A2: Analog Malicious Hardware

Paper by:

Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, Dennis Sylvester Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor, MI, USA

TSMC - biggest non-affiliated fabricator, Taiwan
GlobalFoundries - spun off of AMD, Singapore
SMIC - major Chinese player

Architecture -> RTL/VHDL/timing -> Fabrication -> Drivers/verification

MOSFET:

(a) p-MOS Transistor

Figure 2: Behavior model of proposed analog trigger circuit.

Figure 8: Basic ways of connecting single-stage triggers to form a multi-stage trigger.

One of A and B trigger, C trigger

Both A and B trigger

Either A or B triggers

Figure 13: SPICE simulation waveform of analog trigger circuit using IO devices in 65nm CMOS.

NAND2	X4	3	3.7	4.1	
NAND2	X8	5.75	7.6	8.1	
DFF with Async Set	X1	6.25	12.7	2.9	
DFF with Async Set	X4	7.25	21.8	6.8	
DFF with Async Reset	XI	6	12.7	2.6	
DFF with Async Reset	X4	7.75	21.8	7.2	
DFF with Async Set and Reset	XI	7.5	14.5	3.3	

Drive Strength

ΧI

X4

Width†

8.75

8

13.5

AC Power†

23.6

7.7

0.08

Standby Power†

8.1

2.2

0.08

Function

NAND2

DFF with Async Set and Reset

* DFF stands for D Flip Flop. † Normalized values

Trigger w/o IO device

Trigger w/ IO device

Packaged test chip

Testing PCB

(b) Analog trigger circuit with only core device

Figure 18: Measured trigger cycles under different input frequency at different supply voltages.

(b) Analog trigger circuit with only core device

Figure 19: Measured trigger cycles under different input frequency at different ambient temperatures.

Microprocessor transistor counts 1971-2011 & Moore's law

