Q7 Partial Differential Equations

(Dr. Quaife; Summer 2017)

Part a

Start with 2nd degree Taylor Expansions:

$$f(x+h) = f(x) + f'(x) * h + (\frac{1}{2!})(f''(x) * h^2) + (\frac{1}{3!})(f'''(\xi_1) * h^3)$$
 Equation 1

$$f(x-h) = f(x) - f'(x) * h + (\frac{1}{2!})(f''(x) * h^2) - (\frac{1}{3!})(f'''(\xi_2) * h^3)$$
 Equation 2

Subtract equation 2 from equation 1:

$$f(x+h) - f(x-h) = 2 f'(x) * h + \left[\left(\frac{1}{3!} \right) f'''(\xi_1) * h^3 + \left(\frac{1}{3!} \right) f'''(\xi_2) * h^3 \right]$$

$$f(x+h) - f(x-h) = 2 f'(x) * h + (\frac{1}{3}) f'''(\xi) * h^3$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f'''(\xi) * h^3}{3! * 2h}$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f'''(\xi) * h^2}{12}$$
, where $\frac{f'''(\xi) * h^2}{12} = \text{truncation error.}$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - O(h^2)$$
, where $O(h^2) = \text{truncation error with 2nd order accuracy.}$

Now put in terms of function U(x,y) which is a function with variables x and y:

$$U_x = \frac{\partial \ u(x_i, y_i)}{\partial x} = \frac{U(x+h, y) - U(x-h, y)}{2h} - O_x(h^2)$$

Now take partial derivative with respect to x and y:

$$U_{xy} = \left(\frac{1}{2h}\right) \left[\left(\frac{U(x+h,y+h) - U(x-h,y+h)}{2h}\right) - \left(\frac{U(x+h,y-h) - U(x-h,y-h)}{2h}\right) \right] - \left(\frac{1}{3!}\right) f^{"'}\left(\xi_{xy}\right) h^{3}$$

$$U_{xy} = \left(\frac{U(x+h,y+h) - U(x-h,y+h)}{2h*2h}\right) - \left(\frac{U(x+h,y-h) - U(x-h,y-h)}{2h*2h}\right) - \left(\frac{1}{3!}\right)f'''(\xi_{xy}) * h^3\left(\frac{1}{2h}\right)$$

$$U_{xy} = \left(\frac{U(x+h,y+h) - U(x-h,y+h)}{4h^2}\right) - \left(\frac{U(x+h,y-h) - U(x-h,y-h)}{4h^2}\right) - \left(\frac{1}{12}\right)f'''(\xi_{xy}) * h^2$$

$$U_{xy} = \frac{U(x+h,y+h) + U(x-h,y-h) - U(x+h,y-h) - U(x-h,y+h)}{4h^2} - O(h^2)$$

where $O(h^2)$ = truncation error with 2nd order accuracy.

$$U_{xy} \approx \frac{U(x+h,y+h) + U(x-h,y-h) - U(x+h,y-h) - U(x-h,y+h)}{4h^2}$$

Part b

Standard 2nd Order Centered Difference Approximation for U_{xx} :

$$U_{xx} = \frac{\partial^2 u(x_i, y_j)}{\partial x^2} = \frac{U(x+h, y) - 2U(x, y) + U(x-h, y)}{h^2} - O(h^2)$$

$$U_{xx} \approx \frac{u(x_{i+1}, y_j) - 2u(x_i, y_j) + u(x_{i-1}, y_j)}{h^2}$$

From part a:

$$U_{xy} \approx \frac{U(x+h,y+h) + U(x-h,y-h) - U(x+h,y-h) - U(x-h,y+h)}{4h^2}$$

$$U_{xy} \approx \frac{u(x_{i+1},y_{j+1}) + u(x_{i-1},y_{j-1}) - u(x_{i+1},y_{j-1}) - u(x_{i-1},y_{j+1})}{4h^2}$$

