

NVIDIA-Certified Professional: AI Networking 认证考试学习指南

NVIDIA-Certified Professional: Al Networking 认证考试学习指南

_	_
н	_
н	w
_	~

AI 网络架构: 考试权重 20%	2
Spectrum-X 配置: 考试权重 18%	4
Spectrum-X 优化: 考试权重 6%	6
Spectrum-X 安全: 考试权重 3%	7
Spectrum-X 故障排除: 考试权重 13%	8
InfiniBand 配置: 考试权重 18%	9
InfiniBand 优化: 考试权重 6%	10
InfiniBand 安全: 考试权重 3%	11
InfiniBand 故障排除: 考试权重 13%	12

针对 NVIDIA-Certified Professional:Al Networking (NCP-AIN) 认证考试,本学习指南包含认证所涵盖的各个技术主题的介绍,并推荐了相关培训课程和阅读资料。

查看所有 NVIDIA 认证,请单击此处。

考试适用人群

在构建和优化采用 NVIDIA 高级网络技术的 AI 基础设施方面,NVIDIA AI 网络工程师发挥着关键作用。负责为 AI 和机器学习工作负载配置高性能网络,确保无缝数据流和低延迟通信。通过优化协议并将 NVIDIA 产品与服务器、GPU 和存储系统相集成,在数据中心实现了高效部署。故障排除和与跨职能团队协作。

相关工作职责示例

- 1. 为 AI 和机器学习工作负载配置高性能网络解决方案。
- 2. 优化网络性能,确保 AI 计算实现最大吞吐量和最低延迟。
- 3. 实施和调优网络协议,提高数据传输速度和效率。
- 4. 将 NVIDIA 网络产品与现有的 AI 基础设施 (包括服务器、GPU 和存储系统) 相集成。
- 5. 在数据中心部署网络解决方案,确保 AI 组件之间的无缝连接。
- 6. 诊断和解决影响 AI 工作负载的网络问题,保持系统性能最佳状态。
- 7. 为管理 AI 基础设施的团队提供技术支持和指导。
- 8. 与数据科学家、研究人员和 IT 专业人员协作,了解网络需求和挑战。

建议具备的知识和经验

- 1. 具备 NVIDIA GPU/DPU 技术、网络和 AI 基础设施专业知识。
- 2. 理工科背景,如计算机科学、软件工程、AI等。

认证主题和参考资料

AI 网络架构: 考试权重 20%

考生应能够识别和区分 AI 工厂与 AI 数据中心架构,比较和对比以太网与 InfiniBand 网络技术,并根据性能、可扩展性和成本考虑因素,为 AI 网络架构选择适当的存储类型。

- 1.1 架构、设计和拓扑
- 1.2 AI 拓扑最佳实践
- 1.3 NCP 参考架构
- 1.4 高速网络选项
- 1.5 带宽管理
- 1.6 存储连接
- 1.7 DPU (数据处理器)
- 1.8 NVIDIA NVLink
- 1.9 机器学习应用

培训推荐 (可选)

> 课程:讲师指导的远程直播在线培训 "Cumulus Linux"公开训练营(了解详情)

> 课程:在线自主培训《BlueField DPU 管理》(了解详情)

- > Get Started on DOCA for DPUs With a Free Introductory Course | NVIDIA Technical Blog
- > Bonding Link Aggregation | Cumulus Linux 5.9
- > NVIDIA Unveils Reference Architecture for AI Cloud Providers
- > What Is a SuperNIC? | NVIDIA Blog
- > Doubling all2all Performance With NVIDIA Collective Communication Library 2.12
- > Networking for Data Centers and the Era of AI | NVIDIA Technical Blog
- > NVIDIA GB200 NVL72 Delivers Trillion-Parameter LLM Training and Real-Time Inference | NVIDIA Technical Blog
- > Turbocharging Generative AI Workloads With NVIDIA Spectrum-X Networking Platform
- > Overview of NCCL NCCL 2.25.1 documentation
- > Key Components of the DGX SuperPOD
- > NVIDIA BlueField Reset and Reboot Procedures
- > DOCA Installation Guide for Linux NVIDIA Docs
- > NVIDIA DOCA Profiles
- > BlueField-3 Administrator Quick Start Guide NVIDIA Docs
- > Host-Side Interface Configuration NVIDIA Docs
- > Modes of Operation NVIDIA Docs
- > SRP SCSI RDMA Protocol NVIDIA Docs
- > IB Router NVIDIA Docs
- > What Is ISER?
- > NVIDIA DGX SuperPOD: Scalable Infrastructure for AI Leadership

