Softmax Regression

Quang-Vinh Dinh Ph.D. in Computer Science

Outline

- > Motivation
- Model Construction
- > Loss Function
- > Generalization (Further Reading)
- > Another Approach (Further Reading)

Linear Regression

Prediction

Find the line $\hat{y} = \theta^T x$ that is best fitting to given data, then use \hat{y} to predict for new data

Logistic Regression

***** Binary Classification

Feature	Label	
Petal_Length	Category	
1.4	Flower A	
1	Flower A	Category 0
1.5	Flower A	
3	Flower B	
3.8	Flower B	Category 1
4.1	Flower B	

Feature Label

	Category	Petal_Length
	0	1.4
Category 0	0	1
	0	1.5
	1	3
Category 1	1	3.8
	1	4.1

Idea of Logistic Regression

& Binary Classification

Feature Label

_		
Petal_Length	Category	
1.4	Flower A	
1	Flower A	Category 0
1.5	Flower A	
3	Flower B	
3.8	Flower B	Category 1
4.1	Flower B	
		_

Feature Label

Petal_Length	Category	_
1.4	0	
1	0	Category 0
1.5	0	
3	1	
3.8	1	Category 1
4.1	1	

Sigmoid function could fit the data

$$z = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\hat{y} \in (0 \quad 1)$$

Binary cross-entropy

$$L = -y\log\hat{y} - (1 - y)\log(1 - \hat{y})$$

Feature	Label
Petal_Length	Label
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1

Problem!

Feature	Label
Petal_Length	Label
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1

Implicitly extract that P(label = 0|x) = 1 - p

Optimize w and b for P(label = 1|x) affects P(label = 0|x) and vice versa

How to have explicitly P(y = 0|x)?

Problem!

Feature	Label	
Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	
4.6	1	

Explicitly output P(y = 0|x) and P(y = 1|x)

Softmax function

$$P_i = f(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

$$0 \le f(z_i) \le 1$$

$$\sum_{i} f(z_i) = 1$$

Implementation (straightforward)

Softmax function

Chuyển các giá trị của một vector thành các giá trị xác suất


```
import numpy as np

def softmax(X):
    exps = np.exp(X)
    return exps / np.sum(exps)
```

```
1  X = np.array([1.0, 2.0, 3.0])
2  f = softmax(X)
3  print(f)
```

[0.09003057 0.24472847 0.66524096]

```
1  X = np.array([1000.0, 1001.0, 1002.0])
2  f = softmax(X)
3  print(f)
```


Giá trị nan vì e^x vượt giới hạn lưu trữ của biến

Implementation (stable)

Softmax function (stable)

(Stable) Formula $m = \max(x)$ $f(x_i) = \frac{e^{(x_i - m)}}{\sum_j e^{(x_j - m)}}$

```
X X-m Probability
x_{1} = 1.0 	 x_{1} = -2.0 	 f(x_{1}) = 0.09
x_{2} = 2.0 \longrightarrow x_{2} = -1.0 \longrightarrow Softmax 	 f(x_{2}) = 0.24
x_{3} = 3.0 	 x_{3} = 0 	 f(x_{3}) = 0.67
```

```
import numpy as np

def stable_softmax(X):
    exps = np.exp(X-np.max(X))
    return exps / np.sum(exps)
```

```
1  X = np.array([1.0, 2.0, 3.0])
2  f = stable_softmax(X)
3  print(f)
```

[0.09003057 0.24472847 0.66524096]

```
1  X = np.array([1000.0, 1001.0, 1002.0])
2  f = stable_softmax(X)
3  print(f)
```

```
[0.09003057 0.24472847 0.66524096]
```



```
1  X = np.array([1.0, 1001.0, 1002.0])
2  f = stable_softmax(X)
3  print(f)
```

Feature	[a]	bel
r cature	La	

Label	
0	
0	
0	
1	
1	
1	
	0

Softmax function

$$P_{i} = f(z_{i}) = \frac{e^{z_{i}}}{\sum_{j} e^{z_{j}}}$$

$$0 \le f(z_{i}) \le 1$$

$$\sum_{i} f(z_{i}) = 1$$

Explicitly output P(y = 1|x) and P(y = 0|x)

