Documentation

Le package Preambule.sty ¹ ou HTMLPreambule.sty ² doit être chargé pour pouvoir utiliser les autres qui sont donnés ci-dessous.

Les fichiers .sty doivent être placés dans le même répertoire que le fichier .tex qui est utilisé.

Pour charger un package (par exemple NomDuPackage.sty), il faut utiliser la commande \usepackage{nomdupackage} avant \begin{document}.

En utilisant Preambule.sty ou HTMLPreambule.sty, les packages suivant seront chargés :

- → \usepackage[utf8]{inputenc}
- $\rightarrow \text{\ \ } \{babel\}$
- → \usepackage[T1]{fontenc}
- \rightarrow \usepackage{amsmath, amsfonts, amssymb}
- → \usepackage{stmaryrd}
- → \usepackage{adjustbox} (pour HTMLPreambule.sty)
- → \usepackage{xcolor} (pour Preambule.sty)

Il est nécessaire que cm-super soit installé (disponible sur CTAN) pour pouvoir utiliser Preambule.sty. Pour ne pas avoir à installer cm-super, il est possible de commenter les lignes \usepackage{sffont} et \renewcommand{\sfdefault}{cmssp} du fichier Preambule.sty en mettant % au début de chacune de ces lignes (numéro 10 et 11).

Lors de l'utilisation de beamer (avec une police sans-sérif), il est possible d'utiliser les commandes avec les polices sans-serif, sauf pour les lettres grecques $(\Omega, \phi, \varphi, \ldots)$, la redéfinition du ℓ en mathématiques, les alphabets \mathcal et \mathbb ainsi que les symboles.

Il est possibles de changer les polices de caractères/symboles en important des packages après \usepackage{preambule}. Il peut être nécessaire de placer l'importation avant d'imorter les autres modules décrit ci-dessous.

Il n'est pas possible d'utiliser en simultané le package Dsfont.sty disponible sur CTAN et Dsft.sty décrit ci-dessous. De plus, la commande \1 ne sera pas modifiée si un package définissant \mathbb{1} est importé. Il est alors possible de redéfinir la commande en utilisant \newcommand\1[1]{\mathbb{1}_{#1}} (si Dsft.sty n'est pas importé) ou \renewcommand\1[1]{\mathbb{1}_{#1}}.

Il est possible de redéfinir le ℓ à sa version d'origine avec :

\mathcode`l="8000
\begingroup
\makeatletter

^{1.} Pour utiliser avec Beamer

^{2.} Pour les documents autres que Beamer

```
\lccode`\~=`\l
\DeclareMathSymbol{\lsb@l}{\mathalpha}{letters}{`l}
\lowercase{\gdef~{\lsb@l}}%
\endgroup
\makeatother
```

Pour utiliser des commandes avec des parenthèses automatiques (comme pour sup), il est possible de faire :

 $\1$ et \r sont définis dans Preambule.sty et HTMLPreambule.sty.

Table des matières

1	Preambule.sty et HTMLPreambule.sty	1
2	AL.sty	2
3	Analyse.sty	3
4	Arithmetique.sty	4
5	BigOperators.sty	5
6	Complexes.sty	6
7	Dsft.sty	7
8	Equivalents.sty	8
9	Matrices.sty	9
10	Polynomes.sty	12
11	Probas.sty	13
12	Structures.sty	14
13	Tables.sty	15
14	Trigo.stv	16

1 Preambule.sty et HTMLPreambule.sty

Commande	Résultat
\1 ³	
\r ⁴	
\11b ⁵	
\rrb ⁶	
\oldfrac{a}{b} ⁷	$\frac{a}{b}$
\frac{a}{b} 8	$\frac{a}{b}$
19	ℓ

^{3.} Correspond à la commande usuelle \left(

^{4.} Correspond à la commande usuelle \right)

^{5.} Correspond à la commande usuelle \left\llbracket

^{6.} Correspond à la commande usuelle \right\rrbracket

^{7.} Correspond à la commande usuelle \frac

^{8.} Correspond à la commande usuelle \dfrac

^{9.} Correspond à la commande usuelle $\ensuremath{\mathtt{\commande}}$

2 AL.sty

Le package Matrices.sty sera importé automatiquement avec AL.sty.

