Component	testing	or i	monitoring	appts
-----------	---------	------	------------	-------

Patent Number: 🔨

DE19617383

Publication date:

1997-11-06

Inventor(s):

HOEHN KLAUS DR (DE); HONSBERG MARTIN DR (DE); SEEBERGER DANIEL DIPL

PHYS (DE)

Applicant(s):

SIEMENS AG (DE)

Requested Patent: DE19617383

Application

Number:

DE19961017383 19960430

Priority Number(s): DE19961017383 19960430

IPC Classification: G01N19/04; G01N3/20

EC Classification: G01N19/04

Equivalents:

Abstract

The testing appts, includes a testing portion which matches the component to be tested or monitored. The testing portion is composed of two sections which are elastically deformed and are bonded together so that the elastic deformation state of the two sections is maintained. Shear forces are present in the bonding layer by the elastically deformed state. The two sections of the testing portion extend in a linear manner and are deformed vertically. The two sections have the same length. In one example, the testing portion is made of silicon and is 50 mm long, 2 mm wide and 535 microns thick. The bonding layer is made of an adhesive with a thickness of 0.5 microns and a length of 500 microns.

Data supplied from the esp@cenet database - 12

			·
	•		
;			
,		i de la companya de	

(51) Int. Cl.6:

G 01 N 3/20

(19) BUNDESREPUBLIK **DEUTSCHLAND**

Off nl gungsschrift

DE 196 17 383 A 1

DEUTSCHES PATENTAMT Aktenzeichen:

196 17 383.3

Anmeldetag:

30. 4.96

Offenlegungstag:

6. 11. 97

71) Anmelder:

Siemens AG, 80333 München, DE

② Erfinder:

Seeberger, Daniel, Dipl.-Phys., 80799 München, DE; Honsberg, Martin, Dr., 83359 Hufschlag, DE; Höhn, Klaus, Dr., 82024 Taufkirchen, DE

- (4) Vorrichtung zum Prüfen oder Überwachen von Teilen oder Teile verbindenden Haftschichten und Verfahren zur Herstellung einer solchen Vorrichtung
- Die Vorrichtung besteht aus einem Prüfteil (4), das den gleichen Bedingungen des zu prüfenden oder überwachenden Teils (1, 2) oder einer zu prüfenden oder überwachenden Haftschicht zu unterwerfen ist und aus zwei Prüfteilkörpern (40, 40) besteht, die elastisch gebogen und durch zumindest eine Haftschicht (41) derart fest miteinander verbunden sind, daß der elastisch gebogene Zustand der beiden Prüfteilkörper von selbst beibehalten ist und in der Haftschicht durch den elastisch gebogenen Zustand bedingte Scherkraft wirkt.

Beschreibung

Vorrichtung zum Prüfen oder Überwachen von Teilen oder Teile verbindenden Haftschichten und Verfahren zur Herstellung einer solchen Vorrichtung.

Die Erfindung betrifft eine Vorrichtung zum Prüfen und/oder Überwachen von Teilen und/oder Teile verbindenden Haftschichten und Verfahren zur Herstellung einer solchen Vorrichtung.

Der Erfindung liegt die Aufgabe zugrunde, eine kostengünstige derartige Vorrichtung bereitzustellen, die ein einfaches Prüfen und/oder Überwachen von Teilen und/oder Teile verbindenden Haftschichten ermöglicht.

Diese Aufgabe wird durch eine Vorrichtung zum Prüverbindenden Haftschichten gelöst, die erfindungsgemäß aus dem im Anspruch 1 näher definierten Prüfteil

Das erfindungsgemäße Prüfteil ist zur Durchführung einer Prüfung und/oder Überwachung lediglich den 20 gleichen Bedingungen des Teils oder der Haftschicht, die zu prüfen oder überwachen sind, zu unterwerfen, so daß sich aufgrund dieser Bedingungen ergebende Änderungen im zu prüfenden oder überwachenden Teil oder der zu prüfenden oder überwachenden Haftschicht in 25 gleicher Weise auch im Prüfteil ergeben können. Beispiele für solche Änderungen sind ohne Beschränkung der Allgemeinheit durch Temperaturänderungen und/ oder Altern hervorgerufene Änderungen.

Vorteilhafterweise genügt es, zur Durchführung einer 30 Prüfung und/oder Überwachung das Prüfteil dauerhaft in der Nähe dieses Teils oder dieser Haftschicht anzuordnen oder dieses Teil oder diese Haftschicht durch unmittelbares Anbringen des Prüfteils an diesem Teil oder der Haftschicht mit dem Prüfteil zu versehen.

