ЛЕКЦИЯ 11.1 ПРОБЛЕМА СОБСТВЕННЫХ ЗНАЧЕНИЙ. ЛОКАЛИЗАЦИЯ И МЕТОДЫ РЕШЕНИЯ ЧАСТИЧНОЙ ПРОБЛЕМЫ СОБСТВЕННЫХ ЗНАЧЕНИЙ

1. Собственные числа и векторы. Постановка задачи

Число λ называется *собственным значением* (*числом*) квадратной матрицы A, если существует ненулевой вектор \bar{x} , удовлетворяющий уравнению

$$A\bar{x} = \lambda \bar{x}.\tag{1}$$

Вектор \bar{x} называется *собственным вектором* матрицы A, соответствующим собственному числу λ . Уравнение (1) можно записать в виде

$$(A - \lambda E)\bar{x} = \bar{0},\tag{2}$$

E- единичная матрица. Это однородная линейная система. Она имеет ненулевое решение, только если определитель матрицы равен нулю:

$$\det(A - \lambda E) = 0. \tag{3}$$

Определитель $\det(A - \lambda E)$ – это многочлен степени n от λ , n – порядок матрицы. Он называется характеристическим многочленом матрицы A. А уравнение (3) для нахождения собственных чисел - это алгебраическое уравнение степени n. Оно называется характеристическим (вековым) уравнением матрицы A. Таким образом, для нахождения собственных чисел надо решить алгебраическое уравнение n-й степени (3).

Проблема собственных чисел (значений) — это задача вычисления собственных чисел и векторов матрицы. Если надо найти их все, то проблема называется полной. Она возникает, например, в механике, химии. В других прикладных задачах надо вычислить только некоторые собственные числа или векторы. Например, наибольшее или наименьшее по модулю собственные числа; собственное число, ближе всего расположенное к заданному числу; первые два по модулю собственных значения. Такая задача называется частичной проблемой собственных значений.

Трудность проблемы собственных значений в том, что для больших порядков матриц вычислять корни алгебраического уравнения очень непросто. А на практике как раз и

приходится находить собственные числа матриц очень больших размеров. Поэтому разработаны специальные методы построения и решения характеристического уравнения методы, вообще обходящиеся без решения алгебраических уравнений высоких степеней.

Приведём некоторые полезные свойства собственных чисел и векторов.

Свойство 1. Если λ - собственное число матрицы A и соответствующий собственный вектор есть \bar{x} , то $\alpha \bar{x}$ - тоже собственный вектор для λ , где $\alpha \neq 0$.

Это свойство означает, что каждому собственному числу соответствует бесконечное множество собственных векторов (они определяются с точностью до множителя).

Свойство 2. Собственными числами диагональных и треугольных матриц являются их диагональные элементы. Характеристическое уравнение в этом случае принимает вид

$$\prod_{i=1}^{n} (\lambda - a_{ii}) = 0,$$

где a_{ii} – диагональные элементы матрицы.

Для следующего свойства определим *отношение Рэлея* для квадратной матрицы A:

$$\rho(\bar{x}) = \frac{(A\bar{x}, \bar{x})}{(\bar{x}, \bar{x})},$$

где \bar{x} – произвольный ненулевой вектор. Круглые скобки – это скалярное произведение в векторном пространстве.

Свойство 3. Если \bar{x} – собственный вектор матрицы A, то $\rho(\bar{x})$ – ее собственное число.

Доказательство. Действительно, если λ —собственное число, \bar{x} — собственный вектор, то

$$\rho(\bar{x}) = \frac{(A\bar{x}, \bar{x})}{(\bar{x}, \bar{x})} = \frac{(\lambda \bar{x}, \bar{x})}{(\bar{x}, \bar{x})} = \frac{\lambda(\bar{x}, \bar{x})}{(\bar{x}, \bar{x})} = \lambda.$$

Пару, составленную из собственного числа и соответствующего собственного вектора, будем называть собственной парой матрицы.

Свойство 4. Если (λ, \bar{x}) — собственная пара обратимой матрицы A, то $\left(\frac{1}{\lambda}, \bar{x}\right)$ - собственная пара матрицы A^{-1} .

