACCTGCAA	CCTCACTCAT	AGGAACGAGG	AGCGGTAGTT	GTCCTTGATT	21360
GTCACGAACA	GTTTCAGTTG	TTTTTGCTGT	TAACATAGCA	TCTGCTAATT	CTGGAGCAGC	21420
GGCCATGTGC	AAGTAGGTGA	AGAGAAGAAG	ATCGTCGCGC	AAGTAACCGT	ATTCAGAACT	21480
TAAAGATTCT	TTTACTTTCA	CAACCAACTC	TGCTGCCCAA	GCTTCACCAG	CAGTAGCGAC	21540
AATCTCAGCT	CCTTGCTTTT	GATAGTCAGC	ATCAGTAAAG	CCAGAACCGA	GACCAGCATT	21600

286 TGTTTCGATA AGGACACGAT GACCACGACT AACTAAGCTA TGAACACCTG CAGGTGTGAG 21660 GGCGACACGG TTTTCGTTAT TTTTAATTTC TTTTGGGATT CCGATTAACA TTGAGATAAC 21720 CTACCTITCA ATTGACGGTC TTGTTTTGGT TGTCACATTC CAGTTCATAA ATCAAAAATG 21780 TGACGGTTTC ATTGTATATG AAACCGCTTC AAAAATCAAG AAAAACTTGT CATCCAAATT 21840 TTTTTATGCT AGACTAGTGA AAATCAAGCT CTAATGGAGG GAAAAGTATG GAATCAATAT 21900 TTGTGAAATT TGCCCAGTAT CCGTCTATAG AAACGGAGCG TTTATTGCTC AGACCTGTAA 21960 CTTTGGATGA TGCGGAACAA TGTTTGACTA TGCCTCGGAC AAGGGTAATA CACGTTACAC 22020 TTTTCCAACC AATCAAAGCT TGGAAGAAAC CAAGAATAAC ATTGCTCAGT TCTACTTGGC 22080 TAATCCCTTG GGACGTTGGG GAATAGAACT AAAAAGCAAT GGTCAGTTTA TTGGAACCAT 22140 TGACTTGCAC AAGATTGATT CTGTTCTTAA GAAGGCAGCT ATTGGCTACA TTATCAATAA 22200 AAAGTATTGG AATCAAGGAT TAACGACAGA AGCCAATCGT GCTGTGATTG AGCTAGCTTT 22260 TGAGAAGATA GGGATGAATA AGTTGACTGC CCTTCACGAT AAGGCTAATC CCGCGTCAGG 22320 AAAGGTCATG GAGAAATCAG GCATGCGTTT TTCCCATGCA GAACCATATG CTTGTATGGA 22380 CCAGCATGAA AAAGGCCGAA TCGTGACAAG AGTTCATTAT GTCTTGACCA AGGAAGACTA 22440 TTTTGCAAAT AAATAAGCAG TTGAAAAGAA ATTTTTCGAC TGTTTTTTCT TCCTCTTACG 22500 AATAATCTAA GAGAGGAGAA AATATGGAAG CAATTATCGA GAAAATCAAA GAGTATAAAA 22560 TCATCGTCAT CTGTACTGGT CTGGGCTTGC TTGTAGGAGG ATTTTTCCTG CTAAAACCAG 22620 CTCCACAAAC ACCTGTCAAA GAGACGAATT TGCAGGCTGA AGTTGCAGCT GTTTCCAAGG 22680 ACTCATCGAC CGAAAAGGAA GTGAAGAAGG AAGAAAAGGA AGAACCCCTT GAACAAGATC 22740 TAATCACAGT AGATGTCAAA GGTGCTGTCA AATCGCCAGG GATTTATGAC TTGCCTGTAG 22800 GTAGTCGAGT CAATGATGCT GTTCAGAAGG CTGGTGGCTT GACAGAGCAA GCAGACAGCA 22860 AGTCGCTCAA TCTAGCTCAG AAAGTTAGTG ATGAGGCTCT GGTTTACGTT CCTACTAAGG 22920 GAGAAGAAGC AGTTAGTCAA CAGACTGGTT CGGGGACAGC TTCTTCAACA AGCAAGGAAA 22980 AGAAGGTCAA TCTCAACAAG GCCAGTCTGG AAGAACTCAA GCAGGTCAAG GGACTGGGAG 23040. GAAAACGAGC TCAGGACATT ATTGACCATC GTGAGGCAAA TGGCAAGTTC AAGTCAGTAG 23100 ACGAGCTCAA GAAGGTCTCT GGCATTGGTG GCAAAACAAT AGAAAAGCTT AAAGACTATG 23160 TTACAGTGGA TTAAGAATTT CTCTATTCCC CTAATTTACC TGAGTTTTCT ATTACTTTGG 23220 CTTTATTACG CTATTTCTC AGCATCTTAT CTTGCTTTGT TGGGCTTTGT TTTTCTGCTA 23280 GTCTGTCTCT TTATCCAATT TCCGTGGAAA TCTGCTGGTA AAGTTCTAAT AATTTGCGGA 23340 ATCTTTGGAT TTTGGTTTGT TTTTCAAAAT TGGCAACAGA GTCAAGCGAG TCAAAATCTG 23400

GCGGATTCTG	TTGAAAGGGT	ACGGATTTTG	CCTGATACTA	TTAAGGTTAA	TGGTGATAGT	23460
CTATCCTTTC	GTGGCAAGTC	TAACGGTCGT	GCTTTCCAAG	TCTATTATAA	ACTCCAGTCC	23520
GAGGAGGAGA	AAGAAGCCTT	TCAAGCTTTA	ACTGACCTGC	ATGAGATAGG	ACTAGAAGGG	23580
AAGCTTTCGG	AGCCAGAAGG	GCAGAGAAAT	TTTGGTGGCT	TTAATTACCA	AGCCTATCTG	23640
AAGACTCAGG	GAATTTACCA	GACTCTCAAT	ATCAAAACAA	TCCAGTCACT	TCAAAAGATT	23700
GGCAGTTGGG	ATATAGGAGA	AAACTTGTCC	AGTTTACGTC	GAAAGGCTGT	GGTTTGGATT	23760
AAGACGCACT	TTCCAGACCC	TATGGGCAAT	TACATGACAG	GACTCTTGCT	GGGACATCTG	23820
GACACCGACT	TTGAGGAGAT	GAATGAGCTT	TATTCCAGTC	TAGGAATTAT	CCACCTCTTT	23880
GCCCTATCTG	GCATGCAGGT	AGGTTTTTTC	ATGAATGGAT	TTAAGAAACT	TCTCTTGCGA	23940
TTGGGCTTGA	CCCAAGAAAA	GTTGAAATGG	CTGACTTATC	CCTTTTCCCT	TATCTATGCG	24000
GGACTAACTG	GATTTTCAGC	ATCGGTTATT	CGCAGTCTCT	TGCAAAAGCT	ACTGGCTCAA	24060
CATGGGGTTA	AGGGCTTGGA	TAATTTTGCC	TTGACGGTGC	TTGTCCTCTT	TATTGTCATG	24120
CCAAACTTTT	TCTTGACAGC	AGGAGGAGTC	TTGTCCTGCG	CTTATGCTTT	TATCCTGACC	24180
ATGACCAGCA	AAGAAGGGGA	GGGGCTCAAG	GCTGTTACTA	GTGAAAGTCT	AGTCATCTCC	24240
TTGGGCATAT	TGCCCATTCT	ATCCTTCTAT	TTTGCGGAAT	TTCAACCTTG	GTCTATCCTT	24300
TTGACCTTTG	TCTTTTCCTT	TCTTTTTGAC	TTGGTCTTCT	TACCGCTCTT	GTCTATCTTA	24360
TTTGTCCTTT	CCTTTCTCTA	TCCAGTCATT	CAGCTGAACT	TTATCTTTGA	ATGGTTAGAG	24420
GGCATTATTC	GCTTGGTCTC	GCAGGTGGCA	AGGAGACCAC	TTGTCTTTGG	TCAACCCAAC	24480
GCATGGCTTT	TAATCTTATT	GTTAATTTCC	TTGGCTTTGG	TCTATGATTT	GAGGAAAAAC	24540
ATTAAAGGAT	TAACAGTATT	GAGTTTATTG	ATTACAGGTC	TCTTTTTCCT	TACCAAGTAT	24600
CCACTGGAAA	ATGAAATCAC	CATGCTGGAT	GTGGGGCAAG	GAGAAAGTAT	TTTCTACGGG	24660
ATGTAACTGG	GAAAACCATT	CTCATAGATG	TAGGTGGTAA	GGCAGAATCT	TATAAGAAAA	24720
TCAAAAAATG	GCAAGAAAAG	ATGACGACCA	GCAATGCCCA	GCGAACCTTG	ATTCCCTATC	24780
TCAAAAGTCG	AGGAGTAGCT	AAGATTGACC	AGCTAATTTT	GACTAACACG	GACAAGGAGC	24840
ATGTTGGAGA	TTTGTCAGAG	ATGACCAAGG	CTTTCCATGT	AGGGGAGATT	CTAGTATCAA	24900
AAGACAGTCT	GAAACAGAAG	GAATTTGTGG	CAGAACTACA	GGCGACTCAA	ACAAAGGTGC	24960
GTAGTATGAT	AGTAGGGGAG	AACTTGCCCA	TTTTTGGAAG	TCAGTTAGAA	GTTCTATCTC	25020
CAAGGAAAAT	GGGAGATGGA	GGACACGATG	ATACCCTAGT	TCTGTATGGG	AAATTCTTGG	25080
ATAAGCAATT	TCTCTTCACG	GGAAATTTGG	AGGAGAAAGG	AGAGAAGGAC	TTGCTGAAGC	25140

			288			
ACTATCCAGA	CTTGAAAGTA	AATGTTTTGA	AAGCTAGCCA	ACATGGCAAT	AAAAAATCAT	25200
CAAGTCCAGC	CTTTCTAGAA	AAACTCAAAC	CAGAGCTTAC	TCTTATCTCA	GTTGGAAAGA	25260
GCAATCGAAT	GAAACTCCCC	CATCAGGAAA	CATTGACACG	ACTGGAAGGT	ATCAATAGCA	25320
AAGTTTATCG	AACTGACCAG	CAAGGAGCTA	TACGTTTTAA	GGGGTTGGAT	AGTTGGAAAA	25380
TCGAAAGTGT	TCGATAGGAA	GGATAAATGT	TGTAGATTAG	TGAAATAAAC	TAAAAATTTG	25440
TTGCATAATA	ATGATAAAA	TGGTATAATG	AAAACGTATT	CAATATTGAG	GATATAAAAT	25500
САТТАААААТ	CAGCAAAAGT	TGTTTTATTA	GTTAGTTTAT	AATCTATTGG	TCTTCTTCAG	25560
TCCAGTGTAT	CTGCTGTGAC	AGTCACTAAA	AGTTACAAGT	ATGATTGGAA	TACGGTTTGG	25620
GAATATAGTA	CCAACTATCA	CGACCATCAG	TATGCTTGGA	TTCCGTCATG	GTCTCGTTAT	25680
GACAGCTATT	CTGAGTATAA	AGTTGGCGGA	GGCTGGAACT	ACGCTCGTTA	TGAGGTCATA	25740
AACTATTACA	GCGGAGGCTA	TTAATTCTTA	AAGAGTGAGA	AAAAGGAGGG	CTAGATATGT	25800
TGCAGCTTAC	TCATGTGACC	TTAAAAACGC	GACAAGTCAT	CTTGCAAGAT	GTGGATTTCA	25860
ССТТТААААА	GGGTAGGGTT	TATGGTCTTC	TTGCTATCAA	TGGCTCTGGA	AAGACGACCC	25920
TGTTCCGTGC	CATTAGCAAT	TTAATTCCCA	TAAGTAGTGG	AAATATCGCA	GCCCCTCCTT	25980
CTTTATTTTA	TTATGAGAGT	ATTGAATGGC	TGGATGGAAA	CTTAAGTGGG	ATGGACTACC	26040
TTCGTCTTAT	CAAAAACATC	TGGAAGTCAG	GTCTGAACTT	GAGGGATGAA	ATCGCCTATT	26100
GGGAAATGTC	TGACTATATC	AGTCTTCCCA	TTCGCAAGTA	TTCCTTAGGC	ATGAAGCAAC	26160
GCTTGGTGAT	TGCCATGTAT	TTCCTCAGTC	AGGCCAAATG	CTGGCTCATG	GATGAGATTA	26220
CAAATGGCTT	AGATGAGTAT	TATCGACAGA	AGTTTTTTGA	TAGGCTAGCA	CAAATCGATA	26280
GACAAGAACA	GCTGGTTCTT	TTAAGTTCCC	ACTATAAGGA	AGAGTTGGTT	GATGTCTGCG	26340
atagagtagt	AACCATTCAT	CAGGGGCAGA	TAGAAGAGGT	TTAGTTTATG	AAAGATGTTA	26400
GTCTATTTTT	ATTGAAAAAA	GTTTTCAAAA	GCCGCTTAAA	CTGGATTGTC	TTAGCTTTAT	26460
TTGTATCTGT	ACTCGGTGTT	ACCTTTTATT	TAAATAGTCA	GACTGCAAAC	TCACACAGCT	26520
TGGAGAGCAG	GTTGGAAAGT	CGCATTGCAG	CCAACGAGAG	GGCTATCAAT	GAAAATGAAG.	26580
AGAAACTCTC	CCAAATGTCT	GATACCAGCT	CGGAGGAATA	CCAGTTTGCT	ТТААТАААА	26640
TAGACGTGCA	AAAAAATCTT	TTGACGCGAA	AGACAGAAAT	TCTGACTTTA	TTAAAAGAAG	26700
GGCGCTGGAA	AGAAGCCTAC	TATTTGCAGT	GGCAAGATGA	AGAGAAGAAT	TATGAATTTG	26760
TATCAAATGA	CCCGACTGCT	AGCCCTGGCT	TAAAAATGGG	GGTTGACCGC	GAACGGAAGA	26820
TTTACCAAGC	CCTGTATCCC	TTGAACATAA	AAGCACATAC	TTTGGAGTTT	CCGACCCACG	26880
GGATTGATCA	GATTGTCTGG	ATTTTAGAGG	TTATCATCCC	AAGTTTGTTT	GTGGTTGCTA	26940

289

TTATTTTTAT	GCTAACACAA	CTATTTGCAG	AAAGATATCA	AAATCATCTG	GACACAGCTC	27000
ACTTATATCC	TGTTTCAAAA	GTGACATTTG	CAATATCCTC	TCTTGGAGTT	GGAGTGGGAT	27060
ATGTAACTGT	GCTGTTTATC	GGAATCTGTG	GCTTTTCTTT	TCTAGTGGGA	AGTCTGATAA	27120
GTGGTTTTGG	ACAGTTAGAT	TATCCCTACC	CAATTTATAG	CTTAGTGAAT	CAAGAAGTAA	27180
CTATTGGGAA	AATACAAGAT	GTATTATTTC	CTGGCTTGCT	CTTAGCTTTC	TTAGCCTTTA	27240
ICGTCATTGT	GGAAGTTGTG	TACTTGATTG	CTTACTTTTT	CAAGCAAAAA	ATGCCTGTCC	27300
rctttcttc	ACTCATTGGG	ATTGTTGGCT	TATTGTTTGG	TATCCAAACC	ATTCAGCCTC	27360
TTCAAAGGAT	TGCACATCTG	ATTCCCTTTA	CTTACTTGCG	TTCAGTGGAG	ATTTTATCTG	27420
GAAGATTACC	TAAGCAGATT	GATAATGTCG	ATCTAAATTG	GAGCATGGGA	ATGGTCTTAC	27480
PTCCTTGCCT	GATTATCTTT	TTGCTATTGG	GAATTCTATT	TATTGAAAGA	TGGGGAAGTT	27540
CACAGAAAAA	AGAATTTTTT	AATAGATTCT	AGCTTTCCTA	TAGGTAGGGA	AAATAAGTAA	27600
AAACTAACAT	AGAGAGGGAA	TCAACTTGAT	TCTCTCTTT	TGATTCGAAA	ACCAAACCAA	27660
AATACAAACA	CAAACTTTTC	AAAAAATAAC	TTTTTATCTT	GACAAGAGCT	AGAAAACTTG	27720
GTATCATATA	aaagttgaga	AAAGCAGAAG	TGAGAGCTTC	TCGCCTTGTG	ACATTAAGTT	27780
CCTGGCCCT	ACGGATGAAA	AGTTTCGAAG	AAACGCTATC	ATAACGTGCG	GGCTTGTATA	27840
TTACAAGTC	CGCTATTGTT	TTTCTCTAAT	AAAACAAAAG	AGGTGAAAAC	CATAGCAAAG	27900
CAAGACTTAT	TCATCAATGA	TGAGATTCGT	GTACGTGAAG	TTCGCTTGAT	TGGTCTTGAA	27960
GGAGAACAGC	TAGGTATCAA	GCCACTCAGT	GAAGCGCAAG	CTTTGGCTGA	TAACGCTAAT	28020
GTTGACCTAG	TATTGATTCA	ACCCCAAGCC	AAACCGCCTG	TTGCAAAAAT	TATGGACTAC	28080
GTAAGTTCA	AATTTGAGTA	CCAGAAGAAG	CAAAAAGAAC	AACGTAAAAA	ACAAAGCGTT	28140
STTACTGTGA	AAGAAGTTCG	TCTAAGTCCG	G			28171

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7147 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CCGCTCAACT TTTGCAATCA AGGCTAAGTA GACAGCAGCA AATTTCATAT TGTATAATTT CTGACTCATA CTTCTCTCT TCTATGTGTA CTAGTATAAA TAAGAAAAAG AAGGCCGTCA

			290			
AGCCTTCTTT	TGATTTATTC	TTCTGCTTCA	TCTTCTGTAA	ATTGACTATT	GTACAAGTCA	180
GCGTAGAAGC	CACCTTGCGC	CATCAGTTCC	TCATAGTTGC	CTTGCTCGAT	GATATTTCCA	240
TCTTTCATGA	CCAAGATCAA	GTCTGCATTT	CGGATGGTTG	ACAAGCGGTG	GGCAATGACA	300
AAGGATGTGC	GTCCTTCCAT	CAAACGGTCC	ATGGCTTTTT	GGATCAATTC	CTCTGTCCGT	360
GTGTCAACAG	AAGAAGTCGC	CTCATCCAAA	ATCAAAAGCG	GTGCATCCTT	AAGAAGGGCA	420
CGAGCAATAG	TCAATAGTTG	TTTTTGTCTT	ACAGACAAGG	TCACGGTGTC	ATCCAAGATG	480
GTATCATAGC	CATCTGGCAA	GGTCATAATA	AAGTGGTGAA	TTCCCACAGC	CTTACTAGCT	540
TCCATCATTC	GTTCATCACT	AATCCCTATT	TGATTATAGA	TGAGATTGTC	TCGAATAGTT	600
CCTTCAAAGA	GCCAGGTATC	CTGCAAGACC	ATTGAAAAGG	CATCATGCAC	TTCTGAACGC	660
GTCATAGCCT	TGGTATCCAC	ACCATCAATG	CGAATACTTC	CCTTATCAAT	CTCATAGAAT	720
ттсатсаааа	GATTGACAAT	GGTTGTCTTA	CCAGCCCCAG	TCGGCCCAAC	AATGGCAACC	780
TTTTGACCAG	CATGAGCTGT	CGCAGAGAAG	TCATAGTCTT	GAACATTGAC	ACCGTCCACC	840
AGAATTTCTC	CTGCTGACAC	GTCGTAGAAA	CGTGGAATCA	GATTGACCAG	AGTTGATTTA	900
CCAGAACCTG	TTGACCCAAT	AAAGGCCACT	GTTTGACCAG	TTTCTGCTTT	AAAGCTAACA	960
TGTTCAATAA	CTGCCTCCGA	ATTTGCCGCA	TAGCGGAAGG	TCACATCCTT	AAACTCGACC	1020
TGACCTTTGA	AGTTTTCATC	AGTCAGCTGC	ACTTGAACAG	GGTTTTGGAT	AGAAGAATGC	1080
АААТСТАААА	CTTGATTAAT	CCGCTTAGCA	GAGACCATAG	TTCGGGGAAG	AACGATGAAG	1140
AGTGCTCCCA	TGAGAAGGAA	GCCCATGACA	ACCTACATGG	CATAAGACAT	GAAAACAATC	1200
ATGTCACTAA	AGAGAGGCAG	ACGCGCTATC	GGAGCAGCGT	CGTTAATCAC	ATAGGCCCCA	1260
ATCCAGTAAA	TCGCCACACT	CAAACCACTT	GAAATCCCCA	TCATGATAGG	ATTCAAAATA	1320
GCCATAAGAC	GGTTGACAAA	CAAATTCAAA	CGGGTCAATT	CATCATTTAC	TGCTGCAAAT	1380
TTTTCATTTT	GATAATCCTC	TGCATTGTAG	GCACGAACGA	CACGAATACC	TGTTAAACTC	1440
TCACGAGTGA	TACTGTTCAG	TTTATCTGTC	AGCCCCTGAA	TCAAGGACTG	TTTTGGAAAG	1500
GCTAGCGTCA	TCAAAACGGT	CGTCATCAGG	ACGTTGATAA	TCACTGCCAC	AAGTACGGCC	1560
CAGAGCCAGT	ATTCTGAATG	ACCTAAAATC	TTCCCAATAG	CCCAGATAGC	CATAATTGAA	1620
CCACGCGTTA	CCACTTGCAA	GCCCATAGTA	ATCAACATTT	GAACTTGAGT	AATGTCATTG	1680
GTAGTACGCG	TCAAGAGGCT	aggaattgaa	AATTTCTTAA	TCTCTGTCTG	CGAGTAATCC	1740
AAAACTCGGT	TAAAAATATC	ACTTCTCAGC	CTACTAGTAT	AAGAAGCCGC	CACTCGGGAT	1800
GCAAAAAATC	CAACTGCAAC	TACGGACAAG	AAGGCAAGAA	AGGACATTCC	CATCATCATG	1860
CTTGCCGACT	GCCACAACTC	АТСТАВАТТА	GTTTCTTGAC	TACCTAGCAA	ATCCGTAATT	1920

TTCGAGATAT	AGGTCGGCAC	TTCCAACTCT	AGATAGACCG	AAAAGCAAGT	AAAGAGAATG	1980
GCTAGTAAAA	TCATCCCCCA	TTCTTTTCTA	CTAATTCTTT	TGGCTAATTT	CTTTATTCTC	2040
TCCTCCTATT	CCCTTGATAT	TTTGCCTGTA	GTTGACCGAG	AACCTTCTCA	AAAATCAGTA	2100
ATTCATCTTC	ATCAATGTCT	TCCATCAACT	GCTTGTCTAT	GCGTTCAAAA	AAAGCCTTAA	2160
CCTGTTGCAT	CTGAGAACGT	GCTTTGTCCG	TCAGACGAAC	AAACTTAGCC	CGCTTATCAA	2220
CAGGACTCGC	CTCCAATTCC	ACCAAACCAT	TTTGCACTAT	ACGCTTAACC	AGATTACTAG	2280
CAACAGGCTT	GGTAATATTG	AGTTCCTGCT	CGATATCTTT	AATCAAGACC	AAGTCTTGGT	2340
TTTTCTCGCG	ATTATCCAAA	AAACGCACAA	CCTGACCTTG	CGGCCCACCC	ATAAATTCAA	2400
TGCCGCAACG	TTTGGCTTCC	TTTTGCACCA	TCAGGTGAAT	TTGATGACCA	AAACGCTTAA	2460
AGACTAACAT	CGGTTTATCC	ATAATCTCCC	CCTTCTAAAT	AAAAATAGTT	CTCTGGAGAA	2520
TAATTAAATT	TCTATGAGAA	CTATTTTCTT	GATTAAAAAA	ATCCCAAGTG	ATTTTCTCAC	2580
TTAGGATCAT	GTTCTATAGG	AAATTAAATT	ACCCATCTAC	GTTCGTATAA	ATCTTTTGGA	2640
CGTCTTCGTC	GTCTTCAAGA	ACGCTGTAAA	GTTTTTCAAA	GGTTTCAAGG	TCTTCGCCTG	2700
ACAATTCCAC	TTCTGACTGA	GGAATCATTT	CCAATTCAGT	CACTTGGAAT	TCTTCAATAC	2760
CAGACTCACG	GAGGGCAACG	ATAGCCTTGT	GAAGGTCAGT	TGGCGCTGTG	TAAACTGTGA	2820
TTGTACCTTC	TTGTGCTTCT	ACGTCATCCA	CATCCACATC	CGCTTCGAGC	AATTGCTCAA	2880
AGACTGCGTC	CGCATCTTCA	CCTCCAAATA	CAATAACACC	TTTGTTGTCA	AAGAGGTAAG	2940
AAACAGAACC	TGAAGCGCCC	ATGTTTCCGC	CGTTTTTACC	AAAGGCTGCA	CGGACATTGG	3000
CTGCTGTACG	GTTGACGTTA	GAAGTCAAAG	TATCCACAAT	TAGCATAGAG	CCATTTGGCC	3060
CAAAACCTTC	GTAACGTCCT	TCTGTAAAGG	TTTCGTCTGT	GTTTCCTTTG	GCTTTATCAA	3120
TCGCTTTATC	GATAATGTGT	TTTGGCACTT	GGGCTTGTTT	AGCACGGTCG	ATAACGAATT	3180
TCAAAGCTGA	GTTTGATTCT	GGATCTGGAT	CACCTTTTTT	AGCTGCTACA	TAGATTTCTA	3240
CACCAAATTT	TGCATATACT	TTAGAGTTAG	CTCCATCTTT	AGCCGTTTTC	TTGGCTACGA	3300
TATTGGCCCA	TTTACGTCCC	ATTAGGAATC	TCCTTTTTTC	ACATTTTAAT	CTTTCTTATT	3360
ATAACACAAG	TTTTTTTGAT	TTTCACTAGA	GGAAATGGAT	TTTATTAGCA	AATCAAGCTA	3420
GGATAGCACT	TTACCTGCTA	AGATGGTCTT	GCCTTTCTAT	CTTTATCAAC	AGGCACTCAT	3480
CCACATTCAA	AAAACAAACT	AGACCATTAT	CTGCAAATAG	AAAGTTTCAG	CCAAGTTTGA	3540
CAAAGTCAGC	TCAAATTACT	GTTTGAAGTT	TGTAGATATA	AGCGACAAAA	ACAATCATAC	3600
TGCACCTTTT	GTTGACAGTC	TACTCCAGAC	ATATCATAGT	TCAAGTAAAT	ACTTTGAAAT	3660

			292			
TCAACAGTTC	TTATAGGCGC	TATTGTATTC	TAAGAAATCA	ATAGAAGAGT	TTCTAAGCAA	3720
ACCTCTAATA	CTCAATAAAA	ATCAAAGAGC	AAACTAGAAA	GCTAGCCTCA	GGTTGCTCAA	3780
AACACTGTTT	TGAGGTTGCG	GATGGGGCTG	ACATGGTTTG	AAGAGATTTT	CGAAGAGTAT	3840
AATTTACGTG	TTCCCAAGAT	GGAGAAGTTA	GACTAGTACA	CTGGCACTTC	TAAAACATTG	3900
CTAGCAATTG	ATTTGTTCAT	ATTTAATTTC	ATTTTTTCCA	TAAATGGGTA	TTAGATATAA	3960
ACAGCAAAAT	ATTTCCGATA	CGTGTCGTTC	TTGAATTTCC	AATCATCTAA	AACAAGTAAA	4020
GGATAATCAA	TCCCCTGTAT	ATCAAGGAAT	TGGCTACCCT	TTTTACTTTT	TTACACATTC	4080
TGTTTGATAG	ATTCATTTTA	ACATCACGAG	CATACTCCAA	TGGAAATCGC	TAGGCAAGAG	4140
ATAAACTTTC	AGATATCCGC	AGAGAGATCA	TCGCCTCTTT	TTGTCGCAAG	CATTCTCCTC	4200
TCCTAGTCAT	TTTCTACCTT	ATCTTCTACC	TGAGGATAGA	GAGTTGTTCC	CCAAATAGAA	4260
ATCGTCCGCT	TACGCACTAG	TGGCAAATCG	GTTTTTTCAT	AAACCGTACG	CCACCATTCC	4320
CAGGCAAGCC	CGGTACACTC	TCTAATTTTG	ACAGAGAGAT	TACGAACATT	CCCTTTTAAA	4380
GGAATACTAG	TGGTAAAGTG	AGCCGTTAAA	TCCTGCCCAT	TTCTGTCCCA	AGCCTTAGGA	4440
GTCAAGACTT	CCTTACCTTG	ATGATCATAG	GATAATTCAT	TCCAAGTAAT	ATAATATTGG	4500
GCAACATAGG	CACCACTATG	ATCCAGCAGT	AAATCTCCGT	TTCTGTAAGC	TGTAACCTTA	4560
GTCTCAACAT	AGTCTGTACT	ATTTTGAAAG	GTCGCAACTA	CATTGTCACG	TAAAAAAGAA	4620
GTTGTATAGG	AAATCGGCAA	GCCTGGATGA	TCTGCTGTAA	AGCGACTGCC	TTCTTGAATC	4680
AAGTCCTCTA	CCATATCCAC	CTTGCCTGTT	ACAACTCGGG	CACCCGAACT	TGGGTCGCCC	4740
ССТААААТАА	CCGCCTTCAC	TTCTGTATTG	TCCAAAATCT	GTTTCCACTC	TGTCTGAGGA	4800
GCTACCTTGA	CTCCTTTTAT	CAAAGCTTCA	AAAGCAGCCT	CTACTTCATC	ACTCTTACTC	4860
GTGGTTTCCA	ACTTGAGATA	GACTTGGCGC	CCATAAGCAA	CACTCGAAAT	ATAGACCAAA	4920
GGACGCTCTG	CAGAAATTCC	TCTCTGTTTT	AAATCCTCTA	CCGTTACAGT	ATCTTGAAAC	4980
ACATCTCCTG	GATTTTTAAC	AGCATCTACG	CTGACTGTAT	AATAAATCTG	СТТАААЛТТА	5040
ACAATCTGAA	TCTGCTTTTC	GCCTGAATGG	ACAGAGTTAA	AATCAATATC	AAGAGAATTC	5100
CCTGTCTTTT	CAAAGTCAGA	ACCAAACTTG	ACCTTGAGTT	GTTCCATGCT	GTGAGCCGTG	5160
ATTTTTTCAT	ACTGCATTCT	AGCTGGGACA	TTATTGACCT	GACCATAATC	TTGATGCCAC	5220
TTAGCCAACA	AATCGTTTAC	CGCTCCGCGA	ACACTTGAAT	TGCTGGGGTC	TTCCACTTGG	5280
AGAAAGCTAT	CGCTACTTGC	CAAACCAGGC	AAATCAATAC	TATAAGTCAT	CGGAGCACGA	5340
TCGACCGCAA	GAAGAGTGGG	ATTATTCTCT	AACAAGGTCT	CATCCACTAC	GAGAAGTGCT	5400
CCAGGATAGA	GGCGACTGTC	GTTGGTAGCT	GTTACAGAAA	TATCACTTGT	ATTTGTCGAC	5460

293

AAGCTCCGCT	TCTTTCTTTC	GATAACAACA	AACTCATCGG	GTAGCTGATT	ACCCTCTTTG	5520
ATGAAACGAT	TTTCAATACT	TTCTCCCTGA	TGGGTCAAGA	GTTTCTTTTT	ATCGTAATTC	5580
ATAGCTAGTA	TAAAGTCATT	TACTGCTTTA	TTTGCCATCT	TCTACCTCCT	AATAAGTTCC	5640
TGGATTGAGT	TGCATAAACT	CAGACTTGTT	CAGCGAAATC	AGCCGTGGTT	GGACTAAGTA	5700
ATCCAAAATT	TCCTCGTACA	ATTCTTCTGA	GACATTGCGT	CCCCCTCTGG	CTAAATAAGA	5760
AGTCGGAATG	ACCGTATTAT	CCAACATAAA	TACCTTATCT	AAGTCAATCA	AGGTTGGTCT	5820
TGTAAAAGGA	TTACGAGCTA	GATCCGGCTC	TTCTATCATA	AAGTTCTTGA	CCAAACGTCT	5880
GGTCAAGAGA	GCTGGTTTGA	AGGTCTGATT	TTTAACCAAC	TCTTTGTTTT	TAGTCATGCT	5940
GTTGTCAATA	CAGATATACA	TATGATTCTT	CACAGCCAAA	TCGCTACTAA	TAGTCGGAAA	6000
AGGCAAATAA	AGAGCTACAA	CATCTCCTCT	CTTAATCAAG	CAAGAGCACC	CCCTTTTCTC	6060
CTAATGTAAC	ATAGACAGGA	TTGACCAAGT	CTTCTGATTG	ACTCAGAATT	TCCAAAGTTT	6120
GAGTTTGGCG	CGCTGTCAAT	TTAGTAGCAT	CTTGTCTCTT	СААТАСАААА	TGCTTGTCGC	6180
CAATAACCTT	GACAATATAA	TCCTTCTCCA	AAGCTGACTG	GTAAATCCAC	ATCAGATGTT	6240
GTCTGTCCTG	AGAACTCAAG	AGAGAAGGAT	TTTCAAGCCT	CCCGATAGTC	TGATAAAAAT	6300
CAAAAACAGG	AGCTAACTCC	TGCCAATCTG	ATTGGCTAGT	TGTCAAGGCT	AGAAAAAGGG	6360
CTTTGCGAGC	TGATACTTCT	TGGTTAGCCT	TGAGAGTTAC	TTTCCCCTCC	AAGTTTTTTA	6420
GAAATCGGGA	AACTCCAGAA	AGCAAATTTT	TCTCTAACTG	CGAGAAATAA	AAACCTTTCG	6480
TTCCCAGACA	TAAGTCTTTC	ATGTCGCTTT	CTCTAGCAAA	TAAGAGCTCA	AACATTTGAT	6540
agtaaaagaa	AAATATCTGG	CACTGGGTCG	CGCTCATCTT	TTCCTTATCG	GCTTCTTTTT	6600
TTAACCAGAG	CAAGGGCGAC	AGGTAGCTGG	ATTGAGACAT	TTCCTCTACC	TCCTACTCTT	6660
TTTTAACTGG	AGCATCTGCA	CTAGCTGCCA	CTTCTTTTGA	CTGGATACTT	TCCCACTGGT	6720
TAATCTCCTC	TGAGATAAGA	CCTTCGCATG	TCTTGACAAA	TAGGGCAAAA	GCCTTGGTCT	6780
TTCCTGCATA	TTTCTCCGTT	TGGCATTGAT	AGAGGAATTT	TTCTTTCTCC	AGGAGTTGCG	6840
CAGTTTTTTG	GTAAGAAATC	CAATTTTCCT	TTGCATTATA	CAAATTGATA	ATCCCCTCAC	6900
ACAGCAAGCC	GAGACTGGAT	AAGGCAACCG	AAATCAAACG	GTAGCGATCA	CCTGGCATAG	6960
GAATAGCACA	AAAGACAGCT	ATGAGGAAAC	CTGCCACGAT	TTCTGTTATT	TTTAATACCT	7020
PATAGCGCCT	ACGATGTTGA	ACGCTTTTCT	TTAAAAAATG	AGCTATCTGT	ACGTCTAATC	7080
GCTCTGTCAG	GTACATTTCT	TCTGGCGTCA	TATTCGTAAC	TCCTTTCATT	TACTTTGATA	7140
ATCAGGG						7147

(2)	INFORMATION	FOR	SEQ	ID	NO:	24:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 755 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

CCGCATGGGA	TTGGTGTCCT	TTTGGGCAAT	CTCTTTGACC	AAACTGGAAA	CATGTTTTAT	60
GCGCCTGCCT	TTACTGCCCT	TGTCGGCGGT	ACGTCTATAT	GATCCTAGTC	GCAAAAGTTC	120
CGCGCTTTGG	AGCCATTACC	ACTATCGGCC	TTGTCATTGC	CCTCTTTTTC	TTGGGAACTA	180
AACACGGTGC	TGGTTCCTTC	CTTCCTGGAA	TTATCTGTGG	CCTCCTAGCA	GATGGAGTAG	240
CTCATTTAGG	AAAATACAAG	GACAAAACAA	AGAACTTCCT	TTCTTTCATT	ATTTTCGCCT	300
TTAGTACAAC	AGGACCAATC	TTGCTTATGT	GGATTGCGCC	CAAAGCCTAT	ATGGCTACTC	360
TTCTGGCAAG	AGGAAAATCC	CAAGAATATA	TCGACCGTAT	CATGGTCGCT	CCAAACCCTG	420
GAACTGTCCT	TCTATTTATC	GCAAGTATTG	TCATCGGAGC	CCTAGTGGGT	GCCTTGATTG	480
GACAAGCCTT	GAGTAAAAA	TTTGCCCAGA	AAATCTGATC	AGTTAAAAAG	AGCCACGCGG	540
CTCTTTTTTA	TTTATGGCTC	AATTTCTTAG	TCAAGAAATC	TCCCAAGAAT	TGGATTGCAA	600
AGATAATCAA	AATGATAATA	ATGGTTGCCA	AGATGGTCAC	ATCGTGATTG	TAGCGGTTAA	660
ATCCATAAGC	GATGGCTACG	TTACCGATAC	CACCAGCTCC	AACCGCACCG	GCCATAGCTG	720
TTtcCCAACA	AGGGaAtCAA	GGTCACAGTC	GTCAC			755

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3010 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TTCAATTGGT	ATCTCAATCA	ACGGTCTTCA	CATGGTTTCA	ACTGGTTTGA	CTCTTGAAAA	60
AGCGAAAGCT	GCTGGTTACA	ACGCAACTGA	AACAGGCTTT	AACGATCTTC	AAAAACCAGA	120
ATTCATGAAA	CATGACAACC	ATGAAGTAGC	AATTAAGATT	GTCTTTGACA	AAGATAGCCG	180
TGAAATTCTT	GGTGCCCAAA	TGGTTTCACA	TGATATTGCA	ATTAGCATGG	GAATCCACAT	240
GTTCTCACTT	GCTATCCAAG	AGCATGTGAC	AATTGATAAA	TTGGCATTGA	CAGACCTCTT	300

360	TTACGGCTGA	ATGGCTGCCC	CTACATCACA	AACCATACAA	CACTTCAACA	TTCTTGCCA
420	TTAGCTAATT	CAGATAGTTT	AAGTTAAGGT	ATCTGGCCTT	TGAATGAGCT	AAATTAAAA
480	CTTAAAATGA	TCTGTTCTGA	TGTGCTTCAT	TTTTTTATCT	CAATTATAGT	GTCCCCATA
540	CGTTATGAAC	GACTGAAAAT	TAAAACAAAT	ATGATGAGGA	ACCAATACAA	AAGGTAGCT
600	CAGAATCCTG	TATGGATGTG	GTGGTGTTAT	ATGCTCAAGG	CTTGGCACAG	'AAATAAAA
660	GAACGAATTC	GATGGCCTTG	CGGCAGCTGT	GCTGCTGGTG	TATCGCAGAA	ACAGGCTCG
720	ATGATTAAGG	CGACCCAAAG	CCCGCATGAG	GGAGGAGTTT	TCGTGCAGCT	GGCTGATAT
780	CATTTTGTTG	CAGAATCGGG	TGGCTAAGGT	ATTCCAGTAA	AGCGGTTAGT	AATCCAAGA
840	GTTCTATCTC	CGAGAGTGAA	ATTATATCGA	ATTGAAATTG	TTTAGAGGCT	AGCTCAGAT
900	GTCTGTGGTG	AGTTCCTTTT	AAGAATTCCA	GTGGACAAGA	CCGTTTCCAT	AGCTGATGA
960	ATTCGTACCA	TGCTTCCATG	TCGCTGAAGG	TTGCGTCGTA	GGGTGAAGCC	TAAGGATTT
1020	ATGATGAATC	TCATATGCGT	AAGCTGTTCG	GATATCGTCC	AGGGACAGGG	AGGAGAACC
1080	GCCAAGGATT	TTATGTTGCT	AGGACGAGCT	AACTTACGTG	CCGCATTCAA	GGAAATTCG
1140	CCAGTTGTAA	TGGAAAATTG	TTCATGAACA	GTCCAATATG	TGTAGAATTG	GCAAGTCCC
1200	CAATTAGGGG	GTTAATGATG	CAGATGCTGC	GCAACGCCAG	TGGAGGTGTT	TTTCGCTGC
1260	AAACGAGCGA	AGATCCTGTT	TCAAGTCAGG	TCAGGTATTT	CTTTGTCGGT	AGAGGGGGT
1320	CAAATCTCTG	AATCCTAGCT	GTAATCCTCA	ACTAACTTCC	TAAGGCTGTG	TGCCATTGT
1380	CTCATGGCTG	AATCCAAATT	ATGAAAATGA	GTTGGTATTA	AGAAGCCATG	AGATTTAGG
1440	GCAGAACATG	AGGGGCCTTT	TGGCCTTGCA	ATCGGAATAT	ATAGATGAAA	ACGAGGAAA
1500	GATGATTTTC	CAGAAATCTA	GTGTAGAACT	GGTGTCGAGA	AGATCAATTA	AAAAGTGCT
1560	ACAACCATGG	TGGTGAGTCT	TTTTGCCTGG	TCGGGTTTGA	GAGTGACTTG	GCAAGATCA
1620	CTATCTGGCT	AGAAGCCATT	TTCCCATCCG	AACATGCTAC	ACGTGACCAG	CAAGCTCTT
1680	ACTTCTCAGA	TAAGGAAATC	TTTTGCTGGC	GCGGGCTTAA	TGGGACCTGT	ACCAGTGTT
1740	GGCCCCAAT	TAATGCTTAT	TGGTCGAGCG	ATGGATATGG	TCTAGGAACT	AGAGAGTCA
1800	ATGACCTTTA	CAAGATTCCA	AGGGAGTTGG	GCAGAATGTA	CTACACGGAA	'AGGAAGTTT
1860	ACAGTGAACA	AATTTTAGCA	agggtgtaga	AGTGTTGGTG	GATTATCAGT	CCGTGGTCC
1920	CCAGAATTGA	TTCTTTTCAT	TGTTGGTAAG	GAAAAAAATA	TGCAGCCCAA	TCAAATTGT
1980	AGTTGAGATT	TAAAGAAAAA	TCAATATGTG	CAGTACTTTA	GCGCTTGCAC	TGATGATGT
2040	GCGGACGCAG	GTATTGAAGT	CAATAGCGAT	ATGTAATAAA	ACTTTTTTAC	AATTTCTCA

СТАССАТАЛА	GAGATGCCAA	ATCATCTCA	296	ጥጥጉርጥጥርርርር እ	TAAAATCCAG	2100
CTCCAACTGT	ATAACAGAGT	CCGCCAGTTA	CCATGAGACT	CCAGAAAACG	GGTGTCGTTT	2160
GACTGATAAT	GGCAGGAATG	ATAGCCAGAA	CCAACCAGCC	CATAATCAGG	TAAAGAGCAA	2220
GGCTAAATTT	CTCATTGACC	TTTTTAGCAA	AGATTTTATA	GAGAATACCA	AAGATGGTCG	2280
TTCCCCATTG	GATGACAATA	ATCAGATAGC	CAAACCAGTT	ATTCATCAAG	GTCAAGACAA	2340
CGGGCGTGTA	TGAGCCGGCA	ATGGCAACGT	AAATCATAGA	ATGGTCAATG	ATTCGCAAAA	2400
CATATTTGTG	GGTCGAACCA	TAGGCCATAG	agtgataaat	GGTGGATGAT	AGGAACATGA	2460
Gaaagagact	GATGACGAAA	ATGGAAACGC	CGATAGAGGA	TAAAAATCCG	TGTGCTTCAT	2520
AACTATAGAT	GGATGAAATA	GGCAGCAAGA	TAAGCATGAT	GACTGCACCC	ACAGCATGGG	2580
TCACGCTATT	AGCAATCTCC	TCTCCAAAAC	TGAGTTGTTT	GCTGAGTTTA	AGACTAGTGT	2640
TCATTGGATT	ACCTCCTCTT	GAGTATGATC	GATTAAGTCT	AGAGTTTGAT	GATAGAGTTT	2700
AACGGTTTGG	CAGCTGGTTT	GGATAATAGG	GTTAGCTGGG	TCAATTCCTT	GGTTCATGTA	27 60
GTCCACAAAA	GCATCGTAGA	GTTGGTCTGA	ACTTGCTTGA	GTTTGTAGAG	TATTAAGTGT	2820
CTGGGCTATT	TCTTGAATAG	AAAATACAGA	CTTGAGGGTT	GTGATAGCAA	TCAAACGGGC	2880
AATCTGTTGG	CGTTGGTATT	TTTTTTTGTC	AGGCTTTGTC	AGGTAACCAT	TTTTCACATA	2940
ATTGTTGACC	ATAGATGCTG	TTAGGCCCTT	GTCTTTATTA	GGAGAGATAG	GGGCGCAGAC	3000
CTGATTGACA						3010
(2) THEODM	ATTON FOR CE	O TO NO. 24	٤.			

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15213 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CATAAATCGG	TGCAAATAAC	TTAATAGTGA	AGTAGCCATT	TCTTTCGTAT	TTACCTGAGG	60
CATATTCCCT	AGACGAAAGA	ATATTATTAT	CAATCAAATC	ATTGAATGAA	CGTAGTCTTT	120
CAACTTCTTC	TACTGTTAGA	TTTCTGACAA	CATTTGTTGC	ATAGACCTTA	TTTCCATCAG	180
GATCAGGATG	GTACTCATTT	GTAACTTTTC	TAAGAAGTTG	TTGTTTTTGA	TTCGTATCCA	240
ATTTAAGAAT	TGAATTTCCT	TCGAGATATT	CCAACATATA	AACAACGTCA	AACATGTTGT	300
GGACATATTG	CTTCAAATCA	TCTGCATTAT	TAAATCTTGT	AGTTGGATCA	AGTACTTGTA	360
ATCGTCGACT	TTCTGTACTA	TCAGATTTTG	AATGTTTCAA	GATGGAGTTG	ATGGTAATGG	420

480	TCTGGTCCCA	AGCAAAGAAC	ATAATCCTTT	GGTGCTTGTA	TGGATGGTCT	TCGCATCATC
540	TGTGTCATCT	ATCTGAGTCA	AAATGTCCTG	CCTCCAAGAT	TCGACCATAT	AGCCACTTCT
600	TAATAAACTG	ATAACCCATA	CCAACATTCG	CCATCCTTAT	AGTAATAGCT	CATGCGTATA
660	ACAGGTCCAA	TTTATTTCCA	TATGCCCAAC	CCGTGTTGAT	AGCATAAGCA	CATCACCTGT
720	GCTTTCCCTA	CACTTCTGTA	CAAAATCTGC	TTTGGATTAT	CATTGCAGGA	AGAAATGTTG
780	TAAAGTTTTT	ААТАТТТСТА	CGTAAAGCAA	TTATAAGCAT	ATCGCCAAAT	CGGTATTATC
840	TGACGTTTGG	GTGATCTCGC	AATAATCGTA	ATACGATACC	GTCGTCTAAA	CACGTGCATT
` 900	TTATGGTCAC	CTTGCCCGCT	CATTGAGAGC	TCAACAAAAT	CGCATTTTCT	CTGTTTCACG
960	ATGACAAATA	CATGGTCGAG	CTAGACTAGA	GCTCCAAATC	GCGATCATAA	TACTGCGGTA
1020	CATGTGGCAC	GCGGTATTTC	AGACCATATT	AGGAGAGGCA	TGGCAAGGTC	CGGATCTCTC
1080	TGCTTCGTTT	AGCTAACCCT	ACTTGGTGCC	CCGATAGAAT	АТСАТАЛАСА	TCGTGATACG
1140	GATTTAAACC	CTTAGTCTCT	CAATGTAAGC	TTTTCTTCGA	GATAGTGGAT	TCACCTCTTC
1200	GTGCTAAACA	ATGTTCCAGC	CTTTTCGGTA	GGTAAAAAGA	GCTTGTATTT	AGTCATTATT
1260	TTATTCTTAG	AGTATCGACA	TGATACCATA	CTGGCAAGAC	TCCATGTTGA	AATCTGTCGT
1320	GGTGAAGCAT	AGTATCTAAT	ACTCAATCAG	GATTTACCCA	GTTAAAGCCA	CTAGAAGATT
1380	ACCTGACCAT	TTTGACATTC	GAACTAGGTC	AAATGGTACA	AAAGAAGTCC	TCCCCTTACC
1440	TCCTTGTTGC	TAGCAAGGCT	TCAAGCCAAG	TCCAGATAGG	ATACCACCGT	AGCTAAAGTT
1500	AGTCCAGCAT	AGCACTAGCC	TGACGGGGTT	TAACCTTCAG	ATCTACAAGA	GTTTGATTTT
1560	GCGAACTGGT	TTTTGTTTTG	CCAGTTGTTG	AAACTGTCTT	GAGTTTTTTC	CCGCTGACAA
1620	TTTCTGATGG	ACCCAGCGTC	TTGGAGAAAT	TGCTTGACGT	GAGCTCAGTT	CTTCTAGATA
1680	ATAGAGGTTT	TTGCTTGATG	CAGGTAAGAC	TTTTGTAAGT	ATAGTCAACC	CTTCTGAATG
1740	CTATATTCTG	ATTGCCCAGA	GAAGTCCAGT	GGCGTATAGA	GAATTGGTTT	GGTCATACAG
1800	TCATCCTTGT	CTCAGATAAA	GATCCAGCTT	TGGTATTTGA	GAAATCATTC	CTAATTTGGC
1860	ATGACTTGGT	AATGTCTGTG	TGTTAGAAAC	GCAGTCTGTT	GAGTTTGTTT	AGTGAAGCAA
1920	TTCTCATTGA	TAAAAGACTG	CTTTTTGATA	GACAAGAGTT	CATGACTGCT	TGTCCTTCAT
1980	TTTTCAATGT	AGGTAGCAAT	TGTTGTAGAA	ATGGTTGCCT	GTATTTGACG	CCAGGTTTCC
2040	TCACTGTCTT	СТТАСААААА	AATAGGCCAC	TTAGCTTGAT	CAAGTTGCGC	TTTTATAAGT
2100	ATTTCTGCTT	GAGAGGATTG	TTGGTAAAAT	GGCTCCACTG	TGTTGAAAGT	TTTTGCCACT
2160	GATTCCTTGC	TTCTTCAAAG	TTGTTCCTCT	GCATCTÁGCA	AATTTGAGAA	TTTTGCTTGC

			. 298			
rGACGACCTC	ATCCTTGACC	AAGGTGACAT	TGTAGACTCT	GTTGGCCTTG	CTGCTGAATG	2220
CTCCTTTAC	CTTCATTTCG	TTATAGTGGT	AACCAGTGAT	GGCATTŤCCG	TTGGTTACAT	2280
PAACATCGCT	GAGAACATTG	GTCAAACTTC	CAGCATGCCT	AACATCACCA	GAAGTTCGAT	2340
CCACAAATT	GCCTGCCACT	CCAGCGACTC	TACCAAAGTG	CTTGACATTG	TTGATATCAC	2400
CTTCAGCATA	GCTATCTTGG	ATCTGTGCAT	CTCGGTCTAC	TAGGCCTGCA	AGTCCACCCA	2460
CAGTCTGATC	TGAAGTATTT	GTGTTAGATG	AAATGGCTAC	TGTCGCTTTT	GACTTAGTAA	2520
STAAAGCCTT	GTCACCTGTC	AAATGACCGA	CCATACCACC	GATATTGTAG	GCAGCAGTCG	2580
TTCATAAGT	GTTGATAATT	CTTCCCTTGA	AACTGCTCTC	TGTGATGCTT	GATTGCTCAG	2640
CCTTAGCCAG	CAAACCACCG	ATACCACGTT	CACCAGCCAG	AACACCATCG	ACGTGAACTT	2700
CTTAATT TT	TGTGTTATTC	TGAGCTTCAT	TTGCCAGTGA	ACCGATATCA	TCTTTCCCTG	2760
AAATAGCAAC	ATTTTTTAGA	CTCAGTTTTT	CTACTGTAGC	ACCACTCAAG	TTTTCAAACA	2820
GAGGTTTTTT	CAAATTATAG	ATAGCATAAT	TCTTGCCATC	TTTTTCACCG	ATTAAACGAC	2880
CAGTAAAGGT	GTCCTTGATA	TAGGATCTTT	CATCAGGACC	AAGCTCCACT	TCGTTAGCAT	2940
rcaggctggc	CGCTAAATGA	TAGGTTCCAG	AGGGATTTTG	GTTTATAGCT	TTGACCAGAT	3000
PACTAAAGGA	AGTAAAGTTT	GTTGTTTCTT	CTGTTCCCTT	CTTAGCTAGA	TAGAAGGTAA	3060
ATTATCTTT	ATATCTGCTT	TCTATCTCCT	GCTGAAGCTT	CTCTACTTTT	GCTGTGATTT	3120
TATAAAGGAT	TTTATCATTT	TTTCTTTCCT	CTGATATTGA	TGCTACTGGT	AGGTATACAT	3180
CTTTGAATGA	AGAAGATTTC	ACTTTAACAA	AGTAGCTATT	TGGATTGCTT	GGAACTTGCT	3240
CTAACGAAAT	GTGTTGTTTA	TAAGTACCAT	TTGACAAACT	GTATAACTCT	AGGTCGGAAA	3300
CATTTCTTAA	TTCAAGTGTT	TTCTCTGGTT	CTTCTACCTT	TTTATCAGGG	TCTAGTTCAT	3360
PTTCTTGTTT	AATTTCTTCG	TTTCCATTTG	AATTGGATGT	GTTTGATTCG	GTTGAAACAT	3420
CCTCAGTTGA	ATTTCCGTTT	GATGGTTCTG	GTTCTGTTTG	TCCATTCTCT	GATGTTGTAT	3480
FACCTGAATT	TTCTGGTTTT	GTTGCAGTTC	CGTTTTTTTC	TGGTTGATTT	GATTCTTCAA	3540
CTGGTGGTTT	TGAATCACTA	GGTTTATTGG	ATACTTCTCC	AGTATTTTCG	TTAGCTATTT	3600
rcccagagtt	TGTTTGTGTT	TCTTCTGCAG	GTTGAACTGG	TTTTTCTGTT	TCTTGATTTG	3660
AGGTACCTTC	TACTGTGCCT	TCATTTGGAT	TTACTGGAAC	TTCTTCTACA	GTTTTTTCTG	3720
ATTTTCATT	TTTAGAGTCA	TTATGTTCTG	GTTTATTTGA	TTCTCCAACT	GAGGTTGTCG	3780
AATCACTAGG	ATTACTGGAC	ACTTCCCCAG	TATTTTTGCT	AGATGTATCT	GGTGATACTT	3840
PCTCTGAATT	CGTTGTTGAT	TCTTCTGCAG	GTTGAACTGG	ATTTTCTGCT	TCTTGAATTG	3900
AGGTTCCTTC	TGTAGTACCT	TCATTTGGAT	TTACTGGTGT	TTCTTCTGTT	GGTTTTACTG	3960

GAACT	TCTTC	AGTTTTTTCT	GGACCTTGTT	CTTTGGTCTT	CTCAACCGGA	GTTTCAGGTT	4020
TACT	TGCTC	ÄATATTACCC	TTATATTCTG	GAAGCGGTGC	TACCTGCTCT	GGTTCACCTT	4080
PATCA	CTTAC	CACAGTATCT	GGCGACTCTG	GTTGAACCTC	AGTCTCACCT	TTGTCGGTCA	4140
CAACT	GCTTC	GGGTAATGTA	GGTTGAACTT	CTGGTTCGCC	TTTGTCACTT	ACTACAGCTT	4200
CGGGC	CAACTC	AGGCTGAATT	GCGGGTTCAA	CAATAGCTCC	AGACTGTACG	TCCTTATGTT	4260
CTACA	CCAGT	CTCAGGTTGT	TCCTTTATAA	CTTGAGTTTT	TTTAGTACCT	TTTTCGACTA	4320
PTCTT	GGACT	AGGCGCAGTC	GTTGAAGTTG	AAACAATTTC	TCGCGAAACT	TCTTCCTTGT	4380
PTACA	GAGAA	TATTCTGACG	ATTTCAACTT	TCTTACCTAA	TTTACCTTCT	TGTTTTACTC	4440
TACA	GTTCC	TTCAGCTAAA	TCAGGATTTT	CTTGAATTTC	TTCTTGAAAA	TCTATTTTTG	4500
CTCC	ATAGT	TTCCTCACGA	TATAAGAGTT	CAGGTTTGTT	CAATTGACCT	GATAAAACTT	4560
CATCC	TGTGG	ATTTAATGTA	TTTACCCCAG	TCTTTTCTTT	TGGAGAAATC	TTCTCCTCTT	4620
PCTTC	GTTTC	TAGATTCTTA	TGTTCGGCTA	ATTGTTCTTG	AGAATCTGAA	GATTGTTTCT	4680
CTTCT	TTTCT	TGGATTGATT	AATTCAGTAG	AGAAAGGTTT	TTCAACTACT	TGAACTTCTG	4740
rcggc	TTAGT	TGAAGAAACA	GCTCTTTGTT	CCTGAATAGC	TTGTACTGTT	GATGGATGGT	4800
TACA	LAAAT T	CGGTGTAACA	TTATAATCCA	CCTTTTGTTG	TTTTGTAGGA	GTGGCAACTG	4860
AACTC	TTTTG	ATTACTTACT	TCAGACTCAG	AAGTCGTTTT	TCCCTCTTTG	ATATATCCAA	4920
AATAT	GTGTA	ACCTGAAATC	TCTTTAGGAA	GAGGTAATTT	TTCTCCAGAG	GTCAATTCAT	4980
AGTCC	GTATT	GTAATTTAGC	AAAAGATGAT	TTTCTAAAGC	ATGGACTGAA	ACTAAGACAC	5040
CATTT	CCTAT	CCCTGCAACC	AATACTAAAT	GTAATACCGT	TTTATTCTTA	ACCTTTTTCT	5100
rggaa	ACAGC	AAAAATTAAA	ATTCCCATAG	CAGCTAAGCT	AGCACCAGCA	ACTAGGGCTT	5160
CCTC	TCATT	CTTGCTTCCA	GTATTTGGCA	ATTCCGCCAG	TTGATTTTGA	GAATTTAACT	5220
AATAT	ACAAG	ATAATAAGTT	TCATCATCAT	TCTCCACGTA	TGTCGGAATA	TCATAGACAA	5280
CTGC	TTCTT	TTCTTCTGAT	GATAGCTCTG	AATCTGCCAC	ATATTTATAG	TGAACTCCCG	5340
CAGTT	TCTTG	AGCATCCACA	GATGAACTAG	CTAATACAGA	CATAAAAAAT	AAACTTGAAA	5400
rcgtt	GCAGA	TACAAGTCCT	ACTGATAATT	TTCTAAATGA	AAAACGCTCT	TGTTTTTCAC	5460
CAAAA	TACTT	TTCCATTATT	CCTCCTTGAA	ATAAAATTA	TATATGTTAC	AAAGACCTTT	5520
TATE	ATTAG	TGTATTATCT	ATTATCTATA	GAAAAGGCAG	TATACCTTAA	TTATACTCTT	5580
\ATTT	ACAAA	AAAGTCTTAA	AATTGAGATG	CGCTTTCATA	CTTTGTTTTA	TATTATTTGG	5640
GGTA	CAATA	ACACCTACCA	TGAAATTTAC	ACGGTAGGTG	TTACTCATAT	CACTAATCGT	5700

			300			
TCTAAAAATG	GTTTGAGGCA	GTTGAGGAGA	ATTCCTTCTA	TCCAGCTTCC	TTGTGCTGAT	5760
GAGCGATGGT	CTTCCTGCAG	GCTTTTTTT	AGAAAATCTC	GGACTTGTTC	TGGTGCGATT	5820
TCAAATTCAA	AGGCTTTCAT	TTTATAGAAA	AAGTCGATGA	GATGATCTGA	CAGGTATTCA	5880
GTTGAAAAGG	GTACTTCACC	ACTTTTTCTA	TATTCTAATA	AGAGTCTAGA	AAATCGAGCT	5940
TTTTCTTCAG	GAAGCTCACG	AAAATAGGAA	TTGAGGATCC	AAGTCTGCTT	CTGTTTTCTT	6000
TCAATTGGAT	CCTGACTGGC	AATTCGTTGG	TCTTTTTCCA	GCTCTTTTTG	GTATTGTTTG	6060
GCCTTGATAG	CTCGTTCTGC	TCTATTTTTA	CCAAAAAGAA	TTTTTTCCCA	CTTGCGTTCT	6120
TCTTGAGTCA	GGGTCTCTGT	AAAGCCAAAG	TAATCTTGAT	AAGCACGCTC	TGCGGGTCCC	6180
atggctagaa	CCAGATTGTC	TGCATATTGC	TTGGCGATTT	TATCCCTCTT	CTTGCGTTCT	6240
TTCTCTGCCT	GGATACGGAG	TTCTTGTTCG	TAGTCAATTT	TCTCCTTGCC	TAGCTTGACA	6300
AGGTAGAGTT	GGTCATCCGA	TTTCCCAAGT	AAAAAGGGTT	TGATACACTT	TTCAAGGACT	6360
TCTTCCATCC	GAGCCTTTTT	CTTTGGTTCC	GCCTTGGTCC	AACTTCCTCC	CTGAAAGACT	6420
TCTAGGAAAA	GCTGGTAGTC	TCTCTCAGGC	GCAAATTGAT	TGCCACGATT	GGGTTTGAAA	6480
ACACCTTTTT	CCCAGAGCCA	TTTTAGAAGT	CGCTCGTCAA	AGTTACTTTT	ATTGACCTTG	6540
ATTTTTTCCT	TTTTCTGAGC	TTTTCTGGTT	AGATTTTCAA	CCTTTCTGAG	CAGTTTTTCT	6600
TCCTCTTCCA	ATTGCTGGTC	AAGGGACAAT	CGATGAAAAT	GACGÁACACA	GTCGCTACCA	6660
ATTGGAAAGA	GCCTTGCCC	TGTGACACCG	TTAAAGAGTT	CATAAGCGTA	TTTGATGGCA	6720
TTTCCACAGA	CACAATTGCT	ACGGCCGATA	CCGTTAAAAA	TAAAGGAAAC	TTCATTCCAT	6780
TCCTTGGTAG	CTTGTTCCCA	AGTATCCGCT	TTCGAAGCCT	GTAAAACTGC	ATÇGTGCAGG	6840
GATTTTCTAA	CTGGAAGTGT	CATGAGGTCT	CCTTTCTAAT	АСТСААТААА	AATCAAAGAG	6900
CAAACTAGAA	AGCTAGCCGC	AATCAGCTCA	AAACACTGTT	TTGAGGTTGT	AGATAGAACT	6960
GACGAAGTCA	GCtCAAAACA	CTGTTTTGAG	GTTGTGGATA	GAACTGACGA	AGTCAgTAAC	7020
CATATATACA	GCAAGGCGAA	GCTGACGTGG	TTTGAAGAGA	TTTTCAAAGA	GTATAAGTTA	7080
TACTTTTACA	ACTTGAACCT	CGTCTTTACC	GAGTAAAATC	AAGTATTTT	CAATATTTTC	7140
AATCGAATAG	GCTCGTGATA	AAGCCTCTTC	GTATAGAGCT	AACTGACCAC	GATAGCGGTC	7200
TACGAGTTGA	CTTGGTTCAT	CATAGCGGTC	TGTCTTGTAG	TCGAACAGAA	CAATTTTGTT	7260
TTCGTAAAGC	AGATAGCCAT	CAAGGATACC	ACGGACAACA	AAGTCTTCCT	GACTCTTTTG	7320
GTCTCGTTTG	AGCATGGAGA	AAGGTTGCTC	GCGATAAAGA	TGGTCGGTAT	TAGCAAGAAT	7380
TTCCTGACCG	AGTACTGTGT	CAAAGAAAGC	AAGAATTTTA	TCAAGATTGA	TCTTGTCTCT	7440
GACAGCTTGG	CTAGTTTGAA	CTTGTTTGAG	TGTTTCTGTT	AGGCTAGCAA	GGGTTAGTTG	7500

301

CTGGCTGAGG	TCAATTCTCT	GCATGAGTTC	GTGAGTAGCA	CTACCAATCT	CAGCTCCAGT	7560
TACCTTTTCT	TTGGTTGAAA	AATCTGGCAA	ATCGAAGCTG	ATTTTCTTGC	CTACTGACTG	7620
ACCTTGACCA	GCAATCTCGA	CACCTTCCAT	ATCCATAACT	GGTTCGTAGA	ATTTCTTGAT	7680
TTGACTTGGG	GTTTGAACAC	TAGGAAGTTC	AATAGCTGCG	CGGTGAAGAG	TATTATAAAC	7740
TTCCACCTCC	TTCAGCATTT	CCAGAGCTTC	TTTGATGGTA	TCTGACTGAC	GATTGTCTGC	7800
TTGGGAGCTA	TCTTGGAGAG	GACTCTTGGT	TTCCAACTCT	CCGATAGCTT	CTCTGGTCAA	7860
CTGATCTTCG	CCAATAAAAC	GATAACTAAA	GTTGAGCTTG	TCCTTAGTAA	ACACTTTACT	7920
GATAGCCCAA	AGCCAATCTT	GGAAATTCCG	TGCTTGCAGT	CTAGTATTGC	TATTTAGTTT	7980
CCCATTTTTG	GCTGCTGGGT.	ATTCCTTGGA	TTCCAGCTTT	TCACGAGAAC	CCTTGCCGAC	8040
AAGATAGAGC	TTTTTCTCAG	CCCGCGTCAT	AGCAACATAC	AGCAAACGCA	TCTGCTCAGA	8100
ATAGCTTGCT	AGCTGTAATT	CCTCTTCGTT	CTGCCTATAG	GTCAGACTAG	GAATGGAGAG	8160
TTTGATGGTT	TTAGGATAGT	GGTCTTCTAC	TGCCCCTGTC	TCCATCTTGG	CAATATATTT	8220
GACACCAAGA	CCATTCTGAC	GACTGAGAAT	GACTTCTGAC	ATAGAGTCTT	GCTTGTTGAA	8280
ATCTTGATCC	ATATTGAGGA	TAAAGACGTA	AGGAAACTCC	AGCCCTTTAC	TCTTGTGGAT	8340
GGTCATGAGC	TCTACTGCAT	CTTTTGGCGG	TGCGACGGCC	ACGCTTGCCA	AATCGTGCTG	8400
GGCTTCTAAG	ACTTGGTCAA	TCATACGAAT	AAAACGCGAC	AAACCTTTGA	AATTGCTCTT	8460
TTCAAATTGA	TCAGCACGCA	GTGCTAGGGC	ATAGAGATTG	GCCTGCCTAG	CAGGACCATT	8520
CGGCAAAGCC	CCAACATAGT	CATAATAAAA	ACGGTCGTTG	TAAATCTTCC	AAATCAAGTC	8580
ATAGAGAGAG	TGGGTTTTGG	CATACAAGCG	CCAAGAAGCT	AGGATATCCA	TGAATTGCTT	8640
TAGTTTTTCA	GCTAGAGCTG	TGTGAATCAA	GCCTTTTTGA	CTACTTGCCA	TTTTTTGTGC	8700
ATTGACCAGT	TTCTCATAGA	GATTTTCGTG	GALTTTATCC	TOTSOTTTOT	GAAGGGACAA	8760
ACGTGCTAGC	TCATCCTCAT	CAAAACCAAA	CATTGGAGAC	TTCATAAGGG	CAACCAAGGC	8820
GTAGTCTTGC	AGGGGATTGT	GAATGACACG	AAGAGTGTCT	AGCATGACTT	GCACTTCTAG	8880
GGATTGGAGA	TAATTGTTTT	GCTCTCCGTC	AGTTTTGACA	GGAATTCCGT	ACTCAGACAG	8940
GGCGAGGAGA	ATCTGGTCAT	TACGACTGCG	GCTGGAGGTC	AGAAGGGCAA	TTTCCTTAAA	9000
GGCAACACCT	TTTTCTTGAT	GAAGTTTCAG	AATCTCCTTG	ATAACTAAGC	GCATTTCGCC	9060
TGTTAGTTTC	GTTTCTGTTT	GACTCTCTTC	TTCCTCACCT	GTATCGTCCT	TGTCGTAGAG	9120
GAGAAATGCT	CCCTTCTTGT	CTGGATTGGG	AGTCAGTTTG	GTATTGGCAA	AAACAAGCTG	9180
GTGCTTGTTA	TCATAGTTGA	TTTCGCCGAC	CTCTTGGTCC	ATGAGACGTT	CAAAGACATC	9240

			302			
ATTGGTTGCT	GACAGCACTT	CTGAACTACT	ACGGAAATTT	TCCTTGAGGA	TAATGAGCCT	9300
GCCTTCTTGG	GGATTTTGCG	CATAGCGTTG	GAATTTCTCA	TTGAAAATCT	GCGGGTCTGC	9360
CTGACGGAAA	CGATAGATGG	ATTGCTTGAT	ATCTCCCACC	ATAAAGCGAT	TGTGGCCATT	9420
AGACAACAAT	TCCAGCATCC	GTTCTTGAAT	atggttggta	TCCTGATACT	CATCGACCAT	9480
GACTTCATGG	AAGCGCTCCT	GATAAGACTC	ACGAACTTGT	GGGAAATTCT	СТААААТСТС	9540
aatggtgtaa	TGGCTGATAT	CAGCGAATTC	GAAGGCATTT	TCCTGTCGTT	TTCTCTGACG	9600
ATAAGCCTCT	ACAAAATCGC	TCATGAAAGA	TTGGAAGGTT	TTAGCTAGTT	TCCAAGTGTC	9660
TCCATGATAA	CGTTCTTGAT	AGTCGAGAAT	CGCTATCTGG	TCTGATAATT	GTCCTAGTTT	9720
AGCAAACTGG	GTCTTTCTCT	CTTCGTTGTA	GGCATCAGCC	AGGGGCTTCA	AATCAGCCTA	9780
CGGCTGGCAT	TAGTCAGAGC	TCGACCGTTT	TTCTCCTTAG	AGATGGCGAC	AACACGCGCA	9840
AGCACTGCCT	GATAAGCCTG	ACTATCGGAC	TCCTGATTTA	GGGAGCCAAT	TTCATCCAGA	9900
ATTAACTGAA	CATTTTCTAA	ATAGGCAGCC	TTTGCAAACT	CCTTGGCATC	GTTATCCAGA	9960
TGGTAACGGA	AAAAGCTTTC	CAAATCCCAA	AGGGCTTGTT	TGATTTGCTC	GGTCAGTTTT	10020
TCTTTTTCAC	TGGTAAAATC	AGCTTTCTCA	AATCCTTTGA	GGAAAGATTC	ACTCAGCCAC	10080
TTTTGAGGAT	TACTGGTGGA	TTGGAGGAAG	TCATAGATTT	TATAGACCTG	CTGGCGCAGA	10140
CCCCGTTCGT	CCTTGCCACG	CCCAGCAAAG	TTTTTCAGCA	AATGACTAAA	GGTCTCTTTC	10200
TGTTTACCTT	GGTAATGCGC	TTCAAAGACC	TCATGAAAGA	CTTCGTTTTC	GAGAATAAGT	10260
TGCTCGCTTT	GGTTTTGTAA	AATACGGAAA	TTAGGTGCAA	TATCAAGCAG	ATAACCATGT	10320
TTGCCAAGGA	ATTTTTGTGT	GAAAGAATCC	ATGGTTCCAA	TGGCAGCGTT	GGGTAGGTCT	10380
GCCAACTGGC	GACCCAAGTG	TTGTTTGAGG	TCGACATCAT	CTGTTTCTTG	GATTTTCTTG	10440
CTGATTTTTT	TCTCTAAACG	TTCTTTAAGT	TCAGTTGCAG	CCTTGACGGT	AAAGGTTGAG	10500
ATAAAGAGTT	GAGAAATTTC	GACACCACGC	GCCAATTGGT	CCAGAATGCG	CTCTGCCATG	10560
ACAAAGGTCT	TTCCAGAACC	AGCCGATGCT	GAGACCAGGA	TATTCTGGGC	AGAAGTGTAG	10620
ATAGCTTCGA	TTTGCTCGGC	AGTTTTCTTC	TGTTCCTTGC	TCGAATTTGC	TTCTGCTTCT	10680
TGCAGTTTTT	GAATCTCCTC	CTCACTTAAA	AAGGGAATAA	GCTTCATCGA	TTCAACTCCT	10740
СТСТТАТТТТ	TTCAAGCCAA	GCTTGCTTGA	GTTTTTCTCC	GACCAGACGC	TTGCCATCAG	10800
CTAGGTCCAA	CTTTTCTAGG	AAACGGGCTT	GGCCCAGATG	GTAATTGGCT	ŤCAAAGCCTG	10860
TAATAGCCTG	ATGTTGCTGG	ACGTATGGGG	CAATGCTTCT	GCCATTTTCA	GTATAAGGAT	10920
TGATGGCGAA	CCGCCTGCT	AAAATCTTCT	CAGCAGCTTT	CTTGTAAAGA	TAGGCATTGT	10980
AGTCCAGTAG	GAGCTGAAAT	TCCTCATCTG	TCAGTTGATT	AGCCTTGTTT	TTGTTATAAA	11040

303

ATTCGCCTAA	ATAACTGCTT	TCTTTTTCCA	AGAAGAGCCC	TTGGTATTTC	ATAGATTTGC	11100
TGGCTTCTAC	CACTGCTCCT	GCCAGACTTT	TTACCGCCAT	CAGAGATTGG	ACAGGTTCAG	11160
CCATTTCCAA	GTACATGGCG	CCGAAAAAGT	TCTGCTCCCC	TTCTCTTTTT	AGGGCAGCAA	11220
GATAGGTTGG	TAACTGAGAA	TTGAGCCCAT	TAAAGAAATG	AGGAAACTGG	AACTGAGTCA	11280
GACTGGATTT	GTAGTCTACT	ACTCCTATCG	CTCCATTAGC	TTTCAAACGG	TCAATCCGGT	11340
CCACCTTGCC	TCGTACAAAG	ACACTGCGTC	САТТСТАА	ттсаатааас	GCTTGGTCTT	11400
TTCCACCAAA	ATTTGCTTCT	TCTTTGATGG	TTTCGATGGC	TGGATTGTGT	CGGAGAATAT	11460
GTCCAGTTGT	CCGTGCAACA	TCAAGCAAAA	CTTCCTTGGT	AAACTGGGCT	TCCAAACTTT	11520
CTTGATAAAT	AGCTTCAAAT	TCGCGTTCTT	GACTGGTTTC	TTGAATAGCT	TGTTCTAGAC	11580
GTTGGTCAAA	GGAATCTTCA	TTAGGCAACT	GTAAGGCGCG	TTCAAAGATA	CGATGCAAGA	11640
AATTCCCGTG	ACTACGGGCA	TCAGGATGCA	AACGTAATTC	CTCCTGCAAG	CCTAAAACGT	11700
AGCGTAGGAA	ATAACTGTAT	TCATTGCGAT	AAAACTCTGT	CAAACCCGAC	GTAGACAGGT	11760
AAAACTCCTG	TTTGGCAGGA	TAGAGAGCTT	GCAAGGTGTC	CTTGGCTAAG	GTCTTGCTGC	11820
TTGGACTGGT	TGGGATAGCT	GGATTTTCCA	GACCTTGCTG	ATCTAGTTTT	TTACCTATGA	11880
CACGCGACAG	AACCTTGACA	AAAGTCAAAT	CTTGCTCAGT	ATCGCTCATC	TCACCCTGCT	11940
GGTGATAGGC	AACCAGACTA	GACAAAAGAC	TGTGATAGGA	CCCCATATCC	TCCTTAGACA	12000
GTCCTTTGTG	ATTCATCCTC	TTCTCTCTCC	GCCTAAATCC	AAAATGGATC	AACTCTTGAA	12060
GATAGGCAGA	TTCCTTACTT	TCACTTTCGT	TAAAAAGGCT	TGGAGCCGAC	AAGAACAACT	12120
GCTTACGAGC	AGAATTGACC	AAGGAAAGCA	TAGTGTAGCG	ATTTTTCTTG	AGATTTTCAC	12180
TGCTGGCAAT	CAGTAATTGA	ACGCCTTCTT	CGGTCGCTTG	GTTTAGGTTT	TGCCTTTCTT	12240
CATCTGTCAG	AAGACTGGTG	TTTTGAGAAA	TTTTTGGTAA	ATTGTCCTGA	GTTAGTCCAA	12300
TAGCATAGAC	AAAGTCAGCA	GTCAATGGTG	CAATCAAATC	GTAACTCTGC	ACCAGAACAG	12360
TGTCCACTGT	TGCTGGAATG	GTACGGTATT	GGGACAAACT	CATTCCAGAA	TGGAGCAAGG	12420
CTAGGAAGTC	TTCCAGACTA	ACCTGTGAAC	CAGCAAAAAC	AGTCGCAAAT	TGTTCTAAAA	12480
CATGGCAGAA	AGCCTTCCAA	ACTTCGGCTT	GTCTTTCCTG	TTCTACAGCT	TCCAAAGTGG	12540
TTGTCAAATC	TTGTAACTGC	TTGGTCACAG	CTCCTTCTTT	TAGAAAGACA	CTCCATTTTT	12600
GTAGGAGTTT	TTCAGCCTTT	TGTTTTCGGC	TGGCAAAGAG	GGTTTCAAGA	GGTGCTAAAA	12660
TTCTCAGGCG	GAGGACATTC	AAACGCTCAA	GATTAAATTT	TCCATGGTGG	GATTTGGTGA	12720
AGGTTTGCTG	AAAGGCTGGC	AAGCCATTGA	TACCAAGATA	GCGGATATAT	TGCTCAAAAG	12780

304 CATCAATATC AGACTGACTG AGGTCAGTAT ACAAATCAGT TCTAAGAAGA TTAATCAAAT 12840 CCTCCTGACG AAAACGGTAA CGTTTTAAAG CTAAAATAGA CTCGACAAAC TGAGTCAAGG 12900 GATGATGAGC CATGGCTTCG CTTCTACCAA GATAAAAAGG AATCTGATAC TGGTCAAAAA 12960 TGGTTTTGAG AGATAACTGG TAAGAAGCTA CATCCCCCAA GAGAATACGA AAATGCTTGT 13020 AGCTCAGGTC TGAGTTCTCA TGTAATTTCT GACGAATACT ACGGGCTACT AGCTCCAACT 13080 CCTCCTTTTG CGTCAAACAA GACCAGATTT GTAAATTTTC ACGGTCTTTC TCATCGACAT 13140 CCAAAGCGAG TTCTGAAAAG TCATAAGAAG ACTCCAACAA ACGAGAGGCC TTGTCAAAAC 13200 TATCCATCTT CTCATGAGTT TGAGAACAGT CCTGAGCAGG CGTTTGGTAT TTAGAAGCCA 13260 GATGATGGAG AAATTTTACG CTGGCTTGGT AGAGATTGCC CTCGCTAAAA GGACTGGTAT 13320 AGGCTTTCTT ACTAGCATAA GCCCCGATAA CAATCTCAAC ACCTTTGCCG TGAAGTAAGT 13380 CCACAACCCG CTCTTCCTCA GCAGAAAAAC GAGTAAAGCC GTCAATGACC AAGGCGATTT 13440 GATTAAAATC ACTACTTACC TTGTCATTCT CAATAGCCTC AATCAAATGG GACAACTGAC 13500 TTTCCTGGGC TAACTGACCT TGATTAAGAT AGGCTGTTAC TTTCTCAAAA ATCAAGAGTA 13560 AATCCGCCCT CTTATCCTCA TCTGTTAAAT TCTCCAAGTC CAAAAAACTC ATCTGAGATT 13620 TGGTCATCTC ATGGTAAAGC TCAATTAACT GCTGGATCAA TTGAGGATCC TGCTTAATAG 13680 CGCCATAAAC ACGCAAGTCC TTGGGATCGA GTTCGGCAAG GCATTTGTAA AAGGCCAACC 13740 CAAGACCGAT ATCATCAAGA GTAGTTTTAG CTGGTAAATC ATTCAAGACC AGATAGCGAG 13800 CCATTTGAGC AAAGCGCGTG ACGGTAATCG AAAAAGAAGC CTGCTGGGAC AAGTATTCCA 13860 GCACGGCGCG TTCCTTTTCA AAAGAAAGAG AGTTGGGGGC AATGTAGAAG ACCCGCTTGC 13920 CAGCTGCAAC TAGCTCTTCT GCCTCTCTTG TTAGAATTTC TGTCAAAGAA GTCCGAATAT 13980 CAGTATAAAG TAATTTCATC TCAGCCTCGT TGGAATTTTT CATCACCCTA TATTATACCA 14040 14100 CTAAATCTTA AATACTTAGC TTTACTTGTA TTAGATAGAA TAAGTCTGGC TACTGAAAAT 14160 CACATAATAA AAAAGCCTCG GTAACAAGGC TTTGAGTTTT ATGATTGTTT CTTAGGTACG 14220 GAATACACTT CAATGTGTTG TCCCAGTATC TTAATGTCGA CTGGTAGATT GTCTGATTTA 14280 TCGCCATCAA CATCGGACTC TAATTCGATA TCAGAAGAAG TTTTAATATT ACGTGCCTTT 14340 ATATATTCAA TATTCTTGAT AGAATGATTG AACTATAGTA AATTGAAACT ATAATAGTAC 14400 ACCGTGGATG CTAAAATATT TCTAGAAATT AATTTGATTT CCCTAATCAA GCTATTCGTA 14460 TCTTATTTCA ATCTACTATA ATAAAATGAA CCAAAAATAG TACACAATGT GGTATAATCT 14520 TCTTATGGCA TATTCAATAG ATTTTCGTAA AAAAGTTCTC TCTTATTGTG AGCGAACAGG 14580

305

TAG	TATAACA	GAAGCATCAC	ACGTTTTCCA	AATCTCACGT	AATACCATTT	ATGGCTGGTT	14640
AAA	GCTAAAA	GAGAAAACAG	GAGAGCTAAA	CCACCAAGTA	AAAGGAACAA	AACCAAGAAA	14700
AGT	TGATAGA	GATAGACTTA	AAAACTATCT	TACTGACAAT	CCAGATGCTT	ATTTGACTGA	14760
LAA	AGCTTCT	GACTTTGGCT	GTCATCCAAC	TACCATCCAC	TATGCGCTCA	AAGCTATGGG	14820
CTA	CACTCGA	AAAAAAGAAC	CACACCTACT	ATGAACAAGA	CCCAGAAAAA	GTAGCCTTAT	14880
TTC	TTAAGAA	TTTTAATAGT	TTAAAGCACC	TAGCACCTGT	TTAGATTGAC	GAAACAGGAT	14940
TCG	ATACTTA	TTTTTATCGA	GAATATGGTC	GCTCATTAAA	AGGTCAGTTA	ATAAGAGGCA	15000
AAG	TATCTGG	AAGAAGATAT	CAGAGGATTT	CTTTGGTTGC	AGGTCTAACA	AATGGTGAAT	15060
TAA	TCGCTCC	AATGACTTAC	GAAGAGACGA	TGACGAGCGA	CTTTTTTGAA	GCTTGGTTTC	15120
AGA	AGTTTCT	CTTACCAACA	TTAACCACAC	CATCGGTTAT	TATAGTAAAA	TGAAATAAGA	15180
ATA	GGGGGG	GGGGGGAGGG	GGGGGGAGGG	AGA			15213

