CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	1. A method of protecting a document which will be transformed into a value
2	bearing instrument after adding additional markings to the document from
3	fraudulent alteration of the markings comprising the steps of:
4	generating encryptions of a unique identifier X of the document, the
5	unique identifier X being printed on the document; and
6	covering each critical field k, k=1,2,3, of the document where
7	markings are to be added with encrypted versions of X, $Sign_{k,0}(X)$, where
8	$\operatorname{Sign}_{k,0}(X)$ is a cryptographic function or family thereof which is known only to
9	an institution which issues the document, $\operatorname{Sign}_{k,0}(X)$ being used to authenticate
10	the document.
1	2. The method of protecting a document from fraudulent alteration recited in
2	claim 1, wherein an entire area of a field k is covered with a large number of
3	lines of fine print, the lines of fine print comprising one of several encryptions
4	of X.
1	3. The method of protecting a document from fraudulent alteration recited in
2	claim 2, wherein each critical field k of the document, in addition to being
3	covered by the encrypted version of X, $\operatorname{Sign}_{k,0}(X)$, is covered with another
4	encrypted version of X , $\operatorname{Sign}_k(X)$, where $\operatorname{Sign}_k(X)$ is another cryptographic
5	function or family thereof different from the cryptographic function $Sign_{k,0}(X)$
6	which is known to a larger number of authorized institutions for performing an
7	initial authentication of the document.

1	4. The method of protecting a document from fraudulent alteration recited in
2	claim 2, wherein each critical field k of the document, in addition to being
3	covered by the encrypted version of X, $Sign_{k,0}(X)$, is covered with another
4	encrypted version of X, $Sec_k(X)$, where $Sec_k(X)$ is another cryptographic
5	function or family thereof different from the cryptographic function $\operatorname{Sign}_{k,0}(X)$
6	which is known to a small group within the institution which issues the
7	document for performing final authentication of the document
1	5. The method of protecting a document from fraudulent alteration recited in
2	claim 3, wherein each critical field k of the document, in addition to being
3	covered by encrypted versions of X, $\mathrm{Sign}_k(X)$ and $\mathrm{Sign}_{k,0}(X)$, is covered with a
4	third encrypted version of X, $Sec_k(X)$, where $Sec_k(X)$ is another cryptographic
5	function or family thereof different from the cryptographic functions
6	$\operatorname{Sign}_{k,0}(X)$ and $\operatorname{Sign}_k(X)$ which is known to a small group within the institution
7	which issues the document for performing final authentication of the
8	document
1	6. The method of protecting a document from fraudulent alteration recited in
2	claim 5, further comprising the step of indexing the cryptographic functions
3	$Sign_k$, $Sign_{k,0}$ and Sec_k , by a number corresponding to the field k, so that each
4	line comprises different encryptions of X such that each cryptographic
5	function $\operatorname{Sign}_k(X)$, $\operatorname{Sign}_{k,0}(X)$ and $\operatorname{Sec}_k(X)$ is a family of different
6	cryptographic functions.
1	7. The method of protecting a document from fraudulent alteration recited in
2	claim 6, wherein the families of cryptographic functions Sign _k , Sign _{k,0} and

 Sec_k prevent cryptographic functions which have been obscured at different

3

4	places by marks added to the document from being used to reconstitute the ful
5	cryptographic function.
6	8. The method of protecting a document from fraudulent alteration recited in
7	claim 1, wherein electronic deposit of a document transformed into a value
8	bearing instrument comprises the steps of:
9	scanning the document with a scanner to generate a digitized version
10	of the document; and
11	transmitting the digitized version of the document for deposit.
1	9. The method of protecting a document from fraudulent alteration recited in
2	claim 8, wherein electronic deposit of a document transformed into a value
3	bearing instrument further comprises the step of endorsing the document, if
4	needed, having printed thereon encryptions in at least selected locations where
5	markings are added to transform the document into a value bearing
6	instrument, the act of endorsing obscuring some of the encryptions.
1	10. The method of protecting a document from fraudulent alteration recited in
2	claim 8, wherein electronic deposit of a document transformed into a value
3	bearing instrument further comprises the steps of:
4	extracting from the digitized version of the document the unique
5	identifier X and a corresponding digital encryption of X, Sign _k (X), which is
6	known to a large number of authorized institutions; and
7	comparing a decrypted version of $\operatorname{Sign}_k(X)$ to the unique identifier X
8	as an initial authentication of the document.
1	11. The method of protecting a document from fraudulent alteration recited in
2	claim 10, wherein electronic deposit of a document transformed into a value

