

1^{ère} année Master MAS Séries Chronologiques Année : 2018/2019

Examen Final

EXERCICE N° 1:

Dans le tableau suivant, on a indiqué les ventes (en tonnes par trimestre) d'un certain produit au cours de quatre années.

Années	trimestre 1	trimestre 2	trimestre 3	trimestre 4
2010	52	36	69	89
2011	65	45	86	111
2012	81	56	108	139
2013	102	70	135	174

- 1. Représenter graphiquement cette série temporelle.
- 2. Au vu du graphique, justifier le choix d'un modèle multiplicatif.
- 3. Estimer la tendance de cette série par la méthode des moindres carrés ordinaires (MCO).
- 4. Représenter la droite d'ajustement sur le graphique précédent.
- 5. Estimer les coefficients saisonniers.
- 6. Etablir la série désaisonnalisée ou corrigée des variations saisonnières.
- 7. Calculer les moyennes mobiles d'ordre 4 de cette série.
- 8. Donner une prévision de la vente au quatrième trimestre 2014.

EXERCICE N° 2:

1. On considère le processus défini par $\forall t \in \mathbb{Z}$, $X_t = \epsilon_t - \theta \epsilon_{t-1}$ où $(\epsilon_t)_{t \in \mathbb{Z}}$ est un bruit blanc et $\theta \in]-1,+1[$.

Montrer que X est stationnaire et calculer sa fonction d'auto-covariance.

2. On considère le processus défini par,

$$X_t = Z_1 \cos \omega t + Z_2 \sin \omega t, \quad -\infty < t < +\infty$$

où
$$\mathbb{P}(Z_i = 1) = \mathbb{P}(Z_i = -1) = \frac{1}{2}, i = 1, 2.$$

Montrer que X_t est stationnaire.

1^{ère} année Master MAS Séries Chronologiques Année : 2018/2019

Corrigé de l'examen final

Exercice N° 1:

1. Représenter graphiquement cette série temporelle :

FIGURE 1 – Série chronologique.

- 2. Le nuage de points est limité par deux droites qui ne sont pas parallèles : Les variations saisonnières sont proportionnelles à la tendance. L'enveloppe de la courbe s'évase quand la tendance est croissante.
- Estimer la tendance de cette série par la méthode des moindres carrés ordinaires (MCO).
 On a

$$t = 8.5, \quad \overline{x} = 88.62$$

et

$$\sigma_t^2 = 21.25, \qquad \sigma_X^2 = 1341.61$$

De plus,

$$Cov(t, X) = 123.69.$$

L'équation de la droite de la régression de X sur t, X = at + b, avec :

$$a:=\frac{Cov(t,X)}{\sigma_t^2}=5.82 \quad \text{et} \quad b:=\overline{x}-a\overline{t}=39.15$$

	t	X	t^2	X^2	t imes X
	1	52	1	2704	52
	2	36	4	1296	72
	3	69	9	4761	207
	4	89	16	7921	356
	5	65	25	4225	325
	6	45	36	2025	270
-	7	86	49	7396	602
	8	111	64	12321	888
20	9	81	81	6561	729
21.	10	56	100	3136	560
1	11	108	121	11664	1188
	12	139	144	19321	1668
•	13	102	169	10404	1326
	14	70	196	4900	980
4	15	135	225	18225	2025
	16	174	256	30276	2784
Total	136	1418	1496	147136	14032

4. Représenter la droite d'ajustement sur le graphique précédent.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m_t	44.97	50.79	56.61	62.43	68.25	74.07	79.89	85.71	91.54	97.36	103.18	109.00	114.82	120.64	126.46	132.28

 $FIGURE\ 2-Ajustement\ Lin\'eaire.$

5. Estimer les coefficients saisonniers.Rapport = Série brute / Tendance

Années	trimestre 1	trimestre 2	trimestre 3	trimestre 4
2010	1.16	0.71	1.22	1.43
2011	0.95	0.61	1.08	1.29
2012	0.88	0.58	1.05	1.28
2013	0.89	0.58	1.07	1.32
Coefficients saisonniers	0.97	0.62	1.10	1.33

6. Etablir la série désaisonnalisée ou corrigée des variations saisonnières.
La série corrigée des variations saisonnières = Série brute / Coefficient saisonnier multiplicatif

t	1.	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
X_t^{cvs}	53.58	58.26	62.59	67.03	66.98	72.82	78.01	83.60	83.46	90.62	97.97	104.68	105.10	113.28	122.46	131.04

FIGURE 3 – Série corrigée des variations saisonnières.

