Transportes - parte II (redes gerais)

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

29 de outubro de 2019

Transportes - redes gerais

antes

• O algoritmo de transportes em grafos bipartidos (todos os arcos ligam uma origem a um destino)

Guião

- Generalização do algoritmo de transportes a redes gerais: cada vértice pode funcionar como origem e destino, simultaneamente.
- Há questões particulares que é necessário ter em conta.
- Algoritmo de transportes em redes gerais com arcos com capacidade, porque ...

depois

• o software de optimização de redes (e.g., relax4) aceita como input uma qualquer rede geral com capacidades nos arcos.

Conteúdo

- Revisão de conceitos, e sua adaptação a redes gerais
 - Problema de Transportes em Rede: modelo geral
 - Caracterização das soluções básicas
 - Método dos multiplicadores
 - Circuito de Stepping stone
- Transporte em Redes (ainda sem limites superiores)
 - Exemplo
 - Transporte com Transbordo
- Transporte em Redes com Limites Superiores
 - Exemplo
 - Nota: construção da solução inicial
- Transformação num Problema em Rede com Limites Superiores
 - Problemas com Capacidade nos Vértices
 - Exemplo: Transportes com Armazéns Intermédios
 - Problemas com Limites Inferiores

Problema de Transportes em Rede: modelo geral

• Dado um grafo G = (V, A), pretende-se:

min
$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$
suj. a
$$-\sum_{(i,j)\in A} x_{ij} + \sum_{(j,i)\in A} x_{ji} = b_j, \ \forall j \in V$$

$$0 \le x_{ii} \le u_{ii}, \ \forall (i,j) \in A$$

$$(2)$$

Variáveis de decisão:

• x_{ij} : fluxo de *um único tipo de entidades* no arco orientado (i,j);

Dados:

- $c_{ij:}$ custo unitário de transporte no arco orientado (i,j);
- u_{ij}: capacidade do arco orientado (i,j);
- $b_{j:}$ oferta (valor positivo) ou procura (valor negativo) no vértice j.
- Restrições (1) designam-se por restrições de conservação de fluxo.
- Restrições (2) designam-se por restrições de capacidade.

Caracterização das soluções básicas

- O grafo associado às variáveis básicas é sempre uma árvore de suporte com |V|-1 arcos.
- Há variáveis não-básicas x_{ij}:
 - no limite inferior $(x_{ij} = 0)$
 - no limite superior $(x_{ij} = u_{ij})$
- Quando se altera uma variável não-básica (quer seja uma no limite inferior ou uma no limite superior) forma-se um (e um só) ciclo com as variáveis básicas.

Método dos multiplicadores

Multiplicadores associados aos vértices:

• há um multiplicador u_i associado a cada vértice j, $\forall j \in V$.

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- **1** Para os arcos (i,j) básicos, fazer:

$$c_{ij} = u_i - u_j$$

Para os arcos (i,j) não-básicos, fazer:

$$\delta_{ij} = c_{ij} - (u_i - u_j)$$

Output do método dos multiplicadores:

• os δ_{ii} de todos os arcos não-básicos.

Pivô: stepping stone da variável não-básica x_{ab}

- Arco (a,b) forma um ciclo com os arcos (b,c), (c,d), (e,d), (f,e) e (f,a) (da árvore das variáveis básicas).
- Outros arcos foram omitidos.
- Os arcos do ciclo formam um conjunto linearmente dependente.

- Pivô:
 - Variável não-básica x_{ab} aumenta.
 - Outras variáveis não-básicas mantêm-se iguais a zero.
 - Variáveis básicas no ciclo alteram o seu valor (ver próximo slide).
 - Variáveis básicas fora do ciclo mantêm-se.

Stepping stone: variável não-básica x_{ab}

Pivô:

- A soma das variações de fluxo de entrada e de saída deve ser nula,
- ou seja, a soma dos fluxos que entram e saem em cada vértice permanece igual (ao valor de b_j do vértice).
- Quando a variável não-básica x_{ab} aumenta θ unidades,
- x_{bc} aumenta θ ; x_{cd} aumenta θ ;
- x_{ed} decrementa θ ; x_{fe} decrementa θ ;
- x_{fa} aumenta θ .

