

Cause of Death

Submitted By :- Shruti Gamne

A STRAIGHTFORWARD WAY TO ASSESS THE HEALTH STATUS OF A POPULATION IS TO FOCUS ON MORTALITY – OR CONCEPTS LIKE CHILD MORTALITY OR LIFE EXPECTANCY, WHICH ARE BASED ON MORTALITY ESTIMATES. A FOCUS ON MORTALITY, HOWEVER, DOES NOT TAKE INTO ACCOUNT THAT THE BURDEN OF DISEASES IS NOT ONLY THAT THEY KILL PEOPLE, BUT THAT THEY CAUSE SUFFERING TO PEOPLE WHO LIVE WITH THEM. ASSESSING HEALTH OUTCOMES BY BOTH MORTALITY AND MORBIDITY (THE PREVALENT DISEASES) PROVIDES A MORE ENCOMPASSING VIEW ON HEALTH OUTCOMES. THIS IS THE TOPIC OF THIS ENTRY. THE SUM OF MORTALITY AND MORBIDITY IS REFERRED TO AS THE 'BURDEN OF DISEASE' AND CAN BE MEASURED BY A METRIC CALLED 'DISABILITY ADJUSTED LIFE YEARS' (DALYS). DALYS ARE MEASURING LOST HEALTH AND ARE A STANDARDIZED METRIC THAT ALLOW FOR DIRECT COMPARISONS OF DISEASE BURDENS OF DIFFERENT DISEASES ACROSS COUNTRIES, BETWEEN DIFFERENT POPULATIONS, AND OVER TIME. CONCEPTUALLY, ONE DALY IS THE EQUIVALENT OF LOSING ONE YEAR IN GOOD HEALTH BECAUSE OF EITHER PREMATURE DEATH OR DISEASE OR DISABILITY. ONE DALY REPRESENTS ONE LOST YEAR OF HEALTHY LIFE. THE FIRST 'GLOBAL BURDEN OF DISEASE' (GBD) WAS GBD 1990 AND THE DALY METRIC WAS PROMINENTLY FEATURED IN THE WORLD BANK'S 1993 WORLD DEVELOPMENT REPORT. TODAY IT IS PUBLISHED BY BOTH THE RESEARCHERS AT THE INSTITUTE OF HEALTH METRICS AND EVALUATION (IHME) AND THE 'DISEASE BURDEN UNIT' AT THE WORLD HEALTH ORGANIZATION (WHO), WHICH WAS CREATED IN 1998. THE IHME CONTINUES THE WORK THAT WAS STARTED IN THE EARLY 1990S AND PUBLISHES THE GLOBAL BURDEN OF DISEASE STUDY.

Content:-

In this Dataset, we have Historical Data of different cause of deaths for all ages around the World. The key features of this Dataset are: Meningitis, Alzheimer's Disease and Other Dementias, Parkinson's Disease, Nutritional Deficiencies, Malaria, Drowning, Interpersonal Violence, Maternal Disorders, HIV/AIDS, Drug Use Disorders, Tuberculosis, Cardiovascular Diseases, Lower Respiratory Infections, Neonatal Disorders, Alcohol Use Disorders, Self-harm, Exposure to Forces of Nature, Diarrheal Diseases, Environmental Heat and Cold Exposure, Neoplasms, Conflict and Terrorism, Diabetes Mellitus, Chronic Kidney Disease, Poisonings, Protein-Energy Malnutrition, Road Injuries, Chronic Respiratory Diseases, Cirrhosis and Other Chronic Liver Diseases, Digestive Diseases, Fire, Heat, and Hot Substances, Acute Hepatitis.

IMPORTING SOME OF THE IMPORTANT LIBARARIES:-

```
In [44]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns

import plotly.express as px
   import plotly.offline as pyo
   import plotly.graph_objects as go
   from plotly.subplots import make_subplots

import warnings
   warnings.filterwarnings('ignore')
```

IMPORTING THE DATASET WITH DISPLAY MAX COLUMNS AS THERE ARE 34 COLUMNS IN THE DATASET:-

In [3]: df=pd.read_csv("cause_of_deaths dataset.csv")
df

Out[3]:

