Cálculo de Programas Trabalho Prático MiEI+LCC — 2020/21

Departamento de Informática Universidade do Minho

Junho de 2021

Grupo nr.	21
a93270	João Barbosa
a93262	Simão Cunha
a93277	Tiago Silva

1 Preâmbulo

Cálculo de Programas tem como objectivo principal ensinar a programação de computadores como uma disciplina científica. Para isso parte-se de um repertório de *combinadores* que formam uma álgebra da programação (conjunto de leis universais e seus corolários) e usam-se esses combinadores para construir programas *composicionalmente*, isto é, agregando programas já existentes.

Na sequência pedagógica dos planos de estudo dos dois cursos que têm esta disciplina, opta-se pela aplicação deste método à programação em Haskell (sem prejuízo da sua aplicação a outras linguagens funcionais). Assim, o presente trabalho prático coloca os alunos perante problemas concretos que deverão ser implementados em Haskell. Há ainda um outro objectivo: o de ensinar a documentar programas, a validá-los e a produzir textos técnico-científicos de qualidade.

2 Documentação

Para cumprir de forma integrada os objectivos enunciados acima vamos recorrer a uma técnica de programação dita "literária" [1], cujo princípio base é o seguinte:

Um programa e a sua documentação devem coincidir.

Por outras palavras, o código fonte e a documentação de um programa deverão estar no mesmo ficheiro. O ficheiro cp2021t.pdf que está a ler é já um exemplo de programação literária: foi gerado a partir do texto fonte cp2021t.lhs¹ que encontrará no material pedagógico desta disciplina descompactando o ficheiro cp2021t.zip e executando:

```
$ lhs2TeX cp2021t.lhs > cp2021t.tex
$ pdflatex cp2021t
```

em que <u>lhs2tex</u> é um pre-processador que faz "pretty printing" de código Haskell em <u>LATEX</u> e que deve desde já instalar executando

```
$ cabal install lhs2tex --lib
```

Por outro lado, o mesmo ficheiro cp2021t.lhs é executável e contém o "kit" básico, escrito em Haskell, para realizar o trabalho. Basta executar

```
$ ghci cp2021t.lhs
```

¹O suffixo 'lhs' quer dizer *literate Haskell*.

Abra o ficheiro cp2021t.1hs no seu editor de texto preferido e verifique que assim é: todo o texto que se encontra dentro do ambiente

```
\begin{code}
...
\end{code}
```

é seleccionado pelo GHCi para ser executado.

3 Como realizar o trabalho

Este trabalho teórico-prático deve ser realizado por grupos de 3 (ou 4) alunos. Os detalhes da avaliação (datas para submissão do relatório e sua defesa oral) são os que forem publicados na página da disciplina na *internet*.

Recomenda-se uma abordagem participativa dos membros do grupo de trabalho por forma a poderem responder às questões que serão colocadas na *defesa oral* do relatório.

Em que consiste, então, o *relatório* a que se refere o parágrafo anterior? É a edição do texto que está a ser lido, preenchendo o anexo D com as respostas. O relatório deverá conter ainda a identificação dos membros do grupo de trabalho, no local respectivo da folha de rosto.

Para gerar o PDF integral do relatório deve-se ainda correr os comando seguintes, que actualizam a bibliografia (com BibTeX) e o índice remissivo (com makeindex),

```
$ bibtex cp2021t.aux
$ makeindex cp2021t.idx
```

e recompilar o texto como acima se indicou. Dever-se-á ainda instalar o utilitário QuickCheck, que ajuda a validar programas em Haskell e a biblioteca Gloss para geração de gráficos 2D:

```
$ cabal install QuickCheck gloss --lib
```

Para testar uma propriedade QuickCheck prop, basta invocá-la com o comando:

```
> quickCheck prop
+++ OK, passed 100 tests.
```

Pode-se ainda controlar o número de casos de teste e sua complexidade, como o seguinte exemplo mostra:

```
> quickCheckWith stdArgs { maxSuccess = 200, maxSize = 10 } prop
+++ OK, passed 200 tests.
```

Qualquer programador tem, na vida real, de ler e analisar (muito!) código escrito por outros. No anexo C disponibiliza-se algum código Haskell relativo aos problemas que se seguem. Esse anexo deverá ser consultado e analisado à medida que isso for necessário.

3.1 Stack

O Stack é um programa útil para criar, gerir e manter projetos em Haskell. Um projeto criado com o Stack possui uma estrutura de pastas muito específica:

- Os módulos auxiliares encontram-se na pasta *src*.
- O módulos principal encontra-se na pasta app.
- A lista de depêndencias externas encontra-se no ficheiro package.yaml.

Pode aceder ao GHCi utilizando o comando:

```
stack ghci
```

Garanta que se encontra na pasta mais externa **do projeto**. A primeira vez que correr este comando as depêndencias externas serão instaladas automaticamente.

Para gerar o PDF, garanta que se encontra na diretoria *app*.

Problema 1

Os *tipos de dados algébricos* estudados ao longo desta disciplina oferecem uma grande capacidade expressiva ao programador. Graças à sua flexibilidade, torna-se trivial implementar DSLs e até mesmo linguagens de programação.

Paralelamente, um tópico bastante estudado no âmbito de Deep Learning é a derivação automática de expressões matemáticas, por exemplo, de derivadas. Duas técnicas que podem ser utilizadas para o cálculo de derivadas são:

- Symbolic differentiation
- Automatic differentiation

Symbolic differentiation consiste na aplicação sucessiva de transformações (leia-se: funções) que sejam congruentes com as regras de derivação. O resultado final será a expressão da derivada.

O leitor atento poderá notar um problema desta técnica: a expressão inicial pode crescer de forma descontrolada, levando a um cálculo pouco eficiente. *Automatic differentiation* tenta resolver este problema, calculando **o valor** da derivada da expressão em todos os passos. Para tal, é necessário calcular o valor da expressão **e** o valor da sua derivada.

Vamos de seguida definir uma linguagem de expressões matemáticas simples e implementar as duas técnicas de derivação automática. Para isso, seja dado o seguinte tipo de dados,

```
 \begin{aligned} \mathbf{data} \ & ExpAr \ a = X \\ & \mid N \ a \\ & \mid Bin \ BinOp \ (ExpAr \ a) \ (ExpAr \ a) \\ & \mid Un \ UnOp \ (ExpAr \ a) \\ & \mathbf{deriving} \ (Eq, Show) \end{aligned}
```

onde BinOp e UnOp representam operações binárias e unárias, respectivamente:

```
data BinOp = Sum
  | Product
  deriving (Eq, Show)
data UnOp = Negate
  | E
  deriving (Eq, Show)
```

O construtor E simboliza o exponencial de base e.

Assim, cada expressão pode ser uma variável, um número, uma operação binária aplicada às devidas expressões, ou uma operação unária aplicada a uma expressão. Por exemplo,

```
Bin\ Sum\ X\ (N\ 10)
```

designa x + 10 na notação matemática habitual.

