MULTIPLE CHOICE QUESTIONS (MCQ'S)

1.	If p (n) is a proposition abou	it a positive integer n such that					
	p(n) is true for $n = 1$ and $p(n)$	n) is true for n - k whenever P					
	(ii) is true for any positive in	Nteger n = K + 1 P(n) is true					
	for every positive integer	n, this principle is called					
	principle of						
	(a) Mathematical induction	(b) Mathematical deduction					
	(c) logic used	(d) None of these					
2.	For every positive integer n.	$1 + 5 + 9 + \dots + (4n - 3) =$					
	(a) $n(2n-1)$ (b) $(2n-1)$	(c) $n - 1$ (d) n					
3.	If n is any positive integer the						
	(a) $n \ge 2$ (b) $n \ge 3$	(c) $n \le 2$ (d) $n \le 3$					
4.	If n is any positive integer the	en $2^n > 2 (n + 1)$ is true for all					
	(a) $n \le 3$ (b) $n < 3$	(c) $n \ge 3$ (d) $n > 3$					
5.	Such case which fails the mathematical formula is called						
	(a) An example	(b) Mathematical induction					
	(c) Counter Example	(d) None of these					
6.	for $n = 2$ the statement.						
	$1+4+7+\ldots+(3n-2)$	$=\frac{n}{2}(3n-1)$					
	(a) True	(b) False					
	(c) Roth	(d) None of these					
7.	For $n = 2$ the Statement 2 +	$4+6+8+\ldots 2(3^{n-1})=3^n$					
	- 1 is						
	(a) True	(b) False					
	(c) Both	(d) None of these					
8.	For n = 1 the Statement 1 +	$5 + 9 + \dots + (4n - 3) = n$					
٠.	(2n-2) is	, .					
	(a) True	(b) False					
		(d) None of these,					
9.	(c) Both For $n = 4$ the Statement $n^3 -$	n is divisible by 6 is					
7.	and the second s	(b) False					
	(a) True	(d) None of these					
	(c) Both	(0)					

$$= \sum_{n=1}^{\infty} n = \underline{\qquad}$$

$$= 2n = \underline{\qquad \qquad }$$
(a) $\frac{n(n+1)}{2}$

(b)
$$\frac{n(n+1)(2n+1)}{6}$$

(c)
$$\frac{n^2(n+1)^2}{2}$$

Sum of the squares of first n natural numbers $1^2 + 2^2 + 3^2$ $n^2 = \sum_{n=1}^{\infty} n^2 =$ _____

(a)
$$\frac{n(n+1)}{2}$$

(b)
$$\frac{n(n+1)(2n+1)}{6}$$

(c)
$$\frac{n^2(n+1)^2}{4}$$

(d)
$$n(n+1)$$

Sum of the Cubes of the first n natural numbers. $1^3 + 2^3 + 3^3 + \dots + n^3 = \sum n^3 = 1$

(a)
$$\frac{n(n+1)}{2}$$

(b)
$$\frac{n(n+1)(2n+1)}{6}$$

$$(c) \frac{n^2 (n+1)^2}{4}$$

(d)
$$n(n+1)$$

13. 6+7+8+9+.....+25= (c) 340 (b) 325 (d) 500

14.
$$11^2 + 12^2 + 13^2 + 14^2 + \dots + 25^2 = \frac{1}{(a)}$$

(a) 5525 (b) 6295 (c) 5140 (d) 5000

(a) 5525 (b) 6295 (c) 5140 (d) 50
15.
$$16^3 + 17^3 + 18^3 + \dots + 25^3 =$$

15.
$$16^3 + 17^3 + 18^2 + \dots + 25^3 = \frac{1}{(a)}$$

(a) 105625 (b) 14400 (c) 10000 (d) 91225

(a)
$$103623$$
 (b) 14403 (c) 14223
16. $1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + \dots + (1 + 2 + 3 + 4 + \dots + n) =$

(a)
$$\frac{1}{6}$$
 n (n + 1)(n + 2)

(b)
$$\frac{1}{6}$$
 (n + 1)(n + 2)(n + 3)

(c)
$$\frac{1}{6}$$
 (n + 2)(n + 3)(n + 4)

