Predicting California Wildfires

Zoë Langhoff Weinstein Environmental Data Science

Inspiration

- Natural disasters can be extremely devastating especially because they often come unannounced with little time to prepare
- The goal of this research is to attempt to predict wildfires in California in light of the recent fire in the Palisades

Data

- CAL Fires and NOAA Climate Data Online, from 1984-2024, just under 15,000 rows of data
- Key variables of interest:
 - Dependent variable: Binary variable for fire started
 - Independent variables: Precipitation, maximum temperature, average wind speed, temperature range, wind temperature ratio, month, season, precipitation in the last seven day, average wind speed in last seven days, day of the year (from 1-365)

Temperature and Wind

Logistic Regression

Logistic Regr	ession Class: precision		Report f1-score	support
False True	0.72 0.72	0.87 0.51	0.78 0.60	1938 1344
accuracy macro avg weighted avg	0.72 0.72	0.69 0.72	0.72 0.69 0.71	3282 3282 3282

- Logistic regression has an easier time predicting when a fire will not happen
- Struggles with predicting correctly when a fire will happen (51% correct)

Random Forest adn XGBoost Classification

Random Forest	Classificat: precision		t f1–score	support
False True	0.72 0.72	0.86 0.51	0.78 0.60	1938 1344
accuracy macro avg weighted avg	0.72 0.72	0.69 0.72	0.72 0.69 0.71	3282 3282 3282

XGBoost Class	ification R precision		f1–score	support
False True	0.73 0.72	0.86 0.53	0.79 0.61	1938 1344
accuracy macro avg weighted avg	0.72 0.72	0.70 0.72	0.72 0.70 0.72	3282 3282 3282

- Random forest classification performs similarly to logistic regression
- XGBoost Model performs similarly as well, but slightly better in the True recall, meaning it correctly predicted a fire will happen more than the RF and Logit Model

Feature Importance

- Minimum temperature
 is most important in
 both models
- Precipitation is least important
- In XGBoost, lagged precipitation is third most important

Conclusion

- Predicting wildfires is challenging for numerous reasons, fires differ across space and time
- This research split data up by year and did not factor in location, further research could include longitude and latitude and compare three biomes of CA
- XGBoost Model performs best overall, but still only have a 53% chance of correctly predicting a fire will start on a specific day