ECE355 Cheatsheet

Hanhee Lee

September 1, 2024

Contents

1	Continuous and discrete-time signals (Ch. 1.1)						
	1.1 Signal energy and power						
	1.1.1 Total energy						
	1.1.2 Average power						
	1.1.3 Total energy over infinite time interval						
	1.1.4 Average power over infinite time interval						
2	Time dilation, shifting (Ch. 1.2)						
	2.1 Time shifting						
	2.2 Time scaling						
	2.3 Scaling and shifting (CT)						
	2.4 Periodic signals						
	2.4.1 Fundamental period:						
	2.5 Even and odd signals						
	2.6 Fact:						
	2.0 Pact.						
3	Complex exponential signals (Ch. 1.3)						
	3.1 Review of complex numbers						
	3.2 CT Complex exponential and sinusoidal signals						
	3.2.1 Complex exponential signal						
	3.2.2 Periodic complex exponential and sinusoidal signal						
	3.2.3 General complex exponential signal						
	3.2.4 Properties						
	3.3 DT Complex exponential and sinusoidal signals						
	3.3.1 Complex exponential sequence						
	3.3.2 Sinusoidal signals						
	3.3.3 General complex exponential signal						
	3.4 Comparison between CT and DT signals						
4	Step and impulse functions (Ch. 1.4)						
	4.1 DT Unit impulse and step sequences						
	4.1.1 Unit impulse						
	4.1.2 Unit step						
	4.1.3 Relationship between impulse and step						
	4.1.4 Sampling						
	4.2 CT Unit impulse and step functions						
	4.2.1 Impulse						
	4.2.2 Step						
	4.2.3 Running integral						
	4.2.4 Sampling						
5	General systems and basic properties (Ch. 1.5-6)						
	5.1 Systems						
	5.2 Interconnection of systems						
	5.3 Basic properties						

		5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6	Causality		10 10 10 11 11 11	
6	6.1 6.2 6.3	DT Sif DT Ur CT Sif	response (Ch. 2.1) Sifting property		11 11 11 12 12	
7		Convolution sum				
8	8.1	Convo	cion in continuous time (Ch. 2.2) rolution integral		12 12 13	
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Comm Distrib Consec Associa Memor Inverti Causal	es of LTI systems (Ch. 2.3) mutative ributive equence of commutative and distributive ciative ory tibility ality		13 13 13 13 14 14 15 15	
10	Peri	odic si	signals and Fourier series		16	
11	Prop	perties	es of Fourier series		16	
12	Resp	oonse	e of LTI systems to periodic signals		16	
13	Ape	riodic	c signals and Fourier transform		16	
14	Four	ier tra	ransform properties; time-frequency duality		16	
15	Ban	dlimit	ited signals		16	
16	The	sampl	pling theorem (Ch. 7.1)		16	
17	Reco	onstru	ruction (Ch. 7.2)		16	
18	Amı	olitude	de modulation systems		16	
19	Enve	elope o	e detection, coherent detection		16	
20	Sing	le-side	deband modulation		16	
21	Ang	le mod	odulation		16	
22	Con	cepts	s of digital communication		16	
Li	ist o	of Fi	figures			
		DT un	part of the general form. (a) $r>0$ and (b) $r<0$		6 7 8	

ECE355

4	CT unit step function
5	Series system
6	Parallel system
7	Series and parallel system
8	Feedback system
9	Inverse system concept
10	Distributive property for a parallel interconnection of LTI systems
11	Associative property of convolution and the implication of this and the commutative property for the series
	interconnection of LTI systems
12	Inverse system for CT LTI systems. The system with impulse response $h_1(t)$ is the inverse of the system
	with impulse response $h(t)$

List of Tables

Signals and General Systems

1 Continuous and discrete-time signals (Ch. 1.1)

1.1 Signal energy and power

1.1.1 Total energy

Definition:

Continuous: Total energy from $t_1 \le t \le t_2$ is

$$E_{[t_1,t_2]} = \int_{t_1}^{t_2} |x(t)|^2 dt \tag{1}$$

Hanhee Lee

 \bullet x(t): Continuous-time signal

• |x|: Magnitude of the number

Discrete: Total energy from $n_1 \le n \le n_2$ is

$$E_{[t_1,t_2]} = \sum_{n=n_1}^{n_2} |x[n]|^2 \tag{2}$$

• x[t]: Discrete-time signal

1.1.2 Average power

Definition:

