

Visualisation

Week 1
Position Scales

Coordinate Systems

Cartesian Coordinates

Polar Coordinates

Linear Scales

$$y_{\rm px} = a_{\rm y} \, y_{\rm mm} + b_{\rm y}$$

Linear Scales

$$y_{\rm px} = a_{\rm y} y_{\rm mm} + b_{\rm y}$$

- "Invariant" to:
 - scaling and shifting
 - unit change

$$y'_{px} = a'_{y} y_{cm} + b_{y} \qquad | a'_{y} = 10a_{y}$$

- All functions of the form: $y = \lambda \alpha^x$
 - Result in straight line.
 - Slope is proportional to: $\log(\alpha)$

- "Invariant" to:
 - scaling and shifting
 - unit change
 - changing base

Invariance to Scaling but NOT Shifting

Scaling:

$$y_{px} = a_y \log(yc) + b_y$$
$$= a_y \log(y) + \log(c) + b_y$$

• We can adjust b_y

Shifting:

$$y_{\text{px}} = a_{\text{y}} \log(y + c) + b_{\text{y}}$$

Nothing we can do!

The Verge, 91-divoc.com

Logarithmic Scales – Log-Log Plot

Logarithmic Scales – Log-Log Plot

Logarithmic Scales – Log-Log Plot

- All functions of the form: $y = \alpha x^k$
 - Result in straight line.
 - Slope proportional to: k

- "Invariant" to:
 - scaling and shifting
 - unit change
 - changing base

Log-Log Plots Application

BBC Wonder of Life (Brian Cox) via statisticsbyjim.com

Summary

• Pos. scales map variables to positions along an axis.

Plots using different scales:

Linear $y = \alpha x + b$ is a line

Log-Linear $y = \lambda \alpha^{\gamma x}$ is a line

Log-Log $y = \alpha x^k$ is a line