DIFFERENTIATION

OBJECTIVE PROBLEMS

1. $\frac{d}{dx} \log |x| =, (x \neq 0)$

- (a) $\frac{1}{x}$ (b) $-\frac{1}{x}$
- (c) x
- (d) -x

2. If $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$, then $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$

- (a) y
- **(b)** y-1
- (c) y+1 (d) None of these

 $3. \qquad \frac{d}{dx} \left(\tan^{-1} \frac{\cos x}{1 + \sin x} \right) =$

- (a) $-\frac{1}{2}$ (b) $\frac{1}{2}$

(c) -1 (d) 1 4. $\frac{d}{dx} \tan^{-1} \left(\frac{ax - b}{bx + a} \right) =$

- (a) $\frac{1}{1+x^2} \frac{a^2}{a^2+b^2}$ (b) $\frac{1}{1+x^2}$

(c) $\frac{1}{1+x^2} + \frac{a^2}{a^2+b^2}$ (d) None of these 5. If $y = b \cos \log \left(\frac{x}{n}\right)^n$, then $\frac{dy}{dx} =$

- (a) $-n b \sin \log \left(\frac{x}{n}\right)^n$ (b) $n b \sin \log \left(\frac{x}{n}\right)^n$ (c) $\frac{-n b}{x} \sin \log \left(\frac{x}{n}\right)^n$ (d) None of these

6. If $x^{2/3} + y^{2/3} = a^{2/3}$, then $\frac{dy}{dx} =$

(a)
$$\left(\frac{y}{x}\right)^{1/2}$$

(a)
$$\left(\frac{y}{x}\right)^{1/3}$$
 (b) $-\left(\frac{y}{x}\right)^{1/3}$

(c)
$$\left(\frac{x}{y}\right)^{1/3}$$

(c)
$$\left(\frac{x}{y}\right)^{1/3}$$
 (d) $-\left(\frac{x}{y}\right)^{1/3}$

(a)
$$1 + \frac{\pi}{4}$$

(b)
$$\frac{1}{2} + \frac{\pi}{4}$$

(c)
$$\frac{1}{2} - \frac{\pi}{4}$$

$$(d)$$
 2

3! $\tau = \frac{x^n}{n!}$, then $\frac{dy}{dx} =$ (a) y(b) $y + \frac{x^n}{n!}$ (c) $y - \frac{x^n}{n!}$ (d) $y - 1 - \frac{x^n}{n!}$ 9. $\frac{d}{dx} \log(\log x) =$ (a) $\frac{x}{\log x}$ (b) $\frac{\log x}{x}$ (c) $(x \log x)^{-1}$ (d) None of these

7. If $y = \tan^{-1} \frac{4x}{1+5x^2} + \tan^{-1} \frac{2+3x}{3+2x}$, then $\frac{dy}{dx} =$ (a) $\frac{1}{1+25x^2} + \frac{2}{1+x^2}$ (b)
(c) $\frac{5}{1}$

(b)
$$y + \frac{x^n}{n!}$$

(c)
$$y - \frac{x^n}{n!}$$

(d)
$$y-1-\frac{x^n}{n!}$$

(a)
$$\frac{x}{\log x}$$

(b)
$$\frac{\log x}{x}$$

(c)
$$(x \log x)^{-1}$$

10. If $y = \tan^{-1} \frac{4x}{1+5x^2} + \tan^{-1} \frac{2+3x}{3-2x}$, then $\frac{dy}{dx} =$ (a) $\frac{1}{1+25x^2} + \frac{2}{1+x^2}$ (b) $\frac{5}{1+25x^2} + \frac{2}{1+x^2}$ (c) $\frac{5}{1+25x^2}$ (d) $\frac{1}{1+25x^2}$

(a)
$$\frac{1}{1+25x^2} + \frac{2}{1+x^2}$$

(b)
$$\frac{5}{1+25x^2} + \frac{2}{1+x^2}$$

(c)
$$\frac{5}{1+25x^2}$$

(d)
$$\frac{1}{1+25x^2}$$

11. If $y = x \left[\left(\cos \frac{x}{2} + \sin \frac{x}{2} \right) \left(\cos \frac{x}{2} - \sin \frac{x}{2} \right) + \sin x \right] + \frac{1}{2\sqrt{x}}$, then $\frac{dy}{dx} = \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}}$

(a)
$$(1+x)\cos x + (1-x)\sin x - \frac{1}{4x\sqrt{x}}$$

(b)
$$(1-x)\cos x + (1+x)\sin x + \frac{1}{4x\sqrt{x}}$$

(c)
$$(1+x)\cos x + (1+x)\sin x - \frac{1}{4x\sqrt{x}}$$

(d)None of these

12. If $y = \sin^{-1}(x\sqrt{1-x} + \sqrt{x}\sqrt{1-x^2})$, then $\frac{dy}{dx} = \frac{dy}{dx}$

(a)
$$\frac{-2x}{\sqrt{1-x^2}} + \frac{1}{2\sqrt{x-x^2}}$$
 (b) $\frac{-1}{\sqrt{1-x^2}} - \frac{1}{2\sqrt{x-x^2}}$

(b)
$$\frac{-1}{\sqrt{1-x^2}} - \frac{1}{2\sqrt{x-x^2}}$$

(c)
$$\frac{1}{\sqrt{1-x^2}} + \frac{1}{2\sqrt{x-x^2}}$$
 (d) None of these

13. $\frac{d}{dx}\sqrt{\frac{1-\sin 2x}{1+\sin 2x}} =$

(a)
$$\sec^2 x$$

(b)
$$-\sec^2\left(\frac{\pi}{4}-x\right)$$

(c)
$$\sec^2\left(\frac{\pi}{4} + x\right)$$
 (d) $\sec^2\left(\frac{\pi}{4} - x\right)$

(d)
$$\sec^2\left(\frac{\pi}{4}-x\right)$$

 $14. \quad \frac{d}{dx}\log_7(\log_7 x) =$

(a)
$$\frac{1}{x \log_e x}$$
 (b) $\frac{\log_e 7}{x \log_e x}$

(b)
$$\frac{\log_e 7}{x \log_e x}$$

(c)
$$\frac{\log_7 e}{x \log_e x}$$

(d)
$$\frac{\log_7 e}{x \log_7 x}$$

 $15. \quad \frac{d}{dx} \left(\frac{\cot^2 x - 1}{\cot^2 x + 1} \right) =$

(a)
$$-\sin 2x$$

(b)
$$2\sin 2x$$

(c)
$$2\cos 2x$$

(d)
$$-2\sin 2x$$

(a)
$$-\frac{1}{4}$$

(b)
$$\frac{1}{2}$$

(c)
$$-\frac{1}{2}$$

(d)
$$\frac{1}{4}$$

17. If $f(x) = \log_{x}(\log x)$, then f'(x) at x = e is

(b)
$$\frac{1}{e}$$

(d) None of these

18.
$$\frac{d}{dx}\sqrt{\frac{1+\cos 2x}{1-\cos 2x}} =$$

- (a) $\sec^2 x$
- (b) $-\csc^2 x$
- (c) $2 \sec^2 \frac{x}{2}$ (d) $-2 \csc^2 \frac{x}{2}$

$$19. \quad \frac{d}{dx} \left[\tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}} \right] =$$

20. If
$$y = \sin\left(\frac{1+x^2}{1-x^2}\right)$$
, then $\frac{dy}{dx} = \frac{1+x^2}{1+x^2}$

19.
$$\frac{d}{dx} \left[\tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}} \right] =$$

(a) $-\frac{1}{2}$ (b) 0

(c) $\frac{1}{2}$ (d) 1

20. If $y = \sin\left(\frac{1 + x^2}{1 - x^2}\right)$, then $\frac{dy}{dx} =$

(a) $\frac{4x}{1 - x^2} \cdot \cos\left(\frac{1 + x^2}{1 - x^2}\right)$ (b) $\frac{x}{(1 - x^2)^2} \cdot \cos\left(\frac{1 + x^2}{1 - x^2}\right)$

(c) $\frac{x}{(1 - x^2)} \cdot \cos\left(\frac{1 + x^2}{1 - x^2}\right)$ (d) $\frac{4x}{(1 - x^2)^2} \cdot \cos\left(\frac{1 + x^2}{1 - x^2}\right)$

21. If $y = \sec^{-1}\left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right) + \sin^{-1}\left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1}\right)$, then $\frac{dy}{dx} =$

- (b) $\frac{1}{\sqrt{x}+1}$

- (d) None of these

22. If
$$y = \frac{\sqrt{a+x} - \sqrt{a-x}}{\sqrt{a+x} + \sqrt{a-x}}$$
, then $\frac{dy}{dx} =$

(a) $\frac{ay}{x\sqrt{a^2 - x^2}}$ (b) $\frac{ay}{\sqrt{a^2 - x^2}}$

(c) $\frac{ay}{x\sqrt{x^2 - a^2}}$ (d) None of these

23.
$$\frac{d}{dx}\sin^{-1}(3x-4x^3) =$$

- (a) $\frac{3}{\sqrt{1-x^2}}$ (b) $\frac{-3}{\sqrt{1-x^2}}$ (c) $\frac{1}{\sqrt{1-x^2}}$ (d) $\frac{-1}{\sqrt{1-x^2}}$

24.
$$\frac{d}{dx} \tan^{-1}(\sec x + \tan x) =$$

(a) 1

- (b) 1/2
- (c) $\cos x$
- (d) $\sec x$

25.
$$\frac{d}{dx} \left(\frac{\log x}{\sin x} \right) =$$

(a)
$$\frac{\frac{\sin x}{x} - \log x \cdot \cos x}{\sin x}$$

(b)
$$\frac{\frac{\sin x}{x} - \log x \cdot \cos x}{\sin^2 x}$$

(c)
$$\frac{\sin x - \log x \cdot \cos x}{\sin^2 x}$$

(d)
$$\frac{\frac{\sin x}{x} - \log x}{\sin^2 x}$$

26. If
$$y = \cot^{-1}\left(\frac{1+x}{1-x}\right)$$
, then $\frac{dy}{dx} = \cot^{-1}\left(\frac{1+x}{1-x}\right)$

(a)
$$\frac{1}{1+x^2}$$

(b)
$$-\frac{1}{1+x^2}$$

(c)
$$\frac{2}{1+x^2}$$

(d)
$$-\frac{2}{1+x^2}$$

25.
$$\frac{d}{dx} \left(\frac{\log x}{\sin x} \right) =$$

(a) $\frac{\sin x}{x} - \log x \cdot \cos x}{\sin x}$ (b) $\frac{\sin x}{x} - \log x \cdot \cos x}{\sin^2 x}$

(c) $\frac{\sin x - \log x \cdot \cos x}{\sin^2 x}$ (d) $\frac{\sin x}{x} - \log x}$

26. If $y = \cot^{-1} \left(\frac{1+x}{1-x} \right)$, then $\frac{dy}{dx} =$

(a) $\frac{1}{1+x^2}$ (b) $-\frac{1}{1+x^2}$

(c) $\frac{2}{1+x^2}$ (d) $-\frac{2}{1+x^2}$

27. If $y = \frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}$, then $\frac{dy}{dx} =$

(a) $2x + \frac{2x^3}{\sqrt{x^4 - 1}}$ (b) $2x + \frac{x^3}{\sqrt{x^4 - 1}}$

(c) $x + \frac{2x^3}{\sqrt{x^4 - 1}}$ (d) None of these

28. $\frac{d}{dx}(e^x \log \sin 2x + 2 \cot 2x)$ (b) $e^x (\log \cos 2x + 2 \cot 2x)$ (c) $e^x (\log \cos 2x + \cot 2x)$ (d) None of these

