ДЗ #2. Киселев Павел

Задача 1.

Подпространство четных многочленов $P^{
m \tiny 4et}$ имеет базис

$$(1, x^2, x^4, ..., x^n),$$

(при четном n). Подпространство нечетных многочленов $P^{\mathsf{нечет}}$ имеет базис

$$(x, x^3, ..., x^{n-1}).$$

Их пересечение составляет нуль-вектор:

$$P^{ ext{ iny HEYET}}\cap P^{ ext{ iny HEYET}}=\{0\}.$$

Произвольный многочлен можно представить в виде суммы четного и нечетного, т.к. любой многочлен (и функцию вообще) можно представить в виде

$$p(x) = rac{p(x) + p(-x)}{2} + rac{p(x) - p(-x)}{2} = p^{ ext{ ext{ iny HeVeT}}}(x) + p^{ ext{ iny HeVeT}}(x), \qquad (1)$$

здесь $p(x), p^{\text{чет}}(x), p^{\text{нечет}}(x)$ — векторы. Такое разложение единственно, т.к. подпространства $P^{\text{чет}}, P^{\text{нечет}}$ линейно независимы:

$$p^{ ext{ iny HeVeT}}(x) + p^{ ext{ iny HeVeT}}(x) = 0 \iff p^{ ext{ iny HeV}}(x) = p^{ ext{ iny HeVeT}}(x) = 0.$$

Следовательно, нельзя найти такую комбинацию $p^{\text{чет}}(x), p^{\text{нечет}}(x)$ не из нулей, чтобы, прибавив ее к левой и правой частям равенства (1), в левой остался бы исходный многочлен.

Задача 2.

Базисом будут n^2-1 матриц $\{E_{ij}|i\neq j\}\cup\{E_{11}-E_{ii}|i=2,3,...,n\}$, т.к. любая матрица с нулевым следом определяется n^2 элементами за исключением одного на главной диагонали (предположим a_{11}), который имеет значение равное тому, чтобы сделать след матрицы нулевым.

Задача 3.

Пусть
$$a=(a_1,...,a_n)$$
, $b=(b_1,...,b_n)$, тогда

$$a^T b = egin{pmatrix} a_1 \ a_2 \ dots \ a_n \end{pmatrix} egin{pmatrix} b_1 & b_2 & \dots & b_n \end{pmatrix} = egin{pmatrix} a_1 b_1 & a_1 b_2 & \dots & a_1 b_n \ a_2 b_1 & a_2 b_2 & \dots & a_2 b_n \ dots & dots & dots & dots \ a_n b_1 & a_n b_2 & \dots & a_n b_n \end{pmatrix}.$$

Следовательно, в виде a^Tb могут быть представлены только матрицы с линейно зависимыми столбцами и строками (если рассматривать их как как векторы-столбцы и векторы-строки соответственно). Строки и столбцы в a^Tb совпадают с точностью до множителя.

Задача 4.

Пусть векторы $e_1,...,e_n\in V$ образуют базис линейного пространства V, а $\varphi:V o W$ изоморфизм. Докажем, что $\varphi(e_1),...,\varphi(e_n)\in W$ образуют базис W.

Проверим, является ли набор векторов $\varphi(e_1),...,\varphi(e_n)$ линейно независимым. Предположим, что он таковым не является, тогда существует $\alpha_1 \neq 0$ (для конкретности) такой, что

$$lpha_1 arphi(e_1) + lpha_2 arphi(e_2) + \dots + lpha_n arphi(e_n) = 0, \quad lpha_1
eq 0.$$

В таком случае мы можем выразить $arphi(e_1)$ через остальные вектора:

$$arphi(e_1) = -rac{lpha_2}{lpha_1}arphi(e_2) - \dots - rac{lpha_n}{lpha_1}arphi(e_n).$$

Используя линейные свойства изоморфизма, перепишем равенство:

$$arphi(e_1) = arphiigg(-rac{lpha_2}{lpha_1}e_2 - \dots - rac{lpha_n}{lpha_1}e_nigg).$$

Т.к. изоморфизм биективен, следовательно

$$e_1 = -rac{lpha_2}{lpha_1}e_2 - \cdots - rac{lpha_n}{lpha_1}e_n.$$

Тогда система векторов $e_1,...,e_n$ не является базисом, что противоречит условию задачи. Следовательно, $\varphi(e_1),...,\varphi(e_n)$ линейно независимы.

