STRENG VERTRAULICH

NUR FOR PHILIPS SERVICE HANDLER

COPYRIGHT 1938

KUNDENDIENSTANLEITUNG

Kathadenstrahloszillograph

ALLGEMEINES

Der Kathodenstrahloszillograph dient zur Sichtbarmachung elektrischer Erschemungen oder eigentlich zur Sichtbarmachung des Verlaufs der entsprechenden Spannungen, aus dem dann Form, Größe oder Phasenverschiebung abzuleiten sind.

Der Oszillograph GM 3153 setzt sich aus folgenden Bestandteilen zusammen:

- A. Kathodenstrahlröhre (L1);
 B. Speisungsgerät zur Kathodenstrablröhre (L3);
- Speisungsgerät für die anderen Röhren (L4);
- D. Verstärker für die senkrechten Ablenkplatten (L2);
- Verstärker (gleichzeitig Zeitachse) für die waagerechten Ablenkplatten (L5 und L6);
- Oszillator für 1000 Hz (L2).

Bemerkung.

Im folgenden werden alle mit den senkrechten Ablenkplatten zusammenhängenden Teile kurz als

"vertikal", die mit den waagerechten Platten zusammenhängenden kurz als "horizontal" bezeichnet.

Verschiedenes.

Der Vertikalverstärker (L2) ergibt in der Einstellung auf grösste Empfindlichkeit eine Bildhöhe von 1 cm je 150 mV Eingangsspannung.

Der Horizontalverstärker (L5) ergibt eine Bild-breite von 1 cm je 200 mV Eingangsspannung.

Die Frequenz der Zeitachse (L5 und L6) ist von 15 bis 10000 Hz regelbar.

Die Abmessungen des Oszillographen sind:

Höhe cm. ¢m, Breite

Tiefe (einschliesslich Knöpfe) 28,5 cm.

Gewicht 7,2 kg.

Gesamteingangsleistung 35-40 W.

66 994.45 1.14

I. Technische Beschreibung

A. Kathodenstrahlröhre,

Der Hauptbestandteil des Oszillographen ist die Kathodenstrahlröhre Ll. Der Durchmesser des Leuchtschirmes beträgt 7 cm. Die Kathode der Röhre sendet einen Elektronenstrahl aus, und am Treffpunkt des Strahles entsteht auf dem Schirm ein grünleuchtender Fleck. Die Elektronenstrahlstärke und damit die Fleckhelligkeit hängen von der Spannung am Gitter der Röhre ab und sind also mit Rl regelbar. Die Fleckschärfe (kleinste Abmessungen) auf dem Schirm wird mit Hilfe der positiven Spannung der ersten Anode, der sog. Fokusanode, gegen die Kathode geregelt (mit R2). Zwei Paar Platten, die über und unter dem Elektronenstrahl (vertikal) bzw. rechts und links von diesem (horizontal) angeordnet sind, ermöglichen die Ablenkung des Elektronenstrahles und deshalb eine Verschiebung des Lichtflecks auf dem Schirm. Die Ablenkung ist proportional der an die Platten gelegter Spanrung. Wird an die Vertikalplatten eine sinusförmige Wechselsmannung gelegt und an die horizontalen eine proportional der Zeit ansteigende Spannung (Zeitachse), so zeigt sich auf dem Schurm eine sinusförmige Leuchtlinie.

Damit andere spannungführende Teile im Gerät nicht einen ährlichen Einfluss auf den Elektronenstranl ausüben wie die ablenkplatten, ist die Rühre ganz in einen dickwandigen Eisenkegel gekapselt.

B. Speisungsgerät zur Kathodenstrahlröhre.

Die verschiedenen Gleichspannungen für die Kathodenstrahlröhre Ll liefert die Gleichrichterröhre L3, die aus den Sekundärwicklungen des Netztransformators gespeist wird.
Der positive Pol der Anodenspannung ist mit dem Chassis(Erde)
verbunden. Die Spannung wird mit den Kondensatoren C8 und C9
geglättet, die Spannung des ersten Gitters ausserdem noch mit
R18 und C7. Die letztere Spannung wird mit dem Potentiometer
R1 geregelt, welches die Lichtstärke des Punktes auf dem Schirm
beeinflusst.

Die Primärwicklung ist mit einem Karussell in der Rückwand für Netzspannungen von 110 V, 125 V, 145 V, 200 V, 220 V und 245 V bei 40 bis 100 Hz unschaltbar. Zum Schutz der Wicklung sind zwei Sicherungen (Zl und Z2) von 500 mA vorgesehen. Die Netzspannung wird mit dem auf der Welle von Rl befindlichen Netzschalter (Al) ein- und ausgeschaltet. Zur Einschaltung wird Rl etwa 30° aus seiner Nullstellung veräreht.

C. Speisungsgerät für L2, L5 und L6.

Die Sekundärwicklung (S2), welche die Spannung für L3 liefert, dient auch zur Speisung der Gleichrichterröhre L4.

Der negative Pol dieser Spannung liegt nämlich am Chassis(Erde) Die Spannung wird mit den Kondensatoren ClO und Cll, R24 und S8, Cl2 und Cl3 geglättet.

D. Vertikalverstärker (L2).

Zur Erzielung einer Abweichung von 1 cm mit den senkrechten Ablenkplatten (Klemmen 5 und 6) ist eine Spannung von 55 V erforderlich. Das bedeutet für ein Bild von 5 cm eine höchstzulässige Gleichspannung von 275 V oder die doppelte Scheitelspannung ,was einer effektiven Wechselspannung von etwa 100 V entspricht.