Transporte em Redes (ainda sem limites superiores)

- valor associado ao arco: c_{ij} custo unitário de transporte.
- ullet valor associado ao vértice: b_j oferta ou procura no vértice

Exemplo: uma solução inicial básica e admissível

Solução é básica (variáveis básicas formam uma árvore):

- variáveis básicas: $x_{12} = 12, x_{23} = 22, x_{34} = 14$.
- variável não-básicas: $x_{21} = x_{13} = x_{14} = x_{24} = x_{43} = 0$.

- Solução é admissível: todas as restrições de conservação de fluxo (1) são obedecidas.
- Custo da solução = 12(1) + 22(12) + 14(3) = 318

Stepping stone: variável não-básica x_{14}

 Arco (1,4) forma um ciclo com os arcos (1,2),(2,3) e (3,4) (das variáveis básicas).

- Quando a variável não-básica x_{14} aumenta θ unidades, **todas** as variáveis básicas x_{34} , x_{23} e x_{12} decrementam θ unidades, porque:
 - **1** quando x_{14} aumenta, x_{34} decrementa, para o fluxo que entra no vértice 4 permanecer igual.
 - ② quando x_{34} decrementa, x_{23} decrementa, para a variação do fluxo no vértice 3 ser nula.
 - $oldsymbol{0}$ quando x_{23} decrementa, x_{12} decrementa, para a variação do fluxo no vértice 2 ser nula.
 - lack o o decremento de x_{12} e o aumento de x_{14} mantêm o fluxo que sai do vértice 1 igual.

Teste de optimalidade: análise do ciclo da variável x_{14}

- Dadas as variações (aumento e decremento) de fluxo ao longo do ciclo (1,2),(2,3),(3,4),(1,4), o valor de $\delta_{14}=11-3-12-1=-5$.
- Para as restantes variáveis não-básicas:

$$\delta_{13} = 10 - 12 - 1 = -3;$$
 $\delta_{14} = 11 - 3 - 12 - 1 = -5;$ $\delta_{21} = 2 + 1 = 3$
 $\delta_{24} = 13 - 3 - 12 = -2;$ $\delta_{43} = 4 + 3 = 7;$

A variável não-básica mais atractiva é x₁₄.

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

- fixar um multiplicador: $u_1 = 0$.
- $c_{12} = u_1 u_2$
- •
- •

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

- fixar um multiplicador: $u_1 = 0$.
- $c_{12} = u_1 u_2$ $\Rightarrow 1 = 0 u_2$ $\Rightarrow u_2 = -1$

 $c_{23} = u_2 - u_3$

•

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

- fixar um multiplicador: $u_1 = 0$.
- $c_{12} = u_1 u_2$ $\Rightarrow 1 = 0 u_2$ $\Rightarrow u_2 = -1$
- $c_{23} = u_2 u_3$ $\Rightarrow 12 = -1 u_3$ $\Rightarrow u_3 = -13$
- $c_{34} = u_3 u_4$

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

- fixar um multiplicador: $u_1 = 0$.
- $c_{12} = u_1 u_2$ $\Rightarrow 1 = 0 u_2$ $\Rightarrow u_2 = -1$

$$\rightarrow 1 - 0 -$$

$$\Rightarrow u_2 = -1$$

• $c_{23} = u_2 - u_3$ $\Rightarrow 12 = -1 - u_3$ $\Rightarrow u_3 = -13$

$$\Rightarrow 12 = -1 - u$$

$$\Rightarrow u_3 = -13$$

•
$$c_{34} = u_3 - u_4$$
 $\Rightarrow 3 = -13 - u_4$ $\Rightarrow u_4 = -16$

Método dos multiplicadores

Para as casas não-básicas, fazer:

$$\delta_{ij} = c_{ij} - (u_i - u_j)$$

atractividade das variáveis não-básicas:

$$\delta_{13} = 10 - (0 - (-13)) = -3;$$
 $\delta_{14} = 11 - (0 - (-16)) = -5;$ $\delta_{21} = 2 - (-1 - 0) = 3;$ $\delta_{24} = 13 - (-1 - (-16)) = -2;$ $\delta_{43} = 4 - (-16 - (-13)) = 7;$

• x_{14} é a variável mais atractiva.

Valor máximo do aumento de x_{14}

 Arco (1,4) forma um ciclo com os arcos (1,2),(2,3) e (3,4) (das variáveis básicas).

- Quando a variável não-básica x_{14} aumenta, as variáveis básicas x_{34}, x_{23} e x_{12} diminuem.
- Qual o aumento máximo de x₁₄ sem nenhuma das variáveis básicas se tornar negativa?
- $\theta_{max} = \min\{14, 22, 12\} = 12.$

Pivô

• A variável x_{14} entra na base e x_{12} sai da base.