1. A definição das funções inExpAr e baseExpAr para este tipo é a seguinte:

```
inExpAr = [\underline{X}, num\_ops] where num\_ops = [N, ops] ops = [bin, \widehat{Un}] bin (op, (a, b)) = Bin op a b baseExpAr f g h j k l z = f + (g + (h × (j × k) + l × z))
```

Defina as funções *outExpAr* e *recExpAr*, e teste as propriedades que se seguem.

Propriedade [QuickCheck] 1 inExpAr e outExpAr são testemunhas de um isomorfismo, isto é, inExpAr outExpAr = id e $outExpAr \cdot idExpAr = id$:

```
prop\_in\_out\_idExpAr :: (Eq\ a) \Rightarrow ExpAr\ a \rightarrow Bool

prop\_in\_out\_idExpAr = inExpAr \cdot outExpAr \equiv id

prop\_out\_in\_idExpAr :: (Eq\ a) \Rightarrow OutExpAr\ a \rightarrow Bool

prop\_out\_in\_idExpAr = outExpAr \cdot inExpAr \equiv id
```

2. Dada uma expressão aritmética e um escalar para substituir o X, a função

```
eval\_exp :: Floating \ a \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a
```

calcula o resultado da expressão. Na página 12 esta função está expressa como um catamorfismo. Defina o respectivo gene e, de seguida, teste as propriedades:

Propriedade [QuickCheck] 2 A função eval_exp respeita os elementos neutros das operações.

```
prop\_sum\_idr :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_sum\_idr \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} sum\_idr \ \mathbf{where}
   sum\_idr = eval\_exp \ a \ (Bin \ Sum \ exp \ (N \ 0))
prop\_sum\_idl :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_sum\_idl \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} sum\_idl \ \mathbf{where}
   sum\_idl = eval\_exp \ a \ (Bin \ Sum \ (N \ 0) \ exp)
prop\_product\_idr :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_product\_idr \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} prod\_idr \ \mathbf{where}
   prod\_idr = eval\_exp \ a \ (Bin \ Product \ exp \ (N \ 1))
prop\_product\_idl :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_product\_idl \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} prod\_idl \ \mathbf{where}
   prod\_idl = eval\_exp \ a \ (Bin \ Product \ (N \ 1) \ exp)
prop_{-e_{-}id} :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow Bool
prop_{-}e_{-}id \ a = eval_{-}exp \ a \ (Un \ E \ (N \ 1)) \equiv expd \ 1
prop\_negate\_id :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow Bool
prop\_negate\_id\ a = eval\_exp\ a\ (Un\ Negate\ (N\ 0)) \equiv 0
```

Propriedade [QuickCheck] 3 Negar duas vezes uma expressão tem o mesmo valor que não fazer nada.

```
prop\_double\_negate :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool

prop\_double\_negate \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} eval\_exp \ a \ (Un \ Negate \ exp))
```

3. É possível otimizar o cálculo do valor de uma expressão aritmética tirando proveito dos elementos absorventes de cada operação. Implemente os genes da função

```
optmize\_eval :: (Floating \ a, Eq \ a) \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a
```

que se encontra na página 12 expressa como um hilomorfismo² e teste as propriedades:

Propriedade [QuickCheck] 4 A função optimize_eval respeita a semântica da função eval.

```
prop\_optimize\_respects\_semantics :: (Floating\ a, Real\ a) \Rightarrow a \rightarrow ExpAr\ a \rightarrow Bool\ prop\_optimize\_respects\_semantics\ a\ exp\ =\ eval\_exp\ a\ exp\ \stackrel{?}{=}\ optmize\_eval\ a\ exp
```

- 4. Para calcular a derivada de uma expressão, é necessário aplicar transformações à expressão original que respeitem as regras das derivadas:³
 - Regra da soma:

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$$

²Qual é a vantagem de implementar a função *optimize_eval* utilizando um hilomorfismo em vez de utilizar um catamorfismo com um gene "inteligente"?

³Apesar da adição e multiplicação gozarem da propriedade comutativa, há que ter em atenção a ordem das operações por causa dos testes.

• Regra do produto:

$$\frac{d}{dx}(f(x)g(x)) = f(x) \cdot \frac{d}{dx}(g(x)) + \frac{d}{dx}(f(x)) \cdot g(x)$$

Defina o gene do catamorfismo que ocorre na função

```
sd :: Floating \ a \Rightarrow ExpAr \ a \rightarrow ExpAr \ a
```

que, dada uma expressão aritmética, calcula a sua derivada. Testes a fazer, de seguida:

Propriedade [QuickCheck] 5 A função sd respeita as regras de derivação.

```
prop_const_rule :: (Real a, Floating a) \Rightarrow a \rightarrow Bool

prop_const_rule a = sd (N a) \equiv N 0

prop_var_rule :: Bool

prop_sum_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow ExpAr a \rightarrow Bool

prop_sum_rule exp1 exp2 = sd (Bin Sum exp1 exp2) \equiv sum_rule where

sum_rule = Bin Sum (sd exp1) (sd exp2)

prop_product_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow ExpAr a \rightarrow Bool

prop_product_rule exp1 exp2 = sd (Bin Product exp1 exp2) \equiv prod_rule where

prod_rule = Bin Sum (Bin Product exp1 (sd exp2)) (Bin Product (sd exp1) exp2)

prop_e_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow Bool

prop_e_rule exp = sd (Un E exp) \equiv Bin Product (Un E exp) (sd exp)

prop_negate_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow Bool

prop_negate_rule exp = sd (Un Negate exp) \equiv Un Negate (sd exp)
```

5. Como foi visto, *Symbolic differentiation* não é a técnica mais eficaz para o cálculo do valor da derivada de uma expressão. *Automatic differentiation* resolve este problema cálculando o valor da derivada em vez de manipular a expressão original.

Defina o gene do catamorfismo que ocorre na função

```
ad :: Floating \ a \Rightarrow a \rightarrow ExpAr \ a \rightarrow a
```

que, dada uma expressão aritmética e um ponto, calcula o valor da sua derivada nesse ponto, sem transformar manipular a expressão original. Testes a fazer, de seguida:

Propriedade [QuickCheck] 6 Calcular o valor da derivada num ponto r via ad é equivalente a calcular a derivada da expressão e avalia-la no ponto r.

```
prop\_congruent :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_congruent \ a \ exp = ad \ a \ exp \stackrel{?}{=} eval\_exp \ a \ (sd \ exp)
```

Problema 2

Nesta disciplina estudou-se como fazer programação dinâmica por cálculo, recorrendo à lei de recursividade mútua.⁴

Para o caso de funções sobre os números naturais (\mathbb{N}_0 , com functor F X=1+X) é fácil derivar-se da lei que foi estudada uma *regra de algibeira* que se pode ensinar a programadores que não tenham estudado Cálculo de Programas. Apresenta-se de seguida essa regra, tomando como exemplo o cálculo do ciclo-for que implementa a função de Fibonacci, recordar o sistema

$$fib \ 0 = 1$$

 $fib \ (n+1) = f \ n$

⁴Lei (3.94) em [2], página 98.

$$f 0 = 1$$

$$f (n+1) = fib n + f n$$

Obter-se-á de imediato

```
fib' = \pi_1 \cdot \text{for loop init where}

loop\ (fib, f) = (f, fib + f)

init = (1, 1)
```

usando as regras seguintes:

- O corpo do ciclo loop terá tantos argumentos quanto o número de funções mutuamente recursivas.
- Para as variáveis escolhem-se os próprios nomes das funções, pela ordem que se achar conveniente.⁵
- Para os resultados vão-se buscar as expressões respectivas, retirando a variável n.
- Em init coleccionam-se os resultados dos casos de base das funções, pela mesma ordem.

