SmonMole

Preface

The purpose of this handbook is to supply a collection of mathematical formulas and tables which will prove to be valuable to students and research workers in the fields of mathematics, physics, engineering and other sciences. To accomplish this, care has been taken to include those formulas and tables which are most likely to be needed in practice rather than highly specialized results which are rarely used. Every effort has been made to present results concisely as well as precisely so that they may be referred to with a maximum of ease as well as confidence.

Topics covered range from elementary to advanced. Elementary topics include those from algebra, geometry, trigonometry, analytic geometry and calculus. Advanced topics include those from differential equations, vector analysis, Fourier series, gamma and beta functions, Bessel and Legendre functions, Fourier and Laplace transforms, elliptic functions and various other special functions of importance. This wide coverage of topics has been adopted so as to provide within a single volume most of the important mathematical results needed by the student or research worker regardless of his particular field of interest or level of attainment.

The book is divided into two main parts. Part I presents mathematical formulas together with other material, such as definitions, theorems, graphs, diagrams, etc., essential for proper understanding and application of the formulas. Included in this first part are extensive tables of integrals and Laplace transforms which should be extremely useful to the student and research worker. Part II presents numerical tables such as the values of elementary functions (trigonometric, logarithmic, exponential, hyperbolic, etc.) as well as advanced functions (Bessel, Legendre, elliptic, etc.). In order to eliminate confusion, especially to the beginner in mathematics, the numerical tables for each function are separated. Thus, for example, the sine and cosine functions for angles in degrees and minutes are given in separate tables rather than in one table so that there is no need to be concerned about the possibility of error due to looking in the wrong column or row.

I wish to thank the various authors and publishers who gave me permission to adapt data from their books for use in several tables of this handbook. Appropriate references to such sources are given next to the corresponding tables. In particular I am indebted to the Literary Executor of the late Sir Ronald A. Fisher, F.R.S., to Dr. Frank Yates, F.R.S., and to Oliver and Boyd Ltd., Edinburgh, for permission to use data from Table III of their book Statistical Tables for Biological, Agricultural and Medical Research.

I also wish to express my gratitude to Nicola Monti, Henry Hayden and Jack Margolin for their excellent editorial cooperation.

M. R. SPIEGEL

Rensselaer Polytechnic Institute September, 1968

CONTENTS

Part
I

FORMULAS

	Page
1.	Special Constants 1
2.	Special Products and Factors
3.	The Binomial Formula and Binomial Coefficients
4.	Geometric Formulas 5
5.	Trigonometric Functions 11
6.	Complex Numbers
7 .	Exponential and Logarithmic Functions
8.	Hyperbolic Functions
9.	Solutions of Algebraic Equations
10.	Formulas from Plane Analytic Geometry
11.	Special Plane Curves
12.	Formulas from Solid Analytic Geometry 46
13.	Derivatives
14.	Indefinite Integrals 57
15.	Definite Integrals94
16.	The Gamma Function
17.	The Beta Function
18.	Basic Differential Equations and Solutions104
19.	Series of Constants
20.	Taylor Series
21.	Bernoulli and Euler Numbers114
22.	Formulas from Vector Analysis
23.	Fourier Series
24.	Bessel Functions
25.	Legendre Functions
26.	Associated Legendre Functions
27 .	Hermite Polynomials
28.	Laguerre Polynomials
29 .	Associated Laguerre Polynomials
30.	Chebyshev Polynomials

CONTENTS

	Hamana and A. D. A.	Page							
31.									
32.	Fourier Transforms								
33.									
34.									
35 .	The state of the s								
36.									
37 .									
38.									
39.									
40.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
41.	. Conversion Factors								
	Part II TABLES								
San	mple problems illustrating use of the tables	104							
1.									
2.									
3.									
4.									
5.									
6.									
7 .	·								
8.									
9.									
10.	·								
11.									
12.									
13.									
14.									
15.									
16.	Exponential functions e^x								
 17.	Exponential functions e^{-x}								
	By Exponential Tunctions v								
	Hyperbolic functions $\cosh x$								
	. Hyperbolic functions tenh x								

CONTENTS

		Page
19.		.234
20.	Gamma Function	.234
21.	Binomial Coefficients	
22.	Squares, Cubes, Roots and Reciprocals	.238
23.	Compound Amount: $(1+r)^n$.240
24.	Present Value of an Amount: $(1+r)^{-n}$.241
25.	Amount of an Annuity: $\frac{(1+r)^n-1}{r}$	242
26.	Present Value of an Annuity: $\frac{1-(1+r)^{-n}}{r}$	
27.	Possel function $I(t)$.243
27. 28.	Bessel functions $J_0(x)$.244
29.	Bessel functions $J_1(x)$.244
30 .	Bessel functions $Y_0(x)$.245
31.	Bessel functions $Y_1(x)$	
31. 32.	Bessel functions $I_0(x)$	
33.	Bessel functions $I_1(x)$.246
34.	$egin{align*} ext{Bessel functions} \ K_0(x) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
35.	Bessel functions Ber (x)	
36.	Bessel functions Bei (x)	248
37.	Bessel functions $\operatorname{Ker}(x)$	
38.	Bessel functions $\text{Kei}(x)$	
39.	Values for Approximate Zeros of Bessel Functions	
40.	Exponential, Sine and Cosine Integrals	
41.	Legendre Polynomials $P_n(x)$	
42.	Legendre Polynomials $P_n(\cos \theta)$	
43.	Complete Elliptic Integrals of First and Second Kinds	
44.	Incomplete Elliptic Integral of the First Kind	
45.	Incomplete Elliptic Integral of the Second Kind	
46.	Ordinates of the Standard Normal Curve	
47.	Areas under the Standard Normal Curve	
48.	Percentile Values for Student's t Distribution	
49.		
	Percentile Values for the Chi Square Distribution	
50. 51	95th Percentile Values for the F Distribution	
51.	99th Percentile Values for the F Distribution	
52.	Random Numbers	262
Inde	x of Special Symbols and Notations	263
(nde	x	265

*Part I*FORMULAS

THE GREEK ALPHABET

Greek	Greek letter				
name	Lower case	Capital			
Alpha	α	Α			
Beta	β	В			
Gamma	γ	Г			
Delta	δ	Δ			
Epsilon	€	E			
Zeta	ζ	Z			
Eta	η	н			
Theta	heta	Θ			
Iota	ι	I			
Kappa	к	K			
Lambda	λ	Λ			
Mu	μ	м			
<u> </u>					

Greek	Greek letter				
name	Lower case	Capital			
Nu	ν	N			
Xi	ξ	至			
Omicron	o	O			
Pi	π	11			
Rho	ρ	P			
Sigma	σ	Σ			
Tau	τ	${f T}$			
Upsilon	υ	Y			
Phi	ϕ	Φ			
Chi	χ	X			
Psi	ψ	Ψ			
Omega	ω	Ω			
	1				

SPECIAL CONSTANTS

- 1.1 \(\pi = 3.14159 26535 89793 23846 2643 \(\pi \) \(
- 1.2 $e = 2.71828 \ 18284 \ 59045 \ 23536 \ 0287... = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ = natural base of logarithms
- 1.3 $\sqrt{2} = 1.41421\ 35623\ 73095\ 04882...$
- 1.4 $\sqrt{3} = 1.73205\ 08075\ 68877\ 2935...$
- 1.5 $\sqrt{5} = 2.2360679774997896964...$
- 1.6 $\sqrt[3]{2} = 1.25992 \ 1050 \dots$
- 1.7 $\sqrt[3]{3} = 1.442249570...$
- 1.8 $\sqrt[5]{2} = 1.148698355...$
- 1.9 $\sqrt[5]{3} = 1.245730940...$
- 1.10 $e^{\pi} = 23.14069\ 26327\ 79269\ 006...$
- 1.11 $\pi^e = 22.45915771836104547342715...$
- 1.12 $e^e = 15.15426 22414 79264 190...$
- 1.13 $\log_{10} 2 = 0.30102 99956 63981 19521 37389...$
- **1.14** $\log_{10} 3 = 0.47712 12547 19662 43729 50279...$
- 1.15 $\log_{10} e = 0.43429 44819 03251 82765...$
- **1.16** $\log_{10} \pi = 0.49714 98726 94133 85435 12683...$
- 1.17 $\log_e 10 = \ln 10 = 2.30258 50929 94045 68401 7991...$
- **1.18** $\log_e 2 = \ln 2 = 0.693147180559945309417232...$
- **1.19** $\log_e 3 = \ln 3 = 1.09861 \ 22886 \ 68109 \ 69139 \ 5245...$
- 1.20 $\gamma = 0.57721 \ 56649 \ 01532 \ 86060 \ 6512... = Euler's constant$ $= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \ln n \right)$
- **1.21** $e^{\gamma} = 1.78107 \ 24179 \ 90197 \ 9852...$ [see 1.20]
- 1.22 $\sqrt{e} = 1.64872 12707 00128 1468...$
- 1.23 $\sqrt{\pi} = \Gamma(\frac{1}{2}) = 1.77245 38509 05516 02729 8167...$ where Γ is the *gamma function* [see pages 101-102].
- 1.24 $\Gamma(\frac{1}{3}) = 2.67893 85347 07748...$
- 1.25 $\Gamma(\frac{1}{4}) = 3.62560 99082 21908...$
- 1.26 1 radian = $180^{\circ}/\pi$ = 57.29577 95130 8232...°
- 1.27 $1^{\circ} = \pi/180 \text{ radians} = 0.01745 32925 19943 29576 92... \text{ radians}$

2.10

SPECIAL PRODUCTS and FACTORS

2.1
$$(x+y)^2 = x^2 + 2xy + y^2$$

2.2 $(x-y)^2 = x^2 - 2xy + y^2$
2.3 $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$
2.4 $(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$
2.5 $(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$
2.6 $(x-y)^4 = x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4$
2.7 $(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$
2.8 $(x-y)^5 = x^5 - 5x^4y + 10x^3y^2 - 10x^2y^3 + 5xy^4 - y^5$
2.9 $(x+y)^6 = x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6$

The results 2.1 to 2.10 above are special cases of the binomial formula [see page 3].

 $(x-y)^6 = x^6 - 6x^5y + 15x^4y^2 - 20x^3y^3 + 15x^2y^4 - 6xy^5 + y^6$

2.11
$$x^2 - y^2 = (x - y)(x + y)$$

2.12 $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$
2.13 $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$
2.14 $x^4 - y^4 = (x - y)(x + y)(x^2 + y^2)$
2.15 $x^5 - y^5 = (x - y)(x^4 + x^3y + x^2y^2 + xy^3 + y^4)$
2.16 $x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4)$
2.17 $x^6 - y^6 = (x - y)(x + y)(x^2 + xy + y^2)(x^2 - xy + y^2)$
2.18 $x^4 + x^2y^2 + y^4 = (x^2 + xy + y^2)(x^2 - xy + y^2)$
2.19 $x^4 + 4y^4 = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2)$

Some generalizations of the above are given by the following results where n is a positive integer.

2.20
$$x^{2n+1} - y^{2n+1} = (x-y)(x^{2n} + x^{2n-1}y + x^{2n-2}y^2 + \dots + y^{2n})$$

$$= (x-y)\left(x^2 - 2xy\cos\frac{2\pi}{2n+1} + y^2\right)\left(x^2 - 2xy\cos\frac{4\pi}{2n+1} + y^2\right)$$

$$\cdots \left(x^2 - 2xy\cos\frac{2n\pi}{2n+1} + y^2\right)$$

2.21
$$x^{2n+1} + y^{2n+1} = (x+y)(x^{2n} - x^{2n-1}y + x^{2n-2}y^2 - \dots + y^{2n})$$

$$= (x+y)\left(x^2 + 2xy\cos\frac{2\pi}{2n+1} + y^2\right)\left(x^2 + 2xy\cos\frac{4\pi}{2n+1} + y^2\right)$$

$$\cdots \left(x^2 + 2xy\cos\frac{2n\pi}{2n+1} + y^2\right)$$

$$2.22 x^{2n} - y^{2n} = (x - y)(x + y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots)(x^{n-1} - x^{n-2}y + x^{n-3}y^2 - \cdots)$$

$$= (x - y)(x + y) \left(x^2 - 2xy \cos\frac{\pi}{n} + y^2\right) \left(x^2 - 2xy \cos\frac{2\pi}{n} + y^2\right)$$

$$\cdots \left(x^2 - 2xy \cos\frac{(n-1)\pi}{n} + y^2\right)$$

2.23
$$x^{2n} + y^{2n} = \left(x^2 + 2xy \cos \frac{\pi}{2n} + y^2\right) \left(x^2 + 2xy \cos \frac{3\pi}{2n} + y^2\right) \cdots \left(x^2 + 2xy \cos \frac{(2n-1)\pi}{2n} + y^2\right)$$

The BINOMIAL FORMULA and BINOMIAL COEFFICIENTS

FACTORIAL n

If $n = 1, 2, 3, \ldots$ factorial n or n factorial is defined as

3.1

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$$

We also define zero factorial as

3.2

$$0! = 1$$

BINOMIAL FORMULA FOR POSITIVE INTEGRAL n

If n = 1, 2, 3, ... then

3.3
$$(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^2 + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^3 + \cdots + y^n$$

This is called the *binomial formula*. It can be extended to other values of n and then is an infinite series [see *Binomial Series*, page 110].

BINOMIAL COEFFICIENTS

The result 3.3 can also be written

3.4
$$(x+y)^n = x^n + \binom{n}{1} x^{n-1}y + \binom{n}{2} x^{n-2}y^2 + \binom{n}{3} x^{n-3}y^3 + \cdots + \binom{n}{n} y^n$$

where the coefficients, called binomial coefficients, are given by

3.5
$$\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$$

PROPERTIES OF BINOMIAL COEFFICIENTS

$$3.6 \qquad \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

This leads to Pascal's triangle [see page 236].

$$3.7 \qquad \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$$

3.8
$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \cdots + \binom{n}{n} = 0$$

$$3.9 \qquad \binom{n}{n} + \binom{n+1}{n} + \binom{n+2}{n} + \cdots + \binom{n+m}{n} = \binom{n+m+1}{n+1}$$

$$3.10 \qquad \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots = 2^{n-1}$$

$$3.11 \qquad \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots = 2^{n-1}$$

3.12
$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \cdots + \binom{n}{n}^2 = \binom{2n}{n}$$

$$3.13 \qquad {m \choose 0} {n \choose p} + {m \choose 1} {n \choose p-1} + \cdots + {m \choose p} {n \choose 0} = {m+n \choose p}$$

3.14
$$(1)\binom{n}{1} + (2)\binom{n}{2} + (3)\binom{n}{3} + \cdots + (n)\binom{n}{n} = n2^{n-1}$$

$$\sqrt{3.15}$$
 $(1)\binom{n}{1} - (2)\binom{n}{2} + (3)\binom{n}{3} - \cdots + (-1)^{n+1}(n)\binom{n}{n} = 0$

MULTINOMIAL FORMULA

3.16
$$(x_1 + x_2 + \cdots + x_p)^n = \sum_{n_1! \ n_2! \cdots n_p!} \frac{n!}{n_1! \ n_2! \cdots n_p!} x_1^{n_1} x_2^{n_2} \cdots x_p^{n_p}$$

where the sum, denoted by Σ , is taken over all nonnegative integers n_1, n_2, \ldots, n_p for which $n_1 + n_2 + \cdots + n_p = n$.

GEOMETRIC FORMULAS

RECTANGLE OF LENGTH b AND WIDTH a

- 4.1 Area = ab
- 4.2 Perimeter = 2a + 2b

PARALLELOGRAM OF ALTITUDE h AND BASE b

- 4.3 Area = $bh = ab \sin \theta$
- 4.4 Perimeter = 2a + 2b

TRIANGLE OF ALTITUDE h AND BASE b

- 4.5 Area = $\frac{1}{2}bh$ = $\frac{1}{2}ab \sin \theta$ $=\sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{1}{2}(a+b+c) = \text{semiperimeter}$
- 4.6 Perimeter = a + b + c

TRAPEZOID OF ALTITUDE h AND PARALLEL SIDES a AND b

- 4.7 Area = $\frac{1}{2}h(a+b)$
- Perimeter = $a + b + h \left(\frac{1}{\sin \theta} + \frac{1}{\sin \phi} \right)$ = $a + b + h(\csc \theta + \csc \phi)$ 4.8

REGULAR POLYGON OF n SIDES EACH OF LENGTH b

4.9 Area =
$$\frac{1}{4}nb^2 \cot \frac{\pi}{n} = \frac{1}{4}nb^2 \frac{\cos (\pi/n)}{\sin (\pi/n)}$$

Fig. 4-5

CIRCLE OF RADIUS 7

4.11 Area =
$$\pi r^2$$

4.12 Perimeter = $2\pi r$

Fig. 4-6

SECTOR OF CIRCLE OF RADIUS r

4.13 Area =
$$\frac{1}{2}r^2\theta$$
 [θ in radians]

4.14 Arc length
$$s = r\theta$$

Fig. 4-7

RADIUS OF CIRCLE INSCRIBED IN A TRIANGLE OF SIDES a,b,c

4.15
$$r = \frac{\sqrt{\S(s-a)(s-b)(s-c)}}{s}$$
 where $s = \frac{1}{2}(a+b+c) = \text{semiperimeter}$

RADIUS OF CIRCLE CIRCUMSCRIBING A TRIANGLE OF SIDES a,b,c

4.16
$$R = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}}$$
 where $s = \frac{1}{2}(a+b+c) = \text{semiperimeter}$

Fig. 4-9

REGULAR POLYGON OF n SIDES INSCRIBED IN CIRCLE OF RADIUS r

4.17 Area =
$$\frac{1}{2}nr^2 \sin \frac{2\pi}{n} = \frac{1}{2}nr^2 \sin \frac{360^{\circ}}{n}$$

4.18 Perimeter =
$$2nr \sin \frac{\pi}{n} = 2nr \sin \frac{180^{\circ}}{n}$$

REGULAR POLYGON OF n SIDES CIRCUMSCRIBING A CIRCLE OF RADIUS r

4.19 Area =
$$nr^2 \tan \frac{\pi}{n} = nr^2 \tan \frac{180^{\circ}}{n}$$

4.20 Perimeter =
$$2nr \tan \frac{\pi}{n} = 2nr \tan \frac{180^{\circ}}{n}$$

Fig. 4-11

SEGMENT OF CIRCLE OF RADIUS T

4.21 Area of shaded part = $\frac{1}{2}r^2(\theta - \sin \theta)$

Fig. 4-12

ELLIPSE OF SEMI-MAJOR AXIS a AND SEMI-MINOR AXIS b

$$4.22 \qquad \text{Area} = \pi ab$$

4.23 Perimeter =
$$4a \int_0^{\pi/2} \sqrt{1-k^2 \sin^2 \theta} \ d\theta$$

= $2\pi \sqrt{\frac{1}{2}(a^2+b^2)}$ [approximately]

where $k = \sqrt{a^2 - b^2}/a$. See page 254 for numerical tables.

Fig. 4-13

SEGMENT OF A PARABOLA

$$4.24 \qquad \text{Area} = \frac{2}{3}ab$$

4.25 Arc length
$$ABC = \frac{1}{2}\sqrt{b^2 + 16a^2} + \frac{b^2}{8a}\ln\left(\frac{4a + \sqrt{b^2 + 16a^2}}{b}\right)$$

Fig. 4-14

RECTANGULAR PARALLELEPIPED OF LENGTH a, HEIGHT l, WIDTH c

- 4.26 Volume = abc
- **4.27** Surface area = 2(ab + ac + bc)

Fig. 4-15

PARALLELEPIPED OF CROSS-SECTIONAL AREA A AND HEIGHT h

4.28 Volume = $Ah = abc \sin \theta$

Fig. 4-16

SPHERE OF RADIUS T

- **4.29** Volume = $\frac{4}{3}\pi r^3$
- 4.30 Surface area = $4\pi r^2$

Fig. 4-17

RIGHT CIRCULAR CYLINDER OF RADIUS r AND HEIGHT h

- 4.31 Volume = $\pi r^2 h$
- **4.32** Lateral surface area = $2\pi rh$

Fig. 4-18

CIRCULAR CYLINDER OF RADIUS r AND SLANT HEIGHT l

- 4.33 Volume = $\pi r^2 h = \pi r^2 l \sin \theta$
- 4.34 Lateral surface area = $2\pi rl$ = $\frac{2\pi rh}{\sin \theta}$ = $2\pi rh \csc \theta$

Fig. 4-19

CYLINDER OF CROSS-SECTIONAL AREA \emph{A} AND SLANT HEIGHT \emph{l}

4.35 Volume =
$$Ah = Al \sin \theta$$

4.36 Lateral surface area =
$$pl = \frac{ph}{\sin \theta} = ph \csc \theta$$

Note that formulas 4.31 to 4.34 are special cases.

Fig. 4-20

RIGHT CIRCULAR CONE OF RADIUS $\it r$ and height $\it h$

4.37 Volume =
$$\frac{1}{3}\pi r^2 h$$

4.38 Lateral surface area =
$$\pi r \sqrt{r^2 + h^2} = \pi r l$$

Fig. 4-21

PYRAMID OF BASE AREA A AND HEIGHT h

4.39 Volume =
$$\frac{1}{3}Ah$$

Fig. 4-22

SPHERICAL CAP OF RADIUS r AND HEIGHT h

4.40 Volume (shaded in figure) =
$$\frac{1}{3}\pi h^2(3r - h)$$

4.41 Surface area =
$$2\pi rh$$

Fig. 4-23

FRUSTRUM OF RIGHT CIRCULAR CONE OF RADII $a,b\,$ AND HEIGHT $h\,$

4.42 Volume =
$$\frac{1}{3}\pi h(a^2 + ab + b^2)$$

4.43 Lateral surface area
$$= \pi(a+b)\sqrt{h^2+(b-a)^2}$$

 $= \pi(a+b)l$

Fig. 4-24

SPHERICAL TRIANGLE OF ANGLES A,B,C ON SPHERE OF RADIUS r

4.44 Area of triangle $ABC = (A + B + C - \pi)r^2$

Fig. 4-25

TORUS OF INNER RADIUS a AND OUTER RADIUS b

4.45 Volume =
$$\frac{1}{4}\pi^2(a+b)(b-a)^2$$

4.46 Surface area = $\pi^2(b^2 - a^2)$

Fig. 4-26

ELLIPSOID OF SEMI-AXES a,b,c

4.47 Volume = $\frac{4}{3}\pi abc$

Fig. 4-27

PARABOLOID OF REVOLUTION

4.48 Volume = $\frac{1}{2}\pi b^2 a$

Fig. 4-28

TRIGONOMETRIC FUNCTIONS

DEFINITION OF TRIGONOMETRIC FUNCTIONS FOR A RIGHT TRIANGLE

Triangle ABC has a right angle (90°) at C and sides of length a,b,c. The trigonometric functions of angle A are defined as follows.

5.1
$$sine ext{ of } A = sin A = \frac{a}{c} = \frac{\text{opposite}}{\text{hypotenuse}}$$

5.2
$$cosine ext{ of } A = cos A = \frac{b}{c} = \frac{adjacent}{hypotenuse}$$

5.3
$$tangent ext{ of } A = tan A = \frac{a}{b} = \frac{\text{opposite}}{\text{adjacent}}$$

5.4 cotangent of
$$A = \cot A = \frac{b}{a} = \frac{\text{adjacent}}{\text{opposite}}$$

5.5
$$secant ext{ of } A = sec A = \frac{c}{b} = \frac{\text{hypotenuse}}{\text{adjacent}}$$

5.6 cosecant of
$$A = \csc A = \frac{c}{a} = \frac{\text{hypotenuse}}{\text{opposite}}$$

Fig. 5-1

EXTENSIONS TO ANGLES WHICH MAY BE GREATER THAN 90°

Consider an xy coordinate system [see Fig. 5-2 and 5-3 below]. A point P in the xy plane has coordinates (x,y) where x is considered as positive along OX and negative along OX' while y is positive along OY and negative along OY'. The distance from origin O to point P is positive and denoted by $r = \sqrt{x^2 + y^2}$. The angle A described counterclockwise from OX is considered positive. If it is described clockwise from OX it is considered negative. We call X'OX and Y'OY the x and y axis respectively.

The various quadrants are denoted by I, II, III and IV called the first, second, third and fourth quadrants respectively. In Fig. 5-2, for example, angle A is in the second quadrant while in Fig. 5-3 angle A is in the third quadrant.

Fig. 5-3

For an angle A in any quadrant the trigonometric functions of A are defined as follows.

 $\sin A = y/r$

 $\cos A = x/r$

 $\tan A = y/x$

 $\cot A = x/y$

5.11 sec A = r/x

 $\mathbf{5.12} \qquad \qquad \mathbf{csc} \, A = r/y$

RELATIONSHIP BETWEEN DEGREES AND RADIANS

A radian is that angle θ subtended at center O of a circle by an arc MN equal to the radius r.

Since 2π radians = 360° we have

5.13 1 radian = $180^{\circ}/\pi$ = $57.29577951308232...^{\circ}$

Fig. 5-4

RELATIONSHIPS AMONG TRIGONOMETRIC FUNCTIONS

5.15
$$\tan A = \frac{\sin A}{\cos A}$$
 5.19 $\sin^2 A + \cos^2 A = 1$

5.16
$$\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A}$$
 5.20 $\sec^2 A - \tan^2 A = 1$

5.17
$$\sec A = \frac{1}{\cos A}$$
 5.21 $\csc^2 A - \cot^2 A = 1$

$$5.18 \qquad \csc A = \frac{1}{\sin A}$$

SIGNS AND VARIATIONS OF TRIGONOMETRIC FUNCTIONS

Quadrant	$\sin A$	$\cos A$	tan A	$\cot A$	$\sec A$	csc A
I	+ 0 to 1	+ 1 to 0	+ 0 to ∞	+ ∞ to 0	+ 1 to ∞	+ ∞ to 1
II	+ 1 to 0	- 0 to -1		0 to -∞	_ -∞ to -1	+ 1 to ∞
III	0 to -1	-1 to 0	+ 0 to ∞	+ ∞ to 0	_ -1 to -∞	
IV	-1 to 0	+ 0 to 1	_ _∞ to 0		+ ∞ to 1	_ -1 to -∞

EXACT VALUES FOR TRIGONOMETRIC FUNCTIONS OF VARIOUS ANGLES

Angle A in degrees	Angle A in radians	$\sin A$	$\cos A$	tan A	$\cot A$	$\sec A$	$\csc A$
0°	0	0	1	0	80	1	8
15°	$\pi/12$	$\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$2-\sqrt{3}$	$2+\sqrt{3}$	$\sqrt{6}-\sqrt{2}$	$\sqrt{6} + \sqrt{2}$
30°	$\pi/6$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	2
45°	$\pi/4$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\pi/3$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	2	$\frac{2}{3}\sqrt{3}$
75°	$5\pi/12$	$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$2+\sqrt{3}$	$2-\sqrt{3}$	$\sqrt{6}+\sqrt{2}$	$\sqrt{6}-\sqrt{2}$
90°	$\pi/2$	1	0	±∞	0	±∞	1
105°	$7\pi/12$	$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$-\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$-(2+\sqrt{3})$	$-(2-\sqrt{3})$	$-(\sqrt{6}+\sqrt{2})$	$\sqrt{6}-\sqrt{2}$
120°	$2\pi/3$	$\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	-2	$\frac{2}{8}\sqrt{3}$
135°	$3\pi/4$	$\frac{1}{2}\sqrt{2}$	$-rac{1}{2}\sqrt{2}$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	$5\pi/6$	$\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$	2
165°	$11\pi/12$	$\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$-\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$-(2-\sqrt{3})$	$-(2+\sqrt{3})$	$-(\sqrt{6}-\sqrt{2})$	$\sqrt{6}+\sqrt{2}$
180°	π	0	-1	0	∓∞	-1	±∞
195°	$13\pi/12$	$-\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$-\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$2-\sqrt{3}$	$2+\sqrt{3}$	$-(\sqrt{6}-\sqrt{2})$	$-(\sqrt{6}+\sqrt{2})$
210°	$7\pi/6$	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$	-2
225°	$5\pi/4$	$-\frac{1}{2}\sqrt{2}$	$-rac{1}{2}\sqrt{2}$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
240°	$4\pi/3$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	-2	$-\frac{2}{3}\sqrt{3}$
255°	$17\pi/12$	$-\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$-\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$2+\sqrt{3}$	$2-\sqrt{3}$	$-(\sqrt{6}+\sqrt{2})$	$-(\sqrt{6}-\sqrt{2})$
270°	$3\pi/2$	-1	0	±∞	0	∓∞	1
285°	$19\pi/12$	$-\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$-(2+\sqrt{3})$	$-(2-\sqrt{3})$	$\sqrt{6} + \sqrt{2}$	$-(\sqrt{6}-\sqrt{2})$
300°	$5\pi/3$	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	2	$-\frac{2}{3}\sqrt{3}$
315°	$7\pi/4$	$-\frac{1}{2}\sqrt{2}$	$rac{1}{2}$ $rac{1}{2}\sqrt{2}$	-1	-1	$\sqrt{2}$	$-\sqrt{2}$
330°	$11\pi/6$	$-\frac{1}{2}$	$\frac{\frac{1}{2}\sqrt{3}}{\frac{1}{4}(\sqrt{6}+\sqrt{2})}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	-2
345°	$23\pi/12$	$-\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$-(2-\sqrt{3})$	$-(2+\sqrt{3})$	$\sqrt{6}-\sqrt{2}$	$-(\sqrt{6}+\sqrt{2})$
360°	2π	0	1	0	∓∞	1	∓∞

For tables involving other angles see pages 206-211 and 212-215.

GRAPHS OF TRIGONOMETRIC FUNCTIONS

In each graph x is in radians.

 $5.22 y = \sin x$

Fig. 5-5

 $5.24 y = \tan x$

Fig. 5-7

Fig. 5-9

 $5.23 y = \cos x$

Fig. 5-6

 $5.25 y = \cot x$

Fig. 5-8

 $5.27 y = \csc x$

Fig. 5-10

FUNCTIONS OF NEGATIVE ANGLES

5.28 $\sin(-A) = -\sin A$

5.29 $\cos{(-A)} = \cos{A}$

5.30 $\tan (-A) = -\tan A$

 $5.31 \qquad \csc{(-A)} = -\csc{A}$

 $5.32 \qquad \sec{(-A)} = \sec{A}$

5.33 $\cot(-A) = -\cot A$

ADDITION FORMULAS

5.34
$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$
5.35
$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$
5.36
$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
5.37
$$\cot (A \pm B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$$

FUNCTIONS OF ANGLES IN ALL QUADRANTS IN TERMS OF THOSE IN QUADRANT I

	-A	$90^{\circ} \pm A$ $\frac{\pi}{2} \pm A$	$180^{\circ} \pm A$ $\pi \pm A$	$270^{\circ}\pm A \ rac{3\pi}{2}\pm A$	$k(360^\circ) \pm A \ 2k_\pi \pm A \ k = ext{integer}$
sin	$-\sin A$	$\cos A$	$\mp \sin A$	$-\cos A$	$\pm \sin A$
cos	$\cos A$	$\mp \sin A$	$-\cos A$	$\pm \sin A$	$\cos A$
tan	$-\tan A$	$\mp \cot A$	\pm $ an A$	$\mp\cot A$	$\pm an A$
csc	$-\csc A$	$\sec A$	$\mp \csc A$	$-\sec A$	$\pm\csc A$
sec	$\sec A$	$\mp \csc A$	$-\sec A$	$\pm \csc A$	$\sec A$
cot	$-\cot A$	$\mp an A$	$\pm\cot A$	$\mp an A$	$\pm \cot A$

RELATIONSHIPS AMONG FUNCTIONS OF ANGLES IN QUADRANT I

	$\sin A = u$	$\cos A = u$	tan A = u	$\cot A = u$	$\sec A = u$	$\csc A = u$
$\sin A$	u	$\sqrt{1-u^2}$	$u/\sqrt{1+u^2}$	$1/\sqrt{1+u^2}$	$\sqrt{u^2-1}/u$	1/u
$\cos A$	$\sqrt{1-u^2}$	u	$1/\sqrt{1+u^2}$	$u/\sqrt{1+u^2}$	1 / <i>u</i>	$\sqrt{u^2-1}/u$
tan A	$u/\sqrt{1-u^2}$	$\sqrt{1-u^2}/u$	u	1/u	$\sqrt{u^2-1}$	$1/\sqrt{u^2-1}$
$\cot A$	$\sqrt{1-u^2}/u$	$u/\sqrt{1-u^2}$	1/u	u	$1/\sqrt{u^2-1}$	$\sqrt{u^2-1}$
sec A	$1/\sqrt{1-u^2}$	1/u	$\sqrt{1+u^2}$	$\sqrt{1+u^2}/u$	u	$u/\sqrt{u^2-1}$
csc A	1/ <i>u</i>	$1/\sqrt{1-u^2}$	$\sqrt{1+u^2}/u$	$\sqrt{1+u^2}$	$u/\sqrt{u^2-1}$	$\sqrt{1+u^2}$

For extensions to other quadrants use appropriate signs as given in the preceding table.

DOUBLE ANGLE FORMULAS

5.38
$$\sin 2A = 2 \sin A \cos A$$

5.39 $\cos 2A = \cos^2 A - \sin^2 A = 1 - 2 \sin^2 A = 2 \cos^2 A - 1$
5.40 $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$

HALF ANGLE FORMULAS

5.41
$$\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{2}} \qquad \begin{bmatrix} + \text{ if } A/2 \text{ is in quadrant I or II} \\ - \text{ if } A/2 \text{ is in quadrant III or IV} \end{bmatrix}$$
5.42
$$\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}} \qquad \begin{bmatrix} + \text{ if } A/2 \text{ is in quadrant I or IV} \\ - \text{ if } A/2 \text{ is in quadrant II or III} \end{bmatrix}$$
5.43
$$\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} \qquad \begin{bmatrix} + \text{ if } A/2 \text{ is in quadrant I or III} \\ - \text{ if } A/2 \text{ is in quadrant I or IV} \end{bmatrix}$$

$$= \frac{\sin A}{1+\cos A} = \frac{1-\cos A}{\sin A} = \csc A - \cot A$$

MULTIPLE ANGLE FORMULAS

5.44	$\sin 3A$	=	$3\sin A - 4\sin^3 A$
5.45	$\cos 3A$	=	$4\cos^3A - 3\cos A$
5.46	tan 3A	=	$\frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$
5.47	$\sin 4A$	=	$4 \sin A \cos A - 8 \sin^3 A \cos A$
5.48	$\cos 4A$	=	$8\cos^4 A - 8\cos^2 A + 1$
5.49	an 4A	=	$\frac{4 \tan A - 4 \tan^3 A}{1 - 6 \tan^2 A + \tan^4 A}$
5.50	$\sin 5A$	=	$5 \sin A - 20 \sin^3 A + 16 \sin^5 A$
5.51	$\cos 5A$	=	$16\cos^5 A - 20\cos^3 A + 5\cos A$
5.52	an 5A	=	$rac{ an^5 A - 10 an^3 A + 5 an A}{1 - 10 an^2 A + 5 an^4 A}$

See also formulas 5.68 and 5.69.

POWERS OF TRIGONOMETRIC FUNCTIONS

5.53	$\sin^2 A$	=	$\frac{1}{2} - \frac{1}{2}\cos 2A$	5.57	$\sin^4 A$	=	$\frac{3}{8} - \frac{1}{2}\cos 2A + \frac{1}{8}\cos 4A$
5.54	$\cos^2 A$	=	$\frac{1}{2} + \frac{1}{2}\cos 2A$	5.58	$\cos^4 A$	=	$\frac{3}{8} + \frac{1}{2}\cos 2A + \frac{1}{8}\cos 4A$
5.55	$\sin^3 A$	=	$\frac{3}{4}\sin A - \frac{1}{4}\sin 3A$	5.59	$\sin^5 A$	=	$\frac{5}{8} \sin A - \frac{5}{16} \sin 3A + \frac{1}{16} \sin 5A$
5.56	$\cos^3 A$	=	$\tfrac{3}{4}\cos A + \tfrac{1}{4}\cos 3A$	5.60	$\cos^5 A$	=	$\frac{5}{8}\cos A + \frac{5}{16}\cos 3A + \frac{1}{16}\cos 5A$

See also formulas 5.70 through 5.73.

SUM, DIFFERENCE AND PRODUCT OF TRIGONOMETRIC FUNCTIONS

5.61	$\sin A + \sin B = 2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)$
5.62	$\sin A - \sin B = 2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)$
5.63	$\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$
5.64	$\cos A - \cos B = 2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (B - A)$
5.65	$\sin A \sin B = \frac{1}{2} {\cos (A - B) - \cos (A + B)}$
5.66	$\cos A \cos B = \frac{1}{2} \{\cos (A - B) + \cos (A + B)\}$
5 67	$\sin A \cos R = 1/\sin (A - R) + \sin (A + R)$

5.71

5.68
$$\sin nA = \sin A \left\{ (2\cos A)^{n-1} - \binom{n-2}{1} (2\cos A)^{n-3} + \binom{n-3}{2} (2\cos A)^{n-5} - \cdots \right\}$$

5.69 $\cos nA = \frac{1}{2} \left\{ (2\cos A)^n - \frac{n}{1} (2\cos A)^{n-2} + \frac{n}{2} \binom{n-3}{1} (2\cos A)^{n-4} - \frac{n}{3} \binom{n-4}{2} (2\cos A)^{n-6} + \cdots \right\}$

5.70 $\sin^{2n-1}A = \frac{(-1)^{n-1}}{2^{2n-2}} \left\{ \sin(2n-1)A - \binom{2n-1}{1} \sin(2n-3)A + \cdots + \binom{-1)^{n-1} \binom{2n-1}{n-1} \sin A \right\}$

5.71 $\cos^{2n-1}A = \frac{1}{2^{2n-2}} \left\{ \cos(2n-1)A + \binom{2n-1}{1} \cos(2n-3)A + \cdots + \binom{2n-1}{n-1} \cos A \right\}$

5.72
$$\sin^{2n} A = \frac{1}{2^{2n}} {2n \choose n} + \frac{(-1)^n}{2^{2n-1}} \left\{ \cos 2nA - {2n \choose 1} \cos (2n-2)A + \cdots + (-1)^{n-1} {2n \choose n-1} \cos 2A \right\}$$

5.73
$$\cos^{2n} A = \frac{1}{2^{2n}} {2n \choose n} + \frac{1}{2^{2n-1}} \left\{ \cos 2nA + {2n \choose 1} \cos (2n-2)A + \cdots + {2n \choose n-1} \cos 2A \right\}$$

INVERSE TRIGONOMETRIC FUNCTIONS

If $x = \sin y$ then $y = \sin^{-1} x$, i.e. the angle whose sine is x or inverse sine of x, is a many-valued function of x which is a collection of single-valued functions called branches. Similarly the other inverse trigonometric functions are multiple-valued.

For many purposes a particular branch is required. This is called the principal branch and the values for this branch are called principal values.

5.79

PRINCIPAL VALUES FOR INVERSE TRIGONOMETRIC FUNCTIONS

Principal values for $x \geqq 0$	Principal values for $x < 0$
$0 \leq \sin^{-1} x \leq \pi/2$	$-\pi/2 \leq \sin^{-1}x < 0$
$0 \leq \cos^{-1} x \leq \pi/2$	$\pi/2 < \cos^{-1} x \le \pi$
$0 \leq \tan^{-1} x < \pi/2$	$-\pi/2 < \tan^{-1}x < 0$
$0 < \cot^{-1} x \leq \pi/2$	$\pi/2<\cot^{-1}x<\pi$
$0 \leq \sec^{-1} x < \pi/2$	$\pi/2 < \sec^{-1} x \leq \pi$
$0 < \csc^{-1} x \le \pi/2$	$-\pi/2 \leq \csc^{-1} x < 0$

RELATIONS BETWEEN INVERSE TRIGONOMETRIC FUNCTIONS

In all cases it is assumed that principal values are used.

 $\cot^{-1} x = \tan^{-1} (1/x)$

5.74	$\sin^{-1} x + \cos^{-1} x = \pi/2$	5.80	$\sin^{-1}(-x)$	=	$-\sin^{-1}x$
5.75	$\tan^{-1} x + \cot^{-1} x = \pi/2$	5.81	$\cos^{-1}(-x)$	=	$\pi - \cos^{-1} x$
5.76	$\sec^{-1} x + \csc^{-1} x = \pi/2$	5.82	$\tan^{-1}(-x)$	=	$-\tan^{-1}x$
5.77	$\csc^{-1} x = \sin^{-1} (1/x)$	5.83	$\cot^{-1}(-x)$	=	$\pi = \cot^{-1} x$
5.78	$\sec^{-1} x = \cos^{-1} (1/x)$	5.84	$\sec^{-1}(-x)$	==	$\pi - \sec^{-1} x$

GRAPHS OF INVERSE TRIGONOMETRIC FUNCTIONS

5.85 $\csc^{-1}(-x) = -\csc^{-1}x$

In each graph y is in radians. Solid portions of curves correspond to principal values.

Fig. 5-11

 $y = \tan^{-1} x$

Fig. 5-13

$$y = \sec^{-1} x$$

5.91 $y = \csc^{-1} x$

Fig. 5-16

Fig. 5-14

Fig. 5-15

RELATIONSHIPS BETWEEN SIDES AND ANGLES OF A PLANE TRIANGLE

The following results hold for any plane triangle ABC with sides a, b, c and angles A, B, C.

5.92 Law of Sines

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

5.93 Law of Cosines

$$c^2 = a^2 + b^2 - 2ab \cos C$$

with similar relations involving the other sides and angles.

5.94 Law of Tangents

$$\frac{a+b}{a-b} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}$$

with similar relations involving the other sides and angles.

Fig. 5-17

$$\sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}$$

where $s = \frac{1}{2}(a+b+c)$ is the semiperimeter of the triangle. Similar relations involving angles B and C can be obtained.

See also formulas 4.5, page 5; 4.15 and 4.16, page 6.

RELATIONSHIPS BETWEEN SIDES AND ANGLES OF A SPHERICAL TRIANGLE

Spherical triangle ABC is on the surface of a sphere as shown in Fig. 5-18. Sides a,b,c [which are arcs of great circles] are measured by their angles subtended at center O of the sphere. A,B,C are the angles opposite sides a,b,c respectively. Then the following results hold.

5.96 Law of Sines

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$

5.97 Law of Cosines

 $\cos a = \cos b \cos c + \sin b \sin c \cos A$ $\cos A = -\cos B \cos C + \sin B \sin C \cos a$ with similar results involving other sides and angles.

Fig. 5-18

5.98 Law of Tangents

$$\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)} = \frac{\tan \frac{1}{2}(a+b)}{\tan \frac{1}{2}(a-b)}$$

with similar results involving other sides and angles.

$$\cos\frac{A}{2} = \sqrt{\frac{\sin s \sin (s-c)}{\sin b \sin c}}$$

where $s = \frac{1}{2}(a+b+c)$. Similar results hold for other sides and angles.

5.100
$$\cos \frac{a}{2} = \sqrt{\frac{\cos (S-B) \cos (S-C)}{\sin B \sin C}}$$

where $S = \frac{1}{2}(A + B + C)$. Similar results hold for other sides and angles.

See also formula 4.44, page 10.

NAPIER'S RULES FOR RIGHT ANGLED SPHERICAL TRIANGLES

Except for right angle C, there are five parts of spherical triangle ABC which if arranged in the order as given in Fig. 5-19 would be a, b, A, c, B.

Fig. 5-19

Fig. 5-20

Suppose these quantities are arranged in a circle as in Fig. 5-20 where we attach the prefix co [indicating complement] to hypotenuse c and angles A and B.

Any one of the parts of this circle is called a middle part, the two neighboring parts are called adjacent parts and the two remaining parts are called opposite parts. Then Napier's rules are

5.101 The sine of any middle part equals the product of the tangents of the adjacent parts.

5.102 The sine of any middle part equals the product of the cosines of the opposite parts.

Example: Since co- $A = 90^{\circ} - A$, co- $B = 90^{\circ} - B$, we have

$$\sin \alpha = \tan b \tan (\text{co-}B)$$
 or $\sin \alpha = \tan b \cot B$

$$\sin (\text{co-}A) = \cos a \cos (\text{co-}B)$$
 or $\cos A = \cos a \sin B$

These can of course be obtained also from the results 5.97 on page 19.

COMPLEX NUMBERS

DEFINITIONS INVOLVING COMPLEX NUMBERS

A complex number is generally written as a + bi where a and b are real numbers and i, called the imaginary unit, has the property that $i^2 = -1$. The real numbers a and b are called the real and imaginary parts of a + bi respectively.

The complex numbers a + bi and a - bi are called *complex conjugates* of each other.

EQUALITY OF COMPLEX NUMBERS

6.1

$$a + bi = c + di$$
 if and only if $a = c$ and $b = d$

ADDITION OF COMPLEX NUMBERS

6.2

$$(a+bi)+(c+di) = (a+c)+(b+d)i$$

SUBTRACTION OF COMPLEX NUMBERS

6.3

$$(a+bi) - (c+di) = (a-c) + (b-d)i$$

MULTIPLICATION OF COMPLEX NUMBERS

6.4

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

DIVISION OF COMPLEX NUMBERS

6.5

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{ac+bd}{c^2+d^2} + \left(\frac{bc-ad}{c^2+d^2}\right)i$$

Note that the above operations are obtained by using the ordinary rules of algebra and replacing i^2 by -1 wherever it occurs.

GRAPH OF A COMPLEX NUMBER

A complex number a+bi can be plotted as a point (a,b) on an xy plane called an $Argand\ diagram$ or $Gaussian\ plane$. For example in Fig. 6-1 P represents the complex number -3+4i.

A complex number can also be interpreted as a vector from O to P.

POLAR FORM OF A COMPLEX NUMBER

In Fig. 6-2 point P with coordinates (x,y) represents the complex number x+iy. Point P can also be represented by *polar coordinates* (r,θ) . Since $x=r\cos\theta$, $y=r\sin\theta$ we have

$$6.6 x + iy = r(\cos\theta + i\sin\theta)$$

called the *polar form* of the complex number. We often call $r = \sqrt{x^2 + y^2}$ the *modulus* and θ the *amplitude* of x + iy.

Fig. 6-2

MULTIPLICATION AND DIVISION OF COMPLEX NUMBERS IN POLAR FORM

6.7
$$[r_1(\cos\theta_1 + i\sin\theta_1)][r_2(\cos\theta_2 + i\sin\theta_2)] = r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$$

$$\frac{r_1(\cos\theta_1+i\sin\theta_1)}{r_2(\cos\theta_2+i\sin\theta_2)} = \frac{r_1}{r_2}[\cos(\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)]$$

DE MOIVRE'S THEOREM

If p is any real number, De Moivre's theorem states that

$$[r(\cos\theta + i\sin\theta)]^p = r^p(\cos p\theta + i\sin p\theta)$$

ROOTS OF COMPLEX NUMBERS

If p = 1/n where n is any positive integer, 6.9 can be written

6.10
$$[r(\cos\theta + i\sin\theta)]^{1/n} = r^{1/n} \left[\cos\frac{\theta + 2k\pi}{n} + i\sin\frac{\theta + 2k\pi}{n} \right]$$

where k is any integer. From this the n nth roots of a complex number can be obtained by putting k = 0, 1, 2, ..., n - 1.

EXPONENTIAL and LOGARITHMIC **FUNCTIONS**

LAWS OF EXPONENTS

In the following p, q are real numbers, a, b are positive numbers and m, n are positive integers.

7.1
$$a^p \cdot a^q = a^{p+q}$$

$$7.2 a^p/a^q = a^{p-q}$$

$$7.3 \qquad (a^p)^q = a^{pq}$$

7.4
$$a^0 = 1, a \neq 0$$

$$a^0 = 1, \ a \neq 0$$
 7.5 $a^{-p} = 1/a^p$

$$7.6 (ab)^p = a^p b^p$$

$$7.7 \qquad \sqrt[n]{a} = a^{1/n}$$

$$7.8 \qquad \sqrt[n]{a^m} = a^{m/n}$$

7.9
$$\sqrt[n]{a/b} = \sqrt[n]{a}/\sqrt[n]{b}$$

In a^p , p is called the exponent, a is the base and a^p is called the pth power of a. The function $y=a^x$ is called an exponential function.

LOGARITHMS AND ANTILOGARITHMS

If $a^p = N$ where $a \neq 0$ or 1, then $p = \log_a N$ is called the logarithm of N to the base a. The number $N = a^p$ is called the antilogarithm of p to the base a, written antilog_a p.

Example: Since $3^2 = 9$ we have $\log_3 9 = 2$, anti $\log_3 2 = 9$.

The function $y = \log_a x$ is called a logarithmic function.

LAWS OF LOGARITHMS

$$\log_a MN = \log_a M + \log_a N$$

$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

$$7.12 \log_a M^p = p \log_a M$$

COMMON LOGARITHMS AND ANTILOGARITHMS

Common logarithms and antilogarithms [also called Briggsian] are those in which the base a = 10. The common logarithm of N is denoted by $\log_{10} N$ or briefly $\log N$. For tables of common logarithms and antilogarithms, see pages 202-205. For illustrations using these tables see pages 194-196.

NATURAL LOGARITHMS AND ANTILOGARITHMS

Natural logarithms and antilogarithms [also called Napierian] are those in which the base a = e = 2.7182818... [see page 1]. The natural logarithm of N is denoted by $\log_e N$ or $\ln N$. For tables of natural logarithms see pages 224-225. For tables of natural antilogarithms [i.e. tables giving e^x for values of x] see pages 226-227. For illustrations using these tables see pages 196 and 200.

CHANGE OF BASE OF LOGARITHMS

The relationship between logarithms of a number N to different bases a and b is given by

$$\log_a N = \frac{\log_b N}{\log_b a}$$

In particular,

7.14
$$\log_e N = \ln N = 2.30258 \ 50929 \ 94... \log_{10} N$$

7.15
$$\log_{10} N = \log N = 0.43429 \ 44819 \ 03... \log_e N$$

RELATIONSHIP BETWEEN EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS

7.16
$$e^{i\theta} = \cos\theta + i\sin\theta, \quad e^{-i\theta} = \cos\theta - i\sin\theta$$

These are called Euler's identities. Here i is the imaginary unit [see page 21].

7.17
$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

$$7.18 \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

7.19
$$\tan \theta = \frac{e^{i\theta} - e^{-i\theta}}{i(e^{i\theta} + e^{-i\theta})} = -i\left(\frac{e^{i\theta} - e^{-i\theta}}{e^{i\theta} + e^{-i\theta}}\right)$$

7.20
$$\cot \theta = i \left(\frac{e^{i\theta} + e^{-i\theta}}{e^{i\theta} - e^{-i\theta}} \right)$$

$$\mathbf{7.21} \qquad \qquad \sec \theta = \frac{2}{e^{i\theta} + e^{-i\theta}}$$

$$\mathbf{7.22} \qquad \qquad \mathbf{csc} \ \theta \ \ = \ \frac{2i}{e^{\mathrm{i}\theta} - e^{-\mathrm{i}\theta}}$$

PERIODICITY OF EXPONENTIAL FUNCTIONS

7.23
$$e^{i(\theta+2k\pi)} = e^{i\theta}$$
 $k = \text{integer}$

From this it is seen that e^x has period $2\pi i$.

POLAR FORM OF COMPLEX NUMBERS EXPRESSED AS AN EXPONENTIAL

The polar form of a complex number x + iy can be written in terms of exponentials [see 6.6, page 22] as

7.24
$$x + iy = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

OPERATIONS WITH COMPLEX NUMBERS IN POLAR FORM

Formulas 6.7 through 6.10 on page 22 are equivalent to the following.

7.25
$$(r_1e^{i\theta_1})(r_2e^{i\theta_2}) = r_1r_2e^{i(\theta_1+\theta_2)}$$

7.26
$$\frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

7.27
$$(re^{i\theta})^p = r^p e^{ip\theta}$$
 [De Moivre's theorem]

7.28
$$(re^{i\theta})^{1/n} = [re^{i(\theta+2k\pi)}]^{1/n} = r^{1/n}e^{i(\theta+2k\pi)/n}$$

LOGARITHM OF A COMPLEX NUMBER

7.29
$$\ln{(re^{i\theta})} = \ln{r} + i\theta + 2k\pi i \qquad k = \text{integer}$$

HYPERBOLIC FUNCTIONS

DEFINITION OF HYPERBOLIC FUNCTIONS

8.1 Hyperbolic sine of
$$x = \sinh x = \frac{e^x - e^{-x}}{2}$$

8.2 Hyperbolic cosine of
$$x = \cosh x = \frac{e^x + e^{-x}}{2}$$

8.3 Hyperbolic tangent of
$$x = \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

8.4 Hyperbolic cotangent of
$$x = \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

8.5 Hyperbolic secant of
$$x = \operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$

8.6 Hyperbolic cosecant of
$$x = \operatorname{csch} x = \frac{2}{e^x - e^{-x}}$$

RELATIONSHIPS AMONG HYPERBOLIC FUNCTIONS

$$\tanh x = \frac{\sinh x}{\cosh x}$$

8.8
$$\coth x = \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

8.10
$$\operatorname{csch} x = \frac{1}{\sinh x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$8.12 \qquad \qquad \operatorname{sech}^2 x + \tanh^2 x = 1$$

$$\coth^2 x - \operatorname{csch}^2 x = 1$$

FUNCTIONS OF NEGATIVE ARGUMENTS

8.14
$$\sinh{(-x)} = -\sinh{x}$$
 8.15 $\cosh{(-x)} = \cosh{x}$ **8.16** $\tanh{(-x)} = -\tanh{x}$

8.17
$$\operatorname{csch}(-x) = -\operatorname{csch} x$$
 8.18 $\operatorname{sech}(-x) = \operatorname{sech} x$ **8.19** $\operatorname{coth}(-x) = -\operatorname{coth} x$

ADDITION FORMULAS

8.20	$\sinh (x \pm y)$	=	$\sinh x \cosh y \pm \cosh x \sinh y$
8.21	$\cosh (x \pm y)$	=	$\cosh x \cosh y \pm \sinh x \sinh y$
8.22	$tanh(x \pm y)$	=	$\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$
8.23	$\coth (x \pm y)$	=	$\frac{\coth x \coth y \pm 1}{\coth y \pm \coth x}$

DOUBLE ANGLE FORMULAS

8.24	$\sinh 2x$	=	$2 \sinh x \cosh x$				
8.25	$\cosh 2x$	=	$\cosh^2 x + \sinh^2 x$	=	$2\cosh^2 x - 1$	=	$1 + 2 \sinh^2 x$
8.26	anh 2x	=	$\frac{2\tanh x}{1+\tanh^2 x}$				

HALF ANGLE FORMULAS

8.27
$$\sinh \frac{x}{2} = \pm \sqrt{\frac{\cosh x - 1}{2}} \quad [+ \text{ if } x > 0, - \text{ if } x < 0]$$
8.28
$$\cosh \frac{x}{2} = \sqrt{\frac{\cosh x + 1}{2}}$$
8.29
$$\tanh \frac{x}{2} = \pm \sqrt{\frac{\cosh x - 1}{\cosh x + 1}} \quad [+ \text{ if } x > 0, - \text{ if } x < 0]$$

$$= \frac{\sinh x}{\cosh x + 1} = \frac{\cosh x - 1}{\sinh x}$$

MULTIPLE ANGLE FORMULAS

8.30	$\sinh 3x$	=	$3 \sinh x + 4 \sinh^3 x$
8.31	$\cosh 3x$	=	$4\cosh^3 x - 3\cosh x$
8.32	tanh 3x	=	$\frac{3\tanh x + \tanh^3 x}{1 + 3\tanh^2 x}$
8.33	$\sinh 4x$	=	$8 \sinh^3 x \cosh x + 4 \sinh x \cosh x$
8.34	$\cosh 4x$	=	$8\cosh^4x - 8\cosh^2x + 1$
8.35	$\tanh 4x$	=	$\frac{4\tanh x + 4\tanh^3 x}{1+6\tanh^2 x + \tanh^4 x}$

POWERS OF HYPERBOLIC FUNCTIONS

8.36	$\sinh^2 x$	=	$\tfrac{1}{2}\cosh 2x \; - \; \tfrac{1}{2}$
8.37	$\cosh^2 x$	=	$\frac{1}{2}\cosh 2x + \frac{1}{2}$
8.38	$\sinh^3 x$	=	$\frac{1}{4}\sinh 3x - \frac{3}{4}\sinh x$
8.39	$\cosh^3 x$	=	$\tfrac{1}{4}\cosh 3x + \tfrac{3}{4}\cosh x$
8.40	$\sinh^4 x$	=	$\frac{3}{8} - \frac{1}{2} \cosh 2x + \frac{1}{8} \cosh 4x$
8.41	$\cosh^4 x$	=	$\frac{3}{8} + \frac{1}{2} \cosh 2x + \frac{1}{8} \cosh 4x$

SUM, DIFFERENCE AND PRODUCT OF HYPERBOLIC FUNCTIONS

8.42	$\sinh x + \sinh y$		$2 \sinh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$
8.43	$\sinh x - \sinh y$	=	$2\cosh \frac{1}{2}(x+y)\sinh \frac{1}{2}(x-y)$
8.44	$\cosh x + \cosh y$		$2\cosh \frac{1}{2}(x+y)\cosh \frac{1}{2}(x-y)$
8.45	$ \cosh x - \cosh y $	=	$2 \sinh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$
8.46	$\sinh x \sinh y =$	$\frac{1}{2}$ {	$\{\cosh(x+y) - \cosh(x-y)\}$
8.47	$ \cosh x \cosh y = $	$\frac{1}{2}$ {	$\{\cosh(x+y) + \cosh(x-y)\}$
8.48	$\sinh x \cosh y =$	$\frac{1}{2}$ {	$\{\sinh(x+y) + \sinh(x-y)\}$

EXPRESSION OF HYPERBOLIC FUNCTIONS IN TERMS OF OTHERS

In the following we assume x > 0. If x < 0 use the appropriate sign as indicated by formulas 8.14 to 8.19.

1	$\sinh x = u$	$\cosh x = u$	tanh x = u	$\coth x = u$	$\mathrm{sech} x=u$	$\operatorname{esch} x = u$
$\sinh x$	u	$\sqrt{u^2-1}$	$u/\sqrt{1-u^2}$	$1/\sqrt{u^2-1}$	$\sqrt{1-u^2}/u$	1/u
$\cosh x$	$\sqrt{1+u^2}$	u	$1/\sqrt{1-u^2}$	$u/\sqrt{u^2-1}$	1/ <i>u</i>	$\sqrt{1+u^2}/u$
tanh x	$u/\sqrt{1+u^2}$	$\sqrt{u^2-1}/u$	u	1/u	$\sqrt{1-u^2}$	$1/\sqrt{1+u^2}$
$\coth x$	$\sqrt{u^2+1}/u$	$u/\sqrt{u^2-1}$	1/ <i>u</i>	u	$1/\sqrt{1-u^2}$	$\sqrt{1+u^2}$
$\operatorname{sech} x$	$1/\sqrt{1+u^2}$	1/ <i>u</i>	$\sqrt{1-u^2}$	$\sqrt{u^2-1}/u$	u	$u/\sqrt{1+u^2}$
esch x	1/ <i>u</i>	$1/\sqrt{u^2-1}$	$\sqrt{1-u^2}/u$	$\sqrt{u^2-1}$	$u/\sqrt{1-u^2}$	u

GRAPHS OF HYPERBOLIC FUNCTIONS

$$y = \sinh x$$

8.50

$$y = \cosh x$$

8.51

$$y = \tanh x$$

$$y = \coth x$$

$$y = \operatorname{sech} x$$

$$y = \operatorname{csch} x$$

Fig. 8-4

Fig. 8-5

Fig. 8-6

INVERSE HYPERBOLIC FUNCTIONS

If $x = \sinh y$, then $y = \sinh^{-1} x$ is called the *inverse hyperbolic sine* of x. Similarly we define the other inverse hyperbolic functions. The inverse hyperbolic functions are multiple-valued and as in the case of inverse trigonometric functions [see page 17] we restrict ourselves to principal values for which they can be considered as single-valued.

The following list shows the principal values [unless otherwise indicated] of the inverse hyperbolic functions expressed in terms of logarithmic functions which are taken as real valued.

$$\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1})$$

$$-\infty < x <$$

$$\cosh^{-1} x = \ln (x + \sqrt{x^2 - 1})$$

$$x \ge 1$$
 [cosh⁻¹ $x > 0$ is principal value]

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \qquad -1 < x < 1$$

$$-1 < x <$$

$$\coth^{-1} x = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)$$

$$x > 1$$
 or $x < -1$

$$\operatorname{sech}^{-1} x = \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1} \right)$$
 $0 < x \le 1$ [sech⁻¹ $x > 0$ is principal value]

$$0 < x \le 1$$

$$[{\rm sech}^{-1} x > 0 \text{ is principal value}]$$

$$\operatorname{csch}^{-1} x = \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1} \right) \qquad x \neq 0$$

$$x \neq 0$$

RELATIONS BETWEEN INVERSE HYPERBOLIC FUNCTIONS

8.61	$\operatorname{csch}^{-1} x$	=	$sinh^{-1} (1/s)$	c)
------	------------------------------	---	-------------------	----

8.62
$$\operatorname{sech}^{-1} x = \cosh^{-1} (1/x)$$

8.63
$$\coth^{-1} x = \tanh^{-1} (1/x)$$

8.64
$$\sinh^{-1}(-x) = -\sinh^{-1}x$$

8.65
$$\tanh^{-1}(-x) = -\tanh^{-1}x$$

8.66
$$\coth^{-1}(-x) = -\coth^{-1}x$$

8.67
$$\operatorname{csch}^{-1}(-x) = -\operatorname{csch}^{-1}x$$

GRAPHS OF INVERSE HYPERBOLIC FUNCTIONS

 $y = \cosh^{-1} x$

8.72

8.69

Fig. 8-8

 $y = \operatorname{sech}^{-1} x$

Fig. 8-9

8.73

8.71
$$y = \coth^{-1} x$$

Fig. 8-10

Fig. 8-11

Fig. 8-12

RELATIONSHIP BETWEEN HYPERBOLIC AND TRIGONOMETRIC FUNCTIONS

8.74	$\sin(ix) = i \sinh x$	8.75	$\cos(ix) = \cosh x$	8.76	$\tan(ix) = i \tanh x$
------	------------------------	------	----------------------	------	------------------------

8.77
$$\csc{(ix)} = -i \operatorname{csch} x$$
 8.78 $\sec{(ix)} = \operatorname{sech} x$ **8.79** $\cot{(ix)} = -i \coth{x}$

8.80
$$\sinh{(ix)} = i \sin{x}$$
 8.81 $\cosh{(ix)} = \cos{x}$ **8.82** $\tanh{(ix)} = i \tan{x}$

8.83
$$\operatorname{csch}(ix) = -i \operatorname{csc} x$$
 8.84 $\operatorname{sech}(ix) = \operatorname{sec} x$ **8.85** $\operatorname{coth}(ix) = -i \operatorname{cot} x$

PERIODICITY OF HYPERBOLIC FUNCTIONS

In the following k is any integer.

8.86
$$\sinh{(x+2k\pi i)} = \sinh{x}$$
 8.87 $\cosh{(x+2k\pi i)} = \cosh{x}$ **8.88** $\tanh{(x+k\pi i)} = \tanh{x}$

8.89
$$\operatorname{csch}(x + 2k\pi i) = \operatorname{csch} x$$
 8.90 $\operatorname{sech}(x + 2k\pi i) = \operatorname{sech} x$ **8.91** $\operatorname{coth}(x + k\pi i) = \operatorname{coth} x$

RELATIONSHIP BETWEEN INVERSE HYPERBOLIC AND INVERSE TRIGONOMETRIC FUNCTIONS

8.92	$\sin^{-1}(ix) = i \sinh^{-1}x$	8.93	$\sinh^{-1}(ix)$	$= i \sin^{-1} x$
------	---------------------------------	------	------------------	-------------------

8.94
$$\cos^{-1} x = \pm i \cosh^{-1} x$$
 8.95 $\cosh^{-1} x = \pm i \cos^{-1} x$

8.96
$$\tan^{-1}(ix) = i \tanh^{-1} x$$
 8.97 $\tanh^{-1}(ix) = i \tan^{-1} x$

8.98
$$\cot^{-1}(ix) = -i \coth^{-1} x$$
 8.99 $\coth^{-1}(ix) = -i \cot^{-1} x$

8.100
$$\sec^{-1} x = \pm i \operatorname{sech}^{-1} x$$
 8.101 $\operatorname{sech}^{-1} x = \pm i \operatorname{sec}^{-1} x$

8.102
$$\csc^{-1}(ix) = -i \operatorname{csch}^{-1} x$$
 8.103 $\operatorname{csch}^{-1}(ix) = -i \operatorname{csc}^{-1} x$

SOLUTIONS of ALGEBRAIC EQUATIONS

QUADRATIC EQUATION: $ax^2 + bx + c = 0$

9.1 Solutions:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If a, b, c are real and if $D = b^2 - 4ac$ is the discriminant, then the roots are

- (i) real and unequal if D > 0
- (ii) real and equal if D=0
- (iii) complex conjugate if D < 0

9.2 If x_1, x_2 are the roots, then $x_1 + x_2 = -b/a$ and $x_1x_2 = c/a$.

CUBIC EQUATION: $x^3 + a_1x^2 + a_2x + a_3 = 0$

Let

$$Q = rac{3a_2 - a_1^2}{9}, \quad R = rac{9a_1a_2 - 27a_3 - 2a_1^3}{54},$$
 $S = \sqrt[3]{R + \sqrt{Q^3 + R^2}}, \quad T = \sqrt[3]{R - \sqrt{Q^3 + R^2}}$

9.3 Solutions:

$$\begin{cases} x_1 &= S + T - \frac{1}{3}a_1 \\ x_2 &= -\frac{1}{2}(S+T) - \frac{1}{3}a_1 + \frac{1}{2}i\sqrt{3}(S-T) \\ x_3 &= -\frac{1}{2}(S+T) - \frac{1}{3}a_1 - \frac{1}{2}i\sqrt{3}(S-T) \end{cases}$$

If a_1, a_2, a_3 are real and if $D = Q^3 + R^2$ is the discriminant, then

- (i) one root is real and two complex conjugate if D>0
 - (ii) all roots are real and at least two are equal if D=0
 - (iii) all roots are real and unequal if D < 0.

If D < 0, computation is simplified by use of trigonometry.

9.4 Solutions if D < 0: $\begin{cases} x_1 = 2\sqrt{-Q} \cos{(\frac{1}{3}\theta)} \\ x_2 = 2\sqrt{-Q} \cos{(\frac{1}{3}\theta + 120^\circ)} \\ x_3 = 2\sqrt{-Q} \cos{(\frac{1}{3}\theta + 240^\circ)} \end{cases}$ where $\cos{\theta} = -R/\sqrt{-Q^3}$

9.5 $x_1 + x_2 + x_3 = -a_1$, $x_1x_2 + x_2x_3 + x_3x_1 = a_2$, $x_1x_2x_3 = -a_3$

where x_1, x_2, x_3 are the three roots.

QUARTIC EQUATION: $x^4 + a_1x^3 + a_2x^2 + a_3x + a_4 = 0$

Let y_1 be a real root of the cubic equation

9.6
$$y^3 - a_2 y^2 + (a_1 a_3 - 4 a_4) y + (4 a_2 a_4 - a_3^2 - a_1^2 a_4) = 0$$

9.7 Solutions: The 4 roots of
$$z^2 + \frac{1}{2} \{a_1 \pm \sqrt{a_1^2 - 4a_2 + 4y_1}\}z + \frac{1}{2} \{y_1 \pm \sqrt{y_1^2 - 4a_4}\} = 0$$

If all roots of 9.6 are real, computation is simplified by using that particular real root which produces all real coefficients in the quadratic equation 9.7.

9.8
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -a_1 \\ x_1x_2 + x_2x_3 + x_3x_4 + x_4x_1 + x_1x_3 + x_2x_4 = a_2 \\ x_1x_2x_3 + x_2x_3x_4 + x_1x_2x_4 + x_1x_3x_4 = -a_3 \\ x_1x_2x_3x_4 = a_4 \end{cases}$$

where x_1, x_2, x_3, x_4 are the four roots.

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1} = 0$$

$$\frac{3^{2} - 3^{2} - 1}{3^{2} - 1$$

10

FORMULAS from PLANE ANALYTIC GEOMETRY

DISTANCE d BETWEEN TWO POINTS $P_1(x_1,y_1)$ AND $P_2(x_2,y_2)$

10.1

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Fig. 10-1

SLOPE m OF LINE JOINING TWO POINTS $P_1(x_1,y_1)$ AND $P_2(x_2,y_2)$

10.2

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \tan \theta$$

EQUATION OF LINE JOINING TWO POINTS $P_1(x_1,y_1)$ AND $P_2(x_2,y_2)$

10.3

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1} = m$$
 or $y-y_1 = m(x-x_1)$

10.4

$$y = mx + b$$

where $b=y_1-mx_1=rac{x_2y_1-x_1y_2}{x_2-x_1}$ is the intercept on the y axis, i.e. the y intercept.

EQUATION OF LINE IN TERMS OF x INTERCEPT a eq 0 AND y INTERCEPT b eq 0

10.5

$$\frac{x}{a} + \frac{y}{b} = 1$$

NORMAL FORM FOR EQUATION OF LINE

$$10.6 x \cos \alpha + y \sin \alpha = p$$

where p = perpendicular distance from origin O to line and α = angle of inclination of perpendicular with positive x axis.

Fig. 10-3

GENERAL EQUATION OF LINE

$$Ax + By + C = 0$$

DISTANCE FROM POINT (x_1,y_1) TO LINE Ax+By+C=0

10.8
$$\frac{Ax_1 + By_1 + C}{\pm \sqrt{A^2 + B^2}}$$

where the sign is chosen so that the distance is nonnegative.

ANGLE ψ BETWEEN TWO LINES HAVING SLOPES m_1 AND m_2

10.9
$$\tan \psi = \frac{m_2 - m_1}{1 + m_1 m_2}$$

Lines are parallel or coincident if and only if $m_1 = m_2$. Lines are perpendicular if and only if $m_2 = -1/m_1$.

Fig. 10-4

AREA OF TRIANGLE WITH VERTICES AT $(x_1,y_1),(x_2,y_2),(x_3,y_3)$

10.10 Area
$$=$$
 $\pm \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$
 $=$ $\pm \frac{1}{2} (x_1 y_2 + y_1 x_3 + y_3 x_2 - y_2 x_3 - y_1 x_2 - x_1 y_3)$

where the sign is chosen so that the area is nonnegative.

If the area is zero the points all lie on a line.

Fig. 10-5

TRANSFORMATION OF COORDINATES INVOLVING PURE TRANSLATION

10.11

$$\begin{cases} x = x' + x_0 \\ y = y' + y_0 \end{cases} \text{ or } \begin{cases} x' = x - x_0 \\ y' = y - y_0 \end{cases}$$

where (x,y) are old coordinates [i.e. coordinates relative to xy system], (x',y') are new coordinates [relative to x'y' system] and (x_0,y_0) are the coordinates of the new origin O' relative to the old xy coordinate system.

TRANSFORMATION OF COORDINATES INVOLVING PURE ROTATION

10.12

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases} \text{ or } \begin{cases} x' = x \cos \alpha + y \sin \alpha \\ y' = y \cos \alpha - x \sin \alpha \end{cases}$$

where the origins of the old [xy] and new [x'y'] coordinate systems are the same but the x' axis makes an angle α with the positive x axis.

Fig. 10-7

TRANSFORMATION OF COORDINATES INVOLVING TRANSLATION AND ROTATION

10.13

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha + x_0 \\ y = x' \sin \alpha + y' \cos \alpha + y_0 \end{cases}$$
or
$$\begin{cases} x' = (x - x_0) \cos \alpha + (y - y_0) \sin \alpha \\ y' = (y - y_0) \cos \alpha - (x - x_0) \sin \alpha \end{cases}$$

where the new origin O' of x'y' coordinate system has coordinates (x_0, y_0) relative to the old xy coordinate system and the x' axis makes an angle α with the positive x axis.

Fig. 10-8

POLAR COORDINATES (r, θ)

A point P can be located by rectangular coordinates (x,y) or polar coordinates (r,θ) . The transformation between these coordinates is

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \quad \text{or} \quad \begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1}(y/x) \end{cases}$$

Fig. 10-9

EQUATION OF CIRCLE OF RADIUS R, CENTER AT (x_0,y_0)

10.15

$$(x-x_0)^2+(y-y_0)^2 = R^2$$

Fig. 10-10

EQUATION OF CIRCLE OF RADIUS $oldsymbol{R}$ PASSING THROUGH ORIGIN

10.16

$$r = 2R \cos(\theta - \alpha)$$

where (r, θ) are polar coordinates of any point on the circle and (R, α) are polar coordinates of the center of the circle.

Fig. 10-11

CONICS [ELLIPSE, PARABOLA OR HYPERBOLA]

If a point P moves so that its distance from a fixed point [called the *focus*] divided by its distance from a fixed line [called the *directrix*] is a constant ϵ [called the *eccentricity*], then the curve described by P is called a *conic* [so-called because such curves can be obtained by intersecting a plane and a cone at different angles].

If the focus is chosen at origin O the equation of a conic in polar coordinates (r,θ) is, if OQ=p and LM=D, [see Fig. 10-12]

$$r = \frac{p}{1 - \epsilon \cos \theta} = \frac{\epsilon D}{1 - \epsilon \cos \theta}$$

The conic is

- (i) an ellipse if $\epsilon < 1$
- (ii) a parabola if $\epsilon = 1$
- (iii) a hyperbola if $\epsilon > 1$.

Fig. 10-12

ELLIPSE WITH CENTER $C(x_0,y_0)$ AND MAJOR AXIS PARALLEL TO x AXIS

10.19 Length of minor axis
$$B'B = 2b$$

10.20 Distance from center C to focus F or F' is

$$c = \sqrt{a^2 - b^2}$$

10.21 Eccentricity =
$$\epsilon = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$$

Fig. 10-13

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} \ = \ 1$$

10.23 Equation in polar coordinates if C is at O:
$$r^2 = \frac{a^2b^2}{a^2\sin^2\theta + b^2\cos^2\theta}$$

10.24 Equation in polar coordinates if C is on x axis and F' is at O:
$$r = \frac{a(1-\epsilon^2)}{1-\epsilon\cos\theta}$$

10.25 If P is any point on the ellipse,
$$PF + PF' = 2a$$

If the major axis is parallel to the y axis, interchange x and y in the above or replace θ by $\frac{1}{2}\pi - \theta$ [or $90^{\circ} - \theta$].

PARABOLA WITH AXIS PARALLEL TO $oldsymbol{x}$ AXIS

If vertex is at $A(x_0, y_0)$ and the distance from A to focus F is a > 0, the equation of the parabola is

10.26
$$(y-y_0)^2 = 4a(x-x_0)$$
 if parabola opens to right [Fig. 10-14]

10.27
$$(y-y_0)^2 = -4a(x-x_0)$$
 if parabola opens to left [Fig. 10-15]

If focus is at the origin [Fig. 10-16] the equation in polar coordinates is

$$r = \frac{2a}{1 - \cos x}$$

In case the axis is parallel to the y axis, interchange x and y or replace θ by $\frac{1}{2}\pi - \theta$ [or $90^{\circ} - \theta$].

HYPERBOLA WITH CENTER $C(x_0,y_0)$ AND MAJOR AXIS PARALLEL TO x AXIS

Fig. 10-17

- 10.29 Length of major axis A'A = 2a
- 10.30 Length of minor axis B'B = 2b
- **10.31** Distance from center C to focus F or $F' = c = \sqrt{a^2 + b^2}$
- **10.32** Eccentricity $\epsilon = \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a}$
- 10.33 Equation in rectangular coordinates: $\frac{(x-x_0)^2}{a^2} \frac{(y-y_0)^2}{b^2} = 1$
- **10.34** Slopes of asymptotes G'H and $GH' = \pm \frac{b}{a}$
- **10.35** Equation in polar coordinates if C is at C: $r^2 = \frac{\alpha^2 b^2}{b^2 \cos^2 \theta \alpha^2 \sin^2 \theta}$
- **10.36** Equation in polar coordinates if C is on X axis and F' is at O: $r = \frac{a(\epsilon^2 1)}{1 \epsilon \cos \theta}$
- 10.37 If P is any point on the hyperbola, $PF PF' = \pm 2a$ [depending on branch]

If the major axis is parallel to the y axis, interchange x and y in the above or replace θ by $\frac{1}{2}\pi - \theta$ [or $90^{\circ} - \theta$].

11

SPECIAL PLANE CURVES

LEMNISCATE

11.1 Equation in polar coordinates:

$$r^2 = a^2 \cos 2\theta$$

11.2 Equation in rectangular coordinates:

$$(x^2+y^2)^2 = a^2(x^2-y^2)$$

- 11.3 Angle between AB' or A'B and x axis = 45°
- 11.4 Area of one loop = $\frac{1}{2}a^2$

Fig. 11-1

CYCLOID

11.5 Equations in parametric form:

$$\begin{cases} x = a(\phi - \sin \phi) \\ y = a(1 - \cos \phi) \end{cases}$$

- 11.6 Area of one arch = $3\pi a^2$
- 11.7 Arc length of one arch = 8a

This is a curve described by a point P on a circle of radius a rolling along x axis.

Fig. 11-2

HYPOCYCLOID WITH FOUR CUSPS

11.8 Equation in rectangular coordinates:

$$x^{2/3} + y^{2/3} = a^{2/3}$$

11.9 Equations in parametric form:

$$\begin{cases} x = a \cos^3 \theta \\ y = a \sin^3 \theta \end{cases}$$

- 11.10 Area bounded by curve = $\frac{3}{8}\pi a^2$
- 11.11 Arc length of entire curve = 6a

This is a curve described by a point P on a circle of radius a/4 as it rolls on the inside of a circle of radius a.

Fig. 11-3

CARDIOID

11.12 Equation:
$$r = a(1 + \cos \theta)$$

11.13 Area bounded by curve
$$= \frac{3}{2}\pi a^2$$

11.14 Arc length of curve = 8a

This is the curve described by a point P of a circle of radius a as it rolls on the outside of a fixed circle of radius a. The curve is also a special case of the limacon of Pascal [see 11.32].

Fig. 11-4

CATENARY

11.15 Equation:
$$y = \frac{a}{2} (e^{x/a} + e^{-x/a}) = a \cosh \frac{x}{a}$$

This is the curve in which a heavy uniform chain would hang if suspended vertically from fixed points A and B.

Fig. 11-5

THREE-LEAVED ROSE

11.16 Equation: $r = a \cos 3\theta$

The equation $r=a\sin 3\theta$ is a similar curve obtained by rotating the curve of Fig. 11-6 counterclockwise through 30° or $\pi/6$ radians.

In general $r = a \cos n\theta$ or $r = a \sin n\theta$ has n leaves if n is odd.

Fig. 11-6

FOUR-LEAVED ROSE

11.17 Equation: $r = a \cos 2\theta$

The equation $r=a\sin 2\theta$ is a similar curve obtained by rotating the curve of Fig. 11-7 counterclockwise through 45° or $\pi/4$ radians.

In general $r = a \cos n\theta$ or $r = a \sin n\theta$ has 2n leaves if n is even.

Fig. 11-7

EPICYCLOID

11.18 Parametric equations:

$$\begin{cases} x = (a+b)\cos\theta - b\cos\left(\frac{a+b}{b}\right)\theta \\ y = (a+b)\sin\theta - b\sin\left(\frac{a+b}{b}\right)\theta \end{cases}$$

This is the curve described by a point P on a circle of radius b as it rolls on the outside of a circle of radius a.

The cardioid [Fig. 11-4] is a special case of an epicycloid.

Fig. 11-8

GENERAL HYPOCYCLOID

11.19 Parametric equations:

$$\begin{cases} x = (a-b)\cos\phi + b\cos\left(\frac{a-b}{b}\right)\phi \\ y = (a-b)\sin\phi - b\sin\left(\frac{a-b}{b}\right)\phi \end{cases}$$

This is the curve described by a point P on a circle of radius b as it rolls on the inside of a circle of radius a.

If b = a/4, the curve is that of Fig. 11-3.

Fig. 11-9

TROCHOID

11.20 Parametric equations: $\begin{cases} x = a\phi - b \sin \phi \\ y = a - b \cos \phi \end{cases}$

This is the curve described by a point P at distance b from the center of a circle of radius a as the circle rolls on the x axis.

If b < a, the curve is as shown in Fig. 11-10 and is called a curtate cycloid.

If b > a, the curve is as shown in Fig. 11-11 and is called a prolate cycloid.

If b = a, the curve is the cycloid of Fig. 11-2.

Fig. 11-10

Fig. 11-11

TRACTRIX

11.21 Parametric equations:
$$\begin{cases} x = a(\ln \cot \frac{1}{2}\phi - \cos \phi) \\ y = a \sin \phi \end{cases}$$

This is the curve described by endpoint P of a taut string PQ of length a as the other end Q is moved along the x axis.

WITCH OF AGNESI

11.22 Equation in rectangular coordinates:
$$y = \frac{8a^3}{x^2 + 4a^2}$$

11.23 Parametric equations:
$$\begin{cases} x = 2a \cot \theta \\ y = a(1 - \cos 2\theta) \end{cases}$$

In Fig. 11-13 the variable line OA intersects y=2a and the circle of radius a with center (0,a) at A and B respectively. Any point P on the "witch" is located by constructing lines parallel to the x and y axes through B and A respectively and determining the point P of intersection.

Fig. 11-13

FOLIUM OF DESCARTES

11.24 Equation in rectangular coordinates:

$$x^3 + y^3 = 3axy$$

11.25 Parametric equations:

$$\begin{cases} x = \frac{3at}{1+t^3} \\ y = \frac{3at^2}{1+t^3} \end{cases}$$

11.26 Area of loop =
$$\frac{3}{2}\alpha^2$$

11.27 Equation of asymptote:
$$x + y + a = 0$$

Fig. 11-14

INVOLUTE OF A CIRCLE

11.28 Parametric equations:

$$\begin{cases} x = a(\cos\phi + \phi \sin\phi) \\ y = a(\sin\phi - \phi \cos\phi) \end{cases}$$

This is the curve described by the endpoint P of a string as it unwinds from a circle of radius a while held taut.

Fig. 11-15

EVOLUTE OF AN ELLIPSE

11.29 Equation in rectangular coordinates:

$$(ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$$

11.30 Parametric equations:

$$\begin{cases} ax = (a^2 - b^2) \cos^3 \theta \\ by = (a^2 - b^2) \sin^3 \theta \end{cases}$$

This curve is the envelope of the normals to the ellipse $x^2/a^2 + y^2/b^2 = 1$ shown dashed in Fig. 11-16.

Fig. 11-16

OVALS OF CASSINI

11.31 Polar equation: $r^4 + a^4 - 2a^2r^2\cos 2\theta = b^4$

This is the curve described by a point P such that the product of its distances from two fixed points [distance 2a apart] is a constant b^2 .

The curve is as in Fig. 11-17 or Fig. 11-18 according as b < a or b > a respectively.

If b = a, the curve is a lemniscate [Fig. 11-1].

Fig. 11-17

Fig. 11-18

LIMACON OF PASCAL

11.32 Polar equation: $r = b + a \cos \theta$

Let OQ be a line joining origin O to any point Q on a circle of diameter a passing through O. Then the curve is the locus of all points P such that PQ = b.

The curve is as in Fig. 11-19 or Fig. 11-20 according as b > a or b < a respectively. If b = a, the curve is a *cardioid* [Fig. 11-4].

Fig. 11-19

Fig. 11-20

CISSOID OF DIOCLES

11.33 Equation in rectangular coordinates:

$$y^2 = \frac{x^3}{2a - x}$$

11.34 Parametric equations:

$$\begin{cases} x = 2a \sin^2 \theta \\ y = \frac{2a \sin^3 \theta}{\cos \theta} \end{cases}$$

This is the curve described by a point P such that the distance $OP = \operatorname{distance} RS$. It is used in the problem of duplication of a cube, i.e. finding the side of a cube which has twice the volume of a given cube.

Fig. 11-21

SPIRAL OF ARCHIMEDES

11.35 Polar equation: $r = a\theta$

Fig. 11-22

12

FORMULAS from SOLID ANALYTIC GEOMETRY

DISTANCE d BETWEEN TWO POINTS $P_1(x_1,y_1,z_1)$ AND $P_2(x_2,y_2,z_2)$

12.1
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Fig. 12-1

DIRECTION COSINES OF LINE JOINING POINTS $P_1(x_1,y_1,z_1)$ AND $P_2(x_2,y_2,z_2)$

12.2
$$l = \cos \alpha = \frac{x_2 - x_1}{d}, \quad m = \cos \beta = \frac{y_2 - y_1}{d}, \quad n = \cos \gamma = \frac{z_2 - z_1}{d}$$

where α, β, γ are the angles which line P_1P_2 makes with the positive x, y, z axes respectively and d is given by 12.1 [see Fig. 12-1].

RELATIONSHIP BETWEEN DIRECTION COSINES

12.3
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
 or $l^2 + m^2 + n^2 = 1$

DIRECTION NUMBERS

Numbers L, M, N which are proportional to the direction cosines l, m, n are called direction numbers. The relationship between them is given by

12.4
$$l = \frac{L}{\sqrt{L^2 + M^2 + N^2}}, \quad m = \frac{M}{\sqrt{L^2 + M^2 + N^2}}, \quad n = \frac{N}{\sqrt{L^2 + M^2 + N^2}}$$

EQUATIONS OF LINE JOINING $P_1(x_1,y_1,z_1)$ AND $P_2(x_2,y_2,z_2)$ IN STANDARD FORM

12.5
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$
 or $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$

These are also valid if l, m, n are replaced by L, M, N respectively.

EQUATIONS OF LINE JOINING $P_1(x_1,y_1,z_1)$ AND $P_2(x_2,y_2,z_2)$ IN PARAMETRIC FORM

12.6
$$x = x_1 + lt, \quad y = y_1 + mt, \quad z = z_1 + nt$$

These are also valid if l, m, n are replaced by L, M, N respectively.

ANGLE ϕ BETWEEN TWO LINES WITH DIRECTION COSINES l_1, m_1, n_1 AND l_2, m_2, n_2

12.7
$$\cos \phi = l_1 l_2 + m_1 m_2 + n_1 n_2$$

GENERAL EQUATION OF A PLANE

12.8
$$Ax + By + Cz + D = 0$$
 [A, B, C, D are constants]

EQUATION OF PLANE PASSING THROUGH POINTS $(x_1,y_1,z_1),\,(x_2,y_2,z_2),\,(x_3,y_3,z_3)$

12.9
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

or

$$\begin{vmatrix} y_2 - y_1 & z_2 - z_1 \\ y_3 - y_1 & z_3 - z_1 \end{vmatrix} (x - x_1) + \begin{vmatrix} z_2 - z_1 & x_2 - x_1 \\ z_3 - z_1 & x_3 - x_1 \end{vmatrix} (y - y_1) + \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix} (z - z_1) = 0$$

EQUATION OF PLANE IN INTERCEPT FORM

12.11
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 where a, b, c are the intercepts on the x, y, z axes respectively.

Fig. 12-2

EQUATIONS OF LINE THROUGH (x_0,y_0,z_0) AND PERPENDICULAR TO PLANE Ax+By+Cz+D=0

12.12
$$\frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C}$$
 or $x = x_0 + At$, $y = y_0 + Bt$, $z = z_0 + Ct$

Note that the direction numbers for a line perpendicular to the plane Ax + By + Cz + D = 0 are A, B, C.

DISTANCE FROM POINT (x_0,y_0,z_0) TO PLANE Ax+By+Cz+D=0

12.13
$$\frac{Ax_0 + By_0 + Cz_0 + D}{\pm \sqrt{A^2 + B^2 + C^2}}$$

where the sign is chosen so that the distance is nonnegative.

NORMAL FORM FOR EQUATION OF PLANE

12.14
$$x \cos \alpha + y \cos \beta + z \cos \gamma = p$$

where p= perpendicular distance from O to plane at P and α , β , γ are angles between OP and positive x,y,z axes.

Fig. 12-3

TRANSFORMATION OF COORDINATES INVOLVING PURE TRANSLATION

12.15
$$\begin{cases} x = x' + x_0 \\ y = y' + y_0 \\ z = z' + z_0 \end{cases} \text{ or } \begin{cases} x' = x - x_0 \\ y' = y - y_0 \\ z' = z - z_0 \end{cases}$$

where (x,y,z) are old coordinates [i.e. coordinates relative to xyz system], (x',y',z') are new coordinates [relative to x'y'z' system] and (x_0,y_0,z_0) are the coordinates of the new origin O' relative to the old xyz coordinate system.

Fig. 12-4

TRANSFORMATION OF COORDINATES INVOLVING PURE ROTATION

12.16
$$\begin{cases} x = l_1 x' + l_2 y' + l_3 z' \\ y = m_1 x' + m_2 y' + m_3 z' \\ z = n_1 x' + n_2 y' + n_3 z' \end{cases}$$
or
$$\begin{cases} x' = l_1 x + m_1 y + n_1 z \\ y' = l_2 x + m_2 y + n_2 z \\ z' = l_3 x + m_3 y + n_3 z \end{cases}$$

where the origins of the xyz and x'y'z' systems are the same and $l_1, m_1, n_1; l_2, m_2, n_2; l_3, m_3, n_3$ are the direction cosines of the x', y', z' axes relative to the x, y, z axes respectively.

Fig. 12-5

TRANSFORMATION OF COORDINATES INVOLVING TRANSLATION AND ROTATION

12.17
$$\begin{cases} x = l_1 x' + l_2 y' + l_3 z' + x_0 \\ y = m_1 x' + m_2 y' + m_3 z' + y_0 \\ z = n_1 x' + n_2 y' + n_3 z' + z_0 \end{cases}$$
or
$$\begin{cases} x' = l_1 (x - x_0) + m_1 (y - y_0) + n_1 (z - z_0) \\ y' = l_2 (x - x_0) + m_2 (y - y_0) + n_2 (z - z_0) \\ z' = l_3 (x - x_0) + m_3 (y - y_0) + n_3 (z - z_0) \end{cases}$$

where the origin O' of the x'y'z' system has coordinates (x_0, y_0, z_0) relative to the xyz system and l_1, m_1, n_1 ; l_2, m_2, n_2 ; l_3, m_3, n_3 are the direction cosines of the x', y', z' axes relative to the x, y, z axes respectively.

Fig. 12-6

CYLINDRICAL COORDINATES (r, θ, z)

A point P can be located by cylindrical coordinates (r, θ, z) [see Fig. 12-7] as well as rectangular coordinates (x, y, z).

The transformation between these coordinates is

12.18
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases} \text{ or } \begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1}(y/x) \\ z = z \end{cases}$$

Fig. 12-7

SPHERICAL COORDINATES (r, θ, ϕ)

A point P can be located by spherical coordinates (r, θ, ϕ) [see Fig. 12-8] as well as rectangular coordinates (x, y, z).

The transformation between those coordinates is

12.19
$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}$$
 or
$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \phi = \tan^{-1}(y/x) \\ \theta = \cos^{-1}(z/\sqrt{x^2 + y^2 + z^2}) \end{cases}$$

Fig. 12-8

EQUATION OF SPHERE IN RECTANGULAR COORDINATES

12.20 $(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2$

where the sphere has center (x_0,y_0,z_0) and radius R.

Fig. 12-9

EQUATION OF SPHERE IN CYLINDRICAL COORDINATES

12.21 $r^2 - 2r_0r\cos(\theta - \theta_0) + r_0^2 + (z - z_0)^2 = R^2$

where the sphere has center (r_0, θ_0, z_0) in cylindrical coordinates and radius R. If the center is at the origin the equation is

 $12.22 r^2 + z^2 = R^2$

EQUATION OF SPHERE IN SPHERICAL COORDINATES

12.23 $r^2 + r_0^2 - 2r_0 r \sin \theta \sin \theta_0 \cos (\phi - \phi_0) = R^2$

where the sphere has center (r_0, θ_0, ϕ_0) in spherical coordinates and radius R. If the center is at the origin the equation is

12.24 r = R

EQUATION OF ELLIPSOID WITH CENTER (x_0,y_0,z_0) AND SEMI-AXES a,b,c

12.25
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} + \frac{(z-z_0)^2}{c^2} = 1$$

Fig. 12-10

ELLIPTIC CYLINDER WITH AXIS AS z AXIS

12.26

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

where a, b are semi-axes of elliptic cross section.

If b = a it becomes a circular cylinder of radius a.

Fig. 12-11

ELLIPTIC CONE WITH AXIS AS Z AXIS

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

Fig. 12-12

HYPERBOLOID OF ONE SHEET

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Fig. 12-13

HYPERBOLOID OF TWO SHEETS

12.29

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Note orientation of axes in Fig. 12-14.

Fig. 12-14

ELLIPTIC PARABOLOID

12.30

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$$

Fig. 12-15

HYPERBOLIC PARABOLOID

12.31

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$$

Note orientation of axes in Fig. 12-16.

Fig. 12-16

13

DERIVATIVES

DEFINITION OF A DERIVATIVE

If y = f(x), the derivative of y or f(x) with respect to x is defined as

13.1
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

where $h = \Delta x$. The derivative is also denoted by y', df/dx or f'(x). The process of taking a derivative is called differentiation.

GENERAL RULES OF DIFFERENTIATION

In the following, u, v, w are functions of x; a, b, c, n are constants [restricted if indicated]; e = 2.71828... is the natural base of logarithms; $\ln u$ is the natural logarithm of u [i.e. the logarithm to the base e] where it is assumed that u > 0 and all angles are in radians.

$$13.2 \qquad \frac{d}{dx}(c) = 0$$

$$13.3 \qquad \frac{d}{dx}(cx) = c$$

$$13.4 \qquad \frac{d}{dx}(cx^n) = ncx^{n-1}$$

13.5
$$\frac{d}{dx}(u \pm v \pm w \pm \cdots) = \frac{du}{dx} \pm \frac{dv}{dx} \pm \frac{dw}{dx} \pm \cdots$$

$$13.6 \qquad \frac{d}{dx}(cu) = c\frac{du}{dx}$$

13.7
$$\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$$

13.8
$$\frac{d}{dx}(uvw) = uv\frac{dw}{dx} + uw\frac{dv}{dx} + vw\frac{du}{dx}$$

13.9
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v(du/dx) - u(dv/dx)}{v^2}$$

$$13.10 \quad \frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

13.11
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$
 (Chain rule)

$$13.12 \quad \frac{du}{dx} = \frac{1}{dx/du}$$

$$13.13 \quad \frac{dy}{dx} = \frac{dy/du}{dx/du}$$

DERIVATIVES OF TRIGONOMETRIC AND INVERSE TRIGONOMETRIC FUNCTIONS

$$13.14 \quad \frac{d}{dx}\sin u = \cos u \frac{du}{dx}$$

13.17
$$\frac{d}{dx} \cot u = -\csc^2 u \frac{du}{dx}$$

$$13.15 \quad \frac{d}{dx}\cos u = -\sin u \frac{du}{dx}$$

13.18
$$\frac{d}{dx} \sec u = \sec u \tan u \frac{du}{dx}$$

$$13.16 \quad \frac{d}{dx} \tan u = \sec^2 u \frac{du}{dx}$$

$$13.19 \quad \frac{d}{dx} \csc u = -\csc u \cot u \frac{du}{dx}$$

13.20
$$\frac{d}{dx} \sin^{-1} u = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} \qquad \left[-\frac{\pi}{2} < \sin^{-1} u < \frac{\pi}{2} \right]$$

13.21
$$\frac{d}{dx}\cos^{-1}u = \frac{-1}{\sqrt{1-u^2}}\frac{du}{dx}$$
 $[0 < \cos^{-1}u < \pi]$

13.22
$$\frac{d}{dx} \tan^{-1} u = \frac{1}{1+u^2} \frac{du}{dx}$$
 $\left[-\frac{\pi}{2} < \tan^{-1} u < \frac{\pi}{2} \right]$

13.23
$$\frac{d}{dx} \cot^{-1} u = \frac{-1}{1+u^2} \frac{du}{dx}$$
 $[0 < \cot^{-1} u < \pi]$

13.24
$$\frac{d}{dx} \sec^{-1} u = \frac{1}{|u| \sqrt{u^2 - 1}} \frac{du}{dx} = \frac{\pm 1}{u \sqrt{u^2 - 1}} \frac{du}{dx}$$
 $\begin{bmatrix} + & \text{if } 0 < \sec^{-1} u < \pi/2 \\ - & \text{if } \pi/2 < \sec^{-1} u < \pi \end{bmatrix}$

13.25
$$\frac{d}{dx} \csc^{-1} u = \frac{-1}{|u| \sqrt{u^2 - 1}} \frac{du}{dx} = \frac{\mp 1}{u \sqrt{u^2 - 1}} \frac{du}{dx} \qquad \begin{bmatrix} -\text{ if } 0 < \csc^{-1} u < \pi/2 \\ +\text{ if } -\pi/2 < \csc^{-1} u < 0 \end{bmatrix}$$

DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

13.26
$$\frac{d}{dx}\log_a u = \frac{\log_a e}{u} \frac{du}{dx}$$
 $a \neq 0, 1$

13.27
$$\frac{d}{dx} \ln u = \frac{d}{dx} \log_e u = \frac{1}{u} \frac{du}{dx}$$

$$13.28 \quad \frac{d}{dx}a^u = a^u \ln a \, \frac{du}{dx}$$

$$13.29 \quad \frac{d}{dx} e^u = e^u \frac{du}{dx}$$

13.30
$$\frac{d}{dx}u^v = \frac{d}{dx}e^{v \ln u} = e^{v \ln u} \frac{d}{dx}[v \ln u] = vu^{v-1}\frac{du}{dx} + u^v \ln u \frac{dv}{dx}$$

DERIVATIVES OF HYPERBOLIC AND INVERSE HYPERBOLIC FUNCTIONS

$$13.31 \quad \frac{d}{dx} \sinh u = \cosh u \, \frac{du}{dx}$$

13.34
$$\frac{d}{dx} \coth u = -\operatorname{csch}^2 u \frac{du}{dx}$$

$$13.32 \quad \frac{d}{dx}\cosh u = \sinh u \, \frac{du}{dx}$$

13.35
$$\frac{d}{dx} \operatorname{sech} u = - \operatorname{sech} u \tanh u \frac{du}{dx}$$

13.33
$$\frac{d}{dx} \tanh u = \operatorname{sech}^2 u \frac{du}{dx}$$

13.36
$$\frac{d}{dx} \operatorname{csch} u = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

13.37
$$\frac{d}{dx} \sinh^{-1} u = \frac{1}{\sqrt{u^2 + 1}} \frac{du}{dx}$$

13.38
$$\frac{d}{dx} \cosh^{-1} u = \frac{\pm 1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$
 $\begin{bmatrix} + & \text{if } \cosh^{-1} u > 0, \ u > 1 \\ - & \text{if } \cosh^{-1} u < 0, \ u > 1 \end{bmatrix}$

13.39
$$\frac{d}{dx} \tanh^{-1} u = \frac{1}{1 - u^2} \frac{du}{dx}$$
 [-1 < u < 1]

13.40
$$\frac{d}{dx} \coth^{-1} u = \frac{1}{1 - u^2} \frac{du}{dx}$$
 [$u > 1$ or $u < -1$]

13.41
$$\frac{d}{dx} \operatorname{sech}^{-1} u = \frac{\mp 1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

$$\begin{bmatrix} - & \text{if } \operatorname{sech}^{-1} u > 0, \ 0 < u < 1 \\ + & \text{if } \operatorname{sech}^{-1} u < 0, \ 0 < u < 1 \end{bmatrix}$$

13.42
$$\frac{d}{dx} \operatorname{csch}^{-1} u = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx} = \frac{\mp 1}{u\sqrt{1+u^2}} \frac{du}{dx}$$
 [- if $u > 0$, + if $u < 0$]

HIGHER DERIVATIVES

The second, third and higher derivatives are defined as follows.

13.43 Second derivative
$$=$$
 $\frac{d}{dx}\left(\frac{dy}{dx}\right)$ $=$ $\frac{d^2y}{dx^2}$ $=$ $f''(x)$ $=$ y''

13.44 Third derivative
$$=\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3} = f'''(x) = y'''$$

13.45 *n*th derivative
$$= \frac{d}{dx} \left(\frac{d^{n-1}y}{dx^{n-1}} \right) = \frac{d^ny}{dx^n} = f^{(n)}(x) = y^{(n)}$$

LEIBNITZ'S RULE FOR HIGHER DERIVATIVES OF PRODUCTS

Let D^p stand for the operator $\frac{d^p}{dx^p}$ so that $D^p u = \frac{d^p u}{dx^p}$ = the pth derivative of u. Then

13.46
$$D^{n}(uv) = uD^{n}v + \binom{n}{1}(Du)(D^{n-1}v) + \binom{n}{2}(D^{2}u)(D^{n-2}v) + \cdots + vD^{n}u$$
 where $\binom{n}{1}, \binom{n}{2}, \ldots$ are the binomial coefficients [page 3].

As special cases we have

13.47
$$\frac{d^2}{dx^2}(uv) = u \frac{d^2v}{dx^2} + 2 \frac{du}{dx} \frac{dv}{dx} + v \frac{d^2u}{dx^2}$$

13.48
$$\frac{d^3}{dx^3}(uv) = u \frac{d^3v}{dx^3} + 3 \frac{du}{dx} \frac{d^2v}{dx^2} + 3 \frac{d^2u}{dx^2} \frac{dv}{dx} + v \frac{d^3u}{dx^3}$$

DIFFERENTIALS

Let y = f(x) and $\Delta y = f(x + \Delta x) - f(x)$. Then

13.49
$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x) + \epsilon = \frac{dy}{dx} + \epsilon$$

where $\epsilon \to 0$ as $\Delta x \to 0$. Thus

$$\Delta y = f'(x) \Delta x + \epsilon \Delta x$$

If we call $\Delta x = dx$ the differential of x, then we define the differential of y to be

$$13.51 dy = f'(x) dx$$

RULES FOR DIFFERENTIALS

The rules for differentials are exactly analogous to those for derivatives. As examples we observe that

13.52
$$d(u \pm v \pm w \pm \cdots) = du \pm dv \pm dw \pm \cdots$$

$$13.53 d(uv) = u dv + v du$$

$$d\left(\frac{u}{v}\right) = \frac{v \, du - u \, dv}{v^2}$$

13.55
$$d(u^n) = nu^{n-1} du$$

$$13.56 d(\sin u) = \cos u \ du$$

$$13.57 d(\cos u) = -\sin u \ du$$

PARTIAL DERIVATIVES

Let f(x, y) be a function of the two variables x and y. Then we define the partial derivative of f(x, y) with respect to x, keeping y constant, to be

13.58
$$\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

Similarly the partial derivative of f(x, y) with respect to y, keeping x constant, is defined to be

13.59
$$\frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

Partial derivatives of higher order can be defined as follows.

13.60
$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

13.61
$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right), \quad \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

The results in 13.61 will be equal if the function and its partial derivatives are continuous, i.e. in such case the order of differentiation makes no difference.

