日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 7月28日

出 願 番 号 Application Number:

特願2004-220400

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-220400

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人

三菱電機株式会社

Applicant(s):

2005年 6月15日

特許庁長官 Commissioner, Japan Patent Office

自然口』 打 武 隊 【整理番号】 552024JP01 【提出日】 平成16年 7月28日 【あて先】 特許庁長官 殿 H05B 41/282 【国際特許分類】 H02M 7/48 【発明者】 東京都千代田区九段北一丁目13番5号 三菱電機エンジニアリ 【住所又は居所】 ング株式会社内 貫里 康博 【氏名】 【発明者】 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 【住所又は居所】 【氏名】 大澤 孝 【特許出願人】 【識別番号】 000006013 【氏名又は名称】 三菱電機株式会社 【代理人】 【識別番号】 100066474 【弁理士】 【氏名又は名称】 田澤 博昭 【選任した代理人】 【識別番号】 100088605 【弁理士】 【氏名又は名称】 加藤 公延 【選任した代理人】 【識別番号】 100123434 【弁理士】 【氏名又は名称】 田澤 英昭 【選任した代理人】 【識別番号】 100101133 【弁理士】 【氏名又は名称】 濱田 初音 【手数料の表示】 【予納台帳番号】 020640 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 ! 【物件名】 明細書 【物件名】 図面 1

【物件名】

要約書 1

【官規句】付訂胡小ツ靶四

【請求項1】

直流電源に複数の負荷回路を接続し該直流電源からの電圧を所定の直流電圧に変換後、 交流電圧に変換して放電灯に供給する電源回路と、前記放電灯に放電を開始させるために 高電圧バルスを発生させて前記交流電圧に重畳印加する起動回路と、前記複数の負荷回路 に流れる電流の合計値に基づいて前記直流電源から供給される電流を制御する制御部とを 備えた放電灯点灯装置。

【請求項2】

直流電源からの電圧をDC/DCコンバータのトランスの1次側に印加して所定の直流電圧に変換して該トランスの2次側より出力する直流電源回路と、前記直流電源回路からの直流電圧を交流電圧に変換する交流電源回路と、高電圧バルスを発生させて前記交流電圧に重畳印加する起動回路と、前記トランスの1次側に流れる負荷電流値を検出する第1の負荷電流検出手段と、前記交流電源回路に流れる負荷電流値を検出する第2の負荷電流検出手段と、前記第1の負荷電流検出手段で検出した負荷電流値および第2の負荷電流検出手段で検出した負荷電流値の合計電流値を検出する合計電流検出部と、前記合計電流検出部で検出された合計電流値に基づいて前記直流電源から供給される電流を制御する制御部とを備えたことを特徴とする請求項!記載の放電灯点灯装置。

【請求項3】

直流電源からの電圧をDC/DCコンバータのトランスの1次側に印加して所定の直流電圧に変換して該トランスの2次側より出力する直流電源回路と、前記直流電源回路からの直流電圧を交流電圧に変換する交流電源回路と、高電圧バルスを発生させて前記交流電圧に重畳印加する起動回路とを有する放電灯点灯回路と、前記直流電源に接続された複数の放電灯点灯回路のそれぞれに流れる負荷電流を検出するように該放電灯点灯回路の各々に設けた負荷電流検出手段と、前記各々の負荷電流検出手段で検出した負荷電流値をもとに前記複数の放電灯点灯回路へ流れる合計電流値を検出する合計電流検出部と、前記合計電流検出部で検出された合計電流値を基に前記直流電源から供給される電流を制御する制御部とを備えたことを特徴とする請求項1記載の放電灯点灯装置。

【請求項4】

制御部は、合計電流検出部で検出された合計電流値を基に、直流電源から供給される電流の過電流制限を行うことを特徴とする請求項2または請求項3記載の放電灯点灯装置。

【請求項5】

合計電流検出部は、複数の負荷電流検出手段で検出した負荷電流値を加算増幅する加算 増幅回路を備えたことを特徴とする請求項2または請求項3記載の放電灯点灯装置。

【請求項6】

合計電流検出部は、加算増幅回路からの出力を基準設定値と比較し、前記加算増幅回路からの出力が基準設定値を超えたときには、直流電源から供給される電流を制限する比較回路を備えたことを特徴とする請求項2または請求項3記載の放電灯点灯装置。

【請求項7】

比較回路は、瞬間的な大電流には反応しない積分機能付であることをことを特徴とする 請求項6記載の放電灯点灯装置。

【請求項8】

比較回路は、瞬間的な大電流には反応しない反応特性を任意に設定できる積分機能付で あることをことを特徴とする請求項6記載の放電灯点灯装置。 [百规句] 叨刚盲

【発明の名称】放電灯点灯装置

【技術分野】

[0001]

この発明は自動車等のヘッドランプとして用いられる放電灯、または屋内外施設、倉庫、工場等における照明灯や街灯等として用いられる放電灯を点灯する放電灯点灯装置において、この放電灯点灯装置を作動させる直流電源から供給される電流を負荷へ流れる合計電流値をもとに制御するようにした放電灯点灯装置に関するものである。

【背景技術】

[0002]

放電灯の中でも、メタルハライドバルブ、高圧ナトリウムバルブ、水銀バルブ等の高輝度放電灯(HID)は光東が大きいとともにランブ効率も高く、更に、寿命が長い等の利点を有していることから、従来より屋内外施設、倉庫または工場等における照明灯や街灯等として用いられている。特に近年では、自動車等の車両用の前照灯としても利用されつつある。この種の放電灯を点灯させるためには、起動時に所定の電圧をバルブに印加したうえに、高電圧の起動バルスを重畳する必要があり、放電灯を安定に点灯させるための方之に、高電圧の起動バルスを重畳する必要があり、放電灯を安定に点灯させるための方と化直流電源回路(DC一DCコンバータ等)や、直流電圧を矩形波交流に変換するインバータ回路(交流電源回路)、起動用高電圧バルスを発生するためのイグナイタ(起動回路)等を備えている。また、上記直流電源回路およびインバータ回路等を作動させるため、例えばバッテリー等の直流電源から電源供給される。この場合、電源供給は過電流とならないようにする必要がある。この過電流を防止するようにした従来の放電灯点灯装置として、例えば以下のものがある。

