$\operatorname{semestr} \, I$

Wprowadzenie do Data Science i metod uczenia maszynowego 2020/2021

Prowadzący: mgr inż. Rafał Woźniak

Wtorek, 13:15

 Szymon Gruda
 239661
 239661@edu.p.lodz.pl

 Jan Karwowski
 239671
 239671@edu.p.lodz.pl

 Michał Kidawa
 239673
 239673@edu.p.lodz.pl

 Kamil Kowalewski
 239676
 216806@edu.p.lodz.pl

Zadanie 2.: Problem Set 2

Spis treści

1.	Wpi	rowadz	enie	3
2.	Wyı	niki		5
	2.1.		w danych 5%	5
		2.1.1.	List wise deletion	5
		2.1.2.	Mean imputation	7
		2.1.3.	Interpolation	8
		2.1.4.	Hot deck	10
		2.1.5.	Regression	11
	2.2.	Braki ⁻	w danych 15%	13
		2.2.1.	List wise deletion	13
		2.2.2.	Mean imputation	14
		2.2.3.	Interpolation	16
		2.2.4.	Hot deck	17
		2.2.5.	Regression	19
	2.3.	Braki	w danych 30%	20
		2.3.1.	List wise deletion	20
		2.3.2.	Mean imputation	22
		2.3.3.	Interpolation	23
		2.3.4.	Hot deck	25
		2.3.5.	Regression	26
	2.4.	Braki	w danych 45%	28
		2.4.1.	List wise deletion	28
		2.4.2.	Mean imputation	28
		2.4.3.	Interpolation	30
		2.4.4.	Hot deck	31
		2.4.5.	Regression	33
3.	Dys	kusja .		33
		3.0.1.	Mean imputation	33
		3.0.2.	Interpolation	33
		3.0.3.	Hot deck	34
		3.0.4.	Regression	34
4.	Wni	ioski .		35
	torat			35

1. Wprowadzenie

Jednym z elementów przygotowania danych do późniejszej analizy jest rozwiązanie problemu brakujących, a niezbędnych do analizy atrybutów. Jest to realizowane poprzez imputację danych. W tym zadaniu badany był wpływ imputacji, przeprowadzonej przy pomocy różnych metod, na statystyki dotyczące zbioru danych. Jako testowy zbiór danych wykorzystaliśmy zbiór heart-disease-uci [1]. Tabela 1 zawiera opis zawartości tego zbioru.

Nazwa kolumny	Opis zawartości
age	wiek w latach
Sex	płeć, gdzie 1 to mężczyzna a 0 to kobieta
cp (chest-pain-type)	rodzaj bólu w klatce piersiowej, przyjmuje wartość 0, 1, 2 lub 3
trestbps (resting-blood-pressure)	ciśnienie krwi w czasie spoczynku (w mm/Hg przy przyjęciu do szpitala)
chol (serum-cholestoral)	cholesterol w surowicy w mg/dl
fbs (fasting-blood-sugar)	poziom cukru we krwi na czco, przyjmuje wartość 1 dla poziomu większego niż 120 mg/dl, lub wartość 0 dla poziomu mniejszego
restecg (resting-electrocardiographic)	wyniki eloktrokardiografu w stanie spoczynku, przyjmuje wartość 0, 1 lub 2
thalach (maximum-heart-rate)	najwyższe osiągnięte tętno
exang (exercise-induced-angina)	dławica wysiłkowa, przyjmuje wartość 1, jeżeli dławica występuje, w przeciwnym razie przyjmuje wartość 0
oldpeak	Obniżenie odcinka ST, wywołane przez ćwiczenie, w stosunku do odpoczynku
slope (the-slope-of-the-peak-exercise)	nachylenie szczytowe odcinka ST podczas wysiłku, przyjmuje wartość 0, 1 lub 2
ca (number-of-major-vessels)	liczba głównych naczyń, przyjmuje wartość 0, 1, 2, 3 lub 4
thal	przyjmuje wartość 0, 1, 2 lub 3
target	przyjmuje wartość 0 lub 1

Tabela 1. Opis zbioru danych

Imputację stosujemy dla kilku wariantów zbioru, w których braki danych zostały usunięte poprzez losowe usunięcie kolejno 5%, 15%, 30% i 45% danych. Dla analizy wpływu imputacji zostały obliczone statystyki takie jak: średnia arytmetyczna, odchylenie standardowe, moda, mediana oraz kwartyle. Ich wartości zostały wyznaczone dla zbioru, zawierającego wszystkie dane, a także dla zbiorów, których brakujące dane zostały uzyskane wypełnione danymi uzyskanymi przy użyciu następujących metod imputacji: "mean imputation", interpolacji, hot-deck, krzywej regresji.

