Unsung Agency House Modelling Project

Agenda:

- Go through the business problem.
- Give the benefits that could be gotten by solving the business problem.
- Highlight the findings from the analysis and modelling done.
- Give some recommendations and a conclusion from the findings.

Business problem:

- Unsung agency is in need of a model that would help predict the price of a home based on the sort of attributes or features a home has.
- A more transparent valuation of specific features in a home is also required.

What sort of benefits would the model bring?

- The agency can save on the time it takes to determine the price of a house because with the model, this process will be automated.
- Factual advice about what attributes increase the valuation of a house can be given to clients seeking to either buy or sell a home. The best part is an approximate figure is attached to each value.

What are some of the things we found out?

- Most homes in King County are priced between 78,000 and 1 million dollars.
- Houses that are priced past 3 million are very little in number.

- The top correlated features to price are:
 - Sqft living area of a house
 - Grade King County grading system
 - Bathrooms
 - Bedrooms

- Sqft living is the most correlated feature of a home to price.
- This ideally means that the larger a home is, the higher the price is going to be.

- This is the baseline model.
- It uses sqft living as the only feature that determines the price of a house.
- The model score is 37.8% which is very low so we have to try and create a model with a better score.

Dep. Variable			price	R-so	quared:	(0.378	
Model	:		OLS	Adj. R-so	quared:	(.378	
Method	: Le	ast Sc	uares	F-s	tatistic:	9	178.	
Date	Mon,	04 Ju	2022	Prob (F-st	atistic):		0.00	
Time		20	42:39	Log-Like	lihood:	-2.1163	e+05	
No. Observations			15117		AIC:	4.233	e+05	
Df Residuals	:		15115		BIC:	4.233	e+05	
Df Model			1					
Covariance Type		non	robust					
			coef	std err	t	P> t	[0.025	0.975]
Int	ercept	-3.47	5e+06	4.2e+04	-82.741	0.000	-3.56e+06	-3.39e+06
transformed_sqft	living	5.31	9e+05	5552.456	95.803	0.000	5.21e+05	5.43e+05
Omnibus:	12767.8	815	Durbi	n-Watson:	1.	982		
Prob(Omnibus):	0.0	000	Jarque-	Bera (JB):	812994.	778		
Skew:	3.0	690		Prob(JB):	(0.00		
Kurtosis:	38.:	160		Cond. No.		137.		

Dep. Variable	:	price	R-s	squared	:	0.657		
Model	:	OLS	Adj. R-s	squared	l:	0.657	,	
Method	: Least	Squares	F-:	statistic	:	1379.		
Date	: Mon, 04	Jul 2022	Prob (F-s	tatistic)):	0.00)	
Time	:	20:42:59	Log-Lik	elihood	l: -2.0	712e+05	5	
o. Observations	:	15117		AIC	: 4.	.143e+05	5	
Df Residuals	:	15095		віс	: 4.	.145e+05	5	
Df Model	:	21						
Covariance Type	: n	onrobust						
		co	of sta	l err	t	P> t	[0.025	0.975]
	Intercept	1.588e+0			80.535	0.000	1.49e+07	1.69e+07
,	waterfront	5.962e+0			25.870	0.000	5.51e+05	6.41e+05
	renovated	5.695e+0			5.570	0.000	3.69e+04	7.7e+04
	oms_high	-1.553e+0			2.945	0.003	-2.59e+05	-5.19e+04
	ooms low	3.643e+0			8.249	0.000	2.78e+04	4.51e+04
	ooms_high	4.366e+0			9.548	0.000	3.47e+05	5.26e+05
	ooms_low	-9.081e+0			1.649	0.000	-1.06e+05	-7.55e+04
	oors high	8.995e+0			7.883	0.000	6.76e+04	1.12e+05
	floors_low	-3.287e+0			6.633	0.000	-4.26e+04	-2.32e+04
	view_low	-5.365e+0			-3.100	0.002	-8.76e+04	-1.97e+04
viev	w_medium	-1.176e+0	05 1.29e	+04	9.137	0.000	-1.43e+05	-9.24e+04
,	view_none	-1.858e+0	05 1.02e	+04 -1	8.153	0.000	-2.06e+05	-1.66e+05
cond	lition_high	3.125e+0	04 4167	.747	7.498	0.000	2.31e+04	3.94e+04
con	dition_low	-3.907e+0	04 1.84e	+04	2.121	0.034	-7.52e+04	-2959.176
grade	_excellent	8.619e+0	05 2.93e	+04 2	9.387	0.000	8.04e+05	9.19e+05
	grade_fair	-1.267e+0	05 7012	.973 -1	8.063	0.000	-1.4e+05	-1.13e+05
gı	rade_good	2.809e+0	05 8611.	.499 3	32.622	0.000	2.64e+05	2.98e+05
g	rade_poor	-3.029e+0	05 5.36e	+04	5.649	0.000	-4.08e+05	-1.98e+05
scaled_	home_age	2.955e+0	05 9618	.919 3	80.724	0.000	2.77e+05	3.14e+05
transformed_	sqft_living	-4.387e+0	06 1.39e	+05 -3	31.457	0.000	-4.66e+06	-4.11e+06
transforme	d_sqft_lot	-3.82e+0	04 2316	.571 -1	6.491	0.000	-4.27e+04	-3.37e+04
ansformed_sqft	_living_sq	3.19e+0	05 9338.	.724 3	84.156	0.000	3.01e+05	3.37e+05
Omnibus:	7289.172	Durbin-	Watson:		2.012			
rob(Omnibus):	0.000	Jarque-B		18921				
Skew:	1.765	•	rob(JB):		0.00			
Kurtosis:	19.969		ond. No.	1.80	e+04			
				1.00				

Dep. Variable:

- This a summary of the final model.
- The model's score is 65.7% meaning that it covers 65.7% of the variability in price of homes.
- A basic interpretation of it is:
 - The base price of a house is 15.8 million dollars.
 - From the base price adjustments to the price are made based on the present attributes in a house.

For example: Having a high number of bathrooms in a home increases the price by 436,600 dollars while having a low number of bathrooms in a home, reduces the price by 90,810 dollars.

Final recommendations:

- More investigation into the relation of certain features to price should be done to have a better understanding of how said features affect the price of a house.
- A more complete dataset where we don't have to fill in values would be much better because with such data a more accurate model could be made.