aprendizagem automática baseada em dados – vizinhos mais próximos; aglomeração (clustering)

treino, validação e teste

(consolidação)

um modelo não paramétrico

não usa um nº fixo de parâmetros para representar o modelo

⇒ cada avaliação necessita recorrer ao conjunto de treino

+ não tem fase de treino!

k-nearest neighbours (NN)

classificador (regressor) simples

classificação de um novo caso $\mathbf{x}_q \to NN(k, \mathbf{x}_q)$ com base nos k exemplos mais próximos de \mathbf{x}_q

em classificação binária

por votação — classe do maior n^o dos k vizinhos mais próximos

 \Rightarrow *k* é ímpar! (para evitar empates)

distâncias

"proximidade" ⇒ métrica de **distância**

Euclideana:
$$D(\mathbf{x}_j, \mathbf{x}_q) = \sqrt{\sum_i (x_{ji} - x_{qi})^2}$$
 atributos nas mesmas unidades

Manhattan:
$$D(\mathbf{x}_j, \mathbf{x}_q) = \sum_i |x_{ji} - x_{qi}|$$
 atributos em unidades diversas

Hamming: *nº de atributos diferentes* atributos booleanos

vizinhos mais próximos - overfit

o NN não precisa fazer isto!

é só para visualizarmos como classifica qualquer ponto no plano

normalização

medidas de distância como Euclideana e Manhattan dão mais importância a atributos de valores elevados para evitar isso → **normalização**

para cada atributo x_i calcula-se a média μ_i e o desvio padrão σ_i

o atributo normalizado é
$$x'_i = \frac{x_i - \mu_i}{\sigma_i}$$

implementação do *k*-NN

complexidade de procurar os k vizinhos mais próximos em N exemplos

estrutura de dados linear (lista,...): O(N)

árvore binária: O(log N)

tabela de dispersão (hash table): O(1)

maldição da dimensionalidade

num espaço *n* dimensional

se N exemplos cabem num hiper-cubo de volume 1

e k exemplos ocupam um hiper-cubo de lado $l \Rightarrow$ volume l^n

$$\Rightarrow$$
 em média $l^n = k/N \Rightarrow (l = (k/N)^{1/n})$

supondo k = 10 e N = 1.000.000

- \rightarrow com $n=2 \Rightarrow l=0.003$ (0.3% do lado do espaço de N, quadrado de lado 1)
- \rightarrow com $n = 3 \Rightarrow l = 2\%$
- ⇒ com n = 17 ⇒ l = 94% as distâncias entre quaisquer dois pontos são semelhantes (próximas da média)

aprendizagem não supervisionada

os exemplos apenas têm caraterísticas (atributos) não têm resultado correto (classe, ou valor)

em algoritmos de aglomeração / agrupamento (clustering):

o conjunto de treino é usado para identificar grupos (aglomerados) com caraterísticas similares

alguns destes algoritmos definem um protótipo de cada *cluster*

algoritmos de aglomeração (clustering)

clusters

caraterísticas desejáveis

elementos de um *cluster* devem ser semelhantes similaridade *intra-cluster* elevada

elementos de *clusters* diferentes devem ser bem distintos similaridade *inter-cluster* baixa

os grupos são disjuntos cada exemplo só pertence a um grupo

animais domésticos

calf

cat

chick

cow

dog

goat

goose

quantos grupos?

hen

horse

kid

Milka

fonte:

https://blog.biolab.si/2017/04/03/image-analytics-clustering/

OX

rabbit

rooster

sheep

turkey

2 grupos

3 grupos

3 grupos – alternativa

aspetos a ter em conta

nº de grupos dado *a priori*, ou automaticamente determinado

formar grupos é uma forma de classificação!

como se determina a semelhança entre exemplos

como se avaliam os resultados

como se interpretam os resultados

k-means (k-médias)

um modelo baseado em centroides

centroide C_i = protótipo de cada grupo

representa o grupo

é o valor médio (means) dos exemplos do grupo

distância Euclideana para medir a dissemelhança entre dois pontos

em particular entre um exemplo \mathbf{x}_i e o centróide \mathbf{C}_i

k-means – passos

- 1. seleciona *k* exemplos do conjunto de treino *D* cada um deles figura como um centroide
- 2. para cada um dos exemplos de *D*, afeta-o ao grupo do centroide mais próximo (menor distância Euclideana)
- 3. para cada grupo calcula a média dos exemplos afetados ao grupo, que passa a ser o respetivo centroide, C_i
- 4. repete desde 2 até uma iteração em que não há alterações nos grupos

exemplo – a)

problema c/ 2 dimensões 2 atributos numéricos

+ centroides iniciais – pontos do conj. treino (aleatoria/)

exemplos atribuídos ao grupo do centroide mais próximo

exemplo – b)

atualizam-se os centroides média dos pontos do grupo

e reagrupam-se os pontos atribuídos aos grupos dos centroides mais próximos (tracejado fino)

exemplo – c)

após algumas iterações deixa de haver alterações

retorna os grupos e centroides definidos nessa altura

(linha contínua e cruzes)

melhoramentos

k-means é sensível aos centroides iniciais solução simples: correr várias vezes e retornar a melhor

preferível: *k-means++*

centroides iniciais aleatórios mas com probabilidade proporcional ao quadrado da distância aos centroides já definidos

(é a initialização por defeito no Scikit-learn)

que valor de *k* ?

muito pequeno – pode manter no mesmo grupo exemplos pouco semelhantes

muito grande – no limite, cada exemplo é o seu centroide overfit

método de escolha automática testa vários valores de k e escolhe aquele em que avaliação é melhor

atualmente o mais usado é o Silhouette – combina medida de coesão intra-cluster com separação inter-cluster

