Digital Logic

Arithmetic and Logic

Mano chapter 3

ALU

- Arithmetic Logic Unit
 - Arithmetic: ADD, SUB, MULT, DIV
 - Logic: AND, OR, NOT, XOR
- Mathematical "heart" of the computer
- We know how to built a circuit that can add, and do logic, but how to do other arithmetic?
 - how to subtract? how to represent negative numbers?
 - how to multiply?
 - how to divide? how to represent fractional numbers?

Converting decimal to binary

- Binary to decimal is easy. Powers of two
- Decimal to binary is harder.
- Successive division by 2.
- Then read the remainders from bottom to top:
 - example: what is 307 in binary?

```
100110011 = 256 + 32 + 16 + 2 +
= 307
```

```
307 \div 2 = 153 \text{ r } 1
153 \div 2 = 76 \text{ r } 1
 76 \div 2 = 38 \text{ r } 0
 38 \div 2 = 19 \text{ r } 0
 19 \div 2 = 9 r 1
  9 \div 2 = 4 r 1
  4 \div 2 = 2 r 0
  2 \div 2 = 1 r 0
  1 \div 2 = 0 r 1
```

Converting decimal to binary

convert 41₁₀ to binary

$$41 \div 2 = 20 \text{ r } 1$$
 $20 \div 2 = 10 \text{ r } 0$
 $10 \div 2 = 5 \text{ r } 0$
 $5 \div 2 = 2 \text{ r } 1$
 $2 \div 2 = 1 \text{ r } 0$
 $1 \div 2 = 1 \text{ r } 1$

101001

confirm: 32 + 8 + 1 = 41

Practice: pick a random number between 0 and 100 and convert it. Then confirm.

Some Terminology

- MSB: Most Significant Bit
 - The leftmost bit of a stream
- LSB: Least Significant Bit
 - The rightmost bit of a stream

- e.g. 10010100
 - MSB is 1, corresponding to 1×2^7
 - LSB is 0, corresponding to 0×2^{0}

Binary arithmetic: remember the Full Adder

- Addition: Just like high school
 - Line up similar place values
 - Any result bigger than will fit in the column results in a carry into the next column
 - decimal: 5+7=12 -> 2 with 1 carried to the 10s column
 - binary: 1+1=10 -> 0 with 1 carried to the 2s column
 (1) (1) (1) carries

Binary arithmetic: Subtraction

- Subtraction: Just like addition
 - Line up similar place values
 - Borrow from the next column if necessary

 1s column needs to borrow, but nothing in 2s column, so borrow from 4s column.

Subtraction: Bitslice Truth Table D = X-Y

- (in this slide + is plus, not OR)
- B_{in} means a column to the right has borrowed from this column,
 - so subtract 1 from X-Y
- B_{out} is a request to borrow from the *next* column to the left
 - so add 2 (binary 10) to X-Y
- if $X < (Y + B_{in})$ then borrow from the next column ($B_{out} = 1$).
- then $D = 2 \times B_{out} + X Y B_{in}$

X	Y	Bin	Bout	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	O	0	0
1	1	1	1	1

Subtraction: the bitslice functions

- $D = X \oplus Y \oplus B_{in}$
- $B_{out} = \overline{X}\overline{Y}B_{in} + \overline{X}Y\overline{B}_{in} + \overline{X}YB_{in} + XYB_{in}$ = $\overline{X}(Y \oplus B_{in}) + YB_{in}$
 - exercise: prove with k-maps
 - does it look familiar?
- But what happens if a borrow fails (i.e. what if X<Y)?
- if X<Y, the result will be negative
 - What does that mean in binary?
 - Tangent time...