Po zapoznaniu się z charakterystyką zbioru danych postawiliśmy trzy hipotezy:

- średnia wieku osoby chorej na serce jest równa 54 (lata)
- średnie ciśnienie spoczynkowe osoby chorej wynosi 131
- średnie maksymalne zanotowane tętno wynosi 148

2. Wyniki

2.1. Braki w danych 5%

2.1.1. List wise deletion

	Mean	Std	Mode	Q1	Median	Q3
age	54.2838	9.2744	58.0	47.75	56.0	60.0
sex	0.6824	0.4671	1.0	0.0	1.0	1.0
chest-pain-type	0.8514	0.9715	0.0	0.0	0.0	2.0
resting-blood-pressure	131.0068	16.7858	120.0	120.0	130.0	140.0
serum-cholestoral	249.6351	55.9982	197.0	210.75	243.5	275.0
fasting-blood-sugar	0.1554	0.3635	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5068	0.5408	0.0	0.0	0.0	1.0
maximum-heart-rate	148.0676	23.2554	143.0	131.0	151.5	166.0
exercise-induced-angina	0.3243	0.4697	0.0	0.0	0.0	1.0
oldpeak	1.0108	1.0793	0.0	0.0	0.65	1.6
the-slope-of-the-peak-exercise	1.3716	0.598	1.0	1.0	1.0	2.0
number-of-major-vessels	0.7568	1.0408	0.0	0.0	0.0	1.0
thal	2.3108	0.5931	2.0	2.0	2.0	3.0
target	0.5135	0.5015	1.0	0.0	1.0	1.0

Tabela 2.

Rysunek 1. Współczynnik kierunkowy: 0.5113, Punkt przecięcia: 103.2523

Rysunek 2. Współczynnik kierunkowy: -1.1359, Punkt przecięcia: 209.7261

2.1.2. Mean imputation

	Mean	Std	Mode	Q1	Median	Q3
age	54.3024	8.7404	58.0	48.0	55.0	60.0
sex	0.6964	0.4606	1.0	0.0	1.0	1.0
chest-pain-type	0.9934	1.0	0.0	0.0	1.0	2.0
resting-blood-pressure	131.3514	17.0986	120.0	120.0	130.0	140.0
serum-cholestoral	245.9397	51.0872	245.9397	211.5	244.0	272.0
fasting-blood-sugar	0.132	0.3391	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5578	0.5234	1.0	0.0	1.0	1.0
maximum-heart-rate	149.4913	22.4148	149.4913	136.5	151.0	165.0
exercise-induced-angina	0.3036	0.4606	0.0	0.0	0.0	1.0
oldpeak	1.0287	1.1035	0.0	0.0	0.8	1.6
the-slope-of-the-peak-exercise	1.3927	0.6042	1.0	1.0	1.0	2.0
number-of-major-vessels	0.7195	0.9476	0.0	0.0	0.0	1.0
thal	2.2871	0.5869	2.0	2.0	2.0	3.0
target	0.5644	0.4967	1.0	0.0	1.0	1.0

Tabela 3.

Rysunek 3. Współczynnik kierunkowy: 0.5289, Punkt przecięcia: 102.6334

Rysunek 4. Współczynnik kierunkowy: -1.0417, Punkt przecięcia: 206.0584

2.1.3. Interpolation

	Mean	Std	Mode	Q1	Median	Q3
age	54.2558	8.7904	58.0	48.0	55.0	60.0
sex	0.6733	0.4698	1.0	0.0	1.0	1.0
chest-pain-type	0.9802	1.0162	0.0	0.0	1.0	2.0
resting-blood-pressure	131.4818	17.2471	120.0	120.0	130.0	140.0
serum-cholestoral	246.3779	52.2324	234.0	211.0	240.0	275.1667
fasting-blood-sugar	0.132	0.3391	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5281	0.5259	1.0	0.0	1.0	1.0
maximum-heart-rate	149.7013	22.7039	162.0	136.0	153.0	165.5
exercise-induced-angina	0.3036	0.4606	0.0	0.0	0.0	1.0
oldpeak	1.021	1.1065	0.0	0.0	0.8	1.6
the-slope-of-the-peak-exercise	1.3993	0.6162	2.0	1.0	1.0	2.0
number-of-major-vessels	0.7294	0.9897	0.0	0.0	0.0	1.0
thal	2.2937	0.6004	2.0	2.0	2.0	3.0
target	0.5446	0.4988	1.0	0.0	1.0	1.0

Tabela 4.