(a)
$$2x + \frac{2x^3}{\sqrt{x^4 - 1}}$$

(b)
$$2x + \frac{x^3}{\sqrt{x^4 - 1}}$$

(c)
$$x + \frac{2x^3}{\sqrt{x^4 - 1}}$$

28.
$$\frac{d}{dx}(e^x \log \sin 2x) =$$

(a)
$$e^{x}(\log \sin 2x + 2 \cot 2x)$$
 (b) $e^{x}(\log \cos 2x + 2 \cot 2x)$
(c) $e^{x}(\log \cos 2x + \cot 2x)$ (d) None of these

(b)
$$e^x (\log \cos 2x + 2 \cot 2x)$$

(c)
$$e^x(\log \cos 2x + \cot 2x)$$

29. If
$$y = t^{4/3} - 3t^{-2/3}$$
, then $dy/dt =$

(a)
$$\frac{2t^2+3}{3t^{5/3}}$$

(b)
$$\frac{2t^2+3}{t^{5/3}}$$

(c)
$$\frac{2(2t^2+3)}{t^{5/3}}$$

(c)
$$\frac{2(2t^2+3)}{t^{5/3}}$$
 (d) $\frac{2(2t^2+3)}{3t^{5/3}}$

30. If $y = \sin(\sqrt{\sin x + \cos x})$, then $\frac{dy}{dx} =$

(a)
$$\frac{1}{2} \frac{\cos \sqrt{\sin x + \cos x}}{\sqrt{\sin x + \cos x}}$$

(b)
$$\frac{\cos\sqrt{\sin x + \cos x}}{\sqrt{\sin x + \cos x}}$$

(c)
$$\frac{1}{2} \frac{\cos \sqrt{\sin x + \cos x}}{\sqrt{\sin x + \cos x}} . (\cos x - \sin x)$$

(d) None of these

31.
$$\frac{d}{dx} \log \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) =$$

- (a) $\csc x$ (b) $-\csc x$
- (c) $\sec x$

$$32. \quad \frac{d}{dx} \left[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}} \right] =$$

- (a) $\sec x$ (b) $\csc x$ (c) $\csc \frac{x}{2}$ (d) $\sec \frac{x}{2}$

33. If $y = (1 + x^{1/4})(1 + x^{1/2})(1 - x^{1/4})$, then $\frac{dy}{dx} =$

(a) 1 (b) - 1 (c) x (d) \sqrt{x} 34. If $y = \tan^{-1} \left(\frac{\sqrt{a} - \sqrt{x}}{1 + \sqrt{ax}} \right)$, then $\frac{dy}{dx} =$ (a) $\frac{1}{2(1+x)\sqrt{x}}$ (b) $\frac{1}{(1+x)\sqrt{x}}$ (c) $-\frac{1}{2(1+x)\sqrt{x}}$ (d) None of these

$$35. \quad \frac{d}{dx}e^{x\sin x} =$$

- (a) $e^{x \sin x} (x \cos x + \sin x)$ (b) $e^{x \sin x} (\cos x + x \sin x)$
- (c) $e^{x \sin x} (\cos x + \sin x)$ (d) None of these

$$36. \quad \frac{d}{dx} \left[\log \sqrt{\sin \sqrt{e^x}} \right] =$$

(a)
$$\frac{1}{4}e^{x/2}\cot(e^{x/2})$$
 (b) $e^{x/2}\cot(e^{x/2})$

(b)
$$e^{x/2} \cot(e^{x/2})$$

(c)
$$\frac{1}{4}e^x \cot(e^x)$$

(c)
$$\frac{1}{4}e^x \cot(e^x)$$
 (d) $\frac{1}{2}e^{x/2}\cot(e^{x/2})$

37. If
$$y = \frac{e^{2x} + e^{-2x}}{e^{2x} - e^{-2x}}$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{-8}{(e^{2x} - e^{-2x})^2}$$
 (b) $\frac{8}{(e^{2x} - e^{-2x})^2}$

(b)
$$\frac{8}{(e^{2x}-e^{-2x})^2}$$

(c)
$$\frac{-4}{(e^{2x} - e^{-2x})^2}$$
 (d) $\frac{4}{(e^{2x} - e^{-2x})^2}$

(d)
$$\frac{4}{(e^{2x}-e^{-2x})^2}$$

37. If
$$y = \frac{e^{2x} + e^{-2x}}{e^{2x} - e^{-2x}}$$
, then $\frac{dy}{dx} =$

(a) $\frac{-8}{(e^{2x} - e^{-2x})^2}$ (b) $\frac{8}{(e^{2x} - e^{-2x})^2}$

(c) $\frac{-4}{(e^{2x} - e^{-2x})^2}$ (d) $\frac{4}{(e^{2x} - e^{-2x})^2}$

38. If $y = \tan^{-1} \sqrt{\frac{1 + \cos x}{1 - \cos x}}$, then $\frac{dy}{dx}$ is equal to

(a) 0 (b) $-\frac{1}{2}$

(c) $1/2$ (d) 1

39. $\frac{d}{dx} \{ \log(\sec x + \tan x) \} =$

(a) $\cos x$ (b) $\sec x$

$$(a) 0$$

(b)
$$-\frac{1}{2}$$

(c)
$$1/2$$

$$39. \quad \frac{d}{dx}\{\log(\sec x + \tan x)\} =$$

(a)
$$\cos x$$

(c)
$$\tan x$$

(d)
$$\cot x$$

40. If
$$y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$$
, then $\frac{dy}{dx} = \frac{1}{2}$

41. If
$$y = \sqrt{\frac{1 + e^x}{1 - e^x}}$$
, then $\frac{dy}{dx} = \frac{1}{1 + e^x}$

(a)
$$\frac{e^x}{(1-e^x)\sqrt{1-e^{2x}}}$$

(b)
$$\frac{e^x}{(1-e^x)\sqrt{1-e^x}}$$

(a)
$$\frac{e^x}{(1-e^x)\sqrt{1-e^{2x}}}$$
 (b) $\frac{e^x}{(1-e^x)\sqrt{1-e^x}}$ (c) $\frac{e^x}{(1-e^x)\sqrt{1+e^{2x}}}$ (d) $\frac{e^x}{(1-e^x)\sqrt{1+e^x}}$

(d)
$$\frac{e^x}{(1-e^x)\sqrt{1+e^x}}$$

- **42.** If f(2) = 4, f'(2) = 1 then $\lim_{x \to 2} \frac{xf(2) 2f(x)}{x 2} =$
 - (a) 1

(b) 2

(c)3

- (d) -2
- 43. $\frac{d}{dx}\left(\cos^{-1}\sqrt{\frac{1+\cos x}{2}}\right) =$
 - (a) 1

- (b) $\frac{1}{2}$

- (b) 1 (c) -1 (d) -2 **45. The value of** $\frac{d}{dx}[|x-1|+|x-5|]$ **at** x=3 **is** (a) -2 (b) 0 (c) 2 (d) 4 **16.** If $y = \sin^{-1} \sqrt{(1-x)} + \cos^{-1} \sqrt{x}$, then $\frac{dy}{dx} = \frac{1}{\sqrt{x(1-x)}}$

- (c) $\frac{1}{\sqrt{x(1+x)}}$ (d) None of these **47.** If $y = \cot^{-1} \left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} \sqrt{1-\sin x}} \right]$, then $\frac{dy}{dx} = \frac{1}{\sqrt{1+\sin x}} = \frac{1}{\sqrt{1+\cos x}} = \frac{1}{\sqrt{1+$

- (d) 1
- **48.** The derivative of f(x) = x |x| is
 - (a) 2x
- (b) -2x
- (c) $2x^2$
- (d) 2|x|

49.
$$\frac{d}{dx} \left[\log \left\{ e^x \left(\frac{x+2}{x-2} \right)^{3/4} \right\} \right]$$
 equals

(a)
$$\frac{x^2-7}{x^2-4}$$

(b) 1

(c)
$$\frac{x^2+1}{x^2-4}$$

(c) $\frac{x^2+1}{x^2-4}$ (d) $e^x \frac{x^2-1}{x^2-4}$

50. If $y = \log_{\cos x} \sin x$, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{\cot x \log \cos x + \tan x \log \sin x}{(\log \cos x)^2}$$

(b)
$$\frac{\tan x \log \cos x + \cot x \log \sin x}{(\log \cos x)^2}$$

(c)
$$\frac{\cot x \log \cos x + \tan x \log \sin x}{(\log \sin x)^2}$$

50. If
$$y = \log_{\cos x} \sin x$$
, then $\frac{dy}{dx}$ is equal to

(a) $\frac{\cot x \log \cos x + \tan x \log \sin x}{(\log \cos x)^2}$

(b) $\frac{\tan x \log \cos x + \cot x \log \sin x}{(\log \cos x)^2}$

(c) $\frac{\cot x \log \cos x + \tan x \log \sin x}{(\log \sin x)^2}$

(d) None of these

51. If $f(x) = \cos^{-1} \left[\frac{1 - (\log x)^2}{1 + (\log x)^2} \right]$, then the value of $f(e) = (a) 1$

(c) $2/e$

(d) $\frac{2}{e^2}$

52. If
$$y\sqrt{x^2+1} = \log\left\{\sqrt{x^2+1} - x\right\}$$
, then $(x^2+1)\frac{dy}{dx} + xy + 1 = 1$

(a) 0

(c) 2

(d) None of these

53. If f(x) is a differentiable function, then $\lim_{x\to a} \frac{af(x)-xf(a)}{x-a}$ is

- (a) af'(a) f(a)

54. If $y = \tan^{-1}(\sec x - \tan x)$ then $\frac{dy}{dx} = \frac{1}{2}$

(a) 2

- (b) -2
- (c) 1/2
- (d)-1/2

$$55. \quad \frac{d}{dx} \left[\tan^{-1} \left(\frac{a-x}{1+ax} \right) \right] =$$

(a)
$$-\frac{1}{1+x^2}$$

(a)
$$-\frac{1}{1+x^2}$$
 (b) $\frac{1}{1+a^2} - \frac{1}{1+x^2}$

(c)
$$\frac{1}{1 + \left(\frac{a-x}{1+ax}\right)^2}$$

(c)
$$\frac{1}{1 + \left(\frac{a - x}{1 + ax}\right)^2}$$
 (d) $\frac{-1}{\sqrt{1 - \left(\frac{a - x}{1 + ax}\right)^2}}$

$$\frac{d}{dx} \left[\log \left\{ e^x \left(\frac{x - 2}{x + 2} \right)^{3/4} \right\} \right] \text{ equals to}$$
(a) 1 (b) $\frac{x^2 + 1}{x^2 - 4}$
(c) $\frac{x^2 - 1}{x^2 - 4}$ (d) $e^x \frac{x^2 - 1}{x^2 - 4}$
If $y = \tan^{-1} \left(\frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right)$ then $\frac{dy}{dx} =$
(a) 2 (b) -1
(c) $\frac{a}{b}$ (d) 0
If $\sin y + e^{-x \cos y} = e$, then $\frac{dy}{dx}$ at $(1, \pi)$ is

56.
$$\frac{d}{dx} \left[\log \left\{ e^x \left(\frac{x-2}{x+2} \right)^{3/4} \right\} \right]$$
 equals to

(b)
$$\frac{x^2+1}{x^2-4}$$

(c)
$$\frac{x^2-1}{x^2-4}$$

(c)
$$\frac{x^2-1}{x^2-4}$$
 (d) $e^x \frac{x^2-1}{x^2-4}$

57. If
$$y = \tan^{-1}\left(\frac{a\cos x - b\sin x}{b\cos x + a\sin x}\right)$$
 then $\frac{dy}{dx} =$

$$(b) - 1$$

(c)
$$\frac{a}{b}$$

58. If
$$\sin y + e^{-x \cos y} = e$$
, then $\frac{dy}{dx}$ at $(1, \pi)$ is

(b)
$$-x \cos y$$

(d)
$$\sin y - x \cos y$$

59.
$$\frac{d}{dx} \left[\tan^{-1} \left(\frac{\sqrt{x}(3-x)}{1-3x} \right) \right] =$$