17. Which number Satisfied the relation $2^n > n^2$.

(a)
$$n = 5$$
 (b) $n = 4$

(c)
$$n = 3$$

(d)
$$n = 2$$

18. If $(a^{2n} - b^{2n})$ is divisible by (a + b) when $n = \underline{\hspace{1cm}}$

(a)
$$\frac{1}{3}$$

$$(b) - 1$$

(c)
$$-2$$

19. A powerful method of proof frequently used in Mathematics is

- (a) Binomial Theorem
- (b) Probability
- (c) Inductive logic
- (d) Mathematical induction

Chapter 8 # Mathematical Induction Binomial theorem 749

(b)
$$\frac{n(n-1)}{2}$$

(c)
$$n(n+1)$$

(d)
$$\frac{n(n+1)}{2}$$

21. If a proposition is true for n = K then it must be true for n = K

$$\frac{1}{(a) \frac{1}{K+1}}$$

(b) K -1 (c)
$$\frac{1}{K-1}$$
 (d) K + 1

$$\frac{1}{-1}$$
 (d) K + 1

is a form of deductive reasoning.

(a) Probability

(b) Binomial Theorem (d) permutation

(c) Mathematical induction

23. Mathematical induction is a form of _

(a) Inductive Reasoning

(b) Probability

(c) Permutation (d) Deductive Reasoning

is not true for the first few values of Some times a __ n and is true for all successive values after a certain stage.

(a) Proposition p (n)

(b) Binomia! theorem

(c) Probability

(d) Permutation

25.
$$1+3+5+\dots+(2n-1)=$$
(a) $2n^2$ (b) n^2 (c) $\frac{n^2}{2}$ (d) n^3

(c)
$$\frac{n^2}{2}$$

(d) 385

(a)
$$2n(n-1)$$
 (b) $n(n-1)$ (c) $2n(n+1)(d)\frac{n(n-1)}{2}$

27.
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n} = \dots$$

(a) 2^n (b) $\left(\frac{1}{2}\right)^n$ (c) $\left(1 + \frac{1}{2}\right)^n$ (d) 2^{n-1}
28. Find the sum of $1^2 + 2^2 + 3^2 + \dots + 10^2$

(a) 55

29. Find sum of $1^2 + 2^2 + 3^2 + \dots + 30^2$ (b) 4512 (c) 65223

(a) 7473 30. Find the sum of $1^2 + 2^2 + 3^2 + \dots + 15^2$

(c) 64620 (b) 338350 (a) 1240 3). Find the sum of $1^2 + 2^2 + 3^3 + \dots + 100^2$

(c) 64620 (d) 75000 (a) 1240 (b) 338350

32. Find the sum of $1^2 + 2^2 + 3^2 + \dots + 40^2$.

(a) 1240

(b) 338350

(c) 64620

(d) 75000

```
1+5+9+.....+[4n-3]=
   33.
         (a) n(n+1) (b) 2n(n+1) (c) n(2n-1)(d) n^2
        for n = 10, the Statement 1 + 2 + 4 + \dots + 2^{n-1} = 2^n = 1
         is.
                                            (b) False
         (a) True
                                            (d) None of these
         (c) Neither true or false
  35. for n = 1, the Statement 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 1
        1-\frac{1}{2^n} is
                                            (b) True
        (c) Neither true nor false
                                            (d) None of these
  36. for n = 3, the Statement 1 \times 3 + 2 \times 5 + 3 \times 7 + \dots + n
        \times (2n+1) = \frac{n(n+1)(4n+5)}{6} is
        (a) True
        (c) Neither true nor false
                                           (d) None of these
        for n = ,1, the Statement 1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n (n
        +1) = \frac{n(n+1)(n+2)}{3} is
                                           (b) False
        (a) True
                                           (d) None of these
        (c) Neither true nor false
 38. for n = 1, the Statement \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \frac{1}{5 \times 7}
       \frac{1}{(2n-1)(2n+1)} = \frac{1}{2n+1} is
                                           (b) False
       (a) True
       (c) Neither true nor false
                                           (d) None of these
39. for n = 2 the Statement a + (a + d) + (a + 2d) + \dots + [a]
       +(n-1)d] = \frac{n}{2}[2a + (n-1)d] is ____
                                           (b) False
       (a) True
                                           (d) None of these
       (c) Neither true nor false
40. for n = 0, the statement 1.1! + 22! + 33! + ..... + nn! =
      (n+1)! - 1 is _
                                           (b) False
      (a) True
                                          (d) None of these
      (c) Neither true nor false
```