Commande	Résultat
\oldvect	Vect
\vect{E}	Vect(E)
\al{E}{}	$\mathcal{L}(E)$
\al{E}{F}	$\mathcal{L}(E,F)$
\oplus 10	⊕
$\verb \matgl{n}{\mathbb{K}} ^{11}$	$\mathrm{GL}_n(\mathbb{K})$
\g1{E}	$\mathrm{GL}(E)$
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	dim
\dim{E}	$\dim(E)$
\oldrg	rg
\rg{u}	rg(u)
\oldtr	tr
\tr{u}	$\operatorname{tr}(u)$
\oldmat	Mat
$\mathtt{Mat}_{B}}{u}$	$\mathcal{M}_{\mathcal{B}}(u)$
$\label{lem:mathcal} $$\max_{\mathbb{C}}_{u}$$	$\mathcal{M}_{\mathcal{B},\mathcal{C}}(u)$
\lc	[
\rc	

^{10.} Le $\$ oplus utilisé est celui de stmaryrd

Pour récupérer celui de LATEX, il est possible d'utiliser la commande $\left(\frac{1}{2}\right)$ avant $\left(\frac{1}{2}\right)$ puis de faire $\left(\frac{1}{2}\right)$ avant après importation

Comparaison \LaTeX - stmaryrd avec le plus normal $\bigoplus \bigoplus$ +

^{11.} Le \matgl de AL.sty correspond à la commande \gl de Matrices.sty qui a été renommé

^{12.} Correspond à la commande usuelle \dim

3 Analyse.sty

Le package BigOperators.sty sera importé automatiquement avec Analyse.sty.

Commande	Résultat
$\backslash {\sf oldd}^{13}$	d
\der{f(x)}	$\frac{\mathrm{d}}{\mathrm{d}x}(f(x))$
\der[n]{f(x)}	$\frac{\mathrm{d}^n}{\mathrm{d}x^n}(f(x))$
\der[][t]{f(t)}	$\frac{\mathrm{d}}{\mathrm{d}t}(f(t))$
$ackslash$ oldint 14	\int
\int{f}	$\int (f)$
\int[t]{f(t)}	$\int (f(t)) \mathrm{d}t$
$\inf[t][{[a,b]}]{f(t)}^{15}$	$\int_{[a,b]} (f(t)) \mathrm{d}t$
\int[t][a][b]{f(t)}	$\int_{a}^{b} (f(t)) \mathrm{d}t$
\eval[{[a,b]}]{f(t)}	$[f(t)]_{[a,b]}$
\eval[a][b]{f(t)}	$[f(t)]_a^b$
\serie{a_n}	$\sum a_n$

^{13.} d de dérivation

^{14.} Correspond à la commande usuelle \int

^{15.} L'argument [a,b] doit être mis entre accolades pour être traîté correctement par LATEX

4 Arithmetique.sty

Commande	Résultat
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	÷
\div^{17}	
\cgr{a}{b}{n}	$a \equiv b \ [n]$
\oldphi 18	φ
\phi ¹⁹	φ

^{16.} Correspond à la commande usuelle \div

^{17.} Correspond à la commande usuelle $\mbox{\em mid}$

^{18.} Correspond à la commande usuelle \phi

^{19.} Correspond à la commande usuelle \varphi

5 BigOperators.sty

Commande	Résultat
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	\sum
\sum{n=0}{+\infty}{u_n}	$\sum_{n=0}^{+\infty} (u_n)$
\oldprod ²¹	Π
\prod{n=0}{+\infty}{u_n}	$\prod_{n=0}^{+\infty}(u_n)$
$ackslash$ oldcap 22	\cap
$\label{linear} $$ \left(n=0\right)_{+\in\mathbb{N}} (A_n) $$$	$\bigcap_{n=0}^{+\infty} (A_n)$
$ackslash$ oldcup 23	U
\bigcup{n=0}{+\infty}{A_n}	$\bigcup_{n=0}^{+\infty} (A_n)$
\olduplus 24	H
$\label{lem:lem:n=0} $$ \left(\frac{n=0}{+\left(\frac{n}{n} \right)} \right) $$ is the lemint of the lemint o$	$\biguplus_{n=0}^{+\infty} (A_n)$
$\label{limit} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\bigoplus_{n=0}^{+\infty} (E_n)$

^{20.} Correspond à la commande usuelle \sum

^{21.} Correspond à la commande usuelle \prod

^{22.} Correspond à la commande usuelle \bigcap

^{23.} Correspond à la commande usuelle \bigcup

^{24.} Correspond à la commande usuelle \biguplus

6 Complexes.sty

Commande	Résultat
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	$ar{z}$
$\$ \oldbar{z} 25 \bar{z} 26	\overline{z}
$\ensuremath{\setminus} e^{27}$	e
\i ²⁸	i
\j ²⁹	j
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	8
\Im	Im
\pIm{x}	$\operatorname{Im}(x)$
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	\Re
\Re	Re
\pRe{x}	Re(x)

^{25.} Correspond à la commande usuelle \bar

^{26.} Se comporte comme \overline

^{27.} e de la fonction exponentielle

^{28.} i complexe

L'ancienne commande \i s'obtient avec \ii

^{29.} $j = e^{\frac{2i\pi}{3}}$

L'ancienne commande \j s'obtient avec \j

^{30.} Correspond à la commande usuelle \Im

^{31.} Correspond à la commande usuelle $\ \$

7 Dsft.sty

Ce package remplace le 1 du package Dsfonts.sty disponible sur CTAN.

