PROBLEMS 105



**Figure 4.10.** Scatter plots for the ramus bone data in Table 3.6.

The bivariate scatter plots are given in Figure 4.10. Three values are clearly separate from the other observations in the plot of  $y_1$  versus  $y_4$ . In Table 3.6, the 9th, 12th, and 20th values of  $y_4$  are not unusual, nor are the 9th, 12th, and 20th values of  $y_1$ . However, the increase from  $y_1$  to  $y_4$  is exceptional in each case. If these values are not due to errors in recording the data and if this sample is representative, then we appear to have a mixture of two populations. This should be taken into account in making inferences.

## **PROBLEMS**

## **4.1** Consider the two covariance matrices

$$\Sigma_1 = \begin{pmatrix} 14 & 8 & 3 \\ 8 & 5 & 2 \\ 3 & 2 & 1 \end{pmatrix}, \qquad \Sigma_2 = \begin{pmatrix} 6 & 6 & 1 \\ 6 & 8 & 2 \\ 1 & 2 & 1 \end{pmatrix}.$$

Show that  $|\Sigma_2| > |\Sigma_1|$  and that  $\text{tr}(\Sigma_2) < \text{tr}(\Sigma_1)$ . Thus the generalized variance of population 2 is greater than the generalized variance of population 1, even though the total variance is less. Comment on why this is true in terms of the variances and correlations.

- **4.2** For  $z = (T')^{-1}(y \mu)$  in (4.4), show that E(z) = 0 and cov(z) = I.
- **4.3** Show that the form of the likelihood function in (4.13) follows from the previous expression.
- **4.4** For  $(\mathbf{y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu})$  in (4.3) and (4.6), show that  $E[(\mathbf{y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu})] = p$ . Assume  $E(\mathbf{y}) = \boldsymbol{\mu}$  and  $cov(\mathbf{y}) = \boldsymbol{\Sigma}$ . Normality is not required.
- **4.5** Show that by adding and subtracting  $\overline{y}$ , the exponent of (4.13) has the form given in (4.14), that is,

$$\frac{1}{2} \sum_{i=1}^{n} (\mathbf{y}_{i} - \overline{\mathbf{y}} + \overline{\mathbf{y}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y}_{i} - \overline{\mathbf{y}} + \overline{\mathbf{y}} - \boldsymbol{\mu}) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{y}_{i} - \overline{\mathbf{y}})' \boldsymbol{\Sigma}^{-1} (\mathbf{y}_{i} - \overline{\mathbf{y}}) + \frac{n}{2} (\overline{\mathbf{y}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{y}} - \boldsymbol{\mu}).$$

- **4.6** Show that  $\sqrt{b_1}$  and  $b_2$ , as given in (4.18) and (4.19), are invariant to the transformation  $z_i = ay_i + b$ .
- **4.7** Show that if y is  $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , then  $\beta_{2,p} = p(p+2)$  as in (4.34).
- **4.8** Show that  $b_{1,p}$  and  $b_{2,p}$ , as given by (4.36) and (4.37), are invariant under the transformation  $\mathbf{z}_i = \mathbf{A}\mathbf{y}_i + \mathbf{b}$ , where  $\mathbf{A}$  is nonsingular. Thus  $b_{1,p}$  and  $b_{2,p}$  do not depend on the units of measurement.
- **4.9** Show that  $F_{(n)} = [(n-p-1)/p](1/w-1)$  as in (4.45).
- **4.10** Suppose y is  $N_3(\mu, \Sigma)$ , where

$$\mu = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} 6 & 1 & -2 \\ 1 & 13 & 4 \\ -2 & 4 & 4 \end{pmatrix}.$$

- (a) Find the distribution of  $z = 2y_1 y_2 + 3y_3$ .
- (b) Find the joint distribution of  $z_1 = y_1 + y_2 + y_3$  and  $z_2 = y_1 y_2 + 2y_3$ .
- (c) Find the distribution of  $y_2$ .
- (d) Find the joint distribution of  $y_1$  and  $y_3$ .
- (e) Find the joint distribution of  $y_1$ ,  $y_3$ , and  $\frac{1}{2}(y_1 + y_2)$ .
- **4.11** Suppose y is  $N_3(\mu, \Sigma)$ , with  $\mu$  and  $\Sigma$  given in the previous problem.
  - (a) Find a vector  $\mathbf{z}$  such that  $\mathbf{z} = (\mathbf{T}')^{-1}(\mathbf{y} \boldsymbol{\mu})$  is  $N_3(\mathbf{0}, \mathbf{I})$  as in (4.4).
  - (b) Find a vector  $\mathbf{z}$  such that  $\mathbf{z} = (\mathbf{\Sigma}^{1/2})^{-1}(\mathbf{y} \boldsymbol{\mu})$  is  $N_3(\mathbf{0}, \mathbf{I})$  as in (4.5).
  - (c) What is the distribution of  $(y \mu)' \Sigma^{-1} (y \mu)$ ?
- **4.12** Suppose y is  $N_4(\mu, \Sigma)$ , where

$$\boldsymbol{\mu} = \begin{pmatrix} -2 \\ 3 \\ -1 \\ 5 \end{pmatrix}, \qquad \boldsymbol{\Sigma} = \begin{pmatrix} 11 & -8 & 3 & 9 \\ -8 & 9 & -3 & 6 \\ 3 & -3 & 2 & 3 \\ 9 & 6 & 3 & 9 \end{pmatrix}.$$

- (a) Find the distribution of  $z = 4y_1 2y_2 + y_3 3y_4$ .
- (b) Find the joint distribution of  $z_1 = y_1 + y_2 + y_3 + y_4$  and  $z_2 = -2y_1 + y_4 + y_4 + y_4 + y_5 + y_4 + y_5 + y_6 +$  $3y_2 + y_3 - 2y_4$ .
- (c) Find the joint distribution of  $z_1 = 3y_1 + y_2 4y_3 y_4$ ,  $z_2 = -y_1 3y_2 + y_3 y_4$  $y_3 - 2y_4$ , and  $z_3 = 2y_1 + 2y_2 + 4y_3 - 5y_4$ .
- (d) What is the distribution of  $v_3$ ?
- (e) What is the joint distribution of  $y_2$  and  $y_4$ ?
- (f) Find the joint distribution of  $y_1$ ,  $\frac{1}{2}(y_1 + y_2)$ ,  $\frac{1}{3}(y_1 + y_2 + y_3)$ , and  $\frac{1}{4}(y_1 + y_2)$  $y_2 + y_3 + y_4$ ).
- **4.13** Suppose y is  $N_4(\mu, \Sigma)$  with  $\mu$  and  $\Sigma$  given in the previous problem.
  - (a) Find a vector  $\mathbf{z}$  such that  $\mathbf{z} = (\mathbf{T}')^{-1}(\mathbf{y} \boldsymbol{\mu})$  is  $N_4(\mathbf{0}, \mathbf{I})$  as in (4.4).
  - (b) Find a vector  $\mathbf{z}$  such that  $\mathbf{z} = (\mathbf{\Sigma}^{1/2})^{-1}(\mathbf{y} \boldsymbol{\mu})$  is  $N_4(\mathbf{0}, \mathbf{I})$  as in (4.5).
  - (c) What is the distribution of  $(y \mu)' \Sigma^{-1} (y \mu)$ ?
- **4.14** Suppose y is  $N_3(\mu, \Sigma)$ , with

$$\mu = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} 4 & -3 & 0 \\ -3 & 6 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

Which of the following random variables are independent?

