

1. 等差数列的概念 00:09

- **定义特征**: 从第二项起,每一项与前一项的差等于同一个常数(公差*d*)。用递推关 系表示为 $a_n - a_{n-1} = d \ (n \ge 2)$
- 实例说明:
 - 自然数列1,2,3,4...公差d=1
 - 奇数数列1,3,5,7...公差d=2
- **应用场景**:用于证明数列是否为等差,只需验证相邻项差是否为常数
- 2. 等差数列的通项公式 01:44
- 1) 公式推导 02:08

- 递推累加法:
 - $\pm a_2 a_1 = d$, $a_3 a_2 = d ... a_n a_{n-1} = d$
 - 累加后抵消中间项得: $a_n a_1 = (n 1)d$
 - 最终公式: $a_n = a_1 + (n-1)d$
- 形象记忆: 手指类比法(小拇指 a_1 到其他手指需跨越的"指缝"数量对应公差倍数)
- 2) 公式变式 03:38
- 任意项公式: $a_n = a_k + (n k)d$ (已知第k项时使用) $a_n a_m$ (通过任意两项求公差)
- **特例应用**:如 $a_5 = a_3 + 2d$ (项数差为2时对应2倍公差)
- 3. 等差数列的性质 04:58
- 1) 等差中项 05:04

推导过程: 由b-a=c-b移项可得2b=a+c

2) 对称性质 06:06

下标和定理: 若m + n = p + q = 2w, 则 $a_m + a_n = a_p + a_q = 2a_w$

o 例: $a_3 + a_9 = a_5 + a_7 = 2a_6$ (因3+9=5+7=12=2×6)

平衡原理:多减的d与多加的d相互抵消(如 a_3 比 a_5 少2d,但 a_9 比 a_7 多2d)

3) 函数特性 08:20

- **一次函数形式**: $a_n = dn + (a_1 d)$ (关于n的线性函数)
 - 斜率d即为公差(如3n + 3表示d = 3,首项 $a_1 = 6$)
 - 可通过展开通项公式得到: $a_1 + (n-1)d = dn + (a_1 d)$
- 4. 应用案例 09:46
- 1) 例题:等差数列求a12

- 题目解析
 - **万能参数法**: 将已知条件转化为首项 a_1 和公差d的方程组求解。已知 $a_7 + a_9 = 16$ 可转化为 $2a_1 + 14d = 16$, 结合 $a_4 = a_1 + 3d = 1$ 解得 $d = \frac{7}{4}$, $a_1 = -\frac{17}{4}$
 - **性质法**:利用下标和性质, $a_7 + a_9 = a_4 + a_{12} = 16$,已知 $a_4 = 1$ 直接得 $a_{12} = 15$
 - 答案: A选项15
 - **技巧**: 当题目给出多个项的关系时, 优先考虑下标和性质可简化计算
- 2) 例题:等差数列求和 13:17

- 题目解析
 - \circ **关键转换**:将 a_2 - a_5 + a_8 转化为 a_5 表达式,利用 a_2 + a_8 =2 a_5 得到 a_5 =9
 - o **求和技巧**: 前9项和 S_9 可表示为9 a_5 (因 $a_1 + a_9 = 2a_5$ 等配对关系)
 - o 答案: D选项81
 - **考点**:等差数列求和时,奇数项可利用中项性质简化计算
- 5. 等差数列的前n项和 15:16

- 基本公式:
 - o **高斯公式**: $S_n = \frac{n(a_1 + a_n)}{2}$ (首项+末项) ×项数/2
 - o **公差公式**: $S_n = na_1 + \frac{n(n-1)}{2}d$ (需已知首项和公差)
- 二次函数形式:
 - o 可变形为 $S_n = \frac{d}{2}n^2 + (a_1 \frac{d}{2})n$, $\diamondsuit A = \frac{d}{2}$, $B = a_1 \frac{d}{2}$ 得 $S_n = An^2 + Bn$
 - \circ 特征: 无常数项的二次函数, n^2 系数为公差的一半 (如 $S_n = 2n^2 3n$ 对应d = 4)
- 记忆方法: 联系高斯求和故事, 理解配对思想 (1+100=101等)
- 1) 例题:等差数列求S12 19:20

题目解析

性质应用: a_2 + a_{11} = a_3 + a_{10} = a_1 + a_{12} , 由 a_2 + a_3 + a_{10} + a_{11} = 64得 a_1 + a_{12} =

o 公式选择: 直接使用 $S_{12} = \frac{12(a_1 + a_{12})}{2} = 6 \times 32 = 192$

o 答案: D选项192

o **易错点**: 注意项数计算(12项非11项),避免漏掉 a_1 或 a_{12}

二、知识小结			
知识点	核心内容	考试重点/易混	难度系数
		淆点	
等差数列概	从第二项起,每	易混淆点:公	**
念	一项与前一项的	差d可为负数	
	差为同一常数	或零(常数	
	(公差d)。; 示	列)。; 证明方	
	例 :自然数列	法 :验证相邻	
	1,2,3 (d=1) ; 奇		
	数数列	数。	
	1,3,5 (d=2) 。		
通项公式	an = a1 + (n-	考试重点: 已	***
	1)d; 推导: 累加	知a3=5 <i>,</i> d=2,	
	递推关系(如a2-	求a8(需用变	
	a1=d, a3-	形公式)。; 易	
	a2=d···)。; 变形	错点:混淆n	
	公式: an = ak	与k的差值计	
	+ (n-k)d (已知	 算。	
	任意项ak时使		
	用)。		
等差中项	三数a,b,c成等差	易混淆点: 与	*
	⇒ b =	等比中项公式	
	(a+c)/2。; 应用	(b²=ac) 区	
	:快速求中间项	分。	
	或验证等差性。		
性质(对称	若m+n=p+q,则	考试重点: 利	***
性)	am + an = ap	I	
	+ aq。; 示例	算(如例题中	
	: a3+a9 = a5+a7 =	a7+a9=16 ⇒	
	2a6。; 特例	a4+a12=16) 。	
	: a1+an = a2+a(n-		
	1)。		
前n项和公式	高斯求和: Sn =	易错点 ∶混淆	***
	n(a1+an)/2; 二	Sn与通项an的	
	次函数形式:Sn	表达式(如误	
	$= (d/2)n^2 +$	判Sn=2n²-3n+1	
	(a1-d/2)n (无	为等差)。; 考	
	常数项) 。; 标志	试重点 :通过	
	: Sn关于n为二次	Sn反求公差	

	函数且无常数	d(n²系数为	
	项。	d/2) 。	
万能参数法	已知条件均转化	技巧 : 优先用	***
	为首项a1和公差d	性质简化,复	
	的方程。; 例题应	杂时再用万能	
	用: a7+a9=16 ⇒	法。	
	2a1+14d=16; 结		
	合a4=1解方程		
	组。		
	组。		