#### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

# «Вятский государственный университет» (ФГБОУ ВПО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Лабораторной работе №1 по дисциплине «Системы массового обслуживания и марковские процессы»

| Выполнил студент группы ИВТм-21 | /Шурупов М.А./ |
|---------------------------------|----------------|
| Проверил доцент кафедры ЭВМ     | /Исупов К.С./  |

## Исходные данные

Таблица 1 - Интенсивности поступления потоков обслуживаемых процессов

| № варианта | № погока | од Интенсивность потока | № погока | Титенсивность потока [1/c] | $ m N^{i}$ погока | о Интенсивность потока | № погока | Титенсивность потока [1/c] | № погока | т Питенсивность потока |
|------------|----------|-------------------------|----------|----------------------------|-------------------|------------------------|----------|----------------------------|----------|------------------------|
| 7          | 7        | 0,20                    | 14       | 0,40                       | 10                | 0,05                   | 19       | 0,05                       | 1        | 0,20                   |

Таблица 2 - Параметры обслуживаемых процессов.

| $N_{\overline{0}}$ | Среднее количество            | Сред                              | Среднее число операций обращения к файлам |        |       | ам да | нных |       |        |       |     |
|--------------------|-------------------------------|-----------------------------------|-------------------------------------------|--------|-------|-------|------|-------|--------|-------|-----|
| процесс            | вычислительных операций,      | при обслуживании процесса (N i j) |                                           |        |       |       |      |       |        |       |     |
| a                  | выполняемых при обслуживаниях | Ном                               | ера фа                                    | айлов, | к кот | горым | выпо | лняет | ся обр | ащени | ıе  |
|                    | процесса [Мфлоп]              |                                   | F2                                        | F3     | F4    | F5    | F6   | F7    | F8     | F9    | F10 |
| 7                  | 700                           | 20                                | -                                         | ı      | 10    | _     | _    | 2     | -      | 4     | -   |
| 14                 | 400                           | 10                                | _                                         | 30     | 14    | _     | _    | 4     | -      | 6     | -   |
| 10                 | 1000                          | _                                 | 30                                        | -      | _     | _     | 20   | 6     | -      | 8     | -   |
| 19                 | 900                           | _                                 | 80                                        | ı      | 30    | _     | _    | 8     | -      | _     | 4   |
| 1                  | 100                           | 20                                | 10                                        | -      | -     | _     | _    | 4     | 2      | -     | -   |

Таблица 3 - Интенсивности поступления потоков обслуживаемых процессов

| № файлов данных | Объем данных, передаваемых | Средний объем данных,         |
|-----------------|----------------------------|-------------------------------|
|                 | при выполнении одной       | передаваемых при выполнении   |
|                 | операции обращения к файлу | одной операции ввода/вывода G |
|                 | данных V FI [Мбайт]        | FI [Кбайт]                    |
| F1              | 0,5                        | 5                             |
| F2              | 1,0                        | 8                             |
| F3              | 1,0                        | 15                            |
| F4              | 1,5                        | 6                             |
| F5              | 1,5                        | 14                            |
| F6              | 2,0                        | 18                            |
| F7              | 2,5                        | 10                            |
| F8              | 3,0                        | 15                            |
| F9              | 4,0                        | 20                            |
| F10             | 0,5                        | 5                             |

Таблица 4 - Характеристики накопителей внешней памяти.

|                | Среднее время выполнения одной операции ввода/вывода данных [мкс/ оп.] |       |  |  |  |  |
|----------------|------------------------------------------------------------------------|-------|--|--|--|--|
| № файла данных | Тип накопителя ВЗУ, на котором размещены файлы данных                  |       |  |  |  |  |
|                | нмд 1                                                                  | НМД 2 |  |  |  |  |
| F1             | 1,0                                                                    | -     |  |  |  |  |
| F2             | -                                                                      | 0,10  |  |  |  |  |
| F3             | 2,0                                                                    | -     |  |  |  |  |
| F4             | -                                                                      | 0,05  |  |  |  |  |
| F5             | 3,0                                                                    | -     |  |  |  |  |
| F6             | -                                                                      | 0,06  |  |  |  |  |
| F7             | 2,5                                                                    | -     |  |  |  |  |
| F8             | -                                                                      | 0,13  |  |  |  |  |
| F9             | 2,5                                                                    | -     |  |  |  |  |
| F10            | -                                                                      | 0,12  |  |  |  |  |

