(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 27 October 2005 (27,10,2005)

PCT

(10) International Publication Number WO 2005/099572 A1

(51) International Patent Classification⁷:

A61B 5/026

(21) International Application Number:

PCT/SE2005/000554

(22) International Filing Date: 18 April 2005 (18.04.2005)

(25) Filing Language: English

(26) Publication Language: English

(**30**) **Priority Data:** 0401004-7

19 April 2004 (19.04.2004) S

- (71) Applicant (for all designated States except US): WHEELSBRIDGE AB [SE/SE]; c/o Gert Nilsson, Lövsbergsvägen 13, S-589 37 Linköping (SE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): NILSSON, Gert [SE/SE]; Lövsbergsvägen 13, S-589 37 Linköping (SE). SJÖBERG, Folke [SE/SE]; Björkgatan 7, S-582 45 Linköping (SE).
- (74) Agent: BERGENSTRÅHLE & LINDVALL AB; P.0. Box 17704, Medborgarplatsen 25, S-118 93 Stockholm (SE).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NON-INVASIVE METHOD TO MONITOR MICROCIRCULATION

Α

В

С

D

(57) Abstract: This invention relates to the non-invasive determination of the degree of vasoactivity in the microcirculation in a tissue caused by a drug, disease, injury normal or pathological regulation. More specifically, the invention relates to a method of determining the influence on microcirculation in living tissue from an irritative agent, drugs, disease, injuries normal or pathological regulation including, illuminating a tissue surface with polarized light, collecting the backscattered light through a polarizing filter, detecting the backscattered and polarized light by a photo-sensitive array, transferring the collected information in digital form to a computing device, separating the collected information into at least two data matrixes, each representing a specific wavelength range and generating an output data matrix by processing corresponding values in at least two data matrixes by an algorithm, wherein each value in said output data matrix represents the amount of influence on the microcirculation in a source point of the tissue. Thereby a representation of the tissue microcirculation is obtained.