Set Theory2

Yao

2022年3月10日

目录

1	集合的宇宙		1
	1.1	数理逻辑	1
	1.2	层垒的谱系	4
	1.3	相对化 relativization	9
	1.4	Exercise	13
1	集	合的宇宙	
	a 161	- STATE AND ALL	
1.1 数理逻辑			
	在	ZFC 下证明 ZFC ⊢ CH,希望将"ZFC ⊢ CH"表述为一阶句子	
	— ∮	般而言,给定一个 \mathcal{L} -理论 T 和一个 \mathcal{L} -句子 δ ," $T \vdash \sigma$ " 不能用一	个
\mathcal{L} -	句子	表示,只能用元语言表述	
	我们	们需要在 ZFC 中编码"元语言"	
	在	ZFC 中可以定义 $\mathcal{N} = (\mathbb{N}, +, \times, 0, 1)$	
	即石	存在集合论语言 $\mathcal{L}=\{\in\}$ 中的 公式 ,在 ZFC 的任意模型中可以定	义
N	+ ×	0.1 以上公式与模型无关	

用「0[¬],「1[¬],「2[¬]... 表示 ZFC 中的"自然数",以区别元语言中的自然数

Theorem 1.1. 如果 $R \subseteq \mathbb{N}^n$ 是一个递归关系。 $T \subseteq \operatorname{Th}(\mathcal{N})$ 是包含数论的适当丰富的理论,则存在公式 $\varphi(x_1, ..., x_n)$ 使得对任意自然数 $m_1, ..., m_n$ 有

如果
$$(m_1,\ldots,m_n)\in R$$
则 $T\vdash \varphi(\lceil m_1\rceil,\ldots,\lceil m_n\rceil)$ 如果 $(m_1,\ldots,m_n)\notin R$ 则 $T\vdash \neg \varphi(\lceil m_1\rceil,\ldots,\lceil m_n\rceil)$

Remark. 1. $T \subset \text{Th}(\mathcal{N}) \subset \text{ZFC}$

- 2. φ 是语言 $\{+, \times, 0, 1\}$ 上的公式
- 3. φ 可以还原为一个 {∈} 上的公式
- 4. $\varphi(\lceil m_1 \rceil, \dots, \lceil m_n \rceil)$ 是一个闭语句

编码

编码函数 $f: X \to \mathbb{N}$

存在解码函数 g,h,对 $a=a_0,\ldots,a_n\in X$, h(f(a))=n+1, $g(f(a),k)=a_k$ (分量)

性质: 以上三种函数 f,g,h 均是递归函数 \Rightarrow 都是可表示的

性质: "公式集"的编码集是递归的

性质: 如果 $T \subseteq ZFC$ 是可公理化的,则 T 的证明集的编码集是递归的

Corollary 1.2. 存在一个公式 ψ 和 θ 使得

$$\begin{tabular}{ll} ZFC \vdash \psi(n) \Leftrightarrow n \ is \ a \ formula \\ ZFC \vdash \neg \psi(n) \Leftrightarrow n \ is \ not \ a \ formula \\ ZFC \vdash \theta(n) \Leftrightarrow n \ is \ a \ proof \ in \ ZFC \\ ZFC \vdash \neg \theta(n) \Leftrightarrow n \ is \ not \ a \ proof \ in \ ZFC \\ \end{tabular}$$

 $\mathsf{FORM} = \{\lceil \varphi \rceil \mid \varphi \; \mathsf{formula}\} \subseteq \mathbb{N}$

如果 $T \subseteq \mathsf{ZFC}$ 是可公理化的,则"T 是一致的"是一个一阶表述式"不存在一个有穷的证明序列 $D = (\varphi_1, \dots, \varphi_n)$ 使得 φ_n 形如 $\varphi \land \neg \varphi$,记作 $\mathsf{Con}(T)$

