Lab 4 – Analyzing Grammars

 $\begin{array}{c} {\rm Ryan~Munger} \\ {\rm Ryan.Munger1@marist.edu} \end{array}$

March 3, 2025

1 Crafting a Compiler

$1.1 \quad 4.9 - First and Follow set$

Compute First and Follow sets for the nonterminals of the following grammar.

Figure 1: Grammar for 4.9

First Set: Set of all the possible terminals that can appear at the beginning of any string derived from a specific non-terminal.

Follow Set: Set of all the possible terminals that can immediately follow a specific non-terminal.

Production	Nullable	FIRST	FOLLOW
S	No	${a, b, c, d}$	${a, b, c, d, e}$
В	No	$\{b, c, d\}$	$\{b, c, d, e\}$
C	No	$\{c, d\}$	$\{c, d, e\}$

1.2 5.10 – Dangling Else Parse Trees

Show the two distinct parse trees that can be constructed for:

if expr then if expr then other else other

using the grammar below. For each parse tree, explain the correspondence of then and else.

Figure 2: Grammar for 5.10

```
Tree 1:
                                  Tree 2:
-<Stmt>
                                  -<Stmt>
--[if expr then]
                                  --[if expr then]
--<Stmt>
                                  --<Stmt>
---[if expr then]
                                  ---[if expr then]
---<Stmt>
                                  ---<Stmt>
----[Other]
                                  ----[Other]
--[else]
                                  ---[else]
--<Stmt>
                                  ---<Stmt>
---[Other]
                                  ----[Other]
$
                                  $
```

Correspondence of then & else: In tree #1, the else corresponds with the outer if expr then. In tree #2, the else corresponds to the inner if expr then. This is important as we need to know which if expr then the else is actually for.

2 Dragon Book

2.1 4.4.3 – First and Follow set

Compute FIRST and FOLLOW for the grammar below.

$$S \to SS + |SS*|a$$

Production	Nullable	FIRST	FOLLOW
S	No	{a}	{+, *, a}