BUNDESREPUBLIK DEUTSCHLAND

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D **14 JAN 2005**WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 36 030.1

Anmeldetag: 01. August 2003

Anmelder/Inhaber: Behr GmbH & Co KG, 70469 Stuttgart/DE

Bezeichnung: Wärmeübertrager sowie Platte für einen Wärme-

übertrager

IPC: F 28 F 3/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 4. Oktober 2004 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Remus

BEHR GmbH & Co. Mauserstraße 3, 70469 Stuttgart

10

5

Wärmeübertrager sowie Platte für einen Wärmeübertrager

Die Erfindung bezieht sich auf einen Wärmeübertrager, insbesondere einen Ölkühler für ein Fahrzeug, mit mehreren schalenförmig ausgebildeten Platten, die aufeinander gesetzt sind und an ihrem umlaufenden Rand dicht verbunden sowie mit Durchgangsöffnungen versehen sind, wobei im wesentlichen übereinander liegende Durchgangsöffnungen einen die Platte durchlaufenden Strömungskanal bilden. Des Weiteren betrifft die Erfindung eine besonders geeignete Platte für einen Wärmeübertrager.

20

25

15

Ein derartiger Wärmeübertrager, auch Platten- oder Stapelscheiben-Wärmeübertrager genannt, ist beispielsweise aus der DE 100 49 890 A1 bekannt. Bei der Stapelbauweise werden wannenartig ausgebildete metallische Platten mit ihren umlaufenden Rändern unmittelbar miteinander verlötet. Dabei weisen die Platten die gleiche oder identische Form auf, so dass die Anzahl der notwendigen Bauteile gering gehalten ist. Die Wärmeübertragungsfläche wird durch die Anzahl der Platten und daraus resultierend die Länge des Strömungskanals sowie durch die Abmessungen des Strömungskanals selbst bestimmt. Je größer die Anzahl der Platten und die Abmessungen des Strömungskanals desto größer ist daher die Wärmeübertragungsfläche bei gleichzeitig sinkender Reynoldszahl. Somit ist eine effektive Wärmeübertragung begrenzt, da mit einer maximalen Anzahl von Platten

30

10

15

20

25

30

eine Steigerung der Wärmeübertragung bedingt durch den Vorteil einer größeren Wärmeübertragungsfläche durch den Nachteil einer geringeren Wärmeübertragung aufgrund der geringeren Reynoldszahl nicht mehr erzielt werden kann. Darüberhinaus sind die Herstellungskosten umso höher, je mehr Platten verwendet werden.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Wärmeübertrager anzugeben, der eine Erhöhung der Wärmeübertragung bei im wesentlichen gleichen oder ähnlichen Außenabmessungen des Wärmeübertragers und guter Nutzung der Wärmeübertragungsfläche ermöglicht.

Die Aufgabe wird erfindungsgemäß gelöst durch einen Wärmeübertrager der eingangs genannten Art mit den Merkmalen des Anspruchs 1.

Die Erfindung beruht dabei auf dem Konzept, dass eine intensivere Wärmeübertragung unter weitestgehend gleich bleibender Bauform, d.h. Abmessungen, insbesondere äußeren Abmessungen, des Wärmeübertragers ermöglicht sein sollte. Dabei sollte sichergestellt werden, dass eine bauliche Anpassung des Wärmeübertragers die an sich widersprechenden Kriterien -Steigerung der Wärmeübertragungsfläche bei sinkender Reynoldszahl - dahingehend aufhebt, dass die Reynoldszahl möglichst nicht sinkt. Hierzu ist ein Wärmeübertrager mit mehreren schalenförmig ausgebildeten Platten, die mit Durchgangsöffnungen versehen sind, dahingehend geometrisch vereinfacht, dass ein im wesentlichen durch übereinander liegende Durchgangsöffnungen gebildeter und die Platten durchlaufender Strömungskanal einen gestreckten, insbesondere einen lang gestreckten Querschnitt aufweist. Durch eine derart einfache geometrische Änderung des Wärmeübertragers ist bei gleich bleibendem Bauvolumen des Wärmeübertragers eine intensivere Kühlung durch einen höheren Wärmeübergang, ohne dass die Reynoldszahl absinkt, sichergestellt.

