# Зведення мов та задач

Андрій Фесенко

**Зведенням** і називають певну процедуру (або алгоритм) перетворення однієї (обчислювальної) задачі в іншу. Задача  $\Pi_1$  зводиться до задачі  $\Pi_2$ :

- $oldsymbol{0}$  використати наявний розв'язок задачі  $\Pi_2$
- $oldsymbol{2}$  довести складність розв'язку задачі  $\Pi_1$

Зведенням і називають певну процедуру (або алгоритм) перетворення однієї (обчислювальної) задачі в іншу. Задача  $\Pi_1$  зводиться до задачі  $\Pi_2$ :

- f 0 використати наявний розв'язок задачі  $\Pi_2$
- $oldsymbol{2}$  довести складність розв'язку задачі  $\Pi_1$

### Приклад

• задача  $\Pi_1$  — задача знайти розв'язок квадратного рівняння  $ax^2+bx+c=0$  для довільних дійсних чисел  $a,\ b$  і c

**Зведенням** і називають певну процедуру (або алгоритм) перетворення однієї (обчислювальної) задачі в іншу. Задача  $\Pi_1$  зводиться до задачі  $\Pi_2$ :

- f 0 використати наявний розв'язок задачі  $\Pi_2$
- $oldsymbol{2}$  довести складність розв'язку задачі  $\Pi_1$

- задача  $\Pi_1$  задача знайти розв'язок квадратного рівняння  $ax^2 + bx + c = 0$  для довільних дійсних чисел a, b і c
- задача  $\Pi_2$  задача знайти розв'язок квадратного рівняння  $x^2+bx+1=0$  для довільного дійсного числа b

**Зведенням** і називають певну процедуру (або алгоритм) перетворення однієї (обчислювальної) задачі в іншу. Задача  $\Pi_1$  зводиться до задачі  $\Pi_2$ :

- lacktriangle використати наявний розв'язок задачі  $\Pi_2$
- $oldsymbol{2}$  довести складність розв'язку задачі  $\Pi_1$

- задача  $\Pi_1$  задача знайти розв'язок квадратного рівняння  $ax^2 + bx + c = 0$  для довільних дійсних чисел a, b і c
- задача  $\Pi_2$  задача знайти розв'язок квадратного рівняння  $x^2 + bx + 1 = 0$  для довільного дійсного числа b
- задача  $\Pi_3$  задача знайти розв'язок квадратного рівняння  $x^2 2x + 1 = 0$

Зведенням і називають певну процедуру (або алгоритм) перетворення однієї (обчислювальної) задачі в іншу. Задача  $\Pi_1$  зводиться до задачі  $\Pi_2$ :

- lacktriangle використати наявний розв'язок задачі  $\Pi_2$
- $oldsymbol{2}$  довести складність розв'язку задачі  $\Pi_1$

- задача  $\Pi_1$  задача знайти розв'язок квадратного рівняння  $ax^2 + bx + c = 0$  для довільних дійсних чисел a, b і c
- задача  $\Pi_2$  задача знайти розв'язок квадратного рівняння  $x^2 + bx + 1 = 0$  для довільного дійсного числа b
- ullet задача  $\Pi_3$  задача знайти розв'язок квадратного рівняння  $x^2-2x+1=0$
- ullet  $\Rightarrow$  задача  $\Pi_3$  зводиться до задачі  $\Pi_2$

Зведенням і називають певну процедуру (або алгоритм) перетворення однієї (обчислювальної) задачі в іншу. Задача  $\Pi_1$  зводиться до задачі  $\Pi_2$ :

- lacktriangle використати наявний розв'язок задачі  $\Pi_2$
- $oldsymbol{2}$  довести складність розв'язку задачі  $\Pi_1$

- задача  $\Pi_1$  задача знайти розв'язок квадратного рівняння  $ax^2 + bx + c = 0$  для довільних дійсних чисел a, b і c
- задача  $\Pi_2$  задача знайти розв'язок квадратного рівняння  $x^2 + bx + 1 = 0$  для довільного дійсного числа b
- ullet задача  $\Pi_3$  задача знайти розв'язок квадратного рівняння  $x^2-2x+1=0$
- ullet  $\Rightarrow$  задача  $\Pi_3$  зводиться до задачі  $\Pi_2$
- ullet  $\Rightarrow$  задача  $\Pi_2$  зводиться до задачі  $\Pi_1$

### Приклад

Доведення нерозв'язності задачі  $HALT_{arepsilon}$ :

з існування розв'язку задачі  $HALT_{arepsilon}$  будувався розв'язок задачі HALT

 $\Rightarrow$  зведення задачі  $\mathit{HALT}$  до задачі  $\mathit{HALT}_{arepsilon}$ 

### Приклад

• *PRIME* — для заданого натурального числа визначити, чи є воно простим;

- PRIME для заданого натурального числа визначити, чи є воно простим;
- COMPOSITE для заданого натурального числа визначити, чи має воно нетривіальні дільники (відмінні від числа 1 та самого заданого числа);

- PRIME для заданого натурального числа визначити, чи є воно простим;
- СОМРОЅІТЕ для заданого натурального числа визначити, чи має воно нетривіальні дільники (відмінні від числа 1 та самого заданого числа);
- FACTOR для заданих натуральних чисел m і k визначити, чи має число m нетривіальний дільник, який є не більшим за число k.

