Generalidades del Álgebra

Conceptos, expresiones y operaciones

Matemáticas

Grado 8

2022

MAT G8 Gen. del Álgebra 2022

Contenidos

- Introducción
- Objetivos y Metas
- La cantidad algebraica
- Términos algebraicos
- Términos semejantes
- 6 Reducción de términos semejantes
- Aplicación RTS: adición de complejos
- Valor numérico
- Valor numérico
- Actividades
 - Actividad 15
 - Actividad 16
 - Actividad 18
 - Actividad 19
 - Actividad 21
 - Actividad 22a
 - Actividad 22b
 - Actividad 24

Introducción

Reconocimiento de patrones y variables en algunas situaciones

Situación o	Descripción	Descripción
Ejemplo	antigua	contemporánea
Tercera ley de Kepler	Los periodos de los planetas	$T=a^{3/2}$
	están en una proporción ses-	
	quiáltera con sus distancias al	
	Sol (1619).	
Indice de Quetelet o de masa	Las características saludables	$IMC = \frac{m}{h^2}$
corporal	del humano ideal deben tener	
	en cuenta el peso corporal y	
	la estatura (1835).	

3/32

MAT G8 Sen, del Algebra 2022

Introducción

Reconocimiento de patrones y variables en algunas situaciones

Situación o	Descripción	Descripción
Ejemplo	antigua	contemporánea
Equivalencia entre masa y energía	La energía de un cuerpo en reposo se puede calcular como la masa multiplicada por la velocidad de la luz al cuadrado (1905).	$E = mc^2$
Nota área matemáticas	La nota del área es el 80 % de matemáticas sumado con el 20 % de geometría (semanas atrás).	N=0.8M+0.2G

Introducción

Una connotación del Álgebra

• Proceso de pensamiento lógico:

Observación \rightarrow Patrones y variables \rightarrow Formulación

- La lógica, el reconocimiento de patrones, el razonamiento inductivo y deductivo son algunas de las capacidades mentales que requiere, fomenta y desarrolla una nueva rama de las matemáticas: el Algebra.
- Desde su origen, ha tenido y seguirá teniendo un notable impacto en el desarrollo de la humanidad.

Figura: El término álgebra surgió de la palabra árabe al-jabr, como abreviación del nombre del libro al-Kitab al-mukhtasar fi hisab al-jabr al-muqabala (Manual de cálculo de restauración y balanceo) escrito por Al-Juarismi en el s. IX.

MAT G8

Objetivos y Metas

Lo que pretende el tema

Objetivos

- Reconocer las expresiones algebraicas como la manera de representar fenómenos donde intervienen algunas regularidades.
- Generalizar los fenómenos usando expresiones algebraicas, así como la relación entre sus variables.
- Identificar y clasificar expresiones algebraicas, así como aplicar sus algoritmos para operarlas.

Desempeños

- Reconoce y construye la utilidad de las expresiones algebraicas para modelar fenómenos o situaciones.
- Identifica y clasifica expresiones algebraicas asi como la relación de variación entre sus elementos.
- Aplica correctamente los algoritmos elementales para operar expresiones algebraicas.

MAT G8 Gen. del Algebra 2022 6/

Conceptos elementales

Figura: Una de las páginas de la obra de Al Juarismi

- El álgebra es una rama de la matemáticas dedicada al estudio de objetos abstractos.
- Tales objetos están formados con patrones fijos y variables (des)conocidos, y dentro de cada objeto suele haber números, letras y operaciones concretas.
- Con estas estructuras se pueden realizar operaciones: suma, ... Lo anterior, es el concepto de **cantidad algebraica**. Ejemplo. La capacidad de cualquier cilindro depende del radio y la altura.

- Fórmula (cantidad algebraica): $\pi r^2 h$
- Patrón fijo (número): π
- Patrones variables: h (altura), r (radio)
- Operación: producto

Partes

En una cantidad algebraica (simple) se combinan letras y números entendidas como un producto (o división) [Baldor, 1980]. Se identifican las siguientes partes:

Signo: la cantidad puede ser positiva o negativa. Si no aparece, se asume positiva.

Coeficiente: el número que acompaña a la(s) variable(s).

Parte literal/Variable: las letras o símbolos de la cantidad.

Grado: el exponente a la que está elevada cada letra/variable. Si no aparece ningún exponente se entiende que es 1.

Nota. Si la cantidad algebraica aparece sin coeficiente, éste es 1.

