DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2004 EPO. All rts. reserv.

18447273

Basic Patent (No, Kind, Date): JP 2002358031 A2 20021213 < No. of Patents: 002>

LIGHT EMITTING DEVICE AND ITS DRIVING METHOD (English)

Patent Assignee: SEMICONDUCTOR ENERGY LAB

Author (Inventor): KOYAMA JUN

IPC: *G09F-009/30; G09G-003/20; G09G-003/30; G09G-003/32; H01L-029/786;

H05B-033/14

Derwent WPI Acc No: C 04-080084 Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 2002358031 A2 20021213 JP 2001166739 A 20010601 (BASIC)

US 20020196389 AA 20021226 US 159004 A 20020531

Priority Data (No,Kind,Date):

JP 2001166739 A 20010601

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

07489513

Image available

LIGHT EMITTING DEVICE AND ITS DRIVING METHOD

PUB. NO.:

2002-358031 [JP 2002358031 A]

PUBLISHED:

December 13, 2002 (20021213)

INVENTOR(s): KOYAMA JUN

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD

APPL. NO.:

2001-166739 [JP 2001166739]

FILED:

June 01, 2001 (20010601)

INTL CLASS:

G09F-009/30; G09G-003/20; G09G-003/30; G09G-003/32;

H01L-029/786; H05B-033/14

ABSTRACT

PROBLEM TO BE SOLVED: To provide an electrooptical device capable of preventing deterioration in frequency characteristics caused by a high power external switch that is connected to opposing electrodes, and reduction in the number of gradations.

SOLUTION: The device has a plurality of source signal lines, gate signal lines, power source supplying lines, power control lines and pixels. The pixels have switching TFTs, EL driving TFTs, power supply control TFTs and EL elements. The power supply control TFTs control the potential difference between cathode and anode electrodes of the EL elements.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-358031

(P2002-358031A) (43)公開日 平成14年12月13日(2002.12.13)

(51) Int. Cl	7	識別記号		FΙ				デ	-43-},	(参考
G09F	9/30	338		G09F	9/30	338		3K007	1	
		365				365	Z	5C080)	
G09G	3/20	624		G09G	3/20	624	В	5C094	+	
		641				641	E	5F110)	
	3/30				3/30		J			
			審査請求	未請求	請求項の数13	OL	(全28	頁)	最終頁	こ続く

(21)出願番号 特願2001-166739(P2001-166739)

(22)出願日 平成13年6月1日(2001.6.1)

(71)出願人 000153878

株式会社半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72)発明者 小山 潤

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】発光装置及びその駆動方法

(57)【要約】

【課題】 対向電極と接続されている大電力外部スイッチに起因する周波数特性の低下を防ぎ、階調数の減少を防ぐことが可能となる電気光学装置を提供する。

【解決手段】 複数のソース信号線と、複数のゲート信号線と、複数の電源供給線と、複数の電源制御線と、複数の画素とを有する電気光学装置であって、複数の画素はスイッチング用TFTと、EL駆動用TFTと、電源制御用TFTと、EL素子とをそれぞれ有しており、電源制御用TFTは、EL素子が有する陰極と陽極との間の電位差を制御することを特徴とする発光装置。

【特許請求の範囲】

【請求項1】第1のTFTと、第2のTFTと、第3の TFTと、OLEDと、第1の配線と、第2の配線とを それぞれ有する画素が複数設けられた発光装置であっ て、

前記第1のTFTのソース領域とドレイン領域の一方は、前記第2のTFTのゲート電極に電気的に接続されており、他方は前記第1の配線に電気的に接続されており、

前記第2のTFTのソース領域とドレイン領域は、一方 10 は前記第2の配線に、もう一方は前記第3のTFTのソース領域とドレイン領域の一方に電気的に接続されており、

前記第3のTFTのソース領域とドレイン領域の他方に 前記OLEDの画素電極が電気的に接続されており、 前記複数の画素がそれぞれ有する前記第1のTFTのゲ ート電極は、互いに電気的に接続されており、

前記複数の画素がそれぞれ有する前記第3のTFTのゲート電極は、互いに電気的に接続されていることを特徴とする発光装置。

【請求項2】第1のTFTと、第2のTFTと、第3の TFTと、OLEDと、第1の配線と、第2の配線とを それぞれ有する複数の画素と、第3の配線と、第4の配 線とが設けられた発光装置であって、

前記第1のTFTのソース領域とドレイン領域の一方は、前記第2のTFTのゲート電極に電気的に接続されており、他方は前記第1の配線に電気的に接続されており、

前記第2のTFTのソース領域とドレイン領域は、一方は前記第2の配線に、もう一方は前記第3のTFTのソ 30 一ス領域とドレイン領域の一方に電気的に接続されており、

前記第3のTFTのソース領域とドレイン領域の他方に 前記OLEDの画素電極が電気的に接続されており、 前記複数の画素がそれぞれ有する前記第1のTFTのゲート電極は、前記第3の配線に電気的に接続されており、

前記複数の画素がそれぞれ有する前記第3のTFTのゲート電極は、前記第4の配線に電気的に接続されている ことを特徴とする発光装置。

【請求項3】第1のTFTと、第2のTFTと、第3の TFTと、OLEDと、第1の配線と、第2の配線とを それぞれ有する画素が複数設けられた発光装置であっ て、

前記第1のTFTのソース領域とドレイン領域の一方は、前記第2のTFTのゲート電極に電気的に接続されており、他方は前記第1の配線に電気的に接続されてお

前記第2のTFTのソース領域とドレイン領域は、一方 (ポリビニルカルバゾール)またには前記OLEDの画素電極に、もう一方は前記第3のT 50 らなることを特徴とする発光装置。

FTのソース領域とドレイン領域の一方に電気的に接続 されており、

前記第3のTFTのソース領域とドレイン領域の他方に 前記第2の配線が電気的に接続されており、

前記複数の画素がそれぞれ有する前記第1のTFTのゲート電極は、互いに電気的に接続されており、

前記複数の画素がそれぞれ有する前記第3のTFTのゲート電極は、互いに電気的に接続されていることを特徴とする発光装置。

0 【請求項4】第1のTFTと、第2のTFTと、第3の TFTと、OLEDと、第1の配線と、第2の配線とを それぞれ有する複数の画素と、第3の配線と、第4の配線とが設けられた発光装置であって、

前記第1のTFTのソース領域とドレイン領域の一方は、前記第2のTFTのゲート電極に電気的に接続されており、他方は前記第1の配線に電気的に接続されており、

前記第2のTFTのソース領域とドレイン領域は、一方は前記OLEDの画素電極に、もう一方は前記第3のT 20 FTのソース領域とドレイン領域の一方に電気的に接続されており、

前記第3のTFTのソース領域とドレイン領域の他方に 前記第2の配線が電気的に接続されており、

前記複数の画素がそれぞれ有する前記第1のTFTのゲート電極は、前記第3の配線に電気的に接続されてお

前記複数の画素がそれぞれ有する前記第3のTFTのゲート電極は、前記第4の配線に電気的に接続されている ことを特徴とする発光装置。

) 【請求項5】請求項1乃至請求項4のいずれか1項において、前記第2のTFTと前記第3のTFTは極性が同じであることを特徴とする発光装置。

【請求項6】請求項1乃至請求項5のいずれか1項において、前記画素電極は陽極であり、前記第3のTFTがpチャネル型TFTであることを特徴とする発光装置。

【請求項7】請求項1乃至請求項5のいずれか1項において、前記画素電極は陰極であり、前記第3のTFTがnチャネル型TFTであることを特徴とする発光装置。

【請求項8】請求項1乃至請求項7のいずれか1項において、前記複数のOLEDは有機発光層を有しており、前記有機発光層は低分子系有機物質またはポリマー系有機物質であることを特徴とする発光装置。

【請求項9】請求項8において、前記低分子系有機物質は、Alq、(トリス-8-キノリライト-アルミニウム)またはTPD(トリフェニルアミン誘導体)からなることを特徴とする発光装置。

【請求項10】請求項8において、前記ポリマー系有機物質は、PPV(ポリフェニレンビニレン)、PVK(ポリビニルカルバゾール)またはポリカーボネートからなることを特徴とする発光装置。

1

いても良い。

【請求項11】各画素に第1のTFTと、第2のTFTと、第3のTFTと、OLEDとを有する発光装置の駆動方法であって1フレーム期間に表示期間と非表示期間とが出現し、

前記表示期間において、1ビットのデジタル信号が、第 1のTFTを介して前記第2のTFTのゲート電極に入 力され、なおかつ前記第2のTFTのドレイン電流が前 記第3のTFTを介して前記OLEDが有する画素電極 に流れ、

前記非表示期間において、前記第3のTFTがオフにな 10 っていることを特徴とする発光装置の駆動方法。

【請求項12】各画素に第1のTFTと、第2のTFTと、第3のTFTと、OLEDとを有する発光装置の駆動方法であって1フレーム期間に複数の表示期間と複数の非表示期間とが出現し、

前記複数の各表示期間において、nビットのデジタル信号のうちの1ビットが、第1のTFTを介して前記第2のTFTのゲート電極に入力され、なおかつ前記第2のTFTのドレイン電流が前記第3のTFTを介して前記OLEDが有する画素電極に流れ、

前記複数の各非表示期間において、前記第3のTFTが オフになっており、

前記各ピット毎に対応する表示期間の長さの比は、 $2^0:2^{-1}:\dots:2^{(n-1)}$ で表されることを特徴とする発光装置の駆動方法。

【請求項13】請求項11または請求項12のいずれか 1項において、前記1フレーム期間とは1/60s以下 であることを特徴とする発光装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、基板上に形成されたOLED(OLED:Organic Light EmittingDevice)を、該基板とカバー材の間に封入したOLEDパネルに関する。また、該OLEDパネルにコントローラを含むIC等を実装した、OLEDモジュールに関する。なお本明細書において、OLEDパネル及びOLEDモジュールを共に発光装置と総称する。本発明はさらに、該発光装置を用いた電子機器に関する。

[0002]

【従来の技術】近年、基板上にTFTを形成する技術が 40 大幅に進歩し、アクティブマトリクス型表示装置への応 用開発が進められている。特に、ポリシリコン膜を用い たTFTは、従来のアモルファスシリコン膜を用いたT FTよりも電界効果移動度(モビリティともいう)が高 いので、高速動作が可能である。そのため、従来、基板 外の駆動回路で行っていた画素の制御を、画素と同一の 基板上に形成した駆動回路で行うことが可能となっている。

【0003】このようなアクティブマトリクス型表示装 は、OLEDパネルの外部に設けられた電源1704に 置は、同一基板上に様々な回路や素子を作り込むことで 50 よって、所定の電圧が与えられている。なお、本明細書

製造コストの低減、表示装置の小型化、歩留まりの上昇、スループットの低減など、様々な利点が得られる。【0004】そしてさらに、自発光型素子としてOLEDを有したアクティブマトリクス型発光装置(以下、単に発光装置と呼ぶ)の研究が活発化している。発光装置は有機ELディスプレイ(OELD:Organic EL Display)又は有機ライトエミッティングダイオード(OLED:Organic Light Emitting Diode)とも呼ばれている。

【0005】OLEDは自ら発光するため視認性が高

く、液晶表示装置(LCD)で必要なバックライトが要らず薄型化に最適であると共に、視野角にも制限が無い。そのため、近年OLEDを用いた発光装置は、CRTやLCDに代わる表示装置として注目されている。【0006】OLEDは、電場を加えることで発生するルミネッセンス(Electroluminescence)が得られる有機化合物(有機発光材料)を含む層(以下、有機発光層と記す)と、陽極層と、陰極層とを有している。有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)とがあるが、本発明の発光装置は、上述した発光のうちの、いずれか一方の発光を用いていても良いし、または両方の発光を用いて

【0007】なお、本明細書では、OLEDの陽極と陰極の間に設けられた全ての層を有機発光層と定義する。有機発光層には具体的に、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。基本的にOLEDは、陽極/発光層/陰極が順に積層された構造30を有しており、この構造に加えて、陽極/正孔注入層/発光層/陰極や、陽極/正孔注入層/発光層/電子輸送層/陰極等の順に積層した構造を有していることもある

【0008】発光装置の画素部1701は、図21に示す構造を有しているのが一般的である。画素部1701は、複数のゲート信号線1706と、複数のソース信号線1705と、複数の電源供給線1707とが設けられている。

