ESC103F Engineering Mathematics and Computation: Tutorial #4

Question 1:

i) Find a 3x3 matrix with 3 independent columns and all nine entries equal to 1 or 2.

ii) In part (i), what is the maximum possible number of 1's?

Solution:

i) One example is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$.

ii) To maintain 3 independent columns, seven 1's is the maximum possible number of 1's. With eight 1's, two of the columns will be equal.

Question 2:

Suppose matrix A is 5x2, with column vectors $\overrightarrow{a_1}$ and $\overrightarrow{a_2}$. We are now going to add one more column to produce matrix B, now 5x3. Do A and B have the same column space if:

i) the new column is the zero vector?

ii) the new column is $\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$?

iii) the new column is $\overrightarrow{a_2} - \overrightarrow{a_1}$?

Solution:

i) In this case, A and B have the same column space defined by combinations of $\overrightarrow{a_1}$ and $\overrightarrow{a_2}$.

ii) If $\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$ is already in the column space of A, then A and B have the same column space.

If
$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 is not in the column space of A , then A and B do not have the same column space.

Since the new column is $\overrightarrow{a_2} - \overrightarrow{a_1}$ is a combination of $\overrightarrow{a_1}$ and $\overrightarrow{a_2}$, then A and B iii) have the same column space.

Question 3:

Assume the vectors \vec{v} and \vec{w} are nonzero and non-parallel. Which of the following sets of vectors are linearly independent:

- i)
- $\begin{aligned}
 & \{ \vec{0}, \vec{v}, \vec{w} \} \\
 & \{ \vec{v}, \vec{w}, 3\vec{v} 4\vec{w} \} \\
 & \{ \vec{v}, \vec{w}, \vec{v} \times \vec{w} \}
 \end{aligned}$ ii)
- iii)

Solution:

To answer this question, we need to know if there are constants c_1 , c_2 , c_3 that i) satisfy:

$$c_1 \vec{0} + c_2 \vec{v} + c_3 \vec{w} = \vec{0}$$

other than $c_1 = c_2 = c_3 = 0$. If we choose $c_1 \neq 0$ and $c_2 = c_3 = 0$, this equation is satisfied. Therefore, the vectors are not independent.

ii) To answer this question, we need to know if there are constants c_1 , c_2 , c_3 that satisfy:

$$c_1\vec{v}+c_2\vec{w}+c_3(3\vec{v}-4\vec{w})=\vec{0}$$

other than $c_1 = c_2 = c_3 = 0$. If we choose $c_1 = -3$, $c_2 = 4$, $c_3 = 1$, this equation is satisfied. Therefore, the vectors are not independent.

To answer this question, we need to know if there are constants c_1 , c_2 , c_3 that iii) satisfy:

$$c_1\vec{v} + c_2\vec{w} + c_3(\vec{v} \times \vec{w}) = \vec{0}$$

other than $c_1 = c_2 = c_3 = 0$. Let's begin by trying to solve for c_1, c_2, c_3 using what we know about cross product:

$$(\vec{v} \times \vec{w}) \cdot \left(c_1 \vec{v} + c_2 \vec{w} + c_3 (\vec{v} \times \vec{w}) \right) = (\vec{v} \times \vec{w}) \cdot \vec{0} = 0$$

Since \vec{v} and \vec{w} are orthogonal to $\vec{v} \times \vec{w}$:

$$(\vec{v} \times \vec{w}) \cdot (c_1 \vec{v} + c_2 \vec{w} + c_3 (\vec{v} \times \vec{w})) = 0 + 0 + c_3 ||\vec{v} \times \vec{w}||^2 = 0$$

Since \vec{v} and \vec{w} are nonzero, non-parallel vectors:

$$\|\vec{v} \times \vec{w}\|^2 \neq 0$$

$$c_3 = 0$$

$$\therefore c_1 \vec{v} + c_2 \vec{w} = \vec{0}$$

However, since \vec{v} and \vec{w} are not parallel:

$$c_1 = c_2 = 0$$

Therefore, the vectors are independent.

Question 4:

If two 5x2 matrices A and B each have independent columns, so does the matrix A + B. Is this statement true or false?

Solution:

This statement is false. For example, if B = -A, then A + B has two zero column vectors that are dependent.

Question 5:

i) Solve this system of equations $S\vec{y} = \vec{c}$ for the unknowns in \vec{y} in terms of the constants in \vec{c} :

$$S\vec{y} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

- ii) Write the solution in part (i) for \vec{y} as a matrix T times the vector \vec{c} .
- iii) The matrix *T* is called the inverse of matrix *S*. Are the columns of *S* independent or dependent?

Solution:

i)
$$y_1 = c_1$$

$$y_1 + y_2 = c_2$$

$$\therefore y_2 = c_2 - c_1$$

$$y_1 + y_2 + y_3 = c_3$$

$$\therefore y_3 = c_3 - c_1 - (c_2 - c_1) = c_3 - c_2$$

ii)
$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = T\vec{c}$$

iii) The columns of matrix S are independent.