(a) $\frac{1}{2(1+x)\sqrt{x}}$

(b) $\frac{3}{(1+x)\sqrt{x}}$

(c) $\frac{2}{(1+x)\sqrt{x}}$

(d) $\frac{3}{2(1-x)\sqrt{x}}$

(a)
$$\frac{1}{2(1+x)\sqrt{x}}$$

(b)
$$\frac{3}{(1+x)\sqrt{x}}$$

(c)
$$\frac{2}{(1+x)\sqrt{x}}$$

(d)
$$\frac{3}{2(1-x)\sqrt{x}}$$

60. If
$$y = \sqrt{\sin x + y}$$
, then $\frac{dy}{dx}$ equals to

(a)
$$\frac{\sin x}{2y-1}$$

(b)
$$\frac{\cos x}{2y-1}$$

(c)
$$\frac{\sin x}{2y+1}$$

(d)
$$\frac{\cos x}{2y+1}$$

61. If
$$y = \tan^{-1} \left[\frac{\sin x + \cos x}{\cos x - \sin x} \right]$$
, then $\frac{dy}{dx}$ is

- (a) 1/2
- (b) $\pi/4$

(c) 0

(d) 1

62. If
$$\sin y = x \sin(a+y)$$
, then $\frac{dy}{dx} =$

- (a) $\frac{\sin^2(a+y)}{\sin(a+2y)}$ (b) $\frac{\sin^2(a+y)}{\cos(a+2y)}$
- (c) $\frac{\sin^2(a+y)}{\sin a}$ (d) $\frac{\sin^2(a+y)}{\cos a}$

63. If
$$3\sin(xy) + 4\cos(xy) = 5$$
, then $\frac{dy}{dx} =$

- (a) $-\frac{y}{x}$
- (c) $\frac{3\cos(xy) + 4\sin(xy)}{4\cos(xy) 3\sin(xy)}$ (d) None of these

64. If
$$f(x) = \frac{1}{1-x}$$
, then the derivative of the composite function $f[f(x)]$ is equal to

(a) 0

(c) 1

65. If
$$x^3 + 8xy + y^3 = 64$$
, then $\frac{dy}{dx} =$

- (d) None of these

66. If
$$\cos(x + y) = y \sin x$$
, then $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{$

- (a) $-\frac{\sin(x+y)+y\cos x}{\sin x+\sin(x+y)}$
- (b) $\frac{\sin(x+y) + y\cos x}{\sin x + \sin(x+y)}$
- (c) $\frac{y\cos x \sin(x+y)}{\sin x \sin(x+y)}$
- (d) None of these

67.	If	$\sin(x+y) = \log(x+y)$, then	<u>dy</u> _
			dx

(a) 2

(b) - 2

(c) 1

(d) - 1

68. If $\sin y = x \cos(a + y)$, then $\frac{dy}{dx} =$

(a) $\frac{\cos^2(a+y)}{\cos a}$ (b) $\frac{\cos(a+y)}{\cos^2 a}$

(c) $\frac{\sin^2(a+y)}{\sin a}$ (d) None of these

69. Let f and g be differentiable functions satisfying g'(a) = 2, g(a) = b and $f \circ g = l$ (identity function). Then f(b) is equal to

(a) $\frac{1}{2}$

(c) $\frac{2}{3}$

(d) None of these

70. Let g(x) be the inverse of the function f(x) and $f'(x) = \frac{1}{1+x^3}$. Then g'(x) is equal to

(a) $\frac{1}{1 + (g(x))^3}$ (b) $\frac{1}{1 + (f(x))^3}$ (c) $1 + (g(x))^3$ (d) $1 + (f(x))^3$

71. If $x = a(t + \sin t)$ and $y = a(1 - \cos t)$, then $\frac{dy}{dx}$ equals

73. If $x = a(t - \sin t)$ and $y = a(1 - \cos t)$, then $\frac{dy}{dx} =$

(a) $\tan\left(\frac{t}{2}\right)$ (b) $-\tan\left(\frac{t}{2}\right)$ (c) $\cot\left(\frac{t}{2}\right)$ (d) $-\cot\left(\frac{t}{2}\right)$

74. If
$$x = \frac{1-t^2}{1+t^2}$$
 and $y = \frac{2t}{1+t^2}$, then $\frac{dy}{dx} = \frac{1-t^2}{1+t^2}$

- (a) $\frac{-y}{x}$
- (c) $\frac{-x}{y}$ (d) $\frac{x}{y}$

75. If
$$x^2 + y^2 = t - \frac{1}{t}$$
, $x^4 + y^4 = t^2 + \frac{1}{t^2}$, then $x^3 y \frac{dy}{dx} = t^2 + \frac{1}{t^2}$

(a) 1

(b) 2

(c) 3

(d)4

76. If
$$x = a\cos^3\theta$$
, $y = a\sin^3\theta$, then $\sqrt{1 + \left(\frac{dy}{dx}\right)^2} =$

- (a) $\tan^2 \theta$
- (b) $\sec^2 \theta$
- (c) $\sec \theta$
- (d) $|\sec \theta|$

77. If
$$x^p y^q = (x+y)^{p+q}$$
, then $\frac{dy}{dx} =$

- (a) $\frac{y}{x}$
- (c) $\frac{x}{y}$

78. The first derivative of the function
$$\left[\cos^{-1}\left(\sin\sqrt{\frac{1+x}{2}}\right) + x^x\right]$$
 with respect to x at $x = 1$ is

79. If
$$y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \dots \infty}}}$$
, then $\frac{dy}{dx} = \frac{1}{2}$

- (c) $\frac{1}{x(2y-1)}$ (d) $\frac{1}{x(1-2y)}$

80. If $x^y = y^x$, then $\frac{dy}{dx} =$

- (a) $\frac{y(x \log_e y + y)}{x(y \log_e x + x)}$ (b) $\frac{y(x \log_e y y)}{x(y \log_e x x)}$
- (c) $\frac{x(x \log_e y y)}{y(y \log_e x x)}$ (d) $\frac{x(x \log_e y + y)}{y(y \log_e x + x)}$

81. If $y = \log x^x$, then $\frac{dy}{dx} =$

- (a) $x^{x}(1 + \log x)$
- (b) $\log(ex)$
- (c) $\log\left(\frac{e}{r}\right)$
- (d) None of these

82. If $y = x^{(x^x)}$, then $\frac{dy}{dx} =$

- (a) $y[x^x(\log ex).\log x + x^x]$
- (b) $y[x^x(\log ex).\log x + x]$
- (c) $y[x^{x}(\log ex).\log x + x^{x-1}]$
- (d) $y[x^{x}(\log_{e} x).\log x + x^{x-1}]$

83. If $x^y = e^{x-y}$, then $\frac{dy}{dx} =$

- (a) $\log x \cdot [\log(ex)]^{-2}$ (b) $\log x \cdot [\log(ex)]^2$
- (c) $\log x \cdot (\log x)^2$
- (d) None of these

85. If $x = \sin^{-1}(3t - 4t^3)$ and $y = \cos^{-1}\sqrt{(1 - t^2)}$, then $\frac{dy}{dx}$ is equal to

- (b) 2/5
- (c) 3/2
- (d) 1/3

86. If $y = (\sin x)^{(\sin x)(\sin x)....\infty}$, then $\frac{dy}{dx} =$

(a)
$$\frac{y^2 \cot x}{1 - y \log \sin x}$$

(a)
$$\frac{y^2 \cot x}{1 - y \log \sin x}$$
 (b)
$$\frac{y^2 \cot x}{1 + y \log \sin x}$$

(c)
$$\frac{y \cot x}{1 - y \log \sin x}$$
 (d) $\frac{y \cot x}{1 + y \log \sin x}$

(d)
$$\frac{y \cot x}{1 + y \log \sin x}$$

87. If $y^{x} + x^{y} = a^{b}$, then $\frac{dy}{dx} =$

(a)
$$-\frac{yx^{y-1} + y^x \log y}{xy^{x-1} + x^y \log x}$$

(b)
$$\frac{yx^{y-1} + y^x \log y}{xy^{x-1} + x^y \log x}$$

(c)
$$-\frac{yx^{y-1}+y^x}{xy^{x-1}+x^y}$$

(d)
$$\frac{yx^{y-1} + y^x}{xy^{x-1} + x^y}$$

 $x^{2} + \frac{1}{x^{2} + \frac{1}{x^{2} + \frac{1}{x^{2} + \dots + \infty}}}, \text{ then } \frac{dy}{dx} =$ (a) $\frac{2xy}{2y - x^{2}}$ (b) $\frac{xy}{y + x^{2}}$ (c) $\frac{xy}{y - x^{2}}$ (d) $\frac{2xy}{2 + \frac{x^{2}}{y}}$ If $2^{x} + 2^{y} = 2^{x+y}$, then the value

(a)
$$\frac{2xy}{2y-x^2}$$

(b)
$$\frac{xy}{y+x^2}$$

(c)
$$\frac{xy}{y-x^2}$$

(d)
$$\frac{2xy}{2 + \frac{x^2}{y}}$$

89. If $2^x + 2^y = 2^{x+y}$, then the value of $\frac{dy}{dx}$ at x = y = 1 is

$$(b) - 1$$

90. If $x^m y^n = 2(x + y)^{m+n}$, the value of $\frac{dy}{dx}$ is

(a)
$$x + y$$

(b)
$$x/$$

(c)
$$y/x$$

(d)
$$-v/x$$

(a) x + y (b) x/y (c) y/x (d) -y/x91. If $y = \sqrt{x} \sqrt{x} \sqrt{x}$, then $\frac{dy}{dx} = x$ (a) $\frac{y^2}{2x - 2y \log x}$ (b) $\frac{y^2}{2x + \log x}$

(a)
$$\frac{y^2}{2x - 2y \log x}$$

(b)
$$\frac{y^2}{2x + \log x}$$

$$(c) \frac{y^2}{2x + 2y \log x}$$

(d) None of these

92. If $x = e^{y + e^{y + \dots to \infty}}$, x > 0, then $\frac{dy}{dx}$ is

- (a) $\frac{1+x}{x}$ (b) $\frac{1}{x}$
- (c) $\frac{1-x}{x}$ (d) $\frac{x}{1+x}$

93. If $f(x) = \cot^{-1}\left(\frac{x^x - x^{-x}}{2}\right)$, then f'(1) is equal to $(d) \frac{1}{1+x^{2}}$ $(d) \frac{-2}{1+x^{2}}$ If $\sqrt{1-x^{2}} + \sqrt{1-y^{2}} = a(x-y)$, then $\frac{dy}{dx} =$ (a) $\sqrt{\frac{1-x^{2}}{1-y^{2}}}$ (b) $\sqrt{\frac{1-y^{2}}{1-x^{2}}}$ (c) $\sqrt{\frac{x^{2}-1}{1-y^{2}}}$ (d) $\sqrt{\frac{y^{2}-1}{1-x^{2}}}$ 96. $\frac{d}{dx} \left\{ \cos^{-1} \left(\frac{1-x^{2}}{1+x^{2}} \right) \right\} =$ (a) $\frac{1}{1+x^{2}}$

 $\frac{d}{dx} \left\{ \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right\} =$ (a) $\frac{1}{1 + x^2}$ (b) $-\frac{1}{1 + x^2}$ (c) $-\frac{2}{1 + x^2}$ (d) $\frac{2}{1 + x^2}$

97. If $y = \cos^{-1}\left(\frac{3\cos x + 4\sin x}{5}\right)$, then $\frac{dy}{dx} = \frac{1}{3}\cos^{-1}\left(\frac{3\cos x + 4\sin x}{5}\right)$

