Probabilistic Logical Networks Introduction

Nil Geisweiller

OpenCog Foundation

The Robotics Garage Project 2016

- Introduction
- 2 Example
- Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

- Introduction
- 2 Example
- Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

What is PLN?

http://wiki.opencog.org/wikihome/index.php/OpenCogPrime:PLNBookErrata

http://wiki.opencog.org/wikihome/index.php/PLNBook

What is PLN?

- Handling the kind of uncertain, messy reasoning we humans are so good at, but machines not so good.
- While maintaining full consistency with Probability Theory!

What is PLN?

Follow the Patternist Philosophy. Mixing extensional and intensional reasoning.

Inheritance <0.4, 0.8> Dolphin Fish

What is PLN?

Very good at mixing knowledge coming from different sources with different confidence levels.

- Introduction
- 2 Example
- Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

Example: Query

What is the color of the sky?

```
Inheritance <?>
Sky
Variable "$Color"
```

Example: Background Knowledge

```
John says that the sky is Pink (KB.1)
Evaluation <1 0.99>
 Predicate "Say"
 List
   Concept "John"
   Inheritance
     Concept "Sky"
     Concept "Pink"
John's credential is low (KB.2)
Implication < 0.6 0.1>
 Variable "$X"
 Evaluation
   Predicate "Sav"
   List
     .lohn
     Variable "$X"
 Variable "$X"
```

```
According to my limited observations the sky is blue
(KB.3)
Inheritance <0.9 0.6>
Concept "Sky"
Concept "Blue"

Though sometimes pink as well
(KB.4)
Inheritance <0.1 0.6>
Concept "Sky"
```

Concept "Pink"

Example: Rules

```
Deduction (R.1)
Inheritance <TV1>
 Α
Inheritance <TV2>
 C
Inheritance < f_1(TV1, TV2, ...)>
 C
Disjunction Composition (R.2)
P <TV1>
Q <TV2>
And < f_A(TV1, TV2)>
 O
```

```
Inversion (R.3)
Inheritance <TV>
 В
Inheritance <f3(TV, ...)>
 Α
Conditional Instantiation (R.4)
Implication <TV>
Q[V->T] < f_2(TV, ...)>
```

Example: Inference

Only one inference step: Apply (R.4) on (KB.2)

Inheritance < 0.6 0.099>

Concept "Sky"

Concept "Blue"

When producing that conclusion PLN will merge it to the existing one which has a much higher confidence, so the result will be

Inheritance < 0.91 0.62>

Concept "Sky"

Concept "Blue"

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

- 1 Introduction
- 2 Example
- 3 Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

- Introduction
- 2 Example
- Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

Level 3: Contextual Inference

Level 4: Sugar

SubSet

SubSet A B ~~$$\equiv P(B|A) = s$$~~

Fuzzy/Multi sets

$$P(B|A) = \frac{\sum_{x} \min(A(x), B(x))}{\sum_{x} A(x)}$$

Level 3: Contextual Inference

Level 4: Sugar

And, Or, Not

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication
Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Level 0: Subset, And, Or, Not

Level 0 is all about extensional constructs.

Rules dealing with these constructs

- modus ponens
- deduction, inversion
- conjunction, disjunction, negation compositions
- universal and conditional instantiations

form the basis of PLN.1

¹ForAll let aside

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication
Level 2: Intensional Inheritance and Implication

evel 2. Contestinal informace and implicat

Level 3: Contextual Inference

Level 4: Sugar

Level 0: Subset, And, Or, Not

Level 0 is all about extensional constructs.

Rules dealing with these constructs

- modus ponens
- deduction, inversion
- conjunction, disjunction, negation compositions
- universal and conditional instantiations

form the basis of PLN.1

Take away

All the remaining of PLN is built on top of that.

¹ForAll let aside

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

- Introduction
- 2 Example
- Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

SubSet ≡ Extensional Inheritance

ExtensionalInheritance <TV>

В

=

SubSet <TV>
A
B

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication
Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Extensional Inheritance Extensional Implication

ExtensionalInheritance <TV>
SatisfyingSet P
SatisfyingSet Q

ExtensionalImplication <TV>
= P
Q

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication

Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Extensional Inheritance Extensional Implication

```
 \begin{array}{lll} \text{ExtensionalInheritance} & < TV > & & \text{ExtensionalImplication} & < TV > \\ \text{SatisfyingSet P} & & \equiv & P \\ \text{SatisfyingSet Q} & & Q \\ \end{array}
```

$$\begin{array}{lll} \text{Member} \, {<} \text{TV} > & & \text{Evaluation} \, {<} \text{TV} > \\ \text{T} & \equiv & \text{P} \\ \text{SatisfyingSet P} & & \text{T} \\ \end{array}$$

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication

Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference Level 4: Sugar

- Introduction
- 2 Example
- 3 Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication

Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Intensional Inheritance Extensional Inheritance

Intensional Inheritance \equiv Extensional Inheritance²!!!

