Condensé de la MPSI Mathématiques

Ewen Le Bihan MPSI – Daudet

Contents

1	Processus de démonstration				
	1.1	Proces	ssus élémentaires	2	
		1.1.1	Quantification universelle \forall	2	
		1.1.2	Quantification existentielle \exists	2	
		1.1.3	Quantification existentielle unique $\exists !$	2	
		1.1.4	Implication $P \implies Q \dots \dots \dots \dots \dots \dots$	2	
		1.1.5	,	2	
		1.1.6	Inclusion $E \subset F$	2	
		1.1.7	Égalité ensembliste	2	
	1.2	Proces		2	
		1.2.1	Récurrence	2	
		1.2.2	Contraposée	2	
		1.2.3	l'Absurde	3	
		1.2.4		3	
		1.2.5	·	3	
_	Dérivation 4				
	2.1	Nomb	re dérivé en un point	4	
	2.2		see de f		
	2.3			4	
	2.4			4	
3	Trigonométrie 5				
	3.1		e trigonométrique ou unité ${\mathcal C}$	5	
	3.2		$uence \cdot \equiv \cdot [\cdot] \dots \dots \dots \dots \dots$	5	
		_	Propriétés	5	

1 Processus de démonstration

1.1 Processus élémentaires

1.1.1 Quantification universelle \forall

Soit $a \in E$

1.1.2 Quantification existentielle \exists

Posons $a = \ldots \in E$

1.1.3 Quantification existentielle unique \exists !

Existence cf. 1.1.2

Unicité Posons $b \in E$. Démonstration de b = a

1.1.4 Implication $P \implies Q$

Supposons P(a). Montrons Q(a)

1.1.5 Équivalence $P \iff Q$

Procédons par double implication.

 \implies : Démonstration de $P \implies Q$

 $\Longleftarrow: D\'{e}monstration de P \Longleftarrow Q$

1.1.6 Inclusion $E \subset F$

 $D\acute{e}montrer \ \forall x \in \mathbb{E}, x \in E \implies x \in F.$

1.1.7 Égalité ensembliste

Procédons par double inclusion.

 \subset : Démonstration de $E \subset F$

 \supset : Démonstration de $E\supset F$

1.2 Processus de démonstration

On commence chaque démonstration utilisant un de ces processus par « Procédons par nom du processus »

1.2.1 Récurrence

Pour montrer une propriété vraie dans $E \subseteq \mathbb{N}$

Initialisation Démontrer la propriété au premier rang

Hérédité Démontrer $\forall n \in E, P(n) \implies P(n+1)$

Conclusion La propriété étant initialisée et héréditaire, elle est vraie pour tout $n \in E$.

1.2.2 Contraposée

Pour montrer $P \implies Q$ quand l'implication directe est trop compliquée Démontrer $\neg Q \implies \neg P$

1.2.3 l'Absurde

```
\begin{array}{c} Pour\ montrer\ P\\ \text{Supposons}\ \neg P\\ \vdots\\ \text{On obtient une contradiction.}\\ \text{On a donc}\ P \end{array}
```

1.2.4 Disjonction des cas

```
1er cas: ...

2ème cas: ...

:

n-ième cas: ...

Conclusion ...
```

1.2.5 Analyse-Synthèse

Pour trouver les solutions d'une équation, inéquation, ...

Analyse Soit $a \in E$. Supposons P(a). Réduire le nombre de candidats possibles pour a

Synthèse Testons nos candidats

Conclusion Les solutions sont ...

2 Dérivation

Attention aux hypothèses!

2.1 Nombre dérivé en un point

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

2.2 Dérivée de f

$$f' = \begin{cases} I \to \mathbb{R} \\ a \mapsto f'(a) \end{cases}$$

2.3 Dérivée usuelles

•
$$\forall n \in \mathbb{N}, \quad (\mathrm{id}^n)' = n\mathrm{id}^{n-1}$$

•
$$\forall n \in \mathbb{N}, \quad \sqrt[n]{r} = \frac{1}{n \sqrt[n]{r}}$$

•
$$\ln' = \frac{1}{id}$$

•
$$\exp' = \exp$$

•
$$(a^{\mathrm{id}})' = x \mapsto \ln(a)a^x$$

•
$$\sin' = \cos$$

•
$$\cos' = -\sin$$

•
$$\tan' = \frac{1}{\cos^2} = 1 + \tan^2$$

•
$$sh' = ch$$

•
$$ch' = sh$$

•
$$th' = \frac{1}{ch^2} = 1 + th^2$$

•
$$a\cos' = \frac{-1}{\sqrt{1-id^2}}$$

•
$$a\sin' = \frac{1}{\sqrt{1-id^2}}$$

•
$$atan' = \frac{1}{1+id^2}$$

2.4 Dérivées de composées

•
$$\forall (\lambda, \mu) \in \mathbb{R}^2$$
, $(\lambda u + \mu v)' = \lambda u' + \mu v'$

•
$$(uv)' = u'v + v'u$$

$$\bullet \quad (\frac{1}{v})' = \frac{-v'}{v^2}$$

•
$$(\frac{u}{v})' = \frac{u'v - v'u}{v^2}$$

•
$$(u \circ v)' = v' \cdot (u' \circ v)$$

•
$$(u^{-1})' = \frac{1}{u' \circ u^{-1}}$$

3 Trigonométrie

3.1 Cercle trigonométrique ou unité $\mathcal C$

Cercle de centre (0; 0) et de rayon 1.

$$C = \{(x; y) \in \mathbb{R}^2, x^2 + y^2 = 1\} = \{(\cos x; \sin x), x \in \mathbb{R}\}$$

3.2 Congruence $\cdot \equiv \cdot [\cdot]$

$$a \equiv b \ [t] \iff \exists k \in \mathbb{Z}, \ a = b + kt$$

3.2.1 Propriétés

•
$$\forall a, b, c, d \in \mathbb{R}, \begin{cases} a \equiv b \ [t] \\ c \equiv d \ [t] \end{cases} \implies a + c \equiv c + d \ [t]$$

•
$$\forall a, b, \lambda \in \mathbb{R}, \ a \equiv b \ [t] \implies \lambda a \equiv \lambda b \ [\lambda t] \ \text{et} \ \begin{cases} \lambda a \equiv \lambda b \ [t] \\ \lambda \in \mathbb{Z} \end{cases}$$

 $\bullet \ \cdot \equiv \cdot \left[\cdot \right]$ est un RAT une relation d'équivalence