7. Calculer les moyennes mobiles d'ordre 4 de cette série.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$M_4(t)$			63.12	65.88	69.12	74.00	78.75	82.12	86.25	92.50	98.62	103.00	108.12	115.88		

8. Donner une prévision de la vente au quatrième trimestre 2014.

$$\widehat{X_{20}} = (5.82 \times 20 + 39.15) \times 1.33 = 206.88$$

EXERCICE N° 2:

1. On considère le processus défini par $\forall t \in \mathbb{Z}$, $X_t = \epsilon_t - \theta \epsilon_{t-1}$ où $(\epsilon_t)_{t \in \mathbb{Z}}$ est un bruit blanc et $\theta \in]-1,+1[$.

Montrer que *X* est stationnaire et calculer sa fonction d'auto-covariance.

On a

$$\mathbb{E}[X_t] = \mathbb{E}[\epsilon_t - \theta \epsilon_{t-1}] = \mathbb{E}[\epsilon_t] - \theta \mathbb{E}[\epsilon_{t-1}] = 0,$$

$$\mathbb{V}[X_t] = \mathbb{V}[\epsilon_t - \theta \epsilon_{t-1}] = \mathbb{V}[\epsilon_t] + \theta^2 \mathbb{V}[\epsilon_{t-1}] - 2\theta \mathbb{C}ov(\epsilon_t, \epsilon_{t-1}) = (1 + \theta^2)\sigma^2$$

et

$$\mathbb{C}ov(X_{t}, X_{t+h}) = \mathbb{E}[X_{t}X_{t+h}] - \mathbb{E}[X_{t}]\mathbb{E}[X_{t+h}] \\
= \mathbb{E}[(\epsilon_{t} - \theta\epsilon_{t-1})(\epsilon_{t+h} - \theta\epsilon_{t+h-1})] \\
= \mathbb{E}[\epsilon_{t}\epsilon_{t+h} - \theta\epsilon_{t-1}\epsilon_{t+h} - \theta\epsilon_{t}\epsilon_{t+h-1} + \theta^{2}\epsilon_{t-1}\epsilon_{t+h-1}] \\
= \mathbb{E}[\epsilon_{t}\epsilon_{t+h}] - \theta\mathbb{E}[\epsilon_{t-1}\epsilon_{t+h}] - \theta\mathbb{E}[\epsilon_{t}\epsilon_{t+h-1}] + \theta^{2}\mathbb{E}[\epsilon_{t-1}\epsilon_{t+h-1}] \\
= \begin{cases}
(1 + \theta^{2})\sigma^{2} & \text{si } h = 0, \\
\theta^{2}\sigma^{2} & \text{si } |h| = 1, \\
0 & \text{sinon.}
\end{cases}$$

2. On considère le processus défini par,

$$X_t = Z_1 \cos \omega t + Z_2 \sin \omega t, \qquad -\infty < t < +\infty$$

où
$$\mathbb{P}(Z_i = 1) = \mathbb{P}(Z_i = -1) = \frac{1}{2}, i = 1, 2.$$

Montrer que X_t est stationnaire. On a

$$\mathbb{E}[X_t] = \mathbb{E}[Z_1 \cos \omega t + Z_2 \sin \omega t] = \mathbb{E}[Z_1] \cos \omega t + \mathbb{E}[Z_2] \sin \omega t = 0,$$

car

$$\mathbb{E}[Z_1] = \mathbb{E}[Z_2] = 1 \times \frac{1}{2} - 1 \times \frac{1}{2} = 0$$

$$\mathbb{V}[X_t] = \mathbb{V}[Z_1 \cos \omega t + Z_2 \sin \omega t] = \mathbb{V}[Z_1] \cos^2 \omega t + \mathbb{V}[Z_2] \sin^2 \omega t = 1,$$

car

$$\mathbb{V}[Z_1] = \mathbb{V}[Z_2] = 1 \times \frac{1}{2} + 1 \times \frac{1}{2} = 1$$

$$\mathbb{C}ov(X_t, X_{t+h}) = \mathbb{E}[X_t X_{t+h}] - \mathbb{E}[X_t] \mathbb{E}[X_{t+h}]$$

$$= \mathbb{E}[(Z_1 \cos \omega t + Z_2 \sin \omega t)(Z_1 \cos \omega (t+h) + Z_2 \sin \omega (t+h))]$$

$$= \mathbb{E}[Z_1^2 \cos \omega t \cos \omega (t+h) + Z_1 Z_2 \sin \omega t \cos \omega (t+h)$$

$$+ Z_1 Z_2 \sin \omega t \cos \omega (t+h) + Z_2^2 \sin \omega t \sin \omega (t+h)]$$

$$= \mathbb{E}[Z_1^2] \cos \omega t \cos \omega (t+h) + \mathbb{E}[Z_2^2] \sin \omega t \sin \omega (t+h)$$

$$= \cos \omega t \cos \omega (t+h) + \sin \omega t \sin \omega (t+h)$$

$$= \cos \omega t \cos \omega (t+h) + \sin \omega t \sin \omega (t+h)$$

$$= \cos (\omega (t+h) - \omega t) = \cos \omega h.$$

1^{ère} année Master MAS Séries Chronologiques Année : 2019/2020

Examen Final

EXERCICE N° 1:

On considère la série chronologique observée au cours de quatre années.