Доказательство. Действительно, пусть λ —собственное число, \bar{x} — собственный вектор матрицы A. Умножим равенство (1) слева на $\frac{1}{\lambda}A^{-1}$ и получим

$$\frac{1}{\lambda}\bar{x}=A^{-1}\bar{x},$$

что и доказывает утверждение. ■

Свойство 5. Пусть (μ, \bar{x}) — собственная пара матрицы A - pE при некотором $p \in \mathbb{R}$. Тогда $(\mu + p, \bar{x})$ - собственная пара матрицы A.

Доказательство. По условию $(A - pE)\bar{x} = \mu\bar{x}$, откуда $A\bar{x} = (\mu + p)\bar{x}$. Обозначая $\lambda = \mu + p$, получаем, что $\{\lambda, \bar{x}\}$ — собственная пара матрицы A.

Для последнего свойства дадим определение подобных матриц. Матрица B подобна матрице A, если выполняется равенство

$$B = HAH^{-1}, (4)$$

где H – некоторая невырожденная матрица. Очевидно, что отношение подобия симметрично: если матрицы A и B подобны, то и наоборот, B и A подобны.

Свойство 6. Собственные числа подобных матриц совпадают.

Доказательство. Пусть матрицы A и B подобны. Запишем характеристическое уравнение (3) для матрицы B. В силу (4) имеем

$$\det(B - \lambda E) = \det(HAH^{-1} - \lambda E) = \det(HAH^{-1} - \lambda EHH^{-1}) =$$

$$= \det(H(A - \lambda E)H^{-1}) = \det(H)\det(A - \lambda E)\det(H^{-1}) = \det(A - \lambda E).$$

Здесь применены известные свойства определителей: определитель произведения матриц равен произведению определителей, определители взаимно обратных матриц взаимно обратны. Получили одно и то же характеристическое уравнение, поэтому собственные числа подобных матриц совпадают. ■

2. Локализация собственных чисел

Перед вычислением собственных чисел полезно провести их локализацию, т.е. определить приблизительно их расположение на комплексной плоскости. Иногда этого бывает достаточно для нужд решаемой задачи. Это можно сделать с помощью теоремы Гершгорина.

Пусть

$$r_i = \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|,$$

$$S_i = \{z \in \mathbb{C} \mid |z - a_{ii}| \le r_i\},$$

$$i = 1, ..., n$$
.

 r_i - сумма модулей недиагональных элементов i-й строки матрицы; S_i — замкнутый круг комплексной плоскости радиуса r_i с центром в точке a_{ii} , где a_{ii} — это диагональный элемент матрицы в i-й строке. Круги S_i называются *кругами Гершгорина*. По теореме Гершгорина эти круги локализуют собственные числа.

Теорема 1 (Гершгорина). Все собственные значения матрицы A лежат в объединении кругов

$$\bigcup_{i=1}^{n} S_i.$$

Если какой-нибудь круг изолирован, то он содержит ровно одно собственное значение матрицы A.

Доказательство. Пусть (λ, \bar{x}) — собственная пара матрицы A и x_i — наибольшая по модулю координата собственного вектора. Из уравнения (2) получаем

$$a_{ii}x_i + \sum_{\substack{j=1\\j\neq i}}^n a_{ij}x_j - \lambda x_i = 0 \iff (a_{ii} - \lambda)x_i = -\sum_{\substack{j=1\\j\neq i}}^n a_{ij}x_j \iff$$

$$\Leftrightarrow a_{ii} - \lambda = -\sum_{\substack{j=1\\j\neq i}}^{n} a_{ij} \frac{x_j}{x_i}$$

 $(x_i \neq 0$, т.к. $\bar{x} \neq \bar{0}$). Поскольку

$$\left|\frac{x_j}{x_i}\right| \le 1,$$

j = 1, ..., n, то

$$|a_{ii} - \lambda| \le \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}| \left| \frac{x_j}{x_i} \right| \le \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}| = r_i.$$

Итак, получается, что собственное число λ лежит в некотором круге Гершгорина S_i . Отсюда следует, что оно принадлежит объединению всех кругов Гершгорина.