Ejemplo 1

Identificar las partes en la cantidad algebraica $-\frac{1}{27}Mv^3$.

Solución. Signo: (-); coeficiente: $-\frac{1}{27}$; letras: M, v; grados: 1 de M, 3 de v.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 妻|= 夕久◇ _{8/32}

Ejemplos

Ejemplo 2

La capacidad de una piramide de base cuadrada consta del producto de la tercera parte del cuadrado del lado y el producto de la altura. Escribir la cantidad algebraica y encontrar sus partes.

Solución. La cantidad algebraica y sus partes son:

$$\frac{1}{3}\ell^2h$$

Signo: (+); coeficiente: $\frac{1}{3}$; letras: ℓ , h; grados: 2 de ℓ , 1 de h.

Ejemplos

Ejemplo 3

En química, una expresión para hallar la variable n, consta de la división del producto de las variables P y V, entre el producto de las variables R y T. Escribir la cantidad algebraica y encontrar sus partes.

Solución. La cantidad algebraica y sus partes son:

$$n = (P \times V) \div (R \times T)$$
 o también, $n = \frac{PV}{RT}$

Del lado derecho del igual, signo: (+); coeficiente: 1; letras: P, V, R, T; grados: 1 en todas las letras.

Más ejemplos. . .

Escribir la cantidad algebraica y encontrar sus partes del producto de la dos terceras partes de la raíz cúbica de un número.

Clases de grado

En una cantidad algebraica se distinguen dos clases de grado [Baldor, 1980]:

Absoluto

Es la suma de los exponentes de las partes literales.

Relativo a una letra

Es el exponente de dicha letra.

Ejemplo 4

Analizar los grados en la cantidad algebraica $-\frac{1}{27}Mv^3$.

Solución. Grados relativos: M es 1, v es 3. Grado absoluto: es 4, pues 1+3=4, **Nota.** Dos o más cantidades son *homogéneas* si tienen el mismo grado absoluto. P. ej., $-\frac{1}{27}Mv^3$ y $-\frac{1}{27}M^3v$ son cantidades homogéneas.

MAT G8

Expresiones algebraicas

El concepto

Es la unión de dos o más cantidades algebraicas mediante adición o sustracción. Así, ejemplos de expresiones algebraicas son:

$$0.8M + 0.2G$$
, $-a + b - c$, $\frac{3a^2x - 2b^4y}{5}$, $1 + 2k + 3k^2 + 4k^3$

- Cada cantidad se denomina término.
- La(s) letra(s) representa una variable según el contexto.

Las expresiones algebraicas se clasifican por [Suárez et al., 2006]:

- La cantidad de términos.
- El grado mayor de uno de los términos.

Ejemplo 1

En medicina, la presión arterial media se obtiene como la suma del doble de la presión diastólica más la presión sistólica, dividida en 3. Analizar la expresión.

Solución. $\frac{2D+S}{3}$, 2 términos, 2 variables.

Expresiones algebraicas

Clasificación

Por cantidad de términos

Monomio. Un sólo término.

Binomio. Dos términos.

Trinomio. Tres términos.

Polinomio. Dos o más términos.

Por el grado mayor

Absoluto. El grado de su término de mayor grado.

Relativo a una letra. El mayor exponente de dicha letra.

Ejemplo 2

Analizar la expresión para describir el movimiento de un objeto colgado de un caucho elástico,

$$\frac{1}{2}mv^2 + \frac{1}{2}kz^2 - mgz$$

Solución. Trinomio; variables: m, v, k, z y g; grado absoluto: 3; grado relativo a z: 2; grado relativo a m: 1. Coeficientes en su orden: $\frac{1}{2}$, $\frac{1}{2}$ y -1.

Términos semejantes

Su definición

Son términos algebraicos que tienen las mismas partes literales y mismos grados, siendo su coeficiente diferente [Guanajuato, 2021, p. 32]. Algunos ejemplos a continuación,

Son términos semejantes

1)
$$3x^2$$
, $-2x^2$, $-7.89x^2$, $-\pi x^2$

2)
$$\frac{1}{2}r^3t$$
, $\sqrt{35}r^3t$

3)
$$\frac{3GM}{r^3}$$
, 0.000589 $\frac{GM}{r^3}$

No son términos semejantes

1)
$$3x^2yz$$
, $-4xy^2z$, $1.6123xyz^2$

2)
$$4\pi g^3 f^2$$
, $-34af^2$

Esta distinción se suele realizar individualmente, aunque también se puede realizar en expresiones compuestas. Por ejemplo, en la siguiente expresión hay términos semejantes:

$$7a^3t^3 + 8.6bt^3 - \frac{23}{5}a^3t^3 + 32a^2t^3 + a^3t^3 - 67bt^3$$

MAT G8 Gan. del Álasbra 2022 14

Concepto

Es el proceso que consta en sumar o restar los coeficientes numéricos de términos semejantes en una o varias expresiones algebraicas, **sin** alterar la parte literal [Baldor, 1980, p. 19].

