36-710: Advanced Statistical Theory

Fall 2018

Lecture 24: November 26

Lecturer: Alessandro Rinaldo Scribes: Boxiang Lyu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

24.1 Recap

Previously, we want to bound the random process

$$||P_n - P||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n (f(X_i) - \mathbb{E}[f(X_i)]) \right|, \quad X_1, \dots, X_n \stackrel{i.i.d.}{\sim} P$$

Our first result is

$$\mathbb{P}(\|P_n - P\|_{\mathcal{F}} \ge 2R_n(\mathcal{F}) + t) \le \exp\left\{-\frac{nt}{2B^2}\right\}$$

where we assume

$$||f||_{\infty} = \sup_{x \in \mathcal{X}} |f(x)| \le B, \quad \forall f \in \mathcal{F}$$

$$\frac{\mathbb{E}[||P_n - P||_{\mathcal{F}}]}{2} \le R_n(\mathcal{F}) = \mathbb{E}_{\underline{X},\underline{\epsilon}} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right| \right]$$

where $\mathcal{X} = (X_1, \dots, X_n)$, $\varepsilon = (\epsilon_1, \dots, \epsilon_n) \stackrel{i.i.d.}{\sim}$ Rademacher, and $\mathfrak{X} \perp \varepsilon$ We can then focus on bounding $R_n \mathcal{F}$. We recall the definition that \mathcal{F} has polynomial discrimination with parameter $\nu \geq 1$ when $|\mathcal{F}(X_1^n)| \leq (n+1)^{\nu}$ for all n and $X_1^n = (X_1, \dots, X_n) \subset \mathcal{X}$, where $\mathcal{F}(X_1^n)$ is defined as

$$\mathcal{F}(X_1^n) = \{ (f(X_1), \dots, f(X_n)), f \in \mathcal{F} \} \subseteq \mathbb{R}^n$$

If \mathcal{F} has polynomial discrimination, then $|R_n(\mathcal{F})| \leq 2B\sqrt{\nu \frac{\log(n+1)}{n}}$.

24.2 VC Theory

For all X_1^n , $|\mathcal{F}(X_1^n)| \leq 2^n$, where \mathcal{F} is a class of functions taking binary values. \mathcal{F} is a VC class when $|\mathcal{F}(X_1^n)|$ grows polynomially in n.

Definition 24.1 Given a class \mathcal{F} of $\{0,1\}$ valued functions we say that the n-tuple $X_1^n = (X_1, \ldots, X_n) \subset \mathcal{X}$ is shattered by \mathcal{F} if $|\mathcal{F}(X_1^n)| = 2^n$. VC dimension of \mathcal{F} is the largest n such that some n-tuple X_1^n is shattered by \mathcal{F} . Write this $V(\mathcal{F})$ or V.

If n > V then no n-tuple X_1^n can be shattered by \mathcal{F} .

24-2 Lecture 24: November 26

Remark 24.2 Take $f \in \mathcal{F} \to \{0,1\}$ valued, then let $A = A(f) = \{x \in \mathcal{X}, f(x) = 1\}$ be a one to one correspondence between functions in \mathcal{F} and the class \mathcal{A} of subsets of \mathcal{X} obtained this way.

$$\mathcal{A} = \{A(f), f \in \mathcal{F}\}\$$

$$VC\text{-}dim \ of \ \mathcal{F} = VC\text{-}dim \ of \ \mathcal{A}$$

In fact for any X_1^n ,

$$\mathcal{F}(X_1^n) = \mathcal{A}(X_1^n) = \{A \cap X_1^n, A \in \mathcal{A}\}$$

Back to our example where $\mathcal{F} = \{\mathbb{1}_{(-\infty,z]}(\cdot), z \in \mathbb{R}\}, A = \{(-\infty,z], z \in \mathbb{R}\}, \text{ the VC-dimension is 1 because for all } X_1^n$

$$|\mathcal{F}(X_1^n)| = |\mathcal{A}(X_1^n)| \le n + 1$$

. Consider when $\mathcal{A} = \{(a,b], -\infty < a < b\infty\}$, the VC dim is 2. In fact for all X_1^n , $\mathcal{A}(X_1^n) \leq (n+1)^2$. If $n \geq V$ then $|\mathcal{A}(X_1^n)| < 2^n$ for all X_1^n but it could be close to being polynomial.

