Decidability of Termination Problems for Sequential P Systems with Active **Membranes**

Michal Kováč

FMFI UK, Slovakia

15.5.2015

Membrane structure

- Multisets
- Rewriting rules
- Passive vs. Active

Computation

- Maximal parallel vs. sequential
- Language
 - generating mode
 - accepting mode

P systems

- Overview
- Computational power
- 2 Termination problems
 - Halting problem
 - Termination problems in active membranes

P system with active membranes

- $\Pi = (\Sigma, C_0, R_1, \dots R_m)$
- C = (T, I, c)
 - $I:V(T)\rightarrow\{1,\ldots,m\}$
 - $c:V(T)\to \mathbb{N}^{\Sigma}$
- Rewriting rules
 - $u \rightarrow v$
 - $u \rightarrow v\delta$
 - $u \rightarrow [jv]_j$,
 - where $u \in \mathbb{N}^{\Sigma}, |u| \geq 1$ and $v \in \mathbb{N}^{\Sigma \times \{\cdot,\uparrow,\downarrow_j\}}$

Vector addition systems

- $G = (x, W), x \in \mathbb{N}^n, W \subseteq \mathbb{Z}^n$
- Reachability set $R(G) = \{z | \exists v_1 \dots v_j \in W : z = \}$ $x + v_1 + \dots v_j$ and $\forall 1 \le i \le j : x + v_1 + \dots + v_i \ge 0$
- Same reachability set as Petri nets

Termination problems

- Halting problem
- Existence of (in)finite computation
- Reachability graph
- Two conditions:
 - $\mathcal{C}_1 \leq \mathcal{C}_2 \Rightarrow$ each transition in \mathcal{C}_1 can be fired in \mathcal{C}_2
 - for each infinite computation there is C_1 , C_2 , such that $C_1 \rightarrow^* C_2$ and $C_1 \leq C_2$
- Dickson's lemma: For every infinite sequence of tuples over \mathbb{N} $\{a_i\}_{i=0}^{\infty}$ there are i < j such that $a_i \le a_i$

Outline
P systems
Termination problems

Halting problem
Termination problems in active membranes

Termination problems in active membranes

- How to use Dickson's lemma for active membranes?
- Idea: encode configuration to k-tuple maintaining two conditions

Definition

 $C_1 = (T_1, I_1, c_1) \le C_2 = (T_2, I_2, c_2) \Leftrightarrow \exists \text{ isomorphism } f: T_1 \to T_2 \text{ such that } \forall d \in V(T_1):$

- $l_1(d) = l_2(f(d))$
- $c_1(d) \subseteq c_2(f(d))$

Lemma

 $C_1=(T_1,l_1,c_1)\leq C_2=(T_2,l_2,c_2)\Rightarrow \exists$ isomorphism $f:T_1\to T_2$

such that rule r is applicable in Michal Kovač Michal Kovač Decidability of Termination Problems for Sequential P System r(u).

P systems
Termination problems

Halting problem
Termination problems in active membranes

Termination problems in active membranes

Theorem

Existence of infinite computation in sequential P systems with active membranes is decidable.

Theorem

Existence of finite computation in sequential P systems with active membranes is decidable.

Proof

Reduction to reachability of register machines.

Michal Ková

Decidability of Termination Problems for Sequential P Systems

P systems
Termination problems

Halting problem
Termination problems in active membra

Termination problems in active membranes

Definition

Define end(C) as k-tuple satisfying $enc(C_1) \leq enc(C_2) \Rightarrow C_1 \leq C_2$.

Lemma

For every infinite computation there is i < j such that $C_i \le C_j$.

Proof

Assume infinite sequence $\{enc(C_i)\}_{i=0}^{\infty}$. From Dickson's lemma there is i < j such that $enc(C_1) \le enc(C_2)$. Our property of enc implies $C_i \le C_j$.

Michal Ková

Decidability of Termination Problems for Sequential P Systems

Thanks for your attention!