Solitario di Prina

Gallina Roberto13/11/2022

Contents

1	Premesse	2
2	Funzionamento del gioco 2.1 Sequenza corretta	3 4 4 5
3	Introduzione	6
4	Analisi statistica	6
5	Implementazione	7
6	Conclusioni	10
7	Dati statistici	11

1 Premesse

In tutto il documento ci si riferirà a il *mazzo (Deck)*, esso è da intendere come un mazzo di 40 carte, divise in 4 semi. Per convenzione durante il documento si userà il mazzo francese le cui carte sono:

- l'asso
- \bullet il due
- \bullet il tre
- il quattro
- il cinque
- il sei
- \bullet il sette
- il fante (J)
- la regina (Q)
- il re (K)

Mentre i semi sono:

- i cuori
- i quadri
- \bullet i fiori
- i picche

Il mazzo è quindi composta dalle carte sottostanti:

Figure 1: Mazzo

In tutto il documento ci si riferirà a la sequenza, essa rappresenta l'ordine delle carte nel mazzo mescolato.

2 Funzionamento del gioco

Il gioco è molto semplice, dato un mazzo da gioco mischiato, si tengono tutte le carte coperte in pila; si scopre le prime tre carte. Nel caso la prima e la terza carta hanno stesso valore o stesso seme, allora la seconda carta viene spostasta sopra la prima (avvicinando la terza). Successivamente si scopre un'altra carta di ricomincia a controllare dall'inizio.

Ecco un esempio del funzionamento

Avendo lo stesso valore (1), la carte centrale sale sopra la prima

Figure 2: Esempio di funzionamento

2.1 Sequenza corretta

Viene definita sequenza corretta, una sequenza, in cui terminate le carte si hanno due esattamente due pile di carte.

Eccone un esempio

Figure 3: Sequenza corretta

2.2 Sequenza perfetta

Viene definita sequenza perfetta, una sequenza corretta, in cui è esattamente l'ultima carta a formare la seconda pila; per cui terminate le carte di hanno esattamente due pile di carte in cui la seconda pila ha esattamente una carta

Eccone un esempio

Figure 4: Sequenza perfetta

2.3 Sequenza n-perfect

Viene definita sequenza n-perfect, una sequenza, in cui terminate le carte non ci sono pile con più di un carta, ossia il numero delle pile è uguale al numero delle carte

Eccone un esempio

Figure 5: Esempio di sequeza n-perfect

3 Introduzione

Durante le innumerevoli partite giocate da me giocate, non è capito che la sequenza fosse corretta o ben che meno perfetta, e quindi nata in me l'idea si sapere quanto siano rare tali sequenze, ho quindi iniziato ad analizzare il gioco dal punto di vista statistico.

Poichè il mazzo è composto da 40 carte, possiamo calcolare il numero totale di sequenze, esso sarà pari a $40! \simeq 8.1591528 \cdot 10^{47}$; questo numero computazionalmente enorme, non è quindi possibile su un computer verificare tutte le sequenze possibili per avere dati esatti. Allo stesso modo anche calcolare quante siano le sequenze corrette, perfette o n-perfect non è semplice, avendo dati esempi di tutte e tre possiamo sicuramente affermare che ne esistano.

4 Analisi statistica

Definiamo P_C la probabilità che una sequenza sia corretta, P_P la probabilità che una sequenza sia perfetta e P_{N-P} la probabilità che una sequenza sia n-perfect; queste probabilità sono a noi sconusciute, ma sicuramente $P_C > 0$, $P_P > 0$ e $P_{N-P} > 0$ avendo dato un esempio per ognuna.

Ci aspettiamo che su 10 sequenze, le sequenze corrette S_C^{10} siano:

$$S_C^{10} \simeq 10 \cdot P_C$$

Possiamo quindi isolare P_C

$$P_C \simeq \frac{S_C^{10}}{10}$$

Ovviamente questa è un'approsimazione, ma aumentando il numero di sequenze otterremo un risultato sempre più vicino a P_C , possiamo quindi definire:

$$P_C = \lim_{n \to +\infty} \frac{S_C^n}{n}$$

Allo stesso modo definiamo:

$$P_P = \lim_{n \to +\infty} \frac{S_P^n}{n}$$
 $P_{N-P} = \lim_{n \to +\infty} \frac{S_{N-P}^n}{n}$

Possiamo quindi scrivere un programma per generare quante più sequenze possibili in modo approssimare queste probabilità.

