Mesocosm Manuscript Analyses & Figures

Carolyn Schroeder

10/9/2021

Importing and Organizing

Analyses and Graphs (Main)

Phragmites in Monoculture

ANOVA

What are the effects of microbial inoculum, salinity, and their interaction on *Phragmites* biomass in monoculture pots?

```
#ANOVA
P.mono<-D%>%
  filter(Community.Type=="Phragmites")%>%
  filter(Inoculum!="Sterile")
p.mod1<-lm(Biomass~Inoculum*Salinity, dat=P.mono)</pre>
anova(p.mod1)
## Analysis of Variance Table
##
## Response: Biomass
                      {\tt Df \; Sum \; Sq \; Mean \; Sq \; F \; value}
                                                    Pr(>F)
                       1 750.78 750.78 95.9591 1.514e-10 ***
## Inoculum
                       1 46.40
## Salinity
                                  46.40 5.9306
                                                    0.0215 *
## Inoculum:Salinity 1 17.75
                                  17.75 2.2688
                                                    0.1432
## Residuals
                      28 219.07
                                   7.82
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
#Examine residuals
par(mfrow=c(2,2))
plot(p.mod1)
```


Bar Graph: Figure 1A

```
P.mono<-D%>%
filter(Community.Type=="Phragmites")%>%
filter(Inoculum!="Sterile")%>%
group_by(Inoculum,Salinity)%>%
summarise(mean=mean(Biomass),se=std.error(Biomass))
```

```
P.mono$Salinity<-factor(P.mono$Salinity, levels=c("Low","High"))
ggplot(P.mono,aes(x=Salinity,y=mean,fill=Inoculum)) +
    theme_classic()+
    theme(legend.position="right",text = element_text(size=18)) +
    geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black") +
    geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
    scale_fill_manual(values=c("grey70", "grey20"))+
    ylab("Mean per plant biomass (g)")+
    ylim(0,28)+
    facet_wrap(~Inoculum)</pre>
```


Phragmites in mixed community pots

ANOVA

What are the effects of microbial inoculum, salinity, and their interaction on *Phragmites* biomassin mixed community (*Phragmites* + Native) pots?

```
P.mix<-D%>%
  filter(Community.Type=="Mixed")%>%
  filter(IN=="Invasive")%>%
  filter(Inoculum!="Sterile")
p.mod2<-lm(Biomass~Inoculum*Salinity, dat=P.mix)</pre>
anova(p.mod2)
## Analysis of Variance Table
##
## Response: Biomass
                     Df Sum Sq Mean Sq F value
##
                                                    Pr(>F)
## Inoculum
                          0.03
                                  0.03
                                          0.0037
                                                    0.9518
## Salinity
                      1 844.26 844.26 123.9843 8.521e-12 ***
## Inoculum:Salinity
                     1
                          1.40
                                   1.40
                                          0.2060
                                                    0.6534
## Residuals
                     28 190.66
                                   6.81
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
#Examine residuals
par(mfrow=c(2,2))
plot(p.mod2)
```


Bar Graph: Figure 1B.

```
P.mix<-D%>%
filter(Community.Type=="Mixed")%>%
filter(IN=="Invasive")%>%
filter(Inoculum!="Sterile")%>%
group_by(Inoculum,Salinity)%>%
summarise(mean=mean(Biomass),se=std.error(Biomass))
```

```
P.mix$Salinity<-factor(P.mix$Salinity, levels=c("Low","High"))
ggplot(P.mix,aes(x=Salinity,y=mean,fill=Inoculum)) +
    theme_classic()+
    theme(legend.position="right",text = element_text(size=18)) +
    geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black") +
    geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
    scale_fill_manual(values=c("grey70", "grey20"))+
    ylab("Mean per plant biomass (g)")+
    ylim(0,28)+
    facet_wrap(~Inoculum)</pre>
```