- (a)  $y_1$  and  $y_2$
- **(b)**  $y_1$  and  $y_3$
- (c)  $y_2$  and  $y_3$
- (d)  $(y_1, y_2)$  and  $y_3$
- (e)  $(y_1, y_3)$  and  $y_2$
- **4.15** Suppose y is  $N_4(\mu, \Sigma)$ , with

$$\boldsymbol{\mu} = \begin{pmatrix} -4 \\ 2 \\ 5 \\ -1 \end{pmatrix}, \qquad \boldsymbol{\Sigma} = \begin{pmatrix} 8 & 0 & -1 & 0 \\ 0 & 3 & 0 & 2 \\ -1 & 0 & 5 & 0 \\ 0 & 2 & 0 & 7 \end{pmatrix}.$$

Which of the following random variables are independent?

- (a)  $y_1$  and  $y_2$
- (f)  $y_3$  and  $y_4$
- (k)  $y_1$  and  $y_2$  and  $y_3$

- **(b)**  $y_1$  and  $y_3$
- (g)  $(y_1, y_2)$  and  $y_3$
- (I)  $y_1$  and  $y_2$  and  $y_4$

- (c)  $y_1$  and  $y_4$
- (**m**)  $(y_2, y_2)$  and  $(y_3, y_4)$

- (**d**)  $y_2$  and  $y_3$
- (h) (y<sub>1</sub>, y<sub>2</sub>) and y<sub>4</sub>(i) (y<sub>1</sub>, y<sub>3</sub>) and y<sub>4</sub>
- (n)  $(y_1, y_3)$  and  $(y_2, y_4)$

- (e)  $y_2$  and  $y_4$
- (i)  $y_1$  and  $(y_2, y_4)$

**4.16** Assume y and x are subvectors, each  $2 \times 1$ , where  $\binom{y}{x}$  is  $N_4(\mu, \Sigma)$  with

$$\boldsymbol{\mu} = \begin{pmatrix} 2 \\ -1 \\ \hline 3 \\ 1 \end{pmatrix}, \qquad \boldsymbol{\Sigma} = \begin{pmatrix} 7 & 3 & -3 & 2 \\ 3 & 6 & 0 & 4 \\ \hline -3 & 0 & 5 & -2 \\ 2 & 4 & -2 & 4 \end{pmatrix}.$$

- (a) Find E(y|x) by (4.7).
- **(b)** Find cov(y|x) by (4.8).
- **4.17** Suppose y and x are subvectors, such that y is  $2 \times 1$  and x is  $3 \times 1$ , with  $\mu$  and  $\Sigma$  partitioned accordingly:

$$\boldsymbol{\mu} = \begin{pmatrix} 3 \\ -2 \\ \hline 4 \\ -3 \\ 5 \end{pmatrix}, \qquad \boldsymbol{\Sigma} = \begin{pmatrix} 14 & -8 & 15 & 0 & 3 \\ -8 & 18 & 8 & 6 & -2 \\ \hline 15 & 8 & 50 & 8 & 5 \\ 0 & 6 & 8 & 4 & 0 \\ 3 & -2 & 5 & 0 & 1 \end{pmatrix}.$$

Assume that  $\binom{y}{x}$  is distributed as  $N_5(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ .

- (a) Find E(y|x) by (4.7).
- **(b)** Find cov(y|x) by (4.8).
- **4.18** Suppose that  $y_1, y_2, \ldots, y_n$  is a random sample from a nonnormal multivariate population with mean  $\mu$  and covariance matrix  $\Sigma$ . If n is large, what is the approximate distribution of each of the following?
  - (a)  $\sqrt{n}(\overline{y} \mu)$
  - (b)  $\overline{y}$
- **4.19** For the ramus bone data treated in Example 4.5.2, check each of the four variables for univariate normality using the following techniques:
  - (a) Q-Q plots;
  - **(b)**  $\sqrt{b_1}$  and  $b_2$  as given by (4.18) and (4.19);
  - (c) D'Agostino's test using D and Y given in (4.22) and (4.23);
  - (d) The test by Lin and Mudholkar using z defined in (4.24).
- **4.20** For the calcium data in Table 3.3, check for multivariate normality and outliers using the following tests:
  - (a) Calculate  $D_i^2$  as in (4.27) for each observation.
  - (b) Compare the largest value of  $D_i^2$  with the critical value in Table A.6.
  - (c) Compute  $u_i$  and  $v_i$  in (4.28) and (4.29) and plot them. Is there an indication of nonlinearity or outliers?
  - (d) Calculate  $b_{1,p}$  and  $b_{2,p}$  in (4.36) and (4.37) and compare them with critical values in Table A.5.