Rysunek 5. Współczynnik kierunkowy: 0.5243, Punkt przecięcia: 103.0352

Rysunek 6. Współczynnik kierunkowy: -1.0493, Punkt przecięcia: 206.6338

2.1.4. Hot deck

	Mean	Std	Mode	Q1	Median	Q3
age	54.5215	8.8182	59.0	48.0	56.0	60.5
sex	0.6931	0.462	1.0	0.0	1.0	1.0
chest-pain-type	0.9901	1.018	0.0	0.0	1.0	2.0
resting-blood-pressure	131.429	17.1287	130.0	120.0	130.0	140.0
serum-cholestoral	245.0792	54.0866	234.0	207.5	236.0	274.0
fasting-blood-sugar	0.1353	0.3426	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5479	0.5244	1.0	0.0	1.0	1.0
maximum-heart-rate	149.4884	23.1365	162.0	133.5	153.0	166.0
exercise-induced-angina	0.3399	0.4745	0.0	0.0	0.0	1.0
oldpeak	0.9954	1.1182	0.0	0.0	0.6	1.6
the-slope-of-the-peak-exercise	1.4125	0.6074	2.0	1.0	1.0	2.0
number-of-major-vessels	0.6733	1.0011	0.0	0.0	0.0	1.0
thal	2.2937	0.5948	2.0	2.0	2.0	3.0
target	0.5611	0.4971	1.0	0.0	1.0	1.0

Tabela 5.

Rysunek 7. Współczynnik kierunkowy: 0.5173, Punkt przecięcia: 103.2271

Rysunek 8. Współczynnik kierunkowy: -1.0607, Punkt przecięcia: 207.3196

2.1.5. Regression

	Mean	Std	Mode	Q1	Median	Q3
age	54.1981	8.7838	58.0	48.0	55.0	60.0
sex	0.6799	0.4673	1.0	0.0	1.0	1.0
chest-pain-type	1.0297	1.0305	0.0	0.0	1.0	2.0
resting-blood-pressure	131.3432	17.1124	120.0	120.0	130.0	140.0
serum-cholestoral	246.0021	51.3759	197.0	211.5	240.0	274.0
fasting-blood-sugar	0.132	0.3391	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5479	0.5244	1.0	0.0	1.0	1.0
maximum-heart-rate	149.9182	22.6091	162.0	136.5	153.0	166.0
exercise-induced-angina	0.3036	0.4606	0.0	0.0	0.0	1.0
oldpeak	1.0201	1.1124	0.0	0.0	0.8	1.6
the-slope-of-the-peak-exercise	1.4059	0.6119	2.0	1.0	1.0	2.0
number-of-major-vessels	0.6337	0.9635	0.0	0.0	0.0	1.0
thal	2.2871	0.5869	2.0	2.0	2.0	3.0
target	0.5644	0.4967	1.0	0.0	1.0	1.0

Tabela 6.

Rysunek 9. Współczynnik kierunkowy: 0.5377, Punkt przecięcia: 102.2009

Rysunek 10. Współczynnik kierunkowy: -1.0547, Punkt przecięcia: 207.0784

2.2. Braki w danych 15%

2.2.1. List wise deletion

	Mean	Std	Mode	Q1	Median	Q3
age	52.0	7.1487	52.0	49.0	52.0	55.5
sex	0.7667	0.4302	1.0	1.0	1.0	1.0
chest-pain-type	1.3	1.1188	2.0	0.0	2.0	2.0
resting-blood-pressure	127.7	12.0977	120.0	118.5	126.5	138.0
serum-cholestoral	241.3333	46.9588	197.0	203.5	237.5	275.25
fasting-blood-sugar	0.1	0.3051	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5	0.5724	0.0	0.0	0.0	1.0
maximum-heart-rate	158.9	19.9937	152.0	151.25	161.5	173.5
exercise-induced-angina	0.2667	0.4498	0.0	0.0	0.0	0.75
oldpeak	0.83	1.0577	0.0	0.0	0.55	1.2
the-slope-of-the-peak-exercise	1.3333	0.7112	2.0	1.0	1.0	2.0
number-of-major-vessels	0.6333	1.0981	0.0	0.0	0.0	1.0
thal	2.2333	0.6261	2.0	2.0	2.0	3.0
target	0.7333	0.4498	1.0	0.25	1.0	1.0

Tabela 7.

Rysunek 11. Współczynnik kierunkowy: -0.0155, Punkt przecięcia: 128.507

Rysunek 12. Współczynnik kierunkowy: -1.3833, Punkt przecięcia: 230.8298

2.2.2. Mean imputation

	Mean	Std	Mode	Q1	Median	Q3
age	54.1712	8.3071	54.1712	49.5	54.1712	59.5
sex	0.7261	0.4467	1.0	0.0	1.0	1.0
chest-pain-type	0.9835	0.9576	0.0	0.0	1.0	2.0
resting-blood-pressure	131.4318	16.546	131.4318	120.0	131.4318	140.0
serum-cholestoral	247.3472	49.3824	247.3472	214.0	247.3472	269.0
fasting-blood-sugar	0.1254	0.3317	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.604	0.5162	1.0	0.0	1.0	1.0
maximum-heart-rate	151.1875	20.5691	151.1875	143.0	151.1875	163.0
exercise-induced-angina	0.2838	0.4516	0.0	0.0	0.0	1.0
oldpeak	1.0402	1.0868	0.0	0.0	1.0	1.5
the-slope-of-the-peak-exercise	1.3333	0.5849	1.0	1.0	1.0	2.0
number-of-major-vessels	0.7723	0.9513	0.0	0.0	1.0	1.0
thal	2.2739	0.5819	2.0	2.0	2.0	3.0
target	0.6007	0.4906	1.0	0.0	1.0	1.0

Tabela 8.

