Differential Geometry

Hoyan Mok

November 30, 2022

Contents

C	onter	its	j			
Ι	Do	mestic Differential Geometry	1			
1	Mai	nifolds	2			
2	Scal	Scalar and Vector Fields				
	§ 1	Scalar Fields	3			
	§2	Vector Fields	3			
	§3	Covariant and Contravariant	4			
	§4	Components of Vector Fields	5			
	§ 5	Lie Bracket	6			
3	Differential Forms					
	§ 6	1-forms	8			
	§7	Components of 1-Forms	9			
	§ 8	<i>k</i> -Forms	10			
	§ 9	Exterior Derivative	11			
4	Metric					
	§10	Pseudo-Riemannian Metric	12			
	§11	Volume Form	14			

CONTENTS	ii
----------	----

	§12 Hodge Star Operator	15		
	§13 Metric and Coordinates	15		
5	De Rham Theory	16		
	§14 Closed and Exact 1-Forms	16		
	§15 Stokes' Theorem	16		
	§16 De Rham Cohomology	16		
6	Bundles and Connections	17		
	§17 Fibre Bundles	17		
	§18 Vector Bundles	18		
7	Curvature	20		
8	Pseudo-Riemannian Geometry			
bi	bibliography			
Sy	Symbol List			
Index				

Part I Domestic Differential Geometry

Manifolds

Scalar and Vector Fields

§1 Scalar Fields

Definition 1.1 (Scalar Field). Let M be a smooth manifold, $f \in C^{(\infty)}(M)$ is called a *scalar field*.

The scalar field over a manifold, form an algebra.

§2 Vector Fields

Definition 2.1 (vector field). A *vector field* v over manifold M is a $C^{(\infty)}(M) \to C^{(\infty)}(M)$ map that satisfies

- (a) $\forall f, g \in C^{(\infty)}(M), \ \forall \lambda, \mu \in \mathbb{R}, \ v(\lambda f + \mu g) = \lambda v(f) + \mu v(g)$ (linearity).
- (b) $\forall f, g \in C^{(\infty)}(M), v(fg) = v(f)g + fv(g)$

The space of all vector fields on M is denoted by Vect(M)

Definition 2.2 (tangent vector). Let v be a vector field over M, p be a point on M. The tangent vector v_p at p is defined as a $C^{(\infty)}(M) \to C^{(\infty)}(M)$ map that satisfies

$$v_p(f) = v(f)(p). \tag{2-1}$$

The collection of tangent vectors at p is called the **tangent space** at p, denoted by T_pM .

The derivative of a path $\gamma \colon [0,1] \to M$ (or $\mathbb{R} \to M$) in a smooth manifold is defined as:

$$\gamma'(t) \colon C^{(\infty)}(M) \to \mathbb{R};$$

$$\gamma'(t)(f) = \frac{\mathrm{d}}{\mathrm{d}t} f \circ \gamma(t)$$
 (2-2)

We can see that $\gamma'(t) \in T_{\gamma(t)}M$.

Let a path γ : \mathbb{R} follows a vector field (a velocity field), that is

$$\gamma'(t) = v_{\gamma(t)},\tag{2-3}$$

then we call γ the *integral curve* through $p := \gamma(0)$ of the vector field v.

Definition 2.3. Suppose v is an integrable vector field. Let $\varphi_t(p)$ be the point at time t on the integral curve through p.

$$\varphi_t \colon M \to M$$
 (2-4)

is then called a flow generated by v.

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi_t(p) = v_{\varphi_t(p)}.\tag{2-5}$$

§3 Covariant and Contravariant

Definition 3.1 (pullback). Let f be a scalar field over $N, \varphi \in C^{(\infty)}(M,N)$. Then the **pullback** of f by φ

$$\varphi^* \colon C^{(\infty)}(N) \to C^{(\infty)}(M), \tag{3-1}$$

is defined as

$$\varphi^* f = f \circ \varphi \in C^{(\infty)}(M). \tag{3-2}$$

Fields that are pullbacked are *covariant* fields.

Definition 3.2 (pushforward). Let v_p be a tangent vector of M at $p, \varphi \in C^{(\infty)}(M, N), q = \varphi(p)$. Then the **pushforward** of v_p by φ

$$\varphi_* \colon T_p M \to T_q N, \tag{3-3}$$

is defined as

$$(\varphi_* v)_q(f) = v_p(\varphi^* f). \tag{3-4}$$

Note that the pushforward of a vector field can only be obtained when φ is a diffeomorphism.

Fields that are pushforwarded are *contravariant* fields.

Mathematicians and physicists might have disagreement on whether a tangent vector is covariant or contravariant. This is because of that physicists might consider the coordinates (v^{μ}) of a tangent vector as a vector field, instead of linear combination of bases ∂_{μ} .

§4 Components of Vector Fields

Let $\varphi \colon U \to \mathbb{R}^n$ be a chart of M $(U \subset M)$.

Let $p \in U$, $\varphi(p) = x = (x^{\mu})$ $(\mu = 0, ..., n-1)$. Locally, a function $f \in C^{(\infty)}(M)$ can be written as

$$(\varphi^{-1})^* f = f \circ \varphi^{-1} \colon M \to \mathbb{R}, \tag{4-1}$$

and a vector field $v \in Vect(M)$ can be written as

$$(\varphi_* v)_x = \varphi_* v_p \colon C^{(\infty)}(\mathbb{R}^n) \to \mathbb{R}, \tag{4-2}$$

or

$$\varphi_* v \in \operatorname{Vect}(\mathbb{R}^n) \tag{4-3}$$

Since $T_x\mathbb{R}^n\cong\mathbb{R}^n$ is a linear space, one can find a basis for $T_x\mathbb{R}^n$ as

$$\partial_{\mu} \colon C^{(\infty)}(\mathbb{R}^n) \to C^{(\infty)}(\mathbb{R}^n),$$
 (4-4)

and $(\varphi_* v)_x = v^{\mu}(x) \partial_{\mu}$.

Pushing forward $v^{\mu}(x)\partial_{\mu}$ by φ^{-1} one obtains v.

In an abuse of symbols, one may just omit the pullback and pushforward, and refer to the f and v by $(\varphi^{-1})^*f$ and φ_*v .

Consider another chart $\psi \colon U \to \mathbb{R}^n$ of M, and

$$y = \psi(p), \quad (\psi_* v)_x = u^\mu \partial_\mu, \tag{4-5}$$

where we have chosen the same basis in $T_y\mathbb{R}^n$ as in $T_x\mathbb{R}^n$.

We would like to know how to relate v^{μ} and u^{μ} i.e. we want to know how the components of v transforms under a coordinate transformation $\tau = \psi \circ \varphi^{-1}$.

Consider any $f \in C^{(\infty)}(M)$,

$$v(f) = \varphi_* v((\varphi^{-1})_* f) = \psi_* v((\psi^{-1})_* f)$$
(4-6)

 \Rightarrow

$$u^{\mu}\partial_{\mu}(f \circ \psi^{-1}) = v^{\mu}\partial_{\mu}(f \circ \varphi^{-1}) = v^{\mu}\partial_{\mu}(f \circ \psi^{-1} \circ \tau) = v^{\mu}\tau'^{\nu}_{\mu}\partial_{\nu}(f \circ \psi^{-1})$$
(4-7)

 \Rightarrow

$$u^{\mu} = v^{\nu} \tau'^{\mu}_{\nu},\tag{4-8}$$

where

$${\tau'}^{\mu}_{\nu} = \frac{\partial y^{\mu}}{\partial x^{\nu}}.\tag{4-9}$$

§5 Lie Bracket

Definition 5.1 (Lie bracket). Let $v, w \in \text{Vect}(M)$, then the **Lie bracket** of v and w is defined as

$$[v,w]: C^{(\infty)}(M) \to C^{(\infty)}(M); \ f \mapsto v \circ w(f) - w \circ v(f). \tag{5-1}$$

The Lie bracket is an antisymmetric bilinear map¹, and an important property of the Lie bracket is the Leibniz rule:

$$[v, w](fg) = [v, w](f)g + f[v, w](g).$$
(5-2)

Another important property of the Lie bracket is the Jacobi identity:

$$[v, [w, u]] + [w, [u, v]] + [u, [v, w]] = 0.$$
 (5-3)

Note that it is not $C^{(\infty)}$ -linear

Differential Forms

§6 1-forms

Definition 6.1 (1-form). A **1-form** ω on M is a $\mathrm{Vect}(M) \to C^{(\infty)}(M)$ which satisfies that

(a)
$$\forall v, w \in \text{Vect}(M), \forall f, g \in C^{(\infty)}(M),$$

$$\omega(fv + gw) = f\omega(v) + g\omega(w). \tag{6-1}$$

The space of all 1-forms on M is denoted as $\Omega^1(M)$, which is a module over $C^{(\infty)}(M)$.

The operator d, when given a $C^{(\infty)}(M)$ function (which is called a **0-form**), would give a 1-form:

$$(\mathrm{d}f)(v) = v(f). \tag{6-2}$$

This is called the *exterior derivative* or *differential* of f.

The $cotangent\ vector$ or covector is similar as the tangent vector:

$$\omega_p(v_p) = \omega(v)(p). \tag{6-3}$$

The space of cotangent vectors at p on M is denoted by T_p^*M . 1-forms are covariant, that is, if $\varphi \colon M \to N$, then the pushforward of a 1-form ω by φ is

$$(\varphi^*\omega)_p(v_p) = \omega_q(\varphi_*v_p), \tag{6-4}$$

where $\varphi(p) = q$.

Theorem 6.1. $f \in C^{(\infty)}(N)$, $\varphi \colon M \to N$ is differential, then

$$\varphi^*(\mathrm{d}f) = \mathrm{d}(\varphi^*f). \tag{6-5}$$

§7 Components of 1-Forms

Let $\varphi \colon U \to \mathbb{R}^n$ be a chart of M $(U \subset M)$.

Let $p \in U$, $\varphi(p) = x = (x^{\mu})$ ($\mu = 0, ..., n-1$). Locally a 1-form $\omega \in \Omega^1(M)$ can be written as

$$(\varphi^{-1})^*\omega \in T_x^* \mathbb{R}^n. \tag{7-1}$$

A natural way to impose a basis $\mathrm{d} x^{\mu}$ in $T_x^* \mathbb{R}^n$ is

$$\mathrm{d}x^{\mu}(\partial_{\nu}) = \delta^{\mu}_{\nu},\tag{7-2}$$

and $(\varphi^{-1})^*\omega = \omega_{\mu}(x) dx^{\mu}$.

Now by the definition of 1-form:

$$\omega_{\mu} \, \mathrm{d}x^{\mu} (v^{\nu} \partial_{\nu}) = v^{\nu} \omega_{\mu} \delta^{\mu}_{\nu} = v^{\mu} \omega_{\mu}. \tag{7-3}$$

By the transformation rule of components of a vector, one have

$${\tau'}^{\nu}_{\mu}\alpha_{\nu} = \omega_{\mu}, \tag{7-4}$$

where $\psi: U \to \mathbb{R}^n$, $(\psi^{-1})_*\omega = \alpha_\mu \, \mathrm{d} x^\mu$, $\tau = \psi \circ \varphi^{-1}$.

$\S 8$ k-Forms

Definition 8.1. If we assign an antisymmetric multilinear k-form $\omega_p \in \bigotimes_{i \in k} T_p^* M$ to each point $p \in M$, we say we have a k-form on M.

The collection of all k-forms is denoted by $\Omega^k(M)$, and $\Omega(M) := \bigcup_{k \in \mathbb{N}} \Omega^k(M)$.

Theorem 8.1 (Dimension of forms). If M is an nD manifold, then the dimension of $\Omega^k(M)$ is $\frac{n!}{k!(n-k)!}$ $(k \leq n)$, and 0 for k > n; The dimension of $\Omega(M)$ is 2^n .

Definition 8.2 (Wedge product). The *wedge product* \wedge is defined as a binary operator that takes a k-form and ℓ -form and gives a $(k + \ell)$ -forms, satisfying $\forall \alpha \in \Omega^k(M), \ \forall \beta \in \Omega^\ell(M)$:

(a) (Associativity) $\forall \gamma \in \Omega^m(M)$,

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma). \tag{8-1}$$

(b) (Supercommutativity)

$$\alpha \wedge \beta = (-1)^{k\ell} \beta \wedge \alpha. \tag{8-2}$$

(c) (Distributiveness) $\forall \gamma \in \Omega^{\ell}(M)$,

$$\alpha \wedge (\beta + \gamma) = \alpha \wedge \beta + \alpha \wedge \gamma. \tag{8-3}$$

(d) (Bilinearity over $C^{(\infty)}(M)$) $\forall f \in C^{(\infty)}(M)$,

$$(f\alpha) \wedge \beta = f(\alpha \wedge \beta). \tag{8-4}$$

(e) (Naturality) If $\varphi \colon M \to N$ is a smooth map, then the pullback of a form by φ can be given by repeatingly applying $(\forall \gamma \in \Omega^{\ell}(M))$

$$\varphi^*(\beta + \gamma) = \varphi^* \alpha + \varphi^* \beta$$

$$\varphi^*(\alpha \wedge \beta) = \varphi^* \alpha \wedge \varphi^* \beta,$$
 (8-5)

while the pullback of a 0-form and a 1-form agree with what we have already defined before.

By convention if $f \in C^{(\infty)}(M)$ then

$$f \wedge \omega =: f\omega. \tag{8-6}$$

It can be shown that any k-form ω can be written as

$$(\varphi^{-1})^*\omega = \frac{\omega_{\mu_1\cdots\mu_k}}{n!} \bigwedge_{i=1}^k \mathrm{d}x^{\mu_i},\tag{8-7}$$

where $\varphi \colon M \to \mathbb{R}^n$ is a chart.

§9 Exterior Derivative

Definition 9.1 (Exterior derivative). The *exterior derivative* d is defined as a linear operator that takes a k-form and gives a (k+1)-form, satisfying $\forall \alpha \in \Omega^k(M), \forall \beta \in \Omega^\ell(M)$:

(a) (Linearity) $\forall \lambda, \mu \in \mathbb{R}, \forall \gamma \in \Omega^{\ell}(M)$,

$$d(\lambda \beta + \mu \gamma) = \lambda d\alpha + \mu d\beta. \tag{9-1}$$

(b) (Leibniz rule)

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta. \tag{9-2}$$

$$d^2\omega = 0. (9-3)$$

(d) (Naturality) If $\varphi \colon M \to N$ is a smooth map, then

$$\varphi^* d\omega = d\varphi^* \omega. \tag{9-4}$$

Metric

§10 Pseudo-Riemannian Metric

Definition 10.1 (Psedudo-Riemannian metric). Let M be a manifold. A **pseudo-Riemannian metric** or simply **metric** g on a manifold M is a field $(g \in \Gamma(T^*M \otimes T^*M))$ that $\forall p \in M$,

$$g_p \colon T_p^* M \times T_p^* M \to \mathbb{R},$$
 (10-1)

is a bilinear form satisfying the following properties:

(a) (Symmetry) $\forall u, v \in T_p M$,

$$g_p(u,v) = g_p(v,u).$$
 (10-2)

(b) (Non-degenerate)

$$u \mapsto g_p(u, -) \colon T_pM \to T_p^*M$$
 (10-3)

is an isomorphism.

(c) (Bilinearity) $\forall p \in M, \forall u, v \in T_p M, \forall \lambda, \mu \in \mathbb{R},$

$$g_p(\lambda u + \mu v, w) = \lambda g_p(u, w) + \mu g_p(v, w). \tag{10-4}$$

(d) (Smoothness) If $v, u \in Vect(M)$, then

$$p \mapsto g_p(v_p, u_p) \in C^{(\infty)}(M). \tag{10-5}$$

Given a metric, $\forall p \in M$, we can always find an orthonormal basis $\{e_{\mu}\}$ of T_pM such that

$$g_p(e_\mu, e_\nu) = \operatorname{sign}(\mu) \delta_{\mu\nu}, \tag{10-6}$$

where $\operatorname{sign}(\mu) = \pm 1$. Conventionally we order the basis such that $\operatorname{sign}(\mu) = 1$ for $\mu \in s$ and $\operatorname{sign}(\mu) = -1$ for $\mu - s \in n - s$, and say that the metric has **signature** (s, n - s).

If $\gamma: [0,1] \to M$ is a smooth path and $\forall t, s \in [0,1]$,

$$g(\gamma'(t), \gamma'(t))g(\gamma'(s), \gamma'(s)) \ge 0, \tag{10-7}$$

then we can define the arclength of γ as

$$\int_0^1 \sqrt{|g(\gamma'(t), \gamma'(t))|} \, \mathrm{d}t \tag{10-8}$$

if the integral converges.

The metric gives an *inner product* on Vect(M):

$$\langle u, v \rangle := g(u, v). \tag{10-9}$$

The metric also gives a way to relate a vector field v to a 1-form ω . If v and ω satisfies: $\forall u \in \text{Vect}(M)$,

$$g(v, u) = \omega(u), \tag{10-10}$$

then we say that v is the corresponding vector field of ω , and ω is the corresponding 1-form of v.

We can also define the *inner product* on $\Omega^1(M)$ by

$$\langle \alpha, \beta \rangle = \langle a, b \rangle, \tag{10-11}$$

where a and b is the corresponding vector fields of α and β .

The *inner product* on $\Omega^k(M)$ is defined by induction with

$$\langle \bigwedge_{i \in k} \alpha_i, \bigwedge_{i \in k} \beta_i \rangle = \det(\langle \alpha_i, \beta_j \rangle)_{i,j \in k}.$$
 (10-12)

Hence, if $\{e_{\mu}\}$ is an orthonormal basis (field) of T_pM , while the corresponding covectors are $\{f^{\mu}\}$ $(f^{\mu}(e_{\nu}) = \delta^{\mu}_{\nu})$ then

$$\langle \bigwedge_{i \in k} f^{\mu_i}, \bigwedge_{i \in k} f^{\mu_i} \rangle = \prod_{i \in k} \operatorname{sign}(\mu_i).$$
 (10-13)

Specially, when $f, g \in \Omega^0(M) = C^{(\infty)}(M)$,

$$\langle f, g \rangle = fg. \tag{10-14}$$

§11 Volume Form

Notice that if M is an nD manifold, dim $\Omega^n(M) = 1$, meaning at $p \in M$, $\{\omega_p \mid \omega \in \Omega^n(M)\}$ can be labelled by a parametre $\lambda_p \in \mathbb{R}$. If we have a basis $\{f^{\mu}\}$ of T_p^*M (or corresponding vectors $\{e_{\mu}\}$), then

$$\{\omega_p \mid \omega \in \Omega^n(M)\} = \lambda_p \bigwedge_{\mu \in n} f^{\mu}. \tag{11-1}$$

If there were another basis $\{g^{\mu}\}\$ of T_p^*M (or corresponding vectors $\{h_{\mu}\}$), and the transformation between the two bases is given by

$$Pe^{\mu} = f^{\mu}, \tag{11-2}$$

where $P \in \text{Aut}(T_p^*M)$. When $\det P > 0$, we say that $\{f^{\mu}\}$ and $\{g^{\mu}\}$ have the same **orientation**.

Definition 11.1 (Volume form). Let M be an orientable manifold. If $\forall p \in M$, we find an oriented orthonormal basis $\{f_{\mu}\}$ of T_p^*M at point p, then the **volume form** vol is defined by

$$\bigwedge_{\mu \in n} f_{\mu} = \operatorname{vol}_{p}. \tag{11-3}$$

§12 Hodge Star Operator

Definition 12.1 (Hodge Star Operator). Let M be an orientable manifold. The **Hodge star operator** \star is defined by the linear map

$$\star \colon \Omega^k(M) \to \Omega^{n-k}(M),$$
 (12-1)

 $\forall \alpha, \beta \in \Omega^k(M),$

$$\alpha \wedge \star \beta = \langle \alpha, \beta \rangle \text{ vol }. \tag{12-2}$$

We call $\star \omega$ the **dual** of ω .

The special case is when k = 0,

$$\star f = f \text{ vol}, \tag{12-3}$$

and k = n,

$$\star(f \text{ vol}) = f \prod_{\mu \in n} \text{sign}(\mu) = (-1)^{n-s} f \tag{12-4}$$

if the signature of the metric is (s, n - s).

§13 Metric and Coordinates

De Rham Theory

- §14 Closed and Exact 1-Forms
- §15 Stokes' Theorem
- $\S 16$ De Rham Cohomology

Bundles and Connections

§17 Fibre Bundles

Definition 17.1 (Bundle). A **bundle** is a triple (E, π, B) , where $\pi: E \to B$ is a surjective map. E is called the **total space**, π is called the **projection map**, and B is called the **base space**.

A bundle (E, π, B) can be denoted as $\pi: E \to B$ or $E \xrightarrow{\pi} B$.

Definition 17.2 (Fibre). For $p \in B$, $\pi^{-1}(\{p\})$ is the *fibre* over b.

Definition 17.3 (Subbundle). Let $\pi: E \to B$ be a bundle. $F \subset E$, $C \subset B$, $\rho: F \to C$. If $\pi|_C = \rho$, then $\rho: F \to C$ is called a **subbundle** of $\pi: E \to B$.

