CHAPITRE

42

DÉTERMINANTS

Dans tout le chapitre, $(\mathbb{K}, +, .)$ désignera un corps. Le programme se limite au cas où ce corps est \mathbb{R} ou \mathbb{C} .

42.1 APPLICATIONS BILINÉAIRES

§1 Définition

Définition 1

Soient E, F deux \mathbb{K} -espaces vectoriels. On dit qu'une application

$$f: E \times E \to F$$

est bilinéaire si

- $f(*,b): x \mapsto f(x,b)$ est une application linéaire pour tout $b \in E$,
- $f(a,*): y \mapsto f(a,y)$ est une application linéaire pour tout $a \in E$.

Lorsque $F = \mathbb{K}$, on dit que f est une **forme bilinéaire** sur E^2 .

Cela signifie donc que l'on a les identités

$$f(x + x', y) = f(x, y) + f(x', y),$$
 $f(\lambda x, y) = \lambda f(x, y),$
 $f(x, y + y') = f(x, y) + f(x, y'),$ $f(x, \lambda y) = \lambda f(x, y).$

Notation

L'ensemble des applications bilinéaires de $E \times E$ dans F se note $L_2(E, F)$.

Clairement, $L_2(E, F)$ est un sous-espace vectoriel de $\mathcal{F}(E \times E, F)$.

Définition 2

Soient E, F deux \mathbb{K} -espaces vectoriels et soit $f: E \times E \to F$.

• On dit que l'application f est symétrique lorsque

$$\forall (x, y) \in E^2, f(y, x) = f(x, y).$$

• On dit que l'application f est antisymétrique lorsque

$$\forall (x, y) \in E^2, f(y, x) = f(x, y).$$

• On dit que l'application f est alternée lorsque

$$\forall x \in E, f(x, x) = 0.$$

Proposition 3

Soit $f \in \mathbf{L}_2(E, F)$ (avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$). Alors l'application bilinéaire f est alternée f est antisymétrique.

Démonstration. Si f est alternée, alors quels que soient $x, y \in E$, on a

$$0 = f(x + y, x + y) = f(x, x) + f(x, y) + f(y, x) + f(y, y) = f(x, y) + f(y, x).$$

Si f est antisymétrique, alors quel que soit $x \in E$, on a

$$f(x, x) = -f(x, x).$$

Exemple 4

Soit $E = \mathbb{R}^q$ et $F = \mathbb{R}$ et soit

Alors f est une forme bilinéaire symétrique.

Exemple 5

Soit $E = \mathscr{C}_m([a, b], \mathbb{R})$ et $F = \mathbb{R}$ et soit

$$\psi: \begin{array}{ccc} E^2 & \to & F \\ (f,g) & \mapsto & \int_a^b fg \end{array}.$$

Alors ψ est une forme bilinéaire symétrique.

Exemple 6

Soit $E = \mathbb{R}^2$ et $F = \mathbb{R}$ et soit

$$f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

$$((x_1, x_2); (y_1, y_2)) \mapsto x_1 y_2 - x_2 y_1$$

Alors f est une forme bilinéaire antisymétrique et alternée.

§2 Formes bilinéaires en dimension 2

Soient E un \mathbb{K} -espace vectoriel de dimension 2, $\mathcal{E}=(e_1,e_2)$ une base de E, x et y deux vecteurs de E de coordonnées respectives (x_1,x_2) et (y_1,y_2) dans la base \mathcal{E} . Si $f: E\times E\to \mathbb{R}$ est une forme bilinéaire, alors

$$f(x,y) = f(x_1e_1 + x_2e_2, y_1e_1 + y_2e_2)$$

= $x_1y_1f(e_1, e_1) + x_1y_2f(e_1, e_2) + x_2y_1f(e_2, e_1) + x_2y_2f(e_2, e_2).$

En notant $a = f(e_1, e_1)$, $b = f(e_1, e_2)$, $c = f(e_2, e_1)$ et $d = f(e_2, e_2)$, on a

$$f(x,y) = ax_1y_1 + bx_1y_2 + cx_2y_1 + dx_2y_2 = \begin{pmatrix} x_1 & y_1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}.$$

Alors

- l'application f est symétrique si, et seulement si la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est symétrique, c'est-à-dire lorsque c = b.
- l'application f est alternée si, et seulement si la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est antisymétrique, c'est-à-dire lorsque a = d = 0 et c = -b.

