Chapter 2

NOTATION

a, b, c, d: syntactical variables over terms.

A, B, C, D: syntactical variables over formulas.

e: syntactical variables over constant symbols.

f, **g**: syntactical variables over function symbols.

i, j: syntactical variables over names.

p, **q**: syntactical variables over predicate symbols.

u, v: syntactical variables over expressions.

x, y, z, w: syntactical variables over (individual) variables.

DEFINITIONS

- A first-order language has as symbols:
 - a) the variables: $x, y, z, w, x', y', z', w', x'', y'', z'', w'', \dots$
 - b) for each n, the n-ary function symbols and the n-ary predicate symbols.
 - c) the symbols \neg , \vee and \exists .
- A term is defined inductively as:
 - i) **x** is a term;
 - ii) if **f** is *n*-ary, then $\mathbf{fa}_1 \dots \mathbf{a}_n$ is a term.
- A formula is defined inductively as:
 - i) if **p** is *n*-ary, then an atomic formula $\mathbf{pa}_1 \dots \mathbf{a}_n$ is a formula;
 - ii) $\neg \mathbf{A}$ is a formula:
 - iii) $\vee \mathbf{AB}$ is a formula;
 - iv) $\exists \mathbf{x} \mathbf{A}$ is a formula.
- A designator is an expression which is either a term or a formula.
- A structure A for a first-order language L consist of:
 - i) A nonempty set $|\mathcal{A}|$, the universe and its individuals.
 - ii) For each n-ary function symbol \mathbf{f} of L, an n-ary function $\mathbf{f}_{\mathcal{A}} : |\mathcal{A}|^n \to |\mathcal{A}|$. (In particular, for each constant \mathbf{e} of L, $\mathbf{e}_{\mathcal{A}}$ is an individual of \mathcal{A} .)
 - iii) For each n-ary predicate symbol \mathbf{p} of L other than =, an n-ary predicate $\mathbf{p}_{\mathcal{A}}$ in $|\mathcal{A}|$.

Also, $\mathcal{A}(\mathbf{a})$ designates an individual and $\mathcal{A}(\mathbf{A})$ designates a truth value.

- A formula **A** is *valid* in a structure \mathcal{A} if $\mathcal{A}(\mathbf{A}') = \top$ for every \mathcal{A} -instance \mathbf{A}' of **A**. In particular, a closed formula **A** is valid in \mathcal{A} iff $\mathcal{A}(\mathbf{A}) = \top$.
- A formula **A** is *logically valid* if it's valid in every structure.
- A formula **A** is a *consequence* of a set Γ of formulas if the validity of **A** follows from the validity of the formulas in Γ .
- A formula **A** is a *logical consequence* of a set Γ of formulas if **A** is valid in every structure for L in which all of the formulas in Γ are valid.
- ullet A first-order theory is a formal system T such that
 - i) the language of T is a first-order language;
 - ii) the axioms of T are the logical axioms of L(T) and certain further axioms, the nonlogical axioms;
 - iii) the rules of T are Expansion, Contraction, Associative, Cut and \exists -Introduction.
- A model of a theory T, is a structure for L(T) in which all the nonlogical axioms of T are valid.
- A formula **A** is *valid* in a theory T if it is valid in every model of T.

LOGICAL AXIOMS

Propositional: $\neg A \lor A$

Substitution: $A_x[a] \rightarrow \exists x A$

Identity: x = x

Equality: $\mathbf{x}_1 = \mathbf{y}_1 \rightarrow \cdots \rightarrow \mathbf{x}_n = \mathbf{y}_n \rightarrow \mathbf{f} \mathbf{x}_1 \dots \mathbf{x}_n = \mathbf{f} \mathbf{y}_1 \dots \mathbf{y}_n$

 $\mathbf{x}_1 = \mathbf{y}_1 \to \cdots \to \mathbf{x}_n = \mathbf{y}_n \to \mathbf{p}\mathbf{x}_1 \dots \mathbf{x}_n \to \mathbf{p}\mathbf{y}_1 \dots \mathbf{y}_n$

RULES OF INFERENCE

Expansion. Infer $\mathbf{B} \vee \mathbf{A}$ from \mathbf{A} .

Contraction. Infer A from $A \vee A$.

Associative. Infer $(A \lor B) \lor C$ from $A \lor (B \lor C)$.

 $\mathbf{Cut}.\ \mathrm{Infer}\ \mathbf{B}\vee\mathbf{C}\ \mathrm{from}\ \mathbf{A}\vee\mathbf{B}\ \mathrm{and}\ \neg\mathbf{A}\vee\mathbf{C}.$

 \exists -Introduction. If **x** is not free in **B**, infer \exists **xA** \rightarrow **B** from **A** \rightarrow **B**.

RESULTS

§**2.4**

Lemma 1. If $\mathbf{u}_1, \dots, \mathbf{u}_n, \mathbf{u}'_1, \dots, \mathbf{u}'_n$ are designators and $\mathbf{u}_1 \dots \mathbf{u}_n$ and $\mathbf{u}'_1 \dots \mathbf{u}'_n$ are compatible, then \mathbf{u}_i is \mathbf{u}'_i for $i = 1, \dots, n$.

Formation Theorem. Every designator can be written in the form $\mathbf{u}\mathbf{v}_1...\mathbf{v}_n$, where \mathbf{u} is a symbol of index n and $\mathbf{v}_1,...,\mathbf{v}_n$ are designators, in one and only one way.

Lemma 2. Every occurrence of a symbol in a designator u begins an occurrence of a designator in u.

Occurrence Theorem. Let \mathbf{u} be a symbol of index n, and let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be designators. Then any occurrence of a designator \mathbf{v} in $\mathbf{u}\mathbf{v}_1 \dots \mathbf{v}_n$ is either all of $\mathbf{u}\mathbf{v}_1 \dots \mathbf{v}_n$ or a part of one of the \mathbf{v}_i .

§2.5

Lemma. Let \mathcal{A} be a structure for L; \mathbf{a} a variable-free term in $L(\mathcal{A})$; \mathbf{i} the name of $\mathcal{A}(\mathbf{a})$. If \mathbf{b} is a term of $L(\mathcal{A})$ in which no variable except \mathbf{x} occurs, then $\mathcal{A}(\mathbf{b_x}[\mathbf{a}]) = \mathcal{A}(\mathbf{b_x}[\mathbf{i}])$. If \mathbf{A} is a formula of $L(\mathcal{A})$ in which no variable except \mathbf{x} is free, then $\mathcal{A}(\mathbf{A_x}[\mathbf{a}]) = \mathcal{A}(\mathbf{A_x}[\mathbf{i}])$

Validity Theorem. If T is a theory, then every theorem of T is valid in T.

EXERCISES

1.

(a) Let $F(a_1, \ldots, a_n)$ be any truth function. We can construct another function

$$F'(a_1,\ldots,a_n) = H_{d,m}(H_{c,n}(a_1^1,\ldots,a_n^1),\ldots,H_{c,n}(a_1^m,\ldots,a_n^m))$$

where the a_1^i, \ldots, a_n^i are all the tuples of truth values such that $F(a_1^i, \ldots, a_n^i) = \top$. Thus, $a_j^i = a_j$ or $a_j^i = H_{\neg}(a_j)$, for some values of i and j. Now, we can see that F and F' are the same function, since any truth assignment a_1', \ldots, a_n' that satisfies (falsifies) F, also satisfies (falsifies) F', respectively. This is called Disjunctive Normal Form (DNF).

We can also construct a similar function

$$F''(a_1,\ldots,a_n) = H_{c,m}(H_{\neg}(H_{c,n}(a_1^1,\ldots,a_n^1)),\ldots,H_{\neg}(H_{c,n}(a_1^m,\ldots,a_n^m)))$$

= $H_{c,m}(H_{d,n}(H_{\neg}(a_1^1),\ldots,H_{\neg}(a_n^1)),\ldots,H_{d,n}(H_{\neg}(a_1^m),\ldots,H_{\neg}(a_n^m)))$

where the a_1^i, \ldots, a_n^i are all the tuples of truth values such that $F(a_1^i, \ldots, a_n^i) = \bot$. It can be seen by a reasoning similar to above, that F and F'' are the same function. This is called *Conjunctive Normal Form* (CNF).

(b) It can be seen that

$$H_{c,n} = H_{\wedge}(a_1, H_{\wedge}(a_2, \ldots))$$

 $H_{d,n} = H_{\vee}(a_1, H_{\vee}(a_2, \ldots))$

This means we can define any truth function F in terms of H_{\neg} , H_{\lor} and H_{\land} , due to (a). Additionally, we can convert each instance of $H_{\land}(a,b)$ into $H_{\neg}(H_{\lor}(H_{\neg}(a),H_{\neg}(b)))$. Thus, every truth function is definable in terms of H_{\neg} and H_{\lor} .

- (c) Since $H_{\vee}(a,b)$ can be defined as $H_{\rightarrow}(H_{\neg}(a),b)$, every truth function is definable in terms of H_{\neg} and H_{\rightarrow} , due to (b).
- (d) Since $H_{\vee}(a,b)$ can be defined as $H_{\neg}(H_{\wedge}(H_{\neg}(a),H_{\neg}(b)))$, every truth function is definable in terms of H_{\neg} and H_{\wedge} , due to (b).
 - (e) Consider the following identities, which can be easily verified e.g. via their truth tables

$$H_{\vee}(a,a) = a, \quad H_{\vee}(a,\top) = \top$$

$$H_{\wedge}(a,a) = a, \quad H_{\wedge}(a,\top) = a$$

$$H_{\rightarrow}(a,a) = \top, \quad H_{\rightarrow}(a,\top) = \top, \quad H_{\rightarrow}(\top,a) = a$$

$$H_{\leftrightarrow}(a,a) = \top, \quad H_{\leftrightarrow}(a,\top) = a, \quad H_{\leftrightarrow}(\top,a) = a.$$

Thus, any formula consisting of only those connectives and the free variable a can be inductively reduced to either a or \top and can never define H_{\neg} . Those connectives can only define monotone functions while negation is not monotone. Note that allowing constants in the expression would allow to define negation as e.g. $H_{\neg}(a) = H_{\rightarrow}(a, \bot)$.

2.

(a) Note that $H_d(a,b) = H_{\wedge}(H_{\neg}(a), H_{\neg}(b))$. We can then define

$$H_{\neg}(a) = H_d(a, a)$$

 $H_{\lor}(a, b) = H_d(H_d(a, b), H_d(a, b))$

and thus every truth function is definable in terms of H_d (using result from 1.1(b)).

