Recitation 4

Rachel Lee

September 29, 2021

What is causal inference?

Inferring the effects of any treatment/policy/intervention/etc.

Examples:

- Effect of treatment on a disease
- Effect of climate change policy on emissions
- Effect of social media on mental health
- Many more (effect of X on Y)

Motivating example: Simpson's paradox

Correlation does not imply causation

Then, what does imply causation?

Causation in observational studies

Simpson's paradox: COVID-27

New disease: COVID-27

Treatment T: A (0) and B (1)

Condition C: mild (0) or severe (1)

Outcome Y: alive (0) or dead (1)

Simpson's paradox: mortality rate table

Condition

		Mild	Severe
reathent.	A	15% (210/1400)	30% (30/100)
reali	В	10% (5/50)	20% (100/500)
		(5/50)	(100/500)

 $\mathbb{E}[Y|T,C=0] \quad \ \mathbb{E}[Y|T,C=1]$

Simpson's paradox: mortality rate table

Condition

		Mild	Severe	Total
Treatment.	A	15% (210/1400)	30% (30/100)	16% (240/1500)
Treati	В	10% (5/50)	20% (100/500)	19% (105/550)
•		$\mathbb{E}[Y T,C=0]$	$\mathbb{E}[Y T,C=1]$	$\mathbb{E}[Y T]$

Simpson's paradox: scenario 1 (treatment B)

Condition Mild Total Severe 15% 16% 30% A (210/1400)(240/1500)(30/100)10% 20% 19% B (5/50)(100/500)(105/550)

Simpson's paradox: scenario 2 (treatment A)

Condition

	Mild	Severe	Total
A	15% (210/1400)	30% (30/ <u>100</u>)	16% (240/1500)
В	10% (5/ <u>50</u>)	20% (100/ <u>500</u>)	19% (105/550)

Potential outcomes: intuition

Inferring the effect of treatment/policy on some outcome

causal effect

Potential outcomes: intuition

Inferring the effect of treatment/policy on some outcome

Potential outcomes: notation

T: observed treatment Y: observed outcome i: used in subscript to denote a specific unit/individual $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Causal effect

$$Y_i(1) - Y_i(0)$$

Observational studies

Can't always randomize treatment

- Ethical reasons (e.g. unethical to randomize people to smoke for measuring effect on lung cancer)
- Infeasibility (e.g. can't randomize countries into communist/capitalist systems to measure effect on GDP)
- Impossibility (e.g. can't change a living person's DNA at birth for measuring effect on breast cancer)

Formulating your hypothesis

Formulating your hypothesis