【0009】ゲート信号線1706の1つと、ソース信号線1705の1つと、電源供給線1707の1つとを有する領域が画素1702に相当する。画素部1701には、マトリクス状に複数の画素1702が配列されている。各画素1702にはOLED1703が設けられている。OLED1703は陽極と陰極を有しており、本明細書では、陽極を画素電極(第1の電極)といて用いる場合は陰極を対向電極(第2の電極)と呼び、陰極を画素電極として用いる場合は陽極を対向電極と呼ぶ。【0010】OLED1703が有する全ての対向電極は、OLEDパネルの外部に設けられた電源1704に

において、対向電極と画素電極の間の電圧を、OLED 駆動電圧と呼ぶ。

【0011】画素1702の拡大図を図22に示す。画素1702は、OLED1703と、スイッチング素子として機能する第1のTFT1708と、OLED1703の画素電極と対向電極の間を流れる電流の大きさを制御する第2のTFT1709と、コンデンサ(保持容量)1710とを有している。

【0012】第1のTFT1708のゲート電極は、ゲート信号線1706に接続されている。第1のTFT1 10708のソース領域とドレイン領域は、一方が、デジタル信号が入力されるソース信号線1705に、もう一方が第2のTFT1709のゲート電極に接続されている。

【0013】また、第2のTFT1709のソース領域とドレイン領域は、一方は電源供給線1707に、もう一方はOLED1703の画素電極に接続されている。またコンデンサ1710が有する2つの電極は、一方は電源供給線1707と電気的に接続されており、もう一方は、第2のTFT1709のゲート電極に電気的に接続されている。

【0014】次に、図21及び図22に示した発光装置の駆動方法について説明する。ここではnビットのデジタル信号を用いて、階調を表示する例について説明する。

【0015】 nビットのデジタル信号を用いて表示を行う場合、1フレーム期間を少なくともn個のサブフレーム期間に分割する。各サブフレーム期間は各画素にデジタル信号を入力する期間(書き込み期間)と、書き込まれたデジタル信号の各ビットに応じて各画素が表示を行30う期間(表示期間)とに分けることができる。

【0016】まず書き込み期間では、全てのOLED1703の対向電極は、電源1704によって、電源供給線1707の電圧と同じ高さに保たれている。そして、複数のゲート信号線1705が順に選択され、各ゲート信号線にゲート電極が接続された第1のTFT1708が順にオンになる。なお本明細書において、信号線が選択されるとは、該信号線にゲート電極が接続された全てのTFTが、オンになることを意味する。

【0017】そして、複数の各ソース信号線1706にデジタル信号が入力されると、オンである第1のTFTを介して、該デジタル信号が第2のTFTのゲート電極に入力される。また、コンデンサ1710においてデジタル信号の電圧が保持される。

【0018】デジタル信号は「0」または「1」の情報を有している。「0」と「1」のデジタル信号はそれぞれH i またはL 0 のいずれかの電圧を有する信号を意味する。

【0019】そして、全てのゲート信号線1706を順に選択し、全ての画素にデジタル信号を入力する。な

お、画素にデジタル信号を入力するとは、第2のTFT 1709のゲート電極にデジタル信号を入力することを意味する。画素部1701の全ての画素にデジタル信号が入力されるまでの期間を書き込み期間と呼ぶ。

【0020】全ての画素にデジタル信号が入力されると、書き込み期間が終了し、表示期間が開始される。表示期間が開始されると、電源1704によって、全てのOLED1703の対向電極の電圧が変化し、対向電極と電源供給線1707との間に電圧が生じる。

【0021】なお、書き込み期間において画素に入力されたデジタル信号が、「0」の情報を有していた場合、第2のTFT1709はオフとなり、OLED1703は発光しない。逆に、「1」の情報を有していた場合、第2のTFT1709はオンとなる。その結果、OLED1703の画素電極に電源供給線1707との間に生じた電圧が、OLED1703の画素電極と対向電極の間に印加され、OLED1703は発光する。

電源供給線1707と電気的に接続されており、もう一 【0022】なお、表示期間における対向電極の電圧 方は、第2のTFT1709のゲート電極に電気的に接 20 は、電源供給線1707の電圧が画素電極に与えられた 続されている。 とき、OLED1703に順バイアスの電圧がかかるよ 【0014】次に、図21及び図22に示した発光装置 うな高さである。

【0023】このように、デジタル信号が有する情報によって、OLEDが発光するかしないかが選択され、全ての画素が一斉に表示を行う。

【0024】n個の各サブフレーム期間が有する表示期間において、画素が発光したりしなかったりすることで、所望の階調を表示することができる。

[0025]

【発明が解決しようとする課題】上述したような、デジタル信号を用いて表示を行う発光装置では、発光装置を大型化した場合、画素数が増加し、画素部全体に大きな電流が流れる。この電流はOLED駆動電圧を制御する電源を通じて流れるため、電源が有する、対向電極の電圧を制御するスイッチは、高い電流能力が必要とされる。

が順にオンになる。なお本明細書において、信号線が選 【0026】発光装置において、200cd/m²の発 択されるとは、該信号線にゲート電極が接続された全て 光量を得る場合、数mA/cm²の電流が必要である。 のTFTが、オンになることを意味する。 例えば、5mA/cm²の有機発光材料を用いて40イ 【0017】そして、複数の各ソース信号線1706に 40 ンチの表示装置を作る場合、表示に必要な電流値は約2 デジタル信号が入力されると、オンである第1のTFT 5Aとなり、多大なものとなってしまう。

【0027】一般に、電源のスイッチには所定の電流能力の規格が定められており、この電流能力の上限は、発光装置の大型化の妨げとなってきた。

【0028】また、上述した発光装置では、階調数が多くなるにつれて1フレーム期間の分割数も増え、駆動回路を高い周波数で駆動しなければならない。一方、電源のスイッチ周波数特性は、電流能力が高くなるにつれて低下する傾向にある。その結果、発光装置の大型化に伴い、その周波数特性は低下し、可能な階調数が減少して

しまうという問題があった。

【0029】本発明は発光装置の大型化に伴う以上のよ うな問題点を解決するための手段を提供することを課題 とする。すなわち、OLED駆動電圧を制御する電源の スイッチによる電流値の制限を取り除くこと、及び、〇 LED駆動電圧を制御する電源のスイッチに起因する駆 動回路の周波数特性の低下を防ぎ、階調数の減少を防ぐ ことを課題とする。

[0030]

【課題を解決するための手段】本発明では、電源供給線 10 線の1つと、電源供給線の1つとを有している。 とOLEDの画素電極との間に、新たにもう1つTFT を設ける。具体的には、デジタル信号によってスイッチ ングが制御されているTFTのドレイン電流が、OLE Dに流れるのを制御する、第3のTFTを新たに設け る。

【0031】そして前記第3のTFTのスイッチング を、各ライン毎に制御する。

【0032】上記構成によって、OLEDの対向電極に 常に一定の電圧を与えていても、OLED駆動電圧を制 御することができる。従って、本発明の発光装置では、 対向電極の電圧を制御する電源のスイッチを取り除くこ とが可能であり、スイッチを有していても高い電流能力 は必要とされない。

【0033】そして、第3のTFTのスイッチングは、 第3のTFTのゲート電極に印加する電圧で制御するこ とができ、第3のTFTのゲート電極にはほとんど電流

【0034】従って、対向電極の電源が有するスイッチ の電流能力の上限によって、発光装置の大型化が妨げら れることがない。また、対向電極の電源が有するスイッ 30 チに流れる電流値を抑えることができるので、スイッチ に起因する駆動回路の周波数特性の低下を防ぎ、階調数 の減少を防ぐことができる。

【0035】なお、本発明の発光装置において、TFT の代わりに単結晶シリコンを用いて形成されたトランジ スタを使っても良い。またTFTは、多結晶シリコンや アモルファスシリコンを用いていても良い。また、有機 半導体を用いたトランジスタであっても良い。

[0036]

【発明の実施の形態】図1に、本発明の発光装置のプロ 40 ック図を示す。図1の発光装置は、画素部101、ソー ス信号側駆動回路102、第1ゲート信号側駆動回路1 03a及び第2ゲート信号側駆動回路103bを有して いる。なお、ソース信号側駆動回路と、第1ゲート信号 側駆動回路と、第2ゲート信号側駆動回路の数は、設計 者が適宜設定することができる。また、駆動回路である ソース信号側駆動回路と、第1ゲート信号側駆動回路 と、第2ゲート信号側駆動回路とは、画素部が設けられ たOLEDパネル上に形成されていても良いし、別途形 成してOLEDパネルに実装するようにしても良い。

【0037】図2に画素部101の構造を示す。画素部 101には、第1ゲート信号線(G1~Gy)と、第2 ゲート信号線(С1~Су)と、ソース信号線(S1~ Sy)と、電源供給線(V1~Vx)とが設けられてい る。なお、ソース信号線と、電源供給線の数は、必ずし も同じであるとは限らない。

【0038】画素部101にはマトリクス状に複数の画 素104が配列される。各画素104は、第1ゲート信 号線の1つと、第2ゲート信号線の1つと、ソース信号

【0039】第1ゲート信号線Gj(j=1~y)と、 第2ゲート信号線Cj (j=1~y)と、ソース信号線 $Si(i=1\sim x)$ と、電源供給線 $Vi(i=1\sim x)$ とを有している画素104の拡大図を図3に示す。

【0040】図3において、画素104は、第1のTF T105、第2のTFT106、第3のTFT107 と、OLED108と、コンデンサ109とを有してい る。

【0041】第1のTFT105のゲート電極は、第1 20 ゲート信号線Gjに接続されている。また、第1のTF T105のソース領域とドレイン領域は、一方はソース 信号線Siに、もう一方は第2のTFT106のゲート 電極に接続されている。

【0042】第2のTFT106のソース領域とドレイ ン領域は、一方は電源供給線Viに、もう一方は第3の TFT107のソース領域またはドレイン領域に接続さ れている。

【0043】第3のTFTのゲート電極は、第2ゲート 信号線C」に接続されている。第3のTFTのソース領 域とドレイン領域のうち、第2のTFT106のソース 領域またはドレイン領域と接続していない方が、OLE D108が有する画素電極に接続されている。

【0044】コンデンサ109は、第2のTFT106 のゲート電極と、電源供給線Viとの間に形成されてい る。なお、コンデンサ109は必ずしも設ける必要はな

【0045】OLED108は陽極と陰極と、陽極と陰 極との間に設けられた有機発光層とを有している。

【0046】なお、第1のTFT105、第2のTFT 106、第3のTFT107は、nチャネル型TFTで あっても、pチャネル型TFTであってもどちらでも良 い。ただし、第2のTFT106と第3のTFT107 の極性が同じであることが望ましい。また、陽極を画素 電極として用いる場合、第3のTFTはpチャネル型T FTであることが望ましい。逆に、陰極を画素電極とし て用いる場合、第3のTFTはnチャネル型TFTであ ることが望ましい。

【0047】次に、図1乃至図3に示した本発明の発光 装置の駆動方法について説明する。ここではnビットの 50 デジタル信号を用いて2"階調を表示する場合について

説明する。

【0048】図4において、横軸はタイムスケールを示 しており、縦軸は第1ゲート信号線の位置を示してい る。

9

【0049】はじめに、第1ゲート信号側駆動回路10 3 aによって第1ゲート信号線G1が選択され、第1ゲ ート信号線G1にゲート電極が接続されている、1ラ イン目の画素の第1のTFT105がオンになる。ま た、第2ゲート信号側 駆動回路103bによって第2 ゲート信号線C1が選択され、第2ゲート信 号線C1 にゲート電極が接続されている、1ライン目の画素の第 3のTFT 107がオンになる。

【0050】そして、ソース信号側駆動回路102から ソース信号線S1~Sxに入力される1ビット目のデジ タル信号が、第1のTFT105を介して第2のTF T106のゲート電極に入力される。なお本明細書にお いて、デジタル信号 が第1のTFT105を介して第 2のTFT106のゲート電極に入力され ることを、 画素にデジタル信号が入力されるとする。

【0051】デジタル信号は「0」または「1」の情報 20 わなくなる。 を有しており、「0」と「1」のデジタル信号は、一方 がHi、一方がLoの電圧を有する信号である。第2 のTFT106は、デジタル信号が有する「0」または 「1」の情報によっ て、オンまたはオフになる。

【0052】第2のTFT106がオフのとき、電源供 給線Viの電圧は、OLED108の画素電極に与えら れない。その結果、OLED108は発光しない。

【0053】第2のTFT106がオンのとき、第3の TFT107はオンになっているので、OLED108 の画素電極に電源供給線Viの電圧が与えられる。そ の結果、OLED108は発光する。

【0054】なお、本発明の発光装置は、電源供給線 と、OLEDの対向電極との間の電圧が常に一定の値に 保たれている。そして、電源供給線と、OLEDの対向 電極との間の電圧は、画素電極に電源供給線の電圧が与 えられると、OLEDに順バイアスの電圧が印加される 高さである。

