# CSC 225 - Summer 2019

Traversals I

Bill Bird

Department of Computer Science University of Victoria

July 17, 2019

## Path Finding (1)



**Problem**: Design an algorithm to find a path from u to w in the graph above.

# Path Finding (2)



Although it is clear to a human observer how to reach w from u, there is no information in the graph itself besides the neighbours of each vertex.

# Path Finding (3)



**Idea**: Start at u, pick a direction and start walking.

# Path Finding (4)



After arriving at a neighbour of u, mark u as 'visited' and keep track of the edge used.

# Path Finding (5)



# Path Finding (6)



# Path Finding (7)



# Path Finding (8)



# Path Finding (9)



### Path Finding (10)



At this point, there are no unvisited vertices neighbouring the current vertex.

### Path Finding (11)



It is impossible to continue without either visiting an already-visited neighbour or doubling back.

### Path Finding (12)



Since the path reached a dead end, double back and ignore the edge used (but leave the vertex marked as visited).

### Path Finding (13)



After backing up to the last vertex with an unvisited neighbour, continue walking.

# Path Finding (14)



# Path Finding (15)



### Path Finding (16)



When w is reached, the set of edges followed during the walk (darkened in the diagram) is a path from u to w.

### Path Finding (17)



Observe that the resulting path is not the most direct route.

### Path Finding (18)



Algorithms which explore a graph by walking along edges are called **graph traversals**.

### Path Finding (19)



The 'pick a direction and start walking' approach corresponds to an algorithm called **Depth First Search** (or DFS).

#### Path Finding (20)

```
1: procedure PATHDFS(v, w, PathStack)
      if v is marked as visited then
 2:
 3:
          return
      end if
4.
5:
      Mark v as visited
6: Push v onto PathStack
7:
      if v = w then
          Output the contents of PathStack
8:
9:
          return
10:
      end if
11:
       for each neighbour q of v do
          PATHDFS(q, w, PathStack)
12:
      end for
13:
14:
       Pop PathStack
15: end procedure
```

The pseudocode above describes the algorithm in the example.

#### Path Finding (21)

```
1: procedure PATHDFS(v, w, PathStack)
       if v is marked as visited then
 2:
 3:
          return
      end if
4.
5:
      Mark v as visited
6: Push v onto PathStack
7:
   if v = w then
          Output the contents of PathStack
8:
9:
          return
10:
      end if
11:
       for each neighbour q of v do
          PATHDFS(q, w, PathStack)
12:
      end for
13:
14:
       Pop PathStack
15: end procedure
To find a u-w path, the initial call is PATHDFS(u, w, PathStack),
where PathStack is an empty stack.
```

#### Path Finding (22)

```
1: procedure PATHDFS(v, w, PathStack)
      if v is marked as visited then
 2:
 3:
          return
      end if
4.
5:
      Mark v as visited
6: Push v onto PathStack
7:
   if v = w then
          Output the contents of PathStack
8:
9:
          return
10:
      end if
11:
       for each neighbour q of v do
          PATHDFS(q, w, PathStack)
12:
      end for
13:
14:
       Pop PathStack
15: end procedure
```

When the traversal reaches vertex w, the contents of PathStack will be the set of vertices in a u-w path.

### Depth-First Search (1)



The path finding algorithm in the previous example was a special case of Depth-First Search (DFS).

### Depth-First Search (2)



The general DFS algorithm starts at a vertex u and visits every vertex reachable from u.

### Depth-First Search (3)



At each step, a neighbour of the current vertex is chosen to be the next vertex visited.

### Depth-First Search (4)



The edge (darkened) followed to reach the next vertex becomes part of the **DFS tree**.

### Depth-First Search (5)



The root of a DFS tree is the initial starting vertex u.

#### Depth-First Search (6)



Edges in the DFS tree may be called tree edges or discovery edges.

# Depth-First Search (7)



#### Depth-First Search (8)



The green edge in the diagram cannot be followed by DFS, since it is connected to a previously visited vertex. Such edges are called **back edges**.

### Depth-First Search (9)



**Exercise**: Show that if a back edge exists, the graph must contain a cycle.

# Depth-First Search (10)



# Depth-First Search (11)



#### Depth-First Search (12)



At this point, the current vertex has no unvisited neighbours.

### Depth-First Search (13)



Recursion unwinds to the last vertex with unvisited neighbours and the traversal continues from there.

#### Depth-First Search (14)



A DFS tree is a spanning tree of the connected component containing the starting vertex u.

#### Depth-First Search (15)

```
1: procedure DFS(v)
       Mark v as visited
2:
       //Visit v (pre-order)
3:
       for each neighbour w of v do
4.
5:
          if w has not already been visited then
              //(v, w) is a discovery edge
6:
7:
              //Recursively traverse w
              DFS(w)
8:
          else
9:
10:
              //(v, w) is a back edge
11:
          end if
12:
       end for
       //Visit v (post-order)
13:
14: end procedure
```

The pseudocode above gives the general structure of DFS.

