Contents

1	Ora	\mathbf{le}		3
	1.1	Obblig	gatori	3
		1.1.1	TDC	3
		1.1.2	Definizione di limite per una funzione $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$	3
		1.1.3	Definizione di continuità per una funzione $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$	3
		1.1.4	Definizione di derivate parziali e di vettore gradiente per	
			una funzione $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$ A aperto	4
		1.1.5	Definizione di differenziabilità in un punto per una fun-	
			zione $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$ e relazione con l'esistenza del	
			gradiente in quel punto	4
		1.1.6	Regola della catena nel caso generale di due funzioni, f :	
			$\mathbb{R}^n \to \mathbb{R}^m \in g: \mathbb{R}^m \to \mathbb{R}^k \dots \dots \dots \dots \dots$	5
		1.1.7	Formula di Taylor del II ordine per una funzione di due	
			variabili	5
		1.1.8	Definizione di matrice Hessiana per un funzione $f:A\subseteq$	
			$\mathbb{R}^2 \to \mathbb{R}$ e sua applicazione nella formula di Taylor del II	
			ordine	5
		1.1.9	Definizione di punto di massimo/minimo relativo, mas-	
			simo/minimo assoluto e punto di sella per una funzione	
			$f:A\subseteq\mathbb{R}^2\to\mathbb{R}$	6
		1.1.10	Teorema di Fermat sui punti stazionari di una funzione .	7
		1.1.11	Teorema di Weierstrass sullesistenza del massimo e min-	
			imo assoluto di una funzione	7
		1.1.12	Metodo dei moltiplicatori di Lagrange per la ricerca di	
			massimi e minimi vincolati per funzioni di due variabili .	7
		1.1.13	Definizione di insieme insieme semplice (o normale) in \mathbb{R}^2	
			rispetto agli assi cartesiani	7
			Formula di riduzione di integrali doppi su insiemi semplici	8
		1.1.15	Formula di cambiamento di variabili per integrali doppi e	
			tripli	8
			Cambiamento di coordinate cilindriche e sferiche	9
			Formule di riduzione per integrali tripli su un parallelepipedo	10
			Definizione di insieme definito per fili e per strati	10
		1.1.19	Formula di integrazione per fili e per strati	10

	1.1.20	Definizione di curva in \mathbb{R}^n , supporto di una curva, estremi	
		di una curva, equazione parametrica di una curva	11
	1.1.21	Definizione di curva chiusa, semplice, regolare, orientazione	
		(o verso di percorrenza) di una curva semplice	11
	1.1.22	Definizione di versore tangente ad una curva regolare	12
		Definizione di curva rettificabile e lunghezza di una curva	
		$L(\gamma)$	12
	1.1.24	Formula per il calcolo della lunghezza di una curva retti-	
		ficabile	12
	1.1.25	Definizione di integrale curvilineo di prima specie per una	
		funzione continua f lungo una curva γ di classe C^1	13
	1.1.26	Definizione di integrale curvilineo di seconda specie di	
		una forma differenziale lungo una curva di classe C^1	13
	1.1.27	Definizione di forma differenziale esatta e di potenziale di	
		una forma differenziale	13
	1.1.28	Formula per il calcolo dellintegrale curvilineo di una forma	
		differenziale esatta	14
	1.1.29	Definizione di superficie elementare di \mathbb{R}^3 : parametriz-	
		zazione di una superficie	14
	1.1.30	Definizione di area per una superficie regolare	14
	1.1.31	Area di una superficie cartesiana regolare e di una super-	
		ficie di rotazione	15
	1.1.32	Definizione di integrale di superficie per una funzione con-	
		tinua $f: \Sigma \subseteq \mathbb{R}^3 \to \mathbb{R}$, dove Σ una superficie regolare	16
1.2	Enunc	iati	16
	1.2.1	Unicità del limite	16
	1.2.2	Teorema (algebra dei limiti)	16

Chapter 1

Orale

1.1 Obbligatori

1.1.1 TDC

• Sia $h, g, f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, supponiamo che:

5.1
$$f(p) \leq g(p) \leq h(p), \forall p \in A \setminus \{p_0\}$$

5.2 $\exists \lim_{p \to p_0} f(p) = \lim_{p \to p \to p_0} h(p) = L \in \mathbb{R} \cup \{\pm \infty\}$
allora $\exists \lim_{p \to p_0} g(p) = L$

1.1.2 Definizione di limite per una funzione $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$

• Sia $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$ e sia $p_0\in\mathbb{R}^2$ punto di accomulazione per A. Si dice che:

$$\begin{split} \exists lim_{(x,y)\to(x_0,y_0)}f(x,y) &= L \in \mathbb{R} \\ \text{oppure } \exists \lim_{p\to p_0}f(p) &= L \text{ se} \\ \forall \varepsilon > 0, \exists \delta = d(p_0,\varepsilon) > 0 \mid |f(x,y)-L| < \varepsilon, \forall (x,y) \in B(p,\delta) \cap (A \setminus \{p_0\}) \end{split}$$