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6004 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TTATTACCTG	AAACATTAAA	TTTAATTGGA	CATCCCGTTA	TCAATTTTAT	AATATCATCA	60
AGATTTTTAT	TATCTGATTC	AGGAATTTTA	TCTGATATAA	CAACACCATT	TTCAAGATAG	120
ТТСАТТАААТ	TATTTGATTC	ACTAACATTA	GTGTTTTGAT	CTCCATCAAG	ССАААААТАА	180
TGGTTATCGG	AATCTAAATA	CGATGAGTTT	AAAATATTAT	TACAAATTAT	TTGATTTGCT	240
CCACCAGGAA	TATATCTCAC	TACTAAATTC	TGTTTAAGAT	TCTCACTACC	TGAATGAGTG	300
ATAACAAACT	CTAGAATATA	TTTAGCTAGT	CTATCTTCAA	CATAAATCAT	CTTCCTAGAA	360
TGATACACAT	CACCTAATTC	AAAAAATGCA	TCCTGATAAT	CAATATTTTC	AATAACATCT	420
ACCTTTTCTC	CGTTTTTCAC	TAAAAGTTTC	ACGGCTTCTC	TAGGAAAATC	TTTTATAAGT	480
TGTGTAGAAT	GTGTAGTGAT	AATAATTTGA	TGTTTTTTAT	TTAAACACTC	TTGAAGTAAA	540
AACTCTTTAA	ATTTATAGAT	TGCACTCGGA	TGAAGTGAGA	TTTCAGGTTC	ATCTATTAAT	600
ATTAATGAAT	TTGATTGCGC	ATTTACTATA	TCATTTACTA	ACAAAATAAT	TCTAGCCTCA	660
CCTGTTCCTG	CAAAAGCCTC	GGAATATTCT	TTTCCAGATT	TTTTCATCCA	AATAGTTTTG	720

			306	•		
GAAGCTTTTA	TATCATCACC	TTTTGAATAC	AACTTATGTG	TTAAAATTTG	AATGTCTGTA	780
PAAGATTCAT	CCATTATTTC	ACTAATAATT	TCACAAACTT	TATCATCAAC	TTTAACATTA	840
PCTATAACCA	TTTCCTTTTT	ATAACGCGTA	TAGCTACTTG	TATTATTCTT	ТААААТАТСА	900
GCAACTGGCT	TAGATCGTAA	ТСТТАТАААА	TCTTGTTTAC	TACGTTGAGT	AGAAATTTTT	960
TATAAAATT	agtgatagaa	AAATAAATCA	AAAGCAGAAA	CATATTCTTT	ACAATCACAA	1020
AAGACAACAT	TTTTTTCAAT	GCCATCCCAT	CTGTCTGTCG	AAGAACTTCC	ATTATATTA	1080
PTTTTGGGTA	ATCTTTCCAT	CTCATATTGT	TTTTGAGGAG	CATATGGTTC	CCAATAATCT	1140
AATCCTTTTT	TTGTTCCAGA	ACGGCCTTTA	AGAACTTCTA	CATTTCTAGA	AGCTTTAATG	1200
ГТАТААТАТG	AATAGATTAA	ACATTGTTTC	CCATCCACTT	CATCTATTTG	ATCAACATTT	1260
GTACTAAACC	AATATTCAGA	CACACTTTTA	TTGGCTGGAG	AACCATATAA	AGCTTGTAAA	1320
ATTGAAGTTT	TATTTACTCC	ATATCTATTA	CAGACACCTC	AGGATTATTT	AACTTATAAG	1380
PTTTAACAGC	TACGGAATCA	ATTTCAACAG	CAACTTGAAC	ATCTATGCCT	GATTTTTTAA	. 1440
GCCACTTGT	AGTGCCACCT	GCACCGTTAA	ATAAATCAAT	AGCAACAATT	TTCCCCATAG	1500
PATTCTCCTA	AAGTTTCTCC	TTTTTATTAT	AACATTATCA	AATGTAAAAC	CCAACCCGAT	1560
AGGGTTAGGT	TTTTAACATC	ATTTCACCAA	CTTCTTCATC	TCATCAATAC	GTGCGACGGT	1620
CGCGTCATAT	TTAGCTTGGT	AGTCAGCTTG	TTTGTCGCAT	TCTTTTTGGA	CGACTTCTGG	1680
TTTGGCGTTG	GCTACGAAGC	GTTCGTTAGA	GAGTTTCTTA	CCAACCATGT	CCAGTTCTTT	1740
PTGCCATTTA	GCAAGTTCCT	TGTCGAGACG	GGCCAGTTCT	TCTTCAACAT	TGAGGAGATC	1800
GCCAGTGGC	AGGTAGATTT	CTGCTCCTGT	GATGACACTT	GACATAGCCA	GTTCAGGTGC	1860
AGGGATGGTT	GATGCGATTT	CCAAGTGTTC	TGGATTTGTA	AAGCGTTTGA	TATAGTTGAC	1920
ATTGCTGTTA	AAGAAGGCTT	CCAAGTCGCT	ATCGCTTGTC	TTAACAAGGA	TGGTGATAGG	1980
CTTGCTTGGT	GCTACATTTA	CTTCCGCACG	CGCATTCCGA	ACAGCACGAA	TCAAGTCTTT	2040
GAGACTTTCC	ACACCAGTGT	GAGCCGCAAG	GTCTTCAAAG	GCTAGATTAA	CAGTTGGGTA	2100
rgcagctgtc	ACGATAGAAC	CTTCTGAGAT	TTGTCCAAAG.	ATTTCCTCTG	TCACGAATGG	2160
CATGATTGGG	TGAAGGAGAC	GAAGGATCTT	GTCCAGCGTA	TAGAGGAGAA	CAGATCGAGT	2220
AATGACCTTA	TCGTCTTCAT	TGTCGCTGTA	TAGAACTTCC	TTGGTCAACT	CAACATACCA	2280
GTTGGCAAAT	TCTTCCCAGA	TGAAGTTGTA	AAGGATATGA	CCAGCCACAC	CAAACTCGAA	2340
CTTATCAAAG	TTTTCAGTAA	CTTTTGCAAT	GGTTTCGTTG	AGATTGTGGA	GAATCCAGCG	2400
GTCCGTCACA	TTACCAGCCT	CACCTGTTGC	AACTTTTGTG	ACATTGTCAT	GCGCCACATC	2460
CAGCGTCAAA	CCTTCATTGT	TCATGAGGAT	ATAGCGAGAA	ATGTTCCAAA	TTTTGTTAAT	2520

307

AAAGTTCCAT	GAAGCATCCA	TTTTCTCGTA	AGAGAAACGA	ACGTCTTGAC	CTGGTGCGGA	2580
ACCGTTTGAA	AGGAACCAAC	GAAGGCCATC	AGCACCGTAT	TTCTCGATGA	CATCCATTGG	2640
GTCAATCCCG	TTACCGAGAG	ATTTAGACAT	CTTGCGTCCT	TGCTCGTCAC	GGATGAGACC	2700
GTGGATAAGC	ACGTTTTGGA	ATGGCTGACG	ACCAGTAAAT	TCCAAGGACT	GGAAGATCAT	2760
ACGAGACACC	CAGAAGAAGA	TGATGTCGTA	ACCTGTTACC	AAGGTTGAAG	TTGGGAAATA	2820
ACGTTTAAAG	TCTTCTGAGT	CGACTTCAGG	CCAGCCCATG	GTTGAAAATG	GCCAGAGGGC	2880
AGAACTGAAC	CAAGTATCCA	AGACGTCTTC	GTCCTGAGTC	CATCCGTCAC	CTTCTGGAGC	2940
TTCTTCGCCG	ACATACATTT	CACCATCAGC	ATTGTACCAG	GCAGGGATTT	GGTGACCCCA	3000
CCAAAGCTGA	CGAGAGATAA	CCCAGTCGTG	GACATTTTCC	ATCCATTGAA	GGAAGGTATC	3060
GTTGAAACGA	GGTGGGTAGA	ATTCGACCTT	GTCCTCTGTG	TCTTGGTTAG	CAATGGCGTT	3120
CTTAGCCAAT	TGGTCCATCT	TGACGAACCA	TTGAGTAGAC	AAGCGTGGCT	CAACTACGAC	3180
ACCTGTACGT	TCTGAGTGAC	CAACACTGTG	GACACGTTTT	TCGATTTTGA	CAAGGCACC	3240
GATTTCTTCC	AACTTAGCAA	CGACTGCCTT	ACGÄGCTTCA	AAACGATCCA	TGCCTGAAAA	3300
TTCAAAGGCA	AGCTCATTCA	TAGTTCCGTC	GTCGTTCATG	ACGTTGACTT	GTGGCAAGTT	3360
ATGACGTTGG	CCAACCAAGA	AGTCATTTGG	ATCGTGGGCA	GGTGTGATTT	TCACGACACC	3420
AGTACCAAGC	TCAGGATCTG	CGTGCTCATC	TCCAACGATT	GGGATGAGTT	TATTAGCGAT	3480
TGGAAGGATG	ACGTTTTTAC	CAATCAAGTC	CTTGTAGCGC	GGGTCTTCTG	GATTAÁCCGC	3540
AACCGCAACG	TCCCCAAACA	TAGTCTCAGG	ACGAGTTGTA	GCAACTTÇAA	GGGCGCGTGA	3600
ACCATCTTCC	AGCATGTAAT	TCATGTGGTA	GAAGGCACCT	TCTACATCCT	TGTGAATCAC	3660
CTCAATATCA	GAAAGGGCTG	TGCGAGCTGC	TGGGTCCCAG	TTGATGATAA	ACTCACCACG	3720
ATAGATCCAG	CCTTTCTTGT	AAAGGTTCAC	AAAGACCTTA	CGAACAGCTT	TTGACAAACC	3780
TTCATCAAGA	GTGAAACGCT	CACGAGAATA	GTCTACAGAA	AGCCCCATCT	TGCCCCATTG	3840
TTCCTTGATG	GTAGTGGCAT	ATTCGTCTTT	CCATTCCCAG	ACCTTCGTCA	AGAAAGACTC	3900
ACGACCTAGG	TCATAACGCG	TAATACCCTC	ACCACGTAAG	CGCTCCTCAA	CCTTAGCCTG	3960
AGTCGCAATA	CCAGCGTGGT	CCATACCTGG	AAGCCAAAGG	GTATCAAAGC	CTTGCATGCG	4020
TTTTTGACGG	ATGATGATAT	CCTGCAAAGT	CGTATCCCAA	GCGTGACCAA	GGTGAAGTTT	4080
CCCAGTTACG	TTTGGTGGTG	GAATCACGAT	TGAATAAGGC	TTAGCCTTTT	GATCGCCTGA	4140
AGGCTTGAAA	ACATCCGCAT	CAAGCCATTT	TTGGTAACGA	CCAGCCTCAA	CCTCGGCTGG	4200
ATTGTATTTA	GGTGAAAGTT	CTTTAGACAT	GTGTGTGTCC	TTTCTCTATT	TTGTTTATTT	4260

			308			
TATTTTGAAT	TTGCTTAGCA	GCTTCTTCTG	CAGACAAATT	CGTATTATTT	ATTTTAAAGT	4320
AGTGGTGCAA	CTCATTCGGT	TGATGTTGGG	AATTTAATTG	AAGTGTTTCA	GCGGTCTCTA	4380
AAATTTCTCT	TTCAGATACC	TCAATATGTC	GTTTTAAGGG	TTTGTGCTTT	AATCGATTCT	4440
CCGTTCGATT	TCGACGTATG	CACTCTTCAA	GACTTGTTTC	CAATTCAACA	AACAGAATCT	4500
CTTGATGAAA	GTTATCCAAT	AAATCCTGAA	TTTGCTTTAA	ATACATCAGC	TGGTACTGAT	4560
TTGAAAAATC	AATTACGTCT	GTTAAAATTA	CTGATCGCTG	ATTTCTTGCA	CTTGCTCCAA	4620
GGAAAGAAAA	GGTAATTCCA	CGAACAAATT	CCCACATCTC	CTCGGTATAA	TCCTGATAGA	4680
TCTCTAGTGC	AAAATCAATG	GCTTGATGGT	TATAAAATAG	GGTAGCATCC	GTCAGTCGAG	4740
ATAATTCTTG	ACCAATGGTC	ATTTTTCCTG	ATGCTGGAGC	ACCAATGATG	AAAAGATGCA	4800
TCAAATCACC	TCCCACTCAC	TCCTCAGCAA	GCCATATCTC	AAATCATCAC	AGCAGTTGCC	4860
TTGAGCATCT	TTGCGGTCTC	TTATGCGAGC	TTCGAGGGTA	AAGCCAAGCT	TTTCCGAGAC	4920
TCGTTGACTT	TGAAGGTTAT	ATCCAAAGCA	AGTTAGTTCA	ATCTTGTGAA	GACCAAGTTC	4980
ТТТААААССТ	AGATCAATCA	AGGAACACGC	TGCTTCTGGA	ACATAACCTC	GACCCCAATA	5040
GTCTGGGTGC	AAGGTATAGC	CAAGCTCTAG	CACATCATCC	GCATGAAGAT	GGTTGAAGTC	5100
AACAGAACCA	ATGACTTTAT	CGGTTCCTTT	GACGACAATC	CCATAGCCAG	CTGGGAGATT	5160
TTCCTTTTGA	GTACGCTCCG	GAAGAATGTG	CTCCAGATAA	TAAATCTCAT	CTTCCAAGAT	5220
CTTGACTGGA	GGAAAACCTG	CTGGATAGGC	GACCTCTGGC	AAACTAGCGT	AGGTATGGAT	5280
ATCCTCAGCA	TCCACCACTG	TGCGGACTCG	TAAAACGAGA	CGTTCTGTTT	CGATTTTATC	5340
TGGCAGCTCA	GTTCTTGCCA	TCCTTCTTCC	TCGCTTTTTT	GATGAAACTG	CCCTTCATAT	5400
CTACACGCTT	GTCCAGATAG	CGATAAACGC	GCTGATATCC	ATCTCCCATG	AAATAGGTTG	5460
GGGCAAACAG	TTGATTTTTA	AAATGTCCCT	TTTCATCCAG	GAGTTCTGGG	GCAACAAGTC	5520
GCTCAAGAAT	CTTGGCAAAG	ATGTGGCAAA	TACCGTCTTC	CTCAACAATC	CTATCTACCC	5580
GACAATCTAA	AACAAGTGGA	CAGGCGTCTA	AAATAGGAGT	CTGAGTTCGT	TCAGAAAT IT	5640
CATAATGCAC	TCCCAAACGT	TCCAATTTCT	CCTGATGACT	GATAAAACCA	GCCTGCTCCA	5700
TCGCAAGCAT	AGAAGTTTCA	TCAGAAATAT	TCACAGTAAA	TTTTTGATAC	TGTTTGATCT	5760
GCTCTGCGGC	ATTCTCTCTC	GCAACGACTC	CAATCACAAC	CCAATCTCCT	AGACTATAAG	5820
AGGAACTACA	GGTCGTGATG	TTATAGCCAA	AATTCTAATC	TTGATATCCT	AAAATAAAA	5880
CAGGAAAACC	ATAATATAGT	TTACTTGTGT	TAAAAGATTG	CTTCATAACA	ACCCCCTTTG	5940
ACTAAGACGT	AAAAGAAAAG	CCCTGCCATC	TACATGACAG	GGACGAATGT	GTTTATCCGC	6000
GGGG						6004

309

(2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5857 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

TGTAGAATTC	ACGACAATGC	TTCGTTGATT	TCTGGGTTGA	TTTCGTCGCG	TTCTGGCAAG	60
CGAGTCAATG	AACCAAAAAT	AGTACACAAT	GTGGTATAAT	CCTTTTATGG	CATATTCAAT	120
AGATTTTCGT	AAAAAAGTTC	TCTCTTATTG	TGAGCGAACA	GGTAGTATAA	CAGAAGCATC	180
ACACGTTTTC	CAAATCTCAC	GTAATACCAT	TTATGGCTGG	TTAAAGCTAA	AAGAGAAAAC	240
AGGAGAGCTA	AACCACCAAG	TAAAAGGAAC	AAAACCAAGA	AAAGTTGATA	GAGATAGACT	300
TAAAAACTAT	CTTACTGACA	ATCCAGATGC	TTATTTGACT	GAAATAGCTT	CTGACTTTGG	360
CTGTCATCCA	ACTACCATCC	ACTATGCGCT	CAAAGCTATG	GGCTACÀCTC	GAAAAAAGAA	420
CCACACCTAC	TATGAACAAG	ACCCAGAAAA	AGTAGCCTTA	TTTCTTAAGA	ATTTTAATAG	480
TTTAAAGCAC	CTAACACCTG	TTTAGATTGA	CGAAACAGGA	TTCGATACTT	ATTTTTATCG	540
AGAATATGGT	CGCTCATTAA	AAGGTCAGTT	AATAAGAGGC	AAAGTATCTG	GAAGAAGATA	600
TCAGAGGATT	TCTTTGGTTG	CAGGTCTAAC	AAATGGTGAG	TTAATCGCTC	CAATGACTTA	660
CGAAGAGACG	ATGACGAGCG	ACTTTTTTGA	AGCTTGGTTT	CAGAAGTTTC	TCTTACCAAC	720
ATTAACCACA	CCATCGGTTA	TTATTATGGA	TAATGCAAGA	TTCCATAGAA	TGGGGAAGCT	780
AGAACTCTTG	TGTGAAGAGT	TTGGGTATAA	ACTTTTACCT	CTTCCTCCCT	ACTCACCTGA	840
GTACAATCCT	ATTGAGAAAA	CATGGGCTCA	TATCAAAAAG	CACCTCAAAA	AGGTATTACC	900
AAGTTGCÄAT	ACCTTTTATG	AGGCTTTTTT	GTCTTGTTCT	TGTTTCAATT	GACTATATAA	960
ATTGTCTAAG	CGAAACAACC	GATAAGAATT	GGCACAAAAG	CGACCGTATT	TTTGTTACCA	1020
ATACAGGAAA	AACAGTTCAT	AGTTCTATCT	TGAGCAAGTC	TCTCCAGCGA	GCAAACGAAC	1080
GCCTTAAAAA	ACCAATTCCC	AAACATCTGT	CCCCTCACAT	CTTCAGACAC	ACCACTATTA	1140
GCATCTTATC	AGAAAATAAA	ATTCCTTTAA	AAACAATCAC	GGACAGGGTT	GGTCATCCCG	1200
ACTCTGAAGT	CACTACTTCC	ATCTACACCC	ACGTCACAAA	GAACATGAAA	GATGAAGCAA	1260
TCAATGTACT	GGATAAAGTT	ATGAAAAAGA	тттттаааа	AGTTTTGTCC	CTTTTTTGCC	1320
CTCTAAATAC	AAAAATAGCC	CTTCGGATAA	AATCCGAGGG	GCTAGAAACG	TTGTTAAATC	1380

	·		310			
AACGGCCGAA	CTTTTGAATT	TCATGGTTCG	GGATAAAATA	GTTCACTGAA	CTATTTTATT	1440
TTTTAAGGTT	ATCATAATAT	CAAATAGTTC	AATTAAATAC	GCTAAATTAC	TAATATACTT	1500
TTTACCTTTT	TCATTCTAAA	ATGTAAAGTA	CAAACAATTA	CAATATACTA	GAGGGGGAGT	1560
AAAAAAGGTA	TTAAATCGAT	GAGTTCAGCA	GGCAAGAAAA	TAGCACCTTT	ACGGGTGCTA	1620
TTTTTTAATT	AACGCCACGT	TAACTTTTGA	TTGATGAATT	TTATTGTTTG	GCACTTCTTT	1680
CATTTCACGG	TAAACATCGA	TGAAATTCTT	TCCAACATTA	TTTTTGGAGT	TAACTGCATT	1740
TATTTTTGTA	TTAATAACTT	TTTTAGTATC	GAAAGAATGG	TTTAAGAAAT	ССАТААСТАА	1800
CTCTCCTTTC	TCATCCTGTA	ATCAAGATTT	TTATCAATGT	CAAAATAGTA	ТТТТСТАТСА	1860
ATCCAAATTG	GTCCTTCTCC	TTTAGAAATA	GCAAGTACAT	CTACCGGACC	TCCTACTGTT	1920
TCAAGAGTGT	TGACAATTTT	TCTCTTAAAT	GAAGTTAATT	CAATAAATGT	TTTAGCTGTA	1980
CTCGCCATTT	CATTAAGTGG	TTGCATTCCA	ATAAGGTCTA	TTATAGGATT	TATATAATAT	2040
TTTTGCTGTA	TAGATGATAT	ATTTTCAAAT	ATATTCTCAA	TTTCATCACC	CAATCCATTT	2100
ТТСТССАТАА	CTGATGATAC	TTGCTCTGCG	ATATATACAT	TTAAGTTAGG	ATCTATACCA	2160
ттсатаатсс	TCTCAACCAT	CTCTGACTGT	GCAAAAGGGA	TTATATGACA	AGTTTTATGA	2220
TGATTTATCA	CACTTTCATT	AATAACTTTC	CAAATTAATC	GTTTAGAAAA	AATTCCATAT	2280
AATTCAATTT	GTCTTATAGA	TGGAAATATC	TCGTCTGTAC	CATAACCTGC	TATAACTAAT	2340
CCAGTTATGT	TTGTTGAGTC	ATATCCAATG	AAAATCGCTT	TATATAAAGA	TTTAGCAATA	2400
ACTTCAACCT	CATCATCAGT	ATGAGGAAAG	GATTTAAAAA	CATCGTCTAC	AATGCTTTTT	2460
АТТААСТСТА	ACTCAGCTTC	AAAAAATTCA	AAATTACTTT	CAGCTTCTAC	TTTTGAAATT	2520
ТСТАААСТАА	AATTAGTTAT	AGCATTTAAT	TATTTTAAAA	TAAAATCATC	TAGAGTGATG	2580
GTTTCACCAT	TAGAAACTCT	TAAATCAGCT	GTTTCTTGCG	CTTCATAGGC	AATGCTGTCC	2640
AAAATACTTC	TTGTACTTCT	GACAATATAA	TTTCTTAATA	AATCCTCAAC	TTGTAGATGT	2700
TTAAAGGAAA	TTAAAAATTC	TATTAGCTTT	TCAACGTATT	GGGCAGTATT	АТСТААТААА	2760
TCTGTGCCAA	TAGCCTGCTT	AAACTCATTT	AAAATTACCT	CCCACGGAAT	TTCCATAAAC	.2820
GAAGCGTTCC	CATATATCAT	GATCCCCACG	GAATGTTCTT	TTGATAAAGT	GAATAATTTT	2880
CGGGCGCTAT	TAAAAACTTT	TGAATTTTTC	CCGTCTGATA	AGGTTACAGC	GCTATCAGAA	2940
GCCAATACAA	CACCATTTT	ATTTAATATT	CCAATTTCTG	CTGTCAAAAT	ATCACCTAAA	3000
CTTTCTAAAC	CTGCTCATGC	TCTAATGGTA	CAACAGCTAA	GGTCTTACCA	AGACTTGCCA	3060
ACACTTTTAA	TACTGTATCA	AGTTGTGGGC	TTGTCTTTCC	TGTTTCCATT	CTAGCGATAA	3120
CTGGCTGACT	AACACCGCTC	ATCTCCTCTA	GTTTCTTCTG	ACTAATACCC	TTTTCATTTC	3180

TAGCCTCGA	T AAGCTCACTC	ATGATAGCCA	CGCGCATATC	ACTTTCCAAA	ATTTCCTCTT	3240
TGCTGAATA	A TTCAGCTCTT	ACATCTTTCC	AGTTACTACC	AATAGCATTA	TTTTTCATTG	3300
TCTAAACCT	С ТТТСТТТТАА	ATCTGCAAGT	TCACGTTTAG	CTTGCTCAAT	CTCTCTTTTG	3360
GGTGTTTTC	T GTGTCCTTTT	CATAAAATGA	TGCAGTAAAA	CAAAACTACC	ATCCATCCAA	3420
GCAACAAAT	A AAATTCTATC	TCTAAGTGGT	CTCAGCTCCC	AAATTTCAGC	ATCTAAATGC	3480
TATATATT	G GTTCGCCTGC	GCGTGTTCCA	TGTTGGCTTA	ACAACTCAAT	ATAATCATTA	3540
ATTTTATTA	а ссттааттст	GCTATCTTTC	CCTTTTTTAC	TGGTAAGCTC	TCGCATATAA	3600
TCAAAAACA	G GCTCATTGCC	GTTTTTATCC	TTGTAAAAAT	AGATATTATG	CACTATTAAC	3660
ACCTCTTCC	т аатаасаатт	АТААССТААА	AGTTATTGTT	TGTAAATACT	TTTAAGTTAT	3720
AAATAAAT	A AGCACCTAGT	TTCCTAGATG	CTAGCACAAT	GACACGGATT	CGCACCGTGG	3780
СТАССТСТА	T CAAGGTGTAC	TCCTTCTATA	CTATCCCTTG	TGCTTTAGAA	TATTATACCA	3840
CACAATCAA	C TAGATACCTA	CCATCTCATG	ATATACCCCC	ATTTTGGGCA	AGGGTACAAC	3900
GCTAAAATA	C AAATCAGAAT	AGATATTAAA	CCACTTATTT	AACTTATCAT	AAGCTGGTGA	3960
TTGACTGAT.	A AATAATATCC	GCTGACAAGC	TCCGATAACA	TTCATGTGAT	TGTACACATA	4020
AACCTCTTT	T ACAGCCTCTA	AAATGTCAGC	CTCACTTGTT	TGTACCCTAA	TATCTGTTAT	4080
CTGCTTGAT	A GTTGCGTATT	TTTGATAAGC	TAGCATATCT	TGATTTTTAG	CAGCATCAAA	4140
CATTTTACG	C TCAAGGACAC	TATACTTAGG	TTGTTCTTTA	TCTCGCATGA	AATACCACTT	4200
GAGCCATAA	A ATCTTTTCTC	GGTGTATTAC	AGAAATACGC	TCAATTTTCT	TCTTTGTCAT	4260
TGCTACCTC	C TAAATCATCA	ATTTAACAAT	TCTAACCACT	CACTTTTAGA	AATAGTTGCA	4320
PAGATCTTG	T TCGATGTATG	ATACAAAGGT	TCTAAATCTT	TTTCCACCCT	AATATAGTTC	4380
ATCTTATCC	r catgagtagg	AAAGTATAGT	ATTTCCGTTT	CATCCTCGTT	TAGGATACGA	4440
PTGCACCAA	г сатсаатаат	AACTGGCACT	TCCCACTCAC	GCCATTTTTT	AAGGTTTTCT	4500
AAAAGTTCA	г татсастааа	TAGCTCGCCA	TCTATTTGGA	AAAATTCCCC	TAAGTCATTG	4560
PTTCCTTCA.	А СААТААТААА	CTCTGGCATA	TTTCTATTAC	TTAATAACTC	CTTGAGTTCT	4620
TGTAACTCT	r tgatttcctt	TAGATACTTC	CTCAATTTCC	AACCTCAATT	CTTCAATCTG	4680
CCTTACTAC	r ccaaaaattt	CATGGGTCTT	ATAAGATTGT	TCAAGTATAG	CCTTTGCTGC	4740
TGAGTTCT	I ATAAACGGGT	TGACCTTACT	GTCCATCATA	ATATCATTGA	GTACAGAAAC	4800
agcgttaga'	r gatgctaaat	AAAGCATTTG	AGTTGTTTTA	TCCATCATCT	CATCTTGCTT	4860
ГАТССТСАА	r gtctttttaa	CCGCTGCAAC	TTTTAGATAC	TTATGACCTG	TTGCGCGTGA	4920

·			312			
TACCCCTGCT TT	PTTGACATG	CTTTGTCTAT	CGTTGGCTCG	GTAAGCATGG	CATCTATGAA	4,980
TTTAATTTGC TI	rggacgtaa	GGTTATCATT	TTCATTTCCT	GCCATCTATT	ACCTCCTCAT	5040
ТАТСААААТА - Ал	AGGGTTGCC	CCTTTATTTC	CCTATGCTAG	ATAATTCTGC	AATTCTGCAT	5100
CCATTGCCTC TO	GAATTGCCC	TCAACAATCA	TTTCATGCTG	ТАСТАААТСА	ATCTTATCTC	5160
CGTTAATAAG TA	AACCACCG	TGGAAATAAT	CAATTTTTCT	ATCAAGGAAA	TGTACTAGCT	5220
TTTCAAGGCG TT	CCTGTTGG	CTGAATTGCT	CCATGTCAAT	TTCGATATAA	GCAAGGGTAG	5280
TATCATTATC CA	TAATATCT	TCTAATTTTC	TAAGAGCTAG	AGGTTTATTT	TTATATTTT	5340
CTAGGTATTC TO	TCATTTCT	GCCACTGTTA	ATTTGATACT	AGATAATAAA	CTTAGTTCAG	5400
CTGCATCATC TO	CTGTAATA	GGCTCTTCTT	TTGATTCATG	GTTTGCTAGT	TCAGCATTTT	5460
TCTCTTTTTC TA	AGTTGCTGA	TACAATAGCT	GAGCAGTATT	TTGGGAATAG	TTTTCGCCCT	5520
СТТТТТТАТА ТТ	TTAAAAGT	TCTTGCTCTG	CATACACTTT	CCCGATAATC	ACTTCCTTAT	5580
AAACTAATTG CC	CATCTTGA	GCTTTTAGCT	TAATACTCCC	ATGCTCTGGA	ATTTCAATAT	5640
ACTTAATTAT AC	CATTTTTT	GAGTATAAAA	CAAAGCCTTT	CTCCATCATT	TTTAATAATT	5700
TATCATCCTT GI	TTTCAGTC	ATGCTTTTCT	CCTTTATTTC	ATTTTATTAT	AATCTGAATA	5760
CCCCTAGTCT AT	TTATTCA	CTAGGTTTTT	AGGGTTCGTA	TGCTAAAATA	CTACCCTTTT.	5820
TGTGTACCTT AT	rggctgact	TTTCAAATTG	GTTAGTT			5857
(2) INFORMATI	ON FOR SE	Q ID NO: 25):			
(A) (B) (C)	LENGTH: TYPE: nu	ACTERISTICS 10254 base acleic acid NESS: doubl ': linear	pairs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

AAAATGATAG	CAGGAGAGTT	TTCCCGTCCA	TCAGACCCAG	AACTGAGAGC	CTTAGCTCAG	60
GCTTCTCGCC	AAAAACAGGC	CGCCTTTAAC	AAGGAAGAGA	ACCCCTTGAA	GGGAGCCGAA	120
ATCATCAAGA	CTTGGTTTGC	CTCAACCGGG	AAAAATCTTT	ACATCAACAC	TCGCTTGATG	180
GTGGACTACG	GTGTCAACAT	CCATCTAGGG	GAAAATTTTT	ATTCTAATTG	GAACTTGACC	240
ATGCTGGATA	TCTGTCCCAT	TCGTATCGGG	GACAATGCTA	TGATTGGTCC	TAATTGTCAG	300
TTTTTGACAC	CCCTCCATCC	ACTAGATCCA	CAGGAACGCA	ATTCAGGTAT	CGAGTACGGA	360
AAGCCTATCA	CAATCGGAGA	TAATTTCTGG	ACTGGTGGTG	GCGTCATTGT	CCTTCCTGGA	420
GTGACACTGG	GAAATAATGT	CGTTGCAGGA	GCAGGGGCAG	TAATTACCAA	ATCTTTTGGC	480

540	TGTTAAATAG	AGGAAATACC	CGCGTGATTA	CAATCCTGCG	TCCTAGCTGG	GACAACGTTG
600	TTTTACCCAG	TTTCATCATT	TTTTTGTAGG	GGTTGTTTCT	GAACAGCTGG	aagtaaaag
660	TCAAAGCATC	TTAAGCAAGT	GTCTGTTTCA	CTCTTAGCAA	CCTACTCTAT	TTCACATTTA
720	TCGGTCAGAT	TCCTTGACAC	ATCAGCTTCC	TCCTCAGTTC	GATGTTTTC	TCGTAAGTGG
780	TGCGATTCCT	TTCAGAAACA	CAGGCTATGA	TTAGAGGAGG	TAGTACAAAA	PTTGATACAA
840	GGGGCTGGAC	CCAATCACGA	GTTATCATGC	TCCTCAGGCG	TTGATGACAA	ati'itagagt
900	CCGCTATGCG	AGGAGATTGA	TTTTTAGGTG	TGTTTATGCA	CAAAGAAGTG	PTGCAGTTGC
960	CTATCCAGTT	CCACCAAGAC	TTTGTTTCTG	TGTTGGCGAA	GGGCGAACTG	AGGGAAGTAG
1020	TGGCTCCGCT	AGGCTCCTGT	TGTCTGGCTC	CGAGGAGGTC	ACTACAAGGA	Patgtcgtga
1080	TATCTCTACT	TGGAGCAGAT	GGCTATGGTG	TTGGTTGATT	AGTTTATGGA	CCAGCAGCCC
1140	TGTTCGCGCT	TTCTAGTCCC	GAAAATGCCT	TGATATAGAG	GTGTCCTAGC	GGACCTGTG
1200	GGAAATGCAG	GTCGTTATAT	GTGGCACCTT	TTACCACTAT	AAGGAGCCAG	CTGCGAGATG
1260	TTATGAAGAA	GAGGGATTCC	TTGGAAGACA	TGAGGAAGTT	TTGCTGCTAT	CCAGAGGCTA
1320	GGCTTATCGT	CTGAAAAGGT	CGAGAAACGG	CGGTTTTTAC	GGACGACAGA	GTCATGACCT
1380	AGTAGCTCAA	CTCTTGCGGC	GAGTGTTCTG	TGTGGAGATG	GCTGTGCTGT	AAGGAAGAAG
1440	GGACTTGGAC	ATTCTCTAGC	TTCACAGCAG	TGAATTGTTG	TTCTCTGGGG	TGCGTGGGG
1500	ACTGAGTTTA	AGGCGCTAGA	GCTTTTAATA	GGGCTCGGAA	GTCGTGACTG	CAGTACGACA
1560	AAAATGTCTA	GTTTTATCAT	CAAAGGATTT	GTTGTACTGG	ACCACCTTTA	GCAAGTGTTC
1620	TAGGCATGTT	CCTCTTGTCC	AGGTCACCTT	TGTTTAAACG	ттсааааата	GCTCATACTT
1680	GAAAACTTTG	ATCAGGTGAT	AACGTATCAT	AAATCAGAAA	AAAATCTTTA	GAGGTTGGGA
1740	CTTCGAAAAT	AAATGATACT	GAGTGAGATG	ATAAGATTTA	TTTTATGTCG	ACACTATGCG
1800	TCGTCAGTCT	GTTACTGACT	GTAGGTATAT	TCACCTTGCC	CAGGTCAGCT	CTCTTCAAAC
1860	TGCAACCTCA	CAGTTCTATT	CTGACTTCGT	GTGTTTTGAG	CCTCAAAACG	TATCCGGCAA
1920	TTTCATTGCC	ATGCCTTGGT	TTTCTAATCG	TGTGACTAGC	TTGAGCAACC	<i>L</i> AACAGTGTT
1980	GTTAAAAGCT	AGTAGCTGGC	AAGCATATAG	TTCTCCTGAA	AAGAGAAATT	TATAATCAAA
2040	CCTAAGCTAT	ATTGTTCTTG	TCTATCAAGT	TATAGTCACA	TTTTTTGACC	CTGTCTTGC
2100	тсстатстаа	TTTTGCCTTA	TGTTAGTAGA	TTAGGCTTGG	GTGGCATTTT	CAATAAAAAG
2160	TAAGGAAAAA	TCAAATTATC	AACATGTTAT	GTACAATGGA	ACTTTTTATG	TCATTTCGA
2220	TTTTGCCTTG	TTTTTTGAG	GCCCGTCGTA	TTTATCGCCA	GCTTATCTCG	TAGAGCTAG

			314			
GTCATTTTAC	TAGGCTCTCT	TCTTTTGAGC	TTGCCCTTTG	TCCAAGTTGA	AAGCTCACGA	2280
GCGACTTATT	TTGATCATCT	TTTCACTGCT	GTCTCTGCAG	TCTGTGTGAC	GGGTCTCTCA	2340
ACCCTTCCAG	TAGCTCACAC	CTATAATATC	TGGGGTCAAA	TAATCTGTTT	GCTCTTGATT	2400
CAGATCGGTG	GTCTAGGGCT	CATGACCTTT	ATTGGGGTTT	TCTATATCCA	GAGCAAGCAA	2460
AAGCTTAGTC	TTCGTAGCCG	TGCAACTATT	CAGGATAGTT	TTAGTTATGG	AGAAACTCGA	2520
TCTTTGAGAA	AGTTTGTCTA	TTCTATTTTT	CTCACGACCT	TTTTGGTTGA	GAGCTTGGGA	2580
GCTATTTTGC	TTAGTTTTCG	CCTTATTCCT	CAACTTGGCT	GGGGACGTGG	TCTTTTTAGT	2640
TCCATTTTTC	TAGCGATCTC	AGCCTTCTGT	AATGCCGGTT	TTGATAATTT	AGGGAGCACC	2700
AGTTTATTTG	CTTTTCAGAC	CGATTTACTG	GTCAATCTGG	TGATTGCAGG	CTTGATTATT	2760
ACAGGCGGCC	TTGGTTTTAT	GGTCTGGTTT	GATTTGGCTG	GTCATGTAGG	AAGAAAGAAA	2820
AAAGGACGTC	TGCACTTTCA	TACGAAGCTT	GTACTATTAT	TGACTATAGG	TTTGTTGTTA	2880
TTTGGAACAG	CAACTACTCT	CTTTCTTGAG	TGGAACAATG	CTGGAACGAT	TGGCAATCTC	2940
CCTGTTGCCG	ATAAGGTTTT	AGTTAGCTTT	TTTCAAACAG	TGACGATGCG	AACAGCTGGC	3000
TTTTCTACGA	TAGATTATAC	TCAGGCTCAT	CCTGTGACTC	TTTTGATTTA	TATCTTACAG	3060
ATGTTTCTAG	GTGGGGCACC	TGGAGGAACA	GCTGGGGGAC	TCAAGATTAC	GACATTTTTT	3120
GTCCTCTTGG	TCTTTGCACG	AAGTGAGCTŢ	CTAGGCTTGC	CTCATGCCAA	TGTTGCGAGA	3180
CGAACGATCG	CGCCGCGAAC	GGTTCAAAAA	TCCTTTAGTG	TCTTTATTAT	CTTTTTGATG	3240
AGCTTCTTGA	TAGGATTGAT	TCTGCTAGGG	ATAACAGCCA	AAGGCAATCC	TCCCTTTATC	3300
CACCTCGTAT	TTGAAACCAT	TTCAGCTCTT	AGTACAGTTG	GTGTAACGGC	AAATCTGACT	3360
CCTGACCTTG	GGAAATTGGC	TCTCAGTGTT	ATCATGCCAC	TTATGTTTAT	GGGACGAATT	3420
GGTCCCTTGA	CCTTGTTTGT	TAGCTTGGCA	GATTACCATC	CAGAAAAGAA	AGATATGATT	3480
CACTATATGA	AAGCAGATAT	TAGTATTGGT	TAAGAAAGGA	AAGAGCATGT	CAGATCGTAC	3540
GATTGGAATT	TTGGGCTTGG	GAATTTTTGG	GAGCAGTGTC	CTAGCTGCCC	TAGCCAAGCA	3600
GGATATGAAT	ATTATCGCTA	TTGATGACCA	CGCAGAGCGC	ATCAATCAGT	TTGAGCCAGT	3660
FTTGGCGCGT.	GGAGTGATTG	GTGACATCAC	AGATGAAGAA	TTATTGAGAT	CAGCAGGGAT	3720
rgatacetge	GATACCGTTG	TAGTCGCGAC	AGGTGAAAAT	CTGGAGTCGA	GTGTGCTTGC	3780
GGTTATGCAC	TGTAAGAGTT	TGGGGGTACC	GACTGTTATT	GCTAAGGTCA	AAAGTCAGAC	3840
CGCTAAGAAA	GTGCTAGAAA	AGATTGGAGC	TGACTCGGTT	ATCTCGCCAG	AGTATGAAAT	3900
GGGCAGTCT	CTAGCACAGA	CCATTCTTTT	CCATAATAGT	GTTGATGTCT	TTCAGTTGGA	3960
PAAAAATGTG	TCTATCGTGG	AGATGAAAAT	TCCTCAGTCT	TGGGCAGGTC	AAAGTCTGAG	4020

PAAATTAG:	AC	CTCCGTGGCA	AATACAATCT	GAATATTTTG	GGTTTCCGAG	AGCAGGAAAA	4080
PTCCCCAT	TG	GATGTTGAAT	TTGGACCAGA	TGACCTCTTG	AAAGCAGATA	CCTATATTTT	4140
GCAGTCA:	TC	AACAACCAGT	ATTTGGATAC	CCTAGTAGCA	TTGAATTCGT	AAAGAGGGAT	4200
GACCCCTC!	TT	TTTTGATGCC	TAAGATGGCA	AATAGAGACA	GAAGCCCCTT	GTCTTCTAGT	4260
AAAAGTTC!	TT	CAAAGGCTGG	ACTTTATGGT	AAAATAGAAA	GAAGTGACAA	GAGAGAGTAA	4320
PACTCAAT	GΑ	AAATCAAAGA	TCAAACTAGG	AAACTAGCTA	CGGGCTGCTC	AAAACACTGT	4380
TTGAGGT:	TG	CAGATAGAAC	TGACGAAGTC	AGTAACATCT	ATACGGCAAG	GCGACGTTGA	4440
CGCGGTTT	GΑ	AGAGATTTC	GAAGAGTATA	AGAAAAAATC	AGTCCCCTAA	AGGAGTAGAT	4500
PATGAAGT:	TA	TTGTCTATCG	CAATTTCTAG	CTATAATGCA	GCAGCCTATC	TTCATTACTG	4560
rgtggagt	CG	CTAGTGATTG	GTGGTGAGCA	AGTTGGGATT	TTGATTATCA	ATGACGGGTC	4620
PCAGGATC!	AG	ACTCAGGAAA	TCGCTGAGTG	TTTAGCTAGC	AAGTATCCTA	ATATCGTTAG	4680
AGCCATCT	АТ	CAGGAAAATA	AATGCCATGG	CGGTGCGGTC	AATCGTGGCT	TGGTAGAGGC	4740
TTCTGGGC	GC	TATTTTAAAG	TAGTTGACAG	TGATGAÇTGG	GTGGATCCTC	GTGCCTACTT	4800
SAAAATTC	TT	GAAACCTTGC	AGGAACTTGA	GAGCAAAGGT	CAAGAGGTGG	ATGTCTTTGT	4860
GACCAATT	ГT	GTCTATGAAA	AGGAAGGGCA	GTCTCGTAAG	AAGAGTATGA	GTTACGATTC	4920
\G T CTTGC(CT	GTTCGGCAGA	TTTTTGGCTG	GGACCAGGTC	GGAAATTTCT	CCAAAGGCCA	4980
TATACCAT	rg	ATGCACTCGC	TGATTTATCG	GACAGATTTG	TTGCGTGCTA	GCCAGTTCTA	5040
ACTGCCTG/	AA	CATACTTTTT	ATGTCGATAA	TCTCTTTGTC	TTTACGCCCC	TTCAGCAGGT	5100
CAAGACCAT	rg	TACTATCTGC	CTGTCGATTT	CTATCGTTAT	TTGATTGGGC	GTGAGGACCA	5160
STCTGTCA	ΑT	GAGCAAGTGA	TGATTAAGTG	CATTGACCAG	CAACTCAAGG	TCAATCGACT	5220
TTGATAG	AC	CAACTTGATT	TGTCCCAAGT	GAGTCATCCC	AAAATGCGAG	AATATCTGCT	5280
SAATCATAT	ГT	GAACTCACGA	CGGTGATTTC	CAGTACCCTG	CTCAACCGAT	CTGGAACAGC	5340
GAGCATCT	ľG	GCAAAAAAAC	GCCAATTGTG	GACCTATATT	CAGCAGAAAA	ATCCAGAAGT	5400
TTTCAGG	CT	ATTCGTAAGA	CCATGTTGAG	CCGTTTGACC	AAACATTCTG	TCTTGCCAGA	5460
CGCAAACI	rg	TCCAATGTCG	TCTATCAAAT	CACCAAATCT	GTTTATGGAT	TTAATTAATA	5520
AAGTGTTT	ľŤ	ATAAGAGGGA	TTTAAGAAAA	ATTTTAACTT	TTTCTTAGTC	CTTTTTAATT	5580
CAGGAGA1	ľT	ATACTAGAGT	CATCAAATAA	AGAAAGACTC	TAAGGAGAAT	CCTATGAAAT	5640
CAATCCA	AΑ	TCAAAGATAT	ACTCGTTGGT	CTATTCGCCG	TCTCAGTGTC	GGTGTTGCCT	5700
AGTTGTTG	ЭT	GGCTAGTGGC	TTCTTTGTCC	TAGTTGGTCA	GCCAAGTTCT	GTACGTGCCG	5760

			316			
ATGGGCTCAA	TCCAACCCCA	GGTCAAGTCT	TACCTGAAGA	GACATCGGGA	ACGAAAGAGG	5820
GTGACTTATC	AGAAAAACCA	GGAGACACCG	TTCTCACTCA	AGCGAAACCT	GAGGGCGTTA	5880
CTGGAAATAC	GAATTCACTT	CCGACACCTA	CAGAAAGAAC	TGAAGTGAGC	GAGGAAACAA	5940
GCCCTTCTAG	TCTGGATACA	CTTTTTGAAA	AAGATGAAGA	AGCTCAAAAA	AATCCAGAGC	6000
TAACAGATGT	CTTAAAAGAA	ACTGTAGATA	CAGCTGATGT	GGATGGGACA	CAAGCAAGTC	6060
CAGCAGAAAC	TACTCCTGAA	CAAGTAAAAG	GTGGAGTGAA	AGAAAATACA	AAAGACAGCA	6120
PCGATGTTCC	TGCTGCTTAT	CTTGAAAAAG	CTGAAGGGAA	AGGTCCTTTC	ACTGCCGGTG	6180
PAAACCAAGT	AATTCCTTAT	GAACTATTCG	CTGGTGATGG	TATGTTAACT	CGTCTATTAC	6240
PAAAAGCTTC	GGATAATGCT	CCTTGGTCTG	ACAATGGTAC	TGCTAAAAAT	CCTGCTTTAC	6300
CTCCTCTTGA	AGGATTAACA	AAAGGGAAAT	ACTTCTATGA	AGTAGACTTA	AATGGCAATA	6360
CTGTTGGTAA	ACAAGGTCAA	GCTTTAATTG	ATCAACTTCG	CGCTAATGGT	ACTCAAACTT	6420
ATAAAGCTAC	TGTTAAAGTT	TACGGAAATA	AAGACGGTAA	AGCTGACTTG	ACTAATCTAG	6480
TTGCTACTAA	AAATGTAGAC	ATCAACATCA	ATGGATTAGT	TGCTAAAGAA	ACAGTTCAAA	6540
AAGCCGTTGC	AGACAACGTT	AAAGACAGTA	TCGATGTTCC	AGCAGCCTAC	CTAGAAAAAG	6600
CCAAGGGTGA	AGGTCCATTC	ACAGCAGGTG	TCAACCATGT	GATTCCATAC	GAACTCTTCG	6660
CAGGTGATGG	CATGTTGACT	CGTCTCTTGC	TCAAGGCATC	TGACAAGGCA	CCATGGTCAG	6720
ATAACGGCGA	CGCTAAAAAC	CCAGCCCTAT	CTCCACTAGG	CGAAAACGTG	AAGACCAAAG	6780
GTCAATACTT	CTATCAAGTA	GCCTTGGACG	GAAATGTAGC	TGGCAAAGAA	AAACAAGCGC	6840
FCATTGACCA	GTTCCGAGCA	AAyGGTACTC	AAACTTACAG	CGCTACAGTC	AATGTCTATG	6900
GTAACAAAGA	CGGTAAACCA	GACTTGGACA	ACATCGTAGC	AACTAAAAA	GTCACTATTA	6960
ACATAAACGG	TTTAATTTCT	AAAGAAACAG	TTCAAAAAGC	CGTTGCAGAC	AACGTTAAAG	7020
ACAGTATCGA	TGTTCCAGCA	GCCTACCTAG	AAAAAGCCAA	GGGTGAAGGT	CCATTCACAG	7080
CAGGTGTCAA	CCATGTGATT	CCATACGAAC	TCTTCGCAGG	TGATGGTATG	TTGACTCGTC	7140
PCTTGCTCAA	GGCATCTGAC	AAGGCACCAT	GGTCAGATAA	CGGTGACGCT	AAAAACCCAG	7200
CCTATCTCC	ACTAGGTGAA	AACGTGAAGA	CCAAAGGTCA	ATACTTCTAT	CAATTAGCCT	7260
rggacggaaa	TGTAGCTGGC	AAAGAAAAAC	AAGCGCTCAT	TGACCAGTTC	CGAGCAAACG	7320
STACTCAAAC	TTACAGCGCT	ACAGTCAATG	TCTATGGTAA	CAAAGACGGT	AAACCAGACT	7380
rggacaacat	CGTAGCAACT	AAAAAGTCA	CTATTAACAT	AAACGGTTTA	ATTTCTAAAG	7440
NAACAGTTCA	AAAAGCCGTT	GCAGACAACG	TTAAGGACAG	TATCGATGTT	CCAGCAGCCT	7500
ACCTAGAAAA	GGCCAAGGGT	GAAGGTCCAT	TCACAGCAGG	TGTCAACCAT	GTGATTCCAT	7560

ACGAACTCTT	CGCAGGTGAT	GGCATGTTGA	CTCGTCTCTT	GCTCAAGGCA	TCTGACAAGG	7620
CACCATGGTC	AGATAACGGC	GACGCTAAAA	ACCCAGCTCT	ATCTCCACTA	GGTGAAAACG	7680
TGAAGACCAA	AGGTCAATAC	TTCTATCAAG	TAGCCTTGGA	CGGAAATGTA	GCTGGCAAAG	7740
AAAAACAAGC	GCTCATTGAC	CAGTTCCGAG	CAAACGGTAC	TCAAACTTAC	AGCGCTACAG	7800
TCAATGTCTA	TGGTAACAAA	GACGGTAAAC	CAGACTTGGA	CAACATCGTA	GCAACTAAAA	7860
AAGTCACTAT	TAAGATAAAT	GTTAAAGAAA	CATCAGACAC	AGCAAATGGT	TCATTATCAC	7920
CTTCTAACTC	TGGTTCTGGC	GTGACTCCGA	TGAATCACAA	TCATGCTACA	GGTACTACAG	7980
ATAGCATGCC	TGCTGACACC	ATGACAAGTT	CTACCAACAC	GATGGCAGGT	GAAAACATGG	8040
CTGCTTCTGC	TAACAAGATG	TCTGATACGA	TGATGTCAGA	GGATAAAGCT	ATGCTACCAA	8100
ATACTGGTGA	GACTCAAACA	TCAATGGCAA	GTATTGGTTT	CCTTGGGCTT	GCGCTTGCAG	8160
GTTTACTCGG	TGGTCTAGGT	TTGAAAAACA	AAAAAGAAGA	AAACTAATCA	GCTAAGGAAA	8220
TAAATGATGG	ATAGTGGGCT	GACTAAGATT	AGTTTAACAA	CTCAATCAGC	AATCAGGACT	8280
ттстттсаат	AGCAGATTAA	AATCATCGTA	AAACAATAAA	AATAGTGTTA	TACTTAAAGC	8340
AGTATAGCAC	TGTTTTTATC	AAAGGAGAGA	CAGATGGGAA	AGACAATTTT	ACTCGTTGAC	8400
GACGAGGTAG	AAATCACAGA	TATTCATCAG	AGATACTTAA	TTCAGGCAGG	TTATCAGGTC	8460
TTGGTAGCCC	ATGATGGACT	GGAAGCGCTA	GAGCTGTTCA	AGAAAAAACC	GATTGATTTG	8520
ATTATCACAG	ATGTCATGAT	GCCTCGGATG	GATGGTTATG	ATTTAATCAG	TGAGGTTCAA	8580
TACTTATCAC	CAGAGCAGCC	TTTCCTATTT	ATTACTGCTA	AGACCAGTGA	ACAGGACAAG	8640
ATTTACGGCC	TGAGCTTGGG	AGCAGATGAT	TTTATTGCTA	AGCCTTTTAG	CCCACGTGAG	8700
CTGGTTTTGC	GTGTCCACAA	TATTTTGCGC	CGCCTTCATC	GTGGGGGCGA	AACAGAGCTG	8760
ATTTCCCTTG	GCAATCTAAA	AATGAATCAT	AGTAGTCATG	AAGTTCAAAT	AGGAGAAGAA	8820
ATGCTGGATT	TAACTGTTAA	ATCATTTGAA	TTGCTGTGGA	TTTTAGCTAG	TAATCCAGAG	8880
CGAGTTTTCT	CCAAGACAGA	CCTCTATGAA	AAGATCTGGA	AAGAAGACTA	CGTGGATGAC	8940
ACCAATACCT	TGAATGTGCA	TATCCATGCT	CTTCGACAGG	AGCTGGCAAA	ATATAGTAGT	9000
GACCAAACTC	CCACTATTAA	GACAGTTTGG	GGGTTGGGAT	ATAAGATAGA	GAAACCGAGA	9060
GGACAAACAT	GAAACTAAAA	AGTTATATTT	TGGTTGGATA	TATTATTTCA	ACCCTCTTAA	9120
CCATTTTGGT	TGTTTTTTGG	GCTGTTCAAA	AAATGCTGAT	TGCGAAAGGC	GAGATTTACT	9180
TTTTGCTTGG	GATGACCATC	GTTGCCAGCC	TTGTCGGTGC	TGGGATTAGT	CTCTTTCTCC	9240
TATTGCCAGT	CTTTACGTCG	TTGGGCAAAC	TCAAGGAGCA	TGCCAAGCGG	GTAGCGGCCA	9300

1.CC1.mmmmcc	MMC3 3 3 MMmc	0100mm0110	318			
AGGATTTTCC	TTCAAATTIG	GAGGTTCAAG	GTCCTGTAGA	ATTTCAGCAA	TTAGGGCAAA	9360
CTTTTAATGA	GATGTCCCAT	GATTTGCAGG	TAAGCTTTGA	TTCCTTGGAA	GAAAGCGAAC	9420
GAGAAAAGGG	CTTGATGATT	GCCCAGTTGT	CGCATGATAT	TAAGACTCCT	ATCACTTCGA	9480
TCCAAGCGAC	GGTAGAAGGG	ATTTTGGATG	GGATTATCAA	GGAGTCGGAG	CAAGCTCATT	9540
ATCTAGCAAC	CATTGGACGC	CAGACGGAGA	GGCTCAATAA	ACTGGTTGAG	GAGTTGAATT	9600
TTTTGACCCT	AAACACAGCT	AGAAATCAGG	TGGAAACTAC	CAGTAAAGAC	AGTATTTTC	9660
TGGACAAGCT	CTTAATTGAG	TGCATGAGTG	AATTTCAGTT	TTTGATTGAG	CAGGAGAGAA	9720
GAGATGTCCA	CTTGCAGGTA	ATCCCAGAGT	CTGCCCGGAT	TGAGGGAGAT	TATGCTAAGC	9780
TTTCTCGTAT	CTTGGTGAAT	CTGGTCGATA	ACGCTTTTAA	ATATTCTGCT	CCAGGAACCA	9840
AGCTGGAAGT	GGTGGCTAAG	CTGGAGAAGG	ACCAGCTTTC	AATCAGTGTG	ACCGATGAAG	9900
GGCAGGGTAT	TGCCCCAGAG	GATTTGGAAA	ATATTTTCAA	ACGCCTTTAT	CGTGTCGAAA	9960
CTTCGCGTAA	CATGAAGACA	GGTGGTCATG	GATTAGGACT	TGCGATTGCG	CGTGAATTGG .	10020
CCCATCAATT	GGGTGGGGAA	ATCACAGTCA	GCAGCCAGTA	CGGTCTAGGA	AGTACCTTTA	10080
CCCTCGTTCT	CAACCTCTCT	GGTAGTGAAA	ATAAAGCCTA	AAACCCCTTT	ACAAATCCAG	10140
CTATTCATGG	TAGAATAGAT	TTTGTGTGAA	ATATCAGCAG	GAAAGCATGA	AGCTCGTCAA	10200
CAGGTGTCTT	ATGACAAGTA	ACCTTGGCTG	TTTAGGCGAA	GGGCATCTGC	ACGG	10254
(2) INFORMA	ATION FOR SE	O TO NO: 30):			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9769 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

CCGGCGAG	CTA	TCGATAACAC	TTGACTTGGT	AGCCCCACAT	TTTGGACAAC	GCATCCTTTC	60
CCTCCTT	ATC	GTTTTCTTTT	CATTATACCA	TTTTTTAAGC	GATTCCCAAA	ACAATTCTTC	120
TTTTTGCT	rtg	ACAAGTTTTT	TGTTTTGTTG	TATTATTTAA	TTAAGACAAC	AAGGTAAAAG	180
AAAGGAGA	ACT	AAGATGTCCT	GGACATTTGA	СААСААААА	CCCATCTATT	TACAGATTAT	240
GGAGAAA	ATC	AAGCTTCAGA	TTGTTTCCCA	TACACTGGAA	CCCAATCAAC	AACTTCCAAC	300
CGTGAGG	AGC	TAGCTAGCGA	GGCTGGTGTC	AATCCCAATA	CCATCCAAAG	AGCCTTATCA	360
GACCTTGA	AAC	GAGAAGGATT	TGTCTACAGC	AAGCGAACAA	CTGGACGATT	TGTGACTAAG	420
GATAAGGA	AGC	TAATCGCCCA	GTCACGCAAA	CAATTATCAG	AAGAAGAATT	GGAACACTTC	480

				-		
GTTTCCTCCA	TGACCCATTT	TGGCTATGAA	AAAGAAGAAC	TACCAGGCGT	AGTCAGTGAT	540
TATATTAAAG	GAGTTTAAGC	CTATGTCATT	ACTAGTATTT	GAAAATGTAT	CCAAATCATA	600
TGGAGCAACA	CCAGCCCTTG	AAAATGTTTC	TCTTGACATT	CCAGCTGGAA	AAATTGTCGG	660
CCTTCTTGGG	CCAAACGGCT	CAGGAAAAAC	AACCCTGATT	AAACTAATTA	ATGGCCTCTT	720
ACAACCAGAT	CAAGGACGTG	TCCTCATCAA	CGACATGGAC	CCAAGCCCAG	CAACCAAGGC	780
CGTTGTAGCT	TATTTGCCTG	ATACGACCTA	TCTCAATGAG	CAAATGAAGG	TCAAAGAAGC	840
CCTAACCTAC	TTCAAGACCT	TCTATAAAGA	TTGTCAGATC	TTGAACGCGC	CCATCATCTA	900
CTTGCAGACC	TGGGCATTGA	TGAAAATAGT	CGTCTCAAGA	ААСТАТСААА	AGGAAACAAA	960
GAAAAGGTTC	AACTGATTTT	GGTTATGAGC	CGTGATGCTC	GTCTCTATGT	TTTGGACGAA	1020
CCCATTGGTG	GGGTGGATCC	AGCAGCCCGT	GCTTATATCC	TCAATACCAT	TATCAACAAC	1080
TACTCACCAA	CTTCTACCGT	TTTGATTTCT	ACCCACTTGA	TTTCTGATAT	CGAGCCAATC	1140
TTGGATGAAA	TTGTCTTCCT	AAAAGACGGA	AAAGTCGTCC	GTCAAGGAAA	TGTAGATGAT	1200
ATTCGCTACG	AGTCAGGTGA	ATCCATTGAC	CAACTCTTCC	GTCAGaATTT	AAGGCCTAAG	. 1260
CAAAGGAGAT	TATTTATGTT	TTGGAATTTA	GTTCGCTACG	AAAAATTTAA	TGTTAACAAG	1320
TGGTATTTAG	CCCTCTACGC	AGCCGTGCTA	GTCCTTTCTG	CCCTCATCGG	AATACAGACA	1380
CAAGGCTTTA	AAAATCTACC	TTACCAAGAA	AGTCAGÇCTA	CTATGCTACT	TTTTCTAGCT	1440
ACAGTCTTTG	GTGGCTTGAT	GCTTACACTT	GGGATTTCAA	CCATTTTCTT	GATTATTAAA	1500
CGCTTCAAAG	GTAGTGTCTA	CGACCGACAA	GGCTATCTGA	CTTTGACCTT	GCCAGTTTCT	1560
GAACACCATA	TCATCACAGC	CAAACTAATC	GGTGCCTTTA	TCTGGTCATT	GATTAGCACC	1620
GCTGTATTGG	CTCTAAGTGC	TGTTATTATT	CTGGCTTTAA	CAGCTCCAGA	ATGGATTCCT	1680
CTTTCTTATG	TGATTACATT	TGTAGAAACA	CATCTCCCTC	AGATCTTTCT	TACAGGTATA	1740
TCCTTCCTAC	ТАААТАСТАТ	TTCAGGAATC	CTCTGCATCT	ACCTGGCTAT	TTCCATTGGA	1800
CAGCTTTTCA	ATGAATACCG	TACAGCACTC	GCTGTTGCAG	TCTACATTGG	TATCCAAATC	1860
GTCATTGGAT	TTATTGAACT	TTTCTTCAAT	CTTAGTTCTA	ATTTCTATGT	CAATTCACTG	1920
GTAGGACTCA	ATGACCATTT	CTATATGGGA	GCAGGTATAG	CCATTGTTGA	AGAACTCATA	1980
TTCATAGCTA	тсттттатст	CGGAACCTAC	TACATCTTGA	GAAATAAGGT	TAATTTGCTT	2040
TTAATTAATT	TTACCTAGAT	ATGTAACATA	CTCATAGAAC	AAAAGAGACC	AGGCAAAAAG	2100
TCTTTAAAAT	TAGAAAACGC	ATAGTATCAG	GTGTTGAATA	TGTACTGCcC	CCCAAAAGTT	2160
AGATTTTTTC	TGTCTAACTT	TTGGGGGCAG	TTCATAAGAA	CCTTGGTAAT	ATGCGTTTTT	2220

320 TGTGAGCTGA CTTATTTCCT TTCACTATAT CGCAAAATGA AATAAGAACG GAACGATGGG 2280 ATTTTGGAAT TCAAATCAAT TTATAAGAAT GTTTTAGAAG TAATATTATC CTATTCCAGA TTCAGTTCAC TATACAATTG AGTTTTCAAG CAACCTGTTT ACATAATGTG TACATAATTA 2400 GGTTCGTGAT TCCACCCTTT TCACCTTTAA AAACCTCGCT TTCGCAAGGC TCTTCTATTT 2460 ATAAGATAAG GCACGTTTAA AGGTTTTCCA AATCCCTAAA TCATCCGTTT GAAGAACGAG 2520 ACTAGCATAC ATGCGTCCGA TAAATCCTGT TGCTACCACC GCAAAAATCA CTGTAATAGC 2580 AAGTGAAATC CATGCTTCTG CTCCCCCGC ATAGTCATTA ATCGTTCGAA ACGGCATAAA 2640 GAAGGTCGAA ATAAAGGGAA TATAAGAACC AATCTTCAAG AGGAGATTGT CACCAGCTGC 2700 ACCTAGAGCT GTCACTCCAA AAAAACCACC CATAATCAAA ATCATCAAAG GCGACAAGGC 2760 TTTCCCTGAG TCCTCAGGAC GAGAAACCAT AGATCCTAGG AAGGCTGCCA AGACTACGTA 2820 CATGAAAAGA CTGATCAAAA TAAAGAGCAA GGTATTCAGT GAGATAGCAT CTCCCAAGTG 2880 ATCCAAAATA CCAGACTGAG CCAAGAATGG CAAATCTTTA AAGAGCAAAA CGGCAGCCAG 2940 ACCACCTACA ACATAGATCC CAATATGCGT TAAAATCACT AGAAACAGAG CCATCATCCG 3000 CGCATAGAAA TAGTGACTTG CCCTTATGCT AGAAAAAACG ACTTCCATAA TTTTGGTGCC 3060 TTTTCACTG GCAACTTCCT GAGCTGTTAC ACCCGCATAG GTAATCAGAA TCATATAAAG 3120 AAAGAATCCT AAGGCACCTG CTGCAATTGT TTGAATAAAC TTTTTATTTT CCTTGGCTTC 3180 ATCAATCTTT TCTGTGAATT GAATTGTCTG CGCTAAGCGT TTTTCCTGCT CTTGAGACAA 3240 GGAAGCAGTT GAACGATTAA GCTGATTTTG CAGTTCATTG AGTGTACCTG TAACCTCAAA 3300 TTTAATTCCA TTTTCAAGCG ATGTTTCGCC ATGATAAACT GCCTTTAGAA CACTATCTTC 3360 TTGATCAATG GTCAAATAAC CTTTTAATTT TTCTTCTTTA ATTGCTTCTT TGGCACTTGC 3420 TTCGTCTTTA TAGTCGAAGT TAACACCATT TACATTCTTC AGTCCTTCTG CTACAGATGG 3480 CACTGTTGTC ACTACTGCCA CTTTATTATT TTTAGCCATA GAAGAACCTT GGAGATGCCC 3540 AATTCCTACA GAGATTCCTA AAAAGAGGAA CGGCGAAATC ACCATAAAGA AGAAACTCCA 3600 TGACTCGACA TGTCGAAGAT AGGTTTCCTT GATTACAACC CACATATTTC TCATACTTCC 3660 ACTCCTGATT CTAGTTTAAA GATTTCATCG ATAGTTGGCG CTTGTTGGTC AAATGTTGCG 3720 ATATATTGAC CTTGAGTCAA GATTGAGAAG AGTTCCCTTC CAGCGCTCTC ATCCTCCAAA 3780 ATCAATTTCC AACTGCCTTG TTTGGTCAAG CTCACCTGTT TGACATGAGG AAGATTTTCC 3840 AATTCTTCCT TGCTTCGTTC ACTTGAAACA AAGAGACGCG TTTTCCCGTA TTGATTGCGG 3900 ACATCCTGAA CTGGTCCGTG CAAGACCACA CGGCCATCTC GGATCATCAG AATATCGTCA 3960 CAAAGTTCCT CAACATTGGT CATGACATGG TCAGAAAAGA TAATGGTTGT CCGCGCTCTT 4020

321

TTTCCTGA	AA	AATGACTTGT	TTGAGCAATT	CTGTATTAAC	TGGGTCCAAT	CCACTAAAAG	4080
GCTCATCC	ΆA	GATAATCAGG	TCTGGTTCAT	GAATCAGAGT	AATAATGAGC	TGAATCTTCT	4140
GCTGATTT	CC	TTTTGACAGA	CTCTTGATTT	TATCTGTCAG	CTTTCCTTTC	ACTTCCAACC	4200
TCTTCATC	CA	TTGAGGGAGT	TTTTCTTTGA	CTTCTTTGGC	ATCCATGCCT	TTTAGAGTCG	4260
CCAAGTAG	CG	AACTTGTTCA	AGAACTGTCA	ATTTAGGCAT	GAGATGCGTT	CTTCAGGCAG	4320
АТААССАА	TC	CGAGCATAGG	TCTCCTGACG	AATATCCTGA	CCATCCAGAC	CGATTTCTCC	4380
CTGATATT	CT	AGGAATTTCA	AAATACTATG	GAAAATCGTT	GTTTTTCCAG	CACCATTTTT	4440
TCCGACTA	GT.	CCCAAAATAC	GACCTGGTCG	CGCTTGAAAG	TCAATACCAA	ACAAAACTTG	4500
CTTGGATC	CA	AAACTTTTCT	CTAGACTTCT	TACTTCTAGC	ATCTTTCACC	TCCGAAATTT	4560
CTTGCACT	CA	TTATACTCCT	TTTTGATAGC	CTTTACAATG	TTTTTTGTCC	ATTTTTAGAA	4620
GACTATTG	CT	GTGTAAAATA	TGGCCTGGAG	CACTTTTATA	CTCAATGAAA	ATCAAAGAGC	4680
AAACTAGG	AA	GCTAGCCGTA	GACTGCTCAA	AGTACAGCTT	TGAGGTTGCA	GATAAAACTG	4740
ACGAAGTC	gA	CTCAAAACAC	TGTTTTGAGG	TTGTGGATAG	AACTGACGAA	kCrTAaCTAT	4800
ATCTACGG	CA	AGGCGAAcTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTAT	TAGTGATAAA	4860
TCCATTAT	AC	AGCAGCAAAC	TTAATTTATA	CCTTCCGCTC	CTCAACTGTC	TATTTTTAT	4920
CCTGAATT	GT	TATTTGAGTA	ACTCCTTTTT	CCTCGTAAAG	TTTTCTTCCT	CTAAAACTTC	4980
TGGAAAAA	GG	CTAATAGTTT	CAGACAACAT	TTTTATAAGA	AACAAGTTCA	TCTGTCATTT	5040
CAAGAAGG	AG	TAATCCTTTA	TCTACTAATG	GACGGAACAG	AATTCAACCG	CTTGTCCGAT	5100
ATGTTTTC	TA	AGGATTATAT	agtaaaatga	AATAAGAACA	GGACAAATTG	ATCAGGACAG	5160
TCAAATTG	TA	TTCTAACAAT	GTTTTAGAAG	TAGATGTATA	CTATTCTAGT	TTCAATCTGC	5220
TATATCTA	TT	ATGCACACCC	CTATAGGATC	TAATGAAAAT	CACAACAGGC	TCATTCATAG	5280
ATGGTTAC	CT	AAGCCTAAGG	GAACTAAGAA	AACGACTACC	AAGGAAGTCG	CATTCATCGA	5340
AAAGTAGA	TT -	AACAACTATC	CTAAAAAATG	CTTGAACTAC	AAGTCCCCCA	GAGAAGACTT	5400
CTGGATGA	CT	AACTTGAACT	TGAAATTTAG	CAATAATTAA	TTCACTATCT	AACTATATTT	5460
AGTAATTA	TT	TCAGAACTGA	TTAATATTAA	AATTAACTAA	CAATTCAAAG	GATTCATACT	5520
AGCCATAA	ТA	TACGTCCATC	AGAGAGAGAC	TCTTACTACT	TTTAGATTTT	AGTCTTTCTA	5580
GCTTCAGA	ΑT	ACATCTAAAC	TTTAGGGAAA	ATGACTATTC	GAAAGCGCGA	ATGCCTCAAA	5640
ATTATCTC	AG	ATAAGCTATT	CGAAACTTAG	AATGCTTTTA	AATTTATGGA	ATTGCGATTA	5700
*********	~	3 C 3 3 M C C 3 M 3	ma accommon ac	mmanchana	паппста в ст	CECCAACCCC	5760

			322			
TATTTACTTT	CTATTCCTTA	TCAAAAAAGA	CTCATTCCCC	CTTTCTCCTC	CAAAATATGG	5820
TATAGTAGAA	ATATACTATC	TATGAGGAGT	TTACATGTCA	CAGGATAAAC	AAATGAAAGC	5880
TGTTTCTCCC	CTTCTGCAGC	GAGTTATCAA	TATCTCATCG	ATTGTCGGTG	GGGTTGGGAG	5940
TTTGATTTTC	TGTATTTGGG	CTTATCAGGC	TGGGATTTTA	CAATCCAAGG	AAACCCTCTC	6000
TGCCTTTATC	CAGCAGGCAG	GCATCTGGGG	TCCACCTCTC	TTTATCTTTT	TACAGATTTT	6060
ACAGACTGTC	GTCCCTATCA	TTCCAGGGGC	CTTGACCTCG	GTGGCTGGGG	TCTTTATCTA	6120
CGGGCACATC	ATCGGGACTA	TCTACAACTA	TATCGGCATC	GTGATTGGCT	GTGCCATTAT	6180
СТТТТАТСТА	GTGCGCCTAT	ACGGAGCTGC	CTTTGTCCAG	TCTGTCGTCA	GCAAGCGCAC	6240
CTACGACAAG	TACATCGACT	GGCTAGATAA	GGGCAATCGT	TTTGACCGCT	TCTTTATTTT	6300
TATGATGATT	TGGCCCATTA	GCCCAGCTGA	CTTTCTCTGT	ATGCTGGCTG	CCCTGACCAA	6360
GATGAGCTTC	AAGCGCTACA	TGACCATCAT	CATTCTGACC	AAACCCTTTA	CCCTCGTGGT	6420
TTATACCTAC	GGTCTGACCT	ATATTATTGA	CTTTTTCTGG	CAAATGCTTT	GACACGTAAA	6480
AAATCCGTTT	GGTTTCCCAA	GTGGATTTTT	AAAGCGTAGA	TTAACTATAG	CTTGATACTA	6540
AATATACTTT	GGTATGGAAA	TCATGCATAT	TTTTCGATAG	TGAGGCGAGG	ACTTACCTAG	6600
CCTTTCCGCC	GTGATAGAAA	CACCTGAAAT	CTAATGGTTT	CAGGTATTCG	GAAACTTTGA	6660
GCCTAGTGTC	TCAAAGTTTA	GGTATGGAAT	TTTGAAGAAA	GTCGCTACCG	TCCGTAATCA	6720
CTTAAGGAAA	GGCTCAAAAA	TATTGTTTTC	AACCACAAAA	TCCGTTTGGT	TTCCCAAGCG	6780
GATTTTGTGC	TTTATTTTGA	AACTTCTTTT	GCAAGAACAA	AGTTCCCAAG	TGTGGCAGAA	6840
CCATTTCCTG	CGACTGCTGG	CGTCACGATA	TAGTCACGCA	CATCTGGTAC	TGGTAGGTAA	6900
CCATTAAGAA	GAGATGTAAA	TTTCTCACGG	ACACGGTCCA	GCATATGTTG	TTGAGCCATG	6960
ACCCCTCCAC	CAAAGACAAT	CACGTCTGGG	CGGAAAGTCA	CTGTCGCATT	AACCGCAGCT	7020
TGAGCGATAT	AGTAGGCTTG	AACATCCCAA	ACAGGGTTGT	TGAGTTCAAŢ	AGTTTCCCCA	7080
CGTACACCTG	TACGAGCTTC	CAAACTTGGA	CCAGCTGCAT	AACCTTCTAG	ACATCCCTTA	7140
TGGAAAGGAC	AAACACCCTT	AAACTCTTTT	TCAATATCCA	TTGGGTGTCT	AGCAACATAA	7200
TAATGACCCA	TTTCAGGGTG	ACCCACACCA	CCGATAAACT	CACCACGTTG	GATGACGCCT	7260
GCACCGATAC	CTGTACCGAT	TGTGTAGTAA	ACCAAGTTTT	CGATACGACC	ACCAGCATTG	7320
TTACGGGCAA	CCATTTCACC	GTAAGCAGAG	CTGTTTACGT	CTGTTGTGAA	GTACATTGGC	7380
ACGTTTAGGG	CGCGACGAAG	GGCACCAAGC	AAGTCTACAT	TTGCCCAGTT	TGGTTTTGGA	7440
GTCGTCGTGA	TAAAGCCATA	AGTTTTTGAG	TTTTTGTCAA	TATCAATCGG	CCCAAATGAA	7500
CCAACTGCAA	GACCAGCAAG	GTTATCGAAT	TTTGAGAAGA	ACTCAATGGT	TTTATCGATT	7560

GTTTCGATTG	GAGTTGTTGT	TGGAAATTGT	GTTTTTTCTA	CAACGTTAAA	GTTTTCATCA	7620
CCGACAGCAC	AGACAAACTT	TGTACCGCCC	GCTTCCAAGC	ТТССАТАТАА	TTTTGTCATG	7680
АТАААССТСТ	TGTTTTTATT	ТТСТТТАТТА	TAGCATACTT	CGAAAGTCTA	AATGTCTCTA	7740
TTTTTAGAT	TTTCCTCTGT	AAATCTTACT	АТСТААТААА	AACGAACAAA	CATGTCATTT	7800
GTTCGTTTTC	ACATTAGAGA	GGATTGATTA	GATTTTCACT	TCGATCACAG	CATCCCCCTT	7860
AGCAACTGAA	CCTGTTGCGA	CTGGAGCTAC	TGAAGCGTAG	TCACCTGTAT	TTGTAACGAT	7920
AACCATTGTT	GTATCATCAA	GTCCAGCTGC	AGCGATTTTG	TTTGAGTCAA	ATGTTCCAAG	7980
AACATCGCCA	GCTTTCACCT	TATTACCTTG	AGCAACTTTT	GTTTCAAAAC	CGTCACCGTT	8040
CATAGATACA	GTATCAATAC	CAACATGAAT	CAAAACTTCA	GCACCATTTC	TTGTTTTCAA	8100
ACCAAAAGCG	TGCCCTGTTG	GAAAGGCAAT	TGAAACTTCA	GCATCAGCTG	GTGCATAGAC	8160
CACGCCTTGG	CTTGGTTTCA	CAACGATACC	TTGTCCCATA	GCTCCACTTG	AGAAGACTGG	8220
GTCATTGACA	TCAGCAAGAG	CGACAACATC	ACCGACGATA	GGAGTTACAA	GTGTTTCATT	8280
PTGAAGAGCT	GCTGGCGCAA	CTTCTTCTTT	TTCTTCAGCC	ACTTCAGCTC	GTTTTGCAGC	8340
rgcagttgcg	TCTACTTCAT	CTTCGTAACC	AAACATGTAA	GTAAGAGCAA	AACCAAGGC	8400
AAATGATACA	GCTACCATAA	GAAGGTATTG	TGGAAGTTGT	CCGTTACCAA	CATAAAGCAT	8460
TGTACCAGGG	ATGATGGTGA	TACCATTACC	AGTACCAGCA	AGTCCAAGGA	TAGAAGCCAA	8520
rccaccaccg	ATTGCACCAG	CAATCAATGA	AAGGAAGAAT	GGTTTACGGA	AGCGCAAGTT	8580
CACCCCGAAG	ATAGCAGGCT	CTGTAATACC	TAGGAAGGCA	GAAAGAGCAG	CCGGGAAAGC	8640
AAGTGTTTTC	AGTTTTGGAT	TTTTTGTTTT	AACACCAACC	GCAACAGTAG	CAGCACCTTG	8700
AGCTGTCATA	GCAGCTGTGA	TGATAGCGTT	GAATGGGTTA	GCATGGTCAG	CAGCAAGTAA	8760
PTGCACTTCA	AGCAAGTTGA	AGATGTGGTG	CACACCTGAC	ACGACGATCA	ATTGGTGAAC	8820
CCCACCAATC	AAGAAACCAC	CAAGACCAAA	TGGCATGCTA	AGAATCGCTT	TTGTAGCAAT	8880
AAGGATGTAG	TTTTCAACAA	CGTGGAAAAC	TGGTCCAATG	ACAAAGAGTC	CAAGGATAGA	8940
CATGACCAAA	AGTGTCACGA	ATGGTGTTAC	CAAGAGGTCA	ATGACATCTG	GAACAACTTG	9000
CGGACAGCTT	TTTCAAATTT	AGCTCCGACA	ACCCCGATGA	TGAAGGCTGG	AAGAACGGAA	9060
CCTTGCAAAC	CAACAACAGG	GATGAAACCA	AAGAAGTTCA	TCGCTGTTAC	TTCACCACCT	9120
rgagcaactg	CCCAAGCGTT	TGGAAGTGAG	CCAGAGACAA	GCATCATACC	AAGAACGATA	9180
CCAACGCCAG	GATTTCCACC	AAATACACGG	AAGGTTGACC	ACACAACCAA	ACCTGGCAAG	9240
ATTENTED ACC	Cancian y ar Carrente	CAACAMMTON	CINCIPA ACTINIC	CAAACTCACC	THE CAR A CTICCO	0300

PCT/US97/19588 WO 98/18931

ATTTCAAGAG	CGTTGAAAAG	ACCACGCACA	324 CCCATGAAGA	GACCTGTCGC	TACGATAACT	9360		
GGGATGATTG	GAACGAAAAC	ATCACCAAAA	GTACGGATAG	CACGTTGGAA	CCAGTTCCCT	9420		
TGTTTAGCAA	CTTCTGCTTT	CATGTCATCC	TTAGATGATG	TTGGTAATCC	AAGTACAACA	9480		
ACTTCATCGT	ACATTTTGTT	AACTGTACCT	GTACCAAAGA	TAATTTGGTA	TTGCCCTGAG	9540		
TTAAAGAAAG	CACCTTGAAC	TTTTTCCAAG	TTCTCAATCA	CTTCTTTATT	GATTTTCTCT	9600		
TCATCTTTGA	CCATGACACG	TAGACGAGTC	GCACAGTGGG	CAACACTATT	GACATTTTCA	9660		
CGTCCGCCCA	AGGCATCGAT	GACTTTTTTT	GCAATTTCCT	GATTGTTCAT	TTGCAAAAAT	9720		
CTCCTTATAT	AACATTTTGT	TCTTGTTTGA	AAGCGATTTT	ATTCGCCGG		9769		
(2) INFORMATION FOR SEQ ID NO: 31:								

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3149 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

CGCTTGAGTG	CTAATTCATA	GTTCTATTGT	ATCACTTGGT	CAGAAATAAT	CAAGAAAAA	. 60
GTCTGACTTT	CTCAAGATAA	AAAGCCTGAG	ACCAACTCAG	ACTTTTTAAT	TCTTAAAATG	120
GCAATTCTTC	CTCTTCCAAG	ACCAAATCTG	CCAAATCTTG	GCCTGCATTA	TTTTCACGCA	180
TAGCACGTTG	GGCACGACTT	TCCAAGAGTT	GGAATCCTGT	GACAAGTACT	TCGGTCACGT	240
AGTTCATTTG	GCCATTTTTC	TCAAAGCGAC	GGGTACGCAA	TTCTCCATCA	ACGGAAATGA	300
GACTACCTTT	GGTTGCGTAC	TTGCCAAAGT	TTCTGCTAGT	CTGCCCCATA	GGACCATATT	360
GACAAAATCA	GCTTCACGTT	CACCGTTTTG	GTCTTTGTAA	CGACGGTTCA	CAGCGATAGT	420
TGCTCGCGCT	ACCGACTTGT	CATTGTTGGT	TTTGTGCAAT	TCTGGTGTAG	ACGTTAAACG	480
TCCAATCAAG	ATAACTTTAT	TATACATATT	TTCTTCCTCC	TACTTATCTA	TTCGTAGGAA	540
АТСАААААА	GTTACAGAAA	TTTGTAACTT	TTCGAGAAAA	TTTTTTATTT	TTTATGAACC.	600
ATGAAACCTG	TCGCCTGTTG	ATTGGCCATA	ATGGTCATAT	CTGTAATCTG	AACACGACGA	660
GGTTGACTAG	TCACATAGAC	TACTGTATCT	GCAATATCCT	GAGCTTGCAA	AGCTTCTATT	720
CCTTGGTAAA	CGGACGCAGC	TCGTTCTTTA	TCACCATGAA	AACGCACTGT	AGAAAAATCT	780
GTTTCGACAA	TTCCAGGCTG	AATGGTCGTC	ACCTTGATAT	CCGTTGCGAT	GGTATCAATT	840
CGCAGTCCAT	CTGAAAAGGT	CTTAACTGCC	GCCTTGGTGG	CTGAGTAAAC	AGCTGCACCA	900
GCATAGGCAT	AAATTCCTGC	GGTTGACCCC	ATATTGATAA	TATGACCTTG	ATTGGCTTTT	960

