§4 Hermite 矩阵特征值的变分特征

程光辉

2019年11月26日

定义 1. 设 $A \in C^{n \times n}$ 为 Hermite 矩阵, $x \in C^n$, 称

$$R(x) = \frac{x^H A x}{x^H x}, \quad x \neq 0$$

为 A 的 Rayleigh 商.

若 ||x|| = 1,则 Rayleigh 商变为

$$R(x) = x^H A x.$$

为了下文方便,给出如下结论和记号:

若 $A \in C^{n \times n}$ 为 Hermite 矩阵,则存在酉矩阵 $U = (u_1, u_2, \dots, u_n)$ 使得 $A = U\Lambda U^H$,其中 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$,且 $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$.

引理 1. 若 $W=span\{u_r,\cdots,u_s\}$,其中 $1\leq r\leq s\leq n$,则对 $\forall x\in W$, $\|x\|=1$,有

$$\lambda_s \le x^H A x \le \lambda_r.$$

证明: 对 $\forall x \in W$, ||x|| = 1, 有

$$x = \sum_{i=r}^{s} k_i u_i, \quad \sum_{i=r}^{s} |k_i|^2 = 1.$$

进而

$$x^HAx = x^H\sum_{i=r}^s k_iAu_i = x^H\sum_{i=r}^s k_i\lambda_iu_i = \sum_{i=r}^s |k_i|^2\lambda_i.$$

又因 $\lambda_s \leq \lambda_i \leq \lambda_r, \ i=r,\cdots,s$,则有

$$\lambda_s = \lambda_s \sum_{i=r}^s |k_i|^2 \leq x^H A x = \sum_{i=r}^s |k_i|^2 \lambda_i \leq \lambda_r \sum_{i=r}^s |k_i|^2 = \lambda_r,$$

得证.

定理 1. (Rayleigh -Ritz) 设 $A \in C^{n \times n}$ 为 Hermite 矩阵, 则

(1)
$$\lambda_n x^H x \leq x^H A x \leq \lambda_1 x^H x$$
, $(\forall x \in C^n)$,

(2)
$$\lambda_{\max} = \lambda_1 = \max_{x \neq 0} R(x) = \max_{x^H x = 1} x^H A x,$$

(3)
$$\lambda_{\min} = \lambda_n = \min_{x \neq 0} R(x) = \min_{x^H x = 1} x^H A x$$
.

证明: (1) 直接由引理 1,即可得证.

- (2) 取 x 为 λ_1 对应的特征向量,即可.
- (3) 取 x 为 λ_n 对应的特征向量,即可.

定理 2. (Courant -Fischer) 设 $A \in C^{n \times n}$ 为 Hermite 矩阵,特征值为 $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, k 为给定的正整数,且 $1 \leq k \leq n$,则

$$egin{array}{ll} \max_{V, dim(V) = k} & \min_{x \in V, \|x\| = 1} R(x) = \lambda_k, \ \min_{V, dim(V) = n-k+1} & \max_{x \in V, \|x\| = 1} R(x) = \lambda_k. \end{array}$$

证明:设A的特征值 λ_i 对应的单位特征向量为 u_i .考虑如下子空间

$$T = \operatorname{span}\{u_k, \cdots, u_n\},\$$

则
$$\dim(T)=n-(k-1)=n-k+1$$
. 设 V 是 C^n 上任意的子空间,且 $\dim(V)=k$. 因为

$$\dim(T) + \dim(V) = n - k + 1 + k = n + 1,$$

则有 $\dim(T \cap V) \ge 1$. 对 $\forall x \in T \cap V$,且 ||x|| = 1,因 $x \in T$,由引理 1 知

$$\lambda_k \geq x^H A x$$
.

又因 $x \in V$,则有

$$x^H A x \geq \min_{v \in V, \|v\|=1} v^H A v.$$

进而有

$$\lambda_k \geq \min_{v \in V, \|v\|=1} v^H A v.$$

上式除了 $\dim(V) = k$ 外,没有任何限制,于是

$$\lambda_k \geq \max_{V, \dim(V) = k} \quad \min_{x \in V, \|x\| = 1} x^H A x.$$

下面证明上面不等式的方向. 记 $W = \operatorname{span}\{u_1, \cdots, u_k\}$,由引理 1 知,若 $w \in W$,且 ||w|| = 1,有

$$w^H A w \ge \lambda_k = u_k^H A u_k.$$

因此,对 $\forall w \in W$,||w|| = 1,有

$$\min_{w \in W, \|w\|=1} w^H A w \geq \lambda_k = u_k^H A u_k.$$

设 V 是 C^n 上任意的子空间,且 $\dim(V) = k$,则有

$$\max_{V,\dim(V)=k} \quad \min_{x\in V, \|x\|=1} x^H Ax \geq \min_{w\in W, \|w\|=1} w^H Aw \geq \lambda_k = u_k^H Au_k.$$

综上,不等式大于等于小于等于同时成立,即

$$\max_{V,\dim(V)=k} \quad \min_{x\in V, \|x\|=1} R(x) = \lambda_k.$$

同理,可证另外一个等式.

定理 3. (Weyl) 设 $A, B \in C^{n \times n}$ 为 Hermite 矩阵, 则 $\forall k = 1, 2, \dots, n$, 有

$$\lambda_k(A) + \lambda_n(B) \le \lambda_k(A+B) \le \lambda_k(A) + \lambda_1(B).$$

证明: 对 $\forall x \in C^n$,且 ||x|| = 1 有

$$\lambda_n(B) \le x^H B x \le \lambda_1(B),$$

所以

$$\begin{split} \lambda_k(A+B) &= \max_{V, \dim(V) = k} & \min_{x \in V, ||x|| = 1} x^H (A+B) x \\ &= \max_{V, \dim(V) = k} & \min_{x \in V, ||x|| = 1} \left(x^H A x + x^H B x \right) \\ &\geq \max_{V, \dim(V) = k} & \min_{x \in V, ||x|| = 1} \left(x^H A x + \lambda_n(B) \right) \\ &= \lambda_k(A) + \lambda_n(B). \end{split}$$

类似可证不等式另外一侧.