	Country/Territory	Code	Year	Meningitis	Alzheimer's Disease and Other Dementias	Parkinson's Disease	Nutritional Deficiencies	Malaria	Drowning	Interpersonal Violence		Diabetes Mellitus	Chronic Kidney Disease	Poisonings	ľ
0	Afghanistan	AFG	1990	2159	1116	371	2087	93	1370	1538		2108	3709	338	
1	Afghanistan	AFG	1991	2218	1136	374	2153	189	1391	2001		2120	3724	351	
2	Afghanistan	AFG	1992	2475	1162	378	2441	239	1514	2299		2153	3776	386	
3	Afghanistan	AFG	1993	2812	1187	384	2837	108	1687	2589		2195	3862	425	
4	Afghanistan	AFG	1994	3027	1211	391	3081	211	1809	2849		2231	3932	451	
	***	1444						***		***					
6115	Zimbabwe	ZWE	2015	1439	754	215	3019	2518	770	1302	***	3176	2108	381	
6116	Zimbabwe	ZWE	2016	1457	767	219	3056	2050	801	1342		3259	2160	393	
6117	Zimbabwe	ZWE	2017	1460	781	223	2990	2116	818	1363		3313	2196	398	
6118	Zimbabwe	ZWE	2018	1450	795	227	2918	2088	825	1396		3381	2240	400	
6119	Zimbabwe	ZWE	2019	1450	812	232	2884	2068	827	1434		3460	2292	405	
6120 r	ows × 34 columns	3													

DOING SOME SHUFFLING OF THE DATASET TO SEE ANY ABNORMAL VALUES PRESENT IN THE DATASET :-

d-				

	Country/Territory	Code	Year	Meningitis	Alzheimer's Disease and Other Dementias	Parkinson's Disease	Nutritional Deficiencies	Malaria	Drowning	Interpersonal Violence	Maternal Disorders	HIV/AIDS	Drug Use Disorders	Tuber
6115	Zimbabwe	ZWE	2015	1439	754	215	3019	2518	770	1302	1355	29162	104	
6116	Zimbabwe	ZWE	2016	1457	767	219	3056	2050	801	1342	1338	27141	110	
6117	Zimbabwe	ZWE	2017	1460	781	223	2990	2116	818	1363	1312	24846	115	
6118	Zimbabwe	ZWE	2018	1450	795	227	2918	2088	825	1396	1294	22106	121	
6119	Zimbabwe	ZWE	2019	1450	812	232	2884	2068	827	1434	1294	20722	127	
														-

	Country/Territory	Code	Year	Meningitis	Alzheimer's Disease and Other Dementias	Parkinson's Disease	Nutritional Deficiencies	Malaria	Drowning	Interpersonal Violence	Maternal Disorders	HIV/AIDS	Drug Use Disorders	Tuber
1275	Costa Rica	CRI	2005	43	660	120	17	0	137	299	26	150	12	
2396	Hungary	HUN	2016	53	4538	891	34	0	137	143	11	32	51	
1573	Dominican Republic	DOM	2003	299	1148	231	441	16	252	1242	196	3686	15	
3784	New Zealand	NZL	1994	28	919	188	11	0	67	70	7	54	32	
4482	Russia	RUS	2002	2380	27337	7642	635	0	18248	56916	533	9450	9596	
4														-

CHECKING OUT THE DATA TYPES OF THE COLUMNS IN THE DATASET :-

```
: # Now lets identify which types of data types do they all belongs
  df.dtypes
Country/Territory
                                                object
  Code
                                                object
                                                 int64
  Year
  Meningitis
                                                 int64
  Alzheimer's Disease and Other Dementias
                                                 int64
  Parkinson's Disease
                                                 int64
  Nutritional Deficiencies
                                                 int64
                                                 int64
  Malaria
  Drowning
                                                 int64
  Interpersonal Violence
                                                int64
  Maternal Disorders
                                                 int64
                                                 int64
  HIV/AIDS
  Drug Use Disorders
                                                 int64
  Tuberculosis
                                                 int64
  Cardiovascular Diseases
                                                 int64
  Lower Respiratory Infections
                                                 int64
  Neonatal Disorders
                                                 int64
  Alcohol Use Disorders
                                                int64
                                                 int64
  Self-harm
  Exposure to Forces of Nature
                                                 int64
  Diarrheal Diseases
                                                 int64
  Environmental Heat and Cold Exposure
                                                 int64
  Neoplasms
                                                 int64
  Conflict and Terrorism
                                                 int64
  Diabetes Mellitus
                                                 int64
  Chronic Kidney Disease
                                                 int64
                                                 int64
  Poisonings
  Protein-Energy Malnutrition
                                               int64
  Road Injuries
                                               int64
  Chronic Respiratory Diseases
                                                int64
  Cirrhosis and Other Chronic Liver Diseases
                                                 int64
```

