Complejidad de consultas

DISCLAIMER: este ppt es un resumen de un par de clases del curso Implementación de Sistemas de Bases de Datos dictado por el profesor Cristian Riveros. La idea es aterrizar conceptos y mostrar la utilidad de la teoría de Lógica. Por un lado, los teoremas y definiciones NO reemplazan a las del curso y NO se deben usar al resolver evaluaciones. Por otro, ojalá les sirva de motivación e inspiración.

¿qué tan complejo es evaluar una consulta SQL?

Problema de enumeración:

PROBLEMA: Evaluación de consultas en SQL (SQL-ENUM).

INPUT: una consulta Q en SQL,

una BD relacional \mathcal{D} .

OUTPUT: $Q(\mathcal{D})$.

Queremos un algoritmo de enumeración que sea polinomial en Q y \mathcal{D} :

- lacksquare tiempo polinomial en Q y ${\mathcal D}$ para entregar la **primera tupla** de $Q({\mathcal D})$, y
- tiempo polinomial en Q y \mathcal{D} entre cada **siguiente tupla** de $Q(\mathcal{D})$.

¿cómo medimos la complejidad de SQL-ENUM?

Micro-curso de complejidad computacional

- PTIME: problemas que pueden ser resueltos en tiempo polinomial en el tamaño del input.
- NP: problemas cuya solución puede ser verificada en tiempo polinomial en el tamaño del input/solución.
- PSPACE: problemas que pueden ser resultos en espacio polinomial en el tamaño del input.
- EXPTIME: problemas que pueden ser resueltos en tiempo exponencial en el tamaño del input.

Micro-curso de complejidad computacional

Definición

- Un problema P es hard para una clase de complejidad C si todos los problemas $P' \in P$ se pueden reducir (en tiempo polinomial) a P.
- Un problema P es completo para una clase de complejidad C si:
 - 1. $P \in \mathcal{C}$.
 - 2. P es hard para C.

Problema de decisión asociado a SQL-ENUM

PROBLEMA: Resultado no-vacío de consultas SQL (SQL-Emptyness).

INPUT: una consulta Q en SQL,

una BD relacional $\mathcal D$

OUTPUT: TRUE ssi $Q(\mathcal{D}) \neq \emptyset$.

- Si SQL-EMPTYNESS no esta en PTIME (ej. es NP-HARD), ¿implica que SQL-ENUM NO se puede enumerar en tiempo polinomial?
- Si SQL-EMPTYNESS esta en PTIME, ¿implica que SQL-ENUM se puede enumerar en tiempo polinomial?

SQL-Emptyness solo nos puede dar evidencia si el problema es difícil

¿qué tan complejo es evaluar una consulta SQL?

Teorema

El problema $\operatorname{SQL-Emptyness}$ es PSPACE-completo.

A menos que P = PSPACE, no existe un algoritmo de enumeración eficiente (en tiempo polinomial) para $\mathrm{SQL\text{-}Enum}$

¿cuáles son las consultas SQL difíciles de evaluar?

- Consultas de la forma: NOT EXIST... EXIST... NOT EXIST...
- Consultas con negación anidadas.

Problemas asociados a optimización de consultas en SQL

Para la optimización de consultas en SQL, nos interesan algoritmos eficientes para los siguientes problemas:

PROBLEMA: Satisfabilidad de SQL (SQL-SAT).

INPUT: una consulta Q en SQL,

OUTPUT: TRUE ssi existe $\mathcal D$ tal que $Q(\mathcal D) \neq \varnothing$.

PROBLEMA: Igualdad de consultas SQL (SQL-EQUIVALENCE).

INPUT: consultas Q_1 y Q_2 en SQL,

OUTPUT: TRUE ssi para todo \mathcal{D} se cumple $Q_1(\mathcal{D}) = Q_2(\mathcal{D})$.

¿para que nos serviría resolver estos problemas?

Es imposible tener un optimizador perfecto para SQL

Teorema

Para SQL, los siguientes problemas son indecidibles:

- SQL-Equivalence
- SQL-SAT

indecidible = no existe algoritmo alguno que solucione el problema

¿es posible hacer "algo" para mejorar la evaluación/optimización en SQL?

Fragmento más sencillo: consultas conjuntivas

Definición

Una consulta conjuntiva (CQ) es una consulta en AR que solo contiene:

- proyección (π)
- selección sencilla ($\sigma_{A=B}$ o $\sigma_{A=v}$)
- Equality joins $(\bowtie_{A=B})$
- Renaming $(\rho_{A \to B})$

Ejemplo

SELECT P.name, M.goals

FROM Players AS P, Matches AS M, Players_Matches AS PM

WHERE P.pld = PM.pld AND PM.mld = M.mld AND

P.name = 'Alexi' AND M.year = 2001

En otras palabras, una consulta SELECT-FROM-WHERE.

Fragmento más sencillo: consultas conjuntivas

Proposición

Para toda consulta conjuntiva Q, existe una consulta Q' tal que $Q(\mathcal{D}) = Q'(\mathcal{D})$ para toda BD \mathcal{D} y Q' es de la forma:

$$\pi_I(\sigma_{c_1}(R_1) \bowtie \ldots \bowtie \sigma_{c_n}(R_n))$$

con cada c_i una conjunción filtros A = v.

