

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/03, 1/20, 15/31, A61K 39/108 // (C12N 1/20, C12R 1:19)		A1	(11) International Publication Number: WO 99/49026 (43) International Publication Date: 30 September 1999 (30.09.99)
(21) International Application Number: PCT/GB99/00935 (22) International Filing Date: 25 March 1999 (25.03.99) (30) Priority Data: 9806449.6 25 March 1998 (25.03.98) GB		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(71) Applicant (for all designated States except US): PEPTIDE THERAPEUTICS LIMITED [GB/GB]; Peterhouse Technology Park, 100 Fulbourn Road, Cambridge CB1 9PT (GB). (72) Inventor; and (75) Inventor/Applicant (for US only): CHATFIELD, Steven, Neville [GB/GB]; Commonwealth Building, ICSM, Hammersmith Campus, Ducane Road, London W12 0NN (GB). (74) Agents: WOODS, Geoffrey, Corlett et al.; J.A. Kemp & Co., 14 South Square, Gray's Inn, London WC1R 5LX (GB).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(54) Title: BACTERIA ATTENUATED BY A NON-REVERTING MUTATION IN EACH OF THE AROC, OMPF AND OMPC GENES, USEFUL AS VACCINES			
(57) Abstract <p>The invention provides a bacterium attenuated by a non-reverting mutation in each of the aroC gene, the ompF gene and the ompC gene. The bacterium is useful as a vaccine. The bacterium may, for example, be an attenuated strain of E.coli useful in vaccination against diarrhoea.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Kazakhstan	PT	Portugal		
CU	Cuba	LC	Saint Lucia	RO	Romania		
CZ	Czech Republic	LI	Liechtenstein	RU	Russian Federation		
DE	Germany	LK	Sri Lanka	SD	Sudan		
DK	Denmark	LR	Liberia	SE	Sweden		
EE	Estonia			SG	Singapore		

BACTERIA ATTENUATED BY A NON-REVERTING MUTATION IN EACH OF THE AROC, OMPF AND OMPC GENES, USEFUL AS VACCINES

The invention relates to attenuated bacteria useful in vaccines.

5

Background to the invention

The principle behind vaccination is to induce an immune response in the host thus providing protection against subsequent challenge with a pathogen. This may be

10 achieved by inoculation with a live attenuated strain of the pathogen, i.e. a strain having reduced virulence such that it does not cause the disease caused by the virulent pathogen.

15 Clasically, live attenuated vaccine strains of bacteria and viruses have been selected using one of two different methodologies. Mutants have been created either by

treatment of the organism using mutagenic chemical compounds or by repeated passage of the organism *in*

20 *vitro*. However, use of either method gives rise to attenuated strains in which the mode of attenuation is unclear. These strains are particularly difficult to characterise in terms of possible reversion to the wild type strain as attenuation may reflect single (easily

25 reversible) or multiple mutation events. Furthermore, it is difficult to obtain such strains having optimum immunogenic properties because of multiple mutation events, and multiple strains may need to be used to provide protection against the pathogen.

30

Using modern genetic techniques, it is now possible to construct genetically defined attenuated bacterial strains in which stable attenuating deletions can be created. A number of site directed mutants of *Salmonella* have been

35 created using this type of technology (2, 4, 5, 9, 12,

16, 17, 18). Mutations in a large number of genes have been reported to be attenuating, including the aro genes (e.g. *aroA*, *aroC*, *aroD* and *aroE*), *pur*, *htrA*, *ompR*, *ompF*, *ompC*, *galE*, *cya*, *crp* and *phoP*.

5

Salmonella *aroA* mutants have now been well characterised and have been shown to be excellent live vaccines against salmonellosis in several animal species. In addition, in order to reduce the chances of a reversion to virulence 10 by a recombination event, mutations have been introduced into two independent genes such as *aroA/purA* and *aroA/aroC*. Identical mutations in host adapted strains of Salmonella such as *S.typhi* (man) and *S.dublin* (cattle) has also resulted in the creation of a number of 15 candidate single dose vaccines which have proved successful in clinical (8, 11) and field trials (10).

A *Salmonella typhimurium* strain harboring stable mutations in both *ompC* and *ompF* is described in Chatfield 20 et al (1991, ref. 21). When administered orally to BALB/c mice the strain was attenuated, with the 50% lethal dose (LD50) reduced by approximately 1,000-fold. However, the intravenous LD50 was reduced only by approximately 10-fold, demonstrating the importance of the porins in 25 conferring on the bacteria the ability to infect by the oral route.

Expression of the *ompC* and *ompF* genes is regulated by *ompR*. Pickard et al (1994, ref. 13) describes the cloning 30 of the *ompB* operon, comprising the *ompR* and *envZ* genes, from a *Salmonella typhi* Ty2 cosmid bank and characterisation by DNA sequence analysis. The DNA sequence data were used to identify appropriate restriction sites for generating a defined deletion of

517 bp within the open reading frame of the *ompR* gene. This deletion was introduced by homologous recombination into the chromosomes of two *S.typhi* strains which already harbored defined deletions in both the *aroC* and *aroD* genes. The *S.typhi* *ompR* mutants displayed a marked decrease in *ompC* and *ompF* porin expression as demonstrated by examination of outer membrane preparations. It was also shown that the *ompR-envZ* two component regulatory system plays an important role in 10 the regulation of Vi polysaccharide synthesis in *S.typhi*.

In animal studies, attenuated *S.typhimurium* has been used as a vehicle for the delivery of heterologous antigens to the immune system (3, 6, 15). This raises the potential 15 of the development of multivalent vaccines for use in man (7).

Summary of the Invention

The invention provides a bacterium attenuated by a non-reverting mutation in each of the *aroC* gene, the *ompF* gene and the *ompC* gene. The invention also provides a vaccine containing the bacterium.

It is believed that the *aroC/ompF/ompC* combination of 25 mutations gives a vaccine having superior properties. For example, it is believed that the *aroC/ompF/ompC* combination may be superior to a *aroC/ompR* combination for two reasons:

30 1. The *ompR* mutation may cause higher levels of attenuation than the *ompF/ompC* combination of mutations because *ompR* may regulate a number of genes other than *ompF* and *ompC* which are important for survival of the bacterium *in vivo*. Thus, the

ompF/ompC combination may allow the bacterium to survive in the vaccinated host for a longer time and at higher levels, resulting in better protection.

5

2. The *ompR* mutation may cause reduced immunogenicity compared to the *ompF/ompC* combination of mutations because *ompR* may regulate the expression of antigens important for immunogenicity.

10

Detailed Description of the Invention

Bacteria useful in the Invention

The bacteria that are used to make the vaccines of the invention are generally those that infect by the oral route. The bacteria may be those that invade and grow within eukaryotic cells and/or colonise mucosal surfaces. The bacteria are generally Gram-negative.

- 20 The bacteria may be from the genera *Escherichia*, *Salmonella*, *Vibrio*, *Haemophilus*, *Neisseria*, *Yersinia*, *Bordetella* or *Brucella*. Examples of such bacteria are *Escherichia coli* - a cause of diarrhoea in humans; *Salmonella typhimurium* - the cause of salmonellosis in several animal species; *Salmonella typhi* - the cause of human typhoid; *Salmonella enteritidis* - a cause of food poisoning in humans; *Salmonella choleraesuis* - a cause of salmonellosis in pigs; *Salmonella dublin* - a cause of both a systemic and diarrhoeal disease in cattle, especially of new-born calves; *Haemophilus influenza* - a cause of meningitis; *Neisseria gonorrhoeae* - a cause of gonorrhoeae; *Yersinia enterocolitica* - the cause of a spectrum of diseases in humans ranging from gastroenteritis to fatal septicemic disease; *Bordetella*

pertussis - the cause of whooping cough; and *Brucella abortus* - a cause of abortion and infertility in cattle and a condition known as undulant fever in humans.

5 Strains of *E.coli* and *Salmonella* are particularly useful in the invention. As well as being vaccines in their own right against infection by *Salmonella*, attenuated *Salmonella* can be used as carriers of heterologous antigens from other organisms to the immune system via
10 the oral route. *Salmonella* are potent immunogens and are able to stimulate systemic and local cellular and antibody responses. Systems for driving expression of heterologous antigens in *Salmonella* *in vivo* are known; for example the *nirB* and *htrA* promoters are known to be
15 effective drivers of antigen expression *in vivo*.

The invention may be applied to enterotoxigenic *E.coli* ("ETEC"). ETEC is a class of *E.coli* that cause diarrhoea. They colonise the proximal small intestine.

20 A standard ETEC strain is ATCC H10407.

Infections of ETEC are the single most frequent cause of travellers diarrhoea, causing 3-9 million cases per year amongst visitors to developing countries. In endemic
25 areas, ETEC infections are an important cause of dehydrating diarrhoea in infants and young children, resulting in 800,000 deaths a year in the under fives world-wide. In developing countries, the incidence of ETEC infections leading to clinical disease decreases
30 with age, indicating that immunity to ETEC infection can be acquired. In contrast, naive adults from industrialized countries who visit endemic areas are highly susceptible to ETEC infections. However, with prolonged or repeated visits to endemic areas
35 susceptibility to ETEC infections diminishes, suggesting

that a live attenuated approach to ETEC vaccination may prove successful.

The inventors chose to work on a non-toxigenic strain of
5 ETEC called E1392/75/2A. E1392/75/2A arose spontaneously from a toxic mutant by deletion of toxin genes. In human studies, oral vaccination with live E1392/75/2A gave 75% protection against challenge with toxin-expressing ETEC from a different serotype. However, approximately 15% of
10 vaccinees experienced diarrhoea as a side effect of the vaccine. The strain needs further attenuation to reduce the side effects before it can be considered as a potential vaccine and the invention gives a means of achieving such attenuation.

15

Seq Id No. 1 shows the sequence of the *E.coli aroC* gene, Seq Id No. 3 shows the sequence of the *E.coli ompC* gene and Seq. Id No. 5 shows the sequence of the *E.coli ompF* gene.

20

Further mutations

One or more further mutations may be introduced into the bacteria of the invention to generate strains containing
25 mutations in addition to those in *aroC*, *ompC* and *ompF*. Such a further mutation may be (i) an attenuating mutation in a gene other than *aroC*, *ompC* and *ompF*, (ii) a mutation to provide *in vivo* selection for cells maintaining a plasmid (e.g. a plasmid expressing a
30 heterologous antigen), or (iii) a mutation to prevent expression of a toxin gene.

The further attenuating mutation may be a mutation that is already known to be attenuating. Such mutations

include mutations in *aro* genes (e.g. *aroA*, *aroD* and *aroE*), *pur*, *htrA*, *ompR*, *gale*, *cya*, *crp*, *phoP* and *surA* (see e.g. refs 2, 4, 5, 9, 12, 13, 16, 17 and 18).

5 A mutation to provide selection for maintenance of a plasmid may be made by mutating a gene that is essential for the bacterium to survive. A plasmid carrying the essential gene is then introduced into the bacterium, so that only cells carrying the plasmid can survive. This
10 may be useful where the plasmid contains, for example, a heterologous antigen to be expressed by the bacterium.

A mutation to prevent expression of a toxin gene may be made to reduce any side-effects caused by vaccination
15 with the bacterium. For example, in the case of vaccination with *E.coli* strains such as ETEC it may be desirable to mutate the heat labile toxin (LT) or heat stable toxin (ST) genes so that they are not expressed.

20 **The nature of the mutations**

The mutations introduced into the bacterial vaccine generally knock-out the function of the gene completely. This may be achieved either by abolishing synthesis of
25 any polypeptide at all from the gene or by making a mutation that results in synthesis of non-functional polypeptide. In order to abolish synthesis of polypeptide, either the entire gene or its 5'-end may be deleted. A deletion or insertion within the coding
30 sequence of a gene may be used to create a gene that synthesises only non-functional polypeptide (e.g. polypeptide that contains only the N-terminal sequence of the wild-type protein).

The mutations are non-reverting mutations. These are mutations that show essentially no reversion back to the wild-type when the bacterium is used as a vaccine. Such mutations include insertions and deletions. Insertions 5 and deletions are preferably large, typically at least 10 nucleotides in length, for example from 10 to 600 nucleotides. Preferably, the whole coding sequence is deleted.