Das erfindungsgemäße Prüfteil selbst ist sehr einfach aufgebaut und besteht lediglich aus zwei Prüfteilkörpern, die elastisch gebogen und durch zumindest eine Haftschicht fest miteinander verbunden sind, allerdings derart, daß der elastisch gebogene Zustand der beiden 40 Prüfteilkörper von selbst beibehalten ist und - was wesentlich ist - in der Haftschicht eine durch den elastisch gebogenen Zustand bedingte Scherkraft wirkt.

Dabei ist es günstig, wenn in der Haftschicht eine möglichst nur durch den elastisch gebogenen Zustand 45 und keine andere Ursache bedingte Scherkraft wirkt.

Die Wirkungsweise des erfindungsgemäßen Prüfteils ist generell die, daß bei einem bedingten, zumindest teilweisen Plastischwerden des zunächst elastischen Materials eines zu prüfenden oder überwachenden Teils oder 50 einem bedingten Nachlassen der Härte oder Festigkeit bzw. Plastischwerden einer zu prüfenden oder überwachenden Haftschicht aufgrund der gleichen Bedingungen, denen das Teil oder die Haftschicht und das Prüfteil unterworfen sind, auch Veränderungen in einem Prüf- 55 teilkörper bzw. der Haftschicht des Prüfteils auftreten können, die sich in einer Verformung des Prüfteils infolge eines Nachlassens der elastischen Verbiegung zeigen.

Das Plastischwerden des Materials kann die verschiedensten Ursachen haben, beispielsweise thermisch be- 60 terial (Anspruch 7). dingt oder durch ein Kriechen im Material des zu prüfenden Teils oder der zu prüfenden Haftschicht verur-

Aufgrund dieser Verformung ist es möglich, mittels kroskop oder einer Lupe, oder durch eine automatische Prüfung, beispielsweise mit Hilfe eines elektrischen Kontaktes an einem Ende eines Prüfteilkörpers, das

Nachlassen der Elastizität des zu prüfenden oder überwachenden Teils oder der Härte oder Festigkeit einer zu prüfenden oder überwachenden Haftschicht eindeutig zu bestimmen.

Eine bevorzugte und vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung ist so ausgebildet, daß die beiden Prüfteilkörper in einer gemeinsamen Längsrichtung langgestreckt und senkrecht zur Längsrichtung in der gleichen Biegerichtung elastisch gebogen sind, wobei die Biegerichtung die Ebene der die beiden Prüfteilkörper fest miteinander verbindenden Haftschicht schneidet (Anspruch 2). Bei dieser Ausgestaltung kann über die Länge und eine Querabmessung der Prüfteilkörper ein Übersetzungsfaktor der Verbiegung zu einer fen und/oder Überwachen von Teilen und/oder Teile 15 gegenseitigen Verschiebung der Prüfteilkörper und damit das Auflösungsvermögen des Prüfteils eingestellt werden. Die Scherkraft in der die beiden Prüfteilkörper fest miteinander verbindenden Haftschicht wirkt in der Längsrichtung der Prüfteilkörper.

Bei einer Ausgestaltung dieser Vorrichtung weisen die beiden langgestreckten Prüfteilkörper im wesentlichen gleiche Länge auf (Anspruch 3), während bei einer anderen Ausgestaltung einer der beiden langgestreckten Prüfteilkörper eine größere Länge als der andere Prüfteilkörper aufweist (Anspruch 4). Bei der zweitgenannten Ausgestaltung besteht gegenüber der erstgenannten der Vorteil, daß ein über ein Ende des relativ kürzeren Prüfteilkörpers hinausstehender Abschnitt des längeren Prüfteilkörpers bei gleicher Verformung des Prüfteils einen größeren Ausschlag liefert, der das Prüfteil empfindlicher macht.

Obgleich unter die beanspruchte Erfindung auch Prüfteile fallen, bei denen die beiden Prüfteilkörper durch eine einzige Haftschicht miteinander verbunden 35 sind, die sich über eine ganze Ausdehnung eines Prüfteilkörpers erstrecken kann, ist es zur dosierten Einstellbarkeit einer hohen Scherspannung in der Haftschicht des Prüfteils, aber auch aus Materialersparnisgründen vorteilhaft, wenn die beiden Prüfteilkörper durch zwei oder mehrere in einem Abstand voneinander angeordnete Haftschichten fest miteinander verbunden sind.

Derart ausgestaltete Prüfteile sind im Fall der oben näher bezeichneten langgestreckten Prüfteilkörper vorzugsweise so ausgebildet, daß die beiden langgestreckten Prüfteilkörper durch zwei oder mehrere in der Längsrichtung in einem Abstand voneinander angeordnete Haftschichten jeweils vorbestimmter Länge fest miteinander verbunden sind (Anspruch 5). Dabei ist es besonders vorteilhaft an jedem der beiden Enden eines Prüfteilkörpers je eine die beiden Prüfteilkörper fest miteinander verbindende Haftschicht vorzusehen (Anspruch 6), da dort nach der Verbiegung der beiden Prüfteilkörper ihre größte gegenseitige Verschiebung und damit auch die größte Scherkraft in der Haftschicht auftritt.

