

Chapter 1

22/09/2020

1.1 Introduction

Our aim is to abstract and generalize concepts such as space, distance and continuity.

As en example of the character of this theory, we intend not to distinguish subspaces A (circle) and B (square) of \mathbb{R}^2 , but to distinguish these from C (ring), as in figure 1.1.

Figure 1.1: Examples of topological subspaces of \mathbb{R}^2 .

1.2 Topological Spaces

Definition 1. Given a set X, we denote the set of all subsets of X as $\mathcal{P}(X)$, called the **power set** of X.

In topology, the union of potentially infinite (and uncountable) subsets. We write the union of a family of subsets $\{A_i : i \in I\}$ as $\cup_{i \in I} A_i$.

Definition 2. Given a non-empty set X, we say $\mathcal{T} \subseteq \mathcal{P}(X)$ is a **topology** on X if:

- 1. $X, \emptyset \in \mathcal{T}$
- 2. if $A, B \in \mathcal{T}$ then $A \cap B \in \mathcal{T}$
- 3. if $A_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} A_i \in \mathcal{T}$.

Then (X, \mathcal{T}) is a **topological space**, and the elements of X sometimes denotes by points.

Remark. For a finite family of subsets N, the reunion $\bigcap_{i \in N} A_i \in \mathcal{T}$.

Proof. The case for n=2 is taken care by the second axiom in 2. Assume $\bigcap_{i=1}^n A_i = B \in \mathcal{T}$. Then

$$\bigcap_{i=1}^{n+1} A_i = \left(\bigcap_{i=1}^n A_i\right) \cap A_{n+1} = B \cap A \in \mathcal{T}$$

so the statement holds by induction.

Example 1. Let $X_1 = \{a, b, c, d, e, f\}$ and $\mathcal{T}_1 = \{X_1, \emptyset, \{a\}, \{c, b\}, \{a, c, d\}, \{b, c, d, e, f\}\}$. Then \mathcal{T}_1 is a topology on X_1 .

Remark. For a finite set X, one does enough to test the union of each two subsets of \mathcal{T} , and the finite union follows by induction.

Example 2. Let $X = \{a, b, c, d\}$ and $\mathcal{T}_2 = \{X_2, \emptyset, \{a\}, \{c, d\}, \{a, c\}, \{a, c, d\}\}$. Then \mathcal{T}_2 is not a topology on X_2 , for $\{a\} \cap \{a, c\} = \{c\} \notin \mathcal{T}$.

Example 3. Let $\mathcal{T}_3 \subseteq \mathcal{P}(\mathbb{N})$ be such that

$$\mathcal{T}_3 = \{\mathbb{N}\} \cup \{A \subseteq \mathbb{N} : A \text{ is finite}\}.$$

 \mathcal{T}_3 is not a topology on \mathbb{N} . Let $B_n = \{2n+1\}$ for $n \in \mathbb{N}$. Then $B_n \in \mathcal{T}_3$ but

$$\bigcup_{n=1}^{\infty} B_n \notin \mathcal{T}_3.$$

Definition 3. Let X be a non-empty set. Then $\mathcal{T} = \mathcal{P}(X)$ is a topology on X, called the **discrete topology**.

Remark. Let (X, \mathcal{T}) be a topological space. Then \mathcal{T} is the discrete topology if and only if $\{x\} \in \mathcal{T}$ for all $x \in X$. These are called the **singular sets** of X.

Proof. Take $A \in \mathcal{P}(X)$ and let x_i for $i \in I$ be elements of X. If A is empty then it is simply the **empty union** of singleton sets. Otherwise, it implies that there does not exist a union such that

$$\bigcup_{i \in I} \{x_i\} = A.$$

Then there exists an element $x_k \in A$ that is not contained in the union. As every element of X is contained in the union of singletons sets of X, A contains an element that is not contained in X. Hence $A \notin \mathcal{P}(X)$, which is contradiction.

Definition 4. Let X be a non empty set. Then $\mathcal{T} = \{X, \emptyset\}$ is a topology of X, called the **indiscrete** topology.

1.3 Open and Closed subsets

Definition 5. Given a topological space (X, \mathcal{T}) , the elements of \mathcal{T} are called **open** subsets of X.

Definition 6. Given a topological space (X, \mathcal{T}) , a subset $A \in X$ is called closed if $X \setminus A \in \mathcal{T}$.

1.3.1 Properties of closed subsets

In a topological space X, \mathcal{T} :

- X and \emptyset are closed
- the intersection of finitely many closed subsets is closed
- the union of an arbitrary family of closed subsets is closed.

