Thesis

Tim Lichtnau

May 2024

1 Preparation

Lemma 1.1. Let C be a class of types stable under \sum . The class $\mathsf{HasAtlas}_C$ of types Y which admit a map $\mathsf{Spec}\,A \to Y$ fibered in C is stable under identity types.

Proof. By assumption we can choose a map $p:V\to Y$ out of an affine fibered in C. Let y,y':Y. Then we have the map

$$(\operatorname{fib}_p y) \times_V (\operatorname{fib}_p y') \to y = y'$$
$$(v, q: y = pv), (v', q': y' = pv'), (h: v = v') \mapsto q \cdot h \cdot q'^{-1}$$

The fiber over j: y = y' looks like

$$\sum_{v} (\underbrace{\sum_{v'} (h:v=v')}_{\text{isContr}}) \times (q:y=pv) \times (q':y'=pv') \times (q\cdot h\cdot q'^{-1}=j) \simeq \sum_{v} (v=py) \simeq \operatorname{fib}_{p} y$$

Hence the map is fibered in C. It suffices to show, that $(\operatorname{fib}_p y) \times_V (\operatorname{fib}_p y')$ has an atlas, because then we can compose such an atlas with the above map to obtain an atlas of y = y'. By assumption the fibers of p have an atlas, so we can choose $q:W\to\operatorname{fib}_p y,q':W'\to\operatorname{fib}_p y'$ atlasses. Then $W\times_V W'\to(\operatorname{fib}_p y)\times_V (\operatorname{fib}_p y')$ is an atlas: The domain is a fiber product of affines, hence affine. The fiber over (x,x') is equivalent to the product of fibers $(\operatorname{fib}_q x)\times(\operatorname{fib}_{q'} x')$ which is in C by stability under dependent sums (so in particular under finite products).

Lemma 1.2. Let $\mathcal{U}' \subset \mathcal{U}$ be stable under dependent sums (e.g. \mathbb{T} -inhabited types) Let X be a type with a map $p: U \to X$ fibered in \mathcal{U}' . For any x: X, let Y_x be a type and moreover for any u: U, we are given a map $q_u: V_u \to Y_{p(u)}$ fibered in \mathcal{U}' . Then the induced map

$$p: \sum_{u:U} V_u \to \sum_{x:X} Y_x$$

is fibered in \mathcal{U}'

Proof. The fiber of p over some $(x,y) \in \sum_{x:X} Y_x$ is given by

$$\sum_{u: \mathrm{fib}_n} \mathrm{fib}_{q_u}(y')$$

where $y': Y_{p(u)}$ (depending on u) is the transport of $y: Y_x$ along x = p(u). As \mathcal{U}' is stable under dependent sum those fibers are again in \mathcal{U}' . This shows the result.

2 Lex Modalities

Lemma 2.1 (Stability resuls). Lex Modalities are stable under

- 1. Conjunction
- 2. Composition

Lemma 2.2. Let \bigcirc be a lex-modality. Let X be \bigcirc -modal and $B: X \to \mathcal{U}_{\bigcirc}$ be a family of modal types. Then $\sum_{x:X} B_x$ is \bigcirc -modal

Lemma 2.3. Let $B: \bullet X \to \mathcal{U}$. Then $\bullet(\sum_{x:X} B(\eta x)) = \sum_{x:\bullet X} \bullet Bx$

Proof. Observe that

$$\sum_{x:X} B\eta x \to \sum_{x:\bullet X} Bx$$

is a \bullet -equivalence, because for all modal types T, the type $Bx \to T$ is modal for any $x : \bullet X$. Then it follows by [ref?].

Lemma 2.4. Let \bullet be a lex modality. Let x, y : X. The map

$$\bullet(x=y) \to \eta x =_{\bullet X} \eta y$$

induced by $ap_{\eta}: x = y \to \eta x =_{\bullet X} \eta y$ is an equivalence

Proof. By Modalities Theorem 3.1 [ix].

Definition 2.5. Let \bullet be a lex modality. we call a type X \bullet -separated if one of the following equivalent conditions hold

- \bullet the identity types of X are modal
- the unit $X \to \bullet X$ is an embedding

In this case

Proof. by 2.4 the vertical map in the commutative diagram

$$x =_{X} y \xrightarrow{\eta_{x=y}} L(x=y)$$

$$\downarrow \simeq \qquad \qquad \downarrow \simeq$$

$$\eta x =_{LX} \eta y$$

is an equivalence. So x = y is a sheaf if $\eta_{x=y}$ is an equivalence iff η_X is an embedding.

3 Covering stacks

Fix \mathbb{T} a topology, which we call the covering-affines.

Definition 3.1. Covering geometric stacks are the smallest class containing \mathbb{T} such that: If Y is a sheaf and $\mathbb{T} \ni S \to Y$ is fibered in covering geometric stacks, then Y is a covering geometric stack.

