U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 2 of 38

RECEIVED CENTRAL FAX CENTER

OCT 2 3 2006

II. AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in this application.

1. (Original) A compound of formula I:

$$(R^{1})_{a}$$
 Ar^{1} E $(R^{2})_{b}$ Ar^{2} $(R^{3})_{c}$ $(R^{3})_{c}$ $(R^{3})_{c}$ $(R^{4})_{c}$ $(R^{5})_{c}$ $(R^{5}$

wherein:

Ar¹ represents phenyl, (3-6C)cycloalkyl, (3-5C)heteroaryl or (3-5C)heterocyclyl; wherein the heteroaryl and heterocyclyl groups contain 1 or 2 ring heteroatoms selected independently from oxygen, nitrogen and sulfur;

I

a is 0 or an integer from 1 to 3;

each R¹ is selected independently from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{1a}, -SR^{1b}, -S(O)R^{1c}, -S(O)₂R^{1d}, -NR^{1c}R^{1f} and -C(O)OR^{1g}; or two adjacent R¹ groups are joined together to form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-;

each of R^{1a} , R^{1b} , R^{1c} , R^{1d} , R^{1e} , R^{1f} and R^{1g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

Ar² represents phenyl, (3-6C)cycloalkyl, (3-5C)heteroaryl or (3-5C)heterocyclyl; wherein the heteroaryl and heterocyclyl group contain 1 or 2 ring heteroatoms selected independently from oxygen, nitrogen and sulfur;

b is 0 or an integer of from 1 to 3;

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 3 of 38

each R² is selected independently from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{2a}, -SR^{2b}, -S(O)R^{2c}, -S(O)₂R^{2d}, -NR^{2e}R^{2f} and -C(O)OR^{2g}; or two adjacent R² groups are joined together to form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-;

each of R^{2a} , R^{2b} , R^{2c} , R^{2d} , R^{2e} , R^{2f} and R^{2g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

E is -CN, -OH, -C(O)NW^aW^b or -C(O)OW^c;

W^a and W^b are selected independently from hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl, or together with the nitrogen atom to which they are attached, W^a and W^b form a pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, morpholin-4-yl or thiomorpholin-4-yl group; or W^a and one R¹ are joined to form a covalent bond;

W° is hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

c is 0 or an integer of from 1 to 4;

each R³ is independently selected from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{3a}, -SR^{3b}, -S(O)R^{3c}, -S(O)₂R^{3d} and -NR^{3e}R^{3f} and -C(O)OR^{3g}; or two R³ groups are joined to form (1-3C)alkylene, (2-3C)alkenylene or oxiran-2,3-diyl;

each of R^{3a} , R^{3b} , R^{3c} , R^{3d} , R^{3e} , R^{3f} and R^{3g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

z is 1 or 2;

R⁴ is a divalent group of the formula:

$$-\!(R^{4a})_{cl}\!\!-\!\!(A^1)_e\!\!-\!\!(R^{4b})_f\!\!-\!\!Q\!\!-\!\!(R^{4c})_g\!\!-\!\!(A^2)_h\!\!-\!\!(R^{4d})_i\!\!-\!\!\!$$

wherein

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 4 of 38

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

 $\label{eq:Qis} Q \ \text{is selected from a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)_2-, -N(Q^a)C(O)-, -C(O)N(Q^b)-, -N(Q^c)S(O)_2-, -S(O)_2N(Q^d)-, -N(Q^c)C(O)N(Q^f)-, -N(Q^b)S(O)_2N(Q^b)-, -OC(O)N(Q^i)-, -N(Q^i)C(O)O-\ \text{and}\ -N(Q^k);$

Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ, Q^j and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 16;

R⁵ represents hydrogen or (1-4C)alkyl;

 R^6 is $-NR^{6a}CR^{6b}(O)$ or $-CR^{6c}R^{6d}OR^{6e}$ and R^7 is hydrogen; or R^6 and R^7 together form $-NR^{7a}C(O)-CR^{7b}=CR^{7c}$, $-CR^{7d}=CR^{7c}-C(O)-NR^{7f}$, $-NR^{7g}C(O)-CR^{7b}R^{7i}-CR^{7j}R^{7k}$ or $-CR^{7i}R^{7m}-CR^{7n}R^{7o}-C(O)-NR^{7p}$;

each of R^{6a}, R^{6b}, R^{6c}, R^{6d} and R^{6e} is independently hydrogen or (1-4C)alkyl; and

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 5 of 38

each of R^{7a} , R^{7b} , R^{7c} , R^{7d} , R^{7e} , R^{7f} , R^{7g} , R^{7h} , R^{7i} , R^{7i} , R^{7i} , R^{7m} , R^{7n} , R^{7n} and R^{7p} is independently hydrogen or (1-4C)alkyl;

wherein each alkyl, alkenyl, alkylene and cycloalkyl group in R^1 , R^{1a-g} , R^2 , R^{2a-g} , R^3 , R^{3a-g} , W^{a-c} is optionally substituted with from 1 to 5 fluoro substituents;

or a pharmaceutically acceptable salt or solvate or stereoisomer thereof.