Häufig wird jedoch eine kleinere Spannung gemessen werden müssen, und für diesen Zweck wird der Verstärker benötigt. Überdles bietet auch bei Spannungen hinreichender Grösse die Verwendung des Verstärkers den Vorteil, dass die Bildhöhe mit dem Potentiometer R5 geregelt werden kann. Der Verstärker wird mit R5 geregelt und mit dem vierstelligen Schalter A3 bedient.

In Schalterstellung 1 liegt die zu messende Spannung unmittelbar an den Vertikalplatten, nur in den Stellungen 2 und 3 ist der Verstärker als solcher in Betrieb.

Stellung 2 ist die unempfindliche, Stellung 3 die empfirdliche Stellung. Die Empfindlichkeiten betragen 600 bzw. 150 mV
je cm Bildhöhe. Der Empfindlichkeitsunterschied wird dadurch erzielt, dass in Stellung 3 der Kondensator C4 über den Widerstand
R14 geschaltet wird. In Stellung 2, in welcher der Kondensator
C4 nicht eingeschaltet ist, ist die Kathodenleitung von L2 der
Widerstand R14 aufgenommen, der eine Gegenkopplung bewirkt, die
z.B. zur unverzerrten Verstärkung rechteckig vorlaufender Spannungen notwendig ist. Auf die Stellungen 1 und 4 wird unter F
näher eingegangen. Der Verstärker bedeutet für das zu messende
Gerät eine Belastung von 0,1 Megohm.

Die Wirkungsweise des Verstärkers in den Stellungen 2 und 3 geht ohne weiteres aus dem Schaltbild hervor.

Nurze Zusammen fassung:

Die zu messende Spannung wird an die Klemmen K5 und K6 gelegt. Klemme K6 ist über den Schalter A3 geerdet (am Chassis). Da eine der Messklemmen immer geordet ist, müssen wenn beide anzulegende Pole eine Spannung gegen Erde führen, ein Zwischentransformator oder Kondensatoren benutzt werden.

Die Spannung an K5 gelangt über Schalter A3 zum Potentiometer R5. Ein Teil der Spannung über R5 liegt über C1, Schalter A3 und R13 am Gitter von L2. Das Schirmgitter von L2 erhält seine Spannung über R15; mit C3 wird diese Spannung abgeflacht. Die Anode wird über R16 und Schalter A3 gespeist (in Stellung 2 und 3). Die Vertikalplatten sind über Kondensator C24 mit der Anode verbunden.

E1. Horizontalverstärker (gleichzeitig Zeicachse,L5).

Sollen die Horizontalplatten (Klemmen Kl und K2) an irgendeine Messspannung angeschlossen werden, so sind zur Erzielung einer Bildbreite von 1 cm 70 Volt erforderlich. Bei einer Bildbreite von 5 cm sind also 350 V Gleichspannung oder doppelte Scheitelspannung anzulegen.

Diese Spannung ist höher als die der Vertikalplatten, weil die Horizontalplatten in der Kathodenstrahlröhre näher am Schirm, also weiter von der Kathode entfernt angebracht sind und deshalb den Elektronenstrom später, also weniger beeinflussen.

Der Verstärker wird mit R3 geregelt und mit dem sechsstelligen Schalter A2 bedient.

In Stellung 1 des Schalters liegt die zu messende Spannung unmittelbar an den Horizontalplatten, nur in Stellung 2 wird der Verstärker als solcher benutzt.

Auf die Stellungen 3 bis 6 wird im folgenden näher eingegangen. Der Verstärker bedeutet für das zu messende Gerät eine Belastung von 0,5 Megohm.

Die Wirkungsweise des Verstärkers in Stellung 2 lässt sich kurz wie folgt zusammenfassen:

Die zu messende Spannung wird an die Klemmen Kl und K2 gelegt. Klemme Kl liegt an Erde (Chassis). Die Spannung an K2 durchläuft zunächst R39 und C23, die als Phasenausgleich des eingebauten Potenticmeters und der Leitungen dienen; weiter geht sie über C25 und Schalter A2 zum Potentiometer R3, welches mit dem anderen Ende geerdet ist. Die abgegriffene Spannung geht über C14 und R30 zum Steuergitter von L5. Die Schirmgitterspannung erhält die Röhre über R34, sie wird mit Kondensator C20 geglättet; die Anodenspannung wird über R33 und A2 zugeführt. Die Anode ist über C19 und R36 mit der nichtgeerdeten waagerechten Ablenkplatte verbunden(die andere Ablenkplette liegt, ebenso wie Klemme Kl, am Chassis = Erde). Da diese Messklemme immer geerdet ist, müssen, wenn beide anzulegende Pole eine Spannung gegen Erde haben, ein Zwischentransformator oder Kondensatoren verwendet werden.

Abb.18 gilt sowohl für den Vertikal- whe auch für den Horizontalverstärker.

E2. Zeîtachse.

In den Stellungen 3 bis 6 des Schalters A2 dient die Röhre L5 zur Erzeugung einer Spannung, welche en die waagerechten Ablenkplatten angelegt wird.

Diese Spannung an den Horizontalplatten hat den Zweck, den Lichtpunkt auf dem Schirm linear mit der Zeit waagerecht zu verschieben. Ohne Spannung an den Vertikalplatten beschreibt der Lichtpunkt infolgedessen eine horizontale Linic auf dem Schirm. Am Ende der Linie angekommen, springt der Lichtpunkt rasch zum Ausgangspunkt zurück.

