Exercitium (curso 2018–19) Ejercicios de programación funcional con Haskell

(hasta el 28 de diciembre de 2018)

José A. Alonso Jiménez

Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Sevilla, 5 de enero de 2019

Esta obra está bajo una licencia Reconocimiento-NoComercial-Compartirlgual 2.5 Spain de Creative Commons.

Se permite:

- copiar, distribuir y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Esto es un resumen del texto legal (la licencia completa). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2. 5/es/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

"Sorpresas tiene la vida, Guiomar, del alma y del cuerpo; que nadie guarde hasta el fin el nombre que le pusieron; nadie crea ser quien dicen que es, ni que pueda serlo."

De Antonio Machado

Para Guiomar

Índice general

1	Listas equidigitales	13
2	Distancia de Hamming	15
3	Último dígito no nulo del factorial	19
4	Diferencia simétrica	23
5	Números libres de cuadrados	25
6	Capicúas productos de dos números de dos dígitos	29
7	Números autodescriptivos	31
8	Número de parejas	33
9	Reconocimiento de particiones	37
10	Relación definida por una partición	41
11	Ceros finales del factorial	43
12	Números primos sumas de dos primos	47
13	Suma de inversos de potencias de cuatro	51
14	Elemento solitario	55
15	Números colinas	61
16	Raíz cúbica entera	65
17	Numeración de los árboles binarios completos	69

18	Posiciones en árboles binarios	71
19	Posiciones en árboles binarios completos	75
20	Elemento del árbol binario completo según su posición	81
21	Aproximación entre pi y e	85
22	Menor contenedor de primos	87
23	Árbol de computación de Fibonacci	89
24	Entre dos conjuntos	95
25	Expresiones aritméticas generales	101
26	Superación de límites	103
27	Intercambio de la primera y última columna de una matriz	105
28	Números primos de Pierpont	107
29	Grado exponencial	109
30	Divisores propios maximales	113
31	Árbol de divisores	117
32	Divisores compuestos	121
33	Número de divisores compuestos	127
34	Tablas de operaciones binarias	131
35	Reconocimiento de conmutatividad	135
36	Árbol de subconjuntos	141
37	El teorema de Navidad de Fermat	145
38	El 2019 es apocalíptico	151
39	El 2019 es malvado	155
40	El 2019 es semiprimo	161

Índice general 7

41 El 2019 es un número de la suerte

165

Introducción

"The chief goal of my work as an educator and author is to help people learn to write beautiful programs."

(Donald Knuth en Computer programming as an art)

Este libro es una recopilación de las soluciones de los ejercicios propuestos en el blog Exercitium ¹ durante el curso 2018–19.

El principal objetivo de Exercitium es servir de complemento a la asignatura de Informática 2 de 1° del Grado en Matemáticas de la Universidad de Sevilla.

Con los problemas de Exercitium, a diferencias de los de las relaciones ³, se pretende practicar con los conocimientos adquiridos durante todo el curso, mientras que con las relaciones están orientadas a los nuevos conocimientos.

Habitualmente de cada ejercicio se muestra distintas soluciones y se compara sus eficiencias.

La dinámica del blog es la siguiente: cada día, de lunes a viernes, se propone un ejercicio para que los alumnos escriban distintas soluciones en los comentarios. Pasado 7 días de la propuesta de cada ejercicio, se cierra los comentarios y se publica una selección de sus soluciones.

Para conocer la cronología de los temas explicados se puede consultar el diario de clase ⁴.

En el libro se irán añadiendo semanalmente las soluciones de los ejercicios del curso.

https://www.glc.us.es/~jalonso/exercitium

²https://www.cs.us.es/~jalonso/cursos/i1m-18

³https://www.cs.us.es/~jalonso/cursos/ilm-18/ejercicios/ejercicios-I1M-2018.pdf

⁴https://www.glc.us.es/~jalonso/vestigium/category/curso/i1m/i1m2018

El código del libro se encuentra en GitHub 5

Cuaderno de bitácora

En esta sección se registran los cambios realizados en las sucesivas versiones del libro.

Versión del 16 de diciembre de 2018

Se han añadido los ejercicios resueltos de la primera semana de diciembre:

- Numeración de los árboles binarios completos
- Posiciones en árboles binarios
- Posiciones en árboles binarios completos
- Elemento del árbol binario completo según su posición
- Aproximación entre pi y e

Versión del 22 de diciembre de 2018

Se han añadido los ejercicios resueltos de la primera semana de diciembre:

- Menor contenedor de primos
- Árbol de computación de Fibonacci
- Entre dos conjuntos
- Expresiones aritméticas generales
- Superación de límites

⁵https://github.com/jaalonso/Exercitium2018

Índice general 11

Versión del 29 de diciembre de 2018

Se han añadido los ejercicios resueltos de la primera semana de diciembre:

- Intercambio de la primera y última columna de una matriz
- Números primos de Pierpont
- Grado exponencial
- Divisores propios maximales
- Árbol de divisores

Versión del 29 de diciembre de 2018

Se han añadido los ejercicios resueltos del 24 al 28 de diciembre:

- Divisores compuestos
- Número de divisores compuestos
- Tablas de operaciones binarias
- Reconocimiento de conmutatividad
- Árbol de subconjuntos

Listas equidigitales

Enunciado

Una lista de números naturales es equidigital si todos sus elementos tienen el mismo número de dígitos.

Definir la función

```
equidigital :: [Int] -> Bool
```

tal que (equidigital xs) se verifica si xs es una lista equidigital. Por ejemplo,

```
equidigital [343,225,777,943] == True
equidigital [343,225,777,94,3] == False
```

```
-- 1º definición
-- ===========

equidigital :: [Int] -> Bool
equidigital xs = todosIguales (numerosDeDigitos xs)
-- (numerosDeDigitos xs) es la lista de los números de dígitos de
```

```
-- los elementos de xs. Por ejemplo,
     numerosDeDigitos [343,225,777,943] == [3,3,3,3]
     numerosDeDigitos [343,225,777,94,3] == [3,3,3,2,1]
numerosDeDigitos :: [Int] -> [Int]
numerosDeDigitos xs = [numeroDeDigitos x | x <- xs]</pre>
-- (numeroDeDigitos x) es el número de dígitos de x. Por ejemplo,
     numeroDeDigitos 475 == 3
numeroDeDigitos :: Int -> Int
numeroDeDigitos x = length (show x)
-- (todosIquales xs) se verifica si todos los elementos de xs son
-- iguales. Por ejemplo,
-- todosIguales [3,3,3,3] == True
     todosIquales [3,3,3,2,1] == False
todosIguales :: Eq a => [a] -> Bool
todosIguales (x:y:zs) = x == y \&\& todosIguales (y:zs)
todosIguales _ = True
-- 2ª definición
-- ==========
equidigital2 :: [Int] -> Bool
equidigital2 [] = True
equidigital2 (x:xs) = and [numeroDeDigitos y == n | y <- xs]</pre>
   where n = numeroDeDigitos x
-- 3ª definición
-- ==========
equidigital3 :: [Int] -> Bool
equidigital3 (x:y:zs) = numeroDeDigitos x == numeroDeDigitos y &&
                       equidigital3 (y:zs)
equidigital3 _ = True
```

Distancia de Hamming

Enunciado

La distancia de Hamming entre dos listas es el número de posiciones en que los correspondientes elementos son distintos. Por ejemplo, la distancia de Hamming entre romaz "loba.es 2 (porque hay 2 posiciones en las que los elementos correspondientes son distintos: la 1º y la 3º).

Definir la función

```
distancia :: Eq a => [a] -> Int
```

tal que (distancia xs ys) es la distancia de Hamming entre xs e ys. Por ejemplo,

```
distancia "romano" "comino" == 2
distancia "romano" "camino" == 3
distancia "roma" "comino" == 2
distancia "roma" "camino" == 3
distancia "romano" "ron" == 1
distancia "romano" "cama" == 2
distancia "romano" "rama" == 1
```

Comprobar con QuickCheck si la distancia de Hamming tiene la siguiente propiedad: distancia(xs,ys) = 0 si, y sólo si, xs = ys y, en el caso de que no se verifique, modificar ligeramente la propiedad para obtener una condición necesaria y suficiente de distancia(xs,ys) = 0.

```
import Test.QuickCheck
-- 1ª definición:
distancia :: Eq a => [a] -> [a] -> Int
distancia xs ys = length [(x,y) | (x,y) \leftarrow zip xs ys, x /= y]
-- 2ª definición:
distancia2 :: Eq a => [a] -> [a] -> Int
distancia2 [] _{-} = 0
distancia2 [] = 0
distancia2 (x:xs) (y:ys) | x /= y = 1 + distancia2 xs ys
                          | otherwise = distancia2 xs ys
-- La propiedad es
prop_distancial :: [Int] -> [Int] -> Bool
prop distancial xs ys =
  (distancia xs ys == 0) == (xs == ys)
-- La comprobación es
      ghci> quickCheck prop_distancial
      *** Failed! Falsifiable (after 2 tests and 1 shrink):
      []
      [1]
-- En efecto,
      ghci> distancia [] [1] == 0
      True
     ghci> [] == [1]
     False
-- La primera modificación es restringir la propiedad a lista de igual
-- longitud:
prop_distancia2 :: [Int] -> [Int] -> Property
prop distancia2 xs ys =
 length xs == length ys ==>
  (distancia xs ys == 0) == (xs <math>== ys)
-- La comprobación es
```

```
-- ghci> quickCheck prop_distancia2
-- *** Gave up! Passed only 33 tests.

-- Nota. La propiedad se verifica, pero al ser la condición demasiado
-- restringida sólo 33 de los casos la cumple.

-- La segunda restricción es limitar las listas a la longitud de la más
-- corta:
prop_distancia3 :: [Int] -> [Int] -> Bool
prop_distancia3 xs ys =
  (distancia xs ys == 0) == (take n xs == take n ys)
  where n = min (length xs) (length ys)

-- La comprobación es
-- ghci> quickCheck prop_distancia3
-- +++ OK, passed 100 tests.
```

Último dígito no nulo del factorial

Enunciado

El factorial de 7 es 7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 = 5040. Por tanto, el último dígito no nulo del factorial de 7 es 4.

Definir la función

```
ultimoNoNuloFactorial :: Integer -> Integer
```

tal que (ultimoNoNuloFactorial n) es el último dígito no nulo del factorial de n. Por ejemplo,

```
ultimoNoNuloFactorial 7 == 4
ultimoNoNuloFactorial 10 == 8
ultimoNoNuloFactorial 12 == 6
ultimoNoNuloFactorial 97 == 2
ultimoNoNuloFactorial 0 == 1
```

Comprobar con QuickCheck que si n es mayor que 4, entonces el último dígito no nulo del factorial de n es par.

Solución

```
import Test.QuickCheck
-- 1ª definición
-- ==========
ultimoNoNuloFactorial :: Integer -> Integer
ultimoNoNuloFactorial n = ultimoNoNulo (factorial n)
-- (ultimoNoNulo n) es el último dígito no nulo de n. Por ejemplo,
-- ultimoNoNulo 5040 == 4
ultimoNoNulo :: Integer -> Integer
ultimoNoNulo n
  \mid \mathbf{m} \mid = 0 = \mathbf{m}
  | otherwise = ultimoNoNulo (n `div` 10)
 where m = n \text{ `rem` } 10
-- (factorial n) es el factorial de n. Por ejemplo,
      factorial 7 == 5040
factorial :: Integer -> Integer
factorial n = product [1..n]
-- 2ª definición
-- ==========
ultimoNoNuloFactorial2 :: Integer -> Integer
ultimoNoNuloFactorial2 n = ultimoNoNulo2 (factorial n)
-- (ultimoNoNulo2 n) es el último dígito no nulo de n. Por ejemplo,
      ultimoNoNulo 5040 == 4
ultimoNoNulo2 :: Integer -> Integer
ultimoNoNulo2 n = read [head (dropWhile (=='0') (reverse (show n)))]
-- Comprobación
-- =========
-- La propiedad es
prop_ultimoNoNuloFactorial :: Integer -> Property
prop_ultimoNoNuloFactorial n =
```

+++ OK, passed 100 tests.

```
n > 4 ==> even (ultimoNoNuloFactorial n)
-- La comprobación es
-- ghci> quickCheck prop_ultimoNoNuloFactorial
```

Diferencia simétrica

Enunciado

La diferencia simétrica de dos conjuntos es el conjunto cuyos elementos son aquellos que pertenecen a alguno de los conjuntos iniciales, sin pertenecer a ambos a la vez. Por ejemplo, la diferencia simétrica de 2,5,3 y 4,2,3,7 es 5,4,7.

Definir la función

```
diferenciaSimetrica :: Ord a => [a] -> [a] -> [a]
```

tal que (diferenciaSimetrica xs ys) es la diferencia simétrica de xs e ys. Por ejemplo,

```
diferenciaSimetrica [2,5,3] [4,2,3,7] == [4,5,7]

diferenciaSimetrica [2,5,3] [5,2,3] == []

diferenciaSimetrica [2,5,2] [4,2,3,7] == [3,4,5,7]

diferenciaSimetrica [2,5,2] [4,2,4,7] == [4,5,7]

diferenciaSimetrica [2,5,2,4] [4,2,4,7] == [5,7]
```

```
import Data.List
```

```
-- 1ª definición
```

```
diferenciaSimetrica :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica xs ys =
    sort (nub ([x | x <- xs, x `notElem` ys] ++ [y | y <- ys, y `notElem` xs]))
-- 2ª definición
diferenciaSimetrica2 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica2 xs ys =
    sort (nub (union xs ys \\ intersect xs ys))
-- 3ª definición
diferenciaSimetrica3 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica3 xs ys =
    [x | x <- sort (nub (xs ++ ys))
    , x `notElem` xs | x `notElem` ys]</pre>
```

Números libres de cuadrados

Enunciado

Un número entero positivo es libre de cuadrados si no es divisible por el cuadrado de ningún entero mayor que 1. Por ejemplo, 70 es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70; en cambio, 40 no es libre de cuadrados porque es divisible por 2^2 .

Definir la función

```
libreDeCuadrados :: Integer -> Bool
```

tal que (libreDeCuadrados x) se verifica si x es libre de cuadrados. Por ejemplo,

```
import Data.List (nub)
-- 1@ definición
```

```
-- ==========
libreDeCuadrados :: Integer -> Bool
libreDeCuadrados x = x == product (divisoresPrimos x)
-- (divisoresPrimos x) es la lista de los divisores primos de x. Por
-- ejemplo,
-- divisoresPrimos 40 == [2,5]
      divisoresPrimos 70 == [2,5,7]
divisoresPrimos :: Integer -> [Integer]
divisoresPrimos x = [n | n <- divisores x, primo n]</pre>
-- (divisores n) es la lista de los divisores del número n. Por ejemplo,
     divisores 30 == [1,2,3,5,6,10,15,30]
divisores :: Integer -> [Integer]
divisores n = [x \mid x \leftarrow [1..n], n \mod x == 0]
-- (primo n) se verifica si n es primo. Por ejemplo,
      primo 30 == False
     primo 31 == True
primo :: Integer -> Bool
primo n = divisores n == [1, n]
-- 2ª definición
-- ==========
libreDeCuadrados2 :: Integer -> Bool
libreDeCuadrados2 n =
  null [x \mid x \leftarrow [2..n], rem n (x^2) == 0]
-- 3ª definición
-- ==========
libreDeCuadrados3 :: Integer -> Bool
libreDeCuadrados3 n =
  null [x | x <- [2..floor (sqrt (fromIntegral n))]</pre>
          , rem n (x^2) == 0
-- 4ª definición
-- ==========
```

```
libreDeCuadrados4 :: Integer -> Bool
libreDeCuadrados4 x =
  factorizacion x == nub (factorizacion x)
-- (factorizacion n) es la lista de factores primos de n. Por ejemplo,
     factorizacion 180 == [2,2,3,3,5]
factorizacion :: Integer -> [Integer]
factorizacion n \mid n == 1 = []
                \mid otherwise = x : factorizacion (div n x)
 where x = menorFactor n
-- (menorFactor n) es el menor divisor de n. Por ejemplo,
     menorFactor 15 == 3
menorFactor :: Integer -> Integer
menorFactor n = head [x \mid x \leftarrow [2..], rem n x == 0]
-- Comparación de eficiencia
λ> libreDeCuadrados 510510
     True
     (0.76 secs, 89,522,360 bytes)
     λ> libreDeCuadrados2 510510
     True
     (1.78 secs, 371,826,320 bytes)
     λ> libreDeCuadrados3 510510
     True
     (0.01 secs, 0 bytes)
     λ> libreDeCuadrados4 510510
     True
    (0.00 secs, 153,216 bytes)
```

Capicúas productos de dos números de dos dígitos

Enunciado

El número 9009 es capicúa y es producto de dos números de dos dígitos, pues 9009 = 91x99.