Custo = 12 (11) + 10 (12) + 2 (3) = 258

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

- fixar um multiplicador: $u_1 = 0$.
- $c_{14} = u_1 u_4$
- •
- •

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

- fixar um multiplicador: $u_1 = 0$.
- $c_{14} = u_1 u_4$ $\Rightarrow 11 = 0 u_4$ $\Rightarrow u_4 = -11$

 $c_{34} = u_3 - u_4$

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

- fixar um multiplicador: $u_1 = 0$.
- $c_{14} = u_1 u_4$ $\Rightarrow 11 = 0 u_4$ $\Rightarrow u_4 = -11$
- $c_{34} = u_3 u_4$ $\Rightarrow 3 = u_3 (-11)$ $\Rightarrow u_3 = -8$
- $c_{23} = u_2 u_3$

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

- fixar um multiplicador: $u_1 = 0$.

$$\rightarrow 11 - 0$$

$$\Rightarrow u_4 = -11$$

•
$$c_{14} = u_1 - u_4$$
 $\Rightarrow 11 = 0 - u_4$ $\Rightarrow u_4 = -11$
• $c_{34} = u_3 - u_4$ $\Rightarrow 3 = u_3 - (-11)$ $\Rightarrow u_3 = -8$

$$\Rightarrow u_3 = -8$$

•
$$c_{23} = u_2 - u_3$$
 $\Rightarrow 12 = u_2 - (-8)$ $\Rightarrow u_2 = 4$

$$\Rightarrow u_2 =$$

Método dos multiplicadores

Para as casas não-básicas, fazer:

$$\delta_{ij} = c_{ij} - (u_i - u_j)$$

• atractividade das variáveis não-básicas:

$$\delta_{12} = 1 - (0 - 4) = 5;$$
 $\delta_{13} = 10 - (0 - (-8)) = 2;$ $\delta_{21} = 2 - (4 - 0) = -2;$ $\delta_{24} = 13 - (4 - (-11)) = -2;$ $\delta_{43} = 4 - (-11 - (-8)) = 7;$

- x₂₁ e x₂₄ são as variáveis não-básicas mais atractivas.
- Desempate: x_{24} é seleccionada (escolha é arbitrária).

Valor máximo do aumento de x₂₄

 Arco (2,4) forma um ciclo com os arcos (2,3) e (3,4) (das variáveis básicas).

- Quando a variável não-básica x_{24} aumenta, as variáveis básicas x_{23} e x_{34} diminuem.
- Qual o aumento máximo de x_{24} sem nenhuma das variáveis básicas se tornar negativa?
- $\theta_{max} = \min = \{10, 2\} = 2$.

Pivô

• A variável x_{24} entra na base e x_{34} sai da base.

• Custo = 12(11) + 8(12) + 2(13) = 254

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

•
$$u_1 = 0$$
.

$$C_{1A} = U_1 - U_A$$

•
$$c_{14} = u_1 - u_4$$
 $\Rightarrow 11 = 0 - u_4$ $\Rightarrow u_4 = -11$
• $c_{24} = u_2 - u_4$ $\Rightarrow 13 = u_2 - (-11)$ $\Rightarrow u_2 = 2$

$$c_{24} = u_2 - u_4$$

$$\Rightarrow$$
 13 = $u_2 - (-11)$

$$\Rightarrow u_2 = 2$$

•
$$c_{23} =$$

•
$$c_{23} = u_2 - u_3$$
 $\Rightarrow 12 = 2 - u_3$ $\Rightarrow u_3 = -10$

Método dos multiplicadores

Para as casas não-básicas, fazer:

$$\delta_{ij} = c_{ij} - (u_i - u_j)$$

atractividade das variáveis não-básicas:

$$\begin{array}{ll} \delta_{12} = 1 - (0 - 2) = 3; & \delta_{13} = 10 - (0 - (-10)) = 0; \\ \delta_{21} = 2 - (2 - 0) = 0; & \delta_{34} = 3 - (-10 - (-11)) = 2; \\ \delta_{43} = 4 - (-11 - (-10)) = 5; & \end{array}$$

• Solução é óptima. Há soluções óptimas alternativas. Porquê?

Transportes com transbordo

 O problema anteriormente apresentado é muitas vezes designado por problema com transbordo ou de transexpedição.

O que é o transbordo?

- Expedição de todas / algumas unidades produzidas numa origem para outra origem, tendo em vista o seu transporte para os destinos.
- No exemplo, também há transbordo de unidades nos destinos.

Transporte em Redes com Limites Superiores

Rede com capacidades associadas aos arcos:

- valores associados aos arcos, (c_{ij}, u_{ij}) , representam o custo unitário de transporte e a capacidade do arco, respectivamente,
- valores associados aos vértices representam ofertas e procuras.

Problema balanceado (soma das ofertas = soma dos procuras)

Caracterização das soluções básicas

- O grafo associado às variáveis básicas é sempre uma árvore de suporte, i.e., um grafo :
 - ligado,
 - sem ciclos, e
 - com |V|-1 arcos.
- As restantes variáveis x_{ii} são não-básicas:
 - no limite inferior $(x_{ij} = 0)$, ou
 - no limite superior $(x_{ij} = u_{ij})$
- O arco de cada variável não-básica (quer seja uma no limite inferior ou uma no limite superior) forma um (e um só) ciclo com arcos (todos ou alguns) da árvore associada às variáveis básicas.

Exemplo: uma solução inicial básica e admissível

Solução é básica (variáveis básicas formam uma árvore):

- variáveis básicas: $x_{12} = 18, x_{24} = 8, x_{13} = 6, x_{35} = 16.$
- variável não-básica no limite inferior: $x_{54} = 0$.
- variável não-básica no limite superior: $x_{23} = 4$.

 Solução é admissível: todas as restrições de conservação de fluxo (1) e de capacidade (2) são obedecidas.

Teste de optimalidade

- A definição do δ_{ij} não varia: o δ_{ij} indica a variação de custo total quando a variável não-básica ij aumenta.
- Por isso, quando se considera uma variável não-básica ij no limite superior, e a operação a efectuar é **decrementar o valor do seu fluxo**, se o seu $\delta_{ij} > 0$, há uma redução do custo total.

Uma variável não-básica é atractiva quando:

- $x_{ij} = 0$ (variável aumenta de valor) e $\delta_{ij} < 0$.
- $x_{ij} = u_{ij}$ (variável decrementa de valor) e $\delta_{ij} > 0$

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij} = u_i - u_j$$

Método dos multiplicadores

Para as casas não-básicas, fazer:

$$\delta_{ij} = c_{ij} - (u_i - u_j)$$

atractividade das variáveis não-básicas:

$$\delta_{23} = 2 - (-6 - (-1)) = +7;$$
 $\delta_{54} = 1 - (-4 - (-13)) = -8;$

• Ambas são atractivas; x₅₄ é a variável mais atractiva.

Valor máximo do aumento de x₅₄

• Arco (5,4) forma um ciclo com os arcos (2,4),(1,2),(1,3) e (3,5) (das variáveis básicas).

- Quando a variável não-básica x_{54} aumenta, a variável básica x_{24} decrementa, a x_{12} decrementa, a x_{13} aumenta e a x_{35} aumenta.
- Qual o aumento máximo de x₅₄ sem ela própria ultrapassar o limite superior, nem nenhuma das variáveis básicas se tornar negativa ou ultrapassar o limite superior?
- $\theta_{max} = \min\{8, 8, 18, 2, 1\} = 1.$

 A variável x₅₄ entra na base e x₃₅ sai da base, tornando-se não-básica no limite superior. Qual é nova árvore?

Exemplo: passos 0 e 1 do método dos multiplicadores

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij}=u_i-u_j$$

Exemplo: passo 2 do método dos multiplicadores

Método dos multiplicadores

Para as casas não-básicas, fazer:

$$\delta_{ij} = c_{ij} - (u_i - u_j)$$

atractividade das variáveis não-básicas:

$$\delta_{23} = 2 - (-6 - (-1)) = +7;$$
 $\delta_{35} = 3 - (-1 - (-12)) = -8;$

• Só a variável x₂₃ é atractiva.

Valor máximo do decremento de x₂₃

• Arco (2,3) forma um ciclo com os arcos (1,2) e (1,3) (das variáveis básicas).

- Quando a variável não-básica no limite superior x_{23} decrementa, a variável básica x_{13} aumenta e a x_{12} decrementa.
- Qual o decremento máximo de x₂₃ sem ela própria se tornar negativa, nem nenhuma das variáveis básicas se tornar negativa ou ultrapassar o limite superior?
- $\theta_{max} = \min\{4, 17, 1\} = 1$.

