TD62803P

TD62803P STEPPING MOTOR CONTROLLER/DRIVER

Features

- High-Voltage, High-Current Outputs $V_{\rm CE}({\rm SUS}) \varphi = 28 V ({\rm MIN})$, $I_{\rm OUT} \varphi = 400 {\rm mA}$ (MAX)
- 1,2, 1-2 Phase Excitation Mode Capable
- 3 Inputs Direction Control .. CK-1, CK-2 CW/CCW
- Output Enable Function ... E
- Initialized Status Mo (Monitor out)
- Schmitt Trigger Inputs CK-1, CK-2, CW/CCW, R
- Standard Supply Voltage

MAXIMUM RATINGS (Ta=25°C unless otherwise noted)

CHARACTE	RISTIC	SYMBOL	RATING	UNIT
Supply Volta	ige	V _{CC}	-0.3 \(\sigma +7.0 \)	V
Output Susta	ining Voltage	V _{CE} (SUS)	-0.3 ∿ +28	V
Output	φn	$I_{\mathrm{OUT}\phi}$	400	mA
Current	Mo,CK-OUT	I _{OUT} Mo CK-OUT	10	mA
Input Voltage		VIN	$-0.3 \sim V_{CC}+0.3$	V
Input Current		IIN	±1	mA
Power Dissipation		PD	2.7	W
Operating Te	mperature	Topr	-30 ∿ +85	°C
Storage Temp	erature	T _{stg}	-55 ∿ +150	°C

BLOCK DIAGRAM

SCHEMATICS OF INPUTS AND OUTPUTS

TOSHIBA CORPORATION

TD62803P -

RECOMMENDED OPERATING CONDITIONS (Ta=-30 $^{\circ}$ +85°C)

CHARACTERIST	IC	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage		VCC		4.5	5.0	5.5	V
Output Sustaining Voltage		V _{CE} (SUS)		0		26	V
"L" Level Output Current ¢n		I _{OUT} ϕ				400	mA
		OUT	Test Mode			250	
Output Current Mo,	"H" Level	I _{OH}				-0.4	mA
CK-OUT	"L" Level	I _{OL}				8	mA
Input Voltage		VIN		0		v _{CC}	V
Clock Frequency		fcK		0		100	kHz
Power Dissipation		$P_{\mathbf{D}}$				1.0	W

ELECTRICAL CHARACTERISTICS (Ta=25°C)

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
"H" Level Input Voltage		VIH		2.0			V
"L" Level Input Voltage		VIL				0.8	v
"H" Level Output	Current on	I _{ОНФ}	$V_{CC}=5.5V$, $V_{OUT}=26V$			100	μ A
"H" Level Output Voltage Mo,CK-OUT		v _{OH}	$V_{CC}=4.5V$, $I_{OH}=-0.4mA$	2.4			v
		OH	V _{CC} =5.0V I _{OH} =-10μA	4.0			
Ur U. T. arra 7	Mo, CK-OUT	VOL	V _{CC} =4.5V, I _{OL} =8mA			0.4	
"L" L evel Output Voltage		V 1	$V_{CC}=4.5V$, $I_{OUT}=400$ mA			1.1	V
output volume	φn	^V ouтф	$V_{CC}=4.5V$, $I_{OUT}=200mA$			0.6	
"H" Level Input Current		IIH	V _{CC} =5.5V, V _{IH} =5.5V			10	μ A
"L" Level Input Current		III	V _{CC} =5.5V, V _{IL} =0.4V			-0.4	πA
Hysteresis		∆VT		200			mV
Supply Current		1 _{CC}				100	mA

SWITCHING CHARACTERISTICS (Ta=25°C)

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
	СК-фп		V _{CC} =5.0V		2.0		
Propagation Delay	CK-CK-OUT		R_L -CK-OUT, \overline{Mo} =620 Ω		1.0		
Time,	CK-Mo	t _{pLH}	$R_L - \phi_1 \sim \phi_4 = 100\Omega$		2.8		μS
Low-to-High Level	E- ϕ n		C _L -All Outputs=15pF		1.0		
	\overline{R} - ϕn		$V_{OUT}\phi = 24V$		2.0		

SWITCHING CHARACTERISTICS (Ta=25°C)

CHARACTERIS	TIC	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Propagation Delay Time High-to-Low Level	CK-φn CK-CK-OUT CK-Mo E-φn R-φn R-Mo	t _{pHL}	$V_{\text{CC}=5.0V}$ R_{L} — CK - OUT , Mo = 620Ω R_{L} - $\phi_1 \sim \phi_4$ = 100Ω C_{L} - $A11$ $Outputs$ = $15pF$ V_{OUT} ϕ = $24V$		1.4 0.7 2.1 1.2 1.0 2.0		μ S
Maximum Clock Frequency		fmax			250		kHz
Set Up Time CK, CW/CCW		t _{set-up}			0.1	ļ	
Hold Time CK, CW/CCW		thold			0.1		μS
Minimum Clock Pulse Width		tw(CK)			1.0		
Minimum Reset Pulse	Width	$t_{w}(\overline{R})$			1.0		

TD62803P

PIN NAMES AND FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION			
1	CW/CCW	Clock Wise/Counter Clock Wise	Direction Control Input	Function Table A		
2	EA	Excitation A	Phase Excitation Mode			
3	EB	Excitation B	Input	Function Table B		
4	3/4	3 Phases/4 Phases	Phase Control Input			
5	Mo	Monitor Out	Initial Status Output Mo	="L" at Initial State		
6	Фт	φ ₁ Out	φ ₁ Output			
7	Ф2	Φ ₂ Out	Φ ₂ Output			
8	GND	GND	GND			
9	фз	Φ ₃ Out	φ ₃ Output			
10	ф4	φ ₄ Out	φ ₄ Output			
11	Е	Output Enable	Outputs are Enable at E=	:''H''		
12	CK-OUT	Clock-Out	Clock Output			
13	CK1	Clock In-1	Clock Input 1			
14	CK2	Clock In-2	Clock Input 2 Function Table			
15	\overline{R}	Reset	Reset Input			
16	v_{CC}	VCC	VCC			

FUNCTION TABLE A

CK l	CK2	CW/CCW	FUNCTION
	Н	L	CW
	L	L	Inhibit
H		L	CCW
L	ΓL	L	Inhibit
	Н	Н	CCW
JL	L	Н	Inhibit
Н		Н	CW
L	<u></u>	Н	Inhibit

FUNCTION TABLE B

EA	ЕВ	3/4	FU	NCTION
L	L	L		l Phase Excitation
H	L	L	4 Phases	2 Phase Excitation
L	Н	L		1-2 Phase Excitation
Н	Н	L	Test Mode	φ ₁ ∿ φ ₄ ON
L	L	Н		1 Phase Excitation
Н	L	H	3 Phases	2 Phase Excitation
L	Н	Н		1-2 Phase Excitation
Н	H	Н	Test Mode	$\phi_1 \sim \phi_4$ ON

NOTE) Conversion of Phase Excitation Mode must be made after the Reset Mode is established.

3 PHASES METHOD

ΜŌ

1 PHASE EXCITATION CK OFF ϕ 1 onOFF **ø**2 ON

CW

2 PHASE EXCITATION

CW 1-2 PHASE EXCITATION

1 PHASE EXCITATION

2 PHASE EXCITATION

CCW

1-2 PHASE EXCITATION

CCW

TOSHIBA CORPORATION

TD62803P

4 PHASES METHOD

CW

1 PHASE EXCITATION

CCW

2 PHASE EXCITATION

CW

CCW

1-2 PHASE EXCITATION

CW

CCW

