TSP: Tutorial 1 Mark Ormesher

TSP: Tutorial 1

Question 1

The equation $3n^2+5n$ is dominated by the n^2 component. For any input, the dominant component of the output will be bounded below by $\Omega(n^2)$ and above by $O(n^2)$, therefore $3n^2+5n=\Theta(n^2)$.

Question 2

- ababab
 - Prefixes: a, ab, aba, abab, ababa, ababab
 - Suffixes: b, ab, bab, abab, babab, ababab
 - Roots: ab, ababab
 - Primitive: no, because $ababab = ab^3$
- aaaaaa
 - Prefixes: a, aa, aaa, aaaa, aaaaa, aaaaaa
 - Suffixes: a, aa, aaa, aaaa, aaaaa, aaaaaa
 - Roots: a, aa, aaa, aaaaaa
 - Primitive: no, because aaaaaa = a^6
- abcacb
 - Prefixes: a, ab, abc, abca, abcac, abcacb
 - Suffixes: b, cb, acb, cacb, bcacb, abcacb
 - Roots: abcacb
 - Primitive: yes, because abcacb = abcacb¹

Question 3

If the two strings x and y can be decomposed such that x = uv and y = vu, then z can be selected such that z = u. This gives xz = uvu = zy. For example:

- x = goldfish
- y = fishgold
- u = gold
- v = fish
- z = u = gold
- xz = uvu = zy = goldfishgold

TSP: Tutorial 1 Mark Ormesher

Question 4

Proof by contradiction.

Assume that the primitve word w has a third occurrence in ww. Therefore two non-empty words u and v exist such that ww = uwv. It immediately follows that:

- u is a prefix of w^1
- v is a suffix of w^2
- $|ww| = |u| + |w| + |v|^3$
- $|w| = |u| + |v|^4$
- $w = uv^{5}$

It can now be stated that ww = uwv = uvuv = uuvv. ⁶

By taking a factor of length |w| (or length |uv|) starting from position $|u|^{7}$, it can also be stated that uv = vu. ⁸

By the periodicity lemma, it is known that u and v are both gcd(|u|,|v|)-periodic. Since one of u and v is a prefix of the other, it follows that they must both be powers of the same word.

Since w = uv then w is also a power of that word, but because |w| > |u| and |w| > |v| this makes w non-primitive, thereby violating the assumption.

¹Because u appears at the start of ww.

²Because v appears at the end of ww.

³Because of the assumption ww = uwv.

⁴By removing |w| from both sides of |ww| = |u| + |w| + |v|.

⁵Because the lengths match, u is a prefix of w and v is a suffix of w.

 $^{^6}ww = uwv$ is the assumption; ww = uvuv and uwv = uuvv both follow from w = uv.

⁷i.e. taking a w-length chunk from ww after skipping the first occurrence of w.

⁸By taking |uv| characters afer skipping the first u in uvuv and uuvv.