Diese watgerechte Verschiebung des Lichtpunktes als Funktion der Zeit gestattet also die Sichtburmachung des Verlaufs der an die Vertikalplatten gelegten Spannung.

Abb.l zeigt den Verlauf einer derartigen Sägezahn- oder Kippspannung. Auf der waagerechten Achse ist die Zeit, auf der senkrechten die Spannung aufgetragen; a ist also die Anlaufzeit einer Periode, b die Rücklaufzeit, c der Höchstwert der an die Placten gelegten Spannung, der proportional der Bildbreite auf dem Schirm ist.

Bei der Zeitachse sind also zu unterscheiden:

- 1. Frequenz = Periodenzahl pro Sekunde,
- 2. Amplitude= Bildbreite.

In Abb.2 ist die Schaltung der Zeitachse dargestellt. L5 wird hier als Vorschaltwiderstand zur Ladung eines der Kondensatoren C15 bis C18 verwendet. In der gezeichneten Stellung ist C18 eingeschaltet. Die Ladung eines Kondensators über eine Penthode erfolgt mach Abb. 3. Die Spannung steigt hier fast bis zum Ende der Ladung lincar an, weil bei einer Penthode der Anodenstrom innerhalb weiter Grenzen von der Anodenspannung unabhängig ist. Infolgedessen ist auch der Ladestrom des Kondensators konstant und steigt die Spannung an dem zwischen die Horizontalplatten geschalteten Kondensator gleichmüssig an. Wird jedoch die Ancdenspunnung der Penthode kleiner als etwa 80 Volt, so sinkt der Anodenstrom und die Spannung nimmt nicht mehr linear mit der Zeit zu. Ehe dieser Punkt erreicht wird, muss der Kondensator entladen werden und kann die Ladung von neuem anfungen. Die Entladung erfolgt über die gasgefüllte Triode **16**.

Bei einer Gastriode hängt die Anodenspannung, bei welcher ein anodenstrom einsetzt, ebenso wie bei Rochvakuumröhren, von der Gitterspannung ab; hat der Amdenstrom jedoch einmal eingesetzt, so hat im Gegensatz zu Hochvakuumröhren eine Anderung der Gitterspannung keinen Einfluss mehr auf die Grösse des Stromes. Der Anodenstrom nimmt erst ab, wenn die Anodenspannung unter einen bestimmten Wert sinkt. Die Spannung, bei welcher L6 den Kondensator C18 zu entladen beginnt, kann also durch Regelung der Gitterspannung von L6 eingestellt werden, d.h. mit R3 wird die Gitterspannung und damit auch die Amplitude der Kippspannung geregelt.

Hat die Entladung eingesetzt, so entlädt sich der Kondensator über L6, unabhängig von der Gitterspannung bis auf eine kleine Spannung, bei welcher kein Anodenstrom durch L6 fliesst. Mit Hilfe der Schirmgitterspannung von L5 kann der Ladestrom

und deshalb auch die Frequenz geregelt werden; denn bei kleinerem Ladestrom dauert es länger, bis die Spannung am Kondensator der Zündspannung der Gastriode entspricht und wird also die Frequenz kleiner.

Die Frequenz kann grob in vier Stufen geregelt werden, und zwar durch Wahl eines der Kondensatoren Cl5 bis Cl8 (Schalter A2), weiter in jedem Bereich stufenlos mit Widerstand R4. Der Regelbereich erstreckt sich von 15 bis 10000 Hz mit einer Mindest Amplitude von 4,5 cm; die Amplitude soll nahezu frequenzunabhängig sein.

Die Zeitachse kann mit der zu untersuchenden Spannung synchronisiert werden, so dass auf dem Schirm ein stillstehendes Bild entsteht. Hierzu wird ein Teil der zu untersuchenden Spannung (etwa 5 V) über C22 an das Gitter von L6 gelegt.

Durch Verbindung der Buchsen K3 und K! kann eine Synchronisierungsverbindung mit dem Verstärker hergestellt werden. Sind R4 und Schalter A2 ungefähr für die gewünschte Frequenz eingestellt, so wird infolge der Synchronisierungsspannung am Gitter von L6 die Entladung des Kondensators C18 im richtigen Augenblick anfangen.

F. Oszillator für 10000 Hz (L2).

Der Vertikalverstärker mit L2 als Verstärkerröhre wird, wie unter D erwähnt, als solcher nur in den Stellungen 2 und 3 des Schalters A3 verwendet.

In den Stellungen 1 und 4 von A4 1st L2 mit den Goneratorkreisen S9 (Oszillatorspule) und S10 une S11 (Rückkopplungsspule) verbunden. Die Spulen sind so bemessen, dass die angegebene Frequenz etwa 10000 Hz beträgt.

Die Spannung dieser Frequenz wird nun für zwei wichtige Zwecko verwendet:

1. zur Zeitangabe (Stellung 1 von A2) = Strahlmodulation; 2. zu Impedanzmessungen (Stellung 4 von A2).