Chapter 8 # Mathematical Induction Binomial theorem 751 for n = 1, the Statement (a) True (c) Neither true nor false (d) None of these 42. for n = 30, the Statement " $n^2 + n$ " is divisible by "2" is. (a) True (b) False (c) Neither true nor false (d) None of these 43. for n = 3 the Statement $5^n - 2^n$ divisible by "3" is. (a) True (b) False (c) Neither true or false (d) None of these 44. for n = 2, the Statement "5" - 1" is divisible by "4" is (b) True (a) False (d) None of these (c) Neither true or false 45. for n = 2, the statement "8 × 10ⁿ – 2" is divisible by 6" is (a) True (b) False (c) Neither true nor false (d) None of these 46. for n = 4, the statement " $n^3 - n$ " is divisible by 6" is (a) True (b) False (c) Neither true nor false (d) None of these 47. for n = 1, the statement $\frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n} = \frac{1}{2} \left[1 - \frac{1}{3^n} \right]$ is (b) False (a) True (d) None of these (c) Neither true or false for n = 1, the statement $1^3 + 3^5 + 5^3 + \dots + (2n + 1)^3 = n^2$ $(2n^2 + 1)$ is. (a) True (b) False (c) Neither true nor false (d) None of these 49. for n = 1, the Statement "x + 1" is a factor of " $x^{2n} - 1$ " is (a) True (b) False (c) Neither true or false (d) None of these 50. for n = 3, the Statement "x - y" is a factor of " $x^n - y^n$ " is. (a) True (b) False (c) Neither true or false (d) None of these 51. for n = 2, the Statement "x + y" is a factor of $x^{2n-1} + y^{2n-1}$ is (a) True (b) Faise

(d) None of these

(c) Neither true or false

Chapter 8 # Mathematical Induction Binomial theorem 753 $1^3 + 2^3 + 3^3 + \dots + 30^3 =$ (a) 212562 (b) 212265 (c) 216225 (d) None of these 1+3+5+7+.....+15= (b) 59 (c) 65 (d) None of these 65. If n is any positive integer then $3 + 6 + 9 + \dots + 3n =$ (b) $\frac{2n(n+1)}{3}$ (c) $\frac{3n(n+1)}{4}$ (d) 3n(n+1)66. If n is any positive integer then $4^n > 3^n + 4$ is true for all. (a) n > 2(b) $n \ge 2$ (d) $n \le 2$ (c) n < 267. If n is any positive integer then $n! > 3^{n-1}$ is true for all (a) $n \le 3$ (b) n < 3(c) $n \ge 5$ (d) n > 368. The inequality $n! > 2^n - 1$ is valid if (a) n = 3(b) $n \le 3$ (c) n < 4(d) $n \ge 4$ 69. If n is any positive integer then $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} =$ (a) $\frac{n}{2(n+1)}$ (d) $\frac{n}{2n+1}$ 70. If n is any positive integer then $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots +$ (a) $\frac{n}{2(n+1)}$ (b) $\frac{n}{n+2}$ (c) $\frac{n}{n+1}$ (d) n!

