Package 'CPAT'

February 28, 2019

b_n check_envir_has_objects bessel_zeros bind_power_sim_objs рэикз 9 u-7 andrews_test......andrews_test darktach R topics documented: Author Curtis Miller [aut, cre] NeedsCompilation yes 0.1.0 sto VnogenXoA LinkingTo Rcpp, RcppArmadillo, BH LazyData true Encoding UTF-8 License MIT + file LICENSE SystemRequirements GNU make RdMacros Rdpack .09), methods (>= 3.2), Rcpp (>= 0.12), purr (>= 0.2), Imports stats (>= 3.2), utils (>= 3.2), grDevices (>= 3.2), Repack (>= tikzDevice (>= 0.12), testthat (>= 2.0) , (7.0 =<) tylob , (2.2 =<) choldgg , (0.1 =<) leiktedob Suggests cointReg (>= 0.2), foreach (>= 1.4), doRNG (>= 1.7), Depends R = 3.2Description Implements several statistical tests for structural change. Maintainer Curtis Miller <cmiller@math.utah.edu> Date 2018-10-16 0009.0.2.0 nois19V Title Change Point Analysis Tests 2 R topics documented:

CPAT_startup_message
cpt_consistent_var
CUSUM.test
dBst
dBst summand solver
DE.test
dist conv plot tikz
dZn
ff
getLongRunWeights
get expanding window pvals
get_expanding_window_pvals_reg
get_lrv_vec
HR.test
HS.test
is formula
lrv_plot_tikz
pBst
pBst_summand_solver
pdarling erdos
phidalgo_seo
pkolmogorov
power_plot_tikz
power_plot_tikz_by_n
power_sim_stat_df_creator
power sim Vn to df
power_sim_Zn_to_df
pZn
qBst
qdst
quaring_erdos
qindaigo_seo
qXn
rchangepoint
sim_de_stat
<u></u>
stat_de
stat_hs
stat_hs_reg
stat_Vn
stat_Zn
stat_Zn_reg
stop_with_message
%s%
%s0%

Index 53

ε dəsitAno.

Description Package Attach Hook Function dostiAno.

Hook triggered when package attached

Usage

.onAttach(lib, pkg)

Arguments

a character string giving the library directory where the package defining the diſ

namespace was found

a character string giving the name of the package bkg

Examples

CPAT:::.onAttach(.libPaths()[1], "CPAT")

Andrews' Test for End-of-Sample Structural Change Andrews.test

Description

see the documentation of those functions for more details. formula is specified. This function is thus an interface to andrews_test and andrews_test_reg; function works for both univariate and multivariate data depending on the nature of x and whether Performs Andrews' test for end-of-sample structural change, as described in (Andrews 2003). This

Andrews.test(x, M, formula = NULL)

Arguments

The regression formula, which will be passed to 1m formula Numeric index of the location of the first potential change point Data to test for change in mean (either a vector or data. frame)

Value

A htest-class object containing the results of the test

00129682, 14680262, https://www.jstor.org/stable/1555535. Andrews DWK (2003). "End-of-Sample Instability Tests." Econometrica, 71(6), 1661–1694. ISSN 4 andrews_test

Examples

```
Andrews.test(rnorm(1000), M = 900)
x <- rnorm(1000)
y <- 1 + 2 * x + rnorm(1000)
df <- data.frame(x, y)
Andrews.test(df, y ~ x, M = 900)
```

andrews_test

Univariate Andrews Test for End-of-Sample Structural Change

Description

This implements Andrews' test for end-of-sample change, as described by Andrews (2003). This test was derived for detecting a change in univariate data. See (Andrews 2003) for a description of the test.

Usage

```
andrews_test(x, M, pval = TRUE, stat = TRUE)
```

Arguments

x Vector of the data to test

M Numeric index of the location of the first potential change point

pval If TRUE, return a p-value

stat If TRUE, return a test statistic

Value

If both pval and stat are TRUE, a list containing both; otherwise, a number for one or the other, depending on which is TRUE

References

Andrews DWK (2003). "End-of-Sample Instability Tests." *Econometrica*, **71**(6), 1661–1694. ISSN 00129682, 14680262, https://www.jstor.org/stable/1555535.

Examples

```
CPAT:::andrews_test(rnorm(1000), M = 900)
```

Index

*Topic datasets	is.formula,22
banks, 6	lm, 3, 5, 11, 14, 18, 20, 45, 49
ff, 16	log, 20
onAttach, 3	lrv_plot_tikz, 23
%s0%, 51	11 1_p10t_t1R2, 25
%s%, 51	numeric, <i>11</i> , <i>14</i> , <i>21</i>
a_n, 5	pBst, 12, 24, 25, 31
Andrews.test, 3	pBst_summand_solver, 24, 25, 31, 32
andrews_test, 3, 4	pdarling_erdos, 14, 25
andrews_test_reg, 3, 5	phidalgo_seo, 21, 26
b_n, 5, 8	pkolmogorov, 11, 26
banks, 6	power_plot_tikz, 27
base_file_name,6	power_plot_tikz_by_n, 28
besselJ, 7	power_sim_stat_df_creator, 29
besselJ_zeros,7	power_sim_Vn_to_df, 8, 29, 29
bind_power_sim_objs,8	power_sim_Zn_to_df, 8, 29, 30 pZn, 16, 20, 31
check_envir_has_objects,9	gBst, 32
CPAT_startup_message, 9	qdarling_erdos, 32
cpt_consistent_var, 10	qhidalgo_seo, 33
CUSUM.test, 10	qkolmogorov, 33
	qZn, 34
data.frame, <i>3</i> , <i>11</i> , <i>14</i> , <i>21</i> , <i>45</i>	q211, 34
dBst, 12, <i>13</i>	rchangepoint, 35
dBst_summand_solver, 12, 13	
DE.test, 13	scale_linetype_manual, 28
dist_conv_plot_tikz, 15	sim_de_stat,36
dZn, 16	sim_hs_stat, 37
	sim_Vn, 38
ff, 16	sim_Vn_stat, 39
formula, 21, 22, 45	sim_Zn, 40
	sim_Zn_stat,41
get_expanding_window_pvals, 18	sqrt, 20
get_expanding_window_pvals_reg, 18	stat_de, <i>14</i> , <i>36</i> , 42
get_lrv_vec, 19	stat_hs, 21, 38, 43
getBandwidth, 11, 14, 19, 20, 43, 44, 47, 48,	stat_hs_reg, 21, 45
50	stat_Vn, 11, 40, 43, 46
getLongRunVar, 11, 14, 17, 19, 20, 43, 44, 47,	stat_Zn, 20, 42, 48
48, 50	stat_Zn_reg, 49
getLongRunWeights, 17, 17	stop, <i>51</i>
HR.test, 20	stop_with_message, 50
HS. test, 21	uniroot, <i>32-34</i>

53

ς gor_iso1_sworbns %0s%

Value

25

A string combining x and y

Examples

"Hello" %s0% "world" /%20%/ <- CPAT:::/%20%/

Description

andrews_test_reg

2003) for a description of the test. test was derived for detecting a change in multivarate data, aso originally described. See (Andrews This implements Andrews' test for end-of-sample change, as described by Andrews (2003). This

Multivariate Andrews' Test for End-of-Sample Structural Change

andrews_test_reg(formula, data, M, pval = TRUE, stat = TRUE)

Arguments

Usage

The regression formula, which will be passed to 1m formula

data. frame containing the data eteb

Numeric index of the location of the first potential change point W

If TRUE, return a p-value pval

If TRUE, return a test statistic stat

Value

If both pval and stat are TRUE, a list containing both; otherwise, a number for one or the other,

depending on which is TRUE

References

Andrews DWK (2003). "End-of-Sample Instability Tests." Econometrica, 71(6), 1661–1694. ISSN

00129682, 14680262, https://www.jstor.org/stable/1555535.

Examples

u_6

CPAT:::andrews_test_reg($y \sim x$, data = df, M = 900) $df \leftarrow data.frame(x, y)$ $\lambda < -1 + 5 * x + LuoLm(1000)$ x <- rnorm(1000)

Sequence a_n of the Darling-Erdös Law

Description

Computes $a_n(m) = \sqrt{b_n(m)/(2\log\log n)}$, with $b_n(m)$ as described by b_n.

Usage

(w 'u)u⁻e

6 base_file_name

Arguments

n The parameter n

m The parameter m

Value

The number $a_n(m)$

Examples

CPAT:::a_n(5, 2)

banks

Bank Portfolio Returns

Description

Data set representing the returns of an industry portfolio representing the banking industry based on company four-digit SIC codes, obtained from the data library maintained by Kenneth French. Data ranges from July 1, 1926 to October 31, 2017.

Usage

banks

Format

A data frame with 24099 rows and 1 variable:

Banks The return of a portfolio representing the banking industry

Row names are dates in YYYY-MM-DD format.

Source

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

base_file_name

Extract Base File Name

Description

Extract the base name of the file without path or extension.

