

Potential flow governing equations

• Theorem: For every vector field \vec{V} , if $\vec{\nabla}$ $\times \vec{V} = 0$, then \vec{V} can be written as the gradient of a scalar field ϕ :

 $\vec{V} = \vec{\nabla} \phi$ (1.6) $u = \frac{\partial \phi}{\partial x}, v = \frac{\partial \phi}{\partial y}, w = \frac{\partial \phi}{\partial z}$ (2.6) Cartesian coordinates (Velocity) potential

- Proof: See [3], section 12.4
- See "chap6-AppendixA-Del operat....pdf" for other coordinates systems
- Exercise: Show that the change of variable Eq. (1.6) satisfies the irrotational flow condition $(\vec{\nabla} \times \vec{V} = 0)$. You can use Cartesian

Chapter 6 Coordinates.

By E. Aman

Potential flow governing equations

• Theorem: For every vector field \vec{V} , if $\vec{\nabla} \times \vec{V}$ = 0, then \vec{V} can be written as the gradient of a scalar field ϕ :

$$\vec{V} = \vec{\nabla}\phi$$
 (1.6) $u = \frac{\partial\phi}{\partial x}, v = \frac{\partial\phi}{\partial y}, w = \frac{\partial\phi}{\partial z}$ (2.6) Cartesian coordinates

• Form continuity (incompressible flow):

$$\vec{\nabla} \cdot \vec{V} = 0 = \vec{\nabla} \cdot (\vec{\nabla} \phi)$$

$$\nabla^2 \phi = 0$$
, $\nabla^2 = \vec{\nabla} \cdot \vec{\nabla}$ (3.6) $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$ (4.6) Cartesian coordinates equation operator

• Exercise: Substituting Eq. (2.6) into Eq. (17.3)', derive Eq. (4.6) directly.

Chapter 6

By E. Amani

Potential flow governing equations

• Assuming gravity in the negative z-direction, the momentum equation is reduced to Eq.

(40.3):
$$\vec{V}\left(\frac{p}{\rho} + gz + \frac{V^2}{2}\right) + \frac{\partial \vec{V}}{\partial t} = 0 \xrightarrow{\partial \vec{t}} \frac{\partial \vec{V}}{\partial t} = \vec{V}\frac{\partial \phi}{\partial t}$$

$$\xrightarrow{\text{integration}} \frac{p}{\rho} + gz + \frac{\left(\vec{\nabla}\phi\right)^2}{2} + \frac{\partial\phi}{\partial t} = C' \longrightarrow$$

$$p = C - \rho \left(gz + \frac{(\vec{V}\phi)^2}{2} + \frac{\partial \phi}{\partial t} \right) \quad (6.6) \qquad \qquad \frac{p}{\rho} + gz + \frac{V^2}{2} = C' \text{ (steady)}$$

• Exercise: Assuming $\vec{V} = U\hat{\imath}$, show that Eq. (6.6) is simplified to Eq. (10.5).

Chapter 6

Potential flow governing equations

- Solution method
 - 1. Solving the Laplace equation for ϕ with appropriate boundary conditions

$$\nabla^2 \phi = 0$$
 (3.6) $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$ (4.6) Cartesian coordinate

$$\nabla^2 \phi = 0 \quad (3.6) \qquad \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \qquad (4.6) \frac{\text{Cartesian}}{\text{coordinates}}$$
2. Calculating velocity
$$\vec{V} = \vec{V}\phi \qquad (1.6) \qquad u = \frac{\partial \phi}{\partial x}, v = \frac{\partial \phi}{\partial y}, w = \frac{\partial \phi}{\partial z} \qquad (2.6) \frac{\text{Cartesian}}{\text{coordinates}}$$
3. Calculating pressure

3. Calculating pressure
$$p = C - \rho \left(gz + \frac{(\vec{\nabla}\phi)^2}{2} + \frac{\partial\phi}{\partial t} \right) \quad (6.6) \qquad \frac{p}{\rho} + gz + \frac{V^2}{2} = C' \text{ (steady)}$$

Chapter 6

Your name

Stream function in potential flow

• For 2D plane flow, Eq. (23.3):

$$u \equiv \frac{\partial \psi}{\partial y}, -v \equiv \frac{\partial \psi}{\partial x} \tag{23.3}$$

irrotational

$$\overrightarrow{\nabla} \times \overrightarrow{V} = 0 \longrightarrow \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) \hat{k} = 0 \xrightarrow{(23.3)} \frac{\partial}{\partial y} \left(\frac{\partial \psi}{\partial y}\right) - \frac{\partial}{\partial x} \left(-\frac{\partial \psi}{\partial x}\right) = 0$$

