

Stefan Domaradzki

Agregacja danych z czujnika i Raspberry Pi przy użyciu Apache Kafka i języka Python

Praca dyplomowa

Opiekun pracy:

Dr. Marek Bolanowski

Spis treści

1.	Data	a strea	am	ning			•															4
2.	Ras	pberry	y I	Pi.																	•	4
3. Realizacja														4								
	3.1.	Konfig	gur	racja	Rasp	pber	rryl	Ρi								•						4
		3.1.1.	S	Syster	n Op	oera	cyj	ny														4
		3.1.2.	k	Konfig	gurac	eja I	ſΡ															4
		3.1.3.	Γ	ONS 1	resol	utio	n									•						5
	3.2.	Połącz	zer	nie .											 •	•						6
	3.3.	Termo	m	etr.											 •	•						7
	3.4.	Skrypt	ty	w jęż	zyku	pyt	ho	n.								•						8
		3.4.1.	Γ	emp	eratu	ire l	Pro	du	cer													8
	3.5.	Consu	m	er.py											 •	•						8
4.	Wni	oski .																				9
5.	Plik	i proje	ek	tu .			•															9
т • л	L 1																					_

1. Data streaming

Strumieniowanie danych (data streaming) jest procesem przetwarzania danych, który polega na przesyłaniu ich strumieniowo, tzn. w czasie rzeczywistym lub w małych paczkach, zamiast jednorazowo przesłać cały zbiór danych. Strumienie danych pochodzą z różnych źródeł, takich jak sensory lub aplikacje internetowe. Strumieniowanie danych pozwala na przetwarzanie i analizowanie danych w czasie rzeczywistym, co umożliwia szybkie reagowanie na zmieniające się warunki.

2. Raspberry Pi

Raspberry Pi to mały jednopłytkowy komputer o stosunkowowo dobrej mocy obliczeniowej. Na jednej małej płytce znajdują się procesor, pamięć RAM, USB, HDMI, czy Ethernet. Architektura płytki została oparta na układzie systemu na chipie (SoC). I jest w stanie uruchamiać standardowe systemy operacyjne, lub dedytkowany Raspberry Pi OS.

3. Realizacja

3.1. Konfiguracja RaspberryPi

3.1.1. System Operacyjny

Instalacja systemu operacyjnego na RaspberryPi jest bardzo prosta. Wykorzystane zostaje darmowe oprogramowanie zapewnione przez producenta mikrokomputera o nazwie Raspberry Pi Imager". Dzięki niemu mamy dostęp wybrania preferowanego systemu operacyjnego. Wybrano RaspberryPi OS (32-bit). Wybieramy docelowe miejsce instalacji systemu (Karta microSD).

3.1.2. Konfiguracja IP

Dla prostszego łączenia się z Raspberry skonfigurowano statyczny adres IP dla połączenia przewodowego. Ponieważ nie istnieje możliwość ustawienia tego parametru z poziomu instalatora *Raspberry Pi Imager*, należy dokonać edycji pliku znajdującego się pod następującą ścieżką .conf zgodnie z zamieszczonym rysunkiem.

Oczywiście nadany adres może być dowolny należy jednak pamiętać, że to za jego pomocą następuje połączenie do urządzenie.

W przypadku wiersza *staticrouters* zapisujemy IP urządzenia które służy jako router i jednocześnie Kafka Server.

interface eth0
static ip_address=192.168.1.217/24
static routers=192.168.1.218

Rysunek 3.1: Konfiguracja pliku dheped.conf

Rysunek 3.2: Konfiguracja sieci na PC

3.1.3. DNS resolution

Jeśli nie jest możliwe przypisanie nazwy hosta do adresu IP, nastąpi błąd w wyszukiwaniu DNS.

Jeśli DNS resolution nie działa poprawnie, należy dodać wpis do pliku /etc/hosts na Raspberry Pi. Po otworzeniu za pomocą dowolnego edytora tekstu należy dodać w nim linijkę z adresem IP brokera Kafka i jego nazwą hosta. Przykładowo:

192.168.1.218 "Nazwa Hosta"

Dobrą praktyką jest również wyczyszczenie pamięci podręcznej i resolverów na maszynie funkcjonującej jako Kafka server Co zagwarantuje aktualność wszystkich rekordów DNS.

C:\Windows\System32>ipconfig /flushdns Windows IP Configuration Successfully flushed the DNS Resolver Cache. C:\Windows\System32>ipconfig /registerdns Windows IP Configuration Registration of the DNS resource records for all adapters of this computer has been initiated.

