Вісник Київського університету Серія: фізико-математичні науки

УДК 519.21

Андрій Кандрьонкін, студент

Про клас інверсних моноїдів ко-скінченних порядкових автоморфізмів множини $\mathbb Z$

У роботі розглядається клас інверсних напівгруп, які одержуються із групи порядкових автоморфізмів лінійно впорядкованої множини цілих чисел приєднанням коскінченного ідемпотента.

Ключові слова: інверсна напівгрупа, коскінченний порядковий автоморфізм. Andrii Kandrynkin, student

On some class of inverse monoids of co–finite orderly automorphisms of integers

In the paper a class of inverse semigroups, which is received from the group of orderly automorphisms of the linearly-ordered set of integers by the the adjunction of the co-finite idempotent, is considered.

Key Words: inverse monoid, co-finite orderly automorphism.

Статтю представив доктор фізико-математичних наук, професор Кириченко В.В.

Вступ

Теорія напівгруп є однією із тих областей сучасної алгебри, яка постійно розвивається. Вона має тісні зв'язки з диференціальною геометрією, функціональним аналізом, теорією графів, теорією алгоритмів, абстрактною теорією автоматів та ін. Найпростішою конструкцією, яка призводитиме до напівгруп, є просте приєднання до групи, яка влаштована досить прозоро, одного ідемпотента. Тим самим ми одержимо моноїд, який зразу ж стає суттєво складнішим.

Розглянемо у якості базової групи групу C_{∞} порядкових автоморфізмів лінійно впорядкованої множини цілих чисел \mathbb{Z} , і нехай $C_{\infty} = \langle b \rangle$. Позначимо напівгрупу частково визначених ко-скінченних порядкових автоморфізмів множини \mathbb{Z} , що визначаються групою C_{∞} , символом IC_{∞} . Тоді напівгрупа IC_{∞} породжується автоморфізмами b та f, де для всіх $x \in \mathbb{Z}$ маємо $b: x \to x+1$, $Codom\ f=\{0\}$ і для всіх $x \in \mathbb{Z}\backslash\{0\}$ $f: x \to x$, і задається такими визначальними співвідношеннями:

$$IC_{\infty} = \langle b, f | bb^{-1} = b^{-1}b = 1, f^2 = f,$$

 $fb^{-r}fb^r = b^{-r}fb^r \ f, r \in \mathbb{N} > .$

Тим самим ми можемо ототожнити елементи напівгрупи IC_{∞} із напівгруповими словами над алфавітом $S=\{b,f\}$. Тоді кожен елемент $g\in IC_{\infty}$ допускає єдине зображення у вигляді сло-

ва вигляду

$$h_1\dots h_t h,\;\;$$
 де $h=b^k,\;h_i=b^{-lpha_i}fb^{lpha_i}$ для $i\in\{1,\dots,t\},\;lpha_1,\dots,lpha_t\in\mathbb{Z}$ такі, що $lpha_1<\dots$

1. Клас (u_1,\ldots,u_c) —піднапівгруп $IC_{u_1,\ldots,u_c;\infty}$ моноїда IC_{∞}

Нехай u_1,\ldots,u_c — невід'ємні цілі числа такі, що $0 < u_1 < u_2 < \ldots < u_c$. Позначимо символом f_{u_1,\ldots,u_c} частково визначений ко-скінченний порядковий автоморфізм моноїда IC_{∞} такий, що

$$Codom\ f_{u_1,\dots,u_c}=\{-u_c,\dots,-u_1,0,u_1,\dots,u_c\}$$
 і для всіх $x\in\mathbb{Z}\backslash\{-u_c,\dots,-u_1,0,u_1,\dots,u_c\}$ $f_{u_1,\dots,u_c}:x\to x.$

Твердження 1. 1) Нехай u_1, \ldots, u_c — невід'ємні цілі числа такі, що $0 < u_1 < u_2 < \ldots < u_c$. Для довільного $k \in \mathbb{Z}$ частково визначений автоморфізм $b^{-k} f_{u_1, \ldots, u_c} b^k \in IC_{\infty}$ є ідемпотентом.

