MATRIX PERTURBATION ANALYSIS OF METHODS FOR EXTRACTING SINGULAR VALUES GIVEN APPROXIMATE SUBSPACES

LORENZO LAZZARINO, HUSSAM AL DAAS, YUJI NAKATSUKASA

Mathematical Institute - University of Oxford

Computational Mathematics Theme - STFC UKRI

Numerical Analysis Seminar, Charles University, 20th February 2025

EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES

- PROBLEM SETTING
- 2 CLASSICAL APPROACHES
- 3 TECHNIQUES FROM (RANDOMIZED) LOW-RANK APPROXIMATIONS
- EXTRACTING SINGULAR VALUES WITH GN
- 6 ANALYSIS AND COMPARISON

PROBLEM SETTING

1

Singular Value Decomposition (SVD)

Any matrix A has the decomposition (assume $m \ge n$):

where $\Sigma = diag(\sigma_1, \dots, \sigma_n)$, with $(\sigma_{max} :=) \sigma_1 \ge \dots \ge \sigma_n \ge 0$, and U, V are orthonormal matrices, that is, $U^*U = V^*V = I_n$.

Sec. 2.4 (Golub, Van Loan)

Lect. 4 (Trefethen, Bau, 2022)

Singular Value Decomposition (SVD)

Any matrix A has the decomposition (assume $m \ge n$):

where $\Sigma = diag(\sigma_1, \dots, \sigma_n)$, with $(\sigma_{max} :=) \sigma_1 \ge \dots \ge \sigma_n \ge 0$, and U, V are orthonormal matrices, that is, $U^*U = V^*V = I_n$

Sec. 2.4 (Golub, Van Loan) Lect. 4 (Trefethen, Bau, 2022)

Existance:

Always, from eigenvalues of A^*A

Uniqueness:

- Singular vectors
 - Can be fliped by signs
 - Multiple singular values
- ▶ Singular values
 - Always unique

Singular Value Decomposition (SVD)

Any matrix A has the decomposition (assume $m \ge n$):

where $\Sigma = diag(\sigma_1, \ldots, \sigma_n)$, with $(\sigma_{max} :=) \sigma_1 \ge \cdots \ge \sigma_n \ge 0$, and U, V are orthonormal matrices, that is, $U^*U = V^*V = I_n$.

- $\sigma_i = \sqrt{\lambda_i(A^*A)}$, for $i = 1, \dots n$
- $\|A\|_2 = \sigma_{max}$ and $\|A\|_F^2 = \sum_{i=1}^n \sigma_i^2$
- $\sigma_i(A) = \sigma_i(Q_1AQ_2)$ for any Q_1, Q_2 orthogonal
- ▶ Computational costs O(mn²)

SINGULAR VALUE DECOMPOSITION > Why do we care?

It's beautiful!

- ▶ Quantum information
- ▶ Immunology
- ▶ Molecular dynamics
- ▶ Information retrieval
- ▶ Pattern Recognition
- ▶ Weather forecast
- Astrodynamics
- ▶ Small-angle scattering

- ▶ Gene expression data
- ▶ Quantum information
- ▶ Immunology
- ▶ Molecular dynamics
- ▶ Information retrieval
- ▶ Pattern Recognition
- ▶ Weather forecast
- Astrodynamics

- ▶ Signal Processing
- ▶ Gene expression data
- ▶ Quantum information
- ▶ Immunology
- ▶ Molecular dynamics
- ▶ Information retrieval
- ▶ Pattern Recognition
- Weather forecast

- Imaging processing and compression
- ▶ Signal Processing
- ▶ Gene expression data
- ▶ Quantum information
- ▶ Immunology
- ▶ Molecular dynamics
- ▶ Information retrieval
- ▶ Pattern Recognition

Applied	Beauty
---------	--------

Choosing a Pizzeria

300 samples measuring 7 features of Pizze from 10 different Pizzerie!

Pizzeria	water	protein	fat	ash	sodium	carbohydrates	calories
A	30.49	21.28	41.65	4.82	1.64	1.76	4.67
A	32.20	19.25	43.42	4.62	1.50	0.51	4.70
:							
:							
В	50.33	13.96	29.25	3.42	0.96	3.04	3.31
:							
C	49.10	24.53	21.08	2.84	0.34	2.45	2.98
:							
D	47.45	22.37	20.97	4.06	0.70	5.15	2.99
:							
J	44.91	11.07	17.00	2.49	0.66	25.36	2.91

Applied Beauty

▶ Choosing a Pizzeria

300 samples measuring 7 features of Pizze from 10 different Pizzerie!

Applied Beauty

▶ Choosing a Pizzeria

300 samples measuring 7 features of Pizze from 10 different Pizzerie!

Applied Beauty

▶ Choosing a Pizzeria

300 samples measuring 7 features of Pizze from 10 different Pizzerie!

Applied Beauty

▶ Choosing a Pizzeria

300 samples measuring 7 features of Pizze from 10 different Pizzerie!

Applied Beauty

▶ Choosing a Pizzeria

300 samples measuring 7 features of Pizze from 10 different Pizzerie!

$$A = U\Sigma V^*$$

Given \tilde{U} and/or \tilde{V} (orthonormal) approximations of the leading singular subspaces of A

$$n \left[egin{array}{c} r \\ \tilde{V} \end{array}
ight], \quad m \left[egin{array}{c} \tilde{V} \end{array}
ight]$$

<u>AIM:</u> Approximate the leading singular values $\{\sigma_i(A)\}_{i=1}^r$

$$A = U\Sigma V^*$$

Given \tilde{U} and/or \tilde{V} (orthonormal) approximations of the leading singular subspaces of A

$$n \left[\begin{array}{c} r \\ \tilde{V} \end{array} \right], \quad m \left[\begin{array}{c} \tilde{U} \end{array} \right]$$

AIM: Approximate the leading singular values $\{\sigma_i(A)\}_{i=1}^r$

$$A = U\Sigma V^*$$

Given \tilde{U} and/or \tilde{V} (orthonormal) approximations of the leading singular subspaces of A

$$n \begin{bmatrix} r \\ \tilde{V} \end{bmatrix}, m \begin{bmatrix} r+\ell \\ \tilde{U} \end{bmatrix}$$

AIM: Approximate the leading singular values $\{\sigma_i(A)\}_{i=1}^r$

CLASSICAL APPROACHES

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- Single-pass
- ightharpoonup 1 multiplication by A

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- ▶ Single-pass
- ▶ 1 multiplication by A

$$Q_1 = egin{bmatrix} ilde{U} & ilde{U}_\perp \end{bmatrix}, \quad Q_2 = egin{bmatrix} ilde{V} & ilde{V}_\perp \end{bmatrix}$$