Definir la lista

```
capicuasP2N2D :: [Int]
```

cuyos elementos son los números capicúas que son producto de 2 números de dos dígitos. Por ejemplo,

```
take 5 capicuasP2N2D == [121,242,252,272,323]
length capicuasP2N2D == 74
drop 70 capicuasP2N2D == [8008,8118,8448,9009]
```

```
import Data.List (nub, sort)

capicuasP2N2D :: [Int]
capicuasP2N2D = [x | x <- productos, esCapicua x]</pre>
```

```
-- productos es la lista de números que son productos de 2 números de
-- dos dígitos.
productos :: [Int]
productos = sort (nub [x*y | x <- [10..99], y <- [x..99]])
-- (esCapicua x) se verifica si x es capicúa.
esCapicua :: Int -> Bool
esCapicua x = xs == reverse xs
where xs = show x
```

Números autodescriptivos

Enunciado

Un número n es autodescriptivo cuando para cada posición k de n (empezando a contar las posiciones a partir de 0), el dígito en la posición k es igual al número de veces que ocurre k en n. Por ejemplo, 1210 es autodescriptivo porque tiene 1 dígito igual a "0", 2 dígitos iguales a "1", 1 dígito igual a "2z ningún dígito igual a "3".

Definir la función

```
autodescriptivo :: Integer -> Bool
```

tal que (autodescriptivo n) se verifica si n es autodescriptivo. Por ejemplo,

```
λ> autodescriptivo 1210
True

λ> [x | x <- [1..100000], autodescriptivo x]
[1210,2020,21200]

λ> autodescriptivo 9210000001000
True
```

Nota: Se puede usar la función genericLength.

```
import Data.List (genericLength)

autodescriptivo :: Integer -> Bool
autodescriptivo n = autodescriptiva (digitos n)

digitos :: Integer -> [Integer]
digitos n = [read [d] | d <- show n]

autodescriptiva :: [Integer] -> Bool
autodescriptiva ns =
  and [x == ocurrencias k ns | (k,x) <- zip [0..] ns]

ocurrencias :: Integer -> [Integer] -> Integer
ocurrencias x ys = genericLength (filter (==x) ys)
```

Número de parejas

Enunciado

Definir la función

```
nParejas :: Ord a => [a] -> Int
```

tal que (nParejas xs) es el número de parejas de elementos iguales en xs. Por ejemplo,

```
nParejas [1,2,2,1,1,3,5,1,2] == 3

nParejas [1,2,1,2,1,3,2] == 2

nParejas [1..2*10^6] == 0

nParejas2 ([1..10^6] ++ [1..10^6]) == 1000000
```

En el primer ejemplos las parejas son (1,1), (1,1) y (2,2). En el segundo ejemplo, las parejas son (1,1) y (2,2).

Comprobar con QuickCheck que para toda lista de enteros xs, el número de parejas de xs es igual que el número de parejas de la inversa de xs.

```
import Test.QuickCheck
import Data.List ((\\), group, sort)
```

```
-- 1ª solución
nParejas :: Ord a => [a] -> Int
nParejas []
              = 0
nParejas (x:xs) | x `elem` xs = 1 + nParejas (xs \\ [x])
                | otherwise = nParejas xs
-- 2ª solución
nParejas2 :: Ord a => [a] -> Int
nParejas2 xs =
  sum [length ys `div` 2 | ys <- group (sort xs)]</pre>
-- 3ª solución
nParejas3 :: Ord a => [a] -> Int
nParejas3 = sum . map (`div` 2). map length . group . sort
-- 4ª solución
nParejas4 :: Ord a => [a] -> Int
nParejas4 = sum . map ((`div` 2) . length) . group . sort
-- Equivalencia
prop equiv :: [Int] -> Bool
prop_equiv xs =
  nParejas xs == nParejas2 xs &&
  nParejas xs == nParejas3 xs &&
  nParejas xs == nParejas4 xs
-- Comprobación:
      λ> quickCheck prop equiv
      +++ OK, passed 100 tests.
-- Comparación de eficiencia
      \lambda> nParejas [1..20000]
      0
      (2.54 secs, 4,442,808 bytes)
      \lambda> nParejas2 [1..20000]
      (0.03 secs, 12,942,232 bytes)
      \lambda> nParejas3 [1..20000]
      0
```

```
-- (0.02 secs, 13,099,904 bytes)
-- λ> nParejas4 [1..20000]
-- 0
-- (0.01 secs, 11,951,992 bytes)

-- Propiedad:
prop_nParejas :: [Int] -> Bool
prop_nParejas xs =
   nParejas xs == nParejas (reverse xs)

-- Compropación
comprueba :: IO ()
comprueba = quickCheck prop_nParejas

-- Comprobación:
-- λ> comprueba
-- +++ OK, passed 100 tests.
```

Reconocimiento de particiones

Enunciado

Una partición de un conjunto es una división del mismo en subconjuntos disjuntos no vacíos.

Definir la función

```
esParticion :: Eq a => [[a]] -> Bool
```

tal que (esParticion xss) se verifica si xss es una partición; es decir sus elementos son listas no vacías disjuntas. Por ejemplo.

```
esParticion [[1,3],[2],[9,5,7]] == True
esParticion [[1,3],[2],[9,5,1]] == False
esParticion [[1,3],[],[9,5,7]] == False
esParticion [[2,3,2],[4]] == True
```

```
esParticion :: Eq a => [[a]] -> Bool
esParticion xss =
  [] `notElem` xss &&
 and [disjuntos xs ys | xs <- xss, ys <- xss \\ [xs]]
disjuntos :: Eq a => [a] -> [a] -> Bool
disjuntos xs ys = null (xs `intersect` ys)
-- 2ª definición
-- ==========
esParticion2 :: Eq a => [[a]] -> Bool
                 = True
esParticion2 []
esParticion2 (xs:xss) =
 not (null xs) &&
 and [disjuntos xs ys | ys <- xss] &&
 esParticion2 xss
-- 3ª definición
-- ==========
esParticion3 :: Eq a => [[a]] -> Bool
esParticion3 []
                 = True
esParticion3 (xs:xss) =
 not (null xs) &&
 all (disjuntos xs) xss &&
 esParticion3 xss
-- Equivalencia
prop_equiv :: [[Int]] -> Bool
prop_equiv xss =
 and [esParticion xss == f xss | f <- [ esParticion2
                                       , esParticion3]]
-- Comprobación
     λ> quickCheck prop equiv
     +++ OK, passed 100 tests.
-- Comparación de eficiencia:
     \lambda> esParticion [[x] | x <- [1..3000]]
```

```
-- True

-- (4.37 \text{ secs}, 3,527,956,400 \text{ bytes})

-- \lambda > \text{ esParticion2 } [[x] \mid x <- [1..3000]]

-- True

-- (1.26 \text{ secs}, 1,045,792,552 \text{ bytes})

-- \lambda > \text{ esParticion3 } [[x] \mid x <- [1..3000]]

-- True

-- (1.30 \text{ secs}, 1,045,795,272 \text{ bytes})

-- \lambda > \text{ esParticion3 } [[x] \mid x <- [1..3000]]

-- True

-- (1.30 \text{ secs}, 1,045,795,272 \text{ bytes})
```

Relación definida por una partición

Enunciado

Dos elementos están relacionados por una partición xss si pertenecen al mismo elemento de xss.

Definir la función

```
relacionados :: Eq a => [[a]] -> a -> a -> Bool
```

tal que (relacionados xss y z) se verifica si los elementos y y z están relacionados por la partición xss. Por ejemplo,

```
relacionados [[1,3],[2],[9,5,7]] 7 9 == True
relacionados [[1,3],[2],[9,5,7]] 3 9 == False
relacionados [[1,3],[2],[9,5,7]] 4 9 == False
```

```
relacionados [] _ _ = False
relacionados (xs:xss) y z
  | y `elem` xs = z `elem` xs
  | otherwise = relacionados xss y z
-- 2ª definición
-- ==========
relacionados2 :: Eq a => [[a]] -> a -> a -> Bool
relacionados2 xss y z =
 or [elem y xs && elem z xs | xs <- xss]
-- 3ª definición
-- =========
relacionados3 :: Eq a => [[a]] -> a -> a -> Bool
relacionados3 xss y z =
 or [[y,z] `subconjunto` xs | xs <- xss]
-- (subconjunto xs ys) se verifica si xs es un subconjunto de ys; es
-- decir, si todos los elementos de xs pertenecen a ys. Por ejemplo,
      subconjunto [3,2,3] [2,5,3,5] == True
      subconjunto [3,2,3] [2,5,6,5] == False
subconjunto :: Eq a => [a] -> [a] -> Bool
subconjunto xs ys = and [elem x ys \mid x <- xs]
-- 4ª definición
-- ==========
relacionados4 :: Eq a => [[a]] -> a -> a -> Bool
relacionados4 xss y z =
 any ([y,z] `subconjunto`) xss
```

Ceros finales del factorial

Enunciado

Definir la función

```
cerosDelFactorial :: Integer -> Integer
```

tal que (cerosDelFactorial n) es el número de ceros en que termina el factorial de n. Por ejemplo,

```
factorial 3 == 6
factorial :: Integer -> Integer
factorial n = product [1..n]
-- (ceros n) es el número de ceros en los que termina el número n. Por
-- ejemplo,
-- ceros 320000 == 4
ceros :: Integer -> Integer
ceros n | rem n 10 /= 0 = 0
        | otherwise = 1 + ceros (div n 10)
-- 2ª definición
-- ==========
cerosDelFactorial2 :: Integer -> Integer
cerosDelFactorial2 n = ceros2 (factorial n)
-- (ceros n) es el número de ceros en los que termina el número n. Por
-- ejemplo,
-- ceros 320000 == 4
ceros2 :: Integer -> Integer
ceros2 n = genericLength (takeWhile (=='0') (reverse (show n)))
-- 3ª definición
-- ==========
cerosDelFactorial3 :: Integer -> Integer
cerosDelFactorial3 n
  | n < 5
           = 0
  | otherwise = m + cerosDelFactorial3 m
 where m = n \cdot div \cdot 5
-- Comparación de la eficiencia
     \lambda> cerosDelFactorial1 (3*10^4)
      7498
     (3.96 secs, 1,252,876,376 bytes)
     λ> cerosDelFactorial2 (3*10^4)
     7498
    (3.07 secs, 887,706,864 bytes)
- -
     λ> cerosDelFactorial3 (3*10^4)
```

```
- - 7498
```

```
-- (0.03 secs, 9,198,896 bytes)
```

Números primos sumas de dos primos

Enunciado

Definir las funciones

```
esPrimoSumaDeDosPrimos :: Integer -> Bool
primosSumaDeDosPrimos :: [Integer]
```

tales que

- (esPrimoSumaDeDosPrimos x) se verifica si x es un número primo que se puede escribir como la suma de dos números primos. Por ejemplo,

```
esPrimoSumaDeDosPrimos 19 == True
esPrimoSumaDeDosPrimos 20 == False
esPrimoSumaDeDosPrimos 23 == False
```

 primosSumaDeDosPrimos es la lista de los números primos que se pueden escribir como la suma de dos números primos. Por ejemplo,

```
λ> take 17 primosSumaDeDosPrimos
[5,7,13,19,31,43,61,73,103,109,139,151,181,193,199,229,241]
λ> primosSumaDeDosPrimos !! (10<sup>5</sup>)
18409543
```

```
import Data.Numbers.Primes (isPrime, primes)
import Test.QuickCheck
-- 1ª solución
-- =========
esPrimoSumaDeDosPrimos :: Integer -> Bool
esPrimoSumaDeDosPrimos x =
  isPrime x && isPrime (x - 2)
primosSumaDeDosPrimos :: [Integer]
primosSumaDeDosPrimos =
  [x \mid x \leftarrow primes]
     , isPrime (x - 2)]
-- 2ª solución
-- =========
primosSumaDeDosPrimos2 :: [Integer]
primosSumaDeDosPrimos2 =
  [y | (x,y) <- zip primes (tail primes)</pre>
     , y == x + 2
esPrimoSumaDeDosPrimos2 :: Integer -> Bool
esPrimoSumaDeDosPrimos2 x =
  x == head (dropWhile (<x) primosSumaDeDosPrimos2)</pre>
-- Equivalencias
-- ==========
-- Equivalencia de esPrimoSumaDeDosPrimos
prop_esPrimoSumaDeDosPrimos_equiv :: Integer -> Property
prop_esPrimoSumaDeDosPrimos_equiv x =
  x > 0 ==>
  esPrimoSumaDeDosPrimos x == esPrimoSumaDeDosPrimos2 x
-- La comprobación es
      λ> quickCheck prop_esPrimoSumaDeDosPrimos_equiv
```

```
+++ OK, passed 100 tests.
-- Equivalencia de primosSumaDeDosPrimos
prop_primosSumaDeDosPrimos_equiv :: Int -> Property
prop_primosSumaDeDosPrimos_equiv n =
  n >= 0 ==>
  primosSumaDeDosPrimos !! n == primosSumaDeDosPrimos2 !! n
-- La comprobación es
     λ> quickCheck prop_primosSumaDeDosPrimos_equiv
     +++ OK, passed 100 tests.
-- Comparación de eficiencia
     λ> primosSumaDeDosPrimos !! (10^4)
      1261081
      (2.07 secs, 4,540,085,256 bytes)
-- Se recarga para evitar memorización
     λ> primosSumaDeDosPrimos2 !! (10^4)
     1261081
      (0.49 secs, 910,718,408 bytes)
```

Suma de inversos de potencias de cuatro

Enunciado

Esta semana se ha publicado en Twitter una demostración visual de que

$$1/4 + 1/4^2 + 1/4^3 + \dots = 1/3$$

como se muestra en la siguiente imagen

Definir las funciones

```
sumaInversosPotenciasDeCuatro :: [Double]
aproximacion :: Double -> Int
```

tales que

 sumaInversosPotenciasDeCuatro es la lista de las suma de la serie de los inversos de las potencias de cuatro. Por ejemplo,

```
λ> take 6 sumaInversosPotenciasDeCuatro
[0.25,0.3125,0.328125,0.33203125,0.3330078125,0.333251953125]
```

 (aproximacion e) es el menor número de términos de la serie anterior que hay que sumar para que el valor absoluto de su diferencia con 1/3 sea menor que e. Por ejemplo,

```
-- 1ª definición
sumaInversosPotenciasDeCuatro :: [Double]
sumaInversosPotenciasDeCuatro =
    [sum [1 / (4^k) | k <- [1..n]] | n <- [1..]]

-- 2ª definición
sumaInversosPotenciasDeCuatro2 :: [Double]
sumaInversosPotenciasDeCuatro2 =
    [1/4*((1/4)^n-1)/(1/4-1) | n <- [1..]]

-- 3ª definición
sumaInversosPotenciasDeCuatro3 :: [Double]
sumaInversosPotenciasDeCuatro3 =
    [(1 - 0.25^n)/3 | n <- [1..]]
```

