

Testing the Normality of Data

Data Analysis Group A

Contents

- Dataset description
- Questions
- Methods for testing normality
 - Mistograms & Box Plots
 - Q-Q and P-P Plots
 - Skewness & Kurtosis
 - Shapiro-Wilk, Kolmogorov-Smirnov, & Anderson-Darling
- Results/Question answers
 - Question 1
 - Question 2

Data Set Description

Heart Disease Prediction

Heart Disease Prediction Dataset

- 14 variables including Age, Sex, BP, etc...
- 270 rows of data
- The variables consist of a mix of numerical and categorical variables
- The variables that are relevant for this analysis are the continuous numeric variables: Age, BP, Cholesterol, Max HR, ST Depression

Questions

Questions

- Question 1: Which of the variables are approximately normally distributed?
- Question 2: Which of the variables are not normally distributed?
- Question 3: How might the normal distribution of these variables help us in possible future analysis of this data set?

Methods for Testing Normality

Histogram, Q-Q Plots, P-P Plots, Box Plots, Skewness & Kurtosis, Shapiro-Wilk & Kolmogorov Smirnov Tests

3

Methods of testing normality

- Testing for normality is only for numerical data.
- An assessment of the normality of data is a prerequisite for many statistical tests because normal data is an underlying assumption in parametric testing.
- There are two main methods of assessing normality: graphically and numerically.

Histograms

- Age, BP, Cholesterol, and Max HR look approximately normal
- They are symmetric
- They have one mode
- The number of events less than the mean is approximately equal to the number of events above the mean

Histograms

- ST depression does not look like it is normally distributed
- It is not symmetric
- The number of events less than the average is not equal to the number of events above the average

Max HR

- Median is approximately at the center of the box
- Upper and lower quartile seem approximately equal
- Upper and lower whiskers seem approximately equal

- Max HR and ST Depression seem to deviate from a normal distribution
- Median is not centered
- Upper and lower quartiles and whiskers are not equal

Box Plots

Q-Q and **P-P** Plots

Q-Q Plot: useful for checking whether a dataset follows a certain theoretical distribution, such as a normal distribution or a log-normal distribution. If the points on the Q-Q plot fall on a straight line, it indicates that the two datasets have the same distribution.

QQ plots

All variables show normality aside from ST depression. BP and Cholesterol shows slight outliers, but overall show normal distribution

PP Plots

All tests aside from ST depression here shows normality as well

Max HR shows slight deviation from the line but sticks close enough to be considered normal, and BP is a bit messy but sticks to the line.

Descriptives

As the sample is medium-size we establish the normality of the data if the Z-score is between -3.29 and +3.29.

Variable Age

Skewness: 0.114/0.153=0.745

• Kurtosis: 0.580/0.304=1,98

			Statistic	Std. Error
Age	Mean		54,20	,578
	95% Confidence Interval for	Lower Bound	53,06	
	Mean	Upper Bound	55,34	
	5% Trimmed Mean		54,25	
	Median		54,00	
	Variance	85,121		
	Std. Deviation		9,226	
-	Minimum	29		
	Maximum	77		
	Range	48		
	Interquartile Range	14		
	Skewness	-,114	,153	
	Kurtosis		-,580	,304

Descriptives

Variable BP

Skewness: 0.610/0.153=3.987

• Kurtosis: 0.811/0.304=2.668

We cannot consider the BP variable to be normally distributed due to the skewness z-score is greater than 3,29

			Statistic	Std. Error
SMEAN(BP)	Mean	129,896	1,0273	
	95% Confidence Interval for	Lower Bound	127,873	
	Mean	Upper Bound	131,919	
	5% Trimmed Mean	129,328		
	Median	129,896		
	Variance	269,088		
	Std. Deviation	16,4039		
	Minimum	94,0		
	Maximum	192,0		
	Range	98,0		
	Interquartile Range	20,0		
	Skewness	,610	,153	
	Kurtosis	,811	,304	

Variable Cholesterol

Skewness: 0.152/0.153=0.993

• Kurtosis: 0.172/0.304=0,566

The result of the skewness and kurtosis z-score of the cholesterol variable indicate that the data may be normally distributed

Descriptives

			Statistic	Std. Error
SMEAN(Cholesterol)	Mean	246,349	2,6950	
	95% Confidence Interval for	Lower Bound	241,041	
	Mean	Upper Bound	251,656	
	5% Trimmed Mean	245,955		
	Median	246,349		
	Variance	1852,055		
	Std. Deviation	43,0355		
	Minimum	126,0		
	Maximum	360,0		
	Range	234,0		
	Interquartile Range	60,0		
	Skewness		,152	,153
	Kurtosis	-,172	,304	

Variable Max HR

Skewness: -0.577/0.153=-3.77

Kurtosis: -0.046/0.304= -0.151

We cannot consider the MaxHR variable to be normal distributed due to the skewness z-score is greater than 3,29

Descriptives

			Statistic	Std. Error
SMEAN(MaxHR)	Mean	149,346	1,4372	
	95% Confidence Interval for	Lower Bound	146,515	
	Mean	Upper Bound	152,176	
	5% Trimmed Mean	150,161		
	Median	152,000		
	Variance	526,699		
	Std. Deviation	22,9499		
	Minimum	71,0		
	Maximum	202,0		
	Range	131,0		
	Interquartile Range	34,0		
	Skewness		-,577	,153
	Kurtosis		-,046	,304