Exemple 7

Soient E un \mathbb{K} -espace vectoriel de dimension 2, $\mathcal{E} = (e_1, e_2)$ une base de E, x et y deux vecteurs de E de coordonnées respectives (x_1, x_2) et (y_1, y_2) dans la base \mathcal{E} . On appelle **déterminant** du couple (x, y) dans la base \mathcal{E} le scalaire

$$\det_{\mathcal{E}}(x,y) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = x_1 y_2 - x_2 y_1.$$

L'application $\det_{\mathcal{E}}: E^2 \to \mathbb{K}$ est une forme bilinéaire alternée. Cela signifie donc que pour tout $(x_1, x_2), (x_1', x_2'), (y_1, y_2), (y_1', y_2') \in \mathbb{K}^2$ et $\lambda, \mu \in \mathbb{K}$, on a

$$\begin{vmatrix} \lambda x_1 + \mu x_1' & y_1 \\ \lambda x_2 + \mu x_2' & y_2 \end{vmatrix} = \lambda \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} + \mu \begin{vmatrix} x_1' & y_1 \\ x_2' & y_2 \end{vmatrix}; \qquad \begin{vmatrix} x_1 & x_1 \\ x_2 & x_2 \end{vmatrix} = 0;$$

$$\begin{vmatrix} x_1 & \lambda y_1 + \mu y_1' \\ x_2 & \lambda y_2 + \mu y_2' \end{vmatrix} = \lambda \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} + \mu \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2' \end{vmatrix}; \qquad \begin{vmatrix} y_1 & x_1 \\ y_2 & x_2 \end{vmatrix} = - \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}.$$

Proposition 8

Soient E un \mathbb{K} -espace vectoriel de dimension 2 et $\mathcal{E} = (e_1, e_2)$ une base de E. Soit $f : E^2 \to \mathbb{K}$ une forme bilinéaire alternée, alors

$$\forall (x,y) \in E^2, f(x,y) = f(e_1,e_2) \cdot \det_{\mathcal{E}}(x,y).$$

Toute forme bilinéaire alternée f sur E^2 est proportionnelle à $\det_{\mathcal{E}}$ et il existe un unique $\lambda \in \mathbb{K}$ tel que $f = \lambda \det_{\mathcal{E}}$.

42.2 DÉTERMINANTS

§1 Déterminant d'une matrice carrée

Définition 9

Étant donnée une matrice carrée d'ordre 2

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K}),$$

on appelle **déterminant** de A le scalaire

$$\det A = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc.$$

Définition 10

Étant donnée une matrice carrée d'ordre 3

$$A = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} \in \mathcal{M}_3(\mathbb{K}),$$

on appelle déterminant de A le scalaire

$$\det A = \begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh.$$

Remarque

Si C_1 , C_2 et C_3 désigne les colonnes de A, on a det $A = (C_1 \land C_2) \cdot C_3$, les produits scalaires et vectoriels étant donnés par les formules usuelles...

Définition 11

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. On appelle **déterminant de la matrice** A le scalaire

$$\det(A) = \begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix} = \sum_{\sigma \in \mathcal{S}_n} \epsilon(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)} = \sum_{\sigma \in \mathcal{S}_n} \epsilon(\sigma) \prod_{j=1}^n a_{j,\sigma(j)}.$$

Proposition 12

Pour toute matrice carrée A, on a $det(A^T) = det(A)$.

§2 Applications multilinéaires

Définition 13

Soient E, F deux \mathbb{K} -espace vectoriel et $n \geq 2$. On dit qu'une application

$$f: E^n \to F$$

est *n***-linéaire** si pour tout $j \in [1, n]$, pour tout $a_k \in E$ avec $k \in [1, n] \setminus \{j\}$, l'application

$$\begin{array}{cccc} \phi: & E & \rightarrow & F \\ & x_j & \mapsto & f\left(a_1, \dots, a_{j-1}, x_j, a_{j+1}, \dots, a_n\right) \end{array}$$

est linéaire.