Usage

```
base_file_name(x)
```

Arguments

String from which to extract base name

%s% 51

Arguments

bool Condition to check; if FALSE, stop is called
message Message to report if stop is called

Examples

```
x \leftarrow 1
CPAT:::stop_with_message(x == 1, message = "x is not 1")
```

%s%

Concatenate (With Space)

Description

Concatenate and form strings (with space separation)

Usage

x %s% y

Arguments

x One objecty Another object

Value

A string combining x and y with a space separating them

Examples

```
`%s%` <- CPAT:::`%s%`
"Hello" %s% "world"
```

%s0%

Concatenate (Without Space)

Description

Concatenate and form strings (no space separation)

Usage

x %s0% y

Arguments

x One objecty Another object

pessell_zeros

Value

A string containing the base file name without extension

Examples

CPAT:::base_file_name("~\Documents/test.txt")

Compute Zeros of the Bessel Function of the First Kind pessell_zeros

Description

Returns the zeros of the Bessel function of the first kind, Jv.

Usage

```
pessell_zeros(b, a = 1, nu = 1)
```

Arguments

nu

The (one-based) index of the first zero to return (so a = 1 represents the first The (one-based) index of the last zero to return q

positive zero)

The order of the Bessel function

Details

does nothing other than make the Boost function available to R. serves effectively as an interface to a Boost C++ function cyl_bessel_j_zero. Thus this function This function is an interface to the function bessell_zeros_cpp, a function written in C++ and

See the references of bessell for more about bessel functions.

A vector containing the zeros of the Bessel function

Examples

CPAT:::bessell_zeros(4)

```
(3.5 = 10, n = 3.5)
```

stop_with_message 0ς

```
If character, the identifier of the kernel function as used in cointReg (see getLongRunVar);
                                                                                                   Kernel
                                          change point; if NULL, this argument is ignored
         this vector, with x representing the data vector and k the position of a potential
         occured) or a function taking two parameters x and k that can be used to generate
         estimate" of the long-run variance if that location were where the change point
         at each potential change point (so each entry of the vector would be the "best
         Can be a vector the same length as dat consisting of variance-like numbers
                                                                                              custom_var
```

if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in cointReg)

tReg (see getBandwidth); if function, a function to use for computing the band-If character, the identifier for how to compute the bandwidth as defined in coinhandwidth

width; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in cointReg)

If TRUE, return all values for the statistic at every tested point in the data set get_all_vals

accuracy (by solving the normal equations); otherwise, use slower but more If TRUE, the test statistic is computed quickly but at a potential loss of numerical fast

numerically stable solution techniques

Details

TODO: EXTENDED DESCRIPTION

SION AS THE REGRESSION MODEL. AND custom_var SHOULD NOT BE NULL, BUT CREATE A MATRIX THE SAME DIMEN-WORKING ON THE THEORY; use_kernel_var, kernel, AND bandwidth ARE IGNORED TODO: THIS FUNCTION DOES NOT WORK AS MARKETED BECAUSE WE'RE STILL

Value

first position and the estimated change point in the second) contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that

gxsubjes

```
CPAT:::stat\_Zn\_reg(y \sim x, data = df)
                df \leftarrow data.frame(x, y)
        \lambda < -1 + 2 * x + rnorm(1000)
                       x <- rnorm(1000)
```

Check For Condition and Stop With Message stop_with_message

Description

Check if bool is TRUE; if not, stop and report message

Usage

```
stop_with_message(bool, message = NULL)
```

8 b_n

Power Result Data Frame Creation bind_power_sim_objs

Description

Creates a data. frame containing power simulation results. Effectively a better, higher-level interface to power_sim_Zn_to_df and power_sim_Vn_to_df.

Usage

```
bind_power_sim_objs(files, crit_value, conv_func, stat_name)
```

Arguments

files A character vector of file names

crit_value The critical value against which to compare a test statistic

conv func The function responsible for converting a list containing simulated statistic val-

ues under different conditions to a data. frame

stat_name The label of the statistic

Value

A data. frame containing power levels

Examples

```
## Not run:
filenames <- c("powerSimulations_sdest_norm_DE.rda",
                "powerSimulations sdest ar1 0.5 DE.rda")
bind_power_sim_objs(filenames, crit_value = qdarling_erdos(.95),
                    conv_func = power_sim_Vn_to_df, stat_name = "de")
## End(Not run)
```

b_n

Sequence b n of the Darling-Erdös Law

Description

```
Computes b_n(m) = (2 \log \log(n) + (m \log \log \log n)/2 - \log(\Gamma(m/2)))^2/(2 \log \log n)
```

Usage

```
b_n(n, m)
```

Arguments

```
The parameter n
The parameter m
```

stat_Zn_reg 49

Details

The definition of the statistic is

$$\max_{t_T \leq t \leq T - t_T} \hat{\sigma}_{t,T}^{-1} \left| t^{-1} \sum_{s=1}^t X_s - (T-t)^{-1} \sum_{s=t+1}^T X_s \right|$$

The parameter kn corresponds to the trimming parameter t_T .

Value

If both estimate and get all vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

Examples

```
CPAT:::stat_Zn(rnorm(1000))
CPAT:::stat_Zn(rnorm(1000), kn = function(n) {floor(log(n))})
CPAT:::stat_Zn(rnorm(1000), use_kernel_var = TRUE, bandwidth = "nw",
              kernel = "bo")
```

stat_Zn_reg

Compute the Rényi-Type Statistic for Stability in Linear Regression

Description

This function computes the Rényi-type statistic for detecting structural change in linear regression models.

Usage

```
stat_Zn_reg(formula, data, kn = function(n) {
                                                 floor(sart(n)) }.
 estimate = FALSE, use_kernel_var = FALSE, custom_var = NULL,
 kernel = "ba", bandwidth = "and", get_all_vals = FALSE,
 fast = FALSE)
```

Arguments

formula The regression formula, which will be passed to 1m

data. frame containing the data data

A function corresponding to the trimming parameter t_T ; by default, the square kn

root function

estimate Set to TRUE to return the estimated location of the change point

use_kernel_var Set to TRUE to use kernel methods for long-run variance estimation (typically used when the data is believed to be correlated); if FALSE, then the long-run vari-

ance is estimated using
$$\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$$
, where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\bar{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$; if custom_var is not NULL, this argument is ignored

check_envir_has_objects 6

Value

The number $b_n(m)$

Examples

CPAT:::b_n(5, 2)

check_envir_has_objects

Check An Environment for Objects

Description

Check that an environment has expected objects, and stop if it does not.

Usage

blame_string = NULL) check_envir_has_objects(objects, envir = globalenv(),

Arguments

A character vector listing what objects to expect in envir objects

The environment to check for objects Aivns

A string that gives more detailed output in error message if not all files are found; blame_string

default is the environment passed to envir

Examples

CPAT:::check_envir_has_objects(c("x"))

CPAT_startup_message Create Package Startup Message

Description

Makes package startup message.

Usage

CPAT_startup_message()

Examples

CPAT:::CPAT_startup_message()

aZ_tat_Zn 87

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

CPAT:::stat_Vn(rnorm(1000), $kn = function(n) \{0.1 * n\}$, tau = 1/2) CPAT:::stat_Vn(rnorm(1000))

CPAT:::stat_Vn(rnorm(1000), use_kernel_var = TRUE, bandwidth = "nw", kernel = "bo")

Compute the Rényi-Type Statistic

uZ_tete

Description

This function computes the Rényi-type statistic.

∂sage

bandwidth = "and", get_all_vals = FALSE) use_kernel_var = FALSE, custom_var = NULL, kernel = "ba", $stat_Zn(dat, kn = function(n)$ { floor(sqrt(n)) }, estimate = FALSE,

Arguments

dat

A function corresponding to the trimming parameter t_T ; by default, the square kη

root function

The data vector

Set to TRUE to return the estimated location of the change point estimate

use_kernel_var Set to TRUE to use kernel methods for long-run variance estimation (typically

used when the data is believed to be correlated); if FALSE, then the long-run vari-

where $ar{X}_t=t^{-1}\sum_{s=1}^t X_s$ and $\hat{X}_{T-t}=(T-t)^{-1}\sum_{s=t+1}^T X_s$; if custom_var ance is estimated using $\hat{\sigma}_{T,i}^2 = T^{-1} \left(\sum_{s=1}^i \left(X_s - \bar{X}_i \right)^2 + \sum_{s=i+1}^T \left(X_s - \bar{X}_{T-i} \right)^2 \right)$,

is not NULL, this argument is ignored

occured) or a function taking two parameters x and k that can be used to generate estimate" of the long-run variance if that location were where the change point at each potential change point (so each entry of the vector would be the "best Can be a vector the same length as dat consisting of variance-like numbers custom_var

this vector, with x representing the data vector and k the position of a potential

change point; if NULL, this argument is ignored

if function, the kernel function to be used for long-run variance estimation (de-If character, the identifier of the kernel function as used in cointReg (see getLongRunVar); Kernel

fault is the Bartlett kernel in cointReg)

tReg (see getBandwidth); if function, a function to use for computing the band-If character, the identifier for how to compute the bandwidth as defined in coinhandwidth

width; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in cointReg)

If TRUE, return all values for the statistic at every tested point in the data set get_all_vals 10 CUSUM.test

cpt_consistent_var

Variance Estimation Consistent Under Change

Description

Estimate the variance (using the sum of squared errors) with an estimator that is consistent when the mean changes at a known point.

