Examen Toegepaste Wiskunde I Oefeningen

Prof. dr Werner Peeters

1e bachelor bio-ingenieur — 2e zittijd 2015–2016

	Naam:						
	Richting:	BIR					
	Studentenkaartnr.:	r.:					
Gebruik van een niet-programmeerbaar, niet-alfanumeriek rekentoestel is toegelaten!							
Onleesbaar = fout!							
Gebruik, tenzij uitdrukkelijk gevraagd, geen numerieke afrondingen en geen kommagetallen.							
Schrijf waar mogelijk zo veel mogelijk tussenstappen.							
VEEL SUCCES!			Eindscore:	/60			

1. Bereken
$$\frac{1}{(1+2i)^4} + \frac{1}{(1-2i)^4}$$
.

2. De veelterm $A(z) = 9z^3 + (1+i)z^2 + az + b$ heeft als rest bij deling door (z-i) de waarde 2-6i en heeft als rest bij deling door (z-1) de waarde 10+2i. Zoek a en b.

3. Bereken de volgende limieten in $\mathbb R$ zonder gebruik van de regel van de l'Hopital. Maak indien nodig onderscheid tussen linker-en rechterlimiet en tussen $+\infty$ en $-\infty$

(a)
$$\lim_{x \to 1} \frac{2x^3 + 2x^2 - 2x - 2}{6x^3 - 15x^2 + 12x - 3}$$

(b)
$$\lim_{x \to 8} \frac{\sqrt[3]{x^2} - 4}{x - 8}$$

(c)
$$\lim_{x \to \pi/2} \frac{\sin 2x + \sin 6x}{\cos x + \cos 3x}$$

$$\frac{2}{\log_{x+1} 2} - \log_2 (44x - 16) + 3 = 0$$

5. Bereken de afgeleide van de functie $f\left(x\right)=\frac{x^{2}}{\left(x+1\right)\ln x}.$

6. Bestudeer de functie

$$f(x) = 1 + \frac{6}{x} + \frac{8}{x^2}.$$

Onderzoek domein, asymptoten, nulpunten, tekenonderzoek van de eerste twee afgeleiden, en maak een tekening.

7. Bereken door gebruik van de regel van Fuss:

$$\int \frac{7x^2 + 8x + 4}{x^3 + 3x^2 + 4x + 2} dx$$

8. Bereken

$$\int \frac{\sin x + 3\cos x}{\sin x + \cos x - 1} dx$$

9. Bereken de integraal $\int_{0}^{1} \frac{x}{1+x^2} dx$ met n=5 (voor Simpson n=10) met de middelpuntsmethode en de trapeziummethode met n=5, en de methode van Simpson met n=10, bereken de fout, en vergelijk met de werkelijke waarde. Je krijgt cadeau dat $||f''|| \leq \frac{3}{2}$ en dat $||f^{iv}|| \leq 20$

10.	Bepaal de oppervlakte binnen	de poolkromme	$r_1(\theta) = 1$	en buiten	de poolkromme	$r_2(\theta) =$	$\cos 2\theta$.
	Maak een tekening.						

En hier is nog een leeg blad om flaters van de vorige bladzijden recht te zetten:

Oplossingen:

1. Bereken
$$\frac{1}{(1+2i)^4} + \frac{1}{(1-2i)^4}$$

$$= \frac{1}{1+8i-24-32i+16} + \frac{1}{1-8i-24+32i+16}$$

$$= \frac{1}{-7-24i} + \frac{1}{-7+24i}$$

$$= -\frac{7}{625} + \frac{24}{625}i - \frac{7}{625} - \frac{24}{625}i$$

$$= -\frac{14}{625}$$

2. De veelterm $A(z) = 9z^3 + (1+i)z^2 + az + b$ heeft als rest bij deling door (z-i) de waarde 2-6i en heeft als rest bij deling door (z-1) de waarde 10+2i. Zoek a en b.

