Student Information

Full Name : İsmail Talaz Id Number : 2581031

Answer 1

a)

p	q	$\neg q$	$p \rightarrow q$	$p \land \neg q$	$(p \to q) \oplus (p \land \neg q)$
\overline{T}	T	F	T	F	T
T	F	T	F	T	T
F	T	F	T	F	T
F	F	$\mid T \mid$	T	F	T

b)

```
(p \to ((q \lor \neg p) \to r)
                                           \neg p \lor ((q \lor \neg p) \to r)
                                                                                          Table 7 Line 1
                                          \neg p \lor (\neg (q \lor \neg p) \lor r)
                                                                                          Table 7 Line 1
                                         \neg p \lor ((\neg q \land \neg \neg p) \lor r)
                                                                                          Table 6 De Morgan's Law
                      \equiv
                                           \neg p \lor ((\neg q \land p) \lor r)
                      \equiv
                                                                                          Table 6 Double Negation Law
                                       \neg p \lor ((\neg q \lor r) \land (p \lor r))
                                                                                          Table 6 Distributive Law
                      \equiv
                                  (\neg p \lor (\neg q \lor r)) \land (\neg p \lor (p \lor r))
                                                                                          Table 6 Distributive Law
                      \equiv
                            (\neg p \lor (\neg q \lor r)) \land ((\neg p \lor p) \lor (\neg p \lor r))
                      \equiv
                                                                                          Table 6 Distributive Law
                                 (\neg p \lor (\neg q \lor r)) \land (T \lor (\neg p \lor r))
                                                                                          Table 6 Negation Law
                      \equiv
                                           (\neg p \lor (\neg q \lor r)) \land T
                                                                                          Table 6 Domination Law
                      \equiv
                                               \neg p \lor (\neg q \lor r)
                                                                                          Table 6 Identity Law
                      \equiv
                                               (\neg p \lor \neg q) \lor r
                                                                                          Table 6 Associative Law
                      \equiv
                      \equiv
                                             \neg(\neg p \lor \neg q) \to r
                                                                                          Table 7 Line 3
                                            (\neg \neg p \land \neg \neg q) \rightarrow r
                                                                                          Table 6 De Morgan Law
                      \equiv
                                                 (p \land q) \to r
                                                                                          Table 6 Double Negation Law
                      \equiv
```

c)

- 1-) *F*2-) *F*3-) *F*4-) *T*
- 5-) T

Answer 2

- a) $\exists x (P(Can, x) \land T(x, L))$
- b) $\forall x(T(x,S) \to \exists y(P(y,x) \land N(y,Turkish)))$
- c) $\forall x(T(x,S) \to \exists y(R(x,y) \land T(y,S) \land \forall z((R(x,z) \land T(z,S)) \to (z=y)))$
- d) $\forall x (\exists y (N(y, English) \land P(y, x)) \rightarrow \neg W(M, x)))$
- e) $\exists x \exists y ((x \neq y) \land N(x, Turkish) \land N(y, Turkish) \land P(x, G) \land P(y, G) \land \forall z ((P(z, G) \land N(z, Turkish)) \rightarrow ((z = y) \lor (z = y))))$
- f) $\exists x \exists y \exists z (T(x,y) \land T(x,z) \land (y \neq z))$

Answer 3

1. $p \rightarrow q$	premise
$2. (r \wedge s) \to p$	premise
3. $r \land \neg p$	premise
$4. \neg q$	$\wedge e, 3$
5. r	$\wedge e, 3$
6. s	assumed
7. $r \wedge s$	$\wedge i, 5, 6$
8. p	$\rightarrow e, 2, 7$
9. q	$\rightarrow e, 1, 8$
10. ⊥	$\neg e, 4, 9$
11. ¬s	$\neg i, 6-10$

Answer 4

Premise 1 - $\exists x (P(x) \to S(x))$ Premise 2 - $\forall x P(x)$ Claim - $\exists x S(x)$

1. $\exists x (P(x) \to S(x))$	premise
$2. \ \forall x P(x)$	premise
$3. P(a) \rightarrow S(a)$	assumed
4. P(a)	$\forall e, 2$
$\int S(a)$	$\rightarrow e, 3, 4$
6. $\exists x S(x)$	$\exists i, 5$
$7. \exists x S(x)$	$\exists e, 1, 3-6$