Из алгебры известно, что если матрица симметрическая, то все ее собственные числа вещественны. У такой матрицы круги Гершгорина превращаются в отрезки числовой оси, и их объединение есть отрезок локализации собственных чисел.

3. Методы решения частичной проблемы собственных значений

Методы решения проблемы собственных значений разделяются на две группы. В методах первой группы специальными приёмами вычисляются коэффициенты характеристического полинома, т.е. строится характеристическое уравнение. Из алгебры известно, что коэффициенты характеристического полинома являются с точностью до знака суммами некоторых миноров матрицы. А вычисление миноров, т.е. определителей – это очень трудоёмкая операция. Поэтому необходимы специальные методы, обходящие непосредственное вычисление коэффициентов характеристического полинома по минорам. А далее собственные значения находятся численным решением характеристического уравнения. Эти методы точны в том смысле, что они точно находят коэффициенты характеристического полинома. Хотя сами собственные значения вычисляются приближённо. Они очень хорошо приспособлены для полной проблемы.

В методах второй группы собственные числа находятся как пределы итерационных числовых последовательностей. При этом характеристический полином вообще не используется. Это значительно упрощает вычисления. Эти методы более приспособлены к частичной проблеме.

3.1. Степенной метод вычисления наибольшего по модулю собственного числа

Рассмотрим степенной метод нахождения наибольшего по модулю собственного числа матрицы. Он относится ко второй группе.

Пусть все собственные числа матрицы A размера $n \times n$ различны и выполняются неравенства

$$|\lambda_1| > |\lambda_2| > \dots > |\lambda_n|. \tag{5}$$

Надо вычислить наибольшее по модулю собственное число λ_1 и соответствующий ему собственный вектор \bar{x}_1 . Заметим, что при таких условиях все собственные числа должны быть вещественными, иначе комплексно сопряжённые им были бы тоже собственными с теми же модулями. Будем считать, что матрица A вещественная.

Начиная с произвольного вектора $\bar{x}^{(0)}$, строим последовательность векторов $\left\{\bar{x}^{(k)}\right\}_{k=0}^{\infty}$ и чисел $\left\{\lambda_1^{(k)}\right\}_{k=0}^{\infty}$, являющихся приближением к собственному вектору \bar{x}_1 и собственному числу λ_1 . Очередное k-е приближение к собственному вектору \bar{x}_1 вычисляется по формуле

$$\bar{x}^{(k)} = A\bar{x}^{(k-1)}$$

 $k = 1, 2, \dots$

Можно предположить, что при достаточно хорошем приближении $\bar{x}^{(k-1)}$ к собственному вектору \bar{x}_1 для вычисления собственного числа в силу свойства 3 можно применить отношение Рэлея:

$$\begin{split} \lambda_1 &\approx \rho \left(\bar{x}^{(k-1)} \right) = \frac{\left(A \bar{x}^{(k-1)}, \bar{x}^{(k-1)} \right)}{\left(\bar{x}^{(k-1)}, \bar{x}^{(k-1)} \right)} \Rightarrow \\ &\Rightarrow \lambda_1^{(k)} = \frac{\left(A \bar{x}^{(k-1)}, \bar{x}^{(k-1)} \right)}{\left(\bar{x}^{(k-1)}, \bar{x}^{(k-1)} \right)} = \frac{\left(\bar{x}^{(k)}, \bar{x}^{(k-1)} \right)}{\left(\bar{x}^{(k-1)}, \bar{x}^{(k-1)} \right)}. \end{split}$$

Тогда расчётные формулы степенного метода имеют такой вид:

$$\begin{cases} \bar{x}^{(k)} = A\bar{x}^{(k-1)}, \\ \lambda_1^{(k)} = \frac{\left(\bar{x}^{(k)}, \bar{x}^{(k-1)}\right)}{\left(\bar{x}^{(k-1)}, \bar{x}^{(k-1)}\right)}, \end{cases}$$
(6)

k=1,2,...; начальная итерация – произвольный ненулевой вектор $\bar{x}^{(0)}$.

