

INTRODUCCIÓN A LA ROBÓTICA

Rafael Barea

Departamento de Electrónica. Universidad de Alcalá.

Alcalá de Henares. Madrid. (Spain) barea@depeca.uah.es

ÍNDICE

- Introducción a la robótica.
- Definición de robot.
- Clasificación de robots.
- Componentes de un robot.
- Historia de la robótica.
- Futuro de la robótica.
- Robótica de servicios.

INTRODUCCIÓN: ¿Qué es la robótica?

• El término "Robótica" fue acuñado por Isaac Asimov para describir la tecnología de los robots.

- Procede de las palabras checas *robota* (trabajo forzado) y **robotnik** (sirviente)
 - -Usadas por primera vez en 1921 por el escritor checo Karel Capek en su obra de teatro Rossum's Universal Robot (R.U.R.) y hacían referencia a un humanoide mecánico.

INTRODUCCIÓN: Definición de robot

• Muchas películas han mostrado a los robots como máquinas dañinas y

amenazadoras (Terminator, Yo robot)

• Otras retratan a robots como ayudantes del hombre (C3PO, R2D2,

Robocop,...)

INTRODUCCIÓN: Definición de robot

- Existen ciertas dificultades a la hora de establecer una definición formal de lo que es un robot.
- Las definiciones son muy dispares:
 - "Es un dispositivo reprogramable y multifuncional diseñado para mover materiales, piezas, herramientas o dispositivos especializados a través de movimientos programados"
 - Robot Institute of America, 1979 -
 - "Un dispositivo automático que realiza funciones que normalmente se considera son o debieran ser realizadas por humanos"
 - Diccionario Webster -
 - Máquina o ingenio electrónico programable, capaz de manipular objetos y realizar operaciones antes reservadas sólo a las personas.
 - Diccionario Real Academia -

- Es difícil establecer una clasificación rigurosa de los robots
- En base a su arquitectura se pueden dividir en:
 - -Poliarticulados: son sedentarios y están estructurados para mover sus elementos terminales en un determinado espacio de trabajo con un número limitado de grados de libertad (manipuladores y algunos robots industriales)

-Móviles: Cuentan con gran capacidad de desplazamiento, basados en carros o plataformas y dotados de un sistema locomotor de tipo rodante. Siguen su camino por telemando o guiándose por la información recibida de su entorno a través de sus sensores

- Androides: intentan reproducir total o parcialmente la forma y el comportamiento cinemático del ser humano. Uno de los aspectos más complejos de estos robots es la locomoción bípeda (controlar dinámicamente el movimiento y mantener el equilibrio del robot).
- Zoomórficos: imitan los sistemas de locomoción de los diversos seres vivos
 - No caminadores: basados en segmentos cilíndricos biselados acoplados axialmente entre sí y dotados de un movimiento relativo de rotación
 - Caminadores: multípedos capaces de evolucionar en superficies muy accidentadas.
- **Híbridos:** aquellos de difícil clasificación cuya estructura se sitúa en combinación con alguna de las anteriores (un carro móvil con un brazo, robot personal antropomorfo, etc)

- En base a su aplicación:
 - Industriales: son artilugios mecánicos y electrónicos destinados a realizar de forma automática determinados procesos de fabricación o manipulación.

 Seguridad y espacio: relativos al uso de robots en tierra, mar y aire en misiones de seguridad civil o militar así como su uso en misiones espaciales

 De servicios: sistemas aplicados en los dominios de la vida: entornos domésticos y de ocio, en salud y rehabilitación, en servicios profesionales y en ambientes peligrosos; que reproducen acciones de ayuda a los humanos

- En base a su evolución:
 - 1º Generación: Sistema de control basado en "paradas fijas" mecánicamente (mecanismos de relojería que mueven las cajas musicales o los juguetes de cuerda)
 - 2º Generación: El movimiento se controla a través de una secuencia numérica almacenada en disco o cinta magnética (industria automotriz)
 - 3º Generación: Utilizan las computadoras para su control y tienen cierta percepción de su entorno a través del uso de sensores. Con esta generación se inicia la era de los robots inteligentes y aparecen los lenguajes de programación
 - 4º Generación: Robots altamente inteligentes con más y mejores extensiones sensoriales, para entender sus acciones y captar el mundo que los rodea. Incorporan conceptos "modélicos" de conducta.
 - 5º Generación: Actualmente se encuentran en desarrollo. Basarán su acción principalmente en modelos conductuales establecidos.

