Homework 05

Problem 1

Use $[a, a^{\dagger}] = 1$, arrange operator $A = aa^{\dagger}a^{\dagger}aa^{\dagger}$ into a form so that \hat{a}^{\dagger} are all on the left, and \hat{a} are all on the right, for example $a^{\dagger}a^{\dagger}a^{\dagger}aa + 2a^{\dagger}a$, etc. Before arranging, A has three a^{\dagger} and two a. Does this still hold after arranging?

Problem 2

Evaluate $[a, A], A = aa^{\dagger}a^{\dagger}a.$

Problem 3

For a fork state $|n\rangle$, calculate $\langle \Delta x^2 \rangle$, $\langle \Delta p^2 \rangle$, and does it obey uncertainty principle?

Problem 4

 $\xi(\lambda) = e^{i\lambda a^{\dagger}a} a e^{-i\lambda a^{\dagger}a}, \ \lambda \text{ is a number}$

- 1. Evaluate $\xi'(\lambda)$
- 2. Get a differential equation in the form $\xi'(\lambda) = c\xi(\lambda)$, and obtain $\xi(\lambda)$