数据挖掘互评作业1:数据探索性分析与数据预处理

姓名:曹健 学号:3120190978

一.数据可视化和摘要

1. 数据集选择: Wine Reviews 和 Consumer & Visitor Insights For Neighborhoods

2. 数据集描述:

数据集 Wine Reviews:

winemag-data-130k-v2.csv 包含 13 列和 130k 行葡萄酒评论

序号	属性	含义
1	Country	葡萄酒产地
2	Description	介绍
3	Designation	所属葡萄园
4	Points	WineEnthusiast 对葡萄酒的评分
5	Price	单瓶葡萄酒成本
6	Province	葡萄酒来源的省或州
7	Region_1	一个省或州的葡萄酒种植区
8	Region_2	有时在葡萄酒种植区域中指定了更
		多特定区域,但此值有时可能为空
9	Taster_name	
10	Taster_twitter_handle	
11	Title	评论的标题
12	Variety	葡萄种类
13	Winery	所属酿酒厂

标称属性:country, designation, province, region_1, region_2, taster_name,

taster_twitter_handle, variety, winery;

数值属性:points, price

winemag-data_first150k.csv 包含 10 列和 150k 行葡萄酒评论

与上一个数据集相比缺少 taster_name, taster_twitter_handle, title 三个属性。 标称属性:country, designation, province, region_1, region_2, variety, winery;

数值属性:points, price

数据集 Consumer & Visitor Insights For Neighborhoods:

cbg_patterns.csv 文件,包含13列22万条数据

序号	属性	含义
1	census_block_group	人口普查区组唯一的 12 位 FIPS 码
2	date_range_start	测量周期的开始时间作为时间戳 (UTC 秒)
3	date_range_end	测量周期的时间结束作为时间戳 (UTC 秒)

4	raw_visit_count	在此日期范围内, 我们的专家组对该 CBG 的访问次数
5	raw_visitor_count	在日期范围内,我们的小组访问 POI的独立访问人数
6	visitor_home_cbgs	此列列出了在 census_block_group 列(目标 CBG) 中列出的 CBG 中访 问过目的地的设备的所有原始归属 CBG
7	visitor_work_cbgs	此列列出了在 census_block_group 列(目标 CBG) 中列出的 CBG 中访 问过目标的设备的所有工作位置 CBG。
8	distance_from_home	访客 (我们确定住所的访客) 到 CBG 的平均距离 (以米为单位)
9	related_same_day_brand	这些 CBG 的访问者在访问 CBG 的同一天访问的品牌
10	related_same_month_brand	访问 CBG 的客户在访问 CBG 的同一个月访问的品牌
11	top_brands	在此期间,访问过 CBG 的顶级品牌 列表。 仅限十大品牌。
12	popularity_by_hour	在当地时间范围内,每天的小时数与每小时的访问量之间的映射
13	popularity_by_day	在日期范围内,将星期几映射为每天的访问量(当地时间)。

标称属性:census_block_group, date_range_start, date_range_end, visitor_home_cbgs, visitor_work_cbgs, related_same_day_brand, related_same_month_brand, top_brands, popularity_by_hour, popularity_by_day;

数值属性:raw_visit_count, raw_visitor_count, distance_from_home

3. 数据集摘要(以数据集 Wine Reviews 为例)

针对标称属性,给出每个可能取值的频数 使用 pandas 包的 read_csv()方法将 csv 文件输入并存为 dataframe 格式。

df1 = pd. read_csv(data_file1)

按列分别取出各标称属性:

然后通过 list 类型统计频数:

```
for each in col1:
    resdic["country"][each] = list(df1.country).count(each)
for each in col6:
    resdic["province"][each] = list(df1.province).count(each)
for each in col7:
    resdic["region_1"][each] = list(df1.region_1).count(each)
for each in col8:
    resdic["region_2"][each] = list(df1.region_2).count(each)
for each in col9:
    resdic["variety"][each] = list(df1.variety).count(each)
for each in col10:
    resdic["winery"][each] = list(df1.winery).count(each)
```

针对标称属性,给出 5 数概括及缺失值的个数(最大值、最小值、均值、中位数、四分位数)

选择需要处理的数值属性的两列构建新的 dataframe, 调用 describe()方法得到对数值属性列的重要指标描述。

```
def Numeric(Ndf, filename):
    resdic = {}
    describe = Ndf.describe()
```

```
Numeric(pd.DataFrame(dataframe, columns=["points", "price"]), "result-Numeric-{}.json".format(id))
```

得到的指标值如下所示:

	points	price
count	150930.000000	137235.000000
Count	130930.00000	137233.000000
mean	87.888418	33 . 131482
std	3.222392	36.322536
min	80.000000	4.000000
25%	86.000000	16.000000
50%	88.000000	24.000000
75%	90.000000	40.000000
max	100.000000	2300.000000

