Nichtstandard Analysis 1

Klaus Philipp Theyssen

21.1.2020

1 Konstruktion von $*\mathbb{R}$

- **1.1 Definition** R ist der Ring der Folgen $a=(a^{(n)})_{n\in\mathbb{N}}$ reeller Zahlen
 - (i) Addition, Subtraktion und Multiplikation Komponentenweise, für $a,b\in R$

$$(a_1 \pm b_1, a_2 \pm b_2, ...)$$
 und $(a_1 * b_1, a_2 * b_2, ...)$

Wir wollen aus R den Körper *R konstruieren, dafür fehlt uns die Division.

1.3 Definition Sei D ein Ideal in R, für das gilt:

$$a \in D \iff a^{(n)} = 0$$
 für fast alle $n \in \mathbb{N}$

- 1.5 Satz Jedes echte Ideal in einem Ring mit Einselement ist in einem maximalen Ideal enthalten. (mithilfe des Zornsches Lemma).
- **1.6 Definition** Äquivalenzrelation auf R

$$a \equiv b \mod M \iff a - b \in M$$

- **1.7 Satz** I maximal $\iff R/I$ ist ein Körper
- 1.8 Definition $*\mathbb{R} = R/M$
- **1.9 Satz** Jede Funktion $f: \mathbb{R}^m \to \mathbb{R}$ lässt sich zu einer Funktion $f: \mathbb{R}^m \to \mathbb{R}$ fortsetzen, sodass sie Eigenschaften im Rahmen der Logik 1. Stufe behält.

1.10 Definition

$$U = U_M = \{Z(a) : a \in M\} \text{ mit } Z(a) = \{n \in \mathbb{N} : a^{(n)} = 0\}$$

U ist ein Filter auf \mathbb{N} . Ist M maximales Ideal so ist U_M ein Ultrafilter, es gelten:

- (i) ∅ ∉ *U*
- (ii) $\mathbb{N} \in U$
- (iii) $Z_1, Z_2 \in U \Rightarrow Z_1 \cap Z_2 \in U$

- (iv) $Z \in U$, $Z \subset A \subset \mathbb{N} \Rightarrow A \in U$
- (v) $A \subset \mathbb{N} \Rightarrow A \in U$ oder $\mathbb{N} \setminus A \in U$
- (vi) $A \subset \mathbb{N}, |\mathbb{N} \setminus A| < \infty \Rightarrow A \in U$
- (vii) $a \equiv b \mod M \iff \{n : a^{(n)} = b^{(n)}\} \in U_M$

2 Eigenschaften von *R

- **2.1 Satz** Die Anordnung \leqslant der reellen Zahlen lässt sich zu einer Anordnung von * \mathbb{R} fortsetzen.
- 2.2 Satz *R besitzt ein Element das größer als alle reellen Zahlen ist.

$$\forall r \in \mathbb{R} : r \leqslant \omega \mod M, \ \omega = (1, 2, 3, ..., n, n + 1, ...)$$

2.3 Definition $\mathfrak{D} = \{ a \in {}^*\mathbb{R} : |a| \leqslant r, \text{ für ein } r \in \mathbb{R} \}$

Ist echter konvexer Teilring von * \mathbb{R} , die Elemente von $\mathfrak D$ nennt man endliche Größen.

Konvexität meint hier:

$$0 \leqslant b \leqslant a \in \mathfrak{D} \Rightarrow b \in \mathfrak{D}$$

2.4 Definition $\mathfrak{M} = \{ a \in {}^*\mathbb{R} : |a| \leqslant \epsilon, \text{ für alle } \epsilon \in \mathbb{R}^+ \}$

M ist konvexes Ideal in D, sodass folgende Eigenschaften erfüllt sind

- (i) $a, b \in \mathfrak{M} \Rightarrow a + b \in \mathfrak{M}$
- (ii) $a \in \mathfrak{M}, b \in \mathfrak{D} \Rightarrow a * b \in \mathfrak{M}$
- (iii) $0 \le b \le a \in \mathfrak{M} \Rightarrow b \in \mathfrak{M}$

Die Elemente von \mathfrak{R} bezeichnen wir als unendliche kleine oder infinitesimale Größen. Alle anderen Elemente von $*\mathbb{R}$, die nicht in \mathfrak{R} oder \mathfrak{D} sind bezeichnen wir als unendliche oder infinite Größen.

2.5 Definition $a, b \in {}^*\mathbb{R}$ heißen benachbart wenn gilt:

$$a \approx b \iff a - b \in \mathfrak{M}$$

Das heißt a und b unterscheiden sich nur um eine infinitesimale Größe, \approx ist eine Äquivalenzrelation auf * $\mathbb R$

- **2.6 Satz** Jede endliche Größe $a \in {}^*\mathbb{R}$ ist zu genau einer reellen Zahl r benachbart. r wird dann als der Standardteil $\operatorname{st}(a)$ von a bezeichnet.
- **2.7 Definition** Funktion $f: \mathbb{R} \to \mathbb{R}$ ist im Punkt $x \in \mathbb{R}$ stetig wenn für alle $\epsilon \in \mathbb{R}^+$, ein $\delta \in \mathbb{R}^+$ existiert, sodass für alle $h \in \mathbb{R}$ gilt:

$$|h| \le \delta \Rightarrow |f(x+h) - f(x)| \le \epsilon$$

2.8 Satz Die Funktion $f : \mathbb{R} \to \mathbb{R}$ ist im Punkt $x \in \mathbb{R}$ stetig falls für alle $h \approx 0$ gilt:

$$*f(x+h) \approx f(x)$$