Theorem 1.3 (第二不完全). 如果T是包含ZFC的一个递归公理集,且T一致,则

$$T \not\vdash Con(T)$$

特别地, ZFC ⊁ Con(ZFC)

Theorem 1.4. 对任意可公理化的理论 T, $ZFC \vdash Con(T)$ 当且仅当存在 $M \vDash T$

即不能在 ZFC 里证明 ZFC 有一个模型

需要可公理化来写出 Con(T),因此因为 ZFC
ot = Con(T),我们只能假设这么一个模型

集合论的模型跟集合论没什么关系,就是一个集合带一个二元关系,是 关于集合论语言的结构

Definition 1.5. 设 (M, E) 是集合论模型

1. 对任意公式 $\varphi(\bar{x},y)$, 定义 M^n 上的函数

$$h_{\omega}:M^n\to M$$

满足条件

$$M \vDash \exists y \varphi(\bar{a},y) \Rightarrow M \vDash \varphi(\bar{a},h_{\varphi}(\bar{a}))$$

称 h_{φ} 为 φ 的 Skolem 函数(依赖于选择公理,不同的变量选择有不同的函数)

2. 令 $\mathcal{H}=\{h_{\varphi}\mid \varphi \text{ formula}\}$ 为 Skolem 函数集合,设 S 是 M 的任意子集,则 $\mathcal{H}(S)$ 表示包含 S 且对 \mathcal{H} 封闭的最小集合,称之为 S 的 Skolem 壳

Lemma 1.6. 令 N 是集合论模型, $S \subseteq N$, 如果 $M = \mathcal{H}(S)$, 则 $M \prec N$

证明. Induction

对任意 $\bar{a} \in M^n$,有 $M \models \varphi(\bar{a}) \Leftrightarrow N \models \varphi(\bar{a})$

1. 不含量词,显然成立

2. φ 形如 $\exists y \psi(\bar{x},y)$, $N \vDash \exists y \psi(\bar{a},y) \Rightarrow N \vDash \psi(\bar{a},h_{\psi}(\bar{a}))$, by IH, $M \vDash \psi(\bar{a},h_{\psi}(\bar{a})) \Rightarrow M \vDash \exists y \psi(\bar{a},y)$

Theorem 1.7 (Löwenheim-Skolem Theorem).

1.2 层垒的谱系

工作于 \mathbf{ZF}^- : $\mathbf{ZF} -$ 基础公理 $\alpha \mapsto V_{\alpha}$ 是 On 到 WF 的 1-1 映射,而 On 是真类

Lemma 1.8. For any ordinal α

- 1. V_{α} is transitive
- 2. $\xi \leq \alpha \Rightarrow V_{\xi} \subseteq V_{\alpha}$
- 3. if κ is inaccessible, then $|V_{\kappa}| = \kappa$

Definition 1.9. For any $x \in WF$, rank of x is

$$\mathrm{rank}(x) = \min\{\beta \mid x \in V_{\beta+1}\}$$

$$\operatorname{rank}(x) = \alpha \Rightarrow x \in V_{\alpha+1} \land x \not\in V_\alpha$$

- $x \in V_{\alpha+1} \Leftrightarrow \operatorname{rank}(x) \le \alpha$
- $\bullet \ \ x \subseteq V_\alpha \Leftrightarrow \mathrm{rank}(x) \leq \alpha$

 $\textbf{Lemma 1.10.} \qquad 1. \ \ V_{\alpha} = \{x \in \mathrm{WF} \mid \mathit{rank}(x) < \alpha\}$

- 2. WF is transitive
- 3. $\forall x, y \in WF$, $x \in y \Rightarrow rank(x) < rank(y)$
- 4. $\forall y \in WF$, $rank(y) = \sup\{rank(x) + 1 \mid x \in y\}$

