Kolokwium z Rachunku Prawdopodobieństwa II*

gr.I, 4 grudnia 2008

- 1. Wyznacz wszystkie funkcje $f: \mathbb{N} \to \mathbb{N}$ takie, że dla dowolnego skończonego momentu zatrzymania τ , $f(\tau)$ też jest momentem zatrzymania względem tej samej filtracji co τ .
- 2. Zmienne X_n i Y_n są niezależne i mają rozkład Poissona z parametrem 2n. Zbadaj zbieżność według rozkładu ciągu $n^{-5/2}(X_n^3-Y_n^3)$.
- 3. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na $[-1,1], S_n = X_1 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Znajdź wszystkie wielomiany w(x) takie, że $(w(S_n), \mathcal{F}_n)_{n=1}^{\infty}$ jest martyngałem.
- 4. Zmienne X_1, X_2, \ldots są niezależne i mają rozkład wykładniczy ze średnią 2. Czy ciąg $n^{-3/2} \sum_{k=1}^{n} k(X_k 2)$ jest zbieżny według rozkładu? Jeśli tak, to do jakiej granicy?
- 5. Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych o rozkładzie Poissona z parametrem 2. Określmy $S_0 = 0, S_n = X_1 + \ldots + X_n$ dla $n = 1, 2, \ldots$ Niech $\tau = \inf\{n \ge 0: S_n = S_{n-1}\}$, znajdź funkcję charakterystyczną zmiennej S_{τ} .
- 6. Znajdź wszystkie zmienne losowe X takie, że jeśli Y jest zmienną $\mathcal{N}(0,1)$ niezależną od X, to 2X+Y ma ten sam rozkład, co X+3Y+1.

Kolokwium z Rachunku Prawdopodobieństwa II*

gr.II, 4 grudnia 2008

- 1. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na $[-2,2], S_n = X_1 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1,\ldots,X_n)$. Znajdź wszystkie wielomiany w(x) takie, że $(w(S_n), \mathcal{F}_n)_{n=1}^{\infty}$ jest martyngałem.
- 2. Wyznacz wszystkie funkcje $f: \mathbb{N} \to \mathbb{N}$ takie, że dla dowolnego skończonego momentu zatrzymania τ , $f(\tau)$ też jest momentem zatrzymania względem tej samej filtracji co τ .
- 3. Zmienne X_1,X_2,\ldots są niezależne i mają rozkład wykładniczy ze średnią 1. Czy ciąg $n^{-3/2}\sum_{k=1}^n k(X_k-1)$ jest zbieżny według rozkładu? Jeśli tak, to do jakiej granicy?
- 4. Znajdź wszystkie zmienne losowe X takie, że jeśli Y jest zmienną $\mathcal{N}(0,1)$ niezależną od X, to 3X+Y ma ten sam rozkład, co X+2Y-1.
- 5. Zmienne X_n i Y_n są niezależne i mają rozkład Poissona z parametrem 3n. Zbadaj zbieżność według rozkładu ciągu $n^{-5/2}(X_n^3 Y_n^3)$.
- 6. Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych o rozkładzie Poissona z parametrem 3. Określmy $S_0 = 0, S_n = X_1 + \ldots + X_n$ dla $n = 1, 2, \ldots$ Niech $\tau = \inf\{n \ge 0: S_n = S_{n-1}\}$, znajdź funkcję charakterystyczną zmiennej S_{τ} .