3	bearing instrument further comprises the steps of:
4	extracting from the digitized version of the document the unique
5	identifier X and a corresponding digital encryption of X , $\operatorname{Sign}_{k,0}(X)$, which is
6	known only to an institution that issues the document; and
7	comparing a decrypted version of $\operatorname{Sign}_{k,0}(X)$ to the unique identifier X
8	as a further authentication of the document.
1	12. The method of protecting a document from fraudulent alteration recited in
2	claim 11, wherein electronic deposit of a document transformed into a value
3	bearing instrument further comprises the steps of:
4	extracting from the digitized version of the document the unique
5	identifier X and a corresponding digital encryption of X , $\operatorname{Sec}_k(X)$, which is
6	known to a small group within the institution that issues the document; and
7	comparing a decrypted version of Sec _k (X) to the unique identifier X as
8	a final authentication of the document.
1	13. The method of protecting a document from fraudulent alteration recited in
2	claim 1, wherein portions of the lines of fine print are obscured by writing
3	added to the document when transforming the document into a value bearing
4	instrument.
1	14. The method of protecting a document from fraudulent alteration recited in
2	claim 13, wherein the document is a check and the unique identifier X is
3	check data comprising a bank Id number, an account Id number and a check
4	number.
1	15. The method of protecting a document from fraudulent alteration recited in
2	claim 14, wherein an issuing bank chooses a first secret key Sign _k using a

3	secure cryptographic generator (SCG), further comprising the steps of:
4	computing a first family of encrypted functions $\operatorname{Sign}_k(X)$; and
5	communicating the key Sign_k to banks and other authorized institutions
6	involved in depositing of checks, the family of encrypted functions $\operatorname{Sign}_k(X)$
7	allowing the payee's bank to perform a first authentication of the check.
1	16. The method of protecting a document from fraudulent alteration recited in
2	claim 15, wherein an issuing bank chooses a second secret key $\operatorname{Sign}_{k,0}$ using a
3	SCG, further comprising the steps of:
4	computing a second family of encrypted functions $Sign_{k,0}(X)$, key
5	Sign _{k,0} remaining the exclusive property of the issuing bank; and
6	using SCGs, communicating the key Sign _{k,0} to all branches of the
7	issuing bank where check clearing is done, the family of encrypted functions
8	$\operatorname{Sign}_{k,0}(X)$ being used exclusively by the issuing bank and branches involved in
9	the clearing of checks.
1	17. The method of protecting a document from fraudulent alteration recited in
2	claim 16, wherein an issuing bank chooses a third secret key Seck which is
3	exclusively known to a small group within the issuing bank, further
4	comprising the step of computing a third family of encrypted functions
5	$Sec_k(X)$, the secret key Sec_k being used by the issuing bank as final instrument
6	to verify the check.
1	18. The method of protecting a document from fraudulent alteration recited in
2	claim 14, wherein the check is deposited by a payee electronically from a
3	location remote from a bank or Automatic Teller Machine (ATM).
1	19. The method of protecting a document from fraudulent alteration recited in