Continuous: Average power from $t_1 \le t \le t_2$ is

$$P_{[t_1,t_2]} = \frac{E_{[t_1,t_2]}}{t_2 - t_1} \tag{3}$$

Discrete: Average power from $n_1 \le n \le n_2$ is

$$P_{[t_1,t_2]} = \frac{E_{[t_1,t_2]}}{n_2 - n_1 + 1} \tag{4}$$

1.1.3 Total energy over infinite time interval

Definition:

Continuous:

$$E_{\infty} \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
 (5)

Discrete:

$$E_{\infty} \triangleq \lim_{N \to \infty} \sum_{n=-N}^{+N} |x[n]|^2 = \sum_{n=-\infty}^{\infty} |x[n]|^2$$
(6)

1.1.4 Average power over infinite time interval

Definition:

Continuous:

$$P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \tag{7}$$

Discrete:

$$P_{\infty} \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} |x[n]|^2 \tag{8}$$

2 Time dilation, shifting (Ch. 1.2)

2.1 Time shifting

Definition:

CT: $x(t) = x(t - t_0), t_0 \in \mathbb{R}$

DT: $x[n] = x[n - n_0], \ n_0 \in \mathbb{Z}$

2.2 Time scaling

Definition:

CT: $x(t) = x(at), a \in \mathbb{R}$

- |a| > 1: Contraction
- |a| < 1: Expansion
- a < 0: Time reversal (reflect across y-axis)

DT: $y[n] = x[an], \ an \in \mathbb{Z}$

2.3 Scaling and shifting (CT)

Definition:

$$y(t) = x(at+b), \ a, b \in \mathbb{R} \tag{9}$$

• Order: Apply the shift, then the scaling.

2.4 Periodic signals

Definition:

CT: x(t) is periodic with T iff $\exists T > 0$, s.t. $x(t) = x(t+T), \forall t$.

DT: x[n] is periodic with N iff $\exists N > 0$, s.t. $x[n] = x[n+N], \forall n$.

Fundamental period:

Definition:

CT: T_0 of x(t) is the smallest period.

DT: N_0 of x[t] is the smallest period.

2.5Even and odd signals

Definition:

CT:

• Even: x(-t) = x(t) (symmetrical about y-axis)

• Odd: x(-t) = -x(t) (symmetrical about origin)

DT:

• Even: x[-n] = x[n]

• Odd: x[-n] = -x[n]

• Note: Odd signal must be 0 at t = 0 or n = 0.

2.6Fact:

Definition: Any signal can be broken into a sum of an even and odd signal.

3 Complex exponential signals (Ch. 1.3)

3.1 Review of complex numbers

Definition:

 $\bullet \ z = a + jb, \quad \underline{j} \triangleq \sqrt{-1}$ $\bullet \ r = |z| = \sqrt{a^2 + b^2}$

• $\theta \triangleq \angle z = \arctan\left(\frac{b}{a}\right)$

• $z = re^{j\theta} = r(\cos(\theta) + j\sin(\theta))$ • $\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$, $\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$

3.2 CT Complex exponential and sinusoidal signals

Complex exponential signal

Definition: The complex exponential signal is of the form

$$x(t) = Ce^{at}, \ C, a \in \mathbb{C}$$
 (10)

Periodic complex exponential and sinusoidal signal

Definition:

$$x(t) = Ce^{j\omega_0 t} = |C|e^{j(\omega_0 t + \phi)} = |C|cos(\omega_0 t + \phi) + jsin(\omega_0 t + \phi)$$

$$\tag{11}$$

• $\omega_0 = 2\pi f_0$: Fundamental frequency

• $T_0 = \frac{2\pi}{|\omega_0|}$: Fundamental period

General complex exponential signal

Definition:

$$x(t) = |C|e^{rt}e^{j(\omega_0 t + \phi)} = |C|e^{rt}\cos(\omega_0 t + \phi) + j|C|e^{rt}\sin(\omega_0 t + \phi)$$

$$\tag{12}$$

- $Re\{x(t)\} = |C|e^{rt}\cos(\omega_0 t + \phi)$ $Im\{x(t)\} = |C|e^{rt}\sin(\omega_0 t + \phi)$

Figure 1: Real part of the general form. (a) r > 0 and (b) r < 0

3.2.4 Properties

Definition:

- 1. The larger the magnitude of ω_0 , the higher is the rate of oscillation in the signal.
- 2. $e^{j\omega_0 t}$ is periodic for any value of ω_0 .

