A Strange Example of a Vector Space

Let $\mathbb{V} = \mathbb{R}^+$ and $\mathbb{F} = \mathbb{R}$ and let's define the following operations: \oplus and \odot

- (1) $a \oplus b = a \cdot b$ called the vector addition.
- (2) $t \odot a = a^t$ called the scalar multiplication.

Example 1

$$3 \oplus 2 = 6,$$
 $3 \oplus 5 = 15,$ $1 \oplus 3 = 3$
 $3 \odot 2 = 8,$ $3 \odot 5 = 125,$ $-2 \odot 3 = \frac{1}{9},$ $0 \odot 2 = 1,$

Theorem 1

$$\langle \mathbb{V} = \mathbb{R}^+, \ \oplus, \ \odot, \ \mathbb{F} = \mathbb{R} \rangle$$
 with

- (1) $a \oplus b = a \cdot b$ [vector addition]
- (2) $t \odot a = a^t$ [scalar multiplication]

is a vector space.

We'll have to check if all 8 defining properties of a vector space are satisfied:

- (1) $a \oplus b = b \oplus a$ is true, since $a \cdot b = b \cdot a$.
- (2) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ is true, since $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- (3) The zero vector is: $\vec{0} = 1$ since $a \oplus 1 = a$.
- (4) The opposite of a vector: $-a = \frac{1}{a}$ since $a \oplus \frac{1}{a} = 1 = \vec{0}$.
- (5) $1 \odot a = a^1 = a$.
- **(6)** $s \odot (t \odot a) = (a^t)^s = a^{st} = (st) \odot a.$
- (7) $t \odot (a \oplus b) = (t \odot a) \oplus (t \odot b)$ since $t \odot (a \oplus b) = t \odot (a \cdot b) = (a \cdot b)^t = a^t \cdot b^t = (t \odot a) \oplus (t \odot b)$
- (8) $(s+t) \odot a = (s \odot a) \oplus (t \odot a)$ since $(s+t) \odot a = a^{s+t} = a^s \cdot a^t = (s \odot a) \oplus (t \odot a)$