10 The bacterium used in the vaccine preferably contains only defined mutations, i.e. mutations which are characterised. It is clearly undesirable to use a bacterium which has uncharacterised mutations in its genome as a vaccine because there would be a risk that 15 the uncharacterised mutations may confer properties on the bacterium that cause undesirable side-effects.

The attenuating mutations may be introduced by methods well known to those skilled in the art (see ref. 14). 20 Appropriate methods include cloning the DNA sequence of the wild-type gene into a vector, e.g. a plasmid, and inserting a selectable marker into the cloned DNA sequence or deleting a part of the DNA sequence, resulting in its inactivation. A deletion may be 25 introduced by, for example, cutting the DNA sequence using restriction enzymes that cut at two points in or just outside the coding sequence and ligating together the two ends in the remaining sequence. A plasmid carrying the inactivated DNA sequence can be transformed 30 into the bacterium by known techniques such as electroporation and conjugation. It is then possible by suitable selection to identify a mutant wherein the inactivated DNA sequence has recombined into the chromosome of the bacterium and the wild-type DNA 35 sequence has been rendered non-functional by homologous

recombination.

Expression of heterologous antigens

The attenuated bacterium of the invention may be
5 genetically engineered to express an antigen that is not
expressed by the native bacterium (a "heterologous
antigen"), so that the attenuated bacterium acts as a
carrier of the heterologous antigen. The antigen may be
from another organism, so that the vaccine provides
10 protection against the other organism. A multivalent
vaccine may be produced which not only provides immunity
against the virulent parent of the attenuated bacterium
but also provides immunity against the other organism.
Furthermore, the attenuated bacterium may be engineered
15 to express more than one heterologous antigen, in which
case the heterologous antigens may be from the same or
different organisms.

The heterologous antigen may be a complete protein or a
20 part of a protein containing an epitope. The antigen may
be from another bacterium, a virus, a yeast or a fungus.
More especially, the antigenic sequence may be from
E.coli (e.g. ETEC), tetanus, hepatitis A, B or C virus,
human rhinovirus such as type 2 or type 14, herpes
25 simplex virus, poliovirus type 2 or 3, foot-and-mouth
disease virus, influenza virus, coxsackie virus or
Chlamydia trachomatis. Useful antigens include non-toxic
components of *E.coli* heat labile toxin, *E.coli* K88
antigens, ETEC colonization factor antigens, P.69 protein
30 from *B.pertussis* and tetanus toxin fragment C.

The ETEC colonization factors and components thereof are
prime candidates for expression as heterologous antigens.
To instigate diarrhoeal disease, pathogenic strains of
35 ETEC must be able to colonize the intestine and elaborate

enterotoxins. For most strains of ETEC colonization factors (CF) that are required for adhesion to the intestinal mucosa have been identified. In almost all cases CFs are expressed as fimbriae on the outer surface

5 of the bacteria. A large number of CFs have been identified, the most prevalent being CFAI, CRAII (includes CS1, CS2, CS3) and CFAIV (includes CS4, CS5, CS6).

10 A vaccine to ETEC will ideally give protection against a range of colonization factor antigens to ensure that protection against different strains is obtained. In order to achieve this, it would be possible to express several colonization factors in one strain.

15 Alternatively, the same attenuations could be made in a range of different ETEC strains, each with a different colonization factor. This would involve deleting the toxins from such strains.

20 The DNA encoding the heterologous antigen is expressed from a promoter that is active *in vivo*. Two promoters that have been shown to work well in *Salmonella* are the *nirB* promoter (19, 20) and the *htrA* promoter (20). For expression of the ETEC colonization factor antigens, the

25 wild-type promoters could be used.

A DNA construct comprising the promoter operably linked to DNA encoding the heterologous antigen may be made and transformed into the attenuated bacterium using

30 conventional techniques. Transformants containing the DNA construct may be selected, for example by screening for a selectable marker on the construct. Bacteria containing the construct may be grown *in vitro* before being formulated for administration to the host for vaccination

35 purposes.

Formulation of the vaccine

The vaccine may be formulated using known techniques for formulating attenuated bacterial vaccines. The vaccine is
5 advantageously presented for oral administration, for example in a lyophilised encapsulated form. Such capsules may be provided with an enteric coating comprising, for example, Eudragate "S" (Trade Mark), Eudragate "L" (Trade Mark), cellulose acetate, cellulose phthalate or
10 hydroxypropylmethyl cellulose. These capsules may be used as such, or alternatively, the lyophilised material may be reconstituted prior to administration, e.g. as a suspension. Reconstitution is advantageously effected in a buffer at a suitable pH to ensure the viability of the
15 bacteria. In order to protect the attenuated bacteria and the vaccine from gastric acidity, a sodium bicarbonate preparation is advantageously administered before each administration of the vaccine. Alternatively, the vaccine may be prepared for parenteral administration, intranasal
20 administration or intramuscular administration.

The vaccine may be used in the vaccination of a mammalian host, particularly a human host but also an animal host. An infection caused by a microorganism, especially a
25 pathogen, may therefore be prevented by administering an effective dose of a vaccine prepared according to the invention. The dosage employed will ultimately be at the discretion of the physician, but will be dependent on various factors including the size and weight of the host
30 and the type of vaccine formulated. However, a dosage comprising the oral administration of from 10^7 to 10^{11} bacteria per dose may be convenient for a 70 kg adult human host.

Examples

The Examples described in this section serve to illustrate the invention.

5 **Brief description of the drawings**

Figure 1 shows a system for constructing defined deletions in target genes using splicing by overlay extension PCR mutagenesis.

10

Figure 2 shows the expected sequences of target genes after recombination and selection for deletions.

15 Figure 3 shows the cloning of deletion cassettes into plasmid pCVD442.

20 Figure 4 shows an SDS-PAGE analysis of outer membranes prepared from ETEC strains under conditions of low (no salt L-broth) and high (no salt L-broth + 15% sucrose) osmolarity. M = markers; Sample 1 = PTL010; Sample 2 = PTL002; Sample 3 = PTL003; Sample 4 = Δ a_{ro}C Δ ompC; Sample 5 = Δ ompF.

25 Figure 5 shows expression of CS1 and CS3 in deletion strains after growth on CFA agar. Equal numbers of cells from each strain were loaded on a 15% SDS-PAGE gel and Western blotted with monospecific anti-CS1 or anti-CS3 polyclonal antibodies. Controls for antibody specificity were whole ces11 lysates of TG1 cells expressing the 30 majore pilin protein of CS1, or purified major pilin protein from CS3. Lane M, rainbow low molecular mass markers; lane 1, induced TG1 cells harbouring pKK223; lane 2, induced TG1 cells harbouring pKKCs1; lane 3, CS1-ETEC strain; lane 4, PTL010; lane 5, PTL001; lane 6, 35 PTL002; lane 7, PTL003; lane 8, purified CS3 major pilin

protein.

Figure 6 shows a Southern blot of mutant loci.

Chromosomal DNA was extracted from the wild-type ETEC
5 (E1392/75-2A), PTL001 (htrA aroC), PTL002 (aroC ompR) and
PTL003 (aroC ompC ompF) as indicated, digested with
restriction endonuclease EcoRV, and pulsed field
electrophoresed through 1% agarose. DNA was blotted from
the gel onto Hybond N+ nylon membranes (Amersham) and
10 hybridised with DNA probes derived from the aroC, htrA,
ompR, ompC, or ompF loci as shown. The banding patterns
are consistent with the mutant loci being deletions.

Figure 7 shows the IgA responses in volunteers

15 administered a vaccine according to the invention.

EXAMPLE 1: CONSTRUCTION AND CHARACTERISATION OF STRAIN
ACCORDING TO THE INVENTION

20 **Design of deletions and construction of plasmids**

pCVDΔAroC, pCVDΔOmpC and pCVDΔOmpF

Deletions were designated to remove the entire open
reading frame of the target gene. Using the *E.coli* genome
sequence as a template, PCR primers were designed to
25 amplify fragments of 500-600 base pairs flanking the
target open reading frame (see Table 1 for primer
sequences). Splicing by overlap extension using PCR was
used to fuse the two flanking sequences, creating a PCR
product with the entire gene deleted (Figure 1). The
30 wild-type sequences around the deletion site and the
predicted sequences after deletion are depicted in Figure
2.

For each gene two different restriction sites were

introduced into the splice region (see Table 2 below). These were used for identification of deletion clones. The PCR primers at either end of the PCR fragment introduced unique restriction sites that were used to 5 clone the fragment into the multiple cloning site of pCVD442 (Figure 3).

PCR products were gel purified using a Qiagen (Trade Name) gel extraction kit and digested with the relevant 10 restriction enzymes prior to ligation to the suicide plasmid pCVD442 (22) digested with the same enzyme and treated with alkaline phosphatase to prevent vector self-ligation (Figure 3). The ligation mix was transformed into SY327 λ pir and plated on L-Ampicillin (100 µg/ml) 15 plates. Plasmids from Ampicillin resistant transformants were screened for the presence of the deletion cassettes by restriction digestion. The following plasmids were generated:

20 pCVD Δ AroC
pCVD Δ OmpC
pCVD Δ OmpF

The suicide plasmid pCVD442 can only replicate in cells 25 harboring the *pir* gene. On introduction into *non-pir* strains, pCVD442 is unable to replicate, and the Ampicillin resistance conferred by the plasmid can only be maintained if the plasmid is integrated in the chromosome by a single homologous recombination event. 30 The plasmid also has a *sacB* gene, encoding levan sucrase, which is toxic to gram negative bacteria in the presence of sucrose. This can be used to select clones that have undergone a second recombination event, in which the suicide plasmid is excised. Such cells will be resistant 35 to sucrose, but Ampicillin sensitive.

Construction and characterisation of $\Delta AroC\Delta OmpC\Delta OmpF$ strain

This section outlines the chronology of construction and history of a $\Delta AroC\Delta OmpC\Delta OmpF$ strain. In the section,

5 "ETEC" refers specifically to strain E1392/75/2A or its derivatives.

$\Delta AroC\Delta OmpC\Delta OmpF$ deletions were introduced into E1392/75/2A in the following order:

10 $\Delta AroC \rightarrow \Delta AroC\Delta OmpC \rightarrow \Delta AroC\Delta OmpC\Delta OmpF$

Construction of ETEC $\Delta AroC$

1) E1392/75/2A from original microbanked stock was plated onto L-Agar.

15 2) Electroporation competent cells were prepared from these cells. 100 μ l aliquots were frozen.

3) pCVD $\Delta AroC$ was purified from SY327pir cells using a Qiagen Qiafilter (Trade Name) midiprep. The plasmid was concentrated about 10-fold by ethanol precipitation. The construction of pCVD $\Delta AroC$ is described above.

20 4) 5 μ l of concentrated plasmid was mixed with 100 μ l defrosted cells and electroporated. The whole transformation was plated on an L-Ampicillin plate (50 μ g/ml) and incubated overnight at 37°C.

25 5) A single Ampicillin resistant colony grew.

6) The colony was streaked onto an L-Ampicillin plate (100 μ g/ml) and grown overnight at 37°C ("merodiploid plate").

30 7) PCR using primers TT19 and TT20 (specific for the *aroc* gene) and a colony picked from the merodiploid plate amplified two bands, with sizes corresponding to that of the wild-type and $\Delta aroc$ genes. The sequences of the primers are shown in Table 1

below.

8) A colony from the merodiploid plate was grown up for 7 hr in a) L-Ampicillin broth (100 µg/ml) and b) L-Broth. The colony grown on L-Ampicillin was microbanked.

5 9) Serial dilutions of the L-broth culture were set up on:

- a) No salt L-agar
- b) No salt L-agar + 5% sucrose.

10 The plates were incubated overnight at 30°C.

10) Colony counts showed that 10^4 more colonies grew on L-agar than on L-agar + 5% sucrose, showing sucrose selection worked.

11) Sucrose resistant colonies were screened for the presence of $\Delta aroC$ gene by PCR. Colonies chosen for screening were picked onto an L-agar plate and grown overnight at 37°C. This plate was stored at 4°C, whilst further tests were carried out.

15 12) 50% of 90 colonies tested had $\Delta aroC$ only.

