Exercises and solutions for MM101 Tutorial in Week 2

- 1. Given the sets $S_1 = \{x \in \mathbb{N} : 1 \le x \le 5\}, S_2 = \{y \in \mathbb{Z} : |y| < 4\} \text{ and } S_3 = \{z \in \mathbb{Z} : |y| < 4\}$ z is even}, identify the elements in the sets
- (i) $S_1 \cup S_2$, (ii) $S_2 \cap S_3$, (iii) $S_1 \cap S_2 \cap S_3$, (iv) $S_1 S_3$.

As $S_1 = \{1, 2, 3, 4, 5\}$ and $S_2 = \{-3, -2, -1, 0, 1, 2, 3\}$ we have

- (i) $S_1 \cup S_2 = \{-3, -2, -1, 0, 1, 2, 3, 4, 5\}.$
- (ii) $S_2 \cap S_3 = \{-2, 0, 2\}.$
- (iii) $S_1 \cap S_2 \cap S_3 = \{2\}.$
- (iv) $S_1 S_3 = \{1, 3, 5\}.$
- 2. Identify the members of the following sets:
 - (a) $S = \{a \in \mathbb{Z} \mid a = (-1)^i \text{ for some } i \in \mathbb{Z}\}.$
 - (b) $T = \{b \in \mathbb{Z} \mid b = 1 + (-1)^j \text{ for some } j \in \mathbb{Z}\}.$
 - (c) $U = \{c \in \mathbb{Z} \mid 3 < c < -3\}.$
 - (d) $V = \{d \in \mathbb{Z} \mid d > -2 \text{ or } d < -1\}.$
 - (a) $\{-1,1\}$. (b) $\{0,2\}$. (c) \emptyset . (d) \mathbb{Z} .
- 3. Sketch the following sets of real numbers on the real number line and express them using interval notation:
 - (i) $\{x \in \mathbb{R} : -2 < x < 2\}$, (ii) $\{x \in \mathbb{R} : |x| < 2\}$,
 - (iii) $\{x \in \mathbb{R} : x < -2 \lor x > 2\}, \text{ (iv) } \{x \in \mathbb{R} : x < -2 \land x > 2\}.$
 - (i) $\{x \in \mathbb{R} : -2 < x < 2\} = [-2, 2]$
 - (ii) $\{x \in \mathbb{R} : |x| \le 2\} = [-2, 2].$
 - (iii) $\{x \in \mathbb{R} : x < -2 \lor x > 2\} = (-\infty, -2] \cup [2, \infty).$
 - (iv) There is no standard way of writing \emptyset in interval notation (although e.g. (a, a), (a,a], [a,a) (for any $a \in \mathbb{R}$) and (a,b), (a,b], [a,b), [a,b] when a > b all denote empty intervals!).

4. Evaluate the following.

$$\begin{array}{lll} (i) \ |\sqrt{2}| & (ii)| - \sqrt{3}| \\ (iii)|\sqrt{3} - \sqrt{2}| & (iv)|\sqrt{3} - \sqrt{5}| \\ (v)|\sqrt{2} + \sqrt{5} - \sqrt{3}| & (vi)|1 + \sqrt{2} - \sqrt{10}| \\ (vii)|\sqrt{5} - \sqrt{2} - \sqrt{3} - \sqrt{7}| & (viii)|\sqrt{5} + \sqrt{7} - \sqrt{3} - \sqrt{2}| \\ (ix)|\sqrt{5} + \sqrt{2} - \sqrt{3} - \sqrt{7}| & (x)|\sqrt{6} - \sqrt{3} + \sqrt{5} - \sqrt{8}| \\ (xi)|\sqrt{7} + \sqrt{2} - \sqrt{3} - \sqrt{5}| & (xii)||\sqrt{2} - \sqrt{3}| - |\sqrt{5} - \sqrt{7}| \end{array}$$

- (i) $|\sqrt{2}| = \sqrt{2}$.
- (ii) $|-\sqrt{3}| = \sqrt{3}$.

(iii)
$$\sqrt{3} > \sqrt{2}$$
 so $|\sqrt{3} - \sqrt{2}| = \sqrt{3} - \sqrt{2}$.

(iv)
$$\sqrt{5} > \sqrt{3}$$
 so $|\sqrt{3} - \sqrt{5}| = \sqrt{5} - \sqrt{3}$.

(v)
$$\sqrt{2} + \sqrt{5} > \sqrt{3}$$
 so $|\sqrt{2} + \sqrt{5} - \sqrt{3}| = \sqrt{2} + \sqrt{5} - \sqrt{3}$.

(vi)
$$\sqrt{10} > \sqrt{9} = 3$$
 and $\sqrt{2} < 2$ so $\sqrt{10} > 1 + \sqrt{2}$. Thus $|1 + \sqrt{2} - \sqrt{10}| = \sqrt{10} - \sqrt{2} - 1$.