#### Ход работы

#### Модель М1

При обслуживании в однопроцессорной системе М независимых потоков процессов с примерно одинаковой сложностью обслуживания и при использовании в качестве дисциплины планировании дисциплины FIFO (Fitst In First Out) время ожидания любого процесса из М потоков процессов примерно одинаково и определяется по выражению (1)

$$\omega = \sum_{i=1}^{M} \frac{\lambda_i \vartheta_i (1 + v_i^2)}{2(1 - R)} \tag{1}$$

где M - количество процессов, поступающих но обслуживание в систему,

$$R = (\rho_1 + \rho_2 + \rho_3 + \dots + \rho_m)$$

 $ho_i$  - коэффициент загрузки ресурсов системы i – ым процессом.

Значение  $\rho_i$  определяется по выражению (2)

$$\rho_i = \lambda_i \vartheta_i \tag{2}$$

где  $\lambda_i$  – интенсивность i – потока процессов на обслуживание в систему,

$$\vartheta = (\vartheta_1, \vartheta_2, \vartheta_3, ..., \vartheta_k)/k$$
,

 $\vartheta_k$  — длительность обслуживания процесса k —ом ресурсе системы.

Длительность обслуживания процесса в k-ом ресурсе системы определяется по выражению 3

$$\vartheta_{pi} = \Theta_i / V_p \tag{3}$$

где

 $V_p$  —производительность процессора,  $\Theta_i$  — количество вычислительных операций, выполняемых при обслуживании процесса в системе,

Время обслуживания одного обрушения к j-му файлу i-м процессом представлено в таблице 5.

Таблица 5 - Время обслуживания одного процессора.

| $\mathcal{N}_{ar{o}}$ | F1      | F2      | F3      | F4      | F5 | F6      | F7       | F8      | F9      | F10     |
|-----------------------|---------|---------|---------|---------|----|---------|----------|---------|---------|---------|
| 7                     | 0,00205 | -       | -       | 0,00013 | -  | -       | 0,00128  | ı       | 0,00205 | -       |
| 14                    | 0,00102 | -       | 0,00410 | 0,00018 | -  | -       | 0,00256  | -       | 0,00307 | -       |
| 10                    | -       | 0,00038 | -       | -       | -  | 0,00014 | 0,00384  | -       | 0,00410 | -       |
| 19                    | -       | 0,00102 | -       | 0,00038 | -  | -       | 0,000512 | -       | -       | 0,00005 |
| 1                     | 0,00205 | 0,00013 | -       | -       | -  | -       | 0,00256  | 0,00005 | -       | -       |

Время обслуживания і-го процесса каждым ВЗУ (НДМ) представлены в таблице 6.

Таблица 6 - Время обслуживания i-го процесса каждым ВЗУ.

| N₀ | НДМ1     | НДМ2     |
|----|----------|----------|
| 7  | 0,005376 | 0,000128 |
| 14 | 0,010752 | 0,000179 |
| 10 | 0,007936 | 0,000521 |
| 19 | 0,005120 | 0,001457 |
| 1  | 0,004608 | 0,000181 |

Следующие расчёты приведены при производительности процессора

$$V_{\Pi} = 10^5$$

- . Результаты расчёта максимальной длительности обслуживания і-го процесса представлены в таблице
- 7. Результаты расчета коэффициента загрузки [
  ho] ресурсов системы каждым процессом представлены в таблице 8.

Таблица 7 - Максимальная длительность обслуживания і-го процесса.

| $\mathcal{N}_{ar{0}}$ | 7       | 14      | 10      | 19      | 1       |
|-----------------------|---------|---------|---------|---------|---------|
| V                     | 0,01238 | 0,01475 | 0,01794 | 0,01412 | 0,00561 |

Таблица 8 - Коэффициент загрузки ресурсов системы.

| $\mathcal{N}^{\underline{o}}$ | 7       | 14      | 10      | 19      | 1       |
|-------------------------------|---------|---------|---------|---------|---------|
| ho                            | 0,00248 | 0,00590 | 0,00090 | 0,00071 | 0,00112 |

Время ожидания процессами в очереди и время их пребывания в СМО проставлены в таблице 9.

