Ы	ΓУ	И	P

Кафедра 3	ЭВМ
-----------	-----

Отчет по лабораторной работе № 1

Выполнил:

студент группы 150501 Климович А.Н.

Проверил:

профессор Татур М.М.

1 МОДЕЛИРОВАНИЕ НЕИСПРАВНОСТЕЙ КОМБИНАЦИОННЫХ СХЕМ

Была выбрана следующая функция:

$$F = \overline{(\overline{(x1+x2)}*(x3+x4))}*x5$$

Построена следующая схема:

Также была заполнена таблица функций неисправностей (см. таблицу 1.1).

Таблица 1.1 – Таблица функций неисправностей

N	X_1	X_2	X ₃	X ₄	X_5		Y	1/0	1/1	2/0	2/1	3/0	3/1	4/0	4/1	5/0	5/1	6/0	6/1	7/0	7/1	8/0	8/1	9/0	9/1
0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
1	1	0	0	0	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
2	0	1	0	0	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
3	1	1	0	0	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
4	0	0	1	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5	1	0	1	0	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
6	0	1	1	0	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
7	1	1	1	0	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
8	0	0	0	1	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
9	1	0	0	1	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
10	0	1	0	1	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
11	1	1	0	1	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
12	0	0	1	1	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
13	1	0	1	1	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
14	0	1	1	1	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
15	1	1	1	1	0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
16	0	0	0	0	1		1	1	1	1	1	1	0	1	0	0	1	1	1	1	0	0	1	0	1
17	1	0	0	0	1		1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	0	1
18	0	1	0	0	1	 	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	0	1
19	1	1	0	0	1		1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	0	1
20	0	0	1	0	1		0	0	1	0	1	1	0	0	0	0	0	1	0	1	0	0	1	0	1
21	1	0	1	0	1		1	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	0	1
22	0	1	1	0	1		1	1	1	0	1	1	1	1	1	0	1	1	0	1	1	0	1	0	1
23	1	1	1	0	1		1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	0	1
24	0	0	0	1	1		0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	1
25	1	0	0	1	1		1	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	0	1
26	0	1	0	1	1		1	1	1	0	1	1	1	1	1	0	1	1	0	1	1	0	1	0	1
27	1	1	0	1	1		1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	0	1
28	0	0	1	1	1		0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	0	1	0	1
29	1	0	1	1	1		1	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	0	1
30	0	1	1	1	1		1	1	1	0	1	1	1	1	1	0	1	1	0	1	1	0	1	0	1
31	1	1	1	1	1		1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	0	1

2 ИССЛЕДОВАНИЕ МЕТОДОВ ДЕТЕРМИНИРОВАННОГО СИНТЕЗА ПРОВЕРЯЮЩИХ ТЕСТОВ КОМБИНАЦИОННЫХ СХЕМ

2.1 Получение проверяющего теста с помощью таблицы.

Теперь необходимо найти проверяющий тест, т.е. нужно найти наборы, которые находят все неисправности.

Создадим множество $A = \{\}$, в которое будем добавлять наборы, которые будут покрывать функции неисправностей.

Проанализировав таблицу 1, можно увидеть, что только набор 16 покрывает функцию неисправности $3_{/1}$. Добавим его в наше множество:

$$A = \{00001\}.$$

Наборы 20 и 24 также являются обязательными наборами для полного покрытия. Добавляем их в множество А:

```
A = \{00001, 00101, 00011\}.
```

Функции неисправности $1_{/0}$ и $6_{/1}$ покрывают наборы 21, 25, 29. Поэтому выбираем любой из них, например 21:

```
A = \{00001, 00101, 00011, 10101\}.
```

Аналогично функцию $5_{/1}$ покрывают следующие наборы: 0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15. Возьмем в наше покрытие набор 0:

```
A = \{00001, 00101, 00011, 10101, 00000\}.
```

Для покрытия функции 2_{0} возьмем набор 22, помимо которого эту функцию также покрывают наборы 26 и 30:

```
A = \{00001, 00101, 00011, 10101, 00000, 01101\}.
```

После проведенных действий наше множество А полностью покрывает функции неисправности, представленные в таблице 1.1.

Коэффициенты полноты проверки для каждого набора.

```
00001 - 12/27.
```

00101 - 22/27.

00011 - 23/27.

10101 - 25/27.

00000 - 26/27.

01101 - 27/27.

Эмпирическая зависимость коэффициента полноты проверки от длины теста представлена на рисунке 2.1.

Рисунок 2.1 – Эмпирическая зависимость коэффициента полноты проверки от длины теста

2.2 Получение проверяющего теста методом активизации путей.

Таблица 2.1 – Результаты, полученные методом активизации путей

	X1	X2	X3	X4	X5
1/0	1	0	1	1	1
1/1	0	0	1	1	1
2/0	0	1	1	1	1
2/1	0	0	1	1	1
3/0	0	0	1	0	1
3/1	0	0	0	0	1
4/0	0	0	0	1	1
4/1	0	0	0	0	1
5/0	1	1	0	0	1
5/1	1	1	0	0	0

Рисунок 2.2 – Эмпирическая зависимость коэффициента полноты проверки от длины теста (метод активизации путей)

3 СИНТЕЗ ПРОВЕРЯЮЩИХ ТЕСТОВ ДЛЯ РЕКОНВЕРГЕНТЫХ СХЕМ

Рисунок 3.1 – Реконвергентная схема

Функция $5_{/1}$ является не выявленной неисправностью.