Laumon sheaf and mol p Langlands Correspondence Laurent Fargues

Introduction

Standard geom Langlands methods

(Drinfeld, Laumon, Frankel-Gaitsgory-Vibonen). To construct $\varphi \longmapsto \pi(\varphi)$.

But Does not directly work in our context.

ble "descent issue" in mod l case.

However, everything should cook well for the p-adic Langlands.

use this p-acic case + motivic argument

motivic spectral action

to treat any l \ p or l=p.

Starting point Breuil, Colonez, Emerton, Paskunas, ...

 \exists good p-adic largeards corresp. for $GL_2(\mathbb{Q}_p)$. \int but not for $GL_2(\mathbb{E})$ for E/\mathbb{Q}_p . $E \neq \mathbb{Q}_p$.

<u>later</u> * Extend this to a rep of $Gl_2(E)$ ("descent") when p is inted & $\lim_{n \to \infty} p = 2$.

> * By mod p^n for all $n \ge 1$, get Barach LLC: L/Ω_p , $Rep_L T_E \longrightarrow \{Barach\ reps\ of\ {E^* E \choose o\ l}\}$.

* Locally analytic version $\rho \mapsto \pi \iota_{\rho} \iota_{\alpha}$.

Using the analytic prismatization of Spa E: $Rep_{ep}T_E \longrightarrow VBs$ on the analytic pairs of Spa E.

Key word: Holonomy.

Warm up Recall (Lawmon): $X/k = \overline{k}$ Sm projective. $E = \overline{Q}_{k} - i \operatorname{red} Y + K - Loc SYS / X$. $L = [E : Q_{p}] > 1$.

 $(x_1, \dots, x_d) \longmapsto \sum_{i=1}^d [x_i]$ (confier Liv

Note Sate = 1:* \overline{J} where S_{i} is $S_$

retus in Dir.

multi-free dirisons.

Cremerally For ξ VB on X, $S_{\xi} \xi := (\pi_{\xi *} \xi^{\boxtimes \xi})^{\xi_{\xi}}$.

This is a coh sheef $/ \text{Div}_{X}^{\xi}$.

Lem Set is a vert bell on Didx.

Compatibility with RH

Recall Katz, Emerton-Kisin, Bhatt-Lurie: X = Fig.-Sch. $RH : Det(X, \text{Fig.}) \longrightarrow Dcoh(O_X \text{Ym})^{g=id}$ fully faithful. $X^{\text{Yp}} := \underbrace{\lim}_{TT} X$ adjoint to Sol (solin functor) $Sol: (E, \varphi) \longrightarrow E^{\varphi=id}$ $Sol: (E, \varphi) \longrightarrow E^{\varphi=id}$ $Sol: (E, \varphi) \longrightarrow E^{\varphi=id}$

Punk Katz corresp.

$$\begin{cases}
T_{Q} - \text{etable boc sys } / \chi \end{cases} \simeq \begin{cases}
(E, q) | E \vee B / \chi^{4/p} | \{
q \cdot E \simeq E
\end{cases}$$
Prop χ curve $/ T_{Q}$ (Sm proj), $T = T_{Q} - \text{etable boc sys } / \chi$

$$(E, q) = RH(F)$$

$$\Rightarrow RH(S_{d}F) = \lim_{Q \to \infty} (S_{d}E, Q).$$

$$\text{VB by bem}$$
Prop \Rightarrow RH(S_{d}F) is holomory (i.e. a perfection of some VB).

The real thing E/D_{Q} . $d = IE:Q_{Q}$, $T_{Q} = Q_{E}/T$.

$$B^{2} = T$$

$$absolute BC, $\simeq S_{Q} (T_{Q}T_{Q}T_{Q})^{2} + S_{Q} (T_{Q}T_{Q}T_{Q})^{2}$

$$\chi = S_{Q} T_{Q}$$

$$\chi = S_{Q}$$

$$\chi = S_{Q$$$$

Rep F(TE) = { Fg - Etale loc sys on (B = 105) / Ex }

Then RH: Repts (TE) ~ VB on Div Front 6

Tetale la sys (14,71-mol).

Ep = Fp @ Q Seen at an Ex-equir VB on Box / for.

Symnetrization To. (Bet (6)) - Bet (6) $(+, \dots, +_2) \longrightarrow +_1 \dots +_d$

This (Fargues) Ad = f (gu, ...; que) E (End | II pi=16.

Then π_{ℓ} is quasi-proof sujective, $\mathcal{L} \qquad \left(\begin{array}{ccc} B^{q=\pi} \setminus \{0\} \end{array} \right)^{d} / \underbrace{\Delta_{d} \times G'_{d}}_{\ell} \stackrel{\sim}{\longrightarrow} B^{q=\pi^{d}} \{0\}.$ pro-of quotient

From now m, $e \in \text{Rep}_{\overline{F}_{\overline{q}}}(\Gamma_{\overline{E}})$ \longrightarrow $\xi_{p} = \overline{F}_{p} \otimes G$.

Det $S_{\ell} F_{\rho} := (\pi_{\ell *} F_{\rho}^{\text{Ad}})^{\Delta_{\ell} \times G_{\ell}}$ an etale sheaf. $S_{\ell} E_{\rho} := (\pi_{\ell *} E_{\rho}^{\text{Ad}})^{\Delta_{\ell} \times G_{\ell}}$ v-sheaf of 0-muds.

(an prove: So Ep = RH(So Fe)

(4.7)-mod Mann's AH corresp.

=> "So Ep is quasi-coherent".

Thm (Holonomicity) If d < p, then

I M < S, Ep Stable under 9

Sub-0-mod (i.e. 9(w) < M)

s.t. Il is a perfect complex l "U 4-9(94) is dense in Sa Ep."

Thin (Very difficult) If dep

then Sate is generated by its global sections.

Fact $H^{\circ}(S_{d}\xi_{p}) = \Gamma\left(\frac{(B^{0} = \pi_{1}\xi_{0}\xi_{1})^{d}}{Stein} + o \text{ if } p \neq 0\right)$ Stein & perfectoid $\sqrt{8}$ This can also be very difficult even if $p = x_1 \otimes x_2$, $x_1 + x_2$.

Lem d < p, k char p field. Then $M[x_1, \dots, x_d] / (\sigma_0, \dots, \sigma_{d-1}) \cong k[G_d]$ Gy

e.g. d=[E:0p], FqEI=6(Be=Td)

Ex Ex