[0003]

従来例その1として、放電灯の電気配線が何らかの原因で地絡したときのフェイルセーフ作動の技術に関し、放電灯電流検出用の抵抗をインバータ回路を形成するHブリッジ回路の低電圧共通端子と接地(GND)間に設けている。ここで上記地絡が発生すると、上記電流検出用の抵抗により検出され、この検出に従いHブリッジ回路を形成するスイッチング用トランジスタ(MOSトランジスタ)をオフさせ、直流電源からの過電流を防止している(例えば、特許文献1参照)。

[0004]

従来例その2として、直流電源の電圧が低下したときに、電源電流が過度に増大しないように電源電流を制限する技術に関し、1次巻線と2次巻線とが分離したDC/DCコンバータのトランスを使用した直流電源回路(DC-DCコンバータ)において、この直流電源回路への入力電流(電源電流)を検出するための電流検出用抵抗を1次巻線側に設けるとともに、その検出信号に応じて直流電源回路への入力電流に対する電流制限を行うための電流制限制御部を設け、直流電源からの過電流を防止している(例えば、特許文献2参照)。

[0005]

上記の他、放電灯点灯装置における電源供給に関連する従来技術として下記の特許文献3万至特許文献6がある。

[0006]

【特許文献1】特開2001-43989号公報

【特許文献2】特開平7-169585号公報

【特許文献3】特開平6-188078号公報

【特許文献4】特開平9-223590号公報

【特許文献5】特開2002-110384号公報

【特許文献 6 】 特開 2 0 0 3 - 3 2 3 9 9 2 号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

此不い瓜电川 尽川 衣胆は以上いよりに俯臥でれてむり、付に此不則てい」は地間に割り る過電流防止の技術であり、従来例その2のような直流電源の電圧低下といった地絡以外 の要因については対象外としている。この従来例その1の直流電源回路(DC-DCコン バータ)に使用している昇圧用のDC/DCコンバータのトランスは単巻構成のステップ アップ用トランスであり、DC-DCコンバータとしてはこの単巻構成のステップアップ 用トランスの方が巻線が少なく、コアも小形にできるといった利点があり、好都合である 。そこで、この従来例その1の構成に従来例その2のように、直流電源と点灯装置間に電 流検出用抵抗を設けることができれば従来例その2の効果も発揮でき好都合となる。しか し、DC/DCコンバータのトランスに単巻構成のステップアップ用トランスを使用した 場合の直流電源からの負荷電流は、1次巻線と2次巻線とが分離したDC/DCコンバー タのトランスを使用した従来例その2と異なり、直流電源回路のみならず後段のインバー タ回路等にも流れる。つまり、一つの直流電源からの負荷電流は直流電源回路およびイン パータ回路等の複数の負荷回路へ分流することとなる。このため、従来例その2のように 直流電源と点灯装置間に電流検出用抵抗を設けても、この電流検出用抵抗の負荷側の電位 は電流とともに変動し、この変動によりインバータ回路に流れる出力電流検出用の抵抗両 端の電位も変動し、これら変動等により電源電流を正確に検出することができないという 問題があった。

[0008]

この発明は上記のような課題を解決するためになされたもので、直流電源回路(DCーDCコンパータ)を形成するトランスに単巻構成のステップアップ用トランスを使用した場合のように、一つの直流電源から直流電源回路およびインバータ回路等の複数の負荷回路へ負荷電流が分流するように構成された放電灯点灯装置において、この一つの直流電源から供給される電源電流を正確に検出し、この検出結果をもとに直流電源から供給される電流を制御するようにした放電灯点灯装置を得ることを目的とする。

【課題を解決するための手段】

[0009]

この発明に係る放電灯点灯装置は、直流電源に複数の負荷回路を接続し該直流電源からの電圧を所定の直流電圧に変換後、交流電圧に変換して放電灯に供給する電源回路と、前記放電灯に放電を開始させるために高電圧バルスを発生させて前記交流電圧に重畳印加する起動回路とを備え、制御部は複数の負荷回路に流れる電流の合計値に基づいて前記直流電源から供給される電流を制御するものである。

【発明の効果】

[0010]

この発明によれば、電源回路は直流電源からの電圧を所定の直流電圧に変換後、交流電圧に変換して放電灯に供給し、起動回路は前記放電灯に放電を開始させるために高圧バルスを発生させて前記交流電圧に重畳印加し、制御部は前記直流電源に接続された前記電源回路および起動回路等の複数の負荷回路に流れる電流の合計値に基づいて前記電源から供給される電流を制御するように構成したので、前記直流電源から前記複数の負荷回路へ供給される電流を適切に制御することができる。

【発明を実施するための最良の形態】

[0011]

以下、この発明の実施の一形態を説明する。

実施の形態1.

