Departamento de Física da Faculdade de Ciências da Universidade de Lisboa

Física Experimental para Engenharia Informática

2019/2020 (1°. Semestre)

Nome:	n°	Turma PL
Nome:	n°	Grupo :
Nome:	n°_	Data:// 2019

Lab #6 - O Condensador e os Circuitos RC e CR

Notas **Muitíssimo** Importantes

LEIA-AS

Notas **Muitíssimo** Importantes

- 1. Registe os valores medidos *respeitando os algarismos significativos* (a.s.) dados pelos aparelhos.
 - a. Nos multímetros escolha sempre a escala que dá mais a.s..
 - b. No osciloscópio escolha as escalas que expandem o sinal ao máximo possível e útil.
- 2. Inclua sempre as unidades de cada valor medido ou calculado.
- 3. Apresente os resultados finais dos cálculos respeitando os a.s. das parcelas.
- 4. Nas leituras na grelha do osciloscópio considere as incertezas $\delta x = \delta y = \pm 0,1 div$ (estimado).
- 5. As duas Pontas de Prova do osciloscópio têm o terminal da tensão de referência ("crocodilo") <u>em comum</u> e estão sempre com 0 volts (*e forçam-na*) proveniente da tomada de alimentação de 230V. Selecione o modo "Acoplamento CC" nas entradas do osciloscópio.
- 6. Quando se pede "justifique..." => fazer a dedução matemática baseada nas leis dos circuitos.

Equipamento necessário:

- 1. Gerador de tensão alterna, com frequência, amplitude e fase reguláveis. Painel Breadboard.
- 2. Osciloscópio digital com pontas de prova.
- 3. Resistência de 12 K Ω .
- 4. Condensador de 10 nF.

Objetivos

- Obter as curvas de carga e descarga do condensador e deduzir daí o valor de τ.
- Verificar a resposta dos circuitos RC e CR.
- Estudar nestes circuitos o comportamento de filtro em frequência.

Experiência 1 – Carga e Descarga do Condensador.

Objetivo: medir a tensão $V_c(t)$ durante a descarga e obter a constante de tempo.

No circuito representado na figura 1 os componentes têm o valor R= 12 k Ω e C= 10nF.

Figura 1. **Circuito RC**. Se o *sinal de entrada* $V_e(t)$ for quadrado e positivo e tiver um período T bem maior do que o "tempo característico" τ do par RC, então a tensão $V_c(t)$ aos terminais do condensador demonstra bem o processo de carga e descarga do mesmo.

1. Meça R e C com o multímetro e registe os valores e incertezas de leitura.

2. Calcule o valor da constante de tempo $\tau = RC \pm \Delta \tau$ (ms) com os valores medidos.

Turma TL II II II Grupo Data//2019
3. O gerador de sinais deve fornecer um sinal quadrado de frequência f = 1 kHz com tensão a variar entre $0 \le Ve \le V_m$ = 7,5 volt. Calcule analiticamente o período T_s deste sinal em milissegundos.
 A equação 1 V_C(t) = V_m e^{-t/τ} descreve a tensão aos terminais do condensador, na sua descarga através de R. Define-se τ como a "constante de tempo" do par RC. Note que ao fim de t = τ (s) o condensador descarrega-se até e⁻¹ = 36,8% do valor inicial V_m. 4. Calcule analiticamente o valor de T_s/τ e mostre que ao fim do tempo t=T_s o condensador está praticamente descarregado, ou seja, (calcule!) V_C(T_s) ≈ 0V.
 5. Monte o circuito representado na figura 1 utilizando os componentes especificados. Para obter o V_e(t) pretendido use a função de "offset" no gerador e selecione as opções "mín" e "máx" para o canal de V_e no osciloscópio. Observe V_e(t) (Ch1) e V_C(t) (Ch2) e use as opções de "Medidas". 6. Regule a base de tempo do osciloscópio para 50 μs/div e a escala vertical do canal Ch2=V_C para 1V/div, de modo a visualizar a curva completa de descarga do condensador no máximo do ecrã, ajustando o trigger e as posições X e Y. Recolha imagens dos sinais observados e junte-as ao relatório. 7. No menu de "Cursores" pressione "Tipo" → "Tempo" para o canal de V_C. Rode o botão de funções que movimenta os cursores e meça os valores (Δt, V_C) de 8 pontos ao longo da curva de descarga do condensador (uma função exponencial negativa), entre V_m e ≈V_m/3. Registe esses valores. 8. Represente os N resultados experimentais de (Δt, ln(V_C)) = (x,y) com Δt em ms, num gráfico linear e ajuste uma linha reta. Registe aqui os valores do declive m e a ordenada na origem b.
9. Linearize a Equação 1 aplicando o logaritmo natural <i>In</i> à igualdade. <u>Identifique</u> os termos assim obtidos com o declive <i>m</i> e a ordenada na origem <i>b</i> da alínea anterior.
10. Determine o valor da constante de tempo τ a partir de m. Compare este resultado com o obtido na alínea 2 e comente. Atenção às unidades e aos a.s
11. Com o valor de τ obtido em 10., calcule o valor da capacidade do condensador. Compare este resultado com o valor medido (com o capacímetro). Atenção às unidades e aos a.s
12. No osciloscópio selecione a função Ch1-Ch2. O que é? Junte a foto e interprete o que se observa.