$$\begin{cases} A(i) = 2 - 6i \\ A(1) = 10 + 2i \end{cases} \Rightarrow \begin{cases} -1 + b + i(-10 + a) = 2 - 6i \\ 10 + i + a + b = 10 + 2i \end{cases}$$
$$\Rightarrow \begin{cases} ia + b = 3 + 4i \\ a + b = i \end{cases} \Rightarrow \begin{cases} (-1 + i)a = 3 + 3i \\ a + b = i \end{cases} \Rightarrow \begin{cases} a = -3i \\ b = 4i \end{cases}$$

3. Bereken de volgende limieten in \mathbb{R} zonder gebruik van de regel van de l'Hopital. Maak indien nodig onderscheid tussen linker-en rechterlimiet en tussen $+\infty$ en $-\infty$

(a)
$$\lim_{x \to 1} \frac{2x^3 + 2x^2 - 2x - 2}{6x^3 - 15x^2 + 12x - 3} = \frac{0}{0}$$
$$= \lim_{x \to 1} \frac{2(x - 1)(x + 1)^2}{3(x - 1)^2(2x - 1)}$$
$$= \lim_{x \to 1} \frac{2(x + 1)^2}{3(x - 1)(2x - 1)} = \frac{8}{0}$$

•
$$\lim_{x \to 1} \frac{2(x+1)^2}{3(x-1)(2x-1)} = \frac{8}{0^+} = +\infty$$

•
$$\lim_{x \le 1} \frac{2(x+1)^2}{3(x-1)(2x-1)} = \frac{8}{0^-} = -\infty$$

(b)
$$\lim_{x \to 8} \frac{\sqrt[3]{x^2 - 4}}{x - 8} = \frac{0}{0}$$

$$= \lim_{x \to 8} \frac{\left(x^{\frac{2}{3}} - 4\right) \left(x^{\frac{4}{3}} + 4x^{\frac{2}{3}} + 16\right)}{\left(x - 8\right) \left(x^{\frac{4}{3}} + 4x^{\frac{2}{3}} + 16\right)}$$

$$= \lim_{x \to 8} \frac{\left(x^2 - 64\right)}{\left(x - 8\right) \left(x^{\frac{4}{3}} + 4x^{\frac{2}{3}} + 16\right)}$$

$$= \lim_{x \to 8} \frac{\left(x - 8\right) \left(x + 8\right)}{\left(x - 8\right) \left(x^{\frac{4}{3}} + 4x^{\frac{2}{3}} + 16\right)}$$

$$= \lim_{x \to 8} \frac{x + 8}{x^{\frac{4}{3}} + 4x^{\frac{2}{3}} + 16} = \frac{4}{4 + 4 + 4} = \frac{1}{3}$$

(c)
$$\lim_{x \to \pi/2} \frac{\sin 2x + \sin 6x}{\cos x + \cos 3x} = \lim_{x \to \pi/2} \frac{2\sin 4x \cos 2x}{2\cos 2x \cos x} = \lim_{x \to \pi/2} \frac{\sin 4x}{\cos x}$$
Stel $y = \frac{\pi}{2} - x$

$$= \lim_{y \to 0} \frac{\sin 4\left(\frac{\pi}{2} - y\right)}{\cos\left(\frac{\pi}{2} - y\right)} = \lim_{y \to 0} \frac{-\sin 4y}{\sin y} = \lim_{y \to 0} \frac{-4y \cdot \sin 4y}{4y \cdot \sin y} = -4\lim_{y \to 0} \frac{\sin 4y}{4y} \cdot \frac{y}{\sin y} = -4$$