Usage

```
cpt_consistent_var(x, k)
```

Arguments

x A numeric vector for the data set

k The potential change point at which the data set is split

Details

This is the estimator

$$\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$$

where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$. In this implementation, T is computed automatically as length(x) and k corresponds to t, a potential change point.

Value

The estimated change-consistent variance

Examples

```
CPAT:::cpt consistent var(c(rnorm(500, mean = 0), rnorm(500, mean = 1)), k = 500)
```

CUSUM.test

CUSUM Test

Description

Performs the CUSUM test for change in mean, as described in (Rice et al.).

Usage

stat_Vn 47

Arguments

dat The data vector

kn A function corresponding to the trimming parameter t_T in the trimmed CUSUM

variant; by default, is a function returning 1 (for no trimming)

tau The weighting parameter τ for the weighted CUSUM statistic; by default, is 0

(for no weighting)

estimate Set to TRUE to return the estimated location of the change point

 ${\tt use_kernel_var} \ \ {\tt Set} \ to \ {\tt TRUE} \ to \ use \ kernel \ methods \ for \ long-run \ variance \ estimation \ (typically \ typically \ typ$

used when the data is believed to be correlated); if FALSE, then the long-run vari-

ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$,

where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$

at each potential change point (so each entry of the vector would be the "best estimate" of the long-run variance if that location were where the change point occured) or a function taking two parameters x and k that can be used to generate this vector, with x representing the data vector and k the position of a potential

change point; if NULL, this argument is ignored

kernel If character, the identifier of the kernel function as used in cointReg (see getLongRunVar);

if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in cointReg)

bandwidth If character, the identifier for how to compute the bandwidth as defined in coin-

tReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in cointReg)

Details

The definition of the statistic is

$$T^{-1/2} \max_{1 \le t \le T} \hat{\sigma}_{t,T}^{-1} \left| \sum_{s=1}^{t} X_s - \frac{t}{T} \sum_{s=1}^{T} \right|$$

A more general version is

$$T^{-1/2} \max_{t_T \leq t \leq T-t_T} \hat{\sigma}_{t,T}^{-1} \left(\frac{t}{T} \left(\frac{T-t}{T} \right) \right)^{\tau} \left| \sum_{s=1}^{t} X_s - \frac{t}{T} \sum_{s=1}^{T} \right|$$

The parameter kn corresponds to the trimming parameter t_T and the parameter tau corresponds to τ .

See (Rice et al.) for more details.

Value

If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

CUSUM.test

Arguments

Data to test for change in mean (either numeric or a data. frame)

Formula used for defining the regression model, if applicable

use_kernel_var Set to TRUE to use kernel methods for long-run variance estimation (typically used when the data is believed to be correlated); if FALSE, then the long-run variance

ance is estimated using
$$\hat{\sigma}_{T,i}^2 = T^{-1} \left(\sum_{s=1}^i \left(X_s - \bar{X}_i \right)^2 + \sum_{s=i+1}^T \left(X_s - \bar{X}_{T-i} \right)^2 \right),$$
 where $\bar{X}_i = t^{-1} \sum_{s=1}^t X_s$ and $\bar{X}_{T-i} = (T-i)^{-1} \sum_{s=i+1}^T X_s$

stat_plot Whether to create a plot of the values of the statistic at all potential change points

Kernel If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar); if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in cointReg)

bandwidth

If character, the identifier for how to compute the bandwidth as defined in cointification in the ge (see getBandwidth); if function, a function to use for computing the bandwidth, if numeric, the bandwidth value to use (the default is to use Andrews) width; if numeric, the bandwidth value to use (the default is to use Andrews)

method, as used in cointReg)

Details

This is effectively an interface to stat_vn; see its documentation for more details.

When x is a (numeric) vector, the CUSUM test is performed directly on the data. When x is a

data. frame and formula is not NULL, then a regression model is estimated first with 1m and the test is performed on the residuals of the regression model (see (Ploberger and Krämer 1992)).

p-values are computed using pkolmogorov, which represents the limiting distribution of the statistic under the null hypothesis.

₽alue

A htest-class object containing the results of the test

References

271–285. Ploberger W, Krämer W (1992). "The CUSUM test with OLS residuals." Econometrica, 60(2),

Rice G, Miller C, Horvath L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
CUSUM.test(rnorm(1000))
CUSUM.test(rnorm(1000), use_kernel_var = TRUE, kernel = "bo",
x <- rnorm(1000)
y <- 1 + 2 * x + rnorm(1000)
df <- data.frame(x, y)
df <- data.frame(x, y)</pre>
```

ılV_isis 46

$$\left(\sqrt[3]{i^{1/3}x} \sum_{i=1}^{s} \right)^{T} \left(\sqrt[3]{i^{1/3}x} \sum_{i=1}^{s} \right) \left(\frac{n}{(s-n)s(\hat{\alpha})\hat{\Delta}} \right) = (s) \mathcal{M}\mathcal{I}$$

and $\Delta(\hat{\beta})$ is the long-run variance estimator

$$\left(\beta; \frac{\ell \pi^2}{n}\right) I \sum_{1=\ell}^m \frac{1}{m} = (\beta) \hat{\Delta}$$

where $I(\cdot;\beta)$ is the periodogram estimated from the residuals when the regression model coefficients are given by β . This is the test statistic suggested by the procedure introduced in (Hidalgo and Sep 2013)

and Seo 2013).

The parameter m described above can be controlled via the function parameter m, which can be either numeric or a function that returns numeric values.

Sulsy

If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

References

Hidalgo J, Seo MH (2013). "Testing for structural stability in the whole sample." Journal of Econometrics, 175(2), 84 - 93. ISSN 0304-4076, doi: 10.1016/j.jeconom.2013.02.008, http:

//www.sciencedirect.com/science/article/pii/50304407613000626.

Examples

```
x <- rnorm(100)
y <- 1 + 2 * x + rnorm(100)
df <- data.frame("x" = x, "y" = y)
CPAT:::stat_hs_reg(y ~ x, data = df)</pre>
```

stat_Vn Compute the CUSUM Statistic

Description

This function computes the CUSUM statistic (and can compute weighted/trimmed variants, depending on the values of kn and tau).

Osage

12 dBst

dBst

Density Function of the First Hitting Time of a Bessel Process

Description

Density function of the distribution of the first time a Bessel process with parameter $\nu>1$ hits b>0.

Usage

```
dBst(x, b, nu = -1/2, summands = NULL)
```

Arguments

x Points at which to evaluate the density function

b Point in space Bessel process hits

nu The parameter $\nu > -1$ of the Bessel process

summands Number of summands to use in summation; default is to pick the number of

summands with dBst_summand_solver (it could be slow, so for performance it

may be best to pick a fixed number)

Details

Let $\tau_b^{(\nu)}$ be the first time a Bessel process with parameter ν hits b>0. Let $J_{\nu}(x)$ be the Bessel function (of the first kind) with order ν , and let $j_{\nu,k}$ be the kth zero of $J_{\nu}(x)$. Let $\Gamma(x)$ be the gamma function. Then the density function of $\tau_b^{(\nu)}$ is

$$\frac{1}{2^{\nu}b^{2}\Gamma(\nu+1)}\sum_{k=1}^{\infty}\frac{j_{\nu,k}^{\nu+1}}{J_{\nu+1}(j_{\nu,k})}e^{-\frac{j_{\nu,k}^{2}}{2b^{2}}t}$$

This was found by differentiating the CDF computed by pBst.

Value

The value of the density function at x

Examples

```
CPAT:::dBst(0.1, 1)
```

stat_hs_reg 45

Value

If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

References

Hidalgo J, Seo MH (2013). "Testing for structural stability in the whole sample." *Journal of Econometrics*, **175**(2), 84 - 93. ISSN 0304-4076, doi: 10.1016/j.jeconom.2013.02.008, http://www.sciencedirect.com/science/article/pii/S0304407613000626.

Examples

```
CPAT:::stat_hs(rnorm(1000))
CPAT:::stat_hs(rnorm(1000), corr = FALSE)
```

stat_hs_reg

Regression Model Hidalgo-Seo Statistic

Description

Compute the Hidalgo-Seo statistic indended for detecting change in linear models (estimated via least squares regression).

Usage

