g Set-2

Scoring Indicators

Code: 5021 (15)

Version: B

Qn.		Split	Total
No.	Scoring indicators	score	Score
1	Part – A Load, Mechanism, Material, Manufacturing process, Cost, safety (any4)	2	
2	Torque $T = (\pi/16) \times d^3 \times T$ Where $d = Diameter of shaft$ $\tau = Permissible shear stress$	2	
3	Coefficient of fluctuation of speed is the ratio of max. fluctuation of speed to the mean speed. $K_s = (\omega_1 - \omega_2) / \omega$	2	
4	The relative motion b/w belt and pulley is called slip. Expressed in %.	2	
5	The distance b/w corresponding points of adjacent teeth measured along pitch circle.	2	10
1	$\begin{array}{c} \textbf{Part} - \textbf{B} \\ & (\text{Any Five}) \end{array}$ Efficiency of screw jack is the ratio of Ideal torque to the actual torque.	3+3	6
2	Half portion on shaft and half portion on hub. Capable to take high loadsKey way expensive.	Fig 4 + 2	6
	Key way is provided only in hubSuitable for small loads. Keyway cutting is cheap.		

	Axial movement of hub is permittedClutcheschange gears Feather Key		
3	Torque T = $20 \text{ kN} - \text{m} = 20 \times 10^6 \text{ N-mm}$. Permissible shear stress (τ) = 70 N/mm^2 . Torque T = $(\pi/16) \times d^3 \times \tau$ $20 \times 10^6 = (\pi/16) \times d^3 \times 70$ Diameter of shaft d = 113.3 mm (Ans.)	3+3	6
4	Torque $T = 1365 \text{ N-m} = 1365 \text{ x } 10^3 \text{ N -mm}.$ τ for muff = 15 N/mm ² . τ for Shaft = 30 N/mm ² .		-
	Shaft Torque $T = (\pi/16) \times d^3 \times T = 1365 \times 10^3 = (\pi/16) \times d^3 \times 30$ Diameter of shaft $d = 61.42 \text{ mm} = 62 \text{ mm}$	2 + 2 + 2	6
	Check $T = (\pi/16) \times D^3 \times \tau (1 - K^4) = (\pi/16) \times 137^3 \times \tau (1 - (62/137)^4)$ $\tau = 2.8 \text{ N/mm}^2 \dots (\text{safe})$	*	
5	According to load application 1.Radial_Bearing_(Journal_Bearing) Load Perpendicular to axis (Bushed Bearing, Plummer Block etc) 3.Guide Bearing Guide the motion of Machine member.	3 +	6
	According to the type of contact 1. Sliding contact Bearing (Ex. Bushed Bearing) 2. Rolling contact Bearing (Ex: Ball Bearing, Roller Bearing)	3	
6	i) Height of governor:-The vertical distance from centre of ball to the point where axis of arms intersects on the spindle axis.	2	

