A Voyage through Equations ANSWER KEY

Section 1: Identify the type of reaction

- 1) Na₃PO₄ + 3 KOH \rightarrow 3 NaOH + K₃PO₄ DOUBLE DISPLACEMENT
- 2) $MgCl_2 + Li_2CO_3 \rightarrow MgCO_3 + 2 LiCl$ **DOUBLE DISPLACEMENT**
- 3) $C_6H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O$ COMBUSTION
- 4) Pb + FeSO₄ → PbSO₄ + Fe SINGLE DISPLACEMENT
- 5) $CaCO_3 \rightarrow CaO + CO_2$ **DECOMPOSITION**
- 6) $P_4 + 3 O_2 \rightarrow 2 P_2 O_3$ **SYNTHESIS**
- 7) $2 \text{ RbNO}_3 + \text{BeF}_2 \rightarrow \text{Be(NO}_3)_2 + 2 \text{ RbF} \quad \text{DOUBLE DISPLACEMENT}$
- 8) 2 AgNO₃ + Cu \rightarrow Cu(NO₃)₂ + 2 Ag SINGLE DISPLACEMENT
- 9) $C_3H_6O + 4O_2 \rightarrow 3CO_2 + 3H_2O$ COMBUSTION
- 10) $2 C_5H_5 + Fe \rightarrow Fe(C_5H_5)_2$ **SYNTHESIS**
- 11) SeCl₆ + O₂ \rightarrow SeO₂ + 3Cl₂ SINGLE DISPLACEMENT
- 12) $2 \text{ Mgl}_2 + \text{Mn}(SO_3)_2 \rightarrow 2 \text{ MgSO}_3 + \text{MnI}_4 \text{ DOUBLE DISPLACEMENT}$
- 13) $O_3 \rightarrow O' + O_2$ **DECOMPOSITION**
- 14) $2 \text{ NO}_2 \rightarrow 2 \text{ O}_2 + \text{N}_2 \text{ DECOMPOSITION}$

Section 2: Practicing equation balancing

- 1) $2 C_6 H_6 + 15 O_2 \rightarrow 6 H_2 O + 12 CO_2$
- 2) $\frac{4}{1}$ Nal + $\frac{1}{1}$ Pb(SO₄)₂ $\rightarrow \frac{1}{1}$ PbI₄ + $\frac{2}{1}$ Na₂SO₄
- 3) $2 NH_3 + 2 O_2 \rightarrow 1 NO + 3 H_2O$
- 4) **2** Fe(OH)₃ \rightarrow **1** Fe₂O₃ + **3** H₂O
- 5) $\frac{2}{2}$ HNO₃ + $\frac{1}{2}$ Mg(OH)₂ $\rightarrow \frac{2}{2}$ H₂O + $\frac{1}{2}$ Mg(NO₃)₂
- 6) $1 H_3PO_4 + 3 NaBr \rightarrow 3 HBr + 1 Na_3PO_4$
- 7) $3 C + 4 H_2 \rightarrow 1 C_3 H_8$
- 8) 2 CaO + 1 Mnl₄ \rightarrow 1 MnO₂ + 2 Cal₂
- 9) $\underline{1} \text{ Fe}_2\text{O}_3 + \underline{3} \text{ H}_2\text{O} \rightarrow \underline{2} \text{ Fe}(\text{OH})_3$
- 10) $1 C_2H_2 + 2 H_2 \rightarrow 1 C_2H_6$

- $\frac{2}{2}$ VF₅ + $\frac{10}{10}$ HI $\rightarrow \frac{1}{10}$ V₂I₁₀ + $\frac{10}{10}$ HF 11)
- $\underline{1} \text{ OsO}_4 + \underline{2} \text{ PtCl}_4 \rightarrow \underline{2} \text{ PtO}_2 + \underline{1} \text{ OsCl}_8$ 12)
- 13) $1 \text{ CF}_4 + 2 \text{ Br}_2 \rightarrow 1 \text{ CBr}_4 + 2 \text{ F}_2$
- 14) $2 Hg_2I_2 + 1 O_2 → 2 Hg_2O + 2 I_2$