Remark. The aforementioned properties of closed subsets are a direct consequence of the axioms in 2.

1.4. FUNCTIONS 5

Example 4. Let X be a non-empty set. The family of subsets

$$\mathcal{T} = \{\emptyset\} \cup \{A \subseteq X : X \setminus A \text{ is finite}\}\$$

are a topology on X, called the **cofinite topology**. The closed sets of \mathcal{T} are X and its finite subsets. *Proof.* We have that \emptyset and $X \in \mathcal{T}$.

Let $A, B \in X$. If A or B are empty the intersection is trivial. Otherwise

$$X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$$

is finite because $X \setminus A$ and $X \setminus B$ are finite, therefore $A \cap B \in \mathcal{T}$.

Let $A_i \in \mathcal{T}$ for $i \in I$. Then

$$X \setminus \left(\bigcup_{i \in I} A_i\right) = \bigcap_{i \in I} (X \setminus A_i)$$

is contained in \mathcal{T} , as the intersection of finite sets is finite.

1.4 Functions

Definition 7. Let $f: X \to Y$ be a function. Given $A \subseteq Y$, we define **reciprocal imagine** of A

$$f^{-1}(A) = \{ x \in X : f(x) \in A \}.$$

Remark. The reciprocal image allows for the introduction of a topology on X from a given topology on Y. Let $f: X \to Y$ be a function with $X \neq \emptyset$. If \mathcal{T} is a topology on Y, then

$$\mathcal{T}' = \{ f^{-1}(A) : A \in \mathcal{T} \}$$

is a topology on X.

Proof. Because \mathcal{T} is a topology on Y, we know that $\emptyset, Y \in \mathcal{T}$. Then $f^{-1}(\emptyset) \in \mathcal{T}'$ and $f^{-1}(Y) \in \mathcal{T}'$. Let $A, B \in \mathcal{T}$. Hence $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) \in \mathcal{T}'$.

Let $A_i \in \mathcal{T}$ for $i \in I$ be an arbitrary family of subsets of Y. We shall now prove that

$$\bigcup_{i \in I} f^{-1}(A_i) = f^{-1}\left(\bigcup_{i \in I} A_i\right) \in \mathcal{T}'$$

to conclude the proof.

Let $y \in \bigcup_{i \in I} A_i$, then $y \in A_k$ for some $k \in I$ and

$$f^{-1}(y) \in f^{-1}(A_k) \subseteq \bigcup_{i \in I} f^{-1}(A_i).$$

Now take $x \in \bigcup_{i \in I} f^{-1}(A_i)$ so, in particular, $x \in f^{-1}(A_k)$ for some $k \in I$. It follows that there exists $y = f(x) \in A_k$ and

$$y \in A_k \subseteq \bigcup_{i \in I} A_i \Rightarrow x \in f^{-1} \left(\bigcup_{i \in I} A_i \right)$$

as we wanted to show.

Remark. Inheriting a topology in the reverse manner, that is, $\mathcal{T}' = \{f(A) : A \in \mathcal{T}\}$ does not work, even if f is surjective.

Example 5. Let $X = \{a, b, c, d\}, Y = \{1, 2, 3\}$ and $f : X \to Y$ defined by

$$a\mapsto 1$$
 $b\mapsto 2$ $c\mapsto 3$ $d\mapsto 1$

and $\mathcal{T} = \{X, \emptyset, \{a, b\}, \{c, d\}\}\)$ on X. We notice that $\{1, 2\}, \{1, 3\} \in \mathcal{T}$ and

$$\{1,2\} \cap \{1,3\} = \{1\} \notin \mathcal{T}'.$$

1.5 Axioms of Separation

Definition 8. A topological space (X, \mathcal{T}) is T_0 if, given two distinct points $a, b \in X$, there exists an open subset that contains only one of them.

Notice that:

- Every discrete space is T₀.
- A indescrete space is T_0 if and only if $|X| \leq 1$.

Definition 9. A topological space (X, \mathcal{T}) is T_1 if, given two distinct points $a, b \in X$, there exists an open subset that contains a but not b.

Remark. Every T_1 topological space is T_0 , but not the reverse.

Example 6. Let $X = \{a, b\}$ and $\mathcal{T} = \{X, \emptyset, \{a\}\}$. Then (X, \mathcal{T}) is T_0 but not T_1 , because there does not exist an open subset of X that contains b but not a.

Theorem 1. A topological space (X, \mathcal{T}) is T_1 if and only if every singular subset of X is closed.