- 2. (Original) The compound of Claim 1, wherein the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 8 to 14.
- 3. (Original) The compound of Claim 2, wherein the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is 8, 9, 10 or 11.
- 4. (Original) The compound of Claim 1, wherein Ar¹ and Ar² independently represent phenyl, (3-6C)cycloalkyl or (3-5C)heteroaryl.
- 5. (Original) The compound of Claim 4, wherein Ar¹ and Ar² are independently selected from phenyl, pyridyl, thienyl, cyclobutyl, cyclopentyl or cyclohexyl.
 - 6. (Original) The compound of Claim 5, wherein Ar¹ and Ar² are both phenyl.
 - 7. (Original) The compound of Claim 1, wherein a, b and c are 0.
 - 8. (Original) The compound of Claim 1, wherein E is -C(O)NW^aW^b.
 - 9. (Original) The compound of Claim 8, wherein E is -C(O)NH₂.

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 6 of 38

- 10. (Original) The compound of Claim 1, wherein z is 1.
- 11. (Original) The compound of Claim 1, wherein R⁶ is -NHCHO or -CH₂OH and R⁷ is hydrogen; or R⁶ and R⁷ together form -NHC(O)-CH=CH-,
 -CH=CH-C(O)-NH-, -CH₂-CH₂-C(O)NH- or -NHC(O)-CH₂-CH₂-.
- 12. (Original) The compound of Claim 1, wherein R^4 is a divalent group of the formula: $-(R^{4a})_{d}$ where R^{4a} is (4-10C)alkylene.
- 13. (Original) The compound of Claim 12, wherein R⁴ is -(CH₂)₈-, -(CH₂)₉, and -(CH₂)₁₀-.
- 14. (Original) The compound of Claim 1, wherein R⁴ is a divalent group of the formula:

$$-(R^{4a})_{d}$$
- $(A^{2})_{h}$ - $(R^{4d})_{i}$ -

wherein R^{4a} is (1-10C)alkylene; A^2 is (6-10C)arylene or (2-9C)heteroarylene; and R^{4d} is (1-10C)alkylene.

15. (Original) The compound of Claim 1, wherein R⁴ is a divalent group of the formula:

$$-(R^{4a})_d$$
-Q- $(A^2)_h$ - $(R^{4d})_i$ -

wherein Q is -O- or $-N(Q^k)$ -; Q^k is hydrogen or (1-3C)alkyl; R^{4a} is (1-10C)alkylene; A^2 is (6-10C)arylene or (2-9C)heteroarylene; and R^{4d} is (1-10C)alkylene.

16. (Original) The compound of Claim 1, wherein Q is $-N(Q^a)C(O)$ - or $-C(O)N(Q^b)$ -.

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 7 of 38

17. (Original) The compound of Claim 16, wherein R⁴ is selected from:

$$--(CH_2)_m$$
 $--C-N_1$ $--(CH_2)_n$ $---$

wherein m is an integer from 2 to 10; and n is an integer from 2 to 10; provided that m + n is an integer from 4 to 12;

wherein o is an integer from 2 to 7; and p is an integer from 1 to 6; provided that o + p is an integer from 3 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

wherein q is an integer from 2 to 6; r is an integer from 1 to 5; and s is an integer from 1 to 5; provided that q + r + s is an integer from 4 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)2-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 8 of 38

$$--$$
 (CH₂)₁ $-$ N $-$ C $-$ (CH₂)_u $--$

wherein t is an integer from 2 to 10; and u is an integer from 2 to 10; provided that t + u is an integer from 4 to 12;

$$-- (CH_2)_v - N - C - (CH_2)_w - C$$

wherein v is an integer from 2 to 7; and w is an integer from 1 to 6; provided that v + w is an integer from 3 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy; and

$$--(CH_{2})_{x}-\underset{H}{\overset{O}{\bigvee}}-(CH_{2})_{y}-\overset{-}{\bigvee}-(CH_{2})_{z}-$$

wherein x is an integer from 2 to 6; y is an integer from 1 to 5; and z is an integer from 1 to 5; provided that x + y + z is an integer from 4 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, $-S(O)_2-(1-4C)$ alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy.

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 9 of 38

18. (Original) A compound of formula II:

wherein

R⁴ is a divalent group of the formula:

$$-(R^{4a})_d - (A^1)_c - (R^{4b})_f - Q - (R^{4c})_g - (A^2)_h - (R^{4d})_i -$$

II

wherein

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl,

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 10 of 38

-C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

 $\label{eq:Q_is_selected} Q \text{ is selected from a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)_2-, -N(Q^a)C(O)-, -C(O)N(Q^b)-, -N(Q^c)S(O)_2-, -S(O)_2N(Q^d)-, -N(Q^c)C(O)N(Q^f)-, -N(Q^g)S(O)_2N(Q^b)-, -OC(O)N(Q^i)-, -N(Q^i)C(O)O- \text{ and } -N(Q^k);$

Q^a, Q^b, Q^c, Q^d, Q^c, Q^f, Q^g, Q^h, Qⁱ, Qⁱ and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 16;

 R^6 is $-NR^{6a}CR^{6b}(O)$ or $-CR^{6c}R^{6d}OR^{6c}$ and R^7 is hydrogen; or R^6 and R^7 together form $-NR^{7a}C(O)-CR^{7b}=CR^{7c}$, $-CR^{7d}=CR^{7c}-C(O)-NR^{7f}$, $-NR^{7g}C(O)-CR^{7h}R^{7i}-CR^{7j}R^{7k}$ or $-CR^{7l}R^{7m}-CR^{7n}R^{7o}-C(O)-NR^{7p}$ -;

each of R^{6a} , R^{6b} , R^{6c} , R^{6d} and R^{6e} is independently hydrogen or (1-4C)alkyl; and each of R^{7a} , R^{7b} , R^{7c} , R^{7d} , R^{7e} , R^{7f} , R^{7g} , R^{7h} , R^{7i} , R^{7i} , R^{7k} , R^{7h} , R^{7m} , R^{7n} , R^{7o} and R^{7p} is independently hydrogen or (1-4C)alkyl;

or a pharmaceutically acceptable salt or solvate or stereoisomer thereof.

