Universidade Federal do ABC

BCJ0204 - Fenômenos Mecânicos

Experimento 4 - Relatório Colisão com Momento Angular

Professor: Regina	Turma: 45	Data: 27/11/2023
Nome: 50ão v. tor Araciso da GIVE		RA: 11202231435
Nome: Gulherme Macedo		RA: 11202020499
Nome: Rodrigo Luiz Soares		RA: 11202231251
Nome:		RA:
Nome:		RA:

Obs: Apresente as fórmulas, a substituição dos valores nas fórmulas e o resultado final com a incerteza já arredondados e unidades nas questões pertinentes.

Este experimento envolveu duas etapas, uma em que o carrinho percorre o trilho sem acontecer a colisão com o disco, e a outra em que ocorre a colisão.

MEDIDAS PRELIMINARES

Massa do carrinho: $m_c = 320, 7 \pm 0, 1 g$.

Parâmetro de impacto da colisão: $b = 6, 0 \pm 0, 0.5$ cm

Raio do disco: $R = 5, 2 \pm 0, 0.5$ cm

Massa do disco: $M = 78, 4 \pm 0, 1 g$

PRIMEIRA ETAPA: SEM COLISÃO

1. Preencha a Tabela 1.

Tabela 1: Dados experimentais (SEM COLISÃO)

3	0,338	11,4	0,132
2	0,338		,
3 J 1 8 0, 325 1 4 0, 216 X Média J 1 7 0, 320 154 0, 215 X Incerteza ± 1 cm 50,0025 ± 3 cm ± 0,0015 X	,	+ t, -	0,152
Média 11,7 0,320 154 0,215 X Incerteza ±1cm 50,0025 ± 3 cm ±0,0015 X	0,340	00	122
Incerteza + 1 cm 50,0025 + 3 cm +0,0015 X	0. 339	9,9	0,132
	10,0015	9,5 +1cm	0,132
v(cm/s) 36,733cm/s 72,050cm/s	X		
σ _ν (cm/s) ± 3,7 cm/s = ±36,6 cm/s	X	7.	2,2 cm/

2. Demonstre para uma coluna o cálculo da média e da incerteza da distância entre os sensores e do tempo.

3. Demonstre o cálculo da velocidade média e da incerteza para uma das colunas.

Vmed =
$$\frac{d}{d}$$
 \$\frac{11,767}{0,320} \$\frac{1}{2} \text{ vmed } \frac{1}{2} = 36,733 \text{ cms}\$\left(\frac{0,002}{0,320}\right)^2 + $\left(\frac{55}{12}\frac{1}{12}\$

4. Calcule a aceleração do carro usando as medidas feitas pelos sensores 0, 1 e 2, ou seja, utilizando os valores das velocidades calculadas nos intervalos 1 e 2. Demonstre a obtenção da fórmula da incerteza da aceleração e calcule a incerteza.

$$\frac{\partial = \frac{\Delta V}{\Delta E}}{\left(\frac{\delta(X)}{A}\right)^{2}} = \left(\frac{\delta(X)}{X}\right)^{2} + \left(\frac{\delta(X)}{Y}\right)^{2} + \left(\frac{\delta(X)}{Y}\right)^{2} + \left(\frac{\delta(X)}{A}\right)^{2} + \left(\frac{\delta(X$$

$$62 = 35, 14 \cdot \sqrt{\frac{0,1}{27,234}}^2 + \frac{0,02}{0,535}^2 \Rightarrow 62 = 35, 14 \cdot \sqrt{\frac{1}{50,9}}^2 + \frac{0,02}{0,535}^2 \Rightarrow 62 = 45,02 \text{ cm/s}$$

Object to the second

The spine serve

The state of the s

744 747

5. Vamos arbitrar que o instante t=0 ocorre quando o carro passa pelo primeiro sensor. Relembre a teoria vista em MRUV e calcule a velocidade final teórica do carrinho (V_{teo_final}) ao passar pelos últimos 2 sensores utilizando a aceleração calculada acima. Calcule a incerteza.

$$Tf = \Delta_{E_1} + \Delta_{E_{11}} + \Delta$$

6. Calcule o Momento Angular teórico final ($L_{teo}(t_f)$) com a velocidade calculada. Para estimar a incerteza de $L_{teo}(t_f)$, vamos desconsiderar as incertezas das massas e do parâmetro de impacto.