We call such map $X \to Y$ whose fibers are covering stacks a geometric cover. If X is affine we call it a geometric atlas. If X is in \mathbb{T} we call it a geometric catlas.

Proposition 3.2 (Recursion principle for covering stacks). Let $P: \mathcal{U}_{\mathbb{T}} \to \text{Prop } be \ a \ property \ of sheaves. Assume$

- Every covering affine has P
- If $\mathbb{T} \ni S \to Y$ is fibered in P then Y has P

Then every covering geometric stack has P.

Proof. Replace P by $P \wedge \mathsf{is} - \mathsf{covering} - \mathsf{stack}$. Then usual induction

Definition 3.3. We call X a geometric stack if it merely has a geometric atlas, i.e some Spec $A \to X$ fibered in covering geometric stacks.

Lemma 3.4. The class of (covering) geometric stacks is \sum -stable.

Proof. Define the predicate PX as 'the sum of every family B of (covering) geometric stacks is a (covering) geometric stack'. If X is a (covering) affine, by choice of X we can choose geometric (c)atlasses $S_x \to Bx$ for all x:X. Then $\sum_{x:X} S_x \to \sum_x Bx$ is a geometric catlas. If $f:S \to X$ is a map fibered in P with $S \in T$, then let $B:X \to \mathsf{CS}_{\mathcal{V}}$. By choice of S we can choose geometric catlasses $\tilde{B}s \to B(fs)$ for all s:S. Then consider $\sum_{s:S} \tilde{B}s \to \sum_{x:X} Bx$. Its domain is in \mathbb{T} . It remains to show, that the fiber over (x,t) is a covering stack. It is a dependent sum over fib f x, which by induction satisfies P that lets us conclude by definition of P.

Lemma 3.5. covers are stable under composition.

Proof. covering stacks are stable under \sum .

Proposition 3.6. Every covering geometric stack X merely admits a geometric catlas.

Proof. • If X is covering affine, then $X \to X$ is a geometric catlas.

• If X is obtained as a quotient then it already is equipped with a catlas.

Proposition 3.7. The class of (covering) geometric stacks is stable under quotients: If $X \to Y$ is fibered in covering stacks and X is a (covering) stack and Y is a sheaf then Y is a (covering) stack.

Proof. Choose a geometric (c)atlas of X. Then the composition with the map $X \to Y$ is a cover by 3.5. As the domain is (covering) affine, its a geometric (c)atlas.

Now we want to show that the clash of terminology regarding 'covering' is reasonable:

Proposition 3.8. Let \mathbb{T} be saturated. A covering stack X is affine iff its a covering affine.

Proof. The converse is clear. The direct direction follows by the recursion principle. choosing a geometric catlas $S \to X$. As both S and X are affine the fibers are affine. By induction the fibers are covering affines. By saturatedness of the topology X is covering affine.

Lemma 3.9. Let \mathbb{T} be saturated. Let X be a covering stack. Let $f: \operatorname{Spec} A \to X$ be a geometric atlas. Then $\operatorname{Spec} A \in \mathbb{T}$

Proof. As Spec $A \simeq \sum_{x:X} \operatorname{fib}_f x$ is a dependent sum of covering stacks, it is a covering stack again. We conclude by 3.8.

3.1 Geometric stacks

Lemma 3.10. geometric stacks are closed under id-types.

Proof. This is 1.1, using that covering stacks are closed under \sum .

warning. The previous lemma does not hold for covering stacks: Identity types of things in \mathbb{T} could be empty.

Proposition 3.11 (Recursion principle for geometric stacks). Let $P: \mathsf{GS} \to \mathsf{Prop}$ be a property of geometric stacks. Assume

- Every affine has P
- ullet If $S \to Y$ is fibered in covering stacks that have P then Y has P

Then every geometric stack has P.

Proof. One could explain geometric stacks as the smallest class containing all affines and if Spec $A \to X$ is fibered in geometric stacks that happens to be covering, then X is a geometric stack.

3.2 About the smallest class in a subuniverse

Definition 3.12. Let $\mathcal{V} \supset \mathsf{Aff}$ be a superclass stable under \sum covering geometric \mathcal{V} stacks are the smallest intermediate class $\mathbb{T} \subset \mathsf{CS}_{\mathcal{V}} \subset \mathcal{V}$ such that: If $X : \mathbb{T} Y : \mathcal{V}$ and $X \to Y$ is fibered in $\mathsf{CS}_{\mathcal{V}}$, then $Y \in \mathsf{CS}_{\mathcal{V}}$

Definition 3.13. We define the saturation of \mathbb{T} as the class of covering Aff-stacks. We call a topology \mathbb{T} saturated if it coincides with its saturation, or more concretely: Every affine schemes that has a catlas lies itself in \mathbb{T} .

In a further chapter we will develop this theory further.

Proposition 3.14. Let V be stable under finite limits and containing (covering) affines. X is a (covering) V-stack iff it is in V and a (covering) geometric stack.

