

Course > Topic 7... > 7.6 Vari... > Variance **Variance** Video Start of transcript. Skip to the end. - Hello, and welcome back. So, we have talked about the expectation of a random variable and what's the average of a random variable, and now we want to talk about what's the difference in a random variable, call it variance. So, we're talking in general about distribution properties 0:49 / 0:00 ▶ 1.0x X CC 66 and recall that these are deterministic 7.6_Variance **POLL** Which of the following is greater (≥) for a random variable X? **RESULTS** E[X^2] 45% Depends on X 38% 17% E[X]^2 Submit Results gathered from 211 respondents. **FEEDBACK** $E[X^2]$ will be greater. Since $V(X)=E[X^2]-E[X]^2$, and V(X) is always non-negative. 1 0 points possible (ungraded)

Given 4 probability density functions, which one shows the greatest variance?

0 1

2

3

0 4

Answer

Correct: Video: Variance

Explanation

Variance measures how far a set of (random) numbers are spread out from their average value. 3 is the brodest one.

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

2

0 points possible (ungraded)

A random variable X is distributed over $\{-1,0,1\}$ according to the p.m.f. $P(X=x)=rac{|x|+1}{5}$.

Find its expectation E(X)

Explanation

The pmf is symmetric around 0, hence the mean is 0.

and variance $V\left(X\right)$

0.32

X Answer: 4/5

0.32

By definition,
$$\text{Var}(X) = \frac{2}{5} \times (-1-0)^2 + \frac{1}{5} \times (0-0)^2 + \frac{2}{5} \times (1-0)^2 = \frac{2}{5} + 0 + \frac{2}{5} = \frac{4}{5}$$
 Or, $\text{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = 4/5 - 0 = 4/5$

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

3

4.0/4.0 points (graded)

Let random variable \boldsymbol{X} be distributed according to the p.m.f

$$\begin{array}{c|cccc} x & 1 & 2 & 3 \\ \hline P(x) & 0.3 & 0.5 & 0.2 \end{array}$$

ullet If $Y=2^X$, what are

E[Y]

4.2

✓ Answer: 4.2

4.2

Explanation

$$E(Y) = E(2^X) = 2 \times 0.3 + 4 \times 0.5 + 8 \times 0.2 = 4.2$$

Var(Y)

4.36

✓ Answer: 4.36

4.36

For any random variable Z, $V\left(Z\right)=E\left(Z^{2}\right)-E(Z)^{2}$. Here $E\left(Y^{2}\right)=E\left(2^{2X}\right)=4 imes0.3+16 imes0.5+64 imes0.2=22$ Thus $V\left(Y
ight) = 22 - 4.2^2 = 4.36$

ullet If Z=aX+b has $E\left[Z
ight] =0$ and $\mathrm{Var}\left(Z
ight) =1$, what are:

|a|

1.4282856857

✓ Answer: 1.42857

1.4282856857

|b|

2.71374280284628299

✓ Answer: 2.714285

2.71374280284628299

Explanation

First, $E\left(X\right) = 0.3 \times 1 + 0.5 \times 2 + 0.2 \times 3 = 1.9 E\left(X^2\right) = 0.3 \times 1 + 0.5 \times 4 + 0.2 \times 9 = 4.1$ and thus

$$Var(X) = E(X^2) - E(X)^2 = 4.1 - 1.9^2 = 0.49$$

Now, by linearity of expectation, $0=E\left(Z
ight)=aE\left(X
ight)+b=1.9\cdot a+b$ Further, we know

 $1 = \operatorname{Var}(Z) = \operatorname{Var}(aX + b) = a^2 \cdot \operatorname{Var}(X) = a^2 \cdot 0.49$ Solving these two equations gives |a| = 1.42857, |b| = 2.71485.

Submit

You have used 3 of 4 attempts

Answers are displayed within the problem

4

5.0/5.0 points (graded)

Consider two games. One with a guaranteed payout $P_1=90$, and the other whose payout P_2 is equally likely to be 80 or 120.

• $E(P_1)$

✓ Answer: 90 90

Explanation

The distribution of P_1 is $P\left(P_1=90\right)=1$. Hence, $E\left(P_1\right)=1 imes 90=90$

• $E(P_2)$

100 ✓ Answer: 100 100

The distribution of P_2 is $P\left(P_2=80\right)=P\left(P_2=120\right)=rac{1}{2}$ Hence, $E\left(P_2\right)=rac{1}{2} imes80+rac{1}{2} imes120=100$

• $\operatorname{Var}(P_1)$

0 Answer: 0 0

Explanation

By definition, $\mathrm{Var}\left(P_{1}
ight)=1 imes\left(90-90
ight)^{2}=0$

• $\operatorname{Var}(P_2)$

400 **✓ Answer:** 400 400

By definition, ${
m Var}\left(P_{2}\right)=\frac{1}{2}\times\left(80-100\right)^{2}+\frac{1}{2}\times\left(120-100\right)^{2}=400$

• Which of games 1 and 2 maximizes the `risk-adjusted reward' $E(P_i) - \sqrt{\operatorname{Var}(P_i)}$?