Lemma 24.3 <u>Sauer Lemma</u>: Let V be the VC dim of A then for each n-tuple $X_1^n = (X_1, ..., X_n)$, for all $n \ge 1$

$$|\mathcal{A}(X_1^n)| = |\{X_1^n \cap A, A \in \mathcal{A}\}| \le \sum_{i=1}^V \binom{n}{V} \le (n+1)^V$$

Let $S_{\mathcal{A}}(n) = \max_{X_1^n} |\mathcal{A}(X_1^n)|$ be the shatter coefficient of \mathcal{A} . If \mathcal{A} has VC dimension V then $S_{\mathcal{A}}(n) \leq (n+1)^V$. We can then obtain the classical result

$$\mathbb{E}\left[\sup_{A \in \mathcal{A}} |P_n(A) - P(A)|\right] \le \sqrt{2\frac{\log S_{\mathcal{A}}(2n)}{n}}$$

where $P(A) = \frac{\#\{X_i, X_i \in A\}}{n}$.

24.3 Controlling/Calculating the VC Dimension

Let \mathcal{A} and \mathcal{B} be collections of subsets of \mathcal{X} with VC dimensions $V_{\mathcal{A}}$ and $V_{\mathcal{B}}$ then

- 1. the class $\mathcal{A}^C = \{A^C, A \in \mathcal{A}\}$ has VC dimension $V_{\mathcal{A}}$.
- 2. the class $\mathcal{A} \coprod \mathcal{B} = \{A \cup B, A \in \mathcal{A}, B \in B\}$ is such that $S_{\mathcal{A} \coprod \mathcal{B}}(n) \leq S_{\mathcal{A}}(n)S_{\mathcal{B}}(n)$
- 3. the class $\mathcal{A} \prod \mathcal{B} = \{A \cup B, A \in \mathcal{A}, B \in \mathcal{B}\}$ is such that $S_{\mathcal{A} \prod \mathcal{B}}(n) \leq S_{\mathcal{A}}(n)S_{\mathcal{B}}(n)$
- 4. the class $\mathcal{A} \times \mathcal{B} = \{A \times B, A \in \mathcal{A}, B \in \mathcal{B}\}$ is such that $S_{\mathcal{A} \times \mathcal{B}} \leq S_{\mathcal{A}}(n)S_{\mathcal{B}}(n)$
- 5. $S_{\mathcal{A}}(n+m) = S_{\mathcal{A}}(n)S_{\mathcal{A}}(m)$
- 6. If $C = A \cup B = \{C : C \in A \text{ or } C \in B \text{ or both}\}\$ then $S_C(n) \leq S_A(n) + S_B(n)$

Examples

- 1. $A = \{A_1, \dots, A_m\}, V_A \le \log_2 m, S_A(X_1^n) \le |A| = m \text{ for all } n.$
- 2. $\mathcal{A} = \{(-\infty, z_1] \times \cdots \times (-\infty, z_d], (x_1, \dots, x_d) \in \mathbb{R}^d\}, V_{\mathcal{A}} = d$

Lecture 24: November 26 24-3

3. A collection of rectangles in \mathbb{R}^d . $V_A = 2d$

Vector Space Structure: Let \mathcal{G} be a vector space of dimension r of functions on \mathbb{R}^d . Let

$$\mathcal{A} = \{ \{ x \in \mathbb{R}^d; g(x) \ge 0 \}, g \in \mathcal{G} \}$$

then VC dim of $A \leq dim(\mathcal{G}) = r$.