How about loss function?

$$L(\boldsymbol{\theta}) = -y\log\hat{y}_1 - (1-y)\log(\hat{y}_0)$$

Outline

- > Motivation
- Model Construction
- > Loss Function
- > Generalization (Further Reading)
- > Another Approach (Further Reading)

4 1-D Feature and two classes

Feature	Label	
		_
Petal_Length	Label	
1.4	0	
1.3	0	== #class=2
1.5	0	
4.5	1	#feature=1
4.1	1	
4.6	1	

Feature is with one dimension

→ Need one node for input

Two categories

→ Need two node for output

Model

***** 1-D Feature and three classes

Feature	Label	
		_
Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	#class=3
4.5	1	
4.1	1	IIC (1
4.6	1	#feature=1
5.2	2	
5.6	2	
5.9	2	

Feature is with one dimension

→ Need one node for input

Three categories

→ Need three nodes for output

Model

4-D Feature and three classes

Feature		Label	l
Petal_Length	Petal_Width	Label	
1.4	0.2	0	
1.4	0.2	0	
1.3	0.2	0	#class=3
4.5	1.5	1	π Class—3
4.9	1.5	1	
4	1.3	1	#feature=2
4.5	1.7	2	
6.3	1.8	2	
5.8	1.8	2	

Feature is with two dimensions

→ Need two nodes for input

Three categories

→ Need three nodes for output

Model

4-D Feature and three classes

Label

Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Label
5.1	3.5	1.4	0.2	0
4.9	3	1.4	0.2	0
4.7	3.2	1.3	0.2	0
6.4	3.2	4.5	1.5	1
6.9	3.1	4.9	1.5	1
5.5	2.3	4	1.3	1
4.9	2.5	4.5	1.7	2
7.3	2.9	6.3	1.8	2
6.7	2.5	5.8	1.8	2

Feature is with four dimensions

→ Need four nodes for input

Three categories

→ Need three nodes for output

Outline

- > Motivation
- Model Construction
- > Loss Function
- > Generalization (Further Reading)
- > Another Approach (Further Reading)

Simple illustration

Feature Label

Petal_Length	Category	
1.4	0	
1	0	
1.5	0	
3	1	
3.8	1	
4.1	1	
		Г

Model

One-hot encoding for label

$$y = 0 \rightarrow y = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$

$$y = 1 \rightarrow y = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\uparrow$$
scalar vector

$$z_{0} = xw_{0} + b_{0}$$

$$z_{1} = xw_{1} + b_{1}$$

$$\hat{y}_{0} = \frac{e^{z_{0}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\hat{y}_{1} = \frac{e^{z_{1}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\mathbf{z} = \begin{bmatrix} z_0 \\ z_1 \end{bmatrix} = \begin{bmatrix} b_0 & w_0 \\ b_1 & w_1 \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \begin{bmatrix} \boldsymbol{\theta}_0^T \\ \boldsymbol{\theta}_1^T \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \boldsymbol{\theta}^T \mathbf{x}$$

$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{\mathbf{y}}_0 \\ \hat{\mathbf{y}}_1 \end{bmatrix} = \frac{1}{\sum_{i=0}^1 e^{z_i}} \begin{bmatrix} e^{z_0} \\ e^{z_1} \end{bmatrix} = \frac{e^{\mathbf{z}}}{\sum_{i=0}^1 e^{z_i}}$$

A vector is by default a column vector
$$\boldsymbol{\theta}_0 = \begin{bmatrix} b_0 \\ w_0 \end{bmatrix}$$

vector transpose $\boldsymbol{\theta}_0^T = \begin{bmatrix} b_0 & w_0 \end{bmatrix}$

