

Соединители электрические цилиндрические, низкочастотные типа

2PM(T) 2PMД(T)

ГЕО.364.126 ТУ

Тип соединителя: соединители цилиндрические малогабаритные типа 2РМТ, 2РМДТ предназначены для работы в электрических цепях постоянного, переменного (частотой до 3 МГц) токов.

Состав соединителя: соединители состоят из кабельной и приборной части.

Конструктивное исполнение: вилки и розетки могут быть как приборными, так и кабельными. Приборная часть изготавливается без патрубка, с прямым патрубком, кабельная часть изготавливается без патрубка, с прямым патрубком, с угловым патрубком.

Тип сочленения: резьбовое.

Взаимосочленение: соединители 2РМТ и 2РМДТ имеют различные схемы расположения контактов и не взаимосочленяемы.

Покрытие контактов: Контакты покрыты золотом или серебром: Ø 1,0 мм, 1,5 мм, 2,0 мм, 3,0 мм. Климатическое исполнение: Соединители изготовляют для внутреннего монтажа в климатическом исполнении: «В».

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА Условное обозначение

			U COIO	DIIOC OC	,0311	aicinc					
2РМТ, 2РМДТ	18	К(Б)	П(У)	Н(Э)	4	Г(Ш)	1(1-9)	A	1	(ЛБ)	В
Тип											
соединителя											
Условный разм	1 ер										
корпуса 14, 18,											
30, 33, 36, 39, 4	2, 45										
Вид корпуса: Б											
(приборный), Ь	С - кабельны	й					ļ		ļ		ļ
Вид патрубка:	П – прямой,	У - углог	вой								
Вид гайки патр	Вид гайки патрубка: Э – для экранированного										
кабеля, Н – для	неэкраниро	ванного	кабеля								
Количество ко	нтактов: 4,7	8,10,19,2	0,22,24,32	,45,50							
Часть соединит	геля: Г – роз	етка, Ш	- вилка								
Обозначение со	очетаний ког	нтактов:	1 – все ко	нтакты (Ø 1,0	MM,	<u>-</u>				
2 – контакты 🤇	ў 1,0 мм и 1, 5	5 мм, 3– і	контакты	Ø 2,0 MM	ı и 3,	0 мм,					
4 – контакты 🤇											
6 – контакты 🤇							MM				
8 – контакты (ў 1,5 мм и 2, 0) мм, 9– і	все контан	сты Ø 3,0) мм,	ı					
Вид покрытия	Вид покрытия контактов: А – золото, В - серебро										
Теплостойкость: 1 - 100° C								ļ			
Л – левая розетка (только для проходных вилок)											
Б - корпус блочный (приборный) без левой резьбы											
Всеклиматич	еское испол	інение (,	для 2РМ	Т, 2РМ Д	(T)						

Пример записи при заказе:

Вилка 2РМ18Б7Ш1В1 ГЕО.364.126 ТУ;

Розетка 2РМ18КПЭ7Г1В1 ГЕО.364.126 ТУ;

Вилка 2РМДТ27БПЭ19Ш5В1БВ ГЕО.364.126 ТУ.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ						
1. Сопротивление контактов:	диаметр контакта, 1,0 мм	не более 5,0 мОм				
	диаметр контакта, 1,5 мм	не более 2,5 мОм				
	диаметр контакта, 2,0 мм	не более 1,6 мОм				
	диаметр контакта, 3,0 мм	не более 0,8 мОм				
2. Сопротивление изоляции:		не менее 5000 МОм				
3. Максимальный ток на одиночный контакт:	диаметр контакта, 1,0 мм	От 5,0 до 8,0 А				
	диаметр контакта, 1,5 мм	От 7,0 до 15,0 А				
	диаметр контакта, 2,0 мм	18,0 A				
	диаметр контакта, 3,0 мм	32,0 A				
4. Максимальное рабочее напряжение						
постоянного тока или амплитудное значение		От 560 В до 700 В				
напряжения переменного тока:						
6. Количество сочленений - расчленений:		500				
7. Минимальный срок сохраняемости		15 лет				
соединителей:						
8. Минимальная наработка соединителя в		(см. Табл. 1)				
зависимости от максимальной температуры						
соединителя:						
9. Соединители устойчивы к воздействию						
специальных факторов.						

Таблица 1 Минимальная наработка соединителя в зависимости от максимальной температуры.

Минимальная наработка соединителя, ч.	Максимальная температура соединителя, °С
1000	150
3000	129
5000	120
7500	113
10000	109
15000	102
20000	98
25000	94
30000	92
40000	88
50000	84
80000	78
100000	75
130000	71

Таблица 2 Температура перегрева контактов соединителей в зависимости от токовой нагрузки.