Rysunek 3.3: Czyszczenie pamięci podręcznej DNS

3.2. Połączenie

Połączenie następuje poprzez użycie SSH. SSH to standard protokołów komunikacyjnych używanych w sieciach komputerowych TCP/IP. Po podłączeniu Raspberry Pi za pomocą przewodu sieciowego do urządzenia działającego jako serwer Kafki wykonujemy następującą komendę:

SSH pi@192.168.1.217

Pamiętając, że jest to wcześniej ustawiony adres używanego mikrokomputera. Sprawdzenie dostępności portu na którym pracuje *Kafka Server*:

Rysunek 3.4: Test dostępności portu 9092

3.3. Termometr

Wykorzystano następujący schemat połączenia czujnika DS18B20z Raspberry Pi:

Rysunek 3.5: Termometr schemat połączenia

Aby jednak można było odczytać temperaturę z czujnika należy włączyć odpowiedni sterownik w jądrze systemu Raspberry.

Aby to zrobić należy włączyć panel konfiguracji:

sudo raspi-config

I w zakładce "Interfacing Options" włączyć opcję: P7 1-Wire. Na koniec należy zrestartować użądzenie za pomocą komendy:

 $sudo\ reboot\ now$

3.4. Skrypty w języku python

3.4.1. Temperature Producer

Skrypt *Temperature Producer* znajduje się na wykorzystywanym urządzeniu Raspberry Pi. Korzysta on z dwóch bibliotek

- w1thermsensor zawiera metodę do pobrania temeratury z czujnika,
- kafka odpowiada za przysyłanie wiadomości do servera kafki

Na początku należy dokonać definicji producenta wiadomości dla serwera Kafka, przypisujemy adres hosta i port hosta, oraz wybieramy sposób serializowania wiadomości, może być dowolny, lecz należy pamiętać by był on zgodny ze sposobem użytym w konsumerze.

```
temperature_producer = KafkaProducer(
    bootstrap_server=['host_ip:port'], #change to current host
    IP
    value_serializer=lamba v: json.dumps(v).encode('utf-8'),
    api_version=(3,3,1)
    )
}
```

Listing 1: Definicja producera Kafka

Protokołem wykorzystywanym jest domyślny dla Kafki protokół TCP.

Pętla While odpowiadająca za pobranie i wysłanie informacji. Operacja wysyłania zostaje zakończona komendą producer.flush(). Gwarantującą, że wszystkie wiadomości przygotowane do wysłania trafią do brokera wiadomości kafka.

```
kafka_topic = 'Ethernet'

while True:

temperature = sensor.get_temperature()
temperature_producer.send(kafka_topic, temperature)
temperature_producer.flush()
sleep(1)
```

Listing 2: Definicja producera Kafka

3.5. Consumer.py

Kafka Consumer znajduje się na tej samej maszynie która służy za *Kafka Server*. Z tego powodu w skrypcie wykorzystano argument: bootstrap_servers[localhost:9092]

Kafka Consumer definiujemy analogicznie do Producera:

Listing 3: Definicja producera Kafka

Operacja kończy się zasubskrybowaniem do tematu z którego docelowo będą zczytywane dane. Parametr *earliest* jest kluczowy, gdyż dzięki niemu możliwe jest odczytywanie wiadomości w miarę jak nadchodzą, co jest funkjejonalnością ostatniej części *Consumera*.

4. Wnioski

Projekt z wykorzystaniem czujnika temperatury, Raspberry Pi i biblioteki Kafka Python dostarczył wartościowych wniosków oraz zapewnił cenne doświadczenie związane z sieciami komputerowymi. Debugowanie błędów połączenia z brokerem Kafka ujawniło problem z DNS Resolution. Rozwiązanie wymagało edycji pliku /etc/hosts. rojekt dostarczył cenne doświadczenie w zakresie konfiguracji połączenia z brokerem Kafka, produkcji i konsumpcji danych w czasie rzeczywistym oraz rozwiązywania problemów z sieciami komputerowymi.

5. Pliki projektu

 ${\it https://github.com/Stefan-Luna-Domaradzki/Kafka-Raspberry-Thermometer} \\ {\bf Literatura}$

- [1] http://weii.portal.prz.edu.pl/pl/materialy-do-pobrania. Dostęp 5.01.2015.
- [2] https://forbot.pl/blog/kurs-raspberry-pi-czujnik-temperatury-ds18b20-id26430

POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza Wydział Elektrotechniki i Informatyki

Rzeszów, 2023

STRESZCZENIE PRACY DYPLOMOWEJ

AGREGACJA DANYCH Z CZUJNIKA I RASPBERRY PI PRZY UŻYCIU APACHE KAFKA I JĘZYKA PYTHON

Autor: Stefan Domaradzki, nr albumu: FS-166642

Opiekun: Dr. Marek Bolanowski

Słowa kluczowe: (max. 5 słów kluczowych w 2 wierszach, oddzielanych przecinkami)

RZESZOW UNIVERSITY OF TECHNOLOGY

Rzeszow, 2023

Faculty of Electrical and Computer Engineering

WPISZ-RODZAJ-PRACY THESIS ABSTRACT TEMAT PRACY PO ANGIELSKU

Author: Stefan Domaradzki, nr albumu: FS-166642

Supervisor:

Key words: (max. 5 słów kluczowych w 2 wierszach, oddzielanych przecinkami)