

Disciplina: Redes Sem Fio

Professora Anelise Munaretto Fonseca

CPGEI/UTFPR

6LoWPAN

Adaptação do IPv6 para a Internet das Coisas

Hermano Pereira

Curitiba, 21 de agosto de 2015

Introdução

IPv6 + 802.15.4 = Internet das Coisas

- IoT, justificar o uso do IEEE 802.15.4
- Como fica a topologia e a Pilha de Protocolos
- Necessidade de Adaptação
- Resumir endereços, fragmentar datagramas e comprimir cabeçalhos.
 - Adaptar protocolos IPv6, NDP, ICMPv6, UDP
 - Novos protocolos: RPL, CoAP
 - Necessidade de Segurança e Criptografia
 - Prospecção, Exemplos de Mercado e Pesquisa

INTERNET

THINGS (WPAN/WSN)

INTERNET

Aplicações WEB Comunicação TCP/IP (IPv6)

Automação residencial Monitoração industrial Ambientes hospitalares

THINGS (WPAN/WSN)

. . .

Fontes [1-3] 4/49

INTERNET

Aplicações WEB

Comunicação TCP/IP (IPv6)

- 1 Consumo de Energia
- 2 Confiabilidade
- 3 Compatibilidade

Automação residencial Monitoração industrial Ambientes hospitalares

THINGS (WPAN/WSN)

. . .

Fontes [1-3] 5/49

INTERNET

Aplicações WEB

Comunicação TCP/IP (IPv6)

6LoWPAN IPv6 over

Low-power WPAN

Automação residencial Monitoração industrial Ambientes hospitalares

THINGS (WPAN/WSN)

. . .

INTERNET

Aplicações WEB

Comunicação TCP/IP (IPv6)

6LoWPAN
IPv6 over
Low-power WPAN

Projeção:

Em 2020 serão

50 bilhões de

dispositivos na IoT.

Automação residencial Monitoração industrial Ambientes hospitalares

THINGS (WPAN/WSN)

. . .

Fontes [1-3] 7/49

IPv6

IETF – Arquitetura TCP/IP

802.15.4

IEEE - MAC/PHY

IPv6

IETF – Arquitetura TCP/IP

6LoWPAN

IETF – Camada de Adaptação

802.15.4

IEEE - MAC/PHY

ISM – 2400-2483.5 MHz – max 250 Kbps

Fontes [4-6] 10/49

Gravogl et Al. [6] comparam o consumo de Energia:

Sleep

Tx

Rx

IEEE 802.15.4

Bluetooth

WiFi

Gravogl et Al. [6] comparam o consumo de Energia:

	Sleep	Tx	Rx
IEEE 802.15.4	0,06 µW	36,9 mW	34,8 mW
Bluetooth	330,00 µW	215,0 mW	215,0 mW
WiFi	6600,00 μW	835,0 mW	1550,0 mW

Fontes [6] 12/49

Fontes [5,7,8] 13/49

Topologia IEEE 802.15.4

Star/Peer-to-peer

PAN Coordinator

FFD (Full Function)

RFD (Reduced Func.)

Fontes [5,7,8] 14/49

Topologia 6LoWPAN

Star/Mesh

LBR (Border Router)

LC (Local Controller)

N (Nodes)

Fontes [5,7,8] 15/49

Topologia 6LoWPAN/IEEE 802.15.4

Star/Mesh

LBR (Border Router)
[PAN Coord. e FFD]

LC (Local Controller)
[FFD]

N (Nodes)
[FFD/RFD]

Fontes [5,7,8] 16/49

Pilha de Protocolos

Aplicação

Transporte

Rede

Adaptação

Enlace

Física

Fontes [7-20] 17/49

Pilha de Protocolos

Aplicação

CoAP

Transporte

UDP

Rede

IPv6 (ICMPv6 / 6Lo-DP / RPL)

Adaptação

6LoWPAN

Enlace

IEEE 802.15.4 MAC

Física

IEEE 802.15.4 PHY

Pilha de Protocolos

Aplicação

Transporte

Rede

Adaptação

Enlace

Física

CoAP

UDP

IPv6 (ICMPv6 / 6Lo-DP / RPL)

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

Resumo de Endereços

IPv6 Normal = 128 bits

Addr. Total

16 bytes 32 bytes

MAC Extended Address 64 bits

8 bytes

16 bytes

Resumo de Endereços

		Addr.	Total
IPv6	Normal = 128 bits	16 bytes	32 bytes
	Half = 64 bits	8 bytes	16 bytes
	Max = 16 bits	4 bytes	8 bytes
	Address elided	0 bytes	0 bytes
MAC	Extended Address 64 bits	8 bytes	16 bytes
	Short Address 16 bits	2 bytes	4 bytes

Fontes [5,9] 21/49

Resumo de Endereços

		Addr.	Total
IPv6	Normal = 128 bits	16 bytes	32 bytes
	Half = 64 bits	8 bytes	16 bytes
	Max = 16 bits	4 bytes	8 bytes
	Address elided	0 bytes	0 bytes
MAC	Extended Address 64 bits	8 bytes	16 bytes
	Short Address 16 bits	2 bytes	4 bytes

IEEE 802.15.4 – Tamanho total do frame = 127 bytes.