【0055】このように、1ライン目の画素にデジタル 信号が入力されると、OLED108が発光するかしな いかが選択され、1ライン目の画素は表示を行う。画 素が表示を行っている期間を表示期間Trと呼ぶ。特に 1ビット目のデジタ ル信号が画素に入力されたことで 開始する表示期間をTr1と呼ぶ。

【0056】次に第1ゲート信号線G1の選択が終了す ると、第2ゲート信号線C1が選択された状態のまま、 第1ゲート信号線G2が選択され、第1ゲート信号線 G2にゲート電極が接続されている2ライン目の画素の 第1のTFT105 がオンになり、2ライン目の画素 にソース信号線S1~Sxから1ビット目 のデジタル 信号が入力される。そして、第2ゲート信号線C2が選 50 に選択され、2ピット目のデジタル信号が全ての画素

択され、 2 ライン目の画素において表示期間Tr1が 開始される。

【0057】そして同様に、残り全ての第1ゲート信号 線G3~Gy及び第2ゲート信号線C3~Cyが順に選 択され、全てのラインの画素において、順に表示期間 Tr1が開始される。各ラインの表示期間が開始される タイミングはそれぞ れ時間差を有している。全ての画 素に1ビット目のデジタル信号が入力され るまでの期 間が、書き込み期間Talである。

【0058】一方、1ビット目のデジタル信号が全ての 画素に入力される前、言い換えると書き込み期間Ta1 が終了する前に、画素への1ビット目のデジタル信号 の入力と並行して、第2ゲート信号側駆動回路103b によって、第2ゲー ト信号線C1の選択が終了する。 そして、第2ゲート信号線C1にゲート電 極が接続さ れている1ライン目の画素の第3のTFT107が、オ フになる 。よって、電源供給線の電圧がOLED10 8の画素電極に与えられなくな り、1ライン目の画素 が有するOLED108は、全て発光せず、表示を行

【0059】画素が表示を行わない期間を非表示期間T dと呼ぶ。1ライン目の画素において、第2ゲート信号 線C1の選択が終了すると同時に表示期間T r 1 が終 了し、非表示期間Td1となる。

【0060】そして第2ゲート信号線C1の選択が終了 したままの状態で、次に第2ゲート信号線C2の選択が 終了され、第2ゲート信号線C2に接続されている2 ライン目の画素の第3のTFT107が、オフになる。 そして、2ライン目 の画素の第3のTFT107がオ 30 フになる。よって、電源供給線の電圧が〇 LED10 8の画素電極に与えられなくなり、2ライン目の画素が 有する〇 LED108は、全て発光せず、表示を行わ なくなる。

【0061】そして同様に、残り全ての第2ゲート信号 線に消去用ゲート信号C3~Cyの選択が順に終了され ていく。表示期間と同様に、各ラインの非表示期間が 開始されるタイミングはそれぞれ時間差を有している。 全ての第2ゲート信 号線C1~Cyの選択が終了され るまでの期間が消去期間Te1である。

【0062】一方、全てのラインの画素において消去期 40 間Td1が開始される前または開始された後に、言い換 えると消去期間Te1が終了する前または終了した後 に、再び第1ゲート信号線G1及び第2ゲート信号線C 1の選択が開始され る。そして1ライン目の画素に、 2 ビット目のデジタル信号が入力される。 その結果、 1 ライン目の画素は再び表示を行うので、非表示期間T d1が終 了して表示期間Tr2となる。

【0063】そして同様に、順に残り全ての第1ゲート 信号線G2~Gy及び第2ゲート信号線C2~Cyが順

に入力される。全ての画素に2ビット目のデジタル信号 が入力し終わるまで の期間を、書き込み期間Ta2と 呼ぶ。

【0064】そして一方、全ての画素に2ビット目のデ ジタル信号が入力される前、言い換えると書き込み期間 Ta2が終了する前に、画素への2ピット目のデジタ ル信号の入力と並行して、第2ゲート信号線C2の選択 が終了する。よって 1ライン目の画素が有するOLE Dは全て発光しなくなり、1ライン目の画 素が表示を 行わなくなる。よって1ライン目の画素において表示期 10 と、1つの画像を表示することができる。本発明におい 間Tr2 は終了し、非表示期間Td2となる。

【0065】そして順に、全ての第2ゲート信号線C1 ~Cyが選択され、全ての画素において非表示期間Td 2が開始される。全ての画素において、第2ゲート信 号線C2の選択が終了するまでの期間が、消去期間Te 2である。

【0066】上述した動作はmビット目のデジタル信号 が画素に入力されるまで繰り返し行われ、表示期間Tr と非表示期間Tdとが繰り返し出現する。表示期間T r 1 は、書き込み期間 T a 1 が開始されてから消去期間 20 数が 6 0 より少なくなると、視覚的に画像のちらつき Te1が開始される までの期間である。また非表示期 間Td1は、消去期間Te1が開始されて から次に出 現する書き込み期間 (この場合書き込み期間Ta2) が 開始され るまでの期間である。そして表示期間Tr 2、Tr3、…、Tr (m-1) と非表示期間Td 2、Td3、…、Td (m-1) も、表示期間Tr1と 非 表示期間Td1と同様に、それぞれ書き込み期間T a1、Ta2、…、Ta mと消去期間Te1、Te 2、…、Te (m-1) とによって、その期間が 定め られる。

【0067】説明を分かり易くするために、図4ではm =n-2の場合を例にとって示すが、本発明はこれに限 定されないのは言うまでもない。本発明においてmは 、1からnまでの値を任意に選択することが可能であ る。

【0068】m [n-2 (以下、[] 内はm=n-2の 場合を示す)〕ビット目のデジタル信号が1ライン目の 画素に入力されると、1ライン目の画素は表示期間T rm〔n-2〕となり表示を行う。そして次のビットの デジタル信号が入力 されるまで、m $\{n-2\}$ ビット 40 $1\sim n$ のうち、書き込み期間T a mが表示期間T r m o目のデジタル信号は画素に保持される。なおこのと き、第2ゲート信号線は選択されたままである。

【0069】そして次に(m+1) [n-1] ビット目 のデジタル信号が1ライン目の画素に入力されると、画 素に保持されていたm〔n-2〕ビット目のデジタル 信号は、(m+1)〔n-1〕ビット目のデジタル信号 に書き換えられる。 なおこのとき、第2ゲート信号線 は選択されたままである。そして1ライン 目の画素は 表示期間Tr(m+1) 〔n-1〕となり、表示を行 う。(m+1) [n-1] ビット目のデジタル信号

は、次のビットのデジタル信号が入 力されるまで画素 に保持される。

【0070】上述した動作は、nビット目のデジタル信 号が画素に入力されるまで繰り返し行われる。表示期間 Trm [n-2]、…、Trnは、書き込み期間Ta m[n-2]、…、Tanが開始されてから、その次に 出現する書き込み期 間が開始されるまでの期間であ

【0071】全ての表示期間Tr1~Trnが終了する て、1つの画像が表示される期間を1フレーム期間(F) と呼ぶ。

【0072】そして1フレーム期間終了後は、再び第1 ゲート信号線G1及び第2ゲート信号線C1が選択され る。そして、1ビット目のデジタル信号が画素に入力 され、1ライン目の画素が再び表示期間Tr1となる。 そして再び上述した 動作を繰り返す。

【0073】発光装置は1秒間に60以上のフレーム期 間を設けることが好ましい。1秒間に表示される画像の が目立ち始めることがある。

【0074】また本発明では、全ての書き込み期間の長 さの和が1フレーム期間よりも短いことが重要である。 なおかつ表示期間の長さをTr1:Tr2:Tr3: \cdots : Tr (n-1): Tr $n=2^{0}:2^{1}:2^{2}:\cdots:2^{n}$ ("-2): 2("-1) とすることが必要である。この表示期 間の組み合わせで2"階調のうち所望 の階調表示を行 うことができる。

【0075】1フレーム期間中にOLEDが発光した表 30 示期間の長さの総和を求めることによって、当該フレー ム期間におけるその画素の表示した階調がきまる。例え ば、n=8のとき、全部の表示期間で画素が発光した場 合の輝度を100%とすると、Tr1とTr2において 画素が発光した場合には1%の輝度が表現でき、Tr3 とTr5とTr8を選択した場合には60%の輝度が表 現できる。

【0076】mピット目のデジタル信号が画素に書き込 まれる書き込み期間Tamは、表示期間Trmの長さよ りも短いことが肝要である。よってビット数mの値は、 長さよりも短くなるような値であることが必要である。 【0077】また表示期間Tr1~Trnは、どのよう な順序で出現させても良い。例えば1フレーム期間中に おいて、Tr1の次にTr3、Tr5、Tr2、…とい う順序で表示期間を出現させることも可能である。ただ し、表示期間Tr1~Trnが互いに重ならない順序の 方がより好ましい。また消去期間Te1~Tenも、互 いに重ならない順序の方がより好ましい。

【0078】本発明は上記構成によって、対向電極の電 50 源が有するスイッチの電流能力の上限によって、発光装

置の大型化が妨げられることがない。また、対向電極の 電源が有するスイッチに流れる電流値を抑えることがで きるので、スイッチに起因する駆動回路の周波数特性の 低下を防ぎ、階調数の減少を防ぐことができる。

【0079】なお本発明においては、表示期間と書き込 み期間とが一部重なっている。言い換えると書き込み期 間においても画素を表示させることが可能である。その ため、1フレーム期間における表示期間の長さの総和の 割合(デューティー比)が、書き込み期間の長さによっ てのみ決定されない。

【0080】なお本実施の形態では、第2のTFTのゲ ート電極にかかる電圧を保持するためにコンデンサを設 けているが、コンデンサを省略することも可能である。 第2のTFTが、ゲート絶縁膜を介してゲート電極に重 なるように設けられたLDD領域を有している場合、こ の重なり合った領域には一般的にゲート容量と呼ばれる 寄生容量が形成される。このゲート容量を第2のTFT のゲート電極にかかる電圧を保持するためのコンデンサ として積極的に用いても良い。

【0081】なお、ゲート電極が互いに電気的に接続さ 20 れた複数のTFTを直列に接続することで、1つのTF Tとし、第1のTFT、第2のTFTまたは第3のTF Tに用いることも可能である。第1のTFTを上記構成 にすることによって、第1のTFTのオフ電流を下げる ことができる。また第2のTFT及び第3のTFTを上 記構成にすることによって、熱による第2のTFTまた. は第3のTFTの劣化を抑えることができる

【0082】このゲート容量の容量値は、上記ゲート電 極とLDD領域とが重なり合った面積によって変化する ため、その重なり合った領域に含まれるLDD領域の長 30 ゲート信号線1202と、第2ゲート信号線1207 さによって決まる。

[0083]

【実施例】以下に、本発明の実施例を示す。

【0084】(実施例1)本実施例では、図3に示した 画素の上面図について説明する。

【0085】図5に本実施例の画素の上面図を示す。ソ ース信号線Siと、電源供給線Viと、第1ゲート信号 線Gjと、第2ゲート信号線Cjとを有する領域が画素 104に相当する。

01は、第1ゲート信号線Gjに電気的に接続されてい る。また、第1のTFT105が有する半導体膜202 に含まれているソース領域とドレイン領域は、一方はソ ース信号線Siに、もう一方は配線203を介してゲー ト配線204に接続されている。

【0087】ゲート配線204の一部は、第2のTFT 106のゲート電極205として機能している。第2の TFT106が有する半導体膜206に含まれているソ ース領域とドレイン領域は、一方は電源供給線Viに、 もう一方は配線207に接続されている。

【0088】第3のTFT107のゲート電極208 は、第2ゲート信号線Cjに電気的に接続されている。 また、第3のTFT107が有する半導体膜209に含 まれているソース領域とドレイン領域は、一方は配線2 07に、もう一方は配線250を介して画素電極210 に接続されている。

【0089】211は半導体膜202、206と同時に 形成された容量用の半導体膜であり、絶縁膜(図示せ ず)を間に挟んでゲート配線204と重なることでコン 10 デンサを形成している。また、ゲート配線204は絶縁 膜(図示せず)を間に挟んで電源供給線Viと重なって いる。

【0090】なお、図3に示した画素の構造は、図5に 示したものに限定されない。

【0091】 (実施例2) 本実施例では、本発明におけ る発光装置の、画素の配置について説明する。

【0092】図6、図7に、本実施例の画素の回路図を 示す。

【0093】図6(A)において、画素1200と画素 1210とが隣接して設けられている。画素1200 は、第1のTFT1201と、第2のTFT1204 と、第3のTFT1209と、OLED1205と、コ ンデンサ1208とを有している。画素1210は、第 1のTFT1211と、第2のTFT1214と、第3 のTFT1219と、OLED1215と、コンデンサ 1218とを有している。