Mais um exemplo, envolvendo polinómios do segundo grau $ax^2 + bx + c$ em \mathbb{N}_0 . Seguindo o método estudado nas aulas⁶, de $f = ax^2 + bx + c$ derivam-se duas funções mutuamente recursivas:

$$f \ 0 = c$$

 $f \ (n+1) = f \ n + k \ n$
 $k \ 0 = a + b$
 $k \ (n+1) = k \ n + 2 \ a$

Seguindo a regra acima, calcula-se de imediato a seguinte implementação, em Haskell:

```
f' a b c = \pi_1 \cdot \text{for loop init where}

loop (f, k) = (f + k, k + 2 * a)

init = (c, a + b)
```

O que se pede então, nesta pergunta? Dada a fórmula que dá o n-ésimo número de Catalan,

$$C_n = \frac{(2n)!}{(n+1)!(n!)} \tag{1}$$

derivar uma implementação de C_n que não calcule factoriais nenhuns. Isto é, derivar um ciclo-for

```
cat = \cdots for loop init where \cdots
```

que implemente esta função.

Propriedade [QuickCheck] 7 A função proposta coincidem com a definição dada:

```
prop\_cat = (\geqslant 0) \Rightarrow (catdef \equiv cat)
```

Sugestão: Começar por estudar muito bem o processo de cálculo dado no anexo B para o problema (semelhante) da função exponencial.

Problema 3

As curvas de Bézier, designação dada em honra ao engenheiro Pierre Bézier, são curvas ubíquas na área de computação gráfica, animação e modelação. Uma curva de Bézier é uma curva paramétrica, definida por um conjunto $\{P_0,...,P_N\}$ de pontos de controlo, onde N é a ordem da curva.

O algoritmo de *De Casteljau* é um método recursivo capaz de calcular curvas de Bézier num ponto. Apesar de ser mais lento do que outras abordagens, este algoritmo é numericamente mais estável, trocando velocidade por correção.

⁵Podem obviamente usar-se outros símbolos, mas numa primeira leitura dá jeito usarem-se tais nomes.

⁶Secção 3.17 de [2] e tópico Recursividade mútua nos vídeos das aulas teóricas.

Figure 1: Exemplos de curvas de Bézier retirados da Wikipedia.

De forma sucinta, o valor de uma curva de Bézier de um só ponto $\{P_0\}$ (ordem 0) é o próprio ponto P_0 . O valor de uma curva de Bézier de ordem N é calculado através da interpolação linear da curva de Bézier dos primeiros N-1 pontos e da curva de Bézier dos últimos N-1 pontos.

A interpolação linear entre 2 números, no intervalo [0, 1], é dada pela seguinte função:

```
\begin{array}{l} linear1d :: \mathbb{Q} \to \mathbb{Q} \to OverTime \ \mathbb{Q} \\ linear1d \ a \ b = formula \ a \ b \ \mathbf{where} \\ formula :: \mathbb{Q} \to \mathbb{Q} \to Float \to \mathbb{Q} \\ formula \ x \ y \ t = ((1.0 :: \mathbb{Q}) - (to_{\mathbb{Q}} \ t)) * x + (to_{\mathbb{Q}} \ t) * y \end{array}
```

A interpolação linear entre 2 pontos de dimensão N é calculada através da interpolação linear de cada dimensão.

O tipo de dados NPoint representa um ponto com N dimensões.

```
type NPoint = [\mathbb{Q}]
```

Por exemplo, um ponto de 2 dimensões e um ponto de 3 dimensões podem ser representados, respetivamente, por:

```
p2d = [1.2, 3.4]

p3d = [0.2, 10.3, 2.4]
```

O tipo de dados *OverTime a* representa um termo do tipo *a* num dado instante (dado por um *Float*).

```
type OverTime\ a = Float \rightarrow a
```

O anexo C tem definida a função

```
calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint)
```

que calcula a interpolação linear entre 2 pontos, e a função

```
deCasteljau :: [NPoint] \rightarrow OverTime\ NPoint
```

que implementa o algoritmo respectivo.

1. Implemente calcLine como um catamorfismo de listas, testando a sua definição com a propriedade:

Propriedade [QuickCheck] 8 Definição alternativa.

```
\begin{aligned} prop\_calcLine\_def :: NPoint \rightarrow NPoint \rightarrow Float \rightarrow Bool \\ prop\_calcLine\_def \ p \ q \ d = calcLine \ p \ q \ d \equiv zipWithM \ linear1d \ p \ q \ d \end{aligned}
```

2. Implemente a função de Casteljau como um hilomorfismo, testando agora a propriedade:

Propriedade [QuickCheck] 9 Curvas de Bézier são simétricas.

```
\begin{array}{l} prop\_bezier\_sym :: [[\mathbb{Q}]] \to Gen \ Bool \\ prop\_bezier\_sym \ l = all \ (<\Delta) \cdot calc\_difs \cdot bezs \ \langle \$ \rangle \ elements \ ps \ \mathbf{where} \\ calc\_difs = (\lambda(x,y) \to zipWith \ (\lambda w \ v \to \mathbf{if} \ w \geqslant v \ \mathbf{then} \ w - v \ \mathbf{else} \ v - w) \ x \ y) \\ bezs \ t = (deCasteljau \ l \ t, deCasteljau \ (reverse \ l) \ (from_{\mathbb{Q}} \ (1 - (to_{\mathbb{Q}} \ t)))) \\ \Delta = 1e-2 \end{array}
```

3. Corra a função runBezier e aprecie o seu trabalho⁷ clicando na janela que é aberta (que contém, a verde, um ponto inicila) com o botão esquerdo do rato para adicionar mais pontos. A tecla Delete apaga o ponto mais recente.

Problema 4

Seja dada a fórmula que calcula a média de uma lista não vazia x,

$$avg \ x = \frac{1}{k} \sum_{i=1}^{k} x_i \tag{2}$$

onde k = length x. Isto é, para sabermos a média de uma lista precisamos de dois catamorfismos: o que faz o somatório e o que calcula o comprimento a lista. Contudo, é facil de ver que

$$avg~[a]=a$$

$$avg(a:x)=\frac{1}{k+1}(a+\sum_{i=1}^k x_i)=\frac{a+k(avg~x)}{k+1}~\text{para}~k=length~x$$

Logo avg está em recursividade mútua com length e o par de funções pode ser expresso por um único catamorfismo, significando que a lista apenas é percorrida uma vez.