The differential of f(x, y) is defined as

13.62
$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

where $dx = \Delta x$ and $dy = \Delta y$.

Extension to functions of more than two variables are exactly analogous.

INDEFINITE INTEGRALS

DEFINITION OF AN INDEFINITE INTEGRAL

If $\frac{dy}{dx} = f(x)$, then y is the function whose derivative is f(x) and is called the anti-derivative of f(x) or the indefinite integral of f(x), denoted by $\int f(x) dx$. Similarly if $y = \int f(u) du$, then $\frac{dy}{du} = f(u)$. Since the derivative of a constant is zero, all indefinite integrals differ by an arbitrary constant.

For the definition of a definite integral, see page 94. The process of finding an integral is called integration.

GENERAL RULES OF INTEGRATION

In the following, u, v, w are functions of x; a, b, p, q, n any constants, restricted if indicated; e=2.71828... is the natural base of logarithms; $\ln u$ denotes the natural logarithm of u where it is assumed that u>0 [in general, to extend formulas to cases where u<0 as well, replace $\ln u$ by $\ln |u|$]; all angles are in radians; all constants of integration are omitted but implied.

$$14.1 \qquad \int a \, dx = ax$$

$$14.2 \qquad \int af(x) dx = a \int f(x) dx$$

14.3
$$\int (u \pm v \pm w \pm \cdots) dx = \int u dx \pm \int v dx \pm \int w dx \pm \cdots$$

14.4
$$\int u \, dv = uv - \int v \, du$$
 [Integration by parts]

For generalized integration by parts, see 14.48.

$$14.5 \qquad \int f(ax) \ dx = \frac{1}{a} \int f(u) \ du$$

14.6
$$\int F\{f(x)\} dx = \int F(u) \frac{dx}{du} du = \int \frac{F(u)}{f'(x)} du \text{ where } u = f(x)$$

14.7
$$\int u^n du = \frac{u^{n+1}}{n+1}, \quad n \neq -1$$
 [For $n = -1$, see 14.8]

14.8
$$\int \frac{du}{u} = \ln u$$
 if $u > 0$ or $\ln (-u)$ if $u < 0$
 $= \ln |u|$

$$14.9 \qquad \int e^u du = e^u$$

14.10
$$\int a^u du = \int e^{u \ln a} du = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a}, \quad a > 0, \ a \neq 1$$

$$14.11 \quad \int \sin u \ du = -\cos u$$

$$14.12 \quad \int \cos u \ du = \sin u$$

$$14.13 \quad \int \tan u \ du = \ln \sec u = -\ln \cos u$$

$$14.14 \quad \int \cot u \ du = \ln \sin u$$

14.15
$$\int \sec u \ du = \ln (\sec u + \tan u) = \ln \tan \left(\frac{u}{2} + \frac{\pi}{4}\right)$$

14.16
$$\int \csc u \ du = \ln (\csc u - \cot u) = \ln \tan \frac{u}{2}$$

$$14.17 \quad \int \sec^2 u \ du = \tan u$$

$$14.18 \quad \int \csc^2 u \ du = -\cot u$$

$$14.19 \quad \int \tan^2 u \ du = \tan u - u$$

14.20
$$\int \cot^2 u \ du = -\cot u - u$$

14.21
$$\int \sin^2 u \ du = \frac{u}{2} - \frac{\sin 2u}{4} = \frac{1}{2}(u - \sin u \cos u)$$

14.22
$$\int \cos^2 u \ du = \frac{u}{2} + \frac{\sin 2u}{4} = \frac{1}{2}(u + \sin u \cos u)$$

14.23
$$\int \sec u \, \tan u \, du = \sec u$$

$$14.24 \quad \int \csc u \cot u \ du = -\csc u$$

$$14.25 \quad \int \sinh u \ du = \cosh u$$

$$14.26 \quad \int \cosh u \ du = \sinh u$$

14.27
$$\int \tanh u \ du = \ln \cosh u$$

$$14.28 \quad \int \coth u \ du = \ln \sinh u$$

14.29
$$\int \operatorname{sech} u \ du = \sin^{-1}(\tanh u)$$
 or $2 \tan^{-1} e^u$

14.30
$$\int \operatorname{csch} u \ du = \operatorname{ln} \tanh \frac{u}{2} \quad \text{or} \quad -\coth^{-1} e^{u}$$

$$14.31 \quad \int \operatorname{sech}^2 u \ du = \tanh u$$

$$14.32 \quad \int \operatorname{csch}^2 u \ du = -\coth u$$

$$14.33 \quad \int \tanh^2 u \ du = u - \tanh u$$

14.34
$$\int \coth^2 u \, du = u - \coth u$$
14.35
$$\int \sinh^2 u \, du = \frac{\sinh 2u}{4} - \frac{u}{2} = \frac{1}{2} (\sinh u \cosh u - u)$$
14.36
$$\int \cosh^2 u \, du = \frac{\sinh 2u}{4} + \frac{u}{2} = \frac{1}{2} (\sinh u \cosh u + u)$$
14.37
$$\int \operatorname{sech} u \, \tanh u \, du = -\operatorname{sech} u$$
14.38
$$\int \operatorname{csch} u \, \coth u \, du = -\operatorname{csch} u$$
14.39
$$\int \frac{du}{u^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{u}{a}$$
14.40
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left(\frac{u - a}{u + a} \right) = -\frac{1}{a} \coth^{-1} \frac{u}{a} \quad u^2 > a^2$$
14.41
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left(\frac{a + u}{a - u} \right) = \frac{1}{a} \tanh^{-1} \frac{u}{a} \quad u^2 < a^2$$
14.42
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a}$$
14.43
$$\int \frac{du}{\sqrt{u^2 + a^2}} = \ln \left(u + \sqrt{u^2 + a^2} \right) \quad \text{or} \quad \sinh^{-1} \frac{u}{a}$$
14.44
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \ln \left(u + \sqrt{u^2 - a^2} \right)$$

14.45
$$\int \frac{du}{u\sqrt{u^2-a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right|$$

14.46
$$\int \frac{du}{u\sqrt{u^2 + a^2}} = -\frac{1}{a} \ln \left(\frac{a + \sqrt{u^2 + a^2}}{u} \right)$$

14.47
$$\int \frac{du}{u\sqrt{a^2-u^2}} = -\frac{1}{a} \ln \left(\frac{a+\sqrt{a^2-u^2}}{u} \right)$$

14.48
$$\int f^{(n)}g \, dx = f^{(n-1)}g - f^{(n-2)}g' + f^{(n-3)}g'' - \cdots (-1)^n \int fg^{(n)} \, dx$$

This is called generalized integration by parts.

IMPORTANT TRANSFORMATIONS

Often in practice an integral can be simplified by using an appropriate transformation or substitution and formula 14.6, page 57. The following list gives some transformations and their effects.

14.49
$$\int F(ax+b) dx = \frac{1}{a} \int F(u) du$$
 where $u = ax+b$
14.50 $\int F(\sqrt{ax+b}) dx = \frac{2}{a} \int u F(u) du$ where $u = \sqrt{ax+b}$
14.51 $\int F(\sqrt[n]{ax+b}) dx = \frac{n}{a} \int u^{n-1} F(u) du$ where $u = \sqrt[n]{ax+b}$
14.52 $\int F(\sqrt{a^2-x^2}) dx = a \int F(a \cos u) \cos u du$ where $x = a \sin u$
14.53 $\int F(\sqrt{x^2+a^2}) dx = a \int F(a \sec u) \sec^2 u du$ where $x = a \tan u$

14.54
$$\int F(\sqrt{x^2-a^2}) dx = a \int F(a \tan u) \sec u \tan u du \quad \text{where} \quad x = a \sec u$$

14.55
$$\int F(e^{ax}) dx = \frac{1}{a} \int \frac{F(u)}{u} du \qquad \text{where} \quad u = e^{ax}$$

14.56
$$\int F(\ln x) dx = \int F(u) e^u du \qquad \text{where } u = \ln x$$

14.57
$$\int F\left(\sin^{-1}\frac{x}{a}\right) dx = a \int F(u) \cos u \, du$$
 where $u = \sin^{-1}\frac{x}{a}$

Similar results apply for other inverse trigonometric functions.

14.58
$$\int F(\sin x, \cos x) dx = 2 \int F\left(\frac{2u}{1+u^2}, \frac{1-u^2}{1+u^2}\right) \frac{du}{1+u^2}$$
 where $u = \tan \frac{x}{2}$

SPECIAL INTEGRALS

Pages 60 through 93 provide a table of integrals classified under special types. The remarks given on page 57 apply here as well. It is assumed in all cases that division by zero is excluded.

INTEGRALS INVOLVING ax + b

14.59
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln (ax+b)$$

14.60
$$\int \frac{x \, dx}{ax+b} = \frac{x}{a} - \frac{b}{a^2} \ln{(ax+b)}$$

14.61
$$\int \frac{x^2 dx}{ax+b} = \frac{(ax+b)^2}{2a^3} - \frac{2b(ax+b)}{a^3} + \frac{b^2}{a^3} \ln{(ax+b)}$$

14.62
$$\int \frac{x^3 dx}{ax+b} = \frac{(ax+b)^3}{3a^4} - \frac{3b(ax+b)^2}{2a^4} + \frac{3b^2(ax+b)}{a^4} - \frac{b^3}{a^4} \ln{(ax+b)}$$

14.63
$$\int \frac{dx}{x(ax+b)} = \frac{1}{b} \ln \left(\frac{x}{ax+b} \right)$$

$$14.64 \quad \int \frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \ln \left(\frac{ax+b}{x} \right)$$

14.65
$$\int \frac{dx}{x^3(ax+b)} = \frac{2ax-b}{2b^2x^2} + \frac{a^2}{b^3} \ln \left(\frac{x}{ax+b} \right)$$

14.66
$$\int \frac{dx}{(ax+b)^2} = \frac{-1}{a(ax+b)}$$

14.67
$$\int \frac{x \, dx}{(ax+b)^2} = \frac{b}{a^2(ax+b)} + \frac{1}{a^2} \ln{(ax+b)}$$

14.68
$$\int \frac{x^2 dx}{(ax+b)^2} = \frac{ax+b}{a^3} - \frac{b^2}{a^3(ax+b)} - \frac{2b}{a^3} \ln(ax+b)$$

14.69
$$\int \frac{x^3 dx}{(ax+b)^2} = \frac{(ax+b)^2}{2a^4} - \frac{3b(ax+b)}{a^4} + \frac{b^3}{a^4(ax+b)} + \frac{3b^2}{a^4} \ln(ax+b)$$

14.70
$$\int \frac{dx}{x(ax+b)^2} = \frac{1}{b(ax+b)} + \frac{1}{b^2} \ln \left(\frac{x}{ax+b} \right)$$

14.71
$$\int \frac{dx}{x^2(ax+b)^2} = \frac{-a}{b^2(ax+b)} - \frac{1}{b^2x} + \frac{2a}{b^3} \ln \left(\frac{ax+b}{x} \right)$$

14.72
$$\int \frac{dx}{x^3(ax+b)^2} = -\frac{(ax+b)^2}{2b^4x^2} + \frac{3a(ax+b)}{b^4x} - \frac{a^3x}{b^4(ax+b)} - \frac{3a^2}{b^4} \ln\left(\frac{ax+b}{x}\right)$$

14.73
$$\int \frac{dx}{(ax+b)^3} = \frac{-1}{2(ax+b)^2}$$

14.74
$$\int \frac{x \, dx}{(ax+b)^3} = \frac{-1}{a^2(ax+b)} + \frac{b}{2a^2(ax+b)^2}$$

14.75
$$\int \frac{x^2 dx}{(ax+b)^3} = \frac{2b}{a^3(ax+b)} - \frac{b^2}{2a^3(ax+b)^2} + \frac{1}{a^3} \ln{(ax+b)}$$

14.76
$$\int \frac{x^3 dx}{(ax+b)^3} = \frac{x}{a^3} - \frac{3b^2}{a^4(ax+b)} + \frac{b^3}{2a^4(ax+b)^2} - \frac{3b}{a^4} \ln{(ax+b)}$$

14.77
$$\int \frac{dx}{x(ax+b)^3} = \frac{a^2x^2}{2b^3(ax+b)^2} - \frac{2ax}{b^3(ax+b)} - \frac{1}{b^3} \ln \left(\frac{ax+b}{x} \right)$$

14.78
$$\int \frac{dx}{x^2(ax+b)^3} = \frac{-a}{2b^2(ax+b)^2} - \frac{2a}{b^3(ax+b)} - \frac{1}{b^3x} + \frac{3a}{b^4} \ln \left(\frac{ax+b}{x} \right)$$

14.79
$$\int \frac{dx}{x^3(ax+b)^3} = \frac{a^4x^2}{2b^5(ax+b)^2} - \frac{4a^3x}{b^5(ax+b)} - \frac{(ax+b)^2}{2b^5x^2} - \frac{6a^2}{b^5} \ln \left(\frac{ax+b}{x} \right)$$

14.80
$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)a}.$$
 If $n=-1$, see 14.59

14.81
$$\int x(ax+b)^n dx = \frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}, \quad n \neq -1, -2$$

If
$$n = -1, -2$$
, see 14.60, 14.67.

14.82
$$\int x^2 (ax+b)^n dx = \frac{(ax+b)^{n+3}}{(n+3)a^3} - \frac{2b(ax+b)^{n+2}}{(n+2)a^3} + \frac{b^2(ax+b)^{n+1}}{(n+1)a^3}$$
If $n = -1, -2, -3$, see 14.61, 14.68, 14.75.

14.83
$$\int x^{m}(ax+b)^{n} dx = \begin{cases} \frac{x^{m+1}(ax+b)^{n}}{m+n+1} + \frac{nb}{m+n+1} \int x^{m}(ax+b)^{n-1} dx \\ \frac{x^{m}(ax+b)^{n+1}}{(m+n+1)a} - \frac{mb}{(m+n+1)a} \int x^{m-1}(ax+b)^{n} dx \\ \frac{-x^{m+1}(ax+b)^{n+1}}{(n+1)b} + \frac{m+n+2}{(n+1)b} \int x^{m}(ax+b)^{n+1} dx \end{cases}$$

INTEGRALS INVOLVING $\sqrt{ax+b}$

$$14.84 \quad \int \frac{dx}{\sqrt{ax+b}} = \frac{2\sqrt{ax+b}}{a}$$

14.85
$$\int \frac{x \, dx}{\sqrt{ax+b}} = \frac{2(ax-2b)}{3a^2} \sqrt{ax+b}$$

14.86
$$\int \frac{x^2 dx}{\sqrt{ax+b}} = \frac{2(3a^2x^2 - 4abx + 8b^2)}{15a^3} \sqrt{ax+b}$$

14.87
$$\int \frac{dx}{x\sqrt{ax+b}} = \begin{cases} \frac{1}{\sqrt{b}} \ln \left(\frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}} \right) \\ \frac{2}{\sqrt{-b}} \tan^{-1} \sqrt{\frac{ax+b}{-b}} \end{cases}$$

14.88
$$\int \frac{dx}{x^2 \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{bx} - \frac{a}{2b} \int \frac{dx}{x\sqrt{ax+b}}$$
 [See 14.87]

14.89
$$\int \sqrt{ax+b} \ dx = \frac{2\sqrt{(ax+b)^3}}{3a}$$
14.90
$$\int x\sqrt{ax+b} \ dx = \frac{2(3ax-2b)}{15a^2} \sqrt{(ax+b)^3}$$
14.91
$$\int x^2\sqrt{ax+b} \ dx = \frac{2(15a^2x^2-12abx+8b^2)}{105a^3} \sqrt{(ax+b)^3}$$
14.92
$$\int \frac{\sqrt{ax+b}}{x} \ dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}} \qquad [See 14.87]$$
14.93
$$\int \frac{\sqrt{ax+b}}{x} \ dx = -\frac{\sqrt{ax+b}}{x} + \frac{a}{2} \int \frac{dx}{x\sqrt{ax+b}} \qquad [See 14.87]$$
14.94
$$\int \frac{x^m}{\sqrt{ax+b}} \ dx = \frac{2x^m\sqrt{ax+b}}{(2m+1)a} - \frac{2mb}{(2m+1)a} \int \frac{x^{m-1}}{\sqrt{ax+b}} \ dx$$
14.95
$$\int \frac{dx}{x^m\sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{(m-1)bx^{m-1}} - \frac{(2m-3)a}{(2m-2)b} \int \frac{dx}{x^{m-1}\sqrt{ax+b}}$$
14.96
$$\int x^m\sqrt{ax+b} \ dx = \frac{2x^m}{(2m+3)a} (ax+b)^{3/2} - \frac{2mb}{(2m+3)a} \int x^{m-1}\sqrt{ax+b} \ dx$$
14.97
$$\int \frac{\sqrt{ax+b}}{x^m} \ dx = -\frac{\sqrt{ax+b}}{(m-1)bx^{m-1}} + \frac{a}{2(m-1)} \int \frac{dx}{x^{m-1}\sqrt{ax+b}}$$
14.98
$$\int \frac{\sqrt{ax+b}}{x^m} \ dx = \frac{-(ax+b)^{9/2}}{(m-1)bx^{m-1}} - \frac{(2m-5)a}{(2m-2)b} \int \frac{\sqrt{ax+b}}{x^{m-1}} \ dx$$
14.99
$$\int (ax+b)^{m/2} \ dx = \frac{2(ax+b)^{(m+2)/2}}{a(m+2)}$$
14.100
$$\int x(ax+b)^{m/2} \ dx = \frac{2(ax+b)^{(m+2)/2}}{a^2(m+4)} - \frac{2b(ax+b)^{(m+2)/2}}{a^2(m+4)} + \frac{2b^2(ax+b)^{(m+2)/2}}{a^3(m+2)}$$
14.101
$$\int x^2(ax+b)^{m/2} \ dx = \frac{2(ax+b)^{(m+6)/2}}{a^3(m+6)} - \frac{4b(ax+b)^{(m+2)/2}}{a^3(m+4)} + \frac{2b^2(ax+b)^{(m+2)/2}}{a^3(m+2)}$$
14.102
$$\int \frac{(ax+b)^{m/2}}{x} \ dx = -\frac{(ax+b)^{(m+2)/2}}{a} + \frac{b}{bx} \int \frac{(ax+b)^{(m-2)/2}}{x} \ dx$$
14.103
$$\int \frac{(ax+b)^{m/2}}{x^2} \ dx = -\frac{(ax+b)^{(m+2)/2}}{bx} + \frac{1}{b} \int \frac{dx}{x(ax+b)^{(m-2)/2}} \ dx$$
14.104
$$\int \frac{dx}{x(ax+b)^{m/2}} \ dx = -\frac{(ax+b)^{(m+2)/2}}{(m-2)^{b}(ax+b)^{(m-2)/2}} + \frac{1}{b} \int \frac{dx}{x(ax+b)^{(m-2)/2}} \ dx$$

INTEGRALS INVOLVING ax + b AND px + q

14.105
$$\int \frac{dx}{(ax+b)(px+q)} = \frac{1}{bp-aq} \ln \left(\frac{px+q}{ax+b} \right)$$
14.106
$$\int \frac{x \, dx}{(ax+b)(px+q)} = \frac{1}{bp-aq} \left\{ \frac{b}{a} \ln (ax+b) - \frac{q}{p} \ln (px+q) \right\}$$
14.107
$$\int \frac{dx}{(ax+b)^2(px+q)} = \frac{1}{bp-aq} \left\{ \frac{1}{ax+b} + \frac{p}{bp-aq} \ln \left(\frac{px+q}{ax+b} \right) \right\}$$
14.108
$$\int \frac{x \, dx}{(ax+b)^2(px+q)} = \frac{1}{bp-aq} \left\{ \frac{q}{bp-aq} \ln \left(\frac{ax+b}{px+q} \right) - \frac{b}{a(ax+b)} \right\}$$
14.109
$$\int \frac{x^2 \, dx}{(ax+b)^2(px+q)} = \frac{b^2}{(bp-aq)a^2(ax+b)} + \frac{1}{(bp-aq)^2} \left\{ \frac{q^2}{p} \ln (px+q) + \frac{b(bp-2aq)}{a^2} \ln (ax+b) \right\}$$

14.110
$$\int \frac{dx}{(ax+b)^m(px+q)^n} = \frac{-1}{(n-1)(bp-aq)} \left\{ \frac{1}{(ax+b)^{m-1}(px+q)^{n-1}} + a(m+n-2) \int \frac{dx}{(ax+b)^m(px+q)^{n-1}} \right\}$$

$$+ a(m+n-2) \int \frac{dx}{(ax+b)^m(px+q)^{n-1}} dx$$
14.111
$$\int \frac{ax+b}{px+q} dx = \frac{ax}{p} + \frac{bp-aq}{p^2} \ln(px+q)$$

$$= \begin{cases} \frac{-1}{(n-1)(bp-aq)} \left\{ \frac{(ax+b)^{m+1}}{(px+q)^{n-1}} + (n-m-2)a \int \frac{(ax+b)^m}{(px+q)^{n-1}} dx \right\} \\ \frac{-1}{(n-m-1)p} \left\{ \frac{(ax+b)^m}{(px+q)^{n-1}} + m(bp-aq) \int \frac{(ax+b)^{m-1}}{(px+q)^n} dx \right\} \\ \frac{-1}{(n-1)p} \left\{ \frac{(ax+b)^m}{(px+q)^{n-1}} - ma \int \frac{(ax+b)^{m-1}}{(px+q)^{n-1}} dx \right\}$$

INTEGRALS INVOLVING $\sqrt{ax+b}$ AND px+q

14.113
$$\int \frac{px+q}{\sqrt{ax+b}} \, dx = \frac{2(apx+3aq-2bp)}{3a^2} \sqrt{ax+b}$$

$$= \begin{cases} \frac{1}{\sqrt{bp-aq}\sqrt{p}} \ln\left(\frac{\sqrt{p(ax+b)} - \sqrt{bp-aq}}{\sqrt{p(ax+b)} + \sqrt{bp-aq}}\right) \\ \frac{2}{\sqrt{aq-bp}\sqrt{p}} \tan^{-1}\sqrt{\frac{p(ax+b)}{aq-bp}} \end{cases}$$

$$14.115 \int \frac{\sqrt{ax+b}}{px+q} dx = \begin{cases} \frac{2\sqrt{ax+b}}{p} + \frac{\sqrt{bp-aq}}{p\sqrt{p}} \ln \left(\frac{\sqrt{p(ax+b)} - \sqrt{bp-aq}}{\sqrt{p(ax+b)} + \sqrt{bp-aq}} \right) \\ \frac{2\sqrt{ax+b}}{p} - \frac{2\sqrt{aq-bp}}{p\sqrt{p}} \tan^{-1} \sqrt{\frac{p(ax+b)}{aq-bp}} \end{cases}$$

14.116
$$\int (px+q)^n \sqrt{ax+b} \ dx = \frac{2(px+q)^{n+1} \sqrt{ax+b}}{(2n+3)p} + \frac{bp-aq}{(2n+3)p} \int \frac{(px+q)^n}{\sqrt{ax+b}} \ dx$$

14.117
$$\int \frac{dx}{(px+q)^n \sqrt{ax+b}} = \frac{\sqrt{ax+b}}{(n-1)(aq-bp)(px+q)^{n-1}} + \frac{(2n-3)a}{2(n-1)(aq-bp)} \int \frac{dx}{(nx+q)^{n-1} \sqrt{ax+b}}$$

14.118
$$\int \frac{(px+q)^n}{\sqrt{ax+b}} dx = \frac{2(px+q)^n \sqrt{ax+b}}{(2n+1)a} + \frac{2n(aq-bp)}{(2n+1)a} \int \frac{(px+q)^{n-1} dx}{\sqrt{ax+b}}$$

14.119
$$\int \frac{\sqrt{ax+b}}{(px+q)^n} dx = \frac{-\sqrt{ax+b}}{(n-1)p(px+q)^{n-1}} + \frac{a}{2(n-1)p} \int \frac{dx}{(px+q)^{n-1} \sqrt{ax+b}}$$

INTEGRALS INVOLVING $\sqrt{ax+b}$ AND $\sqrt{px+q}$

14.120
$$\int \frac{dx}{\sqrt{(ax+b)(px+q)}} = \begin{cases} \frac{2}{\sqrt{ap}} \ln \left(\sqrt{a(px+q)} + \sqrt{p(ax+b)} \right) \\ \frac{2}{\sqrt{-ap}} \tan^{-1} \sqrt{\frac{-p(ax+b)}{a(px+q)}} \end{cases}$$

14.121
$$\int \frac{x \, dx}{\sqrt{(ax+b)(px+q)}} = \frac{\sqrt{(ax+b)(px+q)}}{ap} - \frac{bp+aq}{2ap} \int \frac{dx}{\sqrt{(ax+b)(px+q)}}$$

14.122
$$\int \sqrt{(ax+b)(px+q)} \, dx = \frac{2apx + bp + aq}{4ap} \sqrt{(ax+b)(px+q)} - \frac{(bp - aq)^2}{8ap} \int \frac{dx}{\sqrt{(ax+b)(px+q)}}$$
14.123
$$\int \sqrt{\frac{px+q}{ax+b}} dx = \frac{\sqrt{(ax+b)(px+q)}}{a} + \frac{aq - bp}{2a} \int \frac{dx}{\sqrt{(ax+b)(px+q)}}$$
14.124
$$\int \frac{dx}{(px+q)\sqrt{(ax+b)(px+q)}} = \frac{2\sqrt{ax+b}}{(aq-bp)\sqrt{px+q}}$$

INTEGRALS INVOLVING x^2+a^2

$$\begin{aligned} &\mathbf{14.125} \quad \int \frac{dx}{x^2 + a^2} &= \frac{1}{a} \tan^{-1} \frac{x}{a} \\ &\mathbf{14.126} \quad \int \frac{x \, dx}{x^2 + a^2} &= \frac{1}{2} \ln (x^2 + a^2) \\ &\mathbf{14.127} \quad \int \frac{x^2 \, dx}{x^2 + a^2} &= x - a \tan^{-1} \frac{x}{a} \\ &\mathbf{14.128} \quad \int \frac{x^3 \, dx}{x^2 + a^2} &= \frac{x^2}{2} - \frac{a^2}{2} \ln (x^2 + a^2) \\ &\mathbf{14.129} \quad \int \frac{dx}{x(x^2 + a^2)} &= \frac{1}{2a^2} \ln \left(\frac{x^2}{x^2 + a^2} \right) \\ &\mathbf{14.130} \quad \int \frac{dx}{x^2(x^2 + a^2)} &= -\frac{1}{a^2x} - \frac{1}{a^3} \tan^{-1} \frac{x}{a} \\ &\mathbf{14.131} \quad \int \frac{dx}{x^3(x^2 + a^2)} &= -\frac{1}{2a^2x^2} - \frac{1}{2a^4} \ln \left(\frac{x^2}{x^2 + a^2} \right) \\ &\mathbf{14.132} \quad \int \frac{dx}{(x^2 + a^2)^2} &= \frac{1}{2a^2x^2 + a^2} + \frac{1}{2a^3} \tan^{-1} \frac{x}{a} \\ &\mathbf{14.133} \quad \int \frac{x \, dx}{(x^2 + a^2)^2} &= \frac{-1}{2(x^2 + a^2)} \\ &\mathbf{14.134} \quad \int \frac{x^2 \, dx}{(x^2 + a^2)^2} &= \frac{-1}{2(x^2 + a^2)} + \frac{1}{2a} \tan^{-1} \frac{x}{a} \\ &\mathbf{14.135} \quad \int \frac{x^3 \, dx}{(x^2 + a^2)^2} &= \frac{a^2}{2(x^2 + a^2)} + \frac{1}{2} \ln (x^2 + a^2) \\ &\mathbf{14.136} \quad \int \frac{dx}{x(x^2 + a^2)^2} &= -\frac{1}{2a^2(x^2 + a^2)} + \frac{1}{2a^4} \ln \left(\frac{x^2}{x^2 + a^2} \right) \\ &\mathbf{14.137} \quad \int \frac{dx}{x^2(x^2 + a^2)^2} &= -\frac{1}{a^4x} - \frac{x}{2a^4(x^2 + a^2)} - \frac{3}{a^6} \tan^{-1} \frac{x}{a} \\ &\mathbf{14.138} \quad \int \frac{dx}{x^3(x^2 + a^2)^2} &= -\frac{1}{2a^4x^2} - \frac{1}{2a^4(x^2 + a^2)} - \frac{1}{a^6} \ln \left(\frac{x^2}{x^2 + a^2} \right) \\ &\mathbf{14.139} \quad \int \frac{dx}{(x^2 + a^2)^n} &= \frac{x}{2(n - 1)a^2(x^2 + a^2)^{n - 1}} + \frac{2n - 3}{(2n - 2)a^2} \int \frac{dx}{(x^2 + a^2)^{n - 1}} \\ &\mathbf{14.140} \quad \int \frac{x \, dx}{(x^2 + a^2)^n} &= \frac{1}{2(n - 1)a^2(x^2 + a^2)^{n - 1}} + \frac{1}{a^2} \int \frac{dx}{x(x^2 + a^2)^{n - 1}} \\ &\mathbf{14.141} \quad \int \frac{dx}{x^2(x^2 + a^2)^n} &= \int \frac{x^{m - 2} \, dx}{(x^2 + a^2)^{n - 1}} - \frac{1}{a^2} \int \frac{dx}{x^{m - 2}(x^2 + a^2)^n} \\ &\mathbf{14.143} \quad \int \frac{dx}{x^m(x^2 + a^2)^n} &= \frac{1}{a^2} \int \frac{dx}{x^m(x^2 + a^2)^{n - 1}} - \frac{1}{a^2} \int \frac{dx}{x^m(x^2 + a^2)^n} \end{aligned}$$

INTEGRALS INVOLVING x^2-a^2 , $x^2>a^2$

14.144
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left(\frac{x - a}{x + a} \right) \quad \text{or} \quad -\frac{1}{a} \coth^{-1} \frac{x}{a}$$

14.145
$$\int \frac{x \, dx}{x^2 - a^2} = \frac{1}{2} \ln (x^2 - a^2)$$

14.146
$$\int \frac{x^2 dx}{x^2 - a^2} = x + \frac{a}{2} \ln \left(\frac{x - a}{x + a} \right)$$

14.147
$$\int \frac{x^3 dx}{x^2 - a^2} = \frac{x^2}{2} + \frac{a^2}{2} \ln(x^2 - a^2)$$

14.148
$$\int \frac{dx}{x(x^2 - a^2)} = \frac{1}{2a^2} \ln \left(\frac{x^2 - a^2}{x^2} \right)$$

14.149
$$\int \frac{dx}{x^2(x^2-a^2)} = \frac{1}{a^2x} + \frac{1}{2a^3} \ln \left(\frac{x-a}{x+a} \right)$$

14.150
$$\int \frac{dx}{x^3(x^2-a^2)} = \frac{1}{2a^2x^2} - \frac{1}{2a^4} \ln \left(\frac{x^2}{x^2-a^2} \right)$$

14.151
$$\int \frac{dx}{(x^2 - a^2)^2} = \frac{-x}{2a^2(x^2 - a^2)} - \frac{1}{4a^3} \ln \left(\frac{x - a}{x + a} \right)$$

14.152
$$\int \frac{x \, dx}{(x^2 - a^2)^2} = \frac{-1}{2(x^2 - a^2)}$$

14.153
$$\int \frac{x^2 dx}{(x^2 - a^2)^2} = \frac{-x}{2(x^2 - a^2)} + \frac{1}{4a} \ln \left(\frac{x - a}{x + a} \right)$$

14.154
$$\int \frac{x^3 dx}{(x^2 - a^2)^2} = \frac{-a^2}{2(x^2 - a^2)} + \frac{1}{2} \ln (x^2 - a^2)$$

14.155
$$\int \frac{dx}{x(x^2-a^2)^2} = \frac{-1}{2a^2(x^2-a^2)} + \frac{1}{2a^4} \ln \left(\frac{x^2}{x^2-a^2} \right)$$

14.156
$$\int \frac{dx}{x^2(x^2-a^2)^2} = -\frac{1}{a^4x} - \frac{x}{2a^4(x^2-a^2)} - \frac{3}{4a^5} \ln\left(\frac{x-a}{x+a}\right)$$

14.157
$$\int \frac{dx}{x^3(x^2-a^2)^2} = -\frac{1}{2a^4x^2} - \frac{1}{2a^4(x^2-a^2)} + \frac{1}{a^6} \ln \left(\frac{x^2}{x^2-a^2} \right)$$

14.158
$$\int \frac{dx}{(x^2 - a^2)^n} = \frac{-x}{2(n-1)a^2(x^2 - a^2)^{n-1}} - \frac{2n-3}{(2n-2)a^2} \int \frac{dx}{(x^2 - a^2)^{n-1}}$$

14.159
$$\int \frac{x \, dx}{(x^2 - a^2)^n} = \frac{-1}{2(n-1)(x^2 - a^2)^{n-1}}$$

14.160
$$\int \frac{dx}{x(x^2-a^2)^n} = \frac{-1}{2(n-1)a^2(x^2-a^2)^{n-1}} - \frac{1}{a^2} \int \frac{dx}{x(x^2-a^2)^{n-1}}$$

14.161
$$\int \frac{x^m dx}{(x^2 - a^2)^n} = \int \frac{x^{m-2} dx}{(x^2 - a^2)^{n-1}} + a^2 \int \frac{x^{m-2} dx}{(x^2 - a^2)^n}$$

14.162
$$\int \frac{dx}{x^m(x^2-a^2)^n} = \frac{1}{a^2} \int \frac{dx}{x^{m-2}(x^2-a^2)^n} - \frac{1}{a^2} \int \frac{dx}{x^m(x^2-a^2)^{n-1}}$$

INTEGRALS INVOLVING a^2-x^2 , $x^2 < a^2$

14.163
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left(\frac{a + x}{a - x} \right) \quad \text{or} \quad \frac{1}{a} \tanh^{-1} \frac{x}{a}$$

14.164
$$\int \frac{x \, dx}{a^2 - x^2} = -\frac{1}{2} \ln (a^2 - x^2)$$

14.165
$$\int \frac{x^2 dx}{a^2 - x^2} = -x + \frac{a}{2} \ln \left(\frac{a + x}{a - x} \right)$$

14.166
$$\int \frac{x^3 dx}{a^2 - x^2} = -\frac{x^2}{2} - \frac{a^2}{2} \ln (a^2 - x^2)$$

14.167
$$\int \frac{dx}{x(a^2-x^2)} = \frac{1}{2a^2} \ln \left(\frac{x^2}{a^2-x^2} \right)$$

14.168
$$\int \frac{dx}{x^2(a^2-x^2)} = -\frac{1}{a^2x} + \frac{1}{2a^3} \ln \left(\frac{a+x}{a-x} \right)$$

14.169
$$\int \frac{dx}{x^3(a^2-x^2)} = -\frac{1}{2a^2x^2} + \frac{1}{2a^4} \ln \left(\frac{x^2}{a^2-x^2} \right)$$

14.170
$$\int \frac{dx}{(a^2-x^2)^2} = \frac{x}{2a^2(a^2-x^2)} + \frac{1}{4a^3} \ln \left(\frac{a+x}{a-x} \right)$$

14.171
$$\int \frac{x \, dx}{(a^2 - x^2)^2} = \frac{1}{2(a^2 - x^2)}$$

14.172
$$\int \frac{x^2 dx}{(a^2 - x^2)^2} = \frac{x}{2(a^2 - x^2)} - \frac{1}{4a} \ln \left(\frac{a + x}{a - x} \right)$$

14.173
$$\int \frac{x^3 dx}{(a^2 - x^2)^2} = \frac{a^2}{2(a^2 - x^2)} + \frac{1}{2} \ln (a^2 - x^2)$$

14.174
$$\int \frac{dx}{x(a^2-x^2)^2} = \frac{1}{2a^2(a^2-x^2)} + \frac{1}{2a^4} \ln \left(\frac{x^2}{a^2-x^2} \right)$$

14.175
$$\int \frac{dx}{x^2(a^2-x^2)^2} = \frac{-1}{a^4x} + \frac{x}{2a^4(a^2-x^2)} + \frac{3}{4a^5} \ln\left(\frac{a+x}{a-x}\right)$$

14.176
$$\int \frac{dx}{x^3(a^2-x^2)^2} = \frac{-1}{2a^4x^2} + \frac{1}{2a^4(a^2-x^2)} + \frac{1}{a^6} \ln \left(\frac{x^2}{a^2-x^2} \right)$$

14.177
$$\int \frac{dx}{(a^2-x^2)^n} = \frac{x}{2(n-1)a^2(a^2-x^2)^{n-1}} + \frac{2n-3}{(2n-2)a^2} \int \frac{dx}{(a^2-x^2)^{n-1}}$$

14.178
$$\int \frac{x \, dx}{(a^2 - x^2)^n} = \frac{1}{2(n-1)(a^2 - x^2)^{n-1}}$$

14.179
$$\int \frac{dx}{x(a^2-x^2)^n} = \frac{1}{2(n-1)a^2(a^2-x^2)^{n-1}} + \frac{1}{a^2} \int \frac{dx}{x(a^2-x^2)^{n-1}}$$

14.180
$$\int \frac{x^m dx}{(a^2 - x^2)^n} = a^2 \int \frac{x^{m-2} dx}{(a^2 - x^2)^n} - \int \frac{x^{m-2} dx}{(a^2 - x^2)^{n-1}}$$

14.181
$$\int \frac{dx}{x^m(a^2-x^2)^n} = \frac{1}{a^2} \int \frac{dx}{x^m(a^2-x^2)^{n-1}} + \frac{1}{a^2} \int \frac{dx}{x^{m-2}(a^2-x^2)^n}$$

INTEGRALS INVOLVING $\sqrt{x^2+a^2}$

14.182
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2})$$
 or $\sinh^{-1} \frac{x}{a}$

14.183
$$\int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 + a^2}$$

14.184
$$\int \frac{x^2 dx}{\sqrt{x^2 + a^2}} = \frac{x\sqrt{x^2 + a^2}}{2} - \frac{a^2}{2} \ln (x + \sqrt{x^2 + a^2})$$

14.185
$$\int \frac{x^3 dx}{\sqrt{x^2 + a^2}} = \frac{(x^2 + a^2)^{3/2}}{3} - a^2 \sqrt{x^2 + a^2}$$

14.186
$$\int \frac{dx}{x\sqrt{x^2+a^2}} = -\frac{1}{a} \ln \left(\frac{a+\sqrt{x^2+a^2}}{x} \right)$$

14.187
$$\int \frac{dx}{x^2 \sqrt{x^2 + a^2}} = -\frac{\sqrt{x^2 + a^2}}{a^2 x}$$

14.188
$$\int \frac{dx}{x^3 \sqrt{x^2 + a^2}} = -\frac{\sqrt{x^2 + a^2}}{2a^2 x^2} + \frac{1}{2a^3} \ln \left(\frac{a + \sqrt{x^2 + a^2}}{x} \right)$$

14.189
$$\int \sqrt{x^2 + a^2} \ dx = \frac{x\sqrt{x^2 + a^2}}{2} + \frac{a^2}{2} \ln (x + \sqrt{x^2 + a^2})$$

14.190
$$\int x\sqrt{x^2+a^2} \ dx = \frac{(x^2+a^2)^{3/2}}{3}$$

14.191
$$\int x^2 \sqrt{x^2 + a^2} \, dx = \frac{x(x^2 + a^2)^{3/2}}{4} - \frac{a^2 x \sqrt{x^2 + a^2}}{8} - \frac{a^4}{8} \ln (x + \sqrt{x^2 + a^2})$$

14.192
$$\int x^3 \sqrt{x^2 + a^2} \ dx = \frac{(x^2 + a^2)^{5/2}}{5} - \frac{a^2(x^2 + a^2)^{3/2}}{3}$$

14.193
$$\int \frac{\sqrt{x^2 + a^2}}{x} dx = \sqrt{x^2 + a^2} - a \ln \left(\frac{a + \sqrt{x^2 + a^2}}{x} \right)$$

14.194
$$\int \frac{\sqrt{x^2 + a^2}}{x^2} dx = -\frac{\sqrt{x^2 + a^2}}{x} + \ln(x + \sqrt{x^2 + a^2})$$

14.195
$$\int \frac{\sqrt{x^2 + a^2}}{x^3} dx = -\frac{\sqrt{x^2 + a^2}}{2x^2} - \frac{1}{2a} \ln \left(\frac{a + \sqrt{x^2 + a^2}}{x} \right)$$

14.196
$$\int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{x}{a^2 \sqrt{x^2 + a^2}}$$

14.197
$$\int \frac{x \, dx}{(x^2 + a^2)^{3/2}} = \frac{-1}{\sqrt{x^2 + a^2}}$$

14.198
$$\int \frac{x^2 dx}{(x^2 + a^2)^{3/2}} = \frac{-x}{\sqrt{x^2 + a^2}} + \ln(x + \sqrt{x^2 + a^2})$$

14.199
$$\int \frac{x^3 dx}{(x^2 + a^2)^{3/2}} = \sqrt{x^2 + a^2} + \frac{a^2}{\sqrt{x^2 + a^2}}$$

14.200
$$\int \frac{dx}{x(x^2+a^2)^{3/2}} = \frac{1}{a^2\sqrt{x^2+a^2}} - \frac{1}{a^3} \ln \left(\frac{a+\sqrt{x^2+a^2}}{x} \right)$$

14.201
$$\int \frac{dx}{x^2(x^2+a^2)^{3/2}} = -\frac{\sqrt{x^2+a^2}}{a^4x} - \frac{x}{a^4\sqrt{x^2+a^2}}$$

14.202
$$\int \frac{dx}{x^3(x^2+a^2)^{3/2}} = \frac{-1}{2a^2x^2\sqrt{x^2+a^2}} - \frac{3}{2a^4\sqrt{x^2+a^2}} + \frac{3}{2a^5} \ln\left(\frac{a+\sqrt{x^2+a^2}}{x}\right)$$

14.203
$$\int (x^2 + a^2)^{3/2} dx = \frac{x(x^2 + a^2)^{3/2}}{4} + \frac{3a^2x\sqrt{x^2 + a^2}}{8} + \frac{3}{8}a^4 \ln(x + \sqrt{x^2 + a^2})$$
14.204
$$\int x(x^2 + a^2)^{3/2} dx = \frac{(x^2 + a^2)^{5/2}}{5}$$
14.205
$$\int x^2(x^2 + a^2)^{3/2} dx = \frac{x(x^2 + a^2)^{5/2}}{6} - \frac{a^2x(x^2 + a^2)^{3/2}}{24} - \frac{a^4x\sqrt{x^2 + a^2}}{16} - \frac{a^6}{16} \ln(x + \sqrt{x^2 + a^2})$$
14.206
$$\int x^3(x^2 + a^2)^{3/2} dx = \frac{(x^2 + a^2)^{7/2}}{7} - \frac{a^2(x^2 + a^2)^{5/2}}{5}$$
14.207
$$\int \frac{(x^2 + a^2)^{3/2}}{x} dx = \frac{(x^2 + a^2)^{3/2}}{3} + a^2\sqrt{x^2 + a^2} - a^3 \ln\left(\frac{a + \sqrt{x^2 + a^2}}{x}\right)$$
14.208
$$\int \frac{(x^2 + a^2)^{3/2}}{x^2} dx = -\frac{(x^2 + a^2)^{3/2}}{x} + \frac{3x\sqrt{x^2 + a^2}}{2} + \frac{3}{2}a^2 \ln(x + \sqrt{x^2 + a^2})$$

INTEGRALS INVOLVING $\sqrt{x^2-a^2}$

14.210
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln(x + \sqrt{x^2 - a^2}), \qquad \int \frac{x \, dx}{\sqrt{x^2 - a^2}} = \sqrt{x^2 - a^2}$$
14.211
$$\int \frac{x^2 \, dx}{\sqrt{x^2 - a^2}} = \frac{x\sqrt{x^2 - a^2}}{2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 - a^2})$$
14.212
$$\int \frac{x^3 \, dx}{\sqrt{x^2 - a^2}} = \frac{(x^2 - a^2)^{3/2}}{3} + a^2 \sqrt{x^2 - a^2}$$
14.213
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{x}{a} \right|$$
14.214
$$\int \frac{dx}{x^2 \sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{a^2 x}$$
14.215
$$\int \frac{dx}{x^3 \sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{2a^2 x^2} + \frac{1}{2a^3} \sec^{-1} \left| \frac{x}{a} \right|$$
14.216
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x\sqrt{x^2 - a^2}}{2} - \frac{a^2}{2} \ln(x + \sqrt{x^2 - a^2})$$
14.217
$$\int x\sqrt{x^2 - a^2} \, dx = \frac{(x^2 - a^2)^{3/2}}{3}$$
14.218
$$\int x^2 \sqrt{x^2 - a^2} \, dx = \frac{x(x^2 - a^2)^{3/2}}{4} + \frac{a^2 x \sqrt{x^2 - a^2}}{8} - \frac{a^4}{8} \ln(x + \sqrt{x^2 - a^2})$$
14.219
$$\int x^3 \sqrt{x^2 - a^2} \, dx = \frac{(x^2 - a^2)^{5/2}}{5} + \frac{a^2(x^2 - a^2)^{3/2}}{3}$$
14.220
$$\int \frac{\sqrt{x^2 - a^2}}{x^2} \, dx = -\frac{\sqrt{x^2 - a^2}}{x} + \ln(x + \sqrt{x^2 - a^2})$$
14.221
$$\int \frac{\sqrt{x^2 - a^2}}{x^2} \, dx = -\frac{\sqrt{x^2 - a^2}}{x} + \ln(x + \sqrt{x^2 - a^2})$$
14.222
$$\int \frac{\sqrt{x^2 - a^2}}{x^2} \, dx = -\frac{\sqrt{x^2 - a^2}}{2x^2} + \frac{1}{2a} \sec^{-1} \left| \frac{x}{a} \right|$$

14.223 $\int \frac{dx}{(x^2-a^2)^{3/2}} = -\frac{x}{a^2\sqrt{x^2-a^2}}$

14.209 $\left(\frac{(x^2 + a^2)^{3/2}}{x^3} dx \right) = -\frac{(x^2 + a^2)^{3/2}}{2x^2} + \frac{3}{2} \sqrt{x^2 + a^2} - \frac{3}{2} a \ln \left(\frac{a + \sqrt{x^2 + a^2}}{x^2} \right) \right)$

14.224
$$\int \frac{x \, dx}{(x^2 - a^2)^{3/2}} = \frac{-1}{\sqrt{x^2 - a^2}}$$
14.225
$$\int \frac{x^2 \, dx}{(x^2 - a^2)^{3/2}} = -\frac{x}{\sqrt{x^2 - a^2}} + \ln\left(x + \sqrt{x^2 - a^2}\right)$$
14.226
$$\int \frac{x^3 \, dx}{(x^2 - a^2)^{3/2}} = \sqrt{x^2 - a^2} - \frac{a^2}{\sqrt{x^2 - a^2}}$$
14.227
$$\int \frac{dx}{x(x^2 - a^2)^{3/2}} = \frac{-1}{a^2\sqrt{x^2 - a^2}} - \frac{1}{a^3} \sec^{-1} \left| \frac{x}{a} \right|$$

14.228
$$\int \frac{dx}{x^2(x^2-u^2)^{3/2}} = -\frac{\sqrt{x^2-a^2}}{a^4x} - \frac{x}{a^4\sqrt{x^2-a^2}}$$

14.229
$$\int \frac{dx}{x^3(x^2-a^2)^{3/2}} = \frac{1}{2a^2x^2\sqrt{x^2-a^2}} - \frac{3}{2a^4\sqrt{x^2-a^2}} - \frac{3}{2a^5} \sec^{-1} \left| \frac{x}{a} \right|$$

14.230
$$\int (x^2-a^2)^{3/2} dx = \frac{x(x^2-a^2)^{3/2}}{4} - \frac{3a^2x\sqrt{x^2-a^2}}{8} + \frac{3}{8}a^4 \ln(x+\sqrt{x^2-a^2})$$

14.231
$$\int x(x^2-a^2)^{3/2} dx = \frac{(x^2-a^2)^{5/2}}{5}$$

14.232
$$\int x^2(x^2-a^2)^{3/2} dx = \frac{x(x^2-a^2)^{5/2}}{6} + \frac{a^2x(x^2-a^2)^{3/2}}{24} - \frac{a^4x\sqrt{x^2-a^2}}{16} + \frac{a^6}{16} \ln(x+\sqrt{x^2-a^2})$$

14.233
$$\int x^3(x^2-a^2)^{3/2} dx = \frac{(x^2-a^2)^{7/2}}{7} + \frac{a^2(x^2-a^2)^{5/2}}{5}$$

14.234
$$\int \frac{(x^2 - a^2)^{3/2}}{x} dx = \frac{(x^2 - a^2)^{3/2}}{3} - a^2 \sqrt{x^2 - a^2} + a^3 \sec^{-1} \left| \frac{x}{a} \right|$$

14.235
$$\int \frac{(x^2-a^2)^{3/2}}{x^2} dx = -\frac{(x^2-a^2)^{3/2}}{x} + \frac{3x\sqrt{x^2-a^2}}{2} - \frac{3}{2}a^2 \ln(x+\sqrt{x^2-a^2})$$

14.236
$$\int \frac{(x^2 - a^2)^{3/2}}{x^3} dx = -\frac{(x^2 - a^2)^{3/2}}{2x^2} + \frac{3\sqrt{x^2 - a^2}}{2} - \frac{3}{2} a \sec^{-1} \left| \frac{x}{a} \right|$$

INTEGRALS INVOLVING $\sqrt{a^2-x^2}$

14.237
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a}$$

14.238
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2}$$

14.239
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$

14.240
$$\int \frac{x^3 dx}{\sqrt{a^2 - x^2}} = \frac{(a^2 - x^2)^{3/2}}{3} - a^2 \sqrt{a^2 - x^2}$$

14.241
$$\int \frac{dx}{x\sqrt{a^2-x^2}} = -\frac{1}{a} \ln \left(\frac{a+\sqrt{a^2-x^2}}{x} \right)$$

14.242
$$\int \frac{dx}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x}$$

14.243
$$\int \frac{dx}{x^3 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{2a^2 x^2} - \frac{1}{2a^3} \ln \left(\frac{a + \sqrt{a^2 - x^2}}{x} \right)$$

14.244
$$\int \sqrt{a^2 - x^2} \ dx = \frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$

14.245
$$\int x\sqrt{a^2-x^2} \ dx = -\frac{(a^2-x^2)^{3/2}}{3}$$

14.246
$$\int x^2 \sqrt{a^2 - x^2} \ dx = -\frac{x(a^2 - x^2)^{3/2}}{4} + \frac{a^2 x \sqrt{a^2 - x^2}}{8} + \frac{a^4}{8} \sin^{-1} \frac{x}{a^2}$$

14.247
$$\int x^3 \sqrt{a^2 - x^2} \ dx = \frac{(a^2 - x^2)^{5/2}}{5} - \frac{a^2 (a^2 - x^2)^{3/2}}{3}$$

14.248
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left(\frac{a + \sqrt{a^2 - x^2}}{x} \right)$$

14.249
$$\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \sin^{-1} \frac{x}{a}$$

14.250
$$\int \frac{\sqrt{a^2 - x^2}}{x^3} dx = -\frac{\sqrt{a^2 - x^2}}{2x^2} + \frac{1}{2a} \ln \left(\frac{a + \sqrt{a^2 - x^2}}{x} \right)$$

14.251
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

14.252
$$\int \frac{x \, dx}{(a^2 - x^2)^{3/2}} = \frac{1}{\sqrt{a^2 - x^2}}$$

14.253
$$\int \frac{x^2 dx}{(a^2 - x^2)^{3/2}} = \frac{x}{\sqrt{a^2 - x^2}} - \sin^{-1} \frac{x}{a}$$

14.254
$$\int \frac{x^3 dx}{(a^2 - x^2)^{3/2}} = \sqrt{a^2 - x^2} + \frac{a^2}{\sqrt{a^2 - x^2}}$$

14.255
$$\int \frac{dx}{x(a^2-x^2)^{3/2}} = \frac{1}{a^2\sqrt{a^2-x^2}} - \frac{1}{a^3} \ln\left(\frac{a+\sqrt{a^2-x^2}}{x}\right)$$

14.256
$$\int \frac{dx}{x^2(\alpha^2 - x^2)^{3/2}} = -\frac{\sqrt{a^2 - x^2}}{\alpha^4 x} + \frac{x}{a^4 \sqrt{a^2 - x^2}}$$

14.257
$$\int \frac{dx}{x^3(a^2-x^2)^{3/2}} = \frac{-1}{2a^2x^2\sqrt{a^2-x^2}} + \frac{3}{2a^4\sqrt{a^2-x^2}} - \frac{3}{2a^5} \ln\left(\frac{a+\sqrt{a^2-x^2}}{x}\right)$$

14.258
$$\int (a^2 - x^2)^{3/2} dx = \frac{x(a^2 - x^2)^{3/2}}{4} + \frac{3a^2x\sqrt{a^2 - x^2}}{8} + \frac{3}{8}a^4 \sin^{-1}\frac{x}{a}$$

14.259
$$\int x(a^2-x^2)^{3/2} dx = -\frac{(a^2-x^2)^{5/2}}{5}$$

14.260
$$\int x^2 (a^2 - x^2)^{3/2} dx = -\frac{x(a^2 - x^2)^{5/2}}{6} + \frac{a^2 x(a^2 - x^2)^{3/2}}{24} + \frac{a^4 x \sqrt{a^2 - x^2}}{16} + \frac{a^6}{16} \sin^{-1} \frac{x}{a}$$

14.261
$$\int x^3 (a^2 - x^2)^{3/2} dx = \frac{(a^2 - x^2)^{7/2}}{7} - \frac{a^2 (a^2 - x^2)^{5/2}}{5}$$

14.262
$$\int \frac{(a^2 - x^2)^{3/2}}{x} dx = \frac{(a^2 - x^2)^{3/2}}{3} + a^2 \sqrt{a^2 - x^2} - a^3 \ln \left(\frac{a + \sqrt{a^2 - x^2}}{x} \right)$$

14.263
$$\int \frac{(a^2 - x^2)^{3/2}}{x^2} dx = -\frac{(a^2 - x^2)^{3/2}}{x} - \frac{3x\sqrt{a^2 - x^2}}{2} - \frac{3}{2}a^2 \sin^{-1}\frac{x}{a}$$

14.264
$$\int \frac{(a^2 - x^2)^{3/2}}{x^3} dx = -\frac{(a^2 - x^2)^{3/2}}{2x^2} - \frac{3\sqrt{a^2 - x^2}}{2} + \frac{3}{2} a \ln \left(\frac{a + \sqrt{a^2 - x^2}}{x} \right)$$

INTEGRALS INVOLVING $ax^2 + bx + c$

14.265
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}} \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left(\frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right) \end{cases}$$

If $b^2 = 4ac$, $ax^2 + bx + c = a(x + b/2a)^2$ and the results on pages 60-61 can be used. If b = 0 use results on page 64. If a or c = 0 use results on pages 60-61.

14.266
$$\int \frac{x \, dx}{ax^2 + bx + c} = \frac{1}{2a} \ln (ax^2 + bx + c) - \frac{b}{2a} \int \frac{dx}{ax^2 + bx + c}$$

14.267
$$\int \frac{x^2 dx}{ax^2 + bx + c} = \frac{x}{a} - \frac{b}{2a^2} \ln(ax^2 + bx + c) + \frac{b^2 - 2ac}{2a^2} \int \frac{dx}{ax^2 + bx + c}$$

14.268
$$\int \frac{x^m dx}{ax^2 + bx + c} = \frac{x^{m-1}}{(m-1)a} - \frac{c}{a} \int \frac{x^{m-2} dx}{ax^2 + bx + c} - \frac{b}{a} \int \frac{x^{m-1} dx}{ax^2 + bx + c}$$

14.269
$$\int \frac{dx}{x(ax^2 + bx + c)} = \frac{1}{2c} \ln \left(\frac{x^2}{ax^2 + bx + c} \right) - \frac{b}{2c} \int \frac{dx}{ax^2 + bx + c}$$

14.270
$$\int \frac{dx}{x^2(ax^2+bx+c)} = \frac{b}{2c^2} \ln \left(\frac{ax^2+bx+c}{x^2} \right) - \frac{1}{cx} + \frac{b^2-2ac}{2c^2} \int \frac{dx}{ax^2+bx+c}$$

14.271
$$\int \frac{dx}{x^n(ax^2+bx+c)} = -\frac{1}{(n-1)cx^{n-1}} - \frac{b}{c} \int \frac{dx}{x^{n-1}(ax^2+bx+c)} - \frac{a}{c} \int \frac{dx}{x^{n-2}(ax^2+bx+c)}$$

14.272
$$\int \frac{dx}{(ax^2+bx+c)^2} = \frac{2ax+b}{(4ac-b^2)(ax^2+bx+c)} + \frac{2a}{4ac-b^2} \int \frac{dx}{ax^2+bx+c}$$

14.273
$$\int \frac{x \, dx}{(ax^2 + bx + c)^2} = -\frac{bx + 2c}{(4ac - b^2)(ax^2 + bx + c)} - \frac{b}{4ac - b^2} \int \frac{dx}{ax^2 + bx + c}$$

14.274
$$\int \frac{x^2 dx}{(ax^2 + bx + c)^2} = \frac{(b^2 - 2ac)x + bc}{a(4ac - b^2)(ax^2 + bx + c)} + \frac{2c}{4ac - b^2} \int \frac{dx}{ax^2 + bx + c}$$

14.275
$$\int \frac{x^m dx}{(ax^2 + bx + c)^n} = -\frac{x^{m-1}}{(2n - m - 1)a(ax^2 + bx + c)^{n-1}} + \frac{(m-1)c}{(2n - m - 1)a} \int \frac{x^{m-2} dx}{(ax^2 + bx + c)^n}$$

$$-\frac{(n-m)b}{(2n-m-1)a}\int \frac{x^{m-1}\,dx}{(ax^2+bx+c)^m}$$

14.276
$$\int \frac{x^{2n-1} dx}{(ax^2 + bx + c)^n} = \frac{1}{a} \int \frac{x^{2n-3} dx}{(ax^2 + bx + c)^{n-1}} - \frac{c}{a} \int \frac{x^{2n-3} dx}{(ax^2 + bx + c)^n} - \frac{b}{a} \int \frac{x^{2n-2} dx}{(ax^2 + bx + c)^n}$$

14.277
$$\int \frac{dx}{x(ax^2+bx+c)^2} = \frac{1}{2c(ax^2+bx+c)} - \frac{b}{2c} \int \frac{dx}{(ax^2+bx+c)^2} + \frac{1}{c} \int \frac{dx}{x(ax^2+bx+c)}$$

14.278
$$\int \frac{dx}{x^2(ax^2+bx+c)^2} = -\frac{1}{cx(ax^2+bx+c)} - \frac{3a}{c} \int \frac{dx}{(ax^2+bx+c)^2} - \frac{2b}{c} \int \frac{dx}{x(ax^2+bx+c)^2}$$

14.279
$$\int \frac{dx}{x^m (ax^2 + bx + c)^n} = -\frac{1}{(m-1)cx^{m-1}(ax^2 + bx + c)^{n-1}} - \frac{(m+2n-3)a}{(m-1)c} \int \frac{dx}{x^{m-2}(ax^2 + bx + c)^n}$$

$$-\frac{(m+n-2)b}{(m-1)c}\int \frac{dx}{x^{m-1}(ax^2+bx+c)^n}$$

INTEGRALS INVOLVING $\sqrt{ax^2+bx+c}$

In the following results if $b^2 = 4ac$, $\sqrt{ax^2 + bx + c} = \sqrt{a}(x + b/2a)$ and the results on pages 60-61 can be used. If b = 0 use the results on pages 67-70. If a = 0 or c = 0 use the results on pages 61-62.

$$\begin{array}{lll} \textbf{14.280} & \int \frac{dx}{\sqrt{ax^2+bx+c}} &=& \begin{cases} \frac{1}{\sqrt{a}} \ln{(2\sqrt{a}\sqrt{ax^2+bx+c}+2ax+b)} \\ -\frac{1}{\sqrt{a}} \sin{-1}\left(\frac{2ax+b}{\sqrt{b^2-4ac}}\right) & \text{or} & \frac{1}{\sqrt{a}} \sinh{-1}\left(\frac{2ax+b}{\sqrt{4ac-b^2}}\right) \end{cases} \\ \textbf{14.281} & \int \frac{x\,dx}{\sqrt{ax^2+bx+c}} &=& \frac{\sqrt{ax^2+bx+c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2+bx+c}} \\ \textbf{14.282} & \int \frac{x^2\,dx}{\sqrt{ax^2+bx+c}} &=& \frac{2ax-3b}{4a^2} \sqrt{ax^2+bx+c} + \frac{3b^2-4ac}{8a^2} \int \frac{dx}{\sqrt{ax^2+bx+c}} \\ \textbf{14.283} & \int \frac{dx}{x\sqrt{ax^2+bx+c}} &=& \begin{cases} -\frac{1}{\sqrt{c}} \ln{\left(\frac{2\sqrt{c}\sqrt{ax^2+bx+c}+bx+2c}{x}\right)} \\ \frac{1}{\sqrt{c}} \sin{-1}\left(\frac{bx+2c}{|x|\sqrt{b^2-4ac}}\right) & \text{or} & -\frac{1}{\sqrt{c}} \sinh{-1}\left(\frac{bx+2c}{|x|\sqrt{4ac-b^2}}\right) \end{cases} \\ \textbf{14.284} & \int \frac{dx}{x^2\sqrt{ax^2+bx+c}} &=& -\frac{\sqrt{ax^2+bx+c}-b}{cx} - \frac{b}{2c} \int \frac{dx}{x\sqrt{ax^2+bx+c}} \\ \textbf{14.285} & \int \sqrt{ax^2+bx+c} \, dx &=& \frac{(2ax+b)\sqrt{ax^2+bx+c}+b}{4a} + \frac{4ac-b^2}{8a^2} \int \frac{dx}{\sqrt{ax^2+bx+c}} \\ \textbf{14.286} & \int x\sqrt{ax^2+bx+c} \, dx &=& \frac{(ax^2+bx+c)^{3/2}}{3c} - \frac{b(2ax+b)}{8a^2} \sqrt{ax^2+bx+c} \\ \textbf{14.287} & \int x^2\sqrt{ax^2+bx+c} \, dx &=& \frac{6ax-5b}{24a^2} (ax^2+bx+c)^{2/2} + \frac{5b^2-4ac}{16a^2} \int \sqrt{ax^2+bx+c} \, dx \\ \textbf{14.288} & \int \frac{\sqrt{ax^2+bx+c}}{x} \, dx &=& -\sqrt{ax^2+bx+c} + \frac{b}{2} \int \frac{dx}{\sqrt{ax^2+bx+c}} + \frac{b}{2} \int \frac{dx}{x\sqrt{ax^2+bx+c}} \\ \textbf{14.289} & \int \frac{\sqrt{ax^2+bx+c}}{x^2} \, dx &=& -\sqrt{ax^2+bx+c} + \frac{b}{2} \int \frac{dx}{\sqrt{ax^2+bx+c}} + \frac{b}{2} \int \frac{dx}{x\sqrt{ax^2+bx+c}} \\ \textbf{14.290} & \int \frac{x\,dx}{(ax^2+bx+c)^{3/2}} &=& \frac{2(2ax+b)}{(a^2-b^2)\sqrt{ax^2+bx+c}} \\ \textbf{14.291} & \int \frac{x\,dx}{(ax^2+bx+c)^{3/2}} &=& \frac{2(2ax+b)}{(a^2-a^2+bx+c)} + \frac{1}{a} \int \frac{dx}{\sqrt{ax^2+bx+c}} \\ \textbf{14.292} & \int \frac{x\,dx}{(ax^2+bx+c)^{3/2}} &=& \frac{2(bx+2c)}{(b^2-4ac)\sqrt{ax^2+bx+c}} + \frac{1}{a} \int \frac{dx}{\sqrt{ax^2+bx+c}} \\ \textbf{14.293} & \int \frac{dx}{x(ax^2+bx+c)^{3/2}} &=& \frac{1}{a(4ac-b^2)\sqrt{ax^2+bx+c}} + \frac{b^2-2ac}{a(4ac-b^2)\sqrt{ax^2+bx+c}} \\ \textbf{14.294} & \int \frac{dx}{x^2(ax^2+bx+c)^{3/2}} &=& -\frac{a^2+2bx+c}{a^2(ax^2+bx+c)} + \frac{b^2-2ac}{a^2} \int \frac{dx}{(ax^2+bx+c)^{3/2}} \\ -\frac{3b}{2c^2} \int \frac{dx}{x(ax^2+bx+c)} \\ \textbf{14.295} & \int (ax^2+bx+c)^{3/2} &=& -\frac{(2ax+b)(ax^2+bx+c)}{a(a(x+1)} + \frac{b}{2}} \\ \textbf{14.295} & \int (ax^2+bx+c)^{3/2} &=& -\frac{(2ax+b)(ax^2+bx+c)}{a(a(x+1)} + \frac{b}{2}} \\ \textbf{14.295} & \int (ax^2+bx+c)^{3/2} &=& -\frac{(2ax+$$

14.296
$$\int x(ax^2 + bx + c)^{n+1/2} dx = \frac{(ax^2 + bx + c)^{n+3/2}}{a(2n+3)} - \frac{b}{2a} \int (ax^2 + bx + c)^{n+1/2} dx$$

$$14.297 \int \frac{dx}{(ax^2 + bx + c)^{n+1/2}} = \frac{2(2ax + b)}{(2n-1)(4ac - b^2)(ax^2 + bx + c)^{n-1/2}} + \frac{8a(n-1)}{(2n-1)(4ac - b^2)} \int \frac{dx}{(ax^2 + bx + c)^{n-1/2}}$$

$$14.298 \int \frac{dx}{x(ax^2 + bx + c)^{n+1/2}} = \frac{1}{(2n-1)c(ax^2 + bx + c)^{n-1/2}} + \frac{1}{c} \int \frac{dx}{x(ax^2 + bx + c)^{n-1/2}} - \frac{b}{2c} \int \frac{dx}{(ax^2 + bx + c)^{n+1/2}}$$

INTEGRALS INVOLVING x^3+a^3

Note that for formulas involving $x^3 - a^3$ replace a by -a.

$$14.299 \qquad \int \frac{dx}{x^3 + a^3} = \frac{1}{6a^2} \ln \frac{(x+a)^2}{x^2 - ax + a^2} + \frac{1}{a^2\sqrt{3}} \tan^{-1} \frac{2x - a}{a\sqrt{3}}$$

$$14.300 \qquad \int \frac{x \, dx}{x^3 + a^3} = \frac{1}{6a} \ln \frac{x^2 - ax + a^2}{(x+a)^2} + \frac{1}{a\sqrt{3}} \tan^{-1} \frac{2x - a}{a\sqrt{3}}$$

$$14.301 \qquad \int \frac{x^2 \, dx}{x^3 + a^3} = \frac{1}{3} \ln (x^3 + a^3) \qquad 14.302 \qquad \int \frac{dx}{x(x^3 + a^3)} = \frac{1}{3a^3} \ln \left(\frac{x^3}{x^3 + a^3}\right)$$

$$14.303 \qquad \int \frac{dx}{x^2(x^3 + a^3)} = -\frac{1}{a^3x} - \frac{1}{6a^4} \ln \frac{x^2 - ax + a^2}{(x+a)^2} - \frac{1}{a^4\sqrt{3}} \tan^{-1} \frac{2x - a}{a\sqrt{3}}$$

$$14.304 \qquad \int \frac{dx}{(x^3 + a^3)^2} = \frac{x}{3a^3(x^3 + a^3)} + \frac{1}{9a^5} \ln \frac{(x+a)^2}{x^2 - ax + a^2} + \frac{2}{3a^5\sqrt{3}} \tan^{-1} \frac{2x - a}{a\sqrt{3}}$$

$$14.305 \qquad \int \frac{x \, dx}{(x^3 + a^3)^2} = \frac{x^2}{3a^3(x^3 + a^3)} + \frac{1}{18a^4} \ln \frac{x^2 - ax + a^2}{(x+a)^2} + \frac{1}{3a^4\sqrt{3}} \tan^{-1} \frac{2x - a}{a\sqrt{3}}$$

$$14.306 \qquad \int \frac{x^2 \, dx}{(x^3 + a^3)^2} = -\frac{1}{3(x^3 + a^3)}$$

$$14.307 \qquad \int \frac{dx}{x(x^3 + a^3)^2} = \frac{1}{3a^3(x^3 + a^3)} + \frac{1}{3a^6} \ln \left(\frac{x^3}{x^3 + a^3}\right)$$

$$14.308 \qquad \int \frac{dx}{x^2(x^3 + a^3)^2} = -\frac{1}{a^6x} - \frac{x^2}{3a^6(x^3 + a^3)} - \frac{4}{3a^6} \int \frac{x \, dx}{x^3 + a^3} \quad [See 14.300]$$

$$14.309 \qquad \int \frac{x^m \, dx}{x^m \, dx} = \frac{x^{m-2}}{m-2} - a^3 \int \frac{x^{m-3} \, dx}{x^3 + a^3}$$

$$14.310 \qquad \int \frac{dx}{x^n(x^3 + a^3)} = \frac{-1}{a^3(n-1)x^{n-1}} - \frac{1}{a^3} \int \frac{dx}{x^{n-3}(x^3 + a^3)}$$

INTEGRALS INVOLVING $x^4 \pm a^4$

14.311
$$\int \frac{dx}{x^4 + a^4} = \frac{1}{4a^3\sqrt{2}} \ln \left(\frac{x^2 + ax\sqrt{2} + a^2}{x^2 - ax\sqrt{2} + a^2} \right) - \frac{1}{2a^3\sqrt{2}} \tan^{-1} \frac{ax\sqrt{2}}{x^2 - a^2}$$
14.312
$$\int \frac{x \, dx}{x^4 + a^4} = \frac{1}{2a^2} \tan^{-1} \frac{x^2}{a^2}$$
14.313
$$\int \frac{x^2 \, dx}{x^4 + a^4} = \frac{1}{4a\sqrt{2}} \ln \left(\frac{x^2 - ax\sqrt{2} + a^2}{x^2 + ax\sqrt{2} + a^2} \right) - \frac{1}{2a\sqrt{2}} \tan^{-1} \frac{ax\sqrt{2}}{x^2 - a^2}$$
14.314
$$\int \frac{x^3 \, dx}{x^4 + a^4} = \frac{1}{4} \ln (x^4 + a^4)$$

14.315
$$\int \frac{dx}{x(x^4 + a^4)} = \frac{1}{4a^4} \ln \left(\frac{x^4}{x^4 + a^4} \right)$$

14.316
$$\int \frac{dx}{x^2(x^4+a^4)} = -\frac{1}{a^4x} - \frac{1}{4a^5\sqrt{2}} \ln \left(\frac{x^2 - ax\sqrt{2} + a^2}{x^2 + ax\sqrt{2} + a^2} \right) + \frac{1}{2a^5\sqrt{2}} \tan^{-1} \frac{ax\sqrt{2}}{x^2 - a^2}$$

14.317
$$\int \frac{dx}{x^3(x^4+a^4)} = -\frac{1}{2a^4x^2} - \frac{1}{2a^6} \tan^{-1} \frac{x^2}{a^2}$$

14.318
$$\int \frac{dx}{x^4 - a^4} = \frac{1}{4a^3} \ln \left(\frac{x - a}{x + a} \right) - \frac{1}{2a^3} \tan^{-1} \frac{x}{a}$$

14.319
$$\int \frac{x \, dx}{x^4 - a^4} = \frac{1}{4a^2} \ln \left(\frac{x^2 - a^2}{x^2 + a^2} \right)$$

14.320
$$\int \frac{x^2 dx}{x^4 - a^4} = \frac{1}{4a} \ln \left(\frac{x - a}{x + a} \right) + \frac{1}{2a} \tan^{-1} \frac{x}{a}$$

14.321
$$\int \frac{x^3 dx}{x^4 - a^4} = \frac{1}{4} \ln (x^4 - a^4)$$

14.322
$$\int \frac{dx}{x(x^4 - a^4)} = \frac{1}{4a^4} \ln \left(\frac{x^4 - a^4}{x^4} \right)$$

14.323
$$\int \frac{dx}{x^2(x^4-a^4)} = \frac{1}{a^4x} + \frac{1}{4a^5} \ln \left(\frac{x-a}{x+a} \right) + \frac{1}{2a^5} \tan^{-1} \frac{x}{a}$$

14.324
$$\int \frac{dx}{x^3(x^4-a^4)} = \frac{1}{2a^4x^2} + \frac{1}{4a^6} \ln \left(\frac{x^2-a^2}{x^2+a^2} \right)$$

INTEGRALS INVOLVING $x^n \pm a^n$

14.325
$$\int \frac{dx}{x(x^n + a^n)} = \frac{1}{na^n} \ln \frac{x^n}{x^n + a^n}$$

14.326
$$\int \frac{x^{n-1} dx}{x^n + a^n} = \frac{1}{n} \ln (x^n + a^n)$$

14.327
$$\int \frac{x^m dx}{(x^n + a^n)^r} = \int \frac{x^{m-n} dx}{(x^n + a^n)^{r-1}} - a^n \int \frac{x^{m-n} dx}{(x^n + a^n)^r}$$

14.328
$$\int \frac{dx}{x^m(x^n+a^n)^r} = \frac{1}{a^n} \int \frac{dx}{x^m(x^n+a^n)^{r-1}} - \frac{1}{a^n} \int \frac{dx}{x^{m-n}(x^n+a^n)^r}$$

14.329
$$\int \frac{dx}{x\sqrt{x^n + a^n}} = \frac{1}{n\sqrt{a^n}} \ln \left(\frac{\sqrt{x^n + a^n} - \sqrt{a^n}}{\sqrt{x^n + a^n} + \sqrt{a^n}} \right)$$

14.330
$$\int \frac{dx}{x(x^n - a^n)} = \frac{1}{na^n} \ln \left(\frac{x^n - a^n}{x^n} \right)$$

14.331
$$\int \frac{x^{n-1} dx}{x^n - a^n} = \frac{1}{n} \ln (x^n - a^n)$$

14.332
$$\int \frac{x^m dx}{(x^n - a^n)^r} = a^n \int \frac{x^{m-n} dx}{(x^n - a^n)^r} + \int \frac{x^{m-n} dx}{(x^n - a^n)^{r-1}}$$

14.333
$$\int \frac{dx}{x^m(x^n-a^n)^r} = \frac{1}{a^n} \int \frac{dx}{x^{m-n}(x^n-a^n)^r} - \frac{1}{a^n} \int \frac{dx}{x^m(x^n-a^n)^{r-1}}$$

$$14.334 \quad \int \frac{dx}{x\sqrt{x^n - a^n}} = \frac{2}{n\sqrt{a^n}} \cos^{-1} \sqrt{\frac{a^n}{x^n}}$$

14.335
$$\int \frac{x^{p-1} dx}{x^{2m} + a^{2m}} = \frac{1}{ma^{2m-p}} \sum_{k=1}^{m} \sin \frac{(2k-1)p\pi}{2m} \tan^{-1} \left(\frac{x + a \cos [(2k-1)\pi/2m]}{a \sin [(2k-1)\pi/2m]} \right)$$

$$- \frac{1}{2ma^{2m-p}} \sum_{k=1}^{m} \cos \frac{(2k-1)p\pi}{2m} \ln \left(x^2 + 2ax \cos \frac{(2k-1)\pi}{2m} + a^2 \right)$$
where $0 .$

14.336
$$\int \frac{x^{p-1} dx}{x^{2m} - a^{2m}} = \frac{1}{2ma^{2m-p}} \sum_{k=1}^{m-1} \cos \frac{kp\pi}{m} \ln \left(x^2 - 2ax \cos \frac{k\pi}{m} + a^2 \right)$$
$$- \frac{1}{ma^{2m-p}} \sum_{k=1}^{m-1} \sin \frac{kp\pi}{m} \tan^{-1} \left(\frac{x - a \cos (k\pi/m)}{a \sin (k\pi/m)} \right)$$
$$+ \frac{1}{2ma^{2m-p}} \{ \ln (x - a) + (-1)^p \ln (x + a) \}$$
where $0 .$

14.337
$$\int \frac{x^{p-1} dx}{x^{2m+1} + a^{2m+1}} = \frac{2(-1)^{p-1}}{(2m+1)a^{2m-p+1}} \sum_{k=1}^{m} \sin \frac{2kp\pi}{2m+1} \tan^{-1} \left(\frac{x + a \cos \left[2k\pi/(2m+1) \right]}{a \sin \left[2k\pi/(2m+1) \right]} \right) - \frac{(-1)^{p-1}}{(2m+1)a^{2m-p+1}} \sum_{k=1}^{m} \cos \frac{2kp\pi}{2m+1} \ln \left(x^2 + 2ax \cos \frac{2k\pi}{2m+1} + a^2 \right) + \frac{(-1)^{p-1} \ln (x+a)}{(2m+1)a^{2m-p+1}}$$

where 0 .

$$\begin{array}{ll}
\mathbf{14.338} & \int \frac{x^{p-1} \, dx}{x^{2m+1} - a^{2m+1}} \\
& = \frac{-2}{(2m+1)a^{2m-p+1}} \sum_{k=1}^{m} \sin \frac{2kp\pi}{2m+1} \tan^{-1} \left(\frac{x - a \cos \left[2k\pi/(2m+1) \right]}{a \sin \left[2k\pi/(2m+1) \right]} \right) \\
& + \frac{1}{(2m+1)a^{2m-p+1}} \sum_{k=1}^{m} \cos \frac{2kp\pi}{2m+1} \ln \left(x^2 - 2ax \cos \frac{2k\pi}{2m+1} + a^2 \right) \\
& + \frac{\ln (x-a)}{(2m+1)a^{2m-p+1}}
\end{array}$$

where 0 .

INTEGRALS INVOLVING $\sin ax$

14.349
$$\int \sin ax \, dx = -\frac{\cos ax}{a}$$
14.340
$$\int x \sin ax \, dx = \frac{\sin ax}{a^2} - \frac{x \cos ax}{a}$$
14.341
$$\int x^2 \sin ax \, dx = \frac{2x}{a^2} \sin ax + \left(\frac{2}{a^3} - \frac{x^2}{a}\right) \cos ax$$
14.342
$$\int x^3 \sin ax \, dx = \left(\frac{3x^2}{a^2} - \frac{6}{a^4}\right) \sin ax + \left(\frac{6x}{a^3} - \frac{x^3}{a}\right) \cos ax$$
14.343
$$\int \frac{\sin ax}{x} \, dx = ax - \frac{(ax)^3}{3 \cdot 3!} + \frac{(ax)^5}{5 \cdot 5!} - \cdots$$
14.344
$$\int \frac{\sin ax}{x^2} \, dx = -\frac{\sin ax}{x} + a \int \frac{\cos ax}{x} \, dx \quad [\text{see } 14.373]$$
14.345
$$\int \frac{dx}{\sin ax} = \frac{1}{a} \ln \left(\csc ax - \cot ax \right) = \frac{1}{a} \ln \tan \frac{ax}{2}$$
14.346
$$\int \frac{x \, dx}{\sin ax} = \frac{1}{a^2} \left\{ ax + \frac{(ax)^3}{18} + \frac{7(ax)^5}{1800} + \cdots + \frac{2(2^{2n-1}-1)B_n(ax)^{2n+1}}{(2n+1)!} + \cdots \right\}$$
14.347
$$\int \sin^2 ax \, dx = \frac{x}{2} - \frac{\sin 2ax}{4a}$$

14.347
$$\int \sin^2 ax \ dx = \frac{x}{2} - \frac{\sin 2ax}{4a}$$

$$\begin{array}{lll} \textbf{14.348} & \int x \sin^2 ax \, dx & = \frac{x^2}{4} - \frac{x \sin 2ax}{4a} - \frac{\cos 2ax}{8a^2} \\ \textbf{14.349} & \int \sin^3 ax \, dx & = -\frac{\cos ax}{a} + \frac{\cos^3 ax}{3a} \\ \textbf{14.350} & \int \sin^4 ax \, dx & = \frac{3x}{8} - \frac{\sin 2ax}{4a} + \frac{\sin 4ax}{32a} \\ \textbf{14.351} & \int \frac{dx}{\sin^2 ax} & = -\frac{1}{a} \cot ax \\ \textbf{14.352} & \int \frac{dx}{\sin^2 ax} & = -\frac{\cos ax}{2a \sin^2 ax} + \frac{1}{2a} \ln \tan \frac{ax}{2} \\ \textbf{14.353} & \int \sin px \sin qx \, dx & = \frac{\sin (p-q)x}{2(p-q)} - \frac{\sin (p+q)x}{2(p+q)} \quad [\text{If } p = \pm q, \text{ see } 14.368.] \\ \textbf{14.354} & \int \frac{dx}{1-\sin ax} & = \frac{1}{a} \tan \left(\frac{\pi}{4} + \frac{ax}{2}\right) \\ \textbf{14.355} & \int \frac{dx}{1-\sin ax} & = \frac{x}{a} \tan \left(\frac{\pi}{4} + \frac{ax}{2}\right) + \frac{2}{a^2} \ln \sin \left(\frac{\pi}{4} - \frac{ax}{2}\right) \\ \textbf{14.356} & \int \frac{dx}{1+\sin ax} & = -\frac{1}{a} \tan \left(\frac{\pi}{4} - \frac{ax}{2}\right) + \frac{2}{a^2} \ln \sin \left(\frac{\pi}{4} + \frac{ax}{2}\right) \\ \textbf{14.357} & \int \frac{x \, dx}{1+\sin ax} & = -\frac{x}{a} \tan \left(\frac{\pi}{4} - \frac{ax}{2}\right) + \frac{2}{a^2} \ln \sin \left(\frac{\pi}{4} + \frac{ax}{2}\right) \\ \textbf{14.358} & \int \frac{dx}{(1+\sin ax)^2} & = \frac{1}{2a} \tan \left(\frac{\pi}{4} - \frac{ax}{2}\right) + \frac{1}{6a} \tan^3 \left(\frac{\pi}{4} - \frac{ax}{2}\right) \\ \textbf{14.359} & \int \frac{dx}{(1+\sin ax)^2} & = -\frac{1}{2a} \tan \left(\frac{\pi}{4} - \frac{ax}{2}\right) - \frac{1}{6a} \tan^3 \left(\frac{\pi}{4} - \frac{ax}{2}\right) \\ \textbf{14.360} & \int \frac{dx}{p+q \sin ax} & = \frac{2}{a(p^2-q^2)(p+q \sin ax)} + \frac{p \tan \frac{1}{2}ax + q}{\sqrt{p^2-q^2}} \\ \textbf{14.361} & \int \frac{dx}{(p+q \sin ax)^2} & = \frac{1}{ap\sqrt{p^2-q^2}} \tan \frac{1}{p} \frac{p \tan \frac{1}{2}ax + q - \sqrt{q^2-p^2}}{\sqrt{p^2-q^2}} \\ \textbf{14.362} & \int \frac{dx}{p^2+q^2 \sin^2 ax} & = \frac{1}{ap\sqrt{p^2-q^2}} \tan^{-1} \frac{\sqrt{p^2+q^2} \tan ax}{p} \\ \textbf{14.363} & \int \frac{dx}{p^2+q^2 \sin^2 ax} & = \frac{1}{ap\sqrt{p^2-q^2}} \tan^{-1} \frac{\sqrt{p^2-q^2} \tan ax + p}{\sqrt{q^2-p^2} \tan ax - p} \\ \textbf{14.364} & \int x^m \sin ax \, dx & = -\frac{x^m \cos ax}{2} + \frac{mx^{m-1} \sin ax}{a^2} \, dx & = -\frac{m(m-1)}{a^2} \int x^{m-2} \sin ax \, dx \\ \textbf{14.365} & \int \frac{\sin ax}{a} \, dx & = -\frac{x^m \cos ax}{a} + \frac{mx^{m-1} \sin ax}{a^2} \, dx & = [\text{see } 14.395] \\ \textbf{14.365} & \int \frac{\sin ax}{a} \, dx & = -\frac{\sin ax}{a} + \frac{a}{a} & \int \frac{\cos ax}{a} \, dx & = [\text{see } 14.395] \\ \textbf{14.365} & \int \frac{\sin ax}{a} \, dx & = -\frac{\sin ax}{a} + \frac{a}{a} & \int \frac{\cos ax}{a} \, dx & = [\text{see } 14.395] \\ \textbf{14.365} & \int \frac{\sin ax}{a} \, dx & = -\frac{\sin ax}{a} + \frac{a}{a} & \int \frac{\cos ax}{a} \, dx & = [\text{see } 14.395] \\ \textbf{14.365} & \int \frac{\sin ax}{a} \, dx & = -\frac{\sin ax$$

14.365
$$\int \frac{\sin ax}{x^n} dx = -\frac{\sin ax}{(n-1)x^{n-1}} + \frac{a}{n-1} \int \frac{\cos ax}{x^{n-1}} dx \quad [\text{see } 14.395]$$
14.366
$$\int \sin^n ax \, dx = -\frac{\sin^{n-1} ax \cos ax}{an} + \frac{n-1}{n} \int \sin^{n-2} ax \, dx$$
14.367
$$\int \frac{dx}{\sin^n ax} = \frac{-\cos ax}{a(n-1)\sin^{n-1} ax} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} ax}$$
14.368
$$\int \frac{x \, dx}{\sin^n ax} = \frac{-x \cos ax}{a(n-1)\sin^{n-1} ax} - \frac{1}{a^2(n-1)(n-2)\sin^{n-2} ax} + \frac{n-2}{n-1} \int \frac{x \, dx}{\sin^{n-2} ax}$$

INTEGRALS INVOLVING cos ax

14.369
$$\int \cos ax \, dx = \frac{\sin ax}{a}$$
14.370
$$\int x \cos ax \, dx = \frac{\cos ax}{a^2} + \frac{x \sin ax}{a}$$
14.371
$$\int x^2 \cos ax \, dx = \frac{2x}{a^2} \cos ax + \left(\frac{x^2}{a} - \frac{2}{a^3}\right) \sin ax$$
14.372
$$\int x^3 \cos ax \, dx = \left(\frac{3x^2}{a^2} - \frac{6}{a^4}\right) \cos ax + \left(\frac{x^3}{a} - \frac{6x}{a^3}\right) \sin ax$$
14.373
$$\int \frac{\cos ax}{x} \, dx = \ln x - \frac{(ax)^2}{2 \cdot 2!} + \frac{(ax)^4}{4 \cdot 4!} - \frac{(ax)^6}{6 \cdot 6!} + \cdots$$
14.374
$$\int \frac{\cos ax}{x^2} \, dx = -\frac{\cos ax}{x} - a \int \frac{\sin ax}{x} \, dx \quad [See 14.343]$$
14.375
$$\int \frac{dx}{\cos ax} = \frac{1}{a} \ln (\sec ax + \tan ax) = \frac{1}{a} \ln \tan \left(\frac{\pi}{4} + \frac{ax}{2}\right)$$
14.376
$$\int \frac{x \, dx}{\cos ax} = \frac{1}{a^2} \left\{\frac{(ax)^2}{2} + \frac{(ax)^4}{8} + \frac{5(ax)^6}{144} + \cdots + \frac{E_n(ax)^{2n+2}}{(2n+2)(2n)!} + \cdots\right\}$$
14.377
$$\int \cos^2 ax \, dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$$
14.378
$$\int x \cos^2 ax \, dx = \frac{x}{2} + \frac{\sin 2ax}{4a} + \frac{\cos 2ax}{8a^2}$$
14.379
$$\int \cos^3 ax \, dx = \frac{\sin ax}{a} - \frac{\sin^3 ax}{3a}$$
14.380
$$\int \cos^4 ax \, dx = \frac{3x}{2a \cos^2 ax} + \frac{1}{2a} \ln \tan \left(\frac{\pi}{4} + \frac{ax}{2}\right)$$
14.381
$$\int \frac{dx}{\cos^3 ax} = \frac{\tan ax}{a}$$
14.382
$$\int \frac{dx}{\cos^3 ax} = \frac{\sin ax}{a} + \frac{\sin (ax - p)x}{2(a - p)} + \frac{\sin (a + p)x}{2(a + p)} \quad [If \ a = \pm p, \ see \ 14.377.]$$
14.383
$$\int \cos ax \cos px \, dx = \frac{\sin (ax - p)x}{2a \cos^2 ax} + \frac{2}{a^2} \ln \sin \frac{ax}{2}$$
14.385
$$\int \frac{dx}{1 + \cos ax} = -\frac{1}{a} \cot \frac{ax}{2}$$
14.386
$$\int \frac{dx}{1 + \cos ax} = \frac{1}{a} \tan \frac{ax}{2}$$
14.387
$$\int \frac{dx}{1 + \cos ax} = \frac{1}{a} \tan \frac{ax}{2}$$
14.388
$$\int \frac{dx}{(1 + \cos ax)^2} = -\frac{1}{2a} \cot \frac{x}{2} - \frac{1}{6a} \cot^3 \frac{ax}{2}$$
14.389
$$\int \frac{dx}{(1 + \cos ax)^2} = -\frac{1}{2a} \tan \frac{ax}{2} + \frac{1}{6a} \cot^3 \frac{ax}{2}$$

14.390
$$\int \frac{dx}{p+q\cos ax} = \begin{cases} \frac{2}{a\sqrt{p^2-q^2}} \tan^{-1}\sqrt{(p-q)/(p+q)} \tan \frac{1}{2}ax \\ \frac{1}{a\sqrt{q^2-p^2}} \ln \left(\frac{\tan \frac{1}{2}ax + \sqrt{(q+p)/(q-p)}}{\tan \frac{1}{2}ax - \sqrt{(q+p)/(q-p)}} \right) \end{cases}$$
[If $p = \pm q$ see 14.384 and 14.386.]

14.391
$$\int \frac{dx}{(p+q\cos ax)^2} = \frac{q \sin ax}{a(q^2-p^2)(p+q\cos ax)} - \frac{p}{q^2-p^2} \int \frac{dx}{p+q\cos ax}$$
 [If $p = \pm q$ see 14.388 and 14.389.]

14.392
$$\int \frac{dx}{p^2+q^2\cos^2 ax} = \frac{1}{ap\sqrt{p^2+q^2}} \tan^{-1}\frac{p\tan ax}{\sqrt{p^2+q^2}}$$

$$\frac{1}{2ap\sqrt{q^2-p^2}} \ln \left(\frac{p\tan ax - \sqrt{q^2-p^2}}{p\tan ax + \sqrt{q^2-p^2}} \right)$$
14.393
$$\int \frac{dx}{p^2-q^2\cos^2 ax} = \frac{1}{ap\sqrt{p^2-q^2}} \tan^{-1}\frac{p\tan ax}{\sqrt{p^2-q^2}}$$

$$\frac{1}{2ap\sqrt{q^2-p^2}} \ln \left(\frac{p\tan ax - \sqrt{q^2-p^2}}{p\tan ax + \sqrt{q^2-p^2}} \right)$$
14.394
$$\int x^m \cos ax \, dx = \frac{x^m \sin ax}{a} + \frac{mx^{m-1}}{a^2} \cos ax - \frac{m(m-1)}{a^2} \int x^{m-2} \cos ax \, dx$$
14.395
$$\int \frac{\cos ax}{x^n} \, dx = -\frac{\cos ax}{(n-1)x^{n-1}} - \frac{a}{n-1} \int \frac{\sin ax}{x^{n-1}} \, dx$$
 [See 14.365]
14.396
$$\int \cos^n ax \, dx = \frac{\sin ax \cos^{n-1} ax}{an} + \frac{n-1}{n} \int \cos^{n-2} ax \, dx$$
14.397
$$\int \frac{dx}{\cos^n ax} = \frac{\sin ax}{a(n-1)\cos^{n-1} ax} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} ax}$$

INTEGRALS INVOLVING sin ax AND cos ax

14.398 $\int \frac{x \, dx}{\cos^n ax} = \frac{x \sin ax}{a(n-1) \cos^{n-1} ax} - \frac{1}{a^2(n-1)(n-2) \cos^{n-2} ax} + \frac{n-2}{n-1} \int \frac{x \, dx}{\cos^{n-2} ax}$

14.399
$$\int \sin ax \cos ax \, dx = \frac{\sin^2 ax}{2a}$$
14.400
$$\int \sin px \cos qx \, dx = -\frac{\cos (p-q)x}{2(p-q)} - \frac{\cos (p+q)x}{2(p+q)}$$
14.401
$$\int \sin^n ax \cos ax \, dx = \frac{\sin^{n+1} ax}{(n+1)a} \quad [\text{If } n=-1, \text{ see } 14.440.]$$
14.402
$$\int \cos^n ax \sin ax \, dx = -\frac{\cos^{n+1} ax}{(n+1)a} \quad [\text{If } n=-1, \text{ see } 14.429.]$$
14.403
$$\int \sin^2 ax \cos^2 ax \, dx = \frac{x}{8} - \frac{\sin 4ax}{32a}$$
14.404
$$\int \frac{dx}{\sin ax \cos ax} = \frac{1}{a} \ln \tan ax$$
14.405
$$\int \frac{dx}{\sin^2 ax \cos ax} = \frac{1}{a} \ln \tan \frac{ax}{2} + \frac{1}{a \cos ax}$$
14.406
$$\int \frac{dx}{\sin ax \cos^2 ax} = \frac{1}{a} \ln \tan \frac{ax}{2} + \frac{1}{a \cos ax}$$
14.407
$$\int \frac{dx}{\sin^2 ax \cos^2 ax} = -\frac{2 \cot 2ax}{a}$$

14.408
$$\int \frac{\sin^2 ax}{\cos ax} dx = -\frac{\sin ax}{a} + \frac{1}{a} \ln \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right)$$

14.409
$$\int \frac{\cos^2 ax}{\sin ax} dx = \frac{\cos ax}{a} + \frac{1}{a} \ln \tan \frac{ax}{2}$$

14.410
$$\int \frac{dx}{\cos ax(1 \pm \sin ax)} = \mp \frac{1}{2a(1 \pm \sin ax)} + \frac{1}{2a} \ln \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right)$$

14.411
$$\int \frac{dx}{\sin ax(1 \pm \cos ax)} = \pm \frac{1}{2a(1 \pm \cos ax)} + \frac{1}{2a} \ln \tan \frac{ax}{2}$$

14.412
$$\int \frac{dx}{\sin ax \pm \cos ax} = \frac{1}{a\sqrt{2}} \ln \tan \left(\frac{ax}{2} \pm \frac{\pi}{8} \right)$$

14.413
$$\int \frac{\sin ax \, dx}{\sin ax \pm \cos ax} = \frac{x}{2} \mp \frac{1}{2a} \ln (\sin ax \pm \cos ax)$$

14.414
$$\int \frac{\cos ax \, dx}{\sin ax \pm \cos ax} = \pm \frac{x}{2} + \frac{1}{2a} \ln (\sin ax \pm \cos ax)$$

14.415
$$\int \frac{\sin ax \, dx}{p + q \cos ax} = -\frac{1}{aq} \ln (p + q \cos ax)$$

14.416
$$\int \frac{\cos ax \ dx}{p+q \sin ax} = \frac{1}{aq} \ln (p+q \sin ax)$$

14.417
$$\int \frac{\sin ax \ dx}{(p+q\cos ax)^n} = \frac{1}{aq(n-1)(p+q\cos ax)^{n-1}}$$

14.418
$$\int \frac{\cos ax \ dx}{(p+q\sin ax)^n} = \frac{-1}{aq(n-1)(p+q\sin ax)^{n-1}}$$

14.419
$$\int \frac{dx}{p \sin ax + q \cos ax} = \frac{1}{a\sqrt{p^2 + q^2}} \ln \tan \left(\frac{ax + \tan^{-1}(q/p)}{2} \right)$$

14.420
$$\int \frac{dx}{p \sin ax + q \cos ax + r} = \begin{cases} \frac{2}{a\sqrt{r^2 - p^2 - q^2}} \tan^{-1} \left(\frac{p + (r - q) \tan (ax/2)}{\sqrt{r^2 - p^2 - q^2}} \right) \\ \frac{1}{a\sqrt{p^2 + q^2 - r^2}} \ln \left(\frac{p - \sqrt{p^2 + q^2 - r^2} + (r - q) \tan (ax/2)}{p + \sqrt{p^2 + q^2 - r^2} + (r - q) \tan (ax/2)} \right) \end{cases}$$

If r = q see 14.421. If $r^2 = p^2 + q^2$ see 14.422.