Native in Native Community

ANOVA

What are the effects of microbial inoculum, salinity, and their interaction on native biomass in native community pots? The biomass from all three native species is combined.

```
N.nat<-D%>%
  filter(Community.Type=="Native")%>%
  filter(Inoculum!="Sterile")
Nmod1<-lm(Biomass~Inoculum*Salinity, dat=N.nat)</pre>
anova(Nmod1)
## Analysis of Variance Table
##
## Response: Biomass
                     Df Sum Sq Mean Sq F value
##
                                                   Pr(>F)
## Inoculum
                      1 586.45 586.45 23.4661 4.247e-05 ***
## Salinity
                         31.32
                                  31.32 1.2531
                                                   0.2725
## Inoculum:Salinity
                      1
                          3.27
                                   3.27
                                        0.1307
                                                   0.7204
## Residuals
                     28 699.75
                                  24.99
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
#Examine residuals
#par(mfrow=c(2,2))
#plot(Nmod1)
```

Bar Graph: Figure 1C

```
N.nat<-D%>%
filter(Community.Type=="Native")%>%
filter(Inoculum!="Sterile")%>%
group_by(Inoculum,Salinity)%>%
summarise(mean=mean(Biomass),se=std.error(Biomass))
```

```
N.nat$Salinity<-factor(N.nat$Salinity, levels=c("Low","High"))
ggplot(N.nat,aes(x=Salinity,y=mean,fill=Inoculum)) +
    theme_classic()+
    theme(legend.position="right",text = element_text(size=18)) +
    geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black" ) +
    geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
    scale_fill_manual(values=c("grey70", "grey20"))+
    ylab("Mean per plant biomass (g)")+
    ylim(0,34)+
    facet_wrap(~Inoculum)</pre>
```


Native in Mixed Community

ANOVA

What are the effects of microbial inoculum, salinity, and their interaction on native biomass in mixed community (half native species + half *Phragmites*) pots? The biomass from all three native species is combined.

```
N.mix<-D\%>\%
 filter(Community.Type=="Mixed")%>%
 filter(IN=="Native")%>%
 filter(Inoculum!="Sterile")
Nmod2<-lm(Biomass~Inoculum*Salinity, dat=N.mix)</pre>
anova(Nmod2)
## Analysis of Variance Table
## Response: Biomass
##
                    Df Sum Sq Mean Sq F value
                                                Pr(>F)
## Inoculum
                    1 1.39 1.39 0.1448
                                                0.7065
## Salinity
                    1 363.15 363.15 37.8505 1.216e-06 ***
## Inoculum:Salinity 1 3.38
                               3.38 0.3523
                                                0.5576
## Residuals
                    28 268.64
                                 9.59
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
#Examine residuals
par(mfrow=c(2,2))
plot(Nmod2)
```


Bar Plot: Figure 1D

```
N.mix<-D%>%
filter(Community.Type=="Mixed")%>%
filter(IN=="Native")%>%
filter(Inoculum!="Sterile")%>%
group_by(Inoculum,Salinity)%>%
summarise(mean=mean(Biomass),se=std.error(Biomass))
```

```
N.mix$Salinity<-factor(N.mix$Salinity, levels=c("Low","High"))
ggplot(N.mix,aes(x=Salinity,y=mean,fill=Inoculum)) +
    theme_classic()+
    theme(legend.position="right",text = element_text(size=18)) +
    geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black" ) +
    geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
    scale_fill_manual(values=c("grey70", "grey20"))+
    ylab("Mean per plant biomass (g)")+
    ylim(0,34)+
    facet_wrap(~Inoculum)</pre>
```


Supplemental Analyses and Graphs

Biomass analyses and Graphs Including Sterile Treatments

Phragmites in Monoculture

Post hoc Tukey Tests

What are the effects of microbial inoculum, salinity, and their interaction on *Phragmites* biomass in monoculture pots?

```
#ANOVA
P.mono.dat<-D%>%
  filter(Community.Type=="Phragmites")
pt.mod<-lm(Biomass~Type, P.mono.dat)</pre>
pt.av<-aov(pt.mod)
summary(pt.av)
##
               Df Sum Sq Mean Sq F value
                                            Pr(>F)
## Type
                   941.3
                          188.25
                                    17.63 4.16e-09 ***
                   416.4
## Residuals
               39
                            10.68
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