#### Depth-First Search (16)

```
1: procedure DFS(v)
       Mark v as visited
2:
       //Visit v (pre-order)
 3:
       for each neighbour w of v do
4.
5:
          if w has not already been visited then
              //(v, w) is a discovery edge
6:
7:
              //Recursively traverse w
              DFS(w)
8:
          else
9:
10:
              //(v, w) is a back edge
11:
          end if
12:
       end for
       //Visit v (post-order)
13:
14: end procedure
```

Depending on the application, some aspects (such as the status of edges) may be irrelevant.

## DFS on Directed Graphs (1)



# DFS on Directed Graphs (2)



## DFS on Directed Graphs (3)



## DFS on Directed Graphs (4)



## DFS on Directed Graphs (5)



At this point, the current vertex has no unvisited neighbours, since the edges incident with the vertex are inbound edges.

## DFS on Directed Graphs (6)



Recursion unwinds to the last vertex with unvisited neighbours.

## DFS on Directed Graphs (7)



The neighbours of the current vertex are in a different branch of the DFS tree, so the edges are called **cross edges**.

## DFS on Directed Graphs (8)



**Exercise**: Show that cross edges will never appear during DFS on an undirected graph.

# DFS on Directed Graphs (9)



The two green edges are back edges, since the other endpoint of each edge is an ancestor of the current node in the DFS tree.

# DFS on Directed Graphs (10)



The light blue edge points from the root of the DFS tree to the current node. It is therefore a **forward edge**, since it points from a node to one of its descendants.

# DFS Vertex Numbering (1)



The order in which vertices are visited in a DFS traversal is often significant. Vertices can be assigned indices based on their order during a traversal.

# DFS Vertex Numbering (2)



(In the diagrams above, the vertex u is the root of the DFS tree)

# DFS Vertex Numbering (3)



In a **pre-order** numbering, each vertex is assigned the next available index during the 'pre-order visit' (as DFS first arrives at the vertex).

## DFS Vertex Numbering (4)



A pre-order numbering corresponds to the order in which vertices are visited in a pre-order traversal of the DFS tree.

# DFS Vertex Numbering (5)



In a **post-order** numbering, each vertex is assigned the next available index during the 'post-order visit' (just before DFS leaves the vertex for the last time). A post-order numbering corresponds to a post-order traversal of the DFS tree.

## Storing Traversal Trees (1)



**Exercise**: Perform a DFS traversal starting at vertex f above and store the resulting DFS tree.

## Storing Traversal Trees (2)



Traversal trees (and other rooted trees) can be represented with a **parent array** structure. A parent array is an associative map which stores the parent of each vertex.

## Storing Traversal Trees (3)



Vertices which are not part of the tree have no parent, and are marked as invalid (in this case, using the symbol  $\times$ ). Before the traversal starts, all vertices have invalid parents.

## Storing Traversal Trees (4)



At the beginning of the traversal, the starting vertex f is set to be its own parent (to indicate that f is the root).

#### Storing Traversal Trees (5)



Since vertex e is visited for the first time from vertex f, the parent of e is set to be f.

#### Storing Traversal Trees (6)



As the traversal proceeds, the parent of each newly discovered vertex  $\boldsymbol{w}$  is set to be the vertex  $\boldsymbol{u}$  on the other endpoint of its discovery edge.

#### Storing Traversal Trees (7)



## Storing Traversal Trees (8)



# Storing Traversal Trees (9)



# Storing Traversal Trees (10)



64

## Storing Traversal Trees (11)



When the traversal finishes, any vertices with an invalid parent (such as h and i in the above example) are not reachable from the starting vertex f.

## Storing Traversal Trees (12)



If a vertex v has a valid parent, a path from v to the starting vertex can be found by following the parent pointers to the root of the tree.

## Storing Traversal Trees (13)



Observe that a single DFS traversal rooted at a vertex u will find a path from u to **all** vertices reachable from u.

## Storing Traversal Trees (14)

```
1: procedure GENERATEDFSTREE(v)
      for each neighbour w of v do
2:
         if Parent[w] = x then
3:
            //(v, w) is a discovery edge
4:
            Parent[w] = v
5:
            GENERATEDFSTREE(w)
6:
         end if
7:
     end for
8.
9: end procedure
```

To start the recursive traversal above at a vertex u, set Parent[u] = u and set all other elements of Parent to  $\times$ .

## Finding Connected Components (1)



**Exercise**: Describe an algorithm to find the connected components of a graph G.

# Finding Connected Components (2)



(This will be very helpful on Programming Assignment 3...)

# Finding Connected Components (3)



A DFS traversal rooted at a vertex v will visit all vertices reachable from v.

## Finding Connected Components (4)



To find the components, choose a vertex  $v_1$  and run DFS to find the component containing  $v_1$ .

## Finding Connected Components (5)



If all vertices in the graph have not been visited, choose another vertex  $v_2$  and run DFS again.

## Finding Connected Components (6)



Each instance of DFS finds a spanning tree of one connected component.

## Finding Connected Components (7)



While unvisited vertices remain, continue choosing an unvisited vertex and running DFS.

# Finding Connected Components (8)



While unvisited vertices remain, continue choosing an unvisited vertex and running DFS.