

Unidad Profesional Interdisciplinaria de Ingeniería

Campus Zacatecas IPN

# Guiones de prácticas: Implementación de sistemas digitales

Docente:

Ramón Jaramillo Martínez

 ${\bf Zacatecas,\ Zac.}$  Fecha de actualización 30 de mayo de 2022

Índice 1

# Índice

| 1. | Pru                                    | ebas del ambiente de programación | 3 |  |  |
|----|----------------------------------------|-----------------------------------|---|--|--|
|    | 1.1.                                   | Objetivo                          | 3 |  |  |
|    | 1.2.                                   | Material y equipo                 | 3 |  |  |
|    | 1.3.                                   | Desarrollo                        | 3 |  |  |
|    | 1.4.                                   | Conclusiones                      | 3 |  |  |
| 2. | Manejo de entradas y salidas digitales |                                   |   |  |  |
|    | 2.1.                                   | Objetivo                          | 4 |  |  |
|    | 2.2.                                   | Material y equipo                 | 4 |  |  |
|    | 2.3.                                   | Desarrollo                        | 4 |  |  |
|    | 2.4.                                   | Conclusiones                      | 4 |  |  |
| 3. | Uso                                    | de interrupciones                 | 5 |  |  |
|    | 3.1.                                   | Objetivo                          | 5 |  |  |
|    | 3.2.                                   | Material y equipo                 | 5 |  |  |
|    | 3.3.                                   | Desarrollo                        | 5 |  |  |
|    | 3.4.                                   | Conclusiones                      | 5 |  |  |
| 4. | Modulación por ancho de pulso (PWM)    |                                   |   |  |  |
|    | 4.1.                                   | Objetivo                          | 6 |  |  |
|    | 4.2.                                   | Material y equipo                 | 6 |  |  |
|    | 4.3.                                   | Desarrollo                        | 6 |  |  |
|    | 4.4.                                   | Conclusiones                      | 6 |  |  |
| 5. | Med                                    | dición de período de tiempo       | 7 |  |  |
|    | 5.1.                                   | Objetivo                          | 7 |  |  |
|    | 5.2.                                   | Material y equipo                 | 7 |  |  |
|    | 5.3.                                   | Desarrollo                        | 7 |  |  |
|    | 5.4.                                   | Conclusiones                      | 7 |  |  |
| 6. | Convertidor analógico digital          |                                   |   |  |  |
|    | 6.1.                                   | Objetivo                          | 8 |  |  |
|    | 6.2.                                   | Material y equipo                 | 8 |  |  |
|    | 6.3.                                   | Desarrollo                        | 8 |  |  |
|    | 6.4.                                   | Conclusiones                      | 8 |  |  |

 ${\sf Indice} \\$ 

| 7. | Comunicación UART         |                   |    |  |  |
|----|---------------------------|-------------------|----|--|--|
|    | 7.1.                      | Objetivo          | 9  |  |  |
|    | 7.2.                      | Material y equipo | 9  |  |  |
|    | 7.3.                      | Desarrollo        | 9  |  |  |
|    | 7.4.                      | Conclusiones      | 9  |  |  |
| 8. | 3. Comunicación I2C y SPI |                   |    |  |  |
|    | 8.1.                      | Objetivo          | 10 |  |  |
|    | 8.2.                      | Material y equipo | 10 |  |  |
|    | 8.3.                      | Desarrollo        | 10 |  |  |
|    | 8.4.                      | Conclusiones      | 10 |  |  |

# 1. Pruebas del ambiente de programación

## 1.1. Objetivo

Aprender el manejo del entorno de programación y la tarjeta de desarrollo.

# 1.2. Material y equipo

- Software Code Composer Studio (CCS).
- Tarjeta de desarrollo con microcontrolador MSP432P401R.

#### 1.3. Desarrollo

Genere un código en C/C++ contemplando las siguientes características:

- Contador desde 0 a 1000.
- Utilizar un retardo crudo aproximadamente de 1 segundo.
- Encender el led rojo cuando el contador coincida con un número primo.
- El código deberá enstar en un ciclo infinito.
- Demostrar el funcionamiento del código a través de imagenes donde se observe claramente el valor del contador y el valor del registro que corresponde al control de encendido del led.

#### 1.4. Conclusiones

# 2. Manejo de entradas y salidas digitales

## 2.1. Objetivo

Configurar los puertos de entrada/salida (GPIOs) del microcontrolador utilizando el lenguaje de programación C/C++.

Analizar, diseñar e implementar una interfaz de entrada/salida, para resolver un problema específico por medio de poleo y de interrupciones.

# 2.2. Material y equipo

- Software Code Composer Studio (CCS).
- Tarjeta de desarrollo con microcontrolador MSP432P401R.

#### 2.3. Desarrollo

Genere un código en C/C++ contemplando las siguientes características:

- Máquina de Mealy con 4 estados.
- Cada estado corresponde a un coler del led RGB.
- La máquina de estado cambia al siguiente estado cuando el pulsador se pesiona.
- El estado A, solo realiza transición al estado B.
- El estado B, solo realiza transición al estado C.
- El estado C, solo realiza transición al estado D.
- El estado D, solo realiza transición al estado A.
- El sensado del pulsador se deberá realizar con y sin interrupción con la finalidad de poder analizar el comportamiento de ambos casos.

