Name: ______ CS1231 Discrete Structures Tutorial group: _____ (number or day&time)
Quiz 2 2023/24 Semester 2

1. Let $A = \{-2, -1, 0, 1, 2\}$ and $B = \{1, 2, 3, 4\}$.

(i) Write down $\{x \in A : x^2 + 2x = 0\}$ in roster notation.

[1 mark]

Solution. $\{-2, 0\}.$

(ii) Write down the power set of the set you wrote in (i) in roster notation.

[1 mark]

Solution. $\{\{\}, \{-2\}, \{0\}, \{-2, 0\}\}.$

(iii) Is $\{x^2 : x \in A\} \subseteq B$? Explain your answer.

[2 marks]

Solution. No, because $0 \in \{x^2 : x \in A\}$ but $0 \notin B$.

(iv) Write down $A \setminus B$ in roster notation.

[1 mark]

Solution. $\{-2, -1, 0\}.$

- (v) Write down in roster notation a set C such that $\{A \setminus B, C\}$ is a partition of A.

[1 mark]

Solution. $\{1,2\}$.

2. Let A and B be sets. Prove that, if $A \cap C = B \cap C$ and $A \cup C = B \cup C$ for some set C, then A = B.

[5 marks]

П

Solution. Let C be a set such that $A \cap C = B \cap C$ and $A \cup C = B \cup C$.

To show that $A \subseteq B$, take any $x \in A$.

Case 1: assume $x \in C$. Then $x \in A \cap C = B \cap C \subseteq B$ by Example 4.3.9(1).

Case 2: assume $x \notin C$. Note that Example 4.3.9(2) implies $x \in A \subseteq A \cup C = B \cup C$. So the definition of \cup tells us $x \in B$ or $x \in C$. As $x \notin C$ by assumption, we deduce that $x \in B$.

So $x \in B$ in all cases.

The proof for $B \subseteq A$ is similar.

Alternative proof by contraposition. Suppose $A \neq B$. Take any set C. As $A \neq B$, either there is some $x \in A$ such that $x \notin B$, or there is some $x \in B$ such that $x \notin A$. We focus on the former case here; the latter case can similarly be handled. Fix $x \in A$ such that $x \notin B$.

Case 1: assume $x \in C$. Then $x \in A \cap C$ as $x \in A$, but $x \notin B \cap C$ because $x \notin B$. So $A \cap C \neq B \cap C$.

Case 2: assume $x \notin C$. Then $x \in A \cup C$ as $x \in A$, but $x \notin B \cup C$ because $x \notin B$ and $x \notin C$. So $A \cup C \neq B \cup C$.

Hence $A \cap C \neq B \cap C$ or $A \cup C \neq B \cup C$ in all cases.

Alternative proof using set identities. Let C be a set such that $A \cap C = B \cap C$ and $A \cup C = B \cup C$. Then

 $A = A \cap (A \cup C)$ by the Absorption Laws; $= A \cap (B \cup C)$ as $A \cup C = B \cup C$; $= (A \cap B) \cup (A \cap C)$ by the Distributive Laws; $= (B \cap A) \cup (B \cap C)$ by the Commutative Laws, as $A \cap C = B \cap C$; $= B \cap (A \cup C)$ by the Distributive Laws; $= B \cap (B \cup C)$ as $A \cup C = B \cup C$; = B by the Absorption Laws.

Comments. • Some used a truth table in their attempts. This is possible, but additional explanations is required. Moreover, it is tricky to get the explanations right. For example, some used a truth table to show that

$$\forall x \ ((x \in A \cap C \leftrightarrow x \in B \cap C) \land (x \in A \cup C \leftrightarrow x \in B \cup C) \rightarrow (x \in A \leftrightarrow x \in B)),$$

but what you are asked to show is

$$\forall x \ (x \in A \cap C \leftrightarrow x \in B \cap C) \land \forall x \ (x \in A \cup C \leftrightarrow x \in B \cup C) \rightarrow \forall x \ (x \in A \leftrightarrow x \in B);$$

the two are different, and additional explanation is required to link the two.

- Some used the Inclusion–Exclusion Rule. This applies to only finite sets, but our sets may not be finite. In addition, it shows only |A| = |B|, not A = B.
- Some deduced from $A \neq B$ that $A \not\subseteq B$. There is a second case where $B \not\subseteq A$, which cannot be ignored altogether.

3. Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. The following are arrow diagrams of a relation R from A to B, and a relation S from B to A.

(i) Write down R^{-1} is roster notation.

[1 mark]

Solution. $R^{-1} = \{(a, 1), (b, 2), (c, 3), (d, 3)\}.$

(ii) Write down $R \circ S$ in roster notation.

[1 mark]

Solution. $R \circ S = \{(a, a), (a, b), (b, c), (b, d), (c, a)\}.$

(iii) Is $R \circ S$ antisymmetric as a relation on B? Explain your answer.

[2 marks]

Solution. Yes, because the only $x, y \in B$ that make $(x, y), (y, x) \in R \circ S$ are when x and y are both a. **Comments.** Some wrote that there are no $x, y \in B$ such that $x (R \circ S) y$ and $y (R \circ S) x$. This is not true because a $(R \circ S)$ a and a $(R \circ S)$ a.

(iv) Write down $S \circ R$ in roster notation.

[1 mark]

Solution. $S \circ R = \{(1,1), (1,2), (2,3), (3,1)\}.$

(v) Is $S \circ R$ reflexive as relation on A? Explain your answer.

[2 marks]

Solution. No, because $(2,2) \notin S \circ R$.

4. Define a relation R on \mathbb{Z} by setting, for all $a, b \in \mathbb{Z}$,

 $a R b \Leftrightarrow a + b \text{ is even.}$

(i) Prove that R is an equivalence relation, based only on what we have established in this course.

[5 marks]

Solution. (Reflexivity) Let $a \in \mathbb{Z}$. Then a + a = 2a, which is even. So a R a by the definition of R.

(Symmetry) Let $a, b \in \mathbb{Z}$ such that a R b. Then a + b is even by the definition of R. This implies b + a is even too, because + is commutative. So b R a by the definition of R.

(Transitivity) Let $a, b, c \in \mathbb{Z}$ such that a R b and b R c. Then, by the definition of R, both a + b and b + c are even. Use the definition of even to find $x, y \in \mathbb{Z}$ such that a + b = 2x and b + c = 2y. Then

$$a + c = (2x - b) + (2y - b) = 2x + 2y - 2b = 2(x + y - b),$$

where $x+y-b\in\mathbb{Z}$. So a+c is even by the definition of even. It follows from the definition of R that $a\ R\ c$.

Comments. Some claimed that $a \ R \ b$ if and only if a, b are both odd or both even for all $a, b \in \mathbb{Z}$ without any explanation. A proof is needed for this.

(ii) Write down $[1231] \cap \{7, 8, 9, 10, 11, 12\}$ in roster notation, where [1231] denotes the equivalence class of 1231 with respect to the equivalence relation R. [2 marks]

Solution. $\{7, 9, 11\}.$

Extra explanation. All of 7+1231, 9+1231, and 11+1231 are even, but none of 8+1231, 10+1231, and 12+1231 is even.

Comments. Some wrote $\{(1231,7), (1231,9), (1231,11)\}$. By definition, with respect to an equivalence relation on a set A, elements of equivalence classes are elements of A, not elements of $A \times A$.