【0094】また画素1200はソース信号線1203 を有し、画素1210はソース信号線1213を有して いる。そして、画素1200と、画素1210は、第1 と、電源供給線1220とを共有している。

【0095】1つの電源供給線を隣り合う画素で共有し ていることにより、図3に示した構成に比べて、電源供 給線の数を減らすことができる。配線の数が少ないと歩 留まりを高くすることができる。また、配線の画素部全 体に占める面積の割合が小さくなるので、有機発光層の 発光する方向に配線が設けられている場合において、配 線による光の遮蔽が抑えられる。

【0096】次に本発明の画素の配置の、異なる一例を 【0086】第1のTFT105が有するゲート電極2 40 図6 (B) に示す。図6 (B) において、画素1300 と画素1310とが隣接して設けられている。

> 【0097】画素1300は、第1のTFT1301 と、第2のTFT1304と、第3のTFT1309 と、OLED1305と、コンデンサ1308とを有し ている。画素1310は、第1のTFT1311と、第 2のTFT1314と、第3のTFT1319と、OL ED1315と、コンデンサ1318とを有している。 【0098】また画素1300は第1ゲート信号線13 02を有し、画素1310は第1ゲート信号線1312 50 を有している。そして、画素1300と、画素1310

15

16

は、ソース信号線1303と、第2ゲート信号線1307と、電源供給線1320とを共有している。

【0099】1つの第1ゲート信号線を隣り合う画素で 共有していることにより、図3に示した構成に比べて、 第1ゲート信号線の数を減らすことができる。配線の数 が少ないと歩留まりを高くすることができる。また、配 線の画素部全体に占める面積の割合が小さくなるので、 有機発光層の発光する方向に配線が設けられている場合 において、配線による光の遮蔽が抑えられる。

【0100】次に本発明の画素の配置の、異なる一例を 10 図7(A)に示す。図7(A)において、画素1400 と画素1410とが隣接して設けられている。

【0101】画素1400は、第1のTFT1401 と、第2のTFT1404と、第3のTFT1409 と、OLED1405と、コンデンサ1408とを有している。画素1410は、第1のTFT1411と、第 2のTFT1414と、第3のTFT1419と、OL ED1415と、コンデンサ1418とを有している。 【0102】また画素1400はソース信号線1403 を有し、画素1410はソース信号線1413を有している。そして、画素1400と、画素1410は、第1 ゲート信号線1402と、第2ゲート信号線1407 と、電源供給線1420とを共有している。

【0103】1つの第2ゲート信号線を隣り合う画素で 共有していることにより、図3に示した構成に比べて、 第2ゲート信号線の数を減らすことができる。配線の数 が少ないと歩留まりを高くすることができる。また、配 線の画素部全体に占める面積の割合が小さくなるので、 有機発光層の発光する方向に配線が設けられている場合 において、配線による光の遮蔽が抑えられる。

【0104】次に本発明の画素の配置の、異なる一例を図7(B)に示す。図7(B)において、画素1500と画素1510とが隣接して設けられている。

【0105】画素1500は、第1のTFT1501 と、第2のTFT1504と、第3のTFT1509 と、OLED1505と、コンデンサ1508とを有し ている。画素1510は、第1のTFT1511と、第 2のTFT1514と、第3のTFT1519と、OL ED1515と、コンデンサ1518とを有している。

【0106】また画素1500は第1ゲート信号線15 40 02を有し、画素1510は第1ゲート信号線1512 を有している。そして、画素1500と、画素1510 は、ソース信号線1503と、第2ゲート信号線152 0と、電源供給線1507とを共有している。

【0107】1つの第2ゲート信号線を隣り合う画素で 共有していることにより、図3に示した構成に比べて、 第2ゲート信号線の数を減らすことができる。配線の数 が少ないと歩留まりを高くすることができる。また、配 線の画素部全体に占める面積の割合が小さくなるので、 有機発光層の発光する方向に配線が設けられている場合 において、配線による光の遮蔽が抑えられる。

【0108】なお。、本実施例は、実施例1と自由に組み合わせて実施することができる。

【0109】 (実施例3) 本実施例では、図3とは異なる、本発明の画素の構成について説明する。

【0110】図8において、画素304は、第1のTFT305、第2のTFT306、第3のTFT307 と、OLED308と、コンデンサ309とを有している。

【0111】第1のTFT305のゲート電極は、第1 ゲート信号線Gjに接続されている。また、第1のTF T305のソース領域とドレイン領域は、一方はソース 信号線Siに、もう一方は第2のTFT306のゲート 電極に接続されている。

【0112】第2のTFT306のソース領域とドレイン領域は、一方はOLED308の画素電極に、もう一方は第3のTFT307のソース領域またはドレイン領域に接続されている。

【0113】第3のTFTのゲート電極は、第2ゲート信号線Cjに接続されている。第3のTFTのソース領域とドレイン領域のうち、第2のTFT306のソース領域またはドレイン領域と接続していない方が、電源供給線Viに接続されている。

【0114】コンデンサ309は、第2のTFT306のゲート電極と、電源供給線Viとの間に形成されている。なお、コンデンサ309は必ずしも設ける必要はない。

【0115】OLED308は陽極と陰極と、陽極と陰極との間に設けられた有機発光層とを有している。

【0116】なお、第1のTFT305、第2のTFT306、第3のTFT307は、nチャネル型TFTであっても、pチャネル型TFTであってもどちらでも良い。ただし、第2のTFT306と第3のTFT307の極性が同じであることが望ましい。また、陽極を画素電極として用いる場合、第3のTFTはpチャネル型TFTであることが望ましい。逆に、陰極を画素電極として用いる場合、第3のTFTはnチャネル型TFTであることが望ましい。

【0117】なお。、本実施例は、実施例1または2と 自由に組み合わせて実施することができる。

【0118】(実施例4)本実施例では、本発明の発光 装置の画素部を駆動させるために用いる、ソース信号側 駆動回路、第1ゲート信号側駆動回路の詳しい構成について説明する。なお、第2ゲート信号側駆動回路は、第 1ゲート信号側駆動回路と同じ構成を用いることができるので、ここでは代表的に第1ゲート信号側駆動回路の 構成についてのみ説明する。

が少ないと歩留まりを高くすることができる。また、配 【0119】図9に本実施例の発光装置の駆動回路のブ 線の画素部全体に占める面積の割合が小さくなるので、 ロック図を示す。図9(A)はソース信号側駆動回路6 有機発光層の発光する方向に配線が設けられている場合 50 01であり、シフトレジスタ602、ラッチ(A)60

3、ラッチ(B) 604を有している。

【0120】ソース信号側駆動回路601において、シ フトレジスタ602にクロック信号(CLK)およびス タートパルス(SP)が入力される。シフトレジスタ6 02は、これらのクロック信号(CLK)およびスター トパルス(SP)に基づきタイミング信号を順に発生さ せ、バッファ等(図示せず)を通して後段の回路へタイ ミング信号を順次入力する。

17

【0121】シフトレジスタ602からのタイミング信 信号が入力される配線には、多くの回路あるいは素子が 接続されているために負荷容量(寄生容量)が大きい。 この負荷容量が大きいために生ずるタイミング信号の立 ち上がりまたは立ち下がりの"鈍り"を防ぐために、こ のバッファが設けられる。なおバッファは必ずしも設け る必要はない。

【0122】バッファによって緩衝増幅されたタイミン グ信号は、ラッチ(A)603に入力される。ラッチ (A) 603は、nビットデジタル信号を処理する複数 は、前記タイミング信号が入力されると、ソース信号側 **駆動回路601の外部から入力されるnビットのデジタ** ル信号を順次取り込み、保持する。

【0123】なお、ラッチ(A)603にデジタル信号 を取り込む際に、ラッチ(A)603が有する複数のス テージのラッチに、順にデジタル信号を入力しても良 い。しかし本発明はこの構成に限定されない。ラッチ (A) 603が有する複数のステージのラッチをいくつ

かのグループに分け、各グループごとに並行して同時に デジタル信号を入力する、いわゆる分割駆動を行っても 30 良い。なおこのときのグループの数を分割数と呼ぶ。例 えば4つのステージごとにラッチをグループに分けた場 合、4分割で分割駆動すると言う。

【0124】ラッチ(A)603の全てのステージのラ ッチにデジタル信号の書き込みが一通り終了するまでの 時間を、ライン期間と呼ぶ。実際には、上記ライン期間 に水平帰線期間が加えられた期間をライン期間に含むこ とがある。

【0125】1ライン期間が終了すると、ラッチ(B) 604にラッチシグナル (Latch Signal) が入力され る。この瞬間、ラッチ(A)603に書き込まれ保持さ れているデジタル信号は、ラッチ(B)604に一斉に 送出され、ラッチ(B)604の全ステージのラッチに 書き込まれ、保持される。

【0126】デジタル信号をラッチ(B)604に送出 し終えたラッチ(A) 603には、シフトレジスタ60 2からのタイミング信号に基づき、デジタル信号の書き 込みが順次行われる。

【0127】この2順目の1ライン期間中には、ラッチ

号がソース信号線に入力される。

【0128】図9(B)は第1ゲート信号側駆動回路の 構成を示すブロック図である。

18

【0129】第1ゲート信号側駆動回路605は、それ ぞれシフトレジスタ606、バッファ607を有してい る。また場合によってはレベルシフトを有していても良

【0130】第1ゲート信号側駆動回路605におい て、シフトレジスタ606からのタイミング信号がバッ 号は、バッファ等によって緩衝増幅される。タイミング 10 ファ607に入力され、対応するアドレス用ゲート信号 線に入力される。アドレス用ゲート信号線には、1ライ ン分の画素のアドレス用TFTのゲート電極が接続され ている。そして、1ライン分の画素のアドレス用TFT を一斉にONにしなくてはならないので、バッファは大 きな電流を流すことが可能なものが用いられる。

> 【0131】本実施例は実施例1~3と自由に組み合わ せて実施することが可能である。

【0132】 (実施例5) 本発明の発光装置において、 OLEDが有する有機発光層に用いられる材料は、有機 のステージのラッチを有している。ラッチ(A)603 20 発光材料に限定されず、無機発光材料を用いても実施で きる。但し、現在の無機発光材料は非常に駆動電圧が高 いため、そのような駆動電圧に耐えうる耐圧特性を有す るTFTを用いなければならない。

> 【0133】または、将来的にさらに駆動電圧の低い無 機発光材料が開発されれば、本発明に適用することは可 能である。

> 【0134】また、本実施例の構成は、実施例1~4の いずれの構成とも自由に組み合わせることが可能であ

【0135】(実施例6)本実施例では、本発明の発光 装置の画素部とその周辺に設けられる駆動回路部(ソー ス信号側駆動回路、第1ゲート信号側駆動回路、第2ゲ 一ト信号側駆動回路)のTFTを同時に作製する方法に ついて説明する。但し、説明を簡単にするために、駆動 回路部に関しては基本単位であるCMOS回路を図示す ることとする。また、本実施例では、画素部の第1のT FTと第2のTFTについてのみ示したが、第3のTF Tも第1のTFT及び第2のTFTと同時に作製するこ とができる

【0136】まず、図10(A)に示すように、コーニ 40 ング社の#7059ガラスや#1737ガラスなどに代 表されるバリウムホウケイ酸ガラス、またはアルミノホ ウケイ酸ガラスなどのガラスから成る基板5001上に 酸化シリコン膜、窒化シリコン膜または酸化窒化シリコ ン膜などの絶縁膜から成る下地膜5002を形成する。 例えば、プラズマCVD法でSiH,、NH,、N,Oか ら作製される酸化窒化シリコン膜5002aを10~2 00[nm] (好ましくは50~100[nm]) 形成し、同様 にSiH、、N、Oから作製される酸化窒化水素化シリコ (B) 603に書き込まれ、保持されているデジタル信 50 ン膜5002bを50~200[nm](好ましくは100

 ~ 150 [nm]) の厚さに積層形成する。本実施例では下地膜 5002を2層構造として示したが、前記絶縁膜の単層膜または2層以上積層させた構造として形成しても良い。

【0137】半導体膜 $5003\sim5006$ は、非晶質構造を有する半導体膜をレーザー結晶化法や公知の熱結晶化法を用いて作製した結晶質半導体膜で形成する。この半導体膜 $5003\sim5006$ の厚さは $25\sim80[nm]$ (好ましくは $30\sim60[nm]$)の厚さで形成する。結晶質半導体膜の材料に限定はないが、好ましくはシリコン 10またはシリコンゲルマニウム(SiGe)合金などで形