- PRIME для заданого натурального числа визначити, чи є воно простим;
- COMPOSITE для заданого натурального числа визначити, чи має воно нетривіальні дільники (відмінні від числа 1 та самого заданого числа);
- FACTOR для заданих натуральних чисел m і k визначити, чи має число m нетривіальний дільник, який є не більшим за число k.
- задача COMPOSITE зводиться до задачі PRIME

- PRIME для заданого натурального числа визначити, чи є воно простим;
- *COMPOSITE* для заданого натурального числа визначити, чи має воно нетривіальні дільники (відмінні від числа 1 та самого заданого числа);
- FACTOR для заданих натуральних чисел m і k визначити, чи має число m нетривіальний дільник, який є не більшим за число k.
- задача COMPOSITE зводиться до задачі PRIME
- задача PRIME зводиться до задачі COMPOSITE

- PRIME для заданого натурального числа визначити, чи є воно простим;
- СОМРОЅІТЕ для заданого натурального числа визначити, чи має воно нетривіальні дільники (відмінні від числа 1 та самого заданого числа);
- FACTOR для заданих натуральних чисел m і k визначити, чи має число m нетривіальний дільник, який є не більшим за число k.
- задача COMPOSITE зводиться до задачі PRIME
- задача PRIME зводиться до задачі COMPOSITE
- задачі PRIME та COMPOSITE зводяться до задачі FACTOR

- PRIME для заданого натурального числа визначити, чи є воно простим;
- COMPOSITE для заданого натурального числа визначити, чи має воно нетривіальні дільники (відмінні від числа 1 та самого заданого числа);
- FACTOR для заданих натуральних чисел m і k визначити, чи має число m нетривіальний дільник, який є не більшим за число k.
- задача COMPOSITE зводиться до задачі PRIME
- задача PRIME зводиться до задачі COMPOSITE
- задачі PRIME та COMPOSITE зводяться до задачі FACTOR
- задача FACTOR не зводиться ні до задачі PRIME, ні до задачі COMPOSITE

#### Означення

Зведенням мов називають довільне бінарне відношення на множині всіх мов над алфавітом  $\{0,1\}$ , яке є рефлексивне та транзитивним. Мова  $L_1\subseteq\{0,1\}$  зводиться до мови  $L_2\subseteq\{0,1\}$ , якщо впорядкована пара  $(L_1,L_2)$  належить бінарному відношенню, яке задає зведення. Для позначення зведення мов використовують символ  $\leq$  з можливим використанням нижніх та верхніх індексів для уточнення конкретного зведення.

#### Означення

Зведенням мов називають довільне бінарне відношення на множині всіх мов над алфавітом  $\{0,1\}$ , яке є рефлексивне та транзитивним. Мова  $L_1\subseteq\{0,1\}$  зводиться до мови  $L_2\subseteq\{0,1\}$ , якщо впорядкована пара  $(L_1,L_2)$  належить бінарному відношенню, яке задає зведення. Для позначення зведення мов використовують символ  $\leq$  з можливим використанням нижніх та верхніх індексів для уточнення конкретного зведення.

### Наслідок

Обчислювальна задача  $\Pi_1$  **зводиться** до обчислювальної задачі  $\Pi_2$ , якщо існують такі схеми кодування  $e_1$  та  $e_2$  задач  $\Pi_1$  та  $\Pi_2$  відповідно, що мова  $L[\Pi_1,e_2]$  зводиться до мови  $L[\Pi_2,e_2]$ .

#### Означення

Зведенням мов називають довільне бінарне відношення на множині всіх мов над алфавітом  $\{0,1\}$ , яке є рефлексивне та транзитивним. Мова  $L_1\subseteq\{0,1\}$  зводиться до мови  $L_2\subseteq\{0,1\}$ , якщо впорядкована пара  $(L_1,L_2)$  належить бінарному відношенню, яке задає зведення. Для позначення зведення мов використовують символ  $\leq$  з можливим використанням нижніх та верхніх індексів для уточнення конкретного зведення.

### Наслідок

Обчислювальна задача  $\Pi_1$  **зводиться** до обчислювальної задачі  $\Pi_2$ , якщо існують такі схеми кодування  $e_1$  та  $e_2$  задач  $\Pi_1$  та  $\Pi_2$  відповідно, що мова  $L[\Pi_1,e_2]$  зводиться до мови  $L[\Pi_2,e_2]$ .

### Зауваження

Е застосовним для довільних множин.

#### Означення

ullet нехай r — довільне зведення мов над алфавітом  $\{0,1\}$ , а  $L_1$  та  $L_2$  — довільні мови над алфавітом  $\{0,1\}$ .

- ullet нехай r довільне зведення мов над алфавітом  $\{0,1\}$ , а  $L_1$  та  $L_2$  довільні мови над алфавітом  $\{0,1\}$ .
- ullet  $L_1 \leq_r L_2$  мова  $L_1$  **зводиться за допомогою зведення** r до мови  $L_2$

- ullet нехай r довільне зведення мов над алфавітом  $\{\,0,1\,\}$ , а  $L_1$  та  $L_2$  довільні мови над алфавітом  $\{\,0,1\,\}$ .
- ullet  $L_1 \leq_r L_2$  мова  $L_1$  **зводиться за допомогою зведення** r до мови  $L_2$
- ullet  $L_1 \not \leq_r L_2$  мова  $L_1$  не зводиться за допомогою зведення r до мови  $L_2$

- ullet нехай r довільне зведення мов над алфавітом  $\{\,0,1\,\}$ , а  $L_1$  та  $L_2$  довільні мови над алфавітом  $\{\,0,1\,\}$ .
- ullet  $L_1 \leq_r L_2$  мова  $L_1$  **зводиться за допомогою зведення** r до мови  $L_2$
- ullet  $L_1 \not\leq_r L_2$  мова  $L_1$  не зводиться за допомогою зведення r до мови  $L_2$
- $L_1 <_r L_2 L_1 \le_r L_2$  та  $L_2 \not\le_r L_1$ .

- ullet нехай r довільне зведення мов над алфавітом  $\{0,1\}$ , а  $L_1$  та  $L_2$  довільні мови над алфавітом  $\{0,1\}$ .
- ullet  $L_1 \leq_r L_2$  мова  $L_1$  **зводиться за допомогою зведення** r до мови  $L_2$
- ullet  $L_1 \not\leq_r L_2$  мова  $L_1$  не зводиться за допомогою зведення r до мови  $L_2$
- $L_1 <_r L_2 L_1 \le_r L_2$  ta  $L_2 \not \le_r L_1$ .
- $L_1|_rL_2 L_1 \not \leq_r L_2$  та  $L_2 \not \leq_r L_1$ .

