3/9/03

Comments From Mattuck Introduction

- · Available as reading on web page
- ·Our analysis of the analytic structure of single-particle Green's functions showed that even when interactions, are strong, he can identify degrees of freedom -quasiportides-That behave much more simply than the original "bore" particles,

· Mattuck makes the analogy to a familiar example of introducing fictitious systems: treating the mosses my and my connected by a spring

If me toss it in the air, or even just let it more in one dimension on a frictionless surface, the motion of the individual masses appears to be quite complicated

- · But the motion simplifies dramatically if we concentrate on the tetitions systems
 - if the center of mass an independent body with no size with moss my+ma
- ii) a single body with reduced mass $\mu = \frac{m_1 m_2}{m_1 + m_2}$, which feels the force of the spring.

 Note that these motions completely decouple in the idealized case.

· In considering the scattering of the particles, he have a similar simplification often decomposing into the confer of mass and a particle with reduced mass in an external potential.

- Note That we still have our choice of voriables: we could use X, and xo for the two masses. It's just more complicated?

3/9/03 -Mattuck goes on to call "quasi-porticles" the Relitions bodies in a many-body system that have simply motion intuitively understood as "real" particle plus cloud of ofter particles > screening, different mass (m*), finite lifetime "In QED, a "ban" electron acquires a cloud of virtual photons 'bore particle + "clothing" = "dressed"

'clond' = "physical" renormalized particle · Conceptually, Think of adding a love particle to a system and natching it propagate (more through the system) · this is what the one-particle Greats function does for us

· if we add on electron to a reutral Coulomb system, we find goos electrons, which are electrons with a cloud of positive charges. · if dilute enough, clouds from different quasi electrons don't overlap => quasi electrons interact only weakly > explains why metals
agreeally behave as it this electrons were

independent

· note that gross particles are excited states

· There will be dissipation of the original particle plus

cloud as time goes on > the lifetime then depends on The phase space of states available. The lifetime goes to infinity at the Fermi surface, where momentum and every conservation severely limit the available states.

3/9/03

· In nuclei, despite powerful short-range forces between protons and neutrons (like an imcompressible liquid in many ways), the nucleons behave as it they make independently of each other

· shell model prediction of orbitals · electron scuttering evidence (lost week)

> not bare nuclions, but quasinucleons.

· Although quasiparticles are good degrees of freedom to deal with, their derivation from the underlying forces los specified by the Homittonian or Lagrangian) they may be prohibitively difficult to derive.

· But Fermi liquid Peory indicates that me don't need to derive the properties of the quasi particles and this interactions.

Instead we parametrize our ignorance systematically > effective mass, parameters Fo, F, Go, F,

> write most general form, fit parameters with one set of observables, then predict other observables.

of using most general Lagrangian with the

replacing the actual, complicated interaction

· You'll gain familiarity with Fermi liquid parameters in homework problem = cuply to I-d.

· Now we switch gears and go back to ground state properties . · nonperturbative systems · sportaneous symmetry breaking

3/9	103
-----	-----

The 'tool' that well use to study fless things is the effective action.

- · As an introduction we'll apply the effective action formalism in a rather unexpected may deriving the boson ground state every for a dilute gas from the dilute fermion calculation.
- · Recall that the energy density (energy per particle) for a low density, unitarm system of fermions with degeneracy of is (for spin-independent interactions):

$$E = 3 \frac{k_{f}^{2}}{2m} \left[\frac{3}{5} + (9-1)\frac{3}{3\pi}(k_{f}a_{5}) + (9-1)\frac{4}{35\pi}(1+2\ln 2)k_{f}a_{5}^{2} + ... \right]$$

· The corresponding answer for a dilute (spinless) Bose system (again, with spin-independent interaction) is:

$$E = \frac{9\pi\alpha_{s} g^{2}}{m} + \frac{2\pi\alpha_{s}}{m} g^{2} \frac{128}{15\sqrt{\pi}} \sqrt{9a_{s}^{2}} + ...,$$

- · Is there a connection? Kg x g/3, but Bose & has gs.!
 Where does that exponent come from?
- · Let's start by considering Bose and Fermi nominteracting ground states (ie. T=0). Suppose Three are 6 particles

`	J			
•		9=2	9=4	956
· K 2		_00_		
٠۲,		_00	-00	
K=0	<u>500000</u>	66	<u> </u>	<u> </u>
	Bose	Fermi	Fermi	Ferm

3/9/03 So the Bose ground state with N particles has the sure occupation numbers as a Fermi system with 93N.
"How are the wave functions related? Fermi wave function must be totally antisymmetric under particle extrenge = same spatial wave Function * totally antisymmetric spin to flower wow function. · eq. N=2, 9=2 I(x, x) = P(X, x)x(11-11) => for a noninteracting Bose system, introduce an artificial "flavor" or "color" degeneracy of and make it bigger. Than the number of particles. · Treat like Fermi system and ignore flavor wavefunction at the end. · Hen turn on the interaction > if the state that evolves adiabatically is the ground state (true for a dilute system), Then we generate the Bose interacting ground state Plan: Calculate the dilute Fermi system for arbitrary q.
Take 9 > 00 with g constant (Permodynamic limit) g=9KE constant => KE>0 => Bose ground stake · Let's try it on the diagrams of the Fermi series.
· Recall that this is a systematic expension in powers of (types). . Every additional . nears another power of the · We can count maximum powers of greasily

> And gike for any diagram.

3/9/63 Try out the first three Fermi terms	
$\left[\mathcal{E}_{0} = \frac{3}{5}\frac{K_{1}^{2}}{2m}\int_{0}^{\infty}\frac{1}{K_{1}^{2}}\frac{\partial}{\partial t}\right]$ Ok, in noninteracting Bose system condensed with $R=0$ \Rightarrow no Kin	iem etic eregy
$E_{2} = \frac{k^{2}}{2m} ((g-1)\frac{2}{3}\pi (kas)) \rho = (1-\frac{1}{9})\frac{2\pi a_{9} \rho^{2}}{m}$	exchange
9500 m V Hartree (but not fock) sur Gives known arswer.	vivs.
E= = kg (g-1) 4 (1+2ln2)(kfas) p ~ gkf ~ (gkf) kf 19200	
> no beach ball contribution.	
What about particle-particle (hole-hole) rings?	
5) Ex 92 Kg x (gkg)2 kg kgs00)	
2 x g ² kg x (gkg) ² kg = 0	
and so on. \Rightarrow all zero!	
But what about particle-hole rings?	
0.0 B) [2 × c3 kg × (9kg) /kf 100 ∞ cops!	
$\mathcal{E} \propto \mathcal{G}^4 k_f \propto \mathcal{G}(k_f^3)^4 / k_f^2 \approx \infty$ even wors	e

Plan: Problem is g > 0, so figure out how to solve the system in large g limit.

3) asymptotic expansion in 1/1.

Consider the more general integral

where fit I has an absolute minimum at t=to first one, to keep things simple.

. Expand Flt) about t=to

$$f(t) = f(t_0) + (t_0)f'(t_0) + \frac{1}{2}(t_0) + \frac{1}{2}(t_0) + \frac{1}{2}(t_0) + \frac{1}{2}(t_0)f''(t_0)$$

$$= f_0 + (t_0)f'(t_0) + \frac{1}{2}(t_0)f''(t_0) + \frac{1}{2}(t_0)f''(t_0) + \frac{1}{2}(t_0)f''(t_0)$$

$$= f_0 + (t_0)f'(t_0) + \frac{1}{2}(t_0)f''(t_0) + \frac{1}{2}(t_0)f''(t_0) + \frac{1}{2}(t_0)f''(t_0)$$

- Since to is a minimum & Fo= 0 and Fo 70)

So
$$T(l) = e^{1/2} \int_{-\infty}^{\infty} dt e^{-\frac{1}{2}f_0'(t+t_0)^2 - \frac{1}{2}\sum_{n=3}^{\infty} \frac{(t-t_0)^n f_0^{(n)}}{n!}}$$

As I gets large, the dominant part of the integral comes from the shift variables to

$$T(L) = e^{4f_0} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{f_0^{(1)}}{2}} e^{-\frac{g_0}{g_0}} \int_{0}^{\infty} \frac{f_0^{(0)}}{f_0^{(0)}}$$

as 1000, m can expand III) (or In I(1) which is really what we want) in powers of I/I.

Report exponent and do Gaussian integrals

3/9/03 Note that the Gaussian (IT) integrand gives a laterminant (1×1 in This case), which we exponentiate to get a la correction to the leading its term
· We can apply our diagrammatic expansion approach lintroduce a source term it, remove the interaction term using &, complete the square, apply the linked cluster theorem — replica method!)
> ln I(l) = -lfo+ sln(200) + E (all linked diagrams)
where the Feynman rules are
s) - (10) = 1 3 for a vertex with n legs
3) same symmetry factor as before
· Let's reproduce the 1/2 terms. To get 1/2 either: i) $3 \times (n=3)$ vertices or ii) $1 \times (n=4)$ vertex.
$(1) \qquad \left(\frac{f_{10}}{f_{10}} \right) \left(\frac{f_{10}}{f_{10}} \right)^{3} \left(1 \cdot \frac{3}{3} \right) = \frac{12}{12} \frac{f_{10}}{f_{10}}^{3} \left(\frac{1}{3} \cdot \frac{3}{3} \right)^{2} = \frac{12}{12} \frac{f_{10}}{f_{10}}^{3} $
$\left(\frac{-\xi_{0}^{(0)}}{\xi_{1}^{(0)}}\right)^{2}\left(\frac{1}{\xi_{1}^{(0)}}\right)^{3}\left(\frac{1}{\xi_{1}^{(0)}}\right)^{2}=\frac{1}{\xi_{1}^{(0)}}\left(\frac{\xi_{0}^{(0)}}{\xi_{1}^{(0)}}\right)^{3}$
$(\frac{1}{2}) \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{2} \cdot \left($

which agrees with our previous expression

· We can generalize to the complex exponent case (see Negde + Orland).
· We'll see the same structure: "classical" + "trace in" + diagrams.

39103 The effective action is found as a functional Legendre transformation of In Z[J] (where J is a source). - It can be minimized to obtain the ground state

every and is porticularly useful when we have "spontaneous symmetry breaking"
. We'll expand ZLJ] in a loop expansion" (this is the suddle-point / stationery phase expansion) that generates the large of expansion of the effective action

· Recall that we've already reviewed Legendre transformations in Aermodynamics; which relate ESFSGSD

· Consider another example, which will be a relevant chalogy when we consider pairing: a spin system with Hamiltonian 765). ·tor example: spin operator

H(5) = - INT ZS. 3, - H. ZS.

where the sums are our lattice sites, (actually just the first term is \$(5).)

· This is a highly contrived example, because we sun the interaction over all pairs of spins lunlike the Ising model, where only rearest reighbors interact). We take the exchange energy to be -J/N, so there is a Printe N-soo limit pa

- · What is the physical origin of the exchange energy? Why is it unrealistic to say it is long ranged?

The external magnetic field H acts like a source J.

•	3/9/03 The partition function Z is (dopping vectors and let $S=11$) $Z(\beta,H,N) = Z \in \beta(\frac{1}{2},\frac{1}{2},S;S;+HZS;)$ $Configurations S=1$ $d Spin - 2^{M}dr Rem! S=1$
	$Z(\beta,H,N) = Z e^{\beta(\frac{1}{2}\sqrt{2}S_iS_i + HZS_i)}$
	of spin - grid flom! - [Dis -Blox[HB]-Hslx)]
	Now the Helmholtz free energy is obtained as
A STATE OF THE PARTY OF THE PAR	$F = -\beta \ln z$ or $Z = e^{-\beta F(H)}$
1	The magnetization is the expectation value of \$551:
	$\left m = \frac{1}{2} Tr(\left z_s \right) e^{-\beta(H_s) + H z_{si}} \right = -\frac{3F(H)}{3H}$
	Now we invot the auto to the Ham)
	Now we can invert this equation to find $H = H(m)$ and define the Gibb's free energy by the Legendre transformation
April of the Samuel	$\left[G(m) = F(H(m)) + MH(m) \right]$
	rote Plat -m
	1 3 m = 3 m + H + m 3 m = H
-	50 Plat G as a Function of M is ininimized at H=O. That is, if H=O, the most stable state is the minimum
	& G(m). Suse this to study ferromagnetism!
	·F(H) and G(m) in principle have the same physical informationBut G(m) is much better to approximate.

2000

zka	١	\2
24/	W	$\mathcal{O}_{\mathcal{O}}$

- · A perturbative approximation to F(H) never predicts a ferromagnetic phase with H=0. But a perturbative approximation to G(m) does!
- · G(m) is the analog of the effective action, · We'll come back to this example next quarter when me do pairing,

For now simply ask how we would deal with evaluating Z with the inconvenient spin sum. Z. e. A very useful technique is to introduce on auxiliary field u using the Gaussian

Epan (ESi) = Coopy = NBIha + BIH Esi

Since $\sum_{i=1}^{\infty} (e^{\beta(J_{\mu}+H)} \Sigma_i S_i = \frac{N}{N} (e^{\beta(J_{\mu}+H)} + e^{\beta(J_{\mu}+H)})$

Me det 5 or au inteduol one in;

which yields the magnetization and susceptibility from derivatives of log 2 with respect to H.

- · Note the overall factor of N >> large N limit as saddle point expansion.

 e We'll return to this later: Par now let's do the
 - Fermi effective field theory.

	3/9/03
	Start with our EFT Lagrangian: (with p) shorthand here! LEFT = 4 [ist + 3m + p] 4 - & Co(4+4)2
	JEET = サインターをCの代かり2
	+ Se [Cynt (4 824 + h.c.] + Se 24 245. (4 24) +
	with $\overline{\nabla} = \overline{\nabla} - \overline{\nabla}$. Ne'll only use to here (S-function potential) Depropriate for a dilute system.
1	· By matching to 2-to-2 scattering, [G-4170].
	- The "partition function" (in minkowski space, so not really!) 2 = S& tyt, 4) e S&x [7/2 (1/2 + 2/2 + 1/2)]
	has the same complication of a quartic term as we just saw in the spin system. The same auxiliary field technique to replace that by an auxiliary scalar (bosonic) field of.
	We can do this easily using [
	which follows simply by shifting the G(X) integration in the numerator.

Note that the term proportional to (744) is equal one opposite to the one in Z.

3/9/03
2= 584,4)\$0 e [Sot 4 m(13-52) + - (00x) 4x) + 5 (0(0x)]
The can do the B(4+4) integral (with 51x) fixed) It is a Gaussian integral > determinant of the operator between 4x and 7a.
· We can identify the appositor as an inverse fermion propagator
[61(x,y) Sap = [i & + \frac{7}{2m} + \mu - Coo(x)] St(x-y) Sap
o still depends on OWI, which is integrated over.
Now use the identity [det A = eTrln A] (discussed long ago in the notes on Gaussian integrals). =[2(5) = eiw[5] = (Bo egTrln G'(x,y)) = Color (ow) eight Jax Gar
= [Z[J] = eiw[J] = (Bo e o Trln G'(x,y)) e o (btx (ow)) e ild'x Jix Ox
-we've introduced a source term Jusax) and defined WIJ so we can do a perturbative expansion, . Note that the path integral looks something like a sample path integral over 5 we introduced earlier in the apparter, but with a strange entring (x, w) term. . The a comes from the spin/flavor trace and to means a trace over space-time (think in terms of discretizing space and time > matrices).
The scale Co-colg and o=90', then there is a single overall g factor in the exponent => stationary phase approximation as g >00

(1) 5 (1) 5
39/13 :- WIJ is analogous to F(H), so do a Legendre transformation analogously.
whe define the classical Pull Ock) [A magnetization] in the presence of Jix) to be the ground stake expectation value of QX):
(25 d/w2i-=(15 w25=-1-2 (07/100/P)=100)
= <u>87(x)</u> = 8MJ]
· Then the effective action" [Too] is defined by the Functional Legendre transformation!

Tel is defined by the

[[[6] = M[2] - [9] ZXIOSK)

where we have inverted of SW to obtain J[OCK]

so for a vanishing source J=0, which is the physical state, we have STLGO _ 1

and solutions to this equation represent the stable quantum states.

3/9/03
At the minimum of [with Jx1=0] of a <u>uniform</u>
system, the energy density E of the ground state
is related to the effective action by

[[0]]²⁼⁰ = - NIE

where VT is the space-time volume.

more generally, at finite don's try we must examine spatially dependent of to find the absolute ground state.

·Ok, so what do we do? We can't carry out the Legendre transformation on the full W. Scorry out the saddle point evaluation.

· Write [0=0=+ 1] and expand in quantum fluctuations of about the classical field (& t=to+7)

- We'll derive this result next time:

where

$$G_{h}'(x,y) = [if + f_{m} + \mu - C_{0}G_{c}(x)] f_{c}'(x-y)$$

 $G_{h}'(x,y) = -iC_{0}f_{c}'(x-y) + gC_{0}G_{h}(x,x)G_{h}(x,y)$