```
stat_hs_reg(formula, data, m = sqrt, estimate = FALSE,
  get_all_vals = FALSE)
```

Arguments

formula A formula that describes the regression model

data A data. frame-like object containing the data set; should be able to be passed

to the data argument of 1m

If numeric, the number of terms of the periodogram to sum; if a function, how

to compute the number of terms to sum (will be passed the number of rows of

data)

estimate Set to TRUE to return the estimated location of the change point

get_all_vals If TRUE, return all values for the statistic at every tested point in the data set

Details

For a data set (y_t, x_t) with n observations, $y_t \in \mathbf{R}$, and $x_t \in \mathbf{R}^d$, the test statistic is

$$\max_{d < s \le n-d} (\mathcal{LM}(s) - B_n)/A_n$$

where $a_n = \sqrt{2\log\log n}$; $b_n = a_n^2 + d\log\log\log n/2 - \log\Gamma(d/2)$; $A_n = b_n/a_n^2$; $B_n = b_n^2/a_n^2$; $\hat{\beta}$ is the least-squares estimate of the linear regression model coefficients; $\hat{u}_t = y_t - \hat{\beta}^T x_t$ are the residuals of the model;

Find Number of Summands Needed for Numerical Accuracy of dBst dBst_summand_solver

Description

Find the number of summands needed to achieve numerical accuracy of the sum involved in dBst.

Usage

dBst_summand_solver(x, b, nu = -1/2, error = .Machine\$double.eps)

Arguments

The parameter v > -1 of the Bessel process nu Point in space Bessel process hits q Quantile input to PDF

The desired numerical error of the sum error

Details

encounters a summand that is not greater than the specified level of numerical accuracy. The index The number of summands needed is determined by using a loop that runs over the summands until it

of that last summand is then returned.

Value

Integer for number of summands

gxambles

dBst_summand_solver(1, 1)

Jest.3d Darling-Erdös Test

Description

Usage

Performs the (univariate) Darling-Erdös test for change in mean, as described in (Rice et al.).

kernel = "ba", bandwidth = "and") get_all_vals = FALSE, custom_var = NULL, use_kernel_var = FALSE, stat_hs(dat, estimate = FALSE, corr = TRUE, m = sqrt, Usage

tt

The data vector dat

This statistic was presented in (Hidalgo and Seo 2013).

For a data set x_t with n observations, the test statistic is

method, as used in cointReg)

fault is the Bartlett kernel in cointReg)

is controlled by the parameter m.

 $s^{-1}s^{-1}s^{-1}(\sum_{t=1}^{s}\hat{u}_{t})^{2}$

Details

handwidth

kernel

Set to TRUE to return the estimated location of the change point

Either numeric or a function that returns numeric; corresponds to m used in

computing the estimate of the long-run variance

If TRUE, return all values for the statistic at every tested point in the data set

custom_var

occured) or a function taking two parameters x and k that can be used to generate estimate" of the long-run variance if that location were where the change point at each potential change point (so each entry of the vector would be the "best Can be a vector the same length as dat consisting of variance-like numbers

this vector, with x representing the data vector and k the position of a potential

change point; if NULL, this argument is ignored

use_kernel_var Set to TRUE to use kernel methods for long-run variance estimation (typically

If corr is FALSE, then the residuals are assumed to be uncorrelated. Otherwise, the residuals are assumed to be correlated and $\Delta = \hat{\gamma}(0) + 2\sum_{j=1}^{\lfloor m \rfloor} (1-\frac{j}{\sqrt{m}})\hat{\gamma}(j)$ with $\hat{\gamma}(j) = \frac{1}{n}\sum_{i=1}^{n-1}\hat{u}_i\hat{u}_i\hat{u}_i+j$. m

where $\hat{u}_t = x_t - \bar{x}$ (\bar{x} is the sample mean), $a_n = (2\log\log n)^{1/2}$, $b_n = a_n^2 - \frac{1}{2}\log\log\log n - \log n - \log n + \log n + \log n + \log n + \log n - \log n + \log n$

 $_{n}\Lambda/(_{n}A-(s)M\lambda)_{1-n\geq s\geq 1}$

width; if numeric, the bandwidth value to use (the default is to use Andrews' tkeg (see getBandwidth); if function, a function to use for computing the band-

If character, the identifier for how to compute the bandwidth as defined in coin-

if function, the kernel function to be used for long-run variance estimation (de-

used when the data is believed to be correlated); if FALSE, then the long-run vari-

If character, the identifier of the kernel function as used in cointReg (see getLongRunVar);

ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \bar{X}_{T-t} \right)^2 \right)$, where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\bar{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$, if $\operatorname{custom_var}$

get_all_vals

lated residuals; ignored if custom_var is not NULL or use_kernel_var is TRUE

If TRUE, the long-run variance will be computed under the assumption of corre-COLL

estimate

Arguments

14 DE.test

Arguments

х	Data to test for change in mean (either a numeric vector or a data.frame)
formula	Formula used for defining the regression model, if applicable
а	The function that will be composed with $l(x) = (2 \log x)^{1/2}$
b	The function that will be composed with $u(x) = 2\log x + \frac{1}{2}\log\log x - \frac{1}{2}\log\pi$
use_kernel_var	Set to TRUE to use kernel methods for long-run variance estimation (typically used when the data is believed to be correlated); if FALSE, then the long-run vari-
	ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$, where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$
stat_plot	Whether to create a plot of the values of the statistic at all potential change points
kernel	If character, the identifier of the kernel function as used in $cointReg$ (see getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in $cointReg$)
bandwidth	If character, the identifier for how to compute the bandwidth as defined in coin-tReg (see getBandwidth); if function, a function to use for computing the bandwidth value to use (the default is to use Andrews')

Details

This is effectively an interface to stat_de; see its documentation for more details.

method, as used in cointReg)

When x is a (numeric) vector, the CUSUM test is performed directly on the data. When x is a data.frame and formula is not NULL, then a regression model is estimated first with lm and the test is performed on the residuals of the regression model.

p-values are computed using pdarling_erdos, which represents the limiting distribution of the test statistic under the null hypothesis when a and b are chosen appropriately. (Change those parameters at your own risk!)

Value

A htest-class object containing the results of the test

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

stat_hs 43

at each potential change point (so each entry of the vector would be the "best estimate" of the long-run variance if that location were where the change point occured) or a function taking two parameters x and k that can be used to generate this vector, with x representing the data vector and k the position of a potential

change point; if NULL, this argument is ignored

kernel If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar);

if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in cointReg)

bandwidth If character, the identifier for how to compute the bandwidth as defined in coin-

tReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in cointReg)

Details

If $\bar{A}_T(\tau,t_T)$ is the weighted and trimmed CUSUM statistic with weighting parameter τ and trimming parameter t_T (see stat_Vn), then the Darling-Erdös statistic is

$$l(a_T)\bar{A}_T(1/2,1) - u(b_T)$$

with $l(x) = \sqrt{2 \log x}$ and $u(x) = 2 \log x + \frac{1}{2} \log \log x - \frac{1}{2} \log \pi (\log x)$ is the natural logarithm of x). The parameter a corresponds to a_T and b to b_T ; these are both $\log b$ default.

See (Rice et al.) to learn more.

Value

If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
CPAT:::stat_de(rnorm(1000))
CPAT:::stat_de(rnorm(1000), use_kernel_var = TRUE, bandwidth = "nw", kernel = "bo")
```

stat_hs

Compute the Univariate Hidalgo-Seo Statistic

Description

This function computes the Hidalgo-Seo statistic for a change in mean model.

dist_conv_plot_tikz

dist_conv_plot_tikz

Create Tikz Plot Demonstrating Rényi-Type Statistic's Convergence in

Description

Create a Tikz file containing a plot demonstrating that the Rényi-type statistic converges in distribution. Optionally, create a PDF as well.

Usage

```
dist_conv_plot_tikz(obj, dist, trim, size, title = "", width = 4,
height = 3, filename = NULL, makePDF = TRUE, verbose = TRUE)
```

Arguments

```
Print updates about progress (via link[base]{cat})
                                                                                       verbose
                                 Automatically compile the resulting . tex file
                                                                                       MakePDF
                                             dist_conv_dist_nsize_trim)
be created); if NULL, the name will automatically be determined (of the form
The name of the output file (without extensions; . Lex and maybe . pdf files will
                                                                                      filename
                                                        The height of the plot
                                                                                        tdgisht
                                                        The width of the plot
                                                                                         Hibiw
                                                          The title of the plot
                                                                                         fitle
                                    The sample size of the simulated data sets
            The identifier of the trimming parameter of the Rényi-type statistic
                                                                                          mint
                                        the Rényi-type statistic was computed
The identifier of the data-generating process that generated the datasets on which
                                                                                           tsib
                                           The list containing the simulations
```

Examples

3p_1s1s

Details

This differs from sim_Zn() in that the long-run variance is estimated with this function, while sim_Zn() assumes the long-run variance is known. Estimation can be done in a variety of ways. If use_kennel_var is set to TRUE, long-run variance estimation using kennel-based techniques will be employed; otherwise, a technique resembling standard variance estimation will be employed. Any technique resembling standard variance estimation will be employed. Any technique myll be employed in Rice et al.

(). See the documentation for stat_Zn for more details.

The parameters kernel and bandwidth control parameters for long-run variance estimation using

kernel methods. These parameters will be passed directly to stat_Zn.

Value

A vector of simulated realizations of the Renyi-type statistic

References

Andrews DWK (1991). "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation." Econometricu, **59**(3), 817-858.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

stat_de Compute the Darling-Erdös Statistic

Description

This function computes the Darling-Erdös statistic.

