doi:10.3969/j.issn.1000 - 1247.2016.09.024



# 基于开源分布式的业务系统技术架构研究

#### 龚德志 黄 磊

中国电信股份有限公司上海研究院



随着分布式技术的发展,越来越多的行业开始使用开源分布式技术作为系统架构的基础,对电信运营商如 商要 何利用开源分布式架构对业务系统进行改造,满足日益增长的业务需求进行了探讨和研究。



开源技术 分布式架构 业务系统 技术架构

# 11 引言

为改变烟囱状、封闭式的业务系统现状,自2014年始, 中国电信集团公司对全国集中系统和全省集中系统的业务系 统建设提出新的要求,提出重新构建集中、开放的IT架构, 实现IT架构互联网化的要求,同时要求各省公司实现IT架构 横向扩展,严格限制小型机新购和扩容。

## 2 分布式架构主要特性

分布式架构早在20世纪70~80年代就已经出现,只是在 互联网时代,分布式架构系统才大放异彩,并且目前主流的 大数据平台均是基于分布式架构。

## 2.1 分布式架构优点

#### (1)可扩展性

分布式架构能够适应需求变化而进行横向扩展, 可以 通过增加服务器数量来增强分布式系统整体的处理能力,以 应对企业业务增长带来的计算需求。其核心理念是让多台服 务器协同工作,完成单台服务器无法处理的任务,尤其是高 并发或者大数据量的任务。分布式系统由独立的服务器通过 高速网络松散耦合组成,每个节点一般不采用高性能的服务 器,而是性能相对一般的普通PC服务器。提升分布式系统 的整体性能是要通过增加更多的服务器进行横向扩展, 而不 是通过提升每个节点的服务器性能进行纵向扩展。

#### (2)廉价高效

由成本低廉的PC服务器组成的分布式架构集群, 在性

能方面能够达到或超越大型机的处理性能,而在成本上远低 于大型机,这也是分布式系统最突出的特点。因为成本低廉 的PC服务器在硬件可靠性方面与大型机相去甚远, 所以基 于分布式架构的系统由软件对硬件进行容错,通过软件保证 整体系统的高可靠性。

分布式架构在解决并发问题的同时,带来其他问题。首 先,服务调用必须经过网络,对性能造成比较严重的影响。 其次,服务器越多宕机的概率越大,一台服务器宕机导致服 务不可用,可能会导致应用不可访问,可用性降低。最后, 数据在分布式环境中保持数据一致性非常难,分布式事务难 以保证,分布式架构如图1所示。

## 2.2 分布式架构系统设计需要注意的核心关键点 (1)扩展性

扩展性指对现有系统影响最小的情况下, 系统功能可持 续扩展或提升的能力。表现在系统基础设施稳定且不需要经常 变更,应用之间较少依赖和耦合,对需求变更可以敏捷响应。 低耦合的系统更容易扩展,低耦合的模块更容易服用,一个低 耦合的系统设计会让开发过程和维护变得更加轻松和容易管 理。低耦合的系统需要对传统紧耦合系统进行解耦,做到展现 与应用分离,应用与应用分离,应用与数据分离。应用与应用 分离有两种方式,一是利用分布式消息队列通过消息对象分解

系统耦合性,二是利用服务总线通过接口分解系统耦合性。

#### (2)可用性

可用性即系统可有效访问的特性。提供系统可用性的



方法包括:通过集群部署 实现数据和服务的冗余备份,通过负载均衡进行无 状态服务的失效转移,通 过消息队列等异步方式避 免一个服务失效导致整个 应用请求失败。

#### (3)伸缩性

伸缩性指系统能够 通过增加或减少自身资源 规模方式,增强或减少自 己计算处理事务的能力。 系统架构设计中,通常指 利用集群的方式增加服务 器数量,提供系统的整体 事务吞吐能力。

#### (4)高性能

提供系统性能的方法主要有以下几个方面。

• 通过分布式缓存、 内存数据库等技术减轻数

据库负载压力;

- 数据库读写分离;
- 通过集群方式提高整体处理能力;
- 通过异步操作将请求发送到消息队列,当前请求直接返回。

## **冈** 开源技术发展现状

目前,从基础设施层到数据库/梳理层、中间件业务逻辑层、Web接入和展现层、负载均衡层,企业级开源技术已经覆盖了典型IT架构的各个层面,可以提供基于开源技术的整体解决方案。

开源技术已经进入蓬勃发展时代,它已经渗透到各行各业和方方面面,新兴技术多数已经与开源结成联盟,但与互联网距离稍微远一些的传统行业,应该怎么接纳开源,怎样引入开源技术,开源技术带来的困惑和挑战等这些都是值得探讨的问题。

目前流行的商业产品,基本都有类似的开源实现,学会 从开源项目中选取适合自己的项目,引入开源技术,培养自 己的开源团队,应该做好以下工作。

- 掌握阅读源代码的能力;
- 掌握从主流社区获取资源的能力;
- 掌握根据行业需求架构开源技术的能力。

## 4 电信业务系统分析

## (1)电信业务系统具备以下特征

- 业务复杂, 耦合度高: 跨产品、跨用户捆绑, 如我的 e家、企业VPN、不同用户共享话费时长、流量等; 业务规则复杂多变, 有8大类60多关键维度业务规则;
- 业务需求多变,需要快速支撑:需求众多,需要快速 支撑响应,开发周期短;
- 数据一致性及稳定性要求高:任何处理错误、不一 致都会导致用户投诉,要求电信级的服务,系统稳定性要 求高;
- 处理各种业务异常: IT是业务处理最后环节,需处理 各类网络、业务异常,业务规则冲突等,如话单排重、重新 出账等。