2	claim 14, wherein electronic deposit of the check by a payee comprises the
3	steps of:
4	endorsing the check having printed thereon encryptions in at least
5	selected locations where information is written by a payer, the act of endorsing
6	by the payee obscuring some of the encryptions;
7	scanning the endorsed check with a scanner to generate a digitized
8	version of the check;
9	transmitting the digitized version of the check for deposit to the
10	payee's bank.
1	20. The method of protecting a document from fraudulent alteration recited in
2	claim 19, wherein electronic deposit of the check by a payee comprises the
3	steps of:
4	extracting by the payee's bank from the digitized version of the check
5	the unique identifier X and a corresponding digital encryption of X , $\operatorname{Sign}_k(X)$,
6	which is known to a large number of authorized institutions including the
7	payee's bank; and
8	comparing by the payee's bank a decrypted version of Sign _k (X) to the
9	unique identifier X as an initial authentication of the check.
1	21. The method of protecting a document from fraudulent alteration recited in
2	claim 20, wherein electronic deposit of the check further comprises the steps
3	of:
4	extracting from the digitized version of the check the unique identifier
5	X and a corresponding digital encryption of X, Sign _{k,0} (X), which is known
6	only to a bank that issues the check; and
7	comparing by the payor's bank a decrypted version of $Sign_{k,0}(X)$ to the
8	unique identifier X as a further authentication of the check.

4

5

6

7

8

1

2

3

4

5

1	22. The method of protecting a document from fraudulent alteration recited in
2	claim 21, wherein electronic deposit of the check further comprises the steps
3	of:

extracting from the digitized version of the check the unique identifier X and a corresponding digital encryption of X, $Sec_k(X)$, which is known to a small group within the bank that issues the check; and

comparing a decrypted version of $Sec_k(X)$ to the unique identifier X as a final authentication of the check.

- 23. The method of protecting a document from fraudulent alteration recited in claim 19, further comprising the step of accessing a database by the payee's bank where the unique identifier X and first encrypted function $\operatorname{Sign}_k(X)$ is registered to determine whether the check has been previously presented for deposit.
- 24. The method of protecting a document from fraudulent alteration recited in claim 19, further comprising the step of registering a check to be deposited by the payee with an SCG to prevent multiple deposits.
- 25. A document protecting against fraudulent alteration of markings added to the document to transform the document into a value bearing instrument, the document having printed thereon and covering each critical field k, k=1,2,3..., where markings are added to the document encrypted versions a unique identifier X printed on the document, Sign_{k0}(X), where Sign_{k0}(X) is a
- 6 cryptographic function or family thereof which is known only to an institution
- 7 which issues the document, $Sign_{k0}(X)$ being used to authenticate the
- 8 document.

1	26. The document recited in claim 25, wherein an entire area of field k is
2	covered with a large number of lines of fine print, the lines of fine print
3	comprising an encryption of X.
1	27. The document recited in claim 26, wherein each critical field k of the
2	document, in addition to being covered by encrypted versions of X, $\operatorname{Sign}_{k0}(X)$,
3	is covered with another encrypted version of X, $Sign_k(X)$, where $Sign_k(X)$ is
4	another cryptographic function or family thereof different from the
5	cryptographic function Sign _{k,0} (X) which is known to a larger number of
6	authorized institutions for performing an initial authentication of the
7	document.
1	28. The document recited in claim 27, wherein each critical field k of the
_	1
2	document, in addition to being covered by encrypted versions of X, $Sign_{k,0}(X)$
3	document, in addition to being covered by encrypted versions of X, $\operatorname{Sign}_{k,0}(X)$ and $\operatorname{Sign}_k(X)$, is covered with a third encrypted version of X, $\operatorname{Sec}_k(X)$ is
	- - - -
3	and $\operatorname{Sign}_k(X)$, is covered with a third encrypted version of X, $\operatorname{Sec}_k(X)$ is
3 4	and $\operatorname{Sign}_k(X)$, is covered with a third encrypted version of X , $\operatorname{Sec}_k(X)$ is another cryptographic function or family thereof different from the
3 4 5	and $\operatorname{Sign}_k(X)$, is covered with a third encrypted version of X , $\operatorname{Sec}_k(X)$ is another cryptographic function or family thereof different from the cryptographic functions $\operatorname{Sign}_{k,0}(X)$ and $\operatorname{Sign}_k(X)$ which is known to a small
3 4 5 6	and $\operatorname{Sign}_k(X)$, is covered with a third encrypted version of X , $\operatorname{Sec}_k(X)$ is another cryptographic function or family thereof different from the cryptographic functions $\operatorname{Sign}_{k,0}(X)$ and $\operatorname{Sign}_k(X)$ which is known to a small group within the institution which issues the document for performing final
3 4 5 6	and $\operatorname{Sign}_k(X)$, is covered with a third encrypted version of X , $\operatorname{Sec}_k(X)$ is another cryptographic function or family thereof different from the cryptographic functions $\operatorname{Sign}_{k,0}(X)$ and $\operatorname{Sign}_k(X)$ which is known to a small group within the institution which issues the document for performing final
34567	and $\operatorname{Sign}_k(X)$, is covered with a third encrypted version of X , $\operatorname{Sec}_k(X)$ is another cryptographic function or family thereof different from the cryptographic functions $\operatorname{Sign}_{k,0}(X)$ and $\operatorname{Sign}_k(X)$ which is known to a small group within the institution which issues the document for performing final authentication of the document.
34567	and Sign _k (X), is covered with a third encrypted version of X, Sec _k (X) is another cryptographic function or family thereof different from the cryptographic functions Sign _{k,0} (X) and Sign _k (X) which is known to a small group within the institution which issues the document for performing final authentication of the document. 29. The document recited in claim 28, wherein the cryptographic functions

