Group 8:

LetitGrow!: Autonomous Hydroponic Garden

Leandro Alepuz (CpE) Danny Nguyen (EE)

- Web Implementation
- ☐ System
 Assembly

PCB DesignHardware troubleshooting

Edwin Rivera (EE)

- Parts and Budget
- PCB Manufacturing

Nathan To (CpE)

- Software Implementation
- Sensor Troubleshooting

Our Solution: LetitGrow! A smart hydroponic system

Deep Water Culture Hydroponic

Automatic Plant Care

Web App Integrated

Motivations

> Food Insecurity

- Rising temperatures due to climate change
- Population outgrowing agricultural output

➤ COVID-19

- Supply chain issues
- Scarcity due to panic buyers
- People acquiring new hobbies

> Rising popularity of Hydroponics

- O Uses 70% to 90% less water
- Faster growing speed
- Cleaner experience for indoors

Why Deep Water Culture (DWC) Hydroponics?

➤ What is it?

Hydroponics is an agricultural technique that only uses water to grow plants, completely getting rid of soil.

DWC is a specific type of hydroponics where the roots are directly submerged in a water reservoir with oxygen and nutrients.

> Advantages

- Fast growth
- Simple setup
- o Clean

Goals and Objectives

- Garden Autonomy
 - O Achieve a minimal amount of time needed for plant care from the user: 2 weeks without any care needed
- > Beginner user friendly experience
 - Require no plant maintenance experience
- > Total feedback of the plant environment
 - Use the plant's pH, nutrients, water level, air and water temperature data to achieve plant growth
- Monitor and control the system remotely from the web
 - O Receive live feed from your plant and modify parameters on the browser

Requirements and Specifications

Requirement	Specification	
Compact Tank Size	< 36" x 24" x 20"	
Power self-sufficiency	Direct connection to US outlet	
Water capacity for 12 plants	23 gallons	
Sensor monitoring	Minimum 12 GPIO pins	
Affordable cost	< \$400	
Accessible User Interface		RSITY OF AL FLORIDA

Plant Requirements

Plant Parameter	Specification
Water Temperature	[65-80]° F
Total Dissolved Solids (TDS)	[600-1000] ppm
Water pH level	[5.0, 7.0]
Air Quality	[800-1000] ppm of CO ₂
Air Temperature	[60-90]° F
Humidity	[50-70]%
Light	LED Lights 14 to 16 hours Everyday

Current Solutions

➤ Home Hydroponics

- For beginners
- Small capacity
- Automatic lights
- Small water pump to oxygenate water
- o Cheap (\$50-\$80)

> Hybriponics

- Vertical garden
- Large capacity
- o Costly (\$800+)
- Appconnectivity

> Farm.bot

- o Robotic arm
- Multiple arm tips for functionalities
- Soil based garden
- o Scalable
- Expert level install
- Expensive (\$1700)

Product Comparison

	Home Hydroponics	Hybriponic	Farm.bot	Our Solution
Easy to use			☑	
Easy to install	✓		×	
Scalability	×		✓	×
Compact size	☑		Z	
App integration	×		☑	
Water level sensing				
Air temperature/Humidity	×		Z	
pH sensing	×	×	×	
Nutrient sensing	×	×	×	
Image monitoring	×	×	✓	
Affordable	✓	×	×	

System Design Diagram

> Input blocks (red)

- On/Off
- Data is collected every 1 hour under normal levels
- If system needs calibration, data is actively sampled in a feedback loop every 10 seconds

Output blocks (cyan)

- Dependent on the input sensors
- LED lights directly controlled by MCU by regular scheduling
- Air pump is completely independent as is always On

System Prototype

Growing Tent

➤ Inputs (red)

- Sensors data is received and transmitted to the main MCU
- Webcam directly connects to main MCU for computer vision testing

Output (green)

- 4 peristaltic pumps supply pH and Nutrients
- Lights are automatically on/off
- Exhaust fan helps regulate temperature and humidity when lights are on
- Water pump refills the main tank

Supply Lines (blue)

- Tubing connects to the main tank for pH and Nutrient delivery
- Air pump delivers oxygen to the roots via and air diffuser placed in the bottom of the tank
- O Tubes deliver water from the reservoir tank to the main tank

Microcontroller

Raspberry Pi 4		
Processor:	Broadcom BCM2711 Quad core Cortex-A72 1.5GHz	
Memory:	8GB LPDDR4 SDRAM	
Connectivity:	X4 USBs, Ethernet, Bluetooth, x2 micro HDMI, 40 pin GPIO header	
Power:	5V DC via USB-C & 5V DC via GPIO header (500mA)	