20 13) Colonies were tested for growth on:

- a) M-9 minimal media plates
- b) M-9 minimal media + Aromix plates
- c) L-Amp (100 µg/ml)

25 $\Delta aroC$ colonies should not grow on M-9 minimal media without Aromix or on L-Amp.

Aromix is a mix of aromatic compounds as follows:

Substance	Final concentration (% w/v)
Phenylalanine	0.004
Tryptophan	0.004
Tyrosine	0.004
p-aminobenzoic acid	0.001
dihydroxybenzoic acid	0.001

These compounds are made in wild-type bacteria, but the *aroC* mutation prevents their synthesis.

14) 13/14 putative Δ AroC colonies required Aromix for growth on M-9 minimal media and were susceptible to Ampicillin.
5

15) 3 colonies (No. 1,2,3) were tested for the presence of the CS1 major pilin protein gene by PCR using primers MGR169 and MGR170. All 3 colonies gave PCR products of the expected size (700 bp.). The 10 sequences of the primers are shown in Table 1.

16) Colonies 1, 2 and 3 from screening master plate were streaked onto L-Agar and grown overnight at 37°C. Cells from these plates were used to inoculate microbank tubes.
15 17) Colony 1, stored in a microbank, was used for further work.
18) For permanent storage, a bead from the microbank tray was inoculated into 1 ml L-broth, grown for 4 hr with shaking at 37°C and used to make agar 20 slopes which were used to make freeze dried stocks. The freeze dried stock of E1392/75/2A Δ AroC was designated PTL004. 20 ml of L-broth was added to the rest of the 1 ml culture and the culture was incubated overnight at 30°C. 1 ml of the overnight 25 culture was transferred to each of three cryovials and stored in liquid nitrogen.

Construction of ETEC Δ AroC Δ OmpC

1) Preparation of pCVD Δ OmpC plasmid DNA for 30 electroporation:
A colony of SY327 λ pir harbouring pCVD Δ OmpC was grown overnight at 37°C in 100 ml L-Ampicillin broth
(100 µg/ml). Plasmid DNA was purified using 2 35 Qiagen Qiafilter (Trade Name) midipreps. DNA was

further concentrated by ethanol precipitation. The construction of pCVD Δ OmpC is described above.

2) Preparation of electrocompetent cells:

ETEC Δ AroC cells from the microbank tray produced in step 17 of the preceding section were streaked on L-agar, grown at 37°C overnight and then stored at 4°C for no more than 1 week before being used to inoculate cultures for preparing electrocompetent cells.

10 3) ETEC Δ AroC cells were electroporated with 5 μ l of concentrated pCVD Δ OmpC DNA, and each transformation plated on a single L-Ampicillin plate (50 μ g/ml) and grown overnight at 37°C.

15 4) 17 Ampicillin resistant colonies (putative ETEC Δ AroC/ pCVD Δ OmpC merodiploids) were obtained.

5) These colonies were spotted onto a master L-Ampicillin (100 μ g/ml) plate and used as templates for PCR with primers TT7/TT8. The master plate was grown at room temperature over the weekend. The sequences of the primers are given in Table 1 below.

20 6) A single colony (No. 7) had the Δ ompC gene.
7) The colony was grown for 5 hr in L-broth.
8) Serial dilutions of the L-broth culture were set up
25 on:

- a) No salt L-agar
- b) No salt L-agar + 5% sucrose.

The plates were incubated overnight at 30°C.

9) Colony counts showed that 10^4 more colonies grew on L-agar than on L-agar + 5% sucrose, showing sucrose selection worked.
30 10) 45 sucrose resistant colonies were screened for Δ ompC by PCR using primers TT7 and TT8. 9 colonies had the Δ ompC gene, but most had traces of w.t. $ompC$ gene. The sequences of the primers are given
35

in Table 1 below.

11) To further characterise putative ETEC Δ AroC Δ OmpC colonies, they were grown in 1 ml L-Broth for 5 hr and plated on:

5 a) L-Agar + 100 µg/ml Ampicillin
 b) L-Agar
 c) L-Agar + 5% sucrose

Δ OmpC colonies should be resistant to sucrose and sensitive to Ampicillin.

10 12) Only 1 colony (No. 1) was Ampicillin sensitive and sucrose resistant.

13) Colony 1 was checked for the presence of Δ aroC, Δ ompC and CS1 genes by PCR with primers TT19/TT20, TT7/TT8 and MGR169 and 170. The sequences of the

15 primers are given in Table 1 below.

14) Colony 1 gave single PCR products of the expected size for Δ aroC, Δ ompC and CS1 genes.

15) The colony was microbanked.

16) For permanent storage, a bead from the microbank

20 was inoculated into 1 ml L-broth, grown for 4 hr with shaking at 37°C and used to make agar slopes which were freeze dried. The freeze dried stock of E1392/75/2A Δ AroC Δ OmpC was designated PTL008. 20 ml of L-broth was added to the rest of the 1 ml culture and the culture was incubated overnight at 30°C. 1 ml of the overnight culture was transferred to each of three cryovials and stored in liquid nitrogen.

30 **Construction of ETEC Δ AroC Δ OmpC Δ OmpF**

Conjugation was used to introduce pCVD Δ OmpF into E1392/75/2A Δ AroC Δ OmpC.

1) Conjugation donor cells SM10λpir were transformed with pCVD Δ OmpF. The construction of plasmid

pCVD Δ OmpF is described above.

2) ETEC Δ AroC Δ OmpC cells were conjugated with SM10 λ pir/pCVD Δ OmpF cells. The pCVD442 plasmid includes a transfer origin which allows the plasmid to be transferred from a donor strain containing the RP4 transfer genes (e.g. SM10 λ pir) to a recipient strain (e.g. ETEC). ETEC Δ aroC Δ ompC cells and *E. coli* strain SM10 λ pir harbouring the Pcvd Δ ompF recombinant were cross-streaked on L-agar plates so as to cover an area of approximately 10 cm².
Plates were incubated at 37° C for 20 h, then the growth washed off using 4 ml L-broth and the suspension plated onto McConkey agar (Difco) containing streptomycin at 20 μ g ml⁻¹ and ampicillin at 300 μ g ml⁻¹. Plates were incubated overnight at 37°C and resulting colonies were checked for merodiploidy by PCR using appropriate oligonucleotides as primers.

3) Putative ETEC transconjugants were screened. 10 colonies were picked from McConkey agar plates and grown overnight on L-Ampicillin (100 μ g/ml) agar. The presence of Δ ompF gene was checked for by PCR with primers TT1/TT2. The sequences of the primers are given in Table 1 below.

25 4) The colonies were grown for 5 hr in L-broth.

5) Serial dilutions of the L-broth culture were set up on:

- a) No salt L-agar
- b) No salt L-agar + 5% sucrose.

30 6) The plates were incubated overnight at 30°C. Colony counts showed 10⁵ more colonies grew on L-agar than on L-agar + 5% sucrose, showing sucrose selection worked.

7) Sucrose resistant colonies were screened for Δ ompF gene by PCR with primers TT1/TT2. The sequences of

the primers are given in Table 1 below. The screened colonies were grown overnight on L-Agar. 3 colonies out of 47 had the Δ ompF gene with no evidence of the wild-type ompF gene.

5 8) To further characterise putative ETEC Δ AroC Δ OmpC Δ OmpF colonies, they were plated on:

- a) L-Agar + 100 µg/ml Ampicillin
- b) L-Agar
- c) L-Agar + 5% sucrose

10 Δ ompF colonies should be resistant to sucrose and sensitive to Ampicillin.

9) All three Δ ompF colonies were Ampicillin sensitive and sucrose resistant.

10) The colonies were microbanked and one colony was chosen as a master stock.

15 11) For permanent storage, a bead from the master stock was inoculated into 1 ml L-broth, grown for 4 hr with shaking at 37°C and used to make agar slopes which were used to make freeze dried stocks. The

20 freeze dried stock of E1392/75/ 2A Δ aroC Δ OmpC Δ OmpF was designated PTL003. 20 ml of L-broth was added to the rest of the 1 ml culture and the culture was incubated overnight at 30°C. 1 ml of the overnight culture was transferred to each of three cryovials 25 and stored in liquid nitrogen.

Characterisation of E1392/75/2A Δ aroC Δ OmpC Δ OmpF

1) Growth requirements:

30 Cells taken from the master stock produced in step 10 of the preceding section were streaked on L-Agar plate. At the same time 8 ml L-broth was inoculated for a chromosomal DNA prep for Southern blots. Both plate and liquid culture were grown overnight at 37°C.

35 Cells from the grown plate were streaked onto the

following media and grown overnight at 37oc.

	<u>Medium</u>	<u>Growth</u>
5	L-Amp	No
	M9 minimal media	No
	M9 minimal + Aromix	Yes
10	M9 + sulfathiazole (100 µg/ml)	No
	M9 + sulfathiazole (100 µg/ml) + Aromix	Yes
	L-Agar + 50 µg/ml streptomycin	Yes
	L-Agar + 5% sucrose	Yes

As expected, the cells were Amp sensitive. The
 15 cells were resistant to sucrose, streptomycin and
 sulfathiazole, but required Aromix to grow on
 minimal media.

2) LPS analysis of PTL003:

20 a) A freeze dried vial of PTL003 was broken open. The culture was resuspended in L-Broth and plated on L-Agar for growth. Some cells were scraped off and stored in microbank.

25 b) More cells were scraped off and the LPS profile was analysed. There was no visible difference between the LPS profile of PTL003 and original E1392/75/2A strain.

3) Confirmation of deletions by PCR:

30 a) A scrape of cells was taken from the plate made in in 2a and streaked onto L-Agar and grown overnight.

b) Freshly grown cells were used for PCR with primers that flank the following genes: *aroC*, *htrA*, *ompC*, *ompF*, *ompR*.

35 c) PTL003 was shown to have deletions in *aroC*,

ompC and *ompF* genes, but not in *htrA* or *ompR*.

4) Analysis of outer membrane protein profile of PTL003:

Outer membrane protein fractions were prepared from
5 strains PTL010 (E1392/75/2A) and the deletion strains PTL002 and PTL003. A strain with a single *ompF* deletion and a strain with both *aroC* and *ompC* deletion were also analysed. Strains were grown under conditions of low osmolarity (no salt L-broth) and high osmolarity (no salt L-broth+15% sucrose). The OmpF protein product is normally expressed at low osmolarity whereas the OmpC product is expressed at high osmolarity. The OmpC and OmpF proteins have similar electroporetic mobilities. At both high and low osmolarities, the strain PTL003 lacks proteins in the OmpC/OmpF region when compared to the wild-type E1392/75/2A strain or to the Δ AroC Δ OmpC or Δ OmpF deletion strains. The results are shown in Figure 4.

20

5) Expression of CS1 and CS3 pili on CFA agar:

The expression of CS1 and CS3 pili in the deletion strains was examined. Equal numbers (2 $A_{600\text{nm}}$ units) of bacteria strains PTL010, PTL001, PTL002 and
25 PTL003 grown overnight at 37°C on CFA agar were subjected to SDS PAGE and analysed by Western blotting with monospecific polyclonal antibodies against CS1 or CS3. CS1 and CS3 pili were expressed equally well in four strains (Figure 5).

30

A CFAII-negative derivative of E1392/75/2A was constructed for use as a control. This was done by specific curing of the CS encoding plasmids from ETEC strain E1392/75-2A. A short fragment of DNA was amplified from the *cooB* gene using PCR with

oligonucleotides CSA01 and CSA02 as primers and
ligated into pGEM-T Easy plasmid vector (Trade
Name, Promega) designed for the cloning of PCR
products. The fragment was subcloned into pCVD442
5 by virtue of the *Sal*I and *Sph*I restriction enzyme
sites. The pCVD442-*cooB* derivative was introduced
into ETEC strain E1392/75/2A by conjugation from
SM10λpir. Ampicillin resistant transconjugants are
most likely to be the result of fusion of the
10 pCVD442-*cooB* derivative with *cooB*-bearing plasmid.
Such transconjugates were then grown on L-agar
supplemented with 5% sucrose to select for loss of
the *sacB* gene of pCVD442. Resulting colonies were
tested for ampicillin sensitivity, and by PCR using
15 CSA01 and CSA02 as primers. Three colonies of
E1392/75/2A were included as positive controls
among these PCRs. Two sucrose resistant colonies
that gave no product with the PCR were streaked out
onto fresh L-agar supplemented with 5% sucrose to
20 obtain pure cultures. These were then grown in L-
broth at 37°C for approximately 16 h and
microbanked at -70°C. Loss of the CS1 encoding
plasmid was confirmed by analysis of the plasmid
profiles of the derivatives using agarose gel
25 electrophoresis. Two derivatives were confirmed as
CS1 negative, but were still CS3+.

