IML -EX1 Amitay Sicherman -203449004

Warm-up - Algebra Recap	2
Q1:	2
Q2:	2
Q3:	2
Q4:	2
SVD	3
Q5:	3
Q6:	3
Q7:	4
Multivariate Calculus	6
Q8	6
Q9	7
Q10	7
Multivariate Gaussian- practical question	9
Q11	9
Q12	9
Q13	10
Q14	10
Q15	11
Concentration inequalities - practical question	13
016	12

Warm-up - Algebra Recap

Q1:

We use that

$$P_v u = \frac{\langle v, u \rangle}{|u|^2} \vec{u}$$

Calculate:

$$P_{v}u = \frac{\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1\\2\\2 \end{pmatrix}}{\begin{pmatrix} 0\\-1\\1\\2\\2 \end{pmatrix}} \cdot \begin{pmatrix} 0\\-1\\1\\2\\2 \end{pmatrix} = \frac{9}{6} \cdot \begin{pmatrix} 0\\-1\\1\\2\\2 \end{pmatrix} = \begin{pmatrix} 0\\-\frac{3}{2}\\\frac{3}{2}\\\frac{3}{2}\\3 \end{pmatrix}$$

Q2:

Use the same equation,

Calculate:

$$P_{v}u = \frac{\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix} \end{pmatrix}}{\begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix}} \cdot \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix} = \frac{0}{3} \cdot \begin{pmatrix} 0\\-1\\1\\2 \end{pmatrix} = 0$$

Q3:

we use the definition of $\langle v, u \rangle$:

$$\langle v, u \rangle = |u| \cdot |v| \cdot \cos(\theta)$$

we will prove the two sides:

First side,
$$\theta = \pm 90 \to \cos(\theta) = 0 \to |u| \cdot |v| \cdot \cos(\theta) = 0 \to \langle v, u \rangle = 0$$

second side: $\langle v, u \rangle = 0 \to |u| \cdot |v| \cdot \cos(\theta) = 0 \to \cos(\theta) = 0 \to \theta = \pm 90$

Q4:

we use that:

- 1. for vector $v: ||v||_2 = \sum v_i^2 = v \cdot v^T$
- 2. for orthogonal marix $A : AA^T = AA^{-1} = I$

And now we prove:

$$\left|\left|Ax\right|\right|_2 \underset{1}{=} Ax(Ax)^T = AxA^Tx^T = AA^Txx^T \underset{2}{=} xx^T \underset{1}{=} \left|\left|x\right|\right|_2$$

SVD

Q5:

we use:

1. for diagonal matix $D^{n*n} = d_{ij}$

: calculat the invers matrix of D can make in O(n) by $-D^{-1} = \frac{1}{d_{ij}}$

2. for orthogonal marix A:: calculat the invers matrix of D can make in $O(n^2)$ by $A^{-1} = A^T$

proof:

$$A = UDV^{T}$$

$$\rightarrow A^{-1} = (V^{T})^{-1}D^{-1}U^{-1}$$

$$from 2 \rightarrow \boxed{(VD^{-1}U^{T})}$$

from (1) we can calculate D^{-1} in O(n), from (2) we can calculate U,T transpose in $O(n^2)$ so the operation is more useful then the regular way that take $O\left(n^{\approx 2.8}\right)$

Q6:

Calculate:

$$c \cdot c^T = \begin{pmatrix} 50 & 30 \\ 30 & 50 \end{pmatrix}$$

We see that:

$$if \ c = UDV^T \ if \ SVD \ so \ cc^T = UDD^TU^T \ is \ EVD$$
 so let say that $U=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $DD^T=diag(d1,d2)$

calculate:

 $DD^T = diag(d1^2, d2^2)$

$$\begin{pmatrix} 50 & 30 \\ 30 & 50 \end{pmatrix} = \begin{pmatrix} a^2d1^2 + cbd2^2 & abd1^2 + dbd2^2 \\ cad1^2 + dcd2^2 & abd1^2 + dbd2^2 \end{pmatrix}$$

And the solve is:

$$d1^2 = 80 , d2^2 = 20 , a = b = c = -d = \frac{1}{\sqrt{2}}$$

$$\rightarrow D = \begin{pmatrix} \sqrt{80} & 0 \\ 0 & \sqrt{20} \end{pmatrix} , U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Now, $c = \mathit{UDV}^T$ multiplate two sides with V in the right $\mbox{we get } \mathit{cV} = \mathit{UDV}^T\mathit{V} = \mathit{UD}$, multiplate two

sides in
$$c^{-1} = \begin{pmatrix} \frac{7}{40} & -\frac{1}{8} \\ \frac{1}{40} & \frac{1}{8} \end{pmatrix}$$
 in the left we get $c^{-1}cV = V = c^{-1}UD$

set the values of $c^{-1}UD$ and calculate the multiplate we get :

$$V = \begin{pmatrix} \sqrt{\frac{1}{10}} & \sqrt{\frac{9}{10}} \\ \sqrt{\frac{9}{10}} & -\sqrt{\frac{1}{10}} \end{pmatrix}$$

<u>Q7:</u>

$$\frac{\partial g_{i}}{\partial s_{j}} = \frac{2}{25i}$$

Multivariate Gaussian- practical question

<u>Q11</u>

3D gaussian

Q12

Scale 3D gaussian

[[0.01 0. 0.]

[0. 0.25 0.]

[0. 0. 4.]]

ניתן לראות כי עדיין אין קורלציה בין הצירים (רק האיברים על האלכסון קיימים) אבל יש מתיחה – כמו שניתן לראות בסרטוט. יש מתיחה אבל אין סיבוב. עדיין מקביל לצירים.

Q13

Scale and rotate 3D gaussian

מטריצת הCOV:

 $[[0.2012325\;\; 0.77954016\; 0.22139559]$

 $[0.77954016\ 3.38267323\ 1.18514263]$

 $[0.22139559\ 1.18514263\ 0.67609427]]$

המטריצה לא אלכסונית- יש גם מתיחה וגם סיבוב (כמו שרואים בסרטוט), אבל היא סימטרית

Q14

נעריך כי הסרטוט יראה כמו גאוסיאן דו מימד סביב אותם ערכים, וזה אכן מה שקיבלנו:

Q15

נצפה לראות גאוסיאן בעל אותם ערכים, אבל בצפיפות נמוכה יותר. כלומר צפיפות הנקודות דלילה יותר אבל הצורה והערכים זהים- וזה אכן מה שקיבלנו:

:A 16 שאלה

נצפה לראות ככל שM גדל, שאיפה אסימפטומטית לממוצע האמיתי (אשר מוערך להיות 0.25)

Estimate Everage of X

ניתן לראות כי כל השורות מתכנסות לערך מסוים ושכל הערכים הם "קרובים" לערך שציפינו לראות. כולם מתכנסים לאזור ה-0.25 ("מתקרבים" זה לא מוגדר – ובהמשך השאלה נדייק יותר)

:B 16 שאלה

^{*} בגרף הראשון חתכתי את ציר הY בנקודה 5 כאשר הקו הסגול מעליה על מנת לקבל גרף ברור יותר (כאשר באופן אמיתי אין משמעות לערכים ג

:C16 שאלה

וזה אכן מה שקיבלנו- כאשר בעבור אפסילון קטן מאוד מספר הדגימות לא מספיק- המודל עדיין לא מייצג כראוי את ההתפלגות ממנה לקחנו את הנתונים