BeagleBone Black		
Processor:	AM335x 1GHz ARM Cortex A8	
Memory:	512MB DDR3 RAM	
Connectivity:	x2 USBs, Ethernet, HDMI, 2x 46 pin header	
Power:	5V DC via USB (210mA)	

Grow Tent

Manufacturer:	YITAHOME
Cost:	\$63.99
Size:	36" x 36" x 72"
Canvas Thickness:	1680D
Support Weight:	Up to 120 lbs

Manufacturer:	MELONFARM
Cost:	\$89.99
Size:	36" x 36" x 72"
Canvas Thickness:	600D
Support Weight:	Up to 110 lbs

pH Sensor

Manufacturer:	GAOHOU
Cost:	\$35.88
Measurement Range:	0pH - 14pH
Accuracy:	+/- 0.25pH
Operating Temperature:	0°C - 60°C
Size:	42 x 32 x 20mm

Manufacturer:	OCESTORE
Cost:	\$34.99
Measurement Range:	0рН - 14рН
Accuracy:	+/- 0.25pH
Operating Temperature:	0°C - 60°C
Size:	42 x 32 x 20mm

TDS Sensor

Manufacturer:	PUSOKEI
Cost:	\$14.89
Measurement Range:	0ppm - 1000ppm
Accuracy:	+/- 10%
Working Voltage:	3.3~5.5V
Size:	42 x 33mm

Manufacturer:	KUIDAMOS
Cost:	\$17.09
Measurement Range:	0ppm - 1000ppm
Accuracy:	+/- 10%
Working Voltage:	3.3~5.5V
Size:	42 x 33mm

Water Level Sensor

Manufacturer:	CQRobot
Cost:	\$8.99
Working Voltage:	5V
Operating Temperature:	-25°C to 105°C
Size:	35 x 36 x 3mm

Manufacturer:	Elegoo	
Cost:	Owned	
Working Voltage:	3~5V	
Operating Temperature:	10°C to 30°C	
Size:	62 x 20 x 8mm	

Air Temp/Humidity Sensor

Manufacturer:	Elegoo (DHT11)	
Cost:	Owned	
Temperature Range:	0°C to 50°C (+/-2°)	
Humidity Range:	20% - 90% RH (+/-5%)	
Size:	28 x 12 x 7.2mm	

Manufacturer:	HiLetgo (DHT22)	
Cost:	\$8.49	
Temperature Range:	-40°C to 80°C (+/-0.5°)	
Humidity Range:	0% - 100% RH (+/-2%)	
Size:	28 x 12 x 10mm	

Water Temperature Sensor

Manufacturer:	GAOHOU	
Cost:	\$13.99 (x2 Sensors)	
Measuring Range:	-55°C to 110°C (+/-2°)	
Working Voltage:	3.2 ~ 5.25V	
Size:	7 x 26mm	

Manufacturer:	Low Voltage Labs	
Cost:	\$8.99 (x1 Sensor)	
Measuring Range:	-55°C to 125°C (+/-2°)	
Working Voltage:	3.0 ~ 5.25V	
Size:	7 x 26mm	

Budget

Item	Quantity	Estimated Cost
Grow Tent	1	\$64
Plastic Tote (Reservoir)	1	\$12
Plant Growth Nutrients	1	\$39
pH Solutions	1	\$21
Raspberry Pi 4	1	Owned
Custom PCB	2	\$170
Air Temp/Humidity Sensor	1	Owned
pH Sensor	1	\$37
TDS Sensor	1	\$16
Water Level Sensor	1	\$9
Water Temperature Sensor	2	\$14
Peristaltic Pump	4	\$52
Air Pump	1	\$16
Water Pump	1	\$12
Webcam	1	Owned
Total:		\$462

➤ Initial estimated budget was between \$410 - \$530

Largest expense attributed to the custom PCB

- Other minor components not listed are also already owned
- ➤ Total cost is approximately \$462

Power Block Diagram

Schematics

Schematics

POWER SWITCH

+12_VIN PROTECTION

FT232RL/USB-UART

- > Pandemic component shortage
- ➤ Long lead parts, sample part
- > 32 VQFN package ATMEGA328P-MU

- ➤ Harvesting demo CCA to procure components
- > 32 TQFN package ATMEGA328P-AU

- Dead bug component
- > 32 TQFN package ATMEGA328P-AU

Modified functioning CCA ready for hardware and software integration

Project Timeline

