INTRODUCCIÓN A LA TRANSFORMADA Z

García, L.(2012). Control Digital Teoría y Práctica. Medellín: Politécnico Colombiano Jaime Isaza Cadavid.

COMPETENCIA DE LA UNIDAD TEMÁTICA

• Aplica las transformadas Z y de Laplace utilizando las tablas de transformadas, así como herramientas computacionales, llegando a obtener las bases para el desarrollo de un modelo matemático asociado a un sistema de control digital.

SECCIONES DE LA UNIDAD

- 2.1 Transformada z de funciones sencillas.
- 2.2 Propiedades de la transformada z.
- 2.3 Transformada z inversa.
- 2.4 La transformada z modificada.

2. INTRODUCCIÓN A LA TRANSFORMADA Z

- La transformada z, en sistemas discretos en el tiempo, desempeña un papel muy similar al de la transformada de Laplace en los sistemas continuos en el tiempo.
- La transformada de Laplace de una función, está definida como:

$$X(S) = F(S) = \int_0^\infty x(t)e^{-St} dt$$
 2.1

• Cualquier función continua , muestreada periódicamente, se puede expresar matemáticamente, para $t \ge 0$, mediante la ecuación:

$$x^*(t) = \sum_{k=0}^{\infty} x(kT)\delta(t - kT)$$
 2.2

Si se desarrolla la sumatoria planteada en la ecuación anterior se obtiene:

$$x^{*}(t) = x(0)\delta(t) + x(T)\delta(t - T) + x(2T)\delta(t - 2T) + \cdots$$
 2.3

• Al tomar la transformada de Laplace a la última expresión resulta:

$$X^*(S) = x(0) + x(T)e^{-TS} + x(2T)e^{-2TS} + \cdots$$

• Es decir:

$$X^*(S) = \sum_{k=0}^{\infty} x(kT)e^{-kTS}$$
2.4

• Si se introduce ahora una nueva variable z definida como:

$$z = e^{TS}$$
 o $S = \frac{1}{T} \ln(z)$

La ecuación 2.4 se puede escribir en la siguiente forma:

$$X^*(S)|_{S=\frac{1}{T}\ln(z)} = \sum_{k=0}^{\infty} x(kT)z^{-k}$$
 2.5

• Haciendo ahora:

$$X^*(S)\big|_{S=\frac{1}{T}\ln(z)} = X(z)$$

Se obtiene:

$$X(z) = \Im[x(t)] = \sum_{k=0}^{\infty} x(kT)z^{-k}$$
 2.6

- La ecuación 2.6 se define como la transformada z de la función continua x(t).
- Así mismo, para una secuencia de números x(k), la transformada z es:

$$X(z) = \Im[x(k)] = \sum_{k=0}^{\infty} x(k)z^{-k}$$
 2.7

2.1 TRANSFORMADA Z DE FUNCIONES SENCILLAS

□2.1.1 Transformada z de la función escalón unitario

Esta función se define como:

$$x(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

Por definición:

$$X(z) = \Im[x(t)] = \sum_{k=0}^{\infty} x(kT)z^{-k} \qquad \text{Pero:} \qquad x(kT) = 1$$

$$X(z) = \sum_{k=0}^{\infty} z^{-k} = 1 + z^{-1} + z^{-2} + z^{-3} + \cdots$$

$$X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$

□2.1.2 Transformada z de la función rampa

Esta función se define como:

$$x(t) = \begin{cases} At & t \ge 0 \\ 0 & t < 0 \end{cases}$$

• En este caso: x(kT) = AkT para k = 0, 1, 2, ..., entonces:

$$X(z) = \sum_{k=0}^{\infty} x(kT)z^{-k} = \sum_{k=0}^{\infty} AkTz^{-k} = AT \sum_{k=0}^{\infty} kz^{-k}$$

$$X(z) = AT(z^{-1} + 2z^{-2} + 3z^{-3} + \dots) = ATz^{-1}(1 + 2z^{-1} + 3z^{-2} + \dots)$$

$$X(z) = \frac{ATz^{-1}}{(1 - z^{-1})^2} = \frac{ATz}{(z - 1)^2}$$

□2.1.3 Transformada z de la función exponencial

Esta función se define como:

$$x(t) = \begin{cases} e^{-at} & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$X(z) = \sum_{k=0}^{\infty} x(kT)z^{-k} = \sum_{k=0}^{\infty} e^{-akT} z^{-k}$$

$$X(z) = 1 + e^{-aT} z^{-1} + e^{-2aT} z^{-2} + e^{-3aT} z^{-3} + \cdots$$

$$X(z) = \frac{1}{1 - e^{-aT} z^{-1}} = \frac{z}{z - e^{-aT}}$$

□2.1.4 Transformada z de la función polinomial

Esta función se define como:

$$x(k) = \begin{cases} a^k & k = 0, 1, 2 \\ 0 & k < 0 \end{cases}$$

Aplicando la ecuación 2.7:

$$X(z) = \sum_{k=0}^{\infty} x(k)z^{-k} = \sum_{k=0}^{\infty} a^k z^{-k}$$

$$X(z) = 1 + az^{-1} + a^2 z^{-2} + a^2 z^{-2} + \cdots$$

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

MATLAB

 El cálculo de la transformada Z, para obtener una expresión en el dominio de z de una secuencia de datos discretos, se realiza con la expresión:

$$X(z) = Z[x(n)] = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

- En MATLAB, esta transformación se obtiene mediante el comando **ztrans**.
- Al igual que en la transformada de Laplace, la variable z, debe definirse como símbolo para obtener su transformada.

```
% escalón unitario como función simbólica
>> escalon_z=sym('1');
>> ztrans(escalon_z)
                          % obtención de la transformada Z
ans =
z/(z-1)
>> syms n T
                          % creación de n y T como símbolos
>> rampa_z=n^*T;
                          % rampa discreta como función simbólica
>> ztrans(rampa z)
                          % obtención de la transformada Z
ans =
T*z/(z-1)^2
                          % creación de la secuencia discreta x1=5^n nT
>> x1=5^n^*n^*T;
>> X1 = ztrans(x1)
                          % obtención de la transformada Z
X1 =
1/5*T*z/(1/5*z-1)^2
>> pretty(X1)
```


Tabla 2.1 Transformada z de funciones prácticas

	f(t)	f(kT)	F(S)	F(z)			1		
Nº	F. Continua	F. Discreta	T. de Laplace	Transformada z	9	sin(bt)	sin(bkT)	$\frac{b}{S^2 + b^2}$	$\frac{zsin(bT)}{z^2 - 2zcos(bT) + 1}$
1	$\delta(t)$	$\delta(kT)$	1	1	40	4.5		S	$z^2 - zcos(bT)$
2	u(t)	u(kT)	$\frac{1}{S}$	$\frac{z}{z-1}$	10	cos(bt)	cos(bkT)	$\overline{S^2 + b^2}$	$\overline{z^2 - 2zcos(bT) + 1}$
3	t	kT	$\frac{1}{S^2}$	$\frac{Tz}{(z-1)^2}$	11	$e^{-at}sin(bt)$	e ^{−akT} sin(bkT)	$\frac{b}{(S+a)^2+b^2}$	$\frac{ze^{-aT}sinbT}{z^2 - 2ze^{-aT}cosbT + e^{-2aT}}$
4	t ²	(kT) ²	$\frac{2}{S^3}$	$\frac{T^2z(z+1)}{(z-1)^3}$	12	e ^{-at} cos(bt)	e ^{-akT} cos(bkT)	$\frac{S+a}{(S+a)^2+b^2}$	$\frac{z^2 - ze^{-aT}cosbT}{z^2 - 2ze^{-aT}cosbT + e^{-2aT}}$
5	t^3	$(kT)^3$	6 S ⁴	$\frac{T^3z(z^2+4z+1)}{(z-1)^4}$	13	$1-e^{-at}$	$1 - e^{-akT}$	$\frac{a}{S(S+a)}$	$\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$
6	e ^{-at}	e ^{-akT}	$\frac{1}{S+a}$	$\frac{z}{z - e^{-aT}}$	14	$1-(1+at)e^{-at}$	$1 - (1 + akT)e^{-akT}$	$\frac{a^2}{S(S+a)^2}$	$\frac{1}{z-1} - \frac{z}{z - e^{-aT}} - \frac{aTe^{-aT}}{(z - e^{-aT})}$
7	te ^{-at}	kTe^{-akT}	$\frac{1}{(S+a)^2}$	$\frac{Te^{-aT}z}{(z-e^{-aT})^2}$	15	$e^{-at} - e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{b-a}{(S+a)(S+b)}$	$\frac{(e^{-aT} - e^{-bT})z}{(z - e^{-aT})(z - e^{-bT})}$
8	t^2e^{-at}	$(kT)^2e^{-akT}$	$\frac{2}{(S+a)^3}$	$\frac{T^2 e^{-aT} z (z + e^{-aT})}{(z - e^{-aT})^3}$	16	$be^{-bt} - ae^{-at}$	$be^{-bkT} - ae^{-akT}$	$\frac{(b-a)S}{(S+a)(S+b)}$	$\frac{[(b-a)z - (be^{-aT} - ae^{-bT})]z}{(z - e^{-aT})(z - e^{-bT})}$
									I .

Tabla 2.1 Transformada z de Funciones Prácticas (Continuación)

Nº	f(t)	f(kT)	F(S)	F(z)						
1	F. Continua	F. Discreta	T. de Laplace	Transformada z						
17	$(1-at)e^{-aT}$	$(1-akT)e^{-akT}$	$\frac{S}{(S+a)^2}$	$\frac{[z - (1 + aT)e^{-aT}]z}{(z - e^{-aT})^2}$	-					
18	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{a^2}{S^2(S+a))}$	$\frac{[(aT-1+e^{-aT})z+(1-e^{-aT}-aT)]}{(z-1)^2(z-e^{-aT})}$	$Te^{-aT})]i$	1				
19		a^k		$\frac{z}{z-a}$	25	1	a ^k cos(kn	r)		$\frac{z}{z+a}$
20		$a^{k-1} k \ge 1$		$\frac{1}{z-a}$	26		$k(k-1)a^{k}$	r-2		$\frac{2z}{(z-a)^3}$
21		ka ^{k−1}		$\frac{z}{(z-a)^2}$	27		k(k-1) ··· (k-n	n+2)		$\frac{z(m-1)!}{(z-1)^m}$
22		k^2a^{k-1}		$\frac{z(z+a)}{(z-a)^3}$			1			(Az+B)z
23		$k^3 a^{k-1}$		$\frac{z(z^2 + 4az + a^2)}{(z - a)^4}$	28	$A = \frac{b(1 - e^{-aT}) - a(1 - b^{T})}{ab(b - a)}$		^T)	$B = \frac{ae^{-aT}(1 - e^{-aT})(z - e^{-bT})}{ab(b - a)}$	
24		$(-a)^k$		$\frac{z}{z+a}$					<i>D</i> =	ab(b-a)
				z + u	29	$1 - e^{-at}(cosb$	$t + \frac{a}{b}sinbt$	$\frac{a^2 + 1}{S[(S + a)]}$		$\frac{(Az+B)z}{(z-1)(z^2-2ze^{-aT}cosbT+e^{-2aT})}$
						$A = 1 - e^{-c}$	$aT cosbT - \frac{a}{b}e^{-\frac{a}{b}}$	-a ^T sinbT	$B = e^{-2}$	$\frac{1}{a^{2}aT} + \frac{a}{b}e^{-aT}sinbT - e^{-aT}cosbT$

□Ejemplo 2.1

 Aplicando la definición de transformada z, hallar la transformada z de la función descrita por:

$$x(t) = te^{-at} t \ge 0$$

□Solución:

$$X(z) = \sum_{k=0}^{\infty} kTe^{-akT}z^{-k} = T\sum_{k=0}^{\infty} Ke^{-akT}z^{-k}$$

$$X(z) = T(e^{-aT}z^{-1} + 2e^{-2aT}z^{-2} + 3e^{-3aT}z^{-3} + \cdots)$$

$$X(z) = Te^{-aT}z^{-1}(1 + 2e^{-aT}z^{-1} + 3e^{-2aT}z^{-2} + \cdots)$$

$$X(z) = \frac{Te^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2} = \frac{Te^{-aT}z}{(z - e^{-aT})^2}$$

Command Window

□Ejemplo 2.2

Hallar la transformada z de:

$$X(S) = \frac{4}{S(S+4)}$$

□Solución:

- Cuando se da una función en términos de S y se desea evaluar su transformada z, se puede transformar X(S) en x(t) y hallar la transformada z de x(t).
- Ahora bien, si se dispone de una tabla de transformada z, se puede expandir X(S) en fracciones parciales y utilizando la tabla se evalúa X(z).
- Para el ejemplo propuesto:

$$X(S) = \frac{4}{S(S+4)} = \frac{1}{S} - \frac{1}{S+4}$$

De las tablas:

$$\Im\left\{\frac{1}{S}\right\} = \frac{z}{z-1}$$

$$\Im\left\{\frac{1}{S+4}\right\} = \frac{z}{z - e^{-4T}}$$

• Es decir:

$$X(z) = \frac{z}{z - 1} - \frac{z}{z - e^{-4T}} = \frac{(1 - e^{-4T})z}{(z - 1)(z - e^{-4T})}$$

• La ubicación del polo $z - e^{-4T}$, depende del valor del periodo de muestreo.

Command Window

2.2 PROPIEDADES DE LA TRANSFORMADA Z

• El uso de las propiedades de la transformada z facilita la evaluación de la transformada z de una función así como el análisis de sistemas de control en tiempo discreto.

□ 2.2.1 Multiplicación por una constante

• Si X(z) es la transformada z de x(t), entonces:

$$\Im\{ax(t)\} = a\Im\{x(t)\} = aX(z)$$

2,8

2.2.2 Propiedad de linealidad

• Si X(z) es la transformada z de x(t) y Y(z) es la transformada z de y(t), entonces:

$$\Im\{ax(t) + by(t)\} = aX(z) + bY(z)$$
2.9

$lue{}$ 2.2.3 Multiplicación por a^k

• Si X(z) es la transformada z de x(t), entonces:

$$\Im\{a^k x(t)\} = X\left(\frac{z}{a}\right)$$
 2.10

□2.2.4 Propiedad de translación

• Si se tiene que X(z) es la transformada z de x(t) y que x(t) = 0 para t < 0, entonces:

$$\Im\{x(t-nT)\} = z^{-n}X(z)$$
2.11

□Ejemplo 2.3

• Hallar la transformada z de la función: x(t) = 4u(t - 3T)

■Solución

• En este caso se aplica la propiedad de traslación y la propiedad de multiplicación por una constante.

$$X(z) = \Im\{4u(t - 3T)\} = 4\Im\{u(t - 3T)\} = 4z^{-3}\Im\{1\}$$
$$X(z) = 4z^{-3}\left(\frac{z}{z - 1}\right) = \frac{4}{z^2(z - 1)}$$


```
Command Window

>> X=ztrans(4*sym('1'));
>> pretty(X)
4 z
----
z - 1

>> n=3;
>> Xz=z^(-n)*X;
>> pretty(Xz)
4
------
2
z (z - 1)
```

□ 2.2.5 Propiedad de la traslación compleja

• Si X(z) es la transformada z de x(t), entonces:

$$\Im\{e^{-at}x(t)\} = X(ze^{aT})$$

□Ejemplo 2.5

• Hallar la transformada z de la función: $x(t) = t^2 e^{-3t}$

□Solución:

• Utilizando la tabla de transformada z se obtiene:

$$\Im\{t^2\} = \frac{T^2 z(z+1)}{(z-1)^3}$$

$$\Im\{t^2e^{-3t}\} = X(ze^{aT}) = X(ze^{3T})$$

• Reemplazando z por ze^{3T} resulta:

$$\Im\{t^2 e^{-3t}\} = \frac{T^2 e^{3T} z (z e^{3T} + 1)}{(z e^{3T} - 1)^3}$$

□ 2.2.6 Teorema del valor inicial

• Si X(z) es la transformada z de x(t), el valor inicial, x(0) de x(t) o x(k) de está dado por:

$$x(0) = \lim_{t \to 0} x(t) = \lim_{z \to \infty} X(z)$$

■ 2.2.7 Teorema del valor final

• Si X(z) es la transformada z de x(t), el valor $x(\infty)$ de x(t) de está dado por:

$$x(\infty) = \lim_{t \to \infty} x(t) = \lim_{z \to 1} (z - 1)X(z)$$
 2.16

2,15

Ejemplo 2.6

 Determinar el valor inicial y el valor final de la función cuya transformada z está dada por:

$$X(z) = \frac{(1 - e^{-3T})z}{(z - 1)(z - e^{-3T})}$$

Solución

a) Para el valor inicial se tiene:

$$x(0) = \lim_{z \to \infty} X(z) = \lim_{z \to \infty} \frac{(1 - e^{-3T})z}{(z - 1)(z - e^{-3T})} = 0$$

b) Para el valor final se tiene:

$$x(\infty) = \lim_{z \to 1} (z - 1) X(z) = \lim_{z \to 1} (z - 1) \frac{(1 - e^{-3T})z}{(z - 1)(z - e^{-3T})} = 1$$

Command Window

```
>> syms z T

>> Xz=(z*(1-exp(-3*T)))/((z-1)*(z-exp(-3*T)));

>> limit(Xz,z,0)

ans =

0

>> limit((z-1)*Xz,z,1)

ans =
```


• En efecto, la función x(t) correspondiente a la función X(z) es: $x(t) = 1 - e^{-3t}$

por lo tanto:

$$x(0) = \lim_{t \to 0} (1 - e^{-3t}) = 0$$
 $x(\infty) = \lim_{t \to \infty} (1 - e^{-3t}) = 1$

• En la tabla 2.2 se dan algunas de las propiedades fundamentales de la transformada z.

Tabla 2.2 Propiedades de la Transformada z

N°	$x(t) \circ x(kT)$	Transformada z
1	ax(t)	aX(z)
2	ax(t) + by(t)	aX(z) + bY(z)
3	x(t+T) ó $x(k+1)$	zX(z)-zx(0)
4	x(t+2T)	$z^2X(z) - z^2x(0) - zx(T)$
5	x(k+2)	$z^2X(z) - z^2x(0) - zx(1)$
6	x(t+kT)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(T) - \cdots zx(kT - T)$
7	x(t-k)	$z^{-k}X(z)$
8	x(n+k)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(1) - \cdots zx(k-1)$
9	x(n-k)	$z^{-k}X(z)$
10	$e^{-at}x(t)$	$X(ze^{-aT})$
11	$e^{-ak}x(k)$	$X(ze^a)$
12	$a^k x(k)$	$X\left(\frac{z}{a}\right)$
13	tx(t)	$-T\frac{d[X(z)]}{dz}$
14	x(0)	$\lim_{z\to\infty}X(z)$
15	<i>x</i> (∞)	$\lim_{z\to 1}[(z-1)X(z)]$

2.3 TRANSFORMADA Z INVERSA

- La transformada z inversa de una función X(z) da como resultado la función muestreada $x^*(t)$ y no la función continua x(t).
- Al evaluar la transformada z inversa se obtienen los valores de la función x(k) en los instantes de muestreo para $k=0,1,2\dots$
- En consecuencia, la función muestreada x(k) obtenida a partir de la transformada z inversa es única pero, es posible que exista más de una función continua x(t) a partir de la cual se pueda derivar la misma función x(k).

• La notación para la transformada z inversa de una función X(z) es:

$$x(k) = \Im^{-1}\{X(z)\}$$
 2.17

- Existen diferentes métodos para evaluar la transformada z inversa, entre ellos están:
- > Método de la división larga o método directo.
- > Método de la expansión en fracciones parciales.
- > Método de la integral de inversión.
- >Método computacional.

■2.3.4 Método Computacional

- Este método utiliza software mediante el cual es posible obtener la transformada z inversa bien sea en forma de serie infinita de potencias o en forma de una expresión matemática específica.
- En el caso del **MATLAB**; la transformada z inversa se evalúa obteniendo la respuesta del sistema al impulso unitario.
- En este caso la entrada está dada por:

$$u = [1 zeros(1, N)]$$
 2.29

- En donde N corresponde al último periodo de muestreo deseado para la observación de la respuesta.
- A continuación se presenta un programa en MATLAB que permite evaluar la transformada z inversa.

□Ejemplo 2.13

Utilizando MATLAB, determinar la transformada z inversa de:

$$G(z) = \frac{2z^{-3}}{(1-z^{-1})(1-0.5z^{-1})}$$

□Solución:

 $\triangleright G(z)$ se puede escribir en la como:

$$G(z) = \frac{2}{z^3 - 1.5z^2 + 0.5z}$$

> El programa en MATLAB para evaluar la transformada z inversa es:

```
>> % Transformada z inversa
% Introducir el numerador y el denominador
n=[0 0 0 2];
d=[1 -1.5 0.5 0];
u=[1 zeros(1,20)];
y=filter(n,d,u)
```


>Al ejecutar el programa se obtiene el siguiente resultado:

```
у =
 Columns 1 through 11
                                 2.0000
                                                     3.5000
                                                               3.7500
                                                                         3.8750
                                           3.0000
                                                                                   3.9375
                                                                                             3.9688
                                                                                                       3.9844
  Columns 12 through 21
    3.9922
             3.9961
                       3.9980
                                 3.9990
                                           3.9995
                                                     3.9998
                                                               3.9999
                                                                         3.9999
                                                                                   4.0000
                                                                                             4.0000
```


Para obtener la respuesta correcta, es necesario que el numerador n, y el denominador d, se introduzcan al MATLAB con el mismo número de coeficientes, por esta razón se introdujo $n = [0\ 0\ 0\ 2]$ y no n = [2] como sería lo más fácil.

>Si se desea graficar la respuesta al impulso unitario se puede utilizar el siguiente

programa:

```
% Transformada z inversa.
% Gráfica de la respuesta al impulso unitario.
n=[0 0 0 2];
d=[1 -1.5 0.5 0];
u=[1 zeros(1,20)];
k=0:20;
y=filter(n,d,u);
stem(k,y)
title('RESPUESTA AL IMPULSO UNITARIO')
xlabel('k')
ylabel('y(k)')
```


Desarrollo usando la librería de matemática simbólica.

```
clc
syms z
disp('Ejemplo 2.13 con matemática simbólica')
Y=2/((z^3)-(1.5*z^2)+(0.5*z));
disp('Y=')
pretty(vpa(Y,2))
y=iztrans(Y);
disp('la Z-1 de Y es y= ')
pretty(y)
disp('A partir del resultado anterior se construye la señal a graficar')
n=0:20;
imp0= n==0; %Función impulso unitario en tiempo n = 0
impl= n==1; %Función impulso unitario en tiempo n = 1
y1=(4*imp1)-(16*(1/2).^n)+(12*imp0)+4;
stem(n,y1)
```


Command Window

La figura 2.1 muestra el resultado que se obtiene al graficar la transformada z inversa de la función dada.

Figura 2.1 Respuesta al impulso unitario

• El cálculo de la transformada inversa, que permite obtener la secuencia discreta a partir de la expresión racional en z, se realiza mediante el comando **iztrans**.

```
>> syms z

>> Y5=z/(z-0.5)/(z-0.8);  % creación de la función simbólica Y5

>> pretty(Y5)

z
(z - 1/2) (z - 4/5)

>> y5=iztrans(Y5)  % obtención de la transformada Z inversa y5 = 10/3*(4/5)^n-10/3*(1/2)^n

>> pretty(y5)

n n n n n 10/3 (4/5) - 10/3 (1/2)
```



```
clc
syms z
Y5=z/(z-0.5)/(z-0.8);
'Y5= '
pretty(Y5)
y5=iztrans(Y5);
y5=simplify(y5);
'y5= '
pretty(vpa(y5,2))
'A partir del resultado anterior se construye el vector n de 21 muestras'
n=0:20;
y=3.3*((0.8.^n)-(0.5.^n));
stem(n,y)
```

```
Y5=
ans =
y5=
3.3 0.8 - 3.3 0.5
ans =
A partir del resultado anterior se construye el vector n de 21 muestras
```


2.4 LA TRANSFORWADA Z MODIFICADA

- La transformada z modificada se utiliza cuando la función de transferencia de un sistema que se analiza, presenta un determinado tiempo muerto o retardo θ' .
- Asumiendo que la función de transferencia del sistema está dada por:

$$G_pS) = G(S)e^{-\theta'S}$$
 2.30

• En donde G(S) no contiene tiempo muerto y θ' es el tiempo muerto, el procedimiento para evaluar la transformada z de esta función es el siguiente:

Sea:

$$\theta' = NT + \theta \tag{2.31}$$

• En donde T es el periodo de muestreo y N es la parte entera del cociente:

$$N = \frac{\theta'}{T}$$
 2.32

• Sustituyendo la ecuación 2.31 en la ecuación 2.30 se obtiene:

$$G_pS) = G(S)e^{-(NT+\theta)S}$$
 2.33

Tomando la transformada z a la ecuación 2.33:

$$G_p(z) = \Im \{G(S)e^{-(NT+\theta)S}\}\$$

• Es decir:

$$G_n(z) = z^{-N} \Im \{G(S)e^{-\theta S}\}$$
2.34

- El término $\Im\{G(S)e^{-\theta S}\}$ se define como la transformada z modificada de G(S) y se denota por: $\Im_m\{G(S)\}=G(z,m)$
- Entonces:

$$G_p(z) = z^{-N} \mathfrak{I}_m \{G(S)\} = z^{-N} G(z, m)$$
 2.35

• En donde:

$$m = 1 - \frac{\theta}{T}$$
 2.36

• En la tabla 2.3 se da la transformada z modificada de algunas funciones prácticas.

Tabla 2.3 Transformada z modificada

Nº	f(t)	F(kT)	F(S)	F(z) Modificada
1	u(t)	U(kT)	$\frac{1}{S}$	$\frac{1}{z-1}$
2	t	kT	$\frac{1}{S^2}$	$\frac{mT}{z-1} - \frac{T}{(z-1)^2}$
3	t^2	$(kT)^2$	$\frac{2}{S^3}$	$T^{2}\left[\frac{m^{2}}{z-1} + \frac{2m+1}{(z-1)^{2}} + \frac{2}{(z-1)^{3}}\right]$
4	t^{n-1}	$(kT)^{n-1}$	$\frac{(n-1)!}{S^n}$	$\lim_{a \to 0} (-1)^{n-1} \frac{\partial^{n-1}}{\partial a^{n-1}} \left[\frac{e^{-amT}}{z - e^{-aT}} \right]$
5	e ^{-at}	e^{-akT}	$\frac{1}{S+a}$	$\frac{e^{-amT}}{z - e^{-aT}}$
6	te ^{-at}	$(kT)e^{-akT}$	$\frac{1}{(s+a)^2}$	$\frac{Te^{-amT}[e^{-aT} + m(z - e^{-aT})]}{(z - e^{-aT})^2}$
7	$1-e^{-at}$	$1-e^{-akT}$	$\frac{a}{S(S+a)}$	$\frac{1}{z-1} - \frac{e^{-amT}}{z - e^{-aT}}$

