LAN (Local Area Network):

- A network confined to a small geographical area, such as a home, office, or building.
- Typically connects computers, printers, and other devices within close proximity.
- o Operates using Ethernet, Wi-Fi, or both.
- High-speed data transfer rates (typically 1 Gbps or more in modern networks).

• WAN (Wide Area Network):

- A network that spans a large geographical area, often connecting multiple LANs.
- Uses public networks like telephone lines, fiber-optic cables, or satellite connections.
- Slower compared to LANs due to broader geographical coverage.
- Examples: The Internet, corporate networks connecting offices in different cities or countries.

Key Features

LAN Features:

- Ownership: Typically owned and managed by a single organization or individual.
- Setup Cost: Relatively low.
- Security: Easier to secure due to limited access points.
- Examples: Home networks, campus networks.

WAN Features:

- Ownership: Can involve multiple entities (ISPs, telecom providers, organizations).
- Setup Cost: High, due to infrastructure needs.
- Security: Challenging to secure due to broader access points.
- Examples: Internet, enterprise WANs connecting international offices.

Applications

LAN:

- Sharing files and resources within an office.
- Gaming and media streaming in homes.

WAN:

- Internet connectivity.
- Corporate network connections for distributed offices.

Switch

• Definition:

- A network device that connects devices within a LAN.
- Operates at the Data Link Layer (Layer 2) of the OSI model but can also function at Layer 3.

• Functions:

- Forwards data based on MAC addresses.
- o Creates a separate collision domain for each connected device.
- Provides efficient data delivery by directing packets only to the intended device.

Types:

- Managed Switches: Allow configuration, monitoring, and management.
- o Unmanaged Switches: Plug-and-play devices with no configuration.

Applications:

Used in LANs for connecting computers, printers, and servers.

Router

• Definition:

- o A network device that connects different networks (e.g., LAN to WAN).
- Operates primarily at the Network Layer (Layer 3) of the OSI model.

Functions:

- Routes data packets based on IP addresses.
- o Enables communication between devices on different networks.
- Provides Network Address Translation (NAT) for private to public IP translation.

Types:

- Wired Routers: Use cables for connections.
- Wireless Routers: Include Wi-Fi for wireless connectivity.

Applications:

- o Connects LANs to the Internet.
- Facilitates communication between remote office networks.

IP Address (Internet Protocol Address)

Definition:

- A unique numerical identifier assigned to each device in a network to facilitate communication.
- Acts as the address for sending and receiving data packets.

Format:

- Binary number written in human-readable formats like:
 - IPv4: 32-bit address, written as four decimal numbers separated by periods (e.g., 192.168.1.1).
 - IPv6: 128-bit address, written as eight groups of hexadecimal numbers separated by colons (e.g., 2001:0db8:85a3:0000:0000:8a2e:0370:7334).

Types of IP Addresses

1. Based on Permanence:

- Static IP Address:
 - Manually assigned.
 - Permanent and does not change unless manually updated.
 - Suitable for servers, printers, and devices requiring constant access.

Dynamic IP Address:

- Automatically assigned by DHCP.
- Changes periodically.
- Ideal for home networks and general use.

2. Based on Accessibility:

Public IP Address:

- Globally unique and accessible over the Internet.
- Assigned by Internet Service Providers (ISPs).

Private IP Address:

- Used within private networks.
- Not directly accessible from the Internet.
- Examples: 192.168.x.x, 10.x.x.x.

3. Based on Version:

- IPv4:
 - 32-bit address, offering approximately 4.3 billion unique addresses.
 - Example: 192.0.2.1.

IPv6:

- 128-bit address, offering a vast address space.
- Developed to overcome IPv4 exhaustion.
- Example: 2001:0db8:0000:0000:0000:8a2e:0370:7334.

OSI Model

Definition:

The Open Systems Interconnection (OSI) Model is a conceptual framework that standardizes the functions of a networking system into seven distinct layers.

Developed by the International Organization for Standardization (ISO) in 1984.