- 2) Для довільної послідовності $0 < u_1 < u_2 < \ldots < u_c$ невід'ємних цілих чисел $f_{u_1,\ldots,u_c} = b^{-1} f_{u_1,\ldots,u_{c-1}} b f_{u_1,\ldots,u_{c-1}}.$
- 3) Для довільної послідовності $0 < u_1 < u_2 < \ldots < u_c$ невід'ємних цілих чисел та для довільних цілих чисел k,l ідемпотенти $b^{-k}f_{u_1,\ldots,u_c}b^k$ та $b^{-l}f_{u_1,\ldots,u_c}b^l$ комутують.

Доведення — безпосередня перевірка.

Означення 1. Частково визначений ко-скінченний порядковий автоморфізм $b^{-k}f_{u_1,...,u_c}b^k \in IC_{\infty}$ називатимемо $(u_1,...,u_c;k)$ -ідемпотентом.

Визначимо для послідовності $0=u_1 < u_2 < \ldots < u_c$ невід'ємних цілих чисел піднапівгрупу $IC_{u_1,\ldots,u_c;\infty}$ інверсного моноїда IC_∞ як таку

$$IC_{u_1,\dots,u_c;\infty} = \langle b, f_{u_1,\dots,u_c} \rangle$$

і називатимемо її (u_1,\ldots,u_c) -піднапівгрупою моноїда IC_{∞} .

Означення 2. Для $k_1, \ldots, k_s \in \mathbb{Z}$ називатимемо елемент g (k_1, \ldots, k_s) -змищенням елемента f_{u_1, \ldots, u_c} , якщо Codom $g = \{-k_1 - u_c, \ldots - k_1 - u_1, -k_1, -k_1 + u_1, \ldots, -k_1 + u_c, -k_1 - k_2 - u_c, \ldots - k_1 - k_2 - u_1, -k_1 - k_2, -k_1 - k_2 + u_1, \ldots, -k_1 - k_2 + u_c, \ldots, -k_1 - \ldots - k_{s-1} - u_c, \ldots, -k_1 - \ldots - k_{s-1} - u_1, -k_1 - \ldots - k_{s-1}, -k_1 - \ldots - k_{s-1} + u_1, \ldots, -k_1 - \ldots - k_{s-1} + u_c\}, а на области визначення елемент <math>g$ діє як $b^{k_1+k_2+\ldots+k_s}$.

 (k_1,\ldots,k_s) -зміщення відповідає своїй назві. Область невизначення елемента g є об'єднанням паралельних зміщень множини $\{-u_c,\ldots,-u_1,0,u_1,\ldots,u_c\}$ на $k_1,\ k_1+k_2,\ldots,k_1+\ldots+k_{s-1}$ вліво.

Твердження 2. Частково визначений ко-скінченний порядковий автоморфізм g моноїда IC_{∞} належить піднапівгрупі $IC_{u_1,...,u_c;\infty}$ тоді і тільки тоді, коли g є деяким (k_1,\ldots,k_s) -зміщенням елемента $f_{u_1,...,u_c}$ $(u_1,\ldots,u_c\in\mathbb{Z})$.

Доведення. Оскільки $f^2=f$, то кожен елемент $g\in IC_{u_1,\dots,u_c;\infty}$ можна зобразити у вигляді слова такого вигляду

$$g = b^{k_1} f_{u_1,\dots,u_c} b^{k_2} \dots b^{k_{s-1}} f_{u_1,\dots,u_c} b^{k_s},$$