	ii) <u>Isochronism of Governor</u> :- The prime mover runs at a particular speed for	+	
	any position of sleeve.	2	6
	iii) <u>Hunting of Governor</u> :- Speed of prime mover controlled by the governor	+	
	fluctuates continuously above and below the mean speed.	2	
	indicates continuously above and below the mean specu.		
7			*
	(A) (A) (A)		_
	В		
	Velocity ratio= N3/N1 = Z1/Z3		
	Simple Gear Train		
	°∏		
	+==+	2.0	
		3+3	6
	V D N2/N4 N4/N2 74/72 72/74		
	$V.R. = N2/N1 \times N4/N3 = Z1/Z2 \times Z3/Z4$		
	Compound Gear Train		
	Part – C		
	UNIT-1		
III			
(a)	Weight W = $25 \text{ kN.} = 25 \times 10^3 \text{ N}$		
	Ultimate tensile strength $\sigma u = 480 \text{ N/mm}^2$	2	
	Factor of safety = 6	+	
	Permissible stress $\sigma t = 480/6 = 80 \text{ N/mm}^2$	3	7
	$\sigma t = W/(\pi/4) \times d^2 = 80 = 25 \times 10^3/(\pi/4) \times d^2$	+	
	0 1 - VV/(1/4) X U OU - 25 X 10-/(1/4) X U-	2	
	Di	_	
	Diameter of bolt = 19.95 mm(Ans.)		
(b)	W 2500 N N D: 1 75	2	
(0)	W = 2500 N , Mean Dia d = 75 mm. , Pitch = 12 mm , μ = 0.075	2	
	$\tan \alpha = \text{Pitch} / \pi d = 12 / (\pi d \times 75)$		
	$\alpha = 2.919^{\circ}$	+	
	$\mu = \tan \phi$, $\phi = \tan^{-1} 0.075 = 4.289^{\circ}$.		
		2	
	Efficiency = $\tan \alpha / (\tan (\phi + \alpha)) = \tan 2.919 / (\tan (4.289 + 2.919))$	2 +	8
	Efficiency = $\tan \alpha / (\tan (\phi + \alpha)) = \tan 2.919 / (\tan (4.289 + 2.919))$		8
			8
-	Efficiency = $\tan \alpha / (\tan (\phi + \alpha)) = \tan 2.919 / (\tan (4.289 + 2.919))$ = 0.403 = 40.3 5(Ans.)	+	8

IV	OR	-	
(a)	d = 40 mm. ,		
	Width of Key W = $d/4 = 40/4 = 10$ mm(Ans.) Height of Key H = $d/6 = 40/6 = 6.67$ mm = 8 mm(Ans.) Force F = w x L x τ = 20000 = 10 x L x 60 Length of Key L = 34 mm(Ans.)	2 + 2+ 3	7
(b)	Max. Pressure = 1 N/mm^2 , Back Pressure = 0.015 N/mm^2 D = 300 mm . $\sigma t = 45 \text{ N/mm}^2$. Effective Pressure = $(1 - 0.015) \text{ N/mm}^2 = 0.985 \text{ N/mm}^2$.	2 +	
	Tensile load on piston rod P = Pressure x ($\pi/4$) D ² . = 0.985 x ($\pi/4$) 300 ²	2	×
	P = 69590.25 N	+	
	Also $P = (\pi/4) d_c^2 \times \sigma t$ $69590.25 = (\pi/4) d_c^2 \times 45$	2 +	·
	d _c = 44.4 mm Nominal Diameter d = 44.4/ 0.84 d = 52.84 = 53 mm(Ans.)	2	8
	UNIT – 2		
V (a)	Power = 1.25×10^6 Watts , N = 240 RPM. , τ = 75 N/mm ² Power = 2π N T / 60 = 2π x 240 T / 60 Torque T = 49735.9 Nm = 49735.9×10^3 N mm But T = $(\pi/16) \times d^3 \times \tau$ = 49735.9×10^3 = $(\pi/16) \times d^3 \times 75$	2	-
	Dia. Of shaft d = 150 mm	2 +	
	$T = (\pi/4) d^2 \times n \times \tau \times (D_p / 2)$ $49735.9 \times 10^3 = (\pi/4) d^2 \times 6 \times 100 \times (225 / 2)$ Bolt Dia d = 30.6 Nominal Dia. = 30.6/0.84 = 36.4 = M38 Bolt(Ans.)	3	7
(b)	Torque T = 30×10^6 N mm. , $\tau = 100$ N/mm ² . $\theta = 1^0 = \pi / 180$ rad = 0.0175 rad L = 1000 mm	2	

