Математический анализ-2 Коллоквиум 1

Зароднюк Алёна

Числовые ряды

Опр: пусть дана последовательность $\{a_n\}_{n=1}^{\infty}$. Тогда выражение вида $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$ называется числовым рядом.

 a_n называется общим членом ряда.

$$S_N = \sum\limits_{n=1}^N a_n = a_1 + \ldots + a_N$$
 называется N -й частичной суммой.

$$r_N = \sum_{n=N+1}^{\infty} a_n = a_{N+1} + a_{N+2} + \dots$$
 называется N -м остатком ряда.

Опр: ряд $\sum\limits_{n=1}^{\infty}a_n$ называется сходящимся, если существует $\lim\limits_{N\to\infty}S_N=S\in\mathbb{R}.$ В этом случае число S называют суммой этого ряда.

Ряд $\sum\limits_{n=1}^{\infty}a_n$ называется расходящимся, если предел $\lim_{N\to\infty}S_N$ не существует (в том числе бесконечный предел).

Теорема (Критерий Коши):

Ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m : n > m > N \quad \left| \sum_{k=m+1}^{n} a_k \right| < \varepsilon$$

Теорема (Необходимое условие сходимости ряда):

Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} a_n = 0$.

Опр: Ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся, если $\sum_{n=1}^{\infty} |a_n|$ сходится. Ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся, если он сходится, но ряд $\sum_{n=1}^{\infty} |a_n|$ расходится.

Утверждение (об абсолютной сходимости ряда): Если ряд сходится абсолютно, то он сходится.

Теорема (о группировке членов ряда без изменения порядка):

Пусть дан ряд $\sum_{n=1}^{\infty} a_n$ и строго возрастающая последовательность $\{k_n\}_{n=1}^{\infty}$, причем $k_1=1$. Обозначим ∞

$$b_n=a_{k_n}+\ldots+a_{k_{n+1}-1},$$
 ряд $\sum_{n=1}^\infty b_n$ – ряд, полученный группировкой членов ряда $\sum_{n=1}^\infty a_n.$ Тогда

1) если
$$\sum_{n=1}^{\infty} a_n = A$$
, то $\sum_{n=1}^{\infty} b_n = A$, т.е. группировка сходящегося ряда не меняет сумму.

2) если
$$\sum_{n=1}^{\infty} b_n = B$$
, $\lim_{n \to \infty} a_n = 0$ и существует $m: k_{n+1} - k_n < m \ \forall n \in \mathbb{N}$ (т.е. группируем не более, чем по m членов), то $\sum_{n=1}^{\infty} a_n = B$.

Математический анализ-2 Коллоквиум 1

Зароднюк Алёна

Знакопостоянные ряды

Опр: ряд $\sum_{n=1}^{\infty} a_n$ называется знакопостоянным, если или $a_n \geq 0 \ \forall n \in \mathbb{N}$, или $a_n \leq 0 \ \forall n \in \mathbb{N}$.

Теорема (Первый признак сравнения). Пусть $a_n \geq b_n \geq 0 \ \forall n \in \mathbb{N}$. Тогда

- 1) если сходится $\sum_{n=1}^{\infty} a_n$, то сходится и $\sum_{n=1}^{\infty} b_n$,
- 2) если расходится $\sum\limits_{n=1}^{\infty}b_n$, то расходится и $\sum\limits_{n=1}^{\infty}a_n$

Следствие (Признак Вейерштрасса): если $|a_n| \le b_n$ и ряд $\sum_{n=1}^{\infty} b_n$ сходится, то ряд $\sum_{n=1}^{\infty} a_n$ сходится.

Теорема (Второй признак сравнения). Пусть $a_n, b_n > 0$ и $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = c \neq 0$. Тогда $\sum_{n=1}^{\infty} a_n \sim \sum_{n=1}^{\infty} b_n$ – эквивалентны по сходимости, т.е. сходятся/расходятся одновременно.

Следствие: если $a_n \geq 0$ и $a_n \sim b_n, n \to \infty$, то $\sum\limits_{n=1}^\infty a_n \sim \sum\limits_{n=1}^\infty b_n$.

Теорема (Признак Коши, Лобачевского-Коши). Пусть $a_n \ge 0$ и $\{a_n\}$ – монотонно (нестрого) убывающая последовательность. Тогда $\sum\limits_{n=1}^{\infty} a_n \sim \sum\limits_{n=0}^{\infty} 2^n a_{2^n}$.

Теорема (Интегральный признак Коши)

Пусть дана функция $f:[1,+\infty)\to\mathbb{R}, \quad f(x)\geq 0$ и f(x) монотонно (нестрого) убывающая. Тогда $\sum_{n=1}^\infty f(n)\sim \int\limits_1^\infty f(x)\;dx.$

Теорема (радикальный признак Коши): пусть $a_n \geq 0$, $\overline{\lim_{n \to \infty} \sqrt[n]{a_n}} = q$. Тогда

- 1) если q < 1, то ряд $\sum\limits_{n=1}^{\infty} a_n$ сходится,
- 2) если q>1, то ряд $\sum\limits_{n=1}^{\infty}a_n$ расходится

Лемма. Пусть $a_n > 0$. Тогда

$$\varliminf_{n\to\infty}\frac{a_{n+1}}{a_n}\le\varliminf_{n\to\infty}\sqrt[n]{a_n}\le\varliminf_{n\to\infty}\sqrt[n]{a_n}\le\varlimsup_{n\to\infty}\frac{a_{n+1}}{a_n}$$

Теорема (признак Даламбера)

Пусть
$$a_n>0,\, d=\varinjlim_{n\to\infty} \frac{a_{n+1}}{a_n},\, D=\varlimsup_{n\to\infty} \frac{a_{n+1}}{a_n}.$$
 Тогда

- 1) если d>1, то ряд $\sum\limits_{n=1}^{\infty}a_{n}$ расходится
- 2) если D < 1, то ряд $\sum\limits_{n=1}^{\infty} a_n$ сходится.

Математический анализ-2 Коллоквиум 1

Зароднюк Алёна

Теорема (Признак Гаусса)

Пусть $a_n > 0$. Если существуют $\alpha \in \mathbb{R}$, $\delta > 0$ такие, что $\frac{a_{n+1}}{a_n} = 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^{1+\delta}}\right)$, то $\sum_{n=1}^{\infty} a_n \sim \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, т.е. при $\alpha > 1$ сходится и при $\alpha \le 1$ расходится.

Знакопеременные ряды

Лемма (Преобразование Абеля)

Пусть даны две последовательности $\{a_n\}, \{b_n\}$. Тогда $\forall n, m \in \mathbb{N}: n > m$ выполнено

$$\sum_{k=m+1}^{n} (a_k - a_{k-1})b_k = a_n b_n - a_m b_{m+1} - \sum_{k=m+1}^{n-1} a_k (b_{k+1} - b_k)$$

Теорема (Признак Дирихле) Пусть

- 1) существует M>0, что $\forall n\in\mathbb{N}$ $\left|\sum_{k=1}^{n}a_{k}\right|\leq M$ (т.е. все частичные суммы ограничены сверхну одной константой)
- 2) последовательность $\{b_n\}$ (нестрого) монотонная (возрастающая или убывающая)
- $3) \lim_{n \to \infty} b_n = 0$

Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Теорема (Признак Абеля) Пусть

- 1) ряд $\sum_{n=1}^{\infty} a_n$ сходится
- 2) последовательность $\{b_n\}$ (нестрого) монотонная (возрастающая или убывающая)
- 3) $\exists M > 0$: $\forall n \in \mathbb{N} |b_n| \leq M$

Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Теорема (Признак Лейбница)

Пусть $b_n \ge 0$, $\{b_n\}$ – монотонно (нестрого) убывающая последовательность и $b_n \to 0, n \to \infty$. Тогда ряд $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ сходится и верна следующая оценка на остаток этого ряда: $|r_n| \le b_{n+1}$.

Перестановки членов ряда

Теорема (о перестановке членов знакопостоянного ряда)

Пусть $a_n \geq 0$, ряд $\sum_{n=1}^{\infty} a_n$ сходится, σ – подстановка $\mathbb{N} \to \mathbb{N}$. Тогда

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = \sum_{n=1}^{\infty} a_n$$

Обозначения для двух ближайших утверждений:

Математический анализ-2 Коллоквиум 1

Зароднюк Алёна

$$a_n^+ = \frac{|a_n| + a_n}{2} = \max\{0, a_n\}, \quad a_n^- = \frac{|a_n| - a_n}{2} = \max\{0, -a_n\}$$

Тогда $a_n = a_n^+ - a_n^-, |a_n| = a_n^+ + a_n^-.$

Утверждение 1 (о сходимости положительной и отрицательной частей абсолютно сходящегося ряда)

Ряд
$$\sum_{n=1}^{\infty} a_n$$
 сходится абсолютно \Longleftrightarrow ряды $\sum_{n=1}^{\infty} a_n^+$ и $\sum_{n=1}^{\infty} a_n^-$ сходятся.

Утверждение 2 (о сходимости положительной и отрицательной частей условно сходящегося ряда)

Ряд
$$\sum\limits_{n=1}^{\infty}a_n$$
 сходится условно \Longleftrightarrow ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится и $\sum\limits_{n=1}^{\infty}a_n^+=\sum\limits_{n=1}^{\infty}a_n^-=+\infty.$

Теорема (переместительное свойство абсолютно сходящегося ряда).

Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится абсолютно, σ – подстановка $\mathbb{N} \to \mathbb{N}$. Тогда ряд $\sum_{n=1}^{\infty} a_{\sigma(n)}$ сходится абсолютно

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = \sum_{n=1}^{\infty} a_n$$

Теорема (Римана о перестановках членов условно сходящегося ряда)

Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится условно. Тогда

1)
$$\forall A \in \mathbb{R} \quad \exists \sigma: \mathbb{N} \to \mathbb{N}$$
 — биекция: $\sum\limits_{n=1}^{\infty} a_{f(n)} = A$

2)
$$\exists \sigma_1: \mathbb{N} \to \mathbb{N}$$
 — биекция: $\sum\limits_{n=1}^\infty a_{\sigma_1(n)} = +\infty$ и $\exists \sigma_2: \mathbb{N} \to \mathbb{N}$ — биекция: $\sum\limits_{n=1}^\infty a_{\sigma_2(n)} = -\infty$

3) $\exists \sigma: \mathbb{N} \to \mathbb{N}$ – биекция: последовательность частичных сумм ряда $\sum\limits_{n=1}^{\infty} a_{\sigma(n)}$ не имеет ни конечного, ни бесконечного предела.

Произведение рядов

В общем виде произведение рядов $\left(\sum\limits_{k=1}^\infty a_k\right)\cdot\left(\sum\limits_{m=1}^\infty b_m\right)=\sum\limits_{n=1}^\infty c_n,$ где $c_n=a_kb_m$ и $(k,m)\to n$ – биекция.

Теорема (о произведении абс.сход.рядов)

Пусть ряды $\sum_{n=1}^{\infty} a_n = A$ и $\sum_{n=1}^{\infty} b_n = B$ сходятся абсолютно.

Тогда любое произведение рядов $\left(\sum\limits_{k=1}^{\infty}a_k\right)\cdot\left(\sum\limits_{m=1}^{\infty}b_m\right)=\sum\limits_{n=1}^{\infty}c_n$ сходится абсолютно и $\sum\limits_{n=1}^{\infty}c_n=AB$.

Опр: Пусть есть два ряда $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$. Их произведением в смысле Коши называется ряд $\sum_{n=1}^{\infty} c_n$, где

Математический анализ-2 Коллоквиум 1

Зароднюк Алёна

$$c_n = a_1 b_n + a_2 b_{n-1} + \ldots + a_n b_1$$

Теорема (Мертенса)

Пусть два ряда $\sum\limits_{n=1}^{\infty}a_n=A,\;\sum\limits_{n=1}^{\infty}b_n=B$ сходятся и хотя бы один из них сходится абсолютно. Тогда $\sum\limits_{n=1}^{\infty}c_n=AB,\;$ где $c_n=a_1b_n+\ldots+a_nb_1.$

Теорема (Абеля)

Пусть
$$\sum_{n=1}^{\infty} a_n = A$$
, $\sum_{n=1}^{\infty} b_n = B$ и $\sum_{n=1}^{\infty} c_n = C$, где $c_n = a_1b_n + \ldots + a_nb_1$. Тогда $C = AB$.

Функциональные последовательности. Равномерная сходимость

Опр: Говорят, что последовательность $\{f_n(x)\}_{n=1}^{\infty}$ функций $f_n: \mathbb{X} \to \mathbb{R}$ сходится в точке $x_0 \in \mathbb{X}$, если сходится соответствующая числовая последовательность $\{f_n(x_0)\}_{n=1}^{\infty}$

Опр: Множесво $D \subset \mathbb{X} \subset \mathbb{R}$ точек, в которых последовательность $\{f_n(x)\}_{n=1}^{\infty}$ функций $f_n : \mathbb{X} \to \mathbb{R}$ содится, называется *множеством сходимости* последовательности функций $\{f_n(x)\}_{n=1}^{\infty}$

Опр: Пусть $D \subset \mathbb{R}$ – множество сходимости последовательности $\{f_n(x)\}_{n=1}^{\infty}$ функций $f_n: D \to \mathbb{R}$. Функция $f: D \to \mathbb{R}$ такая, что

$$f(x) := \lim_{n \to \infty} f_n(x) \quad \forall x \in D$$

называется npedeльной функцией для последовательности функций $\{f_n(x)\}_{n=1}^{\infty}$

Опр: Пусть $D \subset \mathbb{R}$ – множество сходимости; $f_n, f: D \to \mathbb{R}, n \in \mathbb{N}$.

Говорят, что функциональная последовательность $f_n(x)$ сходится *поточечно* к функции f(x) на множестве D, если

$$\forall x \in D \quad \forall \varepsilon > 0 \quad \exists N = N(x, \varepsilon) \quad \forall n > N \quad |f_n(x) - f(x)| < \varepsilon$$

T.e. $\forall x \in D \quad f_n(x) \to f(x), n \to \infty$.

Обозначение: $f_n \xrightarrow{D} f$.

Опр: Пусть $D \subset \mathbb{R}$ – множество сходимости; $f_n, f: D \to \mathbb{R}, n \in \mathbb{N}$.

Говорят, что функциональная последовательность $f_n(x)$ сходится равномерно к функции f(x) на множестве D, если

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \quad \forall n > N, \ \forall x \in D \quad |f_n(x) - f(x)| < \varepsilon$$

Обозначение: $f_n \stackrel{D}{\rightrightarrows} f$

Теорема: (lim-sup критерий)

$$f_n \stackrel{D}{\rightrightarrows} f \iff \lim_{n \to \infty} \sup_{D} |f_n(x) - f(x)| = 0$$

Математический анализ—2 Коллоквиум 1 Зароднюк Алёна

Замечание: $f_n \stackrel{D}{\rightrightarrows} f \Longrightarrow f_n \stackrel{D}{\longrightarrow} f$

Критерий Коши (равномерной сходимости функц.посл.)

Пусть $f_n, f: D \to \mathbb{R}$. Тогда

$$f_n \stackrel{D}{\rightrightarrows} f \Longleftrightarrow \forall \varepsilon > 0 \quad \exists N \quad \forall n, m > N, \ \forall x \in D \quad |f_n(x) - f_m(x)| < \varepsilon$$