中国大恒(集团)有限公司北京图像视觉技术分公司

机器视觉系统

一光源篇

主讲人:华雪

为什么要使用光源

- 目的
 - 将被测物体与背景尽量明显分别,获得高品质、高对比度的图像

• 直接影响处理精度和速度, 甚至系统的成败,

手表玻璃表面划痕检测

错误图像

理想图像

- 理想的光源应该是明亮,均匀,稳定的
- 视觉系统使用的光源主要有三种
 - 高频荧光灯
 - 光纤卤素灯
 - LED (发光二极管)光源

• 高频荧光灯

- 使用寿命约1500-3000小时
- 优点: 扩散性好、适合大面积均匀照射
- 缺点:响应速度慢, 亮度较暗

荧光灯

• 光纤卤素灯

- 使用寿命约1000小时
- 优点: 亮度高
- 缺点:响应速度慢, 几乎没有光亮度和色 温的变化

卤素灯

• LED光源

- 使用寿命约10000-30000小时
- 可以使用多个LED达 到高亮度,同时可组 合不同的形状
- 响应速度快,波长可以根据用途选择

LED灯

光源的对比

	高频荧光灯	卤素灯	LED光源
价格	低	高	中
亮度	低	高	中
稳定性	低	中	高
闪光装置	无	无	有
使用寿命	中	低	高
光线均匀度	高	中	低
多色光	无	无	有
复杂设计	低	中	高
温度影响	中	低 www.daheng.image.com	高市国傳

LED光源的优势

- 可制成各种形状、尺寸及各种照射角度;
- 可根据需要制成各种颜色,并可以随时调节亮度;
- 通过散热装置,散热效果更好,光亮度更稳定;
- 使用寿命长(约3万小时,间断使用寿命更长);
- 反应快捷,可在10微秒或更短的时间内达到最大亮度;
- 电源带有外触发,可以通过计算机控制,起动速度快,可以用作频闪灯;
- 运行成本低、寿命长的LED, 会在综合成本和性能方面体现出更大的优势;
- 可根据客户的需要,进行特殊设计。

LED光源的颜色

• 主要颜色

- 红色
- 蓝色
- 绿色
- 白色

• 其他颜色

- 橙色
- 红外
- 紫外

LED光源的光谱

- 每一种类型的LED都有特别的光谱
- CCD摄像机 的灵敏度受 光谱的影响

红色(中心波长660nm)

白色(全域性波长)

青色/绿色(中心波长470/525nm)

红外(中心波长950nm)

光源对成像的影响

• 根据被测物的特征改变打光方式,可以突出被测物

光源对成像的影响

• 根据被测物的特征改变光源的颜色,可以得到对比鲜明的图像

二值化处理后差别更加明显!

边缘粗糙,图像模糊,难以判断

照明技术的基础知识

- 光在真空中呈直线传播
- 光的反射
 - 入射角 = 反射角
- 光的折射
 - 受到材质的影响
- 光的透射
 - 材质和厚度影响透射率
 - 光的波长越长,对物质的透过力越强
- 光的吸收
 - 形成色差

照明技术的基础知识

• 照射光的种类

■直射光

• 主要来自于一个方向的光,可以在亮色和暗色阴影之间产生相对高的对比度图像。

■漫射光(扩散光)

• 各种角度的光源混合在一起的光。日常的生活用光几乎都是扩散光。

■偏光光

• 在垂直于传播方向的平面内,光矢量只沿某一个固定方向振动的光。通常是利用偏光板(片)来防止特定方向的反射。

■平行光

• 照射角度一致的光。太阳光就是平行光。发光角度越窄的LED 直射光越接近平行光。

照明技术之一

• 直射光和漫射光 (Regular light & Diffused light)

明亮、射角窄、会有光点

较暗、射角宽 无光点、光斑均匀

照明技术之一

• 镜面反射和漫反射 (Regular reflection & Diffused reflection)

明亮 与照射距离无关 与角度有关 不反映照射物的颜色

较暗 与照射距离有关 与角度无关 反映照射物的颜色

• 明视野和暗视野 (Bright field & Dark field)

明视野:

用直射光来观察对象物(散乱光呈黑色)

FPQ-75 LWD 90mm

暗视野:

用散乱光来观察对象物(散乱光呈白色)

FPQ-75 L'

LWD 10mm

• 案例一

塑料饮料瓶肩部OCR——条型照明(直接光)

• 案例二

硬币铸造

明视野照明

暗视野照明

照明技术之三

- 折射照明 (Refraction light)
 - 光由一种介质(物质)斜射到另一种介质,传播方向发生改变
 - 当入射角满足一定的条件时,不会发生折射

照明技术之三

钻石 棱角测定

www.daheng-image.com

- 透射照明 (Penetrating light)——背光的运用
 - 透射照明,即使光线透射对象物,并观察其透射光的照明手法
 - 因材质和厚度不同,对光的透过特性(透明度)各异
 - 光根据其波长之长短,对物质的穿透能力(穿透率)各异
 - 波长越长,对物质的透过力越强。
 - 波长越短,在物质表面的扩散率(反射和透射的比率)越大

扩散比率			
颜色	波长(nm)	扩散比率	
红外	950	0.23	
红	660	1.00	
绿	525	2.25	
蓝	470	3.89	
紫外	370	10.12	

• 案例一

读取塑封带内的TSOP型号

使用红色照明(660nm)

使用蓝色照明(470nm)

• 案例二 **印刷字检测** (LDL-42x15-BL)

照明技术之四

• 案例三 **药片包装** (LDL-TP-51x51)

• 案例四

电缆导线的破损检查

使用LFV-70同轴光

使用LFL-100平面背光

• 颜色和补色

• 非发光物体的颜色

• 测试

白光

红光

蓝光

绿光

www.daheng-image.com

• 案例一 树脂芯片的表面检测

使用红光单独检测芯片

使用绿光可以检测芯片和导线

www.daheng-image.com

• 案例二

金属涂层的表面检测(铜导线上涂有银涂层)

使用红光可以检测基板

• 案例三 BGA焊点检测

使用红光出现问题: 可以看到底部的导线

使用蓝光可以单独提取焊接点

• 偏光器(Polarizer)

偏光镜片

偏光板

两者结合,用来消除照明时产生的泛光

• 偏光技术的应用

未使用偏光器

使用偏光器

• 防外乱光滤镜(Shape-cut filter)

• 防外乱光滤镜的应用

金属工件的轮廓检测

由于来自室内的光源产生了漫射 光,其他不需要的细节也进入了 摄像机

添加滤镜将漫射光滤掉,从而得 到对比度良好的对象轮廓

• 平行光学装置(Collimated-lighting)

• 平行光的应用

纽扣电池表面的凹陷和划痕

选择光源的前提

- 摄像机的种类
- 摄像机的视野和工作距离
- 照明和被测物之间的距离
- •被测物的形状、材质、纹理和颜色等
- 被测物的运动速度
- 工作环境的温度、外乱光等

中国大恒(集团)有限公司北京图像视觉技术分公司

谢谢

E-mail: huaxue@daheng-image.com

