Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Мегафакультет компьютерных технологий и управления Кафедра информатики и прикладной математики

Теория информации Лабораторная работа №2 «Эффективное кодирование дискретных сообщений» Вариант 7

Группа: Р3218

Студент: Петкевич Константин

Преподаватель: Тропченко А. А.

1. Постановка задачи

Сообщение X с символами x_1 , x_2 , x_3 , x_4 , x_5 передается по дискретному двоичному каналу. Полоса пропускания канала обеспечивает возможность передачи двоичных символов длительностью τ . Требуется выбрать наилучший способ кодирования.

2. Расчет пропускной способности дискретного двоичного канала

В данном случае H_{max} = 1 (канал двоичный) и $=10^{-4}$ (в соответствии с вариантом), поэтому

$$C = V_k H_{max} = \frac{1}{-} = 10^4$$

3. Закодированное пятью способами сообщение

Вероятности появления каждого из пяти символов в исходном сообщении соответственно равны

0,1	0,2	0,3	0,1	0,3

Первый способ: равномерное двоичное кодирование

x	код
x1	000
x2	001
x3	010
x4	011
x5	100

Второй способ: кодирование методом Шеннона-Фоно

. 111				
x	p(x)		код	
x 5	0,3	0	0	
x3	0,3	0	1	
x2	0,2	1	0	
x4	0,1	1	1	0
x1	0,1	1	1	1

Третий способ: кодирование методом Шеннона-Фоно с укрупнением

x	p(x)		код					
x5x5	0,09	0	0	0				
x5x3	0,09	0	0	1				
x3x5	0,09	0	0	1	0			
x3x3	0,09	0	1	0	1			
x5x2	0,06	0	1	1	0			
x3x2	0,06	0	1	1	1			
x2x5	0,06	1	0	0	0			
x2x3	0,06	1	0	0	1	0		
x2x2	0,04	1	0	0	1	1		

vEv.4	0.03	4	^		_	_		
x5x4	0,03	1	0	1	0	0		
x5x1	0,03	1	0	1	0	1		
x3x4	0,03	1	0	1	1	0		
x3x1	0,03	1	0	1	1	1		
x4x5	0,03	1	1	0	0	0		
x4x3	0,03	1	1	0	0	1		
x1x5	0,03	1	1	0	1	0		
x1x3	0,03	1	1	0	1	1		
x2x4	0,02	1	1	1	0	0		
x2x1	0,02	1	1	1	0	1	0	
x4x2	0,02	1	1	1	0	1	1	
x1x2	0,02	1	1	1	1	0	0	
x4x4	0,01	1	1	1	1	0	1	
x4x1	0,01	1	1	1	1	1	0	
x1x4	0,01	1	1	1	1	1	1	0
x1x1	0,01	1	1	1	1	1	1	1

Четвертый способ : кодирование методом Хаффмана

х	p(x)	Код				
x5	0,3	1	0			
x3	0,3	1	1			
x2	0,2	0	0			
x4	0,1	0	1	0		
x1	0,1	0	1	1		

Пятый способ : кодирование методом Хаффмана с укрупнением

x	p(x)				код			
x5x5	0,09	0	1	0				
x5x3	0,09	0	1	1				
x3x5	0,09	0	0	0	0			
x3x3	0,09	0	0	0	1			
x5x2	0,06	1	0	0	0			
x3x2	0,06	1	0	0	1			
x2x5	0,06	1	0	1	0			
x2x3	0,06	1	0	1	1			
x2x2	0,04	0	0	1	1	0		
x5x4	0,03	0	0	1	0	0	0	
x5x1	0,03	1	1	0	0	1		
x3x4	0,03	1	1	0	1	0		

x3x1	0,03	1	1	0	1	1		
x4x5	0,03	1	1	1	0	0		
x4x3	0,03	1	1	1	0	1		
x1x5	0,03	1	1	1	1	0		
x1x3	0,03	1	1	1	1	1		
x2x4	0,02	0	0	1	0	0	0	
x2x1	0,02	0	0	1	0	0	1	
x4x2	0,02	0	0	1	0	1	0	
x1x2	0,02	0	0	1	0	1	1	
x4x4	0,01	0	0	1	1	1	0	0
x4x1	0,01	0	0	1	1	1	0	1
x1x4	0,01	0	0	1	1	1	1	0
x1x1	0,01	0	0	1	1	1	1	1

