Course PIT21C202J	Course Name	A MINING	AND D	ATA WAREHOUSING	Cou					P	rof	ess	ion	al (Cor	е			L	T 0	P 4	C 5
Pre- requisite Nil Courses		Co- requisite Courses	Nil	scien(Prog	res			Ì	d				N	Nil							
Course Offering Department	Computer So	ience	0	Data Book / Codes/Standards		4	4	2			è	١	Vil									
Course Learning Rationale (CLR):	The purpose	of learning	this co	urse is to:	Le	earn	ing		0	Pr	ogra	am	Lea	rnir	ng (Outo	com	es	(PL	O)		
warehouses	an <mark>d data</mark> mining			nd algorithms in data	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 : Be familiar w CLR-3 : Characterize association ru	the kinds of par							102	3	1	rch			ility								
CLR-4 : Master data iscientific and	mining techniquenvironmental	es in variou context.	us appl	ications like social,	(mool)			adde		ent	esear	5		ainability		Vork		eor				
(.I K-)	Develop skill in selecting the appropriate data mining algorithm for				ng (Bl	iciency	nment	Knowlec	sis	Development	2	Isage	ulture	Susta		eam V	u	Financ	ning			
CLR-6 : Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments				Thinki	ed Profici	cted Attai	100000	n Analysis	∞ŏ	s, Design,	-	S C	ment &		al & T	unication	Mgt. &	ng Lear	_	2	3	
Course Learning Outcomes (CLO):	At the end of	this course	e, learn	ers will be able to:	Level o	Expect	Expect	Engineering	Problem	Design	Analysi	Modern	Society	Enviror	Ethics	Individu	Comm	Project	Life Lor	PSO -	PSO - 2	PS0 -
CLO-1 : Understand t warehousing		of the vario	ous dat	a mining and data	2	80	70	Н	Н	Н		Н		L	М	Н	M		Н	н	Н	M
CLO-2 : Appreciate the warehousing		limitations	s of var	ious data mining and da	ata 3	85	75	Н	Н	Н	Н	Н	М	L	М	Н	М	-	Н	Н	Н	М
CLO-3: Explain the analyzing techniques of various data			3	75	70	H	Н	Н	Н	Н	М	L	М	Н	М	30-53	Н	Н	Н	М		
	LO-4 : Describe different methodologies used in data mining and data ware housing.			3	85	80	Н	Н	Н	Н	Н	М	L	М	Н	М	-	Н	Н	Н	M	
	Compare different approaches of data ware housing and data mining with various technologies				3	85	75	Н	Н	Н	Н	Н	М	L	М	Н	М	×=	Н	Н	Н	М
				oility to grasp the softwat of tware systems.	re 3	80	70	Н	Н	Н	Н	Н	М	L	М	Н	М	-	Н	Н	Н	М

42

Duration	n (Hour)	21	21	21	21	21
S-1	SLO-1	Introduction to Data Mining	Association Analysis- Market basket analysis	Classification Techniques-introduction	CLUSTERING Analysis - Introduction	Introduction to Data Warehousing
		Data mining as the Evolution of information technology	Frequent Itemesets, closed itemsets, Association rules	-Supervised Vs Unsupervised classifications	Overview of clustering methods	Operational database systems versus Data warehouses
S-2	SLO-1		Methods of Frequent itemset mining		K- means method k-mediods method	Why have a separate data warehouse
	SLO-2	Kinds of Pattern in data mining	AprioriAlogithem	Scalability and decision tree induction	Hierarchical method	Data warehousing-Multi- tired architecture- Data warehouse models
S-3	SLO-1	Technology used in data mining	Generating Association Rules from frequent Itemset		Agglomerative vs Divisive Hierarchical clustering	Extraction, Transformation,
	SLO-2	0.	Pattern Growth Approach	Naive Bayesian Classificatgion	Hierarchical clustering	Loading- Meta data repository Architecture of DW
S4-7	SLO-1	"WEKA" Downloading	Laboratory 4: Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets		Laboratory 10: Demonstrate performing clustering of data sets	Laboratory 13: Creation of a Data Warehouse.
S8	SLO-1	Database systems	Vertical Data Format	Rule Bases Classification	BIRCH	Multi dimensional data model-Data cube
44	SLO-2	Data warehouse	Mining and closed and Max Patterns		Chameleon method	Schemas for multidimensional data models
S9	SLO-1	Kinds of applications- Business Intelligence	Pattern Evaluation methods	Rule Extraction	Probablistic Hierarchical clustering	Role of concept hierarchies
	SLO-2	Web search Engines	Pattern mining -	Rule Extraction from decision tree	Density based method-	OLAP
S10			Mining Multi level associations	Rule Induction	DBSCAN	OLAP operations

		0	Mining multidimensional associations	Metrics for evaluating classifier performance	OPTICS	Querying multidimensional databases
S11-14			in Weka for	Laboratory8: Explore various options available in Weka for preprocessing data	run 1d3, J48	Laboratory 14: create a query based on multidimentional databases
S15		User interaction, Efficeiency and scalability Diversity of data types	Mining quantitative association rules	Cross validation	DENCLUE	Data warehouse design and uses
	SLO-2		Mining rare patterns and negative patterns	Holdout method	Grid based clustering methods	DW design process
S16	SLO-1	Data Mining Metric -		Bootstrap		DW usages for Information processing
		Social Implications of Data Mining	Meta Rule	classification		From OLAP to Multidimensional data mining
S17		Overview of Applications of Data Mining	Constraints based pattern generation	Classification by Back propagation		Data warehouse Implementations
	SLO-2	Data Objects and Attributes types	Graph Mining- Frequent sub-graph mining		Measuring cluster qualilty	
S18-21	SLO-1		/ Line	LILA . LEA		

SLO-2	Laboratory 3: Perform	Laboratory6: Explore	Laboratory 9: Load each	Laboratory 12: Load each	Laboratory 15: Creation
	datapreprocessing tasks	various options available	dataset into Weka and	dataset into Weka and	of a Data Warehouse.
	and Demonstrate	in Weka for	run 1d3, J48	run simple k-means	
	performing association	preprocessing data and	classification algorithm.	clustering algorithm with	
	rule mining on data sets	apply unsupervised	Study the classifier	different values of k	
		filters like Discretization,	output. Compute entropy	(number of desired	
		Resample filter, etc. on	values, Kappa statistic.	clusters). Study the	
		each dataset		clusters formed. Observe	
				the sum of squared	
				errors and centroids, and	
			E Miles	derive insights	

Learning Assessment Bloom's Continous Learning Assessment(50% Weightage)									Final Examination (50%			
Level of Thinking		CLA - 1 (10%)		CLA - 2 (10%)		CLA – 3 (20%)		CLA - 4	1# (10%)	weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
	Understand		193	1	-		== 11-6					
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
	Analyze			C. Calebra		1111/25		- y (
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Create					1/4			V / 6	7-1		
	Total	10	0 %	10	100 % 100 %		0 %	10	0 %	100%		

CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Mr. S. Karthik, IT Analyst, Tata	Dr. Neelanarayanan,, Professor, School of Computer Science and	Dr. S. Kanchana							
Consultancy Services	Engineering, VIT Chennai	Mrs. S. Parimala							

45