Provides guidelines for how data is transmitted, received, and processed over a network.

The 7 Layers of the OSI Model

1. Layer 1: Physical Layer

- Function:
 - Deals with the physical connection between devices.
 - Transmits raw binary data (0s and 1s) through cables, radio waves, or optical fibers.
- Devices: Cables, switches, hubs, repeaters.
- Examples: Ethernet, USB, Bluetooth.

2. Layer 2: Data Link Layer

- Function:
 - Ensures error-free transmission of data by detecting and correcting errors in the Physical Layer.
 - Divided into two sublayers:
 - Logical Link Control (LLC): Manages communication between devices.
 - Media Access Control (MAC): Manages access to the physical medium.
- Devices: Switches, network interface cards (NICs).
- o **Examples:** Ethernet (IEEE 802.3), Wi-Fi (IEEE 802.11).

3. Layer 3: Network Layer

- Function:
 - Manages data routing, addressing, and delivery between devices on different networks.
 - Uses logical addressing like IP addresses.
- o **Devices:** Routers, Layer 3 switches.
- o **Examples:** IPv4, IPv6.

4. Layer 4: Transport Layer

- Function:
 - Ensures reliable data transfer through error detection, flow control, and retransmission.
 - Protocols manage how data is segmented and reassembled.
- Protocols: TCP (Transmission Control Protocol), UDP (User Datagram Protocol).
- **Examples:** Email (SMTP), web browsing (HTTP/HTTPS).

5. Layer 5: Session Layer

- Function:
 - Establishes, maintains, and terminates communication sessions between devices.
 - Manages dialog control and synchronization.
- Examples: Remote Procedure Call (RPC), NetBIOS.

6. Layer 6: Presentation Layer

- Function:
 - Translates data between application and network formats.
 - Manages encryption, compression, and data encoding.
- **Examples:** SSL/TLS encryption, JPEG, PNG.

7. Layer 7: Application Layer

- Function:
 - Provides network services directly to user applications.
 - Interfaces with software to facilitate network communication.
- o **Examples:** Web browsers, email clients, FTP software.

Importance of the OSI Model

- Standardization:
 - Helps different vendors' technologies to interoperate.
- Troubleshooting:
 - Provides a structured approach to diagnose network issues.
- Flexibility:
 - Enables scalability and integration of new technologies.
- Layer Isolation:
 - Changes in one layer do not affect others.

Real-World Example

When sending an email:

- Application Layer: User sends an email via SMTP.
- Presentation Layer: Data is encrypted with SSL/TLS.
- Session Layer: Session is established between sender and receiver.
- Transport Layer: TCP ensures reliable data transfer.
- Network Layer: Data is routed using IP addresses.
- **Data Link Layer:** Frames are sent to the receiver's MAC address.
- Physical Layer: Binary data is transmitted through the network medium.

Subnetting

Introduction

Definition:

- Subnetting is the process of dividing a larger network (IP address range) into smaller, more manageable subnetworks or subnets.
- It improves network performance and security by segmenting traffic and reducing congestion.

Purpose:

- Efficient utilization of IP addresses.
- Enhances network security by isolating subnet traffic.
- Simplifies management of large networks.

Key Concepts in Subnetting

1. Subnet Mask:

- A 32-bit number that determines how an IP address is divided into the network and host portions.
- Example:

IP Address: 192.168.1.1Subnet Mask: 255.255.255.0

2. CIDR Notation (Classless Inter-Domain Routing):

- Denotes the number of bits used for the network portion.
- Example: /24 means the first 24 bits are used for the network.

3. Subnet Address:

- The first IP address in a subnet, identifying the network.
- o Example: 192.168.1.0/24.

4. Broadcast Address:

- The last IP address in a subnet, used to communicate with all devices in the subnet
- o Example: 192.168.1.255/24.

5. Host Range:

- All usable IP addresses between the subnet and broadcast addresses.
- Example: 192.168.1.1 to 192.168.1.254 in a /24 subnet.