де $k_1,\ldots,k_s\in\mathbb{Z}$. Тоді матимемо $g=b^{k_1}$ $b^{u_c}fb^{-u_c}\ldots$ $b^{u_1}fb^{-u_1}$ $fb^{-u_1}fb^{u_1}\ldots$ $b^{-u_c}fb^{u_c}$ b^{k_2} $b^{u_c}fb^{-u_c}\ldots$ $b^{u_1}fb^{-u_1}f$ $b^{-u_1}fb^{u_1}\ldots$ $b^{-u_c}fb^{u_c}$ $b^{k_3}\ldots b^{k_{s-1}}$ b^{u_c} $fb^{-u_c}\ldots b^{u_1}fb^{-u_1}f$ $b^{-u_1}f$ $b^{u_1}\ldots b^{-u_c}fb^{u_c}$ $b^{k_s}=b^{k_1+u_c}fb^{-k_1-u_c}$ $b^{k_1+u_{c-1}}f$ $b^{-k_1-u_{c-1}}\ldots$ $b^{k_1+u_1}fb^{-k_1-u_1}$ $b^{k_1}fb^{-k_1}b^{k_1-u_1}$ $fb^{-k_1+u_1}b^{k_1-u_2}$ $fb^{-k_1+u_2}\ldots$ $b^{k_1-u_c}fb^{-k_1+u_c}$ $b^{k_1+k_2+u_c}fb^{-u_c-k_1-k_2}$ $b^{k_1+k_2+u_{c-1}}\ldots b^{k_1+k_2+\ldots+k_s}$ Тоді Codom $g=\{-k_1-u_c,\ldots-k_1-u_1,-k_1,-k_1+u_1,\ldots,-k_1+u_c,-k_1-k_2-u_c,\ldots-k_1-k_2-u_1,-k_1-k_2-u_1,-k_1-k_2-k_1-k_2+u_1,\ldots,$

 $-k_1 - k_2 + u_c, \dots, -k_1 - \dots - k_{s-1} - u_c, \dots, -k_1 - \dots - k_{s-1} - u_1, -k_1 - \dots - k_{s-1}, -k_1 - \dots - k_{s-1} + u_1, \dots, -k_1 - \dots - k_{s-1} + u_c\}$, а для всіх $x \in \mathbb{Z} \setminus Codom\ g$ матимемо: $g(x) = b^{k_1 + k_2 + \dots + k_s}(x)$. \square

Звідси отримуємо, що областю невизначення ідемпотента $b^{-k}f_{u_1,\dots,u_c}b^k$ є множина $Codom\ b^{-k}f_{u_1,\dots,u_c}b^k=\{k-u_c,\dots,k-u_1,k,k+u_1,\dots,k+u_c\}.$ Елемент $b^{-k}f_{u_1,\dots,u_c}b^k$ природно називати ідемпотентним (k)-зміщенням елемента f_{u_1,\dots,u_c} . Тоді ідемпотентне (k)-зміщення на області визначення діє тривіально, а його область невизначення є паралельним зсувом області невизначення елемента f_{u_1,\dots,u_c} на k вправо.

Твердження 3. Кожен елемент $g \in IC_{u_1,...,u_c;\infty}$ единим чином зображаеться y вигляді слова виду $h_1...h_th$, де $h_i = b^{-\alpha_i}f_{u_1,...,u_c}b^{\alpha_i}$ для $i \in \{1,...,t\}, h = b^k$, $\alpha_1,...,\alpha_t \in \mathbb{Z}$ таких, що $\alpha_1 < ... < \alpha_t, t \in \mathbb{N} \cup \{0\}, k \in \mathbb{Z}$.

Доведення. Кожен елемент $g \in IC_{u_1,\dots,u_c;\infty}$ можна зобразити у вигляді слова такого вигляду $g=b^{k_1}f_{u_1,\dots,u_c}b^{k_2}\dots b^{k_{s-1}}f_{u_1,\dots,u_c}b^{k_s}$, де $k_1,\dots,k_s\in\mathbb{Z}$. Тоді із твердження 2 матимемо $g=b^{k_1}f_{u_1,\dots,u_c}$ $b^{-k_1}b^{k_1+k_2}f_{u_1,\dots,u_c}b^{-k_1-k_2}\dots b^{k_1+\dots+k_{s-1}}f_{u_1,\dots,u_c}$ $b^{-k_1-\dots-k_{s-1}}$ $b^{k_1+\dots+k_s}$. Окрім того, згідно твердження 1 елементи $b^kf_{u_1,\dots,u_c}b^{-k}$ і $b^lf_{u_1,\dots,u_c}b^{-l}$ комутують як ідемпотенти, а $b^kf_{u_1,\dots,u_c}b^{-k}b^k$ f_{u_1,\dots,u_c} $b^{-k}=b^kf_{u_1,\dots,u_c}$ b^{-k} , що і доводить існування нашого зображення.

