Agenda

- Penutup Relasi (*Closure*)
- Relasi Ekuivalen

Penutup Relasi (Closure)

- Diberikan relasi $R = \{ (1,1), (2,3), (3,3) \}$ pada himpunan $A = \{ 1, 2, 3, 4 \}$
 - Apakah R bersifat refleksif? TIDAK
 - Bagaimana membuat relasi R menjadi refleksif?
 - Dengan menambahkan (2,2) dan (4,4)
 - Jika R digabungkan dengan (2,2) dan (4,4) maka diperoleh relasi baru:
 - $R' = R \cup \{ (2,2), (4,4) \}$
 - $R' = \{ (1,1), (2,2), (2,3), (3,3), (4,4) \}$
 - R' disebut sebagai penutup refleksif dari R

• Definisi

Misalkan R adalah relasi pada himpunan A, penutup refleksif/simetri/transitif adalah relasi R' yang memenuhi 3 (tiga) syarat berikut:

- R' bersifat refleksif/simetri/transitif
- $R \subseteq R'$
- Jika R'' bersifat refleksif/simetri/transitif dan $R \subseteq R''$ maka $R' \subseteq R''$

Definisi

Notasi yang diberikan:

- r(R) untuk penutup refleksif dari R
- s(R) untuk penutup simetri dari R
- R⁺ untuk penutup transitif dari R
- R* untuk penutup transitif refleksif dari R

- Contoh
 - Jika $A = \{1, 2, 3, 4\}$ dan $R = \{(1,2), (2,3), (3,4)\}$ maka penutup refleksif, penutup simetri, dan penutup transitif dari R adalah:

```
• r(R) = \{ (1,2), (2,3), (3,4), (1,1), (2,2), (3,3), (4,4) \}

• s(R) = \{ (1,2), (2,3), (3,4), (2,1), (3,2), (4,3) \}

• R^+ = \{ (1,2), (2,3), (3,4), (1,3), (2,4), (1,4) \}

• R^* = R^+ \cup I_A = \{ (1,2), (2,3), (3,4), (1,3), (2,4), (1,4), (1,1), (2,2), (3,3), (4,4) \}
```

- Misalkan R adalah sebuah relasi pada A
 - R bersifat refleksif \rightarrow r(R) = R
 - R bersifat simetri \rightarrow s(R) = R
 - R bersifat transitif \rightarrow $R^+ = R$
- Mengapa demikian?
 - <u>Penutup refleksif</u> dari relasi *R* pada *A*:
 - Superset terkecil dari R yang bersifat refleksif
 - <u>Penutup simetri</u> dari relasi *R* pada *A*:
 - Superset terkecil dari R yang bersifat simetri
 - <u>Penutup transitif</u> dari relasi *R* pada *A*:
 - Superset terkecil dari *R* yang bersifat transitif

Apakah penutup refleksif relasi < pada Z?

• Apakah penutup simetri relasi pada Z yang didefinisikan $R = \{(x, y) \mid x = 2y\}$

• Teorema

Untuk suatu relasi *R* pada himpunan *A* berlaku:

$$r(R) = R \cup I_A$$

$$s(R) = R \cup R^{-1}$$

$$R^+ = (\forall k \mid k > 0 : R^k) = R \cup R^1 \cup R^2 \cup ...$$

$$R^* = R^+ \cup I_A$$

Relasi Ekuivalen (Relasi Setara)

Definisi

Suatu relasi *R* pada himpunan *A* disebut relasi ekuivalen pada *A* jika *R* bersifat refleksif, simetri, dan transitif.

Dua elemen a dan b pada himpunan A dikatakan ekuivalen apabila terdapat suatu relasi ekuivalen R sehingga a R b.

- Contoh relasi ekuivalen
 - Relasi $R = \{(x, y) \mid x \& y \text{ lahir di bulan yang sama } \}$ pada himpunan $A = \{\text{ mahasiswa }\}$
 - Relasi $S = \{ (1,1), (1,2), (2,1), (2,2) \}$ pada $B = \{ 1, 2 \}$
 - Relasi *EQUALS*(=) pada *Z*

Contoh

- Diberikan suatu himpunan $A = \{ \text{ mahasiswa UI} \}$ dan relasi $R = \{ (x, y) \mid x, y \in A, x \text{ sefakultas dengan } y \}$
- Apakah R merupakan relasi ekuivalen?
 - Setiap mahasiswa pasti sefakultas dengan dirinya sendiri, berlaku x R x, artinya R bersifat refleksif
 - Untuk sembarang mahasiswa x dan y, x sefakultas dengan y berarti y juga sefakultas dengan x, berlaku $x R y \wedge y R x$, artinya R bersifat simetri
 - Untuk sembarang mahasiswa x, y, dan z dapat dipastikan bahwa jika x sefakultas dengan y dan y sefakultas dengan z maka x sefakultas dengan y, berlaku $x R y \wedge y R z \rightarrow x R z$, artinya R bersifat transitif
 - Dapat diketahui bahwa R bersifat refleksif, simetri, dan transitif sehingga dapat disimpulkan bahwa R adalah relasi ekuivalen

- Contoh
 - R adalah relasi pada himpunan semua binary string Q sedemikian hingga a R b jika dan hanya jika a dan b memiliki jumlah angka 1 yang sama

```
Q = \{0, 1, 00, 01, ..., 11, 000, 001, ... 111, ...\}
R = ?
```

Apakah R adalah relasi yang ekuivalen?

