F. Clear The Matrix

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

You are given a matrix f with 4 rows and n columns. Each element of the matrix is either an asterisk (*) or a dot (.).

You may perform the following operation arbitrary number of times: choose a square submatrix of f with size $k \times k$ (where $1 \le k \le 4$) and replace each element of the chosen submatrix with a dot. Choosing a submatrix of size $k \times k$ costs a_k coins.

What is the minimum number of coins you have to pay to replace all asterisks with dots?

Input

The first line contains one integer n ($4 \le n \le 1000$) — the number of columns in f.

The second line contains 4 integers a_1 , a_2 , a_3 , a_4 ($1 \le a_i \le 1000$) — the cost to replace the square submatrix of size 1×1 , 2×2 , 3×3 or 4×4 , respectively.

Then four lines follow, each containing n characters and denoting a row of matrix f. Each character is either a dot or an asterisk.

Output

Print one integer — the minimum number of coins to replace all asterisks with dots.

Examples

```
input
4
1 10 8 20
***.
***.
***
output
9
```

```
input

7
2 1 8 2
.***...
.***..*
.***...
output

3
```

```
input

4
10 10 1 10
***.
*..*
*..*
output
```

Note

In the first example you can spend 8 coins to replace the submatrix 3×3 in the top-left corner, and coin to replace the 1×1 submatrix in the bottom-right corner.

1

In the second example the best option is to replace the 4×4 submatrix containing columns 2-5, and the 2×2 submatrix consisting of rows 2-3 and columns 6-7.

In the third example you can select submatrix 3×3 in the top-left corner and then submatrix 3×3 consisting of rows 2-4 and columns 2-4.