Introduction to Week Six

Numerical Solutions of PDEs

Direct Solution of Boundary Value Problems

Iterative Solution of Boundary Value Problems

Time-stepping Methods for Initial Value Problems

- Video: Explicit Methods for Solving the Diffusion Equation | Lecture 69
- Reading: Using a Second-Order Time-Stepping Method
 10 min
- Reading: FTCS Scheme for the Advection Equation
 10 min
- Video: Von Neumann Stability
 Analysis of the FTCS Scheme |
 Lecture 70
 14 min
- Reading: Von Neumann Stability
 Analysis of the FTCS Scheme for the
 Advection Equation
 10 min
- Video: Implicit Methods for Solving the Diffusion Equation | Lecture 71 8 min
- Reading: Implicit Discrete Advection Equation
 10 min
- Video: Crank-Nicolson Method for the Diffusion Equation | Lecture 72 13 min
- Reading: Lax Scheme for the Advection Equation
 10 min
- Video: MATLAB Solution of the Diffusion Equation | Lecture 73
- Reading: Difference Approximations for the Derivative at Boundary Points

 1 min
- Ungraded External Tool: The
 Diffusion Equation with No-Flux
 Boundary Conditions
 30 min

Quiz

Programming Assignment: Twodimensional Diffusion Equation

Farewell

Implicit Discrete Advection Equation

Consider the one-dimensional advection equation given by

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x}.$$

- (a) By computing the spatial derivative at the advanced time step t_{l+1} , derive the implicit discrete advection equation.
- (b) Analyze its stability.

<!--</b-->	Completed	Go to next item
•	•	