Key Management and Distribution

Department of Computer Engineering

CRYPTOGRAPHY

Faculty-Vivek Kumar Anand

Key Management & Distribution

- Topics of cryptographic key management / key distribution are complex
 - Cryptographic, protocol, & management issues
- Symmetric schemes require both parties to share a common secret key
- Public key schemes require parties to acquire valid public keys
- Have concerns with doing both

Key Distribution

- Symmetric schemes require both parties to share a common secret key
- ► Issue is how to securely distribute this key
- ➤ Whilst protecting it from others
- > Frequent key changes can be desirable
- ➤ Often secure system failure due to a break in the key distribution scheme

Symmetric Key Distribution Using Symmetric Encryption

- Given parties A and B have various **key distribution** alternatives:
 - 1. A can select key and physically deliver to B
 - 2. Third party can select & deliver key to A & B
 - 3. If A & B have communicated previously can use previous key to encrypt a new key
 - 4. If A & B have secure communications with a third party C, C can relay key between A & B

Key Hierarchy

- Typically have a hierarchy of keys
- >Session key
 - Temporary key
 - Used for encryption of data between users
 - For one logical session then discarded
- ➤ Master key
 - Used to encrypt session keys
 - Shared by user & key distribution center

Key Hierarchy

Key Distribution Scenario

Key Distribution Issues

- Hierarchies of kdc's required for large networks, but must trust each other
- Session key lifetimes should be limited for greater security
- Use of automatic key distribution on behalf of users, but must trust system
- Use of decentralized key distribution
- Controlling key usage

Simple Secret Key Distribution

- Merkle proposed this very simple scheme
 - Allows secure communications
 - No keys before/after exist

Man-in-the-Middle Attack

This very simple scheme is vulnerable to an active man-in-the-middle attack

Secret Key
Distribution
with
Confidentiality
and
Authentication

Hybrid Key Distribution

- >retain use of private-key KDC
- > shares secret master key with each user
- > distributes session key using master key
- >public-key used to distribute master keys
 - especially useful with widely distributed users

Distribution of Public Keys

- can be considered as using one of:
 - 1. public announcement
 - 2. publicly available directory
 - 3. public-key authority
 - 4. public-key certificates

1. Public Announcement

- users distribute public keys to recipients or broadcast to community at large
 - eg. append PGP keys to email messages or post to news groups or email list
- major weakness is forgery
 - anyone can create a key claiming to be someone else and broadcast it
 - until forgery is discovered can masquerade as claimed user

2. Publicly Available Directory

- can obtain greater security by registering keys with a public directory
- directory must be trusted with properties:
 - contains {name,public-key} entries
 - participants register securely with directory
 - participants can replace key at any time
 - directory is periodically published
 - directory can be accessed electronically
- still vulnerable to tampering or forgery

3. Public-Key Authority

- improve security by tightening control over distribution of keys from directory
- has properties of directory
- and requires users to know public key for the directory
- then users interact with directory to obtain any desired public key securely
 - does require real-time access to directory when keys are needed
 - may be vulnerable to tampering

3. Public-Key Authority

4. Public-Key Certificates

- >certificates allow key exchange without real-time access to public-key authority
- > a certificate binds identity to public key
 - •usually with other info such as period of validity, rights of use etc
- with all contents **signed** by a trusted Public-Key or Certificate Authority (CA)
- can be verified by anyone who knows the public-key authorities public-key

4. Public-Key Certificates

X.509 Authentication Service

- defines framework for authentication services
 - directory may store public-key certificates
 - with public key of user signed by certification authority
- > also defines authentication protocols
- >uses public-key crypto & digital signatures
 - algorithms not standardised, but RSA recommended
- >X.509 certificates are widely used
 - •have 3 versions

Figure 14.13 Public-Key Certificate Use

X.509 Certificates

- issued by a Certification Authority (CA), containing:
 - version V (1, 2, or 3)
 - serial number SN (unique within CA) identifying certificate
 - signature algorithm identifier AI
 - issuer X.500 name (CA)
 - period of validity TA (from to dates)
 - subject X.500 name A (name of owner)
 - subject public-key info Ap (algorithm, parameters, key)
 - issuer unique identifier (v2+)
 - subject unique identifier (v2+)
 - extension fields (v3)
 - signature (of hash of all fields in certificate)
- notation CA<<A>> denotes certificate for A signed by CA

X.509 Certificates

Obtaining a Certificate

- > any user with access to CA can get any certificate from it
- >only the CA can modify a certificate
- because cannot be forged, certificates can be placed in a public directory

CA Hierarchy

- if both users share a common CA then they are assumed to know its public key
- >otherwise CA's must form a hierarchy
- >use certificates linking members of hierarchy to validate other CA's
 - each CA has certificates for clients (forward) and parent (backward)
- > each client trusts parents certificates
- righter enable verification of any certificate from one CA by users of all other CAs in hierarchy

CA Hierarchy Use

Certificate Revocation

- certificates have a period of validity
- may need to revoke before expiry, eg:
 - 1. user's private key is compromised
 - 2. user is no longer certified by this CA
 - 3. CA's certificate is compromised
- CA's maintain list of revoked certificates
 - the Certificate Revocation List (CRL)
- users should check certificates with CA's CRL

X.509 Version 3

- has been recognised that additional information is needed in a certificate
 - email/URL, policy details, usage constraints
- rather than explicitly naming new fields defined a general extension method
- extensions consist of:
 - extension identifier
 - criticality indicator
 - extension value

Certificate Extensions

- key and policy information
 - convey info about subject & issuer keys, plus indicators of certificate policy
- certificate subject and issuer attributes
 - support alternative names, in alternative formats for certificate subject and/or issuer
- certificate path constraints
 - allow constraints on use of certificates by other CA's

Public Key Infrastructure

Figure 14.17 PKIX Architectural Model

PKIX Management

- >functions:
 - registration
 - initialization
 - certification
 - key pair recovery
 - key pair update
 - •revocation request
 - cross certification

Summary

- have considered:
 - symmetric key distribution using symmetric encryption
 - symmetric key distribution using public-key encryption
 - distribution of public keys
 - announcement, directory, authrority, CA
 - X.509 authentication and certificates
 - public key infrastructure (PKIX)