## Bölüm 2 Matematik Dili



### Kümeler

- □ Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir
- □ Kümenin elemanları element olarak adlandırılır
- □ Kümeler nasıl gösterilir
  - Liste şeklinde
    - □ Örnek: A = {1,3,5,7}
  - Tanım şeklinde
    - □ Örnek: B =  $\{x \mid x = 2k + 1, 0 \le k \le 3\}$

# Sonlu ve Sonsuz Kümeler (Finite and İnfinite Sets)

- □ Sonlu kümeler (Finite sets)
  - Örnekler:
    - $\triangle$  A = {1, 2, 3, 4}
    - $\square$  B = {x | x is an integer,  $1 \le x \le 4$ }
- □ Sonsuz kümeler (Infinite sets)
  - □ Örnekler:
    - □ Z = {integers} = {..., -3, -2, -1, 0, 1, 2, 3,...}
    - □  $S=\{x \mid x \text{ is a real number and } 1 \le x \le 4\} = [0, 4]$

#### Bazı önemli kümeler

- Boş küme (*empty* set  $\varnothing$  veya { }), elemanı olmayan küme

  Note:  $\varnothing \neq \{\varnothing\}$ null set veya void set adını da alırlar
- □ Evrensel küme (Universal set): Bahsettiğimiz guruptaki bütün elemanları içine alır
- □ Örnekler:
  - U = {all natural numbers}
  - U = {all real numbers}
  - $U = \{x \mid x \text{ is a natural number and } 1 \le x \le 10\}$

### Cardinality

- □ Bir A kümesinin cardinatilty si o A kümesinin eleman sayısıdır. |A| olarak gösterilir
- □ Örnekler:

```
If A = \{1, 2, 3\} then |A| = 3
If B = \{x \mid x \text{ is a natural number and } 1 \le x \le 9\}
then |B| = 9
```

- □ Sonsuz (Infinite) cardinality
  - Sayılabilir (Countable) (örnek, natural numbers, integers)
  - Sayılamayan (Uncountable) (örnek, real numbers)

If S = 
$$\{1,2,3\}$$
 |S| = 3.  
If S =  $\{3,3,3,3,3,3\}$  |S| = 1.  
If S =  $\emptyset$  |S| = 0.  
If S =  $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$  |S| = 3.  
If S =  $\{0,1,2,3,...\}$ , |S| is infinite. more on this later

# Altkümeler (Subsets)

■ Eğer **X** kümesinin bütün elemanları **Y** kümesi içerisinde yer alıyorsa **X**'e **Y** kümesinin bir alt (*subset*) kümesidir denir

(in symbols  $X \subseteq Y$ )

- □ E*şitlik(Equality)*: X = Y if  $X \subseteq Y$  and  $Y \subseteq X$
- Eğer X kümesi, Y kümesinin bir alt kümesi iken Y kümesi, X kümesinin bir alt kümesi değilse (x#y); X kümesi, Y kümesinin bir öz-alt kümesidir (proper subset) denir
- $\square$  if  $X \subseteq Y$  but  $Y \not\subset X$ 
  - Gözlem: Ø her kümenin bir alt kümesidir

 $x \in S$  means "x is an element of set S."  $x \notin S$  means "x is not an element of set S."

X & O Modilo X io not an element of set o

 $A \subseteq B$  means "A is a subset of B."

or, "B contains A."
or, "every element of A is also in B."

or,  $\forall x ((x \in A) \rightarrow (x \in B)).$ 



Venn Diagram

#### Power set

- X kümesinin power set 'i, X kümesinin bütün alt kümelerinin kümesi olup, P(X) ile gösterilir
  - $P(X) = \{A \mid A \subseteq X\}$
  - Örnek: if  $X = \{1, 2, 3\}$ , then  $P(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- □ Theorem: If |X| = n, then  $|P(X)| = 2^n$

If S is a set, then the power set of S is  $2^{5} = \{ x : x \subseteq S \}.$ 

If 
$$S = \{a\}$$
  $2^{S} = \{\emptyset, \{a\}\}.$ 

If 
$$S = \{a,b\}$$
  $2^{S} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$ 

If 
$$S = \emptyset$$
  $2^S = \{\emptyset\}$ .

