Introductory Functional Analysis Chapter 1 Exercises

Top Maths

Last Updated: Tuesday 5th March, 2024

1.1. Prove the reverse triangle inequality: For vectors x and y in any normed linear space,

$$||x + y|| > |||x|| - ||y|||$$
.

Proof. Without loss of generality, suppose $||x|| \ge ||y||$; it suffices to show that

$$||y|| - ||x|| \le ||x + y|| \le ||x|| - ||y||,$$

because for $\alpha, \beta \in \mathbb{R}$, $|\alpha| \leq |\beta|$ if and only if

$$-|\beta| \le \alpha \le |\beta|$$
.

Assuming that $||x|| \ge ||y||$ is like assuming $\beta \ge 0$ in the above, so that we can remove the absolute value signs. Now,

$$||y|| - ||x|| = ||x + y - x|| - ||x|| \le ||x + y|| + ||x|| - ||x|| = ||x + y||$$

giving the left-side inequality. For the right-side inequality, we have

$$||x|| - ||y|| - ||x + y|| \ge ||x + y - x|| - ||y|| = ||y|| - ||y|| = 0$$

so we get that $||x|| - ||y|| \ge ||x + y||$ and the result follows.

1.2. Show that C[0,1] is a Banach space in the supremum norm. Hint: if $\{f_n\}$ is a Cauchy sequence in C[0,1], then for each fixed $x \in [0,1]$, $\{f_n(x)\}$ is a Cauchy sequence in \mathbb{C} , which is complete.

Proof. Suppose $\{f_n\}$ is a Cauchy sequence in C[0,1]. That means, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for n, m > N we have

$$||f_n - f_m|| = \max_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon.$$

We also get that, for $m, n \ge N$, for all $a \in [0, 1]$,

$$|f_n(a) - f_m(a)| \le \max_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon.$$

In particular, since $\{f_n\}$ is a Cauchy sequence in C[0,1], $\{f_n(a)\}$ is a Cauchy sequence in \mathbb{C} for all $a \in [0,1]$. Since \mathbb{C} is complete, $\{f_n(a)\}$ converges (because it is Cauchy) for all $a \in [0,1]$. For each $a \in [0,1]$, define

$$f(a) := \lim_{n \to \infty} f_n(a).$$

1.3. Let $C^1[0,1]$ be the space of continuous, complex-valued functions on [0,1] with continuous first derivative. Show that the supremum norm $\|\cdot\|_{\infty}$, $C^1[0,1]$ is not a Banach space, but that in the norm defined by $\|f\| = \|f\|_{\infty} + \|f'\|_{\infty}$ it does become a Banach space.

1.4. Show that the space ℓ^1 of Example 1.5 is complete.