Rysunek 13. Współczynnik kierunkowy: 0.4738, Punkt przecięcia: 105.7662

Rysunek 14. Współczynnik kierunkowy: -0.8659, Punkt przecięcia: 198.0939

2.2.3. Interpolation

	Mean	Std	Mode	Q1	Median	Q3
age	54.0513	8.6269	54.0	48.0	55.0	60.0
sex	0.649	0.4781	1.0	0.0	1.0	1.0
chest-pain-type	0.9437	1.005	0.0	0.0	1.0	2.0
resting-blood-pressure	131.1904	16.9762	120.0	120.0	130.0	140.0
serum-cholestoral	246.6838	50.543	197.0	212.0	242.5	272.5
fasting-blood-sugar	0.1258	0.3322	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5166	0.5264	0.0	0.0	1.0	1.0
maximum-heart-rate	150.7897	21.6155	162.0	138.25	154.0	165.875
exercise-induced-angina	0.3311	0.4714	0.0	0.0	0.0	1.0
oldpeak	1.0257	1.1411	0.0	0.0	0.7417	1.6
the-slope-of-the-peak-exercise	1.3411	0.6096	1.0	1.0	1.0	2.0
number-of-major-vessels	0.702	0.9903	0.0	0.0	0.0	1.0
thal	2.3212	0.6041	2.0	2.0	2.0	3.0
target	0.543	0.499	1.0	0.0	1.0	1.0

Tabela 9.

Rysunek 15. Współczynnik kierunkowy: 0.4809, Punkt przecięcia: 105.1974

Rysunek 16. Współczynnik kierunkowy: -0.8672, Punkt przecięcia: 197.6622

2.2.4. Hot deck

	Mean	Std	Mode	Q1	Median	Q3
age	53.7657	8.911	57.0	46.0	56.0	60.0
sex	0.7063	0.4562	1.0	0.0	1.0	1.0
chest-pain-type	0.9208	1.0133	0.0	0.0	1.0	2.0
resting-blood-pressure	131.6469	17.1218	130.0	120.0	130.0	140.0
serum-cholestoral	249.4389	51.0181	271.0	213.0	247.0	273.0
fasting-blood-sugar	0.1353	0.3426	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5479	0.5244	1.0	0.0	1.0	1.0
maximum-heart-rate	149.6535	22.9885	141.0	137.0	153.0	166.0
exercise-induced-angina	0.3399	0.4745	0.0	0.0	0.0	1.0
oldpeak	1.033	1.1596	0.0	0.0	0.8	1.6
the-slope-of-the-peak-exercise	1.4125	0.6074	2.0	1.0	1.0	2.0
number-of-major-vessels	0.7855	1.0627	0.0	0.0	0.0	1.0
thal	2.33	0.6171	2.0	2.0	2.0	3.0
target	0.5248	0.5002	1.0	0.0	1.0	1.0

Tabela 10.

Rysunek 17. Współczynnik kierunkowy: 0.5028, Punkt przecięcia: 104.6144

Rysunek 18. Współczynnik kierunkowy: -0.8717, Punkt przecięcia: 196.5231

2.2.5. Regression

	Mean	Std	Mode	Q1	Median	Q3
age	53.714	8.6974	54.0	47.0	54.0	60.0
sex	0.6964	0.4606	1.0	0.0	1.0	1.0
chest-pain-type	1.0528	1.0248	0.0	0.0	1.0	2.0
resting-blood-pressure	131.1375	17.0185	120.0	120.0	130.0	140.0
serum-cholestoral	247.0421	51.2247	197.0	211.7721	243.0	277.0
fasting-blood-sugar	0.1254	0.3317	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.505	0.5266	0.0	0.0	0.0	1.0
maximum-heart-rate	152.3587	21.0286	162.0	143.0	156.0	166.0
exercise-induced-angina	0.2937	0.4562	0.0	0.0	0.0	1.0
oldpeak	1.0149	1.1179	0.0	0.0	0.7295	1.6
the-slope-of-the-peak-exercise	1.4653	0.6181	2.0	1.0	2.0	2.0
number-of-major-vessels	0.6139	0.983	0.0	0.0	0.0	1.0
thal	2.2739	0.5819	2.0	2.0	2.0	3.0
target	0.5842	0.4937	1.0	0.0	1.0	1.0

Tabela 11.