Economia máxima = 44 bytes.

Fontes [5,9] 22/49

FRAME IEEE 802.15.4

FC	SEQ	Addr	Payload	FCS
2	1	020	•••	2

Fontes [7,10] 23/49

DATAGRAMA IPv6

		V	ТС	FL	PL	NH	HL	SA	DA	Data
--	--	---	----	----	----	----	----	----	----	------

FRAME IEEE 802.15.4

FC	SEQ	Addr	Payload	FCS
2	1	020	•••	2

Fontes [7,10] 24/49

DATAGRAMA IPv6

V	ТС	FL	PL	NH	HL	SA	DA	Data
---	----	----	----	----	----	----	----	------

MTU mínima 1280 Bytes

FRAME IEEE 802.15.4

FC	SEQ	Addr	Payload	FCS
2	1	020	•••	2

Fontes [7,10] 25/49

DATAGRAMA IPv6

MTU mínima 1280 Bytes

Fontes [7,10]

Campos adicionais: size, tag, offset

Fontes [7,10] 27/49

Compressão do Cabeçalho

Cabeçalho do Datagrama IPv6

320 bits = **40** bytes

Fontes [9-11] 28/49

Compressão do Cabeçalho

Cabeçalho do Datagrama IPv6

320 bits = **40** bytes

Cabeçalho do Datagrama LoWPAN_IPHC

Fontes [9-11] 29/49

Compressão do Cabeçalho

Cabeçalho do Datagrama IPv6

320 bits = **40** bytes

Cabeçalho do Datagrama LoWPAN_IPHC

Fontes [9-11] 30/49

6LoWPAN-ND

Network Discovery Protocol

Fontes [13-15] 31/49

6LoWPAN-ND

Network Discovery Protocol

- Neighbor, Gateway
- **Duplicated Address**

Mensagens enviadas quando solicitadas

ICMPv6 (+2 tipos e +3 opções)

Fontes [13-15] 32/49

RPL – Routing Protocol for Low-power and Lossy Networks

Fontes [10,16-18] 33/49

RPL – Routing Protocol for Low-power and Lossy Networks

Árvore DODAG

Nó Sink

Mensagens:

- DIS
- DIO
- DAO

Trickle Algorithm

Rank 32

Rank 128

Rank 256

Fontes [10,16-18]

RPL – Routing Protocol for Low-power and Lossy Networks

Árvore DODAG

Nó Sink

Mensagens:

- DIS
- DIO
- DAO

Trickle Algorithm

Rank 32

Rank 128

Rank 256

Fontes [10,16-18]

RPL – Routing Protocol for Low-power and Lossy Networks

Métricas:

- Energia
- Sobrecarga
- Throughput
- Latência
- Confiabilidade

- . . .

Fontes [10,16-18] 36/49

Compressão do Cabeçalho UDP

Cabeçalho do Segmento UDP

64 bits = 8 bytes

Fontes [9-11] 37/49

Compressão do Cabeçalho UDP

Cabeçalho do Segmento UDP

64 bits = 8 bytes

Cabeçalho do Segmento HC_UDP

Min: 16 bits = 2 bytes

Compressão do Cabeçalho UDP

Cabeçalho do Segmento UDP

64 bits = 8 bytes

Cabeçalho do Segmento HC_UDP

Min: 16 bits = 2 bytes

Aplicação com CoAP

Mensagem HTTP

GET /1 HTTP/1.1\r\n\r\n ...

Neste exemplo: 184 bytes

Fontes [19,20] 40/49

Aplicação com CoAP

Mensagem HTTP

GET /1 HTTP/1.1\r\n\r\n ...

Neste exemplo: 184 bytes

Mensagem CoAP (Constrained Application Protocol)

Neste exemplo: 6 bytes

Aplicação com CoAP

Levä et Al. - Experimento HTTP x CoAP

Pull Mode:

HTTP consumiu duas vezes mais energia que o CoAP

Push Mode:

HTTP consumiu seis vezes mais energia que o CoAP

Fontes [24] 42/49

Segurança e Criptografia

Aplicação

Transporte

Rede

Adaptação

Enlace

Física

DTLS

não

não

AES-CCM* - 32, 64, 128 bits

Prospecção

6LoWPAN

- Grupo concluído
- 6lo IPv6 over Network of Resource-constrained Nodes
- → IEEE 802.15.4
- → BT-LE (Bluetooth Low Energy)
- → NB-PLC (Narrowband Power Line Communications)
- → Ultra Lower Energy DECT
- → ITU-T G.9959

Outros Grupos:

ROLL → Protocolo RPL

CoRE → Protocolo CoAP

6TiSCH → Subcamada de adaptação 802.15.4e TSCH

Mercado (exemplos)

Libelium.com:

Sensores Gases

Agricultura

Sensor estacionamento

Wigwag.com:

Pesquisa

Segurança

- Gerenciamento de troca de chaves
- Ataques
- Mitigação
- Sistemas de Detecção de Intrusão

Perguntas?