- 证明. 1. by definition, $x\in V_{\mathrm{rank}(x)+1}\setminus V_{\mathrm{rank}(x)}$, $\mathrm{rank}(x)<\alpha\Rightarrow x\in V_{\mathrm{rank}(x)+1}\subseteq V_{\alpha}$ $\mathrm{rank}(x)\geq\alpha\Rightarrow x\notin V_{\alpha}$
 - 2. WF is the "union" of transitive sets
 - $3. \ y \in V_{\mathsf{rank}(y)+1} \smallsetminus V_{\mathsf{rank}(y)}, \ y \subseteq V_{\mathsf{rank}(y)}, \ x \in y \Rightarrow x \in V_{\mathsf{rank}(y)} \Rightarrow \mathsf{rank}(x) < \mathsf{rank}(y)$
 - 4. by 3, $\sup\{\operatorname{rank}(x)+1\mid x\in y\}\leq \operatorname{rank}(y)$. induction on $\operatorname{rank}(y)\leq \sup\{\operatorname{rank}(x)+1\mid x\in y\}$
 - $\operatorname{rank}(y) = 0$
 - $$\begin{split} \bullet \ \, \mathrm{rank}(y) &= \beta + 1, y \in V_{\beta + 2} \smallsetminus V_{\beta + 1} \\ y &\in V_{\beta + 2} \Rightarrow y \subseteq V_{\beta + 1}. \ \, y \notin V_{\beta + 1} \Rightarrow y \not\subseteq V_{\beta} \Rightarrow y \smallsetminus V_{\beta} \text{ nonempty.} \\ \mathrm{Let} \, \, x \in y \smallsetminus V_{\beta}, \mathrm{rank}(x) \geq \beta, \sup \{ \mathrm{rank}(x) + 1 \mid x \in y \} \geq \beta + 1 = \mathrm{rank}(y) \end{split}$$
 - $$\begin{split} \bullet \ \, & \operatorname{rank}(y) = \gamma \operatorname{for some limit, then} \, y \subseteq V_{\gamma} \operatorname{and for any} \, \xi < \gamma, y \not\subseteq V_{\xi}, \\ & \operatorname{let} \, X_{\xi} \in y \smallsetminus V_{\xi}, \operatorname{then} \, \operatorname{rank}(X_{\xi}) \geq \xi, \sup \{ \operatorname{rank}(x) + 1 \mid x \in y \} \geq \\ & \sup \{ \xi + 1 \mid \xi < \operatorname{rank}(y) \} \geq \operatorname{rank}(y) \end{split}$$

- WF 中的集合按照秩分层
- 在 WF 中基础公理是成立的: $\forall y(y \neq \emptyset \rightarrow \exists x \in y(x \cap y = \emptyset))$,因为任何序数集都有最小元,挑一个有最小 rank 的就好了
- WF 类的构造没有用到选择公理
- On \subseteq WF

Lemma 1.11. *for any ordinal* α

1. $\alpha \in WF$ and $rank(\alpha) = \alpha$

- 2. $V_{\alpha} \cap On = \alpha$
- 证明. 1. $0 \in V_1 \setminus V_0 \subset WF$, rank(0) = 0

If $\alpha \in \operatorname{WF}$ and $\operatorname{rank}(\alpha) = \alpha$. $\alpha \in V_{\alpha+1} \setminus V_{\alpha}$, $\alpha \subseteq V_{\alpha+1}$. $\alpha+1 = \alpha \cup \{\alpha\} \subseteq V_{\alpha+1}$, $\alpha+1 \in V_{\alpha+2} \subset \operatorname{WF}$. If $\alpha+1 \in V_{\alpha+1}$, then $\operatorname{rank}(\alpha+1) \leq \alpha$, but $\alpha \in \alpha+1 \Rightarrow \operatorname{rank}(\alpha) = \alpha < \operatorname{rank}(\alpha+1)$. A contradiction

suppose γ is a limit ordinal and for any $\alpha < \gamma$, $\alpha \in V_{\alpha+1} \setminus V_{\alpha}$. $\gamma = \bigcup_{\alpha < \gamma} \alpha \subseteq \bigcup_{\alpha < \gamma} V_{\alpha} = V_{\gamma}$. Thus $\gamma \in V_{\gamma+1}$, $\mathrm{rank}(\gamma) \le \gamma$ and $\mathrm{rank}(\gamma) \not< \gamma$.

