

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA ESTATÍTICA

Prof.^a Raiana Roland Seixas

Aluno: Pedro henrique Silva Santana Matrícula: 12011BSI218

Lista 04 - Distribuições Probabilísticas

1) O número X de mensagens enviadas por hora, através de uma rede de computadores, tem a seguinte distribuição: X assume os valores {10, 12, 15 e 20} com probabilidades {0,1; 0,3; 0,5; 0,1}, respectivamente. Determine a esperança matemática e o desvio padrão de X.

Esperança Matemática

$$(10*0,1) + (12*0.3) + (15*0.5) + (20*0.1) = 1+3,6+7,5+2 =$$
14.1

Desvio Padrão

$$\sqrt{(10^2 * 0.1) + (12^2 * 0.3) + (15^2 * 0.5) + (20^2 * 0.1) - 14.1^2} = \sqrt{10 + 43.2 + 112.5 + 40 - 198.81} = \sqrt{6.89} = 2.62$$

R. 14,1 e 2,62

2) Num conjunto de produtos a probabilidade de um produto apresentar uma falha é de 20%. Em 5 produtos escolhidos ao acaso, qual a probabilidade de 2 produtos apresentarem esta falha.

X = 2

$$P(X = 2) = {5 \choose 2} 0.2^2 * 0.8^3 = \mathbf{0.02048}$$

$$R: P(X=2) = 0.2048$$

3) Chegam caminhões a um depósito à razão de 2,8 caminhões/hora. Determine a probabilidade de chegarem 2 ou mais caminhões:

$$P(X \ge 2) = 1 - [P(0) + P(1)]$$

a) Num período de 30 minutos

$$P(X \ge 2) = 1 - \left[\frac{e^{-1,4} * 1,4^{0}}{0!} + \frac{e^{-1,4} * 1,4^{1}}{1!} \right] =$$

$$P(X \ge 2) = 1 - \left[\frac{e^{-1,4} * 1}{1} + \frac{e^{-1,4} * 1,4^{1}}{1} \right] = 1 - \left[0,24659696394 (1 + 1,4) \right]$$

$$= 0,40817$$

b) Num período de 1 hora

$$P(X \ge 2) = 1 - \left[\frac{e^{-2,8} * 2,8^{0}}{0!} + \frac{e^{-2,8} * 2,8^{1}}{1!} \right] =$$

$$P(X \ge 2) = 1 - \left[\frac{e^{-2,8} * 1}{1} + \frac{e^{-2,8} * 2,8^{1}}{1} \right] = 1 - [0,06081006262 (1 + 2,8)]$$

c) Num período de 2 horas.

$$P(X \ge 2) = 1 - \left[\frac{e^{-5.6} * 5.6^{0}}{0!} + \frac{e^{-5.6} * 5.6^{1}}{1!} \right] =$$

$$P(X \ge 2) = 1 - \left[\frac{e^{-5.6} * 1}{1} + \frac{e^{-5.6} * 5.6^{1}}{1} \right] = 1 - [0.00369786371 (1 + 5.6)]$$

$$= 0.97485$$

R: 1- [P(0)+P(1)]

a) $\lambda = 1.4$ R= 0.40817

b) $\lambda = 2.8$ **R**=0.76892

c) $\lambda = 5.6$ R=0.97559

4) Em uma região do Brasil a taxa de contaminação por resíduo industrial é igual a 10 %. Em uma amostra aleatória de 20 pessoas dessa região, qual a probabilidade de 5 serem contaminadas.

X = 5

$$P(X = 5) = {20 \choose 5} 0.1^5 * 0.9^{15} =$$

$$\frac{20 * 19 * 18 * 17 * 16 * 15!}{5 * 4 * 3! * 15!} 0.00001 * 0.20589113209 =$$

$$0.03192$$

$$R: P(X=5) = 0.03192$$

5) Uma distribuição binomial tem média 12 e variância 8. Qual é o valor de n?

$$Var = E(X) * q$$

 $8 = 12 * q$
 $q = 0.666$

$$p = 1 - q = 1 - 0,666 = 0,333$$

$$E(X) = n * p$$

 $12 = n * 0.333$
 $n = 36$

$$n = 36$$

6) O número de clientes atendidos pelo caixa de um banco é de 4, em média, por hora. Qual a probabilidade de se atender:

a) Exatamente 4 clientes em uma hora? Resposta: P(X=4)=0,1954

$$P(X = 4) = \frac{e^{-4} * 4^{4}}{4!} =$$

$$P(X = 4) = \frac{e^{-4} * 4^{3}}{6} = \mathbf{0}, \mathbf{1954}$$

b) No máximo 2 clientes em uma hora? Resposta: P(X≤2)=0,2381

$$P(X \le \mathbf{2}) = \frac{e^{-4} * 4^{0}}{0!} + \frac{e^{-4} * 4^{1}}{1!} + \frac{e^{-4} * 4^{2}}{2!} =$$

$$P(X \le \mathbf{2}) = \frac{e^{-4} * 1}{1} + \frac{e^{-4} * 4}{1} + \frac{e^{-4} * 16}{2} =$$

$$(X \le \mathbf{2}) = e^{-4}(1 + 4 + 8) = \mathbf{0}, \mathbf{1954}$$

c) Pelo menos 2 clientes em uma hora? Resposta: P(X≥2)=0,9084

$$P(X \ge 2) = 1 - \left[\frac{e^{-4} * 4^0}{0!} + \frac{e^{-4} * 4^1}{1!} \right] =$$

$$P(X \ge 2) = 1 - \left[\frac{e^{-4} * 1}{1} + \frac{e^{-4} * 4}{1} \right] = 1 - \left[e^4 * (1+4) \right] = \mathbf{0}, \mathbf{9084}$$