Obgleich nicht notwendig, bestehen bei einem Prüfteil mit mehreren getrennten, die beiden Prüfteilkörper miteinander verbindenden Haftschichten mehrere der Haftschichten, vorzugsweise alle, aus dem gleichen Ma-

In dem Fall, daß ein Teil geprüft oder überwacht werden soll, ist es vorteilhaft, wenn zumindest ein Prüfteilkörper, vorzugsweise beide, aus Material des zu prüfenden oder überwachenden Teils besteht (Anspruch 8), einfacher Sichtkontrolle, beispielsweise mit einem Mi- 65 denn dann verhält sich das Material des Prüfteilkörpers genauso wie das des Teils.

> Soll eine Teile verbindende Haftschicht geprüft oder überlacht werden, ist es vorteilhaft, wenn zumindest ei

ne die beiden Prüfteilkörper fest miteinander verbindende Haftschicht, vorzugsweise alle vorhandenen, aus Material der die Teile verbindenden Haftschicht bestehen (Anspruch 9), denn dann verhält sich das Material der die beiden Prüfteilkörper fest miteinander verbindende Haftschicht genauso wie das der die Teile verbindenden Haftschicht.

Das Prüfteil kann sowohl ein Teil als auch eine Teile verbindende Haftschicht dadurch prüfen und überwanes zu prüfenden oder überwachenden Teils und zumindest eine die beiden Prüfteilkörper fest miteinander verbindende Haftschicht aus Material einer Teile verbindenden Haftschicht besteht.

Im Hinblick auf eine Kompaktheit und hohe Festig- 15 keit des Prüfteils ist es zweckmäßig, wenn die beiden Prüfteilkörper einander gegenüberliegende Flachseiten aufweisen, die durch eine Haftschicht fest miteinander verbunden sind (Anspruch 10).

Vorzugsweise weist in diesem Fall ein Prüfteilkörper 20 einen länglich rechteckförmigen Querschnitt mit einer dem anderen Prüfteilkörper gegenüberliegenden und die Flachseite des einen Prüfteilkörpers definierenden

langen Seite auf (Anspruch 11).

Eine die beiden Prüfteilkörper fest miteinander ver- 25 bindende Haftschicht besteht üblicherweise aus Klebstoff (Anspruch 12) oder aus Lot (Anspruch 13), obgleich auch andere als Prüfteilkörper verbindende Haftschich-

ten geeignete Stoffe verwendet werden können.

Bei einer besonderen Ausgestaltung des Prüfteils 30 weist ein Prüfteilkörper eine dem anderen Prüfteilkörper zugekehrte Seite auf, die durch eine oder mehrere Nuten voneinander getrennte Abschnitte aufweist, deren jeder zur Aufnahme einer die beiden Prüfteilkörper fest miteinander verbindenden Haftschicht dienen kann 35 stellung: (Anspruch 14). Diese Ausgestaltung ist insbesondere bei Verwendung mehrerer mit Abstand voneinander angeordneter Haftschichten aus Klebstoff vorteilhaft, da in diesem Fall der Klebstoff gezielt auf einen solchen Abschnitt aufgebracht werden kann und eine Haftschicht 40 definierter Abmessung entsteht.

Bevorzugte und vorteilhafte Verfahren zur Herstellung einer erfindungsgemäßen Vorrichtung gehen aus

den Ansprüchen 15 bis 17 hervor.

Die erfindungsgemäße Vorrichtung ist vorteilhaft 45 zum Prüfen und/oder Überwachen von Mikroverbindungen, beispielsweise Mikroklebungen, anwendbar. Es können dabei quantitative Messungen kleinster Verschiebungen durchgeführt und so die Auswirkungen thermischer Belastungen auf Mikroverbindungen bzw. 50 Mikroklebungen unter Schubspannung bzw. Scherkraft ermittelt werden. Mögliche Verschlechterungen und Ausfälle der Mikroverbindungen, beispielsweise von geklebten mikrooptischen Modulen, können so abgeschätzt werden.

Insbesondere können kritische Verbindungen, beispielsweise mikrooptische Kopplungen, indirekt geprüft werden. Hier ist die Erweichung und/oder Verformung der aus Klebstoff oder Lot bestehenden Haftschicht ein

Versagenskriterium.

