## Activité 3.1 – Principe d'une échographie

#### Objectifs:

Comprendre le principe d'une échographie.

**Contexte**: Pendant les grossesses on peut visualiser l'embryon à l'aide d'une **échographie**, ce qui permet de vérifier son bon développement.

→ Comment fonctionne une échographie?

## Document 1 - Fréquence de propagation et réflexion des ultrasons

Les ultrasons sont des ondes sonores inaudibles par une oreille humaine. La fréquence d'un ultrason est supérieure à 20 000 Hz.

Les ultrasons sont des ondes mécaniques et donc

- elles ne se propagent pas dans le vide;
- la vitesse des ultrasons dépend du milieu traversé;
- elles peuvent être réfléchie sur un obstacle (écho).

| Vitesse de propagation d'un ultrason dans un milieu |                                |                              |                              |  |  |
|-----------------------------------------------------|--------------------------------|------------------------------|------------------------------|--|--|
| Matériau Air à 20 °C Eau à 37 °C Sang               |                                |                              |                              |  |  |
| Vitesse de propagation                              | $340  \mathrm{m \cdot s^{-1}}$ | $1530\mathrm{m\cdot s^{-1}}$ | $1560\mathrm{m\cdot s^{-1}}$ |  |  |

Dans un corps humain, la célérité moyenne d'un ultrason est  $c = 1540 \,\mathrm{m\cdot s^{-1}}$ .

## Document 2 – L'échographie

L'échographie utilise le phénomène d'écho, comme son nom l'indique. Une sonde est posée sur la peau recouverte d'un gel et émet des ultrasons. Les ultrasons se propagent dans le corps et sont réfléchis quand ils rencontrent un changement de milieu. Par exemple, pendant le passage d'un tissus musculaire à un tissus osseux.

Après réflexion, les ultrasons sont reçues par la sonde. La durée  $\Delta t$  qui sépare l'émission et la réception des ultrasons est alors mesurée et permet de calculer des distances.

En comparant les durée de réception et avec un traitement numérique, on peut obtenir une image contrastée des tissus biologiques dans le corps humain.



↑ Schéma d'une échographie.



↑ Ultrasons reçus lors d'une échographie.

### Document 3 - Surveillance d'une grossesse avec l'échographie

Afin de suivre la croissance du fœtus, une surveillance est réalisée par échographie. Elle permet d'effectuer différentes mesures, notamment celle du diamètre bipariétal BIP (largeur de la tête entre les deux oreilles), qui fournit de précieuses informations sur le développement cérébral du fœtus.

On note A la position de la première oreille et B la position de la seconde oreille.

- 1 Exprimer la distance  $d_A$  entre la sonde et la première oreille, en fonction de la célérité des ultrasons c et du temps de détection des ultrasons réfléchis  $\Delta t_A$ .
- 2 Exprimer de même pour la distance  $d_B$  entre la sonde et la seconde oreille, en fonction de la célérité des ultrasons c et du temps de détection des ultrasons réfléchis  $\Delta t_B$ .
  - 3 Calculer les valeurs de  $d_A$  et  $d_B$ . En déduire le diamètre bipariétal.

**Données** :  $\Delta t_A = 120 \, \mu s$ ,  $\Delta t_B = 185 \, \mu s$ ,  $1 \, \mu s = 10^{-6} \, s$ .

4 — La patiente est examinée lors de la 21ème semaine d'aménorrhée. Les valeurs normales du diamètre bipariétal se situent alors entre 46 mm et 57 mm. Indiquer si l'examen permet de suspecter un retard de croissance du fœtus.

# TP 3.1 - Réalisation pratique d'une échographie

#### Objectifs:

Utiliser une démarche expérimentale pour comprendre le principe d'imagerie par échographie.

Contexte: En envoyant des ultrasons sur un corps humain, on observe que les ondes sont plus ou moins réfléchies en fonction des tissus rencontré. Si on détecte beaucoup d'ultrasons réfléchis sur des tissus dur, la zone correspondante apparaît blanche sur l'image (os). Si on ne détecte pas ou peu d'ultrasons réfléchis, c'est qu'ils se sont propagé dans des tissus mou : la zone apparaît sombre sur l'image (liquide ou membrane).

→ Comment reconstruire une image à partir des données mesurée pendant une échographie?

#### Document 1 - Onde ultrasonore et matériau

Quand une onde sonore dans le domaine des ultrasons arrive sur une surface, elle peut être transmise, absorbée ou réfléchie en fonction des propriétés du matériau.

- Transmission : l'onde traverse le matériau ;
- Absorption : l'onde est absorbée par le matériau (son amplitude diminue) ;
- **Réflexion** : l'onde est réfléchie comme sur un miroir.

En général, plus un matériau est dense et dur, plus il réfléchira bien les ondes ultrasonore.

## Document 2 – Matériel disponible

On dispose

- d'un générateur 12 V;
- d'un émetteur d'ultrasons (noté E), qui émet autour de 40 kHz;
- d'un récepteur d'ultrasons (noté R), sensible autour de 40 kHz;
- d'un oscilloscope;
- de câbles BNC et de câbles banane.

### Document 3 - Protocole de mise en place

- Alimenter l'émetteur (E) d'ultrasons en 12 V en mode salve et le relier à la voie 1 de l'oscilloscope.
- Placer le récepteur (R) à environ 15 cm en face de l'émetteur que l'on relie à la voie 2 de l'oscilloscope.
- Allumer et régler l'oscilloscope pour qu'il affiche les signaux des deux voies.
- Changer le calibre de la voie 2 pour augmenter la sensibilité verticale (en Volt par division : V/div) et obtenir 2 signaux de taille similaire à l'écran.
- 🚣 上 Réaliser le protocole du document 3, appeler le professeur en cas de soucis.
- ☐ ▶ Placer une plaque entre l'émetteur et le récepteur. Compléter le tableau concernant la capacité de transmission des différents matériaux avec les adjectifs : fort, moyen, faible, nul.

| Matériau                 |  |  |  |
|--------------------------|--|--|--|
| Capacité de transmission |  |  |  |

Dans une échographie, l'émetteur et le récepteur sont côte à côte. Placer l'émetteur et le récepteur côte à côte, puis placer des obstacles devant l'ensemble pour remplir le tableau suivant avec les adjectifs fort, moyen, faible, nul.

| Matériau              |  |  |  |
|-----------------------|--|--|--|
| Capacité de réflexion |  |  |  |

- 1 Mesurer la durée  $\Delta t$  en seconde mise par les ultrasons pour faire l'aller-retour.
- 2 Trouver la relation entre la célérité c de l'onde ultrasonore, le temps  $\Delta t$  que met l'onde à faire l'aller-retour et la distance d entre l'émetteur-récepteur et l'obstacle.
  - **3** Calculer d, sachant que  $c = 340 \,\mathrm{m \cdot s^{-1}}$  dans l'air.
  - 4 Vérifier cette mesure avec une règle.
- Pour comprendre le fonctionnement de l'échographie médicale, on utilise le dispositif précédant. Une boîte en carton (ventre) contient un objet (fœtus), que l'on va chercher à imager.
  - 5 Proposer et réaliser une démarche pour identifier la position de l'objet dans la boite.

## Activité 3.2 - Principe d'une échographie doppler

## Objectifs:

• Comprendre le principe d'une échographie doppler.

**Contexte**: Pour vérifier que le sang circule normalement dans les vaisseaux sanguins, de nos jours on utilise l'échographie doppler, qui est précise et non-intrusive.

→ Comment fonctionne une échographie doppler?

## Document 1 - L'effet doppler

Quand deux personnes sont à la même distance d'une source sonore immobile, elles entendent le même son. Mais si la source est en mouvement, chaque personne perçoit un son différent :



- si la source se rapproche, le son parait plus aigu : la fréquence de l'onde augmente ;
- si la source s'éloigne, le son parait plus grave : la fréquence de l'onde diminue.

C'est l'effet doppler : la fréquence de l'onde émise change lorsqu'il y a un mouvement relatif entre la source d'émission et la personne qui écoute.

1 — Yasmine entend la sirène d'une ambulance de plus en plus aiguë. L'ambulance se rapproche ou s'éloigne de Yasmine?

#### Document 2 – L'échographie doppler

L'échographie doppler utilise aussi le phénomène d'écho, comme l'échographie simple. Une sonde est posée sur la peau recouverte d'un gel et émet des ultrasons. Les ultrasons se propagent dans le corps et sont réfléchis par les globules rouges dans les vaisseaux sanguins.