(a) 0

- (b) 1
- (c) -1
- (d) $\frac{1}{2}$

Sillon. Col

98.
$$\frac{d}{dx} \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}} =$$

- (a) $\frac{a}{a^2 + r^2}$ (b) $\frac{-a}{a^2 + r^2}$
- (c) $\frac{1}{a\sqrt{a^2-x^2}}$ (d) $\frac{1}{\sqrt{a^2-x^2}}$

99. Let 3f(x) - 2f(1/x) = x, then f'(2) is equal to

- (a) 2/7
- (b) 1/2

(c) 2

(d) 7/2

100. $\frac{d}{dx}\left(\tan^{-1}\frac{\sqrt{1+x^2}-1}{x}\right)$ is equal to

- (a) $\frac{1}{1+r^2}$
- (c) $\frac{x^2}{2\sqrt{1+x^2}(\sqrt{1+x^2}-1)}$ (d) $\frac{2}{1+x^2}$

101. If $u = \tan^{-1} \left\{ \frac{\sqrt{1 + x^2} - 1}{x} \right\}$ and $v = 2 \tan^{-1} x$, then $\frac{du}{dv}$ is equal to

102. If $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, then $\frac{dy}{dx}$ equals

(a) $\frac{2}{1-x^2}$ (b) $\frac{1}{1+x^2}$ (c) $\pm \frac{2}{1+x^2}$ (d) $-\frac{2}{1+x^2}$

103. The derivative of $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ *w.r.t.* $\cot^{-1}\left(\frac{1-3x^2}{3x-x^2}\right)$ is

- (c) $\frac{2}{3}$
- (d) $\frac{1}{2}$

104. Differential coefficient of $\frac{\tan^{-1} x}{1 + \tan^{-1} x}$ w.r.t. $\tan^{-1} x$ is

(a)
$$\frac{1}{1 + \tan^{-1} x}$$

(a)
$$\frac{1}{1 + \tan^{-1} x}$$
 (b) $\frac{-1}{1 + \tan^{-1} x}$

(c)
$$\frac{1}{(1+\tan^{-1}x)^2}$$

(c)
$$\frac{1}{(1 + \tan^{-1} x)^2}$$
 (d) $\frac{-1}{2(1 + \tan^{-1} x)^2}$

105. If $y = ae^{mx} + be^{-mx}$, then $\frac{d^2y}{dx^2} - m^2y =$

(a)
$$m^2 (ae^{mx} - be^{-mx})$$
 (b) 1

(d) None of these

106. If $y = ax^{n+1} + bx^{-n}$, then $x^2 \frac{d^2y}{dx^2} =$

(a)
$$n(n-1)y$$
 (b) $n(n+1)y$

(b)
$$n(n+1)y$$

(d)
$$n^2 y$$

107. The derivative of $\sin^{-1} \left(\frac{2x}{1+x^2} \right)$ *w.r.t.* $\cos^{-1} \left(\frac{2x}{1+x^2} \right)$

$$(a) -1$$

108. The differential coefficient of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}x$ is

(a)
$$\frac{1}{2}$$

(b)
$$-\frac{1}{2}$$

(d) None of these

(a)
$$\frac{1}{(dy/dx)^2}$$

(b)
$$\frac{\left(d^2y/dx^2\right)}{\left(dy/dx\right)^2}$$

(c)
$$\frac{d^2y}{dx^2}$$

(d)
$$\frac{\left(-d^2y/dx^2\right)}{\left(dy/dx\right)^2}$$

110. If f(x) is a differentiable function and f''(0) = a then $\lim_{x\to 0} \frac{2f(x) - 3f(2x) + f(4x)}{x^2}$ is

111. If $e^y + xy = e$, then the value of $\frac{d^2y}{dx^2}$ for x = 0, is

(a)
$$\frac{1}{e}$$

(b)
$$\frac{1}{a^2}$$

(c)
$$\frac{1}{e^3}$$

(d) None of these

112. If $y = (x + \sqrt{1 + x^2})^n$, then $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$ is

(a)
$$n^2 y$$

(b)
$$-n^2y$$

$$(c)$$
 $-v$

(d)
$$2x^2y$$

113. If $\sqrt{(1-x^6)} + \sqrt{(1-y^6)} = a^3(x^3-y^3)$, then $\frac{dy}{dx} =$

(a)
$$\frac{x^2}{y^2} \sqrt{\frac{1-x^6}{1-y^6}}$$

(a)
$$\frac{x^2}{v^2} \sqrt{\frac{1-x^6}{1-v^6}}$$
 (b) $\frac{y^2}{x^2} \sqrt{\frac{1-y^6}{1-x^6}}$

(c)
$$\frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}$$

(c) $\frac{x^2}{v^2} \sqrt{\frac{1-y^6}{1-x^6}}$ (d) None of these

114. If $x = \sec \theta - \cos \theta$ and $y = \sec^n \theta - \cos^n \theta$, then

(a)
$$(x^2 + 4) \left(\frac{dy}{dx}\right)^2 = n^2(y^2 + 4)$$

(b)
$$(x^2 + 4) \left(\frac{dy}{dx}\right)^2 = x^2(y^2 + 4)$$

(c)
$$(x^2 + 4) \left(\frac{dy}{dx}\right)^2 = (y^2 + 4)^2$$

(d) None of these

115. If $y = \frac{x}{2}\sqrt{a^2 + x^2} + \frac{a^2}{2}\log(x + \sqrt{x^2 + a^2})$, then $\frac{dy}{dx} = \frac{1}{2}$

(a)
$$\sqrt{x^2 + a^2}$$

(a)
$$\sqrt{x^2 + a^2}$$
 (b) $\frac{1}{\sqrt{x^2 + a^2}}$

(c)
$$2\sqrt{x^2 + a^2}$$
 (d) $\frac{2}{\sqrt{x^2 + a^2}}$

(d)
$$\frac{2}{\sqrt{x^2 + a^2}}$$

116. If $y^2 = p(x)$ is a polynomial of degree three, then $2\frac{d}{dx}\left\{y^3 \cdot \frac{d^2y}{dx^2}\right\} =$

- (a) p'''(x) + p'(x)
- (b) p''(x).p'''(x)
- (c) p(x).p'''(x)
- (d) Constant

www.sakshieducation.cox **117.** If f(x+y) = f(x).f(y) for all x and y and f(5) = 2, f'(0) = 3, then f'(5) will be

DIFFERENTIATION

HINTS AND SOLUTIONS

1. (a)
$$\log |x| = \log x$$
, if $x > 0 = \log(-x)$, if $x < 0$

Hence
$$\frac{d}{dx} \{ \log |x| \} = \frac{1}{x}, \text{if } x > 0$$

$$= \left(\frac{1}{-x}\right)(-1) = \frac{1}{x}, \text{if } x < 0$$

Thus
$$\frac{d}{dx} \{ \log |x| \} = \frac{1}{x}$$
, if $x \neq 0$.

2. (a)
$$y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = 0$$

3. (a)
$$\frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right) \right]$$

Hence
$$\frac{d}{dx} \{ \log |x| \} = \frac{1}{x}, \text{ if } x > 0$$

$$= \left(\frac{1}{-x} \right) (-1) = \frac{1}{x}, \text{ if } x < 0$$
Thus $\frac{d}{dx} \{ \log |x| \} = \frac{1}{x}, \text{ if } x \neq 0.$

$$y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots > \infty \Rightarrow y = e^x$$
Differentiating with respect to x , we get $\frac{dy}{dx} = e^x = y$.
$$\frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right) \right]$$

$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \cos \frac{x}{2}} \right) \right]$$

$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{1 - \tan\left(\frac{x}{2}\right)}{1 + \tan\left(\frac{x}{2}\right)} \right) \right] = \frac{d}{dx} \left[\tan^{-1} \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \right] = -\frac{1}{2}$$

4. (d)
$$\frac{d}{dx} \tan^{-1} \left(\frac{ax - b}{bx + a} \right) = \frac{1}{1 + \left(\frac{ax - b}{bx + a} \right)^2} \cdot \frac{d}{dx} \left(\frac{ax - b}{bx + a} \right)$$

5. (c)
$$\frac{dy}{dx} = -b \sin \log \left(\frac{x}{n}\right)^n \frac{1}{(x/n)^n} \frac{n}{n} \left(\frac{x}{n}\right)^{n-1} = -\frac{nb}{x} \sin \log \left(\frac{x}{n}\right)^n$$
.

6. (b)
$$x^{2/3} + y^{2/3} = a^{2/3}$$

$$\implies \frac{2}{3} x^{-1/3} + \frac{2}{3} y^{-1/3} \frac{dy}{dx} = 0 \quad \text{Or} \quad \frac{dy}{dx} = -\left(\frac{x}{y}\right)^{-1/3} = -\left(\frac{y}{x}\right)^{1/3}.$$

7. (b)
$$f(x) = x \tan^{-1} x$$

Differentiating w.r.tx, we get
$$f'(x) = x \frac{1}{1+x^2} + \tan^{-1} x$$

Now put
$$x = 1$$
, then $f'(1) = \frac{1}{2} + \tan^{-1}(1) = \frac{\pi}{4} + \frac{1}{2}$.

8. (c)
$$y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

$$\Longrightarrow \frac{dy}{dx} = 0 + 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!}$$

$$y = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}$$

$$\Rightarrow \frac{dy}{dx} = 0 + 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!}$$

$$\Rightarrow \frac{dy}{dx} + \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} \Rightarrow \frac{dy}{dx} = y - \frac{x^{n}}{n!}.$$

$$\frac{d}{dx} \log(\log x) = \frac{1}{x} \cdot \frac{1}{\log x} = (x \log x)^{-1}.$$

$$y = \tan^{-1} \frac{4x}{1 + 5x^{2}} + \tan^{-1} \frac{2 + 3x}{3 - 2x}$$

$$= \tan^{-1} \frac{5x - x}{1 + 5x \cdot x} + \tan^{-1} \frac{2}{3} + x$$

$$= \tan^{-1} 5x - \tan^{-1} x + \tan^{-1} \frac{2}{3} - \tan^{-1} x$$

9. (c)
$$\frac{d}{dx} \log(\log x) = \frac{1}{x} \cdot \frac{1}{\log x} = (x \log x)^{-1}$$
.

