Hypervisors, VMs, e a Evolução para Containers Docker

A virtualização revolucionou a computação. Hypervisors e VMs melhoraram a utilização de recursos e flexibilidade.

Containers Docker e Kubernetes representam uma nova era, oferecendo benefícios e desafios.

Leonardo Vergutz, Enzo Campos e Rafael Marliere

O que são Hypervisors?

Definição

Hypervisors gerenciam máquinas virtuais (VMs), permitindo múltiplos sistemas operacionais em um único hardware. Eles atuam como intermediários entre hardware e VMs, abstraindo recursos.

Tipos de Hypervisors

Existem dois tipos: tipo 1
(bare-metal), rodando diretamente
no hardware (ex: VMware ESXi), e
tipo 2 (hosted), rodando em um
sistema operacional host (ex:
VirtualBox).

Função

Hypervisors abstraem o hardware, isolando as VMs e gerenciando o acesso a recursos (CPU, memória, armazenamento, rede), assegurando o funcionamento isolado de cada VM.

Hypervisors: Bare-Metal vs. Hosted

Hypervisor Bare-Metal

- Roda diretamente no hardware, sem a necessidade de um sistema operacional subjacente.
- Oferece maior desempenho e segurança, mas exige mais gestão prática.

Hypervisor Hosted

- Roda sobre um sistema operacional já existente, proporcionando uma interface mais amigável.
- Oferece desempenho inferior, mas é mais fácil de configurar e manter.

Arquitetura do Hypervisor Bare-Metal

Hypervisors bare-metal, como VMware ESXi ou Hyper-V, possuem uma interface direta com o hardware subjacente, permitindo a utilização ideal dos recursos e alto desempenho.

Arquitetura do Hypervisor Hosted

Hypervisors hosted, como VMware Workstation ou VirtualBox, rodam sobre um sistema operacional existente, oferecendo uma interface mais amigável, mas com desempenho ligeiramente inferior.

BARE-METAL HYPERVISTORS

Desempenho de Hypervisors Bare-Metal

Alto Desempenho

Hypervisors bare-metal oferecem desempenho quase nativo, pois têm acesso direto aos recursos de hardware.

Baixa Sobrecarga

A ausência de um sistema operacional subjacente reduz a latência e a sobrecarga associadas à virtualização.

Bare-metal ve thyervice dertebaterd hyperhverville?

Desempenho de Hypervisors Hosted

Mais Fáceis de Gerenciar

Hypervisors hosted
aproveitam o sistema
operacional existente,
tornando-os mais amigáveis e
fáceis de configurar e manter.

Desempenho Inferior

A presença do sistema operacional host introduz uma sobrecarga, levando a um desempenho ligeiramente inferior em comparação aos bare-metal.

O que são Virtual Machines?

Definição

VMs são instâncias isoladas de sistemas operacionais, gerenciadas por um hypervisor. Cada VM opera como um sistema independente, com seu próprio SO, aplicativos e arquivos, permitindo a execução de diferentes sistemas e aplicações em um único hardware.

Estrutura de uma VM

O hypervisor cria a base para a VM.

Sobre ele, roda o SO guest (uma cópia de um SO real) com seus aplicativos, garantindo isolamento completo do hardware host e outras VMs.

Vantagens

VMs oferecem isolamento, melhor uso de hardware, backups e migração fáceis, e ambientes seguros para testes. As desvantagens incluem overhead do SO guest, desempenho limitado e inicialização lenta.

Motivos para Usar Hypervisors e VMs

- 1 Consolidação de Servidores
 - Reduza custos com menos servidores físicos, otimizando hardware e energia.
- 3 Escalabilidade

Adicione VMs rapidamente para atender picos de demanda.

Jesolamento

Evite conflitos entre aplicações com isolamento completo.

Recuperação de Desastres

Facilite backups e restauração rápida em caso de falhas.

Casos de Uso para Máquinas Virtuais

Testes de Software

Máquinas virtuais permitem a criação de ambientes isolados para testar softwares de forma controlada e reproduzível.

Consolidação de Servidores

A virtualização possibilita consolidar múltiplos servidores físicos em uma única plataforma, melhorando a utilização dos recursos e reduzindo custos.

Recuperação de Desastres

Máquinas virtuais podem ser facilmente backupadas e restauradas, tornando-se uma ferramenta valiosa para recuperação de desastres e continuidade de negócios.