If 
$$S = \{\emptyset, \{\emptyset\}\}\$$
  $2^{S} = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}.$ 

Fact: if S is finite,  $|2^{S}| = 2^{|S|}$ . (if |S| = n,  $|2^{S}| = 2^{n}$ )

## Venn şemaları (diagrams)



- □ Bir venn şeması verilen iki kümenin grafik olarak gösterilimini sağlar
- □ Bir kümenin birleşimi(union), kesişimi (intersection), farkı (difference), simetrik farkı (symmetric difference) ve tümleyeni (complement) tanımlanabilir

# Küme İşlemleri (Set operations): Birleşim (Union)

X ve Y verilen iki küme olsun

□ X ve Y kümesinin birleşimi (union)

$$X \cup Y = \{ x \mid x \in X \text{ or } x \in Y \}$$



If X = {Ayşe, Lale, Zeynep},
 and Y = {Lale, Deniz}, then
 X ∪ Y = {Ayşe, Lale, Zeynep, Deniz}

#### Küme İşlemleri (Set operations): Kesişim (Intersection)

X ve Y verilen iki küme olsun

□ X ve Y kümesinin kesişimi (intersection)

$$X \cap Y = \{ x \mid x \in X \text{ and } x \in Y \}$$



If  $X = \{Ay\$e, Lale, Zeynep\}$ , and  $Y = \{Lale, Deniz\}$ , then  $X \cap Y = \{Lale\}$ 

X ve Y verilen iki küme olsun

■ X ve Y gibi iki kümenin kesişimi boş küme ise X ve Y kümeleri ayrık (disjoint-pairwise) kümeler olarak adlandırılır

if 
$$X \cap Y = \emptyset$$



If  $X = \{z : z \text{ rekt\"{o}}\text{rd\"{u}}r\}$ , and  $Y = \{z : z \text{ bu} \text{ sinifta oturuyor}\}$ , then

 $X \cap Y = \{z : z \text{ bu sınıfta oturan bir rektördür}\} = \emptyset$ 

## Tümleyen

Bir X kümesinin Tümleyeni:

$$X = \{ z : z \notin X \}$$

If  $X = \{z : z \text{ uzun boyludur}\}$ , then

 $X = \{z : z \text{ uzun boylu değildir.}\}$ 



$$\overline{\varnothing} = U$$
ve
 $\overline{U} = \varnothing$ 

# İki KümeninFarkı (Difference)

□ İki kümenin farkı

$$X - Y = \{ x \mid x \in X \text{ and } x \notin Y \}$$

Fark(difference), **X** kümesine göre **Y**nin göreceli tümleyeni (relative complement ) olarak da adlandırılır



□ Simetrik Fark (Symmetric difference)

$$X \oplus Y = (X - Y) \cup (Y - X)$$

like "exclusive or"

 $X \oplus Y = \{ z : (z \in X \land z \notin Y) \lor (z \in Y \land z \notin X) \}$ 



□ Evrensel küme (universal set ) içerisinde yer alan A kümesinin tümleyeni (complement) A<sup>c</sup> = U – A şeklinde gösterilir

Sembolü Ac = U - A



# Küme işlemlerinin özellikleri (1)

<u>Theorem</u>: U, evrensel bir küme; A, B ve C evrensel kümenin bir alt kümesi olduğunda aşağıdaki özellikler mevcuttur

- a) Birleşim(Associativity):  $(A \cup B) \cup C = A \cup (B \cup C)$ 
  - $(A \cap B) \cap C = A \cap (B \cap C)$
- b) Değişim(Commutativity):  $A \cup B = B \cup A$ 
  - $\mathsf{A} \cap \mathsf{B} = \mathsf{B} \cap \mathsf{A}$

# Küme işlemlerinin özellikleri(2)

c) Dağılma (Distributive):

$$A {\cap} (B {\cup} C) = (A {\cap} B) {\cup} (A {\cap} C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

d) Özdeşlik (Identity):

$$A \cap U = A$$

$$A \cup \emptyset = A$$

e) Tümleyeni(Complement):

$$A \cup A^c = U$$

$$A \cap A^c = \emptyset$$

# Küme işlemlerinin özellikleri(3)

f) Idempotent:

$$A \cup A = A$$

$$A \cap A = A$$

g) Bound laws:

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

h) İçine alma (Absorption):

$$A \cup (A \cap B) = A$$

$$A \cup (A \cap B) = A$$
  $A \cap (A \cup B) = A$ 

# Küme işlemlerinin özellikleri(4)

- i) Gerektirme (Involution):  $(A^c)^c = A$
- j) 0/1 kanunu:  $\emptyset^c = U$   $U^c = \emptyset$
- k) Kümeler için De Morgan:

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

# Kartezyen Çarpım (Cartesian Product)

Verilen iki kümenin kartezyen çarpımı (cartesian product)

$$A \times B = \{(a,b) \mid a \in A \land b \in B \}$$
  
şeklinde gösterilir

- $\Box$  A x B  $\neq$  B x A
- □ | A x B | = | A | . | B |

If A = {Celal, Lale, Lamia}, and B = {Banu, Vedat}, then

A x B = {<Celal, Banu>, <Lale, Banu>, <Lamia,
Banu>, <Celal, Vedat>, <Lale, Vedat>, <Lamia,
Vedat>}

# Genelleştirilmiş birleşim ve kesişim

- $\begin{array}{ll} & \textbf{A}_1, \, \textbf{A}_2, \, \textbf{A}_3, ..., \textbf{A}_n \, \text{k\"umelerinin birleşimi} \\ & \textbf{A}_1 \cup \, \textbf{A}_2 \cup \, \textbf{A}_3 \cup, ..., \textbf{A}_n = \, \sum_{i=1}^n A_i \end{array}$
- Birleşim ve Kesişim kümelerinin eleman sayısı  $s(A \cup B) = s(A) + s(B) s(A \cap B)$

#### Örnek:

Bilgisayar Bilimlerinde 217 öğrenci var.

157 kişi cs125 kodlu dersi alıyor. 145 kişi cs173 kodlu dersi alıyor. 98 kişi her iki derside alıyor.



Kaç kişi her iki dersi de almıyor?

#### Farzedelim:

Bilmek istiyorum | A U B U C |



$$|A \cup B \cup C| = |A| + |B| + |C|$$
  
-  $|A \cap B| - |A \cap C| - |B \cap C|$   
+  $|A \cap B \cap C|$ 

#### Bit stringleri ile küme işlemleri

Örnek:. If U =  $\{x_1, x_2, x_3, x_4, x_5, x_6\}$ ,

 $A = \{x_1, x_3, x_5, x_6\}, \text{ ve B} = \{x_2, x_3, x_6\},$ 

 ${\it A} \cup {\it B}$  ve  ${\it A} \cap {\it B}$  bulmak istediğimizde...

|              | Α          | 1 | 0 | 1 | 0 | 1 | 1 |   |
|--------------|------------|---|---|---|---|---|---|---|
|              | В          | 0 | 1 | 1 | 0 | 0 | 1 |   |
| Bit-wise OR  |            |   |   |   |   |   |   | • |
| Bit-wise AND | $A \cap B$ | 0 | 0 | 1 | 0 | 0 | 1 |   |

# Düzenli Seriler ve Dizgiler (Sequences and Strings)

 Düzenli Dizi (sequence) Sıralı bir listeyi göstermek için kullanılan ayrık yapıya denir. N elemanlı bir dizinin gösterilimi

 $s_n = n$ 'nin bir fonksiyonu olup n = 1, 2, 3,...

- □ Eğer s sıralı bir diziyse  $\{s_n | n = 1, 2, 3, ...\}$ ,
  - s₁ birinci elemanı gösterir,
  - s₂ ikinci elemanı gösterir,...
  - s<sub>n</sub> n. elemanı gösterir...
- {n} düzenli bir serinin indeksidir. N doğal sayılardan oluşur veya bu kümenin sonlu bir alt kümesidir

#### Düzenli serilere (sequences) örnek

#### Örnekler:

1.  $s = \{s_n\}$  aşağıdaki gibi tanımlanmış olsun

$$s_n = 1/n$$
, for  $n = 1, 2, 3,...$ 

Sequence'ın ilk birkaç elementi: 1, ½, 1/3, ¼, 1/5,1/6,...

2.  $s = \{s_n\}$  aşağıdaki gibi tanımlanmış olsun

$$s_n = n^2 + 1$$
, for  $n = 1, 2, 3,...$ 

Sequence'ın ilk birkaç elementi : 2, 5, 10, 17, 26, 37, 50,...

# Artan ve Azalan Diziler (Increasing and Decreasing)

 $s = \{s_n\}$  için aşağıdakiler söylenebilir

- *increasing* if  $s_n \le s_{n+1}$
- decreasing is  $s_n \ge s_{n+1}$ , for every n = 1, 2, 3,...

#### Örnekler:

- $S_n = 4 2n$ , n = 1, 2, 3,... azalan: 2, 0, -2, -4, -6,...
- $S_n = 2n 1, n = 1, 2, 3,...$  artan: 1, 3, 5, 7, 9, ...

### Düzenli altseriler (Subsequences)

- Bir s sequence'ının s = {s<sub>n</sub>}, alt sequence'ı t = {t<sub>n</sub>} ile gösterilir ve sıralama düzeni aynı kalmak şartıyla s sequence'ının elemanlarından elde edilir
  - Örnek:  $s = \{s_n = n \mid n = 1, 2, 3,...\}$ 
    - **1**, 2, 3, 4, 5, 6, 7, 8,...
  - $= t = \{t_n = 2n \mid n = 1, 2, 3, ...\}$ 
    - **2**, 4, 6, 8, 10, 12, 14, 16,...
    - □ t, s'nin bir düzenli altserisidir (Subsequences)

# Toplam (Sigma) gösterilimi

□ Eğer {a<sub>n</sub>} bir sequence ise, bu sequence'ın toplamı

$$\sum_{k=1}^{m} a_{k} = a_{1} + a_{2} + \dots + a_{m}$$

Bu toplam gösterilimi (sigma notation), olup Yunan alfabesindeki  $\Sigma$  ile gösterilir

# Çarpım (Pi) gösterilimi

□ Eğer {a<sub>n</sub>} bir sequence ise, bu sequence'ın çarpımı

$$\prod_{k=1}^{m} a_k = a_1 a_2 \dots a_m$$

Bu çarpım gösterilimi (pi notation), olup Yunan alfabesindeki  $\Pi$  ile gösterilir

### Dizgi-Katar (String)

- □ X sonlu elemanlardan oluşan bir küme olsun
  - Örnek: if X = {a, b, c}
  - $\alpha$  = bbaccc **X** kümesi üzerinden tanımlanmış olsun
  - Gösterilim: bbaccc = b²ac³
  - $\alpha$  string'inin uzunluğu (*length*)  $\alpha$  string'inin eleman sayısını verir ve  $|\alpha|$  ile gösterilir.
  - Eğer  $\alpha = b^2ac^3$  ise  $|\alpha| = 6$ .
- Eğer bir string eleman içermiyorsa boş string (null string) adını alır ve Yunan alfabesindeki λ (lambda) ile gösterilir

- $\square$  X\* = {all strings over X dahil  $\lambda$ }
- $\square$  X<sup>+</sup> = X\* { $\lambda$ }, the set of all non-null strings
- α ve β gibi iki string'in birleşimi (*concatenation*), α ve arkasına β'nın eklenmesiyle elde edilen α β string'i şeklindedir.
- □ Örnek:  $\alpha$  = bbaccc ve  $\beta$  = caaba,  $\alpha\beta$  = bbaccccaaba = b²ac⁴a²ba Kısaca,  $|\alpha\beta| = |\alpha| + |\beta|$

#### Sayı Sistemleri (Number systems)

- □ İkili (Binary) sayılar: 0 ve 1, bits adını alır.
- □ Binary (base 2), hexadecimal (base 16) ve octal (base 8) sayı sistemleri

#### Decimal(base 10) sistem:

Örnek: 45,238

| 8 | bir    | 8 x 1 =     | 8     |
|---|--------|-------------|-------|
| 3 | on     | 3 x 10 =    | 30    |
| 2 | yüz    | 2 x 100 =   | 200   |
| 5 | bin    | 5 x 1000 =  | 5000  |
| 4 | on bin | 4 x 10000 = | 40000 |

# İkili (Binary) sayı sistemi

- □ Binary'den decimal'a:
- □ İki tabanındaki sayı 1101011 olsun
  - $1 \times 2^0 =$ 1 bir 1 1 iki  $1x2^{1} =$ 2  $0x2^2 =$ 0 dört 0  $1x2^3 =$ 1 sekiz 8  $0x2^4 =$ ■ 0 on-altı 0  $1x2^5 =$ 32 1 otuz-iki 1 almış-dört  $1x2^6 =$ 64 107 (taban 10)

# Decimal'den binary'e

- □ Decimal sayı 73<sub>10</sub> olsun
  - 73 = 2 x 36 + kalan <u>1</u>
  - 36 = 2 x 18 + kalan <u>0</u>
  - 18 = 2 x 9 + kalan <u>0</u>
  - 9 = 2 x 4 + kalan <u>1</u>
  - = 4 = 2 x 2 + kalan <u>0</u>
  - $2 = 2 \times 1 + kalan 0$

$$\Rightarrow$$
 73<sub>10</sub> = 1001001<sub>2</sub>

(kalanlar ters sırada yazılır)

# İkili (Binary) toplama (addition) tablosu

| $\oplus$ | 0 | 1  |
|----------|---|----|
| 0        | 0 | 1  |
| 1        | 1 | 10 |

# İkili (binary) sayılarda toplama

# Hexadecimal sayı sistemi

| Decimal sistem     |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |
|--------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α  | В  | O  | D  | Е  | F  |
| Hexadecimal sistem |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |

### Hexadecimal'den decimal'e

□ Hexadecimal sayımız 3A0B<sub>16</sub> olsun

$$11 \times 16^{0} = 11 \\
0 \times 16^{1} = 0 \\
10 \times 16^{2} = 2560 \\
3 \times 16^{3} = 12288 \\
14859_{10}$$

### Decimal'den hexadecimal'e

Verilen sayı 2345<sub>10</sub> olsun

$$2345 = 146x16 + remainder 9$$
  
 $146 = 9x16 + remainder 2$ 

$$2345_{10} = 929_{16}$$

## Hexadecimal sayılarda toplam

Toplam 
$$23A_{16} + 8F_{16}$$

$$23A_{16} + 8F_{16}$$

$$2C9_{16}$$

### Bağıntılar (Relations)

- X ve Y verilen iki küme olsun, bunların Kartezyen
   Çarpımı (Cartesian Product) Xx Y olup, (x,y) çiftlerinden
   oluşur, x∈X ve y∈Y
  - $XxY = \{(x, y) \mid x \in X \text{ and } y \in Y\}$
- □ **R**, XxY kartezyen çarpımının bir alt kümesi olup, X'den Y'ye, bir *ikili bağıntı* (*binary relation*) olarak verilmiş olsun
  - Örnek: X = {1, 2, 3} ve Y = {a, b}
  - $= R = \{(1,a), (1,b), (2,b), (3,a)\} X \text{ ve } Y \text{ arasında bir bağıntıdır}$

# Tanım ve Değer Kümesi (Domain and Range)

X'den Y'ye verilen bir R bağıntısında,

- □ R'nin tanım kümesi (domain)  $Dom(R) = \{ x \in X \mid (x, y) \in R \text{ for some } y \in Y \}$
- □ R'nin değer kümesi (range) Rng(R) = { y∈ Y | (x, y) ∈ R for some x ∈ X}
- □ Örnek:
  - $X = \{1, 2, 3\} \text{ ve } Y = \{a, b\}$
  - $\blacksquare$   $R = \{(1,a), (1,b), (2,b)\}$
  - Dom(R)= {1, 2}, Rng(R) = {a, b}

### Bağıntılara örnek

- $\square$  X = {1, 2, 3} ve Y = {a, b, c, d}
- $\square$   $R = \{(1,a), (1,d), (2,a), (2,b), (2,c)\}$
- □ Verilen bağıntıyı graf kullanarak çizersek:



### Bağıntıların özellikleri

- R, A kümesi üzerinde bir bağıntı olsun Örnek: R, AxA kartezyen çarpımının bir alt kümesi
- □ A relation  $\mathbf{R}$  on a set  $\mathbf{A}$  is called  $\mathbf{reflexive}$  ( $\mathbf{yansıma}$ ) if  $(\mathbf{x}, \mathbf{x}) \in \mathbf{R}$  for every element  $\mathbf{x} \in \mathbf{A}$ .
- □ A relation  $\mathbf{R}$  on a set  $\mathbf{A}$  is called **nonreflexive** if  $(x,x) \notin \mathbb{R}$  for some element  $x \in \mathbf{A}$ .
- □ A relation  $\mathbf{R}$  on a set  $\mathbf{A}$  is called *irreflexive* if  $(x,x) \notin R$  for every element  $x \in \mathbf{A}$ .

