

GEETHANJALIINSTITUTEOFSCIENCE&TECHNOLOGY (ANAUTONOMOUSINSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu) (Accredited by NAAC with "A" Grade, NBA (EEE, ECE &ME) & ISO9001:2008CertifiedInstitution)

QUESTIONBANK(DESCRIPTIVE)

Subject Name with Code: NUMBER THEOREY AND ITS APPLICATION

Course & Branch: B. Tech & CSE (CS)
Year & Semester: II B. Tech II Semester

Regulation: RG23

UNIT-I

S. No	Question [B']	T Level] [CO][Marks]
2 Marks Questions (Short)		
1.	State the well-ordering property.	L1, CO1, 2M
2.	Find the values i) $\sum_{j=1}^{10} 4^j$ and ii) $\prod_{j=1}^6 j^2$	L1, CO1, 2M
3.	Convert (1894) ₁₀ from decimal to binary notation	L1 ,CO1, 2M
4.	State the division theorem.	L2, CO1, 2M
5.	Add (101111011) ₂ and (1100111011) ₂	L2, CO1, 2M
6	Subtract (101110101) ₂ from (1101101100) ₂	L2, CO1, 2M
7	Convert (A35B0F) ₁₆ to decimal notation	L1, CO1, 2M
8	Convert (2FB3) ₁₆ to binary notation.	L2, CO1, 2M
9		L1, CO1, 2M
10		
Descriptive Questions(Long)		
1.	Use mathematical induction to prove $\sum_{j=1}^{n} j = 1+2+3++n=(n(n+1))/2$	L2, CO1,10M
2.	Use mathematical induction to prove that $\sum_{j=1}^{n} j^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = (n(n+1)(2n+1))/6$	L2, CO1,10M
3.	Let n and k be positive integers with $n \ge k$.	L2, CO1,10M
	Prove that $(nc_k)+(nc_{k-1})=(n+1ck)$ b) Find the values of i) $\sum_{j=1}^{10} j^2$ ii) $\prod_{j=1}^{5} 2^j$ iii) 10c4 iv) 12c5	
4.	a)State and prove the division theorem.	L2, CO1,10M
	b) Find the quotient and remainder in the division algorithm with divisor 17 and dividend 100	
5.	a) Convert (1864) ₁₀ and (2FB3) ₁₆ to binary notation.	L2, CO1,10M
	b) Convert (A35B0F) ₁₆ and (6105) ₇ to decimal notation	
6.	a) Find gcd of 28 and 49, express it as linear combination of 28 and 49. b) find the gcd (4340, 2821) by Euclidean algorithm and also express as GCI $(4340,2821) = 2821x+4340y$.	D L2, CO1,10M
7	Show that event +ve integer can be written as the sum of distinct Fibonacci number	L2, CO1,10M
8	Find factor 6077 by using the method of Fermat factorization.	L2, CO1,10M
9	Find all integer solutions of linear Diophantine equation $2x+3y+4z=5$.	L2, CO1,10M
10	Find all integer solutions of systems of linear Diophantine equation $x + y + z = 100$, $x+8y+50z=156$.	L2, CO1,10M

S.No	Question	[BTLevel][CO][Marks]	
2MarksQuestions (Short)			
1.	Write the first five Fibonacci numbers.	L1,CO2,2M	
2.	State the fundamental theorem of arithmetic	L1,CO2,2M	
3.	Find the prime factorization of the positive integers 222 and 5040	L2,CO2,2M	
4.	Find gcd (45,75,25)	L1,CO2,2M	
5.	Define linear Diophantine equation in two variables with example	L1,CO2,2M	
DescriptiveQuestions(Long)			
	a)find the least positive residue of 2 ⁶⁴⁴ mod 645	L2, CO2, 10M	
	b) find the least positive residue of 3 ¹⁰ (mod11)		
12.	find the all solutions $9x \equiv 12 \pmod{15}$	L2,CO2,10M	
	find the values of x, $2x \equiv 3 \pmod{8}$		
13.	solve the systems of linear congruence's	L2, CO2,10M	
	$x \equiv 1 \pmod{3}, \ x \equiv 2 \pmod{5}, \ x \equiv 3 \pmod{7}$		
14.	solve the systems of linear congruence's	L2, CO2,10M	
17.	$x \equiv 2 \pmod{3}, \ x \equiv 3 \pmod{5}, \ x \equiv 2 \pmod{7}$		
15	solve $2x \equiv 1 \pmod{3}$, $2x \equiv 2 \pmod{4}$, $x \equiv 3 \pmod{5}$ using c.r.t	L2, CO2,10M	
16	find the solutions of the congruence's	L2, CO2,10M	
10	$x \equiv 4 \pmod{11} , x \equiv 3 \pmod{17}$		
	solve the system of congruences		
	$x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{6}$, $x \equiv 3 \pmod{7}$ by iterative method		
17.	system of congruences $x \equiv 3 \pmod{7}$, $x \equiv 4 \pmod{11}$, $x \equiv 5 \pmod{3}$	L2, CO2,10M	
1,,	to solve of congruences using c. r.t. method		
18.	solve the system of liner congruences $3x+4y \equiv 5 \pmod{13}$,	L2, CO2,10M	
	$2x+5y \equiv (\bmod 13)$		
19.	Find the solution of the system of linear congruence's $2x+3y\equiv 5 \pmod{7}$,	L2,CO2,10M	
	$x+5y \equiv 6 \pmod{7}.$		
	Find all the solution of the following system of congruence's $x \equiv 4 \pmod{11}$, $x \equiv 3 \pmod{17}$.	L2,CO2,10M	
	Find all the solutions of the system of congruence's $x+y\equiv 1 \pmod{7}$,	L2,CO2,10M	
	$x+z\equiv 2 \pmod{7}$, $y+z\equiv 3 \pmod{7}$. Find a multiple of 11 that leaves a remainder of 1 when divided by of the	L2,CO2,10M	
22.	integers 2,3,5,and7		
23.	Find the solutions of $3x \equiv 2 \pmod{7}$.	L2,CO2,10M	