Lorsque $F = \mathbb{K}$, on dit que f est une forme n-linéaire.

Exemple 14

Dire que f est une application trilinéaire signifie donc que l'on a les identités

$$f(x + x', y, z) = f(x, y, z) + f(x', y, z), f(\lambda x, y, z) = \lambda f(x, y, z), f(x, y + y', z) = f(x, y, z) + f(x, y', z), f(x, \lambda y, z) = \lambda f(x, y, z), f(x, y, z + z') = f(x, y, z) + f(x, y, z'), f(x, y, \lambda z) = \lambda f(x, y, z).$$

Exemple 15

Soit $E = F = \mathcal{F}(\mathbb{R}, \mathbb{R})$. L'application

$$E^{n} \rightarrow E$$

$$(f_{1}, \dots, f_{n}) \mapsto 3f_{1} \times \dots \times f_{n}$$

est une application *n*-linéaire.

Notation

L'ensemble des applications n-linéaire de E^n dans F se note $\mathbf{L}_n(E,F)$.

Proposition 16

 $\mathbf{L}_n(E,F)$ est un sous-espace vectoriel de $\mathcal{F}(E^n,F)$.

Proposition 17

Soit $f \in \mathbf{L}_n(E, F)$ et $(x_1, \dots, x_n) \in E^n$. S'il existe $j \in [1, n]$ tel que $x_j = 0$, alors $f(x_1, \dots, x_n) = 0$.

§3

Définition 18

Soit $f\in \mathcal{F}(E^n,F)$ et soit $\sigma\in \mathcal{S}_n$ (groupe symétrique). On définit l'application $\sigma(f)$ par

$$\forall (x_1, x_2, \dots, x_n) \in E^n, \sigma(f)(x_1, x_2, \dots, x_n) = f\left(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}\right).$$

Exemple 19

Si $\sigma = \begin{pmatrix} 1 & 2 \end{pmatrix}$, alors

$$\sigma(f)(x_1, x_2, x_3, \dots, x_n) = f(x_2, x_1, x_3, \dots, x_n).$$

Test 20

Montrer que si $f \in \mathcal{F}(E^n, F)$ et $(\sigma, \sigma') \in \mathcal{S}_n^2$, alors

$$(\sigma \circ \sigma')(f) = \sigma(\sigma'(f)).$$

Proposition 21

Soit $f \in \mathbf{L}_n(E, F)$ et soit $\sigma \in \mathcal{S}_n$. Alors $\sigma(f) \in \mathbf{L}_n(E, F)$.

Définition 22

Soit $f \in \mathcal{F}(E^n, F)$.

• On dit que f est symétrique lorsque

$$\forall \sigma \in \mathcal{S}_n, \sigma(f) = f.$$

 \bullet On dit que f est **antisymétrique** lorsque

$$\forall \sigma \in \mathcal{S}_n, \sigma(f) = \epsilon(\sigma)f.$$

• On dit que f est alternée lorsque

$$\forall (x_1, \dots, x_n) \in E^n, \forall (i, j) \in [[1, n]]^2, (i \neq j \text{ et } x_i = x_j \implies f(x_1, \dots, x_n) = 0).$$

Proposition 23

Soit $f \in \mathbf{L}_n(E, F)$. Alors f est antisymétrique si, et seulement si f est alternée.

Exemple 24

Soient E un K-espace vectoriel de dimension 3, $\mathcal{E} = (e_1, e_2, e_3)$ une base de E, x, y, z trois vecteurs de E de coordonnées respectives (x_1, x_2, x_3) , (y_1, y_2, y_3) , (z_1, z_2, z_3) dans la base \mathcal{E} . On appelle **déterminant** du triplet (x, y, z) dans la base \mathcal{E} le scalaire

$$\det_{\mathcal{E}}(x, y, z) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = x_1 y_2 z_3 + x_2 y_3 z_1 + x_3 y_1 z_2 - x_1 y_3 z_2 - x_2 y_1 z_3 - x_3 y_2 z_1.$$

On observera que

$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = x_1 \begin{vmatrix} y_2 & z_2 \\ y_3 & z_3 \end{vmatrix} - x_2 \begin{vmatrix} y_1 & z_1 \\ y_3 & z_3 \end{vmatrix} + x_3 \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}.$$

Proposition 25

Soient E un \mathbb{K} -espace vectoriel de dimension 3 et $\mathcal{E} = (e_1, e_2, e_3)$ une base de E.

