Table 1

 Some Linear Constitutive Relations

System Type	Constitutive Relation for			
	Energy-Storage Elements		Energy Dissipating Elements	
	A-Type (across) Element	T-Type (through) Element	D-Type (dissipative) Element	
Translatory-mechanical $v = \text{velocity}$ $f = \text{force}$	Mass $m\frac{dv}{dt} = f$ (Newton's second law) $m = mass$	Spring $\frac{df}{dt} = kv$ (Hooke's law) $k = \text{stiffness}$	Viscous damper $f = bv$ $b = $ damping constant	
Electrical v =voltage i =current	Capacitor $C \frac{dv}{dt} = i$ C=capacitance	Inductor $L\frac{di}{dt} = v$ $L = \text{inductance}$	Resistor $Ri = v$ $R = resistance$	
Thermal T =temperature difference Q =heat transfer rate	Thermal capacitor $C_t \frac{dT}{dt} = Q$ $C_t = \text{thermal capacitance}$	None	Thermal resistor $R_t Q = T$ R_t =thermal resistance	
Fluid <i>P</i> =pressure difference <i>Q</i> =volume flow rate	Fluid capacitor $C_f \frac{dP}{dt} = Q$ $C_f = \text{fluid capacitance}$	Fluid inertor $I_f \frac{dQ}{dt} = P$ $I_f = \text{inertance}$	Fluid resistor $R_f Q = P$ $R_f = $ fluid resistance	

Table 2Force-current Analogy

System Type	Mechanical	Electrical
System-response variables:		
Through-variables	Force <i>f</i>	Current i
Across-variables	Velocity v	Voltage v
System parameters	m	С
	k	1/L
	ь	1/R