(b) Note that $H_s(a,b) = H_{\neg}(H_{\wedge}(a,b))$. We can then define

$$H_{\neg}(a) = H_s(a, a)$$

$$H_{\lor}(a, b) = H_s(H_s(a, a), H_s(b, b))$$

and thus every truth function is definable in terms of H_s (using result from 1.1(b)).

(c) Let H be singularly with $H(a_1, \ldots, a_n) = H'(a_i)$. The syntax of every truth function $F(a_1, \ldots, a_m)$ definable in terms of H can be inductively defined by

$$e ::= a_j | H(e_1, \dots, e_n)$$

where $1 \leq j \leq m$ and e_1, \ldots, e_n are valid expressions.

We can then reduce every expression to an equivalent expression that involves a single a_j : as long as the expression has the form $H(e_1, \ldots, e_n)$, we can replace it with $H'(e_i)$ and inductively reduce e_i . Thus, every truth function F definable in terms of H is singularly and furthermore

$$F(a_1, \dots, a_m) = H'^k(a_i)$$

for some integers $k \geq 0$ and $1 \leq j \leq m$.

- (d) Note that since any n-ary truth function is completely determined by its truth table, there are 2^{2^n} of them. So we know there are $2^{2^2} = 16$ binary truth functions. Let's analyze them:
 - Consider the four binary truth functions H such that

$$H(a,a) = a.$$

It is easy to see that any function definable in terms of such H can be inductively reduced to a, in a similar fashion as before. Thus, none of these four functions can define every truth function (e.g. negation H_{\neg} cannot be defined).

- Consider the four binary truth functions H such that

$$H(a,a) = \bot.$$

For each of these four functions, we have

$$H(a, \perp) \in \{a, \perp\}, \quad H(\perp, a) \in \{a, \perp\}$$

and thus none of these four functions can define every truth function (e.g. negation H_{\neg} cannot be defined)

- Consider the four binary truth functions H such that

$$H(a,a) = \top$$
.

This case is symmetric to the previous one. For each of these four functions, we have

$$H(a, \top) \in \{a, \top\}, \quad H(\top, a) \in \{a, \top\}$$

and thus none of these four functions can define every truth function (e.g. negation H_{\neg} cannot be defined).

- For the four remaining binary truth functions, we have

$$H(\top, \top) = \bot, \quad H(\bot, \bot) = \top.$$

Two of those functions

$$H_1(\top, \bot) = \top, \quad H_1(\bot, \top) = \bot$$

 $H_2(\top, \bot) = \bot, \quad H_2(\bot, \top) = \top$

are singulary and thus cannot define functions such as H_{\vee} , due to the result from 2.2(c). The two remaining functions are H_d and H_s , presented in 2.2(a) and 2.2(b), respectively.

3. If \mathbf{v} is empty, then trivially neither \mathbf{u} or \mathbf{v}' are empty, and they are both designators.

Let's assume that \mathbf{v} is not empty and that the designator $\mathbf{u}\mathbf{v}$ has the form $\mathbf{t}\mathbf{t}_1 \dots \mathbf{t}_n$. Since $\mathbf{u}\mathbf{v}$ and $\mathbf{v}\mathbf{v}'$ are designators, they both begin with a symbol: thus \mathbf{v} also begins with a symbol, since it is a non-empty prefix of $\mathbf{v}\mathbf{v}'$. The occurrence of this symbol in $\mathbf{u}\mathbf{v}$ begins the occurrence of a designator \mathbf{u}' in $\mathbf{u}\mathbf{v}$ (by Lemma 2), which is compatible with \mathbf{v} . Moreover, the occurrence of \mathbf{u}' in $\mathbf{u}\mathbf{v}$ is either all of $\mathbf{u}\mathbf{v}$ or part of one of the \mathbf{t}_i (by the Occurrence Theorem). In the former case, it means that \mathbf{v} is a designator and \mathbf{u} and \mathbf{v}' are empty. On the other hand, if \mathbf{u}' is part of one of the \mathbf{t}_i , it means that $\mathbf{v}\mathbf{v}'$ begins with \mathbf{u}' , and thus \mathbf{u}' and \mathbf{v} are the same (by the Formation Theorem) and \mathbf{v}' is empty.

4. If a term is:

- i) a variable x', then the substitution result is x itself, which is also a term.
- ii) a function application $\mathbf{fa}_1 \dots \mathbf{a}_n$, then \mathbf{a} is one of the \mathbf{a}_i and the substitution result is also a term, or \mathbf{a} is substituted in one of the terms \mathbf{a}_i , and it remains a term, by the induction hypothesis.

If a formula is:

- i) an atomic formula $\mathbf{pa}_1 \dots \mathbf{a}_n$, then substituting \mathbf{a} in any of the \mathbf{a}_i results in a term, as previously shown. Thus it remains a formula.
- ii) $\neg \mathbf{A}$, then substituting \mathbf{a} in \mathbf{A} remains a formula by the induction hypothesis.
- iii) $\vee AB$, then substituting a in A or B remains a formula by the induction hypothesis.
- iv) $\exists y A$, then substituting a in A remains a formula by the induction hypothesis.

5.

(a) The hinted function is defined as:

$$f(\mathbf{A}) = \top$$
, for **A** atomic;
 $f(\neg \mathbf{A}) = \bot$;
 $f(\mathbf{A} \lor \mathbf{B}) = f(\mathbf{B})$;
 $f(\exists \mathbf{x} \mathbf{A}) = \top$.

Let's prove that if **A** is provable without propositional axioms then $f(\mathbf{A}) = \top$, by induction on theorems. In a proof of **A**, if **A** was obtained from:

- a substitution axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}] \lor \exists \mathbf{x} \mathbf{A}') = f(\exists \mathbf{x} \mathbf{A}') = \top;$
- an identity axiom: since it's an atomic formula, $f(\mathbf{A}) = f(\mathbf{x} = \mathbf{x}) = \top$;
- an equality axiom: we have $f(\mathbf{A}) = f(\mathbf{x}_1 = \mathbf{y}_1 \to \mathbf{x}_2 = \mathbf{y}_2 \to \mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2) = f(\neg(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg(\mathbf{x}_1 = \mathbf{x}_2) \lor (\mathbf{y}_1 = \mathbf{y}_2)) = f(\mathbf{y}_1 = \mathbf{y}_2) = \top;$
- the expansion rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}')$ with $f(\mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\mathbf{A}') = \top$;
- the contraction rule: we have $f(\mathbf{A}) = f(\mathbf{A}')$ with $f(\mathbf{A}' \vee \mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee \mathbf{A}') = f(\mathbf{A}') = f(\mathbf{A}) = \top$;
- the associative rule: we have $f(\mathbf{A}) = f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{C}') = f(\mathbf{A}) = \top$;
- the cut rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee \mathbf{B}') = \top$ and $f(\neg \mathbf{A}' \vee \mathbf{C}') = \top$ by the induction hypothesis. In this case $f(\neg \mathbf{A}' \vee \mathbf{C}') = f(\mathbf{C}') = f(\mathbf{A}) = \top$;
- the \exists -introduction rule: we have $f(\mathbf{A}) = f(\exists \mathbf{x} \mathbf{A}' \to \mathbf{B}')$ with $f(\mathbf{A}' \to \mathbf{B}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \to \mathbf{B}') = f(\neg \mathbf{A}' \vee \mathbf{B}') = f(\mathbf{B}') = f(\mathbf{A}) = \top$.

Thus, if **A** is provable without propositional axioms, we have $f(\mathbf{A}) = \top$. But $f(\neg \neg (x = x) \lor \neg (x = x)) = f(\neg (x = x)) = \bot$ and so it is not provable without propositional axioms.

(b) The hinted function is defined as:

$$f(\mathbf{A}) = \top$$
, for **A** atomic;
 $f(\neg \mathbf{A}) = \neg f(\mathbf{A})$;
 $f(\mathbf{A} \lor \mathbf{B}) = f(\mathbf{A}) \lor f(\mathbf{B})$;
 $f(\exists \mathbf{x} \mathbf{A}) = \bot$.

Let's prove that if **A** is provable without substitution axioms then $f(\mathbf{A}) = \top$, by induction on theorems. In a proof of **A**, if **A** was obtained from:

- a propositional axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}' \vee \mathbf{A}') = \neg f(\mathbf{A}') \vee f(\mathbf{A}') = \top$;
- an identity axiom: since it's an atomic formula, $f(\mathbf{A}) = f(\mathbf{x} = \mathbf{x}) = \top$;
- an equality axiom: we have $f(\mathbf{A}) = f(\mathbf{x}_1 = \mathbf{y}_1 \to \mathbf{x}_2 = \mathbf{y}_2 \to \mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2) = f(\neg(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg(\mathbf{x}_1 = \mathbf{x}_2) \lor (\mathbf{y}_1 = \mathbf{y}_2)) = \neg f(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg f(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg f(\mathbf{x}_1 = \mathbf{x}_2) \lor f(\mathbf{y}_1 = \mathbf{y}_2) = \top;$
- the expansion rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}')$ with $f(\mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{B}' \vee \mathbf{A}') = f(\mathbf{B}') \vee f(\mathbf{A}') = f(\mathbf{A}) = \top$;
- the contraction rule: we have $f(\mathbf{A}) = f(\mathbf{A}')$ with $f(\mathbf{A}' \vee \mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee \mathbf{A}') = f(\mathbf{A}') \vee f(\mathbf{A}') = f(\mathbf{A}') = f(\mathbf{A}) = \top$;
- the associative rule: we have $f(\mathbf{A}) = f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = f(\mathbf{A}') \vee f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{A}') \vee f(\mathbf{C}') = f(\mathbf{A}' \vee \mathbf{B}') \vee f(\mathbf{C}') = \top$;
- the cut rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee \mathbf{B}') = \top$ and $f(\neg \mathbf{A}' \vee \mathbf{C}') = \top$ by the induction hypothesis. In this case we have $f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{B}') \vee f(\mathbf{C}')$, $f(\mathbf{A}' \vee \mathbf{B}') = f(\mathbf{A}') \vee f(\mathbf{B}')$ and $f(\neg \mathbf{A}' \vee \mathbf{C}') = \neg f(\mathbf{A}') \vee f(\mathbf{C}')$. If $f(\mathbf{A}') = \top$, then $f(\mathbf{C}') = \top$. If $f(\mathbf{A}') = \bot$, then $f(\mathbf{B}') = \top$. Thus $f(\mathbf{B}') \vee f(\mathbf{C}') = f(\mathbf{A}) = \top$;
- the \exists -introduction rule: we have $f(\mathbf{A}) = f(\exists \mathbf{x} \mathbf{A}' \to \mathbf{B}')$ with $f(\mathbf{A}' \to \mathbf{B}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\neg \exists \mathbf{x} \mathbf{A}' \vee \mathbf{B}') = \neg f(\exists \mathbf{x} \mathbf{A}') \vee f(\mathbf{B}') = \top$.