Токовая нагрузка на соединитель от максимальнодопустимой по ТУ, %	Температура перегрева контактов, ∆т факт., °С
220	150
200	130
180	120
120	80
110	65
100	50
85	40
75	30
60	25
50	20

УСЛОВИЯ ЭКСПЛУАТАЦИИ							
	Mexi	анические факторы:					
1. Синусоидальная вибрация:	диапазон частот	1 – 5000 Гц					
	амплитуда ускорения	$490 \text{ m/c}^2 (50 \text{ g})$					
2. Механический удар одиночного действия:	пиковое ударное ускорение	5000 м/с ² (500 g)					
3. Механический удар многократного действия:	пиковое ударное ускорение	1000 м/с ² (100 g)					
	Клима	тические факторы:					
1. Повышенная рабочая температура среды:		100 °C					
2. Пониженная предельная температура среды:	<u> </u>	минус 60 °С					
3. Атмосферное пониженное рабочее давление:		1,33x10 ⁻¹⁰ Па					
		$(1x10^{-12}$ мм рт. ст.)					
4. Повышенная относительная влажность воздуха	<u> </u>	98 %					
при температуре +40 °C (без конденсации влаги)		70 /0					

Примечание: Максимальная температура соединителя равна сумме повышенной рабочей температуры среды и температуры перегрева контактов. Температура перегрева контактов не должна превышать 50 °C. Температура перегрева контактов в зависимости от токовой нагрузки дана в Таблице 2.

Таблица 3 Схемы расположения контактов и электромеханические параметры.

Условный размер вилки (розетки)	Тип соединителя	Схема расположения контактов в изоляторах (условная нумерация контактов дана со стороны монтажной части розеток)	Условное обозначение контакта	Диаметр контакта, мм	Количество контактов	Номер сочетания контактов	Максимальная суммарная токовая нагрузка, А	Максимальная токовая нагрузка на контакт, A	Максимальное рабочее напряжение, В
1	2	3	4	5	6	7	8	9	10
14	2PMT		•	1,0	4	1	27,0	8,0	560
18	2РМДТ		•	1,5	4	5	50,0	15,0	560
	2PMT	7 2 4 5 6 7 7	•	1,0	7	1	40,0	7,0	560
			×	2,0	2			18,0	
	2PMT		Ø	3,0	2	3	80,0	32,0	560
22	2PMT	3-1-1-5-5-6-1-7-8	Φ	1,0	10	1	58,0	7,0	560

1							0		10
1	2	3	4	5	6	7	8	9	10
	2РМДТ	1 2 3 4 5 6 7 8 8	•	1,5	10	5	83,0	10,0	560
24	2PMT	17 19	•	1,0	19	1	80,0	5,0	560
	2РМДТ	3 4 5 6 1 7	•	1,5	7	5	70,0	12,0	700
	2РМДТ	1 3 1 4 4 9 17 4 9	•	1,5	19	5	110,0	7,0	560
27	2PMT	1	\(\Phi \)	1,0	5	2	60,0	8,0	700
	21 1/11	6 7	•	1,5	2	2	00,0	16,0	700
	2PMT		0	1,0	24	1	100,0	5,0	560
	2PMT	1	ф	1,0	32	1	106,0	4,0	560
30			\(\Phi \)	1,5	4			13	
	2РМДТ	(\Phi	2,0	2	7	120	18	560
		★▼★		3,0	2			36	
M		•							

				_		_		1	
1	2	3	4	5	6	7	8	9	10
30	2РМДТ		\(\Phi \)	1,5	24	5	140	7	560
	2РМДТ		+	3,0	7	9	128	32	560
	an (T	ф ф ф ф ф ф		1,0	12	1	100	6	700
	2PMT	— • • • • • —	•	1,0	8	1			560
33			•	1,0	10	4	110	6	700
	2PMT	-(+++++++++++++++++++++++++++++++++++++	 	1,0	8				560
		+ 1 + 1		3,0	2			36	
	2РМДТ		•	1,5	32	5	160	6	560
		1 1 1 1 1 1 1 1 1 1	•	1,0	10			5	700
36	2PMT		Ф	1,0	6	2	100		560
		+ + + +	•	1,5	4			10	560
V VI	S CETЬ								