Es kann auch die Charakteristik des Temperaturverhaltens der durch eine Haftschicht verbundenen Teile gemessen werden, wenn ein Prüfteilkörper, vorzugsweise beide, aus dem Material des zu prüfenden Teils besteht. In diesem Fall ist die Ermüdung des Materials des 65 Prüfteilkörpers, beispielsweise die Erweichung eines Thermoplasten, ein Versagenskriterium.

Die erfindungsgemäße Vorrichtung kann vorteilhaf-

terweise auch für den gezielten Spannungsabbau in Verbindungen angewendet werden. Für bestimmte Materialien, beispielsweise Haftschichten aus Lot in mikrooptischen Bauteilen, möchte man durch sog. Tempern die innere Spannung abbauen. Die Verformung bzw. Relaxation der Prüfteilkörper des Prüfteils ist hier ein Abbruchkriterium für den Temperprozeß.

Durch die erfindungsgemäße Vorrichtung ist vorteilhafterweise ein einfaches zerstörungsfreies Prüfverfahchen, daß zumindest ein Prüfteilkörper aus Material ei- 10 ren zur Qualitätskontrolle von Mikroverbindungen, beispielsweise Mikroklebungen und Mikrolötungen, bereitgestellt. Die einfache Bauweise des Prüfteils ermöglicht vorteilhafterweise den zusätzlichen Einbau zum eigentlichen zu prüfenden oder überwachenden Objekt mit der kritischen Verbindung. Somit kann durch eine indirekte Kontrolle eine Einzelstückprüfung durchgeführt werden. Das Prüfverfahren bietet sich besonders für temperaturbelastete Verbindungen und zu verbindende Teile an und ermöglicht die "in situ"-Messung von Materialermüdung und Versagen der Haftschichten.

Das erfindungsgemäße Prüfverfahren fügt bisher bekannten zerstörungsfreien Verfahren, bestehend aus Ultraschall- und/oder Röntgenverfahren und/oder Infrarotspektroskopie, mit denen Risse, Brüche, Lunkerbildung in Haftschichten aus Lot und/oder Klebstoff oder Ablösungen von Teilen diagnostiziert werden können, und aus dem Induktionsstromverfahren zum Detektieren von Materialinhomogenitäten in Metallen, insbesondere in Haftschichten aus Lot, vorteilhafterweise eine weitere Möglichkeit zum Prüfen und Überwachen

Die Erfindung wird in der nachfolgenden Beschreibung anhand der Figuren beispielhaft näher erläutert. Es zeigen, nicht maßstäblich und in schematischer Dar-

Fig. 1 in Seitenansicht zwei durch eine Haftschicht miteinander verbundene und daneben angeordnet ein Beispiel einer erfindungsgemäßen Vorrichtung,

Fig. 2 in Seitenansicht ein modifiziertes Beispiel einer

erfindungsgemäßen Vorrichtung

Fig. 3 einen etwas vergrößert dargestellten Querschnitt durch das Beispiel der erfindungsgemäßen Vorrichtung nach Fig. 1 längs der Schnittlinie II-II, und

Fig. 4 in perspektivischer schematischer Darstellung einen Nuten aufweisenden Endabschnitt eines Prüfteils

einer erfindungsgemäßen Vorrichtung.

Beim Beispiel nach Fig. 1 ist der Fall angenommen, daß ein Teil 1 und ein Teil 2 durch eine Haftschicht 3 miteinander verbunden sind und daß dieses Objekt durch das in der Nähe dieses Objekts angeordnete beispielhafte Prüfteil 4 geprüft und/oder überwacht werden soll

Das Prüfteil 4 besteht aus zwei Prüfteilkörpern 40, 40, die elastisch gebogen und durch zumindest eine Haftschicht 41 derart fest miteinander verbunden sind, daß der elastisch gebogene Zustand der beiden Prüfteilkörper 40, 40 von selbst aufrecht erhalten ist und eine Scherkraft in der Haftschicht 41 wirksam ist.

Speziell ist das Prüfteil 4 so ausgebildet, daß die beiden Prüfteilkörper 40, 40 in einer gemeinsamen Längsrichtung R langgestreckt und senkrecht zur Längsrichtung in der gleichen Biegerichtung r, in der Fig. 1 beispielsweise in der Richtung r nach links, elastisch gebogen sind.

Die dargestellte Orientierung des Prüfteils 4 ist keine notwendige. Es ist jede beliebige Orientierung des Prüfteils 4 zulässig, d.h., R und r können in jeder Richtung orientiert sein.