- > Overview | Generative AI in the Enterprise With NVIDIA Spectrum-X Networking Platform | Dell Technologies Info Hub
- > NVIDIA Spectrum-X Network Platform Architecture
- > Spectrum-X Datasheet
- > NVIDIA Spectrum-X White Paper
- > DGX SuperPOD: Al Infrastructure for Enterprise Deployments | NVIDIA
- > NVLink & NVSwitch: Fastest HPC Data Center Platform | NVIDIA
- > NVIDIA BlueField Networking Platform
- > IO for Large Language Models and Secured AI Workflows
- > DGX SuperPOD: Al Infrastructure for Enterprise Deployments | NVIDIA

Spectrum-X 配置: 考试权重 18%

配置 NVIDIA Spectrum 交换机,在以太网交换机上设置遥测监控,并在主机网卡 (HCA)、数据处理器 (DPU) 和 SuperNIC 上执行固件和软件升级。

为以太网架构 (包括 BGP、VRF 和 VXLAN) 应用三层架构配置,根据实时和预测需求自动调配和部署网络资源,使用 Spectrum-X 提供多租户功能,使用参考配置手册 (RCP) 部署和验证 Spectrum-X 网络配置,测试网络连接,使用 NETQ 来分析和排除 Spectrum-X 故障,利用 DPU 改善网络性能,并验证轨道优化拓扑。

1 模拟 (使用 AIR)、数字孪生	
2 Cumulus	
3 Sonic	
4 Net-Q	
5 网络管理员	
6 RoCE	
7 RCP	
8 多租户	
9 Ansible	

培训推荐(可选)

> 课程:讲师指导的远程直播在线培训"Cumulus Linux"公开训练营(了解详情)

> 课程: 在线自主培训《RDMA 编程基础知识》(了解详情)

> 课程: 《Spectrum-X 管理》(即将推出)

- > Streamlining Kubernetes Networking in Scale-Out GPU Clusters With the New NVIDIA Network Operator 1.0 | NVIDIA Technical Blog
- > Introduction to Automation and Ansible | Technical Guides
- > Adaptive Routing | Cumulus NetQ 4.8
- > RDMA Over Converged Ethernet RoCE | Cumulus Linux 5.9
- > Automating Data Center Networks With NVIDIA NVUE and Ansible
- > Maximize Network Automation Efficiency With Digital Twins on NVIDIA Air
- Virtual Routing and Forwarding VRF | Cumulus Linux 4.4
- > Upgrading Cumulus Linux
- > What Just Happened (WJH) | Cumulus Linux 4.4
- > EVPN Multihoming | Cumulus Linux 5.10
- > NVUE CLI | Cumulus Linux 5.11
- > Flow Analysis | Cumulus NetQ 4.4
- > Set Up Your KVM Virtual Machine for a Single On-Premises Server | Cumulus NetQ 4.4
- > Configure and Monitor Threshold-Crossing Events | Cumulus NetQ 4.12
- > Custom Topology | NVIDIA Air
- > Network Operator NVIDIA Docs
- > Network Operator Deployment Guide
- > NVIDIA Spectrum-X Network Platform Architecture
- > NVIDIA Air

- > Using VXLAN Routing With EVPN Through Asymmetric or Symmetric Models | NVIDIA Technical Blog
- > QoS | NVUE 5.x
- > Layer 3 Extensions With VRF Route Leaking | Technical Guides