- 1. Recorra à lei de recursividade mútua para derivar a função $avg_aux = ([b, q])$ tal que $avg_aux = \langle avg, length \rangle$ em listas não vazias.
- 2. Generalize o raciocínio anterior para o cálculo da média de todos os elementos de uma LTree recorrendo a uma única travessia da árvore (i.e. catamorfismo).

Verifique as suas funções testando a propriedade seguinte:

Propriedade [QuickCheck] 10 A média de uma lista não vazia e de uma LTree com os mesmos elementos coincide, a menos de um erro de 0.1 milésimas:

```
\begin{array}{l} prop\_avg :: [Double] \rightarrow Property \\ prop\_avg = nonempty \Rightarrow diff \leqslant \underline{0.000001} \\ \textbf{where} \\ diff \ l = avg \ l - (avgLTree \cdot genLTree) \ l \\ genLTree = [(lsplit)] \\ nonempty = (>[]) \end{array}
```

Problema 5

(NB: Esta questão é **opcional** e funciona como **valorização** apenas para os alunos que desejarem fazê-la.)

Existem muitas linguagens funcionais para além do Haskell, que é a linguagem usada neste trabalho prático. Uma delas é o F# da Microsoft. Na directoria fsharp encontram-se os módulos Cp, Nat e LTree codificados em F#. O que se pede é a biblioteca BTree escrita na mesma linguagem.

Modo de execução: o código que tiverem produzido nesta pergunta deve ser colocado entre o \begin{verbatim} e o \end{verbatim} da correspondente parte do anexo D. Para além disso, os grupos podem demonstrar o código na oral.

⁷A representação em Gloss é uma adaptação de um projeto de Harold Cooper.

Anexos

A Como exprimir cálculos e diagramas em LaTeX/lhs2tex

Como primeiro exemplo, estudar o texto fonte deste trabalho para obter o efeito:⁸

$$id = \langle f, g \rangle$$

$$\equiv \qquad \{ \text{ universal property } \}$$

$$\left\{ \begin{array}{l} \pi_1 \cdot id = f \\ \pi_2 \cdot id = g \end{array} \right.$$

$$\equiv \qquad \{ \text{ identity } \}$$

$$\left\{ \begin{array}{l} \pi_1 = f \\ \pi_2 = g \end{array} \right.$$

Os diagramas podem ser produzidos recorrendo à package LATEX xymatrix, por exemplo:

$$\begin{array}{c|c} \mathbb{N}_0 \longleftarrow & \text{in} & 1 + \mathbb{N}_0 \\ \mathbb{I}_g \mathbb{N} \downarrow & & \downarrow id + \mathbb{I}_g \mathbb{N} \\ B \longleftarrow & g & 1 + B \end{array}$$

B Programação dinâmica por recursividade múltipla

Neste anexo dão-se os detalhes da resolução do Exercício 3.30 dos apontamentos da disciplina⁹, onde se pretende implementar um ciclo que implemente o cálculo da aproximação até i=n da função exponencial $exp\ x=e^x$, via série de Taylor:

$$exp x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$
 (3)

Seja $e \ x \ n = \sum_{i=0}^n \frac{x^i}{i!}$ a função que dá essa aproximação. É fácil de ver que $e \ x \ 0 = 1$ e que $e \ x \ (n+1) = e \ x \ n + \frac{x^{n+1}}{(n+1)!}$. Se definirmos $h \ x \ n = \frac{x^{n+1}}{(n+1)!}$ teremos $e \ x \ e \ h \ x$ em recursividade mútua. Se repetirmos o processo para $h \ x \ n$ etc obteremos no total três funções nessa mesma situação:

$$e \ x \ 0 = 1$$
 $e \ x \ (n+1) = h \ x \ n + e \ x \ n$
 $h \ x \ 0 = x$
 $h \ x \ (n+1) = x \ / \ (s \ n) * h \ x \ n$
 $s \ 0 = 2$
 $s \ (n+1) = 1 + s \ n$

Segundo a regra de algibeira descrita na página 3.1 deste enunciado, ter-se-á, de imediato:

$$e'$$
 $x = prj$ · for loop init where
init = $(1, x, 2)$
loop $(e, h, s) = (h + e, x / s * h, 1 + s)$
 prj $(e, h, s) = e$

⁸Exemplos tirados de [2].

⁹Cf. [2], página 102.

C Código fornecido

Problema 1

```
expd :: Floating \ a \Rightarrow a \rightarrow a

expd = Prelude.exp

\mathbf{type} \ OutExpAr \ a = () + (a + ((BinOp, (ExpAr \ a, ExpAr \ a)) + (UnOp, ExpAr \ a)))
```

Problema 2

Definição da série de Catalan usando factoriais (1):

```
catdef n = (2 * n)! \div ((n + 1)! * n!)
```

Oráculo para inspecção dos primeiros 26 números de Catalan¹⁰:

```
\begin{array}{l} oracle = [\\ 1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,\\ 35357670,129644790,477638700,1767263190,6564120420,24466267020,\\ 91482563640,343059613650,1289904147324,4861946401452\\ ] \end{array}
```

Problema 3

Algoritmo:

```
\begin{array}{l} deCasteljau :: [NPoint] \rightarrow OverTime \ NPoint \\ deCasteljau \ [] = nil \\ deCasteljau \ [p] = \underline{p} \\ deCasteljau \ l = \lambda pt \rightarrow (calcLine \ (p \ pt) \ (q \ pt)) \ pt \ \mathbf{where} \\ p = deCasteljau \ (init \ l) \\ q = deCasteljau \ (tail \ l) \end{array}
```

Função auxiliar:

```
\begin{array}{l} calcLine:: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ calcLine\ [] = \underline{nil} \\ calcLine\ (p:x) = \overline{g}\ p\ (calcLine\ x)\ \mathbf{where} \\ g:: (\mathbb{Q}, NPoint \rightarrow OverTime\ NPoint) \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ g\ (d,f)\ l = \mathbf{case}\ l\ \mathbf{of} \\ [] \rightarrow nil \\ (x:xs) \rightarrow \lambda z \rightarrow concat\ \$\ (sequenceA\ [singl\cdot linear1d\ d\ x,f\ xs])\ z \end{array}
```

2D:

```
\begin{array}{l} bezier2d :: [NPoint] \rightarrow OverTime \ (Float, Float) \\ bezier2d \ [] = \underline{(0,0)} \\ bezier2d \ l = \lambda z \rightarrow (from_{\mathbb{Q}} \times from_{\mathbb{Q}}) \cdot (\lambda[x,y] \rightarrow (x,y)) \ \$ \ ((deCasteljau \ l) \ z) \end{array}
```

Modelo:

```
 \begin{aligned} \mathbf{data} \ World &= World \ \{ \ points :: [ \ NPoint ] \\ , \ time :: Float \\ \} \\ initW :: World \\ initW &= World \ [] \ 0 \end{aligned}
```

