سلسلم سبل التألق في الرياضيات

الوحدة الثانية:الدوال الآسية BAC 2017 هـإعداد الأستاذ محمد حاقة على المحمد الثانية المحمد القائية المحمد المحمد القائية المحمد المحم

هدف الحصم: التمكن من حساب نهاية ومشتق أي دالة آسية

التمرين الأول : أحسب مشتق ونهايات الدالة f في كل حالة مما يلي التمرين الأول : أ

	
f'(x)	f(x)
	$(2x+1)e^x - 1 , D = \mathbb{R}$
	$x - (x+1)e^{-x} , D = \mathbb{R}$
	$e^x - ex - 1$, $D = \mathbb{R}$
	$\frac{2x+2}{e^x+2} \ , D = \mathbb{R}$
	$(1-x)e^{-x} - x - 2, D = \mathbb{R}$
	$\frac{x}{x+e^{-x}}, D=\mathbb{R}$
	$\frac{e^x + 4x - 1}{e^x + 1}, D = \mathbb{R}$
	$(2x-4)e^{\frac{1}{2}x} + 2 - x, D = \mathbb{R}$
	$-x + (x^2 + 3x + 2)e^{-x}, D = \mathbb{R}$
	$1 - \frac{1}{2}x - \frac{2}{e^x + 1}, D = \mathbb{R}$
	$\frac{(x+1)e^x + x + 2}{e^x + 1} , D = \mathbb{R}$
	$\frac{4e^x + 2}{e^x + 1}, D = \mathbb{R}$
	$\frac{x^2 e^x}{e^x - x}, D = \mathbb{R}$ $1 - 2x - e^{2x - 2}, D = \mathbb{R}$
	$1 - 2x - e^{2x - 2} , D = \mathbb{R}$
	$xe^{2x+2} - x + 1, D = \mathbb{R}$
	$2x + 3 - (x+1)e^x , D = \mathbb{R}$

$(x-1)e^{\frac{1}{x}}, D = \mathbb{R}$
$f(x) = \frac{e^{x} - 1}{e^{x} - x}, D = \mathbb{R}$ $\frac{x}{x - 1} + e^{\frac{1}{x - 1}}, D = \mathbb{R} - \{1\}$
$\frac{x}{x-1} + e^{\frac{1}{x-1}}, D = \mathbb{R} - \{1\}$
$\frac{3xe^x - 3x - 4}{3(e^x - 1)}$, $D = \mathbb{R}^*$
$x - 1 + \frac{4}{e^x + 1} , D = \mathbb{R}$
$(-x-1)e^{-x}+1, D=\mathbb{R}$
$x + \frac{2}{1 + e^x} , D = \mathbb{R}$
$x - \frac{1}{e^x - 1} , D = \mathbb{R}^*$
$xe^{\frac{1}{x}}$, $D = \mathbb{R}^*$
$x.(1-e^x)^2, D=\mathbb{R}$
$(x-2)^2 \cdot e^x , D = \mathbb{R}$

لله التمرين الثاني

 $g(x)=x-e^x-2$ ، $f(x)=(1-x)e^{-x}-x-2$: نعتبر الدالتان g و المعرفتان على $\mathbb R$ ب

 $f'(x) = e^{-x}g(x)$: فان $\mathbb R$ من أجل كل عدد حقيقي x من عدد حقيقي \star

لله التمرين الثالث

 $g(x)=1+(x^2+x-1)e^{-x}$ ، $f(x)=-x+(x^2+3x+2)e^{-x}$: بعتبر الدالتان $g(x)=1+(x^2+x-1)e^{-x}$ ، و

f'(x) = -g(x): فان $\mathbb R$ من x عدد حقیقی عدد ختی فان *

لله التمرين الرابع

 $g(x)=1-2x-e^{2x-2}$ ، $f(x)=xe^{2x+2}-x+1$:نعتبر الدالتان g و المعرفتان على g بالدالتان و المعرفتان على

 $f'(x)=e^{2x+2}g(-x)$: فان $\mathbb R$ من عدد حقیقی عدد عدد عدد ختی بنن أنه من أجل كل عدد علي أبد خ

إنما الأعمال العظيمة هي أعمال صغيرة كتب لهيا الاستمرار

ملخص تفصيلي ومبسط للدوال الآسية

f'(x) = f(x): وتحقق على \mathbb{R} وتحقق فابلة وحيدة قابلة للاشتقاق على وتحقق وتحقق

 $f:x o e^x$: تسمى هذه الدالة بالدالة الآسية ذات الأساس e ونرمز لها بالرمز f(0)=1 و حيث epprox 2,71 عدد حقيقى ثابت قيمته التقريبية