1

```
stat_de(dat, a = log, b = log, estimate = FALSE,
    use_kernel_var = FALSE, custom_var = NULL, kernel = "ba",
    bandwidth = "and", get_all_vals = FALSE)
```

Arguments

```
dat The data vector a The function that will be composed with l(x) = (2\log x)^{1/2} b The function that will be composed with u(x) = 2\log x + \frac{1}{2}\log\log x - \frac{1}{2}\log x estimate Set to TRUE to return the estimated location of the change point estimate Set to TRUE to use kernel methods for long-run variance estimation (typically Set Least Vector).
```

used when the data is believed to be correlated); if FALSE, then the long-run variance is estimated using $\hat{\sigma}_{T,i}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_i \right)^2 + \sum_{s=t+1}^T \left(X_s - \bar{X}_{T-t} \right)^2 \right)$, where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\bar{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$

16 ff

dZn

Rényi-Type Statistic Limiting Distribution Density Function

Description

Function for computing the value of the density function of the limiting distribution of the Rényitype statistic.

Usage

```
dZn(x, d = 1, summands = NULL)
```

Arguments

Point at which to evaluate the density function (note that this parameter is not

vectorized)

d Dimension parameter

summands Number of summands to use in summation (the default should be machine ac-

curate)

Details

The density function was found by differentiating the CDF, as described by pZn.

Value

Value of the density function at x

Examples

```
CPAT:::dZn(1)
```

ff

Fama-French Five Factors

Description

Data set containing the five factors described by Fama and French (2015), from the data library maintained by Kenneth French. Data ranges from July 1, 1963 to October 31, 2017.

Usage

ff

sim_Zn_stat 41

Value

A vector of simulated realizations of the Rènyi-type statistic

Examples

sim_Zn_stat

Rènyi-Type Statistic Simulation

Description

Simulates multiple realizations of the Rènyi-type statistic.

Usage

```
sim_Zn_stat(size, kn = function(n) { floor(sqrt(n)) },
  use_kernel_var = FALSE, kernel = "ba", bandwidth = "and",
  n = 500, gen_func = rnorm, args = NULL, parallel = FALSE)
```

Arguments

size Number of realizations to simulate

kn A function returning a positive integer that is used in the definition of the Rènyi-

type statistic effectively setting the bounds over which the maximum is taken

use_kernel_var Set to TRUE to use kernel-based long-run variance estimation (FALSE means this

is not employed)

kernel If character, the identifier of the kernel function as used in the cointReg (see

documentation for cointReg::getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in

 $\pmb{cointReg}); this \ parameter \ has \ no \ effect \ if \ use_kernel_var \ is \ \mathsf{FALSE}$

bandwidth If character, the identifier of how to compute the bandwidth as defined in the

cointReg package (see documentation for cointReg::getLongRunVar); if function, a function to use for computing the bandwidth; if numeric, the bandwidth to use (the default behavior is to use the Andrews (1991) method, as used in

cointReg); this parameter has no effect if use_kernel_var is FALSE

n The sample size for each realization

gen_func The function generating the random sample from which the statistic is computed

args A list of arguments to be passed to gen_func

parallel Whether to use the **foreach** and **doParallel** packages to parallelize simulation

(which needs to be initialized in the global namespace before use)

getLongRunWeights LΙ

A data frame with 13679 rows and 6 variables:

RF The risk-free rate of return

HML The return of a portfolio of stocks with a high book-to-market (B/M) ratio minus the return

RMW The return of a portfolio of stocks with robust profitability minus a portfolio of stocks with

CMA The return of a portfolio of stocks with conservative investment minus the return of a port-

Row names are dates in YYYYMMDD format.

Source

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Weights for Long-Run Variance	getLongRunWeights

Description

∂gage

getLongRunWeights(n, bandwidth, kernel = "ba")

Length of weights' vector

List with components w containing the vector of weights and upper, the index of the largest non-

zero entry in w

```
Mkt.RF Market excess returns
```

SMB The return on a diversified portfolio of small stocks minus return on a diversified portfolio of

of a portfolio of stocks with a low B/M ratio

weak profitability

folio of stocks with aggressive investment

Compute some weights for long-run variance. This code comes directly from the source code of

cointReg; see getLongRunWeights.

Arguments

A number for the bandwidth bandwidth

The kernel function; see getLongRunVar for possible values kernel

Examples

```
CPAT:::getLongRunWeights(10, 1)
```

nZ_mis

Details

(). See the documentation for stat_Vn for more details. technique employed, though, will account for the potential break points, as described in Rice et al. employed; otherwise, a technique resembling standard variance estimation will be employed. Any use_kernel_var is set to TRUE, long-run variance estimation using kernel-based techniques will be sim_Vn() assumes the long-run variance is known. Estimation can be done in a variety of ways. If This differs from sim_Vn() in that the long-run variance is estimated with this function, while

The parameters kernel and bandwidth control parameters for long-run variance estimation using

kernel methods. These parameters will be passed directly to stat_Vn.

Versions of the CUSUM statistic, such as the weighted or trimmed statistics, can be simulated with

the function by passing values to kn and tau; again, see the documentation for stat_Vn.

A vector of simulated realizations of the CUSUM statistic

References

Estimation." Econometrica, 59(3), 817-858. Andrews DWK (1991). 'Heteroskedasticity and Autocorrelation Consistent Covariance Matrix

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
args = list(changepoint = 250, mean2 = 1))
use_kernel_var = TRUE, gen_func = CPAT:::rchangepoint,
   CPAT:::sim_Vn_stat(100, kn = function(n) \{floor(0.1 * n)\}, tau = 1/3,
                                                  CPAT:::sim_Vn_stat(100)
```

Rènyi-Type Statistic Simulation (Assuming Variance) uZ_mi≥

Description

known. Simulates multiple realizations of the Rènyi-type statistic when the long-run variance of the data is

```
sim_Zn(size, kn, n = 500, gen_func = rnorm, args = NULL, sd = 1)
```

Arguments

ps	etch edt to tramom brooss edt to toor erems edT
args	A list of arguments to be passed to gen_func
geu_func	The function generating the random sample from which the statistic is computed
u	The sample size for each realization
	type statistic effectively setting the bounds over which the maximum is taken
kn	A function returning a positive integer that is used in the definition of the Rényi-
əzis	Number of realizations to simulate

the square root of the second moment of the data

18 get_expanding_window_pvals_reg

Description

Gets p-values for the CUSUM, Darling-Erdös, Hidalgo-Seo, Andrews, and Rényi-type tests when applied to an expanding window of data.

Usage

```
get_expanding_window_pvals(dat, m = Inf)
```

Arguments

dat The dataset for which to test for change in mean

The location of the first potential change point for Andrews' test

Value

A matrix containing p-values for an expanding sample size, with each row corresponding to one observation larger; columns are labeled for each statistic

Examples

```
if (require("foreach") & require("doParallel")) {
   CPAT:::get_expanding_window_pvals(rnorm(1000), m = 900)
}
```

```
get_expanding_window_pvals_reg
```

Expanding Window p-Values for Regression Models

Description

Gets p-values for the CUSUM, Darling-Erdös, Hidalgo-Seo, Andrews, and Rényi-type tests when applied to an expanding window of data for a regression model.

Usage

```
get_expanding_window_pvals_reg(formula, data, min_n = 3, m = Inf,
  verbose = FALSE)
```

Arguments

formula	The regression model formula, which will be passed to 1m
data	A data. frame, the dataset for which to test for structural change
min_n	An integer; the minimum sample size
m	The location of the first potential change point for Andrews' test
verbose	If TRUE, send messages to output

sim_Vn_stat 39

Examples

sim_Vn_stat

CUSUM Statistic Simulation

Description

Simulates multiple realizations of the CUSUM statistic.

Usage

```
sim_Vn_stat(size, kn = function(n) { 1 }, tau = 0,
use_kernel_var = FALSE, kernel = "ba", bandwidth = "and",
n = 500, gen_func = rnorm, args = NULL, parallel = FALSE)
```

Arguments

size	Number of realizations to simulate
kn	A function returning a positive integer that is used in the definition of the trimmed CUSUSM statistic effectively setting the bounds over which the maximum is taken
tau	The weighting parameter for the weighted CUSUM statistic (defaults to zero for no weighting) $$
use_kernel_var	Set to TRUE to use kernel-based long-run variance estimation (FALSE means this is not employed) $$
kernel	If character, the identifier of the kernel function as used in the cointReg (see documentation for <code>cointReg::getLongRunVar</code>); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in <code>cointReg</code>); this parameter has no effect if <code>use_kernel_var</code> is <code>FALSE</code>
bandwidth	If character, the identifier of how to compute the bandwidth as defined in the cointReg package (see documentation for cointReg::getLongRunVar); if function, a function to use for computing the bandwidth; if numeric, the bandwidth to use (the default behavior is to use the method described in (Andrews 1991), as used in cointReg); this parameter has no effect if use_kernel_var is FALSE
n	The sample size for each realization
gen_func	The function generating the random sample from which the statistic is computed $% \left(1\right) =\left(1\right) \left(1\right) \left($
args	A list of arguments to be passed to gen_func
parallel	Whether to use the foreach and doParallel packages to parallelize simulation (which needs to be initialized in the global namespace before use)

get_Itv_vec

Value

A matrix containing p-values for an expanding sample size, with each row corresponding to one observation larger; columns are labeled for each statistic

Examples

get_lrv_vec Long-Run Variance Estimation With Possible Change Points

Description

Computes the estimates of the long-run variance in a change point context, as described in (Rice et al.). By default it uses kernel and bandwidth selection as used in the package **cointReg**, though changing the parameters kernel and bandwidth can change this behavior. If **cointReg** is not introduced, the Bartlett internal (defined internally) will be used and the bandwidth will be the square root of the sample size.

Usage