図1はこの発明の実施の形態1による放電灯点灯装置の基本構成を示す回路図である。 図1において、この放電灯点灯装置は、直流電源1、直流電源回路2、インバータ回路 3、イグナイタ4、1次側電流検出用抵抗5(R1)、出力電流検出用抵抗6(R2)、 合計電流検出部7および制御部8とで構成される。

[0012]

上記構成において、直流電源1は直流電圧Vbの例えば、パッテリー等の直流電源である。

[0013]

インバータ回路3は、4つのFET31、32、33、34からなるHブリッジ回路と、このHブリッジ回路のFET31、34の組とFET32、33の組とを交互にオンオフするように制御するHブリッジドライバ35とで構成され、直流電源回路2からの直流電圧Voを矩形波の交流電圧に変換する。直流電源回路2とインバータ回路3とは、放電灯点灯装置における広義の電源回路を形成する。

[0014]

イグナイタ4は、直流電源回路2からの電圧をもとに起動用の高電圧パルスを発生し、 放電灯9へ印加して放電を開始させ、この高電圧パルスを放電灯9へ印加することにより 点灯を開始させる。

[0015]

1次側電流検出用抵抗5(R1)は第1の負荷電流検出手段を形成し、直流電源1の直流電圧Vbにより流れる直流電源回路2の単巻トランス21の1次側電流を電圧信号として検出する。この電流は直流電源1の負荷電流である。

図 2 (a) は 1 次側電流検出用抵抗 5 (R 1) に流れる電流波形の例であり、尖頭値(Ipl)が約 1 0 Aで、1 周期(T 1)が約 1 0 μ s の鋸歯状波電流が流れていることを示す。

[0016]

出力電流検出用抵抗6(R2)は第2の負荷電流検出手段を形成し、直流電源1の直流電圧Vbにより流れるインバータ回路3以降の出力電流を電圧信号として検出する。この出力電流はインバータ回路3に流れる電流から検出するが、インバータ回路3、イグナイタ4および放電灯9に流れる電流の総和を意味し、直流電源1の負荷電流である。

図2(b)は出力電流検出用抵抗6(R2)に流れる電流波形の例であり、最大電流値(Im2)が約0.4Aで、1周期(T2)が約1.25msの間歇状電流が流れていることを示す。

[0017]

合計電流検出部7は、1次側電流検出用抵抗5(R1)および出力電流検出用抵抗6(R2)で検出した負荷電流をもとにこれら複数の負荷回路へ流れる合計電流値を検出する

[0018]

制御部8は、合計電流検出部7で検出された合計電流値をもとに直流電源回路2のスイッチングトランジスタ24をスイッチング制御してその出力電力を制御することにより、 直流電源1から供給される電流 I b を制御する。

[0019]

次に合計電流検出部7の具体的構成例とその動作について説明する。

図3はこの実施の形態1における放電灯点灯装置の合計電流検出部7Aの回路構成図である。

図3において、この合計電流検出部7Aは抵抗701(R3),702(R4),703(R5),704(R6)および増幅器705とで構成され、加算増幅回路を形成している。この増幅器705は例えば演算増幅器(オペアンプ)で構成する。

[0020]

上記構成において、抵抗701(R3)は1次側電流検出用抵抗5(R1)と接続され、また、抵抗702(R4)は出力電流検出用抵抗6(R2)と接続され、これら両抵抗701(R3)、702(R4)を介し1次側電流検出用抵抗5(R1)で検出された直

加電原回照 2 の 1 の関電机の電圧信号と、山刀電机機山用政机の(R2)で機山でれたすンパータ回路 3 以降の出力電流の電圧信号とを合成し、この合成した電圧信号を増幅器 7 0 5 の正相入力端子(十端子)へ入力する。また、逆相入力端子(一端子)には抵抗 7 0 3 (R5),704(R6)を図示のように接続しておく。この増幅器 7 0 5 で増幅することにより、増幅器 7 0 5 からは 1 次側電流検出用抵抗 5 (R1)に流れる直流電源回路 2 の 1 次側電流と、出力電流検出用抵抗 6 (R2)に流れるインバータ回路 3 以降の出力電流とが加算された合計電流値の信号 Saが検出され出力される。これにより、直流電源 1 から供給される電流 I b に相当する合計電流値の信号 Saが得られることとなる。

[0021]

ここで、演算増幅器を使用した増幅器705は正相増幅器として作動し、その入出力間の電圧増幅度Avは、「Av=1+(R5/R6)」である。

また、各抵抗の比率は 1 次側電流検出用抵抗 5 (R 1)および出力電流検出用抵抗 6 (R 2)の抵抗値を加味して、「(R 2 / R 1) = (R 4 / R 3) = (R 6 / R 5)」としてもよい。

[0022]

増幅器705から出力された合計電流値の信号Saは制御部8へ送出され、制御部8はこの合計電流値の信号Saをもとに直流電源回路2のスイッチングトランジスタ24をスイッチング制御してその出力電力を制御することにより、直流電源1から供給される電流 I b を制御する。この場合、制御部8は合計電流値の信号Saが予め設定する直流電源1の過電流制限値内では直流電源回路2の直流電圧Voを略一定に維持するように出力電力を制御し、これに対し、合計電流値の信号Saがこの過電流制限値を超えたときには、直流電源回路2の出力電力を制限し、直流電源1から供給される電流に対し過電流制限を行う。

[0023]

以上のように、この実施の形態1によれば、直流電源1から直流電源回路2の1次側へ分流する1次側電流値を1次側電流検出用抵抗5で検出する一方、直流電源1からインバータ回路3以降へ分流する出力電流値を出力電流検出用抵抗6で検出し、これら検出した1次側電流値および出力電流値をもとに直流電源回路2およびインバータ回路3等の複数の負荷回路へ流れる合計電流値を合計電流検出部7で検出し、この検出した合計電流値をもとに制御部8が直流電源回路2のスイッチングトランジスタ24を制御して出力電力を制御し、直流電源1から供給される電流Ibを制御するように構成したので、この直流電源回路2に単巻トランス21を使用した場合のように、一つの直流電源1から直流電源回路2およびインバータ回路3等の複数の負荷回路へ負荷電流が分流するように構成された東灯装置において、この一つの直流電源1から流出される電源電流値に相当する電流値を正確に検出でき、この検出結果をもとに直流電源1から供給される電流Ibを適切に制御することができる。

[0024]

