

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

BAYESIAN BELIEF NETWORKS

Naive Bayes classifier

 which assumes that all the variables are conditionally independent given the value of the target variable,

Bayesian belief networks

- which allows stating conditional independence assumptions that apply to subsets of the variables.
- It provide an intermediate approach that is less constraining than the global assumption of conditional independence made by the naive Bayes classifier.

Bayesian Belief Networks (BBN)

- □ Graphical (Directed Acyclic Graph) Model
- □ Nodes are the features:
 - Each has a set of possible parameters/values/ states
 - Weather = {sunny, cloudy, rainy}; Sprinkler = {off, on}; Lawn = {dry, wet}
- Edges / Links represent relations between features
- BBN is a probabilistic graphical model (PGM)
- □ Each node/feature is a random variable

Weather

Lawn

Sprinkler

Bayesian Belief Networks

- We call these probabilities of occurring states Beliefs
 - □ Example: our belief in the state {coin='head'} is 50%
- All beliefs of all possible states of a node are gathered in a single CPT - Conditional Probability Table
- □ BBN is a 2-component model:
 - Graph
 - CPTs

Lawn

Weather

Sprinkler

Network represents joint probability distribution over all variables

• In general,

$$P(y_1, \dots, y_n) = \prod_{i=1}^n P(y_i|Parents(Y_i))$$

where $Parents(Y_i)$ denotes immediate predecessors of Y_i in graph

• So joint distribution is fully defined by graph, plus the $P(y_i|Parents(Y_i))$

Marginal Independence:

 $\square P(A,B,C) = P(A) P(B) P(C)$

Independent Causes:

 $\square P(A,B,C) = P(C|A,B)P(A)P(B)$

- ☐ Given C, observing A makes B less likely
- A and B are (marginally) independent but become dependent once C is known

Markov dependence:

 $\Box P(A,B,C) = P(C|B) P(B|A)P(A)$

Types of probabilistic relationships

BAYESIAN BELIEF NETWORKS EXAMPLE

- Assume your house has an alarm system against burglary. You live in the seismically active area and the alarm system can get occasionally set off by an earthquake.
- You have two neighbors, Mary and John, who do not know each other. If they hear the alarm they call you, but this is not guaranteed.
- We want to represent the probability distribution of events:
 - Burglary, Earthquake, Alarm, Mary calls and John calls

Directed acyclic graph

Nodes = random variables (Burglary, Earthquake,
 Alarm, Mary calls and John calls)

Directed acyclic graph

Links = direct (causal) dependencies between variables.

Directed acyclic graph

The chance of Alarm is influenced by Earthquake,
 The chance of John calling is affected by the Alarm.

Local conditional distributions

relate variables and their parents.

Example 2:

 $P(J, M, A, \neg B, \neg E)$

17

Example 3:

- $\Box P(J,M,A,E,B) = P(J \mid A) P(M \mid A) P(A \mid E,B) P(E) P(B)$
- There are 3 conditional probability tables (CPTs) to be determined:
 - $P(J \mid A), P(M \mid A), P(A \mid E, B)$
 - $lue{}$ Requiring 4+4+8=16 probabilities
- \square And 2 marginal probabilities P(E), P(B)
 - \blacksquare Requiring 2 + 2 = 4 probabilities
- \square Total: 4 + 16 = 20 probabilities

Example 4: What's the probability of a burglary if both Mary and John call,
 P(burglary | johhcalls, marycalls)?

Example: $P(burglary \mid johncalls, marycalls)$? (Abbrev. $P(b \mid j, m)$)

$$P(b \mid j, m)$$

$$= \alpha P(b, j, m)$$

$$= \alpha \sum_{a} \sum_{e} P(b, j, m, a, e)$$

$$= \alpha \sum_{a} \sum_{e} P(j, m, a, b, e)$$

 $\alpha = 480$

$$=\alpha \big(P(j,m,a,b,e)+P(j,m,\neg a,b,e)+P(j,m,a,b,\neg e)+P(j,m,\neg a,b,\neg e)\big)$$

What's the probability of a burglary if both Mary and John call, P(burglary | johhcalls, marycalls)?

$$P(b \mid j,m) = \alpha \sum_{a} \sum_{e} P(j,m,a,b,e)$$

$$P(\neg b \mid j,m) = \alpha \sum_{a} \sum_{e} P(j,m,a,\neg b,e)$$

$$\alpha = 480$$

$$\begin{split} P(b\mid j,m) &= \alpha P(b) \sum_{a} P(j\mid a) \ P(m\mid a) \sum_{e} P(a\mid b,e) P(e) = \ldots = \alpha * 0.00059 \\ P(\neg b\mid j,m) &= \alpha P(\neg b) \sum_{a} P(j\mid a) \ P(m\mid a) \sum_{e} P(a\mid \neg b,e) P(e) = \ldots = \alpha * 0.0015 \end{split}$$

$$P(B \mid j,m) = \alpha < 0.00059, 0.0015 > = < 0.28, 0.72 > .$$

CURSE OF DIMENSIONALITY

Network Size = number of parameters

Dr. Hashim Yasin

Network Size = number of parameters

Weather	Sprinkler	Lawn	Gardener Arrived
Sunny	On	Wet	Yes
Sunny	On	Wet	No
Sunny	On	Dry	Yes
Sunny	On	Dry	No
Sunny	Off	Wet	Yes
Sunny	Off	Wet	No
Sunny	Off	Dry	Yes
Sunny	Off /	Dry	No
Rainy	On	Wet	Yes
Rainy	0h	Wet	No
Rainy	On	Dry	Yes
Rainy	On	Dry	No
Rainy	Off	Wet	Yes
Rainy	Off	Wet	No
Rainy	Off	Dry	Yes
Rainy	Off	Dry	No

Network Size = number of parameters

Network grows exponentially with number of nodes $\sim 2^{N}$

Each additional node doubles the size of the network!

A network with 100 nodes \rightarrow 2¹⁰⁰ parameters! \rightarrow Impractical!

BBN - that reduce dimensionality

Joint size = 2^{14} = 16K

BBN size = 3*2 + 5*4 + 6*8 = 74

BBN battles the curse of dimensionality
One of the most powerful properties of BBN

For estimating 74 parameters instead of 16K you need

much less training data

Joint size =
$$2^{14} = 16K$$

BBN size =
$$3*2 + 5*4 + 6*8 = 74$$

Acknowledgement

Tom Mitchel, Russel & Norvig, Wolfram Burgard, Maren Bennewitz, Marco Ragni