Lecture 10

Univariate Volatility Modeling

Reading: An introduction to analysis of financial data with $\ensuremath{\mathbb{R}}$ (2013) by Ruey Tsay

MATH 8090 Time Series Analysis October 19 & October 21, 2021 Univariate Volatility Modeling

Background

ARCH Mode

ANCH Wodel

Stochastic Volatility

Whitney Huang Clemson University

Agenda

Univariate Volatility Modeling

Background

ARCH Model

ARCH Model

GARCH and GARCH Models

Stochastic Volatility

Model

- Background
- 2 ARCH Model
- **3** GARCH Model
- IGARCH and EGARCH Models
- Stochastic Volatility Model

CLEMS N

Apple Inc

\$146.55 \(\gamma \) 13.24\(\pi \) +17.14 YTD

After Hours: \$146.75 (↑0.14%) +0.20

Closed: Oct 18, 8:12:21 PM UTC-4 · USD · NASDAQ · Disclaimer

Source: Google Finance

Background

ARCH Model

GARCH Mode

Carabastia Valatility

Log Returns of Apple Stock

CLEMS N

ARCH Mod

GARCH Model

GARCH and EGARCH Models

Stochastic Volatility Model

Asset volatility is the degree of variation of a trading price series over time, usually measured by the (conditional) standard deviation of (log) returns

Why is volatility important?

- Option pricing, e.g., Black-Scholes formula
- Risk management, e.g., value at risk (VaR)
- Asset allocation, e.g., minimum-variance portfolio
- Interval forecasts

A key characteristic: Not directly observable

We will take a econometric approach by modeling the conditional standard deviation (σ_t) of daily or monthly returns

Basic structure

$$r_t = \mu_t + a_t, \quad \mu_t = \phi_0 + \sum_{i=1}^p \phi_i r_{t-i} - \sum_{j=1}^q \theta_j a_{t-j}$$

Volatility models are concerned with time-evolution of

$$\sigma_t^2 = \operatorname{Var}(r_t|F_{t-1}) = \operatorname{Var}(a_t|F_{t-1}),$$

the conditional variance of a return

- Autoregressive conditional heteroscedastic (ARCH) model [Engle, 1982]
- Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model [Bollerslev, 1986]
- Integrated Generalized Autoregressive Conditional heteroskedasticity (IGARCH) model
- Exponential general autoregressive conditional heteroskedastic (EGARCH) model [Nelson, 1991]
- Asymmetric parametric ARCH models [Ding, Granger, and Engle, 1994]
- Stochastic volatility (SV) models [Melino and Turnbull, 1990; Harvey, Ruiz, and Shephard, 1994; Jacqier, Polson. and Rossi, 19941

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_m a_{t-m}^2,$$

where $\{\epsilon_t\}$ is a sequence of i.i.d. r.v. with

- $\mathbb{E}(\epsilon_t) = 0$
- $Var(\epsilon_t) = 1$
- $\alpha_i \ge 0$ for $1 \le i \le m$
- Distribution: standard normal, standardize Student-t, generalized error distribution, or their skewed counterparts

... 5

ARCH Model

GARCH Mode

EGARCH Models

Consider an ARCH(1) model

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2,$$

where $\alpha_0 > 0$ and $\alpha_1 \ge 0$. We have the following properties:

- \bullet $\mathbb{E}(a_t) = 0$
- $\operatorname{Var}(a_t) = \frac{\alpha_0}{1-\alpha_1}$ if $0 < \alpha_1 < 1$
- Under normality,

$$m_4 = \frac{3\alpha_0^2(1+\alpha_1)}{(1-\alpha_1(1-3\alpha_1^2))}$$

provided $0 < \alpha_1^2 < \frac{1}{3}$. \Rightarrow this implies heavy tails

ADCH and

Stochastic Volatility

Advantages:

- Simplicity
- Generate volatility clustering
- Heavy tails

Weaknesses:

- Symmetric between positive and negative returns
- Restrictive
- Not sufficiently adaptive in prediction

Background

Anch Model

GARCH and

Stochastic Volatility Model

lacktriangle Modeling the mean effect μ_t and testing for ARCH effects for a_t

 H_0 : no ARCH effects versus H_1 : ARCH effects

Use *Q*-statistics of squared residuals [Engle, 1982; McLeod and Li, 1983]

- Order determination: use PACF of the squared residuals
- Estimation: conditional MLE
- Model checking: Q-statistics of standardized residuals and squared standardized residuals. Skewness and Kurtosis of standardized residuals

We use R package fGarch in this course

Background

ARCH Model

GANGH MOULE

Here we test and examine the temporal pattern of the squared residuals

> Box.test(y^2 , lag = 12, type = 'Ljung')

Box-Ljung test

data: y^2

X-squared = 68.67, df = 12, p-value = 5.676e-10

$$r_t = \mu + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^3 \alpha_i a_{t-i}^2,$$

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

assuming $\epsilon_t \overset{i.i.d.}{\sim} N(0,1)$.