6) Southern blotting of PTL003:
Structure of deletion mutations. Total DNA was
30 extracted from cultures of the three deletion
mutants grown from the microbanked stocks, digested
with restriction endonuclease *EcoRV*, and the
digested DNA subjected to pulsed field agarose gel
electrophoresis. DNA was blotted from the gels
35 onto Hybond N+ (Trade Name) nylon membranes and

5

hybridised with appropriate DNA probes according to standard procedures. Results (Figure 6) show that the hybridising chromosomal DNA fragments of the mutants are shorter than the wild-type, consistent with the mutations being deletions.

10

Confirmation of absence of Heat-Stable (ST) and Heat-Labile (LT) toxin genes in E.coli strain E1392/75-2A. For this the ST and LT-AB genes were used as DNA probes against total DNA from E1392/75-2A. Total DNA from the toxin positive ETEC strain E1393/75 was included as a positive control, while that from the laboratory *E.coli* strain JM109 was included as a negative. Hybridised membranes were left under Hyperfilm-ECL (Trade Name) for 1 h to obtain the maximum amount of signal. Probes were prepared using PCR with plasmid DNA extracted from E1392/75-2A as template and oligonucleotides EST01 and EST02 as primers for ST, or LT-R1 and LT-03 for LT-AB. There was no significant hybridisation with total DNA using either the LT-AB or the ST probe, despite obtaining a very intense signal from the positive control total DNA.

15

20

25

30

35

Confirmation of absence of pCVD442 sequences from the chromosome of deletion mutants. The plasmid pCVD442 was labelled and hybridised to total DNA from deletion mutants PTL001, PTL002 and PTL003 digested with EcoRV. Total DNA from ETEC strain E1392/75-2A was included as a control. A complex pattern of hybridising DNA fragments was obtained. But, there was no significant difference between the pattern obtained for the wild-type and that for the mutants, indicating that probably no residual pCVD442 nucleotide sequences were left in the genomes of the mutants. The complex pattern of

hybridising fragments was most likely due to the pCVD442 probe hybridising with the plasmid DNA components of the E1392/75-2A strain and mutant derivatives.

5

Table 1 - PCR primers

Name	Target	Use	Sequence (5'-3')
TT1	<i>ompF</i>	Primer A for cloning	ATC TGT TTG TTG AGC TCA GCA ATC TAT TTG CAA CC
10 TT2	<i>ompF</i>	Primer B for cloning	TTT TTT GCC AGC ATG CCG GCA GCC ACG CGT AGT G
TT3	<i>ompF</i>	Primer C for cloning	CTC GAG GCT TAG CTC TAT TTA TTA CCC TCA TGG
TT4	<i>ompF</i>	Primer D for cloning	GAG CTA AGC CTC GAG TAA TAG CAC ACC TCT TTG
TT7	<i>ompC</i>	Primer A for cloning	TTG CTG GAA AGT CGA CGG ATG TTA ATT ATT TGT G
15 TT8	<i>ompC</i>	Primer B for cloning	GGC CAA AGC CGA GCT CAT TCA CCA GCG GCC CGA CG
TT9	<i>ompC</i>	Primer C for cloning	GCT AAG CCT CGA GTA ATC TCG ATT GAT ATC CG
TT10	<i>ompC</i>	Primer D for cloning	CTC GAG GCT TAG CGT TAT TAA CCC TCT GTT A

	TT19	<i>aroC</i>	Primer A for cloning	CCG CGC TCG CTC TAG AGT GAA CTG ATC AAC AAT A
	TT20	<i>aroC</i>	Primer B for cloning	ATG CGC GCG AGA GCT CAA CCA GCG TCG CAC TTT G
	TT21	<i>aroC</i>	Primer C for cloning	CTC GAG GCA TGC TGA ATA AAA CCG CGA TTG
	TT22	<i>aroC</i>	Primer D for cloning	GCA TGC CCT CGA GGG CTCC GTT ATT GTT GTG
5	MGR169	CS1	Binds in CS1 sequence	TGA TTC CCT TTG TTG CGA AGG CGA A
	MGR170	CS1	Binds in CS1 sequence	ATT AAG ATA CCC AAG TAA TAC TCA A
	LT-R1	LT-AB	See text	GCT TTT AAA GGA TCC TAG TT
	LT-03	LT-AB	See text	GGT TAT CTT TCC GGA TTG TC
	EST01	ST	See text	CAT GTT CCG GAG GTA ATA TGA A
10	EST02	ST	See text	AGT TCC CTT TAT ATT ATT AAT A
	CSA01	CS1	See text	TGG AGT TTA TAT GAA ACT AA
	CSA02	CS1	See text	TGA CTT AGT CAG GAT AAT TG
	CS3-01	CS3	See text	ATA CTT ATT AAT AGG TCT TT
	CS3-02	CS3	See text	TTG TCG AAG TAA TTG TTA TA

Table 2

	Target gene	Sites used for cloning into pCVD442		Sites introduced for screening purposes	
		Site 1	Site 2	Site 3	Site 4
5	aroC	XbaI	SacI	XhoI	SphI
	htrA	SalI	SphI	XhoI	XbaI
	ompC	SalI	SacI	BspI	XhoI
	ompF	SacI	SphI	BspI	XhoI
10	ompR	SalI	SacI	BspI	SphI

EXAMPLE 2: SAFETY AND IMMUNOGENICITY OF ATTENUATED VACCINE STRAIN OF ENTEROTOXIGENIC E. COLI

(ΔaroC/ΔompC/ΔompF) IN HUMAN VOLUNTEERS

The study was designed to evaluate a candidate live attenuated vaccine strain of enterotoxigenic *E. coli*, namely the Δ aroC/ Δ ompC/ Δ ompF PTL003 described above.

20

Preparation of the vaccine seed lots

The bacterial strain was plated onto MacConkey agar for 25 purity and for confirmation of identity, and 5 colonies used to inoculate a flask containing 200 ml of luria broth. After 8 hours incubation at +37°C, 30 ml of sterile glycerol was added to the broth culture and aliquots prepared (1 ml per vial). One hundred such vials were 30 frozen at -70°C. These vials constituted the seed lot for the vaccine strain.

Purity of the seed lot was ensured by selecting ten random vials, and testing them for bacterial purity and freedom from fungi. An additional three vials were tested to determine the number of bacteria in the vials using 5 standard plate count methods with serial dilutions of the culture broth.

Preparation of the vaccine

10 The vaccine was prepared fresh prior to each vaccination and all steps in the preparation of the inoculum carried out in a safety cabinet. The day prior to vaccination, 0.2 ml was spread onto the surface of luria agar plates using sterile cotton swabs to prepare the lawn of bacteria. The 15 same culture broth was streaked onto MacConkey and luria agar plates for purity. The agar plates were incubated at 37°C for 18 hours in a sealed container with tamper-resistant indicator tape to ensure that the plates were not tampered with during incubation. After incubation, the lawn 20 of bacteria was harvested with 5 ml of sterile phosphate buffered saline (PBS), and the optical density of the suspension measured. The appropriate volume of this suspension, corresponding to the desired dose, was then placed into unit dose bottles with 30 ml of bicarbonate 25 buffer and administered to the volunteers. An extra dose of vaccine was prepared and left in the laboratory, and immediately after the volunteers had been vaccinated the actual number of bacteria in each dose of vaccine was validated using standard colony count procedures with ten 30 fold dilutions of vaccine.

The procedure for diluting the bacteria was established during preliminary studies using lawn cultures prepared and incubated exactly as done for the vaccine preparations 35 administered to volunteers. Suspensions were made and the

number of viable bacteria enumerated by colony counts of serial dilutions and related to the determined optical density. Based on these preliminary studies, a standard procedure was developed for preparing and validating the
5 correct dilutions of bacteria in order to give the doses stated.

Preparation of buffer

10 A buffer consisting of sodium bicarbonate in water was used. For each dose of vaccine 150 ml of deionised water containing 2 gram of sodium bicarbonate was prepared and filter sterilised. 30 ml of the buffer was placed into 50 ml sterile vials and the dose of vaccine bacteria was added
15 to these vials. The remaining 120 ml of buffer was placed into separate sterile bottles. At the time of vaccination, the volunteers were first administered 120 ml of buffer, then a minute later, 30 ml of buffer containing the vaccine.

20

Vaccination schedule

Groups of volunteers were studied in a dose escalation manner. The first group of volunteers received a dose of
25 approximately 5×10^7 bacteria, the second a dose of approximately 5×10^9 and the third group a dose of approximately 5×10^8 .

The volunteers were given Ciprofloxacin 500 mg BID for
30 three days beginning on day 4. They were discharged on day 6, having had a haematology and chemistry screen for safety. Serum was saved for antibody measurement.

On days 9 and 14 the volunteers returned for follow-up
35 outpatient visits at which time an interval history was

done and a blood sample was obtained for serological assays. In total, blood (40 ml) was collected for serology three times, prior to vaccination and on day 9 and day 14 after vaccination.

5

Laboratory Assay Procedures

Up to two faecal specimens were cultured each day while the volunteers were in hospital. For qualitative cultures, a 10 faecal swab was placed into Cary Blair transport media and taken to the laboratory where it was inoculated directly onto MacConkey agar and onto MacConkey agar containing antibiotics selective for the vaccine strain. Up to five 15 colonies were shown to be agglutinated using antisera specific for the vaccine strain. For quantitative culture (first specimen each day only) faecal specimens were weighed and diluted in PBS, with serial 10-fold dilutions up to 10^{-4} , and then 100 μ l of each dilution was spread onto MacConkey agar with antibiotics. Suspected colonies were 20 confirmed by agglutination with anti-O serum.

Serum was collected and saved for subsequent assay for antibody against CFA II antigens by ELISA and bactericidal antibody against the vaccine strain.

25

Peripheral blood mononuclear cells were separated from whole blood collected into citrate and washed. These cells were cultured at a density of 10^7 cells per ml in RPMI tissue culture medium at 37°C for 48 hours. After 48 hours 30 the supernatant was transferred to a cryovial and frozen at -20°C until it could be assayed for IgG and IgA antibody to CFA II by ELISA.

Table 3 - Summary of the procedures of the protocol

	Day (Vaccination day is day 0)	pre	-1	0	1	2	3	4	5	6	9	14
5	Recruitment / screening	x										
	HCG (urine)	x				x						
	Training/consent	x										
10	Inpatient stay		x	x	x	x	x	x	x	x		
	Vaccination			x								
	Outpatient visit	x									x	x
15	Stool cultures - quantitative		x	x	x	x	x	x	x	x	x	x
	Stool cultures - qualitative		x	x	x	x	x	x	x	x	x	x
	Serology		x								x	x
20	CBC/Chem panel	x								x		
	Ciprofloxacin 500mg BID for 3d							x	x	x		

Results:

25 No symptoms were seen at all actual doses of 6.8×10^7 and 3.7×10^8 cfu. At the higher dose of 4.7×10^9 1/6 volunteers experienced diarrhoea and 2/6 had mild abdominal cramps. Bacterial shedding was seen in all volunteers at the 5×10^9 cfu dose level from day 1 post vaccination until, 30 as per protocol, ciprofloxacin was started on day 4 after vaccination. This indicates good intestinal colonisation, which is indicative of the potential to induce a good immune response. At the two lower doses, vaccine strain was recovered from all volunteers on at least one time 35 point following vaccination but the duration of the excretion was reduced compared to that seen at the highest dose.

At the time of filing the application, the analysis of the 40 immune responses generated by the vaccine was incomplete.

