Simulering og eksperimentel modelbestemmelse

Klaus Trangbæk

ktr@es.aau.dk

Automation & Control

Aalborg University

Denmark

Slides af Henrik Vie Chr.

Kursusoversigt

Plan for de enkelte minimoduler:

- 1. Introduktion, metode og procedure for eksperimentel modelbestemmelse, Grafisk modeltilpasning, System identifikation
- 2. Modellering, modelbeskrivelse og simulering
- 3. Senstools til parameterestimering
- 4. Parameter-nøjagtighed og -følsomhed, Frekvensdomænet
- 5. Design af inputsignaler

Eksperimentel modelbestemmelse, Senstools

Metodens fordele:

- En simpel grundlæggende metode, illustreret grafisk.
- Modeller i kontinuert tid med fysisk betydende parametre.
- Enhver modelstruktur kan anvendes, lineær, ulineær, fordelte parametre, tidsforsinkelse, etc.
- Stokastiske aspekter er reduceret til et minimum.
- Robust overfor afvigelser fra teoretiske antagelser.
- En følsomheds metode brugbar til valg af modelstruktur, eksperiment-design, og nøjagtighedsverifikation.
- Alt i alt kompatibel med fysisk indsigt.

Morten Knudsen

Applikationer

Senstools og følsomhedsmetoden for eksperimentel modellering er blevet anvendt i mange forsknings- og studenter-projekter. Eksempler er:

- Skibs- og maritime systemer
- Vindmøller
- Højttalere
- Induktions- og DC-motorer
- Varmevekslere
- Menneskeligt væv for hypertermi-terapi mod kræft
- Nyre og cerebellar blodgennemstrømning

Procedure for eksperimentel modellering

Eksempel 1: Grafisk model tilpasning

Bestem forstærkning K og tidskonstant τ ved at tilpasse en første-ordens model til den målte step-respons:

Eksempel 2: Grafisk model tilpasning

Tilsvarende for et førsteordens-system med forsinkelse *T*:

Systemidentifikationsmetoder

Metoderne er karakteriseret af modeltyperne:

- Linear discrete-time model: Klassisk systemidentifikation
- Neuralt netværk: Meget ulineære systemer med en kompliceret struktur
- Generel simulationsmodel: Enhver matematisk model, som kan simuleres fx. med Matlab. Den kræver en fysisk realistisk model struktur, typisk udviklet ved teoretisk modellering.

Metoden: Direkte estimering af fysiske parametre

Computertilpasning ved minimering

Performance funktion:

$$P(\theta) = \frac{1}{2N} \sum_{k=1}^{N} \varepsilon^{2}(k, \theta)$$
 1.5

Optimale parametre:

$$\theta_N = \underset{\theta}{\operatorname{argmin}} P(u_N, y_N, \theta)$$

hvor T er samplingstiden og $\varepsilon(k,\theta) = y(kT) - y_m(kT,\theta)$.

Performancefunktion som fkt. af θ

En parameter:

Model: $\frac{Y_m(s)}{U(s)} = \frac{1}{1+s\tau}$

To parametre:

Model:
$$\frac{Y_m(s)}{U(s)} = \frac{K}{1 + s\tau}$$

Minimum af en funktion

Betingelser for minimum i $\theta = \theta_0$ af en fkt. af flere variable

$$P(\theta) = \frac{1}{2N} \sum_{k=1}^{N} (y(kT) - y_m(kT, \theta))^2$$

er, at gradientvektoren er nul: $G(\theta_0) = \frac{\partial P(\theta)}{\partial \theta}\Big|_{\theta=\theta_0} = 0$

og at Hessian matricen: $H(\theta_0) = \frac{\partial^2 P(\theta)}{\partial \theta \partial \theta^{\top}}\Big|_{\theta = \theta_0}$

er positiv definit, dvs. $v^{\top}Hv > 0$ for alle $v \neq 0$.

Numeriske metoder til at finde minimum

Steepest descent

Newtons metode

Gauss-Newton metoden

Direkte estimering af fysiske parametre

- **●** Bestem model output (simulation): $y_m(k) = F(u_n, \theta)$
- Bestem model gradienten ψ ved numerisk differentiation:

$$\psi_j(k,\theta) = \frac{y_m(k,\theta_j + \Delta\theta_j) - y_m(k,\theta_j)}{\Delta\theta_j}$$

• Bestem gradienten G og Hessian matricen H fra ψ :

$$G(\theta) = -\frac{1}{N} \sum_{k=1}^{N} \varepsilon(k, \theta) \psi(k, \theta), \ \widetilde{H}(\theta) = \frac{1}{N} \sum_{k=1}^{N} \psi(k, \theta) \psi^{\top}(k, \theta)$$

Bestem de parameter værdier der minimerer performance funktionen P vha. Gauss-Newton metoden

$$\theta_{i+1} = \theta_i - \widetilde{H}^{-1}(\theta_i)G(\theta_i)$$

Næste Forelæsning

Næste gang ser vi på:

- Modeller og modellering: koncepter
- Modelbeskrivelse
- Diskretiseringsmetoder
- Simulering af lineære og ulineære dynamiske systemer i Matlab