- нехай r довільне зведення мов над алфавітом  $\{0,1\}$ , а  $L_1$  та  $L_2$  довільні мови над алфавітом  $\{0,1\}$ .
- ullet  $L_1 \leq_r L_2$  мова  $L_1$  **зводиться за допомогою зведення** r до мови  $L_2$
- ullet  $L_1 \not \leq_r L_2$  мова  $L_1$  не зводиться за допомогою зведення r до мови  $L_2$
- $L_1 <_r L_2 L_1 \le_r L_2$  ta  $L_2 \not \le_r L_1$ .
- $L_1|_rL_2 L_1 \not\leq_r L_2$  та  $L_2 \not\leq_r L_1$ .
- $L_1 =_r L_2$  мови  $L_1$  і  $L_2$  називають **еквівалентними відносно зведення** r (або r-**еквівалентними**), якщо  $L_1 \leq_r L_2$  і  $L_2 \leq_r L_1$

- нехай r довільне зведення мов над алфавітом  $\{0,1\}$ , а  $L_1$  та  $L_2$  довільні мови над алфавітом  $\{0,1\}$ .
- ullet  $L_1 \leq_r L_2$  мова  $L_1$  **зводиться за допомогою зведення** r до мови  $L_2$
- ullet  $L_1 \not\leq_r L_2$  мова  $L_1$  не зводиться за допомогою зведення r до мови  $L_2$
- $L_1 <_r L_2 L_1 \le_r L_2$  ta  $L_2 \not \le_r L_1$ .
- $L_1|_rL_2 L_1 \not\leq_r L_2$  та  $L_2 \not\leq_r L_1$ .
- ullet  $L_1=_r L_2$  мови  $L_1$  і  $L_2$  називають **еквівалентними відносно зведення** r (або r-**еквівалентними**), якщо  $L_1 \leq_r L_2$  і  $L_2 \leq_r L_1$
- бінарне відношення  $=_r \in$  еквівалентністю і окремий клас еквівалентності за відношенням  $=_r$  називають r-степенем

- нехай r довільне зведення мов над алфавітом  $\{0,1\}$ , а  $L_1$  та  $L_2$  довільні мови над алфавітом  $\{0,1\}$ .
- ullet  $L_1 \leq_r L_2$  мова  $L_1$  **зводиться за допомогою зведення** r до мови  $L_2$
- ullet  $L_1 \not\leq_r L_2$  мова  $L_1$  не зводиться за допомогою зведення r до мови  $L_2$
- $L_1 <_r L_2 L_1 \le_r L_2$  ta  $L_2 \not \le_r L_1$ .
- $L_1|_rL_2 L_1 \not \leq_r L_2$  та  $L_2 \not \leq_r L_1$ .
- ullet  $L_1=_r L_2$  мови  $L_1$  і  $L_2$  називають **еквівалентними відносно зведення** r (або r-**еквівалентними**), якщо  $L_1 \leq_r L_2$  і  $L_2 \leq_r L_1$
- бінарне відношення  $=_r \in$  еквівалентністю і окремий клас еквівалентності за відношенням  $=_r$  називають r-степенем
- r-степені будь-якого зведення r є частково впорядкованими зведенням r

#### Означення

ullet нехай  $r_1$  та  $r_2$   $\epsilon$  довільними зведеннями мов над алфавітом  $\{\,0,1\,\}$ 

- ullet нехай  $r_1$  та  $r_2$  ullet довільними зведеннями мов над алфавітом  $\{\,0,1\,\}$
- зведення  $r_1$  є сильнішим ніж зведення  $r_2$  (відповідно зведення  $r_2$  є слабкішим ніж зведення  $r_1$ ), якщо для довільних мов  $L_1, L_2 \subseteq \{0,1\}^*$  з умови  $L_1 \leq_{r_1} L_2$  випливає, що  $L_1 \leq_{r_2} L_2$ .

- ullet нехай  $r_1$  та  $r_2$   $\epsilon$  довільними зведеннями мов над алфавітом  $\{0,1\}$
- зведення  $r_1$  є сильнішим ніж зведення  $r_2$  (відповідно зведення  $r_2$  є слабкішим ніж зведення  $r_1$ ), якщо для довільних мов  $L_1, L_2 \subseteq \{0,1\}^*$  з умови  $L_1 \leq_{r_1} L_2$  випливає, що  $L_1 \leq_{r_2} L_2$ .
- зведення  $r_1$  є **строго сильнішим ніж зведення**  $r_2$  (відповідно зведення  $r_2$  є **строго слабкішим ніж зведення**  $r_1$ ), якщо зведення  $r_1$  є сильнішим ніж зведення  $r_2$  та існують такі мови  $L_1, L_2 \subseteq \{0,1\}^*$ , що  $L_1 \leq_{r_2} L_2$ , але  $L_1 \nleq_{r_1} L_2$

- ullet нехай  $r_1$  та  $r_2$   $\epsilon$  довільними зведеннями мов над алфавітом  $\{0,1\}$
- зведення  $r_1$  є сильнішим ніж зведення  $r_2$  (відповідно зведення  $r_2$  є слабкішим ніж зведення  $r_1$ ), якщо для довільних мов  $L_1, L_2 \subseteq \{0,1\}^*$  з умови  $L_1 \leq_{r_1} L_2$  випливає, що  $L_1 \leq_{r_2} L_2$ .
- зведення  $r_1$  є **строго сильнішим ніж зведення**  $r_2$  (відповідно зведення  $r_2$  є **строго слабкішим ніж зведення**  $r_1$ ), якщо зведення  $r_1$  є сильнішим ніж зведення  $r_2$  та існують такі мови  $L_1, L_2 \subseteq \{0,1\}^*$ , що  $L_1 \leq_{r_2} L_2$ , але  $L_1 \nleq_{r_1} L_2$
- зведення  $r_1$  є **еквівалентним зведенню**  $r_2$ , якщо для довільних мов  $L_1, L_2 \subseteq \{0,1\}^*$  твердження  $L_1 \leq_{r_1} L_2$  є правильним тоді й тільки тоді, коли  $L_1 \leq_{r_2} L_2$