Two-Dimensional PDE:

$$U_{xx} + U_{xy} = f(x, y)$$

Plugging in the formulas for U_{xx} and U_{xy} :

$$\frac{u(x_{i+1},y_{j})-2u(x_{i},y_{j})+u(x_{i-1},y_{j})}{h^{2}}+\frac{u(x_{i+1},y_{j+1})+u(x_{i-1},y_{j-1})-u(x_{i+1},y_{j-1})-u(x_{i-1},y_{j+1})}{4h^{2}}=f(x_{i},y_{j})$$

Multiplying both sides by $4h^2$:

$$4u(x_{i+1},y_j) - 8\,u(x_i,y_j) + 4u(x_{i-1},y_j) + u\big(x_{i+1},y_{j+1}\big) + u\big(x_{i-1},y_{j-1}\big) - u\big(x_{i+1},y_{j-1}\big) - u\big(x_{i-1},y_{j+1}\big) = 4h^2f(x_i,y_j)$$

Re-arranging terms by rows 1st then by columns:

$$u(x_{i-1},y_{j-1}) - u(x_{i+1},y_{j-1}) + 4u(x_{i-1},y_j) - 8u(x_i,y_j) + 4u(x_{i+1},y_j) - u(x_{i-1},y_{j+1}) + u(x_{i+1},y_{j+1}) = 4h^2f(x_i,y_j)$$

The interval of x and y which are (0,1) are divided in to equidistance nodes spaced at a distance of h.

To have 16 interior nodes, use i = 1, 2, ..., 4.

The interior nodes are labeled $x_{i,i}$.

For Dirichlet Boundary Conditions, the values of $u(x_i, y_i)$ are constant for any i = 0 or 5 or j = 0 or 5.

This new equation is used to generate a system of equations for i = 1, 2, ..., 4 and j = 1, 2, ..., 4.

$$u(x_{i-1},y_{i-1})-u(x_{i+1},y_{i-1})+4u(x_{i-1},y_i)-8u(x_i,y_i)+4u(x_{i+1},y_i)-u(x_{i-1},y_{i+1})+u(x_{i+1},y_{i+1})=4h^2f(x_i,y_i)$$

System of equations with i = 1, 2, 3, 4 and j = 1, 2, 3, 4:

$$i = 1, j = 1$$
 $u(x_0, y_0) - u(x_2, y_0) + 4u(x_0, y_1) - 8u(x_1, y_1) + 4u(x_2, y_1) - u(x_0, y_2) + u(x_2, y_2) = 4h^2f(x_1, y_1)$

$$i = 2, j = 1$$
 $u(x_1, y_0) - u(x_3, y_0) + 4u(x_1, y_1) - 8u(x_2, y_1) + 4u(x_3, y_1) - u(x_1, y_2) + u(x_3, y_2) = 4h^2f(x_2, y_1)$

$$i = 3, j = 1 \quad u(x_2, y_0) - u(x_4, y_0) + 4u(x_2, y_1) - 8u(x_3, y_1) + 4u(x_4, y_1) - u(x_2, y_2) + u(x_4, y_2) = 4h^2f(x_3, y_1) + 4u(x_4, y_2) + 4u(x_$$

$$i = 4, j = 1 \quad u(x_3, y_0) - u(x_5, y_0) + 4u(x_3, y_1) - 8u(x_4, y_1) + 4u(x_5, y_1) - u(x_3, y_2) + u(x_5, y_2) = 4h^2f(x_4, y_1) + 4u(x_5, y_2) + 4u(x_5, y_2) = 4h^2f(x_4, y_2) + 4u(x_5, y_2) + 4u(x_5, y_2) = 4h^2f(x_4, y_2) + 4u(x_5, y_2) + 4u(x_5, y_2) = 4h^2f(x_4, y_2) + 4u(x_5, y_2) + 4u(x_5, y_2) = 4h^2f(x_4, y_2) + 4u(x_5, y_2) + 4u(x_5, y_2) = 4h^2f(x_4, y_2) + 4u(x_5, y_2) = 4h^2f(x_5, y_2) + 4u(x_5, y_2) + 4u(x_5, y_2) + 4u(x_5, y_2) = 4h^2f(x_5, y_2) + 4u(x_5, y_2) = 4h^2f(x_$$

