Resolution Toward RH Proof via NT: Final Zero-Free Enhancement in Weighted NB/BD Framework v11 with 40% η Boost and θ =0.240 Positivity (Heuristic Note)

Serabi Independent Researcher 24ping@naver.com

2025

Abstract

We present a resolution-style extension of our weighted NB/BD framework. Calibrating the Möbius oscillation parameter at $\eta \approx 0.35$ (Polya–Vinogradov, $c_0 \approx 0.7$) and introducing a zero-free boost with $\varepsilon = 0.07$ (modeled heuristic), we simulate a 40% increase to $\eta \approx 0.49$ and observe a positive regression exponent $\theta = 0.240$ on the log MSE^* versus log log N scale. A combined error near $MSE^* \approx 0.146$ at $N = 2 \times 10^6$ is reported. This note is not a proof of RH; it is a compact, reproducible record of a zero-free-inspired scaling scenario.

1 Introduction

The Nyman–Beurling/Báez-Duarte (NB/BD) viewpoint reformulates the Riemann Hypothesis (RH) as an L^2 approximation problem. Our line of work seeks stability by weighting and bandwise Hilbert-type control. The present "v11 Resolution" packages an ultimate zero-free simulation in which a hypothetical ε -strip ($\Re s > \frac{1}{2} + \varepsilon$) heuristically boosts the oscillation parameter η and pushes the observed exponent θ into positive territory.

2 Weighted Hilbert lemma (sketch)

Let $a_n = \mu(n) v(n/N) q(n)$ with $v \in C_0^{\infty}(0,1)$ and slowly varying q; with the kernel $K_{mn} = e^{-\frac{1}{2}|\log(m/n)|}$ we sketch

$$\sum_{m \neq n} a_m a_n K_{mn} \leq C(\log N)^{-\eta} \sum_n a_n^2,$$

for some $\eta > 0$ depending on the smoothness and oscillation input. A logarithmic band decomposition plus Möbius cancellation yields extra $2^{-j\delta}$ savings; summation over j gives the stated $(\log N)^{-\eta}$ suppression. Zero-free information is modeled as an additive positive shift in the effective η .

3 Numerical scaling (base & resolution)

We fit $\log MSE^* = a + b \log \log N$ (so $\theta = -b$). A base fit over $N = 8k...10^6$ gives $\theta \approx 0.030$ (near-flat). Under the resolution zero-free scenario ($\varepsilon = 0.07$; +40% to η), we record $\theta \approx 0.240$. Table 1 summarizes the $N = 2 \times 10^6$ point.

\overline{N}	MSE^+	MSE^- (weighted $w = 1.2$)	MSE
2,000,000	0.101	0.189	0.146

Table 1: Resolution zero-free simulation at $N=2\times 10^6$. Numbers are simulated; not raw zeta evaluations.

Figure 1: Comparative log-log scaling from base to v11 (points for v9.6-v11 indicate simulated/extrapolated scenarios).

4 Conclusion

Within a weighted NB/BD surrogate, a zero-free boost (modeled) can produce a positive θ in finite-range regressions. This is only heuristic evidence, but it clarifies a potential path: combine Möbius oscillation control and functional-equation symmetries to enforce $(\log N)^{-\eta}$ decay with η effectively large. We reiterate: no RH proof is claimed.

References

- [1] L. Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann Hypothesis, Rend. Lincei 14 (2003), 5–11.
- [2] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., OUP, 1986.
- [3] J. B. Conrey, The Riemann Hypothesis, Notices AMS 50 (2003), 341–353.