In Stellung 1 des Schalters A3 liegt nämlich die Spannung von 10000 Hz an Kjemme K10, welche mit Hilfe eines Kurzschlusssteckers mit Klemme K9 verbunden wird. Wird der Oszillator nicht benutzt, so wird K10 mit K11 (Erde) verbunden und ist der Oszillator ausser Betrieb. Das ist erforderlich, um eine Bildbeeinflussung durch die Oszillatorkreise zu vermeiden. Durch Anlegung der Spannung an Buchse K9, die unter Zwischenschaltung von C6 mit dem Gitter der Kathodenstrahlröhre L1 verbunden ist, wird der Elektronenstrahl sekundlich 10000mal unterbrochen und zeichnet der Lichtpunkt infolgedessen eine punktierte Linie auf den Schirm, was zwar mit dem Auge nicht zu sehen ist, weil das zu messende Signal zuzüglich der Zeitachse praktisch nie mit den

etwa 10000 Hz synchronisiert sind. Die punktierte Linie kann jedoch photographisch veranschaulicht werden. An der Zahl der Punkte ist dann die Zeitdauer eines einmaligen Vorganges festzustellen, da ja jeder Lichtpunkt 1/10000 Sekunde darstellt.

In Stellung 4 des Schalters A3 liegt die Spannung von 10000 Hz über Schalter A2 und Kondensator C24 an den Vertikalplatten und entsteht auf dem Schirm nun ein voll ausgezogenes Bild der Oszillatorspannung mit einer konstanten Amplitude.

Indem man an einen Teil des Rückkopplungsspule, etwa an die Klemmen K6 und K8, K5 und K8 oder K10 und K11, eine beliebige Impedanz anschliesst, wird die Höhe des Bildes weniger abhängig vom Wert der Impedanz.

Diese Eigenschaft wird ausgenutzt, um rasch Impedanzreihen miteinander zu vergleichen, z.B. die Spulen eines Ankers mit Kollektor. Zwei Bürsten werden auf nebeneinander befindliche Kollektorlamellen gelegt, und der Anker wird mit einer Geschwindigkeit gedreht, welche mit der Frequenz der Zeitachse synchronisiert ist. Nacheinander werden nun alle anderen Spulen für einen Augenblick parallel zum Oszillator geschaltot, und es entsteht auf dem Schirm ein gezahntes Bild, bei welchem jede Zahnhöhe ein Mass für die Impedanz der jeweiligen Ankerspule ist. Eine kurzgeschlossene oder unterbrochene Ankerspule ist an einem erniedrigten bzw. erhöhten Bildes betreffenden Zahnes zu erkennen.

II. Schaltungskombinationen.

Im Anschluss an die unter I besprochenen verschiedenen Einzelschaltungen möge untenstehend eine Übersicht über die Kombinationsmöglichkeiten folgen.

Die verschiedenen Messungen sind in folgende Hauptgruppen einzuteilen:

A. Spannungsmessungen (siehe Abb.4).

Hierzu gehören alle Messungen, bei denen nur die senkrechten Platten benutzt werden und nur auf die Länge des senkrechten Leuchtstreifens geachtet wird, z.B.: Spannungs-, Strom- und ausgangsleistungsmossungen.

B. Phisen- und Charakteristiekmessungen (siehe Abb.5).

Hierzu gehören alle Messungen, bei denen sowohl den Vertikal- wie den Horizontalplatten eine fremde Spannung zugeführt und der Verlauf der Spannungen untereinander beobachtet wird z.B.:

> Phasenverschiebung, Charakteristiken von Radioröhren, Verzerrung, Modulationstiefe.

C. Periodische Vorgänge (Abb.6).

Hierzu gehören alle Messungen, bei welchen der Verlauf der Spannung als Funktion der Zeit beobachtet wird und also die Horizontalplatten mit der Kippfrequenz gespeist werden, z.B. Form einer Wechselspannung, Verzerrung, mechanische Schwingungen.

D. Einmalige Vorgange (Abb.7).

Hierzu gehören alle Messungen, bei welchen der Verlauf einer einmaligen Erscheinung als Funktion der Zeit beobachtet wird, also mit der Kippspannung an den Horizontalplatten und mat Unterbrechung des Elektronenstromes durch die Oszillatorspannung, z.B.:

Entladungen, Schaltstösse, Induktionsstösse, Explosionen.

E. Impedanzmossungen (Abb.8).

Hierzu gehören alle Messungen, bei welchen die Horizontalplatten mit der Kippspannung, die Vertikalplatten mit der eingebauten Oszillatorspannung gespeist werden. Die Bildhöhe schwankt durch Anschluss einer Impedanz. z.B.: Ankerspulen.

III. Inbetriebsetzung des Oszillographen .

- 1. Prüfer, ob das Spannungskarussell für die richtige Netzspannung eingestellt ist.
- 2. Erdungsklemme mit Erdleitung verbinden.
- 3. Netzspannung anschliessen (Rückseite des Gerätes).
- 4. Knopf von R1 nach rechts drehen, so dass der Netzschalter eingeschaltet.
- 5. 1 bis $1\frac{1}{2}$ Minute warten, bis der Lichtpunks auf dem Schirm erscheint. A2 in Stellung 1, A3 in Stellung 1.
- 6. Mit El auf gewinschte Lichtstärke einstellen. Mit E2 auf größste Funktschärfe des Lichtfleckes einstellen. El nötigenfalls nachregeln.
 - Anmerkung. Der Lichtfleck darf nur ganz kurze Zeit an einer Stelle stehen bleiben, weil sonst der Schirm örtlich verbrennen kann. Deshalb nach Einstellung Schalter a2 in Stellung 3 setzen.

ZUR BEACHTUNG .

In Anbetracht der sehr hohen Anodenspannungen (900 v) an den Elektroden der Kathodenstrahlröhre, und deshalb auch an der Speisungsapparatur, und auch wegen der langsamen Entladung der Elektrolytkondensatoren C8 und C9 soll das Gerät während des Betriebes immer mit dem Mantel umhüllt sein.

Auswechslung der Kathodenstrahlröhre L1.

- 1. Schrauben an der Vorderwand lösen und Mantel abschleben.
- 2. Schraube zur Befestigung des Schutzkegels auf der Vorderwand und Seitenanschluss am Sockel lösen.
- 3. Schrauben zur Befestigung des Schlistens der Röhrenfassung auf dem Netztransformator lösen und Fissung nach hinten schieben. Li aus der Röhrenfassung nehmen.
- 4. Neue Röhre einsetzen. Nach Anbringen des Abschirmkegels auf der neuen Röhre Schlitten nach vorne schleben und Seitenschraube anschliessen.
- 5. Gerät einschalten und Wechselstrom an Vertikalplatten legen, so dass eine senkrechte Linie entsteht.
- 6. Nötigenfalls ist die Röhrenfassung auf dem Schlitten so zu verdrehen, dass die Linie auf dem Schirm genau senkrecht steht. Die Röhrenfassung ist dazu auf einem Bügel befastigt, der mit einer Rändelschraube in der Mitte auf dem Schlitten gehalten wird.
- 7. Gerät in ursprünglichen Zustand zurückbringen (Kegel befestigen, Schutzmantel anbringen usw.).

IV. Störungen am Oszillographen.

Zur Ermittlung eines Fehlers an einem schadhaften Gerät ist der Apparet zunächst normal anzuschliessen und jedes Bedienungselement auf richtiges Arbeiten zu prüfen; insbesondere ist darauf zu achten, dass die Knöpfe A2 und A3 in der richtigen Stellung stehen.

Untenstehend folgt eine Ubersicht über die möglichen Fehler:

Schaltstellung 1.

A2 in Stellung 1, A3 in Stellung 1, K10 und K11 miteinander verbunden. Kein Signal angelegt.

Anmerkung: Unter "Signal anlegen" ist zu verstehen, dass eine Spannung aus dem Wechselstromnetz von beispielsweise 220 V über einen Widerstand von 1 Megohm an die genannten Klemmer angeschlossen wird.

A. Erscheinung: Kein Lichtpunkt auf dem Schirm.

a = keine Spannung an der Kathodenstrahlröhre.

Mögliche Ursache:

- 1. Netzschalter schadhaft.
- 2. Sicherungen durchgeschlagen.
- 3. Unterbrechung in Sl.
- 4. Keine Netzspannung.
- b = Kathodenstrahlröhre hat anormale Spannungen.
- 1. Unterbrechung in S2, S3 oder S4.
- 2, Kurzschluss in C8 oder C9.
- 3. Unterbrechung in R1 oder R2.
- c. Heizfaden der Kuthodenstrahlröhre beschädigt.
- B. Schwacher rechteckiger Lichtfleck auf dem Schirm (keine Reaktion von Rl und R2). Unterbrechung in R20.
- C. Helligkeit des Lichtflecks nicht regelbar.
 - 1. Kurzschluss in C7.
 - 2. Unterbrechung in R18 oder R19.
 - 3. Gitter Ll Schluss gegen Kathode.
- D. Ungenügende Helligkeit:
 - 1. L3 hat schlechte Emission.
 - 2. Leuchtschirm fluoresziert zu schwech.
- E. Lichtfleck verschiebt sich beim Drehen an Rl oder R2. Unterbrechung in R8 oder R9.

Schaltstellung 2.

- A2 in Stellung 1, A3 in Stellung 3. Signal an K5 und K8(K10 an K11).
- A. Senkrechte Linie ist nicht mit R5 regelbar.
 - 1. Unterbrechung in R5 oder C24.
 - 2. Fehler in der Schaltung von L2 (siehe weiter unten)
- B. Kein Lichtfleck (und keine senkrechte Linie). Kurzschluss in C24.

Schaltstellung 3.

- A2 in Stellung 1, A3 in Stellung 3, Signal an K1 und K2.
- A. Waagerechte Linie anormal kurz. Unterbrechung in R39.

Schaltstellung 4.

A2 in Stellung 2, A3 in Stellung 3, Signal an K2, K1 erden .

- A. Wasgerechte Linie nicht regelbar.
 - 1. Unterbrechung in R3, R36, oder in C14, C19, C25.
 - 2. Fehler in der Schaltung von L5 (siehe weiter unten).

Schaltstellung 5.

- A2 in Stellung 3 bis 6, A3 in Stellung 3, Signal an K5.
- A. Keine Zeitachse (nur senkrechte Linie).
 - 1. Unterbrechung in R4, R23, R27, R28, R29, R34, R35, R37.
 - 2. Unterbrechung oder Kurzschluss in C15, C16, C17 oder C18.
 - 3. Heizfaden von L5 oder L6 unterbrochen.

Schaltstellung 6.

- #2 in Stellung 3, A3 in Stellung 4, kein Signal.
- A. Keine Oszillatorspannung (nur waagerechte Linie auf dem Schirm).
 Kurzschluss in C5; Unterbrechung in S9, S10, R12, R17.
- B. Verzerrung der Oszilletorspannung.(Nu rder obere Bildteil hat die normale Helligkeit).Unterbrechung in R5.
- C. Kurzschliessen von K5 und K6 ändert die Bildhöhe nicht. Unterbrechung in S11.

