Comparison of $\mathrm{Q}_{\mathrm{VEM}}^{\mathrm{pk}}$ values getting from SdCalibrator and a local fit method, for UB and UUB

Mauricio Suárez Durán and Ioana C. Mariș

IIHE-ULB

September 30, 2021

The current algorithm (OffLine SdCalibrator Module)

UUB Charge histogram

Find "head-and-shoulder": from the right side of the histogram, search for local maximum (head), surrounded by drops (shoulders) with shoulder/head value ratio less than fChargeWindowShoulderHeadRatio (as default 0.75)

The current algorithm (OffLine SdCalibrator Module)

UUB Charge histogram

Find "head-and-shoulder": from the right side of the histogram, search for local maximum (head), surrounded by drops (shoulders) with shoulder/head value ratio less than fChargeWindowShoulderHeadRatio (as default 0.75)

The current algorithm (OffLine SdCalibrator Module)

UUB Charge histogram

Find "head-and-shoulder": from the right side of the histogram, search for local maximum (head), surrounded by drops (shoulders) with shoulder/head value ratio less than fChargeWindowShoulderHeadRatio (as default 0.75)

1. Smoothing the histogram by 15-bin sliding window, $H_{\mathcal{S}}$

- 1. Smoothing the histogram by 15-bin sliding window, H_S
- 2. Obtain first derivative of the H_S $(\frac{f(x+1)-f(x-1)}{2h})$, H_{DS} (black line)

- 1. Smoothing the histogram by 15-bin sliding window, H_S
- 2. Obtain first derivative of the H_S $(\frac{f(x+1)-f(x-1)}{2h})$, H_{DS} (black line)
- 3. Smoothing H_{DS} , obtaining H_{SDS} (red line)

- 1. Smoothing the histogram by 15-bin sliding window, H_S
- 2. Obtain first derivative of the H_S $(\frac{f(x+1)-f(x-1)}{2h})$, H_{DS} (black line)
- 3. Smoothing H_{DS} , obtaining H_{SDS} (red line)
- 4. Searching for the VEM hump, i.e. first bin for H_{SDS} equal to zero; from right to left.

- 1. Smoothing the histogram by 15-bin sliding window, H_S
- 2. Obtain first derivative of the H_S $(\frac{f(x+1)-f(x-1)}{2h})$, H_{DS} (black line)
- 3. Smoothing H_{DS} , obtaining H_{SDS} (red line)
- 4. Searching for the VEM hump, i.e. first bin for H_{SDS} equal to zero; from right to left.
- 5. Fixing the fitting range using n-bin leftward and n-bin rightward from VEM hump.

3

Describing the muon hump with a second polynomial

Choosing the number of bins

- 1. Using the hump value from the derivative as initial parameter
- 2. Fixing the number of bins to the left and right with an extra condition of not reaching the valley
- 3. Checking the spread of the VEM values versus number of used n-bin

⇒ A number of about 35 bins is sufficient

863 Station, UUB

$\mathrm{Q_{VEM}^{pk}}$ Distribution for all UUB Stations (August, 2019, 2020, 2021)

$\mathrm{Q_{VEM}^{pk}}$ Distribution for all UUB Stations (August, 2019, 2020, 2021)

Relative difference for $Q_{\mathrm{VEM}}^{\mathrm{pk}}\text{, UUB}$

Relative difference for $Q_{\mathrm{VEM}}^{\mathrm{pk}}\text{, UUB}$

Relative difference for $Q_{\mathrm{VEM}}^{\mathrm{pk}}\text{, UUB}$