Après réflexion, les ultrasons sont reçues par la sonde. La fréquence de l'onde sonore réfléchie varie en fonction de la fréquence de l'onde émise et de la vitesse de déplacement des globules rouges.

Mesurer le décalage en fréquence  $\Delta f$  entre la fréquence de l'onde émise et celle de l'onde réfléchie, permet donc de déterminer la vitesse et le sens d'écoulement du sang dans les vaisseaux.

Le décalage en fréquence est relié à la vitesse d'écoulement par la relation suivante :

$$\Delta f = \frac{2v f_E \cos(\theta)}{c} \qquad \Longleftrightarrow \qquad v = \frac{c\Delta f}{2f_E \cos(\theta)}$$

- $f_E$  est la fréquence de l'onde émise en Hz;
- $f_R$  est la fréquence de l'onde réfléchie en Hz;
- c est la célérité du son dans le corps en  $m \cdot s^{-1}$ ;
- v est la vitesse des globules rouges en  $m \cdot s^{-1}$ ;
- $\theta$  est l'angle entre l'axe de la sonde et l'axe du vaisseau sanguin.
- 2 Indiquer quels partie du corps humain réfléchit le son dans une échographie doppler et quelle est la grandeur mesurée.

## Document 3 – Échographie doppler d'une artère

Les échographies doppler servent notamment à vérifier que les patient-es ne présentent pas de **sténose aortique**, c'est-à-dire une diminution du diamètre d'une artère. On peut exprimer cette diminution du diamètre en pourcentage par rapport à une taille normale. On a alors une évolution du signal mesuré avec une échographie doppler en fonction de l'avancée de la sténose.



↑ Signal doppler visible en fonction de l'avancée de la sténose.

On compare deux images d'échographie doppler d'une artère rénale : celle d'un-e patient-e sans pathologie et celle d'un-e patient-e souffrant d'une sténose aortique.





3 — Analyser les échographies et en déduire qui de A ou B souffre de sténose aortique.

## Activité 3.3 - Diagnostiquer une hémochromatose

## Objectifs:

Utiliser les principes de l'échographie pour mener un diagnostique médical.

**Contexte** : L'hémochromatose est une maladie qui perturbe l'absorption du fer et nécessite la surveillance particulière du foie.

→ Comment diagnostiquer une hémochromatose avec une échographie?

#### Document 1 – L'hémochromatose

Les hémochromatoses sont un groupe de maladies héréditaires autosomiques, récessives dans l'immense majorité des cas, concernant le métabolisme du fer, et se caractérisant par une surcharge de fer dans l'organisme. À long terme, les dépôts ferriques engendrent des lésions anatomiques et fonctionnelles irréversibles.

Une augmentation de la taille du foie peut être un symptôme de l'hémochromatose. Une échographie du foie permet de mesurer sa taille.

## Document 2 - Suivi échographique

L'épaisseur d'un foie est normalement comprise entre 8 cm et 12 cm. Une sonde échographique, placée sur le ventre d'un patient, émet des ondes ultrasonores de fréquence  $f=6.0\,\mathrm{MHz}$ . Les signaux reçus par la sonde sont représentés sur la figure de droite ci-dessous.



L'instant  $t=0\,\mu s$  correspond à l'émission du signal

#### Données:

- $-1 \text{ MHz} = 10^6 \text{ Hz}.$
- $-1 \text{ us} = 10^{-6} \text{ s}.$
- Fréquences des ondes sonores audibles : de 20 Hz à 20 000 Hz.
- Vitesse des ultrasons dans le corps humain  $c = 1540 \,\mathrm{m \cdot s^{-1}}$ .
- 1 Justifier que les ondes utilisées sont des ultrasons.

- 2 Rappeler le principe de l'échographie en précisant les phénomène physiques mis en jeu.
- **3** Expliquer la présence des deux signaux 1 et 2 reçus par la sonde et représentés dans le document 2.
- **4** Montrer, à l'aide du document 2, que la durée de propagation des ultrasons pour parcourir l'épaisseur d du foie est  $\Delta t = 55 \,\mu s$ .
  - 5 Déterminer si le foie du patient a une épaisseur normale.
  - 6 Déterminer la distance entre la sonde et la paroi du foie la plus proche de la sonde.