```
get_lrv_vec(dat, kernel = "ba", bandwidth = "and")
```

Arguments

dat The data vector

If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar);

If function, the kernel function to be used for long-run variance estimation (de-

width; if numeric, the bandwidth value to use (the default is to use Andrews'

fault is the Bartlett kernel in **cointkeg**)

If character, the identifier for how to compute the bandwidth as defined in **cointkeg** (see getBandwidth); if function, a function to use for computing the bandwidth.

method, as used in cointReg)

Aalue

A vector of estimates of the long-run variance

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
x <- rnorm(1000)
CPAT:::get_lrv_vec(x)
CPAT:::get_lrv_vec(x, kernel = "pa", bandwidth = "nw")</pre>
```

 nV_{mis} 8£

Slista

If corr is TRUE, then the residuals of the data-generating process are assumed to be correlated and the test accounts for this in long-run variance estimation; see the documentation for stat_hs for more details. Otherwise, the sample variance is the estimate for the long-run variance, as described in Hidalgo and Seo (2013).

Value

A vector of simulated realizations of the Hidalgo-Seo statistic

References

Andrews DWK (1991). "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Econometrics, 59(3), 817-858.

Hidalgo J, Seo MH (2013). "Testing for structural stability in the whole sample." Journal of Econometrics, 175(2), 84 - 93. ISSN 0304-4076, doi: 10.1016/j.jeconom.2013.02.008, http:

//www.sciencedirect.com/science/article/pii/S0304407613000626.

Examples

```
CPAT:::sim_hs_stat(100)
CPAT:::sim_hs_stat(100, gen_func = CPAT:::rchangepoint,
args = list(changepoint = 250, mean2 = 1))
```

sim_Vn CUSUM Statistic Simulation (Assuming Variance)

Description

Simulates multiple realizations of the CUSUM statistic when the long-run variance of the data is known.

∂sage

```
sim_Vn(size, n = 500, gen_func = rnorm, sd = 1, args = NULL)
```

Arguments

Size Number of realizations to simulate

The sample size for each realization

The function generating the random sample from which the statistic is computed

Sen_func

The function generating the random sample from which the statistic is computed

Sen_func

The square root of the second moment of the data

args A list of arguments to be passed to gen_func

Value

A vector of simulated realizations of the CUSUM statistic

20 HR.test

HR.test

Rényi-Type Test

Description

Performs the (univariate) Rényi-type test for change in mean, as described in (Rice et al.). This is effectively an interface to stat_Zn; see its documentation for more details. p-values are computed using pZn, which represents the limiting distribution of the test statistic under the null hypothesis, which represents the limiting distribution of the test statistic under the null hypothesis when kn represents a sequence t_T satisfying $t_T \to \infty$ and $t_T/T \to 0$ as $T \to \infty$. (log and sqrt should be good choices.)

Usage

```
HR.test(x, formula = NULL, kn = log, use_kernel_var = FALSE,
    stat_plot = FALSE, kernel = "ba", bandwidth = "and")
```

Arguments

Х Data to test for change in mean formula The regression formula, which will be passed to 1m kn A function corresponding to the trimming parameter t_T ; by default, the square root function use kernel var Set to TRUE to use kernel methods for long-run variance estimation (typically used when the data is believed to be correlated); if FALSE, then the long-run variance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$, where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$; if custom_var Whether to create a plot of the values of the statistic at all potential change points stat_plot kernel If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in cointReg) bandwidth If character, the identifier for how to compute the bandwidth as defined in cointReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews'

Value

A htest-class object containing the results of the test

method, as used in cointReg)

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

sim_hs_stat 37

References

Andrews DWK (1991). "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation." *Econometrica*, **59**(3), 817-858.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

sim_hs_stat

Hidalgo-Seo Statistic Simulation

Description

Simulates multiple realizations of the Hidalgo-Seo statistic.

Usage

```
sim_hs_stat(size, corr = TRUE, gen_func = rnorm, args = NULL,
  n = 500, parallel = FALSE, use_kernel_var = FALSE, kernel = "ba",
  bandwidth = "and")
```

Arguments

Ę	guments		
	size	Number of realizations to simulate	
	corr	Whether long-run variance should be computed under the assumption of correlated residuals	
	gen_func	The function generating the random sample from which the statistic is computed	
	args	A list of arguments to be passed to gen_func	
	n	The sample size for each realization	
	parallel	Whether to use the foreach and doParallel packages to parallelize simulation (which needs to be initialized in the global namespace before use)	
	use_kernel_var	Set to TRUE to use kernel-based long-run variance estimation (FALSE means this is not employed); TODO: NOT CURRENTLY IMPLEMENTED	
	kernel	If character, the identifier of the kernel function as used in the cointReg (see documentation for cointReg::getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in cointReg); this parameter has no effect if use_kernel_var is FALSE; <i>TODO</i> :	

NOT CURRENTLY IMPLEMENTED

bandwidth

If character, the identifier of how to compute the bandwidth as defined in the **cointReg** package (see documentation for cointReg::getLongRunVar); if function, a function to use for computing the bandwidth; if numeric, the bandwidth to use (the default behavior is to use the Andrews (1991) method, as used in **cointReg**); this parameter has no effect if use_kernel_var is FALSE; *TODO: NOT CURRENTLY IMPLEMENTED*

HS.test

Examples

```
HR.test(rnorm(1000))
HR.test(rnorm(1000), use_kernel_var = TRUE, kernel = "bo", bandwidth = "nw") x < - rnorm(1000)

A <- rnorm(1000)

A <- 1 + 2 * x + rnorm(1000)

df <- data.frame(x, y)

HR.test(df, formula = y ^{\times} x, kn = sqrt, use_kernel_var = FALSE)
```

12-51 o92-oglobiH 12-91.2H

Description

Performs the Hidalgo-Seo test for structural change, as proposed by Hidalgo and Seo (2013).

Usage

```
HS.test(x, formula = NULL, m = sqrt, corr = TRUE,
    stat_plot = FALSE)
```

Arguments

Whether to create a plot of the values of the statistic at all potential change points	stat_plot
If TRUE, the long-run variance will be computed under the assumption of correlated residuals; ignored if custom_var is not NULL or use_kernel_var is TRUE	corr
Either numeric or a function that returns numeric; corresponds to \boldsymbol{m} used in computing the estimate of the long-run variance	ш
The formula defining the regression model, when applicable	formula
Data to test for change in mean (either a vector or data. frame)	x

Details

This function can perform both univariate and regression versions of the test described by Hidalgo

If formula is WULL and x is numeric, this function performs the (univariate) Hidalgo-Seo test for change in mean, as described in (Rice et al.). This is effectively an interface to stat_hs; see its

Otherwise, the function tests for structural change in a linear regression model (estimated via least squares), and serves as an interface to stat_hs_reg; see its documentation for more details. In this

addition), and sorves as an incordate to construct the parameter corr is effectively ignored.

p-values are computed using phidalgo_seo, which represents the limiting distribution of the test statistic when the null hypothesis is true.

Value

A htest-class object containing the results of the test

documentation for more details.

nsi_ab_mis d£

notinulumi? Statistic Statistic	isis_ab_mis

Description

Simulates multiple realizations of the Darling-Erdös statistic.

Usage

```
sim_de_stat(size, a = log, b = log, use_kernel_var = FALSE,
kernel = "ba", bandwidth = "and", n = 500, gen_func = rnorm,
args = NULL, parallel = FALSE)
```

Arguments

gen_func	The function generating the random sample from which the statistic is computed
u	The sample size for each realization
dibiwbned	If character, the identifier of how to compute the bandwidth as defined in the cointReg package (see documentation for cointReg::getLongRunVar); if function, a function to use for computing the bandwidth; if numeric, the bandwidth to use (the default behavior is to use the Andrews (1991) method, as used in cointReg); this parameter has no effect if use_kernel_var is FALSE
kernel	If character, the identifier of the kernel function as used in the cointReg (see documentation for cointReg::getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in cointReg); this parameter has no effect if use_kernel_var is FALSE
use_Kernet_var	Set to TRUE to use kernel-based long-run variance estimation (FALSE means this is not employed)
aon [oaaon oon	$\frac{1}{2}\log(pi)$
q	The function that will be composed with $u(x) = 2\log(x) + \frac{1}{2}\log(\log(x)) - ((x)\log(\log(x)) + (x)\log(\log(x)))$
е	The function that will be composed wit $l(x) = (2\log(x))^{1/2}$
əzis	Number of realizations to simulate
ennamns	

nergi

barallel

args

If use_kernel_var is set to TRUE, long-run variance estimation using kernel-based techniques will be employed; otherwise, a technique resembling standard variance estimation will be employed. Any technique employed, though, will account for the potential break points, as described in Rice et al. (). See the documentation for stat_de for more details.