Turma PL	n°	n°	n°	Grupo :	Data:	_/	_/2019	
Experiência 2 – Resposta em Freguência do circuito RC.								

Objetivo: Características de Vc para frequências altas.

1. Aumente muito a frequência do sinal quadrado até V_C ficar um sinal quase triangular e constante. Diminua o valor da base de tempo para verificar se o sinal fica mesmo triangular. Meça o valor médio de V_C e compare-o com $V_m/2$. Recolha imagens dos sinais observados.

Experiência 3 – Sinais sinusoidais e o filtro "passa baixo" RC.

Objetivo: Estudar a amplitude de "saída" de Vc no circuito RC, em função da frequência.

Quando se usa um sinal sinusoidal em V_e , a amplitude do sinal de saída V_C não é constante com a frequência f. Isto é devido à impedância Z_C do condensador ser dependente de f, além de complexa: $Z_C = -j/\omega C$ (onde $j = \sqrt{-1}$). A relação entre V_C e i_C do condensador também cria um desfasamento com ângulo ϕ entre V_e e V_C , calculado por tan(ϕ)= ω τ , ou seja, é dependente de f.

Vejamos apenas o caso da amplitude. O circuito RC (na fig. 1) mostra que a amplitude A_C (de V_C) é calculada em função da amplitude de entrada A_e , pela fórmula do divisor de tensão:

$$A_{C}(\omega) = \left| \frac{Zc}{R + Zc} \right| A_{e} = \left| \frac{\frac{-j}{\omega C}}{R + \frac{-j}{\omega C}} \right| A_{e} = \frac{\frac{1}{\omega C}}{\sqrt{R^{2} + \frac{1}{(\omega C)^{2}}}} A_{e} = \frac{1}{\sqrt{1 + (\omega RC)^{2}}} A_{e}$$
Equação 2

Procedimento experimental: para estudar a resposta em frequência do circuito é necessário medir a amplitude A_C para várias frequências de $V_e(\omega,t)$. **Nota**: use as entradas do osciloscópio em modo CC.

- **1.** Altere o sinal fornecido pelo gerador para o tipo sinusoidal: $V_e(\omega,t) = A_e$ Sen(ωt), onde A_e = 10 V. Meça e registe o valor pico a pico e determine a amplitude do sinal.
- 2. Mantendo a amplitude A_e constante, <u>meça e registe as amplitudes pico a pico = $2A_C$ </u> (de V_C) para as 11 frequências f: {50, 250, 600} Hz e {1.4, 2.9, 7, 16, 35, 90, 300, 500} kHz.

<u>NOTA</u>: Use o botão "*Medições*" ("*Measures*") do osciloscópio para obter diretamente as amplitudes pico-a-pico de V_e e V_C assim como a frequência do sinal. *Guarde as imagens das medições feitas*.

- 3. Aos valores registados acrescente o ponto teórico (10Hz, A_e). Com os N=12 valores <u>construa um</u> gráfico com *o eixo X em escala logarítmica*, correspondente à série (f, A_C/A_e) = (x,y).
- 4. Usando o valor teórico de A_C/A_e dado pela equação 2, acrescente à folha de cálculo uma coluna com este valor teórico, para cada frequência f medida. Ao gráfico anterior acrescente esta nova série de pontos $(f, (A_C/A_e)_{teórico})$, escolhendo as opções (Excel) de "nenhum marcador" e curva "suavizada" vermelha a uni-los. Junte o gráfico completo ao relatório.
- 5. Comente os resultados obtidos, *baseando-se na Equação* 2. Justifique a designação de "filtro passa baixo" (em frequência) para o circuito RC.

Tui	rma	PL	n°	n°	n°	Grupo :	Data:	_/	_/2019
Ex	oeriê	ncia 4	– O circuit	o CR como fi	Itro "passa a	lto"			
Obj	etivo.	: Estuda	ar a resposta	em frequência	de um circuito	CR.			
Not	a : sele	ecione as	s entradas do	osciloscópio para	a modo AC				
2.	Repit	<u>ta o prod</u> mplitude	cedimento de V _R aos terr	e variar a frequ minais da resist	<u>iência</u> f do gera fência. Faça o	circuito designad ador para obter a gráfico, interprete e fotos do que se o	resposta do o resultado		
NO.	ΤΔ· τ	enare di	le o circuito	CR á um diviso	r de tensão em	que C está em sé	orie com R re	seiet <i>ê</i>	ància
			ligada à mas		de tensão em	que o esta em se	one com rx, re	,31310	noia
		$A_{\scriptscriptstyle F}$	$R(\omega) = \left \frac{R}{R+R} \right $	$\frac{1}{ Z_c }A_e = \left \frac{R}{R + \frac{1}{\omega}}\right $	$\left. \frac{j}{C} \right A_e = \frac{R}{\sqrt{R^2 + \frac{1}{2}}}$	$\frac{1}{\frac{1}{(\omega C)^2}} A_e = \frac{\omega}{\sqrt{1+(\omega C)^2}}$	$\frac{RC}{(\omega RC)^2}A_e$		

Equação 3. Resposta em frequência da amplitude de saída A_R do filtro CR. Note que quando $\omega \to 0 \Rightarrow A_R \to 0$, e quando $\omega \to +\infty \Rightarrow A_R \to A_e$

Entrega obrigatória do relatório na Semana Seguinte