Schaltstellung 7.

- A2 in Stellung 3 bis 6, A3 in Stellung 1, Signal an K5, K6 und K3 geerdet, K9 und K10 miteinander verbunden.
- a. Keine Unterbrechung des Elektronenstrahles (als Zeitangabe). Zur Feststellung dieses Fehlers ist die Zeitachse so einzustellen, dass die Zeitachsenfrequenz in einem garzzahligen Verhältnis zur Oszallatorfrequenz steht. Bei genauer Beobachtung ist dann eine einigermassen punktierte Linie wahrzunehmen. Unterbrechung in C6.

Schaltstellung 8.

- A2 in Stellung 3 bis 6, A3 in Stellung 2 oder 3, Signal an K5, K8 geerdet, K3 und K4 miteinander verbunden.
- A. Keine Synchronisierung möglich. Unterbrechung in R7, R8 oder 022.

Schaltung 9. von L2 defekt (A3 in Stellung 3).

A. Spannung über C12 oder C13 anormal. Kurzschluss von C12, C13, C11 Unterbrechung in S5-S8 oder R24.

B. L2 hat anormale Ströme und Spannungen.
Unterbrechung in R15, R16 (kein anodenstrom).
Kurzschluss in C1, C2, C3 oder C4 (hoher Anodenstrom).
Unterbrechung in R11, R13, R14.

Schaltung 10. von L5 defekt (A2 in Stellung 2).

1. L5 hat anormale Ströme und Spannungen. Unterbrechung in C14, C20. Hoher Anodenstrom. Unterbrechung in R30 oder R31.

V. Einige Bemerkungen über das Bild.

Für eine vollständige Behandlung der Anwendungen des Oszallographen und die Analyse der Lissajousschen Figuren ist hier nicht der Ort. Es seien jedoch einige besondere Erscheinungen kurz beschrieben, um die Beurteilung des Bildes zu ermöglichen.

- A. Elne Wechselspannung vertikel, Zeitachse horizontel.
 - 1. Das feststehende Bild, das nach Synchronisierung entsteht, ist eine Sinuskurve deren Linie selbst wieder eine Schwingung zeigt (4bb.9).

 Ursache: Die angelegte Spannung wird durch ein Signal viel höherer Frequenz beeinflusst.
 - 2. Das Bild besteht aus einer ganzen Reihe von Sinusfiguren, die über- und nebeneinander liegen, was den Eindruck eines unscharfen Bildes erweckt (Abb.10).

 Ursache: Die angelegte Spannung wird durch ein Signal viel niedragerer Frequenz beeinflusst.
 - 3. Das Bild macht den Eindruck einer aus gekrümmten Linien bestehenden Trommel (Abb.ll).

 <u>Ursache</u>: Die Frequenz der Zeitachse liegt weit über der Frequenz des angelegten Signales.
 - 4. Das Bild zeigt eine Sinuslinie mit sehr vielen Wellen (Abb. 12).

Ursache: Die Frequenz der Zeitachse ist ein ganzzahliges Violfaches kleiner als die der angelegten Spannung.

VI. Schrittweise Fehlermittlung.

Mit dem Messgerüt GM 4256 oder GM 7629 ist die Störung nach der Schrittweisen Fehlermittlung sehr einfach zu finden.

Hierzu ist folgendermassen vorzugehen.

- 1. Gerät erden, vom Netz lösen und alle Röhren herausnehmen.
- 2. Die Kontakte der Röhrenfassung von L4 mit einem Kurzschlussstecker kurzschliessen. Bei einigen Messungen (jedoch nur, soweit angegeben) ist auch die Röhrenfassung von L3 kurzzuschliessen.

- 3. Messgerät enschliessen und nacheinander auf die Widerstands(später Kapazitäts-) Messbereiche 12, 11, 10 und 9 einstellen. Positiven Stift der Messschnur verlängern, so dass die
 verschiedenen Kontakte der Röhrenfassungen leicht zu erreichen sind, und den anderen Messstift mit dem Erdkontakt des
 Oszillographen verbinden.
- 4. Die Anzeigungen des Messgerätes, die bei Berührung der in der Tabelle angegebenen Kontakte mit dem Messstift erzielt werden, mit den Tabellenwerten vergleichen. Bei Abweichungen ist auf diese Weise der Fehler an Hand der Prinzipschaltung leicht zu finden.

Anmerkung:

42/68 bedeutet: zwischen den Punkten 42 und 68 messen. Die Überschrift A2/A3 Pos.1 bedeutet, dass bei allen unter dieser Überschrift angegebenen Messungen die Schalter A2 und 13 in Stellung 1 stehen.

Bezeichnung der Röhrenfissungskontakte

Die erste Ziffer bezeichnet die Röhrenfassung entsprochend der Numerierung im Schiltbild. Die zweite Ziffer bedeutet:

1 und 2 = Heizfaden

- 3 = Steuergitter (Wehneltzylinder)
- 4 = Metallisierungskontakt
- $5 = K_{J}$ thode
- 6 = Zusatzelektrode zur vertikalen Ablenkung oder Fanggitter einer Penthode
- 7 = Schirmgitter
- 8 = Anode
- 9 = Zusatzelektrode (zur horizontalen ablenkung).