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 11 of 38

19. (Original) A compound of formula III:

wherein

R⁴ is a divalent group of the formula:

$$-(R^{4a})_d - (A^1)_e - (R^{4b})_f - Q - (R^{4c})_g - (A^2)_h - (R^{4d})_i -$$

Ш

wherein

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 12 of 38

is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

 $\label{eq:Qbound} Q^{i} \text{is selected from a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)_2-, -N(Q^a)C(O)-, -C(O)N(Q^b)-, -N(Q^c)S(O)_2-, -S(O)_2N(Q^d)-, -N(Q^e)C(O)N(Q^f)-, -N(Q^g)S(O)_2N(Q^b)-, -OC(O)N(Q^i)-, -N(Q^i)C(O)O- \text{ and } -N(Q^k);}$

Q⁸, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ, Q^j and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R^4 is attached is in the range of from 4 to 16; or a pharmaceutically acceptable salt or solvate or stereoisomer thereof.

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 13 of 38

20. (Original) A compound of formula IV:

wherein

R⁴ is a divalent group of the formula:

$$-(R^{4a})_{d}-(A^{1})_{c}-(R^{4b})_{f}-Q-(R^{4c})_{g}-(A^{2})_{h}-(R^{4d})_{i}-$$

wherein

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 14 of 38

is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

 $\label{eq:Qbound} Q \text{ is selected from a bond, -O-, -C(O)O-, -S-, -S(O)-, -S(O)_2-, -N(Q^a)C(O)-, -C(O)N(Q^b)-, -N(Q^c)S(O)_2-, -S(O)_2N(Q^d)-, -N(Q^e)C(O)N(Q^f)-, -N(Q^g)S(O)_2N(Q^h)-, -OC(O)N(Q^i)-, -N(Q^j)C(O)O- \text{ and } -N(Q^k);}$

Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ, Q^j and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R^4 is attached is in the range of from 4 to 16; or a pharmaceutically acceptable salt or solvate or stereoisomer thereof.

- 21. (Original) The compound of any one of Claims 18, 19 or 20, wherein the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R^4 is attached is in the range of from 8 to 14.
- 22. (Original) The compound of any one of Claims 18, 19 or 20, wherein the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is 8, 9, 10 or 11.

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-USI Page 15 of 38

- 23. (Original) The compound of any one of Claims 18, 19 or 20, wherein R^4 is a divalent group of the formula: $-(R^{4a})_{d}$ where R^{4a} is (4-10C)alkylene.
- 24. (Original) The compound of Claim 23, wherein R⁴ is -(CH₂)₈-, -(CH₂)₉, and -(CH₂)₁₀-.
- 25. (Original) The compound of any one of Claims 18, 19 or 20, wherein R⁴ is a divalent group of the formula:

$$-(R^{4a})_{d}-(A^{2})_{h}-(R^{4d})_{i}-$$

wherein R^{4a} is (1-10C)alkylene; A^2 is (6-10C)arylene or (2-9C)heteroarylene; and R^{4d} is (1-10C)alkylene.

26. (Original) The compound of any one of Claims 18, 19 or 20, wherein R⁴ is a divalent group of the formula:

$$-(R^{4a})_d$$
-Q- $(A^2)_h$ - $(R^{4d})_i$ -

wherein Q is -O- or -N(Q^k)-; Q^k is hydrogen or (1-3C)alkyl; R^{4a} is (1-10C)alkylene; A^2 is (6-10C)arylene or (2-9C)heteroarylene; and R^{4d} is (1-10C)alkylene.

- 27. (Original) The compound of any one of Claims 18, 19 or 20, wherein Q is $-N(Q^a)C(O)$ or $-C(O)N(Q^b)$ -.
 - 28. (Original) The compound of Claim 27 wherein R⁴ is selected from:

$$---(CH_2)_m$$
 $-- C-N--(CH_2)_n$ $----$

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-USI Page 16 of 38

wherein m is an integer from 2 to 10; and n is an integer from 2 to 10; provided that m + n is an integer from 4 to 12;

wherein o is an integer from 2 to 7; and p is an integer from 1 to 6; provided that o + p is an integer from 3 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

wherein q is an integer from 2 to 6; r is an integer from 1 to 5; and s is an integer from 1 to 5; provided that q + r + s is an integer from 4 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, $-S(O)_2-(1-4C)$ alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 17 of 38

wherein t is an integer from 2 to 10; and u is an integer from 2 to 10; provided that t + u is an integer from 4 to 12;

wherein v is an integer from 2 to 7; and w is an integer from 1 to 6; provided that v + w is an integer from 3 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy; and

$$--(CH_2)_x - N - C - (CH_2)_y - C - (CH_2)_z -$$

wherein x is an integer from 2 to 6; y is an integer from 1 to 5; and z is an integer from 1 to 5; provided that x + y + z is an integer from 4 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, $-S(O)_2-(1-4C)$ alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy.