#### Означення

- ullet нехай  $r_1$  та  $r_2$  ullet довільними зведеннями мов над алфавітом  $\{\,0,1\,\}$
- зведення  $r_1$  є сильнішим ніж зведення  $r_2$  (відповідно зведення  $r_2$  є слабкішим ніж зведення  $r_1$ ), якщо для довільних мов  $L_1, L_2 \subseteq \{0,1\}^*$  з умови  $L_1 \leq_{r_1} L_2$  випливає, що  $L_1 \leq_{r_2} L_2$ .
- зведення  $r_1$  є строго сильнішим ніж зведення  $r_2$  (відповідно зведення  $r_2$  є строго слабкішим ніж зведення  $r_1$ ), якщо зведення  $r_1$  є сильнішим ніж зведення  $r_2$  та існують такі мови  $L_1, L_2 \subseteq \{0,1\}^*$ , що  $L_1 \leq_{r_2} L_2$ , але  $L_1 \not\leq_{r_1} L_2$
- зведення  $r_1$  є **еквівалентним зведенню**  $r_2$ , якщо для довільних мов  $L_1, L_2 \subseteq \{0,1\}^*$  твердження  $L_1 \leq_{r_1} L_2$  є правильним тоді й тільки тоді, коли  $L_1 \leq_{r_2} L_2$

Якщо зведення  $r_1$  є сильнішим ніж зведення  $r_2$ , то кожен  $r_2$ -степінь складається з одного або декількох  $r_1$ -степенів.

#### Означення

ullet нехай C — деякий клас складності (деяка множина) мов над алфавітом  $\{\,0,1\,\}$ ,  $\,r$  — деяке зведення мов над алфавітом  $\{\,0,1\,\}$ 

- ullet нехай C деякий клас складності (деяка множина) мов над алфавітом  $\{\,0,1\,\}$ ,  $\,r$  деяке зведення мов над алфавітом  $\{\,0,1\,\}$
- ullet клас складності C є **замкненим відносно зведення** r, якщо для довільної мови  $L_c\subseteq\{\,0,1\,\}^*$  з класу складності C і довільної мови  $L_1\subseteq\{\,0,1\,\}^*$  з умови  $L_1\subseteq_r L_c$  випливає, що  $L_1\in C$

- ullet нехай C деякий клас складності (деяка множина) мов над алфавітом  $\{\,0,1\,\}$ , r деяке зведення мов над алфавітом  $\{\,0,1\,\}$
- ullet клас складності C є замкненим відносно зведення r, якщо для довільної мови  $L_c\subseteq\{\,0,1\,\}^*$  з класу складності C і довільної мови  $L_1\subseteq\{\,0,1\,\}^*$  з умови  $L_1\subseteq_r L_c$  випливає, що  $L_1\in C$
- мова  $L_1$  складна для класу складності C (C-складна) відносно зведення r, якщо для кожної мови  $L_c$  з класу складності C виконується твердження  $L_c \le_r L_1$

- ullet нехай C деякий клас складності (деяка множина) мов над алфавітом  $\{0,1\}$ , r деяке зведення мов над алфавітом  $\{0,1\}$
- ullet клас складності C є **замкненим відносно зведення** r, якщо для довільної мови  $L_c\subseteq \{\,0,1\,\}^*$  з класу складності C і довільної мови  $L_1\subseteq \{\,0,1\,\}^*$  з умови  $L_1\subseteq_r L_c$  випливає, що  $L_1\in C$
- мова  $L_1$  складна для класу складності C (C-складна) відносно зведення r, якщо для кожної мови  $L_c$  з класу складності C виконується твердження  $L_c \le_r L_1$
- мова  $L_1$  повна для класу складності C (C-повна) відносно зведення r, якщо вона є складною для класу складності C відносно зведення r і належить класу складності C

- нехай C деякий клас складності (деяка множина) мов над алфавітом  $\{0,1\}$ , r деяке зведення мов над алфавітом  $\{0,1\}$
- ullet клас складності C є **замкненим відносно зведення** r, якщо для довільної мови  $L_c\subseteq \{\,0,1\,\}^*$  з класу складності C і довільної мови  $L_1\subseteq \{\,0,1\,\}^*$  з умови  $L_1\subseteq_r L_c$  випливає, що  $L_1\in C$
- мова  $L_1$  складна для класу складності C (C-складна) відносно зведення r, якщо для кожної мови  $L_c$  з класу складності C виконується твердження  $L_c \le_r L_1$
- мова  $L_1$  повна для класу складності C (C-повна) відносно зведення r, якщо вона є складною для класу складності C відносно зведення r і належить класу складності C
- $\leq_r (C)$  множина всіх мов, які зводяться до мов класу складності C за допомогою зведення r

# Порівняння зведень

- нехай C деякий клас складності (деяка множина) мов над алфавітом  $\{0,1\}$ , r деяке зведення мов над алфавітом  $\{0,1\}$
- ullet клас складності C є **замкненим відносно зведення** r, якщо для довільної мови  $L_c\subseteq\{0,1\}^*$  з класу складності C і довільної мови  $L_1\subseteq\{0,1\}^*$  з умови  $L_1\le_r L_c$  випливає, що  $L_1\in C$
- мова  $L_1$  складна для класу складності C (C-складна) відносно зведення r, якщо для кожної мови  $L_c$  з класу складності C виконується твердження  $L_c \le_r L_1$
- мова  $L_1$  повна для класу складності C (C-повна) відносно зведення r, якщо вона є складною для класу складності C відносно зведення r і належить класу складності C
- $\leq_r (C)$  множина всіх мов, які зводяться до мов класу складності C за допомогою зведення r
- ullet  $\leq_r (L_1)$  множина всіх мов, які зводяться до мови  $L_1$  за допомогою зведення r

