INEL4206 Microprocessors

Lectures 1 & 2
Overview of
Number Systems, Boolean Algebra

Representation of Data

 Integers are written using a positional numbering system, where each digit represents the coefficient in a power series:

$$N = a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + \dots + a_1b^1 + a_0b^0$$

where n is the number of digits, b is the base, and a_i are the coefficients where each is an integer in the range $0 < a_i < b$.

Numbering Systems

- Number systems
 - Three main characteristics:
 - Number of independent digits
 - Base or radix (b)
 - Place values of different digits
 - $-b^{n-1}...b^2b^1b^0$ with 0 known as the least significant digit and n-1 the most significant digit
 - Fractional part (if present) is represented as b⁻¹b⁻²b⁻³...
 - Maximum number of values that can be represented given a fixed number of digits (n)
 - $-b^n$

Base 10 system (decimal)

- 10 different digit values
 - -0,1,2,3,4,5,6,7,8,9
- Example:
 - -9138.504 $9138 = 8x10^{0} + 3x10^{1} + 1x10^{2} + 9x10^{3}$ $504 = 5x10^{-1} + 0x10^{-2} + 4x10^{-3}$
- With 10 digits, what are maximum number of values we can represent?
 - -10^{10} ranging from 0 to 10^{10} 1

Base 2 system (binary)

- 2 different digits known as binary digits or "bits"
 0,1
- Example: (first 16 binary numbers, 4 bits)
 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
 1000, 1001, 1010, 1011, 1100, 1101, 1110
- With 10 digits, what are maximum number of values we can represent?
 - 2¹⁰ =1024 values ranging from
 0000000000 to 111111111

Binary System Advantages

- George Boole (1854) mathematics of logic (Boolean Algebra)
 - truth values (false, true) represented by 0,1
- All data can be represented as a sequence of 1s and 0s
- Claude Shannon (1937) use of boolean algebra and binary arithmetic to create logic gates that simplified electromechanical relays used in the phone system switches
 - Foundation of digital circuit design
- Basic electronic devices can be operated in 2 different modes: (e.g. BJTs cut-off / saturation)
- Circuit implementation of 0s & 1s arithmetic easy to implement

Other popular base systems

- Base 8 (Octal)
 - Similar to decimal, just remove digits 8 & 9
- Base 16 (Hexadecimal or hex)
 - 16 different digits
 - -0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
 - Short form to represent large binary numbers
 - Bits are arranged in group of 8 (byte)
 - Working with large binary numbers consume a large amount of digits, (e.g. memory addresses)

Large binary to Hex

 64K memories have up to 2¹⁶ = 65,536 different values

- In general 4 binary digits = 1 hex digit
 - 3 binary digits = 1 hex digit

Common Powers

$$2^{-3} = 0.125$$

 $2^{-2} = 0.25$
 $2^{-1} = 0.5$
 $2^{0} = 1$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024$
 $2^{10} = 1024$
 $2^{10} = 1024$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$
 $2^{10} = 104$

Binary to decimal conversion

1001.0101

$$1001 = 1x2^{0} + 0x2^{1} + 0x2^{2} + 1x2^{3}$$

$$= 1 + 0 + 0 + 8 = 9$$

$$.0101 = 0x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4}$$

$$= 0 + .25 + 0 + .0625 = .3125$$

$$1001.0101 = 9.3125$$

Decimal to binary conversion

13.375

13:

$$\frac{13}{2} = 6 R = 1$$

$$\frac{6}{2} = 3 R = 0$$

$$\frac{3}{2} = 1 R = 1$$

$$\frac{1}{2} = 0 R = 1 \text{ (MSB)}$$

.375

$$0.375 \times 2 = 0.75 \text{ C0}$$

 $0.75 \times 2 = 0.5 \text{ C1}$
 $0.5 \times 2 = 0 \text{ C1}$

Thus $13.375_{10} = 1101.011_2$

Base Conversion

Convert 53 to binary Least Significant Digit 53/2 = 26, R₁=1 ← 26/2 = 13, R. = 0 13/2 = 6, R = 16/2 = 3, $_{R} = 0$ 3/2 = 1, R = 11/2 = 0, $R_1 = 1$ Most Significant Digit $53 = 0b \ 110101$ $= 1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0$

= 32 + 16 + 0 + 4 + 0 + 1 = 53

Base Conversion (2)

Convert 53 to Hex

$$53/16 = 3$$
, $R = 5$
 $3/16 = 0$, $R = 3$
 $53 = 0x35$
 $= 3 * 16^1 + 5 * 16^0$
 $= 48 + 5 = 53$

Binary arithmetic

Addition

– Basic rules:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$ carry '1' to the next more significant bit
 $1 + 1 + 1 = 1$ carry '1' to the next more significant bit

Binary arithmetic

- Subtraction
 - Basic rules

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$1 - 1 = 0$$

$$0 - 1 = 1$$
 borrow '1' form the next most significant bit

Binary Arithmetic

addition

$\begin{array}{c} 111 \\ 1001 & 0101 \\ + 0100 & 0011 \\ \hline 1101 & 1000 \end{array}$

subtraction

Binary Arithmetic

multiplication

1001 0101 x _____10 0000 0000 +10010 101 1 0010 1010

Complements

Binary	1's	2's	10010110	01101001	01101010
Decimal	9's	10'	2496	7503	7504
		S			
Octal	7's	8's	562	215	216
Hex	15's	16'	3BF	C40	C41
		S			

- Binary 1's and 2s complements are important because they allow for easy arithmetic logic implementation.
- In 2s complement notation, the positive value is the same binary and the negative is the 2s complement of the positive value

+9:00001001

-9:11110111

• In 8-bit binary MSB provides sign, rest of the bits are the number representation, possible values range: $+(2^{(n-1)}-1)$ to $-(2^{(n-1)}-1)^8$

Addition using 2's complement

 Final carry obtained while adding MSBs should be disregarded

```
 Consider –18 and –37 addition:
```

2's -18: 11101110

2's -37: <u>11011011</u>

Sum: 11001001 : 2's -55

Subtraction using 2's complement

 Similar to addition, add 2's complement of subtrahend and disregard carry:

```
- Consider +24 - +14
2's +24: 00011000 00011000
```

2's +14: 00001110 2's: 11110010

Sum: 00001010