Section 2.3 – Divisibility and Modular Arithmetics

Division

Definition

If a and b are integers with $a \neq 0$, we say that a divides b if there is an integer c such that b = ac, or equivalently, if $\frac{b}{a}$ is an integers. When a divides b we say that a is a factor or divisor of b, and that b is multiple of a. The notation $a \mid b$ denotes that a divides b. We write $a \mid b$ when a does not divide b.

Example

Determine whether $3 \mid 7$ and whether $3 \mid 12$.

Solution

We see that 3/7, because 7/3 is not integer. $3 \mid 12$ because 12/3 = 4.

Example

Let n and d be positive integers. How many positive integers not exceeding n are divisible by d?

Solution

The positive integers divisible by d are all the integers of the form dk, where k is a positive integer. Hence, the number of positive integers divisible by d that do not exceed n equals the number of integers k with $0 < k \le n/d$. Therefore, there are $\lfloor n/d \rfloor$ positive integers not exceeding n that are divisible by d.

Theroem

Let a, b, and c integers, where $a \neq 0$. Then

- i) If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- *ii*) If $a \mid b$, then $a \mid bc$ for all integers c;
- *iii*) If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof (i)

Suppose If $a \mid b$ and $a \mid c$. Then, from the definition of divisibility, it follows that there are integers s and t with b = as and c = at. Hence,

$$b+c=as+at=a(s+t)$$

Therefore, a divides b + c.

Corollary

If a, b, and c integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid mb + nc$ whenever m and n are integers.

The Division Algorithm

Theroem

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

Definition

In the equality given in the division algorithm, d is called the *divisor*, a called the *dividend*, a is called the *quotient*, and a is called the *remainder*. This notation is used to express the quotient and remainder:

$$q = a \operatorname{div} d$$
, $r = a \operatorname{mod} d$

Example

What are the quotient and remainder when 101 is divided by 11?

Solution

$$101 = 11 \cdot 9 + 2$$

Hence, the quotient when 101 is divided by 11 is $9 = 101 \, div \, 11$, and the remainder is $2 = 101 \, mod \, 11$.

Example

What are the quotient and remainder when -11 is divided by 3?

Solution

$$-11 = 3(-4) + 1$$

Hence, the quotient when -11 is divided by 3 is -4 = -11 **div** 3, and the remainder is 1 = -11 **mod** 3.

Modular Arithmetic

Definition

If a and b are integers and m is positive integer, then a is **congruent** to b **modulo** m if m divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is **congruent** to b **modulo** m. We say that $a \equiv b \pmod{m}$ is a **congruence** and that m is its **modulus** (plural **moduli**). If a and b are not congruent modulo m, we write $a \not\equiv b \pmod{m}$

Theorem

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$

Example

Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6.

Solution

Because 6 divides 17 - 5 = 12, we see that $17 \equiv 5 \pmod{6}$. 24 - 14 = 10 is not divisible by 6, we see that $24 \not\equiv 14 \pmod{6}$

Theorem

Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

Proof

If $a \equiv b \pmod{m}$ that implies by the definition of congruence to $m \mid (a-b)$. Which is that there is an integer k such that $a-b=km \implies a=b+km$.

Conversely, if there is an integer k such that a = b + km, then km = a - b. Hence, m divides a - b, so that $a \equiv b \pmod{m}$

Theorem

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a+c \equiv b+d \pmod{m}$ and

$$ac \equiv bd \pmod{m}$$

Proof

Using direct proof. Because $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, by the theorem that are integers s and t with b = a + sm and d = c + tm. Hence,

$$b+d=(a+sm)+(c+tm)=(a+c)+m(s+t) \qquad \Rightarrow a+c\equiv b+d \pmod{m}$$

And

$$bd = (a+sm)(c+tm) = ac + m(at+sc+stm)$$
 $\Rightarrow ac \equiv bd \pmod{m}$

Corollary

Let a and b be integers, and let m be a positive integer. Then

$$(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$$
 and

$$ab \mod m = ((a \mod m)(b \mod m)) \mod m$$

Arithmetic Modulo m

We define addition by: $a +_m b = (a + b) \mod m$ and multiplication by $a \cdot_m b = (a \cdot b) \mod m$