14.421
$$\int \frac{dx}{p \sin ax + q(1 + \cos ax)} = \frac{1}{ap} \ln \left(q + p \tan \frac{ax}{2} \right)$$

14.422
$$\int \frac{dx}{p \sin ax + q \cos ax \pm \sqrt{p^2 + q^2}} = \frac{-1}{a\sqrt{p^2 + q^2}} \tan \left(\frac{\pi}{4} \mp \frac{ax + \tan^{-1}(q/p)}{2} \right)$$

$$14.423 \quad \int \frac{dx}{p^2 \sin^2 ax + q^2 \cos^2 ax} = \frac{1}{apq} \tan^{-1} \left(\frac{p \tan ax}{q} \right)$$

14.424
$$\int \frac{dx}{p^2 \sin^2 ax - q^2 \cos^2 ax} = \frac{1}{2apq} \ln \left(\frac{p \tan ax - q}{p \tan ax + q} \right)$$

14.425
$$\int \sin^m ax \cos^n ax \, dx = \begin{cases} -\frac{\sin^{m-1} ax \cos^{n+1} ax}{a(m+n)} + \frac{m-1}{m+n} \int \sin^{m-2} ax \cos^n ax \, dx \\ \frac{\sin^{m+1} ax \cos^{n-1} ax}{a(m+n)} + \frac{n-1}{m+n} \int \sin^m ax \cos^{n-2} ax \, dx \end{cases}$$

$$14.426 \int \frac{\sin^m ax}{\cos^n ax} dx = \begin{cases} \frac{\sin^{m-1} ax}{a(n-1)\cos^{n-1} ax} - \frac{m-1}{n-1} \int \frac{\sin^{m-2} ax}{\cos^{n-2} ax} dx \\ \frac{\sin^{m+1} ax}{a(n-1)\cos^{n-1} ax} - \frac{m-n+2}{n-1} \int \frac{\sin^m ax}{\cos^{n-2} ax} dx \\ \frac{-\sin^{m-1} ax}{a(m-n)\cos^{n-1} ax} + \frac{m-1}{m-n} \int \frac{\sin^{m-2} ax}{\cos^n ax} dx \end{cases}$$

$$\mathbf{14.427} \quad \int \frac{\cos^m ax}{\sin^n ax} \, dx = \begin{cases}
\frac{-\cos^{m-1} ax}{a(n-1)\sin^{n-1} ax} - \frac{m-1}{n-1} \int \frac{\cos^{m-2} ax}{\sin^{n-2} ax} \, dx \\
\frac{-\cos^{m+1} ax}{a(n-1)\sin^{n-1} ax} - \frac{m-n+2}{n-1} \int \frac{\cos^m ax}{\sin^{n-2} ax} \, dx \\
\frac{\cos^{m-1} ax}{a(m-n)\sin^{n-1} ax} + \frac{m-1}{m-n} \int \frac{\cos^{m-2} ax}{\sin^n ax} \, dx
\end{cases}$$

14.428
$$\int \frac{dx}{\sin^m ax \cos^n ax} = \begin{cases} \frac{1}{a(n-1)\sin^{m-1} ax \cos^{n-1} ax} + \frac{m+n-2}{n-1} \int \frac{dx}{\sin^m ax \cos^{n-2} ax} \\ \frac{-1}{a(m-1)\sin^{m-1} ax \cos^{n-1} ax} + \frac{m+n-2}{m-1} \int \frac{dx}{\sin^{m-2} ax \cos^n ax} \end{cases}$$

INTEGRALS INVOLVING tan ax

14.429
$$\int \tan ax \ dx = -\frac{1}{a} \ln \cos ax = \frac{1}{a} \ln \sec ax$$

$$14.430 \quad \int \tan^2 ax \ dx = \frac{\tan ax}{a} - x$$

14.431
$$\int \tan^3 ax \ dx = \frac{\tan^2 ax}{2a} + \frac{1}{a} \ln \cos ax$$

14.432
$$\int \tan^n ax \sec^2 ax \ dx = \frac{\tan^{n+1} ax}{(n+1)a}$$

$$14.433 \quad \int \frac{\sec^2 ax}{\tan ax} dx = \frac{1}{a} \ln \tan ax$$

$$14.434 \qquad \int \frac{dx}{\tan ax} = \frac{1}{a} \ln \sin ax$$

14.435
$$\int x \tan ax \ dx = \frac{1}{a^2} \left\{ \frac{(ax)^3}{3} + \frac{(ax)^5}{15} + \frac{2(ax)^7}{105} + \cdots + \frac{2^{2n}(2^{2n}-1)B_n(ax)^{2n+1}}{(2n+1)!} + \cdots \right\}$$

14.436
$$\int \frac{\tan ax}{x} dx = ax + \frac{(ax)^3}{9} + \frac{2(ax)^5}{75} + \cdots + \frac{2^{2n}(2^{2n}-1)B_n(ax)^{2n-1}}{(2n-1)(2n)!} + \cdots$$

14.437
$$\int x \tan^2 ax \ dx = \frac{x \tan ax}{a} + \frac{1}{a^2} \ln \cos ax - \frac{x^2}{2}$$

14.438
$$\int \frac{dx}{p+q \tan ax} = \frac{px}{p^2+q^2} + \frac{q}{a(p^2+q^2)} \ln (q \sin ax + p \cos ax)$$

14.439
$$\int \tan^n ax \ dx = \frac{\tan^{n-1} ax}{(n-1)a} - \int \tan^{n-2} ax \ dx$$

INTEGRALS INVOLVING cot ax

$$14.440 \quad \int \cot ax \ dx = \frac{1}{a} \ln \sin ax$$

14.441
$$\int \cot^2 ax \ dx = -\frac{\cot ax}{a} - x$$

14.442
$$\int \cot^3 ax \ dx = -\frac{\cot^2 ax}{2a} - \frac{1}{a} \ln \sin ax$$

14.443
$$\int \cot^n ax \csc^2 ax \ dx = -\frac{\cot^{n+1} ax}{(n+1)a}$$

$$14.444 \quad \int \frac{\csc^2 ax}{\cot ax} dx = -\frac{1}{a} \ln \cot ax$$

$$14.445 \quad \int \frac{dx}{\cot ax} = -\frac{1}{a} \ln \cos ax$$

14.446
$$\int x \cot ax \ dx = \frac{1}{a^2} \left\{ ax - \frac{(ax)^3}{9} - \frac{(ax)^5}{225} - \cdots - \frac{2^{2n}B_n(ax)^{2n+1}}{(2n+1)!} - \cdots \right\}$$

14.447
$$\int \frac{\cot ax}{x} dx = -\frac{1}{ax} - \frac{ax}{3} - \frac{(ax)^3}{135} - \cdots - \frac{2^{2n}B_n(ax)^{2n-1}}{(2n-1)(2n)!} - \cdots$$

14.448
$$\int x \cot^2 ax \ dx = -\frac{x \cot ax}{a} + \frac{1}{a^2} \ln \sin ax - \frac{x^2}{2}$$

14.449
$$\int \frac{dx}{p+q \cot ax} = \frac{px}{p^2+q^2} - \frac{q}{a(p^2+q^2)} \ln{(p \sin ax + q \cos ax)}$$

14.450
$$\int \cot^n ax \ dx = -\frac{\cot^{n-1} ax}{(n-1)a} - \int \cot^{n-2} ax \ dx$$

INTEGRALS INVOLVING sec ax

14.451
$$\int \sec ax \ dx = \frac{1}{a} \ln (\sec ax + \tan ax) = \frac{1}{a} \ln \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right)$$

$$14.452 \quad \int \sec^2 ax \ dx = \frac{\tan ax}{a}$$

14.453
$$\int \sec^3 ax \ dx = \frac{\sec ax \tan ax}{2a} + \frac{1}{2a} \ln (\sec ax + \tan ax)$$

14.454
$$\int \sec^n ax \tan ax \, dx = \frac{\sec^n ax}{na}$$

$$14.455 \quad \int \frac{dx}{\sec ax} = \frac{\sin ax}{a}$$

14.456
$$\int x \sec ax \ dx = \frac{1}{a^2} \left\{ \frac{(ax)^2}{2} + \frac{(ax)^4}{8} + \frac{5(ax)^6}{144} + \cdots + \frac{E_n(ax)^{2n+2}}{(2n+2)(2n)!} + \cdots \right\}$$

14.457
$$\int \frac{\sec ax}{x} dx = \ln x + \frac{(ax)^2}{4} + \frac{5(ax)^4}{96} + \frac{61(ax)^6}{4320} + \cdots + \frac{E_n(ax)^{2n}}{2n(2n)!} + \cdots$$

14.458
$$\int x \sec^2 ax \ dx = \frac{x}{a} \tan ax + \frac{1}{a^2} \ln \cos ax$$

14.459
$$\int \frac{dx}{q+p \sec ax} = \frac{x}{q} - \frac{p}{q} \int \frac{dx}{p+q \cos ax}$$

14.460
$$\int \sec^n ax \ dx = \frac{\sec^{n-2} ax \tan ax}{a(n-1)} + \frac{n-2}{n-1} \int \sec^{n-2} ax \ dx$$

INTEGRALS INVOLVING csc ax

14.461
$$\int \csc ax \ dx = \frac{1}{a} \ln (\csc ax - \cot ax) = \frac{1}{a} \ln \tan \frac{ax}{2}$$

$$14.462 \quad \int \csc^2 ax \ dx = -\frac{\cot ax}{a}$$

14.463
$$\int \csc^3 ax \ dx = -\frac{\csc ax \cot ax}{2a} + \frac{1}{2a} \ln \tan \frac{ax}{2}$$

$$14.464 \quad \int \csc^n ax \cot ax \ dx = -\frac{\csc^n ax}{na}$$

$$14.465 \quad \int \frac{dx}{\csc ax} = -\frac{\cos ax}{a}$$

14.466
$$\int x \csc ax \ dx = \frac{1}{a^2} \left\{ ax + \frac{(ax)^3}{18} + \frac{7(ax)^5}{1800} + \cdots + \frac{2(2^{2n-1}-1)B_n(ax)^{2n+1}}{(2n+1)!} + \cdots \right\}$$

14.467
$$\int \frac{\csc ax}{x} dx = -\frac{1}{ax} + \frac{ax}{6} + \frac{7(ax)^3}{1080} + \cdots + \frac{2(2^{2n-1}-1)B_n(ax)^{2n-1}}{(2n-1)(2n)!} + \cdots$$

14.468
$$\int x \csc^2 ax \ dx = -\frac{x \cot ax}{a} + \frac{1}{a^2} \ln \sin ax$$

14.469
$$\int \frac{dx}{q+p \csc ax} = \frac{x}{q} - \frac{p}{q} \int \frac{dx}{p+q \sin ax}$$
 [See 14.360]

14.470
$$\int \csc^n ax \ dx = -\frac{\csc^{n-2} ax \cot ax}{a(n-1)} + \frac{n-2}{n-1} \int \csc^{n-2} ax \ dx$$

INTEGRALS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS

14.471
$$\int \sin^{-1}\frac{x}{a} dx = x \sin^{-1}\frac{x}{a} + \sqrt{a^2 - x^2}$$

14.472
$$\int x \sin^{-1} \frac{x}{a} dx = \left(\frac{x^2}{2} - \frac{a^2}{4}\right) \sin^{-1} \frac{x}{a} + \frac{x\sqrt{a^2 - x^2}}{4}$$

14.473
$$\int x^2 \sin^{-1} \frac{x}{a} dx = \frac{x^3}{3} \sin^{-1} \frac{x}{a} + \frac{(x^2 + 2a^2)\sqrt{a^2 - x^2}}{9}$$

14.474
$$\int \frac{\sin^{-1}(x/a)}{x} dx = \frac{x}{a} + \frac{(x/a)^3}{2 \cdot 3 \cdot 3} + \frac{1 \cdot 3(x/a)^5}{2 \cdot 4 \cdot 5 \cdot 5} + \frac{1 \cdot 3 \cdot 5(x/a)^7}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 7} + \cdots$$

14.475
$$\int \frac{\sin^{-1}(x/a)}{x^2} dx = -\frac{\sin^{-1}(x/a)}{x} - \frac{1}{a} \ln \left(\frac{a + \sqrt{a^2 - x^2}}{x} \right)$$

14.476
$$\int \left(\sin^{-1}\frac{x}{a}\right)^2 dx = x \left(\sin^{-1}\frac{x}{a}\right)^2 - 2x + 2\sqrt{a^2 - x^2}\sin^{-1}\frac{x}{a}$$

14.477
$$\int \cos^{-1} \frac{x}{a} dx = x \cos^{-1} \frac{x}{a} - \sqrt{a^2 - x^2}$$

14.478
$$\int x \cos^{-1} \frac{x}{a} dx = \left(\frac{x^2}{2} - \frac{a^2}{4}\right) \cos^{-1} \frac{x}{a} - \frac{x\sqrt{a^2 - x^2}}{4}$$

14.479
$$\int x^2 \cos^{-1} \frac{x}{a} dx = \frac{x^3}{3} \cos^{-1} \frac{x}{a} - \frac{(x^2 + 2a^2)\sqrt{a^2 - x^2}}{9}$$

14.480
$$\int \frac{\cos^{-1}(x/a)}{x} dx = \frac{\pi}{2} \ln x - \int \frac{\sin^{-1}(x/a)}{x} dx$$
 [See 14.474]

14.481
$$\int \frac{\cos^{-1}(x/a)}{x^2} dx = -\frac{\cos^{-1}(x/a)}{x} + \frac{1}{a} \ln \left(\frac{a + \sqrt{a^2 - x^2}}{x} \right)$$

14.482
$$\int \left(\cos^{-1}\frac{x}{a}\right)^2 dx = x \left(\cos^{-1}\frac{x}{a}\right)^2 - 2x - 2\sqrt{a^2 - x^2}\cos^{-1}\frac{x}{a}$$

14.483
$$\int \tan^{-1} \frac{x}{a} dx = x \tan^{-1} \frac{x}{a} - \frac{a}{2} \ln (x^2 + a^2)$$

14.484
$$\int x \tan^{-1} \frac{x}{a} dx = \frac{1}{2} (x^2 + a^2) \tan^{-1} \frac{x}{a} - \frac{ax}{2}$$

14.485
$$\int x^2 \tan^{-1} \frac{x}{a} dx = \frac{x^3}{3} \tan^{-1} \frac{x}{a} - \frac{ax^2}{6} + \frac{a^3}{6} \ln (x^2 + a^2)$$

14.486
$$\int \frac{\tan^{-1}(x/a)}{x} dx = \frac{x}{a} - \frac{(x/a)^3}{3^2} + \frac{(x/a)^5}{5^2} - \frac{(x/a)^7}{7^2} + \cdots$$

14.487
$$\int \frac{\tan^{-1}(x/a)}{x^2} dx = -\frac{1}{x} \tan^{-1} \frac{x}{a} - \frac{1}{2a} \ln \left(\frac{x^2 + a^2}{x^2} \right)$$

14.488
$$\int \cot^{-1} \frac{x}{a} dx = x \cot^{-1} \frac{x}{a} + \frac{a}{2} \ln (x^2 + a^2)$$

14.489
$$\int x \cot^{-1} \frac{x}{a} dx = \frac{1}{2} (x^2 + a^2) \cot^{-1} \frac{x}{a} + \frac{ax}{2}$$

14.490
$$\int x^2 \cot^{-1} \frac{x}{a} dx = \frac{x^3}{3} \cot^{-1} \frac{x}{a} + \frac{ax^2}{6} - \frac{a^3}{6} \ln (x^2 + a^2)$$

14.491
$$\int \frac{\cot^{-1}(x/a)}{x} dx = \frac{\pi}{2} \ln x - \int \frac{\tan^{-1}(x/a)}{x} dx$$
 [See 14.486]

14.492
$$\int \frac{\cot^{-1}(x/a)}{x^2} dx = -\frac{\cot^{-1}(x/a)}{x} + \frac{1}{2a} \ln \left(\frac{x^2 + a^2}{x^2} \right)$$

14.493
$$\int \sec^{-1} \frac{x}{a} dx = \begin{cases} x \sec^{-1} \frac{x}{a} - a \ln(x + \sqrt{x^2 - a^2}) & 0 < \sec^{-1} \frac{x}{a} < \frac{\pi}{2} \\ x \sec^{-1} \frac{x}{a} + a \ln(x + \sqrt{x^2 - a^2}) & \frac{\pi}{2} < \sec^{-1} \frac{x}{a} < \pi \end{cases}$$

14.494
$$\int x \sec^{-1} \frac{x}{a} dx = \begin{cases} \frac{x^2}{2} \sec^{-1} \frac{x}{a} - \frac{a\sqrt{x^2 - a^2}}{2} & 0 < \sec^{-1} \frac{x}{a} < \frac{\pi}{2} \\ \frac{x^2}{2} \sec^{-1} \frac{x}{a} + \frac{a\sqrt{x^2 - a^2}}{2} & \frac{\pi}{2} < \sec^{-1} \frac{x}{a} < \pi \end{cases}$$

$$14.495 \quad \int x^2 \sec^{-1} \frac{x}{a} \, dx = \begin{cases} \frac{x^3}{3} \sec^{-1} \frac{x}{a} - \frac{ax\sqrt{x^2 - a^2}}{6} - \frac{a^3}{6} \ln (x + \sqrt{x^2 - a^2}) & 0 < \sec^{-1} \frac{x}{a} < \frac{\pi}{2} \\ \frac{x^3}{3} \sec^{-1} \frac{x}{a} + \frac{ax\sqrt{x^2 - a^2}}{6} + \frac{a^3}{6} \ln (x + \sqrt{x^2 - a^2}) & \frac{\pi}{2} < \sec^{-1} \frac{x}{a} < \pi \end{cases}$$

14.496
$$\int \frac{\sec^{-1}(x/a)}{x} dx = \frac{\pi}{2} \ln x + \frac{a}{x} + \frac{(a/x)^3}{2 \cdot 3 \cdot 3} + \frac{1 \cdot 3(a/x)^5}{2 \cdot 4 \cdot 5 \cdot 5} + \frac{1 \cdot 3 \cdot 5(a/x)^7}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 7} + \cdots$$

14.497
$$\int \frac{\sec^{-1}(x/a)}{x^2} dx = \begin{cases} -\frac{\sec^{-1}(x/a)}{x} + \frac{\sqrt{x^2 - a^2}}{ax} & 0 < \sec^{-1}\frac{x}{a} < \frac{\pi}{2} \\ -\frac{\sec^{-1}(x/a)}{x} - \frac{\sqrt{x^2 - a^2}}{ax} & \frac{\pi}{2} < \sec^{-1}\frac{x}{a} < \pi \end{cases}$$

14.498
$$\int \csc^{-1} \frac{x}{a} dx = \begin{cases} x \csc^{-1} \frac{x}{a} + a \ln(x + \sqrt{x^2 - a^2}) & 0 < \csc^{-1} \frac{x}{a} < \frac{\pi}{2} \\ x \csc^{-1} \frac{x}{a} - a \ln(x + \sqrt{x^2 - a^2}) & -\frac{\pi}{2} < \csc^{-1} \frac{x}{a} < 0 \end{cases}$$

14.499
$$\int x \csc^{-1} \frac{x}{a} dx = \begin{cases} \frac{x^2}{2} \csc^{-1} \frac{x}{a} + \frac{a\sqrt{x^2 - a^2}}{2} & 0 < \csc^{-1} \frac{x}{a} < \frac{\pi}{2} \\ \frac{x^2}{2} \csc^{-1} \frac{x}{a} - \frac{a\sqrt{x^2 - a^2}}{2} & -\frac{\pi}{2} < \csc^{-1} \frac{x}{a} < 0 \end{cases}$$

14.500
$$\int x^2 \csc^{-1} \frac{x}{a} dx = \begin{cases} \frac{x^3}{3} \csc^{-1} \frac{x}{a} + \frac{ax\sqrt{x^2 - a^2}}{6} + \frac{a^3}{6} \ln (x + \sqrt{x^2 - a^2}) & 0 < \csc^{-1} \frac{x}{a} < \frac{\pi}{2} \\ \frac{x^3}{3} \csc^{-1} \frac{x}{a} - \frac{ax\sqrt{x^2 - a^2}}{6} - \frac{a^3}{6} \ln (x + \sqrt{x^2 - a^2}) & -\frac{\pi}{2} < \csc^{-1} \frac{x}{a} < 0 \end{cases}$$

14.501
$$\int \frac{\csc^{-1}(x/a)}{x} dx = -\left(\frac{a}{x} + \frac{(a/x)^3}{2 \cdot 3 \cdot 3} + \frac{1 \cdot 3(a/x)^5}{2 \cdot 4 \cdot 5 \cdot 5} + \frac{1 \cdot 3 \cdot 5(a/x)^7}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 7} + \cdots\right)$$

14.502
$$\int \frac{\csc^{-1}(x/a)}{x^2} dx = \begin{cases} -\frac{\csc^{-1}(x/a)}{x} - \frac{\sqrt{x^2 - a^2}}{ax} & 0 < \csc^{-1}\frac{x}{a} < \frac{\pi}{2} \\ -\frac{\csc^{-1}(x/a)}{x} + \frac{\sqrt{x^2 - a^2}}{ax} & -\frac{\pi}{2} < \csc^{-1}\frac{x}{a} < 0 \end{cases}$$

14.503
$$\int x^m \sin^{-1} \frac{x}{a} dx = \frac{x^{m+1}}{m+1} \sin^{-1} \frac{x}{a} - \frac{1}{m+1} \int \frac{x^{m+1}}{\sqrt{a^2 - x^2}} dx$$

14.504
$$\int x^m \cos^{-1} \frac{x}{a} dx = \frac{x^{m+1}}{m+1} \cos^{-1} \frac{x}{a} + \frac{1}{m+1} \int \frac{x^{m+1}}{\sqrt{a^2 - x^2}} dx$$

14.505
$$\int x^m \tan^{-1} \frac{x}{a} dx = \frac{x^{m+1}}{m+1} \tan^{-1} \frac{x}{a} - \frac{a}{m+1} \int \frac{x^{m+1}}{x^2 + a^2} dx$$

14.506
$$\int x^m \cot^{-1} \frac{x}{a} dx = \frac{x^{m+1}}{m+1} \cot^{-1} \frac{x}{a} + \frac{a}{m+1} \int \frac{x^{m+1}}{x^2 + a^2} dx$$

14.507
$$\int x^m \sec^{-1} \frac{x}{a} dx = \begin{cases} \frac{x^{m+1} \sec^{-1} (x/a)}{m+1} - \frac{a}{m+1} \int \frac{x^m dx}{\sqrt{x^2 - a^2}} & 0 < \sec^{-1} \frac{x}{a} < \frac{\pi}{2} \\ \frac{x^{m+1} \sec^{-1} (x/a)}{m+1} + \frac{a}{m+1} \int \frac{x^m dx}{\sqrt{x^2 - a^2}} & \frac{\pi}{2} < \sec^{-1} \frac{x}{a} < \pi \end{cases}$$

$$14.508 \quad \int x^m \csc^{-1} \frac{x}{a} dx = \begin{cases} \frac{x^{m+1} \csc^{-1} (x/a)}{m+1} + \frac{a}{m+1} \int \frac{x^m dx}{\sqrt{x^2 - a^2}} & 0 < \csc^{-1} \frac{x}{a} < \frac{\pi}{2} \\ \frac{x^{m+1} \csc^{-1} (x/a)}{m+1} - \frac{a}{m+1} \int \frac{x^m dx}{\sqrt{x^2 - a^2}} & -\frac{\pi}{2} < \csc^{-1} \frac{x}{a} < 0 \end{cases}$$

INTEGRALS INVOLVING ear

$$14.509 \quad \int e^{ax} dx = \frac{e^{ax}}{a}$$

$$14.510 \quad \int xe^{ax} dx = \frac{e^{ax}}{a} \left(x - \frac{1}{a} \right)$$

14.511
$$\int x^2 e^{ax} dx = \frac{e^{ax}}{a} \left(x^2 - \frac{2x}{a} + \frac{2}{a^2} \right)$$

14.512
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$
$$= \frac{e^{ax}}{a} \left(x^n - \frac{nx^{n-1}}{a} + \frac{n(n-1)x^{n-2}}{a^2} - \cdots + \frac{(-1)^n n!}{a^n} \right) \quad \text{if } n = \text{positive integer}$$

14.513
$$\int \frac{e^{ax}}{x} dx = \ln x + \frac{ax}{1 \cdot 1!} + \frac{(ax)^2}{2 \cdot 2!} + \frac{(ax)^3}{3 \cdot 3!} + \cdots$$

14.514
$$\int \frac{e^{ax}}{x^n} dx = \frac{-e^{ax}}{(n-1)x^{n-1}} + \frac{a}{n-1} \int \frac{e^{ax}}{x^{n-1}} dx$$

14.515
$$\int \frac{dx}{p+qe^{ax}} = \frac{x}{p} - \frac{1}{ap} \ln{(p+qe^{ax})}$$

14.516
$$\int \frac{dx}{(p+qe^{ax})^2} = \frac{x}{p^2} + \frac{1}{ap(p+qe^{ax})} - \frac{1}{ap^2} \ln{(p+qe^{ax})}$$

14.517
$$\int \frac{dx}{pe^{ax} + qe^{-ax}} = \begin{cases} \frac{1}{a\sqrt{pq}} \tan^{-1}\left(\sqrt{\frac{p}{q}}e^{ax}\right) \\ \frac{1}{2a\sqrt{-pq}} \ln\left(\frac{e^{ax} - \sqrt{-q/p}}{e^{ax} + \sqrt{-q/p}}\right) \end{cases}$$

14.518
$$\int e^{ax} \sin bx \ dx = \frac{e^{ax}(a \sin bx - b \cos bx)}{a^2 + b^2}$$

14.519
$$\int e^{ax} \cos bx \ dx = \frac{e^{ax}(a \cos bx + b \sin bx)}{a^2 + b^2}$$

14.520
$$\int xe^{ax} \sin bx \ dx = \frac{xe^{ax}(a \sin bx - b \cos bx)}{a^2 + b^2} - \frac{e^{ax}\{(a^2 - b^2) \sin bx - 2ab \cos bx\}}{(a^2 + b^2)^2}$$

14.521
$$\int xe^{ax}\cos bx \ dx = \frac{xe^{ax}(a\cos bx + b\sin bx)}{a^2 + b^2} - \frac{e^{ax}\{(a^2 - b^2)\cos bx + 2ab\sin bx\}}{(a^2 + b^2)^2}$$

14.522
$$\int e^{ax} \ln x \ dx = \frac{e^{ax} \ln x}{a} - \frac{1}{a} \int \frac{e^{ax}}{x} \ dx$$

14.523
$$\int e^{ax} \sin^n bx \ dx = \frac{e^{ax} \sin^{n-1} bx}{a^2 + n^2 b^2} (a \sin bx - nb \cos bx) + \frac{n(n-1)b^2}{a^2 + n^2 b^2} \int e^{ax} \sin^{n-2} bx \ dx$$

14.524
$$\int e^{ax} \cos^n bx \ dx = \frac{e^{ax} \cos^{n-1} bx}{a^2 + n^2 b^2} (a \cos bx + nb \sin bx) + \frac{n(n-1)b^2}{a^2 + n^2 b^2} \int e^{ax} \cos^{n-2} bx \ dx$$

INTEGRALS INVOLVING In &

$$14.525 \quad \int \ln x \ dx = x \ln x - x$$

14.526
$$\int x \ln x \, dx = \frac{x^2}{2} (\ln x - \frac{1}{2})$$

14.527
$$\int x^m \ln x \ dx = \frac{x^{m+1}}{m+1} \left(\ln x - \frac{1}{m+1} \right)$$
 [If $m = -1$ see 14.528.]

14.528
$$\int \frac{\ln x}{x} dx = \frac{1}{2} \ln^2 x$$

14.529
$$\int \frac{\ln x}{x^2} dx = -\frac{\ln x}{x} - \frac{1}{x}$$

14.530
$$\int \ln^2 x \ dx = x \ln^2 x - 2x \ln x + 2x$$

14.531
$$\int \frac{\ln^n x \ dx}{x} = \frac{\ln^{n+1} x}{n+1}$$
 [If $n = -1$ see 14.532.]

$$14.532 \quad \int \frac{dx}{x \ln x} = \ln (\ln x)$$

14.533
$$\int \frac{dx}{\ln x} = \ln (\ln x) + \ln x + \frac{\ln^2 x}{2 \cdot 2!} + \frac{\ln^3 x}{3 \cdot 3!} + \cdots$$

14.534
$$\int \frac{x^m dx}{\ln x} = \ln (\ln x) + (m+1) \ln x + \frac{(m+1)^2 \ln^2 x}{2 \cdot 2!} + \frac{(m+1)^3 \ln^3 x}{3 \cdot 3!} + \cdots$$

14.535
$$\int \ln^n x \ dx = x \ln^n x - n \int \ln^{n-1} x \ dx$$

14.536
$$\int x^m \ln^n x \ dx = \frac{x^{m+1} \ln^n x}{m+1} - \frac{n}{m+1} \int x^m \ln^{n-1} x \ dx$$
 If $m = -1$ see 14.531.

14.537
$$\int \ln (x^2 + a^2) \ dx = x \ln (x^2 + a^2) - 2x + 2a \tan^{-1} \frac{x}{a}$$

14.538
$$\int \ln (x^2 - a^2) dx = x \ln (x^2 - a^2) - 2x + a \ln \left(\frac{x+a}{x-a}\right)$$

14.539
$$\int x^m \ln (x^2 \pm a^2) \ dx = \frac{x^{m+1} \ln (x^2 \pm a^2)}{m+1} - \frac{2}{m+1} \int \frac{x^{m+2}}{x^2 \pm a^2} \ dx$$

INTEGRALS INVOLVING sinh ax

$$14.540 \quad \int \sinh ax \ dx = \frac{\cosh ax}{a}$$

14.541
$$\int x \sinh ax \ dx = \frac{x \cosh ax}{a} - \frac{\sinh ax}{a^2}$$

14.542
$$\int x^2 \sinh ax \ dx = \left(\frac{x^2}{a} + \frac{2}{a^3}\right) \cosh ax - \frac{2x}{a^2} \sinh ax$$

14.543
$$\int \frac{\sinh ax}{x} dx = ax + \frac{(ax)^3}{3 \cdot 3!} + \frac{(ax)^5}{5 \cdot 5!} + \cdots$$

14.544
$$\int \frac{\sinh ax}{x^2} dx = -\frac{\sinh ax}{x} + a \int \frac{\cosh ax}{x} dx$$
 [See 14.565]

14.545
$$\int \frac{dx}{\sinh ax} = \frac{1}{a} \ln \tanh \frac{ax}{2}$$

14.546
$$\int \frac{x \, dx}{\sinh ax} = \frac{1}{a^2} \left\{ ax - \frac{(ax)^3}{18} + \frac{7(ax)^5}{1800} - \cdots + \frac{2(-1)^n (2^{2n} - 1)B_n(ax)^{2n+1}}{(2n+1)!} + \cdots \right\}$$

$$14.547 \quad \int \sinh^2 ax \ dx = \frac{\sinh ax \cosh ax}{2a} - \frac{x}{2}$$

14.548
$$\int x \sinh^2 ax \ dx = \frac{x \sinh 2ax}{4a} - \frac{\cosh 2ax}{8a^2} - \frac{x^2}{4}$$

$$14.549 \quad \int \frac{dx}{\sinh^2 ax} = -\frac{\coth ax}{a}$$

14.550
$$\int \sinh ax \sinh px \ dx = \frac{\sinh (a+p)x}{2(a+p)} - \frac{\sinh (a-p)x}{2(a-p)}$$
 For $a = \pm p$ see 14.547.

14.551
$$\int \sinh ax \sin px \ dx = \frac{a \cosh ax \sin px - p \sinh ax \cos px}{a^2 + p^2}$$

14.552
$$\int \sinh ax \cos px \ dx = \frac{a \cosh ax \cos px + p \sinh ax \sin px}{a^2 + p^2}$$

14.553
$$\int \frac{dx}{p+q \sinh ax} = \frac{1}{a\sqrt{p^2+q^2}} \ln \left(\frac{qe^{ax}+p-\sqrt{p^2+q^2}}{qe^{ax}+p+\sqrt{p^2+q^2}} \right)$$

14.554
$$\int \frac{dx}{(p+q\sinh ax)^2} = \frac{-q\cosh ax}{a(p^2+q^2)(p+q\sinh ax)} + \frac{p}{p^2+q^2} \int \frac{dx}{p+q\sinh ax}$$

14.555
$$\int \frac{dx}{p^2 + q^2 \sinh^2 ax} = \begin{cases} \frac{1}{ap\sqrt{q^2 - p^2}} \tan^{-1} \frac{\sqrt{q^2 - p^2} \tanh ax}{p} \\ \frac{1}{2ap\sqrt{p^2 - q^2}} \ln \left(\frac{p + \sqrt{p^2 - q^2} \tanh ax}{p - \sqrt{p^2 - q^2} \tanh ax} \right) \end{cases}$$

14.556
$$\int \frac{dx}{p^2 - q^2 \sinh^2 ax} = \frac{1}{2ap\sqrt{p^2 + q^2}} \ln \left(\frac{p + \sqrt{p^2 + q^2} \tanh ax}{p - \sqrt{p^2 + q^2} \tanh ax} \right)$$

14.557
$$\int x^m \sinh ax \ dx = \frac{x^m \cosh ax}{a} - \frac{m}{a} \int x^{m-1} \cosh ax \ dx$$
 [See 14.585]

14.558
$$\int \sinh^n ax \ dx = \frac{\sinh^{n-1} ax \cosh ax}{an} - \frac{n-1}{n} \int \sinh^{n-2} ax \ dx$$

14.559
$$\int \frac{\sinh ax}{x^n} dx = \frac{-\sinh ax}{(n-1)x^{n-1}} + \frac{a}{n-1} \int \frac{\cosh ax}{x^{n-1}} dx$$
 [See 14.587]

14.560
$$\int \frac{dx}{\sinh^n ax} = \frac{-\cosh ax}{a(n-1)\sinh^{n-1} ax} - \frac{n-2}{n-1} \int \frac{dx}{\sinh^{n-2} ax}$$

14.561
$$\int \frac{x \, dx}{\sinh^n ax} = \frac{-x \cosh ax}{a(n-1) \sinh^{n-1} ax} - \frac{1}{a^2(n-1)(n-2) \sinh^{n-2} ax} - \frac{n-2}{n-1} \int \frac{x \, dx}{\sinh^{n-2} ax}$$

INTEGRALS INVOLVING cosh ax

14.562
$$\int \cosh ax \, dx = \frac{\sinh ax}{a}$$
14.563
$$\int x \cosh ax \, dx = \frac{x \sinh ax}{a} - \frac{\cosh ax}{a^2}$$
14.564
$$\int x^2 \cosh ax \, dx = -\frac{2x \cosh ax}{a^2} + \left(\frac{x^2}{a} + \frac{2}{a^2}\right) \sinh ax$$
14.565
$$\int \frac{\cosh ax}{x} \, dx = \ln x + \frac{(ax)^2}{2 \cdot 2!} + \frac{(ax)^4}{4 \cdot 4!} + \frac{(ax)^6}{6 \cdot 6!} + \cdots$$
14.566
$$\int \frac{\cosh ax}{x^2} \, dx = -\frac{\cosh ax}{x} + a \int \frac{\sinh ax}{x} \, dx \quad [See 14.543]$$
14.567
$$\int \frac{dx}{\cosh ax} = \frac{2}{a} \tan^{-1} e^{ax}$$
14.568
$$\int \frac{x \, dx}{\cosh ax} = \frac{1}{a^2} \left\{ \frac{(ax)^2}{2} - \frac{(ax)^4}{8} + \frac{5(ax)^6}{144} + \cdots + \frac{(-1)^n E_n(ax)^{2n+2}}{(2n+2)(2n)!} + \cdots \right\}$$
14.569
$$\int \cosh^2 ax \, dx = \frac{x}{2} + \frac{\sinh ax}{2a}$$
14.570
$$\int x \cosh^2 ax \, dx = \frac{x^2}{4} + \frac{x \sinh 2ax}{4a} - \frac{\cosh 2ax}{8a^2}$$
14.571
$$\int \frac{dx}{\cosh^2 ax} = \frac{\tanh ax}{a}$$
14.572
$$\int \cosh ax \cosh px \, dx = \frac{\sinh (a-p)x}{2(a-p)} + \frac{\sinh (a+p)x}{2(a+p)}$$
14.573
$$\int \cosh ax \cosh px \, dx = \frac{a \sinh ax \sin px - p \cosh ax \cos px}{a^2 + p^2}$$
14.574
$$\int \cosh ax \cos px \, dx = \frac{a \sinh ax \cos px + p \cosh ax \sin px}{a^2 + p^2}$$
14.575
$$\int \frac{dx}{\cosh ax - 1} = \frac{1}{a} \tanh \frac{ax}{2}$$
14.576
$$\int \frac{dx}{\cosh ax - 1} = \frac{1}{a} \coth \frac{ax}{2}$$
14.577
$$\int \frac{x \, dx}{\cosh ax - 1} = -\frac{1}{a} \coth \frac{ax}{2}$$
14.578
$$\int \frac{x \, dx}{\cosh ax - 1} = -\frac{x}{a} \coth \frac{ax}{2} - \frac{1}{6a} \tanh \frac{ax}{2}$$
14.579
$$\int \frac{dx}{(\cosh ax - 1)^2} = \frac{1}{2a} \coth \frac{ax}{2} - \frac{1}{6a} \tanh \frac{ax}{2}$$
14.580
$$\int \frac{dx}{(\cosh ax - 1)^2} = \frac{1}{2a} \coth \frac{ax}{2} - \frac{1}{6a} \coth^3 \frac{ax}{2}$$
14.581
$$\int \frac{dx}{p + q \cosh ax} = \begin{bmatrix} \frac{1}{2a} \cot \frac{ax}{2} - \frac{1}{6a} \coth^3 \frac{ax}{2} - \frac{1}{6a} - \frac{1}{$$

14.582 $\int \frac{dx}{(p+q\cosh ax)^2} = \frac{q \sinh ax}{a(q^2-p^2)(p+q\cosh ax)} - \frac{p}{q^2-p^2} \int \frac{dx}{p+q\cosh ax}$

14.583
$$\int \frac{dx}{p^2 - q^2 \cosh^2 ax} = \begin{cases} \frac{1}{2ap\sqrt{p^2 - q^2}} \ln \left(\frac{p \tanh ax + \sqrt{p^2 - q^2}}{p \tanh ax - \sqrt{p^2 - q^2}} \right) \\ \frac{-1}{ap\sqrt{q^2 - p^2}} \tan^{-1} \frac{p \tanh ax}{\sqrt{q^2 - p^2}} \end{cases}$$

14.584
$$\int \frac{dx}{p^2 + q^2 \cosh^2 ax} = \begin{cases} \frac{1}{2ap\sqrt{p^2 + q^2}} \ln\left(\frac{p \tanh ax + \sqrt{p^2 + q^2}}{p \tanh ax - \sqrt{p^2 + q^2}}\right) \\ \frac{1}{ap\sqrt{p^2 + q^2}} \tan^{-1} \frac{p \tanh ax}{\sqrt{p^2 + q^2}} \end{cases}$$

14.585
$$\int x^m \cosh ax \ dx = \frac{x^m \sinh ax}{a} - \frac{m}{a} \int x^{m-1} \sinh ax \ dx$$
 [See 14.557]

14.586
$$\int \cosh^n ax \ dx = \frac{\cosh^{n-1} ax \sinh ax}{an} + \frac{n-1}{n} \int \cosh^{n-2} ax \ dx$$

14.587
$$\int \frac{\cosh ax}{x^n} dx = \frac{-\cosh ax}{(n-1)x^{n-1}} + \frac{a}{n-1} \int \frac{\sinh ax}{x^{n-1}} dx$$
 [See 14.559]

14.588
$$\int \frac{dx}{\cosh^n ax} = \frac{\sinh ax}{a(n-1)\cosh^{n-1} ax} + \frac{n-2}{n-1} \int \frac{dx}{\cosh^{n-2} ax}$$

14.589
$$\int \frac{x \, dx}{\cosh^n ax} = \frac{x \sinh ax}{a(n-1) \cosh^{n-1} ax} + \frac{1}{(n-1)(n-2)a^2 \cosh^{n-2} ax} + \frac{n-2}{n-1} \int \frac{x \, dx}{\cosh^{n-2} ax}$$

INTEGRALS INVOLVING sinh ax AND cosh ax

14.590
$$\int \sinh ax \cosh ax \, dx = \frac{\sinh^2 ax}{2a}$$

14.591
$$\int \sinh px \cosh qx \ dx = \frac{\cosh (p+q)x}{2(p+q)} + \frac{\cosh (p-q)x}{2(p-q)}$$

14.592
$$\int \sinh^n ax \cosh ax \ dx = \frac{\sinh^{n+1} ax}{(n+1)a}$$
 [If $n = -1$, see 14.615.]

14.593
$$\int \cosh^n ax \sinh ax \, dx = \frac{\cosh^{n+1} ax}{(n+1)a}$$
 [If $n = -1$, see 14.604.]

14.594
$$\int \sinh^2 ax \cosh^2 ax \, dx = \frac{\sinh 4ax}{32a} - \frac{x}{8}$$

14.595
$$\int \frac{dx}{\sinh ax \cosh ax} = \frac{1}{a} \ln \tanh ax$$

14.596
$$\int \frac{dx}{\sinh^2 ax \cosh ax} = -\frac{1}{a} \tan^{-1} \sinh ax - \frac{\operatorname{csch} ax}{a}$$

14.597
$$\int \frac{dx}{\sinh ax \cosh^2 ax} = \frac{\operatorname{sech} ax}{a} + \frac{1}{a} \ln \tanh \frac{ax}{2}$$

$$14.598 \int \frac{dx}{\sinh^2 ax \cosh^2 ax} = -\frac{2 \coth 2ax}{a}$$

14.599
$$\int \frac{\sinh^2 ax}{\cosh ax} \, dx = \frac{\sinh ax}{a} - \frac{1}{a} \tan^{-1} \sinh ax$$

14.600
$$\int \frac{\cosh^2 ax}{\sinh ax} dx = \frac{\cosh ax}{a} + \frac{1}{a} \ln \tanh \frac{ax}{2}$$

14.601
$$\int \frac{dx}{\cosh ax \ (1+\sinh ax)} = \frac{1}{2a} \ln \left(\frac{1+\sinh ax}{\cosh ax} \right) + \frac{1}{a} \tan^{-1} e^{ax}$$

14.602
$$\int \frac{dx}{\sinh ax \; (\cosh ax + 1)} = \frac{1}{2a} \ln \tanh \frac{ax}{2} + \frac{1}{2a(\cosh ax + 1)}$$

14.603
$$\int \frac{dx}{\sinh ax \; (\cosh ax - 1)} = -\frac{1}{2a} \ln \tanh \frac{ax}{2} - \frac{1}{2a(\cosh ax - 1)}$$

INTEGRALS INVOLVING tanh ax

14.604
$$\int \tanh ax \ dx = \frac{1}{a} \ln \cosh ax$$

$$14.605 \quad \int \tanh^2 ax \ dx = x - \frac{\tanh ax}{a}$$

14.606
$$\int \tanh^3 ax \ dx = \frac{1}{a} \ln \cosh ax - \frac{\tanh^2 ax}{2a}$$

14.607
$$\int \tanh^n ax \operatorname{sech}^2 ax \, dx = \frac{\tanh^{n+1} ax}{(n+1)a}$$

14.608
$$\int \frac{\operatorname{sech}^2 ax}{\tanh ax} dx = \frac{1}{a} \ln \tanh ax$$

14.609
$$\int \frac{dx}{\tanh ax} = \frac{1}{a} \ln \sinh ax$$

14.610
$$\int x \tanh ax \ dx = \frac{1}{a^2} \left\{ \frac{(ax)^3}{3} - \frac{(ax)^5}{15} + \frac{2(ax)^7}{105} - \cdots + \frac{(-1)^{n-1}2^{2n}(2^{2n}-1)B_n(ax)^{2n+1}}{(2n+1)!} + \cdots \right\}$$

14.611
$$\int x \tanh^2 ax \, dx = \frac{x^2}{2} - \frac{x \tanh ax}{a} + \frac{1}{a^2} \ln \cosh ax$$

14.612
$$\int \frac{\tanh ax}{x} dx = ax - \frac{(ax)^3}{9} + \frac{2(ax)^5}{75} - \cdots + \frac{(-1)^{n-1}2^{2n}(2^{2n}-1)B_n(ax)^{2n-1}}{(2n-1)(2n)!} + \cdots$$

14.613
$$\int \frac{dx}{p+q \tanh ax} = \frac{px}{p^2-q^2} - \frac{q}{a(p^2-q^2)} \ln (q \sinh ax + p \cosh ax)$$

14.614
$$\int \tanh^n ax \ dx = \frac{-\tanh^{n-1} ax}{a(n-1)} + \int \tanh^{n-2} ax \ dx$$

INTEGRALS INVOLVING coth ax

14.615
$$\int \coth ax \ dx = \frac{1}{a} \ln \sinh ax$$

$$14.616 \quad \int \coth^2 ax \ dx = x - \frac{\coth ax}{a}$$

14.617
$$\int \coth^3 ax \ dx = \frac{1}{a} \ln \sinh ax - \frac{\coth^2 ax}{2a}$$

14.618
$$\int \coth^n ax \operatorname{csch}^2 ax \, dx = -\frac{\coth^{n+1} ax}{(n+1)a}$$

14.619
$$\int \frac{\cosh^2 ax}{\coth ax} dx = -\frac{1}{a} \ln \coth ax$$

$$14.620 \quad \int \frac{dx}{\coth ax} = \frac{1}{a} \ln \cosh ax$$

14.621
$$\int x \coth ax \ dx = \frac{1}{a^2} \left\{ ax + \frac{(ax)^3}{9} - \frac{(ax)^5}{225} + \cdots + \frac{(-1)^{n-1}2^{2n}B_n(ax)^{2n+1}}{(2n+1)!} + \cdots \right\}$$

14.622
$$\int x \coth^2 ax \ dx = \frac{x^2}{2} - \frac{x \coth ax}{a} + \frac{1}{a^2} \ln \sinh ax$$

14.623
$$\int \frac{\coth ax}{x} dx = -\frac{1}{ax} + \frac{ax}{3} - \frac{(ax)^3}{135} + \cdots + \frac{(-1)^n 2^{2n} B_n(ax)^{2n-1}}{(2n-1)(2n)!} + \cdots$$

14.624
$$\int \frac{dx}{p+q \coth ax} = \frac{px}{p^2-q^2} - \frac{q}{a(p^2-q^2)} \ln{(p \sinh ax + q \cosh ax)}$$

14.625
$$\int \coth^n ax \ dx = -\frac{\coth^{n-1} ax}{a(n-1)} + \int \coth^{n-2} ax \ dx$$

INTEGRALS INVOLVING sech ax

14.626
$$\int \operatorname{sech} ax \ dx = \frac{2}{a} \tan^{-1} e^{ax}$$

$$14.627 \quad \int \operatorname{sech}^2 ax \ dx = \frac{\tanh ax}{a}$$

14.628
$$\int \operatorname{sech}^3 ax \ dx = \frac{\operatorname{sech} ax \tanh ax}{2a} + \frac{1}{2a} \tan^{-1} \sinh ax$$

14.629
$$\int \operatorname{sech}^n ax \tanh ax \, dx = -\frac{\operatorname{sech}^n ax}{na}$$

$$14.630 \quad \int \frac{dx}{\operatorname{sech} ax} = \frac{\sinh ax}{a}$$

14.631
$$\int x \operatorname{sech} ax \ dx = \frac{1}{a^2} \left\{ \frac{(ax)^2}{2} - \frac{(ax)^4}{8} + \frac{5(ax)^6}{144} + \cdots + \frac{(-1)^n E_n(ax)^{2n+2}}{(2n+2)(2n)!} + \cdots \right\}$$

14.632
$$\int x \operatorname{sech}^2 ax \ dx = \frac{x \tanh ax}{a} - \frac{1}{a^2} \ln \cosh ax$$

14.633
$$\int \frac{\operatorname{sech} ax}{x} dx = \ln x - \frac{(ax)^2}{4} + \frac{5(ax)^4}{96} - \frac{61(ax)^6}{4320} + \cdots + \frac{(-1)^n E_n(ax)^{2n}}{2n(2n)!} + \cdots$$

14.634
$$\int \frac{dx}{q+p \, \operatorname{sech} ax} = \frac{x}{q} - \frac{p}{q} \int \frac{dx}{p+q \, \operatorname{cosh} ax}$$
 [See 14.581]

14.635
$$\int \operatorname{sech}^n ax \ dx = \frac{\operatorname{sech}^{n-2} ax \tanh ax}{a(n-1)} + \frac{n-2}{n-1} \int \operatorname{sech}^{n-2} ax \ dx$$

INTEGRALS INVOLVING csch ax

14.636
$$\int \operatorname{csch} ax \ dx = \frac{1}{a} \ln \tanh \frac{ax}{2}$$

$$14.637 \quad \int \operatorname{csch}^2 ax \ dx = -\frac{\coth ax}{a}$$

14.638
$$\int \operatorname{csch}^3 ax \ dx = -\frac{\operatorname{csch} ax \ \operatorname{coth} ax}{2a} - \frac{1}{2a} \ln \tanh \frac{ax}{2}$$

14.639
$$\int \operatorname{csch}^n ax \operatorname{coth} ax \, dx = -\frac{\operatorname{csch}^n ax}{na}$$

$$14.640 \quad \int \frac{dx}{\cosh ax} = \frac{1}{a} \cosh ax$$

14.641
$$\int x \operatorname{csch} ax \, dx = \frac{1}{a^2} \left\{ ax - \frac{(ax)^3}{18} + \frac{7(ax)^5}{1800} + \cdots + \frac{2(-1)^n (2^{2n-1}-1)B_n(ax)^{2n+1}}{(2n+1)!} + \cdots \right\}$$

14.642
$$\int x \operatorname{csch}^2 ax \, dx = -\frac{x \operatorname{coth} ax}{a} + \frac{1}{a^2} \ln \sinh ax$$

14.643
$$\int \frac{\operatorname{csch} ax}{x} dx = -\frac{1}{ax} - \frac{ax}{6} + \frac{7(ax)^3}{1080} + \cdots + \frac{(-1)^n 2(2^{2n-1}-1)B_n(ax)^{2n-1}}{(2n-1)(2n)!} + \cdots$$

14.644
$$\int \frac{dx}{q+p \operatorname{csch} ax} = \frac{x}{q} - \frac{p}{q} \int \frac{dx}{p+q \sinh ax}$$
 [See 14.553]

14.645
$$\int \operatorname{csch}^n ax \ dx = \frac{-\operatorname{csch}^{n-2} ax \ \operatorname{coth} ax}{a(n-1)} - \frac{n-2}{n-1} \int \operatorname{csch}^{n-2} ax \ dx$$

INTEGRALS INVOLVING INVERSE HYPERBOLIC FUNCTIONS

14.646
$$\int \sinh^{-1} \frac{x}{a} dx = x \sinh^{-1} \frac{x}{a} - \sqrt{x^2 + a^2}$$

14.647
$$\int x \sinh^{-1} \frac{x}{a} dx = \left(\frac{x^2}{2} + \frac{a^2}{4}\right) \sinh^{-1} \frac{x}{a} - \frac{x\sqrt{x^2 + a^2}}{4}$$

14.648
$$\int x^2 \sinh^{-1} \frac{x}{a} dx = \frac{x^3}{3} \sinh^{-1} \frac{x}{a} + \frac{(2a^2 - x^2)\sqrt{x^2 + a^2}}{9}$$

$$\mathbf{14.649} \quad \int \frac{\sinh^{-1}(x/a)}{x} \, dx \quad = \quad \begin{cases} \frac{x}{a} - \frac{(x/a)^3}{2 \cdot 3 \cdot 3} + \frac{1 \cdot 3(x/a)^5}{2 \cdot 4 \cdot 5 \cdot 5} - \frac{1 \cdot 3 \cdot 5(x/a)^7}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 7} + \cdots & |x| < a \\ \frac{\ln^2(2x/a)}{2} - \frac{(a/x)^2}{2 \cdot 2 \cdot 2} + \frac{1 \cdot 3(a/x)^4}{2 \cdot 4 \cdot 4 \cdot 4} - \frac{1 \cdot 3 \cdot 5(a/x)^6}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 6} + \cdots & x > a \\ -\frac{\ln^2(-2x/a)}{2} + \frac{(a/x)^2}{2 \cdot 2 \cdot 2} - \frac{1 \cdot 3(a/x)^4}{2 \cdot 4 \cdot 4 \cdot 4} + \frac{1 \cdot 3 \cdot 5(a/x)^6}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 6} - \cdots & x < -a \end{cases}$$

$$-\frac{\ln^2(-2x/a)}{2} + \frac{(a/x)^2}{2 \cdot 2 \cdot 2} - \frac{1 \cdot 3(a/x)^4}{2 \cdot 4 \cdot 4 \cdot 4} + \frac{1 \cdot 3 \cdot 5(a/x)^6}{2 \cdot 4 \cdot 4 \cdot 2 \cdot 5 \cdot 5} - \cdots \quad x < -a$$

14.650
$$\int \frac{\sinh^{-1}(x/a)}{x^2} dx = -\frac{\sinh^{-1}(x/a)}{x} - \frac{1}{a} \ln \left(\frac{a + \sqrt{x^2 + a^2}}{x} \right)$$

14.651
$$\int \cosh^{-1} \frac{x}{a} dx = \begin{cases} x \cosh^{-1} (x/a) - \sqrt{x^2 - a^2}, & \cosh^{-1} (x/a) > 0 \\ x \cosh^{-1} (x/a) + \sqrt{x^2 - a^2}, & \cosh^{-1} (x/a) < 0 \end{cases}$$

14.652
$$\int x \cosh^{-1} \frac{x}{a} dx = \begin{cases} \frac{1}{4} (2x^2 - a^2) \cosh^{-1} (x/a) - \frac{1}{4} x \sqrt{x^2 - a^2}, & \cosh^{-1} (x/a) > 0 \\ \frac{1}{4} (2x^2 - a^2) \cosh^{-1} (x/a) + \frac{1}{4} x \sqrt{x^2 - a^2}, & \cosh^{-1} (x/a) < 0 \end{cases}$$

14.653
$$\int x^2 \cosh^{-1} \frac{x}{a} dx = \begin{cases} \frac{1}{3} x^3 \cosh^{-1} (x/a) - \frac{1}{9} (x^2 + 2a^2) \sqrt{x^2 - a^2}, & \cosh^{-1} (x/a) > 0 \\ \frac{1}{8} x^3 \cosh^{-1} (x/a) + \frac{1}{9} (x^2 + 2a^2) \sqrt{x^2 - a^2}, & \cosh^{-1} (x/a) < 0 \end{cases}$$

14.654
$$\int \frac{\cosh^{-1}(x/a)}{x} dx = \pm \left[\frac{1}{2} \ln^2(2x/a) + \frac{(a/x)^2}{2 \cdot 2 \cdot 2} + \frac{1 \cdot 3(a/x)^4}{2 \cdot 4 \cdot 4 \cdot 4} + \frac{1 \cdot 3 \cdot 5(a/x)^6}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 6} + \cdots \right] + \text{if } \cosh^{-1}(x/a) > 0, \quad - \text{if } \cosh^{-1}(x/a) < 0$$

14.655
$$\int \frac{\cosh^{-1}(x/a)}{x^2} dx = -\frac{\cosh^{-1}(x/a)}{x} \mp \frac{1}{a} \ln \left(\frac{a + \sqrt{x^2 + a^2}}{x} \right) \quad [-\text{ if } \cosh^{-1}(x/a) > 0, \\ + \text{ if } \cosh^{-1}(x/a) < 0]$$

14.656
$$\int \tanh^{-1} \frac{x}{a} dx = x \tanh^{-1} \frac{x}{a} + \frac{a}{2} \ln (a^2 - x^2)$$

14.657
$$\int x \tanh^{-1} \frac{x}{a} dx = \frac{ax}{2} + \frac{1}{2}(x^2 - a^2) \tanh^{-1} \frac{x}{a}$$

14.658
$$\int x^2 \tanh^{-1} \frac{x}{a} dx = \frac{ax^2}{6} + \frac{x^3}{3} \tanh^{-1} \frac{x}{a} + \frac{a^3}{6} \ln (a^2 - x^2)$$

15

DEFINITE INTEGRALS

DEFINITION OF A DEFINITE INTEGRAL

Let f(x) be defined in an interval $a \le x \le b$. Divide the interval into n equal parts of length $\Delta x = (b-a)/n$. Then the definite integral of f(x) between x = a and x = b is defined as

15.1
$$\int_a^b f(x) dx = \lim_{n \to \infty} \left\{ f(a) \Delta x + f(a + \Delta x) \Delta x + f(a + 2\Delta x) \Delta x + \cdots + f(a + (n-1) \Delta x) \Delta x \right\}$$

The limit will certainly exist if f(x) is piecewise continuous.

If $f(x) = \frac{d}{dx}g(x)$, then by the fundamental theorem of the integral calculus the above definite integral can be evaluated by using the result

15.2
$$\int_a^b f(x) \, dx = \int_a^b \frac{d}{dx} g(x) \, dx = g(x) \Big|_a^b = g(b) - g(a)$$

If the interval is infinite or if f(x) has a singularity at some point in the interval, the definite integral is called an *improper integral* and can be defined by using appropriate limiting procedures. For example,

15.3
$$\int_a^\infty f(x) \ dx = \lim_{b \to \infty} \int_a^b f(x) \ dx$$

15.4
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{\substack{a \to -\infty \\ b \to \infty}} \int_{a}^{b} f(x) dx$$

15.5
$$\int_a^b f(x) dx = \lim_{\epsilon \to 0} \int_a^{b-\epsilon} f(x) dx$$
 if b is a singular point

15.6
$$\int_a^b f(x) dx = \lim_{\epsilon \to 0} \int_{a+\epsilon}^b f(x) dx$$
 if a is a singular point

GENERAL FORMULAS INVOLVING DEFINITE INTEGRALS

15.8
$$\int_a^b c f(x) dx = c \int_a^b f(x) dx$$
 where c is any constant

$$15.9 \qquad \int_a^a f(x) \ dx = 0$$

15.11
$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

15.12
$$\int_a^b f(x) dx = (b-a) f(c) \quad \text{where } c \text{ is between } a \text{ and } b$$

This is called the *mean value theorem* for definite integrals and is valid if f(x) is continuous in $a \le x \le b$.

15.13
$$\int_a^b f(x) g(x) dx = f(c) \int_a^b g(x) dx$$
 where c is between a and b

This is a generalization of 15.12 and is valid if f(x) and g(x) are continuous in $a \le x \le b$ and $g(x) \ge 0$.

LEIBNITZ'S RULE FOR DIFFERENTIATION OF INTEGRALS

15.14
$$\frac{d}{d\alpha} \int_{\phi_1(\alpha)}^{\phi_2(\alpha)} F(x,\alpha) dx = \int_{\phi_1(\alpha)}^{\phi_2(\alpha)} \frac{\partial F}{\partial \alpha} dx + F(\phi_2,\alpha) \frac{d\phi_1}{d\alpha} - F(\phi_1,\alpha) \frac{d\phi_2}{d\alpha}$$

APPROXIMATE FORMULAS FOR DEFINITE INTEGRALS

In the following the interval from x = a to x = b is subdivided into n equal parts by the points $a = x_0$, $x_1, x_2, \ldots, x_{n-1}, x_n = b$ and we let $y_0 = f(x_0), y_1 = f(x_1), y_2 = f(x_2), \ldots, y_n = f(x_n), h = (b-a)/n$.

Rectangular formula

15.15
$$\int_a^b f(x) \ dx \approx h(y_0 + y_1 + y_2 + \cdots + y_{n-1})$$

Trapezoidal formula

15.16
$$\int_a^b f(x) dx \approx \frac{h}{2} (y_0 + 2y_1 + 2y_2 + \cdots + 2y_{n-1} + y_n)$$

Simpson's formula (or parabolic formula) for n even

15.17
$$\int_a^b f(x) \, dx \approx \frac{h}{3} \left(y_0 + 4y_1 + 2y_2 + 4y_3 + \cdots + 2y_{n-2} + 4y_{n-1} + y_n \right)$$

DEFINITE INTEGRALS INVOLVING RATIONAL OR IRRATIONAL EXPRESSIONS

15.18
$$\int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a}$$

15.19
$$\int_0^\infty \frac{x^{p-1} dx}{1+x} = \frac{\pi}{\sin p\pi}, \quad 0$$

15.20
$$\int_0^\infty \frac{x^m \, dx}{x^n + a^n} = \frac{\pi a^{m+1-n}}{n \, \sin \left[(m+1)\pi/n \right]}, \quad 0 < m+1 < n$$

$$15.21 \quad \int_0^\infty \frac{x^m dx}{1 + 2x \cos \beta + x^2} = \frac{\pi}{\sin m\pi} \frac{\sin m\beta}{\sin \beta}$$

15.22
$$\int_0^a \frac{dx}{\sqrt{a^2 - x^2}} = \frac{\pi}{2}$$

15.23
$$\int_0^a \sqrt{a^2 - x^2} \ dx = \frac{\pi a^2}{4}$$

15.24
$$\int_0^a x^m (a^n - x^n)^p dx = \frac{a^{m+1+np} \Gamma[(m+1)/n] \Gamma(p+1)}{n\Gamma[(m+1)/n + p + 1]}$$

15.25
$$\int_0^\infty \frac{x^m \, dx}{(x^n + a^n)^r} = \frac{(-1)^{r-1} \pi a^{m+1-nr} \Gamma[(m+1)/n]}{n \, \sin{[(m+1)\pi/n]}(r-1)! \, \Gamma[(m+1)/n-r+1]}, \quad 0 < m+1 < nr$$

DEFINITE INTEGRALS INVOLVING TRIGONOMETRIC FUNCTIONS

All letters are considered positive unless otherwise indicated.

15.26
$$\int_0^{\pi} \sin mx \sin nx \, dx = \begin{cases} 0 & m, n \text{ integers and } m \neq n \\ \pi/2 & m, n \text{ integers and } m = n \end{cases}$$

15.27
$$\int_0^{\pi} \cos mx \cos nx \, dx = \begin{cases} 0 & m, n \text{ integers and } m \neq n \\ \pi/2 & m, n \text{ integers and } m = n \end{cases}$$

15.28
$$\int_0^\pi \sin mx \cos nx \ dx = \begin{cases} 0 & m, n \text{ integers and } m+n \text{ odd} \\ 2m/(m^2-n^2) & m, n \text{ integers and } m+n \text{ even} \end{cases}$$

15.29
$$\int_0^{\pi/2} \sin^2 x \ dx = \int_0^{\pi/2} \cos^2 x \ dx = \frac{\pi}{4}$$

15.30
$$\int_0^{\pi/2} \sin^{2m} x \ dx = \int_0^{\pi/2} \cos^{2m} x \ dx = \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot 2m - 1}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2m} \frac{\pi}{2}, \qquad m = 1, 2, \dots$$

15.31
$$\int_0^{\pi/2} \sin^{2m+1} x \ dx = \int_0^{\pi/2} \cos^{2m+1} x \ dx = \frac{2 \cdot 4 \cdot 6 \cdots 2m}{1 \cdot 3 \cdot 5 \cdots 2m+1}, \quad m = 1, 2, \dots$$

15.32
$$\int_0^{\pi/2} \sin^{2p-1} x \cos^{2q-1} x \ dx = \frac{\Gamma(p) \Gamma(q)}{2 \Gamma(p+q)}$$

15.33
$$\int_0^\infty \frac{\sin px}{x} dx = \begin{cases} \pi/2 & p > 0 \\ 0 & p = 0 \\ -\pi/2 & p < 0 \end{cases}$$

15.34
$$\int_0^\infty \frac{\sin px \cos qx}{x} dx = \begin{cases} 0 & p > q > 0 \\ \pi/2 & 0 0 \end{cases}$$

15.35
$$\int_0^\infty \frac{\sin px \sin qx}{x^2} dx = \begin{cases} \pi p/2 & 0 0 \end{cases}$$

15.36
$$\int_0^\infty \frac{\sin^2 px}{x^2} \, dx = \frac{\pi p}{2}$$

15.37
$$\int_0^\infty \frac{1 - \cos px}{x^2} \, dx = \frac{\pi p}{2}$$

$$15.38 \quad \int_0^\infty \frac{\cos px - \cos qx}{x} dx = \ln \frac{q}{p}$$

15.39
$$\int_{0}^{\infty} \frac{\cos px - \cos qx}{x^{2}} dx = \frac{\pi(q-p)}{2}$$

15.40
$$\int_0^\infty \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi}{2a} e^{-ma}$$

15.41
$$\int_0^\infty \frac{x \sin mx}{x^2 + a^2} dx = \frac{\pi}{2} e^{-ma}$$

15.42
$$\int_0^\infty \frac{\sin mx}{x(x^2+a^2)} dx = \frac{\pi}{2a^2} (1-e^{-ma})$$

15.43
$$\int_0^{2\pi} \frac{dx}{a+b \sin x} = \frac{2\pi}{\sqrt{a^2-b^2}}$$

15.44
$$\int_0^{2\pi} \frac{dx}{a+b \cos x} = \frac{2\pi}{\sqrt{a^2-b^2}}$$

15.45
$$\int_0^{\pi/2} \frac{dx}{a+b \cos x} = \frac{\cos^{-1}(b/a)}{\sqrt{a^2-b^2}}$$

15.46
$$\int_0^{2\pi} \frac{dx}{(a+b\sin x)^2} = \int_0^{2\pi} \frac{dx}{(a+b\cos x)^2} = \frac{2\pi a}{(a^2-b^2)^{3/2}}$$

15.47
$$\int_0^{2\pi} \frac{dx}{1 - 2a \cos x + a^2} = \frac{2\pi}{1 - a^2}, \quad 0 < a < 1$$

15.48
$$\int_0^\pi \frac{x \sin x \, dx}{1 - 2a \cos x + a^2} = \begin{cases} (\pi/a) \ln (1+a) & |a| < 1 \\ \pi \ln (1+1/a) & |a| > 1 \end{cases}$$

15.49
$$\int_0^{\pi} \frac{\cos mx \, dx}{1 - 2a \cos x + a^2} = \frac{\pi a^m}{1 - a^2}, \quad a^2 < 1, \quad m = 0, 1, 2, \dots$$

15.50
$$\int_0^\infty \sin ax^2 dx = \int_0^\infty \cos ax^2 dx = \frac{1}{2} \sqrt{\frac{\pi}{2a}}$$

15.51
$$\int_0^\infty \sin ax^n \ dx = \frac{1}{na^{1/n}} \Gamma(1/n) \sin \frac{\pi}{2n}, \quad n > 1$$

15.52
$$\int_{0}^{\infty} \cos ax^{n} dx = \frac{1}{na^{1/n}} \Gamma(1/n) \cos \frac{\pi}{2n}, \quad n > 1$$

15.53
$$\int_0^\infty \frac{\sin x}{\sqrt{x}} \, dx = \int_0^\infty \frac{\cos x}{\sqrt{x}} \, dx = \sqrt{\frac{\pi}{2}}$$

15.54
$$\int_0^\infty \frac{\sin x}{x^p} dx = \frac{\pi}{2\Gamma(p) \sin(p\pi/2)}, \quad 0$$

15.55
$$\int_0^\infty \frac{\cos x}{x^p} \, dx = \frac{\pi}{2\Gamma(p) \, \cos{(p\pi/2)}}, \quad 0$$

15.56
$$\int_0^\infty \sin ax^2 \cos 2bx \ dx = \frac{1}{2} \sqrt{\frac{\pi}{2a}} \left(\cos \frac{b^2}{a} - \sin \frac{b^2}{a} \right)$$

15.57
$$\int_0^\infty \cos ax^2 \cos 2bx \ dx = \frac{1}{2} \sqrt{\frac{\pi}{2a}} \left(\cos \frac{b^2}{a} + \sin \frac{b^2}{a} \right)$$

15.58
$$\int_0^\infty \frac{\sin^3 x}{x^3} \, dx = \frac{3\pi}{8}$$

15.59
$$\int_0^\infty \frac{\sin^4 x}{x^4} \, dx = \frac{\pi}{3}$$

$$15.60 \quad \int_0^\infty \frac{\tan x}{x} dx = \frac{\pi}{2}$$

15.61
$$\int_0^{\pi/2} \frac{dx}{1 + \tan^m x} = \frac{\pi}{4}$$

15.62
$$\int_0^{\pi/2} \frac{x}{\sin x} dx = 2 \left\{ \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots \right\}$$

15.63
$$\int_{0}^{1} \frac{\tan^{-1} x}{x} dx = \frac{1}{1^{2}} - \frac{1}{3^{2}} + \frac{1}{5^{2}} - \frac{1}{7^{2}} + \cdots \qquad \text{Catalan}$$

15.64
$$\int_{0}^{1} \frac{\sin^{-1} x}{x} dx = \frac{\pi}{2} \ln 2$$

15.65
$$\int_0^1 \frac{1 - \cos x}{x} \, dx - \int_1^\infty \frac{\cos x}{x} \, dx = \gamma$$

$$15.66 \quad \int_0^\infty \left(\frac{1}{1+x^2}-\cos x\right) \frac{dx}{x} = \gamma$$

15.67
$$\int_0^\infty \frac{\tan^{-1} px - \tan^{-1} qx}{x} dx = \frac{\pi}{2} \ln \frac{p}{q}$$

DEFINITE INTEGRALS INVOLVING EXPONENTIAL FUNCTIONS

15.68
$$\int_0^\infty e^{-ax} \cos bx \ dx = \frac{a}{a^2 + b^2}$$

15.69
$$\int_0^\infty e^{-ax} \sin bx \ dx = \frac{b}{a^2 + b^2}$$

15.70
$$\int_0^\infty \frac{e^{-ax} \sin bx}{x} dx = \tan^{-1} \frac{b}{a}$$

$$15.71 \quad \int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx = \ln \frac{b}{a}$$

15.72
$$\int_{0}^{\infty} e^{-ax^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

15.73
$$\int_0^\infty e^{-ax^2} \cos bx \ dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-b^2/4a}$$

15.74
$$\int_{0}^{\infty} e^{-(ax^{2}+bx+c)} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{(b^{2}-4ac)/4a} \operatorname{erfc} \frac{b}{2\sqrt{a}}$$
 where $\operatorname{erfc}(p) = \frac{2}{\sqrt{\pi}} \int_{p}^{\infty} e^{-x^{2}} dx$

15.75
$$\int_{-\infty}^{\infty} e^{-(ax^2+bx+c)} dx = \sqrt{\frac{\pi}{a}} e^{(b^2-4ac)/4a}$$

15.76
$$\int_0^\infty x^n e^{-ax} dx = \frac{\Gamma(n+1)}{a^{n+1}}$$

15.77
$$\int_0^\infty x^m e^{-ax^2} dx = \frac{\Gamma[(m+1)/2]}{2a^{(m+1)/2}}$$

15.78
$$\int_0^\infty e^{-(ax^2+b/x^2)} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}$$

15.79
$$\int_{0}^{\infty} \frac{x \, dx}{e^x - 1} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}$$

15.80
$$\int_0^\infty \frac{x^{n-1}}{e^x - 1} dx = \Gamma(n) \left(\frac{1}{1^n} + \frac{1}{2^n} + \frac{1}{3^n} + \cdots \right)$$

For even n this can be summed in terms of Bernoulli numbers [see pages 108-109 and 114-115].

15.81
$$\int_0^\infty \frac{x \, dx}{e^x + 1} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots = \frac{\pi^2}{12}$$

15.82
$$\int_0^\infty \frac{x^{n-1}}{e^x+1} dx = \Gamma(n) \left(\frac{1}{1^n} - \frac{1}{2^n} + \frac{1}{3^n} - \cdots \right)$$

For some positive integer values of n the series can be summed [see pages 108-109 and 114-115].

15.83
$$\int_0^\infty \frac{\sin mx}{e^{2\pi x} - 1} dx = \frac{1}{4} \coth \frac{m}{2} - \frac{1}{2m}$$

$$15.84 \quad \int_0^\infty \left(\frac{1}{1+x} - e^{-x}\right) \frac{dx}{x} = \gamma$$

15.85
$$\int_0^\infty \frac{e^{-x^2} - e^{-x}}{x} dx = \frac{1}{2} \gamma$$

15.86
$$\int_0^\infty \left(\frac{1}{e^x-1}-\frac{e^{-x}}{x}\right)dx = \gamma$$

15.87
$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x \sec px} dx = \frac{1}{2} \ln \left(\frac{b^2 + p^2}{a^2 + p^2} \right)$$

15.88
$$\int_{0}^{\infty} \frac{e^{-ax} - e^{-bx}}{x \csc px} dx = \tan^{-1} \frac{b}{p} - \tan^{-1} \frac{a}{p}$$

15.89
$$\int_0^\infty \frac{e^{-ax}(1-\cos x)}{x^2} \ dx = \cot^{-1} a - \frac{a}{2} \ln (a^2+1)$$

DEFINITE INTEGRALS INVOLVING LOGARITHMIC FUNCTIONS

15.90
$$\int_0^1 x^m (\ln x)^n dx = \frac{(-1)^n n!}{(m+1)^{n+1}} \quad m > -1, \ n = 0, 1, 2, \dots$$
If $n \neq 0, 1, 2, \dots$ replace $n!$ by $\Gamma(n+1)$.

15.91
$$\int_0^1 \frac{\ln x}{1+x} dx = -\frac{\pi^2}{12}$$

15.92
$$\int_0^1 \frac{\ln x}{1-x} dx = -\frac{\pi^2}{6}$$

15.93
$$\int_0^1 \frac{\ln{(1+x)}}{x} dx = \frac{\pi^2}{12}$$

15.94
$$\int_0^1 \frac{\ln{(1-x)}}{x} dx = -\frac{\pi^2}{6}$$

15.95
$$\int_0^1 \ln x \ln (1+x) \ dx = 2 - 2 \ln 2 - \frac{\pi^2}{12}$$

15.96
$$\int_0^1 \ln x \ln (1-x) \ dx = 2 - \frac{\pi^2}{6}$$

15.97
$$\int_0^\infty \frac{x^{p-1} \ln x}{1+x} dx = -\pi^2 \csc p\pi \cot p\pi \qquad 0$$

15.98
$$\int_0^1 \frac{x^m - x^n}{\ln x} dx = \ln \frac{m+1}{n+1}$$

15.100
$$\int_0^\infty e^{-x^2} \ln x \ dx = -\frac{\sqrt{\pi}}{4} (\gamma + 2 \ln 2)$$

15.101
$$\int_0^\infty \ln\left(\frac{e^x+1}{e^x-1}\right) dx = \frac{\pi^2}{4}$$

15.102
$$\int_0^{\pi/2} \ln \sin x \ dx = \int_0^{\pi/2} \ln \cos x \ dx = -\frac{\pi}{2} \ln 2$$

15.103
$$\int_0^{\pi/2} (\ln \sin x)^2 dx = \int_0^{\pi/2} (\ln \cos x)^2 dx = \frac{\pi}{2} (\ln 2)^2 + \frac{\pi^3}{24}$$

15.104
$$\int_0^{\pi} x \ln \sin x \, dx = -\frac{\pi^2}{2} \ln 2$$

15.105
$$\int_0^{\pi/2} \sin x \ln \sin x \, dx = \ln 2 - 1$$

15.106
$$\int_0^{2\pi} \ln (a + b \sin x) dx = \int_0^{2\pi} \ln (a + b \cos x) dx = 2\pi \ln (a + \sqrt{a^2 - b^2})$$

15.107
$$\int_0^{\pi} \ln (a + b \cos x) dx = \pi \ln \left(\frac{a + \sqrt{a^2 - b^2}}{2} \right)$$

15.108
$$\int_0^{\pi} \ln (a^2 - 2ab \cos x + b^2) dx = \begin{cases} 2\pi \ln a, & a \ge b > 0 \\ 2\pi \ln b, & b \ge a > 0 \end{cases}$$

15.109
$$\int_0^{\pi/4} \ln{(1+\tan{x})} \, dx = \frac{\pi}{8} \ln{2}$$

15.110
$$\int_0^{\pi/2} \sec x \ln \left(\frac{1 + b \cos x}{1 + a \cos x} \right) dx = \frac{1}{2} \{ (\cos^{-1} a)^2 - (\cos^{-1} b)^2 \}$$

15.111
$$\int_0^a \ln \left(2 \sin \frac{x}{2} \right) dx = -\left(\frac{\sin a}{1^2} + \frac{\sin 2a}{2^2} + \frac{\sin 3a}{3^2} + \cdots \right)$$

DEFINITE INTEGRALS INVOLVING HYPERBOLIC FUNCTIONS

15.112
$$\int_0^\infty \frac{\sin ax}{\sinh bx} dx = \frac{\pi}{2b} \tanh \frac{a\pi}{2b}$$

15.113
$$\int_0^\infty \frac{\cos ax}{\cosh bx} dx = \frac{\pi}{2b} \operatorname{sech} \frac{a\pi}{2b}$$

15.114
$$\int_0^\infty \frac{x \, dx}{\sinh ax} = \frac{\pi^2}{4a^2}$$

15.115
$$\int_0^\infty \frac{x^n dx}{\sinh ax} = \frac{2^{n+1}-1}{2^n a^{n+1}} \Gamma(n+1) \left\{ \frac{1}{1^{n+1}} + \frac{1}{2^{n+1}} + \frac{1}{3^{n+1}} + \cdots \right\}$$

If n is an odd positive integer, the series can be summed [see page 108].

15.116
$$\int_0^\infty \frac{\sinh ax}{e^{bx}+1} dx = \frac{\pi}{2b} \csc \frac{a\pi}{b} - \frac{1}{2a}$$

15.117
$$\int_0^\infty \frac{\sinh ax}{e^{bx}-1} dx = \frac{1}{2a} - \frac{\pi}{2b} \cot \frac{a\pi}{b}$$

MISCELLANEOUS DEFINITE INTEGRALS

15.118
$$\int_{0}^{\infty} \frac{f(ax) - f(bx)}{x} dx = \{f(0) - f(\infty)\} \ln \frac{b}{a}$$

This is called Frullani's integral. It holds if f'(x) is continuous and $\int_{1}^{\infty} \frac{f(x) - f(\infty)}{x} dx$ converges.

15.119
$$\int_0^1 \frac{dx}{x^x} = \frac{1}{1^1} + \frac{1}{2^2} + \frac{1}{3^3} + \cdots$$

15.120
$$\int_{-a}^{a} (a+x)^{m-1} (a-x)^{n-1} dx = (2a)^{m+n-1} \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$

THE GAMMA FUNCTION

DEFINITION OF THE GAMMA FUNCTION $\Gamma(n)$ FOR n>0

$$\Gamma(n) = \int_0^\infty t^{n-1}e^{-t}\,dt \qquad n>0$$

$$\Gamma(n+1) = n \Gamma(n)$$

$$\Gamma(n+1) = n!$$
 if $n = 0, 1, 2, ...$ where $0! = 1$

THE GAMMA FUNCTION FOR n < 0

For n < 0 the gamma function can be defined by using 16.2, i.e.

$$\Gamma(n) = \frac{\Gamma(n+1)}{n}$$

Fig. 16-1

CIAL VALUES FOR THE GAMMA FUNCTION

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

$$\Gamma(m+\frac{1}{2}) = \frac{1\cdot 3\cdot 5\cdots (2m-1)}{9m}\sqrt{\pi}$$

$$m = 1, 2,$$

$$\Gamma(m+\frac{1}{2}) = \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2^m} \sqrt{\pi} \qquad m=1,2,3,\dots$$

$$\Gamma(-m+\frac{1}{2}) = \frac{(-1)^m 2^m \sqrt{\pi}}{1 \cdot 3 \cdot 5 \cdots (2m-1)} \qquad m=1,2,3,\dots$$

RELATIONSHIPS AMONG GAMMA FUNCTIONS

$$\Gamma(p) \Gamma(1-p) = \frac{\pi}{\sin n\pi}$$

16.9
$$2^{2x-1} \Gamma(x) \Gamma(x+\frac{1}{2}) = \sqrt{\pi} \Gamma(2x)$$

This is called the duplication formula.

16.10
$$\Gamma(x) \Gamma\left(x + \frac{1}{m}\right) \Gamma\left(x + \frac{2}{m}\right) \cdots \Gamma\left(x + \frac{m-1}{m}\right) = m^{\frac{1}{2}-mx} (2\pi)^{(m-1)/2} \Gamma(mx)$$
For $m=2$ this reduces to 16.9.

OTHER DEFINITIONS OF THE GAMMA FUNCTION

16.11
$$\Gamma(x+1) = \lim_{k \to \infty} \frac{1 \cdot 2 \cdot 3 \cdots k}{(x+1)(x+2) \cdots (x+k)} k^x$$

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{m=1}^{\infty} \left\{ \left(1 + \frac{x}{m}\right) e^{-x/m} \right\}$$

This is an infinite product representation for the gamma function where γ is Euler's constant.

DERIVATIVES OF THE GAMMA FUNCTION

$$\Gamma'(1) = \int_0^\infty e^{-x} \ln x \ dx = -\gamma$$

16.14
$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma + \left(\frac{1}{1} - \frac{1}{x}\right) + \left(\frac{1}{2} - \frac{1}{x+1}\right) + \cdots + \left(\frac{1}{n} - \frac{1}{x+n-1}\right) + \cdots$$

ASYMPTOTIC EXPANSIONS FOR THE GAMMA FUNCTION

16.15
$$\Gamma(x+1) = \sqrt{2\pi x} \, x^x e^{-x} \left\{ 1 + \frac{1}{12x} + \frac{1}{288x^2} - \frac{139}{51,840x^3} + \cdots \right\}$$

This is called Stirling's asymptotic series.

If we let x = n a positive integer in 16.15, then a useful approximation for n! where n is large [e.g. n > 10] is given by Stirling's formula

16.16
$$n! \sim \sqrt{2\pi n} \, n^n e^{-n}$$

where \sim is used to indicate that the ratio of the terms on each side approaches 1 as $n \to \infty$.

MISCELLANEOUS RESULTS

16.17
$$|\Gamma(ix)|^2 = \frac{\pi}{x \sinh \pi x}$$

17

THE BETA FUNCTION

DEFINITION OF THE BETA FUNCTION B(m,n)

17.1
$$B(m,n) = \int_0^1 t^{m-1} (1-t)^{n-1} dt \qquad m > 0, \ n > 0$$

RELATIONSHIP OF BETA FUNCTION TO GAMMA FUNCTION

17.2
$$B(m,n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$

Extensions of B(m, n) to m < 0, n < 0 is provided by using 16.4, page 101.

SOME IMPORTANT RESULTS

17.3
$$B(m,n) = B(n,m)$$

17.4
$$B(m,n) = 2 \int_0^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta \ d\theta$$

17.5
$$B(m,n) = \int_0^\infty \frac{t^{m-1}}{(1+t)^{m+n}} dt$$

17.6
$$B(m,n) = r^{n}(r+1)^{m} \int_{0}^{1} \frac{t^{m-1}(1-t)^{n-1}}{(r+t)^{m+n}} dt$$

BASIC DIFFERENTIAL EQUATIONS and SOLUTIONS

DIFFERENTIAL EQUATION	SOLUTION
18.1 Separation of variables $f_1(x) g_1(y) dx + f_2(x) g_2(y) dy = 0$	$\int rac{f_1(x)}{f_2(x)} dx + \int rac{g_2(y)}{g_1(y)} dy = c$
18.2 Linear first order equation $\frac{dy}{dx} + P(x)y = Q(x)$	$y e^{\int P dx} = \int Q e^{\int P dx} dx + c$
18.3 Bernoulli's equation $\frac{dy}{dx} + P(x)y = Q(x)y^n$	$ve^{(1-n)\int Pdx}=(1-n)\int Qe^{(1-n)\int Pdx}dx+c$ where $v=y^{1-n}$. If $n=1$, the solution is $\ln y=\int (Q-P)dx+c$
18.4 Exact equation $M(x,y) \ dx \ + \ N(x,y) \ dy \ = \ 0$ where $\partial M/\partial y = \partial N/\partial x$.	$\int M \partial x + \int \left(N - \frac{\partial}{\partial y} \int M \partial x \right) dy = \mathbf{c}$ where ∂x indicates that the integration is to be performed with respect to x keeping y constant.
18.5 Homogeneous equation $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$	$\ln x = \int rac{dv}{F(v)-v} + c$ where $v=y/x$. If $F(v)=v$, the solution is $y=cx$.

DIFFERENTIAL EQUATION	SOLUTION
18.6	
y F(xy) dx + x G(xy) dy = 0	$\ln x = \int \frac{G(v) dv}{v\{G(v) - F(v)\}} + c$
	where $v = xy$. If $G(v) = F(v)$, the solution is $xy = c$.
18.7 Linear, homogeneous second order equation	Let m_1, m_2 be the roots of $m^2 + am + b = 0$. Then there are 3 cases.
	Case 1. m_1, m_2 real and distinct:
$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0$	$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$
as as	Case 2. m_1, m_2 real and equal:
a, b are real constants.	$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}$
	Case 3. $m_1 = p + qi, m_2 = p - qi$:
	$y = e^{px}(c_1 \cos qx + c_2 \sin qx)$
	where $p=-a/2,\ q=\sqrt{b-a^2/4}$.
18.8 Linear, nonhomogeneous second order equation	There are 3 cases corresponding to those of entry 18. above.
	Case 1.
$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = R(x)$	$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$ $e^{m_1 x} C$
a, b are real constants.	$+ \frac{e^{m_1x}}{m_1-m_2} \int e^{-m_1x} R(x) dx$
	$+ \frac{e^{m_2 x}}{m_2 - m_1} \int e^{-m_2 x} R(x) dx$
	Case 2. $y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}$
	$+ xe^{m_1x} \int e^{-m_1x} R(x) dx$
	$- e^{m_1 x} \int x e^{-m_1 x} R(x) dx$
	Case 3.
	$y = e^{px}(c_1\cos qx + c_2\sin qx)$
	$+\frac{e^{px}\sin qx}{q}\int e^{-px}R(x)\cos qx\ dx$
	$-\frac{e^{px}\cos qx}{q}\int e^{-px}R(x)\sin qx\ dx$
18.9 Euler or Cauchy equation	
	Putting $x = e^t$, the equation becomes
$x^2\frac{d^2y}{dx^2} + ax\frac{dy}{dx} + by = S(x)$	$\frac{d^2y}{dt^2} + (a-1)\frac{dy}{dt} + by = S(e^i)$
	and can then be solved as in entries 18.7 and 18.8 above.

DIFFERENTIAL EQUATION	SOLUTION
18.10 Bessel's equation	
$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (\lambda^{2}x^{2} - n^{2})y = 0$	$y = c_1 J_n(\lambda x) + c_2 Y_n(x)$ See pages 136-137.
18.11 Transformed Bessel's equation $x^2 \frac{d^2y}{dx^2} + (2p+1)x \frac{dy}{dx} + (\alpha^2 x^{2r} + \beta^2)y = 0$	$y = x^{-p} \left\{ c_1 J_{q/r} \left(rac{lpha}{r} x^r ight) + c_2 Y_{q/r} \left(rac{lpha}{r} x^r ight) ight\}$ where $q = \sqrt{p^2 - eta^2}$.
18.12 Legendre's equation $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$	$y = c_1 P_n(x) + c_2 Q_n(x)$ See pages 146-148.

SERIES of CONSTANTS

ARITHMETIC SERIES

19.1
$$a + (a+d) + (a+2d) + \cdots + \{a + (n-1)d\} = \frac{1}{2}n\{2a + (n-1)d\} = \frac{1}{2}n(a+l)$$
 where $l = a + (n-1)d$ is the last term.

Some special cases are

19.2
$$1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n+1)$$

19.3
$$1 + 3 + 5 + \cdots + (2n-1) = n^2$$

GEOMETRIC SERIES

19.4
$$a + ar + ar^2 + ar^3 + \cdots + ar^{n-1} = \frac{a(1-r^n)}{1-r} = \frac{a-rl}{1-r}$$
 where $l = ar^{n-1}$ is the last term and $r \neq 1$.

If -1 < r < 1, then

19.5
$$a + ar + ar^2 + ar^3 + \cdots = \frac{a}{1-r}$$

ARITHMETIC-GEOMETRIC SERIES

19.6
$$a + (a+d)r + (a+2d)r^2 + \cdots + \{a + (n-1)d\}r^{n-1} = \frac{a(1-r^n)}{1-r} + \frac{rd\{1-nr^{n-1}+(n-1)r^n\}}{(1-r)^2}$$
 where $r \neq 1$.

If -1 < r < 1, then

19.7
$$a + (a+d)r + (a+2d)r^2 + \cdots = \frac{a}{1-r} + \frac{rd}{(1-r)^2}$$

SUMS OF POWERS OF POSITIVE INTEGERS

19.8
$$1^p + 2^p + 3^p + \cdots + n^p = \frac{n^{p+1}}{p+1} + \frac{1}{2}n^p + \frac{B_1pn^{p-1}}{2!} - \frac{B_2p(p-1)(p-2)n^{p-3}}{4!} + \cdots$$

where the series terminates at n^2 or n according as p is odd or even, and B_k are the *Bernoulli numbers* [see page 114].

Some special cases are

19.9
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

19.10
$$1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

19.11
$$1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4} = (1+2+3+\cdots+n)^2$$

19.12
$$1^4 + 2^4 + 3^4 + \cdots + n^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

If $S_k = 1^k + 2^k + 3^k + \cdots + n^k$ where k and n are positive integers, then

19.13
$$\binom{k+1}{1}S_1 + \binom{k+1}{2}S_2 + \cdots + \binom{k+1}{k}S_k = (n+1)^{k+1} - (n+1)^{k+1}$$

SERIES INVOLVING RECIPROCALS OF POWERS OF POSITIVE INTEGERS

19.14
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots = \ln 2$$
).693 \47(806

19.15
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots = \frac{\pi}{4}$$
 0.7853981635

19.16
$$1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + \frac{1}{13} - \cdots = \frac{\pi\sqrt{3}}{9} + \frac{1}{3}\ln 2$$
 (), 8356488485

19.17
$$1 - \frac{1}{5} + \frac{1}{9} - \frac{1}{13} + \frac{1}{17} - \cdots = \frac{\pi\sqrt{2}}{8} + \frac{\sqrt{2}\ln(1+\sqrt{2})}{4}$$
 0.8669729873

19.18
$$\frac{1}{2} - \frac{1}{5} + \frac{1}{8} - \frac{1}{11} + \frac{1}{14} - \cdots = \frac{\pi\sqrt{3}}{9} - \frac{1}{3}\ln 2$$
 (3.3550728)

19.19
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}$$
 1.644934067

19.20
$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{\pi^4}{90} \setminus 0$$

19.21
$$\frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + \frac{1}{4^6} + \cdots = \frac{\pi^6}{945}$$
 \.0\7343063

19.22
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots = \frac{\pi^2}{12}$$
 0.8224670337

19.22
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots = \frac{\pi^2}{12}$$
 0.8224670337
19.23 $\frac{1}{1^4} - \frac{1}{2^4} + \frac{1}{3^4} - \frac{1}{4^4} + \cdots = \frac{7\pi^4}{720}$ 0.9470328300

19.24
$$\frac{1}{1^6} - \frac{1}{2^6} + \frac{1}{3^6} - \frac{1}{4^6} + \cdots = \frac{31\pi^6}{30,240}$$
 (9855) 10919

19.25
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots = \frac{\pi^2}{8} \quad (23370055)$$

19.27
$$\frac{1}{1^6} + \frac{1}{3^6} + \frac{1}{5^6} + \frac{1}{7^6} + \cdots = \frac{\pi^6}{960} \setminus 001417077$$

19.28
$$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \cdots = \frac{\pi^3}{32}$$
 0-968946 (466

19.29
$$\frac{1}{1^3} + \frac{1}{3^3} - \frac{1}{5^3} - \frac{1}{7^3} + \cdots = \frac{3\pi^3\sqrt{2}}{128}$$
 [.027722586

19.30
$$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \cdots = \frac{1}{2}$$

19.31
$$\frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 4} + \frac{1}{3 \cdot 5} + \frac{1}{4 \cdot 6} + \cdots = \frac{3}{4}$$

19.32
$$\frac{1}{1^2 \cdot 3^2} + \frac{1}{3^2 \cdot 5^2} + \frac{1}{5^2 \cdot 7^2} + \frac{1}{7^2 \cdot 9^2} + \cdots = \frac{\pi^2 - 8}{16} \ \text{O.} //68502.753$$

$$\int \frac{x^{2-1}}{1-u^{2}} dx = \int \frac{1}{a} dx + \int \frac{1}{a+2b} dx + \int \frac{$$

19.33
$$\frac{1}{1^2 \cdot 2^2 \cdot 3^2} + \frac{1}{2^2 \cdot 3^2 \cdot 4^2} + \frac{1}{3^2 \cdot 4^2 \cdot 5^2} + \cdots = \frac{4\pi^2 - 39}{16}$$

19.34
$$\frac{1}{a} - \frac{1}{a+d} + \frac{1}{a+2d} - \frac{1}{a+3d} + \cdots = \int_0^1 \frac{u^{a-1} du}{1+u^d}$$

19.35
$$\frac{1}{1^{2p}} + \frac{1}{2^{2p}} + \frac{1}{3^{2p}} + \frac{1}{4^{2p}} + \cdots = \frac{2^{2p-1}\pi^{2p}B_p}{(2p)!}$$

19.36
$$\frac{1}{1^{2p}} + \frac{1}{3^{2p}} + \frac{1}{5^{2p}} + \frac{1}{7^{2p}} + \cdots = \frac{(2^{2p}-1)\pi^{2p}B_p}{2(2p)!}$$

19.37
$$\frac{1}{1^{2p}} - \frac{1}{2^{2p}} + \frac{1}{3^{2p}} - \frac{1}{4^{2p}} + \cdots = \frac{(2^{2p-1}-1)\pi^{2p}B_p}{(2p)!}$$

19.38
$$\frac{1}{1^{2p+1}} - \frac{1}{3^{2p+1}} + \frac{1}{5^{2p+1}} - \frac{1}{7^{2p+1}} + \cdots = \frac{\pi^{2p+1}E_p}{2^{2p+2}(2p)}$$

MISCELLANEOUS SERIES

19.39
$$\frac{1}{2} + \cos \alpha + \cos 2\alpha + \cdots + \cos n\alpha = \frac{\sin (n + \frac{1}{2})\alpha}{2 \sin (\alpha/2)}$$

19.40
$$\sin \alpha + \sin 2\alpha + \sin 3\alpha + \cdots + \sin n\alpha = \frac{\sin \left[\frac{1}{2}(n+1)\right]\alpha \sin \frac{1}{2}n\alpha}{\sin (\alpha/2)}$$

19.41
$$1 + r \cos \alpha + r^2 \cos 2\alpha + r^3 \cos 3\alpha + \cdots = \frac{1 - r \cos \alpha}{1 - 2r \cos \alpha + r^2}, \quad |r| < 1$$

19.42
$$r \sin \alpha + r^2 \sin 2\alpha + r^3 \sin 3\alpha + \cdots = \frac{r \sin \alpha}{1 - 2r \cos \alpha + r^2}, \quad |r| < 1$$

19.43
$$1 + r \cos \alpha + r^2 \cos 2\alpha + \cdots + r^n \cos n\alpha = \frac{r^{n+2} \cos n\alpha - r^{n+1} \cos (n+1)\alpha - r \cos \alpha + 1}{1 - 2r \cos \alpha + r^2}$$

19.44
$$r \sin \alpha + r^2 \sin 2\alpha + \cdots + r^n \sin n\alpha = \frac{r \sin \alpha - r^{n+1} \sin (n+1)\alpha + r^{n+2} \sin n\alpha}{1 - 2r \cos \alpha + r^2}$$

THE EULER-MACLAURIN SUMMATION FORMULA

19.45
$$\sum_{k=1}^{n-1} F(k) = \int_{0}^{n} F(k) dk - \frac{1}{2} \{F(0) + F(n)\}$$

$$+ \frac{1}{12} \{F'(n) - F'(0)\} - \frac{1}{720} \{F'''(n) - F'''(0)\}$$

$$+ \frac{1}{30,240} \{F^{(v)}(n) - F^{(v)}(0)\} - \frac{1}{1,209,600} \{F^{(vii)}(n) - F^{(vii)}(0)\}$$

$$+ \cdots (-1)^{p-1} \frac{B_{p}}{(2n)!} \{F^{(2p-1)}(n) - F^{(2p-1)}(0)\} + \cdots$$

THE POISSON SUMMATION FORMULA

19.46
$$\sum_{k=-\infty}^{\infty} F(k) = \sum_{m=-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} e^{2\pi i m x} F(x) dx \right\}$$

20

TAYLOR SERIES

TAYLOR SERIES FOR FUNCTIONS OF ONE VARIABLE

20.1
$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \cdots + \frac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!} + R_n$$

where R_n , the remainder after n terms, is given by either of the following forms:

20.2 Lagrange's form
$$R_n = \frac{f^{(n)}(\xi)(x-a)^n}{n!}$$

20.3 Cauchy's form
$$R_n = \frac{f^{(n)}(\xi)(x-\xi)^{n-1}(x-a)}{(n-1)!}$$

The value ξ , which may be different in the two forms, lies between a and x. The result holds if f(x) has continuous derivatives of order n at least.

If $\lim_{n\to\infty} R_n = 0$, the infinite series obtained is called the Taylor series for f(x) about x = a. If a = 0 the series is often called a Maclaurin series. These series, often called power series, generally converge for all values of x in some interval called the *interval of convergence* and diverge for all x outside this interval.

BINOMIAL SERIES

20.4
$$(a+x)^n = a^n + na^{n-1}x + \frac{n(n-1)}{2!}a^{n-2}x^2 + \frac{n(n-1)(n-2)}{3!}a^{n-3}x^3 + \cdots$$
$$= a^n + \binom{n}{1}a^{n-1}x + \binom{n}{2}a^{n-2}x^2 + \binom{n}{3}a^{n-3}x^3 + \cdots$$

Special cases are

20.5
$$(a+x)^2 = a^2 + 2ax + x^2$$

20.6
$$(a+x)^3 = a^3 + 3a^2x + 3ax^2 + x^3$$

20.7
$$(a+x)^4 = a^4 + 4a^3x + 6a^2x^2 + 4ax^3 + x^4$$

20.8
$$(1+x)^{-1} = 1 - x + x^2 - x^3 + x^4 - \cdots$$
 $-1 < x < 1$

20.9
$$(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + 5x^4 - \cdots$$
 $-1 < x < 1$

20.10
$$(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + 15x^4 - \cdots$$
 $-1 < x < 1$

20.11
$$(1+x)^{-1/2} = 1 - \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4}x^2 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^3 + \cdots -1 < x \le 1$$

20.12
$$(1+x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{2 \cdot 4}x^2 + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6}x^3 - \cdots -1 < x \le 1$$

20.13
$$(1+x)^{-1/3} = 1 - \frac{1}{3}x + \frac{1 \cdot 4}{3 \cdot 6}x^2 - \frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9}x^3 + \cdots -1 < x \le 1$$

20.14
$$(1+x)^{1/3} = 1 + \frac{1}{3}x - \frac{2}{3 \cdot 6}x^2 + \frac{2 \cdot 5}{3 \cdot 6 \cdot 9}x^3 - \cdots -1 < x \le 1$$

SERIES FOR EXPONENTIAL AND LOGARITHMIC FUNCTIONS

20.15
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 $-\infty < x < \infty$

20.16
$$a^x = e^{x \ln a} = 1 + x \ln a + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \cdots -\infty < x < \infty$$

20.17
$$\ln (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$
 $-1 < x \le 1$

20.18
$$\frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots -1 < x < 1$$

20.19
$$\ln x = 2\left\{\left(\frac{x-1}{x+1}\right) + \frac{1}{3}\left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5}\left(\frac{x-1}{x+1}\right)^5 + \cdots\right\} \qquad x > 0$$

20.20
$$\ln x = \left(\frac{x-1}{x}\right) + \frac{1}{2}\left(\frac{x-1}{x}\right)^2 + \frac{1}{3}\left(\frac{x-1}{x}\right)^3 + \cdots \qquad x \ge \frac{1}{2}$$

SERIES FOR TRIGONOMETRIC FUNCTIONS

20.21
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots -\infty < x < \infty$$

20.22
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots -\infty < x < \infty$$

20.23
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots + \frac{2^{2n}(2^{2n}-1)B_nx^{2n-1}}{(2n)!} + \cdots |x| < \frac{\pi}{2}$$

20.24
$$\cot x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \cdots - \frac{2^{2n}B_nx^{2n-1}}{(2n)!} - \cdots$$
 $0 < |x| < \pi$

20.25
$$\sec x = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \cdots + \frac{E_n x^{2n}}{(2n)!} + \cdots$$
 $|x| < \frac{\pi}{2}$

20.26
$$\csc x = \frac{1}{x} + \frac{x}{6} + \frac{7x^3}{360} + \frac{31x^5}{15,120} + \cdots + \frac{2(2^{2n-1}-1)B_nx^{2n-1}}{(2n)!} + \cdots \qquad 0 < |x| < \pi$$

20.27
$$\sin^{-1} x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \cdots$$
 $|x| < 1$

20.28
$$\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x = \frac{\pi}{2} - \left(x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \cdots\right)$$
 $|x| < 1$

20.29
$$\tan^{-1} x = \begin{cases} x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots & |x| < 1 \\ \pm \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots & [+ \text{ if } x \ge 1, - \text{ if } x \le -1] \end{cases}$$

20.30
$$\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x = \begin{cases} \frac{\pi}{2} - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots\right) & |x| < 1 \\ p_{\pi} + \frac{1}{x} - \frac{1}{3x^3} + \frac{1}{5x^5} - \cdots & [p = 0 \text{ if } x > 1, \ p = 1 \text{ if } x < -1] \end{cases}$$

20.31
$$\sec^{-1} x = \cos^{-1} (1/x) = \frac{\pi}{2} - \left(\frac{1}{x} + \frac{1}{2 \cdot 3x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5x^5} + \cdots\right)$$
 $|x| > 1$

20.32
$$\csc^{-1} x = \sin^{-1} (1/x) = \frac{1}{x} + \frac{1}{2 \cdot 3x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5x^5} + \cdots$$
 $|x| > 1$

SERIES FOR HYPERBOLIC FUNCTIONS

20.33
$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots -\infty < x < \infty$$

20.34
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots -\infty < x < \infty$$

20.35
$$\tanh x = x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \cdots + \frac{(-1)^{n-1}2^{2n}(2^{2n}-1)B_nx^{2n-1}}{(2n)!} + \cdots + |x| < \frac{\pi}{2}$$

20.36
$$\coth x = \frac{1}{x} + \frac{x}{3} - \frac{x^3}{45} + \frac{2x^5}{945} + \cdots + \frac{(-1)^{n-1}2^{2n}B_nx^{2n-1}}{(2n)!} + \cdots$$
 $0 < |x| < \pi$

20.37
$$\operatorname{sech} x = 1 - \frac{x^2}{2} + \frac{5x^4}{24} - \frac{61x^6}{720} + \cdots + \frac{(-1)^n E_n x^{2n}}{(2n)!} + \cdots$$
 $|x| < \frac{\pi}{2}$

20.38
$$\operatorname{csch} x = \frac{1}{x} - \frac{x}{6} + \frac{7x^3}{360} - \frac{31x^5}{15,120} + \cdots + \frac{(-1)^n 2(2^{2n-1}-1)B_n x^{2n-1}}{(2n)!} + \cdots = 0 < |x| < \pi$$

$$\mathbf{20.39} \quad \sinh^{-1} x \quad = \begin{cases} x - \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} - \frac{1 \cdot 3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots & |x| < 1 \\ \pm \left(\ln|2x| + \frac{1}{2 \cdot 2x^2} - \frac{1 \cdot 3}{2 \cdot 4 \cdot 4x^4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6x^6} - \cdots \right) & \begin{bmatrix} + & \text{if } x \ge 1 \\ - & \text{if } x \le -1 \end{bmatrix} \end{cases}$$

20.40
$$\cosh^{-1} x = \pm \left\{ \ln (2x) - \left(\frac{1}{2 \cdot 2x^2} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 4x^4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6x^6} + \cdots \right) \right\}$$
 $\begin{bmatrix} + \text{ if } \cosh^{-1} x > 0, & x \ge 1 \\ - \text{ if } \cosh^{-1} x < 0, & x \ge 1 \end{bmatrix}$

20.41
$$\tanh^{-1} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots$$
 $|x| < 1$

20.42
$$\coth^{-1} x = \frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \frac{1}{7x^7} + \cdots$$
 $|x| > 1$

MISCELLANEOUS SERIES

20.43
$$e^{\sin x} = 1 + x + \frac{x^2}{2} - \frac{x^4}{8} - \frac{x^5}{15} + \cdots$$
 $-\infty < x < \infty$

20.44
$$e^{\cos x} = e \left(1 - \frac{x^2}{2} + \frac{x^4}{6} - \frac{31x^6}{720} + \cdots \right)$$
 $-\infty < x < \infty$

20.45
$$e^{\tan x} = 1 + x + \frac{x^2}{2} + \frac{x^3}{2} + \frac{3x^4}{8} + \cdots$$
 $|x| < \frac{\pi}{2}$

20.46
$$e^x \sin x = x + x^2 + \frac{2x^3}{3} - \frac{x^5}{30} - \frac{x^6}{90} + \cdots + \frac{2^{n/2} \sin(n\pi/4) x^n}{n!} + \cdots -\infty < x < \infty$$

20.47
$$e^x \cos x = 1 + x - \frac{x^3}{3} - \frac{x^4}{6} + \cdots + \frac{2^{n/2} \cos (n\pi/4) x^n}{n!} + \cdots$$
 $-\infty < x < \infty$

20.48
$$\ln |\sin x| = \ln |x| - \frac{x^2}{6} - \frac{x^4}{180} - \frac{x^6}{2835} - \cdots - \frac{2^{2n-1}B_nx^{2n}}{n(2n)!} + \cdots$$
 $0 < |x| < \pi$

20.49
$$\ln |\cos x| = -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} - \frac{17x^8}{2520} - \cdots - \frac{2^{2n-1}(2^{2n}-1)B_nx^{2n}}{n(2n)!} + \cdots \qquad |x| < \frac{\pi}{2}$$

20.50
$$\ln |\tan x| = \ln |x| + \frac{x^2}{3} + \frac{7x^4}{90} + \frac{62x^6}{2835} + \cdots + \frac{2^{2n}(2^{2n-1}-1)B_nx^{2n}}{n(2n)!} + \cdots \qquad 0 < |x| < \frac{\pi}{2}$$

20.51
$$\frac{\ln{(1+x)}}{1+x} = x - (1+\frac{1}{2})x^2 + (1+\frac{1}{2}+\frac{1}{3})x^3 - \cdots$$
 $|x| < 1$

REVERSION OF POWER SERIES

Ιf

20.52
$$y = c_1x + c_2x^2 + c_3x^3 + c_4x^4 + c_5x^5 + c_6x^6 + \cdots$$

then

20.53
$$x = C_1y + C_2y^2 + C_3y^3 + C_4y^4 + C_5y^5 + C_6y^6 + \cdots$$

where

20.54
$$c_1C_1 = 1$$

20.55
$$c_1^3 C_2 = -c_2$$

20.56
$$c_1^5 C_3 = 2c_2^2 - c_1 c_3$$

20.57
$$c_1^7 C_4 = 5c_1c_2c_3 - 5c_2^3 - c_1^2c_4$$

20.58
$$c_1^9 C_5 = 6c_1^2 c_2 c_4 + 3c_1^2 c_3^2 - c_1^3 c_5 + 14c_2^4 - 21c_1 c_2^2 c_3$$

20.59
$$c_1^{11}C_6 = 7c_1^3c_2c_5 + 84c_1c_2^3c_3 + 7c_1^3c_3c_4 - 28c_1^2c_2c_3^2 - c_1^4c_6 - 28c_1^2c_2^2c_4 - 42c_2^5$$

TAYLOR SERIES FOR FUNCTIONS OF TWO VARIABLES

20.60
$$f(x,y) = f(a,b) + (x-a)f_x(a,b) + (y-b)f_y(a,b) + \frac{1}{2!} \{ (x-a)^2 f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b) + (y-b)^2 f_{yy}(a,b) \} + \cdots$$

where $f_x(a,b), f_y(a,b), \ldots$ denote partial derivatives with respect to x, y, \ldots evaluated at x=a, y=b.