Anmerkung:

Da die in der Tabelle angegebenen Werte Mittelwerte von Messungen an zahlreichen Geräten sind, können sehr gut Abweichungen von 10% vorkommen, ohne dass deshalb ein Fehler vorzuliegen braucht.

Bei Messungen an Elektrolytkondensatoren (Widerstandsmessungen) kann infolge der Abnahme des Verluststromes der Ausschlag des Messgerätes bis zu einem bestimmten Wert zurücklaufen. Es kann dann sein, dass der gefundene Wert viel zu hoch ist, weil der betreffende Kondensator schadhaft ist, jedoch auch, weil das Gerät lange Zeit nicht benutzt worden ist. Bei der Beurteilung von Elektrolytkondensatoren ist also vorsichtig vorzugehen.

- 14 -ERSATZTEILLISTE

Bei Bestellung sind stets anzugeben:

- 1. Kodenummer,
- Bezeichnung,
 Typenummer des Gerätes = GM 3153.

Abb.	Pos.	Bezeichnung	Kodenummer	Preis
133333333334444444444444777	ļ	Bezeichnungsschildchen "Philips" Rundkopfzylinderschraube 2x4 Bezeichnungsschildchen mit 6 Stellungen Knopf, Farbe 111 Vierkantmutter,4 mm Stellschraube 4 x 8 Komb.Streifen mit acht Steckerbuchsen Bezeichnungschildchen mit 4 Stellunger Rändelschraube Röhrenfassung Anschlussplatte Einadrige Schnur, 1 mm² Kabelschuh Röhrenhaube Rundkopfzylinderschraube 4 x 10 Rundkopfzylinderschraube 3 x 8 Steckerblock Rändelmutter 4 mm Runde Platte mit Stiften Kontaktfeder des Sicherungshalters Befestigungsklemme zu dieser Feder Komb.Platte mit Steckerbuchsen Streifen Vierfach-Kurzschlussverbindung Gummidruchführungstülle Stecker(für Kurzschlussstecker) Bezeichnungsschildchen "Erde' Rotorkontakt 1 - 1	23.667.630 07.085.040 07.854.080 28.898.290	

-15-STROM- UND SPANNUNGSTABELLE

	Ll	T5	L3	L4	L5	L6)
Eſ	Zirka 4	Zirka 4	Zirka 4	Zirka 4	Zirka 4	Zirka 4	Volt
Ιf	" 1000	" 550	" 300	" 300	" 550	" 60 0	m
Eal	0/270 *	170	900 ~ 800=	820~ 600=	155	320	Volt
Ial	0/0,1	3,3	1,2=	11=	3,5	2	m <i>l</i> ;
Eu2	680	+	_	_	_		Volt
Ia2	0/0,5	-		-	- .	**	må
-Vg	0/7,5 ×	0,5	_		3,5	6,5	Volt
Vg2	•	260			63		Volu
Ig2	B-0-	0,6	_		0,6	-	m/,

- x von der Stellung von R2 abhängig
- x von der Stellung von Rl abhängig
- von der Stellung von Rl und R2 abhängig.

Obige Werte wurden in Stellung 5 des Schalters 42 und Stellung 2 des Schalters 43 gemessen.

Zur Messung wurde das Messgerät GM 4256 oder GM 7629 benutzt; die Voltmeter dieser Geräte haben einen Widerstand von 2000 Ohm je Volt. Bei Verwendung von Voltmetern mit niedrigerem Innenwiderstand werden im allgemeinen niedrigere Werte gemessen.

Die Spannungen oberhalb 500 V wurden mit zwei 1000-Volt-Messtiften gemessen (siehe R.S.537). Da die Tabellenwerte Mittelwerte von Messungen an zahlreichen Geräten sind, können sehr gut Unterschiede vorkommen, ohne dass deshalb ein Fehler vorzuliegen braucht. Gesamteingangsleistung 40 Watt.

ROHRFN

Ll	T5	L3
DN 7/2	4673	1876
L4	L5	L6
1876	4673	4690

-16spulen

!
i
Ī
1
,
<u> </u>
1

KONDENSATOREN

Nr.	Wert	Kodenummer	Preis
01 02 00 00 00 00 00 00 00 00 00 00 00 00	0,1 uF 0,2 uF 500 upF 500 upF 50 uF 40000 uuF 5000 ppF = 10000/2 puF 0,1 pp 16	28.199.090 28.199.120 28.192.500 28.182.321 28.199.050 28.199.050 28.199.090 28.1 2.560 28.182.560 28.182.400 28.182.400 28.182.400 28.199.090 28.199.090 28.199.100 28.199.160 28.199.160 28.199.160 28.199.160 28.199.160 28.199.090	

