Related Work

Matching Nets

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In *NIPS*, 2016.

Prototypical Nets

J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.

Metric Learning

T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning for large scale image classification: Generalizing to new classes at near-zero cost. In ECCV, 2012

Bird

Dog

Monkey

Embedding Module

2

Bird

Dog

Monkey

Embedding Module

2

Related Work

Metric Learning

T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning for large scale image classification: Generalizing to new classes at near-zero cost. In *ECCV*, 2012

Matching Nets

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In *NIPS*, 2016.

Prototypical Nets

J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.

Few-Shot Experiments (1)

Ominglot: Contains 1,623 characters from 50 alphabets each class with 20 samples.

Model	Fine Tune	5-way Acc.		20-way Acc.	
		1-shot	5-shot	1-shot	5-shot
Mann [32]	N	82.8%	94.9%	-	-
CONVOLUTIONAL SIAMESE NETS [20]	N	96.7%	98.4%	88.0%	96.5%
CONVOLUTIONAL SIAMESE NETS [20]	Y	97.3%	98.4%	88.1%	97.0%
MATCHING NETS [39]	N	98.1%	98.9%	93.8%	98.5%
MATCHING NETS [39]	Y	97.9%	98.7%	93.5%	98.7%
SIAMESE NETS WITH MEMORY [18]	N	98.4%	99.6%	95.0%	98.6%
NEURAL STATISTICIAN [8]	N	98.1%	99.5%	93.2%	98.1%
META NETS [27]	N	99.0%	-	97.0%	-
PROTOTYPICAL NETS [36]	N	98.8%	99.7%	96.0%	98.9%
MAML [10]	Y	$98.7 \pm 0.4\%$	$\textbf{99.9} \pm \textbf{0.1}\%$	$95.8\pm0.3\%$	$98.9 \pm 0.2\%$
RELATION NET	N	99.6 \pm 0.2 %	99.8± 0.1%	$\textbf{97.6} \pm \textbf{0.2\%}$	99.1± 0.1%

Table 1: Omniglot few-shot classification. Results are accuracies averaged over 1000 test episodes and with 95% confidence intervals where reported. The best-performing method is highlighted, along with others whose confidence intervals overlap. '-': not reported.