Proof. The direct direction is clear. For the converse we apply the recursion principle to the property $X \in \mathcal{V}$ implies X is a (covering) \mathcal{V} -stack. If $X \in \mathbb{T}$, its clear. Otherwise its equipped with a geometric (c)atlas. The fibers are in \mathcal{V} , as they can be written as a fiberproduct of $S, X, 1 \in \mathcal{V}$. By induction all fibers are covering \mathcal{V} -stacks.

Proposition 3.15. covering V-stacks are stable under dependent sums. In particular the saturation of a topology defines a topology.

Proof. Both the classes \mathcal{V} and covering stacks are stable under dependent sums. Hence the intersection of them is \sum -stable as well.

The saturation is a class of affines, that in particular contains $1 \in \mathbb{T}$. We have argued its stable under \sum .

Proposition 3.16. A sheaf X merely admits some affine Spec $A \to X$ fibered in covering V-stacks, iff its a geometric stack whose identity types are geometric V-stacks.

Proof. The direct direction: By 1.1 the identity types are \mathcal{V} -stacks.

The converse direction: Choose a geometric atlas $f: S \to X$. As each fiber $\sum_{s:S} fs =_X x$ is in V by \sum -stability of \mathcal{V} and is a covering stack, its a covering \mathcal{V} -stack by 3.14.

Definition 3.17. Let $n \ge -2$. A (covering) geometric *n*-stack is a (covering) geometric stack that is an *n*-type.

Proposition 3.18. Let X be a sheaf. For all $n \geq 0$, the following are equivalent:

- 1. X is a (covering) geometric n+1-stack
- 2. X merely admits some map $S \to X$ out of a (covering) affine fibered in covering n-stacks
- 3. X merely admits some (covering) geometric n-stack $Y \to X$ fibered in covering n-stacks.

Proof.

- 1. \Leftrightarrow 2. X is a (covering) geometric n+1 stack iff (3.10) its a (covering) geometric stack whose identity types are geometric n-stack iff (3.16) 2.
- 2. \Rightarrow 3. S is a (covering) geometric n-stack
 - 3. \Rightarrow 2 Y admits a map $S \to Y$ fibered in covering n-stacks with S (covering) affine, so the composition $S \to X$ will have the same property by 3.5.

3.3 Truncatedness

In this subsection we want to prove that every geometric stack is a geometric n-stack for some n.

Lemma 3.19. Every covering V-stack X is \mathbb{T} -merely inhabited.

Proof. • If X is in \mathbb{T} then its clear.

• If X is obtained by a quotient, we have a map $\operatorname{Spec} A \to X$ with domain in \mathbb{T} . Now use that we get a map on \mathbb{T} -propositional-truncations and that $\operatorname{Spec} A$ is $\operatorname{T-merely}$ inhabited.

Lemma 3.20. Let X be an n+1-type and Y a sheaf. If $X \to Y$ is a n-truncated \mathbb{T} -surjective map, then Y is an n+1-type.

Proof. Use that is -n - truncated(y = y') is a sheaf for y, y' : Y.

Theorem 3.21. Every geometric stack is n-truncated for some $n : \mathbb{N}$.

Proof. We apply the recursion principle for geometric stacks.

- If Y is affine its clear with n=0.
- Assume Y is equipped with a V-atlas f: S → Y, such that every fiber in n-truncated for some n. f is T-surjetive by 3.19. We apply 3.20. So it remains to find an n such that all fibers are n-truncated. For any x: S, By induction fib_f(fx) is n-truncated for some n. By projectivity of S, we find some n such that fib_f(fx) is n-truncated for all x: S. For general y: Y, using that is-n-truncated fib_f y is a sheaf, we can conclude by T-surjectivity of f.

3.4 Descent

For this subsection lets assume \mathcal{V} a subuniverse (stable under Σ), that satisfies: If $Y \in \mathcal{V}$ is separated, then $L_{\mathbb{T}}Y \in \mathcal{V}$. (*)

St a class of sheaves in \mathcal{V} , such that \mathbb{T} is contained in it and for any \mathbb{T} -cover $X \to Y$ of sheaves in \mathcal{V} , $X \in \mathsf{St}$ iff $Y \in \mathsf{St}$. We call types in this class stacky.

Lemma 3.22. Let \mathbb{T} satisfy descent, i.e. beeing affine in the topology is a sheaf. If Y admits a \mathbb{T} -cover $f: X \to Y$ where $Y \in \mathcal{V}$ is separated, then there is a \mathbb{T} -cover $X \to L_{\mathbb{T}}Y$.

Proof. Consider $X \xrightarrow{f} Y \xrightarrow{\eta} L_{\mathbb{T}}Y$. As beeing affine in \mathbb{T} is a sheaf, we may just show that for all y:Y, the fibers over $\eta y:L_{\mathbb{T}}Y$ are in \mathbb{T} . As η is a monomorphism by 2.5, η restricts to an equivalence

$$\operatorname{fib}_f y \to \operatorname{fib}_{nf}(\eta y)$$

But the left hand side is in \mathbb{T} by assumption.