Definition 17.4 (Section). A **section** is a map $s: B \to E$ such that

$$p \circ s = \mathrm{id}_B \,. \tag{17-1}$$

All sections of a bundle $\pi \colon E \to B$ is denoted as $\Gamma(E)$.

Definition 17.5 (Fibre bundle). A *fibre bundle* (E, π, B, F) is a bundle $\pi: E \to B$, where E, B, F are topology spaces, and π is a continuous map, and $\forall p \in B, \exists U \in \mathcal{U}(p)$ s.t.

$$\varphi \colon \pi^{-1}(U) \to U \times F,\tag{17-2}$$

is a homeomorphism and $\pi_1 \circ \varphi = \pi$. π_1 is defined as $\pi_1(p,q) = p$. A fibre bundle can be denoted as the exact sequence

$$F \longrightarrow E \stackrel{\pi}{\longrightarrow} B \tag{17-3}$$

The last condition is called the *local triviality condition*. F is called the *standard fibre*

If $E = B \times F$, then (E, π, B, F) is called a **trivial fibre bundle**.

Definition 17.6 (Morphism). Let $\pi \colon E \to B$, $\rho \colon F \to C$ be two fibre bundles. A **morphism** (φ, ψ) is a pair of two continuous maps such that

$$E \xrightarrow{\psi} F$$

$$\downarrow^{\pi} \qquad \downarrow^{\rho}$$

$$B \xrightarrow{\varphi} C$$

$$(17-4)$$

commutes.

§18 Vector Bundles

Definition 18.1 (Vector bundle). A *vector bundle* is a fibre bundle (E, π, B, F) , where F is a vector space, and the local trivialisation $\varphi \colon \pi^{-1}(U) \to U \times F$ (U is a neibourhood of $p \in B$) satisfies that $\forall x \in U, \forall v \in F$,

$$F \to \pi^{-1}(\{x\})$$

$$v \mapsto \varphi^{-1}(x, v)$$
(18-1)

is a linear isomorphism (fibrewise linear).

Definition 18.2 (Morphism (vector bundle)). The morphism between two vector bundles (E, π, B, F) and (E', π', B', F') is a morphism (φ, ψ) such that $\forall x \in B$,

$$\psi_* \colon \pi^{-1}(\{x\}) \to (\pi')^{-1}(\{\varphi(x)\})$$
 (18-2)

is a linear homomorphism.

Definition 18.3 (Tangent bundle). The *tangent bundle* TM is the vector bundle over a nD manifold M with the standard fibre $T_pM=\mathbb{R}^n$.

Curvature

Pseudo-Riemannian Geometry

bibliography

[1] Javier P. Muniain John C. Baez. Gauge Fields, Knots and Gravity (Series on Knots and Everything). Series on Knots and Everything. World Scientific Publishing Company, 1994. ISBN: 9789810217297,9810217293,9810220340.

Symbol List

Here listed the important symbols used in these notes

d, 11	$TM, \frac{19}{}$
$\Gamma(E), 17$	$egin{array}{c} T_p^*M, rac{9}{4} \ T_pM, rac{4}{4} \end{array}$
$\Omega^{1}(M), 8$ $\Omega^{k}(M), 10$ $\Omega(M), 10$	Vect(M), 3 vol, 14
*, 15	∧, 10

Index

0-form, 8	integral curve, 4
1-form, 8	
	k-form, 10
base space, 17	
bundle, 17	Lie bracket, 6
	local triviality condition, 18
contravariant, 5	
cotangent vector, 8	metric, 12
covariant, 5	morphism, 18
covector, 8	
differential, 8	orientation, 14
dual, 15	1.7
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	projection map, 17
exterior derivative, 8, 11	pseudo-Riemannian metric,
	12
fibre, 17	pullback, 4
fibre bundle, 18	pushforward, 5
fibrewise linear, 18	1 C-11 9
flow, $\frac{4}{}$	scalar field, 3
	section, 17
Hodge star operator, 15	signature, 13
. 1 4 19 14	standard fibre, 18
inner product, 13, 14	subbundle, 17

INDEX 25

tangent bundle, 19	vector bundle, 18	
tangent space, 4	vector field, 3 volume form, 14	
total space, 17		
trivial fibre bundle, 18	wedge product, 10	