SVHN RNN

本项目的英文 ReadMe 文档及代码参见 Github: https://github.com/lixuan0023/SVHN_RNN

Contents

- 模型概述
 - 1. 介绍
 - 2. 模型结构
- 准备阶段
 - 1. 关于硬件
 - 2. 环境配置
 - 3. 准备数据
- 训练模型
- 可视化(Tensorboard)
 - 1. 精度
 - 2. Loss
- 生成门牌号(Inference)

模型概述

介绍

这个项目是使用 Tensorflow 完成优达学城 (<u>Udacity.com</u>)的一个练习,参考了 <u>SVHNClassifier</u>和 <u>im2txt</u>。SVHN_RNN 模型结合了 CNN 与 RNN 两种神经网络,其中 CNN 层将输入图像编码成一个固定长度的特征向量,而 RNN 层将特征解码成了一串数字(门牌号码)。

模型结构

SVHN RNN 模型是一个编码-解码式(encoder-decoder)的神经网络示例。

图像编码器是使用的卷积神经网络,这种网络广泛用于图像任务,本模型参考 SVHNClassifier。

而解码器是使用于 Long Short-term Memory (LSTM) 网络。这种网络通常用于序列模型任务,如语言模型,机器翻译。在 SVHN_RNN 中,LSTM 网络用于将图像信息解码成数字序列。

门牌上的数字被表示成嵌入(embedding)模型。每个在字典中的(vocabulary)数字表示成一个定长的向量特征。网络结构如下图。

在图中, $\{S_0, S_1 ..., S_{N-1}\}$ 为门牌号数字, $\{W_e S_0, W_e S_1 ..., W_e S_{N-1}\}$ 是相应数据的特征向量 (embedding vector)。LSTM 的输出 $\{p_1, p_2, ..., p_N\}$ 是模型预测下一个数字出现的概率分布。 $\{\log p_1(s_1), \log p_2(s_2), ..., \log p_N(s_N)\}$ 是每一步预测出数字的 \log 似然概率。

卷积网络的隐藏层如图右下角。包括了卷积层, batch normalization, ReLU, max pooling 和 dropout。

准备阶段

● 关于硬件

SVHN_RNN 模型的训练时间取决于使用的硬件性能,计算能力。以我的实验来说,是在一台拥有 8 片 *NVIDIA Tesla K20c* 的 GPU 上运行,整个过程大概需要 4-5 天时间来达到最高的训练精度。

● 环境配置

TensorFlow 1.0 or greater (instructions)

NumPy (instructions)

h5py (instructions)

pillow (instructions)

In Ubuntu:

\$ sudo apt-get install libhdf5-dev

\$ sudo pip install h5py

Install pillow:

\$ sudo pip install Pillow

● 准备数据

为了训练模型,需要先将训练数据转化成 TFRecord 格式。它是由包含tf.SequenceExample 协议的数据组成。每个tf.SequenceExample 又包括一个图像(PNG 格式),门牌号数字等。

注:数字 0,1,...,9 分别由对应的标签 '0','1',...,'9'表示。标签'10'代表开始标志,标签'11'代表结束标志。门牌数字的格式为 10,XXX,11.

数据来自 <u>Street View House Numbers (SVHN)</u>,将下载好的数据解压成如下文件结构。SVHN_RNN

..._....

- data
- 1.png
- 2.png
- ...
- digitStruct.mat
- test

- extra

- 1.png
- 2.png
- ...
- digitStruct.mat
- train
 - 1.png
 - 2.png
 - ...
 - digitStruct.mat

训练模型

- 1. Convert to TFRecords format
 - \$ python convert_to_tfrecords.py --data_dir ./data
- 2. Train
- \$ python train.py --data_dir ./data --train_logdir ./logs/train
- 3. Retrain if you need
- \$ python train.py --data_dir ./data --train_logdir ./logs/train2 -restore_checkpoint ./logs/train/latest.ckpt
- 4. Evaluate
- \$ python eval.py --data_dir ./data --checkpoint_dir ./logs/train -eval_logdir ./logs/eval
- 5. Visualize
 - \$ tensorboard --logdir ./logs

可视化(Tensorboard)

精度

在大概第6天的时候,测试集上的训练精度达到96.34

Loss

生成门牌号(Inference)

Run in Jupyter

Open 'run_inference.ipynb' in Jupyter

结果如下

The candidate result as follow.

No.	result	probability
1	16	0.578
2	18	0.388
3	10	0.013

The candidate result as follow.

No.	resul t	probability	
1	257	0.981	
2	255	0.005	
3	254	0.004	

