PHẨN MỘT - CƠ HỌC.

Chương I – Động học chất điểm.

Bài 2: Chuyển động thẳng biến đổi đều.

Gia tốc của chuyển động: $a = \frac{v - v_0}{t}$ (m/s²)

- Quãng đường trong chuyển động: $S = v_0 t + \frac{at^2}{2}$
- Phương trình chuyển động: x = x₀, ν₀t, 1/2 at²
- Công thức độc lập thời gian: V² V₀² = 2 a.s

Bài 3: Sự rơi tự do.

Với gia tốc: $a = g = 9.8 \text{ m/s}^2 (= 10 \text{ m/s}^2)$.

- · Công thức:
 - Vận tốc: ν = g.t (m/s)
 - Chiều cao (quãng đường): $h = \frac{gt^2}{2}(m) \Longrightarrow t = \sqrt{\frac{2h}{g}}(s)$

Bài 4: Chuyển động tròn đều.

Vận tốc trong chuyên động tròn đều:

$$v = \frac{s}{t} = \omega r = \frac{2\pi r}{T} = 2\pi r. f (m/s)$$

- Vân tốc góc: $\omega = \frac{\alpha}{T} = \frac{v}{r} = \frac{2\pi}{T} = 2\pi f \frac{\text{(rad/s)}}{\text{(rad/s)}}$
- Chu kì: (Kí hiệu: T) là khoảng thời gian (giây) vật đi được một vòng.
- Tần số (Kí hiệu: f): là số vòng vật đi được trong một giây.

$$f = \frac{1}{T}$$
 (Hz)

• Độ lớn của gia tốc hướng tâm: $a_{bi} = \frac{v^2}{r} = \omega^2 r (m/s^2)$.

Chương II – Đông lực học chất điểm.

Bài 9: Tổng hợp và phân tích lực. Điều kiện cần bằng của chất điểm.

- · Tổng họp và phân tích lực.
- 1. Hai lực bằng nhau tạo với nhau một góc α : $F = 2.F_1.\cos\frac{\alpha}{2}$
- 2. Hai lực không bằng nhau tạo với nhau một góc a:

$$F = F_1^2 + F_2^2 + 2.F_1F_2\cos C$$

Điều kiện cân bằng của chất điểm: F₁+F₂+...+F_n = 0

Bài 10: Ba định luật Niu-tơn:

- Định luật 2: F = m. a
- Định luật 3: $\vec{F}_{S \to A} = -\vec{F}_{A \to S} \iff \vec{F}_{SA} = -\vec{F}_{AS}$.

Bài 11: Lực hấp dẫn. Định luật vạn vật hấp dẫn.

• Biểu thức:
$$F_{kd} = \frac{G.m_1.m_2}{R^2}$$
 Trong đó: G = 6,67.10⁻¹¹ $\left\| \frac{N.m^2}{kg^2} \right\|$

m1, m2. Khối lượng của hai vật.

R: khoảng cách giữa hai vật.

Gia tốc trọng trường:
$$g = \frac{G..M}{(R+h)^2}$$

h: độ cao của vật so với mặt đất.

$$\checkmark$$
 Vật ở mặt đất: $g = \frac{G.M}{R^2}$

✓ Vật ở độ cao "h":
$$g = \frac{G.M}{(R+h)^2}$$

$$\Rightarrow \mathbf{g} = \frac{gR^2}{(R+h)^2}$$

Bài 12: Lực đàn hồi của lò xo. Định luật Húc.

Trong đó:
$$k - 1$$
à độ cứng của 1ò xo.

$$|\Delta l|$$
 – độ biên dạng của lò xo.

$$\Leftrightarrow m.g = k |\Delta l|$$

$$\Leftrightarrow k = \frac{m.g}{|\Delta l|}$$

$$\Leftrightarrow |\Delta| = \frac{m.g}{k}$$

Bài 13: Luc ma sát.

Biểu thức: F_m − ∞N

Trong đó: oc hệ số ma sát

N – Áp lực (lực nên vật này lên vật khác)

Vật đặt trên mặt phẳng nằm ngang:

Vật chuyển động trên mặt phẳng nằm ngang chịu tác dụng của 4 lực.

