LABORATÓRIO DE COMUNICAÇÕES II ENGENHARIA DE TELECOMUNICAÇÕES PRÁTICA 3 – FILTRO PASSA-BAIXAS

OBJETIVOS

- Entender o comportamento de um filtro passa-baixas.
- Verificar experimentalmente o funcionamento de um filtro passa-baixa de 1ª e 2ª ordem.

PARTE EXPERIMENTAL

1) Monte o circuito da figura abaixo e ajuste o gerador de sinais para fornecer uma onda senoidal, de 1V de amplitude.

2) Varie a frequência do gerador de sinais conforme a Tabela 1, meça e anote a tensão de saída.

OBS.: Pode ser necessário reajustar a tensão de entrada para 1V ao variar a frequência. É importante monitorar isso.

Tabela 1 – Quadro para levantamento da amplitude da resposta em frequência do filtro.

f(Hz)	Vs								
10		100		1000		10k		100k	
20		200		2000		20k		200k	
30		300		3000		30k		300k	
40		400		4000		40k		400k	
50		500		5000		50k		500k	
60		600		6000		60k		600k	
70		700		7000	_	70k		700k	
80		800		8000	_	80k		800k	
90		900		9000		90k		900k	

3) Coloque o canal 1 do osciloscópio para medir a tensão de entrada e o canal 2 para medir a tensão de saída. Coloque a função Measure para medir a diferença de fase entre os canais 1 e 2.

Tabela 2 – Quadro para levantamento da fase da resposta em frequência do filtro.

f (Hz)	θ	f(Hz)	θ	f(Hz)	θ	f(Hz)	θ	f(Hz)	θ
10		100		1000		10k		100k	
20		200		2000		20k		200k	
30		300		3000		30k		300k	
40		400		4000		40k		400k	
50		500		5000		50k		500k	
60		600		6000		60k		600k	
70		700		7000		70k		700k	
80		800		8000		80k		800k	
90		900		9000		90k		900k	

4) Monte o circuito da figura abaixo e ajuste o gerador de sinais para fornecer uma onda senoidal, de 1V de amplitude.

5) Varie a frequência do gerador de sinais conforme a Tabela 3, meça e anote a tensão de saída.

Tabela 3 – Levantamento da amplitude da resposta em frequência do filtro de 2ª ordem.

f(Hz)	Vs								
10		100		1000		10k		100k	
20		200		2000		20k		200k	
30		300		3000		30k		300k	
40		400		4000		40k		400k	
50		500		5000		50k		500k	
60		600		6000		60k		600k	
70		700		7000		70k		700k	
80		800		8000		80k		800k	
90		900		9000		90k		900k	

6) Coloque o canal 1 do osciloscópio para medir a tensão de entrada e o canal 2 para medir a tensão de saída. Coloque a função Measure para medir a diferença de fase entre os canais 1 e 2, conforme a Tabela 4.

Tabela 4 – Levantamento da fase da resposta em frequência do filtro.

f (Hz)	θ	f(Hz)	θ	f(Hz)	θ	f(Hz)	θ	f(Hz)	θ
10		100		1000		10k		100k	
20		200		2000		20k		200k	
30		300		3000		30k		300k	
40		400		4000		40k		400k	
50		500		5000		50k		500k	
60		600		6000		60k		600k	
70		700		7000		70k		700k	
80		800	•	8000		80k	•	800k	•
90		900		9000		90k	•	900k	•

QUESTÕES:

- Com os valores anotados na Tabela 1, construa o gráfico do módulo do ganho de tensão do filtro em função da frequência.
- 2) Com os valores anotados na Tabela 2, construa o gráfico do módulo da fase do filtro em função da frequência.
- 3) Calcule a frequência de corte do filtro montado na Parte Prática e indique-a nos gráficos construídos nas questões 1 e 3.
- 4) A partir do gráfico da amplitude da resposta em frequência do filtro, determine as faixas de passagem, transição e atenuação.
- 5) Usando o Matlab ou outro software matemático/científico qualquer, obtenha o gráfico do módulo do ganho de tensão do filtro em função da frequência.
- 6) Compare o gráfico obtido na Questão 5 com o construído na Questão 1.
- 7) Usando o Matlab ou outro software matemático/científico qualquer, obtenha o gráfico da fase do ganho de tensão do filtro em função da frequência.
- 8) Compare o gráfico obtido na Questão 7 com o construído na Questão 3.
- 9) Repita as questões de 1 a 8 para o filtro de 2ª ordem.
- 10) Compare as respostas teóricas e experimentais da amplitude do ganho de tensão dos dois filtros.