ACCA'	TTGCTG	GCAAGAAACA	GCGAGTGACT	GCCATCAAAC	CTTTGACATT	GGTATCCAAC	102
\TGG'	PCAGCA	TATCCAACTC	TTCATAGTCT	TGATAGGGAG	CTAAGCCAAG	AGCCAGTCCT	1080
GCGT"	PATTGA	CCAGGATGTC	AATCTGACCT	ATCGTTTCTA	AAATATCAGA	GCAGACAGTC	1140
ATT	CCATTG	TCATATCCGT	GACATCTAGG	AGAAAAGTCC	AAACTGTTTG	ATTTGGAAAA	1200
TTTC	CTGCAA	ACTCCGCCTT	AAGAGCTTCT	AGTCTGTCTA	TCCGTCGTCC	TGTTAGAACG	1260
CATO	CCTCAC	CCTGCTCCAG	ATAAGCACGC	GCAATCGCTT	CACCGATTCC	TGATGTCGCT	1320
CTG	TAATCA	CAACATTTTT	TGCCATCTTA	TTTCCTTCTA	GCTGGTCTAT	CAGATATTAA	1380
CAAC	PTCTTA	GGCAGTCCAG	TGTTTCGCTG	GGTCGAACGG	TGTTCCGACA	ACTTGGTCTT	1440
TGA:	PAATTC	AAGCACCCCA	CGTTTTTGTG	GAGCATTTGG	CAGATGCAAT	TCACGAGGAC	1500
'GCA	CATCAT	ACCAAAACTC	TTTTCACCAC	GAAGTTCACC	TGGGAAAATG	AGATTCCCTT	1560
TGG	CATCAT	AGCTCCAGGA	AGCGCGACAA	TGGTTTTCAA	CCCCACACGC	GCATTGGGAG	1620
TCC:	rgcaac	GATTTGTACA	GTCTTATCAC	TTGCGACTGC	AACTTGGCAG	ATGTTGAGGT	1680
GTC	ACTATC	TGGATGGGCT	ACCATCTCAA	CAATTTCACC	TACAACAAAC	TTAGGTTCCT	1740
ATC	ATTAAC	AATTTCTTCT	GTAAAACCTT	CCGCCTGCAA	CTCTTGGTTC	AAACGAGCGA	1800
TTG	CTCATC	TGTCAAAAAG	ACTTGACCGC	GCTCTGCAAT	ТТСАААТААА	CTTGAAACTT	1860
GAA	TTATA	CCAAGCCACT	GTTTCCCCAT	TATCTTTGAG	AAAAACACGG	GCTACCTTGC	1920
TTTC	CCCTC	CACATCCAGT	TTGGCATCTC	CGCTATTTTT	CACGATGACC	ATAAGGACAT	1980
CACCO	GACATG	TTCTTTATTA	TATGTAAAAA	TCATTGTTTC	CTTTTTCTCC	TATTTCAGTC	2040
TGC	AAAAA	GTCATTGATT	TGTTGCTTGC	TTTTACGGTC	GCGATTGACA	AAACGACCGA	2100
TTCC	CTTGTC	CTTTTCTAGA	ACAACAAGGC	TAGGAATTCC	GTAAACATCC	CAGAGTTTGG	2160
CAA	ATCCAT	ATACTGATCT	CGGTCCATTC	GAATAAAGGT	GAACTCTGGA	TTGGTCTCCT	2220
AATO	CTCTGG	TAAGGCAGGA	TAAATATAAC	GACAATCGCT	ACACCAGTCT	GCCACAAAAA	2280
'GAAC	SACCTT	CTTGCCCGCT	TTTTCCACTA	AAGATGCTAA	TTCTTCTAAA	CTTGCTGGCT	2340
TATO	CATAAG	ACTTCCTCCT	CATAGACTAG	GTCTTCATTT	TCATAGACAA	AGGTATAATG	2400
CGGC	CCATCC	TCAAAAATGA	CGCCACCAAC	CAAGCTCTCC	AGACTGCTTT	CGTAAACTTG	2460
ACAT	TAAAGG	GTCGCAATTT	CCCCCATGTC	GGAAAAATGG	TCTCGCACAA	TCTCTGTCAA	2520
TCTT	CCTGA	GTCTTCATGA	GCTTACGGTC	ATCTGCAACT	TTTTTCGTAG	CAAGAGCAAG	2580
CTTC	CGATA	CCTAGCAGAG	CCAAGCCTGC	CATCCACATT	TTTTTAGCTT	TCATACCATT	2640
יתית	тааса	CAAAAAAGGC	ттерестер	ATGAGGAAGC	ACCACAAAAC	CAACTAAAA	2700

PCT/US97/19588 WO 98/18931

				326			
CCTCTT	CCT	TTAAGGAAAA	GGACTTCTTA	TACTCAATGA	AAATCAAAGA	CCAAACTAGG	2760
AAGCTAG	CCG	CAGGCTGCTC	AAAGCACTGC	TTTGAGGTTG	TAGATAGAAC	TGACGAgTCa	2820
CTCAAAA	CAC	TGTTTTGAGG	TTGTGGATGA	AGCTGACGTG	GTTTGAAGAG	ATTTTCGAAG	2880
AGTATTA	TTC	TTATTGCCAG	GCACCTAAGT	TGCCAACGTA	GTAACTATCA	GGTGTGTAGG	2940
PATTGCG	AGC	ATCTTACCTG	ATGAAGCCAG	ATAATACTAC	TTGCCATTGT	CTTTGACCCA	3000
ATCATTC	GCA	ATCATGGAAC	CAGAAGAACT	TACATAATAC	CATTCTCCCT	TGTCATAAAC	3060
CCAAGTA	CTG	ACTTTCATGG	TTCCTGAGCA	ATTAAAGGCA	AAAAAACTGT	CCAATAACAT	3120
rcgtttt	ATT	AAAGCATTTG	ACACTACAT				3149

(2) INFORMATION FOR SEQ ID NO: 32:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 10240 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

60	ATAAAAGAAT	AAGGTGTCAG	AGAGACTCAC	GGGAGTCCAG	AACCTTTAAG	CCAAAAATTC
120	GATTTTAACT	TGTGTTGTAC	TGTGCTCTCT	ACTTTTTGAG	TCTAGAGGAG	GGTGCAATTT
180	AAGGAGGAAA	CTTAAAATTT	ATCTGGTCCC	TCTTTTCTTT	ACTAGCAAGG	GAGGCCTTGC
240	CCATGAAGGT	CGGTTGGAAA	GGGTGTCATT	AGAAGCGTTT	CCCACATGTA	AGTTATGAAT
300	agaaatggtt	TCCTAGAAGG	TTTGAATTAG	CGCCACAATC	GAGGAAATCG	GGTTGCACAA
360	CCATCTCTTA	CGGACGATGC	CTGCGTGTAC	ATTTCTTCAT	GAGCAGGCCA	GAAGCCATGC
420	ССТСАТТТАТ	AGCAGTGTCA	AAGGCAAACA	GTCTATTGAC	TTTCAATTTC	CGTCGTCCTA
480	CACTCTTGAT	GTCAGGGAGA	TCAACCTTAA	TGCAATTTTT	GAGCTGGGAC	CGGATTGACG
540	GAATCAGGTT	TTGATGAGCA	TTGTCTGACC	TGGTTTTGAC	CTCAGGGAAA	GTGATGGGGC
600	GGAATTGCAT	AGGTGGCCAA	CCCTTGCTTG	TGGTGTTCCA	GTGGTGGGAT	CTCCTTGTTG
660	TGTTATTTTG	ATAAGGATGC	GGTTTTGCTA	GACAGTCCTC	TGAAAGTAGT	GAACGTGGAG
720	TTCTTATGGC	CAGATGATGG	TTTGTAACGA	TGGTCAGGTC	TGGCTCAGTA	AAAACGGAAT
780	TGCTGTTTAC	GTCAGTTTGA	GATTTAGACA	TGTTATCAAT	ATGTTTCCGT	ATCAAGGGAA
840	TCACCCAAGA	CCTTTGATGA	АТСААТСААА	GATGAAGTAT	CTCCAGGAAT	TCGTGTGGGG
900	TGCCTGTGTT	GAGCTTGCTA	TGTGGGATGG	TCGTATGGCT	CTCTGGAATC	GCCTATTTAT
960	TCCTGTTTTC	GTGAAGATGG	CAACGCGTCT	GACGGTCAGC	CAGAAAACGA	CTAAAAGTAC

CGCACAGGAA	CAGTTGTATT	ATAAGGAGAA	AATTATGACT	ACAAATCGAT	TACAAGTTTC	1020
TCTACCTGGT	TTGGATTTGA	AAAATCCGAT	TATTCCAGCA	TCAGGCTGTT	TTGGCTTTGG	1080
ACAAGAGTAT	GCCAAGTACT	ATGATTTAGA	CCTTTTAGGT	TCTATTATGA	TCAAGGCGAC	1140
AACCCTTGAA	CCACGTTTTG	GGAATCCAAC	TCCAAGAGTG	GCAGAGACGC	CTGCTGGTAT	1200
GCTCAATGCA	ATTGGCTTGC	AAAATCCTGG	TTTAGAGGTT	GTTTTGGCTG	AAAAGCTACC	1260
TTGGCTGGAA	AGAGAATATC	CAAATCTTCC	TATTATTGCC	AATGTAGCTG	GTTTTTCAAA	1320
ACAAGAGTAT	GCAGCTGTTT	CTCATGGGAT	TTCCAAGGCA	ACTAATGTAA	AAGCTATCGA	1380
GCTCAATATT	TCTTGTCCCA	ATGTTGACCA	CTGTAATCAT	GGACTTTTGA	TTGGTCAAGA	1440
TCCAGATTTG	GCTTATGATG	TGGTGAAAGC	AGCTGTGGAA	GCCTCAGAAG	TGCCAGTTTA	1500
TGTCAAATTA	ACCCCGAGTG	TGACCGATAT	CGTTACTGTC	GCAAAAGCTG	CAGAAGATGC	1560
GGGAGCAAGT	GGCTTGACCA	TGATCAATAC	TCTGGTTGGA	ATGCGCTTTG	ACCTCAAAAC	1620
TAGAAAACCA	ATCTTGGCCA	ATGGAACAGG	TGGAATGTCT	GGTCCAGCAG	TCTTTCCAGT	1680
AGCCCTCAAA	CTCATCCGCC	AAGTTGCCCA	AACAACAGAC	CTGCCTATCA	TTGGAATGGG	1740
AGGAGTGGAT	TCGGCTGAAG	CTGCCCTAGA	AATGTATCTG	GCTGGGGCAT	CTGCTATCGG	1800
AGTTGGAACA	GCTAACTTTA	CCAATCCTTA	TGCCTGCCCT	GACATCATCG	AAAATTTACC	1860
AAAAGTCATG	GATAAATACG	GTATTAGCAG	TCTGGAAGAA	CTCCGTCAGG	AAGTAAAAGA	1920
GTCTCTGAGG	TAAACTGCAA	TCAATCTGTT	CTTGATTTTT	TATTAGTTTG	TAATATGAAT	1980
TTAGGAGAAT	TTTGGTACAA	TAAAATAAAT	AAGAACAGAG	GAAGAAGGTT	AATGAAGAAA	2040
GTAAGATTTA	TTTTTTTAGC	TCTGCTATTT	TTCTTAGCTA	GTCCAGAGGG	TGCAATGGCT	2100
AGTGATGGTA	CTTGGCAAGG	AAAACAGTAT	CTGAAAGAAG	ATGGCAGTCA	AGCAGCAAAT	2160
GAGTGGGTTT	TTGATACTCA	TTATCAATCT	TGGTTCTATA	TAAAAGCAGA	TGCTAACTAT	2220
GCTGAAAATG	AATGGCTAAA	GCAAGGTGAC	GACTATTTT	ACCTCAAATC	TGGTGGCTAT	2280
ATGGCCAAAT	CAGAATGGGT	AGAAGACAAG	GGAGCCTTTT	ATTATCTTGA	CCAAGATGGA	2340
aagatgaaaa	GAAATGCTTG	GGTAGGAACT	TCCTATGTTG	GTGCAACAGG	TGCCAAAGTA	2400
ATAGAAGACT	GGGTCTATGA	TTCTCAATAC	GATGCTTGGT	TTTATATCAA	AGCAGATGGA	2460
CAGCACGCAG	AGAAAGAATG	GCTCCAAATT	AAAGGGAAGG	ACTATTATTT	CAAATCCGGT	2520
GGTTATCTAC	TGACAAGTCA	GTGGATTAAT	CAAGCTTATG	TGAATGCTAG	TGGTGCCAAA	2580
GTACAGCAAG	GTTGGCTTTT	TGACAAACAA	TACCAATCTT	GGTTTTACAT	САААСААААТ	2640
GGAAACTATG	CTGATAAAGA	ATGGATTTTC	GAGAATGGTC	ACTATTATTA	TCTAAAATCC	2700

328 GGTGGYTACA TGGCAGCCAA TGAATGGATT TGGGATAAGG AATCTTGGTT TTATCTCAAA 2760 TYTGATGGGA AAATrGCTGA AAAAGAATGG GTCTACGATT CTCATAGTCA AGCTTGGTAC 2820 TACTTCAAAT CCGGTGGTTA CATGACAGCC AATGAATGGA TTTGGGATAA GGAATCTTGG 2880 TTTTACCTCA AATCTGATGG GAAAATAGCT GAAAAAGAAT GGGTCTACGA TTCTCATAGT 2940 CAAGCTTGGT ACTACTTCAA ATCTGGTGGC TACATGGCGA AAAATGAGAC AGTAGATGGT 3000 TATCAGCTTG GAAGCGATGG TAAATGGCTT GGAGGAAAAA CTACAAATGA AAATGCTGCT 3060 TACTATCAAG TAGTGCCTGT TACAGCCAAT GTTTATGATT CAGATGGTGA AAAGCTTTCC 3120 TATATATCGC AAGGTAGTGT CGTATGGCTA GATAAGGATA GAAAAAGTGA TGACAAGCGC 3180 TTGGCTATTA CTATTTCTGG TTTGTCAGGC TATATGAAAA CAGAAGATTT ACAAGCGCTA 3240 GATGCTAGTA AGGACTTTAT CCCTTATTAT GAGAGTGATG GCCACCGTTT TTATCACTAT 3300 GTGGCTCAGA ATGCTAGTAT CCCAGTAGCT TCTCATCTTT CTGATATGGA AGTAGGCAAG 3360 AAATATTATT CGGCAGATGG CCTGCATTTT GATGGTTTTA AGCTTGAGAA TCCCTTCCTT 3420 TTCAAAGATT TAACAGAGGC TACAAACTAC AGTGCTGAAG AATTGGATAA GGTATTTAGT 3480 TTGCTAAACA TTAACAATAG CCTTTTGGAG AACAAGGGCG CTACTTTTAA GGAAGCCGAA 3540 GAACATTACC ATATCAATGC TCTTTATCTC CTTGCCCATA GTGCCCTAGA AAGTAACTGG 3600 GGAAGAAGTA AAATTGCCAA AGATAAGAAT AATTTCTTTG GCATTACAGC CTATGATACG 3660 ACCCCTTACC TTTCTGCTAA GACATTTGAT GATGTGGATA AGGGAATTTT AGGTGCAACC 3720 AAGTGGATTA AGGAAAATTA TATCGATAGG GGAAGAACTT TCCTTGGAAA CAAGGCTTCT 3780 GGTATGAATG TGGAATATGC TTCAGACCCT TATTGGGGCG AAAAAATTGC TAGTGTGATG 3840 ATGAAAATCA ATGAGAAGCT AGGTGGCAAA GATTAGTACT ATAAGTGAAT ATGATTTGAG 3900 TGAATAGTAA GTTAAAAATC CTGATTTCAA GTAAAATCAG GATTTTTTCA TGGATGCAAT 3960 TTTTTTGGAG TCTGGTGTGA CGCGGAGGGT CTTTTGTCCT GTGTAAGTGA CAAAGCCGGG 4020 TTTTCCACCA GTTGGTTTAT TGAGTTTTTT GACTTCAATC ATATCTACCT GCACCAGATT 4080 CGACAGGCGC CCTTGAGAGA AGTAGGCAGC TAACTCTGCT GCGTCTGTCT TGACTGCATC 4140 AGATGGGTCA AGATTTCCTG AGATGACAAC ATGGCTTCCA GGAATGTCCT TAGCATGGAA 4200 CCAAAGTTCC TCCTTGCGGG CCATTTTAAA GGTCAATTCC TCATTTTGAA GATTGTTTCG 4260 TCCGACATAG ATGATGGTTT TGCCATCGCT TGCTAGATAT TGTTCTAGTT TTTTGCGTTT 4320 CTGGATTTTC TCCCGTTGTC TTCTGCGGAT AAAACCTGTT TGAATCAATT CTTCACGGAT 4380 TTCAGCGATT TCTTCCAGTC CAGCTTGGTT GAGGACGGTT TCTACACTTT CCAGATAGAG 4440 AATAGTGGCT TTGGTTTCTT CAATCAAATC AGTCAAGTAT TTGACAGCTT CTTTGAGTTT 4500

CTGATAC	CGT	TTAAAATAGC	GTTGGGCATT	CTGGTTGGGA	GTCAGAGCCT	TATCAAGCGC	4560
AATCATG	ATA	GGTTGGTTGG	TATAGTAGTT	GTCTAGGATA	ACCTGGTCTT	GGTCGTTAGG	4620
CACTTGG	TGG	AGGAAGGTTG	TCAGCAATTC	TCCTTTTTGA	CGAAATTCTT	CAGCGTTGTC	4680
PGTCGCC	AGT	AACTCTTTTT	CCTGTTTTTT	GAGTTTGTGT	CGGTTTTTCT	GAAGTTCATT	4740
PTCAACA	CGA	CGAATCAGTT	CACTGGCCTG	CTGTTTGACG	CGGTCGCGCT	CAGCCTTATC	4800
CTTATAG	TAG	GTGTCCAACA	AATCAGAAAG	ATTTGCAAAA	GGCTCTCCCA	CCTGATTTGC	4860
AAAAGGA	ACT	GGACTGAAGG	AAGTCTCAGT	CAAGCATGGC	TTGGTTTCTT	GATTGAAAAA	4920
ATTTCGG	AAA	GCGGAAAGTT	TTTCACTAAC	CAGTATCCTT	TCCAATTCAT	TTGCCGTATC	4980
GCGTCCC	AGA	CCTTGAAAGA	GGCTTTGAAG	ATTTTTTGCT	GTTAGTTCTT	GGGTTTGCAG	5040
GATTTCA	AAG	AGCTTTTCAT	CCTTGATAGT	AAAAGGATTG	AGAGATTTTG	TACTTGGCGG	5100
AGCGATA	TAG	GTCGATCCTG	GAAGTAAGGT	GCGGTAGCTA	TTTTGTGAAA	AGCCGACGTG	5160
PTTGATA	ACT	TCGAGGATTT	TATGACTGCT	TTTATCGACC	AGTAGAATAT	TACTGTGTTT	5220
CCCCATA	ATT	TCGATAATCA	AGGTAGCCTG	GATATGGTCT	CCAATCTCGT	TTTTATTGGA	5280
aactgta	ATT	TCCACAATAC	GGTCATTTTC	CACTTGCTCA	ATCGACTCAA	TCAGGGCCCC	5340
CTGCAAA	TAC	TTTCTCAAAA	ССАТБАТААА	GGTAGAAGGT	TGAGCTGGAT	TTTCAAAAGT	5400
CGTTTGG	GTC	AGCTGAATGC	GTCCAAAAAC	TGGATGGGCA	GAAAGGAGCA	$\mathbf{GGCGATGGCT}^{\ /}$	5460
PTGGCGA	TTG	CTGCGGATTT	GCAAGACCAA	CTCTTGTTCA	AAAGGCTGAT	TGATTTTCTG	5520
GATGCGA	CCA	TTCACTAATT	CGCTTCGCAA	TTCCTCAACT	ATGTGGTGTA	AAAAAAATCC	5580
GTCAAAT	GAC	ATCGTTCTCT	CCTTGTGATT	GTATTCCATA	GTATTATATC	AAAAAGGTAG	5640
AAAATAA	TCA	TGGAAATGTG	GTATAATAAA	GCCAAGTAAA	GAGAAACGAG	AAGCACATGT	5700
ATATTGA	TAA	GGTAGATGAA	ACTGGTCAAG	TTTCAAAAGA	AATGTTGCAA	CAAACCCAAG	5760
ጥ ተሞልል	GGA	ATTTGCAGCC	CAAAAATTAG	GAAAAGAAGA	CAAGGAGATG	GCAGTCACTT	5820
PTGTGAC	CAA	TGAGCGTAGT	CATGAACTTA	ATCTGGAGTA	CCGTAACACC	GACCGTCCGA	5880
CAGATGT	CAT	CAGCCTTGAG	TATAAACCAG	AATTGGAAAT	TGCCTTTGAC	GAAGAGGATT	5940
IGCTTGA	AAA	TTCAGAATTG	GCAGAGATGA	TGTCTGAGTT	TGATGCCTAT	ATTGGGGAAT	6000
rgttcat	стс	TATCGATAAG	GCTCATGAGC	AGGCCGAAGA	ATATGGTCAC	AGCTTTGAGC	6060
GTGAGAT	GGG	CTTCTTGGCA	GTACACGGCT	TTTTACATAT	TAACGGCTAT	GATCACTACA	6120
CTCCGGA	AGA	AGAAGCGGAG	ATGTTCGGTT	TACAAGAAGA	AATTTTGACA	GCCTATGGAC	6180
בי בי בי בי	474	ВТВВССВВВ	риссававая	ССПСАСППСА	ጥልጥርርልርጥጥጥ	አርኔ አጥጥጥርርጥ	6245

			330			
TTGACAGGTA	TTTTTACTGC	TATCAAGGAA	GAACGCAATA	TGCGAAAACA	CGCAGTGACG	6300
GCTCTAGTGG	TCATCCTTGC	AGGTTTTGTT	TTTCAGGTGT	CACGAATCGA	ATGGCTCTTT	6360
CTCCTATTGA	GTATTTTCTT	GGTAGTAGCC	TTTGAGATTA	TCAACTCTGC	TATTGAAAAT	6420
GTGGTGGATT	TGGCCAGTCA	CTATCACTTT	TCCATGCTGG	CTAAAAATGC	CAAGGATATG	6480
GCGGCCGGCG	CGGTATTAGT	GGTTTCTCTT	TTCGCAGCCT	TAACAGGCGC	ATTGATTTTT	6540
CTCCCACGAA	TCTGGGATTT	ATTATTTTAA	ACAGTAAGAG	GAAATTATGA	СТТТТАААТС	6600
AGGCTTTGTA	GCCATTTTAG	GACGTCCCAA	TGTTGGGAAG	TCAACCTTTT	TAAATCACGT	6660
TATGGGGCAA	AAGATTGCCA	TCATGAGTGA	CAAGGCGCAG	ACAACGCGCA	АТААААТСАТ	6720
GGGAATTTAC	ACGACTGATA	AGGAGCAAAT	TGTCTTTATC	GACACACCAG	GGATTCACAA	6780
GCCTAAAACA	GCTCTCGGAG	ATTTCATGGT	TGAGTCTGCC	TACAGTACCC	TTCGCGAAGT	6840
GGACACTGTT	CTTTTCATGG	TGCCTGCTGA	TGAAGCGCGT	GGTAAGGGGG	ACGATATGAT	6900
TATCGAGCGT	CTCAAGGCTG	CCAAGGTTCC	TGTGATTTTG	GTGGTGAATA	AAATCGATAA	6960
GGTCCATCCA	GACCAGCTCT	TGTCTCAGAT	TGATGACTTC	CGTAATCAAA	TGGACTTTAA	7020
GGAAATTGTT	CCAATCTCAG	CCCTTCAGGG	AAATAACGTG	TCTCGTCTAG	TGGATATTTT	7080
GAGTGAAAAT	CTGGATGAAG	GTTTCCAATA	TTTCCCGTCT	GATCAAATCA	CAGACCATCC	7140
AGAACGTTTC	TTGGTTTCAG	AAATGGTTCG	CGAGAAAGTC	TTGCACCTAA	CTCGTGAAGA	7200
GATTCCGCAT	TCTGTAGCAG	TAGTTGTTGA	CTCTATGAAA	CGAGACGAAG	AGACAGACAA	7260
GGTTCACATC	CGTGCAACCA	TCATGGTCGA	GCGCGATAGC	CAAAAAGGGA	TTATCATCGG	7320
TAAAGGTGGC	GCTATGCTTA	AGAAAATCGG	TAGCATGGCC	CGTCGTGATA	TCGAACTCAT	7380
GCTAGGAGAC	AAGGTCTTCC	TAGAAACCTG	GGTCAAGGTC	AAGAAAAACT	GGCGCGATAA	7440
AAAGCTAGAT	TTGGCTGACT	TTGGCTATAA	TGAAAGAGAA	TACTAAGTAG	AGGTAGGCTC	7500
ATGCCTGCTT	CTTGTTTTTA	CAGAAGGAGG	ACTTATGCCT	GAATTACCTG	AGGTTGAAAC	7560
CGTTTGTCGT	GGCTTAGAAA	AATTGATTAT	AGGAAAGAAG	ATTTCGAGTA	TAGAAATTCG	7620
CTACCCCAAG	atgattaaga	CGGATTTGGA	AGAGTTTCAA	AGGGAATTGC	CTAGTCAGAT	7680
TATCGAGTCA	ATGGGACGTC	GTGGAAAATA	TTTGCTTTTT	TATCTGACAG	ACAAGGTCTT	7740
GATTTCCCAT	TTGCGGATGG	AGGGCAAGTA	TTTTTACTAT	CCAGACCAAG	GACCTGAACG	7800
CAAGCATGCC	CATGTTTTCT	TTCATTTTGA	AGATGGTGGC	ACGCTTGTTT	ATGAGGATGT	7860
TCGCAAGTTT	GGAACCATGG	AACTCTTGGT	GCCTGACCTT	TTAGACGTCT	ACTTTATTTC	7920
ATTAAAAAAT	GGTCCTGAAC	CAAGCGAACA	AGACTTTGAT	TTACAGGTCT	TTCAATCTGC	7980
CCTTGCCAAG	TCCAAAAAGC	CTATCAAATC	CCATCTCCTA	GACCAGACCT	TGGTAGCTGG	8040

ACTI	GGCAAT	ATCTATGTGG	ATGAGGTTCT	CTGGCGAGCT	CAGGTTCATC	CAGCTAGACC	8100
TTCC	CAGACT	TTGACAGCAG	AAGAAGCGAC	TGCCATTCAT	GACCAGACCA	TTGCTGTTTT	8160
GGGC	CAGGCT	GTTGAAAAAG	GTGGCTCCAC	CATTCGGACT	TATACCAATG	CCTTTGGGGA	8220
AGAT	GGAAGC	ATGCAGGACT	TTCATCAGGT	CTATGATAAG	ACTGGTCAAG	AATGTGTACG	8280
CTGT	GGTACC	ATCATTGAGA	AAATTCAACT	AGGCGGACGT	GGAACCCACT	TTTGTCCAAA	8340
CTGT	'CAAAGG	AGGGACTGAT	GGGAAAAATC	ÄTCGGAATCA	CTGGGGGAAT	TGCCTCTGGT	8400
aagt	CAACTG	TGACAAATTT	TCTAAGACAG	CAAGGCTTTC	AAGTAGTGGA	TGCCGACGCA	8460
GTCG	TCCACC	AACTACAGAA	ACCTGGTGGT	CGTCTGTTTG	AGGCTCTAGT	ACAGCACTTT	8520
GGGC	:AAGAAA	TCATTCTTGA	AAACGGAGAA	CTCAATCGCC	CTCTCCTAGC	TAGTCTCATC	8580
PTT	CAAATC	CTGATGAACG	AGAATGGTCT	AAGCAAATTC	AAGGGGAGAT	TATCCGTGAG	8640
GAAC	TGGCTA	CTTTGAGAGA	ACAGTTGGCT	CAGACAGAAG	AGATTTTCTT	CATGGATATT	8700
ccc	TACTTT	TTGAGCAGGA	CTACAGCGAT	TGGTTTGCTG	AGACTTGGTT	GGTCTATGTG	8760
GACC	GAGATG	CCCAAGTGGA	ACGCTTAATG	AAAAGGGACC	AGTTGTCCAA	AGATGAAGCT	8820
GAGT	CTCGTC	TGGCAGCCCA	GTGGCCTTTA	GAAAAAAAGA	AAGATTTGGC	CAGCCAGGTT	8886
CTTG	ATAATA	ATGGCAATCA	GAACCAGCTT	CTTAATCAAG	TGCATATCCT	TCTTGAGGGA	8940
GTA	GGCAAG	ATGACAGAGA	TTAACTGGAA	GGATAATCTG	CGCATTGCCT	GGTTTGGTAA	9000
rttī	CTGACA	GGAGCCAGTA	TTTCTTTGGT	TGTACCTTTT	ATGCCCATCT	TCGTGGAAAA	9060
CTA	GGTGTA	GGGAGTCAGC	AAGTCGCTTT	TTATGCAGGC	TTAGCAATTT	CTGTCTCTGC	9120
TTAT	TCCGCG	GCGCTCTTTT	CTCCTATTTG	GGGTATTCTT	GCTGACAAAT	ACGGCCGAAA	9180
ACCC	ATGATG	ATTCGGGCAG	GTCTTGCTAT	GACTATCACT	ATGGGAGGCT	TGGCCTTTGT	9240
CCA	AATATC	TATTGGTTAA	TCTTTCTTCG	TTTACTAAAC	GGTGTATTTG	CAGGTTTTGT	9300
rcct	AATGCA	ACGGCACTGA	TAGCCAGTCA	GGTTCCAAAG	GAGAAATCAG	GCTCTGCCTT	9360
AGGT	ACTTTG	TCTACAGGCG	TAGTTGCAGG	TACTCTAACT	GGTCCCTTTA	TTGGTGGCTT	9420
PATC	GCAGAA	TTATTTGGCA	TTCGTACAGT	TTTCTTACTG	GTTGGTAGTT	TTCTATTTTT	9480
GCT	GCTATT	TTGACTATTT	GCTTTATCAA	GGAAGATTTT	CAACCAGTAG	CCAAGGAAAA	9540
GCT	ATTCCA	ACAAAGGAAT	TATTTACCTC	GGTTAAATAT	CCCTATCTTT	TGCTCAATCT	9600
LILLI	TTAACC	AGTTTTGTCA	TCCAATTTTC	AGCTCAATCG	ATTGGCCCTA	TTTTGGCTCT	9660
TAT	GTACGC	GACTTAGGGC	AGACAGAGAA	TCTTCTTTTT	GTCTCTGGTT	TGATTGTGTC	9720
AGT	ATGGGC	TTTTCCAGCA	TGATGAGTGC	AGGAGTCATG	GGCAAGCTAG	GTGACAAGGT	9780

			332			
GGGCAATCAT	CGTCTCTTGG	TTGTCGCCCA	GTTTTATTCA	GTCATCATCT	ATCTCCTCTG	9840
TGCCAATGCC	TCTAGCCCCC	TTCAACTAGG	ACTCTATCGT	TTCCTCTTTG	GATTGGGAAC	9900
CGGTGCCTTG	ATTCCCGGGG	TTAATGCCCT	ACTCAGCAAA	ATGACTCCCA	AAGCCGGCAT	9960
TTCGAGGGTC	TTTGCCTTCA	ATCAGGTATT	CTTTTATCTG	GGAGGTGTTG	TTGGTCCCAT	10020
GGCAGGTTCT	GCAGTAGCAG	GTCAATTTGG	CTACCATGCT	GTCTTTTATG	CGACAAGCCT	10080
TTGTGTTGCC	TTTAGTTGTC	TCTTTAACCT	GATTCAATTT	CGAACATTAT	TAAAAGTAAA	10140
GGAAATCTAG	TGCGAGTAAA	AATCAATCTC	AAATGCTCCT	CTTGTGGCAG	TATCAATTAC	10200
CTAACCAGTA	AAAATTCAAA	AACCCATCCA	GACAGATTGA			10240

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGCTTTATCG	TGGACGTGGT	CAAGCCGAGA	ATTTCATCAA	GGAGATGAAG	GAGGGATTTT	60
TTGGCGATAA	AACGGATAGT	TCAACCTTAA	TCAAAAACGA	AGTTCGTATG	ATGATGAGCT	120
GTATCGCCTA	СААТСТСТАТ	CTTTTTCTCA	AACATCTAGC	TGGAGGTGAC	TTCCAAACTT	180
TAACAATCAA	ACGCTTCCGC	CATCTTTTTC	TTCACGTGGT	GGGAAAATGT	GTTCGAACAG	240
GACGCAAGCA	GCTCCTCAAA	TTGTCTAGTC	TCTATGCCTA	TTCCGAATTG	TTTTCAGCAC	300
TTTATTCTAG	GATTAGAAAA	GTCAACCTGA	ATCTTCCTGT	TCCTTATGAA	CCACCTAGAA	360
GAAAAGCGTC	GTTAATGATG	CATTAAAGAA	CAGTCGAGAT	GAAAAAATCG	TGTGACGCAC	420
CAAGGGAGGA	GTCTGCCCTT	TTGAGGAAAT	CTAGCGAGGA	AAAACGATAC	TGGAACAGCA	480
Gaaagtaaaa	CTGACCTCAT	GAGGAGGAAG	AAAGTGGCTC	ATGAGGTCAG	GGGTTTTGTA	540
AGTTACATCT	AGTTGAGAGA	GGTATGAATG	ATTTGGGATT	AATCATTTCT	TGTTTTAAAT	600
CAGGAGAATA	GTAACGATTT	TTTCCTTTTT	TGACGAACTC	TATTCCGTAA	CGATCAATCA	660
ATTTAATCAT	GTACCTAATA	TTAGAATTGT	TTATCCCAAA	TTTATTTGAA	AGCTTCTCTA	720
AGCTATATCC	TTGTTTTCTA	AGTTCATAGA	TCTGAACTTT	ATCATCATAA	GTTAGTTTCA	780
таатааааас	ACCCCAAAAG	TTAGATTTTT	TCTGTCTAAC	TTTTGGGGGG	CAGTTCATTC	840
AACACCTGAT	ACTATGCGTT	TTTCTTATTT	GAAATACTTT	TTACTCAACC	тстттатаст	900
CAATGAAAAT	CAAAGTGCAA	ACTAGAAAGC	TAGCCTCAGG	CTGCTCAAAA	CAGTGTTTTG	960

AGG	TTGCAGA	TGGAAGCTGA	CGTGGTTTGA	AGAGATTTTC	GAAGAGTATT	ACTTAATCTT	1020
CTI	GATACTT	TGACTAAGAA	TAAATCCTAC	AATCATCCCT	ACCATATTTT	GCATAAAATT	1080
CGG	TAGAATT	TCTGGGAGGG	CTGCTGCCCA	GCCATTCATC	AAAGCAGAAC	CCAAGGCGTA	1140
GCC	TCCTACC	ATGGCAATAG	TTGCTAAAAT	AAGGCCTAAC	CACTGACTTT	TTCCTTTAAA	1200
rcc	TGCGAAA	AATCCCTGCA	AGCCATGGTT	GACCAAGCTA	AAGAACATCC	ACTGAGGGTA	1260
GCC	TGATAAG	AGGTCAATCA	AGAAACTTGC	TAGTCCTCCG	ACTACCGCTC	CTTCACGACT	1320
ACC	:AAAGTAA	AAGGCCGCAA	AGAAGACACC	AGCATCTAAA	AGAGTTAGAA	TTCCTGTAGG	1380
rgt	TGGGATT	TTTAAGAAAT	AACCTAGAAC	CACAGAAAGG	GCGGTTAATA	GGGATACAAG	1440
GGC	GATTTTA	GTTGTTTTTG	TTTGCTTCAT	ATTGTCTTAC	TCCATACTGA	TCTGCTTGTG	1500
CAA	TAGCACG	ATAAACGAAA	GCCTTAGAGC	TTTCTACTGC	TGGCAAAAGT	TTATCACCTT	1560
ΓAΑ	CCAGGTG	ACTGGCAATG	CTAGAGSCAA	AGGTACAACs	TGCACCAGCA	TTTTGGCCTT	1620
GGA	TAACTGG	ATTTTCTAGG	ATAGTAAAGG	TCTGTCCATC	ATAAAAGACA	TCCACAGCCT	1680
rgt	CCTGACT	AAGACGATTG	CCTCCCTTGA	TAATGACTGt	GGCGCTCCTA	AATCATGCAA	1740
rri	CTGCGCT	GCAGTTTTCA	TGTCTTCCAA	GGTTTTAATT	TCCTGACCGG	ATAATAATTC	1800
rgc	TTCTGGG	AGATTAGGCG	TAATCACACT	GACATAAGGG	AAAAAGCGAA	TCAACTCTTG	1860
GCA	GAGCTCA	CTGACAGCTA	CATCATGCGT	TTCCTTGCAG	ACCAAGACAG	GATCCAACAC	1920
CAC	AGGTACT	CCTGGGCGTT	GTTTGATAAA	GTCCAAGGCC	TTCTCAGCCA	CGCTGACAGT	1980
AGG	GAGAAGA	CCAATCTTAA	TTCCCCCAAA	TTCCACATCA	CGCAAGCTAT	CTAATTCATG	2040
ГТG	AAAAATG	GTATCATCAG	TTGGAAAGAC	TTCAAATCCT	TTTTCTGTCA	AGGCTGT-CAA	2100
ACA	AGTCACT	GCTACAAACC	CATGCAAGCC	GTTCAAGGTA	TAGGTAGCCA	AATCAGCTGA	2160
CAG	TCCACCA	CCACTAAAAA	TATCATTTCC	AGAAAGTGCT	AAAATACGAT	TATTCTTCAT	2220
AAC	GAATCTC	CTTTAAATAC	AAACCATTTG	GTGCTGCAGT	GGGACCTGCA	AGTTGCCTGT	2280
CT	тсттстс	CAAGATGAGA	TCAATCTGCT	CTACTGGCAT	GCGGTTGTTA	CCGATTTTGA	2340
SAA	GAGTCCC	CACCATATTG	CGAATCTGTT	TATACAAGAA	ACCATTTCCT	GAAAAGGTAA	2400
AGG	TCAAAAA	TTGTCCTGTC	TCATCGACTA	TTAAACTAGC	TTCTGTGATG	GTGCGAACCT	2460
TAT	CCTCTAC	ACTAGTCCCA	GAGGCTGTAA	AACCGGTAAA	ATCATGGGTT	CCCTCTAGCT	2520
TT	TGATTGC	AATCTGCATT	CGTTCCACAT	CGAGTGGGTA	GGGAAAGTGG	GTGGCATAGT	2580
SAC	GGCGCAT	CGGATTTTTG	GGACGTCCTC	TATCCACAGT	AAACTCATAG	GTCTTGCTAT	2640
CT	TGGCATA	ACGGCAATGA	AAATCATCTG	CCACAAGCTC	AATCGAAATC	ACATCAATAT	2700

			334			
CTTCAGGAGA	CTGGGTATCC	AAGGCAAAAC		CTCATCCATC	TGATAAGGCA	2760
GGTCAAAATG	AATCACCTGT	CCCAGGGCAT	GAACCCCACT	ATCTGTCCTA	CCAGCACCGT	2820
GAACAGTAAT	GGCTTGCCCT	TTATTTAATC	TGGTCAAGGT	TTTTTCAATT	TCTTCCTGAA	2880
CGCTACGCGC	ATGAGGCTGG	CGCTGAAAGC	CAGCAAAGGC	ATAACCATCA	TAGGAAATAG	2940
TTGCTTTATA	TCTCGTCATA	GCCTCTATTT	TATCAAGAAA	TTAGTCTGTA	AACAAGGACC	3000
ТААААСАААТ	ATTGTATGGG	TATAAAAATC	TCATACTCTT	CGAAAATCTC	TTCAAACCAC	3060
GTCAGTTTCC	ATCTGCAACC	TCAACACACT	ATTTTGAGCA	ACCTGCGGCT	AGCTTTCTAT	3120
AGTAGATTGA	AATAAGATAT	GAACAACTCT	ATTAGGAAAG	TCAAATTAAT	TTCTAGAAAT	3180
ATTTTAGCAG	CTACAGCGTA	CTATTCCAAA	CTCAATCAAC	TATAGTTTGC	TCTTTGATTT	3240
TCATTGAGTA	TCAAAAGAAA	AACTTAGGAA	TCAATCCTAA	GCTCTCTTCT	GAAGTAGGTA	3300
CATGACAAAG	ATAGAGATTA	CAATCAACCA	ACCTCCTAAG	ATACTAAAGA	CCAACATCCC	3360
attgtgagtt	AGTAAGCCAA	TTGCACCTAG	AACGAATGGG	GTCGTAAAGG	CTCCGAAACT	3420
ACAGCCTAAT	ACAGCAAATG	AAGTTGCTTG	ATTGAGGAGT	TTAGCTGGAA	TTCGTTCAGA	3480
GACAAGTTGA	AAGACCGTCG	TCAAGACTAC	ACTATAGGCA	AATCCAGCCA	GAACACTTCC	3540
FGCTACTACC	ACCCACAAGG	ATGAAGACAA	GGCAATCACG	ATTTGCCCCA	AGCCAAAGGT	3600
AATACCAGAC	CAGAGGAGCA	GTTTCTCTTT	AAAGATAGAA	ATCAAGAAAG	AAAAACTCAC	3660
CCCAGCCACA	ATCCCGATCA	ACTGCATGAT	ACTAAGAACA	AAACTAGATA	ACTGGGCATC	3720
CCCCAATCCT	CTTTCCACCA	TCAAACTTGG	AATACGGATG	GTAATAGCTG	TATTGGTACA	3780
AACTACAACT	GCCGCTTCGA	TAGCTAAGGT	AAAAATCAAG	CCTTTCATTT	CTCGAGTTAA	3840
ACGACTTGCT	TCCTTCGCTC	TTTTCTTGAC	TTCTTTCTTT	GATTTTCCAT	AAGGGACAAA	3900
GAGCAGATAA	AGGGGCAGCA	CCAAAAATCC	AGCACTATAG	GCTAGAAAGA	TAGCTGTCCA	3960
ACCAAAGGCC	AACAACTGAC	CGACGGCCAA	GGTAATGAGA	GAAGCTCCAA	CGACCTCTGC	4020
AGAAGCGCGT	AGCCCTAACA	TCTGAATTCG	CCTTTTTCCT	TGGTAGCGTT	CACTGATAAT	4080
AGAAATGGCC	TTGGCATTGA	TCATCCCAAG	ACCCAAACCA	AAGAGAAGCC	GTGTTCCAAA	4140
GACAAAGGGA	TAGGCTTGGT	ACCAGAAGGG	AGCTGTACCG	CTCAATGATA	AAATCAGCAA	4200
GCCCAAACTA	ATCTGTAAGC	GCTCAGGAAA	TATTTTTTCT	AAGAAACCAT	TTAGCAGTAA	4260
CATCATCATG	ATTCCAAAGG	AAGGCAAGCT	CACCAAGAGC	TCAATTTGTT	CCTTAGAATA	4320
ACCCTGATAA	TAGTCAAACA	TGGCTGGTAG	GGCACTCGAA	ATGGAAAAGG	AGGTAATCAA	4380
AACGAGGGAG	AGAGCCAAAA	TGCTGGCCCG	TTCTAAAAAT	TGTTTCATGA	AATCTCTTTC	4440
ГАТАТТТСТС	TTAATCTTCT	ACTTTTTTGA	TAGTTATCAA	ATAAGCAAGA	AAAGAAGAAG	4500

CCTCATTGGT	TTGTAGACTC	CTTCTTAAAT	TCGAAAATGA	ATCCCTTGTA	TCTTATACTC	4560
AATGAAAATC	AAAGAGCAAA	CTAGGAAGCT	AGCCGCAGGT	TGTTCAAAAC	AGTGTTTTGA	4620
GGTTGCAGAT	GGAAACTGAC	GTGGTTTGAA	GAGATTTTCG	AAGAGTATTA	GGATGACTTT	4680
CTCTTGATTT	GCTTGATAAA	GTAGAAAATA	AATCCTGCTA	CCATATAGGC	AACAAAGATA	4740
ATCAGACACC	ACTTAAACAC	AACATTCCAA	CCCTTGTTCA	CATTCAAAAA	GAAGTAAGGG	4800
AAAGGATTAT	CCTTGGCATT	TGGAATATTG	AGTTTTAGAA	CCAAGCCATT	AAAAAGAGCA	4860
AACATCATAT	ACAGAAAGGG	TAAAATGGTC	CACACTGCTG	GATCCCAAAT	CTTGTATTGA	4920
CCCTGTTTGT	CAAAAAAGAG	GGTATCCGCT	AAAAACCAGA	TGGGAACGAT	ATAGTGGCAA	4980
AGGAAATTTT	CTAGGGTATA	GAAATTAGTC	GCAATGGGCG	CCAAGAGGAA	ATGGTAAATC	5040
ACACAGGTAA	TCATGATACT	CATGGTGACC	CCACCTTTTA	AGCGCAAGAG	ACTTGGCCTT	5100
TGCCAATTTT	CACCTACACG	GCTCATAACC	TTTAGAAGAT	AAAGGGTAAA	AATAGTTACC	5160
AAGAGGTTGG	ACAGAACCGT	GTAATAGAGA	AGCATCCCAA	AACCACCATG	CTTAGTAATT	5220
TCAAGATAAA	CTCCCGTAAA	AGCCGCTAGA	AACAAGAAGA	TACGGCTATA	AAATACAAGT	5280
TTATAGTGTT	TTGACATGCT	TAAATCTTCC	TCACAAACTC	TGATTTAAGT	TTCATGGCAC	5340
CAAAACCATC	AATCTTACAG	TCGATATTGT	GGTCGCCTTC	TACGATGCGG	ATATTTTTCA	5400
CGCGCGTCCC	TTGTTTCAAA	TCTTTTGGCG	CACCTTTTAC	TTTCAAGTCC	TTGATGAGAG	5460
TTACTGTATC	ACCATCAGCC	AATTTATTTC	CGTTGGCATC	GATAGCGACA	AGACCTTCTT	5520
CTACTTCTGC	AACTTCAGCA	GGATTCCACT	CATGAGCACA	CTCTGGGCAA	ACCAGTAGGG	5580
CACCGTCTTC	GTAGACATAC	TCTGAGTTAC	ATTTTGGACA	ATTTGGTAAA	TTGTTCATGG	5640
TTTCTCCTTA	TCATCATTCA	CTATTCTTTG	AAAATCAAAA	TTTCTCGAAC	AGCAACTATT	. 5700
ATACCCTAAA	ATCAGCATTT	TGACAAATTT	AGAAAAAAAC	CGATATCAAT	CTATCGGCTT	5760
TTCTACATTT	ACATTCTTTT	TTCAGCTTCT	GCTTTGATTT	TTTCAACTAC	TTCTTGAATG	5820
TTCAAACCAG	TTGTATCAAG	GTAGACAGCA	TCCTCTGCTT	GTTTGAGAGG	AGAAGTCTCA	5880
CGATGACTAT	CCTTGTAGTC	ACGCGCAGCA	ATTTCCTTTT	TTAGGGTTTC	AAGGTCTGTT	5940
TCAATTCCCT	TGGCAATATT	TTCCTTGTAA	CGACGCTCTG	CTCTCTCATC	AACAGAAGCT	6000
ACTAGGAAAA	TTTTCAATTC	TGCTTGTGGC	AATACAACAG	TTCCAATATC	GCGACCATCC	6060
ATGACAATCC	CCCCTTCCTC	GGCAATTTCT	TGTTGGAGAG	AAACCAGTTT	CTCACGCACT	6120
TGAGGAATTG	CTGCAATAGC	AGAAACATGA	TTGGTCACTT	CATTTTCACG	GATAGGATGG	6180
GTAATATCCA	CATCTCCTAC	AAAAACAAGC	TGGTCTCCAG	TTTCTGAACG	TCCAAAGCTG	6240

			סככ			
ATTGGATGCT	GGTCCAACAA	GGCTAGAAGG	GCTTCGACTT	CTTCAACTCC	TAATTGGTTC	6300
PTAAGAGCCA	TATAGGTCGC	TGCACGATAC	ATAGCTCCTG	TATCAAGGTA	GGTGAATCCA	6360
AAATCCTTAG	CAATAATCTT	TGCGACCGTA	CTCTTACCGC	TGGAAGCAGG	ACCATCAATA	6420
GCAATTTGAA	TTGTTTTCAT	ATCGGCTCCT	ATTTTATTTT	TATAACATCA	CCTGGATTAG	6480
CAAACCAAGA	TCCTGTAGCC	ATGTGCCCAG	GATTCAAGGC	CTCTAACTGA	GCAATGGAGA	6540
TTCCTGCACG	AGCGGCAATA	GCTGCTTCCC	CTTCTCCTGC	GAGAACTTTA	ATCGTTCCTT	6600
CAGGATTAGC	AGCTTCTTCT	GAACTACTAG	AAGTAGATTC	TGGCTCTGAA	CTCTGCTCAG	6660
GCTGAGAACT	ACTTGAAGAT	GAGATTTGTA	CTACACTGGC	ATCAGAATCA	TGAAAGCCTT	6720
TAAGGCTGC	TGTGCGATTA	CTCCCCCCG	ATGATAGATA	GATGAGAACG	ATGACCATCA	6780
CCACCACAAT	TACAAAGAAA	ATACTAGCTA	GGATCGTCAA	AATACGATTA	GCCATCCTAT	6840
CAGCCCCTCC	GTGGTTTCGA	TGCCGACGCT	CTGCTCTTGA	TTCTTCTTGA	TCATAGATAT	6900
CTTCTTGCCA	CGGTTCTTTT	GCCATACCTT	ACTCCTTGTT	TTTTTTTACT	ТТТСТТАТТА	6960
CAATATAAAT	ATGAACATGA	AAATCACACT	TATACCTGAA	CGATGTATCG	CCTGTGGGCT	7020
PTGCCAAACT	TATTCTGATT	TATTTGATTA	CCACGATAAT	GGAATCGTGC	GTTTTTACGA	7080
rgaccctgac	CAACTGGAAA	AAGAAATTTC	TCCTAGTCAG	GATATCTTAG	AGGCTGTTAA	7140
AAATTGCCCA	ACTCGCGCCC	TGATTGGAAA	CCAGGAAGCC	TAAATCAATG	GCGATAATCC	7200
ACTCCCTCTA	GTTTAGCACA	TTTCCATGTA	AAATTATAGT	CTTTTCACTT	TATTTTTTC	7260
rgtaaaatca	GGAAGGTCAC	TTTTTTCTTT	GATAAGATAA	AGTGGTCTTT	TTTTAGTCTC	7320
TAAATAAATC	TTACTGATAT	ACTTGCCGAG	AATCCCAATG	GTCAAGAGTT	GAATGCCTCC	7380
AAGAAAGAGA	ATAACAGCCA	TCAGAGAGGT	CCAACCAGAT	GTCGGATTGC	CCAAAATGAG	7440
GTCCGAACC	ACAACAAAAA	AGGTCATCAG	CAGAGAAAGA	AAACAAGATA	GGAGACCAGC	7500
FACAAAGGCT	ATAATCAAGG	GAAAATCTGA	ATAATTAAAA	ATCCCTTCAA	TGGAGTAGAA	7560
AAAGAGTTGC	CTAAAACTCC	AACTTGTCTT	GCCAGCCTGC	CTTTCGACAT	TTGGATAGTC	7620
CAAATAGTAG	GTTTTGAAAC	CCACCCAGGC	GAAGAGCCCC	TTTGAAAAAC	GATTGGACTC	7680
GTCAAGCTT	AAAATGGCAT	CGACTACAGA	CCTTCTCATC	ATACGAAAAT	CACGGACACC	7740
CGACGGCAGA	GCTACTGGGC	TGATTTTTTG	CATGAGGCGA	TAAAAGAGAA	CAGCACAGAA	7800
ACTGCGAAAG	AAGGGTTCTC	CCTCCCGACT	AGTTCTCCGT	GTCCCAACGC	AGTCCAAGTC	7860
PACATTTTTG	TCTAATACAT	TTTTCATCTC	AAACAACATA	CTAGGAGGAT	CTTGGAGGTC	7920
rgcatccatc	ACCACCACCA	AATCTCCTGT	CGCATATTGC	AAGCCTGCAT	AAAGGGCTGC	7980
TCTTTGCCA	AAATTTCGAG	AGAAAGAAAT	ATAATGGACT	GCCGGATTTT	GCTCCCGATA	8040

GGCCTTTAA	G AGTTCCAAGG	TCCCATCACT	TGATCCATCA	TCGACAAAGA	CATACTCGAT	8100
PTCTGTTTC	C AAATCTGGAA	GTAAAGCTTC	CAGAGCCTGA	TAAAAAAGAG	GAAGTACTTC	8160
CTCTTCGTT	T AAACAAGGGA	CGATGAŤTGA	AATCATCATC	TTAGTCTTCA	AATCCATTTG	8220
GATGCTTGC	T TTGCCAACGC	CATGCGTCTT	CACACATTTG	GGTGATGTCG	AGTTCTGCTT	8280
CCCAACCGA	G TTCTGCTTTA	GCTTTTGCCG	GGTCTGAGTA	GCAGGCAGCG	ATATCACCTG	8340
GCGACGTT	C TACGATGCGG	TAAGGAATAG	GACGGCCCAC	CGCTTTTTCC	ATGTTTTGGA	8400
FAATTTCAA	G AACTGAGTAA	CCTTTACCAG	TTCCAAGGTT	ATAAACGTTT	AGTCCTGAAC	8460
CTTTTTGGA	T TTTTTCAAA	GCTGCAACGT	GACCCTTAGC	CAAATCGACA	ACGTGGATAT	8520
AGTCACGAA	C ACCTGTTCCA	TCTTCCGTAT	CGTAATCGTC	TCCAAACACT	TGCACTTGCT	8580
CTAATTTC	C AACGGCTACT	TGAGTCACAT	ATGGCAAGAG	ATTGTTTGGA	ATACCGTTTG	8640
GATTTTCTC	C CAAATCACCA	CTCTCATGGG	CTCCGATTGG	GTTAAAGTAA	CGAAGCAAGA	8700
CAACATTCC	A TTCTGAGTCT	GCTTTGTAAA	TATCAGTCAA	AATTTCCTCT	AGCATGAGCT	8760
FAGTACGAC	C GTATGGGTTG	GTCACTGAAA	GTGGGAAATC	TTCCAAGATG	GGCACTGTGT	8820
GCGGATCCC	C GTAAACTGTC	GCAGAAGAAC	TGAAGATGAT	GTTTTTACAG	TTGTTTTCTT	8880
CATGGCTT	T [,] CAAAAGGCTG	ACAGTTCCAG	CGATATTGTT	GTCATAGTAG	GCAAGAGGGA	8940
PACGTGTTG.	A TTCGCCAACA	GCCTTCAAAC	CAGCAAAGTG	AATGACACCA	GTCGGTTCTT	9000
CCTGCTTGA	A AATATCTCTG	AGGGTATCTG	TGTCACGAAT	ATCTGCCTCA	TAGAAAGGAA	9060
CTCAACTC	C TGTGATTCCT	TCAACAACTT	СТАААСТСТТ	ACGATTGCTA	TTGACAAGAT	9120
PATCCACCA	C AACAACTTGA	TGACCTGCTT	GGATCAATTC	AATAACAGTG	TGGGTTCCAA	9180
PAAAACCGG	C ACCACCAGTT	ACCAAAATCT	TTTCTTGCAT	CTTTTTTCCT	CGATTCTCAG	9240
TTATTTT	r cttattttac	CATTTTTGAC	AGGGAATGTC	ATTTGCCATC	CTAAACTACC	9300
TAAAAT T	r T CAGTAAAAT	GCTTATACTC	TTCGAAAATC	CAATTCAAAC	TACGTCAACG	9360
CGCCTTGC	C ATGGGTATGG	TTACTGACTT	CGTCAGTTCT	ATCCACAACC	TCAAAACAGT	9420
TTTTGAGC	F GACTTCGTCA	GTTCTATCCA	CAÄCCTCAAA	GCAGTGCTTT	GAGTAACCCG	9480
GGCTAGTT	r cctagtttgt	TCTTTGATTT	TTATTGAGTA	TTATTCGCTT	TTTACTCGTT	9540
GACATAGT	P TTCAATTGGG	TAATTTAGAG	GGTCCAAGGT	CAACTCCTTG	TCTTGGATCA	9600
ettgggcta(G ATGGTAACCA	ATGATAGGAC	CAGTTGTGAG	GCCTGATGAA	CCTAGTCCAC	9660
GGCTGCAT	A GACACCAGTT	AAGTCAGGCA	CCTGCCCAAA	GAAAGGAGAG	AAATCACTGG	9720
GTAGGCAC	G GATTCCAACA	CGCTCAGATT	TTGAAGTAGC	TTCAGCCAAA	ATCAGATAGT	9780

338 9840 CCATGTCATT TTCGTGGGTA GCGCCTAAGG ATAATTTCCC ACCTGCAAAG GGAATCAAAT 9900 CCCACTCCCC TTCTGGCATG ACAACAGGGT AATCTTCCAT GTCTTGGGCA AGCTGATAAT 9960 CTCGTAGTTG TCCTTTTTGA GGACGGACAT CCACTTCATA ACCTAAAGGC TCTAACATGT 10020 CCCCCAACCA AGCTCCCGTC GCCAAAATAA CCTGCTCAAA CTCCTCTTCA CCAATCTGGT 10080 AGCCTGATGC TAACGGTGTC AGAGTCACTT TTTCTTTGAC CAGCTTGACA TGACTGACTT 10140 CCAGCAAACG AGTCACTAAA AGTTGGCCAT CTACTCTCGC TCCACCAGAA GCATAGAGCA 10200 GGCGGTCAAA TCCCTGCAAA CCAGGGAATA ATTCATTAGC TGAGGCTTGG TTCAGAATGG 10260 CTAATTGCCC TATCAAGGGA GATTCTTCTC TGCGCTGGAG GGCCAGTTGA TAAAGTTCTT 10320 CCAAATTGGA TTCATCCTTT TTCAAGAGAA AGACTCCCGA ACGCTGGTAA AAGTCGATTT 10380 CTTGTCCTGA TTTCTCTAAA TCAGCTAATA AATCCACATA AAAATCAGCC CCCAAGCGCG 10440 CCATCTTGTA CCAGGCTTTA TTACGGCGTT TGGAAAACCA AGGACTGATA ATTCCTGCTG 10500 CGGCCTTGGT GGCTTGACCT TGCTCATGGT CAAAAACGGT CACCTCTAGG TCACTTTCTC 10560 TCGAGAGGTA GTAGGCAGCT GTTGCTCCCA CAATTCCTGC TCCAATAATG GCAACTTTTT 10620 TCATTGTCTT CACTTTCTAA CTAGATATGA TGGAAAGGAT TGGTTGATGC CTGACTAGGC 10680 AAGATATCAA TAGACCACCC CTTATCTTCC TTCCATTGAC TAAGAAGTGC TGCGATTTTT 10740 TCTACAAAAA TCACTTCGAT ATAGTGACCT GGGTCCAATG CAAGCAACCC ATCAGATAGC 10800 ATATCCTGAG CAGTATGGTA GTAGATATCA CCAGTGATAT AGACATCTGC CCCCTTTGCC 10860 AAAGCATCCT TATAGAAAGA CTGCCCGCTT CCACCACAAA TTGCTACTCT TGAAATAGGC 10920 TTCTGCAAAT CATCCTCTTG ATAATGCACC ATTCGAAGGC TATCTAGGTC AAAGACTTGC 10980 TTGACCTGTT GGGCCAATTC CCAAAATGTC TGAGGCTGAA TATTCCCAAT ACGTCCAATT 11040 CCACGTTCTG GACCTGTTTC CTGCAGATAA GTCGTCTCCT CGATTCCTAG CATCTGACAA 11100 AACCAGTCAT TGAGCCCATT TTCAACGATA TCAATATTGG TATGGCTGAC ATAAACTGCG 11160 ATATCATGCT TAATCAGGTC GATGTAAATC TGATTTTGCG GACGGCTGGC AAGCAAGTCC 11220 TTGATAGGAC GAAAGATAGG CGCGTGCTTG ACGATAATCA AGTCCACACC CTTTTCAATG 11280 GCCTCTGCCA CTGTCTCTTC ACGAATATCG AGGGCAACCA TGACCCTTTG GATACCCTTG 11340 TCTAAAGTGC CAATTTGCAG ACCACGGCTG TCTCCCTCCA TAGAAAATTC CTGAGGGCAA 11400 AAGGCTTCAT AAGCTTGGAT CACTTCACTT GCTAACATGG AGCACCTCCT TGATAGCTTG 11460 AATCTTATCT ACTAGAACTT GACGTTCTTC CAGATTTTTT TCTGGGATTT GTCCGAGGGC 11520 GAACTCTAGC TTCTCAGCTT CTTTTTGCCA TTTTTGGACA AATACTGGAC TGACTTCTTT 11580

GGACAAGAAG	GGACCAAAGC	GAACATCACT	GGCTGATAGC	TTCATTTGTC	CTGCTTCCAC	11640
CACCAAAATC	TCATAAAACT	TTCCAGCTTC	TTCTAAGATG	CTTTCTGCTA	CAATCTGGAA	11700
TCCATGATCC	TGTAGCCAGA	TACGCAAGTC	GTCTTCACGA	TTATTGGGCT	GGAGGATCAA	11760
ACGCTCTACA	TTAGCTAACT	TCCCCAAACC	TTCTTCTAAA	ATCCTAGCAA	TCAAACGACC	11820
ACCCATGCCA	GCAATGGTAA	TGACAGACAC	TTGGTCAGTC	TCTTCAAAAG	CTGCCAAGCC	11880
ATTGGCTAAA	CGGACTTGGA	TTTTCTCCTT	TAGGCCGTGA	GCCTCAACAT	TTTTAACCGC	. 11940
AGACTGATAG	GGACCTTCCA	CCACCTCACC	TGCAATAGCG	CTTTTGATTT	GCCTCTCTC	12000
AACCAACTCG	ATAGGCAGAT	AAGCATGGTC	ACTTCCCACA	TCTAGTAAAA	TAGCCCCCTG	12060
TGACACAAAG	GAAGCTACCA	ATTCTAATCT	CTTTGAAATC	ATCTTCTCTC	ACTTTCCAAA	12120
ACTCTATTAC	CTCTTATTAT	ACCACATTTC	AATCTTCAAC	TTCCCAGTAA	TATAAGCACC	12180
TCTGGCGAAA	GAAGTTTCAA	TGTCCTAAAG	TAATAAGTGA	ATCCAATTGA	AAGATTTTAA	12240
ACAATTTGCA	AAAATGTCAA	ААААТАААА	ATAAACAGTT	TATTCAGAAA	ATTCTTGACA	12300
татаааааса	CATGGTAGAA	TATAATTAGA	aagttagaaa	AAATAAAAGT	TTGACTAAAA	12360
TTTGTATTTG	AAGGTGGTGT	TCAGATAAGA	AATTTAGTCA	GACGAACCAC	GAATTTGCTC	12420
TATGCTTTCT	GGAATTTATC	ATAACAGGAG	GATACAGTCA	TGGAACAAAC	ATTGTTTGAA	12480
TTAGAACTAC	TTCCAGAGGA	AGATATCATT	GTCACAGGTC	TCCCTAAGTA	TTGTTCTTT	12540
ACTTGTTTAA	TTACAGGTCG	CTAGTTATAT	TTTATATAAA	ATAAGTAGCT	TTACTTACGG	12600
AATAGGCTAG	TGCTGTGTCT	CTAGCCTATT	TTAATAATTA	GGAGTTTGTT	ATGGATTTAT	12660
TAGAGAAAGA	ATGTTTAAAA	TGTGATAAAA	ATTTCCAACA	GGGTGATATT	TGGAATTACT	12720
ATTATTTATC	AGATAAGATG	CCTGCACAAG	GGTGGAAAAT	ACACATAAGC	тсссааатаа	12780
AAGACGCTGT	TTTTTATAAA	AAGATTGTGT	ATAAACTATC	CCAACTAAAT	AATTGTAGCT	12840
TTAAAGTTGT	TAAAAATTTA	GAGGAATTAA	AATTAAAAAA	TTCCCCTAGG	GAAATGAGCC	12900
CTACTGCTAA	САААТТТАТА	ACTCTATATC	CTAAGTCAGA	ATCTGAAGCT	AAGAGTATGA	12960
TTTGTAATCT	TACGAATAGA	CTGTCAGAAT	TTAAGGCTCC	AAAAATACTA	TCTGACTATC	13020
aatgtggaat	GCATTCTCCA	GTTCATTATA	GATATGGGGC	AAAATTTTTT	AAACAAGCTT	13080
atgatgaaaa	аааааатааа	GTCATCTATT	TATTGCTAGA	TGAAAAAAGG	AAGAACTATG	13140
TAGAAGATAA	GAGACAAAAT	TTCCCTAGTC	TTCCTAGCTG	GAAAATGGAT	TTATTTTCAG	13200
AAGAAG						13206

⁽²⁾ INFORMATION FOR SEQ ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13104 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

CGAAAAATAT	GCTCTTTGAT	GCTGTAAGTG	GTCAAAAAGA	TGCTAAAACA	60
ATGCTGTAAC	ATTGATCAAA	GAAACAATCA	AACAAAAATT	TGGTGAATAA	120
CAAGGGGGGT	GGAAATCAAA	TCCCCCTTTG	AATTTATCAA	TAGAGACACA	180
CTTTCTTATA	AAAAAGTAGT	ATCCTATGAA	AGGAGTTAAT	ATGGAAAAGC	240
TAAAGCAGCC	CTGCTGTCTA	TCATTCCTGG	ĢTTAGGACAG	ATTTACAATA	300
CAAAGGTTTT	ATCTTCCTTG	GTGTAACCAT	CGTATTTGTC	CTTTACTTCC	360
AACCCCTGAA	TTGAGCAACC	TCATCACTCT	TGGTGACAAA	CCAGGTCGTG	420
CTTTATGCTG	ATTCGTGGTG	CCTTCCATCT	AATCTTTGTA	ATCGTTTATG	480
TTTCTCAAAT	ATCAAAGATG	CACATACGAT	TGCAAAACGC	ATTAACAATG	540
TCCACGCACA	CTCAAAGACA	TGATCAAAGG	GATTTATGAA	AATGGCTTCC	600
GATCATTCCA	TCTTATGTTG	CCATGACCTT	CGCGATTATC	TTCCCAGTTA	660
GATGATCGCC	TTTACCAACT	ACGACTTCCA	ACACTTGCCA	CCAAACAAGT	720
GGTTGGTTTG	ACCAACTTTA	CAAACATTTG	GAGCTTGAGT	ACCTTCCGTT	780
TTCTGTTCTT	TCTTGGACTA	TCATTTGGGC	TTTGGCAGCT	TCTACTTTAC	840
TGGTATCTTC	ACAGCTATCA	TTGCCAACCA	ACCATTTATC	AAAGGAAAAC	900
TGTTATTTTC	CTTCTTCCTT	GGCTGTCCC	AGCCTTCATC	ACTATCTTGA	960
CATGTTTAAC	GATAGTGTCG	GTGCTATCAA	CACTCAAGTA	TTGCCAATCT	1020
CCTTCCTTTC	CTTGATGGAG	CTCTTATTCC	TTGGAAAACA	GACCCAACTT	1080
TGCCTTGATT	ATGATGCAAG	GTTGGCTCGG	ATTCCCATAC	ATCTACGTTC	1140
TATCTTGCAA	TCTATTCCTA	ACGACCTTTA	CGAAGCAGCT	TATATTGACG	1200
TTGGCAAAAA	TTCCGCAACA	TCACTTTCCC	AATGATTTTG	GCTGTTGCGG	1260
GATTAGCCAA	TACACCTTCA	ACTTTAACAA	CTTCTCTATC	ATGTACCTCT	1320
AGGACCTGGT	AGTGTCGGAG	GTGGÄGCTGG	TTCAACCGAT	ATCTTGATCT	1380
CCGTTTGACA	ACAGGTACAT	CTCCTCAATA	CTCAATGGCG	GCAGCTGTTA	1440
CTCTATCATT	GTCATCTCAA	TCTCTATGAT	CGCATTCAAG	AAACTACACG	1500
	ATGCTGTAAC CAAGGGGGGT CTTTCTTATA TAAAGCAGCC CAAAGGTTTT AACCCCTGAA CTTTATGCTG TTTCTCAAAT TCCACGCACA GATCATTCCA GATGATCGCC GGTTGGTTTG TGGTATCTTC TGGTATCTTC TGTTATTTC CATGTTTAAC CCTTCCTTTC TGCCTTGATT TATCTTGCAA TTGGCAAAAA GATTAGCCAA AGGACCTGGT CCGTTTGACA	ATGCTGTAAC ATTGATCAAA CAAGGGGGT GGAAATCAAA CTTTCTTATA AAAAGTAGT TAAAGCAGCC CTGCTGTCTA AACCCCTGAA TTGAGCAACC CTTTATGCTG ATTCGTGGTG TTTCTCAAAT ATCAAAGATG TCCACGCACA CTCAAAGACA GATCATTCCA TCTTATGTTG GATGATCGCC TTTACCAACT TCTTGTTCTT TCTTGGACTA TGGTATCTTC ACAGCTATCA TGTTATTTC CTTCTTCCTT CATGTTTAC GATAGTGCA CCTTCCTTT CTTGATGAG TATCTTGATGAG TATCTTGATGAG TATCTTGCAA TTGCCTTGATGAG TATCTTGCAACA TATCTTGCAA TTGGCAAAAA TTCCGCAACA GATTAGCCAA TACACCTTCA AGGACCTGGT AGTGTCGGG CCGTTTGACA ACAGGTACAT	ATGCTGTAAC ATTGATCAAA GAAACAATCA CAAGGGGGGT GGAAATCAAA TCCCCCTTTG CTTTCTTATA AAAAAGTAGT ATCCTATGAA TAAAGCAGCC CTGCTGTCTA TCATTCCTGG CAAAGGTTTT ATCTTCCTTG GTGTAACCAT AACCCCTGAA TTGAGCAACC TCATCACTCT CTTTATGCTG ATTCGTGGTG CCTTCCATCT TTTCTCAAAT ATCAAAGATG CACATACGAT TCCACGCACA CTCAAAGACA TGATCAAAGG GATCATTCCA TCTTATGTTG CCATGACCTT GATGATCGCC TTTACCAACT ACGACTTCCA GGTTGGTTTG ACCAACTTTA CAAACATTTG TCTCTTTCTT TCTTGGACTA TCATTTGGGC TGGTATCTTC ACAGCTATCA TGCCAACCA CCTTCCTTTC CTTCTCCTT GGGCTGTCCC CATGTTTAAC GATAGTGTG GTGCTATCAA CCTTCCTTTC CTTGATGGAG CTCTTATTCC TGCCTTGATT ATGATGCAAC GTTGGCTCGG TATCTTGCAA TCTATTCCTA ACGACCTTTA TTGGCAAAAA TCCCGCAACA TCACTTTCC GATTAGCCAA TACACCTTCA ACTTTACCA AGGACCTGGT ACTGTCGGAG GTGGAGCTGG CCGTTTGACA ACAGGTACAT CTCCTCAATA	ATGCTGTAC ATTGATCAAA GAAACAATCA AACAAAAATT CAAGGGGGGT GGAAATCAAA TCCCCCTTTG AATTTATCAA CTTTCTTATA AAAAAGTAGT ATCCTATGAA AGGAGTTAAT TAAAGCAGCC CTGCTGTCTA TCATTCCTGG GTTAGGACAG CAAAGGTTTT ATCTTCCTTG GTGTAACCAT CGTATTTGTC AACCCCTGAA TTGAGCAACC TCATCACTCT TGGTGACAAA CTTTATGCTG ATTCGTGGTG CCTTCCATCT AATCTTTGTA TTCCCACACA CTCAAAGACA TGATCAACGAT TGCAAAACGC GATGATTCCA TCTTATGTTG CCATGACCTT CGCGATTATC GATGATCCC TCTTACCAACT ACGACTTCCA ACACTTGCCA GGTTGGTTTG ACCAACTTTA CAAACATTTG GAGCTTGAGT TTCTGTTCTT TCTTGGACTA TCATTTGGCC TTTGGCAGCT TGGTATCTTC ACAGCTATCA TTGCCAACCA ACCATTTATC CATGTTTACC CTTCTTCCTT GGGCTGTCCC AGCCTTCATC CATGTTTACC CTTCTTCCTT GGGCTGTCCC AGCCTTCATC CATGTTTACC CTTGATGGAG CTCTTATTCC TTGGAAAACA TGCCTTGATT ATGATGCAAG GTTGGCTCG ATTCCCATAC TATCTTGCAA TCTATTCCTA ACGACCTTTA CGAAGCAGCT TTGGCAAAAA TTCCCCAACA TCACTTTCC AATGATTTG GATTAGCCAA TACACCTTCA ACGACCTTTA CGAAGCAGCT TTGGCAAAAA TTCCCCAACA TCACTTTCC AATGATTTG GATTAGCCAA TACACCTTCA ACTTTACCA ACTTCTATC AGGACCTGGT AGTGTCGGAG GTGGAGCTGG TTCAACCGAT CCGTTTGACA ACAGGTACAT CTCCTCAATA CTCAATGGCG	CGAAAAATAT GCTCTTTGAT GCTGTAAGTG GTCAAAAAGA TGCTAAAACA ATGCTGTAAC ATTGATCAAA GAAACAATCA AACAAAAATT TGGTGAATAA CAAGGGGGGT GGAAATCAAA TCCCCCTTTG AATTTATCAA ATGGAAAAGC CTTTCTTATA AAAAAGTAGT ATCCTATGAA AGGAGTTAAT ATGGAAAAGC TAAAGCAGC CTGCTGTCTA TCATTCCTGG GTTAGGACAG ATTTACAATA CAAAGGTTTT ATCCTCTTG GTGTAACCAT CGTATTTGTC CTTTACTTCC AACCCCTGAA TTGAGCAACC TCATCACTCT TGGTGACAAA CCAGGTCGTG CTTTATGTG ATCAAAGATG CACATACGAT TGCAAAAACAC ATTAACAATG TCCACGCACA ATCAAAGACA TGATCAAAGG GATTTATGAA AATGGCTTCC GATGATCCC TTTACCAACT ACGACTTCC CCAAACAACT TCCCAGGTACA ACCTTGCCT TCCCAGCTAC ACCTTCCCGTT ACCTTCCGTT TCTTCCTTT TCTTCTTTCCTT GAGCTTGAGT ACCTTCCGTT ACCTTCCTTT ACAGCTATCAA ACCTTCATC ACCTTCTTTACC ACCTTCATCAACA ACCTTCAATCAA ATCTCCAATCATCAACAACAAAAAAAACACACAAAAAAAA

CATTTGATAT	GGAGGACGTC	TAAGATGAAT	AACTCAATTA	AACTCAAACG	TAGACTGACT	1560
CAAAGCCTTA	CTTACCTTTA	CCTGATTGGT	CTATCAATTG	ТААТТАТСТА	TCCACTGTTG	1620
ATTACCATTA	TGTCAGCCTT	TAAAGCAGGT	AACGTCTCAG	CCTTTAAACT	AGATACTAAT	1680
ATCGACCTCA	ATTTTGATAA	CTTTAAAGGC	CTCTTCACTG	AAACCTTGTA	CGGTACTTGG	1740
TACCTCÁACA	CTTTGATTAT	CGCCTTAATT	ACCATGGCTG	TTCAAACAAG	TATCATCGTA	1800
CTTGCTGGTT	ATGCTTACAG	CCGTTACAAC	TTCTTGGCTC	GTAAACAAAG	TTTGGTCTTC	1860
TTCTTGATCA	TCCAAATGGT	GCCAACTATG	GCCGCTTTGA	CAGCCTTCTT	CGTTATGGCG	1920
CTTATGTTGA	ACGCCCTTAA	CCACAACTGG	TTCCTCATCT	TCCTCTACGT	TGGTGGTGGT	1980
ATCCCGATGA	ATGCTTGGCT	CATGAAAGGC	TACTTCGATA	CAGTGCCAAT	GTCTTTAGAC	2040
GAATCTGCAA	AACTAGACGG	TGCAGGACAC	TTCCGCCGCT	TCTGGCAAAT	TGTTCTACCA	2100
CTTGTTCGCC	CAATGGTTGC	CGTACAAGCT	CTCTGGGCCT	TCATGGGACC	TTTCGGGGAC	2160
TACATCCTCT	CTAGTTTCTT	GCTTCGTGAG	AAAGAATACT	TTACTGTTGC	CGTAGGTCTC	2220
CAAACCTTCG	TTAACAATGC	GAAAAACTTG	AAGATTGCCT	ACTTCTCAGC	AGGTGCTATC	2280
CTCATCGCCC	TTCCAATCTG	TATTCTCTTC	TTCTTCCTAC	AAAAGAACTT	TGTTTCAGGA	2340
CTTACAAGTG	GTGGCGACAA	GGGATAATTT	ATCCCCGCCA	CCCTTTTTCA	TTTTATACTC	2400
TTCGAAAATC	TCTTCAAACC	ACGTCAGCTT	TATCTCCAAC	CTCAAAGTTG	TGCTTTGAGC	2460
AACCTGTGGC	TAGTTTGCAC	TTTGATTTTC	ATTGATTATT	AGCAATTGTC	ACTGTAAATA	2520
ATATCCTTGT	AGCAAGCAAT	TTTTCTCCTA	GACTTGAAAT	AAAGCGCATT	TCTCTATATA	2580
ATAATACTCA	TATAGAAAAC	ACCTTTTAGA	AAGATACCTA	TGCTTCCATA	TCCATTTTCC	2640
TATTTTCAA	GTATTTGGGG	GGTTCGTAAG	CCCCTGTCCA	AACGTTTCGA	GCTCAACTGG	2700
TTTCAACTTC	TCTTTACCAG	TATCTTCCTT	ATCAGCTTGT	CTATGGTACC	CATTGCTATC	2760
CAAAACAGCT	CCCAGGAGAC	CTATCCGCTA	GAAACTTTTA	TCGATAATGT	CTATGAACCT	2820
CTGACAGATA	AGGTTGTCCA	GGATCTCTCT	GAACATGCTA	CAATTGTCGA	TGGCACATTA	2880
ACTTATACTG	GAACAGCTAG	TCAAGCCCCT	TCTGTTGTGA	TTGGTCCAAG	TCAAATCAAG	2940
GAATTACCTA	AGGACTTGCA	ACTGCATTTC	GATACAAATG	AGCTAGTCAT	CAGCAAGGAA	3000
AGCAAGGAAC	TGACCCGCAT	CTCTTACCGA	GCCATTCAGA	CTGAGAGTTT	CAAAAGCAAA	3060
GACAGCTTGA	CCCAAGCAAT	TTCTAAAGAC	TGGTACCAAC	AAAATCGTGT	CTATATCAGC	3120
CTCTTCCTAG	TTCTCGGTGC	GAGCTTCCTC	TTTGGTTTGA	ATTTCTTTAT	CGTCTCTCTT	3180
GGAGCTAGCT	TTCTCCTTTA	TATCACCAAA	AGATCACGCC	TCTTTTCATT	TAATACCTTT	3240

AAAGAGTGCT	ACCATTTTAT	CTTGAACTGT		CGACTCTGAT	TACACTTATT	3300
TTGGGATTAT	TTGGCCAAAA	TATGACAACC	CTGATTACTG	TACAAAATAT	TCTTTTTGTT	3360
CTGTATCTGG	TCACTATCTT	ттатааааса	CATTTCCGTG	ATCCAAATTA	CCATAAATAG	3420
GAGATTTTTA	TGCCCGTTAC	GATTAAAGAC	GTGGCCAAGG	CTGCTGGTGT	TTCGCCTTCA	3480
ACCGTAACCC	GTGTTATTCA	АААТАААТСА	ACCATTAGCG	ACGAAACAAA	AAAACGTGTT	3540
CGCAAAGCTA	TGAAGGAACT	CAACTACCAC	CCAAACCTCA	ACGCTCGTAG	CTTGGTAAGC	3600
AGCTATACTC	AGGTTATCGG	ATTAGTTCTT	CCTGATGACT	CAGACGCCTT	CTACCAGAAT	3660
CCTTTCTTTC	CATCGGTTCT	ACGTGGCATC	TCTCAAGTCG	CATCTGAAAA	CCACTATGCC	3720
ATTCAGATAG	CAACAGGGAA	AGATGAGAAG	GAGCGTCTCA	ACCCTATTTC	ACAAATGGTC	3780
TACGGCAAGC	GTGTAGATGG	GCTAATTTTT	CTCTATGCCC	AAGAAGAAGA	CCCTCTCGTA	3840
AAACTCGTCG	CAGAAGAACA	GTTCCCCTTC	CTTATCTTAG	GTAAATCTCT	ATCTCCTTTC	3900
ATCCCACTTG	TCGACAACGA	CAATGTTCAA	GCTGGTTTTG	ATGCGACTGA	ATATTTCATC	3960
AAAAAAGGCT	GCAAACGCAT	TGCCTTTATC	GGAGGAAGTA	AAAAGCTCTT	CGTGACCAAA	4020
GACCGTTTAA	CAGGCTATGA	ACAGGCGCTT	AAACATTACA	AACTTACCAC	TGACAACAAT	4080
CGCATCTACT	TTGCCGACGA	GTTTCTGGAA	GAAAAGGGCT	ATAAATTTAG	CAAGCGATTA	4140
TTCAAGCACG	ATCCACAAAT	TGATGCTATC	ATCACAACCG	ATAGCCTCCT	AGCTGAAGGT	4200
GTTTGTAACT	ATATTGCCAA	ACACCAGCTG	GATGTCCCTG	TTCTCAGCTT	TGACTCGGTT	4260
AATCCCAAGC	TCAACTTGGC	AGCCTATGTC	GATATCAATA	GTTTAGAGCT	TGGTCGTGTT	4320
TCCCTTGAAA	CTATTCTCCA	GATTATTAAT	GATAATAAAA	ACAATAAACA	AATTTGTTAC	4380
CGTCAATTGA	TCGCCCACAA	AATTATCGAA	AAATAAGAGA	CTGGGCAAAA	AGTCGTTAAA	4440
AGCAAAAACG	CATACTATCA	GGTATTGAAA	AAACTTGATA	CTATGCGTTT	TATTGTGGGA	4500
AGATTTACTT	CCTTTTCTAC	TGAAATTGAG	TCTTTTCCCA	AGATCTTTTT	ATACTCAATG	4560
AAAATCAAAG	TGCAAACTAG	GAAGCTAGCC	GCAGGTTGCT	CAAAACACTG	TTTTGAGGTT	4620
GTAGATGAAA	CTGACGAAGT	CAGTAACCAT	ACCTACGGCA	AGGTGAAGCT	GACGTGGTTT	4680
GAAGAGATTT	TCGAAGAGTA	ТТААТСАСТА	ATTATCTATC	TCAACAAATC	TTCCTAGAAT	4740
ATGAACATTT	TCCGAGACAG	AGACAAAGGA	GCTTGGATCC	ACTTGTGTCA	TAATCTGTTT	4800
AAATTCATTA	AACTCTGCAC	GTGTAATGAC	agtgattaaa	ACTGCCTTTC	TCTCGTGATT	4860
ATAGGTTCCT	TCTGCATCGT	GGATCATGGT	TGCTCCGCGG	TGCAATTTTT	TATGGATTTT	4920
TTCAATTACC	TTCTCTGGAT	GATTTGTCAC	AATCATGGCC	TGCATACGCT	TTTGCTTAGT	4980
AAAGACTGCG	TCTGTCACAC	GGCTAGAGAC	AAAGATGGTA	ATCATAGAAT	AAAGAGCGTA	5040

