

Лабораторні роботи (2019) (рівень **A**) з курсу "Обчислювальна геометрія та комп'ютерна графіка".

1	Oa	0	птимізація		
1.1	OBa	Вписання			
N	код	Назва задачі	Постановка задачі	O.c. 25	ПІБ
1	AO1	Задача лінійного програмування	На заданій множині з N точок розв'язати задачу лінійного програмування.	O(N)	
2	AO21	Найбільше коло вписане в опуклу оболонку	На заданій множині з N точок побудувати опуклу оболонку і вписати в неї коло найбільшого радіусу.	O(NlogN)	
3	AO31	Трикутник найбільшої площі вписаний в опуклу оболонку	На заданій множині з N точок побудувати опуклу оболонку і вписати в неї трикутник найбільшої площі.	O(NlogN)	
4	AO41	Прямокутник найбільшої площі вписаний в опуклу оболонку	На заданій множині з N точок побудувати опуклу оболонку і вписати в неї прямокутник найбільшої площі.	O(NlogN)	
5	BO4	Найбільший еліпс вписаний в опуклу оболонку	На заданій множині S із N точок на площині побудувати опуклу оболонку і вписати еліпс максимальної площі.	O(N ²)	
1.2	OOa	0	хоплення		
N	код	Назва задачі	Постановка задачі	O.c. 25	ПІБ
6	AO2	Найменше коло	На заданій множині з N точок побудувати коло найменшого радіусу, яке б охоплювало задану множину точок.	O(NlogN)	
7	AO3	Трикутник найменшої	На заданій множині з N точок побудувати трикутник найменшої	O(NlogN)	

8	AO4	Прямокутник найменшої площі	площі, який би охоплював задану множину точок. На заданій множині з N точок побудувати чотирикутник найменшої площі, який би охоплював задану множину.	O(NlogN)	
9	BO32	Еліпс найменшої площі	На заданій множині з N точок побудувати еліпс найменшої площі, який би охоплював задану множину.	O(NlogN)	
		Задачі н	на розташування		
10	AO5	Найбільше порожнє коло	На заданій множині з N точок, обмеженій опуклою оболонкою, вписати порожнє коло найбільшої площі так, щоб внутрішня область оточена ним не містила б жодної точки заданої множини.	O(NlogN)	
11	AO6	Найбільший порожній прямокутник	На заданій множині з N точок, обмеженій опуклою оболонкою, побудувати прямокутник найбільшої площі так, щоб внутрішня область оточена ним не містила б жодної точки заданої множини.	O(NlogN)	
12	AO7	Найбільший порожній еліпс	На заданій множині з N точок, обмеженій опуклою оболонкою, вписати порожній еліпс найбільшої площі так, щоб внутрішня область оточена ним не містила б жодної точки заданої множини.	O(NlogN)	
2.1	ДТа	Тр	иангуляція		
N	код	Назва задачі	Постановка задачі	O.c. 25	ШБ
13	АД7	Триангуляція множини точок	Для заданої множини S із N точок в у прямокутнику побудувати тріангуляцію.	O(NlogN)	
14	АД1	Тріангуляція простого многокутника	Заданий простий многокутник розбити на трикутники, з'єднуючи	O(N)	

			його вершини, без введення додаткових точок.	
15	АД2	Тріангуляція зіркового многокутника	Заданий зірковий многокутник розбити на трикутники, з'єднуючи його вершини, без введення додаткових точок.	O(N)
16	ВД4	Розбиття ізотетичного многокутника на чотирикутники	Заданий ізотетичний многокутник розбити на чотирикутники, при умові, що ребра цього многокутника паралельні осям координат ОХ та ОУ.	O(N)
		Види	мість(з точки)	
17	AB1	Простого многокутника	Побудувати множину видимих та невидимих відрізків ребер простого многокутника з точки.	O(N)
18	AB3	Множини відрізків	Побудувати множину видимих та невидимих відрізків з точки.	O(N)
		Видим	иість(з прямої)	
19	AB4	Простого многокутника.	Побудувати множину видимих та невидимих відрізків ребер простого многокутника з прямої (проекції ортогональні до заданої прямої).	O(N)
20	AB6	Множини відрізків	Побудувати множину видимих та невидимих відрізків з прямої (проекції ортогональні до заданої прямої).	O(N)
		Pos	пізнавання	
21	AP2	Простого многокутника	Нехай задано на вході деякий многокутник. Необхідно відповісти на запитання <i>простий</i> він чи ні.	O(N)
22	AP3	Зіркового многокутника	Нехай задано на вході деякий многокутник. Необхідно відповісти на запитання <i>зірковий</i> він чи ні.	O(N)