```
tukey.test <- TukeyHSD(pt.av)</pre>
tukey.test
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = pt.mod)
##
## $Type
##
                 diff
                            lwr
                                              p adj
## PCL-PCH 1.2460317 -4.2006617 6.692725 0.9825558
## PFH-PCH -1.1053571 -6.1722009 3.961487 0.9858899
## PFL-PCH -0.1866071 -5.2534509 4.880237 0.9999975
## PSH-PCH 7.0925595 2.0257157 12.159403 0.0019817
## PSL-PCH 10.9904762 5.9236324 16.057320 0.0000015
## PFH-PCL -2.3513889 -7.6386322 2.935854 0.7654531
## PFL-PCL -1.4326389 -6.7198822 3.854604 0.9636275
## PSH-PCL 5.8465278 0.5592844 11.133771 0.0227785
## PSL-PCL 9.7444444 4.4572011 15.031688 0.0000336
## PFL-PFH 0.9187500 -3.9762862 5.813786 0.9928893
## PSH-PFH 8.1979167 3.3028805 13.092953 0.0001632
## PSL-PFH 12.0958333 7.2007972 16.990870 0.0000001
## PSH-PFL 7.2791667 2.3841305 12.174203 0.0009117
## PSL-PFL 11.1770833 6.2820472 16.072120 0.0000005
## PSL-PSH 3.8979167 -0.9971195 8.792953 0.1863147
plot(tukey.test)
```

95% family-wise confidence level

Differences in mean levels of Type

Bar Graph: Supplemental Figure 1A

```
P.mono<-D%>%
filter(Community.Type=="Phragmites")%>%
group_by(Inoculum,Salinity)%>%
summarise(mean=mean(Biomass),se=std.error(Biomass))
```

```
P.mono$Salinity<-factor(P.mono$Salinity, levels=c("Low","High"))
ggplot(P.mono,aes(x=Salinity,y=mean,fill=Inoculum)) +
    theme_classic()+
    theme(legend.position="right",text = element_text(size=18)) +
    geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black" ) +
    geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
    scale_fill_manual(values=c("white","grey70", "grey20"))+
    ylab("Mean per plant biomass (g)")+
    ylim(0,28)+
    facet_wrap(~Inoculum)</pre>
```


Phragmites in mixed community pots

Post hoc Tukey test

```
P.mix.dat<-D%>%
  filter(Community.Type=="Mixed")%>%
  filter(IN=="Invasive")
pt.mod1<-lm(Biomass~Type, P.mix.dat)</pre>
pt.av1<-aov(pt.mod1)</pre>
summary(pt.av1)
               Df Sum Sq Mean Sq F value
##
                   992.8 198.56
                                     29.52 1.98e-12 ***
## Type
                 5
                40
                    269.1
                             6.73
## Residuals
## ---
                    0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
tukey.test1 <- TukeyHSD(pt.av1)</pre>
tukey.test1
```

Tukey multiple comparisons of means

