CISC 2210 Discrete Structures - Noson S. Yanofsky

Student: Ruslan Pantaev

March 10, 2018

2.2

1. Give the converse and contrapositive for each of the following propositions:

(a) $p \to (q \wedge r)$

converse: $(q \wedge r) \to p$ contrapositive: $\neg (q \wedge r) \to \neg p$

(b) if x + y = 1, then $x^2 + y^2 > 1$

converse: if $x^2 + y^2 \ge 1$, then x + y = 1 contrapositive: if $x^2 + y^2 \ngeq 1$, then $x + y \ne 1$

(c) if 2+2=4, then 3+3=8

converse: if3 + 3 = 8, then2 + 2 = 4contrapositive: $if3 + 3 \neq 8$, $then2 + 2 \neq 4$

3. Consider the following propositions:

(a) Which proposition is the converse of $p \to q$?

 $q \to p$

(b)

Which proposition is the contrapositive of $p \to q$?

$$\neg q \to \neg p$$

(c)

Which propositions are logically equivalent to $p \to q$?

$$\neg p \lor q$$
$$\neg q \to \neg p$$
$$\neg (p \land \neg q)$$

9.

Construct the truth table for $[(p \lor q) \land r] \to (p \land \neg q)$

p	q	r	$[(p \vee q)$	$\wedge r$	\rightarrow	$(p \land$	$\neg q)$
0	0	0	0	0	1	0	1
0	0	1	0	0	1	0	1
0	1	0	1	0	1	0	0
0	1	1	1	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	1	1	1	1	1
1	1	0	1	0	1	0	0
1	1	1	1	1	0	0	0

11.

Construct truth tables for:

(a)

$$\neg(p\vee q)\to r$$

p	q	r	_	$(p \lor q)$	$\rightarrow r$
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	0	1	1

12.

In which of the following statements is the "or" an "inclusive or"?

(a)

Choice of soup or salad - Exclusive Or

(b)

To enter the university, a student must have taken a year of chemistry or physics in high school - Inclusive Or

(c)

Publish or Perish - Exclusive Or

(d)

Experience with C++ of Java is desirable - Inclusive Or

(e)

The task will be completed on Thursday or Friday - Exclusive Or

(f)

Discounts are available to persons under 20 or over 60 - Exclusive Or

(g)

No fishing or hunting allowed - Inclusive Or

(h)

The school will not be open in July or August - Inclusive Or

13.

The exclusive or connective \oplus , is defined by the truth table:

p	q	$p\oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

(a)

Show that $p \oplus q$ has the same truth table as $\neg(p \leftrightarrow q)$:

p	q	_	$(p \leftrightarrow q)$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

(b)

Construct a truth table for $p \oplus p$:

This is a contradiction

p	p	$p\oplus p$
0	0	0
0	0	0
1	1	0
1	1	0

(c)

Construct a truth table for $(p \oplus q) \oplus r$:

p	q	r	$(p\oplus q)$	$\oplus r$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

(d)

Construct a truth table for $(p \oplus p) \oplus p$:

p	p	p	$(p\oplus p)$	$\oplus p$
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	1	1	0	1
1	1	1	0	1
1	1	1	0	1
1	1	1	0	1

16.

(a)

Write a compound proposition that is true when exactly one of the three propositions p, q, and r is true:

$$(p \vee q \vee r)$$

18.

Prove or disprove:

(c)

$$[(p \to q) \to r] \Longleftrightarrow [p \to (q \to r)]$$

This is true by way of the transitivity of \rightarrow law.

19.

Verify the following logical equivalences using truth tables

(a)

Rule 12a:	$[(p \rightarrow$	$r) \wedge (q$	$r \rightarrow r$	\iff [(p	$\vee q) \rightarrow r$]
-----------	-------------------	----------------	-------------------	------------	-------------------------	---

p	q	r	$[(p \rightarrow r)$	\wedge	$(q \rightarrow r)]$	\leftrightarrow	$[(p\vee q)$	$\rightarrow r$]
0	0	0	1	1	1	1	0	1
0	0	1	1	1	1	1	0	1
0	1	0	1	0	0	1	1	0
0	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	0
1	0	1	1	1	1	1	1	1
1	1	0	0	0	0	1	1	0
1	1	1	1	1	1	1	1	1

20.

(b)

22.

(a)

23.

24.

(a)

(b)

(c)

(d)