また、制御部 8 は合計電流値の信号 S a が予め設定する直流電源 1 の過電流制限値を超えたときには、直流電源回路 2 の出力電力を制限し、直流電源 1 から供給される電流に対し過電流制限を行うように構成したので、直流電源 1 や直流電源回路 2 等の負荷回路を過電流から保護することができる。

[0025]

また、1次側電流検出用抵抗5による検出回路と出力電流検出用抵抗6による検出回路とは各々独立しているため、互いに干渉することなくそれぞれが正確な電流を検出することができる。

[0026]

また、合計電流検出部7Aは、1次側電流検出用抵抗5で検出した1次側電流値および出力電流検出用抵抗6で検出した出力電流値の各信号を増幅器705で加算増幅するように構成し、簡単な回路構成で両者を誤差なく加算するために、直流電源1から複数の負荷回路へ流出される電源電流値に相当する電流値を正確に検出することができる。

100211

実施の形態2.

図4はこの発明の実施の形態2による放電灯点灯装置の合計電流検出部7Bの回路構成図である。図3と同一のものについては同一符合を付してあり、これら同一符合のものについての説明は省略する。

図4において、この実施の形態2による合計電流検出部7Bは、図3と同一の増幅器705等で構成される加算増幅回路の後段に比較器706を設けるとともに、この比較器706に対し、抵抗707(R7)とコンデンサ708(C1)とからなる積分回路を設け、積分機能を付加したものである。この積分機能としての積分回路はノイズ等の瞬間的な変動に反応しないようにするために設けるものである。また、比較器706は例えば演算増幅器で構成し、その正相入力端子(十端子)には抵抗709(R8)と抵抗710(R9)とにより直流電圧Vccを分圧した電圧Vsを設定している。この電圧Vsは過電流判定の基準設定値となるものである(以下、「基準設定値Vs」とする)。この基準設定値Vsは安定化された例えば3Vまたは5V等の直流電圧Vccを使用して分圧し、変動のない安定化された基準設定値Vsにする。

上記比較器706と抵抗709(R8)および抵抗710(R9)等で比較回路を形成している。

[0028]

以上の構成により、増幅器705から出力された合計電流値の信号Saは抵抗707(R7)を介し比較器706の逆相入力端子(一端子)に入力し、正相入力端子(十端子)に設定された基準設定値Vsと比較される。この場合、合計電流値の信号Saは抵抗707(R7)とコンデンサ708(C1)とからなる積分回路による積分作用を受けるため、合計電流値の信号Saが瞬間的に変動しても比較器706はこの影響から回避される。例えば合計電流値の信号Saがノイズ等の影響により瞬間的な大電流となっても比較器706はこの影響を受けない。なお、この積分回路の時定数を定める抵抗707(R7)およびコンデンサ708(C1)各々の定数設定は任意であり、この定数設定の適正化により、所要の応答特性を容易に実現できる。

[0029]

比較器 7 0 6 による比較において、抵抗 7 0 7 (R 7) とコンデンサ 7 0 8 (C 1) とからなる積分回路を経て入力された合計電流値の信号 S a が基準設定値 V s を超えない範囲内の場合、比較器 7 0 6 は制御部 8 に対し通常制御の状態に設定する。この設定に従い、図 1 に示す制御部 8 は直流電源回路 2 の直流電圧 V o を略一定に維持するようにスイッチングトランジスタ 2 4 をスイッチング制御して出力電力を制御し、直流電源 1 から供給される電流 I b を制御する。

上記に対し、比較器 7 0 6 による比較において合計電流値の信号 S a が基準設定値 V s を超えた場合、比較器 7 0 6 は過電流制限を指示する信号 (Sb) を制御部 8 へ出力する。制御部 8 は入力されたこの指示信号に従い、直流電源回路 2 のスイッチングトランジスタ 2 4 をスイッチング制御して出力電力を制限し、直流電源 1 から供給される電流に対し過電流制限を行う。

[0030]

以上のように、この実施の形態2によれば、合計電流検出部7Bは、1次側電流検出用抵抗5で検出した1次側電流値および出力電流検出用抵抗6で検出した出力電流値の各信号を増幅器705で加算増幅し、この増幅器705の出力を積分回路を形成する抵抗707(R7)を介し比較器706へ入力して基準設定値Vsと比較し、比較器706は増幅器705からの出力が基準設定値Vsを超えたときには、直流電源回路2の出力電力を制限し、直流電源1から供給される電流に対し過電流制限を指示する信号Sbを制御部8へ出力するように構成したので、直流電源回路2の1次側電流等を減少させ、これにより直流電源1から流出される電流が制限され、直流電源1や直流電源回路2等の負荷回路を過電流から保護することができる。

[0031]

本に、比較的 1 0 0 に対しては、公加 1 0 1 (N 1) にコンリンツ 1 0 0 (0 1) にからなる積分回路を設けているので、増幅器 7 0 5 からの合計電流値の信号 S a が例えば J イズ等の影響により瞬間的な大電流となっても比較器 7 0 6 はこの影響を受けないようにすることができる。

[0032]

実施の形態3.