			<u> </u>		1
		I	Побудова		
23	АП4	Евклідове мінімальне кістякове дерево	Для заданої множини точок побудувати дерево, сумарна довжина ребер, якого найменша.	O(NlogN)	
		Б	лизькість		
24		Найближча пара між точками двох множин	На площині задано дві множини А і В, які містять по N точок кожна. Знайти дві найближчі точки, одна з яких належить А, а інша В. Множини А і В лінійно роздільні.	O(NlogN)	Косуха О. ТК-31
			Перетин		
25	AT2	Перетин відрізків.	На площині задано <i>п</i> відрізків. Визначити усі перетини відрізків.	O(NlogN)	Некряч В. ТК-31
26	AT3	Перетин простих многокутників	Задано два многокутники P_1 і P_2 з n_1 і n_2 вершинами відповідно. Знайти їх перетин.	O(NlogN) $N=n_1+n_2$	
27	AT5	Перетин ізотетичних многокутників.	Задані <i>т</i> ізотетичних многокутників, сторони яких паралельні осям координат. Знайти перетин їх перетин.	O(N)	
			ричний пошук		
28	ΑΓ1	Опуклий многокутник	На площині задано п точок. Знайти усі точки, які потрапляють в середину опуклого k –кутника (випадок масових запитів).	$O(k \log n)$	
29	АГ2	Простий многокутник	На площині задано п точок. Знайти усі точки, які потрапляють в середину простого k –кутника (випадок масових запитів).	$O(k \log n)$	
30	АГ3	Регіональний пошук для круга	На площині задано п точок. Знайти усі точки, які потрапляють в середину круга радіусу R (випадок масових запитів).	$O(\log n)$	

Лабораторні роботи (2021 2-семестр) (рівень **В**) з курсу "Обчислювальна геометрія та комп'ютерна графіка".

	Ов Оптимізація					
	OBb	Вписання				
N	код	Назва задачі	Постановка задачі	O.c. 30	ПІБ	
31	ВО21	Найбільше коло в зірковому многокутнику	Для заданого N вершинного зіркового многокутника вписати коло найбільшого радіусу	Близька до Ω(f(N))	П	
32	BO41	Найбільший прямокутник в зірковому многокутнику	Для заданого N вершинного зіркового многокутника вписати прямокутник найбільшої площі	Близька до $\Omega(f(N))$		
33	ВО7	Найбільший еліпс в зірковому многокутнику	Для заданого N вершинного зіркового многокутника вписати еліпс найбільшої площі	Близька до $\Omega(f(N))$		
34	BMOM 3	Опуклий многокутник найбільшої площі вписаний в зірковий многокутник ———————————————————————————————————	Для заданого N вершинного зіркового многокутника вписати опуклий многокутник максимальної площі.	O(NlogN)		
1.2	OOb	0	хоплення			
N	код	Назва задачі	Постановка задачі	O.c. 30	ПІБ	
35	BO1	Найменший охоплюючий зірковий многокутник	Для заданої множини S із N точок на площині побудувати зірковий многокутник найменшої площі, який би охоплював задану множину точок, вершинами якого є усі точки множини S.	Близька до Ω(f(N)		
36	воз	Найменший охоплюючий простий многокутник	Для заданої множини S із N точок на площині побудувати простий многокутник найменшої площі, який би охоплював задану множину точок, вершинами якого ϵ усі точки множини S .	Близька до Ω(f(N))		

			T T		
37	ОМЗМ	Генерація зіркових многокутників (ПРОБЛЕМА 26.1.1.).	Нехай задана фіксована множина S із N точок на площині. Необхідно розробити алгоритм генерації зіркових многокутників, вершинами яких ϵ усі точки заданої множини S і визначити многокутник найменшої площі .	Близька до $\Omega(f(N))$	
38	ОМПМ	Генерація простих многокутників (ПРОБЛЕМА 26.1.1.).	Нехай задана фіксована множина S із N точок на площині. Необхідно розробити алгоритм генерації простих многокутників, вершинами яких ϵ усі точки заданої множини S і визначити многокутник найменшої площі.	Близька до Ω(f(N))	
	Дь	Де	композиція		
	ДТь	T_{l}	риагуляція		
N	код	Назва задачі	Постановка задачі	O.c. 30	ПІБ
39	АД6	Тріангуляція ділянки між <i>т</i> опуклими <i>k</i> -кутниками	Триангулювати ділянку між m опуклими k -кутниками із загальною кількістю N вершин.	$O(N + k^2)$	
]	Розбиття		
N	код	Назва задачі	Постановка задачі	O.c. 30	ШБ
		Видим	мість(з точки)		
40	AB4		Розставити мінімальну кількість відеокамер у вершинах так, щоб уся територія двору була видима.	O(N)	
			Тобудова		
41	АБ1	Усі найближчі сусіди	лизькість Для заданої множини S із N точок в E² просторі за допомогою стратегії «Р та П» (МЄАС) знайти усіх найближчих сусідів.	O(NlogN)	
		Перети	н та об'єднання		
42	AT4	Перетин ізотетичних многогранників	Задані m ізотетичнихмногогранників,сторониякихпаралельнікоординатнимплощинам.Загальнакількість	O(N)	

			вершин рівна <i>N</i> . Знайти їх перетин		
		Найкоротш	ні шляхи та мережі		
43	НШМ1	Найкоротший шлях у многокутнику.	Побудувати ефективний алгоритм обчислення найкоротшого шляху між двома точками в простому многокутнику без триангуляціїї.	O(NlogN)	
44	НШП	Найкоротші шляхи на множині перешкод у 2D	Задача. На заданій множині һ- перешкод, (являють собою полігони, сумарна ткількість вершин яких рівна п) для кожного розташування запитних точок S і Т знайти найкоротший шлях між ними.	O(NlogN)	