实验: MPLS BGP VPN 跨域

HCIE 综合实验 - MPLS BGP VPN 跨域

臧家林制作

跨域 option B 实验

两个 ASBR 通过 MP-EBGP 交换它们从各自 AS 的 PE 设备接收的标签 VPN-IPv4 路由。

跨域 VPN-OptionB 方案中,ASBR 接收本域内和域外传过来的所有跨域 VPN-IPv4 路由,再把 VPN-IPv4 路由发布出去。但 MPLS VPN 的基本实现中,PE 上只保存与本地 VPN 实例的 VPN Target 相匹配的 VPN 路由。因此,可以在 ASBR 上配置不做 RT 过滤来传递路由,因此无需在 ASBR 创建 VPN实例,无需绑定任何接口。可以在网络中叠加部署 RR 设备,专门负责客户侧 VPN 路由的传递。

ASBR 间有一层标签需要运行 mpls,不需要运行 mpls ldp

配置思路

1.配置各接口 IP,配置 OSPF。 2.配置 MPLS/MPLS LDP。 3.配置 IBGP/MP-BGP,VPN 路由反射 4.配置 VPN 实例。 5.VPN 实例配置 PE 与 CE 的 EBGP。6.ASBR 相连接口使能 MPLS。 7.ASBR 间配置 MP-EBGP。

1.配置各接口 IP OSPF 协议

R1: undo ter mo sy sys R1 user-interface console 0 idle-timeout 0 0 int loo0 ip add 1.1.1.1 32 int g0/0/0 ip add 192.168.12.1 24
int g0/0/1
ip add 192.168.19.1 24
ospf router-id 1.1.1.1
area 0
net 1.1.1.1 0.0.0.0
net 192.168.12.1 0.0.0.0
q

undo ter mo Sy sys R2 user-interface console 0 idle-timeout 0 0 int loo0 ip add 2.2.2.2 32 int g0/0/0 ip add 192.168.12.2 24 int g0/0/1ip add 192.168.23.2 24 int q0/0/2ip add 192.168.27.2 24 ospf router-id 2.2.2.2 area 0 net 2.2.2.2 0.0.0.0 net 192.168.12.2 0.0.0.0 net 192.168.23.2 0.0.0.0 net 192.168.27.2 0.0.0.0 q

R3: undo ter mo sy sys R3 user-interface console 0 idle-timeout 0 0 int loo0 ip add 3.3.3.3 32 int g0/0/0 ip add 192.168.34.3 24 int g0/0/1 ip add 192.168.23.3 24 ospf router-id 3.3.3.3 area 0 net 3.3.3.3 0.0.0.0 q

R4: undo ter mo Sy sys R4 user-interface console 0 idle-timeout 0 0 int loo0 ip add 4.4.4.4 32 int q0/0/0ip add 192.168.34.4 24 int g0/0/1ip add 192.168.45.4 24 ospf router-id 4.4.4.4 area 0 net 4.4.4.4 0.0.0.0 net 192.168.45.4 0.0.0.0 q

R5:

undo ter mo SV sys R5 user-interface console 0 idle-timeout 0 0 int loo0 ip add 5.5.5.5 32 int g0/0/0 ip add 192.168.56.5 24 int q0/0/1ip add 192.168.45.5 24 int g0/0/2ip add 192.168.58.5 24 ospf router-id 5.5.5.5 area 0 net 5.5.5.5 0.0.0.0 net 192.168.45.5 0.0.0.0 net 192.168.56.5 0.0.0.0 net 192.168.58.5 0.0.0.0 q

R6: undo ter mo sy sys R6 user-interface console 0 idle-timeout 0 0 int loo0 ip add 6.6.6.6 32 int g0/0/0 ip add 192.168.56.6 24 int g0/0/1 ip add 192.168.61.6 24 ospf router-id 6.6.6.6 area 0 net 6.6.6.6 0.0.0.0 net 192.168.56.6 0.0.0.0 q

R7:
undo ter mo
sy
sys R7
user-interface console 0
idle-timeout 0 0
int loo0
ip add 7.7.7.7 32
int g0/0/2
ip add 192.168.27.7 24
ospf router-id 7.7.7.7
area 0
net 7.7.7.7 0.0.0.0
q

R8: undo ter mo sy sys R8 user-interface console 0 idle-timeout 0 0 int loo0 ip add 8.8.8.8 32 int g0/0/2 ip add 192.168.58.8 24 ospf router-id 8.8.8.8 area 0 net 8.8.8.8 0.0.0.0 net 192.168.58.8 0.0.0.0

R9:
undo ter mo
sy
sys R9
user-interface console 0
idle-timeout 0 0
int loo0
ip add 9.9.9.9 32
int g0/0/1
ip add 192.168.19.9 24
q

R10:
undo ter mo
sy
sys R10
user-interface console 0
idle-timeout 0 0
int loo0
ip add 10.10.10.10 32
int g0/0/1
ip add 192.168.61.1 24