OXFORD lathematical stitute

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- Single-pass
- ▶ 1 multiplication by A

$$egin{aligned} Q_1 = egin{bmatrix} ilde{U} & ilde{U}_\perp \end{bmatrix}, & Q_2 = egin{bmatrix} ilde{V} & ilde{V}_\perp \end{bmatrix} \end{aligned}$$

$$\begin{split} \bar{A} &= Q_1^* A Q_2 \\ \sigma_i(A_{RR,\tilde{V},\tilde{U}}) &= \sigma_i(\bar{A}_{RR,\begin{bmatrix} l^r \\ 0 \end{bmatrix},\begin{bmatrix} l^{r+\ell} \\ 0 \end{bmatrix})| \\ &= \sigma_i(\bar{A}_{11}) = \sigma_i\left(\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix}\right) \end{split}$$

 $\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$

(Dax, 2012) (Saad, 2011) (Xin-guo, 1992)

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- Single-pass
- ▶ 1 multiplication by A

$$Q_1 = egin{bmatrix} ilde{U} & ilde{U}_ot \end{bmatrix}, \quad Q_2 = egin{bmatrix} ilde{V} & ilde{V}_ot \end{bmatrix}$$

$$\bar{A}=Q_1^*AQ_2$$

$$\sigma_i(A_{RR,\tilde{V},\tilde{U}}) = \sigma_i(\bar{A}_{RR,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}})|$$

$$=\sigma_i(ar{A}_{11})=\sigma_i\left(egin{bmatrix}ar{A}_{11}&0\0&0\end{bmatrix}
ight)$$

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(Dax, 2012) (Saad, 2011) (Xin-guo, 1992)

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- Single-pass
- ▶ 1 multiplication by A

$$ightharpoonup N_r + \mathcal{O}(mr^2)$$

- Single-pass
- ▶ 1 multiplication by A

$$extit{Q}_1 = egin{bmatrix} ilde{U} & ilde{U}_\perp \end{bmatrix}, \quad extit{Q}_2 = egin{bmatrix} ilde{V} & ilde{V}_\perp \end{bmatrix}$$

$$\begin{split} \bar{A} &= Q_1^* A Q_2 \\ \sigma_i(A_{RR,\tilde{V},\tilde{U}}) &= \sigma_i(\bar{A}_{RR,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}})| \\ &= \sigma_i(\bar{A}_{11}) = \sigma_i\left(\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix}\right) \end{split}$$

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(Dax, 2012) (Saad, 2011) (Xin-guo, 1992)

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- Single-pass
- ▶ 1 multiplication by A

- $ightharpoonup N_r + \mathcal{O}(mr^2)$
- Single-pass
- ▶ 1 multiplication by A

$$\begin{aligned} Q_1 &= \begin{bmatrix} \tilde{U} & \tilde{U}_\perp \end{bmatrix}, \quad Q_2 &= \begin{bmatrix} \tilde{V} & \tilde{V}_\perp \end{bmatrix} \\ \tilde{A} &= Q_1^* A Q_2 & \tilde{A} &= A Q_2 &= \begin{bmatrix} \tilde{A}_1 & \tilde{A}_2 \end{bmatrix} \\ \sigma_i(A_{RR,\tilde{V},\tilde{U}}) &= \sigma_i(\bar{A}_{RR,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix})| & \sigma_i(A_{SVD,\tilde{V}}) &= \sigma_i(\tilde{A}_{SVD,\begin{bmatrix} I_r \\ 0 \end{bmatrix}) \\ &= \sigma_i(\bar{A}_{11}) &= \sigma_i\left(\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix}\right) &= \sigma_i([\tilde{A}_1 & 0]) \end{aligned}$$

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations > Accuracy

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(one-sided) SVD approximations

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

Not bad...

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(one-sided) SVD approximations

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

Not bad...

BUT, what if we could have this?

TECHNIQUES FROM (RANDOMIZED) LOW-RANK APPROXIMATIONS

OXFORD Mathematical

(RANDOMIZED) LOW-RANK APPROXIMATIONS

Given a fix rank r, find $E \in \mathbb{R}^{m \times r}$ and $F \in \mathbb{R}^{n \times r}$ such that $A \approx EF^*$

$$A_r = \sum_{i=1}^r \sigma_i u_i v_i^*$$

$$\|A - A_r\|_2 = \sigma_{r+1}$$

is the best rank-r approximation of A in both 2-norm and F-norm

$$||A - A_r||_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_{rank(A)}^2}$$

(RANDOMIZED) LOW-RANK APPROXIMATIONS

Given a fix rank r, find $E \in \mathbb{R}^{m \times r}$ and $F \in \mathbb{R}^{n \times r}$ such that $A \approx EF^*$

$$A_r = \sum_{i=1}^r \sigma_i u_i v_i^*$$

is the best rank-r approximation of \boldsymbol{A} in both 2-norm and F-norm

$$\|A - A_r\|_2 = \sigma_{r+1}$$

$$||A - A_r||_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_{rank(A)}^2}$$

Deterministic Approach

$$||A - A_r|| = ||A - U_r U_r^* A|| = \inf_{P = r - \text{dim orth, proj.}} ||A - PA||$$

- → Find cheaper (but not optimal) orthogonal projections: e.g.
 - ▶ Gram-Schmidt on the columns/rows of A
 cost O(mnr)

(RANDOMIZED) LOW-RANK APPROXIMATIONS

Given a fix rank r, find $E \in \mathbb{R}^{m \times r}$ and $F \in \mathbb{R}^{n \times r}$ such that $A \approx EF^*$

$$A_r = \sum_{i=1}^r \sigma_i u_i v_i^*$$

is the best rank-r approximation of A in both 2-norm and F-norm

$$\|A - A_r\|_2 = \sigma_{r+1}$$

$$||A - A_r||_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_{rank(A)}^2}$$

Deterministic Approach

$$||A - A_r|| = ||A - U_r U_r^* A|| = \inf_{P = r - \text{dim orth. proj.}} ||A - PA||$$

- → Find cheaper (but not optimal) orthogonal projections: e.g.
 - ▶ Gram-Schmidt on the columns/rows of A
 cost O(mnr)

Randomized Approach

Use randomization for a model reduction while (approximately) preserving properties of the big problem

Sketching → Random Embedding

Reduced costs

- Different outputs
- (often) near-optimal solutions
- Can fail (with small probability)

RANDOMIZED SVD (HMT)