- 1. L'application $\det_{\mathcal{E}}: E^3 \to \mathbb{K}$ est une forme trilinéaire alternée.
- **2.** Soit $f: E^3 \to \mathbb{K}$ une forme trilinéaire alternée, alors

$$\forall x, y, z \in E, f(x, y, z) = f(e_1, e_2, e_3) \det_{\mathcal{E}}(x, y, z).$$

Toute forme trilinéaire alternée f sur E^3 est proportionnelle à $\det_{\mathcal{E}}$ et il existe un unique $\lambda \in \mathbb{K}$ tel que $f = \lambda \det_{\mathcal{E}}$.

§4 Déterminant d'une famille de vecteurs relativement à une base

Définition 26

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$ et $e = (e_1, \dots, e_n)$ une base de E. Soit $S = (x_1, x_2, \dots, x_n)$ une famille de n vecteurs de E.

Pour tout $j \in [1, n]$, il existe $(a_{1,j}, a_{2,j}, \dots, a_{n,j}) \in \mathbb{K}^n$ tel que

$$x_j = a_{1,j}e_1 + a_{2,j}e_2 + \dots + a_{n,j}e_n = \sum_{k=1}^n a_{k,j}e_j.$$

On appelle **déterminant de la famille** (x_1, x_2, \dots, x_n) relativement à la base e le scalaire

$$\det_e(x_1,\ldots,x_n) = \sum_{\sigma \in \mathcal{S}_n} \epsilon(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \ldots a_{n,\sigma(n)} = \sum_{\sigma \in \mathcal{S}_n} \epsilon(\sigma) \prod_{j=1}^n a_{j,\sigma(j)}.$$

Le déterminant de la matrice de la famille (x_1, x_2, \dots, x_n) dans la base e est aussi le déterminant de la matrice des coordonnées de la famille (x_1, x_2, \dots, x_n) dans la base e.

$$\det_{e}(x_{1},\ldots,x_{n}) = \begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix} = \det\left(\operatorname{Coord}_{e}\left(x_{1},x_{2},\ldots,x_{n}\right)\right)$$

Réciproquement, en notant $\mathcal{B}=(e_1,e_2,\ldots,e_n)$ la base canonique de \mathbb{K}^n , alors

$$\det(A) = \det_{\mathcal{B}}(C_1, C_2, \dots, C_n)$$

où A est une matrice carrée d'ordre n dont les colonnes sont C_1, C_2, \dots, C_n

Exemples 27

1. Si
$$n = 2$$
, $\det_e(e_1, e_2) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$.

2. Si
$$n = 3$$
, $\det_e(e_1, e_2, e_3) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1$.

3. Si $e' = (e'_1, e'_2)$ désigne la base de E définie par $e'_1 = e_1 + 2e_2$ et $e'_2 = 2e_1 - e_2$, alors

$$\det_{e}(e_{1}', e_{2}') = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = -5 \qquad \det_{e'}(e_{1}', e_{2}') = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.$$

Théorème 28

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$ et $e = (e_1, \dots, e_n)$ une base de E.

- 1. det est une forme n-linéaire alternée.
- **2.** Soit $f \in \mathbf{L}_n(E, \mathbb{K})$ une forme n-linéaire alternée, alors

$$\forall (x_1, \dots, x_n) \in E^n, f(x_1, \dots, x_n) = f(e_1, \dots, e_n) \cdot \det_e(x_1, \dots, x_n).$$

3. \det_e est l'unique forme n-linéaire alternée sur E qui prend la valeur 1 en (e_1, \dots, e_n) .

