



### Efficient Object-Level Semantic Mapping with RGB-D Cameras

#### **Benchun Zhou**

Institute for Material Handling and Logistics (IFL) Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany



### **Contents**



- Background
- Literature Review
- Method
- Experiment
- Conclusion



# **Background and Tasks**



- Scene understanding in unknown environment (3D object segmentation)
- Efficient semantic mapping (voxblox++)
- Field expriment on Agiprobot project







### **Literature Review**

- Semantic mapping
- Object-level semantic mapping

| ,                                   |      |                |                    |                              |                   |                                                          |  |  |  |  |
|-------------------------------------|------|----------------|--------------------|------------------------------|-------------------|----------------------------------------------------------|--|--|--|--|
| Method                              | Year | Sensors        | Object<br>model    | Semantic/<br>object-oriented | Мар Туре          | usage                                                    |  |  |  |  |
| Zhou et al<br>Structure SLAM        | 2022 | RGB-D          | Geometric cuboid   | Object-oriented              | Feature point map | Localization                                             |  |  |  |  |
| Sünderhauf et al.<br>Meaningful map | 2014 | RGB-D          | Point cloud model  | Object-oriented              | Point cloud map   | Scene understanding                                      |  |  |  |  |
| Nakajima et al,<br>Efficient        | 2018 | RGB-D          | Point cloud model  | Semantic                     | Point cloud map   | Scene understanding                                      |  |  |  |  |
| McCormac et al.<br>Semantic Fusion  | 2016 | RGB-D          | Surfel-based model | semantic                     | Point cloud map   | Scene understanding                                      |  |  |  |  |
| Pham et al                          | 2016 | RGB-D          | Voxel model        | Object-oriented              | Voxel map         | Interactive application, object manupulation and picking |  |  |  |  |
| Grinvald et al<br>Voxblox ++        | 2019 | RGB-D          | Voxel model        | Object-oriented              | Voxel map         | Scene understanding, navigation                          |  |  |  |  |
| Li et al<br>Incremental             | 2020 | RGB-D          | Voxel model        | Object-oriented              | Voxel map         | Navigation and manipulation                              |  |  |  |  |
| Mascaro et al<br>Voxblox fusion     | 2022 | RGB-D<br>LiDAR | Voxel model        | Object-oriented              | Voxel map         | Interactive application                                  |  |  |  |  |



Feature Point Map Structure SLAM 2019



Voxel object-oriented map Voxblox++, 2019



### **Method: Framework**







# **Method: Camera Poses Tracking**



- Camera poses tracking methods:
  - Wheel encoder
  - Feature tracking
  - Laser scan matching



$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} \cos \varphi & 0 \\ \sin \varphi & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix}$$





camera

matched points

# Method: Object Segmentation







Point cloud extraction







Cuboid Generation



Why do we detect conveyor?

- >> small, can be fully observed
- >> cuboid shape, accurate detection
- >> can act as navigation goal







# **Method: Object Association**





- Association
  - Label
  - 3D bbox IoU (maybe label is not correct)
  - 2D bbox loU
  - HSV
  - >> Init frame objects to map objects or update existing objects
- How to update object information:
  - ID -> update related to associated result
  - label-> same
  - points-> merge, probabilistic
  - HSV -> replace
  - 9 DoF -> update, calculate again.



# Methods: Object-level Semantic Map



- Why voxel-based map
  - 3D occupancy information: interactive application, such as navigation and picking
  - Efficient: CPU real-time solution (from voxblox)



- Convert object points to voxel-based model
  - Voxel size: 2cm
  - Voxel param: label info, occupancy info, position info

