

Generic Machine Learning

Clustering and Classification

TCTI-VKAAI-17: Applied Artificial Intelligence

I!U

K-Means Clustering Algorithm

- Input: \hat{K} , set of points x_1, \ldots, x_n
- Place centroids c_1, \ldots, c_k at random locations
- Repeat until convergence:—

Distance (e.g., Euclidian) between instance x_i and c_i

 $\arg\min_{i} D(x_i, c_j)$

- For each point x_i :
 - ullet Find the nearest centroid c_i
 - Assign the point x_i to cluster j
- For each cluster $j = 1, \dots, K$:
 - Calculate new centroid c_j = mean of $c_j(a) = \frac{1}{n_j} \sum_{x_i \to c_j} x_i(a)$ all points x_i assigned to cluster j for $a = 1, \ldots, d$
- Stop when none of the cluster assignments changes

K-Means Example

- Input K, points x_1, \ldots, x_n
- Place centroids randomly
- Repeat until convergence:
 - For each point x_i:
 - Find nearest centroid c_j
 Assign x_i to cluster j
 - For each cluster j.
 - $\qquad \hbox{ Compute new centroid } c_j \\$

16

K-Means Example

- Input K, points x_1, \ldots, x_n
- Place centroids randomly
- Repeat until convergence:
 - For each point x_i:
 - Find nearest centroid C_j
 Assign X_i to cluster j
 - For each cluster j.
 - lacksquare Compute new centroid c_j

K-Means Properties

- Minimizes aggregate intra-cluster distance
 - Total squared distance from point to centre of its cluster
 - Same as variance if Euclidian distance is used
- Converges to local minimum
 - Different starting points → very different results
 - Run several times with random starting points
 - Pick clustering that yields smallest aggregate distance
- Nearby points might not end up in the same cluster
 - The following clustering is a stable local minimum

How many clusters?

- How many clusters are there in the data?
 - Class labels may suggest the value of K(e.g., digits 0...9)
 - Optimize distance V: for K = 2, 3, ...
 - Run K-Means, record distance
 - Problem: V minimized when K=n
 - What if we use a validation set?
 - Visually from scree plot
 - Point where 'mountain' ends, 'rubble' begins

Conclusion

- Classification and Clustering appear similar
 - Classification: supervised categorization of observations
 - Clustering: unsupervised determination of (potential) categories
- k Nearest Neighbors simple and effective
 - But very costly to run effectively
- K-Means also rather simple and effective (and fast!)
 - Some unwanted results due to randomness of chosen centroids
 - Meaning one has to calculate several times for a data set → more costly