# Види зведень



### Означення

•  $L_1$  і  $L_2$  — деякі мови над алфавітом  $\{0,1\}$  і F — множина всюди визначених функцій виду  $\{0,1\}^* \to \{0,1\}^*$ , яка є замкненою відносно операції композиції функцій та містить тотожну функцію

- $L_1$  і  $L_2$  деякі мови над алфавітом  $\{0,1\}$  і F множина всюди визначених функцій виду  $\{0,1\}^* \to \{0,1\}^*$ , яка є замкненою відносно операції композиції функцій та містить тотожну функцію
- мова  $L_1$  зводиться за допомогою зведення функціонального типу з множиною функцій F до мови  $L_2$ , якщо існує функція f в множині F (яку називають функцією зведення) така, що для довільного слова  $x \in \{0,1\}^*$   $x \in L_1$  тоді й тільки тоді, коли  $f(x) \in L_2$

- $L_1$  і  $L_2$  деякі мови над алфавітом  $\{0,1\}$  і F множина всюди визначених функцій виду  $\{0,1\}^* \to \{0,1\}^*$ , яка є замкненою відносно операції композиції функцій та містить тотожну функцію
- мова  $L_1$  зводиться за допомогою зведення функціонального типу з множиною функцій F до мови  $L_2$ , якщо існує функція f в множині F (яку називають функцією зведення) така, що для довільного слова  $x \in \{0,1\}^*$   $x \in L_1$  тоді й тільки тоді, коли  $f(x) \in L_2$
- ullet мова  $L_1$  мова, яка зводиться

- $L_1$  і  $L_2$  деякі мови над алфавітом  $\{0,1\}$  і F множина всюди визначених функцій виду  $\{0,1\}^* \to \{0,1\}^*$ , яка є замкненою відносно операції композиції функцій та містить тотожну функцію
- мова  $L_1$  зводиться за допомогою зведення функціонального типу з множиною функцій F до мови  $L_2$ , якщо існує функція f в множині F (яку називають функцією зведення) така, що для довільного слова  $x \in \{0,1\}^*$   $x \in L_1$  тоді й тільки тоді, коли  $f(x) \in L_2$
- ullet мова  $L_1$  мова, яка зводиться
- ullet мова  $L_2$  мова, до якої зводять

- $L_1$  і  $L_2$  деякі мови над алфавітом  $\{0,1\}$  і F множина всюди визначених функцій виду  $\{0,1\}^* \to \{0,1\}^*$ , яка є замкненою відносно операції композиції функцій та містить тотожну функцію
- мова  $L_1$  зводиться за допомогою зведення функціонального типу з множиною функцій F до мови  $L_2$ , якщо існує функція f в множині F (яку називають функцією зведення) така, що для довільного слова  $x \in \{0,1\}^*$   $x \in L_1$  тоді й тільки тоді, коли  $f(x) \in L_2$
- мова L<sub>1</sub> мова, яка зводиться
- ullet мова  $L_2$  мова, до якої зводять
- позначають  $L_1 \leq_F L_2$

- $L_1$  і  $L_2$  деякі мови над алфавітом  $\{0,1\}$  і F множина всюди визначених функцій виду  $\{0,1\}^* \to \{0,1\}^*$ , яка є замкненою відносно операції композиції функцій та містить тотожну функцію
- мова  $L_1$  зводиться за допомогою зведення функціонального типу з множиною функцій F до мови  $L_2$ , якщо існує функція f в множині F (яку називають функцією зведення) така, що для довільного слова  $x \in \{0,1\}^*$   $x \in L_1$  тоді й тільки тоді, коли  $f(x) \in L_2$
- ullet мова  $L_1$  мова, яка зводиться
- мова L<sub>2</sub> мова, до якої зводять
- позначають  $L_1 \leq_F L_2$

$$f(L_1)\subseteq L_2$$
 і  $f(\overline{L_1})\subseteq \overline{L_2}$ ,  $f$  — необов'язково ін'єктивна

## Наслідок

Нехай F є множиною функцій деякого зведення функціонального типу. Для довільних мов  $L_1, L_2, L_3 \subseteq \{\,0,1\,\}$  виконується твердження, що, якщо функція  $f \in F$  є функцією зведення мови  $L_1$  до мови  $L_2$ , а функція  $g \in F$  є функцією зведення мови  $L_2$  до мови  $L_3$ , то функція  $f \circ g$  є функцією зведення мови  $L_1$  до мови  $L_3$ .

### Наслідок

Нехай F є множиною функцій деякого зведення функціонального типу. Для довільних мов  $L_1, L_2, L_3 \subseteq \{\,0,1\,\}$  виконується твердження, що, якщо функція  $f \in F$  є функцією зведення мови  $L_1$  до мови  $L_2$ , а функція  $g \in F$  є функцією зведення мови  $L_2$  до мови  $L_3$ , то функція  $f \circ g$  є функцією зведення мови  $L_1$  до мови  $L_3$ .

## Наслідок

Всі зведення функціонального типу є рефлексивними і транзитивними відношеннями на множині мов над алфавітом  $\{\,0,1\,\}.$ 

## Наслідок

Нехай F є множиною функцій деякого зведення функціонального типу. Для довільних мов  $L_1, L_2, L_3 \subseteq \{\,0,1\,\}$  виконується твердження, що, якщо функція  $f \in F$  є функцією зведення мови  $L_1$  до мови  $L_2$ , а функція  $g \in F$  є функцією зведення мови  $L_2$  до мови  $L_3$ , то функція  $f \circ g$  є функцією зведення мови  $L_1$  до мови  $L_3$ .

