

SIX WEEKS SUMMER TRAINING REPORT

On

Airline management System (Database systems concepts and designs)

Submitted by

Name-Navin Chandra

Registration No. 12001138

Program Name:B-tech CSE lateral entry

Under the Guidance of

Georgia Tech (Udacity)

School of Computer Science & Engineering
Lovely Professional University, Phagwara
(June-July, 2021)

DECLARATION

I hereby declare that I have completed my six weeks summer training at UDACITY from 26 Jul 2021 to 14 Aug 2021 under the guidance of Georgia tech. I have declare that I have worked with full dedication during these six weeks of training and my learning outcomes fulfill the requirements of training for the award of degree of B.tech CSE, Lovely Professional University, Phagwara.

Name of student: Navin Chandra

Registration No: 12001138

Date:30 sept 2021

ACKNOWLEDGEMENT

I would like to express my gratitude towards my University as well as Udacity for providing me the golden opportunity to do this wonderful summer training regarding Database systems concepts and designs, which also helped me in doing a lot of homework and learning. As a result, I came to know about so many new things. So, I am really thank full to them.

Moreover I would like to thank my Instructor who explained in such a way that, whenever I got stuck in some problem related to my course. I am really thankfull to have such a good Course.

Also,I would like to mention the support and consideration of my parents who have always been there in my life to make me choose right thing and oppose the wrong. Without them I could never had learned and became a person who I am now.

I have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals and organizations. I would like to extend my sincere thanks to all of them.

Summer Training Certificate

Contents

SL NO.	TABLE OF CONTENT	PAGE NO.
1	Intoduction	6
2	Technology Learnt	8
3	Reason for choosing this technology	9
4	Profile of the Problem	10
5	Existing System	11
6	Problem AnalysisProduct definitionFeasibility Analysis	12
7	Software Requirement Analysis	13
8	 Design Tables and their relationships Flowcharts/Pseudo code 	15
9	Implementation	33
10	Learning Outcome from training/technology learnt	40

1. Introduction

Database system is a tool that simplifies the above tasks of managing the data and extracting useful information in a timely fashion. It analyses and guides the activities or business purposes of an organisation. It is the central repository of the data in the organisation's information system and is essential for supporting the organisation's functions, maintaining the data for these functions and helping users interpret the data in decision-making. Managers are seeking to use knowledge derived from databases for competitive advantages, for example, to determine customer buying pattern, tracking sales, support customer relationship management (CRM), online shopping, employee relationship management, implement decision support system (DSS). managing inventories and so on. To meet the changing organisational needs, database structures must be flexible to accept new data and accommodate new relationships to support the new decisions

With the rapid growth in computing technology and its application in all spheres of modern society. databases have become an integral component of our everyday life. We encounter several activities in our day-to-day life that involve interaction with a database, for example, bank database to withdraw and deposit money, air or railway reservation databases for booking of tickets, library database for searching of a particular book, supermarket goods databases to keep the inventory, to check for sufficient credit balance while purchasing goods using credit cards and so on.

In fact, databases and database management systems (DBMS) have become essential for managing our business, governments, banks, universities and every other kind of human endeavour. Thus, they are a critical element of today's software industry to support these requirements and a daunting task to solve the problems of managing huge amounts of data that are increasingly being stored

Project Name and Description

The Airline management

The Airline management System was one of the earliest changes to improve efficiency. ARS eventually evolved into the Computer Reservations System (CRS). A Computer Reservation System is used for the reservations of a particular airline and interfaces with a Global Distribution System (GDS) which supports travel agencies and other distribution channels in making reservations for most major airlines in a single system.

Airline management System contain airline schedules, fare tariffs, passenger reservations and ticket records. An airline's direct distribution works within their own reservation system, as well as pushing out information to the GDS. A second type of direct distribution channel are consumers who use the internet or mobile applications to make their own reservations.

2. Technology Learnt

It had 15 units which was further divided into topics so during my whole 6 week course I learned the following :

Fundamental of Database:

In this chapter I learnt

- The introduction of database,
- use of database,
- Data Modeling,
- Process Modeling,
- Data Models-Architecture,
- Relational Model,
- Introduction to Keys and Identifiers,
- Introduction to Integrity and Consistency,
- ANSI-SPARC
- Intro to Conceptual Schema, Ecternal Schema, Internal Schema
- Physical, logical Data Independence
- Metadata.

Entity Relationship Diagram

Draw the ER diagram here. An example is shown:

ER diagrams help to explain the logical structure of databases. ER diagrams are created based on three basic concepts: entities, attributes and relationships.

ER Diagrams contain different symbols, here's how they are represented.

Normalization

First Normal Form (1NF):

For a table to be in the First Normal Form, it should follow the following 4 rules:

- 1. It should only have single(atomic) valued attributes/columns.
- 2. Values stored in a column should be of the same domain
- 3. All the columns in a table should have unique names.
- 4. And the order in which data is stored, does not matter.

