Termodynamik - Slafs

Aron Granberg, Daniel Kempe, Mårten Wiman

Utvidgning

 $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T \ [\mathrm{Pa}^{-1}]$ Isobar volymutvidgningskoefficient $\alpha_V = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p [\text{K}^{-1}]$ Relativa volymändringen $\frac{dV}{V} = -\kappa \cdot dp + \alpha_V \cdot dT$

Kinetisk gasteori

m = massan per partikel [kg]Molara massan $M = mN_A$ $\nu R = N k_B$ $n = \frac{N}{V}$ $v_p = \sqrt{2} \cdot \sqrt{\frac{k_B T}{m}}$ $\langle v \rangle = \sqrt{\frac{8}{\pi}} \cdot \sqrt{\frac{k_B T}{m}}$ $v_{rms} = \sqrt{\langle v^2 \rangle} = \sqrt{3} \cdot \sqrt{\frac{k_B T}{m}}$ $\langle E_k \rangle = \frac{3k_BT}{2}$ Ekvipartitionsprincipen

Konstanter

Massenhet

Avogadros

Plancks

Boltzmanns

Gaskonstanten

Ljushastigheten

Arbete vid sömn

Stefan-Boltzmanns

Vettiga värden

Lätt arbete utvecklar vid 25% eff

Sveriges energikonsumption

Världens energikonsumption

$U = Nk_BT \cdot \frac{1}{2} \cdot (\#\text{frihetsgrader}) [J]$ Energi i enatomig gas $\begin{array}{l} U = N \frac{m \langle v^2 \rangle}{2} = \frac{3}{2} N k_B T \text{ [J]} \\ \text{Notera } N k_B T = p V \end{array}$ $pV = \frac{2}{2}U$

Medelfri väg
$$\begin{split} l &= \frac{k_B T}{\sqrt{2\pi} d^2 p} = \frac{1}{n\sigma\sqrt{2}} \\ \text{Där } d &= \text{partikelns diameter} \end{split}$$
 $\nu^* = \frac{p}{\sqrt{2\pi m k_B T}} = \frac{1}{4} n \langle v \rangle [s^{-1} m^{-2}]$ Maxwell-Boltzmanns hastighetsfördelning $n(v) = \mathbf{K} \cdot v^2 \cdot e^{-\frac{mv^2}{2k_BT}}$ om $\int n(v) = \frac{N}{V}$, dvs om normaliserat $K = 4\pi n \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}}$

Värme

 $\mathrm{J}\,\mathrm{K}^{-1}$

Js

 ${
m m\,s}^{-1}$

 $1 \quad \text{W kg}^{-1}$

W

W

 ${\rm J}\,{\rm mol}^{-1}\,{\rm K}^{-1}$

 ${
m W}\,{
m m}^{-2}\,{
m K}^{-4}$

Energi för att förändra temp. $\Delta Q = mC\Delta T$ [J] Molar isokor värmekapacitet ideal gas $C_V = \frac{1}{\nu} \frac{dU}{dT} [\text{J mol}^{-1} \hat{K}^{-1}]$ Enatomig ideal gas har $C_V = \frac{3}{2}R$

Molar isobar värmekapacitet ideal gas $C_n = C_V + R [\text{J mol}^{-1} \text{K}^{-1}]$ Molar värmekapacitet fast kropp $C_m = 3R \, [\text{J mol}^{-1} \, \text{K}^{-1}]$

Adiabiska processer

 C_p = isobara molara värmekapaciteten $C_V = isokora molara värmekapaciteten$ $\gamma = \frac{C_p}{C_V} = \frac{c_p}{c_V}$ $pV^{\gamma} = \text{konst.}$ $Tp^{(1-\gamma)/\gamma} = \text{konst.}$ $TV^{\gamma-1} = \text{konst.}$ Adiabatiskt arbete på en gas $W = -\int_0^1 p dV = \frac{p_1 V_1 - p_2 V_2}{1 - \gamma}$

Matematik

Sfär: $A = 4\pi r^2$; $V = \frac{4\pi r^3}{2}$

Värmetransport

 $\lambda = V$ ärmekonduktivitet $\alpha = V$ ärmeövergångskoefficient Ledning $U = \frac{\lambda}{d} [\text{W K}^{-1} \text{ m}^{-2}]$ Konvektion $U = \alpha \, [\text{W K}^{-1} \, \text{m}^{-2}]$ Värmemotstånd

$$\frac{1}{U} = \sum \frac{1}{U_i}$$
Värmeflöde
$$\Phi = UA (T_i - T_u)$$

 $W_V = 0$

Kom ihåg: Vid jämvikt är värmeflödet konstant, och i t.ex en vägg är värmeflödet konstant genom hela väggen.