Rysunek 19. Współczynnik kierunkowy: 0.4281, Punkt przecięcia: 108.1442

Rysunek 20. Współczynnik kierunkowy: -0.8362, Punkt przecięcia: 197.2746

2.3. Braki w danych 30%

2.3.1. List wise deletion

	Mean	Std	Mode	Q1	Median	Q3
age	46.5	6.364	42.0	44.25	46.5	48.75
sex	0.5	0.7071	0.0	0.25	0.5	0.75
chest-pain-type	1.0	1.4142	0.0	0.5	1.0	1.5
resting-blood-pressure	98.0	5.6569	94.0	96.0	98.0	100.0
serum-cholestoral	246.0	26.8701	227.0	236.5	246.0	255.5
fasting-blood-sugar	0.0	0.0	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5	0.7071	0.0	0.25	0.5	0.75
maximum-heart-rate	138.0	22.6274	122.0	130.0	138.0	146.0
exercise-induced-angina	0.5	0.7071	0.0	0.25	0.5	0.75
oldpeak	0.3	0.4243	0.0	0.15	0.3	0.45
the-slope-of-the-peak-exercise	1.5	0.7071	1.0	1.25	1.5	1.75
number-of-major-vessels	0.5	0.7071	0.0	0.25	0.5	0.75
thal	2.5	0.7071	2.0	2.25	2.5	2.75
target	1.0	0.0	1.0	1.0	1.0	1.0

Tabela 12.

Rysunek 21. Współczynnik kierunkowy: -0.8889, Punkt przecięcia: 139.3333

Rysunek 22. Współczynnik kierunkowy: 3.5556, Punkt przecięcia: -27.3333

2.3.2. Mean imputation

	Mean	Std	Mode	Q1	Median	Q3
age	54.2755	7.4138	54.2755	52.0	54.2755	58.0
sex	0.7921	0.4065	1.0	1.0	1.0	1.0
chest-pain-type	0.9736	0.8608	1.0	0.0	1.0	1.0
resting-blood-pressure	130.5311	13.982	130.5311	124.0	130.5311	134.0
serum-cholestoral	246.1991	40.5367	246.1991	225.5	246.1991	260.0
fasting-blood-sugar	0.1122	0.3161	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.6535	0.4971	1.0	0.0	1.0	1.0
maximum-heart-rate	149.8873	18.8264	149.8873	144.0	149.8873	160.0
exercise-induced-angina	0.2112	0.4089	0.0	0.0	0.0	0.0
oldpeak	1.0326	0.9452	1.0326	0.2	1.0326	1.2
the-slope-of-the-peak-exercise	1.297	0.5733	1.0	1.0	1.0	2.0
number-of-major-vessels	0.8119	0.8808	1.0	0.0	1.0	1.0
thal	2.2442	0.5396	2.0	2.0	2.0	3.0
target	0.7063	0.4562	1.0	0.0	1.0	1.0

Tabela 13.

Rysunek 23. Współczynnik kierunkowy: 0.4026, Punkt przecięcia: 108.6808

Rysunek 24. Współczynnik kierunkowy: -0.6673, Punkt przecięcia: 186.1078

2.3.3. Interpolation

	Mean	Std	Mode	Q1	Median	Q3
age	54.1204	8.3722	57.0	48.0	54.0	60.0
sex	0.6421	0.4802	1.0	0.0	1.0	1.0
chest-pain-type	0.913	0.9336	0.0	0.0	1.0	2.0
resting-blood-pressure	130.9649	15.7225	130.0	120.0	130.0	140.0
serum-cholestoral	244.3595	44.8516	197.0	212.25	241.5	269.5
fasting-blood-sugar	0.1371	0.3446	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.5251	0.5327	0.0	0.0	1.0	1.0
maximum-heart-rate	149.1538	21.3123	152.0	138.0	152.0	165.0
exercise-induced-angina	0.301	0.4595	0.0	0.0	0.0	1.0
oldpeak	1.0258	1.0343	0.0	0.1	0.8	1.67
the-slope-of-the-peak-exercise	1.3579	0.6095	1.0	1.0	1.0	2.0
number-of-major-vessels	0.689	0.9695	0.0	0.0	0.0	1.0
thal	2.3211	0.5827	2.0	2.0	2.0	3.0
target	0.5351	0.4996	1.0	0.0	1.0	1.0

Tabela 14.

Rysunek 25. Współczynnik kierunkowy: 0.2714, Punkt przecięcia: 116.274

Rysunek 26. Współczynnik kierunkowy: -0.83, Punkt przecięcia: 194.0758

2.3.4. Hot deck

	Mean	Std	Mode	Q1	Median	Q3
age	54.7228	8.7464	55.0	50.0	55.0	60.0
sex	0.6073	0.4892	1.0	0.0	1.0	1.0
chest-pain-type	1.0363	1.0174	0.0	0.0	1.0	2.0
resting-blood-pressure	131.2574	16.278	120.0	120.0	130.0	140.0
serum-cholestoral	246.0561	46.8676	212.0	212.0	244.0	274.5
fasting-blood-sugar	0.1419	0.3495	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.4785	0.5198	0.0	0.0	0.0	1.0
maximum-heart-rate	149.0759	22.3185	125.0	132.0	150.0	167.0
exercise-induced-angina	0.2739	0.4467	0.0	0.0	0.0	1.0
oldpeak	1.038	1.1374	0.0	0.0	0.8	1.8
the-slope-of-the-peak-exercise	1.3465	0.6372	1.0	1.0	1.0	2.0
number-of-major-vessels	0.7162	1.0351	0.0	0.0	0.0	1.0
thal	2.3663	0.5878	2.0	2.0	2.0	3.0
target	0.5776	0.4948	1.0	0.0	1.0	1.0

Tabela 15.