$$i = 1, j = 2$$
 $u(x_0, y_1) - u(x_2, y_1) + 4u(x_0, y_2) - 8u(x_1, y_2) + 4u(x_2, y_2) - u(x_0, y_3) + u(x_2, y_3) = 4h^2f(x_1, y_2)$

$$i = 2, j = 2$$
 $u(x_1, y_1) - u(x_3, y_1) + 4u(x_1, y_2) - 8u(x_2, y_2) + 4u(x_3, y_2) - u(x_1, y_3) + u(x_3, y_3) = 4h^2f(x_2, y_2)$

$$i = 3, j = 2 \quad u(x_2, y_1) - u(x_4, y_1) + 4u(x_2, y_2) - 8u(x_3, y_2) + 4u(x_4, y_2) - u(x_2, y_3) + u(x_4, y_3) = 4h^2f(x_3, y_2)$$

$$i = 4, j = 2 \quad u(x_3, y_1) - u(x_5, y_1) + 4u(x_3, y_2) - 8u(x_4, y_2) + 4u(x_5, y_2) - u(x_3, y_3) + u(x_5, y_3) = 4h^2f(x_4, y_2)$$

$$i = 1, j = 3$$
 $u(x_0, y_2) - u(x_2, y_2) + 4u(x_0, y_3) - 8u(x_1, y_3) + 4u(x_2, y_3) - u(x_0, y_4) + u(x_2, y_4) = 4h^2 f(x_1, y_3)$

$$i = 2, j = 3$$
 $u(x_1, y_2) - u(x_3, y_2) + 4u(x_1, y_3) - 8u(x_2, y_3) + 4u(x_3, y_3) - u(x_1, y_4) + u(x_3, y_4) = 4h^2f(x_2, y_3)$

$$i = 3, j = 3$$
 $u(x_2, y_2) - u(x_4, y_2) + 4u(x_2, y_3) - 8u(x_3, y_3) + 4u(x_4, y_3) - u(x_2, y_4) + u(x_4, y_4) = 4h^2f(x_3, y_3)$

$$i = 4, j = 3$$
 $u(x_3, y_2) - u(x_5, y_2) + 4u(x_3, y_3) - 8u(x_4, y_3) + 4u(x_5, y_3) - u(x_3, y_4) + u(x_5, y_4) = 4h^2f(x_4, y_3)$

$$i = 1, j = 4$$
 $u(x_0, y_3) - u(x_2, y_3) + 4u(x_0, y_4) - 8u(x_1, y_4) + 4u(x_2, y_4) - u(x_0, y_5) + u(x_2, y_5) = 4h^2f(x_1, y_3)$

$$i = 2, j = 4$$
 $u(x_1, y_3) - u(x_3, y_3) + 4u(x_1, y_4) - 8u(x_2, y_4) + 4u(x_3, y_4) - u(x_1, y_5) + u(x_3, y_5) = 4h^2f(x_2, y_3)$

$$i = 3, j = 4$$
 $u(x_2, y_3) - u(x_4, y_3) + 4u(x_2, y_4) - 8u(x_3, y_4) + 4u(x_4, y_4) - u(x_2, y_5) + u(x_4, y_5) = 4h^2f(x_3, y_3)$

$$i = 4, j = 4$$
 $u(x_3, y_3) - u(x_5, y_3) + 4u(x_3, y_4) - 8u(x_4, y_4) + 4u(x_5, y_4) - u(x_3, y_5) + u(x_5, y_5) = 4h^2f(x_4, y_3)$

For boundary values $u(x_{0,i})$, $u(x_{5,i})$ $u(x_{i,0})$, and $u(x_{i,5})$ which are constants, this set of equations becomes:

$$-8u(x_1, y_1) + 4u(x_2, y_1) + u(x_2, y_2) = 4h^2f(x_1, y_1) - u(x_0, y_0) + u(x_2, y_0) - 4u(x_0, y_1) + u(x_0, y_2)$$

$$4u(x_1, y_1) - 8u(x_2, y_1) + 4u(x_3, y_1) - u(x_1, y_2) + u(x_3, y_2) = 4h^2f(x_2, y_1) - u(x_1, y_0) + u(x_3, y_0)$$