Randomized SVD

$$A \approx (A\Omega)(A\Omega)^{\dagger}A =: A_{HMT,\Omega}$$

I. Choose
$$\Omega \in \mathbb{R}^{n imes n}$$

2. Sketch:
$$X = A\Omega$$

3.
$$[Q, \sim] = qr(X, 0)$$

1. Choose
$$\Omega \in \mathbb{R}^{n \times r}$$
 2. Sketch: $X = A\Omega$ 3. $[Q, \sim] = qr(X, 0)$ 4. $A_{HMT,\Omega} = Q(Q^*A)$

RANDOMIZED SVD (HMT)

Randomized SVD

$$A \approx (A\Omega)(A\Omega)^{\dagger}A =: A_{HMT,\Omega}$$

1. Choose
$$\Omega \in \mathbb{R}^{n \times r}$$

2. Sketch:
$$X = A\Omega$$

3.
$$[Q, \sim] = qr(X, 0)$$

2. Sketch:
$$X = A\Omega$$
 3. $[Q, \sim] = qr(X, 0)$ 4. $A_{HMT,\Omega} = Q(Q^*A)$

$$N_r + \mathcal{O}(mr^2) + \tilde{N}_r$$

- Double-pass
- ▶ 2 multiplications by A

RANDOMIZED SVD (HMT)

Randomized SVD

$$A \approx (A\Omega)(A\Omega)^{\dagger}A =: A_{HMT,\Omega}$$

(Clarkson, Woodruff, 2017) (Halko, Martinsson, Tropp, 2011) (Rokhlin, Szlam, Tygert, 2009)

- 1. Choose $\Omega \in \mathbb{R}^{n \times r}$
- 2. Sketch: $X = A\Omega$ 3. $[Q, \sim] = \operatorname{qr}(X, 0)$ 4. $A_{HMT, \Omega} = Q(Q^*A)$

- $N_r + \mathcal{O}(mr^2) + \tilde{N}_r$
- ▶ Double-pass
- ▶ 2 multiplications by A

Accuracy

$$\hat{r} \le r - 2$$

$$\mathbb{E}\|A - A_{HMT,\Omega}\|_F \leq \sqrt{1 + \frac{r}{r - \hat{r} - 1}} \|A - A_{best,\hat{r}}\|_F$$

(Halko, Martinsson, Tropp, 2011)

RANDOMIZED SVD (HMT)

Randomized SVD

$$A \approx (A\Omega)(A\Omega)^{\dagger}A =: A_{HMT,\Omega}$$

(Clarkson, Woodruff, 2017) (Halko, Martinsson, Tropp, 2011) (Rokhlin, Szlam, Tygert, 2009)

- 1. Choose $\Omega \in \mathbb{R}^{n \times r}$
- 2. Sketch: $X = A\Omega$ 3. $[Q, \sim] = \operatorname{qr}(X, 0)$ 4. $A_{HMT, \Omega} = Q(Q^*A)$

- $N_r + \mathcal{O}(mr^2) + \tilde{N}_r$
- ▶ Double-pass
- ▶ 2 multiplications by A

Accuracy

$$\hat{r} \leq r - 2$$

Stability

$$\mathbb{E}\|A - A_{HMT,\Omega}\|_F \leq \sqrt{1 + \frac{r}{r - \hat{r} - 1}}\|A - A_{best,\hat{r}}\|_F$$

(Halko, Martinsson, Tropp, 2011)

Stable under rounding errors if computed with Householder QR

(Connolly, Higham, Pranesh, 2022)

GENERALIZED NYSTRÖM APPROXIMATION

Generalized Nyström

$$A pprox A\Omega_1(\Omega_2^*A\Omega_1)^\dagger\Omega_2^*A =: A_{GN,\Omega_1,\Omega_2}$$

(Clarkson, Woodruff, 2009) (Nakatsukasa, 2020) (Woolfe, Liberty, Rokhlin, Tygert, 2008)

1. Choose
$$\Omega_1 \in \mathbb{R}^{n \times r}, \Omega_2 \in \mathbb{R}^{m \times (r+\ell)}$$

2. Two-side Sketch:
$$X=A\Omega_1$$
 and $Y=\Omega_2^*A$

3.
$$[Q,R] = qr(Y\Omega_1,0)$$

3.
$$[Q,R] = qr(Y\Omega_1,0)$$
 4. $A_{GN,\Omega_1,\Omega_2} = (XR^{-1})(Q^*Y)$

GENERALIZED NYSTRÖM APPROXIMATION

Generalized Nyström

$$A \approx A\Omega_1(\Omega_2^*A\Omega_1)^{\dagger}\Omega_2^*A =: A_{GN,\Omega_1,\Omega_2}$$

- 1. Choose $\Omega_1 \in \mathbb{R}^{n \times r}, \Omega_2 \in \mathbb{R}^{m \times (r+\ell)}$ 2. Two-side Sketch: $X = A\Omega_1$ and $Y = \Omega_2^*A$
 - 3. $[Q,R] = qr(Y\Omega_1,0)$ 4. $A_{GN,\Omega_1,\Omega_2} = (XR^{-1})(Q^*Y)$
 - $N_{2r+\ell} + \mathcal{O}(r^3 + (m+n)r^2)$
 - ▶ Single-pass
 - ▶ 2 multiplications by A

OXFORD Mathematical

GENERALIZED NYSTRÖM APPROXIMATION

Generalized Nyström

$$A \approx A\Omega_1(\Omega_2^*A\Omega_1)^\dagger\Omega_2^*A =: A_{GN,\Omega_1,\Omega_2}$$

(Clarkson, Woodruff, 2009) (Nakatsukasa, 2020) (Woolfe, Liberty, Rokhlin, Tygert, 2008)

1. Choose
$$\Omega_1 \in \mathbb{R}^{n \times r}, \Omega_2 \in \mathbb{R}^{m \times (r+\ell)}$$
 2.

2. Two-side Sketch:
$$X=A\Omega_1$$
 and $Y=\Omega_2^*A$

3.
$$[Q,R] = qr(Y\Omega_1,0)$$
 4. $A_{GN,\Omega_1,\Omega_2} = (XR^{-1})(Q^*Y)$

$$N_{2r+\ell} + \mathcal{O}(r^3 + (m+n)r^2)$$

- Single-pass
- ▶ 2 multiplications by A

Accuracy

$$\hat{r} \leq r - 2$$

$$\mathbb{E}\|A - A_{\textit{GN},\Omega_1,\Omega_2}\|_F \leq \sqrt{1 + \frac{r+\ell}{\ell-1}}\sqrt{1 + \frac{r}{r-\hat{r}-1}}\|A - A_{\textit{best},\hat{r}}\|_F$$