```
95% family-wise confidence level
##
##
  Fit: aov(formula = pt.mod1)
##
##
## $Type
##
                  diff
                               lwr
            -0.7380952
                        -4.886376
                                    3.410186 0.9944913
## MCL-MCH
## MFH-MCH
             8.4476190
                         4.431063 12.464175 0.0000026
## MFL-MCH
            -1.4065476
                        -5.423103
                                    2.610008 0.8985868
             8.8101190
## MSH-MCH
                         4.793563 12.826675 0.0000011
## MSL-MCH
            -1.8815476
                        -5.898103
                                   2.135008 0.7257512
## MFH-MCL
             9.1857143
                         5.169159 13.202270 0.0000005
                        -4.685008
## MFL-MCL
            -0.6684524
                                    3.348103 0.9959704
             9.5482143
                         5.531659 13.564770 0.0000002
## MSH-MCL
## MSL-MCL
            -1.1434524
                        -5.160008
                                   2.873103 0.9555358
## MFL-MFH
            -9.8541667 -13.734528 -5.973805 0.0000000
             0.3625000
                        -3.517861
## MSH-MFH
                                   4.242861 0.9997507
  MSL-MFH -10.3291667 -14.209528 -6.448805 0.0000000
            10.2166667
                         6.336305 14.097028 0.0000000
## MSH-MFL
## MSL-MFL
            -0.4750000
                        -4.355361
                                   3.405361 0.9990699
## MSL-MSH -10.6916667 -14.572028 -6.811305 0.0000000
```

plot(tukey.test1)

95% family-wise confidence level

Differences in mean levels of Type

Bar Graph: Supplemental Figure 1B.

```
P.mix<-D%>%
filter(Community.Type=="Mixed")%>%
filter(IN=="Invasive")%>%
group_by(Inoculum,Salinity)%>%
summarise(mean=mean(Biomass),se=std.error(Biomass))
```

'summarise()' has grouped output by 'Inoculum'. You can override using the '.groups' argument.

```
P.mix$Salinity<-factor(P.mix$Salinity, levels=c("Low","High"))
ggplot(P.mix,aes(x=Salinity,y=mean,fill=Inoculum)) +
    theme_classic()+
    theme(legend.position="right",text = element_text(size=18)) +
    geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black") +
    geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
    scale_fill_manual(values=c("white","grey70", "grey20"))+
    ylab("Mean per plant biomass (g)")+
    ylim(0,28)+
    facet_wrap(~Inoculum)</pre>
```


Native in Native Community

Post hoc Tukey Test

```
N.nat.dat<-D%>%
  filter(Community.Type=="Native")
pt.mod2<-lm(Biomass~Type, N.nat.dat)</pre>
pt.av2<-aov(pt.mod2)
summary(pt.av2)
              Df Sum Sq Mean Sq F value
                                          Pr(>F)
## Type
               5 673.9 134.78
                                   5.94 0.000338 ***
              40 907.6
                          22.69
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
tukey.test2 <- TukeyHSD(pt.av2)</pre>
tukey.test2
##
     Tukey multiple comparisons of means
       95% family-wise confidence level
##
##
## Fit: aov(formula = pt.mod2)
##
## $Type
##
                 diff
                             lwr
                                        upr
                                                p adj
## NCL-NCH 2.4333333 -5.185269 10.0519355 0.9290122
## NFH-NCH 6.0053571 -1.371323 13.3820370 0.1685301
## NFL-NCH 8.6228571
                       1.246177 15.9995370 0.0138033
## NSH-NCH -1.9175595 -9.294239 5.4591203 0.9697244
## NSL-NCH -0.5779762 -7.954656 6.7987037 0.9998951
## NFH-NCL 3.5720238 -3.804656 10.9487037 0.6975339
## NFL-NCL 6.1895238 -1.187156 13.5662037 0.1452692
## NSH-NCL -4.3508929 -11.727573 3.0257870 0.4990302
## NSL-NCL -3.0113095 -10.387989 4.3653703 0.8238071
## NFL-NFH 2.6175000 -4.509050 9.7440498 0.8788595
## NSH-NFH -7.9229167 -15.049466 -0.7963669 0.0216913
## NSL-NFH -6.5833333 -13.709883 0.5432165 0.0847236
## NSH-NFL -10.5404167 -17.666966 -3.4138669 0.0009603
## NSL-NFL -9.2008333 -16.327383 -2.0742835 0.0050188
## NSL-NSH
           1.3395833 -5.786966 8.4661331 0.9928938
plot(tukey.test2)
```

95% family-wise confidence level

Differences in mean levels of Type

Bar Graph: Supplemental Figure 1C