Thus, if **A** is provable without substitution axioms, we have $f(\mathbf{A}) = \top$. But $f(x = x \to \exists x (x = x)) = \neg f(x = x) \lor f(\exists x (x = x)) = \bot$ and so it is not provable without substitution axioms.

(c) The hinted function is defined as:

$$f(\mathbf{A}) = \bot$$
, for **A** atomic;
 $f(\neg \mathbf{A}) = \neg f(\mathbf{A})$;
 $f(\mathbf{A} \lor \mathbf{B}) = f(\mathbf{A}) \lor f(\mathbf{B})$;
 $f(\exists \mathbf{x} \mathbf{A}) = f(\mathbf{A})$.

Let's prove that if **A** is provable without identity axioms then $f(\mathbf{A}) = \top$, by induction on theorems. In a proof of **A**, if **A** was obtained from:

- a propositional axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}' \vee \mathbf{A}') = \neg f(\mathbf{A}') \vee f(\mathbf{A}') = \top$;
- a substitution axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}] \lor \exists \mathbf{x} \mathbf{A}') = \neg f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) \lor f(\mathbf{A}') = \top$ (see below for this case);
- an equality axiom: we have $f(\mathbf{A}) = f(\mathbf{x}_1 = \mathbf{y}_1 \to \mathbf{x}_2 = \mathbf{y}_2 \to \mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2) = f(\neg(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg(\mathbf{x}_1 = \mathbf{x}_2) \lor (\mathbf{y}_1 = \mathbf{y}_2)) = \neg f(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg f(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg f(\mathbf{x}_1 = \mathbf{x}_2) \lor f(\mathbf{y}_1 = \mathbf{y}_2) = \top;$
- the expansion rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}')$ with $f(\mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{B}' \vee \mathbf{A}') = f(\mathbf{B}') \vee f(\mathbf{A}') = f(\mathbf{A}) = \top$;
- the contraction rule: we have $f(\mathbf{A}) = f(\mathbf{A}')$ with $f(\mathbf{A}' \vee \mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee \mathbf{A}') = f(\mathbf{A}') \vee f(\mathbf{A}') = f(\mathbf{A}') = f(\mathbf{A}) = \top$;
- the associative rule: we have $f(\mathbf{A}) = f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = f(\mathbf{A}') \vee f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{A}') \vee f(\mathbf{C}') = f(\mathbf{A}' \vee \mathbf{B}') \vee f(\mathbf{C}') = \top$;
- the cut rule: we have $f(\mathbf{A}) = f(\mathbf{B'} \vee \mathbf{C'})$ with $f(\mathbf{A'} \vee \mathbf{B'}) = \top$ and $f(\neg \mathbf{A'} \vee \mathbf{C'}) = \top$ by the induction hypothesis. In this case we have $f(\mathbf{B'} \vee \mathbf{C'}) = f(\mathbf{B'}) \vee f(\mathbf{C'})$, $f(\mathbf{A'} \vee \mathbf{B'}) = f(\mathbf{A'}) \vee f(\mathbf{B'})$ and $f(\neg \mathbf{A'} \vee \mathbf{C'}) = \neg f(\mathbf{A'}) \vee f(\mathbf{C'})$. If $f(\mathbf{A'}) = \top$, then $f(\mathbf{C'}) = \top$. If $f(\mathbf{A'}) = \bot$, then $f(\mathbf{B'}) = \top$. Thus $f(\mathbf{B'}) \vee f(\mathbf{C'}) = f(\mathbf{A}) = \top$;
- the \exists -introduction rule: we have $f(\mathbf{A}) = f(\exists \mathbf{x} \mathbf{A}' \to \mathbf{B}')$ with $f(\mathbf{A}' \to \mathbf{B}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\neg \exists \mathbf{x} \mathbf{A}' \lor \mathbf{B}') = \neg f(\mathbf{A}') \lor f(\mathbf{B}') = f(\neg \mathbf{A}' \lor \mathbf{B}') = f(\mathbf{A}' \to \mathbf{B}') = \top$. To treat substitution axioms, let's show that $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A})$ by induction on the length of \mathbf{A} :
 - for **A** atomic with form $\mathbf{pb_1} \dots \mathbf{b_n}$: we have $f(\mathbf{A_x}[\mathbf{a}]) = f(\mathbf{pb_1}_{\mathbf{x}}[\mathbf{a}] \dots \mathbf{b_{nx}}[\mathbf{a}]) = \bot$ and $f(\mathbf{A}) = f(\mathbf{pb_1} \dots \mathbf{b_n}) = \bot$.
 - for **A** with form $\neg \mathbf{A}'$: we have $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = \neg f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\mathbf{A}) = \neg f(\mathbf{A}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ by the induction hypothesis.

- for **A** with form $\mathbf{A}' \vee \mathbf{B}'$: we have $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) \vee f(\mathbf{B}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\mathbf{A}) = f(\mathbf{A}') \vee f(\mathbf{B}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ and $f(\mathbf{B}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{B}')$ by the induction hypothesis.
- for **A** with form $\exists \mathbf{y} \mathbf{A}'$: we have $f(\exists \mathbf{y} \mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\exists \mathbf{y} \mathbf{A}') = f(\mathbf{A}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ by the induction hypothesis.

Thus, if **A** is provable without identity axioms, we have $f(\mathbf{A}) = \top$. But $f(x = x) = \bot$ and so it is not provable without identity axioms.

(d) The hinted function is defined as:

$$f(\mathbf{e}_i = \mathbf{e}_j) = \top \quad \text{iff } i \leq j;$$

$$f(\neg \mathbf{A}) = \neg f(\mathbf{A});$$

$$f(\mathbf{A} \vee \mathbf{B}) = f(\mathbf{A}) \vee f(\mathbf{B});$$

$$f(\exists \mathbf{x} \mathbf{A}) = \top \quad \text{iff } f(\mathbf{A}_{\mathbf{x}}[\mathbf{e}_i]) = \top \text{ for some } i.$$

Let's prove that if **A** is provable without equality axioms then $f(\mathbf{A}') = \top$ for every formula obtained from **A** by replacing each variable by some \mathbf{e}_i at all its free occurrences, by induction on theorems. In a proof of **A**, if **A** was obtained from:

- a propositional axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}' \vee \mathbf{A}') = \neg f(\mathbf{A}') \vee f(\mathbf{A}') = \top$ for every closed formula \mathbf{A}'' obtained from \mathbf{A}' by replacing each variable by some \mathbf{e}_i at all its free occurrences;
- a substitution axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}] \vee \exists \mathbf{x} \mathbf{A}') = \neg f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) \vee f(\exists \mathbf{x} \mathbf{A}')$. For every closed formula \mathbf{A}'' obtained from \mathbf{A}' by replacing each variable (except \mathbf{x}) by some \mathbf{e}_i at all its free occurrences: if $f(\mathbf{A}''_{\mathbf{x}}[\mathbf{e}_i]) = \top$ for some i, then $f(\exists \mathbf{x} \mathbf{A}'') = \top$ by the definition of f. Otherwise, $f(\mathbf{A}''_{\mathbf{x}}[\mathbf{e}_i]) = \bot$ for all i and thus $\neg f(\mathbf{A}''_{\mathbf{x}}[\mathbf{e}_i]) = \top$;
- an identity axiom: $f(\mathbf{A}) = f(\mathbf{x} = \mathbf{x}) = \top$ for any substitution of \mathbf{x} by some \mathbf{e}_i ;
- the expansion rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}') = f(\mathbf{B}') \vee f(\mathbf{A}')$ with $f(\mathbf{A}') = \top$ for every closed formula \mathbf{A}'' obtained from \mathbf{A}' by replacing each variable by some \mathbf{e}_i at all its free occurrences, by the induction hypothesis;
- the contraction rule: we have $f(\mathbf{A}) = f(\mathbf{A}')$ with $f(\mathbf{A}' \vee \mathbf{A}') = f(\mathbf{A}') \vee f(\mathbf{A}') = f(\mathbf{A}') = T$ for every closed formula \mathbf{A}'' obtained from \mathbf{A}' by replacing each variable by some \mathbf{e}_i at all its free occurrences, by the induction hypothesis;
- the associative rule: we have $f(\mathbf{A}) = f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}') = f(\mathbf{A}') \vee f(\mathbf{B}') \vee f(\mathbf{C}')$ with $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = f(\mathbf{A}') \vee f(\mathbf{B}') \vee f(\mathbf{C}') = \top$ for every closed formulas \mathbf{A}'' , \mathbf{B}'' and \mathbf{C}'' obtained from \mathbf{A}' , \mathbf{B}' and \mathbf{C}' , respectively, by replacing each variable by some \mathbf{e}_i at all its free occurrences, by the induction hypothesis;
- the cut rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{B}') \vee f(\mathbf{C}')$ with $f(\mathbf{A}' \vee \mathbf{B}') = f(\mathbf{A}') \vee f(\mathbf{B}') = \top$ and $f(\neg \mathbf{A}' \vee \mathbf{C}') = \neg f(\mathbf{A}') \vee f(\mathbf{C}') = \top$ for every closed formulas \mathbf{A}'' , \mathbf{B}'' and \mathbf{C}'' obtained from \mathbf{A}' , \mathbf{B}' and \mathbf{C}' , respectively, by replacing each variable by some \mathbf{e}_i at all its free occurrences, by the induction hypothesis. If $f(\mathbf{A}') = \top$, then $f(\mathbf{C}') = \top$. If $f(\mathbf{A}') = \bot$, then $f(\mathbf{B}') = \top$. Thus $f(\mathbf{B}') \vee f(\mathbf{C}') = f(\mathbf{A}) = \top$;
- the \exists -introduction rule: we have $f(\mathbf{A}) = f(\exists \mathbf{x} \mathbf{A}' \to \mathbf{B}') = \neg f(\exists \mathbf{x} \mathbf{A}') \lor f(\mathbf{B}')$ with $f(\mathbf{A}' \to \mathbf{B}') = \neg f(\mathbf{A}') \lor f(\mathbf{B}') = \top$ for every closed formula \mathbf{A}'' and \mathbf{B}'' obtained from \mathbf{A}' and \mathbf{B}' , respectively, by replacing each variable by some \mathbf{e}_i at all its free occurrences, by the induction hypothesis. If $f(\mathbf{B}') = \top$, then $f(\mathbf{A}) = \top$ follows trivially. Otherwise, we must have $f(\mathbf{A}') = \bot$ for all closed formulas \mathbf{A}'' obtained from \mathbf{A}' as described above. This implies that $f(\exists \mathbf{x} \mathbf{A}') = \bot$ and thus $f(\mathbf{A}) = \top$.

