22 февраля 2012 г. (день 5), обе лиги

Задача А. Арифметическая прогрессия

 Имя входного файла:
 a.in

 Имя выходного файла:
 a.out

 Ограничение по времени:
 1 с

 Ограничение по памяти:
 256 Мб

Требуется найти арифметическую прогрессию из натуральных чисел a_1, a_2, \ldots, a_n , с разностью d, обладающую свойством: a_k^2+1 — простое при всех $k=1,2,\ldots,n$. Среди всех таких прогрессий следует выбрать ту, которая состоит из максимального числа элементов.

Разность прогрессии d означает, что для всех $k=2,3,\ldots,n$ выполняется $a_k-a_{k-1}=d$.

Формат входного файла

Входной файл содержит несколько тестов. В каждой строке записано целое число d — разность прогрессии ($1 \le d \le 9999$). В десятичной записи числа d цифра 0 не встречается. Все числа во входном файле различны.

Формат выходного файла

Для каждого теста выведите в выходной файл по одной строке, содержащей два числа. Первое число — максимальная длина арифметической прогрессии. Второе число — её первый элемент. Среди всех прогрессий максимальной длины выберите прогрессию с наименьшим первым элементом.

Пример

a.in	a.out
6	3 4
311	1 1

22 февраля 2012 г. (день 5), обе лиги

Задача В. Мирные кони

 Имя входного файла:
 b.in

 Имя выходного файла:
 b.out

 Ограничение по времени:
 3 с

 Ограничение по памяти:
 256 Мб

Рассмотрим следующую задачу. Есть стандартная шахматная доска размером 8 на 8 клеток. Необходимо расставить на ней N коней, так, чтобы они не били друг друга, при условии, что на i-ой горизонтали должно стоять ровно r_i коней, а на j-ой вертикали должно стоять ровно c_j коней, где сумма всех r_i равна сумме всех c_j и равна N. Шахматный конь — это фигура, ход которой состоит в перемещении её на две клетки в горизонтальном или вертикальном направлении, а затем ещё на одну — в перпендикулярном направлении. Считается, что под боем находятся только те клетки, в которых конь может закончить свой ход. В каждой клетке может стоять не более одного коня.

Требуется по заданным значениям r_i найти такие значения для c_j , чтобы исходная задача имела ровно одно решение.

Формат входного файла

В первой строке входного файла записаны восемь чисел — $r_1, r_2, \ldots, r_8 \ (0 \le r_i \le 8)$.

Формат выходного файла

В выходной файл выведите через пробел искомые восемь чисел — c_1, c_2, \ldots, c_8 ($0 \le c_j \le 8$). Если невозможно подобрать требуемым образом эти числа, то выведите через пробел восемь чисел —1. Если подходящих ответов несколько, то выведите из них наименьший лексикографически (т.е. с минимально возможным значением c_1 , если таких несколько, то с минимально возможным значением c_2 и т.д.).

Примеры

b.in	b.out
3 3 3 3 3 3 3	0 8 0 0 8 0 0 8
4 4 4 4 4 4 4 4	-1 -1 -1 -1 -1 -1 -1
2 3 4 3 2 3 4 3	0 2 4 2 4 4 4 4

22 февраля 2012 г. (день 5), обе лиги

Задача С. Четыре точки

 Имя входного файла:
 с.in

 Имя выходного файла:
 c.out

 Ограничение по времени:
 1 с

 Ограничение по памяти:
 256 Мб

На плоскости заданы четыре точки. Требуется построить окружность, равноудалённую от всех этих точек. Расстояние от точки A до окружности — это минимальное из расстояний от точки A до какой-либо точки B, лежащей на этой окружности.

Формат входного файла

В первой строке входного файла содержится одно число T — количество тестов ($1 \le T \le 10^4$). В каждой из следующих T строк записаны координаты четырёх точек x_1 , y_1 , x_2 , y_2 , x_3 , y_3 , x_4 , y_4 — целые числа, не превосходящие 100 по абсолютному значению.

Формат выходного файла

Для каждого теста выведите в отдельной строке число K — количество различных окружностей, удовлетворяющих условию. Далее в K строках выведите по три числа — координаты центра окружности и её радиус (x_i, y_i, r_i) . Если возможно построить более 42 различных окружностей, выведите вместо числа K строку "-1". Сами окружности в этом случае выводить не следует.

Допускается абсолютная погрешность не более 10^{-5} .

Пример

c.in	c.out
3	-1
0 0 0 0 0 0 0 0	5
4 0 4 16 0 8 8 8	4 11 8
0 0 1 1 0 1 1 0	4 5 8
	-2 8 6
	10 8 6
	4 8 6
	-1

22 февраля 2012 г. (день 5), обе лиги

Задача D. Римские числа

Имя входного файла:d.inИмя выходного файла:d.outОграничение по времени:1 сОграничение по памяти:256 Мб

Дана строка из символов '**I**', '**V**', '**X**', '**L**', '**C**', '**D**' и '**M**'. Требуется разбить её на несколько строк так, чтобы каждая получившаяся строка представляла собой корректное римское число, а сумма этих чисел была бы минимально возможной.

Корректным римским числом будем называть число, которое получается по следующим правилам. Сначала выписывается символ 'M' столько раз, сколько целых тысяч содержится в числе. Например, в числе 2045 содержится две целых тысячи, и его запись начнётся с символов "MM". После этого берём остаток от деления его на 1000. В зависимости от того, столько целых сотен содержит результат, добавляем к римской записи следующую строку: "С" — для одной сотни, "СС" — для двух, "СС", "ССС", "СС", "DС", "DСС", "DСС", "СМ" — для трёх, четырёх, ..., для девяти сотен соответственно. Остаток от деления числа 2045 на 1000 равен 45. Целых сотен в нём нет, поэтому к римской записи ничего не добавляем.

Далее берём остаток от деления числа на 100 и, в зависимости от количества целых десятков в результате, по тем же правилам добавляем к римской записи "X", "XX", "XXX", "XX", "L", "L", "LX", "LXX", "LXXX" или "XC" (либо ничего не добавляем, если целых десятков нет). Соответственно, для числа 2045 мы должны добавить к римской записи строку "XL".

После этого берётся остаток от деления на 10 исходного числа, и, в зависимости от результата, добавляется "I", "II", "IV", "V", "VI", "VII", "VIII", "IX" — для $1, 2, \ldots, 9$ соответственно, либо, в случае нулевого остатка, ничего не добавляется. Для числа 2045 по этому правилу мы должны прибавить строку "V".

В итоге для числа 2045 получаем римскую запись "MMXLV".

Также на римские числа вводится дополнительное ограничение, что никакой символ в их записи не может встречаться более трёх раз подряд. То есть будем считать, что корректная римская запись существует только у чисел от 1 до 3999 включительно.

Формат входного файла

Во входном файле содержится одна непустая строка длиной не более 20000 символов, состоящая из заглавных латинских букв, указанных в условии ('I', 'V', 'X', 'L', 'C', 'D' и 'M').

Формат выходного файла

В выходной файл выведите одно число — минимально возможную сумму чисел.

Примеры

d.in	d.out
IVI	5
IIIIV	7
CDILMVX	1466
М	1000
IX	9

22 февраля 2012 г. (день 5), обе лиги

Задача Е. Камни

 Имя входного файла:
 e.in

 Имя выходного файла:
 e.out

 Ограничение по времени:
 2 с

 Ограничение по памяти:
 256 Мб

Двое играют в игру. Изначально есть одна кучка из N камней. За один ход разрешается взять любую кучку и разбить её на несколько так, чтобы количества камней в новых кучках отличались бы не менее, чем на K. Например, при K=2 кучку из 9 камней можно разбить на кучки (1,8), (2,7), (3,6) и (1,3,5). Тот, кто не сможет сделать очередной ход, проигрывает. При заданном N определите все K ($0 \le K \le N$), при которых выигрывает второй игрок.

Формат входного файла

В первой строке входного файла записано натуральное число N ($1 \le N < 100$).

Формат выходного файла

В первую строку выходного файла выведите общее количество искомых чисел, а во вторую — сами числа в порядке возрастания.

Пример

e.in	e.out
9	3
	6 8 9

22 февраля 2012 г. (день 5), обе лиги

Задача F. Две строки

Имя входного файла:f.inИмя выходного файла:f.outОграничение по времени:1 сОграничение по памяти:256 Мб

Даны две строки S_1 и S_2 , состоящие из строчных латинских букв. В каждой из этих строк выбирается некоторая начальная позиция (k_1 и k_2). Затем, начиная с этой позиции, по порядку выписываются все символы строки. После выписывания последнего символа переходят к первому и продолжают выписывать подряд все символы. Например, если строка S_1 равна "CAB", а $k_1=2$ (нумерация начинается с единицы), то получаем строку "ABCABCABCABCABC...". Если строка S_2 равна "BCACAC", а $k_2=3$, то получаем строку "ACACBCACACACAC...". Так получаем две бесконечные последовательности из символов. Обозначим их T_1 и T_2 .

Требуется для заданных строк S_1 и S_2 найти такие k_1 и k_2 , чтобы значение выражения $\sum_{n\to\infty}^n eq(T_1[i],T_2[i])$ $\lim_{n\to\infty}\frac{i=1}{n}$ было максимально возможным (здесь $T_1[i]-i$ -ый символ строки T_1 , eq(a,b) равно

 $\stackrel{n\to\infty}{\longrightarrow}$ n 1, если символы a и b совпадают, или 0, если a и b различаются). То есть нужно максимизировать среднее количество совпавших символов в полученных последовательностях.

Формат входного файла

В первой строке входного файла записана непустая строка S_1 . Во второй строке входного файла записана непустая строка S_2 . Длина каждой строки не превосходит 2000 символов.

Формат выходного файла

В выходной файл выведите искомые числа k_1 и k_2 $(1 \le k_1 \le length(S_1), 1 \le k_2 \le length(S_2)).$

Примеры

f.in	f.out
CAB	1 2
BCACAC	
ABRACADABRA	1 1
TEST	
AAAB	1 2
BABA	