Second Normal Form (2NF):

For a table to be in the Second Normal Form,

- 1. It should be in the First Normal form.
- 2. And, it should not have Partial Dependency.

Third Normal Form (3NF):

A table is said to be in the Third Normal Form when,

- 1. It is in the Second Normal form.
- 2. And, it doesn't have Transitive Dependency

Boyce and Codd Normal Form (BCNF):

Boyce and Codd Normal Form is a higher version of the Third Normal form. This form deals with certain type of anomaly that is not handled by 3NF. A 3NF table which does not have multiple overlapping candidate keys is said to be in BCNF. For a table to be in BCNF, following conditions must be satisfied:

R must be in 3rd Normal Form

and, for each functional dependency ($X \rightarrow Y$), X should be a super Key.

3. Reason of choosing this technology

I choosed this technology because Database is concept which is everywhere in every websites and every companies also use this technology

And, In order to ensure data accuracy, you must design a database that only store relevant and valuable information. A well-designed database is essential to guarantee information consistency, eliminate redundant data, efficiently execute queries, and improve the database's performance.

- ➤ Database management system helps making data more efficient and effective. This system stores, organises and manages a large amount of information within a single software application.
- ➤ Our Project on airline database system holds flight details, flight schedule, passenger details, ticket records, etc.
- ➤ We have used SQL as an language for applying queries. (Queries for insertion, deletion, updating, etc.)
- ➤ Benefits
 - ✓ Control redundancy in data storage and in development of effort.
 - ✓ It Provides a structured approach to managing risks.
 - ✓ It Reduces risk by streamlining continuous improvement to operations.
 - ✓ Improve maintenance through data independence also backup and recovery services.

4. Profile of the Problem

The web based "Airline management System" project is an attempt to stimulate the basic concepts of airline reservation system. The system enables the customer to do the things such as search for airline flights for two travel cities on a specified date, choose a flight based on the details, reservation of flight and cancellation of reservation.

The system allows the airline passenger to search for flights that are available between the two travel cities, namely the "Departure city" and "Arrival city" for a particular departure and arrival dates. The system displays all the flight's details such as flight no, name, price and duration of journey etc. After search the system display list of available flights and allows customer to choose a particular flight. Then the system checks for the availability of seats on the flight. If the seats are available then the system allows the passenger to book a seat. Otherwise it asks the user to choose another flight

To book a flight the system asks the customer to enter his details such as name, address, city, state, credit card number and contact number. Then it checks the validity of card and book the flight and update the airline database and user database.

5. Existing System

In the existing system all the data are stored manually to an excel sheet and filed accordingly in a filing cabinet.

Disadvantages in existing system:

- o Time consuming
- o Possibly of loosing data
- Lack of security
- o Difficulties in maintaining records
- o Human error will be frequent
- o searching the records manually leads time consuming

HARDWARE: PROCESSOR:

- PENTUIUM IV 2.6 GHz
- RAM: 512MB DD RAM
- MONITOR: 15" COLOR
- HARD DISK :250 GB
- CDDRIVE: LG52X
- KEYBOARD : STANDARD 102 KEYS
- MOUSE:OPTICAL MOUSE

SOFTWARE:

- FORNT END :JAVA,HTML,SERVLETS
- BACKEND: ORACLE 10i
- OPERATING SYSTEM: WINDOWS XP

6. Problem Analysis

Product definition

- **1. Airplane_type**: This defines the physical type of the plane. It dictates the capacity of first, executive, business and economy seats that a flight can have.
- **2. Route :** A route is simply a tuple of airports: (StartAirport,EndAirport), and every route has a unique route id. A flight runs over a route only
- **3. Flight :** A flight is identified by its flightid. A flight denotes an unique "plane", i.e. one which is scheduled to run at a certain time, from one place to another. A flight runs over a set of routes.
- **4. AirFare :** Air fare is Price of ticket which is decided by the airline company and the government
- **5.** Passengers: Passengers are the people who book the flight and travel
- **6. Employees :** An Employees is a person who can book tickets for others, and can find retrieve the complete list of passengers boarding a flight. An official works at an airport.
- **7. Transactions :** Transactions are the process of booking the ticket made by Passengers in which all their details are present, Each transaction is unique.
- **8.** Countries: Countries are basically the Country in which flight are going and from flight are going
- **9. Airport :** An airport consists of a name, the city it is in, and its airport id.

Feasibility Analysis

FlightRouteScheme: This is a ternary relation that says that a flight runs over a route using a particular scheme. The scheme can be null, but not the flight id and route id. The attributes in this include:

- 1. Fare for the flight between the two stops given by the route specified.
- 2. Any scheme valid on this flight, for this route
- 3. Number of booked seats on this flight, route. d. A flag value indicating whether this is an elementary or complex route for this flight.

7. Software Requirement Analysis

Introduction:

Requirements analysis is critical to the success of a development project. Requirements must be documented, actionable, measurable, testable, related to identified business needs or opportunities, and defined to a level of detail sufficient for system design. Requirements can be architectural, structural, behavioral, functional, and non-functional.