成すると良い。

【0138】レーザー結晶化法で結晶質半導体膜を作製 するには、パルス発振型または連続発光型のエキシマレ ーザーやYAGレーザー、YVO、レーザーを用いる。 これらのレーザーを用いる場合には、レーザー発振器か ら放射されたレーザー光を光学系で線状に集光し半導体 膜に照射する方法を用いると良い。結晶化の条件は実施 者が適宜選択するものであるが、エキシマレーザーを用 いる場合はパルス発振周波数300[Hz]とし、レーザー エネルギー密度を100~400[mJ/cm²](代表的には 200~300[mJ/cm²])とする。また、YAGレーザ ーを用いる場合にはその第2高調波を用いパルス発振周 波数30~300[kHz]とし、レーザーエネルギー密度 を300~600[mJ/cm²](代表的には350~500 $[mJ/cm^2]$)とすると良い。そして幅100~1000 $[\mu]$ m]、例えば $400[\mu m]$ で線状に集光したレーザー光を 基板全面に渡って照射し、この時の線状レーザー光の重 ね合わせ率 (オーバーラップ率)を50~90[%]とし て行う。

【0139】次いで、半導体膜5003~5006を覆 うゲート絶縁膜5007を形成する。ゲート絶縁膜50 07はプラズマCVD法またはスパッタ法を用い、厚さ を40~150[nm]としてシリコンを含む絶縁膜で形成 する。本実施例では、120[nm]の厚さで酸化窒化シリ コン膜で形成する。勿論、ゲート絶縁膜はこのような酸 化窒化シリコン膜に限定されるものでなく、他のシリコ ンを含む絶縁膜を単層または積層構造として用いても良 い。例えば、酸化シリコン膜を用いる場合には、プラズ マCVD法でTEOS (Tetraethyl Orthosilicate) と 40 O₁とを混合し、反応圧力 4 0 [Pa]、基板温度 3 0 0 ~ 400[℃]とし、高周波(13.56[MHz])、電力密 度 $0.5\sim0.8$ [W/cm²] で放電させて形成することが 出来る。このようにして作製される酸化シリコン膜は、 その後400~500[℃]の熱アニールによりゲート絶 縁膜として良好な特性を得ることが出来る。

【0140】そして、ゲート絶縁膜5007上にゲート電極を形成するための第1の導電膜5008と第2の導電膜5009とを形成する。本実施例では、第1の導電膜5008をTaで50~100[nm]の厚さに形成し、

第2の導電膜5009をWで100~300[nm]の厚さ に形成する。

【0141】 Ta 膜はスパッタ法で、Ta のターゲットをArでスパッタすることにより形成する。この場合、Arに適量のXeやKrを加えると、Ta 膜の内部応力を緩和して膜の剥離を防止することが出来る。また、 α 相のTa 膜の抵抗率は20 [μ Ω cm] 程度でありゲート電極に使用することが出来るが、 β 相のTa 膜の抵抗率は180 [μ Ω cm] 程度でありゲート電極とするには不向きである。 α 相のTa 膜を形成するために、Ta α α 相に近い結晶構造をもつ窒化タンタルを10~50 [nm] 程度の厚さでTa の下地に形成しておくと α 相のTa 膜を容易に得ることが出来る。

【0142】W膜を形成する場合には、Wをターゲットとしたスパッタ法で形成する。その他に6フッ化タングステン(WF。)を用いる熱CVD法で形成することも出来る。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は20 [μ Qcm]以下にすることが望ましい。W膜は結晶粒を大きくすることで低抵抗率化を図ることが出来るが、W中に酸素などの不純物元素が多い場合には結晶化が阻害され高抵抗化する。このことより、スパッタ法による場合、純度99.999[%]または99.99[%]のWターゲットを用い、さらに成膜時に気相中からの不純物の混入がないように十分配慮してW膜を形成することにより、抵抗率 $9\sim20$ [μ Qcm]を実現することが出来る。

【0143】なお、本実施例では、第1の導電膜5008をTa、第2の導電膜5009をWとしたが、特に限定されず、いずれもTa、W、Ti、Mo、Al、Cuなどから選ばれた元素、または前記元素を主成分とする合金材料もしくは化合物材料で形成してもよい。また、リン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜を用いてもよい。本実施例以外の他の組み合わせの一例で望ましいものとしては、第1の導電膜5008を窒化タンタル(TaN)で形成し、第2の導電膜5009をWとする組み合わせ、第1の導電膜5008を窒化タンタル(TaN)で形成し、第2の導電膜5008を窒化タンタル(TaN)で形成し、第2の導電膜5008を窒化タンタル(TaN)で形成し、第2の導電膜5008を窒化タンタル(TaN)で形成し、第2の導電膜5008を窒化タンタル(TaN)で形成し、第2の導電膜5008を窒化タンタル(TaN)で形成し、第2の導電膜5008を窒化タンタル(TaN)で形成し、第2の導電膜5008を

【0144】次に、レジストによるマスク5010を形成し、電極及び配線を形成するための第1のエッチング処理を行う。本実施例ではICP(Inductively Couple d Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング用ガスに $CF_1 \succeq Cl_2$ を混合し、1[Pa]の圧力でコイル型の電極に500[W]のRF(13.56[MHz])電力を投入してプラズマを生成して行う。基板側(試料ステージ)にも100[W]のRF(13.56[MH]

50 2]) 電力を投入し、実質的に負の自己バイアス電圧を印

加する。 CF_* と CI_* を混合した場合にはW膜及T a 膜とも同程度にエッチングされる。

【0145】上記エッチング条件では、レジストによる マスクの形状を適したものとすることにより、基板側に 印加するバイアス電圧の効果により第1の導電層及び第 2の導電層の端部がテーパー形状となる。テーパー部の 角度は15~45°となる。ゲート絶縁膜上に残渣を残 すことなくエッチングするためには、10~20[%]程 度の割合でエッチング時間を増加させると良い。W膜に 対する酸化窒化シリコン膜の選択比は2~4 (代表的に 10 は3)であるので、オーバーエッチング処理により、酸 化窒化シリコン膜が露出した面は20~50[nm]程度エ ッチングされることになる。こうして、第1のエッチン グ処理により第1の導電層と第2の導電層から成る第1 の形状の導電層5011~5016 (第1の導電層50 11a~5016aと第2の導電層5011b~501 6b)を形成する。このとき、ゲート絶縁膜5007に おいては、第1の形状の導電層5011~5016で覆 われない領域は20~50[nm]程度エッチングされ薄く なった領域が形成される。(図10(A))

【0146】そして、第1のドーピング処理を行いn型を付与する不純物元素を添加する。ドーピングの方法はイオンドープ法もしくはイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を $1\times10^{13}\sim5\times10^{14}$ [atoms/cm²]とし、加速電圧を $60\sim100$ [keV]として行う。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いるが、ここではリン(P)を用いる。この場合、導電層 $5011\sim5015$ がn型を付与する不純物領域 $5017\sim5025$ が形成される。第10不純物領域 $5017\sim5025$ には $1\times10^{20}\sim1\times10^{21}$ [atoms/cm³]の濃度範囲でn型を付与する不純物元素を添加する。

【0147】次に、図10(C)に示すように、レジストマスクは除去しないまま、第2のエッチング処理を行う。エッチングガスにCF,とC1,とO,とを用い、W膜を選択的にエッチングする。この時、第2のエッチン

グ処理により第2の形状の導電層5026~5031

(図10(B))

(第1の導電層5026a~5031aと第2の導電層 405026b~5031b)を形成する。このとき、ゲート絶縁膜5007においては、第2の形状の導電層5026~5031で覆われない領域はさらに20~50[n □]程度エッチングされ薄くなった領域が形成される。

【0148】W膜やTa膜のCF,とC1。の混合ガスによるエッチング反応は、生成されるラジカルまたはイオン種と反応生成物の蒸気圧から推測することが出来る。WとTaのフッ化物と塩化物の蒸気圧を比較すると、Wのフッ化物であるWF,が極端に高く、その他のWC1。、TaF,、TaC1。は同程度である。従って、C

F,とC12の混合ガスではW膜及びTa膜共にエッチングされる。しかし、この混合ガスに適量のO2を添加するとCF,とO2が反応してCOとFになり、FラジカルまたはFイオンが多量に発生する。その結果、フッ化物の蒸気圧が高いW膜のエッチング速度が増大する。一方、TaはFが増大しても相対的にエッチング速度の増加は少ない。また、TaはWに比較して酸化されやすいので、O2を添加することでTaの表面が酸化される。Taの酸化物はフッ素や塩素と反応しないためさらにTa膜のエッチング速度は低下する。従って、W膜とTa膜とのエッチング速度は低下する。従って、W膜とTa膜とのエッチング速度は差を作ることが可能となりW膜のエッチング速度をTa膜よりも大きくすることが可能となる。

【0149】そして、図11(A)に示すように第2の ドーピング処理を行う。この場合、第1のドーピング処 理よりもドーズ量を下げて高い加速電圧の条件としてn 型を付与する不純物元素をドーピングする。例えば、加 速電圧を70~120[keV]とし、1×10¹³[atoms/cm ²]のドーズ量で行い、図10(B)で半導体膜に形成さ 20 れた第1の不純物領域の内側に新たな不純物領域を形成 する。ドーピングは、第2の形状の導電層5026~5 030を不純物元素に対するマスクとして用い、第1の 導電層5026a~5030aの下側の領域にも不純物 元素が添加されるようにドーピングする。こうして、第 3の不純物領域5032~5036が形成される。この 第3の不純物領域5032~5036に添加されたリン (P) の濃度は、第1の導電層5026a~5030a のテーパー部の膜厚に従って緩やかな濃度勾配を有して いる。なお、第1の導電層5026a~5030aのテ ーパー部と重なる半導体膜において、第1の導電層50 26a~5030aのテーパー部の端部から内側に向か って若干、不純物濃度が低くなっているものの、ほぼ同 程度の濃度である。

【0150】図11(B)に示すように第3のエッチング処理を行う。エッチングガスにCHF。を用い、反応性イオンエッチング法(RIE法)を用いて行う。第3のエッチング処理により、第1の導電層5026a~5031aのテーパー部を部分的にエッチングして、第1の導電層が半導体膜と重なる領域が縮小される。第3のエッチング処理によって、第3の形状の導電層5037~5042(第1の導電層5037a~5042aと第2の導電層5037b~5042b)を形成する。このとき、ゲート絶縁膜5007においては、第3の形状の導電層5037~5042で覆われない領域はさらに20~50[nm]程度エッチングされ薄くなった領域が形成される。

【0151】第3のエッチング処理によって、第3の不 純物領域5032~5036においては、第1の導電層 5037a~5041aと重なる第3の不純物領域50 32a~5036aと、第1の不純物領域と第3の不純 物領域との間の第2の不純物領域5032b~5036 bとが形成される。

【0152】そして、図11 (C) に示すように、pチ ャネル型TFTを形成する半導体膜5004、5006 に第1の導電型とは逆の導電型の第4の不純物領域50 43~5054を形成する。第3の形状の導電層503 8 b、5041 bを不純物元素に対するマスクとして用 い、自己整合的に不純物領域を形成する。このとき、n チャネル型TFTを形成する半導体膜5003、500 5 および配線部 5 0 4 2 はレジストマスク 5 2 0 0 で全 10 しくは 2 \sim 4 [μm])とすれば良い。 面を被覆しておく。不純物領域5043~5054には それぞれ異なる濃度でリンが添加されているが、ジボラ ン(B, H,)を用いたイオンドープ法で形成し、そのい ずれの領域においても不純物濃度が2×10¹⁰~2×1 0² [atoms/cm³]となるようにする。

【0153】以上までの工程でそれぞれの半導体膜に不 純物領域が形成される。半導体膜と重なる第3の形状の 導電層5037~5041がゲート電極として機能す る。また、5042は島状のソース信号線として機能す

【0154】レジストマスク5200を除去した後、導 電型の制御を目的として、それぞれの半導体膜に添加さ れた不純物元素を活性化する工程を行う。この工程はフ ァーネスアニール炉を用いる熱アニール法で行う。その 他に、レーザーアニール法、またはラピッドサーマルア ニール法(RTA法)を適用することが出来る。熱アニ ール法では酸素濃度が1[ppm]以下、好ましくは0.1 [ppm]以下の窒素雰囲気中で400~700[℃]、代表 的には500~600[℃]で行うものであり、本実施例 では500[℃]で4時間の熱処理を行う。ただし、第3 30 の形状の導電層5037~5042に用いた配線材料が 熱に弱い場合には、配線等を保護するため層間絶縁膜 (シリコンを主成分とする)を形成した後で活性化を行 うことが好ましい。