Auch ist es nicht notwendig, daß die Prüfteilkörper 40, 40 in der gemeinsamen Richtung R langgestreckt sind. Prinzipiell ist jede beliebige Form der beiden Prüfteilkörper 40 zulässig, wenn diese Form eine elastische Verbiegung zuläßt. Beispielsweise könnten die beiden Prüfteilkörper 40 in Richtung senkrecht zur Zeichenebene länger oder gleichlang ausgebildet sein, wie in der Richtung R. Die langgestreckte Ausbildung in der gemeinsamen Richtung R ist im Hinblick auf eine raumsparende kompakte Ausbildung des Prüfteils 4 vorteilhaft.

Überdies ist das Prüfteil 4 nach Fig. 1 speziell so ausgebildet, daß die Biegerichtung r die senkrecht zur Zeichenebene stehende Ebene E der die beiden Prüfteilkörper 40, 40 fest miteinander verbindenden Haftschicht 41 schneidet. Diese Ausbildung des Prüfteils 4 ist gegen- 15 über einer ebenfalls möglichen Ausbildung dieses Prüfteils 4, bei der die Biegerichtung parallel zur Ebene E der die beiden Prüfteilkörper 40, 40 fest verbindenden

Haftschicht ist, günstiger.

Überdies weisen beim Beispiel nach Fig. 1 die beiden 20 Prüfteilkörper 40, 40 im wesentlichen die gleiche Länge Lauf. Demgegenüber hat bei dem Prüfteil 4 nach Fig. 2, der beispielsweise rechte Prüfteilkörper 40 eine größere Länge L2 als der linke Prüfteilkörper 40, der die kleinere Länge L1 aufweist. Hier besteht der Vorteil, daß der 25 über den kürzeren Prüfteilkörper 40 überstehende Abschnitt des längeren Prüfteilkörpers 40 eine Veränderung im Prüfteil 40 deutlicher anzeigt und das Prüfteil 4 dadurch empfindlicher wird.

Bis auf die unterschiedlichen Längen L1 und L2 der 30 Prüfteilkörper 40, 40 unterscheidet sich das Prüfteil

nach Fig. 2 nicht von dem Prüfteil 4 nach Fig. 1.

Beim Beispiel nach den Fig. 1 und 2 sind die beiden Prüfteilkörper 40, 40 durch mehrere, speziell drei in der Längsrichtung R im Abstand b voneinander angeordnete Haftschichten 41 der jeweiligen Länge I fest miteinander verbunden, obgleich sich auch eine einzige Haftschicht 41 lückenlos über beispielsweise die ganze gemeinsame Länge der beiden Prüfteilkörper 40, 40 erstrecken könnte.

Die in einer Haftschicht 41 in der Längsrichtung R bzw. entgegengesetzt zu dieser Richtung R wirkende Scherkraft ist umso größer, desto näher sich die Haftschicht 41 an einem Ende 401 eines Prüfteilkörpers 40 befindet. Es ist deshalb zweckmäßig, wenn möglichst 45 nahe an jedem der beiden Enden 401 eines Prüfteilkörpers 40, der im Fall unterschiedlicher Längen der kürzere sein muß, je eine die beiden Prüfteilkörper 40, 40 fest miteinander verbindende Haftschicht 41 vorgesehen ist.

Der Abstand b kann ebenso wie die Länge I der Haftschichten 41 von Haftschicht 41 zu Haftschicht 41 unterschiedlich sein. Vorzugswiese weisen die Haftschichten 41 gleiche Länge I auf und überdies sind nicht nur im vorzugsweise äquidistant.

Obgleich prinzipiell verschiedene der mehreren Haftschichten 41 aus verschiedenen Materialien sein können, bestehen zweckmäßigerweise die mehreren Haftschich-

ten 41 aus dem gleichen Material.

Soll eines der beiden Teile 1 und 2, beispielsweise das Teil 1, geprüft und/oder überwacht werden, wobei in diesem Fall die Haftschicht 3 und das andere Teil 2 fehlen könnten, besteht zumindest ein Prüfteilkörper 40 des Prüfteils 4 aus Material dieses Teils 1. Das Material 65 des anderen Prüfteilkörpers 40 ist dann so auf das Material des einen Prüfteilkörpers 40 abzustimmen, daß eine Veränderung im Material Teils 1, die zugleich eine Veränderung in dem aus diesem Material bestehenden Prüfteilkörper 40 hervorruft, eine Verformung des Prüfteils 4 bewirkt, die im Beispielsfall eine Rückbiegung bzw. Relaxation des Prüfteils 4 ist . Zweckmäßig ist es, wenn beide Prüfteilkörper 40 aus dem Material des zu überprüfenden oder überwachenden Teils, hier des Teils 1, zu fertigen.