Specific Requirements

- **Software**
- Windows 10
- M.S Word
- SQL Live

❖ Hardware

- Lenovo Ideapad 320
- Intel i3 7th generation
- Recommended: 2.2 GHz or higher CPU, 1024 MB or more RAM, 1280×1024 display, 7200 RPM or higher hard disk

APPLICABILITY

This project solve the problem of the traditional reservation system.

With certain changes it can be applicable on any online reservation field.

One of the most benefits in today's life is that reservation can be made from any place of the world.

The user need not to be present the physically to draw a reservation slip. It will automatically do by the system

ADVANTAGES

- 1. It easy to learn and adjust to the system
- 2. this system does not require the staff to be highly educated
- 3. the requirements to tackle this job may be limited to
- 4. Willing to work long hours
- 5. data is not easily lost
- 6. it easy to manage the system due to the high number of staff working

8. Design

o Tables and their relationships

Here we represent the database management system for an Airline. The entities and their respective attributes required are as follows:

- 1. Airplane_type
 - o A_ID (Number)
 - o Capacity (Number)
 - o A_weight (Number)
 - o Company (Varchar)
- 2. Route
 - o Route_ID (Number)
 - o Destination (Varchar)
 - Take_Off_point (Varchar)
 - o R_type
- 3. Flight
 - o Flight_ID (Number)
 - o Departure
 - o Arrival
 - o Flight_date (Date)
- 4. AirFare
 - o Fare_ID (Number)
 - Charge_Amount (Number)
 - Description (Varchar)
- 5. Passengers
 - o Ps_ID (Number)
 - o Name (Varchar)
 - o Address (Varchar)
 - o Age (Number)
 - o Sex (Varchar)
 - o Contacts (Number)
- 6. Employees
 - o Emp_ID (Number)
 - o Name (Varchar)
 - o Address (Varchar)
 - o Age (Varchar)
 - Email_ID (Varchar)
 - o Contacts (Number)

7. Transactions

- o TS_ID (Number)
- o Booking_Date (Date)
- o Departure_Date (Date)
- o Type (Varchar)
- o Emp_ID* (Number)
- o Ps_ID* (Number)
- o Flight_ID* (Number)
- o Charge_Amount* (Number)

8. Countries

- o Country_code (Number)
- Country_Name (Varchar)

9. Airport

- o Air_Code (Number)
- o Air_Name (Varchar)
- o City (Varchar)
- o State (Varchar)

Relationships and Cardinality

- Relationship is nothing but an association among two or more entities. Entities take part in relationships. We can often identify relationships with verbs or verb phrases.
- Cardinality defines the numerical attributes of the relationship between two entities or entity sets. These are most useful in describing binary relation sets.

Different types of cardinal relationships are:

One-to-One Relationships (1:1)

One entity from entity set X can be associated with at most one entity of entity set Y and vice versa.

One-to-Many Relationships (1: M)

One entity from entity set X can be associated with multiple entities of entity set Y, but an entity from entity set Y can be associated with at least one entity.

o Many to One Relationships (M:1)

More than one entity from entity set X can be associated with at most one entity of entity set Y. However, an entity from entity set Y may or may not be associated with more than one entity from entity set X.

o Many-to-Many Relationships (M:N)

One entity from X can be associated with more than one entity from Y and vice versa

- 1. The entities Airplane_type and Flight are connected by a relation called Type. It is a One To Many Relationship.
 - And they Both Have Total Participation.
- 2. The entities Passengers and Transactions are connected by a relation called Payment. It is a One To Many Relationship.
 - And they Both Have Total Participation.
- 3. The entities Flight and Airport are connected by a relation called Can land. It is a Many To Many Relationship.
 - And they Both Have Total Participation.
- 4. The entities Flight and Route are connected by a relation called Travels on. It is a Many To Many Relationship.
 - And here Flight has Total Participation and the Route has Partial Participation.
- 5. The entities Air-Fare and Flight are connected by a relation called Assigned. It is a Many To One Relationship.
 - And they Both Have Total Participation.
- 6. The entities Airport and Countries are connected by a relation called Part of. It is a Many To One Relationship.
 - And they Both Have Total Participation.
- 7. The entities Employee and Airport are connected by a relation called Works for. It is a Many To One Relationship.
 - And they Both Have Total Participation.
- 8. The entities Passenger and Flight are connected by a relation called Belongs to. It is a Many To One Relationship.
 - And they Both Have Total Participation

o Flowcharts and Pseudo code

Entity Relationship Diagram

o SQL Queries: (Pseudo code)

1. Airplane type

CREATE TABLE Airplane_type(A_ID INT,

Capacity INT, A_weight INT,

Company VARCHAR(15),

PRIMARY KEY(A_ID));

INSERT INTO Airplane_type VALUES (738,853,394,'Indigo');