Definisi

Misalkan R adalah relasi ekuivalen pada himpunan A, himpunan $[x]_R = \{ y \mid y \in A \land x R y \}$ disebut sebagai kelas ekuivalen x terhadap relasi R

Jika $b \in [x]_R$, dapat dikatakan bahwa b merupakan perwakilan (representative) dari kelas ekuivalen $[x]_R$

 $[x]_R$ sering ditulis cukup dengan [x] saja

- Diketahui:
 - $A = \{1, 2, 3, 4, 5, 6, 7\}$
 - $R = \{ (a, b) \mid a \equiv b \pmod{3} \}$ atau
 - $R = \{ (1,1), (1,4), (1,7), (2,2), (2,5), (3,3), (3,6), (4,1), (4,4), (4,7), (5,2), (5,5), (6,3), (6,6), (7,1), (7,4), (7,7) \}$
 - Kita dapat membentuk kelompok-kelompok berdasarkan keterlibatan anggota yang berelasi
 - (1,1), (1,4), (1,7); (4,1), (4,4), (4,7); (7,1), (7,4), (7,7)
 - (2,2), (2,5); (5,2), (5,5)
 - (3,3), (3,6); (6,3), (6,6)
 - Sesuai dengan definisi kelas ekuivalen, maka dapat diketahui kelas-kelas ekuivalen yang terbentuk yaitu:
 - [1] = [4] = [7] = { 1, 4, 7 }
 - [2] = [5] = { 2, 5 }
 - [3] = [6] = {3, 6}

- Sebutkan kelas-kelas ekuivalen yang ada pada relasi $\{(x, y) \mid x, y \in Z \land x \equiv y \pmod{2}\}$
- Jawab
 - Anggota relasi tersebut adalah
 - { (0,0), (0,2), (0,4), ..., (1,1), (1,3), (1,5), ..., (0,-2), (0,-4), (0,-6), ..., (1,-1), (1,-3), (1,-5), ... }
 - Kelas-kelas ekuivalen yang terbentuk:
 - $[0] = \{0, \pm 2, \pm 4, \pm 6, \dots\}$
 - $[1] = \{\pm 1, \pm 3, \pm 5, \pm 7, \dots \}$

- Contoh
 - R adalah relasi pada himpunan semua binary string sedemikian hingga a R b jika dan hanya jika a dan b memiliki jumlah angka 1 yang sama
 - Apakah kelas ekuivalen untuk binary string 011 pada relasi ekuivalen R?
 - Tuple-tuple yang memenuhi syarat relasi untuk a = 011 antara lain: { (011,11), (011,011), (011,110), ... }
 - Jadi,

```
[011] = { semua binary string yang mempunyai angka 1 sebanyak 2 }
```

- Diberikan:
 - A = { mahasiswa UI } dan;
 - $R = \{ (x, y) \mid x, y \in A, x \text{ sefakultas dengan } y \}$
 - Berapakah jumlah kelas ekuivalen pada R?
- Jawab
 - Untuk setiap fakultas ke-i maka kita mendapati (x_i, y_i) , menyatakan x dan y berada di fakultas ke-i
 - Jika terdapat m mahasiswa pada fakultas ke-i maka diperoleh kelas ekuivalen $[x_{ij}] = [x_{ij+1}] = [x_{ij+2}] = ... [x_{im}]$
 - Setiap fakultas akan membentuk satu kelas ekuivalen
 - Jadi, jumlah kelas ekuivalen pada R adalah sebanyak jumlah fakultas

Teorema

Jika R adalah relasi ekuivalen pada suatu himpunan A, $x \in A$, dan $y \in A$, maka 3 (tiga) pernyataan berikut ini adalah ekuivalen:

- 1. xRy
- 2. [x] = [y]
- 3. $[x] \cap [y] \neq \emptyset$

- Kelas-kelas ekuivalen yang dibangun oleh sebuah relasi ekuivalen membentuk suatu partisi *P* dari *A*, yaitu:
 - Himpunan yang anggotanya adalah himpunan-himpunan bagian dari A yang merupakan kelas-kelas ekuivalen yang saling lepas (disjoint)
- Gabungan dari semua himpunan-himpunan bagian tersebut sama dengan A

- Contoh
 - *A* = { 1, 2, 3, 4, 5, 6, 7 }
 - $R = \{ (a, b) \mid a \equiv b \pmod{3} \}$
 - Kita dapat membentuk kelompok-kelompok berdasarkan keterlibatan anggota yang berelasi
 - (1,1), (1,4), (1,7); (4,1), (4,4), (4,7); (7,1), (7,4), (7,7)
 - (2,2), (2,5); (5,2), (5,5)
 - (3,3), (3,6); (6,3), (6,6)
 - Diperoleh partisi *P* dari *A* yaitu
 - $P = \{ \{ 1, 4, 7 \}, \{ 2, 5 \}, \{ 3, 6 \} \}$

Teorema

Jika $P = \{A_1, A_2, A_3, ..., A_n\}$ adalah sebuah partisi pada himpunan A, maka relasi $R = \{(x, y) \mid \forall k, 1 \le k \le n, x \in A_k \text{ dan } y \in A_k\}$ pada A merupakan suatu relasi ekuivalen

- Bagaimana membuktikannya?
 - Harus dibuktikan bahwa *R* bersifat refleksif, simetri, dan transitif

- Contoh
 - Suatu himpunan $A = \{1, 2, 3, 4, 5, 6\}$ mempunyai partisi $P = \{\{1, 2, 3\}, \{4\}, \{5, 6\}\}$, maka relasi ekuivalen yang bersesuaian adalah:
 - $R = \{ (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,4), (5,5), (5,6), (6,5), (6,6) \}$
 - Terdapat 3 (tiga) kelas ekuivalen berbeda:
 - { 1, 2, 3 } dengan nama kelas ekuivalen [1] atau [2] atau [3]
 - { 4 } dengan nama kelas ekuivalen [4]
 - { 5, 6 } dengan nama kelas ekuivalen [5] atau [6]