Wyznaczanie współczynnika rozszerzalności liniowej ciał stałych - doświadczenie 103 (sala 217)

Sebastian Maciejewski 132275 i Jan Techner 132332

10 listopada 2017

1 Wstęp teorytyczny

Zmiana temperatury ciała z reguły powoduje zmianę jego wymiarów liniowych. Elementarny przyrost temperatury dT ciała o długości l powoduje przyrost długości dl, który jest określony wzorem:

$$dl = \alpha \, l \, dT. \tag{1}$$

Współczynnik α nazywany jest współczynnikiem rozszerzalności liniowej. Jego wartość liczbowa jest równa względnemu przyrostowi długości dl/l spowodowanemu zmianą temperatury o 1°C i zależy od rodzaju ciała, a także od temperatury. Zależność współczynnika α od temperatury powoduje, że długość ciała jest na ogół nieliniową funkcją temperatury. Jednakże w zakresie niewielkich zmian temperatury można przyjąć, że współczynnik α jest stały, a długość jest wprost proporcjonalna do temperatury. W takim przypadku wzór (1) można zastąpić wzorem:

$$l - l_0 = \alpha_{sr} \, l_0 \, \Delta T,\tag{2}$$

który znacznie ułatwia obliczenie długości w dowolnej temperaturze.

Przyczyny zjawiska rozszerzalności cieplnej są związane ze stukturą mikroskopową ciał. Ciała stałe są zbudowane z atomów (jonów) rozłożonych regularnie w przestrzeni i tworzących sieć krystaliczą. Atomy są ze sobą powiązane siłami pochodzenia elektrycznego, co uniemożliwia im trwałą zmianę położenia. Dostarczona do kryształu energia cieplna wywołuje drgania atomów wokół położeń równowagi, a amplituda tych drgań rośnie wraz ze wzrostem temperatury. Częstotliwość drgań atomów sięga rzędu 10^{13} Hz. W tej sytuacji ciężko jest określić odległośc między atomami, a pojęcie to ma sens tylko jako odległość pomiędzy środkami drgań sąsiednich atomów.

Gdyby energia kinetyczna atomów była równa zeru, znajdowałyby się one w odległości r_0 od siebie, a przy tej odległości energia potencjalna ma swoje minimum. W rzeczywistości jednak atomy wykonują drgania wokół położeń równowagi, tnz. mają pewną energię kinetyczną, zależną od temperatury. Wskutek asymetrii krzywej potencjalnej średnia odległość między cząsteczkami nie będzie się pokrywać z wartością r_0 , ale będzie rosła wraz ze wzrostem temperatury.

Z powyższego opisu wynika, że podczas wzrostu temperatury rośnie nie tylko amplituda drgań atomów, ale także średnia odległość między nimi, co rzutuje na makroskopowe wydłużenie ciała zwane rozszerzalnością cieplną.

Opis doświadczenia

Badane ciała, w naszym przypadku 3 pręty (stalowy, mosiężny i miedziany), umieszczamy w płaszczu wodnym połączonym z termostatem. Stopniowo ogrzewamy pręty, regulując temperaturę wody ustawioną na termostacie co ok 5°C. Jeden koniec każdego z prętów umieszczony jest w uchwycie, natomiast drugi przesuwa się w miarę podgrzewania. Po każdej zmianie temperatury i jej ustabilizowaniu mierzymy wydłużenie każdego pręta czujnikiem mikrometrycznym, a jego temperaturę termometrem elektrycznym. Po osiągnięciu temperatury ok. 60°C, pręty stopniowo schładzamy, kontynuując pomiary, aż do osiągnięcia temperatury początkowej.