(Tropp et al., 2017),(Nakatsukasa, 2020)

GENERALIZED NYSTRÖM APPROXIMATION

Generalized Nyström

$$A \approx A\Omega_1(\Omega_2^*A\Omega_1)^{\dagger}\Omega_2^*A =: A_{GN,\Omega_1,\Omega_2}$$

(Clarkson, Woodruff, 2009) (Nakatsukasa, 2020) (Woolfe, Liberty, Rokhlin, Tygert, 2008)

1. Choose
$$\Omega_1 \in \mathbb{R}^{n imes r}, \Omega_2 \in \mathbb{R}^{m imes (r+\ell)}$$

2. Two-side Sketch:
$$X = A\Omega_1$$
 and $Y = \Omega_2^*A$

3.
$$[Q,R] = qr(Y\Omega_1,0)$$
 4. $A_{GN,\Omega_1,\Omega_2} = (XR^{-1})(Q^*Y)$

•
$$N_{2r+\ell} + \mathcal{O}(r^3 + (m+n)r^2)$$

- Single-pass
- ▶ 2 multiplications by A

Stability

Accuracy

$$\hat{r} \leq r - 2$$

$$\mathbb{E}\|A - A_{\mathit{GN},\Omega_1,\Omega_2}\|_F \leq \sqrt{1 + \frac{r+\ell}{\ell-1}}\sqrt{1 + \frac{r}{r-\hat{r}-1}}\|A - A_{\mathit{best},\hat{r}}\|_F$$

(Tropp et al., 2017),(Nakatsukasa, 2020)

$$(A\Omega_1)(\Omega_2^*A\Omega_1)^{\dagger}_{\epsilon}\Omega_2^*A$$

(Nakatsukasa, 2020)

EXTRACTING SINGULAR VALUES WITH GN

$$\sigma_i(A) pprox \sigma_i \left(A ilde{V} (ilde{U}^* A ilde{V})^\dagger ilde{U}^* A
ight) =: \sigma_i^{GN}$$

$$N_{2r+\ell}$$

$$\sigma_i(A) pprox \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^\dagger \tilde{U}^* A
ight) =: \sigma_i^{GN}$$

$$\sigma_i(egin{array}{c|c} Q_L & R_L & \widetilde{U}^*A\widetilde{V} \end{array}^\dagger egin{array}{c|c} R_R^* & Q_R^* & R_R^* &$$

$$N_{2r+\ell} + \mathcal{O}((m+n)r^2)$$

$$\sigma_i(A) \approx \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$N_{2r+\ell} + \mathcal{O}((m+n)r^2)$$

$$\sigma_i(A) \approx \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$\sigma_i$$
 (R_L R_p^{\dagger} R_p^{*} R_R^{*}

$$N_{2r+\ell} + \mathcal{O}((m+n)r^2)$$

Single-pass methods

$$\bullet \ \sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

GN and Orthogonal Transformations

Consider T_1 and T_2 orthogonal matrices, then

$$T_1^*(M_{GN,\tilde{V},\tilde{U}})T_2 = (T_1^*MT_2)_{GN,T_2^*\tilde{V},T_1^*\tilde{U}}$$

For any orthonormal \tilde{V} and \tilde{U} , we can:

- **1.** Define $Q_1 = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}$ $Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$;
- **2.** Consider the transformed matrix: $Q_1^*AQ_2$;
- 3. Consider the transformed GN approximation:

$$Q_1^*A_{GN,\tilde{V},\tilde{U}}Q_2 = (Q_1^*AQ_2)_{GN,Q_2^*\tilde{V},Q_1^*\tilde{U}} = (Q_1^*AQ_2)_{GN,\left[\begin{smallmatrix} r_r \\ 0 \end{smallmatrix}\right],\left[\begin{smallmatrix} r_{r+\ell} \\ 0 \end{smallmatrix}\right]}.$$

GN and Orthogonal Transformations

Consider T_1 and T_2 orthogonal matrices, then

$$T_1^*(M_{GN,\tilde{V},\tilde{U}})T_2 = (T_1^*MT_2)_{GN,T_2^*\tilde{V},T_1^*\tilde{U}}$$

For any orthonormal \tilde{V} and \tilde{U} , we can:

- **1.** Define $Q_1 = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}$ $Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$;
- **2.** Consider the transformed matrix: $Q_1^*AQ_2$;
- 3. Consider the transformed GN approximation:

$$Q_1^*A_{GN,\tilde{V},\tilde{U}}Q_2 = (Q_1^*AQ_2)_{GN,Q_2^*\tilde{V},Q_1^*\tilde{U}} = (Q_1^*AQ_2)_{GN,\left[{r_r\atop 0}\right],\left[{r_r+\ell\atop 0}\right]}.$$

$$\rightarrow \quad |\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})| = |\sigma_i(Q_1^*AQ_2) - \sigma_i((Q_1^*AQ_2)_{GN,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}})|$$

$$\tilde{V} := \begin{bmatrix} r \\ l_r \\ -r \\ 0 \end{bmatrix}, \quad \tilde{U} := \begin{bmatrix} r+\ell \\ l_{r+\ell} \\ -r \\ 0 \end{bmatrix}, \quad A := \begin{bmatrix} r \\ l_r \\ -r \\ 0 \end{bmatrix}, \quad A := \begin{bmatrix} r \\ -r \\ -r \\ -r \\ -r \end{bmatrix}$$

(Tropp, Webber, 2023)

$$A_{GN,\tilde{V},\tilde{U}} = A\tilde{V} (\tilde{U}^*A\tilde{V})^{\dagger} \tilde{U}^*A$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \\ - \\ A_{21} \end{array}
ight] (\tilde{U}^*A\tilde{V})^\dagger \, \tilde{U}^*A$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \\ - \\ A_{21} \end{array} \right] (\tilde{U}^*A\tilde{V})^{\dagger} \left[A_{11} \mid A_{12} \end{array} \right]$$

$$\tilde{V} := \prod_{n-r}^{r} \begin{bmatrix} I_r \\ I_r \\ 0 \end{bmatrix}, \quad \tilde{U} := \prod_{m-(r+\ell)}^{r+\ell} \begin{bmatrix} I_{r+\ell} \\ I_{r+\ell} \\ - \\ 0 \end{bmatrix}, \quad A := \prod_{m-(r+\ell)}^{r} \begin{bmatrix} I_r \\ A_{11} \\ - \\ - \\ - \end{bmatrix}, \quad A_{22}$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \ - \ A_{21} \end{array}
ight] (A_{11})^\dagger \left[egin{array}{c} A_{11} \ - \end{array}
ight]$$