Corollaire 29 Si e et e' sont deux bases de E, alors

$$\forall (x_1, \dots, x_n) \in E^n, \det_{e'}(x_1, \dots, x_n) = \det_{e'}(e) \cdot \det_{e}(x_1, \dots, x_n).$$

Théorème 30

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $e = (e_1, e_2, \dots, e_n)$ une base de E. Soit $S = (x_1, x_2, \dots, x_n)$ une famille de n vecteurs de E. Alors S est une base de E si, et seulement si $\det_e (x_1, x_2, \dots, x_n) \neq 0$.

Exemple 31

On considère $\mathbb{R}_2[X]$ l'espace vectoriel des polynômes de degré au plus 2 et les polynômes

$$P_0 = (X - 1)^2$$
, $P_1 = X(X - 1)$, $P_2 = X^2$.

Dans la base canonique $\mathcal{B} = (1, X, X^2)$, nous avons

$$\det_{\mathcal{B}}(P_0, P_1, P_2) = \begin{vmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = -1.$$

La famille (P_0, P_1, P_2) est donc une base de $\mathbb{R}_2[X]$.

§5 Déterminant d'un endomorphisme

Définition 32

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \geq 1$. Il existe un unique élément de \mathbb{K} , noté $\det(f)$, tel que, pour *toute* base $e = (e_1, e_2, \dots, e_n)$ de E, on a

$$\forall \left(x_1, x_2, \dots, x_n\right) \in E^n, \det_e\left(f(x_1), f(x_2), \dots, f(x_n)\right) = \det\left(f\right) \cdot \det_e\left(x_1, x_2, \dots, x_n\right).$$

Ce scalaire det(f) est appelé déterminant de f.

Proposition 33

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \geq 1$. Pour toute base $e = (e_1, e_2, \dots, e_n)$ de E, l'égalité suivante est vérifiée

$$\det(f) = \det_{e} \left(f(e_1), f(e_2), \dots, f(e_n) \right) = \det \left(\operatorname{Mat}_{e}(f) \right).$$

A

Le déterminant n'est pas une application linéaire. Par exemple, pour $u \in \mathbf{L}(E)$ et $\lambda \in \mathbb{K}$, on a $\det(\lambda u) = \lambda^n \det(u)$.

Théorème 34

Soit E un K-espace vectoriel de dimension finie $n \ge 1$. Pour tous $f, g \in \mathbf{L}(E)$, on a

$$\det(g \circ f) = \det(g) \det(f)$$
.

Théorème 35

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \geq 1$. Pour que f soit bijectif (i.e. soit un automorphisme de E), il faut, et il suffit que son déterminant soit

non nul. Lorsque c'est le cas, on a

$$\det\left(f^{-1}\right) = \left(\det(f)\right)^{-1}.$$

L'application det induit donc un morphisme de GL(E) sur \mathbb{K}^* .

42.3 DÉTERMINANT D'UNE MATRICE CARRÉE

§1 Propriétés élémentaires

Théorème 36 Soit A et B deux matrices (n, n), alors

 $\det(AB) = \det(A)\det(B)$.

Théorème 37 Soit A une matrice (n, n), alors A est inversible si, et seulement si $det(A) \neq 0$. Dans ce cas, on a

$$\det\left(A^{-1}\right) = \frac{1}{\det(A)}.$$

L'application det induit donc un morphisme de $GL_n(\mathbb{K})$ sur \mathbb{K}^* .

Théorème 38 Soit $A \in \mathcal{M}_n(\mathbb{K})$, alors

$$\det\left(A^{T}\right) = \det\left(A\right).$$

§2 Déterminant d'une matrice triangulaire

Lemme 39 Si A est une matrice carrée de la forme

$$\begin{pmatrix} & & * \\ A' & \vdots \\ & * \\ 0 & \cdots & 0 & \lambda \end{pmatrix}$$

Alors $det(A) = \lambda det(A')$.

