Uma Análise Abrangente da Função de Partição:

Das Identidades de Euler à Fórmula Assintótica de Hardy-Ramanujan

Matheus Sales dos Santos

15 de setembro de 2025

Abstract

Este trabalho oferece uma exploração detalhada da função de partição de inteiros, p(n), um dos objetos mais fascinantes na intersecção da combinatória e da teoria dos números. Iniciamos com as definições fundamentais e representações visuais, como os diagramas de Ferrers, para construir uma base intuitiva. Em seguida, mergulhamos no trabalho pioneiro de Leonhard Euler, que introduziu a poderosa ferramenta das funções geradoras, transformando um problema de contagem discreta em uma questão de análise de produtos infinitos. Investigamos o célebre Teorema dos Números Pentagonais de Euler e demonstramos como ele leva a uma elegante e eficiente fórmula de recorrência para p(n). A análise se aprofunda com o estudo de partições restritas, explorando como modificações na função geradora permitem enumerar partições com propriedades específicas. O clímax do trabalho é a apresentação da fórmula assintótica de Hardy e Ramanujan, um marco da teoria analítica dos números que descreve o crescimento de p(n) com precisão notável e revela a profunda conexão entre a teoria dos números e a análise complexa. Concluímos com uma reflexão sobre o legado e o impacto dessas descobertas, que continuam a inspirar a pesquisa matemática contemporânea.

Contents

1	Introdução: A Simplicidade Enganosa das Partições	3
2	Visualizando Partições: Diagramas de Ferrers	3
3	A Ferramenta Revolucionária: A Função Geradora de Euler	5
4	Partições com Restrições	5
5	O Teorema dos Números Pentagonais e a Recorrência de Euler	6
6	A Análise Assintótica de Hardy e Ramanujan	7
7	Conclusão e Legado	9

1 Introdução: A Simplicidade Enganosa das Partições

A matemática é repleta de problemas cuja formulação é tão simples que podem ser explicados a uma criança, mas cuja solução exige ferramentas de extraordinária sofisticação. A função de partição de inteiros, p(n), é um exemplo paradigmático desse fenômeno.

Definição 1.1 (Partição de um Inteiro). Uma **partição** de um inteiro positivo n é uma maneira de escrever n como uma soma de inteiros positivos, chamados de **partes**. A ordem das partes não importa. A função de partição, p(n), conta o número de partições distintas de n.

Exemplo 1.2. Vamos encontrar as partições de n = 5:

- 5
- 4 + 1
- 3+2
- 3 + 1 + 1
- \bullet 2 + 2 + 1
- \bullet 2 + 1 + 1 + 1
- \bullet 1 + 1 + 1 + 1 + 1

Contamos 7 partições, portanto, p(5) = 7. Por convenção, define-se p(0) = 1, representando a "partição vazia" do zero.

A aparente simplicidade da sequência de valores de p(n) (p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, ...) rapidamente se desfaz. O crescimento da função é superpolinomial e seu comportamento não é capturado por uma fórmula fechada simples. Por exemplo, p(10) = 42, enquanto p(100) = 190.569.292. Essa explosão combinatória torna a enumeração direta um método impraticável para valores moderados de n.

Este trabalho se propõe a traçar a jornada histórica e conceitual para desvendar os mistérios de p(n). Nossa investigação seguirá os passos dos grandes matemáticos que abordaram o problema, revelando uma tapeçaria de conexões inesperadas entre diferentes áreas da matemática.

2 Visualizando Partições: Diagramas de Ferrers

Antes de mergulharmos nas ferramentas analíticas, é útil ter uma representação visual para as partições. Os diagramas de Ferrers (ou gráficos de Ferrers) oferecem essa intuição.

Definição 2.1 (Diagrama de Ferrers). Um diagrama de Ferrers representa uma partição de *n* como um padrão de *n* pontos (ou quadrados) organizados em linhas, onde o comprimento de cada linha corresponde a uma parte da partição. As linhas são alinhadas à esquerda e dispostas em ordem não crescente de comprimento.

Exemplo 2.2. A partição 10 = 4 + 3 + 3 + 1 é representada pelo seguinte diagrama:

• • • •

Essa representação visual é surpreendentemente poderosa. Uma operação simples no diagrama, a **conjugação**, nos dá um teorema combinatório gratuitamente. A conjugação de um diagrama consiste em transpor suas linhas e colunas.