A list of arguments to be passed to gen_func

(which needs to be initialized in the global namespace before use)

Whether to use the foreach and doParallel packages to parallelize simulation

The parameters kernel and bandwidth control parameters for long-run variance estimation using kernel methods. These parameters will be passed directly to ${\tt stat_de}$.

Value

A vector of simulated realizations of the Darling-Erdös statistic

22 is.formula

References

Hidalgo J, Seo MH (2013). "Testing for structural stability in the whole sample." *Journal of Econometrics*, **175**(2), 84 - 93. ISSN 0304-4076, doi: 10.1016/j.jeconom.2013.02.008, http://www.sciencedirect.com/science/article/pii/S0304407613000626.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
HS.test(rnorm(1000))
HS.test(rnorm(1000), corr = FALSE)
x <- rnorm(1000)
y <- 1 + 2 * x + rnorm(1000)
df <- data.frame(x, y)
HS.test(df, formula = y ~ x)</pre>
```

is.formula

Check For Formulas

Description

Checks if an object is a formula.

Usage

```
is.formula(x)
```

Arguments

х

Object to check

Value

TRUE if x is a formula, FALSE otherwise

Examples

```
CPAT:::is.formula(y ~ x)
CPAT:::is.formula(2)
```

rchangepoint 35

rchangepoint Simu

Simulate Univariate Data With a Single Change Point

Description

This function simulates univariate data with a structural change.

Usage

```
rchangepoint(n, changepoint = NULL, mean1 = 0, mean2 = 0,
    dist = rnorm, meanparam = "mean", ...)
```

Arguments

An integer for the data set's sample size

changepoint An integer for where the change point occurs

mean1 The mean prior to the change point
mean2 The mean after the change point

dist The function with which random data will be generated

meanparam A string for the parameter in dist representing the mean

... Other arguments to be passed to dist

Details

This function generates artificial change point data, where up to the specified change point the data has one mean, and after the point it has a different mean. By default, the function simulates standard Normal data with no change. If changepoint is NULL, then by default the change point will be at about the middle of the data.

Value

A vector of the simulated data

Examples

23 lrv_plot_tikz

Long-Run Variance Estimation Simulations Plot lrv_plot_tikz

Description

Create a Tikz plot of the estimated distribution of LRV estimators

Usage

```
makePDF = TRUE
       width = 4.5, height = 3.5, filename = NULL, verbose = FALSE,
lrv_plot_tikz(data, n, ker_name, true_lrv, phi = NULL, xrange = NULL,
```

Arguments

End(Not run)

```
Examples
                                Automatically compile the resulting . tex file
                                                                                      MakePDF
                         Print updates about progress (via link[base]{cat})
                                                                                      verbose
         automatically be chosen (of the form lvv_est_plot_ker_name_phi)
pended with .tex and maybe .pdf will be created); if NULL, a file name will
The name of the file to save output (without stems; files with this string ap-
                                                                                    filename
                                                       The height of the plot
                                                                                      height
                                                       The width of the plot
                                                                                        Midth
                                  The limits of the horizontal axis of the plot
                                                                                       xrange
               is assumed to have been generated with a GARCH(1,1) process
The autocorrelation parameter of the simulated data sets to plot; if NULL, the data
                                                                                          īЧd
                                      The value of the true long-run variance
                                                                                    true_lrv
                   The name of the kernel function used in the LRV estimator
                                                                                    ker_name
                                                                                            u
The sample size of simulated data sets for which to plot an estimated distribution
                                    A data. frame containing the data to plot
                                                                                        atab
```

((0

lrv_plot_tikz(plotlist, 50, ker_name = "bartlett", true_lrv = 1)

phi = c(0,

plotlist <- data.frame(val = c(0.649, 0.965, 0.905),

'0

u = c(20, 20, 20)

75

Details

arguments for that function; see its documentation for more details. This function uses uniroot for finding this quantity, and many of the the accepted parameters are

Value

The quantile associated with p

Examples

CPAT:::qkolmogorov(0.5)

```
Rènyi-Type Statistic Quantile Function
```

Description

uzb

Quantile function for the limiting distribution of the Renyi-type statistic.

Osage

```
(... ,eqs.slduobtenidaeM. = Lot
qZn(p, d = 1, summands = 500, interval = c(0, 100),
```

Arguments

... , fot , favnetni Number of summands for infinite sum spuewwns Dimension parameter р d Value of the CDF at the quantile

Arguments to be passed to uniroot

Details

arguments for that function; see its documentation for more details. This function uses uniroot for finding this quantity, and many of the the accepted parameters are

Value

The quantile associated with p

Examples

(C.0)nZp:::TA92

24 pBst

pBst

CDF of First Hitting Time of Bessel Process

Description

CDF of the distribution of the first time a Bessel process with parameter $\nu > -1$ hits b > 0.

Usage

```
pBst(q, b, nu = -1/2, summands = NULL)
```

Arguments

q Quantile input to CDF

b Point in space Bessel process hits

nu The parameter $\nu > -1$ of the Bessel process

summands Number of summands to use in summation; default is to pick the number of

summands with pBst_summand_solver (it could be slow, so for performance it

may be best to pick a fixed number)

Details

Let $\tau_b^{(\nu)}$ be the first time a Bessel process with parameter ν hits b>0. Let $J_{\nu}(x)$ be the Bessel function (of the first kind) with order ν , and let $j_{\nu,k}$ be the kth zero of $J_{\nu}(x)$. Let $\Gamma(x)$ be the gamma function. Then the CDF of $\tau_b^{(\nu)}$ is

$$1 - \frac{1}{2^{\nu - 1}\Gamma(\nu + 1)} \sum_{k=1}^{\infty} \frac{j_{\nu,k}^{\nu - 1}}{J_{\nu + 1}(j_{\nu,k})} e^{-\frac{j_{\nu,k}^2}{2b^2}t}$$

(This was obtained in (Kent 1980), but the formula above was given in (Hamana and Matsumoto 2013).)

Value

If T is the random variable as described, $P(T \le q)$

References

Hamana Y, Matsumoto H (2013). "The probability distributions of the first hitting times of Bessel processes." *Transactions of the American Mathematical Society*, **365**(10), 5237–5257.

Kent JT (1980). "Eigenvalue expansions for diffusion hitting times." Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, **52**(3), 309–319. ISSN 1432-2064, doi: 10.1007/BF00538895, https://doi.org/10.1007/BF00538895.

Examples

```
CPAT:::pBst(1, 1)
```

qhidalgo_seo 33

Arguments

р

The probability associated with the desired quantile

Value

The quantile associated with p

Examples

```
CPAT:::qdarling_erdos(0.5)
```

qhidalgo_seo

Hidalgo-Seo Statistic Limiting Distribution Quantile Function

Description

Quantile function for the limiting distribution of the Hidalgo-Seo statistic

Usage

```
qhidalgo_seo(p)
```

Arguments

n

The probability associated with the desired quantile

Value

A The quantile associated with p

Examples

```
CPAT:::qhidalgo_seo(0.5)
```

qkolmogorov

Kolmogorov Distribution Quantile Function

Description

Quantile function for the Kolmogorov distribution.

Usage

```
qkolmogorov(p, summands = 500, interval = c(0, 100), tol = .Machine$double.eps, ...)
```

Arguments

```
p Value of the CDF at the quantile
summands Number of summands for infinite sum
interval, tol, ...
Arguments to be passed to uniroot
```

qdarling_erdos 35

pBst_summand_solver Find Number of Summands Needed for Numerical Accuracy of pBst

Description

Find the number of summands needed to achieve numerical accuracy of the sum involved in pBst.

Usage

pBst_summand_solver(q, b, nu = -1/2, error = .Machine\$double.eps)

Arguments

The desired numerical error of the sum error The parameter $\nu > -1$ of the Bessel process nu Point in space Bessel process hits q Quantile input to CDF b

Details

encounters a summand that is not greater than the specified level of numerical accuracy. The index The number of summands needed is determined by using a loop that runs over the summands until it

of that last summand is then returned.

Value

Integer for number of summands

Examples

pBst_summand_solver(1, 1)

```
Darling-Erdös Statistic CDF
                                  pdarling_erdos
```

Description

CDF for the limiting distribution of the Darling-Erdös statistic.