3.3 DT Complex exponential and sinusoidal signals

3.3.1 Complex exponential sequence

Definition: The complex exponential sequence is of the form

$$x[n] = Ce^{\beta n} \tag{13}$$

• $C, \beta \in \mathbb{C}$

3.3.2 Sinusoidal signals

Definition:

$$x[n] = e^{j\omega_0 n} = \cos(\omega_0 n) + j\sin(\omega_0 n)$$
(14)

General complex exponential signal

Definition:

$$x[n] = C\alpha^n = |C||\alpha|^n \cos(\omega_0 n + \phi) + j|C||\alpha|^n \sin(\omega_0 n + \phi)$$
(15)

- $C = |C|e^{j\phi}$
- $\alpha = |\alpha|e^{j\omega_0}$
 - For $|\alpha| = 1$, the real and imaginary parts of a complex exponential sequence are sinusoidal.
 - For $|\alpha| < 1$, they correspond to sinusoidal sequences multiplied by a decaying exponential.
 - For $|\alpha| > 1$, they correspond to sinusoidal sequences multiplied by a growing exponential.

3.4 Comparison between CT and DT signals

Intuition: Assumes that m and N do not have any factors in common.

- Distinct signals for distinct values of ω_0
- Periodic for any choice of ω_0
- Fundamental frequency ω_0
- Fundamental period
 - $-\omega_0 = 0: \text{ undefined}$ $-\omega_0 \neq 0: \frac{2\pi}{\omega_0}$

$$-\omega_0 \neq 0$$
: $\frac{2\pi}{\omega_0}$

 $e^{j\omega_0 n}$.

- Identical signals for values of ω_0 separated by multiples of 2π
- Periodic only if $\omega_0 = \frac{2\pi m}{N}$ for some integers N > 0 and m• Fundamental frequency* $\frac{\omega_0}{m}$
- Fundamental period*
 - $-\omega_0=0$: undefined

$$-\omega_0 \neq 0: \ m\left(\frac{2\pi}{\omega_0}\right)$$

Step and impulse functions (Ch. 1.4) 4

4.1 DT Unit impulse and step sequences

4.1.1 Unit impulse

Definition:

$$\delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$
 (16)

Figure 2: DT unit impulse

4.1.2 Unit step

Definition:

$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$
 (17)

Figure 3: DT unit step

4.1.3 Relationship between impulse and step

Definition:

1. First Difference:

$$\delta[n] = u[n] - u[n-1]$$

2. Running Sum:

$$u[n] = \sum_{m = -\infty}^{n} \delta[m]$$

Let k = n - m:

$$u[n] = \sum_{k=\infty}^{0} \delta[n-k] = \sum_{k=0}^{\infty} \delta[n-k]$$

4.1.4 Sampling

Definition: If we consider a unit impulse $\delta[n-n_0]$ at $n=n_0$, then

$$x[n]\delta[n - n_0] = x[n_0]\delta[n - n_0]$$
(18)

4.2 CT Unit impulse and step functions

4.2.1 Impulse

Definition:

$$\delta(t) = \frac{du(t)}{dt} \tag{19}$$

4.2.2 Step

Definition:

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$
 (20)

• Note: Step is discontinuous at t = 0.

Figure 4: CT unit step function

4.2.3 Running integral

Definition:

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau = \int_{0}^{x} \delta(t - \sigma) d\sigma$$
 (21)

4.2.4 Sampling

Definition: For an impulse at t_0 then,

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$
(22)

5 General systems and basic properties (Ch. 1.5-6)

5.1 Systems

Definition: A process that transforms input signals into output signals.

- Note: Signals can be discrete or continuous.
 - CT: $x(t) \rightarrow y(t)$
 - **DT:** $x[n] \rightarrow y[n]$

5.2 Interconnection of systems

Definition:

• Series:

Figure 5: Series system.

• Parallel:

Figure 6: Parallel system.

• Series and parallel:

Figure 7: Series and parallel system.

• Feedback:

Figure 8: Feedback system.

5.3 Basic properties

5.3.1 Memory

Definition: A system is said to be *memoryless* if $y(t_0)$ depends only on $x(t_0)$, $\forall t_0$

5.3.2 Invertibility

Definition: A system is invertible if distinct input leads to distinct output.

Figure 9: Inverse system concept.

5.3.3 Causality

Definition: A system is causal if the output at any time depends only on values of the input at the present time and in the past.

DT: $y[n_0]$ does not depend on values of x[n] for $n > n_0$.

CT: $y(t_0)$ does not depend on values of x(t) for $t > t_0$.

5.3.4 Stability

Definition: A system is bounded-input-bounded-output (BIBO) stable if bounded input signals (i.e. $|x(t)| < \infty \ \forall t$), leads to bounded output signals (i.e. $|y(t)| < \infty \ \forall t$)

5.3.5 Time invariance

Definition: A system is time invariant if a time shift in the input signal results in an identical time shift in the output signal.

- **DT:** If y[n] is the output of a time-invariant system when x[n] is the input, then $y[n-n_0]$ is the output when $x[n-n_0]$ is applied.
- CT: If y(t) is the output of a time-invariant system when x(t) is the input, then $y(t-t_0)$ is the output when $x(t-t_0)$ is applied.

5.3.6 Linearity

Definition:

Suppose for inputs x_1 , x_2 correspond to outputs y_1 , y_2 respectively, then a system is linear if:

- 1. Additivity: The response to $x_1 + x_2$ is $y_1 + y_2$.
- 2. **Homogeneity:** The response to ax_1 is ay_1 , where $a \in \mathbb{C}$.

Superposition: If x_k , k = 1, 2, 3, ..., are a set of inputs to a linear system with corresponding outputs y_k , k = 1, 2, 3, ..., then the response to a linear combination of these inputs given by

$$x = \sum_{k} a_k x_k$$
 is $y = \sum_{k} a_k y_k$

• Consequence: $x = 0 \rightarrow y = 0$

Linear Time-Invariant Systems

6 Impulse response (Ch. 2.1)

6.1 DT Sifting property

Definition: Any DT signal can be written as

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k]$$
 (23)

• **Key:** $\delta[n-k]$ is nonzero only when k=n, so it preserves only that value.

6.2 DT Unit impulse response

Definition: h[n] is the output of the LTI system when $\delta[n]$ is the input.

$$h[n] = h_0[n] \tag{24}$$

Intuition: $\delta[n] \to LTI \to h[n]$

6.3 CT Sifting property

Definition: Any CT signal can be written as

$$x(t) = \int_{-x}^{+x} x(\tau)\delta(t-\tau) d\tau$$
 (25)

6.4 CT Unit impulse response

Definition: h(t) is the output of the LTI system when $\delta(t)$ is the input.

$$h(t) = h_0(t) \tag{26}$$

Intuition: $\delta(t) \to LTI \to h(t)$

7 Convolution in discrete time (Ch. 2.1)

7.1 Convolution sum

Definition: For an LTI system, the convolution of the sequences x[n] and h[n] (i.e. the sliding of h[n-k] past x[k] is

$$y[n] = x[n] \star h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$
 (27)

- x[k]: Input applied at time k.
- x[k]h[n-k]: Response due to the input (i.e. it is a shifted and scaled version of h[n]).
- y[n]:
 - Output from the superposition of all these time-shifted impulse responses.
 - Output from the sum over k of functions x[k]h[n-k] in n.

8 Convolution in continuous time (Ch. 2.2)

8.1 Convolution integral

Definition: The convolution of two signals x(t) and h(t) is

$$y(t) = x(t) \star h(t) = \int_{-x}^{+x} x(\tau)h(t-\tau) d\tau$$
 (28)

- $x(\tau)$: Input
- $h(t-\tau)$: Weight
- y(t): Weighted integral of the input

Process:

- 1. Flip $h(\tau)$ about the y-axis for $h(-\tau)$
- 2. Slide $h(-\tau)$ from left to right for $h(t-\tau)$
- 3. For any t, multiply $x(\tau)$ and $h(t-\tau)$
- 4. Integrate from $\tau = -\infty$ to $\tau = +\infty$ to obtain y(t)

8.2 Consequence of convolution

Intuition: For LTI systems, the characteristics of the system is completely determined by its impulse response.