Définition 40 • On dit que $A = (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$ est **triangulaire supérieure** si

$$\forall (i,j) \in [[1,n]]^2, i > j \implies a_{ij} = 0. \qquad \begin{cases} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \cdots & 0 & a_{nn} \end{cases}$$

• On dit que $A = (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$ est **triangulaire inférieure** si

$$\forall (i,j) \in [[1,n]]^2, i < j \implies a_{ij} = 0. \qquad \begin{pmatrix} a_{11} \\ \vdots & \ddots & \mathbf{0} \\ \vdots & & \ddots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Proposition 41

Soient A et B deux matrices triangulaires supérieures, alors AB est triangulaire supérieure et les coefficients diagonaux de AB s'obtiennent en multipliant les coefficients diagonaux correspondants de A et de B.

On a un résultat analogue avec les matrices triangulaires inférieures.

Proposition 42

Si $A = (a_{ij})$ est une matrice triangulaire supérieure, triangulaire inférieure, ou diagonale, alors

$$\det A = a_{11}a_{22}\dots a_{nn}.$$

Une matrice carrée échelonnée par ligne est triangulaire supérieure. Si nous savons comment le déterminant est affecté par les opérations élémentaires, nous obtenons un moyen simple de calculer les déterminants.

§3 Bases de \mathbb{K}^n

Théorème 43

Soit A une matrice carrée (n, n). Alors, les assertions suivantes sont équivalentes

- 1. A est inversible,
- 2. Pour tout b, le système Ax = b admet une unique solution,
- 3. Pour tout b, le système Ax = b admet une solution,
- **4.** Le système Ax = 0 n'admet que la solution nulle,
- 5. $A \sim I_n$
- **6.** $\det(A) \neq 0$,
- 7. rg(A) = n,
- 8. Les colonnes de A forment une base de \mathbb{K}^n ,
- **9.** Les lignes de A (écrites en colonnes) forment une base de \mathbb{K}^n .

Exemple 44

L'espace vectoriel $Vect(v_1, v_2, w)$, où

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}, \quad w = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix}.$$

est \mathbb{R}^3 , et la famille (v_1, v_2, w) en est une base. En effet, la matrice dont les colonnes sont v_1, v_2, w est inversible puisque

$$\begin{vmatrix} 1 & 2 & 4 \\ 2 & 1 & 5 \\ 3 & 5 & 1 \end{vmatrix} = 30 \neq 0$$

Que penser de $U = \text{Vect}(v_1, v_2, v_3)$ où v_1, v_2, v_3 sont

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 4 \\ 5 \\ 11 \end{pmatrix}$$
?

Ces trois vecteurs sont liés puisque $v_3 = 2v_1 + v_2$, ainsi $v_3 \in \text{Vect}(v_1, v_2)$ et donc $\text{Vect}(v_1, v_2, v_3) = \text{Vect}(v_1, v_2)$.

De plus, (v_1, v_2) est une famille libre, donc $U = \text{Vect}(v_1, v_2)$ est un plan de \mathbb{R}^3 , et (v_1, v_2) est une base de U.

Une représentation paramétrique est $v = sv_1 + tv_2$ et on peut obtenir une équation en cherchant si ce système est compatible pour un vecteur $v = (x, y, z)^T$... Mais il y a plus simple!

En effet, le vecteur $v \in U$ si, et seulement si v est combinaison linéaire de v_1, v_2 , si, et seulement si (v_1, v_2, v) est liée, si, et seulement si

$$\det(A) = \begin{vmatrix} 1 & 2 & x \\ 2 & 1 & y \\ 3 & 5 & z \end{vmatrix} = 0.$$

En développant ce déterminant, on obtient

$$7x + y - 3z = 0.$$

Test 45

Calculer le déterminant. Vérifier que 7x + y - 3z = 0 est une équation de U en vérifiant que v_1, v_2, v_3 vérifient l'équation.

42.4 CALCUL DES DÉTERMINANTS

§1 Déterminant et opérations élémentaires

Si $A \in \mathcal{M}_3(\mathbb{K})$ a pour colonnes (C_1, C_2, C_3) et si \mathcal{B} est la base canonique de $\mathcal{M}_{3,1}(\mathbb{K})$, alors det $A = \det_{\mathcal{B}}(C_1, C_2, C_3)$. On a donc naturellement

$$\det\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} = \det_{\mathcal{B}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}.$$

On a un résultat analogue avec les lignes de A ou encore lorsque $A \in \mathcal{M}_n(\mathbb{K})$.

