SESA3029 Aerothermodynamics

Lecture 4.2
Effect of Mach number on airfoil flow

Airfoil flows

- Objective: study the effect of Mach number on airfoil flow, including shock pattern
- Method: CFD solving the Euler equations
 - excludes viscous (boundary-layer) effects
 - finite volume method with shock waves captured by artificial dissipation

got to capture discontinuity without issues
we achive this using "artiticial dissipation"

40

60

O-grid set up

12% thick Karman-Trefftz airfoil 51x101 grid points (grid generated by a conformal mapping)

Iterate to convergence

In between the previous two cases, we have a conditions where the Mach number just reaches one on the surface: the critical M

Alpha=0 M=1.2

Sonic and supersonic cases

Notes (zero incidence)

- M_{∞} < M_{crit} subsonic flow throughout
- $M_{\infty} = M_{crit}$ flow reaches M=1 at some point on the surface
- $M_{crit} < M_{\infty} < 1$ Supersonic flow region, terminated with shock wave
- M_{∞} >1 bow shock wave forms (closer to leading edge as M_{∞} increases) and trailing edge shocks develop
 - Only region of subsonic flow is in front of leading edge

At 5.7° incidence

Transonic flow (M_{∞} =0.8)

Supersonic flow (M_{∞} =1.4)

Lift rises in subsonic region – well predicted by Prandtl-Glauert theory (covered later in the module)

Lift falls in supersonic region, approximated by Ackeret theory for high M_{∞}

Drag-rise Mach number approximately 0.6.

Wave drag rises steeply, peaking in transonic flow regime and reaching a plateau for $M_{\infty} > 1$

Drag reduction strategies

• Supercritical sections (for high subsonic flight)

- Wing sweep provided to my many
 - Effective oncoming Mach number is $M_{\infty}\cos\beta$, where β is the leading edge sweep angle
 - Used in transonic and supersonic regions to reduce the effective Mach number seen by the airfoil section

 Supersonic aircraft can reduce wave drag by keeping a smooth streamwise variation of total cross-sectional area (wings plus fuselage)