21

BERNOULLI and EULER NUMBERS

DEFINITION OF BERNOULLI NUMBERS

The Bernoulli numbers B_1, B_2, B_3, \ldots are defined by the series

21.1
$$\frac{x}{e^x-1} = 1 - \frac{x}{2} + \frac{B_1x^2}{2!} - \frac{B_2x^4}{4!} + \frac{B_3x^6}{6!} - \cdots$$
 $|x| < 2\pi$

21.2
$$1-\frac{x}{2}\cot\frac{x}{2} = \frac{B_1x^2}{2!} + \frac{B_2x^4}{4!} + \frac{B_3x^6}{6!} + \cdots$$
 $|x| < \pi$

DEFINITION OF EULER NUMBERS

The Euler numbers E_1, E_2, E_3, \ldots are defined by the series

21.3
$$\operatorname{sech} x = 1 - \frac{E_1 x^2}{2!} + \frac{E_2 x^4}{4!} - \frac{E_3 x^6}{6!} + \cdots$$
 $|x| < \frac{\pi}{2}$

21.4
$$\sec x = 1 + \frac{E_1 x^2}{2!} + \frac{E_2 x^4}{4!} + \frac{E_3 x^6}{6!} + \cdots$$
 $|x| < \frac{\pi}{2}$

TABLE OF FIRST FEW BERNOULLI AND EULER NUMBERS

Bernoulli numbers	Euler numbers
$B_1 = 1/6$	$E_1 = 1$
$B_2 = 1/30$	$E_2 = 5$
$B_3 = 1/42$	$E_3 = 61$
$B_4 = 1/30$	$E_4 = 1385$
$B_5 = 5/66$	$E_5 = 50,521$
$B_6 = 691/2730$	$E_6 = 2,702,765$
$B_7 = 7/6$	$E_7 = 199,360,981$
$B_8 = 3617/510$	$E_8 = 19,391,512,145$
$B_9 = 43,867/798$	$E_9 = 2,404,879,675,441$
$B_{10} = 174,611/330$	$E_{10} = 370,371,188,237,525$
$B_{11} = 854,513/138$	$E_{11} = 69,348,874,393,137,901$
$B_{12} = 236,364,091/2730$	$E_{12} = 15,514,534,163,557,086,905$

RELATIONSHIPS OF BERNOULLI AND EULER NUMBERS

21.5
$$\binom{2n+1}{2} 2^2 B_1 - \binom{2n+1}{4} 2^4 B_2 + \binom{2n+1}{6} 2^6 B_3 - \cdots (-1)^{n-1} (2n+1) 2^{2n} B_n = 2n$$

21.6
$$E_n = {2n \choose 2} E_{n-1} - {2n \choose 4} E_{n-2} + {2n \choose 6} E_{n-3} - \cdots (-1)^n$$

21.7
$$B_n = \frac{2n}{2^{2n}(2^{2n}-1)} \left\{ \binom{2n-1}{1} E_{n-1} - \binom{2n-1}{3} E_{n-2} + \binom{2n-1}{5} E_{n-3} - \cdots (-1)^{n-1} \right\}$$

SERIES INVOLVING BERNOULLI AND EULER NUMBERS

21.8
$$B_n = \frac{(2n)!}{2^{2n-1}\pi^{2n}} \left\{ 1 + \frac{1}{2^{2n}} + \frac{1}{3^{2n}} + \cdots \right\}$$

21.9 $B_n = \frac{2(2n)!}{(2^{2n}-1)\pi^{2n}} \left\{ 1 + \frac{1}{3^{2n}} + \frac{1}{5^{2n}} + \cdots \right\}$

21.9
$$B_n = \frac{2(2n)!}{(2^{2n}-1)\pi^{2n}} \left\{ 1 + \frac{1}{3^{2n}} + \frac{1}{5^{2n}} + \cdots \right\}$$

21.10
$$B_n = \frac{(2n)!}{(2^{2n-1}-1)\pi^{2n}} \left\{ 1 - \frac{1}{2^{2n}} + \frac{1}{3^{2n}} - \cdots \right\}_{2}^{2n}$$

21.11
$$E_n = \frac{2^{2n+2}(2n)!}{\pi^{2n+1}} \left\{ 1 - \frac{1}{3^{2n+1}} + \frac{1}{5^{2n+1}} - \cdots \right\}$$

ASYMPTOTIC FORMULA FOR BERNOULLI NUMBERS

21.12

$$B_n \sim 4n^{2n}(\pi e)^{-2n}\sqrt{\pi n}$$

22

FORMULAS from VECTOR ANALYSIS

VECTORS AND SCALARS

Various quantities in physics such as temperature, volume and speed can be specified by a real number. Such quantities are called *scalars*.

Other quantities such as force, velocity and momentum require for their specification a direction as well as magnitude. Such quantities are called *vectors*. A vector is represented by an arrow or directed line segment indicating direction. The magnitude of the vector is determined by the length of the arrow, using an appropriate unit.

NOTATION FOR VECTORS

A vector is denoted by a bold faced letter such as A [Fig. 22-1]. The magnitude is denoted by |A| or A. The tail end of the arrow is called the *initial point* while the head is called the *terminal point*.

FUNDAMENTAL DEFINITIONS

- 1. Equality of vectors. Two vectors are equal if they have the same magnitude and direction. Thus $\mathbf{A} = \mathbf{B}$ in Fig. 22-1.
- 2. Multiplication of a vector by a scalar. If m is any real number (scalar), then mA is a vector whose magnitude is |m| times the magnitude of A and whose direction is the same as or opposite to A according as m > 0 or m < 0. If m = 0, then mA = 0 is called the zero or null vector.

Fig. 22-1

3. Sums of vectors. The sum or resultant of A and B is a vector C = A + B formed by placing the initial point of B on the terminal point of A and joining the initial point of A to the terminal point of B [Fig. 22-2(b)]. This definition is equivalent to the parallelogram law for vector addition as indicated in Fig. 22-2(c). The vector A - B is defined as A + (-B).

Fig. 22-2

Extensions to sums of more than two vectors are immediate. Thus Fig. 22-3 shows how to obtain the sum E of the vectors A, B, C and D.

Fig. 22-3

4. Unit vectors. A unit vector is a vector with unit magnitude. If A is a vector, then a unit vector in the direction of A is a = A/A where A > 0.

LAWS OF VECTOR ALGEBRA

If A, B, C are vectors and m, n are scalars, then

22.1
$$A + B = B + A$$

Commutative law for addition

22.2
$$A + (B + C) = (A + B) + C$$

Associative law for addition

22.3
$$m(nA) = (mn)A = n(mA)$$

Associative law for scalar multiplication

$$\mathbf{22.4} \qquad (m+n)\mathbf{A} = m\mathbf{A} + n\mathbf{A}$$

Distributive law

$$22.5 m(A+B) = mA + mB$$

Distributive law

COMPONENTS OF A VECTOR

A vector A can be represented with initial point at the origin of a rectangular coordinate system. If i, j, k are unit vectors in the directions of the positive x, y, z axes, then

22.6
$$A = A_1 i + A_2 j + A_3 k$$

where A_1 i, A_2 j, A_3 k are called component vectors of **A** in the i, j, k directions and A_1 , A_2 , A_3 are called the components of **A**.

Fig. 22-4

DOT OR SCALAR PRODUCT

22.7

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$

 $0 \le \theta \le \pi$

where θ is the angle between A and B.

Fundamental results are

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$

Commutative law

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

Distributive law

$$\mathbf{A} \cdot \mathbf{B} = A_1 B_1 + A_2 B_2 + A_3 B_3$$

where $A = A_1 i + A_2 j + A_3 k$, $B = B_1 i + B_2 j + B_3 k$.

CROSS OR VECTOR PRODUCT

$$\mathbf{A} \times \mathbf{B} = AB \sin \theta \mathbf{u} \qquad 0$$

where θ is the angle between A and B and u is a unit vector perpendicular to the plane of A and B such that A, B, u form a right-handed system [i.e. a right-threaded screw rotated through an angle less than 180° from A to B will advance in the direction of u as in Fig. 22-5].

Fundamental results are

22.12
$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$$

=
$$(A_2B_3 - A_3B_2)\mathbf{i} + (A_3B_1 - A_1B_3)\mathbf{j} + (A_1B_2 - A_2B_1)\mathbf{k}$$

Fig. 22-5

$$22.13 \quad \mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$$

22.14
$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$$

22.15 $|A \times B|$ = area of parallelogram having sides A and B

MISCELLANEOUS FORMULAS INVOLVING DOT AND CROSS PRODUCTS

22.16
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = A_1 B_2 C_3 + A_2 B_3 C_1 + A_3 B_1 C_2 - A_3 B_2 C_1 - A_2 B_1 C_3 - A_1 B_3 C_2$$

22.17
$$|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$$
 = volume of parallelepiped with sides A, B, C

22.18
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

22.19
$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{A}(\mathbf{B} \cdot \mathbf{C})$$

22.20
$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$$

22.21
$$(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = \mathbf{C} \{ \mathbf{A} \cdot (\mathbf{B} \times \mathbf{D}) \} - \mathbf{D} \{ \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \}$$

= $\mathbf{B} \{ \mathbf{A} \cdot (\mathbf{C} \times \mathbf{D}) \} - \mathbf{A} \{ \mathbf{B} \cdot (\mathbf{C} \times \mathbf{D}) \}$

DERIVATIVES OF VECTORS

The derivative of a vector function $\mathbf{A}(u) = A_1(u)\mathbf{i} + A_2(u)\mathbf{j} + A_3(u)\mathbf{k}$ of the scalar variable u is given by

22.22
$$\frac{d\mathbf{A}}{du} = \lim_{\Delta u \to 0} \frac{\mathbf{A}(u + \Delta u) - \mathbf{A}(u)}{\Delta u} = \frac{dA_1}{du}\mathbf{i} + \frac{dA_2}{du}\mathbf{j} + \frac{dA_3}{du}\mathbf{k}$$

Partial derivatives of a vector function $\mathbf{A}(x,y,z)$ are similarly defined. We assume that all derivatives exist unless otherwise specified.

FORMULAS INVOLVING DERIVATIVES

22.23
$$\frac{d}{du}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \cdot \frac{d\mathbf{B}}{du} + \frac{d\mathbf{A}}{du} \cdot \mathbf{B}$$

22.24
$$\frac{d}{du}(\mathbf{A} \times \mathbf{B}) = \mathbf{A} \times \frac{d\mathbf{B}}{du} + \frac{d\mathbf{A}}{du} \times \mathbf{B}$$

22.25
$$\frac{d}{du} \{ \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \} = \frac{d\mathbf{A}}{du} \cdot (\mathbf{B} \times \mathbf{C}) + \mathbf{A} \cdot \left(\frac{d\mathbf{B}}{du} \times \mathbf{C} \right) + \mathbf{A} \cdot \left(\mathbf{B} \times \frac{d\mathbf{C}}{du} \right)$$

22.26
$$\mathbf{A} \cdot \frac{d\mathbf{A}}{du} = A \frac{dA}{du}$$

22.27
$$\mathbf{A} \cdot \frac{d\mathbf{A}}{du} = 0$$
 if $|\mathbf{A}|$ is a constant

THE DEL OPERATOR

The operator del is defined by

22.28
$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$$

In the results below we assume that U=U(x,y,z), V=V(x,y,z), $\mathbf{A}=\mathbf{A}(x,y,z)$ and $\mathbf{B}=\mathbf{B}(x,y,z)$ have partial derivatives.

THE GRADIENT

22.29 Gradient of
$$U = \text{grad } U = \nabla U = \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}\right) U = \frac{\partial U}{\partial x} \mathbf{i} + \frac{\partial U}{\partial y} \mathbf{j} + \frac{\partial U}{\partial z} \mathbf{k}$$

THE DIVERGENCE

22.30 Divergence of
$$\mathbf{A} = \operatorname{div} \mathbf{A} = \nabla \cdot \mathbf{A} = \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}\right) \cdot (A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k})$$

$$= \frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z}$$

THE CURL

22.31 Curl of
$$\mathbf{A} = \text{curl } \mathbf{A} = \nabla \times \mathbf{A}$$

$$= \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}\right) \times (A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k})$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_1 & A_2 & A_3 \end{vmatrix}$$

$$= \left(\frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial A_1}{\partial z} - \frac{\partial A_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y}\right) \mathbf{k}$$

THE LAPLACIAN

22.32 Laplacian of
$$U = \nabla^2 U = \nabla \cdot (\nabla U) = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}$$

22.33 Laplacian of
$$\mathbf{A} = \nabla^2 \mathbf{A} = \frac{\partial^2 \mathbf{A}}{\partial x^2} + \frac{\partial^2 \mathbf{A}}{\partial y^2} + \frac{\partial^2 \mathbf{A}}{\partial z^2}$$

THE BIHARMONIC OPERATOR

22.34 Biharmonic operator on
$$U = \nabla^4 U = \nabla^2 (\nabla^2 U)$$

$$= \frac{\partial^4 U}{\partial x^4} + \frac{\partial^4 U}{\partial y^4} + \frac{\partial^4 U}{\partial z^4} + 2 \frac{\partial^4 U}{\partial x^2 \partial y^2} + 2 \frac{\partial^4 U}{\partial y^2 \partial z^2} + 2 \frac{\partial^4 U}{\partial x^2 \partial z^2}$$

MISCELLANEOUS FORMULAS INVOLVING TO

22.35
$$\nabla(U+V) = \nabla U + \nabla V$$

22.36
$$\nabla \cdot (\mathbf{A} + \mathbf{B}) = \nabla \cdot \mathbf{A} + \nabla \cdot \mathbf{B}$$

22.37
$$\nabla \times (\mathbf{A} + \mathbf{B}) = \nabla \times \mathbf{A} + \nabla \times \mathbf{B}$$

22.38
$$\nabla \cdot (U\mathbf{A}) = (\nabla U) \cdot \mathbf{A} + U(\nabla \cdot \mathbf{A})$$

22.39
$$\nabla \times (U\mathbf{A}) = (\nabla U) \times \mathbf{A} + U(\nabla \times \mathbf{A})$$

22.40
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

22.41
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - \mathbf{B}(\nabla \cdot \mathbf{A}) - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B})$$

22.42
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} + (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{B} \times (\nabla \times \mathbf{A}) + \mathbf{A} \times (\nabla \times \mathbf{B})$$

22.43
$$\nabla \times (\nabla U) = 0$$
, i.e. the curl of the gradient of U is zero.

22.44
$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$
, i.e. the divergence of the curl of \mathbf{A} is zero.

22.45
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

INTEGRALS INVOLVING VECTORS

If $\mathbf{A}(u) = \frac{d}{du}\mathbf{B}(u)$, then the indefinite integral of $\mathbf{A}(u)$ is

22.46
$$\int \mathbf{A}(u) du = \mathbf{B}(u) + \mathbf{c} \quad \mathbf{c} = \text{constant vector}$$

The definite integral of A(u) from u = a to u = b in this case is given by

$$\int_a^b \mathbf{A}(u) \ du = \mathbf{B}(b) - \mathbf{B}(a)$$

The definite integral can be defined as on page 94.

LINE INTEGRALS

Consider a space curve C joining two points $P_1(a_1,a_2,a_3)$ and $P_2(b_1,b_2,b_3)$ as in Fig. 22-6. Divide the curve into n parts by points of subdivision $(x_1,y_1,z_1),\ldots,(x_{n-1},y_{n-1},z_{n-1})$. Then the line integral of a vector $\mathbf{A}(x,y,z)$ along C is defined as

22.48
$$\int_C \mathbf{A} \cdot d\mathbf{r} = \int_{P_1}^{P_2} \mathbf{A} \cdot d\mathbf{r} = \lim_{n \to \infty} \sum_{p=1}^n \mathbf{A}(x_p, y_p, z_p) \cdot \Delta \mathbf{r}_p$$

where $\Delta \mathbf{r}_p = \Delta x_p \, \mathbf{i} + \Delta y_p \, \mathbf{j} + \Delta z_p \, \mathbf{k}$, $\Delta x_p = x_{p+1} - x_p$, $\Delta y_p = y_{p+1} - y_p$, $\Delta z_p = z_{p+1} - z_p$ and where it is assumed that as $n \to \infty$ the largest of the magnitudes $|\Delta \mathbf{r}_p|$ approaches zero. The result 22.48 is a generalization of the ordinary definite integral [page 94].

Fig. 22-6

The line integral 22.48 can also be written

22.49
$$\int_C \mathbf{A} \cdot d\mathbf{r} = \int_C (A_1 dx + A_2 dy + A_3 dz)$$

using $\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$ and $d\mathbf{r} = dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k}$.

PROPERTIES OF LINE INTEGRALS

$$\int_{P_1}^{P_2} \mathbf{A} \cdot d\mathbf{r} = -\int_{P_2}^{P_1} \mathbf{A} \cdot d\mathbf{r}$$

$$\int_{P_1}^{P_2} \mathbf{A} \cdot d\mathbf{r} = \int_{P_1}^{P_3} \mathbf{A} \cdot d\mathbf{r} + \int_{P_3}^{P_2} \mathbf{A} \cdot d\mathbf{r}$$

INDEPENDENCE OF THE PATH

In general a line integral has a value which depends on the particular path C joining points P_1 and P_2 in a region \mathcal{R} . However, in case $\mathbf{A} = \nabla \phi$ or $\nabla \times \mathbf{A} = \mathbf{0}$ where ϕ and its partial derivatives are continuous in \mathcal{R} , the line integral $\int_C \mathbf{A} \cdot d\mathbf{r}$ is independent of the path. In such case

$$\int_C \mathbf{A} \cdot d\mathbf{r} = \int_{P_1}^{P_2} \mathbf{A} \cdot d\mathbf{r} = \phi(P_2) - \phi(P_1)$$

where $\phi(P_1)$ and $\phi(P_2)$ denote the values of ϕ at P_1 and P_2 respectively. In particular if C is a closed curve,

$$\int_C \mathbf{A} \cdot d\mathbf{r} = \oint_C \mathbf{A} \cdot d\mathbf{r} = 0$$

where the circle on the integral sign is used to emphasize that C is closed.

MULTIPLE INTEGRALS

Let F(x,y) be a function defined in a region $\mathcal R$ of the xy plane as in Fig. 22-7. Subdivide the region into n parts by lines parallel to the x and y axes as indicated. Let $\Delta A_p = \Delta x_p \, \Delta y_p$ denote an area of one of these parts. Then the integral of F(x,y) over $\mathcal R$ is defined as

22.54
$$\int_{\mathcal{R}} F(x,y) dA = \lim_{n \to \infty} \sum_{p=1}^{n} F(x_p, y_p) \Delta A_p$$

provided this limit exists.

In such case the integral can also be written as

22.55
$$\int_{x=a}^{b} \int_{y=f_{1}(x)}^{f_{2}(x)} F(x,y) \, dy \, dx$$
$$= \int_{x=a}^{b} \left\{ \int_{y=f_{1}(x)}^{f_{2}(x)} F(x,y) \, dy \right\} dx$$

Fig. 22-7

where $y = f_1(x)$ and $y = f_2(x)$ are the equations of curves PHQ and PGQ respectively and a and b are the x coordinates of points P and Q. The result can also be written as

22.56
$$\int_{y=c}^{d} \int_{x=g_1(y)}^{g_2(y)} F(x,y) \, dx \, dy = \int_{y=c}^{d} \left\{ \int_{x=g_1(y)}^{g_2(y)} F(x,y) \, dx \right\} dy$$

where $x = g_1(y)$, $x = g_2(y)$ are the equations of curves HPG and HQG respectively and c and d are the y coordinates of H and G.

These are called double integrals or area integrals. The ideas can be similarly extended to triple or volume integrals or to higher multiple integrals.

SURFACE INTEGRALS

Subdivide the surface S [see Fig. 22-8] into n elements of area ΔS_p , $p=1,2,\ldots,n$. Let $\mathbf{A}(x_p,y_p,z_p)=\mathbf{A}_p$ where (x_p,y_p,z_p) is a point P in ΔS_p . Let \mathbf{N}_p be a unit normal to ΔS_p at P. Then the surface integral of the normal component of \mathbf{A} over S is defined as

22.57
$$\int_{S} \mathbf{A} \cdot \mathbf{N} \ dS = \lim_{n \to \infty} \sum_{p=1}^{n} \mathbf{A}_{p} \cdot \mathbf{N}_{p} \ \Delta S_{p}$$

Fig. 22-8

RELATION BETWEEN SURFACE AND DOUBLE INTEGRALS

If $\mathcal R$ is the projection of S on the xy plane, then [see Fig. 22-8]

$$\int_{S} \mathbf{A} \cdot \mathbf{N} \ dS = \iint_{\mathcal{R}} \mathbf{A} \cdot \mathbf{N} \ \frac{dx \ dy}{|\mathbf{N} \cdot \mathbf{k}|}$$

THE DIVERGENCE THEOREM

Let S be a closed surface bounding a region of volume V; then if N is the positive (outward drawn) normal and $d\mathbf{S} = \mathbf{N} \, dS$, we have [see Fig. 22-9]

$$\int_{V} \nabla \cdot \mathbf{A} \ dV = \int_{S} \mathbf{A} \cdot d\mathbf{S}$$

The result is also called Gauss' theorem or Green's theorem.

Fig. 22-9

Fig. 22-10

STOKE'S THEOREM

Let S be an open two-sided surface bounded by a closed non-intersecting curve C [simple closed curve] as in Fig. 22-10. Then

$$\oint_C \mathbf{A} \cdot d\mathbf{r} = \int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S}$$

where the circle on the integral is used to emphasize that C is closed.

GREEN'S THEOREM IN THE PLANE

$$\oint_C (P dx + Q dy) = \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

where R is the area bounded by the closed curve C. This result is a special case of the divergence theorem or Stoke's theorem.

GREEN'S FIRST IDENTITY

22.62
$$\int_{V} \{ \phi \nabla^{2} \psi + (\nabla \phi) \cdot (\nabla \psi) \} dV = \int (\phi \nabla \psi) \cdot d\mathbf{S}$$

where ϕ and ψ are scalar functions.

GREEN'S SECOND IDENTITY

22.63
$$\int_{V} (\phi \nabla^{2} \psi - \psi \nabla^{2} \phi) dV = \int_{S} (\phi \nabla \psi - \psi \nabla \phi) \cdot d\mathbf{S}$$

MISCELLANEOUS INTEGRAL THEOREMS

22.64
$$\int_{V} \nabla \times \mathbf{A} \ dV = \int_{S} d\mathbf{S} \times \mathbf{A}$$
 22.65 $\int_{C} \phi \ d\mathbf{r} = \int_{S} d\mathbf{S} \times \nabla \phi$

CURVILINEAR COORDINATES

A point P in space [see Fig. 22-11] can be located by rectangular coordinates (x,y,z) or curvilinear coordinates (u_1,u_2,u_3) where the transformation equations from one set of coordinates to the other are given by

22.66
$$x = x(u_1, u_2, u_3)$$
$$y = y(u_1, u_2, u_3)$$
$$z = z(u_1, u_2, u_3)$$

If u_2 and u_3 are constant, then as u_1 varies, the position vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ of P describes a curve called the u_1 coordinate curve. Similarly we define the u_2 and u_3 coordinate curves through P. The vectors $\partial \mathbf{r}/\partial u_1$, $\partial \mathbf{r}/\partial u_2$, $\partial \mathbf{r}/\partial u_3$ represent tangent vectors to the u_1 , u_2 , u_3 coordinate curves. Letting \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 be unit tangent vectors to these curves, we have

Fig. 22-11

22.67
$$\frac{\partial \mathbf{r}}{\partial u_1} = h_1 \mathbf{e}_1, \quad \frac{\partial \mathbf{r}}{\partial u_2} = h_2 \mathbf{e}_2, \quad \frac{\partial \mathbf{r}}{\partial u_3} = h_3 \mathbf{e}_3$$

where

22.68
$$h_1 = \left| \frac{\partial \mathbf{r}}{\partial u_1} \right|, \quad h_2 = \left| \frac{\partial \mathbf{r}}{\partial u_2} \right|, \quad h_3 = \left| \frac{\partial \mathbf{r}}{\partial u_3} \right|$$

are called scale factors. If $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are mutually perpendicular, the curvilinear coordinate system is called orthogonal.

FORMULAS INVOLVING ORTHOGONAL CURVILINEAR COORDINATES

22.69
$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial u_1} du_1 + \frac{\partial \mathbf{r}}{\partial u_2} du_2 + \frac{\partial \mathbf{r}}{\partial u_3} du_3 = h_1 du_1 \mathbf{e}_1 + h_2 du_2 \mathbf{e}_2 + h_3 du_3 \mathbf{e}_3$$

22.70
$$ds^2 = d\mathbf{r} \cdot d\mathbf{r} = h_1^2 du_1^2 + h_2^2 du_2^2 + h_3^2 du_3^2$$

where ds is the element of arc length.

If dV is the element of volume, then

22.71
$$dV = |(h_1\mathbf{e}_1 du_1) \cdot (h_2\mathbf{e}_2 du_2) \times (h_3\mathbf{e}_3 du_3)| = h_1h_2h_3 du_1 du_2 du_3$$
$$= \left| \frac{\partial \mathbf{r}}{\partial u_1} \cdot \frac{\partial \mathbf{r}}{\partial u_2} \times \frac{\partial \mathbf{r}}{\partial u_3} \right| du_1 du_2 du_3 = \left| \frac{\partial (x, y, z)}{\partial (u_1, u_2, u_3)} \right| du_1 du_2 du_3$$

where

$$\frac{\partial(x,y,z)}{\partial(u_1,u_2,u_3)} = \begin{vmatrix} \partial x/\partial u_1 & \partial x/\partial u_2 & \partial x/\partial u_3 \\ \partial y/\partial u_1 & \partial y/\partial u_2 & \partial y/\partial u_3 \\ \partial z/\partial u_1 & \partial z/\partial u_2 & \partial z/\partial u_3 \end{vmatrix}$$

is called the Jacobian of the transformation.

TRANSFORMATION OF MULTIPLE INTEGRALS

The result 22.72 can be used to transform multiple integrals from rectangular to curvilinear coordinates. For example, we have

22.73
$$\iiint_{\mathcal{R}} F(x,y,z) \ dx \ dy \ dz = \iiint_{\mathcal{R}'} G(u_1,u_2,u_3) \left| \frac{\partial(x,y,z)}{\partial(u_1,u_2,u_3)} \right| \ du_1 \ du_2 \ du_3$$

where \mathcal{R}' is the region into which \mathcal{R} is mapped by the transformation and $G(u_1, u_2, u_3)$ is the value of F(x, y, z) corresponding to the transformation.

GRADIENT, DIVERGENCE, CURL AND LAPLACIAN

In the following, Φ is a scalar function and $\mathbf{A} = A_1\mathbf{e}_1 + A_2\mathbf{e}_2 + A_3\mathbf{e}_3$ a vector function of orthogonal curvilinear coordinates u_1, u_2, u_3 .

22.74 Gradient of
$$\Phi$$
 = grad Φ = $\nabla \Phi$ = $\frac{1}{h_1} \frac{\partial \Phi}{\partial u_1} + \frac{1}{h_2} \frac{\partial \Phi}{\partial u_2} + \frac{1}{h_3} \frac{\partial \Phi}{\partial u_3}$

22.75 Divergence of
$$\mathbf{A} = \operatorname{div} \mathbf{A} = \nabla \cdot \mathbf{A} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} (h_2 h_3 A_1) + \frac{\partial}{\partial u_2} (h_3 h_1 A_2) + \frac{\partial}{\partial u_3} (h_1 h_2 A_3) \right]$$

22.76 Curl of
$$\mathbf{A} = \text{curl } \mathbf{A} = \nabla \times \mathbf{A} = \frac{1}{h_1 h_2 h_3} \begin{bmatrix} h_1 \mathbf{e}_1 & h_2 \mathbf{e}_2 & h_3 \mathbf{e}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{bmatrix}$$

$$= \frac{1}{h_2 h_3} \left[\frac{\partial}{\partial u_2} (h_3 A_3) - \frac{\partial}{\partial u_3} (h_2 A_2) \right] \mathbf{e}_1 + \frac{1}{h_1 h_3} \left[\frac{\partial}{\partial u_3} (h_1 A_1) - \frac{\partial}{\partial u_1} (h_3 A_3) \right] \mathbf{e}_2 + \frac{1}{h_1 h_2} \left[\frac{\partial}{\partial u_1} (h_2 A_2) - \frac{\partial}{\partial u_2} (h_1 A_1) \right] \mathbf{e}_3$$

22.77 Laplacian of
$$\Phi = \nabla^2 \Phi = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial \Phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_3 h_1}{h_2} \frac{\partial \Phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial \Phi}{\partial u_3} \right) \right]$$

Note that the biharmonic operator $\nabla^4 \Phi = \nabla^2 (\nabla^2 \Phi)$ can be obtained from 22.77.

SPECIAL ORTHOGONAL COORDINATE SYSTEMS

Cylindrical Coordinates (r, θ, z) [See Fig. 22-12]

$$22.78 x = r\cos\theta, \quad y = r\sin\theta, \quad z = z$$

22.79
$$h_1^2 = 1, \quad h_2^2 = r^2, \quad h_3^2 = 1$$

22.80
$$\nabla^{2}\Phi = \frac{\partial^{2}\Phi}{\partial r^{2}} + \frac{1}{r}\frac{\partial\Phi}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2}\Phi}{\partial \theta^{2}} + \frac{\partial^{2}\Phi}{\partial z^{2}}$$

Fig. 22-12. Cylindrical coordinates.

Fig. 22-13. Spherical coordinates.

Spherical Coordinates (r, θ, ϕ) [See Fig. 22-13]

22.81
$$x = r \sin \theta \cos \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \theta$$

22.82
$$h_1^2 = 1$$
, $h_2^2 = r^2$, $h_3^2 = r^2 \sin^2 \theta$

22.83
$$\nabla^{2}\Phi = \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial\Phi}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Phi}{\partial\theta}\right) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}\Phi}{\partial\phi^{2}}$$

Parabolic Cylindrical Coordinates (u, v, z)

22.84
$$x = \frac{1}{2}(u^2 - v^2), \quad y = uv, \quad z = z$$

22.85
$$h_1^2 = h_2^2 = u^2 + v^2, \quad h_3^2 = 1$$

22.86
$$\nabla^{2}\Phi = \frac{1}{u^{2} + v^{2}} \left(\frac{\partial^{2}\Phi}{\partial u^{2}} + \frac{\partial^{2}\Phi}{\partial v^{2}} \right) + \frac{\partial^{2}\Phi}{\partial z^{2}}$$

The traces of the coordinate surfaces on the xy plane are shown in Fig. 22-14. They are confocal parabolas with a common axis.

Fig. 22-14

Paraboloidal Coordinates (u, v, ϕ)

22.87
$$x = uv \cos \phi, \quad y = uv \sin \phi, \quad z = \frac{1}{2}(u^2 - v^2)$$
 where $u \ge 0, \quad v \ge 0, \quad 0 \le \phi < 2\pi$

22.88
$$h_1^2 = h_2^2 = u^2 + v^2, \quad h_3^2 = u^2v^2$$

22.89
$$\nabla^{2}\Phi = \frac{1}{u(u^{2}+v^{2})}\frac{\partial}{\partial u}\left(u\frac{\partial\Phi}{\partial u}\right) + \frac{1}{v(u^{2}+v^{2})}\frac{\partial}{\partial v}\left(v\frac{\partial\Phi}{\partial v}\right) + \frac{1}{u^{2}v^{2}}\frac{\partial^{2}\Phi}{\partial \phi^{2}}$$

Two sets of coordinate surfaces are obtained by revolving the parabolas of Fig. 22-14 about the x axis which is then relabeled the z axis.

Elliptic Cylindrical Coordinates (u, v, z)

22.90
$$x = a \cosh u \cos v, \quad y = a \sinh u \sin v, \quad z = z$$
where $u \ge 0, \quad 0 \le v < 2\pi, \quad -\infty < z < \infty$
22.91 $h_1^2 = h_2^2 = a^2 (\sinh^2 u + \sin^2 v), \quad h_3^2 = 1$

$$u_1 \quad u_2 \quad u \quad \text{(sim } u \quad \text{(sim } v), \quad u_3 = 1$$

22.92
$$\nabla^{2}\Phi = \frac{1}{a^{2}(\sinh^{2}u + \sin^{2}v)} \left(\frac{\partial^{2}\Phi}{\partial u^{2}} + \frac{\partial^{2}\Phi}{\partial v^{2}} \right) + \frac{\partial^{2}\Phi}{\partial z^{2}}$$

The traces of the coordinate surfaces on the xy plane are shown in Fig. 22-15. They are confocal ellipses and hyperbolas.

Fig. 22-15. Elliptic cylindrical coordinates.

Prolate Spheroidal Coordinates (ξ, η, ϕ)

22.93
$$x = a \sinh \xi \sin \eta \cos \phi, \quad y = a \sinh \xi \sin \eta \sin \phi, \quad z = a \cosh \xi \cos \eta$$

where $\xi \ge 0$, $0 \le \eta \le \pi$, $0 \le \phi < 2\pi$

22.94
$$h_1^2 = h_2^2 = a^2(\sinh^2 \xi + \sin^2 \eta), \quad h_3^2 = a^2 \sinh^2 \xi \sin^2 \eta$$

22.95
$$\nabla^{2}\Phi = \frac{1}{a^{2}(\sinh^{2}\xi + \sin^{2}\eta) \sinh \xi} \frac{\partial}{\partial \xi} \left(\sinh \xi \frac{\partial \Phi}{\partial \xi}\right) + \frac{1}{a^{2}(\sinh^{2}\xi + \sin^{2}\eta) \sin \eta} \frac{\partial}{\partial \eta} \left(\sin \eta \frac{\partial \Phi}{\partial \eta}\right) + \frac{1}{a^{2}\sinh^{2}\xi \sin^{2}\eta} \frac{\partial^{2}\Phi}{\partial \phi^{2}}$$

Two sets of coordinate surfaces are obtained by revolving the curves of Fig. 22-15 about the x axis which is relabeled the x axis. The third set of coordinate surfaces consists of planes passing through this axis.

Oblate Spheroidal Coordinates (ξ, η, ϕ)

22.96
$$x = a \cosh \xi \cos \eta \cos \phi, \quad y = a \cosh \xi \cos \eta \sin \phi, \quad z = a \sinh \xi \sin \eta$$

where $\xi \geq 0$, $-\pi/2 \leq \eta \leq \pi/2$, $0 \leq \phi < 2\pi$

22.97
$$h_1^2 = h_2^2 = a^2(\sinh^2 \xi + \sin^2 \eta), \quad h_3^2 = a^2 \cosh^2 \xi \cos^2 \eta$$

$$\nabla^{2}\Phi = \frac{1}{a^{2}(\sinh^{2}\xi + \sin^{2}\eta) \cosh \xi} \frac{\partial}{\partial \xi} \left(\cosh \xi \frac{\partial \Phi}{\partial \xi}\right) \\
+ \frac{1}{a^{2}(\sinh^{2}\xi + \sin^{2}\eta) \cos \eta} \frac{\partial}{\partial \eta} \left(\cos \eta \frac{\partial \Phi}{\partial \eta}\right) + \frac{1}{a^{2}\cosh^{2}\xi \cos^{2}\eta} \frac{\partial^{2}\Phi}{\partial \phi^{2}}$$

Two sets of coordinate surfaces are obtained by revolving the curves of Fig. 22-15 about the y axis which is relabeled the z axis. The third set of coordinate surfaces are planes passing through this axis.

Bipolar Coordinates (u, v, z)

22.99
$$x = \frac{a \sinh v}{\cosh v - \cos u}, \quad y = \frac{a \sin u}{\cosh v - \cos u}, \quad z = z$$

where $0 \le u < 2\pi, -\infty < v < \infty, -\infty < z < \infty$

 \mathbf{or}

22.100
$$x^2 + (y - a \cot u)^2 = a^2 \csc^2 u$$
, $(x - a \coth v)^2 + y^2 = a^2 \operatorname{csch}^2 v$, $z = z$

22.101
$$h_1^2 = h_2^2 = \frac{a^2}{(\cosh v - \cos u)^2}, \quad h_3^2 = 1$$

22.102
$$\nabla^{2}\Phi = \frac{(\cosh v - \cos u)^{2}}{a^{2}} \left(\frac{\partial^{2}\Phi}{\partial u^{2}} + \frac{\partial^{2}\Phi}{\partial v^{2}} \right) + \frac{\partial^{2}\Phi}{\partial z^{2}}$$

The traces of the coordinate surfaces on the xy plane are shown in Fig. 22-16 below.

Fig. 22-16. Bipolar coordinates.

Toroidal Coordinates (u, v, ϕ)

22.103
$$x = \frac{a \sinh v \cos \phi}{\cosh v - \cos u}, \quad y = \frac{a \sinh v \sin \phi}{\cosh v - \cos u}, \quad z = \frac{a \sin u}{\cosh v - \cos u}$$

22.104
$$h_1^2 = h_2^2 = \frac{a^2}{(\cosh v - \cos u)^2}, \quad h_3^2 = \frac{a^2 \sinh^2 v}{(\cosh v - \cos u)^2}$$

22.105
$$\nabla^{2}\Phi = \frac{(\cosh v - \cos u)^{3}}{a^{2}} \frac{\partial}{\partial u} \left(\frac{1}{\cosh v - \cos u} \frac{\partial \Phi}{\partial u} \right) + \frac{(\cosh v - \cos u)^{3}}{a^{2} \sinh v} \frac{\partial}{\partial v} \left(\frac{\sinh v}{\cosh v - \cos u} \frac{\partial \Phi}{\partial v} \right) + \frac{(\cosh v - \cos u)^{2}}{a^{2} \sinh^{2} v} \frac{\partial^{2}\Phi}{\partial \phi^{2}}$$

The coordinate surfaces are obtained by revolving the curves of Fig. 22-16 about the y axis which is relabeled the z axis.

Conical Coordinates (λ, μ, ν)

22.106
$$x = \frac{\lambda \mu \nu}{ab}, \quad y = \frac{\lambda}{a} \sqrt{\frac{(\mu^2 - a^2)(\nu^2 - a^2)}{a^2 - b^2}}, \quad z = \frac{\lambda}{b} \sqrt{\frac{(\mu^2 - b^2)(\nu^2 - b^2)}{b^2 - a^2}}$$

22.107
$$h_1^2 = 1$$
, $h_2^2 = \frac{\lambda^2(\mu^2 - \nu^2)}{(\mu^2 - a^2)(b^2 - \mu^2)}$, $h_3^2 = \frac{\lambda^2(\mu^2 - \nu^2)}{(\nu^2 - a^2)(\nu^2 - b^2)}$

Confocal Ellipsoidal Coordinates (λ, μ, ν)

or

$$22.109 \begin{cases} x^2 = \frac{(a^2 - \lambda)(a^2 - \mu)(a^2 - \nu)}{(a^2 - b^2)(a^2 - c^2)} \\ y^2 = \frac{(b^2 - \lambda)(b^2 - \mu)(b^2 - \nu)}{(b^2 - a^2)(b^2 - c^2)} \\ z^2 = \frac{(c^2 - \lambda)(c^2 - \mu)(c^2 - \nu)}{(c^2 - a^2)(c^2 - b^2)} \end{cases}$$

$$22.110 \begin{cases} h_1^2 = \frac{(\mu - \lambda)(\nu - \lambda)}{4(a^2 - \lambda)(b^2 - \lambda)(c^2 - \lambda)} \\ h_2^2 = \frac{(\nu - \mu)(\lambda - \mu)}{4(a^2 - \mu)(b^2 - \mu)(c^2 - \mu)} \\ h_3^2 = \frac{(\lambda - \nu)(\mu - \nu)}{4(a^2 - \nu)(b^2 - \nu)(c^2 - \nu)} \end{cases}$$

Confocal Paraboloidal Coordinates (λ, μ, ν)

22.111
$$\begin{cases} \frac{x^2}{a^2 - \lambda} + \frac{y^2}{b^2 - \lambda} &= z - \lambda & -\infty < \lambda < b^2 \\ \frac{x^2}{a^2 - \mu} + \frac{y^2}{b^2 - \mu} &= z - \mu & b^2 < \mu < a^2 \\ \frac{x^2}{a^2 - \nu} + \frac{y^2}{b^2 - \nu} &= z - \nu & a^2 < \nu < \infty \end{cases}$$

 \mathbf{or}

22.112
$$\begin{cases} x^2 = \frac{(a^2 - \lambda)(a^2 - \mu)(a^2 - \nu)}{b^2 - a^2} \\ y^2 = \frac{(b^2 - \lambda)(b^2 - \mu)(b^2 - \nu)}{a^2 - b^2} \\ z = \lambda + \mu + \nu - a^2 - b^2 \end{cases}$$

FOURIER SERIES

DEFINITION OF A FOURIER SERIES

The Fourier series corresponding to a function f(x) defined in the interval $c \le x \le c + 2L$ where cand L>0 are constants, is defined as

23.1
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

where

23.2
$$\begin{cases} a_n = \frac{1}{L} \int_c^{c+2L} f(x) \cos \frac{n\pi x}{L} dx \\ b_n = \frac{1}{L} \int_c^{c+2L} f(x) \sin \frac{n\pi x}{L} dx \end{cases}$$

If f(x) and f'(x) are piecewise continuous and f(x) is defined by periodic extension of period 2L, i.e. f(x+2L)=f(x), then the series converges to f(x) if x is a point of continuity and to $\frac{1}{2}\{f(x+0)+f(x-0)\}$ if x is a point of discontinuity.

COMPLEX FORM OF FOURIER SERIES

Assuming that the series 23.1 converges to f(x), we have

23.3
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L}$$

where

where
$$c_n = \frac{1}{L} \int_c^{c+2L} f(x) e^{-in\pi x/L} dx = \begin{cases} \frac{1}{2} (a_n - ib_n) & n > 0 \\ \frac{1}{2} (a_{-n} + ib_{-n}) & n < 0 \\ \frac{1}{2} a_0 & n = 0 \end{cases}$$

PARSEVAL'S IDENTITY

23.5
$$\frac{1}{L} \int_{c}^{c+2L} \{f(x)\}^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

GENERALIZED PARSEVAL IDENTITY

23.6
$$\frac{1}{L} \int_{c}^{c+2L} f(x) g(x) dx = \frac{a_0 c_0}{2} + \sum_{n=1}^{\infty} (a_n c_n + b_n d_n)$$

where a_n, b_n and c_n, d_n are the Fourier coefficients corresponding to f(x) and g(x) respectively.

SPECIAL FOURIER SERIES AND THEIR GRAPHS

$$\frac{4}{\pi}\left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots\right)$$

Fig. 23-1

23.8
$$f(x) = |x| = \begin{cases} x & 0 < x < \pi \\ -x & -\pi < x < 0 \end{cases}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \cdots \right)$$

23.9
$$f(x) = x, -\pi < x < \pi$$

$$2\left(\frac{\sin x}{1}-\frac{\sin 2x}{2}+\frac{\sin 3x}{3}-\cdots\right)$$

Fig. 23-3

23.10
$$f(x) = x, \ 0 < x < 2\pi$$

$$\pi - 2\left(\frac{\sin x}{1} + \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \cdots\right)$$

23.11
$$f(x) = |\sin x|, \ -\pi < x < \pi$$

$$\frac{2}{\pi} - \frac{4}{\pi} \left(\frac{\cos 2x}{1 \cdot 3} + \frac{\cos 4x}{3 \cdot 5} + \frac{\cos 6x}{5 \cdot 7} + \cdots \right)$$

23.12
$$f(x) = \begin{cases} \sin x & 0 < x < \pi \\ 0 & \pi < x < 2\pi \end{cases}$$

$$\frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi} \left(\frac{\cos 2x}{1 \cdot 3} + \frac{\cos 4x}{3 \cdot 5} + \frac{\cos 6x}{5 \cdot 7} + \cdots \right)$$

23.13
$$f(x) = \begin{cases} \cos x & 0 < x < \pi \\ -\cos x & -\pi < x < 0 \end{cases}$$

$$\frac{8}{\pi}\left(\frac{\sin 2x}{1\cdot 3}+\frac{2\sin 4x}{3\cdot 5}+\frac{3\sin 6x}{5\cdot 7}+\cdots\right)$$

Fig. 23-7

23.14
$$f(x) = x^2, -\pi < x < \pi$$

$$\frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \cdots\right)$$

Fig. 23-8

23.15
$$f(x) = x(\pi - x), \ 0 < x < \pi$$

$$\frac{\pi^2}{6} - \left(\frac{\cos 2x}{1^2} + \frac{\cos 4x}{2^2} + \frac{\cos 6x}{3^2} + \cdots\right)$$

Fig. 23-9

23.16
$$f(x) = x(\pi - x)(\pi + x), -\pi < x < \pi$$

$$12\left(\frac{\sin x}{1^3} - \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} - \cdots\right)$$

23.17
$$f(x) = \begin{cases} 0 & 0 < x < \pi - \alpha \\ 1 & \pi - \alpha < x < \pi + \alpha \\ 0 & \pi + \alpha < x < 2\pi \end{cases}$$

$$\frac{\alpha}{\pi} - \frac{2}{\pi} \left(\frac{\sin \alpha \cos x}{1} - \frac{\sin 2\alpha \cos 2x}{2} + \frac{\sin 3\alpha \cos 3x}{3} - \cdots \right)$$

23.18
$$f(x) = \begin{cases} x(\pi - x) & 0 < x < \pi \\ -x(\pi - x) & -\pi < x < 0 \end{cases}$$

$$\frac{8}{\pi} \left(\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \cdots \right)$$

Fig. 23-12

MISCELLANEOUS FOURIER SERIES

23.19
$$f(x) = \sin \mu x, \quad -\pi < x < \pi, \quad \mu \neq \text{integer}$$

$$\frac{2\sin \mu\pi}{\pi} \left(\frac{\sin x}{1^2 - \mu^2} - \frac{2\sin 2x}{2^2 - \mu^2} + \frac{3\sin 3x}{3^2 - \mu^2} - \cdots \right)$$

23.20
$$f(x) = \cos \mu x, \quad -\pi < x < \pi, \quad \mu \neq \text{integer}$$

$$\frac{2\mu\,\sin\,\mu\pi}{\pi} \left(\frac{1}{2\mu^2} + \frac{\cos x}{1^2 - \mu^2} - \frac{\cos 2x}{2^2 - \mu^2} + \frac{\cos 3x}{3^2 - \mu^2} - \, \cdots \right)$$

23.21
$$f(x) = \tan^{-1}[(a \sin x)/(1 - a \cos x)], \quad -\pi < x < \pi, \quad |a| < 1$$

$$a \sin x + \frac{a^2}{2} \sin 2x + \frac{a^3}{3} \sin 3x + \cdots$$

23.22
$$f(x) = \ln (1 - 2a \cos x + a^2), \quad -\pi < x < \pi, \quad |a| < 1$$

$$-2\left(a\,\cos x\,+\,\frac{a^2}{2}\cos 2x\,+\,\frac{a^3}{3}\cos 3x\,+\,\cdots\right)$$

23.23
$$f(x) = \frac{1}{2} \tan^{-1} \left[(2a \sin x)/(1-a^2) \right], \quad -\pi < x < \pi, \quad |a| < 1$$

$$a \sin x + \frac{a^3}{3} \sin 3x + \frac{a^5}{5} \sin 5x + \cdots$$

23.24
$$f(x) = \frac{1}{2} \tan^{-1} \left[(2a \cos x)/(1-a^2) \right], \quad -\pi < x < \pi, \quad |a| < 1$$

$$a \cos x - \frac{a^3}{3} \cos 3x + \frac{a^5}{5} \cos 5x - \cdots$$

23.25
$$f(x) = e^{\mu x}, -\pi < x < \pi$$

$$\frac{2 \sinh \mu \pi}{\pi} \left(\frac{1}{2\mu} + \sum_{n=1}^{\infty} \frac{(-1)^n (\mu \cos nx - n \sin nx)}{\mu^2 + n^2} \right)$$

23.26
$$f(x) = \sinh \mu x, \quad -\pi < x < \pi$$

$$\frac{2\,\sinh\,\mu\pi}{\pi}\left(\frac{\sin\,x}{1^2\,+\,\mu^2}\,-\,\frac{2\,\sin\,2x}{2^2\,+\,\mu^2}\,+\,\frac{3\,\sin\,3x}{3^2\,+\,\mu^2}\,-\,\,\cdots\,\right)$$

23.27
$$f(x) = \cosh \mu x, \quad -\pi < x < \pi$$

$$\frac{2\mu \, \sinh \, \mu\pi}{\pi} \left(\frac{1}{2\mu^2} - \, \frac{\cos x}{1^2 + \, \mu^2} + \, \frac{\cos 2x}{2^2 + \, \mu^2} - \, \frac{\cos 3x}{3^2 + \, \mu^2} + \, \cdots \right)$$

23.28
$$f(x) = \ln |\sin \frac{1}{2}x|, \quad 0 < x < \pi$$

$$-\left(\ln 2 + \frac{\cos x}{1} + \frac{\cos 2x}{2} + \frac{\cos 3x}{3} + \cdots\right)$$

23.29
$$f(x) = \ln \left| \cos \frac{1}{2} x \right|, -\pi < x < \pi$$

$$-\left(\ln 2 - \frac{\cos x}{1} + \frac{\cos 2x}{2} - \frac{\cos 3x}{3} + \cdots\right)$$

23.30
$$f(x) = \frac{1}{6}\pi^2 - \frac{1}{2}\pi x + \frac{1}{4}x^2, \quad 0 \le x \le 2\pi$$

$$\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \cdots$$

23.31
$$f(x) = \frac{1}{12}x(x-\pi)(x-2\pi), \quad 0 \le x \le 2\pi$$

$$\frac{\sin x}{1^3} + \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} + \cdots$$

23.32
$$f(x) = \frac{1}{90}\pi^4 - \frac{1}{12}\pi^2x^2 + \frac{1}{12}\pi x^3 - \frac{1}{48}x^4, \quad 0 \le x \le 2\pi$$

$$\frac{\cos x}{1^4} + \frac{\cos 2x}{2^4} + \frac{\cos 3x}{3^4} + \cdots$$

24

BESSEL FUNCTIONS

BESSEL'S DIFFERENTIAL EQUATION

24.1

$$x^2y'' + xy' + (x^2 - n^2)y = 0$$
 $n \ge 0$

Solutions of this equation are called Bessel functions of order n.

BESSEL FUNCTIONS OF THE FIRST KIND OF ORDER $\it n$

24.2
$$J_n(x) = \frac{x^n}{2^n \Gamma(n+1)} \left\{ 1 - \frac{x^2}{2(2n+2)} + \frac{x^4}{2 \cdot 4(2n+2)(2n+4)} - \cdots \right\}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{n+2k}}{k! \Gamma(n+k+1)}$$

24.3
$$J_{-n}(x) = \frac{x^{-n}}{2^{-n} \Gamma(1-n)} \left\{ 1 - \frac{x^2}{2(2-2n)} + \frac{x^4}{2 \cdot 4(2-2n)(4-2n)} - \cdots \right\}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{2k-n}}{k! \Gamma(k+1-n)}$$

24.4

$$J_{-n}(x) = (-1)^n J_n(x)$$
 $n = 0, 1, 2, ...$

If $n \neq 0, 1, 2, \ldots, J_n(x)$ and $J_{-n}(x)$ are linearly independent.

If $n \neq 0, 1, 2, \ldots, J_n(x)$ is bounded at x = 0 while $J_{-n}(x)$ is unbounded.

For n = 0, 1 we have

24.5
$$J_0(x) = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} - \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \cdots$$

24.6
$$J_1(x) = \frac{x}{2} - \frac{x^3}{2^2 \cdot 4} + \frac{x^5}{2^2 \cdot 4^2 \cdot 6} - \frac{x^7}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8} + \cdots$$

24.7
$$J_0'(x) = -J_1(x)$$

BESSEL FUNCTIONS OF THE SECOND KIND OF ORDER $oldsymbol{n}$

24.8
$$Y_n(x) = \begin{cases} \frac{J_n(x) \cos n\pi - J_{-n}(x)}{\sin n\pi} & n \neq 0, 1, 2, \dots \\ \lim_{p \to n} \frac{J_p(x) \cos p\pi - J_{-p}(x)}{\sin p\pi} & n = 0, 1, 2, \dots \end{cases}$$

This is also called Weber's function or Neumann's function [also denoted by $N_n(x)$].

For $n = 0, 1, 2, \ldots$, L'Hospital's rule yields

24.9
$$Y_n(x) = \frac{2}{\pi} \left\{ \ln (x/2) + \gamma \right\} J_n(x) - \frac{1}{\pi} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!} (x/2)^{2k-n} - \frac{1}{\pi} \sum_{k=0}^{\infty} (-1)^k \left\{ \Phi(k) + \Phi(n+k) \right\} \frac{(x/2)^{2k+n}}{k! (n+k)!}$$

where $\gamma = .5772156...$ is Euler's constant [page 1] and

24.10
$$\Phi(p) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p}, \quad \Phi(0) = 0$$

For n=0,

24.11
$$Y_0(x) = \frac{2}{\pi} \left\{ \ln (x/2) + \gamma \right\} J_0(x) + \frac{2}{\pi} \left\{ \frac{x^2}{2^2} - \frac{x^4}{2^2 4^2} (1 + \frac{1}{2}) + \frac{x^6}{2^2 4^2 6^2} (1 + \frac{1}{2} + \frac{1}{3}) - \cdots \right\}$$

24.12
$$Y_{-n}(x) = (-1)^n Y_n(x)$$
 $n = 0, 1, 2, ...$

For any value $n \ge 0$, $J_n(x)$ is bounded at x = 0 while $Y_n(x)$ is unbounded.

GENERAL SOLUTION OF BESSEL'S DIFFERENTIAL EQUATION

24.13
$$y = A J_n(x) + B J_{-n}(x)$$
 $n \neq 0, 1, 2, ...$

24.14
$$y = A J_n(x) + B Y_n(x)$$
 all n

24.15
$$y = A J_n(x) + B J_n(x) \int \frac{dx}{x J_n^2(x)}$$
 all n

where A and B are arbitrary constants.

GENERATING FUNCTION FOR $J_n(x)$

24.16
$$e^{x(t-1/t)/2} = \sum_{n=-\infty}^{\infty} J_n(x)t^n$$

RECURRENCE FORMULAS FOR BESSEL FUNCTIONS

24.17
$$J_{n+1}(x) = \frac{2n}{x}J_n(x) - J_{n-1}(x)$$

24.18
$$J'_n(x) = \frac{1}{2} \{J_{n-1}(x) - J_{n+1}(x)\}$$

24.19
$$xJ'_n(x) = xJ_{n-1}(x) - nJ_n(x)$$

24.20
$$xJ'_n(x) = nJ_n(x) - xJ_{n+1}(x)$$

24.21
$$\frac{d}{dx} \{x^n J_n(x)\} = x^n J_{n-1}(x)$$

24.22
$$\frac{d}{dx} \{x^{-n} J_n(x)\} = -x^{-n} J_{n+1}(x)$$

The functions $Y_n(x)$ satisfy identical relations.

BESSEL FUNCTIONS OF ORDER EQUAL TO HALF AN ODD INTEGER

In this case the functions are expressible in terms of sines and cosines.

24.23
$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
 24.26 $J_{-3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\cos x}{x} + \sin x \right)$

24.24
$$J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$
 24.27 $J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \left(\frac{3}{x^2} - 1 \right) \sin x - \frac{3}{x} \cos x \right\}$

24.25
$$J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$$
 24.28 $J_{-5/2}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3}{x} \sin x + \left(\frac{3}{x^2} - 1 \right) \cos x \right\}$

For further results use the recurrence formula. Results for $Y_{1/2}(x), Y_{3/2}(x), \ldots$ are obtained from 24.8.

HANKEL FUNCTIONS OF FIRST AND SECOND KINDS OF ORDER n

24.29
$$H_n^{(1)}(x) = J_n(x) + i Y_n(x)$$
 24.30 $H_n^{(2)}(x) = J_n(x) - i Y_n(x)$

BESSEL'S MODIFIED DIFFERENTIAL EQUATION

24.31
$$x^2y'' + xy' - (x^2 + n^2)y = 0 n \ge 0$$

Solutions of this equation are called modified Bessel functions of order n.

MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND OF ORDER n

24.32
$$I_n(x) = i^{-n} J_n(ix) = e^{-n\pi i/2} J_n(ix)$$

$$= \frac{x^n}{2^n \Gamma(n+1)} \left\{ 1 + \frac{x^2}{2(2n+2)} + \frac{x^4}{2 \cdot 4(2n+2)(2n+4)} + \cdots \right\} = \sum_{k=0}^{\infty} \frac{(x/2)^{n+2k}}{k! \Gamma(n+k+1)}$$

24.33

$$I_{-n}(x) = i^n J_{-n}(ix) = e^{n\pi i/2} J_{-n}(ix)$$

$$= \frac{x^{-n}}{2^{-n} \Gamma(1-n)} \left\{ 1 + \frac{x^2}{2(2-2n)} + \frac{x^4}{2 \cdot 4(2-2n)(4-2n)} + \cdots \right\} = \sum_{k=0}^{\infty} \frac{(x/2)^{2k-n}}{k! \Gamma(k+1-n)}$$

24.34
$$I_{-n}(x) = I_n(x)$$
 $n = 0, 1, 2, ...$

If $n \neq 0, 1, 2, \ldots$, then $I_n(x)$ and $I_{-n}(x)$ are linearly independent.

For n = 0, 1, we have

24.35
$$I_0(x) = 1 + \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} + \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \cdots$$

24.36
$$I_1(x) = \frac{x}{2} + \frac{x^3}{2^2 \cdot 4} + \frac{x^5}{2^2 \cdot 4^2 \cdot 6} + \frac{x^7}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8} + \cdots$$

24.37
$$I_0'(x) = I_1(x)$$

MODIFIED BESSEL FUNCTIONS OF THE SECOND KIND OF ORDER $\it n$

.24.38
$$K_n(x) = \begin{cases} \frac{\pi}{2 \sin n\pi} \left\{ I_{-n}(x) - I_n(x) \right\} & n \neq 0, 1, 2, \dots \\ \lim_{p \to n} \frac{\pi}{2 \sin p\pi} \left\{ I_{-p}(x) - I_p(x) \right\} & n = 0, 1, 2, \dots \end{cases}$$

For $n = 0, 1, 2, \ldots$, L'Hospital's rule yields

24.39
$$K_n(x) = (-1)^{n+1} \{ \ln (x/2) + \gamma \} I_n(x) + \frac{1}{2} \sum_{k=0}^{n-1} (-1)^k (n-k-1)! (x/2)^{2k-n} + \frac{(-1)^n}{2} \sum_{k=0}^{\infty} \frac{(x/2)^{n+2k}}{k! (n+k)!} \{ \Phi(k) + \Phi(n+k) \}$$

where $\Phi(p)$ is given by 24.10.

For
$$n=0$$
,

24.40
$$K_0(x) = -\{\ln(x/2) + \gamma\}I_0(x) + \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2}(1 + \frac{1}{2}) + \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2}(1 + \frac{1}{2} + \frac{1}{3}) + \cdots$$

24.41
$$K_{-n}(x) = K_n(x)$$
 $n = 0, 1, 2, ...$

GENERAL SOLUTION OF BESSEL'S MODIFIED EQUATION

24.42
$$y = AI_n(x) + BI_{-n}(x)$$
 $n \neq 0, 1, 2, ...$

24.43
$$y = A I_n(x) + B K_n(x)$$
 all n

24.44
$$y = A I_n(x) + B I_n(x) \int \frac{dx}{x I_n^2(x)}$$
 all n

where A and B are arbitrary constants.

GENERATING FUNCTION FOR $I_n(x)$

24.45
$$e^{x(t+1/t)/2} = \sum_{n=-\infty}^{\infty} I_n(x)t^n$$

RECURRENCE FORMULAS FOR MODIFIED BESSEL FUNCTIONS

24.46
$$I_{n+1}(x) = I_{n-1}(x) - \frac{2n}{x}I_n(x)$$
 24.52 $K_{n+1}(x) = K_{n-1}(x) + \frac{2n}{x}K_n(x)$

24.47
$$I'_n(x) = \frac{1}{2}\{I_{n-1}(x) + I_{n+1}(x)\}$$
 24.53 $K'_n(x) = \frac{1}{2}\{K_{n-1}(x) + K_{n+1}(x)\}$

24.48
$$xI'_n(x) = xI_{n-1}(x) - nI_n(x)$$
 24.54 $xK'_n(x) = -xK_{n-1}(x) - nK_n(x)$

24.49
$$xI'_n(x) = xI_{n+1}(x) + nI_n(x)$$
 24.55 $xK'_n(x) = nK_n(x) - xK_{n+1}(x)$

24.50
$$\frac{d}{dx}\{x^nI_n(x)\} = x^nI_{n-1}(x)$$
 24.56 $\frac{d}{dx}\{x^nK_n(x)\} = -x^nK_{n-1}(x)$

24.51
$$\frac{d}{dx}\{x^{-n}I_n(x)\} = x^{-n}I_{n+1}(x)$$
 24.57 $\frac{d}{dx}\{x^{-n}K_n(x)\} = -x^{-n}K_{n+1}(x)$

MODIFIED BESSEL FUNCTIONS OF ORDER EQUAL TO HALF AN ODD INTEGER

In this case the functions are expressible in terms of hyperbolic sines and cosines.

24.58
$$I_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sinh x$$
 24.61 $I_{-3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\sinh x - \frac{\cosh x}{x} \right)$ 24.59 $I_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cosh x$ 24.62 $I_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \left(\frac{3}{x^2} + 1 \right) \sinh x - \frac{3}{x} \cosh x \right\}$ 24.60 $I_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\cosh x - \frac{\sinh x}{x} \right)$ 24.63 $I_{-5/2}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \left(\frac{3}{x^2} + 1 \right) \cosh x - \frac{3}{x} \sinh x \right\}$

For further results use the recurrence formula 24.46. Results for $K_{1/2}(x), K_{3/2}(x), \ldots$ are obtained from 24.38.

Ber AND Bei FUNCTIONS

The real and imaginary parts of $J_n(xe^{3\pi i/4})$ are denoted by $\mathrm{Ber}_n(x)$ and $\mathrm{Bei}_n(x)$ where

24.64
$$\operatorname{Ber}_{n}(x) = \sum_{k=0}^{\infty} \frac{(x/2)^{2k+n}}{k! \Gamma(n+k+1)} \cos \frac{(3n+2k)\pi}{4}$$
24.65
$$\operatorname{Bei}_{n}(x) = \sum_{k=0}^{\infty} \frac{(x/2)^{2k+n}}{k! \Gamma(n+k+1)} \sin \frac{(3n+2k)\pi}{4}$$
If $n=0$,
24.66
$$\operatorname{Ber}(x) = 1 - \frac{(x/2)^{4}}{2!^{2}} + \frac{(x/2)^{8}}{4!^{2}} - \cdots$$

24.67 Bei
$$(x) = (x/2)^2 - \frac{(x/2)^6}{3!^2} + \frac{(x/2)^{10}}{5!^2} - \cdots$$

Ker AND Kei FUNCTIONS

The real and imaginary parts of $e^{-n\pi i/2} K_n(xe^{\pi i/4})$ are denoted by $\operatorname{Ker}_n(x)$ and $\operatorname{Kei}_n(x)$ where

24.68
$$\operatorname{Ker}_{n}(x) = -\{\ln(x/2) + \gamma\} \operatorname{Ber}_{n}(x) + \frac{1}{4}\pi \operatorname{Bei}_{n}(x) + \frac{1}{2} \sum_{k=0}^{n-1} \frac{(n-k-1)! (x/2)^{2k-n}}{k!} \cos \frac{(3n+2k)\pi}{4} + \frac{1}{2} \sum_{k=0}^{\infty} \frac{(x/2)^{n+2k}}{k! (n+k)!} \{\Phi(k) + \Phi(n+k)\} \cos \frac{(3n+2k)\pi}{4}$$
24.69
$$\operatorname{Kei}_{n}(x) = -\{\ln(x/2) + \gamma\} \operatorname{Bei}_{n}(x) - \frac{1}{4}\pi \operatorname{Ber}_{n}(x) - \frac{1}{2} \sum_{k=0}^{n-1} \frac{(n-k-1)! (x/2)^{2k-n}}{k!} \sin \frac{(3n+2k)\pi}{4} + \frac{1}{2} \sum_{k=0}^{\infty} \frac{(x/2)^{n+2k}}{k! (n+k)!} \{\Phi(k) + \Phi(n+k)\} \sin \frac{(3n+2k)\pi}{4}$$

and Φ is given by 24.10, page 137.

If
$$n=0$$
,

24.70 Ker
$$(x) = -\{\ln(x/2) + \gamma\}$$
 Ber $(x) + \frac{\pi}{4}$ Bei $(x) + 1 - \frac{(x/2)^4}{2!^2}(1 + \frac{1}{2}) + \frac{(x/2)^8}{4!^2}(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}) - \cdots$

24.71 Kei
$$(x) = -\{\ln{(x/2)} + \gamma\}$$
 Bei $(x) - \frac{\pi}{4}$ Ber $(x) + (x/2)^2 - \frac{(x/2)^6}{3!^2} (1 + \frac{1}{2} + \frac{1}{3}) + \cdots$

DIFFERENTIAL EQUATION FOR Ber, Bei, Ker, Kei FUNCTIONS

$$x^2y'' + xy' - (ix^2 + n^2)y = 0$$

The general solution of this equation is

$$y = A\{\operatorname{Ber}_n(x) + i \operatorname{Bei}_n(x)\} + B\{\operatorname{Ker}_n(x) + i \operatorname{Kei}_n(x)\}$$

GRAPHS OF BESSEL FUNCTIONS

Fig. 24-1

Fig. 24-2

Fig. 24-3

Fig. 24-4

Fig. 24-5

Fig. 24-6

INDEFINITE INTEGRALS INVOLVING BESSEL FUNCTIONS

24.74
$$\int x J_0(x) dx = x J_1(x)$$

24.75
$$\int x^2 J_0(x) dx = x^2 J_1(x) + x J_0(x) - \int J_0(x) dx$$

24.76
$$\int x^m J_0(x) \ dx = x^m J_1(x) + (m-1)x^{m-1} J_0(x) - (m-1)^2 \int x^{m-2} J_0(x) \ dx$$

24.77
$$\int \frac{J_0(x)}{x^2} dx = J_1(x) - \frac{J_0(x)}{x} - \int J_0(x) dx$$

24.78
$$\int \frac{J_0(x)}{x^m} dx = \frac{J_1(x)}{(m-1)^2 x^{m-2}} - \frac{J_0(x)}{(m-1)x^{m-1}} - \frac{1}{(m-1)^2} \int \frac{J_0(x)}{x^{m-2}} dx$$

24.79
$$\int J_1(x) \ dx = -J_0(x)$$

24.80
$$\int x J_1(x) dx = -x J_0(x) + \int J_0(x) dx$$

24.81
$$\int x^m J_1(x) \ dx = -x^m J_0(x) + m \int x^{m-1} J_0(x) \ dx$$

24.82
$$\int \frac{J_1(x)}{x} dx = -J_1(x) + \int J_0(x) dx$$

24.83
$$\int \frac{J_1(x)}{x^m} dx = -\frac{J_1(x)}{mx^{m-1}} + \frac{1}{m} \int \frac{J_0(x)}{x^{m-1}} dx$$

24.84
$$\int x^n J_{n-1}(x) \ dx = x^n J_n(x)$$

24.85
$$\int x^{-n} J_{n+1}(x) dx = -x^{-n} J_n(x)$$

24.86
$$\int x^m J_n(x) \ dx = -x^m J_{n-1}(x) + (m+n-1) \int x^{m-1} J_{n-1}(x) \ dx$$

24.87
$$\int x J_n(\alpha x) J_n(\beta x) dx = \frac{x\{\alpha J_n(\beta x) J'_n(\alpha x) - \beta J_n(\alpha x) J'_n(\beta x)\}}{\beta^2 - \alpha^2}$$

24.88
$$\int x J_n^2(\alpha x) dx = \frac{x^2}{2} \{J_n'(\alpha x)\}^2 + \frac{x^2}{2} \left(1 - \frac{n^2}{\alpha^2 x^2}\right) \{J_n(\alpha x)\}^2$$

The above results also hold if we replace $J_n(x)$ by $Y_n(x)$ or, more generally, $A J_n(x) + B Y_n(x)$ where A and B are constants.

DEFINITE INTEGRALS INVOLVING RESSEL FUNCTIONS

24.89
$$\int_0^\infty e^{-ax} J_0(bx) \ dx = \frac{1}{\sqrt{a^2 + b^2}}$$

24.90
$$\int_0^\infty e^{-ax} J_n(bx) \ dx = \frac{(\sqrt{a^2 + b^2} - a)^n}{b^n \sqrt{a^2 + b^2}} \qquad n > -1$$

24.91
$$\int_0^\infty \cos ax \ J_0(bx) \ dx = \begin{cases} \frac{1}{\sqrt{a^2 - b^2}} & a > b \\ 0 & a < b \end{cases}$$

24.92
$$\int_0^\infty J_n(bx) \ dx = \frac{1}{b} \qquad n > -1$$

24.93
$$\int_0^\infty \frac{J_n(bx)}{x} dx = \frac{1}{n} \qquad n = 1, 2, 3, \dots$$

24.94
$$\int_0^\infty e^{-ax} J_0(b\sqrt{x}) dx = \frac{e^{-b^2/4a}}{a}$$

24.95
$$\int_0^1 x J_n(\alpha x) J_n(\beta x) dx = \frac{\alpha J_n(\beta) J'_n(\alpha) - \beta J_n(\alpha) J'_n(\beta)}{\beta^2 - \alpha^2}$$

24.96
$$\int_0^1 x J_n^2(\alpha x) dx = \frac{1}{2} \{J_n'(\alpha)\}^2 + \frac{1}{2} (1 - n^2/\alpha^2) \{J_n(\alpha)\}^2$$

24.97
$$\int_0^1 x J_0(\alpha x) I_0(\beta x) dx = \frac{\beta J_0(\alpha) I_0'(\beta) - \alpha J_0'(\alpha) I_0(\beta)}{\alpha^2 + \beta^2}$$

INTEGRAL REPRESENTATIONS FOR BESSEL FUNCTIONS

24.98
$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$$

24.99
$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x \sin \theta) d\theta, \quad n = \text{integer}$$

24.100
$$J_n(x) = \frac{x^n}{2^n \sqrt{\pi} \Gamma(n+\frac{1}{2})} \int_0^{\pi} \cos(x \sin \theta) \cos^{2n} \theta \ d\theta, \quad n > -\frac{1}{2}$$

24.101
$$Y_0(x) = -\frac{2}{\pi} \int_0^\infty \cos(x \cosh u) du$$

24.102
$$I_0(x) = \frac{1}{\pi} \int_0^{\pi} \cosh(x \sin \theta) d\theta = \frac{1}{2\pi} \int_0^{2\pi} e^{x \sin \theta} d\theta$$

ASYMPTOTIC EXPANSIONS

24.103
$$J_n(x) \sim \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{n\pi}{2} - \frac{\pi}{4}\right)$$
 where x is large

24.104
$$Y_n(x) \sim \sqrt{\frac{2}{\pi x}} \sin\left(x - \frac{n\pi}{2} - \frac{\pi}{4}\right)$$
 where x is large

24.105
$$J_n(x) \sim \frac{1}{\sqrt{2\pi n}} \left(\frac{ex}{2n}\right)^n$$
 where *n* is large

24.106
$$Y_n(x) \sim -\sqrt{\frac{2}{\pi n}} \left(\frac{ex}{2n}\right)^{-n}$$
 where *n* is large

24.107
$$I_n(x) \sim \frac{e^x}{\sqrt{2\pi x}}$$
 where x is large

24.108
$$K_n(x) \sim \frac{e^{-x}}{\sqrt{2\pi x}}$$
 where x is large

ORTHOGONAL SERIES OF BESSEL FUNCTIONS

Let $\lambda_1, \lambda_2, \lambda_3, \ldots$ be the positive roots of $RJ_n(x) + SxJ'_n(x) = 0$, n > -1. Then the following series expansions hold under the conditions indicated.

 $S=0,\ R \neq 0$, i.e. $\lambda_1,\lambda_2,\lambda_3,\ldots$ are positive roots of $J_n(x)=0$

24,109 $f(x) = A_1 J_n(\lambda_1 x) + A_2 J_n(\lambda_2 x) + A_3 J_n(\lambda_3 x) + \cdots$

where

 $A_k = \frac{2}{J_{n+1}^2(\lambda_k)} \int_0^1 x f(x) J_n(\lambda_k x) dx$ 24.110

In particular if n=0.

24.111 $f(x) = A_1 J_0(\lambda_1 x) + A_2 J_0(\lambda_2 x) + A_3 J_0(\lambda_3 x) + \cdots$

where

 $A_k = \frac{2}{J_1^2(\lambda_k)} \int_0^1 x f(x) J_0(\lambda_k x) dx$ 24.112

R/S > -n

24.113 $f(x) = A_1 J_n(\lambda_1 x) + A_2 J_n(\lambda_2 x) + A_3 J_n(\lambda_3 x) + \cdots$

where

 $A_k = \frac{2}{J_n^2(\lambda_k) - J_{n-1}(\lambda_k) J_{n-1}(\lambda_k)} \int_0^1 x f(x) J_n(\lambda_k x) dx$ 24.114

In particular if n=0.

24.115 $f(x) = A_1 J_0(\lambda_1 x) + A_2 J_0(\lambda_2 x) + A_3 J_0(\lambda_3 x) + \cdots$

where

 $A_k = \frac{2}{J_0^2(\lambda_1) + J_1^2(\lambda_1)} \int_1^1 x f(x) J_0(\lambda_k x) dx$ 24.116

R/S = -n

24.117 $f(x) = A_0 x^n + A_1 J_n(\lambda_1 x) + A_2 J_n(\lambda_2 x) + \cdots$

where

 $\begin{cases} A_0 = 2(n+1) \int_0^1 x^{n+1} f(x) dx \\ A_k = \frac{2}{J_n^2(\lambda_k) - J_{n-1}(\lambda_k) J_{n+1}(\lambda_k)} \int_0^1 x f(x) J_n(\lambda_k x) dx \end{cases}$ 24.118

In particular if n=0 so that R=0 [i.e. $\lambda_1,\lambda_2,\lambda_3,\ldots$ are the positive roots of $J_1(x)=0$],

24.119 $f(x) = A_0 + A_1 J_0(\lambda_1 x) + A_2 J_0(\lambda_2 x) + \cdots$

where

 $\begin{cases} A_0 = 2 \int_0^1 x f(x) dx \\ A_k = \frac{2}{J_n^2(\lambda_k)} \int_0^1 x f(x) J_0(\lambda_k x) dx \end{cases}$ 24.120

$$R/S < -n$$

In this case there are two pure imaginary roots $\pm i\lambda_0$ as well as the positive roots $\lambda_1, \lambda_2, \lambda_3, \ldots$ and we have

$$f(x) = A_0 I_n(\lambda_0 x) + A_1 J_n(\lambda_1 x) + A_2 J_n(\lambda_2 x) + \cdots$$

where

$$\begin{cases} A_0 = \frac{2}{I_n^2(\lambda_0) + I_{n-1}(\lambda_0) I_{n+1}(\lambda_0)} \int_0^1 x f(x) I_n(\lambda_0 x) dx \\ A_k = \frac{2}{J_n^2(\lambda_k) - J_{n-1}(\lambda_k) J_{n+1}(\lambda_k)} \int_0^1 x f(x) J_n(\lambda_k x) dx \end{cases}$$

MISCELLANEOUS RESULTS

24.123
$$\cos(x \sin \theta) = J_0(x) + 2J_2(x)\cos 2\theta + 2J_4(x)\cos 4\theta + \cdots$$

24.124
$$\sin(x \sin \theta) = 2J_1(x) \sin \theta + 2J_3(x) \sin 3\theta + 2J_5(x) \sin 5\theta + \cdots$$

24.125
$$J_n(x+y) = \sum_{k=-\infty}^{\infty} J_k(x) J_{n-k}(y)$$
 $n=0,\pm 1,\pm 2,\ldots$

This is called the addition formula for Bessel functions.

24.126 1 =
$$J_0(x) + 2J_2(x) + \cdots + 2J_{2n}(x) + \cdots$$

24.127
$$x = 2\{J_1(x) + 3J_3(x) + 5J_5(x) + \cdots + (2n+1)J_{2n+1}(x) + \cdots\}$$

24.128
$$x^2 = 2\{4J_2(x) + 16J_4(x) + 36J_6(x) + \cdots + (2n)^2J_{2n}(x) + \cdots\}$$

24.129
$$\frac{x J_1(x)}{4} = J_2(x) - 2 J_4(x) + 3 J_6(x) - \cdots$$

24.130 1 =
$$J_0^2(x) + 2J_1^2(x) + 2J_2^2(x) + 2J_2^2(x) + \cdots$$

24.131
$$J_n''(x) = \frac{1}{4} \{ J_{n-2}(x) - 2 J_n(x) + J_{n+2}(x) \}$$

24.132
$$J_n^{\prime\prime\prime}(x) = \frac{1}{8} \{J_{n-3}(x) - 3J_{n-1}(x) + 3J_{n+1}(x) - J_{n+3}(x)\}$$

Formulas 24.131 and 24.132 can be generalized.

24.133
$$J'_n(x) J_{-n}(x) - J'_{-n} J_n(x) = \frac{2 \sin n\pi}{\pi x}$$

24.134
$$J_n(x) J_{-n+1}(x) + J_{-n}(x) J_{n-1}(x) = \frac{2 \sin n\pi}{\pi x}$$

24.135
$$J_{n+1}(x) Y_n(x) - J_n(x) Y_{n+1}(x) = J_n(x) Y'_n(x) - J'_n(x) Y_n(x) = \frac{2}{\pi x}$$

24.136
$$\sin x = 2\{J_1(x) - J_3(x) + J_5(x) - \cdots\}$$

24.137
$$\cos x = J_0(x) - 2J_2(x) + 2J_4(x) - \cdots$$

24.138
$$\sinh x = 2\{I_1(x) + I_3(x) + I_5(x) + \cdots\}$$

24.139
$$\cosh x = I_0(x) + 2\{I_0(x) + I_4(x) + I_6(x) + \cdots\}$$

25

LEGENDRE FUNCTIONS

LEGENDRE'S DIFFERENTIAL EQUATION

25.1

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$

Solutions of this equation are called Legendre functions of order n.

LEGENDRE POLYNOMIALS

If $n = 0, 1, 2, \ldots$, solutions of 25.1 are Legendre polynomials $P_n(x)$ given by Rodrigue's formula

25.2

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

SPECIAL LEGENDRE POLYNOMIALS

25.3 $P_0(x) = 1$

25.7
$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$

25.4 $P_1(x) = x$

25.8
$$P_5(x) = \frac{1}{3}(63x^5 - 70x^3 + 15x)$$

25.5 $P_2(x) = \frac{1}{2}(3x^2 - 1)$

25.9
$$P_6(x) = \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$$

25.6 $P_3(x) = \frac{1}{2}(5x^3 - 3x)$

25.10
$$P_7(x) = \frac{1}{16}(429x^7 - 693x^5 + 315x^3 - 35x)$$

LEGENDRE POLYNOMIALS IN TERMS OF heta WHERE $x=\cos heta$

25.11 $P_0(\cos \theta) = 1$

25.14
$$P_3(\cos\theta) = \frac{1}{8}(3\cos\theta + 5\cos3\theta)$$

 $25.12 \quad P_1(\cos\theta) = \cos\theta$

25.15
$$P_4(\cos\theta) = \frac{1}{64}(9 + 20\cos 2\theta + 35\cos 4\theta)$$

25.13 $P_2(\cos\theta) = \frac{1}{4}(1+3\cos 2\theta)$

25.16
$$P_5(\cos\theta) = \frac{1}{128}(30\cos\theta + 35\cos3\theta + 63\cos5\theta)$$

25.17 $P_6(\cos \theta) = \frac{1}{512}(50 + 105\cos 2\theta + 126\cos 4\theta + 231\cos 6\theta)$

25.18 $P_7(\cos\theta) = \frac{1}{1024}(175\cos\theta + 189\cos3\theta + 231\cos5\theta + 429\cos7\theta)$

GENERATING FUNCTION FOR LEGENDRE POLYNOMIALS

25.19

$$\frac{1}{\sqrt{1-2tx+t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n$$

RECURRENCE FORMULAS FOR LEGENDRE POLYNOMIALS

25.20
$$(n+1) P_{n+1}(x) - (2n+1)x P_n(x) + n P_{n-1}(x) = 0$$
25.21
$$P'_{n+1}(x) - x P'_n(x) = (n+1) P_n(x)$$

25.22
$$x P'_n(x) - P'_{n-1}(x) = n P_n(x)$$

25.23
$$P'_{n+1}(x) - P'_{n-1}(x) = (2n+1) P_n(x)$$

25.24
$$(x^2-1) P'_n(x) = nx P_n(x) - n P_{n-1}(x)$$

ORTHOGONALITY OF LEGENDRE POLYNOMIALS

25.25
$$\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = 0 \qquad m \neq n$$

25.26
$$\int_{-1}^{1} \{P_n(x)\}^2 dx = \frac{2}{2n+1}$$

Because of 25.25, $P_m(x)$ and $P_n(x)$ are called orthogonal in $-1 \le x \le 1$.

ORTHOGONAL SERIES OF LEGENDRE POLYNOMIALS

25.27
$$f(x) = A_0 P_0(x) + A_1 P_1(x) + A_2 P_2(x) + \cdots$$
 where
$$A_k = \frac{2k+1}{2} \int_{-1}^{1} f(x) P_k(x) dx$$

SPECIAL RESULTS INVOLVING LEGENDRE POLYNOMIALS

25.29
$$P_n(1) = 1$$
 25.30 $P_n(-1) = (-1)^n$ **25.31** $P_n(-x) = (-1)^n P_n(x)$

25.32
$$P_n(0) = \begin{cases} 0 & n \text{ odd} \\ (-1)^{n/2} \frac{1 \cdot 3 \cdot 5 \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots n} & n \text{ even} \end{cases}$$

25.33
$$P_n(x) = \frac{1}{\pi} \int_0^{\pi} (x + \sqrt{x^2 - 1} \cos \phi)^n d\phi$$

25.34
$$\int P_n(x) \ dx = \frac{P_{n+1}(x) - P_{n-1}(x)}{2n+1}$$

$$|P_n(x)| \leq 1$$

25.36
$$P_n(x) = \frac{1}{2^{n+1}\pi i} \oint_C \frac{(z^2-1)^n}{(z-x)^{n+1}} dz$$

where C is a simple closed curve having x as interior point.

GENERAL SOLUTION OF LEGENDRE'S EQUATION

The general solution of Legendre's equation is

25.37
$$y = A U_n(x) + B V_n(x)$$

where

25.38
$$U_n(x) = 1 - \frac{n(n+1)}{2!} x^2 + \frac{n(n-2)(n+1)(n+3)}{4!} x^4 - \cdots$$

25.39
$$V_n(x) = x - \frac{(n-1)(n+2)}{3!} x^3 + \frac{(n-1)(n-3)(n+2)(n+4)}{5!} x^5 - \cdots$$

These series converge for -1 < x < 1.

LEGENDRE FUNCTIONS OF THE SECOND KIND

If $n = 0, 1, 2, \ldots$ one of the series 25.38, 25.39 terminates. In such cases,

25.40
$$P_n(x) = \begin{cases} U_n(x)/U_n(1) & n = 0, 2, 4, \dots \\ V_n(x)/V_n(1) & n = 1, 3, 5, \dots \end{cases}$$

where

25.41
$$U_n(1) = (-1)^{n/2} 2^n \left[\left(\frac{n}{2} \right)! \right]^2 / n!$$
 $n = 0, 2, 4, ...$

25.42
$$V_n(1) = (-1)^{(n-1)/2} 2^{n-1} \left[\left(\frac{n-1}{2} \right)! \right]^2 / n!$$
 $n = 1, 3, 5, ...$

The nonterminating series in such case with a suitable multiplicative constant is denoted by $Q_n(x)$ and is called Legendre's function of the second kind of order n. We define

25.43
$$Q_n(x) = \begin{cases} U_n(1) \ V_n(x) & n = 0, 2, 4, \dots \\ -V_n(1) \ U_n(x) & n = 1, 3, 5, \dots \end{cases}$$

SPECIAL LEGENDRE FUNCTIONS OF THE SECOND KIND

25.44
$$Q_0(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

25.45
$$Q_1(x) = \frac{x}{2} \ln \left(\frac{1+x}{1-x} \right) - 1$$

25.46
$$Q_2(x) = \frac{3x^2 - 1}{4} \ln \left(\frac{1 + x}{1 - x} \right) - \frac{3x}{2}$$

25.47
$$Q_3(x) = \frac{5x^3 - 3x}{4} \ln \left(\frac{1+x}{1-x} \right) - \frac{5x^2}{2} + \frac{2}{3}$$

The functions $Q_n(x)$ satisfy recurrence formulas exactly analogous to 25.20 through 25.24. Using these, the general solution of Legendre's equation can also be written

25.48
$$y = A P_n(x) + B Q_n(x)$$

ASSOCIATED LEGENDRE FUNCTIONS

LEGENDRE'S ASSOCIATED DIFFERENTIAL EQUATION

$$(1-x^2)y^{\prime\prime} - 2xy^{\prime} + \left\{n(n+1) - \frac{m^2}{1-x^2}\right\}y = 0$$

Solutions of this equation are called associated Legendre functions. We restrict ourselves to the important case where m, n are nonnegative integers.

ASSOCIATED LEGENDRE FUNCTIONS OF THE FIRST KIND

$$P_n^m(x) = (1-x^2)^{m/2} \frac{d^m}{dx^m} P_n(x) = \frac{(1-x^2)^{m/2}}{2^n n!} \frac{d^{m+n}}{dx^{m+n}} (x^2-1)^n$$

where $P_n(x)$ are Legendre polynomials [page 146]. We have

$$P_n^0(x) = P_n(x)$$

$$P_n^m(x) = 0 \quad \text{if } m > n$$

SPECIAL ASSOCIATED LEGENDRE FUNCTIONS OF THE FIRST KIND

26.5
$$P_1^1(x) = (1-x^2)^{1/2}$$

26.8
$$P_3^1(x) = \frac{3}{2}(5x^2-1)(1-x^2)^{1/2}$$

26.6
$$P_2^1(x) = 3x(1-x^2)^{1/2}$$

$$P_2^1(x) = 3x(1-x^2)^{1/2}$$
 26.9 $P_3^2(x) = 15x(1-x^2)$

26.7
$$P_2^2(x) = 3(1-x^2)$$

26.10
$$P_3^3(x) = 15(1-x^2)^{3/2}$$

GENERATING FUNCTION FOR $P_n^m(x)$

$$\frac{(2m)! \; (1-x^2)^{m/2} t^m}{2^m m! \; (1-2tx+t^2)^{m+1/2}} \;\; = \;\; \sum_{n=m}^{\infty} P_n^m(x) t^n$$

RECURRENCE FORMULAS

$$(n+1-m) P_{n+1}^m(x) - (2n+1)x P_n^m(x) + (n+m) P_{n-1}^m(x) = 0$$

$$P_n^{m+2}(x) - \frac{2(m+1)x}{(1-x^2)^{1/2}} P_n^{m+1}(x) + (n-m)(n+m+1) P_n^m(x) = 0$$

ORTHOGONALITY OF $P_n^m(x)$

ORTHOGONAL SERIES

26.16
$$f(x) = A_m P_m^m(x) + A_{m+1} P_{m+1}^m(x) + A_{m+2} P_{m+2}^m(x) + \cdots$$

where

26.17
$$A_k = \frac{2k+1}{2} \frac{(k-m)!}{(k+m)!} \int_{-1}^1 f(x) P_k^m(x) dx$$

ASSOCIATED LEGENDRE FUNCTIONS OF THE SECOND KIND

26.18
$$Q_n^m(x) = (1-x^2)^{m/2} \frac{d^m}{dx^m} Q_n(x)$$

where $Q_n(x)$ are Legendre functions of the second kind [page 148].

These functions are unbounded at $x = \pm 1$, whereas $P_n^m(x)$ are bounded at $x = \pm 1$.

The functions $Q_n^m(x)$ satisfy the same recurrence relations as $P_n^m(x)$ [see 26.12 and 26.13].

GENERAL SOLUTION OF LEGENDRE'S ASSOCIATED EQUATION

26.19
$$y = A P_n^m(x) + B Q_n^m(x)$$

27

HERMITE POLYNOMIALS

HERMITE'S DIFFERENTIAL EQUATION

27.1

$$y^{\prime\prime} - 2xy^{\prime} + 2ny = 0$$

If $n=0,1,2,\ldots$ then solutions of Hermite's equation are Hermite polynomials $H_n(x)$ given by Rodrigue's formula

27.2

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

SPECIAL HERMITE POLYNOMIALS

27.3 $H_0(x) = 1$

27.7
$$H_4(x) = 16x^4 - 48x^2 + 12$$

27.4 $H_1(x) = 2x$

27.8
$$H_5(x) = 32x^5 - 160x^3 + 120x$$

27.5
$$H_2(x) = 4x^2 - 2$$
 27.9 $H_6(x) = 64x^6 - 480x^4 + 720x^2 - 120$

27.6 $H_3(x) = 8x^3 - 12x$

27.10
$$H_7(x) = 128x^7 - 1344x^5 + 3360x^3 - 1680x$$

GENERATING FUNCTION

27.11

$$e^{2tx-t^2} = \sum_{n=0}^{\infty} \frac{H_n(x) t^n}{n!}$$

RECURRENCE FORMULAS

27.12

$$H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x)$$

27.13

$$H'_n(x) = 2n H_{n-1}(x)$$

ORTHOGONALITY OF HERMITE POLYNOMIALS

27.14
$$\int_{-\infty}^{\infty} e^{-x^2} H_m(x) H_n(x) dx = 0 \qquad m \neq n$$

27.15
$$\int_{-\infty}^{\infty} e^{-x^2} \{H_n(x)\}^2 dx = 2^n n! \sqrt{\pi}$$

ORTHOGONAL SERIES

27.16
$$f(x) = A_0 H_0(x) + A_1 H_1(x) + A_2 H_2(x) + \cdots$$

where

27.17
$$A_k = \frac{1}{2^k k! \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2} f(x) H_k(x) dx$$

SPECIAL RESULTS

27.18
$$H_n(x) = (2x)^n - \frac{n(n-1)}{1!} (2x)^{n-2} + \frac{n(n-1)(n-2)(n-3)}{2!} (2x)^{n-4} - \cdots$$

27.19
$$H_n(-x) = (-1)^n H_n(x)$$
 27.20 $H_{2n-1}(0) = 0$

27.21
$$H_{2n}(0) = (-1)^n 2^n \cdot 1 \cdot 3 \cdot 5 \cdots (2n-1)$$

27.23
$$\frac{d}{dx} \{ e^{-x^2} H_n(x) \} = -e^{-x^2} H_{n+1}(x)$$

27.24
$$\int_0^x e^{-t^2} H_n(t) dt = H_{n-1}(0) - e^{-x^2} H_{n-1}(x)$$

27.25
$$\int_{-\infty}^{\infty} t^n e^{-t^2} H_n(xt) dt = \sqrt{\pi} n! P_n(x)$$

27.26
$$H_n(x+y) = \sum_{k=0}^n \frac{1}{2^{n/2}} \binom{n}{k} H_k(x\sqrt{2}) H_{n-k}(y\sqrt{2})$$

This is called the addition formula for Hermite polynomials.

27.27
$$\sum_{k=0}^{n} \frac{H_k(x) H_k(y)}{2^k k!} = \frac{H_{n+1}(x) H_n(y) - H_n(x) H_{n+1}(y)}{2^{n+1} n! (x-y)}$$

28

LAGUERRE POLYNOMIALS

LAGUERRE'S DIFFERENTIAL EQUATION

28.1

$$xy^{\prime\prime} + (1-x)y^{\prime} + ny = 0$$

LAGUERRE POLYNOMIALS

If $n = 0, 1, 2, \ldots$ then solutions of Laguerre's equation are Laguerre polynomials $L_n(x)$ and are given by Rodrigue's formula.

28.2

$$L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x})$$

SPECIAL LAGUERRE POLYNOMIALS

28.3 $L_0(x) = 1$

28.6
$$L_3(x) = -x^3 + 9x^2 - 18x + 6$$

28.4 $L_1(x) = -x + 1$

28.7
$$L_4(x) = x^4 - 16x^3 + 72x^2 - 96x + 24$$

28.5 $L_2(x) = x^2 - 4x + 2$

28.8
$$L_5(x) = -x^5 + 25x^4 - 200x^3 + 600x^2 - 600x + 120$$

28.9 $L_6(x) = x^6 - 36x^5 + 450x^4 - 2400x^3 + 5400x^2 - 4320x + 720$

28.10
$$L_7(x) = -x^7 + 49x^6 - 882x^5 + 7350x^4 - 29,400x^3 + 52,920x^2 - 35,280x + 5040$$

GENERATING FUNCTION

28.11

$$\frac{e^{-xt/1-t}}{1-t} = \sum_{n=0}^{\infty} \frac{L_n(x) t^n}{n!}$$

RECURRENCE FORMULAS

28.12

$$L_{n+1}(x) - (2n+1-x) L_n(x) + n^2 L_{n-1}(x) = 0$$

28.13

$$L'_n(x) - n L'_{n-1}(x) + n L_{n-1}(x) = 0$$

28.14

$$x L'_n(x) = n L_n(x) - n^2 L_{n-1}(x)$$

ORTHOGONALITY OF LAGUERRE POLYNOMIALS

28.15
$$\int_{0}^{\infty} e^{-x} L_{m}(x) L_{n}(x) dx = 0 \qquad m \neq n$$

28.16
$$\int_0^\infty e^{-x} \{L_n(x)\}^2 dx = (n!)^2$$

ORTHOGONAL SERIES

28.17
$$f(x) = A_0 L_0(x) + A_1 L_1(x) + A_2 L_2(x) + \cdots$$

where

28.18
$$A_k = \frac{1}{(k!)^2} \int_0^\infty e^{-x} f(x) L_k(x) dx$$

SPECIAL RESULTS

28.19
$$L_n(0) = n!$$
 28.20 $\int_0^x L_n(t) dt = L_n(x) - \frac{L_{n+1}(x)}{n+1}$

28.21
$$L_n(x) = (-1)^n \left\{ x^n - \frac{n^2 x^{n-1}}{1!} + \frac{n^2 (n-1)^2 x^{n-2}}{2!} - \cdots (-1)^n n! \right\}$$

28.22
$$\int_0^\infty x^p e^{-x} L_n(x) \ dx = \begin{cases} 0 & \text{if } p < n \\ (-1)^n (n!)^2 & \text{if } p = n \end{cases}$$

28.23
$$\sum_{k=0}^{n} \frac{L_{k}(x) L_{k}(y)}{(k!)^{2}} = \frac{L_{n}(x) L_{n+1}(y) - L_{n+1}(x) L_{n}(y)}{(n!)^{2} (x-y)}$$

28.24
$$\sum_{k=0}^{\infty} \frac{t^k L_k(x)}{(k!)^2} = e^t J_0(2\sqrt{xt})$$

28.25
$$L_{n}(x) = \int_{0}^{\infty} u^{n} e^{x-u} J_{0}(2\sqrt{xu}) du$$

ASSOCIATED LAGUERRE POLYNOMIALS

LAGUERRE'S ASSOCIATED DIFFERENTIAL EQUATION

29.1

$$xy'' + (m+1-x)y' + (n-m)y' = 0$$

ASSOCIATED LAGUERRE POLYNOMIALS

Solutions of 29.1 for nonnegative integers m and n are given by the associated Laguerre polynomials

$$L_n^m(x) = \frac{d^m}{dx^m} L_n(x)$$

where $L_n(x)$ are Laguerre polynomials [see page 153].

29.3

$$L_n^0(x) = L_n(x)$$

29.4

$$L_n^m(x) = 0$$
 if $m > n$

SPECIAL ASSOCIATED LAGUERRE POLYNOMIALS

 $L_1^1(x) = -1$ 29.5

29.10
$$L_3^3(x) = -6$$

 $L_2^1(x) = 2x - 4$ 29.6

29.11
$$L_4^1(x) = 4x^3 - 48x^2 + 144x - 96$$

29.7 $L_2^2(x) = 2$

29.12
$$L_4^2(x) = 12x^2 - 96x + 144$$

29.8 $L_3^1(x) = -3x^2 + 18x - 18$ **29.13** $L_4^3(x) = 24x - 96$

29.13
$$L_4^3(x) = 24x - 96$$

29.9 $L_3^2(x) = -6x + 18$

29.14
$$L_4^4(x) = 24$$

GENERATING FUNCTION FOR $L_n^m(x)$

29.15

$$\frac{(-1)^m t^m}{(1-t)^{m+1}} e^{-xt/(1-t)} = \sum_{n=m}^{\infty} \frac{L_n^m(x)}{n!} t^n$$

RECURRENCE FORMULAS

29.16
$$\frac{n-m+1}{n+1} L_{n+1}^m(x) + (x+m-2n-1) L_n^m(x) + n^2 L_{n-1}^m(x) = 0$$

29.17
$$\frac{d}{dx}\{L_n^m(x)\} = L_n^{m+1}(x)$$

29.18
$$\frac{d}{dx}\left\{x^{m}e^{-x}L_{n}^{m}(x)\right\} = (m-n-1)x^{m-1}e^{-x}L_{n}^{m-1}(x)$$

29.19
$$x \frac{d}{dx} \{L_n^m(x)\} = (x-m) L_n^m(x) + (m-n-1) L_n^{m-1}(x)$$

ORTHOGONALITY

29.20
$$\int_0^\infty x^m e^{-x} L_n^m(x) L_p^m(x) dx = 0 \qquad p \neq n$$

29.21
$$\int_0^\infty x^m e^{-x} \{L_n^m(x)\}^2 dx = \frac{(n!)^3}{(n-m)!}$$

ORTHOGONAL SERIES

29.22
$$f(x) = A_m L_m^m(x) + A_{m+1} L_{m+1}^m(x) + A_{m+2} L_{m+2}^m(x) + \cdots$$

where

29.23
$$A_k = \frac{(k-m)!}{(k!)^3} \int_0^\infty x^m e^{-x} L_k^m(x) f(x) dx$$

SPECIAL RESULTS

$$L_n^m(x) = (-1)^n \frac{n!}{(n-m)!} \left\{ x^{n-m} - \frac{n(n-m)}{1!} x^{n-m-1} + \frac{n(n-1)(n-m)(n-m-1)}{2!} x^{n-m-2} + \cdots \right\}$$

29.25
$$\int_0^\infty x^{m+1}e^{-x} \{L_n^m(x)\}^2 dx = \frac{(2n-m+1)(n!)^3}{(n-m)!}$$

CHEBYSHEV POLYNOMIALS

CHEBYSHEV'S DIFFERENTIAL EQUATION

30.1

$$(1-x^2)y'' - xy' + n^2y = 0$$
 $n = 0, 1, 2, ...$

CHEBYSHEV POLYNOMIALS OF THE FIRST KIND

Solutions of 30.1 are given by

30.2
$$T_n(x) = \cos(n\cos^{-1}x) = x^n - \binom{n}{2}x^{n-2}(1-x^2) + \binom{n}{4}x^{n-4}(1-x^2)^2 - \cdots$$

SPECIAL CHEBYSHEV POLYNOMIALS OF THE FIRST KIND

30.3 $T_0(x) = 1$

30.7
$$T_4(x) = 8x^4 - 8x^2 + 1$$

30.4 $T_1(x) = x$

30.8
$$T_5(x) = 16x^5 - 20x^3 + 5x$$

30.5
$$T_2(x) = 2x^2 - 1$$
 30.9 $T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1$

30.6
$$T_3(x) = 4x^3 - 3x$$
 30.10 $T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x$

GENERATING FUNCTION FOR $T_n(x)$

30.11

$$\frac{1 - tx}{1 - 2tx + t^2} = \sum_{n=0}^{\infty} T_n(x) \ t^n$$

SPECIAL VALUES

30.12 $T_n(-x) = (-1)^n T_n(x)$ **30.14** $T_n(-1) = (-1)^n$

30.16 $T_{2n+1}(0) = 0$

30.13 $T_n(1) = 1$

30.15 $T_{2n}(0) = (-1)^n$

RECURSION FORMULA FOR $T_n(x)$

30.17
$$T_{n+1}(x) - 2x T_n(x) + T_{n-1}(x) = 0$$

ORTHOGONALITY

30.18
$$\int_{-1}^{1} \frac{T_m(x) T_n(x)}{\sqrt{1-x^2}} dx = 0 m \neq n$$

30.19
$$\int_{-1}^{1} \frac{\{T_n(x)\}^2}{\sqrt{1-x^2}} dx = \begin{cases} \pi & \text{if } n=0 \\ \pi/2 & \text{if } n=1,2,\dots \end{cases}$$

ORTHOGONAL SERIES

30.20
$$f(x) = \frac{1}{2}A_0 T_0(x) + A_1 T_1(x) + A_2 T_2(x) + \cdots$$

where

30.21
$$A_k = \frac{2}{\pi} \int_{-1}^1 \frac{f(x) T_k(x)}{\sqrt{1-x^2}} dx$$

CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

30.22
$$U_n(x) = \frac{\sin\{(n+1)\cos^{-1}x\}}{\sin(\cos^{-1}x)}$$
$$= {n+1 \choose 1} x^n - {n+1 \choose 3} x^{n-2} (1-x^2) + {n+1 \choose 5} x^{n-4} (1-x^2)^2 - \cdots$$

SPECIAL CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

30.23
$$U_0(x) = 1$$
 30.27 $U_4(x) = 16x^4 - 12x^2 + 1$

30.24
$$U_1(x) = 2x$$
 30.28 $U_5(x) = 32x^5 - 32x^3 + 6x$

30.25
$$U_2(x) = 4x^2 - 1$$
 30.29 $U_6(x) = 64x^6 - 80x^4 + 24x^2 - 1$

30.26
$$U_3(x) = 8x^3 - 4x$$
 30.30 $U_7(x) = 128x^7 - 192x^5 + 80x^3 - 8x$

GENERATING FUNCTION FOR $U_n(x)$

30.31
$$\frac{1}{1-2tx+t^2} = \sum_{n=0}^{\infty} U_n(x) t^n$$

SPECIAL VALUES

30.32
$$U_n(-x) = (-1)^n U_n(x)$$

30.34
$$U_n(-1) = (-1)^n (n+1)$$

30.36
$$U_{2n+1}(0) = 0$$

30.33
$$U_n(1) = n + 1$$

30.35
$$U_{2n}(0) = (-1)^n$$

RECURSION FORMULA FOR $U_n(x)$

$$U_{n+1}(x) - 2x U_n(x) + U_{n-1}(x) = 0$$

ORTHOGONALITY

$$\int_{-1}^{1} \sqrt{1-x^2} \ U_m(x) \ U_n(x) \ dx = 0 \qquad m \neq n$$

$$\int_{-1}^{1} \sqrt{1-x^2} \{U_n(x)\}^2 dx = \frac{\pi}{2}$$

ORTHOGONAL SERIES

$$f(x) = A_0 U_0(x) + A_1 U_1(x) + A_2 U_2(x) + \cdots$$

where

$$A_k = \frac{2}{\pi} \int_{-1}^{1} \sqrt{1-x^2} f(x) U_k(x) dx$$

RELATIONSHIPS BETWEEN $T_n(x)$ AND $U_n(x)$

$$T_n(x) = U_n(x) - x U_{n-1}(x)$$

$$(1-x^2) \ U_{n-1}(x) = x \ T_n(x) - T_{n+1}(x)$$

$$U_n(x) = \frac{1}{\pi} \int_{-1}^1 \frac{T_{n+1}(v) dv}{(v-x)\sqrt{1-v^2}}$$

$$T_n(x) = \frac{1}{\pi} \int_{-1}^1 \frac{\sqrt{1-v^2} \, U_{n-1}(v)}{x-v} \, dv$$

GENERAL SOLUTION OF CHEBYSHEV'S DIFFERENTIAL EQUATION

$$y = \begin{cases} A T_n(x) + B\sqrt{1-x^2} U_{n-1}(x) & \text{if } n = 1, 2, 3, \dots \\ A + B \sin^{-1} x & \text{if } n = 0 \end{cases}$$

HYPERGEOMETRIC FUNCTIONS

HYPERGEOMETRIC DIFFERENTIAL EQUATION

$$x(1-x)y'' + \{c - (a+b+1)x\}y' - aby = 0$$

HYPERGEOMETRIC FUNCTIONS

A solution of 31.1 is given by

31.2
$$F(a,b;c;x) = 1 + \frac{a \cdot b}{1 \cdot c}x + \frac{a(a+1)b(b+1)}{1 \cdot 2 \cdot c(c+1)}x^2 + \frac{a(a+1)(a+2)b(b+1)(b+2)}{1 \cdot 2 \cdot 3 \cdot c(c+1)(c+2)}x^3 + \cdots$$

If a, b, c are real, then the series converges for -1 < x < 1 provided that c - (a + b) > -1.

