CUAI 스터디 PRML팀

2022.11.01

발표자 : 이하윤

스터디원 소개 및 만남 인증

- 9/26, 10/3, 11/1
- 김민기, 김벼리, 권예진. 이하윤

CHAPTER	2	확률	률분포 7	5		
하윤 민기	-{	2.1	2.1 이산확률 변수_76			
			2,1,1	베타 분포	79	
		2.2	다항변수_83	3		
	_		2,2,1	디리클레 분포	85	
		2.3	가우시안 분포			
벼리	_	1000	2,3,1	조건부 가우시안 분포	95	
	_		2,3,2	주변 가우시안 분포	98	
			2,3,3	가우시안 변수에 대한 베이지안 정리	101	
예진			2,3,4	가우시안 분포의 최대 가능도	104	
	\dashv		2.3.5	순차 추정	105	
			2,3,6	가우시안 분포에서의 베이지안 추론	108	
			2,3,7	스튜던트 t 분포	114	
			2.3.8	주기적 변수	117	
			2.3.9	가우시안 분포의 혼합	123	
		2.4	지수족_126			
			2.4.1	최대 가능도와 충분 통계량	129	
			2.4.2	켤레 사전 분포	130	
			2.4.3	무정보적 사전 분포	131	
		2.5	비매개변수적 방법_134			
			2,5,1	커널 밀도 추정	136	
			2,5,2	최근접 이웃 방법론	139	
		★ 연습	문제		142	

- 확률 밀도
 - 연속적인 변수에서의 확률
 - 그림 1.12 다음과 같이 이산 변수에 대한 확률 개념을 연속 변수에 대해 확장할 수 있다. 변수 x가 $(x, x + \delta x)$ 구간 사이의 값을 가질 확률은 $p(x)\delta x(\delta x \to 0)$ 일 경우)다. 확률 밀도는 누적 분포 함수 P(x)의 미분으로 표현할 수 있다.

- 기댓값과 공분산
 - 기댓값
 - 확률 밀도 f(x) 하에서 어떤 함수 f(x)의 평균값은 f(x)의 기댓값이라고 한다.

$$\mathbb{E}[f] = \sum_{x} p(x)f(x) \qquad \mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x$$

- 공분산
 - X값과 y값이 얼마나 함께 같이 변동하는가에 대한 지표 (서로 독립일 경우 0)

$$cov[x, y] = \mathbb{E}_{x,y} [\{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\}]$$
$$= \mathbb{E}_{x,y} [xy] - \mathbb{E}[x] \mathbb{E}[y]$$

• 가우시안 분포(== 정규분포)

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

- 곡선 피팅
- (베이지안)

- 결정 이론
 - 불확실성이 존재하는 상황에서 의사 결정을 내려야 하는 경우가 많음
 - => 결정 이론과 확률론을 함께 사용하면 최적의 의사 결정을 내릴 수 있음
 - Cost function / Loss function
 - 거부 옵션
- 정보이론
 - 엔트로피
 - 다중도
 - 스털링 근사식
 - 상대적 엔트로피와 상호 정보량
 - 옌센의 부등식