Curriculum Vitae

Yu Xiang

Pronouns: he Bellevue, WA 98004 yux1991@gmail.com (518) 833-4710

Education

August 2014—

Degree: Doctor of Philosophy in Physics

December 2019 Where:

Rensselaer Polytechnic Institute, Troy, NY

GPA: 3.88 of 4.00

Thesis: Electron diffraction from two dimensional materials

Advisor: Gwo-Ching Wang

September 2010—

Degree: Where:

Bachelor of Science in Physics

June 2014

Wuhan University, Wuhan, Hubei, China

GPA: 3.43 of 4.00

Employment

May 2021— Present

Position: Data Scientist Employer: Amazon Where: Bellevue, WA

Responsibilities:

- Communicated with the customers to understand the business scope, establish project timeline and reach agreement on the final deliveries.
- Built the forecasting models based on machine learning algorithms and deep learning neural networks, and then tuned the parameters to achieve the optimal performance.

January 2020— February 2021 **Position:** Seismic Imager

Employer: CGG

Where: Houston, TX

Responsibilities:

- Provided optimal quality control for the input seismic raw data by analyzing the statistics from billions of seismic records using SQL and mapping out key metrics using Hadoop/Spark big-data tools.
- Processed petabytes of seismic data by detecting anomalies using sparse transformation, removing seismic echoes using adaptive subtraction, and imputing missing features with compressed sensing techniques.

Research

July 2018— December 2019 **Project:** VS_2 Growth and Magnetic Properties **Where:** Rensselaer Polytechnic Institute, Troy, NY

Advisor: Gwo-Ching Wang

Contributions:

- Set up the homemade two-zone low pressure chemical vapor deposition (LPCVD) system to synthesize high quality VS_2 nanoflakes for spintronic device applications.
- Experimentally investigated the effect of growth conditions on the morphology, crystal structure and chemical stoichiometry of the VS_2 nano-flakes with the help of theoretical modeling.
- Studied the magnetism in VS_2 using magneto-optical Kerr effect (MOKE) and magnetic force microscopy (MFM).

May 2016— December 2018 **Project:** RHEED Analysis and Simulation

Where: Rensselaer Polytechnic Institute, Troy, NY

Advisor: Gwo-Ching Wang

Contributions:

- Developed the image processing tool to apply noise reduction to and to extract features from the RHEED patterns in the fourdimensional curvelet domain.
- Invented algorithms to model the stochastic nucleation of microscopic crystal growth based on the Poisson point process and Voronoi tessellation.
- Estimated the probability distributions of the lattice constant, size, and orientation measured from the preconditioned RHEED image sets through Bayesian regression.

December 2015— December 2017 **Project:** Epitaxial SnS Thin Film Growth and Characterization

Where: Rensselaer Polytechnic Institute, Troy, NY

Advisor: Gwo-Ching Wang

Contributions:

- Systematically studied the structure, morphology, and electrical transport properties of high-quality SnS epitaxial thin films grown by physical vapor deposition (PVD).
- Characterized the vibrational modes and optical property of the SnS film using Raman, Photoluminescence (PL) and UV-Vis spectroscopy.
- Contributed insight on how to achieve better photoelectronic performance in an integrated photovoltaic device by comparing the SnS films grown on polycrystalline and single-crystal graphene substrates.

Teaching

August 2017— May 2018 Course: Physics I, Quantum Physics

Role: Teaching Assistant

Where: Rensselaer Polytechnic Institute, Troy, NY

Responsibilities:

• Held 15-minitue question & answer sessions and demonstrated lab activities during each class.

• Helped students with their homework and exams during weekly office hours.

