Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Pracownia problemowa magisterska

(semestr letni 23/24L)

Zastosowanie modeli statyki typu Takagi-Sugeno z następnikami hiperbolicznymi w algorytmach regulacji predykcyjnej

Autor:

Promotor:

Wojciech Rogalski dr hab. inż. Piotr Marusak

Spis treści

1.	Wstęp
2.	Identyfikacja
	2.1. Charakterystyka statyczna
3.	Model Hammersteina
	3.1. Następniki liniowe
4.	Model Wienera
	4.1. Następniki liniowe
5.	Podsumowanie
\mathbf{Sp}	ois rysunków
Spis tabel	

1. Wstęp

Praca zawiera porównanie modeli Hammersteina oraz Wienera w regulacji kaskadowej. Bazą porównania był obiekt opisany równaniami fizycznymi postaci:

$$\begin{cases} \frac{dV_1}{dt} = F_1 + F_D - F_2(h_1) \\ \frac{dV_2}{dt} = F_2(h_1) - F_3(h_2) \\ F_2(h_1) = \alpha_1 \sqrt{h_1}, \quad F_3(h_2) = \alpha_2 \sqrt{h_2}, \quad V_1(h_1) = A_1 h_1, \quad V_2(h_2) = C_2 h_2^2, \quad F_1(t) = F_{1in}(t - \tau) \end{cases}$$
(1.1)

• Stałe:

$$A_1 = 540cm^2$$
, $C_2 = 0.85$, $\alpha_1 = 26$, $\alpha_2 = 20$ (1.2)

• Punkt pracy:

$$F_1 = 90 \frac{cm^3}{s}, \quad F_D = 30 \frac{cm^3}{s}, \quad \tau = 100, \quad h_2 = 36cm$$
 (1.3)

gdzie użyte oznaczenia odpowiadają tym zastosowanym na rys. 1.1.

Rys. 1.1: Obiekt regulacji automatycznej.

Wartością sterującą był dopływ F_{1in} natomiast zakłóceniem - F_D . Z kolei wyjściem - wartością regulowaną - wysokość cieczy w drugim zbiorniku h_2 . W pierwszej kolejności dokonano identyfikacji modelu, sprawdzono jego nieliniowość i dobrano odpowiedni rząd dynamiki modelu liniowego.

2.1. Charakterystyka statyczna

Poświęcono jej bardzo dużo uwagi, ze względu na kluczową rolę, jaką odgrywa we wspomnianych modelach Hammersteina i Wienera. Korzystając z modelu fizycznego, z równania 1.1 wyznaczono:

$$\frac{dV_1}{dt} = 0 \quad \wedge \quad \frac{dV_2}{dt} = 0 \tag{2.1}$$

wobec tego:

$$\begin{cases} F_1 + F_D - \alpha_1 \sqrt{h_1} &= 0\\ \alpha_1 \sqrt{h_1} - \alpha_2 \sqrt{h_2} &= 0 \end{cases}$$
 (2.2)

Po prostych przekształceniach otrzymano wzór opisujący charakterystykę statyczną:

$$h_2 = \left(\frac{F_1 + F_D}{\alpha_2}\right)^2 \tag{2.3}$$

Wykres odpowiadający wyprowadzonemu wzorowi prezentuje się następująco:

Rys. 2.1: Charakterystyka statyczna $h_2(F_1)$.

Założono przedział zmienności sygnału sterującego w zakresie $F_1 \in [-45, 45]$.

2.2. Wymuszenia

Po dokonaniu pierwszego kroku identyfikacji - wykreślenia charakterystyki statycznej - uzyskano wstępne informacje o obiekcie. Równania opisujące model (1.1) oraz charakterystyka statyczna przedstawiona na rys. 2.1 pokazuje, że obiekt jest nieliniowy, stąd dokonano jego linearyzacji w punkcie pracy, tj.:

$$\begin{cases}
\frac{dV_1}{dt} \cong F_1 + F_D - \alpha_1 \sqrt{\frac{V_{10}}{A}} - \frac{\alpha_1}{2\sqrt{A \cdot V_{10}}} \cdot (V_1 - V_{10}) \\
\frac{dV_2}{dt} \cong \alpha_1 \sqrt{\frac{V_{10}}{A}} - \alpha_2 \sqrt[4]{\frac{V_{20}}{C}} + \frac{\alpha_1}{2\sqrt{A \cdot V_{10}}} \cdot (V_1 - V_{10}) - \frac{\alpha_2}{4\sqrt[4]{C \cdot V_{20}^3}} \cdot (V_2 - V_{20})
\end{cases}$$
(2.4)

Linearyzacji dokonano przyjmując jako zmienną stanu objętość cieczy w obu zbiornikach.

$$x = \begin{bmatrix} V_1 & V_2 \end{bmatrix}^T \tag{2.5}$$

Następnie, podając wygenerowaną sekwencję sygnału sterującego, zbadano rozbieżność modelu liniowego i nieliniowego.

(a) Wygenerowana sekwencja sygnału sterującego $\boldsymbol{u}(k).$

(b) Sygnał wyjściowy y(k).

Rys. 2.2: Porównanie modelu liniowego z nieliniowym.

Otrzymano dokładnie to czego się spodziewano. Wymuszenia nie większe niż $\pm 10 \frac{cm^3}{s}$ nie powodują znacznego wytrącenia układu z położenia równowagi, dzięki czemu model liniowy bardzo dobrze aproksymuje zachowanie układu. Niestety sytuacja pogarsza się wraz z oddalaniem się od punktu pracy - model liniowy zaczyna poważnie odbiegać od modelu nieliniowego, opisującego obiekt. W celach porównawczych policzono błędy, testując model w trybie bez rekurencji (ARX) oraz z rekurencją OE, przyjmując jako kryterium jakości błąd średni kwadratowy, tj.:

$$E = \sum_{k=0}^{N} (y(k) - y^{mod}(k))^2$$
 (2.6)

Wcześniej dokonano podziału wygenerowanych danych dynamicznych na dwa zbiory - uczący i weryfikujący - stosując zasadę podziału 0% - 50%/50% - 100%. Otrzymano następujące wyniki:

ARX

$$E_{ucz} = 0.002$$
 $E_{wer} = 0.003$ (2.7)

 \mathbf{OE}

$$E_{ucz} = 0.470$$
 $E_{wer} = 0.831$ (2.8)

Model ARX

Model OE

Rys. 2.3: Symulacja odpowiednich modeli z wykorzystaniem wygenerowanej sekwencji sygnału sterującego.

2.3. Podejście inżynierskie

Od tej pory do dalszej analizy postanowiono przyjąć model szarej skrzynki.

3. Model Hammersteina

- 3.1. Następniki liniowe
- 3.2. Następniki hiperboliczne

4. Model Wienera

- 4.1. Następniki liniowe
- 4.2. Następniki hiperboliczne

5. Podsumowanie

Spis rysunków

1.1	Obiekt regulacji automatycznej	2
2.1	Charakterystyka statyczna $h_2(F_1)$:
2.2	Porównanie modelu liniowego z nieliniowym	4
2.3	Model OE	Į.

Spis tabel