TTTCCAACCA	AAGGTCAAAC	CTGCTATCAG	CATGATAGTT	CCATTTACCA	AGAAAGAAAT	5100
ACTACCGACA	TTCTTACCCG	TTTTCTTACG	AATAGTCAGG	CTGACGATAT	CCGTCCCACC	5160
ACTGGAGATA	TTGTTTCGAA	GAGCAAAACC	AATCCCCAAA	CCCATAACAA	CACCCCCAAA	5220
AAGGGAATTG	ATAATGGGAT	CCTCTGTCAA	GGTTGCCACA	GGGACAAACT	GGATAAAGAA	5280
GGAACTCATA	GATACCGTGA	TAAAGGTAAA	GACGGTGAAC	TTATGGCCAA	TCTGATACCA	5340
AGCTAAGACC	ATCAAAGGGA	AGTTAATGGC	GTAGAAGCTT	AGCGAAATCG	GAATATGAAA	5400
ACCAAACCAG	TGATTACTCA	AGGCAGAGAT	AATCTGTGCC	AGACCTGTTG	CACCACTCGA	5460
ATACACATGC	CCTGGTTGGA	AAAAGAAATT	AACTGCTACT	GCTGATAAAA	AACCATAGAC	5520
CAGAGAGGCC	GAAATCTTCT	CATCATACTT	TTCTCGAGAG	ATACTTTGTA	AGACACGTAA	5580
AATTTTTATC	TGATAAGCAA	AGCGGCGCAG	ATAATAGCGC	CACCGCTTAA	TTCGTTTTGT	5640
TTGTTTCATC	TTCTTCTACT	TGTAAGCTGA	GTTCCTCTAG	TTGTTTGAGA	GCGACTGTTG	5700
ATGGAGCTTG	TGTCATTGGG	TCAGTTGCCT	TGTTGTTCTT	AGGAAAGGCA	ATGACTTCAC	5760
GGATATTTTC	TTCTCCAGCA	AGCAACATGA	CAAAACGGTC	AAGCCCGATA	GCCAAACCAC	5820
CGTGTGGTGG	GAAACCATAG	TCCATGGCTT	CAAGAAGGAA	ACCAAACTGG	TCATTGGCTT	5880
CTTCAGTTGA	GAAACCAAGA	GCCTTGAACA	TGCGTTCTTG	AAGGTCTTTT	TGGTTGATAC	5940
GAAGGCTACC	ACCACCAAGC	TCATAACCGT	TCAAGACGAT	ATCGTAAGCA	ATGGCACGAA	6000
CCTTAGCCAA	ATCACCTTCT	AATTCATGAG	CAGTCTCTTC	CTGTGGAAGT	GTGAAAGGAT	6060
GCTGGGCGCT	CATGTAGCGG	CCTTCTTCTT	CAGACCATTC	AAACATCGGC	CAGTCAACCA	6120
CCCAAAGGAA	GTTGAACTTA	TCATTATCAA	TCAAGCCAAG	CTCTTTAGCA	ATACGTCCAC	6180
GAAGGGCACC	CAGTGTTGCA	TTAGCCACTT	CAAGCGTATC	CGCCACAAAG	AGAACCAAGT	6240
CCTTATCTTC	AAGAACAAGC	GCTGTTGTCA	ATTCTTCTTG	GATACCAGTC	AAGAACTTGG	6300
CAACTGGTCC	GTTTAATTCT	CCATCAACCA	CCTTGACCCA	AGCAAGACCT	TTGGCACCAT	6360
ACTGTTTGGC	TACTTCCGTC	ATCTTGTCGA	TGTCTTTACG	TGAATAGTTG	TCCGCAGCTC	6420
CTGTGACCAC	AATCGCTTTT	ACAGCAGGTG	CTTCTGAAAA	GACTTTAAAG	TCTACACCTC	6480
GGACCACTTC	TGTCAAGTCC	TGAAGCAACA	TGTCAAAACG	AGTATCTGGC	TTGTCAGAAC	6540
CGTAAAGAGC	CATAGCATCA	TCGTATTTCA	TACGAGGGAA	TGGTAGCGTT	ACTTCGATGC	6600
CTTTTGTTTC	CTTCATCACG	CGCGCGATCA	AGCTTTCTGT	AATATCTTGG	ATTTCTTGCT	6660
CAGTAAGGAA	GGACGTTTCC	AAGTCGACCT	GAGTAAATTC	AGGCTGGCGG	TCTCCACGCA	6720
AGTCCTCGTC	ACGGAAACAT	TTAACGATTT	GGTAGTAACG	GTCAAAACCA	GCATTCATCA	6780

			344			
AGAGCTGTTT	CGTGATTTGT	GGACTTTGAG		AAAATGCCCC	TTATTAACAC	6840
GAGACGGCAC	TAAATAATCA	CGCGCCCCTT	CAGGCGTTGA	CTTAGAAAGG	AATGGTGTCT	6900
CCACGTCGAT	AAACTCCAAC	TCATCCAAGT	AGTTGCGGAT	AGAGTGGGTC	ACCTTGGCAC	6960
Gaagtttaag	ATTTTCCAAC	ATTTCTGGAC	GACGAAGGTC	AAGGTAACGG	TAACGCAAAC	7020
GTGTATCGTC	ATTTGCCTCA	ATGCCATCCT	TAATCTCAAA	TGGTGTTGTC	TTAGCTGTGT	7080
TAAGCACAAT	AAGAGCTGTC	ACGTTTAACT	CAACCGCACC	AGTTGGCAAC	TTATCATTGG	7140
CTTGTCACGC	GCAGCGACCT	GACCAGTCAC	CTCAATAACA	AATTCGCTAC	GAAGGCTTTC	7200
AGCTGTTGCC	ATAACCTCTG	CAGATACTTT	TTCAGGGTTG	ATAACCAACT	GCATGATTCC	7260
TTCACGGTCA	CGAAGATCGA	TAAAGATCAA	ACCACCAAGG	TCACGACGAC	GGCCAACCCA	7320
TCCTTTCAAG	GTTATTTCTT	GTCCGATGTG	TTCCTCACGA	ACACGACCAG	CATACATACT	7380
ACGTTTCATT	ATTTCTCTCC	TCTTTTATTC	TGTTACTATT	ТТАССАТААА	AGCGCAGCTC	7440
TTCATGAAAA	TCATCAGAAA	AGTTTGCCAG	TCTTTAAAAG	TCAGGTGAAA	GCCCTAAAAA	7500
TTAGCGCTAA	TACTCTTCGA	AAATCTCTTC	AAACCACGTC	AGCGTCGCCT	TACCGTATGT	7560
ATGGTTACTG	ACTTCGTCAG	TTTCATCTAC	AACCTCAAAA	CCATGTTTTG	AGCTGACTTC	7620
GTCAGTTCTA	TCCACAACCT	CAAAACAGTG	TTTTGAGCAA	CCTGCGGCTA	GCTTCCTAGT	7680
PTGCTCTTTG	ATTTTCATTG	AGTATAATAC	AAAAATCCGA	TGAACTTCAC	CGGACTCTTT	7740
PATTTTGAAT	TTTTGCCTGC	TTTACGCTTT	TCAGCGATTT	CGGCTGCCTT	TCGAGGCAAG	7800
ACAATTTCCG	TTATGTAAGC	CGTCCCAAAA	CGCAGTACAC	CTGCAATAGG	AGCAAAGACA	7860
ACTGCTAGAT	agttatagaa	GAAATCGCCT	TTGAAGGCAT	AAGCTAGCGC	TCCAATGATG	7920
AAAAATAGAA	CGACTGCCTG	AATCACTGCT	AATAAAATTA	CTCGTTTCAT	GTGACCTCCT	7980
GACTCTATTA	TAGCATGAGA	ATCATCAAAA	AGCCGACTAA	ATTATTCAAA	GCGTGAAGAG	8040
AAATACTGTA	GACCAGACCT	TTTCTGCTAA	TGTAAGCCAA	ACCCAAACTA	AAACCAAGGC	8100
PAAAATA GAC	AAAAAATTGT	TGCACATCAC	CTGGAAAATG	AATCAAGGCA	AATAGAAGAC	8160
PAGATACCAG	AAGAAAAATC	AGGGTTCGTT	TACTATTGTC	CTGCTTAGGA	AAGAGATAGC	3220
GTGCTAACAT	CCCTCTAAAA	ACAATCTCTT	CCGTCAAAGG	AGCAAAAATA	ACCACAGCAA	8280
agaatgagaa	AAGTGGTTGA	GACAAGGTCA	AGTCTGTCGC	TATTTGCTGA	TTTACTGAAG	8340
GATCATCTGG	CAAGAAGAAT	TGAACGACCA	GAGATAAGAA	CCAAACCAAG	ACAGGAAGCC	8400
AAATAAATCG	ATTAAAGCCG	CTCTTCTCAA	TATGAACAGG	AGCCTTCTGA	TACCATTTGT	8460
AAATGCCGTA	CACATATACT	CCAGCCAAGG	CCACATAGAG	TAGAGTAACA	GCATAGGGTG	8520
AAGCGCCTAA	AGCAAGCGAC	GCAGTCGCGA	GCCCCTG AT	ДАЛСССАПАС	*********	0500

AGGATAGAAG	GGCTAGAAGA	ATCCAGCCAA	GGTTTTTAAG	ТААТТТСАТА	GATAACTCCT	8640
TTATTTGAAA	TAACGTTTTA	CCATAGGTAA	CTGCATCACA	TTGATATAAA	CATGGATGGC	8700
TCCTACAAGC	AAGAAAGCTA	GTAACTGAAT	CTCTCCTGTC	AAGAAAGAAA	TGATAATAAG	8760
АААААТАТАТ	AAGGCTGGTA	AGACATATTG	GTGTAATTGG	AATAAAATTC	GAAAACTCTG	8820
ттссааатта	GCCTGACGCT	CCCCTTCATC	ATAAGAATTT	ATATAGTTCA	AGACATCCTT	8880
TGGTGTAGCG	AAAAATTCCA	AATCAAACTG	ACGAACAATC	GCAATGGTTT	TAAAAAGAGA	8940
TTTTTGAGCG	ACTAAGAATA	CCACAAAGAG	TAAGAAAGAA	AGGAAAAATG	TTTGAGGGTT	9000
TGTATGCAAT	ATAATCACCT	CACTTAATGA	ААТАААААТА	GCCAATGGAA	TCGCTACACC	9060
TGTAATATTA	AAAGCAATGG	TTCCAAACTC	AAGATTCCGA	TACATTTGCA	CATAATAGGT	9120
TTCATTCAGA	TCGTCATCCA	TTTCCTCTTG	ATACAAAGAA	TGAAATTTTC	TGCTTTTCTT	9180
TAAGAAATTG	AAAGTCAAAA	ACATACTAAT	GAAACCTATC	AGTAAACAAA	TAGCTGATAT	9240
CCATGGCATC	AAGGCTTTTA	САТСТААААТ	AATTTCGTGG	GATTCGACAC	GTGCCTTAAA	9300
CATCCCTACA	AACATGCCCA	AGAACCCCCC	AAGACAATAG	ACATCAAAAA	TAACAATCTA	9360
CGTTTCTTTT	TCATATTCAT	TCTCCTTTTT	CACTTGCTAG	ATTTTTGGAT	TTCTTTTCAA	9420
TCCATTCAAT	TACTGGGATG	AGAGCAAAGT	AGACCCAAAC	AAATTGGTCG	CTTTGATAGG	9480
GATTAAACCA	GCTTAGGTCC	ATCCCAATCA	GTAGAAATAC	GCTGACTAAT	AAAGCTATGA	9540
CCACTACATA	ATAAATCACT	TTATACTTGT	TCATCACTCG	TCCTCCTCCA	AACGAAATAC	9600
CGATTCGACT	GTTTCGTTGA	AAATTTGAGA	TATTTTCAGG	GCAATGATAA	TGGATGGGGT	9660
GTACTCATCC	CGTTCTAGTA	GGCTAATGGT	CTGTCTGGAA	ACCCCTGCCA	GTTTGGCTAG	9720
GTCGGTTTGA	TTGAGACCAT	CGCGAGCTCG	AAGCTCTTTT	AGACGATTTT	TTAGTTGCAT	9780
GTTACACACC	TACTCTCCGT	CAAATTCAAC	GGTTTGGATA	TCCTCAATAC	GTTGCAACTT	9840
GAATTTTTCT	TTTCCCGTAT	TATCTACACG	TCGTAGCTTT	ACCCATTCCT	CATCAACATC	9900
CACAACTTCC	CAGTTATCTG	GCCCAATATA	CACTCCCGTT	ATAATTGGTT	CCTTTCCAAT	9960
CATTTCTTGT	AATAATCTCG	ACATTTCTGC	GTTTCCTTTC	TCTTTTCGCT	CAAGTCTTTT	10020
GATTTTATTC	TCTAGTTTCT	TGATTTTTTT	AGAATTATTA	GAATAAAAGA	АААТСАТААА	10080
TAGTATAAAT	CCTAGTACCC	ACATTATAAC	TCCTTTCTGC	TTCCTATTTC	TTAACTTGAA	10140
TTCATTGTAA	CATATCTTTT	TCTTTTTGAC	AAGTATAGTT	GTCAAAAAAA	TTATGATTTT	10200
TGTCATTTTG	CAAAAGAAAA	AGGTCAGGAG	TAGGTTCCTG	ACCACTTTAT	СТАТСАТТАА	10260
TACTCTTCTA	AAATCTCTTC	AAACCACGTC	AGCTTCACCT	TGCCGTAGGT	ATGGTTACTG	10320

ACTTCGTCAG TTTCATCTAC AACCTCAAAA CCATGTTTTG AGCTGACTTC GTCAGTTCTA 10380 TCCACAACCT CAAAACCATG TTTTGAGCTG ACTTCGTCAG TTCTATCCAC AACCTCAAAA 10440 CCATGTTTTG AGCTGACTTC GTCAGTTCTA TCCACAACCT CAAAACAGTG TTTTGAGCAA 10500 CCTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTTATTG AGTATAAAAT CCTAGTTTTT 10560 CAAAGATTTC TGAGAAGTTT TGGCTGATTG TCTCAAGTGA CACTTGCACT TCTTCTCGGG 10620 TTTGGTTGTT CTTGACCGTC ACTTGTCCGC TTTCGACTTC GCTCTCTCCT AGGGTGATGA 10680 GGGTCTTAGC CGCAAAGACA TCGGCTGACT TGAACTGAGC TTTTAGTTTA CGGTTGAGGT 10740 AATCACGCTC TGCTTTGAAA CCTTGTTGGC GAAGAGCCTG TACCAATTCC AAGGCCTTGA 10800 TATTTGCCCC TTCGCCCAAG ACTGCGATAT AGACATCTAG GGCGTTTTCG ATAGGGAGGG 10860 TCACACCTTG CTTTTCAAGG ATGAGAAGCA GGCGCTCTAC ACCAAGTCCA AAACCAAATC 10920 CAGCAGTTTC AGGGCCTCCA AAGTAAGCAA CCAAACCATC GTAGCGACCA CCCGCACAGA 10980 CGGTCAGGTC ATTGCCCTCA ATCTCTGTGA TAAACTCGAA AATGGTGTGG TTGTAGTAGT 11040 CCAGACCACG CACCATATTG GTATCGATGA TGTAATCTAC TCCAAGATTT TCCAACATCT 11100 GACGCACAGC ATCAAAATGA GCTTGGCTTT CTTCATCAAG AAAGTCCAAG ATAGACGGCG 11160 CATTCTCTAC TGCCACCTTG TCTTCTTTTT CCTTAGAGTC CAAGACACGA AGAGGATTTT 11220 CCTCCAAGCG ACGTTGGCTA TCCTTAGACA AGGTCTCCTT GAGCGGTGTC AAATAGTCAA 11280 TCAAGGCTTG GCGGTAGGCT GCACGCCTCT CAGGATTTCC AAGAGTGTTG AGGTGCAATT 11340 TGACACCTTG AATACCGATT TCCTTCAAAA AATGGGCTGC CATAGCGATT GTTTCCACAT 11400 CGGTAGCTGG ATTGCTAGAG CCAAAACACT CAACACCAAT CTGGTGGAAT TGGCGCAAGC 11460 GCCCTGCCTG TGGACGCTCA TAACGGAACA TAGGTCCCAT GTAGTAGAAC TTGCTTGGCT 11520 TTTGCACTTC TGGGGCGAAA AGTTTATTTT CCACATAGGA ACGGACAACG GGTGCAGTTC 11580 CTTCTGGACG GAGGGTAATA TGACGGTCAC CCTTGTCATA AAAATCGTAC ATTTCCTTGG 11640 TTACGATATC CGTTGTATCT CCGACAGAGC GACTGATAAC CTCGTAATGC TCAAAAATAG 11700 GCGTGCGCAC TTCTGCATAG TTGTAGCGTT TGAAAATCTC ACGGGCAAAG CCCTCAACGT 11760 ACTGCCACTT AGCAGACTCA GCAGGTAAAA TATCCTGCGT TCCTTTTGGT TTTTGTAATT 11820 TCATAGGGAA TCCTCTTTAA ACTTAATAGT CTTATTTTAC CATAAATAGA GGGATTAAAA 11880 CAGTAAGAAA AAAATTAGGA TTTAGATATC ATTTTTGAGA TTAAGAATTG TCAAAAAAAT 11940 AGCTAGCAAG GAAAGACCAA CAAATAGCAT CCAAGTCAAC TGTATATTCC ATACGGCTAC 12000 TAGTGAAAAA CAAGCTGTTC CCACAGGTAT GGATAAGGTA AACAATAGAC CTAAAAAATT 12060 ACTAGTACGA GCTAGAACCT CTGGAGCTAG ATTTTTCATG AGCATGGCAC TAATCTTTGG 12120

347

TTGAACTTTA	CCAGACACAT	ACAGAGTAAA	GAAGAGAAAT	AGCAAACCAA	GCACGACTTG	12180
ATTGAATAAA	TTAGCCAAAC	CAACTAGACT	AAGTCĊTACG	GTCTCCCACA	TCATCAATCT	12240
AGGCAAGGAC	TGCTTCCCAA	AATAATCATT	GCCCGTAAGG	CTACTGATGA	TGACTGATAC	12300
TAAAACACAG	AATTGATTGA	TAAATAGTGC	CTCTGTATAA	GAAAAATTC A	AGAGAGAATG	12360
GCTCAAAAAG	AAGATATTAT	AAATTCCACC	CAAAGCGCCA	CCCAAGGAAT	TAATAAGCAA	12420
GACAGCAAAG	AGCATAAAAC	CAAAGTTTTT	CTGTCCACTT	TTAAGAAAAA	CGAGACGTAA	12480
ATTTCGGTAA	ATTGTTAGGA	ACTGGTCTTT	GATAGAAAGC	TTCTCATTTT	TTAAGTTTTC	12540
ACCATCAGCA	GATGACATTG	ACAGGCTCAA	TTTGCTTTTT	CCTAAAAAGA	GGATAGTGGC	12600
TGATACTAGG	AAAAAGCAGG	CATTGATTCC	CGCAACGAGA	GAAAAATTGT	TGACCGATAG	12660
AGCTAAGAGC	CAGACTCCGA	AAGCTTGACC	ACCAATAGCT	GAAATATAGG	TGATGAACTG	12720
TGAAAAAGAA	TAAGCCTCCA	TCAGATCATC	TTCAGCTACT	TTTTCCTTAA	TAAGAGGCAT	12780
ACGCAGGCCA	CCTGCAAAAT	CACTGATGAT	ATCACTAATG	ACATTGATCA	AACACAGGCT	12840
AGAAAAGGCA	AAGAGACTAG	CTTGCTGAAC	AACTAGGGCT	GCTAGAAAAA	ATAGAACCGC	12900
CTGAAACAAA	CCGCTATAGA	CCATCCATTT	GACCTTGTCC	CTCGTGTAAT	CTGCCCGAAT	12960
CCCTGCAAAA	actgtaaaga	GGGTCGGAAG	AATCATGACA	ATATTCGCCA	TAGCAACAGC	13020
AAAAGATGCT	TGTGACAAGG	TCGATGCATA	GACGATAAAG	ACCAGGTTGA	AAATCGAAAC	13080
ACCAAAAGCA	TTGAAGAAGC	GTGG				13104

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19250 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

CCGGGCAAAT	AGTTTTGAAC	TTTTCATCAT	TTTCTCCTTT	AAAACTTTCT	CTCCATTATA	60
GACTCTTTTC	AGAAAGTTGT	CAACAGAATT	TTCAGAATTT	TTGAAAATTA	TTTTTCAAAC	120
AACATCTTTG	CAAAAAATAT	GAATATCGTA	AGCGCGTCAT	AACAAGGTAT	CTATCATTCA	180
TGGAGCTCCT	CCTGTATACT	ATTAGTAAAG	TAAATATTGG	AGGATATTTT	AATGCCACAA	240
CCTATTGTTC	CTGTAGAGAT	TCCACAATCT	CGTCGTTTTG	АТТСТААААА	GAGAAATGAT	300
ATTCTTCTTA	AAATTCGTAT	TGGCAAGCTT	GAAGTAAGTT	TTTTTCAATC	TCTCAATCTC	360

			348			
GAAATGATAG	AACAGCTTTT	GGATAAGGTG	TTGCTCTATG	ACAATTCATC	TATCTAGCCT	420
AGGGCAGGTC	TATCTCGTGT	GTGGGAAAAC	TGATATGAGA	CAAGGAATCG	ATTCACTGGC	480
TTATCTCGTT	AAAACCCACT	TTGAATTGGA	TCCTTTCTCC	GGTCAAATCT	TTCTCTTTTG	540
TGGTGGACGT	AAAGACCGCT	TTAAAGTCCT	TTACTGGGAT	GGTCAAGGAT	TTTGGCTACT	600
ATATAAACGC	TTTGAGAACG	GCAGACTGAC	TTGGCCCAGT	ACAGAAAAGG	ATGTCAAAGC	660
TCTCGCACCT	GAACAAGTAG	ATTGGCTGAT	GAAAGGCTTT	TCTATCACTC	САААААТАТА	720
GTAGATTGAA	ACTAGAATAG	TACACCTCTG	CTTCTAAAAC	ATTGTTAGAA	ATCGATTTTA	780
CTGTCCTGAT	CGATTTGTCC	TGTTATTATT	TCATTTTACT	ATAAATCCAT	CAGAAAGTCG	840
TGATTTCTAT	TGAAATGAGG	ACTTTCTTTT	TATACTCATC	TGCTTTCAAA	AAGCACTCTA	900
GTCCATCTCC	GATTAACGAT	GGACTTTATC	ACCTCCTTCT	CCAGTCCTTG	TATAACATCT	960
TGAAGTTGAT	TCATGACATC	TTCCAAAGTT	CGAAAGGCTT	ТАТТСТТААА	TCCACGTTTA	1020
CGAATCTCTT	TCCACACTTG	TTCAATGGGG	TTCATCTCTG	GTGTGTATGG	AGGAATAAAT	1080
GCAAAGCCAA	TATTAGTCGG	AATCTTTAAG	GTACTTGATT	TATGCCATAT	AGCATTGTCC	1140
ATAACGAGTA	AAAGATAATC	ATCTGGATAA	GCTTGTGAAA	GCTCCTATTC	CTAAAGCCCC	1200
TTTATAACCT	CTTGCGAGAG	AGACTATTGA	CTCAGCCCTT	ACTTCATGCG	GATGAAACCT	1260
CCTATCGGGT	TCTAGAGAGT	GATAGCCATC	TGACCTACTA	TTGGACTTTT	TTGTCAGGTA	1320
AAGCAGAGAA	ACAAGGGATT	ACGCTTTACC	ACCATGATCA	GTGTCGAAGT	GGTTCAGTAG	1380
TACAAGAATT	CCTAGGAGAT	TATTCTGGCT	ATGTTCATTG	TGATATGTTG	CGGCAGTAAC	1440
TTAGGACTTT	AGTCCTCTAG	TTCTGCCTAT	GCGATAGCAG	TCCAAGGTTT	AGGAGTAAGG	1500
CGACGCTAAG	CTTGGTAAAC	TGCGAACAGC	TAGAAGCTTA	TCGTCAACTG	GAAGAAGCTG	1560
CACTTGTTGG	ATGTTGGGCG	CATGTGAGAA	GGAAGTTTTT	TGAAGTGCCC	CCCAAGCAAG	1620
CAGATAAATC	ATCCTTAGGA	GCTAAAGGTT	TAGCCTATTG	TGATCAGTTA	TTTTCCTTGG	1680
AAAGAGACTG	GGAGGCTTTG	CCAGCTGATG	AACGGCTACA	GAAACGTCAA	GAACATCTCC	1740
AACCCCTACT	GGAAGACTTC	TTTGCTTGGT	GCCGTCGTCA	GTCAGTTTTA	TCGGGTTCAA	1800
AACTAGGAAG	GGCAATTGAA	TACAGCCTCA	AGTATGAAGA	AACCTTTAAG	ACCATTTTAA	1860
AAGACGGACA	TCTGGTCCTT	TCCAATAATC	TAGCTGAACG	CGCCATTAAA	TCATTGGTTA	1920
TGGGACGGAG	TAAAAGAGTC	CAGTGGACTC	TTTTAGCCTA	AGCTCAGTTT	AAAAAAACGA	1980
GGGTGGTTAT	TTTTAAAAAA	GCGAGGGTGG	TTATTTTCTC	AAAGTTTTGA	AGGAGCTAAA	2040
GCAAGAGCTA	TTATTATGAG	TTTGTTGGAA	ACAGCTAAAC	GTCATCAATT	ATAGTGCGTT	2100
GAATCTATAA	CAGTACGCAT	CGACTGCTAA	AATATTTCTA	TAAATCAATT	TTCCTTTCCT	2160

AA?	rcgatttg	TTCATATCTT	ATTACAATCC	ATTAAAATA	GCGAGAAATA	TCTATCCTAT	222
CT?	CTAGAAT	GTCTTCCAAA	CGAGGAAACT	CTCGTAAACA	AAGAGGTTTT	AGAGGCCTAT	228
TT!	ACCGTGGA	CTAAAGTTGT	ACAAGAAAAG	TGCAAATAAG	AAATCTCCAG	ATTAGGAACT	2340
ATA	ATATGAGT	TCTCTAGTCT	GGAGATTTTT	CAATAGACTT	CGTTATTGGG	CGGTTACTTT	240
CG	VAACTTTG	AAAACTTCAA	AAAACGGATT	TTTATCGCTC	TGAACATCAA	AAAAGAAAGG	2460
ACC	SAAATTTG	TCCTTTCTCA	AGCTTAGCTT	TTCTTCAACC	CACTACAGTT	GACAAAGAGC	2520
CC1	TTATTCT	ATCAAACATG	AAGCGCAAAA	ACAAGCCAAA	AATCCGATAG	AATGGCTATC	2580
CCI	CGACTAT	CAAGTAAGAC	ATTTCCATCA	AATACGTTCA	ATTTTACTCT	TGTTCTACTA	2640
AG?	ATTAATC	ATCTCGTTTT	GATTTATTAA	AAATATACAA	TTCAGCTTTT	CCTCCAAACT	2700
AT?	PTTATCCA	CTATCCCTGT	ATAGCTCTGT	ATTATCTTAA	CAACTTTAGT	AGAGACATTT	2760
TCC	TCAACAT	AATCCGGAAC	CGGTAATCCA	AAATCCTCAT	CTTGTGCCAA	GCTAACAGCA	2820
GT7	TCAACTG	CTTGAAGAAG	AGAATTTTCA	TCAATGCCTG	CCAAAATAAA	TCCTGCCTTA	2880
TC1	PAAGGACT	CAGGACGTTC	TGTACTTGTA	CGAATACATA	CAGCGGGAAA	AGGATAACCT	2940
TG/	CTAGTAA	AGAAACTACT	TTCTTCCGGT	AAAGTTCCCG	AATCAGATAC	TACAACAAAT	3000
GC?	TTCATCT	GTAAACAATT	ATAGTCATGG	AATCCTAGTG	GCTCATGCTG	AATCACACGT	3060
TT?	TCTAGTT	TAAAACCGCT	CTCTTGTAGC	CTTTTCTTTG	ATCTAGGATG	GCAAGAATAT	3120
AAC	SATTGGCA	TATTATACTT	TTCAGCTAAT	TGATTAATTG	CTGTAAAGAG	AGAAATAAAA	3180
TTI	TTATCTG	TATCAATATT	TTCCTCACGG	TGAGCTGAAA	GTAAGATATA	ACCTCCTTTT	3240
TTC	CAATCCCA	AACGTTCATG	GATATCTGAA	GACTCAATAG	CAGATAAATT	TTTATGTAAC	3300
ACI	TCTGCCA	TAGGAGAACC	AGTTACATAT	GTGCGCTCTT	TAGGTAAACC	ACACTCATGT	3360
AA#	TACTTAC	GTGCATGTTC	AGAGTATGCT	AAGTTAACAT	CTGAAATAAC	ATCAACAATC	3420
CGA	CGATTAG	TCTCTTCCGG	TAGGCACTCA	TCTTTACAGC	GATTGCCAGC	CTCCATATGA	3480
AAA	ATTGGAA	TATGTAAACG	CTTGGCAGCA	ATAGCTGATA	AACAAGAATT	TGTATCCCCT	3540
AAA	ATCAATA	AAGCATCTGG	TTTAATTTGA	TTCATCAATT	TGTATGAAGT	ATTAATAATA	3600
TTC	CCTACAG	TAGCACCAAG	ATCATCTCCA	ACAGCATCCA	TGTATACGTC	CGGAGTGTCT	3660
AAC	CCTAAAT	TATCAAAGAA	AATACCATTT	AAATTGTAAT	CATAGTTTTG	TCCAGTATGT	3720
GCC	AAAATAA	CATCAAAATA	CTTTCGACAT	TTAGTGATAA	CACTACTTAG	ACGTATAATC	3780
rci	GGACGTG	TTCCCACAAT	AATCAATAAC	TTAAGTTTGC	CATTATCTTT	AAAGTGAATA	3840
TCA	CTATAAT	CTGTCTTAAT	TTTCATTTAT	TTCTCCACTT	GTTCAAAAAA	AGTATCTGGA	3900

			350			
TGTCTAGGAT	CAAATGACTC	ATTAGCCCAC	ATGACAGTAA	TTAGATTTTC	TGTATCAGAA	3960
AGATTAATAA	TATTATGTGC	ATAGCCCGGT	ATCATATGTA	TTGCTTCAAT	CTTATCGCCC	4020
GACACTTCAA	AGTTCAGAAT	AGGATACTCT	TGACCGTTTT	CATCCAGCCC	TATCCTACGC	4080
TCTTGTATTA	AAGCACGACC	AGAAACAACC	ATGAAAAATT	CCCACTTAGA	ATGATGCCAA	4140
TGTTGCCCTT	TGGTAATGCC	AGGTTTAGAA	ATATTAACAG	AAAATTGACC	CGTATTTCT	4200
GTTTTTAATA	ATTCCGTAAA	ACTACCTCGT	TCATCTATAT	TCATTTTTAG	AGGAAACTTA	4260
AACTTATCTA	CTGGTAAATA	AGATAGGTAG	GTAGAATACA	ATTTCTTTTT	AAACGATCCC	4320
TGAGGAATTT	CAGGCATAAC	TAAACTATCA	GGCTGTTTTT	TAAATGTTTC	TAATAGAGAG	4380
ACAATCTCTC	CTAAGGTTGC	ACGATGAGTC	GTTGGTACGT	AGCAGTAGTT	TCCTGATGGG	4440
CTAGGTAAGA	TTTGTAATCC	ATCTAGATTA	CAACGATGAG	GATTTCCTTC	CAATGCAGTT	4500
AGACACTCTT	GTATCAAATC	ATCAATATAC	AGCAACTCCA	ATTCTACACT	TGGATCATTT	4560
ACTTGAATAG	GTAAATCGTG	AGCTAGATTA	TAACAGAAAG	TTGCTACAGC	AGAATTGTAG	4620
TTAGGACGGC	ACCACTTCCC	ATAAAGATTC	GGGAAACGGT	AAACTAAGAC	AGGTGCTCCC	4680
GTTTTCTTTC	CATATTCAAA	GAAGAGTTCT	TCCCCTGCTA	GCTTAGATTG	тссататата	4740
GAGTTTGAAA	ATCGGCCTTC	TAAACTAGCT	TGAGTAGAAC	TTGAGAGTAG	AACAGGACAA	4800
GTGTTTTCAT	ACTTTTCTAA	AATCTCCAAT	AATCTACTTG	AAAAACCGTA	ATTTCCCTCC	4860
ATGAATTCAT	CAGGATTCTG	TGGACGATTG	ACACCAGCTA	AATGGAATAC	GAAATCGGCC	4920
TTCTTACAAT	ATTCATCTAA	TAAAATCGGA	TCTGTATCAC	GATCATACTG	AAAAATCTCT	4980
CCAATCTCTA	AATTAGGACG	AGTCCTATCT	CGTCCATCTT	TCAAAGCTTC	CAGAGTACAG	5040
ATAAGATTTT	TTCCTACAAA	TCCTTTCGCT	CCTGTGATTA	AAATATTTTT	AATCATGCCC	5100
CCTCCTTATT	TTATATGCTG	TTTTAATAGT	TAACTCTCTC	GACAATACAT	GATACATTAT	5160
ATATCCTTGA	TAATTTTAAT	GTATCTTAAA	AGATTTTACA	TCTCTTCGTC	TGCTACCATA	5220
TCACGAATTG	CTGTCTGTAT	TTCATCTAAT	TCTAGCAACT	TTCTTTTAAC	TTGCTCTACA	5280
TCCATCAAAT	CGGTATTATT	ACTATTGAAT	TCTGTCAACA	AATTTCŢATT	CGTACTACCA	5340
TCTTTGAAAT	ACTTATCATA	GTTAAGATTA	CGATTATCAC	TAGGAACTCT	ATAAAAATCA	5400
CCCAAATCAA	TTGCATTTGC	GCACTCTTCG	TTAGTTAATA	GTGTTTCATA	CCTTTTTTCT	5460
CCGTGTCTAA	TACCTATAAT	CTTAATATCT	TGTTCTGAGG	САААААТТТС	TGATACAGCC	5520
TTAGCCAACA	CTTCAATCGT	ACATGCTGGT	GCTTTCTGAA	CTAGTATATC	TCCAGATTTC	5580
CCTTCTTCAA	ATGCAAATAA	AACCAAGTCT	ACTGCTTCTT	CCAATGTCAT	CACAAAACGT	5640
GTCATGCTAG	GTTCAGTAAT	TGTAAGAGCA	TTTCCTTGCT	TAATTTGCTC	AATCCAAAGA	5700

GGAACGAC	AG ATCCACGGCT	ACACAGAACA	TTCCCATAGC	GAGTCACACA	TATCTTTGTA	5760
rgctcagg?	AT TTACCGTCCT	GGACTTAGCA	ACAGCAATCT	TTTCCATCAT	AGCCTTGGAT	5820
GTTCCCATA	G CATTGACAGG	ATAAGCCGCC	TTATCTGTAG	AAAGACAGAT	AACTTGCTTT	5880
ACACCAGC1	TT CGATAGCCGC	AGTGAGGACA	TTCTCCGTTC	CCAAAATGTT	AGTTTTTACC	5940
CTTCTAC!	AG GGAAAAATTC	ACAAGAAGGT	ACTTGTTTAA	GAGCAGCAGC	GTGAAAAACA	6000
raatccac <i>i</i>	CATGCATAGC	ATTTTTTACC	GAAGCTAAGT	CACGCACATC	TCCAAGGTAA	6060
AAACGGAT1	TT TCCCAGCCAC	TTCTGGTACT	TTTACCTGAA	ACTCATGACG	CATATCATCT	6120
rgtttc tt t	TT CATCTCGCGA	AAATATACGA	ATCTCTGAGA	CATCTGTTTC	TAAAAAACGC	6180
PTGAGAACO	G CATTCCCAAA	TGAACCTGTC	CCTCCTGTAA	TTAGGAGAGT	TTTTCCTGTA	6240
AATTGTGA(CA TATATTACAC	TTCTCCTTCT	AGTATGTCTG	CAATTTTCTT	ACAAGCCGTT	6300
CCATCTCC	AT ATGGATTTGA	AGCTTGACTC	ATTGCTTGAT	AAACTGAATC	ATTTTCTAAT	6360
ATTCTTT!	A AATGCCTATA	AATATTATTT	TCATCAGCAC	CTACAAGTTT	CAAAGTCCCT	6420
GCTTCAAT1	C CCTCTGGACG	TTCAGTTGTA	TCTCTCATAA	CCAAAACAGG	TTTTCCTAAA	6480
CTTGGAGCC	T CTTCCTGAAT	ACCACCACTA	TCTGTTAAAA	TTAAATAACT	TCTTGATAAA	6540
\aattgtg;	А ААТСТААТА С	TTCTAAAGGT	TCGATCATCT	TGATACGTTC	ACAGCCACTT	6600
AGTTCTTC	T CAGCAATTTG	GCGAACACGA	GGATTCATAT	GGATAGGATA	AATAGCCTTG	6660
ACATCTGA#	ATTCTTCAAT	AATCCTTCTA	ATTGCTCTAA	ACATATGTCT	CATCGGTTCA	6720
CAAGATTI	TT CACGACGATG	AGCTGTAATT	AGAATAAACC	TGCTTTCTCC	TATCCATTCT	6780
ACTCAGG!	AT GCGTATAGTC	CTCTTGAATT	GTAGTTTGTA	AAGCATCAAT	CGCCGTATTA	6840
CTGTCACA	A ATATGCTCTC	TGGAGTTTTT	CCTTCTCTTA	AAAGATTATC	TTTTGAAAGT	6900
GTGTTGG1	гд таааатдата	CTGAGCCAAA	ACCCCAACTG	CTTGACGATT	AAACTCTTCA	6960
GATATGGI	G AATAGATATC	GTAAGTGCGC	AAACCAGCTT	CAACATGACC	AATTGGAATC	7020
gtaaata?	A AGGCCGCCAG	TGAACTAGCG	AAGGTCGTAC	TTGTATCCCC	ATGAACTAAC	7080
CCAAATC	AG GTTTTTCTGA	СТСТАВАВАТА	GCCTTCATTC	CTTCCAAAAT	GCCAATGGTC	7140
CATCAAAT	A AAGTTTGTTT	ATCTTTCATA	ATAGACAAAT	CAAAATCGGG	AATAATCCCA	7200
ATGTGTCC	A AGACCTGATC	CAACATTTGA	CGGTGTTGGC	CCGTAACGCA	AACTAATGTT	7260
CAATATTC	T TACGTGTTCT	TAACTCTTTG	ACCAAAGGAC	ACATCTTGAT	GGCTTCTGGA	7320
GAGTTCCA	A ATACTACAAC	TACTTTTTC	ATATATTTAC	ттастсстаа	CAAATAATGA	7380
· CCCTTTCTT	משייה ממשממה מי	CATAACCCCT	A A TO C A TA A C	ACCACCTCAC	እ <i>ር</i> አመእርመውር አ	7440

			352			
ACAAATAGCT	AATGTTACTA	AACTAAAATT	ATCAGACAAG	ATAAATATTC	CTAATCCCAA	7500
AGTTTGGACA	ATCGAAGCTA	ATATAGTTGT	CATTGTAGTT	TCTTTCACTT	TATCAATAGC	7560
FCCTAAGACA	GGCCATCCGT	AAATCATAGA	ATAAAAACTA	GCAACAAAAG	CGGGTAATAA	7620
GTACTTAAGA	AAATCTGCTG	AAACGGTATA	TTTTTCACCA	CCAATTATAG	AAAGAATTTG	7680
atttgaaaag	AATAAAACTA	TCAAAACTCC	AAAGATAATA	GGAATAAACA	TAATCCGATT	7740
AATACTCTTA	ACCGATTGTA	TATCTTTAGT	ACGTATCATA	TGCGGATATA	AACTATTCGC	7800
PATAGGATTA	TACAATGATT	TTGCTGCTGA	AAGCAGTTGC	ATTGCTATCC	CCCAAAAGGC	7860
PATCTCTTGA	CTTTGTAAAT	AAAAACCCGA	AATGACTGTC	GTAAAGACGC	CAAAAATAGT	7920
AGTTGCAAAA	TTGGATAAAA	AATAAATAGA	GGATTCCTTT	AAATCTTTAA	CCCAAACAGA	7980
CAGATAAGAA	AATGATAATT	TAATTCCATA	ATAATGAAGG	AATCTATAAG	AAACTACTGC	8040
AGCAACTAAA	TTCCCAATTC	CTTCCAATAT	AGGAATCCAT	AAAATAGAAG	AATCATCTTT	8100
FACTACAATA	AATGTCAAAA	TTGTAATGAT	AGTTTTAGAA	ATAATATAAG	GAATTGCAAC	8160
IGCATGCATC	TTTTCAATTC	CACGAAATAA	AAAGTCAAAG	ТАТААААТА	TGGTCACTGT	8220
AGCTAACAAA	TAAAAAACTG	AAAAAAGAAT	ATTCTCTCTC	ATTATTGGGA	TTTGCCACAT	8280
CAATATGGTG	TAAATTAGAA	TCGAAATGAT	AGATAAAAAT	ATTTTTTCAA	CTAGAGTATC	8340
PCCAACTAT C	CTTCCAATCT	TTGAGGGAGT	AGTACAAGCA	TTTACAATAT	TTTTTGTAGC	8400
IGATATCATG	AAACCAAAAT	CAATCACCAG	TTGAACATAA	GCTATTAACG	CTTTAACATA	8460
AATAACCATT	CCATACGCGT	CTAGCGAAAG	CACCCTTGTC	AAATACGGGA	GTGTTAATAA	8520
AGGAAATAGT	AATTTAACAA	TATTCAGAAT	ATAGAGAGAA	CTTGTATTTT	TTATAAATGA	8580
AATTCTATCA	ACTTTCACGA	ACTAGTCCTT	CCAAAAAAAG	ATCTAAATAG	TCCAAACTAC	8640
TTCTCGCTTT	CAACACCAAT	TCTGAAGGTA	TTGTTATCGG	TTTTAGATGA	AAAGTTTCAA	8700
GTTTCTTTAC	AATACTATTA	ACACTTGAAT	CAAATAAAGA	TTCACAACGT	TGTAACTCTC	8760
CAATTGCTCC	ATAATAACGT	GCTGTTTTTT	CTGGATGGCA	TGCAATGGCA	ATCACAGAT I	8820
PATTAAAACA	TGTTGCCACT	ACCCCAACAT	GTAATTTACA	AGTTAAAACC	ACATCTACCA	8880
TTTCAACAA	TGATGTCATT	TCTGCAGGAG	AATGATACTT	GAATTGAAAA	CAATCCTCAG	8940
ГТСТААСТАА	TTTTCTAAAT	TCCTGATAAT	AAGCATCTTC	ATAAGGTAGA	ATGGAATCCG	9000
AAGTTACTAC	AACATAATAG	TTAGGATTGT	TTTCTAGAAA	AAGACTAATT	GATTCCGCAA	9060
ATTTTTCAAG	AGCTTTTTTG	GAATGATTAT	AGTGAACAAG	AATTATCTTC	TTATCTTTAG	9120
CTTCTCTTTT	CAATTGACAC	AGCTGCTCTG	TTTTTTCTTC	TCTTAATTTA	CTTGAAATAA	9180
ГТАААТСААА	GGTTTCATGC	ACTGGAGCCG	AAGGCGACAA	ATGCTTCAAA	GAATCAAATG	9240

9300	ATACCATAAT	AATTCTCTTT	CATGATTAAT	ATAAATTGAG	ACGAACTGTA	ATTCTCGATC
9360	GGCTTTTTAA	тастсстата	СААТАССТАА	GGCCCTGCAC	ATCGTTATTA	TCATCAAAGA
9420	TTATCACGAA	TTGGATTAAA	ATCGTTTAAA	AAAGGTAAAA	CCAAATTCCC	AATATGAAGC
9480	GCATCTGCTT	ATACAAAATA	CTCCCGGGAT	CCAAAATATC	ATGCCCTTCC	AACGTGCATT
9540	AAGAAATCTG	GTACATTTGA	ATTCTTTCAA	TTTTGGCGAT	AAAACTTTGT	GTTTTTTAGT
9600	ACAATCTCAC	TAAATCATAG	TAGATTCTAA	TCATATCCTT	AAAAGAAACT	atggattata
9660	AACATAATTT	TGCACCATGT	CATAATCCGT	TTACTTGAAC	ATCACCGTAA	CGTAAAGATA
9720	TATACATAAT	АТААТСАААС	AATAAATATC	ACCTCCTAAA	TATTTTTCA	TTTTCACCAC
9780	AAATTACCGA	AATAGTTGAG	CACTAAAAGC	AACTACTTCT	ACATCTATTG	AGGACGATAA
9840	ATCGCCATCC	CTGAAATTTA	TTGAAAAGCT	TTTTACTTGT	ACTTTTGAGA	Aaaataaata
9900	AGTTCCAAAA	TAGTAACCAA	AACACCACCA	AACTCCAAAA	CCCAAAACAA	ACTAAATATT
9960	TAACAACCGT	AATTTATTAA	TAACCCCAAA	AGCCTACAGG	ACAAAAGAAG	PAATTCTTCC
10020	TTGATAGGAT	ATAGGAAAAA	TAACCATCCA	AATCACCAAC	ТТАТСААААА	CGCTGATGCT
10080	CAGTTACAGC	CTAGGCACAA	TGGAATGCTA	CATATTCATA	AATGTCATCC	AGTGCGTAGA
10140	GTATATTCTT	ACTTCCCCTA	CTCTGAAAAT	TCAGTCCCGA	GTTAGGCTGG	AGAAGCTACT
10200	TCAAGTCGAA	CCTATAGTAT	TAAGTATATA	AGGAATCAAA	AATGAAGAAA	PACAAAATCT
10260	TTAAAAATAC	ACAGTTACTA	TAATAGAAAT	CTAATACATT	CTAATAACAA	ACGGTGCCCC
10320	AAACCAACGC	GTGTATACTA	TAAAGATTGT	AAGTAATCCC	TTCTTCGAAA	AAGTACTCTT
10380	AAATTAGGTA	ATCATTATCA	TCCTGTTAGG	TTTTACGACT	AACACCTGGA	CAAGATTGAA
10440	СТБААТААА	GACAGCTTAT	TATAACTCGG	TAGTACGCTT	ACCCAAAAAA	AAACAACATT
10500	CTGAACTAGC	TCTATTATTC	TCCTAAATCA	GCATAAGTAC	ACACCAGGAA	CAAGGAGAAC
10560	TTTTAGAATC	GCTAGTACTG	CGCTCTAACT	AGCTATTCGC	TATGCTGAAT	rcctctgaa
10620	TGTACAAAAT	CTACCCGCAT	TGTTAAAATC	AGCCCACTCC	CTAGAAATAA	AGTTATTACC
10680	TTCCATCACT	TAATGTACCT	TTCTGAATGA	AATTTTGTAC	TTTTCCTGAT	TTCTCTTCA
10740	AAATATATGA	САААТТАТАА	AAACAAAATC	CAGAATAACA	AAATAGCCTA	TAAAAAAT
10800	TTGTTTGAAA	CACAGCAGAG	ACTAGGGCTC	TATAGAAGTT	TCTTCATTAT	ATGAAATAAT
10860	TCAGATACCA	TAAGATAAAA	САТАААААА	TTAATCCAAA	TCATTGAAAA	CCCATATAC
10920	GAAAAATA AT	CCAGTAATTT	ТААААТАААА	TAACTTTTTG	TCATATATAC	racaga aaa a
10980	AACCATTATT	GATATAAGAA	AACATAATTA	ATATAGACGG	ACCCATATAA	PAGAAAGCAA

			354			
CCAATTATCG	AGAGTCCAGA	ACAAGTAACA	GAAAGCAAAT	ATAAAACTTA	ATGTCACTAG	11040
TGTCACTCTA	CAAATATACT	TTGTCTGCAT	СТАТАТСТСС	TTTATTACAC	ACATTTCTTG	11100
ATAACGATTC	AATAATTTAC	TAGCTTGATA	ACAAATATCA	TAGAGTCCAT	CTGTCATACT	11160
TTATTTATT	TCAAAACGAT	TGCATTCCTC	AGATGTTAAA	GACAGTACTT	TATCTTTCCA	11220
PAGCAACACA	GACTCTTCGT	TGATAGGTAA	GTAACTAATG	TTTTTGGTCA	CATCTACTTC	11280
PTGCGTCACT	GTATCTGACG	ATAAAATTTG	TAATCCCGAT	GCCTGAGCCT	CTACTAGAGA	11340
AACAGGCAAC	CCCTCATATT	TAGACGGAAG	САААААААСА	TCCATCGCAG	ATAATAAATC	11400
AGAAATATCA	GTCCTTCTCC	CTAAAAATAG	CACATATGGG	GTCAGATTTA	GTTCTAAAGC	11460
PTTCTGTTTT	AATTTCTGCT	CATCCTCACC	ATTACCAACT	AGGAGTAAAA	TAACATTTGG	11520
ITTGATTAAA	ATGAGTTCTT	TTAAAACGTT	AAATAAATAA	CTTTGGTTTT	TTTGATCTGA	11580
PAGGCGAGCT	ATATTTCCTA	ATACGAACTT	ATTTGACACA	TCTAATTCTC	TACGACATTT	11640
PTCTCTAACA	TCTGACAAAA	ATTGATACTT	TTTCAAATCA	ATTGCATTAA	AAATAATTTC	11700
AATTTTTCCG	TCTTTATACG	CTTTCTCTCC	ATATAACCAC	TTAGCCGAAT	CTTCCCCACA	11760
rgcaaaccaa	TGAGTTGCTA	AGATTTTTAC	CAAAATTGTT	ACTAATTTAC	GCAATACTTT	11820
PTGAAAACTG	TTTTCTGTTA	CATAAGCCAT	ATGACTATGA	ATAATTCTAA	TTTTACAACC	11880
ATTATTTTA	GATAAGATCA	GACCAATTGC	AGATTTATAG	CCATGGCAAT	GAACTATATC	11940
TAATCTCCT	TTCTTTATTA	TTCTAGCAAG	AGAGAGAAAC	TGATGTAGAG	GCTTTTTCCT	12000
PAATAGAGGC	ACATGATAAA	CCTTTGCACC	CAATTCTTTC	ATTTTATCCT	CTAAAAATCC	12060
TGTTCTTT	CCAGGCACAA	TAAAATCAAA	TTGAATTTTT	TTTCTATCAA	TGTGAGAATA	12120
TAGTTGAAT	AGAAAACTTT	CTACTCCACC	ACTATCTAGT	GTTGTAAATA	GATGTAATAC	12180
TTAATCATT	CTTCTTCCTT	aagcttaaga	TTCGCTTCTC	TAATTCTATT	TCTGTTTTTT	12240
TTTTTCTAA	ACTAATTCTG	TCCATGAAGT	TATCACAATT	CTTAATTAGC	TGTTTCCTGT	12300
AAGGTTTTG	AATATACAAA	GCCAAACAAT	CTTTTTCCGA	TTCATCCTTC	ATAGGTAAAA	12360
GAAACCAAA	ACCATTCTCT	ATTGACACTT	тттссатата	AGTATCTTCA	САЛАСТАЛЛА	12420
'AGGTTTATA	CAACAATGCA	GCAAAGTAGA	GTTTATTAGA	CAAAGCATAG	TCTAGTAAGG	12480
AGTGTGATT	CCCGTATAAA	ттсаааасаа	CATCTGTATT	СТТАТААААА	GACATGGTAT	12540
TTTAGGCTG	GAATGTGTCC	ACCAAGTTAA	CATTGCTGAT	ATTTTTTTCT	TGACAAAATT	12600
CCTTAATTC	TCCTGCATTA	GTACCTATAA	AATTCAACTG	AAATCGACTG	TCATTTGCAA	12660
AAAATCGAT	TATTTTTTA	TTTTGTTCTT	GAAAACGAAT	TAAACCAATG	TAGGAAAGTT	12720
AATTGGAAA	CGTACTATTA	TTTTTTAACT	GCTTTACCTC	GTTTAATTCT	ATCATATTGG	12780

GTAGGTTATG	GGTAGTAAAA	TACTCTCCCA	TTGGTAAAAA	AAATTTATAG	CCGTCTGAAG	12840
AAACGATATT	CATTAAAGAA	TTTTTCACCA	ATTGTTTCTG	AACCAAACGA	TAAACCAAAA	12900
ATTTTTCATA	ACTGTAATCA	CGAATATCAT	AAATATATCT	ATTTTTAAAT	GAAAAGAGAA	12960
GAAAATCTAC	TAAAATGAAA	GACACAATAC	TATGTAACGG	CAATATCATA	TCATAATCAT	13020
TTTCTTTTAG	CTTCTTTTTA	ATTTCTTTTC	TGAATTTTAC	ATAACCTAAT	ATCTTACTTA	13080
ATTTTCCTTT	ACCAGAAAAA	GAAATACGAT	AGTAGTTTTG	TTTTGTAATA	ATCTCGTTAA	13140
TATTCTTATC	ССААТАТАТА	ACATCGTAAC	TAATAGACAG	TTTCTTCAAT	AATTCTTTAT	13200
AAAAATTGAA	GTAAGGAGTT	AGATATATAT	TATCAGATAG	TATAAACAGT	ACTCTCATTA	13260
AATTATTCTT	TCTTACTTTC	CCTCTCTAAA	CATGTCTCCA	GTTCGAGCAT	AAACTGCTCT	13320
TTTGAAAAGT	GATTTTCATA	GTAACAACGA	GCTTTCTTTC	CTAACTCTCT	TTGTCTCTTA	(13380
ATAGATAACA	TACTAAATTT	ACAAATATTT	TTTGCCAATT	GTTTTACATC	TCGTTCGGGA	13440
CTAACATATC	CACAATTTGC	TTCTTCTACA	ATTATTTTAG	CATCTCCTGA	AATTGCACCT	13500
ATAATTGGTT	TGCCTGCCGC	CATATAAGAk	TGTACCTTCC	CAGGTATAGT	ACGAGAAACT	13560
ATCGAGTCTC	CTATTAAAGA	AACTAACATA	GCATCTGATT	TTTTATAGAA	GGATGGCATT	13620
TCCTCCAAAG	AACGTCTTCC	ATAGAAGGAA	ATATTCTTTA	ACTCCAATTC	ATGAGCTAAT	13680
GCTTTCATGC	TTAACAATTC	CGTACCATCT	CCAACAAAAT	GAAAATGAAT	TTTCTTGGGT	13740
AAATTGGTAT	TCTTCTCTAT	CAAACTGGCA	GCTTTCAAAA	TAGTTTCCAA	ATTTTGTGCT	13800
TTGCCAATAT	TACCAGCAAA	AGTTAGGTCA	ACACTTTCTT	TATTAACTAT	AGATTCATCA	13860
GGGATAAAAA	GATCTTCTGC	ATATTGTGGC	AAATATGTAA	TCTTTTGTTC	GGATATGTCA	13920
AATTGCTTCA	CAAAATAATT	TTTAAATGAT	GGACTAGTGA	CAAATATATA	ATCACTAGCT	13980
CGGTAAACTT	TTTTTGAGAT	AAATTTAAAC	AGCTTGAAAA	TCAAGCCATC	TTGTTTCACT	14040
CCACCTACGG	TTAAACTATC	TGGCCAAACA	TCCATACAAT	ATAGAAACAT	CGGTTTCTTA	14100
TATTTTTTT	TATAAGCCAT	ACCAGCCCAT	GCCATCATAA	CTGGAGACAA	TTGGTTAACG	14160
AATACACAGT	CAAAATTCGA	TCCATCTTTC	GTTTTATACC	TCCCCAATAA	AACTCCTAAA	14220
GTAGAACTAA	TTGCAAAGCT	AAAATAATTC	AACAATCGAA	ATACAACACT	TTTTTTTCTA	14280
GGGATTGTAT	AAGAACGATA	TATCGTAACA	CCTTCTATAA	TCTCACGTCT	TTTTTTTATTA	14340
TGACGATAAT	CTGCATATAT	CTTCCCTTCA	GGGTAATTAG	GAATCCCAGC	CAAAACAGAG	14400
ACTTCATGCC	CTTTTCGAAC	TAAATCTTCA	CAAATATCTG	ACAACCTGAA	TGGTTCTGGC	14460
TTATAATGTT	GGCAAACAAA	TAGTATTTTC	ATTGTCCAAT	TTAACTTTCT	TTCTTACCAC	14520

356 TACCCTCTAC AATACCTTTT CGTTTCAGTA CGTAAGGTAT TGTCTTAACT ATACATCTAA 14580 TATCCATTAT CAAAGACAGA TGTTTAACAT AGTAGCCATC TAACTCCGTC TTCATCTCAA 14640 CAGACAAAGT ATCACGCCCG TTAATTTGTG CCCATCCAGT TAACCCTGGC AAGATATCAT 14700 TTGCTCCATA CTTATCTCTC TCTGCAATCA AATCTAGTTC ATTTATACCC GCTGGTCTAG 14760 GACCTACAAT ACTCATATTA CCAACAAGAA TATTAAACAA TTGTGGTAGT TCATCCAAAG 14820 ATGTTTTCG CAAGAAAGCC CCTACTTTTG TAATCYATTG CTCTGGATTA TATAAGTTTC 14880 GAGGCGCCAC ATTTTTAGGT GCATCTATTT TCATAGACCT AAATTTCAAA ATATAGAAGT 14940 ATTCTTTATG AATACCAAAG CGTTTTTGCT TAAATATAAC CGGACCTTCT GAATCAAGTT 15000 TAATCGCAAT TGCAATTATC ATAAAAACCG GACACAATAT TATTATCCCT ATTAAAGATA 15060 ATAATATATC ACCTAATCGT TTTATTATAC CGTACATAAA CAACCTCCAA CTATAAATTC 15120 TATTTCCATT TTTCATTCTA TTTCCATTTG ACAAATTAAA TCAGGCAGTA CATGCAACTA 15180 CAGAAACTCA ATATATATT GGTCACTCAA TGATTTTCAG AAATATAATT CTTTTATCCT 15240 CTACGTCAGA TAAAACTTTT CTCCATCTAA ACAAAATTTA TTTGTTTCAG TAATATATGA 15300 GTTCTCAATA ATGAATTAGA AGGTCCAGTT CAATTATTCT TCCAAATAGA CCGAATATTA 15360 TTTGAAGACA TATCGGTTTC TGAAATTGCA ATCAGTACAT AAGCTAATAA ACTGATAAGT 15420 ATGCTCTGTA AGAATGCCAG AGTTATATTG TAGTCCCCTT CCATACTATA TTCATTTTAT 15480 TTTTTACCAT AATTTCCATA GGAACCGTAA ACTCCATACT TATTAACCGA GATATCCAAT 15540 TTATTTAAAA CAACTCCTAG GAACAGTTTC CCTGTTTGTT TTAATTGTTG TTTCGCTTTT 15600 TGGATATCAC GTTTATTCGC CTCACCTGTT GCTGTTACCA AGATGGACGC ATCACACTTT 15660 TGAGTGATAA TTGCCGCATC AATAACAATT CCAATAGGCG GTGTATCAAT AATGATATAA 15720 TCAAAATATT TACGCAATGT TTCAATCATA TCATTAAAAT TTTTACTTTG TAACAAGGCT 15780 GTAGGGTTTG GTGATACAGA TCCCGATTGA ACTACAAATA AATTTTCAAT ATTTGTATCA 15840 CATAAACCGT GAGATAAATC AGCTGTCCCA GATAAAAATT CTGTTAGCCC TGTAATTTTT 15900 TCACGAGATT TAAAAACTCC TAACATAACT GAATTTCGAG TATCGCCATC GATCAAAAGA 15960 GTTTTATAGC CTGCACGCGC AAACGACCAT GCTATATTTA TGGAAGTAGT TGTTTTTCCT 16020 TCCCCAGGGT TAACAGAAGT AACGGAAATT ACTTTTAGTT TATCTCCGCT CAACTGTATA 16080 16140 GCTATTTCTA ATGTCGGCAT CCTTCTCTCC TATTTCAACT TACCCAAGTT TGGCACAACT 16200 CCCAAAAGTG TCATCTGCAA TGTATTTTCG ATATCTTCCG GACGTTTCAC ACGAGTATCC 16260 AAAAGTTCAA GATGAAGAAC TATAACACTA GTTCCAATCA CCCCTGCCAA AAAACCAATT 16320

AGTGTATTGC	GTTTAATATT	TGGCGAAGAC	GGGGATATCG	CCGCCCTTGC	CTCCTCCAGT	16380
GTTGTCACGT	CAGAAACACG	AGTAATACTG	ATAATTTTT	GAGCAGCTAC	TTCTCTCAAA	16440
GAGTTAGCGA	TACGGCTTGC	CTCTTCAGGA	ACTCGATCAT	TAACTGAAAT	AGAGACAATA	16500
CGGGTATCAA	CTGGTACTGT	CACTTTAATT	TTATTAGCCA	AACCTTTTGG	CGTCAAATCT	16560
AGTTTCAAAT	CAGAAACAAC	TTCCTCCAAA	ACATCCTGCG	AAAGGATAAT	CTCACGGTAG	16620
TCTTTTACCA	GATAAGTTCC	TGCCTGCAAA	TCCTGATTTG	TCAACCCCGG	CTTGTCTCCT	16680
TGATTGCGAT	TCACTACGTA	AATTCGCGTG	GTACTCGTAT	ATTCTGGCTT	AACAATAAAA	16740
GTGCTATATG	CAAAAGCCCC	CGCACCTGTC	ACAAGTGCCA	CTATTAAAAT	CATTAGCTTG	16800
CGTTTCCACA	AGCTTTTAAC	TAATTGAAAT	ACATCGATTT	CTATCGTATT	TTGTTCTTTC	16860
ATCATTTCTC	CTAAATTAGT	TGATCCATTA	CAATTTTTCG	AGGATTGTCT	ATAAAAAGTT	16920
CCTGAGCCTT	CGCTTCTCCG	TATTTTTGGG	TAACAAGGTC	ATATGCTTCT	GCCATATGAG	16980
GAGGTCTACC	GTCTAGATTG	TGCATATCAC	TTGCAATGAC	ATGAACCAAA	TCCTGCTCTA	17040
AAAAATACTG	AGCTCTTTTT	TTCATGAATT	TATAACGTTC	GCCAAAAAGT	TTGGGTTTGA	17100
GGACATGTGA	ACTATTTACT	TGCGTGTAAC	AGCCCATATC	GATCAGTTCT	CGAACGCGTT	17160
TTTCATTATT	TTCAAGAGCA	TCATAGCGCT	CAATGTGGGC	AATGACTGGA	GTAATTCCCA	17220
ACATCAAGAT	CTTGCTCAAG	GCGCTATGAA	TATCGCGATA	AGGAGTGTTC	ATACTAAACT	17280
CTATCAAGGC	ATAACGACTA	TCATTGAGGG	TCGGAATCCG	CTTTTTTTCC	AGCTTATCCA	17340
GAACATCTGG	TGTGTAATAA	ATTTCAGCCC	CGTAAGCAAT	GACCAAGTCA	CTCGCCACTT	17400
CCTTAGCTAT	TTCCCGAACC	TGAAGAAAGT	TTTCTGCTAT	CTTCTCTTCC	GGAGTTTCAA	17460
ACATGCCCTT	GCGACGGTGA	GAGGTAGAAA	CAATGGTTCG	CACCCCCTGT	CTGTAGGATT	17520
CTGCCAAGAG	AGCCTTGCTT	TCCTCTCTTG	ACTTGGGACC	GTCATCTACA	TCAAAAACGA	17580
TATGCGAATG	GATGTCTATC	ATTTCATCTA	CCCTCCATCA	CATCCTGTAT	AGCTGCTTTA	17640
ACTACAGCTA	AACTACTATC	ATCTATTTCC	ATCACATAGA	GGTTACTGTC	TGGCATTGCA	17700
TAAGAAGGAA	GATCCATCCG	ACCTGTCCCT	TTTAAATCTT	GAGAATTTAC	TTTATAATTC	17760
CCTCCACTTT	CTAACTGAGC	ATTGACCAAA	TTTATCATGG	TCTCAAGTGG	CATATTTGTT	17820
TGGATAGAAT	CTTGCAAGCT	ATTAATGATC	GTACTATAAT	TTTTCAGCAC	TTCGGTTGAC	17880
GTTAATTTTT	GAAGGATAGC	CACAATCACC	TTTTGTTGAT	GGCGCCCGCG	GTCACGATCG	17940
CCATCTGCTA	GGGAGTAGCG	CTCACGAACA	AAACCGAGAG	CCTGTTCTGA	ATCAAGATGA	18000
ACATTGCCTG	CAGGGTAATA	CTTTCCATTC	GTATGGGCAG	TAAATTCTTG	ATCATTATAA	18060

			358			
ACATCAATTC	CACCCAACAA	ATCAATCAAT		AAGTGAAGTT	CAATCGCACA	18120
TAGTAATTGA	TATCCACTCC	ATAGAGATTT	TCTAAGGTGT	GAATGGACGA	ATCAACTCCA	18180
TAAATGCCCG	CATGAGTCAA	TTTATCTTTT	TGATTATTTC	CACCATCTGC	GATTGGTACA	18240
TAGGCATCAC	GTGGCGTTGT	GGTCAAGAGG	ATTTTCTTGG	TATCTCGATT	GACAGTCATC	18300
AGGATGTTGA	CATCTGATCG	CGACACCGAA	CTAATAGGAC	CATAGGTGTC	AATTCCACTA	18360
ACATAGATAT	TGAAAGACTG	ACTCTTAGAC	GTCTTAGGAG	CTTCTACTTT	TTTAGTGAAT	18420
CCCTTAGTAT	AAATCTTTTT	TATCTTCGAT	GCGTAGTCTG	GATACTCTGA	CTCGATGATG	18480
TTTTCAAAGA	CACTATTTAG	GACAATGGCC	TTAGTCTCCC	CTGCAATCAA	ACTCTTGTAA	18540
GCTGCCAAGT	AAGACGAACT	CTGGTTGACC	GTCAAATCGG	TATTCTGACT	TGACTTGATA	18600
TCAGCTAGTA	ATTTCTGAAT	ATTTTCATTA	TTAGTCCCAG	TCGGTGCTGT	CACACTCGTC	18660
AGTTGCGTAA	CATTTTCGAT	CTCACTATCT	GCTAAAACAG	CGACACTGAT	TGAATATTCT	18720
GAGTAATTAG	AAGTCGCATT	TAAACGATTG	GTCAGTCCAA	CAAACTGCTG	TACTGCAAAG	18780
AGCGACACAG	AGCTGACAAG	GATAGAGAAC	ACCAACAGAA	AAATAGTAAA	CTTTTCAGCT	18840
TTTTTATAGA	TAATCAAGAG	TAGCCCTACC	AAGGCAACTA	GTAGGACTAA	CGCAGTTACC	18900
ACTAGATTAA	GATATCTAAA	AGCAAGGATA	TTGTACTTAA	AGATTAAGAA	СААТААААА	18960
CAAACTAACA	TAAATAAATA	AGTCAGCAAA	ACTATATTAA	CACTTCGCTT	CACTTTCTGT	19020
GAACGTGATT	TTTTAAAACG	TCTACTCATG	ATTAATACCT	ATACATTGAA	CATTATACGA	19080
ттататсаст	TTTTTACGGT	AATGTCTACA	CCTTTATTTT	TACTATCTGC	ATCTTTAAGT	19140
ATCTTAGTAG	ACTTCCCGCG	AAACAAAAAT	ATAGTAAAAT	GAAATAAGAA	CAGAACAAAT	19200
CGTTCAGGAC	AGTCAAATCG	ATTTCTAACA	ATGTTTTAGA	AGCAGAGGTG		19250
(2) INFORMA	ATION FOR SE	EQ ID NO: 36	5:			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 21706 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

60	GAGCAAACAG	TCCAACTACA	ACCAATCGTT	TGTTTTTGAT	GACTGCTAGC	AAAGTTGAAA
120	AAATCAAGAA	AATTCCAAGA	CTTGATGGAC	ATGTAAGCTT	TTGTTTTTGG	TATACAAAGT
180	AAAACGCATT	ACTTATCTGA	CAACTGCCGA	TGCCATTGAC	TTCAATTTTT	ATTGCTGACC
240	GCAATATCTT	GTCATAGGGG	GTTTATCAAG	TCTTTGGCAG	AAATAGAGCT	ACCAAGGAGC

GACTAAGAAG	ATGATTATCG	татттстала	TCCATTTTTA	ACAACTAGCA	TGGTATAATA	300
ATATGCAGGA	AAATTTTGAA	TTATGAGGAA	GACTAGATGA	ATTTATGGGA	TATTTTCTTT	360
ACGACTCAGG	CAACCGAGCC	GCCCAAATTT	GACCTTTTTT	GGTATGTTAG	CCTATTTACG	420
CTCTTAGCCT	TAACCTTTTA	TACAGCCCAT	CGCTATCGTG	AAAAGAAGGT	TTACCAACGA	480
TTTTTCCAAA	TCTTGCAGAC	TGTTCAGTTA	ATCCTTCTTT	ATGGTTGGTA	CTGGGTCAAT	540
CATATGCCAC	TGTCAGAAAG	CCTACCCTTT	TACCATTGCC	GTATGGCTAT	GTTTGTGGTA	600
CTCTTGCTTC	CTGGTCAATC	САААТАТААА	CAATACTTTG	CATTATTGGG	AACATTTGGG	660
ACATTAGCAG	CCTTTGTTTA	TCCAGTGCCA	GATGCTTACC	CTTTTCCACA	TATCACCATT	720
CTATCCTTTA	TCTTTGGTCA	TTTAGCACTC	TTGGGGAACT	CTCTAGTTTA	TCTATTGAGA	780
CAGTATAATG	CGCGATTGCT	GGATGTGAAG	GGAATTTTTC	TCATGACCTT	TGCCCTAAAT	840
GCCTTGATTT	TTGTGGTCAA	TTTGGTGACA	GGTGGCGATT	ACGGATTTTT	GACAAAACCG	900
CCATTGGTTG	GGGATCACGG	TCTAGTAGCT	AATTATTTAC	TTGTTTCAAT	TGTGCTGGTA	960
GCTACTATCA	GTTTGACTAA	GAAAATCTTA	GAATTCTTTT	TAGCTCAAGA	AGCAGAAAAA	1020
ATGATTGCAA	AGGAAGCTTA	ACACAGAGCT	TTCTTTTTTG	CTCTTAGAGA	GTTTTTACAA	1080
GCAGCTTATA	AAATAAGAAT	TTCTGAATAG	ACAAACTCAA	AAAATGGCTG	GGAAATTTAG	1140
GAAAAAAGCA	AGCACGATTA	AATTTTTTGT	GTTATAATAT	TTTGTGAATA	GCTATGCCTA	1200
TGTTTAGCTA	TGGAATAATA	CGAAGTGCGA	AACTTGGAAG	ATAGAGAGGA	AGCGATGTAA	1260
TGGCTAGAGA	AGGCTTTTTT	ACAGGTCTAG	ATATTGGAAC	AAGCTCTGTC	AAGGTGCTTG	1320
TGGCCGAGCA	GAGAAATGGT	GAATTAAATG	TAATTGGCGT	GAGTAATGCC	AAAAGTAAAG	1380
GTGTAAAGGA	TGGAATTATT	GTTGATATTG	ATGCAGCAGC	AACTGCTATC	AAGTCAGCCA	1440
TTTCCCAAGC	GGAAGAAAAG	GCAGGCATTT	CGATTAAATC	AGTGAATGTC	GGCTTGCCTG	1500
GTAATCTTTT	GCAGGTAGAA	CCAACTCAGG	GGATGATTCC	AGTAACATCT	GATACTAAGG	1560
AAATTACGGA	TCAAGATGTT	GAAAATGTTG	TCAAATCAGC	TTTGACAAAG	AGTATGACAC	1620
CTGACCGTGA	AGTCATTACC	TTTATTCCTG	AAGAATTTAT	TGTGGATGGT	TTCCAAGGGA	1680
TTCGTGACCC	ACGTGGCATG	ATGGGGGTTC	GCCTTGAAAT	GCGTGGTTTG	CTTTATACAG	1740
GACCTCGTAC	TATCTTGCAC	AATTTGCGTA	AGACGGTTGA	GCGTGCAGGT	GTTCAGGTTG	1800
Aaaatgttat	CATTTCACCA	CTAGCAATGG	TTCAGTCTGT	TTTGAACGAA	GGGGAACGTG	1860
AATTTGGTGC	TACAGTGATT	GATATGGGGG	CAGGTCAAAC	GACTGTCGCT	ACAATCCGTA	1920
ATCAAGAACT	CCAGTTCACA	CATATTCTCC	AAGAAGGTGG	AGATTATGTA	ACTAAAGATA	1980

			360			
TCTCCAAGGT	TTTGAAAACC	TCTCGCAAAT	TAGCGGAAGG	CTTGAAACTG	AATTACGGGG	2040
AAGCCTATCC	GCCTCTTGCA	AGCAAAGAAA	CCTTCCAAGT	AGAGGTTATT	GGAGAAGTAG	2100
AAGCAGTCGA	AGTGACGGAA	GCCTACTTGT	CAGAAATTAT	TTCTGCACGA	ATCAAGCACA	2160
TCCTTGAACA	AATCAAGCAA	Gaattagata	GAAGGCGTCT	ATTGGACCTC	CCTGGTGGTA	2220
TTGTCTTAAT	CGGTGGGAAT	GCCATTTTAC	CAGGTATGGT	TGAGCTTGCT	CAGGAAGTCT	2280
TTGGCGTCCG	TGTCAAGCTT	TATGTTCCAA	ATCAAGTTGG	TATCCGTAAT	CCAGCCTTTG	2340
CGCATGTGAT	TAGTTTATCA	GAATTTGCGG	GTCAATTAAC	AGAAGTTAAT	CTTTTGGCTC	2400
AGGGAGCGAT	AAAAGGTGAG	AATGACTTAA	GTCATCAGCC	AATTAGTTTT	GGTGGGATGC	2460
TGCAAAAAAC	AGCTCAGTTT	GTACAATCAA	CGCCTGTTCA	ACCAGCTCCT	GCTCCAGAAG	2520
TAGAGCCGGT	GGCGCCTACA	GAACCAATGG	CGGATTTCCA	ACAAGCTTCA	СААААТАААС	2580
CGAAATTAGC	AGATCGTTTC	CGTGGATTGA	TCGGAAGCAT	GTTTGACGAA	TAAAGAGGAA	2640
AAATAAATTA	TGACATTTTC	ATTTGATACA	GCTGCTGCTC	AAGGGGCAGT	GATTAAAGTA	2700
ATTGGTGTCG	GTGGAGGTGG	TGGCAATGCC	ATCAACCGTA	TGGTCGACGA	AGGTGTTACA	2760
GGCGTAGAAT	TTATCGCAGC	AAACACAGAT	GTACAAGCAT	TGAGTAGTAC	AAAAGCTGAG	2820
ACTGTTATTC	AGTTGGGACC	TAAATTGACT	CCTCCTTTCC	GTGCAGGAGG	TCAACCTGAG	2880
GTTGGTCGTA	AAGCCGCTGA	AGAAAGCGAA	GAAACACTGA	CGGAAGCTAT	TAGTGGTGCC	2940
GATATGGTCT	TCATCACTGC	TGGTATGGGA	GGAGGCTCTG	GAACTGGAGC	TGCTCCTGTT	3000
attgctcgta	TCGCCAAAGA	TTTAGGTGCG	CTTACAGTTG	GTGTTGTAAC	ACGTCCCTTT	3060
GGTTTTGAAG	GAAGTAAGCG	TGGACAATTT	GCTGTAGAAG	GAATCAATCA	ACTTCGTGAG	3120
CATGTAGACA	CTCTATTGAT	TATCTCAAAC	AACAATTTGC	TTGAAATTGT	TGATAAGAAA	3180
ACACCGCTTT	TGGAGGCTCT	TAGCGAAGCG	GATAACGTTC	TTCGTCAAGG	TGTTCAAGGG	3240
ATTACCGATT	TGATTACCAA	TCCAGGATTG	ATTAACCTTG	ACTTTGCCGA	TGTGAAAACG	3300
GTAATGGCAA	ACAAAGGGAA	TGCTCTTATG	GGTATTGGTA	TCGGTAGTGG	AGAAGAACGT	3360
GTGGTAGAAG	CGGCACGTAA	GGCAATCTAT	TCACCACTTC	TTGAAACAAC	TATTGACGGT	3420
GCTGAGGATG	TTATCGTCAA	CGTTACTGGT	GGTCTTGACT	TAACCTTGAT	TGAGGCAGAA	3480
GAGGCTTCAC	AAATTGTGAA	CCAGGCAGCA	GGTCAAGGAG	TGAACATCTG	GCTCGGTACT	3540
TCAATTGATG	AAAGTATGCG	TGATGAAATT	CGTGTAACAG	TTGTTGCAAC	GGGTGTTCGT	3600
CAAGACCGCG	TAGAAAAGGT	TGTGGCTCCA	CAAGCTAGAT	CTGCTACTAA	CTACCGTGAG	3660
ACAGTGAAAC	CAGCTCATTC	ACATGGCTTT	GATCGTCATT	TTGATATGGC	AGAAACAGTT	3720
GAATTGCCAA	AACAAAATCC	ACGTCGTTTG	GAACCAACTC	AGGCATCTGC	TTTTGGTGAT	3780

IGGGATCTTC	GCCGTGAATC	GATTGTTCGT	ACAACAGATT	CAGTCGTTTC	TCCAGTCGAG	3840
CGCTTTGAAG	CCCCAATTTC	ACAAGATGAA	GATGAATTGG	ATACACCTCC	ATTTTTCAAA	3900
AATCGTTAAG	TAAATGAATG	TAAAAGAAAA	TACAGAACTT	GTTTTTCGAG	AAGTTGCAGA	3960
GCTAGTCTG	AGTGCTCATC	GAGAGAGTGG	TTCGGTCTCT	GTCATTGCAG	TTACCAAGTA	4020
PGTAGATGTA	CCGACAGCGG	AAGCCTTGCT	TCCGCTAGGT	GTCCATCATA	TCGGTGAAAA	4080
PCGTGTAGAT	AAGTTTCTGG	AAAAATATGA	AGCTTTAAAA	GATCGAGATG	TGACTTGGCA	4140
ITTGATTGGT	ACCTTGCAAA	GACGTAAGGT	GAAAGATGTC	ATTCAATACG	TTGATTATTT	4200
CCATGCATTG	GACTCAGTAA	AGCTAGCAGG	GGAAATTCAA	AAAAGAAGTG	ACCGAGTCAT	4260
CAAGTGTTTC	CTTCAAGTAA	ATATTTCTAA	AGAAGAAAGC	AAACACGGTT	TTTCGAGAGA	4320
GGAACTGCTG	GAAATCTTGC	CAGAGTTAGC	CAGACTAGAT	AAGATTGAAT	ATGTTGGTTT	4380
AATGACGATG	GCACCTTTTG	AGGCTAGCAG	TGAGCAGTTG	AAAGAGATTT	TCAAGGCGGC	4440
CCAAGATTTA	CAAAGAGAAA	TTCAAGAGAA	ACAAATTCCA	AATATGCCTA	TGACCGAGTT	4500
AAGTATGGGA	ATGAGTCGTG	ATTATAAAGA	AGCGATTCAA	TTCGGTTCCA	CTTTTGTTCG	4560
PATAGGTACA	TCATTTTTTA	AGTAGGAGAG	AACCATGTCT	TTAAAAGATA	GATTCGATAG	4620
ATTTATAGAT	TATTTTACGG	AGGATGAGGA	TTCAAGTCTC	CCTTATGAAA	AAAGAGATGA	4680
CCTGTGTTT	ACTTCAGTAA	ATTCTTCACA	GGAACCGGCT	CTCCCAATGA	ATCAACCTTC	4740
ACAGTCGGCT	GGCACAAAAG	AGAACAATAT	CACCAGACTT	CATGCAAGAC	AACAGGAATT	4800
GCAAATCAG	AGTCAGCGTG	CAACGGATAA	GGTCATTATA	GATGTTCGTT	ATCCTAGAAA	4860
ATATGAGGAT	GCAACAGAAA	TTGTTGATTT	ATTGGCAGGA	AACGAAAGTA	TCTTGATTGA	4920
TTTTCAGTAT	ATGACAGAGG	TGCAGGCTCG	TCGTTGTTTG	GACTATTTGG	ATGGAGCTTG	4980
CATGTTTA	GCTGGAAATT	TGAAAAAGGT	AGCTTCTACC	ATGTATTTGT	TGACACCAGT	5040
GAACGTTATT	GTAAATGTTG	AAGATATCCG	TTTACCAGAT	GAAGATCAAC	AGGGTGAGTT	5100
CGGTTTTGAT	ATGAAGCGAA	ATAGAGTACG	ATAATGATTT	TTTTAATTCG	TATGATTTAT	5160
VATGCAGTGG	ATATTTACTC	CCTGATTTTG	GTAGCCTTCG	CTGTCATGTC	TTGGTTTCCA	5220
GTGCCTACG	AATCCAGTTT	AGGTCGTTGG	ATTGTAGCGT	TGGTGAAACC	AGTGCTTGCT	5280
CCTTGCAAC	GCCTGCCTTT	ACAGATAGCG	GGTCTTGATT	TATCTGTTTG	GGTTGCGATT	5340
STTTTGGTTC	GATTTTTAGG	AGAAAACCTA	GTGCGTTTTC	TGGCGATGAT	AGGATGAATA	5400
AGGGATTTA	TCAGCATTTC	TCCATAGAAG	ATCGTCCATT	TCTTGACAAG	GGAATGGAAT	5460
GATAAAGAA	GGTAGAAGAT	АССТАТССТС	Եփորդութ № Ե	ጥ ር ምምም ተ	<u>አ</u> ልጥሮርጥሮልጥሮ	5520

			302			
AGGAGAAGCT	ATTAAAGATT	TTGGCCAAAA		TGCTTGTAGC	AGTAGTGGGG	558
AATTCGTCTC	GAGTGAGTAT	GTTCGAGTTT	TATTATACCC	AGATTATTTC	CAACCAGAGT	564
TTTCAGATTT	TGAAATATCT	CTCCAGGAAA	TTGTGTATTC	CAATAAATTT	GAACATTTAA	570
CGCATGCTAA	GATTTTAGGG	ACAGTCATCA	ATCAATTAGG	GATTGAACGG	AAACTTTTTG	576
GAGATATCCT	AGTAGATGAA	GAACGGGCGC	AGATTATGAT	TAATCAGCAG	TTTCTTCTTC	582
TCTTTCAAGA	TGGACTAAAG	AAAATTGGTC	GTATACCTGT	TTCGCTGGAG	GAACGTCCTT	588
TCACCGAGAA	AATAGATAAG	CTAGAACAGT	ATCGAGAACT	GGATTTATCT	GTGTCTAGTT	5940
TTCGATTAGA	TGTTCTTTTA	TCAAATGTTT	TGAAACTATC	TAGGAATCAA	GCAAACCAGT	600
TGATTGAAAA	GAAACTTGTC	CAAGTAAATT	ATCATGTGGT	AGACAAATCA	GATTACACTG	606
TTCAAGTTGG	AGACTTGATT	agtgtgagaa	AATTTGGTCG	CTTGAGATTA	CTTCAAGATA	6120
AGGGACAAAC	GAAAAAAGAG	AAGAAAAAA	TAACCGTCCA	GTTATTATTA	AGTAAGTGAG	6180
Gaatagaatg	CCAATTACAT	CATTAGAAAT	AAAGGACAAG	ACTTTTGGAA	CTCGATTCAG	6240
AGGTTTTGAT	CCAGAAGAAG	TCGATGAATT	TTTAGATATT	GTGGTTCGTG	ATTACGAAGA	6300
TCTTGTGCGT	GCGAATCATG	TTTAAAAATA	GCGTATTAAG	AGTTTAGAAG	AGCGTTTGTC	6360
TTACTTTGAT	GAAATAAAAG	ATTCATTGAG	CCAGTCTGTA	TTGATTGCTC	AGGATACAGC	6420
TGAGAGAGTG	AAACAGGCGG	CGCATGAACG	TTCAAACAAT	ATCATTCATC	AAGCAGAGCA	6480
AGATGCGCAA	CGCTTGTTGG	AAGAAGCTAA	ATATAAGGCA	AACGAGATTC	TTCGTCAAGC	6540
AACTGATAAT	GCTAAGAAAG	TCGCTGTTGA	AACAGAAGAA	TTGAAGAACA	AGAGCCGTGT	6600
CTTCCACCAA	CGTCTCAAAT	CTACAATTGA	GAGTCAGTTG	GCTATTGTTG	AATCTTCAGA	6660
TTGGGAAGAT	ATTCTCCGTC	CAACAGCTAC	TTATCTTCAA	ACCAGTGATG	AAGCCTTTAA	6720
AGAAGTGGTT	AGCGAAGTAC	TTGGAGAACC	GATTCCAGCT	CCAATTGAAG	AAGAACCAAT	6780
TGATATGACA	CGTCAGTTCT	CTCAAGCÁGA	AATGGCAGAA	TTACAAGCTC	GTATTGAGGT	6840
AGCCGATAAA	GAATTGTCTG	AATTTGAAGC	TCAGATTAAA	CAGGAAGTGG	AAGCTCCAAC	6900
TCCTGTAGTG	AGTCCTCAAG	TTGAAGAAGA	GCCTCTGCTC	ATCCAGTTGG	CCCAATGTAT	6960
GAAGAACCAG	AAGTAGCTCC	AATGCATCCG	ATAGGTCCAA	CACCAGCTAC	AGAAACTGTT	7020
GATTCAATAC	CGGGATTTGA	AGCACCGCAA	GAATCTGTTA	CAATTTTATA	AGAAATATTC	7080
TGAGAACAAT	ATCTTATCCT	TATATTTCCA	GCGAGCAGGA	GATGGTGTGA	GTCCTGTAAT	7140
CCCTATTGAT	AAGATTATCC	TCTCAAAAAC	TCAAGTCTGA	AGCTAGTAAG	ATTTGACGTT	7200
TCCCACGTTA	CGGGATAAGA	GGGAGAAAGA	CTAAATCTTT	TTCCGAATAA	AGGTGGTACC	7260
ACGATTTTCG	TCCTTTTTGG	AAGTCGTGGT	TTTTAATTTG	TTATTATTTA	TAAAGGAGAT	7320

