MATERIALS
SCIENCE &
ENGINEERING
B

Contents

	-
Preface	. ix
Organizers and Sponsors	,
Silicon, SOI	
Silicon-on-insulator technology for high-temperature, smart-power applications	1
Silicon-on-insulator technology for high temperature metal oxide semiconductor devices and circuits	7
Static and dynamic behaviour of power devices in silicon-direct-bonded substrates	13
Tungsten metallization technology for high temperature silicon-on-insulator devices	18
Analysis of SIMOX metal-oxide-semiconductor transistors operated in the high temperature range	21
A study of the growth and shrinkage of stacking faults in SIMOX	24
Strain reduction in the Si overlayer for improved SIMOX material	29
Monte Carlo simulation of growth and recovery of silicon	34
Temperature dependence of the thin film silicon-on-insulator field effect transistor current characteristics based on full solution for the one-dimensional MISIS structure	38
Comparison of properties of solid phase epitaxial silicon on sapphire films recrystallized by rapid thermal annealing and furnace annealing	43
III-V Compounds	
III-V Semiconductor properties for high-temperature electronics	47
A complementary III-V heterostructure field effect transistor technology for high temperature integrated circuits	54
Metal-organic chemical vapor deposition growth of GaN	58
Determination of the GaN/AlN band discontinuities via the $(-/0)$ acceptor level of iron	61
The optical properties and electronic transitions of cubic and hexagonal GaN films between 1.5 and 10 eV	65
Investigations on Pd/In-based high temperature stable ohmic contacts on GaAs by X-ray reflectometry and diffractometry T. Pirling, K. Fricke, M. Schüßler, W.Y. Lee, H. Fueß and H.L. Hartnagel (Darmstadt, Germany)	70
How to induce the epitaxial growth of gallium nitride on Si(001)	74

Development of chemical beam epitaxy for the deposition of gallium nitride	78
SiC	
Growth of bulk SiC	83
Study of SiC single-crystal sublimation growth conditions	90
Sputtering effects in hexagonal silicon carbide	
Formation of β -SiC films by ion beam mixing of Si/C multilayers	105
Observation of Si out-diffusion related defects in SiC growth on Si(001)	110
Fabrication and properties of high-resistivity porous silicon carbide for SiC power device passivation	114
$\label{eq:magnetic circular dichroism and electron spin resonance of the A^- acceptor state of vanadium, V^{3+}, in 6H-SiC$	118
Determination of donor and acceptor level energies by admittance spectroscopy in 6H SiC	122
Interfacial reactions of W thin film on single-crystal (001) β-SiC	126
Effects of Ar and H ₂ annealing on the electrical properties of oxides on 6H SiC	131
Unintentional incorporation of contaminants during chemical vapour deposition of silicon carbide	134
Carbonization of Si surfaces by solid source molecular beam epitaxy	138
Defect production and annealing in ion implanted silicon carbide	142
Electronic transport in thermally crystallized SiC films on sapphire	147
Deposition and optical properties of amorphous hydrogenated Si _x C _y layers	151
Structural and electronic characterization of β -SiC films on Si grown from mono-methylsilane precursors	154
Structural, optical and electrical properties of state of the art cubic SiC films	160
X-ray photoelectron spectroscopy study of Sn $^+$ implanted a-Si $_{1-x}$ C $_x$: H thin films	165
Growth of thin β -SiC layers by carbonization of Si surfaces by rapid thermal processing	170

$\label{eq:characterization} Reactive ion etching characterization of a-SiC: H in CF_4/O_2 plasma \\$	176
Deep centers and electroluminescence in 4H–SiC diodes with p-type base region	181
Contact resistivity of Re, Pt and Ta films on n-type β -SiC: preliminary results	185
High temperature silicon carbide stabilitrons for the voltage range from 4 to 50 V	190
High temperature 6H-SiC dinistor	194
Surface barrier height in metal-n-6H-SiC structures	198
Diamond	
Macrodefect formation in semiconductors during high energy ion implantation: Monte Carlo simulation of damage depth distributions	202
High temperature contacts to chemically vapour deposited diamond films—reliability issues	206
Boron doped diamond films: electrical and optical characterization and the effect of compensating nitrogen	211
lem:chemical vapour deposition of diamond from a novel capactively coupled r.f. plasma source	216
Structure of nitrogen-substituted graphite prepared by chemical vapor deposition	220
High temperature stability of chemically vapour deposited diamond diodes	223
Power conversion	
Boron-rich solids: a chance for high-efficiency high-temperature thermoelectric energy conversion	228
$\label{eq:controlled} Diffusion controlled degradation analysis of high temperature \\ (Bi,Sb)_2 (Te,Se)_3 \ semiconductor thermoelectric power modules \\ \\ C. \ Huang \ and \ A. \ Christou \\ (College \ Park, MD, USA)$	233
AUTHOR INDEX	237
SUBJECT INDEX	239

The publisher encourages the submission of articles in electronic form thus saving time and avoiding rekeying errors. A leaflet describing our requirements is available from the publisher upon request.