4. Los op:

$$\frac{2}{\log_{x+1} 2} - \log_2 (44x - 16) + 3 = 0$$

$$\Leftrightarrow 2\log_2(x+1) - \log_2(44x-16) + 3 = 0$$

 $\Leftrightarrow 2\log_2(x+1) = \log_2(44x-16) - 3$

$$\Leftrightarrow \log_2(x+1)^2 = \log_2(44x-16) - \log_2 8$$

$$\Leftrightarrow 2\log_2(x+1) - \log_2(44x - 16) + 3 = 0$$

$$\Leftrightarrow 2\log_2(x+1) = \log_2(44x - 16) - 3$$

$$\Leftrightarrow \log_2(x+1)^2 = \log_2(44x - 16) - \log_2 8$$

$$\Leftrightarrow \log_2(x+1)^2 = \log_2\frac{(44x - 16)}{8}$$

$$\Leftrightarrow (x+1)^2 = \frac{11}{2}x - 2$$

$$\Leftrightarrow 2(x+1)^2 - 11x + 4 = 0 \Leftrightarrow 2x^2 - 7x + 6 = 0$$

$$\Leftrightarrow 2x^2 - 7x + 6 = 0$$

$$\Leftrightarrow (x-2)(2x-3) = 0$$

$$\Leftrightarrow x \in \left\{2, \frac{3}{2}\right\}$$

5. Bereken de afgeleide van de functie $f(x) = \frac{x^2}{(x+1) \ln x}$

6. Bestudeer de functie

$$f(x) = 1 + \frac{6}{x} + \frac{8}{x^2}.$$

Onderzoek domein, asymptoten, nulpunten, tekenonderzoek van de eerste twee afgeleiden, en maak een tekening.

•
$$f(x) = 1 + \frac{6}{x} + \frac{8}{x^2} = \frac{x^2 + 6x + 8}{x^2} = \frac{(x+4)(x+2)}{x^2}$$

dom $f = \mathbb{R}_0$

• Asymptoten

- Verticale asymptoot:

$$\lim_{x \to 0} f(x) = \frac{8}{0^+} = +\infty$$

$$\Rightarrow x = 0 \text{ is een verticale asymptoot}$$

$$f(x) = 1 + \frac{6x + 8}{x^2} \Rightarrow y = 1$$
 is een horizontale asymptoot

$$\begin{array}{c|ccccc} x & -\frac{4}{3} & 0 \\ \hline f - A = \frac{6x + 8}{x^2} & - & 0 & + & |^{(2)} & + \\ \end{array}$$

Als $x \to +\infty$, dan ligt f boven A; als $x \to -\infty$, dan ligt f onder A

• Nulpunten:
$$f(x) = 0 \Leftrightarrow (x+4)(x+2) = 0 \Rightarrow x \in \{-4, -2\}$$

Polen: $N = 0 \Leftrightarrow x^2 = 0 \Rightarrow x \in \{0^{(2)}\}$

•
$$f'(x) = \frac{-6x - 16}{x^3}$$

Nulpunten: $x = -\frac{8}{3}$
Polen: $x \in \{0^{(3)}\}$

•
$$f''(x) = \frac{12x + 48}{x^4}$$

Nulpunten: $x = -4$
Polen: $x \in \{0^{(4)}\}$

x		-4		$-\frac{8}{3}$		-2		0	
f(x)	+	0	_	_	_	0	+	$ ^{(2)}$	+
f'(x)	_	_	_	0	+	+	+	$ ^{(3)}$	_
f''(x)	_	0	+	+	+	+	+	$ ^{(4)}$	+
	\	>	>	m	/	/	7		\
	$\overline{}$	B	\smile	\smile	\smile	\smile	\smile		\smile
		0		$-\frac{1}{8}$					

• Tekening:

7. Bereken door gebruik van de regel van Fuss:

$$\int \frac{7x^2 + 8x + 4}{x^3 + 3x^2 + 4x + 2} dx$$

$$\frac{7x^2 + 8x + 4}{x^3 + 3x^2 + 4x + 2} = \frac{7x^2 + 8x + 4}{(x^2 + 2x + 2)(x + 1)} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{C}{x + 1}$$

$$A(-1 + i) + B = \frac{7x^2 + 8x + 4}{x + 1}|_{x = -1 + i} = -6 + 4i$$

$$\Rightarrow \begin{cases} -A + B = -6 \\ Ai = 4i \end{cases} \Rightarrow (A, B) = (4, -2)$$

$$C = \frac{7x^2 + 8x + 4}{x^2 + 2x + 2}|_{x = -1} = 3$$

$$\Rightarrow I = \int \left(\frac{4x - 2}{x^2 + 2x + 2} + \frac{3}{x + 1}\right) dx = \int \frac{(4x - 2) dx}{x^2 + 2x + 2} + \int \frac{3dx}{x + 1}$$

$$= 2\int \frac{d(x^2 + 2x + 2)}{x^2 + 2x + 2} - 6\int \frac{dx}{x^2 + 2x + 2} + \int \frac{3dx}{x + 1}$$

$$= 2\ln|x^2 + 2x + 2| - 6\int \frac{dx}{(x + 1)^2 + 1} + 3\ln|x + 1|$$

$$= 2\ln|x^2 + 2x + 2| - 6\operatorname{Bgtan}(x + 1) + 3\ln|x + 1| + c$$

8. Bereken

$$\int \frac{\sin x + 3\cos x}{\sin x + \cos x - 1} dx$$

$$t = \tan \frac{x}{2} \implies x = 2 \operatorname{Bgtan} t$$

$$dx = \frac{2dt}{1 + t^2}$$

$$\Rightarrow \tan x = \frac{2t}{1 - t^2}$$

$$\Rightarrow \sin x = \frac{2t}{1 + t^2}$$

$$\Rightarrow \cos x = \frac{1 - t^2}{1 + t^2}$$

$$\begin{split} &= \int \frac{\frac{2t}{1+t^2} + \frac{3-3t^2}{1+t^2}}{\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} - 1} \frac{2dt}{1+t^2} \\ &= \int \frac{2t+3-3t^2}{2t+1-t^2-1-t^2} \frac{2dt}{1+t^2} \\ &= \int \frac{3t^2-2t-3}{(t^2-t)(t^2+1)} dt \\ &= \int \frac{3t^2-2t-3}{t(t-1)(t^2+1)} dt \\ &\text{Stel } \frac{3t^2-2t-3}{t(t-1)(t^2+1)} = \frac{A}{t} + \frac{B}{t-1} + \frac{Ct+D}{t^2+1} \\ &A = \frac{3t^2-2t-3}{(t-1)(t^2+1)}|_{t=0} = 3 \\ &B = \frac{3t^2-2t-3}{t(t^2+1)}|_{t=1} = -1 \\ &Ci+D = \frac{3t^2-2t-3}{t(t-1)}|_{t=i} = 4-2i \Rightarrow (C,D) = (-2,4) \\ &\Rightarrow I = \int \left(\frac{3}{t} - \frac{1}{t-1} + \frac{-2t+4}{t^2+1}\right) dt \end{split}$$

$$= 3\int \frac{dt}{t} - \int \frac{dt}{t-1} - \int \frac{d(t^2+1)}{t^2+1} + 4\int \frac{dt}{t^2+1}$$

$$= 3\ln|t| - \ln|t-1| - \ln|t^2+1| + 4\operatorname{Bgtan} t + c$$

$$= 3\ln|\tan\frac{x}{2}| - \ln|\tan\frac{x}{2} - 1| - \ln|\tan^2\frac{x}{2} + 1| + 2x + c$$

- 9. Bereken de integraal $\int_{0}^{1} \frac{x}{1+x^2} dx$ met n=5 (voor Simpson n=10) met de middelpuntsmethode en de trapeziummethode met n=5, en de methode van Simpson met n=10, bereken de fout, en vergelijk met de werkelijke waarde. Je krijgt cadeau dat $||f''|| \leq \frac{3}{2}$ en dat $||f^{iv}|| \leq 20$
 - Werkelijke waarde: $\int\limits_0^1 \frac{x}{1+x^2}dx = \left[\frac{1}{2}\ln\left|x^2+1\right|\right]_0^1 = \frac{1}{2}\ln2 \simeq 0.3465735903$ $f\left(x\right) = \frac{x}{1+x^2}$ $x \qquad f\left(x\right) \qquad M \quad T \quad S$