/CC	ATGAAAC	TCAAAGACAC	CCTTAATCTT	GGGAAAACTG	AATTCCCAAT	GCGTGCAGGC	7380
TT	CCTACCA	AAGAGCCAGT	TTGGCAAAAG	GAATGGGAAG	ATGCAAAACT	TTATCAACGT	7440
CGT	CAAGAAT	TGAACCAAGG	AAAACCTCAT	TTCACCTTGC	ATGATGGCCC	TCCATACGCT .	7500
AAC	GGAAATA	TCCACGTTGG	ACATGCTATG	AACAAGATTT	CAAAAGATAT	CATTGTTCGT	7560
CT.	AAGTCTA	TGTCAGGATT	TTACGCACCA	TTTATTCCTG	GTTGGGATAC	TCATGGTCTG	7620
CA	ATCGAGC	AAGTCTTGTC	AAAACAAGGT	GTCAAACGTA	AAGAAATGGA	CTTGGTTGAG	7680
PAC	TTGAAAC	TTTGCCGTGA	GTACGCTCTT	TCTCAAGTAG	ATAAACAACG	TGAAGATTTT	7740
\AA	CGTTTGG	GTGTTTCTGG	TGACTGGGAA	AATCCATATG	TGACCTTGAC	TCCTGACTAT	7800
AA	GCAGCTC	AAATTCGTGT	ATTTGGTGAG	ATGGCTAATA	AGGGTTATAT	CTACCGTGGT	7860
CT.	AAGCCAG	TTTACTGGTC	ATGGTCATCT	GAGTCAGCAC	TTGCTGAAGC	AGAGATTGAA	7920
PAC	CATGACT	TGGTTTCAAC	TTCCCTTTAC	TATGCCAACA	AGGTAAAAGA	TGGCAAAGGA	7980
TT	CTAGATA	CAGATACTTA	TATCGTTGTC	TGGACAACGA	CTCCATTTAC	CATCACAGCT	8040
CT	CGTGGTT	TGACGGTTGG	TGCAGATATT	GATTACGTTT	TGGTTCAACC	TGCTGGTGAA	8100
CT	CGTAAGT	TTGTCGTTGC	TGCTGAATTA	TTGACTAGCT	TGTCTGAGAA	ATTTGGCTGG	8160
CT	GATGTTC	AAGTTTTGGA	AACTTACCGT	GGCCAAGAAC	TCAACCACAT	CGTAACAGAA	8220
CAC	CCATGGG	ATACAGCTGT	AGAAGAGTTG	GTAATTCTTG	GTGACCACGT	TACGACTGAC	8280
CT	GGTACAG	GTATTGTCCA	TACAGCCCCT	GGTTTTGGTG	AGGACGATTA	CAATGTTGGT	8340
TT	GCTAATA	ATCTTGAAGT	CGCAGTGACT	GTTGATGAAC	GTGGTATCAT	GATGAAGAAT	8400
CT	GGTCCTG	AATTTGAAGG	TCAATTCTAT	GAAAAGGTAG	TTCCAACTGT	TATTGAAAAA	8460
TT	GGTAACC	TCCTTCTTGC	CCAAGAAGAA	ATCTCTCACT	CATATCCATT	TGACTGGCGT	8520
CT	AAGAAAC	CAATCATCTG	GCGTGCAGTT	CCACAATGGT	TTGCCTCAGT	TTCTAAATTC	8580
GT	CAAGAAA	TCTTGGACGA	AATTGAAAAA	GTGAAATTCC	ACTCAGAATG	GGGTAAAGTC	8640
GT	CTTTACA	ATATGATCCG	TGACCGTGGT	GACTGGGTTA	TCTCTCGTCA	ACGTGCTTGG	8700
GT	GTTCCAC	TTCCTATCTT	CTACGCTGAA	GATGGTACAG	CTATCATGGT	AGCTGAAACT	8760
TT	GAACACG	TAGCTCAACT	TTTTGAAGAA	TATGGTTCAA	GCATTTGGTG	GGAACGTGAT	8820
CC	AAAGACC	TCTTGCCAGA	AGGATTTACT	CATCCAGGTT	CACCAAACGG	CGAGTTCAAA	8880
AA	GAAACTG	ATATCATGGA	CGTTTGGTTT	GACTCAGGTT	CATCATGGAA	TGGAGTGGTG	8940
TA	AACCGTC	CTGAATTGAC	TTACCCAGCC	GACCTTTACC	TAGAAGGTTC	TGACCAATAC	9000
יניתי	ദേണ്ടരണ	ጥጥል እርጥር አጥር	እርጥ ፐልጥር እር አ	ጥርጥርጥጥርርርርል	АССАТЕСССТ	ልርር እርርጥጥልር	9060

			364			
9120	GTCTAAATCT	GTGAGAAGAT	GATGGTAAAG	TTTTGCCCTT	TGTCACAAGG	AAACAAATCT
9180	AATCTTGCGT	TCGGTGCTGA	GAAAAACAAT	AAGCGATGTT	CTATTGCTCC	CTTGGAAATA
. 9240	TATCTTGAGC	TCTCTATGGA	GACGTGCGTA	CTCAAGCAAT	CAAGTGTTGA	CTCTGGGTAA
9300	TGCCAATACA	GTTTCTTGAT	AACACTCTTC	TAAGATTCGT	AAACTTACCG	CAAGTTTCTG
9360	AGTTGATAAG	AGCTTCGTTC	GCTTACGATG	AGATACAGTC	ACCCAGCTCA	PCTGACTTTA
9420	TGCAGACTTT	GTGATGCCTA	AAGACCATTC	CCAGCTTGTC	TTCGCTTTAA	TACATGACGA
9480	GTCAGCCTTC	ACGTTGACTT	AACTTTATCA	GGCCTTGGTG	CGATCTACAA	GAATTCTTGA
9540	GGAACGCCGT	CCAAATCACT	ATTGAAGGTG	TGTTGTTTAC	TTGCCAAAGA	PACCTTGATT
9600	GACACCAATC	CCAAACTCTT	GTCAAAATCA	TGACATTCTT	CTGTCTTCTA	CAAATGCAGA
9660	AGACTTCGTC	TTGAAACAGA	TATCTTGAGT	AATCTGGTCA	CTGCGGAAGA	CTTCCTCACA
9720	CTTGGATACA	AAGAAGAAAT	TTTGCTAACC	AGTTCAAACT	AATTACCAGA	CAATTGTCAG
9780	AGCTCGTAAT	CCTTGGAAGA	GCACAAAAAG	TCGTGGACAA	TCATGGACTT	PGGGCAGCCT
9840	TGAAGTTGTG	ТТТАТССААА	CACTTGACAG	ACTTGAAGCA	TCGGTAAATC	GCAAAAGTTA
9900	GTCTGAGTTG	TTTTGATCGT	GTAGCACAAC	AAACAGCAAT	TCGAAGCAGT	AAAACTCTAC
9960	AGCCTTCACA	TCGAAGATGT	GCCCTTAGCT	TCCGGAAGCT	AAGGACCAGC	ACCATCGCAG
10020	AACAACAGCA	GTATCGACCC	CGTTGCCGTC	AGTATGTGAC	CTACTGGTGA	GTTGAACGTG
10080	AGAAAACTTT	GCATCGTAGA	CACTGTGCAA	TATCTGTGAC	ACCAGGCAGT	GAACGCAGCT
10140	GGCAAAATTC	GAAAAGTCTA	AAATAAGATT	ATTTGAAGAG	TCGCAGAAGG	GCGGAAGCAG
10200	TCACGTTTTT	ACGCATTGTA	AGTCTATTAA	CTAATTTTAT	GAAAAGACAA	AATTTGAGAA
10260	TGACTTTTTA	TTGCGAGGTA	TTTTAAAAAT	TTTTTATTTA	TATGATGCGT	GAATACCTGA
10320	AAATAGGAAT	TAGTAAGATA	AAGCTAACAG	GAAACTTAGC	GAATCAAAGA	TACTCAACAA
10380	AATTTATATA	TACAACAATA	GTAATATTTT	GGTAAATAGT	GGATAAGATT	PTGATATTAG
10440	TTTTTATTTT	ATTATACAAA	TTTATTTCAT	AGTATTATAT	GTTTCTGAAA	GTTATTTCTG
10500	TGAAAAAAAT	CAATTTTATT	AAATATGATA	TTTTAAAAGC	AACATACTŢT	ATAATATCAG
10560	TATCGTCGGT	TAATTAGTGG	AGACTTGCTT	AAAATTAAAA	ATTTTATTAT	AAAAAAGGAG
10620	AGCGGTAAAC	TGTTGGGAAT	CCTTTTGTCT	TCTTATTGGT	GAATTTTACT	CTTGTGGGAG
10680	TGTAGCCTTA	CTTTTTCAGG	ACTGCAGGGG	TGGAGGAGCT	CAACTCTTAA	ACAGCTGCTA
10740	TGTTTACTAT	TCATTGCTAT	GTTCTTGGTA	TGCAAATCTT	CCTTGAAGAT	CTCTTGAATG
10800	TGGTGGAGTT	TGATTGTTTC	TCTGTACTAA	TGCAGCTCCG	AGCGTGTAGG	AAAGGAGATA
10860	ATCGGAGGAT	TTTTGCTATT	TTGGGGGGAT	TTAGGATGGG	TATTCCGTTC	AGTCTCATTC

CTCTATTCCT	TTCAACATTG	AAGAAATTCA	AATCAGAAGA	ATAAAAGGTA	TTTTAGCATG	10920
AAAAGAACAA	AAAAGTTTAT	CGGTATAGGA	GTAGCTCTAT	TATCTCTTTC	TCTTCTAGTT	10980
GCATGTGGAA	CATAAAGTTC	AAAGAATACT	TCAACAAGTA	ATGATGAGAA	GACAGTAGCA	11040
ACATCCAATA	GTTCAAAAGA	AACAATCACT	TTCGATACAC	CGGTTGTAAC	AGACGATGCG	11100
ATTGAATCAA	TACGCACTTA	TGCAGATTAT	ATAGATCTTT	ATAAAAATAT	TTTTGATGAT	11160
TATTTTACTA	AAGCTGAGGA	AGGTTTCAAA	GGCATAGCTA	TGGAAAATAA	TGACTCGTTT	11220
ACTAAACTAA	AAGAGTCAAC	TCAAAAATTA	TTCGATGCGC	AGAAAAAAG	GTTAAATAAT	11280
GAAGATAGAA	TAGAAACAAC	CAAAAACAAT	GTGATTGCCA	AACATTGTCA	AACAGTCCTT	11340
TCCTTTTTGG	TTTTGACTAG	CTTTTTTGTG	AAAAATTGTG	TAAAATAGAA	TAGATAAACG	11400
AGGGGAAACC	TCGGAAAATT	TAAAGGAGAA	TCCATCTAAT	GGTAAAATTG	GTTTTTGCTC	11460
GCCACGGTGA	GTCTGAATGG	AACAAAGCTA	ACCTTTTCAC	TGGTTGGGCT	GATGTTGATT	11520
TGTCTGAAAA	AGGTACACAA	CAAGCGATTG	ACGCTGGTAA	ATTGATCAAA	GAAGCTGGTA	11580
TCGAATTTGA	CCAAGCTTAC	ACTTCAGTAT	TGAAACGTGC	TATCAAAACA	ACTAACTTGG	11640
CTCTTGAAGC	TTCTGACCAA	TTGTGGGTTC	CAGTTGAAAA	ATCATGGCGC	TTGAACGAAC	11700
GTCACTACGG	TGGTTTGACT	GGTAAAAACA	AAGCTGAAGC	TGCTGAACAA	TTTGGTGATG	11760
AGCAAGTTCA	CATCTGGCGT	CGTTCATACG	ATGTATTGCC	TCCAAACATG	GACCGTGATG	11820
ATGAGCACTC	AGCTCACACA	GACCGTCGTT	ACGCTTCACT	TGACGACTCA	GTTATCCCAG	11880
ATGCTGAAAA	CTTGAAAGTG	ACTTTGGAAC	GTGCTCTTCC	ATTCTGGGAA	GATAAAATCG	11940
CTCCAGCTCT	TAAAGATGGT	AAAAACGTAT	TCGTAGGAGC	TCACGGTAAC	TCAATCCGTG	12000
CCCTTGTAAA	ACACATCAAA	GGTTTGTCAG	ATGACGAGAT	CATGGACGTG	GAAATCCCTA	12060
ACTTCCCACC	ATTGGTATTC	GAATTCGACG	AAAAATTGAA	CGTCGTTTCT	GAATACTACC	12120
TTGGAAAATA	AAAAATTGTA	AGTCTAGAAT	TGATTTCTAG	GCTTTTTATG	TTAGTATGGA	12180
AGTATGATAA	GGAATAAAAA	ACAAGATTAT	GTACTGGCCT	ACAAGCAACC	AGCTTCAACC	12240
ACTTACATGG	GTTGGGAAGA	AGAAGCTTTA	CCGATAGGCA	ATGGTTCTTT	AGGAGCAAAA	12300
GTATTTGGCC	TTATAGGGGC	TGAACGGATT	CAATTTAATG	AAAAAAGTCT	CTGGTCTGGA	12360
GGTCCACTTC	CTGATAGTTC	AGATTATCAG	GGTGGAAATC	TTCAGGATCA	GTATGTTTTT	12420
TTAGCTGAGA	TTCGGCAGGC	TTTGGAGAAG	AGAGATTACA	ATCTGGCTAA	GGAACTGGCT	12480
GAGCAGCACC.	TAATTGGGCC	AAAAACGAGT	CAATATGGGA	CCTATCTGTC	TTTTGGGGAT	12540
ATTCACATTG	AGTTCAGCCA	GCAAGGTACG	ACTTTGTCTC	AGGTGACGGA	CTATCAGAGA	12600

			366			
CAGCTGAATA	TTAGTAAGGC	ACTTGCGACG	ACTTCTTATG	TCTATAAGGG	AACGCGATTT	12660
GAACGTAAAG	CTTTTGCGAG	TTTTCCAGAT	GATCTCTTGG	TTCAATGTTT	TACTAAGGAA	12720
GGGTTGGAAA	CTCTAGATTT	TACTATAGAA	CTATCCTTGA	CCTGTGATTT	GGCTTCTGAT	12780
GGAAAGTATG	AGCAGGAAAA	ATCTGATTAC	AAGGAGTGTA	AGTTGGATAT	TACTGATTCT	12840
CATATCTTGA	TGAAGGGAAG	AGTTAAGGAT	AATGATCTGC	GGTTTGCTAG	TTATCTAGCT	12900
TGGGAAACGG	ATGGAGATAT	TAGAGTTTGG	TCAGATAGGG	TTCAGATATC	AGGAGCCAGT	12960
TATGCCAATC	TCTTCTTGGC	CGCTAAGACG	GATTTTGCCC	AAAATCCTGC	TAGCAATTAT	13020
CGCAAGAAAC	TAGATTTAGA	GCAACAGGTG	ATAGACTTGG	TGGACACAGC	TAAAGAAAAG	13080
GGCTATACCC	AATTGAAATC	AAGGCATATC	GAGGACTACC	AAGCCTTATT	CCAGCGTGTT	13140
CAATTGGATT	TGGAAGCTGA	TGTTGACGCA	TCCACTACAG	ATGATTTGTT	AAAAAATTAT	13200
AAGCCACAAG	AAGGGCAGGC	TTTGGAGGAG	CTGTTCTTCC	AGTATGGACG	GTATTTATTG	13260
ATTAGTTCGT	CCAGAGACTG	CCCAGATGCT	CTACCAGCTA	ACCTACAGGG	AGTCTGGAAT	13320
GCGGTCGACA	ATCCTCCTTG	GAATTCGGAC	TATCACTTAA	ATGTCAATCT	GCAGCTGAAT	13380
TATTGGCCAG	CCTATGTTAC	CAATCTCCTA	GAGACGGTCT	TTCCAGTCAT	CAACTATGTA	13440
GATGATTTGC	GTGTCTATGG	TCGTCTAGCG	GCTGTAAAGT	ATGCAGGAAT	CGTCTCTCAG	13500
Aaaggtgagg	AGAATGGTTG	GTTGGTTCAT	ACTCAAGCGA	CTCCCTTTGG	TTGGACGGCA	13560
CCTGGTTGGG	ATTACTATTG	GGGTTGGTCA	CCAGCTGCCA	ATGCGTGGAT	GATGCAAACC	13620
GTTTATGAAG	CCTATTTATT	TTATAGGGAC	CAAGACTATC	TCAGGGAGAA	AATTTATCCC	13680
atgttgaggg	AAACGGTTCG	TTTTTGGAAT	GCCTTTTTAC	ATAAGGATCA	GCAGGCGCAG	13740
CGTTGGGTGT	CTTCTCCGTC	TTATTCCCCA	GAACATGGGC	CGATTTCGAT	TGGCAATACC	13800
TATGACCAAT	CTCTGATTTG	GCAGTTATTT	CATGATTTTA	TTCAGGCTGC	TCAGGAATTG	13860
GGACTGGATG	AGGACTTGTT	GACTGAGGTT	AAGGAGAAGT	CTGATTTACT	AAATCCTTTG	13920
CAAATCACTC	AATCTGGTCG	AATCAGGGAG	TGGTATGAGG	AGGAAGAGCA	GTATTTTCAA	13980
AATGAGAAAG	TGGAGGCCCA	GCATCGGCAC	GCTTCCCATC	TAGTGGGACT	CTATCCTGGC	14040
AATCTCTTTA	GCTACAAGGG	ACAAGAGTAT	ATTGAAGCGG	CGCGTGCTAG	CCTCAATGAT	14100
CGTGGAGATG	GCGGCACAGG	CTGGTCCAAG	GCTAATAAGA	TCAATCTCTG	GGCGCGTTTG	14160
GGAGATGGCA	ATCGAGCCCA	TAAATTATTG	GCAGAGCAGT	TAAAGACATC	CACCTTGCAA	14220
AATCTTTGGT	GTAGCCATCC	TCCTTTTCAG	ATAGATGGTA	ATTTTGGTGC	TACTAGTGGC	14280
atggcagaaa	TGTTACTCCA	GTCTCATGCA	GCTTATCTGG	TACCTCTAGC	TGCCCTACCT	14340
SATGCTTGGT	CAACAGGTTC	TGTTTCAGGC	TTAATGGCAC	GTGGACATTT	TGAAGTGAGC	14400

ATGAGCTGGG	AAGATAAAA	ACTCTTACAG	TTGACCATTT	TATCAAGGAG	TGGAGGAGAT	14460
TTGCGAGTTT	CTTATCCAGA	TATTGAGAAG	AGTGTGATTA	AAATGAATÇA	AGAAAAAATA	14520
AAAGCGAAAT	GCATGGGGAA	AGATTGTATT	TCGGTGGCAA	CAGCAGAAGG	TGATCTTGTT	14580
CAATTTTATT	TTTAAGAAGA	TGTTATAAGG	CAGTAATTTG	AAACTGCCTT	TTAATAAGGA	14640
TTTAAGAATA	TAAGCAGTTT	TCAACTAGTT	GAAAAAACGT	TATAATGATA	ATAGGAAGTA	14700
ATACTCAATG	AAAATCAAAG	AGCACAAACT	AGGAAGCTAG	CCGCAGGTTG	CTCAAAACAG	14760
TGTTTTGAGG	TTGCAGATGG	AAGCTGACGT	GGTTTGAAGA	GAGATTTTCG	AGGAGTATAA	14820
TTTGTTTGAT	AGAGGGTGGG	TCTGATGGCT	TATATTGAGA	TGAAACACTG	TTACAAGCGT	14880
TATCAGGTTG	GGGACACGGA	GATTGTGGCC	AATTGTGATG	TGAATTTTGA	GATTGAAAAG	14940
GGGGAGCTGG	TTATTATCCT	TGGTGCTTCA	GGTGCAGGCA	AGTCAACAGT	TCTTAACCTT	15000
CTTGGGGGAA	TGGATACCAA	TGATGAAGGG	GAAATCTGGA	TTGATGGTGT	TAATATTGCG	15060
GATTATAGTT	CCCACCAGCG	CACCAATTAC	CGTAGAAATG	ATGTGGGGTT	TGTTTTTCAG	15120
TTTTATAATC	TAGTTTCTAA	TCTGACAGCT	AAGGAAAATG	TGGAACTGGC	TTCTGAAATT	15180
GTGACAGATG	CCTTGAATCC	TGATCAGGCC	TTGACAGATG	TAGGTCTGGC	TCATCGTCTC	15240
AATAACTTTC	CAGCCCAGCT	TTCTGGAGGG	GAGCAACAGC	GAGTCTCCAT	TGCACGCGCG	15300
GTAGCCAAAA	ATCCTAAAAT	TCTCCTTTGT	GATGAACCGA	CTGGAGCCTT	GGATTATCAG	15360
ACGGGCAAGC	AGGTTTTGAA	AATTCTCCAA	GACATGTCTC	GTCAAAAGGG	AGCGACGGTG	15420
ATCATCGTGA	CTCATAATGG	AGCTTTGGCG	CCCATTGCTG	ATCGCGTGAT	TCAAATGCAC	15480
GATGCCAGTG	TCAAGGATGT	GGTGCTCAAC	CAGCATCCTC	AGGATATTGA	CAGTTTGGAG	15540
TACTAGCATG	ATCAAGCGAA	AAACTTATTG	GAAGGACTTA	GTTCAGTCCT	TCACAGGCTC	15600
CAAGGGGCGT	TTTTTATCCA	TCTTGATCCT	GATGATGTTG	GGATCTCTAG	CCTTAGTAGG	15660
CCTCAAAGTA	ACCAGTCCCA	ACATGGAGGC	GACAGCTAAT	GCTTATTTAA	CAACTGCTCA	15720
AACCTTGGAT	TTGGCAGTCA	TGTCTAACTA	TGGCTTGGAT	CAAGCAGACC	AAGAAGAACT	15780
AAAACAGACG	GAGGGCĞCAG	AGGTCGAGTT	TGGCTATTTG	ACAGATGTGA	CTATGGATAA	15840
TGGGCAGGAT	GCCATTCGGC	TGTACTCCAA	ACCAGAGCGA	ATTTCAACCT	TTCAGCTAAG	15900
AAAGGGACGA	CTTCCTCAGT	CAGACAAGGA	AATCGCTTTG	GCCACTCATT	TGCAAGGCCA	15960
ATACAGCGTG	GGACAGGAGA	TTAGTTTTAA	AGAAAAAGAA	GAGGGTCATT	CCTCTTTAAA	16020
AGACCATACT	TATACCATTA	CTGGTTTTGT	GGATTCGGCT	GAAATCCTCT	CCCAGCGAGA	16080
TATGGGCTAC	GCAGGAAGTG	GAAGTGGGAC	TCTGACAGCC	TATGGGGTGA	TTTTACCTAG	16140

368 TCAATTTGAT CAGAAAGTCT ACAATATAGC TCGTTTGAAA TATCAAGATT TAGCGGGTTT 16200 AAATGCCTTT TCATCAGCTT ATGAAGAAAA ATCCAAGCAA CATCAAGAAG AGCTTGAACA 16260 AATTTTATCA GATAATGGCA AGGTACGTCT GCAACTTTTG AAAAAAGAAG GACAAGAGTC 16320 TCTAGACAAG GGGCAAGAGA CCCTTGACAA GGCTCAGACT AATTTGCAGG AAGGCAAGCG 16380 TCGTTTAGCA GCTGCTCAAG CTCGTATACA GGCTCAAGAA AGTCAACTAG CCTTGTTTCC 16440 TCAAGTTCAG AGAGAGCAGG CTAGTGCTCA ACTTACCCAA GCCAAGCAGG AATTGGGCAA 16500 GGAAGAGGAC AAACTAAAGC AAGCTGAACA AAATCTAGCC CAAGAAAAGG AAAAATTAGA 16560 AAAACATCAG CAAGTCTTGG ATGATTTGGC GGAGCCAAGG TATCAGGTTT ATAATCGTCA 16620 GACCATGCCA GGTGGTCAGG GCTATCTTAT GTATAGCAAT GCTTCATCCA GTATTCGAGC 16680 AGTGGGCAAT ATCTTTCCTG TGGTACTTTA TGCCGTAGCA GCCATGGTGA CCTTTACGAC 16740 CATGACTCGC TTTGTAGACG AAGAGCGAAC TCATGCAGGG ATTTTTAAGG CCTTGGGTTA 16800 TCGTAGTAAG GATATTATCG CCAAGTTTCT CCTTTATGGA CTAGTAGCTG GGACTGTCGG 16860 AACGGCTCTA GGTAGTATAC TTGGTCATTA TTTGCTAGCC AGTGTAATTT CAAGTGTCAT 16920 TACAAAAGGC ATGGTGGTGG GAGAAACTCA GATTCAGTTC TATTGGACCT ATAGCTTACT 16980 AGCTTTTGTC TTGAGCTTGT TGGCGAGTGT GTTACCAGCC TATCTGGTGG CTTGGAGGGA 17040 ACTTCATGAC GAAGCAGCCC AGCTTCTACT TCCTAAACCT CCTGTCAAAG GAGCTAAAAT 17100 CTTATTGGAG CGTATCGGTT TTATCTGGCG TCGTCTCAGT TTTACTCATA AGGTAACAGC 17160 CCGCAACATC TTTCGTTATA AGCAGAGAAT GTTGATGACA ATCTTTGGTG TGGCAGGTTC 17220 TGTAGCTCTG CTCTTTGCAG GTTTGGGAAT CCAATCTTCT GTAGCAGGAG TTCCGTCTAA 17280 ACAGTTTCAA CAAATCCAAC AGTATCAGAT GCTTGTCTCT GAAAATCCTA GTGCGACCAA 17340 TCAGGACAAG GTAGAGCTAG CAGAAGTGTT GAAAGGGCAG GAGATACTAG CCTACCAGAA 17400 AATCTATTCT AAAGCGCTAT ACAAGGATTT CAAAGGCAAA GCTGGTCTTC AAAACATTAC 17460 TCTTATGATG ATAGAGAAGG AAGATTTGAC TCCCTTTATC CATCTTCAAC ATCATCAGCA 17520 GGAGCTGACA TTAAAAGATG GCATCGTTAT TACAGCTAAA CTCGCCCAGC TGGCAGGTGT 17580 CAAGGTTGGG CAGACTTTAG AAATTGAAGG TAAGGAACTA AAGGTCGTTG CTATTACTGA 17640 GAACTACGTT GGTCACTTTA TTTATATGAG TCAGGCTAGC TATGAGCAAC TTTACGGACA 17700 GCTACCCCAA GCCAACACTT ATCTGGTCTC ATTAAGGGAT ACCAGTGCAA CTAGTATCGA 17760 AAGTCAGGCG GGCTTGCTTA TGAATCAATC TGCGGTGTCC AGCGTTGTCC AAAATGCTTC 17820 AGCCATTCGA CTCTTCGACT CTATCGCTAG CTCACTCAAT CAGACCATGA CCATCTTGGT 17880 CATCGTATCG GTTCTATTAG CTATTGTCAT CCTTTACAAT CTGACCAATA TCAACGTAGC 17940

TGAGAGAATC	CGTGAACTCT	CCACTATCAA	GGTTCTTGGT	TTTCATAATĄ	ATGAAGTCAC	18000
CCTCTACATT	TACCGTGAGA	CGATTGTGCT	GTCCCTTGTG	GGAATCGTAC	TTGGTCTGAT	18060
AGCTGGTTTC	TATTTACACC	AATTTTTGAT	TCAAATGATT	TCGCCTGCGA	CTATTCTCTT	18120
TTATCCGCAG	GTAGGCTGGG	AAGTCTATGT	AATCĆCAGTG	GCAGCAGTAA	GCATCATTTT	18180
GACCTTGCTT	GGTTTCTTCG	TCAATTATTA	TCTGAGAAAG	GTTGATATGT	TAGAAGCCCT	18240
GAAATCTGTA	GAGTAAGGTA	GTTATTTTTA	GCTGATTGAA	СТТСТАТТТА	СТААТАТТСА	18300
AAAATCCTCC	GTTTCAAAGA	GCAGGGAACT	CTTTGTGACA	GAGGATTTTT	TCTATAGGGC	18360
TTTAGCAGCT	GCAATTGCGG	CTTCGAAGTT	TGGCTCAGAA	TTGATATTAT	CCACGTATTC	18420
AACGTAGCGA	ATCGTATTGT	CAGTATCGAG	GACAAAGACT	GCGCGTGCTA	ATAGGTGCCA	18480
TTCGTTGATC	AAGAGGGCAT	AATCGCGCCC	GAAAGAATGG	TCAAAGTAGT	CTGAAAGCAT	18540
AATGGCATTG	TCAAGGCCTT	CAGCACCGCA	CCAACGTTTT	TGAGCAAAAG	GTAGGTCCAT	18600
TGAAACAGTC	AATACGACCG	TGTTGTCCAG	TCCAGCCAAT	TCTTCATTAA	AACGACGTGT	18660
TTGAGTTGAG	CAGATGCCTG	TATCGATAGA	AGGAACGACA	CTCAAGACTT	TTTTCTTGCC	18720
ATCAAAATCA	GCCAGAGATT	TTTTAGAAAG	ATCTGTTGTA	GTAAGAGAAA	AATCAAGCGC	18780
CTTGTCGCCG	ACTTGTAGTT	GTTTACCTGT	AAAGCTCACA	GGATTTCCGA	GAAAAGTTAC	18840
CATAGGATAC	TCCAATCTTT	TTTCTTCCAT	TTTAGCTGAA	ACAGTCGGAA	TTTTCCAATG	18900
ATTTGACCGG	AAATATGGGC	ATAGAAAAAA	CGCCAGCTCA	TGTGAGAATG	ACGTTTTTCA	18960
TAGGTTTATT	TTGCCAATCC	TTCAGCAATC	TTGTCAAGGT	TGTATTTCAT	CATGCTGTAG	19020
TAGCTGTCGC	CTTCTTTACC	TTGTTCTGCG	ATAGAGTCAG	TAAAGATTTG	AGCGTAGATT	19080
GGGATGTTTG	TGTCTTGAGA	AACAGTTTTC	ATTGGACGGT	CATCCACACT	TGATTCTACA	19140
AAGAGTGATG	GAACTTTTGT	TTGGCGAAGT	TTTTCAACCA	AGGTCTTGAT	TTGTTCAGGA	19200
GTTCCTTCTT	CTTCAGTATT	GATTTCCCAG	ATGTAAGCAC	TTGGGACACC	ATAGGCTTTA	19260
GAGAAGTATT	TGAATGCTCC	TTCGCTGGTT	ACAATGAGTT	TCTTTTCAGC	AGGGATCTTA	19320
TTAAATTTAT	CCTTACTTTC	TTTATCAAGT	TTGTCTAACT	TATCAGTĀTA	TTCTTTGAGA	19380
TTTTTTTCAT	AGAATTCTTT	ATTGTTAGGG	TCTTTGGCGC	TCAATTGTTT	GGCGATATTT	19440
TTAGCAAAAA	TAATACCGTT	TTCAAGGTTA	AGCCAAGCGT	GTGGGTCTTC	TTTTCCTTTT	19500
TCATTTTGAC	CTTCAAGGTA	GATAACATCA	ACGCCGTCGC	TGACTGCGAA	GTAGTCTTTG	19560
TTTTCAGTTT	TCTTGGCATT	TTCTACCAAT	TTTGTAAACC	AAGCATTGCC	ACCTGTTTCA	19620
AGGTTGATAC	CGTTATAGAA	AATCAAATTA	GCCTCAGAAG	TTTTCTTAAC	GTCTTCAGGA	19680

370 AGTGGTTCGT ATTCGTGTGG GTCTTGCCCA ATCGGAACGA TACTATGAAG GTCAATTTTG . 19740 TCACCAGCAA TATTTTTAGT AATATCAGCG ATGATTGAGT TTGTAGCAAC AACTTTTAGT 19800 TTTTGACCAG AAGTTGTATC TTTTTTCCG CTAGCACATG CTACAAGAAT GATTGCAGAA 19860 AGAAAGAGAA CGAGTAATGT ACCTAATTTT TTCATTAGAT CCTCCAATTT ATTAGGGCTT 19920 TGCCCCTTAT TTTAACAAAT GTTTATTTTT CAGTTTCAAA TATCGTTGTT TGGGAGCGAT 19980 AAAGAAGCTA ATGAGAAAGA AACTAGCAGC TGTAAGCACG ATACTAGAAC CTGCCGCAAC 20040 ATTAAAACTA TAGCCAATAA AGAGTCCCAA AACTGAAGCA GTAGCTCCGA AGGTTGAGGA 20100 AAGGAAAATC ATACTTTTCA GACTATTAGC ATACAGATAA GCAGTTGCAG CTGGGGTAAT 20160 CAGCATGGCT ACAATCAGGA TAGTTCCGAC ACTTTGCATG GCTGTCACAG ACACGAGAGT 20220 CAGGAGTACC ATGAGAAGGT AGTGATAGAA ATTGACAGGC ATTCCCATGG CTTTAGCCAA 20280 GAGTTCATCA AAGGAAGTTA TCAAGAGTTG CTTGAAGAAA ATCCAGATTA ACAAGAGGAT 20340 AGCTGCCCC ACACCCATAG TAATAAACAT ATCCGTATCT TGGACGGCCA GGATATTACC 20400 AAAAAGGATA TGGAAAAGGT CAGTTGAACT TTTAGCGACA CCAATCAAGA TGATACCGAG 20460 GGCTAAGAAA GAAGAAAAGG TAATGCCGAT GGCGGTATCG CTTTTGATAA TCGAGTTTCC 20520 TTTGATGTAG GTAATGATGA TGGCAGCTAG CAATCCAAAG ACAATGGCTC CGATAAAGAA 20580 GTCAAGGCCC AAGATGAAGG ATAGGGCTAC ACCTGGTAAG ACAGCATGTG AAATGGCATC 20640 TCCCATGAGT GACATCCCGC GTAGAATAAT GAAACATCCC ACAGCTCCAG CTACAATCCC 20700 GACGACAATA GCTGTTATCA AGGCATTTTG TAGGAAATGG AATTTTTGCA ATCCATCGAT 20760 AAATTCTGCA ATCATAGGTC ACCTCCATTG AAAAAGAGTT GATTACCGTA AGCTTCTTTT 20820 AGATTGGTTT CGGTAAAAGT TTCTTTTGTT GGACCAAAGG CAATCACTTC TCGATTGACA 20880 AGTAAGACTT GATCGAAGTA GTGGGGAATC TTGCTGAGGT CGTGGTGAAC GATGAGAACC 20940 GTCTTCCCAG CTTTTTCAA ATCTCTCAGC GTATTCATGA TGATTTCCTC ACTGACAGAG 21000 TCAATCCCAG CAAAGGGTTC ATCCAAGAGG ATATAGTCGG CTTCCTGCAC CAAACATCTG 21060 GCAATCAAGA CCCGCTGGAA TTGACCTCCA GACAGTTGAC TAATTTGACG TTCAGCGTAG 21120 TCAGCTAGGC CGACGATTTC AAGGGCCTCT TGCACTTTCT TCCAATGTTT AGCCTTTAAA 21180 CTTCGAAAGA GAGGAATAGA GGGAAATAGT CCTAACGAGA CGCATTCCTT GACCTTGATG 21240 GGAAAGTTGT AGTCGATATT GATTTTTGT TCGACATAGG CAATTCGGTG TAAGGATTTT 21300 TTAACTTCCT TGTCATCGAG AAATGCCTGA CCTTGATGTG GGATAATTCC CAACATACCT 21360 TTTAATAGTG TTGATTTCCC AGCGCCGTTT GGACCAATGA TGCCGGTAAT TGTTGGTCCA 21420 TGGAGCACTA GTGAAATATC CTTAAGTGCC AACGTTTCTT TGTAGGAGAC ACTGAGGTTT 21480

TCGATACGTA TCATAAACTT GTATTCCTCC TGTCTCTTAA TATACATTAA AAAAAAAAATT 21540
AAGTCAAGTT AATTTTGAA AAAATTAAAA TAATAACTGA AAAATAGATT CTAAAGATAA 21660
CTTTCAGGAT AAATTTCTAA ATTATAAAAC GCATAGTATC AAGTGTAAAA AACTTGGAAT 21706

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6171 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

GATCCCCAGG AAAAACCGAG GTTTTCCCAA TCAATCGTTA CTGTCATATT CCACTCCTTA 60 TTCTAAAAAC CTATTTCTTA TATTCTACAC TATTTTTCTA AAATAGCAAG TATATTTTGT 120 AATTTTCAGA AAATTTCTCC AATAAAAACC AACTCTTAGA ACTGATTCTT CATTTCACTT 180 ATTTATCTTC AGTAACTACT TCCTGAAGAT AAGCGTCAAA AACTTCTTCA TCTGAAATCG 240 TGTCAGAAAT GAAGCTTCCA TTGCTAGTGC GTTCTGACAA GTTCAAGTCT TGCAATCGGC 300 TTTCATAGAT TGTTCCTTTA TTGGATTGGA CAAGCAGAGT TTGGTCGTTC ACATCCACTT 360 CCGTACTGAA GAAATCGCCA ACAAATCCTT GCTCTGCAAC TGCTCCTGCC AAGAAGACAC 420 GATGCGGTTT GTTTTTCAAC TCACGCAAGA CTTGTAATCC TCGTTTGGCA CGGCTGGTTG 480 CTAGAATTTC CTCAATGGAA ACACGTTTCA AGCTTCCACG CTGGGTCAAG AGGTAGAAGG 540 ACGAAGTATT ACAGATAAAG CCAGATTGGA GGACATCATC TTCTTTCAAA TTCATAGCCT 600 TGACACCTGC TGCCTTAGCA CCGACAACCG GAACCTCTTC GATATTGAAA CGCAGGGCAT 660 AACCATTTTG ACTAACCAAG ACAACATCAT CTAGTTTAAT CGGAGCCACT GCTACAATCT 720 GATCTGTATC GTCTTTGAGC TTAGCATACT TGACAGACTT AGATCTATAG GTCCGCCATG 780 GAGTGAATTC TTTTCGCTCT ACCCGTTTGA TTTGACCAAG GCGAGTCACT GCAAAGTAGG R40 TTGTCGCATC GTCAAACTGA TCCAGTACTT CCACATAAAG GATTTCTTCA TTCGTTTCAA 900 AGTTTGTGAT GGTTTGGCTC AGATGCTCTC CGATGTCCTT CCAACGAATA TCTGCCAACT 960 CATGGATTGG TCTGTAGATG ACATTTCCAA GACTTGTGAA CATCAAGAGG TGCTGGGTTG 1020 TCTTGGCAGA TTGAACAAAA ATCAAACGGT CATCATCACG CTTGCCAATT TCTTCCAAGG 1080 TGGAAGCCGC AAAGGAACGT GGACTGGTAC GCTTGATGTA ACCTGCCTTG GTCACGCTGA 1140

				372			
	CGTAGGTATC	TTCCTCAGCG	ATAAGACTAG	CTGTATCAAT	CTCAATTGCT	TTCGCAGTGT	120
	CTTCTAAAGA	ACTCAAACGA	GGAGTTGCAA	ATTTCTTCTT	GACCTCACGA	AGTTCTTTCT	126
	TCATGAGATT	GTACATAGTC	CTTTCATCAC	CGATAATAGC	CGCCAGCATA	GCAATCTTCT	132
	CACGAAGCTC	TGCTTCTTCT	TCCTGCAAGA	CAACCACATC	GGTATTGGTC	AAACGGTACA	138
	GTTGCAAAGT	TACGATAGCC	TCAGCCTGTT	CTTCCGTAAA	ATCATAGCTA	ACTTTGAGGT	144
	TTTCCTTGGC	GTCCGCCTTA	TTCTCAGAAG	CACGGATAAG	AGCAATGACT	ТСАТССАААА	150
	TCGAAATCAC	ACGAATCAAA	CCTTCGACGA	TATGGAGACG	TTTCTCAGCC	TTTTCTTTGT	156
	CAAAGCGTGA	ACGCGCCAAA	ATCACTTCTC	GACGGTGAGC	GATATAGCTA	GACAGGATTG	162
•	GAACAATCCC	AACCTGACGA	GGTGTGAAAT	TGTCAATCGC	CACCATATTA	AAGTTGTAGT	168
	TGATTTGTAG	GTCGGTGTAC	TTAAATAAGT	AGTTGAGAAC	AAGCTCAGTA	TTAGCGTCTT	174
•	TCTTAAGTTC	GATAGCGATA	CGAAGACCAT	CACGGTCAGA	CTCATCACGA	ACCTCAGCAA	180
•	TCCCAGCTAC	CTTGTTATTA	ACACGAACAT	CATCGATTTT	CTTGACTAGA	TTGGCCTTAT	186
•	TGATTTCATA	AGGAATCTCA	ATAATAACGA	TTTGTTCCTT	ACCACCTTTT	AGCTTTTCAA	1920
	TTTCAGTCTT	GGAACGAACA	ACCACGCGCC	CTTTCCCAGT	CTCATAAGCT	TTCTTGATTT	198
(CATCACGACC	CTGAATAATA	GCCCCTGTAG	GGAAGTCTGG	TCCAGGCAAG	AATTCCATGA	204
(GTTTATCAAT	CTTTGCAGTT	GGGTGGTCAA	TCATGTAAAC	TGCAGCATCT	ATGACCTCAG	2100
(CTAAATTATG	GGGAGGAATG	TCTGTGGCAT	AACCAGCCGA	AATCCCAGTC	GAACCATTGA	216
(CCAAGAGGTT	TGGAAAGGCT	GCTGGCAAGA	CCGTTGGTTC	TTTCTCCGTA	TCGTCAAAGT	222
•	PCCATGCAAA	AGGAACTGTC	TTTTTCTCGA	TATCCTGAAG	AAGGTAGCCT	GCAATTTCAG	2280
ļ	ACAAACGTGC	CTCAGTATAA	CGCATAGCCG	CAGGAGGATC	TCCGTCCATA	GAACCGTTAT	2340
7	PACCGTGCAT	TTCAACTAGA	ATCTCACGAT	TTTTCCAGTT	CTGTGACATA	CGAACCATGG	2400
(CATCATAGAT	AGAAGAATCC	CCGTGTGGGT	GGAAATTCCC	CATGATGTTC	CCGACTGACT	2460
7	rggccgactt	ACGGTAGCTC	TTGTCAAAAG	TATTGCTATC	CTTATTCATA	GAATAAAGAA	2520
7	PACGGCGCTG	AACCGGCTTC	AACCCATCAC	GAATATCTGG	CAAAGCCCGG	TCTTGAATAA	2580
3	rgtacttgga	GTAGCGACCA	AAGCGCTCTC	CCATGATGTC	CTCCAGGGAC	ATGTTTTGAA	2640
7	'GTTAGACAT	AAGATACAAA	GCCCATAAAA	TACCAAGTGA	AAATAGAAAA	TTCTTGAAGT	2700
F	AGCAAACTC	ACAAGAGAAT	TTATCTTTTT	CACACAGTAT	CTAGGGCGTG	TTCAACTCCT	2760
1	TTCAAAGAAT	GTAGAGTAGG	TTTTTATGCA	GTAAAAGATA	TTTTACGGGA	ATTCCTCCCG	2820
1	GTTCAGTTA	CGATAAGTAA	CCAAACTATC	CTGTTTGTAT	ТТТТСААТАТ	GAAAATCTGG	2880
1	тттссаааа	TTAGTCTTAG	TTTGTGTCTT	AGCCGCTCCC	TTAAGCGCCT	CTTTGAGATA	2940

AGCACTCATA	GCAGATTCTT	CATTAATAAT	CCTGCAATTT	TTTCAAACCA	AGATTTTCAA	3000
ACTGCTTTTT	CACATAGTCA	TTCACATCCG	ACTCTAATTT	CCAGTTTACT	AACATATTAT	3060
TTTCTTTCAT	TAAAACACTG	TCGTTTCTTC	TAGCGTAAAC	TTGACATTAT	CTTCAATCCA	3120
TTTACGGCGT	GGTTCTACCT	TATCTCCCAT	GAGAACATTG	ACGCGGCGTT	CGGCGCGCC	3180
TAAATCTTCA	ATTGTGACAC	GGATGAGGGT	ACGTGTTTCT	GGGTTCATGG	TTGTTTCCCA	3240
GAGCTGGTCC	GCATTCATCT	CACCAAGTCC	TTTGTATCGT	TGGAGGGTAG	CGCCTTTACC	3300
GAACTGTTTA	CGGAGTTCTT	CTAGTTCTCC	GTCCGTCCAA	GCGTAGGCCA	CTTCTTCTTT	3360
CTTGCCTTTA	CCTTTGGACA	TCTTGTAAAG	AGGTGGGAGG	GCAATATAGA	CATGACCTGC	3420
CTCGACTAGC	GGACGCATGT	AACGGTAGAA	AAATGTCAAG	AGCAAGGTCT	GGATATGGGC	3480
ACCGTCGGTA	TCCGCATCGG	TCATGATAAT	GATCTTATCA	TAGTTGGCAT	CTTCAATAGA	3540
GAAGTCTGCT	CCAACACCCG	CACCAATGGT	ATAAATCATG	GTATTGATCT	CTTCATTTTT	3600
GAGGATATCC	GCCATCTTGG	CCTTGGCTGT	ATTGACAACC	TTACCACGAA	GAGGTAGAAT	3660
AGCCTGGAAC	TTGCGGTCAC	GACCTTGTTT	GGCAGAACCA	CCGGCAGAGT	CCCCTCAAC	3720
PAGATAGAGT	TCATTCTTAG	CAGGATTCTT	AGATTGGGCT	GGGGTCAATT	TCCCAGACAA	3780
CAAGCCCTTA	TCTTTCTTGT	TTTTCTTCCC	ATTTCGGCTC	TCATCACGCG	CCTTACGTGC	3840
rgcttcacga	GCATCACGGG	CCTTGATAGC	CTTGCGGATG	AGGTTAGAAG	CTAATTCCCC	3900
ATTTTCCATA	AGGAAAAAGG	TCAACTTATC	AGCCACTATT	CCATCCACAA	CTGGGCGAGC	3960
PAGGGGGCTT	CCTAGTTTAT	CCTTGGTCTG	TCCTTCAAAC	TGCAAGTGTT	CTTCAGGAAC	4020
PAAGATAGAA	AGAACGGCCG	CTAGTCCCTC	ACGATAGTCT	GAACCTTCAA	GGTTTTTATC	4080
TTTTCCTTG	AGAAGACCTG	TTTTACGTGC	ATAGTCATTC	ATGACCTTGG	TAATGGCAGA	4140
CTTGAGTCCT	GTCTCGTGCG	TTCCACCGTC	CTTGGTGCGA	ACGTTATTGA	CAAAAGATAG	4200
AATGTTATCT	GAGAATCCGT	CATTGTACTG	GAGGGCTACT	TCCACTTGAA	AACCATTGTC	4260
PTCCCCTTCA	AAGTAAAGAA	CTGGCGTCAA	GATTTCCTTA	TCTTCGTTGA	GATAAGAAAC	4320
AAATCTTGT	ACTCCATTCT	CATAGTGGAA	CTCAATCGCT	TCATTTGTTC	GCTTGTCCGT	4380
PAAAGACAAG	GTCACATTTT	TCAAGAGAAA	GGCTGATTCA	TTAAGGCGCT	CTGAAATGGT	4440
ATTGTACTTG	AAATCTGTCG	TAGAAAATAT	AGTCGCGTCA	GGCATAAAAG	TAACTTTGGT	4500
CCTGTTTTA	GACTTGGGTG	CTGTACCGAT	TTTCTTCAAA	GTCGTGACAG	GTTTTCCACC	4560
ATTTTCGAAA	CGTTGCTTGT	AAACTGCGCC	ATCACGGGTA	ATTTCAACTT	CTAACCAGCT	4620
AGAAAGGGCG	TTAACAACGG	AAGAACCCAC	TCCGTGAAGT	CCACCTGATG	ТСТТАТАССС	4680

ACCTTGACCG	AATTTCCCTC	CGGCATGAAG	374 AATGGTAAAG	АТААССТСАА	CAGTTGGAAT	4740
TCCCATAGCG	TGCATACcTG	TCGGCATCCC	ACGTCCATGG	TCTTGAACCG	TTAGACTACC	4800
GTCTTTATTG	ATAGTTACAT	CAATACGATC	ACCAAACCCA	GACAAGGCTT	CATCGACTGC	4860
ATTATCAACG	ATTTCCCAAA	CTAGGTGATG	AAGACCAGCG	CCATCGGTCG	АТССААТАТА	4920
CATCCCTGGA	CGTTTTCGGA	CCGCATCCAA	CCCTTCTAGC	ACCTGAATAG	CATCATCATT	4980
ATAATTGTTA	ATATTGATTT	CCTTTTTTGA	CACAAGGAAC	CTCCTATTCG	TTCATCTTTA	5040
CTATTCTACA	GGTTTTCCAA	GGATTTTGCA	AAATTTTTCT	TTCTCCGATG	TGACAATTTC	5100
AGCAGAGATT	CTCTGCTTTT	CTTTCCCAAT	TCATGATATA	ATAGGAGTAT	GATTACAATA	5160
GTTTTATTAA	TCCTAGCCTA	TCTGCTGGGT	TCGATTCCAT	CTGGTCTCTG	GATTGGACAA	5220
STATTCTTTC	AAATCAATCT	ACGCGAGCAT	GGTTCTGGTA	ACACTGGAAC	GACCAACACC	5280
PTCCGCATTT	TAGGTAAGAA	AGCTGGTATG	GCAACCTTTG	TGATTGACTT	TTTCAAAGGA	5340
ACCCTAGCAA	CGCTGCTTCC	GATTATTTT	CATCTACAAG	GCGTTTCTCC	TCTCATCTTT	5400
GGACTTTTGG	CTGTTATCGG	CCATACCTTC	CCTATCTTTG	CAGGATTTAA	AGGTGGTAAG	54,60
GCTGTCGCAA	CCAGTGCTGG	AGTGATTTTC	GGATTTGCGC	CTATCTTCTG	TCTCTACCTT	5520
CGATTATCT	TCTTTGGAGC	TCTCTATCTT	GGCAGTATGA	TTTCACTGTC	TAGTGTCACA	5580
CATCGATTG	CGGCTGTTAT	CGGGGTTCTG	CTCTTTCCAC	TTTTTGGTTT	TATCCTGAGT	5640
ACTATGACT	CTCTCTTCAT	CGCTATTATC	TTAGCACTTG	CTAGTTTGAT	TATCATTCGT	5700
CATAAGGACA	ATATAGCTCG	TATCAAAAAT	AAAACTGAAA	ATTTGGTCCC	TTGGGGATTG	5760
ACCTAACCC	ATCAAGATCC	таааааатаа	AATGCCAGTT	CTGTACTGCC	CCCAAACAGT	5820
AGACAAATA	АТТТАТССАА	AGGATTTAGT	TCTGTACTGC	ACAGGACTAA	GTCCTTTTAG	5880
тттасстта	ATTCGTTTGT	TGTTGTAGTA	ATCAATATAG	TCTATAATGG	CTTGTTCCAA	5940
TGATTAAGT	GATTTAAATG	TTTTCTCATA	GCCATAAAAC	ATTTCGGATT	TTAAAATGCC	6000
AAGAAAGAT	TCCATCCTAC	CGTTGTCTTG	GCTGTTGCCC	TTACGTGACA	TGGATGCTTG	6060
ATTCCCTTA	CTCTCTAGGA	ACCGATGATA	AGAATCGTGT	TGGTATTGCC	AGCCTTGGTC	6120
CTATGGAGA	ATCGTATTCT	CGTAGTGCTT	CTCTGTGAAT	GCCTGTTCCA	Α	6171

(2) INFORMATION FOR SEQ ID NO: 38:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 18475 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

PCT/US97/19588

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

6	TTAAACCAGG	TATACTTATG	TATGAAAGCC	AGGAGTGCTT	AAAAAAACGG	`ATTACAAAT
120	ACCCTATTCT	AAGCCAACAG	AGTTATTCGC	TAGACAAACC	TTTGTTGATG	CTTGCTTCT
180	GGGATGTTCC	ATTATCAAAG	AGACCTCCAT	TTTGTGGAAC	алалссаста	CGTATTGTA
240	AAGAAGTTGG	GGGATTGTTG	CGAAGGGATT	TTCTTGGCCA	AGTGGTACCA	ACTTGCCAA
300	TCTGTGCCTG	ATTTCTTGCG	CAAGGTCTTG	AAAAAGGTGA	TCCAACTTCA	GAAGGAGTT
360	AAGGGGGCTG	TGTGAAGACG	TTATGCTCAC	AAAAAGGAAT	TACTACTGTA	GGTAAATGC
420	CTCATGCAGA	CTACGTGTCC	GGCTGAATAT	ATGGTATGCA	CACTTGATTG	ATTTTCGGT
480	TGCTGTCAGA	GCTTTGGTTA	GTCAGATGAA	CAGAAGACTT	TACCATACTC	AATACTCTT
540	CTGGTTGCAG	AAAGTAGAAC	CTTAAAAGGG	AAATTGGTGT	ACTGGATATG	ATTCTGCCT
600	CCCAATTCTA	CTTTTAACAG	ATTGGCTGCT	GTCCAGTTGG	ATTGGTTCAG	GTAGCCATT
660	CTGCCCTATC	CGCTTGGAAA	AGACGATAAC	TGGTAGACCT	Aaattgatta	TCACCAGCT
720	AAGAAATTTA	AAAGCCATTA	AGACCCTGAA	TTAATTCTTC	ACTCATAAGG	TTCGGTGCG
780	TTCCTGCAAC	GCTGTTGGTA	CGCTATCGAA	GTGTGGATGT	GATGGTCGTG	GATTTGACA
840	GTGGTGTGCA	GTTGCCAACT	AGACGGAACG	TTATCGGTGT	TGTCAAAAGA	TTTGATTTC
900	ATGTAACAAC	CGCAACATCA	ACTTTGGATT	ATTTAGATAA	GTTGAATTCG	GGTAAACCA
960	GTCATAAGAT	GCACTTGAAA	ATTGTTGAAA	CGACTCCACA	тстасалата	GGTTTGGTA
1020	AAGCCTACGA	GAAATTGAAA	CAAACTCAGT	CTCACTATTT	AAATTGGTAA	'GAACCGGAA
1080	ACGATATCTC	ATTATCGAAA	CATTAAGGTC	ACCACCATGC	AAGGCAGCAG	GTCTTCAGT
1140	GTCATCCATC	TAGAAATTCA	CATAAGTAAA	TATTTTTGTA	GTAGTAAAAA	GAAGCCTAA
1200	CTTGTCTGGC	TATTTCTTTC	GAAATGAGCA	AAAAAATTAA	ATTTTTTATC	GATGGCTGG
1260	TTATAGAAAT	ATGTATCGTG	ATGAATGAAT	GTACAAAGGA	ATAATATACG	GAATTGGTT
1320	TTGTAGCAAG	GAAGAAGATA	AGAAGGTTGG	GGTGGTTCTT	TTTGAACCGT	TACGGAGAT
1380	GGTTTAGATT	AAAACTTGCT	CAAATACTAC	ATGATGCTCT	GACCAGTATT	'AGAAAATTT
1440	TTTGGGACCC	ATGACCATTT	AAGCGACTTG	ATAAAAGTAG	TCGCCTCTTT	GAACAAGAA
1500	ATTCTTTGGC	CAACAATACC	TGAGTATTTA	ATGAATGTGA	CGCTGGTGTG	GAAGACCAA
1560	ATGAAAAACA	CGCTCAGGCT	CGAAAAACTA	TTATCCCAGA	GATGAGCAGG	CTTTTGCAG
1620	AAGTAACTTT	AAATAGAGAA	TATGAAATTA	GTTCTTGCCG	GAAAGGAATC	ACCAGTCAG
4.00	3.CC3.CCM3.3.C	3.Cm3.m3.ccmc	COORDO CO 3 3 M	mmmmcm a a con		mmcc s cmmc

			376			
TATGGTTCAA	GAAATTGCAC	AAGAAATCAT		CGGAAAAAAG	GGACGCAGGA	1740
TATCTATTTT	GTCCCTAAGT	TAGACGCCTA	TGAGCTTCAT	ATGAGGGTAG	GAGACGAGCG	1800
стсталалтт	GGTAGCTATG	ATTTTGAAAA	GTTTGCAGCC	GTTATCAGTC	ACTTTAAGTT	1860
TGTGGCGGGT	ATGAATGTGG	GAGAAAAAG	ACGTAGTCAA	CTGGGTTCCT	GTGATTATGC	1920
CTATGACCAT	AAGATAGCGT	CTCTACGTTT	ATCTACTGTA	GGCGATTATC	GGGGCATGA	1980
GAGTTTGGTT	ATCCGTTTGT	TGCACGATGA	GGAGCAGGAC	CTGCATTTTT	GGTTTCAGGA	2040
TATTGAAGAA	TTAGGCAAGC	AGTACAGGCA	ACGGGGACTC	TATCTTTTTG	CTGGTCCGGT	2100
TGGGAGTGGT	AAGACGACCT	TGATGCATGA	ATTGTCCAAG	TCACTCTTTA	AAGGACAGCA	2160
AGTTATGTCC	ATCGAAGATC	CTGTCGAAAT	CAAGCAGGAC	GACATGCTTC	AGTTGCAGTT	2220
GAACGAAGCA	ATCGGCCTAA	CCTATGAAAA	ТСТААТСААА	CTTTCCTTGC	GTCATCGACC	2280
AGATCTCTTG	ATTATCGGAG	AAATTCGTGA	CAGCGAGACG	GCGCGTGCAG	TGGTCAGAGC	2340
TAGTTTGACA	GGTGCGACAG	TCTTTTCAAC	CATTCACGCC	AAGAGTATCC	GAGGTGTTTA	2400
TGAGCGTCTG	CTGGAGTTGG	GTGTGAGTGA	AGAAGAATTG	GCAGTTGTTC	TGCAAGGAGT	2460
CTGCTACCAG	AGATTAATCG	GGGGAGGAGG	AATCGTTGAC	TTTGCAAGCA	GAGATTATCA	2520
AGAACACCAA	GCAGCCAAGT	GGAATGAGCA	AATTGACCAG	CTTCTTAAAG	ATGGACATAT	2580
CACAAGTCTT	CAGGCTGAGA	CGGAAAAAAT	TAGCTACAGC	TAAGCAAAAA	AATATCATCA	2640
CCCTATTTAA	CAATCTCTTT	TCTAGCGGTT	TTCATCTGGT	GGAGACTATC	TCCTTTTTAG	2700
ATAGGAGTGC	TTTGTTGGAC	AAGCAGTGTG	TGACCCAGAT	GCGTGTGGGC	TTGTCTCAGG	2760
GGAAATCATT	CTCAGAAATG	ATGGAAAGTT	TGGGATGTTC	AAGTGCTATT	GTCACTCAGT	2820
PATCCCTAGC	TGAAGTTCAT	GGCAATCTCC	ACCTGAGTTT	GGGAAAGATA	GAAGAATATC	2880
rggacaatct	GGCTAAGGTC	AAGAAAAAT	TGATTGAAGT	AGCGACCTAT	CCCTTGATTT	2940
PGCTGGGTTT	TCTTCTCTTA	ATTATGCTGG	GGCTACGGAA	TTACCTGCTC	CCACAACTGG	3000
ATAGTAGCAA	TATTGCCACC	CAAATTATCG	GTAATCTGCC	CCAAATTTTT	CTAGGCATGG	3060
PAGGGCTTGT	TTCCGTGCTT	GCCCTTTTAG	CACTCACTTT	TTATAAAAGA	AGTTCTAAGA	3120
PGAGTGTCTT	TTCTATCTTA	GCACGCCTTC	CCTTTATTGG	AATCTTTGTG	CAGACCTACT	3180
IGACAGCCTA	TTATGCACGT	GAATGGGGGA	ATATGATTTC	ACAGGGAATG	GAGTTGACGC	3240
AGATTTTTCA	AATGATGCAG	GAACAAGGTT	CCCAGCTCTT	TAAAGAAGTC	GGTCAAGATC	3300
IGGCTCAAAC	CCTGAAAAAT	GGCCGTGAAT	TTTCTCAGAC	GATAGGAACC	TATCCTTTCT	3360
PTAGGAAGGA	ATTGAGTCTC	ATCATAGAGT	ATGGGGAAGT	TAAGTCCAAG	CTGGGTAGTG	3420
AGTTGGAAAT	CTATGCTGAA	AAAACTTGGG	AAGCCTTTTT	TACCCGAGTC	AACCGCACCA	3480

rgaatttggt	GCAGCCACTG	GTTTTTATCT	TTGTGGCACT	GATTATCCTT	TTACTTTATG	3540
CGGCAATGCT	CATGCCCATG	ТАТСААААТА	TGGAGGTAAA	TTTTTAAAAT	GAAAAAATG	3600
ATGACATTCT	TGAAAAAAGC	TAAGGTTAAA	GCTTTTACAT	TGGTGGAGAT	GTTGGTGGTC	3660
PTGCTGATTA	TCAGCGTGCT	TTTCTTGCTC	TTTGTACCTA	ATCTGACCAA	GCAAAAAGAA	3720
GCAGTCAATG	ACAAAGGAAA	AGCAGCTGTT	GTTAAGGTGG	TGGAAAGCCA	GGCAGAACTT	3780
PATAGCTTAG	AAAAGAATGA	AGATGCTAGC	CTAAGAAAGT	TACAAGCAGA	TGGACGCATC	3840
ACGGAAGAAC	AGGCTAAAGC	TTATAAAGAA	TACAATGATA	AAAATGGAGG	AGCAAATCGT	3900
AAAGTCAATG	ATTAAGGCCT	TTACCATGCT	GGAAAGTCTC	TTGGTTTTGG	GACTTGTGAG	3960
PATCCTTGCC	TTGGGCTTGT	CCGGCTCTGT	CCAGTCCACT	TTTTCAGCGG	TAGAGGAACA	4020
SATTTTCTTT	ATGGAGTTTG	AAGAACTCTA	TCGGGAAACC	CAAAAACGCA	GTGTAGCCAG	4080
rcagcaaaag	ACTAGTCTGA	ACTTAGATGG	GCAGACGCTT	AGCAATGGCA	GTCAAAAGTT	4140
CCAGTCCCT	AAAGGAATTC	AGGCCCCATC	AGGCCAAAGT	ATTACATTTG	ACCGAGCTGG	4200
GGCAATTCG	TCCCTGGCTA	AGGTTGAATT	TCAGACCAGT	AAAGGAGCGA	TTCGCTATCA	4260
ATTATATCTA	GGAAATGGAA	AAATTAAACG	CATTAAGGAA	ACAAAAAATT	AGGCAGTGA	4320
TTTTACTGGA	AGCAGTAGTC	GCTCTAGCTA	TCTTTGCCAG	CATTGCGACC	CTCCTTTTGG	4380
GACAAATTCA	AAAAAATAGG	CAAGAGGAAG	CAAAAATCTT	GCAAAAGGAA	GAAGTCTTGA	4440
GGTAGCTAA	GATGGCCCTG	CAGACGGGGC	AAAATCAGGT	AAGCATCAAC	GGAGTTGAGA	4500
TTCAGGTATT	TTCTAGTGAA	AAAGGATTGG	AGGTCTACCA	TGGTTCAGAA	CAGTTGTTGG	4560
CAATCAAAGA	GCCATAAGGT	CAAGGCTTTT	ACCTTGTTAG	AATCCCTGCT	TGCCCTCATT	4620
STCATCAGTG	GGGGATTACT	CCTTTTTCAA	GCTATGAGTC	AGCTCCTCAT	TTCAGAAGTT	4680
CGCTACCAGC	AACAAAGCGA	GCAAAAGGAG	TGGCTCTTGT	TTGTGGACCA	ACTTGAGGTA	4740
GAATTAGACC	GTTCGCAGTT	CGAAAAAGTA	GAAGGCAATC	GCCTATACAT	GAAGCAAGAT	4800
GCAAGGACA	TCGCCATCGG	TAAGTCAAAG	TCAGATGATT	TCCGTAAAAC	GAATGCTCGT	4860
GTCGAGGTT	ATCAGCCTAT	GGTTTATGGA	CTCAAATCTG	TACGGATTAC	AGAGGACAAT	4920
CAACTGGTTC	GCTTTCATTT	CCAGTTCCAA	AAAGGCTTAG	AAAGGGAGTT	CATCTATCGT	4980
etggaaaaag	AAAAAAGTTA	AGGCAGGTGT	TCTCCTCTAC	GCAGTCACCA	TAGCAGCCAT	5040
TTTAGTCTT	TTGTTGCAAT	TTTATTTGAA	CCGACAAGTC	GCCCACTATC	AAGACTATGC	5100
TTGAATAAA	GAAAAATTGG	TTGCTTTTGC	TATGGCTAAA	CGAACCAAAG	ATAAGGTTGA	5160
CAAGAAAGT	GGGGAACAGT	TTTTTAATCT	AGGTCAGGTA	AGCTATCAAA	ACAAGAAAAC	5220

			3/0			
TGGCTTAGTG	ACGAGGGTTC	GTACGGATAA		GAGTTTCTGT	TTCCTTCAGT	528
CAAAATCAAA	GAAGAGAAAA	GAGATAAAAA	GGAAGAGGTA	GCGACCGATT	CAAGCGAAAA	534
AGTGGAGAAG	AAAAAATCAG	AAGAGAAGCC	TGAAAAGAAA	GAGAATTCAT	AGTCAATTCA	540
ACTATAATGC	GTTGAATCCA	GAATAGTCCA	CTGTAGTTTC	TAGAAAATTG	CTGGAAATGG	546
ATGTTAAGCT	CCAATTCATT	TGTTTATATC	TTATTTCAGT	TTACTATACT	TTGTGCTAAA	5520
TTAAAGATAT	GAAACATGAT	TTTAACCACA	AAGCAGAAAC	TTTCGATTCC	ССТАААААТА	5586
TCTTCCTCGC	AAACTTGGTA	TGTCAAGCAG	CCGAGAAACA	GATTGATCTT	CTATCAGACA	5646
AAGAAATTTT	AGATTTCGGT	GGTGGCACGG	GTCTATTAGC	CTTGCCCCTA	ACCCCTAGCC	570
AAGCAGGCTA	AGTCAGTCAC	TCTTGTAGAC	ATTTCTGAGA	AAATGTTGGA	GCAAGCTCGT	576
TTGAAAGTGG	AGCAGCAAGC	AATCAAGAAT	ATCCAGTTTT	TGGAGCAAGA	TTTACCGAAA	5826
AATCCCTTGG	AGAAAGAGTT	TGATTGCCTT	GCTGTTAGTC	GGGTTCTTCA	TCATATGCCT	5886
GATTTGGATG	CGGCTCTCTC	ACTGTTTCAT	CAACATTTGA	.AGGAAGATGG	GAAACTCATC	5940
ATTGCTGATT	TTACCAAGAC	AGAAGCTAAT	CATCATGGAT	TTGATTTAGC	TGAACTGGAA	6000
AACAAGCTAA	TTGAGCATGG	TTTTTCATCT	GTGCATAGTC	AGATTCTCTA	TAGTGCTGAA	6060
GACCTGTTTC	AAGGAAATCA	CTCAGAATTC	TTTTTAATAG	TAGCCCAAAA	ATCACTCGCC	6120
TAGTCAGGGA	GTGATTTTTC	TATAAGGATG	GAAAAAAGAA	GGGAAATTTG	GTAAGATAGG	6180
AATATGGATT	TTGAAAAAAT	TGAACAAGCT	TATACCTATT	TACTAGAGAA	TGTCCAAGTC	6240
ATCCAAAGTG	ATTTGGCGAC	CAACTTTTAT	GACGCCTTGG	TGGAGCAAAA	TAGCATCTAT	6300
CTGGATGGTG	AAACTGAGCT	AAACCAGGTC	AAGGAGAACA	ATCAAACCCT	TAAGCGTTTA	6360
GCACTACGCA	AAGAAGAATG	GCTCAAGACC	TACCAGTTTC	TCTTGATGAA	GGCTGGGCAA	6420
ACAGAACCCT	TGCAGGCCAA	TCACCAGTTT	ACACCGGATG	CTATTGCTTT	GCTTTTGGTG	6480
TTTATTGTGG	AAGAGTTGTT	TAAAGAGGAG	GAAATTACTA	TCCTCGAAAT	GGGTTCTGGG	6540
ATGGGAATTC	TAGGCGCTAT	TTTCTTGACC	TCGCTTACTA	AAAAGGTGGA	TTACTTGGGA	6600
ATGGAAGTGG	ATGATTTGCT	GATTGATCTG	GCAGCTAGCA	TGGCAGATGT	AATTGGTTTG	6660
CAGGCTGGCT	TTGTCCAAGG	AGATGCCGTT	CGCCCACAAA	TGCTCAAAGA	AAGCGATGTG	6720
GTCATCAGTG	ACTTGCCTGT	CGGCTATTAT	CCTGATGATG	CCGTTGCGTC	GCGCCATCAA	6780
GTTGCTTCTA	GCCAAGAACA	TACTTACGCC	CATCACTTGC	TCATGGAACA	AGGGCTTAAG	6840
PACCTCAAGT	CAGACGGATA	CGCTATTTTT	CTAGCTCCGA	GTGATTTGTT	GACCAGTCCT	6900
CAAAGTGATT	TGTTAAAAGA	ATGGCTGAAA	GAAGAGGCGA	GTCTGGTTGC	TATGATTAGT	6960
CTGCCTGAAA	ATCTCTTTGC	TAATGCCAAA	CAATCTAAGA	СТАТТТТАТ	CTTACAGAAG	7020

AAAAATGAAA	TAGCAGTAGA	GCCTTTTGTT	TATCCACTTG	CTAGCTTGCA	AGATGCAAGT	7080
GTTTTAATGA	AATTTAAAGA	AAATTTTCAA	AAATGGACTC	AAGGTACTGA	AATATAAAAT	. 7140
AGATTTTGTT	ATAATAGTTG	AAAACGCTTA	AAAAGGGGTA	TCATGTTATG	ACAAAAACAA	7200
TTGCAATCAA	TGCAGGAAGT	TCAAGTTTGA	AATGGCAATT	ATACTTAATG	CCAGAAGAAA	7260
AAGTATTGGC	GAAAGGTTTG	ATTGAACGTA	TCGGTTTGAA	AGATTCAATT	TCAACTGTAA	7320
AATTTGACGG	CCGTTCTGAA	CAACAAATTT	TGGATATTGA	АААТСАТАТА	CAAGCCGTTA	7380
AAATTTTATT	GGATGACTTG	ATTCGTTTCG	АТАТТАТСАА	GGCTTATGAC	GAGATTACAG	7440
GTGTTGGACA	TCGTGTTGTT	GCTGGTGGAG	AATATTTCAA	AGAATCAACA	GTTGTTGAGG	7500
GAGATGTTTT	AGAAAAAGTT	GAAGAGTTGA	GTTTGTTGGC	TCCTCTACAC	AACCCGGCCA	7560
ATGCAGCAGG	TGTTCGTGCC	TTCAAGGAAT	TGTTGCCAGA	CATTACCAGT	GTAGTTGTTT	7620
PTGATACTTC	CTTCCACACA	AGTATGCCAG	AGAAAGCTTA	TCGCTACCCT	CTACCAACAA	7680
AATATTACAC	AGAAAACAAG	GTTCGTAAAT	ACGGTGCTCA	TGGTACAAGT	CACCAGTTTG	7740
PAGCAGGAGA	AGCTGCAAAA	CTCTTGGGAC	GTCCATTAGA	AGACTTGAAG	ТТААТТАССТ	7800
STCATATTGG	TAACGGAGGC	TCAATTACAG	CTGTGAAAGC	CGGCAAATCT	GTAGACACTT	7860
TATGGGGTT	CACTCCTCTT	GGTGGTATTA	TGATGGGAAC	GCGTACAGGG	GATATTGATC	7920
CAGCTATCAT	TCCTTATTTA	ATGCAATATA	CAGAGGATTT	TAACACACCA	GAAGATATCA	7980
STCGTGTTCT	TAACCGTGAA	TCAGGTCTTT	TGGGAGTTTC	TGCTAATTCT	AGCGATATGC	8040
CCATATAGA	AGCAGCTGTA	GCAGAAGGGA	ATCACGAGGC	TAGCTTGGCT	TATGAAATGT	8100
ATGTTGACCG	TATCCAAAAA	CATATCGGTC	AGTACCTTGC	AGTGCTAAAT	GGAGCAGATG	8160
CATTGTTTT	CACAGCAGGT	GTCGGTGAAA	ATGCAGAGAG	TTTCCGTCGT	GATGTAATCT	8220
CAGGGATTTC	GTGGTTTGGT	TGTGATGTTG	ATGATGAAAA	GAATGTCTTT	GGCGTTACAG	8280
SAGACATCTC	AACAGAGGCA	GCTAAAATCC	GTGTCTTGGT	TATTCCAACA	GATGAAGAAT	8340
PAGTCATTGC	CCGTGACGTT	GAACGCTTGA	AAAAATAAGT	GAAACTAAAA	AAATATTCAA	8400
ACAAGGAGT	TGGGAAAGTT	ATTTTTCCAG	CTTCTTTTTC	TGATGAAATT	GTCCAAAACC	8460
TGCTATGAT	TGGCTTTTTT	GAAAAATATG	GTATAATAGT	AGTAATTTAA	TAGATGGAGT	8520
GAGTTTTGA	AGAAAAACTT	TCGTGTAAAA	AGAGAGAAAG	ATTTTAAGGC	GATTTTCAAG	8580
GAGGGGACAA	GTTTTGCTAA	TCGCAAATTT	GTGGTCTACC	AATTAGAAAA	CCAGAAAAAC	8640
GTTTTCGAG	TAGGTCTATC	AGTTAGCAAA	AAACTGGGGA	ATGCCGTCAC	TAGAAATCAA	8700
TT A A CCCAC	CCAPTCCCCA	TATTATION OF THE	*******	CC & CMCMCCM	A C A A C A MOMO	0760

			380			
GACTTTGTTG	TCATTGCTCG	AAAAGGAGTC	GAAACCTTGG	GATACGCAGA	GATGGAGAAA	882
AATCTACTCC	ATGTATTAAA	ATTATCAAAG	ATTTACCGGG	AAGGAAATGG	GAGTGAAAAA	888
GAAACTAAAG	TTGACTAGTT	TGCTAGGACT	GTCTCTGTTA	ATCATGACAG	CCTGTGCGAC	894
TAATGGGGTA	ACTAGCGATA	TTACAGCCGA	ATCGGCTGAT	TTTTGGAGTA	AATTGGTTTA	900
CTTCTTTGCG	GAAATCATTC	GCTTTTTATC	GTTTGATATT	AGTATCGGAG	TGGGGATTAT	906
TCTCTTTACG	GTCTTGATTC	GTACAGTCCT	CTTGCCAGTC	TTTCAGGTGC	AAATGGTGGC	9120
TTCTAGGAAA	ATGCAGGAAG	CTCAGCCACG	CATTAAGGCG	CTTCGAGAAC	AATATCCAGG	9180
TCGAGATATG	GAAAGCAGAA	CCAAACTAGA	GCAGGAAATG	CGTAAAGTAT	TTAAAGAAAT	9240
GGGTGTCAGA	CAGTCAGACT	CTCTTTGGCC	GATTTTGATT	CAGATGCCGG	TTATTTTGGC	9300
CCTGTTCCAA	GCCCTATCAA	GAGTTGACTT	TTTAAAGACA	GGTCATTTCT	TATGGATTAA	9360
CCTTGGTAGT	GTGGATACAA	CCCTTGTTCT	TCCGATTTTA	GCAGCAGTAT	TCACCTTTTT	9420
AAGTACTTGG	TTGTCCAACA	AAGCTTTGTC	TGAGCGAAAT	GGCGCTACGA	CTGCGATGAT	9480
CTATCCCATT	CCAGTCTTGA	TTTTTATCTT	TGCAGTTTAT	GCGCCAGGTG	GAGTCGCCCT	9540
ATACTGGACA	GTGTCTAATG	CTTATCAAGT	CTTGCAAACC	TATTTCTTGA	ATAATCCATT	9600
CAAGATTATC	GCAGAGCGCG	AGGCCGTAGT	ACAGGCACAA	AAAGATTTGG	AAAATAGAAA	9660
AAGAAAAGCC	AAGAAAAAGG	CTCAGAAAAC	GAAATAAATA	AGGAGGAATC	TGGTAGTGGT	9720
AGTATTTACA	GGTTCAACTG	TTGAAGAAGC	AATCCAGAAA	GGATTGAAAG	AATTAGATAT	9780
TCCAAGAATG	AAGGCTCATA	TCAAAGTCAT	TTCTAGGGAG	AAAAAAGGCT	TTCTTGGTCT	9840
ATTTGGTAAA	AAACCAGCCC	AAGTGGATAT	TGAAGCGATT	AGTGAAACGA	CTGTTGTCAA	9900
AGCAAATCAA	CAGGTAGTAA	AAGGCGTTCC	GAAAAAAATC	AATGATTTGA	ACGAGCCTGT	9960
GAAGACGGTT	AGTGAAGAAA	CCGTTGACCT	TGGTCATGTG	GTTGATGCTA	TAAAAAAAT	10020
AGAGGAAGAA	GGTCAAGGTA	TTTCTGATGA	AGTCAAGGCT	GAAATCTTAA	AACATGAAAG	10080
ACATGCCAGC	ACTATCTTAG	AAGAAACTGG	TCACATTGAG	ATTTTAAATG	AACTTCAAAT	10140
CGAGGAAGCG	ATGAGGGAAG	AAGCAGGCGC	TGATGACCTT	GAAACTGAGC	AAGACCAAGC	10200
IGAAAGTCAA	GAACTAGAAG	ACTTGGGCTT	GAAAGTTGAA	ACGAACTTTG	ATATTGAACA	10260
AGTAGCTACG	GAAGTAATGG	CTTATGTTCA	AACGATTATT	GATGACATGG	ATGTTGAGGC	10320
PACACTTTCA	AATGATTATA	ACCGTCGTAG	CATCAATCTA	CAAATTGACA	CCAACGAACC	10380
AGGTCGTATT	ATCGGCTACC	ATGGTAAAGT	CTTGAAGGCC	TTGCAACTGT	TGGCTCAAAA	10440
ГТАТСТТТАС	AACCGCTATT	CCAGAACCTT	CTACGTTACA	ATCAATGTCA	ATGATTATGT	10500
CGAACACCGT	GCAGAAGTCT	TGCAGACCTA	TGCGCAAAAA	TTGGCGACTC	GTGTTTTGGA	10560

AGAAGGGCGC	AGTCATAAAA	CAGATCCAAT	GTCAAATAGC	GAACGCAAGA	TTATCCATCG	10620
TATTATTTCA	CGTATGGATG	GCGTGACTAG	TTACTCTGAA	GGTGATGAGC	CAAATCGCTA	10680
igttgttgta	GATACAGAAT	AAGTAAAATC	AGGTTTATCC	TGATTTTTTG	CTAGTTAGAG	10740
GAGGTTAAAC	TGATGTTGAA	TAAGATAAGA	GACTATTTAG	ACTTTGCTGG	TTTGCAGTAC	10800
CGTAATCCTG	ATAAAGCGGG	AGCAGAGCGA	GAGAAGATGC	TGGCATTCCG	CCACAAAGGA	10860
CAAGAGGCCC	GAAAGGTTTT	TACAGAACTG	GCCAAAGCCT	TTCAAGCAAG	CCATCCAGAA	10920
TGGCAACTCC	AACAGACTAG	CCAGTGGATG	AATCAGGCCC	AGCGTTTGAG	ACCACATTTT	10980
PGGGTTTATC	TACAGAGAGA	CGGACAAGTG	ACAGAACCTA	TGATGGCCTT	ACGTTTGTAT	11040
GGGACATCTA	CTGACTTTGG	AATTTCTTTG	GAAGTCAGTT	TCATCGAACG	TAAGAAGGAT	11100
GAGCAAACAC	TGGGCAAGCA	GGCCAAAGTT	TTAGACATTC	CAACCGTTAA	AGGGATTTAT	11160
TATCTAACCT	ACTCTAATGG	TCAAAGTCAA	CGGTGGGAGG	CGAATGAAGA	AAAGCGTCGT	11220
ACTTTACGCG	AGAAGGTGAG	AAGTCAAGAA	GTTCGAAAAG	TTTTAGTGAA	GGTAGATGTT	11280
CCTATGACAG	AAAATTCGTC	TGAAGAAGAA	ATCGTAGAAG	GCTTATTGAA	GTCTTATTCT	11340
AAAATTCTTC	CCTATTATCT	AGCTACGAGA	AAATAAGATA	ATTTGTAAAA	CATCATAAAT	11400
CATACAGTCC	AAGAGTGAAC	AGTCCGCTGT	GTAATTCTTG	GTCTTTTTGT	TTGCGCTTTC	11460
GCATTATATA	ATAAACTTAC	AAAAACAATT	CAAAAGGAGA	ACAATTATGG	AAGTCGTTTC	11520
AAGTGTTCTA	AATTGGTTTT	CTAGCAATAT	TTTGCAGAAT	CCCGCATTTT	TCGTAGGTTT	11580
ATTGGTGTTG	ATAGGATATG	CACTTTTGAA	AAAACCTGCC	CATGACGTTT	TTTCAGGGTT	11640
IGTTAAAGCA	ACAGTAGGGT	ATATGTTGCT	TAACGTGGGT	GCTGGTGGTT	TGGTTACAAC	11700
CTTTCGTCCA	ATCTTAGCAG	CTCTTAACTA	CAAATTCCAA	ATTGGTGCAG	CGGTTATCGA	11760
CCCTTACTTT	GGACTTGCTG	CAGCAAACAA	CAAAATTGTA	GCAGAGTTTC	CAGATTTTGT	11820
rggaactgca	ACTACAGCTC	TATTGATTGG	TTTTGGAATA	AATATCTTGC	TCGTAGCTCT	11880
PCGAAAGATT	ACGAAGGTAA	GAACCCTCTT	TATTACTGGT	CACATCATGG	TACAACAAGC	11940
rgcaacagta	TCTCTTATGG	TTCTATTCTT	AGTACCACAA	TTGCGCAATG	CTTACGGTAC	12000
AGCAGCGATT	GGTATCATCT	GTGGACTTTA	CTGGGCAGTT	AGTTCAAATA	TGACTGTTGA	12060
GCAACTCAA	CGCTTGACTG	GTGGTGGCGG	ATTTGCGATT	GGTCACCAAC	AGCAATTTGC	12120
AATCTGGTTT	GTAGATAAAG	TAGCAGGACG	CTTTGGTAAG	AAAGAAGAAA	GTTTAGACAA	12180
rcttaaatta	CCTAAGTTCC	TCTCAATCTT	CCACGATACA	GTTGTTGCAT	CTGCTACCTT	12240
SATGCTCGTA	TTCTTCGGAG	CCATTCTTTT	AATCTTGGGT	CCAGACATTA	TGTCTAATAA	12300