図5はこの発明の実施の形態3による放電灯点灯装置の合計電流検出部7 Cの回路構成図である。図3と同一のものについては同一符合を付してあり、これら同一符合のものについての説明は省略する。

図5において、この実施の形態3による合計電流検出部7 Cは、出力電流検出用抵抗6 (R2)で検出されたインバータ回路3以降の出力電流を表す電圧信号を増幅する増幅器711(以下、この実施の形態3では「第1の増幅器711」とする)を設け、その増幅出力を抵抗712(R10)を介し、図3の加算増幅回路を形成する増幅器705(以下、この実施の形態3では「第2の増幅器705」とする)の正相入力端子(+端子)に入力して構成したものである。ここで、第1の増幅器711は増幅回路を形成し、その電圧増幅度Av1は、Av1=Kとする。

また、23 と同様に正相増幅器として作動する第2の増幅器705の電圧増幅度Av2はこの23 の場合と必ずしも同一である必要はなく、例えば、増幅度を設定する抵抗を23 の構成とは変え、抵抗713(R11)および抵抗714(R12)とすれば、その入出力間の電圧増幅度Av2は、2 「Av2=1+(R11/R12)」である。

[0033]

1次側電流検出用抵抗5(R1)および出力電流検出用抵抗6(R2)は消費電力の軽減上からは極力低抵抗であることが望ましい。反面、低抵抗にするほとその電圧降下も小さくなり、電流の検出精度は低下する。また、1次側電流検出用抵抗5(R1)に流れる電流に対し出力電流検出用抵抗6(R2)に流れる電流は極めて小さい。従って、出力電流検出用抵抗6(R2)からの電圧信号を第1の増幅器711で増幅することにより出力電流検出用抵抗6(R2)を低抵抗にしても電流の検出精度の低下を防止できることとなる。

[0034]

第1の増幅器711から出力された電圧信号は抵抗712(R10)を介し、抵抗701(R3)を介して入力される1次側電流検出用抵抗5(R1)からの電圧信号と合成され、この合成された電圧信号は第2の増幅器705の正相入力端子(+端子)に入力し、以下、図3と同様の動作となる。これにより、第2の増幅器705からは1次側電流検出用抵抗5(R1)に流れる直流電源回路2の1次側電流と、出力電流検出用抵抗6(R2)に流れるインバータ回路3以降の出力電流とが加算された合計電流値の信号Scが検出され制御部8へ出力される。この制御部8の動作は図3で説明した通りである。

また、各抵抗の比率は第1の増幅器711の電圧増幅度Kを加味して、

 $\Gamma(KR2/R1) = (R10/R3) = (R12/R11)$] EUT = LUT

[0035]

以上のように、この実施の形態3によれば、合計電流検出部7 C は、出力電流検出用抵抗6で検出した出力電流値の信号を第1の増幅器711で増幅し、この第1の増幅器711の出力信号と1次側電流検出用抵抗5で検出した1次側電流値の信号とを第2の増幅器705で加算増幅するように構成したので、出力電流検出用抵抗6(R2)を消費電力の軽減上から低抵抗にしても電流の検出精度の低下を防止することができ、第2の増幅器705から誤差の少ない加算増幅出力を得ることができる。

[0036]

実施の形態4.

図6はこの発明の実施の形態4による放電灯点灯装置の合計電流検出部7Dの回路構成図である。図3または図5と同一のものについては同一符合を付してあり、これら同一符合のものについての説明は省略する。

回りたおいて、この大心の形態はたよる口間电心機山即に口は、大心の形態とで説明した比較器706による過電流判定機能と、実施の形態3(図5)で説明した増幅器711による増幅機能とを設けて構成したものである。

[0037]

図6中の抵抗701(R3)、増幅器711および抵抗712(R10)で構成される部分の動作については図5で説明した通りであり、抵抗701(R3)を経た1次側電流検出用抵抗5(R1)からの電圧信号と、増幅器711および抵抗712(R10)を経た出力電流検出用抵抗6(R2)からの電圧信号とが合成された電圧信号は、例えば演算増幅器で構成する比較器715の逆相入力端子(一端子)に入力する。この比較器715の正相入力端子(十端子)には図4と同様に、抵抗716(R13)と抵抗717(R14)とにより直流電圧Vccを分圧した過電流判定用の基準設定値Vsを設定している。この基準設定値Vsについても図4と同様に、安定化された例えば3Vまたは5V等の直流電圧Vccを使用して分圧し、変動のない安定化された基準設定値Vsにする。

この比較器 7 1 5 と抵抗 7 1 6 (R 1 3) および抵抗 7 1 7 (R 1 4) 等で比較回路を 形成している。

また、比較器 7 1 5 に対しては図 4 と同様に、抵抗 7 0 1 (R 3), 7 1 2 (R 1 0) とコンデンサ 7 0 8 (C 1) とで形成されるる積分回路を設け、ノイズ等の瞬間的な変動に反応しないようにしている。

[0038]

比較器 7 1 5 の動作については図 4 の比較器 7 0 6 と基本的に同様であり、抵抗 7 0 1 (R 3), 7 1 2 (R 1 0)とコンデンサ 7 0 8 (C 1)とからなる積分回路を経て入力された合計電流値の信号 S d が基準設定値 V s を超えない範囲内の場合、比較器 7 1 5 は制御部 8 に対し通常制御の状態に設定する。この設定に従い、図 1 に示す制御部 8 は直流電源回路 2 の直流電圧 V o を略一定に維持するようにスイッチングトランジスタ 2 4 をスイッチング制御して出力電力を制御し、直流電源 1 から供給される電流 I b を制御する。

上記に対し、比較器 7 1 5 による比較において合計電流値の信号 S d が基準設定値 V s を超えた場合、比較器 7 1 5 は過電流制限を指示する信号 (Se) を制御部 8 へ出力する。制御部 8 は入力されたこの指示信号に従い、直流電源回路 2 のスイッチングトランジスタ 2 4 をスイッチング制御して出力電力を制限し、直流電源 1 から供給される電流に対し過電流制限を行う。

[0039]

上記比較器 7 1 5 は、実施の形態 3 (図 5) で説明した第 2 の増幅器 7 0 5 をこの比較器 7 1 5 として使用するようにしてもよい。この場合、増幅器 7 1 1 は削除してもよい。これにより、加算器用増幅器と過電流検出用の比較器を統合することができる。さらに、この統合した加算器用増幅器にコンデンサ 7 0 8 (C 1)等からなる上記積分回路を付加するようにしてもよい。

[0040]

