

Problem1:

Write MIPS assembly program to check a number in \$s0 is even or odd using AND instruction. If the number is even copy it into \$s2, if it is odd copy it in \$s3.

Problem 2:

The table below holds some logical operations that are not included in the MIPS instruction set. How can these instructions be implemented using the available MIPS instructions that you know?

a.	ANDN \$s1, \$s2, \$s3 // bit-wise AND of \$s2 and !s3
b.	XNOR \$s1, \$s2, \$s3 // bit-wise exclusive-NOR

Problem 3:

Write MIPS assembly program that given the value 0xBD in register \$s1, it replaces the bits from bit 4 to bit 7 to be 0x5 instead of 0xB.

Note that in binary to replace bits by another value this is done in two steps:

- 1) Masking: this clears the unrequired bits (using AND operation)
- 2) Inserting: this inserts the required bits (using OR operation)

Problem 4:

Write MIPS assembly program that performs the following equation a = (b + 4c) without using the **mul** instruction. Assume that a, b, and c are values in \$s0, \$s1, and \$s2 respectively.

Problem 5:

Write MIPS assembly program that performs the following equation A = B - C/8 without using **div** instruction. Assume that A, B and C are values in \$s0, \$s1, and \$s2 respectively.

Problem 6:

Write MIPS assembly program that performs the following equation $A = (B + Cx2^D)$ without using **mul** instruction. Assume that A, B, C and D are values in \$s0, \$s1, \$s2 and \$s3 respectively.

Problem 7:

Write an equivalent MIPS assembly program to the following high-level programming code.

```
i=1
    j =1
    sum =0
    for (int i=1; i<=5; i++)
    {
        for (int j =1; j<=20; j++)
        {
            sum = sum + (i*j)
        }
    }</pre>
```

Problem 8:

Write an equivalent MIPS assembly program to the following pseudocode.

```
i=1
    j =1
    sum =0
    for (int i=1; i<=5; i++)
    {
        for (int j =1; j<=20; j++)
        {
            sum = sum + (the anding between the 1<sup>st</sup> complement of i with the value of j)
        }
    }
}
```