FUNDAMENTOS ELEMENTARES DA MATEMÁTICA MANUSCRITOS

(AULA 25: 04/10/22)

FUND. ELEM DA MATEMATICA AUIA 25: Interceour Arbitrarios Cornecenus, como motivação, pr Considero ANBNC= {n: xeA e neB e xeC} AMBACAD= >n: NEA, NEB, NEC eNED} Fora reguir ma comtureas de intersection, précisons fazer indinazion. Arrim, Para m≥2, consideronnos os conjuntos

A, A, Az, Az, ... An - , e An de modo que podernos deferir $\Lambda = 3 \times \pi \in A_{1}, \forall i \in \{1, 2, ..., m\}$ Por exemplo: A=A, A=B, A=C e A=D, $\bigcap A_{\lambda} = A_{1} \cap A_{2} \cap A_{3} \cap A_{3}$ = ANBACAD = {n: xeA; \ ie {1,2,3,4}} De modo qual, dado um comunto

	que chamaremes de conjunts de indee	1
	Praidiremes	
	EAI DIEI Una familier de conjunter Ai.	1
	A Interreços de todos es elemento	
),	de una formila {Ai}, es é definida	
	Por A = { x: x ∈ A, Yi ∈ I}	
	En: Considere I = { Vz, T, ½, 100} e	N
	By= (-VZ, VZ)= {n eR: -VZ < n < VZ}	P
	Bii = { 1, 3, 4} Baz= {1,2,3}	
	B ₁₀₀ = {1, 2, 3,, 100}	

ely	Temos a familla
	{Bi}ieI={Bvz, Bn, Bz, B100}.
	Podemus agre consider a interness
to	() Bi = BVZ () BIT () BZ () B100
ds	1 = { \(\int_2 \), \(\tau_1 \) \(\tau_2 \) \(\tau_2 \)
	$A \in \{Vz, \Pi, \frac{1}{2}, 100\}$
2	Note que a B_NB_= ? 1,33 mos } 3 & Bvz.
THE WAY	Portents, de fats, \(\begin{aligned} \Bi &= \frac{13}{2}, \\ \Lambda \express{\sqrt{100}} \\ \Lambda \express{\sqrt{100}} \sq

Eu: Considere R o conjunte de numeros recis 1={x \in | <> 0} Tx = (-x,x)={xER: -x < x < x}. Note que <<0 => T2=\$. Termo Alim dura, termos a intercest: Primeiro obreve que -d<0<d, YdEI, graha, OETX, YXEI => 0 E (] Ta => {0} C () Ta

Agra, dado
$$9 \neq 0$$
, terms

 $3 \neq 0 - \frac{|9|}{2} = 0$
 $3 \neq 0 - \frac{|9|}{2} = 0$

Sendo avam, considerado

 $x = \frac{|9|}{2} > 0$,

Obtenos $9 \leq -\infty$ on $x \leq 9$, on y_{3} ,

 $9 \neq T_{x}$, $p_{1} = x = \frac{|9|}{2}$.

Armon, $9 \neq 0$

Rotonto, $0 = x = 0$

	Ex: Considere pour eada ne/N*
	$S_{m} = (0, 1+\frac{1}{m}) = \{ n \in \mathbb{R} : 0 < n < 1+\frac{1}{m} \}.$
	$\frac{1+\frac{1}{10m}}{0}$
	$S_1 = (0, 2), S_2 = (0, \frac{3}{2}), $
а,	Termo:
	$\bigcap_{M \in \mathbb{N}^*} = 0,1$
,5	Provo: Devenus provon que vale or prop
	∀y, y∈ ∩ 5m <=> y∈ (0,1).
	Rosa a prova, note que:

Yy, yells, > yes, ymell* <=> 0 < y < 1 + 1 , Ym & W* <=> 0 < 4 < 7 <>> y∈ (0, 1] Vyor que termos $\forall m \in \mathbb{N}^*, 0 < \mathcal{Y} < 1 + \frac{1}{n}$ $\equiv \left[0 < y \leq \lim_{m \to \infty} \left(1 + \frac{1}{m} \right) = 1 \right]$

La Valation of the
YEA; pro alguniEI L YEB
(=> y e A, NB, pour algum i e I.
(=> YE ((A, NB)) NEI
Portonte, terros uma prova pra (6).
Exercício: Forçam proves pora os ilun (a), (e) e (d).