

BIỂU DIỄN VÀ TÍNH TOÁN SỐ HỌC

CÁC HỆ ĐẾM CƠ BẢN

- Hệ thập phân (Decimal System)
- Hệ nhị phân (Binary System)
- Hệ thập lục phân (Hexadecimal System)

HỆ THẬP PHÂN

- Cơ số 10
- 10 chữ số: 0,1,2,3,4,5,6,7,8,9
- Dùng n chữ số có thể biểu diễn được 10ⁿ giá trị khác nhau:
 - 00...000 = 0
 - \bigcirc 99...999 = 10ⁿ 1

VÍ DỤ SỐ THẬP PHÂN

- $472.38 = 4x10^2 + 7x10^1 + 2x10^0 + 3x10^{-1} + 8x10^{-2}$
- Các chữ số của phần nguyên:
 - □ 472 : 10 = 47 dư 2
 - □ 47 : 10 = 4 dư 7
 - □ 4 : 10 = 0 du 4
- Các chữ số phần lẻ:
 - □ 0.38 x 10 = 3.8 phần nguyên = 3
 - □ 0.8 x 10 = 8.0 phần nguyên = 8

HỆ NHỊ PHÂN

- Cơ số 2
- 2 chữ số: 0,1
- Chữ số nhị phân gọi là bit (binary digit)
- Bit là đơn vị thông tin nhỏ nhất
- Dùng n bit có thể biểu diễn được 2ⁿ giá trị khác nhau:
 - 00...000 = 0
 - \square 11...111 = 2^n 1

VÍ DỤ SỐ NHỊ PHÂN

- 1101001.1011₍₂₎
- $= 2^6 + 2^5 + 2^3 + 2^0 + 2^{-1} + 2^{-3} + 2^{-4}$
- = 64 + 32 + 8 + 1 + 0.5 + 0.125 + 0.0625
- $= 105.6875_{(10)}$

CHUYỂN ĐỔI SỐ NGUYÊN THẬP PHÂN SANG NHỊ PHÂN

- Phương pháp 1: chia dần cho 2 rồi lấy phần dư
- Phương pháp 2: phân tích thành tổng các số 2ⁱ

CHIA DÂN CHO 2

• Chuyển đổi 105₍₁₀₎

```
105
      :2 =
               52
                     dư 1
      :2
52
               26
                     du 0
     :2
26
         = 13
                     dư 0
      :2
           = 6
13
                     dư 1
      :2
                     du 0
6
      :2
                     dư 1
                     du 1
```

• Kết quả: $105_{(10)} = 1101001_{(2)}$

HỆ NHỊ PHÂN

- Cơ số 2
- 2 chữ số: 0,1
- Chữ số nhị phân gọi là bit (binary digit)
- Bit là đơn vị thông tin nhỏ nhất
- Dùng n bit có thể biểu diễn được 2ⁿ giá trị khác nhau:
 - 00...000 = 0
 - \square 11...111 = 2^n 1

PHÂN TÍCH THÀNH CÁC SỐ 2ⁱ

- Chuyển đổi 105(10)
 105(10)=64+32+8+1=26+25+23+20
- Kết quả 105(10)=01101001(2)

CHUYỂN ĐỔI SỐ LỂ THẬP PHÂN SANG NHỊ PHÂN

Chuyển đổi 0.6875(10)

```
0.6875 x2 = 1.375 phần nguyên = 1
0.375 x2 = 0.75 phần nguyên = 0
0.75 x2 = 1.5 phần nguyên = 1
0.5 x2 = 1 phần nguyên = 1
```

Kết quả: 0.6875(10)=0.1101(2)

HỆ THẬP LỤC PHÂN (HEXA)

- Cơ số 16
- 16 chữ số: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Dùng để viết gọn cho số nhị phân: một nhóm 4 bit sẽ được thay thế bằng 1 chữ số Hexa