Error Analysis:

```
Estimate Std. Error t value Pr(>|t|)
mu 0.016572 0.006423 2.580 0.00988 **
omega 0.012043 0.001579 7.627 2.4e-14 ***
alpha1 0.208649 0.129177 1.615 0.10626
alpha2 0.071837 0.048551 1.480 0.13897
alpha3 0.049045 0.048847 1.004 0.31536
```

Background

ARCH Model

GARCH Mode

EGARCH Models

Here we fit an ARCH(3) for the volatility:

$$r_t = \mu + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^3 \alpha_i a_{t-i}^2,$$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

assuming $\epsilon_t \stackrel{i.i.d.}{\sim} N(0,1)$.

Error Analysis:

```
Estimate
               Std. Error t value Pr(>|t|)
                           2.580 0.00988 **
    0.016572
                 0.006423
mu
omega 0.012043
                 0.001579 7.627 2.4e-14 ***
alpha1 0.208649 0.129177 1.615 0.10626
                 0.048551 1.480 0.13897
alpha2 0.071837
alpha3 0.049045
                 0.048847
                           1.004 0.31536
```

Let's fit a simplified ARCH(1) model

mu

Signif. codes:

ARCH Model

```
Error Analysis:
        Estimate
                  Std. Error
                             t value Pr(>|t|)
        0.016570
                   0.006161
                                2.689
                                       0.00716 **
        0.012490
                    0.001549
                                8.061 6.66e-16
```

0.001

omega alpha1 0.363447 0.131598 2.762 0.00575 **

0.01 '*'

0.05 '.' 0.1 ' '1

Standardized Residuals sres -2 100 200 300 n Index

ARCH(1) Model Checking

Univariate Volatility Modeling

Daonground

ARCH Model

GARCH Mode

Stochastic Volatility

Standardised Residuals Tests:

			Statistic	p-value
Jarque-Bera Test	R	Chi^2	122.404	0
Shapiro-Wilk Test	R	W	0.9647625	8.273101e-08
Ljung-Box Test	R	Q(10)	13.72604	0.1858587
Ljung-Box Test	R	Q(15)	22.31714	0.09975386
Ljung-Box Test	R	Q(20)	23.88257	0.2475594
Ljung-Box Test	R^2	Q(10)	12.50025	0.25297
Ljung-Box Test	R^2	Q(15)	30.11276	0.01152131
Ljung-Box Test	R^2	Q(20)	31.46404	0.04935483
LM Arch Test	R	TR^2	22.036	0.0371183

Statistic n Value

Estimate Std. Error t value Pr(>|t|)
mu 0.021571 0.006054 3.563 0.000366 ***
omega 0.013424 0.001968 6.820 9.09e-12 ***
alpha1 0.259867 0.119901 2.167 0.030209 *
shape 5.985979 1.660030 3.606 0.000311 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Statistic n Value

Log Likelihood:

242.9678 normalized: 0.6531391

Description:

Mon Oct 18 15:27:27 2021 by user:

Standardised Residuals Tests:

			Statistic	p-value
Jarque-Bera Test	R	Chi^2	130.8931	0
Shapiro-Wilk Test	R	W	0.9637533	5.744995e-08
Ljung-Box Test	R	Q(10)	14.31288	0.1591926
Ljung-Box Test	R	Q(15)	23.34043	0.07717449
Ljung-Box Test	R	Q(20)	24.87286	0.2063387
Ljung-Box Test	R^2	Q(10)	15.35917	0.1195054
Ljung-Box Test	R^2	Q(15)	33.96318	0.003446127
Ljung-Box Test	R^2	Q(20)	35.46828	0.01774746
LM Arch Test	R	TR^2	24.11517	0.01961957

Univariate Volatility Modeling

Daorigioaria

ARCH Model

GARCH Mode

GARCH Models

Stochastic Volatility
Model

Stochastic Volatility Model

For a log return series r_t , let $a_t = r_t - \mu_t$ be the innovation at time t. Then a_t follows a GARCH(m, s) model if

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2,$$

where $\{\epsilon_t\}$ is defined as before, $\alpha_0 > 0$, $\beta_j \ge 0$, and $\sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) < 1$

Re-parameterization:

Let $\eta_t = a_t^2 - \sigma_t^2$. The GARCH model becomes

$$a_t^2 = \alpha_0 + \sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) a_{t-i}^2 + \eta_t - \sum_{j=1}^s \beta_j \eta_{t-j}$$