Dataset contains both categorical columns and numerical columns.. There are only 2 numerical columns in whole dataset

int64

int64 int64

Digestive Diseases

Acute Hepatitis dtype: object

Fire, Heat, and Hot Substances

HERE WE CAN SEE THAT THERE ARE 2 OBJECT COLUMNS AND REST ALL THE OTHER COLUMNS ARE NUMERICAL COLUMNS.

LETS CHECK THE INFO OF THE DATASET AND HERE WE GET TO KNOW ABOUT THE DATA TYPE AND COUNTS OF THE COLUMN:-

: df.info()

memory usage: 1.6+ MB

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6120 entries, 0 to 6119
Data columns (total 34 columns):
#
    Column
                                                Non-Null Count Dtype
0 Country/Territory
                                                6120 non-null
                                                               object
1
    Code
                                                6120 non-null
                                                                object
     Year
                                                6120 non-null
                                                                int64
    Meningitis
                                                6120 non-null
                                                                int64
 3
   Alzheimer's Disease and Other Dementias
                                                6120 non-null
                                                                int64
    Parkinson's Disease
                                                6120 non-null
                                                                int64
    Nutritional Deficiencies
                                                6120 non-null
                                                                int64
    Malaria
                                               6120 non-null
                                                                int64
                                                6120 non-null
    Drowning
                                                                int64
 8
    Interpersonal Violence
                                                6120 non-null
                                                                int64
 10 Maternal Disorders
                                                6120 non-null
                                                                int64
 11 HIV/AIDS
                                               6120 non-null
                                                                int64
 12 Drug Use Disorders
                                               6120 non-null
                                                                int64
 13 Tuberculosis
                                               6120 non-null
                                                                int64
 14 Cardiovascular Diseases
                                                6120 non-null
 15 Lower Respiratory Infections
                                             6120 non-null
    Neonatal Disorders
                                               6120 non-null
    Alcohol Use Disorders
                                               6120 non-null
                                                                int64
 18 Self-harm
                                                6120 non-null
 19 Exposure to Forces of Nature
                                               6120 non-null
 20 Diarrheal Diseases
                                                6120 non-null
 21 Environmental Heat and Cold Exposure
                                               6120 non-null
 22 Neoplasms
                                                6120 non-null
                                                                int64
 23 Conflict and Terrorism
                                                6120 non-null
                                                                int64
 24 Diabetes Mellitus
                                                6120 non-null
                                                                int64
 25 Chronic Kidney Disease
                                                6120 non-null
 26 Poisonings
                                               6120 non-null
                                                                int64
 27 Protein-Energy Malnutrition
                                               6120 non-null
                                                                int64
 28 Road Injuries
                                                6120 non-null
                                                                int64
29 Chronic Respiratory Diseases 6120 non-null 30 Cirrhosis and Other Chronic Liver Diseases 6120 non-null
                                                6120 non-null
                                                                int64
                                                                int64
 31 Digestive Diseases
                                               6120 non-null
                                                                int64
32 Fire, Heat, and Hot Substances
                                                6120 non-null
                                                                int64
33 Acute Hepatitis
                                                6120 non-null
                                                                int64
dtypes: int64(32), object(2)
```

This tell us about columns name null value dtypes of columns and memory usage.. count of every column are equal which means there are no nan present in dataset..it tell dtype of every column and tere are two data type in dataset int64, object where 32 columns are int64 where as 2 column are object..

LETS CHECK NULL VALUES IN THE DATASET:-

df.isnull().sum()	
Country/Territory	0
Code	0
Year	0
Meningitis	0
Alzheimer's Disease and Other Dementias	0
Parkinson's Disease	0
Nutritional Deficiencies	0
Malaria	0
Drowning	0
Interpersonal Violence	0
Maternal Disorders	0
HIV/AIDS	0
Drug Use Disorders	0
Tuberculosis	0
Cardiovascular Diseases	0
Lower Respiratory Infections	0
Neonatal Disorders	0
Alcohol Use Disorders	0
Self-harm	0
Exposure to Forces of Nature	0
Diarrheal Diseases	0
Environmental Heat and Cold Exposure	0
Neoplasms	0
Conflict and Terrorism	0
Diabetes Mellitus	0
Chronic Kidney Disease	0
Poisonings	0
Protein-Energy Malnutrition	0
Road Injuries	0
Chronic Respiratory Diseases	0
Cirrhosis and Other Chronic Liver Diseases	0
Digestive Diseases	0
Fire, Heat, and Hot Substances	0
Acute Hepatitis	0
dtype: int64	

Count of nan is 0 in every column

HERE WE CAN SEE THAT 0 NAN VALUES ARE PRESENT IN THE DATASET.

SEPRATING CATAGORICAL AND NUMERICAL COLUMNS FROM THE DATASET:-

Separating numerical and categorial columns