Thus, if **A** is provable without equality axioms, we have $f(\mathbf{A}') = \top$ for every formula \mathbf{A}' obtained from **A** by replacing each variable by some \mathbf{e}_i at all its free occurences. But $f(x = y \to x = z \to x = x \to y = z) = \neg f(x = y) \lor \neg f(x = z) \lor \neg f(x = x) \lor f(y = z) = \bot$ since it does not hold for the substitution $[\mathbf{x}, \mathbf{y}, \mathbf{z}] \to [\mathbf{e}_1, \mathbf{e}_3, \mathbf{e}_2]$ and so it is not provable without equality axioms.

(e) The hinted function is defined as:

$$f(\mathbf{A}) = \top$$
, for **A** atomic;
 $f(\neg \mathbf{A}) = \neg f(\mathbf{A})$;
 $f(\mathbf{A} \vee \mathbf{B}) = f(\mathbf{A}) \leftrightarrow \neg f(\mathbf{B})$;
 $f(\exists \mathbf{x} \mathbf{A}) = f(\mathbf{A})$.

Let's prove that if **A** is provable without the expansion rule then $f(\mathbf{A}) = \top$, by induction on theorems. In a proof of **A**, if **A** was obtained from:

- a propositional axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}' \vee \mathbf{A}') = \neg f(\mathbf{A}') \leftrightarrow \neg f(\mathbf{A}') = \top$;
- a substitution axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}] \lor \exists \mathbf{x} \mathbf{A}') = \neg f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) \leftrightarrow \neg f(\mathbf{A}') = \top$ (see below for this case);
- an identity axiom: since it's an atomic formula, $f(\mathbf{A}) = f(\mathbf{x} = \mathbf{x}) = \top$;
- an equality axiom: we have $f(\mathbf{A}) = f(\mathbf{x}_1 = \mathbf{y}_1 \to \mathbf{x}_2 = \mathbf{y}_2 \to \mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2) = f(\neg(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg(\mathbf{x}_1 = \mathbf{x}_2) \lor (\mathbf{y}_1 = \mathbf{y}_2)) = \neg f(\mathbf{x}_1 = \mathbf{y}_1) \leftrightarrow \neg f(\mathbf{x}_2 = \mathbf{y}_2) \leftrightarrow \neg f(\mathbf{x}_1 = \mathbf{x}_2) \leftrightarrow \neg f(\mathbf{y}_1 = \mathbf{y}_2) = \top;$
- the contraction rule: we have $f(\mathbf{A}) = f(\mathbf{A}')$ with $f(\mathbf{A}' \vee \mathbf{A}') = \top$ by the induction hypothesis. However, this is a contradiction since $f(\mathbf{A}') \leftrightarrow \neg f(\mathbf{A}') = \bot$ for any \mathbf{A}' so it's not possible to have a proof where the contraction rule is applied (???);
- the associative rule: we have $f(\mathbf{A}) = f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = f(\mathbf{A}') \leftrightarrow \neg f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{A}') \leftrightarrow \neg f(\mathbf{C}') \leftrightarrow \neg f(\mathbf{C}') = f(\mathbf{A}') \leftrightarrow \neg f(\mathbf{C}') \Rightarrow f(\mathbf{C}')$ and $f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}') = f(\mathbf{A}' \vee \mathbf{B}') \leftrightarrow \neg f(\mathbf{C}') = (f(\mathbf{A}') \leftrightarrow \neg f(\mathbf{B}')) \leftrightarrow \neg f(\mathbf{C}') = f(\mathbf{A}') \leftrightarrow f(\mathbf{B}') \leftrightarrow f(\mathbf{C}')$;
- the cut rule: we have $f(\mathbf{A}) = f(\mathbf{B'} \vee \mathbf{C'})$ with $f(\mathbf{A'} \vee \mathbf{B'}) = \top$ and $f(\neg \mathbf{A'} \vee \mathbf{C'}) = \top$ by the induction hypothesis. In this case $f(\mathbf{A'} \vee \mathbf{B'}) = f(\mathbf{A'}) \leftrightarrow \neg f(\mathbf{B'})$ and $f(\neg \mathbf{A} \vee \mathbf{C'}) = \neg f(\mathbf{A'}) \leftrightarrow \neg f(\mathbf{C'}) = f(\mathbf{A'}) \leftrightarrow f(\mathbf{C'})$, and thus $f(\mathbf{B'}) \leftrightarrow \neg f(\mathbf{C'}) = f(\mathbf{B'} \vee \mathbf{C'}) = f(\mathbf{A}) = \top$;
- the \exists -introduction rule: we have $f(\mathbf{A}) = f(\exists \mathbf{x} \mathbf{A}' \to \mathbf{B}')$ with $f(\mathbf{A}' \to \mathbf{B}') = \top$ by the induction hypothesis. In this case $f(\neg \mathbf{A}' \vee \mathbf{B}') = f(\mathbf{A}') \leftrightarrow f(\mathbf{B}')$ and $f(\neg \exists \mathbf{x} \mathbf{A}' \vee \mathbf{B}') = f(\mathbf{A}') \leftrightarrow f(\mathbf{B}')$.

To treat substitution axioms, let's show that $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A})$ by induction on the length of \mathbf{A} :

- for **A** atomic with form $\mathbf{pb_1} \dots \mathbf{b_n}$: we have $f(\mathbf{A_x}[\mathbf{a}]) = f(\mathbf{pb_1_x}[\mathbf{a}] \dots \mathbf{b_{n_x}}[\mathbf{a}]) = \top$ and $f(\mathbf{A}) = f(\mathbf{pb_1} \dots \mathbf{b_n}) = \top$.
- for **A** with form $\neg \mathbf{A}'$: we have $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = \neg f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\mathbf{A}) = \neg f(\mathbf{A}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ by the induction hypothesis.
- for **A** with form $\mathbf{A}' \vee \mathbf{B}'$: we have $f(\mathbf{A_x}[\mathbf{a}]) = f(\mathbf{A_x'}[\mathbf{a}]) \leftrightarrow \neg f(\mathbf{B_x'}[\mathbf{a}])$ and $f(\mathbf{A}) = f(\mathbf{A}') \leftrightarrow \neg f(\mathbf{B}')$ and $f(\mathbf{A_x'}[\mathbf{a}]) = f(\mathbf{A}')$ and $f(\mathbf{B_x'}[\mathbf{a}]) = f(\mathbf{B}')$ by the induction hypothesis.
- for **A** with form $\exists y \mathbf{A}'$: we have $f(\exists y \mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\exists y \mathbf{A}') = f(\mathbf{A}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ by the induction hypothesis.

Thus, if **A** is provable without the expansion rule, we have $f(\mathbf{A}) = \top$. But $f(x = x \lor (\neg(x = x) \lor (x = x))) = f(x = x) \leftrightarrow \neg(f(x = x) \leftrightarrow \neg f(x = x)) = \bot$ and so it is not provable without the expansion rule.

(f) The hinted function is defined as:

$$f(\mathbf{A}) = \top$$
, for **A** atomic;
 $f(\neg \mathbf{A}) = \bot$;
 $f(\mathbf{A} \lor \mathbf{B}) = \top$;
 $f(\exists \mathbf{x} \mathbf{A}) = \bot$.

Let's prove that if **A** is provable without the contraction rule then $f(\mathbf{A}) = \top$, by induction on theorems. In a proof of **A**, if **A** was obtained from:

- a propositional axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}' \vee \mathbf{A}') = \top$;
- a substitution axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}] \vee \exists \mathbf{x} \mathbf{A}') = \top;$
- an identity axiom: since it's an atomic formula, $f(\mathbf{A}) = f(\mathbf{x} = \mathbf{x}) = \top$;
- an equality axiom: we have $f(\mathbf{A}) = f(\mathbf{x}_1 = \mathbf{y}_1 \to \mathbf{x}_2 = \mathbf{y}_2 \to \mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2) = f(\neg(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg(\mathbf{x}_1 = \mathbf{x}_2) \lor (\mathbf{y}_1 = \mathbf{y}_2)) = \top;$
- the expansion rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}')$ with $f(\mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}') = \top$;
- the associative rule: we have $f(\mathbf{A}) = f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = \top$ by the induction hypothesis. In this case $f(\mathbf{A}) = f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}') = \top$;
- the cut rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee \mathbf{B}') = \top$ and $f(\neg \mathbf{A}' \vee \mathbf{C}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{C}') = \top$;

• the \exists -introduction rule: we have $f(\mathbf{A}) = f(\exists \mathbf{x} \mathbf{A}' \to \mathbf{B}')$ with $f(\mathbf{A}' \to \mathbf{B}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\neg \exists \mathbf{x} \mathbf{A}' \vee \mathbf{B}') = \top$.

Thus, if **A** is provable without the contraction rule, we have $f(\mathbf{A}) = \top$. But $f(\neg \neg (x = x)) = \bot$ and so it is not provable without the contraction rule.

(g) The hinted function is defined as:

$$f(\mathbf{A}) = 0$$
, for \mathbf{A} atomic;
 $f(\neg \mathbf{A}) = 1 - f(\mathbf{A})$;
 $f(\mathbf{A} \lor \mathbf{B}) = f(\mathbf{A}) \cdot f(\mathbf{B}) \cdot (1 - f(\mathbf{A}) - f(\mathbf{B}))$;
 $f(\exists \mathbf{x} \mathbf{A}) = f(\mathbf{A})$.

