

Junia- HEI

HEI 3 - Classe 311/352

EPREUVE UE AUTOMATISATION

Durée:

2 heures

Date:

15/11/2022

Conditions:

Avec documents et avec calculatrice

Attention la page 4 du sujet est à rendre avec votre copie

ASSERVISSEMENT D'UN VERIN HYDRAULIQUE

Nous allons étudier l'asservissement en position d'un vérin qui doit gérer le déplacement d'un tiroir.

Le vérin est piloté à l'aide d'un servo-distributeur et possède les caractéristiques suivantes :

- M=50 kg masse de l'équipage (tiroir + vérin),
- f=250 N/m/s résistance due aux frottements visqueux,
- K=112,5 N/m raideur hydraulique du vérin,
- S₁=200 cm² surface du piston de la chambre d'admission

La position du vérin, notée y(t), est fonction du débit d'huile, noté q(t), à l'entrée de la chambre d'admission du vérin.

Nous nous plaçons dans l'hypothèse de petit déplacement autour d'un point de fonctionnement (position particulière d'équilibre).

Après calcul,

- L'équation temporelle donnant le déplacement y(t) en fonction du débit q(t) est telle que :

$$M.\frac{d^2y(t)}{dt^2} = K.\int_0^t \frac{q(\tau)}{S_1} d\tau - K.y(t) - f.\frac{dy(t)}{dt}$$

- Le servo-distributeur délivre un débit d'huile q(t) proportionnel à sa tension de commande $U_e(t)$ tel que :

$$q(t) = K_e.U_e(t)$$
 avec $K_e = 4.10^{-2}m^3/s.V$

- Le détecteur de position délivre une tension $U_s(t)$ proportionnelle à la position y(t) du tiroir telle que :

$$U_{s}(t) = K_{c} \cdot y(t)$$
 avec $K_{c} = 1.5 V/m$

- Le signal de consigne $y_c(t)$ est élaboré de telle sorte que :

$$U_e(t) = y_c(t) - U_s(t)$$

Question 1: A partir des équations données précédemment, effectuer le schéma bloc du système où $Y_c(p)$ représente l'entrée du système et Y(p) la sortie du système.

Nous noterons : $G(p) = \frac{Y(p)}{Q(p)}$.

Question 2: Donner la fonction de transfert du système en boucle ouverte que nous noterons $H_{BO}(p)$.

Question 3 : Donner la fonction de transfert du système en boucle fermée que nous noterons $H_{BF}(p)$ et effectuer l'application numérique.

Question 4 : Calculer la valeur finale de l'erreur statique du système lorsque la consigne est un échelon d'amplitude 0,1.

Question 5 : Calculer la valeur de l'échelon à appliquer en consigne d'entrée afin d'obtenir en sortie une valeur finale de 0,25.

Nous allons maintenant étudier la stabilité du système.

<u>ATTENTION</u>: Pour cela, nous allons prendre $K_c = 1 V/m$ et nous prendrons <u>maintenant</u> (et pour la suite de l'exercice) comme fonction de transfert pour $G(p) = \frac{Y(p)}{Q(p)}$ la fonction de transfert suivante :

$$G(p) = \frac{Y(p)}{Q(p)} = \frac{62,5}{p.(p+1,25).(1+0,25.p)}$$

Question 6: Refaire le schéma bloc de ce système en utilisant la fonction G(p) donnée ci-dessus et en prenant $K_c=1\ V/m$. Déterminer la fonction de transfert de ce système en boucle ouverte notée $F_{BO}(p)$.

Question 7: Déterminer les expressions du module $F_{BO}(\omega)$ et de la phase $\varphi_{F_{BO}}(\omega)$.

Question 8 : Représenter la réponse harmonique du système sur l'abaque de Black donnée (feuille à rendre avec votre copie bien évidemment) en prenant les valeurs suivantes pour la pulsation :

								ial	
ω (rad/s)	0	0,2	0,5	1	1,3	1,5	2	3	5

Question 9 : Déterminer <u>graphiquement</u> la marge de gain et la marge de phase du système. Conclure sur la stabilité et la robustesse du système.

Question 10 : Vérifier par le calcul la marge de gain obtenue.

Question 11: A partir du lieu de Black obtenu à la question 7, déterminer graphiquement :

Le gain K1 qu'il faudrait ajouter au système pour obtenir une marge de phase de 40°.
Quelle serait alors la marge de gain du système.

Nous souhaitons tout d'abord corriger notre système à l'aide d'un correcteur proportionnel tel que :

$$U_e(p) = Gr. (Y_c(p) - Y(p))$$

Question 12 : En utilisant le critère de Routh, déterminer les conditions de stabilité en fonction de Gr du système ainsi corrigé.

Question 13: Est-il possible de retrouver cette valeur en utilisant les questions précédentes.

Maintenant, nous allons introduire une correction proportionnelle dérivée telle que :

$$U_e(p) = K_d \cdot (1 + T_d \cdot p) \cdot (Y_c(p) - Y(p))$$

Nous avons choisi pour la constante T_d la valeur 0,25.

Question 14: Représenter le schéma bloc du système avec cette correction.

Question 15: Donner la fonction de transfert simplifiée du système corrigé en boucle ouverte $H_{c BO}(p)$ et en boucle fermée $H_{c BF}(p)$. Ecrire $H_{c BF}(p)$ sous la forme d'un second ordre normalisé et donner les expressions de K_S , ξ et ω_0 en fonction de K_d .

La figure 1 représente la réponse du système bouclé corrigé lorsque nous appliquons en entrée un échelon unitaire.

Question 16: Déterminer le paramètre K_d du correcteur nous permettant d'obtenir cette réponse.

Figure 1 : Réponse du système bouclé soumis à un échelon unitaire

Barème indicatif: Question 1: 2 – Question 2: 0.5 – Question 3: 1 – Question 4: 1.5 – Question 5: 1.5 – Question 6: 0.5 – Question 7: 1 – Question 8: 1 – Question 9: 1.5 – Question 10: 1.5 – Question 11: 1 – Question 12: 2 – Question 13: 0.5 – Question 14: 0.5 – Question 15: 2 – Question 16: 2.

	< \	/		1 -		,		Λ	1				0.	0 4												
71.6	5)	Le						le s	syste	me e	ust no	on - Evo	Kutaf	, di	snc.											
				K _D	Ξ.	0, 85 Ks	12 T1																			
		6	raphi	quem	ent	, т	. = (), 25	5 (et	12:	= T ₂ ,	- T	. = 1	9-0,	25										
			'	,								- 1,6														
					0,8	5 x 1	6.5					- /-														
		onc	K,	-	1	x 0,	2.5	_ 5	5,61																	
			I			I	l					1	ı		ı											