However, the IgA anti-CFA II responses in the culture supernatants of PBMNC purified from the blood of recipients of the highest dose of vaccine at day 0 (before vaccination) and days 7 and 10 post vaccination have been 5 analysed (see Figure 7). Supernatants were analysed by ELISA on assay plates coated with purified CFA II antigen. The OD values observed from the day 7 and day 10 samples were significantly higher than those from the pre-vaccination samples, demonstrating the induction of a 10 specific IgA response at these time points. As expected, the responses show a peak at day 7 and are reduced at day 10, consistent with the homing of primed IgA secreting B-cells from the blood to the mucosal effector sites of the Gut Associated Lymphoid Tissue.

15

Conclusions:

The attenuated live strain of ETEC (Δ aroC/ Δ ompC/ Δ ompF) has been shown to be well tolerated in healthy adult volunteers and to colonise the intestine in a manner 20 consistent with its utility as an oral vaccine to protect against travellers diarrhoea. It has also been demonstrated to elicit a specific mucosal immune response.

25

30

References

1. Bacon, G.A., Burrows, T.W. and Yates, M. (1950) Br.J.Exp. Pathol., 31, 714-24
- 5 2. Chatfield, S.N., Charles, I.G., Makoff, A.J. et al (1992a) Biotech. 10, 888-892
3. Chatfield, S.N., Strahan, K., Pickard, D., Charles, I.G., Hormaeche, C.E. and Dougan, G. (1992b) Microbiol. Pathog., 12, 145-151
- 10 4. Curtiss III, R. and Kelly, S.M. (1987) Infect.Immun. 55, 3035-3043
5. Dougan, G., Chatfield, S., Pickard, D., Bester, J., O'Callaghan, D. and Maskell, D. (1988) J.Inf.Dis. 158, 1329-1335
- 15 6. Fairweather, N.F., Chatfield, S.N., Makoff, A.J. et al (1990) Infect.Immun. 58, 1323-1329
7. Gomaz-Duarte, O.G., Galen, J., Chatfield, S.N. (1995) Vaccine, 13:1596-1602
8. Hohmann, E.L., Oletta, C.A., Killeen, K.P. and Miller, S.I. (1996) Vaccine 14, 19-24
- 20 9. Hone, D., Morona, R., Attridge, S. and Hackett, J. (1987) J.Infect.Dis., 156, 167-1
10. Jones, P.W., Dougan, G., Haywood, C., MacKensie, N., Collins, P. and Chatfield, S.N. (1991) Vaccine 9, 29-36
- 25 11. Levine, M.M., Galen, J., Barry, E. et al (1995) J.Biotech, 44, 193-196
12. Miller, S.I., Kukral, A.M. and Mekalanos, J.J. (1989), Proc.Nat.Acad.Sci., USA 86, 5054-5058
- 30 13. Pickard, D., Li, J.L., Roberts, M., Maskell, D.,

Hone, D., Levine, M., Dougas, G. and Chatfield, S.
(1994) Infection and Immunity 62, 3984-3993

14. Sambrook, J., Fritsch, E.F. and Maniatis, T.,
(1989)

5 Molecular Cloning, A Laboratory Manual, Cold Spring
Harbor Laboratory, Cold Spring Harbor, NY, USA

15. Strugnell, R.A., Dougan, G., Chatfield, S.N. et al
(1992) Infect. Immun., 60, 3994-4002

16. EP-B-0322237 (Dougan et al)

10 17. EP-B-0400958 (Dougan et al)

18. EP-B-0524205 (Dougan et al)

19. WO 92/15689 (Charles et al)

20. Everest, P., Allen, J., Papakonstantinopoulou, A.,
Mastroeni, P., Roberts, M. and Dougan, G. (1995)
15 FEMS Microbiol. Letts., 126, 97-101

21. Chatfield, S.N., Dorman, C.J., Hayward, C. and
Dougan, G. (1991) Infection & Immunity 59, 449-452

22. Donnenberg, M.S. and Kaper, J.B. (1991) Infection
and Immunity 59, 4310-4317

CLAIMS

1. A bacterium attenuated by a non-reverting mutation in each of the *aroC* gene, the *ompF* gene and the
5 *ompC* gene.
2. A bacterium according to claim 1 which infects by the oral route.
- 10 3. A bacterium according to claim 1 which is from the genera *Escherichia*, *Salmonella*, *Vibrio*, *Haemophilus*, *Neisseria*, *Yersinia*, *Bordetella* or *Brucella*.
- 15 4. A bacterium according to claim 3 which is a strain of *Escherichia coli*, *Salmonella typhimurium*, *Salmonella typhi*, *Salmonella enteritidis*, *Salmonella choleraesuis*, *Salmonella dublin*, *Haemophilus influenzae*, *Neisseria gonorrhoeae*,
20 *Yersinia enterocolitica*, *Bordetella pertussis* or *Brucella abortus*.
5. A bacterium according to claim 4 which is a strain of enterotoxigenic *E.coli* (ETEC).
- 25 6. A bacterium according to any one of the preceding claims which is further attenuated by a mutation in a fourth gene.

7. A bacterium according to claim 6 wherein the fourth gene is *aroA*, *aroD*, *aroE*, *pur*, *htrA*, *galE*, *cya*, *crp*, *phoP* or *surA*.

5 8. A bacterium according to any one of the preceding claims, wherein the mutation in each gene is a defined mutation.

9. A bacterium according to any one of the preceding
10 claims, wherein the mutation in each gene is deletion of the entire coding sequence.

10. A bacterium according to any one of the preceding claims which has been genetically engineered to
15 express a heterologous antigen.

11. A bacterium according to claim 10, wherein expression of the antigen is driven by the *nirB* promoter or the *htrA* promoter.

20

12. A vaccine comprising a bacterium as defined in any one of the preceding claims and a pharmaceutically acceptable carrier or diluent.

25 13. A bacterium as defined in any one of claims 1 to 11 for use in a method of vaccinating a human or animal.

14. An enterotoxigenic *E.coli* cell attenuated by a non-
30 reverting mutation in each of the *aroC* gene, the

ompF gene and the *ompC* gene, for use in a method of vaccinating a human or animal against diarrhoea.

15. Use of a bacterium as defined in any one of claims
5 1 to 11 for the manufacture of a medicament for
vaccinating a human or animal.

16. A method of raising an immune response in a
mammalian host, which comprises administering to
10 the host a bacterium attenuated by a non-reverting
mutation in each of the *aroC* gene, the *ompF* gene
and the *ompC* gene.

1/6

Fig.1.

- Primer A, includes restriction site 1
- Primer B, includes restriction site 2
- Primer C, includes restriction sites 3 and 4
- Primer D, includes restriction sites 3 and 4

Fig.2.

<i>aroC</i>	AAACACAACAATAACGGAGCGGTGATG--TAAAATGAATAAAACCGCGATTG CG
w.t.	AAACACAACAATAACGGAGCGGTGATGAAATAACCGCGATTG CG
deletion	
<i>htrA</i>	TGTTAATCCGAGAXTGAATACATGAA---AGTAATCTCCCTCAACCCCTTCCT GAA
w.t.	TGTTAATCCGAGAXTGAATACCTCGAGTCTAGACTCCCTCAACCCCTTCCT GAA
deletion	
<i>ompC</i>	ATATAACAGAGGGTTAATAAACATGAAA---CAGTTCTAA TCTCGATTGATATCGAAC
w.t.	ATATAACAGAGGGTTAATAACGCTAAGCCTCGAGTAA TCTCGATTGATATCGAAC
deletion	
<i>ompF</i>	AAACCATGAGGGTAATAAAATAATGATGAAGCGC--CCAGTTCTAA TAGCACACCTCTTTGTTA
w.t.	AAACCATGAGGGTAATAAAATAAGCTAAGGCTCGAGCTCTAA TAGCACACCTCTTTGTTA
deletion	
<i>ompR</i>	CGAACCTTTGGGAGTACAAACAATGCAA---AAGCATGAGGGGATTGGCTTCTCGCCA
w.t.	CGAACCTTTGGGAGTACAAACAAGCTAAGGCATGCGAGGGGATTGGCTTCTCGCCA
deletion	

Bold – Stop and start codons*Italics – restriction enzyme sites introduced*Underlined – primer binding sites

Lower case – extra n.t added to primers to avoid primer dimer formation

--- wild type gene

N.B. *aroC* deletion removes 16 n.t. 3' to the stop codon

3/6

Fig.3.

4/6

Fig.4.**Fig.5.**

Anti-CS3 antibody

Fig. 6.

Fig. 7.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5

(i) APPLICANT:

- (A) NAME: PEPTIDE THERAPEUTICS LIMITED
- (B) STREET: 100 Fulbourn Road
- (C) CITY: Cambridge
- 10 (D) STATE: not applicable
- (E) COUNTRY: United Kingdom
- (F) POSTAL CODE (ZIP): CB1 9PT

(ii) TITLE OF INVENTION: ATTENUATED BACTERIA USEFUL IN VACCINES

15

(iii) NUMBER OF SEQUENCES: 6

(iv) COMPUTER READABLE FORM:

- 20 (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

(v) CURRENT APPLICATION DATA:

25

APPLICATION NUMBER:

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

30

- (A) LENGTH: 1690 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

(A) ORGANISM: aroC of E.coli

(ix) FEATURE:

(A) NAME/KEY: CDS

5 (B) LOCATION: 492..1562

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

	GTCGACGCCGG	TGGATATCTC	TCCAGACCGCG	CTGGCGGTTG	CTGAACAGAA	CATCGAAGAA	60										
10	CACGGTCTGA	TCCACAACGT	CATTCCGATT	CGTTCCGATC	TGTTCCGCGA	CTTGCCTGAAA	120										
	GTGCAGTACG	ACCTGATTGT	CACTAACCCG	CCGTATGTG	ATGCGAAGAT	ATGTCGACC	180										
	TGCCAAACAA	TACCGCCACG	AGCCGGAAC	GGGCCTGGCA	TCTGGCACTG	ACGGCCTGAA	240										
	ACTGACGCCGT	CGCATTCTCG	GTAACGCCGC	AGATTACCTT	GCTGATGATG	GCGTGTTGAT	300										
	TTGTGAAGTC	GGCAACAGCA	TGGTACATCT	TATGGAACAA	TATCCGGATG	TTCCGTTCAC	360										
15	CTGGCTGGAG	TTTGATAACG	GCGGCGATGG	TGTGTTATG	CTCACCAAAG	AGCAGCTTAT	420										
	TGCCGCACGA	GAACATTTCG	CGATTATAA	AGATTAAGTA	AACACGCAA	CACAACAATA	480										
	ACGGAGCCGT	G	ATG	GCT	GGA	CAA	CTC	TTT	CGC	GTA	ACC	530					
	Met Ala Gly Asn Thr Ile Gly Gln Leu Phe Arg Val Thr																
	1	5	10														
20	ACC	TTC	GGC	GAA	TCG	CAC	GGG	CTG	GCG	CTC	GGC	TGC	ATC	GTC	GAT	GGT	578
	Thr	Phe	Gly	Glu	Ser	His	Gly	Leu	Ala	Leu	Gly	Cys	Ile	Val	Asp	Gly	
	15	20	25														
25	GTT	CCG	CCA	GGC	ATT	CCG	CTG	ACG	GAA	GCG	GAC	CTG	CAA	CAT	GAC	CTC	626
	Val	Pro	Pro	Gly	Ile	Pro	Leu	Thr	Glu	Ala	Asp	Leu	Gln	His	Asp	Leu	
	30	35	40	45													
30	GAC	CGT	CGT	CGC	CCT	GGG	ACA	TCG	CGC	TAT	ACC	ACC	CAG	CGC	CGC	GAG	674
	Asp	Arg	Arg	Arg	Pro	Gly	Thr	Ser	Arg	Tyr	Thr	Thr	Gln	Arg	Arg	Glu	
	50	55	60														
35	CCG	GAT	CAG	GTC	AAA	ATT	CTC	TCC	GGT	TTT	GAA	GGC	GTT	ACT	ACC	722	
	Pro	Asp	Gln	Val	Lys	Ile	Leu	Ser	Gly	Val	Phe	Glu	Gly	Val	Thr	Thr	
	65	70	75														
35	GGC	ACC	AGC	ATT	GGC	TTG	TTG	ATC	GAA	AAC	ACT	GAC	CAG	CGC	TCT	CAG	770