Soll dagegen die die beiden Teile 1 und 2 verbindende Haftschicht 3 geprüft und/oder überwacht werden, besteht eine die beiden Prüfteilkörper 40, 40 des Prüfteils 4 fest miteinander verbindende Haftschicht 41 aus dem Material Haftschicht 3. Tritt ein bedingtes Versagen der Haftschicht 3 auf, tritt dieses auch bei der unter gleichen Bedingungen stehenden Haftschicht 41 des gleichen Materials des Prüfteils 4 auf und das Prüfteil 4 verformt

sich, d. h., biegt sich zurück und wird gerader.

Ein Teil 1 oder 2 und die Teile 1, 2 verbindende Haftschicht 3 können mit einem Prüfteil 4 geprüft und/oder überwacht werden, bei dem zumindest ein Prüfteilkörper 40 aus Material eines Teils 1 oder 2 und eine die Prüfteilkörper 40, 40 fest miteinander verbindende Haftschicht 41 aus Material der Haftschicht 3 besteht.

Das Querprofil der Prüfteilkörper 40, 40 ist prinzipiell beliebig. Aus Festigkeitsgründen ist es jedoch günstig, wenn die beiden Prüfteilkörper 40, 40 einander gegenüberliegende Flachseiten 402 aufweisen, die durch eine Haftschicht 41 fest miteinander verbunden sind, so wie es in der Fig. 3 dargestellt ist. Bei diesem Beispiel weist jeder Prüfteilkörper 40 einen länglich rechteckförmigen Querschnitt mit einer dem anderen Prüfteilkörper 40 gegenüberliegenden und die Flachseite 402 des einen Prüfteilkörpers 40 definierenden langen Seite auf. Günstig ist es, wenn die parallel zur Flachseite 402 und senkrecht zur Längsrichtung R gemessene Breite b1 des Prüfteilkörpers 40 ebenso wie dessen senkrecht zur Flachseite 402 und Längsrichtung R gemessene Dicke dı klein im Vergleich zu dessen Länge L bzw. L1 gewählt ist, so daß der Prüfteilkörper 40 eine Leiste bildet.

Als Teile verbindende Haftschichten 3 kommen in erster Linie Klebstoffe und Lot in Frage. Entsprechend besteht eine die beiden Prüfteilkörper 40, 40 fest miteinander verbindende Haftschicht in erster Linie aus Kleb-

stoff 411 oder Lot 412 (siehe Fig. 4).

Zur Herstellung eines wirksamen Prüfteils 4, bei dem wesentlich ist, daß in einer Haftschicht 41 eine durch den elastisch gebogenen Zustand bedingte Scherkraft wirkt, wird im Falle einer Haftschicht 41 aus Klebstoff zweckmäßigerweise so vorgegangen, daß auf zumindest einen der beiden Prüfteilkörper 40, 40 flüssiger, härtbarer Klebstoff 41, aufgebracht wird und die beiden Prüfteilkörper 40, 40 zusammengebracht werden, so daß beide Prüfteilkörper 40, 40 mit dem dazwischen befindlichen flüssigen Klebstoff 411 in Kontakt stehen.

Danach werden die beiden Prüfteilkörper 40, 40 unter letztgenannten Fall gleicher Länge die Haftschichten 41 55 Beibehaltung des Kontakts mit dem Klebstoff 411 elastisch gebogen und der Klebstoff 411 unter Beibehaltung der elastischen Verbiegung der beiden Prüfteilkör-

per 40, 40 zur Haftschicht 41 gehärtet.

Dabei sollte darauf geachtet werden, daß während des Aushärtens des Klebstoffs noch keine Scherkräfte im Klebstoff auftreten. Dies kann durch eine möglichst gleichmäßige Härtung des Klebstoffs gewährleistet werden. Bei thermisch härtbaren Klebstoffen kann dies durch eine möglichst gleichmäßige Temperaturverteilung in den Prüfteilkörpern und der dazwischenliegenden Klebstoffschicht erreicht werden.

Wenn die Haftschicht 41 aus Lot 412 besteht, kann ähnlich vorgegangen werden. Auf zumindest einen der beiden Prüfteilkörper 40, 40 wird das Lot 41₂ aufgebracht und die beiden Prüfteilkörper 40, 40 zusammengebracht, so daß beide Prüfteilkörper 40, 40 mit dem dazwischenbefindlichen starren Lot 41₂ in Kontakt stehen. Das Aufbringen des Lots 41₂ kann beispielsweise durch Sputtern oder Bedampfen erfolgen.

Danach werden die beiden Prüfteilkörper 40, 40 unter Beibehaltung des Kontakts mit dem erstarrten Lot 41₂ elastisch gebogen und das Lot 41₂ wird unter Beibehaltung der elastischen Verbiegung der beiden Prüfteilkörper 40, 40 zur Bildung der Haftschicht 41 zum Schmel-

zen und erneuten Erstarren gebracht.

