

planetmath.org

Math for the people, by the people.

spherical derivative

Canonical name SphericalDerivative Date of creation 2013-03-22 14:18:36 Last modified on 2013-03-22 14:18:36

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 7

Author jirka (4157) Entry type Definition Classification msc 30D30 Let $G \subset \mathbb{C}$ be a domain.

Definition. Let $f: G \to \mathbb{C}$ be a meromorphic function, then the *spherical derivative* of f, denoted f^{\sharp} is defined as

$$f^{\sharp}(z) := \frac{2|f'(z)|}{1+|f(z)|^2}$$

for z where $f(z) \neq \infty$ and when $f(z) = \infty$ define

$$f^{\sharp}(z) = \lim_{\zeta \to z} f^{\sharp}(\zeta).$$

The second definition makes sense since a meromorphic functions has only isolated poles, and thus $f^{\sharp}(\zeta)$ is defined by the first equation when we are close to z. Some basic properties of the spherical derivative are as follows.

Proposition. If $f: G \to \mathbb{C}$ is a meromorphic function then

- f^{\sharp} is a continuous function,
- $f^{\sharp}(z) < \infty$ for all $z \in G$.

Note that sometimes the spherical derivative is also denoted as $\mu(f)(z)$ rather then $f^{\sharp}(z)$.

References

- [1] John B. Conway. . Springer-Verlag, New York, New York, 1978.
- [2] Theodore B. Gamelin. . Springer-Verlag, New York, New York, 2001.