Rysunek 27. Współczynnik kierunkowy: 0.4277, Punkt przecięcia: 107.8535

Rysunek 28. Współczynnik kierunkowy: -0.6402, Punkt przecięcia: 184.1101

2.3.5. Regression

	Mean	Std	Mode	Q1	Median	Q3
age	52.0441	8.6195	57.0	46.1239	51.0	58.0
sex	0.736	0.4415	1.0	0.0	1.0	1.0
chest-pain-type	0.8548	1.006	0.0	0.0	0.0	2.0
resting-blood-pressure	129.1386	41.7025	130.0	113.9568	130.0	140.0
serum-cholestoral	253.3096	45.0964	197.0	221.2237	254.0	283.2508
fasting-blood-sugar	0.1419	0.3495	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.538	0.5189	1.0	0.0	1.0	1.0
maximum-heart-rate	149.7161	22.0882	152.0	134.8074	151.0	166.4396
exercise-induced-angina	0.2706	0.445	0.0	0.0	0.0	1.0
oldpeak	0.9303	1.007	0.0	0.0561	0.6791	1.4
the-slope-of-the-peak-exercise	1.462	0.6125	2.0	1.0	2.0	2.0
number-of-major-vessels	0.538	0.9338	0.0	0.0	0.0	1.0
thal	2.2508	0.5427	2.0	2.0	2.0	3.0
target	0.6535	0.4767	1.0	0.0	1.0	1.0

Tabela 16.

Rysunek 29. Współczynnik kierunkowy: 0.6523, Punkt przecięcia: 95.192

Rysunek 30. Współczynnik kierunkowy: -0.7374, Punkt przecięcia: 188.0914

2.4. Braki w danych 45%

2.4.1. List wise deletion

 $Zbyt\ mało\ danych\ aby\ obliczy\'c\ statystyki$

2.4.2. Mean imputation

	Mean	Std	Mode	Q1	Median	Q3
age	54.1198	6.6381	54.1198	54.0	54.1198	56.0
sex	0.8317	0.3748	1.0	1.0	1.0	1.0
chest-pain-type	0.9637	0.7427	1.0	0.0	1.0	1.0
resting-blood-pressure	133.2275	14.8216	133.2275	128.0	133.2275	137.0
serum-cholestoral	242.4387	35.148	242.4387	234.5	242.4387	242.4387
fasting-blood-sugar	0.099	0.2992	0.0	0.0	0.0	0.0
resting-electrocar.	0.7327	0.458	1.0	0.0	1.0	1.0
maximum-heart-rate	148.9341	17.4094	148.9341	148.9341	148.9341	155.0
exercise-induced-angina	0.2112	0.4089	0.0	0.0	0.0	0.0
oldpeak	0.9788	0.7814	0.9788	0.6	0.9788	0.9788
the-slope-of-the-peak	1.2442	0.5014	1.0	1.0	1.0	2.0
number-of-major-vessels	0.8548	0.8048	1.0	0.0	1.0	1.0
thal	2.1947	0.4586	2.0	2.0	2.0	2.0
target	0.7657	0.4243	1.0	1.0	1.0	1.0

Tabela 17.

Rysunek 31. Współczynnik kierunkowy: 0.4675, Punkt przecięcia: 107.9272

Rysunek 32. Współczynnik kierunkowy: -0.5138, Punkt przecięcia: 176.7426

2.4.3. Interpolation

	Mean	Std	Mode	Q1	Median	Q3
age	54.3378	8.0693	54.0	49.0	55.0	60.0
sex	0.6622	0.4738	1.0	0.0	1.0	1.0
chest-pain-type	0.8328	0.9334	0.0	0.0	1.0	2.0
resting-blood-pressure	132.5953	16.9114	130.0	120.0	130.0	140.0
serum-cholestoral	244.2261	46.4819	226.0	214.5	238.6667	270.875
fasting-blood-sugar	0.1605	0.3677	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.4247	0.5085	0.0	0.0	0.0	1.0
maximum-heart-rate	150.1438	21.1781	152.0	136.0	152.0	164.75
exercise-induced-angina	0.3211	0.4677	0.0	0.0	0.0	1.0
oldpeak	1.0065	0.9889	0.0	0.09	0.8	1.6
the-slope-of-the-peak-exercise	1.4381	0.6009	2.0	1.0	1.0	2.0
number-of-major-vessels	0.6756	0.9685	0.0	0.0	0.0	1.0
thal	2.3344	0.5512	2.0	2.0	2.0	3.0
target	0.5385	0.4994	1.0	0.0	1.0	1.0

Tabela 18.