Ta có:
$$\vec{F} = \vec{P} + \vec{N} + \vec{F}_{\text{tat}} + \vec{F}_{\text{tat}}$$

Về đô lớn: $\vec{F} = \vec{F}_{\text{leis}} - \vec{F}_{\text{max}}$

$$F_{kio} = m.a$$

$$F_{ma} = c.m.g$$

Vật chuyển động trên mp nằm ngang với lực kéo hóp với mp 1 góc a

Ta có:
$$\vec{F}_{Rio} + \vec{N} + \vec{P} = 0$$

 $\Leftrightarrow F_{kio} . Sin \alpha + N - P = 0$
 $\Leftrightarrow N = P - F_{kio} . Sin \alpha$

Vật chuyển động trên mặt phần nghiêng.

Vật chịu tác dụng của 3 lực:
$$\Rightarrow \vec{F}_{HL} = \vec{N} + \vec{P} + \vec{F}_{mr}$$

 $\Rightarrow F_{HL} = F - F_{mr}$

Từ hình về ta có: $N = P.Cos \alpha$

 $F = P.Sin\alpha$

Ta có theo định nghĩa: $F_{maxie} = \propto N = \propto P.Cos \alpha$

$$\Rightarrow F_{HI} = F - F_{ms} = P.Sin\alpha - \propto P.Cos\alpha$$
 (1)

Theo định luật II Niu-ton: $F_{hop loc} = m.a$ $P = m \sigma$

$$Tir(1) \implies m.a = m.g.Sin\alpha - \infty m.g.Cos\alpha$$
$$\Leftrightarrow a = g(Sin\alpha - \infty .Cos\alpha)$$

Bài 14: Lực hướng tâm.

- Biểu thức: $F_{hi} = m \cdot \frac{v^2}{r} = m \cdot \omega^2 r$
- Trong nhiều trường họp lực hấp dẫn cũng là lực hưởng tâm:

$$\overline{\mathbf{F}_{bd}} = \overline{\mathbf{F}_{bt}} \Longrightarrow \frac{G.m_1.m_2}{(R+h)^2} = \frac{m.v^2}{R+h}$$

Bài 14: Lực hướng tâm.

• Biểu thức: $\mathbf{F}_{ht} = m \cdot \frac{v^2}{r} = m \cdot \omega^2 \cdot r$

Trong nhiều trường họp lực hấp dẫn cũng là lực hướng tâm:

$$F_{bd} = F_{bt} \Leftrightarrow \frac{G.m_1.m_2}{(R+h)^2} = \frac{m.v^2}{R+h}$$

Bài 15: Bài toán về chuyển động ném ngang.

Chuyển động ném ngang là một chuyển động phức tạp, nó được phân tích thành hai thành phần

Theo phương Ox => là chuyển đồng để a_x = 0, ν_x =ν₀

Thành phần theo phương thẳng đứng Oy.

$$\checkmark$$
 a_y = g (= 9,8 m/s²), $v = g.t$

$$\checkmark$$
 Độ cao: $h = \frac{g \cdot t^2}{2} \Rightarrow t = \sqrt{\frac{2h}{g}}$

⇒ Quỹ đạo là nữa đường Parabol

Vận tốc khi chạm đất:
$$v^2 = v_x^2 + v_y^2$$

$$\Leftrightarrow v = \sqrt{v_x^2 + v_y^2} = \sqrt{v_0^2 + (gt)^2}$$

Chương III - Cân bằng và chuyển động của vật rắn.

Bài 17: Cân bằng của vật rắn chịu tác dụng của 2 lực và của 3 lực không song song.

A, Cân bằng của vật rắn chịu tác dụng của 2 lực không song song.

$$\vec{F}_1 + \vec{F}_2 = 0 \Leftrightarrow \vec{F}_1 = -\vec{F}_2$$

Điều kiên:

1. Cùng giá

- 2. Cùng độ lớn
- 3. Cùng tác dụng vào một vật
- Ngược chiều

B, Cần bằng của vật chịu tác dụng của 3 lực không song song.

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0 \Leftrightarrow \vec{F}_{12} + \vec{F}_3 = 0 \Leftrightarrow \vec{F}_{12} = -\vec{F}_2$$
 Điều kiên:

- 1. Ba lực đồng phẳng
- Ba lực đồng quy
- Họp lực của 2 lực trực đối với lực thứ 3

Bài 18: Cân bằng của một vật có trục quay cố định. Momen lực

- Vật cân bằng phụ thuộc vào 2 yếu tổ.
 - 1. Lực tác dụng vào vật
 - Khoảng cách từ lực tác dụng đến trục quay Biểu thức: M = F.d (Momen lực)

Trong đó: F – lực làm vật quay

d - cánh tay đòn (khoảng cách từ lực đến trực quay)

Quy tắc tổng hợp lực song song cùng chiều.

Biểu thức:
$$F = F_1 + F_2$$

$$\Rightarrow \frac{F_1}{F_2} = \frac{d_2}{d_1} \text{ (chia trong)}$$

$$\Leftrightarrow F_1 \cdot d_1 = F_2 \cdot d_2$$

Chương IV - Các định luật bào toàn.

Bài 23: Động lượng. Định luật bảo toàn động lượng.

Động lượng:
$$\vec{p} = m \cdot \vec{v} | \frac{kg \cdot m}{s}$$

Xung của lực: là độ biến thiên động lượng trong khoảng thời gian

$$\Delta p - F \Delta t$$

- Định luật bảo toàn động lượng (trong hệ cô lập).
 - Va chạm mêm: sau khi va chạm 2 vật đính vào nhau và chuyển động cùng vận tốc v.

Biểu thức:
$$m_1 \cdot \vec{v}_1 + m_2 \cdot \vec{v}_2 = (m_1 + m_2) \vec{v}$$

Va chạm đàn hồi: sau khi va chạm 2 vật không dính vào nhau là chuyển đồng với vận tốc mới

Biểu thức:
$$m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_1 + m_2 \cdot v_2$$

Chuyển động bằng phản lực.

Biểu thức:
$$m.\vec{v} + M.\vec{V} = \vec{0}$$

$$\Leftrightarrow \vec{V} = -\frac{m}{M}.\vec{v}$$

Trong đó: m, \overline{v} – khổi lượng khí phụt ra với vận tốc V

M
, $\overline{\nu}^*$ – khối lượng M của tên lửa chuyển động với vận tố
c $\overline{\nu}^*$ sau khi đã phụt khí

Công: A = F.s.cos a

Trong đó: F – lực tác dụng vào vật

 G – góc tạo bởi lực F và phương chuyển dòi (nằm ngang) và s là chiều dài quãng đường chuyển động (m)

- Công suất: $P = \frac{A}{r}$ (w) với t là thời gian thực hiện công (giây – s)

Bài 25, 26, 27: Động năng - Thế năng - Cơ năng.

Động năng: là năng lượng của vật có được do chuyển động.

Biểu thức: $W_{\omega} = \frac{1}{2}.m.v^{\alpha}$

Định lí động năng
(công sinh ra): $A = \Delta W = -\frac{1}{2} \mathcal{M}.v_1^2 - \frac{1}{2} \mathcal{M}.v_1^2$

Thế năng:

Thế năng trọng trường: W,-m.g.h

Trong đó: m – khối lượng của vật (kg)

h - độ cao của vật so với gốc thế năng. (m)

 $g = 9.8 \text{ or } 10 \text{ (m/s}^2)$

Định lí thế năng (Công A sinh ra): $\mathcal{A} = \Delta W = m.g.h. \neg m.g.h.$

2. Thế năng đàn hồi: $W_{i} = \frac{1}{2} k (|\Delta l|)^{2}$

Định lí thế năng (Công A sinh ra): $A = \Delta W = \frac{1}{2} \cdot k(|\Delta l_1||^2 - \frac{1}{2} \cdot k(|\Delta l_2||^2 -$

Co năng:

Co năng của vật chuyển động trong trọng trường:

 $W = W_* + W_*$

$$\Leftrightarrow \frac{1}{2}.m.v^{2} + m.g.h$$

Cơ năng của vật chịu tác dụng của lực đàn hồi:

$$W = W_a + W_c \Leftrightarrow \frac{1}{2} \mathcal{M} \cdot \overrightarrow{v^2} + \frac{1}{2} \mathcal{M} \cdot ||\Delta l||^2$$

Trong một hệ cô lập cơ năng tại mọi điểm được bảo toàn.