عدد صحیح کیفی x و تائج: من أجل كل عددین حقیقیین x و y عدد صحیح کیفی

$$e^{x-y} = \frac{e^x}{e^y} / *$$
 $e^{-x} = \frac{1}{e^x} / *$ $e^{x+y} = e^x \times e^y / *$

$$(e^{x})' = e^{x} / *$$
 $e^{0} = 1 / *$ $(e^{x})^{n} = e^{nx} / *$

 $(e^{\scriptscriptstyle \Delta}
eq$ معناه (سالب $e^{\scriptscriptstyle \Delta} > 0$ معناه عدد حقیقی x تعمیم من أجل كل عدد حقیقی $e^{\scriptscriptstyle x} > 0/*$

x>y معناه $e^{^x}>e^{^y}$ /* x< y معناه $e^{^x}< e^{^y}$ /* x=y معناه $e^{^x}=e^{^y}$

یکافئ $a=\ln a$ حیث $a=x=\ln a$ عدد حقیقی موجب تماما $e^x=a$

النهايات الشهيرة

الحالسة العامسة	الحالسة الخاصسة
$e^{+\infty} = +\infty$	$\lim_{x\to +\infty} e^x = +\infty$
$e^{-\infty}=0$	$\lim_{x\to -\infty}e^x=0$
$\lim_{x\to +\infty} \frac{e^x}{x^n} = +\infty$	$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$
$\lim_{x \to +\infty} \frac{x^n}{e^x} = 0$	$\lim_{x \to +\infty} \frac{x}{e^x} = 0$
$\lim_{x\to\infty}x^{\scriptscriptstyle n}.e^{\scriptscriptstyle x}=0$	$\lim_{x \to -\infty} x.e^x = 0^-$
$\lim_{u \to 0} \frac{e^u - 1}{u} = 1$	$\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$ وأيضا $\lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$

 $f(x)=e^{g(x)}:$ قانون الاشتقاق $oldsymbol{3}$

 $f'(x) = \left(e^{g(x)}
ight)' = g'(x).e^{g(x)}$ إذا كانت g قابلة للاشتقاق على مجال I فان؛

*/ ملاحظت: تبقى قواعد الاشتقاق المعروفة سابقا صحيحة حسب شكل الدالة المعطاة

4دراسة إشارة بعض العبارات الأسية

أولا: [(دالة) $\times e^{\scriptscriptstyle \Delta}$ أولا: [(دالة) أولا: [أولا: [

الى أعداد حقيقية $eta \cdot \alpha \cdot c \cdot b \cdot a$ الى أعداد حقيقية */ ثانيا: في كلّ ما يلي ، ترمز

 $a.\alpha \neq 0$ حيث $a.e^{\alpha x+\beta}+b$ ثالثا: طريقة لدراسة إشارة عبارة من الشكل */*

- $a.e^{ax+eta}+b>0$ و موجبان فان a و a موجبان الحان a
- $a.e^{ax+\beta}+b<0$ و مالبان فان a و a سالبان فان a
- a.b < 0و مختلفین في الإشارة أي a

بالكيفية التالية:

فان للمعادلة حل $x_{_0}$ يمكن إيجاده بكل بساطة (نتمرن على ذلك خلال التمارين) والإشارة تستنتج في جدول

	$x_{_{0}}$
$a.e^{\alpha x+\beta}+b$	a.lpha عکس إشارة $a.lpha$

 $a.b.c \neq 0$ حيث $ae^{2x} + be^{x} + c$ رابعا :طريقة لدراسة إشارة عبارة من الشكل /*

لدراسة إشارة العبارة $ae^{2x}+be^{x}+c$ على ، نقوم بما يلي

 $a.X^{2}+b.X+c$ الخطوة الأولى: نضع هنا ، $e^{x}=X$ فتصبح العبارة من الشكل

الخطوة الثانية ُ عَن قيم X التي تعدمها، إنْ قبلت حل طبعا

الخطوة الثالثة: نستنتج قيم x وفي الأخير،نشكّل جدولا ندرس فيه إشارة العبارة،مستخدمين القواعد المعروفة لإشارة كثيرات الحدود من الدرجة الثانية.

 $X_{_2}$ و $X_{_1}$ عيث $a(e^x-X_{_1})(e^x-X_{_2})$ عيث $ae^{2x}+be^x+c$ عيث $ae^{2x}+be^x+c$ عيث aX^2+bX+c علي المعادلة

الجهد المتواصل وليس الذكاء أو القوة هو مفتاح إطلاق قدراتنا الكامنة