Definição 2.3 (Partição Conjugada). A partição conjugada de uma partição λ , denotada por λ' , é a partição correspondente ao diagrama de Ferrers conjugado de λ .

Exemplo 2.4. Tomando o diagrama anterior para 10 = 4 + 3 + 3 + 1, sua conjugação (ler as colunas) nos dá um novo diagrama:

O novo diagrama corresponde à partição 10 = 4 + 3 + 2 + 1.

A operação de conjugação cria uma bijeção entre dois tipos de partições aparentemente diferentes, o que nos leva ao seguinte teorema.

Teorema 2.5. O número de partições de n em no máximo k partes é igual ao número de partições de n onde nenhuma parte é maior que k.

Proof. Seja λ uma partição de n em no máximo k partes. Seu diagrama de Ferrers terá no máximo k linhas. A partição conjugada, λ' , terá sua maior parte igual ao número de linhas de λ , que é no máximo k. Portanto, a maior parte de λ' é no máximo k. O mapeamento é uma involução, provando a bijeção.

3 A Ferramenta Revolucionária: A Função Geradora de Euler

O primeiro grande salto conceitual no estudo de p(n) foi dado por Leonhard Euler no século XVIII. Ele introduziu a ideia de encapsular toda a sequência infinita $p(0), p(1), p(2), \ldots$ nos coeficientes de uma única série de potências, uma **função geradora**.

Teorema 3.1 (Função Geradora para p(n)). A função geradora para a sequência de partições p(n) é dada pelo produto infinito:

$$P(x) = \sum_{n=0}^{\infty} p(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1 - x^k}$$
 (1)

Derivação da Identidade. A prova dessa identidade é um dos argumentos mais elegantes da combinatória. Começamos expandindo cada fator do produto como uma série geométrica:

$$\frac{1}{1-x^k} = 1 + x^k + x^{2k} + x^{3k} + \dots$$

Este polinômio infinito representa as escolhas para a parte k: podemos não usá-la (termo $1 = x^{0k}$), usá-la uma vez (termo x^k), duas vezes (termo x^{2k}), e assim por diante.

O produto completo é, portanto:

$$P(x) = (1 + x^{1} + x^{2} + \dots)(1 + x^{2} + x^{4} + \dots)(1 + x^{3} + x^{6} + \dots) \cdots$$

Para encontrar o coeficiente de x^n na expansão deste produto, devemos escolher um termo de cada fator, digamos $x^{m_1\cdot 1}$ do primeiro, $x^{m_2\cdot 2}$ do segundo, e assim por diante, de tal forma que o produto deles seja x^n . Isso requer que a soma dos expoentes seja n:

$$x^{m_1 \cdot 1} x^{m_2 \cdot 2} x^{m_3 \cdot 3} \cdots = x^n \implies m_1 \cdot 1 + m_2 \cdot 2 + m_3 \cdot 3 + \cdots = n$$

Esta última equação é precisamente a definição de uma partição de n, onde m_k é o número de vezes que a parte k aparece na soma. Cada conjunto de soluções $\{m_k\}_{k\geq 1}$ em inteiros não-negativos corresponde a uma única partição de n. Portanto, o coeficiente de x^n na expansão de P(x) é exatamente o número de tais soluções, que é p(n).

Essa identidade é um marco, pois transforma um problema de contagem discreta em um problema da análise, relacionado à manipulação de séries de potências.

4 Partições com Restrições

A beleza da abordagem de função geradora é sua flexibilidade. Ao modificar o produto de Euler, podemos encontrar funções geradoras para partições com várias restrições.

Exemplo 4.1 (Partes Ímpares). Qual é o número de partições de n em partes que são todas ímpares? Para construir a função geradora, simplesmente removemos do produto os fatores correspondentes às partes pares:

$$P_{\text{impar}}(x) = \prod_{k=1}^{\infty} \frac{1}{1 - x^{2k-1}} = \frac{1}{(1 - x)(1 - x^3)(1 - x^5)\cdots}$$

Exemplo 4.2 (Partes Distintas). Qual é o número de partições de n em partes distintas? Para cada inteiro k, só temos duas escolhas: não usar k como parte (termo 1) ou usá-lo exatamente uma vez (termo x^k). A função geradora é:

$$P_{\text{distintas}}(x) = \prod_{k=1}^{\infty} (1+x^k)$$

Euler provou uma identidade notável que conecta esses dois tipos de partições.