1.1.3 Definizione di continuità per una funzione $f:A\subset\mathbb{R}^2\to\mathbb{R}$

- Sia $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$
 - 1. f si dice continua in $p_0 \in A$ se
 - (a) p_0 è un punto <u>isolato</u> di A, oppure
 - (b) p_0 è un punto di accomulazione ed $\exists \lim_{p\to p_0} f(p) = f(p_0)$
 - 2. f si dice continua su A se f è continua in ogni punto $p_0 \in A$

1.1.4 Definizione di derivate parziali e di vettore gradiente per una funzione $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$ A aperto

• 1. Si dice che f è <u>derivabile</u>(parzialmente) rispetto alla variabile x nel punto $p_0 = (x_0, y_0)$ se

$$\exists \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0} := \frac{\partial f}{\partial x}(x_0, y_0) = D_1 f(x_0, y_0) \in \mathbb{R}$$

2. Si dice che f è derivabile (parzialmente) rispetto alla variabile y nel punto $p_0 = (x_0, y_0)$ se

$$\exists \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0} := \frac{\partial f}{\partial y}(x_0, y_0) = D_2 f(x_0, y_0) \in \mathbb{R}$$

3. Se f è derivabile (parzialmente) sia rispetto ad x ed y nel punto $p_0 = (x_0, y_0)$, si chiama (vettore)gradiente di f in p_0 il vettore:

$$\nabla f(p_0) = \left(\frac{\partial f}{\partial x}(p_0), \frac{\partial f}{\partial y}(p_0)\right) \in \mathbb{R}^2$$

Sia $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$, A insieme aperto. Supponiamo che:

$$\exists \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} : A \to \mathbb{R}$$

allora è ben definito il campo dei vettori gradiente:

$$\nabla f: \mathbb{R}^2 \supseteq A \ni p \to \nabla f(p) = \left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p)\right) \in \mathbb{R}^2$$

1.1.5 Definizione di differenziabilità in un punto per una funzione $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$ e relazione con l'esistenza del gradiente in quel punto

• Dato $A \subseteq \mathbb{R}^2$ aperto e dato $p_0 = (x_0, y_0) \in A$, la funzione $f : A \subseteq \mathbb{R}^2 \to \mathbb{R}$ si dice <u>differenziabile</u> nel punto p_0 se vale

(D)
$$\exists \lim_{(x,y)\to(0,0)} \frac{f(x) - [a(x-x_0) + b(y-y_0) + f(x_0)]}{d(p,p_0)}$$

dove $d(p, p_0) = \sqrt{(x - x_0)^2 + (y - y_0)^2}$ e per $a, b \in \mathbb{R}$ opportuni.

Se f è differenziabile nel punto $p_0 = (x_0, y_0)$, allora

$$\exists \nabla f(p_0) = \left(\frac{\partial f}{\partial x}(p_0), \frac{\partial f}{\partial y}(p_0)\right)$$

е

$$a = \frac{\partial f}{\partial x}(p_0), b = \frac{\partial f}{\partial y}(p_0)$$

1.1.6 Regola della catena nel caso generale di due funzioni, $f:\mathbb{R}^n\to\mathbb{R}^m$ e $g:\mathbb{R}^m\to\mathbb{R}^k$

- Siano $q:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ e $f:B\subseteq\mathbb{R}^m\to\mathbb{R}^k$, A e B aperti
 - (i) $g(A) \subseteq B$
 - (ii) Se $g=(g_1,\ldots,g_m), \ f=(f_1,\ldots,f_k)$ Supponiamo che $g_i:A\subseteq\mathbb{R}^n\to\mathbb{R}\ (i=1,\ldots,m)$ sia diff. in un dato $x_0\in A$ $f_i:B\subseteq\mathbb{R}^m\to\mathbb{R}\ (i=1,\ldots,k)$ sia diff. in un dato $y_0=g(x_0)$ Consideriamo ora la funzione $h:=f\circ g:A\subseteq\mathbb{R}^n\to\mathbb{R}^k,\ h=(h_1,\ldots,h_k)$ con $h_i:A\subseteq\mathbb{R}^n\to\mathbb{R},$ allora le funzioni $h_i:A\to\mathbb{R}\ (i=1,\ldots,k)$ sono diff. in x_0 e

$$Dh(x_0) = Df(g(x_0)) \cdot Dg(x_0)$$

1.1.7 Formula di Taylor del II ordine per una funzione di due variabili

• Dato $m \in \mathbb{N}$, $p_0 = (x_0, y_0) \in \mathbb{R}^2$ fissato, si chiama <u>polinomio di ordine m</u> di n = 2 variabili, centrato in p_0 , una funzione $T : \mathbb{R}^2 \to \mathbb{R}$ del tipo

$$T(x,y) = \sum_{h=0}^{m} \sum_{i=0}^{n} c_{i,h-i} (x - x_0)^{i} (y - y_0)^{h-i}$$

 $(x,y) \in \mathbb{R}^2$, dove $c_{i,h-i}$ (i = 0,...,h e h = 0,..., m) sono $\frac{(m+1)(m+2)}{2}$ coeff. ass.

