Prof. Javier Esparza Philipp Czerner, Martin Helfrich

Technische Universität München Lehrstuhl für Theoretische Informatik

Einführung in die Theoretische Informatik Sommersemester 2022 – Übungsblatt 11

THEQ = { W, #w2: W, W2 = {0,13* N YX = 5*: MW [X] (=> - MW2[X])}

Übungsaufgabe Ü11.4. (Überblick: Entscheidbarkeit)

Vervollständigen Sie das folgende Diagramm.

- (a) Fügen Sie die Begriffe "entscheidbar", "unentscheidbar", "semi-entscheidbar", "rekursiv aufzählbar", "co-semi-entscheidbar" und "nulli-entscheidbar" sinnvoll zum Diagramm hinzu.
- (b) Sei $V_f = \{w \mid \varphi_w = f\}$ für eine totale berechenbare Funktion $f : \mathbb{N} \to \mathbb{N}$. Ordnen Sie diese Beispiel-Probleme richtig zu: $\{x \in \mathbb{N} \mid x = f(1)\}, \mathcal{H}, \overline{\mathcal{H}}, \mathcal{H}_0, \overline{\mathcal{H}_0}, \overline{\mathcal{H}_{\Sigma^*}}, \mathcal{K}, \overline{\mathcal{K}}, \overline{\mathcal{H}_{NEQ}}, \overline{\mathcal{H}_{$

$\begin{array}{c} \text{Wenn} \\ x \not\in A \\ \text{Wenn} \\ x \in A \end{array}$	terminiert (0)	$\begin{array}{c} \text{terminiert} \\ \text{nicht} \\ (\bot) \end{array}$
	Beispiele:	Beispiele:
terminiert (1)	eutsheilbar Co	semi-enterleidbæn vekuniv aufziglesen
$\begin{array}{c} \text{terminiert} \\ \text{nicht} \\ (\bot) \end{array}$	Congeni-enterles	user south
	Beispiele:	Beispiele:

¹Eine Sprache L ist co-semi-entscheidbar, wenn es eine TM gibt, die 0 ausgibt wenn die Eingabe nicht in L ist und nicht terminiert wenn die Eingabe in L ist.

²Problem ist *nulli-entscheidbar*, wenn es nicht semi-entscheidbar ist und nicht co-semientscheidbar Problem ist.

TH= = {W = {9 B*/] = x = 2*: Mw[x)/}

Übungsaufgabe Ü11.3. (Unentscheidbare Typ-2 Probleme)

In der Vorlesung haben wir folgende Probleme für kontextfreie Grammatiken G_1, G_2 über einem Alphabet Σ kennengelernt:

$$\begin{cases} \langle 1 \rangle & \text{Ist } L(G_1) \cap L(G_2) = \emptyset ? \\ \langle 2 \rangle & \text{Ist } |L(G_1) \cap L(G_2)| < \infty ? \\ \langle 3 \rangle & \text{Ist } L(G_1) \cap L(G_2) \text{ kontextfrei}? \end{cases}$$
 $\langle 4 \rangle & \text{Ist } L(G_1) \subseteq L(G_2) ?$

Von $\langle 1 \rangle$ wurde in der Vorlesung gezeigt, dass es unentscheidbar ist. In der Übung und den Hausaufgaben dieser Woche wollen wir auch die anderen Probleme behandeln. Zeigen Sie:

Hinweise: Zur Vereinfachung dürfen Sie $\Sigma = \{a, b\}$ jeweils für das zu reduzierenden Problem annehmen (ohne das Problem, auf das Sie reduzieren, einzuschränken).

$$f(G_{1},G_{2}) = (G'_{1},G'_{2}) \qquad L(G_{1}) \cap L(G_{2}) = \emptyset = \emptyset = \emptyset \quad L(G'_{1}) \cap L(G'_{2}) \text{ formation}$$

$$L = (L(G_{1}) \cap L(G_{2})) \underbrace{\{c',c''\}}_{\{c',c''\}} \qquad L(G'_{1}) \cap L(G'_{2}) \underbrace{\{c',c''\}}_{\{c',c''\}} \qquad L(G'_{1}) \cap L(G'_{2}) \\ = L(G_{1}) \underbrace{\{c',c''\}}_{\{c',c''\}} \cap L(G_{2}) \underbrace{\{c',c''\}}_{\{c',c''\}} = L(G'_{1}) \cap L(G'_{2})$$

WEL(G) 1 = {cidé e : i e / N}

Übungsaufgabe Ü11.5. (Reductio ad absurdum)

Sei $A := \{w \in \Sigma^* \mid \exists i \in \mathbb{N}_0. \mid w \mid = 5i + 3\}$ mit $\Sigma = \{a, b\}$. Erklären Sie, warum die angegebenen Funktionen keine Reduktionen gemäß Vorlesungsdefinition sind.

(a) Behauptung: $\mathcal{H}_0 \leq A$

Reduktion: Definiere $f: \mathcal{H}_0 \to A$ mit f(w) := aaa.

(b) Behauptung: $\mathcal{H}_0 \leq A$

Reduktion:

$$f(w) = \begin{cases} aaa & \text{falls } w \in \mathcal{H}_0 \\ b & \text{sonst} \end{cases}$$

(c) Behauptung: $A < \mathcal{H}_0$

Reduktion: f bildet jedes Element $x \in \Sigma^*$ auf die Kodierung einer TM M_x ab, die wie folgt definiert ist: Die TM M_x löscht die Eingabe und schreibt x aufs Band, bestimmt dann die Länge von x, zieht 3 ab und prüft anschließend, ob das Ergebnis durch 5 teilbar ist. Dementsprechend gibt die Maschine "Ja"(1) oder "Nein"(0) aus. \longrightarrow

(d) Behauptung: $\overline{\mathcal{H}_0} \leq \mathcal{H}_0$

Reduktion: f bildet jedes $w \in \{0,1\}^*$ auf die Kodierung f(w) einer TM $M_{f(w)}$ ab, die $M_w[\epsilon]$ simuliert. Falls $M_w[\epsilon]$ hält, geht $M_{f(w)}$ in eine Endlosschleife. Falls $M_w[\epsilon]$ nicht hält, hält $M_{f(w)}$.

(e) Behauptung: $\mathcal{H}_{\Sigma^*} \leq \mathcal{H}_0$ mit $\mathcal{H}_{\Sigma^*} := \{ w \in \{0,1\}^* \mid \forall x \in \Sigma^*. \ M_w[x] \downarrow \}.$

Reduktion: f bildet jedes $w \in \{0,1\}^*$ auf die Kodierung f(w) einer TM $M_{f(w)}$ ab, die erst die Eingabe löscht, dann nichtdeterministisch $x \in \Sigma^*$ erzeugt und dann $M_w[x]$ simuliert.

 $M_{\omega}[E]U \wedge H_{x} = \Sigma^{+}; M_{\omega}[x]$ $W \notin \mathcal{H}_{S} \neq f(\omega) \in \mathcal{H}_{o}$