INSERT INTO Airplane_type VALUES (777,800,380,'Vistara');

INSERT INTO Airplane_type VALUES (750,790,364,'AirIndia');

INSERT INTO Airplane_type VALUES (790,850,390,'SpiceJet');

INSERT INTO Airplane_type VALUES (745,770,405,'GoAir');

INSERT INTO Airplane_type VALUES (768,867,387,'AirAsia');

INSERT INTO Airplane_type VALUES (821,790,355,'TruJet');

INSERT INTO Airplane_type VALUES (785,835, 410,'Alliance Air');

SELECT * FROM Airplane_type;

A_ID	CAPACITY	A_WEIGHT	COMPANY
738	853	394	Indigo
777	800	380	Vistara
750	790	364	AirIndia
790	850	390	SpiceJet
745	770	405	GoAir
768	867	387	AirAsia
821	790	355	TruJet
785	835	410	Alliance Air

Download CSV

8 rows selected.

2. Route

CREATE TABLE Route(Route_ID INT, Take_Off_point VARCHAR(15),

Destination VARCHAR(15) R_type VARCHAR(15),

PRIMARY KEY(Route_ID));

INSERT INTO Route VALUES(168806, 'London', 'Delhi', 'Direct');

INSERT INTO Route VALUES(157306,'NewJersey','Mumbai','2Hr Break');

INSERT INTO Route VALUES(178916, 'Washington', 'Jodhpur', '3Hr Break');

INSERT INTO Route VALUES(324567, 'Chennai', 'Denmark', 'Direct');

INSERT INTO Route VALUES(452368,'Chandigard','NewYork','3Hr Break');

INSERT INTO Route VALUES(894521, 'Daman', 'Delhi', 'Direct');

INSERT INTO Route VALUES(578425, 'Beijing', 'Punjab', 'Direct');

INSERT INTO Route VALUES(421523, 'Hyderabad', 'Jammu & Kashmir', 'Direct')

SELECT * FROM Route;

ROUTE_ID	TAKE_OFF_POINT	DESTINATION	R_TYPE
168806	London	Delhi	Direct
157306	NewJersey	Mumbai	2Hr Break
178916	Washington	Jodhpur	3Hr Break
324567	Chennai	Denmark	Direct
452368	Chandigard	NewYork	3Hr Break
894521	Daman	Delhi	Direct
578425	Beijing	Punjab	Direct
421523	Hyderabad	Jammu & Kashmir	Direct

Download CSV

8 rows selected.

3. FLIGHT

VARCHAR(30),A_ID INT,PRIMARY KEY(Flight_ID),FOREIGN KEY (A_ID) REFERENCES Airplane_type(A_ID));

INSERT INTO Flight VALUES('AI2014','2021-01-12 08:45am','2021-01-12 10:25pm',738);

INSERT INTO Flight VALUES('QR2305','2020-12-26 12:05pm','2020-12-27 12:25pm',777);

INSERT INTO Flight VALUES('EY1234','2021-02-10 05:00am','2021-02-10 10;30pm',750);

INSERT INTO Flight VALUES('LH9876','2021-02-25 10:15am','2021-02-25 11:00pm',790);

INSERT INTO Flight VALUES('BA1689','2021-03-02 2:15am','2021-03-02 10:00pm',745);

INSERT INTO Flight VALUES('AA4367','2021-03-25 12:05am','2021-03-25 02:15am',768);

INSERT INTO Flight VALUES('CT7812','2021-04-04 2:15pm','2021-04-04 8:00pm',821);

INSERT INTO Flight VALUES('PF4521','2020-12-25 5:00pm','2020-12-25 10:30pm',785);

SELECT * FROM Flight;

CREATE TABLE Flight (Flight_ID VARCHAR(15), Departure VARCHAR(30), Arrival

FLIGHT_ID	DEPARTURE	ARRIVAL	A_ID
AI2014	2021-01-12 08:45am	2021-01- 12 10:25pm	738
QR2305	2020-12-26 12:05pm	2020-12- 27 12:25pm	777
EY1234	2021-02-10 05:00am	2021-02- 10 10;30pm	750
LH9876	2021-02-25 10:15am	2021-02- 25 11:00pm	790
BA1689	2021-03-02 2:15am	2021-03- 02 10:00pm	745
AA4367	2021-03-25 12:05am	2021-03- 25 02:15am	768
CT7812	2021-04-04 2:15pm	2021-04- 04 8:00pm	821
PF4521	2020-12-25 5:00pm	2020-12- 25 10:30pm	785

4. AIRFARE

CREATE TABLE AirFare(Fare_ID INT, Charge_Amount INT, Description VARCHAR(25), Flight_ID

VARCHAR(15), PRIMARY KEY(Fare_ID), FOREIGN KEY (Flight_ID) REFERENCES

Flight(Flight_ID));

INSERT INTO AirFare VALUES(1,27341,'Standard Single','AI2014');