¹⁰Fonte: Wikipedia.

```
tick :: Float \rightarrow World \rightarrow World
      tick \ dt \ world = world \ \{ \ time = (time \ world) + dt \}
      actions :: Event \rightarrow World \rightarrow World
      actions (EventKey (MouseButton LeftButton) Down \_ p) world =
         world \{ points = (points \ world) + [(\lambda(x, y) \rightarrow \mathsf{map} \ to_{\mathbb{Q}} \ [x, y]) \ p] \}
       actions (EventKey (SpecialKey KeyDelete) Down _ _) world =
         world \{ points = cond (\equiv []) id init (points world) \}
      actions \_world = world
      scaleTime :: World \rightarrow Float
      scaleTime\ w = (1 + cos\ (time\ w))/2
      bezier2dAtTime :: World \rightarrow (Float, Float)
      bezier2dAtTime\ w = (bezier2dAt\ w)\ (scaleTime\ w)
      bezier2dAt :: World \rightarrow OverTime (Float, Float)
      bezier2dAt \ w = bezier2d \ (points \ w)
      thicCirc :: Picture
      thicCirc = ThickCircle \ 4 \ 10
      ps :: [Float]
      ps = \mathsf{map}\ from_{\mathbb{Q}}\ ps'\ \mathbf{where}
         ps' :: [\mathbb{Q}]
         ps' = [0, 0.01..1] -- interval
Gloss:
      picture :: World \rightarrow Picture
      picture\ world = Pictures
         [animateBezier (scaleTime world) (points world)
         , Color\ white \cdot Line \cdot {\sf map}\ (bezier2dAt\ world)\ \$\ ps
         , Color blue · Pictures \ [Translate (from_{\mathbb{Q}} \ x) \ (from_{\mathbb{Q}} \ y) \ thicCirc \ | \ [x,y] \leftarrow points \ world]
         , Color green $ Translate cx cy thicCirc
          where
         (cx, cy) = bezier2dAtTime\ world
Animação:
       animateBezier :: Float \rightarrow [NPoint] \rightarrow Picture
       animateBezier \_[] = Blank
       animateBezier \ \_ \ [\_] = Blank
       animateBezier \ t \ l = Pictures
         [animateBezier\ t\ (init\ l)]
         , animateBezier t (tail l)
         , Color red \cdot Line \$ [a, b]
         , Color orange $ Translate ax ay thicCirc
         , Color orange $ Translate bx by thicCirc
          where
         a@(ax, ay) = bezier2d (init l) t
         b@(bx, by) = bezier2d (tail l) t
Propriedades e main:
      runBezier :: IO ()
      runBezier = play (InWindow "Bézier" (600,600) (0,0))
         black 50 initW picture actions tick
      runBezierSym :: IO ()
      runBezierSym = quickCheckWith (stdArgs \{ maxSize = 20, maxSuccess = 200 \}) prop\_bezier\_sym
    Compilação e execução dentro do interpretador:<sup>11</sup>
      main = runBezier
      run = do \{ system "ghc cp2021t"; system "./cp2021t" \}
```

¹¹Pode ser útil em testes envolvendo Gloss. Nesse caso, o teste em causa deve fazer parte de uma função *main*.

QuickCheck

Código para geração de testes:

```
instance Arbitrary\ UnOp\ where arbitrary\ =\ elements\ [Negate,E] instance Arbitrary\ BinOp\ where arbitrary\ =\ elements\ [Sum,Product] instance (Arbitrary\ a)\ \Rightarrow\ Arbitrary\ (ExpAr\ a)\ where arbitrary\ =\ do binop\ \leftarrow\ arbitrary\ unop \leftarrow\ arbitrary\ unop \leftarrow\ arbitrary\ exp1 \leftarrow\ arbitrary\ exp2 \leftarrow\ arbitrary\ exp2 \leftarrow\ arbitrary\ a \leftarrow\ arbitrary\ frequency \cdot map (id\ \times\ pure)\ $ [(20,X),(15,N\ a),(35,Bin\ binop\ exp1\ exp2),(30,Un\ unop\ exp1)] infixr 5\stackrel{?}{=} (\stackrel{?}{=})::Real\ a\Rightarrow a\rightarrow a\rightarrow Bool\ (\stackrel{?}{=})\ x\ y=(to_{\mathbb{Q}}\ x)\ \equiv\ (to_{\mathbb{Q}}\ y)
```

Outras funções auxiliares

Lógicas:

```
 \begin{aligned} &\inf \mathbf{x} \mathbf{r} \ 0 \Rightarrow \\ (\Rightarrow) & :: (\mathit{Testable prop}) \Rightarrow (a \to \mathit{Bool}) \to (a \to \mathit{prop}) \to a \to \mathit{Property} \\ p \Rightarrow f = \lambda a \to p \ a \Rightarrow f \ a \\ &\inf \mathbf{x} \mathbf{r} \ 0 \Leftrightarrow \\ (\Leftrightarrow) & :: (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \to a \to \mathit{Property} \\ p \Leftrightarrow f = \lambda a \to (p \ a \Rightarrow \mathit{property} \ (f \ a)) \ .\&\&. \ (f \ a \Rightarrow \mathit{property} \ (p \ a)) \\ &\inf \mathbf{x} \mathbf{r} \ 4 \equiv \\ (\equiv) & :: \mathit{Eq} \ b \Rightarrow (a \to b) \to (a \to b) \to (a \to \mathit{Bool}) \\ f \equiv g = \lambda a \to f \ a \equiv g \ a \\ &\inf \mathbf{x} \mathbf{r} \ 4 \leqslant \\ (\leqslant) & :: \mathit{Ord} \ b \Rightarrow (a \to b) \to (a \to b) \to (a \to \mathit{Bool}) \\ f \leqslant g = \lambda a \to f \ a \leqslant g \ a \\ &\inf \mathbf{x} \ 4 \land \\ (\land) & :: (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \\ f \land g = \lambda a \to ((f \ a) \land (g \ a)) \end{aligned}
```

D Soluções dos alunos

Os alunos devem colocar neste anexo as suas soluções para os exercícios propostos, de acordo com o "layout" que se fornece. Não podem ser alterados os nomes ou tipos das funções dadas, mas pode ser adicionado texto, disgramas e/ou outras funções auxiliares que sejam necessárias.

Valoriza-se a escrita de pouco código que corresponda a soluções simples e elegantes.

Problema 1

São dadas:

```
\begin{array}{l} {\it cataExpAr} \ g = g \cdot {\it recExpAr} \ ({\it cataExpAr} \ g) \cdot {\it outExpAr} \\ {\it anaExpAr} \ g = inExpAr \cdot {\it recExpAr} \ ({\it anaExpAr} \ g) \cdot g \\ {\it hyloExpAr} \ h \ g = {\it cataExpAr} \ h \cdot {\it anaExpAr} \ g \end{array}
```

```
\begin{array}{l} eval\_exp :: Floating \ a \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a \\ eval\_exp \ a = cataExpAr \ (g\_eval\_exp \ a) \\ optmize\_eval :: (Floating \ a, Eq \ a) \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a \\ optmize\_eval \ a = hyloExpAr \ (gopt \ a) \ clean \\ sd :: Floating \ a \Rightarrow ExpAr \ a \rightarrow ExpAr \ a \\ sd = \pi_2 \cdot cataExpAr \ sd\_gen \\ ad :: Floating \ a \Rightarrow a \rightarrow ExpAr \ a \rightarrow a \\ ad \ v = \pi_2 \cdot cataExpAr \ (ad\_gen \ v) \end{array}
```

O primeiro problema baseia-se em definir a função "saída" do tipo ExpAr. É nos dado tanto o tipo da função outExpAr como o do seu isomorfismo inExpAr, assim pudendo representar o seu diagrama.