In einer bevorzugten Ausführungsform weist der jeweilige Strömungskanal einen ovalen oder rechteckigen Querschnitt auf. Dadurch wird eine vorteilhafte Raumausnutzung erreicht.

Zweckmäßigerweise können verschiedene, insbesondere nebeneinander liegende oder benachbarte Strömungskanäle unterschiedliche Querschnittsformen aufweisen. Beispielsweise kann ein als Zufuhrleitung ausgebildeter Strömungskanal einen ovalen und ein als Abfuhrleitung ausgebildeter Strömungskanal einen rechteckigen Querschnitt aufweisen. Ebenso kann ein Strömungskanal für ein erstes Medium einen länger gestreckten Querschnitt aufweisen als ein Strömungskanal für ein zweites Medium. Je nach Art und Aufbau des Wärmeübertragers können die Strömungskanäle den Wärmeübertrager in verschiedene Richtungen geradlinig und/oder verschlungen mit und/oder ohne Umlenkung durchlaufen.

.15

20

25

30

Bevorzugt weist der Querschnitt eines Strömungskanals ein Länge-zu-Breite-Verhältnis L/B zwischen 1,5 und 12, vorzugsweise zwischen 1,5 und 6 auf, wobei L eine Länge und B eine Breite des Strömungskanalquerschnitts ist. Besonders bevorzugt beträgt das Länge-zu-Breite-Verhältnis L/B, insbesondere bei kleinen Wärmeübertragern wie beispielsweise Kraftfahrzeugölkühlern mit 15mm <= L <= 25mm, zwischen 1,5 und 3 oder, insbesondere bei größeren Wärmeübertragern wie beispielsweise Industriekühlern mit 50mm <= L <= 80mm, zwischen 4 und 6.

Der Wärmeübertrager ist besonders geeignet zum Einsatz als Stapelscheibenkühler, insbesondere als Stapelscheibenölkühler für ein Fahrzeug. Die jeweiligen Platten für einen derartigen Wärmeübertrager sind dabei im wesentlich identisch ausgeführt und weisen in einfachster Form nebeneinander angeordnete Durchgangsöffnungen mit einem im wesentlichen gestreckten, insbesondere lang gestreckten Querschnitt, z.B. einem rechteckigen oder ovalen Querschnitt oder einem domförmigen Querschnitt auf.

Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Darin zeigen:

- 5 Figur 1 in schematischer Darstellung einen Wärmeübertrager, insbesondere einen Platten-Wärmeübertrager mit Strömungskanälen,
 - Figur 2 in schematischer Darstellung eine Ausführungsform für eine Platte eines Wärmeübertragers a) gemäß dem Stand der Technik und b) gemäß der vorliegenden Erfindung,
 - Figur 3 ein Diagramm mit einer Darstellung des Verlaufs der spezifischen Wärmeleistung Q/dTe in Abhängigkeit vom zeitlichen Strömungsvolumen V/t der den Wärmeübertrager durchströmenden Medien,
 - Figur 4 in schematischer Darstellung ein Anschlusselement für einen Wärmeübertrager gemäß Figur 1.
- Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.

Figur 1 zeigt einen Wärmeübertrager 1, der beispielsweise als Ölkühler in einem Fahrzeug für einen Verbrennungsmotor eingesetzt wird. Der Wärmeübertrager 1 ist als ein Platten- oder Stapelscheiben-Wärmeübertrager ausgebildet. Dazu umfasst der Wärmeübertrager 1 mehrere, insbesondere
schalenförmig ausgestaltete Scheiben oder Platten 2a bis 2z (im weiteren
kurz Platten 2 bezeichnet). Die Platten 2 sind aufeinander gestapelt oder
gesetzt und an ihren umlaufenden Rändern dicht miteinander verbunden,
z.B. verlötet. Die Platten 2 sind mit Durchgangsöffnungen 4 versehen. Dabei
sind die Platten 2 im wesentlichen identisch ausgeführt. Die Durchgangsöffnungen 4 sind bei einer übereinander Anordnung möglichst an gleicher Po-

