Solve each problem. Show your work, and check your answer.

Exam

1. Find the slope and y-intercept of the function from the table. Show the line differences.

x	f(x)
-1	-1
0	1
1	3
2	5
3	7

$$y$$
-intercept = _____

Graph the function as a line over the domain $-1 \le x \le 3$.

In the following two problems, solve for the value of x.

2.
$$10 = 3x - x$$

$$3. \ \frac{1}{2}(6-2x) = 2x$$

- 4. A new band charges \$300 to play for a party plus \$120 per hour. The total for BECA's 10th grade prom party was \$900.
 - (a) Make a table with x the number of hours and the cost. Start with x=0

x hours	total cost
0	
1	
2	
3	
4	
5	
6	

Show the row differences. Circle the row in the table with the right cost.

(b) Write an equation for the problem of the form y = mx + b, and solve it for x

- (c) Check the answer
- (d) Spicy: How much would be a tip for the band of 15% on the total charge?

5. (a) For the function $y = \frac{1}{2}x - 1$, fill in the T-chart, plot the points, and draw the line.

x	$y = \frac{1}{2}x - $	1

(b) Write down the slope and y-intercept of the line.

$$m =$$

$$b =$$

(c) Circle the row for the y-intercept.

In the following two problems, simplify by collecting like terms.

6.
$$4x^2 + 3x - 7 - 2x^2 - x + 4$$

6.
$$4x^2 + 3x - 7 - 2x^2 - x + 4$$
 7. $3(a^2 - 2a + 1) - 2(a^2 - a - 4)$

8. After lunch on the day of the math test, Dr. Huson took 12 students for dessert. Some students wanted ice cream, which cost \$2.25 each, and the others got pie, which cost \$3.50 each. The total cost was \$32.00. (Dr. Huson did not eat) How many students got each kind of dessert?

Use x for the number of ice cream orders and y for the number of pie orders.

(a) Complete the table of costs below. (the first row is done as a hint)

x	y	cost for ice creams	cost for pies	total cost
0	12	\$0.00	\$42.00	\$42.00
2	10			
4	8			
6	6			
8	4			
10	2			
12	0			_

(b) Complete the two equations modeling the situation, one adding up to 12 people, the other adding up to \$32.00.

$$x + y = \underline{\hspace{1cm}}$$

$$x \times \underline{\hspace{1cm}} + y \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

(c) Circle the row in the table that has the correct total. Write down how many students wanted ice cream and pie (x and y).

$$x = \underline{\hspace{1cm}}$$
 $y = \underline{\hspace{1cm}}$

(d) Check your answer.

5

Distribute

Factor each expression

9.
$$(x+1)(x+5)$$

11.
$$x^2 + 6x + 5$$

10.
$$(x+3)(x+3)$$

12.
$$x^2 + 7x + 12$$

Solve for the value of x.

13.
$$11 = \frac{1}{3}x + 2x - 10$$

14. Given
$$f(x) = 4x + 7$$
. Simplify $f(2)$.

15. Given
$$f(x) = -\frac{(12+4x)}{11}$$
. Simplify $f(-3)$.