Exercises Section 2.3 – Divisibility and Modular Arithmetics

- **1.** Does 17 divide each of these numbers?
 - **a**) 68 **b**) 84 **c**) 35 **d**) 1001
- **2.** Prove that if a is an integer other than 0, then
 - **a**) 1 divides a **b**) a divides 0
- 3. Show that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.
- **4.** Show that if a, b, and c are integers, where $a \ne 0$ and $c \ne 0$, such that $ac \mid bc$, then $a \mid b$
- **5.** What are the quotient and remainder when
 - a) 19 is divided by 7?
 - b) -111 is divided by 11?
 - *c*) 789 is divided by 23?
 - d) 1001 is divided by 13?
 - e) 0 is divided by 19?
 - f) 3 is divided by 5?
 - g) -1 is divided by 3?
 - h) 4 is divided by 1?
- **6.** What time does a 12-hour clock read
 - a) 80 hours after it reads 11:00?
 - b) 40 hours before it reads 12:00?
 - c) 100 hours after it reads 6:00?
- 7. What time does a 24-hour clock read
 - a) 100 hours after it reads 2:00?
 - b) 45 hours before it reads 12:00?
 - c) 168 hours after it reads 19:00?
- 8. Suppose a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that
 - a) $c \equiv 9a \pmod{13}$
 - b) $c \equiv 11b \pmod{13}$
 - c) $c \equiv a + b \pmod{13}$
 - $d) \quad c \equiv 2a + 3b \pmod{13}$
 - $e) \quad c \equiv a^2 + b^2 \pmod{13}$
 - $f) \quad c \equiv a^3 b^3 \pmod{13}$

- **9.** Suppose a and b are integers, $a = 11 \pmod{19}$, and $b = 3 \pmod{19}$. Find the integer c with
 - $0 \le c \le 10$ such that a) $c \equiv a - b \pmod{19}$
 - b) $c = 7a + 3b \pmod{19}$
 - c) $c = 2a^2 + 3b^2 \pmod{19}$
 - d) $c \equiv a^3 + 4b^3 \ (mod \ 19)$
- 10. Let m be a positive integer. Show that $a \equiv b \pmod{m}$ if $a \mod m = b \mod m$
- **11.** Show that if *n* and *k* are positive integers, then $\left[n/k\right] = \left\lceil \frac{n-1}{k} \right\rceil + 1$
- **12.** Evaluate these quantities
 - a) $-17 \$ **mod** $\ 2$
 - b) 144 **mod** 7
 - $c) -101 \, mod \, 13$
 - d) 199 **mod** 19
 - e) 13 **mod** 3
 - f) -97**mod**11
- 13. Find $a \operatorname{div} m$ and $a \operatorname{mod} m$ when
 - a) a = 228, m = 119
 - b) a = 9009, m = 223
 - c) a = -10101, m = 333
 - d) a = -765432, m = 38271
- 14. Find the integer a such that
 - a) $a = -15 (mod \ 27)$ and $-26 \le a \le 0$
 - b) $a = 24 \pmod{31}$ and $-15 \le a \le 15$
 - c) $a = 99 \pmod{41}$ and $100 \le a \le 140$
 - *d*) $a = 43 \pmod{23}$ and $-22 \le a \le 0$
 - e) $a = 17 \pmod{29}$ and $-14 \le a \le 14$
- **15.** Decide whether each of these integers is congruent to 5 modulo 17.
 - *a*) 37
- *b*) 66
- c)-17
- d) 67
- **16.** Find each of these values.
 - a) $(-133 \mod 23 + 261 \mod 23) \mod 23$

- b) (457 mod 23·182 mod 23) mod 23
- c) $(177 \mod 31 + 270 \mod 31) \mod 31$
- d) $(19^2 \, mod \, 41) mod \, 9$
- e) $(32^3 \, mod \, 13)^2 \, mod \, 11$
- f) $(99^2 \, mod \, 32)^3 \, mod \, 15$
- g) $(3^4 \mod 17)^2 \mod 11$
- h) $(19^3 \, mod \, 23)^2 \, mod \, 31$
- i) $(89^3 \, mod \, 79)^4 \, mod \, 26$