²in pattern space

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication

Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Intensional Inheritance Extensional Inheritance

Intensional Inheritance

Extensional Inheritance²!!!

IntentionalInheritance <TV>

В

ExtensionalInheritance <TV>
= Patterns A

Patterns B

Patterns A

All properties of A (super-sets) weighted by a prior (Solomonoff Universal Distribution).

²in pattern space

Outline Introduction Example Bottom Up

Open questions

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

- Introduction
- 2 Example
- Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

Outline Introduction Example Bottom Up

Open questions

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Context is almost kinda equivalent to SubSet!

ContextLink <TV>
Concept C
Concept A

SubSet <TV>

Concept C

Concept A

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication
Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Context is almost kinda equivalent to SubSet!

```
ContextLink <TV>
                                  SubSet <TV>
 Concept C
                                    Concept C
                                    Concept A
 Concept A
 More generally [or not]
ContextLink <TV>
                                    R <TV>
                                      And A1 C
 R
   Α1
                                      And An C
   An
```

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

- Introduction
- 2 Example
- 3 Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Lambda

Remark

All atoms taking place in a PLN inference chain have only scoped variables.

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Implication Sugar Syntax

Basic format

Implication <implicant-predicate> <implicand-predicate>

Example

Implication
Predicate "is-primate"
Predicate "is-mammal"

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication
Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Implication Sugar Syntax

Using Lambda

```
Implication
Lambda
<variables>
<implicant-predicate-body>
Lambda
<variables>
<implicand-predicate-body>
```

Example

```
Implication
 TypedVariable
   Variable X
   Type "ConceptNode"
 Lambda
   TypedVariable
     Variable X
     Type "ConceptNode"
   Evaluation
     Predicate "is-primate"
     Х
 Lambda
   TypedVariable
     Variable X
     Type "ConceptNode"
   Evaluation
     Predicate "is-mammal"
```

Level 0: Subset, And, Or, Not

Level 1: Extensional Inheritance and Implication Level 2: Intensional Inheritance and Implication

Level 3: Contextual Inference

Level 4: Sugar

Implication Sugar Syntax

Sugar form

Implication

<variables>

<implicant-predicate-body>

<implicand-predicate-body>

Example

```
Implication
TypedVariable
Variable X
Type "ConceptNode"
Evaluation
Predicate "is-primate"
X
Evaluation
```

Evaluation

Predicate "is-mammal"

Χ

- Introduction
- 2 Example
- Bottom Up
 - Level 0: Subset, And, Or, Not
 - Level 1: Extensional Inheritance and Implication
 - Level 2: Intensional Inheritance and Implication
 - Level 3: Contextual Inference
 - Level 4: Sugar
- Open questions

Instantiation done right

 How reconcile instantiations from different predicates or implications?

Suppose we have predicate Q <0.01 0.99999>

And implication P->Q <0.2 0.9>

One universally instantiate with A based on Q, leading to $Q(A) < 0.01 \ 0.99999 >$

or conditionally instantiate with A based on P->Q (assuming that P(A) holds), leading to

 $Q(A) < 0.2 \ 0.9 >$

Priors

 How to represent (let alone decide) a prior in a Atom? For instance if we have

```
Implication
<very complex P>
<very complex Q>
```

we may want to use some prior to for instance decrease the confidence of such an atom, or perhaps increase its confidence that Q doesn't depend on P.

Perhaps we can represent these priors in the AtomSpace itself! using higher order facts, etc, and just let PLN chew on them.

Objective Probabilistic Atom Semantics

What is Ω ?

```
Implication <TV>
 Evaluation
   Predicate "sensor-A"
 Evaluation
   Predicate "sensor-B"
Implication <TV>
 Lambda
   Variable "$T"
   AtTime "$T"
     Evaluation
       Predicate "sensor-A"
 Lambda
   Variable "$T"
   AtTime "$T"
     Evaluation
       Predicate "sensor-R"
```

So Evaluation a can be a Predicate as well. Then you don't want to use systematically Fuzzy TV semantics for And, Or, etc.