Таблица 9 - Время ожидания в очереди и пребывания в СМО.

|           | $\omega$ , сек | u, сек  |
|-----------|----------------|---------|
| $v_i = 0$ | 0.00561        | 0,07040 |
| $v_i = 1$ | 0,01120        | 0,07600 |

 $\Gamma$ рафики зависимости времени ожидания и времени обслуживания представлены на рисунках 1 и 2, соответственно.



Рисунок 1 - график зависимости  $\omega(V_p)$ 



Рисунок 2 - график зависимости  $u(V_p)$ 

В качестве более точной математической модели исследуемой однопроцессорной системы предлагается рассмотреть трехкомпонентную стохастическую сеть одноканальных СМО с бесприоритетной дисциплиной FIFO обслуживания очереди процессов. В этом случае каждая из СМО сети моделирует соответствующий ресурс системы — процессор, ВЗУ1 и ВЗУ2.

Для полного определения этой модели необходимо знать вероятности переходов процессов между СМО сети при их обслуживании в системе.

В качестве модели процесса организации обслуживания процессов в стохастической сети СМО предлагается модель, показанная на рисунке 3, в виде графа Маркова.

В этом случае вероятности переходов процессов для обслуживания между СМО сети определяются по выражению (4):

$$p_{i,j} = \frac{N_{i,j}}{\sum_{i=1}^{k} N_{j,i}} \tag{4}$$

где

 $N_{i,j}$  – количество переходов процесса из состояния обслуживания в i – ресурсе системы в состояние обслуживания процесса в j ресурсе,

 $\sum_{i=1}^{k} N_{j,i}$  — количество переходов процесса из состояния обслуживания в других ресурсах системы в состояние обслуживания в j ресурсе,

*k* – количество состояний моделируемой системы.

В результате определения значений  $\rho_{ij}$  троится аналитическая модель обслуживания процессов в системе, представляемой системой линейных уравнений. Определяются интенсивности  $\lambda_i$  поступления процессов на обслуживания в каждый модуль системы.

На рисунке 3 представлена трёхкомпонентная стохастическая сеть одноканальной СМО.



Рисунок 3 - Трёхкомпонентная стохастическая сеть одноканальной СМО



Рисунок 4 - Модель организации обслуживания процессов

В результате решения системы уравнений определяются интенсивности поступления процессов  $\lambda_i$  на обслуживание в каждый из ресурсов системы — интенсивность поступления процессов на обслуживание в процессор, ВЗУ1 и ВЗУ2.

Определение значений интенсивностей  $\lambda_i$  дает возможность выполнить более точное построение графиков зависимостей времени ожидания  $\omega$  и времени обслуживания и от варьируемых параметров  $\vartheta_i$  для бесприоритетной дисциплины FIFO обслуживания процессов.

Матрица переходов:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & P_{12} & P_{13} & P_{1k} \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Система уравнений:

$$\lambda_{1} = \lambda_{0} + \lambda_{2} + \lambda_{3}$$

$$\lambda_{2} = \lambda_{1} * P_{12}$$

$$\lambda_{3} = \lambda_{1} * P_{13}$$

$$\lambda_{k} = \lambda_{1} * P_{1k} = \lambda_{1} * (1 - (P_{12} + P_{13}))$$

$$\lambda_{2} = \frac{\lambda_{0} * P_{12}}{1 - (P_{12} + P_{13})}$$

$$\lambda_{3} = \frac{\lambda_{0} * P_{13}}{1 - (P_{12} + P_{13})}$$

$$\lambda_k = \frac{\lambda_0 * 1}{1 - (P_{12} + P_{13})}$$
$$\lambda_k = \lambda_1 * P_{1k} = \lambda_0$$

Матрицы переходных вероятностей

$$P(7) = \begin{bmatrix} 0 & 0,70270 & 0,27027 & 0,02703 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$P(14) = \begin{bmatrix} 0 & 0,76923 & 0,21528 & 0,01538 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$P(10) = \begin{bmatrix} 0 & 0,21538 & 0,76923 & 0,01538 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$P(19) = \begin{bmatrix} 0 & 0,06504 & 0,92683 & 0,00813 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$P(1) = \begin{bmatrix} 0 & 0,64865 & 0,32432 & 0,02703 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Интенсивности входных потоков заявок (обращений к файлу) для СМО