Assim, conseguimos perceber de imediato a definição de outExpAr.

```
 \begin{array}{l} outExpAr :: ExpAr \ a \rightarrow () + (a + ((BinOp, (ExpAr \ a, ExpAr \ a)) + (UnOp, ExpAr \ a))) \\ outExpAr \ X = i_1 \ () \\ outExpAr \ (N \ x) = i_2 \ (i_1 \ x) \\ outExpAr \ (Bin \ op \ exp1 \ exp2) = i_2 \ (i_2 \ (i_1 \ (op, (exp1, exp2)))) \\ outExpAr \ (Un \ op \ exp1) = i_2 \ (i_2 \ (op, exp1))) \end{array}
```

Relativamente à função recExpAr. Esta recebe uma função f e chama a função baseExpAr, aplicando esse f apenas aos argumentos ExpAr, deixando o resto intacto com a função id. Fazendo assim a função recursiva do tipo ExpAr.

Chegamos à conclusão da expressão de recExpAr através da dica dada pelo professor nas FAQ's da página da disciplina (Q9).

```
recExpAr\ f = baseExpAr\ id\ id\ id\ f\ f\ id\ f
```

No enunciado é nos dado cataExpAr e, com isso, fazer um gene de um catamorfismo que recursivamente calculasse o valor de um ExpAr. Começamos por fazer o diagrama, para nos servir de ajuda à realização do gene.

recExpAr eval_exp = id + id + id + eval_exp + eval_exp + id + eval_exp
Com a ajuda do diagrama chegamos ao seguinte gene.

```
g\_eval\_exp\ var = [g\_eval\_x, [g\_eval\_na, [g\_eval\_binop, g\_eval\_unop]]]
\mathbf{where}
g\_eval\_x\ () = var
g\_eval\_na\ b = b
g\_eval\_binop\ (op, (a1, a2))
|\ op \equiv Sum = a1 + a2
|\ otherwise = a1 * a2
g\_eval\_unop\ (op, a1)
```

```
| op \equiv Negate = (-1) * a1
| otherwise = Prelude.exp (a1)
```

A seguinte questão baseava-se em criar uma solução mais eficiente à questão anterior, e para isso era necessário fazer um hilomorfismo, ou seja, juntar ao catamorfismo já feito, um anamorfismo que realiza-se uma otimização na expressão, utilizando, por exemplo, das propriedades neutras da multiplicação. Sabendo disso, criamos mais uma vez um diagrama para nos ajudar a chegar à solução do problema.

Seguindo o diagrama, chegamos à solução do clean. Como dissemos a solução do gene gopt (gene utilizado no catamorfismo do hilomorfismo), foi re-utilizara o gene do catamorfismo da questão anterior, g_eval_exp .

```
clean :: (Floating a, Eq a) \Rightarrow ExpAr a \rightarrow () + (a + ((BinOp, (ExpAr a, ExpAr a)) + (UnOp, ExpAr a))) clean (Bin Sum (N 0) b) = outExpAr b clean (Bin Sum a (N 0)) = outExpAr a clean (Bin Product (N 0) _{-}) = i_2 (i_1 0) clean (Bin Product _{-}(N 0)) = i_2 (i_1 0) clean (Bin Product _{-}(N 1)) = outExpAr a clean (Bin Product (N 1) b) = outExpAr b clean (Un Negate (N 0)) = i_2 (i_1 0) clean (Un Negate (Un Negate x)) = outExpAr x clean (Un E (N 0)) = i_2 (i_1 1) clean exp = outExpAr exp qopt var = g_{-}eval_{-}exp var
```

Nesta questão era pedido que realizasse-mos uma função que fizesse a derivada de uma expressão, através de um catamorfismo. Percebemos através do enunciado que o gene devolvia um par, e que, a função principal só se aproveitava do segundo elemento. Com isso percebemos que o gene colocava a expressão intacta no primeiro elemento do par, e a sua derivada no segundo, para que quando aparecese uma multiplicação conseguisse completar a derivada, já que esta precisa de parte da expressão antes de ser derivada. Depois de toda a análise, chegamos ao seguinte diagrama.

Através do diagrama, conseguimos concluir o seguinte gene.

```
sd\_gen :: Floating \ a \Rightarrow
() + (a + ((BinOp, ((ExpAr \ a, ExpAr \ a), (ExpAr \ a, ExpAr \ a))) + (UnOp, (ExpAr \ a, ExpAr \ a))))
\rightarrow (ExpAr \ a, ExpAr \ a)
sd\_gen = [sd\_x, [sd\_binop, sd\_unop]]]  where
```

```
\begin{array}{l} sd\_x \ \_ = (X,N\ 1) \\ sd\_n\ x = (N\ x,N\ 0) \\ sd\_binop\ (op,((x1,y1),(x2,y2))) \\ \mid op \equiv Sum = ((Bin\ Sum\ x1\ x2),(Bin\ Sum\ y1\ y2)) \\ \mid otherwise = ((Bin\ Product\ x1\ x2),(Bin\ Sum\ (Bin\ Product\ x1\ y2)\ (Bin\ Product\ y1\ x2))) \\ sd\_unop\ (op,(x,y)) \\ \mid op \equiv Negate = ((Un\ op\ x),(Un\ op\ y)) \\ \mid otherwise = (Un\ op\ x,Bin\ Product\ (Un\ op\ x)\ y) \end{array}
```

Esta questão é muito parecida à anterior, só que calculando a derivada com um valor para o x dado. Sendo assim, utilizamos do mesmo raciocinio e fizemos o seguinte diagrama.

Com o diagrama chegamos ao seguinte gene.

```
\begin{array}{l} ad\_gen \ a = [ad\_x, [ad\_n, [ad\_binop, ad\_unop]]] \ \mathbf{where} \\ ad\_x \ \_ = (a,1) \\ ad\_n \ x = (x,0) \\ ad\_binop \ (op, ((x1,y1), (x2,y2))) \\ \mid op \equiv Sum = (x1+x2,y1+y2) \\ \mid otherwise = (x1*x2, (x1*y2) + (y1*x2)) \\ ad\_unop \ (op, (x,y)) \\ \mid op \equiv Negate = ((-1)*x, (-1)*y) \\ \mid otherwise = (Prelude.exp \ (x), y*Prelude.exp \ (x)) \end{array}
```

Problema 2

Definir

$$loop (f, b, c) = ((f * b) 'div' c, 4 + b, 1 + c)$$

 $inic = (1, 2, 2)$
 $prj (a, b, c) = a$

por forma a que

$$cat = prj \cdot \text{for } loop \ inic$$

seja a função pretendida. **NB**: usar divisão inteira. Apresentar de seguida a justificação da solução encontrada.

Para uma simplificação de cálculos, decidimos utilizar como fórmula para os números de Catalan:

$$\begin{cases} C_0 = 1 \\ C_{n+1} = \frac{2(2n+1)}{n+2} C_n \end{cases}$$

$$C_n = \frac{(2n)!}{(n+1)!(n)!} \Rightarrow C_{n-1} = \frac{(2(n-1))!}{(n)!(n-1)!}$$

$$\frac{C_n}{C_{n-1}} = \frac{(2n)(2n-1)(2n-2)!(n-1)!}{(n+1)n(n-1)!(2n-2)!} = \frac{2(2n-1)}{n+1}$$

$$\Rightarrow C_n = \frac{2(2n-1)}{n+1}C_{n-1}$$

que pode ser deduzida aqui.

A expressão para calcular o n-ésimo número de Catalan pode ser traduzida pelas seguintes expressões:

$$\left\{ \begin{array}{l} C(0)=1 \\ C(n+1)=(h(n)/r(n))*C(n) \end{array} \right.$$

Chegamos ao resultado da função recursiva h através dos seguintes cálculos.

$$\begin{cases} h(0) = 2 \\ h(n) = 2(2n+1) \\ h(n+1) = 2(2(n+1)+1) \end{cases} \equiv \begin{cases} h(0) = 2 \\ h(n) = 4n+2 \\ h(n+1) = 2(2n+2+1) \end{cases} \equiv \begin{cases} h(0) = 2 \\ h(n) = 4n+2 \\ h(n+1) = 4n+2+4 \end{cases} \equiv \begin{cases} h(0) = 2 \\ h(n) = 4n+2 \\ h(n+1) = h(n)+4 \end{cases}$$

Chegamos ao resultado da função recursiva r através dos seguintes cálculos.

$$\left\{ \begin{array}{l} r(0) = 2 \\ r(n) = (n+2) \\ r(n+1) = (n+1) + 2 \end{array} \right. \equiv \left\{ \begin{array}{l} r(0) = 2 \\ r(n) = (n+2) \\ r(n+1) = n+2+1 \end{array} \right. \equiv \left\{ \begin{array}{l} r(0) = 2 \\ r(n) = (n+2) \\ r(n+1) = r(n) + 1 \end{array} \right.$$

Agora estamos em condições de responder ao enunciado.

A função *init* irá ser constituída por um triplo, onde cada campo vai ser constituído pelo valor obtido no caso de paragem da função c, h e r, respetivamente.

A função *loop* irá ser constiuída por um triplo, onde em cada campo irá estar a função c, h e r, respetivamente.

Por último, a função *proj* será constituída por um triplo com as funções utilizadas, projetando a função c que contém o resultado pretendido (i.e. o n-ésimo número de Catalan).

Problema 3

```
 \begin{array}{l} calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ calcLine = cataList\ h\ \mathbf{where} \\ h = [h1, h2] \\ h1\_\_ = nil \\ h2\ (h,t)\ l = \mathbf{case}\ l\ \mathbf{of} \\ [] \rightarrow nil \\ (x:xs) \rightarrow \lambda z \rightarrow concat\ \$\ (sequenceA\ [singl\cdot linear1d\ h\ x,t\ xs])\ z \\ deCasteljau :: [NPoint] \rightarrow OverTime\ NPoint \\ deCasteljau = hyloAlgForm\ alg\ coalg\ \mathbf{where} \\ coalg = \bot \\ alg = \bot \\ hyloAlgForm = \bot \\ \end{array}
```

Problema 4

Antes de descobrir o avg_aux tanto para listas como para LTree, será necessário transformar [b,q] num split de funções para podermos aplicar a lei da troca (Lei 28).

```
 \langle \pi_1, \pi_2 \rangle \cdot [b, q] 
 \equiv \qquad \{ \text{ Lei 20 - Fusão + } \} 
 [\langle \pi_1, \pi_2 \rangle \cdot b, \langle \pi_1, \pi_2 \rangle \cdot q] 
 \equiv \qquad \{ \text{ Lei 9 - Fusão X } \} 
 [\langle \pi_1 \cdot b, \pi_2 \cdot b \rangle, \langle \pi_1 \cdot q, \pi_2 \cdot q \rangle] 
 \equiv \qquad \{ \text{ Lei 28 - Lei da troca } \} 
 \langle [\pi_1 \cdot b, \pi_1 \cdot q], [\pi_2 \cdot b, \pi_2 \cdot q] \rangle
```