PROBLEMS 109

**4.21** For the probe word data in Table 3.5, check each of the five variables for univariate normality and outliers using the following tests:

- (a) Q-Q plots;
- **(b)**  $\sqrt{b_1}$  and  $b_2$  as given by (4.18) and (4.19);
- (c) D'Agostino's test using D and Y given in (4.22) and (4.23);
- (d) The test by Lin and Mudholkar using z defined in (4.24).
- **4.22** For the probe word data in Table 3.5, check for multivariate normality and outliers using the following tests:
  - (a) Calculate  $D_i^2$  as in (4.27) for each observation.
  - (b) Compare the largest value of  $D_i^2$  with the critical value in Table A.6.
  - (c) Compute  $u_i$  and  $v_i$  in (4.28) and (4.29) and plot them. Is there an indication of nonlinearity or outliers?
  - (d) Calculate  $b_{1,p}$  and  $b_{2,p}$  in (4.36) and (4.37) and compare them with critical values in Table A.5.
- **4.23** Six hematology variables were measured on 51 workers (Royston 1983):

```
y_1 = hemoglobin concentration y_4 = lymphocyte count y_2 = packed cell volume y_5 = neutrophil count
```

 $y_3$  = white blood cell count  $y_6$  = serum lead concentration

The data are given in Table 4.3. Check each of the six variables for univariate normality using the following tests:

- (a) Q-Q plots;
- **(b)**  $\sqrt{b_1}$  and  $b_2$  as given by (4.18) and (4.19);
- (c) D'Agostino's test using D and Y given in (4.22) and (4.23);
- (d) The test by Lin and Mudholkar using z defined in (4.24).

Table 4.3. Hematology Data

| Observation |       |       |                       |       |                       |                       |
|-------------|-------|-------|-----------------------|-------|-----------------------|-----------------------|
| Number      | $y_1$ | $y_2$ | <i>y</i> <sub>3</sub> | $y_4$ | <i>y</i> <sub>5</sub> | <i>y</i> <sub>6</sub> |
| 1           | 13.4  | 39    | 4100                  | 14    | 25                    | 17                    |
| 2           | 14.6  | 46    | 5000                  | 15    | 30                    | 20                    |
| 3           | 13.5  | 42    | 4500                  | 19    | 21                    | 18                    |
| 4           | 15.0  | 46    | 4600                  | 23    | 16                    | 18                    |
| 5           | 14.6  | 44    | 5100                  | 17    | 31                    | 19                    |
| 6           | 14.0  | 44    | 4900                  | 20    | 24                    | 19                    |
| 7           | 16.4  | 49    | 4300                  | 21    | 17                    | 18                    |
| 8           | 14.8  | 44    | 4400                  | 16    | 26                    | 29                    |
| 9           | 15.2  | 46    | 4100                  | 27    | 13                    | 27                    |
| 10          | 15.5  | 48    | 8400                  | 34    | 42                    | 36                    |

(continued)