Sia $f \in C^2(B(p_0, r)), p_0 = (x_0, y_0) \in \mathbb{R}^2$ e r > 0 fissato. Allora vale:

$$(FT_2) f(p) = T_2(p) + o(||p - p_0||^2)$$

 $\forall p = (x, y) \in B(p_0, r), \text{ dove}$

$$T_2(p) := f(p_0) + \langle \nabla f(p_0), p - p_0 \rangle + \frac{1}{2} \langle D^2 f(p_0) \cdot (p - p_0), p - p_0 \rangle$$

se $p \in \mathbb{R}^2$.

(polinomio di taylor del II ordine di f, centrato in p_0)

1.1.8 Definizione di matrice Hessiana per un funzione $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$ e sua applicazione nella formula di Taylor del II ordine

• Data $f \in C^2(A), A \in \mathbb{R}^2$ aperto, si chiama, matrice hessiana di f in un punto $p \in A$, la matrice 2×2

$$D^{2}f(p) = H(f)(p) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x^{2}}(p) & \frac{\partial^{2} f}{\partial y \partial x}(p) \\ \frac{\partial^{2} f}{\partial x \partial y}(p) & \frac{\partial^{2} f}{\partial y^{2}}(p) \end{bmatrix}_{2 \times 2}$$

L'applicazione della matrice Hessiana nel PT2o si può trovare nello sviluppo della dimostrazione, infatti per una funzione $F(t) = f(p_0+tv), t \in (-r,r)$ e $B(p_0,r)$ andando a calcolare il polinomio di Taylor per t=0, e supponendo di avere $v=\frac{p-p_0}{\|p-p_0\|}$, otteniamo che F''(t):

$$F''(t) = v_1 \cdot \left\langle \nabla \left(\frac{\partial f}{\partial x} \right) (p_0 + tv), v \right\rangle + v_2 \cdot \left\langle \nabla \left(\frac{\partial f}{\partial y} \right) (p_0 + tv), v \right\rangle =$$

$$= v_1 \left(\frac{\partial^2 f}{\partial x^2} (p_0 + tv) v_1 + \frac{\partial^2 f}{\partial y \partial x} (p_0 + tv) v_2 \right) + v_2 \left(\frac{\partial^2 f}{\partial x \partial y} (p_0 + tv) v_1 + \frac{\partial^2 f}{\partial y^2} (p_0 + tv) v_2 \right) =$$

$$= \frac{\partial^2 f}{\partial x^2} (p_0 + tv) v_1^2 + 2 \frac{\partial^2 f}{\partial y \partial x} (p_0 + tv) v_1 v_2 + \frac{\partial^2 f}{\partial y^2} (p_0 + tv) v_2^2$$

Pertanto calcolando F''(0) otteniamo:

$$F''(0) = \frac{\partial^2 f}{\partial x^2} (p_0 + tv)v_1^2 + 2\frac{\partial^2 f}{\partial y \partial x} (p_0 + tv)v_1v_2 + \frac{\partial^2 f}{\partial y^2} (p_0 + tv)v_2^2$$

Che può essere riscritto mediante matrice Hessiana del tipo:

$$F''(0) = \langle D^2 f(p_0)v, v \rangle$$

E sostituendola otteniamo

$$f(p_0+tv) = F(t) = f(p_0) + \langle \nabla f(p_0), v \rangle t + \frac{1}{2} \langle D^2 f(p_0)v, v \rangle t^2 + o(t^2), \text{ per } t \to 0$$

Scegliendo $t = ||p - p_0||$ e otteniamo la forma del polinomio di Taylor di II ordine. Ed è questa l'applicazione della matrice Hessiana.