10. (c)
$$y = \tan^{-1} \frac{4x}{1+5x^2} + \tan^{-1} \frac{2+3x}{3-2x}$$

$$= \tan^{-1} \frac{5x - x}{1 + 5x \cdot x} + \tan^{-1} \frac{\frac{2}{3} + x}{1 - \frac{2}{3} \cdot x}$$

$$1 + 5x.x 1 - \frac{2}{3}.x$$

$$= \tan^{-1} 5x - \tan^{-1} x + \tan^{-1} \frac{2}{3} - \tan^{-1} x$$

11. (a)
$$y = x \left[\left(\cos \frac{x}{2} + \sin \frac{x}{2} \right) \left(\cos \frac{x}{2} - \sin \frac{x}{2} \right) + \sin x \right] + \frac{1}{2\sqrt{x}}$$

$$\Rightarrow y = x(\cos x + \sin x) + \frac{1}{2\sqrt{x}}$$

12. (c) Putting
$$x = \sin A$$
 and $\sqrt{x} = \sin B$

13. (b)
$$y = \sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} = \frac{\cos x - \sin x}{\cos x + \sin x}$$

14. (c)
$$\frac{d}{dx}[\log_7(\log_7 x)] = \frac{d}{dx} \left(\frac{\log_e(\log_7 x)}{\log_e 7} \right)$$

$$= \frac{1}{x \log_e x} \cdot \frac{1}{\log_e 7} = \frac{\log_7 e}{x \log_e x} .$$

15. (d)
$$\frac{d}{dx} \left[\frac{\cot^2 x - 1}{\cot^2 x + 1} \right] = \frac{d}{dx} \left[\frac{\cos^2 x - \sin^2 x}{\cos^2 x + \sin^2 x} \right]$$

$$= \frac{d}{dx} [\cos 2x] = -2\sin 2x.$$

16. (a) Let
$$y = \tan^{-1} \sqrt{\frac{1 + \cos \frac{x}{2}}{1 - \cos \frac{x}{2}}} = \tan^{-1} \sqrt{\frac{2 \cos^2 \frac{x}{4}}{2 \sin^2 \frac{x}{4}}}$$

$$y = \tan^{-1} \cot \frac{x}{4} = \tan^{-1} \tan \left(\frac{\pi}{2} - \frac{x}{4}\right) = \frac{\pi}{2} - \frac{x}{4}$$

$$\therefore \frac{dy}{dx} = -\frac{1}{4}.$$

17. (b)
$$f(x) = \log_x(\log x) = \frac{\log(\log x)}{\log x}$$

$$\implies f'(x) = \frac{\frac{1}{x} - \frac{1}{x} \log(\log x)}{(\log x)^2} \Rightarrow f'(e) = \frac{\frac{1}{e} - 0}{1} = \frac{1}{e}.$$

18. (b)
$$\frac{d}{dx} \sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} = \frac{d}{dx} \cot x = -\csc^2 x$$

19. (c)
$$\frac{d}{dx} \left[\tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}} \right] = \frac{d}{dx} \left[\tan^{-1} \tan \frac{x}{2} \right] = \frac{1}{2}$$

$$y = \tan^{-1}\cot\frac{x}{4} = \tan^{-1}\tan\left(\frac{\pi}{2} - \frac{x}{4}\right) = \frac{\pi}{2} - \frac{x}{4}$$

$$\therefore \frac{dy}{dx} = -\frac{1}{4}.$$
17. (b) $f(x) = \log_{x}(\log x) = \frac{\log(\log x)}{\log x}$

$$\Rightarrow f'(x) = \frac{\frac{1}{x} - \frac{1}{x}\log(\log x)}{(\log x)^{2}} \Rightarrow f'(e) = \frac{\frac{1}{e} - 0}{1} = \frac{1}{e}.$$
18. (b) $\frac{d}{dx}\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} = \frac{d}{dx}\cot x = -\csc^{2}x.$
19. (c) $\frac{d}{dx}\left[\tan^{-1}\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right] = \frac{d}{dx}\left[\tan^{-1}\tan\frac{x}{2}\right] = \frac{1}{2}.$
20. (d) $\frac{dy}{dx} = \cos\left(\frac{1 + x^{2}}{1 - x^{2}}\right)\left[\frac{(1 - x^{2})2x + (1 + x^{2})2x}{(1 - x^{2})^{2}}\right]$

$$= \frac{4x}{(1 - x^{2})^{2}}\cos\left(\frac{1 + x^{2}}{1 - x^{2}}\right).$$
21. (a) $y = \sec^{-1}\left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right) + \sin^{-1}\left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1}\right)$

21. (a)
$$y = \sec^{-1} \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1} \right) + \sin^{-1} \left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right)$$

$$= \cos^{-1} \left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right) + \sin^{-1} \left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right) = \frac{\pi}{2}$$

22. (a)
$$y = \frac{\sqrt{a+x} - \sqrt{a-x}}{\sqrt{a+x} + \sqrt{a-x}} \Rightarrow y = \frac{(\sqrt{a+x} - \sqrt{a-x})^2}{(a+x) - (a-x)}$$

$$\Rightarrow y = \frac{(a+x) + (a-x) - 2(\sqrt{a^2 - x^2})}{2}$$

$$= \frac{2a - 2\sqrt{a^2 - x^2}}{2x} \text{ or } y = \frac{a - \sqrt{a^2 - x^2}}{x}$$

23. (a) Put
$$x = \sin \theta$$
, we get $\frac{d}{dx} \sin^{-1}(3x - 4x^3)$

$$=\frac{d}{dx}\sin^{-1}(\sin 3\theta) = \frac{3}{\sqrt{1-x^2}}$$
.

24. (b)
$$\frac{d}{dx} \tan^{-1}(\sec x + \tan x) = \frac{d}{dx} \tan^{-1}\left(\frac{1 + \sin x}{\cos x}\right)$$

$$= \frac{d}{dx} \tan^{-1} \left(\frac{\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)} \right) = \frac{d}{dx} \left(\frac{\pi}{4} + \frac{x}{2}\right) = \frac{1}{2}.$$

25. (b)
$$\frac{d}{dx} \left(\frac{\log x}{\sin x} \right) = \frac{\frac{\sin x}{x} - \log x \cdot \cos x}{\sin^2 x}$$

26. (b)
$$y = \cot^{-1}\left(\frac{1+x}{1-x}\right)$$

$$\frac{dy}{dx} = -\frac{1}{1 + \left(\frac{1+x}{1-x}\right)^2} \left[\frac{(1-x) + (1+x)}{(1-x)^2} \right]$$

27. (a) Rationalizing,
$$y = \frac{2x^2 + 2\sqrt{x^4 - 1}}{2} = x^2 + (x^4 - 1)^{1/2}$$

$$\frac{d}{dx} \tan^{-1} \left(\frac{\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)} \right) = \frac{d}{dx} \left(\frac{\pi}{4} + \frac{x}{2} \right) = \frac{1}{2}.$$
25. (b)
$$\frac{d}{dx} \left(\frac{\log x}{\sin x} \right) = \frac{\frac{\sin x}{x} - \log x \cdot \cos x}{\sin^2 x}.$$
26. (b)
$$y = \cot^{-1} \left(\frac{1+x}{1-x} \right)$$

$$\frac{dy}{dx} = -\frac{1}{1 + \left(\frac{1+x}{1-x}\right)^2} \left[\frac{(1-x) + (1+x)}{(1-x)^2} \right]$$
27. (a) Rationalizing,
$$y = \frac{2x^2 + 2\sqrt{x^4 - 1}}{2} = x^2 + (x^4 - 1)^{1/2}$$
28. (a)
$$\frac{d}{dx} (e^x \log \sin 2x) = e^x \log \sin 2x + 2e^x \frac{1}{\sin 2x} \cos 2x$$

$$= e^x \log \sin 2x + e^x 2 \cot 2x = e^x (\log \sin 2x + 2 \cot 2x).$$
29. (d)
$$y = t^{4/3} - 3t^{-2/3}$$

$$\therefore \frac{dy}{dx} = \frac{4}{x^2} t^{1/3} + 3x \frac{2}{x^2} t^{1/3/3} = \frac{4t^2 + 6}{5\sqrt{3}} = \frac{2(2t^2 + 3)}{5\sqrt{3}}.$$

29. (d)
$$y = t^{4/3} - 3t^{-2/3}$$

$$\therefore \frac{dy}{dt} = \frac{4}{3}t^{1/3} + 3 \times \frac{2}{3}t^{-5/3} = \frac{4t^2 + 6}{3t^{5/3}} = \frac{2(2t^2 + 3)}{3t^{5/3}}.$$

30. (c)
$$y = \sin(\sqrt{\sin x + \cos x})$$

$$\frac{dy}{dx} = \frac{1}{2} \frac{\cos(\sqrt{\sin x + \cos x})}{\sqrt{\sin x + \cos x}} (\cos x - \sin x).$$

$$\frac{dy}{dx} = \frac{1}{2} \frac{\cos(\sqrt{\sin x + \cos x})}{\sqrt{\sin x + \cos x}} (\cos x - \sin x).$$
31. (c) $\frac{d}{dx} \log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) = \frac{1}{\tan \left(\frac{\pi}{4} + \frac{x}{2}\right)} \sec^2 \left(\frac{\pi}{4} + \frac{x}{2}\right).\frac{1}{2}$

32. (b)
$$\frac{d}{dx} \left[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}} \right] = \frac{d}{dx} \left[\log \left(\tan \frac{x}{2} \right) \right] = \csc x$$
.

33. (b)
$$y = (1 + x^{1/4})(1 + x^{1/2})(1 - x^{1/4})$$

$$\implies$$
 y = $(1 + x^{1/4})(1 - x^{1/4})(1 + x^{1/2})$

$$=(1-x^{1/2})(1+x^{1/2})=1-x \Rightarrow \frac{dy}{dx}=-1$$
.

34. (c)
$$y = \tan^{-1} \sqrt{a} - \tan^{-1} \sqrt{x}$$

Differentiating w.r.t.x, we get, $\frac{dy}{dx} = -\frac{1}{(1+x)} \cdot \frac{1}{2\sqrt{x}}$.

35. (a) Let
$$y = e^{x \sin x} \Rightarrow \log y = x \sin x$$

$$\therefore \frac{1}{y} \frac{dy}{dx} = \sin x + x \cos x \text{ or } \frac{dy}{dx} = e^{x \sin x} (\sin x + x \cos x).$$

36. (a)
$$\frac{d}{dx} [\log \sqrt{\sin \sqrt{e^x}}] = \frac{d}{dx} \left[\frac{1}{2} \log(\sin \sqrt{e^x}) \right]$$

= $\frac{1}{2} \cot \sqrt{e^x} \frac{1}{2\sqrt{e^x}} e^x = \frac{1}{4} e^{x/2} \cot(e^{x/2})$

37. (a)
$$y = \frac{e^{2x} + e^{-2x}}{e^{2x} - e^{-2x}}$$

$$\therefore \frac{dy}{dx} = \frac{(e^{2x} - e^{-2x})2(e^{2x} - e^{-2x}) - (e^{2x} + e^{-2x})2(e^{2x} + e^{-2x})}{(e^{2x} - e^{-2x})^2}$$

35. (a) Let
$$y = e^{x \sin x} \Rightarrow \log y = x \sin x$$

$$\therefore \frac{1}{y} \frac{dy}{dx} = \sin x + x \cos x \text{ OF } \frac{dy}{dx} = e^{x \sin x} (\sin x + x \cos x).$$
36. (a) $\frac{d}{dx} [\log \sqrt{\sin \sqrt{e^x}}] = \frac{d}{dx} \left[\frac{1}{2} \log(\sin \sqrt{e^x}) \right]$

$$= \frac{1}{2} \cot \sqrt{e^x} \frac{1}{2\sqrt{e^x}} e^x = \frac{1}{4} e^{x/2} \cot(e^{x/2})$$
37. (a) $y = \frac{e^{2x} + e^{-2x}}{e^{2x} - e^{-2x}}$

$$\therefore \frac{dy}{dx} = \frac{(e^{2x} - e^{-2x})2(e^{2x} - e^{-2x}) - (e^{2x} + e^{-2x})2(e^{2x} + e^{-2x})}{(e^{2x} - e^{-2x})^2}$$
38. (b) $y = \tan^{-1} \sqrt{\frac{1 + \cos x}{1 - \cos x}} = \tan^{-1} \sqrt{\frac{2\cos^2 \frac{x}{2}}{2\sin^2 \frac{x}{2}}}$

$$= \tan^{-1} \cot \frac{x}{2} = \tan^{-1} \left(\tan \left(\frac{\pi}{2} - \frac{x}{2} \right) \right) = \frac{\pi}{2} - \frac{x}{2}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{1}{2}.$$

39. (b)
$$\frac{d}{dx} \{ \log(\sec x + \tan x) \} = \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} = \sec x.$$

40. (a)
$$y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$$

Or $y = \cos^{-1}\frac{x-1}{x+1} + \sin^{-1}\left(\frac{x-1}{x+1}\right)$

$$\therefore y = \frac{\pi}{2} \Rightarrow \frac{dy}{dx} = 0$$

41. (a)
$$y = \sqrt{\frac{1+e^x}{1-e^x}}$$
 or $y^2 = \frac{1+e^x}{1-e^x}$

$$2y\frac{dy}{dx} = \frac{(1-e^x)e^x + (1+e^x)e^x}{(1-e^x)^2} = \frac{2e^x}{(1-e^x)^2}$$

42. (b) Given
$$f(2) = 4$$
, $f'(2) = 1$

$$\therefore \lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2} = \lim_{x \to 2} \frac{xf(2) - 2f(2) + 2f(2) - 2f(x)}{x - 2}$$

$$= \lim_{x \to 2} \frac{(x-2)f(2)}{x-2} - \lim_{x \to 2} \frac{2f(x) - 2f(2)}{x-2}$$

$$= f(2) - 2\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f(2) - 2f'(2) = 4 - 2(1) = 4 - 2 = 2$$

Aliter: Applying L-Hospital rule, we get $\lim_{x \to 2} \frac{f(2) - 2f'(2) = 4 - 2(1) = 4 - 2 = 2}{d \int_{x \to 2} \frac{d}{dx} \left[\cos^{-1} \sqrt{\frac{1 + \cos x}{2}} \right] = \frac{d}{dx} \left[\cos^{-1} \left(\cos \frac{x}{2} \right) \right] = \frac{1}{2}.$ $\frac{d}{dx} \left[\tan^{-1} (\cot x) + \cot^{-1} (\tan x) \right]$ $\frac{1(-\csc^2 x)}{1 + \cot^2 x} - \frac{1(\sec^2 x)}{1 + \tan^2 x} = -1 - 4$

43. (b)
$$\frac{d}{dx} \left(\cos^{-1} \sqrt{\frac{1 + \cos x}{2}} \right) = \frac{d}{dx} \left[\cos^{-1} \left(\cos \frac{x}{2} \right) \right] = \frac{1}{2}$$
.