```
: # Checking for categorical columns
   categorical_col=[]
   for i in df.dtypes.index:
     if df.dtypes[i]=='object':
          categorical_col.append(i)
  print("Categorical columns are:\n",categorical_col)
  Categorical columns are:
    ['Country/Territory', 'Code']
```

These two columns are only categorical in dataset

```
: # Now checking for numerical columns
  numerical col=[]
  for i in df.dtypes.index:
     if df.dtypes[i]!='object':
         numerical_col.append(i)
  print("Numerical columns are:\n",numerical_col)
```

Numerical columns are:

['Year', 'Meningitis', "Alzheimer's Disease and Other Dementias", "Parkinson's Disease", 'Nutritional Deficiencies', 'Malari a', 'Drowning', 'Interpersonal Violence', 'Maternal Disorders', 'HIV/AIDS', 'Drug Use Disorders', 'Tuberculosis', 'Cardiovascul ar Diseases', 'Lower Respiratory Infections', 'Neonatal Disorders', 'Alcohol Use Disorders', 'Self-harm', 'Exposure to Forces o f Nature', 'Diarrheal Diseases', 'Environmental Heat and Cold Exposure', 'Neoplasms', 'Conflict and Terrorism', 'Diabetes Melli tus', 'Chronic Kidney Disease', 'Poisonings', 'Protein-Energy Malnutrition', 'Road Injuries', 'Chronic Respiratory Diseases', 'Cirrhosis and Other Chronic Liver Diseases', 'Digestive Diseases', 'Fire, Heat, and Hot Substances', 'Acute Hepatitis']

These are numerical column of dataset

AS TOLD ABOVE WE KNOW THAT WE **HAVE 2 CATAGORICAL COLUMNS OUT OF 34 COLUMNS AND REST ALL** 32 COLUMNS ARE NUMERICAL COLUMNS.

LETS DESCRIBE THE DATASET:-

	count	mean	std	min	25%	50%	75%	max
Year	8120.0	2004.500000	8.858149	1990.0	1997.00	2004.5	2012.00	2019.0
Meningitis	6120.0	1719.701307	6672.006930	0.0	15.00	109.0	847.25	98358.0
Alzheimer's Disease and Other Dementias	6120.0	4864.189379	18220.659072	0.0	90.00	686.5	2456.25	320715.0
Parkinson's Disease	6120.0	1173.169118	4616,156238	0.0	27.00	184.0	609.25	78990.0
Nutritional Deficiencies	6120.0	2253.600000	10483.633601	0.0	9.00	119.0	1167.25	268223.0
Malaria	6120.0	4140.980131	18427.753137	0.0	0.00	0.0	393.00	280604.0
Drowning	6120.0	1683.333170	8877.018366	0.0	34.00	177.0	698.00	153773.0
Interpersonal Violence	6120.0	2083.797222	6917.006075	0.0	40.00	265.0	877.00	69640.0
Maternal Disorders	8120.0	1262.589216	6057,973183	0.0	5.00	54.0	734.00	107929.0
HIV/AIDS	6120.0	5941.898529	21011.982487	0.0	11.00	138.0	1879.00	305491.0
Drug Use Disorders	6120.0	434.006699	2898.761628	0.0	3.00	20.0	129.00	65717.0
Tuberculosis	6120.0	7491.928595	39549.977578	0.0	35.00	417.0	2924.25	857515.0
Cardiovascular Diseases	8120.0	73160.454575	291577,537794	4.0	2028.00	11742.0	42546.50	4584273.0
Lower Respiratory Infections	6120.0	13687.914706	48031.720009	0.0	345.00	2126.5	10161.25	690913.0
Neonatal Disorders	6120.0	12558.942647	58058.386412	0.0	131.00	916.0	7419.75	852761.0
Alcohol Use Disorders	6120.0	787.421242	3545.823616	0.0	9.00	80.0	316.00	55200.0
Self-harm	6120.0	3874.825327	18425.616418	0.0	94.00	533.0	1882.25	220357.0
Exposure to Forces of Nature	6120.0	243.485821	4717.104377	0.0	0.00	0.0	12.00	222641.0
Diarrheal Diseases	6120.0	10822.795425	85416,174485	0.0	20.00	296.5	3946.75	1119477.0
Environmental Heat and Cold Exposure	6120.0	292.295915	1704.486358	0.0	2.00	21.0	109.00	29048.0
Neoplasms	6120.0	37542.244771	181558.385445	1.0	809.75	5629.5	20147.75	2716551.0
Conflict and Terrorism	6120.0	538.243954	7033.308187	0.0	0.00	0.0	23.00	503532.0
Diabetes Mellitus	6120.0	5138.704575	18773.081040	1.0	236.00	1087.0	2954.00	273089.0
Chronic Kidney Disease	6120.0	4724.132680	16470.429969	0.0	145.75	822.0	2922.50	222922.0
Poisonings	6120.0	425.013399	2022.840521	0.0	6.00	52.5	254.00	30883.0
Protein-Energy Malnutrition	8120.0	1965.994281	8255.999063	0.0	5.00	92.0	1042.50	202241.0
Road Injuries	6120.0	5930.795588	24097.784291	0.0	174.75	986.5	3435.25	329237.0
Chronic Respiratory Diseases	6120.0	17092.374837	105157.179839	1.0	289.00	1689.0	5249.75	1366039.0
Cirrhosis and Other Chronic Liver Diseases	6120.0	6124.072059	20688.118580	0.0	154.00	1210.0	3547.25	270037.0
Digestive Diseases	6120.0	10725.287157	37228.051096	0.0	284.00	2185.0	6080.00	464914.0
Fire, Heat, and Hot Substances	6120.0	588.711438	2128.595120	0.0	17.00	128.0	450.00	25876.0
Acute Hepatitis	6120.0	618.429902	4186.023497	0.0	2.00	15.0	160.00	64305.0

Here we have described the whole dataset by DESCRIBE command.

- 1. We can see the count of all the columns that is 6120 which means no Null value is present in the dataset.
- 2. We can see the mean and standard deviation of all the Numeric columns in the dataset.
- 3. We can see the Min and Max from all the columns.
- 4. We can see Quartiles over here too

VISUALIZATIONS:

df.columns

NOW LET'S DIVIDE ALL THE FACTORS OF DEATH INTO 4 CATAGORIES :-

