

TARGET: JEE (Advanced) 2015

Course: VIJETA & VIJAY (ADP & ADR) Date: 08-04-2015

TEST INFORMATION

DATE: 15.04.2015 PART TEST-01 (PT-01)

Syllabus: Function & Inverse Trigonometric Function, Limits, Continuity & Derivability, Quadratic Equation

REVISION DPP OF FUNCTION AND INVERSE TRIGONOMETRIC FUNCTION

Single of Multiple Compression of Multiple Compression of Multiple Compression of the Com	Marks: 171 choice Objective (no neg e choice objective (no ne ehension (no negative ma the Following (no negati tive Questions (no negati	gative marking) Q. 11 to 32 arking) Q.33 to 37 ive marking) Q.38	2	Max. 1 (3 marks 3 min.) (5 marks, 4 min.) (3 marks 3 min.) (8 marks, 8 min.) (4 marks 5 min.)	Fime : 151 min. [30, 30] [110, 88] [15, 15] [8, 8] [8, 10]
1.	If $e^x + e^{f(x)} = e$, then the (A) $(-\infty, 1]$	range of $f(x)$ is (B) $(-\infty, 1)$	(C) (1, ∞)	(D) [1, ∞)	
2.	$\cos^{-1}\left(\frac{1}{\sqrt{2}}\left(\cos\frac{7\pi}{5} - \sin^{-1}\theta\right)\right)$	$\left(\frac{2\pi}{5}\right)$ is equal to			
	(A) $\frac{23\pi}{20}$	(B) $\frac{13\pi}{20}$	(C) $\frac{3\pi}{20}$	(D) $\frac{17\pi}{20}$	
3.	and fractional part of x				denote integra
4.		(B) 12I points of intersection of(B) y = -x	(C) 2 f(x) = f(x) and y = f(x) (C) $f(x) = f(x)$	(D) 1 $f^{-1}(x)$ lie on the line (D) $y = -2x$	
5.	Range of $f(\theta) = \tan \left(\cos \theta \right)$	$\sec^{-1}\left(\frac{1}{\sqrt{2}\sin\theta}\right)$ is			
	(A) $(-\infty, \infty) - \{n\pi\}$ (C) $[0, \infty)$		(B) R – {0} (D) $(-\infty, -\sqrt{2}]$	\cup {0} \cup [$\sqrt{2}$, ∞)	
6.	P(x) is a polynomial of	degree 98 such that P(K)	$0 = \frac{1}{K}$ for K = 1, 2	2, 3, 99. The value	e of P(100) is
	(A) <u> 100</u> + 1	(B) $\frac{1}{100}$	(C) $\frac{1}{50}$	(D) $\frac{1}{\lfloor 100}$	
7.	For each positive integ	er n, let $f(n + 1) = n(-1)^{n+1}$	-1 - 2f(n) and f(1)) = f(2010). Then $\sum_{k=1}^{2009} f(k)$	() is equal to
8.	(A) 335	(B) 336 x) is inverse of g(x), then	(C) 331	(D) 333	
	(-())	(B) $\frac{1}{1+(g(x)+x)^2}$	(-()) (-()	,
9.	Number of solution of t	he equation $\tan^{-1}\left(\frac{x}{1+\sqrt{1-x}}\right)$	$\frac{1}{-x^2}$ + sin $\left(2 \tan x^2\right)$	$n^{-1}\sqrt{\frac{1-x}{1+x}}$ = $\sqrt{1-x^2}$ is	s equal to
	(A) 0	(B) 1	(C) 2	(D) 3	
Λ_		Corporate Office : CG To	ower, A-46 & 52, IPIA, N	Near City Mall, Jhalawar Road, K	ota (Raj.) - 324005

- If x and y are of same sign, then the value of $\frac{x^3}{2} \csc^2\left(\frac{1}{2}\tan^{-1}\frac{x}{y}\right) + \frac{y^3}{2}\sec^2\left(\frac{1}{2}\tan^{-1}\frac{y}{x}\right)$ is equal to 10.
 - $(A)(x y)(x^2 + y^2)$