Lteo=
$$m_c$$
 by =D Lteo=320,74,6.150,98 d) Lteo=213574,3512 gcm²/s-D
Lteo=2,136 Kgm²/s | $660 = m_c$. b\(6v, 2+62^2(eq-6.7) d)
=16teo=320, 4.6\(\frac{3}{3}, \frac{1}{2} + \frac{5}{102^2}(0, \frac{94}{0} - 0, \frac{16}{0}) \) = $6teo=10410$, 3023 g cm/s = $6teo=t$ 1,04 Kgm²/s : [Lteo=2,13 t 1,04 Kgm²/s]

7. Calcule o Momento Angular experimental final (L_{exp}(t_f)) a partir da velocidade final medida para o carrinho, quando ele passa pelo último par de sensores. Desconsidere as incertezas das massas e do parâmetro de impacto para o calculo da incerteza. Esse valor medido para o momento angular final é compatível com a "previsão teórica" calculada logo antes? Considere a faixa de incerteza estimada para as duas grandezas.

SEGUNDA ETAPA: COM COLISÃO

8. Preencha a Tabela 2.

Tabela 2: Dados experimentais (COM COLISÃO)

Medida	L _I (cm)	Δt ₁ (s)	L _{II} (cm)	Δt _{II} (s)	L _{III} (cm)	Δt _{III} (s)	L _{vi} (cm)	Δt _{IV} (s)
1	13 400	20 0 1 7	10/0		X		201 (6111)	ZL(V (5)
2	13,800	0,317	12,40	0,213		0,358	11,4	0,345
3	9, 700	0,317	22,6	0,213	X	0.356	7.3	0 145
	11,800	0,317	11,4	0,213	X		0.0	1
Média	11, 767	0.317	15467	1	X	0,357	3,3	0,345
Incerteza	trom	0,52+	1	0,213	X	0,357	9,533	0, 145
$\overline{v}(cm/s)$	12 CW1	0	±3cm	0	^	00015 X	+1 cm	0
$\sigma_v (cm/s)$	97,33	136m/s		8 cm/s		X	65,70	item/s

ATENÇÃO: Os comprimentos ticam inalterados em relação às primeiras medidas.

9. Preencha a Tabela 3 e demonstre o cálculo de uma linha ao lado da tabela. Para medir a velocidade angular do disco em cada colisão você deve filmar com seu celular a colisão e depois em casa (por exemplo, usando a ferramenta de análise de vídeo: https://physlets.org/tracker) usar o tempo que o disco leva para fazer a primeira volta T para calcular a velocidade angular.

$$\omega = \frac{2\pi}{T}$$

Outra opção é usar dois celulares: deixe um celular sobre a mesa, abaixo do trilho, com um cronômetro "rodando", de forma que o celular que grava a colisão grave também esse cronômetro. Depois você pode analisar o vídeo da colisão quadro-a-quadro, e ler diretamente os tempos no cronômetro.