QUAN HỆ GIỮA SỐ NHỊ PHÂN VÀ SỐ THẬP LỤC PHÂN

- $0000\ 0000(2) = 00(16)$
- 1011 0011(2) = B3(16)
- 0010 1101 1001 1010(2) = 2D9A(16)

Nhị phân	Hexa	Nhị phân	Hexa
0000	0	1000	8
0001	10	1001	9
0010	2	1010	Α
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

MÃ HÓA VÀ LƯU TRỮ DỮ LIỆU TRONG MÁY TÍNH

 Mọi dữ liệu đưa vào máy tính đều được mã hoá thành số nhị phân

MÃ HÓA VÀ TÁI TẠO TÍN HIỆU VẬT LÝ

- Các tín hiệu vậy lý thông dụng:
 - Âm thanh
 - Hình ảnh

THỨ TỰ LƯU TRỮ CÁC BYTE DỮ LIỆU

- Bộ nhớ chính thường được tổ chức theo byte
- Độ dài từ dữ liệu (word) có thể chiếm từ 1 đến nhiều byte => cần phải biết thứ tự lưu trữ các byte trong bộ nhớ chính với các dữ liệu nhiều byte.
- Lưu trữ đầu nhỏ (Little-endian):
 - Byte thấp được lưu trữ ở ô nhớ có địa chỉ nhỏ hơn.
 - □ Byte cao được lưu trữ ở ô nhớ có địa chỉ lớn hơn.
- Lưu trữ đầu lớn(Little-endian):
 - Byte thấp được lưu trữ ở ô nhớ có địa chỉ lớn hơn.
 - □ Byte cao được lưu trữ ở ô nhớ có địa chỉ nhỏ hơn.

VÍ DỤ LƯU TRỮ DỮ LIỆU

0001 1010 0010 1011 0011 1100 0100 1101

1A	2B	3C	4D

	١
4D	300
3C	301
2B	302
1A	303

1A	410
2B	411
3C	312
4D	413

little-endian

big-endian

BIỂU DIỄN SỐ NGUYÊN

- Số nguyên không dấu (Unsigned Integer)
- Số nguyên có dấu (Signed Integer)

BIỂU DIỄN SỐ KHÔNG DẤU

 Nguyên tắc tổng quát: Dùng n bit biểu diễn số nguyên không dấu A:

$$a_{n-1}a_{n-2}....a_2a_1a_0$$

Giá trị của A được tính như sau:

$$A = \sum_{i=0}^{n-1} a_i 2^i$$

Miền giá trị A có thể nhận: từ 0 đến 2ⁿ-1

BIỂU DIỄN SỐ KHÔNG DẦU

 Biểu diễn số nguyên không dấu A=41, B=150 bằng 8 bit:

$$A = 41 = 32 + 8 + 1 = 2^5 + 2^3 + 2^0$$

 $A = 0100 \ 1001$

B =
$$150 = 128 + 16 + 4 + 2 = 2^7 + 2^4 + 2^2 + 2^1$$

B = $1001\ 0110$

BIỂU DIỄN SỐ KHÔNG DẦU

 Xác định số nguyên không dấu được biểu diễn bởi 8 bit:

$$M = 0001 \ 0010$$

 $M = 24 + 21 = 16 + 2 = 18$

$$N = 1011 \ 1001$$

$$N = 2^7 + 2^5 + 2^4 + 2^3 + 20$$

$$= 128 + 32 + 16 + 8 + 1$$

$$= 185$$

VÓI 8 BIT

Biểu diễn các giá trị từ 0 đến 255:

$$0000 \ 0000 = 0$$

 $0000 \ 0001 = 1$

. . .

$$1111 \quad 1111 = 255$$

Tràn bộ nhớ:

```
1111 1111 = 255
```

- + 0000 0001 = 1
- $1\ 0000\ 0000 = 0$

VÓI 8 BIT

Trục số học:

0 1 2 3

Trục số học máy tính:

VỚI 16 BIT, 32 BIT, 64 BIT

- 16 bit: biểu diễn từ 0 đến 2¹⁶-1
- 32 bit: biểu biễn từ 0 đến 2³²-1
- 64 bit: biểu diễn từ 0 đến 2⁶⁴-1

BIỂU DIỄN SỐ NGUYÊN CÓ DẤL

- Số bù một của A: đảo các giá trị bit của A
- Số bù hai của A = Số bù một của A + 1
- Ví dụ:

```
Giả sử ta có A = 0010 \ 0101
Số bù một của A = 1101 \ 1010
Số bù hai của A = 1101 \ 1011
```

Dùng số bù hai để biểu diễn số âm

BIỂU DIỄN SỐ NGUYÊN CÓ DẤU

- Dùng n bit để biểu diễn số nguyên có dấu A:
 a_{n-1}a_{n-2}...a₁a₀
- Với A là số dương: a_{n-1}=0, các bit còn lại biểu diễn độ lớn như số không dấu
- Với A là số âm: được biểu diễn bằng số bù hai của số dương tương ứng

BIỂU DIỄN SỐ DƯƠNG

Dạng tổng quát của số dương A:

$$0a_{n-2}...a_1a_0$$

Giá trị của số dương A:

$$A = \sum_{i=0}^{n-2} a_i 2^i$$

Biểu diễn cho số dương từ 0 đến 2ⁿ⁻¹-1

BIỂU DIỄN SỐ ÂM

- Dạng tổng quát của số âm A:
 - 1a_{n-2}...a₁a₀
- Giá trị của số âm A:

$$A = -2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

Biểu diễn cho số âm từ -1 đến -(2ⁿ⁻¹)

BIỂU DIỄN TỔNG QUÁT SỐ NGUYÊN CÓ DẦU

Dạng tổng quát của số âm A:

$$a_{n-1}a_{n-2}...a_1a_0$$

Giá trị của số nguyên A:

$$A = -a_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

Biểu diễn cho số nguyên từ -(2ⁿ⁻¹) đến (2ⁿ⁻¹-1)

BIỂU DIỄN TỔNG QUÁT SỐ NGUYÊN CÓ DẦU

Biểu diễn các số nguyên có dấu sau bằng 8 bit:

$$A = +58$$
; $B = -80$

$$A = +58 = 0011 \ 1010$$

$$B = -80$$

Ta
$$c\acute{o}$$
 +80 = 0101 0000

Vậy
$$B = -80 = 1011 0000$$

BIỂU DIỄN TỔNG QUÁT SỐ NGUYÊN CÓ DẦU

 Xác định giá trị của số nguyên có dấu được biểu diễn dưới đây:

 $P = 0110\ 0010$

 $Q = 1101 \ 1011$

 $P = 0110\ 0010 = 64 + 32 + 2 = +98$

 $Q = 1101 \ 1011 = -128 + 64 + 16 + 8 + 2 + 1 = -37$

VỚI 8 BIT

- Biểu diễn các giá trị từ -128 đến +127
- Tràn bộ nhớ

VÓI 8 BIT

Trục số học

Trục số học máy tính

VỚI 16 BIT, 32 BIT, 64 BIT

- 16 bit: biểu diễn từ -(215) đến 215-1
- 32 bit: biểu diễn từ -(231) đến 231-1
- 64 bit: biểu diễn từ -(263) đến 263-1

CHUYỂN ĐỔI TỪ BYTE THÀNH WORD

- Đối với số dương: thêm các bit 0 vào bên trái
- Đối với số âm: thêm các bit 1 vào bên trái

