Systèmes dynamiques

Corrigé de la feuille de révision

Exercice 1. Entropie topologique des applications non dilatantes

On note $d_n^f(x,y) = \max_{k=0,\dots,n-1} d(f^k(x),f^k(y))$. L'hypothèse de non dilatation implique que $d_n^f(x,y) = d(x,y)$ pour tous $x,y \in X$. En particulier, si $M^f(n,\varepsilon)$ est le nombre minimal de ε -boules pour d_n^f qu'il faut pour recouvrir X, on a $M^f(n,\varepsilon) = M^f(1,\varepsilon)$ pour tout n. Ainsi pour tout $\varepsilon > 0$ on a

$$\limsup_{n} \frac{1}{n} \log M^{f}(n, \varepsilon) = 0,$$

ce qui donne $h_{\text{top}}(f) = 0$.

Exercice 1. Ergodicitié et mélange au sens de Césaro

On applique le théorème de Birkhoff à $\varphi = 1_A$ et on obtient que $S_n 1_A = \frac{1}{n} \sum_{k=0}^{n-1} 1_A \circ f^k \to \int_X 1_A d\mu = \mu(A)$, μ -presque partout quand $n \to \infty$. Par convergence dominée on obtient donc

$$\frac{1}{n} \sum_{k=0}^{n-1} \mu \left(f^{-k}(A) \cap B \right) = \frac{1}{n} \sum_{k=0}^{n-1} \int_X 1_{f^{-k}(A)} 1_B d\mu = \int_B S_n 1_A d\mu \longrightarrow \mu(A) \mu(B)$$

quand $n \to \infty$.

Exercice 1. Mesures ergodiques et points extrémaux

1. (a) Supposons la mesure μ non ergodique. Soit A un borélien invariant par f tel que $0 < \mu(A) < 1$. Alors $B = \mathbb{C}A$ est aussi invariant, et on peut écrire

$$\mu = \mu(A)\mu_A + (1 - \mu(A))\mu_{CA}$$

où pour tout borélien B de mesure non nulle on a noté $\mu_B = \mu(\cdot \cap B)/\mu(B)$. Clairement les mesures μ_A et $\mu_{\mathbb{C}A}$ sont distinctes, donc μ n'est pas un point extrémal.

(b) Soit r > 0. On note $A = \{ \varphi \leqslant r \}$, $B = f^{-1}A \setminus A$ et $C = A \setminus f^{-1}A$. On a $\varphi > r$ sur B et donc

$$\int_{B} (\varphi - r) d\mu = \nu(B) - r\mu(B) \geqslant 0$$

avec égalité ssi $\mu(B) = 0$. On a aussi

$$\nu(C) = \int_{A \setminus f^{-1}A} \varphi d\mu \leqslant r\mu(C).$$

Par ailleurs, comme ν est f-invariante,

$$\nu(B) = \nu(f^{-1}A) - \nu(f^{-1}A \cap A) = \nu(A) - \nu(f^{-1}A \cap A) = \nu(C).$$

De même $\mu(B) = \mu(C)$. On obtient finalement

$$\nu(B) \geqslant r\mu(B) = r\mu(C) \geqslant \nu(C) = \nu(B),$$

ce qui implique par une remarque précédente que $\mu(B)=0,$ et donc $\mu(C)=0.$ On a donc obtenu que

$$\mu\left(A\Delta f^{-1}A\right) = 0$$

1

pour tout r > 0. Ainsi

$$\{\varphi>\varphi\circ f\}=\bigcup_{r\in\mathbb{Q}_{>0}}\{\varphi>r\geqslant\varphi\circ f\}=\bigcup_{r\in\mathbb{Q}_{>0}}\{r\geqslant\varphi\circ f\}\setminus\{r\geqslant\varphi\}$$

est de μ -mesure nulle, et donc $\varphi \leqslant \varphi \circ f$ μ -presque partout. En changeant les rôles de φ et $\varphi \circ f$ on obtient le résultat voulu.

(c) Soit $\mu \in \mathcal{M}(X, f)$ ergodique. Soient $\mu_1, \mu_2 \in \mathcal{M}(X, f)$ et $t \in]0, 1[$ vérifiant $\mu = t\mu_1 + (1 - t)\mu_2$. On a clairement, pour tout borélien A,

$$\mu(A) = 0 \implies \mu_1(A) = 0.$$

En particulier le théorème de Radon-Nikodym implique l'existence d'une fonction $\varphi \in L^1(\mu)$ telle que $\mu_1 = \varphi \mu$. Comme μ et μ_1 sont invariantes par f, on a $\varphi = \varphi \circ f$ μ -presque partout par la question précedente. Ainsi φ est constante μ presque partout par ergodicité et donc $\mu_1 = \mu$.