Il résulte de là que le déterminant est une forme multilinéaire alternée des colonnes. De là résultent les règles de calcul suivantes, importantes dans la pratique

Proposition 46

Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. Si chaque coefficient de la colonne i s'écrit comme somme de deux scalaire $a_{ij} = b_{ij} + c_{ij}$ pour $1 \le j \le n$, alors

$$\det A = \det B + \det C$$
,

où B se déduit de la matrice A en substituant la colonne i par $(b_{i1}, b_{i2}, \ldots, b_{in})$, et C se déduit de la matrice A en substituant la colonne i par $(c_{i1}, c_{i2}, \ldots, c_{in})$.

Proposition 47

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

1. Si B se déduit de A en multipliant une colonne par un scalaire α , alors

$$\det B = \alpha \det A.$$

2. Si B se déduit de A en permutant deux colonnes, alors

$$\det B = -\det A$$
.

3. Si B se déduit de A en ajoutant à une colonne un multiple d'une autre colonne, alors

$$\det B = \det A$$
.

Proposition 48

Un déterminant est nul si et seulement si une de ses colonnes est combinaison linéaire des autres.

En particulier, un déterminant qui a deux colonnes égales est nul.

Enfin, la relation $det(A^T) = det(A)$ montre que

Proposition 49

Les règles précédentes demeurent valables si l'on remplace partout le mot colonne par le mot ligne.

Remarque

On dit que det(A) dépend linéairement de de la colonne L_i (resp. colone C_j) lorsque les autres colonnes (resp. colonnes) sont fixées.

L'application $A \mapsto \det A$ n'est pas linéaire! En effet, $\det(\lambda A) = \lambda^n A$ si $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$ (chaque colonne est multipliée par λ).

Exemple 50

Illustrons le résultat pour une matrice (3, 3). La proposition affirme que

$$\det(A) = \begin{vmatrix} a & b & c \\ d+p & e+q & f+r \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} a & b & c \\ p & q & r \\ g & h & i \end{vmatrix} = \det(B) + \det(C).$$

Exemple 51

À l'aide d'opération élémentaire sur les ligne, calculer

$$\det A = \begin{vmatrix} 1 & 2 & -1 & 4 \\ -1 & 3 & 0 & 2 \\ 2 & 1 & 1 & 2 \\ 1 & 4 & 1 & 3 \end{vmatrix}.$$

Test 52

On peut raccourcir la rédaction précédente en développant le déterminant aussitôt que l'on a obtenue des zéros sous un pivot. On est alors ramener au calcul d'un déterminant (3, 3). Utiliser cette stratégie pour calculer à nouveau

$$\det A = \begin{vmatrix} 1 & 2 & -1 & 4 \\ -1 & 3 & 0 & 2 \\ 2 & 1 & 1 & 2 \\ 1 & 4 & 1 & 3 \end{vmatrix}.$$

§2 Déterminant et cofacteurs

Définition 53

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $i, j \in [1, n]$.

- **1.** Le **mineur** d'indice (i, j) de A, noté M_{ij} , est le déterminant de la matrice (n-1, n-1) extraite de A en supprimant la i-ème ligne et la j-ème colonne de A.
- **2.** Le **cofacteur** d'indice (i, j) de la matrice A est

$$C_{ij} = (-1)^{i+j} M_{ij}.$$

Ainsi le cofacteur est égale au mineur si i + j est pair, et son opposé si i + j est impair. On peut retrouver rapidement ce signe en suivant le schéma

$$\begin{pmatrix} + & - & + & - & \dots \\ - & + & - & + & \dots \\ + & - & + & - & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Exemple 54

Soit

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 1 \\ -1 & 3 & 0 \end{pmatrix}.$$

Alors le mineur M_{23} et le cofacteur C_{23} sont

$$M_{23} = \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} = 5, \quad C_{23} = (-1)^{2+3} M_{23} = -5.$$

Test 55

Déterminer le cofacteur C_{13} pour la matrice précédente.

Théorème 56

Soit $A = (a_{ij}) \in \mathcal{M}_n \mathbb{K}$. On désigne par C_{ij} le cofacteur d'indice (i, j) de A.

