BASIC ELECTRONICS ENGINEERING

(RBL1B002)

MODULE-1

BJT = Bipoalr Junction Transistor

Transistor = Transfer + Resistor

BIPOLAR JUNCTION TRANSISTOR (BJT)

- The transistor is a three layer semiconductor device consisting of either two N-type & one P-type or two P-type & one N-type semiconductor.
- It has three terminals
 - Base (B)
 - Emitter (E)
 - Collector (C)
- In this device both electrons & holes take part in the conduction. Hence it is called as *bipolar*.

STRUCTURE & SYMBOL OF BJT

NPN

TERMINALS

1. EMITTER

- The main function of the emitter terminal is to supply the majority charge carriers to the base.
- For NPN type BJT the majority charge carriers are electrons & for PNP type BJT the majority charge carriers are holes.
- The emitter is always heavily doped.

2. BASE

• The base is a thin layer and it is lightly doped. It's main function is to pass the majority charge carriers to the collector.

3. COLLECTOR

- The main function of the collector is to collect the majority charge carriers coming from the base.
- It is moderately doped.

TRANSISTOR CONFIGURATION

- The BJT can be connected in circuit in 3 different configurations:
 - Common Base (CB)
 - Common Emitter (CE)
 - Common Collector (CC)

Common Base (CB)

PNP Type

- For the Operation of the transistor, the Emitter Base junction must be forward bias and Collector Base junction must be reverse bias.
- The forward bias at the emitter terminal will repel the holes from emitter side towards the base constituting emitter current (I_E) .
- As the base is lightly doped, some of the holes will recombine with electron and rest of holes will enter the collector.
- Due to this, a current at the base is observed which is called as base current (I_B) .
- The holes entering into the collector will constitute collector current (I_C) .
- Hence the majority carriers from emitter travels to the collector through the base.
- Hence, $I_E = I_B + I_C$

Common Base (CB)

NPN Type

- For the Operation of the transistor, the Emitter Base junction must be forward bias and Collector Base junction must be reverse bias.
- The forward bias at the emitter terminal will repel the electrons from emitter side towards the base constituting emitter current (I_E) .
- As the base is lightly doped, some of the electrons will recombine with holes and rest of electrons will enter the collector.
- Due to this, a current at the base is observed which is called as base current (I_R) .
- The electrons entering into the collector will constitute collector current (I_C) .
- Hence the majority carriers from emitter travels to the collector through the base.
- Hence, $I_E = I_B + I_C$

Current Amplification Factor (a)

It is the ratio of collector current to the emitter current at constant collector base voltage.

i.e.
$$\alpha = \frac{I_C}{I_E}\Big|_{V_{CB} = Constant}$$

Collector Current (I_C)

The collector current consists of:

1. The part of emitter current which reaches from the emitter and is given by

$$I_C = \alpha \cdot I_E$$

2. The leakage current due to the flow of minority carrier across CB junction and is given by I_{CBO}

Hence the total collector current is given by

$$I_{C} = \alpha \cdot I_{E} + I_{CBO}$$

$$\Rightarrow I_{C} = \alpha (I_{B} + I_{C}) + I_{CBO}$$

$$\Rightarrow I_{C} (1 - \alpha) = \alpha I_{B} + I_{CBO}$$

$$\Rightarrow I_{C} = \frac{\alpha}{1 - \alpha} I_{B} + \frac{1}{1 - \alpha} I_{CBO}$$

Input VI Characteristics

It is the curve between the current I_E and voltage V_{EB} at constant collector base voltage V_{CB} .

Output VI Characteristics

It is the curve between the current I_C and voltage V_{CB} at constant collector base voltage I_E .

Common Emitter (CE)

PNP Type

- For the Operation of the transistor, the Base –Emitter junction must be forward bias and Collector –Emitter junction must be reverse bias.
- The forward bias at the emitter terminal will repel the holes from emitter side towards the base constituting emitter current (I_E) .
- As the base is lightly doped, some of the holes will recombine with electron and rest of holes will enter the collector.
- Due to this, a current at the base is observed which is called as base current (I_B) .
- The holes entering into the collector will constitute collector current (I_C) .
- Hence the majority carriers from emitter travels to the collector through the base.
- Hence, $I_E = I_B + I_C$

Common Emitter (CE)

NPN Type

- For the Operation of the transistor, the Base –Emitter junction must be forward bias and Collector –Emitter junction must be reverse bias.
- The forward bias at the emitter terminal will repel the electrons from emitter side towards the base constituting emitter current (I_E) .
- As the base is lightly doped, some of the electrons will recombine with holes and rest of electrons will enter the collector.
- Due to this, a current at the base is observed which is called as base current (I_B) .
- The electrons entering into the collector will constitute collector current (I_C) .
- Hence the majority carriers from emitter travels to the collector through the base.
- Hence, $I_E = I_B + I_C$

Current Amplification Factor (B)

It is the ratio of collector current to the base current at constant collector emitter voltage.

i.e.
$$\beta = \frac{I_C}{I_B}\Big|_{V_{CE} = Constant}$$

The relation between $\alpha \& \beta$.

$$\beta = \frac{I_C}{I_B} = \frac{I_C}{I_E - I_C} = \frac{I_C/I_E}{I_E/I_E} = \frac{\alpha}{1 - \alpha}$$

Collector Current (I_C)

We know that,

$$I_C = \frac{\alpha}{1 - \alpha} I_B + \frac{1}{1 - \alpha} I_{CBO}$$

When $I_B = 0$, i.e. base is open, the collector current will be the current across the emitter & is represented as I_{CEO} .

$$\therefore I_{CEO} = \frac{1}{1 - \alpha} I_{CBO}$$

So,

$$I_C = \frac{\alpha}{1-\alpha} I_B + I_{CEO}$$

$$= > I_C = \beta I_B + I_{CEO}$$

Input VI Characteristics

It is the curve between the current I_B and voltage V_{BE} at constant collector base voltage V_{CE} .

Output VI Characteristics

It is the curve between the current I_C and voltage V_{CE} at constant collector base voltage I_B .