5 Implementazione

Iniziamo col definire gli enumeratori per i semi e per i valori, in modo da poterli usare con semplicità dopo.

```
class Seme {
public static HEART = "1";
public static DIAMOND = "2";
public static FLOWER = "3";
public static CLUB = "4";
}
```

```
class Value {

public static ONE = "1";

public static TWO = "2";

public static THREE = "3";

public static FOUR = "4";

public static FIVE = "5";

public static SIX = "6";

public static SEVEN = "7";

public static JACK = "J";

public static QUEEN = "Q";

public static KING = "K";
```

Definiamo ora una carta come una classe che memorizza un seme e un valore.

```
class Card{
      private Seme seme;
2
      private Value value;
3
      constructor(seme, value) {
      this.seme = seme;
6
           this.value = value;
9
     public Seme getSeme() {
10
          return this.seme
11
12
13
       public Value getValue() {
14
15
          return this.value
16
17 }
```

Definiamo poi il mazzo come un contenitore di 40 carte; definiamogli poi:

- un metodo shuffle che randomicamente mischia le carte nel mazzo.
- un metodo sameValueOrSeme che confronta due carte, ritornando true se hanno lo stesso valore o lo stesso seme
- un metodo *check* che data una sequenza di carte le confronta facendo salire quelle con lo stesso valore o seme, ritornando la sequenza ridotta
- $\bullet\,$ un metodo isCorrectche analizza la sequenza è dice se la sequenza ridotta è di2 carte

- un metodo isPerfect che analizza la sequenza è dice se la sequenza ridotta è di 2 carte (in cui l'ultima è esattamente l'ultima scesa)
- \bullet un metodo isNPerfectche analizza la sequenza è dice se la sequenza ridotta è di 40 carte

La classe risultante sarà simile a questa

```
class Deck{
       private Card cards[40];
2
3
        constructor() {
           this.cards.add(new Card(Seme.HEART, Value.ONE));
5
            this.cards.add(new Card(Seme.DIAMOND, Value.ONE));
9
       }
10
       public void shaffle() {
11
            cards.randomSort();
12
13
14
       public bool sameValueOrSeme(a, b) {
15
            return a.value == b.value || a.seme == b.seme;
16
17
18
       public Card[] check(cards) {
19
           i = 0;
            j = 2;
21
22
            while (j < cards.length) {</pre>
23
                if (sameValueOrSeme(cards[i], cards[j])) {
24
                    cards.removeByIndex(i);
                    i = 0;
26
                    j = 2;
27
                } else {
                    i++;
29
30
                    j++;
31
            }
32
33
            return cards;
34
35
36
        public bool isCorrect() {
            return check(cards).length == 2;
37
38
39
        public bool isPerfect() {
40
41
            last = cards.pop();
            cards = check(cards);
42
43
            if (cards.length == 2) {
                return sameValueOrSeme(cards[0], last);
45
46
            return false;
47
48
49
        public bool isNPerfect() {
50
           return check(cards).length == 40;
51
52
53 }
```

Possiamo quindi scrivere un programma per calcolare sequenze corrette, perfette o n-perfect.

```
d d = new Deck();
d d = new Deck();
d shaffle();
} while (d.isCorrect());
// or d.isPerfect() or d.isNPerfect()

d.print(); // is a method for print the sequence
```

Oppure, ben più interessante, possiamo generare diverse sequenze contare quante di esse siano corrette, prefette o n-perfect

```
const MAX_TENT = 1 * 1000 * 1000;
   correct = 0;
perfect = 0;
3
   n_perfect = 0;
   for (i = 0; i < MAX_TENT; i++) {</pre>
       d = new Deck();
        d.shaffle();
8
9
       if (d.isCorrect()) {
10
11
             correct++;
12
             if (d.isPerfect())
                 perfect++
13
       }
14
       if (d.isNPerfect())
15
            n_perfect++;
16
```