Teorema 4.3 (Euler). O número de partições de n em partes ímpares é igual ao número de partições de n em partes distintas.

Proof. Provamos isso mostrando que suas funções geradoras são idênticas.

$$P_{\text{distintas}}(x) = \prod_{k=1}^{\infty} (1+x^k)$$

$$= \prod_{k=1}^{\infty} \frac{(1-x^{2k})}{(1-x^k)}$$

$$= \frac{(1-x^2)(1-x^4)(1-x^6)\cdots}{(1-x)(1-x^2)(1-x^3)(1-x^4)\cdots}$$

$$= \frac{1}{(1-x)(1-x^3)(1-x^5)\cdots}$$

$$= P_{\text{impar}}(x)$$

Como as funções geradoras são iguais, os coeficientes de x^n em suas expansões também devem ser iguais para todo n.

5 O Teorema dos Números Pentagonais e a Recorrência de Euler

Euler não parou na função geradora de p(n). Ele também investigou seu inverso, $\frac{1}{P(x)}$, e descobriu uma das identidades mais belas da matemática.

Teorema 5.1 (Teorema dos Números Pentagonais de Euler). O inverso da função geradora de partições é dado pela série:

$$\frac{1}{P(x)} = \prod_{k=1}^{\infty} (1 - x^k) = \sum_{j=-\infty}^{\infty} (-1)^j x^{g_j}$$
 (2)

onde $g_j = \frac{j(3j-1)}{2}$ são os números pentagonais generalizados.

Os primeiros números pentagonais generalizados são para $j=0,1,-1,2,-2,\ldots$

$$g_0 = 0$$
, $g_1 = 1$, $g_{-1} = 2$, $g_2 = 5$, $g_{-2} = 7$, $g_3 = 12$, ...

A identidade de Euler afirma que o produto infinito se expande para uma série com pouquíssimos termos não-nulos:

$$\prod_{k=1}^{\infty} (1 - x^k) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + \cdots$$

A prova combinatória original de Franklin para esta identidade é um tour de force, mas aqui focaremos em sua consequência mais importante: uma fórmula de recorrência para p(n).

Da identidade $P(x) \cdot \left(\prod_{k=1}^{\infty} (1 - x^k)\right) = 1$, temos:

$$\left(\sum_{n=0}^{\infty} p(n)x^n\right)\left(\sum_{j=-\infty}^{\infty} (-1)^j x^{g_j}\right) = 1$$

O lado direito é $1 + 0x + 0x^2 + \dots$ Para n > 0, o coeficiente de x^n no produto do lado esquerdo deve ser zero. O coeficiente de x^n é obtido somando os produtos $p(n-k)c_k$, onde c_k é o coeficiente de x^k na série pentagonal. Isso nos dá:

$$p(n) \cdot 1 + p(n-1) \cdot (-1) + p(n-2) \cdot (-1) + p(n-5) \cdot 1 + p(n-7) \cdot 1 + \dots = 0$$

Isolando p(n), obtemos a célebre recorrência de Euler.

Proposição 5.2 (Recorrência de Euler para p(n)). Para $n \ge 1$,

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \cdots$$
$$= \sum_{i \in \mathbb{Z}, i \neq 0} (-1)^{j-1} p(n-g_j)$$

A soma é finita, pois consideramos p(k) = 0 para k < 0.

Esta fórmula é extremamente eficiente. Para calcular p(n), precisamos apenas dos valores anteriores de p, tornando o cálculo de p(100) ou mesmo p(1000) uma tarefa computacionalmente viável.

6 A Análise Assintótica de Hardy e Ramanujan

A recorrência de Euler é exata, mas não nos dá uma sensação intuitiva sobre a magnitude de p(n). Qual é a sua taxa de crescimento? A resposta a esta pergunta teve que esperar

até o século XX e exigiu uma mudança de paradigma: da análise real e combinatória para a análise complexa.