□ A relation **R** on a set **A** is called *symmetric* (*simetrik*)

if  $[(y,x) \in R$  whenever  $(x,y) \in R]$  or

 $[(y,x) \notin R \text{ whenever } (x,y) \notin R] \text{ or }$ 

(x=y), for  $x,y \in A$ .

■ A relation **R** on a set **A** such that  $(x,y) \in R$  and  $(y,x) \in R$  only if x=y, for  $x,y \in A$ , is called **antisymmetric** (antisimetrik).

□ A relation **R** on a set **A** is called *transitive* (*geçişkenlik*) if whenever  $(x,y) \in R$  and  $(y,z) \in R$  then  $(x,z) \in R$ , for  $x,y,z \in A$ 

**Örnek:** if  $a=b^2$ ,  $(a,b) \in R$   $A=\{1,2,3,4\}$ 

İlgili bağıntıyı yazınız ve hangi özelliklerin mevcut olduğunu söyleyiniz.

 $R = \{(1,1),(4,2)\}$ 

Reflexive Yok Transitive Var

Nonreflexive Var Irreflexive Yok

Symmetric Yok A={ } Transitive ? EVET

Antisymmetric Var

## Bağıntının tersi

Xden Yye bir R bağıntısı verilmiş olsun, bu bağıntının *tersi (inversi)* Yden Xe olup  $R^{-1}$  ile gösterilir

# Bağıntının Bileşkesi(Composition)

□ Tanım

 $R^1 = R$ 

 $R^2 = R \circ R$ 

 $R^3 = R^2 \circ R$ 

.....

 $R^n = R^{n-1} \circ R$ 

Örnek:  $R=\{(1,1), (2,1), (3,2), (4,3)\}$  için  $R^2$  ve  $R^3$  bulunuz.

 $R^2 = R \circ R = \{(1,1)(2,1)(3,1)(4,2)\}$ 

 $R^3 = R^2 \circ R = \{(1,1)(2,1)(3,1)(4,1)\}$ 

```
A={1,2,3,4}

{(2,2)(2,3)(2,4)(3,2)(3,3)(3,4)} NR,NS,NAS,T

{(1,1)(1,2)(2,1)(2,2)(3,3)(4,4)} R,S,NAS,T

{(2,4)(4,2)} IR,S,NAS,NT

{(1,2)(2,3)(3,4)} IR,NS,AS,NT

{(1,1)(2,2)(3,3)(4,4)} R,S,AS,T

{(1,3)(1,4)(2,3)(2,4)(3,1)(3,4)} IR,NS,NAS,NT
```

## Denklik Bağıntısı (Equivalence Relation)

X bir küme, R'de X üzerindeki bir bağıntı olsun

 □ R bağıntısı üzerinde reflexive, symmetric ve transitive özellikleri mevcut ise bu bir denklik bağıntısı (equivalence relation) olup X ⇔ R şeklinde gösterilir ■ Örnek:  $X = \{\text{integers}\}\ \text{ve }X\ \text{kümesi üzerinde tanımlı olan}$  R bağıntısı da  $xRy \Leftrightarrow x - y = 5$  olarak verilsin. R'nin *equivalence relation* olup olmadığını gösteriniz.

 $X = \{1,6\}$  $R = \{(6,1)\}$ 

Irreflexive

Antisymmetric

Transitive

Denklik Bağıntısı değildir.

#### Örnek:

$$\begin{split} X &= \{1,2,3,4,5,6\} \\ R &= \{(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)(2,2)(2,6)(6,2)(6,6) \\ (4,4)\} \end{split}$$

**EQUIVALENCE RELATION?** 

**EVET** 

Reflexive - Symmetric - Transitive

# Sıralama Bağıntısı (Partial Order Relation)

X bir küme, R'de X üzerindeki bir bağıntı olsun

- R bağıntısı üzerinde reflexive, antisymmetric ve transitive özellikleri mevcut ise bu bir sıralama bağıntısı (partial order relation) dır
- □ Hasse Diyagramları (partial order öz.)