## Наслідок

Всі зведення функціонального типу є рефлексивними і транзитивними відношеннями на множині мов над алфавітом  $\{\,0,1\,\}.$ 

## Теорема

Для довільних мов  $L_1, L_2 \subseteq \{0,1\}^*$  і довільної множини F всюди визначених функцій виду  $\{0,1\}^* \to \{0,1\}^*$ , яка є замкненою відносно операції композиції функцій та містить тотожну функцію, з умови  $L_1 \leq_F L_2$  випливає, що  $\overline{L_1} \leq_F \overline{L_2}$ .

# Приклади замкнених множин

## Приклад

- ullet множина всіх всюди визначених функцій виду  $\set{0,1}^* o \set{0,1}^*$
- множина всіх обчислювальних всюди визначених функцій виду  $\{\,0,1\,\}^* \to \{\,0,1\,\}^*$
- ullet множина всіх всюди визначених функцій виду  $\{\,0,1\,\}^* o \{\,0,1\,\}^*$ , які обчислюються машинами Тюрінга за поліноміальний час
- множина всіх всюди визначених функцій виду  $\left\{\,0,1\,\right\}^* o \left\{\,0,1\,\right\}^*$ , які обчислюються машинами Тюрінга за лінійний час

### Означення

m-зведенням називають зведення функціонального типу відносно множини всіх всюди визначених обчислювальних функцій.

Позначають як  $L_1 \leq_m L_2$ .

### Означення

m-зведенням називають зведення функціонального типу відносно множини всіх всюди визначених обчислювальних функцій.

Позначають як  $L_1 \leq_m L_2$ .

### Властивості т-зведення

Для довільних мов  $L_1, L_2 \subseteq \set{0,1}^*$ , якщо  $L_1 \leq_m L_2$  і

ullet  $L_2$   $\epsilon$  вирішуваною мовою, то мова  $L_1$  також  $\epsilon$  вирішуваною

### Означення

*m*-**зведенням** називають зведення функціонального типу відносно множини всіх всюди визначених обчислювальних функцій.

Позначають як  $L_1 \leq_m L_2$ .

## Властивості т-зведення

Для довільних мов  $L_1, L_2 \subseteq \set{0,1}^*$ , якщо  $L_1 \leq_m L_2$  і

- ullet  $L_2$   $\epsilon$  вирішуваною мовою, то мова  $L_1$  також  $\epsilon$  вирішуваною
- ullet  $L_1$   $\epsilon$  невирішуваною мовою, то мова  $L_2$  також  $\epsilon$  невирішуваною

### Означення

*m*-**зведенням** називають зведення функціонального типу відносно множини всіх всюди визначених обчислювальних функцій.

Позначають як  $L_1 \leq_m L_2$ .

## Властивості т-зведення

Для довільних мов  $L_1, L_2 \subseteq \set{0,1}^*$ , якщо  $L_1 \leq_m L_2$  і

- $L_2$  є вирішуваною мовою, то мова  $L_1$  також є вирішуваною
- ullet  $L_1$   $\epsilon$  невирішуваною мовою, то мова  $L_2$  також  $\epsilon$  невирішуваною
- $L_2$  є рекурсивно зліченною мовою, то мова  $L_1$  також є рекурсивно зліченною

### Означення

*m*-**зведенням** називають зведення функціонального типу відносно множини всіх всюди визначених обчислювальних функцій.

Позначають як  $L_1 \leq_m L_2$ .

## Властивості т-зведення

Для довільних мов  $L_1, L_2 \subseteq \set{0,1}^*$ , якщо  $L_1 \leq_m L_2$  і

- ullet  $L_2$   $\epsilon$  вирішуваною мовою, то мова  $L_1$  також  $\epsilon$  вирішуваною
- ullet  $L_1$   $\epsilon$  невирішуваною мовою, то мова  $L_2$  також  $\epsilon$  невирішуваною
- $L_2$  є рекурсивно зліченною мовою, то мова  $L_1$  також є рекурсивно зліченною
- $L_2$  є корекурсивно зліченною мовою, то мова  $L_1$  також є корекурсивно зліченною

#### Означення

m-зведенням називають зведення функціонального типу відносно множини всіх всюди визначених обчислювальних функцій. Позначають як  $L_1 \leq_m L_2$ .

### Властивості т-зведення

Для довільних мов  $L_1, L_2 \subseteq \set{0,1}^*$ , якщо  $L_1 \leq_m L_2$  і

- $L_2$  є вирішуваною мовою, то мова  $L_1$  також є вирішуваною
- $L_1$  є невирішуваною мовою, то мова  $L_2$  також є невирішуваною
- $L_2$  є рекурсивно зліченною мовою, то мова  $L_1$  також є рекурсивно зліченною
- $L_2$  є корекурсивно зліченною мовою, то мова  $L_1$  також є корекурсивно зліченною

## Наслідок

Класи складності R, RE та coRE  $\epsilon$  замкненими відносно m-зведення.

#### Означення

1-зведенням мови  $L_1\subseteq\{0,1\}^*$  до мови  $L_2\subseteq\{0,1\}^*$  називають зведення функціонального типу відносно множини всіх всюди визначених обчислювальних функцій, якщо існує ін'єктивна всюди визначена обчислювальна функція  $f\colon\{0,1\}^*\to\{0,1\}^*$  така, що для довільного слова  $x\in\{0,1\}^*$   $x\in L_1$  тоді й тільки тоді, коли  $f(x)\in L_2$ . 1-зведення мови  $L_1\subseteq\{0,1\}^*$  до мови  $L_2\subseteq\{0,1\}^*$  позначають як  $L_1\le 1$   $L_2$ .