## Activité 3.4 – Radiographie et radiothérapie

## Objectifs:

- Comprendre le principe de la radiographie.
- Comprendre le principe de la radiothérapie.

**Contexte** : Que ce soit pour diagnostiquer des blessures (radiographie) ou pour traiter des maladies (radiothérapie), les rayons X sont utilisés tous les jours en médecine.

→ Comment et pourquoi les rayons X sont-ils utilisés dans le milieu médical?

## Document 1 - Les rayons X



La lumière est une **onde électromagnétique**, dont les propriétés dépendent de la **fréquence**. Plus la fréquence est élevée, plus les ondes électromagnétiques sont potentiellement dangereuse. La lumière est visible pour des yeux humains de 380 à 790 THz (1 THz =  $10^{12}$  Hz = mille milliards de hertz). Les autres fréquences sont invisibles.

Les ondes électromagnétiques sont la propagation d'un champ magnétique et d'un champ électrique à la vitesse de la lumière  $c = 3,00 \times 10^8 \,\mathrm{m} \cdot \mathrm{s}^{-1}$ . Elles se propagent dans le vide comme dans les milieux matériels.

Les rayons X sont des ondes électromagnétiques de fréquences très élevées. En médecine les rayons X sont utilisés principalement pour

- faire de l'imagerie médicale : c'est la radiographie ;
- traiter des cancers : c'est la radiothérapie.

Le rayonnement dans le domaine X est dangereux à forte dose, car il est suffisamment énergétique pour détruire des molécules!

De par leur danger, les rayons X sont manipulés par des spécialistes et il faut limiter la durée d'exposition à ce rayonnement.

#### Document 2 - Principe de la radiographie

La **radiographie** est une technique d'imagerie médicale utilisant des rayons X. Les rayonnement X sont très énergétiques et traversent plus ou moins la matière en fonction de sa composition et de son épaisseur.

Pour réaliser une radiographie, il faut placer une plaque X-sensible sous l'objet que l'on veut observer, puis envoyer des rayons X à partir d'une source. La plaque X-sensible noircit si elle reçoit des rayons X et reste blanche si elle n'en reçoit pas.

Si on irradie une main avec des rayons X pendant une durée très courte, alors :

- la peau et les muscles absorbent peu les rayons X, la plaque reçoit peu de rayon et noircit faiblement;
- les os absorbent beaucoup les rayons X, la plaque reçoit très peu de rayon et apparaît presque blanche.

#### Document 3 - Absorption des rayons X

Les rayons X sont plus absorbés si les atomes qui composent la matière ont des numéro atomique Z élevé.

- La peau et les muscles sont essentiellement composés d'hydrogène (Z=1), de carbone (Z=6), d'azote (Z=7) et d'oxygène (Z=8). Ils absorbent donc peu les rayons X et apparaissent gris.
- Les os sont essentiellement composés de phosphore (Z=15) et de calcium (Z=20). Ils absorbent beaucoup les rayons X et apparaissent presque blanc.



Radiographie d'une main

## Document 4 - Principe de la radiothérapie

La radiothérapie consiste à irradier suffisamment longtemps les cellules cancéreuses pour les tuer et éviter leur prolifération. Quand ils pénètrent dans la matière, les rayons X vont décharger leur énergies a une certaine profondeur que l'on connaît : on peut donc détruire finement un cancer en endommageant au minimum ce qu'il y a autour.

Pendant une radiothérapie, le ou la patiente est donc soumis localement à des rayonnement X intense et prolongée.

- 🎇 🕰 Légender la radio en précisant l'épaisseur et la composition atomique des milieux traversé.
- 1 Rechercher le numéro atomique de l'or dans le tableau périodique et expliquer pourquoi on observe une ellipse blanche sur la radio.
- 2 Expliquer pourquoi la source de rayon X doit être proche de la patiente pendant une radiographie.
  - 3 Comparer radiographie et radiothérapie. Trouver un point commun et deux différences.
- 4 Chercher et lister quelques effet néfastes sur la santé des rayons X s'ils sont utilisés à trop fortes doses.

## Activité 3.5 – Imagerie par résonance magnétique (IRM)

### Objectifs:

Comprendre le principe de l'IRM et l'intérêt des produits de contraste.

Contexte : L'Imagerie par Résonance Magnétique est une technique d'imagerie médicale qui permet d'observer les tissus mous en temps réel.