【0155】さらに、3~100[%]の水素を含む雰囲 気中で、300~450[℃]で1~12時間の熱処理を 行い、半導体膜を水素化する工程を行う。この工程は熱 的に励起された水素により半導体膜のダングリングボン ドを終端する工程である。水素化の他の手段として、プ ラズマ水素化(プラズマにより励起された水素を用い る)を行っても良い。

【0156】次いで、図12(A)に示すように、第1 の層間絶縁膜5055を酸化窒化シリコン膜から100 ~200[nm]の厚さで形成する。その上に有機絶縁物材 料から成る第2の層間絶縁膜5056を形成した後、第 1の層間絶縁膜5055、第2の層間絶縁膜5056、 およびゲート絶縁膜5007に対してコンタクトホール を形成し、各配線(接続配線、信号線を含む)5057 ~5062、5064をパターニング形成した後、接続 配線5062に接する画素電極5063をパターニング 50 次、有機発光層および陰極を形成する。但し、有機発光

形成する。

【0157】第2の層間絶縁膜5056としては、有機 樹脂を材料とする膜を用い、その有機樹脂としてはポリ イミド、ポリアミド、アクリル、BCB(ベンゾシクロ ブテン)等を使用することが出来る。特に、第2の層間 絶縁膜5056は平坦化の意味合いが強いので、平坦性 に優れたアクリルが好ましい。本実施例ではTFTによ って形成される段差を十分に平坦化しうる膜厚でアクリ ル膜を形成する。好ましくは $1 \sim 5[\mu m]$ (さらに好ま

【0158】コンタクトホールの形成は、ドライエッチ ングまたはウエットエッチングを用い、n型の不純物領 域5017、5018、5021、5023またはp型 の不純物領域5043~5054に達するコンタクトホ ール、配線5042に達するコンタクトホール、電源供 給線に達するコンタクトホール(図示せず)、およびゲ ート電極に達するコンタクトホール(図示せず)をそれ ぞれ形成する。

【0159】また、配線(接続配線、信号線を含む)5 20 057~5062、5064として、Ti膜を100[n m]、Tiを含むアルミニウム膜を300[nm]、Ti膜1 50[nm]をスパッタ法で連続形成した3層構造の積層膜 を所望の形状にパターニングしたものを用いる。勿論、 他の導電膜を用いても良い。

【0160】また、本実施例では、画素電極5063と してITO膜を110[nm]の厚さに形成し、パターニン グを行った。画素電極5063を接続配線5062と接 して重なるように配置することでコンタクトを取ってい る。また、酸化インジウムに2~20[%]の酸化亜鉛 (ZnO) を混合した透明導電膜を用いても良い。この 画素電極5063がOLEDの陽極となる。(図12 (A))

【0161】次に、図12(B)に示すように、珪素を 含む絶縁膜(本実施例では酸化珪素膜)を500[nm]の 厚さに形成し、画素電極5063に対応する位置に開口 部を形成して、バンクとして機能する第3の層間絶縁膜 5065を形成する。開口部を形成する際、ウエットエ ッチング法を用いることで容易にテーパー形状の側壁と することが出来る。開口部の側壁が十分になだらかでな 40 いと段差に起因する有機発光層の劣化が顕著な問題とな ってしまうため、注意が必要である。

【0162】次に、有機発光層5066および陰極(M gAg電極) 5067を、真空蒸着法を用いて大気解放 しないで連続形成する。なお、有機発光層5066の膜 厚は80~200[nm] (典型的には100~120[n m])、陰極5067の厚さは180~300[nm](典型 的には200~250[nm]) とすれば良い。

【0163】この工程では、赤色に対応する画素、緑色 に対応する画素および青色に対応する画素に対して順

層は溶液に対する耐性に乏しいためフォトリソグラフィ 技術を用いずに各色個別に形成しなくてはならない。そ こでメタルマスクを用いて所望の画素以外を隠し、必要 箇所だけ選択的に有機発光層および陰極を形成するのが 好ましい。

【0164】即ち、まず赤色に対応する画素以外を全て 隠すマスクをセットし、そのマスクを用いて赤色発光の 有機発光層を選択的に形成する。次いで、緑色に対応す る画素以外を全て隠すマスクをセットし、そのマスクを で、同様に青色に対応する画素以外を全て隠すマスクを セットし、そのマスクを用いて青色発光の有機発光層を 選択的に形成する。なお、ここでは全て異なるマスクを 用いるように記載しているが、同じマスクを使いまわし ても構わない。

【0165】ここではRGBに対応した3種類のOLE Dを形成する方式を用いたが、白色発光のOLEDとカ ラーフィルタを組み合わせた方式、青色または青緑発光 のOLEDと蛍光体(蛍光性の色変換層:CCM)とを 組み合わせた方式、陰極(対向電極)に透明電極を利用 20 してRGBに対応したOLEDを重ねる方式などを用い ても良い。

【0166】なお、有機発光層5066としては公知の 材料を用いることが出来る。公知の材料としては、駆動 電圧を考慮すると有機材料を用いるのが好ましい。例え ば正孔注入層、正孔輸送層、発光層および電子注入層で なる4層構造を有機発光層とすれば良い。

【0167】次に、陰極5067を形成する。なお本実 施例では陰極5067としてMgAgを用いたが、本発 明はこれに限定されない。陰極5067として他の公知 30 いることが好ましい。このような例としては、やはり、 の材料を用いても良い。

【0168】最後に、窒化珪素膜でなるパッシベーショ ン膜5068を300[nm]の厚さに形成する。パッシベ ーション膜5068を形成しておくことで、有機発光層 5066を水分等から保護することができ、OLEDの 信頼性をさらに高めることが出来る。

【0169】こうして図12(B)に示すような構造の 発光装置が完成する。なお、本実施例における発光装置 の作成工程においては、回路の構成および工程の関係 上、ゲート電極を形成している材料であるTa、Wによ 40 ってソース信号線を形成し、ソース、ドレイン電極を形 成している配線材料であるAlによって第1ゲート信号 線を形成しているが、異なる材料を用いても良い。

【0170】ところで、本実施例の発光装置は、画素部 だけでなく駆動回路部にも最適な構造のTFTを配置す ることにより、非常に高い信頼性を示し、動作特性も向 上しうる。また結晶化工程においてN i 等の金属触媒を 添加し、結晶性を高めることも可能である。それによっ て、ソース信号側駆動回路の駆動周波数を10[MHz]以 上にすることが可能である。

【0171】まず、極力動作速度を落とさないようにホ ットキャリア注入を低減させる構造を有するTFTを、 駆動回路部を形成するСМОS回路のnチャネル型TF Tとして用いる。なお、ここでいう駆動回路としては、 シフトレジスタ、バッファ、レベルシフタ、線順次駆動 におけるラッチ、点順次駆動におけるトランスミッショ ンゲートなどが含まれる。

【0172】本実施例の場合、nチャネル型TFTの活 性層は、ソース領域、ドレイン領域、ゲート絶縁膜を間 用いて緑色発光の有機発光層を選択的に形成する。次い 10 に挟んでゲート電極と重なるオーバーラップLDD領域 (Lov領域)、ゲート絶縁膜を間に挟んでゲート電極と 重ならないオフセットLDD領域(Loff領域)および チャネル形成領域を含む。

> 【0173】また、CMOS回路のpチャネル型TFT は、ホットキャリア注入による劣化が殆ど気にならない ので、特にLDD領域を設けなくても良い。勿論、nチ ャネル型TFTと同様にLDD領域を設け、ホットキャ リア対策を講じることも可能である。

> 【0174】その他、駆動回路において、チャネル形成 領域を双方向に電流が流れるようなCMOS回路、即 ち、ソース領域とドレイン領域の役割が入れ替わるよう なCMOS回路が用いられる場合、CMOS回路を形成 するnチャネル型TFTは、チャネル形成領域の両サイ ドにチャネル形成領域を挟む形でLDD領域を形成する ことが好ましい。このような例としては、点順次駆動に 用いられるトランスミッションゲートなどが挙げられ る。また駆動回路において、オフ電流を極力低く抑える 必要のあるCMOS回路が用いられる場合、CMOS回 路を形成するnチャネル型TFTは、Lov領域を有して 点順次駆動に用いられるトランスミッションゲートなど が挙げられる。

> 【0175】なお、実際には図12(B)の状態まで完 成したら、さらに外気に曝されないように、気密性が高 く、脱ガスの少ない保護フィルム(ラミネートフィル ム、紫外線硬化樹脂フィルム等)や透光性のシーリング 材でパッケージング(封入)することが好ましい。その 際、シーリング材の内部を不活性雰囲気にしたり、内部 に吸湿性材料(例えば酸化バリウム)を配置したりする とOLEDの信頼性が向上する。

> 【0176】また、パッケージング等の処理により気密 性を高めたら、基板上に形成された素子又は回路から引 き回された端子と外部信号端子とを接続するためのコネ クタ (フレキシブルプリントサーキット: FPC) を取 り付けて製品として完成する。

> 【0177】また、本実施例で示す工程に従えば、発光 装置の作製に必要なフォトマスクの数を抑えることが出 来る。その結果、工程を短縮し、製造コストの低減及び 歩留まりの向上に寄与することが出来る。

【0178】また、本実施例の構成は、実施例1~5の 50

いずれの構成とも自由に組み合わせることが可能である。

【0179】(実施例7)本実施例では、本発明を用いて発光装置を作製した例について、図13を用いて説明する。

【0180】図13(A)は、画素部が形成されたTFT基板をシーリング材によって封止することによって形成されたOLEDパネルの上面図であり、図13(B)は、図13(A)のA-A)における断面図、図13(C)は図13(A)のB-B)における断面図である。

【0181】基板4001上に設けられた画素部400 2と、ソース信号側駆動回路4003と、第1及び第2 ゲート信号側駆動回路4004a、bとを囲むようにし て、シール材4009が設けられている。また画素部4 002と、ソース信号側駆動回路4003と、第1及び 第2ゲート信号側駆動 回路4004a、bとの上 にシーリング材4008が設けられている。 て画素部4002と、ソース信号側駆動回路4003 と、第1及び 第2ゲート信号側駆動回路4004 a、bとは、基板4001とシール 材4009と シーリング材4008とによって、充填材4210で密 封 されている。

【0182】また基板4001上に設けられた画素部4002と、ソース信号側駆動回路4003と、第1及び第2ゲート信号側駆動回路4004a、bとは、複数のTFTを有している。図13(B)では代表的に、下地膜4010上に形成された、ソース信号側駆動回路4003に含まれる駆動回路用TFT(但し、ここではnチャネル型TFTとpチャネル型TFTを図示する)423001及び画素部4002に含まれる第2のTFT(OLEDへの電流を制御するTFT)4202を図示した。

【0183】本実施例では、駆動回路用TFT4201には公知の方法で作製されたpチャネル型TFTまたはnチャネル型TFTが用いられ、第2のTFT4202には公知の方法で作製されたpチャネル型TFTが用いられる。また、画素部4002には第2のTFT4202のゲートに接続された保持容量(図示せず)が設けられる。

【0184】駆動回路用TFT4201及び第2のTFT4202上には層間絶縁膜(平坦化膜)4301が形成され、その上に第2のTFT4202のドレインと電気的に接続する画素電極(陽極)4203が形成される。画素電極4203としては仕事関数の大きい透明導電膜が用いられる。透明 導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジウムを 用いることができる。また、前記透明導電膜にガリウムを添加したもの を用いても良い。

【0185】そして、画素電極4203の上には絶縁膜4302が形成され、絶縁膜4302は画素電極4203の上に開口部が形成されている。この開口部において、画素電極4203の上には有機発光層4204が形成される。有機発光層4204は公知の有機発光材料または無機発光材料を用いることができる。また、有機発光材料には低分子系(モノマー系)材料と高分子系(ポリマー系)材料があるがどちらを用いても良い。

【0186】有機発光層4204の形成方法は公知の蒸 10 着技術もしくは塗布法技術を用いれば良い。また、有機 発光層の構造は正孔注入層、正孔輸送層、発光層、電子 輸送層または電子注入層を自由に組み合わせて積層構造 または単層構造とすれば良い。

【0187】有機発光層4204の上には遮光性を有する導電膜(代表的にはアルミニウム、銅もしくは銀を主成分とする導電膜またはそれらと他の導電膜との積層膜)からなる陰極4205が形成される。また、陰極4205と有機発光層4204の界面に存在する水分や酸素は極力排除しておくことが望ましい。従って、有機発光層4204を窒素または希ガス雰囲気で形成し、酸素や水分に触れさせないまま陰極4205を形成するといった工夫が必要である。本実施例ではマルチチャンバー方式(クラスターツール方式)の成膜装置を用いることで上述のような成膜を可能とする。そして陰極4205は所定の電圧が与えられている。