INSERT INTO AirFare VALUES(4,34837,'Standard Return','QR2305');

INSERT INTO AirFare VALUES(2,42176,'Key Fare Single','EY1234');

INSERT INTO AirFare VALUES(3,27373, 'Business Return', 'LH9876');

INSERT INTO AirFare VALUES(6,44592,'Advanced Purchase','BA1689');

INSERT INTO AirFare VALUES(5,8777, 'Superpex Return', 'AA4367');

INSERT INTO AirFare VALUES(7,9578,'Standard Return','CT7812');

INSERT INTO AirFare VALUES(8,4459,'Superpex Return','PF4521');

SELECT * FROM AirFare;

FARE_ID	CHARGE_AMOUNT	DESCRIPTION	FLIGHT_ID
1	27341	Standard Single	AI2014
4	34837	Standard Return	QR2305
2	42176	Key Fare Single	EY1234
3	27373	Business Return	LH9876
6	44592	Advanced Purchase	BA1689
5	8777	Superpex Return	AA4367
7	9578	Standard Return	CT7812
8	4459	Superpex Return	PF4521

Download CSV

8 rows selected.

5. Passengers

```
CREATE TABLE Passengers (Ps_ID INT, Ps_Name VARCHAR(20), Address VARCHAR(50), Age INT,
Sex VARCHAR(1), Contacts VARCHAR(10), Flight_ID VARCHAR(15), PRIMARY KEY(Ps_ID),
FOREIGN KEY (Flight_ID) REFERENCES Flight(Flight_ID));
INSERT INTO Passengers VALUES(1, 'Steve
Smith','2230Northside,Apt11,London',30,'M','8080367290','AI2014');
INSERT INTO Passengers VALUES(2,'Ankita Ahir','3456
VikasApts, Apt102, NewJersey', 26, 'F', '8080367280', 'QR2305');
INSERT INTO Passengers VALUES(4,'Akhilesh Joshi','345 Chatam
courts, Apt678, Chennai', 29, 'M', '9080369290', 'EY1234');
INSERT INTO Passengers VALUES(3,'Khyati Mishra','7820 Mccallum
courts, Apt234, Washington', 30, 'F', '8082267280', 'LH9876');
INSERT INTO Passengers VALUES(5,'Rom Solanki','1234 Baker
Apts, Apt208, Chandigard', 60, 'M', '9004568903', 'EY1234');
INSERT INTO Passengers VALUES(6, 'Lakshmi Sharma', '1110 Fir hills, Apt
90,Daman',30,'F','7666190505','AA4367');
INSERT INTO Passengers VALUES(8, 'Manan Lakhani', '7720 Mccallum
Blvd, Apt77, Beijing', 45, 'M', '8124579635', 'CT7812');
```

INSERT INTO Passengers VALUES(7,'Ria Gupta','B402,Aditya Apt,Hyderabad',

34,'F','9819414036','EY1234');

SELECT * FROM Passengers;

PS_ID	PS_NAME	ADDRESS	AGE	SEX	CONTACTS	FLIGHT_ID
1	Steve Smith	2230 Northside,Apt 11,London	30	М	8080367290	AI2014
2	Ankita Ahir	3456 Vikas Apts,Apt 102,New Jersey	26	F	8080367280	QR2305
4	Akhilesh Joshi	345 Chatam courts,Apt 678, Chennai	29	М	9080369290	EY1234
3	Khyati Mishra	7820 Mccallum courts,Apt 2 34,Washington	30	F	8082267280	LH9876
5	Rom Solanki	1234 Baker Apts,Apt 208,Cha ndigard	60	М	9004568903	EY1234
6	Lakshmi Sharma	1110 Fir hills,Apt 90,Dam an	30	F	7666190505	AA4367
8	Manan Lakhani	7720 Mccallum Blvd,Apt 7 7,Beijing	45	М	8124579635	CT7812
7	Ria Gupta	B2402,Aditya Apt,Hyderabad	34	F	9819414036	EY1234

Download CSV

8 rows selected.

6. Countries

CREATE TABLE Countries (Country_code INT, Country_Name VARCHAR(20), PRIMARY

KEY(Country_code));

INSERT INTO Countries VALUES (+44, 'England');

INSERT INTO Countries VALUES (+1,'USA');

INSERT INTO Countries VALUES (+91,'India');

INSERT INTO Countries VALUES (+45,'Kingdom of Denmark');

INSERT INTO Countries VALUES (+64,'New Zealand');

INSERT INTO Countries VALUES (+971, 'UAE');

INSERT INTO Countries VALUES (+213,'Algeria');

INSERT INTO Countries VALUES (+55, 'Brazil');

SELECT * FROM Countries;

COUNTRY_CODE	COUNTRY_NAME
44	England
1	USA
91	India
45	Kingdom of Denmark
64	New Zealand
971	UAE
213	Algeria
55	Brazil

7. Airport

CREATE TABLE Airport(Air_code VARCHAR(10), Air_Name VARCHAR(52), City VARCHAR(20),

