

Status Meeting - Application of Graph Learning to inverse problems

Cédric Mendelin < cedric.mendelin@stud.unibas.ch >

Department of Mathematics and Computer Science, University of Basel

05.05.2022

Problem and Goal

- Denoise observations
- > Motivation from imaging (computed tomography, cryo-EM)

Problem and Goal

- Denoise observations
- Motivation from imaging (computed tomography, cryo-EM)

Input

 \mathcal{I} : class of images (where $i \in \mathbb{R}^M$ with M as image dimension.)

Output

denoiser :
$$(i + \eta) \mapsto i^* \approx i$$

Where $i \in \mathcal{I}$ and $\eta \sim \mathcal{N}(0, \sigma^2) \in \mathbb{R}$.

Sinogram Denoiser

forward: radon transform

 $backward: filter\ back\ projection$

Sinogram Denoiser

forward: radon transform

backward : filter back projection

Sinogram Denoiser

$$denoiser_{sino}: forward(i) + \eta \mapsto forward(i)^* pprox forward(i)$$
 $denoiser = backward(denoiser_{sino}(forward(i) + \eta))$ $\forall i \in \mathcal{I} \text{ and } \eta \sim \mathcal{N}(0, \sigma^2) \in \mathbb{R}.$

GAT Denoiser

GAT - Graph Attention Network

 $GAT(A, GAT args) :\rightarrow fixed angles \rightarrow k-nn circle graph$

GAT Denoiser

GAT - Graph Attention Network

 $GAT(A, GAT args) : \rightarrow fixed angles \rightarrow k-nn circle graph$

GAT Loss

$$egin{aligned} \mathcal{L}_1 &= || \textit{forward}(i) - \textit{denoiser}_{\textit{sino}}(\textit{forward}(i) + \eta) ||_2 \ \mathcal{L}_2 &= || i - \textit{backward}(\textit{denoiser}_{\textit{sino}}(\textit{forward}(i) + \eta)) ||_2 \ \end{aligned}$$
 Where $i \in \mathcal{I}$ and $\eta \sim \mathcal{N}(0, \sigma^2) \in \mathbb{R}$.

GAT Denoiser - 2

GAT - Graph Attention Network

 $GAT(A, GAT args) :\rightarrow fixed angles \rightarrow k-nn circle graph$

Input Graph

- > Learning does work with circle graph
- > Learning does not work with random (Erdős–Rényi) graph

Toy images

> Uniformly places shapes on image

Figure: Example toy images.

Current Results

- \geq Results with \mathcal{L}_1 available.
- > Results with \mathcal{L}_2 calculating.
- > If time, add some comparison with BM3d

Final steps

- > Gather final results
- > Write report
- > Comparing with BM3D