GRUPE Zadaća 8.

1. Na skupu \mathbb{R} definirana je binarna operacija * na sljedeći način:

$$x * y = \sqrt[3]{x^3 + y^3}, \quad x, y \in \mathbb{R}.$$

Dokažite da je $(\mathbb{R},*)$ Abelova grupa.

2. Na skupu $S = \{(a, b) \in \mathbb{R}^2; a \neq 0\}$ definirana je binarna operacija * na sljedeći način:

$$(a,b)*(c,d) = (ac, ad + b).$$

Dokažite da je (S, *) grupa. Je li to Abelova grupa? Obrazložite svoj odgovor.

3. Na skupu $\mathbb{Z} \times \mathbb{Q}$ definirana je binarna operacija * na sljedeći način:

$$(x,y)*(u,v) = (x+u,2^{u}y+v).$$

Dokažite da je $(\mathbb{Z} \times \mathbb{Q}, *)$ grupa. Je li to Abelova grupa? Obrazložite!

- 4. Na skupu $G=\{x\in\mathbb{R};x>0,x\neq 1\}$ definirana je binarna operacija * na sljedeći način: $x*y=x^{\log_5 y}.$
 - (a) Dokažite da je (G, *) Abelova grupa.
 - (b) Je li skup $\mathbb{R}^+ = \{x \in \mathbb{R}; x > 0\}$ s operacijom * grupa? Obrazložite!
- 5. Na skupu $G=\{x\in\mathbb{Q};x\neq -1\}$ definirana je binarna operacija * na sljedeći način: x*y=x+y+xy.
 - (a) Dokažite da je (G,*) Abelova grupa.
 - (b) Je li skup ℚ s operacijom * grupa? Obrazložite!
- 6. Dokažite da skup svih matrica oblika $\begin{bmatrix} x & x \\ 0 & 0 \end{bmatrix}$, $x \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$, čini grupu s obzirom na matrično množenje.
- 7. Zadani su skupovi

$$S = \{z \in \mathbb{C}; |z| = 1\}$$

$$K_n = \{z \in \mathbb{C}; z^n = 1\}, n \text{ prirodan broj}$$

$$K = \bigcup_{n=1}^{\infty} K_n$$

- (a) Dokažite da S grupa s obzirom na množenje kompleksnih brojeva.
- (b) Dokažite da je K_n podgrupa od S za svaki prirodan broj n.
- (c) Je li K podgrupa od S? Sve svoje tvrdnje dokažite!
- 8. Neka je X skup svih funkcija $f: S \to G$ sa skupa S u grupu (G, \circ) . Na X je definirana binarna operacija * na sljedeći način:

$$(f * g)(s) = f(s) \circ g(s), \qquad f, g \in X, s \in S.$$

Dokažite da je (X, *) grupa.

GRUPE Zadaća 8.

9. Neka su a, b, c realni brojevi te neka je \otimes binarna operacija definirana sa

$$x \otimes y = ax + by + c, \quad x, y \in \mathbb{R}.$$

- (a) Za koje vrijednosti parametara a, b, c je (\mathbb{R}, \otimes) polugrupa?
- (b) Za koje vrijednosti parametara a, b, c je (\mathbb{R}, \otimes) grupa?
- 10. Odredite red
 - (a) elementa $\frac{1+i}{\sqrt{2}}$ u grupi (\mathbb{C}^*,\cdot) ,
 - (b) elementa 10 u grupi $(\mathbb{Z}_{15}, +_{15})$,
 - (c) elementa 10 u grupi $(\mathbb{Z}_{17}, +_{17})$,
 - (d) elementa 10 u grupi $(\mathbb{Z}_{13}^*, \cdot_{13})$,
 - (e) elementa 10 u grupi $(\mathbb{Z}_{17}^*, \cdot_{17})$.
- 11. (a) Odredite sve elemente reda 12 u grupi \mathbb{Z}_{12} .
 - (b) Odredite sve elemente reda 12 u grupi $\mathbb{Z}_3 \times \mathbb{Z}_4$.
- 12. (a) Odredite podgrupu od (\mathbb{R}^*,\cdot) generiranu elementom -1.
 - (b) Odredite podgrupu od $(\mathbb{Z}_7, +_7)$ generiranu elementom 4.
 - (c) Odredite podgrupu od $(\mathbb{Z}_8, +_8)$ generiranu elementom 6.
 - (d) Odredite podgrupu od $(\mathbb{Z}_{17}^*, +_{17})$ generiranu elementom 13.
- 13. (a) Napišite sve elemente simetrične grupe S_3 stupnja 3.
 - (b) Neka je $H = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$. Dokažite da je H podgrupa od S_3 , ali nije normalna podgrupa od S_3 .
- 14. Odredite podgrupu od S_7 generiranu
 - (a) ciklusom c = (1234). Koliki je red ciklusa c?
 - (b) permutacijom p = (123)(57). Koliki je red permutacije p?
- 15. Neka su H i K podgrupe grupe G. Dokažite da je $HK = \{hk; h \in H, k \in K\}$ podgrupa grupe G ako i samo ako je HK = KH.
- 16. Neka je H normalna podgrupa grupe G te neka su $a,b \in G$. Dokažite da vrijedi

$$ab \in H \Leftrightarrow ba \in H$$
.

- 17. Neka je G grupa te neka je $Z(G)=\{g\in G;\ gh=hg, \forall h\in G\}$. Dokažite da je Z(G) podgrupa od G. Mora li Z(G) biti normalna podgrupa od G?
- 18. Neka je (\mathbb{Q}^*,\cdot) multiplikativna grupa racionalnih brojeva različitih od nule, te neka je $\varphi: \mathbb{Q}^* \to \mathbb{Q}^*$ preslikavanje zadano sa $\varphi(x) = x^2$. Dokažite da je φ homomorfizam grupa te mu odredite jezgru i sliku.
- 19. Je li grupa iz zadatka 6. izomorfna multiplikativnoj grupi realnih brojeva \mathbb{R}^* ? Ukoliko jest, konstruirajte odgovarajući izomorfizam. Sve svoje tvrdnje dokažite!
- 20. Jesu li grupe $(\mathbb{Z}, +)$ i $(2\mathbb{Z}, +)$ izomorfne? Sve svoje tvrdnje dokažite!

GRUPE Zadaća 8.

- 21. (a) Dokažite da grupe $(\mathbb{Q}, +)$ i $(\mathbb{Z}, +)$ nisu izomorfne.
 - (b) Dokažite da grupe (\mathbb{R}^*,\cdot) i (\mathbb{C}^*,\cdot) nisu izomorfne.
- 22. (a) Jesu li grupe \mathbb{Z}_{12} i $\mathbb{Z}_2 \times \mathbb{Z}_6$ izomorfne? Obrazložite!
 - (b) Jesu li grupe \mathbb{Z}_8 i $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ izomorfne? Obrazložite!
- 23. Neka je (G,*) konačna grupa i $f:(G,*)\to (\mathbb{C}^*,\cdot)$ homomorfizam grupa sa svojstvom da postoji $x_0\in G$ takav da je $f(x_0)\neq 1$.
 - (a) Dokažite da je funkcija $g:G\to R$ definirana sa $g(x)=x_0*x$ bijekcija.
 - (b) Služeći se tvrdnjom iz a) dijela zadatka, izračunajte

$$\sum_{x \in G} f(x) \quad \text{i} \quad \sum_{x \in G \setminus \{e\}} f(x),$$

pri čemu je e neutralni element u grupi G.