COL380 Assignment 3

Compiling:

- mpic++ -fpermissive -mcmodel=medium -std=c++0x 2013CS10219_hypersort.cpp -o 2013CS10219_hypersort
- mpirun -np procs> ./2013CS10219_hypersort <inputfilename> <outputfilename>

Design decisions:

- 1. Data is divided equally among the processors
- 2. If number of processors is one then it will undergo the complete sort.
- 3. It then does an MPI_Scatter to all other processes so that all
- 4. processes have equal parts of the array.

Parallelization strategy:

- 1. Every process sorts its local list
- 2. Pivot to divide this list into low and high(here, pivot = median of unsorted list)
- Pivot is broadcasted.
- 4. Based on its rank it decides whether to send its lower or higher half.
- 5. Then it receives the other half from its partner.
- 6. It merges this with the unsent part of its buffer.
- 7. This entire procedure is done in parallel for each process.

Load-balancing strategy:

- 1. Since data is divided by giving the start and end in the array, if the randomness is more then load is balanced almost same on all processors.
- 2. If some sub arrays are sorted then their processors will be ideal

User + Real time in output of HPC is taken as time.

Size - nprocs	2	4	8	16	32
16	157 ms	264 ms	523	1160	6248
18	305	506	891	1752	7711
20	983	1460	2355	4249	12603
22	3705	5423	8504	14623	25289