#### 2.4. Conclusiones

# 3. Uso de interrupciones

## 3.1. Objetivo

Analizar, diseñar e implementar una interfaz de entrada/salida, para resolver un problema específico por medio de interrupciones.

# 3.2. Material y equipo

- Software Code Composer Studio (CCS).
- Tarjeta de desarrollo con microcontrolador MSP432P401R.
- Generador de señales.

#### 3.3. Desarrollo

Genere un código en C/C++ contemplando las siguientes características:

- Medir período y frecuencia.
- Utilizar interrupción por flanco de subida y flanco de bajada.
- No es necesario utilizar el módulo timer, puede utilizar un contador crudo.
- El valor de frecuencia deberá ser identificado claramente a través de un display de 7 segmentos (Considere dos digitos).
- El código deberá estar en un ciclo infinito y deberá encontrar las limitaciones en cuanto a tiempo de muestreo y rango de operación del medidor.

#### 3.4 Conclusiones

# 4. Modulación por ancho de pulso (PWM)

## 4.1. Objetivo

Analizar, diseñar e implementar una interfaz que permita resolver la cinemática directa de un robot manipulador de 3 grados de libertad.

# 4.2. Material y equipo

- Software Code Composer Studio (CCS).
- Tarjeta de desarrollo con microcontrolador MSP432P401R.
- Osciloscopio.

#### 4.3. Desarrollo

Genere un código en C/C++ contemplando las siguientes características:

- Controlar 3 servomotores, los cuales corresponde a cada grado de libertad del robot.
- Implementar una interfaz de entrada que permida introducir el valor de los parámetros para cada servomotor (Puede ser potenciometro, pulsadores, comunicación UART, etc).

#### 4.4. Conclusiones

# 5. Medición de período de tiempo

## 5.1. Objetivo

Analizar, diseñar e implementar una interfaz que permita medir el período de tiempo de una señal digital utilizando el módulo timer.

#### 5.2. Material y equipo

- Software Code Composer Studio (CCS).
- Tarjeta de desarrollo con microcontrolador MSP432P401R.
- Generador de señales.

#### 5.3. Desarrollo

Genere un código en C/C++ contemplando las siguientes características:

- Medir período y frecuencia.
- Utilizar el módulo timer para realizar la medición del periódo.
- El valor de frecuencia deberá ser enviado por el puerto UART.
- Considerar la frecuencia máxima de reloj con la finalidad de obtener el rango máximo de medición.

#### 5.4 Conclusiones

# 6. Convertidor analógico digital

## 6.1. Objetivo

Analizar, diseñar e implementar una interfaz de entrada/salida, para resolver un problema específico por medio del módulo ADC y UART.

# 6.2. Material y equipo

- Software Code Composer Studio (CCS).
- Tarjeta de desarrollo con microcontrolador MSP432P401R.
- Generador de señales.

#### 6.3. Desarrollo

Genere un código en C/C++ contemplando las siguientes características:

- Adquirir una señal analógica.
- Aplicar filtro EMA, SMA y FIR.
- Filtro FIR debe ser diseñado con base a los siguientes parámetros: filtro pasa bajas, Fc = 1200k, método de ventanas, ventana rectangular.
- Enviar todas las señales obtenidas a la salida de los filtros por UART así como la señal original.

#### 6.4 Conclusiones

# 7. Comunicación UART

## 7.1. Objetivo

Analizar, diseñar e implementar una interfaz de entrada/salida, para resolver un problema específico por medio del modulo UART.

# 7.2. Material y equipo

- Software Code Composer Studio (CCS).
- Tarjeta de desarrollo con microcontrolador MSP432P401R.

#### 7.3. Desarrollo

Genere un código en C/C++ contemplando las siguientes características:

- Recepción de información por un puerto UART a velocidad de 9600 baudios. (Puede considerar UARTO)
- Envío de dato recibido por otro puerto UART a una velocidad mayor con la finalidad de poder enviar el eco sin perdida de información. (Puede considerar UART2)
- Justificar si es posible o no, realizar el eco utilizando el módulo AES, para recibir los datos crudos y encriptarlos antes de enviarlos por el otro módulo UART.

#### 7.4. Conclusiones

# 8. Comunicación I2C y SPI

## 8.1. Objetivo

Analizar, diseñar e implementar una interfaz de entrada/salida, para resolver un problema específico por medio del modulo I2C y SPI.

# 8.2. Material y equipo

- Software Code Composer Studio (CCS).
- Tarjeta de desarrollo con microcontrolador MSP432P401R.

#### 8.3. Desarrollo

Genere código en C/C++ contemplando las siguientes características:

- Eco a través del protocolo SPI, utilizando 3 cables.
- Los datos enviados a través del buffer deberán estar encriptados.

Genere código en C/C++ contemplando las siguientes características:

- Implementar una comunicación entre un maestro y al menos 4 esclavos.
- Los datos enviados a través del buffer deberán estar encriptados.

#### 8.4. Conclusiones