71. If n is any positive integer then $2^1 + 2^2 + 2^3 + \dots + 2^n =$

(b) $2(2^{n-1}-1)$

(d) $2(3^n-1)$

(a) $2(2^n-1)$

(c) $2(2^{n+1}-1)$

754

a	epter 8 # Mainemarca This	" and "h" in each terms of the
83.	The Sum of exponents of	a" and "b" in each terms of the
	expansion of (a + b)" is equa	al to v nerv.
	(a) $n + 1$ (b) n	(c) $n-1$ (d) $n+2$
84.	In binomial theorem the ex-	xponent of "a" decreases from
0.4	index to ∀ n ∈ N	
	(a) Zero	(b) 1
	(a) 2	(d) None of these
85.	a the mint the comment the ex	sponent of "b" increases from
	zero to	
	(a) index n	(b) $n + 1$
	(c) $n - 1$	(d) None of these
86.	L'amial avancion of	$f(a + b)^a$ then general term T_{r+1}
-	= ∀ n ∈ N.	
		$(\mathbf{b}) \binom{\mathbf{n}}{\mathbf{r}} \mathbf{a}^{\mathbf{a} - \mathbf{r}} \mathbf{b}^{\mathbf{r}}$
	(a) $\binom{r+1}{a}$	(b) (r) a b
	(B)	
	$(c) \binom{n}{r-1} a^n b^r$	(d) None of these
87.	In the expansion of $(a + b)$	\forall n ∈ N, then the term $T_{i+1} =$
01.	•	
	$\binom{\mathbf{n}}{\mathbf{r}}$ $\mathbf{a}^{\bullet \bullet}$ \mathbf{b}' is called	
	(a) Binomial theorem	(b) Binomial expansion
		(d) None of these
88.	In general term formula of	binomial theorem for positive
•	index n, r belongs to	•
	(a) W (b) N	
89.	In the expansion of (a + b) i	
		(b) are two Middle terms
	(c) are three Middle term	(d) None of these
90.	In the expansion of (a + 1	b) if n is odd then there as
		o) ii ii is odd dieii iikae 🗻
	(a) One Middle term	(b) Two Middle term
	* > .1 . >	
91.		(d) None of these
-	terms is	if n is even then the Middle
	terms is	
	(a) $\left(\frac{n}{2}\right)$ th term	(b) $\left(\frac{n+1}{2}\right)$ th term.
	\- <u>/</u>	2 Juneans
	(c) $\left(\frac{n+2}{2}\right)$ th term	(d) $\left(\frac{n+3}{2}\right)$ th term
	(c) (2) in term	(d) th term

- 92. In the expansion of $(a + b)^a$ if n is odd then the Mid
 - (a) $\left(\frac{n+1}{2}\right)$ th and $\left(\frac{n+2}{2}\right)$ th terms

 - (c) $\left(\frac{n+2}{2}\right)$ th and $\left(\frac{n+3}{2}\right)$
- 93. The Middle term in the expansion of $\left(x \frac{20}{3}\right)^{10}$ is
 - (a) 5th
- (d) None of these (c) 4th
- 94. The middle term in the expansion of $\left(x \frac{x^2}{2}\right)^{14}$ is (b) 9th
- 95. The middle term in the expansion of x
 - term. (a) (n + 1)th (b) nth
- (c) (n-1)th (d) (n+2)th
- 96. The middle term in the expansion of $\left(x \frac{1}{x}\right)^{2n}$ is _____
 - (a) ${}^{2n}C_{n+1} \times {}^{n-1}$, $\frac{1}{x^{n+1}} (-1)^n$
- (c) $(-1)^{n} {}^{2n}C_n$
- (d) None of these
- 97. The two middle terms of $\left(x^3 + \frac{1}{x^2}\right)^7$ are _____ terms.
 - (a) 3rd and 4th
- (b) 4th and 5th
- (c) 5th and Sixth
- (d) None of these
- 98. The two middle terms of $\left(2x \frac{x}{4}\right)^{y}$ are _
 - (a) 3rd and 4th
- (b) 4th and 5th
- (c) 5th and 6th
- (d) None of these
- 99. The two middle terms of x -
 - (a) nth and (n + 1)th
- (b) (n + 1)th and (n + 2)th
- (c) (n + 2) th and (n + 3)th
- (d) (n-1)th and nth

Chapter 8 # Mathematical Induction Binomial theorem 757

- - (a) positive
- (b) Negative
- (c) Both
- (c) None of these
- 101. The 6th term of $\left(\frac{xy^2}{2a} \frac{4a}{x^2v}\right)^8$ is
 - (a) positive
- (b) Negative
- (c) Both
- (d) None of these
- 102. The middle term of $\left(\frac{a}{y} \frac{y}{a}\right)^{12}$ is
 - (a) positive
- (b) Negative
- (c) Both
- (d) None of these
- 103. The middle term of $\left(\frac{a}{x} \sqrt{x}\right)^{10}$ is
 - (a) Positive
- (b) Negative
- (c) Both
- (d) None of these
- 104. The Seventh terms of the expansion of $(a + b)^n$ is