```
N.nat<-D%>%
filter(Community.Type=="Native")%>%
group_by(Inoculum,Salinity)%>%
summarise(mean=mean(Biomass),se=std.error(Biomass))
```

```
N.nat$Salinity<-factor(N.nat$Salinity, levels=c("Low","High"))
ggplot(N.nat,aes(x=Salinity,y=mean,fill=Inoculum)) +
    theme_classic()+
    theme(legend.position="right",text = element_text(size=18)) +
    geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black" ) +
    geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
    scale_fill_manual(values=c("white","grey70", "grey20"))+
    ylab("Mean per plant biomass (g)")+
    ylim(0,34)+
    facet_wrap(~Inoculum)</pre>
```


Native in Mixed Community

Tukey Post hoc Test

```
N.mix.dat<-D%>%
  filter(Community.Type=="Mixed")%>%
  filter(IN=="Native")
pt.mod3<-lm(Biomass~Type, N.mix.dat)</pre>
pt.av3<-aov(pt.mod3)</pre>
summary(pt.av3)
               Df Sum Sq Mean Sq F value
##
                                             Pr(>F)
                  786.1 157.21
                                     10.31 2.11e-06 ***
## Type
                 5
                40
                    609.9
                            15.25
## Residuals
                    0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
tukey.test3 <- TukeyHSD(pt.av3)</pre>
tukey.test3
```

Tukey multiple comparisons of means

```
95% family-wise confidence level
##
##
  Fit: aov(formula = pt.mod3)
##
##
## $Type
                   diff
##
                                lwr
                                            upr
             5.56190476
                        -0.6836197 11.80742926 0.1053373
## MCL-MCH
            -6.34523810 -12.3924412 -0.29803500 0.0348876
## MFH-MCH
## MFL-MCH
             1.04226190
                        -5.0049412
                                     7.08946500 0.9952516
## MSH-MCH
            -6.11190476 -12.1591079 -0.06470167 0.0462977
## MSL-MCH
            -0.02440476
                        -6.0716079
                                     6.02279833 1.0000000
## MFH-MCL -11.90714286 -17.9543460 -5.85993976 0.0000096
## MFL-MCL
            -4.51964286 -10.5668460
                                     1.52756024 0.2443552
## MSH-MCL -11.67380952 -17.7210126 -5.62660643 0.0000139
## MSL-MCL
            -5.58630952 -11.6335126
                                     0.46089357 0.0847189
## MFL-MFH
             7.38750000
                          1.5453468 13.22965322 0.0062838
                         -5.6088199
## MSH-MFH
             0.23333333
                                     6.07548656 0.9999963
## MSL-MFH
             6.32083333
                          0.4786801 12.16298656 0.0272827
            -7.15416667 -12.9963199 -1.31201344 0.0087692
## MSH-MFL
## MSL-MFL
            -1.06666667
                         -6.9088199 4.77548656 0.9937891
## MSL-MSH
             6.08750000
                          0.2453468 11.92965322 0.0368269
```

plot(tukey.test3)

95% family-wise confidence level

Bar Plot: Figure 1D

```
N.mix<-D%>%
filter(Community.Type=="Mixed")%>%
filter(IN=="Native")%>%
group_by(Inoculum,Salinity)%>%
summarise(mean=mean(Biomass),se=std.error(Biomass))
```

```
N.mix$Salinity<-factor(N.mix$Salinity, levels=c("Low","High"))
ggplot(N.mix,aes(x=Salinity,y=mean,fill=Inoculum)) +
    theme_classic()+
    theme(legend.position="right",text = element_text(size=18)) +
    geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black" ) +
    geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
    scale_fill_manual(values=c("white","grey70", "grey20"))+
    ylab("Mean per plant biomass (g)")+
    ylim(0,34)+
    facet_wrap(~Inoculum)</pre>
```


Native Biomass Analyses- Separated by native species

Native Community-

something weird is going on here

```
NatSp1<-BM%>%
  filter(Inoculum!="Sterile")%>%
  filter(Community.Type=="Native")%>%
  select(c(1,2,3,4,5,16,17,18))%>%
  gather(key="Species", value="Biomass", c(SL.tot, SP.tot, SC.tot))
NatSp1b<-NatSp1%>%
  mutate(Salinity=factor(NatSp1$Salinity, levels=c("Low","High")))
```

Sagittaria lancifolia ANOVA

```
x<-NatSp1%>%
 filter(Species=="SL.tot")
modx<-lm(Biomass~Salinity*Inoculum, dat=x)</pre>
anova(modx)
## Analysis of Variance Table
##
## Response: Biomass
                   Df Sum Sq Mean Sq F value Pr(>F)
                    1 4365.0 4365.0 9.6147 0.004372 **
## Salinity
                    1 10401.9 10401.9 22.9116 4.97e-05 ***
## Inoculum
## Salinity:Inoculum 1 558.9 558.9 1.2312 0.276619
## Residuals 28 12712.0 454.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Bar Graph
NatSp2<-NatSp1%>%
 filter(Species=="SL.tot")%>%
 group_by(Inoculum, Salinity)%>%
 summarise(mean=mean(Biomass), se=std.error(Biomass))
```

```
ggplot(NatSp2,aes(x=Salinity,y=mean,fill=Inoculum)) +
  theme_classic()+
  theme(legend.position="right",text = element_text(size=18)) +
  geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black" ) +
  geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
  scale_fill_manual(values=c("grey90","grey50"))+
  ylab("Mean per plant biomass (g)")+
  facet_wrap(~Inoculum)
```


Spartina patens ANOVA

```
x<-NatSp1%>%
  filter(Species=="SP.tot")
modx<-lm(Biomass~Salinity*Inoculum, dat=x)</pre>
anova(modx)
## Analysis of Variance Table
##
## Response: Biomass
##
                     Df
                         Sum Sq Mean Sq F value
                                   2.82 0.0692 0.794495
## Salinity
                      1
                           2.82
## Inoculum
                      1
                         416.88 416.88 10.2223 0.003429 **
                                    0.17 0.0041 0.949687
## Salinity:Inoculum
                     1
                           0.17
## Residuals
                     28 1141.89
                                  40.78
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Bar Graph
NatSp2<-NatSp1%>%
  filter(Species=="SP.tot")%>%
  group_by(Inoculum, Salinity)%>%
  summarise(mean=mean(Biomass), se=std.error(Biomass))
```

'summarise()' has grouped output by 'Inoculum'. You can override using the '.groups' argument.

```
ggplot(NatSp2,aes(x=Salinity,y=mean,fill=Inoculum)) +
  theme_classic()+
  theme(legend.position="right",text = element_text(size=18)) +
  geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black" ) +
  geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
  scale_fill_manual(values=c("grey90","grey50"))+
  ylab("Mean per plant biomass (g)")+
  facet_wrap(~Inoculum)
```


$Schoenoplectus\ californicus\ {\tt ANOVA}$

Salinity:Inoculum 1 153.6 153.56 0.5987 0.44554

```
ggplot(NatSp2,aes(x=Salinity,y=mean,fill=Inoculum)) +
  theme_classic()+
  theme(legend.position="right",text = element_text(size=18)) +
  geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black") +
  geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
  scale_fill_manual(values=c("grey90","grey50"))+
  ylab("Mean per plant biomass (g)")+
  facet_wrap(~Inoculum)
```


Mixed Community

Native Community

```
NatSp<-BM%>%
  filter(Inoculum!="Sterile")%>%
  filter(Community.Type=="Mixed")%>%
  select(c(1,2,3,4,5,16,17,18))%>%
  gather(key="Species", value="Biomass", c(SL.tot, SP.tot, SC.tot))%>%
  #mutate(Biomass=Biomass/2)%>%
  mutate(Salinity=factor(NatSp1$Salinity, levels=c("Low","High")))
```

Sagittaria lancifolia ANOVA

