Estadística II - Taller 02 Semestre: 2024-01

Profesores: Johnatan Cardona Jimenez, Freddy Hernández Barajas, Raul Alberto Perez

Monitor: Ronald Palencia

El conjunto de datos (kc_house_data.csv) utilizado en este análisis contiene información sobre los precios de los casas y sus características asociadas. Aquí hay un breve resumen del conjunto de datos:

- id: Un identificador único para cada propiedad listada.
- date: La fecha en la que la casa fue vendida.
- price: El precio de venta de la casa.
- bedrooms: El número de dormitorios en la casa.
- bathrooms: El número de baños en la casa, a menudo en formato decimal para representar baños parciales (por ejemplo, 1.5 para un baño completo y un aseo).
- sqft_living: El área habitable en pies cuadrados de la casa.
- sqft_lot: El tamaño total del terreno en pies cuadrados.
- floors: El número de pisos en la casa.

Para el desarrollo de este taller trabajaremos con las variables Price y sqft_living.

A continuación se muestran las primeras 6 observaciones o registros del conjunto de datos

id	date	price	bedrooms	bathrooms	$\operatorname{sqft_living}$	$\operatorname{sqft}_{\operatorname{lot}}$	floors
7129300520	2014-10-13	221900	3	1.00	1180	5650	1
6414100192	2014-12-09	538000	3	2.25	2570	7242	2
5631500400	2015-02-25	180000	2	1.00	770	10000	1
2487200875	2014-12-09	604000	4	3.00	1960	5000	1
1954400510	2015-02-18	510000	3	2.00	1680	8080	1
7237550310	2014-05-12	1225000	4	4.50	5420	101930	1

Parte teorica

- 1 Respoder falso o verdadero y argumentar en caso de ser verdadero o dar un contra ejemplo en caso de ser falso
- $1.1~{\rm Un}~R^2$ alto indica que el modelo puede hacer predicciones útiles.
- $1.2 \text{ Un } R^2$ alto indica que la recta de regresión tiene buen ajuste.
- 1.3 Un \mathbb{R}^2 cercano a cero indica que X y Y no están relacionados.
- 1.4 La formula del intervalo de predicción es:

$$\begin{split} \text{a)} & \ \hat{y}_0 \pm t_{\alpha/2,n-2} \times \sqrt{\sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]} \\ \text{b)} & \ \hat{y}_0 \pm t_{\alpha/2,n-5} \times \sqrt{\sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]} \\ \text{c)} & \ \hat{y}_0 \pm t_{\alpha/2,n-2} \times \sqrt{\sigma^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]} \\ \text{d)} & \ \hat{y}_0 \pm t_{\alpha,n-3} \times \sqrt{\sigma^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]} \end{split}$$

- 1.5 Estimación puntual y por intervalo de la respuesta media $E[Y|x_0] + \varepsilon_0$
- 1.6 Predicción de valores futuros $y_0 = \beta_0 + \beta_1 x_0 = E[Y|x_0]$
- 1.7 Sólo se podrán hacer inferencias sobre la respuesta cuando $X=x_0\in[X_{\min},X_{\max}]$, donde X_{\min} y X_{\max} son los valores mínimo y máximo de la variable predictora, que fueron fijados en la muestra.
- 2 Completar la siguiente tabla anova.

Table 2: Tabla ANOVA parcialmente completada

Fuente de Variación	SS (Suma de Cuadrados)	df (Grados de Libertad)	MS (Cuadrado Medio)	F
Entre Grupos	10.25	1		
Dentro de Grupos Total	$20.50 \\ 30.75$	29		

Parte Practica

Considere el area cuadrada habitable de las propiedades como la covariable (X) y el precio como la variable respuesta (Y) para responder las preguntas de la 1 a la 7.

- 1. Realice la lectura de la base de datos, seleccione únicamente las variables numéricas.
- 2. Elabore un gráfico de dispersión de las variables para encontrar aquella que presente una mejor relación lineal con respecto a la variable respuesta.

- 3. Escriba la ecuación del modelo de regresión, junto con sus supuestos. Ajuste un modelo de regresión lineal simple y añada la recta de regresión a la gráfica generada anteriormente. **Nota**: seleccione aleatoriamente el 80% de los datos para ajustar el modelo.
- 4. Realice la prueba de significancia para la pendiente, luego realice la prueba de significancia de la regresión usando análisis de varianza. ¿Ambos enfoques permiten llegar a la misma conclusión? ¿Qué relación existe entre una prueba y la otra?
- 5. De una interpretación de los parámetros β_0 y β_1 del modelo, claro está, si es posible hacerlo.
- 6. Calcule el \mathbb{R}^2 usando el coeficiente de correlación y usando sumas de cuadrados, compare estos entre sí y compárelos con las salidas de \mathbb{R} . Realice una interpretación de este.
- 7. Use el modelo para predecir los precios de las viviendas del 20% de los datos que NO usó para ajustar el modelo. Calcule los respectivos intervalos de confianza y de predicción. ¿Cuáles intervalos son más anchos? ¿Por qué cree usted que esto sucede?
- 8. **Tarea:** Repetir los literales del 1 al 7 con las variables Price y sqft_lot (Cambiar sqft living por sqft lot)