

Figure 1

PRIOR ART

Figure 2

Figure 3

PRIOR ART

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 12

Figure 13

Figure 15

Figure 16

Nodes A, B, and C contend for D's lone RXR

Figure 17

Reference Network protocol procedure dependencies

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

RXR COUNT LIST record fields

Figure 26

Algorithm 0.0.2: UPDATE AVAIL RXR LISTs(Global, Node, Token) [block 0] if rxr lists are empty then return if Node is on a lightpath [block 1] then note source and sink for each $rec \in Node.add_back_rxr_list$ [block 2] increment rec.adj increment Token[rec.sink].AVAIL_RXRS if Token[rec.sink].NUM_FAILS > 0 then decrement Token[rec.sink].NUM_FAILS if rec.adj = 0then delete rec for each $rec_1 \in Node.take_away_rxr_list$ [block 3] decrement rec₁.adj decrement $Token[rec_1.sink]$.AVAIL_RXRS if $(Token[rec_1.sink].AVAIL_RXRS + Token[rec_1.sink].NUM_FAILS) < 0^a$ increment $Token[rec_1.sink]$.NUM_FAILS if sink noted and $rec_1.sink = sink$ and $Token[rec_1.sink].LINK = SINK^b$ then if no active TXN to sink comment: TANDEM then $Node.on_off[\lambda_i] \leftarrow ON$ else if Token[sink].LINK_URG ≥ urgency of least urgent active TXN comment: STOMP then do $Node.on_off[\lambda_i] \leftarrow ON$ then discontinue own least urgent active TXN invoke Failed_TXN() comment: SIPHON reset lightpath from sink upstream else $Node.on_off[\lambda_i] \leftarrow OFF$ $Token[source].TX_FAIL \leftarrow sink$ if $rec_1.adj = 0$ new $rec_2 \leftarrow (rec_1.sink, -(Global.num_tokens))$ then add rec₂ to Node.add_back_rxr_list

Figure 27

delete rec_1

aif the sum of the AVAIL_RXRS and NUM_FAILS token fields for rec_1.sink becomes negative ...

bif rec₁.sink is the sink of a lightpath that was noted near the top of the algorithm ...

Figure 28

Algorithm 0.0.3: RESERVE LINKS PROCEDURE(Token, Path)

• create priority queue of destination candidates, sorted on primary key (most urgent),

and secondary key (greatest hop-length)

while (1)

```
do {
    if queue empty
        then return
        pop candidate
    if every RSV_URG of path to candidate has lower urgency than candidate burst
        then drop through WHILE loop

for each link on Path

    note "losing" reservation ID, if any
```

do {
 note "losing" reservation ID, if any
 write "my" ID and MAXDEST urgency number

for each losing ID

do { reset all reservations which are contiguous to new reservation link and which have losing IDs (clear away "orphaned" IDs)

Figure 29

Figure 30

Algorithm 0.0.1: FIND PATH(Global, Node, Token)

if a TXR is available

```
find max (the free link farthest downstream on active ring)
 dest\_list \leftarrow all dests (with bursts waiting) incl. max^a
 sort dest list, by primary key (most urgent)
                                                                                            [3110]
                and secondary key (farthest)
 while (1)
           if dest_list is empty
 then return

dest ← pop dest_list

if (∀ intermediate link, (dest.urg > link.RSV_URG)

and "grayed-out" links can be bypassed)
                                                                                          [3118]
                                                                                          [3120]
            d-out" links on path

Token.RI ← largest available bypass ring (RI)

if new RI changes the route at thisnode, set switch
if "grayed-out" links on path
                                                                                          [3130]
decrement Token[dest].AVAIL_RXRS
arrec \leftarrow (dest, Global.num\_tokens - 1)
add arrec to Node.take_away_rxrs_list
```

^aRecall that node information appears on the token in the same record with its upstream link.

^bThe break statement is unconditional, except in RESERVATION_SCHEME (first condition) and MESH (second condition).

Figure 32

Figure 34