- (d) None of these
- 105. $\left(\frac{a}{3} \frac{b}{2}\right)^{12}$, then the 9th term of expansion is
- $(a) \begin{pmatrix} 12 \\ 8 \end{pmatrix} \left(\frac{a}{3}\right)^4 \left(\frac{b}{2}\right)^8$ $(b) \begin{pmatrix} 12 \\ 8 \end{pmatrix} \left(\frac{a}{3}\right)^8 \left(\frac{b}{2}\right)^4$ $(c) \begin{pmatrix} 12 \\ 9 \end{pmatrix} \left(\frac{a}{3}\right)^3 \left(\frac{b}{2}\right)^9$ $(d) \begin{pmatrix} 12 \\ 9 \end{pmatrix} \left(\frac{a}{3}\right)^9 \left(\frac{b}{2}\right)^3$
- 106. The term $\binom{9}{r}$ $\frac{2^{9-r}}{3}$ x^{9-3r} is independent of x then r =
 - - (b) 2
- (d) 4
- 107. The term $\binom{15}{r}$ $(-1)^r$ x^{15-3r} is independent of x then r =
 - (a) 2
- (b) 3
- (d) 5

```
108. The term \binom{7}{r}(2x)^{7-r}(\frac{-1}{2})^r involving x^3 then r = \frac{1}{r}
```

1(9) The term $\binom{10}{r}$ $(x^2)^{10-r} \frac{(-1)^r}{x^{3r}}$ involving x^{10} then $r = \frac{10}{r}$

110. The sum of binomial Coefficients of order n is (b) 2ⁿ (c) 2^{n-1} (a) n + 1

(b) 2ⁿ

112. The Sum of even Coefficients of binomial expansion is

(c) 2ⁿ⁻¹ (b) 2ⁿ (d) 2^{n+1}

113. The Sum of odd Coefficients of a binomial expansion is

(b) 2ª (c) 2^{n-1} (a) n (d) 2^{n+1} 114. Sum of Coefficients of binomial (a + b)8 is

n are called Sum of

(a) Odd Coefficients

(b) Even Coefficients

(c) Binomial Coefficients

(d) None of these

(d)(n+1)

 $\dots \binom{n}{n}$ are called _

(a) Odd Coefficients

(b) Even Coefficients (d) None of these

(c) Binomial Coefficients

119. Sum of odd Coefficients and even Coefficients of binomial

(b) 2ⁿ⁺¹ (a) 2ⁿ (c) 2^{n-1} (d) n Chapter 8 # Mathematical Induction Binomial theorem 759

 $\binom{n}{1}$, $\binom{n}{2}$, $\binom{n}{n}$ are meaningless when

(a) Positive

(b) Negative integer

(c) Negative or a fraction

(d) None of these

121. $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots \forall n \in \mathbb{R}$ then. (a) |x| > 1 (b) $|x| \ge 1$ (c) $|x| \le 1$ (d) |x| < 1

122. $1-x+x^2-x^3+\dots+(-1)^{r}x+\dots+|x|<1$.

(a) $(1+x)^{-1}$ or $\frac{1}{1+x}$ (b) $(1-x)^{-1}$

(c) $(1 + x)^{-2}$ (d) None of these

123. $\frac{(c) (1+x)}{(a) (1-x)^{-1}} = 1 + x + x^2 + x^3 + \dots + x^{r-1} +$

124. $T_{r+1} = \frac{n(n-1)(n-2)....(n-r+1)}{r!} x^r$ is called _

(a) Binomial theorem

(b) rth term

(c) General term

(d) None of these

125. If n < 0 and |x| < 1 then number of terms of $(1 + x)^n$ is

(a) n

(b) n + 1

(c) n - 1

(d) Infinite

126. If n is not a positive integer then the expansion $(1 + x)^n$ is valid for _

(a) 1 < x < 2

(b) -1 < x < 1

(c) 1 < x < 2

(d) None of these

127. If |x| < 1 then the expansion of $\frac{1}{\sqrt{1-x^2}}$ upto two terms.

(a) $1 - \frac{1}{3}x^2$ (b) $1 - \frac{1}{3}x^{-2/3}$ (c) $1 + \frac{1}{3}x^2$ (d) $1 + \frac{1}{3}x^{-2/3}$

128. If number of terms of binomial $(a + b)^n$ is 14 then n =

(a) 12

(b) 11

(c) 14

(d) 13 129. If number of terms of binomial is 15 then middle term of binomial is (a) 7th term (b) 8th term (c) 9th term (d) 11th term