Années	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
1)	36	50	31	21
2	50	68	40	24
3	62	90	51	31
4	78	120	70	38

- 1. Représenter graphiquement cette série temporelle.
- 2. Au vu du graphique, justifier le choix d'un modèle multiplicatif.
- 3. Estimer la tendance de cette série par la méthode des moindres carrés ordinaires (MCO).
- 4. Représenter la droite d'ajustement sur le graphique précédent.
- 5. Estimer les coefficients saisonniers.
- 6. Établir la série corrigée des variations saisonnières.
- 7. Donner une prévision de la série au troisième trimestre de la cinquième année.

EXERCICE N° 2: On considère le processus défini par

$$\forall t \in \mathbb{Z}, \ X_t = \epsilon_t - \frac{1}{\theta} \epsilon_{t-1}$$

où $(\epsilon_t)_{t\in\mathbb{Z}}$ est un bruit blanc et $\theta\in]-1,+1[$.

- 1. Montrer que le processus X_t est stationnaire
- 2. Calculer la fonction d'auto-covariance $\gamma(\cdot)$ et la fonction d'auto-corrélation $\rho(\cdot)$, de X_t .
- 3. Déterminer la fonction d'auto-corrélation partielle de X_t .

On rappelle que $\rho_{kk} = \frac{|P_k^*|}{|P_k|}$, avec :

$$P_k = \left[egin{array}{ccccc} 1 &
ho_1 & \cdots & \cdots &
ho_{k-1} \ dots & 1 & & dots \ & & \ddots & & & \
ho_{k-1} & & & 1 \end{array}
ight] \qquad et \qquad P_k^* = \left[egin{array}{cccc} 1 &
ho_1 & \cdots & \cdots &
ho_1 \ dots & 1 & & &
ho_2 \ dots & & \ddots & & \
ho_{k-1} & & & \ddots & \
ho_{k-1} & & &
ho_k \end{array}
ight]$$

1^{ère} année Master MAS Séries Chronologiques Année: 2019/2020

Corrigé de l'examen final

Exercice N° 1:

1. Représenter graphiquement cette série temporelle :

FIGURE 1 – Série chronologique.

- 2. Le nuage de points est limité par deux droites qui ne sont pas parallèles : Les variations saisonnières sont proportionnelles à la tendance. L'enveloppe de la courbe s'évase quand la tendance est croissante.
- Estimer la tendance de cette série par la méthode des moindres carrés ordinaires (MCO).
 On a

$$\overline{t} = 8.5, \quad \overline{x} = 53.75$$

et

$$\sigma_t^2 = 21.25, \qquad \sigma_X^2 = 662.94$$

De plus,

$$Cov(t, X) = 54.75.$$

L'équation de la droite de la régression de X sur t, X = at + b, avec :

$$a:=\frac{Cov(t,X)}{\sigma_t^2}=2.58 \quad \text{et} \quad b:=\overline{x}-a\overline{t}=31.85$$

	t	X	t^2	X^2	$t \times X$
	1	36	1	1296	36
	2	50	4	2500	100
	3	31	9	961	93
	4	21	16	441	84
	5	50	25	2500	250
	6	68	36	4624	408
	7	40	49	1600	280
The state of the s	8	24	64	576	192
	9	62	81	3844	558
17	10	90	100	8100	900
	11	51	121	2601	561
	12	31	144	961	372
	13	78	169	6084	1014
	14	120	196	14400	1680
	15	70	225	4900	1050
	16	38	256	1444	608
Total	136	860	1496	56832	8186

4. Représenter la droite d'ajustement sur le graphique précédent.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m_t	34.43	37.00	39.58	42.16	44.73	47.31	49.89	52.46	55.04	57.61	60.19	62.77	65.34	67.92	70.50	73.07

 $\label{eq:figure 2-Ajustement Linéaire.} Figure \ 2-Ajustement \ Linéaire.$

5. Estimer les coefficients saisonniers. Rapport = Série brute / Tendance

Années	trimestre 1	trimestre 2	trimestre 3	trimestre 4
1.	1.05	1.35	0.78	0.50
2	1.12	1.44	0.80	0.46
3	1.13	1.56	0.85	0.49
4	1.19	1.77	0.99	0.52
Coefficients saisonniers	1.12	1.53	0.86	0.49

6. Etablir la série désaisonnalisée ou corrigée des variations saisonnières.
La série corrigée des variations saisonnières = Série brute / Coefficient saisonnier multiplicatif

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
X_t^{cvs}	32.12	32.69	36.20	42.65	44.61	44.46	46.71	48.74	55.31	58,85	59.56	62.96	69.59	78.46	81.74	77.18

FIGURE 3 – Série corrigée des variations saisonnières.