This is an ARMA form for the squared series a_t^2

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2,$$

Properties

- Weak stationarity if $0 \le \alpha_1$, $\beta_1 \le 1$, $(\alpha_1 + \beta_1) < 1$
- Volatility clusters
- Heavy tails if $1 2\alpha_1^2 (\alpha_1 + \beta_1)^2 > 0$, as

$$\frac{\mathbb{E}(a_t^4)}{\left[\mathbb{E}(a_t^2)\right]^2} = \frac{3\left[1 - (\alpha_1 + \beta_1)^2\right]}{1 - (\alpha_1 + \beta_1)^2 - 2\alpha_1^2} > 3$$

1-step ahead forecast

$$\sigma_h^2(1) = \alpha_0 + \alpha_1 a_h^2 + \beta_1 \sigma_h^2$$

Dackground

ARCH Mode

ARCH Model

GARCH and EGARCH Models

Stochastic Volatility
Model

Stochastic Volatility Model

For multi-step ahead forecasts, use $a_t^2 = \sigma_t^2 \epsilon_t^2$ and rewrite the model as

$$\sigma_{t+1}^2 = \alpha_0 + (\alpha_1 + \beta_1)\sigma_t^2 + \alpha_1\sigma_t^2(\epsilon_t^2 - 1)$$

We have 2-step ahead volatility forecast

$$\sigma_h^2(2) = \alpha_0 + (\alpha_1 + \beta_1)\sigma_h^2(1)$$

In general, we have

$$\sigma_h^2(\ell) = \alpha_0 + (\alpha_1 + \beta_1)\sigma_h^2(\ell - 1), \quad \ell > 1$$

$$= \frac{\alpha_0[1 - (\alpha_1 + \beta_1)^{\ell - 1}]}{1 - \alpha_1 - \beta_1} + (\alpha_1 + \beta_1)^{\ell - 1}\sigma_h^2(1)$$

Therefore

$$\sigma_h^2(\ell) \to \frac{\alpha_0}{1 - \alpha_1 - \beta_1}, \quad \text{as } \ell \to \infty$$

Estimate Std. Error t value Pr(>|t|) 0.0163276 0.0062624 omega 0.0010918

2.607 0.00913 ** 0.0005291 2.063 0.03907 *

beta1 0.8553014 0.0461374

alpha1 0.0802716 0.0281162 2.855 0.00430 **

18.538 < 2e-16 ***

0 '***, 0.001 '**, 0.01 '*, 0.02 ', 0.1 ', 1

mu

Log Likelihood: 239.5189

Signif. codes:

normalized: 0.6438681

Description:

Mon Oct 18 15:44:32 2021 by user:

Standardised Residuals Tests:

Statistic p-Value Jaraue-Bera Test R Chi^2 156.5138 0

R

Shapiro-Wilk Test W 0.9676933 2.471139e-07 Ljung-Box Test 0(10) 9.805485 0.4577215 Liuna-Box Test R 0(15) 16.54435 0.346824

Ljung-Box Test 0(20) 17.8005 0.6005484 Ljung-Box Test R^2 0(10) 0.5130171 0.9999925 0(15) 10.24557 0.8040151

Ljung-Box Test R^2 Liuna-Box Test R^2 LM Arch Test

0(20) 11.77988 0.9234441 TR^2

9.334459 0.6741288

10.21

Modelina

Univariate Volatility

GARCH Model

Volatility Series and Standardized Residuals

Year

GARCH Model Checking: ACF and PACF

ARCH Model

GARCH Mode

IGARCH and EGARCH Models

CLEMS

ARCH Mod

If the AR polynomial of the GARCH representation has unit root then we have and IGARCH model

An IGARCH(1, 1) model:

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \beta_1 \sigma_{t-1}^2 + (1 - \beta_1) a_{t-1}^2$$

ℓ-step ahead forecasts

$$\sigma_h^2(\ell) = \sigma_h(1)^2 + (\ell - 1)\alpha_0, \quad \ell \ge 1$$

 \Rightarrow the effect of $\sigma_h^2(1)$ on future volatilities is persistent, and the volatility forecasts form a straight line with slope α_0

The EGARCH model is able to capture asymmetric effects between positive and negative asset returns by considering the weight innovation

$$g(\epsilon_t) = \theta \epsilon_t + \gamma [|\epsilon_t| - \mathbb{E}(|\epsilon_t|)],$$

with
$$\mathbb{E}[g(\epsilon_t)] = 0$$

We can see the asymmetry of $g(\epsilon_t)$ by rewriting it as

$$g(\epsilon_t) = \begin{cases} (\theta + \gamma)\epsilon_t - \gamma \mathbb{E}(|\epsilon_t|) & \text{if } \epsilon_t \ge 0, \\ (\theta - \gamma)\epsilon_t - \gamma \mathbb{E}(|\epsilon_t|) & \text{if } \epsilon_t < 0 \end{cases}$$