INTRODUCCIÓN: Componentes de un robot

PARTES PRINCIPALES

- Estructura mecánica
- Actuadores
- > Sensores (Percepción del entorno)
- Procesadores (sistema de control)

INTRODUCCIÓN: El impacto de la robótica

- La robótica es una nueva tecnología multidisciplinar que hace uso de recursos de otras ciencias afines:
 - Mecánica
 - Cinemática
 - Dinámica
 - Matemáticas
 - Automática
 - Electrónica
 - Informática
 - Energía y actuadores eléctricos, neumáticos e hidráulicos
 - Visión artificial
 - Inteligencia artificial
- Su gran auge (sobretodo en el sector industrial) desde los años 70 ha producido un gran impacto en diferentes sectores → Medicina
 Equipos diagnósticos, sistemas de rehabilitación, prótesis, cirugía robótica

INTRODUCCIÓN: El impacto de la robótica

- Impacto en la Educación/aprendizaje
 - Formación de especialistas dada su gran demanda en el mundo industrial.
 - Formación de especialistas en el uso de equipos médicos: cirugía robótica.
 - Introducción de nuevas asignaturas en carreras de Ingeniería Superior y
 Técnica, facultades de informática y centros de formación profesional
 - La abundante oferta de robots educacionales en el mercado y sus precios competitivos, permiten a los centros de enseñanza complementar el estudio teórico de la Robótica con prácticas
- Impacto en la automatización industrial
 - Los robots permiten sistemas de fabricación flexibles que se adaptan a las diferentes tareas de producción
 - Las células flexibles disminuyen el ciclo de trabajo de un producto y liberan a las personas de trabajos desagradables y monótonos
 - La interrelación de las diferentes células flexibles a través de potentes computadores da lugar a la factoría totalmente automatizada

INTRODUCCIÓN: El impacto de la robótica

• Impacto en la competitividad

- La adopción de la automatización en la fabricación de las poderosas compañías multinacionales obliga a todas las demás a seguir sus pasos para mantener su supervivencia
- La automatización provoca un aumento de productividad y de calidad del producto lo que hace que la empresa sea más competitiva

Impacto sociolaboral

- La inversión económica de la automatización industrial se lleva a cabo a costa de la reducción de puestos de trabajo
- El desempleo generado queda compensado por los nuevos puestos de trabajo que surgen en otros sectores: enseñanza, servicios, instalación, mantenimiento y fabricación de robots
- También supone el mantenimiento del resto de puestos de trabajo dado que la automatización de la misma provocará la revitalización y salvación de empresa

INTRODUCCIÓN: ¿Qué esperamos?

- Isaac Asimov propuso las siguientes tres leyes de la robótica:
 - 1. Un robot no puede dañar a un ser humano o, a través de la inacción, permitir que se dañe a un ser humano.
 - 2. Un robot debe obedecer las órdenes dadas por los seres humanos, excepto cuando tales órdenes estén en contra de la primera ley.
 - 3. Un robot debe proteger su propia existencia siempre y cuando esta protección no entre en conflicto con la primera y segunda ley.
- Sin llegar a la ciencia-ficción, por ahora nos gustaría que los robots tuvieran las siguientes características:
 - **Autónomos**, que pudiesen desarrollar su tarea de forma independiente.
 - Fiables, que siempre realizasen su tarea de la forma esperada.
 - Versátiles, que pudiesen ser utilizados para varias tareas sin necesidad de modificaciones en su control.

• A lo largo de la historia la tecnología de cada época ha influido en la vida cotidiana de sus sociedades creando artefactos para realizar labores repetitivas o de entretenimiento

• Grecia

Fuente de pájaros cantores de Herón de Alejandría (85 d. C.)