Simple illustration

Feature Label

Petal_Length	Category	
1.4	0	
1	0	
1.5	0	
3	1	
3.8	1	
4.1	1	

Model

One-hot encoding for label

$$y = 0 \rightarrow y = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$

$$y = 1 \rightarrow y = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
scalar vector

$$z_{0} = xw_{0} + b_{0}$$

$$z_{1} = xw_{1} + b_{1}$$

$$\hat{y}_{0} = \frac{e^{z_{0}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\hat{y}_{1} = \frac{e^{z_{1}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\mathbf{z} = \begin{bmatrix} z_0 \\ z_1 \end{bmatrix} = \begin{bmatrix} b_0 & w_0 \\ b_1 & w_1 \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \begin{bmatrix} \boldsymbol{\theta}_0^T \\ \boldsymbol{\theta}_1^T \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \boldsymbol{\theta}^T \mathbf{x}$$

$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_0 \\ \hat{y}_1 \end{bmatrix} = \frac{1}{\sum_{j=0}^1 e^{z_j}} \begin{bmatrix} e^{z_0} \\ e^{z_1} \end{bmatrix} = \frac{e^{\mathbf{z}}}{\sum_{j=0}^1 e^{z_j}}$$

$$= \frac{e^{\mathbf{z}_1}}{\sum_{j=0}^1 e^{\mathbf{z}_j}} \qquad L(\boldsymbol{\theta}) = -y_0 \log \hat{y}_0 - y_1 \log \hat{y}_1 = -\sum_{i=0}^1 y_i \log \hat{y}_i = -\mathbf{y}^T \log \hat{\mathbf{y}}$$

$$L(\boldsymbol{\theta}) = -y_0 \log \hat{\mathbf{y}}_0 - y_1 \log \hat{\mathbf{y}}_1 = -\sum_{i=0}^1 y_i \log \hat{\mathbf{y}}_i = -\mathbf{y}^T \log \hat{\mathbf{y}}$$

$$\hat{y}_0 = \frac{e^{z_0}}{\sum_{j=0}^1 e^{z_j}}$$

$$\hat{y}_1 = \frac{e^{z_1}}{\sum_{j=0}^1 e^{z_j}}$$

$$\hat{y}_{0} = \frac{e^{z_{0}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\hat{y}_{1} = \frac{e^{z_{1}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\frac{\partial \hat{y}_{i}}{\partial z_{j}} = \begin{cases} \hat{y}_{i}(1 - \hat{y}_{i}) & \text{if } i = j \\ -\hat{y}_{i}\hat{y}_{j} & \text{if } i \neq j \end{cases}$$

$$\frac{\partial L}{\partial z_i} = -\sum_{k} y_k \frac{\partial \log(\hat{y}_k)}{\partial z_i}$$

$$= -\sum_{k} y_k \frac{\partial \log(\hat{y}_k)}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial z_i}$$

$$= -\sum_{k} y_k \frac{1}{\hat{y}_k} \frac{\partial \hat{y}_k}{\partial z_i}$$

$$\frac{\partial L}{\partial z_i} = -y_i (1 - \hat{y}_i) - \sum_{k \neq i} y_k \frac{1}{\hat{y}_k} (-\hat{y}_k \hat{y}_i)$$

$$= -y_i (1 - \hat{y}_i) + \sum_{k \neq i} y_k \hat{y}_i$$

$$= -y_i + y_i \hat{y}_i + \sum_{k \neq i} y_k \hat{y}_i$$

$$= \hat{y}_i \left(y_i + \sum_{k \neq i} y_k \right) - y_i$$

$$= \hat{y}_i - y_i$$

One-hot encoding for label

$$y = 0 \rightarrow y^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$y = 1 \rightarrow y^{T} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\uparrow$$
scalar
vector

$$z_{0} = xw_{0} + b_{0}$$

$$z_{1} = xw_{1} + b_{1}$$

$$\hat{y}_{0} = \frac{e^{z_{0}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\hat{y}_{1} = \frac{e^{z_{1}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$z_{0} = xw_{0} + b_{0}$$

$$z_{1} = xw_{1} + b_{1}$$

$$\hat{y}_{0} = \frac{e^{z_{0}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$z_{1} = xw_{1} + b_{1}$$

$$\hat{y}_{0} = \frac{e^{z_{0}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\hat{y}_{0} = \frac{1}{\sum_{j=0}^{1} e^{z_{j}}} \begin{bmatrix} e^{z_{0}} \\ e^{z_{1}} \end{bmatrix} = \frac{e^{z}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$L(\boldsymbol{\theta}) = -\sum_{i=0}^{1} y_i \log \hat{y}_i = -\boldsymbol{y}^T \log \hat{\boldsymbol{y}}$$