2. suppose $\beta \in V_{\alpha} \cap \text{On}$, then $\beta = \text{rank}(\beta) < \alpha$. If $\beta \in \alpha$ and $\text{rank}(\beta) < \alpha$, $\beta \in V_{\alpha} \cap \text{On}$

Lemma 1.12. 1. If $x \in WF$, then $\bigcup x, \mathcal{P}(x), \{x\} \in WF$, and their rank $< rank(x) + \omega$

- 2. If $x,y \in WF$, then $x \times y, x \cup y, x \cap y, \{x,y\}, (x,y), x^y \in WF$, and their $rank < rank(x) + rank(y) + \omega$
- 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \in V_{\omega + \omega}$
- *4. for any set* x, $x \in WF \Leftrightarrow x \subset WF$
- 证明. 1. suppose $\operatorname{rank}(x) = \alpha. \ x \in V_{\alpha+1} \setminus V_{\alpha} \ \operatorname{and} \ x \subseteq V_{\alpha}.$ by transitivity, $\bigcup x \subseteq V_{\alpha} \Rightarrow \bigcup x \in V_{\alpha+1} \subset \operatorname{WF. rank}(\bigcup x) \leq \alpha$ suppose $y \in \mathcal{P}(x), \ y \subseteq x \Rightarrow y \subseteq V_{\alpha} \Rightarrow y \in V_{\alpha+1}. \ \mathcal{P}(x) \subseteq V_{\alpha+1},$ $\mathcal{P}(x) \in V_{\alpha+2}, \operatorname{rank}(\mathcal{P}(x)) \leq \alpha+1.$ $\{x\} \in \mathcal{P}(x) \in V_{\alpha+2}.$
 - 2. Suppose $\operatorname{rank}(x) = \alpha, \operatorname{rank}(y) = \beta, x \subset V_{\alpha}, y \subset V_{\beta}$ $x \cup y \subset V_{\alpha} \cup V_{\beta} = V_{\max(\alpha,\beta)}, \operatorname{rank}(x \cup y) \leq \max(\alpha,\beta)$ $x \cap y \subset V_{\min(\alpha,\beta)}$

$$\begin{split} \{x,y\} &\subseteq V_{\alpha+1} \cup V_{\beta+1} = V_{\max(\alpha,\beta)+1}, \operatorname{rank}(\{x,y\}) = \max(\alpha,\beta) + 1 \\ (x,y) &= \{\{x\}, \{x,y\}\} \subset V_{\max(\alpha,\beta)+2}. \ \operatorname{rank}((x,y)) = \max(\alpha,\beta) + 2 \\ x \times y &= \{(a,b) \mid a \in x, b \in y\}. \ a \in x \Rightarrow \operatorname{rank}(a) < \alpha, b \in y \Rightarrow \\ \operatorname{rank}(b) &< \beta, \operatorname{rank}(a,b) < \max(\alpha,\beta) + 2, (a,b) \in V_{\max(\alpha,\beta)+2}. \ x \times y \subseteq V_{\max(\alpha,\beta)+2}, \operatorname{rank}(x \times y) \leq \max(\alpha,\beta) + 2. \\ x^y &\subseteq \mathcal{P}(x \times y) \subseteq V_{\max(\alpha,\beta)+3}. \end{split}$$

