Writing Parallel Programs is Painful

2-layer neural networks with 2 GPUs

A network may have hundreds of layers

Auto Parallelization

Write serial programs

```
>>> import mxnet as mx
>>> A = mx.nd.ones((2,2)) *2
>>> C = A + 2
>>> B = A + 1
>>> D = B * C
```

Run in parallel

Data Parallelism

- 1. Read a data partition
- 2. Pull the parameters
- 3. Compute the gradient
- 4. Push the gradient
- 5. Update the parameters

Distributed Computing

A user does not need to change the codes when using multiple machines

examples

multiple server machines

multiple worker machines

read over network

Store data in a distributed filesystem

Scale to Multiple GPU Machines

Hierarchical parameter server

Experiment Setup

- ♦ IM^{*}GENET
 - √ 1.2 million images with 1000 classes
- Resnet 152-layer model
- ♦ EC2 P2.16xlarge

- Minibatch SGD
- Synchronized Updating

Scalability over Multiple Machines

Convergence

- Increase learning rate by 5x
- Increase learning
 rate by 10x, decrease
 it at epoch 50, 80

Time to achieve 22.5% top-1 accuracy