1

2

Explanation

By definition,
$$E\left(P_{1}\right)-\sqrt{\mathrm{Var}\left(P_{1}\right)}=90~E\left(P_{2}\right)-\sqrt{\mathrm{Var}\left(P_{2}\right)}=80$$

Submit

You have used 3 of 4 attempts

1 Answers are displayed within the problem

5

0.0/2.0 points (graded)

Which of the following are always true for random variables X, Y and real numbers a, b?

- lacktriangle The variance of X is always non-negative. \checkmark
- lacktriangledown The standard deviation of X is always non-negative. lacktriangledown

$$ightharpoonup$$
 If $V\left(X
ight) = V\left(Y
ight)$, then $V\left(X + a
ight) = V\left(Y + b
ight)$

- \square If $V\left(aX\right)=V\left(bX\right)$ for $a\neq0$ and $b\neq0$, then a=b.
- lacksquare If $E\left[X
 ight]=E\left[Y
 ight]$ and $V\left(X
 ight)=V\left(Y
 ight)$, then X=Y.
- lacksquare If $E\left[X
 ight]=E\left[Y
 ight]$ and $V\left(X
 ight)=V\left(Y
 ight)$, then $E\left[X^2
 ight]=E\left[Y^2
 ight]$. lacksquare

×

Explanation

- True. Standard deviation is defined by $\sqrt{V\left(X\right)}$, which is also non-negative.
- True. Adding a constant a to random varianle X will not affect its varaince.

$$V\left(X+a
ight) = E\left(\left(X+a-E\left(X+a
ight)
ight)^{2}
ight) = E\left(\left(X+a-E\left(X
ight)-a
ight)^{2}
ight) = E\left(\left(X-E\left(X
ight)
ight)^{2}
ight) = V\left(X
ight)$$

- False. When $V\left(X\right) =0$, this does not hold.
- False. Consider two random variables X,Y with pmf, $P(X=x)=\begin{cases} \frac{1}{2},x=-1,\\ \frac{1}{2},x=1 \end{cases}$ and $P(Y=y)=\begin{cases} \frac{1}{8},y=-2\\ \frac{3}{4},y=0\\ \frac{1}{2},u=2 \end{cases}$. Now

$$E\left(X
ight)=E\left(Y
ight)=0, V\left(X
ight)=V\left(Y
ight)=1$$
 However, $X
eq Y$. - True. As $E\left(X^2
ight)=V\left(X
ight)+E^2\left[X
ight]$ if $E\left(X
ight)=E\left(Y
ight)$ and $V\left(X
ight)=V\left(Y
ight)$, then $E\left(X^2
ight)=E\left(Y^2
ight)$.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

0 points possible (ungraded)

We say X_A is an indicator variable for event A: $X_A=1$ if A occurs, $X_A=0$ if A does not occur.

II $P(A) = 0.33$, what is	If $P(A)$	=0.35, what	is
----------------------------	-----------	-------------	----

• $E(X_A)$?

12

X Answer: 0.35

12

Explanation

The distribution of X_A is $P\left(X_A=1\right)=P\left(A\right)=0.35, P\left(X_A=0\right)=1-P\left(A\right)=0.65$ The epectation is $E\left(X_{A}
ight) = 0.35 imes 1 + 0.65 imes 0 = 0.35$

• $\operatorname{Var}(X_A)$?

X Answer: 0.2275

Explanation

. The variance of X_A is $\mathrm{Var}\left(X_A\right) = 0.35 imes \left(1 - 0.35\right)^2 + 0.65 imes \left(0 - 0.35\right)^2 = 0.2275$

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

7

0 points possible (ungraded)

Let X denote the number when rolling a fair six-sided die, then what is:

• $\operatorname{Var}(X)$?

2.92

✓ Answer: 35/12

2.92

Explanation

The expectation of X is $E\left(X\right)=3.5$. The variance of X is

$$\mathrm{Var}\left(X\right) = \tfrac{1}{6} \times (1-3.5)^2 + \tfrac{1}{6} \times (2-3.5)^2 + \tfrac{1}{6} \times (3-3.5)^2 + \tfrac{1}{6} \times (4-3.5)^2 + \tfrac{1}{6} \times (5-3.5)^2 + \tfrac{1}{6} \times (6-3.5)^2 = \tfrac{35}{12}$$

• σ_X ?

1.71

✓ Answer: 1.7078

1.71

Explanation

The standard deviation of X is $\sigma_X = \sqrt{\operatorname{Var}\left(X\right)} = 1.7078$

Submit

You have used 3 of 4 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Topic 7 / Variance

Add a Post

Show all posts ▼	by recent activity
 Problem 1 Questions and comments regarding problem 1. <u>A Staff</u> 	1
Problem 3 Questions and comments regarding problem 3. Staff	2 new_ 8
 Problem 5 Questions and comments regarding problem 5. \(\text{Staff} \) 	6
Problem 6 Questions and comments regarding problem 6. ▲ Staff	3
 General Comments Questions and comments regarding this section. Staff 	1
Problem 2 Questions and comments regarding problem 2. Staff	1
Problem 4 Questions and comments regarding problem 4. Staff	1
Problem 7 Questions and comments regarding problem 7. ♣ Staff	1

© All Rights Reserved