#### Означення

1-зведенням мови  $L_1\subseteq\{0,1\}^*$  до мови  $L_2\subseteq\{0,1\}^*$  називають зведення функціонального типу відносно множини всіх всюди визначених обчислювальних функцій, якщо існує ін'єктивна всюди визначена обчислювальна функція  $f\colon\{0,1\}^*\to\{0,1\}^*$  така, що для довільного слова  $x\in\{0,1\}^*$   $x\in L_1$  тоді й тільки тоді, коли  $f(x)\in L_2$ . 1-зведення мови  $L_1\subseteq\{0,1\}^*$  до мови  $L_2\subseteq\{0,1\}^*$  позначають як  $L_1\le L_2$ .

## Наслідок

т-зведення є слабкішим за 1-зведення.

# Машиною Тюрінга з оракулом

```
Машиною Тюрінга з оракулом називають абстрактний
обчислювальний пристрій, який визначається кортежем (k, \Gamma, \Sigma, \#, 
Q, Q_F, q_0, q_{query}^O, q_{ves}^O, q_{no}^O, \delta), де
k \in \mathbb{N}, k > 3 — кількість стрічок машини Тюрінга;
Г — алфавіт машини Тюрінга або алфавіт стрічки;
\# \in \Gamma — порожній символ;
\Sigma \subseteq \Gamma \setminus \{\#\} — вхідний алфавіт;
Q — множина внутрішніх станів;
Q_F \subset Q — множина кінцевих внутрішніх станів;
q_0 \in Q — початковий стан;
q_{query}^O \in Q — виділений внутрішній стан запиту до оракулу;
q_{	ext{ves}}^O \in Q, q_{	ext{ves}}^O 
eq q_{	ext{auerv}}^O, — виділений внутрішній стан відповіді оракула
'так':
q_{no}^{O} \in Q, q_{no}^{O} \neq q_{query}^{O}, q_{no}^{O} \neq q_{ves}^{O}, — виділений внутрішній стан
відповіді оракула 'ні';
\delta \colon Q \setminus (Q_F \cup \{q_{query}^O\}) \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{L, S, R\}^k — функція
переходів.
```

# Зведення за Тюрінгом

#### Означення

Мова  $L_1\subseteq\{0,1\}^*$  зводиться за Тюрінгом до мови  $L_2\subseteq\{0,1\}^*$  (за час T(n)), якщо існує машина Тюрінга з оракулом, яка вирішує мову  $L_1$  (за час T(n)) з використанням мови  $L_2$  як мови оракула, і позначають це як  $L_1\leq_T L_2$ .

# Зведення за Тюрінгом

#### Означення

Мова  $L_1\subseteq\{0,1\}^*$  зводиться за Тюрінгом до мови  $L_2\subseteq\{0,1\}^*$  (за час T(n)), якщо існує машина Тюрінга з оракулом, яка вирішує мову  $L_1$  (за час T(n)) з використанням мови  $L_2$  як мови оракула, і позначають це як  $L_1\leq_T L_2$ .

### Твердження

Зведення за Тюрінгом є слабкішим за m-зведення.

Мова  $L_1 \subseteq \{0,1\}^*$  зводиться до мови  $L_2 \subseteq \{0,1\}^*$  за допомогою табличного зведення, якщо існують обчислювані всюди визначені функції  $f_1\colon \left\{0,1\right\}^* o \mathbb{N}$ ,  $f_2\colon \left\{0,1\right\}^* o \left(\left\{0,1\right\}^*\right)^k$  та  $f_3$ :  $\left\{0,1\right\}^* \to U$ , де U — множина всіх булевих функцій, тобто всіх відображень  $\{0,1\}^k \to \{0,1\}$  для всіх чисел  $k \in \mathbb{N}$ , такі, що для довільного слова  $x \in \{0,1\}^*$   $f_3(x) = \varphi(b_1,\ldots,b_{f_1(x)})$ , де  $\varphi \in$ булевою функцією від  $f_1(x)$  булевих змінних виду  $\{0,1\}^{f_1(x)} \to \{0,1\}, \text{ а } f_2(x) = (z_1,\ldots,z_{f_1(x)}), \text{ де}$  $z_1, \dots, z_{f_1(x)} \in \{0,1\}^*$ , і  $x \in L_1$  тоді й тільки тоді, коли  $\varphi(L_2(z_1), \dots, L_2(z_{f_1(x)})) = 1$ . Позначають це через запис  $L_1 \leq_{tt} L_2$ .

Мова  $L_1 \subseteq \{0,1\}^*$  зводиться до мови  $L_2 \subseteq \{0,1\}^*$  за допомогою табличного зведення, якщо існують обчислювані всюди визначені функції  $f_1 \colon \left\{ 0,1 \right\}^* o \mathbb{N}, \, f_2 \colon \left\{ 0,1 \right\}^* o \; \bigcup \; \left( \left\{ 0,1 \right\}^* \right)^k$  та  $f_3 \colon \{\,0,1\,\}^* \to U$ , де U- множина всіх булевих функцій, тобто всіх відображень  $\{0,1\}^k \to \{0,1\}$  для всіх чисел  $k \in \mathbb{N}$ , такі, що для довільного слова  $x \in \{0,1\}^*$   $f_3(x) = \varphi(b_1,\ldots,b_{f_2(x)})$ , де  $\varphi \in$ булевою функцією від  $f_1(x)$  булевих змінних виду  $\{0,1\}^{f_1(x)} \to \{0,1\}, \text{ а } f_2(x) = (z_1,\ldots,z_{f_1(x)}), \text{ де}$  $z_1,\ldots,z_{f_1(x)}\in \{\ 0,1\ \}^*$ , і  $x\in L_1$  тоді й тільки тоді, коли  $\varphi(L_2(z_1), \ldots, L_2(z_{f_1(x)})) = 1$ . Позначають це через запис  $L_1 \leq_{tt} L_2$ .