7. Donner une prévision de la série au troisième trimestre de la cinquième année.

$$\widehat{X}_{19} = (2.58 \times 19 + 31.85) \times 0.86 = 69.55$$

EXERCICE N° 2:

1. On considère le processus défini par $\forall t \in \mathbb{Z}$, $X_t = \epsilon_t - \frac{1}{\theta} \epsilon_{t-1}$ où $(\epsilon_t)_{t \in \mathbb{Z}}$ est un bruit blanc et $\theta \in]-1,+1[$.

Montrer que X_t est stationnaire.

On a

$$\mathbb{E}[X_t] = \mathbb{E}\left[\epsilon_t - \frac{1}{\theta}\epsilon_{t-1}\right] = \mathbb{E}[\epsilon_t] - \frac{1}{\theta}\mathbb{E}[\epsilon_{t-1}] = 0,$$

$$\mathbb{V}[X_t] = \mathbb{V}[\epsilon_t - \frac{1}{\theta}\epsilon_{t-1}] = \mathbb{V}[\epsilon_t] + \frac{1}{\theta^2}\mathbb{V}[\epsilon_{t-1}] - 2\frac{1}{\theta}\mathbb{C}ov(\epsilon_t, \epsilon_{t-1}) = \left(1 + \frac{1}{\theta^2}\right)\sigma^2$$

et

$$\mathbb{C}ov(X_{t}, X_{t+h}) = \mathbb{E}[X_{t}X_{t+h}] - \mathbb{E}[X_{t}]\mathbb{E}[X_{t+h}] \\
= \mathbb{E}\left[\left(\epsilon_{t} - \frac{1}{\theta}\epsilon_{t-1}\right)\left(\epsilon_{t+h} - \frac{1}{\theta}\epsilon_{t+h-1}\right)\right] \\
= \mathbb{E}\left[\epsilon_{t}\epsilon_{t+h} - \frac{1}{\theta}\epsilon_{t-1}\epsilon_{t+h} - \frac{1}{\theta}\epsilon_{t}\epsilon_{t+h-1} + \frac{1}{\theta^{2}}\epsilon_{t-1}\epsilon_{t+h-1}\right] \\
= \mathbb{E}[\epsilon_{t}\epsilon_{t+h}] - \frac{1}{\theta}\mathbb{E}[\epsilon_{t-1}\epsilon_{t+h}] - \frac{1}{\theta}\mathbb{E}[\epsilon_{t}\epsilon_{t+h-1}] + \frac{1}{\theta^{2}}\mathbb{E}[\epsilon_{t-1}\epsilon_{t+h-1}] \\
= \begin{cases}
\left(1 + \frac{1}{\theta^{2}}\right)\sigma^{2} & \text{si } h = 0, \\
-\frac{1}{\theta}\sigma^{2} & \text{si } |h| = 1, \\
0 & \text{sinon.}
\end{cases}$$

2. La fonction d'auto-covariance $\gamma(\cdot)$ et la fonction d'auto-corrélation $\rho(\cdot)$, de X_t :

$$\gamma(h) = \begin{cases} \left(1 + \frac{1}{\theta^2}\right) \sigma^2 & \text{si } h = 0, \\ -\frac{1}{\theta} \sigma^2 & \text{si } |h| = 1, \\ 0 & \text{sinon.} \end{cases}$$

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \left\{ \begin{array}{ll} 1 & \text{si } h = 0, \\ -\frac{\theta}{\theta^2 + 1} & \text{si } |h| = 1, \\ 0 & \text{sinon.} \end{array} \right.$$

3. La fonction d'auto-corrélation partielle de X_t .

ENBOUALI

On a $\rho_{11} = \rho_1$ et

$$\rho_{22} = \frac{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 0 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix}} = -\frac{\rho_1^2}{1 - \rho_1^2}$$

Pour k > 1

$$\rho_{kk} = \frac{\theta^k \left(1 - \theta^2\right)}{1 - \theta^{2(k+1)}}$$