Let's prove that if **A** is provable without the associative rule then $f(\mathbf{A}) = 0$, by induction on theorems. In a proof of **A**, if **A** was obtained from:

- a propositional axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}' \vee \mathbf{A}') = (1 f(\mathbf{A}')) \cdot f(\mathbf{A}') \cdot (1 (1 f(\mathbf{A}')) f(\mathbf{A}')) = (1 f(\mathbf{A}')) \cdot f(\mathbf{A}') \cdot (f(\mathbf{A}') f(\mathbf{A}')) = 0;$
- a substitution axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}] \lor \exists \mathbf{x} \mathbf{A}') = (1 f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}])) \cdot f(\mathbf{A}') \cdot (1 (1 f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}])) f(\mathbf{A}')) = 0$ (see below for this case);
- an identity axiom: since it's an atomic formula, $f(\mathbf{A}) = f(\mathbf{x} = \mathbf{x}) = 0$;
- an equality axiom: we have

$$f(\mathbf{A}) = f(\mathbf{x}_1 = \mathbf{y}_1 \to \mathbf{x}_2 = \mathbf{y}_2 \to \mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2)$$

= $f(\neg(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg(\mathbf{x}_1 = \mathbf{x}_2) \lor (\mathbf{y}_1 = \mathbf{y}_2))$
= $(1 - f(\mathbf{x}_1 = \mathbf{y}_1)) \cdot f(\mathbf{A}') \cdot (f(\mathbf{x}_1 = \mathbf{y}_1) - f(\mathbf{A}'))$

$$f(\mathbf{A}') = f(\mathbf{x}_2 = \mathbf{y}_2 \to \mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2) = (1 - f(\mathbf{x}_2 = \mathbf{y}_2)) \cdot f(\mathbf{A}'') \cdot (f(\mathbf{x}_2 = \mathbf{y}_2) - f(\mathbf{A}''))$$

$$f(\mathbf{A}'') = f(\mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2) = (1 - f(\mathbf{x}_1 = \mathbf{x}_2)) \cdot f(\mathbf{y}_1 = \mathbf{y}_2) \cdot (f(\mathbf{x}_1 = \mathbf{x}_2) - f(\mathbf{y}_1 = \mathbf{y}_2)) = 0;$$

- the expansion rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}')$ with $f(\mathbf{A}') = 0$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\mathbf{B}') \cdot f(\mathbf{A}') \cdot (1 f(\mathbf{B}') f(\mathbf{A}')) = 0$;
- the contraction rule: we have $f(\mathbf{A}) = f(\mathbf{A}')$ with $f(\mathbf{A}' \vee \mathbf{A}') = 0$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee \mathbf{A}') = f(\mathbf{A}') \cdot f(\mathbf{A}') \cdot (1 f(\mathbf{A}') f(\mathbf{A}')) = 0$ and the only integer solution is $f(\mathbf{A}') = 0$ and thus $f(\mathbf{A}) = 0$;
- the cut rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee \mathbf{B}') = 0$ and $f(\neg \mathbf{A}' \vee \mathbf{C}') = 0$ by the induction hypothesis. Consider the equations

$$f(\mathbf{A}' \vee \mathbf{B}') = f(\mathbf{A}') \cdot f(\mathbf{B}') \cdot (1 - f(\mathbf{A}') - f(\mathbf{B}')) = 0 \tag{1}$$

$$f(\neg \mathbf{A}' \lor \mathbf{C}') = (1 - f(\mathbf{A}')) \cdot f(\mathbf{C}') \cdot (f(\mathbf{A}') - f(\mathbf{C}')) = 0$$
(2)

$$f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{B}') \cdot f(\mathbf{C}') \cdot (1 - f(\mathbf{B}') - f(\mathbf{C}')) = 0$$
(3)

and the possible cases that satisfy equation (2). First, $(1 - f(\mathbf{A}')) = 0$ implies that $f(\mathbf{A}') = 1$ and substituting in equation (1) we obtain $f(\mathbf{B}') \cdot (-f(\mathbf{B}')) = 0$ which means that $f(\mathbf{B}') = 0$ which satisfies equation (3). Second, $f(\mathbf{C}') = 0$, which trivially satisfies equation (3). Third, $f(\mathbf{A}') - f(\mathbf{C}') = 0$ which implies $f(\mathbf{A}') = f(\mathbf{C}')$ and substituting in equation (1) we obtain $f(\mathbf{C}') \cdot f(\mathbf{B}') \cdot (1 - f(\mathbf{C}') - f(\mathbf{B}')) = 0$. Thus, equation (3) is satisfied in all cases;

• the \exists -introduction rule: we have $f(\mathbf{A}) = f(\exists \mathbf{x} \mathbf{A}' \to \mathbf{B}')$ with $f(\mathbf{A}' \to \mathbf{B}') = 0$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\neg \exists \mathbf{x} \mathbf{A}' \vee \mathbf{B}') = (1 - f(\mathbf{A}')) \cdot f(\mathbf{B}') \cdot (f(\mathbf{A}') - f(\mathbf{B}')) = f(\mathbf{A}' \to \mathbf{B}') = 0$.

To treat substitution axioms, let's show that $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A})$ by induction on the length of \mathbf{A} :

- for **A** atomic with form $\mathbf{pb_1} \dots \mathbf{b_n}$: we have $f(\mathbf{A_x}[\mathbf{a}]) = f(\mathbf{pb_1}_{\mathbf{x}}[\mathbf{a}] \dots \mathbf{b_n}_{\mathbf{x}}[\mathbf{a}]) = 0$ and $f(\mathbf{A}) = f(\mathbf{pb_1} \dots \mathbf{b_n}) = 0$.
- for **A** with form $\neg \mathbf{A}'$: we have $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = 1 f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\mathbf{A}) = 1 f(\mathbf{A}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ by the induction hypothesis.

- for \mathbf{A} with form $\mathbf{A}' \vee \mathbf{B}'$: we have $f(\mathbf{A_x}[\mathbf{a}]) = f(\mathbf{A_x'}[\mathbf{a}]) \cdot f(\mathbf{B_x'}[\mathbf{a}]) \cdot (1 f(\mathbf{A_x'}[\mathbf{a}]) f(\mathbf{B_x'}[\mathbf{a}]))$ and $f(\mathbf{A}) = f(\mathbf{A}') \cdot f(\mathbf{B}') \cdot (1 f(\mathbf{A}') f(\mathbf{B}'))$ and $f(\mathbf{A_x'}[\mathbf{a}]) = f(\mathbf{A}')$ and $f(\mathbf{B_x'}[\mathbf{a}]) = f(\mathbf{B}')$ by the induction hypothesis.
- for **A** with form $\exists \mathbf{y} \mathbf{A}'$: we have $f(\exists \mathbf{y} \mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\exists \mathbf{y} \mathbf{A}') = f(\mathbf{A}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ by the induction hypothesis.

Thus, if **A** is provable without the associative rule, we have $f(\mathbf{A}) = 0$. But $f(\neg(x = x) \lor \neg(x = x))) = 1 - f(\neg(x = x) \lor \neg(x = x)) = 1 - ((1 - f(x = x))^2 \cdot (1 - 2 \cdot (1 - f(x = x)))) = 1 - (1 - 2) = 2$ and so it is not provable without the associative rule.

(h) The hinted function is defined as:

$$f(\mathbf{A}) = \top \quad \text{for } \mathbf{A} \text{ atomic;}$$

$$f(\neg \mathbf{A}) = \begin{cases} \top, & \text{if } f(\mathbf{A}) = \bot \text{ or } \mathbf{A} \text{ is atomic;} \\ \bot, & \text{otherwise.} \end{cases}$$

$$f(\mathbf{A} \vee \mathbf{B}) = f(\mathbf{A}) \vee f(\mathbf{B});$$

$$f(\exists \mathbf{x} \mathbf{A}) = f(\mathbf{A}).$$

Let's prove that if **A** is provable without the cut rule then $f(\mathbf{A}) = \top$, by induction on theorems. In a proof of **A**, if **A** was obtained from:

- a propositional axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}' \vee \mathbf{A}') = f(\neg \mathbf{A}') \vee f(\mathbf{A}') = \top$ (since if $f(\mathbf{A}') = \bot$, then $f(\neg \mathbf{A}') = \top$ from the definition of f);
- a substitution axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}] \vee \exists \mathbf{x} \mathbf{A}') = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) \vee f(\mathbf{A}') = \top$ (since if $f(\mathbf{A}') = \bot$, then $f(\neg \mathbf{A}') = \top$ from the definition of f and $f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\neg \mathbf{A}')$. See below for this case);
- an identity axiom: since it's an atomic formula, $f(\mathbf{A}) = f(\mathbf{x} = \mathbf{x}) = \top$;
- an equality axiom: we have $f(\mathbf{A}) = f(\mathbf{x}_1 = \mathbf{y}_1 \to \mathbf{x}_2 = \mathbf{y}_2 \to \mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2) = f(\neg(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg(\mathbf{x}_1 = \mathbf{x}_2) \lor (\mathbf{y}_1 = \mathbf{y}_2)) = f(\neg(\mathbf{x}_1 = \mathbf{y}_1)) \lor f(\neg(\mathbf{x}_2 = \mathbf{y}_2)) \lor f(\neg(\mathbf{x}_1 = \mathbf{x}_2)) \lor f(\mathbf{y}_1 = \mathbf{y}_2) = \top;$
- the expansion rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}')$ with $f(\mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}') = f(\mathbf{B}') \vee f(\mathbf{A}') = \top$;
- the contraction rule: we have $f(\mathbf{A}) = f(\mathbf{A}')$ with $f(\mathbf{A}' \vee \mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee \mathbf{A}') = f(\mathbf{A}') \vee f(\mathbf{A}') = \top$ and thus $f(\mathbf{A}) = f(\mathbf{A}') = \top$;
- the associative rule: we have $f(\mathbf{A}) = f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = f(\mathbf{A}') \vee f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{A}') \vee f(\mathbf{B}') \vee f(\mathbf{C}') = f(\mathbf{A}' \vee \mathbf{B}') \vee f(\mathbf{C}') = \top$;
- the \exists -introduction rule: we have $f(\mathbf{A}) = f(\exists \mathbf{x} \mathbf{A}' \to \mathbf{B}')$ with $f(\mathbf{A}' \to \mathbf{B}') = \top$ by the induction hypothesis. In this case we have $f(\mathbf{A}) = f(\neg \exists \mathbf{x} \mathbf{A}' \vee \mathbf{B}') = f(\neg \exists \mathbf{x} \mathbf{A}') \vee f(\mathbf{B}')$ and $f(\neg \mathbf{A}') \vee f(\mathbf{B}') = \top$. So either $f(\neg \mathbf{A}') = \top$ or $f(\mathbf{B}') = \top$. In the latter case, it follows trivially that $f(\mathbf{A}) = \top$. In the former case, note that since $f(\exists \mathbf{x} \mathbf{A}) = f(\mathbf{A})$ and $\exists \mathbf{x} \mathbf{A}$ is not atomic, then $f(\neg \exists \mathbf{x} \mathbf{A}') = f(\neg \mathbf{A}')$.