Название метода объясняется тем, что приближение $\bar{x}^{(k)}$ равно произведению k-й степени матрицы A на начальный вектор $\bar{x}^{(0)}$:

$$\bar{x}^{(k)} = A\bar{x}^{(k-1)} = A^2\bar{x}^{(k-2)} = A^3\bar{x}^{(k-3)} = \dots = A^k\bar{x}^{(0)}.$$
 (7)

Получим расчётные формулы (6) более строго. Разложим начальный вектор $\bar{x}^{(0)}$ по базису нормированных собственных векторов (предполагаем, что матрица A допускает такой базис, в силу свойства 1 собственные векторы можно нормировать, т.е. считаем, что $\|\bar{x}_i\|=1$):

$$\bar{x}^{(0)} = \sum_{i=1}^n c_i \, \bar{x}_i.$$

Тогда в силу (6) имеем

$$\bar{x}^{(k)} = A^k \sum_{i=1}^n c_i \, \bar{x}_i = \sum_{i=1}^n c_i \, A^k \bar{x}_i = \sum_{i=1}^n c_i \, A^{k-1} \lambda_i \bar{x}_i = \sum_{i=1}^n c_i \, A^{k-2} \lambda_i^2 \bar{x}_i =$$

$$= \sum_{i=1}^{n} c_{i} \lambda_{i}^{k} \bar{x}_{i} = c_{1} \lambda_{1}^{k} \bar{x}_{1} + \sum_{i=2}^{n} c_{i} \lambda_{i}^{k} \bar{x}_{i}.$$

Отсюда

$$\begin{split} \left(\bar{x}^{(k-1)}, \bar{x}^{(k-1)}\right) &= \left(c_1 \lambda_1^{k-1} \bar{x}_1 + \sum_{i=2}^n c_i \, \lambda_i^{k-1} \bar{x}_i, c_1 \lambda_1^{k-1} \bar{x}_1 + \sum_{i=2}^n c_i \, \lambda_i^{k-1} \bar{x}_i\right) = \\ &= |c_1|^2 |\lambda_1|^{2k-2} + O(|\lambda_1|^{k-1} |\lambda_2|^{k-1}) \end{split}$$

(поскольку λ_1 и λ_2 – максимальные по модулю собственные числа, остальными λ_i можно пренебречь, поэтому остаточный член в скалярном произведении равен $O(|\lambda_1|^{k-1}|\lambda_2|^{k-1}))$.

Далее, аналогично

$$\begin{split} \left(\bar{x}^{(k-1)}, \bar{x}^{(k)}\right) &= \left(c_1 \lambda_1^{k-1} \bar{x}_1 + \sum_{i=2}^n c_i \, \lambda_i^{k-1} \bar{x}_i, c_1 \lambda_1^k \bar{x}_1 + \sum_{i=2}^n c_i \, \lambda_i^k \bar{x}_i\right) = \\ &= \left(\lambda_1 c_1 \lambda_1^{k-2} \bar{x}_1 + \sum_{i=2}^n c_i \, \lambda_i^{k-1} \bar{x}_i, c_1 \lambda_1^k \bar{x}_1 + \sum_{i=2}^n c_i \, \lambda_i^k \bar{x}_i\right) = \\ &= \lambda_1 |c_1|^2 |\lambda_1|^{2k-2} + O(|\lambda_1|^k |\lambda_2|^k). \end{split}$$

Пусть

$$\lambda_1^{(k)} = \frac{\left(\bar{x}^{(k)}, \bar{x}^{(k-1)}\right)}{\left(\bar{x}^{(k-1)}, \bar{x}^{(k-1)}\right)}.$$

Тогда

$$\lambda_{1}^{(k)} = \frac{\lambda_{1}|c_{1}|^{2}|\lambda_{1}|^{2k-2} + O(|\lambda_{1}|^{k}|\lambda_{2}|^{k})}{|c_{1}|^{2}|\lambda_{1}|^{2k-2} + O(|\lambda_{1}|^{k-1}|\lambda_{2}|^{k-1})} = \frac{\lambda_{1}\left(1 + \frac{|\lambda_{1}|^{2}}{|c_{1}|^{2}}O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)\right)}{1 + \frac{1}{|c_{1}|^{2}}O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k-1}\right)}$$

Отсюда, пренебрегая остаточными членами ($|\lambda_2| < |\lambda_1|$, поэтому $\left|\frac{\lambda_2}{\lambda_1}\right|^k$ стремится к нулю при увеличении k), приходим к выводу, что $\lambda_1^{(k)}$ стремится к λ_1 . Это обосновывает расчётную формулу (6).

