TP: Méthode Numérique

TP N°1: Résolution numérique des équations non linéaires

1. But du TP

Dans ce TP, nous allons implémenter les algorithmes des méthodes de résolution des équations non linéaires étudiées: la méthode de *Dichotomie*, la méthode de *Point fixe* et la méthode de *Newton-Raphson*.

2. Énoncé du TP

Soit l'équation non linéaire : $f(x) = x^2 - 2 = 0$

- 1) Déclarer la fonction f(x) avec x = -10:0.001:10
- Tracer le graphe y = f(x) sur un intervalle tel qu'il vous permet de localiser la solution de l'équation.
- 3) Il est à noter que, les solutions exactes de cette équation sont $x_1 = \sqrt{2}$ et $x_2 = -\sqrt{2}$ et on veut trouver la première racine x_1 de cette équation en utilisant :

a) La méthode de dichotomie

- Quel est le nombre d'opération nécessaire pour atteindre une précision de ε = 0.01 si on prend l'intervalle [0, 3] ?
- Ecrire un script qui implémente la méthode de Dichotomie suivant les étapes :
 - Φ Déclarer a, b et ε
 - Initialiser un compteur d'itération
 - Ecrire l'algorithme en incrémentant le compteur i à chaque passage de boucle
 - Arrêter la boucle quand la largeur de l'intervalle devient inférieure ou égale à ε
 - Afficher la solution calculée ainsi que le nombre d'itérations.
- Faire dérouler le programme et remplir la table ci-dessous :

i	a	b	С	f(a)	<i>f</i> (b)	f(c)	ε
			·				

b) La méthode de point fixe

- Quelles sont les formes possibles de la fonction g(x)?
- Quelle est la fonction qui vérifie le théorème précédent, sur l'intervalle [0, 3] ?
- Ecrire un programme Matlab qui donne la solution de cette équation. Prendre $\varepsilon=0.01$ et $x_0=0$ puis $x_0=3$. Conclure!.

c) La méthode de Newton-Raphson

- Ecrire un programme Matlab qui donne la solution de cette équation. Prendre ε = 0.01 et x₀ = 2 puis x₀ = 3. Conclure!.
- 4) Comparer les résultats des différentes méthodes implémentées.