- **Exercise:** Using cylindrical coordinates, prove Eq. (12.6).
- Are ψ and ϕ the same?
- ϕ and ψ iso-lines are orthogonal

Chapter 6

By E. Amani

12/2/2024

4

Boundary conditions

Wall: Using the reference frame attached to the solid body

$$u_{n} = \vec{n}. \vec{V} = \vec{n}. \vec{V} \phi = \frac{\partial \phi}{\partial n} \frac{\text{On body}}{\text{surface}} \frac{\partial \phi}{\partial n} \Big|_{body} = 0$$
 (13.6)
$$\psi \Big|_{body} = cte \text{ or } \frac{\partial \psi}{\partial s} \Big|_{body} = 0$$
 (14.6)

• Farfield:

$$u = U_{\infty}, v = V_{\infty} \longrightarrow$$
$$\frac{\partial \phi}{\partial x} = U_{\infty}, \frac{\partial \phi}{\partial y} = V_{\infty}$$

$$\frac{\partial \psi}{\partial y} = U_{\infty}, \frac{\partial \psi}{\partial x} = -V_{\infty}$$
(15.6)

Chapter 6

Solution of potential flow equations

- Simplifications compared to Navier-Stokes
 - > Velocity governed by a linear equation
 - > Pressure and velocity is decoupled
 - > Momentum is an algebraic equation (Bernoulli)
- Still needs a numerical solution in general case
- Analytical solutions in simple cases
- Superposition if boundary conditions are linear

Chapter 6

By E. Amani

Basic plane potential flows

- Uniform flow
- Source & sink
- Free vortex
- Doublet

Your name

summing of Duste, I'll	ane Potential Flows			
Description of Flow Field	Velocity Potential	Stream Function	Velocity Components ^a	
Uniform flow at angle α with the x axis (see Fig. 6.16 b)	$\phi = U(x\cos\alpha + y\sin\alpha)$	$\psi = U(y\cos\alpha - x\sin\alpha)$	$u = U\cos\alpha$ $v = U\sin\alpha$	
Source or sink (see Fig. 6.17) $m > 0$ source $m < 0$ sink	$\phi = \frac{m}{2\pi} \ln r$	$\psi = \frac{m}{2\pi} \theta$	$v_r = \frac{m}{2\pi r}$ $v_\theta = 0$	ψ 8 4 0-
Free vortex (see Fig. 6.18) $\Gamma > 0$ counterclockwise motion $\Gamma < 0$ clockwise motion	$\phi = \frac{\Gamma}{2\pi}\theta$	$\psi = -\frac{\Gamma}{2\pi} \ln r$	$v_r = 0$ $v_\theta = \frac{\Gamma}{2\pi r}$	
Doublet (see Fig. 6.23)	$\phi = \frac{K\cos\theta}{r}$	$\psi = -\frac{K\sin\theta}{r}$	$v_r = -\frac{K\cos\theta}{r^2}$ $v_\theta = -\frac{K\sin\theta}{r^2}$	

Superposition

• The superposition of several potential flow is a potential flow

$$\nabla^2 \phi_1 = 0, \nabla^2 \phi_2 = 0, \dots$$
 $\phi = \phi_1 + \phi_2 + \dots \longrightarrow \nabla^2 \phi = 0$

 Only Boundary Conditions (BC) need to be considered

Chapter 6 By E. Amani

Superposition

> Example: Flow over a rotating circular cylinder

Lecture Notes

> Exercise: Determine pressure at the cylinder surface using Bernoulli's equation. Then, show that

$$\begin{split} \mathcal{D} &= 0 \\ \mathcal{L} &= -\rho U_0 \Gamma, \Gamma = 2\pi \omega \alpha^2 \end{split}$$

Chapter 6

By E. Amani

Useful relations in potential flow

- D'Alembert's paradox: For every body of arbitrary shape in a potential flow D = 0
 - Potential flow is not capable of predicting drag
- Kutta-Joukowski lift theorem: For every body of arbitrary shape in a uniform 2D flow

Lift per unit depth $\leftarrow \vec{\mathcal{L}}' = \rho \vec{U}_0 \times \vec{\Gamma}_c$ (27.6)

circulation
$$\Gamma_c = \oint_P \vec{V} \cdot d\vec{s}$$
 (28.6)
Body perimeter

Chapter 6

By E. Amani