Applications:

1. $\mathcal{A} = \{\{x \in \mathbb{R}^d, x^T a \geq b\}, a \in \mathbb{R}^d, b \in \mathbb{R}\}$, class of half spaces in $\mathbb{R}^d, V(\mathcal{A}) \leq d+1$

2.
$$\mathcal{A} = \{\mathcal{B}(a,r), a \in \mathbb{R}^d, r > 0\}, \mathcal{B}(a,r) = \{x \in \mathbb{R}^d : ||x - a||^2 \le r^2\} \text{ then } V(A) \ge d + 2d \le r^2\}$$

Proof: Write

$$\sum_{i=1}^{d} (x_i - a_i)^2 - r = \sum_{i=1}^{d} x_i^2 + \sum_{i=1}^{d} a_i^2 - 2\sum_{i=1}^{d} x_i a_i - r$$

Let $g_1, g_2, \ldots, g_{d+2}$ be functions on \mathbb{R}^d of the form

$$g_1(\mathcal{X}) = \sum_{i=1}^d x_i^2$$

$$g_2(\mathcal{X}) = x_1$$

$$\vdots$$

$$g_{d+1}(\mathcal{X}) = x_d$$

$$g_{d+2}(\mathcal{X}) = 1$$

where $\mathcal{X} = (x_1, \dots, x_d)$.

Traditional Approach to VC Theory: We want to bound

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A)-P(A)|\geq\lambda\right),\lambda>0$$

where $P(A) = \frac{\#\{Y_i, Y_i \in A\}}{n}, Y_1, \dots, Y_n \overset{i.i.d.}{\sim} P \perp (X_1, \dots, X_n).$

Proof: Part 1: Symmetrization if $\lambda^2 n \geq 2$

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A) - P(A)| \ge \lambda\right) \le 2\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A) - P(A)| \ge \lambda/2\right) \\
= 2\mathbb{P}_{\underline{X},\underline{Y},\underline{\epsilon}}\left(\sup_{A\in\mathcal{A}}\frac{1}{n}\left|\sum_{i=1}^n\epsilon_i(\mathbb{I}\{X_i\in A\} - \mathbb{I}\{Y_i\in A\})\right| \ge \lambda/2\right) \\
= 2\mathbb{E}_{\underline{X},\underline{Y}}\left[\mathbb{P}_{\underline{\epsilon}\perp\underline{X},\underline{Y}}\left(\sup_{A\in\mathcal{A}}W_A|X,Y\right)\right]$$

where $W_A = \frac{1}{n} |\sum_{i=1}^n \epsilon_i (\mathbb{1}\{X_i \in A\} - \mathbb{1}\{Y_i \in A\})|$ conditionally on X, tY. W_A is an average of iid RV's taking values in $\{-1, 1\}$. For fixed A,

$$P(W_A > \lambda/2|X, Y) \le 2 \exp\left\{-\frac{n\lambda^2}{8}\right\}$$

24-4 Lecture 24: November 26

by Hoeffding. Let $A^*(\c X,\c Y)\subset \mathcal{A}$ be such that

$$\{A \cap (X, Y), A \in \mathcal{A}^*(X, Y) = \{A \cap \{X, Y\}, A \in \mathcal{A}\}$$

then $|\mathcal{A}^*(X, Y)| \leq S_{2\mathcal{A}}(2n)$. We then have that

$$\mathbb{P}_{\underline{\epsilon}|\underline{X},\underline{Y}}\left(\sup_{A\in\mathcal{A}}W_{A} \geq \lambda/2|\underline{X},\underline{Y}\right) = \mathbb{P}_{\underline{\epsilon}|\underline{X},\underline{Y}}\left(\max_{A\in\mathcal{A}^{*}(\underline{X},\underline{Y})}W_{A} \geq \lambda/2|\underline{X},\underline{Y}\right) \\
\leq S_{\mathcal{A}}(2n) \cdot 2\exp\{-\frac{n\lambda^{2}}{8}\}$$