State VARCHAR(20), Country_code INT, PRIMARY KEY(Air_code),FOREIGN KEY (Country_code)

REFERENCES Countries(Country_code));

INSERT INTO Airport VALUES('DEL','Indira Gandhi International Airport','Delhi','UP',+91);

INSERT INTO Airport VALUES ('BOM', 'Chhatrapati Shivaji Maharaj International

Airport', 'Mumbai', 'Maharashtra', +91);

INSERT INTO Airport VALUES('LCY', 'London City Airport', 'Newham', 'London', +44);

INSERT INTO Airport VALUES('EWR','Newark Liberty International Airport','Newark','New Jersey',+1);

INSERT INTO Airport VALUES('JFK', 'John F. Kennnedy International Airport', 'New York City', 'New

York',+1);

INSERT INTO Airport VALUES('CPH', 'Copenhagen Airport', 'Copenhagen', 'Denmark', +45);

INSERT INTO Airport VALUES('AIP','Adampur Airport','Jalandhar','Punjab',+91);

INSERT INTO Airport VALUES('IXJ', 'Satwari Airport', 'Jammu', 'Jammu & Kashmir', +91);

SELECT * FROM Airport;

AIR_CODE	AIR_NAME	CITY	STATE	COUNTRY_CODE
DEL	Indira Gandhi International Airport	Delhi	UP	91
BOM	Chhatrapati Shivaji Maharaj International Airport	Mumbai	Maharashtra	91
LCY	London City Airport	Newham	London	44
EWR	Newark Liberty International Airport	New ark	New Jersey	1
JFK	John F.Kennnedy International Airport	New York City	New York	1
СРН	Copenhagen Airport	Copenhagen	Denmark	45
AIP	Adampur Airport	Jalandhar	Punjab	91
IXJ	Satwari Airport	Jammu	Jammu & Kashmir	91

Download CSV

8 rows selected.

8. Employees

```
CREATE TABLE Employees (Emp_ID INT, E_Name VARCHAR(20),
Address VARCHAR(50), Age INT, Email_ID VARCHAR(20),
Contact VARCHAR(20), Air_code VARCHAR(10),
PRIMARY KEY(Emp_ID),
FOREIGN KEY (Air_code)
REFERENCES Airport(Air_code));
INSERT INTO Employees VALUES(1234, 'Rekha Tiwary', '202-Meeta Apt, Yogi
Nagar, Mumbai', 30, 'rekha1234@\,gmail.com', '+918530324018', 'DEL');\\
INSERT INTO Employees VALUES(3246, 'John Dsouza', '302-Fountain Apt, ElizaBeth
Street, Newham', 26, 'john 2346@gmail.com', '+447911123456', 'BOM');
INSERT INTO Employees VALUES(9321, 'Sanjay Rathod', '62-Patwa Apt, Pradeep
Nagar, Delhi', 36, 'sanjay 78@gmail.com', '+917504681201', 'LCY');
INSERT INTO Employees VALUES(8512, 'Hafsa Iqmar', '1023-Prajwal
Apt, Newark', 41, 'hafsa 964@gmail.com', '6465554468', 'EWR');
INSERT INTO Employees VALUES(7512, 'Akshay Sharma', 'Akshay Villa, Queens
Street, Copenhagen', 20, 'akshay 27@gmail.com', '+45886443210', 'JFK');
```

INSERT INTO Employees VALUES(5123,'Lara Jen','28-Mark road, Victoria street, New

YorkCity',31,'jenlara4@gmail.com','+448000751234','CPH');

INSERT INTO Employees VALUES(2458, 'Johny Paul', '45-Balaji Apt, Ajit

 $Nagar, Jalandar', 32, 'johnypaul 8@\,gmail.com', '+919785425154', 'AIP');$

INSERT INTO Employees VALUES(4521, 'Nidhi Maroliya', '6-Matruchaya Apt, Park

Road, Jammu', 31, 'nidhi 785@gmail.com', '+918211954901', 'IXJ');

SELECT * FROM Employees;

EMP_ID	E_NAME	ADDRESS	AGE	EMAIL_ID	CONTACT	AIR_CODE
1234	Rekha Tiwary	202-Meeta Apt,Yogi Nagar,Mumbai	30	rekha1234@gmail.com	+918530324018	DEL
3246	John Dsouza	302-Fountain Apt,ElizaBeth Street,Newham	26	john2346@gmail.com	+447911123456	BOM
9321	Sanjay Rathod	62-Patwa Apt,Pradeep Nagar,Delhi	36	sanjay78@gmail.com	+917504681201	LCY
8512	Hafsa Iqmar	1023-Prajwal Apt,Newark	41	hafsa964@gmail.com	6465554468	EWR
7512	Akshay Sharma	Akshay Villa,Queens Street,Copenhagen	20	akshay27@gmail.com	+45886443210	JFK
5123	Lara Jen	28-Mark road, Victoria street, New YorkCity	31	jenlara4@gmail.com	+448000751234	СРН
2458	Johny Paul	45-Balaji Apt,Ajit Nagar,Jalandar	32	johnypaul8@gmail.com	+919785425154	AIP
4521	Nidhi Maroliya	6-Matruchaya Apt,Park Road,Jammu	31	nidhi785@gmail.com	+918211954901	IXJ

Download CSV

8 rows selected.