382 AGAAGTCATC ACTTCAGGAA CTCTATTCAA TCCTGCTAAA CAAGATTTCT TTATGTACAT 12360 TATCCAAACA GCCTTTACCT TCTCAGTTTA CTTGTTCGTT TTGATGCAAG GTGTCCGAAT 12420 GTTCGTATCT GAGTTGACAA ACGCCTTCCA AGGTATTTCA AACAAATTGT TGCCAGGTTC 12480 ATTCCCAGCG GTTGACGTTG CAGCTTCTTA TGGATTTGGT TCTCCAAATG CTGTCTTGTC 12540 AGGATTTACC TTTGGTTTGA TTGGTCAATT GATTACAATT GTTTTGCTCA TCGTCTTTAA 12600 AAATCCGATT CTTATTATTA CAGGATTTGT ACCAGTGTTC TTTGACAATG CAGCCATTGC 12660 GGTCTACGCT GATAAACGCG GCGGATGGAA AGCGGCTGTT ATCCTTTCCT TTATATCAGG 12720 TGTCCTTCAA GTTGCTCTAG GAGCTCTTTG TGTGGCCCTT CTCGATTTGG CATCTTATGG 12780 TGGCTACCAT GGAAATATCG ACTTTGAATT CCCATGGCTT GGATTTGGAT ATATCTTCAA 12840 ATACCTTGGT ATTGTTGGTT ATGTACTTGT GTGTCTCTTC TTGCTTGTTA TTCCTCAACT 12900 TCAATTTGCC AAAGCAAAAG ATAAAGAGAA ATATTACAAC GGTGAAGTTC AAGAAGAAGC 12960 TTAGTATCTA GAAAAGGAGA AATAAAATGG TTAAAGTATT AGCAGCGTGC GGAAATGGAA 13020 TGGGTTCATC AATGGTTATC AAGATGAAGG TTGAAAATGC TCTCCGTAAG CTTAATCAAA 13080 CAGATTTTAC AGTCAATTCA TGCAGTGTCG GTGAAGCTAA AGGTTTAGCA GTAGGATATG 13140 ACATCGTAAT CGCTTCTCTT CATTGATTC AAGAATTGGA AGGGCGAACT AATGGGAAGT 13200 TAATTGGGCT TGATAACTTG ATGGATGATA AAGAAATCAC CGAAAAACTC AGTCAAGCAC 13260 TACAGTAAAA GGTTGGAGGG GGCTGGACAG AAACTGAGAG TTATCGTTTC TGTCCTTCTC 13320 CCTCTTTAAA TAAAGGAGGC AGATATGAAT TTAAAACAAG CTTTAATTGA CAATGACTCG 13380 ATCCGACTAG GTTTAGAGGC TAACAATTGG AAAGAAGCAG TCAAGGTAGC AGTAGATCCC 13440 TTAATTGAAA GTGGGGCAAT TTTGCCAGAG TATTACGATG CTATCATTGA ATCGACTGAA 13500 GAGTATGGGC CTTACTATAT CTTGATGCCA GGTATGGCTA TGCCCCACGC TAGACCTGAA 13560 GCAGGTGTGC AAAGTGATGC CTTTTCATTG ATTACCTTAC AAAATCCTGT TGTATTTTCA 13620 GATGGGAAAG AGGTATCTGT TTTGTTGGCA CTAGCAGCAA CAAGTTCAAA AATTCACACA 13680 AGTGTAGCCA TTCCACAAAT TATTGCCCTA TTTGAATTAG AAGATTCTAT TGCACGTTTA 13740 CAGGCTTGCC AGACTAAAGA AGATGTCTTG GCTATGATTG AAGAATCTAA GGATAGCCCT 13800 TATCTCGAAG GATTGGATTT GGAAAGTTAG AAAGAGGAAT AAAGAAATGA CAAAAAGAAT 13860 ACCTAATTTA CAAGTTGCAT TAGACCATTC AGACTTGCAA GGAGCGATTA AAGCAGCTGT 13920 TTCTGTTGGT CAGGAAGTAG ATATTATCGA AGCTGGAACT GTTTGCTTGC TTCAAGTTGG 13980 AAGTGAACTG GCTGAAGTCT TGCGTAGCCT TTTCCCAGAT AAGATTATTG TGGCAGACAC 14040 AAAATGTGCT GATGCTGGTG GAACAGTTGC TAAAAATAAT GCGGTTCGTG GAGCAGACTG 14100

GATGACTTGT	ATCTGTTGTG	CAACCATCCC	TACTATGGAA	GCAGCTCTAA	AGGCTATCAA	14160
GACTGAACGA	GGAGAACGAG	GCGAAATCCA	GATCGAGCTT	TATGGCGATT	GGACTTTTGA	14220
ACAAGCTCAG	CTTTGGCTAG	ATGCAGGTAT	CTCACAAGCT	ATTTATCACC	AATCTCGTGA	14280
TGCTCTTCTT	GCTGGTGAAA	CTTGGGGTGA	AAAAGACCTT	AATAAGGTTA	AAAAACTCAT	14340
TGACATGGGC	TTCCGTGTAT	CTGTAACAGG	TGGTCTAGAT	GTAGATACTC	TCAAACTCTT	14400
TGAAGGTATT	GATGTCTTTA	CCTTTATCGC	AGGTCGTGGA	ATTACAGAGG	CTGTGGATCC	14460
AGCAGGAGCA	GCGCGTGCCT	TCAAGGATGA	AATCAAACGA	ATTTGGGGGT	AAATCATGGT	14520
ACGTCCAATT	GGAATTTATG	AAAAGGCAAC	CCCAACACAC	TGTACTTGGC	TAGAACGTTT	14580
AAATTTTGCC	AAGGAGTTAG	GCTTTGATTT	TGTCGAGATG	TCTATTGACG	AACGTGACGA	14640
GCGTTTAGCA	AGACTTGACT	GGAGTAAGGA	AGAACGCTTG	GAAGTTGTCA	AAGCAATCTA	14700
TGAAACTGGT	GTTCGTATTC	CTTCTATCTG	TTTTTCAGGC	CATCGTCGCT	ACCCATTGGG	14760
TTCAAAAGAT	CCAGTTCTAG	AGGAAAAATC	TCTAGAACTC	ATGAAAAAAT	GTATCGAATT	14820
AGCTCAAGAC	TTGGGAGTTC	GTACGATTCA	ATTAGCTGGT	TACGATGTTT	ACTATGAGGA	14880
AAAGTCACCC	CAGACACGCC	AACGTTTTAT	CAAAAATTTG	AGAAAAGCCT	GTGACTGGGC	14940
TGAAGAAGCT	CAGGTGGTAC	TTGCTATTGA	AATTATGGAT	GATCCTTTCA	TCAGTAGCAT	15000
CGAAAAATAT	TTGGCTATAG	AAAAAGAGAT	TGACTCTCCC	TTCCTCTTTG	TATATCCAGA	15060
TATTGGTAAT	GTGTCTGCAT	GGCATAATGA	TATCTATAGT	GAGTTTTATC	TTGGTCATCA	15120
TGCCATCGCA	GCTCTCCATC	TCAAGGATAC	TTATGCAGTG	ACAGAAAGTT	CAAAGGGCCA	15180
GTTCCGAGAT	GTACCTTTCG	GGCAAGGTTG	TGŤCAAATGG	GAAGAAGCTT	TCGATATTTT	15240
AAAGGAAACC	AATTATAATG	GACCTTTCCT	AATCGAAATG	TGGTCTGAAA	ATTGTGAAAC	15300
AGTAGAAGAA	ACACGCGCAG	CCATTCAAGA	GGCGCAAGCT	TTTCTCTATC	CACTCATTAA	15360
GAAAGCAGGT	TTGATGTAAG	ATGAATCAAG	TAATCAATGC	TATGCGTAAA	CGAGTCTGTG	15420
ATGCCAATCA	ATCATTGCCA	AAACATGGAC	TTGTCAAATT	TACCTGGGGG	AATGTATCTG	15480
AAGTTAATCG	CGAACTCGGT	GTCATTGTTA	TCAAACCATC	AGGCGTGGAT	TATGACGAAT	15540
TGACACCTGA	AAACATGGTA	GTGACTGATC	TAGATGGTAA	GATCCTAGAA	GGGGATTTAA	15600
GACCATCTTC	CGACCTCCCA	ACTCATGTGC	AATTATATAA	GACTTGGTCA	GAAATTGGTA	15660
GTGTGGTTCA	CACCCATTCG	ACAGAAGCTG	TTGGTTGGGC	TCAGGCAGGT	CGTGATATTC	15720
CTTTCTACGG	AACAACCCAT	GCAGATTATT	TCTACGGTTC	AATCCCTTGC	GCCCGTAGTT	15780
TGACCAAGGA	CGAAGTAGAA	GTGGCCTATG	AAAAAGATAC	TGGCCTGGTT	ATCGTAGAAG	15840

384 AGTTTGAACA TCGCGGACTT AACCCGGTTG AAGTACCAGG AATTGTTGTA CGCAATCACG 15900 GTCCATTCAC CTGGGGCAAA AATCCAGAGA ATGCTGTTTA TCACTCTGTC GTACTAGAGG 15960 AAGTATCAAA GATGAATCGC TTTACAGAAC AAATCAATCC AAGAGTTGGA CCTGCTCCCC 16020 AGTACATACT AGAAAAACAC TACCAACGTA AACATGGACC AAATGCTTAT TATGGTCAAA 16080 AGTAAGAACG ATGAAGGAGG AGAAAAAGAT AAATTTAGCT CCTCTTTTTA CATTTGATTT 16140 TTATTGAGAG TAAAGTTGGA GTTGAAGTAA TTTTAAAAGA TTTTTTAGAA ATAGCGCTTG 16200 ATATATATA GGTAAAATAA AAAGAATTGC TGTGATATCA ATAGATTTGG GGGATTTTTT 16260 AATATGGTAC TGGATAAGGC AAGTTGTGAT TTGCTTCAAT ATTTGATGGA TCAAGAAACG 16320 TCCAAAACGA TTATGGCGAT TTCGAAAGAT TTGAAAGAGT CAAGAAGGAA AATTTATTAT 16380 CACATTGACA AAATCAATGC TGCTCTGGGT GACGAGGCGC TTCACATCAT TAGTATTCCA 16440 CGAATTGGTA TTCACTTAAC GGAAGAGCAG AGAGATGCTT GTTGTAAACT ATTATCGGAA 16500 GTAGATTCGT ACGATTATAT CATGAGTGCG CATGAACGTA TGATGATAAT GTTACTATGG 16560 ATAGGTATTT CTAAAGAACG TATTACGATT GAAAAATTGA TAGAGTTAAC AGAGGTATCT 16620 AGGAATACTG TTCTCAATGA TTTGAATAGT ATTCGTTATC AACTAACTTT GGAACAATAT 16680 CAGGTGATCT TGCAAGTGAG CAAGTCACAG GGATACAACC TTCATGCCCA CCCTCTTAAT 16740 AAAATTCAGT ATCTTCAATC GCTTCTATAT CATATTTTTA TGGAAGAAAA TGCCACTTTT 16800 GTATCTATTT TAGAAGATAA GATGAAAGAG AGGTTAGATG ATGAGTGTTT GCTTTCTGTT 16860 GAAATGAACC AATTTTTTAA GGAACAGGTT CCTTTAGTTG AACAAGATTT AGGGAAGAAA 16920 ATAAACCATC ATGAAATAAC TTTTATGTTG CAGGTTCTAC CTTATTTGCT GTTAAGCTGT 16980 CATAATGTTG AACAGTATCA AGAAAGACAT CAGGATATAG AGAAAGAATT TTCTTTGATA 17040 AGAAAAAGAA TAGAGTATCA GGTGTCTAAG AAATTAGGAG AACGGTTGTT TCAAAAGTTT 17100 GAAATTTCTT TGTCAGGACT TGAAGTTTCT CTTGTAGCTG TTCTCCTCCT CTCCTATCGT 17160 AAAGATTTGG ATATTCATGC AGAAAGTGAT GATTTTCGGC AATTAAAACT TGCTTTAGAA 17220 GAATTTATCT GGTATTTTGA ATCACAAATC CGAATGGAGA TTGAGAACAA GGATGATTTG 17280 TTACGAAATT TGATGATCCA CTGTAAAGCC TTGTTATTTA GAAAGACTTA CGGTATTTTT 17340 TCTAAAAATC CTCTAACAAA ACAAATTCGA TCCAAGTATG GAGAATTATT TTTAGTCACT 17400 AGAAAATCTG CGGAAATTTT AGAAGGAGCA TGGTTTATTC GGCTAACAGA CGATGATATT 17460 GCCTATTTGA CGATTCATAT TGGAGGATTT TTAAAATATA CACCATCATC TCAAAAAAAT 17520 ATGAAAAAG TTTATCTCGT TTGTGATGAA GGTGTTGCGG TTTCGAGACT TTTGCTGAAA 17580 CAATGCAAAC TTTATTTTCC AAATGAGCAA ATTGACACTG TATTTACAAC AGAACAATTT 17640

385

AAC	SAGTGTGG	AAGATATTGC	ACAAGTTGAT	GTAGTGATTA	CTACTAATGA	TGATTTGGAT	17700
AGC	CAGATTTC	CGATTTTAAG	GGTTAATCCT	ATCCTTGAAG	CAGAAGATAT	TTTGAAAATG	17760
CTA	GACTATC	TTAAACACAA	TATATTTCGT	AATAAGAGCA	AAAGTTTCAG	TGAAAATCTT	17820
TCT	AGTCTTA	TTTCGTCTTA	TATTGTAGAC	AGCAAGTTGG	CTAGTAAGTT	CCAAGAAGAG	17880
GT7	CAAACAC	TTATAAATCA	AGAAATAGTA	GTTCAAGCTT	TTTTGGAAGr	TATTTGAAGG	17940
ACA	GTCCAAT	GATGAACACA	AACCTGTGTk	TTTCsTGGTC	TTTTTTAGTG	TTTTGAAGGG	18000
TGG	katacta	ATCTCAAAGA	TAACAATTAT	ATCCAAAGGA	GGCAACATAT	GCCAAACGTC	18060
AAA	GAAATTA	CAAGAGAGTC	ATGGATTTTA	GCCACTTTCC	CAGAGTGGGG	AACATGGTTG	18120
AAC	GAAGAAA	TCGAAGAAGA	AGTCGTACCT	GAAGGCAACT	TTGCCATGTG	GTGGCTAGGC	18180
AAC	TGTGGTA	CTTGGATTAA	GACACCAGCT	GGTGCTAACG	TTGTCATGGA	CCTTTGGTCA	18240
AAC	CGTGGAA	AATCAACCAA	aaaagtgaaa	GATATGGTTC	GTGGGCACCA	AATGGCAAAT	18300
ATG	GCAGGTG	TTCGTAAGCT	GCAACCAAAC	TTGCGTGTTC	AGCCAATGGT	TATCGATCCA	18360
ттт	GCTATCA	ACGAACTAGA	СТАТТАСТТА	GTTTCACACT	TCCACAGTGA	TCATATCGAC	18420
CCA	TACACAG	CTGCAGCAAT	TCTCAATAAT	CCTAAGTTAG	AGCATGTTAA	GTTGG	18475
121	TNPODM	MTON BOD OF	0 TD NO. 30	. .			

(2) INFORMATION FOR SEQ ID NO: 39:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 7186 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCAGGATTTG	GTACCGTTGC	AAGTGGTGTG	CCTTTCCTCC	TAAAGGAAAA	TGGAGGAAAA	60
ATCAATCAAT	CAGCACATTC	AGATATCAAA	GTTGCTAAGG	TATTGGTCAA	GGATGAAGAT	120
GAAAAAATC	GCTTGCTTGC	AGCAGGGAAT	GACTTTAACT	TTGTAACCAA	TGTGGATGAT	180
ATTTTATCAG	ACCAGGATAT	TACTÁTCGTA	GTGGAATTGA	TGGGGCGTAT	TGAGCCTGCT	240
AAAACCTTTA	TCACTCGTGC	CTTGGAAGCT	GGAAAACACG	TTGTTACTGC	TAACAAGGAC	300
CTTTTAGCTG	TCCATGGCGC	AGAATTGCTA	GAAATCGCTC	AAGCTAACAA	GGTAGCACTT	360
TACTACGAAG	CAGCAGTTGC	TGGTGGGATT	CCAATTCTTC	GTACTTTAGC	AAATTCCTTG	420
GCTTCTGATA	AAATTACGCG	CGTGCTTGGA	GTAGTCAACG	GAACTTCCAA	CTTCATGGTG	480
ACCAAGATGG	TGGAAGAAGG	CTGGTCTTAC	GATGATGCTC	TTGCGGAAGC	ACAACGTCTA	540

			386			
GGATTTGCAG	AAAGCGATCC	GACGAATGAC	GTAGATGGGA	TTGATGCAGC	CTACAAGATG	60
GTTATTTTGA	GCCAATTTGC	CTTTGGCATG	AAGATTGCCT	TTGATGATGT	AGCCCACAAG	66
GGAATCCGCA	ATATCACACC	AGAAGACGTA	GCTGTAGCTC	AAGAGCTTGG	TTACGTAGTG	72
AAATTGGTTG	GTTCTATTGA	GGAAACTTCT	TCAGGTATTG	CTGCAGAAGT	GACTCCAACC	78
TTCCTACCTA	AAGCGCACCC	ACTTGCTAGT	GTGAATGGCG	TAATGAACGC	TGTCTTTGTA	84
GAATCTATCG	GTATTGGTGA	GTCTATGTAC	TACGGACCAG	GTGCGGGTCA	AAAACCAACT	90
GCAACAAGTG	TTGTAGCTGA	TATTGTCCGT	ATCGTTCGTC	GTTTGAATGA	TGGTACTATT	96
GGCAAAGACT	TCAACGAATA	TAGCCGTGAC	TTGGTCTTGG	CAAATCCTGA	AGATGTCAAA	102
GCAAACTACT	ATTTCTCAAT	CTTGGCTCTA	GACTCAAAAG	GTCAGGTCTT	GAAGTTGGCT	108
GAAATCTTCA	ATGCTCAAGA	TATTTCCTTT	AAGCAAATCC	TTCAAGATGG	CAAAGAGGGT	114
GACAAGGCGC	GTGTCGTTAT	CATCACACAC	AAGATTAATA	AAGCCCAGCT	TGAAAATGTC	120
TCAGCTGAAT	TGAAGAAGGT	TTCAGAATTC	GACCTCTTGA	ATACCTTCAA	GGTGCTAGGA	126
GAATAAGATG	AAGATTATTG	TACCTGCAAC	CAGTGCCAAT	ATCGGGCCAG	GTTTTGACTC	1320
GGTCGGTGTA	GCTGTAACCA	AGTATCTTCA	AATTGAGGTC	TGCGAAGAAC	GAGATGAGTG	1380
GCTGATTGAA	CACCAGATTG	GCAAATGGAT	TCCACATGAC	GAGCGTAATC	TCTTGCTCAA	1440
AATCGCTTTG	CAAATTGTAC	CAGACTTGCA	ACCAAGACGC	TTGAAAATGA	CCAGTGATGT	1500
CCCTTTGGCG	CGCGGTTTGG	GTTCTTCCAG	CTCGGTTATC	GTTGCTGGGA	TTGAACTAGC	1560
CAACCAACTG	GGTCAACTCA	ACTTATCAGA	CCATGAAAAA	TTGCAGTTAG	CGACCAAGAT	1620
TGAAGGGCAT	CCTGACAATG	TGGCTCCAGC	CATTTATGGT	AATCTCGTTA	TTGCAAGTTC	1680
TGTTGAAGGG	CAAGTCTCTG	CTATCGTAGC	AGACTTTCCA	GAGTGTGATT	TTCTAGCTTA	1740
CATTCCAAAC	TATGAATTAC	GTACTCGCGA	CAGCCGTAGT	GTCTTGCCTA	AAAAATTGTC	1800
TTATAAGGAA	GCTGTTGCTG	CAAGTTCTAT	CGCCAATGTA	GCGGTTGCTG	CCTTGTTGGC	1860
AGGAGACATG	GTGACCGCTG	GGCAAGCAAT	CGAGGGAGAC	CTCTTCCATG	AGCGCTATCG	1920
TCAGGACTTG	GTAAGAGAAT	TTGCGATGAT	TAAGCAAGTG	ACCAAAGAAA	ATGGGGCCTA	1980
TGCAACCTAC	CTTTCTGGTG	CTGGGCCGAC	AGTTATGGTT	CTGGCTTCTC	ATGACAAGAT	2040
GCCAACAATT	AAGGCAGAAT	TGGAAAAGCA	ACCTTTCAAA	GGAAAACTGC	ATGACTTGAG	2100
AGTTGATACC	CAAGGTGTCC	GTGTAGAAGC	AAAATAAAGA	ATAGAAGATA	GGATGGGGAA	2160
ACTCTTGACC	AGAGGGGTTC	ATATCCTTTT	TGTGAAAAGA	AGTTTATACT	CAATGAAAAT	2220
CAAAGAGCAA	ACTAGGAAGC	TAGCCGCAGG	CTGCTCAAAA	CAGTGTTTTG	AGGTTGCAGA	2280
TAGAACTGAC	GAAGTCAGCT	CAAGACACTG	TTTTGAGGTT	GCAGATAGAA	CTGACGAAGT	2340

CAGTAACCAT	ACTACGGTAA	GGTGACGCTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTAT	2400
TAGTTAAAAA	CGTGATAAAG	GAGAAATAAA	GATGGCAGAA	ATTTATCTAG	CAGGTGGTTG	2460
TTTTTGGGGC	CTAGAGGAAT	ATTTTTCACG	CATTTCTGGA	GTGCTAGAAA	CCAGTGTTGG	2520
CTACGCTAAT	GGTCAAGTCG	AAACGACCAA	TTACCAGTTG	CTCAAGGAAA	CAGACCATGC	2580
AGAAACGGTC	CAAGTGATTT	ACGATGAGAA	GGAAGTGTCA	CTCAGAGAGA	TTTTACTTTA	2640
TTATTTCCGA	GTTATCGATC	СТСТАТСТАТ	CAATCAACAA	GGGAATGACC	GTGGTCGCCA	2700
ATATCGAACT	GGGATTTATT	ATCAGGATGA	AGCAGATTTG	CCAGCTATCT	ACACAGTGGT	2760
GCAGGAGCAG	GAACGCATGC	TGGGTCGAAA	GATTGCAGTA	GAAGTGGAGC	AATTACGCCA	2820
CTACATTCTG	GCTGAAGACT	ACCACCAAGA	CTATCTCAGG	AAGAATCCTT	CAGGTTACTG	2880
TCATATCGAT	GTGACCGATG	CTGATAAGCC	ATTGATTGAT	GCAGCAAACT	ATGAAAAGCC	2940
TAGTCAAGAG.	GTGTTGAAGG	CCAGTCTATC	TGAAGAGTCT	TATCGTGTCA	CACAAGAAGC	3000
TGCTACAGAG	GCTCCATTTA	CCAATGCCTA	TGACCAAACC	TTTGAAGAGG	GGATTTATGT	3060
AGATATTACG	ACAGGTGAGC	CACTCTTTTT	TGCCAAGGAT	AAGTTTGCTT	CAGGTTGTGG	3120
TTGGCCAAGT	TTTAGCCGTC	CGATTTCCAA	AGAGTTGATT	CATTATTACA	AGGATCTGAG	3180
CCATGGAATG	GAGCGAATTG	AAGTTCGTTC	TCGTTCAGGC	AGTGCTCACT	TGGGTCATGT	3240
TTTCACAGAT	GGACCGCGGG	AGTTAGGCGG	CCTCCGTTAC	TGTATCAATT	CTGCTTCTTT	3300
ACGCTTTGTG	GCCAAGGATG	AGATGGAAAA	AGCAGGATAT	GGCTATCTAT	TGCCTTACTT	3360
AAACAAATAA	AACAGAGAGT	GGGGCTTCCC	ACTTTCTTCA	TTTCTAGAAT	ATGAATAGAA	3420
GGGATTTATG	AAACACCTAT	TATCTTACTT	CAAACCCTAC	ATCAAGGAAT	CAATTTTAGC	3480
CCCCTTGTTC	AAGCTGTTAG	AAGCTGTTTT	TGAGCTCTTG	GTTCCCATGG	TGATTGCTGG	3540
GATTGTTGAC	CAATCTTTAC	CTCAGGGAGA	TCAAGGTCAT	CTCTGGATGC	AGATTGGCCT	3600
GCTCCTTATC	TTTGCAGTAA	TTGGCGTTTT	AGTGGCCTTG	ATAGCTCAAT	TTTACTCAGC	3660
AAAGGCAGCA	GTAGGTTCTG	CTAAGGAATT	GACAAACGAT	CTTTATCGTC	ATATTCTTTC	3720
CTTGCCCAAG	GACAGCAGAG	ACCGTCTGAC	AACTTCTAGT	TTGGTCACTC	GCTTGACTTC	3780
GGATACCTAC	CAGATTCAGA	CTGGTATCAA	TCAATTCCTG	CGTCTCTTTT	TACGAGCGCC	3840
CATTATCGTT	TTTGGTGCCA	TTTTTATGGC	TTATCGAATC	TCAGCTGAGT	TGACTTTCTG	3900
GTTCTTAGTC	TTGGTTGCCA	TTTTGACCAT	TGTCATTGTA	GGGTTATCTC	GATTGGTCAA	3960
TCCTTTCTAC	AGTAGTCTCA	GAAAGAAAAC	GGACCAACTG	GTTCAGGAAA	CGCGCCAGCA	4020
ATTGCAAGGG	ATGCGGGTTA	TTCGTGCTTT	TGGTCAAGAA	AAACGAGAGT	TACAGATTTT	4080

			388			
TCAAACCCTT	AACCAAGTTT	ATGCTAGATT	ACAAGAAAAG	ACAGGTTTCT	GGTCTAGTTT	414
ATTAACACCT	CTGACCTATC	TGATTGTCAA	TGGAACTCTT	CTCGTTATTA	TCTGGCAAGG	420
CTATATTTCA	ATTCAAGGAG	GAGTGCTCAG	TCAAGGTGCT	CTCATTGCTC	TTATCAATTA	426
CCTCTTACAG	ATTTTGGTGG	AATTGGTCAA	GCTAGCCATG	TTGATCAATT	CCCTCAACCA	432
GTCCTATATC	TCAGTCAAGC	GAATCGAGGA	AGTCTTTGTT	GAGGCTCCAG	AGGATATCCA	438
TTCAGAGTTA	GAACAAAAGC	AAGCTACCAG	AGATAAGGTT	TTACAAGTCC	AAGAATTGAC	444
CTTTACCTAT	CCTGATGCGG	CCCAGCCTTC	TCTGAGATAC	ATTTCCTTTG	ATATGACTCA	450
AGGACAAATT	CTAGGTATCA	TCGGGGGAAC	TGGTTCTGGT	AAATCAAGCT	TGGTGCAACT	456
CTTACTTGGA	CTTTATCCAG	TAGACAAGGG	GAACATTGAC	CTTTATCAAA	ATGGACGTAG	462
TCCTCTTAAT	TTGGAGCAGT	GGCGGTCTTG	GATTGCCTAT	GTACCTCAAA	AGGTCGAACT	468
CTTTAAAGGA	ACCATTCGTT	CCAACTTGAC	TCTAGGTTTC	AATCAAGAAG	TATCTGACCA	474
GGAACTCTGG	CAGGCCTTGG	AGATTGCGCA	AGCTAAGGAT	TTTGTCAGTG	AAAAGGAAGG	480
ACTCTTGGAT	GCTCTAGTTG	AGGCAGGGG	GCGAAATTTC	TCAGGTGGAC	AAAAACAAAG	486
ATTGTCTATC	GCCCGAGCAG	TCTTGCGCCA	GGCTCCGTTT	CTCATCCTAG	ATGATGCAAC	4920
CTCGGCACTG	GATACCATTA	CAGAGTCCAA	GCTCTTGAAA	GCTATTAGAG	AAAATTTTCC	4980
AAACACGAGC	TTAATTTTGA	TCTCTCAACG	AACCTCAACT	TTACAGATGG	CGGACCAGAT	5040
TCTCCTCTTG	GAAAAAGGTG	AGTTGCTAGC	TGTTGGCAAG	CACGATGACT	TGATGAAATC	5100
CAGCCAAGTC	TATTGTGAAA	TCAATGCATC	CCAACATGGA	AAGGAGGACT	AGAATGAAAC	5160
GACAAACTGT	AAACCAGACG	CTCAAACGTT	TAGCCGTAGA	TTTAGCAAGC	CATCCTTTCC	5220
TCCTTTTCCT	AGCCTTTCTA	GGAACTATTG	CCCAAGTTGG	CTTATCAATT	TACCTACCTA	5280
TTCTGATTGG	GCAGGTCATT	GACCAAGTCC	TAGTGGCTGG	TTCATCACCA	GTTTTTTGGC	5340
AGATTTTTCT	CCAGATGCTC	TTGGTGGTAA	TAGGAAATAC	TCTGGTACAA	TGGGCCAATC	5400
CTCTCCTCTA	TAATCGTCTA	ATCTTCTCTT	ATACCAGAGA	TTTACGGGAG	CGAATCATCC	5460
ATAAGCTCCA	TCGTTTACCG	ATTGCCTTTG	TAGATAGGCA	AGGTAGTGGA	GAGATGGTTA	5520
GTCGTGTAAC	CACGGACATC	GAACAGTTGG	CAGCTGGCTT	GACCATGATT	TTTAACCAAT	5580
PTTTCATTGG	TGTTTTGATG	ATTTTGGTCA	GTATTCTAGC	CATGCTCCAA	ATTCATCTCC	5640
PCATGACTCT	CTTAGTCTTG	CTGTTGACGC	CACTGTCCAT	GGTGATTTCA	CGCTTTATTG	5700
CCAAGAAATC	CTATCATCTC	TTCCAGAAGC	AAACAGAGAC	GAGGGGAATT	CAGACTCAGT	5760
rgattgaaga	ATCGCTTAGT	CAGCAGACTA	TAATCCAGTC	CTTCAATGCT	CAAACAGAAT	5820
מממרכים	МИТЕССТЕМЕ	CCTCATCACA	ACTIACTICACC	СФАФФСФСАС	TO A COCA TOTAL	5001

389

TTTATTCTTC	AACGGTCAAT	CCTTCGACTC	GCTTTGTAAA	TGCACTCATT	TATGCCCTTT	5940
TAGCTGGAGT	AGGAGCTTAT	CGTATCATGA	TGGGTTCAGC	CTTGACCGTC	GGTCGTTTAG	6000
TGACTTTTTT	GAACTATGTT	CAGCAATACA	CCAAGCCCTT	TAACGATATT	TCTTCAGTGC	6060
TAGCTGAGTT	GCAAAGTGCT	CTGGCTTGCG	TAGAGCGTAT	CTATGGAGTC	TTAGATAGCC	6120
CTGAAGTGGC	TGAAACAGGT	AAGGAAGTCT	TGACGACCAG	TGACCAAGTT	AAGGGAGCTA	6180
PTTCCTTTAA	ACATGTCTCT	TTTGGCTACC	ATCCTGAAAA	AATTTTGATT	AAGGACTTGT	6240
CTATCGATAT	TCCAGCTGGT	AGTAAGGTAG	CCATCGTTGG	TCCGACAGGT	GCTGGAAAAT	6300
CAACTCTTAT	CAATCTCCTT	ATGCGTTTTT	ATCCCATTAG	CTCGGGAGAT	ATCTTGCTGG	6360
ATGGGCAATC	CATTTATGAT	TATACACGAG	TATCATTGAG	ACAGCAGTTT	GGTATGGTGC	6420
PTCAAGAAAC	CTGGCTCACA	CAAGGGACCA	TTCATGATAA	TATTGCCTTT	GGCAATCCTG	6480
AAGCCAGTCG	AGAGCAAGTA	ATTGCTGCTG	CCAAAGCAGC	TAATGCAGAC	TTTTTCATCC	6540
AACAGTTGCC	ACAGGGATAC	GATACCAAGT	TGGAAAATGC	TGGAGAATCT	CTCTCTGTCG	6600
GCCAAGCTCA	GCTCTTGACC	ATAGCCCGAG	TCTTTCTGGC	TATTCCAAAG	ATTCTTATCT	6660
PAGACGAGGC	AACTTCTTCC	ATTGATACAC	GGACAGAAGT	GCTGGTACAG	GATGCCTTTG	6720
CAAAACTCAT	GAAGGCCGC	ACAAGTTTCA	TCATTGCTCA	CCGTTTGTCA	ACCATTCAGG	6780
ATGCGGATTT	AATTCTTGTC	TTAGTAGATG	GTGATATTGT	TGAATATGGT	AACCATCAAG	6840
AACTCATGGA	TAGAAAGGGT	AAGTATTACC	AAATGCAAAA	AGCTGCGGCT	TTTAGTTCTG	6900
AATAAGCCAT	TCTCTTTTGA	AAGTTTATGG	ACGAAAAAAG	TTGCCTTCGA	GTGACTTTTT	6960
rgttacaata	GCTAGAAAAA	TTGTTCACTG	TAATACTCAA	TGAAAATCAA	AGAGCAAACT	7020
AGGAAGCTAG	CCGTAGGTTG	CTCAAAGCAC	AGCTTTGAGG	TTGTAGATAA	GACTGACGAA	7080
GTCAGTTCAA	AACACTGTTT	TGAGGTTGCA	GATAGAACTG	ACGAAGTCAG	CTCAAAACAC	7140
rgttttgagg	TTGCAGATAG	AACTGACGAA	GTCAGCTCAA	AACAGG		7186

(2) INFORMATION FOR SEQ ID NO: 40:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14273 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

CTGAAAATTC TAAAAAATTT ATAAGTAAGG AATTAATTAG TTATTTTTGT GATAAAGTTT

			390			
ATGATGAAAT	ATTTGTTGAA	GAGGTAGTTC	CGCACGTTTT	TCTGCCATAT	GAATCTGACT	120
TACTTCTTAT	TTTACCAGCT	ACGGCAAATG	TGATTGGCAA	AATTGCTAAT	GGTATTGCTG	180
ATGATTTAGT	TACAGCAACT	GTTTTAAACT	ТТААТАААА	TTTTAATAA	TGTCCCAATA	240
TGAACTCTAC	TATGTGGGAC	AATCACATAG	TTCAAAGAAA	TGTATCAATT	CTAAAGGAGT	300
TGGGACATAT	ATTTTTATT	GAGTCTAAAA	AAACATATGA	GGTAGGATTG	CGTAAAGCAA	360
TAGATTCAAC	ATGTTCAATG	TTACAACCAC	AGTCGTTAGT	AAAAGAACTT	ATCAAATTAG	420
AAAATATTGT	CCTTGAAGAG	GGACATTAAA	AACTACTGAG	AATATTAATG	AGGGGAAAAA	480
ATGGAAAATT	CATCAATCGA	TGTAGATATG	CTGTTGGAAG	AATTGACACA	AGAAGCAATG	540
GTCGTTGTTG	CTGTTGATAA	GGACTGTTAA	TTTAAACTTA	TGGCAATATA	TGAAAGGTTA	600
CTGGATGTTT	TAAATTATGC	AGGCAGTAGC	CTTTTATTAT	ATACAAATGG	ATAAAGTAAG	660
GATAATACAA	TGATTAATAA	АААААТАСАА	CAAGTTGTTT	TGGAATCATT	ACAGAATTTT	720
TTGAATGGGA	ACTTCATTTC	GCCTTGTGTA	GTCTATGATT	TTGGCTTGCT	GGAAACTGTA	780
CTTGATGAAT	TTAAAAATCA	AATTCCTGTA	ACATTCAATT	ACCAACTTTT	TTATGCCGTT	840
AAAGCAAATT	CAAATGAGAA	GATACTTGAA	TTCTTAGTAG	ATAAAATTGA	TGGAGTTGAT	900
GTGGCGTCAT	TATCTGAATT	AGATGTGGCT	AAAAAATTTT	TCCCACCAAC	TCAAATTTCT	960
GTTAATGGTC	CCGCATTTTC	TTATGAAACT	TTATATAATC	TGATTAAAAA	АСААТАТААА	1020
GTTGATATTA	ACTITITGGA	ACATCTTCAA	CAATTTTCCC	CAAAAGAATC	TGTTGGAATA	1080
AGAGTAACGG	AGCCAGATGA	ACTTAATAAT	CGTATGAGTC	GATTTGGAAT	AAATATTTGC	1140
AGTGATAATT	GGACTAGTAA	TTTACAAAAT	CCTTTAATTA	CACGACTGCA	TTTTCATTTT	1200
GGAGAAAAAG	ATGATAAATT	TATTGTTAAG	TTAGATAAAA	TATTATTTAA	GTTACAAGAA	1260
АТТААТАААС	TTAGAGAGGT	TAGAGAAATA	AATCTTGGAG	GCGGTTTTAT	GAAATTATTT	1320
ATGGAAAATC	GTTTGAAAGA	ATTTTTTCTA	TCACTTATGG	AAATCTATAA	AAAGTACGAT	1380
ATTGATAGTA	CTGTGACTAC	AATAATAGAA	CCAGGTAGTG	CAATTACTTC	ATTTTCTGCC	1440
ТАТАТСАТТА	CTAGCCCAGT	TAATGTTAGT	GAGGTGAATG	AGCAGCAGGT	TATCACGTTA	1500
GACACATCAA	TATACACCAA	TACATTATGG	TTTGTTCCGC	ATATTATTAC	AACGTTAAAT	1560
TCAAGTAGTA	AAGAGCGTTA	TAGTACTATT	CTCTATGGTA	ATACCTGTTA	TGAACATGAC	1620
AAGTATAAAA	TGAAAGTTTC	GCTTCCAAGG	ттаастсааа	ATAGCAGTAT	AGTGTTTTTT	1680
CCTGTAGGAG	СТТАТАТААА	AAGCAATCAT	TCAAATTTAC	ATCGTAATGA	TTTTATGCGG	1740
GAGGTATATT	TGTGGACAAA	AAACTTGACA	TATTAGATAA	AGTTAAGGAA	TATTTAGGAA	1800
АТААААСТАС	TCAAATTCTG	GATAATCAAT	ATAAAGAATT	TTTGAAACTT	AATGATATAA	1860

GGC	GAGCGTT	TGGTATTTCA	GAAAAAGTAT	TAAACAATTC	TTTTAATTTT	ACGAGTAAAG	1920
AAT	TTAATGA	TAATTAATTT	AACGAAAATT	ATTTATTCGA	ATATGCATGT	AGAATTAGAG	1980
AGG.	Aatggag	AAAAAAATGC	TTTAATCATT	CTTATCGTTT	TCTATGCTCA	ССТАТААТТА	2040
CAG	ATGATTT	TCTTAACACG	AAGACATTGA	GAAGTAGCCA	AATTGAATAT	AAATATGAGC	2100
GAT.	ATTTATC	GAAAAGTTCG	ATAGGCGATA	GAGCGGTTGA	TGGCTTTGTT	TCCTTCAATA	2160
CTT	TAACAGC	TAATGGTATG	TCTGCTATTA	AACTATGTCT	TGAGATATTA	AACTCTATTT	2220
TCT	TCAAGAA	GAAGATTGAT	TTATTATATT	CAACCGGATA	TTATGAAACA	AGATTTTAT	2280
TAA	ATAATCT	TGCTAAATCA	GGTATTAGTT	GCTATGAGGT	AAGTAATTGT	GAATTGGATA	2340
AAG.	АТАААТТ	TTATAATGTA	TTCATGATGG	AACCCAATCG	AGCCGATTTA	ACATTACAAA	2400
AAA	CTGATTT	CAAGATAGTA	GAATATTTTG	TTAAGTATAA	AAATAATTCA	ATAAAAGTCG	2460
TTA:	TTTTAGA	TATTTCATAT	CAAGGTTCTA	ATTTTAAATT	AGTAGAATTT	TTAGAGAAAT	2520
PΤA	AATTTGC	GAATGTAATT	ATTTTTGTGG	TACGATCTTT	GATAAAATTA	GATCAAATGG	2580
GAT	TAGAATT	GACAAATGGG	GGAATAATAG	AAGTGTTTAT	TCCTAATCAT	TTGAGAAAGT	2640
I'GA	AAAATTT	TATTGAAGAG	GAATTCAATA	AATTTAGAAA	TTCTCACGGA	GCTAATCTAA	2700
GCC	TCTATGA	ATACTGTTTG	CTTGATAATT	CTTTAACTTT	AAAAAATGAT	TGGAACTATT	2760
CTG.	ATTTAGT	TATGAAATTT	ACGAGTAATT	TTTATGCTGA	TATAAAAGAC	TTGTTCATGG	2820
AAA.	ATTCTGA	TATTGAAATC	ATCCATGAAG	AGGGAGTACC	TTTTGTATTT	TTAGATTTAA	2880
FA G	GTGAAGG	TAAAAAAGAA	TATGAAATGT	TTTTTCAATG	GTTAAACTTC	TTTTACAAAC	2940
AGC'	TTGGAAT	CACATTGTAT	GCTAGAAATA	GTTTTGGGTT	TCGGAATCTA	ACAGTAGAGT	3000
ATT'	TTGGAAT	TATTGGGACA	GAAAGATATA	TATTTAAGAT	TTGTCCAGGT	GTTTATAAAG .	3060
GT*	Paagtta	TTATTTGATG	AAATTTTTAT	TAAAATCTTT	TTCAAATGAA	AAAAATTTAT	3120
CTA	CTGATGA	GGTTAATAGA	TGAAAAATTT	GATAAAGTTG	CTAATAATTA	GATTGATTGT	3180
raa(CTTAGCA	GACAGTGTAT	TTTATATAGT	AGCATTGTGG	CACGTTAGCA	ATAATTATTC	3240
PTC	GAGCATG	TTCTTAGGAA	TATTTATTGC	AGTÁAATTAT	CTACCGGÄTT	TGTTACŤAÄT	3300
CTT:	PTTTGGA	CCAGTTATTG	ACAGAGTAAA	TCCGCAAAAA	ATTCTTATAA	TATCAATTTT	3360
GT'	PCAATTA	GCAGTGGCTG	TAATATTTT	ATTATTATTA	AACCAAATAT	CATTTTGGGT	3420
GAT?	AATGAGT	CTAGTGTTTA	TTTCAGTAAT	GGCTAGCTCC	ATAAGTTACG	TGATAGAAGA	3480
rgto	STTGATT	CCTCAAGTGG	TAGAATATGA	TAAGATTGTA	TTTGCAAATT	CTCTTTTTAG	3540
rat:	PTCGTAT	AAAGTATTAG	ATTCTATTTT	TAATTCATTC	GCATCATTT	TACAGGTGGC	3600

			332			
AGTAGGATTT	ATTTTATTGG	TTAAGATAGA	TATAGGCATA	TTTTTACTTG	CTCTATTTAT	366
ATTGTTGTTG	TTAAAATTTA	GAACTAGCAA	TGCGAATATA	GAAAACTTCT	CTTTCAAATA	372
TTACAAGAGA	GAAGTGTTGC	AAGGTACAAA	GTTTATTTTA	TAAATAATAA	TATTATTTAA	378
AACCAGTATT	TCTTTAACGC	ттатааастт	ТТТТТАТТСА	TTTCAGACAG	TAGTTGTACC	384
GATTTTTTCT	ATTCGATATT	TTGATGGTCC	GATTTTTAT	GGTATTTTT	TAACTATTGC	390
TGGTTTGGGT	GGTATATTGG	GAAATATGCT	AGCGCCAATC	GTAATAAAAT	ATTTAAAATC	3960
GAATCAAATT	GTTGGTGTAT	TTCTTTTTT	GAACGGCTCA	AGTTGGTTAG	TAGCAATTGT	402
TATAAAAGAC	TATACTTTAT	CACTTATTTT	ATTTTTCGTT	TGTTTTATGT	CTAAAGGAGT	408
CTTCAATATT	ATTTTTAATT	CGTTGTACCA	ACAAATACCT	CCACATCAAC	TTCTTGGTAG	4140
GGTAAATACT	ACCATTGATT	СТАТТАТТТС	TTTTGGAATG	CCAATTGGTA	GTTTAGTTGC	4200
AGGAACGCTT	ATTGATTTGA	ATATTGAATT	AGTGTTAATT	GCTATTAGCA	TACCTTATTT	4260
TTTGTTTTCT	TATATTTTT	ATACGGATAA	TGGATTGAAA	GAATTTAGTA	TATATTAGAA	4320
atgtttatgt	TCATTCAAAA	GCATAATGAC	TATAACTGAA	AAAGAAAAGT	GATATCTTTA	4380
AGGTTGTTCT	TCTTGGTGGT	GAGATTCGTG	AGACAACCCA	AGCTTTTGTC	GGAAAGATTA	4440
CCAATGCTTT	GATGGATAGG	ATGTACTTTA	GCAAGATĠTT	TTTAGTGGTA	ACGGTATCGT	4500
GGATGGACGT	GTAATAACCT	CTTCTTTCGA	GGAGTATTTT	ACTAAAAAAC	TAGCCTTGGA	4560
GCGTTCCCCA	GAAACGGACT	TACTCATTGA	CTCTTCAAAG	ATTTGGGGAG	AAGATTTTGC	4620
TTCATCTGTT	CCTTGAAAAA	AGTCACAGCA	GTCATCACAG	ACGATAGTAC	TGAACAAAAC	4680
TATGAAGAGT	TAGAAATTTA	TACGCAGGTG	ATTGTATAAA	GGATCTGGAA	ATAGATAAGA	4740
AGTTGATTAG	TATTGACCTA	GGTGGTACAA	ATATTAAGAT	TACTGTTCTT	TCAAATGACG	4800
GTGAGATTGA	AACTTTGTGG	AGTATTACAA	CAGATACAAG	TGAGAAAGGT	ТСТСАААТТА	4860
TATCGGACAT	CATCAGTTCT	ATTAAAAATA	AATTGACCGA	ACGGAATATT	CCTGATAGCG	. 4920
ACCTTCTTGG	AATCGGTATG	GGAAGTTGCT	CATCATACTT	TCCTTGTAAA	TCATAGGGGC	4980
TATAAACTCT	CCGTCTACTT	GTCCTGCAAC	AATTGAAGTC	TGCTCAAAAC	GCCGTCCGCT	5040
AATCTTTTCA	TAGACTTTCT	CCCTTTTAGG	AGCCTAGCTT	TCTAGTTTGT	TCTTTGATTT	5100
TTATTGAGTA	TACCACTATT	TTACTCCCTC	TGGCAAGGGA	CTTTGTCTAT	GTGGAGGGAT	5160
TGGGCTCCTA	TGTGGTGGAG	CTTTTCTGTT	CTTTCTGAAA	TATGGTATAA	TAGCACTAAT	5220
CAATTTCTAG	GAAAATAGAT	ACAGAAAGGG	GCTGAAAGAT	GTCTCATATT	ATTGAATTGC	5280
CAGAGATGCT	GGCAAACCAA	ATCGCGGCTG	GAGAGGTCAT	TGAACGTCCT	GCCAGTGTGG	5340
TCAAAGAGTT	GGTAGAAAAT	GCCATTGACG	CGGGCTCTAG	TCAGATTATC	ATTGAGATTG	5400

AGGAAGCTGG	TCTCAAGAAG	GTTCAAATCA	CGGATAACGG	TCATGGAATT	GCCCACGATG	5460
AGGTGGAGTT	GGCCCTGCGT	CGCCATGCGA	CCAGTAAGAT	ААААААТСАА	GCAGATCTCT	5520
TTCGGATTCG	GACGCTTGGT	TTTCGTGGTG	AAGCCTTGCC	TTCTATTGCG	TCTGTTAGTG	5580
TCTTGACTCT	GTTAACGGCG	GTGGATGGTG	CTAGTCATGG	AACCAAGTTA	GTCGCGCGTG	5640
GGGGTGAAGT	TGAGGAAGTC	ATCCCAGCGA	CTAGTCCTGT	GGGAACCAAG	GTTTGTGTGG	5700
AGGATCTCTT	TTTCAACACG	CCTGCCCGTC	TCAAGTATAT	GAAGAGCCAG	CAAGCGGAGT	5760
TGTCTCATAT	CATTGATATT	GTCAACCGTC	TGGGCTTGGC	CCATCCTGAG	ATTTCTTTTA	5820
GCTTGATTAG	TGATGGCAAG	GAAATGACGC	GGACAGCAGG	GACTGGTCAA	TTGCGCCAAG	5880
CAATCGCAGG	GATTTACGGT	TTGGTCAGTG	CCAAGAAGAT	GATTGAAATT	GAGAACTCTG	5940
ACCTAGATTT	CGAAATTTCA	GGTTTTGTGT	CCTTGCCTGA	GTTGACTCGG	GCTAACCGCA	6000
ATTATATCAG	CCTCTTCATC	AATGGCCGTT	ATATTAAGAA	CTTCCTGCTC	AATCGTGCTA	6060
TTTTGGATGG	TTTTGGAAGC	AAGCTTATGG	TTGGACGTTT	TCCACTGGCT	GTCATTCACA	6120
TCCATATCGA	CCCTTATCTA	GCGGATGTCA	ATGTGCATCC	AACTAAGCAA	GAGGTGCGGA	6180
TTTCCAAGGA	AAAAGAACTG	ATGACTCTGG	TTTCAGAAGC	TATTGCAAAT	AGTCTCAAGG	6240
AACAAACCTT	GATTCCAGAT	GCCTTGGAAA	ATCTTGCCAA	ATCGACCGTG	CGCAATCGTG	6300
AGAAGGTGGA	GCAAACTATT	CTCCCACTCA	AAGAAAATAC	GCTCTACTAT	GAGAAAACTG	6360
AGCCGTCAAG	ACCTAGTCAA	ACTGAAGTAG	CTGATTATCA	GGTAGAATTG	ACTGATGAAG	6420
GGCAGGATTT	GACCCTGTTT	GCCAAGGAAA	CCTTGGACCG	ATTGACCAAG	CCAGCAAAAC	6480
TGCATTTTGC	AGAGAGAAAG	CCTGCTAACT	ACGACCAGCT	AGACCATCCA	GAGTTAGATC	6540
TTGCTAGCAT	CGATAAGGCT	TATGACAAAC	TGGAGCGAGA	AGAAGCATCC	AGCTTCCCAG	6600
AGTTGGAGTT	TTTCGGACAA	ATGCACGGGA	CTTATCTCTT	TGCCCAAGGG	CGAGATGGAC	6660
TTTACATCAT	AGATCAGCAC	GCTGCTCAGG	AACGGGTCAA	GTACGAGGAG	TACCGTGAAA	6720
GCATTGGCAA	TGTTGACCAA	AGCCAGCAGC	AACTCCTAGT	GCCCTATATC	TTTGAATTTC	6780
CTGCGGATGA	TGCCCTGCGT	CTCAAGGAAA	GAATGCCTCT	CTTAGAGGAA	GTGGGCGTCT	6840
TTCTAGCAGA	GTACGGAGAA	AATCAATTTA	TTCTACGTGA	ACATCCTATT	TGGATGGCAG	6900
AAGAAGAGAT	TGAATCAGGC	ATCTATGAGA	TGTGCGACAT	GCTCCTTTTG	ACCAAGGAAG	6960
TTTCTATCAA	GAAATACCGA	GCAGAGCTGG	CTATCATGAT	GTCTTGCAAG	CGATCTATCA	7020
AGGCCAATCA	TCGTATTGAT	GATCATTCAG	CTAGACAACT	CCTCTATCAG	CTTTCTCAAT	7080
GTGACAATCC	CTATAACTGT	CCTCACGGAC	GTCCTGTTTT	GGTGCATTTT	ACCAAGTCGG	7140

			394			
ATATGGAAAA	GATGTTCCGA	CGTATTCAGG	AAAATCACAC	CAGTCTCCGT	GAGTTGGGGA	720
AAAATTATAA	GTATAAAAA	GTCTGGGAAA	AATTTTCAAA	ATCAAAAAAA	CGCATAAAAT	726
CAGGTGTTCA	AAAACCTTGA	TTTTATGCGT	TTTATCATGG	AAATAGTTAC	TTCATTTTT	732
CCTAATTCTT	TTCGAAACTC	TTTTTAAACG	ACGTCAGTTT	TATCAGTAAT	CTCAAAACAG	738
TGTTTTGAGC	TAATTTTGCC	AGTTTTGTCT	GTAACATCGA	AGTTGTGTTT	TACCACTCTG	744
CGACTGGTTT	CCTAGTTTGC	TCTATGATTT	TCACAGAGCA	TTAAATTGCG	ATTTTGCCAA	750
GTTTCTTTAT	TCGTCTAAAA	GTAGAGTCTG	TTCTATGCGT	CTAATGTACG	AATCAGGTTG	756
ACCATTTCAA	TAGCTCCTTG	TGCACACTCA	GAACCCTTAT	TTCCTGCTTT	AGTACCAGCT	762
CGTTCTATGG	CTTGTTCAAT	TGTATCTGTC	GTTAGCACAC	CAAACATAAC	AGGAATTTCG	768
CTATTTAAAC	TGATTTGGGC	GATTCCCTTA	GATACCTCGC	TACATACATA	ATCATAATGA	774
CTTGTATTCC	CTCTAATGAC	AGCTCCCAAG	CAGATAATTG	CATCATATTT	TTTACTTTTT	780
GCCATTTTTG	ATGCAATCAG	TGGTATTTCA	AAAGCTCCTG	GAACCCAGGC	TACCTCTATA	7860
TCTTTCTCGT	TTACATTCTC	TCTTTTGAGA	TTATCTAGTG	CTCCAGATAA	TAATTTTGAA	792
GTTATAAATT	CATTAAATCT	CGCTACAACA	ATACCTATTT	TAATATTGTT	TGCTACTAAA	798
TTACCTTCAT	AAGTGTTCAT	TTATTTTCC	TCCATATTTA	AAATGTGACC	CATTCGATTT	8040
TTCTTTGTTT	СТАААТАААА	ACTATCGTAA	GGATTGGCTT	CTATTTCGAT	TGATATTCTA	810
CTGGAAATGG	TAATTCCATA	TTTTTCTAAC	TGTTCAACCT	TGTCAGGATT	ATTTGTCAGT	8160
AAATGAAGTG	ACTGAAGTCC	CAGATCTTTA	AGCATTTTTG	CTCCAATATG	ATATTCTCTT	8220
AAATCACCTT	CAAAGCCTAA	TGCAAGATTG	GCATCAAGCG	TATCCATGCC	TTGATCTTGT	8280
AAATGATAGG	CTTTTAATTT	ATTGATAAGT	CCAATTCCTC	GTCCCTCCTG.	TCGCAAGTAA	8340
AGTAAGACAC	CCGAACCATT	CTCAACAATC	ATTTTCATAG	CCTTATCGAA	TTGCTGTCCA	8400
CAATCGCAAC	GTAAAGAGCC	TAAAACATCT	CCTGTTAAAC	ATTCGGAGTG	GACCCGACAT	8460
AATACATTGG	CTTCATCCTC	TATATTTCCC	ATAATAAGAG	CAAGATGATG	TTCCCCATTT	8520
AGTTTATCTA	TATAGCTAAT	TGCTTTGAAA	TTACCGTATC	TAGTAGGCAT	ATTGACAGTT	8580
GAAACTCGTT	CTACCAGCTG	ATCATATACT	TTTCTATATT	CTTGTAATTC	ŢŦŦĠĀŦĠĠŦĀ	8640
attagtggaa	TGTTGTGTTT	TTTCGAGAAC	TGAATTAAAT	CATCTGTTCT	CATCATTTTG	8700
CCATCATGAT	TCATTATTTC	ACAACATAGG	CCACACTCTT	TTAGTCCAGC	TAATTTTAAT	8760
AAATCAACAG	TTGCTTCTGT	GTGTCCATTT	CTTTCTAGGA	CACCACCTTT	TTTTGCAATT	8820
AAAGGAAACA	TGTGTCCTGG	CCTGCGAAAA	TCAGAGGGTG	TTATATCTTC	AGCTACACAC	888
ATACGTGCGG	TCAGTCCTCT	TTCCTCGGCA	GAAATACCTG	TGGTCGTTTC	TTTATAATCA	8940

ATTGAAACTG	TAAAAGCAGT	CTTATGATTA	TCTGTATTGT	TTTCAACCAT	AGGTGAAAGC	9000
ATTAATTGAT	TAGCTAAACT	TTCGCTCATA	GGCATACAAA	TTAATCCTTT	GGCATAAGTA	9060
GCCATAAAAT	TAACATTTTC	TGTTGTAGCT	GCTTGTGCAG	AACAAATTAA	GTCTCCTTCA	9120
TTTTCTCTAT	CCTTGTCGTC	TATAACAAGA	ACAAGTCGTC	CCTTCTGCAA	TGCTTCTAAT	9180
GCTTCTTGTA	TTTTTCGATA	TTCCATTGAC	TGATTATCCT	TTCTGCTAAA	ATCCATTTTG	9240
ATATAATAGT	TCCTTAGATA	TTTCTGATTT	TGGAGAGTTA	TCCATCAGTT	TTTGCACATA	9300
TTTACCTAAG	ATATCATTTT	CAAGATTTAC	TGTACTCCCG	ACTTGTTTAC	TCTTAAGAAT	9360
GGTTTGTTCC	AAGGTATGAG	GGATAACAGA	TACTGAAAAG	TTTACTTTGG	AGACTTTAGC	9420
GACAGTCAGA	CTAATGCCGT	CAATTGTAAT	AGATCCTTTT	ТСААСТАТТА	AATCTAAAAT	9480
TTCTTTTTGT	GTGTTGATTT	GATACCATAC	AGCATTATCA	ТСТТТТТТА	TTGACGAGAT	9540
TTTTCCTGTA	CCATCAATGT	GTCCTGTAAC	GACGTGACCC	CCAAGTCGAC	CGTTGACAGA	9600
TAAGGCTCTT	TCTAGATTCA	CCTCACTTCC	ATGTTTTAAT	AGAGTAAGAG	CTGTTCGACT	9660
CCATGTTTCA	TTCATTACAT	CAACTGTAAA	GGATTGATGA	TTGAAATGAG	TAACTGTAAG	9720
ACAGATACCA	TTTACTGCTA	TACTATCGCC	TAAATGGATA	TCCGTTAATA	TTTTTGAGGC	9780
TTTAATTGAT	ACTITACAAT	TACGAGAGTC	TTTCTGTATT	CTTTCAACTT	TTCCGATTTC	9840
TTCAATTATT	CCTGTGAACA	TGGATAAATC	ACTTCACTTT	CTATGAGATA	GTCATTTCCT	9900
ATTTGAGAAA	ATGCATAAGG	TTTCAATCTA	ATAGCGTCAT	TTGGCAAAGA	AATACCTTCA	9960
CCTCCGACAG	GAAACTTGGC	ACTACCTCCA	AAAACTTTTG	GTGCAATATA	TATTTTCAGC	10020
TCATCAACAA	TTTGTTGTTC	CAAAGCACTC	CAATTCATTA	GACTGCCCCC	TTCTAGAACT	10080
AGGCTATCAA	TCTGCATGTT	TCCTAGATGT	TGCATTAAAC	TCGATAAGTC	TATATGATTG	10140
CCTTTTTTCT	TTATGGAAAG	TATTTCACAG	CCATGATTTT	GATATAGCTT	CATTTTATTT	10200
TTGTCTTCAG	AGGAAGTGGC	AATGTAAGTT	TTAATATCAT	TTGCTGTTTT	TACGATTTTA	10260
GAGGTAAGAG	GAGTTCGTAA	ATGTGTATCG	CATATGATAC	GGATAGGATT	TTTCCCTTCC	10320
TCCAATCTAC	ATGTCAGCAA	AGGATCGTCT	TGAATAACAG	TATTGACTCC	CACCATAATT	10380
GCACTAACAT	GGTGTCGTAA	CTGATGCACA	TGCTTTCTTG	CTTCTTCTTC	AGTAATCCAT	10440
TTGGATTGAT	TTGTTTTAGT	GGCTATTTTT	CCATCCATTG	ACATTGCATA	TTTCATAAAA	10500
ACATAGGGTA	CATGCTGGGT	AATATACTTT	CTAAAACTTT	TTATTAAGTT	AAGACACTCA	10560
TTTTCTAAAA	TTCCAACAGT	AACTTGAAGA	TTATTTTCCT	CAAGTATCTT	TACTCCTTTT	10620
CCAGATACAA	TAGGATTACA	GTCTAGGCTT	CCAATGACTA	CTCTTGTAAT	ACCACTATCG	10680

			ספנ			
ATTATAGCAT	CTATACAGGG	AGGTGTTTTC		AACAGGGTTC	AAGTGTTACA	10740
TAAAGCGTCG	CTCCGACAGG	GGATTCTCTA	CAGTTTTTAA	GAGCATTTCT	CTCAGCATGT	10800
GGGCCACCAA	AAAACTCATG	ATAACCTTGT	CCGATAATGT	GATTATCTTT	TACAATAACT	10860
GCGCCGACCA	TAGGATTGGG	ATTGACGTAA	CCAGCCCCTT	TTTGTGCCAG	TTTTATTGCT	10920
AATTTCATAT	ATTTTGAATC	GCTCATCTCG	СТАССТССАА	AAAAATATAC	CTTGAATAGG	10980
GGACTACTCA	AGGCATACAA	AAGAAAACTT	ATGCGATTAA	CAAAAATGCT	CTGAAATGAC	11040
AAGTAATCAT	TTCAGAGCAC	GCAAAAAGCA	САААТАТАСТ	TTTATCTTCT	TTCATCCAGA	11100
CTATACTGTC	GGCTTTGGAA	TTTCACCAAA	TCATGCCTTT	CGGCTCGTGG	GCTATACCAC	11160
CGGTAGGGAA	TTTCACCCTG	CCCTGAAGAT	AGTTATTCAA	TTACAGATGA	TTATAGTACT	11220
TAATTTTGAA	TATGTCAACA	GATAAATACC	GATTGTTTTT	GATATACTGT	ATTTGTGATA	11280
ATCGATTCTC	GCTCCTCGGA	TAAAGAAAAT	ATGATATACT	AGATAAACGA	AATAAGAGAG	11340
AAGGAATACT	ATGTACGCAT	ATTTAAAAGG	AATCATTACC	AAAATTACTG	CCAAATACAT	11400
TGTTCTTGAA	ACCAATGGTA	TTGGTTATAT	CCTGCATGTG	GCCAATCCTT	ATGCCTATTC	11460
AGGTCAGGTT	AATCAGGAGG	CTCAGATTTA	TGTGCATCAG	GTTGTGCGTG	AGGACGCCCA	11520
TTTGCTTTAT	GGATTTCGCT	CAGAGGATGA	GAAAAAGCTC	TTTCTTAGTC	TGATTTCGGT	11580
CTCTGGGATT	GGTCCTGTAT	CAGCTCTTGC	TATTATCGCT	GCTGATGACA	ATGCTGGCTT	11640
GGTTCAAGCC	ATTGAAACCA	AGAACATCAC	CTACTTGACC	AAGTTCCCTA	AAATTGGCAA	11700
GAAAACAGCC	CAGCAGATGG	TGCTGGACTT	GGAAGGCAAG	GTAGTAGTTG	CAGGAGATGA	11760
CCTTCCTGCC	AAGGTCGCAG	TGCAAGCAAG	TGCTGAAAAC	CAAGAATTGG	AAGAAGCTAT	11820
GGAAGCCATG	TTGGCTCTGG	GCTACAAGGC	AACAGAGCTC	AAGAAAATCA	AGAAATTCTT	11880
TGAAGGAACG	ACAGATACAG	CTGAGAACTA	TATCAAGTCG	GCCCTTAAAA	TGTTGGTCAA	11940
ATAGGAGCAG	AGAATGACAA	AACGTTGTTC	GTGGGTCAAG	ATGACCAACC	CGCTCTACAT	12000
CGCCTATCAT	GATGAGGAGT	GGGGCCAGCC	CCTCCATGAT	GACCAAGTAT	TGTTTGAGTT	12060
GTTGTGTATG	GAAACCTATC	AGGCAGGCCT	GTCTTGGGAA	ACGGTACTCA	ACAAACGCCA	12120
AGCTTTCCGA	GAAGTCTTTC	ATAGCTATCA	AATTCACTCA	GTCGCAGAGA	TGACTGACAC	12180
TGAATTGGAA	GCCATGCTGG	AGAATCCAGC	TATCATTCGA	AATAGAGCCA	AGCTTTTTGC	12240
TACACGCGCT	AACGCCCAAG	CCTTTCTACA	GTTACAGGCA	GAGTACGGCT	CTTTTGATGC	12300
CTATCTTTGG	TCTTTTGTTG	AGGGGAAAAC	TGTCGTTAAC	GATGTTCCTG	ATTATCGCCA	12360
AGCGCCAGCT	AAAACACCCT	TATCTGAGAA	ATTAGCCAAA	GATCTCAAAA	AACGAGGCTT	12420
CAAGTTCACA	GCCCAGTCG	CCGTATTGTC	TTTTCTACAG	GCTGCAGGGC	TAGTTGATGA	12480

CACGAGAAT	GATTGTGAGT	GGAAAGGTCT	TAAATGATGT	СТААСААААА	TAAGGAAATT	1254
TGATTTTTG	CGATTCTCTA	TACAGTCCTC	TTTATGTTTG	ATGGCGTTAA	ATTGCTGGCT	1260
CTTTAATGC	CATCTGCCAT	TGCAAATTAT	CTTGTTTATG	TAGTTTTAGC	TCTATATGGC	1266
CCTTCTTGT	TCAAGGATAG	ATTGATCCAA	CAATGGAAGG	AGATTAGAAA	GACTAAAAGA	1272
AATTCTTCT	TTGGAGTCTT	AACAGGATGG	CTCTTTCTCA	TTCTGATGAC	TGTTGTCTTT	1278
SAATTTGTAT	CAGAGATGTT	GAAGCAGTTT	GTGGGACTAG	ATGGACAAGG	TCTAAATCAG	1284
CTAATATTC	AAAGTACCTT	TCAAGAACAA	CCACTACTGA	TAGCTGTTTT	TGCTTGTGTC	1290
ATTGGACCTC	TGGTAGAAGA	ATTATTTTC	CGTCAGGTCT	TATTGCATTA	CTTGCAGGAA	1296
GGTTGTCAG	GTTTACTAAG	CATTATTCTG	GTAGGACTTG	TTTTTGCTCT	GACTCATATG	1302
CACAGTTTGG	CTCTATCAGA	GTGGATTGGT	GCAGTTGGTT	ACTTAGGTGG	AGGCCTTGCC	1308
TTTCTATTA	TTTATGTGAA	AGAAAAAGAG	AATATCTACT	ATCCCCTACT	TGTTCACATG	1314
TAAGCAACA	GCCTCTCCTT	AATCATTTTA	GCTATCAGTA	TAGTAAAATG	AAATGAGAAC	1320
GGACAAATC	GATTTCTAAC	AATGTTTTAG	AAGTAGAGGT	GTACTATTCT	AGTTTCAATA	1326
ACTGTAATA	TGTGATGAAA	ATGCCAGTAA	TGATACCGAG	AAAAAAGCTG	AGAAACTTTT	1332
CCAGCTTTA	TTTGTTATAG	TCAAAGAGAA	TGACTTGTTC	CTGTGCATCT	ACATGAGCAT	1338
GACCCCAAA	GGGTACAATT	GCTCTTGGAG	TTGCGTGGCC	GACATTCAGA	TTATAGACAA	1344
CGGGATATT	GCTGTCAATG	ATATCCAATA	GTGCCTCTTT	ATAGTCGTCA	TGGAAAGTTT	1350
CATCCATAGG	TTTTCCGACC	AAGAGTCCAT	TGATGACCGC	GAATATGCCA	GTGTCCTTTA	13560
AGTTAGCAA	CATCTTTTTG	AAGTCTTCTG	GCTTAGGCTT	TTCTTCGCTT	GTTTCGAGCA	13620
GAGGATTTT	CCCTTCCCAG	TCTGACAAGT	CAGGGAAAAG	TTTGTATTTT	TGGCAGAGTT	13680
CGTGCTATC	TGCGTATCGA	GAGTTGTCAA	AGATATCGTA	GAGGGATTCG	AGGCAACCAC	13740
GAGGATTTT	CCCCTCGAAC	TGGGCACTTC	CTTGCAACAA	GTCAAAACCT	GTATTTGTAT	13800
ACTGACACG	AGGTGTTCCC	AGGGCCGTGG	GACTAAAATC	AGTTCGTTCC	TCATACCAAA	13860
GTCACTAGG	GCGGATTTCT	GAAATTCTTC	CCGTCTCAAT	CAATTCTTTA	AAGTAGTGAA	13920
GCTATAGGC	TAGCATTTCT	TTGTCTAATT	CACAAATGTC	TGCTAAAAAG	GATTGACCAT	13980
AAAAGTCTT	GATTCCTAAT	TTATGCAACA	TGAGGTGGTT	CATGGTTGTA	TCCGAGAAGC	14040
AAGAAAAAT	TTTTTGCTTG	ATAACCTTTT	GGAGTTGGTC	ATTTTCAAAA	AGATAAGGTA	14100
CAAGCGATA	GGTATCGTCT	CCACCGATGG	CACATAGGAT	CATGTCGATG	CTATCATCAG	14160
AAAGGCATG	AATCAAATCC	TCTGCACGAG	CTTCAGGATG	GTCCTTGATA	AAGTCTAATC	14220

398 CTTTTAACGA ATGGGGCAAA AAGATGGGAT TGGTCCCAGA TCCTTGAGAC GTT

14273

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9828 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

GTGAAGTGCG	GCAAAAGGTG	CAAGTGATGA	GCTCAGGTTC	TTTAGCTCTT	GACATTGCCC	60
TTGGCTCAGG	TGGTTATCCT	AAGGGACGTA	TCATCGAAAT	CTATGGCCCA	GAGTCATCTG	120
GTAAGACAAC	GGTTGCCCTT	CATGCAGTTG	CACAAGCGCA	AAAAGAAGGT	GGGATTGCTG	180
CCTTTATCGA	TGCGGAACAT	GCCCTTGATC	CAGCTTATGC	TGCGGCCCTT	GGTGTCAATA	240
TTGACGAATT	GCTCTTGTCT	CAACCAGACT	CAGGAGAGCA	AGGTCTTGAG	ATTGCGGGAA	300
AATTGATTGA	CTCAGGTGCA	GTTGATCTTG	TCGTAGTCGA	CTCAGTTGCT	GCCCTTGTTC	360
CTCGTGCGGA	AATTGATGGA	GATATCGGAG	ATAGCCATGT	TGGTTTGCAG	GCTCGTATGA	420
TGAGCCAGGC	CATGCGTAAA	CTTGGCGCCT	CTATCAATAA	AACCAAAACA	ATTGCCATTT	480
TTATCAACCA	ATTGCGTGAA	AAAGTTGGAG	TGATGTTTGG	AAATCCAGAA	ACAACACCGG	540
GCGGACGTGC	TTTGAAATTC	TATGCTTCAG	TCCGCTTGGA	TGTTCGTGGT	AATACACAAA	600
TTAAGGGAAC	TGGTGACCAA	AAAGAAACCA	ATGTCGGTAA	AGAAACTAAG	ATTAAGGTTG	-660
TAAAAAATAA	GGTAGCTCCA	CCGTTTAAGG	AAGCCGTAGT	TGAAATTATG	TACGGAGAAG	720
GAATTTCTAA	GACTGGTGAG	CTTTTGAAGA	TTGCAAGCGA	TTTGGATATT	ATCAAAAAAG	780
CAGGGGCTTG	GTATTCTTAC	AAAGATGAAA	AAATTGGGCA	AGGTTCTGAG	AATGCTAAGA	840
AATACTTGGC	AGAGCACCCA	GAAATCTTTG	ATGAAATTGA	TAAGCAAGTC	CGTTCTAAAT	900
TTGGCTTGAT	TGATGGAGAA	GAAGTTTCAG	AACAAGATAC	TGAAAACAAA	AAAGATGAGC	960
CAAAGAAAGA	AGAAGCAGTG	AATGAAGAAG	TTCCGCTTGA	CTTAGGCGAT	GAACTTGAAA	1020
TCGAAATTGA	AGAATAAGCT	GTTAAAGCAG	TGGĄGAAATC	CGCTACTTTT	TCGATTTTTG	1080
ATTCAAGTTT	TTAGATTATA	TATAGTAGCT	TGAAATAAGA	TATGAACAAC	TCTATTAGGA	1140
AAGTCAAATT	AATTTCTAGA	AATGTTTTAG	CAGCTACAGC	GTACTATTCC	AAACTCAACC	1200
ААСТАТААТА	GATCGAAACT	AGAATAGTAC	ATATCTACTT	CTAAAACATT	GTTAAAAATC	1260
GATTTGACTT	TCCTTATTTC	ATTCCGCTAT	ATATAGTTTG	CTGTTTCTTG	TCGCTCCTCT	1320
GGAAAGCTGA	TATAATAGCT	TTATGAATAA	AAAACGAACA	GTGGACCTGA	TACATGGTCC	1380

	GATTCTTCCC	TCGCTCTTAA	GCTTCACCTT	TCCAATTTTG	СТАТСАЛАТА	TTTTTCAACA	1440
	GCTCTATAAC	ACTGCTGATG	TCTTGATTGT	TGGACGATTT	CTTGGTCAAG	AATCCTTGGC	1500
	TGCAGTAGGA	GCGACGACAG	CGATTTTTGA	CCTGATTGTA	GGTTTTACAC	TTGGTGTTGG	1560
	CAATGGCATG	GGGATTGTCA	TTGCTCGTTA	TTATGGGGCT	CGGAATTTCA	CTAAAATCAA	1620
•	GGAAGCAGTA	GCAGCCACCT	GGATTTTAGG	TGCTCTTTTG	AGCATTCTAG	TTATGTTGCT	1680
	GGGCTTTCTT	GGCTTGTATC	CTCTCTTGCA	ATACTTAGAT	ACTCCTGCAG	AAATTCTTCC	1740
	TCAATCTTAT	CAATATATTT	CTATGATTGT	GACCTGTGTA	GGTGTCAGCT	TTGCTTATAA	1800
	TCTTTTTGCA	GGCTTGTTGC	GGTCTATTGG	TGACAGTCTA	GCAGCCCTGG	GATTTCTGAT	1860
	TTTCTCTGCC	TTGGTTAATG	TGGTTCTGGA	TCTCTATTTT	ATTACGCAAT	TGCATCTGGG	1920
	AGTTCAATCC	GCAGGACTTG	CTACCATTAT	TTCGCAAGGT	TTATCAGCGG	TTCTCTGCTT	1980
	TTATTATATT	CGTAAAAGTG	TGCCAGAACT	CTTGCCACAG	TTTAAACATT	TCAAATGGGA	2040
	CAAAAGCTTG	TACGCGGATC	TCTTGGAGCA	AGGTTTGGCT	ATGGGCTTGA	TGAGTTCAAT	2100
	TGTATCTATC	GGCAGTGTGA	TTTTACAGTT	TTCTGTTAAT	ACATTTGGTG	CAGTGATTAT	2160
	TAGTGCCCAG	ACGGCAGCTC	GACGCATTAT	GACCTTTGCC	СТТСТТССТА	TGACCGCTAT	2220
	TTCTGCATCA	ATGACGACCT	TTGCTTCTCA	GAATCTAGGA	GCTAAGCGAC	CTGACCGTAT	2280
	TGTTCAAGGT	CTTCGAATCG	GCAGTCGTTT	AAGTATATCC	TGGGCAGTTT	TTGTTTGTAT	2340
	TTTCCTCTTT	TTTGCCAGTC	CAGCTTTGGT	TTCCTTCTTG	GCTAGTTCGA	CAGATGGTTA	2400
	CTTGATAGAA	AATGGAAGTC	TCTATCTGCA	AATCAGTTCA	ACCTTTTATC	CCATTTTGAG	2460
	CCTCTTGTTG	ATTTATCGCA	ATTGCTTGCA	GGGCTTGGGG	CAAAAGATCC	TTCCTCTAGT	2520
	TTCTAGCTTT	ATTGAACTAA	TCGGAAAAAT	CGTTTTTGTG	GTTTTGATTA	TTCCTTGGGC	2580
	AGGATATAAG	GGTGTTATCC	TTTGTGAACC	TCTTATCTGG	GTTGCCATGA	CAGTTCAACT	2640
	GTACTTCTCA	TTATTCCGTC	ATCCCTTGAT	ÄAAAGAAGGC	AAGGCAATCT	TGGCAACCAA	2700
	AGTGCAATCC	TAGTTGGATT	TACTGAATAA	AATCCATTTC	CTCTAGTGAA	AATCGAAAAA	2760
	ACTTGTGTTC	TCTTCTTTAG	TTTGGTGTTG	AAAATAGTTT	AACAGACTTT	TGACTTCTTT	2820
	TATATGATAT	AATAAAGTAT	AGTATTTATG	AAAAGGACAT	ATAGAGACTG	ТАААААТАТА	2880
	CTTTTGAAAA	TCTTTTTAGT	CTGGGGTGTT	ATTGTAGATA	GAATGCAGAC	CTTGTCAGTC	2940
	CTATTTACAG	TGTCAAAATA	GTGCGTTTTG	AAGTTCTATC	TACAAGCCTA	ATCGTGACTA	3000
	AGATTGTCTT	CTTTGTAAGG	TAGAAATAAA	GGAGTTTCTG	GTTCTGGATT	GTAAAAAATG	3060
	AGTTGTTTTA	ATTGATAAGG	AGTAGAATAT	GGAAATTAAT	GTGAGTAAAT	TAAGAACAGA	3120

			400			
TTTGCCTCAA	GTCGGCGTGC	AACCATATAG	GCAAGTACAC	GCACACTCAA	CTGGGAATCC	3180
GCATTCAACC	GTACAGAATG	AAGCGGATTA	TCACTGGCGG	AAAGACCCAG	AATTAGGTTT	3240
TTTCTCGCAC	ATTGTTGGGA	ACGGTTGCAT	CATGCAGGTA	GGACCTGTTG	ATAATGGTGC	3300
CTGGGACGTT	GGGGGCGGTT	GGAATGCTGA	GACCTATGCA	GCGGTTGAAC	TGATTGAAAG	3360
CCATTCAACC	AAAGAAGAGT	TCATGACGGA	CTACCGCCTT	TATATCGAAC	TCTTACGCAA	3420
TCTAGCAGAT	GAAGCAGGTT	TGCCGAAAAC	GCTTGATACA	GGGAGTTTAG	CTGGAATTAA	3480
AACGCACGAG	TATTGCACGA	ATAACCAACC	AAACAACCAC	TCAGACCACG	TTGACCCTTA	3540
TCCATATCTT	GCTAAATGGG	GCATTAGCCG	TGAGCAGTTT	AAGCATGATA	TTGAGAACGG	3600
CTTGACGATT	GAAACAGGCT	GGCAGAAGAA	TGACACTGGC	TACTGGTACG	TACATTCAGA	3660
CGGCTCTTAT	CCAAAAGACA	AGTTTGAGAA	AATCAATGGC	ACTTGGTACT	ACTTTGACAG	3720
TTCAGGCTAT	ATGCTTGCAG	ACCGCTGGAG	GAAGCACACA	GACGGCAACT	GGTACTGGTT	3780
CGACAACTCA	GGCGAAATGG	CTACAGGCTG	GAAGAAAATC	GCTGATAAGT	GGTACTATTT	3840
CAACGAAGAA	GGTGCCATGA	AGACAGGCTG	GGTCAAGTAC	AAGGACACTT	GGTACTACTT	3900
AGACGCTAAA	GAAGGCGCCA	TGGTATCAAA	TGCCTTTATC	CAGTCAGCGG	ACGGAACAGG	3960
CTGGTACTAC	CTCAAACCAG	ACGGAACACT	GGCAGACAAG	CCAGAATTCA	CAGTAGAGCC	4020
AGATGGCTTG	ATTACAGTAA	AATAATAATG	GAATGTCTTT	CAAATCAGAA	CAGCGCATAT	4080
TATTAGGTCT	TGAAAAAGCT	TAATAGTATG	CGTTTTCTTG	TGGAGATATT	TCCTTCAATT	4140
TTGCTACTAT	ATTAAACAAA	AATCAAAAAG	CAAACTAGAA	AGTTATGCTC	AAATAAAATC	4200
TAAATTTGAC	AATGTAAACC	GAGTCGGATA	GCTTTAAGTA	CTGTTTTGAG	GTTGAAGATA	4260
CGATTTTTGA	TAGGAACTCA	TCAATTTTAG	ATTTTTAAGC	AGCATCAATA	AATTGCTTCC	4320
PTGTTTTGTC	ATAATTTTTT	TATTTAAAAA	ATTATGACma	GAGTGTGCTA	TTCTTTTTAT	4380
GAGAGGTGTA	TGAATATGAT	AAATGTATGT	GATAAATGTA	TGTGATGTTG	GAAAAAGAAT	4440
AAAAGAACTT	AGAATATCTT	CAAATCTTAC	TCAAGATAAG	ATTGCTGAGT	ATTTGTCTTT	4500
GAAŢCAAAGC	ATGATTGCCA	AAATGGAAAA	AGGTGAAAGG	AATATCACGA	ATGGATTTAA	4560
GTAATAAAGC	TTCAAATCTT	AGAAAAAGT	TGGGAGCTGA	TGGTGAATCG	CCGATAGATA	4620
TTAAATTTT	GGTACAAAAG	ATAGAAAATT	TGACGCTGGT	ATTTTATGGA	CTCGGAAAGA	4680
ATATTAGCGG	AGTCTGTTAT	AAAGGAACTC	AGTTCAGTCT	CATTGCAGTC	AATTCAGACA	4740
TGCCATTAGG	AAGGTAAAGA	TTTTCTTTAG	CACATGGACT	GTATCATCTT	TATTATGATG	4800
AGGTGAAGAA	GAGTTCAGTC	AGTCTTATCT	TGATTGGTGA	AGGAGATGAA	ACTGAAAGAA	4860
AAGCGGATCA	GTTTGCTTCT	TATTTTTAA	TTTTCCCATC	TTCACTGTAT	AGGATGGTTG	4920