```
x<-NatSp%>%
 filter(Species=="SL.tot")
modx<-lm(Biomass~Salinity*Inoculum, dat=x)</pre>
anova(modx)
## Analysis of Variance Table
## Response: Biomass
##
                    Df Sum Sq Mean Sq F value Pr(>F)
## Salinity
                    1 327.7 327.68 1.7380 0.1981
                        3.4
                                 3.43 0.0182 0.8936
## Inoculum
                     1
## Salinity:Inoculum 1 271.9 271.92 1.4422 0.2398
## Residuals 28 5279.1 188.54
Bar Graph
NatSp2<-NatSp%>%
 filter(Species=="SL.tot")%>%
  group_by(Inoculum, Salinity)%>%
  summarise(mean=mean(Biomass), se=std.error(Biomass))
```

```
ggplot(NatSp2,aes(x=Salinity,y=mean,fill=Inoculum)) +
    theme_classic()+
    theme(legend.position="right",text = element_text(size=18)) +
    geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black") +
    geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
    scale_fill_manual(values=c("grey90","grey50"))+
    ylab("Mean per plant biomass (g)")+
    facet_wrap(~Inoculum)
```


Spartina patens ANOVA

```
x<-NatSp%>%
  filter(Species=="SP.tot")
modx<-lm(Biomass~Salinity*Inoculum, dat=x)</pre>
anova(modx)
## Analysis of Variance Table
##
## Response: Biomass
##
                     Df
                         Sum Sq Mean Sq F value Pr(>F)
## Salinity
                          5.445 5.4450 0.5843 0.4510
                      1
## Inoculum
                        12.890 12.8896 1.3831 0.2495
## Salinity:Inoculum 1
                          3.703
                                 3.7029 0.3973 0.5336
## Residuals
                     28 260.943
                                 9.3194
Bar Graph
NatSp2<-NatSp%>%
  filter(Species=="SP.tot")%>%
  group_by(Inoculum, Salinity)%>%
  summarise(mean=mean(Biomass), se=std.error(Biomass))
```

```
ggplot(NatSp2,aes(x=Salinity,y=mean,fill=Inoculum)) +
  theme_classic()+
  theme(legend.position="right",text = element_text(size=18)) +
  geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black") +
  geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
  scale_fill_manual(values=c("grey90","grey50"))+
  ylab("Mean per plant biomass (g)")+
  facet_wrap(~Inoculum)
```


Schoenoplectus californicus ANOVA

```
x<-NatSp%>%
  filter(Species=="SC.tot")
modx<-lm(Biomass~Salinity*Inoculum, dat=x)</pre>
anova(modx)
## Analysis of Variance Table
##
## Response: Biomass
                     Df Sum Sq Mean Sq F value Pr(>F)
##
## Salinity
                      1 18.30 18.301 1.2707 0.26920
## Inoculum
                      1 18.94 18.939 1.3150 0.26119
## Salinity:Inoculum 1 78.97 78.969 5.4831 0.02654 *
## Residuals
                     28 403.26 14.402
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Bar Graph

NatSp2<-NatSp%>%
  filter(Species=="SC.tot")%>%
  group_by(Inoculum, Salinity)%>%
  summarise(mean=mean(Biomass), se=std.error(Biomass))
```

```
ggplot(NatSp2,aes(x=Salinity,y=mean,fill=Inoculum)) +
  theme_classic()+
  theme(legend.position="right",text = element_text(size=18)) +
  geom_bar(stat="identity",size=0.7,alpha= 0.7, color="black") +
  geom_errorbar(aes(ymax=mean+se, ymin=mean-se),width=.25,size=0.70)+
  scale_fill_manual(values=c("grey90","grey50"))+
  ylab("Mean per plant biomass (g)")+
  facet_wrap(~Inoculum)
```