Auch hier gilt, daß während des Erstarrens des Lots 412 möglichst kleine Scherkräfte im Lot 412 auftreten, so daß die in der Haftschicht 41 zu erzeugenden Scherkräfte allein durch die elastische Verbiegung der Prüfteilkörper 40, 40 bedingt ist. Dies kann durch eine möglichst gleichmäßige Temperaturverteilung in den Prüfteilkörpern 40, 40 und im Lot 412 während des zum Erstarren erforderlichen Abkühlens des Lots 412 gewährleistet 20 werden.

In der Fig. 4 ist ein Endabschnitt eines Prüfteilkörpers 40 nach den Fig. 1 bis 3 dargestellt, der auf der dem anderen Prüfteilkörper 40 des Prüfteils 4 zugekehrten Seite 40₂ Abschnitte 40₄ aufweist, die durch Nuten 40₃ 25

voneinander getrennt sind.

Auf jeden dieser Abschnitte 404 kann Klebstoff 411 aufgebracht werden, der sich beim Zusammenbringen der beiden Prüfteilkörper 40, 40 des Prüfteils 4 über die ganze Fläche des Abschnitts 404 verteilt und danach 30 eine Klebstoffschicht 41 definierter Länge 1 bildet, die zur Haftschicht 41 der gleichen Länge ausgehärtet werden kann. Dadurch können vorteilhafterweise Haftschichten 41 genau definierter Länge 1 an genau definierter Stelle auf dem Prüfteilkörper 40 erzeugt werden. 35

Lot 41₂ kann beispielsweise durch Sputtern oder Aufdampfen auf die dem anderen Prüfteilkörper 40 des Prüfteils 4 zugekehrte Seite 40₂ des einen Prüfteilkör-

pers 40 aufgebracht werden.

Bei einem Ausführungsbeispiel bestanden die Prüfteilkörper 40, 40 aus Siliziumleisten mit einer Länge L von 50 mm, einer Breite b₁ von 2 mm und einer Dicke d₁ von 535 μm. Einer der beiden Prüfteilkörper 40 wies auf der dem anderen Prüfteilkörper zugekehrten flachen Seite 40₂ Nuten 40₃ mit einer Tiefe von etwa 70 μm und einem Abstand 1 von 500 μm auf. Die Haftschicht 41 bestand aus einem Klebstoff auf Epoxidharzbasis und wies eine Dicke d von 0,5 μm und eine Länge l von 500 μm auf.

Die Länge L eines Prüfteils sollte nicht unter 10 mm 50 liegen und die Länge I einer Haftschicht 41 sollte größer als 50 µm sein. Die Dicke d einer Haftschicht 41 sollte zwischen 0,1 µm und 100 µm liegen. Typische maximale Durchbiegungen D des Prüfteils 4 liegen zwischen

20 μm und 500 μm.

Patentansprüche

1. Vorrichtung zum Prüfen und/oder Überwachen von Teilen (1, 2) und/oder Teile (1, 2) verbindenden 60 Haftschichten (3), bestehend aus:

- einem Prüfteil (4), das

- den gleichen Bedingungen eines zu prüfenden oder über wachenden Teils (1, 2) oder einer zu prüfenden oder überwachenden Haftschicht (3) zu unterwerfen ist und aus
- zwei Prüfteilkörpern (40, 40) besteht, die
- elastisch gebogen und durch

- zumindest eine Haftschicht (41) derart fest miteinander verbunden sind, daß
- der elastisch gebogene Zustand der beiden Prüfteilkörper (40, 40) von selbst beibehalten ist und
- in der Haftschicht (41) eine durch den elastisch gebogenen Zustand bedingte Scherkraft wirkt.