#### Örnek:

R: if x divides y  $(x,y) \in R$  A={1,2,3,4}  $x,y \in A$ 

 $R = \{(1,1)(1,2)(1,3)(1,4)(2,2)(2,4)(3,3)(4,4)\}$ 

PARTIAL ORDER?

**EVET** 

Reflexive - Antisymmetric - Transitive

#### Hasse Diyagramları

Sıralama Bağıntısı Özelliğini Sağlarlar

# Kapalılık (Closure)

□ Verilmiş olan bağıntı üzerinde reflexive, symmetric ve transitive özellikleri mevcut değilse bağıntının bu özelliklere sahip olabilmesini sağlama işlemidir.

- Transitive closure
- Warshall algoritması (by Stephen Warshall)

#### Warshall algoritması

```
procedure \ warshall \\ W=M_R \\ for \ k=1,n \\ for \ i=1,n \\ for \ j=1,n \\ W_{ij}=W_{ij} \ V \ (W_{ik} \ \Lambda \ W_{kj}) \\ end \\ end \\ end \\ end
```

## Matris Bağıntıları

- □ X ve Y bir küme, R'de X'den Y'ye bir bağıntı olsun. Aşağıdaki bağıntılardan matris A = (a<sub>ii</sub>) yazılır
  - X kümesinin elemanları, A matrisinin satırlarını oluşturur
  - Y kümesinin elemanları, A matrisinin kolonlarını oluşturur
  - i. satırdaki X'in elemanları ile j. kolondaki Y'nin elemanları birbirleriyle ilişkili değilse, a<sub>i,j</sub> = 0 dır
  - i. satırdaki X'in elemanları ile j. kolondaki Y'nin elemanları birbirleriyle ilişkili ise, a<sub>i,i</sub> = 1 dir

# Matris bağıntıları (1)

Örnek:

$$X = \{1, 2, 3\}, Y = \{a, b, c, d\}$$
  
 $R = \{(1,a), (1,d), (2,a), (2,b), (2,c)\}$ 

R bağıntısının matrisi:

# Matris Bağıntıları (2)

■ Eğer R bağıntısı, X kümesinden X kümesine ise bu bağıntının matrisi bir kare matristir Örnek:

$$X = \{a, b, c, d\} \text{ ve } R = \{(a,a), (b,b), (c,c), (d,d)\}$$

**A** =

|   | а | b | С | d |
|---|---|---|---|---|
| а | 1 | 0 | 0 | 0 |
| b | 0 | 1 | 0 | 0 |
| С | 0 | 0 | 1 | 0 |
| d | 0 | 0 | 0 | 1 |

## Fonksiyonlar (Functions)

- □ Fonksiyon bağıntının özel bir şeklidir.
- □ Bir f fonksiyonunun, X'den Y'ye bir bağıntısı olsun (f: X → Y)
   Let A and B are sets. A function f from A to B is an assignment of exactly one element of B to each element of A.
- X'e f nin tanım kümesi (domain)Dom(f) = X
- - Örnek:
    Dom(f) = X = {a, b, c, d},
    Rng(f) = Y = {1, 3, 5}

Rng(f) =  $Y = \{1, 3, 5\}$ f(a) = f(b) = 3, f(c) = 5, f(d) = 1



X=Dom(f) Y=Rng(f)

```
f_1(x)=x^2 f_2(x)=x-x^2

f_1+f_2=? x^2+x-x^2=x

f_1*f_2=? x^2(x-x^2)=x^3-x^4

X=\{1,2,3\} Y=\{a,b,c\}

R=\{(1,a)(2,b)(3,a)\} Bir fonksiyon mudur ? EVET

X=\{1,2,3\} Y=\{a,b,c\}

R=\{(1,a)(2,b)(3,c)(1,b)\} Bir fonksiyon mudur ? HAYIR
```

# Bire-Bir Fonksiyonlar (One-to-one functions-injective)

- □ Bir fonksiyon  $f: X \to Y$  bire-bir (*one-to-one*)  $\Leftrightarrow$  her  $y \in Y$  sadece bir  $x \in X$  değerine karşılık gelir.
- □ Alternatif tanım:  $f: X \to Y$ , one-to-one  $\Leftrightarrow X$  kümesindeki her x değeri  $x_1, x_2 \in X$ , Y kümesindeki  $y_1, y_2 \in Y$  gibi farklı iki değere karşılık gelir.  $f(x_1) = y_1$  ve  $f(x_2) = y_2$  gibi Örnekler:
  - 1.  $f(x) = 2^x$  (from the set of real numbers to itself) one-to-one
  - 2. f :  $R \rightarrow R$  defined by  $f(x) = x^2$  <u>not</u> one-to-one çünkü for every real number x, f(x) = f(-x).

