Clase Teoría de Lenguajes: Pasaje de $AFND - \lambda$ a AFD y Minimización

- AFD para referirnos a un autómata finito determinísitico
- AFND para referirnos a un autómata finito no determinístico, sin transiciones lambda
- \blacksquare AFND— $\!\lambda$ para referir
nos a un autómata finito determinísitico, con transiciones lambda

$$2^{|Q|}$$
 si Q son los estados de AFND λ
$$p \xrightarrow{a} q, p \xrightarrow{a} r, p \xrightarrow{a} s, p \xrightarrow{a} t \qquad \{p\} \xrightarrow{a} \{q, r, s, t\}$$

$$\{p, q\} \xrightarrow{a} \{r\} \qquad p \xrightarrow{a} r \text{ o bien } q \xrightarrow{a} r$$

AFND a AFD

$$N = \langle Q_N, \Sigma, \delta_N, q_0, F_N \rangle$$
$$D = \langle Q_D, \Sigma, \delta_D, \{q_0\}, F_D \rangle$$

$$Q_D = P(Q_N)$$

$$F_D = \{\{q_1, \dots, q_n\} \in Q_D : \{q_1, \dots, q_n\} \cap F_N \neq \emptyset\}$$

$$\delta_D(\{q_1, \dots, q_n\}, a) = \bigcup_{i=1}^n \delta_N(q_i, a)$$

$$Mover(T,a) = \bigcup_{t \in T} \delta(t,a)$$

Sea $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ un AFND, construyamos $M'=\langle Q',\Sigma,\delta',q_0',F'\rangle$ tal que L(M)=L(M')

- 1. Defino $\{q_0\}$ el estado inicial de M'
- 2. Inicializo $Q' := \{\{q_0\}\}\$ donde Q' es marcable, y el estado inicial está sin marcar
- 3. Mientras exista $T \in Q'$ sin marcar:
 - a) Marcar T.
 - b) Para cada $a \in \Sigma$
 - 1) Hacer $U \leftarrow Mover(T, a)$.
 - 2) Si $U \notin Q'$ entonces agrego sin marcar U a Q'.
 - 3) Hacer $\delta'(T, a) = U$
 - c) Fin Para.
- 4. Fin Mientras.
- 5. Hacer $F' \leftarrow \{X \in Q' | X \cap F \neq \emptyset\}$

Sea M el AFND que reconoce cadenas de $\{a,b\}$ que contengan aaa: $M = \langle \{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\} \rangle$

$$M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$$

$$\begin{array}{c|cccc}
\delta' & a & b & Mover(\{q_0\}, a) = \bigcup_{t \in \{q_0\}} \delta(t, a) = \{q_0, q_1\} \\
\hline
\{q_0\} & Mover(\{q_0\}, b) = \bigcup_{t \in \{q_0\}} \delta(t, a) = \{q_0\}
\end{array}$$

$$\begin{array}{c|ccccc}
\delta' & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & & & \\
\end{array}$$

$$Mover(\{q_0, q_1\}, a) = \bigcup_{t \in \{q_0, q_1\}} \delta(t, a) = \delta(\{q_0\}, a) \bigcup \delta(\{q_1\}, a) = \{q_0, q_1, q_2\}$$
$$Mover(\{q_0, q_1\}, b) = \bigcup_{t \in \{q_0, q_1\}} \delta(t, a) = \delta(\{q_0\}, b) \bigcup \delta(\{q_1\}, b) = \{q_0\}$$

Sea M el AFND que reconoce cadenas de $\{a,b\}$ que contengan aaa: $M=\langle\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\}\rangle$

$$M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$$

δ'	a	b
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0\}$
$\{q_0,q_1,q_2\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0,q_3\}$

$$M = \langle \{\{q_0\}, \{q_0, q_1\}, \{q_0, q_1, q_2\}, \{q_0, q_1, q_2, q_3\}, \{q_0, q_3\}, \{q_0, q_1, q_3\}\}, \{a, b\}, \delta', \{q_0\}, \{q_0, q_1, q_2, q_3\}, \{q_0, q_3\}, \{q_0, q_1, q_3\}\rangle$$

$AFND-\lambda$ a AFD

Si Q son los estados del AFND $-\lambda$ de entrada, sea $Clausura_{\lambda}: \mathbf{P}(Q) \to \mathbf{P}(Q)$:

$$Clausura_{\lambda}(K) = \{x \in Q | \exists q \in K \land (q, \lambda) \stackrel{*}{\vdash} (x, \lambda)\}$$

 $Clausura_{\lambda}(\{q_{0}\}) = \{q_{0}, q_{1}, q_{2}, q_{3}\}$ $Clausura_{\lambda}(\{q_{1}\}) = \{q_{1}, q_{2}\}$ $Clausura_{\lambda}(\{q_{2}\}) = \{q_{2}\}$ $Clausura_{\lambda}(\{q_{3}\}) = \{q_{3}\}$ $Clausura_{\lambda}(\{q_{4}\}) = \{q_{4}\}$

 $Mover: \mathbf{P}(Q) \times \Sigma \to \mathbf{P}(Q):$

 $Mover(T, a) = Clausura_{\lambda}(\bigcup_{t \in T} \delta(t, a))$

- 1. Hacer $Clausura_{\lambda}(\{q_0\})$ el estado inicial de $M'(q'_0)$.
- 2. Hacer $Q' = \{Clausura_{\lambda}(\{q_0\})\}\$ donde Q' es marcable y $Clausura_{\lambda}(\{q_0\})$ está sin marcar.
- 3. Mientras exista $T \in Q'$ sin marcar:
 - a) Marcar T.
 - b) Para cada $a \in \Sigma$
 - 1) Hacer $U \leftarrow Mover(T, a)$.
 - 2) Si $U \notin Q'$ entonces agrego sin marcar U a Q'.
 - 3) Hacer $\delta'(T, a) = U$
 - c) Fin Para.
- 4. Fin Mientras.
- 5. Hacer $F' \leftarrow \{X \in Q' | X \cap F \neq \emptyset\}$

Minimización de AFD

Indistinguibilidad

Estados Indistinguibles: Sea el AFD M, y $q_p, q_r \in Q$ dos estados.

$$q_p \equiv q_r \text{ si } L_p = L_r$$

lenguaje generado a partir de un estado q_i :

$$L_i = \{\alpha | \exists q_f \in F(q_i, \alpha) \vdash (q_f, \lambda)\}$$

 q_p es indistinguible de q_r

$$\forall \alpha \in \Sigma^* (\exists q_f \in F \mid (q_p, \alpha) \stackrel{*}{\vdash} (q_f, \lambda) \Longleftrightarrow \exists q_f' \in F \mid (q_r, \alpha) \stackrel{*}{\vdash} (q_f', \lambda)$$

Indistinguibilidad de orden k

Sea el AFD M, y $q, r \in Q$ dos estados $q \equiv_k r$ si

$$\forall \alpha \in \Sigma^* \wedge |\alpha| \leq k \ (\exists q_f \in F \mid (q,\alpha) \overset{*}{\vdash} (q_f,\lambda) \Longleftrightarrow \exists q_f' \in F \mid (r,\alpha) \overset{*}{\vdash} (q_f',\lambda)$$

Propiedades

- 1. \equiv_k es relación de equivalencia.
- $2. \equiv_{k+1} \subseteq \equiv_k$
- 3. $Q/\equiv_0=\{Q-F,F\}$
- 4. $p \equiv_{k+1} r \iff (p \equiv_k r \land \forall a \in \Sigma, (\delta(p, a) \equiv_k \delta(r, a))$
- 5. $(\equiv_p) = (\equiv_{p+1}) \Rightarrow \forall k > 0 \ (\equiv_p) = (\equiv_{p+k})$

AFD $M = \langle \{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b\}, \delta, q_0, \{q_3, q_4, q_5\} \rangle$