Теперь проверим, можно ли дополнить $\varphi(e_1),...,\varphi(e_n)$ до $\varphi(e_1),...,\varphi(e_n),\varepsilon_{n+1}$ так, чтобы набор векторов остался линейно независимым.

ДЗ #2. Киселев Павел

Предположим, что такой ε_{n+1} существует. Т.к. изоморфизм биективен, то существует обратное отображение φ^{-1} , ставящее ε_{n+1} в соответствие вектор в V:

$$arphi^{-1}(arepsilon_{n+1}) = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n$$

для некоторых λ_i . Но также в W существует вектор

$$egin{aligned} w &= \lambda_1 arphi(e_1) + \lambda_2 arphi(e_2) + \dots + \lambda_n arphi(e_n) \ &= arphi(\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n) \end{aligned}$$

такой что

$$arphi^{-1}(w) = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n, \quad w
eq arepsilon_{n+1}.$$

Из предположения что такой ε_{n+1} существует следует, что изоморфизм φ не биективен, что противоречит определению. Следовательно, $\varphi(e_1),...,\varphi(e_n)$ максимальный линейно независимый набор векторов в $W \Longrightarrow \varphi(e_1),...,\varphi(e_n)$ является базисом в W.

Задача 5.

Пусть $v_1,...,v_n\in V$ набор векторов линейного пространства V.

a) Если набор векторов $v_1,...,v_n$ линейно зависим, то хотя бы один из них линейно выражается через остальные n-1 векторов. Предположим, что линейно зависим вектор v_1 , тогда

$$v_1 = \lambda_2 v_2 + ... + \lambda_n v_n$$

для фиксированных λ_i . В таком случае,

$$egin{aligned} arphi(v_1) &= arphi(\lambda_2 v_2 + ... + \lambda_n v_n) \ &= \lambda_2 arphi(v_2) + ... + \lambda_n arphi(v_n). \end{aligned}$$

Т.е. линейное отображение $\varphi(v_1)$ полностью детерминированно λ_i и $\varphi(v_i), i=2,...,n$. Следовательно, значения линейной функции нельзя выбрать произвольно для всех i. Если же набор векторов $v_1,...,v_n$ линейно i0 произвольное ограничения нет, и мы можем свободно выбрать в соответствие i0 произвольное i0 произвольное i0 произвольное i0 произвольное i1 произвольное i1 произвольное i2 произвольное i3 произвольное i4 произвольное i6 произвольное i7 произвольное i8 произвольное i8 произвольное i9 произвольное i

ДЗ #2. Киселев Павел

существует множество вариантов определить соответствия для полного набора, зафиксировав соответствия для $v_1,...,v_n$).

- **б)** Если набор $v_1, ..., v_n$ полон в V, тогда возможны два случая:
 - 1. Набор $v_1,...,v_n$ линейно независим. Тогда $\dim V=n$ и поставить в соответствие $v_i\in V$ произвольное $\alpha_i\in \mathbb{R}, i=1,...,n$ значит с точностью определить линейное отображение $\varphi:V\to \mathbb{R}$ (т.е. существует ровно одно линейное отображение).
 - 2. Набор $v_1,...,v_n$ линейно зависим. Тогда невозможно поставить в соответствие каждому $v_i\in V$ произвольное $\alpha_i\in\mathbb{R}, i=1,...,n$ по причине, описанной в пункте (a).

Следовательно, существует <u>не больше одного</u> линейного отображения $\varphi:V o R$ такого, что $\varphi(v_1)=lpha_1,..., \varphi(v_n)=lpha_n.$

в) Если набор $v_1,...,v_n$ образует базис в V, тогда этот набор линейно независим. Следовательно, существует ровно одно линейное отображение $\varphi:V\to R$ такое, что $\varphi(v_1)=\alpha_1,...,\varphi(v_n)=\alpha_n$ аналогично подпункту 1 пункта (б).

ДЗ #2. Киселев Павел 4