Homework 10

123456,皮卡丘

December 12, 2019

Problem 1

Determine whether the following relations on $\{0, 1, 2, 3\}$ are partial ordering. If not, show the reason.

- 1. $\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,0\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 3,2\rangle,\langle 3,3\rangle\}$
- 2. $\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
- 3. $\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 3,3\rangle\}$

Solution.

- 1. No, $\langle 2, 3 \rangle$, $\langle 3, 2 \rangle$ can not exist in a partial relation together.
- 2. Yes
- 3. Yes

Problem 2

Draw the hasse diagram of poset $\langle A,R\rangle,$ and write the maximal, minimal, maximum and minimum elements of A

1. $A = \{a, b, c, d, e\}$

$$R = \{ \langle a, d \rangle, \langle a, c \rangle, \langle a, b \rangle, \langle a, e \rangle, \langle b, e \rangle, \langle c, e \rangle, \langle d, e \rangle \} \cup I_A$$

2. $A = \{a, b, c, d\}$

$$R = \{\langle c, d \rangle\} \cup I_A$$

Solution.

1.

2.

Problem 3

Let R be a partial order on set A, $B \subseteq A$, prove that $R \cap (B \times B)$ is a partial order on B.

Solution.

Prove:

Reflexivity: For any $x \in B$

$$x \in B \Rightarrow \langle x, x \rangle \in R \land \langle x, x \rangle \in (B \times B) \Leftrightarrow \langle x, x \rangle \in R \cap (B \times B)$$

Anti-symmetry: For any $x, y \in B$

$$\langle x,y\rangle \in R \cap (B\times B) \Leftrightarrow \langle x,y\rangle \in R \wedge \langle x,y\rangle \in (B\times B) \Rightarrow \langle x,y\rangle \in R$$

So

$$\langle x, y \rangle \in R \cap (B \times B) \land \langle y, x \rangle \in R \cap (B \times B)$$

$$\Rightarrow \langle x, y \rangle \in R \land \langle y, x \rangle \in R$$

$$\Rightarrow x = y$$

Transitivity: For any $x, y, z \in B$

$$\langle x, y \rangle \in R \cap (B \times B) \land \langle y, z \rangle \in R \cap (B \times B)$$

$$\Rightarrow \langle x,y \rangle \in R \land \langle y,z \rangle \in R$$

$$\Rightarrow \langle x, z \rangle \in R$$

$$\Rightarrow \langle x, z \rangle \in R \land \langle x, z \rangle \in (B \times B)$$
$$\Rightarrow \langle x, z \rangle \in R \cap (B \times B)$$

Q.E.D

Problem 4

Find r(R), s(R), t(R) for the relation given blow.

$$M_R = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{array}
ight]$$

Solution.

1.
$$M_{r(R)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$2. \ M_{s(R)} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right]$$

3.
$$M_{t(R)} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Problem 5

Theorem 10.5.5: Let R_1, R_2 be relations on a non-empty set A, if $R_1 \subseteq R_2$ prove that (only using definition):

1.
$$r(R_1) \subseteq r(R_2)$$

2.
$$s(R_1) \subseteq s(R_2)$$

3.
$$t(R_1) \subseteq t(R_2)$$

Solution.

- 1. $R_2 \subseteq r(R_2)$ and $R_1 \subseteq R_2$, so we have $R_1 \subseteq r(R_2)$. We know $r(R_2)$ is reflexive and according to the defination of closure, any reflexive relation that contains R_1 must contains its reflexive closure, so $r(R_1) \subseteq r(R_2)$.
- 2. $R_2 \subseteq s(R_2)$ and $R_1 \subseteq R_2$, so we have $R_1 \subseteq s(R_2)$. We know $s(R_2)$ is symmetric and according to the defination of closure, any symmetric relation that contains R_1 must contains its symmetric closure, so $s(R_1) \subseteq s(R_2)$.
- 3. $R_2 \subseteq t(R_2)$ and $R_1 \subseteq R_2$, so we have $R_1 \subseteq t(R_2)$. We know $r(R_2)$ is transitive and according to the defination of closure, any transitive relation that contains R_1 must contains its transitive closure, so $t(R_1) \subseteq t(R_2)$.

Problem 6

Theorem 10.5.6: Let R_1, R_2 be relations on a non-empty set A, prove that (only using definition):

- 1. $s(R_1) \cup s(R_2) = s(R_1 \cup R_2)$
- 2. $t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$

Solution.

1. $R_1 \subseteq R_1 \cup R_2$ and $R_2 \subseteq R_1 \cup R_2$, so we have $s(R_1) \subseteq s(R_1 \cup R_2)$ and $s(R_2) \subseteq s(R_1 \cup R_2)$ according to problem 5. So $s(R_1) \cup s(R_2) \subseteq s(R_1 \cup R_2)$

We then prove that $s(R_1) \cup s(R_2)$ is symmetric.

$$\langle x, y \rangle \in s(R_1) \cup s(R_2)$$

$$\Leftrightarrow \langle x, y \rangle \in s(R_1) \lor \langle x, y \rangle \in s(R_2)$$

$$\Rightarrow \langle y, x \rangle \in s(R_1) \lor \langle y, x \rangle \in s(R_2)$$

$$\Leftrightarrow \langle y, x \rangle \in s(R_1) \cup s(R_2)$$

So $s(R_1) \cup s(R_2)$ is symmetric. And we have $R_1 \cup R_2 \subseteq s(R_1) \cup s(R_2)$, according to the definition of closure we have $s(R_1 \cup R_2) \subseteq s(R_1) \cup s(R_2)$.

$$s(R_1) \cup s(R_2) \subseteq s(R_1 \cup R_2) \land s(R_1 \cup R_2) \subseteq s(R_1) \cup s(R_2)$$

$$\Rightarrow s(R_1 \cup R_2) = s(R_1) \cup s(R_2)$$

2. $R_1 \subseteq R_1 \cup R_2$ and $R_2 \subseteq R_1 \cup R_2$, so we have $t(R_1) \subseteq t(R_1 \cup R_2)$ and $t(R_2) \subseteq t(R_1 \cup R_2)$ according to problem 5. So $t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$