29. (Original) The compound of any one of Claims 18, 19 or 20, wherein R⁴ is selected from:

-(CH₂)₇-;

-(CH₂)₈-;

-(CH₂)₉-;

-(CH₂)₁₀-;

-(CH₂)₁₁-;

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 18 of 38

```
-(CH<sub>2</sub>)<sub>2</sub>C(O)NH(CH<sub>2</sub>)<sub>5</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(CH<sub>2</sub>)<sub>5</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)CH<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>NHC(O)(phen-1,4-ylene)CH<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>NHC(O)NH(CH<sub>2</sub>)<sub>5</sub>-;
 -(CH<sub>2</sub>)<sub>3</sub>NHC(O)NH(CH<sub>2</sub>)<sub>5</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(cyclohex-1,3-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(cis-cyclopent-1,3-ylene)-;
 -(CH<sub>2</sub>)<sub>2</sub>NHC(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
 1-[-(CH_2)_2C(O)](piperidin-4-yl)(CH<sub>2</sub>)<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(trans-cyclohex-1,4-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(cis-cyclopent-1,3-ylene)-;
 -(CH<sub>2</sub>)<sub>2</sub>NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
  1-[-(CH<sub>2</sub>)<sub>2</sub>NHC(O)](piperidin-4-yl)(CH<sub>2</sub>)<sub>2</sub>-;
  -CH2(phen-1,4-ylene)NH(phen-1,4-ylene)CH2-;
  -(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(phen-1,3-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(pyrid-2,6-ylene)CH<sub>2</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(cis-cyclohex-1,4-ylene)CH<sub>2</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(trans-cyclohex-1,4-ylene)CH<sub>2</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(cis-cyclopent-1,3-ylene)CH<sub>2</sub>-;
   -(CH_2)_2N(CH_3)C(O)(phen-1,3-ylene)CH_2-;
   -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(trans-cyclohex-1,4-ylene)CH<sub>2</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)CH<sub>2</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)C*H(CH<sub>3</sub>)- ((S)-isomer);
   -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)C*H(CH<sub>3</sub>)- ((R)-isomer);
   2-[(S)-(-CH_2-](pyrrolidin-1-yl)C(O)(CH_2)_4-;
   2-[(S)-(-CH_{2}-](pyrrolidin-1-yl)C(O)(phen-1,4-ylene)CH_{2}-;\\
    -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(4-chlorophen-1,3-ylene)CH<sub>2</sub>-;
    -CH<sub>2</sub>(2-fluorophen-1,3-ylene)CH<sub>2</sub>-;
    -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(4-methylphen-1,3-ylene)CH<sub>2</sub>-;
```

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-USil Page 19 of 38

```
\hbox{-(CH$_2)$_2$C(O)NH(6-chlorophen-1,3-ylene)$CH$_2-;}\\
-(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-chlorophen-1,4-ylene)CH<sub>2</sub>-;
-(CH_2)_2C(O)NH(2,6-dichlorophen-1,4-ylene)CH_2-;\\
-(CH<sub>2</sub>)<sub>2</sub>NHC(O)NHCH<sub>2</sub>(phen-1,3-ylene)CH<sub>2</sub>-;
 4-[-CH<sub>2</sub>-](piperidin-1-yl)C(O)(phen-1,4-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>C(O)N(CH<sub>2</sub>CH<sub>3</sub>)(phen-1,4-ylene)CH<sub>2</sub>-;
 1-[-(CH<sub>2</sub>)<sub>2</sub>NHC(O)](piperidin-4-yl)-;
  -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
  -(CH_2)<sub>2</sub>NHC(O)(thien-2,5-ylene)CH_2-;
  -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(3-nitrophen-1,4-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(trans-cyclohex-1,4-ylene)-;
  1-[-CH_2(2-fluorophen-1,3-ylene)CH_2](piperidin-4-yl)-;
  5-[-(CH<sub>2</sub>)<sub>2</sub>NHC(O)](pyrid-2-yl)CH<sub>2</sub>-;
   -(CH_2)_2(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
   -(CH_2)<sub>3</sub>(thien-2,5-ylene)(CH_2)<sub>3</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
   -CH<sub>2</sub>(phen-1,2-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
   1-[-CH_2(2-fluorophen-1,3-ylene)CH_2] (piperidin-4-yl)(CH_2)_2-;\\
    1-[-CH<sub>2</sub>(2-fluorophen-1,3-ylene)CH<sub>2</sub>](piperidin-4-yl)CH<sub>2</sub>-;
    -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(3-chlorophen-1,4-ylene)CH<sub>2</sub>-;
    -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-(CF<sub>3</sub>O-)phen-1,4-ylene)CH<sub>2</sub>-;
    -(CH<sub>2</sub>)<sub>3</sub>(phen-1,3-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
    -(CH<sub>2</sub>)<sub>2</sub>S(O)<sub>2</sub>NH(CH<sub>2</sub>)<sub>5</sub>-;
    -CH<sub>2</sub>(phen-1,3-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
     -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-iodophen-1,4-ylene)CH<sub>2</sub>-;
     -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-chloro-5-methoxyphen-1,4-ylene)CH<sub>2</sub>-;
     \hbox{-(CH$_2)$_2$C(O)NH(2-chloro-6-methylphen-1,4-ylene)CH$_2$-;}\\
     -(CH_2)_2C(O)NH(CH_2)_5-;
     \hbox{-(CH$_2)$_2$N(CH$_3)$S(O)$_2$(phen-1,4-ylene)$CH$_2-;}\\
      -(CH_2)<sub>2</sub>C(O)NH(2-bromophen-1,4-ylene)CH_2-;
```

