Draw a decision tree diagram to predict number of hours to play based on weather conditions like outlook temperature, humidity whole, Consider dataset shown below

Butlook	Temperatore	themidity	windy	tous to play
Raphy	Hot	high	False	25
Rainy	that	high	True	30
Overcast	-tlot	high	False	46
Sonny	mild	high	False	48
Sonny	cool	normal	False	52
Overcat	cool	normal	TalseTive	43
Rainy Rainy	mild cool	high	Foodse	35
	mild	lamon	Palee	38
Sunny	mild .	normal	Falle True	46
Over cart	mild	high	Troe	52
Quee cont	+tot	nomal	false	५५
Sunny	mild	high	True	30
Sunny	cool	normal	The	23

Termination Criteria: CV L=10°1. Or minimum number of Samples: 4

Calculating mean, standard derivation (SD), co-efficient of variation (CV)

$$mean = \frac{2x}{n} = \frac{557}{10} = 39.78$$

$$50 = \sqrt{\frac{E(x-mean)^2}{n}} = 9.67$$

$$CV = \frac{SD}{mean} \times 100 = \frac{9.62}{39.78} \times 100 = 84.30$$

Nao, data set is split into different attributes. The so of each branch is caladated

and the result sone (standard derivation reduction) is calculated

e elocation

attook	mean	80	CV .	n	10(v)
Rainy	35-2	8.3	24.7	5	5/14
Diescont	46.25	403	8.72	y	ધી 14
Sonny	39-2	15.5	81.0	5	sliq

Temperatore:

SD (temperator) = 4/14 10.34 + 4/14 12.14 + 6/14 x 8.38 = 10.01

SpR (temperature) = 80-80 (temperature) = 9.67-40.01 = 0.34

Homidity

$$SD(homidity) = \frac{1}{14} \times 10.11 + \frac{7}{14} \times 9.4 = 9.77$$

= $SD - SD(homidity)$
= $9.67 - 9.17 = 0.1$

windy:

SDR (outlook) = 1.08

SDR (temperature) = -0.34

SOR(Homidity) = -0-1

SDR (windy) = -0-1

The value that has highest SDR Pr considered as soot node (i.e. decision node)

Considering termination criteria.

CU ? 10.1. Or CU : (n 54)

alcottco

Overcost how on of C.1. which is less than threshold value therefore we need not go for forther splitting

we need to split sonny and rainy advomme

Sonry:

Nochta	Temperadore	-Homidity	windy	how played	
Sonny	mild	high	Palse	UC	
80my	cool	normal	Pale	52	
80nny	cool	normal	True	23	
80nny	wild	Carron	Falm	46	mean = 392 SD = 12.2
Sonny	mild	high	Troe	30	Cn = 31.0

Tempe	untore	4
Representative and		

Temperatore	man	cas.	CN	n	رهاص
milal	40.3	894	22-23	8	315
cad	35.5	20.50	54.66	2	ນເ

SD (temperature) =
$$\frac{3}{5}$$
 x 8.96 + $\frac{2}{5}$ x 20.50
= 13.52-6
SDR (temp) = SD-SD (temp)

$$50(3ndy) = \frac{9}{5} \times 3.784 \times 15 \times 4.94$$

In outbook among temperature, humidity and windy 8DR value is high for windy 8DR = 7.97. Then check for cu value both troe and felse sedisty the cu value

Rainy:

Temperadore	Homidity	windy	hous played
hot	high	false	25
hot	high	True	30
mold	hof	falce	38
cool	Lennon	-false	38
mild	normal	Troc	40
	hot hot hold cool	hot high high third high cool normal	hot high false hot high True hold high false cool normal false

mean = 35-2 ,80 = 8.7 , CV=24.7

-	1
lei	npecatore:
_	

$$80 (temp) = \frac{2}{5} \times 8.53 + \frac{2}{5} \times 9.19 + \frac{1}{5} \times 0$$

$$= 5.089$$

Homidity

Homidity mean so cu n wow)

High so 5 16.66 3 36

normal 48 7.07 1644 2 als

SD (homidity) =
$$\frac{3}{5} \times 5 + \frac{7}{5} \times 7.07 + 5.828$$

SDR (homidity) = 8D - sD(homidity)

= 87 - 5.828

= 2872

Windy mean 8D CV n w(v) False 3266 6.80 2085 3 3/5 39 12.72 328 2 2/5 True 80 (wirdy) = 3 x 6.80 + 2 x 12.72 = 9.168 SDR (wirdy) = SD-SD (wirdy) = 87 - 9:168 = - 0:468 Among temperature homidity and windy the 80R value is high for temperature (; 3.612). Then check for CV value of hot, mild, cold scalinly the cu value Decision tree diagram to spredict number at hour to play board on weather conditions Coullage -Rainy (Overcant) Hoor played) (to) (mild) (cool