Lemma 3.23. Assume \mathbb{T} have descent. Let $X \in \mathsf{St}$ and $Y \in \mathcal{V}$. Let $f: X \twoheadrightarrow Y$ be fibered in \mathbb{T} and surjective. Then $L_{\mathbb{T}}Y$ is stacky.

Proof. As X is stacky, it suffices to show, that $L_{\mathbb{T}}Y$ admits a \mathbb{T} -cover. We want to apply 3.22. So it remains to show, that Y is separated, because then we also know $L_{\mathbb{T}}Y \in \mathcal{V}$ by (*). By surjectivity of f we may only show that for any x: X, y: Y, the type $fx =_Y y$ is a sheaf. If we define U to be the fiber over y, it is in \mathbb{T} by assumption. But then $fx =_Y y$ is the outer pullback

of stacky types, in particular sheaves.

 $\square(Claim)$

Theorem 3.24. Assume \mathbb{T} have descent. Then St is a sheaf.

Proof. St is seperated: This follows from the embedding St into the seperated (TODO) type of sheaves.

Let $U \in \mathbb{T}$ and $P : ||U|| \to \mathsf{St}$. We want to construct a filler

Claim: $L_{\mathbb{T}}(\sum_{x:||U||} Px)$ is stacky.

Proof. of the claim. We want to apply the previous lemma to the map

$$\sum_{x:U} P|x| \to \sum_{x:\|U\|} Px$$

The domain is in St by stability under \sum . The fibers are equivalent to $U \in \mathbb{T} \subset St$.

The claim provides the map $1 \to \mathsf{St}$. The diagram commutes: Assuming $x : \|\operatorname{Spec} A\|$ we wish to show $Px = \sum_{x:\|U\|} Px$. Using univalence, we may show that the maps

$$Px \to \sum_{x:\|U\|} Px \xrightarrow{\eta} L_{\mathbb{T}} \sum_{x:\|U\|} Px$$

are both equivalences. The first one is an equivalence as ||U|| is contractible. Hence the middle term is a sheaf, thus the unit map is an equivalence as well.

Corollary. *If* \mathbb{T} *has descent, (covering) geometric stacks satisfy descent.*

Corollary. If \mathbb{T} has descent. For all $n : \mathbb{N}$, the class of (covering) (n-)stacks has descent.

Proof. We set \mathcal{V} as the n-truncated-type. We have to check the condition (*): If Y is a seperated n type, then $L_{\mathbb{T}}Y$ is an n-type. As a sheaf beeing n-truncated is a sheaf, we may just show that $\eta x = \eta y$ is n-1-truncated for all x,y:Y. hence, Apply 2.5 to the seperated Y, we know $\eta x =_{LX} \eta y \simeq (x=y)$ beeing an n-1-type.

Saturated Topologies 4

Definition 4.1. A catlas of X is some $\hat{X} \in \mathbb{T}, \hat{X} \to X$ T-cover

Proposition 4.2. The saturation of a topology \mathbb{T} is the class \mathbb{T}' defined by

$$X \in \mathbb{T}'$$
 iff X is affine $\wedge \exists$ catlas of X

Proof. As \mathbb{T}' is definitely contained in the saturation, it suffices to show, that the class \mathbb{T}'

defined above is saturated. \mathbb{T}' is Σ -stable by 6.3. Consider some \mathbb{T}' -cover $\mathbb{T}' \ni X' \to X$. By replacing X' with some catlas (allowed as \mathbb{T}' -covers compose), we may assume that $X' \in \mathbb{T}$. As every fiber $X'_x \in \mathbb{T}'$ and X has choice, we can choose for all x: X a catlas $\tilde{X}'_x \to X'_x$. We obtain commutative diagram

$$\tilde{X} \equiv \sum_{x:X} \tilde{X}'_x \longrightarrow \sum_{x:X} X'_x$$

As $X' \in \mathbb{T}$ and $\tilde{X} \to X'$ is fibered in \mathbb{T} (1.2) we have $\tilde{X} \in \mathbb{T}$. And $X' \to X$ is a \mathbb{T} -cover hence $Y \to X$ is a \mathbb{T} -cover. Hence $X \in \mathbb{T}'$.

Lemma 4.3. A type T is a sheaf wrt to \mathbb{T}' iff it is a sheaf wrt to \mathbb{T}

Proof. As $\mathbb{T} \subset \mathbb{T}'$ the \to direction is clear. Now, let $X \in \mathbb{T}'$. We have to show that $T \to T^{\|X\|}$ is an equivalence. Choose $\mathbb{T} \ni Y \to X$. Then we have a commutative diagram

$$T \xrightarrow{\simeq} T^{\|X\|} \downarrow$$

$$T^{\|Y\|}$$

So $T \to T^{\|X\|}$ has a left-inverse. Thus it suffices to show that any $f: T^{\|X\|}$ has a preimage. Choose t: T, s.th. cnst_t^Y is the composite $||Y|| \to ||X|| \xrightarrow{f} T$. We have $||Y|| \to (\operatorname{cnst}_t^X = f)$. But as $Y \in \mathbb{T}$ and $\Delta_t = f$ is a sheaf (as an identity type in the sheaf $T^{||X||}$) we are done. \square

Remark 1. We never used that we only talk about T-covers.