Rysunek 33. Współczynnik kierunkowy: 0.3362, Punkt przecięcia: 114.328

Rysunek 34. Współczynnik kierunkowy: -0.5493, Punkt przecięcia: 179.9911

2.4.4. Hot deck

	Mean	Std	Mode	Q1	Median	Q3
age	52.5281	8.9468	44.0	44.0	53.0	59.0
sex	0.6568	0.4756	1.0	0.0	1.0	1.0
chest-pain-type	1.0462	0.972	0.0	0.0	1.0	2.0
resting-blood-pressure	132.6073	17.6662	120.0	120.0	130.0	140.0
serum-cholestoral	240.6436	43.6327	216.0	216.0	234.0	265.0
fasting-blood-sugar	0.1749	0.3805	0.0	0.0	0.0	0.0
resting-electrocardiographic	0.4983	0.5139	0.0	0.0	0.0	1.0
maximum-heart-rate	153.7822	21.2241	171.0	143.0	159.0	170.0
exercise-induced-angina	0.3993	0.4906	0.0	0.0	0.0	1.0
oldpeak	0.9323	0.9955	0.0	0.0	0.8	1.5
the-slope-of-the-peak-exercise	1.5347	0.5794	2.0	1.0	2.0	2.0
number-of-major-vessels	0.5248	0.9377	0.0	0.0	0.0	1.0
thal	2.3135	0.5374	2.0	2.0	2.0	3.0
target	0.6634	0.4733	1.0	0.0	1.0	1.0

Tabela 19.

Rysunek 35. Współczynnik kierunkowy: 0.2702, Punkt przecięcia: 118.4117

Rysunek 36. Współczynnik kierunkowy: -0.5656, Punkt przecięcia: 183.4912

2.4.5. Regression

Zbyt mało danych aby utworzyć model regresji liniowej

3. Dyskusja

3.0.1. Mean imputation

Metoda *Mean inputation* polega na uzupełnianiu brakujących wartości średnią danej kolumny.

Porównując wyniki uzyskane z użyciem metody *Mean inputation* a *List wise deletion* dla braków na poziomie 5% można zauważyć delikatny wzrost wartości a co za tym idzie wartości *Q1*, *Mediany* oraz *Q3* uległy też zmianie. Bardzo ciekawą obserwacją jest to, że wartość mody(dominanty) *serum-cholestoral* jest teraz równa średniej arytmetycznej. Krzywe regresji są do siebie mocno zbliżone, ze względu na fakt, że zbiory są bardzo podobne do siebie.

W przypadku braków na poziomie 15% zauważa się coraz większy wzrost wartości w porównaniu do braków na poziomie 5%. Jedyną kolumną odbiegającą od tej tendencji jest maximum-heart-rate gdzie wartość wszystkich miar statystycznych zmalała. Krzywe regresji diametralnie się od siebie różnią, jest to spowodowane tym, że w List wise deletion jest znacząco mniej rekordów, dla tych kolumn, które są wizualizowane na wykresach - liczba punktów na wykresie.

W przypadku braków na poziomie 30% sytuacja coraz bardziej się pogłębia i wygenerowane dane w bardzo słaby sposób wypełniają istniejące braki. W tym przypadku porównywanie krzywych regresji w ocenie autora nie jest sensowne ze względu na liczbę punktów na wykresach dla metody *List wise deletion*.

Dla przypadków braków na poziomie 15% i 30% można zauważyć, że dla wielu kolumn wartości średniej i mody są takie same. Można wnioskować, że większość wartości w danej kolumnie jest identyczna.

W przypadku braków na poziomie 45% nie ma możliwości porównania do gdyż *List wise deletion* danych było tak mało, że nie było możliwości wyliczenia statystyk.

3.0.2. Interpolation

Metoda interpolacji polega na uzupełnieniu brakujących danych średnią, wyliczaną z dwóch niepustych rekordów, które sąsiadują z usuniętą wartością.

Pomimo faktu dużej ilości braku, interpolacja bazuje na wartościach obliczanych lokalnie, stąd brak istotnych odchyleń w otrzymanych wynikach. Wraz ze zwiększaniem procent imputowanych danych, maleje odchylenie standardowe, co jest efektem obliczania brakujących wartości za pomocą interpolacji liniowej. Analizując krzywe regresji można zauważyć, iż jest to metoda, która poradziła sobie poprawnie w uzupełnianiu danych.

Porównując skrajne przykłady zbiorów wybrakowanych w 5% i w 45% można zauważyć, że nawet w przypadku dużego stopnia wybrakowania metoda interpolacji osiąga zbliżone wyniki.

3.0.3. Hot deck

Metoda hot deck polega na uzupełnieniu brakujących danych wartościami, pochodzącymi z najbardziej podobnego rekordu. Oczywiście pojęcie "podobny" jest zupełnie względne, w tym przypadku odnosi się ono do odległości euklidesowej.