2. Soient μ et ν deux mesures ergodiques. Supposons $\mu \neq \nu$. Soit $t \in]0,1[$. Alors par ce qui précède, on a que la mesure

$$\nu_t = t\mu + (1-t)\nu$$

n'est pas un point extrémal et donc n'est pas ergodique. En particulier il existe un borélien A invariant par f tel que $0 < \mu_t(A) < 1$. Or on a $\mu(A) = 0$ ou 1 et $\nu(A) = 0$ ou 1, et donc $\mu(A) = 1 - \nu(A) = 1$ ou $\mu(A) = 1 - \nu(A) = 0$. Ceci implique les mesures μ et ν sont étrangères.

Exercice 1. Le théorème de Von Neumann via le théorème de Birkhoff

1. Pour tout n on a

$$\int_{X} |S_n \varphi|^2 d\mu = \int_{X} |\varphi|^2 d\mu.$$

Par conséquent on a $\int_X |\bar{\varphi}|^2 d\mu \leqslant \int_X |\varphi|^2 d\mu$ par le lemme de Fatou, et donc $\bar{\varphi} \in L^2(\mu)$.

2. Si $|\varphi| \in L^{\infty}(\mu)$ on a $\int_X |S_n \varphi - \bar{\varphi}|^2 d\mu \to 0$ par le théorème de convergence dominée.

Posons $\varphi_k = \varphi \cdot 1_{\{|\varphi| \leq k\}}$. Alors

$$\int_X |\varphi|^2 d\mu \geqslant \int_X |\varphi - \varphi_k|^2 d\mu \geqslant k^2 \mu(\{|\varphi| > k),$$

de sorte que

$$\mu(\{|\varphi| > k\}) \leqslant \frac{\|\varphi\|_{L^2(\mu)}^2}{k^2}, \quad k > 0.$$

Il suit que $\varphi_k \to \varphi$ μ -presque partout et donc $\varphi_k \to \varphi$ dans $L^2(\mu)$ par convergence dominée.

Soit $\varepsilon > 0$ et k assez grand de sorte que $\|\varphi - \varphi_k\|_{L^2(\mu)} < \varepsilon$. On a

$$||S_n\varphi - S_m\varphi||_2 \leqslant ||S_n\varphi - S_n\varphi_k||_2 + ||S_n\varphi_k - S_m\varphi_k||_2 + ||S_m\varphi_k - S_m\varphi||_2.$$

On a pour tout ℓ

$$||S_{\ell}\varphi - S_{\ell}\varphi_k||_2 \leqslant \frac{1}{\ell} \sum_{j=1}^{\ell} ||(\varphi - \varphi_k) \circ f^j||_2 \leqslant ||\varphi - \varphi_k|| < \varepsilon.$$

D'autre part, comme φ_k est bornée on sait que $S_n\varphi_k$ converge dans $L^2(\mu)$; on obtient que si m, n sont assez grands,

$$||S_n\varphi - S_m\varphi||_2 < 3\varepsilon.$$

Ainsi $(S_n\varphi)$ converge dans $L^2(\mu)$, vers $\bar{\varphi}$.

Exercice 2. Systèmes linéaires avec second membre

Soit A une matrice carrée d'ordre n, et $z: \mathbf{R} \to \mathbf{R}^n$ une application continue.

1. En cherchant une solution particulière sous la forme $t \mapsto e^{tA}c(t)$, on trouve que les solutions sont de la forme

$$x(t) = e^{tA} \left(x_0 + \int_0^t e^{-sA} z(s) ds \right), \quad t \in \mathbf{R}^n,$$

où $x_0 \in \mathbf{R}^n$.

2. Soit $\varepsilon > 0$ et $x_0 \in \mathbf{R}^n$. Soit T > 0 tel que pour tout $t \ge T$ on a $||z(t) - z_\infty||_A \le \varepsilon$, où $||\cdot||_A$ est une norme adaptée à A. Alors

$$\int_{0}^{t} e^{(t-s)A} z(s) ds = \int_{0}^{T} e^{(t-s)A} z(s) ds + \int_{T}^{t} e^{(t-s)A} z(s) ds.$$

On a

$$\int_T^t e^{(t-s)A} z(s) ds = \int_T^t e^{(t-s)A} (z(s) - z_\infty) ds + \left(\int_T^t e^{(t-s)A} ds \right) z_\infty.$$

Or pour tout $t \geqslant T$ on a

$$\left\| \int_T^t e^{(t-s)A}(z(s) - z_{\infty}) ds \right\|_A \leqslant \varepsilon \int_T^t e^{-a(t-s)} ds \leqslant \frac{\varepsilon}{a}.$$

D'autre part,

$$\int_{T}^{t} e^{(t-s)A} ds = e^{tA} \left[-A^{-1} e^{-sA} \right]_{s=T}^{s=t} = -A^{-1} + A^{-1} e^{(t-T)A}.$$

En particulier puisque A est une contraction on ϵ

$$\left(\int_T^t e^{(t-s)A} ds\right) z_{\infty} \to -A^{-1} z_{\infty}, \quad t \to +\infty.$$

