DRAFT

Application No.: 10/757667 Docket No.: BB1071USDIV2

claims in the application.

Page 2

RECEIVED
CENTRAL FAX CENTER

NOV 2 8 2007

Amendments to Claims

This listing of the claims will replace all prior versions, and listings, of the

Claim 1-21 (canceled)

Claim 22. (currently amended) Food <u>comprising a soy protein product</u> prepared from soybean seeds having a reduced quantity of soybean seed storage protein prepared by a method comprising:

- (a) constructing a chimeric gene comprising:
 - (i) a nucleic acid fragment comprising a promoter that is functional in the cells of soybean seeds;
 - (ii) a nucleic acid fragment encoding all or a portion of a soybean seed storage protein placed in sense or antisense orientation relative to the promoter of (i); and
 - (iii) a transcriptional termination region;
- (b) creating a transgenic soybean cell by introducing into a soybean cell the chimeric gene of (a); and
- (c) growing the transgenic soybean cells of step (b) which express the chimeric gene of step (a)

wherein the quantity of one or more members of a class of soybean seed storage protein subunits is reduced when compared to soybean seeds not comprising the chimeric gene of step (a).

- Claim 23. (currently amended) Food <u>comprising a soy protein product</u> prepared from soybean seeds prepared by a method for simultaneously reducing the expression of two soybean genes comprising:
 - (a) constructing a chimeric gene comprising:
 - (i) a nucleic acid fragment comprising a promoter region from a soybean seed storage protein gene; and
 - (ii) a nucleic acid fragment encoding all or a portion of a soybean protein that is not the soybean seed storage protein

DRAFT

Application No.: 10/757667 Docket No.: BB1071USDIV2

Page 3

of (i), said nucleic acid fragment placed in sense or antisense orientation relative to the promoter of (i), and (iii) a transcriptional termination region;

- (b) creating a transgenic soybean seed by introducing into a soybean seed the chimeric gene of (a); and
- (c) growing the transgenic soybean seeds of step (b) which express the chimeric gene of step (a);

wherein the quantity of one or more members of a class of soybean seed storage protein subunits and the quantity of the protein encoded by the nucleic acid fragment of (a)(ii) is reduced when compared to soybeans seeds not comprising the chimeric gene of step (a).

Claim 24. (currently amended) Food comprising a soy protein product prepared from transgenic soybean seeds obtained from a soybean plant transformed at a single locus in its genome wherein the seeds comprise in its genome with a chimeric gene comprising at least a portion of a glycinin or a beta-conglycin gene for reducing the amount of at least one soybean seed storage protein in a the soybean seeds wherein the seed storage protein is selected from the group consisting of glycinin and β -conglycinin, the chimeric gene comprising a nucloic acid fragment encoding a promoter that is functional in the cells of soybean seeds operably linked te-a-nucleic-acid fragment encoding a portion of a scybean seed storage protein. selected from the group consisting of glycinin and & conglycinin, wherein-said fragment is placed in a sense or antisense orientation relative to the prometer and wherein the nucleic acid fragment encoding a portion of said soybean seed storage protein is sufficient in length to reduce the amount of at least one of said-soybean seed-storage-proteins in a the soybean plant when compared to seeds obtained from a non-transgenic soybean plant seeds not comprising the chimeric gene in its genome.