Projet de Stage : Détection d'Anomalies

Wensi DING

August 25, 2016

Outline

- 1 Introduction
- 2 Modélisation
- 3 Test et Conclusion
- 4 Référence

Introduction

Données:

- données brutes : imsi, event, cgi, timestamp
- données stop-segment : imsi, segmentType, tsStart, tsEnd, cuidStart, cuidEnd, speed
- données des cellules : cgi, cuid, longitude, latitude, rayon

Objective: identifier les anomalies

- comportements inhumains?
- comportements particuliers?
- imprécision ou erreurs dans les données?
- etc...

Présentation des Modèles

Modèle Gaussien:

- chaque variable suit la loi gaussienne
- toutes les variables sont indépendantes
- anomalies sont les points avec les plus petites probabilités

Modèle LOF:

- lof : rapport entre la moyenne des densités des points voisins et la densité locale
- anomalies sont des points qui ont une densité relativement petite par rapport leurs voisins

Figure 1: 2-d dataset DS1

Présentation des Modèles

Modèle Half Space Tree:

- Arbre de décision
- Chaque nœud représente les intervalles des toutes les dimensions
- anomalies sont des points qui entrent dans les feuilles avec les plus petits nombres de points

Variables Possibles

Avec les données brutes:

- v_max : le maximum des vitesses entre deux événements consécutifs
- v_mean : la moyenne sur l'ensemble des valeurs moyennes des vitesses entre deux événements consécutifs chaque jour
- n_events_mean : la moyenne du nombre d'événements chaque jour
- n_events_sd : la variance du nombre d'événements chaque jour
- duree_stop_mean : la moyenne des sommes de durée d'être immobile chaque jour
- duree_stop_sd : la variance des sommes de durée d'être immobile chaque jour

Variables Possibles

Avec les données stop-segment:

- ullet v_max_ss, v_mean_ss, duree_stop_mean_ss, duree_stop_sd_ss
- n_stop_mean : la moyenne du nombre d'événements de type "STOP" chaque jour
- n_stop_sd : la variance du nombre d'événements de type "STOP" chaque jour
- dis_ss : la médiane des distances entre les endroits où la personne a fait le dernier stop chaque jour

sur les variables:

- v_max √: capable de sortir deux types d'anomalies: cellules mal positionnées, oscillations entre deux cellules avec une distance grande
- v_{max}s: capable d'enlever les événements anormaux à cause de cellules très mal placées; pour les cellules pas trop mal positionnés ou les cellules avec rayons grands, le résultat peut varier
- v_mean : écrasé par les v_max très grands, pas très performant
- v_mean_ss √: capable de représenter une sorte de mobilité d'une personne en moyenne

sur les variables :

- n_events_mean ✓: capable de sortir des imsi avec le nombre d'oscillations entre plusieurs cellules très grand
- n_events_sd : écrasé par les n_events_mean très grands, pas très performant
- n_stop_mean √: capable de représenter une sorte de mobilité d'une personne, exemple: un voyageur peut faire plein de stop pendant une journée
- n_stop_sd √: capable de représenter une sorte de mobilité d'une personne, exemple: un voyageur qui visite plusieurs villes peut faire plein de stop dans une journée de visite, très peu de stop dans une journée de déplacement

sur les variables :

- duree_stop_mean : pas très précis pour représenter la vraie durée de stop
- duree_stop_sd : pas très précis à cause d'imprécision de duree_stop_mean
- duree_stop_mean_ss : capable de représenter une sorte de mobilité d'une personne, mais cette variable a une relation linéaire avec n_stop_mean
- duree_stop_sd_ss : pas de typique comportement sorti
- dis_ss : capable de représenter une sorte de mobilité dans le sens global, exemple: les personnes qui bougent tout le temps avec une grande distance chaque jour

variables choisies:

- E1: v_max, v_mean, n_events_mean, n_events_sd, duree_stop_mean, duree_stop_sd
- E2: v_max, v_mean_ss, n_events_mean, n_stop_mean, n_stop_sd

sur les modèles :

- 1. Courbe ROC et AUC Score(référence : modèle gaussien)
 - LOF: 0.78 (E1); 0.82 (E2)
 - HS_Tree: 0.94 (E1); 0.93 (E2)

2. Matrice de Confusion : 679 anomalies sur 157,107 imsi pour tous les trois modèles

Modèle Référent :	Gaussien	Gaussien	LOF
Modèle Testé :	LOF	HS_Tree	HS_Tree
Accuracy Score :	0.99	0.99	0.99
F1 Score:	0.23	0.22	0.11
Matrice de Confusion :	TN: 155906; FP, FN: 522; TP: 157	TN: 155897; FP, FN: 531; TP: 148	TN: 155825; FP, FN: 603; TP: 76

Table 1: Résultat matrice de confusion

- Pour comparer ou évaluer les résultats des trois modèles, il vaut mieux utiliser F1 Score ou Similarité de Jaccard.
- Pour expliquer les grandes différences entre les trois modèles, une hypothèse possible : la transformation à la distribution gaussienne sur les variables dans le modèle gaussien a un effet important.

1. profile spécial

2. cellule très mal placée

3. nombre d'événement explose

3. nombre d'événement explose

Wensi DING Détection d'Anomalies August 25, 2016 17 / 20

3. nombre d'événement explose

Proposition

- modèle : comprendre les différences des modèles
- variables : créer et examiner des nouvelles variables (par exemple: différencier les jours dans la semaine et les weekends; utiliser les données avec d'autre type d'événement; etc...)

Référence

- Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jörg Sander (2000). LOF: Identifying Density-Based Local Outliers. ACM, 1-58113-218-2/00/05
- Swee Chuan Tan, Kai Ming Ting, Tony Fei Liu. Fast Anomaly Detection for Streaming Data. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence