All-round (3 problems)

- 1. Suppose $f(z_0, z_1, z_2, z_3)$ is a degree 2 homogeneous polynomial and its zero set S is a smooth submanifold in $\mathbb{C}P^3$. Then S is called a smooth degree 2 complex hypersurface in $\mathbb{C}P^3$.
 - a). Compute the Euler number of S.
- b). Suppose that $f(z_0, z_1, z_2, z_3) = z_0 z_3 z_1 z_2$. Identify the zero set as a familiar 4 dimensional manifold.
- **2.** Show that a positively curved noncompact surface in \mathbb{R}^3 has infinite area.
- 3. If M is a compact manifold with negative sectional curvature, then the fundamental group of M is of exponential growth.

3