Тепер доведемо єдиність зображення. Нехай $g = h_1 \dots h_t h = \tilde{h}_1 \dots \tilde{h}_s \tilde{h}$ — два зображення елемента h необхідного вигляду, де h_i = $b^{-\alpha_i}$ f_{u_1,\dots,u_c} b^{α_i} , i \in $\{1,\ldots,t\}, \quad h = b^{k_1}, \quad \tilde{h}_j = b^{-\beta_j}, \quad f_{u_1,\ldots,u_c}$ $b^{\beta_j}, \ j \in \{1,\ldots,s\}, \ \ \tilde{h} = b^{\tilde{k}_2}.$ Тоді $Codom\ g =$ $Codom (h_1 \dots h_t) = Codom (\tilde{h}_1 \dots \tilde{h}_s)$ i $(h_1 \ldots h_t)|_{Dom \ g} = (h_1 \ldots h_s)|_{Dom \ g} = id|_{Dom \ g}.$ Тому $h|_{Dom\ g}=h|_{Dom\ g},$ а значить h=h. Більш того, область невизначення елемента $h_1 \dots h_t$ є об'єднанням паралельних зсувів на $\alpha_1, \ldots, \alpha_t$ вправо області невизначення елемента $f_{u_1,...,u_c}$. Аналогічно, область невизначення елемента $h_1 \dots h_s$ є об'єднанням паралельних зсувів на β_1, \ldots, β_t вправо області невизначення елемента $f_{u_1,...,u_c}$ і $\alpha_1 < ... < \alpha_t, \beta_1 < ... < \beta_s$. Таким чином, t = s і $\alpha_1 = \beta_1, \ldots, \alpha_t = \beta_t$. \square

З останнього твердження отримуємо, що

Твердження 4. Піднапівгрупа $IC_{u_1,...,u_c;\infty}$ е інверсною піднапівгрупою моноїда IC_{∞} . Її задання твірними елементами і визначальними співвідношеннями має наступний вигляд: $IC_{u_1,...,u_c;\infty} = \langle b, f_{u_1,...,u_c} | bb^{-1} = b^{-1}b = 1, f_{u_1,...,u_c}^2 = f_{u_1,...,u_c}, f_{u_1,...,u_c} b^{-r} f_{u_1,...,u_c} b^r = b^{-r} f_{u_1,...,u_c}$ $b^r f_{u_1,...,u_c}, r \in \mathbb{N} >$, причому система визначальних співвідношень є незвідною, тобто жодне із цих співвідношень не є наслідком інших.

Знайдемо довжину $l_w([g]_{u_1,\dots,u_c})$ напівгрупового слова $[g]_{u_1,\dots,u_c}$. Матимемо: $l_w([g]_{u_1,\dots,u_c}) = |\alpha_1|+1+|\alpha_1-\alpha_2|+1+\dots+|\alpha_{t-1}-\alpha_t|+1++|\alpha_t+k|=|\alpha_1|+\alpha_t-\alpha_1+|\alpha_t+k|+t,$ оскільки $\alpha_1<\dots<\alpha_t$. Позначимо символом g_π слово $h_{\pi(1)}\dots h_{\pi(t)}h$ де $\pi\in S_t$ – довільна підстановка. Тоді довжина елемента g_π дорівнює $l_w(g_\pi)=|\alpha_{\pi(1)}|+1+|\alpha_{\pi(1)}-\alpha_{\pi(2)}|+1+\dots+|\alpha_{\pi(t-1)}-\alpha_{\pi(t)}|+1+|\alpha_{\pi(t)}+k|$, і має місце таке

