Pima2021

Long Nguyen

July 26, 2021

Mục lục

1 Mô tả bài toán						
	1.1	Bài toán 1			2	
	1.2	Bài toán 2			2	
	1.3	Rài toán 3			2	

1 Mô tả bài toán

1.1 Bài toán 1

Dữ liệu được đưa dưới dạng một danh sách các vector D chiều được ký hiệu là: $X = (\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n)^T$ với $\vec{x}_i \in \mathbb{R}^d$.

Một phân phối chuẩn nhiều chiều định nghĩa bởi vector trung bình và $\vec{\mu}$ ma trận covariance Σ . Vector ngẫu nhiên \vec{X} được gọi là tuân theo phân phối đều D chiều ký hiệu là: $\vec{X} \sim N_D(\vec{\mu}, \Sigma)$, khi đó hàm mật độ xác suất có thể được tính như công thức 1

$$f(\vec{x}; \vec{\mu}, \Sigma) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp{-\frac{1}{2} (\vec{x} - \vec{\mu}) \Sigma^{-1} (\vec{x} - \vec{\mu})^T}$$
(1)

1.2 Bài toán 2

Thầy Dũng muốn tham dự trại hè Pima 2022 ở Cape Town, Nam Phi. Tuy nhiên, do không có đường bay thẳng từ Thành phố Hồ Chí Minh đến Nam Phi nên thầy Dũng phải quá cảnh ở hai thành phố khác. Dựa vào bảng sau đây, hãy giúp thầy Dũng chọn lộ trình bay ít tốn kém nhất.

	HCM	Chia-	Singa-	Santa	San	Los	Paris	Cape
		ngmai	pore	Marta	An-	An-		Town
					tonio	geles		
HCM	-	250	176	1039	-	=	-	-
Chiangmai	-	_	-	-	1480	1565	647	-
Singapore	-	-	-	-	1733	-	546	-
Santa Marta	-	-	-	-	540	769	-	-
San Antonio	-	-	-	-	-	=	-	1103
Los Angeles	-	-	-	-	-	=	-	967
Paris	-	-	-	-	-	-	-	2016
Cape Town	-	-	-	-	-	-	-	-

Bảng 1: Bảng trọng số đường bay giữa các trạm

1.3 Bài toán 3

Sobel là một thuận toán phát hiện biên cạnh dựa theo gradient trên hướng x và y. Dưới đây là mô tả của thuật toán.

Mã giả nguồn của thuật toán

```
def sobel_edge_detection(image, filter):
import numpy as np
im_x = convolution(image, filter)
im_y = convolution(image, np.flip(filter.T, axis=0))
gradient_magnitude = np.square(im_x) + np.square(im_y)
gradient_magnitude = np.sqrt(gradient_magnitude)
gradient_magnitude *= 255.0 / gradient_magnitude.max()
return gradient_magnitude
```