• A variável x_{23} entra na base e x_{13} sai da base, tornando-se não-básica no limite superior. Qual é nova árvore?

Exemplo: passos 0 e 1 do método dos multiplicadores

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas, fazer:

$$c_{ij} = u_i - u_j$$

Exemplo: passo 2 do método dos multiplicadores

Método dos multiplicadores

Para as casas não-básicas, fazer:

$$\delta_{ij} = c_{ij} - (u_i - u_j)$$

• atractividade das variáveis não-básicas:

$$\delta_{13} = 1 - (0 - (-8)) = -7;$$
 $\delta_{35} = 3 - (-8 - (-12)) = -1;$

Nenhuma variável é atractiva. Solução é óptima.

Construção da solução inicial

- Ao atribuir valores aos fluxos, para construir a solução inicial, devemos respeitar os limites superiores dos arcos, sempre que possível, para obter uma solução válida.
- Se não for possível respeitar o limite superior de um (ou mais) arcos, num segundo passo, devemos tentar obter uma solução válida, alterando o fluxo ao longo de ciclos.
- Se tal não for possível, o problema é impossível.

Transformações

Podemos determinar a solução óptima de uma instância com:

- um vértice com capacidade, ou
- um arco com um limite inferior,
- criando uma nova instância, definida numa rede G = (V, A) apenas com arcos com limites superiores.
- A nova rede é definida por uma lista de arcos $(i, j, c_{ij}, u_{ij}), \forall (i, j) \in A$, sendo:
 - i: origem do arco
 - j: destino do arco
 - c_{ij}: custo unitário de transporte no arco, e
 - u_{ij} : limite superior de fluxo no arco.
- Este é o formato normalmente usado em *software* de optimização de redes (*e.g.*, *relax4*).
- As transformações apresentadas de seguida são aplicadas sucessivamente a cada caso acima descrito.

Como transformar uma instância com capacidade num vértice numa instância apenas com capacidade nos arcos?

- valores associados aos arcos: (c_{ij}, u_{ij}), sendo:
- c_{ij} : custo unitário de transporte.
- u_{ij}: limite superior de fluxo no arco.
- C_j^{max} : fluxo máximo no vértice j :

$$\sum_{(i,j)\in A} x_{ij} = \sum_{(j,k)\in A} x_{jk} \le C_j^{max}.$$

Transformação de uma instância com capacidade num vértice numa instância apenas com capacidade nos arcos

Exemplo: Transportes com Armazéns Intermédios

- Existem armazéns a e b entre as origens e os destinos com capacidades de 10 e de 16, respectivamente.
- Cada vértice representando um armazém é desdobrado num vértice de entrada e num vértice de saída, e é criado um arco com a capacidade do armazém.

- O fluxo pelo armazém é limitado pela sua capacidade.
- O custo do novo arco tipicamente é nulo; no entanto, pode ser igual ao custo unitário de armazenagem.

Como transformar uma instância com um limite inferior num arco numa instância apenas com limites superiores?

• Deve haver um fluxo mínimo no arco $(i,j): x_{ij} \ge l_{ij}$

- Valores associados aos arcos: (c_{ij}, l_{ij}, u_{ij}) , sendo:
- c_{ij} : custo unitário de transporte.
- *l_{ij}* : limite inferior de fluxo no arco.
- u_{ij} : limite superior de fluxo no arco.

Transformação de uma instância com um limite inferior num arco numa instância apenas com limites superiores

- Os valores da oferta (ou procura) nos vértices i e j devem ser reajustados: a procura do vértice i é aumentada de l_{ij} unidades e a oferta do vértice j é aumentada de l_{ij} unidades.
- Esta transformação é equivalente a efectuar uma mudança de variável $x_{ii}^{'}=x_{ij}-l_{ij}$ no modelo de programação linear apresentado.

Após calcular a solução óptima do problema transformado,

 os valores finais do fluxo no arco devem ser recalculados, bem como os custos.

Conclusão

- O algoritmo de transporte em redes com capacidades é uma especialização do algoritmo simplex com limites superiores (que não foi apresentado).
- A sua implementação usando estruturas de dados adequadas permite resolver instâncias de muito grande dimensão em tempo razoável.
- Há uma regra (que não iremos ver) para evitar que situações de degenerescência (duas ou mais variáveis atingem simultaneamente os seus limites inferior ou superior) originem que o algoritmo entre em ciclo.

Fim