$$\tilde{V} := \begin{pmatrix} r & r + \ell & r + \ell & r + \ell & r - r \\ r + \ell & I_{r+\ell} & - & - & - & - \\ r & I_{r+\ell} & - & - & - & - \\ r & I_{r+\ell} & - & - & - & - \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 &$$

$$MM^{\dagger}M = M$$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} \\ - \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} \mid A_{12} \end{bmatrix} = \begin{bmatrix} A_{11}A_{11}^{\dagger}A_{11} & | & A_{11}A_{11}^{\dagger}A_{12} \\ - - - - - & - & - - - - \\ & | & | & \\ A_{21}A_{11}^{\dagger}A_{11} & | & A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix}$$

$$\tilde{V} := \prod_{n-r}^{r} \begin{bmatrix} r \\ l_r \\ - \\ 0 \end{bmatrix}, \quad \tilde{U} := \prod_{m-(r+\ell)}^{r+\ell} \begin{bmatrix} r+\ell \\ l_{r+\ell} \\ - \\ 0 \end{bmatrix}, \quad A := \prod_{m-(r+\ell)}^{r+\ell} \begin{bmatrix} r & n-r \\ A_{11} & | & A_{12} \\ - & - & - \\ & | & | \\ A_{21} & | & A_{22} \end{bmatrix}$$

M has linearly independent columns $\implies M^{\dagger}M = M^{-1}M = M$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} \\ - \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} \mid A_{12} \end{bmatrix} = \begin{bmatrix} A_{11} A_{11}^{\dagger} A_{11} & A_{11} A_{11}^{\dagger} A_{12} & A_{11} A_{11}^{\dagger} A_{12} & A_{11} A_{11}^{\dagger} A_{12} & A_{21} A_{11}^{\dagger} A_{22} & A_{21} A_{11}^{\dagger} A_{22} & A_{21} A_{11}^{\dagger} A_{22} & A_{21} A_{11}^{\dagger} A_{22} & A_{21} A_{21}^{\dagger} A_{22} & A_{22} A_{22}^{\dagger} A_$$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} \\ - \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} \mid A_{12} \end{bmatrix} = \begin{bmatrix} A_{11} & | & A_{11}A_{11}^{\dagger}A_{12} \\ ----- & | & ---- \\ A_{21}A_{11}^{\dagger}A_{11} & | & A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix}$$

$$A_{GN,\tilde{V},\tilde{U}} = A - \begin{bmatrix} 0 & | & A_{12} - A_{11}A_{11}^{\dagger}A_{12} \\ - - - - - - & - & - - - - \\ | & | & | \\ 0 & | & A_{22} - A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix} =: A - E_{GN}$$

No-oversample (
$$\ell=0$$
) $\rightarrow A_{12}-A_{11}A_{11}^{\dagger}A_{12}=0$, but change of block sizes!

$$A_{GN,\tilde{V},\tilde{U}} = A - \begin{bmatrix} 0 & | & 0 \\ ----- & - & - & ---- \\ | & | & | \\ 0 & | & A_{22} - A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix} =: A - E_{GN}$$

GN AND MATRIX PERTURBATION THEORY > Weyl's bound

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$

Cor. 7.3.5 (Horn, Johnson, 2012)

Cor. I.4.31 (Stewart, 1998)

GN AND MATRIX PERTURBATION THEORY > Weyl's bound

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$

Cor. 7.3.5 (Horn, Johnson, 2012) Cor. I.4.31 (Stewart, 1998)

$$|\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})|$$

GN AND MATRIX PERTURBATION THEORY > Weyl's bound

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$

Cor. 7.3.5 (Horn, Johnson, 2012) Cor. I.4.31 (Stewart, 1998)

$$|\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})| \le ||E_{GN}||_2$$

ANALYSIS AND COMPARISON

OXFORD Mathematical

RESULT ON SYMMETRIC MATRICES

Consider the $n \times n$ symmetric matrices

$$H := \begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H} := H + \begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix} =: H + E.$$

Theorem 3.2 (Nakatsukasa, 2012)

RESULT ON SYMMETRIC MATRICES

Consider the $n \times n$ symmetric matrices

$$H:=\begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H}:=H+\begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix}=:H+E.$$

Define

$$\tau_i = \left(\frac{\|H_{21}\|_2 + \|E_{21}\|_2}{\min_j |\lambda_i(H) - \lambda_j(H_{22})| - 2\|E\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\lambda_i(H) - \lambda_i(\hat{H})| \le ||E_{11}||_2 + 2||E_{21}||_2\tau_i + ||E_{22}||_2\tau_i^2,$$

RESULT ON SYMMETRIC MATRICES

Consider the $n \times n$ symmetric matrices

$$H:=\begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H}:=H+\begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix}=:H+E.$$

Theorem 3.2 (Nakatsukasa, 2012)

Define

$$\tau_i = \left(\frac{\|H_{21}\|_2 + \|E_{21}\|_2}{\min_j |\lambda_i(H) - \lambda_j(H_{22})| - 2\|E\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\lambda_i(H) - \lambda_i(\hat{H})| \le ||E_{11}||_2 + 2||E_{21}||_2\tau_i + ||E_{22}||_2\tau_i^2,$$

- $au_i < 1$ necessary to be better than Wevl
- If $||E_{11}||_2 \ll ||E||_2$ and λ_i is far from the spectrum of H_{22} then $\tau_i \ll 1$
- ▶ If $E_{11} = E_{21} = 0$ and H_{21} is small, then λ_i is particularly insensitive to the perturbation E_{22} \rightarrow bound proportional to $\|E_{22}\|_2 \|H_{21}\|_2^2$

OXFORD athematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary

Apply symmetric Result

Transform back

General Result

Generalize (Nakatsukasa, 2012) to the 2×2 block matrix:

$$G:=egin{bmatrix} G_1 & B \ C & G_2 \end{bmatrix},$$

and its perturbation:

$$\hat{G} := G + \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} =: G + F.$$

Strategy: Use a technique in (Li, Li, 2005)

OXFORD dathematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Thm. 7.3.3 (Horn, Johnson, 2012) Thm. I.4.2 (Stewart, Sun. 1990)

Jordan-Wielandt (JW) Theorem

Let $\{\sigma_i(M)\}_{i=1}^n$ be the singular values of a matrix $M\in\mathbb{C}^{m\times n}$, with $m\geq n$. Then, the symmetric matrix

$$\begin{bmatrix} 0 & M \\ M^* & 0 \end{bmatrix} \tag{1}$$

has eigenvalues $\pm \sigma_1(M), \ldots, \pm \sigma_n(M)$ and m-n zeros eigenvalues.