3. $\mathbb{N} = \omega \in V_{\omega+1}$

 \mathbb{Z} : let \sim be an equivalence relation on $\omega \times \omega$, $(a,b) \sim (c,d) \Leftrightarrow a+d=b+c$, then $\mathbb{Z}=(\omega \times \omega)/\sim$. Hence \mathbb{Z} is a partition of $\omega \times \omega$ and hence $\mathbb{Z}\subseteq \mathcal{P}(\omega \times \omega)$. $\mathbb{Z}\in V_{\omega+3}$

 \mathbb{Q} : let \sim be an equivalence on $\mathbb{Z} \times \mathbb{Z}^+$, $(a,b) \sim (c,d) \Leftrightarrow ad = bc$. $\mathbb{Q} \subseteq \mathcal{P}(\mathbb{Z} \times \mathbb{Z}^+)$, $\mathbb{Q} \in V_{\omega+6}$

 $\mathbb{R}\text{: set of dedekind cut on }\mathbb{Q}\text{, }\mathbb{R}\subset\mathcal{P}(\mathbb{Q})\text{, }\mathbb{R}\in V_{\omega+8}$

4. \Rightarrow : WF is transitive

 $\Leftarrow: x \text{ is a set and } x \subset \bigcup_{\alpha \in \mathsf{On}} V_{\alpha}.$

Claim: there is an ordinal α s.t. $x \subset V_{\alpha}$

Otherwise, let $f:\operatorname{On} o \mathcal{P}(x)$ s.t. $f(\alpha)=x \smallsetminus V_{\alpha}$. Then for any $y \in \mathcal{P}(x)$, $f^{-1}(y)$ is a set. $\operatorname{On} = \bigcup_{y \in x} f^{-1}(y)$ and is thus a set, a contradiction

AC => Any set has cardinality

Lemma 1.13. *Assume AC* ($V \models ZFC$)

- 1. for any group G, there is a group G' in WF s.t. $G \cong G'$
- 2. for any topological space T, there is a topological space T' in WF s.t. $T \cong T'$ (homeomorphic)

证明. 1. suppose $(G,*_G)$ is a group, $G,*_G \in V$. By AC, there is a cardinal α s.t. $|G|=\alpha$, that is, there is a bijection $f:\alpha \to G$. Define *: for any $x,y,z\in \alpha$, $x*y=z\Leftrightarrow f(x)*_G f(y)=f(z)$. Then $(\alpha,*)\cong (G,*_G)$, $*\subseteq \alpha \times \alpha$

V 中的任何结构都可以在 WF 中找到同构象(同构是在 V 里看到的)

Definition 1.14. 任意集合 A 上的二元关系 < 是 **良基**的,当且仅当对 A 的 任意非空子集 X,X 有 < 下的极小元

Theorem 1.15. *If* $A \in WF$, then \in is a well-founded relation on A

证明. suppose $X \subseteq A$, $X \neq \emptyset$, $X \subseteq WF$, then elements of X has ranks and $x \in y \Rightarrow \operatorname{rank}(x) < \operatorname{rank}(y)$. Let x having least rank in X, then x is the \in -minimal element in X

Lemma 1.16. If A is a transitive set and \in is a well-founded relation on A, then $A \in WF$

证明. Just need to prove $A \subset WF$. If $A \not\subset WF$, $X = A \setminus WF \neq \emptyset$. Then X has a \in -minimal element x. Then $x \neq \emptyset \in WF$. For any $y \in x$, $y \in A$. By the minimality of x, $y \in WF$. Then $x \subset WF$, $x \in WF$, a contradiction

Lemma 1.17. *For any set* x*, there is a minimal transitive set* trcl(x) s.t. $x \subseteq trcl(x)$

证明. For any $n \in \omega$ define x_n

$$x_0 = x$$

$$x_{n+1} = \bigcup x_n$$

let $\operatorname{trcl}(x) = \bigcup_{n \in \omega} x_n$.

1. trcl(x) is transitive

$$a \in \operatorname{trcl}(x) \Rightarrow a \in x_n \Rightarrow a \subseteq x_{n+1} \subseteq \operatorname{trcl}(x)$$

2. trcl(x) is minimal

If $y\supseteq x$ is transitive, recursively prove for any $n<\omega$, $x_n\subseteq y$.

trcl(x) is the **transitive closure** of x.