760		Watte matics X
130.	According to pascal's Rule	$\binom{n}{r-1}+\binom{n}{r}=$
121	(a) $\binom{n-1}{r}$ (b) $\binom{r-1}{n}$ In expansion of $(a+b)^n$, the e	(c) $\binom{1-n}{r}$ (d) $\binom{n+1}{r}$
151.	in expansion of (2 · o) (and	a also kilown a
	(a) Index	(b) Factorial
	(c) Radical Sign	(d) Power
122	In expansion of (a + b) ^a the Co	pefficient of an =
132.		(n-1) $(n-1)$
	(a) $\binom{n+1}{0}$ (b) $\binom{n}{n}$	(c) $\binom{n}{1}$ (d) $\binom{n-1}{0}$
133.	In $(a + b)^n$ if n is even, say	n = 2K then the number 0
	terms is (a) 2K (b) 2K + 1 In (a + b) ^a if n is odd then the	
	(a) $2K$ (b) $2K + 1$	(c) $2K-1$ (d) $2K-2$
134.	In $(a + b)^n$ if n is odd then the	number of term is
	(a) odd (b) prime	(c) Irrational (d) Even
135.	In the expansion of (a + 1	b)" the coefficient of terms
	equidistant from the beginning	and end are
	(a) Unequal (b) Irrational	(c) Rational (d) Equal
136.	In general most of the infini	te series can be summed up
	very quickly by identifying the	
	(a) Binomial	(b) Trinomial
	(c) Infinite ·	(d) Arithmetic Mean
137.	Binomial theorem was develop	ped by
	(a) Al-Razi	(b) Newton
	(c) Umer Khayam	(d) None of these
138.	In the expansion of $(a-2b)^3$ the	he coefficient of b' is
	(a) $12a$ (b) $-2a^2$	(c) $-8a$ (d) $-4a$
139.	The Coefficient of the last terr	
	(a) 1	(b) −1
•	(c) 0	(d) None of these
140.	$(1+2x)^4 = $	
	(a) $1 - 8x + 24x^2 - 32x^3 + 16x^2$	4
•	(b) $1 + 4x + 6x^2 + 4x^3 + x^4$	r e
	(c) $1 - 4x + 6x^2 - 4x^3 + x^4$	•
•	(d) $1 + 8x + 24x^2 + 32x^3 + 16x$	
141.	In the expansion of (a + b)7 the	2 2 nd term is
	(a) a ⁷	(b) 7a ⁶ b
	(c) 7ah6	(d) None of these
		•

Cha	pier o n						
142	The number of terms in the	oinomial expansion is					
142.	(a) Prilial to the expension	(b) One less are					
	(c) one more than the expansion						
	less than the expense	a <i>t</i>					
142	If the exponent in the bino	mial expansion is 6, then the					
145.							
	(h) 2" term	(c) 4 th term (d) 5 th term					
144	The sum of the Coefficients	in the expansion $(1 + \lambda)^{-15}$					
Jan.	equal to the number of elements of the power Set of a set						
	with elements						
	with elements (a) n^2 (b) 2^{n-2}	(c) 2^{n-1} (d) n					
145	The sum of the even Coeffic	cients and the sum of the odd					
145.	Coefficients in the expansion	$(1 + x)^{a}$ are					
	(a) Not Same	(b) Same					
	(c) Integer	(d) Natural number					
146.	The general term in the expan	sion of $(a + x)^n$ is					
. ,	(a) $(r-1)$ th term	(b) rth term (d) None of these 1) n (n - 1)(n - 2) 1					
	(c) (r + 1)th term	(d) None of these					
147	$(1 + x)^n = 1 + nx + \frac{n(n - x)^n}{2!}$	$\frac{1}{3!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 +$					
147.		3!					
	is	(b) D'' al ab a susse					
		(b) Binomial theorem					
	(c) Taylor Series	(d) None of these					
148.	The expansion of $\left(1 + \frac{x}{2}\right)^{3/2}$ is	s					
	(2)	4) P' ' 1 G '					
	(a) Binomial theorem	(b) Binomial Series					
	(c) Taylor Series	(d) None of these					
149.	_	of $(1-x)^{1/2}$ up to two terms					
	is						
	(a) $1 + \frac{1}{2}x$ (b) $1 - \frac{1}{2}x$	(c) $1 - x$ (d) $1 + x$					
	The expansion of $(1 + 2x)^{-1}$ is						
	(a) $ x < \frac{1}{2}$ (b) $ x < 1$	(c) $ x < 2$ (d) $ x < 3$					
	The expansion of $(1-3x)^{2/3}$ is						
	(a) $ x < \frac{1}{3}$ (b) $ x < \frac{1}{2}$	(c) $ x < \frac{\pi}{3}$ (d) $ x < 1$					
52.	Second term in the expansion	of $(1-2x)^{\frac{1}{2}}$ is					