AGGAAATCAG	AGAAAATGCC	AATAGAACTC	ATCTTGAAGT	AGAAGATATT	ATAAAATTGG	4980
GTCAGTTTTA	TGGTATCAGT	CATAAAGCTA	TGTTATATAG	ATTGAGGAAT	GATGGATACC	5040
TTGATGCAGA	AGAAATTAAA	AATATGGATA	TTAGTGTTAT	AGAGACAGCT	TCAAGATTAG	5100
GCTATGATAC	AAGTTTATAT	CGTCCTTTGT	CAGAAAGTAA	AAAAGAAATG	GCATTAGGAT	5160
AATTATATAA	TTCAACTGAA	CAACTTTTAG	AAAATAACAG	AATTTCGCAA	GGGAAGTATG	5220
AGGAACTGTT	ACTAGATGCT	TTCAGATATG	ATATTGTATA	TGGGCTAGAT	GAAGAGGGGG	5280
GAGTTGTCGT	TTGACTAGTC	GTGTATTTAT	TGATGCAGAT	TGTATTTCAG	TATTTTTATG	5340
GGTTGGCACT	GAACATCTTT	TAGAAAAGCT	CTATTTGGGT	AAAATTGTTA	TTCCACAAGA	5400
GGTGTATGAT	GAAATCAATA	TACCTACAAT	TCCCCATTTA	AAATCTAGGA	TAGATCAGTT	5460
GGTAGCTAAG	GGTTCAGCTG	AGATTGTGAG	CATAGACATT	GGAACTGAAG	AATACGCATT	5520
ATATAGAGAT	TTAACAAGAA	ATCATGATAG	TAACAAGATT	ATTGGTAAGG	GAGAAGGGCC	5580
ATCTATTTCC	TTAGCGAAAA	AGCATAATGG	GATATTAGGA	AGTAATAACC	TAAGAGATGT	5640
ГАААТСАТАТ	GTAGAAGAAT	TTTCTTTAGA	ATATATGACA	ACAGGAGATA	TACTGATTGA	5700
AGCGTTTAAA	GCGTAATTTA	TTACTGAATA	AGAGGGCAAT	CATATCTGGA	ATAATATGCT	5760
PAAAAAGAGA	AGGAAAATTG	GTGCAAATTC	ATTTTCAGAC	TATCTTCGTG	GAAGTATTCA	5820
rcaaaatag a	САААААТААА	TTTGGATAAA	TCGAACTCAC	TATTCAGGAG	GCATATGAGC	5880
AATTCGAAAA	AGAAAAGTGT	CAAATTGAGC	CTATAGGAGT	AGAAGTGAAA	TAGTAAGTCC	5940
FGCATAGTGG	ATGAGAGAAA	AGTTCTCCTT	GAAGTTTTCC	TGAACTATCA	GTCGCATGTC	6000
AAACGATATG	TAGGGTAATG	TGAGAGGGGA	TAGCGAGTAG	TTTTTGGTTA	TTTTATCAAA	6060
AAACTTATAT	TTTATTATAC	CGAATGATAA	AATATAATAA	AAATGATAGA	ATAAGGAAAA	6120
AACATGAATG	TCAAAAAGAT	AATGTÇAATT	TTTCAATCCT	TTTATGTTGA	TGTCAGTATT	6180
GAGGAACTGA	CTTTGACTTT	ACCAATCAGT	TTTGTAAAAA	GGTTTGAGTA	TACTCAAATG	6240
ACTTTTCATA	AGGAATCATT	TTTATTGATT	AAAGAAAAGA	GAAGGGGGAG	TTTGAGTTCA	6300
PTTGTTACTC	AGGCTCGCAC	TATGGGTGAA	AAAGCCAATA	TGGATGTTGT	TTTGGTGTTT	6360
PCGAAGTTAT	CAGACAGTGA	AAAAAAGCAA	TTACTTCAAG	CTAGAGTTCC	GTTTGTAGAC	6420
ITTAAGGGAA	ACCTCTTCTT	CCCTCCATTG	GGACTAGTAC	TCAATGCGAA	TGATACTGAA	6480
GTCCCTAAGG	AATTAACACC	TAGCGAACAA	TTAACGTGGA	TTGCCTTTTT	ATTGACAAAA	6540
GGTCAAAAAG	TAGTAGATGT	TGATTTGCTT	TCACAAGTCA	CTGGACTTCC	AAACTCAACA	6600
ቁምምልጥልርርጥ	GTTTGAGGAC	тттальсст	ም	ТАВАСАВССА	AAATAACCTT	6660

			402			
TACACATATA	CGGTGTCAAA	GAAAGAATTA	TTCTTAAAAT	CCGTGTCATG	ТТТАТТТААТ	6720
CCCATCAAAA	AACGGATTTT	ATTGCCAGAT	GGCGATATAA	AGCAGATAAA	ATCTGTTTCT	6780
AACCTTCTAT	ATGGTGGTGC	TTATGCTTTG	TCGCATTCAA	CTTTTTTAGC	TGAAACGGAT	6840
GAAAATATTA	GCTATGTCAT	ATGGCAGAGA	AAATTCAATC	AGTTATCCTT	GCCACTTTCT	6900
CAGCATGTTT	TAAAATGAAA	GATGCTAGAG	ATATGGAAAT	ATCGTCCTTT	TGTATCTGAG	6960
TTTTGGAATG	АТТТТААААА	TAATCATGAT	AAACAATTTG	TAGATCCGAT	TTCTCTTTAT	7020
TTGACCTTAA	AAGATGATGA	TGACCCACGT	ATAGAGGAAG	AGAGTGAAGC	ACTAGAAAAT	7080
ATGATATTAC	AGTATCTGGG	AGAAGATGAT	GCCAGCTAAT	ACGAAAGTTA	TTTTTCAAGA	7140
AATGTTTGCG	GATTTTCAGA	ACTATTATGT	TCTGATTGGG	GGAACTGCTA	CCTCTATCGT	7200
ATTGGATTCG	CAAGGATTTA	AAAGTCGCAC	AACAAAAGAT	TATGATATGG	TCATCATTGA	7260
TGAAGTAAAA	AATAAGGAAT	TTTATACTAC	CTTGAATCAT	TTTTTAGAAT	TGGGAGAGTA	7320
TCAAGGAAGT	CAGAAAGATG	AGAAAGCGCA	GCTTTTTCGA	TTTACAACAA	CTAATCCTGA	7380
GTTTCCTTCT	ATGATTGAAC	TATTTAGTAT	CTTACCAGAA	TATCCATTAA	AGAAGGACGG	7440
TCGAGAAATT	CCCTTACATT	TTGACCAAGA	TGCTAGTTTA	TCAGCCTTAT	TATTGGATGA	7500
AGATTATTAT	AATATATTGG	TGCATGAAAA	AGAAACCATT	CAGGGGTATT	CGGTATTGAG	7560
TAATTGTGGT	TTATACTCTT	CGAAAATCTC	TTCAAACCAC	GTCAGCTTCC	ATCTACAACC	7620
TCAAAACAGT	GTTTTGAGCA	GCCTGCAGCT	AGCTTCCTAG	TTTGCTCTTT	GATTTTCATT	7680
GAGTATTAAT	TATTTTTAAG	GCTAAAGCTT	GGCTGGATAT	GAGGGAGCGC	TCTGCCACAG	7740
GTGCTCAAGG	TTTAAGTAAG	TCCATTAAAA	AGCATTTGAA	TGACCTTACC	CGTTTGACAG	7800
CTTCCTTGCT	aggagatgaa	AAGTTATCGG	CTATAACATC	AAGTAGTGCG	GTAAAAGCAG	7860
ACATGCACCG	CTTTGTGATA	GAATTAGAGC	CTGTGAAGTC	AACTATTCTT	CAAAATAATG	7920
ACATTTCATT	GGATCAAAAT	GAAATTTTTG	AAATTCTGAA	AAATTTTCTC	GATGGTTAAA	7980
ATAATTGTAG	CGAGATGGCT	ATATTGAATT	CGTCTATATC	TGGAAACTAG	AAAAAACTTC	8040
AATTTCAGGA	GAAAATGAAG	TCAATCTTCC	CACAATCAAA	CGTATAGTAT	CAAGGTTTTT	8100
CAAGACCTGA	TATTATGCGT	TTTTTGCTTT	TCAAAACTTT	TTGCCCAGTC	TTCGTTTTTA	8160
PCCTCTAGTC	ACTTGATTTG	TTTCAGGTGG	TTTTTTAGTA	TAGTAGAATG	AAACGAGAAC	8220
AGGACAAATT	GATCAGGACA	GTCAAATCGA	TTTCTAACAA	TGTTTTAGAA	GCAGAAGTGT	8280
ACTATTCTAG	тттсаатста	CTATAGTTAA	ATCTGCGGTC	AAGTCTACTG	GTGAATCTAT	8340
GATTGTAATA	СТСТТССААА	ATCTCATCAA	CCACGTCAGT	CTTGCCTTGC	AGTCTGTATC	8400
PTACTGACCA	AGCTAGTGAT	GGATTTAGAA	TAGGTGATTT	GGAGCGTCCT	ATTAGCTAGG	8460

AAATGCTGCT	CATAGTCCTT	TGCTGAGGCT	AGGGTGTTTC	AACATTCAAC	ACTCAACTGG	8520
TTGATCTAGT	TGATAGGAAG	GGAGTTACTA	таааатастс	AGGCTTCCAT	CATATTTTTT	8580
GAAACGATTG	TGTAATCAAA	ATGTACCAAT	ATTGTAGTAT	TGGTACAGAA	GATGTTGTGA	8640
atggataaat	ATATCATAAC	TGCTATCTCA	AAAAGATTTC	ATATGTCTGT	GCATATATAA)	8700
TAGACTTCCT	GCAAAACTAG	AATCCTAGTT	CATGATTGAT	AATACCAGCA	ATCAAATTCA	8760
TTCGTAATCC	AAAGCGTTTA	CGATGATTTC	GATAGGTTGT	TGAAAACATT	TTÄAACGTTT	8820
CTACTTTGGC	AAAGATGTTC	TCAACCTTGC	TTCTCTCCTT	AGATAGCGCA	TGGTTATAGG	888
СТТТАТСТТС	AGCTGTTAGC	GGCTTGAGTT	TGCTGGATTT	ACGTGGAGTT	TGTGCTTGAG	8940
GACATATCTT	CATGAGCCCT	TGATAACCAC	TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	9000
PATTTCTGCA	ACTCATTTTG	AACAACTTCA	TATCATGACA	ATAGTTCACA	GTGATATCCA	9060
AAGAAACAAT	TCTCCCTTGA	CTTGTGACAA	TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	9120
PTTTACCAGA	ATCATTCGCT	AATTCTTTTT	TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	9180
PCAATCATTA	CCGTGTCCTC	AGAACTAAGA	GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	9240
ACAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	CGGATTAAGT	TGCTTTCGTG	AATACCAAAA	9300
PCAGCCGCAA	TTTCTTCATA	AGTGCGGTAT	TCTAGGCTTA	ATTTAGGTTT	TCGTCCACCT	9360
TTGCGTGTT	TAAGTTGATA	AGCTGTTTTT	AATACAGCTA	ACATCTCTTT	AAAAGTCGTG	9420
CGCTGAACAC	CAACAAGACG	CTTAAATCGT	GTATCAGTTA	ATTGTTTACT	TGCTTCATAA	9480
PTTCGCAGGG	AGTCTATTGA	CTCTTTGGTA	GGTGTCAATG	TTTTTTTCAT	CTATCCCGAG	9540
ATTATTTC	CCGCCATTTG	TATTTGCAAA	TGCTGAGTAG	GTTTCCCAGA	AAGACTCTGG	9600
AGATTGTTT	TTAGCTTTTT	TGTATTCTAA	ATCAACCCCT	TCAAATTTTA	AGTCCATATT	9660
TTCCTTTAC	ATCTGTTTTT	TGTGGTTCTG	GTATTTGTTC	AAGTTGAGTG	ATAATATAGC	9720
Gaattgaatt	TCGAGAGTTT	TTACTCAGTT	AATTTCTTTT	TTAACCCACT	TTAATTGCTT	9780
TTTAACACG	GGTTAAAAAA	GAAATTAAAG	TGGGTTAATT	TTTCTTGA	•	9828

(2) INFORMATION FOR SEQ ID NO: 42:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3369 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

			404			
60	AATAAAGTAG	CCGTGGCTAT	GACGTGAGGT	CAAGAGTTTG	TATTTTTGAA	CCGCGAAAGA
120	GCCTTGGTCA	AACCTATGCT	AGGACTATGA	GATGTCATCA	GTTTTTAGAC	AAGTTGACGA
180	CCGAAACCTT	AACTCGTAAA	AGGAAGAATT	GCGGATTTGA	TCAGGAAATT	AGTCACTTCG
240	AATTTTGATA	TTCTATGACG	CAATTACAAG	CTTGAAGCGG	AGCAGAACCC	CACCAGTTCA
300	TTAGATAACT	TAAACAAATT	AAGTTTTTGG	TTGGAAAAAG	CCTGAATAGA	TTTTGAAACG
360	AGGAGAATTG	TAATCGCGTG	AATTTTTGGA	TGAGATGTGC	AGTAGTTATT	CAGATTTTTA
420	TTGTGCTAGG	CCTGTAGTGT	GGCTGTGATG	TGCTAGCACA	GGAAAGTCCA	TTTCTCATGA
480	AAGTCCTTGG	TGAAATGGCT	TTACGGCAGT	CGAGAAATCG	AGCCTAGGGA	CGAAACCATA
540	ACAGAGAGAG	CTTTCTGGAA	GTGACGGAGT	AAGTGCCACA	GTAGGCTTGA	ATAGGCCAGA
600	TGGAGTACGC	GGTCGGGGCA	CCCAAATTTT	AAGCTAGCAA	TAAACCCCTC	TGGAACGCGG
660	GACAGATGAT	GTTAGTGGTA	AGCTAGAGCT	GACTGCTATC	GTAGTATTCT	GGAAACGAAC
720	AAAATTGCAT	TGGCTTATAG	GAACAAAACA	GTCACTTCTG	AGTGGTCCTA	TATCGAAGGA
780	ATAGAAAGGT	AAGTGGACAT	TCATTTTTA	TTTCTCAACC	GCTGAGAAAT	ATAGGTTGGG
840	CAGCAGGGCT	GCAACTGTGG	TAATTTAATT	AAAAAGAATT	TGTAACATGA	CTTGCAAGAC
900	TTGAAAATGG	GATTGTCAGG	GTTGGGCTAC	AAGTGCGAGA	GTTGGTCGTG	TGAGGCTGTC
960	GGCTTCGGGC	ACCAACCTTT	TATTATCGAA	ACGTGAGAGC	TTTCAAGGAG	ACGTGTTCGT
1020	AAGAGCTATT	AAGACTTTTG	GTTCCCAGCT	TCGTAGGAAC	ATCAAAATTA	AGCAGATCGT
1080	GGTTCCCGAT	CTTGGAGCTC	ттатттасса	ATTGGGAAAA	TTCGCTTTGG	TCAGGGAGTT
1140	AGGCTATTTC	CCCAGTGTTC	TCACAATGAG	AGTCCAAACT	AAATGTGTTA	TTCAAAAGCT
1200	GGGTTCCTCT	CGCCCAGAAG	ACACTATGCT	AATTGCAGAA	GTTGTCAAGA	TAAGAAAGCT
1260	TGGCAACTGT	CTCAAAGATG	GGTCTCTATT	TTAAGATTGA	GGCCCAGAGT	GATGGAGAAT
1320	AAAAAGGTGG	TATCGTACCG	TAAACGTGGT	CTAGCCTCTT	ACGACCGGGT	CATGATTGAT
1380	GGTATCCAGA	CTTTCTAACT	CATTTTACAA	TGGCAGCAGC	AAGGAAAATA	CGCTCCTATC
1440	CAGTTATGAT	TGTATTGAGG	GGGGACTTTC	CCTGTGGTTC	ATTGATCCGA	CAAGCCTTTG
1500	GGAACTGGAT	TTTGAGGAAT	CTCTTTTGCA	GTCTTCGTCG	ATGGCGCCAG	TGCTAGAAAG
1560	ACCGTGAGCT	AAAAAAGTAG	AGAAGCGGCT	AAGTGCGCAC	TTGATTCAAG	CAGCGATCGC
1620	CTAAGGCCAA	GTGGAAATTG	TGCTCGCATG	GTGATATTGA	ATCATGGGCT	TGAGCTGGAT
1680	TGCAGGATTT	CAGATGCGCG	TACTTTTAAG	CAGGAGACAT	GCTGGTGTTG	TGCTCAGGTA
1740	AACGTTTGTC	CCTTATGGTG	TTCCAATCCG	GAGTAATCAT	AAAATCAATG	ACGTTCCGAT
1800	CACCGCTGAA	CAAGTATTTG	TGAGATGGGG	AGCTCTATGC	GGGGTGACCA	AGATGATGCA

AACTTGGAGC	AAATTTATCC	TGACTAGTGA	TGAAGCTTTT	GAAAGCAAGT	ATGGTAGCCA	1860
AGCAGATAAG	AAGCGTAAGT	TATACAACGG	AACCTTGAAA	GTGGATCTAT	ATCAATATTT	1920
TGGTCAGCGT	GTCAAACGGC	AAGAGGTAAA	ATAGAAAGGG	ATACTCATGA	GTAAAAAAAG	1980
ACGAAATCGT	CATAAAAAAG	AAGGTCAAGA	ACCGCAATTT	GATTTTGATG	AAGCAAAAGA	2040
GCTAACAGTT	GGTCAAGCTA	TTCGTAAAAA	TGAAGAAGTG	GAATCAGGAG	TCTTGCCTGA	2100
GGATTCCATT	TTGGACAAGT	ATGTTAAGCA	ACACAGAGAT	GAAATTGAGG	CGGATAAGTT	2160
TGCGACTCGT	СААТАСАААА	AAGAGGAGTT	CGTTGAAACT	CAGAGTCTGG	ATGATTTAAT	2220
TCAAGAGATG	CCTGAGGCTG	TAGAGAAGTC	AGAAGCTTCT	TCGGAGGAAG	TTCCATCTTC	2280
TGAAGACATC	TTACTACCCT	TGCCTCTGGA	CGATGAGGAG	CAAGGCTTGG	ATCCTCTATT	2340
GCTAGATGAT	GAAAATCCAA	CAGAAATGAC	TGAAGAAGTG	GAAGAGGAGC	AAAACCTTTC	2400
TCGTCTGGAT	CAAGAGGACT	CAGAAAAGAA	aagtaaaaa	GGCTTTATTT	TGACCGTTTT	2460
GGCGCTTGTA	TCAGTAATTA	TTTGTGTCAG	TGCTTATTAT	GTCTACCGTC	AAGTGGCTCG	2520
TTCGACTAAG	GAAATTGAAA	CTTCTCAATC	AACTACAGCC	AATCAATCGG	ATGTGGATGA	2580
TTTTAATACA	CTTTATGACG	CCTTTTACAC	AGATAGCAAT	AAAACGGCTT	TGAAAAATAG	2640
CCAGTTTGAT	AAACTGAGTC	AACTCAAGAC	TTTACTTGAT	AAGCTGGAAG	GTAGTCGTGA	2700
ACATACGCTT	GCCAAATCTA	AATATGATAG	TCTAGCAACG	CAAATCAAGG	CTATTCAAGA	2760
TGTCAATGCT	CAATTTGAGA	AACCAGCTAT	TGTGGATGGT	GTGTTGGATA	CCAATGCCAA	2820
AGCCAAATCG	GATGCTAAAT	TTACGGATAT	TAAAACTGGA	AATACGGAGC	TTGATAAAGT	2880
GCTAGATAAG	GCTATCAGTC	TTGGTAAGAG	CCAGCAAACA	AGTACTTCTA	GCTCAAGTTC	2940
AAGTCAAACT	AGCAGCTCAA	GTTCAAGTCA	AGCAAGTTCA	AATACGACTA	GTGAGCCAAA	3000
ACCAAGTAGT	TCAAATGAGA	CTAGAAGTAG	TCGCAGTGAA	GTCAATATGG	GTCTCTCGAG	3060
TGCAGGGGTT	GCTGTTCAAA	GAAGTGCCAG	TCGTGTTGCC	TATAATCAGT	CTGCTATTGA	3120
TGATAGTAAT	AACTCTGCCT	GGGATTTTGC	GGATGGTGTC	TTGGAACAAA	TTCTAGCGAC	3180
TTCACGTTCA	CGTGGCTATA	TCACTGGAGA	CCAATATATC	CTTGAACGTG	TCAATATCGT	3240
TAACGGCAAT	GGTTATTACA	ACCTCTACAA	GCCAGATGGA	ACCTATCTCT	TTACCCTTAA	3300
CTGTAAGACA	GGCTACTTTG	TCGGAAATGG	CGCTGGTCAT	GCGGATGACT	TAGATTACTA	3360
AGCAGTCGG			•			3369

(2) INFORMATION FOR SEQ ID NO: 43:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9713 base pairs

406

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

AAGTTTACAA TTTAAATGAA TTAACAATTT TCCCAACTAA AAGCACTCCA GTTACCGCAA 60 CGTTTGTACT GAATGTACTA AATCGCATTC CATCAACTTC ATCTGTTTCG TCAACTTGAA 120 CAGATACTAA TTGAAGATTT AATACTTCTG CTGCCATAGC TAGCTCCTCC TATTTAAATT 180 TTTGGGATTA AGTACTTTAT CCACCCTCAT ATACTCTCTC CACCAGTAAA ATGCAAGCAA 240 TGATACAAAA TAGATTTAAC TATTTTATAT AGCGAAAACT TACAAATTTT TAAGAAATAA 300 TTTTTGCATT CTTAAAGATA AAATAGGAAC TTTTAGTAAT AAATATTAAA ATAAATAAAA 360 TAATAGATAC TATAAAATTT GGAAGTATTA ACCCCAAAAG ATTCATATCA TCTATTAAAA 420 TATCCTCTAA AGAGTAGTAT ATTAAAGCCA TAATTTTAAT GTTAAGTAAA AATGCAATTA 480 ATGAAGTAAC AAATGTCAAA AATATAGCCT CACCAACTTT AATCTTAACC ATCTGGTAAT 540 TAGAAGTTCC TAAAATTTCA AATTGCTGAA TCTCAATCCT TTCTTGATGC GATGACAAAA 600 ATGCAATTGA AATAATATT GCAAGTACTA TCAAAATTGG TGCTCCTACA TAGACAATAA 660 ATGCTACTTT TAGCTCTAAA TCACTGTCAT CTTGAAATTG AGATAGTATA TTCTGAGAAA 720 TCATTTGAAA ACTAGAAATT AGTAATATAG CTCCTGTAAT TGCAGCACTG ATAGATTTTA 780 TATAAGACTT ACAATATAGT AAATTCCACT TCGAAACAAT GAACATAAAA TTATTTCTAA 840 ATATAATTAT AGAAAGTAGT TTGATAAAAC ATGACTGTAT AAAAGGAGAT AATTGATAAA 900 TAATCACAAT ATCTAAGATT ACAATATTGA ATATTATCTG GGCCTTCGCT AAAATTGTGC 960 TATCTTGGAA AATTTGTTGC AAAGAAAGCA ACCAGATAAC ACTAAAACCA GCCAATAGCA 1020 GTATTCTTTT TACTATTGAA AGAACATGCC TTATTTTAGA ACTCTTCCTA TTTCTAATCT 1080 TCTTGAACGT ATAAAAGCAA CCACTTAGAA AGGCTAAAAA TGAAATCAAC ACTACTGTAA 1140 TGATACATCC AACAGCACTC GTTTGAAATT GGATATCAGG TAATATATTT TCCCCGAAAA 1200 AGTATTGTAA AAAATAATAA TAATTTGACG TAACAAATAT AGAGCATAGA TATGCAATAA 1260 AACTAATAAT CGAGGAAATG ATAAAAATCT GTCCCCCCAC AAGAAATGAT AGTTGAAGGC 1320 GACTTGCTCC CAACACCTCC AGAAGTTCGT AATCATCTCT AAAAATTTCA ACCAACATAT 1380 TTATTATGTT AGAGAGCACA AAGAATAATG TTACTCCTCC GAATACTATC GGAAACATAA 1440 AAATTGGTTT AGGATCTGGA AGTCCGACAA ATACTTGCGA ATTATTCTCA ACATTAATTA 1500 CCCCATTAAC AGCCAATCCC ATAACTAAAC TCGAAACAAA AATTACTGGT GAAACGCCTA 1560

ACCATTGTTT	CTTATTATGT	AAAAATTGAT	AGTAAACTAA	TCTGAGCATC	TCTATTCCTC	1620
CGTAGTTGAT	TGTÁCCTCTA	AGATTTTATA	CAACTCTTCC	CCGCTAGGTC	TATGAAGTTC	1680
TTTGAAAATT	TTTCCATCTT	TCAATATTAA	TGCACGATCA	GTTTTCGAGG	CCAATTCTAT	1740
ATCGTGCGTT	ACCATAATTA	CACACTTACC	CGCCCCTACT	AACTCTCTCA	ATAATTCAAA	1800
AATTACTTCA	CGAGAAACGC	TGTCTAAAGC	CCCAGTTGGC	TCATCAGCAA	ATATTATATC	1860
ACTATCAGCA	ATAACCGCTC	TAGCTATAGC	AACCTTCTGT	TGTTCTCCAC	CAGACAGAGT	1920
TCCAACAAAA	TCGTTTAAGC	CAGCATTAAA	CTTCATTCTT	TTGAGTAAGT	TTTCTACATT	1980
TTTAATAGTT	AATTTTTTT	GTGATAATCG	CAAAGGAAGT	GCTATATTTT	CTATTACCGG	2040
CAGGGAAGGT	ATTAAATTGT	ATGCTTGAAA	TATAAAAGAT	ACTTCGTTAC	GTCTTATACT	2100
TGACAATŤTT	GCATTTCTGA	TTTTATAGGG	GTTGATTCCA	TTTAAAATTA	CTTCCCCACT	2160
TGTTGGTTCA	AGCAAACTAG	AAATACATTT	TAATAAAGTT	GACTTTCCAG	AACCACTAAT	2220
TCCTAGAATA	CTTATAAATT	CTCCTCTCGA	AGCAGAAAGA	GAAACATTTT	TCAGCACTTG	2280
CAACGTTTTA	TTATTTCCTA	GTAAAAATTG	ATGATACAGC	CCTTTCACTT	TTAATATATA	2340
ATCTTTATCC	ATATTCTTGC	CTCCAATCAC	TTAATTTTGA	AAAGTGTTCC	ATTTTCCAAT	2400
TATATATAT	CAGTGTATCT	CTTGTCATTT	AAGTCATAAT	GATGTGAAAC	TTCAATAAAT	2460
GAAATACCTA	AATTGAACAG	AATATCATGT	ATGGAATTTG	AATTATCATT	АТСТАААТТА	2520
GCTGATATTT	CGTCAAATAA	GTACACTTTA	TTATTTCTAA	TCAGAGCTCT	AGCTAAAGCT	2580
ATTTTTTGTT	TTTGACCTCC	AGACAAATTA	CTACCATTTT	CACCACATTG	ATAATTTAGT	2640
ATATCTATCT	TTTCTAATTC	TTCATATAGA	TTTACCTTTT	TTAACACCTC	AATTATCTGA	2700
TCATCTGAAA	AATATTCATT	TTGAAATAAA	GTTACGTTCT	CACGAATAGT	AGTGTCAAAA	2760
ATATATGGTG	TCTGATCAAC	TGTTGGTATT	GAATCTGAAC	TCTTTTTCCC	ATGTGATAAC	2820
AAATTTACAT	AACCTTTTTG	TGGCTTTAAA	GAACCATTAA	AATTTAAATT	AATCGTTGTT	2880
TTCCCACTAC	CAGAAGTTCC	TGTTAATAAT	ACCCTAAATG	GTGACTTAAA	TGAGAAGTCA	2940
ATACTTAATT	TATTTTCTGG	TGTAATAGAA	TATACAACAT	CTTTCATGTG	ТАТСТСАТСТ	3000
attgatgaag	TATACAGTCC	GTTATTATCA	TGTTCAGCGT	CTATAAAATT	CTTCTCTCCA	3060
CTTAAGTATT	TTAAAAACGG	TTTCCTTAAA	TCTTTGGTTG	TATTTATCTT	ATTTAATGAA	3120
TAGGCAATTG	ATTGTATCGG	CCCTAAAACT	TTATCGTTTG	CTAAGAAAAT	ACCTATCAGT	3180
TCACTAAAAG	AAAGGCTTTT	ATGATAAATT	ACAAAATAAC	ATCCTACAAC	CAAGGGAACT	3240
AGAAAGCAAA	AACCTGAAAT	TAGTACTGCA	ACCAATTTTG	AAAGAACCTC	TGATCGTTTC	3300

			408			
AAATTAAAAG	TAGAATCTTC	TAGTTTATCC	AACTTTTTAT	CCGACAAACT	AATTATTTCT	3360
ITAGTAACAG	AATAAGATTT	TAATGTCTTA	AAACCATTAA	AAATTTCTTT	TATTATGTGA	3420
GTATACTCTG	CATTGCTGTT	AGAGTACTCA	TTAGCTGAAT	TAGACAACAT	CTTCTTCATA	3480
AAGACAGGTA	CTATAATCGG	CAATGCTGAT	AATACAATAA	ATATTATTGA	nACTAGGAAG	3540
AAATAAATTI	GCATAAAACT	TAGAGAGACG	ATGAACAACA	ATATTGAAGA	AATTATTTCA	3600
AAAATTTGTC	TAAAATAGTT	TTCTTCGATT	AATCTCAAAT	CATTTGACAA	AACTGAAATA	3660
atagatgagt	AATCTTTAAC	CATTTCAGAA	GAAAGATACT	GTTCTCTAAA	ATATCCTTGT	3720
ATTTTTAATT	CATTTATATC	TTTAGTTATT	GATGCTTCCG	TTACTTCTAA	ATAGTAATTT	3780
GATATATAGA	TTGCTGACCA	ACCCAGAATA	CTTATAGCAC	CAAATCTTAG	AACGTCAGAA	3840
AATGAGGAAG	TCTGATTTAA	ACTACCTGCA	TATACAATAA	TTCCTGAGAG	CAAGACACCA	3900
PTAAACGAA G	ATAGAAATAT	TAAAATCCCC	ATTAATATAA	GTTTAGTCTT	ТТТТАТААТТ	3960
TAATAATTT	TCATAAGTTA	TTCCTTCCCA	CTTCTTCAAA	GAAATAATTT	AAAGTATCAA	4020
PCATTAAGAG	AACATCTGAT	GGAGTAAAAC	CTCCATGACC	AGCTGCTTTG	TTTAAATACA	4080
ACAAACTTTT	AACTCCAATA	GAATTTAATT	TCTTTGACCA	CTCTATCACT	TCGTTATTAT	4140
PAATATATGG	GTCTTTCTCA	CCCAAAATAT	TAACTATAAC	AGTATTTGAG	TCTCGTGCCT	4200
PTTCAATATT	TTGCATAGGC	GAATATGACT	TTATATAAGC	CTTTACTTCA	GGGTCTCTAA	4260
PATCTCCCCA	CTCTGCTATT	TCGGTCTTAG	AAAGAGGATC	ATTTGGATTC	TGAAGTGTAT	4320
CATAAGGATT	TATAAATGGC	GAAAATAAGA	GAATGCTTTG	CAATAAATTT	TTTTCCTCGT	4380
rcaacaccgc	ACCAGCAATT	ATTCCACCTG	CACTAGAAGT	TATTAAACCT	AATCGCTTAC	4440
FGTCAATTAC	ATCATTTTCC	CTTAAATAAT	TTACTCCCTC	AATAAAATCT	CTGATAGAAT	4500
PCCATTTGTT	TAACGCCTTT	CCTGAGCGAT	ACCATTCACC	ACCCAAATAG	CCTCCACCTC	4560
TACATGAAC	TATAGCATAA	ATAAAACCTG	CATCTATTAT	AGATAACATA	ATTTCATCTA	4620
AATCAGAATT	ATCATTCTTA	CCATAAGCCC	CATAGACACT	TAGAATACAT	TTTTTTCTTC	4680
TTGGGAGCTC	ATCCGTATCT	TCACTTTTCC	AAAATAAAGA	AATCGGTATG	CTTACATCAT	4740
AACTGTCTTT	TTTAGTCCAA	ATCACCTTAG	TTTATAAAAA	AGTATTATTC	GATTTŢATGA	4800
rgggtctttc	AAATTCAGTT	TTTAATGTAT	TTTCTATTAA	ATCAAAACTA	AGTATTTTTT	4860
CGTAAAAAGT	TCTCCTCTCT	AAAAACAGAA	GAACACGATC	AGAAAATGAA	TTTTCATAAA	4920
STGTTGTCTT	TTCATCAAAT	GTTATCTTAT	TAACACTCAA	CTCCCTCAAA	CTATTATTTT	4980
TAAATGTAGC	AAGATAAAAG	ACGGAATTCG	CTGCGTTTGA	ACAGTCTAAA	AGGATATAAC	5040
STCCTATACA	GTGAACTCTT	CTAGCCCTAT	CTTGATATGG	TATAGTAATA	GAAACTCTGT	5100

CTCCCGAAGA	AGTTTCCCTT	AGAATTAGTT	GATCTTTCTT	TTCTTCAGTT	GAAGAGAGCC	5160
CAAGAAAGTA	CTGTGCTTTT	TCTGTACTAA	ATAGAGCGAT	ATCTCTAGGT	GTTGGGGCTA	5220
CCGTTTCTGT	GTAAGAGTGT	CTAACAAAAC	CCGTCCGGTC	GAAACTGTAT	AGAAAAATCC	5280
TGCCTTTCTG	AAAGTCTACT	GACTTTACAA	AACAATTATT	GCTATCAATG	TGGACTATTT	5340
TTAATCGAAA	AGAGCATTCG	TTTTCTTCAA	ACAGTTCCTC	TTCTGTAAAG	CTATCAAAAG	5400
ATTTATAGAA	TAACTTACTT	GCCTCCCGT	ACTCTTTGGA	GCGAGTATAC	ATAACACCGA	5460
ATTTACCCAA	ATAGAACGAA	CTTTCTACTG	AAATATCTTC	AATGATAAAT	AACTCTTCCA	5520
TAGTATATTT	TTTTATTCCA	ATTAAATTAG	TCGTACGCAG	TGAGGATACA	ACCAAAACTA	5580
TATAACTCTC	ATCAGATGAA	ATCCTAACAT	CCTGTAAGAT	ACTATCATCT	GGCAAAGTAT	5640
ATTTTTCCAC	ATCAAAGACA	ATTTTAAGTG	AATTTGAATT	GTCTAAACTG	GAAGAACTAA .	5700
CCTTAGGAAT	CCAGTCATTA	TCTTCGACAT	ACCATTCCTT	TATTACACCA	GTATTGGGTA	5760
TACTCCAATT	ATCAAATTGG	TACCAATATC	GCCCTCTCCT	AAATATCAAA	GAATTCCATT	5820
TTTTTAATTC	CTGAAATGAT	GAAGAGATAG	ACCTCTTATA	GTGTGTTTTT	TCCTGTATTG	5880
AAAAAATTTAA	TATTTCATTA	CTCTGATTCA	CAAGTATGAC	CCCTTAATAA	TGGTATCTAA	5940
ATATTATATT	TGAGGAAGAA	TCGTCAATTT	ATTATCCATT	ATTGATACCA	ATCCAATTGC	6000
AACACCCGCA	AATCCCGAAG	CAATATCTGT	TGTTATCTTT	AAACCATTAT	CTCCCGCAAT	6060
ААСАААТССТ	TCTTCAATTA	CACACAAATA	TCTATAAAGT	TGTTCAATTA	ATTTCTTTTG	6120
TCCTGAAAAG	TTATCATCGA	TATCACTATA	TATATTATTA	GCAACTTCAA	GACCACAAAA	6180
TCCGTTAAAT	AAACCTGGTA	ATACACAAAA	AACTACATCA	GTTGCCCTCT	CTAAAGAAGT	6240
TAAATATTTT	AAGTATTTGC	TTGACAAGAT	TTCTTTATTT	СТАТТААТАА	GTAAAAGCAG	6300
GCCAGCACTT	CCAGTTGCTA	GATATGGTAG	TAATCTATGA	CCTTGGCTGT	ACTGCAATGA	6360
ATTATTACTA	TCTACTTTAT	AAGCAACTAA	TTCTTTATCT	ACAGCCAATT	CTAGACCATT	6420
TTTATAGATA	CTTTCACCAG	TTAATTTATA	AGCTTCACCG	AAGAGCCAAG	CTACCCCTGC	6480
GTGACCATAT	AGTAATCCAC	CAAAATTCTC	ATAAGGATCG	TTACTCTGAA	CATCACTAGC	6540
GCCAACTTTA	CAAAAAGTTT	CTGGATTTTC	TATATAATTT	AAAGTATATT	CTCTAAGCCT	6600
AATTAGTATT	TCTTCTCCTA	GTTTATTATC	AATTCCCCCT	TTACTAAGAA	AATACAGTCC	6660
AACCAGTAAA	ATTCCAGCCT	GCCCACTATA	TAAATTTTTA	TTTTGTGAAT	TCTCAAATAT	6720
СТСТАТАААА	TGAGTTGTAA	AAAGTTCAAC	TGCCCGATCT	ATCTCCCCAA	ATTCATAAAT	6780
GAGCCAGATT	GTACCAATTT	TACCATCAAA	AAGACCAGAA	AGGGACGATT	TCTTAAAATT	6840

			410			
ATTTACTGCC	TCATTAATAA	CCTGTGTTCG	AATCTCATAA	TAGTCATCAA	ACTTGAAATT	6900
TTTTACTTTC	TTAGCTAGTT	GTTGATAACT	CCAAAGGATA	GCTAAATCTG	AAAACGCAAT	6960
rccttgatta	AAATTCAGAC	CATAATAATG	AACTGGGAAG	AATCTTGATT	GAAATTCTTT	7020
ACGCCACTGT	CCATAAGTTA	GCGTAAACCC	TCTCAATAAT	TTTATAATAA	AATCTTGTAT	7080
ATCTTGCTCA	CTCTCGATAG	TTCTAATCTC	ATGCATGGGT	TTTAAAACTT	TTTTCCTGGA	7140
AATATTCTCA	ATCTGTGGAC	ATTTAGAATC	TAGATATGAC	AATAAACTTT	CTACATAATC	7200
TATATGTTCT	CTTGTATAAC	CCAAAGACTC	AAATAGTTTT	TTTCCTTCTA	TCCTGGTTTG	7260
ACTTACATAG	TTGTATGTCA	AATCCGATGT	AGTTACTAGT	GGCATGTATA	AATAATGAGC	7320
TATTTGTCTA	ATACCATACC	AATCTATCTC	ACTGGGAAGT	GTTTCTCGCC	ATGCTCTAAA	7380
ACCAGGGGCT	GCAACTTTAT	GTACAACTTT	TTCATCATTT	GAAAAGACAG	CCTGTTCCCA	7440
GTCTATTATA	CTAATCTCAT	CTTCATCCTT	AACCAAGATA	TTTCCTAAAT	GTAAATCTTG	7500
ATGATATACA	TTTTCAGAAT	GAAACTTATT	CGTTAAATCG	ATGAGTTTTT	CTACTATCTT	7560
TGAAACTCTC	AATAGATAAT	CTTTGGTCTT	ATCAACAACT	TCATATAAAG	GAAAATTATT	7620
GGTAACCCAT	CTATTTAGTG	GAACGCCCTT	CATATGTTCA	ATTCCTAAGA	AGGTGTGCTC	7680
CCAGATCTTA	CCGTGCCAGT	ATATTTTAGG	CGTCTCACTC	CATTCATTTA	Gaatittag	7740
TGCTTTGCAC	TCCGAAGCTA	ATTTCTCTGA	AGAATAAGTA	CCATCAAATC	CTAGACCTGT	7800
ATACGGTCTA	GCCTCTTTTA	TTTTATTAAA	TTTCCCATCT	TCTTTTAGCC	TAGCATTATA	7860
TATCCCACCA	CTGTTTGAAA	ATCTAATTGC	ATTATCTATA	ATAAAGGGAA	AGTCTCCCTG	7920
PTTTTTATCT	TTCTTGTCAA	GCCATTTATT	CAAAAAGTCA	GGGGGCACTA	TACCTTTTGG	7980
TAAATTTTAA	ACTGGTAAAC	GTTCATCTTT	AACAACTTCA	TCGCCAACAA	TTAATTCATC	8040
AATAGCAACC	TTCTTTTCAT	CATCCCTTGA	CGGCCTAAAC	ACACCATACC	TCAGATATAT	8100
TGGTGCTTCA	TCCCAACGTT	TATCGCTTAA	AATATATGGC	CCATTATATT	GCTTTAAGGC	8160
ACTTTCTAAC	CTTTGCAAAA	CCGACTCTAA	TTCATTTTGA	TTTGGATAAC	ATGTAATAAA	8220
TTTACCAGAA	AATCCTCGAC	TAACCAATTT	CCCGTTTCGC	ATGATAAATT	TGTCTTCTGT	8280
ACTAAGATGT	TTAAATGGAA	TTCGCATTTC	ATGGCAAATT	TTTGCTACAT	CTTGTAACAA	8340
TTCATGTGAA	CTGTTATACT	CTGAACTAAT	GTGTATTTTC	CACCCTTGTC	TTTCAACAAA	8400
PTTTCCAATA	GGGTATTGAT	AAACCCACTC	ATCATTATTC	ATTACTTCGT	GCCAATTAAA	8460
AGGCAGACTT	ACTTGGTACT	TTATGCTAGT	ATCTGTACTA	TAATCATTAT	TAGTGAAAAA	8520
GAAAGGATGC	TCCAAATTGA	AATTATAATC	CATAACAAAA	TCTCCAAGAA	ATTTTATCAA	8580
АСТТААТАТА	TCTATAGCTA	GACAGACTTA	TTTAAATAAA	AAGGGAGAAT	CCTTTGGATT	8640

411

CTCCCCATAT.	AAGCACTAAC	ATTCCAACGT	GCACATATTG	GAACGACATC	CATAACTCCA	8700
GAGAATCTCT	AAAGTTTACA	ATTTAAATGA	ATTAACAATT	ТТСССААСТА	AAAGCACTCC	8760
AGTTACCGCA	ACGATTTGTA	CTGAATGTAC	TAAATCGCAT	TCCATCAACT	TCATCTGTTT	8820
CGTCAACTTG	AACAGATACT	AATTGAAGAT	TTAATACTTC	TTCTGCCATA	GCTAGCTCCT	8880
CCTATTTAAA	TTTTTGGGAT	TAAGTACTTT	ATCCACCCTC	ATTATACTCT	CTCCACCAGT	8940
AAAATGCAAG	CAATTATACA	ATGTTGTCAC	ATAGAAAATA	ATGTTTCCGT	AACTTTTCAA	9000
AGTAACTTCC	ATCTCTCTCC	CAAAACTGGA	AGTTAGTTTT	AGAAGTTACC	TAAAAATCAG	9060
GTCACCTATT	TTAAAAAAGC	AGCAAACTAT	AAACTAGTAG	GTTCCACACC	AAATGTAGTC	9120
CCATACTGCC	CCATAAGTCA	GATTTATAGC	GCACCATACC	TAAAAACATC	CCAAGTGAAA	9180
CATACAAACA	CCAAGCTAGA	ATGGTTCCTG	TATGATGTGC	TAAGGCAAAT	AAAACACTTG	9240
TCAAAGCAAC	TCTGATATCT	AATTTTCTGA	CCAAATTCCA	TAAAATTTCT	CGATACAGAA	9300
ATTCTTCAAC	CATACTCGCA	TTGATTAAGA	ACAATAAAAA	TGAAAACCAA	GGAATTTGAT	9360
GTTGAAGGCC	AATTAAGTTT	GCTTGATTCG	TGCTTCCTTG	AGCATGAATC	AGACTAAAAC	9420
ATAGACTTAT	AATCAGTAGG	CTAACAAATT	CAACACCAAG	CCATTTCATC	CTAGATTTCA	9480
TATTGACCTT	ATGCGCTTGT	TTGCGTTGGC	CATACATCCA	TAAAAAAGAA	ATGAGTGACG	9540
AACCATAGAG	AATCTGTAGT	ATAGTTMACT	CACCGATACA	AAGAAATTTC	AATAAGTATA	9600
GAGTTACCAA	TASGACATTT	ACTTGTTGGA	ATATATAAAC	TGGAATTATT	CTTTTCATAG	9660
TTACCTCCGA	AATAAATCTT	CATAATCTAA	ATCTAATACC	TGCACAATCC	TTT	9713

(2) INFORMATION FOR SEQ ID NO: 44:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 8657 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

AAAGAAATTG	TCAGAGAGTG	GCTAGATGAA	GTAGCAGAGC	GGGCTAAGGA	CTATCCAGAG	60
TGGGTGGATG	TTTTCGAGCG	TTGCTACACC	GATACCTTGG	ACAATACGGT	TGAAATCTTA	120
GAAGATGGTT	CAACTTTTGT	CTTGACTGGG	GATATTCCTG	CCATGTGGCT	TCGAGATTCG	180
ACAGCCCAAC	TCAGACCCTA	CCTTCATGTA	GCTAAAAGAG	ATGCCCTCCT	GCGTCAGACC	240
ATTGCAGGTT	TGGTCAAACG	TCAGATGACC	TTGGTACTCA	AGGATCCCTA	TGCTAACTCC	300

			412			
TTCAACATTG	AGGAGAACTG	GAAAGGGCAC	CACGAGACTG	ACCACACAGA	CCTTAACGGC	360
TGGATCTGGG	AGCGCAAGTA	TGAGGTGGAT	TCGCTTTGCT	ATCCTTTGCA	GTTGGCTTAT	420
CTCCTCTGGA	AAGAGACTGG	CGAGACTAGT	CAGTTTGATG	AGATTTTTGT	CGCAGCGACT	480
AAGGAAATTC	TCCATCTGTG	GACGGTGGAA	CAAGACCACA	AGAACTCTCC	TTATCGTTTT	540
GTCCGAGATA	CGGACCGTAA	GGAAGACACC	TTGGTAAATG	ATGGCTTTGG	ACCTGACTTT	600
GCAGTGACAG	GTATGACTTG	GTCAGCTTTT	CGTCCGAGTG	ATGACTGTTG	CCAGTATAGT	660
TACTTGATTC	CGTCAAATAT	GTTTGCTGTA	GTAGTCTTGG	GTTATGTGCA	AGAAATCTTC	720
GCAGCATTAA	ACCTAGCTGA	TAGCCAGAGT	GTTATTGCTG	ATGCCAAGCG	TCTTCAGGAT	780
GAAATCCAAG	AAGGAATCAA	AAACTACGCT	TACACCACCA	ACAGCAAGGG	CGAAAAGATT	840
TACGCTTTTG	AAGTGGATGG	CCTAGGAAAT	GCCAGCATCA	TGGATGATCC	AAATGTACCA	900
AGTCTACTAG	CTGCGCCCTA	TCTGGGCTAC	TGTTCGGTCG	ATGATGAAGT	GTATCAAGCT	960
ACTCGTCGTA	CCATTTTGAG	CTCTGAAAAT	CCATACTTCT	ACCAAGGAGA	ATACGCAAGC	1020
GGTCTCGGCA	GTTCTCATAC	CTTCTATCGC	TATATCTGGC	CAATCGCCCT	TTCTATCCAA	1080
GGCTTGACAA	CAAGAGATAA	GGCAGAGAAA	AAATTCTTGC	TGGATCAGCT	GGTTGCCTGC	1140
GATGGTGGTA	CAGGTGTCAT	GCACGAAAGC	TTTCATGTAG	ATGATCCGAC	CCTCTACTCT	1200
CGTGAATGGT	TCTCCTGGGC	TAACATGATG	TTCTGTGAGT	TGGTCTTGGA	TTACTTGGAT	1260
ATTCGCTAAG	GGGCTCGCTT	TAGCTCAACC	GATTCTTATC	AGAATCACAA	GTTTACATTT	1320
AAAACGTTAA	TTAAATTTAA	TAGAATGAGG	ттттасттса	TGGAAAATGT	TGTTGTACAT	1380
ATTATCTCAC	ATAGTCACTG	GGATCGTGAG	TGGTACTTGC	CTTTTGAAAG	CCATCGTATG	1440
CAGTTGGTGG	AATTGTTTGA	CAATCTCTTT	GATCTCTTTG	AAAATGACCC	TGAGTTCAAG	1500
AGTTTCCACT	TGGATGGACA	AACTATTGTC	CTTGATGACT	ACTTACAAAT	TCGCCCTGAA	1560
AATCGCGACA	AGGTCCAACG	CTACATTGAC	GAGGCAAAC	TTAAAATTGG	TCCCTTTTAC	1620
ATCTTGCAGG	ATGACTACTT	GATCTCCAGT	GAAGCCAATG	TCCGCAATAC	CTTGATTGGT	1680
CAACAAGAAG	CTGCCAAATG	GGGTAAATCA	ACCCAGATTG	GCTACTTTCC	AGATACCTTT	1740
GGAAATATGG	GACAAGCGCC	TCAAATTCTT	CAAAAATCAG	GCATTCACGT	GGCGGCCTTT	1800
GGTCGTGGTG	TGAAGCCGAT	TGGATTTGAC	AACCAAGTCC	TTGAAGATGA	GCAGTTTACG	1860
TCTCAGTTTT	CAGAAATGTA	CTGGCAGGGT	GTGGATGGTA	GTCGTGTTTT	AGGTATTCTC	1920
TTTGCCAACT	GGTACAGTAA	CGGGAATGAA	ATTCCAGTTG	ACAAAGATGA	GGCCTTGACC	1980
TTCTGGAAAC	AAAAATTGTC	AGATGTGCGT	GCCTACGCTT	CGACCAACCA	ATGGTTGATG	2040
ATGAACGGCT	GTGACCACCA	GCCTGTACAG	AAAAATCTGA	GCGAAGCCAT	TCGTGTGGCA	2100

AATGAACTCT	TCCCGGATGT	AATCTTTGTT	CATAGTTCTT	TTGATGAATA	TGTTCAAGCT	2160
GTAGAAGGTG	CGCTTCCTGA	ACACTTATCA	ACTGTTACAG	GCGAGTTGAC	CAGTCAGGAA	2220
ACAGATGGCT	GGTACACACT	TGCCAACACT	TCTTCATCCC	GCATTTACCT	AAAACAAGCC	2280
TTCCAAGAAA	ATAGCAACCT	CCTAGAGCAA	GTGGTAGAAC	CCTTGACTAT	TATCACTGGT	2340
GGACACAACC	ACAAGGACCA	GTTGACCTAT	GCTTGGAAAA	CACTTTTGCA	GAATGCGCCA	2400
CATGATAGTA	TCTGTGGCTG	TAGCGTGGAC	GAAGTTCACC	GCGAGATGGA	AACGCGTTTT	2460
GCCAAGGTCA	ACCAAGTAGG	AAACTTTGTT	AAAAGTAACT	TGCTCAACGA	GTGGAAGGGT	2520
AAAATTGCTA	CGGATAAGGC	TCAAAGTGAC	ТАТСТСТТТА	CTGTCATTAA	CACAGGCTTG	2580
CATGATAAGG	TCGATACTGT	CAGCACAGTG	ATTGATGTGG	CGACTTGTGA	TTTCAAGGAA	2640
TTGCACCCAA	CAGAAGGCTA	CAAAAAGATG	GCTGCTCTTA	TCTTGCCAAG	TTACCGTGTG	2700
GAGGACTTGG	ATGGTCGTCC	TGTAGAGGCT	ACAATCGAAG	ACCTCGGAGC	TAATTTTGAG	2760
TATAATTTAC	CAAAAGACAA	GTTCCGCCAA	GCTCGTATTG	CTCGTCAAGT	GCGCGTGACC	2820
ATTCCAGTTC	ACCTAGCGCC	GCTTTCTTGG	ACAACCTTCC	AATTGCTGGA	AGGAAAACAA	2880
GAACACCGTG	AGGGTATTTA	CCAAAACGGA	GTGATTGATA	CACCATTCGT	AACGGTGAGT	2940
GTGGATGACA	ACATCACAGT	CTATGACAAG	ACAACTCACG	AAGCCTATGA	AGACTTTATC	3000
CGCTTTGAAG	ACCGTGGGGA	CATCGGAAAC	GAGTATATCT	ATTTCCAACC	AAAAGGAACA	3060
GAGCCAATCT	TTGCAGAGCT	TAAGGCCAC	GAGGTCTTGG	AAAACACAGC	TTGCTATGCT	3120
AAAATCTTGC	TCAAACATGA	ATTGACCGTG	CCTGTCAGTG	CGGATGAAAA	GCTAGAAGAA	3180
GAGCAACAAG	GTATCATCGA	GTTTATGAAG	CGTGAGGCTG	GACGGTCAGA	AGAATTGACA	3240
AACATTCCTC	TGGAAACTGA	GTTGACTGTC	TTCGTTGACA	ATCCACAAAT	CCGCTTCAAG	3300
ACTCGCTTTA	CTAACACTGC	CAAGGATCAC	CGTATCCGTC	TCTTGGTCAA	GACTCATAAC	3360
ACGCGTCCAA	GCAATGATTC	TGAAAGTATC	TATGAGGTGG	TGACACGACC	AAACAAACCA	3420
GCTGCTTCAT	GGGAAAACCC	TGAAAATCCT	CAACACCAAC	AAGCTTTTGT	CAGTCTGTAT	3480
GACGATGAAA	AAGGGGTGAC	TGTATCCAAC	AAGGGATTGA	ATGAATACGA	AATCCTTGGG	3540
GATAACACCA	TTGCCGTGAC	CATTTTGCGT	GCATCAGGTG	AGCTAGGTGA	CTGGGGCTAC	3600
TTCCCAACGC	CAGAAGCACA	ATGCTTGCGG	GAGTTTGAAG	TCGAGTTTGC	ACTTGAATGC	3660
CACCAAGCCC	AAGAACGCTT	CTCAGCCTAT	CGTCGTGCCA	AAGCCTTGCA	GACACCGTTT	3720
ACCAGCCTTC	AGCTTGCTAG	ACAGGAAGGA	AGCGTGGTTG	CGACTGGTAG	CCTCTTGAGC	3780
CATTCTGTTC	TCAGCATACC	GCAAGTTTGT	CCAACAGCCT	TTAAGGTAGC	TGAAAATGAA	3840

				414			
•	GAAGGCTATG	TGCTTCGTTA	CTACAATATG	TGTAGTGAAA	ATGTACGTGT	GCCAGAAAGT	390
•	CAACATCTCT	TCCTTGACCT	ACTTGAACGA	CCATACCCAG	TTCATTCAGG	ACTATTGGCT	396
•	CCACAAGAGA	TTCGTACAGA	ATTCATCAAA	AAAGAAGAAA	тттаатттса	AAAAGTAAAC	402
i	ATCAAAAGAA	AGGAGGGCG	AAAAAGTAAG	AACTAACTGC	TGATTCGCCC	CTTTTATGGT	408
i	AAAAACAATG	ACCATTGCAA	CGATTGATAT	CGGAGGGACT	GGGATTAAGT	TTGCCAGTCT	414
(GACTCCTGAT	GGGAAAATAC	TGGATAAGAC	AAGTATTTCA	ACGCCTGAAA	ACTTGGAGGA	420
•	PTTACTAGCG	TGGCTAGATC	AACGCTTGTC	AGAACAGGAT	TACAGTGGGA	TTGCTATGAG	426
(CGTTCCAGGT	GCAGTCAATC	AAGAGACAGG	TGTGATTGAT	GGCTTCAGTG	CGGTGCCCTA	4320
(CATCCATGGC	TTTTCTTGGT	ATGAGGCGCT	TAGCTCTTAT	CAGCTACCTG	TCCATTTAGA	4380
ž	AAATGATGCC	AACTGCGTTG	GACTCAGTGA	ACTACTAGCT	CATCCAGAGC	TTGAAAATGC	444
i	AGCCTGTGTC	GTGATTGGGA	CAGGGATTGG	CGGAGCCATG	ATTATCAATG	GTAGACTTCA	4500
•	PCGAGGTCGC	CACGGTCTGG	GTGGAGAATT	TGGCTACATG	ACAACCCTTG	CCCCTGCTGA	4560
1	AAAACTTAAT	AACTGGTCGC	AACTAGCATC	AACTGGGAAT	ATGGTACGAT	ACGTGATTGA	4620
1	AAAATCTGGT	CATACTGATT	GGGACGGTCG	CAAGATTTAC	CAAGAGGCCG	CAGCTGGTAA	468
•	PATCCTTTGT	CAAGAAGCCA	TTGAGCGCAT	GAACCGCAAT	CTGGCGCAAG	GCTTGCTCAA	474
•	PATCCAGTAT	CTGATCGATC	CAGGTGTCAT	CAGTCTGGGT	GGCTCTATCA	GTCAAAATCC	4800
2	AGATTTTATC	CAAGGTGTCA	AGAAGGCTGT	TGAAGACTTT	GTCGATGCCT	ACGAAGAATA	486
(CACGGTCGCA	CCAGTTATCC	AGGCCTGCAC	CTATCACGCA	GATGCCAATC	TCTACGGTGC	4926
7	CTTGTCAAC	TGGCTACAGG	AGGAAAAGCA	ATGGTAAGAT	TTACAGGACT	TAGTCTCAAA	498
(CAAACGCAAG	CTATTGAGGT	TTTAAAAGGT	CACATTTCTC	TACCAGATGT	GGAAGTGGCT	5040
(STCACTCAGT	CTGACCAAGC	ATCTATCTCT	ATCGAGGGTG	AGGAAGGTCA	CTATCAATTG	510
2	ACCTACCGCA	AACCTCACCA	ACTTTATCGT	GCCTTGTCCT	TGTTGGTAAC	AGTTCTAGCA	5160
(GAAGCTGATA	AAGTAGAGAT	TGAGGAACAA	GCAGCTTACG	AAGATTTGGC	TTACATGGTT	5220
(SACTGTTCTC	GAAATGCGGT	GCTGAATGTG	GCTTCTGCCA	AGCAGATGAT	TGAGATATTG	5280
(CTCTCATGG	GCTACTCAAC	CTTTGAGCTT	TACATGGAAG	ACACTTACCA	GATTGAAGGG	5340
(CAGCCTTACT	TTGGCTATTT	CCGTGGAGCT	TATTCAGCAG	AGGAGTTGCA	GGAAATCGAA	5400
(SCCTATGCCC	AACAGTTTGA	CGTGACCTTT	GTACCATGCA	TCCAGACCTT	GGCCCACTTG	5460
7	rcggcctttg	TCAAATGGGG	TGTCAAGGAA	GTGCAGGAGC	TCCGTGATGT	AGAGGACATT	5520
(CTTCTCATTG	GCGAAGAAAA	GGTTTATGAC	TTGATTGATG	GCATGTTTGC	CACGTTGTCT	5580
I	AACTGAAGA	CTCGCAAGGT	CAATATCGGG	ATGGACGAAG	CCCACTTGGT	TGGTTTGGGA	5640

CGCTACCTGA	TTCTGAACGG	TGTTGTGGAT	CGTAGTCTCC	TCATGTGCCA	ACACTTGGAG	5700
CGCGTGCTGG	ATATTGCTGA	CAAATATGGT	TTCCACTGCC	AGATGTGGAG	TGATATGTTC	5760
TTCAAACTCA	TGTCAGCGGA	TGGCCAGTAC	GACCGTGATG	TGGAAATTCC	AGAGGAAACT	5820
CGTGTCTACC	TAGACCGTCT	CAAAGACCGT	GTGACTCTGG	TTTACTGGGA	TTATTATCAG	5880
GATAGCGAGG	AAAAATACAA	CCGTAATTTC	CGCAATCATC	ACAAGATTAG	CCATGACCTT	5940
GCATTTGCAG	GGGGAGCTTG	GAAGTGGATT	GGCTTTACAC	CTCACAACCA	TTTTAGCCGT	6000
CTAGTGGCTA	TCGAGGCTAA	TAAAGCCTGC	CGTGCCAATC	AGATTAAAGA	AGTCATCGTA	6060
ACGGGTTGGG	GAGACAATGG	TGGTGAAACT	GCCCAGTTCT	CTATCCTACC	AAGCTTGCAA	6120
ATCTGGGCAG	AACTCAGCTA	TCGCAATGAC	CTAGATGGTT	TGTCTGCGCA	CTTCAAGACC	6180
AATACTGGTC	TAACGGTTGA	GGATTTTATG	CAGATTGACC	TTGCCAACCT	CTTACCAGAC	6240
CTACCAGGCA	ATCTCAGCGG	TATCAATCCC	AACCGCTATG	тттттатса	GGATATTCTT	6300
TGTCCGATTC	TTGATCAACA	CATGACACCT	GAACAGGACA	AACCGCACTT	CGCTCAGGCT	6360
GCTGAGACGC	TTGCTAACAT	TAAAGAAAAA	GCTGGAAACT	ATGCCTATCT	CTTTGAAACT	6420
CAGGCCCAGT	TGAATGCTAT	TTTAAGTAGC	AAAGTAGATG	TGGGACGACG	CATTCGTCAG	6480
GCCTACCAAG	CGGATGATAA	AGAAAGTTTA	CAACAAATCG	CCAGACAAGA	ATTACCAGAA	6540
CTTAGAAGCC	AAATTGAAGA	CTTCCATGCC	CTCTTTAGCC	ACCAATGGCT	GAAAGAAAAC	6600
AAGGTCTTTG	GTTTGGATAC	AGTTGACATC	CGTATGGGCG	GACTCTTGCA	ACGCATCAAA	6660
CGAGCAGAAA	GCCGTATCGA	GGTTTATCTG	GCTGGTCAGC	TTGACCGCAT	CGACGAGCTG	6720
GAAGTTGAAA	TCCTACCATT	TACTGACTTC	TACGCAGACA	AGGATTTCGC	AGCAACTACA	6780
GCCAACCAGT	GGCATACCAT	TGCGACAGCG	TCGACGATTT	ATACGACTTA	ATATTCTTCG	6840
AAAATCTCTT	CAAACCACGT	CAGCTTCCAT	CTGCAACCTC	AAAACAGTGT	TTTGAGCAAC	6900
CTGCAGCTAG	CTTCCTAGTT	TGCTCTTTGA	TTTTCATTGA	GTATAAAAAC	AAGAACACCT	6960
TGCTTGGCGC	AGGGTGTTTC	GCGTGAAACA	GAAGAATTAT	CTGGTTTCAA	ATGCTACAGT	7020
TAGACAAACT	TATGATAAAA	TAGCAGAAAG	TGAATGTTTC	CTAAGAGCAA	TTGGAGGTAT	7080
TATGCTACAC	TTAAAATTAG	TAAAACAAGA	AATAGAAGCT	GAAAAGCCAG	CATCTGTAGA	7140
AGCTTGGATC	ATTTCCGTCA	AAATTTAAAA	AGGTTGCTAC	CGACATATAT	AGATTCCAAA	7200
AACAAAAACG	TTAGCGGAAC	TAGCAGATGT	GATTTTATGG	AGTTTTGATT	TTGCAAATGA	7260
TCATGCTCAC	GCATTTTTCA	TGGATAATGT	TGAGTGGAGT	CATGCAGATT	CTTACTTTCG	7320
TAGCTTTGTT	AGTGACGATG	TTGAAGAACG	TTACACAGAA	AATGTCTATC	TGGATAGCCT	7380

AAGTGTCAAA	САААААТТТА	AGTTTATTTT	416 CGACTTCGGT	GATGAATGGC	GTTTTGAATG	7440
		AGACAGAGGA				7500
		CAGATTATGA				
	•					7560
AAATCAGTCT	GTGTAGGCTT	AGTATTTCAA	TAGACTTCCT	GCAAAACTAG	AATCCTAGTT	7620
CATGATTGAT	AATACCAGCA	ATCAAATTCA	TTCGTAATCC	GAAGCGTTTA	CGATGATTTC	7680
GATAGGTTGT	TGAAAACATT	TTAAACGTTT	TTACTTTGGC	AAAGATGTTC	TCAACCTTGC	7740
TTCTCTCCTT	AGATAGCGCA	TGGTTATAGG	CTTTATCTTC	AGCTGTTAGT	GGCTTGAGTT	7800
TGCTGGATTT	ACGTGAAGTT	TGTGCTTGAG	GACATATCTT	CATGAGCCCT	TGATAACCAC	7860
TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	TATTTCTGCA	ACTCATTTTG	AACAACTTCA	7920
TATCATGACA	ATAGTTCACA	GTGATATCCA	AAGAAACAAT	TCTCCCTTGA	CTTGTGACAA	7980
TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	TTTTACCAGA	ATCATTCGCT	AATTCTTTTT	8040
TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	TCAATCATTA	CCGTGTCCTC	AGAACTAAGA	8100
GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	ACAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	8160
CGGATTAAGT	TGCTTTCGTG	AATACCAAAA	TCAGCCGCAA	TTTCTTCATA	AGTGCGGTAT	8220
TCTAGGCTTA	ATTTAGGTTT	TCGTCCACCT	TTTGCGTGTT	TAAGTTGATA	AGCTGTTTTT	8280
AATACAGCTA	ACATCTCTTT	AAAAGTCGTG	CGCTGAACAC	CAACAAGACG	CTTAAATCGT	8340
GTATCAGTTA	ATTGTTTACT	TGCTTCATAA	TTTCGCAGGG	AGTCTATTGA	CTCTTTGGTA	8400
GGTGTCAATG	TTTTTTTCAT	CTATCCCGAG	AATTATTTTC	CCGCCATTTG	TATTTGCAAA	8460
TGCTGAGTAG	GTTTCCCAGA	AAGACTCTGG	AAGATTGTTT	TTAGCTTTTT	TGTATTCTAA	8520
ATCAACCCCT	TCAAATTTTA	AGTCCATATT	TTTCCTTTAC	ATCTGTTTTT	TGTGGTTCTG	8580
GTATTTGTTC	aagttgagtg	ATAATATAGC	GAATTGAATT	TCGAGAGTTT	TTACTCAGTT	8640
AATTTCTTTT	TTAACCC					8657

(2) INFORMATION FOR SEQ ID NO: 45:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11384 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

TCTATTTTGG GTATAGACTT ACCTATAAAG AAAAATATCT ATACACTGCC TTACTAGCTA 60 TACTGAACGA GTCAACAAAA ACGATATATA TTGATGATAT AAATACAGCA AGATTTTTTA 120

ACTTCT	TTGG	CAATGATATT	CCTAATTCGT	СТТТАААААА	AATTGACTAT	ATCGCACCTT	180
CAGAAA	TTGT	TTCATTTAGT	ACGTACGTTC	GACAACGTTC	TAAAGTAATT	CCTAAAATTT	240
rggaac.	ATAT	ATTAAAATCA	AGTTTTTTAT	TAGAGAATAT	AGATGTTTCT	GGTTACACTG	300
ГАААТА	TTTT	AGAAGATCAA	TTAACAAAAC	ATAGAACAAT	CAAAATTAGT	AAAAACTAAC	360
rggttg.	ATCT	CATGTATAAA	TACCTAACAA	AACCACGCGC	CTTGCCTGCT	GATGGAAAGA	420
AAGGTA	CAAA	TACATGAATA	TCAAAGAAAA	AATCAAAAAG	AATGGCCAAA	GAGTTTATTA	480
IGCTAG	TGTT	TATCTAGGCG	TTGACCAACT	AACGGGCAAA	AAAGCCCGTA	CAACTGTTAC	540
AGCAAC	CACT	AAAAAGGGCG	TTAAAGTAAA	AGCGCGTGAT	GCGATCAATA	CTTTTGCTGC	600
Paatgg	CTAT	ACAGTTAAAG	ACAAGCCGAC	AATTACAACA	TATAATGAGC	TTGTAAAAGT	660
rtggtg	GGAT	AGTTACAAGA	ATACAGTTAA	GCCAAATACT	CGCCAATCCA	TGGAGGGATT	720
GGTTAG.	agtg	CATTTATTGC	CTGTATTTGG	CGATTACAAG	CTATCTAAAC	TTACTACGCC	780
PATTCT	TCAA	CAGCAAGTAA	ACAAATGGGC	TGACAAGGCA	AATAAAGGCG	AAAAAGGGGC	840
ATTTGC	TAAC	TACTCTTTGC	TCCATAACAT	GAATAAGCGT	ATTTTGAAAT	ATGGCGTAGC	900
PATCCA	GGTA	ATACAATACA	ACCCAGCTAA	TGATGTCATC	GTTCCACGCA	AACAGCAAAA	960
AGAAAA	GGCT	GCTGTCAAAT	ACTTAGACAA	CAAAGAATTA	AAACAGTTTC	TTGATTATTT	1020
AGATGC	TCTG	GATCAATCAA	ATTATGAGAA	CTTATTTGAT	GTTGTTCTGT	ATAAGACTTT	1080
ATTGGC	CACT	GGTTGCCGTA	TTAGTGAGGC	TCTGGCTCTT	GAATGGTCTG	ATATTGACCT	1140
AGAAAG	CGGT	GTTATCAGCA	TCAATAAGAC	ACTAAACCGC	TATCAGGAAA	TAAACTCACC	1200
PAAATC.	AAGC	GCTGGTTATC	GTGATATACC	AATAGACAAA	GCCACATTAC	TTTTACTGAA	1260
ACAATA	CAAA	AACCGTCAAC	AAATTCAGTC	TTGGAAATTA	GGCCGATCTG	AAACAGTTGT	1320
ATTCTC	TGTA	TTTACGGAGA	AATATGCTTA	TGCTTGTAAC	TTACGCAAAC	GCCTAAATAA	1380
GCATTT	TGAT	GCTGCTGGAG	TAACTAACGT	ATCATTTCAT	GGTTTCCGCC	ATACACATAC	1440
TATOAT	GATG	CTCTATGCTC	AGGTTAGCCC	GAAAGATGTT	CAGTATAGAT	TAGGCCACTC	1500
TAATTT.	AATG	ATCACTGAAA	ATACTTACTG	GCATACTAAC	CAAGAGAATG	CAAAAAAAGC	1560
CGTCTC	AAAT	TATGAAACAG	CTATCAACAA	TTTATAAAAA	ATAAGGGTGA	CCCATTTCCG	1620
GCTAC(CCTC	TTACTATACC	AAAAATTAGT	AGGGGTAGTA	AAAAGGGTAT	ТАААТТАТАА	1680
AAAGCA	CTAA	GGGAAAGCGC	CCCAAAGTGC	TTATTTCAAA	GGCTTTATAG	ССТАТААТСА	1740
CATAAA	GAGA	ттатттттта	AGGTTGTAGA	ATGATTTCAA	TCCACGATAT	TCAGCTACTT	1800
ממרממי	ርጥጥር	СФСФФССВФВ	CCANCOAPT	CCTTCTATTT	AGCGATGCGG	тстстасстс	1860

•			418			
AAAGTGAACC	AGTCTTGATT	TGTCCTGCGT	TAGTTGCAAC	TGCAATATCA	GCGATTGTTG	1920
AATCTTCAGT	TTCACCTGAA	CGGTGTGATA	CAACAGCAGT	GTAACCAGCT	TCTTTAGCCA	1980
TTTCGATAGC	TTCAAAAGTT	TCAGTAAGAG	TACCGATTTG	GTTAACTTTG	ATAAGGATTG	2040
AGTTAGCAGC	ACCTTCTTGG	ATACCACGTG	CAAGGTAGTC	AGTGTTTGTT	ACGAAGAAGT	2100
CGTCACCAAC	AAGTTGTACT	TTCTTACCAA	GACGTTCAGT	AAGAGCTTTC	CAACCATCCC	2160
AGTCGTTTTC	ATCCATACCA	TCTTCAATAG	TGATGATTGG	GTATTTGTTA	ACCAATTCTT	2220
CAAGGTAGTC	GATTTGTTCT	GCAGATGTAC	GAACAGCAGC	ACCTTCACCT	TCAAATTTAG	2280
TGTAGTCGTA	AACTTTACGT	TCTTTATCGT	AGAATTCTGA	TGAAGCACAG	TCAAATCCGA	2340
TAAATACGTC	TTTACCTGGT	ACATATCCAG	CAGCTTCAAT	CGCAGCAAGG	ATAGTTTCAA	2400
CACCATCTTC	AGTTCCTTCG	AAACGAGGAG	CGAATCCACC	TTCGTCACCT	ACGGCAGTTT	2460
CCAAACCACG	TGATTTAAGG	ATTTTCTTAA	GAGCGTGGAA	GATTTCAGCA	CCGTAACGAA	2520
GGGCTTCTTT	AAATGTTGGC	GCACCAACTG	GCAAGATCAT	GAACTCTTGG	AAAGCGATTG	2580
GAGCGTCAGA	GTGAGAACCA	CCGTTGATGA	TGTTCATCAT	TGGAGTTGGA	AGAACTTTAG	2640
TGTTGAATCC	ACCAAGATAG	CTGTAAAGTG	GGATTTCAAG	GTAGTCAGCA	GCAGCACGAG	2700
CTACAGCGAT	AGACACACCG	AGGATTGCAT	TCGCACCCAA	TTTACCTTTG	TTAGGAGTAC	2760
CGTCAAGTGC	GATCATAGCA	CGGTCAATAG	CTTGTTGATC	ACGTACATCG	TAGCCAATGA	2820
TAGCTTCAGC	AATGATGTTG	TTTACGTTGT	CAACAGCTTT	TTGTGTACCA	AGACCACCGT	2880
AACGAGATTT	GTCACCGTCG	CGAAGTTCAA	CTGCTTCGTG	TTCACCAGTA	GAAGCTCCTG	2940
ATGGAACCAT	ACCACGTCCG	AAAGCACCTG	ATTCAGTGTA	AACTTCTACT	TCAAGTGTTG	3000
GGTTACCGCG	TGAGTCTAGG	ACTTCGCGAG	CGTAAACATC	AGTAATAATT	GACATTTTTT	3060
ACTCTCCTTA	TGAGTTAAAT	TTTTTACACC	TCTATAATAC	CTTAAAACCC	CTCCTTTTTC	3120
AAGAAAAAÇ	GTTATCTTTG	TGCAACTTTT	CCTTAACTTT	ATAAAGTAAT	CGCTTTCTTT	3180
TGTCTGTTTT	ATTCTAACTT	TTATGATATA	CTGTTTTCAT	GACAGATTTA	TCAAAACAAT	3240
TACTTGAAAA	AGCTCATGGT	GGGTTAAAAA	TAAATCCGGA	TGAGCAAAGA	CGCTATCTTG	3300
GTACTTTTGA	GGAAAGAGTT	CTTGGATATG	TAGATATTGA	CACAGCAAAT	AGCCCTCAGT	3360
TAGAAAAAGG	CTTTTTATTT	ATTTTAGAAA	ACCTTCAGGA	AAAAGCAGAG	CCACTATTTG	3420
TGAAGATTTC	ACCAACTATC	GAATTTGATA	AGCAAGTTTT	СТАСТТАААА	GAAGCAAAAG	3480
AAACTGATAG	TCAAGCCACC	ATAGTATCTG	AAGAGCATAT	TACTTCTCCT	TTTGGCCTGG	3540
TTATTCATAG	CAATGCACCA	GTTCAAGTAG	AAGAAAAAGA	CCTTCGACTT	GCTTTTCCAA	3600
AACTTTGGGA	AGTTAAAAAG	GAAGAACCAG	CCAAAACATC	CTTATGGAAG	AAATGGTTTA	3660

GCTAAATCT	T GCACATATTT	AATAAGTGCC	CAATATTGGC	AGCCGTGCGC	TCCAGATAGA	3720
AACTGGCAT	Т ТТТСАААСТА	TCTTCTAAAG	GTTCACTTTT	СТССААААТА	GAAAAGACAG	3780
CTTGGATAT	T TTCAAATGGT	AGGGGAGGTA	AATCTTCAGC	AAGACTACCG	CAAATAGCAA	3840
TAACAGGAA	C TCCAACAGGG	GTTCTTTTTG	CAACACCTAT	AGGCGCTTTC	CCAGCAAAGC	3900
PTTGACTAT	C AAGTCTTCCT	TCTCCAACAA	CAACCAAGTC	AGCATCTGAA	ACTTTCTTAT	3960
CAAAGTTGA	T TAAGTCCAAG	CAGGTATCAA	TTCCAGACAC	GATACTTGCC	TGAGCAAAGG	4020
CACACAAAC	C ACCAGCAAGG	CCTCCACCTG	CTCCTGCTCC	TTTAATTTCT	AATGTTGCAG	4080
GTGAGAATT	т ттсатааааа	TCTTGGATCG	CCTGATCTAC	GACTGCAAAC	ATAGTCGGAT	4140
GTAGACCTT	T TTGATTGCCA	AAAGTGTAAG	TCGCACCTTG	ATGACCACAT	AAGGGACTCA	4200
CGACATCTG	C TAAAATATGA	ATTTGAACAC	CTTCAGGAAT	TTTATAGCAA	TTTTCTGTTG	4260
AAACAGAAG	C TAAGTTTAAT	AAGGATTGAC	CGGAAGCAGG	CAAGACATTT	CCATCCCTAT	4320
CATAAAATT	G ATAACCTAAA	CCAGCAGCAA	TCCCCAGTCC	TCCATCATTA	CTGGCCGTGC	4380
CACCAACAC	С САТАТАААТА	TCTTTAATCC	CTTTAGAGAT	GAGATGAAGA	ATCAACTCTC	4440
CAATACCAC	A AGTTTGGATT	TGAAGTGGAT	TTCGTTTCTC	TAGCGGAATT	TTTCCAAGAC	4500
CAACCAAGT	C AGCTACTTCA	AATAGTGCCA	GTTCCCCTTT	TTGAAAATAG	CGCATGGCTT	4560
CTTTTTGTC	C AAAAGGGTCT	GTCACTTGGA	TCCATTTTTC	TTTTAGGTCA	AGAGAATGTC	4620
GGATAGCAT	C TACAGTACCT	TCTCCCCCAT	CACCAACAGG	GCAGAGGAGA	CATTCTACAT	4680
CTGCTATCG	A TTGTTGGAAG	CCTCTTTTTA	TTGCTTCAGC	TACCTGTTGA	GCTGTCAAGC	4740
PTTCCTTAA	A CGAATCCGGT	GCAATTACAA	TCTTCATATT	TTCCCTCATT	CTAAACAGTC	4800
AATCAAAGG	G AGAACTTCTA	AAAAATCCCT	CTTGTCAACA	TGATGTGGTA	TTTCTTTTT	4860
GAGCACTTC	T TTGGCACAAA	AGGCGATTCC	TAACTTCGCC	GACTTCAACA	TTAATAGATT	4920
ATTAACCCC	A TCACCGATTG	CCACCGTTCT	TTCTTTAGAA	AGTTTTAGTT	TCTTTCTCCA	4980
TTTTTCCAG	A GTCTCTTTT	TGACCTGGGG	ACTTATAATT	TGTCCAACTA	ATTTTCCTGT	5040
TAAAAGACC	T TCTTTGACTT	CAAGCTAGTT	GGCAGTGAAA	TAGGCAATAC	CAAGGGATTT	5100
TGCTAATCT	C TCCAACTATT	GGTGTAAATC	CACCAGACAC	CAGACCAACT	AGGATGCCAT	5160
ICTTTTGGA	G AATAGAGATG	AACTCTGGGA	CATTTAGCGA	TAGATGAATT	GAGTTGAAGA	5220
CGTTATCAA	A GACCAAAATA	GGAAGACCTT	CCAACAAGGA	CACTCTTTTT	CTTAAACTGC	5280
TTTCAAAGA	C CAACTCTCCT	CGCATTGCTC	GACTTGTAAT	CTGCGAAATT	TCCGCCTCAT	5340
						F 400

			420			
CCAAAACACA	CAAGCCTTTT	ACTTGAGACA	TCAGTTCTCC	TCTCTAAACA	GCCTAAAAAT	5460
CGTATGAAGT	CATCATACGA	TTTTATCTAT	TAATTAACTA	AACTATGGTA	CAAGTCAAGG	5520
TATGACTTGC	AGGCTGTATC	CCATGAGAAG	TCACTCTCCA	TAGCTTGTTT	TTGTAGGTTT	5580
CTCCAAATGT	CTGGATGGTT	TCTATACAAG	TCCAATGCTG	TTTGGAAAGT	CCAATTTAAC	5640
CAATAAGGAG	ATAGATTGTC	AAAGCTAAAG	CCAGTACCGC	TTCCTTCGAT	TGGATTGAAA	5700
GCGCGAACTG	TATCTCGCAA	GCCTCCAACT	TCATGGACCA	ATGGCAAGGT	TCCATAACGC	5760
ATAGCCATCA	TTTGAGACAA	GCCACACGGT	TCAAAACGAC	TTGGCATGAG	GAAGAGGTCA	5820
CAAGCAGCGT	AGATTTCCTG	AGCAAGTTTG	ACATCAAAAG	TGATATTTGT	TGATAGCTTG	5880
TCTGGGTAAA	TCTGAGCAAA	CCATGAGAAA	GCTCCTTCAA	AGGCTGGATC	GCCAGTTCCC	5940
AAAAGAACAA	TCTGAACATC	TTCTTGCAAG	ATATGGTGAA	GACTTTCGAC	CACCACATCA	6000
AAACCTTTTT	GACGTGTCAA	ACGAGAAACA	ATTCCCACCA	GTGGAACGTC	TGCTCTAACA	6060
GGCAAGCCAA	CTCTTTCTTG	CAATTTTGCC	TTATTTTTGG	CTTTCCCAGA	CAAATCTTCC	6120
TGATTGAAAT	GATAGTCTAA	AAGAGCATCC	GTCTGAGGAT	TATAAAGATC	AGCATCAATC	6180
CCATTCACGA	TACCAGATAC	TTTACCAGAC	TCCATTTTAA	GAATCTGATC	CAAATTACAT	6240
CCAAACTGAC	TAGTCATAAT	TTCATGAGCA	TAGCTAGGTG	AAACGGTTGA	AACACGGTTC	6300
GCATAGAGAA	TACCTGCCTT	CATCCAGTTC	AGACAGTTGT	TCCATCGAAG	GGTGCCATCA	6360
GCGTAACGTT	CAAAGCCAAC	TCCAAACAAA	TCACCCAACA	TTCCTTCTGA	AAATTGTCCT	6420
TGGAATTCTA	AATTATGAAT	GGTTAAAACT	GTTTCAATGT	CCTCATAGGC	TTGAATCCAA	6480
CGGTATTTTT	CCTTCAACAA	GAAAGGAATC	ATAGCTGTAT	GGTAGTCATG	AACATGGAGA	6540
AGATCAGGAA	TAAAGTCAAT	CCTTTCCATA	GCCTCAATGG	CAGCCAGTTG	GAAAAAGGCA	6600
AAGCGTTCTC	CGTCATCAAA	ATCACCGTAA	ACATGACCAC	GGAAGAAATA	ATATTGATTG	6660
TCAATAAAGT	AGAAGGTTAC	ACCATTTAAT	ACTGTTTTCT	TAATTCCACA	ATACTGTCTG	6720
CGCCAACCAA	CGCTCACCTC	AAAATGAAGC	ACATCTTCAA	TCTGATTTCC	AAATTTAGCC	6780
TCTACCATAT	CATAGTAGGG	TAAAATCACT	GCAACTTCGT	GCCCAGCTTT	TACCAGTGAT	6840
TTTGGAAGAG	CGCCAATGAC	GTCTCCCAAA	CCACCTGTTT	TTGAAAAGGG	TGCACCCTCT	6900
GCTGCTACAA	АТААААТТТ	CATGAATGAA	TATCCTCTGT	TACTTTAGCA	CCTTTCTTAA	6960
CCACAACTGG	ATGTTCTGCA	GTTCCTCGAA	TCACAACACC	ATGCTCAACT	TCAACCCCTT	7020
TGTCCAAGAT	AGCATATTCG	ACCTGAGCCC	CTTCTCCAAT	AACAACACGA	GGGAAGAGCA	7080
GGCTATCTTT	AACCAAGCTA	TCCTTATGGA	CATGAATATT	ACGTGATAGA	ACAGAATTAG	7140
CTACTTGACC	ТТСААТААТА	CTACCAGAGG	CAAACTGAGA	AGTGCTTACC	TTAGATGTAT	7200

