# Update on 7 TeV pp → K<sup>0</sup><sub>s</sub>K<sup>0</sup><sub>s</sub> analysis

Tom Humanic
July 18, 2011
ALICE Week Femto Meeting

### Summary of pp→ K<sup>0</sup><sub>s</sub>K<sup>0</sup><sub>s</sub> analysis progress since QM2011

Ran over PHOJET anchor runs to better estimate baseline systematic error

→PHOJET describes C(Q<sub>inv</sub>) baseline with similar accuracy as PYTHIA, gives smaller systematic errors than before, multiplicity dependence of R better articulated

Studied ±10% Q<sub>inv</sub> fit range effect on systematic error

→ Systematic error from this comparable with statistical errors

Made a simple geometric model to compare with data results for R to determine if trivial geometry effects can be eliminated as an explanation for multiplicity and k<sub>T</sub> dependences seen in data

→ This indeed seems to be the case -- need additional physics to describe data

#### R from Lednicky using PYTHIA and PHOJET baselines



Systematic error includes S.D. of the four baseline methods and a ±10% variation on the Q<sub>inv</sub> fit range

## $\lambda$ from Lednicky using PYTHIA and PHOJET baselines



Systematic error includes S.D. of the four baseline methods and a ±10% variation on the Q<sub>inv</sub> fit range

# Comparison of R for $\pi\pi$ and $K_s^0K_s^0$



#### Simple Geometrical Model for 7 TeV pp → K<sup>0</sup><sub>s</sub>K<sup>0</sup><sub>s</sub> HBT

Impose a geometry on  $K_s^0$  hadronization from ALICE PYTHIA-Perugia0 events Assume an exponentially distributed,  $\exp(-\tau/T)$ , proper hadronization time for  $K_s^0$  which defines the hadronization space-time via causality, i.e.,

 $t = \tau(E/m)$ ,  $x = \tau(p_x/m)$ ,  $y = \tau(p_y/m)$ ,  $z = \tau(p_z/m)$ , where  $m = K_s^0$  mass, and T = 1.8 fm/c  $\rightarrow$  only free parameter in Model

Impose HBT on the PYTHIA  $K_s^0 K_s^0$  pairs using 1+cos( $\Delta x \Delta p$ - $\Delta t \Delta E$ ) and bin in  $Q_{inv}$  Use the same PYTHIA anchor runs as the data.

Fit the model  $C(Q_{inv})$  using the same method as used for the data to extract R and  $\lambda$ 

Sample  $K_s^0$  hadronization radius distribution and  $C(Q_{inv})$  for the bin M1-11,  $k_T$  0.8-1.1 GeV/c





#### Comparison of geometric model with data for R



The simple geometrical model does not account for most of the features seen in the data

→ Suggests that other physics needed to explain data, e.g. flow