Es de aclarar que la suma/resta de coeficientes es con números reales.

Método

- Ver y clasificar términos semejantes.
- Extraer coeficientes.
- Resolver operaciones numéricas.

- En el lenguaje algebraico, "Reducir" es entendido como dejar la menor cantidad de términos.
- Requiere dominio operaciones suma/resta con números reales.

Ejemplos con un solo término semejante

Reducir cada situación [Guanajuato, 2021, p. 32].

•
$$4x - 9x = (4 - 9)x = -5x$$

•
$$-3mn + 7nm - 2mn = (-3 + 7 - 2)mn = 2mn$$

•
$$\frac{1}{2}a^2b^3 - \frac{2}{3}a^2b^3 + \frac{5}{6}a^2b^3 = \left(\frac{1}{2} - \frac{2}{3} + \frac{5}{6}\right)a^2b^3$$

= $\left(\frac{3-4+5}{6}\right)a^2b^3 = \frac{4}{6}a^2b^3 = \frac{2}{3}a^2b^3$

•
$$0.85m_ec^2 - 3m_ec^2 + 0.9m_ec^2 = (0.85 - 3 + 0.9)m_ec^2 = -1.25m_ec^2$$

MAT G8

Ejemplos

Ejemplo con diversos término semejantes

Reducir la expresión.

$$8a^2b - 13ab^2 + 5b^3 - 13a^2b - 23b^3 + 14ab^2$$

$$8a^2b - 13ab^2 + 5b^3 - 13a^2b - 23b^3 + 14ab^2$$

$$8a^2b - 13a^2b = -5a^2b$$

$$-13ab^2 + 14ab^2 = ab^2$$

$$+5b^3 - 23b^3 = -18b^3$$

Respuesta:
$$-5a^2b + ab^2 - 18b^3$$

를 ▶ 를|= ♥Q← _{17/3}

MAT G8

Aplicación RTS: adición de complejos

Los números complejos

Una aplicación de la Reducción de Términos Semejantes (RTS) se presenta en la suma/resta de números complejos.

Los números complejos

- Son una extensión mayor de los números reales, es decir los **reales** están contenidos dentro de los **complejos**.
- Cualquier número complejo se representa como la suma de dos partes:

- a, b son cantidades reales y i es la denominada **unidad imaginaria** que equivale a $\sqrt{-1}$.
- Usualmente se representan por una letra. V. gr., w = 8 3i.
- Son de (gran) utilidad en matemáticas aplicadas, aerodinámica, electromagnetismo y en ingeniería electrónica.

[Wikipedia, 2022].

Aplicación RTS: adición de complejos

Suma/Resta de números complejos

• La suma/resta de complejos es simple: sumar/restar separadamente las partes reales y las partes imaginarias.

Ejemplo 1

Sean $z_1=3+i$ y $z_2=7-2i$. Resolver la i) suma z_1+z_2 , la ii) resta z_1-z_2 y la iii) resta z_2-z_2 .

Solución:

$$z_1 + z_2 = (3+i) + (7-2i) = (3+7) + (1-2)i = 10-i$$

Figura: El flujo de aire alrededor de un ala se puede analizar con números complejos.

MAT G8 Gen, del Algebra 2022

◆ロト ◆園 → ◆豆 → ▼目 → 「見」 り へ ○ ○

Valor numérico de una expresión algebraica

De variables a cantidades

Valor numérico

Es aquella cantidad numérica que se obtiene al reemplazar las variables (letras) por un número determinado y luego, realizar las operaciones indicadas [Guanajuato, 2021, p. 33].

De otro modo, es el uso de una fórmula para un propósito o cálculo específico.

Ejemplo 1. Valor numérico en monomios

Hallar el valor numérico en la expresión $4x^2y$ cuando a) x=2, y=-3; b) $x=-\frac{1}{3}$, y=5.

