Diszkrét matematika 1.

3. előadás

Fancsali Szabolcs (Ligeti Péter diái alapján)

nudniq@cs.elte.hu www.cs.elte.hu/~nudniq

Természetes számok

Számfogalom bővítése

Természetes számokból művelet segítségével definiálható

- egész számok $\mathbb{Z} = \{a b : a, b \in \mathbb{N}\}$
- racionális számok $\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}, b \neq 0\}$
- valós számok R =?
- komplex számok $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$

Peano-axiómák

Legyen $\mathbb N$ halmaz, $^+$ unér művelet (rákövetkező). Ekkor

- $0 \in \mathbb{N}$

- $(S \subset \mathbb{N}, 0 \in S, (n \in S \Rightarrow n^+ \in S) \Rightarrow S = \mathbb{N})$

Természetes számok

Megjegyzés

- az axiómák egyértelműen definiálják N-et
- N-en definiálható az összeadás:

$$n+0=n, n+1:=n^+, n+2:=(n^+)^+, \dots$$

Állítás

Legyen + a fent definiált művelet. Ekkor

- + asszociatív és kommutatív az N halmazon
- $\forall n \in \mathbb{N} : 0 + n = n + 0 = n$ (van nullelem/semleges elem)

Természetes számok

Megjegyzés

 \mathbb{N} -en definiálható a szorzás: $\forall n, m \in \mathbb{N}$

$$n \cdot m := \underbrace{m + m + \dots + m}_{n \text{ darab}}$$

Állítás

Legyen · a fent definiált művelet. Ekkor

- asszociatív és kommutatív az N halmazon
- $\forall n \in \mathbb{N} : 1 \cdot n = n \cdot 1 = n$ (van egységelem/semleges elem)

Egész számok

Definíció

Legyen G halmaz, * binér művelet G-n. Ekkor a (G,*) rendezett pár

- grupoid
- ha * asszociatív is G-n, akkor félcsoport
- 3 ha ezen felül $\exists s \in G : \forall g \in G : s * g = g * s = g$, akkor semleges elemes félcsoport és s a semleges elem
- \P ha ezen felül $\forall g \in G \exists g^{-1} \in G : g * g^{-1} = g^{-1} * g = s$, akkor csoport és g^{-1} a g inverze
- ha ∗ kommutatív is G-n, akkor Abel-csoport

Állítás

 $(\mathbb{Z},+)$ a legszűkebb olyan Abel-csoport, ami tartalmazza \mathbb{N} -et.

Egész számok

Z-n is definiálható a szorzás:

- ha $n \in \mathbb{N}, m \in \mathbb{Z}$: $n \cdot m := \underbrace{m + m + \cdots + m}_{n \text{ darab}}$
- ha $n \notin \mathbb{N} : n \cdot m = -((-n) \cdot m)$

Állítás

 (\mathbb{Z},\cdot) kommutatív semlegeselemes félcsoport.

Állítás

 \mathbb{Z} -n a · az +-ra nézve mindkét oldalról disztributív:

$$\forall a, b, c \in \mathbb{Z} : a \cdot (b+c) = a \cdot b + a \cdot c \ \emph{\'es} \ (b+c) \cdot a = b \cdot a + c \cdot a$$

Racionális számok

Definíció

- $Az(R, \oplus, \odot)$ gyűrű, ha
 - \bullet (R, \oplus) Abel-csoport
 - ② (R, ⊙) félcsoport
 - az ⊙ a ⊕ műveletre nézve mindkét oldalról disztributív

Definíció

Legyen (R, \oplus, \odot) gyűrű, és $0 \in R$ legyen a \oplus semleges eleme. Ekkor, ha $(R \setminus \{0\}, \odot)$ Abel-csoport, akkor (R, \oplus, \odot) test.

Állítás

 $(\mathbb{Q},+,\cdot)$ a legszűkebb olyan test, ami tartalmazza \mathbb{N} -et.

Valós számok

Z-n is definiálható a rendezés:

- $n \in \mathbb{N}, n \neq 0$ esetén legyen 0 < n
- legyen n < m, ha 0 < m n

Állítás

Ha $a,b,c\in\mathbb{Z}$, akkor

- \bullet $0 < a \cdot b \Rightarrow 0 < a \cdot b$
- $a < b \Rightarrow a + c < b + c$

Definíció

Egy $(R, *, \diamond)$ test rendezett test, ha definiálható R-en rendezés a fenti két tulajdonsággal.

Valós számok definíciója

Legyen $\mathbb R$ az $\mathbb N$ -et tartalmazó legszűkebb felső határ tulajdonságú rendezett test.

Komplex számok – definíció(k)

Definíció 1

Legyen $\mathbb{C} = \{a+b \cdot i : a, b \in \mathbb{R}, i^2 = -1\}$. Ekkor $(\mathbb{C}, +, \cdot)$ a komplex számok, a szokásos \mathbb{R} -beli + és \cdot műveletekkel.

Definíció 2

 $(\mathbb{R} \times \mathbb{R}, \oplus, \odot)$ a komplex számok, ha

- $(a,b) \oplus (c,d) = (a+c,b+d)$
- $\bullet \ (a,b) \odot (c,d) = (a \cdot c b \cdot d, a \cdot d + b \cdot c)$

ahol + és \cdot a szokásos \mathbb{R} -beli műveletek.

Megjegyzés

- a két definíció ugyanazt a struktúrát adja
- $(\mathbb{C}, +, \cdot)$ test

Síkbeli ábrázolás - a Gauss-sík

Emlékeztető

- $z \in \mathbb{C}$ algebrai alakja: $z = a + b \cdot i$, ahol $a, b \in \mathbb{R}$
- valós rész: Re(z) = a, képzetes rész: Im(z) = b
- konjugált: $\overline{z} = a b \cdot i$

Gauss-sík

- $z = a + b \cdot i \longleftrightarrow$ a sík egy pontja
- x tengely \longleftrightarrow valós rész
- y tengely ←→ képzetes rész

Definíció

- abszolútérték: $|z| = \sqrt{a^2 + b^2}$
- $z \neq 0$ argumentuma: az x tengely pozitív részével bezárt $\varphi \in [0, 2\pi)$ szög