- ullet функція  $f_1$  кількість запитів для кожного слова
- функція  $f_2$  побудова конкретних запитів (слів, щодо яких оракул має відповісти, чи належать вони мові  $L_2$ )
- ullet функція  $f_3$  обробка результатів цих запитів та обчислення результату

#### Означення

Мова  $L_1\subseteq\{0,1\}^*$  зводиться до мови  $L_2\subseteq\{0,1\}^*$  за допомогою слабкого табличного зведення, якщо існують машина Тюрінга M з оракулом  $L_2$  та обчислювані всюди визначені функції  $f_1\colon\{0,1\}^*\to\mathbb{N}$  та  $f_2\colon\{0,1\}^*\to\bigcup_{k\in\mathbb{N}}\left(\{0,1\}^*\right)^k$  такі, що для довільного вхідного слова  $x\in\{0,1\}^*$  машина Тюрінга M з оракулом  $L_2$  зробить точно  $f_1(x)$  запитів  $(z_1,\ldots,z_{f_1(x)})$  до оракулу, які визначаються значенням  $f_2(x)=(z_1,\ldots,z_{f_1(x)})$ , де  $z_1,\ldots,z_{f_1(x)}\in\{0,1\}^*$ , і при цьому машина Тюрінга M з оракулом  $L_2$  вирішує мову  $L_1$ . Позначають це через запис  $L_1\leq_{wtt}L_2$ .

#### Означення

Мова  $L_1\subseteq\{0,1\}^*$  зводиться до мови  $L_2\subseteq\{0,1\}^*$  за допомогою слабкого табличного зведення, якщо існують машина Тюрінга M з оракулом  $L_2$  та обчислювані всюди визначені функції  $f_1\colon\{0,1\}^*\to\mathbb{N}$  та  $f_2\colon\{0,1\}^*\to\bigcup_{k\in\mathbb{N}}\left(\{0,1\}^*\right)^k$  такі, що для довільного вхідного слова  $x\in\{0,1\}^*$  машина Тюрінга M з оракулом  $L_2$  зробить точно  $f_1(x)$  запитів  $(z_1,\ldots,z_{f_1(x)})$  до оракулу, які визначаються значенням  $f_2(x)=(z_1,\ldots,z_{f_1(x)})$ , де  $z_1,\ldots,z_{f_1(x)}\in\{0,1\}^*$ , і при цьому машина Тюрінга M з оракулом  $L_2$  вирішує мову  $L_1$ . Позначають це через запис  $L_1\leq_{wtt}L_2$ .

- ullet функція  $f_1$  кількість запитів для кожного слова
- функція  $f_2$  побудова конкретних запитів (слів, щодо яких оракул має відповісти, чи належать вони мові  $L_2$ )
- обробка результатів цих запитів та обчислення результату в машині Тюрінга

## Твердження

Зведення за Тюрінгом є слабкішим за wtt-зведення. wtt-зведення є слабкішим за tt-зведення. tt-зведення є слабкішим за m-зведення.

## Твердження

Зведення за Тюрінгом є слабкішим за wtt-зведення. wtt-зведення є слабкішим за tt-зведення. tt-зведення є слабкішим за tt-зведення.

#### Означення

Мова  $L_1\subseteq\{0,1\}^*$  обмежено зводиться за Тюрінгом до мови  $L_2\subseteq\{0,1\}^*$  (за час T(n)) (або зводиться за допомогою обмеженого зведення за Тюрінгом), якщо існують всюди визначена обчислювальна функція  $f\colon \mathbb{N}\to\mathbb{N}$  і машина Тюрінга з оракулом, яка вирішує мову  $L_1$  (за час T(n)) з використанням мови  $L_2$  як мови оракула, причому довжина кожного запиту до оракула не перевищує значення f(|x|) для будь-якого вхідного слова  $x\in\{0,1\}^*$ , і позначають це як  $L_1\leq_{bT}L_2$ .

## Твердження

Зведення за Тюрінгом є слабкішим за wtt-зведення. wtt-зведення є слабкішим за tt-зведення. tt-зведення є слабкішим за tt-зведення.

#### Означення

Мова  $L_1\subseteq\{0,1\}^*$  обмежено зводиться за Тюрінгом до мови  $L_2\subseteq\{0,1\}^*$  (за час T(n)) (або зводиться за допомогою обмеженого зведення за Тюрінгом), якщо існують всюди визначена обчислювальна функція  $f\colon \mathbb{N}\to\mathbb{N}$  і машина Тюрінга з оракулом, яка вирішує мову  $L_1$  (за час T(n)) з використанням мови  $L_2$  як мови оракула, причому довжина кожного запиту до оракула не перевищує значення f(|x|) для будь-якого вхідного слова  $x\in\{0,1\}^*$ , і позначають це як  $L_1\leq_{bT}L_2$ .

## Твердження

Обмежене зведення за Тюрінгом є еквівалентним wtt-зведенню.

# Степені Тюрінга

$$L_1, L_2 \subseteq \{0, 1\}^*: L_1 \leq_1 L_2 \Rightarrow L_1 \leq_m L_2 \Rightarrow L_1 \leq_{tt} L_2 \Rightarrow L_1 \leq_{wtt} L_2 \Rightarrow L_1 \leq_{T} L_2$$

# Степені Тюрінга

$$L_1, L_2 \subseteq \{0, 1\}^*$$
:  $L_1 \le_1 L_2 \Rightarrow L_1 \le_m L_2 \Rightarrow L_1 \le_{tt} L_2 \Rightarrow L_1 \le_{wtt} L_2 \Rightarrow L_1 \le_{T} L_2$ 

#### Означення

Класи еквівалентності за зведенням за Тюрінгом називають степенем Тюрінга або степенем нерозв'язності. Для довільної мови  $L_1\subseteq \{\,0,1\,\}^*$  через  $[L_1]$  позначають степінь Тюрінга, якому належить мова  $L_1$ . Множину всіх степенів Тюрінга позначають як  $\mathcal{D}$ .

0 — найменший степінь Тюрінга, містить всі вирішувані мови