로드 노이즈 능동제어 시스템

유 용길

목차

- ●개요
- 제어 알고리즘
- 모의 검증 실험
- 실차 시험
- DSP 적용

개요

▶ 연구 필요성 및 목적

▶ 연구 배경

차량 주행시 발생하는 로드 노이즈는 운전자가 차량을 운전함에 있어 큰 불편함을 줄 수 있으나, 수동적인 방법을 이용하여 차단하게 되면 차량 무게 증가로 인한 문제가 발생

▶ 연구 목적

차량 스피커를 이용한 능동형 로드노이즈 제어 기술 개발

▶ 연구 목표

100~500Hz 대역의 노이즈를 최대 3dB 이상 절감

▶ 활용 방안 및 기대 효과

차량의 연비를 유지하면서 로드노이즈를 절감하여 탑승자에게 쾌적한 환경을 제공

제어 알고리즘

Filtered-x LMS Algorithm

- ▶ Feedforward 제어
- ▶ FIR 필터를 기반으로 Secondary Path 및 제어기 설계
- FXLMS 알고리즘을 통하여 에러를 줄이는 방향으로 제어기가 Update $\mathbf{w}(n+1) = \mathbf{w}(n) + \mu \mathbf{x}'(n) e(n)$

$$\mathbf{x'}(n) = \hat{s}(n) * \mathbf{x}(n)$$
: Filtered x

<Filtered-x LMS Algorithm>

제어 알고리즘

▶ 시뮬레이션 결과

▶ 50Hz 이상의 대역에서 제어에 성공

모의 검증 실험

▶ 실험 세팅

모의 검증 실험

▶ 실험 결과

▶ I차 실험

- ▶ 시스템 셋팅
 - ▶ 계측 및 제어 기기 AutoBox(DS1005)
 - Sensor Conditioner
 - Accel Sensor
 - Mic Conditioner
 - Mic
 - Speaker Amp
 - Sampling Freq = IKHz
- ▶ 실험 결과
 - ▶ Accel Sensor Noise로 인해 실험 불가

▶ 2차 실험

- ▶ 시스템 셋팅
 - ▶ I차와 동일
- 실험 결과
 - ▶ 500Hz 이상 대역에서 잡음 발생 및 이하 대역에서 I~3dB 성능 확인
 - ▶ AutoBox 성능 부족으로 인한 출력 잡음 제거 및 Sensor Aliasing 방지 전용 장비 필요성 확인 → Signal Ranger 제작 결정.

Signal Ranger

- 설계 고려사항
 - Prefilter 역할 수행.
 - ▶ 제어 불가능 대역 제거.
 - ADC를 이용한 기존의 실험 장비와의 호환성.
 - Sampling Freq와 Cut off Freq의 수정 용이성.
 - ▶ 고차 FIR 필터 연산이 가능한 처리 속도.
 - ▶ Speaker Amp 일체화 (Analog type)
 - Speaker output signal Analog Filter → First-order Analog (Cut-off 1kHz)

▶ 3차 실험

- ▶ 시스템 세팅
 - > Speaker output에 Signal Ranger 장착.
- 실험 결과
 - ▶ LMS 필터 계수 발산.
 - ▶ Sensor Aliasing이 원인으로 추정.
 - Signal Ranger Upgrade 결정.

Signal Ranger Upgrade

- ▶ 설계 고려 사항
 - 기존의 Signal Ranger보다 빠른 처리 속도.
 - ▶ 더 빠른 Sampling Freq.
 - > Anti-Aliasing Analog Filter 추가. → First-order Analog (Cut-off 1kHz)

4차 실험

- ▶ 시스템 세팅
 - ▶ Sensor input과 Speaker output에 Signal Ranger 2 장착.
- 실험 결과
 - 필터 계수 발산
 - 시스템의 특정 Part 비선형성 내포로 원인을 추정

▶ 5차 실험

- ▶ 시스템 세팅
 - ▶ Speaker Amp 교체. (Analog → Digital)
- 실험 결과
 - 제어는 성공 했으나 성능은 악화.
 - ▶ 스피커 출력 잡음에 대한 새로운 가능성 탐색 필요.

▶ 6차 실험

- ▶ 시스템 세팅
 - ▶ Signal Ranger에 다양한 형태의 필터를 넣어서 시험.
 - FIR, IIR, Moving Average 등.
- 실험 결과
 - ▶ 스피커 잡음 해결 불가.

7차 실험

- 시스템 세팅
 - ▶ Signal Ranger의 Analog filter cut-off Freq를 4KHz로 교체.
- ▶ 실험 결과
 - 가속도계 Low Freq Noise 발생 확인.

▶ 8차 실험

- ▶ 시스템 세팅
 - ▶ FXLMS 내부의 FIR 필터 계수 개수 축소. → 계산량 축소.
 - ▶ FXLMS Sampling Freq 높임.
 - ▶ High-pass filter 추가.
- 실험 결과
 - ▶ 제어 성공.
 - ▶ Sampling Freq가 2KHz일 때 3dB 이상의 제어 성능 확인.

▶ 최종 결과

DSP 적용

- ▶ 설계 요구 사항
 - ▶ Autobox 보다 빠른 연산속도.
 - ▶ 이식성이 좋은 C언어를 사용한 개발.
 - ▶ System On Ship 형태로 개발.
- ▶ Processor 선정
 - ▶ TI 사의 Keystone DSP → TMS320C6657

TMS320C6657

- 연산속도 I.25GHz
- FPU 내장
- CISC Machine

PPC750GC (Autobox)

- 연산속도 933MHz
- RISC Machine

DSP 적용

▶ 진행 상황

- ▶ AD/DA DSP 연동 작업
 - ▶ 80% 완료.
 - ▶ 연동에 쓰이는 주변장치인 uPP 동작 테스트 완료.
 - ▶ 현재 Data in/output을 위한 타이밍 세팅 중.

FXLMS 포팅 작업

- > 70% 완료.
- ▶ 기본 알고리즘 포팅 완료.
- ▶ Secondary Path 측정 코드 작성 예정.
- ▶ 코드 검증 예정.

Q&A

