!!!Separate Aufgaben zu: int und float!!!

- 1. Berechnen Sie die folgenden Summen im entsprechenden Stellenwertsystem.
 - a) $(10101010)_2 + (11100000)_2$
 - b) $(23)_7 + (17)_7$
 - c) $(19)_h + (12)_h$ (h für hexadezimal)
 - !! Ziffernvorrat angeben !! ((b) ist ungültig)
- 2. a) Wandeln Sie die folgenden Zweierkomplementzahlen ins Dezimalsystem um.
 - i. $(10101010)_{\mathbb{Z}}$
 - ii. $(11100000)_{\mathbb{Z}}$
 - b) Hierbei handelt es sich um die Bitfolgen von oben. Angenommen Sie betrachten nur die ersten 8 Bits des Ergebnisses der Summe (d.h. das höchstwertigste Bit wird ggf. abgeschnitten). Bestimmen Sie das letzte Übertragsbit und das Überlaufsbit. Treffen Sie damit Aussagen über die Gültigkeit des abgeschnittenen Ergebnisses: Interpretieren Sie dabei einmal alle Bitfolgen als Zweierkomplementzahlen und einmal alle als vorzeichenlose Binärzahlen.
- 3. Stellen Sie die Zahlen x=7 und z=-7 als Zweierkomplementzahl der Länge N=4 sowie N=6 dar.
- 4. Betrachten Sie die binären Gleitkommazahlen gemäß der Parameter s2e2.
 - a) Ermitteln Sie den Verschiebewert B (BIAS) für den Exponenten gemäß des IEEE-754 Standards, sowie die Grenzen e_{\min} und e_{\max} des verschobenen Exponentenwertebereichs (berücksichtigen Sie, dass bestimmte Bitmuster für spezielle Werte reserviert sind).
 - b) Mit vielen Bits wird eine Gleitkommazahl hier gespeichert? Erklären Sie die Bedeutung der einzelnen Bits und wie daraus die Gleitkommazahl gebildet wird.

Solution:

- 1. Berechnen Sie die folgenden Summen im entsprechenden Stellenwertsystem.
 - a) (1P) $(10101010)_2 (170) + (11100000)_2 (224) = (110001010)_2 (394)$ hier: C = carry(N-1, N) = 1, c = carry(N-2, N-1) = 1
 - b) (1P) Ungültige Ziffer 7

Falsch: $(23)_7 (17) + (17)_7 (14) = (43)_7 (31)$

- c) (1P) $(19)_h$ (25) + $(12)_h$ (18) = $(2B)_h$ (43)
- a) Wandeln Sie die folgenden 2er-Komplementzahlen ins Dezimalsystem um.
 - i. (0.5P) $(10101010)_{\mathbb{Z}} = -128 + 42 = -86$
 - ii. (0.5P) $(11100000)_{\mathbb{Z}} = -128 + 96 = -32$
 - b) (0.5P) Übertragsbit = 1 (1P) \rightarrow Ergebnis als vorzeichenlose Zahl ungültig (0.5P) Überlaufsbit = $C \oplus c = 1 \oplus 1 = 0$ (1P) \rightarrow Ergebnis als Zweierkomplementzahl gültig
- 3. (1P) $x = 7 = (0111)_Z = (000111)_Z$ (1P) $z = -7 = (1001)_Z = (111001)_Z$
- 4. Betrachten Sie die binären Gleitkommazahlen gemäß der Parameter s2e2.
 - a) Länge für Exponentenbitfolge = 2, also $B=2^{2-1}-1=1$ mögliche Bitmuster für Exponent: 00, 11 (reserviert für subnormals und NaN), 10 (=2), 01 (=1) Also (0.5P) $e_{\min}=(01)_2-B=1-1=0$ und (0.5P) $e_{\max}=(01)_2-B=2-1=1$
 - b) (1P) 5 Bits: 1 Vorzeichen, 2 Exponent, 2 Mantisse in der Reihenfolge: VEEMM