Mở rộng: Đối với con lắc đơn.

1.
$$v_A = \sqrt{2 \cdot g \cdot J \cdot (1 - \cos \alpha_0)}$$

 $T_A = m \cdot g \cdot (3 - 2\cos \alpha_0)$
2. $v_S = \sqrt{2 \cdot g \cdot J \cdot (\cos \alpha - \cos \alpha_0)}$
 $T_A = m \cdot g \cdot (3\cos \alpha - 2\cos \alpha_0)$

Trong đó: v_A, v_B – vân tốc của con lắc tại mỗi vị trí A,B...

 T_A , T_B —lực căng dây T tại mỗi vị trí.

m - khối lượng của con lắc (kg)

PHAN HAI - NHIET HOC

Chương V - Chất khí.

Định luật Bôi-lo – Ma-ri-ốt (Quá trình đẳng nhiệt)

$$p \sim \frac{1}{V}$$
 hay $pV = const \Rightarrow p_1V_1 = p_2V_2$

· Định luật Sác-lợ (Quá trình đẳng nhiệt)

$$\frac{p}{T} = const \Rightarrow \frac{p_1}{T_1} = \frac{p_2}{T_2}$$

Phương trình trạng thái khí li tưởng

Biểu thức:
$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \Rightarrow \frac{p V}{T} = const$$
 Trong đó: $P - \text{Áp suất khi}$
$$V - \text{Thể tích khi}$$

$$T = t^\circ c + 273 \text{ [nhiệt độ khi ($^\circ K$)]}$$

Chương VI – Cơ sở của nhiệt động lực học

Bài 32: Nội năng và Sự biến thiên nội năng.

Nhiệt lượng: số đo độ biến thiên của nội năng trong quá trình truyền nhiệt là <u>nhiệt lượng.</u>
 ΔU = Q

Biểu thức:
$$Q - m.c.\Delta t \rightarrow \sum_{\mathbf{Q} \in \mathbf{Z}} \mathbf{Q}_{\mathbf{fin}} = \sum_{\mathbf{Q} \in \mathbf{Z}} \mathbf{Q}_{\mathbf{fin}}$$

Trong đó: $\mathbf{Q} - \mathbf{l}$ à nhiệt lượng thu vào hay tỏa ra (J) $\mathbf{m} - \mathbf{l}$ à khối lượng (kg)

 $\mathbf{c} - \mathbf{l}$ à nhiệt dung riêng của chất $\mathbf{Z} / \mathbf{kg} . K$
 $\Delta t - \mathbf{l}$ à đô biến thiên nhiệt đô (°C hoặc °K)

Thực hiện công:

$$\Delta U = A$$

Biểu thức:
$$A = p \triangle V = \triangle U$$

Trong đó: $p - \text{Áp suất của khi.} \left| \frac{N}{m^2} \right|$

 ΔV -Đô biến thiên thế tích (m³)

♦ Cách đổi đơn vị áp suất: –
$$1 \frac{N}{m^2} = 1$$
 pa (Paxcan)

1 atm = 1,013.10⁵ pa

1 mmHg = 133 pa = 1 tor

$$1 \text{ HP} = 746 \text{ w}$$

Bài 33: Các nguyên lí của nhiệt đồng lực học.

Nguyên li một: Nhiệt động lực học.

Biểu thức:
$$\Delta U = A + Q$$

◆ Các quy ước về dầu: - Q > 0: Hệ nhận nhiệt lượng.

Q < 0 : Hệ truyền nhiệt lượng</p>

A > 0 : Hê nhân công

A < 0 : Hên thực hiện công

Chương VII - Chất rắn và chất lỏng. Sự chuyển thể

Bài 34: Chất rắn kết tinh. Chất rắn vô định hình.

	Chất kết tinh 1. Có cấu tạo tinh thể 2. Hình học xác định 3. Nhiệt độ nóng chảy xác định		Chất vô định hình Ngược chất kết tinh
Khái niệm Tính chất			
Phân loại	Đơn tinh thể	Đa tinh thể	Đẳng hướng
	Dị hướng	Đẳng hướng	

Bài 35: Biến dạn cơ của vật rắn.