153.	The expansion	on of $(1 - 5x)^3$	is valid if	
	(a) $ x < \frac{1}{5}$	$(b) x \leq \frac{1}{5}$	(c) $ x \le 0$	(d) $ x > \frac{1}{2}$

- 154. If number of terms of binomial is 15 then middle term of
- (c) 9th term (d) 11th term (a) 7th term (b) 8th term
- 155. The term $\binom{5}{r}$ $y^{10-2r} \frac{a^{3r}}{y^r}$ involving "y" then r =_____
- (a) $\frac{9}{2}$ (b) 4
- 156. 1st four terms of the expansion $(1 x)^{-2}$ are
 - (a) $1 + 2x + 3x^2 + 4x^3$
- (b) $12x 3x^2 4x^3$
- (c) $1 + 2x 3x^2 + 4x^3$
- (d) None of these
- 157. The expansion $(1 + x)^{-3}$ holds when
 - (a) |x| > 1
- (b) |x| < 1

(c) 11

- (c) |x| = 1
- (d) None of these
- 158. $(a + x)^n = \sum_{r=0}^{n} {n \choose r} a^{n-r} x^r$ where a and x are _
 - (a) Natural number
- (b) Whole Number
- (c) Complex number
- (d) Real numbers
- 159. If the Coefficient of rth term in the expansion of $(1 + x)^{10}$ Coefficient of (r + 2)th term, then find the value of r.
- (b) 10
- 160. The pascal's triangle for n = 2 is.
 - (c) $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ (d) $\frac{1}{2}$ $\frac{1}{2}$
- 161. The pascal's triangle for n = 3 is
 - (a) 1 1 (b) 1 1 1 2 1 1111 3 3 3 3 1 3 3 1
- 162. In order to calculate (2.02)4 by mean of binomial theorem we write it.
 - (a) $(2 + 0.02)^4$
- (b) $(2-0.02)^4$
- (c) $(2+0.2)^4$
- (d) $(2 + 0.04)^2$

Chapter 8 # Mathematical Induction Binomial theorem 763

- 163. In order to calculate (0.97)3 by mean of binomial theorem we write it as _
 - (a) $(1-0.03)^2$
- (b) $(1 + 0.03)^3$
- (c) $(2-1.03)^4$
- (d) $(1-0.03)^3$
- 164. 1st term in the expansion of $\left(\sqrt{\frac{a}{x}} \sqrt{\frac{x}{a}}\right)^6$ is _____
 - (a) $\binom{6}{1}$ $\left(\sqrt{\frac{a}{x}}\right)^0 \left(-\sqrt{\frac{x}{a}}\right)^0$
 - (b) $\binom{6}{0}$ $\left(\sqrt{\frac{a}{x}}\right)^6$
- $(c)\binom{6}{0}\left(-\sqrt{\frac{x}{a}}\right)^6$
- 165. The sum of odd Coefficient of a binomial expansion equal to the sum of it's ______
 - (a) Odd Coefficient
- (b) Even Coefficient
- (c) Index
- (d) Power number
- 166. If $\binom{10}{r} \frac{1}{2r}$, $x^{(5-5r/2)}$ is free of x then r =_
- (b) 2
- (c) $\frac{25}{2}$
- 167. The (r + 1)th term in the expansion of $(a + x)^n$ is
 - (a) $\binom{n}{r-1} a^{n-r} x^r$
- (b) $\binom{n}{r+1} a^{n-r} x^r$
- (c) $\binom{n}{r}$ $a^r x^{n-r}$
- $(\mathbf{d}) \begin{pmatrix} \mathbf{n} \\ \mathbf{r} \end{pmatrix} \mathbf{a}^{\mathbf{n}-\mathbf{r}} \mathbf{x}^{\mathbf{r}}$
- 168. The rth term in the expansion of $(a + x)^n$ is _
 - $(a) \binom{n}{r-1} a^{n-r-1} x^{r-1}$
- (b) $\binom{n}{r-1} a^{n-r+1} x^{r-1}$
- (c) $\binom{n}{r-1}$ $a^r x^{n-r}$

