Карта регистров блока пространственной обработки

Д. В. Днепров, С. П. Ипполитов, И. В. Корогодин, Е.Н. Болденков, А. А. Перов МЭИ, УИЦ СРТТ

12 декабря 2016 г. (22:16)

Содержание

1	Согл	лашения о терминологии и обозначениях	4
2	Реги	истры блока пространственной обработки	5
	2.1	Карта регистров блока пространственной обработки	5
	2.2	Управляющие регистры	6
		2.2.1 CRPA_ID (0x00)	6
		2.2.2 CRPA_PARAMS (0x04)	7
		2.2.3 CRPA_CONTROL (0x08)	7
		2.2.4 CRPA_STATUS (0x0C)	8
		2.2.5 CRPA_IRQ_RELEASE (0x10)	8
		2.2.6 CRPA_MASTER (0x14)	8
	2.3	Регистры управления тестовым генератором	9
		2.3.1 GEN_CONTROL (0x18)	9
		2.3.2 GEN_PHASE_RATE (0x1C)	9
		2.3.3 GEN_SCALE (0×20)	10
		2.3.4 GEN_CONST (0x24)	10
	2.4	Регистры управления мультиплексором	10
		2.4.1 MUX1_CONTROL (0×28)	10
	2.5	Регистры управления FIFO	11
		2.5.1 FIFO_RESET (0x30)	11
	2.6	Управление тактовыми сигналами	11
		2.6.1 CLK_GATE_CTRL (0x38)	11
		2.6.2 RST_GATE_CTRL (0x3C)	12
	2.7	Статус корреляционной матрицы	12
		2.7.1 CVM_STATUS (0x40)	12
	2.8	Параметры блока корреляционной обработки	13
		2.8.1 DATA_WIDTH0 (0x44)	13
		2.8.2 DATA_WIDTH1 (0x48)	13
		2.8.3 NF_ADDR (0x4C)	14
		2.8.4 NF_STEP (0×50)	14
		2.8.5 BF_RE_ADDR (0x54)	14
		2.8.6 BF_IM_ADDR (0x58)	15
		2.8.7 BF_STEP (0x5C)	15
		2.8.8 CVM_ADDR (0×60)	15
		2.8.9 CVM_LENGTH (0x64)	16
		2.8.10 CVM_TYPEDESCR0 (0x68)	16
		2.8.11 CVM_TYPEDESCR1 (0x6C)	16

Д	,. B. <u>,</u>	Днепроі	в, С. П.	Иппол	итов, І	1. B.	Kopo	годин	₁, E.ŀ	1 . Б	олде	нко	в, А	. A.	Пе	ров	M	ЭИ,	, У	<u>иц</u>	<u> CPT</u> 1
	2.9	Флаги	правил	ьных д	цанных												 				17
		2.9.1	VALID	_NF((0×70)												 				17
		2.9.2	VALID	_BF ((0×74)												 				17
		2.9.3	VALID	_SIGM	IAG (0	×78)											 				17
	2.10	Регист	гры бло	ков поі	мехопо	давле	еиня										 				18
	2.11	Регист	гры бло	ков фо	кусиро	вки											 				18
	2.12	Регист	гры бло	ка расч	нёта ко	рреля	цион	ной	матр	ицы							 				18

1 Соглашения о терминологии и обозначениях

В дальнейшем описании будем руководствоваться следующими принципами.

При описании алгоритмов функционирования устройств помимо математических формул будет испольльзоваться синтаксис языков C, Matlab, Verilog.

Красным цветом отмечено описание нереализованных функций, зеленым - те места документа, которые требуют доработки (чаще всего требуется словесное описание заменить таблицей).

CRPA_BASE - базовый адрес регистровой памяти, относительно которого заданы смещения карты памяти Все регистры являются 32-разрядными.