SPECIAL CASES

_					
3	1.3	F(-n)	1 · 1 · - ~) = ·	(1 + r)p

31.8
$$F(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}; x^2) = (\sin^{-1} x)/x$$

31.4
$$F(1,1;2;-x) = [\ln{(1+x)}]/x$$

31.9
$$F(\frac{1}{2}, 1; \frac{3}{2}; -x^2) = (\tan^{-1} x)/x$$

31.5
$$\lim_{n \to \infty} F(1, n; 1; x/n) = e^x$$

31.10
$$F(1, p; p; x) = 1/(1-x)$$

31.6
$$F(\frac{1}{2}, -\frac{1}{2}; \frac{1}{2}; \sin^2 x) = \cos x$$

31.11
$$F(n+1, -n; 1; (1-x)/2) = P_n(x)$$

31.7
$$F(\frac{1}{2}, 1; 1; \sin^2 x) = \sec x$$

31.12
$$F(n, -n; \frac{1}{2}; (1-x)/2) = T_n(x)$$

GENERAL SOLUTION OF THE HYPERGEOMETRIC EQUATION

If c, a-b and c-a-b are all nonintegers, the general solution valid for |x|<1 is

31.13
$$y = A F(a, b; c; x) + Bx^{1-c} F(a-c+1, b-c+1; 2-c; x)$$

MISCELLANEOUS PROPERTIES

31.14
$$F(a, b; c; 1) = \frac{\Gamma(c) \Gamma(c - a - b)}{\Gamma(c - a) \Gamma(c - b)}$$

31.15
$$\frac{d}{dx}F(a, b; c; x) = \frac{ab}{c}F(a+1, b+1; c+1; x)$$

31.16
$$F(a, b; c; x) = \frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_0^1 u^{b-1} (1-u)^{c-b-1} (1-ux)^{-a} du$$

31.17
$$F(a, b; c; x) = (1-x)^{c-a-b}F(c-a, c-b; c; x)$$

32

LAPLACE TRANSFORMS

DEFINITION OF THE LAPLACE TRANSFORM OF F(t)

$$\mathcal{L}\left\{F(t)\right\} = \int_{0}^{\infty} e^{-st} F(t) dt = f(s)$$

In general f(s) will exist for $s > \alpha$ where α is some constant. $\mathcal L$ is called the *Laplace transform* operator.

DEFINITION OF THE INVERSE LAPLACE TRANSFORM OF f(s)

If $\mathcal{L}\{F(t)\} = f(s)$, then we say that $F(t) = \mathcal{L}^{-1}\{f(s)\}$ is the inverse Laplace transform of f(s). \mathcal{L}^{-1} is called the inverse Laplace transform operator.

COMPLEX INVERSION FORMULA

The inverse Laplace transform of f(s) can be found directly by methods of complex variable theory. The result is

32.2
$$F(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} f(s) \ ds = \frac{1}{2\pi i} \lim_{T \to \infty} \int_{c-iT}^{c+iT} e^{st} f(s) \ ds$$

where c is chosen so that all the singular points of f(s) lie to the left of the line $\text{Re }\{s\}=c$ in the complex s plane.

TABLE OF GENERAL PROPERTIES OF LAPLACE TRANSFORMS

	f(s)	F(t)
32.3	$af_1(s)+bf_2(s)$	$aF_1(t)+bF_2(t)$
32.4	f(s/a)	aF(at)
32.5	f(s-a)	$e^{at}F(t)$
32.6	$e^{-as}f(s)$	$\mathcal{U}(t-a) \; = \; egin{cases} F(t-a) & t > a \ 0 & t < a \end{cases}$
32.7	sf(s)-F(0)	$F^{\prime\prime}(t)$
32.8	$s^2 f(s) - s F(0) - F'(0)$	$F^{\prime\prime}(t)$
32.9	$s^n f(s) - s^{n-1} F(0) - s^{n-2} F'(0) - \cdots - F^{(n-1)}(0)$	$F^{(n)}(t)$
32.10	f'(s)	-tF(t)
32.11	$f^{\prime\prime}(s)$	$t^2F(t)$
32.12	$f^{(n)}(s)$	$(-1)^n t^n F(t)$
32.13	<u>f(s)</u> s	$\int_0^t F(u) du$
32.14	$rac{f(s)}{s^n}$	$\int_0^t \cdots \int_0^t F(u) du^n = \int_0^t \frac{(t-u)^{n-1}}{(n-1)!} F(u) du$
32.15	$f(s) \ g(s)$	$\int_0^t F(u) \ G(t-u) \ du$

	f(s)	F(t)
32.16	$\int_{s}^{\infty} f(u) \ du$	$rac{F(t)}{t}$
32.17	$\frac{1}{1-e^{-sT}}\int_0^T e^{-su}F(u)du$	F(t) = F(t+T)
32.18	$\frac{f(\sqrt{s})}{s}$	$\frac{1}{\sqrt{\pi t}}\int_0^\infty e^{-u^2/4t}F(u)du$
32.19	$\frac{1}{s}f(1/s)$	$\int_0^\infty J_0(2\sqrt{ut})F(u)du$
32.20	$\frac{1}{s^{n+1}}f(1/s)$	$t^{n/2}\int_0^\infty u^{-n/2}J_n(2\sqrt{ut})F(u)du$
32.21	$\frac{f(s+1/s)}{s^2+1}$	$\int_0^t J_0(2\sqrt{u(t-u)})F(u)du$
32.22	$\frac{1}{2\sqrt{\pi}} \int_0^\infty u^{-3/2} e^{-s^2/4u} f(u) du$	$F(t^2)$
32.23	$\frac{f(\ln s)}{s \ln s}$	$\int_0^\infty \frac{t^u F(u)}{\Gamma(u+1)} du$
32.24	$\frac{P(s)}{Q(s)}$	$\sum_{k=1}^{n} \frac{P(\alpha_k)}{Q'(\alpha_k)} e^{\alpha_k t}$
	$P(s)=$ polynomial of degree less than $n,$ $Q(s)=(s-\alpha_1)(s-\alpha_2)\cdots(s-\alpha_n)$ where $\alpha_1,\alpha_2,\ldots,\alpha_n$ are all distinct.	

TABLE OF SPECIAL LAPLACE TRANSFORMS

	f(s)	F(t)
32.25	$rac{1}{s}$	1
32.26	$\frac{1}{s^2}$	t
32.27	$\frac{1}{s^n} \qquad n=1,2,3,\ldots$	$\frac{t^{n-1}}{(n-1)!}, 0! = 1$
32.28	$\frac{1}{s^n}$ $n>0$	$\frac{t^{n-1}}{\Gamma(n)}$
32.29	$\frac{1}{s-a}$	eat
32.30	$\frac{1}{(s-a)^n} \qquad n=1,2,3,\ldots$	$rac{t^{n-1} \ e^{at}}{(n-1)!}, 0! = 1$
32.31	$\frac{1}{(s-a)^n} \qquad n > 0$	$\frac{t^{n-1} e^{at}}{\Gamma(n)}$
32.32	$\frac{1}{s^2+a^2}$	$\frac{\sin at}{a}$
32.33	$\frac{s}{s^2+a^2}$	$\cos at$
32.34	$\frac{1}{(s-b)^2+a^2}$	$rac{e^{bt} \sin at}{a}$
32.35	$\frac{s-b}{(s-b)^2+a^2}$	e ^{bt} cos at
32.36	$rac{1}{s^2-a^2}$	$\frac{\sinh at}{a}$
32.37	$\frac{s}{s^2-a^2}$	$\cosh at$
32.38	$\frac{1}{(s-b)^2-a^2}$	$rac{e^{\mathbf{b}t}\sinh at}{a}$

	f(s)	F(t)
32.39	$\frac{s-b}{(s-b)^2-a^2}$	$e^{\mathrm{b}t}\cosh at$
32.40	$\frac{1}{(s-a)(s-b)} \qquad a \neq b$	$\frac{e^{bt}-e^{at}}{b-a}$
32.41	$\frac{s}{(s-a)(s-b)} \qquad a \neq b$	$rac{be^{bt}-ae^{at}}{b-a}$
32.42	$\frac{1}{(s^2+\alpha^2)^2}$	$\frac{\sin at - at \cos at}{2a^3}$
32.43	$\frac{s}{(\overline{s^2+\alpha^2})^2}$	$rac{t \sin at}{2a}$
32.44	$\frac{s^2}{(s^2+a^2)^2}$	$\frac{\sin at + at \cos at}{2a}$
32.45	$\frac{s^3}{(s^2+\alpha^2)^2}$	$\cos at - \frac{1}{2}at \sin at$
32.46	$\frac{s^2-a^2}{(s^2+a^2)^2}$	$oldsymbol{t}\cos at$
32.47	$\frac{1}{(s^2-\alpha^2)^2}$	$\frac{at\cosh at - \sinh at}{2a^3}$
32.48	$\frac{s}{(s^2-a^2)^2}$	$rac{t \sinh at}{2a}$
32.49	$\frac{s^2}{(s^2-a^2)^2}$	$rac{\sinh at +at\cosh at}{2a}$
32.50	$\frac{s^3}{(s^2-a^2)^2}$	$\cosh at + rac{1}{2}at \sinh at$
32.51	$\frac{s^2 + a^2}{(s^2 - a^2)^2}$	$t\cosh at$
32.52	$\frac{1}{(s^2+a^2)^3}$	$\frac{(3-a^2t^2)\sinat-3at\cos at}{8a^5}$
32.53	$\frac{s}{(s^2+a^2)^3}$	$\frac{t\sin at - at^2\cos at}{8a^3}$
32.54	$\frac{s^2}{(s^2+\alpha^2)^3}$	$\frac{(1+a^2t^2)\sinat-at\cosat}{8a^3}$
32.55	$\frac{s^3}{(s^2+\alpha^2)^3}$	$\frac{3t\sin at + at^2\cos at}{8a}$

	f(s)	F(t)
32.56	$\frac{s^4}{(s^2+a^2)^3}$	$\frac{(3-a^2t^2)\sinat+5at\cos at}{8a}$
32.57	$\frac{s^5}{(s^2+a^2)^3}$	$\frac{(8-a^2t^2)\cosat-7at\sinat}{8}$
32.58	$rac{3s^2-a^2}{(s^2+a^2)^3}$	$rac{t^2 \sin at}{2a}$
32.59	$\frac{s^3-3a^2s}{(s^2+a^2)^3}$	$rac{1}{2}t^2\cos at$
32.60	$\frac{s^4-6a^2s^2+a^4}{(s^2+a^2)^4}$	$rac{1}{6}t^3\cos at$
32.61	$\frac{s^3-a^2s}{(s^2+a^2)^4}$	$rac{t^3 \sin at}{24a}$
32.62	$\frac{1}{(s^2-a^2)^3}$	$\frac{(3+a^2t^2)\sinhat-3at\cosh at}{8a^5}$
32.63	$\frac{s}{(s^2-a^2)^3}$	$rac{at^2\cosh at \ - \ t \ { m sinh} \ at}{8a^3}$
32.64	$\frac{s^2}{(s^2-a^2)^3}$	$rac{at\cosh at \ + \ (a^2t^2-1)\sinh at}{8a^3}$
32.65	$\frac{s^3}{(s^2-a^2)^3}$	$\frac{3t \sinh at + at^2 \cosh at}{8a}$
32.66	$\frac{s^4}{(s^2-a^2)^3}$	$\frac{(3+a^2t^2)\sinh at+5at\cosh at}{8a}$
32.67	$\frac{s^5}{(s^2-a^2)^3}$	$\frac{(8+a^2t^2)\cosh{at}+7at\sinh{at}}{8}$
32.68	$\frac{3s^2+\alpha^2}{(s^2-\alpha^2)^3}$	$rac{t^2 \sinh at}{2a}$
32.69	$rac{s^3 + 3a^2s}{(s^2 - a^2)^3}$	$rac{1}{2}t^2\cosh at$
32.70	$\frac{s^4 + 6a^2s^2 + a^4}{(s^2 - a^2)^4}$	$rac{1}{6}t^3\cosh at$
32.71	$\frac{s^3+\alpha^2s}{(s^2-\alpha^2)^4}$	$rac{t^3 \sinh at}{24a}$
32.72	$\frac{1}{s^3+a^3}$	$rac{e^{at/2}}{3a^2}igg\{\sqrt{3}\sinrac{\sqrt{3}at}{2}-\cosrac{\sqrt{3}at}{2}+e^{-3at/2}igg\}$

•	f(s)	F(t)
32.73	$\frac{s}{s^3+a^3}$	$rac{e^{at/2}}{3a}\left\{\cosrac{\sqrt{3}at}{2}+\sqrt{3}\sinrac{\sqrt{3}at}{2}-e^{-3at/2} ight\}$
32.74	$\frac{s^2}{s^3+a^3}$	$\frac{1}{3}\left(e^{-at} \ + \ 2e^{at/2}\cos\frac{\sqrt{3}\ at}{2}\right)$
32.75	$\frac{1}{s^3-a^3}$	$rac{e^{-at/2}}{3a^2} \left\{ e^{3at/2} - \cosrac{\sqrt{3}at}{2} - \sqrt{3}\sinrac{\sqrt{3}at}{2} ight\}$
32.76	$\frac{s}{s^3-a^3}$	$rac{e^{-at/2}}{3a} \left\{ \sqrt{3} \sin rac{\sqrt{3} at}{2} - \cos rac{\sqrt{3} at}{2} + e^{3at/2} ight\}$
32.77	$rac{s^2}{s^3-lpha^3}$	$rac{1}{3}\left(e^{at}+2e^{-at/2}\cosrac{\sqrt{3}at}{2} ight)$
32.78	$\frac{1}{s^4+4a^4}$	$\frac{1}{4a^3}(\sin at \cosh at - \cos at \sinh at)$
32.79	$\frac{s}{s^4+4a^4}$	$rac{\sin at \sinh at}{2a^2}$
32.80	$\frac{s^2}{s^4+4a^4}$	$\frac{1}{2a}(\sin at \cosh at + \cos at \sinh at)$
32.81	$\frac{s^3}{s^4+4a^4}$	$\cos at \cosh at$
32.82	$\frac{1}{s^4-a^4}$	$\frac{1}{2a^3}(\sinh at - \sin at)$
32.83	$\frac{s}{s^4-a^4}$	$rac{1}{2a^2}(\cosh at - \cos at)$
32.84	$\frac{s^2}{s^4-a^4}$	$\frac{1}{2a}(\sinh at + \sin at)$
32.85	$\frac{s^3}{s^4-a^4}$	$rac{1}{2}(\cosh at + \cos at)$
32.86	$\frac{1}{\sqrt{s+a}+\sqrt{s+b}}$	$\frac{e^{-bt}-e^{-at}}{2(b-a)\sqrt{\pi t^3}}$
32.87	$\frac{1}{s\sqrt{s+a}}$	$\frac{\operatorname{erf}\sqrt{at}}{\sqrt{a}}$
32.88	$\frac{1}{\sqrt{s}(s-a)}$	$rac{e^{at} \operatorname{erf} \sqrt{at}}{\sqrt{a}}$
32.89	$rac{1}{\sqrt{s-a}+b}$	$e^{at}\left\{rac{1}{\sqrt{\pi t}}-b\ e^{b^2t}\operatorname{erfc}\left(b\sqrt{t} ight) ight\}$

	f(s)	F(t)
F		F(b)
32.90	$\frac{1}{\sqrt{s^2+a^2}}$	$J_0(at)$
32.91	$\frac{1}{\sqrt{s^2-a^2}}$	$I_0(at)$
32.92	$\frac{(\sqrt{s^2+a^2}-s)^n}{\sqrt{s^2+a^2}} n>-1$	$a^nJ_n(at)$
32.93	$rac{(s-\sqrt{s^2-a^2})^n}{\sqrt{s^2-a^2}} n>-1$	$a^nI_n(at)$
32.94	$\frac{e^{b(s-\sqrt{s^2+a^2})}}{\sqrt{s^2+a^2}}$	$J_0(a\sqrt{t(t+2b)})$
32.95	$\frac{e^{-b\sqrt{s^2+a^2}}}{\sqrt{s^2+a^2}}$	$\left\{egin{array}{ll} J_0(a\sqrt{t^2-b^2}) & t>b \ 0 & t< b \end{array} ight.$
32.96	$rac{1}{(s^2+a^2)^{3/2}}$	$rac{tJ_1(at)}{a}$
32.97	$\frac{s}{(s^2+a^2)^{3/2}}$	$tJ_0(at)$
32.98	$\frac{s^2}{(s^2+a^2)^{3/2}}$	$J_0(at) - at J_1(at)$
32.99	$\frac{1}{(s^2-a^2)^{3/2}}$	$rac{tI_{1}(at)}{a}$
32.100	$\frac{s}{(s^2-a^2)^{3/2}}$	$tI_{0}(at)$
32.101	$\frac{s^2}{(s^2-a^2)^{3/2}}$	$I_0(at) + at I_1(at)$
32.102	$rac{1}{s(e^s-1)} = rac{c^{-s}}{s(1-e^{-s})}$ See also entry 32.165.	$F(t) = n, \ n \le t < n+1, \ n = 0, 1, 2, \dots$
32.103	$\frac{1}{s(e^s-r)} = \frac{e^{-s}}{s(1-re^{-s})}$	$F(t) = \sum_{k=1}^{\lfloor t floor} r^k$ where $\lfloor t floor = ext{greatest integer} \le t$
32.104	$rac{e^{s}-1}{s(e^{s}-r)} = rac{1-e^{-s}}{s(1-re^{-s})}$ See also entry 32.167.	$F(t) = r^n, \ n \le t < n+1, \ n = 0, 1, 2, \ldots$
32.105	$\frac{e^{-a/s}}{\sqrt{s}}$	$\frac{\cos 2\sqrt{at}}{\sqrt{\pi t}}$

	f(s)	F(t)
32.106	$\frac{e^{-a/s}}{s^{3/2}}$	$rac{\sin 2\sqrt{at}}{\sqrt{\pi a}}$
32.107	$\frac{e^{-a/s}}{s^{n+1}} \qquad n > -1$	$\left(\frac{t}{a}\right)^{n/2}J_n(2\sqrt{at})$
32.108	$\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$	$rac{e^{-a^2/4t}}{\sqrt{\pi t}}$
32.109	$e^{-a\sqrt{s}}$	$rac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$
32.110	$\frac{1-e^{-a\sqrt{s}}}{s}$	$\operatorname{erf}\left(a/2\sqrt{t} ight)$
32.111	$\frac{e^{-a\sqrt{s}}}{s}$	$\operatorname{erfc}\left(a/2\sqrt{t} ight)$
32.112	$\frac{e^{-a\sqrt{s}}}{\sqrt{s}(\sqrt{s}+b)}$	$e^{b(bt+a)}\operatorname{erfc}\left(b\sqrt{t}+rac{a}{2\sqrt{t}} ight)$
32.113	$\frac{e^{-a/\sqrt{s}}}{s^{n+1}} n > -1$	$\frac{1}{\sqrt{\pi t} a^{2n+1}} \int_0^\infty \!\!\! u^n e^{-u^2/4a^2t} J_{2n}(2\sqrt{u}) du$
32.114	$\ln\left(\frac{s+a}{s+b}\right)$	$\frac{e^{-bt}-e^{-at}}{t}$
32.115	$\frac{\ln\ [(s^2+a^2)/a^2]}{2s}$	Ci(at)
32.116	$\frac{\ln [(s+a)/a]}{s}$	Ei(at)
32.117	$\frac{-\frac{(\gamma + \ln s)}{s}}{s}$ $\gamma = \text{Euler's constant} = .5772156$	$\ln t$
32.118	$\ln\left(rac{s^2+a^2}{s^2+b^2} ight)$	$rac{2\left(\cos at-\cos bt ight)}{t}$
32.119	$rac{\pi^2}{6s} + rac{(\gamma + \ln s)^2}{s}$ $\gamma = ext{Euler's constant} = .5772156$	$\ln^2 t$
32.120	$\frac{\ln s}{s}$	$-(\ln t + \gamma)$ $\gamma = \text{Euler's constant} = .5772156$
32.121	$\frac{\ln^2 s}{s}$	$(\ln t + \gamma)^2 - \frac{1}{6}\pi^2$ $\gamma = \text{Euler's constant} = .5772156$

	f(s)	F(t)
32.122	$rac{\Gamma'(n+1)-\Gamma(n+1)\ln s}{s^{n+1}}\qquad n>-1$	$t^n \ln t$
32.123	$\tan^{-1}\left(a/s\right)$	$\frac{\sin at}{t}$
32.124	$\frac{\tan^{-1}(a/s)}{s}$	$Si\left(at ight)$
32.125	$\frac{e^{a/s}}{\sqrt{s}} \operatorname{erfc}(\sqrt{a/s})$	$\frac{e^{-2\sqrt{at}}}{\sqrt{\pi t}}$
32.126	$e^{s^2/4a^2} \mathrm{erfc} (s/2a)$	$\frac{2a}{\sqrt{\pi}}e^{-a^2t^2}$
32.127	$rac{e^{s^2/4a^2} \ \operatorname{erfc} \left(s/2a ight)}{s}$	$\operatorname{erf}\left(at ight)$
32.128	$rac{e^{as}\operatorname{erfc}\sqrt{as}}{\sqrt{s}}$	$\frac{1}{\sqrt{\pi(t+a)}}$
32.129	eas Ei(as)	$\frac{1}{t+a}$
32.130	$rac{1}{a}iggl[\cos asiggl\{rac{\pi}{2}-Si(as)iggr\} - \sin as \ Ci(as)iggr]$	$\frac{1}{t^2+a^2}$
32.131	$\sin as \left\{ rac{\pi}{2} - Si(as) ight\} + \cos as \ Ci(as)$ $rac{t}{t^2 + a^2}$	
32.132	$rac{\cos as\left\{rac{\pi}{2}-Si\left(as ight) ight\}\ -\ \sin as\ Ci\left(as ight)}{s}$	$ an^{-1}(t/a)$
32.133	$\frac{\sin as \left\{\frac{\pi}{2} - Si(as)\right\} + \cos as \ Ci(as)}{s}$	$\frac{1}{2}\ln\biggl(\frac{t^2+a^2}{a^2}\biggr)$
32.134	$\left[\frac{\pi}{2} - Si(as)\right]^2 + Ci^2(as)$	$\frac{1}{t}\ln\left(\frac{t^2+a^2}{a^2}\right)$
32.135	0	$\mathcal{N}(t) = \text{null function}$
32.136	1	$\delta(t) = ext{delta function}$
32.137	e^{-as} $\delta(t-a)$	
32.138	$\frac{e^{-as}}{s}$ See also entry 32.163.	

	$f(\mathbf{s})$	F(t)
32.139	$\frac{\sinh sx}{s \sinh sa}$	$\frac{x}{a} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi x}{a} \cos \frac{n\pi t}{a}$
32.140	$\frac{\sinh sx}{s\cosh sa}$	$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \sin \frac{(2n-1)\pi x}{2a} \sin \frac{(2n-1)\pi t}{2a}$
32.141	$\frac{\cosh sx}{s \sinh as}$	$\frac{t}{a} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cos \frac{n\pi x}{a} \sin \frac{n\pi t}{a}$
32.142	$\frac{\cosh sx}{s\cosh sa}$	$1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \cos \frac{(2n-1)\pi x}{2a} \cos \frac{(2n-1)\pi t}{2a}$
32.143	$rac{\sinh sx}{s^2 \sinh sa}$	$\frac{xt}{a} + \frac{2a}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin \frac{n\pi x}{a} \sin \frac{n\pi t}{a}$
32.144	$\frac{\sinh sx}{s^2\cosh sa}$	$x + \frac{8a}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^2} \sin \frac{(2n-1)\pi x}{2a} \cos \frac{(2n-1)\pi t}{2a}$
32.145	$\frac{\cosh sx}{s^2 \sinh sa}$	$\frac{t^2}{2a} + \frac{2a}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos \frac{n\pi x}{a} \left(1 - \cos \frac{n\pi t}{a} \right)$
32.146	$\frac{\cosh sx}{s^2\cosh sa}$	$t + \frac{8a}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^2} \cos \frac{(2n-1)\pi x}{2a} \sin \frac{(2n-1)\pi t}{2a}$
32.147	$rac{\cosh sx}{s^3\cosh sa}$	$\frac{1}{2}(t^2+x^2-a^2) - \frac{16a^2}{\pi^3} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3} \cos \frac{(2n-1)\pi x}{2a} \cos \frac{(2n-1)\pi t}{2a}$
32.148	$\frac{\sinh x\sqrt{s}}{\sinh a\sqrt{s}}$	$\frac{2\pi}{a^2} \sum_{n=1}^{\infty} (-1)^n n e^{-n^2 \pi^2 t/a^2} \sin \frac{n\pi x}{a}$
32.149	$\frac{\cosh x\sqrt{s}}{\cosh a\sqrt{s}}$	$\frac{\pi}{a^2} \sum_{n=1}^{\infty} (-1)^{n-1} (2n-1) e^{-(2n-1)^2 \pi^2 t/4a^2} \cos \frac{(2n-1)\pi x}{2a}$
32.150	$\frac{\sinh x\sqrt{s}}{\sqrt{s}\cosh a\sqrt{s}}$	$\frac{2}{a} \sum_{n=1}^{\infty} (-1)^{n-1} e^{-(2n-1)^2 \pi^2 t/4a^2} \sin \frac{(2n-1)\pi x}{2a}$
32.151	$\frac{\cosh x\sqrt{s}}{\sqrt{s}\sinh a\sqrt{s}}$	$\frac{1}{a} + \frac{2}{a} \sum_{n=1}^{\infty} (-1)^n e^{-n^2 \pi^2 t/a^2} \cos \frac{n \pi x}{a}$
32.152	$\frac{\sinh x\sqrt{s}}{s\sinh a\sqrt{s}}$	$\frac{x}{a} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-n^2 \pi^2 t/a^2} \sin \frac{n \pi x}{a}$
32.153	$\frac{\cosh x\sqrt{s}}{s\cosh a\sqrt{s}}$	$1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} e^{-(2n-1)^2 \pi^2 t/4a^2} \cos \frac{(2n-1)\pi x}{2a}$
32.154	$rac{\sinh x \sqrt{s}}{s^2 \sinh a \sqrt{s}}$	$\frac{xt}{a} + \frac{2a^2}{\pi^3} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} (1 - e^{-n^2\pi^2 t/a^2}) \sin \frac{n\pi x}{a}$
32.155	$\frac{\cosh x\sqrt{s}}{s^2\cosh a\sqrt{s}}$	$\frac{1}{2}(x^2 - a^2) + t - \frac{16a^2}{\pi^3} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3} e^{-(2n-1)^2 \pi^2 t/4a^2} \cos \frac{(2n-1)\pi x}{2a}$

	f(s)	F(t)
32.156	$\frac{J_0(ix\sqrt{s})}{sJ_0(ia\sqrt{s})}$	$1-2\sum_{n=1}^{\infty}\frac{e^{-\lambda_n^2t/a^2}J_0(\lambda_nx/a)}{\lambda_nJ_1(\lambda_n)}$ where $\lambda_1,\lambda_2,\ldots$ are the positive roots of $J_0(\lambda)=0$
32.157	$rac{J_0(ix\sqrt{s})}{s^2J_0(ia\sqrt{s})}$	$\frac{1}{4}(x^2-a^2) \ + \ t \ + \ 2a^2 \sum_{n=1}^{\infty} \frac{e^{-\lambda_n^2t/a^2} \ J_0(\lambda_n x/a)}{\lambda_n^3 J_1(\lambda_n)}$ where $\lambda_1,\lambda_2,\ldots$ are the positive roots of $J_0(\lambda)=0$
32.158	$rac{1}{as^2} anh\left(rac{as}{2} ight)$	Triangular wave function $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
32.159	$rac{1}{s} anhigg(rac{as}{2}igg)$	Square wave function $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
32.160	$rac{\pi a}{a^2 s^2 + \pi^2} \coth \left(rac{as}{2} ight)$	Rectified sine wave function $1 - \begin{bmatrix} F(t) & & & & \\ & & & & \\ & & & & \\ & & & & $
32.161	$rac{\pi a}{(a^2s^2+\pi^2)(1-e^{-as})}$	Half rectified sine wave function $1-\begin{vmatrix}F(t)\\\\\\\\\\a\\\\\\\\a\end{vmatrix}$ $a \qquad 2a \qquad 3a \qquad 4a \qquad t$ Fig. 32-4
32.162	$\frac{1}{as^2} - \frac{e^{-as}}{s(1-e^{-as})}$	Saw tooth wave function $1-\frac{F(t)}{a}$ $2a$ $3a$ $4a$ t Fig. 32-5

	f(s)	F(t)
32.163	$rac{e^{-as}}{s}$ See also entry 32.138.	Heaviside's unit function $\mathcal{U}(t-a)$ $0 \qquad \qquad t$ Fig. 32-6
32.164	$\frac{e^{-as}\left(1-e^{-\epsilon s}\right)}{s}$	Pulse function $0 = \begin{bmatrix} F(t) & & & & \\ & & & & \\ & & & & \\ & & & & $
32.165	$rac{1}{s(1-e^{-as})}$ See also entry 32.102.	Step function $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
32.166	$rac{e^{-s}+e^{-2s}}{s(1-e^{-s})^2}$	$F(t) = n^2, n \le t < n+1, n = 0, 1, 2,$
32.167	$rac{1-e^{-s}}{s(1-re^{-s})}$ See also entry 32.104.	$F(t) = r^n, \ n \le t < n+1, \ n = 0, 1, 2, \dots$ t
32.168	$\frac{\pi a(1+e^{-as})}{a^2s^2+\pi^2}$	$F(t) = \begin{cases} \sin(\pi t/a) & 0 \le t \le a \\ 0 & t > a \end{cases}$ $1 - \begin{cases} F(t) \\ a \\ Fig. 32-11 \end{cases}$

FOURIER TRANSFORMS

FOURIER'S INTEGRAL THEOREM

33.1

$$f(x) = \int_0^\infty \{A(\alpha) \cos \alpha x + B(\alpha) \sin \alpha x\} d\alpha$$

where

33.2

$$\begin{cases} A(\alpha) & = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos \alpha x \ dx \\ B(\alpha) & = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin \alpha x \ dx \end{cases}$$

Sufficient conditions under which this theorem holds are:

- (i) f(x) and f'(x) are piecewise continuous in every finite interval -L < x < L;
- (ii) $\int_{-\infty}^{\infty} |f(x)| dx$ converges;
- (iii) f(x) is replaced by $\frac{1}{2}\{f(x+0)+f(x-0)\}\$ if x is a point of discontinuity.

EQUIVALENT FORMS OF FOURIER'S INTEGRAL THEOREM

33.3
$$f(x) = \frac{1}{2\pi} \int_{\alpha = -\infty}^{\infty} \int_{u = -\infty}^{\infty} f(u) \cos \alpha (x - u) du d\alpha$$

33.4
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\alpha x} d\alpha \int_{-\infty}^{\infty} f(u) e^{-i\alpha u} du$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) e^{i\alpha(x-u)} du d\alpha$$

33.5
$$f(x) = \frac{2}{\pi} \int_0^{\infty} \sin \alpha x \ d\alpha \int_0^{\infty} f(u) \sin \alpha u \ du$$

where f(x) is an odd function [f(-x) = -f(x)].

33.6
$$f(x) = \frac{2}{\pi} \int_0^\infty \cos \alpha x \ d\alpha \int_0^\infty f(u) \cos \alpha u \ du$$

where f(x) is an even function [f(-x) = f(x)].

FOURIER TRANSFORMS

The Fourier transform of f(x) is defined as

33.7
$$\mathcal{F}\{f(x)\} = F(\alpha) = \int_{-\infty}^{\infty} f(x) e^{-i\alpha x} dx$$

Then from 33.7 the inverse Fourier transform of $F(\alpha)$ is

33.8
$$\mathcal{F}^{-1}\{F(\alpha)\} = f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) e^{i\alpha x} d\alpha$$

We call f(x) and $F(\alpha)$ Fourier transform pairs.

CONVOLUTION THEOREM FOR FOURIER TRANSFORMS

If
$$F(\alpha) = \mathcal{F}\{f(x)\}\$$
and $G(\alpha) = \mathcal{F}\{g(x)\}\$, then

33.9
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) G(\alpha) e^{i\alpha x} d\alpha = \int_{-\infty}^{\infty} f(u) g(x-u) du = f*g$$

where f^*g is called the *convolution* of f and g. Thus

$$\mathcal{F}\lbrace f^*g\rbrace = \mathcal{F}\lbrace f\rbrace \mathcal{F}\lbrace g\rbrace$$

PARSEVAL'S IDENTITY

If
$$F(\alpha) = \mathcal{F}\{f(x)\}\$$
, then

33.11
$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\alpha)|^2 d\alpha$$

More generally if $F(\alpha) = \mathcal{F}\{f(x)\}\$ and $G(\alpha) = \mathcal{F}\{g(x)\}\$, then

33.12
$$\int_{-\infty}^{\infty} f(x) \, \overline{g(x)} \, dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) \, \overline{G(\alpha)} \, d\alpha$$

where the bar denotes complex conjugate.

FOURIER SINE TRANSFORMS

The Fourier sine transform of f(x) is defined as

33.13
$$F_S(\alpha) = \mathcal{F}_S\{f(x)\} = \int_0^\infty f(x) \sin \alpha x \ dx$$

Then from 33.13 the inverse Fourier sine transform of $F_S(\alpha)$ is

33.14
$$f(x) = \mathcal{F}_S^{-1}\{F_S(\alpha)\} = \frac{2}{\pi} \int_0^\infty F_S(\alpha) \sin \alpha x \ d\alpha$$

FOURIER COSINE TRANSFORMS

The Fourier cosine transform of f(x) is defined as

33.15
$$F_C(\alpha) = \mathcal{F}_C\{f(x)\} = \int_0^\infty f(x) \cos \alpha x \ dx$$

Then from 33.15 the inverse Fourier cosine transform of $F_{C}(\alpha)$ is

33.16
$$f(x) = \mathcal{F}_C^{-1}\{F_C(\alpha)\} = \frac{2}{\pi} \int_0^{\infty} F_C(\alpha) \cos \alpha x \ d\alpha$$

SPECIAL FOURIER TRANSFORM PAIRS

	f(x)	F(lpha)
33.17	$egin{cases} 1 & x < b \ 0 & x > b \end{cases}$	$rac{2 \sin b_{lpha}}{lpha}$
33.18	$\frac{1}{x^2+b^2}$	$rac{\pi e^{-\mathrm{b}lpha}}{b}$
33.19	$\frac{x}{x^2+b^2}$	$-rac{\pi i lpha}{b}e^{-{ m b}lpha}$
33.20	$f^{(n)}(x)$	$i^n lpha^n F(lpha)$
33.21	$x^n f(x)$	$i^nrac{d^nF}{dlpha^n}$
33.22	$f(bx)e^{itx}$	$rac{1}{b}Figg(rac{lpha-t}{b}igg)$

SPECIAL FOURIER SINE TRANSFORMS

	f(x)	${F}_{C}(lpha)$
33.23	$\begin{cases} 1 & 0 < x < b \\ 0 & x > b \end{cases}$	$rac{1-\cos blpha}{lpha}$
33.24	x^{-1}	$\frac{\pi}{2}$
33.25	$\frac{x}{x^2+b^2}$	$rac{\pi}{2}e^{-blpha}$
33.26	e−bx	$rac{lpha}{lpha^2+b^2}$
33.27	$x^{n-1}e^{-\mathrm{b}x}$	$\frac{\Gamma(n)\sin\left(n\tan^{-1}\alpha/b\right)}{(\alpha^2+b^2)^{n/2}}$
33.28	xe^{-bx^2}	$rac{\sqrt{\pi}}{4b^{3/2}}lpha e^{-lpha^2/4b}$
33.29	$x^{-1/2}$	$\sqrt{rac{\pi}{2lpha}}$
33.30	x-n	$rac{\pi lpha^{n-1}\csc{(n\pi/2)}}{2\Gamma(n)} \qquad 0 < n < 2$
33.31	$\frac{\sin bx}{x}$	$rac{1}{2}\ln\left(rac{lpha+b}{lpha-b} ight)$
33.32	$\frac{\sin bx}{x^2}$	$\left\{egin{array}{ll} \pilpha/2 & lpha < b \ \pi b/2 & lpha > b \end{array} ight.$
33.33	$\frac{\cos bx}{x}$	$\left\{egin{array}{ll} 0 & lpha < b \ \pi/4 & lpha = b \ \pi/2 & lpha > b \end{array} ight.$
33.34	$\tan^{-1}\left(x/b\right)$	$rac{\pi}{2lpha}e^{-\mathrm{b}lpha}$
33.35	$\csc bx$	$rac{\pi}{2b} anhrac{\pilpha}{2b}$
33.36	$rac{1}{e^{2x}-1}$	$rac{\pi}{4} \coth \left(rac{\pi lpha}{2} ight) - rac{1}{2lpha}$

SPECIAL FOURIER COSINE TRANSFORMS

1		
_	f(x)	${F}_{C}(lpha)$
33.37	$\begin{cases} 1 & 0 < x < b \\ 0 & x > b \end{cases}$	$rac{\sin b_{lpha}}{lpha}$
33.38	$rac{1}{x^2+b^2}$	$\frac{\pi e^{-b\alpha}}{2b}$
33.39	e^{-bx}	$\frac{b}{lpha^2+b^2}$
33.40	$x^{n-1}e^{-bx}$	$\frac{\Gamma(n)\cos{(n\tan^{-1}\alpha/b)}}{(\alpha^2+b^2)^{n/2}}$
33.41	e^{-bx^2}	$rac{1}{2}\sqrt{rac{\pi}{b}}e^{-lpha^2/4b}$
33.42	$x^{-1/2}$	$\sqrt{rac{\pi}{2lpha}}$
33.43	x-n	$\frac{\pi\alpha^{n-1}\sec{(n\pi/2)}}{2\Gamma(n)}, 0< n<1$
33.44	$\ln\left(\frac{x^2+b^2}{x^2+c^2}\right)$	$\frac{e^{-c\alpha}-e^{-b\alpha}}{\pi^{\alpha}}$
33.45	$\frac{\sin bx}{x}$	$\left\{egin{array}{ll} \pi/2 & lpha < b \ \pi/4 & lpha = b \ 0 & lpha > b \end{array} ight.$
33.46	\sinbx^2	$\sqrt{rac{\pi}{8b}}\left(\cosrac{lpha^2}{4b}-\sinrac{lpha^2}{4b} ight)$
33.47	$\cos bx^2$	$\sqrt{rac{\pi}{8b}}igg(\cosrac{lpha^2}{4b}+\sinrac{lpha^2}{4b}igg)$
33.48	$\mathrm{sech}\ bx$	$rac{\pi}{2b}\operatorname{sech}rac{\pilpha}{2b}$
33.49	$\frac{\cosh\left(\sqrt{\pi}x/2\right)}{\cosh\left(\sqrt{\pi}x\right)}$	$\sqrt{rac{\pi}{2}} rac{\cosh{(\sqrt{\pi} lpha/2)}}{\cosh{(\sqrt{\pi} lpha)}}$
33.50	$\frac{e^{-b\sqrt{x}}}{\sqrt{x}}$	$\sqrt{rac{\pi}{2lpha}}\{\cos{(2b\sqrt{lpha})}-\sin{(2b\sqrt{lpha})}\}$

ELLIPTIC FUNCTIONS

INCOMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND

34.1
$$u = F(k,\phi) = \int_0^\phi \frac{d\theta}{\sqrt{1-k^2\sin^2\theta}} = \int_0^x \frac{dv}{\sqrt{(1-v^2)(1-k^2v^2)}}$$

where $\phi = \operatorname{am} u$ is called the amplitude of u and $x = \sin \phi$, and where here and below 0 < k < 1.

COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND

34.2
$$K = F(k, \pi/2) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} = \int_0^1 \frac{dv}{\sqrt{(1 - v^2)(1 - k^2 v^2)}}$$
$$= \frac{\pi}{2} \left\{ 1 + \left(\frac{1}{2}\right)^2 k^2 + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 k^4 + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 k^6 + \cdots \right\}$$

INCOMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND

34.3
$$E(k,\phi) = \int_0^{\phi} \sqrt{1-k^2 \sin^2 \theta} \ d\theta = \int_0^{x} \frac{\sqrt{1-k^2 v^2}}{\sqrt{1-v^2}} \ dv$$

COMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND

34.4
$$E = E(k, \pi/2) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} \ d\theta = \int_0^1 \frac{\sqrt{1 - k^2 v^2}}{\sqrt{1 - v^2}} \ dv$$
$$= \frac{\pi}{2} \left\{ 1 - \left(\frac{1}{2} \right)^2 k^2 - \left(\frac{1 \cdot 3}{2 \cdot 4} \right)^2 \frac{k^4}{3} - \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \right)^2 \frac{k^6}{5} - \cdots \right\}$$

INCOMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND

34.5
$$\prod (k, n, \phi) = \int_0^{\phi} \frac{d\theta}{(1 + n \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}} = \int_0^x \frac{dv}{(1 + nv^2) \sqrt{(1 - v^2)(1 - k^2 v^2)}}$$

COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND

34.6
$$\prod (k, n, \pi/2) = \int_0^{\pi/2} \frac{d\theta}{(1 + n \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}} = \int_0^1 \frac{dv}{(1 + nv^2) \sqrt{(1 - v^2)(1 - k^2v^2)}}$$

LANDEN'S TRANSFORMATION

34.7
$$\tan \phi = \frac{\sin 2\phi_1}{k + \cos 2\phi_1}$$
 or $k \sin \phi = \sin (2\phi_1 - \phi)$

This yields

34.8
$$F(k,\phi) = \int_0^{\phi} \frac{d\theta}{\sqrt{1-k^2\sin^2\theta}} = \frac{2}{1+k} \int_0^{\phi_1} \frac{d\theta_1}{\sqrt{1-k_1^2\sin^2\theta_1}}$$

where $k_1 = 2\sqrt{k}/(1+k)$. By successive applications, sequences k_1, k_2, k_3, \ldots and $\phi_1, \phi_2, \phi_3, \ldots$ are obtained such that $k < k_1 < k_2 < k_3 < \cdots < 1$ where $\lim_{n \to \infty} k_n = 1$. It follows that

34.9
$$F(k,\Phi) = \sqrt{\frac{k_1 k_2 k_3 \dots}{k}} \int_0^{\Phi} \frac{d\theta}{\sqrt{1-\sin^2 \theta}} = \sqrt{\frac{k_1 k_2 k_3 \dots}{k}} \ln \tan \left(\frac{\pi}{4} + \frac{\Phi}{2}\right)$$

where

34.10
$$k_1 = \frac{2\sqrt{k}}{1+k}, \quad k_2 = \frac{2\sqrt{k_1}}{1+k_1}, \quad \dots \quad \text{and} \quad \Phi = \lim_{n \to \infty} \phi_n$$

The result is used in the approximate evaluation of $F(k, \phi)$.

JACOBI'S ELLIPTIC FUNCTIONS

From 34.1 we define the following elliptic functions.

34.11
$$x = \sin{(\operatorname{am} u)} = \sin{u}$$

34.12
$$\sqrt{1-x^2} = \cos{(\operatorname{am} u)} = \sin{u}$$

34.13
$$\sqrt{1-k^2x^2} = \sqrt{1-k^2 \sin^2 u} = dn u$$

We can also define the inverse functions $\operatorname{sn}^{-1} x$, $\operatorname{cn}^{-1} x$, $\operatorname{dn}^{-1} x$ and the following

34.14
$$\operatorname{ns} u = \frac{1}{\operatorname{sn} u}$$
 34.17 $\operatorname{sc} u = \frac{\operatorname{sn} u}{\operatorname{cn} u}$ **34.20** $\operatorname{cs} u = \frac{\operatorname{cn} u}{\operatorname{sn} u}$

34.15
$$\operatorname{nc} u = \frac{1}{\operatorname{cn} u}$$
 34.18 $\operatorname{sd} u = \frac{\operatorname{sn} u}{\operatorname{dn} u}$ **34.21** $\operatorname{dc} u = \frac{\operatorname{dn} u}{\operatorname{cn} u}$

34.16
$$\operatorname{nd} u = \frac{1}{\operatorname{dn} u}$$
 34.19 $\operatorname{cd} u = \frac{\operatorname{cn} u}{\operatorname{dn} u}$ **34.22** $\operatorname{ds} u = \frac{\operatorname{dn} u}{\operatorname{sn} u}$

ADDITION FORMULAS

34.23
$$\operatorname{sn}(u+v) = \frac{\operatorname{sn} u \operatorname{cn} v \operatorname{dn} v + \operatorname{cn} u \operatorname{sn} v \operatorname{dn} u}{1 - k^2 \operatorname{sn}^2 u \operatorname{sn}^2 v}$$

34.24
$$\operatorname{cn}(u+v) = \frac{\operatorname{cn} u \operatorname{cn} v - \operatorname{sn} u \operatorname{sn} v \operatorname{dn} u \operatorname{dn} v}{1 - k^2 \operatorname{sn}^2 u \operatorname{sn}^2 v}$$

34.25
$$dn (u+v) = \frac{dn u dn v - k^2 sn u sn v cn u cn v}{1 - k^2 sn^2 u sn^2 v}$$

DERIVATIVES

34.26
$$\frac{d}{du} \operatorname{sn} u = \operatorname{en} u \operatorname{dn} u$$
 34.28 $\frac{d}{du} \operatorname{dn} u = -k^2 \operatorname{sn} u \operatorname{en} u$

34.27
$$\frac{d}{du} \operatorname{cn} u = -\operatorname{sn} u \operatorname{dn} u$$
 34.29 $\frac{d}{du} \operatorname{sc} u = \operatorname{dc} u \operatorname{nc} u$

SERIES EXPANSIONS

34.31 cn
$$u = 1 - \frac{u^2}{2!} + (1 + 4k^2) \frac{u^4}{4!} - (1 + 44k^2 + 16k^4) \frac{u^6}{6!} + \cdots$$

34.32
$$\operatorname{dn} u = 1 - k^2 \frac{u^2}{2!} + k^2 (4 + k^2) \frac{u^4}{4!} - k^2 (16 + 44k^2 + k^4) \frac{u^6}{6!} + \cdots$$

CATALAN'S CONSTANT

34.33
$$\frac{1}{2} \int_0^1 K \, dk = \frac{1}{2} \int_{k=0}^1 \int_{q-0}^{\pi/2} \frac{d\theta \, dk}{\sqrt{1-k^2 \sin^2 \theta}} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \cdots = .915965594 \dots$$

PERIODS OF ELLIPTIC FUNCTIONS

Let

34.34
$$K = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}, \quad K' = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k'^2 \sin^2 \theta}} \quad \text{where } k' = \sqrt{1 - k^2}$$

Then

34.35 sn u has periods 4K and 2iK'

34.36 cn u has periods 4K and 2K + 2iK'

34.37 dn u has periods 2K and 4iK'

IDENTITIES INVOLVING ELLIPTIC FUNCTIONS

34.38
$$\operatorname{sn}^2 u + \operatorname{cn}^2 u = 1$$
 34.39 $\operatorname{dn}^2 u + k^2 \operatorname{sn}^2 u = 1$

34.40
$$\operatorname{dn}^2 u - k^2 \operatorname{cn}^2 u = k'^2$$
 where $k' = \sqrt{1 - k^2}$ **34.41** $\operatorname{sn}^2 u = \frac{1 - \operatorname{cn} 2u}{1 + \operatorname{dn} 2u}$

34.42
$$\operatorname{cn}^2 u = \frac{\operatorname{dn} 2u + \operatorname{cn} 2u}{1 + \operatorname{dn} 2u}$$
 34.43 $\operatorname{dn}^2 u = \frac{1 - k^2 + \operatorname{dn} 2u + k^2 \operatorname{cn} u}{1 + \operatorname{dn} 2u}$

34.44
$$\sqrt{\frac{1-\operatorname{cn} 2u}{1+\operatorname{cn} 2u}} = \frac{\operatorname{sn} u \operatorname{dn} u}{\operatorname{cn} u}$$
 34.45 $\sqrt{\frac{1-\operatorname{dn} 2u}{1+\operatorname{dn} 2u}} = \frac{k \operatorname{sn} u \operatorname{cn} u}{\operatorname{dn} u}$

SPECIAL VALUES

34.46
$$\operatorname{sn} 0 = 0$$
 34.47 $\operatorname{cn} 0 = 1$ **34.48** $\operatorname{dn} 0 = 1$ **34.49** $\operatorname{sc} 0 = 0$ **34.50** $\operatorname{am} 0 = 0$

INTEGRALS

34.51
$$\int \operatorname{sn} u \, du = \frac{1}{k} \ln (\operatorname{dn} u - k \operatorname{cn} u)$$

34.52 $\int \operatorname{cn} u \, du = \frac{1}{k} \cos^{-1} (\operatorname{dn} u)$
34.53 $\int \operatorname{dn} u \, du = \sin^{-1} (\operatorname{sn} u)$
34.54 $\int \operatorname{sc} u \, du = \frac{1}{\sqrt{1-k^2}} \ln (\operatorname{dc} u + \sqrt{1-k^2} \operatorname{nc} u)$
34.55 $\int \operatorname{cs} u \, du = \ln (\operatorname{ns} u - \operatorname{ds} u)$
34.56 $\int \operatorname{cd} u \, du = \frac{1}{k} \ln (\operatorname{nd} u + k \operatorname{sd} u)$
34.57 $\int \operatorname{dc} u \, du = \ln (\operatorname{nc} u + \operatorname{sc} u)$
34.58 $\int \operatorname{sd} u \, du = \frac{-1}{k\sqrt{1-k^2}} \sin^{-1} (k \operatorname{cd} u)$
34.59 $\int \operatorname{ds} u \, du = \ln (\operatorname{ns} u - \operatorname{cs} u)$
34.60 $\int \operatorname{ns} u \, du = \ln (\operatorname{ds} u - \operatorname{cs} u)$
34.61 $\int \operatorname{nc} u \, du = \frac{1}{\sqrt{1-k^2}} \ln \left(\operatorname{dc} u + \frac{\operatorname{sc} u}{\sqrt{1-k^2}} \right)$

34.62 $\int \operatorname{nd} u \ du = \frac{1}{\sqrt{1-k^2}} \cos^{-1} (\operatorname{cd} u)$

LEGENDRE'S RELATION

34.63
$$EK' + E'K - KK' = \pi/2$$
 where
$$34.64 \qquad E = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} \ d\theta \qquad K = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$$
$$465 \qquad E' = \int_0^{\pi/2} \sqrt{1 - k'^2 \sin^2 \theta} \qquad K' = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k'^2 \sin^2 \theta}}$$

MISCELLANEOUS SPECIAL FUNCTIONS

ERROR FUNCTION
$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} du$$

35.1 erf
$$(x) = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{3 \cdot 1!} + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \cdots \right)$$

35.2 erf (x)
$$\sim 1 - \frac{e^{-x^2}}{\sqrt{\pi} x} \left(1 - \frac{1}{2x^2} + \frac{1 \cdot 3}{(2x^2)^2} - \frac{1 \cdot 3 \cdot 5}{(2x^2)^3} + \cdots \right)$$

35.3
$$\operatorname{erf}(-x) = -\operatorname{erf}(x), \quad \operatorname{erf}(0) = 0, \quad \operatorname{erf}(\infty) = 1$$

COMPLEMENTARY ERROR FUNCTION $\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-u^2} du$

35.4 erfc (x) =
$$1 - \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{3 \cdot 1!} + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \cdots \right)$$

35.5 erfc (x)
$$\sim \frac{e^{-x^2}}{\sqrt{\pi} x} \left(1 - \frac{1}{2x^2} + \frac{1 \cdot 3}{(2x^2)^2} - \frac{1 \cdot 3 \cdot 5}{(2x^2)^3} + \cdots \right)$$

35.6
$$\operatorname{erfc}(0) = 1, \operatorname{erfc}(\infty) = 0$$

EXPONENTIAL INTEGRAL $Ei(x) = \int_x^\infty rac{e^{-u}}{u} du$

35.7
$$Ei(x) = -\gamma - \ln x + \int_0^x \frac{1 - e^{-u}}{u} du$$

35.8
$$Ei(x) = -\gamma - \ln x + \left(\frac{x}{1 \cdot 1!} - \frac{x^2}{2 \cdot 2!} + \frac{x^3}{3 \cdot 3!} - \cdots\right)$$

35.9
$$Ei(x) \sim \frac{e^{-x}}{x} \left(1 - \frac{1!}{x} + \frac{2!}{x^2} - \frac{3!}{x^3} + \cdots \right)$$

$$35.10 \quad Ei(\infty) = 0$$

SINE INTEGRAL $Si(x) = \int_0^x \frac{\sin u}{u} du$

35.11
$$Si(x) = \frac{x}{1 \cdot 1!} - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!} + \cdots$$

35.12
$$Si(x) \sim \frac{\pi}{2} - \frac{\sin x}{x} \left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \cdots \right) - \frac{\cos x}{x} \left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \cdots \right)$$

35.13
$$Si(-x) = -Si(x)$$
, $Si(0) = 0$, $Si(\infty) = \pi/2$

COSINE INTEGRAL
$$Ci(x) = \int_x^\infty rac{\cos u}{u} \, du$$

35.14
$$Ci(x) = -\gamma - \ln x + \int_0^x \frac{1 - \cos u}{u} du$$

35.15
$$Ci(x) = -\gamma - \ln x + \frac{x^2}{2 \cdot 2!} - \frac{x^4}{4 \cdot 4!} + \frac{x^6}{6 \cdot 6!} - \frac{x^8}{8 \cdot 8!} + \cdots$$

35.16
$$Ci(x) \sim \frac{\cos x}{x} \left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \cdots \right) - \frac{\sin x}{x} \left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \cdots \right)$$

35.17
$$Ci(\infty) = 0$$

FRESNEL SINE INTEGRAL $S(x) = \sqrt{rac{2}{\pi}} \int_0^x \sin u^2 \, du$

35.18
$$S(x) = \sqrt{\frac{2}{\pi}} \left(\frac{x^3}{3 \cdot 1!} - \frac{x^7}{7 \cdot 3!} + \frac{x^{11}}{11 \cdot 5!} - \frac{x^{15}}{15 \cdot 7!} + \cdots \right)$$

35.19
$$S(x) \sim \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \left\{ (\cos x^2) \left(\frac{1}{x} - \frac{1 \cdot 3}{2^2 x^5} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2^4 x^9} - \cdots \right) + (\sin x^2) \left(\frac{1}{2x^3} - \frac{1 \cdot 3 \cdot 5}{2^3 x^7} + \cdots \right) \right\}$$

35.20
$$S(-x) = -S(x)$$
, $S(0) = 0$, $S(\infty) = \frac{1}{2}$

FRESNEL COSINE INTEGRAL $C(x) = \sqrt{\frac{2}{\pi}} \int_0^x \cos u^2 \, du$

35.21
$$C(x) = \sqrt{\frac{2}{\pi}} \left(\frac{x}{1!} - \frac{x^5}{5 \cdot 2!} + \frac{x^9}{9 \cdot 4!} - \frac{x^{13}}{13 \cdot 6!} + \cdots \right)$$

35.22
$$C(x) \sim \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \left\{ (\sin x^2) \left(\frac{1}{x} - \frac{1 \cdot 3}{2^2 x^5} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2^4 x^9} - \cdots \right) - (\cos x^2) \left(\frac{1}{2x^3} - \frac{1 \cdot 3 \cdot 5}{2^3 x^7} + \cdots \right) \right\}$$

35.23
$$C(-x) = -C(x), C(0) = 0, C(\infty) = \frac{1}{2}$$

RIEMANN ZETA FUNCTION $\zeta(x) = rac{1}{1^x} + rac{1}{2^x} + rac{1}{3^x} + \cdots$

35.24
$$\zeta(x) = \frac{1}{\Gamma(x)} \int_0^\infty \frac{u^{x-1}}{e^u - 1} du, \quad x > 1$$

35.25
$$\zeta(1-x) = 2^{1-x}\pi^{-x}\Gamma(x)\cos(\pi x/2)\zeta(x)$$
 [extension to other values]

35.26
$$\zeta(2k) = \frac{2^{2k-1}\pi^{2k}B_k}{(2k)!}$$
 $k = 1, 2, 3, ...$

INEQUALITIES

TRIANGLE INEQUALITY

36.1
$$|a_1| - |a_2| \le |a_1 + a_2| \le |a_1| + |a_2|$$

36.2
$$|a_1 + a_2 + \cdots + a_n| \le |a_1| + |a_2| + \cdots + |a_n|$$

CAUCHY-SCHWARZ INEQUALITY

36.3
$$|a_1b_1 + a_2b_2 + \cdots + a_nb_n|^2 \le (|a_1|^2 + |a_2|^2 + \cdots + |a_n|^2)(|b_1|^2 + |b_2|^2 + \cdots + |b_n|^2)$$

The equality holds if and only if $a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n$.

INEQUALITIES INVOLVING ARITHMETIC, GEOMETRIC AND HARMONIC MEANS

If A, G and H are the arithmetic, geometric and harmonic means of the positive numbers a_1, a_2, \ldots, a_n , then

$$36.4 H \leq G \leq A$$

where

36.5
$$A = \frac{a_1 + a_2 + \cdots + a_n}{n}$$
 36.6 $G = \sqrt[n]{a_1 a_2 \dots a_n}$ **36.7** $\frac{1}{H} = \frac{1}{n} \left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} \right)$

The equality holds if and only if $a_1 = a_2 = \cdots = a_n$.

HOLDER'S INEQUALITY

36.8
$$|a_1b_1+a_2b_2+\cdots+a_nb_n| \leq (|a_1|^p+|a_2|^p+\cdots+|a_n|^p)^{1/p}(|b_1|^q+|b_2|^q+\cdots+|b_n|^q)^{1/q}$$

where

36.9
$$\frac{1}{p} + \frac{1}{q} = 1 \quad p > 1, q > 1$$

The equality holds if and only if $|a_1|^{p-1}/|b_1| = |a_2|^{p-1}/|b_2| = \cdots = |a_n|^{p-1}/|b_n|$. For p = q = 2 it reduces to 36.3.

CHEBYSHEV'S INEQUALITY

If
$$a_1 \ge a_2 \ge \cdots \ge a_n$$
 and $b_1 \ge b_2 \ge \cdots \ge b_n$, then

36.10
$$\left(\frac{a_1+a_2+\cdots+a_n}{n}\right)\left(\frac{b_1+b_2+\cdots+b_n}{n}\right) \leq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n}$$

36.11
$$(a_1 + a_2 + \cdots + a_n)(b_1 + b_2 + \cdots + b_n) \leq n(a_1b_1 + a_2b_2 + \cdots + a_nb_n)$$

MINKOWSKI'S INEQUALITY

If $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots b_n$ are all positive and p > 1, then

36.12
$$\{(a_1+b_1)^p+(a_2+b_2)^p+\cdots+(a_n+b_n)^p\}^{1/p} \leq (a_1^p+a_2^p+\cdots+a_n^p)^{1/p}+(b_1^p+b_2^p+\cdots+b_n^p)^{1/p}\}$$

The equality holds if and only if $a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n$

CAUCHY-SCHWARZ INEQUALITY FOR INTEGRALS

36.13
$$\left| \int_a^b f(x) \ g(x) \ dx \right|^2 \le \left\{ \int_a^b |f(x)|^2 \ dx \right\} \left\{ \int_a^b |g(x)|^2 \ dx \right\}$$

The equality holds if and only if f(x)/g(x) is a constant.

HOLDER'S INEQUALITY FOR INTEGRALS

where 1/p + 1/q = 1, p > 1, q > 1. If p = q = 2, this reduces to 36.13.

The equality holds if and only if $|f(x)|^{p-1}/|g(x)|$ is a constant.

MINKOWSKI'S INEQUALITY FOR INTEGRALS

If
$$p > 1$$
,
$$\left\{ \int_a^b |f(x) + g(x)|^p \, dx \right\}^{1/p} \leq \left\{ \int_a^b |f(x)|^p \, dx \right\}^{1/p} + \left\{ \int_a^b |g(x)|^p \, dx \right\}^{1/p}$$

The equality holds if and only if f(x)/g(x) is a constant.

PARTIAL FRACTION EXPANSIONS

37.1
$$\cot x = \frac{1}{x} + 2x \left\{ \frac{1}{x^2 - \pi^2} + \frac{1}{x^2 - 4\pi^2} + \frac{1}{x^2 - 9\pi^2} + \cdots \right\}$$

37.2
$$\csc x = \frac{1}{x} - 2x \left\{ \frac{1}{x^2 - \pi^2} - \frac{1}{x^2 - 4\pi^2} + \frac{1}{x^2 - 9\pi^2} - \cdots \right\}$$

37.3
$$\sec x = 4\pi \left\{ \frac{1}{\pi^2 - 4x^2} - \frac{3}{9\pi^2 - 4x^2} + \frac{5}{25\pi^2 - 4x^2} - \dots \right\}$$

37.4
$$\tan x = 8x \left\{ \frac{1}{\pi^2 - 4x^2} + \frac{1}{9\pi^2 - 4x^2} + \frac{1}{25\pi^2 - 4x^2} + \cdots \right\}$$

37.5
$$\sec^2 x = 4 \left\{ \frac{1}{(\pi - 2x)^2} + \frac{1}{(\pi + 2x)^2} + \frac{1}{(3\pi - 2x)^2} + \frac{1}{(3\pi + 2x)^2} + \cdots \right\}$$

37.6
$$\csc^2 x = \frac{1}{x^2} + \frac{1}{(x-\pi)^2} + \frac{1}{(x+\pi)^2} + \frac{1}{(x-2\pi)^2} + \frac{1}{(x+2\pi)^2} + \cdots$$

37.7
$$\coth x = \frac{1}{x} + 2x \left\{ \frac{1}{x^2 + \pi^2} + \frac{1}{x^2 + 4\pi^2} + \frac{1}{x^2 + 9\pi^2} + \cdots \right\}$$

37.8
$$\operatorname{csch} x = \frac{1}{x} - 2x \left\{ \frac{1}{x^2 + \pi^2} - \frac{1}{x^2 + 4\pi^2} + \frac{1}{x^2 + 9\pi^2} - \cdots \right\}$$

37.9
$$\operatorname{sech} x = 4\pi \left\{ \frac{1}{\pi^2 + 4x^2} - \frac{3}{9\pi^2 + 4x^2} + \frac{5}{25\pi^2 + 4x^2} - \cdots \right\}$$

37.10
$$\tanh x = 8x \left\{ \frac{1}{\pi^2 + 4x^2} + \frac{1}{9\pi^2 + 4x^2} + \frac{1}{25\pi^2 + 4x^2} + \cdots \right\}$$

INFINITE PRODUCTS

38.1
$$\sin x = x \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{4\pi^2}\right) \left(1 - \frac{x^2}{9\pi^2}\right) \cdots$$

38.2
$$\cos x = \left(1 - \frac{4x^2}{\pi^2}\right) \left(1 - \frac{4x^2}{9\pi^2}\right) \left(1 - \frac{4x^2}{25\pi^2}\right) \cdots$$

38.3
$$\sinh x = x \left(1 + \frac{x^2}{\pi^2}\right) \left(1 + \frac{x^2}{4\pi^2}\right) \left(1 + \frac{x^2}{9\pi^2}\right) \cdots$$

38.4
$$\cosh x = \left(1 + \frac{4x^2}{\pi^2}\right) \left(1 + \frac{4x^2}{9\pi^2}\right) \left(1 + \frac{4x^2}{25\pi^2}\right) \cdots$$

38.5
$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \left\{ \left(1 + \frac{x}{1}\right)e^{-x} \right\} \left\{ \left(1 + \frac{x}{2}\right)e^{-x/2} \right\} \left\{ \left(1 + \frac{x}{3}\right)e^{-x/3} \right\} \cdots$$

See also 16.12, page 102.

38.6
$$J_0(x) = \left(1 - \frac{x^2}{\lambda_1^2}\right) \left(1 - \frac{x^2}{\lambda_2^2}\right) \left(1 - \frac{x^2}{\lambda_3^2}\right) \cdots$$

where $\lambda_1, \lambda_2, \lambda_3, \ldots$ are the positive roots of $J_0(x) = 0$.

38.7
$$J_1(x) = x \left(1 - \frac{x^2}{\lambda_1^2}\right) \left(1 - \frac{x^2}{\lambda_2^2}\right) \left(1 - \frac{x^2}{\lambda_3^2}\right) \cdots$$

where $\lambda_1, \lambda_2, \lambda_3, \ldots$ are the positive roots of $J_1(x) = 0$.

$$38.8 \qquad \frac{\sin x}{x} = \cos \frac{x}{2} \cos \frac{x}{4} \cos \frac{x}{8} \cos \frac{x}{16} \cdots$$

$$38.9 \quad \frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \cdots$$

This is called Wallis' product.

PROBABILITY DISTRIBUTIONS

BINOMIAL DISTRIBUTION

39.1

$$\Phi(x) = \sum_{t \leq x} \binom{n}{t} p^t q^{n-t} \qquad p > 0, \ q > 0, \ p+q = 1$$

POISSON DISTRIBUTION

39.2

$$\Phi(x) = \sum_{t \leq x} \frac{\lambda^t e^{-\lambda}}{t!} \qquad \lambda > 0$$

HYPERGEOMETRIC DISTRIBUTION

39.3

$$\Phi(x) = \sum_{t \leq x} \frac{\binom{r}{t} \binom{s}{n-t}}{\binom{r+s}{n}}$$

NORMAL DISTRIBUTION

39.4

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2} dt$$

STUDENT'S t DISTRIBUTION

39.5

$$\Phi(x) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma(n/2)} \int_{-\infty}^{x} \left(1 + \frac{t^2}{n}\right)^{-(n+1)/2} dt$$

CHI SQUARE DISTRIBUTION

39.6

$$\Phi(x) = \frac{1}{2^{n/2} \Gamma(n/2)} \int_0^x t^{(n-2)/2} e^{-t/2} dt$$

F DISTRIBUTION

39.7

$$\Phi(x) = \frac{\Gamma\left(\frac{n_1+n_2}{2}\right)n_1^{n_1/2}n_2^{n_2/2}}{\Gamma(n_1/2)\Gamma(n_2/2)}\int_0^x t^{n_1/2}(n_2+n_1t)^{-(n_1+n_2)/2} dt$$

SPECIAL MOMENTS OF INERTIA

The table below shows the moments of inertia of various rigid bodies of mass M. In all cases it is assumed the body has uniform [i.e. constant] density.

	TYPE OF RIGID BODY	MOMENT OF INERTIA
40.1 T	hin rod of length a	
(a) about a mass,	xis perpendicular to the rod through the center of	$rac{1}{12}Ma^2$
(b) about a	xis perpendicular to the rod through one end.	$rac{1}{3}Ma^2$
40.2 R	ectangular parallelepiped with sides a,b,c	
(a) about a	axis parallel to c and through center of face ab ,	$rac{1}{12}M(a^2+b^2)$
(b) about a	axis through center of face bc and parallel to c .	$\frac{1}{12}M(4a^2+b^2)$
40.3 T	Thin rectangular plate with sides a,b	
(a) about a	axis perpendicular to the plate through center,	$rac{1}{12}M(a^2+b^2)$
(b) about a	exis parallel to side b through center.	$\frac{1}{12}Ma^2$
40.4	Circular cylinder of radius a and height h	
(a) about a	axis of cylinder,	$rac{1}{2}Mlpha^2$
	axis through center of mass and perpendicular to ical axis,	$\frac{1}{12}M(h^2+3a^2)$
(c) about a	axis coinciding with diameter at one end.	$rac{1}{1} 2 M (4h^2 + 3a^2)$
40.3	Hollow circular cylinder of outer radius a , nner radius b and height b	
(a) about a	axis of cylinder,	$\frac{1}{2}M(a^2+b^2)$
	axis through center of mass and perpendicular to rical axis,	$rac{1}{12}M(3a^2+3b^2+h^2)$
(c) about	axis coinciding with diameter at one end.	$\frac{1}{12}M(3a^2+3b^2+4h^2)$

40	.6	Circular plate of radius a	
		axis perpendicular to plate through center, axis coinciding with a diameter.	$rac{1}{2}Mlpha^2 \ rac{1}{4}Mlpha^2$
40	.7	Hollow circular plate or ring with outer radius \boldsymbol{a} and inner radius \boldsymbol{b}	
		axis perpendicular to plane of plate through center, axis coinciding with a diameter.	$egin{array}{l} rac{1}{2} M(a^2+b^2) \ rac{1}{4} M(a^2+b^2) \end{array}$
40	.8	Thin circular ring of radius a	
		axis perpendicular to plane of ring through center, axis coinciding with diameter.	$Ma^2 = rac{1}{2} Ma^2$
40.	.9	Sphere of radius a	
		axis coinciding with a diameter, axis tangent to the surface.	$rac{2}{5}Ma^2 = rac{7}{5}Ma^2$
40.	10	Hollow sphere of outer radius a and inner radius b	
		axis coinciding with a diameter, axis tangent to the surface.	$rac{2}{5}M(a^5-b^5)/(a^3-b^3) \ rac{2}{5}M(a^5-b^5)/(a^3-b^3) \ + \ Ma^2$
40.	11	Hollow spherical shell of radius α	
		axis coinciding with a diameter, axis tangent to the surface.	$egin{array}{c} Ma^2 \ 2Ma^2 \end{array}$
40.	12	Ellipsoid with semi-axes a, b, c	
	about	axis coinciding with semi-axis c , axis tangent to surface, parallel to semi-axis c and cance a from center.	$rac{1}{5}M(lpha^2+b^2) \ rac{1}{5}M(6lpha^2+b^2)$
40.	13	Circular cone of radius a and height h	
(b) (c)	about about :	axis of cone, axis through vertex and perpendicular to axis, axis through center of mass and perpendicular to axis.	$rac{rac{3}{10}Ma^2}{rac{3}{20}M(a^2+4h^2)} \ rac{3}{80}M(4a^2+h^2)$
40.		Torus with outer radius a and inner radius b	
(b) :	plane (axis through center of mass and perpendicular to of torus, axis through center of mass and in the plane of the	$egin{aligned} rac{1}{4}M(7a^2-6ab+3b^2) \ & rac{1}{4}M(9a^2-10ab+5b^2) \end{aligned}$

CONVERSION FACTORS

```
1 inch (in.)
                                                                                                    = 2.540 \text{ cm}
                                          = 1000 meters (m)
Length
                  1 kilometer (km)
                                                                                   1 foot (ft)
                                                                                                    = 30.48 \text{ cm}
                  1 meter (m)
                                          = 100 centimeters (cm)
                                                                                                    = 1.609 \text{ km}
                                          = 10^{-2} \text{ m}
                                                                                   1 mile (mi)
                  1 centimeter (cm)
                  1 \text{ millimeter (mm)} = 10^{-3} \text{ m}
                                                                                                    = 10^{-3} in.
                                                                                   1 mil
                                                                                   1 \text{ centimeter} = 0.3937 \text{ in.}
                  1 micron (\mu)
                                           = 10^{-6} \text{ m}
                                                                                                    = 39.37 \text{ in.}
                  1 millimicron (m\mu) = 10^{-9} m
                                                                                   1 meter
                                                                                   1 kilometer
                                                                                                  = 0.6214 mile
                                           = 10^{-10} \text{ m}
                  1 angstrom (A)
                  1 \ square \ meter \ (m^2) \ = \ 10.76 \ ft^2
                                                                                   1 square mile (mi^2) = 640 acres
Area
                                                                                                            = 43.560 \text{ ft}^2
                  1 square foot (ft<sup>2</sup>)
                                             = 929 \text{ cm}^2
                                                                                   1 acre
                  1 liter (l) = 1000 \text{ cm}^3 = 1.057 \text{ quart (qt)} = 61.02 \text{ in}^3 = 0.03532 \text{ ft}^3
Volume
                  1 cubic meter (m^3) = 1000 l = 35.32 \text{ ft}^3
                  1 cubic foot (ft<sup>3</sup>) = 7.481 U.S. gal = 0.02832 \text{ m}^3 = 28.32 l
                  1 U.S. gallon (gal) = 231 \text{ in}^3 = 3.785 l; 1 British gallon = 1.201 \text{ U.S. gallon} = 277.4 \text{ in}^3
                  1 \text{ kilogram (kg)} = 2.2046 \text{ pounds (lb)} = 0.06852 \text{ slug;} \quad 1 \text{ lb} = 453.6 \text{ gm} = 0.03108 \text{ slug}
Mass
                  1 \text{ slug} = 32.174 \text{ lb} = 14.59 \text{ kg}
                  1 \text{ km/hr} = 0.2778 \text{ m/sec} = 0.6214 \text{ mi/hr} = 0.9113 \text{ ft/sec}
Speed
                  1 \text{ mi/hr} = 1.467 \text{ ft/sec} = 1.609 \text{ km/hr} = 0.4470 \text{ m/sec}
Density
                  1 \text{ gm/cm}^3 = 10^3 \text{ kg/m}^3 = 62.43 \text{ lb/ft}^3 = 1.940 \text{ slug/ft}^3
                  1 \text{ lb/ft}^3 = 0.01602 \text{ gm/cm}^3; \quad 1 \text{ slug/ft}^3 = 0.5154 \text{ gm/cm}^3
                  1 \text{ newton (nt)} = 10^5 \text{ dynes} = 0.1020 \text{ kgwt} = 0.2248 \text{ lbwt}
Force
                  1 pound weight (lbwt) = 4.448 nt = 0.4536 kgwt = 32.17 poundals
                  1 kilogram weight (kgwt) = 2.205 lbwt = 9.807 nt
                  1 U.S. short ton = 2000 lbwt; 1 long ton = 2240 lbwt; 1 metric ton = 2205 lbwt
                  1 joule = 1 nt m = 10^7 \, \mathrm{ergs} = 0.7376 \, \mathrm{ft \, lbwt} = 0.2389 \, \mathrm{cal} = 9.481 \times 10^{-4} \, \mathrm{Btu}
Energy
                  1 ft lbwt = 1.356 joules = 0.3239 \text{ cal} = 1.285 \times 10^{-3} \text{ Btu}
                  1 calorie (cal) = 4.186 joules = 3.087 ft lbwt = 3.968 \times 10^{-3} Btu
                  1 Btu (British thermal unit) = 778 ft lbwt = 1055 joules = 0.293 watt hr
                  1 kilowatt hour (kw hr) = 3.60 \times 10^6 joules = 860.0 kcal = 3413 Btu
                  1 electron volt (ev) = 1.602 \times 10^{-19} joule
                  1 \text{ watt} = 1 \text{ joule/sec} = 10^7 \text{ ergs/sec} = 0.2389 \text{ cal/sec}
Power
                   1 horsepower (hp) = 550 ft lbwt/sec = 33,000 ft lbwt/min = 745.7 watts
                  1 \text{ kilowatt (kw)} = 1.341 \text{ hp} = 737.6 \text{ ft lbwt/sec} = 0.9483 \text{ Btu/sec}
                  1 nt/m^2 = 10 dynes/cm^2 = 9.869 	imes 10^{-6} atmosphere = 2.089 	imes 10^{-2} lbwt/ft^2
Pressure
                   1 \text{ lbwt/in}^2 = 6895 \text{ nt/m}^2 = 5.171 \text{ cm mercury} = 27.68 \text{ in. water}
                   1 atmosphere (atm) = 1.013 \times 10^5 \text{ nt/m}^2 = 1.013 \times 10^6 \text{ dynes/cm}^2 = 14.70 \text{ lbwt/in}^2
                                             = 76 cm mercury = 406.8 in. water
```

Part II

TABLES

SAMPLE PROBLEMS

ILLUSTRATING USE OF THE TABLES

COMMON LOGARITHMS

1. Find log 2.36.

We must find the number p such that $10^p = 2.36 = N$. Since $10^0 = 1$ and $10^1 = 10$, p lies between 0 and 1 and can be found from the tables of common logarithms on page 202.

Thus to find $\log 2.36$ we glance down the *left* column headed N until we come to the first two digits, 23. Then we proceed right to the column headed 6. We find the entry 3729. Thus $\log 2.36 = 0.3729$, i.e. $2.36 = 10^{0.3729}$.

2. Find (a) log 23.6, (b) log 236, (c) log 2360.

From Problem 1, $2.36 = 10^{0.3729}$. Then multiplying successively by 10 we have

$$23.6 = 10^{1.3729}$$
, $236 = 10^{2.3729}$, $2360 = 10^{3.3729}$

Thus

- (a) $\log 23.6 = 1.3729$
- (b) $\log 236 = 2.3729$
- (c) $\log 2360 = 3.3729$.

The number .3729 obtained from the table is called the *mantissa* of the logarithm. The number before the decimal point is called the *characteristic*. Thus in (b) the characteristic is 2.

The following rule is easily demonstrated.

- Rule 1. For a number greater than 1, the characteristic is one less than the number of digits before the decimal point. For example since 2360 has four digits before the decimal point, the characteristic is 4-1=3.
- 3. Find (a) log .236, (b) log .0236, (c) log .00236.

From Problem 1, $2.36 = 10^{0.3729}$. Then dividing successively by 10 we have

$$.236 = 10^{0.3729-1} = 10^{9.3729-10} = 10^{-.6271}$$

 $.0236 = 10^{0.3729-2} = 10^{8.3729-10} = 10^{-1.6271}$
 $.00236 = 10^{0.3729-3} = 10^{7.3729-10} = 10^{-2.6271}$

Then

- (a) $\log .236 = 9.3729 10 = -.6271$
- (b) $\log .0236 = 8.3729 10 = -1.6271$
- (c) $\log .00236 = 7.3729 10 = -2.6271$.

The number .3729 is the mantissa of the logarithm. The number apart from the mantissa [for example 9-10, 8-10 or 7-10] is the characteristic.

The following rule is easily demonstrated.

Rule 2. For a positive number less than 1, the characteristic is negative and numerically one more than the number of zeros immediately following the decimal point. For example since .00236 has two zeros immediately following the decimal point, the characteristic is -3 or 7-10.

- 4. Verify each of the following logarithms.
 - (a) $\log 87.2$. Mantissa = .9405, characteristic = 1; then $\log 87.2 = 1.9405$.
 - (b) $\log 395,000 = 5.5966$.
 - (c) $\log .0482$. Mantissa = .6830, characteristic = 8-10; then $\log_{10}.0482 = 8.6830 10$.
 - (d) $\log .000827 = 6.9175 10$.
- 5. Find log 4.638.

Since the number has four digits, we must use interpolation to find the mantissa. The mantissa of log 4638 is .8 of the way between the mantissas of log 4630 and log 4640.

If desired the proportional parts table on page 202 can be used to give the mantissa directly (6656+7).

- 6. Verify each of the following logarithms.
 - (a) $\log 183.2 = 2.2630$ (2625 + 5)
 - (b) $\log 87,640 = 4.9427$ (9425+2)
 - (c) $\log .2548 = 9.4062 10 \quad (4048 + 14)$
 - (d) $\log .009848 = 7.9933 10$ (9930 + 3)

COMMON ANTILOGARITHMS

- 7. Find (a) antilog 1.7530, (b) antilog (7.7530 10).
 - (a) We must find the value of $10^{1.7530}$. Since the mantissa is .7530 we glance down the *left* column headed p in the table on page 205 until we come to the first two digits 75. Then we proceed right to the column headed 3. We find the entry 5662. Since the characteristic is 1, there are two digits before the decimal point. Then the required number is 56.62.
 - (b) As in part (a) we find the entry 5662 corresponding to the mantissa .7530. Then since the characteristic is 7-10, the number must have two zeros immediately following the decimal point. Thus the required number is .005662.
- 8. Find antilog (9.3842 10).

The mantissa .3842 lies between .3840 and .3850 and we must use interpolation. From the table on page 204 we have

Number corresponding to .3850 = 2427 Given mantissa = .3842 Number corresponding to .3840 = 2421 Next smaller mantissa = .3840 Tabular difference = .0002

Then $2421 + \frac{2}{10}(2427 - 2421) = 2422$ to four digits, and the required number is 0.2422.

The proportional parts table on page 204 can also be used.

- 9. Verify each of the following antilogarithm.
 - (a) antilog 2.6715 = 469.3
 - (b) antilog 9.6089 10 = .4063
 - (c) antilog 4.2023 = 15,930

COMPUTATIONS USING LOGARITHMS

10.
$$P = \frac{(784.6)(.0431)}{28.23}$$
. $\log P = \log 784.6 + \log .0431 - \log 28.23$.

$$\log 784.6 = 2.8947$$

$$(+) \log .0431 = 8.6345 - 10$$

$$11.5292 - 10$$

(-)
$$\log 28.23 = 1.4507$$

 $\log P = 10.0785 - 10 = .0785$. Then $P = 1.198$.

Note the exponential significance of the computation, i.e.

$$\frac{(784.6)(.0431)}{28.23} = \frac{(10^{2.8947})(10^{8.6345-10})}{10^{1.4507}} = 10^{2.8947+8.6345-10-1.4507} = 10^{.0785} = 1.198$$

11.
$$P = (5.395)^8$$
. $\log P = 8 \log 5.395 = 8(0.7320) = 5.8560$, and $P = 717,800$.

12.
$$P = \sqrt{387.2} = (387.2)^{1/2}$$
. $\log P = \frac{1}{2} \log 387.2 = \frac{1}{2} (2.5879) = 1.2940$ and $P = 19.68$.

13.
$$P = \sqrt[5]{.08317} = (.08317)^{1/5}$$
. $\log P = \frac{1}{5} \log .08317 = \frac{1}{5} (8.9200 - 10) = \frac{1}{5} (48.9200 - 50) = 9.7840 - 10$ and $P = .6081$.

14.
$$P = \frac{\sqrt{.003654} (18.37)^3}{(8.724)^4 \sqrt[4]{743.8}}$$
. $\log P = \frac{1}{2} \log .003654 + 3 \log 18.37 - (4 \log 8.724 + \frac{1}{4} \log 743.8)$

Numerator N

Denominator D

$$\log N = 12.5737 - 10$$
(-) $\log D = 4.4806$

$$\log P = 8.0931 - 10. \text{ Then } P = .01239$$

NATURAL OR NAPIERIAN LOGARITHMS

- 15. Find (a) ln 7.236, (b) ln 836.2, (c) ln .002548.
 - (a) Use the table on page 225.

$$\ln 7.240 = 1.97962$$

$$\ln 7.230 \ = \ 1.97824$$

Then

$$\ln 7.236 = 1.97824 + \frac{6}{10}(.00138) = 1.97907$$

In terms of exponentials this means that $e^{1.97907} = 7.236$.

(b) As in part (a) we find

$$\ln 8.362 = 2.12346 + \frac{2}{10}(2.12465 - 2.12346) = 2.12370$$

Then

$$\ln 836.2 \ = \ \ln \left(8.362 \times 10^2 \right) \ = \ \log 8.362 \ + \ 2 \ \ln 10 \ = \ 2.12370 \ + \ 4.60517 \ = \ 6.72887$$

In terms of exponentials this means that $e^{6.72887} = 836.2$.

(c) As in part (a) we find

$$\ln 2.548 = 0.93216 + \frac{8}{10}(0.93609 - 0.93216) = 0.93530$$

Then

$$\ln .002548 = \ln (2.548 \times 10^{-3}) = \ln 2.548 - 3 \ln 10 = 0.93530 - 6.90776 = -5.97246$$

In terms of exponentials this means that $e^{-5.97246} = .002548$.

TRIGONOMETRIC FUNCTIONS (DEGREES AND MINUTES)

- 16. Find (a) $\sin 74^{\circ}23'$, (b) $\cos 35^{\circ}42'$, (c) $\tan 82^{\circ}56'$.
 - (a) Refer to the table on page 206.

 $\sin 74^{\circ}30' = .9636$ $\sin 74^{\circ}20' = .9628$

Tabular difference = .0008

Then $\sin 74^{\circ}23' = .9628 + \frac{3}{10}(.0008) = .9630$

(b) Refer to the table on page 207.

 $\cos 35^{\circ}40' = .8124$ $\cos 35^{\circ}50' = .8107$ Tabular difference = .0017

Then $\cos 35^{\circ}42' = .8124 - \frac{2}{10}(.0017) = .8121$

or $\cos 35^{\circ}42' = .8107 + \frac{8}{10}(.0017) = .8121$

(c) Refer to the table on page 208.

 $\tan 82^{\circ}60' = \tan 83^{\circ}0' = 8.1443$ $\tan 82^{\circ}50' = \frac{7.9530}{.1913}$ Tabular difference = $\frac{1}{.1913}$

Then $\tan 82^{\circ}56' = 7.9530 + \frac{6}{10}(.1913) = 8.0678$

- 17. Find (a) $\cot 45^{\circ}16'$, (b) $\sec 73^{\circ}48'$, (c) $\csc 28^{\circ}33'$.
 - (a) Refer to the table on page 209.

 $\cot 45^{\circ}10' = .9942$

 $\cot 45^{\circ}20' = .9884$

Tabular difference = .0058

Then $\cot 45^{\circ}16' = .9942 - \frac{6}{10}(.0058) = .9907$

or $\cot 45^{\circ}16' = .9884 + \frac{4}{10}(.0058) = .9907$

(b) Refer to the table on page 210.

 $\sec 73^{\circ}50' \ = \ 3.592$

 $\sec 73^{\circ}40' = 3.556$

Tabular difference = .036

Then $\sec 73^{\circ}48' = 3.556 + \frac{8}{10}(.036) = 3.585$

(c) Refer to the table on page 211.

 $\csc 28^{\circ}30' = 2.096$

 $\csc 28^{\circ}40' = 2.085$

Tabular difference = .011

Then $\csc 28^{\circ}33' = 2.096 - \frac{3}{10}(.011) = 2.093$

or $\csc 28^{\circ}33' = 2.085 + \frac{7}{10}(.011) = 2.093$

INVERSE TRIGONOMETRIC FUNCTIONS (DEGREES AND MINUTES)

- 18. Find (a) $\sin^{-1}(.2143)$, (b) $\cos^{-1}(.5412)$, (c) $\tan^{-1}(1.1536)$.
 - (a) Refer to the table on page 206.

$$\sin 12^{\circ}30' = .2164$$

 $\sin 12^{\circ}20' = .2136$

Tabular difference = $\overline{.0028}$

Since .2143 is $\frac{.2143 - .2136}{.0028} = \frac{1}{4}$ of the way between .2136 and .2164, the required angle is $12^{\circ}20' + \frac{1}{4}(10') = 12^{\circ}22.5'$.

(b) Refer to the table on page 207.

$$\cos 57^{\circ}10' = .5422$$

$$\cos 57^{\circ}20' = .5398$$

Tabular difference = .0024

Then
$$\cos^{-1}(.5412) = 57^{\circ}20' - \frac{.5412 - .5398}{.0024}(10') = 57^{\circ}14.2'$$

or
$$\cos^{-1}(.5412) = 57^{\circ}10' + \frac{.5422 - .5412}{.0024}(10') = 57^{\circ}14.2'$$

(c) Refer to the table on page 208.

$$\tan 49^{\circ}10' = 1.1571$$

$$\tan 49^{\circ}0' = 1.1504$$

Tabular difference = .0067

Then
$$\tan^{-1}(1.1536) = 49^{\circ}0' + \frac{1.1536 - 1.1504}{.0067}(10') = 49^{\circ}4.8'$$

Other inverse trigonometric functions can be obtained similarly.

TRIGONOMETRIC AND INVERSE TRIGONOMETRIC FUNCTIONS (RADIANS)

- 19. Find (a) $\sin (.627)$, (b) $\cos (1.056)$, (c) $\tan (.153)$.
 - (a) Refer to the table on page 213.

$$\sin (.630) = .58914$$

$$\sin (.620) = .58104$$

Tabular difference = .00810

Then
$$\sin(.627) = .58104 + \frac{7}{10}(.00810) = .58671$$

(b) Refer to the table on page 214.

$$\cos(1.050) = .49757$$

$$\cos{(1.060)} = .48887$$

Tabular difference = .00870

Then
$$\cos(1.056) = .49757 - \frac{6}{10}(.00870) = .49235$$

or $\cos(1.056) = .48887 + \frac{4}{10}(.00870) = .49235$

(c) Refer to the table on page 212.

$$\tan (.160) = .16138$$

$$tan (.150) = .15114$$

Tabular difference = .01024

Then
$$\tan (.153) = .15114 + \frac{3}{10}(.01024) = .15421$$

Similarly other trigonometric functions are obtained.

20. Find $\sin^{-1}(.512)$ in radians.

Refer to the table on page 213.

$$\sin (.540) = .51414$$

 $\sin (.530) = .50553$
Tabular difference = .00861

Then

$$\sin^{-1}(.512) = .530 + \frac{.512 - .50553}{.00861}(.01) = .5375 \text{ radians}$$

Similarly the other inverse trigonometric functions are obtained.

COMMON LOGARITHMS OF TRIGONOMETRIC FUNCTIONS

- 21. Find (a) $\log \sin 63^{\circ}17'$, (b) $\log \cos 48^{\circ}44'$.
 - (a) Refer to the table on page 217.

$$\log \sin 63^{\circ}20' = 9.9512 - 10$$
 $\log \sin 63^{\circ}10' = 9.9505 - 10$
Tabular difference = .0007

Then

$$\log \sin 63^{\circ}17' = 9.9505 - 10 + \frac{7}{10}(.0007) = 9.9510 - 10$$

(b) Refer to the table on page 219.

$$\log \cos 48^{\circ}40' = 9.8198 - 10$$

 $\log \cos 48^{\circ}50' = 9.8184 - 10$
Tabular difference = .0014

Then

or

$$\log \cos 48^{\circ}44' = 9.8198 - 10 - \frac{4}{10}(.0014) = 9.8192 - 10$$

 $\log \cos 48^{\circ}44' = 9.8184 - 10 + \frac{6}{10}(.0014) = 9.8192 - 10$

Similarly we can find logarithms of other trigonometric functions. Note that $\log \sec x = -\log \cos x$, $\log \cot x = -\log \tan x$, $\log \csc x = -\log \sin x$.

22. If $\log \tan x = 9.6845 - 10$, find x.

Refer to the table on page 220.

$$\log \tan 25^{\circ}50' = 9.6850 - 10$$
 $\log \tan 25^{\circ}40' = 9.6817 - 10$
Tabular difference = .0033

Then

$$x = 25^{\circ}40' + \frac{9.6845 - 9.6817}{.0033}(10') = 25^{\circ}48.5'$$

CONVERSION OF DEGREES, MINUTES AND SECONDS TO RADIANS

23. Find 75° 28′ 47″ in radians.

Refer to the table on page 223.

$$70^{\circ}$$
 = 1.221730 radians
 5° = .087267
 $20'$ = .005818
 $8'$ = .002327
 $40''$ = .000194
 $7''$ = .000034
 75° 28' 47'' = 1.317370 radians

Adding,

CONVERSION OF RADIANS TO DEGREES, MINUTES AND SECONDS

24. Find 2.547 radians in degrees, minutes and seconds.

Refer to the table on page 222.

2 radians = 114° 35′ 29.6″
.5 = 28° 38′ 52.4″
.04 = 2° 17′ 30.6″

$$\frac{.007}{2.547}$$
 radians = $\frac{0° 24′ 3.9″}{144° 114′ 116.5″}$ = 145° 55′ 56.5″

Adding,

CONVERSION OF RADIANS TO FRACTIONS OF A DEGREE

25. Find 1.382 radians in terms of degrees.

Refer to the table on page 222.

Adding,

EXPONENTIAL AND HYPERBOLIC FUNCTIONS

- **26.** Find (a) $e^{5.24}$, (b) $e^{-.158}$.
 - (a) Refer to the table on page 226.

$$e^{5.30} = 200.34$$
 $e^{5.20} = 181.27$
Tabular difference = 19.07
 $e^{5.24} = 181.27 + \frac{4}{10}(19.07) = 188.90$

Then

(b) Refer to the table on page 227.

$$e^{-.150} = .86071$$
 $e^{-.160} = .85214$
Tabular difference = $.00857$
 $e^{-.158} = .86071 - \frac{8}{10}(.00857) = .85385$

Then

$$e^{-.158} = .85214 + \frac{2}{10}(.00857) = .85385$$

- 27. Find (a) $\sinh (4.846)$, (b) $\operatorname{sech} (.163)$.
 - (a) Refer to the table on page 229.

$$sinh (4.850) = 63.866$$
 $sinh (4.840) = 63.231$
Tabular difference = .635

Then

$$\sinh (4.846) = 63.231 + \frac{6}{10}(.635) = 63.612$$

(b) Refer to the table on page 230.

$$\cosh (.170) = 1.0145$$
 $\cosh (.160) = 1.0128$
Tabular difference = .0017

Then

$$\cosh (.163) = 1.0128 + \frac{3}{1.0} (.0017) = 1.0133$$

and so

$$\operatorname{sech}(.163) = \frac{1}{\cosh(.163)} = \frac{1}{1.0133} = .98687$$

28. Find $tanh^{-1}$ (.71423).

Refer to the table on page 232.

$$tanh (.900) = .71630$$
 $tanh (.890) = .71139$
Tabular difference = .00491

Then

$$\tanh^{-1}(.71423) = .890 + \frac{.71423 - .71139}{.00491}(10) = .8958$$

INTEREST AND ANNUITIES

29. A man deposits \$2800 in a bank which pays 5% compounded quarterly. What will the deposit amount to in 8 years?

There are $n = 8 \cdot 4 = 32$ payment periods at interest rate r = .05/4 = .0125 per period. Then the amount is

$$A = \$2800(1 + .0125)^{32} = \$2800(1.4881) = \$4166.68$$

using the table on page 240.

30. A man expects to receive \$12,000 in 10 years. How much is that money worth now, considering interest at 6% compounded semi-annually?

We are asked for the present value P which will amount to A=\$12,000 in 10 years. Since there are $n=10\cdot 2=20$ payment periods at interest rate r=.06/2=.03 per period, the present value is

$$P = \$12,000(1+.03)^{-20} = \$12,000(.55368) = \$6644.16$$

using the table on page 241.

31. An investor has an annuity in which a payment of \$500 is made at the end of each year. If interest is 4% compounded annually, what is the amount of the annuity after 20 years?

Here r = .04, n = 20 and the amount is [see table on page 242],

$$$500 \left[\frac{(1+.04)^{20}-1}{.04} \right] = $500(29.7781) = $14,889.05$$

32. What is the present value of an annuity of \$120 at the end of each 3 months for 12 years at 6% compounded quarterly?

Here $n = 4 \cdot 12 = 48$ payment periods, r = .06/4 = .015 and the present value is

$$120 \left[\frac{1 - (1.015)^{-48}}{.015} \right] = 120(34.0426) = 4085.11$$

using the table on page 243.