```
"Meningitis"
                               "Alzheimer's Disease and Other Dementias",
"Parkinson's Disease",
"Digestive Diseases",
                               "Malaria",
"Tuberculosis"
                               "Diabetes Mellitus",
"HIV/AIDS",
"Acute Hepatitis",
                            "Parkinson's Disease",
"Nutritional Deficiencies",
                           "Cardiovascular Diseases",
"Neoplasms", "Neonatal Disorders", "Maternal Disorders",
"Diarrheal Diseases"]]
deathsBy_Environment_And_Accidental = df[["Country/Territory",
                                            "Year",
"Environmental Heat and Cold Exposure",
                                             "Drowning",
"Road Injuries",
                                             "Exposure to Forces of Nature",
"Protein-Energy Malnutrition"]]
deathsBy_Crimes_Terror_Accident_SelfHarm = df[["Country/Territory",
                                                        "Interpersonal Violence",
                                                         "Drug Use Disorders",
                                                         "Alcohol Use Disorders",
                                                        "Self-harm",
"Conflict and Terrorism",
                                                        "Poisonings"]]
deathsBy_Chronic_Disases = df[["Country/Territory",
                                    "Year",
"Chronic Kidney Disease",
"Chronic Respiratory Diseases",
"Cirrhosis and Other Chronic Liver Diseases","Lower Respiratory Infections"]]
```

THESE 4 CATAGORIES ARE :-

- 1. DEATH BY DISEASES
- 2. DEATH BY ENVIORNMENT AND ACCIDENT.
- 3. DEATH BY CRIME ,TERROR,SELF-HARM AND ACCIDENT.
- 4. DEATH BY CRONIC DISEASES.

NOW DO THE ANALYSIS AS
PER THE DEATH BY
DISEASES :-

HERE I HAVE DONE GROUPING OF YEAR AND COUNTRIES ON THE BASIS OF DISEASES.