## (2)电信IT架构特征

- 底层采用关系型数据库;
- 数据集中存储和处理,需依靠成熟关系型数据库支持复杂数据计算,保障交易完整性,提供较高性能和完整的管理能力;
- 依靠中高端小型机和存储硬件设备提供高性能,高可 靠性,高扩展性;
  - 功能开发快速满足业务需求。

## (3)互联网新型业务特征对IT系统的挑战

互联网新型业务具备两大特点,第一,用户和交易量急速增加;第二,主要挑战是提供最佳产品体验并处理高增长带来的海量用户、海量访问、海量数据。互联网新兴业务对IT 的挑战可总结为4点:海量、动态、敏捷、开放。海量指支持海量数据和高并发访问;动态指具备支撑能力的伸缩性、极高的业务连续性以及多级运营和管理能力;开放指降低非IT人员参与业务创新的技术门槛,促进企业内外部协作,IT融入业务核心,创建健康、多元和共赢的IT建设和运营生态;敏捷指企业掌控IT核心,适应市场的快速变化,促进IT资产积累和增值。

# **5** 分布式开源架构设计

通过对中国电信某省公司业务系统的分析,各系统采用的分布式技术如下。

- •新账务系统采用分布式缓存(Redis)技术;
- 统一资源模型系统采用由自研数据路由层(ZDaaS) +MySql集群组成的分布式关系型数据库;
- OSS数据总线(OIP),采用分布式缓存(Redis)
  +Hadoop+MySql的架构;
- 融合计费正在研究使用分布式缓存、分布式内存数据库等技术, 计划在下一个版本中视情况使用;
- 新OA、ICT项目管理等项目局部使用诸如 Memcache、MySql之类的技术。

为接应中国电信集团公司推动IT架构开放化、互联网化

的工作要求,适应新业务形式下对IT架构的新需求,基于开源技术的分布式IT技术架构,满足以下三个条件。

- (1)以新兴技术、开源技术作为整个IT架构转型的技术 保障,培养自己的技术队伍,掌握部分核心技术,逐步降低 对厂商的技术依赖。
- (2)适用大部分在线交易业务系统,满足大并发在线交易需求,应用层、中间层、数据层各个层面实现分布式架构,应用可以平滑横向扩展,消除系统性能瓶颈。
- (3)服务器PC化,通过集群化和虚拟化封装基础设施能力,实现基础设施资源统一管理、统一调度和横向扩容能力;通过数据读写分离、分布式部署、分库分表、数据路由等手段,引入轻量化数据库技术。

根据对主流厂商和运营商架构设计分析,结合中国电信特有的业务特性,分析总结并抽取出开源分布式通用架构,架构设计如图3所示。

在整个分布式开源架构中,最重要的是PaaS层,而PaaS 又分为DaaS、APaaS、IPaaS和UXPaaS,在APaaS层又分技术 服务和业务服务。

#### (1)分布式数据库

基于网络的多个关系型数据库单元组成逻辑上统一的数据库,具备以下特点。

分布式:将数据切分存储在多个节点上,多种数据切片 方式。

结构化:数据以表、行、列的形式存储。

弹性横向扩展:集群可实现节点动态在线增减。





磁盘存储:使用物理磁盘保存数据持久化。

最终一致性:保证数据处理结果的最终一致性。

冗余性: 主从模式等。

高可用:出现不可信任节点时系统高可用,实现动态在 线任意切换。

## (2)分布式缓存

基于内存的Key-Value结构分布式高速缓冲,具备以下特点。

分布式:将数据切分存储在多个节点上,按Key切片。

Key-Value: 以键值对的形式进行存取。

弹性横向扩展:集群可实现节点动态在线增减。

内存存储:数据加载自数据库或文件。

数据一致性:缓存作为数据库或文件数据的副本,仅单向写入。

冗余性:一主多从,主从动态在线任意切换,实现读写分离。

读多写少:外部读取,支持内外部写入。

低延时:比原来自然状态下延长一段时间,毫秒级。

## (3)分布式文件系统

具备以下特点。

分布式:将数据切分存储在多个节点上,多种数据切片 方式。 弹性横向扩展:集群可实现节点动态在线增减。

磁盘存储:文件直接存放在分布式文件系统,具有和普通文件系统一样的读写访问特性。

冗余性:可实现跨机房、跨机架、跨主机、跨磁盘的多副本。

## (4)分布式内存数据

具备以下特点

分布式:将数据切分存储在多个节点上,多种数据切片 方式。

结构化:数据以表、行、列的形式存储。

弹性横向扩展:集群可实现节点动态在线增减。

低延时:比原来自然状态下延长一段时间,毫秒级。

高并发:使用共享服务或连接池的方式解决应用高并发问题。

## 参考文献

- [1] 郑海雁,金农,季聪,等.电力用户用电数据分析技术及典型场景应用[J].电网技术,2015(11)

如对本文内容有任何观点或评论,请发E-mail至ttm@bjxintong.com.cn。