

Cairo University Faculty of Science Department of Mathematics

Calculus and analytical geometry (2) (MATH 132)-Worksheet #01

2nd week (February 15, 2025 - February 20, 2025)

Full Name:	
Code number.:	
Group number:	

Theoretical Background

Definition 1: The **area** A of the region S that lies under the graph of the continuous function f from a to b is the limit of the sum of the areas of approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x] = \lim_{n \to \infty} \sum_{i=1}^n f(x_i)\Delta x$$

Or

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x] = \lim_{n \to \infty} \sum_{i=1}^n f(x_{i-1})\Delta x$$

Where
$$\Delta x = \frac{b-a}{n}$$
, $x_i = a + i \Delta x$, and $i = 0, 1, 2, ..., n$

Solve the following questions:

Q1) Let S be the region bounded between the curves. $f(x) = 1 - x^3$, x = -5, x = -1, and x - axis. Find the upper estimation for the area of S using 4 rectangles.

Q2) Let S be the region bounded between the curves. $f(x) = \frac{1}{(3+x^2)}$, x = -2, x = -1, and x - axis. Find the lower estimation for the area of S using 3 approximating rectangles.

Q3) Let S be the region bounded between the curves. $f(x) = x^2 - 3x + 4$, x = 2, x = 6, and x - axis. Find the lower estimation for the area of S using 4 rectangles.

Q4) Find Riemann sum for the function $f(x)=4-x^2$ over the interval [-1,2] and corresponding to the partition $x_0=-1$, $x_1=0$, $x_2=\frac{1}{2}$, $x_3=\frac{5}{4}$, $x_4=2$ and sample points $x_1^*=-\frac{1}{4}$, $x_2^*=\frac{1}{4}$, $x_3^*=1$, $x_4^*=\frac{5}{4}$

- Q5) Find an expression for the area under the graph of f as a limit. Do not evaluate the limit.
 - (a) $f(x) = x^3 + x$, $x \in [0,2]$ (simplify the expression)

(b) $f(x) = \sqrt{\sin x}$, $0 \le x \le \pi$

(MATH 132)-Worksheet #01

(c) $f(x) = x^2 - 3x$, $x \in [-2, 0]$ (simplify the expression)

(d)
$$f(x) = \sin(\frac{\pi}{2}x), x \in [0,1]$$

(MATH 132)-Worksheet #01

Determine the region whose area is expressed by the following limit: **Q**6)

$$\lim_{n \to \infty} \frac{2}{n} \left(\sum_{k=1}^{n} \left(5 + \frac{2k}{n} \right)^{10} \right)$$

- Q7) (True or False) and Justify your answer for the following a. If the area A of region S bounded by $y = x^4 + 1$, y = 0, x = 0, and x = 1, then 1 < A < 11.5

b.
$$\sum_{i=1}^{n} i + \sin\left(\frac{i\pi}{2}\right) = \frac{n(n+1)}{2} + \sin\left(\frac{n(n+1)\pi}{4}\right)$$

(MATH 132)-Worksheet #01

Check your knowledge

- Q8) Let A be the area under the graph of an increasing continuous function f from a to b, and let L_n and R_n be the approximations to A with n subintervals using left and right endpoints, respectively.
 - (a) How are A, L_n , and R_n related?

(b) Show that $R_n - L_n = \frac{b-a}{n} [f(b) - f(a)]$