Distribution of staking incentives (COMP/StkAAVE)

- When a new expiry is created, a PendleYieldTokenHolder contract is also deployed alongside the OT and XYT contract
- The PendleYieldTokenHolder will hold all the aToken/cToken
- All the transfers of aToken/cToken is done from/to the PendleYieldTokenHolder
- There will be COMP/StkAAVE rewards accrued in the PendleYieldTokenHolder
- Whenever there is new COMP/StkAAVE rewards coming into the PendleYieldTokenHolder, it will be distributed equally to the current OT holders
 - At time to: total amount of OT is totalor_0, a new user A mints balanceA OTs
 - At time t1: There is rewards_0 coming in, A should get:
 - balanceA/totalOT_0 * rewards_0
 - At time t2: There is rewards_1 coming in, A should get:
 - balanceA/totalOT_1 * rewards_1
 - In total: A should get balanceA * (rewards_0/totalOT_0 + rewards_1/totalOT_1)
 - As such, we can generalise it and let:
 - L(t+1) = (rewards_0/totalOT_0 + rewards_1/totalOT_1 + ... +
 rewards_t/totalOT_t)
 - Then, rewards for a user A with balanceA for holding OT from t1 to t2
 is:
 - balanceA * (L(t2) L(t1))
- As such, before any action that changes the totalOT, we will then need to:
 - claim the COMP/StkAAVE rewards

- update L(t), based on the previous totalOT, and the amount of rewards that came in since the last L(t) update
- Another note is that this way of accounting the rewards is exactly the same as how we account for the interests for a generic pool, especially when the "rewards/interests" do not grow by itself (same as a Compound Market, or Compound liquidity mining contract)
 - Therefore, we try to keep the implementation to be as similar as possible, to reduce potential bugs and mistakes