1.1.9 Definizione di punto di massimo/minimo relativo, massimo/minimo assoluto e punto di sella per una funzione $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$

- Data $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$:
 - 1. $p_0 \in A$ si dice, punto di <u>massimo</u> (= max) <u>relativo</u> di f su A se $\exists r_0 > 0$ t.c. $f(p) \leq f(p_0) \, \forall p \in A \cap B(p_0, r_0)$ Rispettivamente $p_0 \in A$ si dice, punto di <u>minimo</u> (= min) <u>relativo</u> di f su A se $\exists r_0 > 0$ t.c. $f(p) \geq f(p_0) \, \forall p \in A \cap B(p_0, r_0)$
 - 2. $p_0 \in A$ si dice punto di <u>massimo</u> (= MAX) <u>assoluto</u> se $\forall p \in A$, $f(p) \leq f(p_0)$ Rispettivamente $p_0 \in A$ si dice punto di <u>minimo</u> (= MIN) <u>assoluto</u> se $\forall p \in A$, $f(p) \geq f(p_0)$

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$, A aperto. Un punto $p_0\in A$ si dice <u>punto di sella</u> se p_0 è un punto stazionario di f e $f(p)-f(p_0)$ amette sia valori positivi che negativi in ogni intorno di p_0

1.1.10 Teorema di Fermat sui punti stazionari di una funzione

- Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, A aperto. Supponiamo che esista $p_0 \in A$ t.c.
 - (i) f differenziabile in p_0 . In particulare $\exists \nabla f(p_0)$
 - (ii) p_0 sia un estremo libero di f in A

Allora $\nabla f(p_0) = \underline{O}_{\mathbb{R}^n} = (0, ..., 0)$ (n-volte)

1.1.11 Teorema di Weierstrass sullesistenza del massimo e minimo assoluto di una funzione

- Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, Supponiamo che:
 - (i) A sia limitato e chiuso, (in n = 1, A = [a, b], $\partial A = \{a, b\}$, $\mathring{A} = (a, b)$)
 - (ii) f sia continua su A

Allora esiste $\min_A f$ e $\max_A f$

1.1.12 Metodo dei moltiplicatori di Lagrange per la ricerca di massimi e minimi vincolati per funzioni di due variabili

- Sia $f\in C^1(\mathbb{R}^2)$ e V = $\{(x,y)\in\mathbb{R}^2:g(x,y)=0\}$ dove $g\in C^1(\mathbb{R}^2)$. Supponiamo che:
 - (i) $\exists \min_{\mathsf{V}} f = f(p_0) (o \exists \max_{\mathsf{V}} f = f(p_0)) \text{ con } p_0 = (x_0, y_0) \in \mathsf{V}$
 - (ii) $\exists \nabla g(p_0) \neq (0,0)$

Allora esiste $\lambda_0 \in \mathbb{R}$ (detto <u>moltiplicatore</u>) t.c. $(x_0, y_0, \lambda_0) \in \mathbb{R}^3$ è un punto stazionario della funzione.

Equivalentemente:

$$\exists \lambda_0 \in \mathbb{R} \text{ t.c. } \begin{cases} g(p_0) = 0 \\ \nabla f(p_0) + \lambda_0 \nabla g(p_0) = (0, 0) \end{cases} (*)$$

1.1.13 Definizione di insieme insieme semplice (o normale) in \mathbb{R}^2 rispetto agli assi cartesiani

• Un sottoinsieme $A \subset \mathbb{R}^2$ si dice

— Dominio semplice (o normale) rispetto all'asse y se esistono $g_1,g_2\in \overline{C^0([a,b])}$ t.c. $g_1\leq g_2$ su [a,b] e

$$A = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], g_1(x) \le y \le g_2(x)\}$$

— Dominio semplice (o normale) rispetto all'asse x se esistono $h_1, h_2 \in \overline{C^0([c,d]) \text{ t.c. } h_1 \leq h_2 \text{ su } [c,d]}$ e

$$A = \{(x, y) \in \mathbb{R}^2 : y \in [c, d], h_1(y) \le x \le h_2(y)\}$$

1.1.14 Formula di riduzione di integrali doppi su insiemi semplici

- Sia $A \subseteq \mathbb{R}^2$ un dominio semplice rispetto ad uno degli assi. Supponiamo che $f \in C^0(A)$, allora $f \in \mathcal{R}(A)$ e valgono le seguenti formule:
 - 1. Se $A = \{(x,y) \in \mathbb{R}^2 : x \in [a,b], g_1(x) \le y \le g_2(x)\}$ con $g_1,g_2 \in C^0([a,b])$, allora

(1)
$$\iint_{A} f = \int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \, dy \right) \, dx$$

In particoalre A è misurabile e $\left|A\right|_2=\iint_A 1=\int_a^b \left(g_2(x)-g_1(x)\right)\,dx$

2. Se $A = \{(x,y) \in \mathbb{R}^2 : y \in [c,d], h_1(y) \le x \le h_2(y)\}$ con $h_1,h_2 \in C^0([c,d])$, allora

(2)
$$\iint_{A} f = \int_{c}^{d} \left(\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \, dx \right) \, dy$$

In particoalre A è misurabile e $|A|_2=\iint_A 1=\int_c^d \left(h_2(y)-h_1(y)\right)\,dy$