8	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{a^2}{S^2(S+a)}$	$\frac{aT}{(z-1)^2} + \frac{amT - 1}{z - 1} + \frac{e^{-amT}}{z - e^{-aT}}$
9	$1 - (1 + at)e^{-at}$	$1 - (1 + akT)e^{-akT}$	$\frac{a^2}{S(S+a)^2}$	$\frac{1}{z-1} - \left[\frac{1 + amT}{z - e^{-aT}} + \frac{aTe^{-aT}}{(z - e^{-aT})^2} \right]$
10	$e^{-at} - e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{b-a}{(S+a)(S+b)}$	$\frac{e^{-amT}}{z - e^{-aT}} - \frac{e^{-bmT}}{z - e^{-bT}}$
11	sin(bt)	sin(bkT)	$\frac{b}{S^2 + b^2}$	$\frac{z \cdot sin(bmT) + sin(1-m)bT}{z^2 - 2zcos(bT) + 1}$
12	cos(bt)	cos(bkT)	$\frac{S}{S^2 + b^2}$	$\frac{z \cdot cos(bmT) - cos(1-m)bT}{z^2 - 2zcos(bT) + 1}$
13	e ^{-at} sin(bt)	$e^{-akT}sin(bkT)$	$\frac{b}{(S+a)^2+b^2}$	$\frac{[z.sin(bmT) + e^{-aT}sin(1-m)bT]e^{-amT}}{z^2 - 2ze^{-aT}cos(bT) + e^{-2aT}}$
14	$e^{-at}cos(bt)$	$e^{-akT}cos(bkT)$	$\frac{S+a}{(S+a)^2+b^2}$	$\frac{[z, cos(bmT) + e^{-aT}sin(1-m)bT]e^{-amT}}{z^2 - 2ze^{-aT}cos(bT) + e^{-2aT}}$

□Ejemplo 2.15

> Hallar la transformada z de la función:

$$G_p(S) = \frac{5e^{-1.3S}}{(S+3)^2}$$

 \triangleright Asumir que el periodo de muestreo es T=1s.

■Solución

> Utilizando las ecuaciones 2.31, 2.32 y 2.36 se obtiene:

$$N = \frac{\theta'}{T} = \frac{1.3}{1} = 1$$
 (Se toma sólo la parte entera del cociente)
$$\theta = \theta' - NT = 1.3 - 1 = 0.3$$

$$m = 1 - \frac{\theta}{T} = 1 - \frac{0.3}{1} = 0.7$$

 Utilizando la tabla 2.3 se encuentra que:

$$\Im\left\{\frac{1}{(S+a)^2}\right\} = \frac{Te^{-amT}[e^{-aT} + m(z - e^{-aT})]}{(z - e^{-aT})^2}$$

• Utilizando la ecuación 2.34 con N = 1y con $G(S) = 5/(S+3)^2$ obtiene:

$$G_p(z) = z^{-1} \Im_m \left\{ \frac{5}{(S+3)^2} \right\} = \frac{5 * 0.12245[0.04978 + 0.7(z - 0.04978)]}{(z - 0.04978)^2}$$

Simplificando:

$$G_p(S) = \frac{0.42857(z + 0.02133)}{(z - 0.04978)^2}$$

Command Window

BIBLIOGRAFÍA

- García, L.(2012). Control digital teoría y práctica; capítulo 2. Introducción a la transformada z. Medellín: Politécnico Colombiano "Jaime Isaza Cadavid"
- Signatura. 629.895 G21co