信用卡盜刷偵測模型分享

Tim Wang 2020/9/24

流程

- 資料集概況
- 建模規劃
- 資料探索分析(Exploratory Data Analysis)
- •特徵工程(Feature Engineering)
- 建模 (Modelling)
- 問題與嘗試
- 後續方向

資料集概況

• 90天內, 1,521,787筆信用卡交易紀錄, 23欄位

交易序號

歸戶帳號(95,214) 交易卡號(129,413)

交易金額 授權日期 授權時間 分期註記(2) 分期期數 消費國別(103) 消費城市(5,698) 消費幣別(72) MCC_CODE(434) 特店代號(89,316) 收單行代碼(6,051)

交易類別(**7**) 交易型態(**11**) 支付型態(**9**) 網路交易註記(**2**)

超額註記(2)
Fallback註記(2+1)
3DS註記(2+1)

狀態碼(5)

盜刷註記(2) 20,355筆盜刷紀錄 盜刷率約1.3%

建模規劃

變數

- 1. 該筆交易資料
- 2. 該帳號/卡號歷史「正常」 交易資料

演算法

- 1. 監督式 Random Forest Classifier Gradient Boosting Classifier Ada Boost Classifier Neural Network
- 2. 非監督式 (isolation forest)

資料探索分析(一)

主要變數卡方檢定

資料探索分析(二)

帳號/卡號盜刷風險分析

• 被盜刷的機率因【帳號/卡號】而異(75%以上帳號僅有一個卡號)

全數卡號

100 < 刷卡次數 < 200

特徵工程(一)

三個類別以上的名目變數,以風險等級與權重等級重新定義

等級 Fallback註記(2+1) 3DS交易註記 (2+1) 2 0 20 1 狀態碼(5) 交易類別(7) 交易型態(11) 盜刷率 盜刷率 盜刷率 盜刷率 支付型熊(9) 風險 0.01~0.05 0.05~0.10 0.95~1 0~0.01 消費國別(103) 消費城市(5,698) 消費幣別(72) MCC_CODE (434) 佔資料比 佔資料比 佔資料比 佔資料比 權重 0.01~0.05 0.05~0.10 0.95~1 0~0.01 特店代號(89,316) 收單行代碼(6,051)

特徵工程(二)

回顧每筆交易所屬帳號、卡號的歷史資訊

主要資訊

- 過去盜刷機率
- 平均消費/此次消費金額、最大金額/此次消費金額
- 距上次消費天數、最接近消費時段
- 交易類別、交易型態、支付形態、分期期數、狀態碼、網路交易註記、Fallback註記、3DS交易註記、分期交易註記、超額註記碼、消費地國別、消費城市、消費地幣別、MCC_CODE、特店代號、收單行代碼

輔助資訊

- 過去全部刷卡次數
- 過去正常刷卡次數
- 過去正常刷卡次數分佈型態:
 - 距今天數平均、距今天數標準差(較佳)
 - 距今天數【0、25、50、75、100】百分位數

建模(一)

• 依【授權日期】先後拆分資料:

	訓練集	驗證集	測試集
授權日期	1 70	71 80	81 90
交易筆數	1,184,411 (78%)	169,529(11%)	167,847(11%)
盗刷率	1.4%	1.0%	0.9%

建模(二)

• 共採用變數81個

當前交易資料

- 一戶多卡、歸戶卡數
- 交易金額、授權時間、分期期數、分期交易註記、超額註記碼、網路交易註記
- 風險等級+權重等級變數

歷史交易紀錄

- 帳號、卡號
- 主要資訊、輔助資訊

建模(三)

• 模型篩選(以驗證集 F1 Score 衡量):

建模(四)

建模(五)-最終結果

- 用原有設定,以【訓練集】+【驗 證集】的資料重新訓練模型,得到 的【測試集】F1 Score為 0.762
- 81個解釋變數中,以該卡號過去遭 到盜刷的機率所佔的權重最大(右 表:前十大解釋變數)

排	名	變數	權重
1		past_100_交易卡號_過去盜刷機率	14.0%
2		收單行代碼_FRAUD	8.7%
3		特店代號_FRAUD	8.3%
4		消費城市_FRAUD	7.7%
5		past_100_歸戶帳號_過去盜刷機率	4.6%
6		消費地國別_SHARE	4.4%
7		past_100_交易卡號_消費地國別	4.0%
8		消費地國別_FRAUD	3.6%
9		past_100_歸戶帳號_消費地國別	2.9%
10)	MCC_CODE_FRAUD	2.6%
11-8	81	其他	41.6%
		總計	100.0%

問題與嘗試(一)

• 盜刷型態不斷變化,用監督式學習建立的模型容易有漏網之魚

問題與嘗試(二)

• 降維後(81->10) 再訓練非監督式學習模型

問題與嘗試(三)

• 以離正常資料點的距離當作變數,訓練預測模型

訓練集(授權日期:20-30) 測試集(授權日期:30-40)

正常資料點 <u>(授</u>權日期:**1-20**)

採用變數:卡號歷史 資料 計算資料點與離資料點前10近的正常資料彼此間的距離

訓練集

Precision 0.243
Recall 0.215
F1 score 0.228

Neural Network

測試集

Precision 0.320 Recall 0.278 F1 score 0.298

後續方向

- 變數
 - 加入卡主個人資訊(年齡、職業、收入、住所等)
 - 時間序列的歷史資料
- 方法
 - 非監督學習模型
 - 神經網路
 - 組合不同模型 (ensemble)