Solución.
$$4x^2y = 4(2)^2(-3) = 4 \cdot 4 \cdot (-3) = -48$$

Solución.
$$4x^2y = 4(-\frac{1}{3})^2(5) = 4 \cdot \frac{1}{9} \cdot 5 = \frac{20}{81}$$

Usado en fórmulas de geometría, física, gráficas de polinomios entre otras.

Valor numérico de una expresión algebraica

De variables a cantidades

Para obtener el valor numérico en polinomios, se procede como sigue:

- Reemplazar los valores de cada variable.
- Mallar el valor numérico en cada monomio (prioridad del producto).
- Sumar/restar los monomios aritméticos; centrar la atención en cantidades negativas.

Ejemplo 2. Valor numérico en polinomios

Hallar el valor numérico en la expresión $h^2-5hk+3k^2$ para a) $h=-1,\ k=3;\ b)$ $h=\frac{3}{2},\ k=\frac{1}{2}.$

- Solución. $h^2 5hk + 3k^2 = (-1)^2 5(-1)(3) + 3(3)^2 = 1 (-15) + 27 = 43$
- Solución.

$$h^{2} - 5hk + 3k^{2} = \left(\frac{3}{2}\right)^{2} - 5\left(\frac{3}{2}\right)\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)^{2}$$
$$= \frac{9}{4} - \frac{15}{4} + \frac{3}{4} = -\frac{3}{4}$$

Pre-concepto de expresión algebraica

Ver actividad "Taller: pre-concepto de expresión algebraica". Disponible en página web https://github.com/mikemolina/repoedu/raw/ghpages/share/repo/8/2022/act15-ExpAlg-t1.pdf

MAT G8 Gen. del Algebra 2022 22 /

La cantidad algebraica

- En cada una de las siguientes expresiones, encontrar cada una de las partes de la cantidad algebraica.
 - a) $5b^3$

b) $-\frac{2}{3}m^2n^4$

c) $-\frac{x^2y}{4n^3}$

d) $\frac{2\pi^5}{15} \frac{k^4}{h^3 c^2}$

e) $-0.673z^3\sqrt{u}$

- f) $ML^{3}\frac{\sqrt{2}}{3}$
- ② La capacidad de una esfera es el producto de los cuatro tercios de π con el producto del radio elevado al cubo. Escribir la cantidad algebraica y encontrar sus partes.
- En física se denomina ley inversa al cuadrado a la cantidad correspondiente a la división del producto de dos variables entre otra variable elevada al cuadrado. Escribir la cantidad algebraica y encontrar sus partes.
- Escribir una cantidad algebraica con un coeficiente real y cuatro factores, tres de ellos multiplicando y uno dividiendo; uno de ellos debe tener un grado 4 y otro grado 7 (Nota: no se aceptan cantidades iguales).

MAT G8 Gen. del Álgebra

Expresiones algebraicas

- Analizar y clasificar cada expresión algebraica (clase, letras, grado absoluto, grado relativo a todas las letras y coeficientes).
 - a) $-\frac{x}{3}$

b) $3m^2 - h$

- c) $z^2 z + 1$
- d) $6s^3 4s^2t + 3st^2$ e) $-9x^3y^2 + 4.78x^2y^4$ f) $\frac{3d^2 5fd^7}{-5}$
- Del punto 1, indique cuáles expresiones son homogéneas.
- Escribir un trinomio de grado absoluto 3, letras a y b, y uno de sus términos negativo con coeficientes reales.
- Escribir un polinomio de cuatro términos de grado relativo 8 respecto a la letra m y coeficientes reales.
- La ordenación algebraica se refiere al proceso de escribir los términos de modo que los exponentes de una letra escogida queden en orden ascendente o descendente. Escribir en orden ascendente el siguiente polinomio:

$$y^{12} + 2y^4 - 6y + 3y^2 + 12y^3 - 9y^9$$

MAT G8

Términos semejantes

Organizar (o colorear) los términos que sean semejantes en la siguiente tabla.

