Problema 7. Siguin A un anell, $I \subseteq A$ un ideal. Es defineix el radical de I, rad(I), com el conjunt d'elements $x \in A$ tals que existeix $n \in \mathbb{N}$ tal que $x^n \in I$. Proveu que si I, J són ideals de A, llavors

- (a) rad(I) és un ideal de A.
- (b) Direm que I és un $ideal \ radical \ si \ rad(I) = I$. Proveu que rad(I) és un $ideal \ radical$.
- (c) $rad(IJ) = rad(I \cap J) = rad(I) \cap rad(J)$.
- (d) rad(I + J) = rad(rad(I) + rad(J)).

Notes:

- Recordem la definició d'ideal. Un subconjunt $I \subseteq A$ és un ideal quan es compleixen aquestes dues condicions:
 - (1) $(I, +) \subseteq (A, +)$ és un subgrup,
 - (2) $AI \subseteq I$.
- També usarem el concepte de producte d'ideals. Si I, J són dos ideals d'un anell A, s'anomena producte de I i J a l'ideal engendrat per tots els elements de la forma xy, on $x \in I$ i $y \in J$. Clarament, $IJ \subseteq I \cap J$.

Solució.

a)

Per a provar que rad(I) és un ideal de A, anem a comprovar que el radical compleix les dues condicions per a ser un ideal.

Comprovem primer que $A \ rad(I) \subseteq rad(I)$. Si $r \in rad(I)$, $\exists n \in \mathbb{N}$ tal que $r^n \in I$. Així, si $x \in A$, es té que $(xr)^n = x^n r^n \in I$ i, per tant, $xr \in rad(I)$.

Ara veiem que $(rad(I), +) \subseteq (A, +)$. Si tenim també que $s \in rad(I)$, $\exists m \in \mathbb{N}$ tal que $s^m \in I$. Pel teorema del binomi,

$$(r+s)^{n+m} = \sum_{i=0}^{n+m} {n+m \choose i} r^i s^{n+m-i}.$$

- Si i < n, llavors n+m-i > n+m-n = m i, per tant, l'exponent de s és més gran o igual que m. Així, $r^i s^{n+m-i} = r^i (s^m) s^{n+m-i-m} \in I$, ja que $s^m \in I$.
- Si $i \geq n$, llavors $r^i s^{n+m-i} = (r^n) r^{i-n} s^{n+m-i} \in I$, ja que $r^n \in I$.

En qualsevol cas, cada sumand de $(r+s)^{n+m}$ està en I, que és un ideal de A. Per tant, $(r+s)^{n+m} \in I$, i això implica que $r+s \in rad(I)$.

Així, hem provat que rad(I) és un ideal de A.

b)

Hem de veure que rad(rad(I)) = rad(I):

En primer lloc, notem que $I \subseteq rad(I)$ sempre; per tant, $rad(I) \subseteq rad(rad(I))$.

Ara provem la inclusió contrària. Per definició de radical, $rad(rad(I)) = \{y \in A \mid \exists m \in \mathbb{N} \text{ amb } y^m \in rad(I)\}.$

Considerem $y^m \in rad(I)$. Aleshores, $\exists l \in \mathbb{N}$ tal que $(y^m)^l \in I$. Això implica que $y \in rad(I)$, com volíem veure.

Per tant hem provat que rad(I) és un ideal radical.

c)

Clarament, tenim les inclusions $IJ \subseteq I \cap J \subseteq I$, J. Com que $I \subseteq rad(I)$, llavors $rad(IJ) \subseteq rad(I \cap J) \subseteq rad(I)$, $rad(I) \cap rad(I) \cap rad(J)$. Notem que hem fet servir que $I \subseteq J \Rightarrow rad(I) \subseteq rad(J)$, fet que és immediat.

Per tant ja tenim que $rad(IJ) \subseteq rad(I \cap J) \subseteq rad(I) \cap rad(J)$.

D'altra banda, si $x \in rad(I) \cap rad(J)$, $\exists m \in \mathbb{N}$ tal que $x^m \in I \cap J$, per tant $x \in rad(I \cap J)$, i es té que $x^{2m} \in IJ$. Això implica que $x \in rad(IJ)$.

En conseqüència, queden provades les igualtats $\operatorname{rad}(IJ) = \operatorname{rad}(I \cap J) = \operatorname{rad}(I) \cap \operatorname{rad}(J)$.

d)

Sabem que $I + J \subseteq rad(I) + rad(J)$ i, per tant, $rad(I + J) \subseteq rad(rad(I) + rad(J))$.

D' altra banda, si $x \in rad(rad(I) + rad(J))$, $\exists m \in \mathbb{N}$ tal que $x^m \in rad(I) + rad(J)$. Així, $x^m = i + j$, amb $i \in rad(I)$ i $j \in rad(J)$. Aleshores, $\exists l \in \mathbb{N}$ tal que $i^l \in I$ i $\exists k \in \mathbb{N}$ tal que $i^k \in J$. Llavors, $(x^m)^{lk} = (i + j)^{lk} \in I + J$ implica que $x^{mlk} \in I + J$ (pel teorema del binomi hem usat a l'apartat a). Per tant, $x \in rad(I + J)$.

Així, queda provada la igualtat rad(I + J) = rad(rad(I) + rad(J)).