	Gly Thr Ser Ile Gly Leu Leu Ile Glu Asn Thr Asp Gln Arg Ser Gln		
	80	85	90
5	GAT TAC AGT GCG ATT AAG GAC GTT TTC CGT CCA GGC CAT GCC GAT TAC		818
	Asp Tyr Ser Ala Ile Lys Asp Val Phe Arg Pro Gly His Ala Asp Tyr		
	95	100	105
10	ACC TAC GAA CAA AAA TAC GGT CTG CGC GAT TAT CGC GGC GGT GGA CGT		866
	Thr Tyr Glu Gln Lys Tyr Gly Leu Arg Asp Tyr Arg Gly Gly Arg		
	110	115	120
	125		
15	TCT TCC GCC CGC GAA ACC GCC ATG CGC GTG GCG GCA GGA GCT ATT GCC		914
	Ser Ser Ala Arg Glu Thr Ala Met Arg Val Ala Ala Gly Ala Ile Ala		
	130	135	140
	140		
20	AAA AAA TAT CTC GCC GAG AAA TTT GGT ATT GAA ATC CGT GGC TGC CTG		962
	Lys Lys Tyr Leu Ala Glu Lys Phe Gly Ile Glu Ile Arg Gly Cys Leu		
	145	150	155
	155		
25	ACC CAG ATG GGC GAC ATT CCG CTG GAT ATC AAA GAC TGG TCG CAG GTC		1010
	Thr Gln Met Gly Asp Ile Pro Leu Asp Ile Lys Asp Trp Ser Gln Val		
	160	165	170
	170		
30	GAG CAA AAT CCG TTT TTT TGC CCG GAC CCC GAC AAA ATC GAC GCG TTA		1058
	Glu Gln Asn Pro Phe Phe Cys Pro Asp Pro Asp Lys Ile Asp Ala Leu		
	175	180	185
	185		
35	GAC GAG TTG ATG CGT GCG CTG AAA AAA GAG GGC GAC TCC ATC GGC GCT		1106
	Asp Glu Leu Met Arg Ala Leu Lys Lys Glu Gly Asp Ser Ile Gly Ala		
	190	195	200
	200		
	205		
	AAA GTC ACC GTT GTT GCC AGT GGC GTT CCT GCC GGA CTT GGC GAG CCG		1154
	Lys Val Thr Val Val Ala Ser Gly Val Pro Ala Gly Leu Glu Pro		
	210	215	220
	220		
	GTC TTT GAC CGC CTG GAT GCT GAC ATC GCC CAT GCG CTG ATG AGC ATC		1202
	Val Phe Asp Arg Leu Asp Ala Asp Ile Ala His Ala Leu Met Ser Ile		

	225	230	235	
	AAC GCG GTG AAA GGC GTG GAA ATT GGC GAC GGC TTT GAC GTG GTG GCG			1250
	Asn Ala Val Lys Gly Val Glu Ile Gly Asp Gly Phe Asp Val Val Ala			
5	240	245	250	
	CTG CGC GGC AGC CAG AAC CGC GAT GAA ATC ACC AAA GAC GGT TTC CAG			1298
	Leu Arg Gly Ser Gln Asn Arg Asp Glu Ile Thr Lys Asp Gly Phe Gln			
	255	260	265	
10				
	AGC AAC CAT GCG GGC GGC ATT CTC GGC GGT ATC AGC AGC GGG CAG CAA			1346
	Ser Asn His Ala Gly Gly Ile Leu Gly Gly Ile Ser Ser Gly Gln Gln			
	270	275	280	285
15	ATC ATT GCC CAT ATG GCG CTG AAA CCG ACC TCC AGC ATT ACC GTG CCG			1394
	Ile Ile Ala His Met Ala Leu Lys Pro Thr Ser Ser Ile Thr Val Pro			
	290	295	300	
	GGT CGT ACC ATT AAC CGC TTT GGC GAA GAA GTT GAG ATG ATC ACC AAA			1442
20	Gly Arg Thr Ile Asn Arg Phe Gly Glu Glu Val Glu Met Ile Thr Lys			
	305	310	315	
	GGC CGT CAC GAT CCC TGT GTC GGG ATC CGC GCA GTG CCG ATC GCA GAA			1490
	Gly Arg His Asp Pro Cys Val Gly Ile Arg Ala Val Pro Ile Ala Glu			
25	320	325	330	
	GCG AAT GCT GGC GAT CGT TTT AAT GGA TCA CCT GTT ACG GCA ACG GGC			1538
	Ala Asn Ala Gly Asp Arg Phe Asn Gly Ser Pro Val Thr Ala Thr Gly			
	335	340	345	
30				
	GCA AAA TGC CGA TGT GAA GAC TGA TATTCCACGC TGGTAAAAAA TGAATAAAAC			1592
	Ala Lys Cys Arg Cys Glu Asp *			
	350	355		
35	CGCGATTGCG CTGCTGGCTC TGCTTGCCAG TAGGCCAGC CTGGCAGCGA CGCCGTGGCA			1652
	AAAAATAACC CAACCTGTGC CGGGTAGCGC CAAATCGA			1690

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 356 amino acids
(B) TYPE: amino acid
(C) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ala Gly Asn Thr Ile Gly Gln Leu Phe Arg Val Thr Thr Phe Gly
1 5 10 15

15 Glu Ser His Gly Leu Ala Leu Gly Cys Ile Val Asp Gly Val Pro Pro
20 25 30

Gly Ile Pro Leu Thr Glu Ala Asp Leu Gln His Asp Leu Asp Arg Arg
35 40 45

20 Arg Pro Gly Thr Ser Arg Tyr Thr Thr Gln Arg Arg Glu Pro Asp Gln
50 55 60

	Val	Lys	Ile	Leu	Ser	Gly	Val	Phe	Glu	Gly	Val	Thr	Thr	Gly	Thr	Ser
25	65					70					75					80

Ile Gly Leu Leu Ile Glu Asn Thr Asp Gln Arg Ser Gln Asp Tyr Ser
85 90 95

30 Ala Ile Lys Asp Val Phe Arg Pro Gly His Ala Asp Tyr Thr Tyr Glu
100 105 110

Gln Lys Tyr Gly Leu Arg Asp Tyr Arg Gly Gly Gly Arg Ser Ser Ala
115 120 125

35

Arg Glu Thr Ala Met Arg Val Ala Ala Gly Ala Ile Ala Lys Lys Tyr
130 135 140

Leu Ala Glu Lys Phe Gly Ile Glu Ile Arg Gly Cys Leu Thr Gln Met
145 150 155 160

Gly Asp Ile Pro Leu Asp Ile Lys Asp Trp Ser Gln Val Glu Gln Asn
5 165 170 175

Pro Phe Phe Cys Pro Asp Pro Asp Lys Ile Asp Ala Leu Asp Glu Leu
180 185 190

10 Met Arg Ala Leu Lys Lys Glu Gly Asp Ser Ile Gly Ala Lys Val Thr
195 200 205

Val Val Ala Ser Gly Val Pro Ala Gly Leu Gly Glu Pro Val Phe Asp
210 215 220

15 Arg Leu Asp Ala Asp Ile Ala His Ala Leu Met Ser Ile Asn Ala Val
225 230 235 240

Lys Gly Val Glu Ile Gly Asp Gly Phe Asp Val Val Ala Leu Arg Gly
20 245 250 255

Ser Gln Asn Arg Asp Glu Ile Thr Lys Asp Gly Phe Gln Ser Asn His
260 265 270

25 Ala Gly Gly Ile Leu Gly Gly Ile Ser Ser Gly Gln Gln Ile Ile Ala
275 280 285

His Met Ala Leu Lys Pro Thr Ser Ser Ile Thr Val Pro Gly Arg Thr
290 295 300

30 Ile Asn Arg Phe Gly Glu Glu Val Glu Met Ile Thr Lys Gly Arg His
305 310 315 320

35 Asp Pro Cys Val Gly Ile Arg Ala Val Pro Ile Ala Glu Ala Asn Ala
325 330 335

Gly Asp Arg Phe Asn Gly Ser Pro Val Thr Ala Thr Gly Ala Lys Cys
 340 345 350

Arg Cys Glu Asp *

5 355

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

10 (A) LENGTH: 1713 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

(A) ORGANISM: ompC of E.coli

20 (ix) FEATURE:

(A) NAME/KEY: CDS
 (B) LOCATION: 491..1594

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GTTAACAAAGC GTTATAGTTT TTCTGTGGTA GCACAGAATA ATGAAAAGTG TGTAAAGAAG 60

GGTAAAAAAA ACCGAATGCG AGGCATCCGG TTGAAATAGG GGTAAACAGA CATTCAAGAAA 120

30 TGAATGACGG TAATAAATAA AGTTAATGAT GATAGCGGGA GTTATTCTAG TTGCGAGTGA 180

AGGTTTTGTT TTGACATTCA GTGCTGTCAA ATACTTAAGA ATAAGTTATT GATTTAACCC 240

35 TTGAATTATT ATTGCTTGAT GTTAGGTGCT TATTCGCCA TTCCGCAATA ATCTTAAAAAA 300

GTTCCCTTGC ATTTACATTT TGAAACATCT ATAGCGATAA ATGAAACATC TTAAAAGTTT 360

	TAGTATCATA TTCTGTGTTGG ATTATTCTGC ATTTTGAGGG AGAATGGACT TGCCGACTGA	420		
	TTAATGAGGG TTAATCAGTA TGCAGTGGCA TAAAAAAGCA AATAAAGGCA TATAACAGAG	480		
5				
	GGTTAATAAC ATG AAA GTT AAA GTA CTG TCC CTC CTG GTC CCA GCT CTG	529		
	Met Lys Val Lys Val Leu Ser Leu Leu Val Pro Ala Leu			
	360	365	370	
10	CTG GTA GCA GGC GCA GCA AAC GCT GCT GAA GTT TAC AAC AAA GAC GGC	577		
	Leu Val Ala Gly Ala Ala Asn Ala Ala Glu Val Tyr Asn Lys Asp Gly			
	375	380	385	
15	AAC AAA TTA GAT CTG TAC GGT AAA GTA GAC GGC CTG CAC TAT TTC TCT	625		
	Asn Lys Leu Asp Leu Tyr Gly Lys Val Asp Gly Leu His Tyr Phe Ser			
	390	395	400	
20	GAC AAC AAA GAT GTA GAT GGC GAC CAG ACC TAC ATG CGT CTT GGC TTC	673		
	Asp Asn Lys Asp Val Asp Gly Asp Gln Thr Tyr Met Arg Leu Gly Phe			
	405	410	415	
25	AAA GGT GAA ACT CAG GTT ACT GAC CAG CTG ACC GGT TAC GGC CAG TGG	721		
	Lys Gly Glu Thr Gln Val Thr Asp Gln Leu Thr Gly Tyr Gly Gln Trp			
	420	425	430	
30	GAA TAT CAG ATC CAG GGC AAC AGC GCT GAA AAC GAA AAC AAC TCC TGG	769		
	Glu Tyr Gln Ile Gln Gly Asn Ser Ala Glu Asn Glu Asn Asn Ser Trp			
	435	440	445	450
35	ACC CGT GTG GCA TTC GCA GGT CTG AAA TTC CAG GAT GTG GGT TCT TTC	817		
	Thr Arg Val Ala Phe Ala Gly Leu Lys Phe Gln Asp Val Gly Ser Phe			
	455	460	465	
	GAC TAC GGT CGT AAC TAC GGC GTT GTT TAT GAC GTA ACT TCC TGG ACC	865		
	Asp Tyr Gly Arg Asn Tyr Gly Val Val Tyr Asp Val Thr Ser Trp Thr			
	470	475	480	