XFORD thematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Thm. 7.3.3 (Horn, Johnson, 2012) Thm. I.4.2 (Stewart, Sun. 1990)

Jordan-Wielandt (JW) Theorem

Let $\{\sigma_i(M)\}_{i=1}^n$ be the singular values of a matrix $M\in\mathbb{C}^{m\times n}$, with $m\geq n$. Then, the symmetric matrix

$$\begin{bmatrix} 0 & M \\ M^* & 0 \end{bmatrix} \tag{1}$$

has eigenvalues $\pm \sigma_1(M), \ldots, \pm \sigma_n(M)$ and m-n zeros eigenvalues.

$$G
ightarrow G_{JW} := \left[egin{array}{c|ccc} 0 & | & G \ - & - & - \ G^* & | & 0 \end{array}
ight] = \left[egin{array}{c|ccc} 0 & 0 & | & G_1 & B \ 0 & 0 & | & C & G_2 \ - & - & - & - & - \ G_1^* & C^* & | & 0 & 0 \ B^* & G^* & | & 0 & 0 \end{array}
ight]$$

OXFORD

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

OXFORD Wathematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

OXFORD

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

OXFORD

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

OXFORD Wathematical institute

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

$$egin{bmatrix} 0 & G_1 & | & 0 & B \ G_1^* & 0 & | & C^* & 0 \ - & - & - & - & - \ 0 & C & | & 0 & G_2 \ B^* & 0 & | & G_2^* & 0 \ \end{bmatrix} =: G_1$$

Note:
$$\lambda_i(G_p) = \lambda_i(G_{JW}) \stackrel{JW}{=} \pm \sigma_i(G)$$

OXFORD Authematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

$$G_{p} = \begin{bmatrix} 0 & G_{1} & | & 0 & B \\ G_{1}^{*} & 0 & | & C^{*} & 0 \\ - & - & - & - & - \\ 0 & C & | & 0 & G_{2} \\ B^{*} & 0 & | & G_{2}^{*} & 0 \end{bmatrix}$$

$$\hat{G}_{p} = G_{p} + \begin{bmatrix} 0 & F_{11} & | & 0 & F_{12} \\ F_{11}^{*} & 0 & | & F_{21}^{*} & 0 \\ - & - & - & - & - \\ 0 & F_{21} & | & 0 & F_{22} \\ F_{2}^{*} & 0 & | & F_{2}^{*} & 0 \end{bmatrix} =: G_{p} + F_{p}.$$

OXFORD Mathematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

1

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

$$\tau_i = \left(\frac{\left\|\begin{bmatrix}0 & C\\B^* & 0\end{bmatrix}\right\|_2 + \left\|\begin{bmatrix}0 & F_{21}\\F_{12}^* & 0\end{bmatrix}\right\|_2}{\min_j |\lambda_i - \lambda_j \left(\begin{bmatrix}0 & G_2\\G_2^* & 0\end{bmatrix}\right)| - 2 \left\|F_p\right\|_2}\right).$$

Then, for each i, if $\tau_i > 0$:

$$|\lambda_i(G_p) - \lambda_i(\hat{G}_p)| \le \left\| \begin{bmatrix} 0 & F_{11} \\ F_{11}^* & 0 \end{bmatrix} \right\|_2 + 2 \left\| \begin{bmatrix} 0 & F_{21} \\ F_{12}^* & 0 \end{bmatrix} \right\|_2 \tau_i + \left\| \begin{bmatrix} 0 & F_{22} \\ F_{22}^* & 0 \end{bmatrix} \right\|_2 \tau_i^2,$$

OXFORD tathematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

- $\| \begin{bmatrix} 0 & M_1 \\ M_2 & 0 \end{bmatrix} \|_2 = \max\{ \|M_1\|_2, \|M_2\|_2 \};$
- ▶ Jordan-Wielandt theorem

$$\implies |\lambda_i(G_p) - \lambda_i(\hat{G}_p)| = |\sigma_i(G) - \sigma_i(\hat{G})|,$$

for i = 1, ..., n;

• By Jordan-Wielandt theorem and by construction of F_p :

$$||F_p||_2 = ||F||_2$$

FROM THE SYMMETRIC TO THE GENERAL RESULT > Generalization of (Nakatsukasa, 2012)

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Theorem 4.1 (L., Al Daas, Nakatsukasa, 2024)

Consider the matrices

$$G:=\begin{bmatrix}G_1 & B\\ C & G_2\end{bmatrix}, \quad \hat{G}:=G+\begin{bmatrix}F_{11} & F_{12}\\ F_{21} & F_{22}\end{bmatrix}=:G+F,$$

and define

$$\tau_i = \left(\frac{\max\{\|B\|_2, \|C\|_2\} + \max\{\|F_{12}\|_2, \|F_{21}\|_2\}}{\min_i |\sigma_i(G) - \sigma_i(G_2)| - 2\|F\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\sigma_i(G) - \sigma_i(\hat{G})| \le ||F_{11}||_2 + 2 \max\{||F_{12}||_2, ||F_{21}||_2\}\tau_i + ||F_{22}||_2\tau_i^2,$$

OXFORD Mathematical institute

FROM THE SYMMETRIC TO THE GENERAL RESULT > Generalization of (Nakatsukasa, 2012)

General case

Theorem 4.1 (L.,Al Daas, Nakatsukasa,2024)

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Consider the matrices

$$G:=\begin{bmatrix}G_1 & B\\ C & G_2\end{bmatrix},\quad \hat{G}:=G+\begin{bmatrix}F_{11} & F_{12}\\ F_{21} & F_{22}\end{bmatrix}=:G+F,$$

and define

$$\tau_i = \left(\frac{\max\{\|B\|_2, \|C\|_2\} + \max\{\|F_{12}\|_2, \|F_{21}\|_2\}}{\min_j |\sigma_i(G) - \sigma_j\left(G_2\right)| - 2\|F\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\sigma_i(G) - \sigma_i(\hat{G})| \leq \|F_{11}\|_2 + 2\max\{\|F_{12}\|_2, \|F_{21}\|_2\}\tau_i + \|F_{22}\|_2\tau_i^2,$$

• Generalization to Block Tridiagonal: A Singular Value is insensitive to blockwise perturbation if it is well-separated from the spectrum of the diagonal blocks near the perturbed blocks.