Demostración: use las reglas de reescritura.

Representación simplificada de consultas conjuntivas

Sea **V** un conjunto de variables y **C** un conjunto de constantes.

Simplificación

Desde ahora una consulta conjuntiva la representaremos como:

$$ans(\bar{y}) := R_1(\bar{x}_1), R_2(\bar{x}_2), \ldots, R_n(\bar{x}_n)$$

- $1. \ \bar{x}_1, \dots, \bar{x}_n$ son variables en **V** o constantes en **C**,
- 2. \bar{y} es un subconjunto de variables en $\bar{x}_1, \dots, \bar{x}_n$.

Ejemplo

$$ans(x,z) := P(x, 'Alexi'), PM(x,y), M(y, 2001, z)$$

- x, y, z son variables.
- 'Alexi' y 2001 son constantes.

Homomorfismo de consultas conjuntivas

Definición

Un homomorfismo de Q a \mathcal{D} es una función $h: (\mathbf{V} \cup \mathbf{C}) \to \mathbf{C}$ tal que:

■ h(c) = c para toda $c \in \mathbf{C}$ y

Diamera (D).

■ si $R(d_1, ..., d_k)$ es un átomo de Q,

entonces $(h(d_1), \ldots, h(d_k)) \in \mathcal{D}(R)$.

Goals

3

¿cuál es un homomorfismo de Q a \mathcal{D} ?

$$Q: anx(x,z) \coloneqq P(x, 'Alexi', y), M(x,z, '3')$$

	Players (P):			iviatches (IVI):		
	ld	Name	Year		ld	Stadium
\mathcal{D} :	1	Alexi	1987		1	Nacional
	2	Gary	1990		1	Monumental
	3	Arturo	1985		2	San Carlos

Homomorfismo de consultas conjuntivas

Definición

Un homomorfismo de Q a \mathcal{D} es una función $h: (\mathbf{V} \cup \mathbf{C}) \to \mathbf{C}$ tal que:

- h(c) = c para toda $c \in \mathbf{C}$ y
- si $R(d_1, ..., d_k)$ es un átomo de Q,

entonces
$$(h(d_1), \ldots, h(d_k)) \in \mathcal{D}(R)$$
.

Proposición

Para toda base de datos \mathcal{D} y toda consulta conjuntiva Q de la forma:

$$ans(y_1,...,y_k) := R_1(\bar{x}_1), R_2(\bar{x}_2),..., R_n(\bar{x}_n)$$

se tiene que $t \in Q(\mathcal{D})$ si, y solo si, existe un homomorfismo h de Q a \mathcal{D} con

$$t = (h(y_1), \ldots, h(y_k)).$$

Demostración: ejercicio.

¿qué tan complejo es evaluar una consulta conjuntiva?

Problema de decisión:

 $\label{eq:problema: Resultado no-vacío de consultas conjuntivas (CQ-Emptyness).}$

INPUT: una consulta conjuntiva Q,

una BD relacional $\mathcal D$

OUTPUT: TRUE ssi $Q(\mathcal{D}) \neq \emptyset$.

Teorema

El problema CQ-EMPTYNESS es NP-completo.

Demostración: ejercicio.

Equivalencia y satisfiabilidad de consultas conjuntivas

Definición

Un homomorfismo de Q_1 a Q_2 es una función $h: (\mathbf{V} \cup \mathbf{C}) \rightarrow (\mathbf{V} \cup \mathbf{C})$:

- h(c) = c para toda $c \in \mathbf{C}$,
- si $R(d_1,\ldots,d_k)$ es un átomo de Q_1 , entonces $R(h(d_1),\ldots,h(d_k))$ es un átomo de Q_2 ,
- si $ans(y_1,...,y_k)$ es el cuerpo de Q_1 , entonces $ans(h(y_1),...,h(y_k))$ es el cuerpo de Q_2 .

Proposición

Para todo par de consultas conjuntivas Q_1 y Q_2 se tiene que:

- 1. $Q_1(\mathcal{D}) \subseteq Q_2(\mathcal{D})$ para toda \mathcal{D} si, y solo si,
- 2. existe un homomorfismo de Q_2 a Q_1 .

Equivalencia y satisfiabilidad de consultas conjuntivas

PROBLEMA: Satisfabilidad de consultas conjuntivas. (CQ-SAT).

INPUT: una consulta conjuntiva Q,

OUTPUT: TRUE ssi existe \mathcal{D} tal que $Q(\mathcal{D}) \neq \emptyset$.

PROBLEMA: Igualdad de consultas conjuntivas (CQ-EQUIVALENCE).

INPUT: consultas conjuntivas Q_1 y Q_2 ,

OUTPUT: TRUE ssi para todo \mathcal{D} se cumple $Q_1(\mathcal{D}) = Q_2(\mathcal{D})$.

Teorema

- CQ-SAT es un problema trivial (siempre es satisfacible).
- CQ-EQUIVALENCE es NP-COMPLETO.