Name : Dr. K. Leo Dev Wins

Designation : Professor

Organization/Institution: Mechanical Engineering

Karunya University

Address : Coimbatore- 641114

Mobile : 9894822791 Email ID : leo@karunya.edu

Google link : https://scholar.google.co.in/citations?user=jTk0sNAAAAAJ&hl=en

SL No	Title	Year of publication
1	Investigations on the Effect of Tungsten Carbide and Graphite Reinforcements during Spark Erosion Machining of Aluminium Alloy (AA 5052) Hybrid Composite	2018
2	Integrated ANN-GA Approach For Predictive Modeling And Optimization Of Grinding Parameters With Surface Roughness As The Response	2018
3	Effect of tungsten carbide, silicon carbide and graphite particulates on the mechanical and microstructural characteristics of AA 5052 hybrid composites	2018
4	Effect of Dry Sliding Wear Behaviour of AA6061/ZrB^ sub 2^/SiC Hybrid Composite	2016
5	Quantitative Analysis of Grinding Wheel Loading Using Image Processing	2016
6	Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.	2016
7	Performance Evaluation of Vegetable Oil based Cutting Fluid during Hard Turning of AISI 4340 Steel with Minimal Cutting Fluid Application	2016
8	Evaluation of the performance during hard turning of OHNS steel with minimal cutting fluid application and its comparison with minimum quantity lubrication	2016
9	ANFIS based model for surface roughness prediction for hard turning with minimal cutting fluid application	2016
10	Review on hard machining with Minimal cutting fluid application	2015
11	Experimental investigation of soyabean oil based cutting fluid during turning of hardened AISI 4340 steel with Minimal Fluid Application	2015