44. (d)
$$\frac{d}{dx} [\tan^{-1}(\cot x) + \cot^{-1}(\tan x)]$$

$$= \frac{1(-\csc^2 x)}{1 + \cot^2 x} - \frac{1(\sec^2 x)}{1 + \tan^2 x} = -1 - 1 = -1$$

45. (b)
$$f(x) = |x-1| + |x-5|$$

$$f(x) = \begin{cases} -(x-1) - (x-5), & x < 1\\ (x-1) - (x-5), & 1 < x < 5\\ x-1+x-5, & x > 5 \end{cases}$$

$$f(x) = \begin{cases} 6 - 2x, & x < 1 \\ 4, & 1 < x < 5 \\ 2x - 6, & x > 5 \end{cases}$$

46. (b)
$$\sin^{-1}\sqrt{1-x} = \sin^{-1}\sqrt{1-(\sqrt{x})^2} = \cos^{-1}\sqrt{x}$$

$$\therefore y = 2\cos^{-1}\sqrt{x} \text{ or } \frac{dy}{dx} = 2.\frac{-1}{\sqrt{1-x}}.\frac{1}{2\sqrt{x}}$$

47. (a)
$$y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$$

= $\cot^{-1} \left[\frac{2 + 2\cos x}{2\sin x} \right] = \cot^{-1} \left[\frac{1 + \cos x}{\sin x} \right]$

$$= \cot^{-1} \left[\cot \frac{x}{2} \right] = \frac{x}{2}$$

48. (d)
$$f(x) =\begin{cases} -x^2, & x < 0 \\ x^2, & x > 0 \end{cases} \Rightarrow f'(x) =\begin{cases} -2x, & x < 0 \\ 2x, & x > 0 \end{cases}$$

$$\therefore f'(x) = 2|x|.$$

49. (a)
$$y = \log e^x + \frac{3}{4} \log \frac{x+2}{x-2} = x + \frac{3}{4} \log \frac{x+2}{x-2}$$

$$\Rightarrow y = x + \frac{3}{4} [\log(x+2) - \log(x-2)]$$

50. (a) We have
$$y = \log_{\cos x} \sin x = \frac{\log \sin x}{\log \cos x}$$

$$\therefore \frac{dy}{dx} = \frac{\cot x \cdot \log \cos x + (\log \sin x) \tan x}{(\log \cos x)^2} .$$

51. (b)
$$f(x) = \cos^{-1} \left[\frac{1 - (\log x)^2}{1 + (\log x)^2} \right] = 2 \tan^{-1} (\log x)$$

52. (a)
$$y\sqrt{x^2+1} = \log\left\{\sqrt{x^2+1} - x\right\}$$

49. (a)
$$y = \log e^x + \frac{3}{4} \log \frac{x+2}{x-2} = x + \frac{3}{4} \log \frac{x+2}{x-2}$$

$$\Rightarrow y = x + \frac{3}{4} \left[\log(x+2) - \log(x-2) \right]$$
50. (a) We have $y = \log_{\cos x} \sin x = \frac{\log \sin x}{\log \cos x}$

$$\therefore \frac{dy}{dx} = \frac{\cot x \cdot \log \cos x + (\log \sin x) \tan x}{(\log \cos x)^2}.$$
51. (b) $f(x) = \cos^{-1} \left[\frac{1 - (\log x)^2}{1 + (\log x)^2} \right] = 2 \tan^{-1} (\log x)$
52. (a) $y\sqrt{x^2 + 1} = \log \left\{ \sqrt{x^2 + 1} - x \right\}$
53. (a) $\lim_{x \to a} \frac{af(x) - xf(a)}{x - a} \Rightarrow \lim_{x \to a} \frac{af(x) - xf(a) + af(a) - af(a)}{x - a}$

$$\implies \lim_{x \to a} \frac{a[f(x) - f(a)] - f(a)[x - a]}{x - a}$$

$$\Rightarrow \lim_{x \to a} \frac{a[f(x) - f(a)]}{x - a} - \lim_{x \to a} f(a) \Rightarrow af'(a) - f(a).$$

54. (b)
$$y = \tan^{-1}(\sec x - \tan x)$$

$$\frac{dy}{dx} = \frac{1}{1 + (\sec x - \tan x)^2} (\sec x \tan x - \sec^2 x)$$

$$\frac{dy}{dx} = \frac{\cos^2 x \cdot \sec^2 x (\sin x - 1)}{(1 - \sin x)^2 + \cos^2 x}$$

$$\frac{dy}{dx} = \frac{\cos^2 x \cdot \sec^2 x (\sin x - 1)}{(1 - \sin x)^2 + \cos^2 x}$$

$$\frac{dy}{dx} = \frac{\sin x - 1}{1 - 2\sin x + \sin^2 x + \cos^2 x} = \frac{\sin x - 1}{2(1 - \sin x)} = -\frac{1}{2}.$$

55. (a)
$$\frac{d}{dx} \left[\tan^{-1} \left(\frac{a-x}{1+ax} \right) \right].$$

$$= \frac{d}{dx} [\tan^{-1} a - \tan^{-1} x] = 0 - \frac{1}{1 + x^2} = -\frac{1}{1 + x^2}.$$

56. (c) Let
$$y = \left[\log \left\{ e^x \left(\frac{x-2}{x+2} \right)^{3/4} \right\} \right] = \log e^x + \log \left(\frac{x-2}{x+2} \right)^{3/4}$$

$$\implies y = x + \frac{3}{4} [\log(x-2) - \log(x+2)]$$

57. (b)
$$y = \tan^{-1} \left(\frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right)$$

Let $a = r \sin \theta$ and $b = r \cos \theta$

$$\therefore y = \tan^{-1} \left[\frac{r \sin(\theta - x)}{r \cos(\theta - x)} \right]$$

$$y = \theta - x$$
; $y = \tan^{-1} \left(\frac{a}{b}\right) - x$

58. (c)
$$\sin y + e^{-x \cos y} = e$$
,

Let
$$a = r \sin \theta$$
 and $b = r \cos \theta$

$$\therefore y = \tan^{-1} \left[\frac{r \sin(\theta - x)}{r \cos(\theta - x)} \right]$$

$$y = \theta - x ; y = \tan^{-1} \left(\frac{a}{b} \right) - x$$

$$\sin y + e^{-x \cos y} = e,$$

$$\Rightarrow \cos y \frac{dy}{dx} + e^{-x \cos y} \left\{ (-x) \left(-\sin y \frac{dy}{dx} \right) + \cos y(-1) \right\} = 0$$

$$\Rightarrow \cos y \frac{dy}{dx} + x \sin y e^{-x \cos y} \frac{dy}{dx} - \cos y e^{-x \cos y} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{\cos y e^{-x \cos y}}{\cos y + x \sin y e^{-x \cos y}}$$

$$\frac{d}{dx} \left[\tan^{-1} \frac{(\sqrt{x}(3 - x))}{(\sqrt{x}(3 - x))} \right]$$

$$\Rightarrow \cos y \frac{dy}{dx} + x \sin y \ e^{-x \cos y} \frac{dy}{dx} - \cos y e^{-x \cos y} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{\cos y \ e^{-x\cos y}}{\cos y + x\sin y \ e^{-x\cos y}}$$

59. (e)
$$\frac{d}{dx} \left(\tan^{-1} \frac{(\sqrt{x}(3-x))}{1-3x} \right)$$

Put
$$\sqrt{x} = \tan \theta \Rightarrow \theta = \tan^{-1} \sqrt{x}$$

$$\frac{d}{dx} \left(\tan^{-1} \frac{(\tan \theta (3 - \tan^2 \theta))}{1 - 3 \tan^2 \theta} \right)$$

$$\frac{d}{dx} \left(\tan^{-1} \frac{(3 \tan \theta - \tan^3 \theta)}{1 - 3 \tan^2 \theta} \right)$$

$$\frac{d}{dx}(\tan^{-1}(\tan 3\theta) = \frac{d}{dx}(3\theta)$$

$$\frac{d}{dx}(3.\tan^{-1}\sqrt{x}) = \frac{3}{2\sqrt{x}(1+x)}.$$

60. (b)
$$y = \sqrt{\sin x + y}$$
, $\implies y^2 = \sin x + y$

61. (d)
$$y = \tan^{-1} \left[\frac{\sin x + \cos x}{\cos x - \sin x} \right] = \tan^{-1} \left[\frac{1 + \tan x}{1 - \tan x} \right]$$

$$= \tan^{-1} \left[\frac{\tan(\pi/4) + \tan x}{1 - \tan(\pi/4) \tan x} \right] = \tan^{-1} \tan(\pi/4 + x)$$

62. (c)
$$\sin y = x \sin(a+y) \Longrightarrow x = \frac{\sin y}{\sin(a+y)}$$

$$\Rightarrow 1 = \frac{\cos y \cdot \frac{dy}{dx} \cdot \sin(a+y) - \sin y \cos(a+y) \frac{dy}{dx}}{\sin^2(a+y)}$$

$$= \frac{\frac{dy}{dx} \cdot \sin(a+y-y)}{\sin^2(a+y)} \Rightarrow \frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}.$$

63. (a)
$$\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y} = -\frac{3y\cos(xy) - 4y\sin(xy)}{3x\cos(xy) - 4x\sin(xy)} = -\frac{y}{x}.$$

64. (c)
$$f(x) = \frac{1}{1-x} \Longrightarrow f\{f(x)\} = \frac{1-x}{-x}$$

$$\Rightarrow f[f\{f(x)\}] = \frac{-x}{-x - 1 + x} = x$$

65. (a)
$$x^3 + 8xy + y^3 = 64 \Rightarrow 3x^2 + 8\left(y + x\frac{dy}{dx}\right) + 3y^2\frac{dy}{dx} = 0$$

66. (a)
$$\cos(x+y) = (y \sin x)$$

$$\implies$$
 $-\sin(x+y)\left(1+\frac{dy}{dx}\right) = y\cos x + \sin x \frac{dy}{dx}$

63. (a)
$$\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y} = -\frac{3y\cos(xy) - 4y\sin(xy)}{3x\cos(xy) - 4x\sin(xy)} = -\frac{y}{x}$$
.
64. (c) $f(x) = \frac{1}{1-x} \Rightarrow f\{f(x)\} = \frac{1-x}{-x}$
 $\Rightarrow f[f\{f(x)\}] = \frac{-x}{-x-1+x} = x$
 \therefore Derivative of $f[f\{f(x)\}] = 1$.
65. (a) $x^3 + 8xy + y^3 = 64 \Rightarrow 3x^2 + 8\left(y + x\frac{dy}{dx}\right) + 3y^2\frac{dy}{dx} = 0$
66. (a) $\cos(x+y) = (y\sin x)$
 $\Rightarrow -\sin(x+y)\left(1 + \frac{dy}{dx}\right) = y\cos x + \sin x\frac{dy}{dx}$
67. (d) It is implicit function, so
 $\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y} = -\frac{\cos(x+y) - \frac{1}{x+y}}{\cos(x+y) - \frac{1}{x+y}} = -1$.

