Chemieprüfung

Klasse 4b

25.11.2016

Thermodynamik

Name: Ramona

Bn

Hilfsmittel: Taschenrechner, Periodensystem, Formelsammlung

Alle Enthalpien und Entropien sind unter Standardbedingungen angegeben.

BITTE IMMER VOLLSTÄNDIGEN RECHENWEG UND SÄMTLICHE EINHEITEN ANGEBEN!!!

Punkte:

13/22

Note:

4,4

Definiere die folgenden Begriffe:	3 P
a) Innere Energie U	-
Die ister France U ist die France die	
Ein System besitzt. Zu ungerau!	
zu ungerau!	
b) Entropiemaximum	
Das Entropiema inum ist ein Vereich das	
arotstmodiche Chaos zu erreichen. Durchalen Ange-	
gates sustand Gas und sehr viele Teilchen eun	
a) Rindungsouthaluis	
c) Bindungsenthalpie Bradungsenthalpie ist die Energie, die bendigt wird,	
Bindungsathalpie ist die Energie, die bendtigt wird, um Bindungen harzustellen oder Bindungen aufzu-	
bre chen.	7
AHO = EAHB (Produkte) + (= = = HB(Edukte))	
Warum arbeitet man in der Chemie oft nur mit Energieänderungen	1.0
und nicht mit absoluten Energieinhalten?	1 P
Absolute Energielishalte kans man nlaht berechnen. Bei	-
einer solchen Berechowa mussike man lie jedes noch	
so Weine Detail on Energie niteinberechnen, was	

-4. Bestimmte Mengen von Zink und Iod reagieren schon bei Raumtemperatur sehr heftig miteinander zu 3 mol Zinkiodid. Führt man die Reaktion in 0,4 Liter Wasser durch erwärmt sich das Wasser von 20 °C auf 99.2 °C. a) Berechne die Reaktionsenthalpie ΔH_R f
 ür diesen Versuch. Berechne die molare Reaktionsenthalpie ΔH_{R, m} f
ür die Bildung von Zinkiodid. a) Atre 4, 18.400. (20-39.2) -- 132422,47 -13242247:1000=-132.4224kJV b) - 132.4224:3=-44.1408 kg - 5. Die folgenden Werte f
ür ΔH und ΔS beziehen sich auf die 3 P jeweilige Reaktion bei 25 °C (298 K). a) Triff eine begründete Vorhersage zum Ablauf jeder Reaktion: Läuft sie spontan ab oder nicht? b) Erkläre ausserdem, ob im jeweiligen Fall die Temperaturangabe eine Rolle spielt, ob die Reaktion spontan abläuft oder nicht. Begründe! i. $N_2 + O_2 \rightarrow 2 \text{ NO}; \Delta H = +180 \frac{\text{kJ}}{\text{mol}}; \Delta S = +0.25 \frac{\text{kJ}}{\text{mol} \cdot \text{K}}$ $\Delta G = \frac{1}{4} + \frac{1}{$ ii. $H_2O_2 \rightarrow H_2O + 0.5 O_2$; $\Delta H = -98 \frac{kJ}{mol}$; $\Delta S = +0.2 \frac{kJ}{mol \cdot K}$ $= \Delta H - T \Delta S$ $= \Delta H - T$ Demparatur wichtig han bei hoher Temperatur noch nicht spontan worden f

-- 6. Berechne die Bildungsenthalpie von Siliziummonoxid (SiO). Gegeben sind die folgenden Werte:

2 P

$$Si + O_2 \rightarrow SiO_2$$

 $SiO + O_2 \rightarrow SiO_2$

$$\Delta H_{f,m}(SiO_2) = -911 \text{ kJ/mol}$$

 $\Delta H_R = -811 \text{ kJ/mol}$

- - 7. Berechne die Reaktionsenthalpien f
ür die folgende Reaktionen mithilfe...

2 P

a) ... der Bildungsenthalpien E → CH₄ + Br₂ → CH₃Br + HBr (CH₄: Methan; CH₃Br: Brommethan)

$$-75 - (-74)$$

 $-75 + 74 = 160$

b) ...der Bindungsenthalpien + (-E)

Vorzeidensehler

oder sinkt!		서 (등	_
	$\Delta S \le 0$	$\Delta S \ge 0$	
$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$			
$N_{2(g)} + 3 H_{2(g)} \rightarrow 2 NH_{3(g)}$			
$Ca (OH_2)_{(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)} + H_2O_{(l)}$			
$C_{(s)} + 2 H_{2(g)} \rightarrow CH_{4(g)}$			
$NH_4NO_{3(s)} \rightarrow 2 H_2O_{(g)} + N_2O_{(g)}$			
$S_{(s)} + 6 F_{2(g)} \rightarrow SF_{6(g)}$			