TCP: Miscellaneous Issues

Kameswari Chebrolu

Implementation/Miscellaneous Details

Sequence Number Wrap Around Seg Mo 3

- Sequo field is 32 bits; Advtwindow is 16 bits 2^32 >> 2 * 2^16 (assumes in order packet deliver)
 - Best effort service model; Packets do have a MSL (e.g. 120sec).
 - Need to ensure the sequence number doesn't wrap around within 120sec
 - What is this a function of?
 - How fast data is being transmitted

T1 Link	1.5 Mbps	6.4 hours
Ethernet	10 Mbps	57 minutes
T3	45 Mbps	13 minutes
Fast Ethernet	100 Mbps	5.7 minutes
OC-192	10 Gbps	3.4 sec
OC-768	38 Gbps	0.9 sec

Bandwidth

Link Type

Solution: Uses the 32-bit timestamp option field in addition to the sequence number field.

64-bit identifier: lower order: Seqno field, higher order: time-stamp field

RTT Calculation

- Earlier implementations measured RTT at a clock granularity of 500ms
- Options: 32-bit timestamp
- Sender stamps the segment with the actual system clock (32 bit)
- Receiver echoes the time back in the ack

Keeping Pipe Full

BDP (RTT=100ms)

• Advertised window is allocated 16 bits (Rcv buffer can hold 65536 Bytes)

Link Type

Solution: Window
Scaling Option

Specify a scaling factor as part of the options field

• •		A —
T1 Link	1.5 Mbps	18.7 KB
Ethernet	10 Mbps	125 KB
Т3	45 Mbps	562 KB
Fast Ethernet	100 Mbps	1.2 MB
OC-192	10 Gbps _	125 MB
OC-768	38 Gbps	475 MB

Bandwidth

Summary

- Looked at how TCP implements flow and congestion control in the context of the sliding window protocol
- Looked at other miscellaneous details
- Concludes TCP and the transport layer