To treat substitution axioms, let's show that $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A})$ by induction on the length of \mathbf{A} :

- for **A** atomic with form $\mathbf{pb_1} \dots \mathbf{b_n}$: we have $f(\mathbf{A_x}[\mathbf{a}]) = f(\mathbf{pb_1_x}[\mathbf{a}] \dots \mathbf{b_{n_x}}[\mathbf{a}]) = \top$ and $f(\mathbf{A}) = f(\mathbf{pb_1} \dots \mathbf{b_n}) = \top$.
- for **A** with form $\neg \mathbf{A}'$ with \mathbf{A}' atomic: we have $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = \top$ and $f(\mathbf{A}) = f(\neg \mathbf{A}') = \top$.
- for **A** with form $\neg \mathbf{A}'$ with \mathbf{A}' not atomic: we have $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\mathbf{A}) = f(\neg \mathbf{A}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ by the induction hypothesis.
- for **A** with form $\mathbf{A}' \vee \mathbf{B}'$: we have $f(\mathbf{A}_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) \vee f(\mathbf{B}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\mathbf{A}) = f(\mathbf{A}') \vee f(\mathbf{B}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ and $f(\mathbf{B}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{B}')$ by the induction hypothesis.
- for **A** with form $\exists \mathbf{y} \mathbf{A}'$: we have $f(\exists \mathbf{y} \mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}])$ and $f(\exists \mathbf{y} \mathbf{A}') = f(\mathbf{A}')$ and $f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) = f(\mathbf{A}')$ by the induction hypothesis.

Thus, if **A** is provable without the cut rule, we have $f(\mathbf{A}) = \top$. But $f(\neg \neg (x = x)) = \bot$ since $f(\neg (x = x)) = \top$ and so it is not provable without the cut rule.

(i) The hinted function is defined as:

$$f(\mathbf{A}) = \top$$
, for **A** atomic;
 $f(\neg \mathbf{A}) = \neg f(\mathbf{A})$;
 $f(\mathbf{A} \vee \mathbf{B}) = f(\mathbf{A}) \vee f(\mathbf{B})$;
 $f(\exists \mathbf{x} \mathbf{A}) = \top$.

Let's prove that if **A** is provable without the \exists -introduction rule then $f(\mathbf{A}) = \top$, by induction on theorems. In a proof of **A**, if **A** was obtained from:

- a propositional axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}' \lor \mathbf{A}') = \neg f(\mathbf{A}') \lor f(\mathbf{A}') = \top;$
- a substitution axiom: we have $f(\mathbf{A}) = f(\neg \mathbf{A}'_{\mathbf{x}}[\mathbf{a}] \lor \exists \mathbf{x} \mathbf{A}') = \neg f(\mathbf{A}'_{\mathbf{x}}[\mathbf{a}]) \lor f(\exists \mathbf{x} \mathbf{A}') = \top;$
- an identity axiom: since it's an atomic formula, $f(\mathbf{A}) = f(\mathbf{x} = \mathbf{x}) = \top$;
- an equality axiom: we have $f(\mathbf{A}) = f(\mathbf{x}_1 = \mathbf{y}_1 \to \mathbf{x}_2 = \mathbf{y}_2 \to \mathbf{x}_1 = \mathbf{x}_2 \to \mathbf{y}_1 = \mathbf{y}_2) = f(\neg(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg(\mathbf{x}_1 = \mathbf{x}_2) \lor (\mathbf{y}_1 = \mathbf{y}_2)) = \neg f(\mathbf{x}_1 = \mathbf{y}_1) \lor \neg f(\mathbf{x}_2 = \mathbf{y}_2) \lor \neg f(\mathbf{x}_1 = \mathbf{x}_2) \lor f(\mathbf{y}_1 = \mathbf{y}_2) = \top;$
- the expansion rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}')$ with $f(\mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{A}') = f(\mathbf{B}') \vee f(\mathbf{A}') = \top$;
- the contraction rule: we have $f(\mathbf{A}) = f(\mathbf{A}')$ with $f(\mathbf{A}' \vee \mathbf{A}') = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee \mathbf{A}') = f(\mathbf{A}') \vee f(\mathbf{A}') = f(\mathbf{A}') = f(\mathbf{A}) = \top$;
- the associative rule: we have $f(\mathbf{A}) = f((\mathbf{A}' \vee \mathbf{B}') \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = \top$ by the induction hypothesis. In this case $f(\mathbf{A}' \vee (\mathbf{B}' \vee \mathbf{C}')) = f(\mathbf{A}') \vee f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{A}') \vee f(\mathbf{C}') = f(\mathbf{A}' \vee \mathbf{B}') \vee f(\mathbf{C}') = \top$;
- the cut rule: we have $f(\mathbf{A}) = f(\mathbf{B}' \vee \mathbf{C}')$ with $f(\mathbf{A}' \vee \mathbf{B}') = \top$ and $f(\neg \mathbf{A}' \vee \mathbf{C}') = \top$ by the induction hypothesis. In this case we have $f(\mathbf{B}' \vee \mathbf{C}') = f(\mathbf{B}') \vee f(\mathbf{C}')$, $f(\mathbf{A}' \vee \mathbf{B}') = f(\mathbf{A}') \vee f(\mathbf{B}')$ and $f(\neg \mathbf{A}' \vee \mathbf{C}') = \neg f(\mathbf{A}') \vee f(\mathbf{C}')$. If $f(\mathbf{A}') = \top$, then $f(\mathbf{C}') = \top$. If $f(\mathbf{A}') = \bot$, then $f(\mathbf{B}') = \top$. Thus $f(\mathbf{B}') \vee f(\mathbf{C}') = f(\mathbf{A}) = \top$;

Thus, if **A** is provable without the \exists -introduction rule, we have $f(\mathbf{A}) = \top$. But $f(\exists y \neg (x = x) \rightarrow \neg (x = x)) = \neg f(\exists y \neg (x = x)) \vee \neg f(x = x) = \bot$ and so it is not provable without the \exists -introduction rule.

Chapter 3

DEFINITIONS

- A formula is *elementary* if it is either atomic or an instantiation.
- A truth valuation for T is a mapping from the set of elementary formulas in T to the set of truth values.
- **B** is a tautological consequence of $\mathbf{A}_1, \dots, \mathbf{A}_n$ if $V(\mathbf{B}) = \top$ for every truth valuation V such that $V(\mathbf{A}_1) = \dots = V(\mathbf{A}_n) = \top$.
- A formula **A** is a *tautology* it is a tautological consequence of the empty sequence of formulas, i.e. if $V(\mathbf{A}) = \top$ for every truth valuation V.
- \mathbf{A}' is an *instance* of \mathbf{A} if \mathbf{A}' is of the form $\mathbf{A}_{\mathbf{x}_1,\dots,\mathbf{x}_n}[\mathbf{a}_1,\dots,\mathbf{a}_2]$.
- Let **A** be a formula and $\mathbf{x}_1, \dots, \mathbf{x}_n$ its free variables in alphabetical order. The *closure* of **A** is the formula $\forall \mathbf{x}_1 \dots \forall \mathbf{x}_n \mathbf{A}$.
- \mathbf{A}' is a *variant* of \mathbf{A} if \mathbf{A}' can be obtained from \mathbf{A} by a sequence of replacements of the following type: replace a part $\exists \mathbf{x} \mathbf{B}$ by $\exists \mathbf{y} \mathbf{B}_{\mathbf{x}}[\mathbf{y}]$, where \mathbf{y} is a variable not free in \mathbf{B} .

RESULTS

§3.1

Tautology Theorem. If **B** is a tautological consequence of A_1, \ldots, A_n , and $\vdash A_1, \ldots, \vdash A_n$, then $\vdash B$.

Corollary. Every tautology is a theorem.

Lemma 1. *If* \vdash **A** \lor **B**, *then* \vdash **B** \lor **A**.

Detachment Rule. *If* \vdash **A** *and* \vdash **A** \rightarrow **B**, *then* \vdash **B**.

Corollary. If $\vdash \mathbf{A}_1, \ldots, \vdash \mathbf{A}_n$, and $\vdash \mathbf{A}_1 \to \ldots \to \mathbf{A}_n \to \mathbf{B}$, then $\vdash \mathbf{B}$.

Lemma 2. If $n \geq 2$, and $\mathbf{A}_1 \vee \cdots \vee \mathbf{A}_n$ is a tautology, then $\vdash \mathbf{A}_1 \vee \cdots \vee \mathbf{A}_n$.

§3.2

 \forall -Introduction Rule. If $\vdash \mathbf{A} \to \mathbf{B}$ and \mathbf{x} is not free in \mathbf{A} , then $\vdash \mathbf{A} \to \forall \mathbf{x} \mathbf{B}$.

Generalization Rule. If $\vdash \mathbf{A}$, then $\vdash \forall \mathbf{x} \mathbf{A}$.

Substitution Rule. If $\vdash \mathbf{A}$ and \mathbf{A}' is an instance of \mathbf{A} , then $\vdash \mathbf{A}'$.

Substitution Theorem.

$$\vdash \mathbf{A}_{\mathbf{x}_1,...,\mathbf{x}_n}[\mathbf{a}_1,\ldots,\mathbf{a}_n] \to \exists \mathbf{x}_1\ldots \exists \mathbf{x}_n \mathbf{A}$$

 $\vdash \forall \mathbf{x}_1\ldots \forall \mathbf{x}_n \mathbf{A} \to \mathbf{A}_{\mathbf{x}_1,...,\mathbf{x}_n}[\mathbf{a}_1,\ldots,\mathbf{a}_n]$

Distribution Rule. *If* \vdash **A** \rightarrow **B**, *then* $\vdash \exists \mathbf{x} \mathbf{A} \rightarrow \exists \mathbf{x} \mathbf{B}$ *and* $\vdash \forall \mathbf{x} \mathbf{A} \rightarrow \forall \mathbf{x} \mathbf{B}$.

Closure Theorem. If A' is the closure of A, then $\vdash A'$ iff $\vdash A$.

Corollary. If A' is the closure of A, then A' is valid in a structure A iff A is valid in A.

 $\S 3.3$

Deduction Theorem. Let **A** be a closed formula in T. For every formula **B** of T, $\vdash_T \mathbf{A} \to \mathbf{B}$ iff **B** is a theorem of $T[\mathbf{A}]$.

Corollary. Let $\mathbf{A}_1, \dots, \mathbf{A}_n$ be closed formulas in T. For every formula \mathbf{B} in $T, \vdash_T \mathbf{A}_1 \to \dots \to \mathbf{A}_n \to \mathbf{B}$ iff \mathbf{B} is a theorem of $T[\mathbf{A}_1, \dots, \mathbf{A}_n]$.

Theorem on Constants. Let T' be obtained from T by adding new constants (but no new nonlogical axioms). For every formula \mathbf{A} of T and every sequence $\mathbf{e}_1, \ldots, \mathbf{e}_n$ of distinct new constants, $\vdash_T \mathbf{A}$ iff $\vdash_{T'} \mathbf{A}[\mathbf{e}_1, \ldots, \mathbf{e}_n]$.