(vii)
$$|\sqrt{5} - \sqrt{2} - \sqrt{3} - \sqrt{7}| = |\sqrt{5} - (\sqrt{2} + \sqrt{3} + \sqrt{7})|$$
 and $\sqrt{5} < \sqrt{2} + \sqrt{3} + \sqrt{7}$ so $|\sqrt{5} - \sqrt{2} - \sqrt{3} - \sqrt{7}| = \sqrt{2} + \sqrt{3} + \sqrt{7} - \sqrt{5}$.

(viii)
$$|\sqrt{5} + \sqrt{7} - \sqrt{3} - \sqrt{2}| = |\sqrt{5} + \sqrt{7} - (\sqrt{3} + \sqrt{2})|$$
 and $\sqrt{5} + \sqrt{7} > \sqrt{3} + \sqrt{2}$ so $|\sqrt{5} + \sqrt{7} - \sqrt{3} - \sqrt{2}| = \sqrt{5} + \sqrt{7} - \sqrt{3} - \sqrt{2}.$

(ix)
$$|\sqrt{5} + \sqrt{2} - \sqrt{3} - \sqrt{7}| = |\sqrt{5} + \sqrt{2} - (\sqrt{3} + \sqrt{7})|$$
. As $\sqrt{7} > \sqrt{5}$ and $\sqrt{3} > \sqrt{2}$, $\sqrt{5} + \sqrt{2} < \sqrt{3} + \sqrt{7}$ so $|\sqrt{5} + \sqrt{2} - \sqrt{3} - \sqrt{7}| = \sqrt{3} + \sqrt{7} - \sqrt{5} - \sqrt{2}$.

(x)
$$|\sqrt{6} - \sqrt{3} + \sqrt{5} - \sqrt{8}| = |\sqrt{6} + \sqrt{5} - (\sqrt{3} + \sqrt{8})|$$
. But $(\sqrt{6} + \sqrt{5})^2 = 11 + 2\sqrt{5}\sqrt{6} = 11 + 2\sqrt{30}$ and $(\sqrt{3} + \sqrt{8})^2 = 11 + 2\sqrt{3}\sqrt{8} = 11 + 2\sqrt{24}$

so
$$\sqrt{6} + \sqrt{5} > \sqrt{3} + \sqrt{8}$$
 and $|\sqrt{6} - \sqrt{3} + \sqrt{5} - \sqrt{8}| = \sqrt{6} - \sqrt{3} + \sqrt{5} - \sqrt{8}$.

(xi) $|\sqrt{7}+\sqrt{2}-\sqrt{3}-\sqrt{5}| = |\sqrt{7}+\sqrt{2}-(\sqrt{3}+\sqrt{5})|$. We see that $(\sqrt{7}+\sqrt{2})^2 = 9+2\sqrt{14}$ and $(\sqrt{3}+\sqrt{5})^2 = 8+2\sqrt{15}$. But

$$9 + 2\sqrt{14} > 8 + 2\sqrt{15} \Leftrightarrow 1 + 2\sqrt{14} > 2\sqrt{15} \Leftrightarrow 57 + 4\sqrt{14} > 60$$

which is true (as $\sqrt{14} > 3$), so $\sqrt{7} + \sqrt{2} > \sqrt{3} + \sqrt{5}$ and $|\sqrt{7} + \sqrt{2} - \sqrt{3} - \sqrt{5}| = \sqrt{7} + \sqrt{2} - \sqrt{3} - \sqrt{5}$.

(xii)
$$||\sqrt{2} - \sqrt{3}| - |\sqrt{5} - \sqrt{7}|| = |\sqrt{3} - \sqrt{2} - (\sqrt{7} - \sqrt{5})| = |\sqrt{3} + \sqrt{5} - (\sqrt{7} + \sqrt{2})| = |\sqrt{7} + \sqrt{2} - \sqrt{3} - \sqrt{5}| = \sqrt{7} + \sqrt{2} - \sqrt{3} + \sqrt{5} \text{ from part (xi)}.$$

5. Prove that the sum and product of any two rational numbers are rational.

We will denote the two rational numbers by

$$a = \frac{p}{q}, \qquad b = \frac{r}{s}$$

where $p,\,q,\,r$ and s are integers with $q\neq 0$ and $s\neq 0$. Then their sum is

$$a+b = \frac{p}{q} + \frac{r}{s} = \frac{ps + qr}{qs}$$

which is rational as ps + qr and qs are integers with $qs \neq 0$. Similarly, their product is

$$ab = \frac{p}{q} \cdot \frac{r}{s} = \frac{pr}{qs}$$

which is rational as pr and qs are integers with $qs \neq 0$.