1. (i) $f(S_1, S_2) = 1 - JS(S_1, S_2)$
$= 1 - \frac{1 \cdot S_1 \cap S_2}{1 \cdot S_1 \cup S_2}$
= 1 - 1520S.1 52US.
= 1 - JS(S, S,)
= f(s ₂ , s ₁)
Since Sansi SiUSal
so $JS(S_1, S_2) = \frac{ S_1 \cap S_2 }{ S_1 \cup S_2 } \le 1$ $f(S_1, S_2) = 1 - JS(S_1, S_2) \ge 0$
18,081
$50 f(S_1, S_2) = f(S_2, S_1) > 0$
(ii) To prove the sufficiency:
when s. = s2 then S. (1 S2 = 1 S. (1 S2 = 1
$JS(S_1,S_2)=1$
so $f(s_1, s_2) = 1 - JS(s_1, s_2) = 0$
To prove the necessity
when $f(s_1, s_2) = 1 - JS(S_1, S_2) = 0$
then $JS(S_1,S_2) = \frac{ S_1 \cap S_2 }{ S_1 \cup S_2 } = 1$
thus (S, ()S_1 = (S, U)S_2)
So S. = S.

	Transaction ID	Items					
Chips 4	•	Hot Dogs Buns Ketchup					
HotDogs 4	2	HotDogs Burs					
Coke 3	3	Chips HotDogs Coke					
	4	Chips Coke					
Buns 2	5	Chips Ketchup					
Ketchup 2	6	Chips HotOogs Coke					
FP-Tree:	Null						
Chips: 4		HotDogs : 2					
Hot0ogs:2	0	& Buns = 2					
Cles 1	Ketchup: 1 -						
Cokes2		Retenup:1					

A2Q1(1)

$$\rho(s) \ge \lambda$$
 let \overline{s} be $V \setminus S$
 $\overline{\Sigma}$
 \overline{W}_{uv}
 \overline{S}
 \overline{N}
 \overline{S}
 $\overline{S$

(S,u) EE', (u,t) EE' for all ue V

Let
$$W_{uv} = \begin{cases} \sum_{u,v' \in E, v \in V} W_{uv} & \text{if } u = S, v \in V \\ \sum_{v = v} & \text{if } u \in V, v = t \end{cases}$$

$$W_{uv} \quad \text{if } u \in V, v \in V$$

(s-t)-cut in G'

$$2 \gamma |S| + \sum_{(u,v) \in E, u \in \bar{S}} W_{uv} + \sum_{(u,v) \in E(S,\bar{S})} W_{uv} \in \gamma$$

(S)

so by setting
$$\gamma = \sum_{(u,v) \in E, u \in V} W_{uv}$$

we prove that these 2 problems are equivalent.

original edge number: E construct a new graph G'= <1, E')
For any 2 nodes in original graph, we connect them together
For any edge in G': $W_{uv} = \begin{cases} 1 & \text{if } (u,v) \in E \\ -1EI-1 & \text{if } (u,v) \notin E \end{cases}$
Proof: In this case,
The density of any clique in the original graph is
$\frac{C(C-1)}{2C} = \frac{C^2 - C}{2C} = \frac{C-1}{2}$ which is monotanuously increasing
Therefore, the larger the clique is the larger its new density is.
@ For any subgraph S which is not a clique in the original graph,
its density in the new graph G' is definitely smaller than D:
because we add edges with weight -IEI-1 to it.
$P(s) = \frac{\sum_{(u,v) \in E(S)} W_{uv}}{ S }$ E(s) is the edge set of s in the new graph
Obviously, there must be at least a new edge with weight < -IEI-1
let the new edge be e
$\rho_{(s)} \in \frac{\sum_{(u,v) \in E(s)-e} W_{uv} - E -1}{ s } \leq \frac{ E - E -1}{ s } < 0$
3 For a single node, its density is O.
Therefore, the densest subgraph in the new graph is also the clique
with maximum clique size in the original graph.

A2Q4(2)

Algorithm:

- Start from k=1
- 2. Remove all nodes with degree no greater than k and adjust degrees of neighbor nodes of removed nodes
- 3. Set core number of each removed node as k
- 4. k=k+1
- 5. If the graph still has nodes, go to 2
- 6. If the graph is empty, terminate

Using the Linked-List data structure described in lecture slides, we can always maintain all nodes sorted based on their degrees. Every time when we need to reduce the degree of one node by 1, the time cost is only O(1). Thus, using the Linked-List Data structure, the total time complexity is O(m+n), where m is the number of edges and n is the number of nodes.

1. To prove that Randomized Response is
$$Lidite - differentially private we need to prove $\exp(-\ln 3) \le \frac{P(\sqrt{3} - \frac{1}{3}|D_i)}{P(\sqrt{3} - \frac{1}{3}|D_i)} \le \exp(\ln 3)$

thus $\frac{1}{3} \le \frac{P(\sqrt{3} - \frac{1}{3}|D_i)}{P(\sqrt{3} - \frac{1}{3}|D_i)} \le \exp(\ln 3)$

Since D and D. are neighbouring database, D. = $DU\{x_i\}$.

 $D_a = DU\{x_i\}$, $x_i \ne x_i$.

Let D. = {a. a. a. a. ... a. ... $x_i \ge 0$ }

 $P(\sqrt{3} - \frac{1}{3}|D_i) = \frac{P(\sqrt{3} - \frac{1}{3}|D_i)}{P(\sqrt{3} - \frac{1}{3}|D_i)} \times \frac{P(\sqrt{3} - \frac{1}{3}|D_i)}{P(\sqrt{3} - \frac{1}{3}|D_i)} \times \frac{P(\sqrt{3} - \frac{1}{3}|D_i)}{P(\sqrt{3} - \frac{1}{3}|D_i)} \times \frac{P(\sqrt{3} - \frac{1}{3}|D_i)}{P(\sqrt{3} - \frac{1}{3}|D_i)} = \frac{2}{3} = \exp(Lid)$

therefore, $\frac{1}{3} \le \frac{P(\sqrt{3} - \frac{1}{3}|D_i)}{P(\sqrt{3} - \frac{1}{3}|D_i)} \le \frac{2}{3}$

candomize response is $Lide$ differentially private$$

3-13 6 8-13 6	3 1 3 - 6 3+13 6	[\B+13	0]	1-13 2√3-√3	7/3-12 1-12 5/2+3 12+1	0	1 √3+3 1 √3-5
13	-13 _						