

PHYSICS Chapter 05

2th
SECONDARY

VECTORES I

1. Cantidades físicas

Escalares

Cantidades físicas que para estar bien definidas solo necesitan de un número y una unidad física, es decir, conocer su módulo o magnitud.

Ejemplo: la masa de un ladrillo es:

5 kg

Así también tenemos la densidad, el tiempo, la cantidad de trabajo, el volumen, etc.

2.Cantidad física Vectorial

Son aquellas cantidades físicas que además de tener un "módulo" necesitan de una dirección para quedar bien definidos.

Ejemplo: la velocidad del carro es:

20 m/s hacia la derechirección

Número 4

Lunidad de medida

Así también tenemos la aceleración, la fuerza, la velocidad, el torque, el impulso etc.

¿QUÉ ES UN VECTOR?

Elemento matemático que utilizaremos para representar una cantidad física vectorial.

Se representa con un segmento de recta orientado Se lee: Vector V

Elementos del vector

Modulo ($|\vec{V}|$): Es la cantidad de veces que contiene la unidad base de la cantidad física.

Dirección (θ): Expresado por la medida del ángulo θ en sentido antihorario a partir de +X.

VECTORES UNITARIOS CARTESIANOS

Son aquellos vectores cuyo módulo es la unidad de medida y se encuentran en los ejes coordenados cartesianos.

ADICIÓN DE

La adición o suma de dos o más vectores es otro vector llamado resultante. Ejemplo sean los vectores \vec{A} , \vec{B} y \vec{C}

$$\vec{R} = \vec{A} + \vec{B} + \vec{C}$$

$$\vec{R} = a\hat{\imath} + b\hat{\jmath}$$

Donde su módulo de \vec{R} : $R = \sqrt{a^2 + b^2}$

 Determine los elementos del vector mostrado.

RESOLUCIÓN

Los elementos del vector son: módulo y dirección.

Módulo: 5 x 6N 30N

Dirección : $\theta = 180 - 40$

 $\theta = 140^{\circ}$

2. Determine el módulo y dirección de los vectores \vec{A} y \vec{B} , respectivamente.

RESOLUCIÓN

Módulo: A = 3 u

Dirección: $\theta = 90^{\circ}$

Módulo: B = 3u

Dirección : θ = 180 °

3. Exprese los vectores mostrados en términos del vector unitario \hat{i} .

RESOLUCIÓN

$$\vec{E} = +4\hat{\imath} \, \mathsf{u}$$

$$\vec{U} = +6\hat{\imath} \, \mathbf{u}$$

$$\vec{P} = -3\hat{\imath} \, \mathbf{u}$$

4. Exprese los vectores mostrados en términos del vector unitario \hat{j} .

RESOLUCIÓN

$$\vec{A} = +2\hat{j} \mathbf{u}$$

$$\vec{B} = +3\hat{j} \text{ u}$$

$$\vec{C} = -4\hat{j} u$$

5. Determine el vector en términos de los vectores unitarios $\hat{i} y \hat{j}$ e indique su módulo.

RESOLUCIÓN

$$\vec{F} = (+3\hat{\imath} + 4\hat{\jmath})\mathbf{u}$$

MÓDULO DEL \vec{F}

$$F = \sqrt{3^2 + 4^2} u$$

$$F = \sqrt{9 + 16} u$$

$$F=\sqrt{25} u$$

$$F=5u$$

6. Determine el vector resultante de los vectores mostrados con su respectivo módulo.

RESOLUCIÓN

DETERMINACION DE LOS VECTORES

$$\vec{A} = +2\hat{\imath} \mathbf{u}$$

$$\vec{B} = -3\hat{j} \text{ u}$$

$$\vec{C} = +4\hat{\imath} \text{ u}$$

SU RESULTANTE \vec{R}

$$\vec{R} = (+6\hat{\imath} - 3\hat{\jmath}) \text{ u}$$

7. Determine el vector resultante de los vectores que se muestran.

RESOLUCIÓN

DETERMINACION DE LOS VECTORES

$$\vec{A} = (+2\hat{\imath} - \hat{\jmath})\mathbf{u}$$

$$\vec{B} = (-3\hat{\imath} - 3\hat{\jmath})\mathbf{u}$$

SU RESULTANTE \vec{R}

$$\vec{R} = (-\hat{\imath} - 4\hat{\jmath}) \mathbf{u}$$

8. Jair y Anderson en el intento de jalar un bloque pesado ejercen fuerzas representadas por vectores mostrados, siendo ambas fuerzas no suficientes para desplazar al bloque. Determine el vector que representa a la fuerza resultante de ambas fuerzas con su respectivo módulo.

RESOLUCIÓN

$$\vec{J} = (-3\hat{\imath} + \hat{\jmath})\mathbf{u}$$

$$\vec{A} = (-4\hat{\imath} - \hat{\jmath})\mathbf{u}$$

SU RESULTANTE \vec{R}

$$\vec{R} = (-\widehat{7}i - 0\hat{\jmath}) \text{ u}$$

TIPOGRAFÍA PRINCIPAL

Esta tipografía se utilizará en regular para texto y extrabold en caso se deba enfatizar algún tema. Ambas cuentan con su versión italic.

Montserrat Regular

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 123456789 ;? i!

Montserrat Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 123456789 ¿? ¡! Montserrat Extra Bold

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 123456789 ¿? ¡!

Montserrat Extra Bold Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 123456789 ¿? ¡!

TAMAÑO DE TIPOGRAFÍA

TÍTULO > 30

EXTRABOLD

SUB TÍTULO MAYUSCULA
Sub título minúscula

17

EXTRABOLD

Contenido:

Es aquella figura geométrica que está formado por dos rayos que tienen en común el mismo origen.

17

REGULAR

ÁREA DE CT

CONTENIDO