Lemma 4.4. Every saturated affine (i.e. Spec $A \in \mathbb{T}'$) it \mathbb{T} -merely inhabited.

Proof. We have $||X|| \to ||\operatorname{Spec} A||$ for some catlas $\mathbb{T} \ni X \to \operatorname{Spec} A$.

Question 1. Does the converse hold, i.e. is every T-merely inhabited affine saturated?

5 Atlas

Definition 5.1. Given $\mathcal{V} \subset \mathcal{U}$ a subclass stable under \sum , a \mathcal{V} -cover is a map fibered in \mathcal{V} . A \mathcal{V} -atlas of X is a \mathbb{T} -cover Spec $A \to X$ out of an affine scheme.

In the context of a topology \mathbb{T} , We call a \mathcal{V} -atlas Spec $A \to X$ a \mathcal{V} -catlas, if the domain Spec A belongs to \mathbb{T} .

Example 5.2. Let X be a (1-)type. X has a Zar-atlas, iff there exists some $f : \operatorname{Spec} A \to X$ fibered in types of the form $\operatorname{Spec}(R_{f_1} \times \ldots \times R_{f_n})$ for $(f_1, \ldots, f_n) \in Um(R)$.

Remark 2. If one applies ZLC to an affine scheme Spec A the resulting principal open cover $D(f_i), f_i \in A$ will induce indeed a zariski atlas $\bigsqcup D(f_i) \to \operatorname{Spec} A$, because the fiber over $x : \operatorname{Spec} A$ is $\bigsqcup D(f_i(x))$.

Question: Does every zariski atlas of Spec A have this form? ??

Example 5.3. \mathbb{P}^n has a zariski atlas given by the standart homogeneous principal opens $\sum_{i=0}^{n} D_+(x_i)$. The fiber over a point $[y_0:\ldots y_n]$ is $D(y_0)+\ldots D(y_n)$ where $(y_1,\ldots,y_n)\in Um(R)$.

6 Local Choice

One of the goals of this chapter is to show descent for types admitting a \mathbb{T} -(c)atlas. In this section let \mathbb{T} denote a topology finer than the zariski topology.

Definition 6.1. Let Cov be a class of morphisms (which we think of n-atlasses of some n), containing \mathbb{T} -atlas, (stable under pullback NECESSARY TODO?) A type S has $local \ choice$ wrt Cov if for any \mathbb{T} -surjective map $X \to Y$ and any map $f: S \to Y$ there exists a map $p': S' \to S$ in Cov and a commutative diagram

$$S' \xrightarrow{p} X$$

$$\downarrow \qquad \qquad p \downarrow$$

$$S \xrightarrow{f} Y$$

Proposition 6.2. Assume that Cov is stable under composition.

- If $\hat{S} \to S$ is a Cover and \hat{S} has \mathbb{T} -local choice, then S has \mathbb{T} -local choice.
- Affine schemes have \mathbb{T} -local choice.
- Any type admitting a Cov Atlas Spec $A \to S$ has \mathbb{T} -local choice.

Proof. The first point follows from stability under composition of Cov. the third point follows from the second. By the first point, we may assume that S is affine. As p is \mathbb{T} -surjective, for any x:S there merely is a $\operatorname{Spec} B_x \in T$ and a map $\operatorname{Spec} B_x \to \|\operatorname{fib}_p(x)\|$. As S is projective, we have a term in

$$\prod_{x:S} \sum_{\text{Spec } B_x \in T} \text{Spec } B_x \to \| \operatorname{fib}_p(fx) \|$$

By setting

$$(S' := \sum_{x \in S} \operatorname{Spec} B_x) \xrightarrow{\pi} S$$

the projection, we are now in the situation that for any t:S' we merely have a point in $\mathrm{fib}_p((p'(t)))$ and $S'\to S$ is a \mathbb{T} -cover, thus it is in Cov. Moreover, S' is affine, as it is a dependent sum of affines. Hence again we now can find a lift $S'\to X$ making

$$S' \longrightarrow Y$$

$$\downarrow p' \downarrow p \downarrow$$

$$S \longrightarrow X$$

commute.

The next lemma shows, that the class of types equipped with a T-atlas is stable under dependent sums.

Theorem 6.3. Let \mathcal{U}' be a class stable under dependent sums. The class of types admitting a \mathcal{U}' -atlas is closed under dependent sums. If \mathbb{T} is a topology, the same holds for \mathcal{U}' -catlasses.