Управление доступом:

го - только чтение

wo - только запись

rw - чтение/запись

2 Регистры блока пространственной обработки

2.1 Карта регистров блока пространственной обработки

Смещение, б	айт Название	Описание	Раздел (ссылка)
,	Управля	лющие регистры	,
0×00 (0×00)	CRPA_ID	Идентификатор блока пространствен- ной обработки	2.2.1
0×04 (0×01)	CRPA_PARAMS	Параметры блока пространственной обработки	2.2.2
0×08 (0×02)	CRPA_CONTROL	Управление блоком пространственной обработки	2.2.3
0x0C (0x03)	CRPA_STATUS	Статус блока пространственной обра- ботки	2.2.4
0×10 (0×04)	CRPA_IRQ_RELEASE	Регистр количества накапливаемых от- счётов	2.2.5
0×14 (0×05)	CRPA_MASTER	Регистр программного выбора master/slave	2.2.6
	Тесто	вый генератор	
0×18 (0×06)	GEN CONTROL	Управление тестовым генератором	2.3.1
0×1C (0×07)	GEN PHASE RATE	Код частоты тестового сигнала	2.3.2
0x20 (0x08)	GEN SCALE	Амплитуда тестового сигнала	2.3.3
0×24 (0×09)	GEN CONST	Тестовая константа	2.3.4
,	<u> </u>	льтиплексор	I
0×28 (0×0A)	MUX1 CONTROL	Выбор входа	2.4.1
- ()		FIFO	I
0×30 (0×0C)	FIFO RESET	Сброс FIFO	2.5.1
<i>(1.00)</i>		актовыми сигналами	2.0.1
0×38 (0×0E)	CLK_GATE_CTRL	Регистр управления тактовыми сигналами	2.6.1
0x3C (0x0F)	RST GATE CTRL	Регистр сброса	2.6.2
<i>(6)</i> (6)		еляционной матрицы	
0×40 (0×10)	CVM_STATUS	Регистр статуса блока расчёта матрицы	2.7.1
	Параметры блока п	ространственной обработки	I
0×44 (0×11)	DATA_WIDTH0	Регистр разрядности внутренних дан-	2.8.1
0x48 (0x12)	DATA_WIDTH1	Регистр разрядности внутренних данных	2.8.2
0x4C (0x13)	NF ADDR	Смещение блока формирователя нулей	2.8.3
0×50 (0×14)	NF STEP	Размер канала формирователя нулей	2.8.4
0×54 (0×15)	BF_RE_ADDR	Смещение действительных формирователей лучей	2.8.5
0×58 (0×16)	BF_IM_ADDR	Смещение мнимых формирователей лучей	2.8.6
0×5C (0×17)	BF STEP	Размер блока формирователей лучей	2.8.7
0×60 (0×18)	CVM_ADDR	Смещение блока расчёта матрицы	2.8.8
0×64 (0×19)	CVM_LENGTH	Размер блока корреляционной матри- цы	2.8.9
0×68 (0×1A)	CVM_TYPEDESCR0	Описание структуры корреляционной матрицы	2.8.10
0x6C (0x1B)	CVM_TYPEDESCR1	Описание структуры корреляционной матрицы	2.8.11

	Флаги правильн	ых данных	
0×70 (0×1C)	VALID_NF	Флаги правильных данных формиро-	2.9.1
		вателя нулей	
0x74 (0x1D)	VALID_BF	Флаги правильных данных формиро-	2.9.2
		вателя лучей	
0x78 (0x1E)	VALID_SIGMAG	Флаги правильных данных блока кван-	2.9.3
		тования	
	Регистры блоков пом	<i>ехоподавления</i>	
NF_ADDR+NF_STEP*1	CRPA_NF_0	Регистры помехоподавителя 0	2.10
NF_ADDR+NF_STEP*1	CRPA_NF_1	Регистры помехоподавителя 1	2.10
NF_ADDR+NF_STEP*7	CRPA_NF_7	Регистры помехоподавителя 7	2.10
	Регистры блоков с	рокусировки	
BF_RE_ADDR+BF_STEP*0	CRPA_BF_RE_0	Регистры блока фокусировки 0	2.11
BF_RE_ADDR+BF_STEP*1	CRPA_BF_RE_1	Регистры блока фокусировки 1	2.11
BF_RE_ADDR+BF_STEP*11	CRPA_BF_RE_11	Регистры блока фокусировки 11	2.11
BF_IM_ADDR+BF_STEP*0	CRPA_BF_IM_0	Регистры блока фокусировки 0	2.11
BF_IM_ADDR+BF_STEP*1	CRPA_BF_IM_1	Регистры блока фокусировки 1	2.11
BF_IM_ADDR+BF_STEP*11	CRPA_BF_IM_11	Регистры блока фокусировки 11	2.11
	Регистры блока расчёта кор	реляционной матрицы	
CVM_ADDR	CRPA_CM	Регистры блока расчёта корреляцион-	2.12
		ной матрицы	