$$P(7) = \begin{pmatrix} 7, 4 & 5, 2 & 2 & 0, 2 \end{pmatrix}$$

$$P(14) = \begin{pmatrix} 26 & 20 & 5, 6 & 0, 4 \end{pmatrix}$$

$$P(10) = \begin{pmatrix} 26 & 5, 6 & 20 & 0, 05 \end{pmatrix}$$

$$P(19) = \begin{pmatrix} 6, 15 & 0, 4 & 5, 7 & 0, 05 \end{pmatrix}$$

$$P(1) = \begin{pmatrix} 7, 4 & 4, 8 & 2, 4 & 0, 2 \end{pmatrix}$$

Определение длительностей обслуживания каждой СМО. Это максимальная длительность обслуживания заявки конкретной СМО. Пусть  $V_{\Pi}=10^5$  Результаты представлены в таблице 10.

Таблица 10 - Длительность обслуживания каждой СМО.

| № процесса | maxV[CMO1], c | maxV[CMO2], c | maxV[CMO3], c |
|------------|---------------|---------------|---------------|
| 7          | 0,00700       | 0,005376      | 0,000128      |
| 14         | 0,00400       | 0,010752      | 0,000179      |
| 10         | 0,01000       | 0,007936      | 0,000521      |
| 19         | 0,00900       | 0,005120      | 0,001457      |
| 1          | 0,00100       | 0,004608      | 0,000181      |

Определяем загрузку канала. Результаты представлены в таблице 11

Таблица 11 - Загрузка каналов.

| № процесса | CMO1    | CMO2    | CMO3    |
|------------|---------|---------|---------|
| 7          | 0,5180  | 0,02796 | 0,00026 |
| 14         | 0,10400 | 0,21504 | 0,00100 |
| 10         | 0,26000 | 0,04444 | 0,01041 |
| 19         | 0,05535 | 0,00205 | 0,00831 |
| 1          | 0,00740 | 0,02212 | 0,00043 |

Нестационарные режимы отсутствуют. Определяем длительности ожидания в очереди при коэффициенте вариации  $v_i=1$ . Результаты представлены в таблице 12

Таблица 12 - Длительность ожидания в очереди.

| № процесса | $\omega[{ m CMO1}]$ | $\omega [{ m CMO2}]$ | $\omega [{ m CMO3}]$ |
|------------|---------------------|----------------------|----------------------|
| 7          | 0,00035897          | 0,000151920606       | 3,2815R-08           |
| 14         | 0,00041184          | 0,00233724           | 1,800932E-07         |
| 10         | 0,002574            | 0,000356521          | 5,427007E-06         |
| 19         | 0,00049317          | 1,059973E-05         | 1,2120425E-05        |
| 1          | 7,326E-06           | 0,000103029          | 7,895706245E-08      |

Графики зависимости при производительности процессора  $V_{\Pi}=10^5-10^{12}.$ 

График зависимости времени ожидания процессов для обслуживания в системе представлен на рисунке 6. График зависимости обслуживания процессов в системе представлен на рисунке ??.



Рисунок 5 - График зависимости  $\omega(V_{\rho})$  при  $v_i=0$  (нижняя) и  $v_i=1$  (верхняя)



Рисунок 6 - График зависимости  $u(V_{\rho})$  при  $v_i=0$  (нижняя) и  $v_i=1$  (верхняя)

### Вывод

В ходе выполнения лабораторной работы были произведены оценка и исследование дисциплин обслуживания потоков процессов при планировании их исполнения на основе бесприоритетных дисциплин обслуживания.

В первом задании была рассмотрена модель «чёрный ящик», которая позволяет лишь приблизительно оценить производительность работы системы и времена ожидания и обслуживания процесса в системе. Во втором задании «чёрный ящик» «раскрывается», что даёт возможность более точно рассчитать параметры системы, включая не только общую интенсивность процессов, но и интенсивность распределения процессов внутри системы между подсистемами с учетом вероятностей переходов. Данные аспекты объясняют различия между графиками в первом и втором случаях: в первом случае время ожидания и обслуживания являются достаточно значительными, а во втором случае времена уже значительно сокращаются и составляют порядка микро- и наносекунд.

Графики времени обслуживания показывают, что, начиная с некоторого значения производительности процессора, дальнейшее ее увеличение не дает выигрыша во времени: для первого и второго задания стационарный режим начинается со значения  $10^6$ .