Beneficios das Máquinas Virtuais

80%

Utilização de Recursos

Máquinas virtuais podem melhorar a utilização do hardware em até 80%, reduzindo a necessidade de servidores físicos.

\$100K

Economia de Custos

A virtualização pode gerar economias significativas, com organizações relatando economias de até \$100.000 ou mais.

99.99%

Disponibilidade

Máquinas virtuais podem alcançar alta disponibilidade e tempo de atividade, com algumas organizações reportando 99,99% ou mais.

Problemas e Limitações de Hypervisors e VMs

Overhead

Cada VM requer um SO, consumindo recursos (CPU, memória, armazenamento).

Performance

Desempenho afetado pela duplicação de kernels e overhead do hypervisor.

Lentidão na Inicialização

Inicialização lenta devido ao carregamento do SO guest e processo de virtualização.

Complexidade

3

5

Gerenciar múltiplos SOs e VMs aumenta a complexidade operacional.

Escalabilidade

Limitam a escalabilidade em larga escala.

A Gênese da Virtualização: Anos 1960

Contexto

Na década de 1960, a computação era dominada por mainframes com limitações de uso de recursos.

O CP-40/CMS da IBM surgiu como um dos primeiros sistemas de virtualização.

Necessidade

Otimizar o uso dos recursos computacionais e compartilhar recursos com isolamento de ambientes.

Foi um passo importante para a virtualização moderna.

Consolidação nos Mainframes: Anos 1970

VM/370

Adoção generalizada da virtualização em mainframes IBM com o desenvolvimento do VM/370.

Eficiência

Melhoria da eficiência e flexibilidade na alocação de recursos.

Redução de custos

Redução de custos operacionais e aumento da produtividade.

O Declínio Temporário: Anos 1980

Ascensão dos PCs

Ascensão dos computadores pessoais e redes locais, causando um desvio na virtualização.

Arquitetura x86

A arquitetura x86 apresentou desafios iniciais para a virtualização.

Sistemas monousuário

Foco em sistemas operacionais monousuário e aplicações desktop.

O Renascimento com a Arquitetura x86: Anos 1990

Avanços

virtualização.

Avanços no hardware x86 (Intel VT-x e AMD-V) permitiram o retorno da

VMware

Retorno da
virtualização com
produtos como
VMware Workstation.

Consolidação

Necessidade de consolidar servidores e reduzir a infraestrutura física.

Hypervisores Modernos e a Expansão: Anos 2000

Tipo 1

Surgimento de hypervisores bare-metal

(Tipo 1): VMware ESXi, Citrix XenServer.

Data Centers

Consolidação de servidores se torna prática comum em data centers.

Tipo 2

Hypervisores hospedados (Tipo 2): VMware

Workstation, VirtualBox.

Desempenho

Melhoria do desempenho e escalabilidade da virtualização.

A Virtualização na Nuvem: Anos 2010

Adoção massiva

Adoção massiva da virtualização por provedores de nuvem (AWS, Azure, GCP).

laaS

Infraestrutura como Serviço (IaaS) impulsionada pela virtualização.

Escalabilidade

Elasticidade e escalabilidade sob demanda.

Contêineres e Virtualização Híbrida: Anos 2020

1

Contêineres

A ascensão dos contêineres (Docker, Kubernetes) como alternativa.

2

Orquestração

Orquestração de contêineres e microsserviços.

3

Virtualização Híbrida

Combinação de máquinas virtuais e contêineres.

O Futuro da Virtualização: Inovação Contínua

1

Integração

Integração com tecnologias emergentes (IA, Edge Computing).

2

Virtualização de funções

Virtualização de funções de rede (NFV) em telecomunicações.

3

Segurança avançada

Foco em segurança e isolamento avançados.

A Evolução: Containers Docker

Containers

Unidades leves empacotando apps e dependências, compartilhando o kernel do SO host. Mais leves e rápidos que VMs.

Docker

Plataforma para criar, gerenciar e executar containers. Ferramentas para desenvolvimento, empacotamento e distribuição eficiente.

Virtualização de Nível de SO

Usa cgroups e namespaces para isolar e gerenciar recursos eficientemente. Múltiplos containers compartilham o kernel, reduzindo consumo.