$$4u(x_2, y_1) - 8u(x_3, y_1) + 4u(x_4, y_1) - u(x_2, y_2) + u(x_4, y_2) = 4h^2f(x_3, y_1) - u(x_2, y_0) + u(x_4, y_0)$$

$$4u(x_3, y_1) - 8u(x_4, y_1) - u(x_3, y_2) = 4h^2f(x_4, y_1) - u(x_3, y_0) + u(x_5, y_0) - 4u(x_5, y_1) - u(x_5, y_2)$$

$$-u(x_2, y_1) - 8u(x_1, y_2) + 4u(x_2, y_2) + u(x_2, y_3) = 4h^2f(x_1, y_2) - u(x_0, y_1) - 4u(x_0, y_2) + u(x_0, y_3)$$

$$u(x_1, y_1) - u(x_3, y_1) + 4u(x_1, y_2) - 8u(x_2, y_2) + 4u(x_3, y_2) - u(x_1, y_3) + u(x_3, y_3) = 4h^2f(x_2, y_2)$$

$$u(x_2, y_1) - u(x_4, y_1) + 4u(x_2, y_2) - 8u(x_3, y_2) + 4u(x_4, y_2) - u(x_2, y_3) + u(x_4, y_3) = 4h^2f(x_3, y_2)$$

$$u(x_3, y_1) + 4u(x_3, y_2) - 8u(x_4, y_2) - u(x_3, y_3) = 4h^2f(x_4, y_2) + u(x_5, y_1) - 4u(x_5, y_2) - u(x_5, y_3)$$

$$-u(x_2, y_2) - 8u(x_1, y_3) + 4u(x_2, y_3) + u(x_2, y_4) = 4h^2f(x_1, y_3) - u(x_0, y_2) - 4u(x_0, y_3) + u(x_0, y_4)$$

$$u(x_1, y_2) - u(x_3, y_2) + 4u(x_1, y_3) - 8u(x_2, y_3) + 4u(x_3, y_3) - u(x_1, y_4) + u(x_3, y_4) = 4h^2f(x_2, y_3)$$

$$u(x_2, y_2) - u(x_4, y_2) + 4u(x_1, y_3) - 8u(x_2, y_3) + 4u(x_3, y_3) - u(x_1, y_4) + u(x_3, y_4) = 4h^2f(x_2, y_3)$$

$$u(x_2, y_2) - u(x_4, y_2) + 4u(x_2, y_3) - 8u(x_3, y_3) + 4u(x_4, y_3) - u(x_2, y_4) + u(x_4, y_4) = 4h^2f(x_3, y_3)$$

$$u(x_3, y_2) + 4u(x_3, y_3) - 8u(x_4, y_3) - u(x_3, y_4) = 4h^2f(x_4, y_3) + u(x_5, y_2) - 4u(x_5, y_3) - u(x_5, y_4)$$

$$-u(x_2, y_3) - 8u(x_1, y_4) + 4u(x_2, y_4) = 4h^2f(x_1, y_3) - u(x_0, y_4) + u(x_0, y_5) - u(x_2, y_5)$$

$$u(x_1, y_3) - u(x_3, y_3) + 4u(x_1, y_4) - 8u(x_2, y_4) + 4u(x_3, y_4) = 4h^2f(x_3, y_3) + u(x_1, y_5) - u(x_3, y_5)$$

$$u(x_2, y_3) - u(x_4, y_3) + 4u(x_1, y_4) - 8u(x_2, y_4) + 4u(x_3, y_4) = 4h^2f(x_3, y_3) + 4u(x_3, y_4) + 4u(x_3, y_5) - u(x_5, y_5)$$