 $\S 3.4$

Equivalence Theorem. Let A' be obtained from A by replacing some occurrences of B_1, \ldots, B_n by B'_1, \ldots, B'_n , respectively. If

$$\vdash \mathbf{B}_1 \leftrightarrow \mathbf{B}'_1, \dots, \vdash \mathbf{B}_n \leftrightarrow \mathbf{B}'_n$$

then

$$\vdash \mathbf{A} \leftrightarrow \mathbf{A}'$$
.

Variant Theorem. If A' is a variant of A, then $\vdash A \leftrightarrow A'$.

Symmetry Theorem. $\vdash a = b \leftrightarrow b = a$.

Equality Theorem. Let \mathbf{b}' be obtained from \mathbf{b} by replacing some occurrences of $\mathbf{a}_1, \ldots, \mathbf{a}_n$ not immediately following \exists or \forall by $\mathbf{a}'_1, \ldots, \mathbf{a}'_n$ respectively, and let \mathbf{A}' be obtained from \mathbf{A} by the same type of replacements. If $\vdash \mathbf{a}_1 = \mathbf{a}'_1, \ldots \vdash \mathbf{a}_n = \mathbf{a}'_n$ then $\vdash \mathbf{b} = \mathbf{b}'$ and $\vdash \mathbf{A} \leftrightarrow \mathbf{A}'$.

Corollary 1.
$$\vdash \mathbf{a}_1 = \mathbf{a}_1' \to \cdots \to \mathbf{a}_n = \mathbf{a}_n' \to \mathbf{b}[\mathbf{a}_1, \dots, \mathbf{a}_n] = \mathbf{b}[\mathbf{a}_1', \dots, \mathbf{a}_n'].$$

$$\textbf{Corollary 2.} \ \vdash \mathbf{a}_1 = \mathbf{a}_1' \to \cdots \to \mathbf{a}_n = \mathbf{a}_n' \to (\mathbf{A}[\mathbf{a}_1, \dots, \mathbf{a}_n] \leftrightarrow \mathbf{A}[\mathbf{a}_1', \dots, \mathbf{a}_n']).$$

Corollary 3. If x does not occur in a, then

$$\vdash \mathbf{A}_{\mathbf{x}}[\mathbf{a}] \leftrightarrow \exists \mathbf{x}(\mathbf{x} = \mathbf{a} \wedge \mathbf{A})$$

Theories

N (Natural Numbers)

Nonlogical symbols:

- constant 0
- unary function symbol S, the successor function
- binary function symbols + and \cdot
- binary predicate symbol <

Nonlogical axioms:

N1.
$$Sx \neq 0$$

N2.
$$Sx = Sy \rightarrow x = y$$

N3.
$$x + 0 = x$$

N4.
$$x + Sy = S(x + y)$$

N5.
$$x \cdot 0 = 0$$

N6.
$$x \cdot Sy = (x \cdot y) + x$$

N7.
$$\neg (x < 0)$$

N8.
$$x < Sy \leftrightarrow x < y \lor x = y$$

N9.
$$x < y \leftrightarrow \forall x = y \lor y < x$$

G (Elementary Theory of Groups)

Nonlogical symbols:

- binary function symbol \cdot

Nonlogical axioms:

$$\mathbf{G1.} \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

G2.
$$\exists x (\forall y (x \cdot y = y) \land \forall y \exists z (z \cdot y = x))$$

Proofs

Chapter 2 - Exercise 5(a) (1) $\neg \neg (x = x) \lor \neg (x = x)$ [axiom: propositional] Chapter 2 - Exercise 5(b) (1) $\neg(x=x) \lor \exists x(x=x)$ [axiom: substitution] Chapter 2 - Exercise 5(c) (1) (x = x)[axiom: identity] Chapter 2 - Exercise 5(d) (1) $\neg (x = y) \lor (\neg (x = z) \lor (\neg (x = x) \lor (y = z)))$ [axiom: equality] Chapter 2 - Exercise 5(e) [axiom: identity] (1) (x = x) $(2) \neg (x = x) \lor (x = x)$ [rule: expansion: (1)] (3) $(x = x) \lor (\neg(x = x) \lor (x = x))$ [rule: expansion: (2)] Chapter 2 - Exercises 5(f) and 5(h) (1) (x = x)[axiom: identity] $(2) \neg \neg (x = x) \lor (x = x)$ [rule: expansion: (1)] (3) $\neg\neg\neg(x=x) \lor \neg\neg(x=x)$ [axiom: propositional] (4) $(x = x) \lor \neg \neg (x = x)$ [rule: cut: (2) (3)] (5) $\neg \neg (x = x) \lor \neg (x = x)$ [axiom: propositional] [rule: cut: (5) (3)] (6) $\neg(x=x) \lor \neg\neg(x=x)$ (7) $\neg \neg (x = x) \lor \neg \neg (x = x)$ [rule: cut: (4) (6)] (8) $\neg \neg (x = x)$ [rule: contraction: (7)] Chapter 2 - Exercise 5(g) (1) (x = x)[axiom: identity] $(2) \neg (\neg (x=x) \lor \neg (x=x)) \lor (\neg (x=x) \lor \neg (x=x))$ [axiom: propositional] $(3) (\neg(\neg(x=x) \lor \neg(x=x)) \lor \neg(x=x)) \lor \neg(x=x)$ [rule: associative: (2)] (4) $(\neg(\neg(x=x) \lor \neg(x=x)) \lor \neg(x=x)) \lor (x=x)$ [rule: expansion: (1)] $(5) \ \neg (\neg (\neg (x=x) \lor \neg (x=x)) \lor \neg (x=x)) \lor (\neg (\neg (x=x) \lor \neg (x=x)) \lor \neg (x=x))$ [axiom: propositional] (6) $\neg(x=x) \lor (\neg(\neg(x=x) \lor \neg(x=x)) \lor \neg(x=x))$ [rule: cut: (3) (5)] (7) $(x = x) \lor (\neg(\neg(x = x) \lor \neg(x = x)) \lor \neg(x = x))$ [rule: cut: (4) (5)] $(8) \ (\neg(\neg(x=x) \lor \neg(x=x)) \lor \neg(x=x)) \lor (\neg(\neg(x=x) \lor \neg(x=x)) \lor \neg(x=x))$ [rule: cut: (7) (6)] $(9) \neg (\neg (x=x) \lor \neg (x=x)) \lor \neg (x=x)$ [rule: contraction: (8)] (10) $\neg(\neg(x=x) \lor \neg(x=x)) \lor (x=x)$ [rule: expansion: (1)] $(11) \neg \neg (\neg (x=x) \lor \neg (x=x)) \lor \neg (\neg (x=x) \lor \neg (x=x))$ [axiom: propositional] $(12) \neg (x = x) \lor \neg (\neg (x = x) \lor \neg (x = x))$ [rule: cut: (9) (11)] $(13) (x = x) \vee \neg (\neg (x = x) \vee \neg (x = x))$ [rule: cut: (10) (11)] $(14) \neg (\neg (x=x) \lor \neg (x=x)) \lor \neg (\neg (x=x) \lor \neg (x=x))$ [rule: cut: (13) (12)] $(15) \neg (\neg (x=x) \lor \neg (x=x))$ [rule: contraction: (14)] Chapter 2 - Exercise 5(i) (1) $\neg \neg (x = x) \lor \neg (x = x)$ [axiom: propositional] (2) $\neg \exists y \neg (x = x) \lor \neg (x = x)$ [rule: e-introduction: (1)] Chapter 3 - §3.1 - Lemma 1 [premise]

(1) $\mathbf{A} \vee \mathbf{B}$ (2) $\neg \mathbf{A} \vee \mathbf{A}$ [axiom: propositional] (3) $\mathbf{B} \vee \mathbf{A}$ [rule: cut: (1) (2)]