以上のように、この実施の形態4によれば、合計電流検出部7 Dは、出力電流検出用抵抗6で検出した出力電流値の信号を第1の増幅器711で増幅し、この第1の増幅器711の出力信号と1次側電流検出用抵抗5で検出した1次側電流値の信号とを合成した信号を比較器715へ入力して基準設定値Vsと比較し、比較器715はこの合成した合計電流値の信号Sdが基準設定値Vsを超えたときには、直流電源回路2の出力電力を制限し、直流電源1から供給される電流に対し過電流制限を指示する信号Seを制御部8へ出力するように構成したので、直流電源回路2の1次側電流等を減少させ、これにより直流電源1から流出される電流が制限され、直流電源1や直流電源回路2等の負荷回路を過電流から保護することができる。

[0041]

また、比較器 7 1 5 に対しては、抵抗 7 0 1 (R3), 7 1 2 (R10) とコンデンサ 7 0 8 (C1) とからなる積分回路を設けているので、合計電流値の信号 S d が 例 えば ノイズ等の影響により瞬間的な大電流となっても比較器 7 1 5 はこの影響を受けないように

4 のしてかじさる。

[0042]

また、実施の形態3(図5)の第2の増幅器705をこの実施の形態4の比較器715として使用することにより、加算器用増幅器と過電流検出用の比較器を統合することができ、さらに、コンデンサ708(C1)等からなる上記積分回路をを付加することにより瞬間的な大電流に反応しない反応特性を持たせることもできる。これにより、過電流制限に必要な電流加算と比較および反応特性の機能を簡単な構成で実現することができる。

[0043]

実施の形態5.

図7はこの発明の実施の形態5による放電灯点灯装置の合計電流検出部7Eの回路構成図である。図3、図5または図6と同一のものについては同一符合を付してあり、これら同一符合のものについての説明は省略する。

図7において、この実施の形態5による合計電流検出部7Eは、実施の形態4の構成に対しトランジスタ(PNP形)718と、このトランジスタ718のベース電圧設定用の抵抗719(R15)および抵抗720(R16)とを設けて構成したものである。この構成部分は積分回路電圧設定手段を形成している。

上記トランジスタ718等の目的は、抵抗701(R3),712(R10)とコンデンサ708(C1)とで形成される積分回路を比較器715に設けたことに対する応答性の改善である。

以下、このトランジスタ718等による応答性の改善について図8で説明する。

[0044]

図8は直流電源1から供給される時間に対する電流Ib(図1)と、比較器715の時間に対する出力信号Sfとのタイミング関係図であり、(a)は前者の電流Ibを示し、(b)は後者の出力信号(電圧信号)Sfを示す。

[0045]

これに対し、トランジスタ718を設けた場合には以下のようになる。

 $V = \{ (R 1 6 \cdot V c c) / (R 1 5 + R 1 6) \} + 0.7 (V)$

[0.046]

図8(b)の実線部分がオン状態時の上記エミッタ電圧Veを示し、このエミッタ電圧Veは比較器715の出力信号Sfのレベルでもあり、電源電圧Vccが変動しない限り一定値となる。従って、タイミングta以降で電流Ibが過電流Ib2となった場合の下降開始時点のレベルは上記エミッタ電圧Veとなる。この結果、過電流制限を開始させるための出力信号Sfoに達するまでの下降時間はTnとなる。なお、下降の傾斜について

はトラングへと110で取りない物口と凹がに、払加(UICNO)、112 CNIU)とコンデンサ708 (C1)の積分定数によって決定される。

上記下降時間Tnは上述のトランジスタ718を設けない場合の下降時間Tmに対し短く、過電流制限を開始させるための時間を短縮し、過電流制限の応答性を早くすることができることを意味する。

上記説明以外の基本動作については実施の形態4(図6)と同様であり、その説明は省略する。

[0047]

以上のように、この実施の形態5によれば、合計電流検出部7 E は、実施の形態4(図6)の合計電流検出部7 Dの構成に対し、比較器715に設けた抵抗701(R3),712(R10)とコンデンサ708(C1)とで形成される積分回路の出力電圧を制限する積分回路電圧設定手段とを備えた構成としたので、積分回路の出力(トランジスタ718エミッタ)が予め所定の電圧(Ve)に制限され待機しているため、比較器715が過電流制限の開始を指示する信号Sfを制御部8に対し出力するまでの時間を短縮することができる。これにより、瞬間的な大電流には反応せずに、連続的な過電流に対し迅速に応答する積分回路が実現でき、素早い応答性の過電流制限を行うことができる。

[0048]

実施の形態6.

図9はこの発明の実施の形態6による放電灯点灯装置の回路構成図であり、自動車の左右へッドランプ点灯用の放電灯点灯装置としたものである。

実施の形態1では、一つの放電灯点灯回路からなる放電灯点灯装置の中の直流電源回路 2およびインバータ回路3等を直流電源1の負荷としたものであった。

これに対し、図9に示すこの実施の形態6による放電灯点灯装置は二つの放電灯点灯回路を備え、これら二つの放電灯点灯回路各々を直流電源1の負荷としたものである。

図9において、この実施の形態6による放電灯点灯装置は、直流電源11、第1の放電灯点灯回路12、第2の放電灯点灯回路13、第1の負荷電流検出用抵抗14(R121)、第2の負荷電流検出用抵抗15(R131)、合計電流検出部16および制御部17とで構成され、第1の放電灯点灯回路12は自動車の右ヘッドランプ用の放電灯18の点灯用であり、第2の放電灯点灯回路13は自動車の左ヘッドランプ用の放電灯19の点灯用としたものである。

[0049]

上記構成において、直流電源11は図1の直流電源1に相当し、直流電圧Vbの例えば、バッテリー等の直流電源である。

[0050]

