Data Mining

Project Report

Name: Ali Kamal

Roll Number: 19I-1865

Clustering and Sampling

K-means algorithm was used for clustering the images. Optimal value of k was determined through the K-Elbow method (which, in our case, returned 8 as the optimal value of K). These 8 clusters were now treated as the ground truth, and we shall be using these labels for further use.

Against each of our 8 clusters, 70% of images were taken as our sample. So, in the end, we ended up with equal distribution of images with respect to clusters, as we are choosing 70% of the total images against each cluster.

Image Segmentation

Original Image

Segmented Image

Comparison of Models for Segmented and Non-Segmented Images

Accuracy:

	Segmented Images		Non-Segmented Images	
	Accuracy(%)	Time(ms)	Accuracy(%)	Time(ms)
CNN	87	178	88	232
ANN	90	137	94	231
Naiive Bayes	57	0.02	85	0.02
Logistic Regression	69	0.46	70	0.4
GradBoostingCLF	83	17	72	25

Deep Learning models perform better on non-segmented images, where they give the better accuracy. However, the deep learning models are quite a bit faster on segmented images, as they were able to run on 1000 Epochs in less time than on 10 Epochs for Non-Segmented Images.

Gradient boosting classifier performed significantly better on segmented images, as seen by the above figures. All of the models were substantially faster on segmented images.

F1 Score:

	Segmented Images	Non-Segmented Images	
	F1 Score	F1 Score	
Naiive Bayes	53	83	
Logistic Regression	65	69	
GradBoostingCLF	83	74	

Classical ML models tended to perform better on Non-segmented images, in terms of their respective F1 scores, with the exception of Gradient Boosting Classifier, which performed quite a bit better on Segmented Images.

Ali Kamal 19I-1865

In terms of the error rate of Deep Learning models, ANN converges faster than CNN on segmented images, while CNN converges faster than ANN on non-segmented images. Both, however, provide very good accuracy overall, as show in the above graphs.