Lemma 1.18. We can prove the following without axiom of power set

- 1. *if* x *is transitive,* trcl(x) = x
- 2. $y \in x \Rightarrow trcl(y) \subseteq trcl(x)$
- 3. $trcl(x) = x \cup \bigcup \{trcl(y) \mid y \in x\}$
- 证明. 2. $y \in x \subset trcl(x)$. $y \in trcl(x)$. $trcl(y) \subseteq trcl(x)$.
 - 3. $x \cup \bigcup \{ \operatorname{trcl}(y) \mid y \in x \} \subseteq \operatorname{trcl}(x)$ by (2) $\bigcup \{ \operatorname{trcl}(y) \mid y \in x \} \text{ is transitive. For } y \in x, \, y \subseteq \operatorname{trcl}(y). \text{ Thus rhs is }$

Theorem 1.19 (In ZF^-). For any set X, TFAE

- 1. $X \in WF$
- 2. $trcl(X) \in WF$

transitive

3. \in is a well-founded relation on trcl(X)

证明. $1 \rightarrow 2$: WF is closed under union

Theorem 1.20. *If* $V \models ZF^-$, TFAE

- 1. axiom of foundation $(V \vDash)$ axiom of foundation
- 2. for any set X, \in is a well-founded relation on X
- 3. V = WF

 $V \vDash \mathsf{ZF} \Rightarrow V = \mathsf{WF}(\mathsf{WF} \vDash \mathsf{ZF})$

Goal: $V \models \mathbf{ZF}^- \Rightarrow \mathbf{WF} \models \mathbf{ZF}^-$ 但是 \mathbf{WF} 是一个类,我们并没有定义 我们可以用相对化编码 $\mathbf{WF} \models \mathbf{ZF}^-$

1.3 相对化 relativization

工作在 ZF

Definition 1.21. M class, φ formula, φ 对 M 的 相对化 φ^M

- 1. $(x = y)^M := x = y$
- 2. $(x \in y)^M := x \in y$
- 3. $(\varphi \to \psi)^M := \varphi^M \to \psi^M$
- 4. $(\neg \varphi)^M := \neg \varphi^M$
- 5. $(\forall x \varphi)^M := (\forall x \in M) \varphi^M$

 φ^M 读作" φ 在 M 中为真",表示为 $(M, \epsilon) \subseteq (V, \epsilon)$ 有 $M \models \varphi$,即如果 $V \models \varphi^M$,那么 $M \models \varphi$,而 V 知道得更多一点

重新定义了满足

若 M 被公式 M(u) 定义, $(\forall x\varphi)^M$ 是公式 $\forall x(M(x) \to \varphi^M(x))$

Example 1.1. $M = \operatorname{On}, \ \operatorname{On} \models \forall x \forall y (x \in y \lor y \in x \lor x = y)$

" $M \vDash \varphi$ "可以形式化为 $V \vDash \varphi^M$,而 M 对应于 M(u),即等价于 $T \vdash \varphi^M$,如果我们工作在某个 T 上

若函数 f 被公式 $\varphi(\bar{x},y)$ 定义,则 $V \models \forall \bar{x} \exists ! y \varphi(\bar{x},y)$,但相对化后不一定对,因此 $f^M = \{(\bar{x},y) \in M : \varphi^M(\bar{x},y)\}$ 不一定是 M 上的函数

Definition 1.22. for any theory T, any class M, M is a **model** of T, $M \models T$, iff for any axiom φ of T, φ^M holds, i.e., $V \models \varphi^M$