Första huvudsatsen

Arbete på en gas dW = -pdVEnergiutbyte med omgivningen dQ = dU + pdVDerivatan av inre energi dU = dQ + dW = dQ - pdVVid isokor process $dU = \nu C_V dT$ Entalpi $H = \dot{U} + pV$ Arbete på en gas $W = -\int_{V_1}^{V_2} p dV$ Isotermt kompressionsarbete på en gas $W_T = -\nu RT \ln \left(\frac{V_2}{V_1} \right)$ Isobart kompressionsarbete på en gas $W_p = -p_2(V_2 - V_1)$ Isokort arbete på en gas

Andra huvudsatsen

Tillförs dQ reversibelt till ett system så är $dS = \frac{dQ}{T}$ Reversibel process i slutet system $\Delta S = 0$ Irreversibel process i slutet system $\Delta S > 0$

Ovrigt om entropi

 $T = 0 \Rightarrow S = 0$

W = antal möjliga mikroskopiska tillstånd $S = k_B \ln W$

Om S_A är entropi för system A och S_B entropi för system B så har S_A och S_B sett som ett enda system entropin

 $S_{A\cup B} = S_A + S_B$

Need proof $\Delta S = \nu C_V \cdot \ln \frac{T_2}{T_1} + \nu R \cdot \ln \frac{V_2}{V_1}$

Carnotprocesser

 $T_H \ge T_C$ Q_H Värme som tillförs vid T_H Q_C Värme som tillförs vid T_C $\frac{|Q_H|}{T_H} = \frac{|Q_C|}{T_C}$ $-W = Q_H + Q_C$ (termer kan vara negativa) $|W| = |Q_H| - |Q_C|$

Kemi

A +	Atomnum		Substans	C_V/R	Ämne	γ
Atom	Atomnum	mer -	He	1.52	Luft	1.4
Kol		6				
Kväve		7	H_2	2.44	CO_2	1.3
Syre		8	N^2	2.49	H_2O	1.3
Neon		10	O^2	2.51	H_2	1.4
	nte bort	att	CO	2.53		
molekyler är flera atomer						

Ämne	Densitet	$[\mathrm{kg}\mathrm{m}^{-3}]$
Kol		1050
Vatten		1000
Järn		7844
Luft		1.275
Helium		0.1785
Väte		0.0899
Nysnö		60
Packad snö		400
Is		850

 $\left(p + \frac{a_0}{v^2}\right) \cdot (v - b_0) = RT$

Van der Waals tillståndsekvation

Strålning

 $\rho = \text{reflexionsfaktor}; \tau = \text{transmissionsfaktor}$ $\nu = \text{frekvens} = \frac{c}{2}$ Svartkropp $\Rightarrow \varepsilon = 1$ $\sigma = \frac{2\pi^5 k_B^4}{15a^2 h^3}$

 $\varepsilon(\nu) + \rho(\nu) + \tau(\nu) = 1$ $\varepsilon(\nu) = \alpha(\nu)$ $\varphi = \varepsilon \sigma T^4 \, [W/m^2]$ $\Phi = A\varepsilon\sigma T^4 \text{ [W]}$ $\frac{h\nu_{max}}{k_B T} = 2.821$ $\frac{hc}{\lambda_{max}k_BT} = 4.965$ $\lambda_{max}T = 2.898 \cdot 10^{-3} \text{m K}$

Strålningsintensitet Wiens förskjutningslag frekvens

Kirchoffs lag

Strålningstäthet

Wiens förskjutningslag våglängd skippa? Wiens förskjutningslag våglängd

 $u(\nu, T) = \frac{8\pi h \nu^3}{c^3} \cdot \frac{1}{e^{\frac{h\nu}{k_B T}} - 1} [\text{J s m}^{-3}]$ Planck-fördelningen

 $U(T) = V \frac{\pi^5}{15} \cdot \frac{8h}{c^3} \left(\frac{k_B T}{h}\right)^4 [J]$ Total energi hålrumsstrålning $\varphi = \frac{1}{4V}U(T)c = \sigma T^4$

Strålningstäthet hålrumsstrålning $E = h\nu = \frac{hc}{\lambda}$ [J]

Fotonenergi

East di Sete di Veckiai Via 2070 cii.	00 10	* *
Energibehov människa (3000 kcal)	12	MJd^{-1}
Jordens radie	$6.4 \cdot 10^{6}$	m
Månens radie	$1.7 \cdot 10^{6}$	m
Sveriges area	$4.5 \cdot 10^{11}$	m^2
Värmekapacitet c_{luft}	1.007	$kJ kg^{-1} K^{-1}$
Energidensitet Li-ion batteri	0.3 - 0.9	${ m MJkg^{-1}}$
Energidensitet trä	16	${ m MJkg^{-1}}$
Energidensitet kol	24	${ m MJkg^{-1}}$
Energidensitet fett	37	${ m MJkg^{-1}}$
Energidensitet bensin	44	${ m MJkg^{-1}}$
Energidensitet uran	$8.1 \cdot 10^{7}$	${ m MJkg^{-1}}$
Sveriges elkonsumption	$1.5 \cdot 10^{10}$	W
Världens elkonsumption	$2.1 \cdot 10^{12}$	W

 \mathbf{R}

 $1.66054 \cdot 10^{-27}$

 $6.02214 \cdot 10^{23}$

 $1.38065 \cdot 10^{-23}$

 $6.62607 \cdot 10^{-34}$

299 792 458

8.3145 $5.6704 \cdot 10^{-8}$

55-75

 $7.4\cdot10^{10}$

 $1.5\cdot 10^{13}$

Tillståndsekvationer för gaser

$$\begin{split} M &= \text{molara massan [kg mol}^{-1}]; m = \text{totala massan i systemet [kg]} \\ \rho &= \frac{m}{V}; p = \frac{\rho RT}{M} = \frac{Nk_BT}{V} = \frac{\nu RT}{V}; \nu = \frac{m}{M} \\ b &\approx \text{molekylens volym}; a \approx \text{växelverkan mellan partiklar} \\ p &= \frac{Nk_BT}{V - Nb} - a\left(\frac{N}{V}\right)^2 & \text{Van der Waals tillståndsekvation} \\ b_0 &= bN_A; a_0 = aN_A^2; v = \frac{V}{V} \end{split}$$