Buatlah ADT Non Binary Tree dengan alokasi statis / representasi Kontigu (menggunakan Array) dengan Struktur data (setiap node) tddr subvar : info : var tunggal beritpe Integer (boleh diganti karakter) posisi_parent, posisi_first_son, posisi_next_brother : var tunggal betipe integer

(jadi menggunakan array bertipe komposit)

Spesifikasi (*.h) adalah sebagai berikut:

```
#ifndef nbtrees h
#define nbtrees h
#include "boolean.h"
//Maksimal node yang dapat ditampung dalam array
#define jml maks 20
//Arah traversal
#define kebawah 1
#define keatas 2
#define kekanan 3
#define nil
/**********
/* Type data */
/*********
/* Indeks dalam bahasa C dimulai dengan 0; tetapi indeks 0 tidak
dipakai */
/* Kamus */
typedef char infotype;
typedef int address;
typedef struct { infotype info;
            address ps fs, ps nb, ps pr;}nbtree;
typedef nbtree Isi Tree[jml maks+1];
/*********
/* SPESIFIKASI */
/**********
void Create_tree(Isi_Tree X, int Jml_Node);
// Create Non Binary Tree sebanyak Jml Node
// Tujuan mengentrykan Non Binary Tree ke array Isi Tree dengan pola
Level Order
// Jml Node adalah banyaknya elemen dalam Tree yang menjadi parameter
input
```

```
boolean IsEmpty (Isi Tree P);
/* Mengirimkan true jika Isi Tree KOSONG */
/**** Traversal ****/
void PreOrder (Isi Tree P);
/* Traversal PreOrder */
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditampilkan secara PreOrder : Parent,
fs, nb */
void InOrder (Isi_Tree P);
/* Traversal InOrder */
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditampilkan secara InOrder : fs, Parent,
Sisa anak lain */
void PostOrder (Isi Tree P);
/* Traversal PostOrder */
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditampilkan secara PostOrder : fs, nb,
Parent */
void Level order(Isi Tree X, int Maks node);
/* Traversal LevelOrder */
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditampilkan secara Level Order */
void PrintTree (Isi Tree P);
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditulis ke layar */
/**** Search ****/
boolean Search (Isi Tree P, infotype X);
/* Mengirimkan true jika ada node dari P yang bernilai X *
/**** Fungsi Lain ****/
int nbElmt (Isi Tree P);
/* Mengirimkan banyak elemen (node) di pohon non biner P */
int nbDaun (Isi Tree P);
/* Mengirimkan banyak daun (node) pohon non biner P */
int Level (Isi Tree P, infotype X);
/* Mengirimkan level dari node X yang merupakan salah satu simpul */
/* dr pohon P. Akar (P) levelnya adalah O. Pohon tidak kosong */
int Depth (Isi Tree P);
/* Pohon Biner mungkin Kosong, mengirimkan 'depth' yaitu tinggi dari
Pohon */
/* Basis : Pohon Kosong, tingginya Nol */
int Max (infotype Data1, infotype Data2);
/* Mengirimkan Nilai terbesar dari dua data */
#endif
```

Misal akan dibentuk tree sbb:

Maka ilustrasi Final State situasi alokasi statis untuk array NBTS nya adalah sbb: (ilustrasi FS sampai inset node di level 2)

Array NBTS :																																
subvar :	info	fs	nb	pr																												
	'A'	2	0	0	'B'	4	3	1	'C'	6	0	1	'D'	0	5	2	'E'	0	0	2	'F'	0	7	3	'G'	0	8	3	'H'	0	0	3
no indeks		1				2				3				4				5				6				7				8		

	11110	13	טוו	μι	
•••		0	0	0	
•••			•		