第1の放電灯点灯回路12と第2の放電灯点灯回路13とは同一構成であり、1次側と 2次側とが分離した昇圧用のDC/DCコンバータのトランス121(131)と、この トランス121(131)に対しスイッチング動作するMOS形FETのスイッチングト ランジスタ122(132)、このトランス121(131)に発生した交流電圧を直流 電圧にする整流ダイオード123(133)および平滑用のコンデンサ124(134) とからなり、直流電源11からトランス121(131)の1次側に印加される直流電圧 Vbを所定電圧値の直流電圧Voに変換してトランス121(131)の2次側より出力 する直流電源回路と、これら整流ダイオード123(133)および平滑用のコンデンサ 1 2 4 (1 3 4) で直流化した直流電圧 V o を矩形波交流に変換するインバータ回路 1 2 5(135)と、このインバータ回路125(135)で変換した矩形波交流をもとに起 動用の高電圧パルスを発生し、放電灯18(19)へ印加して放電を開始させるするイグ ナイタ126(136)とで構成される。これら第1の放電灯点灯回路12および第2の 放電灯点灯回路13それぞれは、1次側と2次側とが分離したトランス121(131) を使用している点を除き、他の構成部分については図1の構成と基本的に同様である。ま た、直流電源回路とインバータ回路125(135)とは、この放電灯点灯装置における 広義の電源回路を形成する。

IUUJII

第1の負荷電流検出用抵抗14(R121)および第2の負荷電流検出用抵抗15(R131)はそれぞれ負荷電流検出手段を形成し、直流電源11の直流電圧Vbから第1の放電灯点灯回路12または第2の放電灯点灯回路13へ流れる電流を電圧信号として検出する。これら電流は直流電源11の負荷電流である。

[0052]

合計電流検出部16は図1の合計電流検出部7に相当し、第1の負荷電流検出用抵抗14(R121)および第2の負荷電流検出用抵抗15(R131)で検出した負荷電流をもとにこれら複数の負荷回路へ流れる合計電流値を検出する。

[0053]

制御部17は図1の制御部8に相当し、合計電流検出部16で検出された合計電流値をもとに第1の放電灯点灯回路12および第2の放電灯点灯回路13それぞれのスイッチングトランジスタ122(132)をスイッチング制御してその出力電力を制御することにより、直流電源11から供給される電流1bを制御する。

[0054]

次に図9に示す合計電流検出部16の具体的構成をもとに、直流電源11から供給される電流Ibの制御の動作について説明する。

図9に示す合計電流検出部16の具体的内部構成は実施の形態1(図3)で説明した合計電流検出部7Aに相当し、抵抗161(R161),162(R162),163(R163),164(R164)、および例えば演算増幅器で構成する増幅器165とで構成され、加算増幅回路を形成している。

[0055]

この構成において、抵抗161(R161)は第1の負荷電流検出用抵抗14(R121)と接続され、また、抵抗162(R162)は第2の負荷電流検出用抵抗15(R131)と接続され、これら両抵抗161(R161)、162(R162)を介し第1の負荷電流検出用抵抗14(R121)で検出された第1の放電灯点灯回路12の負荷電流検出用抵抗15(R131)で検出された第2の負荷電がの電圧信号と、第2の負荷電流検出用抵抗15(R131)で検出された第2の放電灯点灯回路13の負荷電流の電圧信号とを合成し、この合成した電圧信号を増幅器165で増幅器163(R14)に接続され、この増幅器165を合計電流を日本の上ででは抵抗163(R163)、164(R164)が図示のように接続され、この増幅器165を合計電流のでは第1の負荷電流検出用抵抗14(R121)に流れる第1の放電灯点灯幅器165からは第1の負荷電流検出用抵抗14(R121)に流れる第1の放電灯点灯点灯回路13の負荷電流とが加算された合計電流値の信号Sgが検出され出力される。により、直流電源11から供給される電流1bに相当する合計電流値の信号Sgが得られることとなる。

[0056]

増幅器165から出力された合計電流値の信号Sgは制御部17へ送出され、制御部17はこの合計電流値の信号Sgをもとに第1の放電灯点灯回路12および第2の放電灯点灯回路13それぞれのスイッチングトランジスタ122,132をスイッチング制御してその出力電力を制御することにより、直流電源11から供給される電流Ⅰbを制御する。この場合、制御部17は合計電流値の信号Sgが予め設定する直流電源1の過電流制限値内では第1の放電灯点灯回路12および第2の放電灯点灯回路13それぞれの直流出力電圧Voを略一定に維持するように出力電力を制御し、これに対し、合計電流値の信号Sgがこの過電流制限値を超えたときには、第1の放電灯点灯回路12および第2の放電灯点灯回路13それぞれの直流電源回路の出力電力を制限し、直流電源11から供給される電流に対し過電流制限を行う。

[0057]

上記説明においては、合計電流検出部16の具体的内部構成を実施の形態1(図3)の合計電流検出部7Aに相当するものとしたが、これに限るものではなく、例えば、実施の

ル窓~(四キノツロ引 电処伏山即し口に狙ヨッるもいにしてもよい。

または、この合計電流検出部7Bの比較器706に増幅機能を持たせ、加算器用増幅器と過電流検出用の比較器を統合するようにしてもよい(図示せず)。

さらに、この合計電流検出部7Bの積分回路を形成するコンデンサ708(C1)に対し、実施の形態5(図7)で説明した積分回路電圧設定手段を付加してもよい(図示せず)。

[0058]

また、図9の構成は直流電源11の負荷を同一構成の第1の放電灯点灯回路12および第2の放電灯点灯回路13の2系統としたものであるが、これに限るものではなく、3系統以上の負荷としてもよい。この場合、合計電流検出部16はこれら3系統以上の負荷からの負荷電流を加算合計して合計電流値を検出し、この検出した合計電流値をもとに前述のように、これら3系統以上の負荷における直流電源回路の各々のスイッチングトランジスタをスイッチング制御するようにすればよい。