Сходимость метода обосновывает теорема 2. Она же даёт оценку относительной погрешности итерации λ_1 .

Теорема 2. Пусть собственные числа матрицы A различны и удовлетворяют условию (5). Если в разложении начального вектора

$$\bar{x}^{(0)}=c_1\bar{x}_1+\cdots+c_n\bar{x}_n$$

по базису $\{\bar{x}_i\}_{i=1}^n$ собственных векторов $c_1 \neq 0$, то последовательность $\left\{\lambda_1^{(k)}\right\}$ итераций степенного метода сходится к λ_1 при $k \to \infty$. При этом верна оценка погрешности

$$\delta\left(\lambda_1^{(k)}\right) = \frac{\left|\lambda_1^{(k)} - \lambda_1\right|}{|\lambda_1|} \le c\left(\frac{|\lambda_2|}{|\lambda_1|}\right)^k,$$

где c > 0 – некоторая константа.

Замечание 1. Теорема справедлива и для менее строгих условий на собственные числа. Например, если матрица A имеет простую структуру и её собственные числа удовлетворяют условию $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$. Матрицей простой структуры называется матрица, которую можно преобразованием подобия привести к диагональному виду:

$$HAH^{-1} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix},$$

где H — некоторая невырожденная матрица. Более того, теорема верна для любой матрицы, у которой одно собственное число максимально по модулю, а среди остальных могут быть совпадающие по модулю.

Замечание 2. У описанной в теореме матрицы всегда найдутся n линейно независимых собственных векторов, соответствующих n различным собственным числам. То же верно и для матрицы простой структуры: у неё всегда имеются n линейно независимых собственных векторов, соответствующих n собственным числам. Поэтому разложение вектора $\bar{x}^{(0)}$, фигурирующее в теореме, существует.

Данная теоремой оценка относительной погрешности неприменима на практике, т.к. собственные числа неизвестны. Требуется апостериорная оценка. В общем случае эффективных апостериорных оценок нет. Для симметрических матриц пригодная для реализации метода оценка формулируется следующей теоремой.

Теорема 3. Пусть λ^* — произвольное число, \bar{x}^* — произвольный ненулевой вектор. Тогда для любой симметрической матрицы A существует собственное число λ такое, что справедлива оценка

$$|\lambda - \lambda^*| \le \frac{\|A\bar{x}^* - \lambda^*\bar{x}^*\|}{\|\bar{x}^*\|}.$$

Применяя теорему к числу $\lambda_1^{(k)}$ и вектору $\bar{x}^{(k-1)}$ (тогда нужным собственным числом будет λ_1), получаем апостериорную оценку погрешности степенного метода:

$$\begin{cases} \left| \lambda_1 - \lambda_1^{(k)} \right| \le \frac{\left\| \bar{x}^{(k)} - \lambda_1^{(k)} \bar{x}^{(k-1)} \right\|}{\left\| \bar{x}^{(k-1)} \right\|}, \\ \bar{x}^{(k)} = A \bar{x}^{(k-1)}, \end{cases}$$

 $k = 1, 2, \dots$. Её уже можно использовать для останова итерационного процесса.

Для того чтобы избежать переполнения при расчёте на компьютере, вектор $\bar{x}^{(k)}$ можно нормировать:

$$\begin{cases} \|\bar{x}^{(0)}\| = 1, \\ \bar{y}^{(k)} = A\bar{x}^{(k-1)}, \\ \lambda_1^{(k)} = (\bar{y}^{(k)}, \bar{x}^{(k-1)}), \\ \bar{x}^{(k)} = \frac{\bar{y}^{(k)}}{\|\bar{y}^{(k)}\|}. \end{cases}$$

В качестве начального выбирается произвольный вектор $\bar{x}^{(0)}$ единичной нормы. На k-м шаге вычисляются итерации $\bar{y}^{(k)}$, $\lambda_1^{(k)}$ по расчётным формулам. Вектор $\bar{y}^{(k)}$ нормируется. Таким образом, $\bar{x}^{(k)}$ на каждом шаге имеет единичную норму.