1	2	3	4	5	6	7	8	9	10
		+ + + +	•	1,0	17				700
	2PMT			1,0	5	1	110	6	560
		+	1,5	12				700	
36			1,5	1,5	8	5	133	8	560
	2РМДТ		+	1,5	10			10	700
		+	•	1,5	8	6	147		
				3,0	2			36	560
		+ + + + +	+	1,5	17				700
	2РМДТ	* * * * * *	4	1,5	5	5	146	8	560
39			•	1,0	10				700
	2PMT	PMT	ф	1,0	30	_ 2	167	4	
			+	1,5	5			8	560
W.	デ CETЬ								

				,			,	
2	3	4	5	6	7	8	9	10
ЭРМТ		Ф	1,0	15	2	168	4,5	700
21 1V11		•	1,5	15	۷	100	9	560
		•	1,0	10			Δ	700
2PMT			1,0	33	2	190	T	560
		1,5 7			8			
2РМ ЛТ	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	+	1,5	10	5	107	5	700
21 1412(1		•	1,5	35	3	107	3	560
2РМЛТ	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	•	1,5	35	8	260	5	560
		•	2,0	15			7,5	
	2 2РМТ 2РМДТ	2РМТ 2РМДТ 2РМДТ 2РМДТ 2РМДТ	2РМТ	2РМТ	2РМТ 2РМДТ 2РМДТ 2РМДТ 4 1,0 15 4 1,0 10 4 1,0 33 4 1,5 7 4 1,5 10 4 1,5 35	2РМТ 2РМДТ 35 40 1,0 15 20 1,5 10 1,5 35 40 1,5 40 40 40 40 40 40 40 40 40 4	2РМТ	2PMT 2PMT 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,

ОБЩИЙ ВИД, ГАБАРИТНЫЕ, УСТАНОВОЧНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ СОЕДИНИТЕЛЕЙ:

Приборная часть без патрубка

Размеры, мм								
D*	L	D	\mathbf{D}_1	A	В			
14	25	M14X1	M16X1	17±0.1	24			
18	25	M18X1	M20X1	20±0.1	27			
22	27	M22X1	M24X1	23±0.1	30			
24	25	M24X1	M27X1.5	26±0.1	33			
27	25	M27X1	M30X1.5	29±0.1	36			
30	27	M30X1	M33X1.5	31±0.1	38			
33	27	M33X1	M36X1.5	32±0.1	40			
36	25	M36X1	M39X1.5	35±0.1	43			
39	25	M39X1	M42X1.5	37±0.1	46			
42	25	M42X1	M45X1.5	40±0.1	49			
45	27	M45X1	M48X1.5	43±0.1	52			

Кабельная часть без патрубка

Размеры, мм							
D лев	\mathbf{D}_1	Lmax					
M14X1	22	25					
M18X1	25	25					
M22X1	29	27					
M24X1	32	25					
M27X1	35	25					
M30X1	39	27					
M33X1	42	27					
M36X1	45	25					
M39X1	48	25					
M42X1	51	25					
M45X1	54	27					

Патрубок прямой с экранированной гайкой (ПЭ)

Размеры, мм				
D лев	\mathbf{D}_1	Lmax		
M14X1	6,5	28,7		
M18X1	10,5	28,7		
M22X1	14	28,7		
M24X1	16	34,7		
M27X1	18	34,7		
M30X1	19	34,7		
M33X1	23	39,7		
M36X1	23	39,7		
M39X1	24	39,7		
M42X1	29	39,7		
M45X1	29	39,7		

Патрубок прямой с неэкранированной гайкой (ПН)

Размеры, мм				
\mathbf{D}_1	Lmax			
6,5	34			
10,5	34			
14,5	36,6			
16,6	43			
18,5	43			
20,5	43			
22,5	48			
22,5	48			
24,5	48			
30,5	48			
30,5	48			
	D ₁ 6,5 10,5 14,5 16,6 18,5 20,5 22,5 22,5 24,5 30,5			

Размеры, мм				
D лев	\mathbf{D}_1	Lmax		
M14X1	6,5	31		
M18X1	10,5	34		
M22X1	14	41		
M24X1	16	43		
M27X1	18	46		
M30X1	19	48		
M33X1	23	53		
M36X1	23	50		
M39X1	24	53		
M42X1	29	58		

Патрубок угловой с неэкранированной гайкой (УН)

Размеры, мм				
D лев	\mathbf{D}_1	Lmax		
M14X1	6,5	35		
M18X1	10,5	38		
M22X1	14,5	42,5		
M24X1	16,6	44,5		
M27X1	18,5	46,5		
M30X1	20,5	48,5		
M33X1	22,5	54,5		
M36X1	22,5	51,5		
M39X1	24,5	54,5		
M42X1	30,5	61,5		

