Álgebra lineal I, Grado en Matemáticas

Febrero 2019, Segunda Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz escalonada.
- (b) Suma de subespacios vectoriales.
- (c) Sistema generador y base de un espacio vectorial.
- (d) Aplicación lineal.

Ejercicio 1: (2 puntos)

Sea $A \in \mathfrak{M}_n(\mathbb{K})$ una matriz de orden n para la cual existen escalares $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ tales que

$$I_n + \lambda_1 A + \lambda_2 A^2 + \ldots + \lambda_p A^p = 0$$

- (a) Demuestre que A es invertible y determine su inversa.
- (b) Halle la inversa de una matriz A de orden n que cumple $I_n A^3 = 2A^2$.

Ejercicio 2: (2.5 puntos)

Sea $\mathfrak{M}_2(\mathbb{K})$ el espacio vectorial de la matrices de orden 2 con entradas en \mathbb{K} , y U el subespacio vectorial definido por $U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{M}_2(\mathbb{K}) : a = d \right\}$

- (a) Determine una base del subespacio U.
- (b) Halle un subespacio W suplementario de U que no contenga matrices singulares, salvo la matriz nula.

Ejercicio 3: (3.5 puntos)

Sean V y W dos \mathbb{K} -espacios vectoriales, $\mathcal{B} = \{v_1, v_2, v_3\}$ una base de V y $\mathcal{B}' = \{w_1, w_2\}$ una base de W.

(a) Determine la matriz respecto de las bases $\mathcal B$ y $\mathcal B'$ de la aplicación lineal $f:V\longrightarrow W$ tal que

$$f(v_1 + 2v_2) = w_1 + w_2, \ f(v_2 - v_3) = 0, \ f(v_1 - 2v_3) = 2w_1 - w_2$$

(b) Sea P el plano generado por los vectores $v_1 + v_2 + v_3$ y $v_1 + 2v_3$. Halle unas ecuaciones implícitas del subespacio vectorial f(P).