3.2. Метод исчерпывания

После вычисления первой собственной пары (λ_1, \bar{x}_1) возникает задача о вычислении следующей пары (λ_2, \bar{x}_2) , где $|\lambda_2| > \cdots > |\lambda_n|$. Существует несколько способов исключения уже вычисленных собственных чисел и соответствующих собственных векторов с тем, чтобы не находить их заново. Эти способы принято называть *исчерпыванием* (методами исчерпывания). Приведем для примера один из методов исчерпывания, основанный на подобном преобразовании матриц.

Напомним, что подобные матрицы имеют одинаковые собственные числа (свойство 6), а соответствующие им собственные векторы определяются с точностью до множителя. Пусть матрицы A и B подобны. Тогда

$$A\bar{x} = \lambda \bar{x} \Rightarrow HA\bar{x} = \lambda H\bar{x} \iff HAH^{-1}H\bar{x} = \lambda H\bar{x} \Rightarrow$$

$$\Rightarrow HAH^{-1}(H\bar{x}) = \lambda H\bar{x} \Rightarrow B\bar{y} = \lambda \bar{y} \Rightarrow$$

$$\Rightarrow \bar{y} = H\bar{x},$$
(8)

где H – некоторая невырожденная матрица. Значит, если λ – собственное число матрицы A, \bar{x} - соответствующий собственный вектор, то $\bar{y} = H\bar{x}$ - собственный вектор матрицы B, соответствующий её собственному числу λ .

После вычисления λ_1 составим матрицу

$$H = \begin{pmatrix} \frac{1}{x_1^{(1)}} & 0 & 0 \dots & 0 \\ -\frac{x_1^{(2)}}{x_1^{(1)}} & 1 & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{x_1^{(n)}}{x_1^{(1)}} & 0 & 0 \dots & 1 \end{pmatrix},$$

где \bar{x}_1 - собственный вектор матрицы A, соответствующий собственному числу λ_1 . Очевидно, что H не вырождена. Тогда матрица

$$B_1 = HAH^{-1}$$

подобна матрице A; их собственные числа равны. Далее, поскольку $H\bar{x}_1=\bar{e}_1$, где \bar{e}_1 – первый единичный координатный вектор (орт), то

$$B_1(H\bar{x}_1) = HAH^{-1}(H\bar{x}_1) = H(A\bar{x}_1) = \lambda(H\bar{x}_1) \Rightarrow$$

$$\Rightarrow B_1\bar{e}_1 = \lambda_1\bar{e}_1.$$

А это значит, что \bar{e}_1 - собственный вектор матрицы B_1 , соответствующий λ_1 . При этом

$$\lambda_1 \bar{e}_1 = \begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Поэтому первый столбец матрицы B_1 равен $\lambda_1 \overline{e_1}$. Матрица B_1 , следовательно, имеет следующую структуру:

$$B_1 = HAH^{-1} = \begin{pmatrix} \lambda_1 & b_{12} & \cdots & b_{1n} \\ 0 & & & \\ \vdots & & B_2 & \\ 0 & & & \end{pmatrix}.$$

А по ней видно, что все её собственные числа, а значит и матрицы A, кроме λ_1 , являются собственными числами B_2 . Можно доказать, что при этом следующее по величине модуля собственное число λ_2 матрицы A является *первым* собственным числом матрицы B_2 . А оно вычисляется степенным методом. И так далее методом исчерпывания и степенным методом можно найти все собственные числа матрицы A.

