TD5-6

October 2022

1 Black-Scholes model

We build a class that allows to compute the price of a European vanilla option, and also its Δ . A European vanilla option has the following characteristics:

- \bullet Type: Call or Put (to be modelled with an enum)
- ullet Strike price: K
- Expiry date: T

Its price depends on the following market data:

- \bullet Underlying price: S
- \bullet Interest rate: r

The following parameter is also required in order to price the option:

• Volatility: σ

Write a method that computes the price and the delta of the options. The Black-Scholes formula can be found on the internet.

Hint: use std::erfc.

2 The Cox-Ross-Rubinstein model

Implement a class that allows to compute the price of an option using the CRR method.

In the CRR model the price of an asset evolves in discrete time steps $(n = 0, 1, 2, \cdots)$. Randomly, it can move up by a factor 1 + U or down by 1 + D independently at each time step, starting from the spot price S_0 (see Figure below).

Figure 1: Binary Tree

As a result, the stock price at step n and node i is:

$$S(n,i) = S_0 (1+U)^i (1+D)^{n-i},$$

where $S_0 > 0, U > D > -1$ and $0 \le i \le n$. There is also a risk-free asset which grows by the factor 1 + R > 0 at each time step (starting at 1 at step 0).

The model admits no arbitrage iff D < R < U.

In the CRR model the price H(n,i) at time step n and node i of a **European option** with expiry date N and payoff h(S(N)) can be computed using the CRR procedure, which proceeds by backward induction:

• At the expiry date N:

$$H(N,i) = h(S(N,i))$$

for each node $i = 0, \dots, N$.

• If H(n+1,i) is already known for all nodes $i=0,\cdots,n+1$ for some $n=0,\cdots,N-1,$

$$H(n,i) = \frac{qH(n+1,i+1) + (1-q)H(n+1,i)}{1+R}$$

for each $i = 0, \dots, n$; and where q is defined by

$$q = \frac{R - D}{U - D}$$

is called the risk-neutral probability.

3 Starting the project!

- 1. Implement the abstract class Option:
 - with a private member double expiry, along with a getter method getExpiry()
 - with a pure virtual method $double \ payoff(double), \ payoff()$ represents the function h
 - write a constructor that initialize expiry with an argument
- 2. Derive Option into another abstract class Vanilla Option:
 - with private attributes double strike
 - write a constructor which initialize _ expiry and _ strike with arguments (call the base constructor)
 - the constructor should ensure that the arguments are nonnegative
 - ullet write a **classe enum** optionType that has two values: call and put
 - write an pure virtual method GetOptionType() which should return an optionType enum
- 3. Derive Vanilla Option into two classes: Call Option and Put Option.
 - They should use the constructor of Vanilla Option
 - For a Call option with strike K, the payoff is given by $h\left(z\right)=\begin{cases}z-K & \text{if }z\geq K\\0 & \text{otherwise.}\end{cases}$
 - For a Put option with strike K, the payoff is given by $h\left(z\right)=\begin{cases}K-z & \text{if } K\geq z\\0 & \text{otherwise.}\end{cases}$
 - Override the GetOptionType() accordingly in the derived classes
- 4. Create the class BlackScholesPricer
 - With constructor BlackScholesPricer(VanillaOption* option, double asset_price, double interest rate, double volatility)
 - ullet Declare BlackScholesPricer as a friend class of VanillaOption in order for the former to access the strike of the latter
 - Write the operator() which returns the price of the option
 - Write the method delta() which returns the Delta of the option

- 5. Implement a class *BinaryTree* that represents the data structure (path tree) used for the CRR method:
 - It should be a template class BinaryTree < T >
 - ullet It should have a member $_depth$, representing N
 - \bullet It should contain a private member _ tree, a vector of vectors (STL) to hold data of type T
 - Implement the setter method setDepth(int) a setter for $_depth$, that resizes $_tree$ and allocate/deallocate properly the vectors in tree
 - Implement the setter method setNode(int, int, T) which sets the value stored in $_tree$ at the given indices
 - Implement the getter method getNode(int, int) which retrives the corresponding value
 - Implement the method display() which prints the all the values stored

Figure 2: Examples of output by the display() function

- 6. Create the class CRRPricer
 - With constructor CRRPricer(Option* option, int depth, double asset_price, double up, double down, double interest_rate)
 - depth: N
 - asset_price: S_0
 - up, down, interest rate: U, D, R respectively
 - In the constructor, check for arbitrage
 - Create the tree structure to store the tree of the desired depth (hint: use *BinaryTree* with an appropriate type)
 - Write the method *void compute()* that implements the CRR procedure
 - Write the getter method get(int, int) that returns H(n, i).
 - Write the operator() which returns the price of the option, it must call compute() if needed
 - The CRR method provides also a closed-form formula for option pricing:

$$H(0,0) = \frac{1}{(1+R)^N} \sum_{i=0}^{N} \frac{N!}{i!(N-i)!} q^i (1-q)^{N-i} h(S(N,i)).$$

Put an optional argument bool closed_form that defaults to false to the operator(). When it is set to true, the above formula should be used instead of the CRR procedure.

- 7. Similarly to *VanillaOption*, design *DigitalOption* and its derived classes (*DigitalCallOption* and *DigitalPutOption*) in order to take into account the following type of options:
 - Digital Call with payoff: $h(z) = 1_{z>K}$
 - Digital Put with payoff: $h(z) = 1_{z < K}$
 - Enable *BlackScholesPricer* to price digital options as well (closed form formulas also exist for Black-Scholes prices and deltas for digital options)