Chapter 3 - §3.1 - Detachment Rule	
(1) A	[premise]
$(2) \neg \mathbf{A} \lor \mathbf{B}$	[premise]
(3) $\mathbf{B} \vee \mathbf{A}$	[rule: expansion: (1)]
$(4) \neg \mathbf{B} \lor \mathbf{B}$	[axiom: propositional]
(5) $\mathbf{A} \vee \mathbf{B}$	[rule: cut: (3) (4)]
(6) $\mathbf{B} \vee \mathbf{B}$	[rule: cut : (5) (2)]
(7) B	[rule: contraction: (6)]
Chapter 3 - §3.1 - Tautology Theorem - result (B)	
(1) $\mathbf{A} \vee \mathbf{B}$	[premise]
$(2) \neg \neg \mathbf{A} \lor \neg \mathbf{A}$	[axiom: propositional]
$(3) \neg \neg \neg \mathbf{A} \lor \neg \neg \mathbf{A}$	[axiom: propositional]
$(4) \neg \mathbf{A} \lor \neg \neg \mathbf{A}$	[rule: cut: (2) (3)]
$(5) \mathbf{B} \vee \neg \neg \mathbf{A}$	[rule: cut: (1) (4)]
$(6) \neg \mathbf{B} \vee \mathbf{B}$	[axiom: propositional]
$(7) \neg \neg \mathbf{A} \lor \mathbf{B}$	[rule: cut: (5) (6)]
Chapter 3 - §3.1 - Tautology Theorem - result (C)	
$(1) \neg \mathbf{A} \lor \mathbf{C}$	[premise]
$(2) \neg \mathbf{B} \lor \mathbf{C}$	[premise]
$(3) \neg (\mathbf{A} \lor \mathbf{B}) \lor (\mathbf{A} \lor \mathbf{B})$	[axiom: propositional]
$(4) (\neg(\mathbf{A} \vee \mathbf{B}) \vee \mathbf{A}) \vee \mathbf{B}$ $(5) (\neg(\mathbf{A} \vee \mathbf{B}) \vee \mathbf{A}) \vee (\neg(\mathbf{A} \vee \mathbf{B}) \vee \mathbf{A})$	[rule: associative: (3)]
$(5) \neg(\neg(\mathbf{A} \lor \mathbf{B}) \lor \mathbf{A}) \lor (\neg(\mathbf{A} \lor \mathbf{B}) \lor \mathbf{A})$ $(6) \mathbf{B} \lor (\neg(\mathbf{A} \lor \mathbf{B}) \lor \mathbf{A})$	[axiom: propositional] [rule: cut: (4) (5)]
$(0) \mathbf{B} \vee ((\mathbf{A} \vee \mathbf{B}) \vee \mathbf{A})$ $(7) (\neg(\mathbf{A} \vee \mathbf{B}) \vee \mathbf{A}) \vee \mathbf{C}$	[rule: cut: (4) (5)]
(8) $\mathbf{C} \vee (\neg(\mathbf{A} \vee \mathbf{B}) \vee \mathbf{A})$	[rule: cut: (7) (5)]
$(9) (\mathbf{C} \vee \neg (\mathbf{A} \vee \mathbf{B})) \vee \mathbf{A}$	[rule: associative: (8)]
$(10) \neg (\mathbf{C} \lor \neg (\mathbf{A} \lor \mathbf{B})) \lor (\mathbf{C} \lor \neg (\mathbf{A} \lor \mathbf{B}))$	[axiom: propositional]
$(11) \mathbf{A} \vee (\mathbf{C} \vee \neg (\mathbf{A} \vee \mathbf{B}))$	[rule: cut: (9) (10)]
$(12) (\mathbf{C} \vee \neg (\mathbf{A} \vee \mathbf{B})) \vee \mathbf{C}$	[rule: cut: (11) (1)]
$(13) \mathbf{C} \vee (\mathbf{C} \vee \neg (\mathbf{A} \vee \mathbf{B}))$	[rule: cut: (12) (10)]
$(14) \ (\mathbf{C} \lor \mathbf{C}) \lor \neg (\mathbf{A} \lor \mathbf{B})$	[rule: associative: (13)]
$(15) \neg (\mathbf{C} \lor \mathbf{C}) \lor (\mathbf{C} \lor \mathbf{C})$	[axiom: propositional]
$(16) \neg (\mathbf{A} \lor \mathbf{B}) \lor (\mathbf{C} \lor \mathbf{C})$	[rule: cut: (14) (15)]
$(17) \ (\neg(\mathbf{A} \lor \mathbf{B}) \lor \mathbf{C}) \lor \mathbf{C}$	[rule: associative: (16)]
$(18) \neg (\neg(\mathbf{A} \lor \mathbf{B}) \lor \mathbf{C}) \lor (\neg(\mathbf{A} \lor \mathbf{B}) \lor \mathbf{C})$	[axiom: propositional]
$(19) \mathbf{C} \vee (\neg(\mathbf{A} \vee \mathbf{B}) \vee \mathbf{C})$	[rule: cut: (17) (18)]
$(20) \neg (\mathbf{A} \lor \mathbf{B}) \lor (\mathbf{C} \lor (\neg (\mathbf{A} \lor \mathbf{B}) \lor \mathbf{C}))$	[rule: expansion: (19)]
$(21) (\neg(\mathbf{A} \lor \mathbf{B}) \lor \mathbf{C}) \lor (\neg(\mathbf{A} \lor \mathbf{B}) \lor \mathbf{C})$	[rule: associative: (20)]
$ (22) \neg (\mathbf{A} \lor \mathbf{B}) \lor \mathbf{C} $	[rule: contraction: (21)]
Chapter 3 - §3.1 - Tautology Theorem - frequently used cases (ii)	r . 1
$(1) \neg \mathbf{A} \lor \mathbf{B}$	[premise]
$(2) \neg \mathbf{B} \lor \mathbf{C}$	[premise]
$(3) \neg \neg \mathbf{A} \lor \neg \mathbf{A}$	[axiom: propositional]
$(4) \mathbf{B} \vee \neg \mathbf{A}$ $(5) \neg \mathbf{A} \vee \mathbf{C}$	[rule: cut: (1) (3)]
(0) 41 V O	[rule: cut: (4) (2)]
Chapter 3 - §3.1 - Tautology Theorem - frequently used cases (vi)	, ,
$(1) \neg \mathbf{A} \lor \mathbf{B}$	[premise]
$(2) \neg \neg \mathbf{A} \lor \neg \mathbf{A}$ $(3) \mathbf{B} \lor \neg \mathbf{A}$	[axiom: propositional]
$(3) \mathbf{B} \vee \neg \mathbf{A}$ $(4) \neg \neg \mathbf{B} \vee \neg \mathbf{B}$	[rule: cut: (1) (2)]
	[axiom: propositional]

$(5) \neg \neg \neg \mathbf{B} \lor \neg \neg \mathbf{B}$	[axiom: propositional]
$(6) \neg \mathbf{B} \lor \neg \neg \mathbf{B}$	[rule: cut: (4) (5)]
$(7) \neg \mathbf{A} \lor \neg \neg \mathbf{B}$	[rule: cut: (3) (6)]
$(8) \neg \neg \mathbf{B} \lor \neg \mathbf{A}$	[rule: cut : (7) (2)]
Chapter 3 - $\S 3.2$ - \forall -Introduction Rule	
$(1) \neg \mathbf{A} \vee \mathbf{B}$	[premise]
(2) $\neg\neg \mathbf{A} \lor \neg \mathbf{A}$	[axiom: propositional]
(3) $\mathbf{B} \vee \neg \mathbf{A}$	[rule: cut: (1) (2)]
(4) $\neg\neg \mathbf{B} \lor \neg \mathbf{B}$	[axiom: propositional]
(5) $\neg\neg\neg\mathbf{B} \lor \neg\neg\mathbf{B}$	[axiom: propositional]
(6) $\neg \mathbf{B} \lor \neg \neg \mathbf{B}$	[rule: cut: (4) (5)]
(7) $\neg \mathbf{A} \lor \neg \neg \mathbf{B}$	[rule: cut: (3) (6)]
$(8) \neg \neg \mathbf{B} \lor \neg \mathbf{A}$	[rule: cut: (7) (2)]
(9) $\neg \exists \mathbf{x} \neg \mathbf{B} \lor \neg \mathbf{A}$	[rule: e-introduction: (8)]
$(10) \neg \neg \exists \mathbf{x} \neg \mathbf{B} \lor \neg \exists \mathbf{x} \neg \mathbf{B}$	[axiom: propositional]
$(11) \neg \mathbf{A} \lor \neg \exists \mathbf{x} \neg \mathbf{B}$	[rule: cut: (9) (10)]
Chapter 3 - §3.2 - Generalization Rule	
(1) A	[premise]
$(2) \neg \neg \neg \exists \mathbf{x} \neg \mathbf{A} \lor \mathbf{A}$	[rule: expansion: (1)]
$(3) \neg \neg \neg \exists \mathbf{x} \neg \mathbf{A} \lor \neg \neg \exists \mathbf{x} \neg \mathbf{A}$	[axiom: propositional]
$(4) \mathbf{A} \vee \neg \neg \exists \mathbf{x} \neg \mathbf{A}$	[rule: cut: (2) (3)]
$(5) \neg \neg \mathbf{A} \lor \neg \mathbf{A}$	[axiom: propositional]
$(6) \neg \neg \neg \mathbf{A} \lor \neg \neg \mathbf{A}$	[axiom: propositional]
$(7) \neg \mathbf{A} \lor \neg \neg \mathbf{A}$	[rule: cut: (5) (6)]
$(8) \neg \neg \neg \exists \mathbf{x} \neg \mathbf{A} \lor \neg \neg \mathbf{A}$	[rule: cut: (4) (7)]
$(9) \neg \neg \mathbf{A} \lor \neg \neg \neg \exists \mathbf{x} \neg \mathbf{A}$	[rule: cut: (8) (3)]
(10) $\neg \exists \mathbf{x} \neg \mathbf{A} \lor \neg \neg \neg \exists \mathbf{x} \neg \mathbf{A}$	[rule: e-introduction: (9)]
(11) $\neg\neg\exists \mathbf{x}\neg\mathbf{A} \vee \neg\exists \mathbf{x}\neg\mathbf{A}$	[axiom: propositional]
(12) $\neg\neg\neg\exists \mathbf{x}\neg \mathbf{A} \vee \neg\exists \mathbf{x}\neg \mathbf{A}$	[rule: cut: (10) (11)]
$(13) \neg \neg \neg \exists \mathbf{x} \neg \mathbf{A} \lor \neg \neg \exists \mathbf{x} \neg \mathbf{A}$	[axiom: propositional]
$(14) \neg \neg \exists \mathbf{x} \neg \mathbf{A} \lor \neg \neg \neg \exists \mathbf{x} \neg \mathbf{A}$	[rule: cut: (13) (3)]
(15) $\neg\neg\neg\exists \mathbf{x}\neg \mathbf{A} \lor \neg\neg\neg\exists \mathbf{x}\neg \mathbf{A}$	[rule: cut: (10) (14)]
(16) $\neg\neg\neg\exists \mathbf{x}\neg \mathbf{A}$	[rule: contraction: (15)]
(17) $\neg\neg\neg\neg\neg\exists \mathbf{x}\neg \mathbf{A} \lor \neg\neg\neg\neg\exists \mathbf{x}\neg \mathbf{A}$	[axiom: propositional]
(18) $\neg\neg\neg\exists \mathbf{x}\neg\mathbf{A} \lor \neg\neg\neg\neg\exists \mathbf{x}\neg\mathbf{A}$	[rule: cut: (3) (17)]
(19) $\neg \exists \mathbf{x} \neg \mathbf{A} \lor \neg \neg \neg \neg \exists \mathbf{x} \neg \mathbf{A}$	[rule: cut: (11) (18)]
(20) $\neg\neg\neg\neg\exists \mathbf{x}\neg \mathbf{A} \lor \neg\exists \mathbf{x}\neg \mathbf{A}$	[rule: cut: (19) (11)]
(21) $\neg \exists \mathbf{x} \neg \mathbf{A} \lor \neg \exists \mathbf{x} \neg \mathbf{A}$	[rule: cut: (12) (20)]
(22) $\neg \exists \mathbf{x} \neg \mathbf{A}$	[rule: contraction: (21)]
Chapter 3 - §3.2 - Distribution Rule	
(1) $\neg \mathbf{A} \lor \mathbf{B}$	[premise]
$(2) \neg \mathbf{B} \lor \exists \mathbf{x} \mathbf{B}$	[axiom: substitution]
$(3) \neg \neg \mathbf{A} \lor \neg \mathbf{A}$	[axiom: propositional]
$(4) \mathbf{B} \vee \neg \mathbf{A}$	[rule: cut: (1) (3)]
$ \begin{array}{ccc} (1) & \mathbf{D} & \mathbf{M} \\ (5) & \neg \mathbf{A} & \vee \exists \mathbf{x} \mathbf{B} \end{array} $	[rule: cut: (1) (6)]
$(6) \neg \exists \mathbf{x} \mathbf{A} \lor \exists \mathbf{x} \mathbf{B}$	[rule: e-introduction: (5)]
(*)	[rate. c mirroduction. (0)]