IMD0029 - Estrutura de Dados Básicas 1 –2023.2 – Prova 01 Prof. Eiji Adachi M. Barbosa

Nome:	
Matrícula:	

ANTES DE COMEÇAR A PROVA, leia atentamente as seguintes instruções:

- Esta é uma prova escrita de caráter <u>individual</u> e sem consultas a pessoas ou material (impresso ou eletrônico).
- A prova vale 5,0 pontos na Unidade I e o valor de cada questão é informado no seu enunciado.
- Preze por respostas <u>legíveis</u>, bem <u>organizadas</u> e <u>simples</u>.
- As respostas devem ser em <u>caneta</u>. Respostas em lápis serão aceitas, mas eventuais questionamentos sobre a correção não serão aceitos.
- Celulares e outros dispositivos eletrônicos devem permanecer desligados durante toda a prova.
- Desvios éticos ou de honestidade levarão a nota igual a zero na Unidade 1.

Questão 1: (1,5ponto) Faça uma função de busca que recebe como entrada o array A, o seu tamanho N e um inteiro K e retorna um inteiro i que indica o índice do elemento mais à direita no array A que seja igual ao valor de K. Caso não sejam encontrados elementos iguais a K, deve-se retornar -1. Por exemplo: considerando o array A = $\{0, 2, 2, 2, 3, 8, 8, 8, 10\}$; se K = 2, sua função deve retornar 3, e se K = 1, sua função deve retornar -1. Considere que o array A conta com possíveis repetições e já está ordenado em ordem crescente. Sua função deverá obrigatoriamente ser <u>recursiva</u>, ter complexidade $\Theta(\lg(n))$ e seguir a assinatura:

Obs.: Nesta questão, não podem ser usadas instruções para realizar repetição, como for, while e do-while. Ou seja, você deverá construir sua solução apenas com chamadas recursivas.

Questão2: (1,5 ponto) Dado um número natural N, implemente uma função <u>recursiva</u> chamada contaImpares que retorne a quantidade de dígitos ímpares que o número N possui. Por exemplo, se N for igual a 2746, sua função deve retornar 1, pois 2746 possui 1 dígito ímpar, que é o 7. Sua função deverá seguir a assinatura:

Obs.: Nesta questão, não podem ser usadas instruções para realizar repetição, como for, while e do-while. Ou seja, você deverá construir sua solução apenas com chamadas recursivas.

<u>justificando sucintamente</u> sua resposta. Marcações de V ou F <u>sem justificativas não serão aceitas.</u>	
 1 - () Os algoritmos de busca sequencial e de busca binária podem ser empregados em quaisquer arrays passados como entrada. 	
2 – () Os algoritmos de busca sequencial e de busca binária possuem mesma complexidade assintótica para o pior caso.	
3 – () O algoritmo de ordenação Selection Sort sempre executa o mesmo número de comparações entre elementos, independentemente do array de entrada, tornando-o previsível em termos de tempo de execução.	
4 – () O algoritmo de ordenação Insertion Sort sempre executa o mesmo número de comparações entre elementos, independentemente do array de entrada, tornando-o previsível em termos de tempo de execução.	
5 – () Considerando o melhor caso, o Insertion Sort tem menor complexidade assintótica do que o Selection Sort.	
6 – () Considerando o pior caso, o Selection Sort tem menor complexidade assintótica do que o Insertion Sort.	
7 - () O algoritmo de ordenação Merge Sort possui a mesma complexidade assintótica no melhor e no pior caso.	
8 – () O algoritmo de ordenação Quick Sort possui a mesma complexidade assintótica no melhor e no pior caso.	

Questão 3: (2,0 pontos) Para cada uma das afirmações a seguir, marque V (verdadeiro) ou F (falso),