Proof. The stability under quotients is easy: Let us construct some atlas Spec $A \to \sum_{x:X} B_x$ For any x:X we merely have an atlas $V_x \to B_x$, i.e. with V_x affine. X has local choice wrt atlasses by (6.2) using \mathcal{U}' is \sum -stable (we use the trivial topology).

If additionally, all the B_x and X are smooth n-stacks, just observe that we can choose the affine V_{pu} to lie in \mathbb{T} , Accordingly $\sum_{u:U} V_{pu} \in T$ as \mathbb{T} is stable under Σ . By Local choice for X, we merely find U affine, an atlas $p:U \to X$ with

$$\prod_{u:U} \sum_{V_{p(u)} \in T} (q: V_{p(u)} \to B_{p(u)}) \times (q \text{ fibered in smooth } n \text{ stacks })$$

Proposition 6.4. Let \mathcal{U}' be a class stable under dependent sums. The class of types admitting a \mathcal{U}' -(c)atlas is closed under \mathcal{U}' -covers: If $X \to Y$ is a \mathcal{U}' -cover, then X admits a \mathcal{U}' -(c)atlas iff Y admits a \mathcal{U}' -(c)atlas.

Proof. One direction is the stability under dependent sums. For the other, if $S \to X$ is a \mathcal{U}' -atlas, then $S \to X \to Y$ is a \mathcal{U}' -atlas by Σ -stability of \mathcal{U}' .

Corollary. If \mathbb{T} has descent, The class of sheaves merely admitting a \mathbb{T} -catlas has descent. Proof. We can set $\mathcal{V} = \mathcal{U}$, and we have to show, that if $X \to Y$ is a \mathbb{T} -cover than X admits a \mathbb{T} -catlas iff Y admits a \mathbb{T} -catlas. This follows from 6.4.

Now the desired map is $\sum_{u:U} V_{pu} \to \sum_{x:X} B_x$, because it is an atlas by 1.2

7 Fundamental Theorem of algebraic spaces

Lemma 7.1. Denote $\mathbb{T}Set$ for the sets that are \mathbb{T} -sheaves. Assume given a $\mathbb{T}set\ X$ then the following maps are mutually inverse

$$\begin{split} \sum_{R:X\to X\to\mathbb{T}\,\text{Prop}} R \text{ equivalence relation} &\simeq \sum_{Y:\mathbb{T}\mathsf{Set}} \sum_{p:X\to Y} p \text{ } \mathbb{T} \text{surjective} \\ R &\mapsto (L_{\mathbb{T}}\|X//R\|_0,[\]) \\ \lambda x,y.(p(x)=p(y)) &\leftarrow (Y,p) \end{split}$$

- *Proof.* Well-definedness: The map $[\cdot]: X \to ||X|/R||_0 \to L_T ||X|/R||_0$ is the composition of a surjective with a \mathbb{T} -surjective map [ref?], hence its \mathbb{T} -surjective. Conversely given (Y, p) as Y is a sheaf, we have for all x, y : X that $p(x) =_Y p(y)$ is a sheaf.
 - If x, y : X then we have a chain of equivalences

$$R(x,y) \simeq (\bar{x} =_{\parallel X//R\parallel_0} \bar{y}) \overset{\mathrm{ap}_{\eta}}{\to} ([x] =_{L_T\parallel X//R\parallel_0} [y])$$

where the first map is plain HoTT, meaning that $||X|/R||_0$ is separated. The second map is equivalence by 2.5.

• Let (Y,p) be in the RHS. Let $R(x,y)=(p(x)=p(y)):\mathbb{T}$ Prop. By plain HoTT, There is a map $\eta:X//R\to Y$ (defined by the universal property of the set truncation and by induction on the higher inductive type X//R on canonical terms through the map $p:X\to Y$). I claim η exhibits Y as the localization for \mathbb{T} Set-modality of X//R. Let T be another \mathbb{T} Set equipped with a map $X//R\to T$. By precomposition we obtain a map $X\to T$. Claim: it factors uniquely through $p:X\to Y$.

Proof:

Existence: We want to define a map $Y \to T$. Let y: Y. As p is \mathbb{T} -surjective and T is a sheaf, we may assume we merely have some element in the fiber of p over y. Now push this element through

$$\|\operatorname{fib}_n y\| \to \|X//R\|_0 \to T$$

where the first map is by Plain HoTT and the second one is induced from $X//R \to T$ by assumption and the fact that T is a set.. One can easily check this makes the diagram commute. Uniqueness follows from $X \to Y$ beeing \mathbb{T} -surjective and the following Fact: Two parellel maps $Y \rightrightarrows T$ into a \mathbb{T} Set T are already equal if the become equal after precomposition with a \mathbb{T} -surjection $X \to Y$.