```
groupingByYear = deathsBy_Disease.groupby(['Year'])[[
                         "Meningitis",
                         "Alzheimer's Disease and Other Dementias",
                         "Parkinson's Disease",
                         "Digestive Diseases",
                         "Malaria",
                         "Tuberculosis",
                         "Diabetes Mellitus",
                         "HIV/AIDS",
                        "Acute Hepatitis",
                       "Parkinson's Disease"
                       "Nutritional Deficiencies",
                      "Cardiovascular Diseases",
                      "Neoplasms",
                      "Neonatal Disorders",
                      "Maternal Disorders",
                      "Diarrheal Diseases",]].sum().reset_index()
groupingByCountries = deathsBy_Disease.groupby(['Country/Territory'])[[
                         "Alzheimer's Disease and Other Dementias",
                         "Parkinson's Disease",
                         "Digestive Diseases",
                         "Malaria",
                         "Tuberculosis",
                         "Diabetes Mellitus",
                         "HIV/AIDS",
                        "Acute Hepatitis",
                       "Parkinson's Disease",
                       "Nutritional Deficiencies",
                      "Cardiovascular Diseases",
                      "Neoplasms",
                      "Neonatal Disorders",
                      "Maternal Disorders",
                      "Diarrheal Diseases", ]].sum().reset_index()
```

NOW DO PLOTTING OF DEATH BY DISEASES:-

```
fig = make subplots(rows=5, cols=4)
fig.add trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Meningitis'], name = 'Meningitis'),row=1, col=1)
fig.add_trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Neoplasms'], name = 'Neoplasms'),row=1, col=2)
fig.add_trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Malaria'],name='Malaria'),row=1, col=3)
fig.add_trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['HIV/AIDS'],name='HIV/AIDS'),row=1, col=4)
fig.add trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Tuberculosis'],name='Tuberculosis'),row=2, col=1)
fig.add_trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Maternal Disorders'],name='Maternal Disorders'),row=2, col=1
fig.add_trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Neonatal Disorders'],name='Neonatal Disorders'),row=2, col=4
fig.add trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Diarrheal Diseases'],name='Diarrheal Diseases'),row=3, col=1
fig.add trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Nutritional Deficiencies'],name='Nutritional Deficiencies'),
fig.add_trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Diabetes Mellitus'],name=' Diabetes Mellitus'),row=3, col=3)
fig.add_trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Cardiovascular Diseases'],name='Cardiovascular Diseases'),rc
fig.add_trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Digestive Diseases'],name='Digestive Diseases'),row=4, col=1
fig.add trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear['Acute Hepatitis'],name=' Acute Hepatitis'),row=4, col=3)
fig.add trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear["Alzheimer's Disease and Other Dementias"], name="Alzheimer's
fig.add_trace(go.Scatter(x=groupingByYear['Year'], y=groupingByYear["Parkinson's Disease"],name="Parkinson's Diseases"),row=5, cd
fig.update layout(height=1200, width=1000, title text="Total Deaths -- Each Dissase between Each year 1990-2019")
fig.show()
```


This is Plot shows how much Death has taken places by Diseases In all the year since 1990-2019.

NOW LET'S SEE DEATHS TAKEN PLACE BY ENVIORNMENT AND ACCIDENT.

I HAVE DONE GROUPBY OF ALL THE DEATH ACCORDING TO YEAR WHICH FALLS UNDER THIS CATEGORY.

TIPRORO

	Year	Environmental Heat and Cold Exposure	Drowning	Road Injuries	Exposure to Forces of Nature	Protein-Energy Malnutrition
0	1990	55072	460460	1112770	50218	655975
1	1991	56658	454375	1117024	158552	631013
2	1992	59928	447058	1125588	12030	808015
3	1993	68812	445434	1137444	21389	583919
4	1994	72305	443350	1153642	12717	584048

