INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Proposal for introducing a new subject

1	Name of the Department	Mathematics
2	Name of the Subject	Commutative Algebra
3	LTP and Credit	3+1+0 (4 credit)
4	Status of the subject	
	(a) Specify the Session, Semester, from	Spring 2015-2016
	which the subject is going to be	
	offered	
	(b) Please Specify the Level of the	
	Subject	B. Tech, M.Sc (Mathematics), Integrated M.Sc, Ph. D.
	(c) Whether the subject will be offered	
	as compulsory or elective	Elective
	(d) The semester in which the subject	
	will be offered	
	(e) Name(s) of the Programme(s) in	Spring
	whose curricula this subject will be	
	included	
		(1) 4 th semester of 2 year M.Sc.
		(2) 8 th semester of 5 year integrated M.Sc.
		(3) Research scholars
		(4) 4 th year of B.Tech
5	Prerequisite(s) for the subject,	(1) Linear Algebra (MA30103)
	if any (Please give the subject numbers and	(2) Modern Algebra (MA41002)
	names)	
6	Objective and Contents	
	(a) Objective	To study commutative rings and modules over them.
		This course will be compulsory to students who
		would like to specialize or pursue research in the
		field of pure mathematics (for example: Algebraic
		Geometry, Number theory, Representation theory).
	(1) 0 (1) 400 . 450	Commutative algebra: Basics of commutative rings,
	(b) Contents (in 100 to 150	prime ideals, maximal ideals, primary ideals,
	words)	nilradical, Jacobson radical, theory of modules:
		Noetherian rings, Artinian rings, Chinese remainder
		theorem, modules over PID, localization, tensor
		products, Noetherian/Artinian modules, modules of
		finite length, Primary Decomposition , Hilbert basis
		theorem, Nakayama lemma, integral extensions,
		going up/going down theorems, Hilbert's
		Nullstellansatz, Noether normalization theorem.
7	Names of the faculty members of the	(1) Dr. Ramakrishna Nanduri (Mathematics)
	Department/Centers/School who have the	(2) Dr. Vasudeva Rao Allu (Mathematics)
	= apa. aneng centers, sensor who have the	(-) 511 tabaacta 11a0 / 11a (11aa11c111aa1c5)

	necessary expertise and will be the willing	
	to teach the subject (Minimum two faculty	
	members should be willing to teach the	
8	subject) Do the contents of the subject have an	No
"	overlap with any other subject offered in	
	the Institute?	
9	Recommended Text books/References	
	a) Theory (Text Books)	 [1] Atiyah, M. F., and Macdonald, I. G., Introduction to Commutative Algebra, Addison- Wesley Publishing Co., Reading, Mass London-Don Mills, Ont., 1969. [2] D. S. Dummit and R. M. Foote, Abstract Algebra, 2nd Edition, John Wiley, 2002. [3] Gopalakrishnan, N. S., Commutative Algebra, Oxonian press, 1984.
	b) References (Literature)	Oxoman press, 1984.
		[1] Matsumura, Hideyuki, Commutative Ring Theory, Cambridge University Press.
		[2] Matsumura, Hideyuki, Commutative Algebra, second edition, Mathematics Lecture Note Series, 56, Benjamin / Cummings Publishing Co., Inc., Reading, Mass., 1980.
		[3] Zariski, O. and Samuel, P., Commutative Algebra, Vol. I, GTM No.28, Springer- Verlag, New York, 1958.
10	Names of	Mathematics, CSE, ECE, EE, PHY
	Departments/Centers/Schools/Programmes	
	whose students are expected to register for this subject	
	tina adoject	

Lecture-wise Topics:

Number of Lectures	Topics
3 Lectures	Basics of commutative rings, prime ideals, maximal
	ideals, primary ideals
1 Lecture	nilradical, Jacobson radical
6 Lectures	theory of modules: Noetherian rings, Artinian rings
3 Lectures	Chinese remainder theorem, modules over PID

4 Lectures	localization
5 Lectures	tensor products, Noetherian/Artinian modules,
	modules of finite length
4 Lectures	Primary Decomposition
2 Lectures	Hilbert basis theorem
2 Lectures	Nakayama lemma
3 Lectures	integral extensions
2 Lectures	Hilbert's Nullstellansatz
2 Lectures	Noether's normalization theorem

Total: 37 Lectures and 10 tutorials.