2. Vorrichtung nach Anspruch 1 oder 2, wobei

- die beiden Prüfteilkörper (40, 40) in einer gemeinsamen Längsrichtung (R) langgestreckt und senkrecht zur Längsrichtung (R) in der gleichen Biegerichtung (r) elastisch gebogen sind, wobei
- die Biegerichtung (r) die Ebene (E) der die beiden Prüfteilkörper (40, 40) fest verbindenden Haftschicht (41) schneidet.
- 3. Vorrichtung nach Anspruch 2, wobei die beiden langgestreckten Prüfteilkörper (40, 40) im wesentlichen gleiche Länge (L) aufweisen.
- 4. Vorrichtung nach Anspruch 2, wobei einer (40) der beiden beiden langgestreckten Prüfteilkörper (40, 40) eine größere Länge (L2) als der andere Prüfteilkörper (40) aufweist.
- 5. Vorrichtung nach einem der Ansprüche 2 bis 4, wobei die beiden langgestreckten Prüfteilkörper (40, 40) durch zwei oder mehrere in der Längsrichtung (R) in einem Abstand (b) voneinander angeordnete Haftschichten (41) jeweils vorbestimmter Länge (1) fest miteinander verbunden sind.
- 6. Vorrichtung nach Anspruch 5, wobei an jedem der beiden Enden (40₁) eines Prüfteilkörpers (40) je eine die beiden Prüfteilkörper (40, 40) fest miteinander verbindende Haftschicht (41) vorgesehen ist. 7. Vorrichtung nach Anspruch 5 oder 6, wobei mehrere die beiden Prüfteilkörper (40, 40) fest miteinander verbindende Haftschichten (41) aus dem gleichen Material bestehen.
- 8. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei zumindest ein Prüfteilkörper (40) aus Material eines zu prüfenden oder überwachenden Teils (1, 2) besteht.
- 9. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei eine die beiden Prüfteilkörper (40, 40) fest miteinander verbindende Haftschicht (41) aus Material einer teileverbindenden Haftschicht (3) besteht.
- 10. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die beiden Prüfteilkörper (40, 40) einander gegenüberliegende Flachseiten (40₂) aufweisen, die durch eine Haftschicht (41) fest miteinander verbunden sind.
- 11. Vorrichtung nach Anspruch 10, wobei ein Prüfteilkörper (40) einen länglich rechteckförmigen Querschnitt mit einer dem anderen Prüfteilkörper (40) gegenüberliegenden und die Flachseite (40₂) des einen Prüfteilkörpers (40) definierenden langen Seite aufweist.
- 12. Vorrichtung nach einem-der vorhergehenden Ansprüche, wobei eine die beiden Prüfteilkörper (40, 40) fest miteinander verbindende Haftschicht (41) aus Klebstoff (41₁) besteht.
- 13. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei eine die beiden Prüfteilkörper (40, 40) fest miteinander verbindende Haftschicht (41) aus Lot (41₂) besteht.
- 14. Vorrichtung nach einem der vorhergehenden Ansprüche, insbesondere der Ansprüche 5 bis 8,

wobei ein Prüfteilkörper (40) eine dem anderen Prüfteilkörper (40) zugekehrte Seite (40₂) aufweist, die durch eine oder mehrere Nuten (40₃) voneinander getrennte Abschnitte (40₄) aufweist, deren jeder zur Aufnahme einer die beiden Prüfteilkörper (40, 40) fest miteinander verbindenden Haftschicht (41) dienen kann.

15. Verfahren zur Herstellung einer Vorrichtung nach Anspruch 12, wobei

— auf zumindest einen der beiden Prüfteilkörper (40, 40) flüssiger, härtbarer Klebstoff (41₁) aufgebracht wird,

— die beiden Prüfteilkörper (40, 40) zusammengebracht werden, so daß beide Prüfteilkörper (40, 40) mit dem dazwischen befindlichen Klebstoff (41₁) in Kontakt stehen,

— die beiden Prüfteilkörper (40, 40) unter Beibehaltung des Kontakts mit dem Klebstoff (41₁) elastisch gebogen werden, und

— der Klebstoff (41₁) unter Beibehaltung der 20 elastischen Verbiegung der beiden Prüfteilkörper (40, 40) zur Haftschicht (41) gehärtet wird.

16. Verfahren zur Herstellung einer Vorrichtung nach Anspruch 13, wobei

- auf zumindest einen der beiden Prüfteilkörper (40, 40) Lot (412) aufgebracht wird,

— die beiden Prüfteilkörper (40, 40) zusammengebracht werden, so daß beide Prüfteilkörper (40, 40) mit dem dazwischen befindlichen starren Lot (41₂) in Kontakt stehen,

— die beiden Prüfteilkörper (40, 40) unter Beibehaltung des Kontakts mit dem erstarrten Lot (412) elastisch gebogen werden, und

 das Lot (412) unter Beibehaltung der elastischen Verbiegung der beiden Prüfteilkörper (40, 40) zur Bildung der Haftschicht (41) zum Schmelzen und erneuten Erstarren gebracht wird.

17. Verfahren nach Anspruch 16 oder 17, wobei der 40 Klebstoff (41₁) oder das Lot (41₂) an einer oder mehren mit Abstand voneinander angeordnet vorgesehenen lokalen Stellen auf einen Prüfteilkörper (40) aufgebracht wird.

Hierzu 2 Seite(n) Zeichnungen

45

50

.

Nummer: int. Cl.⁶: Offenlegungstag: **DE 196 17 383 A1 G 01 N 19/04**6. November 1997

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 196 17 383 A1. G 01 N 19/04** 6. November 1997

