```
import pandas as pd
import matplotlib.pyplot as plt

# Load the dataset
file_path = 'C:\\Users\\tejas\\Downloads\\disney_plus_titles.csv'
disney_data = pd.read_csv(file_path)
disney_data.head()
```

1
S
1 :
G G Y

```
In [3]: # Convert 'date_added' to datetime format
    disney_data['date_added'] = pd.to_datetime(disney_data['date_added'])

# Group by year and month to analyze trends
    monthly_trend = disney_data['date_added'].groupby(disney_data['date_added'].dt.to_g
    disney_data.head()
```

Out[3]:		show_id	type	title	director	cast	country	date_added	release_year	rating	dυ
	0	s1	Movie	A Spark Story	Jason Sterman, Leanne Dare	Apthon Corbin, Louis Gonzales	NaN	2021-09-24	2021	TV-PG	
	1	s2	Movie	Spooky Buddies	Robert Vince	Tucker Albrizzi, Diedrich Bader, Ameko Eks Mas	United States, Canada	2021-09-24	2011	G	
	2	s3	Movie	The Fault in Our Stars	Josh Boone	Shailene Woodley, Ansel Elgort, Laura Dern, Sa	United States	2021-09-24	2014	PG-13	1
	3	s4	TV Show	Dog: Impossible	NaN	Matt Beisner	United States	2021-09-22	2019	TV-PG	S
	4	s5	TV Show	Spidey And His Amazing Friends	NaN	Benjamin Valic, Lily Sanfelippo, Jakari Fraser	United States	2021-09-22	2021	TV-Y	1 :

```
In [4]: # Plot the trend
plt.figure(figsize=(12, 6))
monthly_trend.plot()
plt.title('Number of Titles Added to Disney+ Over Time')
plt.xlabel('Date')
plt.ylabel('Number of Titles Added')
plt.grid(True)
plt.show()
```



```
In [ ]:
        #Perform sentiment analysis or text mining on unstructured data
In [7]:
        from wordcloud import WordCloud
        import matplotlib.pyplot as plt
        from nltk.sentiment import SentimentIntensityAnalyzer
        import nltk
        # Ensure nltk resources are downloaded
        nltk.download('vader_lexicon')
        # Text preprocessing (optional: cleaning, tokenization)
        descriptions = disney_data['description'].dropna()
        # Generate a word cloud
        wordcloud = WordCloud(width=800, height=400, background color='white').generate('
        # Display the word cloud
        plt.figure(figsize=(10, 5))
        plt.imshow(wordcloud, interpolation='bilinear')
        plt.axis('off')
        plt.show()
        # Sentiment Analysis
        sia = SentimentIntensityAnalyzer()
        disney data['sentiment score'] = disney data['description'].apply(lambda x: sia.po]
        # Visualize the sentiment scores
        plt.figure(figsize=(10, 5))
        plt.hist(disney_data['sentiment_score'], bins=20, color='blue', edgecolor='black')
        plt.title('Distribution of Sentiment Scores')
        plt.xlabel('Sentiment Score')
        plt.ylabel('Number of Titles')
        plt.show()
        [nltk_data] Downloading package vader_lexicon to
```

[nltk_data] C:\Users\tejas\AppData\Roaming\nltk_data...


```
#Explore clustering or classification techniques for segmentation and pattern recog
In [8]:
         from sklearn.preprocessing import LabelEncoder
         from sklearn.cluster import KMeans
         import matplotlib.pyplot as plt
         # Encode categorical features for clustering
         le = LabelEncoder()
         disney_data['type_encoded'] = le.fit_transform(disney_data['type'])
         disney_data['rating_encoded'] = le.fit_transform(disney_data['rating'].fillna('Unkr')
         # Prepare data for clustering (e.g., using type, rating, duration)
         features = disney_data[['type_encoded', 'rating_encoded']]
         # Apply KMeans clustering
         kmeans = KMeans(n_clusters=3, random_state=42)
         disney_data['cluster'] = kmeans.fit_predict(features)
         # Visualize the clusters
         plt.figure(figsize=(10, 6))
         plt.scatter(disney_data['type_encoded'], disney_data['rating_encoded'], c=disney_data['rating_encoded'],
         plt.title('Clustering of Disney+ Titles')
         plt.xlabel('Type')
         plt.ylabel('Rating')
```

```
plt.colorbar(label='Cluster')
plt.show()
```

C:\Users\tejas\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: Future
Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set t
he value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)

In []: