COMP 308
ARTIFICIAL INTELLIGENCE
PART 8.2 – ARTIFICIAL NEURAL
NETWORKS

Njeri Ireri Jan – April 2020

Overview

- □ The Brain
- □ Brain vs. Computers
- □ The Perceptron
- Multilayer networks
- □ Some Applications

Artificial Neural Networks

Other terms/names

- connectionist
- parallel distributed processing
- neural computation
- adaptive networks...

□ History

- 1943-McCulloch & Pitts are generally recognised as the designers of the first neural network
- 1949-First learning rule
- 1969-Minsky & Papert perceptron limitation Death of ANN
- □ 1980's Re-emergence of ANN multi-layer networks

Brain and Machine

- The Brain
 - Pattern Recognition
 - Association
 - Complexity
 - Noise Tolerance

- The Machine
 - Calculation
 - Precision
 - Logic

The contrast in architecture

- The Von Neumann architecture uses a single processing unit;
 - Tens of millions of operations per second
 - Absolute arithmetic precision
- The brain uses many slow unreliable processors acting in parallel

Features of the Brain

- Ten billion (10¹⁰) neurons
- On average, several thousand connections
- Hundreds of operations per second
- Die off frequently (never replaced)
- Compensates for problems by massive parallelism

The biological inspiration

- The brain has been extensively studied by scientists.
- Vast complexity prevents all but rudimentary understanding.
- Even the behaviour of an individual neuron is extremely complex

The biological inspiration

- Single "percepts" distributed among many neurons
- Localized parts of the brain are responsible for certain well-defined functions (e.g. vision, motion).
- Which features are integral to the brain's performance?
- Which are incidentals imposed by the fact of biology?

A neuron has a cell body, a branching input structure (the dendrite) and a branching output structure (the axOn)

- Axons connect to dendrites via synapses
- Electro-chemical signals are propagated from the dendritic input, through the cell body, and down the axon to other neurons

- A neuron only fires if its input signal exceeds a certain amount (the threshold) in a short time period.
- Synapses vary in strength
 - Good connections allowing a large signal
 - Slight connections allow only a weak signal
 - Synapses can be either excitatory or inhibitory.

The Artificial Neuron (Perceptron)

A Simple Model of a Neuron (Perceptron)

A Simple Model of a Neuron - how it works

- Each neuron has weighted inputs from other neurons and the input signals form a weighted sum
- Each neuron also has a threshold value and an activation function which transforms neuron's input into output as follows:
 - The unit performs a weighted sum of its inputs, and subtracts its threshold value, to give its activation level
 - Activation level is passed through a sigmoid activation function and if it exceeds the threshold, the neuron "fires", meaning that an output signal is given by the neuron

Supervised Learning

- Training and test data sets
- Training set; input & target

Sepal	Sepal width	Petal	Petal	Class
Sepal length	width	length	width	
5.1	3.5	1.4	0.2	0
4.9	3.0	1.4	0.2	2
4.7	3.2	1.3	0.2	0
4.6	3.1	1.5	0.2	1

Perceptron Training

- Linear threshold is used.
- □ W weight value
- □ t threshold value

Simple network

Training Perceptrons

I ₁	I ₂	I ₃	Summation	Output
-1	0	0	(-1*0.3) + (0*0.5) + (0*-0.4) = -0.3	0
-1	0	1	(-1*0.3) + (0*0.5) + (1*-0.4) = -0.7	0
-1	1	0	(-1*0.3) + (1*0.5) + (0*-0.4) = 0.2	1
-1	1	1	(-1*0.3) + (1*0.5) + (1*-0.4) = -0.2	0

Multilayer Perceptron (MLP)

Types of Layers

- The input layer.
 - Introduces input values into the network.
 - No activation function or other processing.
- The hidden layer(s).
 - Perform classification of features
 - Two hidden layers are sufficient to solve any problem
 - Features imply more layers may be better(There can be more than one hidden layers which are used for processing the inputs received from the input layers)
- The output layer.
 - Functionally just like the hidden layers
 - Outputs are passed on to the world outside the neural network.

Properties of neural networks

- The properties of neural networks define where they are useful.
 - Can learn complex mappings from inputs to outputs, based solely on samples
 - Difficult to analyse: firm predictions about neural network behaviour difficult;
 - Unsuitable for safety-critical applications.
 - Require limited understanding from trainer, who can be guided by heuristics.
 - Application The properties of neural networks define where they are useful

Neural network for OCR

- OCR optical character recognition
- feedforward network
- trained using Backpropagation

OCR for 8x10 characters

- NN are able to generalise
- learning involves generating a partitioning of the input space
- for single layer network input space must be linearly separable
- what is the dimension of this input space?
- how many points in the input space?
- this network is binary(uses binary values)
- networks may also be continuous

Engine management

- The behaviour of a car engine is influenced by a large number of parameters
 - temperature at various points
 - fuel/air mixture
 - lubricant viscosity.
- Major companies have used neural networks to dynamically tune an engine depending on current settings.

ALVINN

Drives 70 mph on a public highway

30 outputs for steering

4 hidden units

30x32 pixels as inputs

30x32 weights into one out of four hidden unit

Signature recognition

- Each person's signature is different.
- There are structural similarities which are difficult to quantify.
- One company has manufactured a machine which recognizes signatures to within a high level of accuracy.
 - Considers speed in addition to gross shape.
 - Makes forgery even more difficult.

Sonar target recognition

- Distinguish mines from rocks on sea-bed
- The neural network is provided with a large number of parameters which are extracted from the sonar signal.
- The training set consists of sets of signals from rocks and mines.

Stock market prediction

- "Technical trading" refers to trading based solely on known statistical parameters; e.g. previous price
- Neural networks have been used to attempt to predict changes in prices.
- Difficult to assess success since companies using these techniques are reluctant to disclose information.

Mortgage assessment

- Assess risk of lending to an individual.
- Difficult to decide on marginal cases.
- Neural networks have been trained to make decisions, based upon the opinions of expert underwriters.
- Neural network produced a 12% reduction in delinquencies compared with human experts.

Neural Network Problems

- Many Parameters to be set
- Overfitting
- long training times
- •

Parameter setting

- Number of layers
- Number of neurons
 - too many neurons, require more training time
- Learning rate
 - from experience, value should be small ~0.1
- Momentum term

• ..

Over-fitting

- With sufficient nodes can classify any training set exactly
- May have poor generalisation ability.
- Cross-validation with some patterns
 - Typically 30% of training patterns
 - Validation set error is checked each epoch
 - Stop training if validation error goes up

Training time

- How many epochs of training?
 - Stop if the error fails to improve (has reached a minimum)
 - Stop if the rate of improvement drops below a certain level
 - Stop if the error reaches an acceptable level
 - Stop when a certain number of epochs have passed