Elemento solitario

Enunciado

Definir la función

```
solitario :: Ord a => [a] -> a
```

tal que (solitario xs) es el único elemento que ocurre una vez en la lista xs (se supone que la lista xs tiene al menos 3 elementos y todos son iguales menos uno que es el solitario). Por ejemplo,

```
solitario [2,2,7,2] == 7

solitario [2,2,2,7] == 7

solitario [7,2,2,2] == 7

solitario (replicate (2*10^7) 1 ++ [2]) == 2
```

```
solitario xs =
 head [x \mid x \leftarrow xs]
          , cuenta xs x == 1
cuenta :: Eq a => [a] -> a -> Int
cuenta xs x = length [y | y <- xs]
                        , x == y
-- 2ª definición
-- ==========
solitario2 :: Ord a => [a] -> a
solitario2 xs = head (filter (x -> cuenta2 xs x == 1) xs)
cuenta2 :: Eq a => [a] -> a -> Int
cuenta2 xs x = length (filter (==x) xs)
-- 3ª definición
-- ==========
solitario3 :: Ord a => [a] -> a
solitario3 [x] = x
solitario3 (x1:x2:x3:xs)
  | x1 /= x2 \&\& x2 == x3 = x1
  | x1 == x2 \&\& x2 /= x3 = x3
  | otherwise
                       = solitario3 (x2:x3:xs)
solitario3 _ = error "Imposible"
-- 4ª definición
-- =========
solitario4 :: Ord a => [a] -> a
solitario4 xs
 | y1 == y2 = last ys
  | otherwise = y1
 where (y1:y2:ys) = sort xs
-- 5ª definición
-- ==========
```

```
solitario5 :: Ord a => [a] -> a
solitario5 xs | null ys = y
              | otherwise = z
 where [y:ys,z:_] = group (sort xs)
-- 6º definición
-- ==========
solitario6 :: Ord a => [a] -> a
solitario6 xs =
  head [x \mid x \leftarrow nub xs]
          , cuenta xs x == 1]
-- 7ª definición
-- ==========
solitario7 :: Ord a => [a] -> a
solitario7 (a:b:xs)
  | a == b = solitario7 (b:xs)
  \mid elem a (b:xs) = b
  \mid elem b (a:xs) = a
solitario7 [ ,b] = b
solitario7 _ = error "Imposible"
-- Equivalencia
-- =========
-- Propiedad de equivalencia
prop_solitario_equiv :: Property
prop solitario equiv =
  forAll listaSolitaria (\xs -> solitario xs == solitario2 xs &&
                                solitario xs == solitario3 xs &&
                                solitario xs == solitario4 xs &&
                                solitario xs == solitario5 xs &&
                                solitario xs == solitario6 xs &&
                                solitario xs == solitario7 xs)
-- Generador de listas con al menos 3 elementos y todos iguales menos
-- uno. Por ejemplo,
-- λ> sample listaSolitaria
```

```
[1,0,0,0,0]
      [0,0,-1,0,0,0]
      [4,1,1,1]
      [6,6,4,6]
      [8,8,8,8,8,-4,8,8,8,8,8,8]
      . . .
listaSolitaria :: Gen [Int]
listaSolitaria = do
  n <- arbitrary
  m \leftarrow arbitrary `suchThat` (\a -> n + a > 2)
  x <- arbitrary
  y <- arbitrary `suchThat` (\a -> a /= x)
  return (replicate n x ++ [y] ++ replicate m x)
-- Comprobación:
      λ> quickCheck prop_solitario_equiv
      +++ OK, passed 100 tests.
-- Comparación de eficiencia:
      \lambda> solitario (replicate (5*10^3) 1 ++ [2])
      2
      (5.47 secs, 3,202,688,152 bytes)
      \lambda> solitario2 (replicate (5*10^3) 1 ++ [2])
      2
      (2.08 secs, 1,401,603,960 bytes)
      \lambda> solitario3 (replicate (5*10^3) 1 ++ [2])
      2
      (0.04 secs, 3,842,240 bytes)
      \lambda> solitario4 (replicate (5*10^3) 1 ++ [2])
      2
      (0.02 secs, 1,566,472 bytes)
      \lambda> solitario5 (replicate (5*10^3) 1 ++ [2])
      2
      (0.01 secs, 927,064 bytes)
      \lambda> solitario6 (replicate (5*10^3) 1 ++ [2])
      (0.01 secs, 1,604,176 bytes)
      \lambda> solitario7 (replicate (5*10^3) 1 ++ [2])
      (0.01 secs, 1,923,440 bytes)
```

```
\lambda> solitario3 (replicate (5*10^6) 1 ++ [2])
(4.62 secs, 3,720,123,560 bytes)
\lambda> solitario4 (replicate (5*10^6) 1 ++ [2])
(1.48 secs, 1,440,124,240 bytes)
\lambda> solitario5 (replicate (5*10^6) 1 ++ [2])
(1.40 secs, 1,440,125,936 bytes)
\lambda> solitario6 (replicate (5*10^6) 1 ++ [2])
2
(2.65 secs, 1,480,125,032 bytes)
\lambda> solitario7 (replicate (5*10^6) 1 ++ [2])
2
(2.21 secs, 1,800,126,224 bytes)
\lambda> solitario5 (2 : replicate (5*10^6) 1)
(1.38 secs, 1,520,127,864 bytes)
\lambda> solitario6 (2 : replicate (5*10^6) 1)
(1.18 secs, 560,127,664 bytes)
\lambda> solitario7 (2 : replicate (5*10^6) 1)
2
(0.29 secs, 280,126,888 bytes)
```

Números colinas

Enunciado

Se dice que un número natural n es una colina si su primer dígito es igual a su último dígito, los primeros dígitos son estrictamente creciente hasta llegar al máximo, el máximo se puede repetir y los dígitos desde el máximo al final son estrictamente decrecientes.

Definir la función

```
esColina :: Integer -> Bool
```

tal que (esColina n) se verifica si n es un número colina. Por ejemplo,

```
esColina 12377731 == True
esColina 1237731 == True
esColina 123731 == True
esColina 12377730 == False
esColina 12377730 == False
esColina 10377731 == False
esColina 12377701 == False
esColina 33333333 == True
```

```
import Data.Char (digitToInt)
import Test.QuickCheck
-- 1º definición
-- =========
esColina :: Integer -> Bool
esColina n =
 head ds == last ds &&
 esCreciente xs &&
 esDecreciente ys
 where ds = digitos n
       m = maximum ds
       xs = takeWhile (< m) ds
        ys = dropWhile (==m) (dropWhile (<m) ds)</pre>
-- (digitos n) es la lista de los dígitos de n. Por ejemplo,
      digitos 425 == [4,2,5]
digitos :: Integer -> [Int]
digitos n = map digitToInt (show n)
-- (esCreciente xs) se verifica si la lista xs es estrictamente
-- creciente. Por ejemplo,
     esCreciente [2,4,7] == True
     esCreciente [2,2,7] == False
     esCreciente [2,1,7] == False
esCreciente :: [Int] -> Bool
esCreciente xs = and [x < y \mid (x,y) < -zip xs (tail xs)]
-- (esDecreciente xs) se verifica si la lista xs es estrictamente
-- decreciente. Por ejemplo,
     esDecreciente [7,4,2] == True
     esDecreciente [7,2,2] == False
     esDecreciente [7,1,2] == False
esDecreciente :: [Int] -> Bool
esDecreciente xs = and [x > y \mid (x,y) < -zip xs (tail xs)]
-- 2ª definición
```

```
-- ==========
esColina2 :: Integer -> Bool
esColina2 n =
 head ds == last ds &&
 null (dropWhile (==(-1)) (dropWhile (==0) (dropWhile (==1) xs)))
 where ds = digitos n
       xs = [signum (y-x) | (x,y) \leftarrow zip ds (tail ds)]
-- Equivalencia
-- =========
-- La propiedad de equivalencia es
prop_esColina :: Integer -> Property
prop esColina n =
 n >= 0 ==> esColina n == esColina2 n
-- La comprobación es
-- λ> quickCheck prop esColina
    +++ OK, passed 100 tests.
```

Raíz cúbica entera

Enunciado

Un número x es un cubo si existe un y tal que $x=y^3$. Por ejemplo, 8 es un cubo porque $8=2^3$.

Definir la función

```
raizCubicaEntera :: Integer -> Maybe Integer.
```

tal que (raizCubicaEntera x n) es justo la raíz cúbica del número natural x, si x es un cubo y Nothing en caso contrario. Por ejemplo,

```
import Data.Numbers.Primes (primeFactors)
import Data.List (group)
```

import Test.QuickCheck

```
-- 1º definición
-- ==========
raizCubicaEntera :: Integer -> Maybe Integer
raizCubicaEntera x = aux 0
 where aux y | y^3 > x = Nothing
             | y^3 == x = Just y
             | otherwise = aux (y+1)
-- 2ª definición
-- =========
raizCubicaEntera2 :: Integer -> Maybe Integer
raizCubicaEntera2 x
 | y^3 == x = Just y
  | otherwise = Nothing
 where (y: ) = dropWhile (\langle z - z^3 < x \rangle [0...]
-- 3ª definición
-- ==========
raizCubicaEntera3 :: Integer -> Maybe Integer
raizCubicaEntera3 1 = Just 1
raizCubicaEntera3 x = aux (0,x)
   where aux (a,b) \mid d == x = Just c
                   \mid d < x = aux (c,b)
                    | otherwise = aux (a,c)
             where c = (a+b) \dot div 2
                   d = c^3
-- 4ª definición
-- ==========
raizCubicaEntera4 :: Integer -> Maybe Integer
raizCubicaEntera4 x
 | y^3 == x = Just y
  | otherwise = Nothing
```

```
where y = floor ((fromIntegral x)**(1 / 3))
-- Nota. La definición anterior falla para números grandes. Por ejemplo,
     λ> raizCubicaEntera4 (2<sup>30</sup>)
     Nothing
     λ> raizCubicaEntera (2^30)
     Just 1024
-- 5ª definición
-- ==========
raizCubicaEntera5 :: Integer -> Maybe Integer
raizCubicaEntera5 x
  \mid all (==0) [length as `mod` 3 \mid as <- ass] =
    Just (product [a^{(1 + length as) 'div' 3) | (a:as) <- ass])
  | otherwise = Nothing
 where ass = group (primeFactors x)
-- Equivalencia
-- =========
-- La propiedad es
prop_raizCubicaEntera :: Integer -> Property
prop raizCubicaEntera x =
 x >= 0 ==>
 and [raizCubicaEntera\ x == f\ x \mid f <- [raizCubicaEntera2]
                                        , raizCubicaEntera3]]
-- La comprobación es
     λ> quickCheck prop_raizCubicaEntera
     +++ OK, passed 100 tests.
-- Comparación de eficiencia
λ> raizCubicaEntera (10^18)
     Just 1000000
     (1.80 secs, 1,496,137,192 bytes)
     λ> raizCubicaEntera2 (10^18)
     Just 1000000
```

```
(0.71 secs, 712,134,128 bytes)
λ> raizCubicaEntera3 (10^18)
Just 1000000
(0.01 secs, 196,424 bytes)
λ> raizCubicaEntera2 (5^27)
Just 1953125
(1.42 secs, 1,390,760,920 bytes)
λ> raizCubicaEntera3 (5<sup>27</sup>)
Just 1953125
(0.00 secs, 195,888 bytes)
\lambda> raizCubicaEntera3 (10^9000) == Just (10^3000)
True
(2.05 secs, 420,941,368 bytes)
\lambda> raizCubicaEntera3 (5 + 10^9000) == Nothing
True
(2.08 secs, 420,957,576 bytes)
\lambda> raizCubicaEntera5 (5 + 10^9000) == Nothing
True
```

(0.03 secs, 141,248 bytes)

Numeración de los árboles binarios completos

Enunciado

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

```
arbolBinarioCompleto :: Int -> Arbol
```

tal que (arbolBinarioCompleto n) es el árbol binario completo con n nodos. Por ejemplo,

```
λ> arbolBinarioCompleto 4
N 1 (N 2 (N 4 H H) H) (N 3 H H)
λ> pPrint (arbolBinarioCompleto 9)
N 1
      (N 2
            (N 4
                  (N 8 H H)
                  (N 9 H H))
      (N 5 H H))
      (N 3
                  (N 6 H H)
       (N 7 H H))
```

Posiciones en árboles binarios

Enunciado

Los árboles binarios con datos en los nodos se definen por

Por ejemplo, el árbol

se representa por

```
ejArbol :: Arbol Int
ejArbol = N 3
(N 0
(N 5
(N 2 H H)
```

```
(N 4 H H))
(N 0 H H))
(N 5
(N 0 H H)
(N 3 H H))
```

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 4 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

```
data Movimiento = I | D deriving (Show, Eq)
type Posicion = [Movimiento]
```

Definir la función

```
posiciones :: Eq b => b -> Arbol b -> [Posicion]
\end{solucion}
tal que (posiciones n a) es la lista de las posiciones del elemento n
en el árbol a. Por ejemplo,
\begin{descripcion}
 posiciones 0 ejArbol ==
                            [[I],[I,D],[D,I]]
 posiciones 2 ejArbol ==
                            [[I,I,I]]
 posiciones 3 ejArbol ==
                           [[],[D,D]]
 posiciones 4 ejArbol ==
                            [[I,I,D]]
 posiciones 5 ejArbol ==
                            [[I,I],[D]]
 posiciones 1 ejArbol
                           \Pi
```

```
ejArbol :: Arbol Int
ejArbol = N 3
            (N \ 0)
               (N 5
                  (N 2 H H)
                  (N 4 H H))
               (N \ 0 \ H \ H))
            (N 5
               (N \odot H H)
               (N 3 H H))
data Movimiento = I | D deriving (Show, Eq, Ord)
type Posicion = [Movimiento]
-- 1ª solución
-- ========
posiciones :: Eq b => b -> Arbol b -> [Posicion]
posiciones n a = aux n a [[]]
                                         = []
 where aux _ H _
        aux n' (N x i d) cs | x == n' = cs ++
                                            [I:xs | xs <- aux n' i cs] ++
                                            [D:xs | xs <- aux n' d cs]</pre>
                             | otherwise = [I:xs | xs <- aux n' i cs] ++
                                             [D:xs | xs <- aux n' d cs]
-- 2ª solución
-- =========
posiciones2 :: Eq b => b -> Arbol b -> [Posicion]
posiciones2 n a = aux n a [[]]
 where aux _ H _
                                        = []
        aux n' (N \times i d) cs | x == n' = cs ++ ps
                             | otherwise = ps
          where ps = [I:xs | xs <- aux n' i cs] ++
                     [D:xs | xs <- aux n' d cs]
-- 3ª solución
-- =========
```

```
posiciones3 :: Eq b => b -> Arbol b -> [Posicion]
posiciones3 n a = aux n a [[]]
 where aux _ H _
                                       = []
       aux n' (N x i d) cs | x == n' = cs ++ ps
                            | otherwise = ps
         where ps = map(I:) (aux n' i cs) ++
                     map (D:) (aux n' d cs)
-- Equivalencia
-- =========
-- Generador de árboles
instance Arbitrary a => Arbitrary (Arbol a) where
 arbitrary = sized genArbol
genArbol :: (Arbitrary a, Integral a1) => a1 -> Gen (Arbol a)
genArbol 0
                   = return H
genArbol n \mid n > 0 = N < sample arbitrary < subarbol < sample subarbol
 where subarbol = genArbol (div n 2)
genArbol _
             = error "Imposible"
-- La propiedad es
prop posiciones equiv :: Arbol Int -> Bool
prop posiciones equiv a =
  and [posiciones n a == posiciones2 n a | n <- xs] &&
 and [posiciones n a == posiciones3 n a | n <- xs]
 where xs = take 3 (elementos a)
-- (elementos a) son los elementos del árbol a. Por ejemplo,
     elementos ejArbol == [3,0,5,2,4]
elementos :: Eq b => Arbol b -> [b]
elementos H
elementos (N x i d) = nub (x : elementos i ++ elementos d)
-- La comprobación es
-- λ> quickCheck prop posiciones equiv
-- +++ OK, passed 100 tests.
```