```
pdarling_erdos(q)
```

Arguments

b Quantile input to CDF

Value

If Z is the random variable with this distribution, the quantity $P(Z \le q)$

Description

tsap

Quantile function of the distribution of the first time a Bessel process with parameter $\nu > -1$ hits

Bessel Process First Hitting Time Quantile Function

0 < d

```
dBst(p, b, nu = -1/2, summands = NULL, interval = c(0, 100),
                                                          Usage
```

(... ,eqs.elduob&enideM. = Lot

Arguments

Point in space Bessel process hits q The probability associated with the desired quantile

The parameter $\nu > -1$ of the Bessel process nu

Number of summands to use in summation; default is to pick the number of spuewwns

may be best to pick a fixed number) summands with pBst_summand_solver (it could be slow, so for performance it

... , fot , fevnetni

Arguments to be passed to uniroot

Details

arguments for that function; see its documentation for more details. This function uses uniroot for finding this quantity, and many of the the accepted parameters are

Value

The quantile associated with p

Examples

```
(l = 0, 0.5)
```

Darling-Erdös Statistic Limiting Distribution Quantile Function qdarling_erdos

Description

Quantile function for the limiting distribution of the Darling-Erdös statistic.

qdarling_erdos(p)

26 pkolmogorov

Examples

```
CPAT:::pdarling_erdos(0.1)
```

phidalgo_seo

Hidalgo-Seo Statistic CDF

Description

CDF of the limiting distribution of the Hidalgo-Seo statistic

Usage

```
phidalgo_seo(q)
```

Arguments

_

Quantile input to CDF

Value

If Z is the random variable following the limiting distribution, the quantity $P(Z \le q)$

Examples

```
CPAT:::phidalgo_seo(0.1)
```

pkolmogorov

Kolmogorov CDF

Description

CDF of the Kolmogorov distribution.

Usage

```
pkolmogorov(q, summands = ceiling(q * sqrt(72) + 3/2))
```

Arguments

q Quantile input to CDF

summands

Number of summands for infinite sum (the default should have machine accuracy)

Value

If Z is the random variable following the Kolmogorov distribution, the quantity $P(Z \le q)$

Examples

```
CPAT:::pkolmogorov(0.1)
```

pZn 31

Examples

pZn

Rènyi-Type Statistic CDF

Description

CDF for the limiting distribution of the Rènyi-type statistic.

Usage

```
pZn(q, d = 1, summands = NULL)
```

Arguments

q Quantile input to CDFd Dimension parameter

summands

Number of summands for infinite sum; if NULL, automatically determined using pBst_summand_solver (which isn't necessarily fast, so consider picking a fixed

number if speed is important)

Details

If $G_{\nu,b}(x)$ is the CDF of the first time a Bessel process with parameter ν hits b>0 (as described by pBst) then the CDF of the Rényi-type statistic when the null hypothesis is true is $F(x)=(1-G_{d/2-1,x}(1))^2$, where d is the dimensionality parameter of the statistic. (This comes from combining the limiting distribution of the statistic described in (Rice et al.) with the expression for the CDF of the hitting time of the Bessel process described in (Hamana and Matsumoto 2013).)

Value

If Z is the random variable following the limiting distribution, the quantity $P(Z \le q)$

References

Hamana Y, Matsumoto H (2013). "The probability distributions of the first hitting times of Bessel processes." *Transactions of the American Mathematical Society*, **365**(10), 5237–5257.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
CPAT:::pZn(0.1)
```

bower_plot_tikz L7

power_sim_Zn_to_df 30

Usage

power_sim_Vn_to_df(obj, crit)

Arguments

the null hypothesis The critical value determining whether a statistic should lead to the rejection of tino A list containing simulated statistic values Çdo

Value

A data. frame summarizing the results of the data stored in obj

Examples

```
CPAT:::power_sim_Vn_to_df(saveobj, CPAT:::qkolmogorov(.95))
"d_0" = c(1.551, 1.276, 1.348, 1.982, 1.423)
                               )tsil = "Jn+o"
                                 )tsiI = "0&n"
                                   saveobj <- list("norm" = list(
```

Convert Rényi-Type Statistic Power Simulation Save List to Data h_ot_nZ_mis_newoq

Description

change points were computed; and the size of the change. the generating distribution of the statistic was computed on; the kn parameter; the identifier of how and delta, which correspond to: the empirical power of the statistic; the identifier of the statistic; be rejected, the function will return a data. frame with columns power, stat, dist, kn, n, cpt, data. frame. Given such a list and a critical value to determine whether the null hypothesis should This function will convert the power simulation data generated in a list in our simulation scripts to a

Usage

power_sim_Zn_to_df(obj, crit)

Arguments

the null hypothesis The critical value determining whether a statistic should lead to the rejection of crit A list containing simulated statistic values ţdo

Value

A data. frame summarizing the results of the data stored in obj

Power Curve Plot (By Statistic)

Description

bower_plot_tikz

Create a Tikz plot of the power curves of a statistic, with each sample size having its own curve.

```
makePDF = TRUE)
    width = 4.5, height = 3.5, filename = NULL, verbose = FALSE,
power_plot_tikz(data, d, t, c, s, title = "", legend_pos = "none",
```

Arguments

tics were computed Label for data-generating process used to simulate the data on which the statisр

Э Label for the process that computes the location of change points

S

The statistic for which to plot a power curve

Label for the trimming parameter of the Rényi-type statistic

atab

A data. frame containing the data to plot

7

A string to be passed to link[ggplot2]{theme} (the legend.position argu-Jegend_pos The title of the plot fitle

The width of the plot Midth ment) identifying where to place the legend

The name of the file to save output (without stems; files with this string apfilename The height of the plot height

automatically determined pended with .tex and maybe .pdf will be created); if NULL, the name will be

Automatically compile the resulting . tex file MakePDF Print updates about progress (via link[base]{cat}) verbose

Examples

:unu loM ##

power_plot_tikz(pdat, "norm", "log", "c4rt", "de") ((7.1-,8.1-,9.1-,0.2-)) = 6119bcpt = c("c4rt", "c4rt", "c4rt"), 609 609 u = c(20)kn = c("log", "log", "log", "log"), dist = c("norm", "norm", "norm"), stat = c("de", "de", "de"), pdat <- data.frame(power = c(0.8926, 0.8714, 0.8296, 0.7936),

End(Not run)

28 power_plot_tikz_by_n

```
power_plot_tikz_by_n Power Curve Plot
```

Description

Create a Tikz plot of the power curves of simulated statistics.

Usage

```
power_plot_tikz_by_n(data, d, t, c, N, statlines, title = "",
 legend_pos = "none", width = 4.5, height = 3.5, filename = NULL,
 verbose = FALSE. makePDF = TRUE)
```

Arguments

A data. frame containing the data to plot data Н Label for data-generating process used to simulate the data on which the statistics were computed t Label for the trimming parameter of the Rényi-type statistic Label for the process that computes the location of change points C The sample size of the simulated data sets on which the statistics were computed statlines A character vector where the names of the entries are the labels of the statistics in the stat column of data and the entries define the line types used by the values entry of scale_linetype_manual title The title of the plot legend pos A string to be passed to link[ggplot2]{theme} (the legend.position argument) identifying where to place the legend width The width of the plot height The height of the plot filename The name of the file to save output (without stems; files with this string appended with . tex and maybe .pdf will be created); if NULL, the name will be automatically determined

Print updates about progress (via link[base]{cat})

Automatically compile the resulting . tex file

Examples

verbose makePDF

```
pdat <- data.frame(power = c(0.8926, 0.8714, 0.8296, 0.7936),
                 stat = c("de", "de", "de", "de"),
                 dist = c("norm", "norm", "norm", "norm"),
                 kn = c("log", "log", "log", "log"),
                 n = c(50, 50, 50,
                 cpt = c("c4rt", "c4rt", "c4rt", "c4rt"),
                 delta = c(-2.0, -1.9, -1.8, -1.7)
power_plot_tikz_by_n(pdat, "norm", "log", "c4rt", 50, c("de" = "solid"))
## End(Not run)
```

29 power_sim_stat_df_creator

```
power_sim_stat_df_creator
```

Create Power Simulation Results Data Frame

Description

Creates a data, frame that contains power simulation results from files containing power simulations. This function should automate the use of power_sim_Zn_to_df and power_sim_Vn_to_df for collecting power simulation data. It takes two CSV files, one passed (as a character string) to file_meta and the other to stat_meta, describing how the files (named and described in file_meta) should be handled.

Usage

```
power_sim_stat_df_creator(file_meta, stat_meta, prefix = "",
 alpha = 0.05)
```

Arguments

file_meta	The location of a CSV file that contains file names and the statistics that those files correspond to
stat_meta	The location of a CSV file that contains statistic (stat) labels (used in file_meta) the name of the variable for the statistic, and the name of the function that converts a file (mentioned in file_meta) to a data.frame of power data
prefix	Character string representing a prefix for file names mentioned in file_meta; could be used for adding path information to those names, in case the files are not in the working directory and there is no desire to edit file_meta's data
alpha	Numeric for level of significance used in power calculations

Value

A data frame containing the power simulation data

Frame

Examples

```
power_sim_stat_df_creator("FileStatMeta.csv", "StatMeta.csv")
 ## End(Not run)
                        Convert CUSUM-Type Statistic Power Simulation Save List to Data
power_sim_Vn_to_df
```

Description

This function will convert the power simulation data generated in a list in our simulation scripts to a data.frame. Given such a list and a critical value to determine whether the null hypothesis should be rejected, the function will return a data frame with columns power, stat, dist, n, cpt, and delta, which correspond to: the empirical power of the statistic; the identifier of the statistic; the generating distribution of the statistic was computed on; the identifier of how change points were computed; and the size of the change.