Tabela 3: Velocidade angular medida após a colisão

colisão	Т	ω	T1= 11,66-11,17=0,485 T2=7,15-6,67=0,485
1	0,499	12,8253	W1 = 217 + W1 = 12,825-1 W2 = 21 W2 = 13,095
2	0,485	13,095	0,43
3	0,485	13,095	T3=6,38-5,9=0,485 media:
Media	X	135-1	
incerteza	X	10,000	$\omega_3 = \frac{2\pi}{0.48} \pm \frac{13.085}{3} = \frac{13.085}{3} =$

ATENÇÃO: essas são as velocidades que você calculou a partir dos vídeos das colisões. Considere a incerteza como sendo apenas a incerteza estatística.

mediz=13 51
$$6\omega = \sqrt{(12,82-13)^2 + (13,09-13)^2 + (13,09-15)^2}$$
 d

10. Calcule o Momento de Inércia do disco ($I = \frac{MR^2}{2}$) e sua incerteza (para o cálculo da incerteza, desconsidere a incerteza de massa).

$$J = 78,42 (5,2)^{2} \pm J = 1060,2384 g cm^{2} + J = 0,0106 kg m^{2}$$

$$C_{I} = \sqrt{\frac{6I}{6m}}, 6^{2} + (\frac{6i}{6R})^{2}, 6R^{2} = \sqrt{(mR)^{2}, (6R)^{2}} = mR.6R$$

$$C_{I} = (78,42.5,2).0,05 \pm (6I)^{2} = mR.6I = \frac{1}{20,002033} kg m^{2}$$

$$C_{I} = (78,42.5,2).0,05 \pm (6I)^{2} = \frac{1}{20,002033} kg m^{2}$$

$$C_{I} = 0,010 \pm 0,002. kg m^{2}$$

11. Use as grandezas calculadas acima para determinar o valor experimentalmente medido para o momento angular do **disco**, após a colisão e sua incerteza.

$$\begin{array}{l}
L_{a} = J \cdot \omega = 0.01 \cdot 33 \Rightarrow L = 0.33 \text{ Kg m}^{2}/5 \\
6L_{a} = \left[\left(\frac{dL}{d_{1}} \right)^{2}, 6J^{2} + \left(\frac{dL}{d_{1}} \right)^{2}, 6\omega^{2} = \sqrt{\omega^{2}.6J^{2} + J^{2}.6\omega^{2}} \\
6L_{a} = \left((13)^{2}, (0.002038)^{2} + (0.010)^{2}, (0.09)^{2} \Rightarrow 6L = +0.000023856 \text{ Kg m}^{2}/5 \right], \\
6L_{a} = 0.13 \pm 0.00002 \text{ Kgm}^{2}/5 \right],$$

12. Calcule o valor final medido para o momento angular do **carrinho**, quando ele passa pelo último par de sensores e sua incerteza. Novamente, no cálculo da incerteza, desconsidere as incertezas de massa e do parâmetro de impacto.

parâmetro de impacto.

Lexp= m_c · b · V_{IV} = 320,74 · 6 ·
$$\frac{3}{0}$$
,533 ± = 126521, 376 g cm²/s · τ

Lexp= 12,6521 Kg m²/s | como as 3 medições foram (guais, considerei or incerteza do crono metro.

σμερ= m_c b σ V_{IV} = 320,74 · 6 · 0,001 ± σ σ μερ= 1,324 g cm²/s | τ

σμερ= 0,000 1824 κg m²/s |

: Lexp=12,6521 + 0,000 1324 kg m2/s

13. Preencha a tabela 4 e responda se o momento angular final Sem e Com Colisão são compatíveis. **Justifique** sua resposta.

Tabela 4: Comparação Momento Angular Sem e Com Colisão.

	Sem colisão	
	L _{final_exp} (kg m ² /s)	$\sigma_{L^{exp}}({\sf kg\ m^2/s})$
Carrinho	13,8382	+ 3,4702
Disco	0	0
Total (sistema)	13,8382	± 2,4702
	Com colisão	
Carrinho	12,6521	+0,0001324
Disco	0,33	to,00002
Total (sistema)	12,7821	+0,00019

 $\Sigma_{6} = \sqrt{(0,0001324)^{2} + (0,00003)^{6}}$ $\Sigma_{6} = 0,000132554$ $\Sigma_{6} = \frac{1}{2}0,00018$