On a aussi que $e^{tA} \int_0^T e^{-s} z(s) ds + e^{tA} x_0 \to 0$ quand $t \to +\infty$. Tout ce qui précède montre que pour t assez grand on a (pour une constante C dépendant seulement de a)

$$||x(t) + A^{-1}z_{\infty}|| \le C\varepsilon.$$

On a obtenu que

$$\lim_{t \to +\infty} x(t) = -A^{-1} z_{\infty}.$$

Exercice 3. Entropie des transformations Lipschitziennes

1. Soit $n \ge 1$. Il existe c > 0 telle que pour tout $\varepsilon > 0$ on a

$$c^{-1}\varepsilon^{-n} \leqslant M([0,1]^n,\varepsilon) \leqslant c\varepsilon^{-n}.$$

Par suite

$$\frac{-c + n \log 1/\varepsilon}{\log 1/\varepsilon} \leqslant \frac{\log M([0,1]^n,\varepsilon)}{\log 1/\varepsilon} \leqslant \frac{n \log 1/\varepsilon}{\log 1/\varepsilon},$$

ce qui conclut.

2. Soit $L > \max(1, L(f))$. Alors $d(f(x), f(y)) \leq Ld(x, y)$ pour tous $x, y \in X$. Cela implique que

$$f^m(B(x,\varepsilon/L^n)) \subset B(f^m(x),\varepsilon), \quad 0 \leqslant m \leqslant n,$$

et donc

$$B(x, \varepsilon/L^n) \subset \bigcap_{m=0}^{n-1} f^{-m} B(f^m(x), \varepsilon) = B_{\mathbf{d}_n^f}(x, \varepsilon), \quad \forall x, \varepsilon.$$

Ainsi on obtient

$$\begin{split} \frac{1}{n}\log M^f(n,\varepsilon) &\leqslant \frac{1}{n}\log M(X,\varepsilon/L^n) \\ &= \frac{\log(L^n/\varepsilon)}{n}\frac{\log M(X,\varepsilon/L^n)}{\log(L^n/\varepsilon)} \\ &= \left(\log L - \frac{\log \varepsilon}{n}\right)\frac{\log M(X,\varepsilon/L^n)}{\log(L^n/\varepsilon)}. \end{split}$$

Puisque $\log L > 0$ on obtient

$$\limsup_{n} \frac{1}{n} M^{f}(n, \varepsilon) \leqslant \log(L) \operatorname{bdim}(X),$$

et donc $h_{\text{top}}(f) \leq \log(L) \text{bdim}(X)$.

3. Par le cours, l'application doublante $E_2: [x] \mapsto [2x]$ sur $X = S^1$ satisfait cette égalité, puisque $\operatorname{bdim}(S^1) = 1$, et

$$h_{\text{top}}(E_2) = \log 2.$$

Exercice 4. Moyenne temporelle des temps de retour

1. On applique le théorème de Kac :

$$\int_A \tau \mathrm{d}\mu = \mu(X) - \mu(A_0^*), \quad A_0^* = \bigcap_{n \geqslant 0} f^{-n}(\complement A).$$

Or A_0^* est invariant par f: en effet, on a

$$f^{-1}(A_0^*) = \bigcap_{n \geqslant 1} f^{-n}(CA),$$

ce qui donne $A_0^* \subset f^{-1}(A_0^*)$. D'autre part on a

$$f^{-1}(A_0^*) \setminus A_0^* = \{x \in A, \ f^n(x) \notin A, \ n \geqslant 1\}.$$

Par le théorème de Récurrence de Poincaré, on a donc $\mu(f^{-1}(A_0^*) \setminus A_0^*) = 0$ et donc A_0^* est invariant.

Par ergodicité de f, on obtient $\mu(A_0^*) = 0$ ou 1.

Mais $\mu(A_0^*) = 1$ implique en particulier que $\mu(CA) = 1$ ce qui est impossible car $\mu(A) > 0$.

On a bien $\int_A \tau d\mu = \mu(X) = 1$.

2. Il s'agit de montrer que g est ergodique pour $\mu_A = \mu(A \cap \cdot)/\mu(A)$.

Soit $B \subset A$ un ensemble g-invariant de mesure non nulle. On note $\tau' : B \to \mathbb{N}_{\geqslant 1}$ le temps de retour associé à B, qui est défini μ -presque partout sur B, et g' l'application de premier retour.

Puisque B est g-invariant, on a $g(x) \in B$ pour presque tout $x \in B$, ce qui donne

$$g|_B = g'$$
 μ – presque partout sur B .

En utilisant $\tau' \geqslant \tau$, on obtient que

$$\tau|_B = \tau'$$
 μ – presque partout sur B .

Par la question 1., on a donc

$$1 = \int_{B} \tau' d\mu = \int_{B} \tau d\mu = \underbrace{\int_{A} \tau d\mu}_{-1} - \int_{A \setminus B} \tau d\mu,$$

ce qui donne

$$0 = \int_{A \setminus B} \tau d\mu \geqslant \mu(A \setminus B) \quad \implies \quad \mu(B) = \mu(A).$$

Ainsi g est ergodique pour μ_A , et donc, pour μ -presque tout x de A,

$$\lim \frac{1}{n} \sum_{k=1}^{n} \tau \left(g^{k}(x) \right) = \frac{1}{\mu(A)}.$$