- 1 (a) (i) Define *power*.
 - (ii) Show that the SI base units of power are $kg m^2 s^{-3}$.

(b) All bodies radiate energy. The power *P* radiated by a body is given by

$$P = kAT^4$$

where *T* is the thermodynamic temperature of the body, *A* is the surface area of the body and *k* is a constant.

(i) Determine the SI base units of k.

base units[2]

(ii) On Fig. 1.1, sketch the variation with T^2 of P. The quantity A remains constant.

Fig. 1.1

[1]

[1]

2 A liquid of density ρ fills a container to a depth h, as shown in Fig. 2.1.

Fig. 2.1

The base of the container has area A.

(a) Derive, from the definitions of pressure and density, the equation

$$p = \rho g h$$

where p is the pressure exerted by the liquid on the base of the container and g is the acceleration of free fall.

(b) A small solid sphere falls with constant velocity through the liquid.

- (i) State
 - 1. the names of the three forces acting on the sphere,

2. a word equation that relates the magnitudes of these forces.

.....

[3]

(ii)	State and explain the changes in energy that occur as the sphere falls.				
	[2]				

(c) The liquid in the container is liquid L. Liquid M is now added to the container. The two liquids do not mix. The total depth of the liquids is 0.17 m.

Fig. 2.2 shows how the pressure *p* inside the liquids varies with height *x* above the base of the container.

Fig. 2.2

Fig. 2.2 to

(i) state the value of atmospheric pressure,

(ii) determine the density of liquid M.

density =
$$kg m^{-3} [2]$$

[Total: 10]

3	(a)	State the principle of conservation of momentum.		
				[2]
	(b)	Ball A moves with as shown in Fig.		rizontal frictionless surface towards a stationary ball B,
				$6.0\mathrm{ms^{-1}}$
				4.0 kg (A)
		A	B	- initial path $-\frac{1}{2}$ of ball A $-\frac{1}{2}$
		4.0 kg	12 kg	12 kg B 3.5 m s ⁻¹
		before c	ollision	after collision
		Fig	. 3.1	Fig. 3.2 (not to scale)
		The balls collide Ball A has velocit	y 6.0 m s ⁻¹ at an angl	mass 12 kg. as shown in Fig. 3.2. le of θ to the direction of its initial path. le of 30° to the direction of the initial path of ball A.
		= = =	ng the components o A, calculate θ .	f momentum at right-angles to the direction of the initial
				θ =° [3]

(ii)	your answer in (i) to show that the initial speed v of ball A is $12\mathrm{ms^{-1}}$. Explain your working.
	[2]
(iii)	By calculation of kinetic energies, state and explain whether the collision is elastic or inelastic.
	[3]
	[Total: 10]

- 4 (a) By reference to the direction of propagation of energy, explain what is meant by a longitudinal wave.
 - **(b)** A car horn emits a sound wave of frequency 800 Hz. A microphone and a cathode-ray oscilloscope (c.r.o.) are used to analyse the sound wave. The waveform displayed on the c.r.o. screen is shown in Fig. 4.1.

Fig. 4.1

Determine the time-base setting, in s cm⁻¹, of the c.r.o.

time-base setting = s cm⁻¹ [3]

(c) The intensity I of the sound at a distance r from the car horn in (b) is given by the expression ,

$$I = \frac{k}{r^2}$$

where k is a constant.

Fig. 4.2 shows the car in (b) on a road.

Fig. 4.2

An observer stands at point O. Initially the car is parked at point X which is 120 m away from point O. The car then moves directly towards the observer and stops at point Y, a distance of 30 m away from O. The car horn continuously emits sound when the car is moving between points X and Y.					
(i)	The sound wave at point O has amplitude $A_{\rm X}$ when the car is at X and has amplitude A when the car is at Y. Calculate the ratio $\frac{A_{\rm Y}}{A_{\rm X}}$.				
		ratio =[3]			
(ii)					
	Determine, to two significant figures,				
	1. the minimum wavelength of the sound detected by the observer,				
		wavelength = m [2]			
	2.	the maximum speed of the car.			

speed = $m s^{-1} [2]$

[Total: 11]

5	(a)	Define	electric	field	strength
9	(a)	Delille	CICCLIIC	IIGIU	Su Grigur.

 		-
 	[1]

(b) Two parallel metal plates in a vacuum are separated by $0.045\,\mathrm{m}$. A potential difference V is applied between the plates, as shown in Fig. 5.1.

Fig. 5.1

A proton is initially at rest on the surface of the positive plate. The proton in the uniform electric field takes a time of 1.5×10^{-7} s to reach the negative plate.

(i) Show that the acceleration of the proton is $4.0 \times 10^{12} \, \text{m s}^{-2}$.

[2]

(ii) Calculate the electric force on the proton.

force = N [1]

	(iii)	your answer in (ii) to determine		
	1.	the electric field strength,		
		field strength = NC ⁻¹ [2]		
	2.	the potential difference V between the plates.		
		V = V [2]		
(c)	An α pa	rticle is now accelerated between the two metal plates in (b) by the electric field.		
	Calculate the ratio			
		acceleration of α particle		
		acceleration of proton		
		ratio =[2]		
		[Total: 10]		

A fi	lament lamp is rated as 30 W, 120 V. A potential difference of 120 V is applied across the lamp.				
(a)	the filament wire of the lamp, calculate				
	(i) the current,				
	current = A [2]				
	(ii) the number of electrons passing a point in 3.0 hours.				
	number =[2]				
(b)	Show that the resistance of the filament wire is 480Ω .				
	[0]				
(-)	[2]				
(c)	The filament wire has an uncoiled length of 580 mm and is made of metal. The metal has resistivity $6.1 \times 10^{-7} \Omega$ m at the operating temperature of the lamp.				
	Calculate the diameter of the wire.				
	diameter = m [3]				
(d)					
(u)	on the resistance of the filament wire.				
	[1]				

[Total: 10]

6

	State the number of nucleons and the number of neutrons in nucleus X.	
	number of nucleons =	
	number of neutrons =	
		[2]
(b)	State one similarity and one difference between a β^+ particle and a β^- particle.	
	similarity:	
	difference:	
		[2]
		[Total: 4]
		[

(a) A nucleus X decays by emitting a β^+ particle to form a new nucleus, $^{23}_{11}Na$.

7