	GAC GTA CTG CCA GAA TTC GGT GAC ACC TAC GGT TCT GAC AAC TTC		913
	Asp Val Leu Pro Glu Phe Gly Gly Asp Thr Tyr Gly Ser Asp Asn Phe		
	485	490	495
5	ATG CAG CAG CGT GGT AAC GGC TTC GCG ACC TAC CGT AAC ACT GAC TTC		961
	Met Gln Gln Arg Gly Asn Gly Phe Ala Thr Tyr Arg Asn Thr Asp Phe		
	500	505	510
10	TTC GGT CTG GTT GAC GGC CTG AAC TTT GCT GTT CAG TAC CAG GGT AAA		1009
	Phe Gly Leu Val Asp Gly Leu Asn Phe Ala Val Gln Tyr Gln Gly Lys		
	515	520	525
	530		
15	AAC GGC AAC CCA TCT GGT GAA GGC TTT ACT AGT GGC GTA ACT AAC AAC		1057
	Asn Gly Asn Pro Ser Gly Glu Gly Phe Thr Ser Gly Val Thr Asn Asn		
	535	540	545
20	GGT CGT GAC GCA CTG CGT CAA AAC GGC GAC GGC GTC GGC GGT TCT ATC		1105
	Gly Arg Asp Ala Leu Arg Gln Asn Gly Asp Gly Val Gly Ser Ile		
	550	555	560
	560		
25	ACT TAT GAT TAC GAA GGT TTC GGT ATC GGT GGT GCG ATC TCC AGC TCC		1153
	Thr Tyr Asp Tyr Glu Gly Phe Gly Ile Gly Gly Ala Ile Ser Ser Ser		
	565	570	575
30	AAA CGT ACT GAT GCT CAG AAC ACC GCT GCT TAC ATC GGT AAC GGC GAC		1201
	Lys Arg Thr Asp Ala Gln Asn Thr Ala Ala Tyr Ile Gly Asn Gly Asp		
	580	585	590
35	CGT GCT GAA ACC TAC ACT GGT GGT CTG AAA TAC GAC GCT AAC AAC ATC		1249
	Arg Ala Glu Thr Tyr Thr Gly Gly Leu Lys Tyr Asp Ala Asn Asn Ile		
	595	600	605
	610		
40	TAC CTG GCT GCT CAG TAC ACC CAG ACC TAC AAC GCA ACT CGC GTA GGT		1297
	Tyr Leu Ala Ala Gln Tyr Thr Gln Thr Tyr Asn Ala Thr Arg Val Gly		
	615	620	625
45	TCC CTG GGT TGG GCG AAC AAA GCA CAG AAC TTC GAA GCT GTT GCT CAG		1345

	Ser Leu Gly Trp Ala Asn Lys Ala Gln Asn Phe Glu Ala Val Ala Gln			
	630	635	640	
	TAC CAG TTC GAC TTC GGT CTG CGT CCG TCC CTG GCT TAC CTG CAG TCT			1393
5	Tyr Gln Phe Asp Phe Gly Leu Arg Pro Ser Leu Ala Tyr Leu Gln Ser			
	645	650	655	
	AAA GGT AAA AAC CTG GGT CGT GGC TAC GAC GAC GAA GAT ATC CTG AAA			1441
	Lys Gly Lys Asn Leu Gly Arg Gly Tyr Asp Asp Glu Asp Ile Leu Lys			
10	660	665	670	
	TAT GTT GAT GTT GGT GCT ACC TAC TAC TTC AAC AAA AAC ATG TCC ACC			1489
	Tyr Val Asp Val Gly Ala Thr Tyr Tyr Phe Asn Lys Asn Met Ser Thr			
	675	680	685	690
15	TAC GTT GAC TAC AAA ATC AAC CTG CTG GAC GAC AAC CAG TTC ACT CGT			1537
	Tyr Val Asp Tyr Lys Ile Asn Leu Leu Asp Asp Asn Gln Phe Thr Arg			
	695	700	705	
20	GAC GCT GGC ATC AAC ACT GAT AAC ATC GTA GCT CTG GGT CTG GTT TAC			1585
	Asp Ala Gly Ile Asn Thr Asp Asn Ile Val Ala Leu Gly Leu Val Tyr			
	710	715	720	
	CAG TTC TAA TCTCGATTGA TATCGAACAA GGGCCTGCGG GCCCTTTTT			1634
25	Gln Phe *			
	725			
	CATTGTTTC AGCGTACAAA CTCAGTTTT TGTTGTACTC TTGCGACCGT TCGCATGAGG			1694
30	ATAATCACGT ACGGAAATA			1713

(2) INFORMATION FOR SEQ ID NO: 4:

35 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 367 amino acids
- (B) TYPE: amino acid

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

5

Met Lys Val Lys Val Leu Ser Leu Leu Val Pro Ala Leu Leu Val Ala
1 5 10 15

Gly Ala Ala Asn Ala Ala Glu Val Tyr Asn Lys Asp Gly Asn Lys Leu
10 20 25 30

Asp Leu Tyr Gly Lys Val Asp Gly Leu His Tyr Phe Ser Asp Asn Lys
35 40 45

15 Asp Val Asp Gly Asp Gln Thr Tyr Met Arg Leu Gly Phe Lys Gly Glu
50 55 60

Thr Gln Val Thr Asp Gln Leu Thr Gly Tyr Gly Gln Trp Glu Tyr Gln
65 70 75 80
20

Ile Gln Gly Asn Ser Ala Glu Asn Glu Asn Ser Trp Thr Arg Val
85 90 95

25 Ala Phe Ala Gly Leu Lys Phe Gln Asp Val Gly Ser Phe Asp Tyr Gly
100 105 110

Arg Asn Tyr Gly Val Val Tyr Asp Val Thr Ser Trp Thr Asp Val Leu
115 120 125

30 Pro Glu Phe Gly Gly Asp Thr Tyr Gly Ser Asp Asn Phe Met Gln Gln
130 135 140

Arg Gly Asn Gly Phe Ala Thr Tyr Arg Asn Thr Asp Phe Phe Gly Leu
145 150 155 160
35

Val Asp Gly Leu Asn Phe Ala Val Gln Tyr Gln Gly Lys Asn Gly Asn
165 170 175

Pro Ser Gly Glu Gly Phe Thr Ser Gly Val Thr Asn Asn Gly Arg Asp
 180 185 190

Ala Leu Arg Gln Asn Gly Asp Gly Val Gly Ser Ile Thr Tyr Asp
 5 195 200 205

Tyr Glu Gly Phe Gly Ile Gly Ala Ile Ser Ser Ser Lys Arg Thr
 210 215 220

10 Asp Ala Gln Asn Thr Ala Ala Tyr Ile Gly Asn Gly Asp Arg Ala Glu
 225 230 235 240

Thr Tyr Thr Gly Gly Leu Lys Tyr Asp Ala Asn Asn Ile Tyr Leu Ala
 245 250 255
 15

Ala Gln Tyr Thr Gln Thr Tyr Asn Ala Thr Arg Val Gly Ser Leu Gly
 260 265 270

Trp Ala Asn Lys Ala Gln Asn Phe Glu Ala Val Ala Gln Tyr Gln Phe
 20 275 280 285

Asp Phe Gly Leu Arg Pro Ser Leu Ala Tyr Leu Gln Ser Lys Gly Lys
 290 295 300

25 Asn Leu Gly Arg Gly Tyr Asp Asp Glu Asp Ile Leu Lys Tyr Val Asp
 305 310 315 320

Val Gly Ala Thr Tyr Tyr Phe Asn Lys Asn Met Ser Thr Tyr Val Asp
 325 330 335

30 Tyr Lys Ile Asn Leu Leu Asp Asp Asn Gln Phe Thr Arg Asp Ala Gly
 340 345 350

Ile Asn Thr Asp Asn Ile Val Ala Leu Gly Leu Val Tyr Gln Phe *

35 355 360 365

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 1808 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10

(vi) ORIGINAL SOURCE:

(A) ORGANISM: ompF of E.coli

(ix) FEATURE:

15

(A) NAME/KEY: CDS
(B) LOCATION: 457..1545

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

20

AAAACATAATC CGCATTCTTA TTGCGGATTAA GTTTTTCTT AGCTAATAGC ACAATTTC	60
TACTATTTTT TGGCATTCTG GATGTCTGAA AGAAGATTTT GTGCCAGGTC GATAAAGTTT	120
25 CCATCAGAAA CAAAATTCC GTTTAGTTAA TTTAAATATA AGGAAATCAT ATAAATAGAT	180
TAAAATTGCT GTAAATATCA TCACGTCTCT ATGGAAATAT GACGGTGTTC ACAAGTTCC	240
30 TTAAATTTTA CTTTGGTTA CATATTTTTT CTTTTGAAA CCAAATCTT ATCTTTGTAG	300
CACTTCACG GTAGCGAAC GTTAGTTGA ATGGAAAGAT GCCTGCAGAC ACATAAAGAC	360
ACCAAACCTCT CATCAATAGT TCCGTAAATT TTTATTGACA GAACTTATTG ACGGCAGTGG	420
35 CAGGTGTCAT AAAAAAACC ATGAGGGTAA TAAATA ATG ATG AAG CGC AAT ATT	474
Met Met Lys Arg Asn Ile	

	CTG GCA GTG ATC GTC CCT GCT CTG TTA GTA GCA GGT ACT GCA AAC GCT	522
	Leu Ala Val Ile Val Pro Ala Leu Leu Val Ala Gly Thr Ala Asn Ala	
	10 15 20	
5	GCA GAA ATC TAT AAC AAA GAT GGC AAC AAA GTA GAT CTG TAC GGT AAA	570
	Ala Glu Ile Tyr Asn Lys Asp Gly Asn Lys Val Asp Leu Tyr Gly Lys	
	25 30 35	
10	GCT GTT GGT CTG CAT TAT TTT TCC AAG GGT AAC GGT GAA AAC AGT TAC	618
	Ala Val Gly Leu His Tyr Phe Ser Lys Gly Asn Gly Glu Asn Ser Tyr	
	40 45 50	
15	GGT GGC AAT GGC GAC ATG ACC TAT GCC CGT CTT GGT TTT AAA GGG GAA	666
	Gly Gly Asn Gly Asp Met Thr Tyr Ala Arg Leu Gly Phe Lys Gly Glu	
	55 60 65 70	
20	ACT CAA ATC AAT TCC GAT CTG ACC GGT TAT GGT CAG TGG GAA TAT AAC	714
	Thr Gln Ile Asn Ser Asp Leu Thr Gly Tyr Gly Gln Trp Glu Tyr Asn	
	75 80 85	
	TTC CAG GGT AAC AAC TCT GAA GGC GCT GAC GCT CAA ACT GGT AAC AAA	762
	Phe Gln Gly Asn Asn Ser Glu Gly Ala Asp Ala Gln Thr Gly Asn Lys	
	90 95 100	
25	ACG CGT CTG GCA TTC GCG GGT CTT AAA TAC GCT GAC GTT GGT TCT TTC	810
	Thr Arg Leu Ala Phe Ala Gly Leu Lys Tyr Ala Asp Val Gly Ser Phe	
	105 110 115	
30	GAT TAC GGC CGT AAC TAC GGT GTG GTT TAT GAT GCA CTG GGT TAC ACC	858
	Asp Tyr Gly Arg Asn Tyr Gly Val Val Tyr Asp Ala Leu Gly Tyr Thr	
	120 125 130	
35	GAT ATG CTG CCA GAA TTT GGT GGT GAT ACT GCA TAC AGC GAT GAC TTC	906
	Asp Met Leu Pro Glu Phe Gly Gly Asp Thr Ala Tyr Ser Asp Asp Phe	
	135 140 145 150	
	TTC GTT GGT CGT GTT GGC GGC GTT GCT ACC TAT CGT AAC TCC AAC TTC	954

