Programação Linear e Grafos

Sistemas de Informação - UNISUL

Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 2)

Teoria de Grafos

Caminho: é qualquer seqüência de arestas orientadas onde o vértice final de uma aresta é o vértice inicial da próxima.

Um caminho de **k** vértices é formado pôr (**k-1**) arestas (chamado de **comprimento (k-1)**)

Se todos os vértices do caminho são distintos, então temos um caminho simples.

Se todas as arestas do caminho são distintas, então temos um **caminho elementar**.

Quando o grafo **não é orientado** temos uma **cadeia** (e não mais um caminho) e as mesmas definições continuam válidas.

Menor Caminho de um vértice a qualquer outro vértice:

Algoritmo de Dijkstra

Considere um grafo valorado G(V, A), um vértice chamado origem v_0 e uma função L que associe cada aresta a um número real não negativo, isto é: $L(v_i, v_j) = \infty$, se não existe a aresta (v_i, v_j)

= 0, se
$$v_i = v_j$$

= custo, se $v_i \neq v_i$ e existe a aresta (v_i, v_i)

A matriz formada pela função L é chamada de matriz de distancia D.

O problema consiste em se determinar os caminhos (ou cadeias) do **vértice inicial v**₀ para cada vértice \mathbf{v}_i de \mathbf{G} , de tal forma que a somatória das distâncias das arestas envolvidas em cada caminho seja mínima.

Algoritmo de Dijkstra

```
Inicio
```

```
S \leftarrow \{v_0\}; w \leftarrow v_0 \; ; D[v0] \leftarrow 0;

Para cada v \in V - \{S\} faça D[v] \leftarrow L(v_0, v);

Enquanto S \neq V faça

Escolha o vértice w \in V-S tal que D[w] seja mínimo;

Coloque w em S, isto \acute{e}, faça S \leftarrow S \cup \{w\};

Para cada v \in V-S faça D[v] \leftarrow MIN(D[v], D[w] + L(w, v))

FimEnquanto
```

Fim

Algoritmo de Dijkstra: Exemplo

	\mathbf{V}_{0}	V_1	V_2	V_3	V_4
V_0		2			10
V_1			3		7
V_2				4	
V_3					
V_4			8	5	

Iter	S	W	D[W]	$D[V_1]$	$D[V_2]$	$D[V_3]$	$D[V_4]$
0	V_0	-	О	2	∞	∞	10
1	V_0,V_1	V_1	2	-	$(\infty,5)$	∞	(10,9)
2	V_0, V_1, V_2	V_2	5	-	-	$(\infty,9)$	9
3	V_0, V_1, V_2, V_3	V_3	9	_	_	-	9
4	V_0, V_1, V_2, V_3, V_4	V_4	9	_	_	-	_

Iter	S	W	D[W]	$D[V_1]$	$D[V_2]$	$D[V_3]$	$D[V_4]$
0	V_0	Ι	0	V_0			V_0
1	V_0,V_1	V_1	2	ı	V_1		V_1
2	V_0, V_1, V_2	V_2	5	-	-	V_2	V_1
3	V_0, V_1, V_2, V_3	V_3	9	ı	-	-	V_1
4	V_0, V_1, V_2, V_3, V_4	V_4	9	_	_	-	-

Caminhos: A V4 chego de V1 que chego de V0;

A V3 chego de V2 que chego de V1 que chego de V0

A V2 chego de V1 que chego de V0

Algoritmo de Dijkstra: Exemplo

	V_0	V_1	V_2	V_3	V_4
V_0		1		0.5	
V_1			1		
V_2					5
V_3	1	3			1
V_4				1	

Iter	S	W	D[W]	$D[V_1]$	$D[V_2]$	$D[V_3]$	$D[V_4]$
О	V_0	1	О	1	∞	0,5	∞
1	V_0,V_3	V_3	0,5	(1, 3.5)	∞	-	$(\infty, 1.5)$
2	V_0, V_3, V_1	V_1	1	_	$(\infty,2)$	-	1.5
3	V_0, V_3, V_1, V_4	V_4	1.5	_	2	_	_
4	V_0, V_3, V_1, V_4, V_2	V_2	2	_	-	_	_

Iter	S	W	D[W]	$D[V_1]$	$D[V_2]$	$D[V_3]$	$D[V_4]$
0	V_0	-	0	V_0		V_0	
1	V_0,V_3	V_3	0,5	V_0		-	V_3
2	V_0, V_3, V_1	V_1	1	_	V_1	-	V_3
3	V_0, V_3, V_1, V_4	V_4	1.5	_	V_1	-	_
4	V_0, V_3, V_1, V_4, V_2	V_2	2	-	-	-	-

Caminhos: A V3 chego de V0; a V1 chego de V0;

A V4 chego de V3 que chego de V0

A V2 chego de V1 que chego de V0

Menor Caminho entre dois vértices: Algoritmo de Floyd

Idéia do Algoritmo

Construir uma matriz \mathbf{D}_0 de custos de arestas, onde os laços possuem custo zero e à não existência de arestas atribui-se o custo infinito.

O algoritmo constrói, sucessivamente, $\bf n$ matrizes a partir de $\bf D_0$, através de modificações efetuadas de acordo com o seguinte expressão:

$$d_{ij}(k) = Min[d_{ij}(k-1), (d_{iw}(k-1) + d_{wj}(k-1))] com w = 0.. n-1$$

Para a determinação do caminho, parte-se do final para o início, levando-se em conta os vértices intermediários incluídos durante o processo.

Algoritmo de Floyd

Inicio

- 1. Iniciar a matriz D_1 tal que $d_{ii} = 0$ e $d_{ij} = \infty$ quando não existe aresta (v_i, v_j) , inicializar $k \leftarrow 1$; { o k é o passo ou número de iterações }
- 2. Para todo w = 1 ... n faça $d_{ij}(k+1) = Min [d_{ij}(k), (d_{iw} + d_{wj}(k))]$
- 3. Se o número de iterações (k) é igual a |V|-1 então parar Senão

Se a matriz de distancia $D_k = D_{k-1}$ então parar Senão Faça $k \leftarrow k + 1$;

4. Retornar ao passo 2.

Fim

Algoritmo de Floyd: Exemplo

О	1	∞	0.5	∞
8	О	1	8	1
∞	∞	О	∞	5
1	3	8	О	1
8	8	8	1	О

Caminhos de até 2 passos

О	1	∞	0.5	∞	О	1	2*	0.5	1.5*
∞	О	1	∞	1	∞	О	1	2*	1
∞	8	О	∞	5	∞	∞	О	6 *	5
1	3	∞	О	1	1	2*	4*	О	1
∞	8	8	1	О	2*	4*	∞	1	О

Caminhos de até 3 passos

О	1	∞	0.5	∞	О	1	2	0.5	1.5
∞	О	1	∞	1	3*	О	1	2	1
∞	8	О	∞	5	7*	9*	О	6	5
1	3	∞	О	1	1	2	3*	О	1
∞	8	8	1	О	2	3	5*	1	О

Caminhos de até 4 passos

О	1	8	0.5	∞	О	1	2	0.5	1.5
∞	О	1	8	1	3	О	1	2	1
∞	8	О	∞	5	7	8*	О	6	5
1	3	8	О	1	1	2	3	О	1
∞	8	8	1	О	2	3	4*	1	О

Menor Caminho entre dois vértices: Algoritmo de Floyd

Matriz de Roteamento

Em diversas situações deseja-se saber qual é o menor caminho de um vértice a outro.

Uma maneira de conseguir esta informação é utilizar uma matriz \mathbf{R} , onde em $\mathbf{R}[\mathbf{i},\mathbf{j}]$ contém aquele vértice \mathbf{k} que permite ao algoritmo de Floyd achar o menor valor $\mathbf{A}[\mathbf{i},\mathbf{j}]$. Se $\mathbf{R}[\mathbf{i},\mathbf{j}] = \mathbf{0}$, então o menor caminho de \mathbf{i} para \mathbf{j} é direto, seguindo a aresta $(\mathbf{v}_{\mathbf{i}},\mathbf{v}_{\mathbf{i}})$.

A versão do algoritmo de Floyd modificado fornece estes caminhos

Algoritmo de Floyd: Matriz de Roteamento

Inicio

```
Para i = 1 até n faça
      Para j = 1 até n faça
           A[i,j] \leftarrow D(i,j);
           R[i, i] \leftarrow 0;
Para i = 1 até n faça
           A[i,i] \leftarrow 0;
Para k = 1 até n faça
    Para i = 1 até n faça
       Para j = 1 até n faça
           Se A [ i, k ] + A [ k, j ] < A [ i,j ] então faça
                    A[i,i] \leftarrow A[i,k] + A[k,i];
                    R[i, i] \leftarrow k;
```

Algoritmo de Floyd: Roteamento

Caminhos de até 1 passo

Caminhos de até 2 passos

V0	V1		V3			V0	V1	V1	V3	V3
	V1	V2		V4			V 1	V2	V4	V4
		V2		V4				V2	V4	V4
V0	V1		V3	V4		V0	V0	V1	V3	V4
			V3	V4		V3	V3		V3	V4

O valor V1 foi obtido: (1+1: Vo => V1 e V1=>V2) sempre coloco o valor do meio

Caminhos de até 3 passos

Caminhos de até 4 passos

V0	V1	V1	V3	V3		V0	V1	V1	V3	V3
V4	V1	V2	V4	V4		V4	V1	V2	V4	V4
V4	V4	V2	V4	V4		V4	V4	V2	V4	V4
VO	V0	V0	V3	V4		V0	V0	VO	V3	V4
V3	V3	V3	V3	V4		V3	V3	V3	V3	V4

Caminhos V2 ao V1 (olhar na coluna do V1) De V2 ao V4, do V4 ao V3 do V3 ao V0 do V0 ao V1