BOUND ON GN APPROXIMATION ERROR > Derivation

- $A, \tilde{V}, \tilde{U} \rightarrow A_{GN} = A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A$
- Define

$$\bar{A} = [\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}], \quad \bar{A}_{GN} = \left([\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}] \right)_{GN, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, \begin{bmatrix} I_r \\ 0 \end{bmatrix}}$$

$$\implies \bar{A}_{GN} = \bar{A} - \begin{bmatrix} 0 & 0 \\ 0 & \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \end{bmatrix} =: \bar{A} - E_{GN}$$

BOUND ON GN APPROXIMATION ERROR > Derivation

•
$$A, \tilde{V}, \tilde{U} \rightarrow A_{GN} = A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A$$

Define

$$\bar{A} = [\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}], \quad \bar{A}_{GN} = \left([\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}] \right)_{GN, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, \begin{bmatrix} I_r \\ 0 \end{bmatrix}}$$

 $\implies \bar{A}_{GN} = \bar{A} - \begin{vmatrix} 0 & 0 \\ 0 & \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12} \end{vmatrix} =: \bar{A} - E_{GN}$

Corollary 5.1 (L., Al Daas, Nakatsukasa, 2024)

$$\tau_i = \frac{\max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}}{\min_j |\sigma_i(\bar{A}) - \sigma_j\left(\bar{A}_{22}\right)| - 2\|E_{GN}\|_2}.$$

Then, for each i, if $\tau_i > 0$

$$|\sigma_i(A) - \sigma_i(A_{GN})| = |\sigma_i(\bar{A}) - \sigma_i(\bar{A}_{GN})| \le \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 au_i^2$$

• $au_i < 1$ necessary to be better than Weyl. If $\sigma_i(\bar{A})$ is far from the spectrum of \bar{A}_{22} then $au_i \ll 1$

BOUND ON GN APPROXIMATION ERROR > Numerical illustration

•
$$A \in \mathbb{R}^{1000 \times 1000}$$

•
$$\sigma_i(A)$$
 exponentially decaying

•
$$[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$$

•
$$[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$$

•
$$ilde{V} \in \mathbb{R}^{1000 imes 200}$$

•
$$\tilde{U} \in \mathbb{R}^{1000 \times 200}$$

Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

BOUND ON GN APPROXIMATION ERROR > Numerical illustration

•
$$A \in \mathbb{R}^{1000 \times 1000}$$

- Uex, Vex Haar Matrices
- $\sigma_i(A)$ exponentially decaying

•
$$[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$$

•
$$[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$$

- $ilde{V} \in \mathbb{R}^{1000 imes 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 200}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

- $r + \ell = 1.5r$
- $A \in \mathbb{R}^{1000 \times 1000}$
- Uex, Vex Haar Matrices
- $\sigma_i(A)$ exponentially decaying
- $[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$
- $[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$
- $ilde{V} \in \mathbb{R}^{1000 imes 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 300}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

BOUND ON GN APPROXIMATION ERROR > Numerical illustration - Oversample

- $r + \ell = 1.5r$
- $A \in \mathbb{R}^{1000 \times 1000}$
- Uex, Vex Haar Matrices
- $\sigma_i(A)$ exponentially decaying
- $[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$
- $[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$
- $\tilde{V} \in \mathbb{R}^{1000 imes 200}$
- $ilde{U} \in \mathbb{R}^{1000 imes 300}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

HEURISTIC BOUND FOR GN WITH OVERSAMPLE

Α

Α

 \rightarrow

Ā

1000

0 200 400 600

800 1000

 $ilde{V} \in \mathbb{R}^{1000 imes 200} \ ilde{U} \in \mathbb{R}^{1000 imes 300}$

Size of $\tilde{A}_{11}: 200 \times 200$

BOUND ON GN APPROXIMATION ERROR > Numerical illustration - Algebraic decaying singular values

$$\sigma_i(A) = (\tfrac{1}{i})^4$$

Without oversample ($\ell = 0$)

With oversample $(r + \ell = 1.5r)$

Single-pass methods

$$\bullet \ \sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

$$\bullet \ \sigma_i^{GN} = \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^\dagger \tilde{U}^* A \right)$$

$$Q_1 = egin{bmatrix} ilde{U} & ilde{U}_\perp \end{bmatrix}, \quad Q_2 = egin{bmatrix} ilde{V} & ilde{V}_\perp \end{bmatrix}$$
 $ightharpoons \sigma_i^{RR} = \sigma_i (ilde{U}^* A ilde{V})$

$$\bar{A} = Q_1^* A Q_2$$

$$\sigma_i(A_{RR,\tilde{V},\tilde{U}}) = \sigma_i(\bar{A}_{RR,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_r+\ell \\ 0 \end{bmatrix}})| = \sigma_i(\bar{A}_{11}) = \sigma_i\left(\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix}\right)$$

$$Q_1 = egin{bmatrix} ilde{U} & ilde{U}_\perp \end{bmatrix}, \quad Q_2 = egin{bmatrix} ilde{V} & ilde{V}_\perp \end{bmatrix}$$
 $lacksquare$
 $ar{A} = Q_1^* A Q_2$

$$\sigma_i(A_{RR,\tilde{V},\tilde{U}}) = \sigma_i(\bar{A}_{RR,\begin{bmatrix} t_r \\ 0 \end{bmatrix},\begin{bmatrix} t_r+\ell \\ 0 \end{bmatrix}})| = \sigma_i(\bar{A}_{11}) = \sigma_i\left(\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix}\right)$$

$$\tau_i^{RR} := \frac{2 \max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}}{(\min_k |\sigma_i - \sigma_k (\bar{A}_{22})| - 2 \|E_{RR}\|_2)} > 0$$

Then, for each i, if $au_i > 0$

$$\begin{split} |\sigma_{i} - \sigma_{i}^{RR}| &\leq 4 \frac{\max\{\|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2}\}^{2}}{\min\limits_{k} |\sigma_{i} - \sigma_{k}\left(\bar{A}_{22}\right)| - 2\|E_{RR}\|_{2}} \\ &+ \|\bar{A}_{22}\|_{2} \frac{4 \max\{\|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2}\}^{2}}{\left(\min\limits_{k} |\sigma_{i} - \sigma_{k}\left(\bar{A}_{22}\right)| - 2\|E_{RR}\|_{2}\right)^{2}} \end{split}$$

$$\tau_i^{RR} := \frac{2 \max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}}{(\min_k |\sigma_i - \sigma_k (\bar{A}_{22})| - 2 \|E_{RR}\|_2)} > 0$$