FOUR PLACE COMMON LOGARITHMS $\log_{10} N \, \mathrm{or} \, \log N$

15												T								
10	N	0	1	2	3	4	5	6	7	8	9	1	2		•					9
11	10	0000	0049	0006	0100	0170	0010	0050	0004	0004	0074	+								
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 28 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 14 1461 1492 1523 1555 1584 1614 1644 1673 1703 1732 3 6 9 12 15 12 12 14 161 1492 1523 2360 2405 2122 2148 2175 2201 2227 2253 2279 3 5 8 11 14 17 20 22 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 3 5 8 11 13 16 18 21 24 24 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 2 5 7 10 12 15 17 20 20 20 20 20 20 20 2	1 1						1					1								37
13	1 1											1	_							34
14	1 1												-							$\frac{31}{29}$
16							†													27
16	15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	R	11	14	17	20	99	25
17	16	2041	2068	2095								ı								$\frac{23}{24}$
18	17	2304	2330	2355	2380	2405	2430	2455				•								22
3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 2 4 6 8 10 12 14 16					2625	2648	2672	2695		2742	2765	2	5	7	9	12	14		19	21
21 3222 3243 3263 3284 3304 3324 3365 3365 3385 3404 2 4 6 8 10 12 14 16 22 3424 3444 3464 3483 3502 3511 3560 3579 3598 2 4 6 8 10 12 14 16 24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 26 4150 4166 4183 4204 4216 4232 4244 4456 4458 8 9 11 13 24 462 435 466 4833 <td>19</td> <td>2788</td> <td>2810</td> <td>2833</td> <td>2856</td> <td>2878</td> <td>2900</td> <td>2923</td> <td>2945</td> <td>2967</td> <td>2989</td> <td>2</td> <td>4</td> <td>7</td> <td>9</td> <td>11</td> <td>13</td> <td>16</td> <td>18</td> <td>20</td>	19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	18	20
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 16 23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 12 14 24 3802 3820 3820 3826 3874 3892 3909 3927 3945 3962 2 4 6 7 9 11 12 14 25 3979 3997 4014 4031 4084 4066 4082 4281 4282 4284 4282 2 3 5 6 8 9 11 12 14 26 4150 4166 4183 4200 4216 4283 4460 4456 4281 4298 2 3 5 6 8 9 11 13 4 6 7 9 10 11 13		3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 12 14 24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 26 4150 4166 4183 4364 4362 4378 4393 4409 4456 420 3 5 6 8 9 11 13 29 4624 4639 4681 4829 4843 4557 4571 4886 4900 1 3 4 6 7 9 10 11 <					3284	3304	1	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 26 4150 4166 4183 4200 4216 4232 4249 4266 4281 4298 2 3 5 6 8 9 11 13 28 4472 4487 4502 4518 4564 45679 4594 4609 2 3 5 6 8 9 11 13 4 6 7 9 10 12 30 4771 4786 4809 4843 4857 4871 4886 4900 1 3 4 6 7 9 <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>3560</td> <td>3579</td> <td>3598</td> <td>2</td> <td>4</td> <td>6</td> <td>8</td> <td>10</td> <td>12</td> <td>14</td> <td>15</td> <td>17</td>	1 1						1		3560	3579	3598	2	4	6	8	10	12	14	15	17
25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2 3 5 7 9 10 12 14 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 13 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 13 30 4771 4786 4803 4814 4829 4843 4857 4871 486 4900 1 3 4 6 7 9 10							F									_		13	15	17
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2 3 5 7 8 10 11 13 27 4314 4330 4364 4362 4378 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 13 28 4472 4487 4502 4518 4533 4548 4564 4679 4669 2 3 5 6 8 9 11 13 29 4624 4639 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 31 4914 4928 4942 4955 4969 4883 4997 5011 5024 5		3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	$ ^2$	4	5	7	9	11	12	14	16
27 4314 4330 4346 4362 4378 4393 4409 4425 440 4456 2 3 5 6 8 9 11 13 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 31 4914 4928 4955 4969 483 4897 5011 5038 1 3 4 6 7 9 10 11 32 5051 5065 5471 5495 5610 5523 5263 5276 528					4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 6 7 9 10 11 32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 1 3 4 6 7 9 10 11 32 5051 5065 5079 5092 5105 5119 5145 5159 5172 1 3 4 5 6 8 9 10 35 5441 5453 5465 5478 5490 5502 5514 552										4281	4298	2	3	5	7	8	10	11	13	15
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 12 31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 6 7 9 10 11 32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 1 3 4 5 7 8 9 11 34 515 5065 5079 5002 5105 5119 5132 5145 5159 5172 1 3 4 5 6 8 9 10 35 5441 5453 5465 5478 5490 5502 5514<												l						11	13	14
30							1					Į.								14
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 6 7 8 10 11 32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 1 3 4 5 7 8 9 10 34 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 36 5563 55642 5705 5717 5729 5740 5752<	49	4024	4039	4004	4009	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 1 3 4 5 7 8 9 11 33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 36 5563 5575 5589 5611 5623 5635 5647 5688 5670 1 2 4 5 6 7 8 9 <tr< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4900</td><td>l</td><td></td><td>4</td><td>6</td><td>7</td><td>9</td><td>10</td><td>11</td><td>13</td></tr<>	1										4900	l		4	6	7	9	10	11	13
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 36 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9<	1						ľ					l		4			8	10	11	12
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 35 5441 5453 5465 5478 5490 5502 5514 5527 5539 55511 1 2 4 5 6 7 9 10 36 5563 5575 5587 5599 5611 5623 5635 5647 5688 5670 1 2 4 5 6 7 8 10 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 38 5798 5809 5821 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 40 6021 6031 6042 6053 6064 6075 6085 6096 <td></td> <td>į</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td>												į								12
35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 7 8 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>12</td>												1						_		12
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 4 5 6 7 8 10 38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 7 8 9 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 7 8 9 41 6128 6138 6149 6160 6170														4				g	10	11
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 7 8 9 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 42 6232 6243 6253 6263 6274 6284																				11
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 8 9 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 45 6532 6542 6551 6561 6571 6580 6590							1					_								11
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 1 2 3 4 5 7 8 9 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 8 9 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 45 6532 6542 6551 6561 6571 6580 6590							1										-			10
40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 43 6335 6345 6355 6365 6375 6385 6395 6405 6425 1 2 3 4 5 6 7 8 45 6322 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8							i													10 10
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 45 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 46 6628 6637 6646 6656 6665 6665 6675	40	6021	6031	6042	6053	6064	6075	6085	6006	6107	6117	١,	9	9	4	-				
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 46 6628 6637 6646 6656 6665 6665 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 48 6812 6821 6830 6839 6848 6857							[$\begin{bmatrix} 10 \\ 9 \end{bmatrix}$
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 46 6628 6637 6646 6656 6665 6665 6665 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 5 6 7 49 6902 6911 6920 6928 6937 6946																	-			9
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 46 6628 6637 6646 6656 6665 6665 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 6 7 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 5 6 7 49 6902 6911 6920 6928 6937 6946 6955 6964 </td <td>43</td> <td>6335</td> <td>6345</td> <td></td> <td>6365</td> <td></td> <td>6385</td> <td></td> <td>9</td>	43	6335	6345		6365		6385													9
46 6628 6637 6646 6656 6665 6665 6665 6665 6665 6667 6684 6693 6702 6712 1 2 3 4 5 6 7 7 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 50 6990 6998 7007 7016 7024 7033 7042 7050 7057 7067 1 2 3 3 4 5 6 7 51 7076 7084 7093	44	6435	6444	6454	6464	6474	6484	6493												9
46 6628 6637 6646 6656 6665 6665 66675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 50 6990 6998 7007 7016 7024 7033 7042 7059 7067 1 2 3 3 4 5 6 7 51 7076 7084 7093 7101 7110 7118 7126	45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	б	7	R	9
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 50 6990 6998 7007 7016 7024 7033 7042 7059 7067 1 2 3 3 4 5 6 7 51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 52 7160 7168 7177 7185 7193 7202 7210 7218	46																-	-	_	8
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 50 6990 6998 7007 7016 7024 7033 7042 7059 7067 1 2 3 3 4 5 6 7 51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 54 7284 7293 7340	- 1	6721	6730	6739	6749	6758	1													8
50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 53 7243 7251 7256 7275 7284 7292 7300 7306 7316 1 2 2 3 4 5 6 6 54 7324 7293 7340<											6893	1		3	4					8
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 54 7324 7329 7340	49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 54 7324 7329 7340							7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6							ŀ				7152	1	2	3	3	4				8
54 7994 7999 7940 7949 7949 7949 7999 799												1			3	4	5	6	7	7
7304 7372 7380 7388 7396 1 2 2 3 4 5 6 6	- 4				7267	7275														7
	04	1024	1997	1040	7348	7396	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
$N \mid \begin{array}{ccccccccccccccccccccccccccccccccccc$	N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

Table 1 (continued)

FOUR PLACE COMMON LOGARITHMS

$\log_{10} N$ or $\log N$

										-w .	1								
$\mid_{N}\mid$	0	1	2	3	4	5	6	7	8	9			Pro	port	tiona	al P	arts		
					*					,	1	2	3	4	5	6	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	l î	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7010	7005	7832	7020	704C	,	4					_		•
61	7853	7860	7868	7875	7882	7818 7889	$7825 \\ 7896$	7903	7839 7910	7846 7917	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	1 1	$\frac{2}{2}$	$\frac{3}{3}$	4 4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4 4	5 5	$\frac{6}{6}$	$\frac{6}{6}$
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	1	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
05	0100	0100	01.40									-							
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235		8248	8254	1	1	2	3	3	4	5	5	6
67	8261 8325	8267 8331	8274		8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68 69			8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
09	8388	8395	8401	54U7	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904		8915	1	1	$\overline{2}$	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	$\bar{2}$	3	3	$\hat{4}$	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	,	4			0				_
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	1 1	$rac{2}{2}$	$\frac{2}{2}$	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3 3	3	4 4	4 4	5 5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274		9284	9289	1	1	2	2	3	3	4	4	5 5
1 1											_	-					- ±		
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88 89	9445	$9450 \\ 9499$	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
09	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91			9600		9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647		9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689		9699			9713		9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832		9841	9845		9854		9863	ő	1	1	2	2	3	3	4	4
97	9868		9877	9881	9886	9890	9894		9903	9908	ő	1	1	2	2	3	3	4	4
98	9912		9921		9930	l	9939	9943	9948	9952	ő	1	1	2	2	3	3	4	4
99	9956	9961	9965		9974	1	9983	9987	9991	9996	0	1	1	$\bar{2}$	$\bar{2}$	3	3	3	4
N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
ا ``ا		-		<u>.</u>	7		<u> </u>		0	<i>3</i>			<u>.</u>	4	อ	0	1	o	ฮ

FOUR PLACE COMMON ANTILOGARITHMS $\mathbf{10}^p$ or antilog p

					400						Т		D			1 0			
p	0	1	2	3	4	5	6	7	8	9	1	2	Pro 3	port 4	tions	al P 6	arts 7	8	9
.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076		1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
.05	1122	1125	1127		1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
.06	1148		1153		1159	1161		1167	1169	1172	0	1	1	1	1	2	2	2	2
.07	1175	1178		1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
.08	$1202 \\ 1230$	1205 1233	1208		1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
	·		1236		1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
.10	1259	1262	1265		1271	Į.	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
.11	1288	1291	1294		1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
.13 .14	1349 1380	1352	$1355 \\ 1387$	1358 1390	$1361 \\ 1393$	1365 1396	1368 1400	$1371 \\ 1403$	1374	1377	0	1	1	1	2	2	2	3	3
									1406	1409	0	1	1	1	2	2	2	3	3
.15	1413		1419		1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
.16		1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
.18 .19	1514	$\begin{array}{c} 1517 \\ 1552 \end{array}$	$1521 \\ 1556$	$1524 \\ 1560$	$1528 \\ 1563$	1531 1567	1535 1570	1538	1542	1545	0	1	1	1	2	2	2	3	3
									1578	1581	0	1	1	1	2	2	3	3	3
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
.21 .22	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
.23	$\frac{1660}{1698}$	$\frac{1663}{1702}$	$\frac{1667}{1706}$	$1671 \\ 1710$	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
.24	1738	1742	1746	1750	$\frac{1714}{1754}$	1718 1758	$1722 \\ 1762$	$1726 \\ 1766$	$1730 \\ 1770$	$1734 \\ 1774$	0	1 1	1 1	$\frac{2}{2}$	2 2	2 2	3 3	3 3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2			
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	$\frac{3}{3}$	3	4
.27	1862		1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28	1905	1910		1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31	2042	2046	2051		2061		2070		2080	2084	0	1	1	2	2	3	3	4	4
.32	2089	2094	2099	2104	2109	2113		2123	2128	2133	0	1	1	$\bar{2}$	2	3	3	4	4
.33	2138	2143	2148	2153		2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
.35	2239	2244	22 49	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
.36	2291	2296		2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
.37	2344	2350		2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
.38				2415			2432			2449	1	1	2	2	3	3	4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
.40				2529			2547				1	1	2	2	3	4	4	5	5
.41				2588			2606				1	1	2	2	3	4	4	5	5
.42				2649			2667				1	1	2	2	3	4	4	5	6
.43				2710			2729				1	1	2	3	3	4	4	5	6
.44				2773			2793				1	1	2	3	3	4	4	5	6
.45				2838			2858				1	1	2	3	3	4	5	5	6
.46				2904			2924				1	1	2	3	3	4	5	5	6
.47				2972			2992				1	1	2	3	3	4	5	5	6
.48	3020 3090	$3027 \\ 3097$		3041 3112		3055		3069		3083	1	1	2	3	4	4	5	6	6
										3155	1	1	2	3	4	4	5	6	6
p	0	_1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

Table 2 (continued)

FOUR PLACE COMMON ANTILOGARITHMS

10^p or antilog p

						l					1		D.			1.0			
p	0	1	2	3	4	5	6	7	8	9	1	2	Pro 3	port 4	5 5	al P 6	arts 7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
											i -			_		-			
.60 .61	$\frac{3981}{4074}$	3990 4083	3999 4093	$\frac{4009}{4102}$	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
$\begin{bmatrix} .61 \\ .62 \end{bmatrix}$	4169	4178	4188	4102	4111	4121	$\frac{4130}{4227}$	4140	4150	4159	1	2	3	4	5	6	7	8	9
.63	4266	4276	4285	4198	$4207 \\ 4305$	4217	4325	$4236 \\ 4335$	4246	4256	1	2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4323		4345	4355	1	$\frac{2}{2}$	3	4	5	6	7	8	9
								4436	4446	4457	1		3	4	5	6	7	8	9
65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
$\begin{bmatrix} .67 \\ co \end{bmatrix}$	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9		12	14
.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3							
.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	$\frac{2}{2}$	3	5 5	$\frac{7}{7}$	8	10 10		13 13	15 15
.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	ა 3	5 5	7	9	10		13 14	15 16
.88			7621			1		7709		7745	2	3 4	5	7			12		
.89	7762		7798		7834	7852		7889	7907	7925	$\frac{2}{2}$	4	5	7	9		13		
.90						l					ļ								
91	$7943 \\ 8128$		7980 8166					8072			2	4	6	7	9		13		17
$\begin{bmatrix} .91 \\ .92 \end{bmatrix}$							8241		8279	8299	2	4	6	8	9	11	13		17
.93			8356 8551		8395		8433 8630	8453	8472	8492	2	4	6	8	10		14		17
.94			8750		8790		8831	8851	8670	8690 8892	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	4 4	$\frac{6}{6}$	8	10		14		18
						l			8872					8	10		14		18
95			8954			1	9036	9057	9078	9099	2	4	6	8	10		15		19
.96 .97	$9120 \\ 9333$	9141	9162	9183	9204	9226			9290	9311	2	4	6			13		17	19
98	9333 9550	9354 9572				1	9462	9484	9506	9528	2	4	7	9			15		20
.98	9772	9572	9594 9817		9638 9863	9661 9886	9683	9705 9931	9727	9750	2	4	7	9	11	13	16		20
- +									9954	9977	2	5	7	9	11	14	16	18	20
p	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

3

Sin x (x in degrees and minutes)

x	0'	10'	20′	30′	40′	50′
0°		.0029	.0058	.0087	.0116	.0145
1	.0175	.0204	.0233	.0262	.0291	.0320
2	.0349	.0378	.0407	.0436	.0465	.0494
3	.0523	.0552	.0581	.0610	.0640	.0669
4	.0698	.0727	.0756	.0785	.0814	.0843
5°	1	.0901	.0929	.0958	.0987	.1016
6	.1045	.1074	.1103	.1132	.1161	.1190
7	.1219	.1248	.1276	.1305	.1334	.1363
8	.1392	.1421	.1449	.1478	.1507	.1536
9	.1564	.1593	.1622	.1650	.1679	.1708
10°	.1736	.1765	.1794	.1822	.1851	.1880
11	.1908	.1937	.1965	.1994	.2022	.2051
12	.2079	.2108	.2136	.2164	.2193	.2221
13	.2250	.2278	.2306	.2334	.2363	.2391
14	.2419	.2447	.2476	.2504	.2532	.2560
150	.2588	.2616	.2644	.2672	.2700	.2728
16	.2756	.2784	.2812	.2840	.2868	.2128
17	.2924	.2952	.2979	.3007		
18	.3090	.3118			.3035	.3062
19	.3256	.3283	.3145	.3173	.3201	.3228
1			.3311	.3338	.3365	.3393
20°	.3420	.3448	.3475	.3502	.3529	.3557
21	.3584	.3611	.3638	.3665	.3692	.3719
22	.3746	.3773	.3800	.3827	.3854	.3881
23	.3907	.3934	.3961	.3987	.4014	.4041
24	.4067	.4094	.4120	.4147	.4173	.4200
25°	.4226	.4253	.4279	.4305	.4331	.4358
26	.4384	.4410	.4436	.4462	.4488	.4514
27	.4540	.4566	.4592	.4617	.4643	.4669
28	.4695	.4720	.4746	.4772	.4797	.4823
29	.4848	.4874	.4899	.4924	.4950	.4975
30°	.5000	.5025	.5050	.5075	.5100	.5125
31	.5150	.5175	.5200	.5225	.5250	.5275
32	.5299	.5324	.5348	.5373	.5398	.5422
33	.5446	.5471	.5495	.5519	.5544	.5568
34	.5592	.5616	.5640	.5664	.5688	.5712
35°	.5736	.5760	.5783	.5807	.5831	.5854
36	.5878	.5901	.5925	.5948	.5972	.5995
37	.6018	.6041	.6065	.6088	.6111	.6134
38	.6157	.6180	.6202	.6225	.6248	.6271
39	.6293	.6316	.6338	.6361	.6383	.6406
40°	.6428	.6450	.6472	.6494	.6517	.6539
41	.6561	.6583	.6604	.6626	.6648	.6670
42	.6691	.6713	.6734	.6756	.6777	.6799
43	.6820	.6841	.6862	.6884	.6905	.6926
44	.6947	.6967	.6988	.7009	.7030	.7050
45°	.7071	.7092	.7112	.7133	.7153	.7173

x	0'	10'	20′	30′	40′	50′
45°	.7071	.7092	.7112	.7133	.7153	.7173
46	.7193	.7214	.7234	.7254	.7274	.7294
47	.7314	.7333	.7353	.7373	.7392	.7412
48	.7431	.7451	.7470	.7490	.7509	
49	.7547	.7566	.7585	.7604		
50°	.7660	.7679	.7698	.7716	.7735	.7753
51	.7771	.7790	.7808			
52	.7880	.7898	.7916			
53	.7986	.8004	.8021			
54	.8090	.8107	.8124		.8158	
55°	.8192	.8208	.8225	.8241	.8258	
56	.8290	.8307	.8323		.8355	
57	.8387	.8403	.8418			
58	.8480	.8496		.8434	.8450	
59			.8511	.8526	.8542	.8557
	.8572	.8587	.8601	.8616	.8631	.8646
60°	.8660	.8675	.8689	.8704	.8718	.8732
61	.8746	.8760	.8774	.8788	.8802	.8816
62	.8829	.8843	.8857	.8870	.8884	.8897
63	.8910	.8923	.8936	.8949	.8962	.8975
64	.8988	.9001	.9013	.9026	.9038	.9051
65°	.9063	.9075	.9088	.9100	.9112	.9124
66	.9135	.9147	.9159	.9171	.9182	.9194
67	.9205	.9216	.9228	.9239	.9250	.9261
68	.9272	.9283	.9293	.9304	.9315	.9325
69	.9336	.9346	.9356	.9367	.9377	.9387
$_{70^{\circ}} $.9397	.9407	.9417	.9426	.9436	.9446
71	.9455	.9465	.9474	.9483	.9492	.9502
72	.9511	.9520	.9528	.9537	.9546	.9555
73	.9563	.9572	.9580	.9588	.9596	
74	.9613	.9621	.9628	.9636	.9644	.9605 $.9652$
75°	.9659	.9667	.9674			-
76	.9703	.9710		.9681	.9689	.9696
77	.9744		.9717	.9724	.9730	.9737
- 1		.9750	.9757	.9763	.9769	.9775
78 79	.9781	.9787	.9793	.9799	.9805	.9811
1	.9816	.9822	.9827	.9833	.9838	.9843
30°	.9848	.9853	.9858	.9863	.9868	.9872
31	.9877	.9881	.9886	.9890	.9894	.9899
32	.9903	.9907	.9911	.9914	.9918	.9922
33	.9925	.9929	.9932	.9936	.9939	.9942
34	.9945	.9948	.9951	.9954	.9957	.9959
35°	.9962	.9964	.9967	.9969	.9971	.9974
36	.9976	.9978	.9980	.9981	.9983	.9985
37	.9986	.9988	.9989	.9990	.9992	.9993
88	.9994	.9995	.9996	.9997	.9997	.9998
89	.9998	.9999	.9999	1.0000	1.0000	1.0000
000	1.0000			-		· · · · · · · · · · · · · · · · · · ·

4

Cos x (x in degrees and minutes)

x	0′	10′	20′	30'	40′	50′
0°	1.0000	1.0000	1.0000	1.0000	.9999	.9999
1	.9998	.9998	.9997	.9997	.9996	.9995
2	.9994	.9993	.9992	.9990	.9989	.9988
3	.9986	.9985	.9983	.9981	.9980	.9978
4	.9976	.9974	.9971	.9969	.9967	.9964
5°	.9962	.9959	.9957	.9954	.9951	.9948
6	.9945	.9942	.9939	.9936	.9932	.9929
7	.9925	.9922	.9918	.9914	.9911	.9907
8	.9903	.9899	.9894	.9890	.9886	.9881
9	.9877	.9872	.9868	.9863	.9858	.9853
10°	.9848	.9843	.9838	.9833	.9827	.9822
11	.9816	.9811	.9805	.9799	.9793	.9787
12	.9781	.9775	.9769	.9763	.9757	.9750
13	.9744	.9737	.9730	.9724	.9717	.9710
14	.9703	.9696	.9689	.9681	.9674	.9667
15°	.9659	.9652	.9644	.9636	.9628	.9621
16	.9613	.9605	.9596	.9588	.9580	.9572
17	.9563	.9555	.9546	.9537	.9528	.9520
18	.9511	.9502	.9492	.9483	.9474	.9465
19	.9455	.9446	.9436	.9426	.9417	.9407
20°	.9397	.9387	.9377	.9367	.9356	.9346
21	.9336	.9325	.9315	.9304	.9293	.9283
22	.9272	.9261	.9250	.9239	.9228	.9216
23	.9205	.9194	.9182	.9171	.9159	.9147
24	.9135	.9124	.9112	.9100	.9088	.9075
25°	.9063	.9051	.9038	.9026	.9013	.9001
26	.8988	.8975	.8962	.8949	.8936	.8923
27	.8910	.8897	.8884	.8870	.8857	.8843
28	.8829	.8816	.8802	.8788	.8774	.8760
29	.8746	.8732	.8718	.8704	.8689	.8675
30°	.8660	.8646	.8631	.8616	.8601	.8587
31	.8572	.8557	.8542	.8526	.8511	.8496
32	.8480	.8465	.8450	.8434	.8418	.8403
33	.8387	.8371	.8355	.8339	.8323	.8307
34	.8290	.8274	.8258	.8241	.8225	.8208
35°	.8192	.8175	.8158	.8141	.8124	.8107
36	.8090	.8073	.8056	.8039	.8021	.8004
37	.7986	.7969	.7951	.7934	.7916	.7898
38	.7880	.7862	.7844	.7826	.7808	.7790
39	.7771	.7753	.7735	.7716	.7698	.7679
40°	.7660	.7642	.7623	.7604	.7585	.7566
41	.7547	.7528	.7509	.7490	.7470	.7451
42	.7431	.7412	.7392	.7373	.7353	.7333
43	.7314	.7294	.7274	.7254	.7234	.7214
44	.7193	.7173	.7153	.7133	.7112	.7092
45°	.7071	.7050	.7030	.7009	.6988	.6967

x	0′	10′	20′	30′	40′	50′
45°	.7071	.7050	.7030	.7009	.6988	.6967
46	.6947	.6926	.6905	.6884	.6862	.6841
47	.6820	.6799	.6777	.6756	.6734	.6713
48	.6691	.6670	.6648	.6626	.6604	.6583
49	.6561	.6539	.6517	.6494	.6472	.6450
50°	.6428	.6406	.6383	.6361	.6338	.6316
51	.6293	.6271	.6248	.6225	.6202	.6180
52	.6157	.6134	.6111	.6088	.6065	.6041
53	.6018	.5995	.5972	.5948	.5925	.5901
54	.5878	.5854	.5831	.5807	.5783	.5760
55°	.5736	.5712	.5688	.5664	.5640	.5616
56	.5592	.5568	.5544	.5519	.5495	.5471
57	.5446	.5422	.5398	.5373	.5348	.5324
58	.5299	.5275	.5250	.5225	.5200	.5175
59	.5150	.5125	.5100	.5075	.5050	.5025
60°	.5000	.4975	.4950	.4924	.4899	.4874
61	.4848	.4823	.4797	.4772	.4746	.4720
62	.4695	.4669	.4643	.4617	.4592	.4566
63	.4540	.4514	.4488	.4462	.4436	.4410
64	.4384	.4358	.4331	.4305	.4279	.4253
65°	.4226	.4200	.4173	.4147	.4120	.4094
66	.4067	.4041	.4014	.3987	.3961	.3934
67	.3907	.3881	.3854	.3827	.3800	.3773
68	.3746	.3719	.3692	.3665	.3638	.3611
69	.3584	.3557	.3529	.3502	.3475	.3448
70°	.3420	.3393	.3365	.3338	.3311	.3283
71	.3256	.3228	.3201	.3173	.3145	.3118
72	.3090	.3062	.3035	.3007	.2979	.2952
73	.2924	.2896	.2868	.2840	.2812	.2784
74	.2756	.2728	.2700	.2672	.2644	.2616
75°	.2588	.2560	.2532	.2504	.2476	.2447
76	.2419	.2391	.2363	.2 334	.2306	.2278
77	.2250	.2221	.2193	.2164	.2136	.2108
78	.2079	.2051	.2022	.1994	.1965	.1937
79	.1908	.1880	.1851	.1822	.1794	.1765
80°	.1736	.1708	.1679	.1650	.1622	.1593
81	.1564	.1536	.1507	.1478	.1449	.1421
82	.1392	.1363	.1334	.1305	.1276	.1248
83	.1219	.1190	.1161	.1132	.1103	.1074
84	.1045	.1016	.0987	.0958	.0929	.0901
85°	.0872	.0843	.0814	.0785	.0756	.0727
86	.0698	.0669	.0640	.0610	.0581	.0552
87	.0523	.0494	.0465	.0436	.0407	.0378
88	.0349	.0320	.0291	.0262	.0233	.0204
89	.0175	.0145	.0116	.0087	.0058	.0029
90°	.0000					

Tan x (x in degrees and minutes)

x 0° 1 2 3 4 5° 6 7 8 9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 27 28 29 30° 31 32 33 34 35° 36 37 38 39	0' .0000 .0175 .0349 .0524 .0699 .0875 .1051 .1228 .1405 .1584	.0029 .0204 .0378 .0553	.0058 .0233 .0407	.0087 .0262		.0145
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	.0175 .0349 .0524 .0699 .0875 .1051 .1228 .1405	.0204 $.0378$.0233			.0145
2 3 4 5° 6 7 8 9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39	.0349 .0524 .0699 .0875 .1051 .1228 .1405	.0378		ტიგი		
3 4 5° 6 7 8 9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.0524 .0699 .0875 .1051 .1228 .1405		0407	.0404	.0291	.0320
4 5° 6 7 8 9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 38 39 39 39 30° 30° 30° 30° 30° 30° 30° 30°	.0699 .0875 .1051 .1228 .1405	.0553	.0407	.0437	.0466	.0495
4 5° 6 7 8 9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 38 39 39 39 30° 30° 30° 30° 30° 30° 30° 30°	.0699 .0875 .1051 .1228 .1405		.0582	.0612	.0641	.0670
6 7 8 9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.1051 .1228 .1405	.0729	.0758	.0787	.0816	.0846
6 7 8 9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.1051 .1228 .1405	0004	0004	00.00	0000	
7 8 9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.1228 .1405	.0904	.0934	.0963	.0992	.1022
8 9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.1405	.1080	.1110	.1139	.1169	.1198
9 10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39 39 39 39 39 39 39 39 39 39		.1257	.1287	.1317	.1346	.1376
10° 11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38	.1584	.1435	.1465	.1495	.1524	.1554
11 12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39		.1614	.1644	.1673	.1703	.1733
12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.1763	.1793	.1823	.1853	.1883	.1914
12 13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.1944	.1974	.2004	.2035	.2065	.2095
13 14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.2126	.2156	.2186	.2217	.2247	.2278
14 15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.2309	.2339	.2370	.2401	.2432	.2462
15° 16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38	.2493	.2524	.2555	.2586	.2617	.2648
16 17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38						
17 18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.2679	.2711	.2742	.2773	.2805	.2836
18 19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.2867	.2899	.2931	.2962	.2994	.3026
19 20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38 39	.3057	.3089	.3121	.3153	.3185	.3217
20° 21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38	.3249	.3281	.3314	.3346	.3378	.3411
21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38	.3443	.3476	.3508	.3541	.3574	.3607
21 22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38	.3640	.3673	.3706	.3739	.3772	.3805
22 23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38	.3839	.3872	.3906	.3939	.3973	.4006
23 24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38	.4040	.4074	.4108	.4142	.4176	.4210
24 25° 26 27 28 29 30° 31 32 33 34 35° 36 37 38	.4245	.4279	.4314	.4348	.4383	.4417
26 27 28 29 30° 31 32 33 34 35° 36 37 38	.4452	.4487	.4522	.4557	.4592	.4628
26 27 28 29 30° 31 32 33 34 35° 36 37 38						
27 28 29 30° 31 32 33 34 35° 36 37 38	.4663	.4699	.4734	.4770	.4806	.4841
28 29 30° 31 32 33 34 35° 36 37 38	.4877	.4913	.4950	.4986	.5022	.5059
29 30° 31 32 33 34 35° 36 37 38	.5095	.5132	.5169	.5206	.5243	.5280
30° 31 32 33 34 35° 36 37 38	.5317	.5354	.5392	.5430	.5467	.5505
31 32 33 34 35° 36 37 38 39	.5543	.5581	.5619	.5658	.5696	.5735
32 33 34 35° 36 37 38 39	.5774	.5812	.5851	.5890	.5930	.5969
33 34 35° 36 37 38 39	.6009	.6048	.6088	.6128	.6168	.6208
34 35° 36 37 38 39	.6249	.6289	.6330	.6371	.6412	.6453
35° 36 37 38 39	.6494	.6536	.6577	.6619	.6661	.6703
36 37 38 39	.6745	.6787	.6830	.6873	.6916	.6959
36 37 38 39	.7002	.7046	.7089	.7133	.7177	.7221
37 38 39	.7265	.7310	.7355	.7400	.7445	.7490
38 39	.7536	.7581	.7627	.7673	.7720	.7766
39	.7813	.7860	.7907	.7954	.8002	.8050
1	.8098	.8146	.8195	.8243	.8292	.8342
40°	.8391	.8441	.8491	.8541	.8591	.8642
41	.8693	.8744	.8796	.8847	.8899	.8952
42	.9004	.9057	.9110	.9163	.9217	.9271
43		.9380	.9435	.9490	.9545	.9601
44	.9325	.9713	.9770	.9827	.9884	.9942
45° 1	.9325 .9657	1.0058	1.0117	1.0176	1.0235	1.0295

45°						50′
49	1.0000	1.0058	1.0117	1.0176	1.0235	1.0295
46	1.0355	1.0416	1.0477	1.0538	1.0599	1.0661
47	1.0724	1.0786	1.0850	1.0913	1.0977	1.1041
48	1.1106	1.1171	1.1237	1.1303	1.1369	1.1436
49	1.1504	1.1571	1.1640	1.1708	1.1778	1.1847
50°	1.1918	1.1988	1.2059	1.2131	1.2203	1.2276
51	1.2349	1.2423	1.2497	1.2572	1.2647	1.2723
52	1.2799	1.2876	1.2954	1.3032	1.3111	1.3190
53	1.3270	1.3351	1.3432	1.3514	1.3597	1.3680
54	1.3764	1.3848	1.3934	1.4019	1.4106	1.4193
55°	1.4281	1.4370	1.4460	1.4550	1.4641	1.4733
56	1.4826	1.4919	1.5013	1.5108	1.5204	1.5301
57	1.5399	1.5497	1.5597	1.5697	1.5798	1.5900
58	1.6003	1.6107	1.6212	1.6319	1.6426	1.6534
59	1.6643	1.6753	1.6864	1.6977	1.7090	1.7205
60°	1.7321	1.7437	1.7556	1.7675	1.7796	1.7917
61	1.8040	1.8165	1.8291	1.8418	1.8546	1.8676
62	1.8807	1.8940	1.9074	1.9210	1.9347	1.9486
63	1.9626	1.9768	1.9912	2.0057	2.0204	2.0353
64	2.0503	2.0655	2.0809	2.0965	2.1123	2.1283
65°	2.1445	2.1609	2.1775	2.1943	2.2113	2.2286
66	2.2460	2.2637	2.2817	2.2998	2.3183	2.3369
67	2.3559	2.3750	2.3945	2.4142	2.4342	2.4545
68	2.4751	2.4960	2.5172	2.5386	2.5605	2.5826
69	2.6051	2.6279	2.6511	2.6746	2.6985	2.7228
70°	2.7475	2.7725	2.7980	2.8239	2.8502	2.8770
71	2.9042	2.9319	2.9600	2.9887	3.0178	3.0475
72	3.0777	3.1084	3.1397	3.1716	3.2041	3.2371
73	3.2709	3.3052	3.3402	3.3759	3.4124	3.4495
74	3.4874	3.5261	3.5656	3.6059	3.6470	3.6891
75°	3.7321	3.7760	3.8208	3.8667	3.9136	3.9617
76	4.0108	4.0611	4.1126	4.1653	4.2193	4.2747
77	4.3315	4.3897	4.4494	4.5107	4.5736	4.6382
78	4.7046	4.7729	4.8430	4.9152	4.9894	5.0658
79	5.1446	5.2257	5.3093	5.3955	5.4845	5.5764
80°	5.6713	5.7694	5.8708	5.9758	6.0844	6.1970
81	6.3138	6.4348	6.5606	6.6912	6.8269	6.9682
82	7.1154	7.2687	7.4287	7.5958	7.7704	7.9530
83	8.1443	8.3450	8.5555	8.7769	9.0098	9.2553
84	9.5144	9.7882	10.078	10.385	10.712	11.059
85°	11.430	11.826	12.251	12.706	13.197	13.727
86	14.301	14.924	15.605	16.350	17.169	18.075
87	19.081	20.206	21.470	22.904	24.542	26.432
88	28,636	31.242	34.368	38.188	42.964	49.104
89	57.290	68.750	85.940	114.59	171.89	343.77
90°	∞					

Cot x (x in degrees and minutes)

x	0′	10'	20'	30′	40′	50′
0°		343.77	171 00	114 50	85.940	CO 750
1 . 1			171.89	114.59		68.750
1 1	57.290	49.104	42.964	38.188	34.368	31.242
2	28.636	26.432	24.542	22.904	21.470	20.206
3	19.081	18.075	17.169	16.350	15.605	14.924
4	14.301	13.727	13.197	12.706	12.251	11.826
5°	11.430	11.059	10.712	10.385	10.078	9.7882
6	9.5144	9.2553	9.0098	8.7769	8.5555	8.3450
7	8.1443	7.9530	7.7704	7.5958	7.4287	7.2687
8	7.1154	6.9682	6.8269	6.6912	6.5606	6.4348
9	6.3138	6.1970	6.0844	5.9758	5.8708	5.7694
10°	5.6713	5.5764	5.4845	5.3955	5.3093	5.2257
11	5.1446	5.0658	4.9894	4.9152	4.8430	4.7729
12	4.7046	4.6382	4.5736	4.5107	4.4494	4.3897
13	4.3315	4.2747	4.2193	4.1653	4.1126	4.0611
14	4.0108	3.9617	3.9136	3.8667	3.8208	3.7760
15°	3.7321	3.6891	3.6470	3.6059	3.5656	3.5261
16	3.4874	3.4495	3,4124	3.3759	3.3402	3.3052
17	3.2709	3.2371	3.2041	3.1716	3.1397	3.1084
18	3.0777	3.0475	3.0178	2.9887	2.9600	2.9319
19	2.9042	2.8770	2.8502	2.8239	2.7980	2.7725
20°	2.7475	2.7228	2.6985	2.6746	2.6511	2.6279
21	2.6051	2.5826	2.5605	2.5386	2.5172	2.4960
22	2.4751	2.4545	2.4342	2.4142	2.3945	2.3750
23	2.3559	2.3369	3.3183	2.2998	2.2817	2.2637
24	2.2460	2.2286	2.2113	2.1943	2.1775	2.1609
25°	2.1445	2.1283	2.1123	2.0965	2.0809	2.0655
26	2.0503	2.0353	2.0204	2.0057	1.9912	1.9768
27	1.9626	1.9486	1.9347	1,9210	1.9074	1.8940
28	1.8807	1.8676	1.8546	1.8418	1.8291	1.8165
29	1.8040	1.7917	1.7796	1.7675	1.7556	1.7437
30°	1.7321	1.7205	1.7090	1.6977	1.6864	1.6753
31	1.6643	1.6534	1.6426	1.6319	1.6212	1.6107
32	1.6003	1.5900	1.5798	1.5697	1.5597	1.5497
33	1.5399	1.5301	1.5204	1.5108	1.5013	1.4919
34	1.4826	1.4733	1.4641	1.4550	1.4460	1.4370
35°	1.4281	1.4193	1.4106	1.4019	1.3934	1.3848
36	1.3764	1.3680	1.3597	1.3514	1.3432	1.3351
37	1.3270	1.3190	1.3111	1.3032	1.2954	1.2876
38	1.2799	1.2723	1.2647	1.2572	1.2497	1.2423
39	1.2349	1.2276	1.2203	1.2131	1.2059	1.1988
40°	1.1918	1.1847	1.1778	1.1708	1.1640	1.1571
41	1.1504	1.1436	1.1369	1.1303	1.1237	1.1171
42	1.1106	1.1041	1.0977	1.0913	1.0850	1.0786
43	1.0724	1.0661	1.0599	1.0538	1.0477	1.0416
44	1.0355	1.0295	1.0235	1.0176	1.0117	1.0058
45°	1.0000	.9942	.9884	.9827	.9770	.9713

x	0′	10′	20′	30′	40′	50′
45°	1.000	.9942	.9884	.9827	.9770	.9713
46	.9657	.9601	.9545	.9490	.9435	.9380
47	.9325	.9271	.9217	.9163	.9110	.9057
48	.9004	.8952	.8899	.8847	.8796	.8744
49	.8693	.8642	.8591	.8541	.8491	.8441
50°	.8391	.8342	.8292	.8243	.8195	.8146
51	.8098	.8050	.8002	.7954	.7907	.7860
52	.7813	.7766	.7720	.7673	.7627	.7581
53	.7536	.7490	.7445	.7400	.7355	.7310
54	.7265	.7221	.7177	.7133	.7089	.7046
55°	.7002	.6959	.6916	.6873	.6830	.6787
56	.6745	.6703	.6661	.6619	.6577	.6536
57	.6494	.6453	.6412	.6371	.6330	.6289
58	.6249	.6208	.6168	.6128	.6088	.6048
59	.6009	.5969	.5930	.5890	.5851	.5812
60°	.5774	.5735	.5696	.5658	.5619	.5581
61	.5543	.5505	.5467	.5430	.5392	.5354
62	.5317	.5280	.5243	.5206	.5169	.5132
63	.5095	.5059	.5022	.4986	.4950	.4913
64	.4877	.4841	.4806	.4770	.4734	.4699
65°	.4663	.4628	.4592	.4557	.4522	.4487
66	.4452	.4417	.4383	.4348	.4314	.4279
67	.4245	.4210	.4176	.4142	.4108	.4074
68	.4040	.4006	.3973	.3939	.3906	.3872
69	.3839	.3805	.3772	.3739	.3706	.3673
70°	.3640	.3607	.3574	.3541	.3508	.3476
71	.3443	.3411	.3378	.3346	.3314	.3281
72	.3249	.3217	.3185	.3153	.3121	.3089
73	.3057	.3026	.2994	.2962	.2931	.2899
74	.2867	.2836	.2805	.2773	.2742	.2711
75°	.2679	.2648	.2617	.2586	.2555	.2524
76	.2493	.2462	.2432	.2401	.2370	.2339
77	.2309	.2278	.2247	.2217	.2186	.2156
78	.2126	.2095	.2065	.2035	.2004	.1974
79	.1944	.1914	.1883	.1853	.1823	.1793
80°	.1763	.1733	.1703	.1673	.1644	.1614
81	.1584	.1554	.1524	.1495	.1465	.1435
82	.1405	.1376	.1346	.1317	.1287	.1257
83	.1228	.1198	.1169	.1139	.1110	.1080
84	.1051	.1022	.0992	.0963	.0934	.0904
85°	.0875	.0846	.0816	.0787	.0758	.0729
86	.0699	.0670	.0641	.0612	.0582	.0553
87	.0524	.0495	.0466	.0437	.0407	.0378
88	.0349	.0320	.0291	.0262	.0233	.0204
89	.0175	.0145	.0116	.0087	.0058	.0029
90°	.0000					

Sec x (x in degrees and minutes)

x	0′	10′	20′	30′	40′	50′
0°	1.000	1.000	1.000	1.000	1.000	1.000
1	1.000	1.000	1.000	1.000	1.000	1.001
2	1.001	1.001	1.001	1.001	1.001	1.001
3	1.001	1.002	1.002	1.002	1.002	1.002
4	1.002	1.003	1.003	1.003	1.003	1.004
5°	1.004	1.004	1.004	1.005	1.005	1.005
6	1.006	1.006	1.006	1.006	1.007	1.007
7	1.008	1.008	1.008	1.009	1.009	1.009
8	1.010	1.010	1.011	1.011	1.012	1.012
9	1.012	1.013	1.013	1.014	1.014	1.015
10°	1.015	1.016	1.016	1.017	1.018	1.018
11	1.019	1.019	1.020	1.020	1.021	1.022
12	1.022	1.023	1.024	1.024	1.025	1.026
13	1.026	1.027	1.028	1.028	1.029	1.030
14	1.031	1.031	1.020 1.032	1.033	1.023 1.034	1.034
15°	1.035	1.036	1.037	1.038	1.039	1.039
16	1.033	1.030	1.042	1.038 1.043	1.039 1.044	1.039
17	1.046	1.047	1.048	1.048	1.049	1.050
18	1.051	1.052	1.053	1.054	1.056	1.057
19	1.058	1.059	1.060	1.061	1.062	1.063
200	1.064	1.065	1.066	1.068		
21	1.004 1.071	1.003 1.072	1.000 1.074	1.008 1.075	$1.069 \\ 1.076$	1.070
22	1.079	1.080	1.074	1.073	1.076	$1.077 \\ 1.085$
23	1.086	1.088	1.081	1.082 1.090	1.084 1.092	
24	1.095	1.096	1.085 1.097	1.090 1.099	1.100	$1.093 \\ 1.102$
25°	1.103	1.105	1.106	1.108	1.109	
26	1.113	1.103 1.114	1.116	1.117	1.119	1.111 1.121
$\begin{bmatrix} 20 \\ 27 \end{bmatrix}$	1.113 1.122	1.114 1.124	1.116 1.126	1.117 1.127	1.119 1.129	1.121 1.131
28	1.133	1.124 1.134	1.126 1.136	1.138	1.125 1.140	1.142
29	1.143	1.134 1.145	1.147	1.149	1.140 1.151	1.142
30°	1.155	1.157	1.159			
31	1.167	1.169	1.139 1.171	$1.161 \\ 1.173$	$1.163 \\ 1.175$	1.165 1.177
32	1.179	1.181	1.184	1.186	1.118	1.177
33	1.192	1.195	1.194 1.197	1.180 1.199	1.202	1.190 1.204
34	1.206	1.209	1.211	1.213	1.216	1.218
35°	1.221	1.223	1.226	1.228	1.231	1.233
36	1.221 1.236	1.223 1.239	1.220 1.241	1.244	1.231 1.247	1.233
37	1.252	1.255	1.258	1.244 1.260	1.247 1.263	
38	1.262 1.269	1.272	1.275	1.278	1.265 1.281	$1.266 \\ 1.284$
39	1.287	1.290	1.273 1.293	1.276	1.299	1.302
40°	1.305	1.309	1.312	1.315	1.318	1.322
41	1.325	1.309 1.328	1.312 1.332	1.335	1.339	1.342
$\begin{bmatrix} 41 \\ 42 \end{bmatrix}$	1.346	1.349	1.353	1.356	1.360	1.342
43	1.340 1.367	1.345 1.371	1.375	1.379	1.382	1.386
44	1.390	1.394	1.398	1.402	1.362 1.406	1.410
45°	1.414	1.418	1.423	1.427	1.431	1.435

	·					
x	0′	10'	20′	30′	40′	50′
45°	1.414	1.418	1.423	1.427	1.431	1.435
46	1.440	1.444	1.448	1.453	1.457	1.462
47	1.466	1.471	1.476	1.480	1.485	1.490
48	1.494	1.499	1.504	1.509	1.514	1.519
49	1.524	1.529	1.535	1.540	1.545	1.550
50°	1.556	1.561	1.567	1.572	1.578	1.583
51	1.589	1.595	1.601	1.606	1.612	1.618
52	1.624	1.630	1.636	1.643	1.649	1.655
53	1.662	1.668	1.675	1.681	1.688	1.695
54	1.701	1.708	1.715	1.722	1.729	1.736
55°	1.743	1.751	1.758	1.766	1.773	1.781
56	1.788	1.796	1.804	1.812	1.820	1.828
57	1.836	1.844	1.853	1.861	1.870	1.878
58	1.887	1.896	1.905	1.914	1.923	1.932
59	1.942	1.951	1.961	1.970	1.980	1.990
60°	2.000	2.010	2.020	2.031	2.041	2.052
61	2.063	2.074	2.085	2.096	2.107	2.118
62	2.130	2.142	2.154	2.166	2.178	2.190
63	2.203	2.215	2.228	2.241	2.254	2.268
64	2.281	2.295	2.309	2.323	2.337	2.352
65°	2.366	2.381	2.396	2.411	2.427	2.443
66	2.459	2.475	2.491	2.508	2.525	2.542
67	2.559	2.577	2.595	2.613	2.632	2.650
68	2.669	2.689	2.709	2.729	2.749	2.769
69	2.790	2.812	2.833	2.855	2.878	2.901
70°	2.924	2.947	2.971	2.996	3.021	3.046
71	3.072	3.098	3.124	3.152	3.179	3.207
72	3.236	3.265	3.295	3.326	3.357	3.388
73	3.420	3.453	3.487	3.521	3.556	3.592
74	3.628	3.665	3.703	3.742	3.782	3.822
75°	3.864	3.906	3.950	3.994	4.039	4.086
76	4.134	4.182	4.232	4.284	4.336	4.390
77	4.445	4.502	4.560	4.620	4.682	4.745
78	4.810	4.876	4.945	5.016	5.089	5.164
79	5.241	5.320	5.403	5.487	5.575	5.665
80°	5.759	5.855	5.955	6.059	6.166	6.277
81	6.392	6.512	6.636	6.765	6.900	7.040
82	7.185	7.337	7.496	7.661	7.834	8.016
83	8.206	8.405	8.614	8.834	9.065	9.309
84	9.567	9.839	10.13	10.43	10.76	11.10
85°	11.47	11.87	12.29	12.75	13.23	13.76
86	14.34	14.96	15.64	16.38	17.20	18.10
87	19.11	20.23	21.49	22.93	24.56	26.45
88	28.65	31.26	34.38	38.20	42.98	49.11
89	57.30	68.76	85.95	114.6	171.9	343.8
90°	8					

8

Csc x (x in degrees and minutes)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r						
1 57.30 49.11 42.98 38.20 34.38 31.26 2 28.65 26.45 24.56 22.93 21.49 20.23 3 19.11 18.10 17.20 16.38 15.64 14.96 4 14.34 13.76 13.23 12.75 12.29 11.87 5° 11.47 11.10 10.76 10.43 10.13 9.839 6 9.567 9.309 9.65 8.834 8.614 8.405 7 8.206 8.016 7.834 7.661 7.496 7.337 8 7.185 7.040 6.900 6.765 6.636 6.512 9 6.392 6.277 6.166 6.059 5.955 5.855 10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682	ļ		10′	20′	30′	40'	50′
2 28.65 26.45 24.56 22.93 21.49 20.23 3 19.11 18.10 17.20 16.38 15.64 14.96 4 14.34 13.76 13.23 12.75 12.29 11.87 5° 11.47 11.10 10.76 10.43 10.13 9.839 6 9.567 9.309 9.065 8.834 8.614 8.405 7 8.206 8.016 7.834 7.661 7.496 7.337 8 7.185 7.040 6.900 6.765 6.636 6.512 9 6.392 6.277 6.166 6.059 5.955 5.855 10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.500 4.560 4.502 13 4.445 4.390		l l	343.8	171.9	114.6		68.76
3 19.11 18.10 17.20 16.38 15.64 14.96 4 14.34 13.76 13.23 12.75 12.29 11.87 5° 11.47 11.10 10.76 10.43 10.13 9.839 6 9.567 9.309 9.065 8.834 8.614 8.405 7 8.206 8.016 7.834 7.661 7.496 7.337 8 7.185 7.040 6.900 6.765 6.636 6.512 9 6.392 6.277 6.166 6.059 5.955 5.855 10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039	1	1	49.11	42.98	38.20	34.38	31.26
4 14.34 13.76 13.23 12.75 12.29 11.87 5° 11.47 11.10 10.76 10.43 10.13 9.839 6 9.567 9.309 9.065 8.834 8.614 8.405 7 8.206 8.016 7.834 7.661 7.496 7.337 8 7.185 7.040 6.900 6.765 6.636 6.512 9 6.392 6.277 6.166 6.059 5.955 5.855 10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782	1	28.65	26.45	24.56	22.93	21.49	20.23
5° 11.47 11.10 10.76 10.43 10.13 9.839 6 9.567 9.309 9.065 8.834 8.614 8.405 7 8.206 8.016 7.834 7.661 7.496 7.337 8 7.185 7.040 6.900 6.765 6.636 6.512 9 6.392 6.277 6.166 6.059 5.955 5.855 10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556		19.11	18.10	17.20	16.38	15.64	14.96
6 9.567 9.309 9.065 8.834 8.614 8.405 7 8.206 8.016 7.834 7.661 7.496 7.337 8 7.185 7.040 6.900 6.765 6.636 6.512 9 6.392 6.277 6.166 6.059 5.955 5.855 10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.557 3.326 3.295 3.265 18 3.236 3.207 3.179	4	14.34	13.76	13.23	12.75	12.29	11.87
7 8.206 8.016 7.834 7.661 7.496 7.337 8 7.185 7.040 6.900 6.765 6.636 6.512 9 6.392 6.277 6.166 6.059 5.955 5.855 10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179	5	11.47		10.76	10.43	10.13	9.839
8 7.185 7.040 6.900 6.765 6.636 6.512 9 6.392 6.277 6.166 6.059 5.955 5.855 10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021		9.567		9.065	8.834	8.614	8.405
9 6.392 6.277 6.166 6.059 5.955 5.855 10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 <td></td> <td>8.206</td> <td>8.016</td> <td>7.834</td> <td>7.661</td> <td>7.496</td> <td>7.337</td>		8.206	8.016	7.834	7.661	7.496	7.337
10° 5.759 5.665 5.575 5.487 5.403 5.320 11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 </td <td></td> <td>7.185</td> <td>7.040</td> <td>6.900</td> <td>6.765</td> <td>6.636</td> <td>6.512</td>		7.185	7.040	6.900	6.765	6.636	6.512
11 5.241 5.164 5.089 5.016 4.945 4.876 12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 2.729 2.709 2.689 22 2.669 2.652 2.558 <td>9</td> <td>6.392</td> <td>6.277</td> <td>6.166</td> <td>6.059</td> <td>5.955</td> <td>5.855</td>	9	6.392	6.277	6.166	6.059	5.955	5.855
12 4.810 4.745 4.682 4.620 4.560 4.502 13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 2.729 2.709 2.689 22 2.669 2.650 2.632 2.613 2.595 2.577 23 2.559 2.542 2.525 2.508 2.491 2.475 24 2.245 2.241 <	1				5.487	5.403	5.320
13 4.445 4.390 4.336 4.284 4.232 4.182 14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 2.729 2.709 2.689 22 2.669 2.650 2.632 2.613 2.595 2.577 23 2.559 2.542 2.525 2.508 2.491 2.475 24 2.459 2.433 2.427 <td>11</td> <td>5.241</td> <td>5.164</td> <td>5.089</td> <td>5.016</td> <td>4.945</td> <td>4.876</td>	11	5.241	5.164	5.089	5.016	4.945	4.876
14 4.134 4.086 4.039 3.994 3.950 3.906 15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 2.729 2.709 2.689 22 2.669 2.650 2.632 2.613 2.595 2.577 23 2.559 2.542 2.525 2.508 2.491 2.475 24 2.459 2.443 2.427 2.411 2.396 2.381 25° 2.366 2.352 2.337 </td <td>12</td> <td>4.810</td> <td>4.745</td> <td>4.682</td> <td>4.620</td> <td>4.560</td> <td>4.502</td>	12	4.810	4.745	4.682	4.620	4.560	4.502
15° 3.864 3.822 3.782 3.742 3.703 3.665 16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 2.729 2.709 2.689 22 2.669 2.650 2.632 2.613 2.595 2.577 23 2.559 2.542 2.525 2.508 2.491 2.475 24 2.459 2.443 2.427 2.411 2.396 2.381 25° 2.366 2.352 2.337 2.323 2.309 2.295 26 2.281 2.268 2.254 </td <td>13</td> <td></td> <td>4.390</td> <td>4.336</td> <td>4.284</td> <td>4.232</td> <td>4.182</td>	13		4.390	4.336	4.284	4.232	4.182
16 3.628 3.592 3.556 3.521 3.487 3.453 17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 2.729 2.709 2.689 22 2.669 2.650 2.632 2.613 2.595 2.577 23 2.559 2.542 2.525 2.508 2.491 2.475 24 2.459 2.443 2.427 2.411 2.396 2.381 25° 2.366 2.352 2.337 2.323 2.309 2.295 26 2.281 2.268 2.254 2.241 2.228 2.215 27 2.203 2.190 2.178 <td>14</td> <td>4.134</td> <td>4.086</td> <td>4.039</td> <td>3.994</td> <td>3.950</td> <td>3.906</td>	14	4.134	4.086	4.039	3.994	3.950	3.906
17 3.420 3.388 3.357 3.326 3.295 3.265 18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 2.729 2.709 2.689 22 2.669 2.650 2.632 2.613 2.595 2.577 23 2.559 2.542 2.525 2.508 2.491 2.475 24 2.459 2.443 2.427 2.411 2.396 2.381 25° 2.366 2.352 2.337 2.323 2.309 2.295 26 2.281 2.268 2.254 2.241 2.228 2.215 27 2.203 2.190 2.178 2.166 2.154 2.142 28 2.130 2.118 2.107 2.096 2.085 2.074 29 2.063 2.052 <	l .	1	3.822	3.782	3.742	3.703	3.665
18 3.236 3.207 3.179 3.152 3.124 3.098 19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 2.729 2.709 2.689 22 2.669 2.650 2.632 2.613 2.595 2.577 23 2.559 2.542 2.525 2.508 2.491 2.475 24 2.459 2.443 2.427 2.411 2.396 2.381 25° 2.366 2.352 2.337 2.323 2.309 2.295 26 2.281 2.268 2.254 2.241 2.228 2.215 27 2.203 2.190 2.178 2.166 2.154 2.142 28 2.130 2.118 2.107 2.096 2.085 2.074 29 2.063 2.052 2.041 <td>16</td> <td>3.628</td> <td>3.592</td> <td>3.556</td> <td>3.521</td> <td>3.487</td> <td>3.453</td>	16	3.628	3.592	3.556	3.521	3.487	3.453
19 3.072 3.046 3.021 2.996 2.971 2.947 20° 2.924 2.901 2.878 2.855 2.833 2.812 21 2.790 2.769 2.749 2.729 2.709 2.689 22 2.669 2.650 2.632 2.613 2.595 2.577 23 2.559 2.542 2.525 2.508 2.491 2.475 24 2.459 2.443 2.427 2.411 2.396 2.381 25° 2.366 2.352 2.337 2.323 2.309 2.295 26 2.281 2.268 2.254 2.241 2.228 2.215 27 2.203 2.190 2.178 2.166 2.154 2.142 28 2.130 2.118 2.107 2.096 2.085 2.074 29 2.063 2.052 2.041 2.031 2.020 2.010 30° 2.000 1.990 1.980 </td <td>17</td> <td>3.420</td> <td>3.388</td> <td>3.357</td> <td>3.326</td> <td>3.295</td> <td>3.265</td>	17	3.420	3.388	3.357	3.326	3.295	3.265
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	3.236	3.207	3.179	3.152	3.124	3.098
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	3.072	3.046	3.021	2.996	2.971	- 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.924	2.901	2.878	2.855	2.833	2.812
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	2.790	2.769	2.749	2.729	2.709	2.689
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	2.669	2.650	2.632	2.613	2.595	2.577
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	2.559	2.542	2.525	2.508	2.491	2.475
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	2.459	2.443	2.427	2.411	2.396	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25°		2.352	2.337	2.323	2.309	2.295
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	2.281	2.268	2.254	2.241	2.228	2.215
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	2.203	2.190	2.178	2.166	2.154	2.142
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	2.130	2.118	2.107		2.085	2.074
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	2.063	2.052	2.041	2.031		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30°	2.000	1.990	1.980	1.970	1.961	1.951
33 1.836 1.828 1.820 1.812 1.804 1.796 34 1.788 1.781 1.773 1.766 1.758 1.751 35° 1.743 1.736 1.729 1.722 1.715 1.708 36 1.701 1.695 1.688 1.681 1.675 1.668 37 1.662 1.655 1.649 1.643 1.636 1.630 38 1.624 1.618 1.612 1.606 1.601 1.595 39 1.589 1.583 1.578 1.572 1.567 1.561 40° 1.556 1.550 1.545 1.540 1.535 1.529 41 1.524 1.519 1.514 1.509 1.504 1.499 42 1.494 1.490 1.485 1.480 1.476 1.471 43 1.466 1.462 1.457 1.453 1.448 1.444 44 1.440 1.435 1.431 <td>31</td> <td>1.942</td> <td>1.932</td> <td>1.923</td> <td>1.914</td> <td>1.905</td> <td>1.896</td>	31	1.942	1.932	1.923	1.914	1.905	1.896
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	1.887	1.878	1.870	1.861	1.853	1.844
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	1.836	1.828	1.820	1.812	1.804	1.796
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	1.788	1.781	1.773	1.766	1.758	1.751
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35°	1.743	1.736	1.729	1.722	1.715	1.708
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.701	1.695	1.688	1.681	1.675	1.668
38 1.624 1.618 1.612 1.606 1.601 1.595 39 1.589 1.583 1.578 1.572 1.567 1.561 40° 1.556 1.550 1.545 1.540 1.535 1.529 41 1.524 1.519 1.514 1.509 1.504 1.499 42 1.494 1.490 1.485 1.480 1.476 1.471 43 1.466 1.462 1.457 1.453 1.448 1.444 44 1.440 1.435 1.431 1.427 1.423 1.418	37	1.662	1.655		1.643	1.636	1.630
39 1.589 1.583 1.578 1.572 1.567 1.561 40° 1.556 1.550 1.545 1.540 1.535 1.529 41 1.524 1.519 1.514 1.509 1.504 1.499 42 1.494 1.490 1.485 1.480 1.476 1.471 43 1.466 1.462 1.457 1.453 1.448 1.444 44 1.440 1.435 1.431 1.427 1.423 1.418	38	1.624	1.618	1.612	1.606	1.601	
41 1.524 1.519 1.514 1.509 1.504 1.499 42 1.494 1.490 1.485 1.480 1.476 1.471 43 1.466 1.462 1.457 1.453 1.448 1.444 44 1.440 1.435 1.431 1.427 1.423 1.418	39	1.589	1.583	1.578	1.572	1.567	
42 1.494 1.490 1.485 1.480 1.476 1.471 43 1.466 1.462 1.457 1.453 1.448 1.444 44 1.440 1.435 1.431 1.427 1.423 1.418		ı	1.550	1.545		1.535	1.529
43 1.466 1.462 1.457 1.453 1.448 1.444 44 1.440 1.435 1.431 1.427 1.423 1.418		1.524	1.519	1.514	1.509	1.504	1.499
43 1.466 1.462 1.457 1.453 1.448 1.444 44 1.440 1.435 1.431 1.427 1.423 1.418	42	1.494	1.490	1.485	1.480	1.476	1.471
44 1.440 1.435 1.431 1.427 1.423 1.418	43	1.466	1.462	1.457	1.453	1.448	1.444
45° 1.414 1.410 1.406 1.402 1.398 1.394	44	1.440	1.435	1.431	1.427		
	45°	1.414	1.410	1.406	1.402	1.398	1.394

	x	0′	10′	20′	30′	40′	50′
	45°	1.414	1.410	1.406	1.402	1.398	1.394
I	46	1.390	1.386	1.382	1.379	1.375	1.371
l	47	1.367	1.364	1.360	1.356	1.353	1.349
I	48	1.346	1.342	1.339	1.335	1.332	1.328
ļ	49	1.325	1.322	1.318	1.315	1.312	1.309
İ	50°	1.305	1.302	1.299	1.296	1.293	1 000
ļ	51	1.287	1.284	1.281	1.236 1.278	1.293 1.275	1.290
Ì	52	1.269	1.266	1.263	1.260	1.258	1.272
ı	53	1.252	1.249	1.203 1.247	1.244	1.238 1.241	1.255
l	54	1.236	1.233	1.231	1.244 1.228	1.241 1.226	1.239
l		1	1,200	1.201	1.220	1.220	1.223
ĺ	55°	1.221	1.218	1.216	1.213	1.211	1.209
l	56	1.206	1.204	1.202	1.199	1.197	1.195
l	57	1.192	1.190	1.188	1.186	1.184	1.181
	58	1.179	1.177	1.175	1.173	1.171	1.169
	59	1.167	1.165	1.163	1.161	1.159	1.157
	60°	1.155	1.153	1.151	1.149	1.147	1.145
	61	1.143	1.142	1.140	1.138	1.136	1.134
	62	1.133	1.131	1.129	1.127	1.126	1.124
	63	1.122	1.121	1.119	1.117	1.116	1.114
	64	1.113	1.111	1.109	1.108	1.106	1.105
	65°	1.103	1.102	1.100	1.099	1.097	1.096
	66	1.095	1.093	1.092	1.090	1.089	1.088
	67	1.086	1.085	1.084	1.082	1.081	1.080
	68	1.079	1.077	1.076	1.075	1.074	1.072
	69	1.071	1.070	1.069	1.068	1.066	1.065
	70°	1.064	1.063	1.062	1.061	1.060	1.059
	71	1.058	1.057	1.056	1.054	1.053	1.052
	72	1.051	1.050	1.049	1.048	1.048	1.047
	73	1.046	1.045	1.044	1.043	1.042	1.041
	74	1.040	1.039	1.039	1.038	1.037	1.036
	75°	1.035	1.034	1.034	1.033	1.032	1.031
	76	1.031	1.030	1.029	1.028	1.028	1.027
	77	1.026	1.026	1.025	1.024	1.028 1.024	1.023
	78	1.022	1.022	1.025	1.024	1.024	1.019
	79	1.019	1.018	1.018	1.020	1.016	1.016
	80°	1.015					
		1.015	1.015	1.014	1.014	1.013	1.013
	81	1.012	1.012	1.012	1.011	1.011	1.010
	82 83	1.010 1.008	1.009	1.009	1.009	1.008	1.008
			1.007	1.007	1.006	1.006	1.006
	84	1.006	1.005	1.005	1.005	1.004	1.004
	85°	1.004	1.004	1.003	1.003	1.003	1.003
	86	1.002	1.002	1.002	1.002	1.002	1.002
	87	1.001	1.001	1.001	1.001	1.001	1.001
	38	1.001	1.001	1.000	1.000	1.000	1.000
5	39	1.000	1.000	1.000	1.000	1.000	1.000
•	90°	1.000					

9

I				T		
x	Sin x	$\cos x$	Tan x	Cot x	Sec x	Csc x
.00	.00000	1.00000	.00000	80	1.00000	∞
.01	.01000	.99995	.01000	99.9967	1.00005	100.0017
.02	.02000	.99980	.02000	49.9933	1.00020	50.0033
.03	.03000	.99955	.03001	33.3233	1.00045	33.3383
.04	.03999	.99920	.04002	24.9867	1.00080	25,0067
.04	.00000	.55520	.01002	24.5001	1.00000	20.000
.05	.04998	.99875	.05004	19.9833	1.00125	20.0083
.06	.05996	.99820	.06007	16.6467	1.00180	16.6767
.07	.06994	.99755	.07011	14.2624	1.00246	14.2974
.08	.07991	.99680	.08017	12.4733	1.00321	12.5133
.09	.08988	.99595	.09024	11.0811	1.00406	11.1261
.10	.09983	.99500	.10033	9.9666	1.00502	10.0167
.11	.10978	.99396	.11045	9.0542	1.00608	9.1093
.12	.11971	.99281	.12058	8.2933	1.00724	8.3534
.13	.12963	.99156	.13074	7.6489	1.00851	7.7140
.14	.13954	.99022	.14092	7.0961	1.00988	7.1662
.15	.14944	.98877	.15114	6.6166	1.01136	6.6917
.16	.15932	.98723	.16138	6.1966	1.01294	6.2767
.17	.16918	.98558	.17166	5.8256	1.01463	5.9108
.18	.17903	.98384	.18197	5.4954	1.01642	5.5857
.19	.18886	.98200	.19232	5.1997	1.01042	5.2950
.10	.10000	.30200	.19232	9.1991	1.01000	3,2300
.20	.19867	.98007	.20271	4.9332	1.02034	5.0335
.21	.20846	.97803	.21314	4.6917	1.02246	4.7971
.22	.21823	.97590	.22362	4.4719	1.02470	4.5823
.23	.22798	.97367	.23414	4.2709	1.02705	4.3864
.24	.23770	.97134	.24472	4.0864	1.02951	4.2069
.25	.24740	.96891	.25534	3.9163	1.03209	4.0420
.26	.25708	.96639	.26602	3.7591	1.03478	3.8898
.27	.26673	.96377	.27676	3.6133	1.03759	3.7491
.28	.27636	.96106	.28755	3.4776	1.04052	3.6185
.29	.28595	.95824	.29841	3.3511	1.04358	3.4971
.30	.29552	.95534	.30934	3.2327	1.04675	3.3839
.31	.30506	.95233	.32033	3.1218	1.05005	3.2781
.32	.31457	.94924	.33139	3.0176	1.05348	3.1790
.33	.32404	.94604	.34252	2.9195	1.05704	3.0860
.34	.33349	.94275	.35374	2.8270	1.06072	2.9986
.35	.34290	02027	96509	9 7905	1.00454	9 0169
.36	l .	.93937	.36503	2.7395	1.06454	2.9163
	.35227	.93590	.37640	2.6567	1.06849	2.8387
.37	.36162	.93233	.38786	2.5782	1.07258	2.7654
.38	.37092	.92866	.39941	2.5037	1.07682	2.6960
.39	.38019	.92491	.41105	2.4328	1.08119	2.6303
.40	.38942	.92106	.42279	2.3652	1.08570	2.5679

Table 9 (continued)

x	Sin x	$\cos x$	Tan x	$\operatorname{Cot} x$	Sec x	$\operatorname{Csc} x$
.40	.38942	.92106	.42279	2.3652	1.0857	2.5679
.41	.39861	.91712	.43463	2.3008	1.0904	2.5087
.42	.40776	.91309	.44657	2.2393	1.0952	2.4524
.43	.41687	.90897	.45862	2.1804	1.1002	2.3988
.44	.42594	.90475	.47078	2.1241	1.1053	2.3478
					1.1000	2.0110
.45	.43497	.90045	.48306	2.0702	1.1106	2.2990
.46	.44395	.89605	.49545	2.0184	1.1160	2.2525
.47	.45289	.89157	.50797	1.9686	1.1216	2.2081
.48	.46178	.88699	.52061	1.9208	1.1274	2.1655
.49	.47063	.88233	.53339	1.8748	1.1334	2.1248
.50	.47943	.87758	.54630	1.8305	1.1395	2.0858
.51	.48818	.87274	.55936	1.7878	1.1458	2.0484
.52	.49688	.86782	.57256	1.7465	1.1523	2.0126
.53	.50553	.86281	.58592	1.7067	1.1525	1.9781
.54	.51414	.85771	.59943	1.6683	1.1659	1.9450
.01	.01414	.00111	.02040	1.0000	1.1000	1.5450
.55	.52269	.85252	.61311	1.6310	1.1730	1.9132
.56	.53119	.84726	.62695	1.5950	1.1803	1.8826
.57	.53963	.84190	.64097	1.5601	1.1878	1.8531
.58	.54802	.83646	.65517	1.5263	1.1955	1.8247
.59	.55636	.83094	.66956	1.4935	1.2035	1.7974
.60	.56464	.82534	.68414	1.4617	1.2116	1.7710
.61	.57287	.81965	.69892	1.4308	1.2200	1.7456
.62	.58104	.81388	.71391	1.4007	1.2287	1.7211
.63	.58914	.80803	.72911	1.3715	1.2376	1.6974
.64	.59720	.80210	.74454	1.3431	1.2467	1.6745
or l	20710	5 0000	# 4000	1.0154	1 07 01	
.65	.60519	.79608	.76020	1.3154	1.2561	1.6524
.66	.61312	.78999	.77610	1.2885	1.2658	1.6310
.67	.62099	.78382	.79225	1.2622	1.2758	1.6103
.68	.62879	.77757	.80866	1.2366	1.2861	1.5903
.69	.63654	.77125	.82534	1.2116	1.2966	1.5710
.70	.64422	.76484	.84229	1.1872	1.3075	1.5523
.71	.65183	.75836	.85953	1.1634	1.3186	1.5341
.72	.65938	.75181	.87707	1.1402	1.3301	1.5166
.73	.66687	.74517	.89492	1.1174	1.3420	1.4995
.74	.67429	.73847	.91309	1.0952	1.3542	1.4830
.75	.68164	.73169	09160	1.0734	1.3667	1 4071
.76	.68892	1	.93160	1.0521	1	1.4671
.77		.72484	.95045	1	1.3796	1.4515
	.69614	.71791	.96967	1.0313	1.3929	1.4365
.78	.70328	.71091	.98926	1.0109	1.4066	1.4219
.79	.71035	.70385	1.0092	.99084	1.4208	1.4078
.80	.71736	.69671	1.0296	.97121	1.4353	1.3940

Table 9 (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T	T	 	Т	T	
.81 .72429 .68950 1.0505 .95197 1.4503 1.3807 .82 .73115 .68222 1.0717 .93309 1.4658 1.3677 .83 .73793 .67488 1.0934 .91455 1.4818 1.3551 .84 .74464 .66746 1.1156 .89635 1.4982 1.3429 .85 .75128 .65998 1.1383 .87848 1.5152 1.3311 .86 .75784 .65244 1.1616 .86091 1.5327 1.3195 .87 .76433 .64483 1.1853 .84365 1.5695 1.2975 .89 .77707 .62941 1.2346 .80998 1.5888 1.2869 .90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61875 1.2864 .77738 1.6293 1.2669 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 <td< th=""><th>x</th><th>Sin x</th><th>Cos x</th><th>Tan x</th><th>$\cot x$</th><th>Sec x</th><th>Csc x</th></td<>	x	Sin x	Cos x	Tan x	$\cot x$	Sec x	Csc x
.82 .73115 .68222 1.0717 .93309 1.4658 1.3677 .83 .73793 .67488 1.0934 .91455 1.4818 1.3551 .84 .74464 .66746 1.1156 .89635 1.4982 1.3429 .85 .75128 .65998 1.1383 .87848 1.5152 1.3131 .86 .75784 .65244 1.1616 .86091 1.5327 1.3195 .87 .76433 .64483 1.1853 .84365 1.5508 1.3083 .88 .77074 .63715 1.2097 .82668 1.5695 1.2975 .89 .77707 .62941 1.2346 .80998 1.5888 1.2869 .90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2666 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 <td< td=""><td></td><td></td><td>.69671</td><td>1.0296</td><td>.97121</td><td>1.4353</td><td>1.3940</td></td<>			.69671	1.0296	.97121	1.4353	1.3940
.83 .73793 .67488 1.0934 .91455 1.4818 1.3551 .84 .74464 .66746 1.1156 .89635 1.4982 1.3429 .85 .75128 .65998 1.1383 .87848 1.5152 1.3311 .86 .75784 .65244 1.1616 .86091 1.5327 1.3195 .87 .76433 .64483 1.1853 .84365 1.5508 1.3083 .88 .77074 .63715 1.2097 .82668 1.5695 1.2975 .89 .77707 .62941 1.2346 .80998 1.5888 1.2869 .90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2669 .92 .79560 .60582 1.3133 .76146 1.6507 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 <td< td=""><td>.81</td><td>.72429</td><td>.68950</td><td>1.0505</td><td>.95197</td><td>1.4503</td><td>1.3807</td></td<>	.81	.72429	.68950	1.0505	.95197	1.4503	1.3807
.83 .73793 .67488 1.0934 .91455 1.4818 1.3551 .84 .74464 .66746 1.1156 .89635 1.4982 1.3429 .85 .75128 .65998 1.1383 .87848 1.5152 1.3311 .86 .75784 .65244 1.1616 .86091 1.5327 1.3195 .87 .76433 .64483 1.1853 .84365 1.5508 1.3083 .88 .77074 .62941 1.2346 .80998 1.5695 1.2975 .89 .77707 .62941 1.2346 .80998 1.5688 1.2869 .90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2669 .92 .79560 .60582 1.3133 .76146 1.6507 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2343 <td< td=""><td>.82</td><td>.73115</td><td>.68222</td><td>1.0717</td><td>.93309</td><td>1.4658</td><td>1.3677</td></td<>	.82	.73115	.68222	1.0717	.93309	1.4658	1.3677
.84 .74464 .66746 1.1156 .89635 1.4982 1.3429 .85 .75128 .65998 1.1383 .87848 1.5152 1.3311 .86 .75784 .65244 1.1616 .86091 1.5227 1.3195 .87 .76433 .64483 1.1853 .84365 1.5508 1.3083 .88 .77074 .62941 1.2246 .80998 1.5888 1.2975 .89 .77707 .62941 1.22602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2569 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 <t< td=""><td>.83</td><td>.73793</td><td>.67488</td><td>1.0934</td><td>.91455</td><td>1.4818</td><td></td></t<>	.83	.73793	.67488	1.0934	.91455	1.4818	
.85 .75128 .65998 1.1383 .87848 1.5152 1.3311 .86 .75784 .65244 1.1616 .86091 1.5327 1.3195 .87 .76433 .64483 1.1853 .84365 1.5508 1.3083 .88 .77074 .62941 1.2346 .80998 1.5888 1.2869 .90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2666 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 <td< td=""><td>.84</td><td>.74464</td><td>.66746</td><td>1</td><td></td><td>1</td><td></td></td<>	.84	.74464	.66746	1		1	
.86 .75784 .65244 1.1616 .86091 1.5327 1.3195 .87 .76433 .64483 1.1853 .84365 1.5508 1.3083 .88 .77074 .63715 1.2097 .82668 1.5695 1.2975 .89 .77707 .62941 1.2346 .80998 1.5888 1.2869 .90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2666 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3499 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 <td< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>	_						-
.87 .76433 .64483 1.1853 .84365 1.5508 1.3083 .88 .77074 .63715 1.2097 .82668 1.5695 1.2975 .89 .77707 .62941 1.2346 .80998 1.5888 1.2766 .90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2666 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 <td< td=""><td></td><td>1</td><td></td><td>1.1383</td><td>.87848</td><td>1.5152</td><td>1.3311</td></td<>		1		1.1383	.87848	1.5152	1.3311
.88 .77074 .63715 1.2097 .82668 1.5695 1.2975 .89 .77707 .62941 1.2346 .80998 1.5888 1.2869 .90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2666 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 <td< td=""><td></td><td>.75784</td><td>.65244</td><td>1.1616</td><td>.86091</td><td>1.5327</td><td>1.3195</td></td<>		.75784	.65244	1.1616	.86091	1.5327	1.3195
.89 .77707 .62941 1.2346 .80998 1.5888 1.2869 .90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2666 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .100 .84147 .54030 1.5574 .64209 1.8508 1.1884 <t< td=""><td>.87</td><td></td><td>.64483</td><td>1.1853</td><td>.84365</td><td>1.5508</td><td>1.3083</td></t<>	.87		.64483	1.1853	.84365	1.5508	1.3083
.90 .78333 .62161 1.2602 .79355 1.6087 1.2766 .91 .78950 .61375 1.2864 .77738 1.6293 1.2666 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 <t< td=""><td>.88</td><td>.77074</td><td>.63715</td><td>1.2097</td><td>.82668</td><td>1.5695</td><td>1.2975</td></t<>	.88	.77074	.63715	1.2097	.82668	1.5695	1.2975
.91 .78950 .61375 1.2864 .77738 1.6293 1.2666 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 <	.89	.77707	.62941	1.2346	.80998	1.5888	1.2869
.91 .78950 .61375 1.2864 .77738 1.6293 1.2666 .92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 <	.90	.78333	62161	1 2602	79255	1 6097	1 2766
.92 .79560 .60582 1.3133 .76146 1.6507 1.2569 .93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5574 .64209 1.8508 1.1884 1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665			1	1			1
.93 .80162 .59783 1.3409 .74578 1.6727 1.2475 .94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 1.01 .86883 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04		ľ	i .	1		1	i
.94 .80756 .58979 1.3692 .73034 1.6955 1.2383 .95 .81342 .58168 1.3984 .71511 1.7191 1.2294 .96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.159				1	1	1	ľ
.95		1	1	1			
.96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.1595 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463	.04	.80130	.00010	1.3092	.75054	1.0955	1.2383
.96 .81919 .57352 1.4284 .70010 1.7436 1.2207 .97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.1595 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463	.95	.81342	.58168	1.3984	.71511	1.7191	1.2294
.97 .82489 .56530 1.4592 .68531 1.7690 1.2123 .98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.1595 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463 1.07 .87720 .48012 1.8270 .54734 2.0828 1.1400 1.09 .88663 .46249 1.9171 .52162 2.1622 1.1279<	.96	.81919	.57352	1.4284	.70010	1.7436	
.98 .83050 .55702 1.4910 .67071 1.7953 1.2041 .99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.1595 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463 1.07 .87720 .48012 1.8270 .54734 2.0828 1.1400 1.08 .88196 .47133 1.8712 .53441 2.1217 1.1338 1.09 .88663 .46249 1.9171 .52162 2.1622 1.1279	.97	.82489	.56530	1.4592	.68531	1	
.99 .83603 .54869 1.5237 .65631 1.8225 1.1961 1.00 .84147 .54030 1.5574 .64209 1.8508 1.1884 1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.1595 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463 1.07 .87720 .48012 1.8270 .54734 2.0828 1.1400 1.08 .88196 .47133 1.8712 .53441 2.1217 1.1338 1.09 .88663 .46249 1.9171 .52162 2.1622 1.1279 1.10 .89121 .45360 1.9648 .50897 2.2046 1.122	.98	.83050	.55702	1.4910	ľ		
1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.1595 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463 1.07 .87720 .48012 1.8270 .54734 2.0828 1.1400 1.08 .88196 .47133 1.8712 .53441 2.1217 1.1338 1.09 .88663 .46249 1.9171 .52162 2.1622 1.1279 1.10 .89121 .45360 1.9648 .50897 2.2046 1.1221 1.11 .89570 .44466 2.0143 .49644 2.2489 1.1164 1.12 .90010 .43568 2.0660 .48404 2.2952 1.11	.99	.83603	.54869	1.5237			1 :
1.01 .84683 .53186 1.5922 .62806 1.8802 1.1809 1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.1595 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463 1.07 .87720 .48012 1.8270 .54734 2.0828 1.1400 1.08 .88196 .47133 1.8712 .53441 2.1217 1.1338 1.09 .88663 .46249 1.9171 .52162 2.1622 1.1279 1.10 .89121 .45360 1.9648 .50897 2.2046 1.1221 1.11 .89570 .44466 2.0143 .49644 2.2489 1.1164 1.12 .90010 .43568 2.0660 .48404 2.2952 1.11	1.00	04445	7 4000				
1.02 .85211 .52337 1.6281 .61420 1.9107 1.1736 1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.1595 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463 1.07 .87720 .48012 1.8270 .54734 2.0828 1.1400 1.08 .88196 .47133 1.8712 .53441 2.1217 1.1338 1.09 .88663 .46249 1.9171 .52162 2.1622 1.1279 1.10 .89121 .45360 1.9648 .50897 2.2046 1.1221 1.11 .89570 .44466 2.0143 .49644 2.2489 1.1164 1.12 .90010 .43568 2.0660 .48404 2.2952 1.1110 1.13 .90441 .42666 2.1198 .47175 2.3438 1.05			ı	1			1
1.03 .85730 .51482 1.6652 .60051 1.9424 1.1665 1.04 .86240 .50622 1.7036 .58699 1.9754 1.1665 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463 1.07 .87720 .48012 1.8270 .54734 2.0828 1.1400 1.08 .88196 .47133 1.8712 .53441 2.1217 1.1338 1.09 .88663 .46249 1.9171 .52162 2.1622 1.1279 1.10 .89121 .45360 1.9648 .50897 2.2046 1.1221 1.11 .89570 .44466 2.0143 .49644 2.2489 1.1164 1.12 .90010 .43568 2.0660 .48404 2.2952 1.1110 1.13 .90441 .42666 2.1198 .47175 2.3438 1.1057 1.14 .90863 .41759 2.1759 .45959 2.3947 1.10					l	E .	1.1809
1.04 .86240 .50622 1.7036 .58699 1.9754 1.1595 1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463 1.07 .87720 .48012 1.8270 .54734 2.0828 1.1400 1.08 .88196 .47133 1.8712 .53441 2.1217 1.1338 1.09 .88663 .46249 1.9171 .52162 2.1622 1.1279 1.10 .89121 .45360 1.9648 .50897 2.2046 1.1221 1.11 .89570 .44466 2.0143 .49644 2.2489 1.1164 1.12 .90010 .43568 2.0660 .48404 2.2952 1.1110 1.13 .90441 .42666 2.1198 .47175 2.3438 1.1057 1.14 .90863 .41759 2.1759 .45959 2.3947 1.1006					l		1.1736
1.05 .86742 .49757 1.7433 .57362 2.0098 1.1528 1.06 .87236 .48887 1.7844 .56040 2.0455 1.1463 1.07 .87720 .48012 1.8270 .54734 2.0828 1.1400 1.08 .88196 .47133 1.8712 .53441 2.1217 1.1338 1.09 .88663 .46249 1.9171 .52162 2.1622 1.1279 1.10 .89121 .45360 1.9648 .50897 2.2046 1.1221 1.11 .89570 .44466 2.0143 .49644 2.2489 1.1164 1.12 .90010 .43568 2.0660 .48404 2.2952 1.1110 1.13 .90441 .42666 2.1198 .47175 2.3438 1.1057 1.14 .90863 .41759 2.1759 .45959 2.3947 1.1006 1.15 .91276 .40849 2.2345 .44753 2.4481 1.0956 1.16 .91680 .39934 2.2958 .43558 2.5041 1.09				1	l	1	1.1665
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.04	.86240	.50622	1.7036	.58699	1.9754	1.1595
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.05	.86742	.49757	1.7433	.57362	2.0098	1.1528
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.06	.87236	.48887	1.7844	.56040	2.0455	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.07	.87720	.48012	1.8270	.54734	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.08	.88196	.47133	1.8712	.53441	2.1217	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.09	.88663	.46249	1.9171	.52162	i i	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.10	89121	45360	1 9648	50807	2 2046	1 1001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1			
1.14 .90863 .41759 2.1759 .45959 2.3947 1.1006 1.15 .91276 .40849 2.2345 .44753 2.4481 1.0956 1.16 .91680 .39934 2.2958 .43558 2.5041 1.0907 1.17 .92075 .39015 2.3600 .42373 2.5631 1.0861 1.18 .92461 .38092 2.4273 .41199 2.6252 1.0815 1.19 .92837 .37166 2.4979 .40034 2.6906 1.0772							
1.15 .91276 .40849 2.2345 .44753 2.4481 1.0956 1.16 .91680 .39934 2.2958 .43558 2.5041 1.0907 1.17 .92075 .39015 2.3600 .42373 2.5631 1.0861 1.18 .92461 .38092 2.4273 .41199 2.6252 1.0815 1.19 .92837 .37166 2.4979 .40034 2.6906 1.0772							
1.16 .91680 .39934 2.2958 .43558 2.5041 1.0907 1.17 .92075 .39015 2.3600 .42373 2.5631 1.0861 1.18 .92461 .38092 2.4273 .41199 2.6252 1.0815 1.19 .92837 .37166 2.4979 .40034 2.6906 1.0772	1.1.1	.00000	.41199	4.1199	.40808	Z.3947	1.1006
1.16 .91680 .39934 2.2958 .43558 2.5041 1.0907 1.17 .92075 .39015 2.3600 .42373 2.5631 1.0861 1.18 .92461 .38092 2.4273 .41199 2.6252 1.0815 1.19 .92837 .37166 2.4979 .40034 2.6906 1.0772	1.15	.91276	.40849	2.2345	.44753	2.4481	1.0956
1.17 .92075 .39015 2.3600 .42373 2.5631 1.0861 1.18 .92461 .38092 2.4273 .41199 2.6252 1.0815 1.19 .92837 .37166 2.4979 .40034 2.6906 1.0772	1.16	.91680	.39934	2.2958	.43558	2.5041	
1.18 .92461 .38092 2.4273 .41199 2.6252 1.0815 1.19 .92837 .37166 2.4979 .40034 2.6906 1.0772	1.17	.92075	.39015	2.3600		2.5631	
1.19 .92837 .37166 2.4979 .40034 2.6906 1.0772	1.18	.92461	.38092				
1.20 .93204 .36236 2.5722 .38878 2.7597 1.0729	1.19	.92837					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.00	00004	0.000.0	2.5500			
	1.20	.93204	.36236	2.5722	.38878	2.7597	1.0729

Table 9 (continued)

	T				,	
x	Sin x	$\cos x$	Tan x	$\operatorname{Cot} x$	Sec x	Csc x
1.20	.93204	.36236	2.5722	.38878	2.7597	1.07292
1.21	.93562	.35302	2.6503	.37731	2.8327	1.06881
1.22	.93910	.34365	2.7328	.36593	2.9100	1.06485
1.23	.94249	.33424	2.8198	.35463	2.9919	1.06102
1.24	.94578	.32480	2.9119	.34341	3.0789	1.05732
	+			.01011	3.0103	1.00702
1.25	.94898	.31532	3.0096	.33227	3.1714	1.05376
1.26	.95209	.30582	3.1133	.32121	3.2699	1.05032
1.27	.95510	.29628	3.2236	.31021	3.3752	1.04701
1.28	.95802	.28672	3.3414	.29928	3.4878	1.04382
1.29	.96084	.27712	3.4672	.28842	3.6085	1.94076
100						
1.30	.96356	.26750	3.6021	.27762	3.7383	1.03782
1.31	.96618	.25785	3.7471	.26687	3.8782	1.03500
1.32	.96872	.24818	3.9033	.25619	4.0294	1.03230
1.33	.97115	.23848	4.0723	.24556	4.1933	1.02971
1.34	.97348	.22875	4.2556	.23498	4.3715	1.02724
1 95	07570	21001				
1.35	.97572	.21901	4.4552	.22446	4.5661	1.02488
1.36	.97786	.20924	4.6734	.21398	4.7792	1.02264
1.37	.97991	.19945	4.9131	.20354	5.0138	1.02050
1.38	.98185	.18964	5.1774	.19315	5.2731	1.01848
1.39	.98370	.17981	5.4707	.18279	5.5613	1.01657
1.40	.98545	.16997	5.7979	.17248	5.8835	1.01477
1.41	.98710	.16010	6.1654	.16220	6.2459	1.01307
1.42	.98865	.15023	6.5811	.15195	6.6567	1.01348
1.43	.99010	.14033	7.0555	.14173	7.1260	1.00999
1.44	.99146	.13042	7.6018	.13155	7.6673	1.00353
						1.00002
1.45	.99271	.12050	8.2381	.12139	8.2986	1.00734
1.46	.99387	.11057	8.9886	.11125	9.0441	1.00617
1.47	.99492	.10063	9.8874	.10114	9.9378	1.00510
1.48	.99588	.09067	10.9834	.09105	11.0288	1.00414
1.49	.99674	.08071	12.3499	.08097	12.3903	1.00327
1.50	.99749	.07074	14 1014	07004	144000	4.00
1.51	.99815	.06076	14.1014	.07091	14.1368	1.00251
1.52	.99871	.05076	16.4281	.06087	16.4585	1.00185
1.53	.99917	l I	19.6695	.05084	19.6949	1.00129
1.54	.99953	.04079 .03079	24.4984	.04082	24.5188	1.00083
1.04	.00000	.03079	32.4611	.03081	32.4765	1.00047
1.55	.99978	.02079	48.0785	.02080	48.0889	1.00022
1.56	.99994	.01080	92.6205	.01080	92.6259	
1.57	1.00000	.00080	1255.77	.00080	1255.77	1.00006
1.58	.99996	00920	-108.649	00920	-1255.77 -108.654	1.00000
1.59	.99982	01920	-52.0670	00920 01921	-108.654 -52.0766	1.00004
			32.00.0	.01021	32.0100	1.00018
1.60	.99957	02920	-34.2325	02921	-34.2471	1.00043
					3	1,00040

$\log \sin x$ (x in degrees and minutes)

x	0′	10'	20′	30′	40′	50′
0°		7.4637	7.7648	7.9408	8.0658	8.1627
1	8.2419	8.3088	8.3668	8.4179	8.4637	8.5050
2	8.5428	8.5776	8.6097	8.6397	8.6677	8.6940
3	8.7188	8.7423	8.7645	8.7857	8.8059	8.8251
4	8.8436	8.8613	8.8783	8.8946	8.9104	8.9256
5°	8.9403	8.9545	8.9682	8.9816	8.9945	9.0070
6	9.0192	9.0311	9.0426	9.0539	9.0648	9.0755
7	9.0859	9.0961	9.1060	9.1157	9.1252	9.1345
8	9.1436	9.1525	9.1612	9.1697	9.1781	9.1863
9	9.1943	9.2022	9.2100	9.2176	9.2251	9.2324
10°	9.2397	9.2468	9.2538	9.2606	9.2674	9.2740
11	9.2806	9.2870	9.2934	9.2997	9.3058	9.3119
12	9.3179	9.3238	9.3296	9.3353	9.3410	9.3466
13	9.3521	9.3575	9.3629	9.3682	9.3734	9.3786
14	9.3837	9.3887	9.3937	9.3986	9.4035	9.4083
15°	9.4130	9.4177	9.4223	9.4269	9.4314	9.4359
16	9.4403	9.4447	9.4491	9.4533	9.4576	9.4618
17	9.4659	9.4700	9.4741	9.4781	9.4821	9.4861
18	9.4900	9.4939	9.4977	9.5015	9.5052	9.5090
19	9.5126	9.5163	9.5199	9.5235	9.5270	9.5306
20°	9.5341	9.5375	9.5409	9.5443	9.5477	9.5510
21	9.5543	9.5576	9.5609	9.5641	9.5673	9.5704
22	9.5736	9.5767	9.5798	9.5828	9.5859	9.5889
23	9.5919	9.5948	9.5978	9.6007	9.6036	9.6065
24	9.6093	9.6121	9.6149	9.6177	9.6205	9.6232
25°	9.6259	9.6286	9.6313	9.6340	9.6366	9.6392
26	9.6418	9.6444	9.6470	9.6495	9.6521	9.6546
27	9.6570	9.6595	9.6620	9.6644	9.6668	9.6692
28	9.6716	9.6740	9.6763	9.6787	9.6810	9.6833
29	9.6856	9.6878	9.6901	9.6923	9.6946	9.6968
30°	9.6990	9.7012	9.7033	9.7055	9.7076	9.7097
31	9.7118	9.7139	9.7160	9.7181	9.7201	9.7222
32	9.7242	9.7262	9.7282	9.7302	9.7322	9.7342
33	9.7361	9.7380	9.7400	9.7419	9.7438	9.7457
34	9.7476	9.7494	9.7513	9.7531	9.7550	9.7568
35°	9.7586	9.7604	9.7622	9.7640	9.7657	9.7675
36	9.7692	9.7710	9.7727	9.7744	9.7761	9.7778
37	9.7795	9.7811	9.7828	9.7844	9.7861	9.7877
38	9.7893	9.7910	9.7926	9.7941	9.7957	9.7973
39	9.7989	9.8004	9.8020	9.8035	9.8050	9.8066
40°	9.8081	9.8096	9.8111	9.8125	9.8140	9.8155
41	9.8169	9.8184	9.8198	9.8213	9.8227	9.8241
42	9.8255	9.8269	9.8283	9.8297	9.8311	9.8324
43	9.8338	9.8351	9.8365	9.8378	9.8391	9.8405
44	9.8418	9.8431	9.8444	9.8457	9.8469	9.8482
45°	9.8495	9.8507	9.8520	9.8532	9.8545	9.8557

Table 10 (continued)

log sin x (x in degrees and minutes)

x	0′	10′	20′	30′	40′	50′
45°	9.8495	9.8507	9.8520	9.8532	9.8545	9.8557
46	9.8569	9.8582	9.8594	9.8606	9.8618	9.8629
47	9.8641	9.8653	9.8665	9.8676	9.8688	9.8699
48	9.8711	9.8722	9.8733	9.8745	9.8756	9.8767
49	9.8778	9.8789	9.8800	9.8810	9.8821	9.8832
50°	9.8843	9.8853	9.8864	9.8874	9.8884	9.8895
51	9.8905	9.8915	9.8925	9.8935	9.8945	3.8955
52	9.8965	9.8975	9.8985	9.8995	9.9004	9.9014
53	9.9023	9.9033	9.9042	9.9052	9.9061	9.9070
54	9.9080	9.9089	9.9098	9.9107	9.9116	9.9125
55°	9.9134	9.9142	9.9151	9.9160	9.9169	9.9177
56	9.9186	9.9194	9.9203	9.9211	9.9219	9.9228
57	9.9236	9.9244	9.9252	9.9260	9.9268	9.9276
58	9.9284	9.9292	9.9300	9.9308	9.9315	9.9323
59	9.9331	9.9338	9.9346	9.9353	9.9361	9.9368
60°	0.0975					
	9.9375	9.9383	9.9390	9.9397	9.9404	9.9411
61	9.9418	9.9425	9.9432	9.9439	9.9446	9.9453
62	9.9459	9.9466	9.9473	9.9479	9.9486	9.9492
63	9.9499	9.9505	9.9512	9.9518	9.9524	9.9530
64	9.9537	9.9543	9.9549	9.9555	9.9561	9.9567
65°	9.9573	9.9579	9.9584	9.9590	9.9596	9.9602
66	9.9607	9.9613	9.9618	9.9624	9.9629	9.9635
67	9.9640	9.9646	9.9651	9.9656	9.9661	9.9667
68	9.9672	9.9677	9.9682	9.9687	9.9692	9.9697
69	9.9702	9.9706	9.9711	9.9716	9.9721	9.9725
70°	9.9730	9.9734	9.9739	9.9743	9.9748	9.9752
71	9.9757	9.9761	9.9765	9.9770	9.9774	9.9778
72	9.9782	9.9786	9.9790	9.9794	9.9798	9.9802
73	9.9806	9.9810	9.9814	9.9817	9.9821	9.9825
74	9.9828	9.9832	9.9836	9.9839	9.9843	9.9846
75°	9.9849	9.9853	9.9856	9.9859	9.9863	9.9866
76	9.9869	9.9872	9.9875	9.9878	9.9881	9.9884
77	9.9887	9.9890	9.9893	9.9896	9.9899	9.9901
78	9.9904	9.9907	9.9909	9.9912	9.9914	9.9917
79	9.9919	9.9922	9.9924	9.9927	9.9929	9.9931
80°	9.9934	9.9936	9.9938	9.9940	9.9942	9.9944
81	9.9946	9.9948	9.9950	9.9952	9.9954	9.9956
82	9.9958	9.9959	9.9961	9.9963	9.9964	9.9966
83	9.9968	9.9969	9.9971	9.9972	9.9973	9.9975
84	9.9976	9.9977	9.9979	9.9980	9.9981	9.9982
85°	9.9983	9.9985	9.9986	9.9987	9.9988	9.9989
86	9.9989	9.9990	9.9991	9.9992	9.9993	9.9993
87	9.9994	9.9995	9.9995	9.9996	9.9996	9.9997
88	9.9997	9.9998	9.9998	9.9999	9.9999	9.9999
89	9.9999	10.0000	10.0000	10.0000	10.0000	10.0000
90°	10.0000					

log cos x (x in degrees and minutes) [subtract 10 from each entry]

\boldsymbol{x}	0′	10′	20′	30′	40′	50′
0°	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000
1	9.9999	9.9999	9.9999	9.9999	9.9998	9.9998
2	9.9997	9.9997	9.9996	9.9996	9.9995	9.9995
3	9.9994	9.9993	9.9993	9.9992	9.9991	9.9990
4	9.9989	9.9989	9.9988	9.9987	9.9986	9.9985
5°	9.9983	9.9982	9.9981	9.9980	9.9979	9.9977
6	9.9976	9.9975	9.9973	9.9972	9.9971	9.9969
7	9.9968	9.9966	9.9964	9.9963	9.9961	9.9959
8	9.9958	9.9956	9.9954	9.9952	9.9950	9.9948
9	9.9946	9.9944	9.9942	9.9940	9.9938	9.9936
10°	9.9934	9.9931	9.9929	9.9927	9.9924	9.9922
11	9.9919	9.9917	9.9914	9.9912	9.9909	9.9907
12	9.9904	9.9901	9.9899	9.9896	9.9893	9.9890
13	9.9887	9.9884	9.9881	9.9878	9.9875	9.9872
14	9.9869	9.9866	9.9863	9.9859	9.9856	9.9853
15°	9.9849	9.9846	9.9843	9.9839	9.9836	9.9832
16	9.9828	9.9825	9.9821	9.9817	9.9814	9.9810
17	9.9806	9.9802	9.9798	9.9794	9.9790	9.9786
18	9.9782	9.9778	9.9774	9.9770	9.9765	9.9761
19	9.9757	9.9752	9.9748	9.9743	9.9739	9.9734
20°	9.9730	9.9725	9.9721	9.9716	9.9711	9.9706
21	9.9702	9.9697	9.9692	9.9687	9.9682	9.9677
22	9.9672	9.9667	9.9661	9.9656	9.9651	9.9646
23	9.9640	9.9635	9.9629	9.9624	9.9618	9.9613
24	9.9607	9.9602	9.9596	9.9590	9.9584	9.9579
25°	9.9573	9.9567	9.9561	9.9555	9.9549	9.9543
26	9.9537	9.9530	9.9524	9.9518	9.9512	9.9505
27	9.9499	9.9492	9.9486	9.9479	9.9473	9.9466
28	9.9459	9.9453	9.9446	9.9439	9.9432	9.9425
29	9.9418	9.9411	9.9404	9.9397	9.9390	9.9383
30°	9.9375	9.9368	9.9361	9.9353	9.9346	9.9338
31	9.9331	9.9323	9.9315	9.9308	9.9300	9.9292
32	9.9284	9.9276	9.9268	9.9260	9.9252	9.9244
33	9.9236	9.9228	9.9219	9.9211	9.9203	9.9194
34	9.9186	9.9177	9.9169	9.9160	9.9151	9.9142
35°	9.9134	9.9125	9.9116	9.9107	9.9098	9.9089
36	9.9080	9.9070	9.9061	9.9052	9.9042	9.9033
37	9.9023	9.9014	9.9004	9.8995	9.8985	9.8975
38	9.8965	9.8955	9.8945	9.8935	9.8925	9.8915
39	9.8905	9.8895	9.8884	9.8874	9.8864	9.8853
40°	9.8843	9.8832	9.8821	9.8810	9.8800	9.8789
41	9.8778	9.8767	9.8756	9.8745	9.8733	9.8722
42	9.8711	9.8699	9.8688	9.8676	9.8665	9.8653
43	9.8641	9.8629	9.8618	9.8606	9.8594	9.8582
44	9.8569	9.8557	9.8545	9.8532	9.8520	9.8507
45°	9.8495	9.8482	9.8469	9.8457	9.8444	9.8431

Table 11 (continued)

$\log \cos x$ (x in degrees and minutes)

x	0′	10′	20′	30′	40′	50′
45°	9.8495	9.8482	9.8469	9.8457	9.8444	9.8431
46	9.8418	9.8405	9.8391	9.8378	9.8365	9.8351
47	9.8338	9.8324	9.8311	9.8297	9.8283	9.8269
48	9.8255	9.8241	9.8227	9.8213	9.8198	9.8184
49	9.8169	9.8155	9.8140	9.8125	9.8111	9.8096
50°	9.8081	9.8066	9.8050	9.8035	9.8020	9.8004
51	9.7989	9.7973	9.7957	9.7941	9.7926	9.7910
52	9.7893	9.7877	9.7861	9.7844	9.7828	9.7811
53	9.7795	9.7778	9.7761	9.7744	9.7727	9.7710
54	9.7692	9.7675	9.7657	9.7640	9.7622	9.7604
55°	9.7586	9.7568	9.7550	9.7531	9.7513	9.7494
56	9.7476	9.7457	9.7438	9.7419	9.7400	9.7380
57	9.7361	9.7342	9.7322	9.7302	9.7282	
58	9.7242	9.7222	9.7201	9.7302		9.7262
59	9.7118	9.7097	9.7201 9.7076		9.7160	9.7139
				9.7055	9.7033	9.7012
60°	9.6990	9.6968	9.6946	9.6923	9.6901	9.6878
61	9.6856	9.6833	9.6810	9.6787	9.6763	9.6740
62	9.6716	9.6692	9.6668	9.6644	9.6620	9.6595
63	9.6570	9.6546	9.6521	9.6495	9.6470	9.6444
64	9.6418	9.6392	9.6366	9.6340	9.6313	9.6286
65°	9.6259	9.6232	9.6205	9.6177	9.6149	9.6121
66	9.6093	9.6065	9.6036	9.6007	9.5978	9.5948
67	9.5919	9.5889	9.5859	9.5828	9.5798	9.5767
68	9.5736	9.5704	9.5673	9.5641	9.5609	9.5576
69	9.5543	9.5510	9.5477	9.5443	9.5409	9.5375
70°	9.5341	9.5306	9.5270	9.5235	9.5199	9.5163
71	9.5126	9.5090	9.5052	9.5015	9.4977	9.4939
72	9.4900	9.4861	9.4821	9.4781	9.4741	9.4700
73	9.4659	9.4618	9,4576	9.4533	9.4491	9.4447
74	9.4403	9.4359	9.4314	9.4269	9.4223	9.4177
75°	9.4130	9.4083	9.4035	9.3986	9.3937	9.3887
76	9.3837	9.3786	9.3734	9.3682	9.3629	9.3575
77	9.3521	9.3466	9.3410	9.3353	9.3029 9.3296	9.3238
78	9.3179	9.3119	9.3058	9.2997	9.3296 9.2934	
79	9.2806	9.2740	9.2674	9.2997 9.2606	9.2934 9.2538	$9.2870 \\ 9.2468$
80°	9.2397	9.2324	9.2251	9.2176	9.2100	9.2022
81	9.1943	9.1863	9.2231 9.1781			
82	9.1436	9.1345	9.1781 9.1252	$9.1697 \\ 9.1157$	9.1612	9.1525
83	9.1450 9.0859	9.1345 9.0755	9.1252 9.0648		9.1060	9.0961
84	9.0399	9.0070	9.0648 8.9945	9.0539 8.9816	$9.0426 \\ 8.9682$	9.0311 8.9545
85°	8.9403					
86		8.9256	8.9104	8.8946	8.8783	8.8613
	8.8436	8.8251	8.8059	8.7857	8.7645	8.7423
87	8.7188	8.6940	8.6677	8.6397	8.6097	8.5776
88	8.5428	8.5050	8.4637	8.4179	8.3668	8.3088
89	8.2419	8.1627	8.0658	7.9408	7.7648	7.4637
90°						

12

log tan x (x in degrees and minutes)

\boldsymbol{x}	0′	10'	20′	30′	40'	50'
0°	_	7.4637	7.7648	7.9409	8.0658	8.1627
1	8.2419	8.3089	8.3669	8.4181	8.4638	8.5053
2	8.5431	8.5779	8.6101	8.6401	8.6682	8.6945
3	8.7194	8.7429	8.7652	8.7865	8.8067	8.8261
4	8.8446	8.8624	8.8795	8.8960	8.9118	8.9272
5°	8.9420	8.9563	8.9701	8.9836	8.9966	9.0093
6	9.0216	9.0336	9.0453	9.0567	9.0678	9.0786
7	9.0891	9.0995	9.1096	9.1194	9.1291	9.1385
8	9.1478	9.1569	9.1658	9.1745	9.1831	9.1915
9	9.1997	9.2078	9.2158	9.2236	9.2313	9.2389
10°	9.2463	9.2536	9.2609	9.2680	9.2750	9.2819
11	9.2887	9.2953	9.3020	9.3085	9.3149	9.3212
12	9.3275	9.3336	9.3397	9.3458	9.3517	9.3576
13	9.3634	9.3691	9.3748	9.3804	9.3859	9.3914
14	9.3968	9.4021	9.4074	9.4127	9.4178	9.4230
15°	9.4281	9.4331	9.4381	9.4430	9.4479	9.4527
16	9.4575	9.4622	9.4669	9.4716	9.4762	9.4808
17	9.4853	9.4898	9.4943	9.4987	9.5031	9.5075
18	9.5118	9.5161	9.5203	9.5245	9.5287	9.5329
19	9.5370	9.5411	9.5451	9.5491	9.5531	9.5571
20°	9.5611	9.5650	9.5689	9.5727	9.5766	9.5804
21	9.5842	9.5879	9.5917	9.5954	9.5991	9.6028
22	9.6064	9.6100	9.6136	9.6172	9.6208	9.6243
23	9.6279	9.6314	9.6348	9.6383	9.6417	9.6452
24	9.6486	9.6520	9.6553	9.6587	9.6620	9.6654
25°	9.6687	9.6720	9.6752	9.6785	9.6817	9.6850
26	9.6882	9.6914	9.6946	9.6977	9.7009	9.7040
27	9.7072	9.7103	9.7134	9.7165	9.7196	9.7226
28	9.7257	9.7287	9.7317	9.7348	9.7378	9.7408
29	9.7438	9.7467	9.7497	9.7526	9.7556	9.7585
30°	9.7614	9.7644	9.7673	9.7701	9.7730	9.7759
31	9.7788	9.7816	9.7845	9.7873	9.7902	9.7930
32	9.7958	9.7986	9.8014	9.8042	9.8070	9.8097
33	9.8125	9.8153	9.8180	9.8208	9.8235	9.8263
34	9.8290	9.8317	9.8344	9.8371	9.8398	9.8425
35°	9.8452	9.8479	9.8506	9.8533	9.8559	9.8586
36	9.8613	9.8639	9.8666	9.8692	9.8718	9.8745
37	9.8771	9.8797	9.8824	9.8850	9.8876	9.8902
38	9.8928	9.8954	9.8980	9.9006	9.9032	9.9058
39	9.9084	9.9110	9.9135	9.9161	9.9187	9.9212
40°	9.9238	9.9264	9.9289	9.9315	9.9341	9.9366
41	9.9392	9.9417	9.9443	9.9468	9.9494	9.9519
42	9.9544	9.9570	9.9595	9.9621	9.9646	9.9671
43	9.9697	9.9722	9.9747	9.9772	9.9798	9.9823
44	9.9848	9.9874	9.9899	9.9924	9.9949	9.9975
45°	10.0000	10.0025	10.0051	10.0076	10.0101	10.0126

Table 12 (continued)

log tan x (x in degrees and minutes)

