

Proyecto 3

Optimización Numérica

Francisco Huerta Fernández	C.U. 166040
Fernandez Eric Bazaldúa Miñana	C.U. 155279
Pablo López Landeros	C.U. 178863

Profesor Zeferino Parada García

 $1 \cdot diciembre \cdot 2020$

Índice

Objetivo	2
Scripts	2
Resultados	3

Objetivo

El objetivo del proyecto consistía en maximizar el perímetro de un polígono de n lados sujeto a que todos sus vértices estén dentro de la esfera unitaria.

Matemáticamente queremos maximizar:

$$\sum_{k=1}^{n-1} r_k r_{k+1} sin(\theta_k - \theta_{k+1})$$

Sujeta a:

$$r_i^2 + r_j^2 - 2r_i r_j cos(\theta_i - \theta_k) \le 1, \forall (i, j)$$

$$\theta_{k+1} \ge \theta_k$$

$$0 \le \theta_k \le \pi$$

$$0 \le r_k \le 1$$

Scripts

- Dentro del script main.m se define la variable n que será el número de vértices que tendrá el polígono. Al correr este script, también obtendremos una gráfica con dos polígonos. Uno, el obtenido por el método de puntos interiores y otro con la función de MATLAB fmincon.
- Los puntos iniciales se generan dentro del script *puntosIniciales.m.*
- Posteriormente en el script *puntosInteriores.m* se utiliza el método de puntos interiores para calcular el máximo de la función objetivo.
- El script *Perimetro.m* calcula la función objetivo en coordenadas polares.
- Nota: Los códigos gradiente.m, jacobiana.m, puntoInicial.m, puntosInteriores.m y restricciones.m fueron tomados del proyecto visto en clase.

Resultados

A continuación presentamos los polígonos obtenidos para n = 3, 4, 5, 6, 9, 10:

En general creo que obtuvimos buenos resultados para las distintas n examinada. Pues en prácticamente todas los polígonos podemos ver que la figura obtenida se asemeja bastante a la figura obtenida por MATLAB.

Creemos que nuestros mejores resultados se obtienen en n=4,9,10