Outils mathématiques – Exercices de révision examen 1

1) Évaluer les nombres binaires « non signés » suivants dans le système	décimal
a) 110011 b) 11	10,0001
2) Convertir en hexadécimal les nombres binaires suivants :	
a) (11,111) ₂ b) (10)11101)2

- 3) Effectuer les opérations suivantes en binaire.
 - a) 1110,01 × 100,011

b) 1010001 ÷ 101

4)	Représenter le nombre (–17) selon le mode entier à huit bits par la représentation par complémentation à deux;

5) Trouver l'équivalent dans le système décimal du nombre 11001111, selon que le nombre est en représentation par **complémentation à deux**;

6) Effectuer l'opération suivante après avoir écrit les nombres en binaire signés à huit bits complémenté à 2. Décoder en décimal le résultat de l'opération, s'il n'y a pas de débordement.

$$(-66) + (-63)$$

7) Effectuer l'opération suivante en binaire signée à huit bits selon la représentation complémentation à 2. . Décoder en décimal le résultat de l'opération, s'il n'y a pas de débordement.

8)	Éc pa	riv rti	ez e fr	le r	ior	nb nn	re air	su e s	iva si n	nt	eı es	า fo sai	ori re	ma	at p	oré	écis	sic	n:	sin	npl	e	de	la	no	rm	ie	IEE	E 7	754	4.	Tr	one	qu	ez	la		
																	+	33	3,3	3																		
REI	P:																																					
					T												T									1												

9)	Écrire le nombre $\pi=3,141592$ en mode virgule flottante en base 10 avec r = 5 et s = 2.
	En arrondissant la mantisse.

10) Construire la table de vérité pour la forme propositionnelle suivante :

$$[p \land (q \lor r)] \leftrightarrow [(p \land q) \lor (p \land r)]$$

b) Est-ce que la forme propositionnelle précédente représente une tautologie, une contradiction ou contingence?

c) D'après le résultat obtenu dans la table de vérité précédente, dites si les formes propositionnelles $[p \land (q \lor r)]$ et $[(p \land q) \lor (p \land r)]$ sont équivalentes? (Justifier votre réponse)

11)	À l'aide des pro	priétés sur le	s opérateurs	logiques,	faire la né	gation de l'	expression
	suivante.						

(Vous devez donner la propriété utilisée à chaque étape de votre démarche.)

$$p \land \neg (p \land \neg q)$$

12) Quelle sera la valeur de y après l'exécution de cet algorithme si x=3?

Si
$$(x < 4) \oplus (x \text{ est impair})$$
 alors $y \leftarrow 5 * x$ sinon $y \leftarrow x * x$ finSi

Rep	

13)

Soit *U* l'ensemble des étudiants de cette classe et les formes booléennes :

P(x): « x a fait ses exercices » et Q(x): « x réussira le cours»

Exprimez chacune des phrases suivantes en fonction de P(x), de Q(x), de quantificateurs et de connecteurs logiques.

- a) Il existe un étudiant de la classe tel que s'il a fait ses exercices, il réussira le cours.
- b) Tous les étudiants de la classe font leurs exercices et réussiront le cours.

a) Construire la table de vérité pour cet énoncé.

b) Simplifier l'expression S en utilisant les propriétés.

c) À l'aide des <u>portes logiques</u>, représenter le circuit simplifier obtenu en b).

15)

À l'aide des opérations booléennes, écrire l'énoncé de sortie du circuit suivant. <u>Écrire</u> <u>l'expression à la sortie de chaque porte logique ou inverseur.</u>

Expression à la sortie, sans simplification:

16)

Construire, à partir de la table ci-dessous, un circuit permettant de calculer S à partir des entrées A, B et C. Simplifier, si possible, ce circuit en laissant vos démarches.

Α	В	С	S
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

17) Vrai ou faux (Attention, ici les + sont des + algébriques)

Soit
$$P(x)$$
: $x^2 + x + 12 = 0$, $R(x)$: $x^2 - x = 0$ et $U = \{0,1,2,3,4,5\}$.

Quelles sont les valeurs de vérité des propositions suivantes?

b)
$$P(4) \vee R(1)$$

c)
$$\forall x \in U, R(x)$$

d)
$$\exists x \in U, \neg P(x) \land R(x)$$

e)
$$\exists x \in U, P(x) \leftrightarrow R(x)$$

18) Lorsqu'on incrémente un nombre x, on l'augmente de 1.

a) Faire le circuit de l'incrémentation du nombre b défini sur 3 bits ($b=b_1b_2b_3$). Utiliser des demis aditionneurs et/ou des additionneurs complets

b) Indiquer sur chaque branche de votre circuit (entrants et sortants de vos additionneurs) les valeurs obtenues si b = 011