Transmission Type vs Fuel Efficiency

by Rajesh Sankar

Executive Summary

In this article, we will look at the effect of automatic vs manual transmission on fuel efficiency. To examine, we use a dataset for 32 automobiles (all 1973 - 1974 models) which includes a wide range of data comprising of mpg, number of cylinders, horse power etc.

Exploratory Data Analysis

Data Set

First, we look at the data set. This data set was extracted from the 1974 edition of Motor Trend magazine. It consists of 32 cars on following 11 different variables:

- Miles per US gallon
- Number of cylinders
- Displacement (cubic inches)
- Horsepower
- · Rear axle ratio
- Weight (lb / 1000)
- 1/4 mile time
- V/S
- Transmission (automatic, manual)
- · Number of Gears
- Number of carburetors

The exploratory analysis is described in **Appendix** section for the plots. The box plot shows hat on average there is a difference between fuel efficiency depending on the transmission type. The manual transmission yields higher MPG than the automatic transmission. The Diagnostic plots show Toyota Corolla and Fiat 128 have a very high fuel efficiency, while Chrysler Imperial has a low fuel efficiency. Toyota Corona has a medium fuel efficiency. The pair graph shows some higher correlations between Weight, Displacement, number of Cylinders and Horsepower variables.

Regression Model

Stepwise model selection using backwards elimination was performed to determine the variables for the best model.

```
full.model <- lm(mpg ~ ., data = mtcars)
best.model <- step(full.model, direction = "backward")</pre>
```

```
## Start: AIC=70.9

## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb

##

## Df Sum of Sq RSS AIC

## - cyl 1 0.0799 147.57 68.915
```

```
## - vs
                 0. 1601 147. 66 68. 932
            1
## - carb
           1
                 0. 4067 147. 90 68. 986
## - gear
                 1. 3531 148. 85 69. 190
            1
## - drat
                 1.6270 149.12 69.249
            1
## - di sp
           1
                 3. 9167 151. 41 69. 736
## - hp
            1
                 6. 8399 154. 33 70. 348
                 8. 8641 156. 36 70. 765
## - qsec
                         147. 49 70. 898
## <none>
## - am
            1
                10. 5467 158. 04 71. 108
                27. 0144 174. 51 74. 280
   - wt
            1
##
## Step: AI C=68. 92
## mpg \sim disp + hp + drat + wt + qsec + vs + am + gear + carb
##
           Df Sum of Sq
                            RSS
                                    AI C
##
## - vs
            1
                 0. 2685 147. 84 66. 973
## - carb
            1
                 0.5201 148.09 67.028
## - gear
                 1. 8211 149. 40 67. 308
            1
## - drat
            1
                 1. 9826 149. 56 67. 342
## - di sp
                 3. 9009 151. 47 67. 750
            1
## - hp
                 7. 3632 154. 94 68. 473
            1
## <none>
                         147. 57 68. 915
## - qsec
                10.0933 157.67 69.032
           1
## - am
            1
                11. 8359 159. 41 69. 384
                27. 0280 174. 60 72. 297
## - wt
##
## Step: AI C=66. 97
## mpg \sim disp + hp + drat + wt + qsec + am + gear + carb
           Df Sum of Sq
                            RSS
                                    AI C
##
## - carb
           1
                 0. 6855 148. 53 65. 121
## - gear
                 2. 1437 149. 99 65. 434
## - drat
                 2. 2139 150. 06 65. 449
           1
## - di sp
                 3. 6467 151. 49 65. 753
           1
## - hp
                 7. 1060 154. 95 66. 475
                         147. 84 66. 973
## <none>
## - am
            1
               11. 5694 159. 41 67. 384
## - qsec 1
                15. 6830 163. 53 68. 200
## - wt
            1
                27. 3799 175. 22 70. 410
##
## Step: AIC=65.12
## mpg ~ disp + hp + drat + wt + qsec + am + gear
##
           Df Sum of Sq
                            RSS
##
                  1. 565 150. 09 63. 457
## - gear 1
## - drat
                  1. 932 150. 46 63. 535
           1
## <none>
                         148, 53 65, 121
                 10. 110 158. 64 65. 229
## - disp 1
```

```
12. 323 160. 85 65. 672
## -
     am
  - hp
                 14. 826 163. 35 66. 166
                 26. 408 174. 94 68. 358
  - qsec
           1
## - wt
                 69. 127 217. 66 75. 350
##
## Step: AI C=63. 46
   mpg \sim disp + hp + drat + wt + qsec + am
                            RSS
##
           Df Sum of Sq
                                    AI C
## - drat
                  3. 345 153. 44 62. 162
  - di sp
                  8.545 158.64 63.229
## <none>
                         150.09 63.457
## - hp
                 13. 285 163. 38 64. 171
## - am
            1
                 20.036 170.13 65.466
                 25. 574 175. 67 66. 491
   - qsec 1
## - wt
            1
                 67. 572 217. 66 73. 351
##
## Step: AIC=62.16
  mpg \sim disp + hp + wt + qsec + am
##
##
           Df Sum of Sq
                            RSS
## - disp 1
                  6.629 160.07 61.515
## <none>
                         153. 44 62. 162
   - hp
                 12. 572 166. 01 62. 682
                 26. 470 179. 91 65. 255
## - qsec 1
                 32. 198 185. 63 66. 258
##
   - am
            1
   - wt
                 69. 043 222. 48 72. 051
##
## Step: AIC=61.52
## mpg \sim hp + wt + qsec + am
##
           Df Sum of Sq
                            RSS
                                    AI C
##
            1
## - hp
                  9. 219 169. 29 61. 307
   <none>
                         160.07 61.515
                 20. 225 180. 29 63. 323
  - qsec
           1
   - am
            1
                 25. 993 186. 06 64. 331
                 78. 494 238. 56 72. 284
   - wt
##
## Step: AIC=61.31
## mpg \sim wt + qsec + am
##
           Df Sum of Sq
                            RSS
##
## <none>
                         169. 29 61. 307
                 26. 178 195. 46 63. 908
            1
## - am
                109. 034 278. 32 75. 217
## - qsec 1
                183. 347 352. 63 82. 790
## - wt
```

Summary

```
summary(best. model)
```

```
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
  Resi dual s:
##
       Mi n
                10 Median
                                 3Q
                                        Max
   -3.4811 -1.5555 -0.7257 1.4110 4.6610
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
   (Intercept)
                 9.6178
                             6.9596
                                      1. 382 0. 177915
##
                             0. 7112 - 5. 507 6. 95e- 06 ***
                - 3. 9165
##
                 1. 2259
                             0. 2887 4. 247 0. 000216 ***
  qsec
                 2. 9358
                            1. 4109 2. 081 0. 046716 *
##
  am
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

Result

Thus, this regression model shows the best model includes cyl6, cyl8, hp, wt, and amManual variables. The adjusted R-squared indicates that about 84% of the variance is explained by the final model. The MPG decreases with higher number of cylinders, horsepower and weight. MPG increases with manual transmission.

Appendix: Graphs

Boxplot: Transmission vs MPG

```
boxplot(mpg ~ am, data=mtcars, xlab="Transmission", ylab="MPG", col=terrain.colors(3))
title(main = "Transmission vs MPG")
legend("topleft", inset=.03, c("automatic", "manual"), fill=terrain.colors(3), horiz=TRUE)
```

Transmission vs MPG

Pair Graph

pairs(mtcars, panel=panel.smooth, main="Pair Graph")

Pair Graph

Residual Plots

Transmission vs MPG

Pair Graph