How Subnetting Works

- Step 1: Identify the Network Requirements:
 - Number of subnets needed.
 - Number of hosts per subnet.
- Step 2: Calculate the Subnet Mask:
 - Subtract the number of host bits from 32 (IPv4).
 - Example:
 - For 30 hosts, you need 5 bits (2⁵ = 32 addresses).
 - Subnet mask: /27 or 255.255.255.224.
- Step 3: Allocate Subnets:
 - Divide the IP range using the subnet mask.
 - Example: A /24 network (256 addresses) can be divided into eight /27 subnets, each with 32 addresses.

Benefits of Subnetting

- Improved Security:
 - Traffic within a subnet is isolated from other subnets.
- Efficient IP Allocation:
 - Prevents wastage of IP addresses.
- Enhanced Network Performance:
 - Reduces congestion by localizing traffic within subnets.
- Simplified Troubleshooting:
 - Smaller networks are easier to diagnose and manage.

Practical Example

- **Network:** 192.168.0.0/24 (256 IPs)
- **Requirement:** 4 subnets with equal hosts.

Solution:

- Subnet mask: /26 (64 IPs per subnet).
- Subnets:
 - **192.168.0.0 192.168.0.63**
 - **1**92.168.0.64 192.168.0.127
 - **1**92.168.0.128 192.168.0.191
 - **192.168.0.192 192.168.0.255**

Topic: DNS Basics

Definition:

 DNS (Domain Name System) is a hierarchical naming system that translates human-readable domain names (e.g., www.example.com) into IP addresses (e.g., 192.168.1.1) that computers use to identify each other on the network.

Purpose:

 Simplifies internet navigation by replacing numeric IP addresses with easy-to-remember domain names.

Key Components of DNS

- 1. Domain Name:
 - The human-readable identifier for a resource, such as example.com.
- 2. IP Address:
 - The numerical address corresponding to a domain name.
- 3. DNS Server:
 - A server that resolves domain names to IP addresses.

How DNS Works

- 1. User Request:
 - A user enters a domain name in a browser (e.g., www.example.com).
- 2. Recursive Resolver:
 - The resolver queries DNS servers to resolve the domain into an IP address.
- 3. Root DNS Servers:
 - The query starts at a root server, which directs the resolver to the appropriate
 Top-Level Domain (TLD) server (e.g., .com, .org).
- 4. TLD DNS Servers:

Directs the query to the authoritative DNS server for the domain.

5. Authoritative DNS Server:

Returns the IP address associated with the domain name.

6. Response:

 The resolver sends the IP address to the browser, which connects to the web server hosting the website.

Types of DNS Servers

1. Recursive Resolver:

Acts as an intermediary between the user and DNS hierarchy.

2. Root Server:

• The top of the DNS hierarchy; contains information about TLD servers.

3. TLD Server:

o Maintains information about domains under a specific TLD (e.g., .com, .net).

4. Authoritative Server:

Holds the definitive record for a specific domain.

DNS Records

- A Record (Address Record):
 - Maps a domain to an IPv4 address.
- AAAA Record:
 - Maps a domain to an IPv6 address.
- CNAME Record (Canonical Name):
 - o Redirects one domain name to another.
- MX Record (Mail Exchange):
 - Specifies mail servers for a domain.
- PTR Record (Pointer Record):
 - Resolves an IP address to a domain name (reverse DNS lookup).

Common DNS Issues

- DNS Propagation Delay:
 - Changes in DNS records take time to propagate worldwide.
- DNS Spoofing:
 - Attackers modify DNS data to redirect users to malicious sites.
- DNS Server Failure:
 - Can result in websites being inaccessible.

DNS Security Measures

- DNSSEC (DNS Security Extensions):
 - o Adds cryptographic signatures to DNS data to prevent tampering.
- Firewall Rules:
 - o Restricts access to DNS servers to prevent unauthorized queries.
- Regular Updates:
 - o Ensures DNS server software is up-to-date to prevent vulnerabilities.