VEGETABLE CLASSIFICATION WITH VGG, MOBILENETV2, AND RESNET50

Dibuat oleh: Andre Aditya Amann

A. ARSITEKTUR YANG DIGUNAKAN

• VGG16

VGG16 adalah jenis CNN (*Convolutional Neural Network*) yang dianggap sebagai salah satu model visi komputer terbaik. Model ini menggunakan 16 layer berisi bobot (*13 Convolutional Layer dan 3 Fully Connected Layer*) dan terkenal karena kesederhanaan dan konsistensinya dalam desain.

MobileNetV2

MobileNetV2 adalah arsitektur yang dirancang untuk perangkat dengan daya komputasi yang terbatas. Model ini menggunakan *Depthwise Separable Convolution* dan *Inverted Residuals dan Linear Bottlenecks* yang memungkinkan menjadi lebih efisien saat training model.

• ResNet50

ResNet50 (*Residual Network*) adalah model *deep learning* dengan 50 *layer* sesuai dengan namanya ResNet50, model ini terkenal karena mengatasi masalah *vanishing gradient* melalui konsep *residual connections*.

B. HASIL PERFORMA SETIAP ARSITEKTUR

Dataset yang digunakan adalah *Vegetable Image Dataset* yang berasal dari kaggle. Dataset ini memiliki total 21000 gambar yang berasal dari 15 kelas, tiap kelasnya memiliki 1400 gambar. Dataset ini sendiri dibagi menjadi 70% untuk training (15000 gambar), 15% untuk validation (3000 gambar), dan 15% untuk test (3000 gambar). Di awal dilakukan Preprocessing dan Augmentasi Data sebelum melakukan training dan evaluasi berupa normalisasi nilai piksel, rotasi, pergeseran, dan pembalikan gambar.

	VGG16	MobileNetV2	ResNet50
Akurasi Uji	0.9983	0.9997	0.7117
Waktu Training	2581.79 detik	1837.41 detik	1892.05 detik
Waktu Inference	18.25 detik	12.26 detik	17.03 detik

Kinerja Setiap Arsitektur (Precision, Recall, F1-Score, Accuracy)

Model VGG16

Model MobileNetV2

Model Resnet50

	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
Bean	1.000000	0.995000	0.997494	200.000000	Bean	1.000000	1.000000	1.000000	200.000000	Bean	0.955882	0.650000	0.773810	200.000000
Bitter_Gourd	1.000000	0.995000	0.997494	200.000000	Bitter_Gourd	1.000000	0.995000	0.997494	200.000000	Bitter_Gourd	0.895000	0.895000	0.895000	200.000000
Bottle_Gourd	1.000000	1.000000	1.000000	200.000000	Bottle_Gourd	1.000000	1.000000	1.000000	200.000000	Bottle_Gourd	0.909091	0.650000	0.758017	200.000000
Brinjal	1.000000	1.000000	1.000000	200.000000	Brinjal	0.995025	1.000000	0.997506	200.000000	Brinjal	0.500000	0.565000	0.530516	200.000000
Broccoli	0.990099	1.000000	0.995025	200.000000	Broccoli	1.000000	1.000000	1.000000	200.000000	Broccoli	0.987805	0.810000	0.890110	200.000000
Cabbage	1.000000	0.995000	0.997494	200.000000	Cabbage	1.000000	1.000000	1.000000	200.000000	Cabbage	0.397028	0.935000	0.557377	200.000000
Capsicum	1.000000	1.000000	1.000000	200.000000	Capsicum	1.000000	1.000000	1.000000	200.000000	Capsicum	0.914634	0.750000	0.824176	200.000000
Carrot	1.000000	1.000000	1.000000	200.000000	Carrot	1.000000	1.000000	1.000000	200.000000	Carrot	0.595166	0.985000	0.741996	200.000000
	0.994975	0.990000	0.992481	200.000000	Cauliflower	1.000000	1.000000	1.000000	200.000000	Cauliflower	0.645161	0.900000	0.751566	200.000000
Cucumber	0.995025	1.000000	0.997506	200.000000	Cucumber	1.000000	1.000000	1.000000	200.000000	Cucumber	0.964286	0.675000	0.794118	200.000000
Papaya	1.000000	1.000000	1.000000	200.000000	Papaya	1.000000	1.000000	1.000000	200.000000	Papaya	1.000000	0.375000	0.545455	200.000000
Potato	1.000000	1.000000	1.000000	200.000000	Potato	1.000000	1.000000	1.000000	200.000000	Potato	0.857143	0.240000	0.375000	200.000000
Pumpkin	0.995025	1.000000	0.997506	200.000000	Pumpkin	1.000000	1.000000	1.000000	200.000000	Pumpkin	0.687805	0.705000	0.696296	200.000000
Radish	1.000000	1.000000	1.000000	200.000000	Radish	1.000000	1.000000	1.000000	200.000000	Radish	0.983471	0.595000	0.741433	200.000000
Tomato	1.000000	1.000000	1.000000	200.000000	Tomato	1.000000	1.000000	1.000000	200.000000	Tomato	0.653979	0.945000	0.773006	200.000000
accuracy	0.998333	0.998333	0.998333	0.998333	accuracy	0.999667	0.999667	0.999667	0.999667	accuracy	0.711667	0.711667	0.711667	0.711667
macro avg	0.998342	0.998333	0.998333	3000.000000	macro avg	0.999668	0.999667	0.999667	3000.000000	macro avg	0.796430	0.711667	0.709858	3000.000000
weighted avg	0.998342	0.998333	0.998333	3000.000000	weighted avg	0.999668	0.999667	0.999667	3000.000000	weighted avg	0.796430	0.711667	0.709858	3000.000000

Confusion Matrix Setiap Model

Plot Akurasi dan Loss Tiap Model

C. ANALISIS KEKUATAN DAN KELEMAHAN SETIAP ARSITEKTUR

• VGG16

Arsitektur VGG16 merupakan arsitektur yang sederhana karena hanya menggunakan layer konvolusi 3x3, sehingga VGG16 mudah diimplementasikan. Percobaan penggunaan VGG16 terhadap dataset yang digunakan juga mampu memberikan hasil akurasi yang cukup baik. Namun, arsitektur VGG16 membutuhkan waktu training lebih lama dibandingkan arsitektur yang lain dan pada arsitektur VGG16 ini tidak cocok digunakan pada perangkat dengan sumber daya terbatas.

MobileNetV2

Arsitektur MobileNetV2 merupakan yang terbaik, hal ini bisa dilihat pada tabel Kinerja Model yang baik, Confusion Matrix yang hampir sempurna, dan Akurasi yang tinggi dengan Loss yang rendah.. Pada percobaan arsitektur MobileNetV2 terhadap dataset yang digunakan tidak ditemukan kelemahan yang begitu signifikan, namun untuk dataset yang lebih kompleks ada kemungkinan hasilnya akan berbeda dengan akurasi yang lebih rendah.

• ResNet50

Arsitektur ResNet50 pada dataset yang digunakan memiliki hasil yang kurang memuaskan, tidak ditemukan kelebihan yang signifikan dibandingkan dengan arsitektur lain. Namun, untuk dataset yang lebih kompleks ada kemungkinan akurasi yang dihasilkan oleh ResNet50 lebih baik dari yang lain, karena ResNet50 dapat mengatasi masalah mengenai vanishing gradient.

Kaggle Notebook:

Three CNN Architectures to Classify Vegetables