1.1.15 Formula di cambiamento di variabili per integrali doppi e tripli

Integrali doppi

La mappa ψ si dice un cambiamento di variabili se

- $-\psi$ è bigettiva
 - $-\psi_i \in C^1(D^*), \, \psi_i, \frac{\partial \psi_i}{\partial u}, \frac{\partial \psi_i}{\partial v} : D^* \to \mathbb{R} \text{ limitate (i=1,2)}$
 - $-\det D\psi(u,v)\neq 0$, $\forall (u,v)\in D^*$, dove

$$D\psi(u,v) := \begin{bmatrix} \frac{\partial \psi_1}{\partial u}(u,v) & \frac{\partial \psi_1}{\partial v}(u,v) \\ & & \\ \frac{\partial \psi_2}{\partial u}(u,v) & \frac{\partial \psi_2}{\partial v}(u,v) \end{bmatrix}$$
(Matrice Jacobiana)

Denotiamo $dA^* = du \, dv \, e \, dA = dx \, dy \, \text{Si può provare che } dA = |[| \, det D\psi(u, v)] dA^*.$

Siano $D,D^*\subseteq\mathbb{R}^2$ aperti limitati e misurabili, sia $\psi:D^*\to D$ un cambiamento di variabili e sia $f:D\to\mathbb{R}$ continua e limitata. Allora vale la formula

$$(FCV)_2 \iint_D f(x,y) dx dy = \iint_{D^*} f(\psi(u,v)) |\det D\psi(u,v)| du dv$$

Integrali tripli

La mappa Ψ si dice cambiamento di variabile (in \mathbb{R}^3) Se

- (i) Ψ è bigettiva
- (ii) $\Psi_i \in C^1(D^*),$

$$\Psi_i, \frac{\partial \Psi_i}{\partial u}, \frac{\partial \Psi_i}{\partial v}, \frac{\partial \Psi_i}{\partial w} : D^* \to \mathbb{R}$$

limitate (i = 1,2,3)

(iii) $\det D\Psi(u, v, w) \neq 0$, dove

$$D\Psi(u,v,w) := \begin{bmatrix} \frac{\partial \Psi_1}{\partial u} & \frac{\partial \Psi_1}{\partial v} & \frac{\partial \Psi_1}{\partial w} \\ \\ \frac{\partial \Psi_2}{\partial u} & \frac{\partial \Psi_2}{\partial v} & \frac{\partial \Psi_2}{\partial w} \\ \\ \frac{\partial \Psi_3}{\partial u} & \frac{\partial \Psi_3}{\partial v} & \frac{\partial \Psi_3}{\partial w} \end{bmatrix}$$

se
$$(u, v, w) \in \mathcal{D}^*$$

Siano $D^*,D\subset\mathbb{R}^3$ aperti limitati e misurabili, sia $\Psi:D^*\to D$ un cambiamento di variabili e sia $f\in C^0(D)$ e limitata. Allora

$$\iiint_D f(x,y,z)\,dx\,dy\,dz = \iiint_{D^*} f(\Psi(u,v,w)) \left|\det D\Psi(u,v,w)\right|\,du\,dv\,dw$$

1.1.16 Cambiamento di coordinate cilindriche e sferiche

Coordinate cilindriche

$$\Psi \equiv \left\{ \begin{array}{l} x = \rho \cos \vartheta \\ y = \rho \sin \vartheta \\ z = z \end{array} \right.$$

$$0 \le \vartheta \le 2\pi, \rho \ge 0, |\det D\Psi(\rho, \vartheta, z)| = \rho$$

Coordinate sferiche

$$\Psi \equiv \left\{ \begin{array}{l} x = r \sin \varphi \cos \vartheta \\ y = r \sin \varphi \sin \vartheta \\ z = r \cos \varphi \end{array} \right.$$

$$0 \le \vartheta \le 2\pi, r \ge 0, 0 \le \varphi \le \pi, |\det D\Psi(r, \vartheta, \varphi)| = r^2 \sin \varphi$$

1.1.17 Formule di riduzione per integrali tripli su un parallelepipedo

• Sia $A \subseteq \mathbb{R}^3$ un insieme semplice rispetto all'asse z di tipo

$$A = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in E, g_1(x, y) \le z \le g_2(x, y)\}$$

e sia $f \in C^0(A)$. Allora

$$\iiint_A f = \iint_E \left(\int_{g_1(x,y)}^{g_2(x,y)} f(x,y,z) \, dz \right) \, dx \, dy$$

1.1.18 Definizione di insieme definito per fili e per strati

- Dato un insieme $Q = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ si definisce:
 - L'insieme $\{(x,y,z)\in\mathbb{R}^3:(y,z)\in[a_2,b_2]\times[a_3,b_3]\}$ è uno strato.
 - L'insieme $\{(x, y, z) \in \mathbb{R}^3 : z \in [a_3, b_3]\}$ è un filo.