9 Properties of LTI systems (Ch. 2.3)

9.1 Commutative

Definition:

DT:

$$x[n] * h[n] = h[n] * x[n] = \sum_{k=-x}^{+x} h[k]x[n-k]$$
(29)

CT:

$$x(t) * h(t) = h(t) * x(t) = \int_{-x}^{+x} h(\tau)x(t-\tau) d\tau$$
 (30)

9.2 Distributive

Definition:

DT:

$$x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$$
(31)

CT:

$$x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$$
(32)

Figure 10: Distributive property for a parallel interconnection of LTI systems

9.3 Consequence of commutative and distributive

Definition: The response of an LTI system to the sum of two inputs must equal the sum of the responses to these signals individually.

DT:

$$[x_1[n] + x_2[n]] * h[n] = x_1[n] * h[n] + x_2[n] * h[n]$$
(33)

CT:

$$[x_1(t) + x_2(t)] * h(t) = x_1(t) * h(t) + x_2(t) * h(t)$$
(34)

9.4 Associative

Definition:

DT:

$$x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$
(35)

CT:

$$x(t) * [h_1(t) * h_2(t)] = [x(t) * h_1(t)] * h_2(t)$$
(36)

• **Key:** It does not matter in which order we convolve these signals.

Figure 11: Associative property of convolution and the implication of this and the commutative property for the series interconnection of LTI systems.

9.5 Memory

Definition:

DT: If h[n] = 0 for $n \neq 0$, then an LTI system is memoryless iff $h[n] = K\delta[n]$, where K = h[0] is a constant, so the convolution sum reduces to y[n] = Kx[n]

CT: If h(t) = 0 for $t \neq 0$, then an LTI system is memoryless iff $h(t) = K\delta(t)$, where K is a constant, so the convolution integral reduces to y(t) = Kx(t)

9.6 Invertibility

Definition: If an LTI system is invertible, then it has an LTI inverse.

Figure 12: Inverse system for CT LTI systems. The system with impulse response $h_1(t)$ is the inverse of the system with impulse response h(t)

- **DT**: $h[n] \star h_1[n] = \delta[n]$
- **CT:** $h(t) \star h_1(t) = \delta(t)$

9.7 Causality

Definition:

DT: A LTI system is causal if h[n] = 0 for n < 0, so the convolution sum becomes $y[n] = \sum_{k=0}^{\infty} h[k]x[n-k]$

CT: A LTI system is causal if h(t) = 0 for t < 0, so the convolution integral becomes $y(t) = \int_0^\infty h(\tau)x(t-\tau)d\tau$

- Initial rest: Equivalent to the initial rest condition if x(t) = 0 for $t < t_0$, then y(t) = 0 for $t < t_0$
- Signal causality: Causality of an LTI system is equivalent to its impulse response being a causal signal.

9.8 Stability

Definition:

DT: The LTI system is stable if the impulse response is absolutely summable, that is, if $\sum_{k=-\infty}^{+\infty} |h[k]| < \infty$.

CT: The LTI system is stable if the impulse response is absolutely integrable, that is, if $\int_{-\infty}^{+\infty} |h(\tau)| d\tau < \infty$.

Fourier Series and Fourier Transform Representations

- 10 Periodic signals and Fourier series
- 11 Properties of Fourier series
- 12 Response of LTI systems to periodic signals
- 13 Aperiodic signals and Fourier transform
- 14 Fourier transform properties; time-frequency duality

Sampling

- 15 Bandlimited signals
- 16 The sampling theorem (Ch. 7.1)
- 17 Reconstruction (Ch. 7.2)

Communication Systems

- 18 Amplitude modulation systems
- 19 Envelope detection, coherent detection
- 20 Single-sideband modulation
- 21 Angle modulation
- 22 Concepts of digital communication