Tanta University
Faculty of Engineering

Computers & Control Dept.
Fourth Year Students

Neural Networks: Shifted Threshold Activation Functions

(1) A neural network has two input neurons N1 and

N2 receiving inputs $x_1 = 1.2$ and $x_2 = 2.1$,

respectively, and a single output neuron N3

generating an output s. The output neuron

employs a shifted binary threshold activation

function with an amount of shift $y_0 = 2$. The

weights of the network are $w_{13} = 1.5$, $w_{23} = 0.5$,

and $w_{33} = -1$. Determine the output s.

(2) A neural network has three input neurons

N1, N2, N3 receiving inputs x_1, x_2, x_3 ,

respectively, and a single output neuron N4

generating an output s. The output neuron

employs a shifted bipolar threshold activation

function with an amount of shift y. The

weights of the network are $w_{i,j} = 0.5, w_{2,j} = 1,$ $w_{3,4} = 1$, and $w_{0,4} = -0.8$. Find the value of

y such that the following three input-output

patterns are implemented:

	x_{i}	x_2	\approx_3	S
First pattern	0.8	0.4	1.5	-1
Second pattern		1.2	1.4	-1
Third Pattern	1.7	0.6	1.9	1

(3) Investigate the solution of Prob. (2) when x3

in the third	pattern	is r	educed	fr	om_	1.9
to 1.3.						

- (4) Consider a neural network with two input
 neurons and a single output neuron. The
 network is required to perform a logic
 AND operation. Specify a threshold activation
 function for the output neuron and evaluate
 the various weights of the network.
- (5) If the network in Prob. (4) is required to perform a logic OR (instead of logic AND) operation using the same values of weights, specify a threshold activation function for the output neuron.
- (6) The figure below illustrates a three-layer, two-input, two-output neural network. The two hidden-layer neurons employ binary threshold activation functions, while the two output-layer neurons employ shifted bipolar threshold activation functions with the same amount of shift y. For inputs $x_1 = 1$ and $x_2 = 2$ and corresponding outputs $s_1 = 1$ and $s_2 = -1$, determine the permissible range of values

Answers

$$(1) \quad s = 0$$

(4) Binary threshold activation function;
$$w_{03} = -1.5, \quad w_{13} = 1, \quad w_{23} = 1 \quad (Possible answer)$$

$$(6)$$
 1.5 $< y < 2.1$

Prof. Dr. Mahmoud M. Fahmy