2 Wyniki pomiarów

Początkowa temperatura i długość prętów została zmierzona na początku doświadczenia i wynosiła:

S	tal	Mos	siądz	Miedź		
t	l_0	t	l_0	t	l_0	
23,4 °C	$72,3~\mathrm{cm}$	23,8 °C	$71,2~\mathrm{cm}$	23,8 °C	72,35 cm	

Dokładność pomiarów temperatury to $\Delta t = \pm 0, 1^{\circ}C$ oraz $\Delta(\Delta t) = \pm 0, 1^{\circ}C$, zaś pomiarów długości to $\Delta l_0 = \pm 0, 5mm$ dla pomiaru długości początkowej oraz $\Delta(\Delta l) = \pm 0, 01mm$ dla pomiaru wydłużenia. Poniższa tabela ukazuje zmiany długości prętów pod wpływem temperatury.

Stal		Mosiądz			Miedź			
t (°C)	Δt (°C)	$\Delta l \text{ (mm)}$	t (°C)	Δt (°C)	Δl (mm)	t (°C)	Δt (°C)	Δl (mm)
27,5	4,1	0,04	27,7	3,9	0,07	27,4	3,6	0,06
33,2	9,8	0,11	33,3	9,5	0,19	32,6	8,8	0,15
38,6	15.2	0,16	38,3	14,5	0,26	38,2	14,4	0,23
43,1	19,7	0,21	43,0	19,2	0,34	43,0	19,2	0,30
48,0	24,6	0,25	48,3	24,5	0,44	48,3	24,5	0,38
53,2	29,8	0,32	53,0	29,2	0,53	53,0	29,2	0,47
58,2	34,8	0,37	58,1	34,3	0,63	58,0	34,2	0,54
53,3	29,9	0,28	53,1	29,3	0,50	53,2	29,4	0,42
48,3	24,9	0,23	48,4	24,6	0,42	48,4	24,6	0,34
43,3	19,9	0,17	43,2	19,4	0,33	43,1	19,3	0,26
38,5	15,1	0,13	38,4	14,6	0,26	38,4	14,6	0,19
33,2	9,8	0,08	33,3	9,5	0,17	32,2	8,4	0,12
28,1	4,7	0,02	28,1	4,3	0,08	28,2	4,4	0,04

Wartości zmiany temperatury Δt zostały obliczone w sekcji Wyniki Pomiarów ze względu na możliwość umieszczenia wszystkich danych w jednej tabeli.

3 Opracowanie wyników

Rysunek 1: Zależność wydłużenia pręta od zmiany temperatury podczas ogrzewania

Rysunek 2: Zależność wydłużenia pręta od zmiany temperatury podczas stygnięcia

W celu obliczenia współczynnika rozszerzalności z danych pomiarowych posłużymy się równaniem :

$$\Delta l = \alpha_{sr} l_0 t - \alpha_{sr} l_0 t_0, \tag{3}$$

gdzie t_0 jest temperaturą początkową, w której długość pręta wynosi l_0 .

Równanie (3) oznacza, że wydłużenie jest liniową funkcją temperatury (co dosyć dobrze widać na wykresach, zarówno w procesie ogrzewania jak i schładzania prętów) i że współczynnik nachylenia linii

$$a = \alpha_{sr} l_0 \tag{4}$$

•

Wartość a obliczamy, stosując regresję liniową do par danych $(\Delta l, T)$ wyrażoną wzorem

$$a = \frac{n\Sigma x_i y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2}.$$
 (5)

Jeżeli ponadto dokonamy pomiaru l_0 to równanie (4) może służyć do ostatecznego obliczenia współczynnika rozszerzalności.

	Stal	Mosiadz	Miedź
		$0,00001821528315 \pm$	
po zaokrągleniu	$0,\!00001057850636\ \pm$	$0,00001821528315 \pm$	$0,00001592162172 \pm$

Tablica 1: Współczynnik nachylenia linii a i Δa

Następnie podstawiając otrzymane wartości a i l_0 do wzoru (4) otrzymamy następujące współczynniki rozszerzalności cieplnej :

Tablica 2: Współczynnik rozszerzalności cieplnej α_{sr} i $\Delta\alpha_{sr}$

Błąd $\Delta \alpha_{sr}$ został policzony ze wzoru $\Delta \alpha = \alpha (\frac{\Delta l}{l} + \frac{\Delta dl}{dl} + \frac{\Delta T}{T})$ dla każdego z badanych metali i zaokrąglony.