Total No. of Questions - 8]

[Total No. of Printed Pages - 4

BE-I/12(A) 231055

ENGINEERING MATHEMATICS - I

COURSE NO. MTH - 101

Time Allowed: 3 Hours

Maximum Marks: 100

Note: Attempt *five questions* in all selecting at least two questions from each Section. Each question carries 20 *marks*. Use of calculator is allowed.

Section - A

1. (a) Find the radius of curvature at any point of the curve:

$$x = a (t + \sin t), y = a (1 + \cos t).$$

(b) Trace the curve: $3 \text{ a y}^2 = x (x - a)^2$, where a > 0. Also find the length of a loop of this curve.

(c) Find all the asymptotes of
$$x^3 + y^3 - 3$$
 a x y = 0 (6, 8, 6)

2. (a) Find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ Where $u(x, y) = e^{-2xy}$. Sin $(x^2 - y^2)$

[Turn Over

(b) Examine the function:

$$f = (x - y)^2 + x^3 - y^3 + x^5$$

for extreme values at the origin.

- (c) Evaluate $\int_{0}^{\pi/2} \sqrt{\tan x} \, dx \, x \int_{0}^{\pi/2} \sqrt{\cot x} \, dx$ (7, 7, 6)
- (a) Find y_n (0), where y (x) = Sin (m Sin⁻¹ x)
 - (b) Find the surface area of the solid generated by the revolution of the cardioids $r = a (1 \cos\theta)$ about the initial line.
 - (c) Evaluate $\iint_{\mathbb{R}} (1-x^2-y^2) dx dy$ over the triangular region R whose vertices are (1, 0), (2, 0) and (2, 2). (7, 7, 6)
- 4 (a) Find the position and nature of double points on the curve:

$$y(y-6)=x^2(x-2)^3-9$$

- (b) Evaluate: $\int_0^1 \int_0^{\sqrt{1-x^2-y^2}} xyz. dzdydx$
- (c) Expand f (x, y) = Sin x. Cosy as a series about ($\pi/2$, 0) up to 4th degree terms. (7, 7, 6)

Section - B

5. (a) Express tan⁻¹ z into real and imaginary parts.

(b) Sum the following series to infinity: $\sin^2\alpha - \frac{1}{2} \sin 2\alpha \sin^2\alpha + \frac{1}{3} \sin 3\alpha \sin^3\alpha - \cdots$

(c) Prove that
$$\tan \left(i \log \frac{a - ib}{a + ib} \right) = \frac{2ab}{a^2 - b^2}$$
 (7, 7, 6)

6. Solve the following differential equations:

(a)
$$(x + y + 2)(x) dx + 2 y dy = 0$$

(b)
$$(1-x^2)\frac{dy}{dx} + 2xy = x. \sqrt{(1-x^2)}$$

(c)
$$(1+x^2)$$
. $\left(\frac{dy}{dx}-4x^2\cos^2 y\right)+x.\sin 2y=0$ (7,7,6)

7. Solve the following differential equations:

(a)
$$x^2 y'' + xy' - y = \log x \cdot \cos (\log x)$$

(b)
$$(D^2 + n^2) y = \cot nx$$

(c)
$$(D^2 + 1) y = \sin x$$
. Sin 2x (7, 7, 6)

[Turn Over

Find the equation of the right circular cylinder of radius 2 and whose axis is the line:

$$\frac{\mathsf{x}-1}{2} \ = \ \frac{\mathsf{y}-2}{1} \ = \ \frac{\mathsf{z}-3}{2}$$

(b) Prove that the equation:

$$2 x^2 + 2y^2 + 7 z^2 - 10 yz - 10 xz + 2x + 2y + 26 z - 17 = 0$$

represents a cone whose vertex is (2, 2, 1).

(c) Find the equation of the sphere through the circle: $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1, 2, 3). (7, 7, 6)