1.1.19 Formula di integrazione per fili e per strati

- Siano $Q = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3], f \in C^0(Q)$
 - (i) La funzione

$$[a_1, b_1] \times [a_2, b_2] \ni (x, y) \to \int_{a_2}^{b_3} f(x, y, z) dz$$

è integrabile su $[a_1, b_1] \times [a_2, b_2]$ e

$$(1) \iiint_{Q} f = \iint_{[a_{1},b_{1}]\times[a_{2},b_{2}]} \left(\int_{a_{3}}^{b_{3}} f(x,y,z) \, dz \right)$$

(ii) La funzione

$$[a_1, b_1] \ni x \to \iint_{[a_2, b_2] \times [a_3, b_3]} f(x, y, z) \, dy \, dz$$

è integrabile su $[a_1, b_1]$ e

(2)
$$\iiint_{Q} f = \int_{a_{1}}^{b_{1}} \left(\iint_{[a_{2},b_{2}]\times[a_{3},b_{3}]} f(x,y,z) dz \right)$$

La

- (1) si chiama formula di riduzione per fili
- (2) si chiama formula di riduzione per strati

1.1.20 Definizione di curva in \mathbb{R}^n , supporto di una curva, estremi di una curva, equazione parametrica di una curva

- (i) Si chiama <u>curva</u> una mappa $\gamma: I \to \mathbb{R}^n$ continua, $\gamma(t) = (\gamma_1(t), ..., \gamma_n(t))$ con I intervallo di \mathbb{R}
 - (ii) Se I = [a, b], i punti $\gamma(a)$, $\gamma(b)$ di \mathbb{R}^n si chiamano <u>estremi</u> della curva
 - (iii) Si chiama sostegno (o supporto) della curva γ , l'insieme $\gamma(I) \subseteq \mathbb{R}^n$. Si chiama equazione parametrica di γ l'equazione $x = (x_1, ..., x_n) = \gamma(t)$ $t \in I$

1.1.21 Definizione di curva chiusa, semplice, regolare, orientazione (o verso di percorrenza) di una curva semplice

- (i) La curva γ si dice chiusa se I = [a, b] e $\gamma(a) = \gamma(b)$
 - (ii) La curva $\gamma:I\to\mathbb{R}^n$ si dice semplice se γ è iniettiva, o se γ è chiusa e I=[a,b], allora $\gamma:[a,b)\to\overline{\mathbb{R}^n}$ è iniettiva.

Una curva $\gamma: I \to \mathbb{R}^n$ si dice <u>regolare</u> se γ è di classe C^1 e $\gamma'(t) \neq \underline{O}_{\mathbb{R}^n}$ $\forall t \in I$ Sia data una curva semplice $\gamma: I \to \mathbb{R}^n$. Allora essa induce <u>un'orientazione</u> sul suo sostegno $\gamma(I) \subseteq \mathbb{R}^n$. Più precisamente

Data $\gamma: I \to \mathbb{R}^n$ curva semplice, si dice che il punto $x_1 = \gamma(t_1)$ <u>precede</u> il punto $x_2 = \gamma(t_2)$ se $t_1 < t_2$. L'orientazione della curva viene detta anche verso della curva.

1.1.22 Definizione di versore tangente ad una curva regolare

• Data $\gamma:I\to\mathbb{R}^n$ curva regolare, si chiama <u>versore</u> (o direzione) tangente a γ il campo vettore

 $\mathsf{T}_{\gamma}(t) := \frac{\gamma'(t)}{\|\gamma'(t)\|} \, t \in I$

1.1.23 Definizione di curva rettificabile e lunghezza di una curva $L(\gamma)$

Curva rettificabile

Sia $\gamma:[a,b]\to\mathbb{R}^n$ una curva. Se $L(\gamma)<+\infty,$ allora la curva si dice rettificabile e $L(\gamma)$ è detta lunghezza di γ

Lunghezza curva

• Sia $\gamma:[a,b]\to\mathbb{R}^n$ una curva di classe C^1 . Allora γ è rettificabile e

$$L(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt = \int_{a}^{b} \sqrt{\gamma'_{1}(t)^{2} + \dots + \gamma'_{n}(t)^{2}} dt$$

