Nuclear Reactor Theory Project #1 Group #3

Lee, Seungsup Miller, Dory Payant, Andrew Powers-Luhn, Justin Zhang, Fan

October 5, 2016

$\overline{Material}$				Relative Absorption
H		8.08×10^{-3}	0	0.053
O	7.16×10^{-3}	4.90×10^{-6}	0	0
Zr	2.91×10^{-3}	7.01×10^{-4}	0	0.005
Fe	9.46×10^{-4}	3.99×10^{-3}	0	0.026
$235_{\hbox{U}}$	3.08×10^{-4}	9.24×10^{-2}	0.145	0.602
$238_{ m U}$	6.95×10^{-3}	1.39×10^{-2}	1.20×10^{-2}	0.091
$^{10}\mathrm{B}$		3.41×10^{-2}		0.223
	3.62×10^{-2}	0.1532	0.1570	1.000

Table 1: Macroscopic Cross Sections

1 Introduction & Background

The introduction goes here.

$$\frac{\partial n}{\partial t} + v\hat{\Omega} \cdot \nabla n + v\Sigma_t n\left(\mathbf{r}, E', \hat{\Omega}, t\right) = \int_{4\pi} d\hat{\Omega}' \int_0^\infty dE' v' \Sigma_s \left(E' \to E, \hat{\Omega}' \to \hat{\Omega}\right) n\left(\mathbf{r}, E', \hat{\Omega}', t\right) + s\left(\mathbf{r}, E, \hat{\Omega}, t\right) \tag{1}$$

2 Methodology

The methodology goes here. 1

3 Results

The results go here

4 Conclusions

The conclusions go here