æ	0′	10′	20′	30′	40′	50′
45°	10.0000	10.0025	10.0051	10.0076	10.0101	10.0126
46	10.0152	10.0177	10.0202	10.0228	10.0253	10.0278
47	10.0303	10.0329	10.0354	10.0379	10.0405	10.0430
48	10.0456	10.0481	10.0506	10.0532	10.0557	10.0583
49	10.0608	10.0634	10.0659	10.0685	10.0711	10.0736
50°	10.0762	10.0788	10.0813	10.0839	10.0865	10.0890
51	10.0916	10.0942	10.0968	10.0994	10.1020	10.1046
52	10.1072	10.1098	10.1124	10.1150	10.1176	10.1203
53	10.1229	10.1255	10.1282	10.1308	10.1334	10.1361
54	10.1387	10.1414	10.1441	10.1467	10.1494	10.1521
55°	10.1548	10.1575	10.1602	10.1629	10.1656	10.1683
56	10.1710	10.1737	10.1765	10.1792	10.1820	10.1847
57	10.1875	10.1903	10.1930	10.1958	10.1986	10.2014
58	10.2042	10.2070	10.2098	10.2127	10.2155	10.2184
59	10,2212	10.2241	10.2270	10.2299	10.2327	10.2356
60°	10.2386	10.2415	10.2444	10.2474	10.2503	10.2533
61	10.2562	10.2592	10.2622	10.2652	10.2683	10.2555 10.2713
62	10.2743	10.2774	10.2804	10.2835	10.2866	10.2713
63	10.2928	10.2960	10.2991	10.2033	10.2866 10.3054	10.2897
64	10.3118	10.2300	10.2331	10.3025 10.3215	10.3034 10.3248	
						10.3280
65°	10.3313	10.3346	10.3380	10.3413	10.3447	10.3480
66	10.3514	10.3548	10.3583	10.3617	10.3652	10.3686
67	10.3721	10.3757	10.3792	10.3828	10.3864	10.3900
68	10.3936	10.3972	10.4009	10.4046	10.4083	10.4121
69	10.4158	10.4196	10.4234	10.4273	10.4311	10.4350
70°	10.4389	10.4429	10.4469	10.4509	10.4549	10.4589
71	10.4630	10.4671	10.4713	10.4755	10.4797	10.4839
72	10.4882	10.4925	10.4969	10.5013	10.5057	10.5102
73	10.5147	10.5192	10.5238	10.5284	10.5331	10.5378
74	10.5425	10.5473	10.5521	10.5570	10.5619	10.5669
75°	10.5719	10.5770	10.5822	10.5873	10.5926	10.5979
76	10.6032	10.6086	10.6141	10.6196	10.6252	10.6309
77	10.6366	10.6424	10.6483	10.6542	10.6603	10.6664
78	10.6725	10.6788	10.6851	10.6915	10.6980	10.7047
79	10.7113	10.7181	10.7250	10.7320	10.7391	10.7464
80°	10.7537	10.7611	10.7687	10.7764	10.7842	10.7922
81	10.8003	10.8085	10.8169	10.8255	10.8342	10.8431
82	10.8522	10.8615	10.8709	10.8806	10.8904	10.9005
83	10.9109	10.9214	10.9322	10.9433	10.9547	10.9664
84	10.9784	10.9907	11.0034	11.0164	11.0299	11.0437
85°	11.0580	11.0728	11.0882	11.1040	11.1205	11.1376
86	11.1554	11.1739	11.1933	11,2135	11.2348	11.2571
87	11.2806	11.3055	11.3318	11.3599	11.3899	11.4221
88	11.4569	11.4947	11.5362	11.5819	11.6331	11.6911
89	11.7581	11.8373	11.9342	12.0591	12.2352	12.5363
90°						

CONVERSION OF RADIANS TO DEGREES, MINUTES AND SECONDS OR FRACTIONS OF DEGREES

Radians	Deg.	Min.	Sec.	Fractions of Degrees
1	57°	17′	44.8''	57.2958°
$\overset{-}{2}$	114°	35'	29.6''	114.5916°
3	171°	53'	$14.4^{\prime\prime}$	171.8873°
4	229°	10'	$59.2^{\prime\prime}$	229.1831°
5	286°	28'	44.0′′	286.4789°
6	343°	46'	28.8''	343.7747°
7	401°	4'	13.6"	401.0705°
8	458°	$2\overline{1}'$	58.4''	458.3662°
9	515°	39'	$43.3^{\prime\prime}$	515.6620°
10	572°	57'	$28.1^{\prime\prime}$	572.9578°
.1	5°	43'	46.5"	
.2	11°	27'	$33.0^{\prime\prime}$	
.3	17°	11'	$19.4^{\prime\prime}$	
.4	22°	55'	$5.9^{\prime\prime}$	
.5	28°	38'	$52.4^{\prime\prime}$	
.6	34°	22'	$38.9^{\prime\prime}$	
.7	40°	6'	$25.4^{\prime\prime}$	
.8	45°	50'	$11.8^{\prime\prime}$	
.9	51°	33'	$58.3^{\prime\prime}$	
.01	0°	34'	22.6′′	
.02	1°	8′	$45.3^{\prime\prime}$	
.03	1°	43'	$7.9^{\prime\prime}$	
.04	2°	17'	$30.6^{\prime\prime}$	
.05	2°	51'	$53.2^{\prime\prime}$	
.06	3°	26'	$15.9^{\prime\prime}$	
.07	4°	0'	$38.5^{\prime\prime}$	
.08	4°	35'	$1.2^{\prime\prime}$	
.09	5°	9'	23.8′′	
.001	0°	3′	26.3′′	
.002	0°	6'	$52.5^{\prime\prime}$	
.003	0°	10'	$18.8^{\prime\prime}$	
.004	0°	13'	$45.1^{\prime\prime}$	
.005	0°	17'	$11.3^{\prime\prime}$	
.006	0°	20'	$37.6^{\prime\prime}$	
.007	0°	24'	$3.9^{\prime\prime}$	
.008	0°	27'	$30.1^{\prime\prime}$	
.009	0°	30′	56.4′′	
.0001	0°	0′	20.6"	
.0002	0°	0'	41.3"	
.0003	0°	1'	1.9"	
.0004	0°	1'	22.5"	
.0005	0°	1'	$43.1^{\prime\prime}$	
.0006	0°	2'	$3.8^{\prime\prime}$	
.0007	0°	2'	$24.4^{\prime\prime}$	1
.0008	0°	2′	$45.0^{\prime\prime}$	
.0009	l 0°	3'	$5.6^{\prime\prime}$	

CONVERSION OF DEGREES, MINUTES AND SECONDS TO RADIANS

Degrees	Radians
1°	.0174533
2°	.0349066
3°	.0523599
4°	.0698132
5°	.0872665
6°	.1047198
7°	.1221730
8°	.1396263
9°	.1570796
10°	.1745329

Minutes	Radians
1'	.00029089
2'	.00058178
3′	.00087266
4′	.00116355
5′	.00145444
6'	.00174533
7′	.00203622
8′	.00232711
9'	.00261800
10'	.00290888

Seconds	Radians
1"	.0000048481
2''	.0000096963
3′′	.0000145444
4''	.0000193925
5′′	.0000242407
6''	.0000290888
7''	.0000339370
8′′	.0000387851
9''	.0000436332
10′′	.0000484814

15

NATURAL OR NAPIERIAN LOGARITHMS $\log_e x$ or $\ln x$

x	0	1	2	3	4	5	. 6	7	8	9
1.0	.00000	.00995	.01980	.02956	.03922	.04879	.05827	.06766	.07696	.08618
1.1	.09531	.10436	.11333	.12222	.13103	.13976	.14842	.15700	.16551	.17395
1.2	.18232	.19062	.19885	.20701	.21511	.22314	.23111	.23902	.24686	.25464
1.3	.26236	.27003	.27763	.28518	.29267	.30010	.30748	.31481	.32208	.32930
1.4	.33647	.34359	.35066	.35767	.36464	.37156	.37844	.38526	.39204	.39878
1.5	.40547	.41211	.41871	.42527	.43178	.43825	.44469	.45108	.45742	.46373
1.6	.47000	.47623	.48243	.48858	.49470	.50078	.50682	.51282	.51879	.52473
1.7	.53063	.53649	.54232	.54812	.55389	.55962	.56531	.57098	.57661	.58222
1.8	.58779	.59333	.59884	.60432	.60977	.61519	.62058	.62594	.63127	.63658
1.9	.64185	.64710	.65233	.65752	.66269	.66783	.67294	.67803	.68310	.68813
2.0	.69315	.69813	.70310	.70804	.71295	.71784	.72271	.72755	.73237	.73716
2.1	.74194	.74669	.75142	.75612	.76081	.76547	.77011	.77473	.77932	.78390
2.2	.78846	.79299	.79751	.80200	.80648	.81093	.81536	.81978	.82418	.82855
2.3	.83291	.83725	.84157	.84587	.85015	.85442	.85866	.86289	.86710	.87129
2.4	.87547	.87963	.88377	.88789	.89200	.89609	.90016	.90422	.90826	.91228
2.5	.91629	.92028	.92426	.92822	.93216	.93609	.94001	.94391	.94779	.95166
2.6	.95551	.95935	.96317	.96698	.97078	.97456	.97833	.98208	.98582	.98954
2.7	.99325	.99695	1.00063	1.00430	1.00796	1.01160	1.01523	1.01885	1.02245	1.02604
2.8	1.02962	1.03318	1.03674	1.04028	1.04380	1.04732	1.05082	1.05431	1.05779	1.06126
2.9	1.06471	1.06815	1.07158	1.07500	1.07841	1.08181	1.08519	1.08856	1.09192	1.09527
3.0	1.09861	1.10194	1.10526	1.10856	1.11186	1.11514	1.11841	1.12168	1.12493	1.12817
3.1	1.13140	1.13462	1.13783	1.14103	1.14422	1.14740	1.15057	1.15373	1.15688	1.16002
3.2	1.16315	1.16627	1.16938	1.17248	1.17557	1.17865	1.18173	1.18479	1.18784	1.19089
3.3	1.19392	1.19695	1.19996	1.20297	1.20597	1.20896	1.21194	1.21491	1.21788	1.22083
3.4	1.22378	1.22671	1.22964	1.23256	1.23547	1.23837	1.24127	1.24415	1.24703	1.24990
3.5	1.25276	1.25562	1.25846	1.26130	1.26413	1.26695	1.26976	1.27257	1.27536	1.27815
3.6	1.28093	1.28371	1.28647	1.28923	1.29198	1.29473	1.29746	1.30019	1.30291	1.30563
3.7	1.30833	1.31103	1.31372	1.31641	1.31909	1.32176	1.32442	1.32708	1.32972	1.33237
3.8	1.33500	1.33763	1.34025	1.34286	1.34547	1.34807	1.35067	1.35325	1.35584	1.35841
3.9	1.36098	1.36354	1.36609	1.36864	1.37118	1.37372	1.37624	1.37877	1.38128	1.38379
4.0	1.38629	1.38879	1.39128	1.39377	1.39624	1.39872	1.40118	1.40364	1.40610	1.40854
4.1	1.41099	1.41342	1.41585	1.41828	1.42070	1.42311	1.42552	1.42792	1.43031	1.43270
4.2	1.43508	1.43746	1.43984	1.44220	1.44456	1.44692	1.44927	1.45161	1.45395	1.45629
4.2	1.45862	1.46094	1.46326	1.46557	1.46787	1.47018	1.47247	1.47476	1.47705	1.47933
4.4	1.48160	1.48387	1.48614	1.48840	1.49065	1.49290	1.49515	1.49739	1.49962	1.50185
4.5	1.50408	1.50630	1.50851	1.51072	1.51293	1.51513	1.51732	1.51951	1.52170	1.52388
4.6	1.52606	1.52823	1.53039	1.53256	1.53471	1.53687	1.53902	1.54116	1.54330	1.54543
4.7	1.54756	1.54969	1.55181	1.55393	1.55604	1.55814	1.56025	1.56235	1.56444	1.56653
4.8	1.56862	1.57070	1.57277	1.57485	1.57691	1.57898	1.58104	1.58309	1.58515	1.58719
4.9	1.58924	1.59127	1.59331	1.59534	1.59737	1.59939	1.60141	1.60342	1.60543	1.60744
4.3	1.00044	1.03141	T.00001	1.00003	1,00101	1.00000	1.00171	1,00042	1.00010	1.00133

ln 10 = 2.30259 2 ln 10 = 4.60517 $4 \ln 10 = 9.21034$ $5 \ln 10 = 11.51293$ 7 ln 10 = 16.11810 8 ln 10 = 18.42068

 $3 \ln 10 = 6.90776$ $6 \ln 10 = 13.81551$

 $9 \ln 10 = 20.72327$

Table 15 (continued)

NATURAL OR NAPIERIAN LOGARITHMS

log_e x or ln x

x	0	1	2	3	4	5	6	7	8	9
5.0	1.60944	1.61144	1.61343	1.61542	1.61741	1.61939	1.62137	1.62334	1.62531	1.62728
5.1	1.62924	1.63120	1.63315	1.63511	1.63705	1.63900	1.64094	1.64287	1.64481	1.64673
5.2	1.64866	1.65058	1.65250	1.65441	1.65632	1.65823	1.66013	1.66203	1.66393	1.66582
5.3	1.66771	1.66959	1.67147	1.67335	1.67523	1.67710	1.67896	1.68083	1.68269	1.68455
5.4	1.68640	1.68825	1.69010	1.69194	1.69378	1.69562	1.69745	1.69928	1.70111	1.70293
5.5	1.70475	1.70656	1.70838	1.71019	1.71199	1.71380	1.71560	1.71740	1.71010	1 70000
5.6	1.72277	1.72455	1.72633	1.72811	1.72988	1.73166		1.71740	1.71919	1.72098
5.7	1.74047	1.74222	1.74397	1.74572	1.74746	1.74920	1.73342	1.73519	1.73695	1.73871
5.8	1.75786	1.75958	1.76130	1.76302	1.76473	1.74520 1.76644	1.75094	1.75267	1.75440	1.75613
5.9	1.77495	1.77665	1.77834	1.78002 1.78002	1.78171	1.78339	1.76815 1.78507	1.76985 1.78675	1.77156 1.78842	1.77326 1.79009
6.0	1.79176									
1		1.79342	1.79509	1.79675	1.79840	1.80006	1.80171	1.80336	1.80500	1.80665
6.1	1.80829	1.80993	1.81156	1.81319	1.81482	1.81645	1.81808	1.81970	1.82132	1.82294
6.2	1.82455	1.82616	1.82777	1.82938	1.83098	1.83258	1.83418	1.83578	1.83737	1.83896
6.3	1.84055	1.84214	1.84372	1.84530	1.84688	1.84845	1.85003	1.85160	1.85317	1.85473
6.4	1.85630	1.85786	1.85942	1.86097	1.86253	1.86408	1.86563	1.86718	1.86872	1.87026
6.5	1.87180	1.87334	1.87487	1.87641	1.87794	1.87947	1.88099	1.88251	1.88403	1.88555
6.6	1.88707	1.88858	1.89010	1.89160	1.89311	1.89462	1.89612	1.89762	1.89912	1.90061
6.7	1.90211	1.90360	1.90509	1.90658	1.90806	1.90954	1.91102	1.91250	1.91398	1.91545
6.8	1.91692	1.91839	1.91986	1.92132	1.92279	1.92425	1.92571	1.92716	1.92862	1.93007
6.9	1.93152	1.93297	1.93442	1.93586	1.93730	1.93874	1.94018	1.94162	1.94305	1.94448
7.0	1.94591	1.94734	1.94876	1.95019	1.95161	1.95303	1.95445	1.95586	1.95727	1.95869
7.1	1.96009	1.96150	1.96291	1.96431	1.96571	1.96711	1.96851	1.96991	1.97130	1.97269
7.2	1.97408	1.97547	1.97685	1.97824	1.97962	1.98100	1.98238	1.98376	1.98513	1.98650
7.3	1.98787	1.98924	1.99061	1.99198	1.99334	1.99470	1.99606	1.99742	1.99877	2.00013
7.4	2.00148	2.00283	2.00418	2.00553	2.00687	2.00821	2.00956	2.01089	2.01223	2.00013
7.5	2.01490	2.01624	2.01757	2.01890	2.02022	2.02155	2.02287			
7.6	2.02815	2.02946	2.03078	2.03209	2.02022	2.02155 2.03471		2.02419	2.02551	2.02683
7.7	2.04122	2.04252	2.04381	2.03203	2.03540 2.04640	2.03471	2.03601	2.03732	2.03862	2.03992
7.8	2.05412	2.04232 2.05540	2.05668	2.04511 2.05796			2.04898	2.05027	2.05156	2.05284
7.9	2.06686	2.06813	2.06939	2.07065	2.05924 2.07191	$2.06051 \\ 2.07317$	2.06179 2.07443	2.06306 2.07568	2.06433	2.06560
									2.07694	2.07819
8.0	2.07944	2.08069	2.08194	2.08318	2.08443	2.08567	2.08691	2.08815	2.08939	2.09063
8.1	2.09186	2.09310	2.09433	2.09556	2.09679	2.09802	2.09924	2.10047	2.10169	2.10291
8.2	2.10413	2.10535	2.10657	2.10779	2.10900	2.11021	2.11142	2.11263	2.11384	2.11505
8.3	2.11626	2.11746	2.11866	2.11986	2.12106	2.12226	2.12346	2.12465	2.12585	2.12704
8.4	2.12823	2.12942	2.13061	2.13180	2.13298	2.13417	2.13535	2.13653	2.13771	2.13889
8.5	2.14007	2.14124	2.14242	2.14359	2.14476	2.14593	2.14710	2.14827	2.14943	2.15060
8.6	2.15176	2.15292	2.15409	2.15524	2.15640	2.15756	2.15871	2.15987	2.16102	2.16217
8.7	2.16332	2.16447	2.16562	2.16677	2.16791	2.16905	2.17020	2.17134	2.17248	2.17361
8.8	2.17475	2.17589	2.17702	2.17816	2.17929	2.18042	2.18155	2.18267	2.18380	2.18493
8.9	2.18605	2.18717	2.18830	2.18942	2.19054	2.19165	2.19277	2.19389	2.19500	2.19611
9.0	2.19722	2.19834	2.19944	2.20055	2.20166	2.20276	2.20387	2.20497	2.20607	2.20717
9.1	2.20827	2.20937	2.21047	2.21157	2.21266	2.21375	2.21485	2.21594	2.21703	2.21812
9.2	2.21920	2.22029	2.22138	2.22246	2.22354	2.22462	2.21400 2.22570	2.21634 2.22678	2.22786	2.22894
9.3	2.23001	2.23109	2.23216	2.23324	2.23431	2.23538	2.23645	2.23751	2.23858	2.23965
9.4	2.24071	2.24177	2.24284	2.24390	2.24496	2.23538 2.24601	2.23043 2.24707	2.24813	2.23638	2.25024
9.5	2.25129	2.25234	2.25339	2.25444	2.25549	2.25654	2.25759			
9.6	2.26176	2.26284 2.26280	2.26384	2.26488				2.25863	2.25968	2.26072
9.7	2.26176 2.27213	2.26280 2.27316			2.26592	2.26696	2.26799	2.26903	2.27006	2.27109
9.7	2.27213		2.27419	2.27521	2.27624	2.27727	2.27829	2.27932	2.28034	2.28136
$9.8 \\ 9.9$	2.28238 2.29253	2.28340	2.28442	2.28544	2.28646	2.28747	2.28849	2.28950	2.29051	2.29152
9.8	4.49255	2.29354	2.29455	2.29556	2.29657	2.29757	2.29858	2.29958	2.30058	2.30158

16

EXPONENTIAL FUNCTIONS

 e^x

x	0	1	2	3	4	5	6	7	8	9
.0	1.0000	1.0101	1.0202	1.0305	1.0408	1.0513	1.0618	1.0725	1.0833	1.0942
.1	1.1052	1.1163	1.1275	1.1388	1.1503	1.1618	1.1735	1.1853	1.1972	1.2092
.2	1.2214	1.2337	1.2461	1.2586	1.2712	1.2840	1.2969	1.3100	1.3231	1.3364
.3	1.3499	1.3634	1.3771	1.3910	1.4049	1.4191	1.4333	1.4477	1.4623	1.4770
.4	1.4918	1.5068	1.5220	1.5373	1.5527	1.5683	1.5841	1.6000	1.6161	1.6323
.5	1.6487	1.6653	1.6820	1.6989	1.7160	1.7333	1.7507	1.7683	1.7860	1.8040
6.	1.8221	1.8404	1.8589	1.8776	1.8965	1.9155	1.9348	1.9542	1.9739	1.9937
.7	2.0138	2.0340	2.0544	2.0751	2.0959	2.1170	2.1383	2.1598	2.1815	2.2034
.8	2.2255	2.2479	2.2705	2.2933	2.3164	2.3396	2.3632	2.3869	2.4109	2.4351
9 .9	2.4596	2.4843	2.5093	2.5345	2.5600	2.5857	2.6117	2.6379	2.6645	2.6912
1.0	2.7183	2.7456	2.7732	2.8011	2.8292	2.8577	2.8864	2.9154	2.9447	2.9743
1.1	3.0042	3.0344	3.0649	3.0957	3.1268	3.1582	3.1899	3.2220	3.2544	3.2871
1.2	3.3201	3.3535	3.3872	3.4212	3.4556	3.4903	3.5254	3.5609	3.5966	3.6328
1.3	3.6693	3.7062	3.7434	3.7810	3.8190	3.8574	3.8962	3.9354	3.9749	4.0149
1.4	4.0552	4.0960	4.1371	4.1787	4.2207	4.2631	4.3060	4.3492	4.3929	4.4371
1.5	4.4817	4.5267	4.5722	4.6182	4.6646	4.7115	4.7588	4.8066	4.8550	4.9037
1.6	4.9530	5.0028	5.0531	5.1039	5.1552	5.2070	5.2593	5.3122	5.3656	5.4195
1.7	5.4739	5.5290	5.5845	5.6407	5.6973	5.7546	5.8124	5.8709	5.9299	5.9895
1.8	6.0496	6.1104	6.1719	6.2339	6.2965	6.3598	6.4237	6.4883	6.5535	6.6194
1.9	6.6859	6.7531	6.8210	6.8895	6.9588	7.0287	7.0993	7.1707	7.2427	7.3155
2.0	7.3891	7.4633	7.5383	7.6141	7.6906	7.7679	7.8460	7.9248	8.0045	8.0849
2.1	8.1662	8.2482	8.3311	8.4149	8.4994	8.5849	8.6711	8.7583	8.8463	8.9352
2.2	9.0250	9.1157	9.2073	9.2999	9.3933	9.4877	9.5831	9.6794	9.7767	9.8749
2.3	9.9742	10.074	10.176	10.278	10.381	10.486	10.591	10.697	10.805	10.913
2.4	11.023	11.134	11.246	11.359	11.473	11.588	11.705	11.822	11.941	12.061
2.5	12.182	12.305	12.429	12.554	12.680	12.807	12.936	13.066	13.197	13,330
2.6	13.464	13.599	13.736	13.874	14.013	14.154	14.296	14.440	14.585	14.732
2.7	14.880	15.029	15.180	15.333	15.487	15.643	15.800	15.959	16.119	16.281
2.8	16.445	16.610	16.777	16.945	17.116	17.288	17.462	17.637	17.814	17.993
2.9	18.174	18.357	18.541	18.728	18.916	19.106	19.298	19.492	19.688	19.886
3.0	20.086	20.287	20.491	20.697	20.905	21.115	21.328	21.542	21.758	21.977
3.1	22.198	22.421	22.646	20.031 22.874	23.104	23.336	23.571	23.807	24.047	24.288
3.2	24.533	24.779	25.028	25.280	25.534	25.790	26.050	26.311	26.576	26.843
3.3	27.113	27.385	27.660	27.938	28.219	28.503	28.789	29.079	29.371	29.666
3.4	29.964	30.265	30.569	30.877	31.187	31.500	31.817	32.137	32,460	32.786
3.5	33.115	33.448	33.784	34.124	34.467	34.813	35.163	35.517	35.874	36.234
3.6	36.598	36.966	37.338	34.124 37.713	34.467 38.092	34.815 38.475	38.861	39.252	39.646	40.045
3.7	40.447	40.854	41.264	41.679	42.098	42.521	42.948	43.380	43.816	44.256
3.8	44.701	45.150	45.604	46.063	46.525	46.993	47.465	47.942	48.424	48.911
3.9	49.402	49.899	50.400	50.907	51.419	51.935	52.457	52.985	53.517	54.055
4.	54.598	60.340	66.686	73.700	81.451	90.017	99.484	109.95	121.51	134.29
5.	148.41	164.02	181.27	200.34	221.41	244.69	270.43	298.87	330.30	365.04
6.	403.43	445.86	492.75	544.57	601.85	665.14	735.10	812.41	897.85	992.27
7.	1096.6	1212.0	1339.4	1480.3	1636.0	1808.0	1998.2	2208.3	2440.6	2697.3
8.	2981.0	3294.5	3641.0	4023.9	4447.1	4914.8	5431.7	6002.9	6634.2	7332.0
9.	8103.1	8955.3	9897.1	10938	12088	13360	14765	16318	18034	19930
10.	22026									

EXPONENTIAL FUNCTIONS

 e^{-x}

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9
.0	1.00000	.99005	.98020	.97045	.96079	.95123	.94176	.93239	.92312	.91393
.1	.90484	.89583	.88692	.87810	.86936	.86071	.85214	.84366	.83527	.82696
.2	.81873	.81058	.80252	.79453	.78663	.77880	.77105	.76338	.75578	.74826
.3	.74082	.73345	.72615	.71892	.71177	.70469	.69768	.69073	.68386	.67706
.4	.67032	.66365	.65705	.65051	.64404	.63763	.63128	.62500	.61878	.61263
.5	.60653	.60050	.59452	.58860	.58275	.57695	.57121	.56553	.55990	.55433
.6	.54881	.54335	.53794	.53259	.52729	.52205	.51685	.51171	.50662	.50158
.7	.49659	.49164	.48675	.48191	.47711	.47237	.46767	.46301	.45841	.45384
.8	.44933	.44486	.44043	.43605	.43171	.42741	.42316	.41895	.41478	.41066
.9	.40657	.40252	.39852	.39455	.39063	.38674	.38289	.37908	.37531	.37158
1.0	.36788	.36422	.36060	.35701	.35345	.34994	.34646	.34301	.33960	.33622
1.1	.33287	.32956	.32628	.32303	.31982	.31664	.31349	.31037	.30728	.30422
1.2	.30119	.29820	.29523	.29229	.28938	.28650	.28365	.28083	.27804	.27527
1.3	.27253	.26982	.26714	.26448	.26185	.25924	.25666	.25411	.25158	.24908
1.4	.24660	.24414	.24171	.23931	.23693	.23457	.23224	.22993	.22764	.22537
1.5	.22313	.22091	.21871	.21654	.21438	.21225	.21014	.20805	.20598	.20393
1.6	.20190	.19989	.19790	.19593	.19398	.19205	.19014	.18825	.18637	.18452
1.7	.18268	.18087	.17907	.17728	.17552	.17377	.17204	.17033	.16864	.16696
1.8	.16530	.16365	.16203	.16041	.15882	.15724	:15567	.15412	.15259	.15107
1.9	.14957	.14808	.14661	.14515	.14370	.13124 $.14227$.14086	.13946	.13233	.13670
2.0	.13534	.13399	.13266	.13134	.13003	.12873	.12745	.12619	.12493	
$2.0 \\ 2.1$.12246	.12124	.12003	.11884	.11765	.11648	.11533		.12493 $.11304$.12369
2.2	.11080	.10970	.10861	.10753	.11703	.10540	.11935	.11418	.11304	.11192
2.3	.10026	.09926	.09827	.09730	.09633	.09537	.09442	.10331 .09348	.09255	.10127 $.09163$
2.4	.09072	.08982	.08892	.08804	.08716	.08629	.08543	.08458	.09233 $.08374$.08291
2.5	.08208	.08127	.08046	.07966	.07887	.07808	.07730	.07654	.07577	.07502
2.6	.07427	.07353	.07280	.07208	.07136	.07065	.06995	.06925	.06856	.06788
2.7	.06721	.06654	.06587	.06522	.06457	.06393	.06329	.06266	.06204	.06142
2.8	.06081	.06020	.05961	.05901	.05843	.05784	.05329	.05670	.05613	.05558
2.9	.05502	.05448	.05393	.05340	.05287	.05734	.05127	.05130	.05013	.05029
3.0	.04979	.04929	.04880	.04832	.04783	.04736	.04689	.04642	.04596	
3.1	.04575	.04329	.04416							.04550
3.2	.04076	.04460	.03996	.04372	.04328	.04285	.04243	.04200	.04159	.04117
3.3	.03688	.03652	.03615	.03956	.03916	.03877	.03839	.03801	.03763	.03725
3.4	.03337	.03304	.03271	.03579 $.03239$.03544 $.03206$.03508 $.03175$.03474 $.03143$.03439 $.03112$.03405 $.03081$.03371 $.03050$
3.5	.03020	.02990	.02960	.02930	.02901	.02872	.02844	.02816	.02788	.02760
3.6	.02732	.02705	.02678	.02652	.02625	.02599	.02573	.02548	.02522	.02497
3.7	.02472	.02448	.02423	.02399	.02375	.02352	.02328	.02305	.02282	.02260
$\frac{3.8}{3.9}$.02237	.02215 $.02004$.02193 $.01984$.02171 $.01964$.02149 $.01945$.02128 $.01925$.02107 $.01906$.02086 $.01887$.02065 $.01869$.02045 $.01850$
0.0	.02023	.02004	101004	*01004	.01040	*01020	.01000	.01001	*01009	.01090
4.	.018316	.016573	.014996	.013569	.012277	.011109	.010052	.0290953	.0282297	.0274466
5.	$0^{2}67379$.0260967	.0255166	.0249916	.0245166	.0240868	.0236979	.0233460	.0230276	$.0^{2}27394$
6.	$.0^{2}24788$	$.0^{2}22429$	$.0^{2}20294$.0218363	.0216616	.0215034	.0213604	$.0^{2}12309$	$.0^211138$	$.0^210078$
7.	.0391188	.0382510	.0374659	.0367554	$.0^{3}61125$.0355308	.0350045	.0345283	.0340973	.0337074
8.	0^333546	.0330354	.0327465	.0324852	$.0^{3}22487$.0320347	.0318411	$.0^316659$	$.0^315073$.0313639
9.	$.0^{3}12341$.0311167	.0310104	.0491424	.0482724	.0474852	.0467729	.0461283	$.0^{4}55452$.0450175
10.	$.0^{4}45400$									

TABLE 18a

HYPERBOLIC FUNCTIONS $\sinh x$

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9
.0	.0000	.0100	.0200	.0300	.0400	.0500	.0600	.0701	.0801	.0901
.1	.1002	.1102	.1203	.1304	.1405	.1506	.1607	.1708	.1810	.1911
.2	.2013	.2115	.2218	.2320	.2423	.2526	.2629	.2733	.2837	.2941
.3	.3045	.3150	.3255	.3360	.3466	.3572	.3678	.3785	.3892	.4000
.4	.4108	.4216	.4325	.4434	.4543	.4653	.4764	.4875	.4986	.5098
.5	.5211	.5324	.5438	.5552	.5666	.5782	.5897	.6014	.6131	.6248
.6	.6367	.6485	.6605	.6725	.6846	.6967	.7090	.7213	.7336	.7461
.7	.7586	.7712	.7838	.7966	.8094	.8223	.8353	.8484	.8615	.8748
.8	.8881	.9015	.9150	.9286	.9423	.9561	.9700	.9840	.9981	1.0122
.9	1.0265	1.0409	1.0554	1.0700	1.0847	1.0995	1.1144	1.1294	1.1446	1.1598
1.0	1.1752	1.1907	1.2063	1.2220	1.2379	1.2539	1.2700	1.2862	1.3025	1.3190
1.1	1.3356	1.3524	1.3693	1.3863	1.4035	1.4208	1.4382	1.4558	1.4735	1.4914
1.2	1.5095	1.5276	1.5460	1.5645	1.5831	1.6019	1.6209	1.6400	1.6593	1.6788
1.3	1.6984	1.7182	1.7381	1.7583	1.7786	1.7991	1.8198	1.8406	1.8617	1.8829
1.4	1.9043	1.9259	1.9477	1.9697	1.9919	2.0143	2.0369	2.0597	2.0827	2.1059
1.5	2.1293	2.1529	2.1768	2.2008	2.2251	2.2496	2.2743	2.2993	2.3245	2.3499
1.6	2.3756	2.4015	2.4276	2.4540	2.4806	2.5075	2.5346	2.5620	2.5896	2.6175
1.7	2.6456	2.6740	2.7027	2.7317	2.7609	2.7904	2.8202	2.8503	2.8806	2.9112
1.8	2.9422	2.9734	3.0049	3.0367	3.0689	3.1013	3.1340	3.1671	3.2005	3.2341
1.9	3.2682	3.3025	3.3372	3.3722	3.4075	3.4432	3.4792	3.5156	3.5523	3.5894
2.0	3.6269	3.6647	3.7028	3.7414	3.7803	3.8196	3.8593	3.8993	3.9398	3.9806
2.1	4.0219	4.0635	4.1056	4.1480	4.1909	4.2342	4.2779	4.3221	4.3666	4.4116
2.2	4.4571	4.5030	4.5494	4.5962	4.6434	4.6912	4.7394	4.7880	4.8372	4.8868
2.3	4.9370	4.9876	5.0387	5.0903	5.1425	5.1951	5.2483	5.3020	5.3562	5.4109
2.4	5.4662	5.5221	5.5785	5.6354	5.6929	5.7510	5.8097	5.8689	5.9288	5.9892
2.5	6.0502	6.1118	6.1741	6.2369	6.3004	6.3645	6.4293	6.4946	6.5607	6,6274
2.6	6.6947	6.7628	6.8315	6.9008	6.9709	7.0417	7.1132	7.1854	7.2583	7.3319
2.7	7.4063	7.4814	7.5572	7.6338	7.7112	7.7894	7.8683	7.9480	8.0285	8.1098
2.8	8.1919	8.2749	8.3586	8.4432	8.5287	8.6150	8.7021	8.7902	8.8791	8.9689
2.9	9.0596	9.1512	9.2437	9.3371	9.4315	9.5268	9.6231	9.7203	9.8185	9.9177

Table 18a (continued)

x	0	1	2	3	4	5	6	7	8	9
3.0	10.018	10.119	10.221	10.324	10.429	10.534	10.640	10.748	10.856	10.966
3.1	11.076	11.188	11.301	11.415	11.530	11.647	11.764	11.883	12.003	12.124
3.2	12.246	12.369	12.494	12.620	12.747	12.876	13.006	13.137	13.269	13.403
3.3	13.538	13.674	13.812	13.951	14.092	14.234	14.377	14.522	14.668	14.816
3.4	14.965	15.116	15.268	15.422	15.577	15.734	15.893	16.053	16.215	16.378
3.5	16.543	16.709	16.877	17.047	17.219	17.392	17.567	17.744	17.923	18.103
3.6	18.285	18.470	18.655	18.843	19.033	19.224	19.418	19.613	19.811	20.010
3.7	20.211	20.415	20.620	20.828	21.037	21.249	21.463	21.679	21.897	22.117
3.8	22.339	22.564	22.791	23.020	23.252	23.486	23.722	23.961	24.202	24.445
3.9	24.691	24.939	25.190	25.444	25.700	25.958	26.219	26.483	26.749	27.018
4.0	27.290	27.564	27.842	28.122	28.404	28.690	28.979	29.270	29.564	29.862
4.1	30.162	30.465	30.772	31.081	31.393	31.709	32.028	32.350	32.675	33.004
4.2	33.336	33.671	34.009	34.351	34.697	35.046	35.398	35.754	36.113	36.476
4.3	36.843	37.214	37.588	37.965	38.347	38.733	39.122	39.515	39.913	40.314
4.4	40.719	41.129	41.542	41.960	42.382	42.808	43.238	43.673	44.112	44.555
4.5	45.003	45.455	45.912	46.374	46.840	47.311	47.787	48.267	48.752	49.242
4.6	49.737	50.237	50.742	51.252	51.767	52.288	52.813	53.344	53.880	54.422
4.7	54.969	55.522	56.080	56.643	57.213	57.788	58.369	58.995	59.548	60.147
4.8	60.751	61.362	61.979	62.601	63.231	63.866	64.508	65.157	$\boldsymbol{65.812}$	66.473
4.9	67.141	67.816	68.498	69.186	69.882	70.584	71.293	72.010	72.734	73.465
5.0	74.203	74.949	75.702	76.463	77.232	78.008	78.792	79.584	80.384	81.192
5.1	82.008	82.832	83.665	84.506	85.355	86.213	87.079	87.955	88.839	89.732
5.2	90.633	91.544	92.464	93.394	94.332	95.281	96.238	97.205	98.182	99.169
5.3	100.17	101.17	102.19	103.22	104.25	105.30	106.36	107.43	108.51	109.60
5.4	110.70	111.81	112.94	114.07	115.22	116.38	117.55	118.73	119.92	121.13
5.5	122.34	123.57	124.82	126.07	127.34	128.62	129.91	131.22	132.53	133.87
5.6	135.21	136.57	137.94	139.33	140.73	142.14	143.57	145.02	146.47	147.95
5.7	149.43	150.93	152.45	153.98	155.53	157.09	158.67	160.27	161.88	163.51
5.8	165.15	166.81	168.48	170.18	171.89	173.62	175.36	177.12	178.90	180.70
5.9	182.52	184.35	186.20	188.08	189.97	191.88	193.80	195.75	197.72	199.71

18_b

HYPERBOLIC FUNCTIONS $\cosh x$

x	0	1	2	3	4	5	6	7	8	9
.0	1.0000	1.0001	1.0002	1.0005	1.0008	1.0013	1.0018	1.0025	1.0032	1.0041
.1	1.0050	1.0061	1.0072	1.0085	1.0098	1.0113	1.0128	1.0145	1.0162	1.0181
.2	1.0201	1.0221	1.0243	1.0266	1.0289	1.0314	1.0340	1.0367	1.0395	1.0423
.3	1.0453	1.0484	1.0516	1.0549	1.0584	1.0619	1.0655	1.0692	1.0731	1.0770
.4	1.0811	1.0852	1.0895	1.0939	1.0984	1.1030	1.1077	1.1125	1.1174	1.1225
.5	1.1276	1.1329	1.1383	1.1438	1.1494	1.1551	1.1609	1.1669	1.1730	1.1792
.6	1.1855	1.1919	1.1984	1.2051	1.2119	1.2188	1.2258	1.2330	1.1750 1.2402	1.1792 1.2476
.7	1.2552	1.2628	1.2706	1.2785	1.2865	1.2166 1.2947	1.3030	1.2330 1.3114	1.2402 1.3199	1.3286
.8	1.3374	1.3464	1.3555	1.3647	1.2800 1.3740	1.3835	1.3932	1.3114 1.4029	1.3199 1.4128	1.3286 1.4229
.9	1.4331	1.4434	1.4539	1.4645	1.4753	1.4862	1.4973	1.4025 1.5085	1.4128 1.5199	1.4229 1.5314
1.0	1.5431	1.5549	1.5669	1.5790	1.5913	1.6038	1.6164	1.6292	1.6421	1.6552
1.1	1.6685	1.6820	1.6956	1.7093	1.7233	1.7374	1.7517	1.7662	1.7808	1.7957
1.2	1.8107	1.8258	1.8412	1.8568	1.8725	1.8884	1.9045	1.9208	1.9373	1.9540
1.3	1.9709	1.9880	2.0053	2.0228	2.0404	2.0583	2.0764	2.0947	2.1132	2.1320
1.4	2.1509	2.1700	2.1894	2.2090	2.2288	2.2488	2.2691	2.2896	2.3103	2.3312
1.5	2.3524	2.3738	2.3955	2.4174	2.4395	2.4619	2.4845	2.5073	2.5305	2.5538
1.6	2.5775	2.6013	2.6255	2.6499	2.6746	2.6995	2.7247	2.7502	2.7760	2.8020
1.7	2.8283	2.8549	2.8818	2.9090	2.9364	2.9642	2.9922	3.0206	3.0492	$\frac{2.8020}{3.0782}$
1.8	3.1075	3.1371	3.1669	3.1972	3.2277	3.2585	3.2897	3.3212	3.3530	3.3852
1.9	3.4177	3.4506	3.4838	3.5173	3.5512	3.5855	3.6201	3.6551	3.6904	3.7261
2.0	3.7622	3.7987	0.00	0.0505	0.0100	0.0.100				
2.0	3.7622 4.1443	3.7987 4.1847	3.8355	3.8727	3.9103	3.9483	3.9867	4.0255	4.0647	4.1043
2.1	4.1445 4.5679		4.2256	4.2669	4.3085	4.3507	4.3932	4.4362	4.4797	4.5236
2.2		4.6127	4.6580	4.7037	4.7499	4.7966	4.8437	4.8914	4.9395	4.9881
2.3 2.4	5.0372	5.0868	5.1370	5.1876	5.2388	5.2905	5.3427	5.3954	5.4487	5.5026
2.4	5.5569	5.6119	5.6674	5.7235	5.7801	5.8373	5.8951	5.9535	6.0125	6.0721
2.5	6.1323	6.1931	6.2545	6.3166	6.3793	6.4426	6.5066	6.5712	6.6365	6.7024
2.6	6.7690	6.8363	6.9043	6.9729	7.0423	7.1123	7.1831	7.2546	7.3268	7.3998
2.7	7.4735	7.5479	7.6231	7.6991	7.7758	7.8533	7.9316	8.0106	8.0905	8.1712
2.8	8.2527	8.3351	8.4182	8.5022	8.5871	8.6728	8.7594	8.8469	8.9352	9.0244
2.9	9.1146	9.2056	9.2976	9.3905	9.4844	9.5791	9.6749	9.7716	9.8693	9.9680

Table 18b (continued)

HYPERBOLIC FUNCTIONS

$\cosh x$

x	0	1	2	3	4	5	6	7	8	9
3.0	10.068	10.168	10.270	10.373	10.476	10.581	10.687	10.794	10.902	11.011
3.1	11.121	11.233	11.345	11.459	11.574	11.689	11.806	11.925	12.044	12.165
3.2	12.287	12.410	12.534	12.660	12.786	12.915	13.044	13.175	13.307	13.440
3.3	13.575	13.711	13.848	13.987	14.127	14.269	14.412	14.556	14.702	14.850
3.4	14.999	15.149	15.301	15.455	15.610	15.766	15.924	16.084	16.245	16.408
3.5	16.573	16.739	16.907	17.077	17.248	17.421	17.596	17.772	17.951	18.131
3.6	18.313	18.497	18.682	18.870	19.059	19.250	19.444	19.639	19.836	20.035
3.7	20.236	20.439	20.644	20.852	21.061	21.272	21.486	21.702	21.919	22.139
3.8	22.362	22.586	22.813	23.042	23.273	23.507	23.743	23.982	24.222	24.466
3.9	24.711	24.959	25.210	25.463	25.719	25.977	26.238	26.502	26.768	27.037
4.0	27.308	27.583	27.860	28.139	28.422	28.707	28.996	29.287	29.581	29.878
4.1	30.178	30.482	30.788	31.097	31.409	31.725	32.044	32.365	32.691	33.019
4.2	33.351	33.686	34.024	34.366	34.711	35.060	35.412	35.768	36.127	36.490
4.3	36.857	37.227	37.601	37.979	38.360	38.746	39.135	39.528	39.925	40.326
4.4	40.732	41.141	41.554	41.972	42.393	42.819	43.250	43.684	44.123	44.566
4.5	45.014	45.466	45.923	46.385	46.851	47.321	47.797	48.277	48.762	49.252
4.6	49.747	50.247	50.752	51.262	51.777	52.297	52.823	53.354	53.890	54.431
4.7	54.978	55.531	56.089	56.652	57.221	57.796	58.377	58.964	59.556	60.155
4.8	60.759	61.370	61.987	62.609	63.239	63.874	64.516	65.164	65.819	66.481
4.9	67.149	67.823	68.505	69.193	69.889	70.591	71.300	72.017	72.741	73.472
5.0	74.210	74.956	75.709	76.470	77.238	78.014	78.798	79.590	80.390	81.198
5.1	82.014	82.838	83.671	84.512	85.361	86.219	87.085	87.960	88.844	89.737
5.2	90.639	91.550	92.470	93.399	94.338	95.286	96.243	97.211	98.188	99.174
5.3	100.17	101.18	102.19	103.22	104.26	105.31	106.67	107.43	108.51	109.60
5.4	110.71	111.82	112.94	114.08	115.22	116.38	117.55	118.73	119.93	121.13
5.5	122.35	123.58	124.82	126.07	127.34	128.62	129.91	131.22	132.54	133.87
5.6	135.22	136.57	137.95	139.33	140.73	142.15	143.58	145.02	146.48	147.95
5.7	149.44	150.94	152.45	153.99	155.53	157.10	158.68	160.27	161.88	163.51
5.8	165.15	166.81	168.49	170.18	171.89	173.62	175.36	177.13	178.91	180.70
5.9	182.52	184.35	186.21	188.08	189.97	191.88	193.81	195.75	197.72	199.71

TABLE 18c

x	0	1	2	3	4	5	6	7	8	9
.0	.00000	.01000	.02000	.02999	.03998	.04996	.05993	.06989	.07983	.08976
.1	.09967	.10956	.11943	.12927	.13909	.14889	.15865	.16838	.17808	.18775
.2	.19738	.20697	.21652	.22603	.23550	.24492	.25430	.26362	.27291	.28213
.3	.29131	.30044	.30951	.31852	.32748	.33638	.34521	.35399	.36271	.37136
.4	.37995	.38847	.39693	.40532	.41364	.42190	.43008	.43820	.44624	.45422
.5	.46212	.46995	.47770	.48538	.49299	.50052	.50798	.51536	.52267	.52990
.6	.53705	.54413	.55113	.55805	.56490	.57167	.57836	.58498	.59152	.59798
.7	.60437	.61068	.61691	.62307	.62915	.63515	.64108	.64693	.65271	.65841
.8	.66404	.66959	.67507	.68048	.68581	.69107	.69626	.70137	.70642	.71139
.9	.71630	.72113	.72590	.73059	.73522	.73978	.74428	.74870	.75307	.75736
1.0	.76159	.76576	.76987	.77391	.77789	.78181	.78566	.78946	.79320	.79688
1.1	.80050	.80406	.80757	.81102	.81441	.81775	.82104	.82427	.82745	.83058
1.2	.83365	.83668	.83965	.84258	.84546	.84828	.85106	.85380	.85648	.85913
1.3	.86172	.86428	.86678	.86925	.87167	.87405	.87639	.87869	.88095	.88317
1.4	.88535	.88749	.88960	.89167	.89370	.89569	.89765	.89958	.90147	.90332
1.5	.90515	.90694	.90870	.91042	.91212	.91379	.91542	.91703	.91860	.92015
1.6	.92167	.92316	.92462	.92606	.92747	.92886	.93022	.93155	.93286	.93415
1.7	.93541	.93665	.93786	.93906	.94023	.94138	.94250	.94361	.94470	.94576
1.8	.94681	.94783	.94884	.94983	.95080	.95175	.95268	.95359	.95449	.95537
1.9	.95624	.95709	.95792	.95873	.95953	.96032	.96109	.96185	.96259	.96331
2.0	.96403	.96473	.96541	.96609	.96675	.96740	.96803	.96865	.96926	.96986
2.1	.97045	.97103	.97159	.97215	.97269	.97323	.97375	.97426	.97477	.97526
2.2	.97574	.97622	.97668	.97714	.97759	.97803	.97846	.97888	.97929	.97970
2.3	.98010	.98049	.98087	.98124	.98161	.98197	.98233	.98267	.98301	.98335
2.4	.98367	.98400	.98431	.98462	.98492	.98522	.98551	.98579	.98607	.98635
2.5	.98661	.98688	.98714	.98739	.98764	,98788	.98812	.98835	.98858	.98881
2.6	.98903	.98924	.98946	.98966	.98987	.99007	.99026	.99045	.99064	.99083
2.7	.99101	.99118	.99136	.99153	.99170	.99186	.99202	.99218	.99233	.99248
2.8	.99263	.99278	.99292	.99306	.99320	.99333	.99346	.99359	.99372	.99384
2.9	.99396	.99408	.99420	.99431	.99443	.99454	.99464	.99475	.99485	.99496

Table 18c (continued)

HYPERBOLIC FUNCTIONS anh x

x	0	1	2	3	4	5	6	7	8	9
3.0	.99505	.99515	.99525	.99534	.99543	.99552	.99561	.99570	.99578	.99587
3.1	.99595	.99603	.99611	.99618	.99626	.99633	.99641	.99648	.99655	.99662
3.2	.99668	.99675	.99681	.99688	.99694	.99700	.99706	.99712	.99717	.99723
3.3	.99728	.99734	.99739	.99744	.99749	.99754	.99759	.99764	.99768	.99773
3.4	.99777	.99782	.99786	.99790	.99795	.99799	.99803	.99807	.99810	.99814
3.5	.99818	.99821	.99825	.99828	.99832	.99835	.99838	.99842	.99845	.99848
3.6	.99851	.99853	.99857	.99859	.99862	.99865	.99868	.99870	.99873	.99875
3.7	.99878	.99880	.99883	.99885	.99887	.99889	.99892	.99894	.99896	.99898
3.8	.99900	.99902	.99904	.99906	.99908	.99909	.99911	.99913	.99915	.99916
3.9	.99918	.99920	.99921	.99923	.99924	.99926	.99927	.99929	.99930	.99932
4.0	.99933	.99934	.99936	.99937	.99938	.99939	.99941	.99942	.99943	.99944
4.1	.99945	.99946	.99947	.99948	.99949	.99950	.99951	.99952	.99953	.99954
4.2	.99955	.99956	.99957	.99958	.99958	.99959	.99960	.99961	.99962	.99962
4.3	.99963	.99964	.99965	.99966	.99966	.99967	.99967	.99968	.99969	.99969
4.4	.99970	.99970	.99971	.99972	.99972	.99973	.99973	.99974	.99974	.99975
4.5	.99975	.99976	.99976	.99977	.99977	.99978	.99978	.99979	.99979	.99979
4.6	.99980	.99980	.99981	.99981	.99981	.99982	.99982	.99982	.99983	.99983
4.7	.99983	.99984	.99984	.99984	.99985	.99985	.99985	.99986	.99986	.99986
4.8	.99986	.99987	.99987	.99987	.99987	.99988	.99988	.99988	.99988	.99989
4.9	.99989	.99989	.99990	.99990	.99990	.99990	.99990	.99990	.99991	.99991
5.0	.99991	.99991	.99991	.99991	.99992	.99992	.99992	.99992	.99992	.99992
5.1	.99993	.99993	.99993	.99993	.99993	.99993	.99993	.99994	.99994	.99994
5.2	.99994	.99994	.99994	.99994	.99994	.99994	.99995	.99995	.99995	.99995
5.3	.99995	.99995	.99995	.99995	.99995	.99995	.99996	.99996	.99996	.99996
5.4	.99996	.99996	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997
5.5	.99997	.99997	.99997	.99997	.99997	.99997	.99997	.99997	.99997	.99997
5.6	.99997	.99997	.99997	.99997	.99997	.99998	.99998	.99998	.99998	.99998
5.7	.99998	.99998	.99998	.99998	.99998	.99998	.99998	.99998	,99998	.99998
5.8	.99998	.99998	.99998	.99998	.99998	.99998	.99998	.99998	.99998	.99998
5.9	.99998	.99999	.99999	.99999	.99999	.99999	.99999	.99999	.99999	.99999

FACTORIAL n

 $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$

n	n!
0	1 (by definition)
1	1
2	2
3	6
4	24
5	120
6	720
7	5040
8	40,320
9	362,880
10	3,628,800
11	39,916,800
12	479,001,600
13	6,227,020,800
14	87,178,291,200
15	1,307,674,368,000
16	20,922,789,888,000
17	355,687,428,096,000
18	6,402,373,705,728,000
19	121,645,100,408,832,000
20	2,432,902,008,176,640,000
21	51,090,942,171,709,440,000
22	1,124,000,727,777,607,680,000
23	25,852,016,738,884,976,640,000
24	620,448,401,733,239,439,360,000
25	15,511,210,043,330,985,984,000,000
26	403,291,461,126,605,635,584,000,000
27	10,888,869,450,418,352,160,768,000,000
28	304,888,344,611,713,860,501,504,000,000
29	8,841,761,993,739,701,954,543,616,000,000
30	265,252,859,812,191,058,636,308,480,000,000
31	$8.22284 imes 10^{33}$
32	$2.63131 imes 10^{35}$
33	$8.68332 imes 10^{36}$
34	$2.95233 imes 10^{38}$
35	$1.03331 imes 10^{40}$
36	$3.71993 imes 10^{41}$
37	$1.37638 imes 10^{43}$
38	$5.23023 imes 10^{44}$
39	$2.03979 imes 10^{46}$

	1
n	n!
40	$8.15915 imes 10^{47}$
41	$3.34525 imes 10^{49}$
42	$1.40501 imes 10^{51}$
43	$6.04153 imes 10^{52}$
44	$2.65827 imes 10^{54}$
45	$1.19622 imes 10^{56}$
46	$5.50262 imes 10^{57}$
47	$2.58623 imes 10^{59}$
48	$1.24139 imes 10^{61}$
49	$6.08282 imes 10^{62}$
50	$3.04141 imes 10^{64}$
51	$1.55112 imes 10^{66}$
52	$8.06582 imes 10^{67}$
53	$4.27488 imes 10^{69}$
54	$2.30844 imes 10^{71}$
55	$1.26964 imes 10^{73}$
56	$7.10999 imes 10^{74}$
57	$4.05269 imes 10^{76}$
58	$2.35056 imes 10^{78}$
59	$1.38683 imes 10^{80}$
60	$8.32099 imes 10^{81}$
61	$5.07580 imes 10^{83}$
62	$3.14700 imes 10^{85}$
63	$1.98261 imes 10^{87}$
64	$1.26887 imes 10^{89}$
65	$8.24765 imes 10^{90}$
66	$5.44345 imes 10^{92}$
67	3.64711×10^{94}
68	$2.48004 imes 10^{96}$
69	$1.71122 imes 10^{98}$
70	$1.19786 imes 10^{100}$
71	8.50479×10^{101}
72	$6.12345 imes 10^{103}$
73	$4.47012 imes 10^{105}$
74	3.30789×10^{107}
75	$2.48091 imes 10^{109}$
76	$1.88549 imes 10^{111}$
77	$1.45183 imes 10^{113}$
78	$1.13243 imes 10^{115}$
79	$8.94618 imes 10^{116}$

n	n!
80	7.15695×10^{118}
81	5.79713×10^{120}
82	4.75364×10^{122}
83	3.94552×10^{124}
84	3.31424×10^{126}
85	2.81710×10^{128}
86	2.42271×10^{130}
87	2.10776×10^{132}
88	$1.85483 imes 10^{134}$
89	1.65080×10^{136}
90	$1.48572 imes 10^{138}$
91	1.35200×10^{140}
92	1.24384×10^{142}
93	1.15677×10^{144}
94	1.08737×10^{146}
95	$1.03300 imes 10^{148}$
96	9.91678×10^{149}
97	9.61928×10^{151}
98	$9.42689 imes 10^{153}$
99	$9.33262 imes 10^{155}$
100	9.33262×10^{157}
	·
l	

GAMMA FUNCTION

$$\Gamma(x) = \int_0^\infty t^{x-1}e^{-t} dt \quad \text{for } 1 \le x \le 2$$

[For other values use the formula $\Gamma(x+1) = x \Gamma(x)$]

\boldsymbol{x}	$\Gamma(x)$
1.00	1.00000
1.01	.99433
1.02	
1.03	.98884
1.04	.98355
1.04	.97844
	.97350
1.06	.96874
1.07	.96415
1.08	.95973
1.09	.95546
1.10 1.11	.95135
1.12	.94740 $.94359$
1.13	
	.93993
1.14	.93642
1.15	.93304
1.16	.92980
1.17	.92670
1.18	.92373
1.19	.92089
1.20	.91817
1.21	.91558
1.22	.91311
1.23	.91075
1.24	.90852
1.25	.90640
1.26	.90440
1.27	.90250
1.28	.90072
1.29	.89904
1.30	.89747
1.31	.89600
1.32	.89464
1.33	.89338
1.34	.89222
1.35	.89115
1.36	.89018
1.37	.88931
1.38	.88854
1.39	.88785
1.40	.88726
1.41	.88676
1.42	.88636
1.43	.88604
1.44	.88581
1.45	.88566
1.46	.88560
1.47	.88563
1.48	.88575
1.49	.88595
1.50	.88623

x	$\Gamma(x)$
1.50	.88623
1.51	.88659
1.52	.88704
1.53	.88757
1.54	.88818
1.55	.88887
1.56	
	.88964
1.57	.89049
1.58	.89142
1.59	.89243
1.60	.89352
1.61	.89468
1.62	.89592
1.63	.89724
1.64	.89864
1.65	.90012
1.66	.90167
1.67	.90330
1.68	.90500
1.69	
	.90678
1.70	.90864
1.71	.91057
1.72	.91258
1.73	.91467
1.74	.91683
1.75	.91906
1.76	.92137
1.77	.92376
1.78	.92623
1.79	.92877
1.80	.93138
1.81	.93408
1.82	.93685
1.83	.93969
1.84	.94261
1.85	.94561
1.86	.94869
1.87	.95184
1.88	.95507
1.89	.95838
1.90	.96177
1.91	.96523
1.92	.96877
1.93	.97240
1.94	.97610
1.95	.97988
1.96	.98374
1.97	.98768
1.98	.99171
1.99	.99581
2.00	1.00000
2.00	1.0000

Note that each number is the sum of two numbers in the row above; one of these numbers is in the same column and the other is in the preceding column [e.g. 56 = 35 + 21]. The arrangement is often called *Pascal's triangle* [see 3.6, page 4].

n k	0	1	2	3	4	5	6	7	8	9
1	1	1					· · · · · · · · · · · · · · · · · · ·			
2	1	2	1							
3	1	3	3	1						
4	1	4	6	4	1					
5	1	5	10	10	5	1				
6	1	6	15	20	15		4			
7	1	7	21	35	35	6	1			
8	1	8	28	56	70	21	7	1		
9	1	9	36	84		56	28	8	1	
10	1	10	45	120	126	126	84	36	9	1
	~	10	40	120	210	252	210	120	45	10
11	1	11	55	165	330	462	462	330	165	55
12	1	12	66	220	495	792	924	792	495	220
13	1	13	78	286	715	1287	1716	1716	1287	715
14	1	14	91	364	1001	2002	3003	3432	3003	2002
15	1	15	105	455	1365	3003	5005	6435	6435	5005
16	1	16	120	560	1820	4368	8008	11440	10070	44
17	1	17	136	680	2380	6188	12376	19448	12870	11440
18	1	18	153	816	3060	8568	18564	31824	24310	24310
19	1	19	171	969	3876	11628	27132	50388	43758	48620
20	1	20	190	1140	4845	15504	38760		75582	92378
				1110	4040	10004	30100	77520	125970	167960
21	1	21	210	1330	5985	20349	54264	116280	203490	293930
22	1	22	231	1540	7315	26334	74613	170544	319770	497420
23	1	23	253	1771	8855	33649	100947	245157	490314	817190
24	1	24	276	2024	10626	42504	134596	346104	735471	1307504
25	1	25	300	2300	12650	53130	177100	480700	1081575	2042975
26	1	26	325	2600	14950	65780	230230	CETOOO	150000	040.
27	1	27	351	2925	17550	80730	296010	657800	1562275	3124550
28	1	28	378	3276	20475	98280	296010 376740	888030	2220075	4686825
2 9	1	29	406	3654	23751	118755	475020	1184040	3108105	6906900
30	1	30	435	4060	27405	142506	475020 593775	1560780 2035800	4292145 5852925	10015005 14307150

Table 21 (continued)
$$\binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \binom{n}{n-k}, \quad 0! = 1$$

$n \stackrel{k}{n}$	10	11	12	13	14	15
1						
10	1					
11	11	1				
12	66	12	1			
13	286	78	13	1		
14	1001	364	91	$\overline{14}$	1	
15	3003	1365	455	105	15	1
16	8008	4368	1820	560	120	16
17	19448	12376	6188	2380	680	136
18	43758	31824	18564	8568	3060	816
19	92378	75582	50388	27132	11628	3876
20	184756	167960	125970	77520	38760	15504
21	352716	352716	293930	203490	116280	54264
22	646646	705432	646646	497420	319770	170544
23	1144066	1352078	1352078	1144066	817190	490314
24	1961256	2496144	2704156	2496144	1961256	1307504
25	3268760	4457400	5200300	5200300	4457400	3268760
26	5311735	7726160	9657700	10400600	9657700	7726160
27	8436285	13037895	17383860	20058300	20058300	17383860
28	13123110	21474180	30421755	37442160	40116600	37442160
29	20030010	34597290	51895935	67863915	77558760	77558760
30	30045015	54627300	86493225	119759850	145422675	155117520

For k > 15 use the fact that $\binom{n}{k} = \binom{n}{n-k}$.

SQUARES, CUBES, ROOTS AND RECIPROCALS

n	n^2	n^3	\sqrt{n}	$\sqrt{10n}$	$\sqrt[3]{n}$	$\sqrt[3]{10n}$	$\sqrt[3]{100n}$	1/n
1	1	1	1.000 000	3.162 278	1.000 000	2.154 435	4.641 589	1.000 000
2	4	8	1.414 214	4.472 136	1.259 921	2.714 418	5.848 035	.500 000
3	9	27	1.732 051	5.477 226	$1.442\ 250$	3.107 233	6.694 330	.333 333
4	16	64	2.000 000	6.324 555	1.587 401	3.419 952	7.368 063	.250 000
5	25	125	2.236 068	7.071 068	1.709 976	3.684 031	7.937 005	.200 000
6	36	216	2.449 490	7.745 967	1.817 121	3.914 868	8.434 327	.166 667
7	49	343	2.645 751	8.366 600	1.912 931	4.121 285	8.879 040	.142 857
8	64	512	2.828 427	8.944 272	2.000 000	4.308 869	9.283 178	.125 000
9	81	729	3.000 000	9.486 833	2.080 084	4.481 405	9.654 894	.111 111
10	100	1 000	3.162 278	10.000 00	2.154 435	4.641 589	10.000 00	.100 000
11	121	1 331	$3.316\ 625$	10.488 09	2.223 980	4.791 420	10.322 80	.090 909
12	144	1 728	$3.464\ 102$	10.954 45	2.289 428	4.932 424	10.626 59	.083 333
13	169	2 197	3.605 551	11.401 75	2.351 335	5.065 797	10.913 93	.076 923
14	196	2 744	3.741 657	11.832 16	2.410 142	5.192 494	11.186 89	.071 429
15	225	3 375	3.872 983	12.247 45	2.466 212	5.313 293	11.447 14	.066 667
16	256	4 096	4.000 000	12.649 11	2.519 842	5.428 835	11.696 07	.062 500
17	289	4 913	4.123 106	13.038 40	2.571 282	5.539 658	11.934 83	.058 824
18	324	5 832	$4.242\ 641$	13.416 41	2.620 741	5.646 216	12.164 40	.055 556
19	361	6 859	4.358 899	13.784 05	2.668 402	5.748 897	12.385 62	.052 632
20	400	8 000	$4.472\ 136$	14.142 14	2.714 418	5.848 035	12.599 21	.050 000
21	441	9 261	4.582 576	14.491 38	2.758 924	5.943 922	12.805 79	.047 619
22	484	10 648	4.690 416	14.832 40	2.802 039	6.036 811	13.005 91	.045 455
23	529	$12\ 167$	4.795 832	15.165 75	2.843 867	6.126926	13.200 06	.043 478
24	576	13 824	4.898 979	15.491 93	2.884 499	$6.214\ 465$	13.388 66	.041 667
25	625	$15\ 625$	5.000 000	15.811 39	2.924 018	6.299 605	13.572 09	.040 000
26	676	17 576	5.099 020	16.124 52	$2.962\ 496$	$6.382\ 504$	13.750 69	.038 462
27	729	19 683	$5.196\ 152$	16.431 68	3.000 000	$6.463\ 304$	13.924 77	.037 037
28	784	$21\ 952$	$5.291\ 503$	16.733 20	3.036 589	$6.542\ 133$	14.094 60	.035 714
29	841	$24 \ 389$	5.385 165	17.029 39	$3.072\ 317$	6.619 106	$14.260 \ 43$.034 483
30	900	27 000	5.477 226	$17.320\ 51$	3.107 233	6.694 330	$14.422\ 50$.033 333
31	961	29 791	5.567 764	17.606 82	3.141 381	6.767 899	14.581 00	.032 258
32	1024	$32\ 768$	5.656 854	17.88854	$3.174\ 802$	6.839 904	14.736 13	.031 250
33	1 089	35 937	5.744 563	18.165 90	$3.207\ 534$	6.910 423	14.888 06	.030 303
34	1 156	39 304	5.830 952	18.439 09	3.239 612	$6.979\ 532$	15.03695	.029 412
35	$1\ 225$	$42\ 875$	5.916080	18.708 29	$3.271\ 066$	7.047 299	15.18294	.028 571
36	1 296	46 656	6.000 000	18.973 67	3.301 927	7.113 787	$15.326\ 19$.027 778
37	1 369	50 653	6.082 763	19.235 38	$3.332\ 222$	$7.179\ 054$	15.46680	.027 027
38	1 444	$54\ 872$	6.164 414	19.493 59	$3.361\ 975$	$7.243\ 156$	15.60491	.026 316
39	1 521	59 319	6.244998	19.748 42	3.391 211	$7.306\ 144$	15.740 61	.025 641
40	1 600	64 000	$6.324\ 555$	20.000 00	3.419952	7.368 063	15.874 01	.025 000
41	1 681	68 921	$6.403\ 124$	20.248 46	$3.448\ 217$	7.428959	16.005 21	.024 390
42	1 764	74 088	6.480 741	20.493 90	$3.476\ 027$	7.488872	16.134 29	.023 810
43	1 849	79 507	$6.557\ 439$	20.736 44	3.503 398	7.547842	$16.261\ 33$.023 256
44	1 936	85 184	6.633 250	20.976 18	3.530 348	7.605 905	$16.386\ 43$.022 727
45	2 025	91 125	6.708 204	21.213 20	3.556 893	7.663 094	16.509 64	.022 222
46	2 116	$97\ 336$	6.782 330	21.447 61	3.583 048	7.719 443	$16.631 \ 03$.021 739
47	2 209	103 823	6.855 655	21.67948	3.608 826	7.774 980	16.750 69	.021 277
48	$2\ 304$	110 592	6.928 203	21.908 90	3.634 241	7.829 735	16.868 65	.020 833
49	2 401	117 649	7.000 000	22.135 94	3.659 306	7.883 735	16.984 99	.020 408
50	2 500	125 000	7.071 068	22.360 68	3.684 031	7.937 005	17.099 76	.020 000

Table 22 (continued)

SQUARES, CUBES, ROOTS AND RECIPROCALS

n	n^2	n^3	\sqrt{n}	$\sqrt{10n}$	$\sqrt[3]{n}$	$\sqrt[3]{10n}$	$\sqrt[3]{100n}$	1/n
50	2 500	125 000	7.071 068	22.360 68	3.684 031	7.937 005	17.099 76	.020 000
51	2 601	132 651	7.141 428	22.583 18	3.708 430	7.989 570	17.213 01	.019 608
52	2 704	140 608	7.211 103	22.803 51	3.732 511	8.041 452	17.324 78	.019 231
53	2 809	148 877	7.280 110	23.021 73	3.756 286	8.092 672	17.435 13	.018 868
54	2 916	157 464	7.348 469	23.237 90	3.779 763	8.143 253	17.544 11	.018 519
55	3 025	166 375	7.416 198	23.452 08	3.802 952	8.193 213	17.651 74	.018 182
56	3 136	175 616	7.483 315	23.664 32	3.825 862	8.242 571	17.758 08	.017 857
57	3 249	185 193	7.549 834	23.874 67	3.848 501	8.291 344	17.863 16	.017 544
58	3 364	195 112	7.615 773	24.083 19	3.870 877	8.339 551	17.967 02	.017 241
59	3 481	205 379	7.681 146	24.289 92	3.892 996	8.387 207	18.069 69	.016 949
60	3 600	216 000	7.745 967	24.494 90	3.914 868	8.434 327	18.171 21	.016 667
61	3 721	226 981	7.810 250	24.698 18	3.936 497	8.480 926	18.271 60	.016 393
62	3 844	238 328	7.874 008	24.899 80	3.957 892	8.527 019	18.370 91	.016 129
63	3 969	250 047	7.937 254	25.099 80	3.979 057	8.572 619	18.469 15	.015 873
64	4 096	262 144	8.000 000	25.298 22	4.000 000	8.617 739	18.566 36	.015 625
65	4 225	274 625	8.062 258	25.495 10	4.020 726	8.662 391	18.662 56	.015 385
66	4 356	287 496	8.124 038	25.690 47	4.041 240	8.706 588	18.757 77	.015 152
67	4 489	300 763	8.185 353	25.884 36	4.061 548	8.750 340	18.852 04	.014 925
68	4 624	314 432	8.246 211	26.076 81	4.081 655	8.793 659	18.945 36	.014 706
69	4 761	328 509	8.306 624	26.267 85	4.101 566	8.836 556	19.037 78	.014 493
70	4 900	343 000	8.366 600	26.457 51	4.121 285	8.879 040	19.129 31	.014 286
71	5 041	357 911	8.426 150	26.645 83	4.140 818	8.921 121	19.219 97	.014 085
72	5 184	373 248	8.485 281	26.83282	4.160 168	8.962 809	19.309 79	.013 889
73	5 329	389 017	8.544 004	$27.018\ 51$	4.179 339	9.004 113	19.398 77	.013 699
74	5 476	405 224	8.602 325	27.20294	4.198 336	9.045 042	19.486 95	.013 514
75	5 625	421 875	8.660 254	$27.386\ 13$	4.217 163	9.085 603	19.574 34	.013 333
76	5 776	438 976	8.717 798	$27.568\ 10$	4.235 824	$9.125\ 805$	19.660 95	.013 158
77	5 929	456 533	8.774 964	27.74887	4.254 321	9.165 656	19.746 81	.012 987
78	6 084	474 552	8.831 761	$27.928\ 48$	$4.272\ 659$	$9.205\ 164$	19.831 92	.012 821
79	6 241	493 039	8.888 194	28.106 94	4.290 840	9.244 335	19.916 32	.012 658
80	6 400	512 000	8.944 272	28.284 27	4.308 869	9.283 178	20.000 00	.012 500
81	6 561	531 441	9.000 000	28.460 50	4.326 749	9.321 698	20.082 99	.012 346
82	6 724	551 368	9.055 385	28.635 64	4.344 481	9.359 902	20.165 30	.012 195
83	6 889	571 787	9.110 434	28.809 72	4.362 071	9.397 796	20.24694	.012 048
84	7 056	592 704	9.165 151	28.982 75	4.379 519	9.435 388	20.327 93	.011 905
85 86	7 225 7 396	614 125	9.219 544	29.154 76	4.396 830	9.472 682	20.408 28	.011 765
87		636 056	9.273 618	29.325 76	4.414 005	9.509 685	20.488 00	.011 628
88	7569 7744	658 503	9.327 379	29.495 76	4.431 048	9.546 403	20.567 10	.011 494
89	7 921	681 472 704 969	9.380 832	29.664 79	4.447 960	9.582 840	20.645 60	.011 364
90	8 100	704 969 729 000	9.433 981 9.486 833	29.832 87	4.464 745	9.619 002	20.723 51	.011 236
91	8 281	753 571	i	30.000 00	4.481 405	9.654 894	20.800 84	.011 111
92	8 464	778 688	9.539 392	$30.166 \ 21$ $30.331 \ 50$	4.497 941	9.690 521	20.877 59	.010 989
93	8 649	804 357	9.591 663 9.643 651	30.331 50 30.495 90	4.514 357 4.530 655	9.725 888	20.953 79	.010 870
94	8 836	830 584	9.695 360	30.659 42	4.546 836	9.761 000 9.795 861	21.029 44 21.104 54	.010 753
95	9 025	857 375	9.746 794	30.822 07	4.562 903	9.795 861	21.10454 21.17912	.010 638
96	9 216	884 736	9.797 959	30.983 87	4.578 857	9.864 848	21.179 12 21.253 17	$.010\ 526$ $.010\ 417$
97	9 409	912 673	9.848 858	31.144 82	4.594 701	9.898 983	21.255 17 21.326 71	.010 417
98	9 604	941 192	9.899 495	31.304 95	4.610 436	9.932 884	21.320 71 21.399 75	.010 309
99	9 801	970 299	9.949 874	31.464 27	4.626 065	9.966 555	21.472 29	.010 204
100	10 000	1 000 000	10.00 000	31.622 78	4.641 589	10.00 000	21.544 35	.010 000
					1.011 000	10.00 000	#1.044 OU	.010 000

COMPOUND AMOUNT: $(1+r)^n$

If a principal P is deposited at interest rate r (in decimals) compounded annually, then at the end of n years the accumulated amount $A = P(1+r)^n$.

r	1%	11/1/2/2	$1\frac{1}{2}\%$	2%	$2rac{1}{2}\%$	3%	4%	5%	6%
1	1.0100	1.0125	1.0150	1.0200	1.0250	1.0300	1.0400	1.0500	1.0600
2	1.0201	1.0252	1.0302	1.0404	1.0506	1.0609	1.0816	1.1025	1.1236
3	1.0303	1.0380	1.0457	1.0612	1.0769	1.0927	1.1249	1.1576	1.1910
4	1.0406	1.0509	1.0614	1.0824	1.1038	1.1255	1.1699	1.2155	1.2635
5	1.0510	1.0641	1.0773	1.1041	1.1314	1.1593	1.2167	1.2763	1.3382
$\begin{bmatrix} 6 \\ 6 \end{bmatrix}$	1.0615	1.0774	1.0934	1.1262	1.1597	1.1941	1.2653	1.3401	1.4185
7	1.0721	1.0909	1.1098	1.1487	1.1887	1.2299	1.3159	1.4071	1.5036
8	1.0829	1.1045	1.1265	1.1717	1.2184	1.2668	1.3688	1.4775	1.5938
9	1.0937	1.1183	1.1434	1.1951	1.2489	1.3048	1.4233	1.5513	1.6895
10	1.1046	1.1323	1.1605	1.2190	1.2801	1.3439	1.4802	1.6289	1.7908
10	1.1040	1.1020	1.1000	1.2100					
11	1.1157	1.1464	1.1779	1.2434	1.3121	1.3842	1.5395	1.7103	1.8983
12	1.1268	1.1608	1.1956	1.2682	1.3449	1.4258	1.6010	1.7959	2.0122
13	1.1381	1.1753	1.2136	1.2936	1.3785	1.4685	1.6651	1.8856	2.1329
14	1.1495	1.1900	1.2318	1.3195	1.4130	1.5126	1.7317	1.9799	2.2609
15	1.1610	1.2048	1.2502	1.3459	1.4483	1.5580	1.8009	2.0789	2.3966
16	1.1726	1.2199	1.2690	1.3728	1.4845	1.6047	1.8730	2.1829	2.5404
17	1.1843	1.2351	1.2880	1.4002	1.5216	1.6528	1.9479	2.2920	2.6928
18	1.1961	1.2506	1.3073	1.4282	1.5597	1.7024	2.0258	2.4066	2.8543
19	1.2081	1.2662	1.3270	1.4568	1.5987	1.7535	2.1068	2.5270	3.0256
20	1.2202	1.2820	1.3469	1.4859	1.6386	1.8061	2.1911	2.6533	3.2071
21	1.2324	1.2981	1.3671	1.5157	1.6796	1.8603	2.2788	2.7860	3.3996
22	1.2447	1.3143	1.3876	1.5460	1.7216	1.9161	2.3699	2.9253	3.6035
23	1.2572	1.3307	1.4084	1.5769	1.7646	1.9736	2.4647	3.0715	3.8197
24	1.2697	1.3474	1.4295	1.6084	1.8087	2.0328	2.5633	3.2251	4.0489
25	1.2824	1.3642	1.4509	1.6406	1.8539	2.0938	2.6658	3.3864	4.2919
26	1.2953	1.3812	1.4727	1.6734	1.9003	2.1566	2.7725	3.5557	4.5494
27	1.3082	1.3985	1.4948	1.7069	1.9478	2.2213	2.8834	3.7335	4.8223
28	1.3213	1.4160	1.5172	1.7410	1.9965	2.2879	2.9987	3.9201	5.1117
29	1.3345	1.4337	1.5400	1.7758	2.0464	2.3566	3.1187	4.1161	5.4184
30	1.3478	1.4516	1.5631	1.8114	2.0976	2.4273	3.2434	4.3219	5.7435
31	1.3613	1,4698	1.5865	1.8476	2.1500	2.5001	3.3731	4.5380	6.0881
32	1.3749	1.4881	1.6103	1.8845	2.2038	2.5751	3.5081	4.7649	6.4534
33	1.3887	1.5067	1.6345	1.9222	2.2589	2.6523	3.6484	5.0032	6.8406
34	1.4026	1.5256	1.6590	1.9607	2.3153	2.7319	3.7943	5.2533	7.2510
35	1.4166	1.5446	1.6839	1.9999	2.3732	2.8139	3.9461	5.5160	7.6861
36	1.4308	1.5639	1.7091	2.0399	2.4325	2.8983	4.1039	5.7918	8.1473
37	1.4451	1.5835	1.7348	2.0807	2.4933	2.9852	4.2681	6.0814	8.6361
38	1.4595	1.6033	1.7608	2.1223	2.5557	3.0748	4.4388	6.3855	9.1543
39	1.4741	1.6233	1.7872	2.1647	2.6196	3.1670	4.6164	6.7048	9.7035
40	1.4889	1.6436	1.8140	2.2080	2.6851	3.2620	4.8010	7.0400	10.2857
41	1.5038	1.6642	1.8412	2.2522	2.7522	3.3599	4.9931	7.3920	10.9029
42	1.5188	1.6850	1.8688	2.2972	2.8210	3.4607	5.1928	7.7616	11.5570
43	1.5340	1.7060	1.8969	2.3432	2.8915	3.5645	5.4005	8.1497	12.2505
44	1.5493	1.7274	1.9253	2.3901	2.9638	3.6715	5.6165	8.5572	12.9855
45	1.5648	1.7489	1.9542	2.4379	3.0379	3.7816	5.8412	8.9850	13.7646
46	1.5805	1.7708	1.9835	2.4866	3.1139	3.8950	6.0748	9.4343	14.5905
47	1.5963	1.7929	2.0133	2.5363	3.1917	4.0119	6.3178	9.9060	15.4659
48	1.6122	1.8154	2.0435	2.5871	3.2715	4.1323	6.5705	10.4013	16.3939
49	1.6283	1.8380	2.0741	2.6388	3.3533	4.2562	6.8333	10.9213	17.3775
50	1.6446	1.8610	2.1052	2.6916	3.4371	4.3839	7.1067	11.4674	18.4202

PRESENT VALUE OF AN AMOUNT: $(1+r)^{-n}$

The present value P which will amount to A in n years at an interest rate of r (in decimals) compounded annually is $P = A(1+r)^n$.

n	1%	110%							
		11/4/%	$1\frac{1}{2}\%$	2%	$2\frac{1}{2}\%$	3%	4%	5%	6%
1	.99010	.98765	.98522	.98039	.97561	.97087	.96154	.95238	.94340
2	.98030	.97546	.97066	.96117	.95181	.94260	.92456	.90703	.89000
3	.97059	.96342	.95632	.94232	.92860	.91514	.88900	.86384	.83962
4	.96098	.95152	.94218	.92385	.90595	.88849	.85480	.82270	.79209
5	.95147	.93978	.92826	.90573	.88385	.86261	.82193	.78353	.74726
6	.94205	.92817	.91454	.88797	.86230	.83748	.79031	.74622	.70496
7	.93272	.91672	.90103	.87056	.84127	.81309	.75992	.71068	.66506
8	.92348	.90540	.88771	.85349	.82075	.78941	.73069	.67684	.62741
9	.91434	.89422	.87459	.83676	.80073	.76642	.70259	.64461	.59190
10	.90529	.88318	.86167	.82035	.78120	.74409	.67556	.61391	.55839
11	.89632	.87228	.84893	.80426	.76214	.72242	.64958	.58468	.52679
12	.88745	.86151	.83639	.78849	.74356	.70138	.62460	.55684	.49697
13	.87866	.85087	.82403	.77303	.72542	.68095	.60057	.53032	.46884
14	.86996	.84037	.81185	.75788	.70773	.66112	.57748	.50507	.44230
15	.86135	.82999	.79985	.74301	.69047	.64186	.55526	.48102	.41727
16	.85282	.81975	.78803	.72845	.67362	.62317	.53391	.45811	.39365
17	.84438	.80963	.77639	.71416	.65720	.60502	.51337	.43630	.37136
18	.83602	.79963	.76491	.70016	.64117	.58739	.49363	.41552	.35034
19	.82774	.78976	.75361	.68643	.62553	.57029	.47464	.39573	.33051
20	.81954	.78001	.74247	.67297	.61027	.55368	.45639	.37689	.31180
21	.81143	.77038	.73150	.65978	.59539	.53755	.43883	.35894	.29416
22	.80340	.76087	.72069	.64684	.58086	.52189	.42196	.34185	.27751
23	.79544	.75147	.71004	.63416	.56670	.50669	.40573	.32557	.26180
24	.78757	.74220	.69954	.62172	.55288	.49193	.39012	.31007	.24698
25	.77977	.73303	.68921	.60953	.53939	.47761	.37512	.29530	.23300
26	.77205	.72398	$\boldsymbol{.67902}$.59758	.52623	.46369	.36069	.28124	.21981
27	.76440	.71505	.66899	.58586	.51340	.45019	.34682	.26785	.20737
28	.75684	.70622	.65910	.57437	.50088	.43708	.33348	.25509	.19563
29	.74934	.69750	.64936	.56311	.48866	.42435	.32065	.24295	.18456
30	.74192	.68889	.63976	.55207	.47674	.41199	.30832	.23138	.17411
31	.73458	.68038	.63031	.54125	.46511	.39999	.29646	.22036	.16425
32	.72730	.67198	.62099	.53063	.45377	.38834	.28506	.20987	.15496
33	.72010	.66369	.61182	.52023	.44270	.37703	.27409	.19987	.14619
34	.71297	.65549	.60277	.51003	.43191	.36604	.26355	.19035	.13791
35	.70591	.64740	.59387	.50003	.42137	.35538	.25342	.18129	.13011
36	.69892	.63941	.58509	.49022	.41109	.34503	.24367	.17266	.12274
37	.69200	.63152	.57644	.48061	.40107	.33498	.23430	.16444	.11579
38	.68515	.62372	.56792	.47119	.39128	.32523	.22529	.15661	.10924
39	.67837	.61602	.55953	.46195	.38174	.31575	.21662	.14915	.10306
40	.67165	.60841	.55126	.45289	.37243	.30656	.20829	.14205	.09722
41	.66500	.60090	.54312	.44401	.36335	.29763	.20028	.13528	.09172
42	.65842	.59348	.53509	.43530	.35448	.28896	.19257	.12884	.08653
43	.65190	.58616	.52718	.42677	.34584	.28054	.18517	.12270	.08163
44	.64545	.57892	.51939	.41840	.33740	.27237	.17805	.11686	.07701
45	.63905	.57177	.51171	.41020	.32917	.26444	.17120	.11130	.07265
46	.63273	.56471	.50415	.40215	.32115	.25674	.16461	.10600	.06854
47	.62646	.55774	.49670	.39427	.31331	.24926	.15828	.10095	.06466
48	.62026	.55086	.48936	.38654	.30567	.24200	.15219	.09614	.06100
49	.61412	.54406	.48213	.37896	.29822	.23495	.14634	.09156	.05755
50	.60804	.53734	.47500	.37153	.29094	.22811	.14071	.08720	.05429

25

AMOUNT OF AN ANNUITY: $\frac{(1+r)^n-1}{r}$

If a principal P is deposited at the end of each year at interest rate r (in decimals) compounded annually, then at the end of n years the accumulated amount is $P\left[\frac{(1+r)^n-1}{r}\right]$. The process is often called an annuity.

10 10.4622 10.5817 10.7027 10.9497 11.2034 11.4639 12.0061 11 11.5668 11.7139 11.8633 12.1687 12.4835 12.8078 13.4864 12 12.6825 12.8604 13.0412 13.4121 13.7956 14.1920 15.0258 13 13.8093 14.0211 14.2368 14.6803 15.1404 15.6178 16.6268 14 14.9474 15.1964 15.4504 15.9739 16.5190 17.0863 18.2919 15 16.6969 16.3863 16.6821 17.2934 17.9319 18.5989 20.0236 16 17.2579 17.5912 17.9324 18.6393 19.3802 20.1569 21.8245 17 18.4304 18.8111 19.2014 20.0121 20.8647 21.7616 23.6975 18 19.6147 20.0462 20.4894 21.4123 22.3863 23.4144 25.6454 19 20.8109 21.2968 21.7967 22	1.0000 2.0500 3.1525 4.3101 5.5256 6.8019 8.1420 9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	1.0000 2.0600 3.1836 4.3746 5.6371 6.9753 8.3938 9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
2 2.0100 2.0125 2.0150 2.0200 2.0250 2.0300 2.0400 3 3.0301 3.0377 3.0452 3.0604 3.0756 3.0909 3.1216 4 4.0604 4.0756 4.0909 4.1216 4.1525 4.1836 4.2465 5 5.1010 5.1266 5.1523 5.2040 5.2563 5.3091 5.4163 6 6.1520 6.1907 6.2296 6.3081 6.3877 6.4684 6.6330 7 7.2135 7.2680 7.3230 7.4343 7.5474 7.6625 7.8983 8 8.2857 8.3589 8.4328 8.5830 8.7361 8.8923 9.2142 9 9.3685 9.4634 9.5593 9.7546 9.9545 10.1591 10.5828 10 10.4622 10.5817 10.7027 10.9497 11.2034 11.4639 12.0061 11 11.5668 11.7139 11.8633 12.1687 12.4835 12.8078	2.0500 3.1525 4.3101 5.5256 6.8019 8.1420 9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	2.0600 3.1836 4.3746 5.6371 6.9753 8.3938 9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
2 2.0100 2.0125 2.0150 2.0200 2.0250 2.0300 2.0400 3 3.0301 3.0377 3.0452 3.0604 3.0756 3.0909 3.1216 4 4.0604 4.0756 4.0909 4.1216 4.1525 4.1836 4.2465 5 5.1010 5.1266 5.1523 5.2040 5.2563 5.3091 5.4163 6 6.1520 6.1907 6.2296 6.381 6.3877 6.4684 6.6330 7 7.2135 7.2680 7.3230 7.4343 7.5474 7.6625 7.8983 8 8.2857 8.3589 8.4328 8.5830 8.7361 8.8923 9.2142 9 9.3685 9.4634 9.5593 9.7546 9.9545 10.1591 10.5828 10 10.4622 10.5817 10.7027 10.9497 11.2034 11.4639 12.0061 11 11.5668 11.7139 11.8633 12.1687 12.4835 12.8078	3.1525 4.3101 5.5256 6.8019 8.1420 9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	3.1836 4.3746 5.6371 6.9753 8.3938 9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
3 3.0301 3.0377 3.0452 3.0604 3.0756 3.0909 3.1216 4 4.0604 4.0756 4.0909 4.1216 4.1525 4.1836 4.2465 5 5.1010 5.1266 5.1523 5.2040 5.2563 5.3091 5.4163 6 6.1520 6.1907 6.2296 6.3081 6.3877 6.4684 6.6330 7 7.2135 7.2680 7.3230 7.4343 7.5474 7.6625 7.8983 8 8.2857 8.3589 8.4328 8.5830 8.7361 8.8923 9.2142 9 9.3685 9.4634 9.5593 9.7546 9.9545 10.1591 10.5828 10 10.4622 10.5817 10.7027 10.9497 11.2034 11.4639 12.0061 11 11.5668 11.7139 11.8633 12.1687 12.4835 12.8078 13.4864 12 12.6825 12.8604 13.0412 13.4121 13.7956 14.192	4.3101 5.5256 6.8019 8.1420 9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	4.3746 5.6371 6.9753 8.3938 9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
5 5.1010 5.1266 5.1523 5.2040 5.2563 5.3091 5.4163 6 6.1520 6.1907 6.2296 6.3081 6.3877 6.4684 6.6330 7 7.2135 7.2680 7.3230 7.4343 7.5474 7.6625 7.8983 8 8.2857 8.3589 8.4328 8.5830 8.7361 8.8923 9.2142 9 9.3685 9.4634 9.5593 9.7546 9.9545 10.1591 10.5828 10 10.4622 10.5817 10.7027 10.9497 11.2034 11.4639 12.0061 11 11.5668 11.7139 11.8633 12.1687 12.4835 12.8078 13.4864 12 12.6825 12.8604 13.0412 13.4121 13.7956 14.1920 15.0258 13 13.8093 14.0211 14.2368 14.6803 15.1404 15.6178 16.6268 14 14.9474 15.1964 15.4504 15.9739 16.5190	5.5256 6.8019 8.1420 9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	5.6371 6.9753 8.3938 9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
6 6.1520 6.1907 6.2296 6.3081 6.3877 6.4684 6.6330 7 7.2135 7.2680 7.3230 7.4343 7.5474 7.6625 7.8983 8 8.2857 8.3589 8.4328 8.5830 8.7361 8.8923 9.2142 9 9.3685 9.4634 9.5593 9.7546 9.9545 10.1591 10.5828 10 10.4622 10.5817 10.7027 10.9497 11.2034 11.4639 12.0061 11 11.5668 11.7139 11.8633 12.1687 12.4835 12.8078 13.4864 12 12.6825 12.8604 13.0412 13.4121 13.7956 14.1920 15.0258 13 13.8093 14.0211 14.2368 14.6803 15.1404 15.6178 16.6268 14 14.9474 15.1964 15.4504 15.9739 16.5190 17.0863 18.2919 15 16.6969 16.3863 16.6821 17.2934 17.9319	6.8019 8.1420 9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	6.9753 8.3938 9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
7 7.2135 7.2680 7.3230 7.4343 7.5474 7.6625 7.8983 8 8.2857 8.3589 8.4328 8.5830 8.7361 8.8923 9.2142 9 9.3685 9.4634 9.5593 9.7546 9.9545 10.1591 10.5828 10 10.4622 10.5817 10.7027 10.9497 11.2034 11.4639 12.0061 11 11.5668 11.7139 11.8633 12.1687 12.4835 12.8078 13.4864 12 12.6825 12.8604 13.0412 13.4121 13.7956 14.1920 15.0258 13 13.8093 14.0211 14.2368 14.6803 15.1404 15.6178 16.6268 14 14.9474 15.1964 15.4504 15.9739 16.5190 17.0863 18.2919 15 16.0969 16.3863 16.6821 17.2934 17.9319 18.5989 20.0236 16 17.2579 17.5912 17.9324 18.6393 <td< td=""><td>8.1420 9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020</td><td>8.3938 9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958</td></td<>	8.1420 9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	8.3938 9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
7 7.2135 7.2680 7.3230 7.4343 7.5474 7.6625 7.8983 8 8.2857 8.3589 8.4328 8.5830 8.7361 8.8923 9.2142 9 9.3685 9.4634 9.5593 9.7546 9.9545 10.1591 10.5828 10 10.4622 10.5817 10.7027 10.9497 11.2034 11.4639 12.0061 11 11.5668 11.7139 11.8633 12.1687 12.4835 12.8078 13.4864 12 12.6825 12.8604 13.0412 13.4121 13.7956 14.1920 15.0258 13 13.8093 14.0211 14.2368 14.6803 15.1404 15.6178 16.6268 14 14.9474 15.1964 15.4504 15.9739 16.5190 17.0863 18.2919 15 16.0969 16.3863 16.6821 17.2934 17.9319 18.5989 20.0236 16 17.2579 17.5912 17.9324 18.6393 <td< td=""><td>9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020</td><td>9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958</td></td<>	9.5491 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
8 8.2857 8.3589 8.4328 8.5830 8.7361 8.8923 9.2142 9 9.3685 9.4634 9.5593 9.7546 9.9545 10.1591 10.5828 10 10.4622 10.5817 10.7027 10.9497 11.2034 11.4639 12.0661 11 11.5668 11.7139 11.8633 12.1687 12.4835 12.8078 13.4864 12 12.6825 12.8604 13.0412 13.4121 13.7956 14.1920 15.0258 13 13.8093 14.0211 14.2368 14.6803 15.1404 15.6178 16.6268 14 14.9474 15.1964 15.4504 15.9739 16.5190 17.0863 18.2919 15 16.0969 16.3863 16.6821 17.2934 17.9319 18.5989 20.0236 16 17.2579 17.5912 17.9324 18.6393 19.3802 20.1569 21.8245 17 18.4304 18.8111 19.2014 20.0121 20.8647 21.7616 23.6975 18 19.6147 20.0462<	11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
12 12.6825 12.8604 13.0412 13.4121 13.7956 14.1920 15.0258 13 13.8093 14.0211 14.2368 14.6803 15.1404 15.6178 16.6268 14 14.9474 15.1964 15.4504 15.9739 16.5190 17.0863 18.2919 15 16.0969 16.3863 16.6821 17.2934 17.9319 18.5989 20.0236 16 17.2579 17.5912 17.9324 18.6393 19.3802 20.1569 21.8245 17 18.4304 18.8111 19.2014 20.0121 20.8647 21.7616 23.6975 18 19.6147 20.0462 20.4894 21.4123 22.3863 23.4144 25.6454 19 20.8109 21.2968 21.7967 22.8406 23.9460 25.1169 27.6712 20 22.0190 22.5630 23.1237 24.2974 25.5447 26.8704 29.7781 21 23.2392 23.8450 24.4705 25.7833 27.1833 28.6765 31.9692 22 24.4716	15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
15 16.0969 16.3863 16.6821 17.2934 17.9319 18.5989 20.0236 16 17.2579 17.5912 17.9324 18.6393 19.3802 20.1569 21.8245 17 18.4304 18.8111 19.2014 20.0121 20.8647 21.7616 23.6975 18 19.6147 20.0462 20.4894 21.4123 22.3863 23.4144 25.6454 19 20.8109 21.2968 21.7967 22.8406 23.9460 25.1169 27.6712 20 22.0190 22.5630 23.1237 24.2974 25.5447 26.8704 29.7781 21 23.2392 23.8450 24.4705 25.7833 27.1833 28.6765 31.9692 22 24.4716 25.1431 25.8376 27.2990 28.8629 30.5368 34.2480 23 25.7163 26.4574 27.2251 28.8450 30.5844 32.4529 36.6179 24 26.9735 27.7881 28.6335 30	23.6575 25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	25.6725 28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.8404 28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	28.2129 30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.1324 30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	30.9057 33.7600 36.7856 39.9927 43.3923 46.9958
18 19.6147 20.0462 20.4894 21.4123 22.3863 23.4144 25.6454 19 20.8109 21.2968 21.7967 22.8406 23.9460 25.1169 27.6712 20 22.0190 22.5630 23.1237 24.2974 25.5447 26.8704 29.7781 21 23.2392 23.8450 24.4705 25.7833 27.1833 28.6765 31.9692 22 24.4716 25.1431 25.8376 27.2990 28.8629 30.5368 34.2480 23 25.7163 26.4574 27.2251 28.8450 30.5844 32.4529 36.6179 24 26.9735 27.7881 28.6335 30.4219 32.3490 34.4265 39.0826 25 28.2432 29.1354 30.0630 32.0303 34.1578 36.4593 41.6459 26 29.5256 30.4996 31.5140 33.6709 36.0117 38.5530 44.3117 27 30.8209 31.8809 32.9867 35.3443 37.9120 40.7096 47.0842 28 32.1291	30.5390 33.0660 35.7193 38.5052 41.4305 44.5020	33.7600 36.7856 39.9927 43.3923 46.9958
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33.0660 35.7193 38.5052 41.4305 44.5020	36.7856 39.9927 43.3923 46.9958
20 22.0190 22.5630 23.1237 24.2974 25.5447 26.8704 29.7781 21 23.2392 23.8450 24.4705 25.7833 27.1833 28.6765 31.9692 22 24.4716 25.1431 25.8376 27.2990 28.8629 30.5368 34.2480 23 25.7163 26.4574 27.2251 28.8450 30.5844 32.4529 36.6179 24 26.9735 27.7881 28.6335 30.4219 32.3490 34.4265 39.0826 25 28.2432 29.1354 30.0630 32.0303 34.1578 36.4593 41.6459 26 29.5256 30.4996 31.5140 33.6709 36.0117 38.5530 44.3117 27 30.8209 31.8809 32.9867 35.3443 37.9120 40.7096 47.0842 28 32.1291 33.2794 34.4815 37.0512 39.8598 42.9309 49.9676	35.7193 38.5052 41.4305 44.5020	39.9927 43.3923 46.9958
21 23.3333 25.1431 25.8376 27.2990 28.8629 30.5368 34.2480 23 25.7163 26.4574 27.2251 28.8450 30.5844 32.4529 36.6179 24 26.9735 27.7881 28.6335 30.4219 32.3490 34.4265 39.0826 25 28.2432 29.1354 30.0630 32.0303 34.1578 36.4593 41.6459 26 29.5256 30.4996 31.5140 33.6709 36.0117 38.5530 44.3117 27 30.8209 31.8809 32.9867 35.3443 37.9120 40.7096 47.0842 28 32.1291 33.2794 34.4815 37.0512 39.8598 42.9309 49.9676	38.5052 41.4305 44.5020	$43.3923 \\ 46.9958$
23 25.7163 26.4574 27.2251 28.8450 30.5844 32.4529 36.6179 24 26.9735 27.7881 28.6335 30.4219 32.3490 34.4265 39.0826 25 28.2432 29.1354 30.0630 32.0303 34.1578 36.4593 41.6459 26 29.5256 30.4996 31.5140 33.6709 36.0117 38.5530 44.3117 27 30.8209 31.8809 32.9867 35.3443 37.9120 40.7096 47.0842 28 32.1291 33.2794 34.4815 37.0512 39.8598 42.9309 49.9676	$41.4305 \\ 44.5020$	46.9958
23 25.7163 26.4574 27.2251 28.8450 30.5844 32.4529 36.6179 24 26.9735 27.7881 28.6335 30.4219 32.3490 34.4265 39.0826 25 28.2432 29.1354 30.0630 32.0303 34.1578 36.4593 41.6459 26 29.5256 30.4996 31.5140 33.6709 36.0117 38.5530 44.3117 27 30.8209 31.8809 32.9867 35.3443 37.9120 40.7096 47.0842 28 32.1291 33.2794 34.4815 37.0512 39.8598 42.9309 49.9676	44.5020	
24 26.9735 27.7881 28.6335 30.4219 32.3490 34.4265 39.0826 25 28.2432 29.1354 30.0630 32.0303 34.1578 36.4593 41.6459 26 29.5256 30.4996 31.5140 33.6709 36.0117 38.5530 44.3117 27 30.8209 31.8809 32.9867 35.3443 37.9120 40.7096 47.0842 28 32.1291 33.2794 34.4815 37.0512 39.8598 42.9309 49.9676		FA 01 FC
25 28.2432 29.1354 30.0630 32.0303 34.1578 36.4593 41.6459 26 29.5256 30.4996 31.5140 33.6709 36.0117 38.5530 44.3117 27 30.8209 31.8809 32.9867 35.3443 37.9120 40.7096 47.0842 28 32.1291 33.2794 34.4815 37.0512 39.8598 42.9309 49.9676		50.8156
26 29.5256 30.4996 31.5140 33.6709 36.0117 38.5530 44.3117 27 30.8209 31.8809 32.9867 35.3443 37.9120 40.7096 47.0842 28 32.1291 33.2794 34.4815 37.0512 39.8598 42.9309 49.9676	47.7271	54.8645
27 30.8209 31.8809 32.9867 35.3443 37.9120 40.7096 47.0842 28 32.1291 33.2794 34.4815 37.0512 39.8598 42.9309 49.9676	51.1135	59.1564
28 32.1291 33.2794 34.4815 37.0512 39.8598 42.9309 49.9676	54.6691	63.7058
29 33.4504 34.6954 35.9987 38.7922 41.8563 45.2189 52.9663	58.4026	68.5281
mu 00,400	62.3227	73.6398
30 34.7849 36.1291 37.5387 40.5681 43.9027 47.5754 56.0849	66.4388	79.0582
31 36.1327 37.5807 39.1018 42.3794 46.0003 50.0027 59.3283	70.7608	84.8017
32 37.4941 39.0504 40.6883 44.2270 48.1503 52.5028 62.7015	75.2988	90.8898
33 38.8690 40.5386 42.2986 46.1116 50.3540 55.0778 66.2095	80.0638	97.3432
01 10,2011 12,0100 10,0001	85.0670	104.1838
1 00 41.0000 10.0100 10.0001	90.3203	111.4348
	95.8363	119.1209
01 11.0010 10.0101 10.0001 01.0010	101.6281	127.2681
00 40,0021 40,2020 0011110 0011110	107.7095	135.9042
00 41.4120 40.0002 02.4001 00.0012 01.1000	114.0950	145.0585
40 48.8864 51.4896 54.2679 60.4020 67.4026 75.4013 95.0255 1	120.7998	154.7620
11 00.0.02 00.1002 00.0010	127.8398	165.0477
12 01.0100 04.1010 01.0201 01.0022	135.2318	175.9505
40 00.0010 00.1020 0111200 111200	142.9933	187.5076
44 01.0010 00.1000 01.0001 101001	151.1430	199.7580
10 00:1011 00:0101	159.7002	212.7435
	168.6852	226.5081
	178.1194	241.0986
10 011111	188.0254	256.5645
10 02:0010	198.4267	$272.9584 \\ 290.3359$
50 64.4632 68.8818 73.6828 84.5794 97.4843 112.7969 152.6671	209.3480	

148LE

PRESENT VALUE OF AN ANNUITY: $\frac{1-(1+r)^{-n}}{r}$

An annuity in which the yearly payment at the end of each of n years is A at an interest rate r (in decimals) compounded annually has present value $A \left\lceil \frac{1-(1+r)^{-n}}{r} \right\rceil$.