1.1.24 Formula per il calcolo della lunghezza di una curva rettificabile

• Vogliamo ora definire la nozione di lunghezza di una curva. Sia $\gamma: [a,b] \to \mathbb{R}^n$ una curva e sia $\mathcal{D}:=t_0=a < t_1 < ... < t_N=b$ una suddivisione di [a,b]: essa induce una suddivisione del sostegno di γ in N+1 parti definite da $\gamma(t_0), \gamma(t_1) \dots \gamma(t_N)$. Consideriamo i segmenti

$$[\gamma(t_{i-1}), \gamma(t_i)] := \{s\gamma(t_i) + (1-t)\gamma(t_{i-1}) : 0 \le s \le 1\}$$

i=1,...,N. La lunghezza della spezzata definita dall'unione $\bigcup_{i=1}^N [\gamma(t_{i-1}),\gamma(t_i)]$ è data da

$$L(\gamma, \mathcal{D}) := \sum_{i=1}^{N} \|\gamma(t_i) - \gamma(t_{i-1})\| \in [0, +\infty)$$

Denotiamo

$$L(\gamma) := \sup_{\mathcal{D}} L(\gamma, \mathcal{D}) \in [0, +\infty] =_{def} [0, +\infty) \cup \{+\infty\}$$

1.1.25 Definizione di integrale curvilineo di prima specie per una funzione continua f
 lungo una curva γ di classe C^1

• Sia $\gamma:[a,b]\to\mathbb{R}^n$ una curva di classe C^1 e sia $f:\Gamma\to\mathbb{R}$ una funzione continua. Si definisce

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \, \|\gamma'(t)\| \, dt$$

e si chiama Integrale curvilineo di I specie di f
 lungo γ .

1.1.26 Definizione di integrale curvilineo di seconda specie di una forma differenziale lungo una curva di classe C^1

• Sia $\gamma:[a,b]\to E\subseteq\mathbb{R}^n$ una curva di classe C^1 e sia ω una forma differenziale di classe C^0 su E.

Si definisce integrale curvilineo di II specie di ω (o del campo F) lungo γ il valore

$$\int_{\gamma} \omega := \int_{a}^{b} \langle f(\gamma(t)), \gamma'(t) \rangle \ dt = \int_{a}^{b} \sum_{i=1}^{n} F_{i}(\gamma(t)) \gamma'_{i}(t) \ dt$$

Se γ fosse chiusa il precedente integrale si scrive anche $\oint_{\gamma} \omega$

1.1.27 Definizione di forma differenziale esatta e di potenziale di una forma differenziale

• Sia $E \subseteq \mathbb{R}^n$ un insieme aperto e sia $\mathcal{U} \in C^1(E)$. Possiamo associare ad \mathcal{U} la forma diff.

$$d\mathcal{U} = \langle \nabla \mathcal{U}, dx \rangle = \frac{\partial \mathcal{U}}{\partial x_1} dx_1 + \dots + \frac{\partial \mathcal{U}}{\partial x_n} dx_n$$

che viene anche chiamata differenziale di $\mathcal U$ poichè coincide con la notazione con cui indichiamo il differenziale di $\mathcal U$

Sia $E \subseteq \mathbb{R}^n$ un aperto e sia $\omega = \langle F, dx \rangle$ dove $F : E \to \mathbb{R}^n$ di classe C^0 . La forma ω si dice <u>esatta</u> in E se esiste $\mathcal{U} : E \to \mathbb{R}$ di classe C^1 t.c.

$$\nabla \mathcal{U}(x) = F(x) \, \forall x \in E$$

o, equivalentemente, $d\mathcal{U} = \omega$.

In tal caso \mathcal{U} è detta funzione potenziale (o primitiva) di ω in E.

1.1.28 Formula per il calcolo dellintegrale curvilineo di una forma differenziale esatta

• Sia $E \subseteq \mathbb{R}^n$ aperto, ω forma diff. continua ed esatta su E. Allora per ogni curva $\gamma: [a,b] \to E$ C^1 a tratti vale che

$$(*) \int_{\gamma} \omega = \mathcal{U}(\gamma(b)) - \mathcal{U}(\gamma(a))$$

dove $\mathcal{U}:E\to\mathbb{R}$ è un qualunque potenziale di ω

1.1.29 Definizione di superficie elementare di \mathbb{R}^3 : parametrizzazione di una superficie

• Un sottoinsieme $S \subset \mathbb{R}^3$ si dice <u>superficie</u> (elementare) se esiste una mappa $\sigma : \overline{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$,

$$\sigma(u,v) = (x(u,v), y(u,v), z(u,v))$$

verificante

- 1. D è un aperto di \mathbb{R}^2 , interno di una curva di Jordan
- 2. σ è continua e $\sigma: D \to \mathbb{R}^3$ è iniettiva
- 3. $\sigma(\overline{D}) = S$

Una funzione verificante (1.-3.) è detta parametrizzazione di S.