Posiciones en árboles binarios completos

Enunciado

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 9 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

```
data Movimiento = I | D deriving (Show, Eq)
type Posicion = [Movimiento]

Definir la función

posicionDeElemento :: Integer -> Posicion
```

tal que (posicionDeElemento n) es la posición del elemento n en el árbol binario completo. Por ejemplo,

```
posicionDeElemento 6 == [D,I]
posicionDeElemento 7 == [D,D]
posicionDeElemento 9 == [I,I,D]
posicionDeElemento 1 == []

length (posicionDeElemento (10^50000)) == 166096
```

```
posicionDeElemento n =
 head (posiciones n (arbolBinarioCompleto n))
-- (arbolBinarioCompleto n) es el árbol binario completo con n
-- nodos. Por ejemplo,
     λ> arbolBinarioCompleto 4
     N 1 (N 2 (N 4 H H) H) (N 3 H H)
     λ> pPrint (arbolBinarioCompleto 9)
     N 1
       (N 2
           (N 4)
             (N 8 H H)
              (N 9 H H))
           (N 5 H H))
       (N 3
           (N 6 H H)
           (N 7 H H))
arbolBinarioCompleto :: Integer -> Arbol
arbolBinarioCompleto n = aux 1
 where aux i | i <= n = N i (aux (2*i)) (aux (2*i+1))
              | otherwise = H
-- (posiciones n a) es la lista de las posiciones del elemento n
-- en el árbol a. Por ejemplo,
     posiciones 9 (arbolBinarioCompleto 9) == [[I,I,D]]
posiciones :: Integer -> Arbol -> [Posicion]
posiciones n a = aux n a [[]]
 where aux H
                                       = []
        aux n' (N \times i d) cs | x == n' = cs ++ ps
                            | otherwise = ps
         where ps = map(I:) (aux n' i cs) ++
                     map (D:) (aux n' d cs)
-- 2ª solución
-- ========
posicionDeElemento2 :: Integer -> Posicion
posicionDeElemento2 1 = []
posicionDeElemento2 n
  | even n = posicionDeElemento2 (n `div` 2) ++ [I]
```

```
| otherwise = posicionDeElemento2 (n `div` 2) ++ [D]
-- 3ª solución
-- =========
posicionDeElemento3 :: Integer -> Posicion
posicionDeElemento3 = reverse . aux
 where aux 1 = []
        aux n \mid even n = I : aux (n `div` 2)
              | otherwise = D : aux (n `div` 2)
-- 4ª solución
-- ========
posicionDeElemento4 :: Integer -> Posicion
posicionDeElemento4 n =
  [f x | x <- tail (reverse (binario n))]</pre>
 where f \theta = I
        f 1 = D
        f _ = error "Imposible"
-- (binario n) es la lista de los dígitos de la representación binaria
-- de n. Por ejemplo,
     binario 11 == [1,1,0,1]
binario :: Integer -> [Integer]
binario n
  | n < 2 = [n]
  | otherwise = n `mod` 2 : binario (n `div` 2)
-- Equivalencia
-- =========
-- La propiedad es
prop_posicionDeElemento_equiv :: Positive Integer -> Bool
prop posicionDeElemento equiv (Positive n) =
  posicionDeElemento n == posicionDeElemento2 n &&
  posicionDeElemento n == posicionDeElemento3 n &&
  posicionDeElemento n == posicionDeElemento4 n
-- La comprobación es
```

```
λ> quickCheck prop posicionDeElemento equiv
    +++ OK, passed 100 tests.
-- Comparación de eficiencia
  _____
    \lambda> posicionDeElemento (10^7)
    (5.72 secs, 3,274,535,328 bytes)
    \lambda> posicionDeElemento2 (10^7)
    (0.01 secs, 189,560 bytes)
    \lambda> posicionDeElemento3 (10^7)
    (0.01 secs, 180,728 bytes)
    \lambda> posicionDeElemento4 (10^7)
    (0.01 secs, 184,224 bytes)
    \lambda> length (posicionDeElemento2 (10^4000))
    13287
    (2.80 secs, 7,672,011,280 bytes)
    \lambda> length (posicionDeElemento3 (10^4000))
    13287
    (0.03 secs, 19,828,744 bytes)
    \lambda> length (posicionDeElemento4 (10^4000))
    13287
    (0.03 secs, 18,231,536 bytes)
    \lambda> length (posicionDeElemento3 (10^50000))
    166096
    (1.34 secs, 1,832,738,136 bytes)
    \lambda> length (posicionDeElemento4 (10^50000))
    166096
    (1.70 secs, 1,812,806,080 bytes)
```

Elemento del árbol binario completo según su posición

Enunciado

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 9 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

```
data Movimiento = I | D deriving (Show, Eq)
type Posicion = [Movimiento]

Definir la función
elementoEnPosicion :: Posicion -> Integer
```

tal que (elementoEnPosicion ms) es el elemento en la posición ms. Por ejemplo,

```
elementoEnPosicion [D,I] == 6
elementoEnPosicion [D,D] == 7
elementoEnPosicion [I,I,D] == 9
elementoEnPosicion [] == 1
```

```
where aux [] (N \times _ ) = x
        aux (I:ms') (N _ i _) = aux ms' i
       aux (D:ms') (N_d d) = aux ms' d
                            = error "Imposible"
-- (arbolBinarioCompleto n) es el árbol binario completo con n
-- nodos. Por ejemplo,
     λ> arbolBinarioCompleto 4
     N 1 (N 2 (N 4 H H) H) (N 3 H H)
     λ> pPrint (arbolBinarioCompleto 9)
     N 1
       (N 2)
           (N 4)
             (N 8 H H)
             (N 9 H H))
           (N 5 H H))
      (N 3
          (N 6 H H)
           (N 7 H H))
arbolBinarioCompleto :: Integer -> Arbol
arbolBinarioCompleto n = aux 1
 where aux i | i <= n = N i (aux (2*i)) (aux (2*i+1))
              | otherwise = H
-- 2ª solución
-- =========
elementoEnPosicion2 :: Posicion -> Integer
elementoEnPosicion2 = aux . reverse
 where aux [] = 1
        aux (I:ms) = 2 * aux ms
        aux (D:ms) = 2 * aux ms + 1
-- Equivalencia
-- =========
-- La propiedad es
prop_elementoEnPosicion_equiv :: Positive Integer -> Bool
prop_elementoEnPosicion_equiv (Positive n) =
 elementoEnPosicion ps == n &&
```

```
elementoEnPosicion2 ps == n
 where ps = posicionDeElemento n
-- (posicionDeElemento n) es la posición del elemento n en el
-- árbol binario completo. Por ejemplo,
     posicionDeElemento 6 == [D,I]
     posicionDeElemento 7 == [D,D]
     posicionDeElemento 9 == [I,I,D]
     posicionDeElemento 1 == []
posicionDeElemento :: Integer -> Posicion
posicionDeElemento n =
  [f x | x <- tail (reverse (binario n))]</pre>
 where f \theta = I
        f 1 = D
        f = error "Imposible"
-- (binario n) es la lista de los dígitos de la representación binaria
-- de n. Por ejemplo,
     binario 11 == [1,1,0,1]
binario :: Integer -> [Integer]
binario n
  | n < 2 = [n]
  | otherwise = n `mod` 2 : binario (n `div` 2)
-- La comprobación es
     λ> quickCheck prop_elementoEnPosicion_equiv
     +++ OK, passed 100 tests.
-- Comparación de eficiencia
  _____
     \lambda> length (show (elementoEnPosicion (replicate (3*10^5) D)))
     90310
     (1.96 secs, 11,518,771,016 bytes)
     \lambda> length (show (elementoEnPosicion2 (replicate (3*10^5) D)))
     90310
     (14.32 secs, 11,508,181,176 bytes)
```

Aproximación entre pi y e

Enunciado

El día 11 de noviembre, se publicó en la cuenta de Twitter de Fermat's Library la siguiente curiosa identidad que relaciona los números e y pi:

$$\frac{1}{\pi^2 + 1} + \frac{1}{4\pi^2 + 1} + \frac{1}{9\pi^2 + 1} + \frac{1}{16\pi^2 + 1} + \dots = \frac{1}{e^2 - 1}$$

Definir las siguientes funciones:

```
sumaTerminos :: Int -> Double
aproximacion :: Double -> Int
```

tales que

(sumaTerminos n) es la suma de los primeros n términos de la serie

$$\frac{1}{\pi^2 + 1} + \frac{1}{4\pi^2 + 1} + \frac{1}{9\pi^2 + 1} + \frac{1}{16\pi^2 + 1} + \dots = \frac{1}{e^2 - 1}$$

Por ejemplo,

```
      sumaTerminos
      10
      ==
      0.14687821811081034

      sumaTerminos
      100
      ==
      0.15550948345688423

      sumaTerminos
      1000
      ==
      0.15641637221314514

      sumaTerminos
      10000
      ==
      0.15650751113789382
```

• (aproximación x) es el menor número de términos que hay que sumar de la serie anterior para que se diferencie (en valor absoluto) de $\frac{1}{e^2-1}$ menos que x. Por ejemplo,

```
aproximacion 0.1 == 1
aproximacion 0.01 == 10
aproximacion 0.001 == 101
aproximacion 0.0001 == 1013
```

Menor contenedor de primos

Enunciado

El n-ésimo menor contenenedor de primos es el menor número que contiene como subcadenas los primeros n primos. Por ejemplo, el 6° menor contenedor de primos es 113257 ya que es el menor que contiene como subcadenas los 6 primeros primos (2, 3, 5, 7, 11 y 13).

Definir la función

```
menorContenedor :: Int -> Int
```

tal que (menorContenedor n) es el n-ésimo menor contenenedor de primos. Por ejemplo,

```
menorContenedor 1 == 2
menorContenedor 2 == 23
menorContenedor 3 == 235
menorContenedor 4 == 2357
menorContenedor 5 == 112357
menorContenedor 6 == 113257
```

Árbol de computación de Fibonacci

Enunciado

La sucesión de Fibonacci es

```
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,...
```

cuyos dos primeros términos son 0 y 1 y los restantentes se obtienen sumando los dos anteriores.

El árbol de computación de su 5º término es

que, usando los árboles definidos por

se puede representar por

```
N 5
(N 3
(N 2
(N 1 (H 1) (H 0))
(H 1))
(N 1 (H 1) (H 0)))
(N 2
(N 1 (H 1) (H 0))
(H 1))
```

Definir las funciones

```
arbolFib :: Int -> Arbol
nElementosArbolFib :: Int -> Int
```

tales que

■ (arbolFib n) es el árbol de computación del n-ésimo término de la sucesión de Fibonacci. Por ejemplo,

```
(N 3

(N 2

(N 1 (H 1) (H 0))

(H 1))

(N 1 (H 1) (H 0)))

(N 2

(N 1 (H 1) (H 0))

(H 1)))

(N 3

(N 2

(N 1 (H 1) (H 0)) (H 1))

(N 1 (H 1) (H 0)))
```

• (nElementosArbolFib n) es el número de elementos en el árbol de computación del n-ésimo término de la sucesión de Fibonacci. Por ejemplo,

```
nElementosArbolFib 5 == 15

nElementosArbolFib 6 == 25

nElementosArbolFib 30 == 2692537
```

```
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
-- 2ª definición
-- =========
arbolFib2 :: Int -> Arbol
arbolFib2 0 = H 0
arbolFib2 1 = H 1
arbolFib2 2 = N 1 (H 1) (H 0)
arbolFib2 3 = N 2 (N 1 (H 1) (H 0)) (H 1)
arbolFib2 n = N (a1 + a2) (N a1 i1 d1) (N a2 i2 d2)
 where (N al il d1) = arbolFib2 (n-1)
        (N a2 i2 d2) = arbolFib2 (n-2)
-- 3ª definición
-- =========
arbolFib3 :: Int -> Arbol
arbolFib3 0 = H 0
arbolFib3 1 = H 1
arbolFib3 2 = N \cdot 1 \cdot (H \cdot 1) \cdot (H \cdot 0)
arbolFib3 3 = N 2 (N 1 (H 1) (H 0)) (H 1)
arbolFib3 n = N (a + b) i d
 where i@(N a \_ ) = arbolFib3 (n-1)
        d@(N b _ ) = arbolFib3 (n-2)
-- 1ª definición de nElementosArbolFib
  _____
nElementosArbolFib :: Int -> Int
nElementosArbolFib = length . elementos . arbolFib3
-- (elementos a) es la lista de elementos del árbol a. Por ejemplo,
      \lambda> elementos (arbolFib 5)
      [5,3,2,1,1,0,1,1,1,0,2,1,1,0,1]
     λ> elementos (arbolFib 6)
      [8,5,3,2,1,1,0,1,1,1,0,2,1,1,0,1,3,2,1,1,0,1,1,1,0]
elementos :: Arbol -> [Int]
```

Entre dos conjuntos

Enunciado

Se dice que un x número se encuentra entre dos conjuntos xs e ys si x es divisible por todos los elementos de xs y todos los elementos de zs son divisibles por x. Por ejemplo, 12 se encuentra entre los conjuntos 2, 6 y 24, 36.