Publications

- Xiang, Yu, Songchun Xie, Zonghuan Lu, Xixing Wen, Jian Shi, Morris Washington, Gwo-Ching Wang, and Toh-Ming Lu. "Domain boundaries in incommensurate epitaxial layers on weakly interacting substrates". In: *Journal of Applied Physics* 130.6 (2021), page 065301. DOI: 10.1063/5.0057417
- Xiang, Yu, Xin Sun, Lukas Valdman, Fu Zhang, Tanushree H. Choudhury, Mikhail Chubarov, Joshua A. Robinson, Joan M. Redwing, Mauricio Terrones, Yuan Ma, Lei Gao, Morris A. Washington, Toh-Ming Lu, and Gwo-Ching Wang. "Monolayer MoS_2 on sapphire: an azimuthal reflection high-energy electron diffraction perspective". In: 2D Materials 8.2 (2020), page 025003. DOI: 10.1088/2053-1583/abce08
- Xiang, Yu, Yunbo Yang, Fawen Guo, Xin Sun, Zonghuan Lu, Dibyajyoti Mohanty, Ishwara Bhat, Morris Washington, Toh-Ming Lu, and Gwo-Ching Wang. "van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO₂/Si". In: Applied Surface Science 435.Supplement C (2018), pages 759–768. DOI: 10.1016/j.apsusc.2017.11.098
- Xiang, Y., F.-W. Guo, T.-M. Lu, and G.-C. Wang. "Reflection high-energy electron diffraction measurements of reciprocal space structure of 2D materials". In: *Nanotechnology* 27.48 (2016), page 485703. DOI: 10.1088/0957-4484/27/48/485703
- Jie Jiang, Zhizhong Chen, Yang Hu, **Xiang, Yu**, Lifu Zhang, Yiping Wang, Gwo-Ching Wang, and Jian Shi. "Flexo-photovoltaic effect in MoS_2 ". In: Nature Nanotechnology (2021). DOI: 10.1038/s41565-021-00919-y
- Xixing Wen, Zonghuan Lu, Xin Sun, **Xiang, Yu**, Zhizhong Chen, Jian Shi, Ishwara Bhat, Gwo-Ching Wang, Morris Washington, and Toh-Ming Lu. "Epitaxial CdTe Thin Films on Mica by Vapor Transport Deposition for Flexible Solar Cells". In: *ACS Applied Energy Materials* 3.5 (2020), pages 4589–4599. DOI: 10.1021/acsaem. 0c00265
- Zonghuan Lu, Xin Sun, **Xiang, Yu**, Gwo-Ching Wang, Morris A. Washington, and Toh-Ming Lu. "Large scale epitaxial graphite grown on twin free nickel(111)/spinel substrate". In: *CrystEngComm* 22.1 (2020), pages 119–129. DOI: 10.1039/C9CE01515A
- Lu Li, Zhaodong Li, Anthony Yoshimura, Congli Sun, Tianmeng Wang, Yanwen Chen, Zhizhong Chen, Aaron Littlejohn, **Xiang, Yu**, Prateek Hundekar, Stephen F. Bartolucci, Jian Shi, Su-Fei Shi, Vincent Meunier, Gwo-Ching Wang, and Nikhil Koratkar.

- "Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries". In: Nature Communications 10.1 (2019), page 1764. DOI: 10.1038/s41467-019-09400-w
- Yaobiao Xia, Timothy Yoo, **Xiang, Yu**, Yanli Zhang, Jiyoon Jessica Kim, Tung-Sheng Kuan, and Gwo-Ching Wang. "Uniaxial magnetic anisotropy in three-bilayer Co/Cu and Co/Al superlattices". In: *Thin Solid Films* 681 (2019), pages 32–40. DOI: 10.1016/j.tsf.2019.04.048
- Dibyajyoti Mohanty, Zonghuan Lu, Xin Sun, **Xiang, Yu**, Lei Gao, Jian Shi, Lihua Zhang, Kim Kisslinger, Morris A. Washington, Gwo-Ching Wang, Toh-Ming Lu, and Ishwara B. Bhat. "Growth of epitaxial CdTe thin films on amorphous substrates using single crystal graphene buffer". In: *Carbon* 144 (2019), pages 519–524. DOI: 10.1016/j.carbon.2018.12.094
- Dibyajyoti Mohanty, Zonghuan Lu, Xin Sun, Xiang, Yu, Yiping Wang, Debjit Ghoshal, Jian Shi, Lei Gao, Sufei Shi, Morris Washington, Gwo-Ching Wang, Toh-Ming Lu, and Ishwara Bhat. "Metalorganic vapor phase epitaxy of large size CdTe grains on mica through chemical and van der Waals interactions". In: *Physical Review Materials* 2.11 (2018), page 113402. DOI: 10.1103/PhysRevMaterials.2.113402
- Zhizhong Chen, Yiping Wang, Xin Sun, Xiang, Yu, Yang Hu, Jie Jiang, Jing Feng, Yi-Yang Sun, Xi Wang, Gwo-Ching Wang, Toh-Ming Lu, Hanwei Gao, Esther A. Wertz, and Jian Shi. "Remote Phononic Effects in Epitaxial Ruddlesden-Popper Halide Perovskites". In: The Journal of Physical Chemistry Letters (2018), pages 6676-6682.
 DOI: 10.1021/acs.jpclett.8b02763
- Yiping Wang, Lei Gao, Yunbo Yang, **Xiang, Yu**, Zhizhong Chen, Yongqi Dong, Hua Zhou, Zhonghou Cai, Gwo-Ching Wang, and Jian Shi. "Nontrivial strength of van der Waals epitaxial interaction in soft perovskites". In: *Physical Review Materials* 2.7 (2018), page 076002. DOI: 10.1103/PhysRevMaterials.2.076002
- Xin Sun, Zonghuan Lu, **Xiang, Yu**, Yiping Wang, Jian Shi, Gwo-Ching Wang, Morris A. Washington, and Toh-Ming Lu. "van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene". In: *ACS Nano* 12.6 (2018), pages 6100–6108. DOI: 10.1021/acsnano.8b02374
- Xiaotian Zhang, Tanushree H. Choudhury, Mikhail Chubarov, Xiang, Yu, Bhakti Jariwala, Fu Zhang, Nasim Alem, Gwo-Ching Wang, Joshua A. Robinson, and Joan M. Redwing. "Diffusion-Controlled Epitaxy of Large Area Coalesced WSe₂ Monolayers on Sapphire". In: Nano Letters 18.2 (2018), pages 1049–1056. DOI: 10.1021/acs.nanolett.7b04521
- A. J. Littlejohn, Xiang, Y., E. Rauch, T.-M. Lu, and G.-C. Wang. "van der Waals epitaxy of Ge films on mica". In: *Journal of Applied Physics* 122.18 (2017), page 185305. DOI: 10.1063/1.5000502
- Zonghuan Lu, Xin Sun, **Xiang, Yu**, Morris A. Washington, Gwo-Ching Wang, and Toh-Ming Lu. "Revealing the Crystalline Integrity of Wafer-Scale Graphene on SiO_2/Si : An Azimuthal RHEED Approach". In: ACS Applied Materials & Interfaces 9.27 (2017), pages 23081–23091. DOI: 10.1021/acsami.7b01370
- Aijun Yang, Jian Gao, Baichang Li, Jiawei Tan, **Yu Xiang**, Tushar Gupta, Lu Li, Shravan Suresh, Juan Carlos Idrobo, Toh-Ming Lu, Mingzhe Rong, and Nikhil Koratkar. "Humidity sensing using vertically oriented arrays of ReS_2 nanosheets de-