V 中定义出语义

Theorem 1.23. $V \vDash ZF^- \Rightarrow WF \vDash ZF$ $ZF^- \vdash (ZF)^{WF}$

- 存在公理: $\exists x \in M(x=x)$
- ◆ 外延公理: Ext^M

$$\forall x \in M \forall y \in M \forall u \in M((u \in X \leftrightarrow u \in Y) \to X = Y)$$

Lemma 1.24. *If* M *is transitive, then* Ext^M *holds*

证明. suppose $X,Y \in M$, if $X \neq Y$, then there is $u \in X \triangle Y$ (by Ext in V), by transitivity, $u \in M$

• 分离公理模式: for any M, any formula φ , $S(\varphi)^M$

$$\forall x \in M \exists Y \in M \forall u \in M (u \in Y \leftrightarrow u \in X \land \varphi^M(u))$$

Therefore, if for any $X \in M$, $\{u \in X \mid \varphi^M(x)\} \in M$, then 分离公理模式在 M 中为真

Lemma 1.25. If M satisfies $x \in M \Leftrightarrow x \subset M$, then $S(\varphi)^M$ holds for any M

证明. Suppose $X\in M$, suffices to find corresponding $Y\in M$ s.t. $\forall u\in M(u\in Y\leftrightarrow u\in X\wedge \varphi^M(u))$

根据 V 中的分离公理, $Y = \{x \in X \mid \varphi^M(u)\} \in V \text{ and } Y \subseteq X \subset M$, thus $Y \in M$ and $\forall u(u \in Y \leftrightarrow u \in X \land \varphi^M(u))$. But $x \in Y \Rightarrow x \in M$, thus this is equivalent to $\forall u \in M(u \in Y \leftrightarrow u \in X \land \varphi^M(u))$

• axiom of pairing Pair

$$\forall x \in M \forall y \in M \exists z \in M \forall u \in M (u \in z \leftrightarrow u = x \lor u = y)$$

只要 M 对对集函数 $x, y \mapsto \{x, y\}$ 封闭,则 $Pair^M$ 成立

• 幂集公理 Pow

$$\forall X \in M \exists Y \in M \forall u \in M (u \in Y \leftrightarrow \forall a \in M (a \in u \to a \in X))$$

Lemma 1.26. If M satisfies $x \in M \Leftrightarrow x \subset M$, then Pow^M holds

证明. for any $X \in M$, $\mathcal{P}(X) \in M$. and we prove $\mathcal{P}(X)$ is the Y, for any $u \in M$

• axiom of infinity Inf

$$\exists X \in M (\emptyset \in X \land \forall y \in M (y \in X \to y^+ \in X))$$

$$\emptyset : \psi(x) := \forall u(u \in x \to u \neq u), x = \emptyset \Leftrightarrow \psi(x)$$

 $y^+: \varphi(y,z): \forall u \in z (u=y \lor u \in y) \land y \subseteq z \land y \in z$ 函数相对化后不一定是函数,所以放到下一节

• axiom of foundation Fod

$$\forall x \in M(\exists u \in M(u \in x) \to \exists y \in M(y \in x \land \neg \exists u \in M(u \in x \land u \in y)))$$

Lemma 1.27. If M is transitive and elements of M is well-founded under \in , then Fod^M holds

证明. suppose $x_0 \in M$ and there is

 $\psi := \exists u (u \in x) \text{ and } \varphi \text{ is the latter part}$

 $\psi^M(x_0) \leftrightarrow \exists u(u \in x_0) \text{ since } M \text{ is transitive, } \varphi^M(x_0) \leftrightarrow \exists y(y \in x_0 \land \neg \exists u \in M(u \in x \land u \in y))$

在 V 中, $x_0 \neq \emptyset$, 由条件可知 (x_0, \in) 是良基的,于是 φ 在 V 中对,那 么当然在 M 中对

• 替换公理模式 $Rep(\varphi)$

$$\forall A \in M \forall x \in A \cap M \exists ! y \in M \varphi^M(x, y) \to \exists B \in M \forall x \in A \exists y \in B \varphi^M(x, y)$$
$$\exists ! y \theta(y) : \exists y (\theta(y) \land \forall y' (\theta(y') \to y = y'))$$