	Phe Val Gly Arg Val Gly Gly Val Ala Thr Tyr Arg Asn Ser Asn Phe		
	155	160	165
	TTT GGT CTG GTT GAT GGC CTG AAC TTC GCT GTT CAG TAC CTG GGT AAA		1002
5	Phe Gly Leu Val Asp Gly Leu Asn Phe Ala Val Gln Tyr Leu Gly Lys		
	170	175	180
	AAC GAG CGT GAC ACT GCA CGC CGT TCT AAC GGC GAC GGT GTT GGC GGT		1050
	Asn Glu Arg Asp Thr Ala Arg Arg Ser Asn Gly Asp Gly Val Gly Gly		
10	185	190	195
	TCT ATC AGC TAC GAA TAC GAA GGC TTT GGT ATC GTT GGT GCT TAT GGT		1098
	Ser Ile Ser Tyr Glu Tyr Glu Gly Phe Gly Ile Val Gly Ala Tyr Gly		
	200	205	210
15	GCA GCT GAC CGT ACC AAC CTG CAA GAA GCT CAA CCT CTT GGC AAC GGT		1146
	Ala Ala Asp Arg Thr Asn Leu Gln Glu Ala Gln Pro Leu Gly Asn Gly		
	215	220	225
	230		
20	AAA AAA GCT GAA CAG TGG GCT ACT GGT CTG AAG TAC GAC GCG AAC AAC		1194
	Lys Lys Ala Glu Gln Trp Ala Thr Gly Leu Lys Tyr Asp Ala Asn Asn		
	235	240	245
	ATC TAC CTG GCA GCG AAC TAC GGT GAA ACC CGT AAC GCT ACG CCG ATC		1242
25	Ile Tyr Leu Ala Ala Asn Tyr Gly Glu Thr Arg Asn Ala Thr Pro Ile		
	250	255	260
	ACT AAT AAA TTT ACA AAC ACC AGC GGC TTC GCC AAC AAA ACG CAA GAC		1290
	Thr Asn Lys Phe Thr Asn Thr Ser Gly Phe Ala Asn Lys Thr Gln Asp		
30	265	270	275
	GTT CTG TTA GTT GCG CAA TAC CAG TTC GAT TTC GGT CTG CGT CCG TCC		1338
	Val Leu Leu Val Ala Gln Tyr Gln Phe Asp Phe Gly Leu Arg Pro Ser		
	280	285	290
35	ATC GCT TAC ACC AAA TCT AAA GCG AAA GAC GTA GAA GGT ATC GGT GAT		1386
	Ile Ala Tyr Thr Lys Ser Lys Ala Lys Asp Val Glu Gly Ile Gly Asp		

295	300	305	310	
	GTT GAT CTG GTG AAC TAC TTT GAA GTG GGC GCA ACC TAC TAC TTC AAC Val Asp Leu Val Asn Tyr Phe Glu Val Gly Ala Thr Tyr Tyr Phe Asn			1434
5	315	320	325	
	AAA AAC ATG TCC ACC TAT GTT GAC TAC ATC ATC AAC CAG ATC GAT TCT Lys Asn Met Ser Thr Tyr Val Asp Tyr Ile Ile Asn Gln Ile Asp Ser			1482
	330	335	340	
10				
	GAC AAC AAA CTG GGC GTA GGT TCA GAC GAC ACC GTT GCT GTG GGT ATC Asp Asn Lys Leu Gly Val Gly Ser Asp Asp Thr Val Ala Val Gly Ile			1530
	345	350	355	
15	GTT TAC CAG TTC TAA TAGCACACCT CTTTGTAAA TGCGAAAAA ACAGGACTTT Val Tyr Gln Phe *			1585
	360			
	GGTCCTGTT TTTTATACC TTCCAGAGCA ATCTCACGTC TTGCAAAAC AGCCTGCGTT			1645
20				
	TTCATCAGTA ATAGTTGGAA TTTTGTAAAT CTCCCGTTAC CCTGATAGCG GACTTCCCTT			1705
	CTGTAACCAT AATGGAACCT CGTCATGTTT GAGAACATTA CCGCCGCTCC TGCCGACCCG			1765
25	ATTCTGGGCC TGGCCGATCT GTTTCGTGCC GATGAACGTC CCG			1808

(2) INFORMATION FOR SEQ ID NO: 6:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 362 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Met Lys Arg Asn Ile Leu Ala Val Ile Val Pro Ala Leu Leu Val
 1 5 10 15

Ala Gly Thr Ala Asn Ala Ala Glu Ile Tyr Asn Lys Asp Gly Asn Lys
 5 20 25 30

Val Asp Leu Tyr Gly Lys Ala Val Gly Leu His Tyr Phe Ser Lys Gly
 35 40 45

10 Asn Gly Glu Asn Ser Tyr Gly Gly Asn Gly Asp Met Thr Tyr Ala Arg
 50 55 60

Leu Gly Phe Lys Gly Glu Thr Gln Ile Asn Ser Asp Leu Thr Gly Tyr
 65 70 75 80

15 Gly Gln Trp Glu Tyr Asn Phe Gln Gly Asn Asn Ser Glu Gly Ala Asp
 85 90 95

Ala Gln Thr Gly Asn Lys Thr Arg Leu Ala Phe Ala Gly Leu Lys Tyr
 20 100 105 110

Ala Asp Val Gly Ser Phe Asp Tyr Gly Arg Asn Tyr Gly Val Val Tyr
 115 120 125

25 Asp Ala Leu Gly Tyr Thr Asp Met Leu Pro Glu Phe Gly Gly Asp Thr
 130 135 140

Ala Tyr Ser Asp Asp Phe Phe Val Gly Arg Val Gly Gly Val Ala Thr
 145 150 155 160

30 Tyr Arg Asn Ser Asn Phe Phe Gly Leu Val Asp Gly Leu Asn Phe Ala
 165 170 175

Val Gln Tyr Leu Gly Lys Asn Glu Arg Asp Thr Ala Arg Arg Ser Asn
 35 180 185 190

Gly Asp Gly Val Gly Gly Ser Ile Ser Tyr Glu Tyr Glu Gly Phe Gly

	195	200	205
	Ile Val Gly Ala Tyr Gly Ala Ala Asp Arg Thr Asn Leu Gln Glu Ala		
	210	215	220
5			
	Gln Pro Leu Gly Asn Gly Lys Lys Ala Glu Gln Trp Ala Thr Gly Leu		
	225	230	235
			240
	Lys Tyr Asp Ala Asn Asn Ile Tyr Leu Ala Ala Asn Tyr Gly Glu Thr		
10	245	250	255
	Arg Asn Ala Thr Pro Ile Thr Asn Lys Phe Thr Asn Thr Ser Gly Phe		
	260	265	270
15	Ala Asn Lys Thr Gln Asp Val Leu Leu Val Ala Gln Tyr Gln Phe Asp		
	275	280	285
	Phe Gly Leu Arg Pro Ser Ile Ala Tyr Thr Lys Ser Lys Ala Lys Asp		
	290	295	300
20			
	Val Glu Gly Ile Gly Asp Val Asp Leu Val Asn Tyr Phe Glu Val Gly		
	305	310	315
			320
	Ala Thr Tyr Tyr Phe Asn Lys Asn Met Ser Thr Tyr Val Asp Tyr Ile		
25	325	330	335
	Ile Asn Gln Ile Asp Ser Asp Asn Lys Leu Gly Val Gly Ser Asp Asp		
	340	345	350
30	Thr Val Ala Val Gly Ile Val Tyr Gln Phe *		
	355	360	

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 99/00935

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/03 C12N1/20 C12N15/31 A61K39/108 // (C12N1/20, C12R1:19)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	CERSINI A. ET AL: "Intracellular multiplication and virulence of <i>Shigella flexneri</i> auxotrophic mutants." INFECT AND IMMUNITY, (1998) 66/2 (549-557). , XP002112173 the whole document ----	1-13, 15, 16
Y	COBOS A ET AL: "TRANSPOSON-GENERATED TN10 INSERTION MUTATIONS AT THE ARO GENES OF <i>ESCHERICHIA- COLI</i> K-12." CURR MICROBIOL, (1990) 20 (1), 13-18. , XP002112174 the whole document ----	1-16 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

16 August 1999

30/08/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hix, R

INTERNATIONAL SEARCH REPORT

Inte.	Final Application No PCT/GB 99/00935
-------	---

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	DORMAN C J ET AL: "CHARACTERIZATION OF PORIN AND OMP-R MUTANTS OF A VIRULENT STRAIN OF SALMONELLA -TYPHIMURIUM OMP-R MUTANTS ARE ATTENUATE IN-VIVO." INFECT IMMUN, (1989) 57 (7), 2136-2140. , XP002112175 the whole document ---	1-13, 15, 16
Y	LEVINE, MYRON M. (1) ET AL: "Attenuated Salmonella as live oral vaccines against typhoid fever and as live vectors." JOURNAL OF BIOTECHNOLOGY, (1996) VOL. 44, NO. 1-3, PP. 193-196. , XP004036865 the whole document ---	1-13, 15, 16
P, Y	LOWE, DAVID C. ET AL: "Characterization of candidate live oral Salmonella typhi vaccine strains harboring defined mutations in aroA, aroC, and htrA." INFECT AND IMMUNITY, (FEB., 1999) VOL. 67, NO. 2, PP. 700-707. , XP002112176 the whole document ---	1-13, 15, 16
Y	WO 91 15572 A (WELLCOME FOUND) 17 October 1991 (1991-10-17) the whole document ---	1-16
Y	S.N. CHATFIELD ET AL.: "Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model." MICROBIAL PATHOGENESIS, vol. 12, 1992, pages 145-151, XP002112177 cited in the application the whole document ---	1-13, 15, 16
Y	S.N. CHATFIELD ET AL.: "Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants deficient in both OmpC and OmpF are attenuated in vivo." INFECT AND IMMUNITY, vol. 59, no. 1, January 1991 (1991-01), pages 449-452, XP002112178 cited in the application the whole document ---	1-13, 15, 16
	-/--	

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 99/00935

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	T. NOGAMI ET AL.: "Construction of a series of ompF-ompC chimeric genes by in vivo homologous recombination in Escherichia coli and characterization of the translational products." JOURNAL OF BACTERIOLOGY, vol. 164, no. 2, November 1985 (1985-11), pages 797-801, XP002112179 the whole document ---	
A	J.M. SLAUCH ET AL.: "cis-acting ompF mutations that result in ompR-dependent constitutive expression." JOURNAL OF BACTERIOLOGY, vol. 173, no. 13, July 1991 (1991-07), pages 4039-4048, XP002112180 the whole document ---	
A	I.G. CHARLES ET AL.: "Isolation, characterization and nucleotide sequences of the aroC genes encoding chorismate synthase from Salmonella typhi and Escherichia coli." JOURNAL OF GENERAL MICROBIOLOGY, vol. 136, no. 2, February 1990 (1990-02), pages 353-358, XP002112181 the whole document ---	
Y	EP 0 441 071 A (PASTEUR INSTITUT) 14 August 1991 (1991-08-14) the whole document ---	1-13, 15, 16
Y	WO 92 15689 A (WELLCOME FOUND) 17 September 1992 (1992-09-17) the whole document -----	1-13, 15, 16

INTERNATIONAL SEARCH REPORT

International application No.

PCT/GB 99/00935

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claim 16
is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interr	nat Application No
	PCT/GB 99/00935

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9115572	A 17-10-1991	AT 157397	T	15-09-1997
		AU 659995	B	08-06-1995
		AU 7541791	A	30-10-1991
		CA 2079463	A	01-10-1991
		DE 69127440	D	02-10-1997
		DE 69127440	T	02-01-1998
		DK 524205	T	27-10-1997
		EP 0524205	A	27-01-1993
		ES 2106776	T	16-11-1997
		GR 3025258	T	27-02-1998
		HU 65496	A	28-06-1994
		NZ 237616	A	25-03-1994
		US 5804194	A	08-09-1998
EP 0441071	A 14-08-1991	AT 111957	T	15-10-1994
		CA 2051434	A	07-08-1991
		DE 69012784	D	27-10-1994
		WO 9112321	A	22-08-1991
		JP 4505399	T	24-09-1992
WO 9215689	A 17-09-1992	AT 180280	T	15-06-1999
		AU 664360	B	16-11-1995
		AU 1350892	A	06-10-1992
		CA 2099841	A	06-09-1992
		CZ 9301005	A	19-01-1994
		DE 69229221	D	24-06-1999
		EP 0574466	A	22-12-1993
		ES 2131069	T	16-07-1999
		FI 933757	A	26-08-1993
		WO 9215688	A	17-09-1992
		HU 66833	A	30-01-1995
		JP 6505158	T	16-06-1994
		SK 55593	A	06-10-1993
		US 5547664	A	20-08-1996
		US 5683700	A	04-11-1997
		PL 170938	B	28-02-1997
		PL 171476	B	30-05-1997