What's the Difference between Cpk and Ppk?

<u>Cpk</u>	<u>Ppk</u>
Process <u>Capability</u> Index	Process <u>Performance</u> Index
Cp, Cpu, Cpl, Cpk	Pp, Ppu, Ppl, Ppk
Sometimes referred to as "Short term" capability	Sometimes referred to as "Long term" capability
Uses ô, an estimate of standard deviation R-bar / d2	Uses 's' as the standard deviation stdev.s
Considers only within subgroup variation	Considers <u>overall</u> variation
Does NOT account for the shifts and drifts between subgroups	Does account for the shifts and drifts between subgroups
Potential capability	"As viewed by customer" capability

	Capability Indicies by Sampling Option		
	Option #1 Measure 100% of parts in batch	Option #2 Measure a randomly selected sample of parts from batch	Option #3 Measure repeated samples of parts drawn at uniform intervals across batch production
Arthimetic mean or Average	μ , pronounced /mew/, mean of the population	त्र, pronounced /ex-bar/, mean of the sample	$ar{ar{X}}$, pronounced /ex-double bar/, grand average of the sample means
Standard Deviation (measures spread of data)	σ, Pronounced /sig-ma/, Population standard deviation	s, Sample standard deviation	ỡ, pronounced /sig-ma hat/, Estimated standard deviation
Formula for standard deviation	$\sigma = \sqrt{\frac{E(xi - 10)^2}{N}}$	$5 = \sqrt{\frac{E(x_i - \bar{x})^2}{n-1}}$	ら= F/d2
Where	N = Count of population	n = Count of sample	R-bar = Average of range vlaues from control chart d2 = Constant from Table of Control Chart Constants
Indicies used	Pp, Ppu, Ppl, Ppk, Ppm	Pp, Ppu, Ppl, Ppk, Ppm	Cp, Cpu, Cpl, Cpk, Cpm
Formulas	Pp = (USL - LSL) / (6 * σ)	Pp = (USL - LSL) / (6 * s)	Cp = (USL - LSL) / (6 * ô)
	Ppu = (USL - μ) / (3 * σ)	Ppu = (USL - x) / (3 * s)	Cpu = (USL - \overline{x}) / (3 * $\hat{\sigma}$)
	Ppl = (μ - LSL) / (3 * σ)	PpI = (x - LSL) / (3 * s)	Cpl = (₹ - LSL) / (3 * ô)
	Ppk = [Ppu,Ppl] _{Min}	Ppk = [Ppu,PpI] _{Min}	Cpk = [Cpu,Cpl] _{Min}
	Ppm = (USL - LSL) / 6 * SQRT[σ^2 + (μ - T) 2]	Ppm = (USL - LSL) / 6 * SQRT[$s^2 + (\pi - T)^2$]	Cpm = (USL - LSL) / 6 * SQRT[$\hat{\sigma}^2$ + $(\overline{x}$ - T) ²]
Where	USL = Upper Specification Limit, LSL - Lower Specification Limit, T = Target, SQRT = Square root of		

Capability Analysis Tools

A Capabaility level of Cpk	Equates to +/ sigma before the extent of the process curve meets a specification limit	At which point, the expected Defective Parts per Million (DPPM) is
0.50	1.5	133,610
1.00	3	2,700
1.33	4	63
1.50	4.5	6.8
1.67	5	0.57
2.00	6	0.002

Skewness

The coefficient of Skewness is a measure for the degree of symmetry in the variable distribution.

Negatively skewed distribution or Skewed to the left Skewness <0

Normal distribution Symmetrical Skewness = 0

Positively skewed distribution or Skewed to the right Skewness > 0

Kurtosis

The coefficient of Kurtosis is a measure for the degree of peakedness/flatness in the variable distribution.

Platykurtic distribution Low degree of peakedness Kurtosis <0

Normal distribution Mesokurtic distribution Kurtosis = 0

Leptokurtic distribution High degree of peakedness Kurtosis > 0

Sample Size	d2 (used to estimate sigma for an x-bar control chart)
2	1.128
3	1.693
4	2.059
5	2.326
6	2.534
7	2.704
8	2.847
9	2.970
10	3.078
11	3.173
12	3.258
13	3.336

Sample Size	d2 (used to estimate sigma for an x-bar control chart)
14	3.407
15	3.472
16	3.532
17	3.588
18	3.640
19	3.689
20	3.735
21	3.778
22	3.819
23	3.858
24	3.895
25	3.931