SICHERUNGEN

Nr.	Wert	Kodenummer	Preis
Zl	0,5 Amp.	08.140.450	
Z2	0,5 amp.	08.140.450	

-17-WIDERSTINDE

Nr.	Wert	Kodenummer	Preis
Rl '	50000 Ohm	28.808.660	
R2 /	0,5 M.Ohm	28.808.670	4
R3	0,5 M.Ohm	28.808.670	
R4	0,5 M.Ohm	28.808.670	
R5	O,1 M.Ohm	28.808.680	
R7	0,5 M.Ohm	28.770.520	i
R8	0,8 M.Ohm	28.770.540	· ·
R9	0,32 M.Ohm	28.770.500	
R11	1 M.Ohm	28.770.550	İ
R12	20000 Ohm	28.770.380	
R13	100 Ohm	28.770.150	
R14	1600 Ohm	28.770.270	1
R15	0,32 M.Ohm	28.770.500	
R16	0,1 M.Ohm=0,2/2 M.Ohm	28.771.130	
R17	16000 Ohm	28.770.370	
R18;	0,5 M.Ohm	28.770.520	
R19	50000 Ohm	28.770.420	
R20	0,5 M.Ohm	28.771.170	1
R21	2,5 M.Ohm		
R23	0,5 M.Ohm	28.771.240	
R24	6250 Ohm=25000/4 Ohm	28.770.520	
	0,125M.Ohm	28.771.040	1
R25 R26	0,1 M.Ohm	28.770.460 28.770.450	i
R27	20000 Ohm		
R28 ;		28.770.380	1
		28.770.350	1
R29 {		28.770.380	
R30 ;	100 Ohm	28.770.150	1
R31	0,5 M.Ohm	28.770.520	
R32	1600 Ohm	28.770.270	!
R33	0,1 M.Ohm=0,2/2 M.Ohm	28.771.130	
R34	0,64 M.Ohm	28.770.530	1
R35	1600 Ohm=2x800 Ohm	28.770.240	1
R36	10000 Ohm	28.770.350	
R37	0,5 M.Ohm	28.770.520	i
R38	0,64 M.Ohm	28.770.530	1
R39	8000 Ohm	28.770.340	;
R41 !	12500 Ohm	28.770.360	1
ı			
;		ļ	
}		1	

BAMA KOPIE Archief RadioDatabase.nl

2974

BAMA KOPIE Archief RadioDatabase.nl

SCHALTBILD A. EINFACHE SPANNUNGSHESSUNGEN. SPANNUNG AN E5 UND K8.

A3 IN STELLUNG 1,2 ODER 3.

REGELUNG IN STELLUNG 2 UND 3 MIT R5.

ABB .1

SCHALTBILD D EINVALIGE VORGANGE.

1 C82

SPAILIUNG AN K5 UID K8.

A3 IN STELLUNG 1.

A2 IN STELLUNG 3,4,5 ODER 6.

REGELUNG MIT R3 UND R4.

STRAHLMODULATION : K.10 UND K9 MIT KIMANDER VERBINDEN.

R20

M3106

SCHALTBILD B. PHASEN - UND CHARAKTERISTIKMESSUNGEN SPANEUMGEN AN K5-K8 UNT K1 - K2. A3 IN STELLUNG 1,2 CDOR 3.

REGELUNG IN STELLUNG 2 UND 3 MIT R5.

A2 IN STELLUNG 1 ODER 2.

REGELUNG IN STELLUNG 2 MIT 3.

K10 UND K11 KURZGESCHLOSSEN.

SCHALTBILD E. IMPEDANZMESSUNGEN.

IMPEDANZ AN K6-K8 CDER K5-K8 CDER K10-K11.

AZ IN STELLANG 4.

A3 IN STELLUNG 6.

REGELUNG KIT R3 UND R4.

MÖCHLICHENFALLS SYNJERONISIEREN: K3 UND MA KIT EINAMDER VERBINDEN.

ABB.8

SCHALTBILD C. PERIODISCHE VORGINGE.

SPANNUNG AN K5 UND K8.

A5 IN STELLUNG 1,2 ODER 3.

REGELUNG IN STELLUNG 2 UND 3 MIT R5.

AZ IN STELLUNG 3,4,5 ODER 6.

REGULATE HE RE UND RA.

SY OMROWISIERSN NACH BELIEBEN: M: UND K3 MITEINANDER VERBINDEN.

ABB.6

M3111 ABB.12

M3110

ABB.11

ABB.18

M3116

Archief RadioDatabase.nl BAMA KOPIE

Archief RadioDatabase.nl BAMA KOPIE

Archief RadioDatabase.nl BAMA KOPIE

N.V.	PHILIPS
GLOEILAMPI	ENFABRIEKEN
EIND	HOVEN

WIJZIGING AAN TE BRENGEN IN DE DO-CUMENTATIE VAN HET APPARAAT GM3153 MODIFICATIONS A FAIRE DANS IA DO-

W.D.Nr.250 Wa./AJ

SERVICE-INDUSTRIE CUMENTATION DE L'APPAREIL GM3153

24.2.1939

AHZUBRINGENDE AENDERUNGEN IN DER KUNDENDIENSTAN-LEITUNG DES APPARATES GN 3153

ALTERATIONS TO BE APPLIED IN THE SERVICE MANUAL OF THE APPARATUS GM 3153

ALTERATIONS EN LA DOCUTENTACION DEL APARATO TI-

Weerstanden, Résistances, Widerstände, Resistances Resistencias

Toevoegen:
Ajouter:
Hinzufügen:
To be joint:
Adjuntar:

Ajouter:

R 22 C,125 M.Chm 28.770.460

Aanbrengen tusschen R4 en S8 Ajouter entre R4 et S8 Anbringen zwischen R4 und S6 To be mounted between R4 and S8 Adjuntar entre R4 y S8

Condensatoren, Condensatours, Kondensatoren, Condensers, Condensadares

C12 32 µF 28.182.400 C12 28 µF 49.025.08C C13 32 µF 28.182.400 C12 28 µF 49.025.08C

Werkspanning gewijzigd van 320 V op 350 V Tension de service modifié de 320 V en 350 V Arbeitsspannung geändert von 320 V in 350 V Working voltage altered from 320 V into 350 V Tension de servicio cambiado de 320 V en 350 V.

Ş