1 30. The document recited in claim 29, wherein the act of adding markings to

5

cryptographic functions.

- 2 the document to transform the document into a value bearing instrument
- 3 obscures some of the encryptions, the families of different cryptographic
- 4 functions preventing cryptographic functions which have been obscured at
- 5 different places from being used to reconstitute the full cryptographic
- 6 function.
- 1 31. The document recited in claim 25, wherein the document is a check and
- 2 the unique identifier X is check data comprising a bank Id number, an account
- 3 Id number and a check number.
- 1 32. The document recited in claim 31, wherein the act of adding markings to
- 2 the check to transform the document into a value bearing instrument obscures
- 3 some of the encryptions
- 1 33. The document recited in claim 32, wherein an entire area of field k is
- 2 covered with a large number of lines of fine print, the lines of fine print
- 3 comprising an encryption of X.
- 1 34. The document recited in claim 33, wherein each critical field k of the
- document, in addition to being covered by encrypted versions of X, $Sign_{k0}(X)$,
- is covered with another encrypted version of X, $\operatorname{Sign}_k(X)$, where $\operatorname{Sign}_k(X)$ is
- another cryptographic function or family thereof different from the
- 5 cryptographic function $Sign_{k,0}(X)$ which is known to a larger number of
- authorized banks and institutions for performing an initial authentication of
- 7 the check.
- 1 35. The document recited in claim 34, wherein each critical field k of the
- document, in addition to being covered by encrypted versions of X, $Sign_{k,0}(X)$

- and $Sign_k(X)$, is covered with a third encrypted version of X, $Sec_k(X)$ is
- 4 another cryptographic function or family thereof different from the
- 5 cryptographic functions $Sign_{k,0}(X)$ and $Sign_k(X)$ which is known to a small
- 6 group within the bank or institution which issues the check for performing
- 7 final authentication of the check.
- 1 36. The document recited in claim 35, wherein the encrypted function
- Sign_k(X) are communicated to banks and other authorized institutions
- involved in depositing checks and the encrypted function $Sign_k(X)$ allows the
- 4 payee's bank to perform a first authentication of the check.
- 1 37. The document recited in claim 36, wherein key Sign_{k0} remains the
- exclusive property of the issuing bank and the encrypted function $Sign_{k,0}(X)$ is
- 3 used exclusively by the issuing bank and branches involved in the clearing of
- 4 checks.
- 1 38. The document recited in claim 37, wherein secret key Sec_k is exclusively
- 2 known to the issuing bank and the encrypted function $Sec_k(X)$ is used by the
- 3 issuing bank as a final instrument to verify the check.