Spectrum-X 优化: 考试权重 6%

使用 CloudAl Benchmark 和 NCCL 等工具创建性能基准结果,使用 Grafana 和 SNMP 等工具创建遥测基准结果,排除交换机性能问题,在 Linux 主机上调优 RoCE 和以太网性能并排除故障,以及利用数据处理器 (DPU) 改善网络性能。

- 3.1 模拟 (使用 AIR)、数字孪生
- 3.2 性能 (自适应路由、拥塞控制)
- 3.3 测试和验证
- 3.4 部署云 VMI 容器
- 3.5 AI 数据中心的存储需求
- 3.6 在 DPU Arm 上部署 DOCA 服务

培训推荐(可选)

> 课程: 《Spectrum-X 管理》(即将推出)

- > Building a Data Center Digital Twin With Omniverse and Air | GTC Digital Spring 2022 | NVIDIA On-Demand
- > Maximize Network Automation Efficiency With Digital Twins on NVIDIA Air
- > BGP Weighted Equal Cost Multipath | Cumulus Linux 5.11
- > Congestion Control NVIDIA Docs
- > CloudAl Benchmark Framework
- > Networking for the Era of AI
- > NVIDIA Spectrum-X Network Platform Architecture

Spectrum-X 安全: 考试权重 3%

故障排除是保持最佳性能的关键环节。考生需具备解决包括 Docker、NVlink/NVswitch 系统的 Fabric Manager 服务、 Base Command Manager、Magnum IO 组件及存储性能相关问题的能力。确保这些要素无缝运行,对于高效运行 AI 工作负载并防止潜在中断至关重要。

4.1 Spectrum-X 安全

培训推荐(可选)

> 课程: 《Spectrum-X 管理》(即将推出)

- > Spectrum-X | Ethernet Networking Platform for AI | NVIDIA
- > What Is a SuperNIC? | NVIDIA Blog
- > Understanding NVIDIA's Spectrum-X Solution
- > NVIDIA Spectrum-X Network Platform Architecture

Spectrum-X 故障排除: 考试权重 13%

在 Linux 主机上配置 InfiniBand 并排除故障,确保固件版本在整个网络架构范围内的兼容性 (例如,NIC/HCA 至交换机至 UFM/NetQ),监控并排除以太网和 InfiniBand 网络故障,监控集群中的 DPU 以及 Spectrum ASIC 状态,测试网络连接,排除交换机性能问题,在 Linux 主机上调优 RoCE 和以太网性能并排除故障,使用 NETQ 来分析和排除 Spectrum-X 故障,使用 UFM 来分析和排除 InfiniBand 网络故障,并验证轨道优化拓扑。

5.1 Spectrum-X Troubleshooting

培训推荐(可选)

> 课程: 《Spectrum-X 管理》(即将推出)

- > Diagnosing Network Issues Faster With NVIDIA WJH | NVIDIA Technical Blog
- > Enhancing AI Cloud Data Centers and NVIDIA Spectrum-X With NVIDIA DOCA 2.7
- > Turbocharging Generative AI Workloads With NVIDIA Spectrum-X Networking Platform
- > What Just Happened (WJH) | Cumulus Linux 4.4
- > Logging NVIDIA Docs
- > NVIDIA Launches Accelerated Ethernet Platform for Hyperscale Generative AI
- > Network Operations and Cumulus NetQ | NVIDIA

InfiniBand 配置: 考试权重 18%

配置和升级多个 InfiniBand 交换机。在 Linux 主机上配置 InfiniBand 并排除故障,以及监控 InfiniBand 网络并排除故障,测试网络活动,自动调配和配置 InfiniBand 网络架构。
6.1 网络管理员

6.2 子网管理器

6.3 多租户

6.4 OFED

6.5 UFM

6.6 Infiniband 聚合

6.7 驱动

6.8 网络管理

6.9 MLNXOS

培训推荐(可选)

> 课程: 在线自主培训《InfiniBand 专业人员》(了解详情)