- Voxel label update strategy
  - Voxel labels collection

$$\varphi(v, l_i) \leftarrow \varphi(v, l_i) + 1$$

 Update voxel label by counting the maximum class

$$(L(v)) = \underset{i}{\operatorname{argmax}} \varphi(v, l_i)$$



# **Experiments**



- Indoor dataset: SceneNN dataset
- Logistic dataset: Agiprobot



Source: https://github.com/hkust-vgd/scenenn



# **Experiments**

Example

















# **Experiment: SceneNN dataset**



Average 3D IoU

mAP@0.5

| Sequence<br>ID | Bed      | Chair | Sofa | Table | Books | refrigerator | Television | Toilet | Bag  | Avg.(Ours) | Sequence<br>ID | Bed | Chair | Sofa | Table | Books | refrigerator | Television | Toilet | Bag | Avg.(Ours) |
|----------------|----------|-------|------|-------|-------|--------------|------------|--------|------|------------|----------------|-----|-------|------|-------|-------|--------------|------------|--------|-----|------------|
| 011            | -        | 70.2  | 70.2 | 86.3  | -     | -            | -          | -      | -    | 78.3       | 011            | -   | 100   | 100  | 100   | -     | -            | -          | -      | -   | 100        |
| 016            | 51.3     | -     | 71.9 | 0     |       |              |            |        |      | 41.1       | 016            | 100 | -     | 100  | 0     |       |              |            |        |     | 66.7       |
| 030            | -        | 57.6  | 80.4 | 85.7  | 0     | -            | -          | -      | -    | 57.4       | 030            | -   | 72    | 100  | 66.7  | 0     | -            | -          | -      | -   | 59.7       |
| 061            | -        | 74.5  | 62.7 | 95.1  |       |              |            |        |      | 77.4       | 061            | -   | 62.5  | 100  | 33.3  | -     | -            | -          | -      | -   | 65.3       |
| 078            | -        | 45.9  | -    | 0     | 0     | 67.8         | -          | -      | -    | 13.9       | 078            | -   | 50    | -    | 0     | 0     | 100          | -          | -      | -   | 37.5       |
| 086            | -        | 58.2  | -    | 0     | 0     | -            | -          | -      | 53.8 | 56         | 086            | -   | 75    | -    | 0     | 0     | -            | -          | -      | 50  | 31.3       |
| 096            | 63.1     | 60.9  | -    | 0     | -     | -            | 32.3       | -      | 0    | 31.3       | 096            | 100 | 100   | -    | 0     | 0     | -            | 0          | -      | 0   | 33.3       |
| 206            | -        | 56.5  | 23.3 | 65.5  | -     | -            | -          | -      | 29.6 | 43.7       | 206            | -   | 41    | 0    | 40    | -     | -            | -          | -      | 0   | 20.3       |
| 223            | -        | 63.7  | -    | 69.2  | -     | -            | -          | -      | -    | 66.5       | 223            | -   | 100   | -    | 50    | -     | -            | -          | -      | -   | 75         |
| 255            | <u>-</u> | -     | -    | -     | -     | 55.8         | -          | -      | -    | 55.8       | 255            | -   | -     | -    | -     | -     | 100          | -          | -      | -   | 100        |

3D Intersection over Union (IoU)

$$IoU_{3D} = \frac{V_{overlap}}{V_{gt} + V_{pred} - V_{overlap}}$$



$$mAP = \frac{1}{|classes|} \sum \frac{|TP_c|}{|TP_c| + |I|}$$

IFL

# **Experiment: SceneNN dataset**



### runtime performance

| Module              | Time-CPU<br>(ms) | Time-GPU<br>(ms) |
|---------------------|------------------|------------------|
| Object Detection    | 725              | 32               |
| Object Segmentation | 17.85            | 15               |
| Object Mapping      | 299              | 50               |
| Total               | 1024             | 102              |

#### mAP comparison

| Method             | 011  | 016  | 030  | 061  | 078  | 086  | 096  | 206  | 223       | 225  | Average |
|--------------------|------|------|------|------|------|------|------|------|-----------|------|---------|
| Pham et al [1]     | 52.1 | 34.2 | 56.8 | 59.1 | 34.9 | 35.0 | 26.5 | 41.7 | 40.9      | 48.6 | 43.0    |
| Grinvald et al [2] | 75.0 | 33.3 | 56.1 | 66.7 | 45.2 | 20.0 | 29.2 | 79.6 | 43.6      | 75.0 | 54.4    |
| Li et al [3]       | 78.6 | 25.0 | 58.6 | 46.6 | 69.8 | 47.2 | 26.7 | 78.0 | 45.8      | 75.0 | 55.1    |
| ours               | 100  | 66.7 | 59.7 | 65.3 | 37.5 | 31.3 | 33.3 | 20.3 | <b>75</b> | 100  | 58.9    |

### runtime comparison

| Method             | Representation    | FPS     |
|--------------------|-------------------|---------|
| Pham et al [1]     | Instance-oriented | 1 Hz    |
| Grinvald et al [2] | Instance-oriented | 1 Hz    |
| Li et al [3]       | Instance-oriented | 10.8 Hz |
| Ours-CPU           | Instance-oriented | 1 Hz    |
| Ours-GPU           | Instance-oriented | 20 Hz   |



# **Experiment: Agiprobot**

- Setting:
- Controller: CPU
- Camera: Microsoft Azure Kinect
- Laser scanner: SICK
- Camera laser calibration:
- Scene size: 6x12m
- Detect objects: conveyor









# **Experiment: Agiprobot**

Table: Object IoU

| Conveyor | 3D IoU  | E_Trans(m) | E_rot (°) |
|----------|---------|------------|-----------|
| 1        | 0.7446  | 0.058      | 3.4       |
| 2        | 0.7140  | 0.060      | 0.9       |
| 3        | 0.′8061 | 0.029      | 1.6       |
| 4        | 0.9056  | 0.035      | 1.0       |
| Average  | 0.7925  | 0.045      | 1.7       |





Table: runtime performance

| Module                 | Time-CPU(ms) |
|------------------------|--------------|
| Object Detection       | 725          |
| Object<br>Segmentation | 17.85        |
| Object Mapping         | 299          |
| Total                  | 1024         |







Camera poses tracking

Point cloud map

Voxel-based map



### Conclusion



- What we have done
  - Proposed an efficient object mapping method
  - Evaluate the proposed method on public dataset
  - Evaluate the proposed method on real robotic platform in logistic scene.
- Conclusion
- RQ3: How to efficiently map the environment with semantic object information? (especially in logistic environments)
- we presented an efficient object-level semantic mapping system, which takes RGB-D sequences as input to build a volumetric object-oriented map.
- Experiment on publicly indoor dataset and field test shows that our system has a comparative performance while avoiding high computational cost.
- By employing a fast and stable object detector and TSDF mapping framework, our system can be extended to a CPU-only robotic platform for real-world application.

