Exercice 1. /5

Dans cet exercice, les cinq questions peuvent être traitées de façon indépendante. Pensez à modéliser les situations dès que possible.

- 1. Dans une station de sports d'hiver, on interroge au hasard 20 touristes.
 - Parmi eux, 14 déclarent pratiquer le ski de piste, 7 déclarent pratiquer le ski de fond et enfin 4 déclarent pratiquer les deux sports.
 - Combien de touristes ne pratiquent ni le ski de piste ni le ski de fond?
- 2. On considère l'ensemble $C = \{0; 1\}$ et l'ensemble $L = \{a; b; c\}$. Déterminer l'ensemble $C \times L$ et son cardinal en le justifiant.
- 3. Soit n un entier naturel non nul. Simplifier au maximum : $\frac{(n+2)!}{n!}$.
- 4. Cinq élèves se mettent en rang. Combien de manières y a-t-il de les disposer les uns derrière les autres?
- 5. Parmi tous les entiers composés de cinq chiffres, combien y en a-t-il qui ne contiennent que des chiffres pairs?

On considère la fonction f définie sur $[0; +\infty[$ par :

$$f(x) = \frac{x}{x+1}.$$

On définit la suite (u_n) par $u_0 = \frac{1}{2}$ et, pour tout entier naturel $n: u_{n+1} = f(u_n)$.

- 1. Démontrer que la fonction f est strictement croissante sur $[0; +\infty[$.
- 2. Calculer u_1 .
- 3. Démontrer, par récurrence, que pour tout entier naturel n on a : $0 \le u_{n+1} < u_n \le 1$.
- 4. On veut déterminer le sens de variation de la suite (u_n) . Voici la réponse apportée par un élève à cette question : « comme la fonction f est strictement croissante sur $[0; +\infty[$, on en déduit que la suite (u_n) est elle-même strictement croissante. » Que pensez-vous de cette assertion? Argumentez.

Déduire de la question précédente, le sens de variation de la suite (u_n) .

Exercice 3. /7

On considère la suite (u_n) définie par :

$$u_0 = 1$$
 et, pour tout entier naturel n , $u_{n+1} = 2u_n - n + 3$.

Ilun a calculé les premiers termes de la suite (u_n) à l'aide d'un tableur. Une copie d'écran est donnée ci-dessous.

	A	В
1	$\operatorname{rang} n$	terme u_n
2	0	1
3	1	5
4	2	19
5	3	77
6	4	307

- 1. Quelle formule a été entrée dans la cellule B3 pour obtenir par copie vers le bas les termes de la suite (u_n) ?
- 2. Démontrer par récurrence que pour tout entier naturel n,

$$u_n = 3 \times 2^n + n - 2.$$

- 3. Démontrer que la suite (u_n) est croissante.
- 4. On admet que la suite (u_n) a pour limite $+\infty$.
 - (a) Compléter le programme en Python suivant pour qu'il détermine le plus petit entier n tel que u_n soit supérieur à 1 million :

(b) Déterminer cette valeur de n à l'aide de la calculatrice.

 \ll Ce qui est affirmé sans preuve peut être nié sans preuve. \gg

EUCLIDE D'ALEXANDRIE