Grato:)

pereira@hermano.com.br

Fontes:

- [1] J. Tan and S. Koo, "A Survey of Technologies in Internet of Things," in Distributed Computing in Sensor Systems (DCOSS), 2014 IEEE International Conference on, May 2014, pp. 269–274.
- [2] D. Evans, "The Internet of Things How the Next Evolution of the Internet Is Changing Everything," in Cisco White Paper, Apr 2011.
- [3] M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. Grieco, G. Boggia, and M. Dohler, "Standardized Protocol Stack for the Internet of (Important) Things," Communications Surveys Tutorials, IEEE, vol. 15, no. 3, pp. 1389–1406, Third 2013.
- [4] "IETF Working Group IPv6 over Low power WPAN (6lowpan)." [Online]. Available: http://datatracker.ietf.org/wg/6lowpan/charter/
- [5] "P802.15.4 IEEE Approved Draft Standard for Local and metropolitan area networks - Part 15.4: Low-Rate Wireless Personal Area Networks (WPANs)," 2011. [Online]. Available: http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
- [6] K. Gravogl, J. Haase, and C. Grimm, "Choosing the Best Wireless Protocol for Typical Applications." in ARCS Workshops, W. Karl and D. Soudris, Eds. VDE-Verlag, 2011.
- [7] N. Kushalnagar, G. Montenegro, and C. Schumacher, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals," RFC 4919 (Informational), Internet Engineering Task Force, Aug. 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4919.txt
 [8] E. Kim, D. Kaspar, and J. Vasseur, "Design and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)," RFC 6568

(Informational), Internet Engineering Task Force, Apr. 2012. [Online]. Available:

http://www.ietf.org/rfc/rfc6568.txt

- [9] J. Hui and P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks," RFC 6282 (Proposed Standard), Internet Engineering Task Force, Sep. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6282.txt [10] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," RFC 4944 (Proposed Standard), Internet Engineering Task Force, Sep. 2007, updated by RFCs 6282, 6775. [Online]. Available: http://www.ietf.org/rfc/rfc4944.txt
- [11] S. Deering and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification," RFC 2460 (Draft Standard), Internet Engineering Task Force, Dec. 1998, updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112. [Online]. Available: http://www.ietf.org/rfc/rfc2460.txt
- [12] J. Postel, "User Datagram Protocol," RFC 768 (INTERNET STAN-DARD), Internet Engineering Task Force, Aug. 1980. [Online]. Available: http://www.ietf.org/rfc/rfc768.txt
- [13] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)," RFC 4861 (Draft Standard), Internet Engineering Task Force, Sep. 2007, updated by RFCs 5942, 6980, 7048. [Online]. Available: http://www.ietf.org/rfc/rfc4861.txt
- [14] S. Thomson, T. Narten, and T. Jinmei, "IPv6 Stateless Address Autoconfiguration," RFC 4862 (Draft Standard), Internet Engineering Task Force, Sep. 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4862.txt
- [15] Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann, "Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)," RFC 6775 (Proposed Standard), Internet Engineering Task Force, Nov. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6775.txt

Fontes:

[16] E. Kim, D. Kaspar, C. Gomez, and C. Bormann, "Problem Statement and Requirements for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing," RFC 6606 (Informational), Internet Engineering Task Force, May 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6606.txt [17] "IETF Working Group - Routing Over Low power and Lossy networks (roll)." [Online]. Available: http://datatracker.ietf.org/wg/roll/charter/ [18] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. Vasseur, and R. Alexander, "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks," RFC 6550 (Proposed Standard), Internet Engineering Task Force, Mar. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6550.txt [19] "IETF Working Group - Constrained RESTful Environments (CoRE)." [Online]. Available: http://datatracker.ietf.org/wg/core/charter/ [20] Z. Shelby, K. Hartke, and C. Bormann, "The Constrained Application Protocol (CoAP)," RFC 7252 (Proposed Standard), Internet Engineering Task Force, Jun. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7252.txt [21] E. Rescorla and N. Modadugu, "Datagram Transport Layer Security Version 1.2," RFC 6347 (Proposed Standard), Internet Engineering Task Force, Jan. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6347.txt [22] "IETF Working Group - IPv6 over Networks of Resource-constrained Nodes (6lo)." [Online]. Available: https://datatracker.ietf.org/wg/6lo/charter/ [23] "IETF Working Group - IPv6 over the TSCH mode of IEEE 802.15.4e (6tisch)." [Online]. Available: https://datatracker.ietf.org/wg/6tisch/charter/ [24] T. Levä, O. Mazhelis, H. Suomi, "Comparison the cost-efficiency of CoAP and HTTP in Web of Things applications", Decision Support Systems - Elsevier, 2014, pp. 23-28.