posited on an interdigitated gold electrode". In: 2D Materials 3.4 (2016), page 045012. DOI: 10.1088/2053-1583/3/4/045012

- Y. B. Yang, J. K. Dash, **Xiang, Y.**, Y. Wang, J. Shi, P. H. Dinolfo, T.-M. Lu, and G.-C. Wang. "Tuning the Phase and Optical Properties of Ultrathin SnS_x Films". In: *The Journal of Physical Chemistry C* 120.24 (2016), pages 13199–13214. DOI: 10.1021/acs.jpcc.6b03529
- Y-B Yang, Jatis Kumar Dash, AJ Littlejohn, Xiang, Yu, Yiping Wang, Jian Shi, LH Zhang, Kim Kisslinger, T-M Lu, and G-C Wang. "Large Single Crystal SnS_2 Flakes Synthesized from Coevaporation of Sn and S". in: Crystal Growth & Design 16.2 (2016), pages 961–973. DOI: 10.1021/acs.cgd.5b01512

Conferences

- Oral presentation at CMDIS Fall Symposium, Troy, NY (December 2018)
- Oral presentation at 2018 NanoScientific Symposium, Albany, NY (September 2018)
- Poster presentation at Fall Meeting of MRS, Boston, MA (November 2017)
- Poster presentation at Spring Meeting of Hudson Mohawk AVS Chapter, Troy, NY (May 2017)
- Poster presentation at Fall Meeting of the APS New York State Section, Troy, NY (November 2016)
- Poster presentation at 38th Symposium on Applied Surface Science, Albany, NY (August 2016)

Skills

- Programming
 Python, SQL, MATLAB, Fortran, C/C++, C#, Perl
- Packages
 Scikit-learn, TensorFlow, Pandas, XGBoost, Qt, CUDA, NumPy, SciPy, Matplotlib
- Tools
 Git, Docker, AWS, Hadoop/Spark, UNIX utilities
- Modeling

Machine Learning (SVM, Regression, Decision Trees, Clustering), Time Series (ARIMA, HMM, LSTM), Deep Learning (CNN, GCN, RNN, Transformer), Natural Language Processing (word2vec, BERT)

Awards

- The Karen & Lester Gerhardt Prize in Science and Engineering at Rensselaer Polytechnic Institute (May 2020)
- Paul S. Ho '65 Prize in Physics at Rensselaer Polytechnic Institute (May 2019)
- Hillard B. Huntington Award (1976) at Rensselaer Polytechnic Institute (May 2017)
- Presidential Graduate Research Fellowship Award at Rensselaer Polytechnic Institute (October 2015)