Работа 1

Цель

- Ознакомление с документацией по МК
- Получение опыта работы с периферией GPIO

Программное обеспечение

- 1. STM32CubeCLT
- 2. VS Code
- 3. Расширения для VS Code:
 - STM32 VS Code Extension
 - CMake
 - C/C++ Extension Pack
 - Cortex-Debug
 - Output Colorizer

Аппаратное обеспечение

1. Лабораторный стенд

Задание

Предварительные шаги

1. Откройте схему лабораторного стенда и найдите две кнопки со встроенными светодиодами (красный, синий). Запишите выводы МК, к которым подключены эти кнопки.
2. По схеме кнопки определите логический уровень на выводе МК при нажатии и при отпускании (активный высокий или активный низкий?).
2. Hoŭeuto mocoud no 9 odotornorod di oveno ni odenimisto di dori i MV, medodernoromi

3. Найдите массив из 8 светодиодов в <u>схеме</u> и запишите выводы МК, управляющие каждым светодиодом.

Основное

- 1. Используя раздел «Memory Map» в <u>Datasheet</u> или <u>Reference Manual</u>, определите базовые адреса GPIO-портов, подключённых к найденным кнопкам и светодиодам.
- 2. Создайте структурированное отображение регистров GPIO с использованием конструкции typedef, как показано ниже, основываясь на карте регистров GPIO из MCU Reference Manual:

```
typedef struct
   uint32_t FIRST_REGISTER,
   uint32_t NEXT_REGISTER,
   uint32_t NEXT_REGISTER,
   uint32_t LAST_REGISTER,
}GPIO_TypeDef;
```

3. Включите тактовый сигнал для соответствующего порта GPIO, используя следующую команду:

```
*((uint32_t *) 0x40023830) |= 0xF;
```

- 4. Настройте режим работы для каждого определённого вывода с помощью регистров конфигурации режимов.
- 5. Реализуйте программу, которая считывает входные состояния и управляет выходами в соответствии с вашим вариантом, используя соответствующие регистры данных.

Руководство

Перед написанием всей программы попробуйте выполнить следующие шаги:

- 1. Создайте минимальную программу для зажигания одного светодиода, чтобы проверить правильность определения вывода и методики управления выходом. 2. Расширьте программу, чтобы переключать состояние светодиода при нажатии кнопки, убедившись в корректности чтения входного сигнала. 3. Реализуйте полную функциональность согласно вашему варианту.

Эта блок-схема иллюстрирует рекомендуемый ход программы:

Процесс определения макросов:

Это дерево решений описывает полный процесс конфигурации GPIO:

Варианты

Вариант	Метод управления выходом	Метод чтения входа	Описание программы
1	Регистр выходных данных	Регистр входных данных	Светодиоды отображают двоичную запись числа (переменной). Нажатие кнопок увеличивает и уменьшает число: синий: 00000001 синий: 00000010 синий: 00000011 красный: 00000010 красный: 00000001 красный: 00000001 красный: 000000001
2	Регистр установки/сброса битов	Регистр входных данных + bit- banding	Кнопки управляют перемещением единственного зажжённого светодиода: синий: 00000001 синий: 00000010 синий: 000000100 красный: 00000010 красный: 00000001 красный: 00000001 красный: 100000001
3	Регистр выходных данных + bit- banding	Регистр входных данных	Нажатие кнопок зажигает светодиоды в порядке: синий: 00000001 синий: 00000011 синий: 0000011 красный: 00000011 красный: 00000001 красный: 11111111
4	Регистр выходных данных	Регистр входных данных + bit- banding	Нажатие кнопок зажигает светодиоды в комбинации: синий: 00000001 красный: 00000100 красный: 00001001 синий: 00010011 красный: 00100110
5	Регистр установки/сброса битов	Регистр входных данных	Синяя кнопка отображает двоичную запись случайного числа. Красная кнопка выключает все светодиоды.
6	Регистр выходных данных + bit- banding	Регистр входных данных + bit- banding	Светодиоды отображают двоичную запись числа (переменной). Нажатие кнопок увеличивает и уменьшает число: синий: 00000001 синий: 00000010 синий: 00000011 красный: 00000010 красный: 000000010 красный: 000000001 красный: 000000000

Работа 1					
Вариант	Метод управления выходом	Метод чтения входа	Описание программы		
7	Регистр выходных данных	Регистр входных данных	Кнопки управляют перемещением единственного зажжённого светодиода: синий: 00000001 синий: 00000100 красный: 00000010 красный: 00000001 красный: 10000000		
8	Регистр установки/сброса битов	Регистр входных данных + bit- banding	Нажатие кнопок зажигает светодиоды в порядке: синий: 00000001 синий: 00000011 синий: 00000011 красный: 0000001 красный: 00000001 красный: 1111111		
9	Регистр выходных данных + bit- banding	Регистр входных данных	Нажатие кнопок зажигает светодиоды в комбинации: синий: 00000001 красный: 00000100 синий: 00001001 синий: 00010011 красный: 00100110		
10	Регистр выходных данных	Регистр входных данных + bit- banding	Синяя кнопка отображает двоичную запись случайного числа. Красная кнопка выключает все светодиоды.		
11	Регистр установки/сброса битов	Регистр входных данных	Светодиоды отображают двоичную запись числа (переменной). Нажатие кнопок увеличивает и уменьшает число: синий: 00000001 синий: 00000010 синий: 00000011 красный: 00000010 красный: 000000010 красный: 000000001 красный: 000000000		
12	Регистр выходных данных + bit- banding	Регистр входных данных + bit- banding	Кнопки управляют перемещением единственного зажжённого светодиода: синий: 00000001 синий: 00000010 синий: 00000010 красный: 00000001 красный: 00000001 красный: 10000000		
13	Регистр выходных данных	Регистр входных данных	Нажатие кнопок зажигает светодиоды в порядке: синий: 00000001 синий: 00000011 синий: 00000011 красный: 00000001 красный: 11111111		
14	Регистр установки/сброса битов	Регистр входных данных + bit- banding	Нажатие кнопок зажигает светодиоды в комбинации: синий: 00000001 красный: 00000100 красный: 00001001 синий: 00010011 красный: 00100110		
15	Регистр выходных данных + bit- banding	Регистр входных данных	Синяя кнопка отображает двоичную запись случайного числа. Красная кнопка выключает все светодиоды.		

Продвинутое задание

Состояние кнопок должно определяться внешним прерыванием.

Вопросы

- 1. Как выводятся адреса регистров периферии из карты памяти МК?
- 2. Сравните разные методы работы с регистрами.
- 3. Опишите принцип bit-banding и как вычислять alias-адреса.
- 4. Дайте определение GPIO и его основные функции в встроенных системах.
- 5. Каковы допустимые уровни напряжений на выводах GPIO у STM32?
- 6. Перечислите режимы работы выводов GPIO.
- 7. Сравните разные методы управления выходом GPIO, их плюсы и минусы.
- 8. В чём разница между push-pull и open-drain выходами?
- 9. Какова роль подтягивающих резисторов в цифровых схемах?
- 10. Что такое дребезг контактов и как его устраняют во встроенных системах?