Descriptives

Z-scores

Skewness: 0.902/0.153=5.89

• Kurtosis: -0.007/0.304=-0.023

			Statistic	Std. Error
SMEAN(STdepression)	Mean	,9713	,06359	
	95% Confidence Interval for	Lower Bound	,8461	
	Mean	Upper Bound	1,0966	
	5% Trimmed Mean	,8882		
	Median	,8000		
	Variance	1,031		
	Std. Deviation	1,01550		
	Minimum	,00		
	Maximum	4,20		
	Range	4,20		
	Interquartile Range	1,60		
	Skewness	,902	,153	
	Kurtosis	-,007	,304	

Shapiro-Wilk and Kolmogorov-Smirnov Tests

- These are statistical tests that examine the null hypothesis that the data came from a normally distributed population.
- Null hypothesis: The values are sampled from a population that is normally distributed.
- Alternative hypothesis: The values are sampled from a population that is not normally distributed.

Shapiro-Wilk and Kolmogorov-Smirnov Tests

Tests of Normality

- If P<0.05===> reject null hypothesis.(not normal)
- If P>0.05===> do not reject null hypothesis. (normal)

	Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic df Sig.					Sig.	
Age	.066	270	.006	.988	270	.028	
BP	.104	255	.000	.963	255	.000	
Cholesterol	.052	253	.095	.943	253	.000	
Max HR	.085	259	.000	.970	259	.000	
ST depression	.181	266	.000	.850	266	.000	

a. Lilliefors Significance Correction

Shapiro-Wilk and Kolmogorov-Smirnov Tests

- If we want to conduct a parametric test, normality testing should be done for each category of the independent variable separately.
- E.g. For the independent variable 'Sex' = 0 or 1 (Two categories)
- Since the sample size n>50, KS test will be more reliable.

Tests of Normality

		Kolm	ogorov-Smii	rnov ^a	Shapiro-Wilk			
	Sex	Statistic	df	Sig.	Statistic	Sig.		
Age	0	.102	86	.028	.976	86	.117	
	1	.070	184	.030	.989	184	.177	
BP	0	.116	81	.009	.963	81	.018	
	1	.122	174	.000	.963	174	.000	
Cholesterol	0	.103	82	.032	.923	82	.000	
	1	.045	171	.200*	.994	171	.738	
Max HR	0	.157	82	.000	.909	82	.000	
	1	.060	177	.200*	.982	177	.022	
ST depression	0	.214	85	.000	.775	85	.000	
	1	.166	181	.000	.874	181	.000	

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Interpretation

- Based on the results of the KS and SW tests, the variable 'Cholesterol' is the only one that seems to be sampled from a population that follows a normal distribution.
- When the data is split based on the independent variable 'Sex', both Cholesterol and Max HR are normally distributed for the category '1', as opposed to '0'.

Anderson Darling Test using R

This test is not supported in SPSS, so it has been conducted using the following R code:

```
#install and load readxl package
    install.packages('readxl')
    library(readx1)
    #import Excel file into R
    data <- read_excel ("C:\\Users\\User\\Desktop\\Handson_data_analysis\\Group A. Heart_Disease_Prediction3.xlsx")</pre>
    install.packages('nortest')
    library(nortest)
10
   ad.test(data$Age)
    ad.test(data$BP)
    ad.test(data$Cholesterol)
    ad.test(data$`Max HR`)
    ad.test(data$ST depression)
16
```

Anderson Darling Test using R

The following is the output:

data: data\$Age
A = 1.1234, p-value = 0.006011

> ad.test(data\$BP)

Anderson-Darling normality test

data: data\$BP
A = 2.3371, p-value = 6.23e-06

> ad.test(data\$Cholesterol)

Anderson-Darling normality test

data: data\$Cholester | A = 1.2954, p-value = 0.002259

The results of this test suggest that all of the variables are not sampled from a population that is normally distributed.

Results Answers to Questions

Summary

	Histograms	Box Plots	Q-Q Plots	P-P Plots	Skewness	Kurtosis	Shapio-Wilk	Kolmogorov- Smirnov	Anderson- Darling
Age	✓	✓	✓	✓	✓	✓	×	×	×
BP	✓	✓	✓	✓	×	×	×	×	×
Cholesterol	✓	✓	✓	✓	✓	✓	×	✓	×
Max HR	*	×	✓	✓	*	×	×	×	×
ST Depression	*	×	*	*	*	×	×	*	×

Conclusions

Age and cholesterol are approximately normal

Question 1: Correlation between Age and Cholesterol?

- Data-set indicates, in-spite of how old people were, cholesterol levels were found to be not to be of a great deviation from one another
- Therefore age could not have been a deciding factor as to whether one would have high cholesterol, albeit the fact that the outlier (highest cholesterol level) was one case from old age.

Question 2: What are the chances of having a cholesterol level higher than 268?

Whit a normal distribution we can use Z-score to obtain the probability to happen of a score.

$$P(x=268)=P(z=0.5031)=70.19\%$$

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Skewness		Kurtosis	
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
SMEAN(Cholesterol)	255	126,0	360,0	246,349	43,0355	,152	,153	-,172	,304
Valid N (listwise)	255								

Thank you