TAGCATAGTA	AGTTGGCTCT	TCGTTTTTGA	CCTTTGTATA	AATCTTTTGG	TTTGGTGAGA	7260
AAAGAGAATA	GAATTTTTGT	GATTCAAGCA	TATCGATATT	CGCTTGATAA	TAAGATTTAA	7320
CAGAGTGAAT	ATTGGCTAGA	TAGCCCGTGT	ACTCGTAGGC	GAAAGCTCCC	TCTTTTACAG	7380
CCAAATCCCG	TAAAACATAG	CGCAATTTCT	CTGGATGTTC	TTTTTTAGCT	TCTTCTTCCA	7440
AGTGTTCAAT	CAACCAAGGT	GTATCAACGA	CAAAGATATC	TGTAGACATA	TTGAACGTTT	7500
CAGCTGTTGA	CTTGCTATCA	AAGAGTTTAT	GAGAAAGAAC	ATGGTCTGTT	TCATCTACAT	7560
CCAAGATTGC	ATTTACTTCT	GAAATATCTT	TCTTAGCTAG	TTTTTTATAA	ACTACAGTGA	7620
TAGGCTCTTT	TGTTGTACTA	TGTAGGTGGA	AAACTTGGTT	CAAATCAATG	TTAATAAGAA	7680
CATCGCAGTT	GAGGGCAACC	GTTTGGTTTG	AGCCAGAACG	ТТТСАААТАА	GTAAGAAGCT	7740
GTTGGTAGTA	TTCTTTTCCA	ACTGTACTAC	TTTCTACACG	GGTATTGTAA	ATTCCTAGAT	7800
AGTAATGGCT	AAGAAGGGTT	GATAAGCCCC	ACTCGCGTCC	TGAACGAATA	TGGTCAAATA	7860
CTGAGCTGAT	ATTATCCTGC	TGGAAAATAC	CAAAGACACT	ACGAACACCT	GCATTAGCAA	7920
GCTTGAAAG	TGGGAAGTCA	ATCAAACGAT	ATTTCCCACC	AAATGGCAAA	CTTGCTACTG	7980
GACGGTGGTC	CGTCAATGTC	GACATATTGT	GAAAACCAAC	TGTATTTCCT	AAAATGGCAG	8040
AATATTTATC	AATCTTCATC	TGTTGCTACC	CCCACTACTT	CATTATATCC	TACAACTTGT	8100
ACTTCATCTG	TTCCATCAAT	TTCGACACCG	TCAGAAATAA	TCGCACCTTC	ACCAATAATG	8160
GCACGTTTAA	TCTTAGCTCC	TTGACCAATG	ATAGCTCCAC	TCATGATAAC	TGAATCAAGG	8220
ACTTCCGCTC	CTTCGCGAAC	TTGCGCGCCT	GTTGAAAGGA	TAGAATGTTT	AACAGTTCCA	8280
TCAACGAAAC	ATCCGTCTAC	AACTAATGAG	TCTTCCACAT	GAGCATTTGC	CCCGAGGAAG	8340
TTTGGTGGTG	AAATCAAGTT	TCTTGAGTAA	ATCTTCCATT	GACGGTTACG	ACTATCCAAG	8400
GCATTTTCTG	GAGAAATATA	CTCCATGTTC	GCTTCCCAAA	GTGACTCAAT	AGTACCAACA	8460
TCTTTCCAAT	AACCACTAAA	TTCGTAAGCA	TAAACACTTT	CACCTGACTC	AAGGTAATTT	8520
GGAATGACAT	TTTTACCAAA	GTCTGACATG	CCAACCTTGC	TCTTTTCAGC	AGCGACTAAC	8580
ATATTACGAA	GGCGTTGCCA	ATCAAAAATG	TAGATTCCCA	TAGAAGCTTT	TGTAGATTTA	8640
GGTTGAGCTG	GTTTTTCTTC	AAATTCAACA	ATACGATTGT	TAGCATCTGT	GTTCATGATA	8700
CCAAAACGGC	TTGCTTCTTT	AAGAGGGACG	TCTAAAACTG	CTACTGTCAA	GCTGGCATTA	8760
TTATCCTTAT	GAGACTGGAG	CATATCATCA	TAGTCCATTT	TGTAGATGTG	ATCCCCAGAC	8820
AAAATCAAGA	CATACTCAGG	ATTGACACTG	TCGATATAGT	CGATATTTTG	GTAAATAGCG	8880
TGACTAGTCC	CCTCAAACCA	ACGATTTCCT	TCACTTGCAG	AATAAGGTTG	AAGAATAGAG	8940

ACACCTGAAT TAATACCGTC TAGTCCCCAG CTTGAACCAT TCCCAATATG GTTGTTGAGA 9000 GCAAGTGGTT GATACTGTGT AACGACCCCA ACATTGTGAA TCCCTGAGTT GGCACAGTTT 9060 GATAGGGCAA AGTCAATGAT ACGGTAGCGC CCACCAAATT GCACAGCTGG TTTTGCGATG 9120 CTTTGAGTGA GTTTACCGAG ACGAGTTCCT TGCCCACCAG CAAGAATCAA AGCTAACATT 9180 TCATTTTCA TTTTCTACTC CTTTTTGGTT TTTATTTGTG ACGGTTTTAG TAGATTTCAA 9240 GCGACGTTTG ATTTTCCATA CACTTGCTCC CATAGCCGGT AGGGTAAAGG TTAAGGTCTG 9300 CTCATAATCT TTCCATAGTC CTTCTTGCGT TTGAACAGTT TGATTATGTT CTTTCCAAAC 9360 GCCTCCCCAC TCTTCCAACT CAGTATTCCA TACTTCTTCG TAAATTCCTG CAACGGGTAG 9420 TCCGATTGTA AAATCTTTCC GCTCAACAGG TACCATATTA AAGATACAGA CTAACATTTC 9480 TCCCTTTTA CCCTTACGAA TAAAGGAAAG AACACTCTGG TCTCGATTAT CCGCATCAAT 9540 GATTTCAATA CCATCATAGC TGGTATCAAT TTCCCACAGA CAGCGATGAT CTTTGTAAAA 9600 CTGGTTTAGC TGAGAAGCGA AATACTTCAT CTTAGCATTC ATTGGGTCTT CTAGGTTAGA 9660 CCATTCCAAC TGTTCTTCAG ATTTCCATTC TAGGAATTGA CCGTATTCGC TACCCATGAA 9720 GAGCAATTTC TTACCAGGGT GACAAATTTG GTACGTATAG AGATTGCGCA AGCCTGCGAA 9780 TTGATTGTAA CGATCTCCCC ACATCTTATG CATCATACTC TTCTTGCCAT GAACCACTTC 9840 ATCGTGCGAG AATGGCAAGA GATAATTCTC CTTGAAAACA TACATAAAGC TGAAAGTCAC 9900 CAGGTTAAAG TCATATTTAC GATAGATCGG ATCTTCTTCG TAGAAACGGA GGATATCATT 9960 CATCCAGCCC ATGTTCCATT TGTAGTCAAA TCCTAGACCA CCAATCTCTT TCATTCCCGT 10020 AATCTTGATC GCAGACGAAC TTTCTTCTGC AATCATCATC ACATCTGGAT ATTCTAACTT 10080 AATAACCTCA TTCAAGCGCT GAAGGAAATA ATAACCTTCA TAGTTGAGAT TTCCGCCATC 10140 TTTATTAGGT GTCCATGGAG CATCATCATA GTCCAAATAG AGCATGTTGC TAACAGCATC 10200 CACACGAATA CCATCCAAAT GATAGACATC AATCCAATGC TTAATGCAAG AAATTAAGAA 10260 GGACTGGACT TCATTTTTC CAAGGTCAAA ATTAAGGGCA CCCCAACCAT GGTTATGAGC 10320 CTTATTATGG TCTTGGTATT CAAAAGTCGG TGTCCCATCA TAATAGGCTA AGGCATCATC 10380 GTTGATGGTA AAGTGACTGG TACCCAGTCC ACAATAACCC CAATATTATG GGTATGACAC 10440 TCCTCGACAA AATCTTGAAA CTCCTCTGGT CGGCCATAAG CATGCTCTAA AGCGAAGTAA 10500 CCCATAAGCT GATACCCCCA ACTCAAGCCC AAAGGATGGG ACATCAAGGG CATAAACTCA 10560 ATATGAGTAT AGTTCATTTC AACGAGATAA GGAATGAGTT CATCCTTGAG CTGGGCAAAA 10620 CTATAAGGAC TGCCATCAGA ATTTCTTTTC CATGATCCAG CGTGAACTTC ATAAATATTG 10680 ACAGGACGCT CTTCAAAGCC CCAACGTTTT CTTCGTGCCA GCCAAAGTCC ATCCTTCCAT 10740

PCT/US97/19588

423

TTCTTCTCAG GAAGCTCTGT	TACGATTGCC	CCTGTTCCTG	GACGAGCCTC	ATACCTGACA	10800
GCAAAAGGGT CAATCTTCAT	CAGTTGATGA	CCATTTTGAC	GTGTGACATG	ATATTTGTAA	10860
ATATGCCCTT CTTGAGCCAT	ATTGGTAAAG	ACTTCCCAGA	CCCCAAAATC	ATTTCTTACC	10920
ATTGGAATCT GATTTTCAAT	CCAGTTGGTA	AAATCACCAA	CCAAGTGAAC	AGCCTGAGCA	10980
TTAGGTGCCC AAACACGGAA	GGTATAGCCA	TGCTCTCCAT	TTAGTTCTTC	CCTATGTGCT	11040
CCTAGATAAT GTTGGAGATA	AAAATTTTCA	CCCGTCATAA	AGGTTTTTAA	TGCTTCTCTA	11100
TTATCCATAT ACTCCCCTTC	TCCTGTAAGC	GTTTTCTATG	TTTTTATTAT	ACTACCTTTT	11160
TAGAGAAGAT TCAAGTAAAT	TACTATACTT	СТТТААТТАТ	TTTGAAAATC	TACAACAAGT	11220
TCACTTACTC GTTCAATTGT	AAATCAATAT	TTTTTCAAAA	AATTGCGAAA	ACGCCTTTCT	11280
TTTTCTACTA TAGTGAAATG	AAATAAAACA	TGCGCAAATC	GATTAAGGAA	TTTAATCTAA	11340
TTTCTAACAA TGTCTTAGAA	ATCAAAGTGT	ACTATTTTAA	CTCC		11384

(2) INFORMATION FOR SEQ ID NO: 46:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7577 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

TGTTGATTTG	TTACTAGACG	TTGACCAACG	TCCTTCGGCT	GGAAAAGGAA	TTCTCCTTAG	60
TTTCCAACAC	GTTTTCGCCA	TGTTTGGTGC	GACCATCTTG	GTACCATTGA	TTTTGGGAAT	120
GCCTGTATCT	GTTGCCCTTT	TTGCTTCAGG	TGTTGGAACA	CTCATCTACA	TGATTGCTAC	180
TGGTTTTAAA	GTTCCAGTTT	ATCTAGGTTC	TTCATTTGCC	TTTATCACAG	CTATGTCACT	240
GGCTATGAAA	GAAATGGGGG	GGGATGTATC	TGCTGCCCAA	ACAGGGGTTA	TCTTGACTGG	300
TTTGGTCTAT	GTCCTTGTTG	CTACCAGCAT	CCGATTTGTA	GGAACAAAAT	GGATTGATAA	360
ACTCTTGCCA	CCAATCATTA	TCGGTCCTAT	GATCATCGTT	ATCGGTCTTG	GACTTGCAGG	420
TTCAGCTGTT	ACCAATGCAG	GTCTTGTAGC	AGACGGAAAT	TGGAAAAATG	CTCTGGTAGC	480
CGTTGTTACT	TTCCTAATTG	CTGCCTTTAT	CAATACAAAA	GGAAAAGGCT	TCCTACGAAT	540
CATTCCATTC	CTCTTTGCCA	TTATCGGTGG	TTACCTTTTC	GCACTAACTC	TTGGCTTGGT	600
TGACTTTACA	CCAGTTCTTA	AAGCCAACTG	GTTCGAAATT	CCTGGTTTCT	ACTTGCCATT	660
TAGCACAGGT	GGTGCCTTTA	AAGAGTACAA	TCTTTACTTT	GGTCCAGAAG	CCATCGCTAT	720

CTTGCCAATC	GCTATCGTAA	CAATTTCTGA	ACATATCGGA	GACCATACTG	TTTTGGGTCA	780
AATCTGTGGT	CGTCAATTCT	TAAAAGAACC	AGGTCTTCAC	CGTACTCTTC	TTGGTGACGG	840
TATCGCAACT	TCTGTTTCTG	CCTTCCTTGG	TGGACCAGCC	AATACAACTT	ACGGAGAAAA	900
TACAGGGGTT	ATCGGTATGA	CTCGTATCGC	TTCTGTCTCA	GTTATCCGTA	ACGCTGCCTT	960
CATCGCGATT	GCCCTCAGCT	TCCTTGGTAA	ATTCACTGCC	TTGATTTCAA	CTATTCCAAA	1020
CGCTGTACTT	GGTGGTATGT	CAATCCTTCT	CTATGGGGTT	ATCGCCAGCA	ATGGTTTGAA	1080
AGTCTTGATT	AAAGAACGTG	TTGATTTCGC	TCAAATGCGA	AACCTCATCA	TCGCAAGTGC	1140
TATGTTGGTT	CTTGGACTTG	GAGGAGCTAT	CCTTAAACTT	GGTCCAGTTA	CACTTTCAGG	1200
TACTGCCCTT	TCAGCCATGA	CAGGAATCAT	CTTGAACTTG	ATCTTGCCAT	ACGAAAATAA	1260
AGACTAAGAG	TCTAAATACA	CCTAATCCAC	TCAGACAGCT	GAGTGGATTT	TTCGTATACC	1320
ATAATAAAAG	TGTCTTAACA	AAATTATTAA	AATCAAAAA.	CGTATAATAT	CAGATATTCT	1380
AAAACCTTGA	TACTGTACGT	TTTATCATAG	AAATTTTTAC	TTTATTTTCT	CATCAAATGA	1440
GATTTGCATC	AATCTCTTGT	CTTACTTGCG	TTTCTTCTTC	GCTTTCTTCA	TTTTGTTAGC	1500
CATACGTTTC	ATGGACTGTT	TCATGGCAAA	TTCACCAATT	TTACCTTTCA	AACCGCCACC	1560
AAACATCTGG	CTCATATCTG	GCATTCCTGC	TCCTCCGAGA	GCTGATAAGT	CAGGCATACC	1620
GCCTTGTCCC	ATCATTCCTT	CAAGGGCAGA	CATATCCATT	CCTCCCATAT	TTGGCATATT	1680
TTTAGGAAGG	TTATTTGGAT	TAATCCCCAT	TTGCTTCATC	ATTTTATTCA	TATCCCCAGA	1740
CATAACACCC	TGCATGAGCT	GTTTAGCCTG	GTTAAAGTCC	TTGATGAATT	TATTGACTTC	1800
GACGAATGTA	TTTCCAGAAC	CAGCAGCAAT	ACGACGGCGA	CGGCTTGGAT	TTAACAAATC	1860
TGGGTTTTCA	CGCTCTTCAG	GTGTCATCGA	AGACACAATG	GCACGTTTAC	GAGCAATCTG	1920
GCGTTCATCC	ACCTTCATGT	TTTGAAGGGC	TGGATTGTTG	GCCATACCTG	GAATCATCTT	1980
GAGCAAGTCT	TCCATCGGCC	CCATATTTTG	CACCTGATCT	AATTGATCGA	TGAAATCATT	2040
AAAATCAAAG	GTGTTTTCGC	GCATCTTCTC	AGCCATTTCA	AGGGCTŤTTT	GTTCATCG'!A	2100
TTCCTGAGAA	GCTTTCTCAA	TCAAAGTGAG	CATATCCCCC	ATACCAAGGA	TACGGCTAGA	2160
CATGCGGTCT	GGGTGGAAGG	TTTCAATGTC	CGTAATCTTT	TCACCTGTAC	CAGTGAACTT	2220
GATTGGTTTT	CCAGTAATGT	GACGAACAGA	CAGAGCAGCA	CCACCACGAG	TATCGCCATC	2280
AATCTTGGTA	AGGATGACCC	CAGTCACTTC	CAACTGAGCA	TTAAACTCAC	GCGCAACATT	2340
GGCTGCTTCC	TGACCAATCA	TAGCATCAAC	GACAAGCAAG	ATTTCATTTG	GTTGAGCCAA	2400
TGCTTTCACA	TCACGAAGCT	CATTCATGAG	GAGCTCATCA	ATCTGCAAAC	GACCCGCAGT	2460
ATCAATCAAG	ACATAGTCGT	TATGATTAGT	TTGGGCTTGC	TCCAAACCTT	GACGTACAAT	2520

CTCAACAGCT	GGTACTTCTG	TTCCAAGTGC	AAAGACAGGC	ACATCAATCT	GTTGTCCCAA	2580
GGTCTTAAGC	TGGTCAATGG	CAGCTGGACG	ATAAATATCC	GCCGCAATCA	TCAAAGGACG	2640
AGCATTTTCT	TCTTTCTTGA	GTTTGTTGGC	CAATTTACCA	GCAAAGGTTG	TTTTACCAGC	2700
CCCTTGTAAA	CCAACCATCA	TGATGATGGT	TGGAATCTTA	GGTGACTTGA	TAATTTCTGC	2760
CGTATCAGAA	CCTAAAACGG	CTGTCAATTC	CTCATCAACG	ATTTTAATAA	TCTGTTGCGC	2820
AGGATTAAGT	GTATCAATGA	CCTCATGCCC	GACTGCACGC	TCACGAACTT	TCTTGATAAA	2880
GTCCTTTACA	ACAGGCAAGG	CAACGTCGGC	CTCGAGCAAG	GCCAAGCGAA	TTTCTTTGGT	2940
TGCCTCTTGG	ACATCAGATT	CAGAGATTTT	TCCTTTTTTA	CGTAGATTTT	TAAAGACGTT	3000
CTGCAAACGT	TCTGTTAAAC	TTTCAAATGC	CATTTTTCTT	CCTCTTATTC	TCTATTATCA	3060
ATGCTTGTTA	AAATTTCTAT	CTGCTCCTGC	AGAAAGTCAT	CCTTGGGATA	GCGCTCCAAA	3120
ATCTGATCAA	AAATCTGACT	GCGGACAATA	TAGTCCGAGT	ACATGTGCAA	TTTCATCTCA	3180
TAATCTTCCA	GAATCTTTTC	TGTTCGCTTG	ATATTGTCAT	AGACAGCCTG	ACGACTGACA	3240
CCGAACTCCT	CGGCAATTTC	AGCAAGGCTG	TAATCATCAG	CGTAGTAGAG	CTCGATATAA	3300
TTCATTTGCT	TATCTGTCAA	AAGCGCCGCA	TAAAATTCAA	AGAGCGCATT	CATACGATTG	3360
GTTTTTTCGA	TTTCCATAAC	TTTTATTATA	ССАААААТТА	GCCTAATCTA	CCACACTAGG	3420
AAGCCGATCC	AAGAAGATAG	ATAGCTAAAT	TTGAAAAAGA	CATGAGCCTA	GCCCCAAGTA	3480
ATTTCCAATT	GATAGCTGGC	AAAGGGATGT	CCCTCTTGAT	TTTGTAGTTG	ATAATCTAGT	3540
TCAATCTTTT	GCCTATCAAC	TTGATAATGG	CTCGTTTGGA	TGATAAACTC	CTGCATGCCC	3600
ATAGGTGTAG	GAATATAGGC	TAAACTATCG	CTATCCTTTA	GAAAGCGCAT	AATGGTCTTG	3660
GGATTAGAAA	ATCGGCTCAT	CACAAGTTCT	TGACCATGAA	ATTTAATCAC	TACTTTTTCC	3720
PTTTCCTCAT	TATAGAAAAG	CAGGTAGCTA	TAATCTCCTT	TTTCATGCAC	TTCCACATCA	3780
Paaagctggt	CAATCACTTC	CAACTGCTCA	TCAAACTGAA	TCGTATTTCG	CATCCGAATC	3840
TTCACATCAG	GCCCTCTTTC	TTGTCTCTTG	TCCTACTATT	TTACCAAAAA	GAGCAGGATT	3900
PTGCTATAAT	GGTCATATGA	ACGAAAAAGT	ATTCCGTGAC	CCTGTTCACA	ACTACATCCA	3960
PGTCAATAAT	CAAATCATCT	ATGACTTGAT	TAATACAAAA	GAATTTCAGC	GTTTGCGCCG	4020
GATCAAACAA	CTGGGAACTT	CCAGTTATAC	CTTCCACGGT	GGAGAACACA	GTCGCTTCTC	4080
PCACTGTCTA	GGAGTCTATG	AAATTGCACG	ACGCATCACA	GAGATTTTCG	AAGAAAATA	4140
PCCTGAGGAA	TGGAATCCTG	CCGAGTCTCT	CTTGACCATG	ACCGCTGCTC	TCCTACACGA	4200
CCTTGGGCAT	GGTGCCTACT	CCCATACTTT	TGAACATCTC	TTTGATACAG	ACCATGAAGC	4260

			426			
CATTACTCAG	GAGATTATTC	AAAATCCTGA	GACAGAGATT	CACCAAGTCC	TGCTACAAGT	4320
GCACCTGAT	TTCCCAGAAA	AGGTGGCCAG	TGTCATTGAC	CATACCTATC	CTAATAAGCA	4380
GGTCGTGCAG	СТСАТТТСТА	GTCAGATTGA	CGCAGATCGC	ATGGACTATC	TCTTGCGCGA	4440
CTCCTATTTT	ACAGGAGCAT	CCTATGGGGA	ATTTGACCTG	ACTCGAATCC	TCCGAGTCAT	4500
PCGTCCTATC	GAAAATGGTA	TCGCCTTTCA	GCGCAATGGC	ATGCACGCCA	TCGAAGACTA	4560
CGTCCTCAGT	CGCTACCAGA	TGTACATGCA	GGTTTATTTC	CACCCCGCAA	CACGCGCCAT	4620
GGAAGTTCTC	CTACAGAATC	TTCTCAAACG	CGCCAAGGAA	CTCTATCCTG	AGGACAAGGA	4680
PTTCTTTGCC	CGAACTTCTC	CACACCTCCT	GCCTTTCTTC	GAAAAAAATG	TGACCTTGAC	4740
rgactatetg	GCTCTGGATG	ATGGCGTGAT	GAATACCTAC	TTCCAGCTTT	GGATGACCAG	4800
PCCTGACAA G	ATTCTTGCAG	ATTTATCGCA	TCGCTTTGTC	AACCGCAAGG	TCTTTAAATC	4860
CATTACCTTT	TCACAAGAGG	ACCAAGATCA	ACTTACTAGC	ATGAGAAAAT	TGGTTGAGGA	4920
PATCGGCTTT	GATCCCGACT	ACTACACTGC	CATTCATAAG	AACTTTGACC	TCCCTTATGA	4980
PATCTATCGT	CCCGAATCTG	AAAACCCACG	GACACAGATT	GAGATTTTAC	AAAAAAATGG	5040
AGAACTGGCC	GAACTCTCTA	GCCTGTCTCC	TATCGTCCAA	TCCCTTGCTG	GCAGTCGCCA	5100
CGGAGATAAT	CGCTTTTATT	TTCCAAAAGA	AATGTTGGAC	CAAAACAGCA	TCTTTGCAAG	5160
CATTACCCAG	CAATTTTTAC	ACTTGATTGA	GAACGATCAT	TTTACCCCAA	АТАААААСТА	5220
GAAGAGGAAA	TTTATGAGTA	TTAAACTAAT	TGCCGTTGAT	ATCGACGGAA	CCCTTGTCAA	5280
CAGCCAAAAG	GAAATCACTC	CTGAAGTTTT	TTCTGCCATC	CAAGATGCCA	AAGAAGCTGG	5340
'GTCAAAGTC	GTGATTGCAA	CTGGCCGCCC	TATCGCAGGC	GTTGCCAAAC	TTCTAGACGA	5400
TTGCAGTTG	AGAGACGAGG	GGGACTATGT	GGTAACCTTC	AACGGTGCCC	TTGTCCAAGA	5460
ACTGCTACA	GGACATGAGA	TTATCAGCGA	ATCCTTGACT	TATGAGGATT	ATCTAGATAT	. 5520
GAATTCCTC	AGTCGCAAGC	TCGGTGTCCA	CATGCATGCC	ATTACCAAGG	ACGGTATCTA	5580
PACTGCAAAT	CGCAATATCG	GAAAATACAC	TGTACACGAA	TCAACCCTCG	TCAGCATGCC	5640
ATCTTCTAC	CGTACCCCTG	AAGAAATGGC	TGGCAAAGAA	ATTGTTAAAT	GTATGTŢTAT	5700
GATGAACCA	GAAATTCTCG	ATGCTGCGAT	TGAAAAAATT	CCAGCAGAAT	TTTACGAGCG	5760
TACTCCATC	AACAAATCTG	CTCCTTTCTA	CCTCGAACTC	CTTAAAAAGA	ATGTAGACAA	5820
GGTTCAGCC	ATTACTCACT	TGGCTGAAAA	ACTCGGATTG	ACCAAAGATG	AAACCATGGC	5880
ATCGGTGAT	GAAGAAAATG	ACCGTGCCAT	GCTGGAAGTC	GTTGGAAACC	CCGTTGTCAT	5940
GAAAATGGA	AATCCAGAAA	TCAAAAAAAT	CGCCAAATAC	ATCACCAAAA	CAAATGACGA	6000
TCCGGCGTT	GCCCATGCCA	TCCGAACATG	GGTACTGTAA	AAGTATCATT	ТТТСААТААG	6060

Aattgattag	CAATAAAATC	CAATGAATTT	TTTTAGCAAA	СТАТТТААТТ	TAAAACAAAA	6120
ТААТСАТААТ	AGAGACACAA	ATTCTGATTG	TAACAATTTT	TACCTAAACG	AATTAGAATG	6180
TGGCCTTACT	CCTGGGCAAC	TCATACTCAT	AGATTGGACT	CAAAAAACAG	GGAGAAATTA	6240
TAATTTCCCA	AGATATTTTA	AATACTCTCT	TCAAATTGAC	CCTGAATCTA	CACACAATCA	6300
ATTATACAAA	TTAGGATACT	ТСАСТААЛА	TAAGACTTTA	TCATATCTTA	CAGTAGTAGA	6360
атталаласт	ATATTATCTA	AACATAATTT	AGCTACTTCT	GGAAAAAAAG	CAGAATTAAT	6420
TACAAGAATA	ATTAATAATG	TTAACATTGA	CAATTTAGAT	ATTCCGTTCG	AATTTAAACT	6480
AACAAAAGAA	GCACAAAATC	TTATTATCGA	ACATAGTGAC	TATATCAAAG	CATACTATGA	6540
TAAAGACATA	ACTATGGAAG	ATTATTGTAA	AGAAAAAAAC	AATATCTCTT	TTAAAGCAAC	6600
TTTTGGTGAT	ATAAAATGGA	GTCTCTTAAA	TAAACAAGCT	CATAGGAATA	CTGTATCAGG	6660
agattttgga	TGCTTATCTA	ACACACGAAA	GGCTCAGGGA	AGACATTTGG	AACAAGAAGG	6720
AAATATTAAA	CATGCTTTAA	TATATTACAT	AGAATCTTTG	ATAATTACTA	TTTCAGGATT	6780
AGAAAACAAT	TTTTCAGCCA	CTGATTATCC	AGTATATTAT	CCCGATTCGA	TACCTGACTA	6840
СТСАСТАААА	CATATTCAAA	CATTAATGGA	ATCATTATCT	GATGACGATT	ATGATTTTGC	6900
TTTTGATGAA	GCATTATTTC	GCTTCTCAAT	TTTGAATGCA	AATCATTTTT	TATCTAAGGA	6960
AGATATTGAC	TATTTAAGAG	TTAATTTACC	TCGTTCCACT	GCTGAAGAAA	TAAACAATTA	7020
CTTAAAGAAA	TATGAATGTT	ATAGTCCTTT	AAATAATTTA	GAACTTGACG	ATTTTGAATA	7080
AATTGACTAT	ACAAACATTT	ATATACTCGA	TATAGTCTCA	ATTTTATCTG	ATGATTGCCC	7140
AAATTTTTCA	ATAATAAAAC	GCATAATATT	ATGGAGACAA	TCCCCTATAT	TATGCGTTCT	7200
ТТТААТАТСА	AAGACTTTTT	GACAAACTTC	TTTGATATCT	AATTACATGC	CCCCTGCAGG	7260
AATCGAACCT	GCAACTACTC	CTTAGGAGGG	AGTTGTTATA	TCCATTGAAC	TAAGGGAGCT	7320
AGATAAAAAC	TCTGCTAAAT	GAGCAGAGTT	TTTTAGTCGA	ATTAACGACG	GATTTCTTTG	7380
ATACGAGCTG	CTTTACCTTG	AAGAGCACGC	AAGTAGTACA	ATTTCGCACG	ACGTACTTTA	7440
CCGTAACGAA	CAACTTCGAT	TTTTTCAACA	CGTGGAGTGT	GGATTGGGAA	GATACGCTCA	7500
ACACCTACAC	CGTTAGAGAT	TTTACGAACT	GTGTAGTTTT	CTGAGATTCC	AGCACCTTTA	7560
CGTGCGATAA	CAACACG					7577

(2) INFORMATION FOR SEQ ID NO: 47:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 4945 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

428

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

CCTCGCTGAT	GATTGGTGCT	GTTTTATTTG	CTGGTCCAGC	CTTGGCTGAA	GAAACTGCAG	60
TTCCTGAAAA	TAGCGGAnCT	AATACAGAGC	TTGTTTCAGG	AGAGAGTGAG	CATTCGACCA	120
ATGAAGCTGA	TAAGCAGAAT	GAAGGGGAAC	ATGCTAGAGA	AAACAAGCTA	GAAAAGGCAG	180
AAGGAGTAGC	GATAGCATCT	GAAACTGCTT	CGCCAGCAAG	CAATGAAGCT	GCAACTACTG	240
AAACTGCAGA	AGCAGCTAGC	GCAGCTAAAC	CAGAGGAAAA	AGCAAGTGAG	GTGGTTGCAG	300
AAACACCATC	TGCAGAAGCA	AAACCTAAGT	CTGACAAGGA	AACAGAAGCA	AAGCCCGAAG	360
CAACTAACCA	AGGGGATGAG	TCTAAACCAG	CAGCAGAAGC	TAATAAGACT	GAAAAAGAAG	420
TCCAGCCAGA	TGTCCCTAAA	AATACAGAAA	AAACATTAAA	ACCAAAGGAA	ATCAAATTTA	480
ATTCTTGGGA	AGAATTGTTA	AAATGGGAAC	CAGGTGCTCG	TGAAGATGAT	GCTATTAACC	540
GCGGATCTGT	TGTCCTCGCT	TCACGTCGGA	CAGGTCATTT	AGTCAATGAA	AAAGCTAGCA	600
AGGAAGCAAA	AGTTCAAGCC	TTATCAAACA	CCAATTCTAA	AGCAAAAGAC	CATGCTTCTG	660
TTGGTGGAGA	AGAGTTCAAG	GCCTATGCTT	TTGACTATTG	GCAATATCTA	GATTCAATGG	720
TCTTCTGGGA	AGGTCTCGTA	CCAACTCCTG	ACGTTATTGA	TGCAGGTCAC	CGTAACGGGG	780
TTCCTGTATA	CGGTACACTC	TTÇTTCAACT	GGTCTAATAG	TATTGCAGAT	CAAGAAAGAT	840
TTGCTGAAGC	TTTGAAGCAA	GACGCAGATG	GTAGCTTCCC	AATTGCCCGT	AAATTGGTAG	900
ACATGGCCAA	GTATTATGGC	TATGATGGCT	ATTTCATCAA	CCAAGAAACA	ACTGGAGATT	960
TGGTTAAACC	TCTTGGAGAA	AAGATGCGCC	AGTTTATGCT	CTATAGCAAG	GAATATGCTG	1020
CTAAGGTAAA	CCATCCAATC	AAGTATTCTT	GGTACGATGC	CATGACCTAT	AACTATGGAC	1080
GTTATCATCA	AGATGGTTTG	GGAGAATACA	ACTACCAATT	CATGCAACCA	GAAGGAGATA	1140
AGGTTCCGGC	AGATAACTTC	TTTGCTAACT	TTAACTGGGA	TAAGGCTAAA	AATGATTACA	1200
CTATTGCAAC	TGCCAACTGG	ATTGGTCGTA	ATCCTTATGA	TGTATTTGCA	GGTTTGGAAT	1260
TGCAACAGGG	TGGTTCCTAC	AAGACAAAGG	TTAAGTGGAA	TGACATTTTA	GACGAAAATG	1320
GGAAATTGCG	CCTTTCTCTT	GGTTTATTTG	CCCCAGATAC	CATTACAAGT	TTAGGAAAAA	1380
CTGGTGAAGA	TTATCATAAA	AATGAAGATA	TCTTCTTTAC	AGGTTATCAA	GGAGACCCTA	1440
CTGGCCAAAA	ACCAGGTGAC	AAAGATTGGT	ATGGTATTGC	TAACCTAGTT	GCGGACCGTA	1500
CGCCAGCGGT	AGGTAATACT	TTTACTACTT	CTTTTAATAC	AGGTCATGGT	AAAAATGGT	1560
TCGTAGATGG	TAAGGTTTCT	AAGGATTCTG	AGTGGAATTA	TCGTTCAGTA	TCAGGTGTTC	1620

TTCCAACATG	GCGCTGGTGG	CAGACTTCAA	CAGGGGAAAA	ACTTCGTGCA	GAATATGATT	1680
TTACAGATGC	CTATAATGGC	GGAAATTCCC	TTAAATTCTC	TGGTGATGTA	GCCGGTAAGA	1740
CAGATCAGGA	TGTGAGACTT	ТАТТСТАСТА	AGTTAGAAGT	AACTGAGAAG	ACCAAACTTC	1800
GTGTTGCCCA	CAAGGGAGGA	AAAGGTTCTA	AAGTTTATAT	GGCATTCTCT	ACAACTCCAG	1860
ACTACAAATT	CGATGATGCA	GATGCATGGA	AAGAGCTAAC	CCTTTCTGAC	AACTGGACAA	1920
ATGAAGAATT	TGATCTTAGC	TCACTAGCGG	GTAAAACCAT	CTATGCAGTC	AAACTATTTT	1980
TCGAGCATGA	AGGTGCTGTA	AAAGATTATC	AGTTTAACCT	AGGACAATTA	ACTATCTCGG	2040
ACAATCACCA	AGAGCCACAA	TCGCCGACAA	GCTTTTCTGT	AGTGAAACAA	TCTCTTAAAA	2100
ATGCCCAAGA	AGCGGAAGCA	GTTGTGCAAT	TTAAAGGCAA	CAAGGATGCA	GATTTCTATG	2160
AAGTTTATGA	AAAAGATGGA	GACAGCTGGA	AATTACTAAC	TGGCTCATCT	TCTACAACTA	2220
TTTATCTACC	AAAAGTTAGC	CGCTCAGCAA	GTGCTCAGGG	TACAACTCAA	GAACTGAAGG	2280
TTGTAGCAGT	CGGTAAAAAT	GGAGTTCGTT	CAGAAGCTGC	AACCACAACC	TTTGATTGGG	2340
GTATGACTGT	AAAAGATACC	AGCCTACCAA	AACCACTAGC	TGAAAATATC	GTTCCAGGTG	2400
CAACAGTTAT	TGATAGTACT	TTCCCTAAGA	CTGAAGGTGG	AGAAGGTATT	GAAGGTATGT	2460
TGAACGGTAC	CATTACTAGC	TTGTCAGATA	AATGGTCTTC	AGCTCAGTTG	AGTGGTAGTG	2520
TGGATATTCG	TTTGACCAAG	CCACGTACCG	TTGTTAGATG	GGTCATGGAT	CATGCAGGAG	2580
CTGGTGGTGA	GTCTGTTAAC	GATGGCTTGA	TGAACACTAA	AGACTTTGAC	СТТТАТТАТА	2640
AAGATGCAGA	TGGTGAGTGG	AAGCTAGCTA	AGGAAGTCCG	TGGTAACAAA	GCACACGTGA	2700
CAGATATCAC	TCTTGATAAA	CCAATCACTG	CTCAAGACTG	GCGCTTGAAT	GTTGTCACTT	2760
CTGACAATGG	AACTCCATGG	AAGGCTATTC	GTATCTATAA	CTGGAAAATG	TATGAAAAGC	2820
TTGATACTGA	GAGTGTCAAT	ATTCCGATGG	CCAAGGCTGC	AGCCCGTTCT	CTAGGCAATA	2880
ACAAGGTACA	AGTTGGCTTT	GCAGATGTAC	CGGCTGGAGC	AACTATTACC	GTTTATGATA	2940
ATCCAAATTC	TCAAACTCCG	CTCGCAACCT	TGAAGAGCGA	AGTTGGAGGA	GACCTAGCAA	3000
GTGCACCATT	GGATTTGACA	AATCAATCTG	GTCTTCTTTA	TTATCGTACC	CAGTTGCCAG	3060
GCAAGGAAAT	TAGTAATGTC	CTAGCAGTTT	CCGTTCCAAA	AGATGACAGA	AGAATCAAGT	3120
CAGTCAGCCT	AGAAACAGGA	CCTAAGAAAA	CAAGCTACGC	CGAAGGGGAG	GATTTGGACC	3180
TTAGAGGTGG	TGTTCTTCGA	GTTCAGTATG	AAGGAGGAAC	TGAGGACGAA	CTCATTCGCC	3240
TAACTCACGC	AGGTGTATCA	GTATCAGGTT	TTGATACGCA	TCATAAGGGA	GAACAGAATC	3300
TTACTCTCCA	ATATTTGGGA	CAACCGGTAA	ATGCTAATTT	GTCAGTGACT	GTCACTGGCC	3360

AAGACGAAGC	AAGTCCGAAA	ACTATTTTGG	430 GAATTGAAGT	AAGTCAGGAA	CCGAAAAAAG	3420
ATTACCTAGT	TGGTGATAGC	TTAGACTTGT	CTGAAGGACG	CTTTGCAGTG	GCTTATAGCA	3480
ATGACACCAT	GGAAGAACAT	TCCTTTACTG	ATGAGGGAGT	TGAAATTTCT	GGTTACGATG	3540
CTCAAAAGAC	TGGTCGTCAA	ACCTTGACGC	TTCATTACCA	AGGCCATGAA	GTTAGCTTTG	3600
ATGTTTTGGT	АТСТССАААА	GCAGCATTGA	ACGATGAGTA	CCTCAAACAA	AAATTAGCAG	3660
AAGTTGAAGC	TGCTAAGAAC	AAGGTGGTCT	ATAACTTTGC	TTCATCAGAA	GTAAAAGAAG	3720
CCTTCTTGAA	AGCAATTGAA	GCGGCCGAAC	AAGTGTTGAA	AGACCATGAA	ACTAGCACCC	3780
AAGATCAAGT	CAATGACCGA	CTTAATAAAT	TGACAGAAGC	TCATAAAGCT	CTGAATGGTC	3840
AAGAGAAATT	TACGGAAGAA	AAGACAGAGC	TTGATCGCTT	AACAGGTGAG	GTTCAAGAAC	3900
TCTTGGCTGC	CAAACCAAAC	CATCCTTCAG	GTTCTGCCCT	AGCTCCGCTT	CTTGAGAAAA	3960
ACAAGGCCTT	GGTTGAAAAA	GTAGATTTGA	GTCCAGAAGA	GCTTACAACA	GCGAAACAGA	4020
GTCTAAAAGA	TCTGGTTGCT	TTATTGAAAG	AAGACAAGCC	AGCAGTCTTT	TCTGATAGTA	4080
AAACAGGTGT	TGAAGTACAC	ТТСТСАВАТА	AAGAGAAGAC	TGTCATCAAG	GGTTTGAAAG	4140
TAGAGCGTGT	TCAAGCAAGT	GCTGAAGAGA	AGAAATACTT	TGCTGGAGAA	GATGCTCATG	4200
TCTTTGAAAT	AGAAGGTTTG	GATGAAAAAG	GTCAAGATGT	TGATCTCTCT	TATGCTTCTA	4260
TTGTGAAAAT	CCCAATTGAA	AAAGATAAGA	AAGTTAAGAA	AGTATTTTC	TTACCTGAAG	4320
GCAAAGAGGC	AGTAGAATTG	GCTTTTGAAC	AAACGGATAG	TCATGTTATC	TTTACAGCAC	4380
CTCACTTTAC	TCATTATGCC	TTTGTTTATG	AATCTGCTGA	AAAACCACAA	CCTGCTAAAC	4440
CAGCACCACA	AAACACAGTC	CTTCCAAAAC	CTACTTATCA	ACCGACTTCT	GATCAACAAA	4500
AGGCTCCTAA	ATTGGAAGTT	CAAGAGGAAA	AGGTTGCCTT	TCATCGTCAA	GAGCATGAAA	4560
ATACTGAGAT	GCTAGTTGGG	GAACAACGAG	TCATCATACA	GGGACGAGAT	GGACTGTTAA	4620
GACATGTCTT	TGAAGTTGAT	GAAAACGGTC	AGCGTCGTCT	TCGTTCAACA	GAAGTCATCC	4680
AAGAAGCGAT	TCCAGAAATT	GTTGAAATTG	GAACAAAAGT	AAAAACAGTA	CCAGCAGTAG	4740
TAGCTACACA	GGAAAAACCA	GCTCAAAATA	CAGCAGTTAA	ATCAGAAGAA	GCAAGCAAAC	4800
AATTGCCAAA	TACAGGAACA	GCTGATGCTA	ATGAAGCCCT	AATAGCAGGC	TTAGCCAGCC	4860
TTGGTCTTGC	TAGTTTAGCC	TTGACCTTGA	GACGGAAAAG	agaagataaa	GATTAAATAT	4920
CGAAAAATCT	TGTGAAATCT	TTCCG				4945

(2) INFORMATION FOR SEQ ID NO: 48:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25002 base pairs
(B) TYPE: nucleic acid

WO 98/18931

431

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

GACAACTCAA	GTAGCTTTTT	CTTATTTTGA	AAAAGGAGAT	CAGAGTTTAA	CTATGTCAGA	60
AAAATCACAA	TGGGGGTCGA	AACTTGGTTT	TATTCTAGCA	TCTGCTGGCT	GGCCATCGGG	120
CTTGGTTCCG	TTTGGAAGTT	TCCCTACATG	ACTGCTGCTA	ATGGCGGTGG	AGGCTTTTTA	180
CTAATCTTTC	TCATTTCCAC	TATTTTAATC	GGTTTCCCTC	TCCTGCTGGC	TGAGTTTGCC	240
CTTGGCCGTA	GTGCTGGCGT	TTCCGCTATC	AAAACCTTTG	GAAAACTGGG	CAAGAATAAC	300
AAGTACAACT	TTATCGGTTG	GATTGGCGCC	TTTGCCCTCT	TTATCCTCTT	ATCTTTTTAC	360
AGTGTTATCG	GAGGATGGAT	TCTAGTCTAT	CTAGGTATTG	AGTTTGGGAA	ATTGTTCCAA	420
CTTGGTGGAA	CGGGTGATTA	TGCTCAGTTA	TTTACTTCAA	TCATTTCAAA	TCCAGCCATT	480
GCCCTAGGAG	CTCAAGCGGC	CTTTATCCTA	TTGAATATCT	TCATTGTATC	ACGTGGGGTT	540
CAAAAAGGGA	TTGAAAGAGC	TTCGAAAGTC	ATGATGCCCC	TGCTCTTTAT	CGTCTTTGTT	600
TTTATCATCG	GTCGCTCTCT	CAGTTTGCCA	AATGCCATGG	AAGGGGTTCT	TTACTTCCTC	660
AAACCAGACT	TTTCAAAACT	GACTAGCACT	GGTCTCCTCT	ATGCTCTGGG	ACAATCTTTC	720
TTTGCCCTCT	CACTAGGGGT	TACAGTCATG	TTGACCTATG	CTTCTTACTT	AGACAAGAAA	780
ACCAATCTAG	TCCAGTCAGG	AATCTCCATC	GTAGCCATGA	ATATCTCGAT	ATCCATCATG	840
GCAGGTCTAG	CCATTTTCCA	AGCTCGATCC	CCCTTCAATA	TCCAGTCTGA	AGGGGGACCC	900
AGCCTGCTCT	TTATCGTCTT	GCCTCAACTC	TTTGACAAGA	TGCCTTTTGG	AACCATTTTC	960
TACGTCCTCT	TCCTCTTGCT	CTTCCTTTTT	GCGACAGTCA	CTTTTTCTGT	CGTGATGCTG	1020
GAAATCAATG	TAGACAATAT	CACCAACCAG	GATAACAGCA	AACGTGCCAA	ATGGAGTGTT	1080
ATTTTAGGAA	TTTTGACCTT	TGTCTTTGGC	ATTCCTTCAG	CCCTATCTTA	CGGTGTCATG	1140
GCGGATGTTC	ACATTTTTGG	TAAGACCTTC	TTTGACGCTA	TGGACTTCTT	GGTTTCCAAT	1200
CTCCTCATGC	CATTTGGAGC	TCTCTACCTT	TCACTTTTTA	CAGGCTATAT	CTTTAAAAAG	1260
GCTCTTGCAA	TGGAGGAACT	CCATCTCGAT	GAAAGAGCAT	GGAAACAAGG	ACTGTTCCAA	1320
GTCTGGCTCT	TCCTTCTTCG	TTTCTTCGTT	TCGTCATTCC	AATCATCATC	ATTGTGGTCT	1380
TCATTGCCCA	atttatgtaa	TCAAAAAGGA	CTTGAGTAGT	GAACTCAGGC	CCTTTCTTTT	1440
TATGGATGGC	TAACAATCAA	TTCCAAACCT	TGCCCTTCCA	GAGTCCAAGC	TTCAACATCA	1500
CTTGGTAGGA	TAAAGTGGCT	GCCTTTTTGA	ATTGGATAAT	TTTTCCCGTC	AACAGTTAGC	1560

			432			
TGACCTTGAC	CAGCCAAGAC	ACTCAATAAG	CTGTAGTCAG	CTGTCTTTTC	AAAGTCAACT	1620
TTTCCAGTAA	TTTCCCACTT	GTAAACTGCG	AAGAAATCAT	TAGATACAAG	GAGAGTGGAA	1680
CGCAAATCAT	CTGCTTTAAC	AGTTACAGGA	CGGCTATTTG	CTGGCTCACC	AATGTTCAAG	1740
ACATCGATGG	ATTTTTCAAG	ATGAAGTTCA	CGCAAGTTGC	CTTTGTCATC	CTTGCGGTCA	1800
AAGTCATAGA	CGCGATAGGT	GGTATCGCTA	GACTGCTGGG	TTTCAAGGAT	TAAGATACCC	1860
GCCCCGATAG	CGTGCATAGT	CCCGCTTGGT	ACATAGAAGA	AATCTCCAGC	CTTAACAGGG	1920
ACTTTGGTCA	ACAAGTCATC	CCAGTTCTTG	TCCTCGATTT	GCTGGCGGAG	TTCTTCTTTT	1980
GACTTGGCAT	TGTGACCGTA	GATAATCTCT	GAACCTTCAT	CCGCTGCGAT	AATGTACCAG	2040
CATTCTGTTT	TTCCGAGTTC	GCCTTCATGC	TCGAGTCCAT	AAGCATCGTC	TGGGTGAACT	2100
TGGACACTGA	GCCAGTCGTT	GGCATCGAGG	ATCTTGGTCA	AAAGTGGAAA	TACAGGTTCT	2160
GGACGATTGC	CAAATAATTC	ACGGTGTTCC	GCATACAAAG	TAGCAAGATC	TGTTCCCTCG	2220
TAACGACCAT	TGGCAACTTT	AGAGACTCCA	TTTGGATGGG	CTGAGATGGC	CCAATATTCT	2280
CCGATTTTTT	CACTTGGGAT	GTCGTAGCCA	AACTCATCAC	GTAGCTTGGC	TCCACCCCAG	2340
ATTTTTTCTT	GCATAACTGA	TTGTAAAAAT	AATGGTTCTG	ACATGTCGAT	CTCCTGTCTG	2400
ATTTTTCTCC	CCTCATTATA	GCAAAAAAAG	AGTTCGAATT	GAACTCTTTT	TTACATCTTA	2460
TAAAGCAGGG	AGAAGATTTT	ATAAAAATAG	TAAACAAATG	TGCTCTACCC	GATGCTTGCA	2520
CCATTGCTAT	AAATGACATC	CTTGTACCAA	TAGAAGGACT	TCTTCTTGCT	ACGTTTGAGA	2580
GCTCCGTTTC	CTACATTATC	TCGATCTACA	TAGATAAAGC	CATAGCGCTT	ATTCATTTCC	2640
CCTGTGCCAG	CTGAAACCGG	ATCGATACAG	CCCCAAGTCG	TATAACCAAG	CAAGTCAACC	2700
CCGTCTTGGT	AAATGGCATC	TCGCATGGCC	TTGATGTGGG	CCTCTAAGTA	AGTAATCCGA	2760
TAGTCATCTG	CTACATAACC	ATTCTCATCC	GGTGTATCCA	TAGCACCGAG	TCCATTTTCT	2820
ACGATAATAC	TAAACTAAAA	TCAAAAAGCA	TTATATAATA	GTGATATGAA	ATCAACTAAA	2880
GAAGAAATCC	AAACCATCAA	AACACTTTTA	AAAGACTCTC	GTACAGCTAA	ATATCATAAA	2940
CGCCTTCAAA	TCGTTCTATA	GTAAAATGAA	ATAAGAACAG	TACAAATCGA	TCAGGACAGT	3000
CAAATCGATT	TCTAACAATG	TTTTAGAAGT	AGGGGTGTAC	TATTCTAGTT	TCAATCTACT	3060
ATATTTCGTC	TGATGGGCAA	ATCTTATAAA	GAGATTATAG	AACTTTTATA	GTAGTTTGAA	3120
ATAAGATGTG	AACAACTCTA	TCAGGAAAGT	CAAATTAATT	TATAGAAATA	TTTTAGCAGC	3180
CAAGGTGTAC	TGTTATAGAT	TCAATACACT	ATAGACTGTA	ATCAAACAAC	GATTTGGCGA	3240
AATGTAAAAA	AATATGAGGA	GTTCGGACTC	GACTCTCTCC	TTCAAGAAAC	ACGTGGTGGT	3300
CGTAACCATG	CATATATGAC	AGTTGAGGAA	GAGAAAGCCT	TTCTTCCCC	ССАТТТСААС	3360

GCTACAGA	AGG	CAGGAGAATT	TGTTACAATT	GATGCCTTAT	TTCAGGCTTA	TAAAAAGGAG	3420
TTAGGTCC	3TT	CCTACACACG	TGATGCCTTC	TATCAACTGT	TGAAGCGCCA	TGGTTGGCGA	3480
AATATTAC	CGC	CACGTCCAGA	ACATCCTAAG	AAAGCAGÁCG	CTCAAACCAT	TGTTGCGTCT	3540
LATAAAA	AAA	TCTCAATCCA	AGAAGGCAAG	AAAGCGTTTT	AAATATAGTA	GACGTTTTCG	3600
TAAGGTTT	rgc	TTGATGTACC	AAGCTGAAGC	TGGTTTCGGT	AGAATCAGTA	AACTGGGATC	3660
TTGTTGGG	CT	CCAATAGGAG	TAGGTCCACA	TATCCATAGT	CACTATATAC	GAGAATTTCG	3720
CTATTGTT	TAT	GGAGCTGTTG	ATGCCTATAC	AGGCGAATCA	TTTTTCTTAA	TAGCTGGTAG	3780
atgtaat <i>i</i>	ACT	GAGTGGATGA	ACGCCTTTTT	AGAAGAGCTT	TCACAAGCTT	ATCCTTTTAC	3840
TCGTTATO	GGA	CAATGCTATA	TGGCATAAAT	CAAGTACCTT	AAAGATTCCG	ACTAATATTG	3900
GTTTTGC#	TT	TATTCCTCCA	TACACACCAG	AGATGAACCC	CATTGAACAA	GTGTGGAAAG	3960
AGATTCG1	FAA	ACGTGGATTT	AAGAATAAAG	CCTTTCGAAT	TTTGGAAGAT	GTCATGAATC	4020
aactcca <i>i</i>	AGA	TGTCATACAA	GGATTGGAGA	AGGAGGTGAT	AAAGTCCATC	GTTAATCGGA	4080
GATGGACT	rag	AATGCTTTTT	GAAAGCAGAT	GAGTATTATA	TGCAATTTCT	TTATATAAA	4140
AGACCGGA	TT	GCTCCGATCT	TTCAATAGTT	CATATTCTCA	ATTTCTATTT	TAAAAATAGC	4200
TAAGGTTA	AAC	GTCAAATGAC	TACGCGACCT	ATTTCATACG	ATAAAAATCA	AGCACTAGAC	4260
CAGCAGG1	rcc	TTGAACTAAT	AAGGACTCTG	TTCCCCAATC	GGTTACAGTT	GGTCCGTGTA	4320
AAACCTTI	TAT	ACCAAGCTCG	TTCAACCGTT	TGTAGTTCTG	GTCTACATCC	TCAACCTCGA	4380
FATGAATA	\AT	GATTCCTGAC	TGAAAGTTTT	CCAAAGGAAC	CAAATGATTT	TGTGACAACA	4440
TAAGGCAG	STG	ACTACCAATC	GTAAACTGAG	CAAAACCATC	ATTAGCATAA	TCTGCCTTTT	4500
PATCCAAC	TAE	ATGCTCCAAG	TCAGCACAGA	CTTGGGGAAC	ATTTGAAACG	ATAATATCTA	4560
ATTGATTI	AA1	ATTCATTTAC	TCTCCTCCAT	AAAAAGACCG	GATTGCTCCG	ATCTTTTAAA	4620
GTTCTGC1	'CT	ATGAAAATCA	AAGAATAAAG	TCTACAAGTT	TCATATTTGA	TTTTCGGCGA	4680
GAGGAATI	TAT	TTAATTGCGC	GTGATTGCAA	TCCTTCTTCT	TCCAAGAAGA	GACGGAATGG	4740
TACGAGTI	rct	TCTGCTTCGT	ATTTTTCCTT	GAAGGCTTTG	ATAGCTTCTT	CTGAGTGAAG	4800
PTTTGGAT	CC	AATTCAAGTA	CTTCTACTGG	AAGTGGACGG	TGTTGAGTGA	TGCGAGCATC	4860
GATGACAA	ACA	GTTTTACCTT	CTTTGTTCAA	TTTAACAGCT	TCTGCAACAA	CTGCATCGAT	4920
GTCTTCGA	ATA	CGGTCAACTG	TGAATCCAAC	AGCTCCTTGA	GCTTCCGCAA	TTTTAGCGTA	4980
GTCAGCGT	TT	GTGAAGTCTA	CACCAAACAA	GTGTTTGTTT	GTATCTTCGT	ATTTGTTCTT	5040
GATGAAGC	CG	TACTCAGCAT	TTGAGAAGAC	AAGGTTGATA	ACTGGAAGGT	CGTATTGAAC	5100

			434			
GTTTGTGATA	ACGTCTGGGT	AGCACATGTT	GAATGCTCCG	TCACCCATGA	TGTTCCATAC	5160
TTGGCGATCT	GGATTGTCTT	TCTTAGCAGC	GATACCACCA	GGAAGGGCAA	TACCCATTGT	5220
CGCAAAGAGT	GGAGATGTAC	GCCACATGTT	CTTAGGTGTC	ATGTGAAGGT	GACGAGTAGA	5280
TGTTTGAGTA	GTGTTACCTA	CGTCGATTGA	GTAGATAGCG	TCTTGATCAG	CATGTTTGTT	5340
GATTGCATTG	TAAACTTGAT	ACAATTGCAA	TTCACCCTCA	GTTTTACCTT	CGAGTTTGTT	5400
CATGTAATCA	CGCCAGTTTT	GGTTGTTCTT	AACGTTTGCA	CGCCACCATG	GAGTTGATTC	5460
AACTGGGTTT	ACTTTGTCAA	GGATAGCTTT	AGCTGCTTGA	CCAGCATCAC	CAAGGATTGA	5520
AGCGTCAAGG	GCATGACGTT	TACCAAGTTT	GTAAGGGTCG	ATATCGACTT	GGATGAATTT	5580
TTCAGTGTTC	TTGAATGCTT	CGTAAACTTC	AGCAAATGGG	AAGTTTGAAC	CAAGGAAAAG	5640
AACTGTGTCT	GCTTCAAAGA	CCACTTCGTT	GGCTGGTTTC	CAACCAACAC	GGTAAGCAGA	5700
ACCTGTCAAA	CCTTCATAGT	TCCATTCGAA	AGCTTCAAAG	TTTTTACCAG	TTGTGATGAT	5760
TGGTGCTTTG	ATTTTACGTG	ACAATTCAGT	AATCACTTCA	CCAGCTTTAA	CACCACCAAA	5820
TCCAGCATAG	ATAACTGGGC	GTTCAGCATT	GTTCAAGATT	TCAACAGCTT	TGTCGATTTC	5880
AACTTCGTTC	AAAGCAGGAG	CGATGAATGA	GCGTTCGTAT	GAACCTGAAC	CGTAGTATGA	5940
GTTTTCATCG	ATTTCTTGGA	AACCGAAGTT	TACTGGAATT	TCAACAACAG	CTGGACCTTT	6000
TTTAGAAACT	GCAGCACGGC	AGGCTTCGTC	AATTACTTTT	GGCAATTGCT	CAGCGTAAGC	6060
TACACGTTTG	TTGTAAACAG	CGATACCGTT	GTACATTGGG	TTTTGGTTAA	GCTCTTGGAA	6120
AGCATCCATG	TTCAATTCGT	TAACTGGACG	TGATCCAAGG	ATCGCTAGGA	ATGGAGTGTT	6180
ATCCATAGCT	GCATCGTAAA	CACCGTTAAT	CAAGTGAGTC	GCACCTGGAC	CACCTGAACC	6240
AACTGCAACC	CCGATTGAGC	CGCCGAATTT	AGCTTGCATA	ACCGCTGCAA	GAGCACCTGT	6300
CTCTTCGTGG	CGAACTTGTA	AGAAACGGAT	ATCTTTGTCT	TCAGCCAAAG	CGTCCATCAA	6360
TGAGCTGAGT	GTTCCTGATG	GGATACCGTA	GATTGTATCT	ACGCCCCATG	TTTTCAATAC	6420
GTTAAGCATT	GCTGCAGATG	CAGTAATTTT	CCCTTGAGTC	ATAATGATAA	CTCTCCTTCA	6480
AATTTTTTAA	ACTTGGAGAA	TACGATTACA	TAGAATTGGA	AACGTTCTCC	AAATTTTTAC	6540
TATTCCACTG	TATCATATTT	ATGCTGACTT	TTCTAAAAAT	CTGCTCAAAA	CTCTCTATTC	6600
TCTATTCTAA	TACAGTTTTG	AAAGTTCTGT	CATTTCTGTT	TTATAACAAA	GAAATCTAGT	6660
CATTACTTTT	AGTCTATTTT	ACTAAAATTT	AACAGAAGGG	AACTGGTCAG	AACAGATACA	6720
GAACTAAAGG	CCATGGCTAG	ACCTGCCAAT	TCTGGGTTGA	GAGCCAGTCC	AACACCTGAA	6780
AAGACTCCTG	CTGCAATCGG	AATTCCGACA	ACATTGTAGA	TAAAAGCCCA	GAAAAGATTG	6840
AGTAGAATTC	GATGAAAGGT	TTTCTTACTC	ATATCAAAGG	CACGAACCAC	TCCTAAAAGA	6900

TTATTGGTTG	TCAACACCAA	ATCTGCTGAC	TCGATGGCGA	TATCTGTTCC	AGCTCCCATA	6960
GCAATCCCCA	CATCTGCTAC	ACTAAGGGCA	GGAGCGTCAT	TGATACCGTC	CCCAACAAAG	7020
GCTACTTTCC	CTGACTGTTG	CAGTTTATGG	ATTTCATGGG	CTTTTTCTTC	TGGCAAGACG	7080
CCTGCAATGA	CCTCTTCAAT	TCCGATTTGA	TCTGCAATAG	CACGCGCCAC	ACCAGCATTG	7140
TCTCCTGTCA	GCATGACTGT	TCGGAGACCA	CGTTTTTTTA	GCTGACTGAT	GGCTAGCTTA	7200
GCATTTTCCT	TAGGAATATC	TTGCAAAGCA	AGCAAGCCTT	TGATTTCATT	GTCAACAGCT	7260
AAGAACACAA	CTGTCTTAGC	TTCTTTTTCT	AGTTCTTCTA	GTTTATCTTG	ATAAGTATTA	7320
GAAATATCCA	TGCCATCCAG	CATTTTAGCA	TTTCCAAGTA	AAACTTGTTT	TCCATTGATT	7380
CGCCCTGAAA	CACCTTTCCC	GTGCAAGGAC	TGAAAATTTT	CAACAGTTTG	AAACTCAAGT	7440
CCAGCTTCAC	TCGCTCGCTT	AACGATAGCC	TCAGCCAGTG	GGTGTTGAGA	AGCATCTTCC	7500
AAGGAGGCTG	CCAACCCAAA	CACTTCTACT	TCGTCGCCGA	TGACATCTGT	TACCACAGGT	7560
TTCCCTTCCG	TCAAAGTCCC	GGTCTTATCA	AAGACAAGGG	TTTGAACTTT	CTGGATTTCC	7620
TGTAAGACAG	TTCCATTTTT	GAGGAGAACC	CCCATCTTGG	CACTACGTCC	TGTCCCCACC	7680
ATAAGGGCTG	TCGGTGTTGC	AAGTCCCAAG	GCACAAGGAC	AGGCGATAAT	CAAAACCGCC	7740
ACTCCGTAGA	GAAGAGAGGA	CACAAAGCTA	GCTCCAAGCA	CAACCACACT	ATCCCTGAGC	7800
AAGACGAACC	AAACCCAAAA	GGTCATGATT	CCTAAAATGA	CAACTACTGG	GACAAAAATC	7860
CCTGAAATCT	TATCCGTCAA	GTCCTGAATC	GGCGCACGAC	TTGTCTGAGC	TTTCTTCACA	7920
AAATCCACAA	TCTGAGCCAA	AACAGTCTCT	GAGCCAACTT	TTTCTGCTCT	AAAGACAAGC	7980
GTTCCACTAT	GATTGATGGT	TGAGCCAATG	ACAGTATCTC	CAACTGTCTT	GTCCACAGGC	8040
AGACTCTCAC	CTGTCACCAT	GGATTCGTCA	ATACTAGAGA	CACCTTCTAC	TACGACACCA	. 8100
TCAACAGCAA	TCTTTTCACC	GGGACGCACT	CGAATCAGGT	CGCCTACCTT	GACTTGTTCC	8160
AAAGGAACTT	GGACATAACT	ATCATCACTC	AAGACTTCTG	CGGTTTTAGC	TTGCAAGTCC	8220
AGTAATTTCT	CCACAGCTTG	GGACGTATTT	TTTCTCATTT	TTTCCTCAAA	AACTGCTCCC	8280
AAAAGAACGA	AAAAGAGGAT	AAATCCAGCA	CTTTCGAAGT	AAACAGGGAG	ACCAGCAAAG	8340
AGAGCAACTA	GGCTATAGAA	ATAAGCCACT	AGAGTTCCĆA	GCGCAACCAA	GGTATCCATG	8400
TTGGCATTGT	GCTTTTTAAA	ACTGGCCCAA	GCACTCTGGA	TATATGGCTT	ACCTGCAACT	8460
AACATAATAG	GCGTTGTTGC	TAGAAAGGTT	CCCCAATGCA	TGACTTGATG	ACTAATGCTA	8520
CCTGTCAACA	TCCCAATCAT	GAGAATCACA	AGAGGCACAG	TAAAGATACT	AGTAATCCAA	8580
AAACGTTGCA	GGAGAGATAG	AGATTTTCGA	GTCTTCTCAA	CGACTGTATA	GCTTCCCTTT	8640

436 TGCATCTTCA TGCCACAAGA AAATTCATGT CGCCCTAATT CTTGAGGCGT AAAACGAATG 8700 ACTITCTCCT CATCTACGCC GATTGGTTCC AAGATACCTT CTTCTTCAAA CAGAATTTCC 8760 TTATAACAGT TTGAAGGAGT AGCACGATGA AAGGTAATCT CAGCTGGAAT TCCCTTTTGA 8820 AGCTGGATAT GGGCTGGATG ATAGCCTTTT TCAGCTCGGA TACGGATTTT TTGAATGCCA 8880 TTTTCTAAGC TTGCTTTCAC AATTTCTGTC ATAGTCTCCA CCTACTCTAC AATCATCTTG 8940 CCGTGCATCA TGTTCATACC ACAAGCAAAG CCAAACTCTC CAGCCTGTTC AGGCGTGATT 9000 TCCACTACAT ACTCTTCCCC CATTGGCAGG TTCGCATGTA CACCAAAATC TGGAAAAACA 9060 ATTTGATCCA GACATGGTGA AGGATCCTTG CGGTCAAAGA CAATGCGTGC TGGCACTGAT 9120 TTCTTGAGGA CAATCAACTC AGGAGTATAG CCTCCCATGA CTTCCACTCG AATCTCTTGG 9180 TATCCGTTTT TTTGCTGGGC TTTTTGTCCA GATTTTTCAG GCTTTTTGAA AAACCAAAAC 9240 AAGATAAACG CGATAAGGGC AATACAAATA ATGGTTACAA TACTATTTAA CATGACGTCT 9300 CCTTTACATA CAATTACATC TTACTTCTGT TACAGCACTT GATTTCTTCT CTGAAATCAC 9360 AGCTTCCAAG TCTTCCAAGT CAGTCTGAGT AAATTCACAT TCTACAATCA AGTCAGCCAA 9420 CAPATTCCTA ATCCTACGGG AACAAACCTT GTCTTTGATA TCTTGGACAA GTAAATCCCG 9480 ACTTTGGTCT AGAGTTAAAA GGGCTGAATA AACAAAGGAC TTGCCTTCTT TTTTCCGAGT 9540 CAAACACTCT TTATCAACCA GACGAGCCAA AAGTGTCTGA ACCGTGGACT TGGACCAGTC 9600 AAACCGCTCT GCCAAAACCC TAATCAAATC TGTACTGGTC TGCTCCCCCT GCATCCAAAT 9660 AATCTTCATG ACCTGCCATT CTGCATCTGA AATCTGCATT ACCATACCTC CAAAATCTAC 9720 ATTTGTCAAT TACACTCATC AGTATACTCT TAAAATCTAC ATTTGTCAAT TATAGAAATA 9780 ATATTTCTT CGAAAAATAG AATTTTAATC ATTTGAAAAA CGATTTGCAG TCAAATATTA 9840 CTATATAAAC AATAAAAATA TGCTATACTA AAGAAAAAAG AAAACAACCA CTAGGGGTGC 9900 GTAAAGCTGA GATTAACGAC TGTTAGATCC CTCTGACTCA ATCTAGGTAA TGCTAGCTGA 9960 TGGAAGTGGA AATGATAATG GGGACTAGCA GTCTTCTATT GCCTTTCTAA AACAGACTAG 10020 CTTGTTCTTA AGAATACAAA CTTCAGTTGG TTGGGAGGTT TTAGATGACT TATTTACCCG 10080 TTGCTTTGAC CATTGCAGGG ACTGACCCTA GTGGTGGTGC TGGCATTATG GCAGATTTAA 10140 AGTCATTCCA AGCGAGAGAT GTCTATGGAA TGGCTGTTGT AACCAGTCTT GTCGCTCAAA 10200 ATACCAGAGG TGTTCAGCTA ATCGAGCACG TTTCTCCTCA AATGTTGAAA GCCCAATTGG 10260 AGAGTGTCTT TTCTGATATT CCACCTCAGG CTGTAAAAAC TGGAATGTTG GCTACTACTG 10320 AAATCATGGA AATCATCCAA CCCTATCTTA AAAAACTGGA TTGTCCCTAT GTCCTTGATC 10380 CTGTTATGGT TGCTACAAGT GGAGATGCCT TGATTGACTC AAATGCTAGA GACTATCTCA 10440

AAACAAACTT	ACTACCTCTA	GCAACTATTA	TTACGCCAAA	TCTTCCTGAA	GCAGAAGAGA	10500
TTGTTGGTTT	TTCAATCCAT	GACCCCGAAG	ACATGCAGCG	TGCTGGTCGC	CTGATTTTAA	10560
AAGAATTTGG	TCCTCAGTCT	GTGGTTATCA	AAGGCGGACA	TCTCAAAGGT	GGTGCTAAAG	10620
ATTTCCTCTT	TACCAAGAAT	GAACAATTTG	TCTGGGAAAG	CCCACGAATT	CAAACCTGTC	10680
ACACCCATGG	TACTGGATGT	ACCTTTGCTG	CAGTGATTAC	TGCTGAACTA	GCCAAGGGCA	10740
AGAGTCTTTA	CCAGGCAGTT	GATAAGGCCA	AGGCCTTTAT	CACAAAAGCT	ATTCAAGATG	10800
CCCCTCAACT	CGGTCATGGT	TCTGGTCCAG	TCAACCATAC	AACTTTTAAA	GATTAAGAAA	10860
AAAAACTCTC	TAGTTCCCAC	TTTAAGGGAA	TTAGAGAGTT	TTTATACTCT	TCGAAAATCT	10920
CTTCAAACTA	CGTCAGCTTC	CATCTGCAGC	CTCAAAACAC	TGTTTTGAGC	TGACTTCGTC	10980
AGTCTTATCT	AAAACCTCAA	GGCAGTACTT	TGAGCAACCT	GCGACTAGCT	TTCTAGTTTA	11040
CTCTTTGATT	TTCATTGAGT	attaattagg	AAAGAATGTT	ATGCAACTTT	TTTAAAAAGG	11100
CTTGCGTTTT	TGCCTCAATA	TCTTCTGCTT	GCATCAAATC	ACGTACAACA	GCTACACCAG	11160
CTATGCCAGT	GCCCATAAGC	TGATCAATAT	TCTCCGAAGT	CAAGCCTCCA	ATAGCAACTA	11220
CTGGAATGGC	AACCGTTTGG	CAAATTGTTT	TCAAGGTCGA	TATCAGAGTA	ATGGGCGCAT	11280
TTTCCTTGGT	GGTGGTTGGG	AAAATGGCTC	CTGTACCCAA	GTAATCTGCA	CCTGATTTCT	11340
CCGCTTCCAG	AGCTCTTTTA	ACCGTTTTAG	CGGTGACACC	GAGGATTTTT	TCAGGACCCA	11400
AGACTTTGCG	AGCTACCGAA	ACTGGTAATT	CATCÁTCTCC	GATATGCAGA	CCTGCTGCAT	11460
CAACCGCAAG	ACAAACATCC	AACCGATCAT	CGATTATCAA	GGGTACCTGA	TAAGCATCTG	11520
TTATTTCCTT	GACTTGTTTT	GCCAGTTGAT	AATATTGATT	GGTTGTGAGA	TTTTTTTCTC	11580
GCAATTGGAC	TATGGTAACC	CCTGAACGGC	AGGCCGTCTC	AACTTTTGCA	AGAAAGCTTT	11640
CCACGGAATC	TTGATAGCGA	TTGGTTACCA	GATATAGTCT	AAGTGCTTCT	CTATTCATAA	11700
ACCTCTCCTT	TGATGGTATC	TAGCCAATTT	TCATCTCTTC	TTAGGAGCGA	AAGCTGATTG	11760
AGTACTTGGT	AACGAAATTC	TTCCAATCCC	ATTCCTTGAA	CAACTATTTT	CTCAGCAGCG	11820
ATATTGAGAT	AAGAGACTGC	TAAGCAAGAA	GCTTCAAAAC	CAGTCTTTCC	TTGGCTGAGA	11880
AAAACAGCTG	TTAAGGCTCC	AACCAAGTCT	CCTGTCCCTG	TTATCCAGTC	TAATTCAGTA	11940
CAGCCATTTC	CCAGTACAGC	GACCTGATTT	TTCGAAACGA	CGAGGTCCTT	GGGACCTGTG	12000
ACTAAGAAAG	ACATACCAGG	ATAGGTCTGA	CACCAGTCTT	TCAAGACTTG	AAGCAAATCC	12060
TCCGTTTCTT	GATCTTTAGC	ACTCGCATCG	ACCCCAACGC	CGTGGTGCTT	TAATCCAACA	12120
AGACTTCGAA	TTTCTGACAT	GTTTCCTTTA	AGGACCGTAG	GTCTATAGTC	TAAAAGGTCT	12180

TTAACTAAGC TCTTACGAAT GGATGAAGTC GTTACGCCAA CCGCATCTAC TACCATCGGG 12240 AGAGAAGATT GGTTTGCATA CGAAGCTGCC ATGCGGATTG CTTTTTCCTT CTCAGCTGAC 12300 AAATGCCCCA AATTGATGAA GAGAGCCTGA CTTTGCTTAG TAAAATCAAG AACTTCACGG 12360 GAATCATCTG CCATGACAGG TTTGCATCCC AGAGCCAAAA TCCCATTTGC CAGCATCTCA 12420 CAAGAAATCT CATTGGTAAT GCAGTGAATG AGGGAACTAG AGCCTATAGG AAAGGGATTT 12480 GTAAATTCCT GCATCAGTCT ATCCTTTCAC TAAAGAAATA TCCCTGCACT TTTTTAAAGA 12540 ATTCCTGCTT GATTAAAAAT CGAAAGGCAA TAAAGGAAAT CGCTGTACCA ATCAAGGTTG 12600 CTCCGAAAAA TCGAGGCGTG TAGATAAACC AGCTAAGCTT AGCAGCTGAT CCTGTAAAGA 12660 GTACCATAAC AGGATAGGAA ACAATGGAAC CAATAATACC TGTTCCCAAA ATCTCTCCTA 12720 GAGCAGAATA GTGAAATTTT CGACCGTACT TATAAAAGAG ACCTGCTAGA AGGGCTCCAA 12780 AAGTCGCTCC TGTGAGAGCT AAAGGCGGAA TCCCTTGAGT CGTCATACGG ATAAAGGCTG 12840 TGACTGTAGC CATAGCCAAG GCATAAACAG GTCCCATCAT GATTCCTGCT AGAATATTGA 12900 CTACACTGGA CATCGGTGCC ATTCCCTCAA TTCGAAAGAT AGGTGTAAGG ACTACATCAA 12960 GGGCAATCAT CATAGATAAA ATGGTTAATT TGTGAACTTG TAATTGGTGC TTTCTCATGC 13020 TTCTATTCTT CTCCTTTTTC TAAAGACTGT AAATCGCTCT TCCATGTCTG GTGTTGGTAG 13080 GCCATTTCCC AAAACTTGGC TTCCATATGA ACACTGATGT GGAAGGCATC TAGCATTTTT 13140 TGCTTGTCTG TCTCGTCACT TTCTCGATAG AGCTGATTGA CCAGTGCTCC CTCCTCTCTG 13200 ATCTGTTGCT CTAACTCATC CGTAATATAA GTTTCAATCC ATTGTTGATA GAGAGGATTT 13260 GGTGATGGTT TAAGATTAAG TGATTTGCCT ATATCATGGT ATAACCAAGG ACAAGGAAGC 13320 AAGCTTGCAA AAGCGATGGC TAAGTTCGGT TCTGCAAATT GCCTATAAAT ATGAGAAATG 13380 TAATGATAAC AGGTTGGAGC GATTGGATGT TGCTCCATTT CCTGGTCGCT GATTTCCAAT 13440 TCCTTGAAAA ATTGTTGGCG AATAAATAAC TCACCCTCCA CTAAACCCTG AGCATTTTGT 13500 TTCAAGAGTC TTTTCATCTC TTGGTTTGAA GTCTTATCAG CCAAAAGATG ATAGATTTCT 13560 GAGAAAGCCT TCAGATAGTA GGCATCCTGA ATCAGGTAAT AGCGGAAAAT GGCAGGTTCT 13620 AAATTCCCCT CTTGTAATTG TAAAATAAAG GGATGATGAA AGGAAGCCTG CCAAGCTTTC 13680 TTGGATAATT CCATCGCAAT ATCTGTAAAT TCCATAATAA CTCCTTTATA AAAATAGACT 13740 GGTTTGAAGC AATAAAAAGA AAAGCAGGTA GATTAATTTT GTTTTTTTAG GAATATAAAA 13800 AGTCCGATAG CTATTCTTCA ACTGTGCATG TTCGTCATAT CCGTGAGCAG ATAGAGCTCT 13860 CAGGTAAAGA TGGCGCCACC TAAAGACTGT CATCAGAACC TTACTGTAAA TCAAGGGCGA 13920 CCAAAAATGT AGTTCTTGAC CACGTAATAG GCAAGCTTCT TTGAGGGACT TGATTTCTTG 13980

CTGAATGAGA	GGAAAAGAAT	TGAATACCAC	AATCAAGGCA	TAGGACCAAG	AGCGTGATAG	14040
CCCCTTTTGA	GCCAAGTACA	AGAGAAGCTC	TTTTAGTGAA	ACAGAGGAAA	CAAAGACAAG	14100
GCCGATACAA	ACTGTCACAA	AGGCCCTCGT	TCCAAGCATG	ACTGCCTGTG	AAGCATCTCC	14160
GTGTAACTGA	ACTGCCCAGT	AGTTGGCAAA	AGATGGTAAA	ATGGCAAGTA	TGATCATCCA	14220
AGCTAACATT	TTAAATCGAC	GGTAATAGAG	CATAAAGAGA	ATACAAAATG	CGACTACCGA	14280
AAGAGTCAGA	GCAATCGAAG	GAATGAAAGA	TGTTTCCAAG	GATAAAATCA	GCAAGAAGAG	14340
ACTGATAATC	GGTGTCTGGG	TTGCTACTTT	GACCATACTA	TCTCACCTCC	CCTTGGGTAT	14400
TGCTACTCTG	AGATGTAAGT	GGTTTGGTAA	TGGTCACTTC	TTTCACATGC	CGAAGACCCT	14460
GACTAGTCAT	CTCAATCCAA	TAATCAACCA	CAGAAATCAA	AGGGTCTAAA	CGATGACTAA	14520
TGAGCAGAAA	ACTTCTTCCT	TGATTCCTCT	CCTCCACAAT	CCACTTGCAA	AAATAATGGC	14580
AGGCTCTATC	ATCCAAACCT	GCAAAAGGTT	CATCTAGCAA	GATCACGGAA	GCCTTACTGG	14640
TCAAGATGGT	CAGGAGCTGA	AGAATTTTTT	GCTGACCACC	ACTTAATTGA	TAGGGACTCT	14700
PATCGACTGC	CTGCTCCAAA	TCAAAATATC	GTAAAGCTTG	AAAAATCCGC	TGATTTCTTT	14760
CAGAATCAGG	TCCATCTAAT	TGAAGCTCCT	CTCGCAGACT	GACTCGGATA	AACTGCTTCT	14820
CAGCTTCCTG	AACAACACCA	GTCAGATCAC	GATACAAACT	CTTTTTCTTT	TTCAGGACCG	14880
AACCCTTCCA	AGTAATGCTC	CCCTTATACT	TTTGAAATTG	AAGAATAGAC	CGAAAGAGGG	14940
TTGATTTCCC	GACACCATTG	TCACCCAGGA	TACAGGAAAT	CCCTTGATAG	AATGTGAAAT	15000
CAGCAATTGA	AAAGAGGGGG	CGATTACCAA	GCTCACCAGT	CACACGGTTC	ATATGGAATA	15060
GTTCCGGGCT	AGAAGCAACT	TCCTTTGAAG	CAACCTGTGT	CATCTCATAG	GAAGGGATTT	15120
GAAACACTTC	CCTTAGTTTT	CCGTCTCTTA	GCTCCACCAT	ATGGTCGATA	TAGGCTTTAT	15180
AGTCAGATAA	ATCATGGTCG	САСАЛАЛТАЛ	CTGTCTTCCC	ATCATAGACC	AACTCTTTTA	15240
SAATCTCCAA	TATCTCGATT	CTGCTCTTGC	GGTCAATGGA	AGCGAAGGGC	TCATCCAAGA	15300
GATAGACCCT	AGGATTCATG	GCAAAGAGGA	CAGCCAGCGC	TGCTTTTTGC	TTTTCCCCAC	15360
TGATAAGTG	ATGGATGAGA	CGGTGCAAGA	TGTCCTTGCA	ACGACATTGC	TGGACAACCT	15420
TGCTATTT	AGAATCAATT	TCCTGAAGGT	GATAGCCGAT	ATTTTCCATG	GTAAAAACCA	15480
CTCCTCAAA	CAAGCTCTCC	ATGGTAAATT	GATGATTAGG	ATTTTGCAAG	AGAATACCAA	15540
CCGTCTGGAC	ACGTTCGACG	ATAGAAAGCT	GACTGACCTC	GCTCCCATCT	ATCAGGACTT	15600
GACCGCTATA	GGGAAGAGAA	CTAACTTGGG	CAATCATTTG	AAAGAGGCTG	GATTTTCCAG	15660
CCCACTACT	CCCAACTAAC	AAGGTAAAGG	CTTGCGCATG	AAAAGTAAAA	TCAAACGGCT	15720

CAGAGAAGAT TGGGGACTGA ATCGCTCGTA GTTCCAGACC CATCTATGCT TTTCCTCCAG 15780 TTGCAAACTG ATGATAGAGT TTGACAATGG CACGAACCAA GATGGTACAG AAGAAATAAA 15840 CAGAAATAAA ACGTACCACA AGCAAGGAAA GGACAAACGG AAGGGAAAAG GCGTAGTAAC 15900 CTAACTTAAT GTATTCATAG ACAAAGCTAA CAAGCGTAAT CCCAATACTA TTAGCAGTTA 15960 GAGAGAGCCA ACTITCATAG CGATTCTTAG TTACGATAAA ACCAAATTCA CTTCCCAAAC 16020 CTTGAACAAA GCCAGACAAA AGAGCTCCTA GACCAAATTG GCTACCATAA AGGACTTCAG 16080 CAAGCGCAGC TAGCACTTCT CCAATCGTTG CACTTCCGAC TCTCGGAACA AAGATGGCAG 16140 CAATGGGCGC AGCCATACAC CAGAGACCGA AGAGGATTTC ATTGGCAAAG GCCTGCAAAC 16200 CAAGAGGTGT TAAGAGTAGA CTGAGAATAT TATACACATA TCCTGAACCA ACGAAAACCC 16260 CACCAAAAAA GATAGACAAG AAAGCAAGCA AGATAACATC TTTTAACTGC CATTTTTTCA 16320 ACATAAAAA CTCCTTTTT TAAAGAAAAG TGAGGCACTC AAGAAGACCG ACCTAAATAC 16380 TTTGTATAGC AGACTGAATT TAGAACAGTA CACAAGAACA CTAAAATATT TCTAGAAATT 16440 AATTTGAATT TTCTAATTGA TTTGTTCGCA TCTTATTTCA ATCTACTATA TCATCTTCAT 16500 CCAGTTTCGT AAAAGAAAAA ACTCTAATTA CAGATACAAA TTAGAGTTCA GCTTACAAGA 16560 TTAGACAGTT CTTTTCGACA TACGAAAAAA ACATTTCACA TTTCCCTTCG CCAGTCTTAA 16620 CTGTATCAGG TTCAATGGGT ATCATCTCAG CCTAAAGCAC CCCAAATGTC TTTATTATTT 16680 AATTATGTGA TTATTATAAC ACACATTTTA TACTAGTTCA AGAAATTGAA CTGGAAATAC 16740 AGCCTTGCAC TCACAAAGAC AGCAGATCTT TCTTTTGCAA AAAACAAATG ACCTGTTTGA 16800 TGAATTAGCC ATTCAAGCTG AATCTGGACA TAGCTTTTTA AAAAAGGAAA ATCCTACTTA 16860 CTTAGAATCC AAGGATAGAT ATCTATTGTT CACTCATTTC CCGAACAGTT TTTTCTATAT 16920 TTTTGCATA CGATATTGCC GAAATGATTG AAACGCCATC CATATTGGTC TTTATAATGT 16980 CTTTAATATG TTTCGTCTGT ATCCCACCAA TTGCAACTAA AGGCATTTGT GGCAATAGTT 17040 TTCTCATCAA TTCAAGACCT TCATAACCTA TAGTACCACC AGCATCATCC TTTGACTGGG 17100 TACCAAATAC AGGCCCAACA CCTACATAAT CTACATATTC AACTTTTGAT TGTTGAAATT 17160 CTTCTTCGTT TCTTATAGAA AGACCAATTA TTTTATCTGG CATCAATTTT CTAATTTCAT 17220 CAACACCAAT ATCATCTTGA CCTACATGTA CGCCATCGGC GTCAATTTCC ATTGCTAAAT 17280 CTATATCGTC ATTAACGATA AATGGAACAT TGTATTTTTT ACAAAGTTCT TTAATTTGGA 17340 TAGCTAGCTC AAGTTTTCT AAGCCTTCTA AAGCACCCTC ACCTTTTTCT CGAAATTGAA 17400 ATAAGGTTAT ACCACCTTTT AAGGCTTCCT CAACGACTGT ATATAGATTT TTTCCTTGGC 17460 AAGTAGTCGT TCCACAAATA AAATATAGTT TTAGTAATTC TTTATGAAAC ATCTTACTTC 17520