Tutorial 10

Solution

Q.1 Group or Not?

Is each of the following cases a group?

- a) Integers under addition
- b) Even numbers under addition
- c) Odd numbers under addition
- d) Integers under multiplication
- e) Multiples of 7 under addition
- f) Complex numbers under addition
- g) Complex numbers under multiplication
- h) 2×2 real matrices under addition
- i) 2×2 real matrices under multiplication

Pause and think:

https://www.youtube.c om/watch?v=qvx9TnK8 5bw&list=PLi01XoE8jY oi3SgnnGorR_XOW3IcK -TP6&index=10

Q.1(Solution)

- a) Yes.
- b) Yes.
- c) No.
 - It violates the Closure property and there is no identity.
- d) No.
 - \circ There are no inverses for elements other than 1 or -1.
- e) Yes.
- f) Yes.
- g) No.
 - 0 has no inverse.
- h) Yes.
- i) No.
 - There are no inverses for matrices with zero determinant.

Q.2 Abelian or not?

 \square Let *G* be the set of 2 \times 2 real matrices with non-zero determinant.

a) Is $\langle G, + \rangle$ a group? If so, is it an Abelian group?

b) Is $\langle G, \times \rangle$ a group? If so, is it an Abelian group?

Q.2(Solution)

- a) Not a group.
 - It does not satisfy the closure property. For example, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ has zero determinant, thus not belonging to G.
- b) Yes. Non-Abelian.
 - For matrices, $AB \neq BA$ in general.

Q.3 Unit Circle on Complex Plane

□ Consider the set of complex numbers on the unit circle:

$$H = \{ z \in \mathbb{C} \colon |z| = 1 \}.$$

 \square Denote multiplication by \times .

• e.g.
$$(1+2i)(3-i)$$

= $(3+2)+(6-1)i$
= $5+5i$.

- a) Show that $\langle H, \times \rangle$ forms a group.
- b) Does it have a subgroup of order 3? Why?

Q.3 (Solution a)

Each element in H can be represented as $e^{i\theta}$. We need to check that the four properties hold:

i. Closure:

•
$$e^{i\alpha}e^{i\beta} = e^{i(\alpha+\beta)} \in H$$

ii. Identity: 1 is the identity element

•
$$e^{i\alpha}1 = 1e^{i\alpha} = e^{i\alpha}$$

iii. Inverse: $e^{-i\alpha}$ is the inverse of $e^{i\alpha}$.

•
$$e^{i\alpha}e^{-i\alpha}=e^{-i\alpha}e^{i\alpha}=1$$

iv. Associativity:

•
$$(e^{i\alpha}e^{i\beta})e^{i\gamma} = e^{i\alpha}(e^{i\beta}e^{i\gamma}) = e^{i(\alpha+\beta+\gamma)}$$

Q.3 (Solution b)

- □ Does it have a subgroup of order 3? Why?
- Yes.
- $\{1, e^{j2\pi/3}, e^{j4\pi/3}\}$

➤ Think: how about a subgroup of order 8?

Q.3 (Solution b)

It has a subgroup of order 8!

> The elements are:

$$\{e^{jk2\pi/8} = e^{jk\pi/4}\},\,$$

where k = 0, 1, 2, ..., 7.

Q.4 Binary Linear Code

- \square Recall that a binary linear code C is a subset of \mathbb{B}^n .
- □ It is defined by the encoding function $f: \mathbb{B}^k \to \mathbb{B}^n$, where f(u) = uG and G is the generator matrix.
- \square Is C a subgroup of \mathbb{B}^n ?

Q.4 (Solution)

- ☐ Yes, it is a subgroup.
- a) Closure
 - \circ Consider two codewords, c_u and c_v .
 - $c_u + c_v = uG + vG = (u + v)G$, which is a codeword.
- b) Identity
 - \circ 0 is a codeword, since u = 0 implies f(u) = uG = 0.
 - \circ 0 is the identity, since c + 0 = c for any codeword c.
- c) Inverse
 - The inverse of *c* is *c* itself, since c + c = 0.
- d) Associativity
 - $c_u + c_v + c_w = c_u + (c_v + c_w)$