	l								
n	1%	11/4	$1\frac{1}{2}\%$	2%	$2\frac{1}{2}\%$	3%	4%	5%	6%
1	0.9901	0.9877	0.9852	0.9804	0.9756	0.9709	0.9615	0.9524	0.9434
2	1.9704	1.9631	1.9559	1.9416	1.9274	1.9135	1.8861	1.8594	1.8334
3	2.9410	2.9265	2.9122	2.8839	2.8560	2.8286	2.7751	2.7232	2.6730
4	3.9020	3.8781	3.8544	3.8077	3.7620	3.7171	3.6299	3.5460	3.4651
5	4.8534	4.8178	4.7826	4.7135	4.6458	4.5797	4.4518	4.3295	4.2124
6	5.7955	5.7460	5.6972	5.6014	5.5081	5.4172	5.2421	5.0757	4.9173
7	6.7282	6.6627	6.5982	6.4720	6.3494	6.2303	6.0021	5.7864	5.5824
8	7.6517	7.5681	7.4859	7.3255	7.1701	7.0197	6.7327	6.4632	6.2098
9	8.5660	8.4623	8.3605	8.1622	7.9709	7.7861	7.4353	7.1078	6.8017
10	9.4713	9.3455	9.2222	8.9826	8.7521	8.5302	8.1109	7.7217	7.3601
11	10.3676	10.2178	10.0711	9.7868	9.5142	9.2526	8.7605	8.3064	7.8869
12	11.2551	11.0793	10.9075	10.5753	10.2578	9.9540	9.3851	8.8633	
13	12.1337	11.9302	11.7315	11.3484	10.9832	10.6350	9.9856	9.3936	8.3838
14	13.0037	12.7706	12.5434	12.1062	11.6909	11.2961	10.5631	9.8986	8.8527
15	13.8651	13.6005	13.3432	12.8493	12.3814	11.2301 11.9379	11.1184	10.3797	9.2950
16	14.7179	14.4203	14.1313	13.5777	13.0550	12.5611	11.1164 11.6523		9.7122
17	15.5623	15.2299	14.9076	14.2919	13.7122	13.1661	12.1657	$10.8378 \\ 11.2741$	10.1059
18	16.3983	16.0295	15.6726	14.9920	14.3534	13.7535	12.6593	11.6896	10.4773
19	17.2260	16.8193	16.4262	15.6785	14.9789	14.3238	13.1339	12.0853	10.8276
20	18.0456	17.5993	17.1686	16.3514	15.5892	14.8775	13.5903	12.0655 12.4622	11.1581 11.4699
21	18.8570	18.3697	17.9001	17.0112					
22	19.6604	19.1306	18.6208	17.6580	16.1845	15.4150	14.0292	12.8212	11.7641
23	20.4558	19.8820	19.3309	18.2922	16.7654	15.9369	14.4511	13.1630	12.0416
24	21.2434	20.6242	20.0304	18.2922	17.3321	16.4436	14.8568	13.4886	12.3034
25	22.0232	21.3573	20.7196	19.5235	17.8850 18.4244	16.9355	15.2470	13.7986	12.5504
26	22.7952	22.0813	21.3986	20.1210	18.9506	17.4131	15.6221	14.0939	12.7834
27	23.5596	22.7963	22.0676	20.7069	19.4640	17.8768	15.9828	14.3752	13.0032
28	24.3164	23.5025	22.7267	21.2813	19.9649	18.3270	16.3296	14.6430	13.2105
29	25.0658	24.2000	23.3761	21.8444	20.4535	18.7641 19.1885	16.6631	14.8981	13.4062
30	25.8077	24.8889	24.0158	22.3965	20.9303	19.1885	$\frac{16.9837}{17.2920}$	$15.1411 \\ 15.3725$	13.5907
31	26.5423	25.5693							13.7648
32	27.2696	26.2413	24.6461 25.2671	22.9377	21.3954	20.0004	17.5885	15.5928	13.9291
33	27.9897	26.2415 26.9050	25.2671 25.8790	23.4683	21.8492	20.3888	17.8736	15.8027	14.0840
34	28.7027	27.5605		23.9886	22.2919	20.7658	18.1476	16.0025	14.2302
35	29.4086	28.2079	$26.4817 \\ 27.0756$	24.4986	22.7238	21.1318	18.4112	16.1929	14.3681
36	30.1075	28.8473	27.6607	24.9986 25.4888	23.1452	21.4872	18.6646	16.3742	14.4982
37	30.7995	29.4788	28.2371	25.4888 25.9695	23.5563	21.8323	18.9083	16.5469	14.6210
38	31.4847	30.1025	28.8051	26.4406	23.9573 24.3486	22.1672	19.1426	16.7113	14.7368
39	32.1630	30.7185	29.3646	26.9026	24.3486 24.7303	22.4925	19.3679	16.8679	14.8460
40	32.8347	31.3269	29.9158	27.3555	24.7303 25.1028	22.8082 23.1148	19.5845 19.7928	17.0170 17.1591	14.9491 15.0463
41	33.4997	31.9278	30.4590	27.7995					
42	34.1581	32.5213	30.4590 30.9941	27.7995 28.2348	$25.4661 \\ 25.8206$	23.4124	19.9931	17.2944	15.1380
43	34.8100	33.1075	31.5212	28.6616	26.8206 26.1664	23.7014 23.9819	20.1856 20.3708	17.4232	15.2245
44	35.4555	33.6864	32.0406	29.0800	26.5038	23.9819 24.2543	20.3708	17.5459	15.3062
45	36.0945	34.2582	32.5523	29.4902	26.8330	24.2543 24.5187	20.5488 20.7200	17.6628	15.3832
46	36.7272	34.8229	33.0565	29.8923	27.1542	24.5187 24.7754	20.7200	17.7741	15.4558
47	37.3537	35.3806	33.5532	30.2866	27.4675	25.0247	20.8847 21.0429	17.8801 17.9810	15.5244
48	37.9740	35.9315	34.0426	30.6731	27.7732	25.2667	21.0429 21.1951	18.0772	15.5890
49	38.5881	36.4755	34.5247	31.0521	28.0714	25.5017	21.3415	18.1687	15.6500 15.7076
50	39.1961	37.0129	34.9997	31.4236	28.3623	25.7298	21.4822	18.2559	15.7619
						20.,200	21.4022	10.2000	10.1019

14BLE **27**

BESSEL FUNCTIONS $J_{0}\left(x ight)$

x	0	1	2	3	4	5	6	7	8	9
0.	1.0000	.9975	.9900	.9776	.9604	.9385	.9120	.8812	.8463	.8075
1.	.7652	.7196	.6711	.6201	.5669	.5118	.4554	.3980	.3400	.2818
2.	.2239	.1666	.1104	.0555	.0025	0484	0968	1424	1850	2243
3.	2601	2921	3202	3443	3643	3801	3918	3992	4026	4018
4.	3971	3887	3766	3610	3423	3205	2961	2693	2404	2097
5.	1776	1443	1103	0758	0412	0068	.0270	.0599	.0917	.1220
6.	.1506	.1773	.2017	.2238	.2433	.2601	.2740	.2851	.2931	.2981
7.	.3001	.2991	.2951	.2882	.2786	.2663	.2516	.2346	.2154	.1944
8.	.1717	.1475	.1222	.0960	.0692	.0419	.0146	0125	0392	0653
9.	0903	1142	1367	1577	1768	1939	2090	2218	2323	2403

^{TABLE} 28

BESSEL FUNCTIONS $J_1(x)$

x	0	1	2	3	4	5	6	7	8	9
0.	.0000	.0499	.0995	.1483	.1960	.2423	.2867	.3290	.3688	.4059
1.	.4401	.4709	.4983	.5220	.5419	.5579	.5699	.5778	.5815	.5812
2.	.5767	.5683	.5560	.5399	.5202	.4971	.4708	.4416	.4097	.3754
3.	.3391	.3009	.2613	.2207	.1792	.1374	.0955	.0538	.0128	0272
4.	0660	1033	1386	1719	2028	2311	2566	2791	2985	3147
5.	3276	3371	3432	3460	3453	3414	3343	3241	3110	2951
6.	2767	2559	2329	2081	1816	1538	1250	0953	0652	0349
7.	0047	.0252	.0543	.0826	.1096	.1352	.1592	.1813	.2014	.2192
8.	.2346	.2476	.2580	.2657	.2708	.2731	.2728	.2697	.2641	.2559
9.	.2453	.2324	.2174	.2004	.1816	.1613	.1395	.1166	.0928	.0684

1ABLE **29**

BESSEL FUNCTIONS $Y_{0}\left(x ight)$

x	0	1	2	3	4	5	6	7	8	9
0.	∞	-1.5342	-1.0811	8073	6060	4445	3085	1907	0868	.0056
1.	.0883	.1622	.2281	.2865	.3379	.3824	.4204	.4520	.4774	.4968
2.	.5104	.5183	.5208	.5181	.5104	.4981	.4813	.4605	.4359	.4079
3.	.3769	.3431	.3071	.2691	.22 96	.1890	.1477	.1061	.0645	.0234
4. 5.	0169	0561	0938	1296	1633	1947	2235	2494	2723	2921
6.	3085 2882	3216 2694	3313	3374	3402	3395	3354	3282	3177	3044
7.	2662 0259	2694 .0042	2483 .0339	2251	1999	1732	1452	1162	0864	0563
8.	.2235	.2381	.2501	.0628 .2595	.0907 .2662	.1173	.1424	.1658	.1872	.2065
9.	.2499	.2383	.2245	-		.2702	.2715	.2700	.2659	.2592
9.	.2499	.2383	.2245	.2086	.1907	.1712	.1502	.1279	.1045	.0804

TABLE

BESSEL FUNCTIONS

 $Y_1(x)$

æ	0	1	2	3	4	5	6	7	8	9
0.	∞	-6.4590	-3.3238	-2.2931	-1.7809	-1.4715	-1.2604	-1.1032	9781	8731
1.	7812	6981	6211	5485	4791	4123	3476	2847	2237	1644
2.	1070	0517	.0015	.0523	.1005	.1459	.1884	.2276	.2635	.2959
3,	.3247	.3496	.3707	.3879	.4010	.4102	.4154	.4167	.4141	.4078
4.	.3979	.3846	.3680	.3484	.3260	.3010	.2737	.2445	.2136	.1812
5.	.1479	.1137	.0792	.0445	.0101	0238	0568	0887	1192	1481
6.	1750	1998	2223	-,2422	2596	2741	2857	2945	3002	3029
7.	3027	2995	2934	2846	2731	2591	2428	2243	2039	1817
8.	1581	1331	1072	0806	0535	0262	.0011	.0280	.0544	.0799
9.	.1043	.1275	.1491	.1691	.1871	.2032	.2171	.2287	.2379	.2447

BESSEL FUNCTIONS

 $I_0(x)$

x	0	1	2	3	4	5	6	7	8	9
0.	1.000	1.003	1.010	1.023	1.040	1.063	1.092	1.126	1.167	1.213
1.	1.266	1.326	1.394	1.469	1.553	1.647	1.750	1.864	1.990	2.128
2.	2.280	2.446	2.629	2.830	3.049	3.290	3.553	3.842	4.157	4.503
3.	4.881	5.294	5.747	6.243	6.785	7.378	8.028	8.739	9.517	10.37
4.	11.30	12.32	13.44	14.67	16.01	17.48	19.09	20.86	22.79	24.91
5.	27.24	29.79	32.58	35.65	39.01	42.69	46.74	51.17	56.04	61.38
6.	67.23	73.66	80.72	88.46	96.96	106.3	116.5	127.8	140.1	153.7
7.	168.6	185.0	202.9	222.7	244.3	268.2	294.3	323.1	354.7	389.4
8.	427.6	469.5	515.6	566.3	621.9	683.2	750.5	824.4	905.8	995.2
9.	1094	1202	1321	1451	1595	1753	1927	2119	2329	2561

32

BESSEL FUNCTIONS

 $I_1(x)$

x	0	1	2	3	4	5	6	7	8	9
0.	.0000	.0501	.1005	.1517	.2040	.2579	.3137	.3719	.4329	.4971
1.	.5652	.6375	.7147	.7973	.8861	.9817	1.085	1.196	1.317	1.448
2.	1.591	1.745	1.914	2.098	2.298	2.517	2.755	3.016	3.301	3.613
3.	3.953	4.326	4.734	5.181	5.670	6.206	6.793	7.436	8.140	8.913
4.	9.759	10.69	11.71	12.82	14.05	15.39	16.86	18.48	20.25	22.20
5.	24.34	26.68	29.25	32.08	35.18	38.59	42.33	46.44	50.95	55.90
6.	61.34	67.32	73.89	81.10	89.03	97.74	107.3	117.8	129.4	142.1
7.	156.0	171.4	188.3	206.8	227.2	249.6	274.2	301.3	331.1	363.9
8.	399.9	439.5	483.0	531.0	583.7	641.6	705.4	775.5	852.7	937.5
9.	1031	1134	1247	1371	1508	1658	1824	2006	2207	2428

BESSEL FUNCTIONS $K_0(x)$

x	0	1	2	3	4	5	6	7	8	9
0.	∞	2.4271	1.7527	1.3725	1.1145	.9244	.7775	.6605	.5653	.4867
1.	.4210	.3656	.3185	.2782	.2437	.2138	.1880	.1655	.1459	.1288
2.	.1139	.1008	.08927	.07914	.07022	.06235	.05540	.04926	.04382	.03901
3.	.03474	.03095	.02759	.02461	.02196	.01960	.01750	.01563	.01397	.01248
4.	.01116	.029980	.028927	.027988	.027149	$.0^{2}6400$.025730	$.0^{2}5132$	$.0^{2}4597$	$.0^{2}4119$
5.	$.0^{2}3691$.023308	$.0^{2}2966$	$.0^{2}2659$	$.0^{2}2385$	$.0^{2}2139$	$.0^{2}1918$	$.0^{2}1721$	$.0^{2}1544$.021386
6.	$.0^{2}1244$	$.0^{2}1117$	$.0^{2}1003$	$.0^{3}9001$.038083	.037259	$.0^{3}6520$.035857	$.0^{3}5262$	$.0^{3}4728$
7.	$.0^{3}4248$	$.0^33817$	$.0^{3}3431$.033084	.032772	$.0^{3}2492$	$.0^{3}2240$.032014	$.0^31811$.031629
8.	$.0^{3}1465$	$.0^{3}1317$	$.0^{3}1185$	$.0^{3}1066$.049588	.048626	$.0^{4}7761$	$.0^{4}6983$.046283	$.0^{4}5654$
9.	.045088	$.0^{4}4579$.044121	.043710	.043339	.043006	.042706	$.0^{4}2436$	$.0^{4}2193$	$.0^{4}1975$

34

BESSEL FUNCTIONS $K_1(x)$

x	0	1	2	3	4	5	6	7	8	9
0.	∞	9.8538	4.7760	3.0560	2.1844	1.6564	1.3028	1.0503	.8618	.7165
1.	.6019	.5098	.4346	.3725	.3208	.2774	.2406	.2094	.1826	.1597
2.	.1399	.1227	.1079	.09498	.08372	.07389	.06528	.05774	.05111	.04529
3.	.04016	.03563	.03164	.02812	.02500	.02224	.01979	.01763	.01571	.01400
4.	.01248	.01114	.029938	.028872	.027923	.027078	$.0^{2}6325$	$.0^{2}5654$	$.0^{2}5055$	$.0^{2}4521$
5.	$.0^{2}4045$	$.0^{2}3619$	$.0^{2}3239$	$.0^{2}2900$	$.0^{2}2597$	$.0^{2}2326$	$.0^{2}2083$	$.0^{2}1866$	$.0^{2}1673$	$.0^{2}1499$
6.	$.0^{2}1344$	$.0^{2}1205$	$.0^{2}1081$.039691	.038693	.037799	$.0^{3}6998$	$.0^{3}6280$.035636	.035059
7.	$.0^{3}4542$.034078	.033662	$.0^{3}3288$.032953	$.0^{3}2653$	$.0^{3}2383$	$.0^{3}2141$	$.0^{3}1924$	$.0^{3}1729$
8.	$.0^{3}1554$.031396	$.0^{3}1255$	$.0^{3}1128$	$.0^{3}1014$.049120	$.0^{4}8200$	$.0^{4}7374$	$.0^{4}6631$	$.0^{4}5964$
9.	$.0^{4}5364$	$.0^{4}4825$	$.0^{4}4340$	$.0^{4}3904$.043512	.043160	$.0^{4}2843$	$.0^{4}2559$.042302	$.0^{4}2072$

Bessel functions $\mathbf{Ber}(x)$

x	0	1	2	3	4	5	6	7	8	9
0.	1.0000	1.0000	1.0000	.9999	.9996	.9990	.9980	.9962	.9936	.9898
1.	.9844	.9771	.9676	.9554	.9401	.9211	.8979	.8700	.8367	.7975
2.	.7517	.6987	.6377	.5680	.4890	.4000	.3001	.1887	.06511	07137
3.	2214	3855	5644	7584	9680	-1.1936	-1.4353	-1.6933	-1.9674	-2.2576
4.	-2.5634	-2.8843	-3.2195	-3.5679	-3.9283	-4.2991	-4.6784	-5.0639	-5.4531	-5.8429
5.	-6.2301	-6.6107	-6.9803	-7.3344	-7.6674	-7.9736	-8.2466	-8.4794	-8.6644	-8.7937
6.	8.8583	-8.8491	-8.7561	-8.5688	-8.2762	-7.8669	-7.3287	-6.6492	-5.8155	-4.8146
7.	-3.6329	-2.2571	6737	1.1308	3.1695	5.4550	7.9994	10.814	13.909	17.293
8.	20.974	24.957	29.245	33.840	38.738	43.936	49.423	55.187	61.210	67.469
9.	73.936	80.576	87.350	94.208	101.10	107.95	114.70	121.26	127.54	133.43

TABLE 36

Bei (x)

x	0	1	2	3	4	5	6	7	8	9
0.	.0000	.022500	.01000	.02250	.04000	.06249	.08998	.1224	.1599	.2023
1.	.2496	.3017	.3587	.4204	.4867	.5576	.6327	.7120	.7953	.8821
2.	.9723	1.0654	1.1610	1.2585	1.3575	1.4572	1.5569	1.6557	1.7529	1.8472
3.	1.9376	2.0228	2.1016	2.1723	2.2334	2.2832	2.3199	2.3413	2.3454	2.3300
4.	2.2927	2.2309	2.1422	2.0236	1.8726	1.6860	1.4610	1.1946	.8837	.5251
5.	.1160	3467	8658	-1.4443	-2.0845	-2.7890	-3.5597	-4.3986	-5.3068	-6.2854
6.	-7.3347	-8.4545	-9.6437	-10.901	-12.223	-13.607	-15.047	-16.538	-18.074	-19.644
7.	-21.239	-22.848	-24.456	-26.049	-27.609	-29.116	-30.548	-31.882	-33.092	-34.147
8.	-35.017	-35.667	-36.061	-36.159	-35.920	-35.298	-34.246	-32.714	-30.651	-28.003
9.	-24.713	-20.724	-15.976	-10.412	-3.9693	3.4106	11.787	21.218	31.758	43.459

BESSEL FUNCTIONS

Ker (x)

	0	1	2	3	4	5	6	7	8	9
0.		2.4205	1.7331	1.3372	1.0626	.8559	.6931	.5614	.4529	.3625
1.	.2867	.2228	.1689	.1235 06367	.08513 06737	.05293 06969	.02603 07083	$.0^23691$ 07097	01470 07030	02966 06894
2. 3.	04166 06703	05111 06468	05834 06198	05903	05590	05264	04932	04597	04265 01525	03937 01330
4.	03618	03308 0^29865	03011 0^28359	02726 $0^{2}6989$	02456 0^25749	02200 0^24632	01960 0^23632	01734 0^22740	0^21952	0^21258
5. 6.	$\begin{array}{c c}01151 \\0^36530 \end{array}$	$0^{3}1295$	$.0^{3}3191$	$.0^{3}6991$	$.0^{2}1017$	$.0^{2}1278$ $.0^{2}1860$	$.0^{2}1488$ $.0^{2}1800$	$.0^{2}1653$ $.0^{2}1731$	$.0^{2}1777$ $.0^{2}1655$	$.0^21866$ $.0^21572$
7.		$.0^{2}1951$ $.0^{2}1397$	$.0^{2}1956$ $.0^{2}1306$	$.0^{2}1940$ $.0^{2}1216$	$.0^21907$ $.0^21126$.021037	.039511	.038675	.037871	$.0^{3}7102$ $.0^{3}1628$
9.		.035681	.035030	.034422	.033855	.0 ³ 33330	$0^{3}2846$.032402	.031996	.031028

TABLE
20
JO

BESSEL FUNCTIONS $\mathbf{Kei}(x)$

x	0	1	2	3	4	5	6	7	8	9
0.		7769	7581	7331	7038	6716	6374	6022	5664	5305 2251
1.	4950	4601	4262	3933	3617 1262	3314 1107	3026 09644	2752 08342	2494 07157	06083
2. 3.	2024 05112	1812 04240	1614 03458	1431 02762	02145	01600	01123	027077	0^23487	0^34108
4.	$.0^{2}2198$	$.0^{2}4386$	$.0^{2}6194$.027661	$.0^28826$.01014	$.0^{2}9721$ $.0^{2}9716$	$.01038$ $.0^{2}9255$	$.01083$ $.0^28766$	$.01110$ $.0^28258$	$.01121$ $.0^27739$
5. 6.	$.01119$ $.0^{2}7216$	$.01105$ $.0^{2}6696$	$.01082$ $.0^{2}6183$.01051 .0 ² 5681	$.0^{1014}$ $.0^{2}5194$	$.0^{2}4724$	$.0^{2}4274$.023846	.023440	$.0^23058$ $.0^35117$
7.	.022700	$.0^{2}2366$.022057	.021770	$.0^{2}1507$ $0^{4}4449$	$.0^{2}1267$ $0^{3}1149$	$.0^{2}1048$ $0^{3}1742$	$.0^{3}8498$ $0^{3}2233$	$0^{3}6714$ $-0^{3}2632$	
8. 9.	$0^{3}3696$ $0^{3}3192$	$0^{3}2440$ $-0^{3}3368$	$.0^{3}1339$ $0^{3}3486$	$.0^{4}3809$ $0^{3}3552$	$0^{4}4449$ $0^{3}3574$	$0^{3}3557$		$0^{3}3430$		0^33210
<u>.</u>	.0-5102									

VALUES FOR APPROXIMATE ZEROS OF BESSEL FUNCTIONS

The following table lists the first few positive roots of various equations. Note that for all cases listed the successive large roots differ approximately by $\pi = 3.14159...$

	n = 0	n = 1	n = 2	n = 3	n = 4	n = 5	n=6
	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715	9.9361
	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386	13.5893
7 () 0	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002	17.0038
$J_n(x)=0$	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801	20.3208
	14.9309	16.4706	17.9598	19.4094	20,8269	22,2178	23.5861
	18.0711	19.6159	21.1170	22.5827	24.0190	25.4303	26.8202
	0.8936	2.1971	3.3842	4.5270	5.6452	6.7472	7.8377
	3.9577	5.4297	6.7938	8.0976	9.3616	10.5972	11.8110
$V(\omega) = 0$	7.0861	8.5960	10.0235	11.3965	12.7301	14.0338	15.3136
$Y_n(x)=0$	10.2223	11.7492	13.2100	14.6231	15.9996	17.3471	18.6707
	13.3611	14.8974	16.3790	17.8185	19.2244	20.6029	21.9583
	16.5009	18.0434	19.5390	20.9973	22.4248	23.8265	25.2062
	0.0000	1.8412	3.0542	4.2012	5.3176	6.4156	7.5013
	3.8317	5.3314	6.7061	8.0152	9.2824	10.5199	11.7349
$T'(\omega) = 0$	7.0156	8.5363	9.9695	11.3459	12.6819	13.9872	15.2682
$J_n'(x)=0$	10.1735	11.7060	13.1704	14.5859	15.9641	17.3128	18.6374
	13.3237	14.8636	16.3475	17.7888	19.1960	20.5755	21.9317
	16.4706	18.0155	19.5129	20.9725	22.4010	23.8036	25.1839
~	2.1971	3.6830	5.0026	6.2536	7.4649	8.6496	9.8148
	5.4297	6.9415	8.3507	9.6988	11.0052	12.2809	13.5328
$\mathbf{V}'(\omega) = 0$	8.5960	10.1234	11.5742	12.9724	14.3317	15.6608	16.9655
$Y_n'(x)=0$	11.7492	13.2858	14.7609	16.1905	17.5844	18.9497	20.2913
	14.8974	16.4401	17.9313	19.3824	20.8011	22.1928	23.5619
	18.0434	19.5902	21.0929	22.5598	23.9970	25.4091	26.7995

40

EXPONENTIAL, SINE AND COSINE INTEGRALS

$$Ei(x) = \int_x^\infty \frac{e^{-u}}{u} du$$
, $Si(x) = \int_0^x \frac{\sin u}{u} du$, $Ci(x) = \int_x^\infty \frac{\cos u}{u} du$

x	Ei(x)	Si(x)	Ci(x)
.0	∞	.0000	∞
.5	.5598	.4931	.1778
1.0	.2194	.9461	3374
1.5	.1000	1.3247	4704
2.0	.04890	1.6054	4230
2.5	.02491	1.7785	2859
3.0	.01305	1.8487	1196
3.5	$.0^{2}6970$	1.8331	.0321
4.0	$.0^23779$	1.7582	.1410
4.5	$.0^{2}2073$	1.6541	.1935
5.0	$.0^{2}1148$	1.5499	.1900
5.5	$.0^{3}6409$	1.4687	.1421
6.0	$.0^{3}3601$	1.4247	.0681
6.5	.032034	1.4218	0111
7.0	$.0^{3}1155$	1.4546	0767
7.5	$.0^46583$	1.5107	1156
8.0	.043767	1.5742	1224
8.5	$.0^{4}2162$	1.6296	09943
9.0	$.0^{4}1245$	1.6650	05535
9.5	$.0^{5}7185$	1.6745	$0^{2}2678$
10.0	$.0^{5}4157$	1.6583	.04546

41

LEGENDRE POLYNOMIALS $P_n(x)$

$$[P_0(x) = 1, P_1(x) = x]$$

x	$P_2(x)$	$P_3(x)$	$P_4(x)$	$P_5(x)$
.00	5000	.0000	.3750	.0000
.05	4963	0747	.3657	.0927
.10	4850	1475	.3379	.1788
.15	4663	2166	.2928	.2523
.20	4400	2800	.2320	.3075
.25	4063	3359	.1577	.3397
.30	3650	3825	.0729	.3454
.35	3163	4178	0187	.3225
.40	2600	4400	1130	.2706
.45	1963	4472	2050	.1917
.50	1250	4375	2891	.0898
.55	0463	4091	3590	0282
.60	.0400	3600	4080	1526
.65	.1338	2884	4284	2705
.70	.2350	1925	4121	3652
.75	.3438	0703	3501	4164
.80	.4600	.0800	2330	3995
.85	.5838	.2603	0506	2857
.90	.7150	.4725	.2079	0411
.95	.8538	.7184	.5541	.3727
1.00	1.0000	1.0000	1.0000	1.0000

^{TABLE} 42

LEGENDRE POLYNOMIALS $P_n(\cos\theta)$

 $[P_0(\cos\theta)=1]$

θ	$P_1(\cos\theta)$	$P_2(\cos \theta)$	$P_3(\cos \theta)$	$P_4(\cos \theta)$	$P_5(\cos \theta)$
0°	1.0000	1.0000	1.0000	1.0000	1.0000
5°	.9962	.9886	.9773	.9623	.9437
10°	.9848	.9548	.9106	.8532	.7840
15°	.9659	.8995	.8042	.6847	.5471
20°	.9397	.8245	.6649	.4750	.2715
25°	.9063	.7321	.5016	.2465	.0009
30°	.8660	.6250	.3248	.0234	2233
35°	.8192	.5065	.1454	1714	3691
40°	.7660	.3802	0252	3190	4197
45°	.7071	.2500	1768	4063	3757
50°	.6428	.1198	3002	4275	2545
55°	.5736	0065	3886	3852	0868
60°	.5000	1250	4375	2891	.0898
65°	.4226	2321	4452	1552	.2381
70°	.3420	3245	4130	0038	.3281
75°	.2588	3995	3449	.1434	.3427
80°	.1737	4548	2474	.2659	.2810
85°	.0872	4886	1291	.3468	.1577
90°	.0000	5000	.0000	.3750	.0000

43

COMPLETE ELLIPTIC INTEGRALS OF FIRST AND SECOND KINDS

$$K \; = \; \int_0^{\pi/2} rac{d heta}{\sqrt{1-k^2 \sin^2 heta}} \, , \quad E \; = \; \int_0^{\pi/2} \sqrt{1-k^2 \sin^2 heta} \; d heta, \quad k \; = \; \sin \psi$$

ψ	K	E
0°	1.5708	1.5708
1	1.5709	1.5707
2	1.5713	1.5703
3	1.5719	1.5697
4	1.5727	1.5689
5	1.5738	1.5678
6	1.5751	1.5665
7	1.5767	1.5649
8	1.5785	1.5632
9	1.5805	1.5611
10	1.5828	1.5589
11	1.5854	1.5564
12	1.5882	1.5537
13	1.5913	1.5507
14	1.5946	1.5476
15	1.5981	1.5442
16	1.6020	1.5405
17	1.6061	1.5367
18	1.6105	1.5326
19	1.6151	1.5283
20	1.6200	1.5238
21	1.6252	1.5191
22	1.6307	1.5141
23	1.6365	1.5090
24	1.6426	1.5037
25	1.6490	1.4981
26	1.6557	1.4924
27	1.6627	1.4864
28	1.6701	1.4803
29	1.6777	1.4740
30	1.6858	1.4675

ψ	K	E
30°	1.6858	1.4675
31	1.6941	1.4608
32	1.7028	1.4539
33	1.7119	1.4469
34	1.7214	1.4397
35	1.7312	1.4323
36	1.7415	1.4248
37	1.7522	1.4171
38	1.7633	1.4092
39	1.7748	1.4013
40	1.7868	1.3931
41	1.7992	1.3849
42	1.8122	1.3765
43	1.8256	1.3680
44	1.8396	1.3594
45	1.8541	1.3506
46	1.8691	1.3418
47	1.8848	1.3329
48	1.9011	1.3238
49	1.9180	1.3147
50	1.9356	1.3055
51	1.9539	1.2963
52	1.9729	1.2870
53	1.9927	1.2776
54	2.0133	1.2681
55	2.0347	1.2587
56	2.0571	1.2492
57	2.0804	1.2397
58	2.1047	1.2301
59	2.1300	1.2206
60	2.1565	1.2111
i	l .	

ψ	K	E
60°	2.1565	1.2111
61	2.1842	1.2015
62	2.2132	1.1920
63	2.2435	1.1826
64	2.2754	1.1732
65	2.3088	1.1638
66	2.3439	1.1545
67	2.3809	1.1453
68	2.4198	1.1362
69	2.4610	1.1272
70	2.5046	1.1184
71	2.5507	1.1096
72	2.5998	1.1011
73	2.6521	1.0927
74	2.7081	1.0844
75	2.7681	1.0764
76	2.8327	1.0686
77	2.9026	1.0611
78	2.9786	1.0538
79	3.0617	1.0468
80	3.1534	1.0401
81	3.2553	1.0338
82	3.3699	1.0278
83	3.5004	1.0223
84	3.6519	1.0172
85	3.8317	1.0127
86	4.0528	1.0086
87	4.3387	1.0053
88	4.7427	1.0026
89	5.4349	1.0008
90	∞	1.0000

44

INCOMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND

$$F(k,\phi) = \int_0^{\phi} \frac{d\theta}{\sqrt{1-k^2\sin^2{ heta}}}, \quad k = \sin{\psi}$$

φ	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10°	0.1745	0.1746	0.1746	0.1748	0.1749	0.1751	0.1752	0.1753	0.1754	0.1754
20°	0.3491	0.3493	0.3499	0.3508	0.3520	0.3533	0.3545	0.3555	0.3561	0.3564
30°	0.5236	0.5243	0.5263	0.5294	0.5334	0.5379	0.5422	0.5459	0.5484	0.5493
40°	0.6981	0.6997	0.7043	0.7116	0.7213	0.7323	0.7436	0.7535	0.7604	0.7629
50°	0.8727	0.8756	0.8842	0.8982	0.9173	0.9401	0.9647	0.9876	1.0044	1.0107
60°	1.0472	1.0519	1.0660	1.0896	1.1226	1.1643	1.2126	1.2619	1.3014	1.3170
70°	1.2217	1.2286	1.2495	1.2853	1.3372	1.4068	1.4944	1.5959	1.6918	1.7354
80°	1.3963	1.4056	1.4344	1.4846	1.5597	1.6660	1.8125	2.0119	2.2653	2.4362
90°	1.5708	1.5828	1.6200	1.6858	1.7868	1.9356	2.1565	2.5046	3.1534	∞

TABLE

45

INCOMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND

$$E(k,\phi) = \int_0^{\phi} \sqrt{1-k^2\sin^2\theta} \ d\theta, \quad k = \sin\psi$$

φψ	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
0°	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10°	0.1745	0.1745	0.1744	0.1743	0.1742	0.1740	0.1739	0.1738	0.1737	0.1736
20°	0.3491	0.3489	0.3483	0.3473	0.3462	0.3450	0.3438	0.3429	0.3422	0.3420
30°	0.5236	0.5229	0.5209	0.5179	0.5141	0.5100	0.5061	0.5029	0.5007	0.5000
40°	0.6981	0.6966	0.6921	0.6851	0.6763	0.6667	0.6575	0.6497	0.6446	0.6428
50°	0.8727	0.8698	0.8614	0.8483	0.8317	0.8134	0.7954	0.7801	0.7697	0.7660
60°	1.0472	1.0426	1.0290	1.0076	0.9801	0.9493	0.9184	0.8914	0.8728	0.8660
70°	1.2217	1.2149	1.1949	1.1632	1.1221	1.0750	1.0266	0.9830	0.9514	0.9397
80°	1.3963	1.3870	1.3597	1.3161	1.2590	1.1926	1.1225	1.0565	1.0054	0.9848
90°	1.5708	1.5589	1.5238	1.4675	1.3931	1.3055	1.2111	1.1184	1.0401	1.0000

ORDINATES OF THE STANDARD NORMAL CURVE

$$y = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9
0.0	.3989	.3989	.3989	.3988	.3986	.3984	.3982	.3980	.3977	.3973
0.1	.3970	.3965	.3961	.3956	.3951	.3945	.3939	.3932	.3925	.3918
0.2	.3910	.3902	.3894	.3885	.3876	.3867	.3857	.3847	.3836	.3825
0.3	.3814	.3802	.3790	.3778	.3765	.3752	.3739	.3725	.3712	.3697
0.4	.3683	.3668	.3653	.3637	.3621	.3605	.3589	.3572	.3555	.3538
0.5	.3521	.3503	.3485	.3467	.3448	.3429	.3410	.3391	.3372	.3352
0.6	.3332	.3312	.3292	.3271	.3251	.3230	.3209	.3187	.3166	.3144
0.7	.3123	.3101	.3079	.3056	.3034	.3011	.2989	.2966	.2943	.2920
0.8	.2897	.2874	.2850	.2827	.2803	.2780	.2756	.2732	.2709	.2688
0.9	.2661	.2637	.2613	.2589	.2565	.2541	.2516	.2492	.2468	.244
1.0	.2420	.2396	.2371	.2347	.2323	.2299	.2275	.2251	.2227	.220
1.1	.2179	.2155	.2131	.2107	.2083	.2059	.2036	.2012	.1989	.196
1.2	.1942	.1919	.1895	.1872	.1849	.1826	.1804	.1781	.1758	.1736
1.3	.1714	.1691	.1669	.1647	.1626	.1604	.1582	.1561	.1539	.1518
1.4	.1497	.1476	.1456	.1435	.1415	.1394	.1374	.1354	.1334	.131
1.5	.1295	.1276	.1257	.1238	.1219	.1200	.1182	.1163	.1145	.112
1.6	.1109	.1092	.1074	.1057	.1040	.1023	.1006	.0989	.0973	.095
1.7	.0940	.0925	.0909	.0893	.0878	.0863	.0848	.0833	.0818	.080
1.8	.0790	.0775	.0761	.0748	.0734	.0721	.0707	.0694	.0681	.066
1.9	.0656	.0644	.0632	.0620	.0608	.0596	.0584	.0573	.0562	.055
2.0	.0540	.0529	.0519	.0508	.0498	.0488	.0478	.0468	.0459	.044
2.1	.0440	.0431	.0422	.0413	.0404	.0396	.0387	.0379	.0371	.036
2.2	.0355	.0347	.0339	.0332	.0325	.0317	.0310	.0303	.0297	.029
2.3	.0283	.0277	.0270	.0264	.0258	.0252	.0246	.0241	.0235	.0229
2.4	.0224	.0219	.0213	.0208	.0203	.0198	.0194	.0189	.0184	.018
2.5	.0175	.0171	.0167	.0163	.0158	.0154	.0151	.0147	.0143	.013
2.6	.0136	.0132	.0129	.0126	.0122	.0119	.0116	.0113	.0110	.010
2.7	.0104	.0101	.0099	.0096	.0093	.0091	.0088	.0086	.0084	.008
2.8	.0079	.0077	.0075	.0073	.0071	.0069	.0067	.0065	.0063	.006
2.9	.0060	.0058	.0056	.0055	.0053	.0051	.0050	.0048	.0047	.004
3.0	.0044	.0043	.0042	.0040	.0039	.0038	.0037	.0036	.0035	.003
3.1	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026	.0025	.002
3.2	.0024	.0023	.0022	.0022	.0021	.0020	.0020	.0019	.0018	.001
3.3	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014	.0013	.001
3.4	.0012	.0012	.0012	.0011	.0011	.0010	.0010	.0010	.0009	.000
3.5	.0009	.0008	.0008	.0008	.0008	.0007	.0007	.0007	.0007	.000
3.6	.0006	.0006	.0006	.0005	.0005	.0005	.0005	.0005	.0005	.000
3.7	.0004	.0004	.0004	.0004	.0004	.0004	.0003	.0003	.0003	.000
3.8	.0003	.0003	.0003	.0003	.0003	.0002	.0002	.0002	.0002	.000
3.9	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0001	.000

47

AREAS UNDER THE STANDARD NORMAL CURVE

from $-\infty$ to x

$$\operatorname{erf}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

x	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5754
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7258	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7518	.7549
0.7	.7580	.7612	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7996	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
3.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998
3.6	.9998	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.7	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.8	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

PERCENTILE VALUES (t_p) FOR STUDENT'S t DISTRIBUTION

with n degrees of freedom (shaded area = p)

n	$t_{.995}$	t _{.99}	$t_{.975}$	$t_{.95}$	t _{.90}	t _{.80}	t _{.75}	t _{.70}	$t_{.60}$	$t_{.55}$
1	63.66	31.82	12.71	6.31	3.08	1.376	1.000	.727	.325	.158
2	9.92	6.96	4.30	2.92	1.89	1.061	.816	.617	.289	.142
3	5.84	4.54	3.18	2.35	1.64	.978	.765	.584	.277	.137
4	4.60	3.75	2.78	2.13	1.53	.941	.741	.569	.271	.134
5	4.03	3.36	2.57	2.02	1.48	.920	.727	.559	.267	.132
6	3.71	3.14	2.45	1.94	1.44	.906	.718	.553	.265	.131
7	3.50	3.00	2.36	1.90	1.42	.896	.711	.549	.263	.130
8	3.36	2.90	2.31	1.86	1.40	.889	.706	.546	.262	.130
9	3.25	2.82	2.26	1.83	1.38	.883	.703	.543	.261	.129
10	3.17	2.76	2.23	1.81	1.37	.879	.700	.542	.260	.129
11	3.11	2.72	2.20	1.80	1.36	.876	.697	.540	.260	.129
12	3.06	2.68	2.18	1.78	1.36	.873	.695	.539	.259	.128
13	3.01	2.65	2.16	1.77	1.35	.870	.694	.538	.259	.128
14	2.98	2.62	2.14	1.76	1.34	.868	.692	.537	.258	.128
15	2.95	2.60	2.13	1.75	1.34	.866	.691	.536	.258	.128
16	2.92	2.58	2.12	1.75	1.34	.865	.690	.535	.258	.128
17	2.90	2.57	2.11	1.74	1.33	.863	.689	.534	.257	.128
18	2.88	2.55	2.10	1.73	1.33	.862	.688	.534	.257	.127
19	2.86	2.54	2.09	1.73	1.33	.861	.688	.533	.257	.127
20	2.84	2.53	2.09	1.72	1.32	.860	.687	.533	.257	.127
21	2.83	2.52	2.08	1.72	1.32	.859	.686	.532	.257	.127
22	2.82	$\frac{2.52}{2.51}$	2.07	1.72	1.32	.858	.686	.532	.256	.127
23	2.81	2.50	2.07	1.71	1.32	.858	.685	.532	.256	.127
24	2.80	2.49	2.06	1.71	1.32	.857	.685	.531	.256	.127
25	2.79	2,48	2.06	1.71	1.32	.856	.684	.531	.256	.127
$\frac{25}{26}$	2.78	2.48	2.06	1.71	1.32	.856	.684	.531	.256	.127
$\frac{26}{27}$	2.78	$\frac{2.48}{2.47}$	2.05	1.70	1.31	.855	.684	.531	.256	.127
28	$\frac{2.77}{2.76}$	$\frac{2.47}{2.47}$	2.05	1.70	1.31	.855	.683	.530	.256	.127
28 29	2.76	$\frac{2.47}{2.46}$	2.04	1.70	1.31	.854	.683	.530	.256	.127
30	2.75	2.46	2.04	1,70	1.31	.854	.683	.530	.256	.127
40	$\frac{2.75}{2.70}$	$\frac{2.40}{2.42}$	2.04 2.02	1.68	1.30	.851	.681	.529	.255	.126
	2.70	2.42	2.02	1.67	1.30	.848	.679	.527	.254	.126
$\frac{60}{120}$	2.60	2.39 2.36	1.98	1.66	1.29	.845	.677	.526	.254	.126
120 ∞	2.52	2.33	1.96	1.645	1.28	.842	.674	.524	.253	.126
~	2.00	4.00	1.00	1.010		.~				

Source: R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research (6th edition, 1963), Table III, Oliver and Boyd Ltd., Edinburgh, by permission of the authors and publishers.

PERCENTILE VALUES (χ_p^2) FOR THE CHI-SQUARE DISTRIBUTION

with n degrees of freedom (shaded area = p)

n	$\chi^{2}_{.995}$	$\chi^2_{.99}$	$\chi^2_{.975}$	$\chi^2_{.95}$	$\chi^{2}_{.90}$	$\chi^{2}_{.75}$	$\chi^{2}_{.50}$	$\chi^2_{.25}$	$\chi^{2}_{.10}$	$\chi^{2}_{.05}$	$\chi^{2}_{.025}$	$\chi^{2}_{.01}$	$\chi^{2}_{.005}$
1	7.88	6.63	5.02	3.84	2.71	1.32	.455	.102	.0158	.0039	.0010	.0002	.0000
2	10.6	9.21	7.38	5.99	4.61	2.77	1.39	.575	.211	.103	.0506	.0201	.0100
3	12.8	11.3	9.35	7.81	6.25	4.11	2.37	1.21	.584	.352	.216	.115	.072
4	14.9	13.3	11.1	9.49	7.78	5.39	3.36	1.92	1.06	.711	.484	.297	.207
5	16.7	15.1	12.8	11.1	9.24	6.63	4.35	2.67	1.61	1.15	.831	.554	.412
6	18.5	16.8	14.4	12.6	10.6	7.84	5.35	3.45	2.20	1.64	1.24	.872	.676
7	20.3	18.5	16.0	14.1	12.0	9.04	6.35	4.25	2.83	2.17	1.69	1.24	.989
8	22.0	20.1	17.5	15.5	13.4	10.2	7.34	5.07	3.49	2.73	2.18	1.65	1.34
9	23.6	21.7	19.0	16.9	14.7	11.4	8.34	5.90	4.17	3.33	2.70	2.09	1.73
10	25.2	23.2	20.5	18.3	16.0	12.5	9.34	6.74	4.87	3.94	3.25	2.56	2.16
11	26.8	24.7	21.9	19.7	17.3	13.7	10.3	7.58	5.58	4.57	3.82	3.05	2.60
12	28.3	26.2	23.3	21.0	18.5	14.8	11.3	8.44	6.30	5.23	4.40	3.57	3.07
13	29.8	27.7	24.7	22.4	19.8	16.0	12.3	9.30	7.04	5.89	5.01	4.11	3.57
14	31.3	29.1	26.1	23.7	21.1	17.1	13.3	10.2	7.79	6.57	5.63	4.66	4.07
15	32.8	30.6	27.5	25.0	22.3	18.2	14.3	11.0	8.55	7.26	6.26	5.23	4.60
16	34.3	32.0	28.8	26.3	23.5	19.4	15.3	11.9	9.31	7.96	6.91	5.81	5.14
17	35.7	33.4	30.2	27.6	24.8	20.5	16.3	12.8	10.1	8.67	7.56	6.41	5.70
18	37.2	34.8	31.5	28.9	26.0	21.6	17.3	13.7	10.9	9.39	8.23	7.01	6.26
19	38.6	36.2	32.9	30.1	27.2	22.7	18.3	14.6	11.7	10.1	8.91	7.63	6.84
20	40.0	37.6	34.2	31.4	28.4	23.8	19.3	15.5	12.4	10.9	9.59	8.26	7.43
21	41.4	38.9	35.5	32.7	29.6	24.9	20.3	16.3	13.2	11.6	10.3	8.90	8.03
22	42.8	40.3	36.8	33.9	30.8	26.0	21.3	17.2	14.0	12.3	11.0	9.54	8.64
23	44.2	41.6	38.1	35.2	32.0	27.1	22.3	18.1	14.8	13.1	11.7	10.2	9.26
24	45.6	43.0	39.4	36.4	33.2	28.2	23.3	19.0	15.7	13.8	12.4	10.9	9.89
25	46.9	44.3	40.6	37.7	34.4	29.3	24.3	19.9	16.5	14.6	13.1	11.5	10.5
26	48.3	45.6	41.9	38.9	35.6	30.4	25.3	20.8	17.3	15.4	13.8	12.2	11.2
27	49.6	47.0	43.2	40.1	36.7	31.5	26.3	21.7	18.1	16.2	14.6	12.9	11.8
28	51.0	48.3	44.5	41.3	37.9	32.6	27.3	22.7	18.9	16.9	15.3	13.6	12.5
29	52.3	49.6	45.7	42.6	39.1	33.7	28.3	23.6	19.8	17.7	16.0	14.3	13.1
30	53.7	50.9	47.0	43.8	40.3	34.8	29.3	24.5	20.6	18.5	16.8	15.0	13.8
40	66.8	63.7	59.3	55.8	51.8	45.6	39.3	33.7	29.1	26.5	24.4	22.2	20.7
50	79.5	76.2	71.4	67.5	63.2	56.3	49.3	42.9	37.7	34.8	32.4	29.7	28.0
60	92.0	88.4	83.3	79.1	74.4	67.0	59.3	52.3	46.5	43.2	40.5	37.5	35.5
70	104.2	100.4	95.0	90.5	85.5	77.6	69.3	61.7	55.3	51.7	48.8	45.4	43.3
80	116.3	112.3	106.6	101.9	96.6	88.1	79.3	71.1	64.3	60.4	57.2	53.5	51.2
90	128.3	124.1	118.1	113.1	107.6	98.6	89.3	80.6	73.3	69.1	65.6	61.8	59.2
100	140.2	135.8	129.6	124.3	118.5	109.1	99.3	90.1	82.4	77.9	74.2	70.1	67.3

Source: Catherine M. Thompson, Table of percentage points of the χ^2 distribution, Biometrika, Vol. 32 (1941), by permission of the author and publisher.

50

95th PERCENTILE VALUES FOR THE F DISTRIBUTION

 $n_1 =$ degrees of freedom for numerator $n_2 =$ degrees of freedom for denominator (shaded area = .95)

n_1	1	2	3	4	5	6	8	12	16	20	30	40	50	100	80
1	161.4	199.5	215.7	224.6	230.2	234.0	238.9	243.9	246.3	248.0	250.1	251.1	252.2	253.0	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.43	19.45	19.46	19.46	19.47	19.49	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.85	8.74	8.69	8.66	8.62	8.60	8.58	8.56	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.84	5.80	5.75	5.71	5.70	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.60	4.56	4.50	4.46	4.44	4.40	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.92	3.87	3.81	3.77	3.75	3.71	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.49	3.44	3.38	3.34	3.32	3.28	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.20	3.15	3.08	3.05	3.03	2.98	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.98	2.93	2.86	2.82	2.80	2.76	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.82	2.77	2.70	2.67	2.64	2.59	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.79	2.70	2.65	2.57	2.53	2.50	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.85	2.69	2.60	2.54	2.46	2.42	2.40	2.35	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.77	2.60	2.51	2.46	2.38	2.34	2.32	2.26	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	2.44	2.39	2.31	2.27	2.24	2.19	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.64	2.48	2.39	2.33	2.25	2.21	2.18	2.12	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.33	2.28	2.20	2.16	2.13	2.07	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.55	2.38	2.29	2.23	2.15	2.11	2.08	2.02	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.25	2.19	2.11	2.07	2.04	1.98	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.48	2.31	2.21	2.15	2.07	2.02	2.00	1.94	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.45	2.28	2.18	2.12	2.04	1.99	1.96	1.90	1.84
22	4.30	3.44	3.05	2.82	2.66	2.55	2.40	2.23	2.13	2.07	1.98	1.93	1.91	1.84	1.78
24	4.26	3.40	3.01	2.78	2.62	2.51	2.36	2.18	2.09	2.03	1.94	1.89	1.86	1.80	1.73
26	4.23	3.37	2.98	2.74	2.59	2.47	2.32	2.15	2.05	1.99	1.90	1.85	1.82	1.76	1.69
28	4.20	3.34	2.95	2.71	2.56	2.45	2.29	2.12	2.02	1.96	1.87	1.81	1.78	1.72	1.65
30	4.17	3.32	2.92	2.69	2.53	2.42	2.27	2.09	1.99	1.93	1.84	1.79	1.76	1.69	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.00	1.90	1.84	1.74	1.69	1.66	1.59	1.51
50	4.03	3.18	2.79	2.56	2.40	2.29	2.13	1.95	1.85	1.78	1.69	1.63	1.60	1.52	1.44
60	4.00	3.15	2.76	2.53	2.37	2.25	2.10	1.92	1.81	1.75	1.65	1.59	1.56	1.48	1.39
70	3.98	3.13	2.74	2.50	2.35	2.23	2.07	1.89	1.79	1.72	1.62	1.56	1.53	1.45	1.35
80	3.96	3.11	2.72	2.48	2.33	2.21	2.05	1.88	1.77	1.70	1.60	1.54	1.51	1.42	1.32
100	3.94	3.09	2.70	2.46	2.30	2.19	2.03	1.85	1.75	1.68	1.57	1.51	1.48	1.39	1.28
150	3.91	3.06	2.67	2.43	2.27	2.16	2.00	1.82	1.71	1.64	1.54	1.47	1.44	1.34	1.22
200	3.89	3.04	2.65	2.41	2.26	2.14	1.98	1.80	1.69	1.62	1.52	1.45	1.42	1.32	1.19
400	3.86	3.02	2.62	2.39	2.23	2.12	1.96	1.78	1.67	1.60	1.49	1.42	1.38	1.28	1.13
∞	3.84	2.99	2.60	2.37	2.21	2.09	1.94	1.75	1.64	1.57	1.46	1.40	1.32	1.24	1.00

Source: G. W. Snedecor and W. G. Cochran, Statistical Methods (6th edition, 1967), Iowa State University Press, Ames, Iowa, by permission of the authors and publisher.

51

99th PERCENTILE VALUES FOR THE F DISTRIBUTION

 n_1 = degrees of freedom for numerator n_2 = degrees of freedom for denominator (shaded area = .99)

n_1	1	2	3	4	5	6	8	12	16	20	30	40	50	100	∞
1	4052	4999	5403	5625	5764	5859	5981	6106	6169	6208	6258	6286	6302	6334	6366
2	98.49	99.01	99.17	99.25	99.30	99.33	99.36	99.42	99.44	99.45	99.47	99.48	99.48	99.49	99.50
3	34.12	30.81	29.46	28.71	28.24	27.41	27.49	27.05	28.63	26.69	26.50	26.41	26.35	26.23	26.12
4	21.20	18.00	16.69	15.98	15.52	15.21	14.80	14.37	14.15	14.02	13.83	13.74	13.69	13.57	13.46
5	16.26	13.27	12.06	11.39	10.97	10.67	10.27	9.89	9.68	9.55	9.38	9.29	9.24	9.13	9.02
6	13.74	10.92	9.78	9.15	8.75	8.47	8.10	7.72	7.52	7.39	7.23	7.14	7.00	C 00	C 00
	12.25	9.55	8.45	7.85	7.46	7.19	6.84	6.47	6.27	6.15	5.98	5.90	7.09	$6.99 \\ 5.75$	6.88
1 1	11.26	8.65	7.59	7.01	6.63	6.37	6.03	5.67	5.48	5.36	5.20		5.85		5.65
1 1	10.56	8.02	6.99	6.42	6.06	5.80	5.47	5.11	$\frac{3.48}{4.92}$		$\frac{3.20}{4.64}$	5.11	5.06	4.96	4.86
	10.04	7.56	6.55	5.99	5.64	5.39	5.06			4.80		4.56	4.51	4.41	4.31
10		1.00	0.00	0.55	9.04	0.09	5.00	4.71	4.52	4.41	4.25	4.17	4.12	4.01	3.91
11	9.05	7.20	6.22	5.67	5.32	5.07	4.74	4.40	4.21	4.10	3.94	3.86	3.80	3.70	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.50	4.16	3.98	3.86	3.70	3.61	3.56	3.46	3.36
13	9.07	6.70	5.74	5.20	4.86	4.62	4.30	3.96	3.78	3.67	3.51	3.42	3.37	3.27	3.16
14	8.86	6.51	5.56	5.03	4.69	4.46	4.14	3.80	3.62	3.51	3.34	3.26	3.21	3.11	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.00	3.67	3.48	3.36	3.20	3.12	3.07	2.97	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	3.89	3.55	3.37	3.25	3.10	3.01	2.96	2.86	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.79	3.45	3.27	3.16	3.00	2.92	2.86	2.76	2.65
18	8.28	6.01	5.09	4.58	4.25	4.01	3.71	3.37	3.19	3.07	2.91	2.83	2.78	2.68	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.63	3.30	3.12	3.00	2.84	2.76	2.70	2.60	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.56	3.23	3.05	2.94	2.77	2.69	2.63	2.53	2.42
	5 04	¥ =0	4.00								-				
22	7.94	5.72	4.82	4.31	3.99	3.76	3.45	3.12	2.94	2.83	2.67	2.58	2.53	2.42	2.31
24	7.82	5.61	4.72	4.22	3.90	3.67	3.36	3.03	2.85	2.74	2.58	2.49	2.44	2.33	2.21
26	7.72	5.53	4.64	4.14	3.82	3.59	3.29	2.96	2.77	2.66	2.50	2.41	2.36	2.25	2.13
28	7.64	5.45	4.57	4.07	3.76	3.53	3.23	2.90	2.71	2.60	2.44	2.35	2.30	2.18	2.06
30	7.56	5.39	4.51	4.02	3.70	3.47	3.17	2.84	2.66	2.55	2.38	2.29	2.24	2.13	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	2.99	2.66	2.49	2.37	2.20	2.11	2.05	1.94	1.81
50	7.17	5.06	4.20	3.72	3.41	3.18	2.88	2.56	2.39	2.26	2.10	2.00	1.94	1.82	1.68
60	7.08	4.98	4.13	3.65	3.34	3.12	2.82	2.50	2.32	2.20	2.03	1.93	1.87	1.74	1.60
70	7.01	4.92	4.08	3.60	3.29	3.07	2.77	2.45	2.28	2.15	1.98	1.88	1.82	1.69	1.53
80	6.96	4.88	4.04	3.56	3.25	3.04	2.74	2.41	2.24	2.11	1.94	1.84	1.78	1.65	1.49
100	6.90	4.82	3.98	3.51	3.20	2.99	2.69	2.36	2.19	2.06	1.89	1.70	1 70	1 50	1 40
150	6.81	4.75	3.90	3.44	3.20	$\frac{2.99}{2.92}$	2.69 2.62	$\frac{2.36}{2.30}$	$\frac{2.19}{2.12}$			1.79	1.73	1.59	1.43
200	6.76	$\frac{4.75}{4.71}$	3.88	3.44	3.14					2.00	1.83	1.72	1.66	1.51	1.33
400	6.70	$\frac{4.71}{4.66}$	3.88			2.90	2.60	2.28	2.09	1.97	1.79	1.69	1.62	1.48	1.28
400	6.70 6.64	$\frac{4.66}{4.60}$		3.36	3.06	2.85	2.55	2.23	2.04	1.92	1.74	1.64	1.57	1.42	1.19
	0.04	4.00	3.78	3.32	3.02	2.80	2.51	2.18	1.99	1.87	1.69	1.59	1.52	1.36	1.00

Source: G. W. Snedecor and W. G. Cochran, Statistical Methods (6th edition, 1967), Iowa State University Press, Ames, Iowa, by permission of the authors and publisher.

^{TABLE} 52

RANDOM NUMBERS

51772	74640	42331	29044	46621	62898	93582	04186	19640	87056
24033	23491	83587	06568	21960	21387	76105	10863	97453	90581
45939	60173	52078	25424	11645	55870	56974	37428	93507	94271
30586	02133	75797	45406	31041	86707	12973	17169	88116	42187
03585	79353	81938	82322	96799	85659	36081	50884	14070	74950
64937	03355	95863	20790	-6 5304	55189	00745	65253	11822	15804
15630	64759	51135	98527	62586	41889	25439	88036	24034	67283
09448	56301	57683	30277	94623	85418	68829	06652	41982	49159
21631	91157	77331	60710	52290	16835	48653	71590	16159	14676
91097	17480	2 9414	06829	87843	28195	27279	47152	35683	47280
50532	25496	95652	42457	73547	76552	50020	24819	52984	76168
07136	40876	79971	54195	25708	51817	36732	72484	94923	75936
27989	64728	10744	08396	56242	90985	28868	99431	50995	20507
85184	73949	36601	46253	00477	25234	09908	36574	72139	70185
54398	21154	97810	36764	32869	11785	55261	59009	38714	38723
65544	34371	09591	07839	58892	92843	72828	91341	84821	63886
08263	65952	85762	64236	39238	18776	84303	99247	46149	03229
39817	67906	48236	16057	81812	15815	63700	85915	19219	45943
62257	04077	79443	95203	02479	30763	92486	54083	2 3631	05825
53298	90276	62545	21944	$\boldsymbol{16530}$	03878	07516	95715	02526	33537

Index of Special Symbols and Notations

The following list shows special symbols and notations used in this book together with pages on which they are defined or first appear. Cases where a symbol has more than one meaning will be clear from the context.

Symbols

```
\operatorname{Ber}_n(x), \operatorname{Bei}_n(x)
                      140
          B(m, n)
                      beta function, 103
                      Bernoulli numbers, 114
              C(x)
                      Fresnel cosine integral, 184
             Ci(x)
                      cosine integral, 184
                      natural base of logarithms, 1
                      unit vectors in curvilinear coordinates, 124
          {\bf e}_1, {\bf e}_2, {\bf e}_3
                      error function, 183
           \operatorname{erf}(x)
          \operatorname{erfc}(x)
                      complementary error function, 183
   E = E(k, \pi/2)
                      complete elliptic integral of second kind, 179
           E(k,\phi)
                      incomplete elliptic integral of second kind, 179
             Ei(x)
                      exponential integral, 183
               \boldsymbol{E}_n
                      Euler numbers, 114
     F(a,b;c;x)
                      hypergeometric function, 160
           F(k,\phi)
                      incomplete elliptic integral of first kind, 179
           \mathcal{F}, \mathcal{F}^{-1}
                      Fourier transform and inverse Fourier transform, 175, 176
         h_1, h_2, h_3
                      scale factors in curvilinear coordinates, 124
            H_n(x)
                      Hermite polynomials, 151
 H_{n}^{(1)}(x), H_{n}^{(2)}(x)
                      Hankel functions of first and second kind, 138
                      imaginary unit, 21
                      unit vectors in rectangular coordinates, 117
             i, j, k
                      modified Bessel function of first kind, 138
             I_n(x)
                      Bessel function of first kind, 136
             J_n(x)
   K = F(k, \pi/2)
                      complete elliptic integral of first kind, 179
\operatorname{Ker}_n(x), \operatorname{Kei}_n(x)
             K_n(x)
                      modified Bessel function of second kind, 139
   \ln x or \log_e x
                      natural logarithm of x, 24
 \log x or \log_{10} x
                      common logarithm of x, 23
             L_n(x)
                      Laguerre polynomials, 153
            L_n^m(x)
                      associated Laguerre polynomials, 155
           \mathcal{L}, \mathcal{L}^{-1}
                      Laplace transform and inverse Laplace transform, 161
            P_n(x)
                      Legendre polynomials, 146
            P_n^m(x)
                      associated Legendre functions of first kind, 149
            Q_n(x)
                      Legendre functions of second kind, 148
            Q_n^m(x)
                      associated Legendre functions of second kind, 150
                      cylindrical coordinate, 49
                      polar coordinate, 22, 36
                      spherical coordinate, 50
              S(x)
                      Fresnel sine integral, 184
             Si(x)
                      sine integral, 183
             T_n(x)
                      Chebyshev polynomials of first kind, 157
            U_n(x)
                      Chebyshev polynomials of second kind, 158
            Y_n(x)
                      Bessel function of second kind, 136
```

Greek Symbols

γ Euler's constant, 1

 $\Gamma(x)$ gamma function, 1, 101

 $\zeta(x)$ Riemann zeta function, 184

θ cylindrical coordinate, 49

θ polar coordinate, 22, 36

 θ spherical coordinate, 50

 π 1

 ϕ spherical coordinate, 50

 $\Phi(p)$ the sum $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p}$, $\Phi(0) = 0$, 137

 $\Phi(x)$ probability distribution function, 189

Notations

A = B A equals B or A is equal to B

A > B A is greater than B [or B is less than A]

A < B A is less than B [or B is greater than A]

 $A \ge B$ A is greater than or equal to B

 $A \leq B$ A is less than or equal to B

 $A \approx B$ A is approximately equal to B

 $A \sim B$ A is asymptotic to B or A/B approaches 1, 102

|A| absolute value of $A=egin{cases} A & ext{if } A \geqq 0 \ -A & ext{if } A \leqq 0 \end{cases}$

n! factorial n, 3

 $\binom{n}{k}$ binomial coefficients, 3

 $y' = \frac{dy}{dx} = f'(x),$ $y'' = \frac{d^2y}{dx^2} = f''(x), \text{ etc.}$

derivatives of y or f(x) with respect to x, 53, 55

 $D^p = \frac{d^p}{dx^p}$

 $\frac{d^2}{dx^p}$ pth derivative with respect to x, 55

y differential of y, 55

 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x \partial y}$, etc.

partial derivatives, 56

 $\frac{\partial(x,y,z)}{\partial(u_1,u_2,u_3)}$

Jacobian, 125

 $\int f(x) dx$

indefinite integral, 57

 $\int_a^b f(x) \ dx$

definite integral, 94

 $\int_C \mathbf{A} \cdot d\mathbf{r}$

line integral of A along C, 121

7

dot product of A and B, 117

 $\mathbf{A} \times \mathbf{B}$

cross product of A and B, 118

∇ del operator, 119

 $abla^2 =
abla \cdot
abla$

Laplacian operator, 120

 $\nabla^4 = \nabla^2(\nabla^2)$

biharmonic operator, 120

INDEX

Addition formulas, for Bessel functions, 145	Bernoulli's differential equation, 104
for elliptic functions, 180	Bessel functions, 136-145
for Hermite polynomials, 152	addition formulas for, 145
for hyperbolic functions, 27	asymptotic expansions of, 143
for trigonometric functions, 15	definite integrals involving, 142, 143
Agnesi, witch of, 43	generating functions for, 137, 139
Algebraic equations, solutions of, 32, 33	graphs of, 141
Amplitude, of complex number, 22	indefinite integrals involving, 142
of elliptic integral, 179	infinite products for, 188
Analytic geometry, plane [see Plane analytic	integral representations for, 143
geometry]; solid [see Solid analytic geometry]	modified [see Modified Bessel functions]
Angle between lines, in a plane, 35	of first kind of order n , 136, 137
in space, 47	of order half an odd integer, 138
Annuity, amount of, 201, 242	of second kind of order n, 136, 137
present value of, 243	orthogonal series for, 144, 145
Anti-derivative, 57	recurrence formulas for, 137
Antilogarithms, common, 23, 195, 204, 205	tables of, 244-249
natural or Napierian, 24, 226, 227	zeros of, 250
Archimedes, spiral of, 45	Bessel's differential equation, 106, 136
Area integrals, 122	general solution of, 106, 137
Argand diagram, 22	transformed, 106
Arithmetic-geometric series, 107	Bessel's modified differential equation, 138
Arithmetic mean, 185	general solution of, 139
Arithmetic mean, 165 Arithmetic series, 107	Beta function, 103
•	
Associated Laguerre polynomials, 155, 156	relationship of to gamma function, 103
[see also Laguerre polynomials]	Biharmonic operator, 120 in curvilinear coordinates, 125
generating function for, 155	Binomial coefficients, 3
orthogonal series for, 156	
orthogonality of, 156	properties of, 4
recurrence formulas for, 156	table of values for, 236, 237
special, 155	Binomial distribution, 189
special results involving, 156	Binomial formula, 2
Associated Legendre functions, 149, 150 [see also	Binomial series, 2, 110
Legendre functions	Bipolar coordinates, 128, 129
generating function for, 149	Laplacian in, 128
of the first kind, 149	Branch, principal, 17
of the second kind, 150	Briggsian logarithms, 23
orthogonal series for, 150	G 71 11 41 40 44
orthogonality of, 150	Cardioid, 41, 42, 44
recurrence formulas for, 149	Cassini, ovals of, 44
special, 149	Catalan's constant, 181
Associative law, 117	Catenary, 41
Asymptotes of hyperbola, 39	Cauchy or Euler differential equation, 105
Asymptotic expansions or formulas, for Bernoulli	Cauchy-Schwarz inequality, 185
numbers, 115	for integrals, 186
for Bessel functions, 143	Cauchy's form of remainder in Taylor series, 110
for gamma function, 102	Chain rule for derivatives, 53
	Characteristic, 194
Base of logarithms, 23	Chebyshev polynomials, 157-159
change of, 24	generating functions for, 157, 158
Ber and Bei functions, 140, 141	of first kind, 157
definition of, 140	of second kind, 158
differential equation for, 141	orthogonality of, 158, 159
graphs of, 141	orthogonal series for, 158, 159
Bernoulli numbers, 98, 107, 114, 115	recursion formulas for, 158, 159
asymptotic formula for, 115	relationships involving, 159
definition of, 114	special, 157, 158
relationship to Euler numbers, 115	special values of, 157, 159
series involving, 115	Chebyshev's differential equation, 157
table of first few 114	general solution of 159

Chebyshev's inequality, 186 Chi square distribution, 189 percentile values for, 259 Circle, area of, 6 equation of, 37 involute of, 43 perfimeter of, 6 sector of feee Sector of circle segment of [see Segment of circle Classoid of Dicoles, 45 Common antilogarithms, 23, 195, 204, 206 sample problems involving, 195 table of, 204, 206 Common logarithms, 23, 195, 204, 206 sample problems involving, 194 table of, 202, 203 Computations using, 196 sample problems involving, 194 table of, 202, 203 Complex conjugate, 21 Complex inversion formula, 161 Complex inversion formula, 161 Complex inversion formula, 161 Complex inversion formula, 162 Complex inversion formula, 161 complex conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 graphs of, 22 multiplication of, 21, 25 graphs of, 22 multiplication of, 21, 25 graphs of, 22 multiplication of, 21 Component vectors, 117 Component vec		
percentile values for, 259 Circle, area of, 6 equation of, 37 involute of, 43 perimeter of, 6 sector of [see Sector of circle] segment of [see Segment of circle] Cissoid of Dioles, 45 Common antilogarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complex enumbers, 21 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 inaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 component vectors, 117 Component vector		Coordinates, curvilinear (cont.)
Gircle, area of, 6 equation of, 37 involute of, 43 perimeter of, 6 sector of Jeec Sector of circle] classified of Dioclea, 45 Common antilogarithms, 23, 195, 204, 205 sample problems involving, 195 table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 computations using, 196 communitative law, for dot products, 118 for vector addition, 117 Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex inversion formula, 161 Complex involving, 21 division of, 21, 22 addition of, 21, 25 graphs of, 22 graphs of, 25 graph		rotation of, 36, 49
equation of, 37 involute of, 43 perimeter of, 6 sector of lees Sector of circle segment of [see Segment of circle] Classoid of Dioclea, 45 Common antilogarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 196 complex conjugate, 21 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 indivision of, 21, 25 graphs of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 components of, 22 compound amount, table of, 240 Come, elliptic, 51 right circular [see Right circular cone] Connocal ellipses, 127 component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 cllipsoidal coordinates, 130 Conjugate, complex, 21 Consequence, interval of, 110 of Fourire series, 131 Convergence factors, table of, 192 Condinates, unvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Comidants or integration, 57 Convergence factors, table of, 192 Coordinate, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Commonant tologarithms, 23, 194, 290 Comisson vector product, 118 Cause of to spherical triangles, 19 Lable of, 204 caluse, for, 251 Cosines, law of for palme triangles, 19 Lable of, 204 caluse, for, 251 Cosines, law of for palme triangles, 19 Lable of, 204 caluse, for, 251 Cosines, law of for palme triangles, 19 Lable of, 204 caluse, for, 251 Cosines, law of for spherical triangles, 19 Lable of, 204 caluse, for, 251 Cosines, law of for spherical triangles, 19 Lable of, 204, 26 Cosine, law of for spherical triangles, 19 Lable of, 204, 26 Cutter, coordinate, 186 Cube dupleation of, 28 Cutter, coordinate, 126 Cutter, coordinate, 125 Cutter, coordinate, 124 curtate, 22 cylinder, elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Curvilinear coordinate, 124 Cylinder, elliptic, 51 Lateral surface area of, 8, 9 vo	percentile values for, 259	special orthogonal, 126-130
involute of, 43 perimeter of, 6 sector of [see Segment of circle] Segment of [see Segment of circle] Cissoid of Diocles, 45 Common antilogarithms, 23, 195, 204, 205 sample problems involving, 195 table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Computations using, 196 commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex inversion formula, 161 Complex inversion formula, 161 Complex inversion formula, 162 Complex of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 22 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 22 rouse of, 22, 25 real part of, 21 component vectors, 117 Component vectors, 127 component confinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conney encounter, table of, 192 Convergence, interval of, 110 of Fourier series, 131 Convergence, interval of, 110 of Fourier series, 132 Convergence, interval of, 110 of Fourier series, 131 Convergence, interval of, 110 of Fourier series, 132 Convergen	Circle, area of, 6	spherical, 50, 126
perimeter of, 6 sector of leve Sector of circle] segment of [see Segment of circle] classed of Diocles, 45 Common antitograrithms, 23, 194, 202, 205 sample problems involving, 195 table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complement, 20 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 [logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 subtraction of, 21 roots of, 22, 25 subtraction of, 21 component vectors, 117 Component vectors	equation of, 37	transformation of, 36, 48, 49
sector of [see Sector of circle] segment of [see Segment of circle] Cissoid of Diocles, 45 Common antilogarithms, 23, 195, 204, 205 sample problems involving, 195 table of, 204, 205 computations using, 196 sample problems involving, 194 table of, 202, 203 Common togarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21, 25 graphs of, 22 invaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 component vectors, 117 Component vectors, 117 Component vectors, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 130 Confidence of coordinates, 130 Conical coordinates, 13	involute of, 43	translation of, 36, 49
segment of [see Segment of circle] Cissoid of Diocles, 45 Common antilogarithms, 23, 195, 204, 205 sample problems involving, 195 table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Computations using, 196 communative law, for dot products, 118 for vector addition, 117 Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 component vectors, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coo	perimeter of, 6	Cosine integral, 184
segment of [see Segment of circle] Classid of Diocles, 45 Common antilogarithms, 23, 195, 204, 205 sample problems involving, 195 table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complement are reror function, 183 Complex conjugate, 21 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conjugate, complex, 21 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 23, 36 table of, 204, 205 cubic equation, solution of, 32 Curtate cycloid, 42 Curves, coordinates, 125 Curtate cycloid, 42 Curves, coordinates, 124 special plane, 40-45 Curvilinear coordinates, 125 Curvilinear coordinates, 125 Curvilinear coordinates, 124 special plane, 40-45 Curvilinear coordinates, 125 Curvilinear coordinates, 124 special plane, 40-45 Curvilinear coordinates, 125 Curvilinear coordinates, 126 Curvilinear coordinates, 124 special plane, 40-45 Curvilinear coordinates, 124 special plane, 40-45 Curvilinear coordinates, 126 Curvilinear coor	sector of [see Sector of circle]	
Cissoid of Diocles, 45 Common tiliparithms, 23, 195, 204, 205 sample problems involving, 196 table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 definitions involving, 21 definitions involving, 21 definitions involving, 21 logarithms of, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 real part of, 21 roots of, 22, 25 real part of, 21 component owefors, 117 Component wectors, 117 Component wectors, 117 Component mount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 cellipseidal coordinates, 130 hyperbolas, 127 parabolas, 128 paraboloidal coordinates, 130 Conical coordinates, 130 Convergence factors, table of, 192 Coordinate curves, 214 system, 11 Coordinates, curvilinear, 124-130 cyilndrical, 49, 126 polar, 22, 36 Confidence, 49 Coordinates, 126 paraboloidal coordinates, 130 Convergence factors, table of, 192 Coordinate curves, 214 system, 11 Coerdinates, curvilinear, 124-130 cyilndrical, 49, 126 polar, 22, 36 Confidence of complex, 21 Convergence factors, table of, 192 Coordinate curves, 24 system, 11 Coerdinates, 25 convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 292 convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 282, 289 Curl, 120 Curl, 120 Curl, 120 Curvilinear coordinates, 125 Curvilinear coordinates, 125 Curvilinear coordinates, 126 Curv		·
Common antilogarithms, 23, 195, 204, 205 sample problems involving, 196 common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complement are reror function, 183 Complex conjugate, 21 Complex numbers, 21, 22, 25 saddition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 subtraction of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboladial coordinates, 130 Conjugate, complex, 21 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Differentials, 55 rules for spherical triangles, 19 Counterclockwise, 118 Cube, duplication of, 45 Cube roots, table of, 238, 239 Cubes, table of, 23		·
sample problems involving, 195 table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 components of a vector, 117 Component vectors, 117 Component vectors, 117 Component vectors, 117 Component wectors, 117 Component amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Convergence, interval of, 110 of Fourier series, 131 Convergence, interval of, 110 of Fourier se		
table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complement ary error function, 183 Complex conjugate, 21 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 definitions involving, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 components of a vector, 117 Component vectors, 117 Component vectors, 117 Component vectors, 117 Compound amount, table of, 240 Cone, ellipsic, 31 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 130 Conical coordinates, 130 Conical coordinates, 130 Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 C	sample problems involving 195	
Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complement, 20 Complement, 20 Complement, 20 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 definitions of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 parabolois, 126 paraboloidal coordinates, 130 convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Convignate, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Cube, eluptication of, 22 Curtact, 42 Curves, coordinates, 124 Curves, coordinates, 124 curtate, 42 cylinder, elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas involving, 94, 95 table of, 95-100 Degress, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 129, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delia functions, 181 of exponential and logarithmic functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for 35 r		
computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complement, 20 Complement, 20 Complement, 20 Complement, 20 Complex conjugate, 21 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 definitions involving, 21 definitions involving, 21 definitions involving, 21 definitions of, 22, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 real part of, 21 components of a vector, 117 Component vectors,		
sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22, 25 modulus of, 22, 25 subtraction of, 21, 25 polar form of, 22, 25 subtraction of, 21 vector representation of, 22 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 paraboloid, 126 Conical coordinates, 130 Conical coordinates, 130 Conical coordinates, 130 Conical coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conicas, 37 [see also Ellipse, Parabola, Hyperbola] Coniugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Lable of, 228, 23 curita, 22 curtate, 20 Curvilinear coordinates, 125 Curvilinear coordinates, 124 curtate, 24 curvilinear coordinates, 125 Curvilinear coordinates, 124 curtate, 24 curtate, 26 curvilinear, 04-15 Copliante, 124 Covilindrical coordinates, 120 Sp		, <u> </u>
Cubic equation, solution of, 32 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complement ary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Component vectors, 117 Component vectors, 117 Component vectors, 117 Component vectors, 117 Component wectors, 117 Component vectors, 117 Component of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 130 Conical or integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence, interval of, 110 of Fourier series, 131 Coordinates curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Laplacian in, 129 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Laplacian in, 125 Laplacian in, 126 Laplacian in, 129 Conica, 37 size also Ellipse, Parabola, Hyperbolal Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Laplacian in, 125 Laplacian in, 129 Convergence, interval of, 110 of Fourier series, 131 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 Differentials, 55 rules title, 42 prolate, 42 curtate, 42 prolate, 42 prolate, 42 cylindrical, 49, 126 Definition of, 21 Laplacian in, 126 Definition of, 21 Laplacian in, 126 Definite integrals, 94-100 approximate formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conve		
Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complement, 21 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 definitions involving, 21 definitions involving, 21 definitions of, 22, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 cotos of, 22, 25 real part of, 21 component vectors, 117 Component wectors, 117 Component wectors, 117 Component wectors, 117 Component amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conica, 37 [see also Ellipse, Parabola, Hyperbola] Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylinder, elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 laplacian in, 126 Cylinder, elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 199, 200 Poloperator, 119 miscellaneous formulas involving, 120 Poloperator, 119 miscellaneous formulas involving, 120 polity for the ordinance, 124 prolate, 42 curtate, 42 prolate, 42 prolate, 42 cylindrical, 49, 126 polity for the ordinates, 129 laplacian in, 126 polity for the ordinance, 124 polity for the ordinance, 125 polity for the ordinance, 1		
for vector addition, 117 Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 rots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conica, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Coordinates curvelinear, 124-130 cylindrical, 49, 126 polar, 22, 36 in curvilinear coordinates, 124 special plane, 40-45 Curves, coordinate, 124 special plane, 40-45 Curvilinear coordinates, 129 Laplacian in, 126 Cyloid, 40, 42 curtate, 42 prolate, 42 curtate, 42 curtate, 42 prolate, 42 curtate, 42 prolate, 42 curtate, 42 prolate, 42 curtate, 42 curtate, 42 prolate,		
Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 definition of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 rector representation of, 22 Components of a vector, 117 Component vectors, 117 Component vectors, 117 Component vectors, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular (see Right circular cone) Confocal ellipses, 127 ellipsoidal coordinates, 130 Apperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical coordinates, 129 Laplacian in, 129 Deloperator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of cliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse trigonometric functions, 54, 55 of trigonometric and inverse trigonometric functions, 54, 55 of trigonometric and inverse trigonometric functions, 54, 55 of trigonometric and inverse trigonometric functions, 54, 55 of byperbolic and inverse trigonometric functions, 54, 55 of byperbolic and inverse trigonometric functions, 54,		•
Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 subtraction of, 21 vector representation of, 22 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Conjugate, complex, 21 Conordinates, curvilinear, 124-130 covidinate, 124 special plane, 40-45 Curvilinear coordinates, 124 curtate, 42 prolate, 42 curtae, 42 prolate, 42 curtae,		
Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 definitions of, 21, 25 graphs of, 22 cimaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 subtraction of, 21 roots of, 22, 25 subtraction of, 21 components of a vector, 117 Component vectors, 117 Component of, 20 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates, curvilinear, 124-130 cylindrical coordinates, 124, 125 orthogonal, 124-130 cylindrical coordinates, 124 prolate, 42 prolate, 42 prolate, 42 Cylinder, elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 199, 200 eloperator, 119 miscellaneous formulas involving, 120 Pelloperator, 119 miscellaneous formulas involving, 120 Pellipsoidal coordinates, 130 definition of, 53 definition of, 94 general formulas for, 95 definition of, 94 general formulas for, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 12, 199, 200 conversion of to radians, 12, 199, 200 eloperator, 119 miscellaneous formulas involving, 120 Pelloperator, 119 miscellaneous formulas involving, 120 Pelloperator, 119 miscellaneous formulas involving, 120 Pelloperator, 119 miscellaneous formulas involving, 12 of explored the formulas involving, 12 of exp		- · · · · · · · · · · · · · · · · · · ·
Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 parabolosa, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conicy form; series, 131 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates, curvilinear, 124-130 cylindrical coordinates, 126 polar, 22, 36 Curvilinear coordinates, 124, 125 orthogonal, 124-130 cycloid, 40, 42 curtate, 42 prolate, 42 Cylinder, elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 199, 200 polar formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 199, 200 polar formulas involving, 94, 95 table of, 95-100 Del operator, 119 miscellaneous formulas involving, 120 Della function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 54, 55 of leliptic functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56	Complementary error function, 183	*
orthogonal, 124-130 Cycloid, 40, 42 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 graphs of, 22 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 components of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates, curves, 124 system, 11 Coordinates, curves, 124 system, 11 Coordinates, curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 orthogonal, 124-130 Cycloid, 40, 42 curtate, 42 prolate, 42 Cylindrica (elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 54 of hyperbolic and inverse trigonometric functions, 54, 50 for elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 54 of hyperbolic		·
addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 Anyperbolas, 127 parabolas, 126 Danaboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conics, 37 [see also Ellipse, 127 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Cyclind, 49, 42 curtate, 42 prolate, 42 Cylinder, elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 129, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 54, 50 of hyperbolic and inverse trigonometric functions, 54, 50 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conjugate, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates, curvilinear, 124-130 cylindrical condinates, 242 cylindrical coordinates, 49, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54, 55 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential, 49, 126 Differential, 55 rules for, 56		
conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36		
definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 hyperbolas, 127 parabolas, 126 conical coordinates, 130 Conical coordinates, 130 Conical coordinates, 130 Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates, curvilinear, 124-130 cylindrical surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 polar, 22, 36 Cylindrical surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 Laplacian in, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas involving, 94, 95 table of, 95-100 pegrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 129, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54, 56 of trigonometric and inverse trigonometric functions, 54 of ve	=	
division of, 21, 25 graphs of, 22 graphs of, 22 graphs of, 25 modulus of, 25 modulus of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Compound amount, table of, 240 Cone, ellipite, 51 right circular [see Right circular cone] Confocal ellipses, 127 parabolas, 126 paraboloidal coordinates, 130 hyperbolas, 127 paraboloidal coordinates, 130 Conical coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 Laplacian in, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 129 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Del overator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1,		= '
graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical coordinates, 49, 126 Laplacian in, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 200 conversion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54, 55 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56	e,	
imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 126 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Convergence, interval of, 110 of Fourier series, 131 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Cylindrical coordinates, 49, 126 Laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 19, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 19, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 19, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 9		
logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Conical coordinates, 129 Conical coordinates, 129 Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Laplacian in, 126 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Consystem, 11 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cyclindrical, 49, 126 polar, 22, 36 Definite integrals, 94-100 approximate formulas for, 95 definition of, 93 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 129, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 93 table of, 95-100 Degrees, 1, 199, 200 Conversion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Conversion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 57 chain rule for, 53 definition of, 93 higher, 55 of tignometric and inverse hyperbolic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trignometric and inverse trigonometric functions, 54 of byperbolic and inverse trigonometri	imaginary part of, 21	
multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 120 Deltouresion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 120 Deltouresion of to radians, 129, 200 Conversion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 120 Deltouries of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 120 Deltouries of to radians, 129, 200 Deltouries of to radians, 12, 199, 200 Delourear, 119 miscellaneous formulas involving, 120 Deltouries of		Laplacian in, 126
polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Covergence factors, table of, 192 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 199, 200, 223 relationship of to radians, 199, 200 conversion of to radians, 199, 200 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 129, 200 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 199, 200, 223 relationship of to radians, 199, 200 Delta functions, 15 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 12, 199, 200 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions,	modulus of, 22	
polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 19, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 19, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 19, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 19, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 19, 200, 223 relationship of to radians, 19, 200, 223 relationship of to radians, 19, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 19, 200, 223 relationship of to radians, 19, 200, 223 relationship of to radians, 19, 200 Del operator, 119 miscellaneous formulas involving, 94, 26 Deligerationship of to radians, 19, 200 Del operator, 119 miscellaneous formulas involving, 94 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 Condinate, 19, 200 definition of, 53 higher, 55 of elliptic functions, 181	multiplication of, 21, 25	Definite integrals 94-100
real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Component vectors, 117 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 200, 223 relationship of to radians, 129, 120 Del operator, 119 miscellaneous formulas involving, 120 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 200, 223 relationship of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 129 Del operator, 119 miscellaneous formulas involving, 94, 95 table of, 94 relationship of to radians, 129 Del operator, 119 miscellaneous formulas involving, 120 Del operator, 119 miscellaneous formulas involving, 120 Del operator, 109 peries, 1, 199, 200 Conversion of to radians, 129 Del operator, 119 miscellaneous formulas involving, 120 Del operator, 109 peries, 1, 199, 200 Del	polar form of, 22, 25	
roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates curvel, 124 system, 11 Coordinates, 22, 36 polar, 22, 36 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56	real part of, 21	
subtraction of, 21 vector representation of, 22 Components of a vector, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, 126 polar, 22, 36 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56	roots of, 22, 25	
Components of a vector, 117 Component vectors, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Pegrees, 1, 199, 200 conversion of to radians, 129, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential, 55 polar, 22, 36 rules for, 56	subtraction of, 21	
Components of a vector, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 conversion of to radians, 199, 200, 223 relationship of to radians, 129, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMovire's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56	vector representation of, 22	•
Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
Compound amount, table of, 240 Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Coordinates curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differentials, 55 rules for, 56	Component vectors, 117	
Cone, elliptic, 51 right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differentials, 55 polar, 22, 36 polar, 22, 36 rules for, 56		
right circular [see Right circular cone] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 paraboloidal coordinates, 130 Conical coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Delta function, 170 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		- · · · · · · · · · · · · · · · · · · ·
Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 DeMoivre's theorem, 22, 25 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		<u>. </u>
ellipsoidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Derivatives, 53-56 [see also Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Conical coordinates, 129 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56	· - · · · · · · · · · · · · · · · · · ·	•
Conical coordinates, 129 Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Laplacian in, 129 higher, 55 of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		· · · · · · · · · · · · · · · · · · ·
Laplacian in, 129 Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Conics, 37 [see also Ellipse, Parabola, Hyperbola] of elliptic functions, 181 of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
Conics, 37 [see also Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Conjugate, complex, Parabola, Hyperbola of exponential and logarithmic functions, 54 of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Constant of integration, 57 functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		= *
Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Constant of integration, 57 functions, 54, 55 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
Convergence, interval of, 110 of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Convergence, interval of, 110 of trigonometric and inverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
of Fourier series, 131 Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 functions, 54 functions, 54 functions, 54 functions, 54 of vectors, 119 partial, 56 polaries, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
Convergence factors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Convergence factors, table of, 192 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
Coordinate curves, 124 system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 polar, 22, 36 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		•
system, 11 Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Descartes, folium of, 43 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56		
Coordinates, curvilinear, 124-130 cylindrical, 49, 126 polar, 22, 36 Coordinates, curvilinear, 124-130 Differential equations, solutions of basic, 104-106 Differentials, 55 rules for, 56	· · · · · · · · · · · · · · · · · · ·	
cylindrical, 49, 126 polar, 22, 36 polar, 26, 36 polar, 26, 36 polar, 27, 36 polar, 28, 36		
polar, 22, 36 rules for, 56		
1 1 00 11		
Differentiation, 53 [see also Derivatives]		
	rectangular, 50, 117	Differentiation, 53 [see also Derivatives]

Differentiation (cont.)	Envelope, 44
general rules for, 53	Epicycloid, 42
of integrals, 95	Equation of line, 34
Diocles, cissoid of, 45	general, 35
Direction cosines, 46, 47	in parametric form, 47
numbers, 46, 48	in standard form, 47
Directrix, 37	intercept form for, 34
Discriminant, 32	normal form for, 35
Distance, between two points in a plane, 34	perpendicular to plane, 48
between two points in space, 46	Equation of plane, general, 47
from a point to a line, 35	intercept form for, 47
from a point to a plane, 48	normal form for, 48
Distributions, probability, 189	passing through three points, 47
Distributive law, 117	Error function, 183
for dot products, 118	complementary, 183
Divergence, 119	table of values of, 257
in curvilinear coordinates, 125	Euler numbers, 114, 115
Divergence theorem, 123	definition of, 114
Dot or scalar product, 117, 118	relationship of, to Bernoulli numbers, 115
Double angle formulas, for hyperbolic functions, 27	series involving, 115
for trigonometric functions, 16	table of first few, 114
Double integrals, 122	Euler or Cauchy differential equation, 105
Duplication formula for gamma functions, 102	Euler-Maclaurin summation formula, 109
Duplication of cube, 45	Euler's constant, 1
Dupilcation of cube, 40	Euler's identities, 24
	Evolute of an ellipse, 44
Eccentricity, definition of, 37	
of ellipse, 38	Exact differential equation, 104
of hyperbola, 39	Exponential functions, 23-25, 200
of parabola, 37	periodicity of, 24
Ellipse, 7, 37, 38	relationship of to trigonometric functions, 24
area of, 7	sample problems involving calculation of, 200
eccentricity of, 38	series for, 111
equation of, 37, 38	table of, 226, 227
evolute of, 44	Exponential integral, 183
focus of, 38	table of values for, 251
perimeter of, 7	Exponents, 23
semi-major and-minor axes of, 7, 38	
Ellipses, confocal, 127	F distribution, 189
Ellipsoid, equation of, 51	95th and 99th percentile values for, 260, 261
volume of, 10	Factorial n, 3
Elliptic cone, 51	table of values for, 234
cylinder, 51	
paraboloid, 52	Factors, 2
Elliptic cylindrical coordinates, 127	Focus, of conic, 37
Laplacian in, 127	of ellipse, 38
Elliptic functions, 179-182 [see also Elliptic	of hyperbola, 39
integrals	of parabola, 38
addition formulas for, 180	Folium of Descartes, 43
derivatives of, 181	Fourier series, 131-135
identities involving, 181	complex form of, 131
integrals of, 182	convergence of, 131
Jacobi's, 180	definition of, 131
periods of, 181	Parseval's identity for, 131
series expansions for, 181	special, 132-135
special values of, 182	Fourier transforms, 174-178
Elliptic integrals, 179, 180 [see also Elliptic functions]	convolution theorem for, 175
amplitude of, 179	cosine, 176
Landen's transformation for, 180	definition of, 175
Legendre's relation for, 182	Parseval's identity for, 175
of the first kind, 179	sine, 175
of the second kind, 179	table of, 176-178
of the third kind, 179, 180	Fourier's integral theorem, 174
	Fresnel sine and cosine integrals, 184
table of values for, 254, 255	r resner sine and cosme integrals, for

addition formulas for, 27

Frullani's integral, 100 Hyperbolic functions (cont.) Frustrum of right circular cone, lateral surface definition of, 26 area of, 9 double angle formulas for, 27 volume of, 9 graphs of, 29 half angle formulas for, 27 inverse [see Inverse hyperbolic functions] Gamma function, 1, 101, 102 asymptotic expansions for, 102 multiple angle formulas for, 27 definition of, 101, 102 of negative arguments, 26 periodicity of, 31 derivatives of, 102 powers of, 28 duplication formula for, 102 relationship of to trigonometric functions, 31 for negative values, 101 relationships among, 26, 28 graph of, 101 infinite product for, 102, 188 sample problems for calculation of, 200, 201 series for, 112 recursion formula for, 101 sum, difference and product of, 28 relationship of to beta function, 103 table of values for, 228-233 relationships involving, 102 Hyperbolic paraboloid, 52 special values for, 101 Hyperboloid, of one sheet, 51 table of values for, 235 of two sheets, 52 Gaussian plane, 22 Hypergeometric differential equation, 160 Gauss' theorem, 123 distribution, 189 Generalized integration by parts, 59 Generating functions, 137, 139, 146, 149, 151, 153, Hypergeometric functions, 160 155, 157, 158 miscellaneous properties of, 160 Geometric formulas, 5-10 special cases of, 160 Geometric mean, 185 Hypocycloid, general, 42 with four cusps, 40 Geometric series, 107 arithmetic-, 107 Gradient, 119 Imaginary part of a complex number, 21 in curvilinear coordinates, 125 Imaginary unit, 21 Green's first and second identities, 124 Improper integrals, 94 Green's theorem, 123 Indefinite integrals, 57-93 definition of, 57 Half angle formulas, for hyperbolic functions, 27 table of, 60-93 for trigonometric functions, 16 transformation of, 59, 60 Half rectified sine wave function, 172 Inequalities, 185, 186 Hankel functions, 138 Infinite products, 102, 188 Harmonic mean, 185 series [see Series] Heaviside's unit function, 173 Initial point of a vector, 116 Hermite polynomials, 151, 152 Integral calculus, fundamental theorem of, 94 addition formulas for, 152 Integrals, definite [see Definite integrals] generating function for, 151 double, 122 orthogonal series for, 152 improper, 94 orthogonality of, 152 indefinite [see Indefinite integrals] recurrence formulas for, 151 involving vectors, 121 Rodrigue's formula for, 151 line [see Line integrals] special, 151 multiple, 122, 125 special results involving, 152 Integration, 57 [see also Integrals] Hermite's differential equation, 151 constants of, 57 Higher derivatives, 55 general rules of, 57-59 Leibnitz rule for, 55 Integration by parts, 57 Holder's inequality, 185 generalized, 59 for integrals, 186 Intercepts, 34, 47 Homogeneous differential equation, 104 Interest, 201, 240-243 linear second order, 105 Interpolation, 195 Hyperbola, 37, 39 Interval of convergence, 110 asymptotes of, 39 Inverse hyperbolic functions, 29-31 eccentricity of, 39 definition of, 29 equation of, 37 expressed in terms of logarithmic functions, 29 focus of, 39 graphs of, 30 length of major and minor axes of, 39 principal values for, 29 Hyperbolas, confocal, 127 relationship of to inverse trigonometric Hyperbolic functions, 26-31 functions, 31

relationships between, 30

Inverse Laplace transforms, 161 Linear first order differential equation, 104 Inverse trigonometric functions, 17-19 second order differential equation, 105 definition of, 17 Line integrals, 121, 122 graphs of, 18, 19 definition of, 121 principal values for, 17 independence of path of, 121, 122 relations between, 18 properties of, 121 relationship of to inverse hyperbolic Logarithmic functions, 23-25 [see also Logarithms] functions, 31 series for, 111 Involute of a circle, 43 Logarithms, 23 [see also Logarithmic functions] antilogarithms and [see Antilogarithms] Jacobian, 125 base of, 23 Jacobi's elliptic functions, 180 Briggsian, 23 change of base of, 24 Ker and Kei functions, 140, 141 characteristic of, 194 definition of, 140 common [see Common logarithms] differential equation for, 141 mantissa of, 194 graphs of, 141 natural, 24 of complex numbers, 25 of trigonometric functions, 216-221 Lagrange form of remainder in Taylor series, 110 Laguerre polynomials, 153, 154 Maclaurin series, 110 associated [see Associated Laguerre polynomials] Mantissa, 194 generating function for, 153 Mean value theorem, for definite integrals, 94 orthogonal series for, 154 generalized, 95 orthogonality of, 154 Minkowski's inequality, 186 recurrence formulas for, 153 for integrals, 186 Rodrigue's formula for, 153 Modified Bessel functions, 138, 139 special, 153 differential equation for, 138 Laguerre's associated differential equation, 155 generating function for, 139 Laguerre's differential equation, 153 graphs of, 141 Landen's transformation, 180 of order half an odd integer, 140 Laplace transforms, 161-173 recurrence formulas for, 139 complex inversion formula for, 161 Modulus, of a complex number, 22 definition of, 161 Moments of inertia, special, 190, 191 inverse, 161 Multinomial formula, 4 table of, 162-173 Multiple angle formulas, for hyperbolic Laplacian, 120 functions, 27 in curvilinear coordinates, 125 for trigonometric functions, 16 Legendre functions, 146-148 [see also Legendre Multiple integrals, 122 polynomials| transformation of, 125 associated [see Associated Legendre functions] of the second kind, 148 Legendre polynomials, 146, 147 [see also Napierian logarithms, 24, 196 tables of, 224, 225 Legendre functions Napier's rules, 20 generating function for, 146 Natural logarithms and antilogarithms, 24, 196 orthogonal series of, 147 tables of, 224-227 orthogonality of, 147 Neumann's function, 136 recurrence formulas for, 147 Nonhomogeneous equation, linear second order, 105 Rodrigue's formula for, 146 Normal, outward drawn or positive, 123 special, 146 special results involving, 147 unit, 122 Normal curve, areas under, 257 table of values for, 252, 253 ordinates of, 256 Legendre's associated differential equation, 149 Normal distribution, 189 general solution of, 150 Normal form, equation of line in, 35 Legendre's differential equation, 106, 146 equation of plane in, 48 general solution of, 148 Null function, 170 Legendre's relation for elliptic integrals, 182 Null vector, 116 Leibnitz's rule, for differentiation of integrals, 95 Numbers, complex [see Complex numbers] for higher derivatives of products, 55 Lemniscate, 40, 44 Limacon of Pascal, 41, 44 Oblate spheroidal coordinates, 128 Line, equation of [see Equation of line] Laplacian in, 128 integrals [see Line integrals] Orthogonal curvilinear coordinates, 124-130 slope of, 34 formulas involving, 125

Orthogonality and orthogonal series, 144, 145,	Prolate spheroidal coordinates, 128
147, 150, 152, 154, 156, 158, 159	Laplacian in, 128
Ovals of Cassini, 44	Pulse function, 173
	Pyramid, volume of, 9
Parabola, 37, 38	Quadrants, 11
eccentricity of, 37	Quadratic equation, solution of, 32
equation of, 37, 38	Quartic equation, solution of, 33
focus of, 38	quartic equation, solution of, 55
segment of [see Segment of parabola]	Radians, 1, 12, 199, 200
Parabolas, confocal, 126	relationship of to degrees, 12, 199, 200
Parabolic cylindrical coordinates, 126	table for conversion of, 222
Laplacian in, 126	Random numbers, table of, 262
Parabolic formula for definite integrals, 95	Real part of a complex number, 21
Paraboloid elliptic, 52	Reciprocals, table of, 238, 239
hyperbolic, 52	Rectangle, area of, 5
Paraboloid of revolution, volume of, 10	perimeter of, 5
Paraboloidal coordinates, 127	Rectangular coordinate system, 117
Laplacian in, 127	Rectangular coordinates, transformation of to
Parallel, condition for lines to be, 35	polar coordinates, 36
Parallelepiped, rectangular [see Rectangular	Rectangular formula for definite integrals, 95
parallelepiped]	Rectangular parallelepiped, volume of, 8
volume of, 8	surface area of, 8
Parallelogram, area of, 5	Rectified sine wave function, 172
perimeter of, 5	half, 172
Parallelogram law for vector addition, 116	Recurrence or recursion formulas, 101, 137, 139,
Parseval's identity, for Fourier transforms, 175	147, 149, 151, 153, 156, 158, 159
for Fourier series, 131	Regular polygon, area of, 6
Partial derivatives, 56	circumscribing a circle, 7
Partial fraction expansions, 187	inscribed in a circle, 7
Pascal, limacon of, 41, 44	perimeter of, 6
Pascal's triangle, 4, 236	Reversion of power series, 113
Perpendicular, condition for lines to be, 35	Riemann zeta function, 184
Plane, equation of [see Equation of plane]	Right circular cone, frustrum of
Plane analytic geometry, formulas from, 34-39	[see Frustrum of right circular cone]
Plane triangle, area of, 5, 35	lateral surface area of, 9
law of cosines for, 19	volume of, 9
law of sines for, 19	Right-handed system, 118
law of tangents for, 19	Rodrigue's formulas, 146, 151, 153
perimeter of, 5 radius of circle circumscribing, 6	Roots, of complex numbers, 22, 25
radius of circle inscribed in, 6	table of square and cube, 238, 239
relationships between sides and angles of, 19	Rose, three- and four-leaved, 41
Poisson distribution, 189	Rotation of coordinates, in a plane, 36
Poisson summation formula, 109	in space, 49
Polar coordinates, 22, 36	Saw tooth wave function, 172
transformation from rectangular to, 36	Scalar or dot product, 117, 118
Polar form, expressed as an exponential, 25	Scalars, 116
multiplication and division in, 22	Scale factors, 124
of a complex number, 22, 25	Schwarz inequality [see Cauchy-Schwarz inequality]
operations in, 25	Sector of circle, arc length of, 6
Polygon, regular [see Regular polygon]	area of, 6
Power, 23	Segment of circle, area of, 7
Power series, 110	Segment of parabola, area of, 7
reversion of, 113	arc length of, 7
Present value, of an amount, 241	Separation of variables, 104
of an annuity, 243	Series, arithmetic, 107
Principal branch, 17	arithmetic-geometric, 107
Principal values, for inverse hyperbolic functions, 29	binomial, 2, 110
for inverse trigonometric functions, 17, 18	Fourier [see Fourier series]
Probability distributions, 189	geometric, 107
Products, infinite, 102, 188	of powers of positive integers, 107, 108
special, 2	of reciprocals of powers of positive integers,
Prolate cycloid, 42	108, 109

INDEX 271

Series, arithmetic (cont.)	Triangle inequality, 185
orthogonal [see Orthogonality and orthogonal series]	
	Triangular wave function, 172
power, 110, 113	Trigonometric functions, 11-20
Taylor [see Taylor series]	addition formulas for, 15
Simple closed curve, 123	definition of, 11
Simpson's formula for definite integrals, 95	double angle formulas for, 16
Sine integral, 183	exact values of for various angles, 13
Fresnel, 184	for various quadrants in terms of
table of values for, 251	quadrant I, 15
Sines, law of for plane triangle, 19	general formulas involving, 17
law of for spherical triangle, 19	graphs of, 14
Slope of line, 34	half angle formulas, 16
Solid analytic geometry, formulas from, 46-52	inverse [see Inverse trigonometric functions]
Solutions of algebraic equations, 32, 33	multiple angle formulas for, 16
Sphere, equation of, 50	of negative angles, 14
surface area of, 8	powers of, 16
	-
triangle on [see Spherical triangle]	relationship of to exponential functions, 24
volume of, 8	relationship of to hyperbolic functions, 31
Spherical cap, surface area of, 9	relationships among, 12, 15
volume of, 9	sample problems involving, 197-199
Spherical coordinates, 50, 126	series for, 111
Laplacian in, 126	signs and variations of, 12
Spherical triangle, area of, 10	sum, difference and product of, 17
Napier's rules for right angled, 20	table of in degrees and minutes, 206-211
relationships between sides and angles of, 19, 20	table of in radians, 212-215
Spiral of Archimedes, 45	table of logarithms of, 216-221
Square roots, table of, 238, 239	Triple integrals, 122
Square wave function, 172	Trochoid, 42
Squares, table of, 238, 239	-10011014, 14
Step function, 173	Unit function, Heaviside's, 173
Stirling's asymptotic series, 102	Unit normal to a surface, 122
	Unit vectors, 117
formula, 102	Onit vectors, 11?
Stoke's theorem, 123	Vector algebra, laws of, 117
Student's t distribution, 189	
percentile values for, 258	Vector analysis, formulas from, 116-130
Summation formula, Euler-Maclaurin, 109	Vector or cross product, 118
Poisson, 109	Vectors, 116
Sums [see Series]	addition of, 116, 117
Surface integrals, 122	complex numbers as, 22
relation of to double integral, 123	components of, 117
	equality of, 117
7	fundamental definitions involving, 116, 117
Tangent vectors to curves, 124	multiplication of by scalars, 117
Tangents, law of for plane triangle, 19	notation for, 116
law of for spherical triangle, 20	null, 116
Taylor series, 110-113	parallelogram law for, 116
for functions of one variable, 110	sums of, 116, 117
for functions of two variables, 113	tangent, 124
Terminal point of a vector, 116	unit, 117
Toroidal coordinates, 129	Volume integrals, 122
Laplacian in, 129	volume integrals, 122
Torus, surface area of, 10	Wallie! Just 100
volume of, 10	Wallis' product, 188
Tractrix, 43	Weber's function, 136
	Witch of Agnesi, 43
Transformation, Jacobian of, 125	
of coordinates, 36, 48, 49, 124	x axis, 11
of integrals, 59, 60, 125	x intercept, 34
Translation of coordinates, in a plane, 36	
in space, 49	y axis, 11
Trapezoid, area of, 5	y intercept, 34
perimeter of, 5	
Trapezoidal formula for definite integrals, 95	Zero vector, 116
Triangle, plane [see Plane triangle]	Zeros of Bessel functions, 250
spherical [see Spherical triangle]	Zeta function of Riemann, 184