Definir la función

```
entreDosConjuntos :: [Int] -> [Int] -> [Int]
```

tal que (entreDosConjuntos xs ys) es la lista de elementos entre xs e ys (se supone que xs e ys son listas no vacías de números enteros positivos). Por ejemplo,

```
entreDosConjuntos [2,6] [24,36] == [6,12]
entreDosConjuntos [2,4] [32,16,96] == [4,8,16]
```

Otros ejemplos

```
\lambda> (xs,a) = ([1..15],product xs)

\lambda> length (entreDosConjuntos xs [a,2*a..10*a])

270

\lambda> (xs,a) = ([1..16],product xs)

\lambda> length (entreDosConjuntos xs [a,2*a..10*a])

360
```

Soluciones

```
import Test.QuickCheck
-- 1ª solución
-- =========
entreDosConjuntos :: [Int] -> [Int] -> [Int]
entreDosConjuntos xs ys =
  [z \mid z \leftarrow [a..b]
     , and [z `mod` x == 0 \mid x \leftarrow xs]
     , and [y \mod z == 0 \mid y \leftarrow ys]]
  where a = maximum xs
        b = minimum ys
-- 2ª solución
-- ========
entreDosConjuntos2 :: [Int] -> [Int] -> [Int]
entreDosConjuntos2 xs ys =
  [z \mid z \leftarrow [a..b]
     , all (`divideA` z) xs
     , all (z `divideA`) ys]
  where a = mcmL xs
        b = mcdL ys
      mcmL [2,3,18] == 18
      mcmL [2,3,15] == 30
mcdL :: [Int] -> Int
mcdL[x] = x
```

mcdL (x:xs) = gcd x (mcdL xs)

mcmL (x:xs) = lcm x (mcmL xs)

divideA :: Int -> Int -> Bool
divideA x y = y `mod` x == 0

mcmL :: [Int] -> Int

mcmL[x] = x

mcmL [12,30,18] == 6 mcmL [12,30,14] == 2

```
-- 3ª solución
-- ========
entreDosConjuntos3 :: [Int] -> [Int] -> [Int]
entreDosConjuntos3 xs ys =
  [z \mid z \leftarrow [a..b]
     , all (`divideA` z) xs
     , all (z `divideA`) ys]
  where a = mcmL2 xs
        b = mcdL2 ys
-- Definición equivalente
mcdL2 :: [Int] -> Int
mcdL2 = foldl1 gcd
-- Definición equivalente
mcmL2 :: [Int] -> Int
mcmL2 = foldl1 lcm
-- 4ª solución
-- =========
entreDosConjuntos4 :: [Int] -> [Int] -> [Int]
entreDosConjuntos4 xs ys =
  [z | z <- [a,a+a..b]
     , z `divideA` b]
  where a = mcmL2 xs
        b = mcdL2 ys
-- 5ª solución
-- =========
entreDosConjuntos5 :: [Int] -> [Int] -> [Int]
entreDosConjuntos5 xs ys =
  filter (`divideA` b) [a,a+a..b]
  where a = mcmL2 xs
        b = mcdL2 ys
-- Equivalencia
```

```
- - ==========
-- Para comprobar la equivalencia se define el tipo de listas no vacías
-- de números enteros positivos:
newtype ListaNoVaciaDePositivos = L [Int]
  deriving Show
-- genListaNoVaciaDePositivos es un generador de listas no vacióas de
-- enteros positivos. Por ejemplo,
      λ> sample genListaNoVaciaDePositivos
      L [1]
     L [1,2,2]
     L [4,3,4]
     L [1,6,5,2,4]
     L [2,8]
     L [11]
     L [13,2,31
     L [7,3,9,15,11,12,13,3,9,6,13,3]
     L [16,2,11,10,6,5,16,4,1,15,9,11,8,15,2,15,7]
     L [5,4,9,13,5,6,7]
      L [7,4,6,12,2,11,6,14,14,13,14,11,6,2,18,8,16,2,13,9]
genListaNoVaciaDePositivos :: Gen ListaNoVaciaDePositivos
genListaNoVaciaDePositivos = do
  x <- arbitrary
  xs <- arbitrary
  return (L (map ((+1) . abs) (x:xs)))
-- Generación arbitraria de listas no vacías de enteros positivos.
instance Arbitrary ListaNoVaciaDePositivos where
  arbitrary = genListaNoVaciaDePositivos
-- La propiedad es
prop entreDosConjuntos equiv ::
    ListaNoVaciaDePositivos
  -> ListaNoVaciaDePositivos
  -> Bool
prop entreDosConjuntos equiv (L xs) (L ys) =
  entreDosConjuntos xs ys == entreDosConjuntos2 xs ys &&
  entreDosConjuntos xs ys == entreDosConjuntos3 xs ys &&
  entreDosConjuntos xs ys == entreDosConjuntos4 xs ys &&
```

entreDosConjuntos xs ys == entreDosConjuntos5 xs ys

```
-- La comprobación es
     λ> quickCheck prop_entreDosConjuntos_equiv
     +++ OK, passed 100 tests.
-- Comparación de eficiencia
   _____
     \lambda> (xs,a) = ([1..10],product xs)
     λ> length (entreDosConjuntos xs [a,2*a..10*a])
     36
      (5.08 secs, 4,035,689,200 bytes)
     \lambda> length (entreDosConjuntos2 xs [a,2*a..10*a])
     36
     (3.75 secs, 2,471,534,072 bytes)
     \lambda> length (entreDosConjuntos3 xs [a,2*a..10*a])
     36
     (3.73 secs, 2,471,528,664 bytes)
     λ> length (entreDosConjuntos4 xs [a,2*a..10*a])
     36
     (0.01 secs, 442,152 bytes)
     λ> length (entreDosConjuntos5 xs [a,2*a..10*a])
     36
     (0.00 secs, 374,824 bytes)
```

Expresiones aritméticas generales

Enunciado

Las expresiones aritméticas. generales se contruyen con las sumas generales (sumatorios) y productos generales (productorios). Su tipo es

Por ejemplo, la expresión (2 * (1 + 2 + 1) * (2 + 3)) + 1 se representa por S [P [N 2, S [N 1, N 2, N 1], S [N 2, N 3]], N 1]

Definir la función

```
valor :: Expresion -> Int
```

tal que (valor e) es el valor de la expresión e. Por ejemplo,

```
λ> valor (S [P [N 2, S [N 1, N 2, N 1], S [N 2, N 3]], N 1])
41
```

Superación de límites

Todo necio confunde valor y precio.

Antonio Machado

Enunciado

Una sucesión de puntuaciones se puede representar mediante una lista de números. Por ejemplo, [7,5,9,9,4,5,4,2,5,9,12,1]. En la lista anterior, los puntos en donde se alcanzan un nuevo máximo son 7, 9 y 12 (porque son mayores que todos sus anteriores) y en donde se alcanzan un nuevo mínimo son 7, 5, 4, 2 y 1 (porque son menores que todos sus anteriores). Por tanto, el máximo se ha superado 2 veces y el mínimo 4 veces.

Definir las funciones

```
nuevosMaximos :: [Int] -> [Int]
nuevosMinimos :: [Int] -> [Int]
nRupturas :: [Int] -> (Int,Int)
```

tales que

 (nuevosMaximos xs) es la lista de los nuevos máximos de xs. Por ejemplo,

```
nuevosMaximos [7,5,9,9,4,5,4,2,5,9,12,1] == [7,9,12]
```

• (nuevosMinimos xs) es la lista de los nuevos mínimos de xs. Por ejemplo,

```
nuevosMinimos [7,5,9,9,4,5,4,2,5,9,12,1] == [7,5,4,2,1]
```

 (nRupturas xs) es el par formado por el número de veces que se supera el máximo y el número de veces que se supera el mínimo en xs. Por ejemplo,

```
nRupturas [7,5,9,9,4,5,4,2,5,9,12,1] == (2,4)
```

```
import Data.List (group, inits)

nuevosMaximos :: [Int] -> [Int]
nuevosMaximos xs = map head (group (map maximum xss))
  where xss = tail (inits xs)

nuevosMinimos :: [Int] -> [Int]
nuevosMinimos xs = map head (group (map minimum xss))
  where xss = tail (inits xs)

nRupturas :: [Int] -> (Int,Int)
nRupturas [] = (0,0)
nRupturas xs =
  ( length (nuevosMaximos xs) - 1
  , length (nuevosMinimos xs) - 1)
```

Intercambio de la primera y última columna de una matriz

¡Que difícil es, cuando todo baja no bajar también!

Antonio Machado

Enunciado

Las matrices se pueden representar mediante listas de listas. Por ejemplo, la matriz

```
8 9 7 6
```

4 7 6 5

3 2 1 8

se puede representar por la lista

[[8,9,7,6],[4,7,6,5],[3,2,1,8]]

Definir la función

intercambia :: [[a]] -> [[a]]

tal que (intercambia xss) es la matriz obtenida intercambiando la primera y la última columna de xss. Por ejemplo,

```
λ> intercambia [[8,9,7,6],[4,7,6,5],[3,2,1,8]]
[[6,9,7,8],[5,7,6,4],[8,2,1,3]]
```

```
intercambia :: [[a]] -> [[a]]
intercambia = map intercambiaL

-- (intercambiaL xs) es la lista obtenida intercambiando el primero y el
-- último elemento de xs. Por ejemplo,
-- intercambiaL [8,9,7,6] == [6,9,7,8]
intercambiaL :: [a] -> [a]
intercambiaL xs =
  last xs : tail (init xs) ++ [head xs]
```

Números primos de Pierpont

La memoria es infiel: no sólo borra y confunde, sino que, a veces, inventa, para desorientarnos.

Antonio Machado

Enunciado

Un número primo de Pierpont es un número primo de la forma $2^u 3^v + 1$, para u y v enteros no negativos.

Definir la sucesión

```
primosPierpont :: [Integer]
```

tal que sus elementos son los números primos de Pierpont. Por ejemplo,

```
λ> take 20 primosPierpont
[2,3,5,7,13,17,19,37,73,97,109,163,193,257,433,487,577,769,1153,1297]
λ> primosPierpont !! 49
8503057
```

```
import Data.Numbers.Primes (primes, primeFactors)

primosPierpont :: [Integer]
primosPierpont =
    [n | n <- primes
        , primoPierpont n]

primoPierpont :: Integer -> Bool
primoPierpont n =
    primeFactors (n-1) `contenidoEn` [2,3]

-- (contenidoEn xs ys) se verifica si xs está contenido en ys. Por
    - ejemplo,
    -- contenidoEn [2,3,2,2,3] [2,3] == True
    -- contenidoEn [2,3,2,2,1] [2,3] == False
contenidoEn :: [Integer] -> [Integer] -> Bool
contenidoEn xs ys =
    all (`elem` ys) xs
```

Grado exponencial

De cada diez novedades que pretenden descubrirnos, nueve son tonterías. La décima y última, que no es necedad, resulta a última hora que tampoco es nueva.

Antonio Machado

Enunciado

El grado exponencial de un número n es el menor número e mayor que 1 tal que n es una subcadena de n^e . Por ejemplo, el grado exponencial de 2 es 5 ya que 2 es una subcadena de 32 (que es 2^5) y nos es subcadena de las anteriores potencias de 2 (2, 4 y 16). El grado exponencial de 25 es 2 porque 25 es una subcadena de 625 (que es 25^2).

Definir la función

```
gradoExponencial :: Integer -> Integer
```

tal que (gradoExponencial n) es el grado exponencial de n. Por ejemplo,

```
gradoExponencial 2 == 5
gradoExponencial 25 == 2
gradoExponencial 15 == 26
```

```
gradoExponencial 1093 == 100
gradoExponencial 10422 == 200
gradoExponencial 11092 == 300
```

```
import Test.QuickCheck
import Data.List (genericLength, isInfixOf)
-- 1ª solución
_ _ ______
gradoExponencial :: Integer -> Integer
gradoExponencial n =
  head [e | e <- [2..]
          , show n `isInfixOf` show (n^e)]
-- 2ª solución
-- =========
gradoExponencial2 :: Integer -> Integer
gradoExponencial2 n =
  2 + genericLength (takeWhile noSubcadena (potencias n))
 where c
                      = show n
        noSubcadena x = not (c isInfixOfishow x)
-- (potencias n) es la lista de las potencias de n a partir de n^2. Por
-- ejemplo,
      \lambda> take 10 (potencias 2)
      [4,8,16,32,64,128,256,512,1024,2048]
potencias :: Integer -> [Integer]
potencias n =
  iterate (*n) (n^2)
-- 3ª solución
-- ========
gradoExponencial3 :: Integer -> Integer
```

```
gradoExponencial3 n = aux 2
 where aux x
          \mid cs `isInfixOf` show (n^x) = x
          | otherwise
                               = aux (x+1)
       cs = show n
-- Equivalencia
-- =========
-- La propiedad es
prop_gradosExponencial_equiv :: (Positive Integer) -> Bool
prop gradosExponencial equiv (Positive n) =
  gradoExponencial n == gradoExponencial2 n &&
 gradoExponencial n == gradoExponencial3 n
-- La comprobación es
    λ> quickCheck prop_gradosExponencial_equiv
    +++ OK, passed 100 tests.
```

Referencia

Basado en la sucesión A045537 de la OEIS.

Divisores propios maximales

Moneda que está en la mano quizá se deba guardar; la monedita del alma se pierde si no se da.

Antonio Machado

Enunciado

Se dice que a es un divisor propio maximal de un número b si a es un divisor de b distinto de b y no existe ningún número c tal que a < c < b, a es un divisor de c y c es un divisor de b. Por ejemplo, 15 es un divisor propio maximal de 30, pero 5 no lo es.

Definir las funciones

```
divisoresPropiosMaximales :: Integer -> [Integer]
nDivisoresPropiosMaximales :: Integer -> Integer
```

tales que

(divisoresPropiosMaximales x) es la lista de los divisores propios maximales de x. Por ejemplo,

```
divisoresPropiosMaximales 30 == [6,10,15]
divisoresPropiosMaximales 420 == [60,84,140,210]
```

```
divisores
Propios
Maximales 7 == [1]
length (divisores
Propios
Maximales (product [1..3*10^4])) == 3245
```

(nDivisoresPropiosMaximales x) es el número de divisores propios maximales de x. Por ejemplo,

```
nDivisoresPropiosMaximales 30 == 3
nDivisoresPropiosMaximales 420 == 4
nDivisoresPropiosMaximales 7 == 1
nDivisoresPropiosMaximales (product [1..3*10^4]) == 3245
```

```
import Data.Numbers.Primes (primeFactors)
import Data.List (genericLength, group, nub)
import Test.QuickCheck
-- 1º definición de divisoresPropiosMaximales
divisoresPropiosMaximales :: Integer -> [Integer]
divisoresPropiosMaximales x =
  [y | y <- divisoresPropios x</pre>
     , null [z | z <- divisoresPropios x
              y < z
              , z \mod y == 0]
-- (divisoresPropios x) es la lista de los divisores propios de x; es
-- decir, de los divisores de x distintos de x. Por ejemplo,
     divisoresPropios 30 == [1,2,3,5,6,10,15]
divisoresPropios :: Integer -> [Integer]
divisoresPropios x =
  [y \mid y \leftarrow [1..x-1]
     , x \mod y == 0
-- 2ª definición de divisoresPropiosMaximales
  _____
divisoresPropiosMaximales2 :: Integer -> [Integer]
```

```
divisoresPropiosMaximales2 x =
 reverse [x `div` y | y <- nub (primeFactors x)]</pre>
-- Equivalencia de las definiciones de divisoresPropiosMaximales
  _____
-- La propiedad es
prop divisoresPropiosMaximales equiv :: Positive Integer -> Bool
prop divisoresPropiosMaximales equiv (Positive x) =
 divisoresPropiosMaximales x == divisoresPropiosMaximales2 x
-- La comprobación es
     λ> quickCheck prop_divisoresPropiosMaximales_equiv
     +++ OK, passed 100 tests.
-- Comparación de eficiencia de divisoresPropiosMaximales
 \lambda> length (divisoresPropiosMaximales (product [1..10]))
     (13.33 secs, 7,037,241,776 bytes)
    λ> length (divisoresPropiosMaximales2 (product [1..10]))
     (0.00 secs, 135,848 bytes)
-- 1º definición de nDivisoresPropiosMaximales
  _____
nDivisoresPropiosMaximales :: Integer -> Integer
nDivisoresPropiosMaximales =
 genericLength . divisoresPropiosMaximales
-- 2ª definición de nDivisoresPropiosMaximales
nDivisoresPropiosMaximales2 :: Integer -> Integer
nDivisoresPropiosMaximales2 =
 genericLength . divisoresPropiosMaximales2
-- 3ª definición de nDivisoresPropiosMaximales
```

```
nDivisoresPropiosMaximales3 :: Integer -> Integer
nDivisoresPropiosMaximales3 =
  genericLength . group . primeFactors
-- Equivalencia de las definiciones de nDivisoresPropiosMaximales
-- La propiedad es
prop nDivisoresPropiosMaximales equiv :: Positive Integer -> Bool
prop nDivisoresPropiosMaximales equiv (Positive x) =
  nDivisoresPropiosMaximales x == nDivisoresPropiosMaximales3 x &&
  nDivisoresPropiosMaximales2 x == nDivisoresPropiosMaximales3 x
-- La comprobación es
      λ> quickCheck prop nDivisoresPropiosMaximales equiv
      +++ OK, passed 100 tests.

    Comparación de eficiencia de nDivisoresPropiosMaximales

      \lambda> nDivisoresPropiosMaximales2 (product [1..10])
      4
      (13.33 secs, 7,037,242,536 bytes)
      λ> nDivisoresPropiosMaximales2 (product [1..10])
      4
      (0.00 secs, 135,640 bytes)
      λ> nDivisoresPropiosMaximales3 (product [1..10])
      4
      (0.00 secs, 135,232 bytes)
      λ> nDivisoresPropiosMaximales2 (product [1..3*10^4])
     3245
      (3.12 secs, 4,636,274,040 bytes)
     λ> nDivisoresPropiosMaximales3 (product [1..3*10^4])
     3245
     (3.06 secs, 4,649,295,056 bytes)
```

Árbol de divisores

¿Dónde está la utilidad de nuestras utilidades? Volvamos a la verdad: vanidad de vanidades.