7) Determinar as probabilidades ou os valores de z nas seguintes situações:

Com base na tabela da norma padrão:

Tabela - Normal Padrão de 0 a z								$P(0 \le Z \le z)$				
	Segunda casa decimal de Z											
		0	1	2	3	4	5	6	7	8	9	
	0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359	
	0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753	
Parte inteéra e primeira casa decimal de 2.	0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141	
	0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517	
	0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879	
	0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224	
	0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549	
	0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852	
	0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133	
	0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389	
	1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621	
	1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830	
	1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015	
	1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177	
	1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319	
	1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441	
	1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545	
	1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633	
	1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706	
	1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767	
	2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817	
	2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857	
	2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890	
	2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916	
	2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936	
	2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952	
	2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964	
	2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974	
	2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981	
	2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986	
	3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990	
	3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993	
	3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995	
	3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997	
	3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998	
	3,5	0,4998	0,4998	0.4998	0.4998	0.4998	0,4998	0,4998	0,4998	0,4998	0,4998	
	3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	
	3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	
	3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	
	3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	
	4,0	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	
Professor Guru								profe	professorguru.com.br			

a)
$$P(0.00 < Z < 1.20)$$

= **0.3849**

b)
$$P(-0.68 < Z < 0.0)$$

= 0.2517

c)
$$P(-0.46 < Z < 2.21)$$

= 0.1772 + 0.4864
= 0.6636

d)
$$P(Z > 0.75)$$

= $0.5 - 0.2734$
= **0.2266**

e)
$$P(Z < 1,43)$$

= 0,5 + 0,4236
= **0**, **9236**

f)
$$P(Z < -3,00)$$

= 0,5 - 0,4987
= **0,0013**

g)
$$P(Z < z) = 0.025$$

 $z = -1.96$

h)
$$P(Z < z) = 0.9082$$

 $z = 1.33$

i)
$$P(1,96 < Z < z) = 0.01$$

 $P(z) = 0.9850$
 $z = 2.1$

Respostas:

a. 0,3849

b. 0,2517

c. 0,6636

d. 0,2266

e. 0,9236

f. 0,0013

g. z=-1,96

h. z=1,33

i. z=2,17

8) Os pesos dos alunos de uma determinada turma têm distribuição normal com média 63,6 kg e desvio padrão 2,5 kg. Selecionada aleatoriamente uma mulher, determine a probabilidade de o seu peso estar entre 63,6 e 68,6 kg.

$$Z' = \frac{63,6 - 63,6}{2,5} = \frac{0}{2,5} = 0$$

$$Z'' = \frac{68,6 - 63,6}{2,5} = \frac{5}{2,5} = 2$$

$$P(0 < Z < 2)$$

$$= 0,4772$$

R. 0,4772

9) Considerando os dados do problema anterior, determine:

a) P(63,6<x<65,0)

$$Z' = \frac{63,6 - 63,6}{2,5} = \frac{0}{2,5} = 0$$

$$Z'' = \frac{65 - 63,6}{2,5} = \frac{1,4}{2,5} = 0,56$$

$$P(0 < Z < 0,56)$$

$$= 0,2123$$

R. 0,2123

b) P(x>58,1)

$$Z' = \frac{58,1 - 63,6}{2,5} = \frac{-5,5}{2,5} = -2,2$$

$$P(Z > -2,2)$$

$$= 0,4861 + 0,5$$

$$= 0,9861$$

10) Os prazos de substituição de aparelhos de TV têm distribuição normal com média de 8,2 anos e desvio padrão de 1,1 ano. Determine a probabilidade de um aparelho de TV selecionado aleatoriamente acusar um tempo de substituição inferior a 7,0 anos.

$$Z' = \frac{7 - 8.2}{1.1} = \frac{-1.2}{1.1} = -1.09090909090909091$$

$$P(Z < -1.09)$$

$$= 0.5 - 0.3621$$

$$= 0.1379$$

R. 0,1379

11) Supondo que os pesos do papel descartado semanalmente pelas residências tenham distribuição normal com média de 9,4 kg e desvio padrão de 4,2 kg. Determine a probabilidade de escolher aleatoriamente uma residência que descarte entre 5,0 kg e 8,0 kg de papel em uma semana.

R. 0,2215

12) Os escores de QI têm distribuição normal com média 100 e desvio padrão 15. A admissão na empresa X exige um QI superior a 131,5.

$$Z' = \frac{131,5 - 100}{15} = \frac{31,5}{15} = 2,1$$

a) escolhida aleatoriamente uma pessoa, determine a probabilidade dela satisfazer aquela exigência da empresa.

$$P(Z > 2,1)$$

= 0,5 - 0,4821
= **0**,**0179**

R. 0,0179

b) em uma região de 70.000 habitantes, quantos serão candidatos à uma vaga na empresa?

$$70000 * 0,0179$$
 = **1253**