- (d) None of these
- 169: Second term in expansion of (a + 2b)⁵ is _____.
 - (a) $\binom{5}{0}a^5$
- (b) $\binom{5}{1}$ a^4 (2b)
- (c) $\binom{5}{2}$ $a^3 (2b)^2$
- (d) $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$ $a^2 (2b^3)$

170. Second term in the expansion of $\left(2a - \frac{x}{a}\right)^7$ is

(a) 7 (2a)⁶

(b) $7 (2a)^6 \left(\frac{-x}{a}\right)^2$ (d) $7 (2a)^6 \left(\frac{-x}{a}\right)^2$

(c) $7(2a)^3 \left(\frac{-x}{a}\right)^2$

171. 8th term in the expansion of $\left(\frac{x}{2y} - \frac{2y}{x}\right)^8$ is _____.

(a) $\binom{8}{7} \left(\frac{x}{2y}\right) \left(\frac{-2y}{x}\right)^7$ (b) $\binom{8}{8} \left(\frac{x}{2y}\right)^0 \left(\frac{-2y}{x}\right)^8$ (c) $\binom{8}{8} \left(\frac{-2y}{x}\right)^9$ (d) $\binom{8}{7} \left(\frac{x}{2y}\right)^0 \left(\frac{-2y}{x}\right)^8$

				Ansv	vers	vend (Emp		-	Y
1.1	a	2.	a	3.	b	4.	c	5.	
6	b	7.	b	8.	a	9.	a	10.	a
11.	b	12.	c	13.	а	14.	c	15.	d
16.	c	17.	a	18.	d	19.	d	20.	c
21.	d	22.	C	23.	c	24.	d	25.	b
26.	c	27.	а	28.	d	29.	a	30.	a
31.	b	32.	C	33.	С	34.	а	35.	b
36.	b	37.	a	38.	а	39.	b	40.	a
41.	a	42.	a	43.	а	44.	b	45.	b
46.	a	47.	a	48.	b	49.	а	50.	а
51.	Ь	52.	b	53.	С	54.	b	55.	а
56.	C	57.	b	58.	C	59.	b	60.	С
61.	a	62.	b	63.	С	64.	c	65.	a
66.	b	67.	c	68.	d	69.	d	70.	С
71.	a	72.	a	73.	a	74.	a	75.	a
76.	b	77.	c	78.	a	79.	b	80.	c
81.	b	82.	a	83.	b	84.	a	85.	a
86.	b	87.	c	88.	a	89.	a	90.	b
91.	c	92.	b	93.	b	94.	c	95.	a
96.	c	97.	b	98.	C	99.	b	100.	0
101.	b	102.	a	103.	b	104.	b	105.	a
106.	c	107.	d	108.	c	109.	a	110.	b

Chapter 8 #	Mathematical	Induction	Binomial	theorem
27700				

765

111.	b	112.	c	113.	c	114.	a	115.	C
116.	a	117.	c	118.	b	119.	a	120.	c
121.	d	122.	a	123.	a	124.	c	125.	d
126.	- b	127.	c	128.	\overline{d}	129.	b	130.	d
131.	a	132.	b	133.	b	134.	d	135.	d
136.	a	137.	\overline{c}	138.	a	139.	b	140.	d
141.	b	142.	c	143.	c	144.	d	145.	b
146.	c	147.	a	148.	b	149.	b	150.	а
151.	a	152.	d	153.	a	154.	ь	155.	C
156.	a	157.	b	158.	\overline{d}	159.	a	160.	\boldsymbol{c}
161.	$\frac{u}{d}$	162.	a	163.	d	164.	ь	165.	b
166.	b	167.	$\frac{d}{d}$	168.	b	169.	b	170.	d
4001									