Possiamo ora lanciare il programma generando 10, 100, 1000, 1000, 1 $000\,000,$ 1 $000\,000,$ 10000000, 100000000 e 1 $000\,000\,000$ sequenze; vediamo il risultato

Sequenze generate	Sequenze corrette	P_C	Sequenze perfette	P_P	Sequenze n-perfect	P_{NP}
10	1	0.1	0	0	0	0
10^{2}	2	2	0	0	0	0
10^{3}	5	0.5	1	0.1	0	0
10^{4}	42	0.42	6	0.6	0	0
10^{5}	456	0.4559	141	0.141	0	0
10^{6}	4607	0.4607	1431	0.1431	1	0.0001
10^{7}	46245	0.46245	13995	0.13995	9	0.00009
10^{8}	462679	0.462679	140521	0.140521	86	0.000086
10^{9}	4640873	0.464087	1406504	0.140650	929	0.000092

Table 1: Risultati delle sequenze, le probabilità sono approssimate a 6 cifre decimali

6 Conclusioni

Come era prevedibile la generazione di più sequenze ha portato a un'approsimazione sempre migliore, possiamo quindi presumere che:

$$P_C \simeq 0.46$$
 $P_P \simeq 0.14$ $P_{N-P} \simeq 0.000092$

Inoltre possiamo anche stimare il numero totale di sequenze corrette ${\cal S}_{C}$

$$S_C = 40! \cdot P_C \simeq 4.75 \cdot 10^{47}$$

il numero totale di sequenze perfette \mathcal{S}_{P}

$$S_P = 40! \cdot P_P \simeq 1.14 \cdot 10^{47}$$

e il numero totale di sequenze n-perfect S_{N-P}

$$S_{N-P} = 40! \cdot P_{N-P} \simeq 7.5 \cdot 10^{43}$$

Inoltre come da definizione, ogni sequenza perfetta è una sequenza corretta, ma non vale il contrario, esistono quindi delle sequenze corrette che non sono perfette, definiamo quindi

7 Dati statistici

Possiamo poi modificare leggermente lo script, infatti usando il metodo check, possiamo valutare la lunghezza della sequenza ridotta e ottenere più dati riguardo la distribuzione delle sequenze.

Lungezza sequenze	Sequenze trovate	Percentuale
2	4640873	0,464 087
3	17902642	1,790264
4	28309368	2,830936
5	34732813	$3,\!473281$
6	38441358	$3,\!844135$
7	40810279	4,081027
8	42713517	$4,\!271351$
9	44331576	$4,\!433157$
10	45707571	4,570757
11	46840134	4,684013
12	47716945	4,771694
13	48287643	$4,\!828764$
14	48525463	$4,\!852546$
15	48372274	$4,\!837227$
16	47807739	4,780773
17	46819503	$4,\!681950$
18	45354697	4,535469
19	43463802	4,346380
20	41088830	$4,\!108883$
21	38323020	$3,\!832302$
22	35154387	$3,\!515438$
23	31703653	$3,\!170365$
24	28002162	$2,\!800216$
25	24206455	$2,\!420645$
26	20393795	2,039379
27	16702882	$1,\!670288$
28	13243948	1,324394
29	10118663	1,011866
30	7407866	0,740786
31	5166561	$0,\!516656$
32	3398381	$0,\!339838$
33	2090579	$0,\!209057$
34	1185536	$0,\!118553$
35	609272	$0,\!060927$
36	277209	$0,\!027720$
37	107201	$0,\!010720$
38	33189	0,003318
39	7285	$0,\!000728$
40	929	$0,\!000092$

Table 2: Risultati delle sequenze, le probabilità sono approssimate a 6 cifre decimali

Possiamo poi graficare i dati ottenuti in modo da poterli interpretare meglio:

Figure 6: Distribuzione statistica delle sequenze

Possiamo anche analizzare il numero di sequenze corrette e perfette per capire come siano relazionate:

Sequenze	Lungezza corrette	Sequenze perfette	Percentuale
1000000000	4640873	1406504	30,306 884

Table 3: Sequenze perfette rispetto alle sequenze corrette, le probabilità sono approssimate a 6 cifre decimali

Figure 7: Sequenze perfette rispetto alle sequenze corrette