BIỂU DIỄN SỐ NGUYÊN THEO MÃ BCD

- BCD: Binary Coded Decimal Code
- Dùng 4 bit để mã hóa các chữ số thập phân từ 0 đến 9

```
0 \to 0000 \quad 5 \to 0101
```

$$1 \to 0001 \quad 6 \to 0110$$

$$2 \to 0010 \quad 7 \to 0111$$

$$3 \to 0011 \ 8 \to 1000$$

$$4 \to 0100 \quad 9 \to 1001$$

BIỂU DIỄN SỐ NGUYÊN THEO MÃ BCD

- $35_{(10)} \rightarrow 0010\ 0101_{(BCD)}$
- $61_{(10)} \rightarrow 0110\ 0001_{(BCD)}$
- $1087_{(10)} \rightarrow 0001\ 0000\ 1000\ 0111_{(BCD)}$
- $9640_{(10)} \rightarrow 1001\ 0110\ 0100\ 0000_{(BCD)}$

CÁC KIỂU LƯU TRỮ SỐ BCD

- BCD không gói (Unpacked BCD): mỗi số BCD 4
 bit được lưu trữ trong 4 bit thấp của mỗi byte
- BCD gói (Packed BCD): hai số BCD 4 bit được lưu trữ trong một byte

CỘNG SỐ NGUYÊN KHÔNG DẦU

- Khi cộng 2 số nguyên không dấu n-bit, kết quả nhận được là n-bit.
- Nếu không có nhớ ra khỏi bit cao nhất thì kết quả nhận được luôn luôn đúng (C_{out}= 0).
- Nếu có nhớ ra khỏi bit cao nhất thì kết quả nhận được là sai, có tràn nhớ ra ngoài (C_{out} = 1).
- Tràn nhớ ra ngoài (Carry Out) xảy ra khi tổng > 2ⁿ
 -1.

CỘNG SỐ NGUYÊN CÓ DẤU

- Khi cộng 2 số nguyên có dấu n-bit không quan tâm đến bit C_{out} và kết quả nhận được là n-bit.
- Cộng 2 số khác dấu: kết quả luôn luôn đúng.
- Cộng 2 số cùng dấu: nếu dấu kết quả cùng với dấu các số hạng thì kết quả là đúng, ngược lại là sai.
- Tràn xảy ra khi tổng nằm ngoài dải biểu diễn:

$$[-(2^{n-1}),+(2^{n-1}-1)]$$

PHÉP TRỪ SỐ NGUYÊN

• Phép trừ hai số nguyên: X - Y = X + (-Y)

$11 \times 13 = 143$

	n = 4	С	Α	Q	.01
		0	0000	110 <u>1</u>	/ các giá trị khởi đầu /
	Số bị nhân $= 1011 \rightarrow M$		+1011	- 00%	
	Số nhân =	0	1011	1101	C, A ← A + M
	1101 → Q	0	0101	111 <u>0</u>	Dịch phải 1 bit $n = 3$
	_	0	0010	111 <u>1</u>	Dịch phải 1 bit $n = 2$
			1011	_	
		0	1101	1111	$C, A \leftarrow A + M$
		0	+0110	111 <u>1</u>	Dịch phải 1 bit $n = 1$
	O		1011	_	
		1	0001	1111	C, A ← A + M
		0	1000	1111	Dich phải 1 bit $\mathbf{n} = 0$

NHÂN SỐ NGUYÊN CÓ DẦU

- 1. Chuyển đổi các thừa số thành số dương
- 2. Nhân 2 số dương như số nguyên không dấu
- 3. Hiệu chỉnh dấu của kết quả

NHÂN SỐ NGUYÊN CÓ DẤU

- Thuật toán nhân nhanh
 - Booth

$$(+7) \times (-3) = (-21)$$

□
$$n = 4$$
□ Số bị nhân = $0111 \rightarrow M$
□ $-M = 1001$
□ $3_{10} = 0011$
 $-3_{10} = 1101$
(Số nhân) $\rightarrow Q$