2.2 Управляющие регистры

2.2.1 CRPA_ID (0x00)

Register 2.1: Идентификатор блока пространственной обработки CRPA_ID (0x00)

ID (ro) Идентификация начала блока регистров управления импульсом прерывания. **reserved (ro)** Зарезервированные биты.

2.2.2 CRPA PARAMS (0x04)

Register 2.2: Регистр параметров блока пространственной обработки CRPA PARAMS (0x04)

NT (ro) Количество отводов по времени в пространственно-временном фильтре помехоподавления.

NCH (ro) Количество пространственных входов в пространственно-временном фильтре помехоподавителя.

NBF (ro) Количество блоков формирования лучей.

NNF (ro) Количество блоков формирования нулей.

MASTER SLAVE (ro) Копия состояния Master/slave.

Reserved Зарезервированные биты.

2.2.3 CRPA CONTROL (0x08)

Register 2.3: Регистр управления блоком пространственной обработки ${
m CRPA_CONTROL}$ (0x08)

CVM_start (rw) Сигнал запуска сбора корреляционной матрицы Для запуска надо записать "1", для сброса записать "0".

CRPA NF start (rw) Сигнал загрузки коэфициентов;

CVM mode (rw) Тип корреляционной матрицы;

CVM_LOAD_EN (rw) Флаг разрешения внешнего сигнала запуска сбора корреляционной матрицы;

NF_LOAD_EN (rw) Флаг разрешения внешнего сигнала загрузки коэффициентов пространственно-временных фильтров

2.2.4 CRPA STATUS (0x0C)

Register 2.4: РЕГИСТР СТАТУСТА ВЛОКА ПРОСТРАНСТВЕННОЙ ОБРАБОТКИ CRPA STATUS (0x0A)

CVM READY (r) Флаг готовности результата накопления корреляционной матрицы.

Reserved Зарезервированные биты

2.2.5 CRPA IRQ RELEASE (0x10)

Register 2.5: РЕГИСТР СБРОСА ПРЕРЫВАНИЯ CRPA IRQ RELEASE (0x10)

Reserved (rw) Запись любого значения сбрасывает прерывание

2.2.6 CRPA MASTER (0x14)

Register 2.6: РЕГИСТР УПРАВЛЕНИЯ РЕЖИМОМ СИНХРОНИЗАЦИИ MASTER/SLAVE CRPA MASTER (0x0C)

CRPA_MASTER (rw) Бит управления режимом синхронизации master/slave. Начальное значение определяется состоянием вывода Master/slave в момент сброса.

2.3 Регистры управления тестовым генератором

2.3.1 GEN CONTROL (0x18)

Register 2.7: РЕГИСТР УПРАВЛЕНИЯ РЕЖИМОМ ТЕСТОВОГО ГЕНЕРАТОРА GEN CONTROL (0x18)

SYNC RESET (rw) Синхронный сброс (активный уровень 1).

SIGNAL TYPE (rw) Выбор типа тестового сигнала (0 - синус, 1 - константа).

GEN ENABLE (rw) Разрешение работы тестового генератора (активный уровень 1).

GEN CH DISABLE (rw) Отдельное отключение каналов тестового генератора.

Reserved Зарезервированные биты.

2.3.2 GEN PHASE RATE (0x1C)

Register 2.8: РЕГИСТР ЧАСТОТЫ ТЕСТОВОГО СИГНАЛА GEN PHASE RATE (0x1C)

PHASE RATE (rw) Код частоты опорного сигнала.