$-43.2cd^{2}$	$-7m^3nw^2$	$9p^{\times}q^2$
$\frac{5}{9}p^{x}q^{2}$	$1.5p^{\times}q^2$	$\frac{Qq}{d^2}$
$8m^3nw^2$	$-14m^3wn^2$	$19.3m^3nw^2$
$5m^3wn^2$	$-17\frac{Qq}{d^2}$	$\frac{11}{3}$ cd ²
$-7\frac{Qq}{d^2}$	$-\frac{1}{4}cd^2$	$10m^3wn^2$

② Caracterizar cada cantidad de la tabla anterior: coeficientes, grado absoluto y descripción de la parte literal de cada conjunto de términos semejantes de la tabla anterior. V. g., en el conjunto $\{7u^2v, -2.5u^2v, \pi u^2v\}$ se tiene

Parte literal	Coeficientes	G. Absoluto	Descripción	
u^2v	7, -2.5, π	3	Cuadrado de una	
			variable multiplicada	
			por otra variable	

MAT G8 Gen. del Álgebra 2022

Reducción de términos semejantes

- Reducir los términos semejantes de una sola parte literal.
 - 2a − 3a
 - $5b^2 8b^2 + b^2 7b^2 + 21b^2$

 - 0 x + 1.9x 4.8x
- Reducir los términos semejantes de una parte literal mixta.
 - 0 8z + 3xy 13z
 - $0 \quad 3u 7w + 5u + 4w$
 - $3.9z + 2.8zy^2 5z + 0.5zy^2 1.5xy^2$

Más ejercicios de práctica en:

- https://es.liveworksheets.com/ev3031795ep
- https://es.liveworksheets.com/hz1237706og

Actividad 22a

Aplicación RTS: adición de complejos

Usando la RTS y los siguientes números complejos:

$$u = -8 - 15i$$

$$v=10-2i$$

$$z = \frac{1}{3} - \frac{2}{9}i$$

•
$$u = -8 - 15i$$
 • $v = 10 - 2i$ • $z = \frac{1}{3} - \frac{2}{9}i$ • $w = \frac{7}{3} + \frac{12}{7}i$

Resolver:

- $\mathbf{0} \quad \mathbf{u} + \mathbf{v}$
- u-v; encontrar la parte real del resultado.
- \bigcirc u-z+v
- **3** ¿Que número complejo hay que restar a v + w para que el resultado sea cero?
- ② ¿Que número complejo hay que sumar a v-u para que el resultado sea tres veces v - u?

Actividad 22b

Refuerzo Reducción Términos Semejantes

- En cada expresión reducir los términos semejantes.
 - 3a 8b + 5a 4c + 2a 11b 2c

 - $0.8t^2p 2.94t 5.8t^2p + 3.5t + 12.3t^2p$
- Teniendo en cuenta que el perímetro de una figura es la suma de de la medida de sus lados, usar la RTS para hallar el perímetro en cada figura.

Valor numérico

- Hallar el valor numérico de cada expresión.
 - **1** abc con a = 123, $b = \frac{2}{7}$, c = 6.5. Redondear a dos decimales.
 - $x^2 + 4x + 12$ con x = 2.54. Truncar a dos decimales.
- ② El área superficial de una esfera se obtiene como el producto de 4π por el radio cuadrado. Escribir la formúla del área y hallar el área para una esfera de radio de 15 cm. Usar π con dos decimales y redondear el resultado a misma cantidad.
- **③** El volumen de un ortoedro se obtiene con la fórmula V = abc y su superficie por S = 2ab + 2ac + 2bc, con a largo, b profundo y c el alto. Encontrar V y S donde el largo es de 8.5 metros, el profundo $\frac{4}{5}$ del largo y el alto $\frac{2}{3}$ del largo.

Referencias I

Baldor, A. (1980).

Álgebra.

Ediciones y Distribuciones CODICE S.A., Madrid, España.

Guanajuato, U. (2021).

Unidad 1: Operaciones con números reales, complejos y expresiones algebraicas.

https://nodo.ugto.mx/wp-content/uploads/2017/03/ Unidad-1-Operacion-con-Numeros-Reales-Complejos-y-Expresiones-Apdf.

Curso Matemáticas (Homologación). Consultado Jul 2022.

Suárez, A., Beltrán, L., and Rodríguez, B. (2006).

Matemáticas 8.

Fondo Educativo Panamericano, Bogotá D.C., Colombia.

Referencias II

Wikipedia (2022).

Número complejo.

https://es.wikipedia.org/wiki/N%C3%BAmero_complejo.

Consultado Agosto 2022.

Apéndice 1

Apéndice 1.1

MAT G8 Gen. del Álgebra 2022 32 / 32