→ Quels principes physiques permettent de former une image par IRM?

## Document 1 – Aimantation des noyaux

Les noyaux de certains éléments chimiques se comportent comme des petits aimants. Les aimants qui sont placés dans un champs magnétique vont s'aligner avec celui-ci, comme le ferait une boussole, on parle d'aimantation.

Si un noyau est entouré d'électrons, ils vont agir comme un écran et le protéger des champs magnétiques extérieurs.

C'est pourquoi les noyaux d'hydrogènes, les protons, qui se trouvent dans des **molécules simples**, comme la molécule d'eau, sont les plus sensibles au champ magnétique et présentent l'aimantation la plus forte.

## Document 2 - Principe d'une IRM





Le principe est le suivant :

- les tissus observés sont soumis à un fort champ magnétique  $\vec{B}$  qui aimante les protons;
- on émet une onde électromagnétique dans le domaine radio qui va être absorbée par les noyaux d'hydrogène, ce qui change l'orientation de leur aimantation;
- en fonction de leur environnement, les noyaux d'hydrogènes vont retrouver plus ou moins rapidement l'orientation du fort champ magnétique  $\vec{B}$ , on parle de **relaxation**;
- en mesurant l'orientation de l'aimantation au cours de cette relaxation, on peut ainsi créer une image contrastée des tissus en fonction de leur composition.



Les noyaux d'hydrogènes ont des environnements différents en fonction des tissus.



Les protons s'orientent selon  $\vec{B}$ , ce qui donne une aimantation plus ou moins forte.



L'aimantation est pivotée de 90° sous l'action d'une onde radio perpendiculaire à  $\vec{B}$ .



L'aimantation reprend l'orientation de  $\vec{B}$  et les protons émettent une onde radio qui dépend de leur environnements.

- 1 Expliquer pourquoi les noyaux d'hydrogènes dans des molécules complexes comme les lipides ou les protéines s'aimantent moins bien que les noyaux d'hydrogènes dans des molécules d'eau.
  - 2 Expliquer pourquoi les tissus osseux ne sont pas visible en IRM.

## Document 3 - Les produits de contraste pour l'IRM

Pour réaliser certains diagnostiques, on peut injecter des produits de contraste dans le corps du ou de la patiente. Ces produits améliorent la sensibilité au champ magnétique d'un tissu particulier, ce qui augmente son aimantation et permet de le visualiser avec un meilleur contraste Par exemple pour visualiser les vaisseaux sanguins et donc détecter d'éventuelles thromboses.

Les produits de contraste utilisent l'ion gadolinium III noté Gd<sup>3+</sup>, qui est le plus sensible au champ magnétique. L'ion est couplé à des molécule, les ligands, pour former des chélates de gadolinium, inoffensifs pour l'organisme.

$$O^{-}$$
 $O^{-}$ 
 $O^{-$ 

- 3 Identifier le chélate qui est un alcool. Donner son nombre de fonction amine.
- 4 Expliquer l'intérêt d'un produit de contraste.

## Activité 3.6 – La radioactivité

## Objectifs:

- Comprendre le principe de la radioactivité.
- Savoir qu'il y a trois types de décomposition pour la radioactivité.
- Comprendre la notion d'activité et de temps de demi-vie.

**Contexte**: Les objets qui nous entourent sont composés d'atomes, qui peuvent être radioactifs. Par exemple les bananes sont naturellement radioactives.

→ Qu'est-ce que la radioactivité? Comment la radioactivité évolue au cours du temps?

## Document 1 - Constitution d'un noyau et isotope

Un noyau atomique est constitué de neutrons et de protons, qui sont des nucléons. Un élément chimique est noté  ${}_{Z}^{A}X$ 

- A est le nombre de nucléons (protons + neutrons);
- Z est le numéro atomique ou le **nombre de charges**;



X est le symbole de l'élément (H, O, C, etc.).

Un même élément chimique peut avoir plusieurs noyaux différents, on parle d'isotopes.

Par exemple le carbone a 3 isotopes





Carbone 12

Carbone 13

## Document 2 – Désintégration des noyaux instables

Le carbone 12 et 13 sont stables, tandis que le carbone 14 est instable. Les noyaux instables sont dit radioactifs. Cette instabilité se traduit par une désintégration inéluctable du noyau.

