CS246 Homework 3 Answers

Charlie Zhang

Feb 2013

- 1 Question 1 Latent Features for Recommendations
- 1.1 (a)

$$\epsilon_{iu} = r_{iu} - q_i * p_u^T$$

$$q_i \leftarrow q_i + \eta(\epsilon_{iu}p_u - \lambda q_i)$$

$$p_u \leftarrow p_u + \eta(\epsilon_{iu}q_i - \lambda p_u)$$

Where η is the learning rate.

1.2 (b)

Figure 1: Error in first 40 iterations with $\eta=0.002$:

1.3 (c)

Figure 2: E_{te} as of K with $\lambda = 0.0$:

Figure 3: E_{tr} as of K with $\lambda = 0.0$:

Figure 4: E_{te} as of K with $\lambda = 0.2$:

Figure 5: E_{tr} as of K with $\lambda = 0.2$:

True statements are: \mathbf{B} , \mathbf{D} , \mathbf{H}

1.4 (d)

Update model as:

$$R_{iu} = \mu + b_u + b_i + q_i \cdot p_u^T$$

And plot the following:

Figure 6: E_{te} as of K with $\lambda = 0.0$:

Figure 7: E_{tr} as of K with $\lambda = 0.0$:

Figure 8: E_{te} as of K with $\lambda=0.2$:

Figure 9: E_{tr} as of K with $\lambda = 0.2$:

2 Question 2 – PageRank Computation

2.1 (a)

$$\begin{split} r - r^{(k)} &= \beta M r - \beta M r^{(k-1)} \\ &= \beta M (r - r^{(k-1)}) \\ &= \beta^2 M^2 (r - r^{(k-2)}) \\ &= \dots \\ &= \beta^k M^k (r - r^{(0)}) \\ M \text{ is stochastic, } \|M^k r\|_1 <= 1, \|M^k r^{(0)}\|_1 <= 1 \\ \text{So } \|r - r^{(k)}\|_1 <= \|\beta^k M^k r\|_1 + \|\beta^k M^k r^{(0)}\|_1 <= 2\beta^k \end{split}$$

$2.2 \quad (b)$

Let I be the number of iterations.

$$\|r-r^{(I)}\|_1 <= 2\beta^I <= \delta$$

 $I>=\log_{\beta}(\delta/2)=\frac{\log(2/\delta)}{\log(1/\beta)}$ We need iterate through every edge one time for each iteration. So total running time is:

$$Im = m \frac{\log(2/\delta)}{\log(1/\beta)} = O(\frac{m}{\log(1/\beta)})$$

2.3 (c)

Let c_j be the total number of visits at node j, Then $r_j = c_j \frac{1-\beta}{nR}$

Based on the algorithm, we have: $E[c_j] = \sum_{i->j} \beta \frac{E[c_i]}{deg(i)} + R$

So,
$$E[\tilde{r_j}] = E[c_j] \frac{1-\beta}{nR} = \sum_{i->j} \beta \frac{E[c_i] \frac{1-\beta}{nR}}{deg(i)} + \frac{1-\beta}{n}$$

$$= \sum_{i->j} \beta \frac{E[c_i \frac{1-\beta}{nR}]}{deg(i)} + \frac{1-\beta}{n}$$

$$= \sum_{i->j} \beta \frac{E[\tilde{r_i}]}{\deg(i)} + \frac{1-\beta}{n}$$

Which can be re-written as: $E[\tilde{r_j}] = \frac{1-\beta}{n} \mathbf{1}^T + \beta M E[\tilde{r_j}]$

We also have: $r_j = \frac{1-\beta}{n} \mathbf{1}^T + \beta M r_j$

So
$$E[\tilde{r_j}] = r_j$$

2.4 (d)

Expected run time of one random walker $E[w] = \sum_{i=1}^{\infty} i(1-\beta)\beta^{i-1} = \frac{1}{1-\beta}$ Expected running time of MC algorithm is: $E[w] \cdot nR = \frac{nR}{1-\beta}$