```
: trace1 = go.Bar(
     x=deathsBy_Environment_And_Nature_group_Year['Year'],
     y=deathsBy_Environment_And_Nature_group_Year['Environmental Heat and Cold Exposure'],
     name = 'Deaths - Enviornmental heat and cold exposure',
     marker=dict(color='#FFD700'))
  trace2 = go.Bar(
     x=deathsBy_Environment_And_Nature_group_Year['Year'],
     y=deathsBy_Environment_And_Nature_group_Year['Drowning'],
     name='Deaths - Drowning',
     marker=dict(color='#9EA0A1'))
  trace3 = go.Bar(
     x=deathsBy_Environment_And_Nature_group_Year['Year'],
     y=deathsBy_Environment_And_Nature_group_Year['Road Injuries'],
     name='Deaths - Road injuries',
     marker=dict(color='#CD7F32'))
  trace4 = go.Bar(
     x=deathsBy_Environment_And_Nature_group_Year['Year'],
     y=deathsBy_Environment_And_Nature_group_Year['Exposure to Forces of Nature'],
     name='Exposure to forces of nature',
     marker=dict(color='#CD2F32'))
  trace5 = go.Bar(
     x=deathsBy_Environment_And_Nature_group_Year['Year'],
     y=deathsBy_Environment_And_Nature_group_Year['Protein-Energy Malnutrition'],
     name='Deaths - PEM',
     marker=dict(color='#2f12cd'))
  data = [trace1, trace2, trace3, trace4, trace5]
  layout = go.Layout(
     title='1990 to 2019 Deaths - Environment Or Nature', height = 500, width=1400
  fig = go.Figure(data=data, layout=layout)
  fig.show()
```

1990 to 2019 Deaths - Environment Or Nature

Here following colour is representing following columns:-

- 1. Yellow:- Environmental Heat and Cold Exposure
- 2. Grey :- Deaths Drowning
- 3. Orange :- Road Injuries
- 4. Blue :- Protein-Energy Malnutrition(PEM)

This plot shows the total number of deaths caused by Environment_And_Accidental in year 1990 TO 2019. Here we can notice the least and the max death that took place in all the 4 categories in all the given year.

DEATH BY CRIME, TERROR, SELF-HARM AND ACCIDENT.

groupingCrimesTerrorAccidentSelf.head()

	Year	Interpersonal Violence	Drug Use Disorders	Alcohol Use Disorders	Self-harm	Conflict and Terrorism	Poisonings
0	1990	372497	56133	116390	738804	116286	87951
1	1991	383689	61890	122478	752575	85017	87813
2	1992	407176	66826	131665	770288	62063	88435
3	1993	432858	71603	143901	791904	62733	90038
4	1994	441971	78717	153859	817682	586082	90897

```
fig = go.Figure()
fig.add_trace(go.Violin(x= groupingCrimesTerrorAccidentSelf['Year'],
                      y= groupingCrimesTerrorAccidentSelf['Interpersonal Violence'],
                      name='Interpersonal violence',
                      line_color='#ea9999'))
fig.add_trace(go.Violin(x= groupingCrimesTerrorAccidentSelf['Year'] ,
                      y= groupingCrimesTerrorAccidentSelf['Drug Use Disorders'],
                      name='Drug use disorders',
                      line_color='#48007c'))
name='Alcohol use disorders',
                      line_color='#a60661'))
fig.add_trace(go.Violin(x= groupingCrimesTerrorAccidentSelf['Year'],
                      y= groupingCrimesTerrorAccidentSelf['Self-harm'],
                      name='Self-harm',
                      line_color='#009999'))
fig.add_trace(go.Violin(x= groupingCrimesTerrorAccidentSelf['Year'],
                      y= groupingCrimesTerrorAccidentSelf['Conflict and Terrorism'],
                      name='Conflict and terrorism',
                      line color='#15a962'))
fig.add_trace(go.Violin(x= groupingCrimesTerrorAccidentSelf['Year'],
                      y= groupingCrimesTerrorAccidentSelf['Poisonings'],
                      name='Poisonings',
                      line_color='#ff4040'))
fig.update_traces(meanline_visible=True)
fig.update_layout(title_text='Deaths - Crimes, Self, Accident', violingap=0, violinmode='overlay', height=600, width=1000)
fig.show()
```

Deaths - Crimes, Self, Accident

E P E P 4 D E P 4 D

We can clearly see in this plot which shows CRIMES_TERROR_ACCIDENT_SELF-HARM and here come to know that in all the years the maximum death have been taken place by Conflicts and Terrorism and the max death was in between 1990 and 2000.

Poisoning seems to be constant in all the years.

The second highest death has taken place by Interpersonal violence

And rest all the case of seems to be under 200k in all the given years.

DEATH BY CHRONIC DISEASES

Now do grouping of chronic diseases as per year and relevant diseases.

THPRORO

DEATH BY CRONIC DISEASES