Proof of the fact: Let y:Y. The goal is an identity type of a \mathbb{T} Set, hence a \mathbb{T} Prop. Hence As the fiber over y in X is \mathbb{T} -merely inhabited, we may assume an actual term in the fiber. As $X \to Y$ equalizes the arrows, this term allows us to conclude. \Box (fact) \Box (Claim)

We apply the fact to the (T-)surjectivity of $X \to X//R$ to get a unique factorization

making the right triangle commute. This is what we wanted to show.

Definition 7.2. A modal equivalence relation R on a type X is called covering, if for any y:X the fibers

$$R_y :\equiv \sum_{x:X} R(x,y)$$

merely admits a T-catlas.

Lemma 7.3. Assume that the topology has descent. Given a \mathbb{T} set X, the following types are equivalent:

- ullet The type of covering equivalence relations on X.
- The type of $\mathbb{T}sets\ Y$ equipped with a map $X\to Y$ fibered in types admitting a \mathbb{T} -catlas.

Proof. By the equivalence in 7.1 it is enough to check that The fibers of:

$$[-]: X \to L_{\mathbb{T}} ||X//R||_0$$

merely admit a \mathbb{T} -catlas if and only if the relation R is covering. For any y:X we have that:

$$\sum_{x:X} R(x,y) \simeq \mathrm{fib}_{\text{[-]}}([y])$$

so the direct direction is immediate. The converse follows from \mathbb{T} -surjectivity of [_] and from 6.

8 Algebraic Space

Recall the notion of (covering) 0-stacks. it is the smallest pair of classes that satisfies the following

- (covering) affines are (covering) algebraic spaces.
- stable under covering quotients: If X is an algebraic space, Y modal 0-type and $X \to Y$ is fibered in covering algebraic spaces, then Y is an algebraic space. Additionally, if X is covering, then Y is covering.

8.1 Geometric propositions

Definition 8.1. An affine Scheme U is called geometric, if

$$||U||_{\mathbb{T}} \to (U \in \mathbb{T})$$

Lemma 8.2. The converse holds always

Proof. because things in \mathbb{T} are automatically \mathbb{T} -merely inhabited

Recall the definition of T-atlas 5.1

Definition 8.3. We call a modal proposition geometric, if one of the equivalent conditions is satisfied:

- 1. its merely of the form $||U||_{\mathbb{T}}$ for some geometric affine U.
- 2. There is a \mathbb{T} -surjective map out of a geometric affine U.
- 3. It has a \mathbb{T} -atlas.

Proof.

 $1 \Leftrightarrow 2$ Clear.

 $1 \Rightarrow 3$ we show that $U \to ||U||_{\mathbb{T}}$ is a \mathbb{T} -atlas. Every fiber is in \mathbb{T} , because U is geometric.

 $3 \Rightarrow 1$ Let $V \to P$ be a \mathbb{T} -atlas. have to show TFAE $||V||_{\mathbb{T}} \to P \to (V \in \mathbb{T}) \stackrel{8.2}{\to} ||V||_{\mathbb{T}}$. Proof: $||V||_{\mathbb{T}} \to P$ as P is modal prop. Secondly, because $V \to P$ is a \mathbb{T} -cover. Hence P is a geometric proposition.

8.2 Algebraic spaces

Lemma 8.4. Consider a modal equivalence relation $R: S^2 \to \mathbb{T}$ Prop on an affine S. TFAE

- R is covering, i.e. every fiber $R_s \equiv \sum_{t \in S} Rst$ admits a \mathbb{T} -catlas.
- every fiber $R_s \equiv \sum_{t:S} Rst$ is a covering 0-stack.

Proof. Every type admitting a \mathbb{T} -catlas is a covering 0-stack. Conversely: if the fibers are covering 0-stacks. Let us first observe, that for all s,t:S,Rst is a geometric proposition: Rst is the fiber of the projection $\sum_{t:S} Rst \to S$ between geometric stacks, which are stable under finite limits.

For all t: S we can choose a geometric atlas Spec $A_t \to Rst$ by 8.3. Then

$$\sum_{t:S} \operatorname{Spec} A_t \to \sum_{t:S} Rst$$

is a \mathbb{T} -atlas. As $\sum_{t:S} Rst$ is a covering 0-stack by assumption, the map has to be a \mathbb{T} -catlas by 3.9.

Theorem 8.5. Let X be a modal set. The following are equivalent:

- 1. X is a (covering) geometric 0-stack
- 2. X is merely of the form $L_{\mathbb{T}}(U/R)$ for some (covering) affine U and $R: U^2 \to \text{Prop } a$ covering equivalence relation.
- 3. there exists some map $S \to X$ with S (covering) affine whose fibers merely have \mathbb{T} -catlasses.

We call this class (covering) algebraic spaces.

Proof.

