Learning Curves

Training an algorithm on a very few number of data points (such as 1, 2 or 3) will easily have 0 errors because we can always find a quadratic curve that touches exactly those number of points. Hence:

- As the training set gets larger, the error for a quadratic function increases.
- The error value will plateau out after a certain m, or training set size.

Experiencing high bias:

Low training set size: causes $J_{train}\left(\Theta\right)$ to be low and $J_{CV}\left(\Theta\right)$ to be high.

Large training set size: causes both $J_{train}\left(\Theta\right)$ and $J_{CV}\left(\Theta\right)$ to be high with $J_{train}\left(\Theta\right) \approx J_{CV}\left(\Theta\right)$.

If a learning algorithm is suffering from **high bias**, getting more training data will not **(by itself)** help much.

N (training set size)

Experiencing high variance:

Low training set size: $J_{train}(\Theta)$ will be low and $J_{CV}(\Theta)$ will be high.

desired performance

Large training set size: $J_{train}\left(\Theta\right)$ increases with training set size and $J_{CV}\left(\Theta\right)$ continues to decrease without leveling off. Also, $J_{train}\left(\Theta\right) < J_{CV}\left(\Theta\right)$ but the difference between them remains significant.

If a learning algorithm is suffering from **high variance**, getting more training data is likely to help.

 \bowtie