21.1 . SOME MORE EXAMPLES OF FOR LOOP TIME COMPLEXITIES

$$for(k = 1, i = 1; k \le n; i + +)$$
{
 $c = c + 1; --- \rightarrow Statement$
 $k = k + i;$
}

SOLUTION

THEN WHAT IS THE UPPER BOUND HERE?

\boldsymbol{k}	i	\boldsymbol{n}	i + +	k + i
1	1	n	2	1+1
2	2	n	3	1+1+2
4	3	n	4	1+1+2+3
1 + 1 + 2	k	n		1+1+2+3++
+ 3 +				k-1+k
+k - 1				

$$k = 1 + (1 + 2 + 3 + \cdots + k - 1 + k)$$

if we exclude 1 here: Then we get \Rightarrow

$$\Rightarrow$$
 $(1+2+3+\cdots+k-1+k) \leq n$

$$\Rightarrow \frac{k(k+1)}{2} \leq n$$

$$\Rightarrow \frac{k^2+k}{2} \leq n$$

$$\Rightarrow k^2 + k < 2n$$

$$\Rightarrow k^2 + k - 2n \leq 0$$

By quadratic equation:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Rightarrow \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times -2n}}{2}$$

$$\Rightarrow \frac{-1 \pm \sqrt{1 + 8n}}{2}$$

We get:

$$\left(\frac{-1+\sqrt{1+8n}}{2}\right)$$
 and $\left(\frac{-1-\sqrt{1+8n}}{2}\right)$

And we take the general term for number of times the inner most statement gets printed :

ceil of
$$\left[\frac{-1+\sqrt{1+8n}}{2}\right]$$

And time complexity : $O(\sqrt{n})$