Table 4.3. (Continued)

| Observation |                       |       |      |                       |    |    |
|-------------|-----------------------|-------|------|-----------------------|----|----|
| Number      | <i>y</i> <sub>1</sub> | $y_2$ | У3   | <i>y</i> <sub>4</sub> | У5 | У6 |
| 11          | 15.2                  | 47    | 5600 | 26                    | 27 | 22 |
| 12          | 16.9                  | 50    | 5100 | 28                    | 17 | 23 |
| 13          | 14.8                  | 44    | 4700 | 24                    | 20 | 23 |
| 14          | 16.2                  | 45    | 5600 | 26                    | 25 | 19 |
| 15          | 14.7                  | 43    | 4000 | 23                    | 13 | 17 |
| 16          | 14.7                  | 42    | 3400 | 9                     | 22 | 13 |
| 17          | 16.5                  | 45    | 5400 | 18                    | 32 | 17 |
| 18          | 15.4                  | 45    | 6900 | 28                    | 36 | 24 |
| 19          | 15.1                  | 45    | 4600 | 17                    | 29 | 17 |
| 20          | 14.2                  | 46    | 4200 | 14                    | 25 | 28 |
| 21          | 15.9                  | 46    | 5200 | 8                     | 34 | 16 |
| 22          | 16.0                  | 47    | 4700 | 25                    | 14 | 18 |
| 23          | 17.4                  | 50    | 8600 | 37                    | 39 | 17 |
| 24          | 14.3                  | 43    | 5500 | 20                    | 31 | 19 |
| 25          | 14.8                  | 44    | 4200 | 15                    | 24 | 29 |
| 26          | 14.9                  | 43    | 4300 | 9                     | 32 | 17 |
| 27          | 15.5                  | 45    | 5200 | 16                    | 30 | 20 |
| 28          | 14.5                  | 43    | 3900 | 18                    | 18 | 25 |
| 29          | 14.4                  | 45    | 6000 | 17                    | 37 | 23 |
| 30          | 14.6                  | 44    | 4700 | 23                    | 21 | 27 |
| 31          | 15.3                  | 45    | 7900 | 43                    | 23 | 23 |
| 32          | 14.9                  | 45    | 3400 | 17                    | 15 | 24 |
| 33          | 15.8                  | 47    | 6000 | 23                    | 32 | 21 |
| 34          | 14.4                  | 44    | 7700 | 31                    | 39 | 23 |
| 35          | 14.7                  | 46    | 3700 | 11                    | 23 | 23 |
| 36          | 14.8                  | 43    | 5200 | 25                    | 19 | 22 |
| 37          | 15.4                  | 45    | 6000 | 30                    | 25 | 18 |
| 38          | 16.2                  | 50    | 8100 | 32                    | 38 | 18 |
| 39          | 15.0                  | 45    | 4900 | 17                    | 26 | 24 |
| 40          | 15.1                  | 47    | 6000 | 22                    | 33 | 16 |
| 41          | 16.0                  | 46    | 4600 | 20                    | 22 | 22 |
| 42          | 15.3                  | 48    | 5500 | 20                    | 23 | 23 |
| 43          | 14.5                  | 41    | 6200 | 20                    | 36 | 21 |
| 44          | 14.2                  | 41    | 4900 | 26                    | 20 | 20 |
| 45          | 15.0                  | 45    | 7200 | 40                    | 25 | 25 |
| 46          | 14.2                  | 46    | 5800 | 22                    | 31 | 22 |
| 47          | 14.9                  | 45    | 8400 | 61                    | 17 | 17 |
| 48          | 16.2                  | 48    | 3100 | 12                    | 15 | 18 |
| 49          | 14.5                  | 45    | 4000 | 20                    | 18 | 20 |
| 50          | 16.4                  | 49    | 6900 | 35                    | 22 | 24 |
| 51          | 14.7                  | 44    | 7800 | 38                    | 34 | 16 |

PROBLEMS 111

**4.24** For the hematology data in Table 4.3, check for multivariate normality using the following techniques:

- (a) Calculate  $D_i^2$  as in (4.27) for each observation.
- (**b**) Compare the largest value of  $D_i^2$  with the critical value in Table A.6 (extrapolate).
- (c) Compute  $u_i$  and  $v_i$  in (4.28) and (4.29) and plot them. Is there an indication of nonlinearity or outliers?
- (d) Calculate  $b_{1,p}$  and  $b_{2,p}$  in (4.36) and (4.37) and compare them with critical values in Table A.5.