Model

$$\frac{\partial L}{\partial \hat{y}_{i}} = -\frac{y_{i}}{\hat{y}_{i}}$$

$$\frac{\partial \hat{y}_{i}}{\partial z_{j}} = \begin{cases} \hat{y}_{i}(1 - \hat{y}_{i}) & \text{if } i = j \\ -\hat{y}_{i}\hat{y}_{j} & \text{if } i \neq j \end{cases}$$

$$\frac{\partial L}{\partial z_{i}} = \hat{y}_{i} - y_{i}$$

$$\frac{\partial L}{\partial z_{i}} = \hat{y}_{i} - y_{i}$$

$$\frac{\partial L}{\partial b_{i}} = \hat{y}_{i} - y_{i}$$

Derivative

$$\frac{\partial L}{\partial w_i} = x(\hat{y}_i - y_i)$$
$$\frac{\partial L}{\partial b_i} = \hat{y}_i - y_i$$

Simple Illustration - Summary

Feature Label

Petal_Length	Category	
1.4	0	
1	0	
1.5	0	
3	1	
3.8	1	
4.1	1	

One-hot encoding for label

$$y = 0 \rightarrow y^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$y = 1 \rightarrow y^{T} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\uparrow$$
scalar
vector

$$\boldsymbol{\theta} = \begin{bmatrix} b_0 & b_1 \\ w_0 & w_1 \end{bmatrix} \qquad \boldsymbol{x} = \begin{bmatrix} 1 \\ \boldsymbol{x} \end{bmatrix}$$

1. Forward computation

$$\mathbf{z} = \boldsymbol{\theta}^T \mathbf{x}$$

$$\hat{\mathbf{y}} = \frac{e^{\mathbf{z}}}{\sum_{j=0}^{1} e^{z_j}}$$

2. Loss function

$$L(\boldsymbol{\theta}) = -\mathbf{y}^T log\widehat{\mathbf{y}}$$

3. Derivative

$$\frac{\partial L}{\partial w_i} = x(\hat{y}_i - y_i) \qquad \qquad \frac{\partial L}{\partial b_i} = \hat{y}_i - y_i$$

$$\nabla_{\boldsymbol{\theta}} L = \boldsymbol{x} (\hat{\mathbf{y}} - \boldsymbol{y})^T$$

4. Update

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta L_{\boldsymbol{\theta}}'$$

 η is learning rate

Explaining Cross-entropy in another way

Feature	Label
Petal_Length	Label
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1

Outputs of Model

Feature Label

Label
0
0
0
1
1
1

Softmax function

$$\widehat{\mathbf{y}}_i = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

$$0 \le f(z_i) \le 1$$

$$\sum_{i} f(z_i) = 1$$

Explicitly output P(y = 1|x) and P(y = 0|x)

For a Given Sample

F	eature	La	bel

Petal_Le	ngth Lab	el
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	
4.6	1	

Softmax function

$$\widehat{\mathbf{y}}_i = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

$$0 \le f(z_i) \le 1$$

$$\sum_{i} f(z_i) = 1$$

Given a sample (x = 1.3, y = 0)

With (x = 1.3, y = 0), model becomes better when a_0 increases and a_1 decreases

Differences between increasing a_0 and decreasing a_1 ?

For a Given Sample

Feature Label

Petal_Length	Label
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1

Softmax function

$$\widehat{\mathbf{y}}_i = \frac{e^{z_i}}{\sum_i e^{z_j}}$$

$$0 \le f(z_i) \le 1$$

$$\sum_{i} f(z_i) = 1$$

Given a sample (x = 1.3, y = 0)

With (x = 1.3, y = 0), model becomes better when a_0 increases and a_1 decreases

Increasing
$$a_0$$
: $\hat{y}_0 = \frac{e^{z_0}}{e^{z_0} + e^{z_1}} \rightarrow \frac{\text{increasing } z_0}{\text{decreasing } z_1}$

