Networking Issues and Solutions in Online Games Lecture IV

Claudio E. Palazzi

Games in Ad Hoc Networks

- Multiplayer games on wired infrastructure
 - Home, office, Internet cafè, lab
 - LAN, Internet
- Radio interface is now integrated to portable terminals
 - WiFi, Bluetooth, 3G, LTE...
- Smartphones, Google glass... -> Play outdoor
- How about games on ad hoc networks?

Issues

- For multiplayer games, the game play is sensitive to network resource availability
 - Not really in terms of bandwidth (few Kbps are sufficient), but in terms of:
 - Connectivity
 - Packet losses
 - End to end delays
 - Jitter

Issues in MANET

- MANET (Mobile Ad-hoc Network)
 - Users are mobile
 - 1. Risk of disconnection
 - Some players (clients) isolated for the server
 - Server isolated from the players
 - 2. Energy consumption
 - 3. Possible impact on delays, jitter & packet losses due to misfit adhoc routing protocols

Connectivity

- The classic gaming model today is client-server
 - Client run by the player's PC
 - Server can be located locally or remotely in the internet
- If considering Ad Hoc environment

Connectivity

- The classic gaming model today is client-server
 - Client run by the player's PC
 - Server can be located locally or remotely in the internet
- If considering Ad Hoc environment

Connectivity

- The classic gaming model today is client-server
 - Client run by the player's PC
 - Server can be located locally or remotely in the internet
- If considering Ad Hoc environment

- Energy consumption is not an issue for home players
 - Players can play for a very long time
- If considering Ad Hoc environment
 - Energy consumption is a major concern in case of Ad Hoc environment
 - Mobile consoles are battery powered...
 - ...with limited capacity
 - Support:
 - Game-related computation
 - Visualization
 - Communication
- Battery goes down very fast

- Central nodes in a MANET -> faster energy decrease
 - Forward packets from some clients to the server
 - Forward packets from the server to some clients
 - Generate packets to the server

- Central nodes in a MANET -> faster energy decrease
 - Forward packets from some clients to the server
 - Forward packets from the server to some clients
 - Generate packets to the server

- Central nodes in a MANET -> faster energy decrease
 - Forward packets from some clients to the server
 - Forward packets from the server to some clients
 - Generate packets to the server

- Energy consumption of the game server
 - Receive packets of each client
 - Send packets to each client

- Energy consumption of the game server
 - Receive packets of each client
 - Send packets to each client

- Energy consumption of the game server
 - Receive packets of each client
 - Send packets to each client

How to adapt multiplayer gaming to ad hoc environment?

- Convert the Client-Server Architecture to pure Peer-to-Peer architecture
 - Advantages
 - no dedicated client or server
 - only equal peer nodes that can simultaneously act as client and server
 - every peer sends its player's actions to all other peers in a completely distributed manner
 - Drawbacks
 - each peer is responsible for computing the overall game state
 - Need of efficient synchronization process
 - High energy consumption
 - Unfairly distributed among the various nodes (e.g., server)

Hybrid Architecture

More than one server

- At any time, only one server is active, while others are just kept synchronized
- Three categories of participants in each game session:

1. Active server:

- A node that holds the game status
- Communicates with nodes of its game session
- Keeps synchronized backup servers

2. Backup server (or Dormient server):

Client that can be active server in the future

3. Client:

Node that only plays

Hybrid Architecture

- Active server election is done in round robin way
- Backup servers election is done using a reachability matrix
 - Maximizing the number of reached nodes

- Active server election is done in round robin way
- Backup servers election is done using a reachability matrix
 - Maximizing the number of reached nodes

- Active server election is done in round robin way
- Backup servers election is done using a reachability matrix
 - Maximizing the number of reached nodes

- Active server election is done in round robin way
- Backup servers election is done using a reachability matrix
 - Maximizing the number of reached nodes

- Active server election is done in round robin way
- Backup servers election is done using a reachability matrix
 - Maximizing the number of reached nodes

Partition management

- In case of node movement
 - Periodically the backup servers check if they can communicate with the active server
 - If not, one of them becomes the active server

Simulation parameters

- Area of 100 m x 50 m
- 20 nodes
- 8 possible servers
- Movement models: Grid & RPGM
 - RPGM: Reference Point Group Mobility
- MAC protocol: 802.11g
- Routing protocols: AODV, DSDV
- Transmission range: 20 m
- Server-generated flow: 200 bytes every 50 ms
- Client-generated flow: 40 bytes every 300ms
- Server hold time:
 - no hold time (C/S architecture)
 - 5 minutes, 10 minutes
- Simulation duration: 2 hours

Grid topology

Preliminary Results

Energy consumption with AODV and Grid model

Preliminary Results

Energy consumption with DSDV and Grid model.

Preliminary Results

Energy improvement of backup server solution with respect to a traditional scheme; Grid model

Energy improvement of backup server solution with respect to a traditional scheme; RPGM model

What is OnLive and why is it important?

- Gaming in the cloud
- Thin client, no special hw requirements
 - PC, Mac, OnLive mini-console
- Game video streamed to client

- Importance:
 - Allows playing AAA games on simple devices
 - Provide access to legacy games on next-gen consoles without hardware compatibility

Goal of the study

- How does the magic of OnLive work?
- Study network traffic turbulence of games on OnLive
 - Packet size
 - Inter-packet time
 - Overall bitrate up and down
- Controlled variation of network parameters
- Different genres of games

Motivation

- Network operators to planning for capacity
- Building traffic models for simulators
- Traffic classification to identify thin-client game flows, up and downstream
 - Can allow for treatments that help performance
- Selected games of similar hardware requirements

Unreal Tournament III (2007) First-person shooter

Batman: Arkham Asylum (2009) Third-person action-adventure

Grand Ages: Rome

Real-time strategy (2009)

Experimental set-up

Design of experiments

- All traffic measured UDP
- Varied capacity, loss and latency
- Parameters:
 - Capacity (down:up) 5:1 Mb/s, 10:2 Mb/s, and unrestricted
 - Latency (round-trip) 0, 40, and 70 ms
 - Loss (downstream) 0%, 1%, and 1.5%
 - Iterations: 2.5 minute game runs, 3 iterations for each experiment, following longer pilot studies.

Downstream bitrate unrestricted

Upstream bitrate unrestricted

Downstream packet size unrestricted

- About 30% of pkts are 1414B (smaller than MTU)
- About 10% of pkts are 622B
- About 60% of pckts are distributed fairly uniformly in [100, 1400]B

Downstream bitrate (UT only) Capacity restriction

- Bitrate responds to restriction in capacity. In each of the restricted cases, the bitrate is about half of the restricted capacity
- Tests with increase in latency did not affect bitrate

Measured frame rates on PC (UT only)

Experiment	Frame Rate
Unrestricted	60 fps
40 ms latency	60 fps
70 ms latency	60 fps
1% loss	30 fps
1.5% loss	30 fps
10 Mb/s	30 fps
5 Mb/s	25 fps

- Other games have similar values
- Frame rate is adjusted in presence of loss and capacity variations,
 not in presence of latency changes

Conclusions

- OnLive games have high downstream bitrates, moderate upstream bitrates
- The characteristics of game traffic are similar for all genres tested
- Bitrates do not adapt to loss or latency, do adapt to capacity limits
- Frame rates adapt to both capacity limits and loss, but not to latency

Project idea: traffic analysis

• OnLive Desktop

• OnLive for Tablets (iOS and Android)

Project idea

study of additional
 OnLive games

Comparison of OnLive, GaiKai, other thin client systems