Antonio Machado

Enunciado

Se dice que a es un divisor propio maximal de un número b si a es un divisor de b distinto de b y no existe ningún número c tal que a <c <b, a es un divisor de c y c es un divisor de b. Por ejemplo, 15 es un divisor propio maximal de 30, pero 5 no lo es.

El árbol de los divisores de un número x es el árbol que tiene como raíz el número x y cada nodo tiene como hijos sus divisores propios maximales. Por ejemplo, el árbol de divisores de 30 es

Usando el tipo de dato

```
data Arbol = N Integer [Arbol]
  deriving (Eq, Show)
```

el árbol anterior se representa por

```
N 30
[N 6
[N 2 [N 1 []],
N 3 [N 1 []]],
N 10
[N 2 [N 1 []],
N 5 [N 1 []]],
N 5 [N 1 []]],
N 15
[N 3 [N 1 []],
N 5 [N 1 []]]
```

Definir las funciones

```
arbolDivisores :: Integer -> Arbol
nOcurrenciasArbolDivisores :: Integer -> Integer
```

tales que

■ (arbolDivisores x) es el árbol de los divisores del número x. Por ejemplo,

```
λ> arbolDivisores 30
N 30 [N 6 [N 2 [N 1 []],N 3 [N 1 []]],
        N 10 [N 2 [N 1 []],N 5 [N 1 []]],
        N 15 [N 3 [N 1 []],N 5 [N 1 []]]]
```

 (nOcurrenciasArbolDivisores x y) es el número de veces que aparece el número x en el árbol de los divisores del número y. Por ejemplo,

```
n0currenciasArbolDivisores 3 30 == 2
n0currenciasArbolDivisores 6 30 == 1
n0currenciasArbolDivisores 30 30 == 1
```

```
nOcurrenciasArbolDivisores 1 30 == 6
nOcurrenciasArbolDivisores 9 30 == 0
nOcurrenciasArbolDivisores 2 (product [1..10])
                                               == 360360
nOcurrenciasArbolDivisores 3 (product [1..10])
                                                   180180
nOcurrenciasArbolDivisores 5 (product [1..10])
                                                   90090
                                               ==
n0currenciasArbolDivisores 7 (product [1..10])
                                               == 45045
nOcurrenciasArbolDivisores 6 (product [1..10])
                                               == 102960
nOcurrenciasArbolDivisores 10 (product [1..10])
                                               == 51480
nOcurrenciasArbolDivisores 14 (product [1..10])
                                               == 25740
```

```
import Data.Numbers.Primes (primeFactors)
import Data.List (nub)
data Arbol = N Integer [Arbol]
 deriving (Eq, Show)
-- Definición de arbolDivisores
  arbolDivisores :: Integer -> Arbol
arbolDivisores x =
 N x (map arbolDivisores (divisoresPropiosMaximales x))
-- (divisoresPropiosMaximales x) es la lista de los divisores propios
-- maximales de x. Por ejemplo,
     divisoresPropiosMaximales 30 == [6,10,15]
     divisoresPropiosMaximales 420 == [60,84,140,210]
     divisoresPropiosMaximales 7
                                == [1]
divisoresPropiosMaximales :: Integer -> [Integer]
divisoresPropiosMaximales x =
  reverse [x `div` y | y <- nub (primeFactors x)]</pre>
-- Definición de nOcurrenciasArbolDivisores
 - -----
nOcurrenciasArbolDivisores :: Integer -> Integer -> Integer
```

```
n0currenciasArbolDivisores x y =
  n0currencias x (arbolDivisores y)

-- (n0currencias x a) es el número de veces que aprece x en el árbol
-- a. Por ejemplo,
-- n0currencias 3 (arbolDivisores 30) == 2
n0currencias :: Integer -> Arbol -> Integer
n0currencias x (N y [])
  | x == y = 1
  | otherwise = 0
n0currencias x (N y zs)
  | x == y = 1 + sum [n0currencias x z | z <- zs]
  | otherwise = sum [n0currencias x z | z <- zs]</pre>
```

Divisores compuestos

La verdad del hombre empieza donde acaba su propia tontería, pero la tontería del hombre es inagotable.

Antonio Machado

Enunciado

Definir la función

```
divisoresCompuestos :: Integer -> [Integer]
```

tal que (divisoresCompuestos x) es la lista de los divisores de x que son números compuestos (es decir, números mayores que 1 que no son primos). Por ejemplo,

```
divisoresCompuestos 30 == [6,10,15,30]
length (divisoresCompuestos (product [1..11])) == 534
length (divisoresCompuestos (product [1..14])) == 2585
length (divisoresCompuestos (product [1..16])) == 5369
length (divisoresCompuestos (product [1..25])) == 340022
```

```
import Data.List (group, inits, nub, sort, subsequences)
import Data.Numbers.Primes (isPrime, primeFactors)
import Test.QuickCheck
-- 1ª solución
-- =========
divisoresCompuestos :: Integer -> [Integer]
divisoresCompuestos x =
  [y | y <- divisores x
     , y > 1
     , not (isPrime y)]
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
      divisores 30 == [1,2,3,5,6,10,15,30]
divisores :: Integer -> [Integer]
divisores x =
  [y | y \leftarrow [1..x]
     , x \mod y == 0
-- 2ª solución
-- =========
divisoresCompuestos2 :: Integer -> [Integer]
divisoresCompuestos2 x =
  [y | y <- divisores2 x
     , y > 1
     , not (isPrime y)]
-- (divisores2 x) es la lista de los divisores de x. Por ejemplo,
      divisores2 30 == [1,2,3,5,6,10,15,30]
divisores2 :: Integer -> [Integer]
divisores2 x =
  [y \mid y \leftarrow [1..x \ div \ 2], x \ mod \ y == 0] ++ [x]
-- 2ª solución
-- ========
```

```
divisoresCompuestos3 :: Integer -> [Integer]
divisoresCompuestos3 x =
       [y | y <- divisores2 x
                 , y > 1
                 , not (isPrime y)]
-- (divisores3 x) es la lista de los divisores de x. Por ejemplo,
                   divisores2 \ 30 == [1,2,3,5,6,10,15,30]
divisores3 :: Integer -> [Integer]
divisores3 x =
      nub (sort (ys ++ [x \dot{v} \dot
      where ys = [y \mid y \leftarrow [1..floor (sqrt (fromIntegral x))]
                                                      , x \mod y == 0
-- 4ª solución
-- =========
divisoresCompuestos4 :: Integer -> [Integer]
divisoresCompuestos4 x =
       [y | y <- divisores4 x
                 , y > 1
                 , not (isPrime y)]
-- (divisores4 x) es la lista de los divisores de x. Por ejemplo,
                   divisores4 \ 30 == [1,2,3,5,6,10,15,30]
divisores4 :: Integer -> [Integer]
divisores4 =
      nub . sort . map product . subsequences . primeFactors
-- 5ª solución
-- ========
divisoresCompuestos5 :: Integer -> [Integer]
divisoresCompuestos5 x =
       [y | y <- divisores5 x
                 , y > 1
                 , not (isPrime y)]
-- (divisores5 x) es la lista de los divisores de x. Por ejemplo,
                   divisores5 \ 30 == [1,2,3,5,6,10,15,30]
```

```
divisores5 :: Integer -> [Integer]
divisores5 =
  sort
  . map (product . concat)
  . productoCartesiano
  . map inits
  . group
  . primeFactors
-- (productoCartesiano xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo,
     \lambda> productoCartesiano [[1,3],[2,5],[6,4]]
      [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
productoCartesiano :: [[a]] -> [[a]]
productoCartesiano []
                            = [[]]
productoCartesiano (xs:xss) =
  [x:ys | x <- xs, ys <- productoCartesiano xss]</pre>
-- 6ª solución
- - =========
divisoresCompuestos6 :: Integer -> [Integer]
divisoresCompuestos6 =
 sort
  . map product
  . compuestos
  . map concat
  . productoCartesiano
  . map inits
  . group
  . primeFactors
 where compuestos xss = [xs | xs <- xss, length xs > 1]
-- Equivalencia de las definiciones
- - -----
-- La propiedad es
prop divisoresCompuestos :: (Positive Integer) -> Bool
prop_divisoresCompuestos (Positive x) =
 all (== divisoresCompuestos x) [f x | f <- [ divisoresCompuestos2
```

, divisoresCompuestos3

```
, divisoresCompuestos4
                                              , divisoresCompuestos5
                                              , divisoresCompuestos6 ]]
-- La comprobación es
     λ> quickCheck prop divisoresCompuestos
     +++ OK, passed 100 tests.
-- Comparación de eficiencia
   _____
      λ> length (divisoresCompuestos (product [1..11]))
     534
      (14.59 secs, 7,985,108,976 bytes)
     λ> length (divisoresCompuestos2 (product [1..11]))
     534
      (7.36 secs, 3,993,461,168 bytes)
     \lambda> length (divisoresCompuestos3 (product [1..11]))
      534
      (7.35 secs, 3,993,461,336 bytes)
      \lambda> length (divisoresCompuestos4 (product [1..11]))
      534
      (0.07 secs, 110,126,392 bytes)
     λ> length (divisoresCompuestos5 (product [1..11]))
      534
      (0.01 secs, 3,332,224 bytes)
     λ> length (divisoresCompuestos6 (product [1..11]))
     534
      (0.01 secs, 1,869,776 bytes)
     \lambda> length (divisoresCompuestos4 (product [1..14]))
      2585
      (9.11 secs, 9,461,570,720 bytes)
     \lambda> length (divisoresCompuestos5 (product [1..14]))
     2585
      (0.04 secs, 17,139,872 bytes)
     λ> length (divisoresCompuestos6 (product [1..14]))
     2585
- -
      (0.02 secs, 10,140,744 bytes)
```

Número de divisores compuestos

Lo corriente en el hombre es la tendencia a creer verdadero cuanto le reporta alguna utilidad. Por eso hay tantos hombres capaces de comulgar con ruedas de molino.

Antonio Machado

Enunciado

Definir la función

```
nDivisoresCompuestos :: Integer -> Integer
```

tal que (nDivisoresCompuestos x) es el número de divisores de x que son compuestos (es decir, números mayores que 1 que no son primos). Por ejemplo,

```
nDivisoresCompuestos 30 == 4
nDivisoresCompuestos (product [1..11]) == 534
nDivisoresCompuestos (product [1..25]) == 340022
length (show (nDivisoresCompuestos (product [1..3*10^4]))) == 1948
```

```
import Data.List (genericLength, group, inits, sort)
import Data.Numbers.Primes (isPrime, primeFactors)
import Test.QuickCheck
-- 1ª solución
- - -----
nDivisoresCompuestos :: Integer -> Integer
nDivisoresCompuestos =
 genericLength . divisoresCompuestos
-- (divisoresCompuestos x) es la lista de los divisores de x que
-- son números compuestos (es decir, números mayores que 1 que no son
-- primos). Por ejemplo,
      divisoresCompuestos 30 == [6,10,15,30]
divisoresCompuestos :: Integer -> [Integer]
divisoresCompuestos x =
  [y | y <- divisores x
     , y > 1
     , not (isPrime y)]
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
      divisores 30 == [1,2,3,5,6,10,15,30]
divisores :: Integer -> [Integer]
divisores =
 sort
  . map (product . concat)
  . productoCartesiano
  . map inits
  . group
  . primeFactors
-- (productoCartesiano xss) es el producto cartesiano de los conjuntos xss. Por
-- ejemplo,
      \lambda> productoCartesiano [[1,3],[2,5],[6,4]]
      [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
productoCartesiano :: [[a]] -> [[a]]
productoCartesiano [] = [[]]
```

```
productoCartesiano (xs:xss) =
  [x:ys | x <- xs, ys <- productoCartesiano xss]</pre>
-- 2ª solución
-- =========
nDivisoresCompuestos2 :: Integer -> Integer
nDivisoresCompuestos2 x =
 nDivisores x - nDivisoresPrimos x - 1
-- (nDivisores x) es el número de divisores de x. Por ejemplo,
     nDivisores 30 == 8
nDivisores :: Integer -> Integer
nDivisores x =
 product [1 + genericLength xs | xs <- group (primeFactors x)]</pre>
-- (nDivisoresPrimos x) es el número de divisores primos de x. Por
-- ejemplo,
     nDivisoresPrimos 30 == 3
nDivisoresPrimos :: Integer -> Integer
nDivisoresPrimos =
 genericLength . group . primeFactors
-- 3ª solución
-- =========
nDivisoresCompuestos3 :: Integer -> Integer
nDivisoresCompuestos3 x =
 nDivisores' - nDivisoresPrimos' - 1
 where xss
                         = group (primeFactors x)
       nDivisores'
                      = product [1 + genericLength xs | xs <-xss]</pre>
       nDivisoresPrimos' = genericLength xss
-- Equivalencia de las definiciones
-- -----
-- La propiedad es
prop nDivisoresCompuestos :: (Positive Integer) -> Bool
prop_nDivisoresCompuestos (Positive x) =
 all (== nDivisoresCompuestos x) [f x | f <- [ nDivisoresCompuestos2
```

, nDivisoresCompuestos3]]

```
-- La comprobación es
     λ> quickCheck prop_nDivisoresCompuestos
     +++ OK, passed 100 tests.
-- Comparación de eficiencia
  _____
     λ> nDivisoresCompuestos (product [1..25])
     340022
      (2.53 secs, 3,145,029,032 bytes)
     \lambda> nDivisoresCompuestos2 (product [1..25])
     340022
     (0.00 secs, 220,192 bytes)
     \lambda> length (show (nDivisoresCompuestos2 (product [1..3*10^4])))
     1948
     (5.22 secs, 8,431,630,288 bytes)
     \lambda> length (show (nDivisoresCompuestos3 (product [1..3*10^4])))
     1948
     (3.06 secs, 4,662,277,664 bytes)
- -
```

Tablas de operaciones binarias

¿Tu verdad? No, la Verdad, y ven conmigo a buscarla. La tuya guárdatela.

