PSYC 5301 - Lecture 9

Thomas J. Faulkenberry, Ph.D.

April 23, 2019

Review from last time

Recall that by Bayes Theorem, we have

$$\underbrace{\frac{p(\mathcal{H}_1 \mid \mathsf{data})}{p(\mathcal{H}_0 \mid \mathsf{data})}}_{\mathsf{posterior} \; \mathsf{odds}} = \underbrace{\frac{p(\mathcal{H}_1)}{p(\mathcal{H}_0)}}_{\mathsf{prior} \; \mathsf{odds}} \times \underbrace{\frac{p(\mathsf{data} \mid \mathcal{H}_1)}{p(\mathsf{data} \mid \mathcal{H}_0)}}_{\mathsf{predictive} \; \mathsf{updating} \; \mathsf{factor}}$$

The predictive updating factor

$$B_{10} = \frac{p(\mathsf{data} \mid \mathcal{H}_1)}{p(\mathsf{data} \mid \mathcal{H}_0)}$$

tells us how much better \mathcal{H}_1 predicts our observed data than \mathcal{H}_0 .

This ratio is called the Bayes factor

We can compute Bayes factors for ANOVA models using the BIC:

$$BIC = N \ln(SS_{\text{residual}}) + k \ln(N)$$

where

- \bullet N=total number of independent observations
- ullet k=number of parameters in the model
- ullet $SS_{\mathsf{residual}} = \mathsf{variance}$ NOT explained by the model
- Note: smaller BIC = better model fit

Steps:

- ullet set up two models: \mathcal{H}_0 and \mathcal{H}_1
- compute BIC (Bayesian information criterion) for each model
- ullet compute Bayes factor as $e^{rac{\Delta BIC}{2}}$

Example

(this is from HW 8, #4)

Treatment 1	Treatment 2	Treatment 3	
1	5	7	
2	2	3	
0	1	6	
1	2	4	

first, we model as ANOVA:

source	SS	df	MS	F
bet tmts	32.67	2	16.37	7.01
within tmts	21	9	2.33	
total	53.67	11		

We'll set up our two models:

Null model: $\mathcal{H}_0: \mu_1 = \mu_2 = \mu_3$

- ullet this model has k=1 parameter (the data is explained by a SINGLE mean)
- \bullet $SS_{
 m residual}=53.67$ (the model has only one mean, so all variance is left unexplained)

$$BIC = N \ln(SS_{\text{residual}}) + k \ln(N)$$

= $12 \ln(53.67) + 1 \cdot \ln(12)$
= 50.28

PSYC 5301

Alternative model: $\mathcal{H}_1: \mu_1 \neq \mu_2 \neq \mu_3$

- ullet this model has k=3 parameters (the data is explained by THREE means)
- ullet $SS_{
 m residual}=21$ (the model accounts for variance between treatments with the three means $SS_{
 m within}$ is left unexplained)

$$BIC = N \ln(SS_{\text{residual}}) + k \ln(N)$$
$$= 12 \ln(21) + 3 \cdot \ln(12)$$
$$= 43.99$$

Thus,

$$B_{10} = e^{\frac{\Delta BIC}{2}} = e^{\frac{50.28 - 43.99}{2}} = 23.22$$

meaning that the data are approximately 23 times more likely under \mathcal{H}_1 than \mathcal{H}_0

Repeated measures designs

The same ideas will extend to work with repeated measures designs. The only difference is that we need to think carefully about:

- the number of *independent* observations
- ullet residual SS

Example

Consider the following example from Exam 1, which asks about task performance as a function of computer desk layout:

Subject	Layout 1	Layout 2	Layout 3
# 1	6	2	4
# 2	8	6	7
#3	3	6	9
#4	3	2	4

Let's work through the ANOVA model, since it has been a while:

Step 1 - compute condition means AND subject means:

Subject	Layout 1	Layout 2	Layout 3	M
#1	6	2	4	4
#2	8	6	7	7
#3	3	6	9	6
#4	3	2	4	3
\overline{M}	5	4	6	5

Remember that once we find SS, we remove subject variability and partition what's left:

$$SS_{\text{total}} = \sum X^2 - \frac{(\sum X)^2}{N}$$

= $360 - \frac{60^2}{12}$
= 60

$$SS_{\text{bet subj}} = n \sum_{i=1}^{4} (\overline{X}_{\text{subj }i} - \overline{X})^2$$

= $3 \Big[(4-5)^2 + (7-5)^2 + (6-5)^2 + (3-5)^2 \Big]$
= 30

$$SS_{\text{bet tmts}} = n \sum_{j=1}^{3} (\overline{X}_{\text{tmt } j} - \overline{X})^{2}$$

$$= 4 \left[(5-5)^{2} + (4-5)^{2} + (6-5)^{2} \right]$$

$$= 8$$

Thus, our ANOVA table is as follows:

Source	SS	df	MS	F
bet tmts	8	2	4	1.09
residual	22	6	3.67	
subject	30	3	10	
total	60	11		

PSYC 5301

BIC computations

We'll set up our two models:

Null model: $\mathcal{H}_0: \alpha_1 = \alpha_2 = \alpha_3$

- ullet this model has k=1 parameter (the data is explained by a SINGLE treatment effect)
- $SS_{residual} = 30$ (what is left after removing subject variance)
- N=8 independent observations (for each of 4 subjects, there are 3-1=2 independent observations)
- ullet Note: general formula: N=s(c-1), where s= number of subjects and c= number of conditions

$$BIC = N \ln(SS_{\text{residual}}) + k \ln(N)$$
$$= 8 \ln(30) + 1 \cdot \ln(8)$$
$$= 29.29$$

Alternative model: $\mathcal{H}_1: \alpha_1 \neq \alpha_2 \neq \alpha_3$

- ullet this model has k=3 parameters (the data is explained by THREE treatment effects)
- $SS_{\text{residual}} = 22$

$$BIC = N \ln(SS_{\text{residual}}) + k \ln(N)$$
$$= 8 \ln(22) + 3 \cdot \ln(8)$$
$$= 30.97$$

Thus,

$$B_{01} = e^{\frac{\Delta BIC}{2}} = e^{\frac{30.97 - 29.81}{2}} = 1.79$$

meaning that the data are approximately 2 times more likely under \mathcal{H}_0 than \mathcal{H}_1

Some lessons

The previous homework questions give us some lessons about p-values:

- 1. p-values are uniformly distributed under the null. The implication is that a single p-value gives us no information about the likelihood of any model
- 2. optional stopping inflates Type I error rate.
- 3. $p = p(\text{data} \mid \mathcal{H}_0)$. This is NOT equal to $p(\mathcal{H}_0 \mid \text{data})$

However, with some cleverness, we can actually calculate $p(\mathcal{H}_0 \mid \text{data})$. All we need is Bayes theorem:

Posterior model probabilities

Recall from Bayes theorem:

$$\frac{p(\mathcal{H}_0 \mid \mathsf{data})}{p(\mathcal{H}_1 \mid \mathsf{data})} = B_{01} \cdot \frac{p(\mathcal{H}_0)}{p(\mathcal{H}_1)}$$

Let's assume $p(\mathcal{H}_0) = p(\mathcal{H}_1)$ (that is, \mathcal{H}_0 and \mathcal{H}_1 are equally likely, a priori).

Then the previous equation reduces to

$$rac{p(\mathcal{H}_0 \mid \mathsf{data})}{p(\mathcal{H}_1 \mid \mathsf{data})} = B_{01}$$

Then we have:

$$p(\mathcal{H}_0 \mid \mathsf{data}) = B_{01} \cdot p(\mathcal{H}_1 \mid \mathsf{data})$$

$$= B_{01} \Big[1 - p(\mathcal{H}_0 \mid \mathsf{data}) \Big]$$

$$= B_{01} - B_{01} \cdot p(\mathcal{H}_0 \mid \mathsf{data})$$

Let's solve this equation for $p(\mathcal{H}_0 \mid data)$:

$$p(\mathcal{H}_0 \mid \mathsf{data}) + B_{01} \cdot p(\mathcal{H}_0 \mid \mathsf{data}) = B_{01}$$

which implies by factoring:

$$p(\mathcal{H}_0 \mid \mathsf{data}) \Big[1 + B_{01} \Big] = B_{01}$$

or equivalently

$$p(\mathcal{H}_0 \mid \mathsf{data}) = \frac{B_{01}}{1 + B_{01}}$$

Note: by the same reasoning, we can prove

$$p(\mathcal{H}_1 \mid \mathsf{data}) = \frac{B_{10}}{1 + B_{10}}$$

Let's compute these for the examples we've done tonight:

Example 1: $B_{10} = 23.22$

This example that \mathcal{H}_1 was a better fit. Thus,

$$p(\mathcal{H}_1 \mid \mathsf{data}) = \frac{B_{10}}{1 + B_{10}}$$

$$= \frac{23.22}{1 + 23.22}$$

$$= 0.959$$

Example 2: $B_{01} = 1.79$

This example that \mathcal{H}_0 was a better fit. Thus,

$$p(\mathcal{H}_0 \mid \mathsf{data}) = \frac{B_{01}}{1 + B_{01}}$$

$$= \frac{1.79}{1 + 1.79}$$

$$= 0.642$$