Sterowanie procesami dyskretnymi					
Temat Laboratorium		Zajęcia			
Algo	rytm Carlier	5			
Skład grupy laboratoryjnej					
F_{i}	ilip Dyba, Agata Smoląg				
Prowadzący		Data			
Mgr inż. Teodor	r Niżyński	23 maja 2019			

1 Opis problemu

Problem RPQ polega na uporządkowaniu n zadań wykonywanych na jednej maszynie. Każde zadanie musi być przygotowane przez r_j czasu, później wykonywane nieprzerwanie przez p_j czasu i dostarczone w czasie q_j .

2 Metoda rozwiązania

2.1 Algorytm Carlier

Algorytm Calier został zaimplementowany wykorzystując trzy strategie przeszukiwania grafu.

- Deep left zawsze najpierw wybiera lewą ścieżkę budowanego grafu, schodząc maksymalnie w dół. Kiedy przegląda graf powtórnie wraca tez do potomków węzła leżących na prawo. Wykorzystuje wywołania rekurencyjne funkcji.
- Wide left przegląda graf w poziomach, zawsze zaczynając od lewej strony poziomu. Strategia nie wykorzystuje rekurencji, lecz w pętli bada właściwości kolejnych węzłów grafu opisującego problem. Kolejne tworzone węzły potomne przechowuje w tablicy. Tworzone są zawsze węzły potomne od węzła znajdującego się na początku listy. Po rozpatrzeniu węzła jest on usuwany z listy. Algorytm wykonuje się, dopóki na liście zadań znajduje się jakieś uszeregowanie.
- Greedy strategia nie wykorzystuje rekurencji, lecz przegląda kolejne węzły grafu, zapamiętując węzły potomne na liście. Kolejnym węzłem do rozpatrzenia jest zawsze węzeł o najmniejszej wartości Lower Band. Strategia zatem wymaga zatem sortowania rozpatrywanych kolejności każdorazowo po dodaniu węzłów potomnych jakiegokolwiek węzła. Węzeł rozpatrzony jest usuwany z listy, a algorytm wykonuje się dopóki na liście znajdują się jakieś elementy.

Wykonano pomiary czasu wykonywania algorytmu dla 11 instancji. Wyniki zostały umieszczone w tabeli 1. Pomiary strategii deep left dla 7 i 8 instancji trwały zbyt długo, dlatego wynik nie został zapisany.

	Schrage	Carlier (deep left)		Carlier (wide left)		Carlier (greedy)	
	Cmax	Cmax	t[s]	Cmax	t[s]	Cmax	t[s]
in50.txt	1513	1492	0,00882	1492	0,03477	1492	0,03
in100.txt	3076	3070	0,02047	3070	0,09856	3070	0,09946
in200.txt	6416	6398	0,27361	6398	0,68409	6398	0,66332
data1.txt	3109	3026	0,02954	3026	0,87012	3026	0,88815
data2.txt	3708	3665	230,685	3665	0,09957	3665	0,08621
data3.txt	3353	3309	0,4977	3309	0,12911	3309	0,13046
data4.txt	3235	3191	0,01987	3191	0,01697	3191	0,01396
data5.txt	3625	3618	33,2814	3618	0,15795	3618	0,09212
data6.txt	3446	3446	0,00057	3446	0,0013	3446	0,00132
data7.txt	3862	-	-	3821	0,7901	3821	0,7979
data8.txt	3645	-	-	3634	0,05205	3634	0,03705

Tablica 1: Porównanie wyników dla trzech strategii Carliera i dla Schrage

2.2 Analiza wyników i wnioski

- Carlier jest algorytmem dokładnym. Zwraca lepsze wartości Cmax niż algorytm Schrage.
- Strategia deep left wykonuje się szybciej niż pozostałe strategie (o ile się wykonuje 2 przypadki trwały zbyt długo), często nawet o rząd wielkości szybciej.

 Strategie bez rekurencji wykonują się "stabilniej"- za każdynak dla pewnych danych wykonuje się dość długo (data2.tx wykonania jest nierozsądny. 	m razem trwają podobny czas. Deep left jed- kt oraz data5.txt), a w niektórych wręcz czas