A. Biến dạng đàn hồi

• Độ biến dạng tỉ đối:
$$\varepsilon = \frac{|l-l_0|}{l_0} = \frac{|\Delta l|}{l_0}$$

Trong đó: l_0 – chiều dài ban đầu l — chiều dài sau khi biến dạng Δl – độ biến thiên chiều dài (độ biến dạng).

• Úng suất:
$$\sigma = \frac{F}{S} |N/m^2|$$

Định luật Húc về biến dạng cơ của vật rắn:

Biểu thức:
$$\varepsilon = \frac{|\Delta l|}{l_0} = \alpha.\sigma$$

Với α – là hệ số tỉ lệ phụ thuộc chất liệu vật rắn.

Lực đàn hồi:

Ta có:
$$\sigma - \frac{F}{S} - E \frac{|\Delta l|}{l_0}$$

Biểu thức:
$$F_{2n} = k |\Delta l| = E \frac{S}{l_o} |\Delta L|$$

Trong đó:
$$E - \frac{1}{\alpha} \Rightarrow \alpha - \frac{1}{E}$$
 (E gọi là suất đàn hồi hay suất Y-âng)
$$k - E \frac{S}{I_a} \text{ và S là tiết diện của vật.}$$

Bài 36: Su nở vì nhiệt của vật rắn

Gọi: I₀,V₀,S₀,D₀ lần lượt là: độ dài – thể tích – diện tích – khối lượng riêng ban đầu của vật.
I,V,S,D lần lượt là: độ dài – thể tích – diện tích – khối lượng riêng của vật ở nhiệt độ t⁰C.
△I,△V,△S,△ lần lượt là độ biến thiên(phần nở thêm) độ dài – thể tích – diện tích – nhiệt độ của vật sau khi nở.

- Sự nở dài: $I = I_0 . (1 + \alpha . \Delta t) \Rightarrow \Delta I = I_0 . \alpha . \Delta t$ Với α là hệ số nở dài của vật rắn. Đơn vị: $\frac{1}{K} = K^{-1}$
- Sự nở khối: $V = V_0 \cdot (1 + \beta \Delta t) = V_0 \cdot (1 + 3 \cdot \alpha \Delta t)$ $\Rightarrow \Delta V = V_0 \cdot 3 \alpha \Delta t$ Với $\beta = 3 \cdot \alpha$
- Sự nổ tích (diện tích): S = S₀.(1+2.αΔt)
 ⇒ ΔS = S.2αΔt

$$\Rightarrow d^2 = d_0^2 (1 + 2\alpha \Delta t) \Leftrightarrow \Delta t = \frac{d^2}{d_0^2} - 1$$

Với d là đường kính tiết diện vật rắn.

Sự thay đổi khối lượng riêng:

•
$$\frac{1}{D} = \frac{1}{D_o}(1 + 3\alpha . \Delta t) \Rightarrow D = \frac{D_o}{1 + 3\alpha . \Delta t}$$

Bài 37: Các hiện tường của các chất.

• Lực căn bề mặt: $f = \sigma^{j}$ (N)

Trong đó:
$$\sigma$$
 – hệ số căng bề mặt. $\binom{N}{m}$

 $l = \pi d$ – chu ví đường tròn giới hạn mặt thoáng chất lỏng. (m)

Khi nhúng một chiếc vòng vào chất lỏng sẽ có 2 lực căng bề mặt của chất lỏng lên chiếc vòng.

1. Tổng các lực căng bề mặt của chất lỏng lên chiếc vòng

$$F_{\text{cling}} = F_{e} = F_{\text{labe}} - P$$
 (N)

Với F_{kés} lực tác dụng để nhắc chiếc vòng ra khối chất lỏng (N) P là trọng lượng của chiếc vòng.

2. Tổng chu vi ngoài và chu vi trong của chiếc vòng.

$$l = \pi(\tilde{D} + d)$$

Với D đường kính ngoài

D đường kính trong

Giá trị hệ số căng bề mặt của chất lỏng.

$$\sigma = \frac{Fc}{\pi (D+d)}$$

Chú ý: Một vật nhúng vào xả phòng luôn chịu tác dụng của hai lực căng bề mặt.