Antonio Machado

Enunciado

Para representar las operaciones binarias en un conjunto finito A con n elementos se pueden numerar sus elementos desde el 0 al n-1. Entonces cada operación binaria en A se puede ver como una lista de listas xss tal que el valor de aplicar la operación a los elementos i y j es el j-ésimo elemento del i-ésimo elemento de xss. Por ejemplo, si A = 0,1,2 entonces las tabla de la suma y de la resta módulo 3 en A son

```
0 1 2 0 2 1
1 2 0 1 0 2
2 0 1 2 1 0
Suma Resta
```

Definir las funciones

```
tablaOperacion :: (Int -> Int -> Int) -> Int -> [[Int]]
tablaSuma :: Int -> [[Int]]
```

```
tablaResta :: Int -> [[Int]]
tablaProducto :: Int -> [[Int]]
```

tales que

(tablaOperacion f n) es la tabla de la operación f módulo n en [0..n-1].
 Por ejemplo,

```
tablaOperacion (+) 3 == [[0,1,2],[1,2,0],[2,0,1]]
tablaOperacion (-) 3 == [[0,2,1],[1,0,2],[2,1,0]]
tablaOperacion (-) 4 == [[0,3,2,1],[1,0,3,2],[2,1,0,3],[3,2,1,0]]
tablaOperacion (\x y -> abs (x-y)) 3 == [[0,1,2],[1,0,1],[2,1,0]]
```

■ (tablaSuma n) es la tabla de la suma módulo n en [0..n-1]. Por ejemplo,

```
tablaSuma 3 == [[0,1,2],[1,2,0],[2,0,1]]
tablaSuma 4 == [[0,1,2,3],[1,2,3,0],[2,3,0,1],[3,0,1,2]]
```

■ (tablaResta n) es la tabla de la resta módulo n en [0..n-1]. Por ejemplo,

```
tablaResta 3 == [[0,2,1],[1,0,2],[2,1,0]]
tablaResta 4 == [[0,3,2,1],[1,0,3,2],[2,1,0,3],[3,2,1,0]]
```

 (tablaProducto n) es la tabla del producto módulo n en [0..n-1]. Por ejemplo,

```
tablaProducto 3 == [[0,0,0],[0,1,2],[0,2,1]]
tablaProducto 4 == [[0,0,0,0],[0,1,2,3],[0,2,0,2],[0,3,2,1]]
```

Comprobar con QuickCheck, si parato entero positivo n de verificar las siguientes propiedades:

- La suma, módulo n, de todos los números de (tablaSuma n) es 0.
- La suma, módulo n, de todos los números de (tablaResta n) es 0.
- La suma, módulo n, de todos los números de (tablaProducto n) es n/2 si n es el doble de un número impar y es 0, en caso contrario.

```
import Test.QuickCheck
tablaOperacion :: (Int -> Int -> Int) -> Int -> [[Int]]
tablaOperacion f n =
  [[f i j `mod` n | j \leftarrow [0..n-1]] | i \leftarrow [0..n-1]]
tablaSuma :: Int -> [[Int]]
tablaSuma = tablaOperacion (+)
tablaResta :: Int -> [[Int]]
tablaResta = tablaOperacion (-)
tablaProducto :: Int -> [[Int]]
tablaProducto = tablaOperacion (*)
-- (sumaTabla xss) es la suma, módulo n, de los elementos de la tabla de
-- operación xss (donde n es el número de elementos de xss). Por
-- ejemplo,
      sumaTabla [[0,2,1],[1,1,2],[2,1,0]] == 1
sumaTabla :: [[Int]] -> Int
sumaTabla = sum . concat
-- La propiedad de la tabla de la suma es
prop_tablaSuma :: Positive Int -> Bool
prop_tablaSuma (Positive n) =
  sumaTabla (tablaSuma n) == 0
-- La comprobación es
     λ> quickCheck prop_tablaSuma
     +++ OK, passed 100 tests.
-- La propiedad de la tabla de la resta es
prop_tablaResta :: Positive Int -> Bool
prop tablaResta (Positive n) =
  sumaTabla (tablaResta n) == 0
-- La comprobación es
      λ> quickCheck prop_tablaResta
```

```
-- +++ OK, passed 100 tests.

-- La propiedad de la tabla del producto es
prop_tablaProducto :: Positive Int -> Bool
prop_tablaProducto (Positive n)
  | even n && odd (n `div` 2) = suma == n `div` 2
  | otherwise = suma == 0
  where suma = sumaTabla (tablaProducto n)
```

Reconocimiento de conmutatividad

Nuestras horas son minutos cuando esperamos saber, y siglos cuando sabemos lo que se puede aprender.

Antonio Machado

Enunciado

Para representar las operaciones binarias en un conjunto finito A con n elementos se pueden numerar sus elementos desde el 0 al n-1. Entonces cada operación binaria en A se puede ver como una lista de listas xss tal que el valor de aplicar la operación a los elementos i y j es el j-ésimo elemento del i-ésimo elemento de xss. Por ejemplo, si A = 0,1,2 entonces las tabla de la suma y de la resta módulo 3 en A son

```
0 1 2 0 2 1
1 2 0 1 0 2
2 0 1 2 1 0
Suma Resta
```

Definir la función

conmutativa :: [[Int]] -> Bool

tal que (conmutativa xss) se verifica si la operación cuya tabla es xss es conmutativa. Por ejemplo,

```
conmutativa [[0,1,2],[1,0,1],[2,1,0]] == True conmutativa [[0,1,2],[1,0,0],[2,1,0]] == False conmutativa [[i+j \mod 2000 \mid j \leftarrow [0..1999]] \mid i \leftarrow [0..1999]] == True conmutativa [[i-j \mod 2000 \mid j \leftarrow [0..1999]] \mid i \leftarrow [0..1999]] == False
```

```
import Data.List (transpose)
import Test.QuickCheck
-- 1ª solución
- - =========
conmutativa :: [[Int]] -> Bool
conmutativa xss =
 and [producto i j == producto j i | i <- [0..n-1], j <- [0..n-1]]
 where producto i j = (xss !! i) !! j
                     = length xss
-- 2ª solución
-- =========
conmutativa2 :: [[Int]] -> Bool
conmutativa2 []
                        = True
conmutativa2 t@(xs:xss) = xs == map head t
                          && conmutativa2 (map tail xss)
-- 3ª solución
-- =========
conmutativa3 :: [[Int]] -> Bool
conmutativa3 xss = xss == transpose xss
-- 4ª solución
-- =========
```

```
conmutativa4 :: [[Int]] -> Bool
conmutativa4 = (==) <*> transpose
-- Equivalencia de las definiciones
--
-- Para comprobar la equivalencia se define el tipo de tabla de
-- operciones binarias:
newtype Tabla = T [[Int]]
 deriving Show
-- genTabla es un generador de tablas de operciones binaria. Por ejemplo,
      \lambda> sample genTabla
      T [[2,0,0],[1,2,1],[1,0,2]]
     T [[0,3,0,1],[0,1,2,1],[0,2,1,2],[3,0,0,2]]
     T [[2,0,1],[1,0,0],[2,1,2]]
     T [[1,0],[0,1]]
     T [[1,1],[0,1]]
     T [[1,1,2],[1,0,1],[2,1,0]]
     T [[4,4,3,0,2],[2,2,0,1,2],[4,0,1,0,0],[0,4,4,3,3],[3,0,4,2,1]]
     T [[3,4,1,4,1],[2,4,4,0,4],[1,2,1,4,3],[3,1,4,4,2],[4,1,3,2,3]]
     T [[2,0,1],[2,1,0],[0,2,2]]
- -
     T [[3,2,0,3],[2,1,1,1],[0,2,1,0],[3,3,2,3]]
      T [[2,0,2,0],[0,0,3,1],[1,2,3,2],[3,3,0,2]]
genTabla :: Gen Tabla
genTabla = do
 n \leftarrow choose (2,20)
 xs \leftarrow vector0f(n^2) (elements [0..n-1])
  return (T (separa n xs))
-- (separa n xs) es la lista obtenidaseparando los elementos de xs en
-- grupos de n elementos. Por ejemplo,
      separa 3 [1..9] == [[1,2,3],[4,5,6],[7,8,9]]
separa :: Int -> [a] -> [[a]]
separa _ [] = []
separa n xs = take n xs : separa n (drop n xs)
-- Generación arbitraria de tablas
instance Arbitrary Tabla where
 arbitrary = genTabla
```

```
-- La propiedad es
prop_conmutativa :: Tabla -> Bool
prop conmutativa (T xss) =
  conmutativa xss == conmutativa2 xss &&
  conmutativa2 xss == conmutativa3 xss &&
  conmutativa2 xss == conmutativa4 xss
-- La comprobación es
      λ> quickCheck prop_conmutativa
      +++ OK, passed 100 tests.
-- Comparación de eficiencia
-- Para las comparaciones se usará la función tablaSuma tal que
-- (tablaSuma n) es la tabla de la suma módulo n en [0..n-1]. Por
-- ejemplo,
      tablaSuma 3 == [[0,1,2],[1,2,3],[2,3,4]]
tablaSuma :: Int -> [[Int]]
tablaSuma n =
  [[i + j \mod n \mid j \leftarrow [0..n-1]] \mid i \leftarrow [0..n-1]]
-- La comparación es
      λ> conmutativa (tablaSuma 400)
      (1.92 secs, 147,608,696 bytes)
      λ> conmutativa2 (tablaSuma 400)
      True
      (0.14 secs, 63,101,112 bytes)
      λ> conmutativa3 (tablaSuma 400)
      True
      (0.10 secs, 64,302,608 bytes)
      λ> conmutativa4 (tablaSuma 400)
      True
      (0.10 secs, 61,738,928 bytes)
      λ> conmutativa2 (tablaSuma 2000)
      True
- -
      (1.81 secs, 1,569,390,480 bytes)
```

- -- λ> conmutativa3 (tablaSuma 2000)
- -- True
- -- (3.07 secs, 1,601,006,840 bytes)
- -- λ> conmutativa4 (tablaSuma 2000)
- -- True
- -- (3.14 secs, 1,536,971,288 bytes)

Árbol de subconjuntos

Nunca traces tu frontera, ni cuides de tu perfil; todo eso es cosa de fuera.

Antonio Machado

Enunciado

Se dice que A es un subconjunto maximal de B si A \subset B y no existe ningún C tal que A \subset C y C \subset B. Por ejemplo, {2,5} es un subconjunto maximal de {2,3,5}, pero {3} no lo es.

El árbol de los subconjuntos de un conjunto A es el árbol que tiene como raíz el conjunto A y cada nodo tiene como hijos sus subconjuntos maximales. Por ejemplo, el árbol de subconjuntos de [2,3,5] es

Usando el tipo de dato

```
data Arbol = N Integer [Arbol]
  deriving (Eq, Show)
```

el árbol anterior se representa por

```
N[2,5,3]
  [N [5,3]
     [N [3]
        [N [] []],
      N [5]
        [N [] []]],
   N [2,3]
     [N [3]
        [N [] []],
      N [2]
        [N [] []],
   N [2,5]
     [N [5]
        [N [] []],
      N [2]
        [N [] []]]
```

Definir las funciones

```
arbolSubconjuntos :: [Int] -> Arbol
nOcurrenciasArbolSubconjuntos :: [Int] -> [Int] -> Int
```

tales que

■ (arbolSubconjuntos x) es el árbol de los subconjuntos de xs. Por ejemplo,

 (nOcurrenciasArbolSubconjuntos xs ys) es el número de veces que aparece el conjunto xs en el árbol de los subconjuntos de ys. Por ejemplo,

```
n0currenciasArbolSubconjuntos [] [2,5,3] == 6
n0currenciasArbolSubconjuntos [3] [2,5,3] == 2
n0currenciasArbolSubconjuntos [3,5] [2,5,3] == 1
n0currenciasArbolSubconjuntos [3,5,2] [2,5,3] == 1
```

Comprobar con QuickChek que, para todo entero positivo n, el número de ocurrencia de un subconjunto xs de [1..n] en el árbol de los subconjuntos de [1..n] es el factorial de n-k (donde k es el número de elementos de xs).

```
import Data.List (delete, nub, sort)
import Test.QuickCheck
data Arbol = N [Int] [Arbol]
  deriving (Eq, Show)
arbolSubconjuntos :: [Int] -> Arbol
arbolSubconjuntos xs =
  N xs (map arbolSubconjuntos (subconjuntosMaximales xs))
-- (subconjuntosMaximales xs) es la lista de los subconjuntos maximales
-- de xs. Por ejemplo,
      subconjuntosMaximales [2,5,3] == [[5,3],[2,3],[2,5]]
subconjuntosMaximales :: [Int] -> [[Int]]
subconjuntosMaximales xs =
  [delete x xs | x <- xs]
-- Definición de nOcurrenciasArbolSubconjuntos
nOcurrenciasArbolSubconjuntos :: [Int] -> [Int] -> Int
nOcurrenciasArbolSubconjuntos xs ys =
  nOcurrencias xs (arbolSubconjuntos ys)
```

```
-- (nOcurrencias x a) es el número de veces que aparece x en el árbol
-- a. Por ejemplo,
     nOcurrencias 3 (arbolSubconjuntos 30) == 2
nOcurrencias :: [Int] -> Arbol -> Int
nOcurrencias xs (N ys [])
  | conjunto xs == conjunto ys = 1
  | otherwise
                                = 0
nOcurrencias xs (N ys zs)
  conjunto xs == conjunto ys = 1 + sum [n0currencias xs z | z <- zs]</pre>
  | otherwise
                               = sum [n0currencias xs z | z <- zs]
-- (conjunto xs) es el conjunto ordenado correspondiente a xs. Por
-- ejemplo,
      conjunto [3,2,5,2,3,7,2] == [2,3,5,7]
conjunto :: [Int] -> [Int]
conjunto = nub . sort
-- La propiedad es
prop nOcurrencias :: (Positive Int) -> [Int] -> Bool
prop n0currencias (Positive n) xs =
 n0currenciasArbolSubconjuntos ys [1..n] == factorial (n-k)
 where ys = nub [1 + x \mod n | x < -xs]
        k = length ys
        factorial m = product [1..m]
-- La comprobación es
     λ> quickCheckWith (stdArgs {maxSize=9}) prop nOcurrencias
     +++ OK, passed 100 tests.
```

El teorema de Navidad de Fermat

- ¡Cuándo llegará otro día!
- Hoy es siempre todavía.

Antonio Machado

Enunciado

El 25 de diciembre de 1640, en una carta a Mersenne, Fermat demostró la conjetura de Girard: todo primo de la forma 4n+1 puede expresarse de manera única como suma de dos cuadrados. Por eso es conocido como el Teorema de Navidad de Fermat

Definir las funciones

```
representaciones :: Integer -> [(Integer,Integer)]
primosImparesConRepresentacionUnica :: [Integer]
primos4nM1 :: [Integer]
```

tales que

• (representaciones n) es la lista de pares de números naturales (x,y) tales que $n=x^2+y^2$ con $x\leq y$. Por ejemplo.

```
representaciones 20 == [(2,4)]
representaciones 25 == [(0,5),(3,4)]
```

```
representaciones 325 == [(1,18),(6,17),(10,15)]

representaciones 100000147984 == [(0,316228)]

length (representaciones (10^10)) == 6

length (representaciones (4*10^12)) == 7
```

■ primosImparesConRepresentacionUnica es la lista de los números primos impares que se pueden escribir exactamente de una manera como suma de cuadrados de pares de números naturales (x,y) con $x \le y$. Por ejemplo,

```
λ> take 20 primosImparesConRepresentacionUnica
[5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,173,181,193]
```

 primos4nM1 es la lista de los números primos que se pueden escribir como uno más un múltiplo de 4 (es decir, que son congruentes con 1 módulo 4). Por ejemplo,

```
λ> take 20 primos4nM1
[5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,173,181,193]
```

El teorema de Navidad de Fermat que afirma que un número primo impar p se puede escribir exactamente de una manera como suma de dos cuadrados de números naturales $p=x^2+y^2$ (con $x\leq y$) si, y sólo si, p se puede escribir como uno más un múltiplo de 4 (es decir, que son congruentes con 1 módulo 4).