	,	'	•	/
	Α	Q	Q ₋₁	
	0000	110 <u>1</u>	<u>0</u>	/ các giá trị khởi đầu /
	+ 1001			
	1001	1101	0	$A \leftarrow A - M = A + (-M)$
	1100	111 <u>0</u>	<u>1</u>	Dịch phải, giữ dấu A, n = 3
	+ 0111			
1	0011	1110	1	A ← A + M
	0001	111 <u>1</u>	<u>0</u>	Dịch phải, giữ dấu A, n = 2
	1001			
· -	1010	1111	0	A ← A - M
	1101	011 <u>1</u>	<u>1</u>	Dịch phải, giữ dấu A, n = 1
	1110	1011	1	Dịch phải, giữ dấu A, n = 0

CHIA SỐ NGUYÊN KHÔNG DẤU

7:3=2 DU 1

n = 4	

- □ Số bị chia = $0111 \rightarrow Q$
- \square Số chia = 3_{10}
 - $= 0011 \rightarrow M$
- □ -M = 1101

A	Q		
0000	0111	/ các giá trị kh	ởi đầu /
0000	1110	Dịch trái	
<u>1</u> 101		$A \leftarrow A - M = A$	+ (-M)
0000	1110	Khôi phục A,	n = 3
0001	1100	Dịch trái	
<u>1</u> 110		A ← A - M	
0001	1100	Khôi phục A,	n = 2
0011	1000	Dịch trái	
<u>0</u> 000		A ← A - M	
0000	1001	$Q_0 \leftarrow 1$,	n = 1
0001	0010	Dịch trái	
<u>1</u> 110		A ← A - M	
0001	0010	Khôi phục A.	n = 0

CHIA SỐ NGUYÊN CÓ DẦU

- Sử dụng thuật giải chia số nguyên không dấu sau khi đã đổi sang số dương.
- Hiệu chỉnh dấu:
 - □ (+) : (+) → không hiệu chỉnh
 - □ (+) : (-) → đảo dấu thương
 - □ (-) : (+) → đảo dấu thương và phần dư
 - □ (-) : (-) → đảo dấu phần dư

SỐ DẤU CHẨM ĐỘNG

- Floating Point Number: biểu diễn cho số thực.
- Một số X được biểu diễn theo kiểu số dấu chấm động như sau:

$$X = M * R^{E}$$

M: phần định trị (Mantissa)

R: cơ số (Radix)

E: phần mũ (Exponent)

CHUẨN IEEE 754/85

- Cơ số R = 2
- Các dạng:

Dạng 32 bit

Dạng 44 bit

Dạng 64 bit

Dạng 80 bit

CÁC DẠNG BIỂU DIỄN CHÍNH

31 30 23 22 O

63 62 52 51 0 S e m

79 78 64 63 0 S e m

DANG 32 BIT

S là bit dấu:

$$S = 0 \rightarrow S\delta$$
 dương
 $S = 1 \rightarrow S\delta$ âm

e (8 bit) là mã excess-127 (28-1-1)của phần mũ
E:

$$e = E + 127 => E = e - 127$$

giá trị 127 được gọi là độ lệch (bias)

- m (23 bit) là phần lẻ của phần định trị M: M = 1.m
- Công thức xác định giá trị của số thực:

$$X = (-1)^{S*}1.m*2^{e-127}$$

DANG 32 BIT

$$S = 1 \rightarrow s\hat{o} \hat{a}m$$

$$e = 1000\ 0010_2 = 130 => E = 130 - 127 = 3$$

Vậy:

$$X = -1.10101100 * 23 = -1101.011 = -13.375$$

DANG 32 BIT

• $X = 83.75 = 1010011.112 = 1.01001111 \times 2^{6}$

Ta có:

S = 0 vì đây là số dương

 $E = e-127=6 => e = 127+6=133_{10} = 1000 \ 0101_2$

Vậy:

 $X = 0100\ 0010\ 1010\ 0111\ 1000\ 0000\ 0000\ 0000$

CÁC QUY ƯỚC ĐẶC BIỆT

- Các bit của e bằng 0, các bit của m bằng 0, thì
 X= 0
- Các bit của e bằng 1, các bit của m bằng 0, thì
 X= ∞
- Các bit của e bằng 1, còn m có ít nhất 1 bit bằng
 1, thì không biểu diễn số nào cả

MIỀN GIÁ TRỊ BIỂU DIỄN

- 2⁻¹²⁷ đến 2⁺¹²⁷
- 10⁻³⁸ đến 10⁺³⁸

DANG 64 BIT

- S là bit dấu
- e (11 bit) là mã excess-1023 của phần mũ E: =>E
 e 1023
- m (52 bit) là phần lẻ của phần định trị M:
- Giá trị của số thực: X = (-1)^{S*}1.m*2^{e-1023}
- Biểu diễn từ 10⁻³⁰⁸ đến 10⁺³⁰⁸

DANG 80 BIT

- S là bit dấu
- e (15 bit) là mã excess-16383 của phần mũ E: =>
 E = e 16383
- m (64 bit) là phần lẻ của phần định trị M:
- Giá trị của số thực:X = (-1)^{S*}1.m*2^{e-16383}
- Biểu diễn từ 10⁻⁴⁹³² đến 10⁺⁴⁹³²

BIỂU DIỄN KÝ TỰ

- Bộ mã ASCII (American Standard Code for Information Interchange)
- Bộ mã Unicode

BỘ MÃ ASCII

- Do ANSI (American National Standard Institute) thiết kế
- Bộ mã 8 bit => có thể mã hóa được 2⁸ = 256 ký tự, có mã từ: 00₁₆ ÷ FF₁₆, trong đó:

128 ký tự chuẩn, có mã từ $00_{16} \div 7F_{16}$

128 ký tự mở rộng, có mã từ $80_{16} \div FF_{16}$

BỘ MÃ ASCII

00 NUL	10 DLE	20 SP	30	0	40	(a)	50	P	60	7	70	p
01 SOH	11 DC1	21 !	31	1	41	A	51	Q	61	a	71	q
02 STX	12 DC2	22 "	32	2	42	В	52	R	62	b	72	r
03 ETX	13 DC3	23 #	33	3	43	C	53	S	63	¢	73	s
04 EOT	14 DC4	24 \$	34	4	44	D	54	T	64	d	74	t
05 ENQ	15 NAK	25 %	35	5	45	E	55	U	65	e	75	u
06 ACK	16 SYN	26 &	36	6	46	F	56	V	66	f	76	v
07 BEL	17 ETB	27 '	37	7	47	G	57	W	67	g	77	W
08 BS	18 CAN	28 (38	8	48	Н	58	X	68	h	78	\mathbf{X}
09 HT	19 EM	29)	39	9	49	I	59	Y	69	i	79	У
0A LF	1A SUB	2A *	3A	:	4A	J	5A	Z	6A	j	7A	Z
0B VT	1B ESC	2B +	3B	;	4B	K	5B	[6B	k	7B	{
OC FF	1C FS	2C ′	3C	<	4C	L	5C	\	6C	1	7C	
0D CR	1D GS	2D -	3D	=	4D	M	5D]	6D	m	7 D	}
0E SO	1E RS	2E .	3E	>	4E	N	5E	٨	6E	n	7E	~
0F SI	1F US	2F /	3F	?	4F	O	5F	_	6F	o	7F	DEL

BỘ MÃ UNICODE

- Do các hãng máy tính hàng đầu thiết kế
- Bộ mã 16-bit
- Bộ mã đa ngôn ngữ
- Có hỗ trợ các ký tự tiếng Việt