Then, for each i, if $au_i > 0$

$$\begin{split} |\,\sigma_i - \sigma_i^{RR}| &\leq 4 \frac{\max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}^2}{\min\limits_{k} |\,\sigma_i - \sigma_k\left(\bar{A}_{22}\right)| - 2 \|\mathcal{E}_{RR}\|_2} \\ &+ \|\bar{A}_{22}\|_2 \frac{4 \max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}^2}{\left(\min\limits_{k} |\,\sigma_i - \sigma_k\left(\bar{A}_{22}\right)| - 2 \|\mathcal{E}_{RR}\|_2\right)^2} \end{split}$$

$$Q_{1} = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}, \quad Q_{2} = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$$

$$\bullet \ \sigma_{i}^{RR} = \sigma_{i}(\tilde{U}^{*}A\tilde{V})$$

$$\bullet \ \sigma_{i}^{SVD} = \sigma_{i}(A\tilde{V})$$

$$\tilde{A} = Q_{1}^{*}AQ_{2}$$

$$\tilde{A} = AQ_{2} = \begin{bmatrix} \tilde{A}_{1} & \tilde{A}_{2} \end{bmatrix}$$

$$\sigma_{i}(A_{RR,\tilde{V},\tilde{U}}) = \sigma_{i}(\tilde{A}_{RR,\begin{bmatrix} I_{r} \\ 0 \end{bmatrix}}, \begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}) | = \sigma_{i}(\tilde{A}_{11}) = \sigma_{i}(\begin{bmatrix} \tilde{A}_{11} & 0 \\ 0 & 0 \end{bmatrix})$$

$$\sigma_{i}(A_{SVD,\tilde{V}}) = \sigma_{i}(\tilde{A}_{SVD,\begin{bmatrix} I_{r} \\ 0 \end{bmatrix}}) = \sigma_{i}([\tilde{A}_{1} & 0])$$

$$\tau_i^{RR} := \frac{2 \max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}}{(\min_k |\sigma_i - \sigma_k (\bar{A}_{22})| - 2 \|E_{RR}\|_2)} > 0$$

Then, for each i, if $\tau_i > 0$

$$\begin{split} |\sigma_i - \sigma_i^{RR}| &\leq 4 \frac{\max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}^2}{\min\limits_{k} |\sigma_i - \sigma_k\left(\bar{A}_{22}\right)| - 2\|E_{RR}\|_2} \\ &+ \|\bar{A}_{22}\|_2 \frac{4 \max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}^2}{\left(\min\limits_{k} |\sigma_i - \sigma_k\left(\bar{A}_{22}\right)| - 2\|E_{RR}\|_2\right)^2} \end{split}$$

$$\tau_i^{SVD} := \frac{2\|\tilde{A}_2\|_2}{\sigma_i - 2\|E_{SVD}\|_2} > 0$$

Then, for each i, if $\tau_i > 0$

$$|\sigma_i - \sigma_i^{SVD}| \le 4 \frac{\|\tilde{A}_2\|_2^2}{\sigma_i - 2\|E_{SVD}\|_2}$$

Single-pass methods

$$\bullet \ \sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

$$ullet$$
 $\sigma_i^{GN} = \sigma_i \left(A ilde{V} (ilde{U}^* A ilde{V})^\dagger ilde{U}^* A
ight)$

Single-pass methods

$$\bullet \ \sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

$$\qquad \qquad \bullet \ \sigma_i^{GN} = \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^\dagger \tilde{U}^* A \right)$$

For
$$\tau_i > 0$$
, $|\sigma_i(A) - \sigma_i(A_{GN})| \le 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i^2$

$$\tau_{i} = \frac{\max\{\|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2}\} + \left\|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\right\|_{2}}{\min_{j} |\sigma_{i}(\bar{A}) - \sigma_{j}\left(\bar{A}_{22}\right)| - 2 \|E_{GN}\|_{2}}$$

For
$$\tau_i > 0$$
, $|\sigma_i(A) - \sigma_i(A_{GN})| \le 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i^2$

For
$$au_i > 0$$
, $|\sigma_i(A) - \sigma_i(A_{GN})| \leq 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 au_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 au_i^2$

$$\text{(Forward Bound)} \quad \bar{A}_{GN} = \bar{A} - E_{GN} \implies \tau_i = \frac{\max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\} + \left\|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\right\|_2}{\min_j |\sigma_i(\bar{A}) - \sigma_j(\bar{A}_{22})| - 2 \|E_{GN}\|_2}$$

$$\text{(Backward Bound)} \quad \bar{A} = \bar{A}_{GN} + E_{GN} \implies \tau_i = \frac{\max\{\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_2, \|\bar{A}_{12}\|_2\} + \|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_2}{\min_j |\sigma_i(\bar{A}_{GN}^{\dagger}) - \sigma_j(\bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12})| - 2 \|E_{GN}\|_2}$$

For
$$au_i > 0$$
, $|\sigma_i(A) - \sigma_i(A_{GN})| \leq 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i^2$

$$\tau_{i} = \underbrace{\frac{=\|\bar{A}_{12}\|_{2}}{\max\{\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}, \|\bar{A}_{12}\|_{2}\} + \|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}}_{\min_{j}|\sigma_{i}(\bar{A}_{GN}) - \sigma_{j}(\bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12})| - 2\|E_{GN}\|_{2}}^{\leq \|\bar{A}_{12}\|_{2}}$$

A-POSTERIORI FRROR BOUND > Numerical Illustration

For
$$\tau_i > 0$$
, $|\sigma_i(A) - \sigma_i(A_{GN})| \le 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i^2$

$$\tau_{i} = \underbrace{\frac{=\|\bar{A}_{12}\|_{2}}{\max\{\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}, \|\bar{A}_{12}\|_{2}\} + \|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}}_{=\min_{j}|\sigma_{i}(\bar{A}_{GN}) - \sigma_{j}(\bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12})| - 2\|E_{GN}\|_{2}}$$

FUTURE WORK

- ▶ More on the difference between oversampled and non-oversampled cases
- More on the strategy to improve the bound;
- Use bounds to formally characterize the differences in behaviors of the different techniques: GN, HMT, Rayleigh-Ritz;
- ▶ Use norm estimation strategies to make the bound fully computable.

THANK YOU!

MATRIX PERTURBATION ANALYSIS OF METHODS FOR EXTRACTING SINGULAR VALUES GIVEN APPROXIMATE SUBSPACES

LORENZO LAZZARINO, HUSSAM AL DAAS, YUJI NAKATSUKASA

[1] Matrix perturbation analysis of methods for extracting singular values from approximate singular subspaces, L.L., H. Al Daas, Y. Nakatsukasa, 2024, Arxiv