Comprobar con QuickCheck el torema de Navidad de Fermat; es decir, que para todo número n, los n-ésimos elementos de primosImparesConRepresentacionUnica y de primos4nM1 son iguales.

```
[(x,y) \mid x \leftarrow [0..n], y \leftarrow [x..n], n == x*x + y*y]
-- 2ª definición de representaciones
representaciones2 :: Integer -> [(Integer,Integer)]
representaciones2 n =
  [(x,raiz z) | x \leftarrow [0..raiz (n `div` 2)]
              , let z = n - x*x
              , esCuadrado z]
-- (esCuadrado x) se verifica si x es un número al cuadrado. Por
-- ejemplo,
     esCuadrado 25 == True
     esCuadrado 26 == False
esCuadrado :: Integer -> Bool
esCuadrado x = x == y * y
 where y = raiz x
-- (raiz x) es la raíz cuadrada entera de x. Por ejemplo,
     raiz 25 == 5
     raiz 24 == 4
     raiz 26 == 5
raiz :: Integer -> Integer
raiz 0 = 0
raiz 1 = 1
raiz x = aux (0,x)
   where aux (a,b) \mid d == x = c
                    | c == a
                              = a
                    \mid d < x = aux (c,b)
                    | otherwise = aux (a,c)
              where c = (a+b) \dot div 2
                    d = c^2
-- 3ª definición de representaciones
  representaciones3 :: Integer -> [(Integer,Integer)]
representaciones3 n =
  [(x,raiz3 z) | x \leftarrow [0..raiz3 (n 'div' 2)]
```

```
, let z = n - x*x
              , esCuadrado3 z]
-- (esCuadrado x) se verifica si x es un número al cuadrado. Por
-- ejemplo,
     esCuadrado3 25 == True
     esCuadrado3 26 == False
esCuadrado3 :: Integer -> Bool
esCuadrado3 x = x == y * y
 where y = raiz3 x
-- (raiz3 x) es la raíz cuadrada entera de x. Por ejemplo,
     raiz3 25 == 5
     raiz3 24 == 4
     raiz3 26 == 5
raiz3 :: Integer -> Integer
raiz3 x = floor (sqrt (fromIntegral x))
-- 4º definición de representaciones
- - -----
representaciones4 :: Integer -> [(Integer, Integer)]
representaciones4 n = aux 0 (floor (sqrt (fromIntegral n)))
 where aux x y
         | x > y
                   = []
         | otherwise = case compare (x*x + y*y) n of
                        LT \rightarrow aux (x + 1) y
                        EQ -> (x, y) : aux (x + 1) (y - 1)
                        GT -> aux x (y - 1)
-- Equivalencia de las definiciones de representaciones
-- La propiedad es
prop representaciones equiv :: (Positive Integer) -> Bool
prop representaciones equiv (Positive n) =
  representaciones n == representaciones2 n &&
  representaciones2 n == representaciones3 n &&
  representaciones3 n == representaciones4 n
```

```
-- La comprobación es
      λ> quickCheck prop representaciones equiv
      +++ OK, passed 100 tests.
-- Comparación de eficiencia de las definiciones de representaciones
      \lambda> representaciones 3025
      [(0,55),(33,44)]
      (2.86 secs, 1,393,133,528 bytes)
      λ> representaciones2 3025
      [(0,55),(33,44)]
      (0.00 secs, 867,944 bytes)
      λ> representaciones3 3025
      [(0,55),(33,44)]
      (0.00 secs, 173,512 bytes)
      λ> representaciones4 3025
      [(0,55),(33,44)]
      (0.00 secs, 423,424 bytes)
      \lambda> length (representaciones2 (10^10))
      (3.38 secs, 2,188,903,544 bytes)
      \lambda> length (representaciones3 (10^10))
      (0.10 secs, 62,349,048 bytes)
      \lambda> length (representaciones4 (10^10))
      (0.11 secs, 48,052,360 bytes)
      \lambda> length (representaciones3 (4*10^12))
      (1.85 secs, 1,222,007,176 bytes)
      \lambda> length (representaciones4 (4*10^12))
      (1.79 secs, 953,497,480 bytes)
-- Definición de primosImparesConRepresentacionUnica
```

```
primosImparesConRepresentacionUnica :: [Integer]
primosImparesConRepresentacionUnica =
  [x | x <- tail primes</pre>
     , length (representaciones4 x) == 1]
-- Definición de primos4nM1
primos4nM1 :: [Integer]
primos4nM1 = [x | x < - primes
               , x \mod 4 == 1
-- Teorema de Navidad de Fermat
-- La propiedad es
prop teoremaDeNavidadDeFermat :: Positive Int -> Bool
prop_teoremaDeNavidadDeFermat (Positive n) =
 primosImparesConRepresentacionUnica !! n == primos4nM1 !! n
-- La comprobación es
     λ> quickCheck prop teoremaDeNavidadDeFermat
     +++ OK, passed 100 tests.
```

El 2019 es apocalíptico

A vosotros no os importe pensar lo que habéis leído ochenta veces y oído quinientas, porque no es lo mismo pensar que haber leído.

Antonio Machado

Enunciado

Un número natural n es [apocalíptico](http://bit.ly/2RqeeNk) si 2^n contiene la secuencia 666. Por ejemplo, 157 es apocalíptico porque 2^157 es

182687704666362864775460604089535377456991567872

que contiene la secuencia 666.

Definir las funciones

```
esApocaliptico :: Integer -> Bool
apocalipticos :: [Integer]
posicionApocaliptica :: Integer -> Maybe Int
```

tales que

• (esApocaliptico n) se verifica si n es un número apocalíptico. Por ejemplo,

```
esApocaliptico 157 == True
esApocaliptico 2019 == True
esApocaliptico 2018 == False
```

apocalipticos es la lista de los números apocalípticos. Por ejemplo,

```
take 9 apocalipticos == [157,192,218,220,222,224,226,243,245] apocalipticos !! 450 == 2019
```

(posicionApocalitica n) es justo la posición de n en la sucesión de números apocalípticos, si n es apocalíptico o Nothing, en caso contrario. Por ejemplo,

```
posicionApocaliptica 157 == Just 0
posicionApocaliptica 2019 == Just 450
posicionApocaliptica 2018 == Nothing
```

```
import Data.List (isInfixOf, elemIndex)

-- 1ª definición de esApocaliptico
esApocaliptico :: Integer -> Bool
esApocaliptico n = "666" `isInfixOf` show (2^n)

-- 2ª definición de esApocaliptico
esApocaliptico2 :: Integer -> Bool
esApocaliptico2 = isInfixOf "666" . show . (2^)

-- 1ª definición de apocalipticos
apocalipticos :: [Integer]
apocalipticos = [n | n <- [1..], esApocaliptico n]

-- 2ª definición de apocalipticos
apocalipticos2 :: [Integer]
apocalipticos2 :: [Integer]
apocalipticos2 :: [Integer]
apocalipticos2 = filter esApocaliptico [1..]</pre>
```

El 2019 es malvado

...Yo os enseño, o pretendo enseñaros a que dudéis de todo: de lo humano y de lo divino, sin excluir vuestra propia existencia.

Antonio Machado

Enunciado

Un número malvado es un número natural cuya expresión en base 2 contiene un número par de unos. Por ejemplo, 6 es malvado porque su expresión en base 2 es 110 que tiene dos unos.

Definir las funciones

```
esMalvado :: Integer -> Bool
malvados :: [Integer]
posicionMalvada :: Integer -> Maybe Int
```

tales que

• (esMalvado n) se verifica si n es un número malvado. Por ejemplo,

```
esMalvado 6 == True
esMalvado 7 == False
esMalvado 2019 == True
```

```
esMalvado (10^70000) == True \\ esMalvado (10^(3*10^7)) == True
```

malvados es la sucesión de los números malvados. Por ejemplo,

```
\lambda> take 20 malvados [0,3,5,6,9,10,12,15,17,18,20,23,24,27,29,30,33,34,36,39] malvados !! 1009 == 2019 malvados !! 10 == 20 malvados !! (10^2) == 201 malvados !! (10^3) == 2000 malvados !! (10^4) == 20001 malvados !! (10^5) == 200000 malvados !! (10^6) == 2000001
```

 (posicionMalvada n) es justo la posición de n en la sucesión de números malvados, si n es malvado o Nothing, en caso contrario. Por ejemplo,

```
      posicionMalvada 6
      ==
      Just 3

      posicionMalvada 2019
      ==
      Just 1009

      posicionMalvada 2018
      ==
      Nothing

      posicionMalvada 2000001
      ==
      Just 1000000

      posicionMalvada (10^7)
      ==
      Just 5000000
```

```
-- (numeroUnosBin n) es el número de unos de la representación binaria
-- del número decimal n. Por ejemplo,
   numeroUnosBin 11 == 3
    numeroUnosBin 12 == 2
numeroUnosBin :: Integer -> Integer
numeroUnosBin n = genericLength (filter (== 1) (binario n))
-- Sin argumentos
numeroUnosBin' :: Integer -> Integer
numeroUnosBin' = genericLength . filter (== 1) . binario
-- (binario n) es el número binario correspondiente al número decimal n.
-- Por ejemplo,
-- binario 11 == [1,1,0,1]
    binario 12 == [0,0,1,1]
binario :: Integer -> [Integer]
binario n \mid n < 2 = [n]
         | otherwise = n `mod` 2 : binario (n `div` 2)
-- 2ª definición de esMalvado
- - -----
esMalvado2 :: Integer -> Bool
esMalvado2 n = even (numeroUnosBin n)
-- (numeroIntBin n) es el número de unos que contiene la representación
-- binaria del número decimal n. Por ejemplo,
    numeroIntBin 11 == 3
    numeroIntBin 12 == 2
numeroIntBin :: Integer -> Integer
numeroIntBin n | n < 2</pre>
                        = n
              | otherwise = n `mod` 2 + numeroIntBin (n `div` 2)
-- 3ª definición de esMalvado
- - -----
esMalvado3 :: Integer -> Bool
esMalvado3 n = even (popCount n)
-- Sin argumentos
```

```
esMalvado3' :: Integer -> Bool
esMalvado3' = even . popCount
-- Comparación de eficiencia
  _____
     \lambda> esMalvado (10^30000)
     True
     (1.79 secs, 664,627,936 bytes)
     \lambda> esMalvado2 (10^30000)
     True
     (1.79 secs, 664,626,992 bytes)
     \lambda> esMalvado3 (10^30000)
     True
     (0.03 secs, 141,432 bytes)
     \lambda> esMalvado (10^40000)
     False
     (2.95 secs, 1,162,091,464 bytes)
     \lambda> esMalvado2 (10^40000)
     False
     (2.96 secs, 1,162,091,096 bytes)
     \lambda> esMalvado3 (10^40000)
     False
     (0.04 secs, 155,248 bytes)
-- 1ª definición de malvados
malvados :: [Integer]
malvados = [n \mid n \leftarrow [0..], esMalvado3 n]
-- 2ª definición de malvados
malvados2 :: [Integer]
malvados2 = filter esMalvado3 [0..]
-- 1º definición de posicionMalvada
```

El 2019 es semiprimo

Porque toda visión requiere distancia, no hay manera de ver las cosas sin salirse de ellas.

Antonio Machado

Enunciado

Un número semiprimo es un número natural que es producto de dos números primos no necesariamente distintos. Por ejemplo, 26 es semiprimo (porque 26 = 2*13) y 49 también lo es (porque 49 = 7*7).

Definir las funciones

```
esSemiprimo :: Integer -> Bool semiprimos :: [Integer]
```

tales que

(esSemiprimo n) se verifica si n es semiprimo. Por ejemplo,

```
esSemiprimo 26 == True
esSemiprimo 49 == True
esSemiprimo 8 == False
esSemiprimo 2019 == True
esSemiprimo (21+10^14) == True
```

semiprimos es la sucesión de números semiprimos. Por ejemplo,

```
take 10 semiprimos == [4,6,9,10,14,15,21,22,25,26]
semiprimos !! 579 == 2019
semiprimos !! 10000 == 40886
```

```
import Data.Numbers.Primes
import Test.QuickCheck
-- 1º definición de esSemiprimo
- - =============
esSemiprimo :: Integer -> Bool
esSemiprimo n =
 not (null [x \mid x \leftarrow [n, n-1..2],
                primo x,
                n \mod x == 0,
                primo (n `div` x)])
primo :: Integer -> Bool
primo n = [x \mid x \leftarrow [1..n], n \mod x == 0] == [1,n]
-- 2º definición de esSemiprimo
esSemiprimo2 :: Integer -> Bool
esSemiprimo2 n =
 not (null [x \mid x \leftarrow [n-1, n-2...2],
                isPrime x,
                n \mod x == 0,
                isPrime (n `div` x)])
-- 3ª definición de esSemiprimo
esSemiprimo3 :: Integer -> Bool
esSemiprimo3 n =
```

```
not (null [x \mid x \leftarrow reverse (takeWhile (< n) primes),
                n \mod x == 0,
                isPrime (n `div` x)])
-- 4º definición de esSemiprimo
- - ==============
esSemiprimo4 :: Integer -> Bool
esSemiprimo4 n =
 length (primeFactors n) == 2
-- Equivalencia de las definiciones de esSemiprimo
-- La propiedad es
prop_esSemiprimo :: Positive Integer -> Bool
prop esSemiprimo (Positive n) =
  all (== esSemiprimo n) [f n | f <- [ esSemiprimo2
                                    , esSemiprimo3
                                    , esSemiprimo4
                                    ]]
-- La comprobación es
     λ> quickCheck prop esSemiprimo
     +++ OK, passed 100 tests.
-- Comparación de eficiencia
λ> esSemiprimo 5001
     True
     (1.90 secs, 274,450,648 bytes)
     λ> esSemiprimo2 5001
     True
     (0.07 secs, 29,377,016 bytes)
     λ> esSemiprimo3 5001
     True
     (0.01 secs, 1,706,840 bytes)
     λ> esSemiprimo4 5001
     True
```

```
(0.01 secs, 142,840 bytes)
      λ> esSemiprimo2 100001
      True
      (2.74 secs, 1,473,519,064 bytes)
      λ> esSemiprimo3 100001
      True
      (0.09 secs, 30,650,352 bytes)
      λ> esSemiprimo4 100001
      True
      (0.01 secs, 155,200 bytes)
      λ> esSemiprimo3 10000001
     True
      (8.73 secs, 4,357,875,016 bytes)
     λ> esSemiprimo4 10000001
     True
      (0.01 secs, 456,328 bytes)
-- Definición de semiprimos
semiprimos :: [Integer]
semiprimos = filter esSemiprimo4 [4..]
```

El 2019 es un número de la suerte

Ya es sólo brocal el pozo; púlpito será mañana; pasado mañana, trono.

Antonio Machado

Enunciado

Un número de la suerte es un número natural que se genera por una criba, similar a la criba de Eratóstenes, como se indica a continuación:

Se comienza con la lista de los números enteros a partir de 1:

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25...

Se eliminan los números de dos en dos

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25...

Como el segundo número que ha quedado es 3, se eliminan los números restantes de tres en tres:

1, 3, 7, 9, 13, 15, 19, 21, 25...

Como el tercer número que ha quedado es 7, se eliminan los números restantes de siete en siete:

```
1, 3, 7, 9, 13, 15, 21, 25...
```

Este procedimiento se repite indefinidamente y los supervivientes son los números de la suerte:

```
1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75,79
```

Definir las funciones

```
numerosDeLaSuerte :: [Int]
esNumeroDeLaSuerte :: Int -> Bool
```

tales que

 numerosDeLaSuerte es la sucesión de los números de la suerte. Por ejemplo,

```
λ> take 20 numerosDeLaSuerte
[1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75,79]
λ> numerosDeLaSuerte !! 277
2019
λ> numerosDeLaSuerte !! 2000
19309
```

(esNumeroDeLaSuerte n) que se verifica si n es un número de la suerte.
 Por ejemplo,

```
esNumeroDeLaSuerte 15 == True
esNumeroDeLaSuerte 16 == False
esNumeroDeLaSuerte 2019 == True
```

```
-- 1ª definición de numerosDeLaSuerte
numerosDeLaSuerte :: [Int]
numerosDeLaSuerte = criba 3 [1,3..]
```

```
where
    criba i (n:s:xs) =
      n : criba (i + 1) (s : [x | (k, x) <- zip [i..] xs
                                , rem k s /= 0])
-- 2ª definición de numerosDeLaSuerte
numerosDeLaSuerte2 :: [Int]
numerosDeLaSuerte2 = 1 : criba 2 [1, 3..]
 where criba k xs = z : criba (k + 1) (aux xs)
          where z = xs !! (k - 1)
                aux ws = us ++ aux vs
                  where (us, \underline{\hspace{0.1cm}}:vs) = splitAt (z - 1) ws
-- Comparación de eficiencia
λ> numerosDeLaSuerte2 !! 200
      1387
      (9.25 secs, 2,863,983,232 bytes)
     λ> numerosDeLaSuerte !! 200
     1387
      (0.06 secs, 10,263,880 bytes)
-- Definición de esNumeroDeLaSuerte
esNumeroDeLaSuerte :: Int -> Bool
esNumeroDeLaSuerte n =
  n == head (dropWhile (<n) numerosDeLaSuerte)</pre>
```