1. Pour tout entier i tel que $1 \le i \le n$, on a

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} = \sum_{j=1}^{n} a_{ij}C_{ij}.$$

(Développement par rapport à la i-ème ligne).

2. Pour tout entier j tel que $1 \le j \le n$, on a

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj} = \sum_{i=1}^{n} a_{ij}C_{ij}.$$

(Développement par rapport à la j-ème colonne).

Démonstration. Plus tard!

Exemple 57

On reprend l'exemple 54,

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 1 & 1 \\ -1 & 3 & 0 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} - 2 \begin{vmatrix} 4 & 1 \\ -1 & 0 \end{vmatrix} + 3 \begin{vmatrix} 4 & 1 \\ -1 & 3 \end{vmatrix} = 1(-3) - 2(1) + 3(13) = 34.$$

On dit que l'on développe le déterminant par rapport à la première ligne.

Exemple 58

On reprend l'exemple 54, mais en effectuant un développement selon la troisième ligne ou troisième colonne. Ceci réduit le nombre de calculs puisque $a_{33} = 0$. Par exemple, en développant le déterminant selon la troisième colonne,

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 1 & 1 \\ -1 & 3 & 0 \end{vmatrix} = 3 \begin{vmatrix} 4 & 1 \\ -1 & 3 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} + 0 = 3 \cdot 13 - 5 = 34.$$

Test 59

Calculer le déterminant de la matrice

$$M = \begin{pmatrix} -1 & 2 & 1 \\ 0 & 2 & 3 \\ 1 & 1 & 4 \end{pmatrix}.$$

en utilisant un développement selon une autre ligne ou colonne. Choisir celle avec le moins de calculs à effectuer.

Pour de grandes matrices, développer brutalement avec les cofacteurs est peu pratique. Par exemple,

$$\det(A) = \begin{vmatrix} 1 & -4 & 3 & 2 \\ 2 & -7 & 5 & 1 \\ 1 & 2 & 6 & 0 \\ 2 & -10 & 14 & 4 \end{vmatrix} = 1C_{11} + (-4)C_{12} + 3C_{13} + 2C_{14}$$

nécessite le calcul de quatre déterminants 3×3 .

Heureusement, il y a une méthode plus efficace. Pour simplifier les calculs, nous allons nous tourner encore une fois vers les opérations élémentaires.

§3 Déterminant de Vandermonde

Étant donnée des scalaires x_0, x_1, \dots, x_n , calculer le déterminant

$$V(x_0, x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_0 & x_1 & \dots & x_n \\ x_0^2 & x_1^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_0^{n-1} & x_1^{n-1} & \dots & x_n^{n-1} \end{vmatrix}$$

42.5 COMATRICE

Définition 60

Soit $A = (a_{ij}) \in \mathcal{M}_n \mathbb{K}$. On appelle **comatrice** de A, notée $\operatorname{Com}(A)$, la matrice des cofacteurs de A.

Proposition 61

La combinaison linéaire formé des cofacteur d'une ligne avec les coefficient d'une autre ligne est nulle. Plus précisément, si $i \neq j$, alors

$$a_{j1}C_{i1} + a_{j2}C_{i2} + \dots + a_{jn}C_{in} = 0.$$

Théorème 62

Soit $A = (a_{ij}) \in \mathcal{M}_n \mathbb{K}$. On a

$$A \times \text{Com}(A)^T = \text{Com}(A)^T A = \det(A)I_n$$
.

En particulier, si A est inversible, alors

$$A^{-1} = \frac{1}{\det(A)} \operatorname{Com}(A)^{T}.$$

42.6 COMPLÉMENTS HP: FORMULES DE CRAMER

Théorème 63

Soient $n \ge 2$, $A \in \mathbf{GL}_n(\mathbb{K})$ et $b \in \mathcal{M}_{n,1}(\mathbb{K})$. Soit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ l'unique solution du système de

Cramer Ax = b, alors

$$x_j = \frac{\det A_j}{\det A}$$

où A_j est la matrice obtenue à partir de A en remplaçant la j-ième colonne de A par le vecteur colonne b.