68. (a)
$$x = \frac{\sin y}{\cos(a+y)}$$
. Find $\frac{dx}{dy}$ and then $\frac{dy}{dx}$.

69. (a)
$$f \circ g = I \Rightarrow f \circ g(x) = x$$
 for all x

$$\Rightarrow f'(g(x))g'x = 1 \text{ for all } x$$

$$\Rightarrow f'(g(a)) = \frac{1}{g'(a)} = \frac{1}{2} \Rightarrow f'(b) = \frac{1}{2} \qquad (\because g(a) = b).$$

70. (c) Since g(x) is the inverse of f(x), therefore

$$f(x) = y \iff g(y) = x$$

Now,
$$g'(f(x)) = \frac{1}{f'(x)}, \forall x \Longrightarrow g'(f(x)) = 1 + x^3, \ \forall x$$

$$\Rightarrow g'(y) = 1 + (g(y))^{3} \qquad [Using f(x) = y \Leftrightarrow x = g(y)]$$
$$\Rightarrow g'(x) = 1 + (g(x))^{3}$$

71. (a)
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{d}{dt}[a(1-\cos t)]}{\frac{d}{dt}[a(t+\sin t)]}$$

72. (d)
$$x\sqrt{1+y} + y\sqrt{1+x} = 0 \Rightarrow x^2(1+y) = y^2(1+x)$$

$$\Rightarrow (x-y)(x+y+xy) = 0 \Rightarrow x+y+xy = 0, \quad \{\because x \neq y\}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-1}{(1+x)^2}.$$
73. (c) $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}.$
74. (c) $x = \frac{1-t^2}{1+t^2}$ and $y = \frac{2t}{1+t^2}$
Put $t = \tan \theta$ in both the equations
75. (a) $x^4 + y^4 = \left(t - \frac{1}{t}\right)^2 + 2 = (x^2 + y^2)^2 + 2$

73. (c)
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

74. (c)
$$x = \frac{1-t^2}{1+t^2}$$
 and $y = \frac{2t}{1+t^2}$

Put $t = \tan \theta$ in both the equations

75. (a)
$$x^4 + y^4 = \left(t - \frac{1}{t}\right)^2 + 2 = (x^2 + y^2)^2 + 2$$

$$\Rightarrow x^2 y^2 = -1 \Rightarrow y^2 = -\frac{1}{x^2}$$

76. (d)
$$\sqrt{1 + \tan^2 \theta} = \sec \theta$$
.

77. (a) Taking log both sides,
$$p \log x + q \log y = (p+q)\log(x+y)$$

$$\implies \frac{p}{x} + \frac{q}{y} \frac{dy}{dx} = \frac{p+q}{x+y} \left(1 + \frac{dy}{dx} \right) \Rightarrow \frac{dy}{dx} = \frac{y}{x}.$$

78. (a)
$$f(x) = \cos^{-1} \left[\cos \left(\frac{\pi}{2} - \sqrt{\frac{1+x}{2}} \right) \right] + x^x$$

$$f(x) = \frac{\pi}{2} - \sqrt{\frac{1+x}{2}} + x^x$$

$$f(x) = \frac{\pi}{2} - \sqrt{\frac{1+x}{2}} + x^{x}$$
$$\therefore f'(x) = -\frac{1}{\sqrt{2}} \cdot \frac{1}{2\sqrt{1+x}} + x^{x} (1 + \log x)$$

$$f'(1) = -\frac{1}{4} + 1 = \frac{3}{4}.$$

79. (c)
$$y = \sqrt{\log x + y} \Rightarrow y^2 = \log x + y$$

$$\Rightarrow 2y \frac{dy}{dx} = \frac{1}{x} + \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{x(2y-1)}$$

80. (b)
$$x^y = y^x \Rightarrow y \log_e x = x \log_e y$$

81. (b)
$$y = \log x^x = x \log x$$

Differentiating w.r.t. x, we get

rentiating w.r.t. x, we get
$$\frac{dy}{dx} = (1 + \log x) = \log e + \log x = \log(ex)$$

$$x^{(x)} \Rightarrow \log y = x^{x} \log x$$

$$x^{(y)} \Rightarrow \log y = x - y \Rightarrow y = \frac{x}{1 + \log x}$$

$$x^{(y)} \Rightarrow \log y = (x + y)\log e$$

$$x^{(y)} \Rightarrow \log y = (x + y)\log e$$

$$x^{(y)} \Rightarrow \sin^{-1} t$$

$$x^{(y)} = \sin^{-1}(3t - 4t^{3}) = 3\sin^{-1} t$$

$$x^{(y)} = \sin^{-1}(3t - 4t^{3}) = 3\sin^{-1} t$$

$$x^{(y)} = \frac{1}{\sqrt{1 - t^{2}}}$$

82. (c)
$$y = x^{(x^x)} \Rightarrow \log y = x^x \log x$$

83. (a)
$$x^y = e^{x-y} \implies y \log x = x - y \implies y = \frac{x}{1 + \log x}$$

84. (a)
$$y = e^{x+y} \implies \log y = (x+y)\log e$$

85. (d)
$$y = \cos^{-1} \sqrt{1 - t^2} = \sin^{-1} t$$

and
$$x = \sin^{-1}(3t - 4t^3) = 3\sin^{-1}t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\left(\frac{1}{\sqrt{1-t^2}}\right)}{3\left(\frac{1}{\sqrt{1-t^2}}\right)} \Longrightarrow \frac{dy}{dx} = \frac{1}{3}.$$

86. (a)
$$y = (\sin x)^{(\sin x)^{(\sin x)....\infty}}$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} [\log \sin x + y \cot x]$$

$$\therefore \frac{dy}{dx} = \frac{y^2 \cot x}{1 - y \log \sin x} .$$

87. (a)
$$x^y + y^x = a^b$$
; Let $x^y = u$ and $y^x = v$

$$\Rightarrow u + v = a^b \Rightarrow \frac{du}{dx} + \frac{dv}{dx} = 0$$

88. (a)
$$y = x^2 + \frac{1}{y} \Rightarrow y^2 = x^2y + 1$$

$$\Rightarrow 2y \frac{dy}{dx} = y.2x + x^2 \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{2xy}{2y - x^2}.$$

89. (b) $2^{x} + 2^{y} = 2^{x+y}$; Differentiating w.r.t. x, we get

$$2^{x}(\log 2) + 2^{y}(\log 2)\frac{dy}{dx} = 2^{(x+y)}.(\log 2)\left(1 + \frac{dy}{dx}\right)$$

$$\implies 2^{x} + 2^{y} \frac{dy}{dx} = 2^{x+y} + 2^{x+y} \left(\frac{dy}{dx}\right)$$

$$\Longrightarrow \frac{dy}{dx}(2^y - 2^{x+y}) = 2^{x+y} - 2^x \Longrightarrow \frac{dy}{dx} = \frac{2^{x+y} - 2^x}{2^y - 2^{x+y}}.$$

$$\therefore \left(\frac{dy}{dx}\right)_{x=y=1} = \frac{2^2 - 2}{2 - 2^2} = \frac{2}{-2} = -1.$$

311/COILLON. **90.** (c) $x^m y^n = 2(x+y)^{m+n} \Rightarrow m \log x + n \log y = \log 2 + (m+n) \log(x+y)$

Differentiating both sides w.r.t. x,

91. (d)
$$y = \sqrt{x}^{\sqrt{x} \sqrt{x} - \dots - \infty}$$
 $\Rightarrow y = (\sqrt{x})^y$ $\Rightarrow \log y = y \log x^{1/2} = \frac{1}{2} y \log x$

92. (c)
$$x = e^{y + e^{y + \dots to \infty}}, x > 0, x = e^{y + x}$$

Taking log to the both sides, $\log x = (y + x)$

93. (a)
$$f(x) = \cot^{-1}\left(\frac{x^x - x^{-x}}{2}\right)$$
; Put $x^x = \tan \theta$

- **94.** (d) Putting $x = \cot \theta$
- **95.** (b) Putting $x = \sin \theta$ and $y = \sin \phi$

96. (d)
$$\frac{d}{dx} \left\{ \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right\}$$

Let
$$\frac{1-x^2}{1+x^2} = \cos\theta \Longrightarrow 1-x^2 = (1+x^2)\cos\theta$$

$$\implies$$
 $-x^2(1+\cos\theta)=\cos\theta-1$

$$\Rightarrow x^2 = \frac{1 - \cos \theta}{1 + \cos \theta} = \frac{2\sin^2 \frac{\theta}{2}}{2\cos^2 \frac{\theta}{2}} = \tan^2 \frac{\theta}{2}$$

Or
$$x = \tan \frac{\theta}{2}$$
 Or $\theta = 2 \tan^{-1} x$

97. (b)
$$y = \cos^{-1} \left[\frac{3}{5} \cos x - \frac{4}{5} \sin x \right]$$

Putting
$$\frac{3}{5} = r \cos \theta$$
, $\frac{4}{5} = r \sin \theta \Rightarrow r = 1$

$$\Rightarrow y = \cos^{-1}[\cos\theta\cos x - \sin\theta\sin x] = \theta + x \Rightarrow \frac{dy}{dx} = 1.$$

$$\frac{d}{dx}\tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}$$
Putting $x = a\sin\theta$,
$$3f(x) - 2f(1/x) = x \qquad(i)$$
Let $1/x = y$, then $3f(1/y) - 2f(y) = 1/y$

$$\Rightarrow -2f(y) + 3f(1/y) = 1/y$$

$$\Rightarrow -2f(x) + 3f(1/x) = 1/x \qquad(ii)$$
From $3 \times (i) + 2 \times (ii)$,

98. (d)
$$\frac{d}{dx} \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$

Putting $x = a \sin \theta$,

99. (b)
$$3f(x) - 2f(1/x) = x$$
(i)

Let
$$1/x = y$$
, then $3f(1/y) - 2f(y) = 1/y$

$$\Longrightarrow$$
 $-2f(y) + 3f(1/y) = 1/y$

$$\Rightarrow$$
 $-2f(x) + 3f(1/x) = 1/x$ (ii

From
$$3 \times (i) + 2 \times (ii)$$
,

$$9f(x) - 6f(1/x) - 4f(x) + 6f(1/x) = 3x + 2/x$$

$$5f(x) = 3x + \frac{2}{x} \Longrightarrow f(x) = \frac{1}{5} \left[3x + \frac{2}{x} \right]$$

100. (b) Let
$$y = \tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$$

Put
$$x = \tan \theta$$
, then $y = \tan^{-1} \left(\frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan \theta} \right)$

$$y = \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right) = \tan^{-1} \left(\frac{1 - \cos \theta}{\sin \theta} \right)$$

$$y = \tan^{-1} \left(\frac{2\sin^2 \frac{\theta}{2}}{2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} \right) = \tan^{-1} \tan \frac{\theta}{2}$$

$$y = \frac{\theta}{2} = \frac{1}{2} \tan^{-1} x$$
, $(: \theta = \tan^{-1} x)$.

