

planetmath.org

Math for the people, by the people.

automorphism group (linear code)

Canonical name AutomorphismGrouplinearCode

Date of creation 2013-03-22 15:18:40 Last modified on 2013-03-22 15:18:40 Owner GrafZahl (9234) Last modified by GrafZahl (9234)

Numerical id 5

Author GrafZahl (9234)

Entry type Definition Classification msc 94B05

Synonym automorphism group

Related topic LinearCode

Defines monomial transform

Defines equivalent
Defines equivalent code
Defines automorphism
Defines permutation group

Let \mathbb{F}_q be the finite field with q elements. The group $\mathcal{M}_{n,q}$ of $n \times n$ monomial matrices with entries in \mathbb{F}_q acts on the set $\mathfrak{C}_{n,q}$ of linear codes over \mathbb{F}_q of block length n via the monomial transform: let $M = (M_{ij})_{i,j=1}^n \in \mathcal{M}_{n,q}$ and $C \in \mathfrak{C}_{n,q}$ and set

$$C_M := \left\{ \left(\sum_{i=1}^n M_{i1} c_i, \dots, \sum_{i=1}^n M_{in} c_i \right) \mid (c_1, \dots, c_n) \in C \right\}.$$

This definition looks quite complicated, but since M is , it really just means that C_M is the linear code obtained from C by permuting its coordinates and then multiplying each coordinate with some nonzero element from \mathbb{F}_q .

Two linear codes lying in the same orbit with respect to this action are said to be *equivalent*. The isotropy subgroup of C is its *automorphism group*, denoted by Aut(C). The elements of Aut(C) are the *automorphisms* of C.

Sometimes one is only interested in the action of the permutation matrices on $\mathfrak{C}_{n,q}$. The permutation matrices form a subgroup of $\mathcal{M}_{n,q}$ and the resulting subgroup of the automorphism group $\operatorname{Aut}(C)$ of a linear code $C \in \mathfrak{C}_{n,q}$ is called the *permutation group*. In the case of binary codes, this doesn't make any difference, since the finite field \mathbb{F}_2 contains only one nonzero element.