```
: trace0 = go.Scatter(
        x = chronic_Deaths_GroupingByYear['Year'],
y = chronic_Deaths_GroupingByYear['Chronic Kidney Disease'],
        name = 'Chronic kidney disease',
mode = 'markers',
        marker = dict(
            size = 12,
             color = 'rgb(51,204,153)',
symbol = 'hexagram-open',
              line = dict(width = 2)))
   trace1 = go.Scatter(
        x = chronic_Deaths_GroupingByYear['Year'],
        y = chronic_Deaths_GroupingByYear['Chronic Respiratory Diseases'],
        name = 'Chronic respiratory diseases',
        mode = 'markers',
        marker = dict(
             size = 12,
             color = 'rgb(77,113,222)',
symbol = 'diamond-x-open',
             line = dict(width = 2)))
   trace2 = go.Scatter(
        x = chronic_Deaths_GroupingByYear['Year'],
y = chronic_Deaths_GroupingByYear['Cirrhosis and Other Chronic Liver Diseases'],
        name = 'Cirrhosis and other chronic liver diseases',
        mode = 'markers',
        marker = dict(
            size = 12,
             color = 'rgb(211,188,53)',
symbol = 'hash-open',
line = dict(width = 2)))
   trace3 = go.Scatter(
        x = chronic_Deaths_GroupingByYear['Year'],
y = chronic_Deaths_GroupingByYear['Lower Respiratory Infections'],
name = 'Lower Respiratory Infections',
mode = 'markers',
        marker = dict(
             size = 12,

color = 'rgb(200,150,20)',

symbol = 'hash-open',

line = dict(width = 2)))
   data = [trace0,trace1,trace2,trace3]
   layout = go.Layout(
        title = '1990 to 2019 Deaths - Chronical Diases',
xaxis = dict(title = 'Year'),
yaxis = dict(title = 'Deaths'),
        hovermode ='closest',
        height =600,
        width = 1000
   fig = go.Figure(data=data, layout=layout)
   fig.show()
```


WE CAN SEE THAT THE MAXIMUM DEATH IS CAUSED BY CHRONIC RESPIRATORY DISEASES AND LEAST DEATH IS CAUSED BY CHRONIC KIDNEY DISEASES IN ALL THE GIVEN YEARS WHICH IS 1990 TO 2019.

CONCLUSION:

Total rows 6120 and 34 columns in the dataset.

I found out that there are many diseases which continuously increasing such as Neoplasms, HIV/AIDS, Diabetes, Cardiovascular Diseases, Digestive disorder and Alzheimer I Found out that there are many diseases which are continuously decreasing too such as Acute Hepatitis, Diarrheal Diseases, Nutritional Diseases and Meningitis

Parkinson Diseases seems to be constants till 1990 to 1993 after that no data is present for the same.

We can see that in all the given years i.e. 1990 to 2019, Road accident have taken Maximum life's and the least can death can be seen in Exposure to force of Nature

In case of Death by crime, self-harm and Accident -> Maximum death have been taken place by Conflict and Terrorism and the second highest death have been recorded by -Interpersonal Violence.

Rest all other factors of death are under 200k which can be even further minimized

ALL THE GOVERNMENT AND CONCERNED BODIES SHOULD TAKE RESONABLE STEP TO ENSURE THAT ALL THE AREAS WITH MAXIMUM DEATHS CAN BE MINIMIZED AND PROPER ACTION SHOULD BE TAKEN

IN CASE OF CONFLICT &TERRIOSM AND INTERPERSONAL VIOLENCE SO THAT IT SHOULD BE REDUCED TO MINIMAL.