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 20 of 38

```
-(CH<sub>2</sub>)<sub>3</sub>(phen-1,4-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>3</sub>(phen-1,2-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
1-[-CH<sub>2</sub>(2-fluorophen-1,3-ylene)CH<sub>2</sub>](piperidin-4-yl)(CH<sub>2</sub>)<sub>3</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-methoxyphen-1,4-ylene)CH<sub>2</sub>-;
-(CH_2)<sub>5</sub>NH(phen-1,4-ylene)(CH_2)<sub>2</sub>-;
4-[-(CH<sub>2</sub>)<sub>2</sub>-](piperidin-1-yl)(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)CH(CH<sub>3</sub>)CH<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>-(trans-cyclohex-1,4-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-fluorophen-1,4-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>(phen-1,3-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2,5-difluorophen-1,4-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
 1-[-CH<sub>2</sub>(pyrid-2,6-ylene)CH<sub>2</sub>](piperidin-4-yl)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>3</sub>NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>NH(naphth-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>3</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
 1-[-(CH<sub>2</sub>)<sub>3</sub>](piperidin-4-yl)CH<sub>2</sub>-;
 4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(phen-1,4-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>3</sub>(phen-1,4-ylene)NHC(O)(CH<sub>2</sub>)<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>3</sub>O(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
 2-[-(CH<sub>2</sub>)<sub>2</sub>](benzimidazol-5-yl)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>-(trans-cyclohex-1,4-ylene)NHC(O)(CH<sub>2</sub>)<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>-(trans-cyclohex-1,4-ylene)NHC(O)(CH<sub>2</sub>)<sub>4</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>-(trans-cyclohex-1,4-ylene)NHC(O)(CH<sub>2</sub>)<sub>5</sub>-;
  4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(CH<sub>2</sub>)<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>NHC(O)NH(phen-1,4-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)(CH<sub>2</sub>)<sub>2</sub>(cis-cyclohex-1,4-ylene)-;
  -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2,3,5,6-tetrafluorophen-1,4-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2,6-diiodophen-1,4-ylene)CH<sub>2</sub>-;
  4-[-(CH_2)_2](piperidin-1-yl)C(O)(CH<sub>2</sub>)<sub>3</sub>-;
```

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 21 of 38

```
4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(CH<sub>2</sub>)<sub>4</sub>-;
4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(CH<sub>2</sub>)<sub>5</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(phen-1,4-ylene)CH<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>NHC(O)NHCH<sub>2</sub>(phen-1,4-ylene)CH<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-methylphen-1,4-ylene)CH<sub>2</sub>-;
1-[-(CH_2)_3O(phen-1,4-ylene)(CH_2)_2](piperidin-4-yl)CH_2-;
-(CH_2)<sub>2</sub>C(O)NHCH_2(phen-1,3-ylene)(CH_2)<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)CH<sub>2</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)CH<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(fur-2,5-ylene)CH<sub>2</sub>-;
 -(CH_2)_2N(CH_3)C(O)(thien-2,5-ylene)CH_2-;
 -(CH_2)_2O(phen-1,4-ylene)O(CH_2)_2-;
 -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)(phen-1,4-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,2-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)(fur-2,5-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)(thien-2,5-ylene)CH<sub>2</sub>-;
  \hbox{$4-[-(CH_2)_2]$ (piperidin-1-yl)C(O)CH_2O(phen-1,2-ylene)CH_2-;}\\
  4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)CH<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
  4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)CH<sub>2</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
  4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(fur-2,5-ylene)CH<sub>2</sub>-;
  4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(thien-2,5-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)(phen-1,3-ylene)CH<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)(phen-1,4-ylene)CH<sub>2</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,2-ylene)CH<sub>2</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
   -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)(fur-2,5-ylene)CH<sub>2</sub>-;
```

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 22 of 38

```
-(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)(thien-2,5-ylene)CH<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)(phen-1,3-ylene)CH<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>3</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
-CH2CH(OH)CH2NH(phen-1,4-ylene)(CH2)2-;
-(CH<sub>2</sub>)<sub>4</sub>NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)CH<sub>2</sub>NHC(O)CH<sub>2</sub>-;
-(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>NHC(O)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(trans-cyclohex-1,4-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(CH<sub>2</sub>)<sub>5</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>O(phen-1,3-ylene)O(CH<sub>2</sub>)<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>O(phen-1,2-ylene)O(CH<sub>2</sub>)<sub>2</sub>-;
 -CH<sub>2</sub>(phen-1,2-ylene)O(phen-1,2-ylene)CH<sub>2</sub>-;
 -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(CH<sub>2</sub>)<sub>6</sub>-;
  -(CH_2)_3(phen-1,4-ylene)(CH_2)_3-;
  -(CH_2)_3(phen-1,4-ylene)(CH_2)_2-;
  -(CH<sub>2</sub>)<sub>4</sub>(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
  -(CH<sub>2</sub>)<sub>3</sub>(furan-2,5-ylene)(CH<sub>2</sub>)<sub>3</sub>-;
  -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
  4-[-(CH_2)_2](piperidin-1-yl)C(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
   -(CH_2)_3(phen-1,3-ylene)(CH<sub>2</sub>)<sub>3</sub>-;
   -(CH<sub>2</sub>)<sub>3</sub>(tetrahydrofuran-2,5-ylene)(CH<sub>2</sub>)<sub>3</sub>-; and
   -(CH<sub>2</sub>)<sub>2</sub>O(phen-1,4-ylene)C(O)(CH<sub>2</sub>)<sub>2</sub>-.
```

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 23 of 38

30. (Original) A compound of formula I:

$$(R^{1})_{a}$$
 Ar^{1} E
 $(R^{2})_{b}$ Ar^{2}
 $(R^{3})_{c}$
 $(R^{3})_{c}$
 R^{4}
 R^{5}
 R^{7}
 R^{6}
 OH

wherein:

Ar¹ represents a phenyl, (5-6C)cycloalkyl, (4-5C)heteroaryl or (4-5C)heterocyclyl group wherein the (4-5C)heteroaryl or (4-5C)heterocyclyl group contains one ring heteroatom selected from oxygen, nitrogen and sulfur;

each R¹ represents an optional substituent on Ar¹ that is independently selected from the group consisting of (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{1a}, -SR^{1b}, -S(O)R^{1c}, -S(O)₂R^{1d}, and -NR^{1e}R^{1f}; or two adjacent R¹ groups together form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-; wherein each alkyl, alkenyl or cycloalkyl group is optionally substituted with from 1 to 5 fluorine atoms;

each of R^{1a}, R^{1b}, R^{1c}, R^{1d}, R^{1e} and R^{1f} is independently hydrogen or (1-4C)alkyl; a is 0 or an integer of from 1 to 3;

Ar² represents a phenyl, (5-6C)cycloalkyl, (4-5C)heteroaryl or (4-5C)heterocyclyl group wherein the (4-5C)heteroaryl or (4-5C)heterocyclyl group contains one ring heteroatom selected from oxygen, nitrogen and sulfur;

each R² represents an optional substituent on Ar² that is independently selected from the group consisting of (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{2a}, -SR^{2b}, -S(O)R^{2c}, -S(O)₂R^{2d}, and -NR^{2c}R^{2f}; or two adjacent R² groups together form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 24 of 38

4C)alkylene)-O-; wherein each alkyl, alkenyl or cycloalkyl group is optionally substituted with from 1 to 5 fluorine atoms;

each of R^{2a}, R^{2b}, R^{2c}, R^{2d}, R^{2e} and R^{2f} is independently hydrogen or (1-4C)alkyl; b is 0 or an integer of from 1 to 3;

E is CN or C(O)NW^aW^b;

each of W^a and W^b is independently selected from hydrogen and (1-4C)alkyl, or together with the nitrogen atom to which they are attached form a pyrrolidin-1-yl, piperazin-1-yl, morpholin-4-yl or thiomorpholin-4-yl group;

c is 0 or an integer of from 1 to 4;

each R³ is a substituent on carbon independently selected from the group consisting of (1-4C)alkyl and fluoro, wherein each alkyl group is optionally substituted with from 1 to 5 fluorine atoms;

z is 1 or 2, the atom bearing the group E being attached to the ring containing the nitrogen atom at the 2- or 3-position with respect to the nitrogen atom;

R⁴ is a divalent group of the formula:

$$-(R^{4a})_{d}-(A^{1})_{c}-(R^{4b})_{f}-Q-(R^{4c})_{g}-(A^{2})_{h}-(R^{4d})_{i}-Q$$

wherein

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from the group consisting of (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from the group consisting of (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl(1-4C)-alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, (2-9C)heteroarylene and (3-6C)heterocyclene; wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from the group consisting of halogen, (1-4C)alkyl and (1-4C)alkoxy;

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 25 of 38

 $\label{eq:Q_is_selected} Q \ is \ selected \ from \ the \ group \ consisting \ of \ a \ bond, \ -O-, \ -C(O)O-, \ -OC(O)-, \ -S-, \ -S(O)-, \ -S(O)_2-, \ -N(Q^a)C(O)-, \ -C(O)N(Q^b)-, \ -N(Q^c)S(O)_2-, \ -S(O)_2N(Q^d)-, \ -N(Q^c)C(O)N(Q^f)-, \ -N(Q^g)S(O)_2N(Q^h)-, \ -OC(O)N(Q^i)- \ and \ -N(Q^i)C(O)O-;$

Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ and Q^j are each independently selected from the group consisting of hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴; wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl; wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from the group consisting of halogen, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 14;

R⁵ represents hydrogen or (1-4C)alkyl;

 R^6 is $-NR^{6a}CR^{6b}(O)$ or $-CR^{6c}R^{6d}OR^{6c}$ and R^7 is hydrogen, or R^6 and R^7 together form $-NR^{7a}C(O)-CR^{7b}=CR^{7c}$, $-CR^{7d}=CR^{7e}-C(O)-NR^{7f}$, $-NR^{7g}C(O)-CR^{7h}R^{7i}-CR^{7j}R^{7k}$ or $-CR^{7l}R^{7m}-CR^{7n}R^{7o}-C(O)-NR^{7p}$ -;

each of R^{6a}, R^{6b}, R^{6c}, R^{6d} and R^{6e} is independently hydrogen or (1-4C)alkyl; and each of R^{7a}, R^{7b}, R^{7c}, R^{7d}, R^{7e}, R^{7f}, R^{7g}, R^{7h}, R⁷ⁱ, R⁷ⁱ, R^{7k}, R^{7l}, R^{7m}, R⁷ⁿ, R^{7o} and R^{7p} is independently hydrogen or (1-4C)alkyl; or a pharmaceutically-acceptable salt or solvate or stereoisomer thereof.

31. (Original) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of any one of Claims 1, 18, 19, 20 or 30.