La désintégration est un phénomène aléatoire, on ne peut donc pas prédire quand un noyau va se désintégrer.

Par contre on sait avec certitude que le noyau instable, appelé noyau père, va se transformer en un autre noyau, appelé noyau fils, en libérant une particule au passage.

Le noyau fils a généralement une énergie trop élevée, il est dans un état excité, noté avec un astérisque en exposant  $(X^*)$ . Son énergie est abaissée par l'émission d'un rayonnement électromagnétique de très courte longueur d'onde, appelé rayonnement  $\gamma$  (gamma). On parle de désexcitation gamma.



Désintégration du carbone 14 en azote 14.

| Type de désintégration   | Particule émise                             |
|--------------------------|---------------------------------------------|
| $\alpha \text{ (alpha)}$ | Noyau d'hélium <sup>4</sup> <sub>2</sub> He |
| $\beta^-$ (beta moins)   | Électron $_{-1}^{0}$ e                      |
| $\beta^+$ (beta plus)    | Positron $^0_{+1}$ e                        |

A Vous devez être capable de reconnaître la particule émise au cours d'une désintégration.

- 1 Noter les 3 noyaux isotopes du carbone en utilisant l'écriture  ${}_{Z}^{X}A$ .
- 2 Donner le sens du mot « inéluctable » utilisé dans le document 2.
- 3 Identifier les équations suivantes en indiquant s'il s'agit de désintégration  $\alpha$ ,  $\beta^-$ ,  $\beta^+$  ou d'une désexcitation  $\gamma$ :

$$a) {}^{18}_{9} \text{F} \rightarrow {}^{18}_{8} \text{O} + {}^{0}_{+1} \text{e}$$

b) 
$$^{131}_{54}$$
Xe\*  $\rightarrow ^{131}_{54}$  Xe +  $\gamma$ 

$$c)_{6}^{14}C \rightarrow_{7}^{14}N +_{-1}^{0}e$$

$$a) \,\, ^{18}{}_{9}{\rm F} \,\, {\rightarrow} ^{18}{}_{8}{\rm \,O} \,\, +_{-1}^{0}{\rm \,e} \qquad b) \,\, ^{131}{}_{54}{\rm Xe}^{*} \,\, {\rightarrow} ^{131}{}_{54}{\rm \,Xe} \,+\, \gamma \qquad c) \,\, ^{14}{}_{6}{\rm C} \,\, {\rightarrow} ^{14}{}_{7}{\rm \,N} \,\, +_{-1}^{0}{\rm \,e} \qquad d) \,\, ^{238}{}_{92}{\rm U} \,\, {\rightarrow} ^{234}{}_{90}{\rm \,Th} \,\, +_{-2}^{He}{}_{2} \,\, 4 \,\, {\rightarrow} ^{18}{}_{2}{\rm \,C} \,\, +_{-2}^{18}{}_{2}{\rm \,C} \,\, +_{$$

#### Document 3 – Activité d'un échantillon de matière

L'activité représente le nombre de désintégration dans un échantillon de matière pendant une seconde. Elle se note A et s'exprime en Bq.

Exemple: Si  $A = 400 \,\mathrm{Bg}$ , alors chaque secondes 400 noyaux radioactifs se désintègrent.

## Document 4 – Évolution de la radioactivité au cours du temps

Les novaux radioactifs instables forment des novaux stables, non radioactifs, en se désintégrant. Au sein d'un échantillon de matière radioactive, l'activité ne fait donc que diminuer au cours du temps.

La période radioactive T ou demi-vie radioactive  $t_{1/2}$  est la durée nécessaire

- pour que la moitié des noyaux radioactifs dans un échantillon se désintègrent.
- donc pour que l'activité soit divisée par 2.

Quelques exemples de périodes radioactives

| Noyau | $^{14}\mathrm{C}$ | $^{131}{ m I}$ | <sup>191</sup> Po |
|-------|-------------------|----------------|-------------------|
| T     | 5730  ans         | 8 jours        | $22\mathrm{ms}$   |



Document 5 - Variation de l'activité avec la nature de la source et sa masse

|             | Lait | Granite |
|-------------|------|---------|
| A pour 1 kg | 70   | 1000    |
| A pour 2 kg | 140  | 2000    |

4 — Calculer  $2^{20}$  et indiquer pourquoi on peut considérer qu'il n'y a plus de radioactivité dans un échantillon au bout de 20 périodes radioactive.