W przypadku zbioru danych wybrakowanym na poziomie 5% trudno dostrzec jakieś specjalne różnice między statystykami wyliczonymi po imputacji metoda hot deck, a przed jakakolwiek imputacja. Kwartyle pozostały zbliżone, średnia i odchylenie standardowe również nie uległy zauważalnym zmianom. Chyba najbardziej widoczna różnica dotyczy wartości mody. Ta bowiem nie powinna zmieniać się zbyt łatwo, jako że oznacza najczęściej występująca wartość. Okazuje się jednak, że prawie w każdej kolumnie uległa zmianie, w niektórych w dość radykalny sposób (jak np. dla serum-cholestoral). Zjawisko to można w miarę łatwo wyjaśnić, kiedy spojrzy się na różnicę w wykresach krzywej regresji. Zdecydowanie widać tutaj, że w zbiorze po imputacji, spora część wartości się powtarza. Tak więc rekordy uznane za najbardziej podobne stanowia jakaś niewielką grupę i są często wykorzystywane jako "dawcy" brakującej wartości. Jako że brakująca wartość często jest brana z tego samego rekordu zaczyna ona często występować i w rezultacie zaczyna pełnić rolę mody. Fakt, że niektóre rekordy najczęściej są dawcami, może być spowodowany tym, że dane nie zostały znormalizowane i atrybuty o dużych wartościach mają zdecydowanie większy wpływ na podobieństwo.

Zjawisko to potwierdza się i nasila w przypadku bardziej wybrakowanych zbiorów. Dodatkowo zaczyna zwiększać się różnica także w innych statystykach. W zbiorze wybrakowanym na poziomie 15% zaczyna być widoczny sens imputowania danych. Statystyki dla zbioru przed imputacją różnią się znacznie od tych przed imputacja dla zbioru wybrakowanego w 5%. Jednakże Po imputacji metoda hot deck, statystyki znowu są zbliżone do tych w zbiorze mało wybrakowanym. Krzywe regresji od poziomu wybrakowania 15% stały się zupełnie bez wartości, dla danych bez imputacji. Na tym poziomie po imputacji współczynniki są wciąż zbliżone do oryginalnych. Choć różnica staje się coraz większa dla poziomu 30%, krzywe po imputacji wciąż zachowują ten sam kierunek a statystyki ten sam rząd. W przypadku wybrakowania na najwyższym poziomie, na wykresach wyraźnie widać, że mamy tutaj tylko kilku "dawców" i wartości, które przyjmują poszczególne atrybuty są zdecydowanie skwantyzowane. Nie przeszkadza to jednak w zachowaniu wciaż podobnych do zbioru niewybrakowanego wartości statystyk. Ostatecznie należy więc powiedzieć, że metoda hot-deck jest dość skuteczna nawet przy dużym poziomie wybrakowania zbioru, w przeciwieństwie bowiem do metody mean-imputation, nie jest podatna na silne zmiany rozkładu wartości atrybutów, w wybrakowanym zbiorze.

3.0.4. Regression

Metoda wykorzystująca krzywą regresji, polega na stworzeniu modelu regresji, wykorzystując do tego dostępne dane bez braków. Na podstawie tego modelu ustalone zostają wartości brakujących atrybutów. W zależności od rodzaju danych zostały wykorzystane różne rodzaje regresji. Do ustalenia

wartości atrybutów, których wartość należała do zbioru określonych wartości, jak np. płeć, wykorzystywana była regresja logistyczna, w realizacji pozostałych przypadków wystarczała regresja liniowa. Do poprawnego działania metoda wymaga znacznej liczby parametrów, przez co niemożliwe okazało się wykorzystanie tej metody dla zbiorów, których liczba brakujących danych wynosiła 45%

Wykorzystując zgromadzone statystyki można stwierdzić, że zastosowanie krzywej regresji, jako metody imputacji, w największym stopniu wpłynie na zmianę wartości mody (dominanty), im większy procent braku danych tym różnica jest bardziej widoczna. Warto jednak zauważyć, że wartość mediany, nie jest tak podatna na zmiany, przy wykorzystaniu tej metody.

4. Wnioski

Podsumowując wykonane zadanie wnioskujemy, że:

- Metody *Mean inputation* sprawdza się dobrze dla małych ubytków w danych w dużych zbiorach, które nie posiadają dużej liczby wartości ekstremalnych. Ze względu na charakterystykę średniej wartości mogą bardzo zaburzyć imputacje.
- Przy dużym procencie brakujących danych, należy rozważyć odrzucenie próby analizy danych, zawartych w tym zbiorze, z powodu trudności, jaką jest uzupełnienie danych. Przy dużym braku danych, każda z metod imputacji w sposób znaczący wpłynie na statystyki zbioru, przy założeniu, że uda się ją zastosować.
- Metoda hot deck sprawdza się stosunkowo dobrze przy dużym poziomie wybrakowania zbioru, implementacyjnie jest jednak znacznie bardzie skomplikowana niż np mean-imputation

Literatura

[1] https://www.kaggle.com/ronitf/heart-disease-uci