Page 27, Exercise 38, 58

Exercise 38

Prove that $\forall \ n \in \mathbb{Z}$, $n^3 \mod 6 = n \mod 6$.

Exercise 58

Let S be the set of real numbers. If a, $b \in S$, define a $\sim b$ if a-b is an integer.

a. Show that \sim is an equivalence relation on S.

Properties of an equivalence relation:

Reflexive: $\forall a \in S, a \sim a$

Symmetric: $a \sim b \Rightarrow b \sim a$

Transitive: $a \sim b$ and $b \sim c \Rightarrow a \sim c$

Proof.

Let $a \in S$

 $a\in\mathbb{R}\ \Rightarrow a=a.$

Therefore, $a - a = 0 \in \mathbb{Z}$

Hence, (a, a) is a member of the relation $\forall a \in S$.

Thus, \sim is a reflexive relation on S.

Let a, $b \in S$ such that a - b = c where $c \in \mathbb{Z}$

a - b = c

a = c + b

a - c = b

-c = b - a

Notice that $c \in \mathbb{Z} \implies -c \in \mathbb{Z}$

Thus, if a - b yields an integer, then b - a yields an integer.

Hence, \sim is a symmetric relation on S.

Let a, b, $c \in S$ such that $a \sim b$ and $b \sim c$.

Thus, $\exists d, e \in \mathbb{Z}$ such that a - b = d and b - c = e.

Notice that d + e = a - b + b - c = a - c

Since $d, e \in \mathbb{Z} \implies (d + e) \in \mathbb{Z}$, a - c yields an integer.

Hence, \sim is a transitive relation on S, and that completes the proof.

b. Describe the equivalence classes of S.

Given a, $b \in S$, a $\sim b$ if a - b = c where $c \in \mathbb{Z}$

So each equivalence class is a set of real numbers each separated by some integer.