 $2\leftrightarrow 3$ 7.3

- $2 \to 1$ Choose a presentation $R: U^2 \to \text{Prop.}$ It suffices to show, that the map $f: U \to L_{\mathbb{T}}(U/R)$ is a geometric (c)atlas. The map f is \mathbb{T} -surjective by the well-definedness of the bijection 7.1. By descent we may just show, that the fibers $\text{fib}_f(f(s))$ for s: U are covering 0-stacks. But by the bijection in 7.1 those are equivalent to the fibers R_s , which are covering 0-stacks as the equivalence relation is covering.
- $1 \to 2$ This can be reformulated in the following way, using the recursion principle for (covering) geometric 0-stacks: Let X be a sheaf of sets. Let S be (covering-) affine and $f:S \to X$ be fibered in covering algebraic spaces. Then X is a (covering) algebraic space. This follows from the observation, that the equivalence relation determined by f is covering 8.4, because the fibers of f are covering 0-stacks.

8.3 Schemes are algebraic Spaces for the Zariski Topology

Definition 8.6. A proposition U is open iff its merely of the form f_1 $inv \lor ... f_n inv$ for some $f_i : R$.

Definition 8.7. A Zariski sheaf X is a scheme if there merely exists some affine S map $S \to X$ whose fibers are Zariski-merely inhabited finite sums of open propositions

Lemma 8.8. Given $f_1, \ldots, f_n : R$ such that $||D(f_1) + \ldots + D(f_n)||_{\mathsf{Zar}}$ then $\sum_{i=1}^n D(f_i) \in \mathsf{Zar}$.

Proof. We have to show that $(f_1, \ldots, f_n) = 1$. Claim: $(f_1, \ldots, f_n) = 1$ is a sheaf. Proof: Recall that the Zariski topology is subcanonical ([ref?]). Now the type is equivalent to the statement that the map between the two sheaves $\operatorname{Spec} 0 \to \operatorname{Spec} R/(f_1, \ldots, f_n)$ is an equivalence. This is a sheaf [ref?].

Proposition 8.9. Every Zariski-merely-inhabited type that is merely of the form $U_1 + \ldots + U_n$ for open propositions U_i admits a Zar-catlas.

Proof. By definition of openness, We can choose a surjection $\coprod_{j=1}^{n_i} D(f_{ij}) \twoheadrightarrow U_i$ for any i. We want to show, that the map

$$\coprod_{i,j} D(f_{ij}) \twoheadrightarrow U_1 + \dots U_n$$

is a Zar-catlas.

• Let us first show that the fibers are in Zar. Assume U_i holds. So we find a term in $\coprod_j D(f_{ij})$. In particular we have $\|\coprod_j D(f_{ij})\|_{\mathsf{Zar}}$. By the lemma we conclude, that the fiber $\sum_j D(f_{ij})$ belongs to Zar.

• The total space is in Zar: This follows as the surjection after \mathbb{T} -truncation becomes an equivalence. As we have $||U_1 + \ldots + U_n||_{\mathbb{T}}$, we can conclude by the lemma.

warning. The converse does not hold! Apply 3.22 to the map

$$\mathsf{Zar}\ni 1+1\to \sum D(f)$$

 $\sum D(f)$ is separated as D(f) is a sheaf. All the fibers are equivalent to 1+X, hence they are in the Zariski topology. Use that beeing in the Zariski topology has Zariski-descent.

Corollary. Every scheme is an algebraic space for the Zariski topology.

Question 2. Is every algebraic space for the zariski topology a scheme?

Lemma 8.10. Every Zar-sheaf that admits a Zar-atlas is a scheme. Hence, every geometric proposition is a scheme

Proof. Obvious. \Box

9 Local properties

Lemma 9.1. Given a commutative triangle

$$X \xrightarrow{f} Y \downarrow_{g} Z$$

with $X \to Y$ a geometric cover. Then h is a geometric cover iff g is a geometric cover.

Proof. Reduce to the case of Z=1. If $X\to Y$ is a geometric cover, then X is a covering stack iff Y is a covering stack by stability under quotients and under sums. If both are coverings stacks, then the fibers

Lemma 9.2. A morphism between geometric stacks $f: X \to Y$ is a geometric cover iff there exist atlasses and a \mathbb{T} -cover on affines

$$\operatorname{Spec} A \xrightarrow{\widehat{f}} \operatorname{Spec} B$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{f} \longrightarrow Y$$

Proof. The converse follows by the previous lemma. The direct direction follows by choosing a geometric atlas $\operatorname{Spec} B \to Y$ and taking the pullback

$$\begin{array}{ccc} X \times_Y \operatorname{Spec} A & \xrightarrow{f'} \operatorname{Spec} A \\ & & \downarrow & & \downarrow \\ X & \xrightarrow{f} & Y \end{array}$$

f' has the same fibers as f, hence it will be geometric cover. Now $X \times_Y \operatorname{Spec} A$ is a geometric stack, hence we can choose a geometric atlas $\operatorname{Spec} B \to X \times_Y \operatorname{Spec} A$. The composition will be a geometric cover between affines, hence a \mathbb{T} -cover.