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 26 of 38

- 32. (Withdrawn) The pharmaceutical composition of Claim 31, wherein the composition further comprises a therapeutically effective amount of a steroidal anti-inflammatory agent.
- 33. (Withdrawn) The pharmaceutical composition of Claim 31, wherein the composition further comprises a therapeutically effective amount of a PDE₄ inhibitor.
- 34. (Withdrawn) A method for treating a pulmonary disorder, the method comprising administering to a patient in need of treatment a therapeutically effective amount of a compound of any one of Claims 1, 18, 19, 20 or 30.
- 35. (Withdrawn) A method of providing bronchodilation in a patient, the method comprising administering to a patient requiring bronchodilation a therapeutically effective amount of a compound of any one of Claims 1, 18, 19, 20 or 30.
- 36. (Withdrawn) A method of treating chronic obstructive pulmonary disease or asthma, the method comprising administering to a patient in need of treatment a therapeutically effective amount of a compound of any one of Claims 1, 18, 19, 20 or 30.
- 37. (Withdrawn) A method of studying a biological system or sample comprising a muscarinic receptor or a β_2 adrenergic receptor, the method comprising:
- (a) contacting the biological system or sample with a compound of Claim 1; and
- (b) determining the effects caused by the compound of Claim 1 on the biological system or sample.

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 27 of 38

38. (Original) A process for preparing a compound of formula I:

$$(R^{1})_{a}$$
 Ar^{1} E
 $(R^{2})_{b}$ Ar^{2} $(R^{3})_{c}$ $(R^{3})_{c}$ $(R^{4})_{b}$ $(R^{5})_{c}$ $(R^{5}$

wherein:

Ar¹ represents phenyl, (3-6C)cycloalkyl, (3-5C)heteroaryl or (3-5C)heterocyclyl; wherein the heteroaryl and heterocyclyl groups contain 1 or 2 ring heteroatoms selected independently from oxygen, nitrogen and sulfur;

a is 0 or an integer from 1 to 3;

each R¹ is selected independently from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{1a}, -SR^{1b}, -S(O)R^{1c}, -S(O)₂R^{1d}, -NR^{1e}R^{1f} and -C(O)OR^{1g}, or two adjacent R¹ groups are joined together to form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-;

each of R^{1a}, R^{1b}, R^{1c}, R^{1d}, R^{1e}, R^{1f} and R^{1g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

Ar² represents phenyl, (3-6C)cycloalkyl, (3-5C)heteroaryl or (3-5C)heterocyclyl; wherein the heteroaryl and heterocyclyl group contain 1 or 2 ring heteroatoms selected independently from oxygen, nitrogen and sulfur;

b is 0 or an integer of from 1 to 3;

each R² is selected independently from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{2a}, -SR^{2b}, -S(O)R^{2c}, -S(O)₂R^{2d}, -NR^{2e}R^{2f} and -C(O)OR^{2g}, or two adjacent R² groups are joined together to form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-;

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 28 of 38

each of R^{2a} , R^{2b} , R^{2c} , R^{2d} , R^{2e} , R^{2f} and R^{2g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

E is -CN, -C(O)NW^aW^b or -C(O)OW^c;

W^a and W^b are selected independently from hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl, or together with the nitrogen atom to which they are attached, W^a and W^b form a pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, morpholin-4-yl or thiomorpholin-4-yl group; or W^a and one R¹ are joined to form a covalent bond;

W° is hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

c is 0 or an integer of from 1 to 4;

each R³ is independently selected from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{3a}, -SR^{3b}, -S(O)R^{3c}, -S(O)₂R^{3d} and -NR^{3e}R^{3f} and -C(O)OR^{3g}; or two R³ groups are joined to form (1-3C)alkylene, (2-3C)alkenylene or oxiran-2,3-diyl;

each of R^{3a}, R^{3b}, R^{3c}, R^{3d}, R^{3c}, R^{3f} and R^{3g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

z is 1 or 2;

R⁴ is a divalent group of the formula:

$$-(R^{4a})_{d}-(A^{1})_{e}-(R^{4b})_{f}-Q-(R^{4c})_{g}-(A^{2})_{h}-(R^{4d})_{i}-$$

wherein

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 29 of 38

independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

 $\label{eq:Qisselected} Q \text{ is selected from a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)_2-, -N(Q^a)C(O)-, -C(O)N(Q^b)-, -N(Q^c)S(O)_2-, -S(O)_2N(Q^d)-, -N(Q^e)C(O)N(Q^f)-, -N(Q^g)S(O)_2N(Q^h)-, -OC(O)N(Q^i)-, -N(Q^i)C(O)O- and -N(Q^k);}$

Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ, Q^j and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 16;

R⁵ represents hydrogen or (1-4C)alkyl;

 R^6 is $-NR^{6a}CR^{6b}(O)$ or $-CR^{6c}R^{6d}OR^{6e}$ and R^7 is hydrogen; or R^6 and R^7 together form $-NR^{7a}C(O)-CR^{7b}=CR^{7c}$, $-CR^{7d}=CR^{7e}-C(O)-NR^{7f}$, $-NR^{7g}C(O)-CR^{7h}R^{7i}-CR^{7j}R^{7k}$ or $-CR^{7l}R^{7m}-CR^{7n}R^{7o}-C(O)-NR^{7p}$ -;

each of R^{6a}, R^{6b}, R^{6c}, R^{6d} and R^{6e} is independently hydrogen or (1-4C)alkyl; and each of R^{7a}, R^{7b}, R^{7c}, R^{7d}, R^{7c}, R^{7f}, R^{7g}, R^{7h}, R⁷ⁱ, R⁷ⁱ, R^{7k}, R^{7l}, R^{7m}, R⁷ⁿ, R^{7o} and R^{7p} is independently hydrogen or (1-4C)alkyl;

wherein each alkyl, alkenyl, alkylene and cycloalkyl group in R^1 , R^{1a-g} , R^2 , R^{2a-ig} , R^3 , R^{3a-g} , W^{a-c} is optionally substituted with from 1 to 5 fluoro substituents;

or a stereoisomer thereof; the process comprising:

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 30 of 38

(a) reacting a compound of formula 1:

$$(R^{1})_{a}$$
 Ar^{1} E $(R^{2})_{b}$ Ar^{2} NH $(R^{3})_{c}$ 1

or a salt thereof; with a compound of formula 2:

$$X^{1}$$
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 QP^{2}
 QP^{2}

wherein X^1 represents a leaving group, and P^1 and P^2 each independently represent hydrogen or a hydroxyl-protecting group;

(b) reacting a compound of formula 3:

$$(R^{1})_{a}$$
 Ar^{1} E

$$(R^{2})_{b}$$
 Ar^{2} N

$$(R^{3})_{c}$$
 N

$$R^{4}$$
 NHP^{3}

$$3$$

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 31 of 38

or salt thereof; wherein P^3 represents hydrogen or an amino-protecting group, with a compound of formula $\underline{4}$:

$$X^2$$
 R^5
 R^7
 R^6
 QP^5

wherein X² represents a leaving group, and P⁴ and P⁵ each independently represent hydrogen or a hydroxyl-protecting group;

(c) coupling a compound of formula 5:

$$(R^{1})_{a}^{-}Ar^{1}_{a}E$$
 $(R^{2})_{b}^{-}Ar^{2}_{c}$
 $(R^{3})_{c}$
 $(R^{4a})_{d}^{-}(A^{1})_{e}^{-}(R^{4b})_{f}^{-}X^{Qa}$
 $\underline{5}$

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-U\$1 Page 32 of 38

with a compound of formula $\underline{\mathbf{6}}$:

$$X^{Qb}$$
- $(R^{4c})_g$ - $(A^2)_h$ - $(R^{4d})_i$ - N
 R^5
 R^7
 QP^8

wherein X^{Qa} and X^{Qb} each independently represent functional groups that couple to form a group Q, P^6 represents hydrogen or an amino-protecting group; and P^7 and P^8 each independently represent hydrogen or a hydroxyl-protecting group;

(d) for a compound of formula I wherein R^5 represents hydrogen, reacting a compound of formula 3 with a compound of formula 7:

or a hydrate thereof (e.g., a glyoxal), wherein P⁹ represents hydrogen or a hydroxylprotecting group, in the presence of a reducing agent;

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 33 of 38

(e) reacting a compound of formula <u>1</u> with a compound of formula <u>8</u>:

or a hydrate thereof, in the presence of a reducing agent, wherein P^{10} and P^{11} each independently represent hydrogen or a hydroxyl-protecting group; P^{12} represents hydrogen or an amino-protecting group; and R^4 represents a residue that, together with the carbon to which it is attached, affords a group R^4 upon completion of the reaction;

(f) reacting a compound of formula 9:

$$(R^{1})_{a}^{-}Ar^{1}$$
 E
 $(R^{2})_{b}^{-}Ar^{2}$ $(R^{3})_{c}^{-}$ $(R^{4}-X^{3})_{c}^{-}$

wherein X³ represents a leaving group, with a compound of formula 10:

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 34 of 38

wherein P¹³ and P¹⁴ each independently represent hydrogen or a hydroxylprotecting group, and P¹⁵ represents hydrogen or an amino-protecting group;

(g) reacting a compound of formula 11:

$$(R^{1})_{a} - Ar^{1} = (R^{2})_{b} - Ar^{2} + (R^{3})_{c} + (R^{3})_{c} + (R^{4})_{b} + (R^{5})_{c} + (R^{5})_{c$$

with a reducing agent; wherein P^{16} represents hydrogen or an amino-protecting group; and P^{17} represents hydrogen or a hydroxyl-protecting group;

(h) for a compound of formula I in which E represents C(O)NW^aW^b, reacting a compound of formula 12:

$$(R^{1})_{a}^{-}Ar^{1}$$
 COOH
 $(R^{2})_{b}^{-}Ar^{2}$ $(R^{3})_{c}$ $(R^{3})_{c}$ $(R^{4}-N)_{c}$ $(R^{5}-N)_{c}$ $(R^{5}-N)_$

wherein P^{18} and P^{19} each represents hydrogen or a hydroxyl-protecting group, with a compound of formula <u>13</u>:

U.S. Appl. No. 10/813,745 Attorney Docket No. P-162-US1 Page 35 of 38

HNW^aW^b

<u>13</u>

or

(i) reacting a compound of formula 14:

$$(R^{1})_{a}$$
 $-Ar^{1}$ E

$$(R^{2})_{b}$$
 $-Ar^{2}$ $(R^{3})_{c}$ N R^{4} H

or a hydrate thereof; wherein $R^{4"}$ represents a residue that, together with the carbon to which it is attached, affords an R^4 group upon completion of the reaction; with a compound of formula $\underline{10}$ in the presence of a reducing agent;

and then removing any protecting group P¹, P², P³, P⁴, P⁵, P⁶, P⁷, P⁸, P⁹, P¹⁰, P¹¹, P¹², P¹³, P¹⁴, P¹⁵, P¹⁶, P¹⁷, P¹⁸ or P¹⁹ to provide a compound of formula I.

- 39. (Original) The process of Claim 38, wherein the process further comprises forming a pharmaceutically acceptable salt of the compound of formula I.
 - 40. Canceled.