Number Representation in Binary

- Recall unsigned representation:
 - Each bit means $+a \times 2^{n}$
 - Always positive, since a can only be 0 or 1
- What about negative numbers?
 - We need signed numbers for subtraction.
- 3 common signed representation options, in order from obvious to useful:
 - Sign-magnitude
 - Complement
 - 2's complement

Sign-Magnitude

- In decimal, we use extra symbols for the sign
 - ' ' means negative, ' + ' means positive
- In binary, we can't just add extra symbols
 - only have "0" and "1"
 - So use an extra bit for the sign
 - Adding 0 at the beginning should not change the value
 - > so 0 means positive, and 1 means negative.
- For example,
 - $\mathbf{0}$ 101₂ = +5₁₀, and 1010₂ = -2₁₀

Subtraction with Sign-Magnitude

- 1. Check sign of both operands
- 2. Perform appropriate math
 - e.g.: -x-y would be treated as -(x+y),
 - add x to y, then add "1" to make the result negative.
- Lots of logic to design
 - Check sign,
 - Logic for each sign combination and operation
 - 4 possibilities for add, 4 for subtract

Complement

- if X is the binary encoding of the number, let \overline{X} be the negative version of that
 - Negating is the equivalent inverting, seems intuitive
 - Need very different representations for negative and positive:
 - **5** = 0101
 - -5 = 1010
 - Each bit no longer corresponds to $+a \times 2^{n}$
 - Need a second step to figure out value

2's Complement

- Binary version of the "Radix Complement"
 - Subtract from the next higher power of the radix
- We'll do 10's complement first to get the feel.
- To form the 10's complement:
 - Subtract from the next higher power of 10
 - e.g.: 10's complement of 209 is 1000 209 = 791
 - so 791 means -209 in 10's complement
- The goal is to be able to subtract by adding
 - For example, a b = a + (-b)

10's Complement subtraction by adding

Use 10's complement for subtraction:

```
315 - 209
= 315 + 1000 - 209 - 1000
```

- ▶ 1000 209 = 791 is ten's complement for 209
- ▶ the extra " 1000" maintains the numerical value

```
= 315 + 791 - 10000
```

- = 1106 1000
- = 106, which is the correct answer.
- Adding is easy, and dropping the extra 1000 is easy.
- Is finding 791 easy?

Easily find the 10's complement

- to find the simple complement, subtract each bit from the biggest digit in the representation
 - in base 10, that value is 9
 - also called 9's complement
 - The 9's complement of 209 would be 790
- The 10's complement is just the 9's complement, plus 1

 So finding the 10's complement is easy, adding is easy, and dropping the next higher power of 10 is easy, so we can subtract without subtracting

CS 201 1

Now, in Binary

- Subtract from next higher power of 2. e.g. $43_{10} = 0101011_2$.
 - the two's complement representation of -43 is:
 - \blacktriangleright 100000000 0101011 = 1010101

- Can we form it without using subtraction, using the trick from 10's complement?
- Look at the subtraction table again:

- 0101011
1010101

CC 201

Forming the 2's complement

$$X - Y = 10000000 - 0101011$$

- Except for the MSB, the bits of X are always 0, which means repeated borrows.
- If we could make it so that X is always
 1, there would be no borrows,
 implying D = Y'
- Notice that 1000000 1 = 111111

X	Y	Bin	Bout	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	O	0	0
1	1	1	1	1

S 201

Forming the 2's complement

- 2's complement of 43₁₀
 10000000 0101011 = 1010101
 (10000000 1) + 1 0101011 = 1010101
 1111111 0101011 + 1= 1010101
 (0101011)' + 1 = 1010101
- So, to form 2's complement, take the logical complement and add 1.
 - (just like in the 10's complement)
 - No subtraction necessary!

2's complement for subtraction

```
    e.g.: 50<sub>10</sub>- 43<sub>10</sub> =0110010 - 0101011 = 0111 = 7<sub>10</sub>
    Using the 2's complement idea: complement and add 1
```

```
= 0110010 + 1010101<sup>4</sup> - 1000000
```

 We still have to subtract out the next higher power of 2 to maintain numerical equivalence.

CS 201 20

2's complement representation

- To make this idea workable, we need
 - 1. Some way to identify positive or negative numbers
 - 2. Some way to easily subtract out the next higher power of 2.

- Solution:
 - 1. Add another bit, same as in signed-magnitude, in the MSB location
 - 2. This bit will correspond to $-a \times 2^k$
 - 3. All other bits correspond to $+a \times 2^k$

2's complement representation

- e.g.: 7 bit representation: $-2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0$
 - For small enough positive numbers:

$$0010101 = 16 + 4 + 1 = 21$$

For negative numbers:

```
-43 = -1000000 + (1000000 - 101011)
= -1000000 + 0010101
= -2^{6} + 2^{4} + 2^{2} + 2^{0} = -64 + 16 + 4 + 1 = -43
```

- So the complete representation is 1010101 and can be formed simply by inverting the positive and adding 1:
 - $43 = 0101011 \rightarrow -43 = 1010100 + 1 = 1010101$

Limits of 7-bit 2's complement

- 0000000 is still 0₁₀. That's good.
- The largest positive number is when the negative bit is 0, and all positive bits are 1:
 - 0111111, which is 63₁₀.
- The largest negative number is when the negative bit is 1, and all positive bits are 0:
 - ▶ 1000000, which is −64₁₀.
- All 1's equals -1: 11111111 = -64 + 63 = -1

Range of 2's complement representation

- Since |-64| > |63|,
 - All positive numbers have MSB = 0
 - All negative numbers have MSB = 1
 - So we can interpret the MSB as a sign bit!
- For 7 bits, range is -64..+63
- In general, for *n* bits, range is

 -2^{n-1} to $2^{n-1}-1$

Confirmation of 2's complement representation

- Positive numbers now require a leading zero.
 - e.g. 0111 = +7, 111 = -1
- The size of the representation is important
 - The MSB is negative and all other bits are positive
- -(-N) should equal +N
- e.g.: $-(-17_{10})$ +17 = 16+1 = 010001

 -17 = 101110+1 = 101111
 - -(-17) = 010000+1 = 010001

The wierness of 2's complement

- If you flip the bits and add 1 to form the negative, you should have to subtract the bits before you flip, to undo that change.
- but flipping the bits and adding 1, twice, gets you back to the same value you started with
 - So for any X, $\overline{X}+1 = (X-1)'$
- Note: 2's complement is both a noun (the name of our representation) and a verb (to flip the bits and add 1)
- Remember, positive numbers are unchanged

26

2's complement: doing math

- 2's complement should allow us to subtract by adding (that was the goal)
- Try a bit-by-bit addition of a negative number

$$-$$
 e.g. $50-43 = 50+(-43) = 7$

		-2 6	2 ⁵	24	2 ³	22	21	20
50	1	10	11	1	0	0	1	0
-43	+	1	0	1	0	1	0	1
7	(1)	0	0	0	0	1	1	1

Note: Ignore the final carry out for the time being

Some Practice

 Convert the following to 2's complement (use a 7-bit representation):

Do the following math using 2's complement

2's complement add/sub circuit

- To add, use full adder
- To subtract, add the complement + 1

S = 0: Q = A + BS = 1: Q = A - BXOR is used as a controlled complement (recall the truth table). Ci = S adds the required "1" when subtracting.

S 201

Overflow

Using a 7-bit representation, consider 50 + 21 = 71

- The result will be wrongly interpreted as -57
- Carry from the +2⁵ column into the into the -2⁶ column.
 - Doesn't make sense. columns mean different things
- Arithmetic Overflow: The result of an operation is too large for the representation.
- NOT THE SAME AS carry out.

Overflow

• Consider -50 - 21 = -71

- Ignoring the final carry-out, as before.
- The result will be interpreted as +57.
- This is also arithmetic overflow.
 - in this case, carrying out of the -2⁶ column into who knows what?

Overflow Detection

- It is important to know when overflow occurs
 - We can design other hardware to handle it later.
- Seems to occur when carrying into or out of the MSB
 - MSB Column is negative, carry-in to it would be positive.
 - but if we carry in AND carry out:
 - the representation is correct again
 - (recall 50 43)
 - although final carry out is still wrong.

Overflow Detection

- In general: if we carry in but don't carry out, or if we carry out but don't carry in, there's a problem.
- Overflow when Ci=1 and Co=0, or Ci=0 and Co=1
- Ci≠Co, which is the same as Ci⊕Co
- Final circuit:

Representation Size

- Overflow is a consequence of representation size
 - If the answer can't fit, you get overflow.
- Can we change the size of the representation?
 - make a bigger 2's complement that would fit?
- eg: Start with a 4-bit representation: 2³ +2² +2¹ +2⁰
 - \rightarrow 1000 = -8, 0111 = +7, 1111 = -1
- To switch to a 5-bit representation:
 - -8 = -(01000) = 101111+1 = 11000
 - +7 = 00111

 $-2^4+2^3+2^2+2^1+2^0$

Sign Extension

- We can add lots of 0s to the left of a positive number without changing its value
- Similarity, we can add lots of 1s to the left of a two's complement negative number without changing its value
 - subtract 2ⁿ for the new negative MSB,
 - ▶ 2⁽ⁿ⁻¹⁾ was the negative MSB, but is now positive
 - so we must add 2⁽ⁿ⁻¹⁾ back to the value, twice
 - since $2^n = 2^{(n-1)} + 2^{(n-1)}$, the value is unchanged

°C 201

Faster addition

- Recall: full adder has big gate delay
- Also called "Ripple Carry" adder
 - Carry ripples from one adder to the next
 - Total circuit delay depends on the word size.
 - 64 bit adder has 64 full-adders worth of gate delay.
 - we know any circuit can be built with at most 3 levels of gate delay
- Carry lookahead
 - To design some logic so adder can be faster
 - Recognize relationship between Ci and Co

Ripple-carry adder

Recall full adder expressions

$$S_i = X_i \oplus Y_i \oplus Ci_i$$
 $CO_i = X_iY_i + X_iCi_i + Y_iCi_i$

• Carry-out is the carry-in for the next full adder $co_i = ci_{i+1}$ So we'll just use "c"

$$C_{i+1} = X_i Y_i + X_i C_i + Y_i C_i$$

= $X_i Y_i + (X_i + Y_i) C_i$

- Both x_iy_i and $(x_i + y_i)$ take only 1 gate delay.
- c_i is what takes time so let's get rid of it.

Carry Look-ahead

Starting from the LSB

```
c_1 = X_0 y_0 + (X_0 + y_0) c_0

c_2 = x_1 y_1 + (x_1 + y_1) c_1 (then replace c_1 as above)

c_2 = x_1 y_1 + (x_1 + y_1) [X_0 y_0 + (X_0 + y_0) c_0]
```

- next do c_3 . This will get big quickly.
- Let's rename parts of these expressions

```
x_i y_i = Carry Generate (G_i)
x_i + y_i = Carry Propagate (P_i)
```

- These are both available in 2 gate delays.
 - Neither depends on the carry-in.
- Why these names?...

Carry Look-ahead

- Carry Generate: Start a carry regardless of the other inputs.
- Carry Propagate: If a carry comes in, pass it along, but don't generate a new carry.
- Have a look at the functions, and this makes sense:

$$C_{i+1} = X_i Y_i + (X_i + Y_i) C_i$$

 x_iy_i : if x_i and y_i are both 1, there would be a carry out of that bitslice regardless of the other inputs.

 x_i+y_i : if x_i or y_i are 1, there would be a carry out of that bitslice only if there was a carry in to that bitslice.

Carry Look-ahead

Using the generate and propagate functions:

```
C_{1} = g_{0} + p_{0}C_{0}
C_{2} = g_{1} + p_{1}C_{1} = g_{1} + p_{1}(g_{0} + p_{0}C_{0})
= g_{1} + p_{1}g_{0} + p_{1}p_{0}C_{0}
C_{i+1} = g_{i} + p_{i}g_{i-1} + p_{i}p_{i-1}g_{i-2} + ... + p_{i}p_{i-1}... p_{0} C_{0}
```

- This will require lots more hardware, but
- Guaranteed to execute in 4 gate delays.
 - p_i and g_i are generated in one gate delay
 - c_i takes two gate delays from p_i and g_i
 - sum takes one more delay

CLA Hardware

- Modify the Full Adder:
 - output pi and gi, not ci

- Connect them to create a 4-bit carry-look ahead adder.
 - Lots of additional logic is still required to work with the new P and G signals

How do we generate c for each bitslice?

- Carry in at bitslice i is true if there is a generate from i-1, or a propogate passing along a carry from a previous slice
- for each bitslice, c_i=g_i+pc_{i-1}
- The hardware is constructed recursively, duplicating and building on the logic for calculating carry from generation and propagation from each previous bitslice
- 64 bit adder will have hundreds of gates, thousands of inputs
 - Trade complexity for speed

CS 201 4:

4-bit CLA

ALU: Putting it all together

- Building each individual component of the ALU is done
- To put it all together, we just need multiplexers
 - Generate all possible answers
 - use MUX to choose which answer we will use
 - control signals to ALU are used to select output
- Flags are output signals that give useful information
 - was the result zero? was the result negative? was there overflow?
- Add, subtract, logic, and shifting are all useful

45 201

ALU: Arithmetic

- Desired functions: add, subtract, negative, pass-through
 - or other functions
- Start with adder
- add XOR to B to allow ±B
- Add MUX to A to allow A±B or 0±B
- 2 control signals needed
 - ► S0: S/Ā
 - S1: A=0

ALU: Logic

- Pick desired logic functions
 - AND, OR, NOT, XOR
- Select between them with a MUX
 - Again, two control signals
 - Can use the same 2 signals as for Arithmetic
- Select either Arithmetic or Logic with a final MUX and a third control signal (S2)

ALU: FLAGS

- Output signals that indicate certain conditions
- Typical flags: NZVC
 - N = Negative = MSB of output (F_{n-1})
 - Arr Z = Zero = NOR of output (F_{n-1}+F_{n-2}+..+F₀)'
 - $V = Overflow = C_{n-1} \oplus C_{n-2}$
 - $C = Carry = C_{n-1}$

- NOTE: different ALU will have different functions, different flags
- NOTE: ALU is entirely combinational

Complete ALU and function table

S2	S 1	S 0	F
0	0	0	AND
0	0	1	OR
0	1	0	XOR
0	1	1	B
1	0	0	A+B
1	0	1	+B
1	1	0	A-B
1	1	1	-B

Sequential Math

- ALU is fine for combinational arithmetic
- Some arithmetic will require multiple steps, decision making, state machines etc
 - Multiplication and Division, to start
- These could be done combinationally, since the answer is the same for the same input
 - but the logic would be very large and complex
 - In practice, sometimes done with look-up tables to speed up the process
- Other common sequential math: graphics processing

Sequential Math: Binary Multiplication

Recall grade 3 math. eg 14×10=140

Note: the trailing zeros are usually implied.

Note: assume positive numbers.

Binary Multiplication

- You've seen this in the lab, I think
- Registers, with shift
- Adding with carry
- Repeated shift and add, accumulating result
- Shifting a 0 into the register will maintain the partial products
- Add or not add the multiplicand, based on the current bit of the multiplier
- We'll go into more detail, build a couple variants

S 201

Binary multiply implementation

Binary multiply flowchart

Binary multiply example

• e.g.: $14 \times 10 = 140$ Step by step:

count	R	Q	P
4	1110	1010	0
3	11100	1 0 1	11100
2	111000	1 0	11100
1	1110000	1	10001100
0	Done. P=10001100		

Binary multiply algorithm

- Use a down-counter to decide when done
 - Start with c = length(Q)
 - done when c = 0
- Store Q, R and P in shift registers
 - size(Q) = number of bits in Q
 - $size(R) = 2 \times size(Q)$ (room for left shifts)
 - $size(P) = 2 \times size(Q)$
- Other logic to control the circuit

Control Logic and Counter

- Finite state machine, designed as we have done in class
- Separate into counter (which we can design) and control logic
 - Counter: set to n, decrement to 0 (NOR = done)
 - Control logic: if $Q_0 = 1$, add and load new value
 - route Qo to add and load signals
 - Shifts always shift.

Binary multiply: a better circuit?

- We're only really adding *n* bits at a time
 - Can we get away with an n bit adder?
- As the number of bits in P increases, the number of bits in Q decreases
 - Perhaps we can utilize this as well.
- Consider the following hardware:

Binary multiply: a better circuit?

Binary multiply: a better circuit?

- All registers, and the adder, are now *n* bit
- New register A holds partial product.
- Carry bit is shifted into MSB of A
- LSB of A is shifted into MSB of Q
- A and Q together make partial products P

Signed Multiplication

- Check sign of R and Q
- Make positive, if necessary
- Perform multiplication as before
- Change sign of result P if necessary
 - i.e. if $R_{n-1} \oplus Q_{n-1} = 1$, result should be negative.
- Easier way: Booth algorithm
 - Takes advantage of some cool math

The booth algorithm

- Consider a number containing a string of 1s
 - eg. 011110
- Recall (from 2's complement work):

$$1111 = 10000 - 1$$

It is also true that

$$011110 = 100000 - 10$$

$$2^{4} + 2^{3} + 2^{2} + 2^{1} = 16 + 8 + 4 + 2 = 30$$

$$= 32 - 2$$

$$= 2^{5} - 2^{1}$$

The booth algorithm

```
When the multiplier has a string of 1s,
 add at the multiplicand at the start of the string
 subtract the multiplicand at the end of the string
Identifying the ends of a string of 1s
 Starts with "01", ends with "10"
This also allows us to multiply signed numbers
 because we are subtracting.
 e.g.: 100001 = -100000 + 10
```

CS 201 6:

The booth algorithm

The booth algorithm implementation

But wait...

