Partie 1 : Aspect électronique et traitement du signal

Partie 1 – 1 : L'Électronique analogique

Rappels:

4. - Représentation symbolique d'une tension

Lois de Kirchhoff

Lois des nœuds

- Lois des mailles

Autres méthodes d'analyse d'un circuit :

- Théorème de Thévenin
- Théorème de Norton

La résistance :

U = R . I

R en ohm (Ω)

$$U_2 = U^* \frac{R_2}{R_1 + R_2}$$
 et $U_1 = U^* \frac{R_1}{R_1 + R_2}$

Le potentiomètre:

Les séries de valeurs normalisées pour les résistances

$$1,0-1,2-1,5-1,8-2,2-2,7-3,3-3,9-4,7-5,6-6,8-8,2$$

Série: E12 - E24 - E48 - E96

12 valeurs/décade 24 valeurs/décade

48 valeurs/décade

Marquage

 $P = R \cdot I^2$

Le condensateur

$$I = C \cdot \frac{dV}{dt} \quad (1)$$

Condensateur → Elément de stockage d'énergie

Le condensateur soumis à une tension constante

$$Vc = Vin.\left(1 - e^{-\frac{t}{t}}\right)$$
 avec $t = R \cdot C$

Lissage

Les types de condensateurs

$$W = \frac{1}{2} \times C \times U^2$$

Non polarisés

<u>Polarisés</u>

La self (ou bobine)

$$U = L \times \frac{dI}{dt} + r \times I$$
 avec r (résistance série du fil)

La self soumise à une tension constante

Vin

Image de I

$$I_L = \frac{Vin}{R} \cdot \left(1 - e^{-\frac{t}{t}}\right) \text{ avec } t = \frac{L}{R}$$

$$W = \frac{1}{2} \times L \times I^2$$

$$L = \frac{m_0 \times m_r \times N^2 \times S}{I}$$

La diode

La diode

 $I_D \blacktriangle$

Si $I_D > 0$ alors $V_{AK} = V_D + R_D \times I_D$

« Caractéristique quasi-réelle »

NANCY

La diode réelle

$$I_D = I_S \left(e^{\left(\frac{Vd}{Vk} \right)} - 1 \right) \text{ avec } Vk = \frac{k \cdot T}{q} = 25mV \text{ à } 25^{\circ}C$$

Zone de tension inverse

Modèles de diode

CMS : Composant Monté en Surface

Version axiale

Version CMS

1N4148 Traitement du signal

Diode de redressement

Diode Schottky

Signal

Applications de la

Autre application de la diode

La diode Zener

Composant et symbole

$$Vc < V < Vd \Rightarrow I = 0$$

$$V > Vd \Rightarrow I \rightarrow \infty$$

$$V < Vz \Rightarrow I \rightarrow -\infty$$

Utilisation de la diode Zener

La diode électro-luminescente (LED – Light Emitting Diode)

Le transistor

Le transistor bipolaire et ses symboles

Le transistor à effet de champ et ses symboles

Le transistor IGBT

Schéma interne du NE555

Le transistor bipolaire

$$le = lc + lb$$
 avec $lc=b$. Ib d'où $le = lb \times (b + 1)$

 $β \rightarrow$ Gain en courant du transistor Si β grand alors le ≈ Ic

Transistor en interrupteur commandé

Amplificateur de courant

Le transistor bipolaire

Si Vin=oV \rightarrow I_B=o \rightarrow I_C= β .I_B=o \rightarrow Transistor bloqué \rightarrow Charge déconnectée

Si Vin=3,3V
$$\rightarrow$$
I_B>0 \rightarrow I_C= β .I_B \rightarrow V_{CE} \approx 0V \rightarrow Transistor saturé \rightarrow Relais activé \rightarrow Charge connectée

$$I_B = \frac{I_C}{b} = \frac{0.2}{200} = 1mA$$

$$R_B = \frac{Vin - V_{BE}}{I_B} = \frac{3.3 - 0.7}{0.001} = 2.6KW$$

Le transistor bipolaire

$$I_C = \frac{V^+ - V_{CE}}{R_C}$$

$$I_{C} = \frac{b}{b+1} \cdot \left(\frac{V_{Z} - V_{BE}}{R_{E}} \right)$$

Le transistor bipolaire

Montage Push-Pull

En bleu le signal d'entrée En vert le signal de sortie

Le transistor à effet de champ (FET)

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$g_{m} = \frac{dI_{DS}}{dV_{GS}} = 2\frac{I_{DSS}}{|V_{P}|} \left(1 - \frac{|V_{GS}|}{|V_{P}|}\right)$$

Fin de la partie 1-1 : Électronique analogique

Pour toute question, n'hésitez pas à me contacter. Soit par mail : <u>etienne.bernard@univ-lorraine.fr</u> ou de vive voix à l'école - Bât.F – Bureau 210