【0188】以上のようにして、画素電極(陽極)42 03、有機発光層4204及び陰極4205からなるO LED4303が形成される。そしてOLED4303 を覆うように、絶縁膜4302上に保護膜4303が形成されている。保護膜4303は、OLED4303に 酸素や水分等が入り込むのを防ぐのに効果的である。

【0189】4005 aは電源供給線に接続された引き回し配線であり、第2のTFT4202のソース領域に電気的に接続されている。引き回し配線4005 aはシール材4009と基板4001との間を通り、異方導電性フィルム4300を介してFPC4006が有するFPC用配線4301に電気的に接続される。

【0190】シーリング材4008としては、ガラス材、金属材(代表的にはステンレス材)、セラミックス 材、プラスチック材(プラスチックフィルムも含む)を用いることができる。プラスチック材としては、FRP (Fiberglass-Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることもできる。

【0191】但し、OLEDからの光の放射方向がカバー材側に向かう場合にはカバー材は透明でなければなら 50 ない。その場合には、ガラス板、プラスチック板、ポリ エステルフィルムまたはアクリルフィルムのような透明 物質を用いる。

【0192】また、充填材4103としては窒素やアル ゴンなどの不活性な気体の他に、紫外線硬化樹脂または 熱硬化樹脂を用いることができ、PVC(ポリビニルク ロライド)、アクリル、ポリイミド、エポキシ樹脂、シ リコーン樹脂、PVB (ポリビニルブチラル) またはE VA (エチレンビニルアセテート) を用いることができ る。本実施例では充填材として窒素を用いた。

【0193】また充填材4103を吸湿性物質(好まし 10 くは酸化バリウム)もしくは酸素を吸着しうる物質にさ らしておくために、シーリング材4008の基板400 1側の面に凹部4007を設けて吸湿性物質または酸素 を吸着しうる物質4207を配置する。そして、吸湿性 物質または酸素を吸着しうる物質4207が飛び散らな いように、凹部カバー材4208によって吸湿性物質ま たは酸素を吸着しうる物質4207は凹部4007に保 持されている。なお凹部カバー材4208は目の細かい メッシュ状になっており、空気や水分は通し、吸湿性物 質または酸素を吸着しうる物質4207は通さない構成 20 になっている。吸湿性物質または酸素を吸着しうる物質 4207を設けることで、OLED4303の劣化を抑 制できる。

【0194】図13 (C) に示すように、画素電極42 03が形成されると同時に、引き回し配線4005a上 に接するように導電性膜4203aが形成される。

【0195】また、異方導電性フィルム4300は導電 性フィラー4300aを有している。基板4001とF PC4006とを熱圧着することで、基板4001上の 導電性膜4203aとFPC4006上のFPC用配線 30 4301とが、導電性フィラー4300aによって電気 的に接続される。

【0196】また、本実施例の構成は、実施例1~6の いずれの構成とも自由に組み合わせることが可能であ る。

【0197】(実施例8)本発明において、三重項励起 子からの燐光を発光に利用できる有機発光材料を用いる ことで、外部発光量子効率を飛躍的に向上させることが できる。これにより、OLEDの低消費電力化、長寿命 化、および軽量化が可能になる。

【0198】ここで、三重項励起子を利用し、外部発光 量子効率を向上させた報告を示す。(T. Tsutsui, C. Adac hi, S. Saito, Photochemical Processes in Organized Molecular Systems, ed.K. Honda, (Elsevier Sci. Pub., Tokyo, 1991) p. 437.)

【0199】上記の論文により報告された有機発光材料 (クマリン色素) の分子式を以下に示す。

[0200]

【化1】

[0201] (M. A. Baldo, D. F. O'Brien, Y. You, A. Shou stikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 395 (1998) p. 151.)

【0202】上記の論文により報告された有機発光材料 (Pt錯体)の分子式を以下に示す。

[0203]

【化2】

[0204] (M. A. Baldo, S. Lamansky, P. E. Burrrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 75 (199) 9) p. 4.) (T. Tsutsui, M. - J. Yang, M. Yahiro, K. Nakamu ra, T. Watanabe, T. tsuji, Y. Fukuda, T. Wakimoto, S. Ma yaguchi, Jpn. Appl. Phys., 38 (12B) (1999) L1502.)

【0205】上記の論文により報告された有機発光材料 (Ir錯体)の分子式を以下に示す。

[0206]

【化3】

【0207】以上のように三重項励起子からの燐光発光 を利用できれば原理的には一重項励起子からの蛍光発光 を用いる場合より3~4倍の高い外部発光量子効率の実 現が可能となる。

40 【0208】なお、本実施例の構成は、実施例1~実施 例7のいずれの構成とも自由に組み合わせて実施するこ とが可能である。

【0209】 (実施例9) 本実施例では、図9で示した ソース信号側駆動回路601の回路図を一例で示す。

【0210】図14に示したソース信号側駆動回路60 1は、シフトレジスタ602、ラッチ(A)(60 3)、ラッチ(B)(604)、が図に示すように配置 されている。なお本実施例では、1組のラッチ(A)

(603)、ラッチ(B)(604)が、4本のソース

50 信号線 $Si+1\sim Si+3$ に対応している。また本実施

例では信号が有する電圧の振幅の幅を変えるレベルシフ ト回路を設けなかったが、設計者が適宜設けるようにし ても良い。

【0211】クロック信号CK、CKの極性が反転した クロック信号CKb、スタートパルス信号SP、駆動方 向切り替え信号SL/Rはそれぞれ図に示した配線から シフトレジスタ602に入力される。また外部から入力 されるデジタル信号VDは図に示した配線からラッチ (A) (603) に入力される。ラッチ信号S_LA T、S_LATの極性が反転した信号S_LATbはそ 10 れぞれ図に示した配線からラッチ(B)(604)に入 力される。

【0212】ラッチ(A)(603)の詳しい構成につ いて、ソース信号線Siに対応するデジタル信号を保持 するラッチ(A)(603)の一部608を例にとって 説明する。ラッチ(A)(603)の一部608は2つ のクロックドインバータと2つのインバータを有してい る。

【0213】ラッチ(A)(603)の一部608の上 面図を図15に示す。831a、831bはそれぞれ、 ラッチ(A)(603)の一部608が有するインバー タの1つを形成するTFTの活性層であり、836はイ ンバータの1つを形成するTFTの共通のゲート電極で ある。また832a、832bはそれぞれ、ラッチ

(A) (603)の一部608が有するもう1つのイン バータを形成するTFTの活性層であり、837a、8 37 bは活性層832a、832 b上にそれぞれ設けら れたゲート電極である。なおゲート電極837a、83 7 bは電気的に接続されている。

【0214】833a、833bはそれぞれ、ラッチ (A) (603) の一部608が有するクロックドイン バータの1つを形成するTFTの活性層である。活性層 833a上にはゲート電極838a、838bが設けら れており、ダブルゲート構造となっている。また活性層 833b上にはゲート電極838b、839が設けられ ており、ダブルゲート構造となっている。

【0215】834a、834bはそれぞれ、ラッチ (A) (603) の一部608が有するもう1つのクロ ックドインバータを形成するTFTの活性層である。活 れており、ダブルゲート構造となっている。また活性層 834b上にはゲート電極840、841が設けられて おり、ダブルゲート構造となっている。

【0216】なお、本実施例の構成は、実施例1~実施 例8のいずれの構成とも自由に組み合わせて実施するこ とが可能である。

【0217】(実施例10)本実施例では、6ビットの デジタル信号を用いた駆動方法において、表示期間Tr 1~Tr6の出現する順序について説明する。

【0218】図16に本実施例の駆動方法を示すタイミ 50 対応する表示期間は3つ以上であっても良い。また、他

ングチャートを示す。図16において、横軸は時間を示 しており、縦軸は選択されている第1ゲート信号線の位 置を示している。画素の詳しい駆動の仕方については実 施の形態を参照すれば良いので、ここでは省略する。本 実施例の駆動方法では、1フレーム期間中で1番長い非 表示期間(本実施例ではTd1)を1フレーム期間の最 後に設ける。上記構成によって、非表示期間Td1と、 次のフレーム期間の最初の表示期間(本実施例ではTr 4) との間にフレーム期間の区切れがあるように人間の 目に映る。これによって、中間階調の表示を行ったとき に、隣り合うフレーム期間同士で発光する表示期間が隣 接することによって起きていた表示むらを、人間の目に 認識されずらくすることができる。

【0219】なお本実施例では、6ビットのデジタル信 号の場合について説明したが、本発明はこれに限定され ない。本実施例はデジタル信号のビット数に限定される ことなく実施することが可能である。

【0220】なお、本実施例の構成は、実施例1~実施 例9のいずれの構成とも自由に組み合わせて実施するこ 20 とが可能である。

【0221】 (実施例11) 次に、擬似輪郭を防ぐのに 有効な、nピットのデジタル信号を用いた駆動方法につ いて、図17を用いて説明する。

【0222】図17において、横軸は時間を示してお り、縦軸は選択されている第1ゲート信号線の位置を示 している。画素の詳しい駆動の仕方については実施の形 態を参照すれば良いので、ここでは省略する。

【0223】本実施例では、nビットのデジタル信号に 対応する2つの表示期間Trn、Tr(n+1)を設け 30 る。そして該2つの表示期間が連続して出現しないよ うに、間に他のビットのデジタル信号に対応する表示期 間を設ける。

【0224】そして、表示期間の長さをTr1:Tr $2:Tr3:\cdots:Tr(n-1):(Trn+Tr(n-1))$ $+1)) = 2^{0} : 2^{1} : 2^{2} : \cdots : 2^{(n-2)} : 2^{(n-1)} \ge$ する。この表示期間の組み合わせで1~2" 階調のうち 所望の階調表示を 行うことができる。

【0225】本実施例の駆動方法では、中間階調を表示 するとき、1フレーム期間中に発光する表示期間と発光 性層834a上にはゲート電極839、840が設けら 40 しない表示期間とが交互に出現する確率が高まる。よっ て、人間の視点が左右上下に微妙に動いていたとして も、人間の視点が発光していない画素のみを連続して凝 視したり、逆に発光している画素のみを連続して凝視す る確率を低くすることができる。よって、二進コード法 による時間分割駆動において顕著な、偽輪郭などの表示 妨害が視認されるのを防ぐことができる。

> 【0226】なお本実施例では、nピット目のデジタル 信号を2つの表示期間に対応させているが、本実施例は この構成に限定されない。nビット目のデジタル信号に

のビットのデジタル信号に対応する表示期間を複数設け ても良い。ただし、上位ビットに対応する表示期間から 順に、複数の表示期間に対応させることが好ましい。ま た、表示期間の分割数は設計者が適宜選択可能である が、どこまで分割するかは、表示装置の駆動速度と、要 求される画像の表示品質とのバランスによって決めるの が好ましい。

【0227】また同じビットのデジタル信号に対応した 表示期間の長さは同じであることが望ましいが、本発明 はこれに限定されない。

【0228】なお、本実施例の構成は、実施例1~実施 例10のいずれの構成とも自由に組み合わせて実施する ことが可能である。

【0229】(実施例12)本実施例では、本発明の発 光装置が有する画素の、実施の形態とは異なる構成につ いて説明する。

【0230】図18に本実施例の発光装置の画素の上面 図を示す。なお、画素の構成をよりわかりやすくするた め、画素電極よりも後の工程において作製される有機発 光層や、陰極は図示しなかった。図18のA-A'にお 20 ける断面図を図19 (A) に、B-B' における断面図 を図19 (B) に、C-C'における断面図を図19 (C) に示す。

【0231】第1のTFT501はnチャネル型TFT であり、第2のTFT502はpチャネル型TFTであ り、第3のTFT551はpチャネル型TFTである。 【0232】第1のTFT501は、半導体膜503 と、第1の絶縁膜520と、第1の電極504、505 と、第2の絶縁膜521と、第2の電極506、507 とを有している。そして、半導体膜503は、第1濃度 30 の一導電型不純物領域508と、第2濃度の一導電型不 純物領域509と、チャネル形成領域510、511を 有している。

【0233】第1の電極504、505とチャネル形成 領域510、511とは、それぞれ第1の絶縁膜520 を間に挟んで重なっている。また、第2の電極506、 507と、チャネル形成領域510、511とは、それ ぞれ第2の絶縁膜521を間に挟んで重なっている。