- > Network Operator NVIDIA DGX BasePOD on RHEL
- > Developer Guide NVIDIA Docs
- > Getting Started With Kubernetes NVIDIA Docs
- > Using mlxconfig NVIDIA Docs
- > NVIDIA MLNX_OFED Documentation v23.10-1.1.9.0 LTS
- > NVIDIA SM
- > InfiniBand Fabric Utilities NVIDIA Docs
- > Upgrading Operating System Software NVIDIA Docs
- > Subnet Manager NVIDIA Docs
- > User Management & Security NVIDIA Docs
- > UFM Enterprise User Manual Partitioning NVIDIA Docs
- > Initial Configuration NVIDIA Docs
- > Installation Notes NVIDIA Docs
- > NVIDIA UFM High-Availability User Guide v5.5.0
- > NVIDIA WinOF-2 Documentation
- > Linux InfiniBand Drivers
- > NVIDIA Unified Fabric Manager (UFM) Datasheet

InfiniBand 优化: 考试权重 6%

了解以下技术:使用自适应路由来平衡流量,利用拥塞控制防止瓶颈,使用 UFM 来支持遥测和自动化,使用 SHARP 来分担集体任务,使用 NCCL 来优化 GPU 通信。

7.1 性能(自适应路由、拥塞控制)

7.2 UFM

7.3 SHARP

7.4 NCCL

培训推荐(可选)

> 课程:在线自主培训《InfiniBand 专业人员》(了解详情)

> 课程: 在线自主培训《借助 NVIDIA UFM 轻松管理数据中心》(了解详情)

- > Advancing Performance With NVIDIA SHARP In-Network Computing
- > NVIDIA SM
- > Transport Modes NVIDIA Docs
- > NVIDIA Spectrum-X Network Platform Architecture
- > InfiniBand Fabric Managed by UFM
- > NVIDIA UFM High-Availability User Guide
- > InfiniBand NVIDIA Docs
- > Using NVIDIA SHARP With NVIDIA NCCL
- > Memory Efficiency, Faster Initialization, and Cost Estimation With NVIDIA Collective Communications Library 2.22
- > Troubleshooting NCCL 2.25.1 documentation

InfiniBand 安全: 考试权重 3%

了解如何通过分区、网络管理安全性以及 UFM 密钥来确保安全运营。分区隔离流量,而网络管理安全则使用 M-Keys 限 制更改。 UFM 集中管理,使用密钥自动化响应。这些工具共同实现了安全、可扩展的 InfiniBand 网络架构运营。

8.1 分区

8.2 网络管理安全性

8.3 UFM 密钥

培训推荐(可选)

> 课程:在线自主培训《InfiniBand 专业人员》(了解详情)

- > NVIDIA SM
- > InfiniBand Network NVIDIA Docs
- > InfiniBand Fabric Managed by UFM NVIDIA Docs
- > Subnet Manager, Partitions NVIDIA Docs

InfiniBand 故障排查: 考试权重 13%

在 Linux 主机上配置 InfiniBand 并排查故障,确保固件版本在整个网络架构中的兼容性,监控并排除以太网和 InfiniBand 网络故障,监控集群中的 DPU 和 Spectrum ASIC 状态,测试网络连接,排除交换机性能问题,在 Linux 主机上调优 RoCE 和以太网性能并排除故障,使用 NETQ 来分析和排除 Spectrum-X 故障,使用 UFM 来分析和排除 InfiniBand 网络故障,并验证轨道优化拓扑。

- 9.1 测试和验证
- 9.2 UFM 故障排查
- 9.3 Infiniband 聚合
- 9.4 网络管理

培训推荐(可选)

> 课程: 在线自主培训《InfiniBand 专业人员》(了解详情)

阅读内容推荐

- > NVIDIA SM
- > NVIDIA MLNX-OS User Manual v3.11.4002
- > https://github.com/linux-rdma/perftest
- > InfiniBand Related Troubleshooting NVIDIA Docs
- > Managing Data Centers Securely and Intelligently With NVIDIA UFM Cyber-AI
- > UFM User Manual
- > InfiniBand Related Troubleshooting NVIDIA Docs
- > InfiniBand Fabric Utilities NVIDIA Docs
- > ibnetdiscover Command Sun Datacenter InfiniBand Switch 72

遇到问题?

问题咨询,请发邮件至 dlichina@nvidia.com

