Optimisation Discrete

David Wiedemann

Table des matières

1	What is optimization?		2
	1.1	New lagrange multipliers	2
	1.2	Geometry of linear equalities	2
List of Theorems			
	1	Proposition	2
	1	Definition (Equivalent linear programs)	3
	2	Proposition	3

Lecture 1: Introduction

Tue 22 Feb

1 What is optimization?

Given $f: X \to \mathbb{R}$ find

$$\max \{f(x) : x \in S\}$$
 where $S \subset \mathbb{R}^n$

f is called the objective function and S the feasible region.

The answer will be a point $x_0 \in S$ such that $f(x_0) \ge f(x)$ for all other $x \in S$.

A solution is anything you can plug into f.

A feasible solution is something in S and the x_0 would be called an optimal solution.

We consider feasible regions described by intersection of equalities and inequalities.

A constraint is "active" or "tight" if f satisfies it with equality.

1.1 New lagrange multipliers

We should try to satisfy $\nabla f = \sum_i \lambda_i \nabla g_i$ where $\lambda_i = 0$ whenever g_i is not active. Feasible regions split into nice ones and not so nice ones.

A region S is convex if $\forall x, y \in S$ and all $\lambda \in [0,1]$, then $\lambda x + (1-\lambda)y \in S$

Lecture 2: Stuff

Tue 01 Mar

There are 3 different possibilities for optimisation problems

- 1. The finite max exists
- 2. The problem is unbounded
- 3. The problem is infeasible, ie. $S = \emptyset$

There is a special class of functions f which allow us to solve problems rather easily

- f is linear
- S is made up of linear inequality constraints.

Such an optimisation problem is called a linear program.

1.2 Geometry of linear equalities

What can the feasible region of a LP look like? It will look like an intersection of half spaces, we call it a polyhedron.

Proposition 1

Polyhedra are convex

Indeed they are finite intersections of half-spaces, which are all convex. Given vectors v_1, \ldots, v_n we can look at

- 1. linear combinations (span)
- 2. positive linear combinations $\sum a_i v_i, a_i \geq 0$ (cone)
- 3. convex combinations $\sum a_i v_i, 0 \le a_i \le 1, \sum_i a_i = 1$ (convex hull)

If we have a linear program, only active constraints can be involved in optimal solutions.

Given a linear program, we want to turn it into a standard form.

Definition 1 (Equivalent linear programs)

Two linear programs P and P' are equivalent if for every feasible x in P, there exists a feasible $x' \in P'$ with $value_P(x) = value_{P'}(x')$ and conversely. Furthermore, finding x from x' and x' from x is easy.

What does a general linear program look like?

$$\max c \cdot x$$

s.t. $Ax \geq b$.

Proposition 2

every linear program can be transformed into a linear program in inequality standard form.

Given an equality constraint $a \cdot x \geq b$, we can turn it into $a \cdot x = b + w$ with $w \geq 0$.

Such a variable w is called a slack variable.

Hence, given the constraint $Ax \geq b$, we can turn it into an equality constraint

$$Ax = b + [w_1, \dots, w_n]^T$$

and ask $w_i \geq 0 \forall i$