[0059]

以上のように、この実施の形態6によれば、直流電源11から第1の放電灯点灯回路12へ分流する電流値を第1の負荷電流検出用抵抗14で検出する一方、直流電源11から第2の放電灯点灯回路13へ分流する電流値を第2の負荷電流検出用抵抗15で検出し、これら検出した電流値をもとに第1の放電灯点灯回路12および第2の放電灯点灯回路13等の負荷回路へ流れる合計電流値を合計電流検出部16で検出し、この検出した合計電流値もとに制御部17が第1の放電灯点灯回路12および第2の放電灯点灯回路13それぞれのスイッチングトランジスタ122,132を制御して出力電力を制御し、直流電源11から供給される電流Ⅰ b を制御するように構成したので、一つの直流電源11から開発の放電灯点灯回路13等の複数の負荷回路へ負荷電流が分流するように構成された放電灯点灯要路13等の複数の負荷回路へ負荷電流が分流するように構成された放電灯点灯装置において、この一つの直流電源11から流出される電流値に相当する電流値を正確に検出でき、この検出結果をもとに直流電源1から供給される電流Ⅰ b を適切に制御することができる。

[0060]

また、制御部17は合計電流値の信号Sgが予め設定する直流電源11の過電流制限値を超えたときには、第1の放電灯点灯回路12および第2の放電灯点灯回路13それぞれの直流電源回路の出力電力を制限し、直流電源11から供給される電流に対し過電流制限を行うように構成したので、直流電源11や第1の放電灯点灯回路12および第2の放電灯点灯回路13等の負荷回路を過電流から保護することができる。

[0061]

また、第1の負荷電流検出用抵抗14による検出回路と第2の負荷電流検出用抵抗15による検出回路とは各々独立しているため、互いに干渉することなくそれぞれが正確な電流を検出することができる。

[0062]

また、合計電流検出部16は合計電流検出部7A(実施の形態1)または合計電流検出部7B(実施の形態2)と同一構成でよく、この同一構成の合計電流検出部16により、既述の合計電流検出部7Aまたは合計電流検出部7Bそれぞれの効果を享受しつつ、直流電源11から第1の放電灯点灯回路12および第2の放電灯点灯回路13等の複数の負荷回路へ流出される電源電流値に相当する電流値を正確に検出することができる。

さらに、合計電流検出部7Bの積分回路に対し、実施の形態5(図7)の積分回路電圧 設定手段を付加した場合には、既述の素早い応答性の過電流制限を行うことができる。

【図面の簡単な説明】

[0063]

【図1】この発明の実施の形態1による放電灯点灯装置の基本構成を示す回路図である。

【図2】この発明の実施の形態1による放電灯点灯装置に関し、(a)は1次側電流検出用抵抗(R1)の電流波形図、(b)は出力電流検出用抵抗(R2)の電流波形

凶 (める。

- 【図3】この発明の実施の形態1による放電灯点灯装置の合計電流検出部の回路構成図である。
- 【図4】この発明の実施の形態2による放電灯点灯装置の電流検出部の回路構成図である。
- 【図5】この発明の実施の形態3による放電灯点灯装置の電流検出部の回路構成図である。
- 【図 6 】この発明の実施の形態 4 による放電灯点灯装置の電流検出部の回路構成図である。
- 【図7】この発明の実施の形態5による放電灯点灯装置の電流検出部の回路構成図である。
- 【図8】この発明の実施の形態5による放電灯点灯装置に関し、直流電源から供給される電流(a)と、比較器の出力信号(b)とのタイミング関係図である。
 - 【図9】この発明の実施の形態6による放電灯点灯装置の回路構成図である。

【符号の説明】

[0064]

1,11 直流電源、2 直流電源回路、3 インバータ回路、4 イグナイタ、5 1次側電流検出用抵抗、6 出力電流検出用抵抗、7,16 合計電流検出部、8,17 制御部、9,18,19 放電灯、12,13 放電灯点灯回路、14,15 負荷電流検出用抵抗、21 トランス、22 整流ダイオード、23 平滑用コンデンサ、24 スイッチングトランジスタ、31~34 FET、35 Hブリッジドライバ、121,131 トランス、122,132 スイッチングトランジスタ、123,133 整流ダイオード、124,134 平滑用コンデンサ、125,135 インバータ回路、126,136 イグナイタ、165,705,711 増幅器、706,715 比較器、708 コンデンサ、718 トランジスタ。

【図3】

【図5】

【図7】

----- トランジスタ718無し---- トランジスタ718有り

【盲规句】女们盲

【要約】

【課題】 一つの直流電源から複数の回路へ負荷電流が分流する放電灯点灯装置において、この直流電源から供給される電流を制御する。

【解決手段】 直流電源1から直流電源回路2の1次側へ分流する1次側電流値を1次側電流検出用抵抗5で検出し、インバータ回路3以降へ分流する出力電流値を出力電流検出用抵抗6で検出し、これら検出した電流値をもとに直流電源回路2およびインバータ回路3等の複数の負荷回路へ流れる合計電流値を合計電流検出部7で検出し、この検出した合計電流値をもとに制御部8が直流電源回路2のスイッチングトランジスタ24を制御して出力電力を制御し、直流電源1から供給される電流1bを制御する。

【選択図】

図 1

0000006013 19900824 新規登録 591031924

東京都千代田区丸の内2丁目2番3号 三菱電機株式会社

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP05/009555

International filing date:

25 May 2005 (25.05.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-220400

Filing date: 28 July 2004 (28.07.2004)

Date of receipt at the International Bureau: 30 June 2005 (30.06.2005)

Priority document submitted or transmitted to the International Bureau in Remark:

compliance with Rule 17.1(a) or (b)