An EGARCH(m, s) model can be written as

$$a_t = \sigma_t \epsilon_t, \quad \log(\sigma_t^2) = \alpha_0 + \frac{1 + \beta_1 B + \dots + \beta_{s-1} B^{s-1}}{1 - \alpha_1 B - \dots - \alpha_m B^m} g(\epsilon_{t-1})$$

Univariate Volatility Modeling

Background

GARCH and

Stochastic Volatility
Model

$$a_t = \sigma_t \epsilon_t$$
, $(1 - \alpha B) \log(\sigma_t^2) = (1 - \alpha)\alpha_0 + g(\epsilon_{t-1})$,

where the ϵ_t are i.i.d. standard normal. In this case, $\mathbb{E}(|\epsilon_t|) = \sqrt{\frac{2}{\pi}}$ and the model for $\log(\sigma_t^2)$ becomes

$$(1-\alpha B)\log(\sigma_t^2) = \begin{cases} (1-\alpha)\alpha_0 - \sqrt{\frac{2}{\pi}}\gamma + (\gamma+\theta)\epsilon_{t-1} & \text{if } \epsilon_{t-1} \ge 0, \\ (1-\alpha)\alpha_0 - \sqrt{\frac{2}{\pi}}\gamma + (\gamma-\theta)(-\epsilon_{t-1}) & \text{if } \epsilon_{t-1} < 0 \end{cases}$$

Finally, we have

$$\sigma_t^2 = \sigma_{t-1}^{2\alpha} \exp\left((1-\alpha)\alpha_0 - \sqrt{\frac{2}{\pi}}\gamma\right) \begin{cases} \exp\left[(\gamma+\theta)\frac{a_{t-1}}{\sigma_{t-1}}\right] & \text{if } a_{t-1} \ge 0, \\ \exp\left[(\gamma-\theta)\frac{|a_{t-1}|}{\sigma_{t-1}}\right] & \text{if } a_{t-1} < 0. \end{cases}$$

Daonground

ARCH Mode

_ . _ . . .

CLEMS N

We consider the monthly log returns of IBM stock from January 1967 to December 2009

Background

ARCH Mod

CIATIOTT MODEL

$$r_t = 0.067 + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0, 1)$$

$$\log(\sigma_t^2) = -0.598 + 0.218(|\epsilon_{t-1}| - 0.424\epsilon_{t-1}) + 0.920\log(\sigma_{t-1}^2)$$

Therefore, we have

$$\sigma_t^2 = \sigma_{t-1}^{2 \times 0.0.920} \exp(-0.598) \times \begin{cases} \exp(0.125) & \text{if } \epsilon_{t-1} \ge 0, \\ \exp(-0.310) & \text{if } \epsilon_{t-1} < 0. \end{cases}$$

For example, for a standardized shock with magnitude 2 (i.e., two standard deviations), we have

$$\frac{\sigma_t^2(\epsilon_{t-1} = -2)}{\sigma_t^2(\epsilon_{t-1} = 2)} = \frac{\exp(-0.31 \times (-2))}{\exp(0.125 \times 2)} = e^{0.37} = 1.448$$

Therefore, the impact of a negative shock of size two standard deviations is about 44.8% higher than that of a positive shock of the same size

$$a_t = \sigma_t \epsilon_t, \quad (1 - \alpha_1 B - \dots - \alpha_m B^m) \log(\sigma_t^2) = \alpha_0 + \nu_t,$$

where ϵ_t 's are i.i.d. N(0,1), ν_t 's are i.i.d. $N(0,\sigma_{\nu}^2)$, $\{\epsilon_t\}$ and $\{\nu_t\}$ are independent

Long-memory SV Model:

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t = \sigma \exp(u_t/2), \quad (1 - B)^d u_t = \eta_t,$$

where $\sigma > 0$, ϵ_t 's are i.i.d. N(0,1), η_t 's are i.i.d. $N(0,\sigma_\eta^2)$ and independent of ϵ_t , and 0 < d < 0.5. In LMSV, we have

$$\begin{split} \log(a_t^2) &= \log(\sigma^2) + u_t + \log(\epsilon_t^2) \\ &= \left[\log(\sigma^2) + \mathbb{E}(\log(\epsilon_t^2)) \right] + u_t + \left[\log(\epsilon_t^2) - \mathbb{E}(\log(\epsilon_t^2)) \right] \\ &= \mu + u_t + e_t \end{split}$$

Thus, the $\log(a_t^2)$ series is a Gaussian long-memory signal plus a non-Gaussian white noise

Dackground

ARCH and

ochastic Volatility odel