PSALTer results panel

$$\mathcal{S} = \\ \iiint \left(\rho \, \varphi + \, h^{\alpha\beta} \, \, \mathcal{T}_{\alpha\beta} + \frac{1}{2} \, \frac{\alpha}{2} \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + \frac{1}{8} \, \frac{\alpha}{1} \, (12 \, \partial_{\alpha} \partial^{\alpha} \varphi - 4 \, \partial_{\alpha} h^{\beta}_{\ \beta} \partial^{\alpha} \varphi - 6 \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + 4 \, \partial^{\alpha} \varphi \, \partial_{\beta} h^{\alpha}_{\ \alpha} - 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 4 \, \partial_{\beta} \partial^{\beta} h^{\alpha}_{\ \alpha} - \partial_{\beta} h^{\chi}_{\ \chi} \, \partial^{\beta} h^{\alpha}_{\ \alpha} + 2 \, \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\chi} h^{\chi}_{\beta} - 2 \, \partial_{\beta} h_{\alpha\chi} \, \partial^{\chi} h^{\alpha\beta} + \partial_{\chi} h_{\alpha\beta} \\ \partial^{\chi} h^{\alpha\beta} + 2 \, \partial^{\alpha} \partial^{\alpha} \varphi \, \partial_{\alpha} \partial^{\alpha} \varphi \, \partial^{\alpha} \varphi \, \partial_{\alpha} \partial^{\alpha} h^{\chi}_{\beta} + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\chi}_{\alpha} - 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\alpha} h^{\beta}_{\beta} + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\chi}_{\alpha} - 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\alpha} h^{\beta}_{\beta} + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\chi}_{\alpha} - 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\alpha} h^{\beta}_{\beta} + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\chi}_{\alpha} - 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\alpha} h^{\beta}_{\beta} + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\alpha} h^{\alpha}_{\alpha} + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\alpha} h^{\beta}_{\alpha} + 2 \, \partial^{\alpha} \partial^{\alpha} \varphi \, \partial^{\alpha} \varphi \, \partial^{\alpha} h^{\alpha\beta}_{\alpha} + 2 \, \partial^{\alpha} h^{\alpha\beta}_{\alpha} \, \partial^{\alpha} h^{\alpha\beta}_{\beta} + 2 \, \partial^{\alpha} h^{\alpha\beta}_{\alpha} \, \partial^{\alpha} h^{\alpha\beta}_{\alpha} + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\alpha} h^{\alpha\beta}_{\alpha} + 2 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\alpha} h^{\beta}_{\alpha} + 2 \, \partial^{\alpha} h^{\alpha\beta}_{\alpha} \, \partial^{\alpha} h^{\alpha\beta}_{\alpha} \, \partial^{\alpha} h^{\alpha\beta}_{\alpha} + 2 \, \partial^{\alpha} h^{\alpha\beta}_{\alpha} \, \partial^{$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^+\mathcal{T}^\perp == 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
$\frac{1}{2}\mathcal{T}^{\perp}^{\alpha}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected g	4	

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Massless particle

Pole residue:	$\frac{p^2}{\alpha_1} > 0$	
Polarisations:	2	

Pole residue:	$\frac{1+2p^2}{\frac{\alpha_{\cdot}}{2}}>0$
Polarisations:	1

Unitarity conditions

$$\alpha_1 > 0 \&\& \alpha_2 > 0$$