Proof. Assume that every singular subset of X is closed. Take $a, b \in X$. We have that $\{b\}$ is closed, therefore $X \setminus \{b\}$ is open and contains a, hence the (X, \mathcal{T}) is T_1 .

Assume now that (X, \mathcal{T}) is T_1 . Then for every point y in $X \setminus \{x\}$ there exists an open subset A_y that does not contain x. Thus the reunion

$$\bigcup_{y \in X \setminus \{x\}} A_y = X \setminus \{x\}$$

is open and $\{x\}$ is a closed subset of X.

1.6 Cardinality

Definition 10. Two set X, Y are said to have the same cardinality (|X| = |Y|) if there exists a bijection between them.

Definition 11. A set is said to be **countable** if $|X| \leq |\mathbb{N}|$.

An equivalent definition is that if X is countable, its elements may be written as a succession x_1, x_2, \ldots

Definition 12. A set X is said to have cardinality of the continuum if $|X| = |\mathbb{R}|$.

1.6.1 Properties of Cardinality

- If I is countable and X_i is countable for all $i \in I$, then $\bigcup_{i \in I} X_i$ is countable
- \mathbb{Q} is countable
- If X_1, \ldots, X_n are countable, then $X_1 \times \cdots \times X_n$ is countable.

Chapter 2

24/09/2020

2.1 Euclidean Topology in \mathbb{R}

Definition 13. A set $A \subseteq \mathbb{R}$ is open in the Euclidean topology if $\forall a \in A, \exists b, c \in \mathbb{R}$ such that $a \in (b, c) \subseteq A$.

To see that this is a topology on \mathbb{R} notice that:

- 1. $\mathbb{R}, \emptyset \in \mathcal{T}$
- 2. Let A, B be open sets and a an element of $A \cap B$. Then there exist $b_1, c_1 \in A$ and $b_2, c_2 \in B$ such that $a \in (b_1, c_1) \subseteq A$ and $a \in (b_2, c_2) \subseteq B$. Thus $a \in (\max(b_1, b_2), \min(c_1, c_2)) \subseteq A \cap B$.
- 3. Let $A_i \in \mathcal{T}$ for $i \in I$. Then $a \in \bigcup_{i \in I} A_i \Rightarrow a \in A_j$ for some $j \in I$. As such, there exist $b, c \in A_j$ such that $a \in (b, c) \subseteq A_j \subseteq \bigcup_{i \in I} A_i$.

In this topology we have that, for $a < b \in \mathbb{R}$

- (a, b) is an open
- $(-\infty, a)$ and (a, ∞) are open
- [a, b] is closed, because

$$\mathbb{R} \setminus [a, b] = (-\infty, a) \cap (b, \infty) \in \mathcal{T}$$

- $(-\infty, a]$ and $[a, \infty)$ are closed
- Any singular subset $\{a\}$ is closed
- [a,b] is not open.

Proof. Supposed [a,b] is open and let $c \in [a,b]$. Then there exist $d,e \in [a,b]$ such that $c \in (d,e)$. Taking c=a, we analyse the lower bound

$$a \le d < c = a \Longrightarrow a < a$$

which constitutes a contradiction. The same could be done for the upper bound. In this way, any finitely bounded closed interval is not open. \Box

- \mathbb{Z} is closed but not open.
- \mathbb{Q} is closed but not open.

Theorem 2. Let $A \subseteq \mathbb{R}$. Then A is open in the Euclidean topology if and only if it is an union of open sets.

Proof. Assume A is open. Then $\forall a \in A$ there exists $(b_a, c_a) \subseteq A$ such that $a \in (b_a, c_a)$. As such

$$A = \bigcup_{a \in A} (b_a, c_a).$$

Now assume A is the union of open sets. Then A is open too.

Definition 14. Let (X, \mathcal{T}) be a topological space. Then $B \subseteq \mathcal{T}$ is a base of \mathcal{T} if any open set is an union of members of B.

Example 7. The open sets constitute a base of the Euclidean topology.

Example 8. The singular sets constitute a base of the discrete topology.

Definition 15. A family of subsets $B \in \mathcal{P}(X)$ constitutes a base of a topology in X if and only if X is an union of members of B, and the intersection of members of B is in B.

Example 9. Let $X = \{a, b, c\}$ and $B = \{\{a\}, \{b\}\}$. Then B is not the base of any topology on X because $X \in \mathcal{T}$ for any topology, but X is not generated by B.

Chapter 3

29/09/2020

3.1 Basis of Topology

 ${\rm Tex}$