101. (c)
$$u = \tan^{-1} \left\{ \frac{\sqrt{1 + x^2} - 1}{x} \right\}$$
 and $v = 2 \tan^{-1} x$

Put $x = \tan \theta$ in u and v;

$$u = \tan^{-1} \left\{ \frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan \theta} \right\} \text{ and } v = 2\theta$$

$$u = \tan^{-1} \left\{ \frac{\sec \theta - 1}{\tan \theta} \right\}$$
and $v = 2\theta$

$$u = \tan^{-1} \left\{ \frac{2 \sin^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \right\} \text{ and } v = 2\theta$$

$$u = \tan^{-1} \left\{ \frac{\sec \theta - 1}{\tan \theta} \right\} \text{ and } v = 2\theta$$

$$u = \tan^{-1} \left\{ \frac{2 \sin^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \right\} \text{ and } v = 2\theta$$

$$u = \theta / 2 \text{ and } v = 2\theta \text{ ; } \therefore \frac{du}{dv} = \frac{du / d\theta}{dv / d\theta} = \frac{1/2}{2} = \frac{1}{4}.$$

$$y = \sin^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$$
Put $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$

$$\therefore y = \sin^{-1} \cos 2\theta = \frac{\pi}{2} \pm 2\theta$$
Let $y_1 = \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) = 2 \tan^{-1} x$,

102. (c)
$$y = \sin^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$$

Put
$$x = \tan \theta \Longrightarrow \theta = \tan^{-1} x$$

$$\therefore y = \sin^{-1} \cos 2\theta = \frac{\pi}{2} \pm 2\theta$$

103. (c) Let
$$y_1 = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 2\tan^{-1}x$$
,

$$\cot^{-1}\left(\frac{1-3x^2}{3x-x^3}\right) = 3 \tan^{-1} x \Rightarrow \frac{dy_1}{dy_2} = \frac{\left(\frac{dy_1}{dx}\right)}{\left(\frac{dy_2}{dx}\right)} = \frac{\left(\frac{2}{1+x^2}\right)}{\left(\frac{3}{1+x^2}\right)} = \frac{2}{3}$$

104. (c) The differential coefficient of
$$\frac{\tan^{-1} x}{1 + \tan^{-1} x}$$
 with respect to $\tan^{-1} x = \frac{\frac{d}{dx} \left(\frac{\tan^{-1} x}{1 + \tan^{-1} x} \right)}{\frac{d}{dx} (\tan^{-1} x)}$

105. (c)
$$y = ae^{mx} + be^{-mx}$$
; $\therefore \frac{dy}{dx} = ame^{mx} - mbe^{-mx}$
Again $\frac{d^2y}{dx^2} = am^2e^{mx} + m^2be^{-mx}$

Again
$$\frac{d^2y}{dx^2} = am^2e^{mx} + m^2be^{-mx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = m^2(ae^{mx} + be^{-mx}) \Rightarrow \frac{d^2y}{dx^2} = m^2y$$

Or
$$\frac{d^2y}{dx^2} - m^2y = 0$$
.

106. (b)
$$y = ax^{n+1} + bx^{-n} \Rightarrow \frac{dy}{dx} = (n+1)ax^n - nbx^{-n-1}$$

$$\Rightarrow \frac{d^2y}{dx^2} = n(n+1)ax^{n-1} + n(n+1)bx^{-n-2}$$

$$\Rightarrow x^2 \frac{d^2y}{dx^2} = n(n+1)y.$$

107. (b) Let
$$p = \sin^{-1} \frac{2x}{1+x^2} = 2 \tan^{-1} x$$

and
$$q = \cos^{-1} \frac{1 - x^2}{1 + x^2} = 2 \tan^{-1} x$$
; $\therefore \frac{dp}{dq} = \frac{dp / dx}{dq / dx} = 1$.

and
$$q = \cos^{-1} \frac{1 - x^2}{1 + x^2} = 2 \tan^{-1} x$$
; $\therefore \frac{dp}{dq} = \frac{dp / dx}{dq / dx} = 1$.

108. (a) Let $y_1 = \tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x} \right)$ and $y_2 = \tan^{-1} x$

Now $\frac{dy_1}{dx} = \frac{d}{dx} \left[\tan^{-1} \tan \frac{\theta}{2} \right]$. [By putting $x = \tan \theta$]

$$\Rightarrow \frac{dy_1}{dx} = \frac{d}{dx} \left[\tan^{-1} \tan \frac{\theta}{2} \right] = \frac{1}{2(1 + x^2)} & \frac{dy_2}{dx} = \frac{1}{1 + x^2}$$

Hence $\frac{dy_1}{dy_2} = \frac{1}{2}$.

Now
$$\frac{dy_1}{dx} = \frac{d}{dx} \left[\tan^{-1} \tan \frac{\theta}{2} \right]$$
, [By putting $x = \tan \theta$]

$$\Rightarrow \frac{dy_1}{dx} = \frac{d}{dx} \left[\tan^{-1} \tan \frac{\theta}{2} \right] = \frac{1}{2(1+x^2)} & \frac{dy_2}{dx} = \frac{1}{1+x^2}$$

Hence
$$\frac{dy_1}{dy_2} = \frac{1}{2}$$

109. (d)
$$\frac{d^2x}{dy^2} = \frac{d}{dy} \left(\frac{dx}{dy} \right) = \frac{d}{dy} \left(\frac{1}{\frac{dy}{dx}} \right) = \frac{-1}{\left(\frac{dy}{dx} \right)^2} \cdot \frac{d^2y}{dx^2}$$

110. (a)
$$\lim_{x\to 0} \frac{2f(x)-3f(2x)+f(4x)}{x^2}$$

Using L-Hospital's rule twice, we get

$$\lim_{x \to 0} \frac{2f''(x) - 3.2.2f''(2x) + 4.4f''(4x)}{2} = 3a$$

111. (b) We have
$$e^y + xy = e$$
. Differentiating w.r.t.x, we get $e^y \frac{dy}{dx} + y + x \frac{dy}{dx} = 0$ (i)

$$e^{y} \frac{d^{2}y}{dx^{2}} + e^{y} \left(\frac{dy}{dx}\right)^{2} + 2\frac{dy}{dx} + x\frac{d^{2}y}{dx^{2}} = 0$$
(ii)

112. (a)
$$y = (x + \sqrt{1 + x^2})^n \Rightarrow \frac{dy}{dx} = n(x + \sqrt{1 + x^2})^{n-1} \left(1 + \frac{x}{\sqrt{1 + x^2}} \right)^n$$

$$\Rightarrow \frac{dy}{dx} = \frac{n(x + \sqrt{1 + x^2})^n}{\sqrt{1 + x^2}}$$

$$\Rightarrow (\sqrt{1 + x^2}) \frac{dy}{dx} = n(x + \sqrt{1 + x^2})^n$$

113. (c) Put
$$x^3 = \sin \theta$$
, $y^3 = \sin \phi$

$$\therefore \sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 (x^3 - y^3)$$

$$\Rightarrow \cos \theta + \cos \phi = a^3 (\sin \theta - \sin \phi)$$

Or
$$2\cos\frac{\theta+\phi}{2}\cos\frac{\theta-\phi}{2} = 2a^3\sin\frac{\theta-\phi}{2}\cos\frac{\theta+\phi}{2}$$

Or
$$\cos \frac{\theta + \phi}{2} \left[\cos \frac{\theta - \phi}{2} - a^3 \sin \frac{\theta - \phi}{2} \right] = 0$$

If
$$\cos \frac{\theta + \phi}{2} = 0$$
, then $\frac{\theta + \phi}{2} = \frac{\pi}{2}$

$$\therefore \theta = \pi - \phi \quad \text{Of} \quad \sin \theta = \sin \phi \quad \text{Of} \quad x = y$$

113. (c) Put
$$x^3 = \sin \theta$$
, $y^3 = \sin \phi$

$$\therefore \sqrt{1-x^6} + \sqrt{1-y^6} = a^3(x^3 - y^3)$$

$$\Rightarrow \cos \theta + \cos \phi = a^3(\sin \theta - \sin \phi)$$
Or $2 \cos \frac{\theta + \phi}{2} \cos \frac{\theta - \phi}{2} = 2a^3 \sin \frac{\theta - \phi}{2} \cos \frac{\theta + \phi}{2}$
Or $\cos \frac{\theta + \phi}{2} \left[\cos \frac{\theta - \phi}{2} - a^3 \sin \frac{\theta - \phi}{2}\right] = 0$
If $\cos \frac{\theta + \phi}{2} = 0$, then $\frac{\theta + \phi}{2} = \frac{\pi}{2}$

$$\therefore \theta = \pi - \phi \text{ Or } \sin \theta = \sin \phi \text{ Or } x = y$$
114. (a) $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{n \sec^n \theta \tan \theta + n \cos^{n-1} \theta \sin \theta}{\sec \theta \tan \theta + \sin \theta}$

$$= \frac{n(\sec^n \theta + \cos^n \theta)}{\sec \theta + \cos \theta} \text{ (Dividing } N^r \text{ and } D^r \text{ by } \tan \theta \text{)}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)^2 = \frac{n^2(\sec^n \theta + \cos^n \theta)^2}{(\sec \theta + \cos \theta)^2}$$

$$= \frac{n^2[(\sec^n \theta - \cos^n \theta)^2 + 4 \sec^n \theta \cos^n \theta]}{(\sec \theta - \cos \theta)^2 + 4 \sec \theta \cos \theta} = \frac{n^2(y^2 + 4)}{x^2 + 4}$$

$$\Rightarrow (x^3 + 4) \left(\frac{dy}{dx}\right)^2 = n^2(y^2 + 4).$$

115. (a) standard problem

116. (c)
$$2y \frac{dy}{dx} = p'(x) \Rightarrow 2 \frac{dy}{dx} = \frac{p'(x)}{y} \Rightarrow 2 \frac{d^2y}{dx^2} = \frac{yp''(x) - p'(x)y'}{y^2}$$

$$\Rightarrow 2y^3 \frac{d^2y}{dx^2} = y^2 p''(x) - y \frac{dy}{dx} p'(x) = p(x)p''(x) - \frac{1}{2} \{p'(x)\}^2$$

$$\Rightarrow 2 \frac{d}{dx} \left(y^3 \frac{d^2y}{dx^2} \right) = p'(x)p''(x) + p(x)p'''(x) - p'(x)p''(x)$$

$$= p(x)p'''(x).$$

117. (c) Let
$$x = 5$$
, $y = 0 \Rightarrow f(5+0) = f(5).f(0)$

$$\implies f(5) = f(5)f(0) \Rightarrow f(0) = 1$$

Therefore, $f'(5) = \lim_{h \to 0} \frac{f(5+h) - f(5)}{h}$

Interestore,
$$f'(s) = \lim_{h \to 0} \frac{f(s)f(h) - f(s)}{h} = \lim_{h \to 0} \left[\frac{f(h) - 1}{h} \right]$$
, $\{: f(s) = 2\}$

$$= 2 \lim_{h \to 0} \left[\frac{f(h) - f(0)}{h} \right] = 2 \times f'(0) = 2 \times 3 = 6$$
.

118. (c) $x^2(1 + x) = \int_0^x f(t) dt$.

Differentiating w.r.t. x, $2x(1 + x) + x^2 = f(x^2) \cdot 2x$

$$\Rightarrow f(x^2) = 1 + x + \frac{x}{2} \cdot x > 0$$
Putting $x = 2$, $f(4) = 1 + 2 + \frac{2}{2} = 4$.

$$= 2 \lim_{h \to 0} \left[\frac{f(h) - f(0)}{h} \right] = 2 \times f'(0) = 2 \times 3 = 6.$$

118. (c)
$$x^2(1+x) = \int_0^{x^2} f(t) dt$$

$$\implies f(x^2) = 1 + x + \frac{x}{2}, x > 0$$