Decreasing
$$a_1$$
: $\hat{y}_1 = \frac{e^{z_1}}{e^{z_0} + e^{z_1}} \rightarrow \text{increasing } z_0 \text{ decreasing } z_1$

Observation

Feature Label

Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	
4.6	1	
		_

With (x = 1.3, y = 0), model becomes better when a_0 increases and a_1 decreases

increasing z_0 decreasing z_1

Loss Computation

Feature Label

Petal_Length	Label
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1

Petal length $\hat{y}_0 = P(y = 0 | x) = a_0$ Softmax function selected

 $a_0 \in [0,1]$

When $a_0 = 0$, the model (or θ) is worst

When $a_0 = 1$, the model (or θ) is perfect

With (x = 1.3, y = 0), model becomes better when a_0 increases and a_1 decreases

increasing z_0 decreasing z_1

Loss Computation

Feature Label

Petal_Length	Label
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1

With (x = 1.3, y = 0), model becomes better when a_0 increases and

 a_1 decreases

increasing z_0 decreasing z_1

$$a_0 \in [0,1]$$

When $a_0 = 0$, the model (or θ) is worst

When $a_0 = 1$, the model (or θ) is perfect

Loss function

$$L(\boldsymbol{\theta}) = -\log(\hat{\mathbf{y}}_0)$$

Another Sample

Feature Label

Petal_Length	Label
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1

With (x = 4.1, y = 1), model becomes better when a_1 increases and a_0 decreases

 \rightarrow increasing z_1 decreasing z_0

$$a_1 \in [0,1]$$

When $a_1 = 0$, the model (or θ) is worst

When $a_1 = 1$, the model (or θ) is perfect

Loss function

$$L(\boldsymbol{\theta}) = -\log(\hat{\mathbf{y}}_1)$$

Observation

Petal_Length Label 1.4 0 1.3 0 1.5 0 4.5 1 4.1 1

4.6

With $(x = \dots, y = ?)$, model becomes better when $a_?$ increases

$$L(\boldsymbol{\theta}) = -y\log\hat{y}_1 - (1-y)\log(\hat{y}_0)$$

What about 3+ classes?

Feature	Label	
Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	
4.6	1	
5.2	2	
5.6	2	
5.9	2	

#features = 1
#classes = 3
$$y \in \{0,1,2\}$$

$$y = 0 \rightarrow L(\mathbf{\theta}) = -\log(\hat{y}_0)$$

$$y = 1 \rightarrow L(\mathbf{\theta}) = -\log(\hat{y}_1)$$

$$y = 2 \rightarrow L(\mathbf{\theta}) = -\log(\hat{y}_2)$$

How to convert into a single function?

A Suggested Function

Feature	Label	
Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	
4.6	1	
5.2	2	
5.6	2	
5.9	2	

#features = 1
#classes = 3
$$y \in \{0,1,2\}$$

$$L(\mathbf{\theta}) = -\frac{y(1-y)}{-2} \log(\hat{y}_2) - y(2-y) \log(\hat{y}_1) - (1-y)(\frac{2-y}{2}) \log(\hat{y}_0)$$

$$y = 2 \qquad y = 1 \qquad y = 0$$

Ok! but awkward!!! ... and how to improve?

Using One-Hot Encoding

Feature	Label	
Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	
4.6	1	
5.2	2	
5.6	2	
5.9	2	

$$y \in \{0,1,2\}$$

One-hot encoding for label

$$\mathbf{y} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix} \qquad y_i \in \{0,1\} \qquad \sum_i y_i = 1$$

$$y = 0 \to \mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \ y = 2 \to \mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \ y = 1 \to \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Loss function

$$L(\mathbf{\theta}) = -y_2 \log(\hat{y}_2) - y_1 \log(\hat{y}_1) - y_0 \log(\hat{y}_0)$$
$$= -\sum_i y_i \log(\hat{y}_i)$$

Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	
4.6	1	
	1	

$$x = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

Summary

$$\boldsymbol{\theta} = \begin{bmatrix} b_0 & b_1 \\ w_0 & w_1 \end{bmatrix} \quad z_0 = xw_0 + b_0$$

$$y = 0 \rightarrow y^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$y = 1 \rightarrow y^{T} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \qquad \downarrow$$
calar vector

$$z_{0} = xw_{0} + b_{0}$$

$$z_{1} = xw_{1} + b_{1}$$

$$\hat{y}_{0} = \frac{e^{z_{0}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\hat{y}_{1} = \frac{e^{z_{1}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$z_{0} = xw_{0} + b_{0}$$

$$z_{1} = xw_{1} + b_{1}$$

$$\hat{y}_{0} = \frac{e^{z_{0}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\hat{y}_{1} = \frac{e^{z_{1}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$z_{1} = xw_{1} + b_{1}$$

$$z_{2} = \begin{bmatrix} z_{0} \\ b_{1} \end{bmatrix} = \begin{bmatrix} b_{0} & w_{0} \\ b_{1} & w_{1} \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \begin{bmatrix} \theta_{0}^{T} \\ \theta_{1}^{T} \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \theta^{T}x$$

$$\hat{y}_{1} = \frac{e^{z_{0}}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$\hat{y}_{2} = \begin{bmatrix} \hat{y}_{0} \\ \hat{y}_{1} \end{bmatrix} = \frac{1}{\sum_{j=0}^{1} e^{z_{j}}} \begin{bmatrix} e^{z_{0}} \\ e^{z_{1}} \end{bmatrix} = \frac{e^{z}}{\sum_{j=0}^{1} e^{z_{j}}}$$

$$L(\theta) = -\sum_{j=0}^{1} y_{j} \log \hat{y}_{j} = -y^{T} \log \hat{y}$$

Model

$$\frac{\partial L}{\partial \hat{y}_{i}} = -\frac{y_{i}}{\hat{y}_{i}}$$

$$\frac{\partial \hat{y}_{i}}{\partial z_{j}} = \begin{cases} \hat{y}_{i}(1 - \hat{y}_{i}) & \text{if } i = j \\ -\hat{y}_{i}\hat{y}_{j} & \text{if } i \neq j \end{cases}$$

$$\frac{\partial L}{\partial z_{i}} = \hat{y}_{i} - y_{i}$$

$$\frac{\partial L}{\partial b_{i}} = \hat{y}_{i} - y_{i}$$

Outline

- > Motivation
- Model Construction
- > Loss Function
- > Generalization (Further Reading)
- > Another Approach (Further Reading)

One-hot encoding for labels

$$y = 0 \rightarrow y^T = [1, 0]$$

$$y = 1 \rightarrow \mathbf{y}^T = [0, 1]$$

Training data

Feature Label

			_
Pet	al_Length	Label	
	1.4	0	#class=2
	1.3	0	
	1.5	0	UC . 1
	4.5	1	#feature=1
	4.1	1	
	4.6	1	

One-hot encoding for label

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Training example

$$(x, y) = (1.4, 0)$$

Training data

Feature Label

Petal_Length	Label	Ι	
1.4	0		
1.3	0		
1.5	0		
4.5	1		
4.1	1		
4.6	1		
		$\overline{}$	

#class=2

#feature=1

One-hot encoding for label

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Training example

$$(x, y) = (1.4, 0)$$

Derivative

$$\frac{\partial L}{\partial z_i} = \hat{y}_i - y_i$$

$$\frac{\partial L}{\partial w_i} = x(\hat{y}_i - y_i)$$

$$\frac{\partial L}{\partial b_i} = \hat{y}_i - y_i$$

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\frac{\partial L}{\partial \mathbf{z}_0} = \hat{y}_0 - 1$$

$$= 0.615 - 1 = -0.385$$

$$\frac{\partial L}{\partial \mathbf{z}_1} = \hat{y}_1 - 0 = 0.385$$

Derivative

$$\frac{\partial L}{\partial z_i} = \hat{y}_i - y_i$$

$$\frac{\partial L}{\partial w_i} = x(\hat{y}_i - y_i)$$

$$\frac{\partial L}{\partial b_i} = \hat{y}_i - y_i$$

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\frac{\partial \mathbf{L}}{\partial b_0} = (\hat{y}_0 - 1) = -0.385$$