Lemma 1.28. if M satisfied $x \in M \Leftrightarrow x \subset M$, then $Rep(\varphi)^M$ holds for any φ

证明. for any $A_0\in M$, then $A_0\cap M=A_0$, thus we have $\forall x\in A_0\exists !y(\varphi^M(x,y)\wedge M(y)).$

by
$$Rep(\varphi^M(x,y) \wedge M(y))$$
, $\exists B' \forall x \in A_0 \exists y \in B' \varphi^M(x,y) \wedge M(y)$

Let
$$B = B' \cap M$$
, which is what we want

Thus in ZF^- , we can prove $WF \models ZF - \inf$

1.4 Exercise

 $\textit{Exercise 1.4.1.} \qquad 1. \ \ V_{\alpha} = \{x \in \mathsf{WF} \mid \mathsf{rank}(x) < \alpha\}$

- 2. WF is transitive
- 3. $\forall x, y \in WF$, $x \in y \Rightarrow \operatorname{rank}(x) < \operatorname{rank}(y)$
- 4. $\forall y \in WF$, $rank(y) = sup\{rank(x) + 1 \mid x \in y\}$
- 证明. 1. by definition, $x\in V_{\mathrm{rank}(x)+1}\setminus V_{\mathrm{rank}(x)}$, $\mathrm{rank}(x)<\alpha\Rightarrow x\in V_{\mathrm{rank}(x)+1}\subseteq V_{\alpha}$ $\mathrm{rank}(x)\geq\alpha\Rightarrow x\notin V_{\alpha}$
 - 2. WF is the "union" of transitive sets
 - $3.\ y\in V_{\mathrm{rank}(y)+1}\setminus V_{\mathrm{rank}(y)}\text{, }y\subseteq V_{\mathrm{rank}(y)}\text{, }x\in y\Rightarrow x\in V_{\mathrm{rank}(y)}\Rightarrow \mathrm{rank}(x)<\mathrm{rank}(y)$
 - 4. by 3, $\sup\{\operatorname{rank}(x)+1\mid x\in y\}\leq \operatorname{rank}(y)$. induction on $\operatorname{rank}(y)\leq \sup\{\operatorname{rank}(x)+1\mid x\in y\}$
 - $\operatorname{rank}(y) = 0$

- $\begin{array}{l} \bullet \ \ {\rm rank}(y)=\beta+1, y\in V_{\beta+2}\smallsetminus V_{\beta+1}\\ \\ y\in V_{\beta+2}\Rightarrow y\subseteq V_{\beta+1}.\ y\notin V_{\beta+1}\Rightarrow y\nsubseteq V_{\beta}\Rightarrow y\smallsetminus V_{\beta} \ {\rm nonempty}.\\ \\ {\rm Let}\ x\in y\smallsetminus V_{\beta}, {\rm rank}(x)\geq \beta, {\rm sup}\{{\rm rank}(x)+1\mid x\in y\}\geq \beta+1=\\ \\ {\rm rank}(y) \end{array}$
- $\begin{array}{l} \bullet \ \, \mathrm{rank}(y) = \gamma \, \mathrm{for \, some \, limit, \, then} \, y \subseteq V_{\gamma} \, \mathrm{and \, for \, any} \, \xi < \gamma, y \not\subseteq V_{\xi}, \\ \mathrm{let} \, X_{\xi} \in y \smallsetminus V_{\xi}, \, \mathrm{then \, rank}(X_{\xi}) \geq \xi, \, \mathrm{sup}\{\mathrm{rank}(x) + 1 \mid x \in y\} \geq \\ \mathrm{sup}\{\xi + 1 \mid \xi < \mathrm{rank}(y)\} \geq \mathrm{rank}(y) \\ \end{array}$