Тестовый сигнал представляет собой синусоиду, формируемую методом прямого цифрового синтеза по таблице. Разрядность таблицы по фазе 5 разрядов, по амплитуде - 4 разряда. Частота тестового сигнала определяется выражением:

$$f = \frac{PHASE_RATE}{2^{32}} \cdot f_{CLK}$$

2.3.3 GEN SCALE (0x20)

Register 2.9: РЕГИСТР УПРАВЛЕНИЯ АМПЛИТУДОЙ ТЕСТОВОГО ГЕНЕРАТОРА GEN SCALE (0x20)

SCALE (rw) Масштабный коэффициент.

Reserved Зарезервированные биты.

Разрядность сигнала на выходе тестового генератора — 4 разряда. Разрядность линии данных — 16. Коэффициент SCALE определяет, на сколько разрядов влево сдвигается значение на выходе тестового генератора перед подачей на линию данных.

2.3.4 GEN CONST (0x24)

Register 2.10: РЕГИСТР ТЕСТОВОЙ КОНСТАНТЫ GEN CONST (0x24)

CONST (rw) Тестовая константа.

2.4 Регистры управления мультиплексором

2.4.1 MUX1 CONTROL (0x28)

Register 2.11: Вывор входа MUX1 CONTROL (0x28)

SELECT (rw) Выбор сигнала $(0 - A \ \Box \Pi, 1 - \text{тестовый сигнал}).$

2.5 Регистры управления FIFO

2.5.1 FIFO RESET (0x30)

Register 2.12: Выбор входа FIFO_RESET (0x30)

FIFO RESET (rw) Сброс FIFO (активный уровень 1).

Reserved Зарезервированные биты.

2.6 Управление тактовыми сигналами

2.6.1 CLK_GATE_CTRL (0x38)

Register 2.13: Включение тактовых сигналов отдельных блоков ${
m CLK_GATE_CTRL}$ (0x38)

DCOL CLK (rw) Управление тактовым сигналом блока сбора данных (1 - включить).

BF_CLK (rw) Управление тактовыми сигналами блоков формирователей лучей (0-вы-ключить, 1-включить блок 0, 2-включить блоки 1-11, 3-включить все блоки).

NF_CLK (rw) Управление тактовыми сигналами блоков формирователей нулей (0 - выключить, 1 - включить блок 0, 2 - включить блоки 1-7, 3 - включить все блоки).

CVM_CLK (rw) Управление тактовым сигналом блока накопления корреляционной матрицы (1 - включить).

2.6.2 RST GATE CTRL (0x3C)

Register 2.14: Выбор входа RST GATE CTRL (0x3C)

DCOL CLK (rw) Сброс блока сбора данных (активный низкий).

BF_CLK (rw) Сброс блоков формирователей лучей (0- сброс всех, 1- сброс блоков 1-11, 2- сброс блока 0, 3- включить все блоки).

NF_CLK (rw) Сброс блоков формирователей нулей (0 — сброс всех, 1 — сброс блоков 1-7, 2 — сброс блока 0, 3 — включить все блоки).

CVM_CLK (rw) Сброс блока накопления корреляционной матрицы (активный низкий).

Reserved Зарезервированные биты.

2.7 Статус корреляционной матрицы

2.7.1 CVM STATUS (0x40)

Register 2.15: Статус блока расчёта корреляционной матрицы CVM STATUS (0х40)

CVM STATUS (rw) Статус корреляционной матрицы (1 - вычисление завершено).

2.8 Параметры блока корреляционной обработки

2.8.1 DATA WIDTH0 (0x44)

Register 2.16: Разрядность внутреннего представления данных DATA WIDTH0 (0х44)

At Jab Jros	Dr. coeff width	AE coeff width	ingus width	
31 24	23 16	15 8	7 0	
16	16	16	16	Имя (По сбросу)

NF_lsb_drop (r) Количество разрядов, отбрасываемых после блоков формирования лучей.

BF coeff width (r) Разрядность коэффициентов блоков формирования лучей.

NF coeff width (r) Разрядность коэффициентов блоков формирования нулей.

input width (r) Разрядность входных данных.

2.8.2 DATA_WIDTH1 (0x48)

Register 2.17: Выбор входа DATA WIDTH1 (0х48)

CVM in width (r) Входная разрядность блока расчёта корреляционной матрицы.

CVM accum num (r) Количество накопителей блока расчёта корреляционной матрицы.

CVM accum width (r) Разрядность накопителя блока расчёта корреляционной матрицы.