同时通过对每一个数值属性列判断空值并统计个数,得到缺失值的个数:

```
resdic["col4"]["Max"] = describe.points[7]
resdic["col4"]["Min"] = describe.points[3]
resdic["col4"]["Mean"] = describe.points[1]
resdic["col4"]["Mid"] = describe.points[5]
resdic["col4"]["25"] = describe.points[6]
resdic["col4"]["Nan"] = Ndf.points.isna().sum()
print(resdic["col4"]["Nan"])

resdic["col5"]["Max"] = describe.price[7]
resdic["col5"]["Min"] = describe.price[3]
resdic["col5"]["Mid"] = describe.price[1]
resdic["col5"]["Simid"] = describe.price[5]
resdic["col5"]["Simid"] = describe.price[6]
resdic["col5"]["Nan"] = describe.price[6]
resdic["col5"]["Nan"] = describe.price[6]
```

数据可视化(**以数据集 Wine Reviews 为例**) 绘制直方图:

```
plt.hist(Ndf["points"], bins=100)
plt.xlabel("Interval")
plt.ylabel("Frequency")
plt.title("points--Frequency distribution histogram")
plt.show()

#去空值
print(len(Ndf))
Ndf = Ndf.dropna(subset=["price"])
print(len(Ndf))
plt.hist(Ndf["price"], bins=100)
plt.xlabel("Interval")
plt.ylabel("Frequency")
plt.title("price--Frequency distribution histogram")
plt.show()
```


绘制 QQ 图检验数据分布是否为正态分布:

```
points = Ndf["points"]
price = Ndf["price"]
sort_points = np.sort(points)
sort_price = np.sort(price)
y_points = np.arange(len(sort_points))/float(len(sort_points))
y_price = np.arange(len(sort_price))/float(len(sort_price))
trans_y_points = stats.norm.ppf(y_points)
trans_y_price = stats.norm.ppf(y_price)
plt.scatter(sort_points, trans_y_points)
plt.xlabel("Ordered values")
plt.ylabel("Theoretical quantile")
plt.title("points--quantile-quantile plot")
plt.show()
plt.scatter(sort_price, trans_y_price)
plt.xlabel("Ordered values")
plt.ylabel("Theoretical quantile")
plt.title("points--quantile-quantile plot")
plt.show()
```


绘制盒图,对离群值进行识别:

```
# 意图 plt.boxplot(Ndf["points"])
plt.ylabel("points")
plt.show()
plt.boxplot(Ndf["price"])
plt.ylabel("price")
plt.show()
```


二.数据缺失的处理(以数据集 Wine Reviews 为例)

文件 1: winemag-data_first150k.csv

- 1. 将缺失部分剔除
 - 上文中使用的过程就是剔除缺失值的方法,将空值皆去除掉。
- 2. 用最高频率值来填补缺失值

```
# 用最高频率值来填补缺失值

def high_feq_process(df1):
    Ndf = pd.DataFrame(df1, columns=["points", "price"])

# 用value_counts()方法计算指定数值属性不同取值的频率
    feq_points = Ndf["points"].value_counts()

feq_price = Ndf["price"].value_counts()

# 通过下标得到频率最高的取值
    fill_value = {
        "points": list(dict(feq_points))[0],
        "price": list(dict(feq_price))[0]
    }
    print(fill_value)

# 用fillna()方法填补对应列的缺失值,并调用之前的可视化函数
    Ndf = Ndf.fillna(value=fill_value) |
    print(Ndf)
    Numeric(Ndf)
```

直方图:

QQ 图

盒图:

3. 通过属性的相关关系来填补缺失值

```
# 通过属性的相关关系来填补缺失值

def relation_process(df1):
    Ndf = pd.DataFrame(df1, columns=["points", "price"])
    Ndf.interpolate(method="values")
    Numeric(Ndf)
```

直方图:

4. 通过数据对象之间的相似性来填补缺失值

```
# 通过数据对象之间的相似性来填补缺失值

def similarity_process(df1, k_num):
    OriNdf = pd.DataFrame(df1, columns=["points", "price"])
    Ndf = pd.DataFrame(df1, columns=["points", "price"])
    Ndf = Ndf.dropna(axis=0, how="any")
    clf = KNeighborsRegressor(n_neighbors=k_num, weights="distance")
    clf.fit(np.array(list(Ndf["points"])).reshape(-1, 1), np.array(list(Ndf["price"])).reshape(-1, 1))

    for i in range(0, len(OriNdf)):
        if pd.isna(OriNdf.iloc[i]["price"]):
            new_value = clf.predict(np.array([OriNdf.iloc[i]["points"]]).reshape(-1, 1))
            OriNdf.set_value(i, "price", new_value)
            Numeric(OriNdf)
```

直方图:

文件 2: winemag-data-130k-v2.csv

1. 原始数据(将缺失部分剔除):

2. 用最高频率值来填补缺失值

3. 通过属性的相关关系来填补缺失值:

4. 通过数据对象之间的相似性来填补缺失值:

