

RANdom SAmple Consensus (RANSAC)

P117

Robust estimation

- Two of the points are selected randomly, these points define a line
- The support for this line is measured by the number of points that lie within a distance threshold.
- This random selection is repeated a number of times.
- The line with most support is deemed the robust fit of matches.
- Use the robust fit to identify outliers.

RANSAC

Objective

Robust fit of model to data set S which contains outliers Algorithm

- Randomly select a sample of s data points from S and instantiate the model from this subset.
- II. Determine the set of data points S_i which are within a *distance threshold t* of the model. The set S_i is the *consensus set* of samples and defines the inliers of S.
- III. If the subset of S_i is greater than some threshold T, re-estimate the model using all the points in S_i and terminate
- IV. If the size of S_i is less than T, select a new subset and repeat the above.
- V. After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i

Distance threshold

Choose *t* so probability for inlier is a (e.g. 0.95)

- Often empirically
- Zero-mean Gaussian noise σ then d_{\perp}^2 follows χ_m^2 distribution with m=codimension of model (dimension+codimension=dimension space)

Codimension	Model	<i>t</i> ²		
1	I,F	$3.84\sigma^2$		
2	H,P	$5.99\sigma^2$		
3	Т	$7.81\sigma^2$		

How many samples?

Choose *N* so that, with probability p, at least one random sample is free from outliers. e.g. p=0.99

$$(1 - (1 - e)^{s})^{N} = 1 - p$$

$$N = \log(1 - p) / \log(1 - (1 - e)^{s})$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Adaptively determining the number of samples

e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2

- N=∞, sample_count =0
- While N > sample_count repeat
 - Choose a sample and count the number of inliers
 - Set e=1-(number of inliers)/(total number of points)
 - Recompute *N* from e $\left(N = \log(1-p)/\log(1-(1-e)^s)\right)$
 - Increment the sample_count by 1
- Terminate

Acceptable consensus set?

 Typically, terminate when inlier ratio reaches expected ratio of inliers

$$T = (1 - e)n$$