Comparação: VMs vs Containers

Característica	Máquinas Virtuais	Containers
Isolamento	Completo (nível de SO)	Parcial (kernel compartilhado)
Recursos	Alto (SO + apps)	Baixo (apenas apps)
Inicialização	Lenta	Rápida
Portabilidade	Moderada	Alta
Gerenciamento	Complexo	Simples

VIRTUAL MACHINE

Virtall machince + container

CONTAINER

Level of icolaber contaire

Beneficios dos Containers Docker

1 Leveza

Containers Docker compartilham o kernel do host, reduzindo o uso de recursos e o consumo de energia.

3 Escalabilidade

Ideais para microsserviços, escalando horizontalmente com facilidade.

Portabilidade

Rodam consistentemente em qualquer ambiente, facilitando implantação em diferentes plataformas.

4 Rapidez

Inicializam em segundos, acelerando desenvolvimento, teste e implantação.

Limitações dos Containers

Segurança

Containers compartilham o kernel, aumentando vulnerabilidades.

Compatibilidade

Containers não suportam apps que exigem SO completo ou dependências de hardware.

O que é Kubernetes?

Kubernetes é uma plataforma de orquestração de containers de código aberto projetada para automatizar a implantação, o dimensionamento e a gestão de aplicações em containers.

Características Principais:

- Automação: Gerencia automaticamente a alocação de recursos e o balanceamento de carga.
- Portabilidade: Funciona em diversos ambientes, como nuvens públicas, privadas e híbridas.
- Escalabilidade: Permite ajustar recursos dinamicamente com base na demanda.
- Resiliência: Detecta e corrige falhas automaticamente, reiniciando containers defeituosos.

Componentes Básicos:

- Nodes: Unidades que executam os containers.
- Pods: Conjunto de um ou mais containers, sendo a menor unidade gerenciada pelo Kubernetes.
- Clusters: Agrupamentos de nodes gerenciados como um único sistema.

Usos no Mercado:

- Implementação de microsserviços.
- Gerenciamento de aplicações na nuvem.
- Orquestração de ambientes multicloud

Kubernetes em Ambientes Corporativos

Escalabilidade

Kubernetes permite escalar aplicativos de forma eficiente, atendendo a demanda variável dos negócios.

Automação

A orquestração e gerenciamento automatizados dos containers reduzem a complexidade operacional.

Gerenciando Clusters com Kubernetes

Orquestração

O Kubernetes automatiza o provisionamento, implantação e escala de containers em clusters.

Auto-Cura

O Kubernetes monitora a saúde dos containers e restaura automaticamente os que falham.

DevOps e Virtualização

Agilidade

A virtualização e o DevOps permitem um ciclo de desenvolvimento e implantação mais rápido e eficiente.

Escalabilidade

Recursos virtuais sob demanda possibilitam escalar soluções de acordo com as necessidades do negócio.

Ambientes de Desenvolvimento Isolados

1

Isolamento

Ambientes de desenvolvimento virtualizados garantem isolamento entre equipes e projetos.

Consistência

Ambientes padronizados e reproduzíveis asseguram consistência durante todo o ciclo de desenvolvimento.

Testes de Carga com Containers e VMs

Containers

Containers permitem testar cargas de trabalho em ambientes isolados e reproduzíveis.

VMs

Máquinas virtuais oferecem flexibilidade para simular diversos cenários de infraestrutura durante os testes.

Automação com Infrastructure as Code (IaC)

Reprodutibilidade

laC permite criar e destruir ambientes de forma consistente e previsível.

Versionamento

O código de infraestrutura é versionado, facilitando a colaboração e rastreabilidade.

Containers e Microservicos no Mercado Financeiro

Agilidade

Containers e microservices permitem implementar atualizações e novos recursos rapidamente.

Segurança

O isolamento de containers melhora a segurança de aplicações críticas.

Integração Contínua com Containers

Construção

Containers simplificam a construção e o empacotamento de aplicações.

2

Entrega

A entrega contínua é facilitada pela criação e implantação de containers.

Monitoramento e Segurança em Kubernetes e VMs

24/7

100%

Monitoramento

Soluções integradas monitoram a saúde e o desempenho de cargas de trabalho em Kubernetes e VMs.

Segurança

Políticas de segurança automatizadas protegem a infraestrutura virtualizada contra ameaças e violações.

Referencias

- Hypervisor e sua importância na infraestrutura de TI
- Hipervisor: A Tecnologia por Trás da Virtualização
- O que é Máquina Virtual e o que são hypervisors?
- O que é um hipervisor?
- Virtualização
- Surgimento da virtualização
- História dos sistemas operacionais
- Conceitos de Virtualização