אלגברה לינארית (2) תשע"ט 2018-2019 *- סמסטר ב' -* תרגיל 4

הנחיות: כתבו את הפתרון בכתב יד ברור, בצירוף שם (פרטי ומשפחה) ומספר ת.ז. יש לציין כותרת ברורה בראש הדף הכוללת את שם הנחיות: כתבו את הפתרון, כאשר השאלות בסדר עולה, והגישו אלקטרונית באתר הקורס עד ל־ 10.4.19 בשעה 21:00.

1. עבור כל אחת מהמטריצות הבאות מצאו את הערכים העצמיים, בסיסים של המרחבים העצמיים וקבעו האם המטריצה לכסינה.

$$\begin{bmatrix} 4 & -2 & 2 \\ 0 & 0 & 0 \\ -4 & 2 & -2 \end{bmatrix} \in M_{3\times3}(\mathbb{R}) \text{ (a} \qquad \begin{bmatrix} -1 & 2 & -1 \\ -2 & 2 & -2 \\ 1 & -2 & 1 \end{bmatrix} \in M_{3\times3}(\mathbb{R}) \text{ (a} \qquad \begin{bmatrix} -2 & -2 & 2 \\ 3 & 3 & -2 \\ -1 & -1 & 2 \end{bmatrix} \in M_{3\times3}(\mathbb{R}) \text{ (b)}$$

- . $\lambda \in \{-1,0,1\}$ כך ש־ $A \in \{-1,0,1\}$ ויהי A ערך עצמי של A ויהי A ערך מידי $A \in M_{n \times n}(\mathbb{R})$ מונה (א). .2
 - $A^3=A$ כך שהערכים העצמיים שלה הם $A\in M_{2 imes 2}(\mathbb{R})$ כך מתונה (ב)
 - $A^3=A$ שהערכים העצמיים שלה הם $A\in M_{3 imes 3}(\mathbb{R})$ (ג) נתונה $A\in M_{3 imes 3}(\mathbb{R})$
 - $A^3=A$ לכסינה כך שהערכים העצמיים שלה הם 0,-1. האם בהכרח לכסינה כך לכסינה לכסינה אונה (ד)
- מורכב מוקטורים V מרחב וקטורי מעל השדה $T:V\to V$ ו" המורכב מוקטורים V מרחב וקטורי מעל השדה V ווער אופרטור לינארי. יהיו ווער אופרטור ווער אופרטור בי אם אופרטור ווער איידער אייד
 - באות: הבאות: הפריכו מהטענות הבאות: . $K \in M_{n \times n}(\mathbb{F})$ הפיכה מטריצה מטריצה .4
 - א) אם K לכסינה, אז K^{-1} לכסינה.
 - ב) אם $K+K^{-1}$ לכסינה, אז לכסינה K
 - . לכסינה, אז $K+K^{-1}$ ג) אם אם $K+K^{-1}$
 - . אופרטורים לינאריים $T,S \colon V \to V$ ויהיו , ויהיו מ"ו מ"ו מ"י היי אופרטורים מ"ו מ"ו מ"ו מ"ים. 5
 - - .ii נניח ש־ $S \circ T = T \circ S$.ii האם יתכן ש־ T לכסין.
 - . $S\circ T=T\circ S$ ש־ כך ש־ לינאריים לינאריים (ב) אופרטורים ויהיו ויהיו (ב) ויהיו עובר סופית), ויהיו לאו דווקא נוצר סופית), ויהיו
 - . יהי λ ערך עצמי של T ונסמן ב־ $V_{T,\lambda}$ את תת המרחב העצמי השייך לו. הוכיחו ש־ $V_{T,\lambda}$ הוא הוא $V_{T,\lambda}$.i
 - $ec{v}$ אשייך עצמי של $ec{v}$ בהכרח וקטור עצמי של יהי אייך לערך עצמי של יהי $ec{v} \in V$ יהי .ii
 - :6. נגדיר סדרה על ידי על רקורסיבי באופן טבעיים טבעיים של מספרה אידי סדרה נגדיר סדרה של מספרים אל מספרים .6

$$F_0 = 0$$
 , $F_1 = 1$, $F_{n+2} = F_n + F_{n+1}$

הסדרה הזו תוארה לראשונה בספר "Liber Abaci" ("ספר החישובים") משנת 1202 שכתב לאונרדו מפיזה הידוע בכינוי "פיבונאצ'י", ונקראת לרוב "סדרת פיבונאצ'י". האיברים הראשונים של הסדרה הם:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

 $:F_n$ בתרגיל זה נמצא נוסחה מפורשת עבור

- . $\psi=rac{1-\sqrt{5}}{2}$ ה בדירו את המטריצה המתאימה לסדרה F_n , והראו שהערכים העצמיים שלה ה $\phi=rac{1+\sqrt{5}}{2}$ המטריצה המתאימה לסדרה והראו
 - . $\phi\psi=-1$ ו־ $\phi-\psi=\sqrt{5}$, $\psi=1-\phi$ הראו שהמספרים את הקיימים את היחסים הבאים: (ב)

.
$$F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$$
 הראו שי