Solução para listas não vazias:

```
avg\_aux = ([b, q])
\equiv
                     { Definição de avg_aux }
          \langle avq, length \rangle = ([b, q])
                     { Resultado calculado em cima }
          \langle avg, length \rangle = (\langle [\pi_1 \cdot b, \pi_1 \cdot q], [\pi_2 \cdot b, \pi_2 \cdot q] \rangle)
                      { Lei 52 - Fokkinga e Functor das listas: F f = id + id \times f }
            \begin{cases} avg \cdot \mathbf{in} = [\pi_1 \cdot b, \pi_1 \cdot q] \cdot (id + id \times \langle avg, length \rangle) \\ length \cdot \mathbf{in} = [\pi_2 \cdot b, \pi_2 \cdot q] \cdot (id + id \times \langle avg, length \rangle) \end{cases} 
                      { Definição de in para as listas ([nil,cons]) e Lei 22 - Absorção + }
                [\mathit{avg} \cdot \mathit{nil}, \mathit{avg} \cdot \mathit{cons}] = [\pi_1 \cdot b \cdot \mathit{id}, \pi_1 \cdot q \cdot (\mathit{id} \times \langle \mathit{avg}, \mathit{length} \rangle)]
           \begin{cases} [avg \cdot nit, avg \cdot cons] = [n_1 \cdot o \cdot id, n_1 \cdot q \cdot (id \times \langle avg, length \rangle)] \\ [length \cdot nit, length \cdot cons] = [\pi_2 \cdot b \cdot id, \pi_2 \cdot q \cdot (id \times \langle avg, length \rangle)] \end{cases} 
                     { Lei 27 - Eq +, 2 vezes; Lei 1, Natural-id }
               \begin{aligned} & avg \cdot nil = \pi_1 \cdot b \\ & avg \cdot cons = \pi_1 \cdot q \cdot (id \times \langle avg, length \rangle) \\ & length \cdot nil = \pi_2 \cdot b \\ & length \cdot cons = \pi_2 \cdot q \cdot (id \times \langle avg, length \rangle) \end{aligned}
                     \{ Em Haskell, avg[] = 0 e length[] = 0 \}
\equiv
              avg \cdot cons = \pi_1 \cdot q \cdot (id \times \langle avg, length \rangle)

\pi_2 \cdot b = 0

length \cdot cons = \pi_2 \cdot q \cdot (id \times \langle avg, length \rangle)
                     { Lei 71 - Igualdade Extensional; Lei 72 - Def-Comp }
            \begin{cases} avg\left(h:t\right) = \left(\pi_1\left(q\left(\left(id \times \langle avg, length\rangle\right)\left(h:t\right)\right)\right)\right) \\ \pi_2\left(b\ l\right) = 0 \end{cases}
               length (h:t) = (\pi_2 (q ((id \times \langle avg, length \rangle) (h:t))))
                     { Lei 77 - Def-x; Lei 73 - Def-id }
               avg (h:t) = 0
avg (h:t) = (\pi_1 (q (h, \langle avg, length \rangle (t))))
\pi_2 (b l) = 0
length (h:t) = (\pi_2 (q (h, \langle avg, length \rangle (t))))
                     { Lei 76 - Def-split }
```

```
avg (h:t) = (\pi_1 (q (h, (avg t, length t))))
\pi_2 (b l) = 0
length (h:t) = (\pi_2 (q (h, (avg t, length t)))
            avg = \pi_1 \cdot avg\_aux
         avg\_aux = cataList [(0,0), aux] where
             aux(x, (md, c)) = ((x + md * c) / (c + 1), c + 1)
Solução para árvores de tipo LTree:
                    avg\_aux = ([b, q])
             =
                           { Definição de avg_aux }
                    \langle avg, length \rangle = ([b, q])
                           { Resultado calculado em cima }
                    \langle avg, length \rangle = (\langle [\pi_1 \cdot b, \pi_1 \cdot q], [\pi_2 \cdot b, \pi_2 \cdot q] \rangle)
                           { Lei 52 - Fokkinga e Functor de LTree: F f = id + f^2 }
                    \int avg \cdot \mathbf{in} = [\pi_1 \cdot b, \pi_1 \cdot q] \cdot (id + \langle avg, length \rangle \uparrow 2)
                    \begin{cases} length \cdot \mathbf{in} = [\pi_2 \cdot b, \pi_2 \cdot q] \cdot (id + \langle avg, length \rangle \uparrow 2) \end{cases}
                           { Definição de in para as LTree ([Leaf,Fork]) e Lei 22 - Absorção + }
                       [avg \cdot Leaf, avg \cdot Fork] = [\pi_1 \cdot b \cdot id, \pi_1 \cdot q \cdot (\langle avg, length \rangle \uparrow 2)]
                    [length \cdot Leaf, length \cdot Fork] = [\pi_2 \cdot b \cdot id, \pi_2 \cdot q \cdot (\langle avg, length \rangle \uparrow 2)]
                           { Lei 27 - Eq +, 2 vezes; Lei 1, Natural-id }
                        avg \cdot Leaf = \pi_1 \cdot b
                       avg \cdot Fork = \pi_1 \cdot q \cdot (\langle avg, length \rangle \uparrow 2)
length \cdot Leaf = \pi_2 \cdot b
length \cdot Fork = \pi_2 \cdot q \cdot (\langle avg, length \rangle \uparrow 2)
                           { Lei 71 - Igualdade Extensional }
             \equiv
                        avg (Leaf lf) = \pi_1 (b lf)
                        avg (Fork (fl, fr)) = \pi_1 (q (\langle avg, length \rangle \uparrow 2)) (fl, fr)
                        length (Leaf lf) = \pi_2 (b lf)
                        length (Fork (fl, fr) = \pi_2 (q (\langle avg, length \rangle \uparrow 2)) (fl, fr))
                           { Propriedade do quadrado de um número }
                        avg (Leaf lf) = \pi_1 (b lf)
                        avg (Fork (fl, fr)) = \pi_1 (q \langle avg, length \rangle \times \langle avg, length \rangle) (fl, fr)
                        length (Leaf lf) = \pi_2 (b lf)
                        length (Fork (fl, fr) = \pi_2 (q \langle avg, length \rangle \times \langle avg, length \rangle) (fl, fr)
                          { Lei 77 - Def-x }
                        avg (Leaf lf) = \pi_1 (b lf)
                        avg \ (Fork \ (fl, fr)) = \pi_1 \ (q \ (\langle avg, length \rangle \ (fl, fr), \langle avg, length \rangle \ (fl, fr)))
                        length (Leaf lf) = \pi_2 (b lf)
                        length \ (Fork \ (fl, fr) = \pi_2 \ (q \ (\langle avg, length \rangle \ (fl, fr), \langle avg, length \rangle \ (fl, fr)))
                           { Lei 76 - Def-split }
             \equiv
                        avg (Leaf lf) = \pi_1 (b lf)
                        avg\ (Fork\ (fl,fr)) = \pi_1\ (q\ ((avg\ fl, length\ fr), (avg\ fl, length\ fr)))
                        \mathit{length}\ (\mathit{Leaf}\ \mathit{lf}) = \pi_2\ (\mathit{b}\ \mathit{lf})
                        length (Fork (fl, fr) = \pi_2 (q ((avg fl, length fr), (avg fl, length fr)))
```

```
avgLTree = \pi_1 \cdot (|gene|) where gene = [\lambda l \to (l, 1), aux] aux ((md1, c1), (md2, c2)) = ((md1 * c1 + c2 * md2) / (c1 + c2), c1 + c2)
```

Problema 5

 $Inserir\ em\ baixo\ o\ c\'odigo\ F\#\ desenvolvido,\ entre\ \verb|\begin{verbatim}\}\ e\ \verb|\end{verbatim}\}:$

Index

```
LATEX, 1
     bibtex, 2
     lhs2TeX, 1
    makeindex, 2
Combinador "pointfree" cata, 8, 9, 17, 18
     either, 3, 8, 13–19
Curvas de Bézier, 6, 7
Cálculo de Programas, 1, 2, 5
     Material Pedagógico, 1
       BTree.hs, 8
       Cp.hs, 8
       LTree.hs, 8, 18
       Nat.hs, 8
Deep Learning), 3
DSL (linguaguem específica para domínio), 3
F#, 8, 19
Functor, 5, 11
Função
     \pi_1, 6, 9, 17–19
     \pi_2, 9, 13, 17, 18
    for, 6, 9, 15
    length, 8, 17, 18
    map, 11, 12
     uncurry, 3
Haskell, 1, 2, 8
     Gloss, 2, 11
     interpretador
       GĤCi, 2
     Literate Haskell, 1
     QuickCheck, 2
    Stack, 2
Números de Catalan, 6, 10
Números naturais (IV), 5, 6, 9
Programação
     dinâmica, 5
     literária, 1
Racionais, 7, 8, 10–12
U.Minho
     Departamento de Informática, 1
```

References

- [1] D.E. Knuth. *Literate Programming*. CSLI Lecture Notes Number 27. Stanford University Center for the Study of Language and Information, Stanford, CA, USA, 1992.
- [2] J.N. Oliveira. *Program Design by Calculation*, 2018. Draft of textbook in preparation. viii+297 pages. Informatics Department, University of Minho.