BF out width (r) Выходная разрядность блоков формирования лучей

2.8.3 NF_ADDR (0x4C)

Register 2.18: Начальный адрес коэффициентов формирователя нулей NF ADDR (0x4C)

NF_ADDR (rw) Начальный адрес коэффициентов блока 0 формирователя нулей относительно базового адреса CRPA (байты).

2.8.4 NF STEP (0x50)

Register 2.19: Приращение адреса между каналами влока формирователя нулей NF STEP (0x50)

NF STEP (rw) Приращение адреса между каналам блока формирователя нулей (слов).

2.8.5 BF RE ADDR (0x54)

Register 2.20: Начальный адрес действительных коэффициентов формирователя лучей BF RE ADDR (0x54)

BF_RE_ADDR (rw) Начальный адрес действительных коэффициентов 0 формирователя лучей относительно базового адреса CRPA (байты).

2.8.6 BF IM ADDR (0x58)

Register 2.21: Начальный адрес мнимых коэффициентов формирователей лучей BF IM ADDR (0x58)

BF_IM_ADDR (rw) Начальный адрес мнимых коэффициентов 0 формирователя лучей относительно базового адреса CRPA (байты).

2.8.7 BF STEP (0x5C)

Register 2.22: Приращение адреса между каналами влока формирователей лучей BF STEP (0x5C)

BE STEEL	
31 0	
8	Имя (По сбросу)

BF STEP (rw) Приращение адреса между каналами блока формирователей лучей (слов).

2.8.8 CVM ADDR (0x60)

Register 2.23: Начальный адрес блока расчёта корреляционной матрицы CVM ADDR (0x60)

CVM_ADDR (rw) Начальный адрес блока расчёта корреляционной матрицы относительно базового адреса CRPA (байты).

2.8.9 CVM LENGTH (0x64)

Register 2.24: Количество элементов корреляционной матрицы CVM LENGTH (0x64)

CVM LENGTH (r) Количество элементов корреляционной матрицы (слов).

2.8.10 CVM TYPEDESCR0 (0x68)

Register 2.25: Конфигурация корреляционной матрицы CVM_TYPEDESCR0 (0x68)

BATCHILL	the contract of the contract o	
15 0	15 0	I
0×2109	0×2009	Имя (По сбросу)

INTCNT1 (r) Конфигурация корреляционной матрицы в режиме 1.

INTCNT0 (r) Конфигурация корреляционной матрицы в режиме 0.

2.8.11 CVM TYPEDESCR1 (0x6C)

Register 2.26: Конфигурация корреляционной матрицы CVM TYPEDESCR1 (0x6C)

INTCNT3 (r) Конфигурация корреляционной матрицы в режиме 3.

INTCNT2 (r) Конфигурация корреляционной матрицы в режиме 2.

2.9 Флаги правильных данных

2.9.1 VALID NF (0x70)

Register 2.27: Φ лаги правильных данных на выходах Φ ормирователей нулей VALID NF (0x70)

	Reserved	VALID AT	
31	8	7 0	
	0×000000	0×00	Имя (По сбросу)

VALID_NF (rw) Флаги правильных данных на выходе каждого из блоков формирователя нулей (1 - данные правильные).

Reserved Зарезервированные биты.

2.9.2 VALID BF (0x74)

Register 2.28: Флаги правильных данных на выходах формирователей лучей VALID BF (0x74)

Reserved	VALID BE	
31 12	11 0	
0×0000000	0×000	Имя (По сбросу)

VALID_BF (rw) Флаги правильных данных на выходах формирователей лучей (1 - правильные данныe).

Reserved Зарезервированные биты.

2.9.3 VALID SIGMAG (0x78)

Register 2.29: Флаги правильных данных на выходах квантователей VALID SIGMAG (0x78)

VALID_SIGMAG (rw) Флаги правильных данных на выходах блоков квантования (1 - правильные данные).

2.10 Регистры блоков помехоподавления

Смещения указаны относительно начального адреса блока помехоподавления CRPA_NF_x (см. разд. 2).

Расположение коэффициентов зависит от параметров реализованного фильтра (см. 2.2.2): NF_TIME — количества отводов по времени и NF_CHAN — количества входов блока помехоподавления.