	$G = 80 \times 10^3 \text{ N/mm}^2$. $J = \pi d^4 / 32 = 0.098 d^4$	2	8
	$T/J = G \Theta/L$; $30 \times 10^6 / 0.098 d^4 = (80 \times 10^3 \times 0.0175) / 1000$	4	·
	Dia. Of Shaft d =121.6 mm(Ans.)		2
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	OR		
VI (a)	n = 8 , PCD = 120 mm , T = 2500 N m = 2500 x 10 ³ N mm		
	$\tau = 70 \text{ N/mm}^2$.		
	$T = (\pi/4) d^2 \times n \times \tau (D_p/2)$	2	
	$2500 \times 10^{3} = (\pi/4) d^{2} \times 8 \times 70 (120/2)$	+	7
	Root Dia of bolt d = 19.46 mm	2 +	
	Nominal Dia = 19.46 / 0.84 = 23.16 = M24 Bolt (Ans.)	3	
b)	Power = 500×10^3 watts , N = 450 RPM , $\tau = 60 \text{ N/mm}^2$.		
	K = 0.5 , T max = 1.25 T mean Mean Torque T = (60 x500 x 10 ³) / (2 x π x 450) = 10615.71 Nm	2	
	T = 10615.71 x 10 ³ N mm.	+	
	Tmax = $1.25 \times 10615.71 \times 10^3$ = 13269639 N mm T max = $(\pi/16) D^3 \tau (1 - k^4)$	2 +	8
	13269639 = $(\pi/16)$ D ³ x 60 $(1-0.5^4)$ Outer Dia. D = 106.32 mm(Ans.)	2 +	
	inner dia. D = 106.32 / 2 = 53.16 mm(Ans.)	2	
	UNIT – 3		
VII			
(a)	Max. fluctuation of energy The difference b/w the kinetic energy at max. speed and minimum	2	
	speed is called Max. fluctuation of energy.		

	Coefficient of fluctuation of energy		
	The ratio of max. fluctuation of energy to the net work done per cycle is	2	7
	called coefficient of fluctuation of energy. $K_s = dE/E$		
	Energy stored in flywheel	3	
	The Kinetic energy stored in a flywheel in a cycle will be equal to the	3	
	max. fluctuation of energy.		
	Energy stored in flywheel = $\frac{1}{2}$ x I x ($\omega_2^2 - \omega_1^2$).		
(b)	Dia of Journal D = 60 mm. , Load W = $4.5 \text{ kN} = 4.5 \text{ x } 10^3 \text{ N}$		
	$N = 180 \text{ RPM}$, $\mu = 0.02$, $L/D = 3$		
	Length of Bearing $L = 3 \times D = 3 \times 60 = 180 \text{ mm}$.		
	Projected Area A = L x D = 180 x 60 = 10800 mm ²		
	Projected Area A = L x D = 180 x 60 = 10800 mm		
	N - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	a) Bearing pressure $P_b = W/A = (4.5 \times 10^3) / 10800$		
	= 0.416 N/mm ² (Ans.)	2	
		+	
	Frictional torque T = μ x W x R = 0.02 x 4.5 x 10^3 x 30		*
	= 2700 N mm = 2.7 N m		
	(b) Power lost in friction = $2 \times \pi N T / 60 = 2 \times \pi \times 180 \times 2.7 / 60$	3	
1	= 50.87 Watts(Ans.)	+	8
	c) Heat generated = Power lost in friction		· ·
		3	
	= 50.87 Watts(Ans.)	3	
	0.0		
	OR		
VIII			
(a)	The term (ZN/P) is called bearing characteristic number.		
	Where Z = Ab. Viscosity	3	
	N = RPM		
	N - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	+	
	P= Bearing pressure		
	- TION		
	BOUNDRY LUBRICATION		7
	PARTIAL FILM LUBRICATION	4	
		7	
	K. min u		

	A B B	4	8
X (a)	OR ORNER ORNER INTERMEDIATE SHAFT	4	7
	Large velocity ratio can be achieved by arranging the pulleys as compound drive as shown in fig. Velocity Ratio N4 / N1 = (D1 / D2) x (D3/ D4) (N2 = N3)	3	
(b)	Speed of A N1 = 300 RPM		

	2	
No.of teeth on A TA = 25 , TB = 50 TC = 35 TD = 70 Let N4 be the speed of Wheel D	3	8
Then Velocity Ratio = N4 / N1 = (TA / TB) x (TC / TD) N4 = [(25 x 35) / (50 x 70)] x 300 = 75 RPM (Ans.)	3	
		# ; ·