$$\frac{\partial \mathbf{L}}{\partial b_1} = (\hat{y}_1 - 0) = 0.385$$

Derivative

$$\frac{\partial L}{\partial z_i} = \hat{y}_i - y_i$$

$$\frac{\partial L}{\partial w_i} = x(\hat{y}_i - y_i)$$

$$\frac{\partial L}{\partial b_i} = \hat{y}_i - y_i$$

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} \mathbf{y}_0 & \mathbf{y}_1 \\ 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\frac{\partial L}{\partial w_0} = x(\hat{y}_0 - 1)$$

$$= -0.385*1.4 = -0.539$$

$$\frac{\partial L}{\partial w_1} = x(\hat{y}_1 - 0)$$

$$= 0.385*1.4 = 0.539$$

Update parameters

$$\theta = \theta - \eta L'_{\theta}$$

 η is learning rate

$$\boldsymbol{\theta} = \begin{bmatrix} b_0 & b_1 \\ w_0 & w_1 \end{bmatrix}$$

$$\boldsymbol{\eta} = 0.1$$

$$L'_{\boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial L}{\partial b_0} & \frac{\partial L}{\partial b_1} \\ \frac{\partial L}{\partial w_0} & \frac{\partial L}{\partial w_1} \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} 0.1 & 0.05 \\ 0.2 & -0.1 \end{bmatrix} - 0.1 \begin{bmatrix} -0.385 & 0.385 \\ -0.539 & 0.539 \end{bmatrix}$$
$$= \begin{bmatrix} 0.138 & 0.011 \\ 0.253 & -0.153 \end{bmatrix}$$

Training data

Feature Label

Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	П
4.6	1	

One-hot encoding for label

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Training example

$$(x, y) = (1.4, 0)$$

$$\frac{\partial L}{\partial z_0} = \hat{y}_0 - y_0 \qquad \frac{\partial L}{\partial z_1} = \hat{y}_1 - y_1$$

$$\frac{\partial L}{\partial w_0} = x(\hat{y}_0 - y_0) \qquad \frac{\partial L}{\partial w_1} = x(\hat{y}_1 - y_1)$$

$$\frac{\partial L}{\partial b_0} = \hat{y}_0 - y_0 \qquad \frac{\partial L}{\partial b_1} = \hat{y}_1 - y_1$$

$$\frac{\partial L}{\partial z_o} = \hat{y}_o - y_o \qquad \qquad \frac{\partial L}{\partial z_1} = \hat{y}_1 - y_1$$

$$\frac{\partial L}{\partial w_0} = x(\hat{y}_0 - y_0) \qquad \frac{\partial L}{\partial w_1} = x(\hat{y}_1 - y_1)$$

$$\frac{\partial L}{\partial b_0} = \hat{y}_0 - y_0 \qquad \qquad \frac{\partial L}{\partial b_1} = \hat{y}_1 - y_1$$

Softmax Regression - Vectorization

$$\frac{\partial L}{\partial z_o} = \hat{y}_o - y_o$$

$$\frac{\partial L}{\partial z_o} = \hat{y}_o - y_o \qquad \qquad \frac{\partial L}{\partial z_1} = \hat{y}_1 - y_1$$

$$\frac{\partial L}{\partial w_0} = x \frac{\partial L}{\partial z_0} \qquad \qquad \frac{\partial L}{\partial w_1} = x \frac{\partial L}{\partial z_1}$$

$$\frac{\partial L}{\partial w_1} = x \frac{\partial L}{\partial z_1}$$

$$\frac{\partial L}{\partial b_0} = \frac{\partial L}{\partial z_0}$$

$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial z_1}$$

Softmax Regression - Vectorization

- 1) Pick a sample from training data
- 2) Tính output \hat{y}

$$z = \theta^T x$$

$$l = [1 ... 1]e^{z}$$

$$\hat{\mathbf{y}} = e^{\mathbf{z}} \emptyset \mathbf{c}$$

Ø is Hadamard division

$$\mathbf{d} = \begin{bmatrix} 1 & \dots 1 \end{bmatrix} e^{\mathbf{z}}$$

$$\widehat{\mathbf{y}} = e^{\mathbf{z}} \emptyset \mathbf{d}$$

$$\widehat{\mathbf{y}} = \frac{e^{\mathbf{z}}}{\sum_{j} e^{x_{j}}}$$

3) Tính loss (cross-entropy)

$$L(\boldsymbol{\theta}) = -\boldsymbol{y}^T log \widehat{\boldsymbol{y}}$$

4) Tính đao hàm

$$\nabla_{\boldsymbol{\theta}} L = \boldsymbol{x} (\hat{\mathbf{y}} - \boldsymbol{y})^T$$