[−8	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0 7	$[u(x_1,y_1)]$	$\lceil F_1 \rceil$
4	-8	4	0	-1	0	1	0	0	0	0	0	0	0	0	0	$u(x_2,y_1)$	F_2
0	4	-8	4	0	-1	0	1	0	0	0	0	0	0	0	0	$u(x_3, y_1)$	$ F_3 $
0	0	4	-8	0	0	-1	0	0	0	0	0	0	0	0	0	$u(x_4,y_1)$	$ F_4 $
0	-1	0	0	-8	4	0	0	0	1	0	0	0	0	0	0	$u(x_1, y_2)$	$ F_5 $
1	0	-1	0	4	-8	4	0	-1	0	1	0	0	0	0	0	$u(x_2, y_2)$	$ F_6 $
0	1	0	-1	0	4	-8	4	0	-1	0	1	0	0	0	0	$u(x_3, y_2)$	$ F_7 $
0	0	1	0	0	0	4	-8	0	0	-1	0	0	0	0	0	$u(x_4, y_2)$	$ F_8 $
0	0	0	0	0	-1	0	0	-8	4	0	0	0	1	0	0	$ u(x_1,y_3) ^{-1}$	F_9
0	0	0	0	1	0	-1	0	4	-8	4	0	-1	0	1	0	$u(x_2, y_3)$	$ F_{10} $
0	0	0	0	0	1	0	-1	0	4	-8	4	0	-1	0	1	$u(x_3, y_3)$	$ F_{11} $
0	0	0	0	0	0	1	0	0	0	4	-8	0	0	-1	0	$u(x_4, y_3)$	F_{12}
0	0	0	0	0	0	0	0	0	-1	0	0	-8	4	0	0	$u(x_1, y_4)$	$ F_{13} $
0	0	0	0	0	0	0	0	1	0	-1	0	4	-8	4	0	$u(x_2, y_4)$	F_{14}
0	0	0	0	0	0	0	0	0	1	0	- 1	0	4	-8	4	$u(x_3, y_4)$	F ₁₅
١٨	_	_	_	_	_	_	_	_	_		0	_	_	4	_8 []]	$[u(x_4,y_4)]$	$\lfloor F_{16} \rfloor$

Note: Multiplying both sides by scalar -1 will make the coefficient matrix positive definite.

Part c

Grids	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
1 _[-	-8	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0 ₁	
2	4	-8	4	0	-1	0	1	0	0	0	0	0	0	0	0	0	
3	0	4	-8	4	0	-1	0	1	0	0	0	0	0	0	0	0	
4	0	0	4	-8	0	0	-1	0	0	0	0	0	0	0	0	0	
5	0	-1	0	0	-8	4	0	0	0	1	0	0	0	0	0	0	
6	1	0	-1	0	4	-8	4	0	-1	0	1	0	0	0	0	0	
7	0	1	0	-1	0	4	-8	4	0	-1	0	1	0	0	0	0	
8	0	0	1	0	0	0	4	-8	0	0	-1	0	0	0	0	0	
9	0	0	0	0	0	-1	0	0	-8	4	0	0	0	1	0	0	
10	0	0	0	0	1	0	-1	0	4	-8	4	0	-1	0	1	0	
11	0	0	0	0	0	1	0	-1	0	4	-8	4	0	-1	0	1	
12	0	0	0	0	0	0	1	0	0	0	4	-8	0	0	-1	0	
13	0	0	0	0	0	0	0	0	0	-1	0	0	-8	4	0	0	
14	0	0	0	0	0	0	0	0	1	0	-1	0	4	-8	4	0	
15	0	0	0	0	0	0	0	0	0	1	0	-1	0	4	-8	4	
16 [[]	0	0	0	0	0	0	0	0	0	0	1	0	0	0	4	−8 J	

<u>Undirected Adjacency graph for linear system from part b</u>:

(Grid Number shown inside bubbles)

Algebraic Multigird Coloring Scheme Step 1

Algebraic Multigird Coloring Scheme Step 2

Algebraic Multigird Coloring Scheme Step 3

Algebraic Multigird Coloring Scheme Step 4

Algebraic Multigird Coloring Scheme Step 5

Algebraic Multigird Coloring Scheme Step 6

Algebraic Multigird Coloring Scheme Step 7

Algebraic Multigird Coloring Scheme Step 8, 9

<u>Part e</u>

The results of part d "coloring scheme method for algebraic multigrid" and the results of one step of "geometric multigrid method" seem to produce the same results.

However, there is a difference between the two methods.

The algebraic multigrid method selects coarse grids associated with a <u>subset</u> of the original values of $u(x_i, y_j)$.

The geometric multigrid method selects coarse grids that $\underline{may are not be}$ associated with the original values of $u(x_i, y_i)$.