學號:B07901169 系級: 電機三 姓名:楊宗桓

1. (0.5%) 請比較你實作的 generative model、logistic regression 的準確率,何者較佳?

	train	validation	public	private
generative model	0.83532	0.83355	0.84508	0.83269
logistic regression	0.85006	0.84154	0.84791	0.84289

兩種 model 都是經過 normalized ,validation 跟 training set 為將 training data 切一半得來,接著去除'fnlwgt',因為我上網查發現 fnlwgt 是代表資料中某個州的權重人數,對收入判斷沒有幫助,所以刪除。

如上圖: logistic regression 不論在 private 或 public set 都有較高的準確率,這是 因為 generative model 在一開始就假設資料有某種特定的分布,但實際並非如此。 2. (0.5%) 請實作特徵標準化(feature normalization)並討論其對於你的模型準確率的影響

- 11						
			training	validation	public	private
		generative model	0.83581	0.83379	0.84484	0.83233
	unnormalized	logistic regression	0.83031	0.83259	0.82877	0.82387
	normalized	generative model	0.83532	0.83355	0.84508	0.83269
		logistic regression	0.85006	0.84154	0.84791	0.84289
Ш	·					

Normalized 的部分只針對 X_train 中 age,capital_gain,capital_loss,hours_per_week 因為我發現只有這幾項是沒有經過 one-hot encodeing 且其值為連續值。可以發現 normalization 對 generative model 影響不大,但對 logistic regression 影響較大,但不論是哪種模型,做了 normalization 都可使模型的準確度增加。

3. (1%) 請說明你實作的 best model,其訓練方式和準確率為何? 我的 best_model 是使用 sk-learn 的 GradientBoostingClassifier,其中我發現將 learning_rate 調成 0.05,n_estimators = 800 可以得到較高的準確度,最後的準確率為:

train	validation	public	private
0.88401	0.872	0.87506	0.86991

我在 kaggle 上選的 best_model(Ir=0.05, n_estimators = 500 準確率為:

train	validation	public	private
0.8769	0.87009	0.87432	0.8677

可以發現一件有趣

† 的事,用這個套件

做出來的模型,只要把訓練次數一直提高準確率一定會跟著提升(除非達到最小值)而不會 overfit。

4. (3%) Refer to math problem

https://hackmd.io/0fDimgO7RaSCPpD_minSGQ?both

https://hackind.lo/orbiniqo/kascPpb_hillisagepoth
ML HW #2.
Litelihood function:
P(x, x, x) = P(x,) × P(x) × P(x) P(xn)
les Cxx denote the class xx belongs to.
II P(Cxz) P(xxl Cxx)
1 13 February No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
log P = Z log P(Cxxx) + Z log P(xx) (xxx)
Ne denotes the number of datas that belongs to C+
I lag P(Cnz) = E Nilog Tui
To find The that Maximize P(xx, xx, xx, xx)
ologe = on (E Nilgra) + Ilg P(xn Cxn)
= 0 K Ne light datas are drawn independently
= Nilng Ti = Ni mdepart of Til
Because Z ai = 1, from Lagrange Mutifi pliner we know the
maximum of log ? (ie P) happens when of (x,y)= 2 ? (g(x,y)-c)
Where f = log P = g = 2 Tix C=1 , 0 Tix =1
$=) \frac{N}{\pi \lambda} = \lambda \qquad \sum_{n=1}^{N} T_{n} = 1 \Rightarrow \sum_{n=1}^{N} \lambda = 1 $
$\Rightarrow \overline{V}\hat{\lambda} = \frac{N\hat{\lambda}}{N} \Rightarrow \frac{N\hat{\lambda}}{N}$
7 102 4

To compute det et uxn Matrix: using Coface det(A) = (-1) Ax, det (A(211)) + (-1) Ax det(A(212)). Were A: uxn Matrix. let Coj denote (-1)	det(A(ZIJ))	Vivolini
Back to the problem: Back to $\Sigma = \Sigma $	A) = [C11 C21 CM] : C11 C21 CM	WARRING TO A STATE OF THE STATE
Staglast Z) det I obj (Floright) City by(>). = det I where City = (ady I)/jix	: transpose of	
$= \left(\frac{\partial \mathcal{L}}{\partial et} \mathcal{L}\right)_{j\lambda}$ $= \left(\frac{\partial \mathcal{L}}{\partial et} \mathcal{L}\right)_{j\lambda} = 2\mathcal{L}_{j\lambda}$ $= \left(\frac{\partial \mathcal{L}}{\partial et} \mathcal{L}\right)_{j\lambda} = 2\mathcal{L}_{j\lambda}$		