Твердження 5. Для довільного елемента $g \in IC_{\infty}$, де $g = h_1 \dots h_t h$ — його канонічний вигляд, маємо:

$$l(g) = \min_{\pi \in S_t} \{l_w(g_\pi)\}.$$

Доведення. Нехай π — підстановка із S_t така, що $l_w(g_\pi) = \min_{\pi \in S_t} \{l_w(g_\pi)\}$. Рівність $l(g) \leqslant l_w(g_\pi)$ очевидна. Нехай $d = d_1 d_2 \dots d_j$ таке напівгрупове слово, що $l(g) = l_w(d) = j < l_w(g_\pi)$. Тоді ми можемо зобразити d у вигляді $d = b^{\delta_1} f b^{\delta_2} f \dots f b^{\delta_q}$, де $\delta_2 \neq 0, \dots, \delta_{q-1} \neq 0$ і $|\delta_1| + \dots + |\delta_q| + (q-1) = j$. Наша мета показати, що $l_w(d) = l_w(g_\pi)$ для деякої підстановки

 $\pi \in S_t$. Оскільки згідно попереднього твердження $d = g_\pi$, то $h = b^{\delta_1 + \ldots + \delta_q}$ і $b^{\delta_1} f b^{-\delta_1}$ $b^{\delta_1 + \delta_2}$ $f b^{-\delta_1 - \delta_2} \ldots b^{\delta_1 + \ldots + \delta_{q-1}}$ $f b^{-\delta_1 - \ldots - \delta_{q-1}} = h_1 \ldots h_t$ є ідемпотентами. А з того, що $l(g) = l_w(d)$ випливає $\delta_1, \delta_1 + \delta_2, \ldots, \delta_1 + \ldots + \delta_{q-1}$ є різними. Тепер необхідна рівність випливає із порівняння областей невизначення $\{\alpha_1, \ldots, \alpha_t\}$ та $\{\delta_1, \delta_1 + \delta_2, \ldots, \delta_1 + \ldots + \delta_{q-1}\}$ тих ідемпотентів, які ми щойно розглядали. \square

Ми можемо обчислити точне значення функції довжини l(g), де $g \in IC_{u_1,...,u_c;\infty}$.

Теорема 1. Нехай g — довільний елемент напівгрупи $IC_{u_1,...,u_c;\infty}$, $[g]_{u_1,...,u_c}$ — його $(u_1,...,u_c)$ —канонічне зображення, а $r=i([g]_{u_1,...,u_c})$ — індекс переходу. Тоді для k>0

$$l(g) = \left\{ \begin{array}{ll} 2\alpha_t - \alpha_1 + |\alpha_1 + k| + t, & \text{якщо } r \neq 0, t, \\ 2\alpha_t + k + t, & \text{якщо } r = 0, \\ -\alpha_1 + |\alpha_1 + k| + t, & \text{якщо } r = t; \end{array} \right.$$

i для $k \leqslant 0$

$$l(g) = \left\{ \begin{array}{ll} \alpha_t - 2\alpha_1 + |\alpha_t + k| + t, & \text{якщо } r \neq 0, t, \\ \alpha_t + |\alpha_t + k| + t, & \text{якщо } r = 0, \\ -2\alpha_1 - k + t, & \text{якщо } r = t. \end{array} \right.$$

Доведення. Нехай k>0. Тоді матимемо, що довжина слова g_{π} не буде більшою за $\pi(1)=r+1,\ldots,\ \pi(t-r)=t,\ \pi(t-r+1)=r,\ldots,\ \pi(t)=1,$ тобто $l(g)=l_w(g_{\pi})=l_w(h_{r+1}\ldots h_th_r\ldots h_1h).$ Для $k\leqslant 0$ довжина не буде більшою за $\pi(1)=1,\ldots,\ \pi(t)=t,$ і ми маємо $l(g)=l_w(h_1\ldots h_rh_{r+1}\ldots h_th).$ Отримаємо, що довжина $l_w(g_{\pi})$ у кожному із випадків має вигляд із умови твердження. \square

Список використаних джерел

- 1. А. Клиффорд, Г. Престон, *Алгебраическая теория полугрупп, т.1*, Москва: Мир.-1972.-293 с.
- 2. O. Bezushchak, On growth of the inverse semigroup of partially defined co-finite automorphisms of integers, Algebra and discrete mathematics, 2004, N 2.

Надійшла до редколегії 1.04.2009