BỘ MÃ UNICODE

								. ,	
0000 NUL	0020	SP	0040	α	0060 `	0080 Ctrl	00A0 NBS		00E0 à
0001 SOH	0021	!	0041	Α	0061 a	0081 Ctrl	00A1	00C1 Á	00E1 á
0002 STX	0022	"	0042	В	0062 b	0082 Ctrl	00A2 ¢	00C2 Â	00E2 â
0003 ETX	0023	#	0043	C	0063 c	0083 Ctrl	00A3 £	00C3 Ã	00E3 ã
0004 EOT	0024	\$	0044	D	0064 d	0084 Ctrl	00A4 ¤	00C4 Ä	00E4 ä
0005 ENQ	0025	%	0045	Е	0065 e	0085 Ctrl	00A5 ¥	00C5 Å	00E5 å
0006 ACK	0026	&	0046	F	0066 f	0086 Ctrl	00A6	00C6 Æ	00E6 æ
0007 BEL	0027	•	0047	G	0067 g	0087 Ctrl	00A7 §	00C7 Ç	00E7 ç
0008 BS	0028	(0048	Н	0068 h	0088 Ctrl	00A8 "	00C8 È	00E8 è
0009 HT	0029)	0049	I	0069 i	0089 Ctrl	00A9 ©	00C9 É	00E9 é
000A LF	002A	*	004A	J	006A j	008A Ctrl	00AA ≗	00CA Ê	00EA ê
000B VT	002B	+	004B	K	006B k	008B Ctrl	00AB «	00CB Ë	00EB ë
000C FF	002C	,	004C	L	006C 1	008C Ctrl	00AC ¬	00CC Ì	00EC ì
000D CR	002D	-	004D	M	006D m	008D Ctrl	00AD -	00CD į	00ED í
000E SO	002E		004E	N	006E n	008E Ctrl	00AE ®	00CE Î	OOEE î
000F SI	002F	/	004F	O	006F o	008F Ctrl	00AF -	00CF Ï	00EF ï
0010 DLE	0030	0	0050	P	0070 p	0090 Ctrl	00B0 °	00D0 Đ	00F0 ¶
0011 DC1	0031	1	0051	Q	0071 q	0091 Ctrl	00B1 ±	00D1 Ñ	00F1 ñ
0012 DC2	0032	2	0052	R	0072 r	0092 Ctrl	00B2 2	00D2 Ò	00F2 ò
0013 DC3	0033	3	0053	S	0073 s	0093 Ctrl	00B3 ³	00D3 Ó	00F3 ó
0014 DC4	0034	4	0054	T	0074 t	0094 Ctrl	00B4 ′	00D4 Ô	00F4 ô
0015 NAK	0035	5	0055	U	0075 u	0095 Ctrl	00B5 μ	00D5 Õ	00F5 õ
0016 SYN	0036	6	0056	V	0076 v	0096 Ctrl	00B6 ¶	00D6 Ö	00F6 ö
0017 ETB	0037	7	0057	W	0077 w	0097 Ctrl	00B7	00D7 ×	00F7 ÷
0018 CAN	0038	8	0058	X	0078 x	0098 Ctrl	00B8 ,	00D8 Ø	00F8 ø
0019 EM	0039	9	0059	Y	0079 у	0099 Ctrl	00B9 ¹	00D9 Ù	00F9 ù
001A SUB	003A	:	005A	Z	007A z	009A Ctrl	00BA ≗	00DA Ú	00FA ú
001B ESC	003B	;	005B	[007B {	009B Ctrl	00BB »	00DB Û	00FB û
001C FS	003C	<	005C	\	007C	009C Ctrl	00BC 1/4	00DC Ü	00FC ü
001D GS	003D	=	005D]	007D }	009D Ctrl	00BD 1/2	00DD Y	00FD P
001E RS	003E	>	005E	^	007E ~	009E Ctrl	00BE 3/4	00DE ý	00FE þ
001F US	003F	?	005F	_	007F DEL	009F Ctrl	00BF ;	00DF §	00FF ÿ