Em um trabalho monumental de 1918, G.H. Hardy e Srinivasa Ramanujan desenvolveram o **método do círculo** para encontrar uma fórmula assintótica para p(n). A ideia central é tratar a função geradora P(x) como uma função de uma variável complexa z e usar o Teorema dos Resíduos de Cauchy para extrair seus coeficientes. A fórmula integral de Cauchy para os coeficientes de uma série de Laurent nos diz que:

$$p(n) = \frac{1}{2\pi i} \oint_C \frac{P(z)}{z^{n+1}} dz$$

onde C é um contorno simples em torno da origem.

A função P(z) tem uma singularidade em cada raiz da unidade na fronteira do disco unitário |z|=1. O método do círculo consiste em escolher um contorno C que passa muito perto dessas singularidades. A intuição é que a contribuição principal para a integral vem das singularidades "mais fortes", em particular de z=1.

A análise é extremamente intrincada e envolve o estudo do comportamento de P(z) perto das raízes da unidade, utilizando a teoria das formas modulares (especificamente, a transformação da função eta de Dedekind, que está intimamente relacionada a P(z)). O resultado final, no entanto, é uma fórmula de beleza e precisão surpreendentes.

Teorema 6.1 (Fórmula Assintótica de Hardy-Ramanujan). Para valores grandes de n, a função de partição p(n) é assintoticamente equivalente a:

$$p(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}} \tag{3}$$

Esta fórmula revela que o crescimento de p(n) é dominado por um termo exponencial em \sqrt{n} . Vamos analisar sua precisão.

Exemplo 6.2 (Precisão da Fórmula). Para n=100, o valor exato é p(100)=190.569.292. A fórmula assintótica nos dá:

$$p(100) \sim \frac{1}{400\sqrt{3}} e^{\pi\sqrt{\frac{200}{3}}} \approx \frac{1}{692.82} e^{\pi \cdot 8.165} \approx \frac{e^{25.65}}{692.82} \approx \frac{1.37 \times 10^{11}}{692.82} \approx 197.752.156$$

O valor previsto tem um erro relativo de apenas cerca de 3.7%. Para n=1000, o erro relativo cai para cerca de 1%.

O trabalho de Hardy e Ramanujan foi posteriormente generalizado por Hans Rademacher, que encontrou uma série convergente exata para p(n), da qual a fórmula de Hardy-Ramanujan é o primeiro e dominante termo.

7 Conclusão e Legado

A jornada para entender a função de partição p(n) é uma história emblemática do progresso matemático. O que começa com uma simples questão de contagem nos leva a uma viagem através de:

- 1. Combinatória Visual: A elegância dos diagramas de Ferrers e as provas bijetivas que eles permitem.
- 2. **Álgebra Formal:** A genialidade de Euler ao introduzir as funções geradoras, transformando o problema em manipulação de séries.
- 3. **Identidades Notáveis:** A descoberta do Teorema dos Números Pentagonais, que forneceu uma ferramenta computacional inesperadamente eficiente.
- 4. Análise Complexa: O poder do método do círculo de Hardy e Ramanujan para extrair o comportamento assintótico de uma sequência a partir das singularidades de sua função geradora.

Essa progressão demonstra como a matemática avança, construindo novas camadas de abstração e conectando campos que pareciam distantes. A teoria das partições hoje continua a ser uma área de pesquisa ativa, com conexões com a física estatística (modelos de gases de Bóson), representações de grupos de Lie e ciência da computação.

O estudo de p(n) nos ensina que, por trás de uma pergunta simples, pode haver um universo de estrutura matemática esperando para ser descoberto, um universo que unifica o discreto e o contínuo, a álgebra e a análise, de maneiras profundas e belas.

References

- [1] Andrews, G. E. (1976). The Theory of Partitions. Addison-Wesley.
- [2] Apostol, T. M. (1976). Introduction to Analytic Number Theory. Springer.
- [3] Hardy, G. H., & Wright, E. M. (2008). An Introduction to the Theory of Numbers (6th ed.). Oxford University Press.
- [4] Hardy, G. H., & Ramanujan, S. (1918). Asymptotic Formulæ in Combinatory Analysis. *Proceedings of the London Mathematical Society*, s2-17(1), 75–115.