# Örten Fonksiyonlar (Onto functions-surjective)

Bir fonksiyon f :  $X \rightarrow Y$  *örten* (*onto*)  $\Leftrightarrow$ 

Her  $y \in Y$  için en az bir tane  $x \in X$  mevcuttur

# Bijective Fonksiyonlar

Bir fonksiyon f :  $X \rightarrow Y$  bijective  $\Leftrightarrow$  fonksiyonu one-to-one ve onto'dur

- Örnekler:
  - 1. Lineer bir fonksiyon f(x) = ax + b bijective fonksiyondur (from the set of real numbers to itself)
  - 2. Bir  $f(x) = x^3$  bijective fonksiyondur (from the set of real numbers to itself)



# Ters Fonksiyon (Inverse function)

- □ y = f(x) fonksiyonunun tersi(inverse)  $f^{-1}$  olup  $\{(y, x) \mid y = f(x)\}$  olarak sembolize edilir.
- □ f -1 in bir fonksiyon olması gerekmez
  - Örnek: if  $f(x) = x^2$ , then  $f^{-1}(4) = \sqrt{4} = \pm 2$ , tek bir değer olmadığından tersi bir fonksiyon değildir
- Eğer bir fonksiyon bijective (*onto ve one to one*) ise tersi de bir fonksiyondur

```
f=\{(1,a)(2,c)(3,b)\} \qquad f^{1}=? \qquad f^{1}=\{(a,1)(c,2)(b,3)\}
f(x)=x+1 \qquad f^{1}=? \qquad f^{1}=x-1
```

### Fonksiyonların Bileşkesi

□ Verilen iki fonksiyon  $g: X \to Y$  ve  $f: Y \to Z$  olup, bileşkesi  $f \circ g$  aşağıdaki gibi tanımlanır

$$f \circ g(x) = f(g(x))$$
 for every  $x \in X$ .

- □ Örnek:  $g(x) = x^2 1$ , f(x) = 3x + 5. Then  $f \circ g(x) = f(g(x)) = 3(x^2 1) + 5 = (3x^2 + 2)$
- □ Fonksiyon bileşkesinde birleşim öz.:

$$f \circ (g \circ h) = (f \circ g) \circ h,$$

□ Fakat değişme özelliği yoktur:

$$f \circ g \neq g \circ f$$
.

# Üstel ve Logaritmik Fonksiyonlar (Exponential and Logarithmic Functions)

$$\Box$$
 f(x) = 2<sup>x</sup> ve g(x) = log <sub>2</sub> x = lg x

• 
$$f \circ g(x) = f(g(x)) = f(\lg x) = 2^{\lg x} = x$$

$$g \circ f(x) = g(f(x)) = g(2^x) = \lg 2^x = x$$

□ Üstel ve Logaritmik fonksiyonlar birbirinin tersidir

### String'in tersi (inverse)

X herhangi bir küme olsun

X üzerindeki tüm string'lerin kümesi de X\* olsun

Eğer 
$$\alpha = x_1 x_2 ... x_n \in X^*$$
  
 $f(\alpha) = \alpha^{-1} = x_n x_{n-1} ... x_2 x_1$ 

String'in inversi alınırken ters sırada yazılır

$$\alpha \alpha^{-1} = \alpha^{-1} \alpha = \lambda$$

#### Floor ve Ceiling Fonksiyonları

```
x'in FLOOR'u \lfloor x \rfloor olarak gösterilir.
```

x'e EŞİT veya ondan KÜÇÜK EN BÜYÜK tamsayıyı verir.

x'in CEILING'i  $\lceil x \rceil$  olarak gösterilir.

x'e EŞİT veya ondan BÜYÜK EN KÜÇÜK tamsayıyı verir.