4. Расчет скорости передачи информации для каждого способа

Первый способ: равномерное двоичное кодирование

Каждая кодовая комбинация имеет одинаковую длину и передается в течение одного и того же времени au:

$$R = V_k * H = \frac{H}{\tau} = \frac{-\sum_{i=1}^5 p(x_i) lb(p(x_i))}{\tau} = \frac{2,17}{3*10^{-4}} = 7236,5 \text{ } 6um/c$$

Второй способ: кодирование методом Шеннона-Фоно

Некоторые кодовые комбинации имеет разную длину и передаются в течение разного времени, поэтому понадобится сделать некоторое усреднение:

$$R = V_k * H = \frac{H}{\tau} = \frac{-\sum_{i=1}^5 p(x_i) lb(p(x_i))}{\sum_{i=1}^5 p(x_i) \tau_i} = \frac{2,17}{2,2*10^{-4}} = 9867,96 \text{ } 6um/c$$

Третий способ: кодирование методом Шеннона-Фоно с укрупнением

При расчете потребуется дополнительно учесть то, что рассматривается передача пары символов:

$$R = V_k * H = 2 * \frac{H}{\tau} = 2 * \frac{-\sum_{i=1}^{5} p(x_i) lb(p(x_i))}{\sum_{i=1}^{5} p(x_i) \tau_i} = \frac{2,17}{2,2*10^{-4}} = 9867,96 \text{ } 6 um/c$$

Четвертый способ: кодирование методом Хаффмана Вычисления аналогичны расчету в случае метода Шеннона-Фоно:

$$R = V_k * H = \frac{H}{\tau} = \frac{-\sum_{i=1}^{5} p(x_i) lb(p(x_i))}{\sum_{i=1}^{5} p(x_i) \tau_i} = \frac{2,17}{2,2*10^{-4}} = 9867,96 \ 6 um/c$$

Пятый способ: кодирование методом Хаффмана с укрупнением Вычисления похожи на расчет в случае метода Шеннона-Фоно с укрупнением:

$$R = V_k * H = 2 * \frac{H}{\tau} = 2 * \frac{-\sum_{i=1}^{5} p(x_i) lb(p(x_i))}{\sum_{i=1}^{5} p(x_i) \tau_i} = \frac{2,17}{2,21*10^{-4}} = 9845,58 \ 6 um/c$$

Таким образом, имеются три наиболее эффективных способа кодирования заданного сообщения с равной скоростью передачи информации.

5. Примеры декодирования сообщений

Первый вариант: кодирование методом Шеннона-Фоно

Предположим, что было получено двоичное сообщение 1100100. Пользуясь таблицей соответствия, пытаемся найти символы, соответствующие кодам: 1, далее - 11, далее - 110. Коду 110 соответствует символ x4. Просматриваем коды далее : коду 0 не соответствует ни один символ, а коду 01 - символ x2. Коду 00 соответствует символ x1, значит, было передано сообщение x4x1x2.

Второй вариант: кодирование методом Шеннона-Фоно с укрупнением Декодируем сообщение 11001000. Пользуясь таблицей соответствия, можем сказать, что в сообщении четыре символа с кодами пар соответственно 1100 и 1000. Декодированное сообщение имеет вид x4x5x2x5.

Третий вариант: кодирование методом Хаффмана

Рассмотрим сообщение 110010 и разделим его на коды отдельных символов : 11 00 10. Получаем сообщение x3x2x5.

Четвертый вариант: кодирование методом Хаффмана с укрупнением Декодируем сообщение 110010000. Пользуясь таблицей соответствия, можем сказать, что в сообщении четыре символа с кодами пар соответственно 11001 и 0000. Декодированное сообщение имеет вид x5x1x3x5.

6. Выводы по работе

В ходе лабораторной работы были рассмотрены несколько способов кодирования дискретных сообщения для передачи по двоичному каналу: равномерное двоичное кодирование, кодирование методом Шеннона-Фоно без укрупнения и с укрупнением, кодирование методом Хаффмана без укрупнения и с укрупнением. Можно говорить о том, что укрупнение дает выигрыш не во всех случаях, но, как правило, его использование оправдано в случае, если требуется увеличить скорость передачи данных по каналу связи. Равномерное двоичное кодирование представляется наиболее простым для понимания, но не обеспечивает высоких скоростей передачи данных, в отличие от более сложных методов - Шеннона-Фоно и Хаффмана. Метод Шеннона-Фоно обеспечивает оптимальное соотношение сложности кодирования сообщения и скорости передачи информации, метод Хаффмана же находит свое применение там, где скорость передачи является наиболее критическим параметром. Метод Хаффмана создает наибольшие сложности в сравнении с остальными рассмотренными алгоритмами (особенно при использовании укрупнения).