## Activité 3.7 - Utilisation de la radioactivité en médecine

## Objectifs:

- ▶ Comprendre la notion de dose absorbée.
- Comprendre la notion de dose équivalente.
- Connaître quelques utilisation médicale diagnostique et curative.

**Contexte** : La radioactivité est utilisée tous les jours en médecine pour diagnostiquer ou pour soigner des maladies.

→ Quelles sont les doses radioactives utilisées pour diagnostiquer ou guérir des maladies ?

## Document 1 – Dose absorbée et dose équivalente

La dose absorbée D se mesure en Gray noté Gy

$$D = \frac{\text{Énergie reçue pendant la désintégration (J)}}{\text{masse du corps recevant l'énergie (kg)}}$$

La dose absorbée mesure l'irradiation brute reçue, mais certaines particules sont plus dangereuses que d'autres à cause de leur masse. C'est pour ça qu'on introduit la dose équivalente H.

La dose équivalente H se mesure en sievert noté Sv

$$H = w_R \times D$$

où  $w_R$  est un facteur de pondération.  $w_R$  vaut 1 pour les radioactivités  $\beta^-$ ,  $\beta^+$  et  $\gamma$ .  $w_R$  vaut 20 pour la radioactivité  $\alpha$ .

#### Document 2 - Échelle de dose recue Dose annuelle (mSv) Dose ponctuelle (mSv) 0,006 Vol aller-retour Paris/New York Rejet des centrales nucléaires 0,002 0,06 Radiographie dentaire panoramique Radiographie du bras 0.1 Limite d'exposition du public Exposition médicale moyenne en France 1,6 Radioactivité en France 2,4 Mammographie Radioactivité des zones granitiques en Bretagne 5 Scanner abdominal Limite d'exposition des travailleurs du nucléaire 20 Radioactivité au Kerala en Inde Limite d'exposition des professionnelle d'urgence 100 100 Augmentation du risque de cancer Débit maximal en mSv/h mesuré pendant 400 l'accident de Fukushima 2000 Séance de radiothérapie Radioactivité naturelle Mortalité par oedème cérébral dans les mois 6000 Radioactivité artificielle suivant (ouvriers de Tchernobyl) 10000 Mort rapide par hémorragie interne Impact sanitaire Source: CEA

## Document 3 - Réglementation française

En France, une dose efficace annuelle H est préconisé pour le grand public, en plus de la radio-activité naturelle et médicale.

| Grand public       | Personne travaillant avec des sources radioactives |
|--------------------|----------------------------------------------------|
| $1\mathrm{mSv/an}$ | $20\mathrm{mSv/an}$                                |

#### Document 4 - Utilisation des radioéléments en médecine

| Radioélément                  | Cible                                                 | Dose               | Demi-vie  | Application                                           |  |
|-------------------------------|-------------------------------------------------------|--------------------|-----------|-------------------------------------------------------|--|
| Technétium : $\gamma$         | Peu Spécifique                                        | 1 à 10 mSv         | 6 h       | Scintigraphic                                         |  |
| Gallium : $\gamma$            | Colon, poumons                                        | $30  \mathrm{mSv}$ | 78 h      | Scintigraphie                                         |  |
| Fluor : $\beta^+$ et $\gamma$ | Détection des<br>cellules cancéreuses.<br>Neurologie. | 7 mSv              | 110 min   | PET par détection des rayon $\gamma$ de haute énergie |  |
| Samarium $\beta^-$            | Os, poumon, prostate, sein                            | 2 Sv/séance        | 1,9 jours | Radiothérapie<br>métabolique                          |  |
| Yttrium $\beta^-$             | Foie                                                  |                    | 2,7 jours | metabonque                                            |  |

1 — On considère qu'une source radioactive est inoffensive passé 20 demi-vie. Calculer 20 fois la demi-vie pour chaque radioélément utilisé.

2 — Pourquoi utilise-t-on des éléments avec de courtes demi-vie en médecine?

3 — Est-ce que les examens utilisant des radioéléments sont dangereux?

4 - Comparer les doses reçues lors d'un examen diagnostique et pendant une radiothérapie.

5 — Chercher comment le personnel médical se protège des radiations.