10

15

25

30

sition vorgesehen, so dass bei einer übereinander Stapelung der Platten 2 durch die übereinander liegenden Durchgangsöffnungen 4 ein Strömungskanal 6 gebildet ist. Die übereinander liegenden Durchgangsöffnungen 4 der Platten 2 weisen somit im wesentlichen identische Abmessungen und Querschnittsformen auf. Nebeneinander angeordnete Durchgangsöffnungen 4, welche zur Bildung mehrerer separater Strömungskanäle 6 vorgesehen sind, können andere Abmessungen und andere Querschnittsformen aufweisen. Die jeweilige Form und Länge des Strömungskanals 6 wird insbesondere bestimmt durch ein den Strömungskanal 6 durchströmendes Medium M.

10

15

5

Wie in Figur 1 an einer möglichen Ausführungsform für einen Wärmeübertrager 1 gezeigt, wird ein erster Strömungskanal 6a von einem ersten Medium M1 in Strömungsrichtung R1 durchströmt. Der erste Strömungskanal 6a dient dabei als Zufuhrkanal oder Zufuhrleitung von dem entlang der jeweiligen Platte 2 das erste Medium M1 zu einem gegenüberliegenden als Sammelkanal ausgebildeten zweiten Strömungskanal 6b strömt und dort wieder mit umgekehrter Strömungsrichtung R2 aus dem Wärmeübertrager 1 abgeführt wird.

20

25

Das erste Medium M1 ist beispielsweise ein zu kühlendes Öl des Motors. Das erste Medium M1 wird über einen Zulaufstutzen 8a und einen Ablaufstutzen 10a im Ausführungsbeispiel auf der Oberseite des Wärmeübertrages 1 angeordnet zu- bzw. abgeführt. Je nach Art und Aufbau des Wärmeübertragers 1 kann die Zu- und Abfuhr auch auf der Unterseite des Wärmeübertragers 1 oder auf einer anderen Seite oder aber auch auf getrennten Seiten erfolgen.

30

Als zweites Medium M2 wird dem Wärmeübertrager 1 über zugehörige Zulaufstutzen 8b und Ablaufstutzen 10b ein Kühlmittel zum Kühlen des Öls zubzw. abgeführt. Zum Durchströmen des Wärmeübertragers 1 mit dem zweiten Medium M2 in Strömungsrichtung R3 weisen die jeweiligen Platten 2

weitere Durchgangsöffnungen 4 auf, welche weitere Strömungskanäle 6c und 6d bilden. Dabei strömt das Kühlmittel in analoger Weise zum Öl durch den zugehörigen Strömungskanal 6c mit Umlenkung der Strömungsrichtung R3 in eine Strömungsrichtung R4 und/oder ohne Umlenkung (nicht dargestellt).

10

5

Für einen möglichst guten Wärmeübergang weisen die jeweiligen Strömungskanäle 6a, 6b, 6c, 6d einen gestreckten, insbesondere einen lang gestreckten Querschnitt QS auf. Bevorzugt ist der Querschnitt QS rechteckig oder oval. Dabei können nebeneinander liegende Strömungskanäle 6a, 6b, 6c und/oder 6d und somit die zugehörigen Durchgangsöffnungen 4 unterschiedliche Querschnittsformen aufweisen. Bevorzugt weist der jeweilige Strömungskanal 6a, 6b, 6c und/oder 6d im Querschnitt eine Länge I von 10 mm bis 20 mm und eine Breite b von 5 mm bis 10 mm auf.

15

20

Im Detail ist in Figur 2b eine der Platten 2 dargestellt. Die Platte 2 weist vier Durchgangsöffnungen 4 auf, welche durch Stapeln mehrerer Platten 2 übereinander einen der Strömungskanäle 6a bis 6d bildet. Bedingt durch den gestreckten Querschnitt QS – rechteckig und oval - der Durchgangsöffnungen 4 wird unter Beibehaltung der äußeren Abmessungen des Wärmeübertragers 1 gegenüber einem herkömmlichen Wärmeübertrager mit runden Durchgangsöffnungen wie in Figur 2a zu sehen die wärmeübertragende Fläche A, die sich zwischen den Durchgangsöffnungen 4 erstreckt, vergrößert. Die Bereiche zwischen den Durchgangsöffnungen 4 und dem Rand der Platte 2 tragen nur in geringem Maße zu einem Wärmeübertrag bei und zählen hier deshalb nicht zur wärmeübertragenden Fläche A.

25

30

Die Veränderung der Größe der kühlenden Oberfläche des erfindungsgemäßen Wärmeübertragers 1 gegenüber einem herkömmlichen Wärmeübertrager ist nachfolgend anhand eines vorgegebenen Beispiels für gleiche äußere Abmessungen der beiden Wärmeübertrager dargestellt:

Oberfläche

- Wärmeübertrager nach dem 6384 mm²

Stand der Technik

- Wärmeübertrager gemäß 7600 mm² .

der Erfindung

5

10

15

20

25

30

Durch die Vergrößerung der kühlenden Oberfläche mit einem gestreckten Querschnitt QS für die Durchgangsöffnungen 4 der Strömungskanäle 6a bis 6d wird eine Steigerung der spezifischen Wärmeleistung Q/dTe in Abhängigkeit vom Volumendurchsatz Qv erreicht. Nachfolgend ist ein Vergleich der Änderung der spezifischen Wärmeleistung Q/dTe eines herkömmlichen Wärmeübertragers gegenüber dem erfindungsgemäßen Wärmeübertrager 1 dargestellt. Dabei ist die spezifische Wärmeleistung Q/dTe die auf eine Temperaturdifferenz dTe am Kühlereintritt normierte Wärmeleistung. Des Weiteren wird der Volumendurchsatz Qv definiert als das in der Zeit t durch den jeweiligen Strömungskanal 6a bis 6d strömende Strömungsvolumen V des Mediums M1 oder M2.

Figur 3 zeigt ein Diagramm mit einer Darstellung des Verlaufs der spezifische Wärmeleistung Q/dTe in Abhängigkeit vom zeitlichen Strömungsvolumen V1/t des den Wärmeübertrager 1 durchströmenden Mediums M1 gemäß dem Wärmeübertrager 1 nach der Erfindung (Meßpunkte mit durchgezogenen Verbindungslinien) und nach dem Stand der Technik (Meßpunkte mit unterbrochenen Verbindungslinien), jeweils für verschiedene feste zeitliche Strömungsvolumina V2/t des jeweils anderen den Wärmeübertrager durchströmenden Mediums M2. Es ist aus Fig. 3 zu entnehmen, daß durch die Vergrößerung der wärmeübertragenden Fläche A gemäß der vorliegenden Erfindung bei einem beispielhaft ausgewählten Wärmeübertragertyp eine Steigerung der spezifischen Wärmeleistung um bis zu etwa 20% möglich ist.

Figur 4 zeigt beispielhaft eine mögliche Ausführungsform für ein Anschlusselement 12, welches an den geänderten Querschnitt QS des jeweiligen Strömungskanals 6a bis 6d des Wärmeübertrager 1 angepasst ist. Dabei weist das Anschlusselement 12 auf der dem Wärmeübertrager 1 zugewandten Seite ebenfalls eine lang gestreckte Querschnittsform auf, auf der abgewandten Seite weist das Anschlusselement 12 beispielsweise eine runde Querschnittsform zum Anschluss von Leitungen oder Rohren zum Zuführen und/oder Abführen des ersten Mediums M1 und/oder des zweiten Mediums M2 auf.

10

5 .

25

30

Patentansprüche

- Wärmeübertrager (1) mit mehreren schalenförmig ausgebildeten Platten (2a bis 2z), die aufeinander gesetzt und an ihrem umlaufenden Rand dicht verbunden sowie mit Durchgangsöffnungen (4) versehen sind, wobei im wesentlichen übereinander liegende Durchgangsöffnungen (4) einen die Platten (2a bis 2z) durchlaufenden Strömungskanal (6a bis 6d) bilden und nebeneinander liegende Strömungskanäle (6a bis 6d) von unterschiedlichen Medium (M1, M2) von einer Zulaufseite zu einer Ablaufseite durchströmt sind, wobei der jeweilige Strömungskanal (6a bis 6d) einen gestreckten Querschnitt (QS) aufweist.
- 20 2. Wärmeübertrager nach Anspruch 1, wobei der jeweilige Strömungskanal (6a bis 6d) einen ovalen oder rechteckigen Querschnitt (QS) aufweist.
 - 3. Wärmeübertrager nach einem der vorhergehenden Ansprüche, wobei verschiedene, insbesondere benachbarte Strömungskanäle (6a bis 6d) unterschiedliche Querschnittsformen aufweisen.
 - 4. Wärmeübertrager nach einem der vorhergehenden Ansprüche, wobei der gestreckte Querschnitt eines Strömungskanals eine Länge L und eine Breite B aufweist und ein Länge-zu-Breite-Verhältnis L/B zwischen 1,5 und 12, bevorzugt zwischen 1,5 und 6, besonders bevorzugt zwischen 1,5 und 3 oder zwischen 4 und 6 beträgt.

- 5. Verwendung eines Wärmeübertragers (1) nach einem der vorhergehenden Ansprüche als Stapelscheibenkühler für ein Fahrzeug.
- 6. Platte (2a bis 2z) für einen Wärmeübertrager (1) nach einem der vorhergehenden Ansprüche, mit Durchgangsöffnungen (4), welche im wesentlichen einen gestreckten Querschnitt (QS) aufweisen.
 - 7. Platte nach Anspruch 6, wobei die Durchgangsöffnungen (4) einen rechteckigen oder ovalen Querschnitt (QS) aufweisen.
 - 8. Platte nach einem der Ansprüche 6 und 7, wobei verschiedene, insbesondere benachbarte Durchgangsöffnungen unterschiedliche Querschnittsformen aufweisen.
 - 9. Platte nach einem der Ansprüche 6 bis 8, wobei der gestreckte Querschnitt einer Durchgangsöffnung eine Länge L und eine Breite B aufweist und ein Länge-zu-Breite-Verhältnis L/B zwischen 1,5 und 12, bevorzugt zwischen 1,5 und 6, besonders bevorzugt zwischen 1,5 und 3 oder zwischen 4 und 6 beträgt.

15

20

10

Zusammenfassung

Für eine Erhöhung der Wärmeübertragung bei gleichzeitig besonders guter Nutzung der Wärmeübertragungsfläche bei einem Wärmeübertrager, insbesondere einem Stapelscheibenkühler für ein Fahrzeug, ist erfindungsgemäß ein Wärmeübertrager (1) mit mehreren schalenförmig ausgebildeten Platten (2a bis 2z) vorgesehen. Die Platten (2a bis 2z) sind aufeinander gesetzt und an ihrem umlaufenden Rand dicht verbunden sowie mit Durchgangsöffnungen (4) versehen, wobei im wesentlichen übereinander liegende Durchgangsöffnungen (4) einen die Platten (2a bis 2z) durchlaufenden Strömungskanal (6a bis 6d) bilden und nebeneinander liegende Strömungskanäle (6a bis 6d) von unterschiedlichen Medium (M1, M2) von einer Zulaufseite zu einer Ablaufseite durchströmt sind, wobei der jeweilige Strömungskanal (6a bis 6d) einen gestreckten Querschnitt (QS) aufweist.

20

15

Sign. Figur 1

Bezugszeichenliste

	1	Wärmeübertrager
5	2	Platten
	4	Durchgangsöffnung
	6a bis 6d	Strömungskanal
	8a, 8b	Zulaufstutzen
	10a,10b	Ablaufstutzen
10	12	Anschlusselement
15 20	b	Breite einer Durchgangsöffnung
	dP1	Druckverlust für Medium M1
	dP2	Druckverlust für Medium M2
	dTe	Temperaturdifferenz
	1	Länge einer Durchgangsöffnung
	M1	erstes Medium
	M2	zweites Medium
	Q	Wärmeübertragungsmenge
	QS	Querschnitt
	Qv	Strömungsvolumen
	R1 bis R4	Strömungsrichtung

Fig. 1

Fig. 3

Fig. 4