9. Can_Land

CREATE TABLE Can_Land(Air_code VARCHAR(10), Flight_ID VARCHAR(15),

PRIMARY KEY(Air_code,Flight_ID), FOREIGN KEY(Air_code) REFERENCES Airport(Air_code),

FOREIGN KEY(Flight_ID) REFERENCES Flight(Flight_ID));

INSERT INTO Can_Land VALUES('DEL','AI2014');

INSERT INTO Can_Land VALUES('BOM','QR2305');

INSERT INTO Can_Land VALUES('LCY','EY1234');

INSERT INTO Can_Land VALUES('EWR','LH9876');

INSERT INTO Can_Land VALUES('JFK','BA1689');

INSERT INTO Can_Land VALUES('CPH','AA4367');

INSERT INTO Can_Land VALUES('AIP','CT7812');

INSERT INTO Can_Land VALUES('IXJ','PF4521');

SELECT * FROM Can_Land;

AIR_CODE	FLIGHT_ID
AIP	CT7812
BOM	QR2305
СРН	AA4367
DEL	AI2014
EWR	LH9876
IXJ	PF4521
JFK	BA1689
LCY	EY1234

10.Transactions

```
CREATE TABLE Transactions (TS_ID INT, Booking_Date DATE NOT NULL, Departure_Date DATE
NOT NULL, TS_Type VARCHAR(20), Emp_ID INT, Ps_ID INT, Flight_ID VARCHAR(15),
Charge_Amount INT, PRIMARY KEY(TS_ID), FOREIGN KEY (Emp_ID) REFERENCES
Employees(Emp_ID), FOREIGN KEY (Ps_ID) REFERENCES Passengers(Ps_ID), FOREIGN KEY
(Flight ID) REFERENCES Flight(Flight ID), FOREIGN KEY (Charge Amount) REFERENCES
AirFare(Fare_ID));
INSERT INTO Transactions VALUES(12345678,DATE '2021-02-21',DATE '2021-02-22','Google
Pay',1234,1,'AI2014',27341);
INSERT INTO Transactions VALUES(45612789,DATE '2021-01-12',DATE '2021-01-14','Credit
Card',3246,2,'QR2305',34837);
INSERT INTO Transactions VALUES(56987123, DATE '2020-12-05', DATE '2020-12-
02', 'Paytm', 9321, 4, 'EY1234', 42176);
INSERT INTO Transactions VALUES(45321879, DATE '2021-03-15', DATE '2021-03-
16','PhonePe',8512,3,'LH9876',27373);
INSERT INTO Transactions VALUES(75145863, DATE '2021-04-22', DATE '2021-04-
25', 'Paytm', 7512, 5, 'EY1234', 44592);
INSERT INTO Transactions VALUES(17892455,DATE '2021-02-05',DATE '2021-02-
08', 'Paytm', 5123, 6, 'AA4367', 8777);
INSERT INTO Transactions VALUES(24517852,DATE '2021-03-06',DATE '2021-03-
08','PhonePe',2458,8,'CT7812',9578);
INSERT INTO Transactions VALUES(32548525,DATE '2021-01-20',DATE '2021-01-25','Credit
Card',4521,7,'EY1234',4459);
SELECT * FROM Transactions;
```

11.Travels_on

CREATE TABLE Travels_on(Route_ID INT, Flight_ID VARCHAR(15),

PRIMARY KEY(Route_ID,Flight_ID), FOREIGN KEY(Route_ID) REFERENCES Route(Route_ID),

FOREIGN KEY(Flight_ID) REFERENCES Flight(Flight_ID));

INSERT INTO Travels_on VALUES(168806,'AI2014');

INSERT INTO Travels_on VALUES(157306,'QR2305');

INSERT INTO Travels_on VALUES(178916, 'EY1234');

INSERT INTO Travels_on VALUES(324567,'LH9876');

INSERT INTO Travels_on VALUES(452368,'BA1689');

INSERT INTO Travels_on VALUES(894521,'AA4367');

INSERT INTO Travels_on VALUES(578425,'CT7812');

INSERT INTO Travels_on VALUES(421523,'PF4521');

SELECT * FROM Travels_on;

ROUTE_ID	FLIGHT_ID
157306	QR2305
168806	AI2014
178916	EY1234
324567	LH9876
421523	PF4521
452368	BA1689
578425	CT7812
894521	AA4367

9. Implementation

1. Find the Employee-id of all employees whose name includes the substring John.

SELECT Emp_ID, E_Name

FROM Employees

WHERE E_Name LIKE '%John%';

