COL380

Introduction to Parallel & Distributed Programming

Agenda

- Instruction latency and overlap
- Core organization
- Inter-communication
- Parallel programming models

SIMD

```
float *d1, *d2;
Loop: d1[I] += d2[i];
```

```
movss xmm0,DWORD PTR [rdi+rax*1] addss xmm0,DWORD PTR [rsi+rax*1] movss DWORD PTR [rdi+rax*1],xmm0
```

```
float *d1, *d2;
Loop: d1[I] += d2[i];
```

movss xmm0,DWORD PTR [rdi+rax*1] addss xmm0,DWORD PTR [rsi+rax*1] movss DWORD PTR [rdi+rax*1],xmm0

L1 Instructi


```
float *d1, *d2;
Loop: d1[I] += d2[i];
```

movss xmm0,DWORD PTR [rdi+rax*1] addss xmm0,DWORD PTR [rsi+rax*1] movss DWORD PTR [rdi+rax*1],xmm0

float *d1, *d2;

vmovss xmm0,DWORD PTR [rdi+rax*1]
vaddss xmm0,xmm0,DWORD PTR [rsi+rax*1]
vmovss DWORD PTR [rdi+rax*1],xmm0

Instructions • • •

Instructions • • •

$$R1 = x$$

 $R2 = y$
 $Z = R1+R2$

volatile int x;
Access x

.

R2 = y

Z = R1+R2

State

Mem Mgmt Unit

Network Controllers

DMA Engines

10 controller

State

Routing algorithm

Routing algorithm

Routing algorithm

Routing algorithm

Routing algorithm

→ Address, Low latency, High bandwidth

Metrics

- → Number of links required
- → Number of ports on a node
- → Distance between nodes
- → Redundancy in routes

Routing algorithm

→ Address, Low latency, High bandwidth

Metrics

- → Number of links required
- → Number of ports on a node
- → Distance between nodes
- → Redundancy in routes

- Diameter: Longest path
- · Bisection width: Min #links failures to bi-partition the nodes
- · Blocking: If independent pairs can communicate at each step

Basic Interconnects

connects *m* inputs to *n* outputs

Cost scales well;
Performance does not

n node fully connected network

Single clock latency; Link cost is quadratic, Layout complex

Mesh Network

Mesh Network

Mesh Network

Hypercube

Hypercube

Hypercube

No. of links = ?
Diameter =?
Bisection width = ?
Blocking?

Tree Network

Tree Network

No. of links = ?
Diameter =?
Bisection width = ?
Blocking?

Fat Tree Network

No. of links = ?
Diameter =?
Bisection width = ?
Blocking?

Butterfly

Multi-stage Network

Butterfly

Multi-stage Network

Butterfly

Multi-stage Network

Butterfly

Multi-stage Network

Pass-through or Crossover

Butterfly

Multi-stage Network

Pass-through or Crossover

Shuffle Exchange

Butterfly

Multi-stage Network

Pass-through or Crossover

Summary

- Instruction latency and overlap
- Core organization
- Inter-communication