5) Cập nhật tham số

$$m{ heta} = m{ heta} - \eta L_{m{ heta}}'$$
 η is learning rate

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \qquad \mathbf{\theta} = \begin{bmatrix} \mathbf{\theta}_o & \mathbf{\theta}_1 \end{bmatrix} = \begin{bmatrix} w_{00} & w_{10} \\ w_{01} & w_{11} \end{bmatrix}$$
$$\widehat{\mathbf{y}} = \begin{bmatrix} \widehat{y}_0 \\ \widehat{y}_1 \end{bmatrix}$$

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
 $L(\boldsymbol{\theta}) = -\mathbf{y}^T \log \hat{\mathbf{y}} = -\log \hat{\mathbf{y}}_0$
 $y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$ $L(\boldsymbol{\theta}) = -\mathbf{y}^T \log \hat{\mathbf{y}} = -\log \hat{\mathbf{y}}_1$

$$L'_{\theta} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \begin{bmatrix} \frac{\partial L}{\partial z_0} & \frac{\partial L}{\partial z_1} \end{bmatrix} = \begin{bmatrix} x_0 \frac{\partial L}{\partial z_0} & x_0 \frac{\partial L}{\partial z_1} \\ x_1 \frac{\partial L}{\partial z_0} & x_1 \frac{\partial L}{\partial z_1} \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w_{00} & w_{10} \\ w_{01} & w_{11} \end{bmatrix} - \eta \begin{bmatrix} x_0 \frac{\partial L}{\partial z_0} & x_0 \frac{\partial L}{\partial z_1} \\ \frac{\partial L}{\partial z_0} & x_1 \frac{\partial L}{\partial z_1} \end{bmatrix}$$

Outline

- > Motivation
- Model Construction
- > Loss Function
- > Generalization (Further Reading)
- > Another Approach (Further Reading)

Softmax Regression - Batch

- 1) Pick N samples from training data
- 2) Tính output \hat{y}

$$z = x\theta$$

$$d = e^z \mathbf{1}$$

Ø is Hadamard division

$$\widehat{\mathbf{y}} = (\mathbf{1} \mathbf{\emptyset} \mathbf{d}) e^{\mathbf{z}}$$

3) Tính loss (cross-entropy)

$$L(\boldsymbol{\theta}) = \mathbf{1}(-(\boldsymbol{y} \odot log \hat{\boldsymbol{y}})\mathbf{1})$$

4) Tính đạo hàm

$$L'_{\boldsymbol{\theta}} = \boldsymbol{x}^T(\hat{\mathbf{y}} - \boldsymbol{y})$$

5) Cập nhật tham số

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{N}$$

 η is learning rate

$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & x_4^{(1)} \\ x_0^{(2)} & x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & x_4^{(2)} \end{bmatrix}$$

$$= \begin{bmatrix} w_{00} & w_{10} & w_{20} \\ w_{01} & w_{11} & w_{21} \\ w_{02} & w_{12} & w_{22} \\ w_{03} & w_{13} & w_{23} \\ w_{04} & w_{14} & w_{24} \end{bmatrix}$$

Friday - Pytorch

O PyTorch

```
# create model
input_dim = X.shape[1]
output dim = len(torch.unique(y))
model = nn.Linear(input dim, output dim)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)
# Training Loop
max_epoch = 100
for epoch in range(max_epoch):
    # Zero the gradients
    optimizer.zero grad()
    # Forward pass
    outputs = model(X)
    loss = criterion(outputs, y)
    # Backward pass
    loss.backward()
    optimizer.step()
```