• Middelpuntsbenadering:

$$M_5 = \frac{1}{5} (f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9)) \approx 0.3482550971$$

Fout:
$$||f''|| \le \frac{3}{2}$$

$$\Rightarrow \left| \int_{2}^{1} \frac{x}{1+x^2} dx - M_5 \right| \le \frac{\frac{3}{2} \cdot 1^3}{24 \cdot 5^2} = \frac{1}{400} = 0.0025$$

• Trapeziumbenadering:

$$T_{4} = \frac{1}{10} \left(f\left(0\right) + 2f\left(0.2\right) + 2f\left(0.4\right) + 2f\left(0.6\right) + 2f\left(0.8\right) + f\left(1\right) \right) \simeq 0.3432233254$$

Fout:
$$||f''|| \le \frac{3}{2}$$

$$\Rightarrow \left| \int_{0}^{1} \frac{x}{1+x^{2}} dx - M_{5} \right| \le \frac{\frac{3}{2} \cdot 1^{3}}{12 \cdot 5^{2}} = \frac{1}{200} = 0.005$$

• Simpsonbenadering:

$$S_{10} = \frac{1}{30} \left(f\left(0\right) + 4f\left(0.1\right) + 2f\left(0.2\right) + 4f\left(0.3\right) + 2f\left(0.4\right) + 4f\left(0.5\right) + 2f\left(0.6\right) + 4f\left(0.7\right) + 2f\left(0.8\right) + 4f\left(0.9\right) + 2f\left(0.8\right) + 4f\left(0.9\right) + 2f\left(0.8\right) + 4f\left(0.9\right) + 2f\left(0.8\right) + 4f\left(0.9\right) + 2f\left(0.8\right) + 2f\left(0.9\right) + 2f\left(0.9\right)$$

Fout:
$$||f^{iv}|| \le 20$$

$$\Rightarrow \left| \int_{0}^{1} \frac{x}{1+x^2} dx - S_{10} \right| \le \frac{20 \cdot 1^5}{180 \cdot 10^4} = \frac{1}{90000} \simeq 0.00001111111$$

10. Bepaal de oppervlakte binnen de poolkromme $r_1(\theta) = 1$ en buiten de poolkromme $r_2(\theta) = \cos 2\theta$. Maak een tekening.

 r_1 is de cirkel met straal $\boldsymbol{1}$

 $r_2:$ Periode: $\pi\Rightarrow$ We onderzoeken de functie op $[0,\pi]$

$$r_{2}(\theta) = 0 \Leftrightarrow \cos 2\theta = 0 \Leftrightarrow 2\theta = \frac{\pi}{2} + k\pi \Leftrightarrow \theta = \frac{\pi}{4} + k\frac{\pi}{2} \Rightarrow \theta \in \left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$$

$$r_{2}'\left(\theta\right)=-2\sin2\theta=0\Leftrightarrow2\theta=k\pi\Leftrightarrow\theta=k\frac{\pi}{2}\Rightarrow\theta\in\left\{ 0,\frac{\pi}{2},\pi\right\}$$

$$S = \pi - \frac{1}{2} \cdot 2 \int_{0}^{\pi} \cos^{2} 2\theta d\theta = \pi - 2 \int_{0}^{\pi/2} \cos^{2} 2\theta d\theta = \pi - 4 \int_{0}^{\pi/4} \cos^{2} 2\theta d\theta$$
$$= \pi - 4 \int_{0}^{\pi/4} \frac{1 + \cos 4\theta}{2} d\theta = \pi - 2 \int_{0}^{\pi/4} (1 + \cos 4\theta) d\theta = \pi - 2 \left[\theta + \frac{1}{4} \sin 4\theta\right]_{0}^{\pi/4} = \frac{\pi}{2}$$