Arabia

 Los árabes fueron unos maestros en la construcción de autómatas (el reloj mecánico, artilugios para astrología, etc)

Edad Media

- Hombre de hierro de Alberto Magno (1204-1282)
- Gallo de Estrasburgo (1352)

Renacimiento

- León Mecánico de Leonardo da Vinci (1499)
- Hombre de Palo de Juanelo Turriano (1525)

Siglos XVII- XIX

- Muñecos (flautista) de Jacques Vaucanson (1738)
- Escriba, organista, dibujante de familia Droz (1770)
- Muñeca dibujante de Henry Maillardet

• Siglos XVII- XIX

- A mediados del siglo XVIII los molinos de agua y la máquina de vapor remplazaron la fuerza humana y animal como fuente principal de energía
- Las nuevas máquinas de fabricación impulsaron el crecimiento de la industria
- Los bienes se producían mejor y más rápidamente y la calidad de vida aumentó: Revolución industrial

• Siglo XX

- En la mitad del siglo XX surgen las industrias basadas en la ciencia
- Las mejoras tecnológicas de la electrónica hacen posible el ordenador
- La galopante evolución del ordenador revoluciona el modo de procesar información: Era de la información
- La tecnología de la información tiene un gran impacto en la sociedad y es la responsable del espectacular crecimiento de la robótica

- Siglo XX (desarrollo de la robótica)
 - 1950: El laboratorio ARGONNE diseña manipuladores para manejar material radioactivo.
 - 1960: La empresa Unimation instala los primeros robots en una factoría de General Motors en USA. Tres años después, se inicia la implantación de los robots en Europa. Japón comienza a implementar esta tecnología a partir de 1968.
 - 1970: Los laboratorios de la Universidad de Stanford y del MIT acometen la tarea de controlar un robot mediante computador.
 - 1975: La aplicación del microprocesador, transforma la imagen y las características del robot, hasta entonces grande y costoso. Los robots se introducen masivamente en las empresas (robots industriales)
 - A partir de 1980, se potencia la configuración del robot inteligente capaz de adaptarse al ambiente y tomar decisiones en tiempo real, adecuarlas para cada situación.
 - En los 90 los robots salen de las fábricas y se les asigna nuevos roles,
 aparecen los robots de servicios

ESTADO ACTUAL

- Consolidación de los robots de servicios versus robots industriales
 - Limpieza de residuos tóxicos
 - Exploración espacial
 - Minería y agricultura
 - Búsqueda y rescate de personas
 - Localización de minas terrestres
 - Asistentes personales (Wakamaru de Mitsubishi)
 - Entretenimiento (Asimo de Toyota, Aibo de Sony)
 - Robots de medicina
 - Robots exploradores (terrestres, voladores y submarinos)
- Los robots se están abaratando y empequeñeciendo (nanorobots)
- Desarrollo de simuladores de robots
- Nuevos conceptos:"Web bots internet bots"

ESTADO ACTUAL. Robots industriales

Source: World Robotics 2008

ESTADO ACTUAL. Robots industriales

EL FUTURO: Cifras

- En los próximos años se producirá un "boom" de los sistemas robóticos
- El mayor desarrollo recaerá en los robots de servicios y asistentes personales en las casas
- Japón, USA y Europa se está preparando para ello

EL FUTURO: Contexto de la UE

- Consciente de este reto Europa ha activado los mecanismos necesarios para desarrollar la I+D+i en este sector.
- A través de la Estrategia de Lisboa y en el contexto del plan i2010, se establecen como prioritarios:
 - Servicios robóticos para personas mayores
 - Servicios robóticos para ayudar a la inmigración y a los problemas de seguridad
 - Automatización industrial como un activo para evitar la deslocalización
- La robótica será una parte esencial en la futura sociedad de la información y las comunicaciones (ICT)

EL FUTURO: Visión europea

- Mantener el liderazgo en robótica industrial
- Lograr el liderazgo en los mercados emergentes de seguridad y servicios
- Desarrollar una cadena de suministro robótico europea (EURON, EUROP,...)
- Asegurar la seguridad pública y personal
- Mejorar la calidad de vida y expandir los esfuerzos científicos

EL FUTURO: Dominios de aplicación

- Una división pragmática de los segmentos de mercado
- Establecer las bases para una agenda de investigación estratégica

EL FUTURO: Retos tecnológicos

3611301

Tecnologías para sistemas robóticos

- •Manipulación delicada
- Sistemas de agarre

•

Retos en robots Industriales, Servicio, Espacio y seguridad

Ingeniería de sistemas

- Seguridad, accesibilidad
- Tiempo real
- Normalización

Factores Humanos

- Cognición
- •Ergonomía
- Interfaces hombre-robot

•...

Miniaturización Robótica

- •MEMS
- •Hiper-redundancia

...

EL FUTURO: Otros retos

Organización de la sociedad

• Educación y habilidades