18)

 $\frac{1}{2}$ Y(NO₃)₂ + $\frac{1}{2}$ GaPO₄ → $\frac{1}{2}$ YPO₄ + $\frac{1}{2}$ Ga(NO₃)₂ 15)

Section 3: Predicting the products of chemical reactions

- 1) $\underline{2}$ Ag + $\underline{1}$ CuSO₄ \rightarrow $\underline{1}$ Ag₂SO₄ + $\underline{1}$ Cu Type: Single Displacement
- 2) $2 \text{ Nal} + 1 \text{ CaCl}_2 \rightarrow 2 \text{ NaCl} + 1 \text{ Cal}_2$ Type: **Double Displacement**
- $10_2 + 1H_2 \rightarrow 2H_2O$ 3) Type: **Synthesis**
- 4) $\frac{2}{3}$ HNO₃ + $\frac{1}{3}$ Mn(OH)₂ → $\frac{2}{3}$ H₂O + $\frac{1}{3}$ Mn(NO₃)₂ Type: Acid-Base
- 5) 2 AgNO₂ + 1 BaSO₄ → 1 Ag₂SO₄ + 1 Ba(NO₂)₂ Type: **Double Displacement**
- 6) 2 HCN + 1 CuSO₄ → 1 H₂SO₄ + 1 Cu(CN)₂ Type: **Double Displacement**
- $1 H_2O + 1 AgI \rightarrow 1 HI + 1 AgOH$ 7) Type: **Double Displacement**
- 8) $\frac{3}{2}$ HNO₃ + $\frac{1}{2}$ Fe(OH)₃ → $\frac{3}{2}$ H₂O + $\frac{1}{2}$ Fe(NO₃)₃ Type: Acid-Base
- 9) Type: **Double Displacement**
- 10) $1 \text{ LiNO}_3 + 1 \text{ Ag} \rightarrow 1 \text{ AgNO}_3 + 1 \text{ Li}$ Type: Single Displacement
- 11) $1 N_2 + 2 O_2 \rightarrow 2 NO_2$ Type: **Synthesis**
- Type: **Decomposition** 12) $1 H_2CO_3 → 1 CO_2 + 1 H_2O$
- 13) $1 \text{ AICI}_3 + 3 \text{ Cs} \rightarrow 3 \text{ CsCI} + 1 \text{ AI}$ Type: Single Displacement
- 14) $_{1}$ Al(NO₃)₃ + $_{1}$ Ga \rightarrow $_{1}$ Ga(NO₃)₃ + $_{1}$ Al Type: Single Displacement
- $_{1}$ H₂SO₄ + $_{2}$ NH₄OH → $_{2}$ H₂O + $_{1}$ (NH₄)₂SO₄ 15) Type: Acid-Base
- 16) $1 \text{ CH}_3\text{COOH} + 1 \text{ O}_2 \rightarrow 1 \text{ CO}_2 + 2 \text{ H}_2\text{O}$ Type: **Combustion**
- 17) $1 C_4H_8 + 6 O_2 \rightarrow 4 CO_2 + 4 H_2O$ Type: **Combustion**
- $\underline{2}$ KCI + $\underline{1}$ Mg(OH)₂ \rightarrow $\underline{2}$ KOH + $\underline{1}$ MgCl₂
- 19) $1 \text{ Zn} + 1 \text{ Au}(NO_2)_2 \rightarrow 1 \text{ Zn}(NO_2)_2 + 1 \text{ Au}$ Type: Single Displacement
- 20) $\frac{2}{1}$ KOH + $\frac{1}{1}$ H₂SO₄ → $\frac{1}{1}$ K₂SO₄ + $\frac{2}{1}$ H₂O Type: Acid-Base
- 21) $\underline{1}$ BaS + $\underline{1}$ PtCl₂ → $\underline{1}$ BaCl₂ + $\underline{1}$ PtS Type: **Double Displacement**
- 22) $2 \text{ Na}_2\text{O} \rightarrow 4 \text{ Na} + 1 \text{ O}_2$ Type: **Decomposition**

Type: **Double Displacement**