- (B) $(x + y) (x^2 y^2)$ (C) $(x + y) (x^2 + y^2)$ (D) $(x y) (x^2 y^2)$
- For $f(x) = \tan^{-1} \left(\frac{\left(\sqrt{12} 2\right) x^2}{x^4 + 2x^2 + 3} \right)$
- (A) $f_{\text{max}} = \frac{\pi}{12}$ (B) $f_{\text{min}} = 0$ (C) f_{min} does not exist (D) $f_{\text{max}} = \frac{\pi}{2}$

- If $f(x) = \begin{cases} x+1, & x \le 0 \\ 2-x, & x > 0 \end{cases}$ and $g(x) = \begin{cases} x^2+1, & x \ge 1 \\ 2x-3, & x < 1 \end{cases}$ then 12.
 - (A) Range of gof (x) is $(-\infty, -1) \cup [2, 5]$
- (B) Range of gof (x) is $(-\infty, -1) \cup [2, 5)$
- (C) gof (x) is one-one for $x \in [0, 1]$
- (D) gof (x) is many one for $x \in [0, 1]$
- 13. If f(x) is identity function, g(x) is absolute value function and h(x) is reciprocal function then
 - (A) fogoh(x) = hogof(x)

- (B) hog(x) = hogof(x)
- (C) gofofofohogof(x) = gohog(x)
- (D) hohohoh(x) = f(x)
- The function $y = \frac{x}{1+|x|} : R \to R$ is 14.
 - (A) one-one
- (C) odd
- If α , β , γ are roots of equation $\tan^{-1}(|x^2+2x|+|x+3|-||x^2+2x|-|x+3||)+\cot^{-1}(-\frac{1}{2})=\pi$ in 15.
 - ascending order ($\alpha < \beta < \gamma$) then
 - (A) $\sin^{-1}\gamma$ is defined

(B) $\sec^{-1}\alpha$ is defined

(C) $\gamma - \beta = \sqrt{2}$

- (D) $|\beta| > |\gamma|$
- If f(x) and g(x) are two polynomials such that the polynomial $h(x) = xf(x^3) + x^2g(x^6)$ is divisible by 16. $x^2 + x + 1$, then
 - (A) f(1) = g(1)
- (B) f(1) = -g(1)
- (C) h(1) = 0
- (D) all of these

- 17. 1 + $[\sin^{-1}x]$ > $[\cos^{-1}x]$ where [.] denotes GIF, if $x \in$
 - (A) (cos1, sin1)
- (B) [sin1, 1]
- (C) (cos1, 1]
- If the solution of equation $\sin(\tan^{-1}x) = \sqrt{4 \left\lceil \sin\left(\cos^{-1}x\right) + \cos\left(\sin^{-1}x\right) \right\rceil^2}$ is a, then 18.
 - (A) $\sin^{-1}a + \cos^{-1}a = \frac{\pi}{2}$ (B) $2\sin^{-1}a + \cos^{-1}a = \frac{\pi}{2}$ (C) $\sin^{-1}a + 3\cos^{-1}a = \frac{3\pi}{2}$ (D) $\tan^{-1}a + \cos^{-1}a = \frac{\pi}{2}$
- If $f(x) = \frac{2^{\{x\}} 1}{2^{\{x\}} + 1}$ then (where $\{x\}$ represent fractional part of x) 19.
- (B) $R_f \in [0, \frac{1}{2})$
- (C) period of f(x) is 1 (D) f(x) is even function
- Which of the following is true for $f(x) = (\cos x)^{\cos x}$, $x \in \left[-\cos^{-1}\frac{1}{e},\cos^{-1}\frac{1}{e}\right]$ 20.