- This algorithm needs to handle positive AND negative numbers, but
- Shift right could turn negative into positive!

```
1100 \rightarrowshift right \rightarrow 0110; -4 \rightarrow 6
```

- We want to retain the sign when we shift
- Arithmetic shift right: replicate the sign bit.

1100 \rightarrow arithmetic shift right \rightarrow 1110; $-4 \rightarrow -2$

Shifts

- Logical shift: Shift in a "0" from either direction
- Arithmetic shift: maintain sign bit
 - Shifting right: replicate the sign bit, drop the LSB

- becomes Q_n Q_n Q_{n-1} ... Q₁
- Shifting left: Retain the sign bit, shift in a "0" from the right.

 - becomes Q_n Q_{n-2} ... Q₁ 0

The booth algorithm: Example

$$10111 \times 10011$$
, $(-9)\times(-13)=+117=01110101$

C	A	Q	Q-1	Next Function
5	00000	1001	0	Subtract
	01001	10011	0	Arith. shift
4	00100	11001	1	Arith. shift
3	00010	01100	1	Add
	11001	01100	0	Arith. shift
2	11100	1011 <mark>0</mark>	0	Arith. shift
1	11110	0101	0	Subtract
	00111	01011	0	Arith. shift
0	00011	10101	1	Done

Unsigned division

Again, go back to grade 3: 147 ÷ 11 = 13, remainder 4 Quotient Divisor Dividend 1011 Partial Remainders

S 201

Division

- multiplication is repeated addition of the multiplicand based on whether or not the multiplier is 0 or 1
- division is repeated subtraction of the divisor from the dividend
 - If the result is negative you took away too much and the quotient should be 0 at that bit position
 - add back the divisor
 - If the result is positive, you didn't subtract too much so the quotient should be 1 at that bit position

70 To the state of the state of

Procedure: Unsigned division

Things to consider

- This algorithm assumes M > Q
- A is n+1 bits long
- Shifting A and Q together
 - same idea as in multiply
- Successive subtraction
 - Each time, if the result is negative, subtracted too much so add back again.
- Use a counter, start at "n"
- "Done" when counter reaches 0
 - Quotient is in "Q", Remainder is in "A"

Example: 1000/11=10r10 (8/3=2r2)

C	A	Q	Function
4	00000	1000	Start
	00001 <	+ 000	shift AQ
	11110	000	$A \leftarrow A - M$
3	00001	000	$Q_0 \leftarrow 0$, $A \leftarrow A + M$
	00010 ←	+ 000	shift AQ
	1 1111	000	$A \leftarrow A - M$
2	00010	000	$Q_0 \leftarrow 0$, $A \leftarrow A + M$
	00100 ←	+ 000	shift AQ
	00001	000	$A \leftarrow A - M$
1	00001	0001	$Q_0 \leftarrow 1$
	00010 <	+ 001	shift AQ
	1 1111	001	$A \leftarrow A - M$
0	00010	0010	$Q_0 \leftarrow 0$, $A \leftarrow A + M$

$$00001 - 11 = 11110$$

$$00010 - 11 = 11111$$

$$00100 - 11 = 00001$$

$$00010 - 11 = 11111$$

Hardware for division

Floating Point Numbers

- So far we've dealt with integers
- Need to allow computers to handle decimals, big numbers and small numbers
- We'll cover this later in the course, somewhat abstractly

Where are we now?

- We've built all the parts we need to start assembling them into a computer
 - Registers
 - Memory (sort of we'll do more)
 - ALU and other math bits
- We need to do some work before we start assembling
 - What will this computer do, and how?
 - How to move data around in the computer?
- Next: Assembly Language.