Что касается собственного вектора \bar{x}_2 для второго собственного числа λ_2 , то можно предложить такой метод его вычисления. Тем же степенным методом находится собственный вектор меньшей матрицы B_2 , соответствующий λ_2 . Пусть он равен

$$\bar{y}_2 = \begin{pmatrix} y_2^{(1)} \\ \vdots \\ y_2^{(n-1)} \end{pmatrix},$$

$$B_2\bar{y}_2=\lambda_2\bar{y}_2.$$

Тогда матрица B_1 имеет собственный вектор, соответствующий λ_2 , такой структуры:

$$\overline{ys}_2 = \begin{pmatrix} b \\ y_2^{(1)} \\ \vdots \\ y_2^{(n-1)} \end{pmatrix}.$$

Надо найти число b. Из равенства $B_1\overline{ys}_2=\lambda_2\overline{ys}_2$ имеем уравнение для нахождения b:

$$\lambda_1 b + b_{12} y_2^{(1)} + \dots + b_{1n} y_2^{(n-1)} = \lambda_2 b.$$

Откуда получаем число b:

$$b = \frac{b_{12}y_2^{(1)} + \dots + b_{1n}y_2^{(n-1)}}{\lambda_2 - \lambda_1}.$$

Итак, вычислен собственный вектор для собственного числа λ_2 матрицы B_1 . Собственный вектор подобной ей матрицы A в силу (8) равен

$$\bar{x}_2 = H^{-1} \overline{y} \overline{s}_2.$$

Вычисление в этом итерационном процессе собственного вектора меньших матриц B_k есть еще более сложный ступенчатый процесс. Надо подниматься от собственного вектора B_k с помощью описанной процедуры до B_{k-1} и так далее до A.

Пример. Дана матрица $A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 2 \\ 2 & 2 & 1 \end{pmatrix}$. Степенным методом и методом исчерпывания вы-

числить собственные числа и собственные векторы матрицы.

Характеристическое уравнение (2) примет вид

$$\lambda^3 - 7\lambda^2 + 6\lambda + 8 = 0 \iff (\lambda - 2)(\lambda^2 - 5\lambda - 4) = 0.$$

Его корни:

$$\lambda_1=rac{5+\sqrt{41}}{2}$$
 , $\lambda_2=2$, $\lambda_3=rac{5-\sqrt{41}}{2}$.

А теперь их вычислим степенным методом и методом исчерпывания. За начальное приближение к первому собственному вектору возьмем $\bar{x}^{(1)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Степенным методом построим последовательность приближений (см. табл. 1).

Табл. 1. Последовательность приближений степенного метода в примере на с. 11

k	0	1	2	3	4	5
$\lambda_1^{(k)}$	-	1	5,444	5,698	5,702	5,702
$x_1^{(1)}$	0	0,667	0,597	0,607	0,606	0,606
$x_2^{(1)}$	0	0,667	0,597	0,607	0,606	0,606
$x_3^{(1)}$	1	0,333	0,537	0,513	0,513	0,516

Вычисления проведены до совпадения трёх знаков после запятой в собственном числе $\lambda_1^{(k)}$. Далее образуем матрицу

$$H = \begin{pmatrix} \frac{1}{x_1^{(1)}} & 0 & 0\\ -\frac{x_2^{(1)}}{x_1^{(1)}} & 1 & 0\\ -\frac{x_3^{(1)}}{x_1^{(1)}} & 0 & 1 \end{pmatrix}.$$

Тогда

$$HAH^{-1} = \begin{pmatrix} 5,702 & 1,65 & 3,30 \\ 0 & 2 & 0 \\ -4 \cdot 10^{-5} & 1,149 & -0,702 \end{pmatrix}.$$

Из метода исчерпывания следует, что

$$B_2 = \begin{pmatrix} 2 & 0 \\ 1.149 & -0.702 \end{pmatrix}.$$

Два оставшихся собственных числа матрицы A являются собственными числами матрицы B_2 . Так как эта матрица треугольная, то ясно, что ее собственные числа – диагональные элементы. Итак, $\lambda_2=2$, $\lambda_3=-0.702$.

Собственные векторы можно найти, просто решая систему однородных линейных уравнений (2) для случаев λ_2 , λ_3 . Тогда получаем соответствующие собственные векторы:

$$\bar{x}^{(2)} = \begin{pmatrix} 0.707 \\ -0.707 \\ 0 \end{pmatrix}, \bar{x}^{(3)} = \begin{pmatrix} -0.364 \\ -0.364 \\ 0.857 \end{pmatrix}.$$