- (A) $R_f \in \left[\left(\frac{1}{R} \right)^{1/e}, 1 \right]$ (B) f(x) is increasing (C) f(x) is many-one (D) f(x) is maximum at x = 0
- If $f(x) = \tan^{-1}\left(\frac{2x}{4-x^2}\right)$ is a bijective function from set A to set B then which of the following may be true 21.
 - (A) A = $(-\infty, -1)$, B = $\left(0, \frac{\pi}{2}\right)$

(B) A = (-1, 1), B = $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(C) $A = [1, \infty), B = \left(-\frac{\pi}{2}, 0\right)$

(D) All of these

- 22. If the functions f(x) and g(x) are defined from R^+ to R such that
 - $f(x) = \begin{cases} 1 \sqrt{x} & ; & x \text{ is rational} \\ x^2 & ; & x \text{ is irrational} \end{cases} \text{ and } g(x) = \begin{cases} x & ; & x \text{ is rational} \\ 1 x & ; & x \text{ is irrational} \end{cases}, \text{ then the composite function fog}(x) \text{ is } x \text{ is irrational} \end{cases}$
 - (A) one one
- (B) many-one
- (D) onto
- Let $f(x) = ([a]^2 5[a] + 4)x^3 + (6\{a\}^2 5\{a\} + 1)x tanx.sgn(x)$ is an even function for all $x \in R$, where [.] 23. and {.} are greatest integer and fractional part functions respectively, then which of the following is defined
 - (A)sin-1a
- (B) tan-1a
- (C)sec⁻¹a
- (D) $\sqrt[3]{a-2}$
- Let $f(x) = \cot^{-1}(x^2 + 4x + \alpha^2 3\alpha)$ be a function defined on $R \to \left(0, \frac{\pi}{2}\right)$, is an onto function then 24.
 - (A) $\alpha \in [-1, 4]$
- (B) f'(0) = -4/17
- (C) f(x) is one-one
- (D) f(x) is many-one
- 25. The number of solutions of equation $2\cos^{-1}x = a + a^2(\cos^{-1}x)^{-1}$ are
 - (A) at least 1 if $a \in [-2\pi, \pi] \{0\}$
- (B) 1 if $a \in (0, \pi]$

(C) 1 if $a \in [-2\pi, 0)$

- The function $f: \left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ defined by $f(x) = \sin^{-1}(3x 4x^3)$ is 26.
 - (A) a surjective function

- (B) an injective function
- (C) a surjective but not injective
- (D) neither injective nor surjective
- If $f(x) = \left| \frac{1}{\ln(x^2 + e)} \right| + \frac{1}{1 + x^2}$ where [.] is greatest integer function then 27.

- $(A) \ f(x) \in \left(0,\frac{1}{2}\right) \cup \left(\frac{1}{2},1\right) \cup \{2\} \ \text{for} \ x \in R-\{1\} \qquad (B) \ R_f = (0,\,1) \cup \{2\}$ $(C) \ f \ \text{is many-one} \qquad \qquad (D) \ f(x) \ \text{is bounded}$ $\text{If} \ f(x) = 2x + |x|, \ g(x) = \frac{1}{3}(2x |x|) \ \text{and} \ h(x) = f(g(x)), \ \text{then} \ \left(\frac{h\left(h\left(h.....\left(h\left(x\right)\right)\right)\right)\right)}{h \ \text{constant} \ n \ \text{times}}\right)$ is 28.
 - (A) identity function
- (B) one-one
- (C) odd
- (D) periodic
- The function f: R \rightarrow (-1, 1) is defined by f(x) = $\frac{e^x e^{-x}}{e^x + e^{-x}}$. 29.
 - (A) f(x) is a bijective function

(B) f(x) is non-bijective function

(C) $f^{-1}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$

- (D) f(x) is many one onto function
- Which of the following is true? 30.

- (A) $2\tan^{-1}x = \pi \sin^{-1}\frac{2x}{1+x^2}$ if x > 1 (B) $\tan^{-1}\frac{1}{x} = -\pi + \cot^{-1}x$ if x < 0 (C) $\sec^{-1}x = \sin^{-1}\frac{\sqrt{x^2-1}}{x}$ if |x| > 1 (D) $\sin(\tan^{-1}(\csc(\cos^{-1}x))) = \frac{1}{\sqrt{2-x^2}}$ if -1 < x < 0
- 31. Let f:[a, ∞) \rightarrow [a, ∞) be a function defined by f(x) = x^2 – 2ax + a(a + 1). If one of the solutions of the equation $f(x) = f^{-1}(x)$ is 2014, then the other solution may be
 - (A) 2013
- (C) 2016
- (D) 2012
- Let $f(x) = \frac{3}{4}x + 1$ and $f^{n+1}(x) = f(f^n(x)) \ \forall n \ge 1, \ n \in \mathbb{N}$. If $\lim_{n \to \infty} f^n(x) = \lambda$, then 32.
 - (A) λ is independent of x.
 - (B) λ is a linear polynomial in x.
 - (C) line $y = \lambda$ has slope 0.
 - (D) line $4y = \lambda$ touches a circle of unit radius with centre at origin.

Comprehension #1 (Q. no. 33 to 35)

Let $f: [2, \infty) \to [1, \infty)$ defined by $f(x) = 2^{x^4 - 4x^2}$ and $g: \left[\frac{\pi}{2}, \pi\right] \to A$, defined by $g(x) = \frac{\sin x + 4}{\sin x - 2}$ be two invertible functions, then

33.
$$f^{-1}(x)$$
 is equal to

(A)
$$-\sqrt{2+\sqrt{4+\log_2 x}}$$

(B)
$$\sqrt{2 + \sqrt{4 + \log_2 x}}$$

(C)
$$\sqrt{2-\sqrt{4+\log_2 x}}$$

(A)
$$-\sqrt{2 + \sqrt{4 + \log_2 x}}$$
 (B) $\sqrt{2 + \sqrt{4 + \log_2 x}}$ (C) $\sqrt{2 - \sqrt{4 + \log_2 x}}$ (D) $-\sqrt{2 - \sqrt{4 + \log_2 x}}$

35. Domain of
$$\log^{-1}(x)$$
 is

(B)
$$\left[-5, \frac{\sin 1}{2 - \sin 1}\right]$$

(C)
$$\left[-5, \frac{4 + \sin 2}{\sin 2 - 2} \right]$$

(B)
$$\left[-5, \frac{\sin 1}{2-\sin 1}\right]$$
 (C) $\left[-5, \frac{4+\sin 2}{\sin 2-2}\right]$ (D) $\left[\frac{4+\sin 2}{\sin 2-2}, -2\right]$

Comprehension # 2 (Q. no. 36 to 37)

Let $f(x) = x^2 + xg'(1) + g''(2)$ and $g(x) = f(1) x^2 + xf'(x) + f''(x)$.

36. The domain of function
$$\sqrt{\frac{f(x)}{g(x)}}$$
 is

$$\text{(A) } (-\infty,\,1] \cup (2,\,3] \qquad \text{(B) } (-2,\,0] \cup (1,\,\infty) \qquad \text{(C) } (-\infty,\,0] \cup \left[\frac{2}{3},\ 3\right] \quad \text{(D) None of these }$$

37. Area bounded between the curves
$$y = f(x)$$
 and $y = g(x)$ is

(A)
$$\frac{4\sqrt{2}}{3}$$

(B)
$$\frac{8\sqrt{2}}{3}$$

(C)
$$\frac{2\sqrt{2}}{3}$$

(D)
$$\frac{16}{3}$$

38. Match the columns:

Let $f(x) = \log(\sec x)$, g(x) = f'(x) and 'n' is an integer.

Column - I

Column-II

(p)
$$\bigcup_{n\in I} \left(2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2}\right)$$

(q)
$$R - \left\{ (2n+1)\frac{\pi}{2} \right\}$$

(C) If fundamental period of
$$g(x)$$
 is k then k is element of set

r)
$$\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

(D)
$$gog^{-1}$$
 is an identity for $x \in$

(s)
$$\left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$$

39. Let
$$f(x) = -4 \sqrt{e^{1-x}} + 1 + x + \frac{x^2}{2} + \frac{x^3}{3}$$
. If $g(x)$ is inverse of $f(x)$, then find the value of reciprocal of $g'\left(-\frac{7}{6}\right)$.

40. Let
$$f: R^+ \to R^+$$
 be a function which satisfies the relation $f(x).f(y) = f(xy) + 2\left(\frac{1}{x} + \frac{1}{y} + 1\right)$ then find the value of $f\left(\frac{1}{2}\right)$.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free: 1800 200 2244 | 1800 258 5555 | cin: U80302RJ2007PTC024029