【0234】2つの第1濃度の一導電型不純物領域50 0に接続されている。

【0235】第1の電極504、505は第1ゲート信 号線Gjの一部であり、第2の電極506、507は第 1下層配線Gdjの一部である。

【0236】第2のTFT551は、半導体膜530 と、第1の絶縁膜520と、第1の電極531と、第2 の絶縁膜521と、第2の電極532とを有している。 そして、半導体膜530は、第3濃度の一導電型不純物 領域533と、チャネル形成領域534を有している。

【0237】第1の電極531とチャネル形成領域53 50

4とは、それぞれ第1の絶縁膜520を間に挟んで重な っている。第2の電極532とチャネル形成領域534 とは、それぞれ第2の絶縁膜521を間に挟んで重なっ ている。

【0238】2つの第3濃度の一導電型不純物領域53 3は、一方は電源供給線Viに、もう一方は配線570 に接続されている。

【0239】そして、第1の電極531と第2の電極5 32とは、配線540を介して電気的に接続されてい 10 る。

【0240】第3のTFT502は、半導体膜560 と、第1の絶縁膜520と、第1の電極561と、第2 の絶縁膜521と、第2の電極562とを有している。 そして、半導体膜560は、第3濃度の一導電型不純物 領域563と、チャネル形成領域564を有している。 【0241】第1の電極561とチャネル形成領域56 4とは、それぞれ第1の絶縁膜520を間に挟んで重な っている。第2の電極562とチャネル形成領域564 とは、それぞれ第2の絶縁膜521を間に挟んで重なっ ている。

【0242】2つの第3濃度の一導電型不純物領域56 3は、一方は配線591を間に介してOLEDの画素電 極580に、もう一方は配線570に接続されている。 【0243】第1の電極561は第2ゲート信号線Cj の一部であり、第2の電極562は第2下層配線Cdj の一部である。

【0244】582は、第2のTFT551が有する第 1電極531と電気的に接続された容量用の第1配線で あり、583は第2のTFT551が有する第2電極5 32と電気的に接続された容量用の第2配線である。第 1配線582と第2配線583は、間に第1の絶縁膜5 20及び第2の絶縁膜521を挟んで重なり合ってい る。そして、電源供給線Viと、第1配線582とは、 第2配線583と同時に形成される配線590に接続さ れており、電気的に等価である。第1配線582と第2 配線583と、第1の絶縁膜520と、第2の絶縁膜5 21とが重なり合っている部分が、コンデンサ581に 相当する。

【0245】この様に、第1の電極と第2の電極の間の 8は、一方はソース信号線Siに、もう一方は配線54 40 絶縁膜を用いて、より大きな容量を形成することができ る。この構成は、画素に限らず、他の回路でも使用する ことが可能である。

> 【0246】本実施例では、スイッチング素子として用 いる第1のTFT501及び第3のTFT502は、そ れぞれ第1の電極に閾値電圧に近い一定の電圧を印加し ている。第1の電極に閾値電圧に近い一定の電圧を印加 することで、電極が1つの場合に比べて閾値のばらつき を抑えることができ、なおかつオフ電流を抑えることが できる。

> 【0247】また、スイッチング素子として用いるTF

Tよりも、大きな電流を流すことが要求される第2のT FT551は、第1の電極と第2の電極とを電気的に接 続している。第1の電極と第2の電極に同じ電圧を印加 することで、実質的に半導体膜の膜厚を薄くしたのと同 じように空乏層が早く広がるので、サブスレッショルド 係数を小さくすることができ、さらに電界効果移動度を 向上させることができる。したがって、電極が1つの場 合に比べてオン電流を大きくすることができる。よっ て、この構造のTFTを駆動回路に使用することによ り、駆動電圧を低下させることができる。また、オン電 10 流を大きくすることができるので、TFTのサイズ(特 にチャネル幅)を小さくすることができる。そのため集 積密度を向上させることができる。

【0248】なお、本実施例の第2のTFT551のよ うに、第1の電極と第2の電極を電気的に接続したTF Tは、比較的高いオン電流が得られるため、駆動回路、 特にソース信号線、第1及び第2のゲート信号線に印加 される電圧を制御するのに適している。

【0249】なお、本実施例の構成は、実施例1~実施 例11のいずれの構成とも自由に組み合わせて実施する ことが可能である。

【0250】(実施例13)発光装置は自発光型である ため、液晶ディスプレイに比べ、明るい場所での視認性 に優れ、視野角が広い。従って、様々な電子機器の表示 部に用いることができる。

【0251】本発明の発光装置を用いた電子機器とし て、ビデオカメラ、デジタルカメラ、ゴーグル型ディス プレイ(ヘッドマウントディスプレイ)、ナビゲーショ ンシステム、音響再生装置(カーオーディオ、オーディ オコンポ等)、ノート型パーソナルコンピュータ、ゲー 30 ート2604、リモコン受信部2605、受像部260 ム機器、携帯情報端末(モバイルコンピュータ、携帯電 話、携帯型ゲーム機または電子書籍等)、記録媒体を備 えた画像再生装置(具体的にはDVD(digital

versatile disc)等の記録媒体を再生 し、その画像を表示しうるディスプレイを備えた装置) などが挙げられる。特に、斜め方向から画面を見る機会 が多い携帯情報端末は、視野角の広さが重要視されるた め、発光装置を用いることが望ましい。それら電子機器 の具体例を図20に示す。

【0252】図20(A)はEL表示装置であり、筐体 40 2001、支持台2002、表示部2003、スピーカ 一部2004、ビデオ入力端子2005等を含む。本発 明の発光装置は表示部2003に用いることができる。 発光装置は自発光型であるためバックライトが必要な く、液晶ディスプレイよりも薄い表示部とすることがで きる。なお、EL表示装置は、パソコン用、TV放送受 信用、広告表示用などの全ての情報表示用表示装置が含 まれる。

【0253】図20(B)はデジタルスチルカメラであ り、本体2101、表示部2102、受像部2103、

操作キー2104、外部接続ポート2105、シャッタ -2106等を含む。本発明の発光装置は表示部210 2に用いることができる。

【0254】図20(C)はノート型パーソナルコンピ ュータであり、本体2201、筐体2202、表示部2 203、キーボード2204、外部接続ポート220 5、ポインティングマウス2206等を含む。本発明の 発光装置は表示部2203に用いることができる。

【0255】図20(D)はモバイルコンピュータであ り、本体2301、表示部2302、スイッチ230 3、操作キー2304、赤外線ポート2305等を含 む。本発明の発光装置は表示部2302に用いることが できる。

【0256】図20(E)は記録媒体を備えた携帯型の 画像再生装置(具体的にはDVD再生装置)であり、本 体2401、筐体2402、表示部A2403、表示部 B2404、記録媒体(DVD等)読み込み部240 5、操作キー2406、スピーカー部2407等を含 む。表示部A2403は主として画像情報を表示し、表 20 示部B2404は主として文字情報を表示するが、本発 明の発光装置はこれら表示部A、B2403、2404 に用いることができる。なお、記録媒体を備えた画像再 生装置には家庭用ゲーム機器なども含まれる。

(ヘッドマウントディスプレイ)であり、本体250 1、表示部2502、アーム部2503を含む。本発明 の発光装置は表示部2502に用いることができる。 【0258】図20(G)はビデオカメラであり、本体 2601、表示部2602、筐体2603、外部接続ポ 6、バッテリー2607、音声入力部2608、操作キ - 2609等を含む。本発明の発光装置は表示部260

【0257】図20(F)はゴーグル型ディスプレイ

【0259】ここで図20(H)は携帯電話であり、本 体2701、筐体2702、表示部2703、音声入力 部2704、音声出力部2705、操作キー2706、 外部接続ポート2707、アンテナ2708等を含む。 本発明の発光装置は表示部2703に用いることができ る。なお、表示部2703は黒色の背景に白色の文字を 表示することで携帯電話の消費電力を抑えることができ

2に用いることができる。

【0260】なお、将来的に有機発光材料の発光輝度が 高くなれば、出力した画像情報を含む光をレンズ等で拡 大投影してフロント型若しくはリア型のプロジェクター に用いることも可能となる。

【0261】また、上記電子機器はインターネットやC ATV(ケーブルテレビ)などの電子通信回線を通じて 配信された情報を表示することが多くなり、特に動画情 報を表示する機会が増してきている。有機発光材料の応 50 答速度は非常に高いため、発光装置は動画表示に好まし

61

【0262】また、発光装置は発光している部分が電力を消費するため、発光部分が極力少なくなるように情報を表示することが望ましい。従って、携帯情報端末、特に携帯電話や音響再生装置のような文字情報を主とする表示部に発光装置を用いる場合には、非発光部分を背景として文字情報を発光部分で形成するように駆動することが望ましい。

37

【0263】以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いることが可能である。また、本実施例の電子機器は実施例1~12に示したいずれの構成の発光装置を用いても良い。

[0264]

【発明の効果】本発明は上記構成によって、OLEDの対向電極に常に一定の電圧を与えていても、OLED駆動電圧を制御することができる。従って、本発明の発光装置では、対向電極の電圧を制御する電源のスイッチを取り除くことが可能であり、スイッチを有していても高い電流能力は必要とされない。

【0265】また、対向電極の電源が有するスイッチの 20 電流能力の上限によって、発光装置の大型化が妨げられ ることがない。また、対向電極の電源が有するスイッチ に流れる電流値を抑えることができるので、スイッチに 起因する駆動回路の周波数特性の低下を防ぎ、階調数の 減少を防ぐことができる。

【図面の簡単な説明】

【図1】 本発明の発光装置の回路構成を示す図。

- 【図2】 本発明の発光装置の画素部の回路図。
- 【図3】 本発明の発光装置の画素の回路図。
- 【図4】 本発明の発光装置の駆動方法を示すタイミングチャート。
- 【図5】 本発明の発光装置の画素上面図。
- 【図6】 本発明の発光装置の画素の回路図。
- 【図7】 本発明の発光装置の画素の回路図。
- 【図8】 本発明の発光装置の画素の回路図。
- 【図9】 本発明の発光装置が有する駆動回路の構成 10 を示すブロック図。
 - 【図10】 本発明の発光装置の作製工程を示す図。
 - 【図11】 本発明の発光装置の作製工程を示す図。
 - 【図12】 本発明の発光装置の作製工程を示す図。
 - 【図13】 本発明の発光装置の上面図及び断面図。
 - 【図14】 本発明で用いられるソース信号側駆動回路 の回路図。
 - 【図15】 本発明で用いられるラッチ回路の上面図。
 - 【図16】 本発明の発光装置の駆動方法を示すタイミングチャート。
 - ① 【図17】 本発明の発光装置の駆動方法を示すタイミングチャート。
 - 【図18】 本発明の発光装置の画素上面図。
 - 【図19】 本発明の発光装置の画素断面図。
 - 【図20】 本発明の発光装置を用いた電子機器。
 - 【図21】 従来の発光装置の画素部の回路図。
 - 【図22】 従来の発光装置の画素の问路図。

【図1】

[図2]

【図4】

[図 6] [図 7]

(A)

(B) (B)

【図10】

【図21】

【図12】

(A) 第1, 第2の階間絶縁膜, 配線, 国家電極形成

[図11]

(C) 第3のドーピング処理

(A)

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4004

4

【図14】

【図16】

【図17】

【図22】

フロントページの続き

(51) Int. Cl. 7		識別記号	FI		テーマコード(参考)
G 0 9 G	3/30		G 0 9 G	3/30	K
	3/32			3/32	Α
H01L	29/786		H 0 5 B	33/14	Α
H 0 5 B	33/14		H 0 1 L	29/78	6 1 4

Fターム(参考) 3K007 AB04 AB13 AB17 AB18 BA06 BB01 BB05 BB06 CA01 CB01 DA00 DB03 EB00 FA00 FA01 FA02 5C080 AA06 AA07 BB05 DD22 DD30 EE29 FF11 JJ02 JJ03 JJ04 JJ06 KK07 KK43 KK47 5C094 AA21 AA45 BA03 BA29 CA19 DA14 DA15 DB01 DB04 EA04 EA07 FB01 5F110 AA01 AA28 BB02 BB04 CC02 DD02 DD13 DD14 DD15 EE01 EE02 EE03 EE04 EE09 EE11 EE14 EE15 EE23 EE28 EE44 EE45 FF02 FF04 FF12 FF28 FF30 FF36 GG01 GG02 GG13 GG25 HJ01 HJ04 HJ06 HJ12 HJ13 HJ23 HL04 HL06 HL07 HL12 HM13 HM15 HM18 NN03 NN04 NN22 NN23 NN27 NN72 NN73 PP01 PP03 PP05 PP06

PP34 QQ04 QQ05 QQ11 QQ19

QQ24 QQ25