S si dice superficie cartesiana se esiste una parametrizzazione $\sigma:\overline{D}\subseteq\mathbb{R}^2\to\mathbb{R}^3$ del tipo

$$(u,v,f(u,v)) \quad z=f(x,y)$$
 oppure
$$\sigma(u,v)= \begin{array}{ll} (f(u,v),u,v) & x=f(y,z) \ (u,v) \in \overline{D} \\ \text{oppure} \\ (u,f(u,v),v) & y=f(x,z) \end{array}$$

dove $f: \overline{D} \to \mathbb{R}$ continua.

1.1.30 Definizione di area per una superficie regolare

• Sia S una superficie regolare di parametrizzazione $\sigma:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ insieme misurabile e supponiamo che la funzione

$$(*)D \ni (u,v) \rightarrow \|\sigma_u \wedge \sigma_v\| (u,v)$$

sia limitata.

Si chiama
area di \underline{S} il valore

$$A(S) := \iint_D \|\sigma_u(u, v) \wedge \sigma_v(u, v)\| \ du \ dv$$

Una superficie S regolare per cui valga (*) si dice di area ben definita

1.1.31 Area di una superficie cartesiana regolare e di una superficie di rotazione

Superficie regolare cartesiana

Sia $D \subseteq \mathbb{R}^2$ interno di una curva di Jordan, e sia $f \in C^0(\overline{D}) \cap C^1(D)$ e supponiamo che $\partial_u f, \partial_v f : D \to \mathbb{R}$ siano limitate.

Allora se $S = G_f := \{(u, v, f(u, v)) : (u, v) \in D\}$ (superficie cartesiana),

$$A(S) = \iint_D \sqrt{1 + |\nabla f(u, v)|^2} \, du \, dv$$

Superficie di rotazione

Calcolare l'area della sfera di centro (0,0,0) e raggio r>0 Soluzione:

Possiamo rappresentare

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = r^2\}$$

e consideriammo la sua parametrizzazione in coordinate sferiche, cioè la mappa $\sigma: \overline{D} \to \mathbb{R}^3, \ \overline{D} = [0,2\pi] \times [0,\pi],$

$$\sigma(u, v) = r(\cos u \sin v, \sin u \sin v, \cos v)$$

Sappiamo che

$$\|\sigma_u \wedge \sigma_v\| = r^2 |\sin v|$$

Pertanto

$$A(S) = \iint_D \|\sigma_u \wedge \sigma_v\| (u, v) du dv = \iint_D r^2 |\sin v| du dv =$$

$$= r^{2} \left(\int_{0}^{2\pi} du \right) \cdot \left(\int_{0}^{\pi} \sin v \, dv \right) = r^{2} \cdot 2\pi \left(-\cos v |_{0}^{\pi} \right) = 4\pi r^{2}$$

1.1.32 Definizione di integrale di superficie per una funzione continua $f:\Sigma\subseteq\mathbb{R}^3\to\mathbb{R},$ dove Σ una superficie regolare

- Sia S una superficie regolare di parametrizzazione $\sigma: \overline{D} \to \mathbb{R}^3$ t.c.
 - 1. $D \subseteq \mathbb{R}^2$ misurabile
 - 2. $D \ni (u, v) \rightarrow \|\sigma_u \wedge \sigma_v\| (u, v)$ sia limitata

Sia $f: S' \to \mathbb{R}$ continua e limitata. Il valore

$$\iint_{S} f \, dS := \iint_{D} f(\sigma(u, v)) \, \|\sigma_{u} \wedge \sigma_{v}\| \, (u, v) \, du \, dv$$

si chiama integrale di superficie di f.

1.2 Enunciati

1.2.1 Unicità del limite

• Sia $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ e sia $p_0 \in \mathbb{R}^2$ punto di accomulazione per A. Supponiamo che $\exists lim_{p \to p_0} f(p) = L \in \mathbb{R}$. Allora L è unico.

1.2.2 Teorema (algebra dei limiti)

- Siano $g, f: A \subseteq \mathbb{R}^2 \to \mathbb{R}, \, p_0 \in \mathbb{R}^2$ punto di accomulazione per A. Supponiamo che $\exists \lim_{p \to p_0} f(p) = L \in \mathbb{R} \ e \ \exists \lim_{p \to p_0} g(p) = M \in \mathbb{R}$, allora:
 - 1. $\exists \lim_{p \to p_0} f(p) + g(p) = L + M$
 - 2. $\exists \lim_{p \to p_0} f(p) \cdot g(p) = L \cdot M$
 - 3. Se $g(p) \neq 0, \forall p \in A \setminus \{p_0\}$ e $M \neq 0$, allora $\exists \lim_{p \to p_0} \frac{f(p)}{g(p)} = \frac{L}{M}$
 - 4. Sia $F:\mathbb{R}\to\mathbb{R}$ continua e sia h(p)=F(f(p)),allora $\exists \lim_{p\to p_0}h(p)=F(L)$