2. Display the companyname whose flight will be landed in mumbai Airport.

SELECT Company, A_ID
FROM Airplane_type
WHERE A_ID in (SELECT A_ID
FROM Flight
WHERE Flight_ID in (SELECT Flight_ID
FROM Can_Land
WHERE Air_code in (SELECT Air_code
FROM Airport
WHERE City = 'Mumbai')))

3. Find the Fare-id of those with Chargeamount between 20000 and 35000.

SELECT Fare_ID, Charge_Amount FROM AirFare WHERE Charge_Amount BETWEEN 20000 AND 35000

FARE_ID	CHARGE_AMOUNT
1	27341
4	34837
3	27373

4. Increase the charge-amount by 5% whose class is Superex Return.

UPDATE AirFare
SET Charge_Amount = Charge_Amount * 1.05
WHERE Description = 'Superpex Return'

SELECT * FROM AirFare

FARE_ID	CHARGE_AMOUNT	DESCRIPTION	FLIGHT_ID
1	27341	Standard Single	AI2014
4	34837	Standard Return	QR2305
2	42176	Key Fare Single	EY1234
3	27373	Business Return	LH9876
6	44592	Advanced Purchase	BA1689
5	9216	Superpex Return	AA4367
7	9578	Standard Return	CT7812
8	4682	Superpex Return	PF4521

8 rows selected.

5. Display the country-name that does not have an airport

SELECT Country_code, Country_Name FROM Countries WHERE Country_code NOT IN (SELECT Country_code FROM Airport)

COUNTRY_CODE	COUNTRY_NAME
64	New Zealand
971	UAE
213	Algeria
55	Brazil

6. Display All the counties that may have or may not have the Airport.

SELECT *
FROM Countries NATURAL LEFT OUTER JOIN Airport

COUNTRY_CODE	COUNTRY_NAME	AIR_CODE	AIR_NAME	CITY	STATE
91	India	DEL	Indira Gandhi International Airport	Delhi	UP
91	India	BOM	Chhatrapati Shivaji Maharaj International Airport	Mumbai	Maharashtra
44	England	LCY	London City Airport	Newham	London
1	USA	EWR	Newark Liberty International Airport	Newark	New Jersey
1	USA	JFK	John F.Kennnedy International Airport	New York City	New York
45	Kingdom of Denmark	СРН	Copenhagen Airport	Copenhagen	Denmark
91	India	AIP	Adampur Airport	Jalandhar	Punjab
91	India	IXJ	Satwari Airport	Jammu	Jammu & Kashm
64	New Zealand	-	-	-	-
971	UAE	-	-	-	-
213	Algeria	-	-	-	-
55	Brazil	-	-	-	-

10. <u>Learning Outcome from training/technology learnt</u>

Airline Management System is a large scale project which includes database of more than a single Airport. This airline management system contains the details about: Airplane_Type, Route, Flight, Airfare, Passengers, Employees, Transactions, Countries and Airport.

- 1. The Airline database Management System keeps a record of its passengers:
- o Every passenger has a unique ID, name, address, age, sex and contacts.
- The database keeps track of transactions made by the passengers.
- o It keeps track of the booking date, and charge amount of bookings.
- o The transaction details are also noted with transaction id and payment details.
- o Each passenger can make the payment with many transactions.
- 2. The Airline database Management System keeps a track of the employees and stores their information in the database.
 - The name, employee id, address, age, email id and contact are stored in the database.
 - o Each employee has a unique id.
 - Since this is a rapidly growing establishment, the airline database continually keeps employing more employees to keep up with the workload.
 - An airport can employ various employees.
- 3. It also stores the information of airfare with unique fare if to book a ticket, modify or cancel a reservation also the details of the charge amount.
 - o Depending on the travel time each airline assigns different airfare

- 4. Each country has an airport with a unique air code and a name.
 - This database systems contains details about all the passenger travelling and it also contains details of all employees associated to respective airports.
 - o Each country may have more than one airport.
- 5. Each airport has various airplanes belonging to various airlines.
 - Each airport has a unique airplane id.
 - It also shows the passenger capacity and airplane weight.
- 6. The route of the each airplane has been provided by each airlines:
 - o Each flight has a unique route ID and a distinct path to follow.
 - It also shows the information of take off and destination point of respective flights.
 - o More than one flight can travel on the same path simultaneously.
- 7. 7. Many flight can land on a particular airport and more than one passenger belongs to particular flight.
- This system provides options for viewing different flights available with different timings for a particular date and also shows information of arrival and departure schedule of flights.
 - The project has been planned to be having the view of distributed architecture,
 with centralized storage of the database.
 - The entire project has been developed keeping in view of the distributed client server computing technology, in mind. The specification has been normalized up to 2NF to eliminate all the anomalies that may arise due to the database transaction that are executed by the general users and the organizational administration. The user interfaces are browser specific to give distributed accessibility for the overall system.

THANK YOU