	\equiv_0	a	b
q_0	NF		
q_1	NF		
q_2	NF		
q_3	F		
q_4	F		
q_5	F		

$$\begin{array}{c} q_1 \xrightarrow{b} q_0 \\ q_2 \xrightarrow{a} q_3 \end{array}$$

 $q_4 \xrightarrow{a} q_5$

$$q_0 \, \, \mathrm{es} \, \, NF$$

$$q_3 \, \operatorname{es} \, F$$

$$q_5 \, \, \mathrm{es} \, \, {\color{red} F}$$

$$[q_1,b]$$
 ponemos NF

$$[q_2,a]$$
 ponemos F

$$[q_4,a]$$
 ponemos F

AFD $M = \langle \{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b\}, \delta, q_0, \{q_3, q_4, q_5\} \rangle$

	\equiv_0	a	b
q_0	NF	NF	NF
$ q_1 $	NF	NF	NF
q_2	NF	F	NF
q_3	F	F	F
q_4	F	F	F
q_5	F	F	F

AFD $M = \langle \{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b\}, \delta, q_0, \{q_3, q_4, q_5\} \rangle$

	\equiv_0	a	b	\equiv_1	\overline{a}	b
q_0	NF	NF	NF	Q		
$ q_1 $	NF	NF	NF	\Diamond		
$ q_2 $	NF	F	NF	.		
q_3	F	F	F	\Diamond		
q_4	F	F	F	\Diamond		
q_5	F	F	F	\Diamond		

$$q_1 \xrightarrow{b} q_0$$
 $q_0 \text{ es } \heartsuit$ $[q_1,b] \text{ ponemos } \heartsuit$
 $q_2 \xrightarrow{a} q_3$ $q_3 \text{ es } \diamondsuit$ $[q_2,a] \text{ ponemos } \diamondsuit$

$$q_4 \xrightarrow{a} q_5 \quad q_5 \text{ es } \diamondsuit \quad [q_4,a] \text{ ponemos } \diamondsuit$$

AFD $M = \langle \{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b\}, \delta, q_0, \{q_3, q_4, q_5\} \rangle$

	\equiv_0	a	b	\equiv_1	a	b	\equiv_2	a	b	\equiv_3
q_0	NF	NF	NF	\Diamond	\Diamond	\Diamond	X	*	X	I
$ q_1 $	NF	NF	NF	\Diamond	*	\Diamond	*	0	\mathbf{X}	II
$ q_2 $	F	F	NF	*	\Diamond	\triangle	0	•	\mathbf{X}	III
q_3	F	F	F	\Diamond	\Diamond	\Diamond	⊡	•	•	IV
$ q_4 $	F	F	F	\Diamond	\Diamond	\Diamond	⊡	•	$\overline{\cdot}$	IV
q_5	F	F	F	\Diamond	\Diamond	\Diamond	·	•	$\overline{\cdot}$	IV

$M = \langle \{ \textcolor{red}{I}, \textcolor{red}{II}, \textcolor{red}{III}, \textcolor{red}{IV} \}, \{a,b\}, \delta', \textcolor{red}{I}, \{\textcolor{red}{IV}\} \rangle$

	\equiv_0	a	b	\equiv_1	a	b	\equiv_2	a	b	\equiv_3
q_0	NF	NF	NF	\Diamond	\Diamond	\Diamond	*	*	X	I
$ q_1 $	NF	NF	NF	\Diamond	*	\Diamond	*	0	\mathbf{X}	II
$ q_2 $	F	F	NF	*	\Diamond	\triangle	0	•	\mathbf{X}	III
q_3	F	F	F	\Diamond	\Diamond	\Diamond	·	•	$\overline{\cdot}$	IV
$ q_4 $	F	F	F	\Diamond	\Diamond	\Diamond	·	•	$\overline{\cdot}$	IV
q_5	F	F	F	\Diamond	\Diamond	\Diamond	·	•	•	IV