Каждый коэффициент представляет собой действительное целое число со знаком.

При записи новых коэффициентов по данным адресам происходит запись в теневые регистры. Новые значения коэффициентов начинают использоваться после сигнала обновления CRPA_NF_START, см. разд. 2.2.3.

Смещение	Название	Описание	Примечание
0×00 (0×00)	CRPA_NF_K_0_0	Коэффициент для 0 входа и 0	
		отвода по времени	
0×04 (0×01)	CRPA_NF_K_0_1	Коэффициент для 0 входа и 1	
		отвода по времени	
0xXX (0xYY)	CRPA_NF_K_I_J	Коэффициент для I входа и J от-	смещение $4 imes (I ext{ } \cdot$
		вода по времени	$NF_TIME + J)$
0×7C	CRPA_NF_K_7_3	Коэффициент для 7 входа и 3	при $NF_TIME =$
		отвода по времени	4

2.11 Регистры блоков фокусировки

Смещения указаны относительно начального адреса блока фокусировки CRPA_BF_x (см. разд. 2).

Расположение коэффициентов зависит от параметров реализованного фильтра (см. 2.2.2): NF_TIME — количества отводов по времени и NF CHAN — количества входов блока помехоподавления.

Каждый коэффициент представляет собой действительное целое число со знаком.

При записи новых коэффициентов в по данным адресам происходит запись в теневые регистры. Новые значения коэффициентов начинают использоваться после сигнала обновления CRPA_BF_START, см. разд. 2.2.3.

Смещение	Название	Описание	Примечание
0x00 (0x00)	CRPA_BF_RE_K_0	Коэффициент для 0 входа	
0x04 (0x01)	CRPA_BF_RE_K_0	Коэффициент для 1 входа	
0x20 (0x08)	CRPA_BF_K_7	Коэффициент для 7 входа	

2.12 Регистры блока расчёта корреляционной матрицы

Для вычисления коэффициентов фильтров пространственного подавления помех рассчитывается матрица корреляционных коэффициентов.

Для расчёта матрицы формируется вектор задержанных отсчётов входного сигнала, имеющий вид, приведённый на рис. 1.

Далее рассчитывается матрица коэффициентов. Матрица имеет нижний треугольный вид. Структура матрицы приведена на рис. 2.

Смещения указаны относительно начального адреса блока расчёта корреляционной матрицы CRPA_CM (см. разд. 2), равного 0x5000.

Расположение коэффициентов зависит от параметров реализованного фильтра (см. 2.2.2): NF TIME

Вектор задержанных сигналов Ү														
		[`N	<i>ICHA</i>	NNELS	S*(LEI	V GTH	+1)*A	DC_D	WIDT	H - 1	: 0] Отводы adc0 z ⁻³ z ⁻² z ⁻¹ z ⁻⁰			
Отвод	ы adc	3		Отвод	ы adc2	2		Отвод	ы adci	1		Отвод	ы adc	0
z ⁻³ z ⁻²	z-1	Z ⁻⁰	z -3	z -2	Z ⁻¹	Z -0	z -3	z -2	Z ⁻¹	Z ⁻⁰	z -3	z -2	z-1	Z -0
MSB (стар	ший (бит)									(мл	тадши	й бит)	LSB

Рис. 1. Вектор задержанных отсчётов входных сигналов

Рис. 2. Структура корреляционной матрицы

- количества отводов по времени и NF_CHAN - количества входов блока помехоподавления.

Каждый коэффициент представляет собой действительное целое число со знаком.

Смещение	Название	Описание	Примечание
0x00 (0x00)	CRPA_CM_R_0_0	Элемент матрицы 0, 0	
0x04 (0x01)	CRPA_CM_R_1_0	Элемент матрицы 1, 0	
0x08 (0x02)	CRPA_CM_R_1_1	Элемент матрицы 1, 1	
0xXX (0xYY)	CRPA_CM_R_I_J	Элемент матрицы I, J	
0x83C (0x20F)	CRPA_CM_R_31_31	Элемент матрицы 31, 31	при $NF_TIME = 4$,
			$NF_CHAN = 8$

Список литературы