=======

2.配置 MPLS/MPLS LDP

```
R1:
mpls lsr-id 1.1.1.1
mpls
mpls ldp
int g0/0/0
mpls
mpls ldp
q
R2:
mpls Isr-id 2.2.2.2
mpls
mpls ldp
int g0/0/0
mpls
mpls ldp
int g0/0/1
mpls
mpls ldp
q
R3:
mpls lsr-id 3.3.3.3
mpls
```

mpls ldp

```
int g0/0/1
mpls
mpls ldp
q
R4:
mpls Isr-id 4.4.4.4
mpls
mpls ldp
int g0/0/1
mpls
mpls ldp
q
R5:
mpls lsr-id 5.5.5.5
mpls
mpls ldp
int g0/0/0
mpls
mpls ldp
int g0/0/1
mpls
mpls ldp
q
R6:
mpls lsr-id 6.6.6.6
mpls
mpls ldp
```

int g0/0/0 mpls mpls ldp

========

4.配置 IBGP/MP-BGP ,配置 VPN 路由反射

配置 PE ASBR 与 RR 之间的 IBGP 邻居关系。

undo policy vpn-target

命令用来取消对接收的 VPN 路由或者标签块进行 VPN-Target 过滤。缺省情况下,对接收到的 VPN 路由或者标签块进行 VP N-Target 过滤。

PE或RR上只保存与本地 VPN 实例的 VPN Target 相匹配的 VPN 路由,而本实验中要学习对端 PE 或 RR 发送的 VPN 路由,因此,可以配置不做 RT 过滤来传递路由

R1:

bgp 100 router-id 1.1.1.1 peer 7.7.7.7 as-n 100 peer 7.7.7.7 con loo0 ipv4-family vpnv4 peer 7.7.7.7 enable

R3:

bgp 100 router-id 3.3.3.3 peer 7.7.7.7 as-n 100 peer 7.7.7.7 con loo0

```
ipv4-family vpnv4
peer 7.7.7.7 enable
q
```

R7: bgp 100 router-id 7.7.7.7 peer 1.1.1.1 as-n 100 peer 1.1.1.1 con loo0 peer 3.3.3.3 as-n 100 peer 3.3.3.3 con loo0 ipv4-family vpnv4 peer 1.1.1.1 enable peer 3.3.3.3 enable peer 1.1.1.1 reflect-client peer 3.3.3.3 reflect-client undo policy vpn-target

=====

q

R4: bgp 200 router-id 4.4.4.4 peer 8.8.8.8 as-n 200 peer 8.8.8.8 con loo0 ipv4-family vpnv4 peer 8.8.8.8 enable q

R6: bgp 200 router-id 6.6.6.6 peer 8.8.8.8 as-n 200 peer 8.8.8.8 con loo0 ipv4-family vpnv4 peer 8.8.8.8 enable q

R8:

bgp 200
router-id 8.8.8.8
peer 4.4.4.4 as-n 200
peer 4.4.4.4 con loo0
peer 6.6.6.6 as-n 200
peer 6.6.6.6 con loo0
ipv4-family vpnv4
peer 4.4.4.4 enable
peer 6.6.6.6 enable
peer 4.4.4.4 reflect-client
peer 6.6.6.6 reflect-client
undo policy vpn-target
q

5.配置 VPN 实例

R1:

ip vpn-instance huawei route-distinguisher 100:1 vpn-target 100:1 both

```
int g0/0/1
ip binding vpn-instance huawei
ip add 192.168.19.1 24
q
```

R6:

ip vpn-instance huawei route-distinguisher 100:1 vpn-target 100:1 both int g0/0/1 ip binding vpn-instance huawei ip add 192.168.61.6 24 q

========

6.VPN 实例配置 PE 与 CE 的 EBGP

R1:

bgp 100 ipv4-family vpn-instance huawei peer 192.168.19.9 as-n 65001 q

R9:

bgp 65001 router-id 9.9.9.9 peer 192.168.19.1 as-n 100 net 9.9.9.9 32

R6:

bgp 200

```
ipv4-family vpn-instance huawei
peer 192.168.61.1 as-n 65002
q
R10:
bgp 65002
router-id 10.10.10.10
peer 192.168.61.6 as-n 200
net 10.10.10.10 32
q
========
7.ASBR 相连接口使能 MPLS
R3:
int g0/0/0
mpls
q
R4:
int g0/0/0
mpls
q
========
8.ASBR 间配置 MP-EBGP
R3:
bgp 100
peer 192.168.34.4 as-n 200
ipv4-family vpnv4
peer 192.168.34.4 enable
undo policy vpn-target
q
```

R4:

bgp 200

peer 192.168.34.3 as-n 100

ipv4-family vpnv4

peer 192.168.34.3 enable

undo policy vpn-target

q

========

检查配置结果

全部配置完成后,进行查看和检测

R1: display bgp vpnv4 vpn-instance huawei peer 查看 VPN 实例邻居状态

BGP local router ID : 1.1.1.1

Local AS number: 100

VPN-Instance huawei, Router ID 1.1.1.1:

Peer V AS MsgRcvd

MsgSent OutQ Up/Down State Pre fRcv

192.168.19.9 4 65001 4

4 0 00:01:18 Established 1

R7:display bgp vpnv4 all routing-table 查看 RR 上是否接收到正确的 VPN 路由

[R7]dis bgp vpnv4 all routing-table

```
BGP Local router ID is 7.7.7.7
 Route Distinguisher: 100:1
Network
                    NextHop
MED
                  LocPrf
                                PrefVal
Path/Ogn
*>i 9.9.9/32
                          1.1.1.1
0
            100
                     0
                                  65001i
*>i
       10.10.10.10/32 3.3.3.3
100
        0
                     200 65002i
```

R9 做连通性测试,可以通 ping -a 9.9.9.9 10.10.10.10

[R9]ping -a 9.9.9.9 10.10.10.10

PING 10.10.10.10: 56 data bytes,

press CTRL_C to break

Reply from 10.10.10.10: bytes=56

Sequence=1 ttl=250 time=170 ms

Reply from 10.10.10.10: bytes=56

Sequence=2 ttl=250 time=150 ms

Reply from 10.10.10.10: bytes=56

Sequence=3 ttl=250 time=150 ms

Reply from 10.10.10.10: bytes=56

Sequence=4 ttl=250 time=180 ms

Reply from 10.10.10.10: bytes=56

Sequence=5 ttl=250 time=170 ms