Pour l'utiliser, il faut copier les fichiers dsrom12.pfb et dsrom12.tfm dans les dossiers où ils sont actuellement avec dsfonts (et éventuellement créer une copie des anciens fichiers).

Commande	Résultat
\mathds{1}	1
\1{E}(x)	$\mathbb{1}_E(x)$
\square	
\star	☆
\triangle	Δ

8 Equivalents.sty

Commande	Résultat
\o{x}	o(x)
\o[x\to0]{x}	$\underset{x\to 0}{o}(x)$
\0{x}	O(x)
\0[x\to0]{x}	$O_{x \to 0}(x)$
\Th{x}	$\Theta(x)$
$Th[x\to0]\{x\}$	$\Theta_{x \to 0}(x)$
\0m{x}	$\Omega(x)$
$\label{local_matter} $$ \operatorname{\mathbb{Z}} \ .$	$\Omega_{x o 0}(x)$
\eq{u_n}{v_n}	$u_n \sim v_n$
$\eq[n\to+\inf ty]\{u_n\}\{v_n\}$	$u_n \underset{n \to +\infty}{\sim} v_n$
\eg{u_n}{v_n+\o{v_n}}	$u_n = v_n + o(v_n)$
$\label{eq:conditional} $$ \left[n \right] \{u_n} \{v_n + o\{v_n\} \} $$$	$u_n \underset{n \to +\infty}{=} v_n + o(v_n)$

9 Matrices.sty

Commande	Résultat
$\mathfrak{K}}{\mathbf{n}}{\mathbf{K}}$	$\mathcal{M}_{n,p}(\mathbb{K})$
\mat{n}{}{\mathbb{K}}	$\mathcal{M}_n(\mathbb{K})$
$\sym{n}{\mathbb{K}}$	$\mathcal{S}_n(\mathbb{K})$
\ant{n}{\mathbb{K}}	$\mathcal{A}_n(\mathbb{K})$
\diag{n}{\mathbb{K}}	$\mathcal{D}_n(\mathbb{K})$
$\ts{n}{\mathbb{K}}$	$\mathcal{T}_n^+(\mathbb{K})$
$\tilde{K}}$	$\mathcal{T}_n^-(\mathbb{K})$
$ackslash$ olddet 32	det
\det{M}	$\det(M)$
$\gl{n}{\mathbb{K}}^{33}$	$\mathrm{GL}_n(\mathbb{K})$
\mdots	
\ddots	·.
\idots	
\vdots	:
\xdots	×
\tmatrix({1\&0\\0\&1\\}) 34	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$

Les commandes avec ·

Les commandes avec des points tel que : ont des définitions qui dépendent de la taille de la police (celle pour LATEXest adaptée pour 12pt, et celle de Beamer pour 17pt). Pour avoir des points alignés correctement, il est possible de modifier la valeur de \dotsep en utilisant \setlength{\dotsep}{taille_en_pt}.

Par exemple, avec 2pt, on obtient : :::.

La commande \tmatrix

\tmatrix est composé de deux arguments optionnels (les éléments à ajouter à la matrice tikz et les éléments de mise en page de la matrice) ainsi que de trois arguments (le délimiteur d'ouverture, le contenu de la matrice et le délimiteur de fermeture).

Les commandes sont :

Commande	Résultat
	Crée une ligne verticale après la colonne n
\mtxvline{params}{n}	(ou left/right pour les extrémités) avec les
	paramètres tikz params
	Crée une ligne horizontale après la ligne n
\mtxhline{params}{n}	(ou top/bottom pour les extrémités) avec
	les paramètres tikz params

^{32.} Correspond à la commande usuelle \det

^{33.} Si AL.sty est chargé, cette commande est remplacée et il faut utiliser \matgl{n}{\mathbb{K}} pour obtenir ce résultat

^{34.} Les caractères \& sont utilisés au lieu du & utilisé habituellement avec tikz pour des raisons de compatibilité avec Beamer

	Crée une ligne verticale après la colonne n
\mtxvpartial{params}{n}{a}{b}	(ou left/right pour les extrémités), la
	ligne ayant pour extrémités la fin de la
	ligne a et b (ou top/bottom) avec les
	paramètres tikz params
	Crée une ligne horizontale après la ligne n
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	(ou top/bottom pour les extrémités), la
	ligne ayant pour extrémités la fin de la
	ligne a et b (ou left/right) avec les
	paramètres tikz params
	Crée une boîte autour de la case de
	coordonnées x et y (l'indexation
\mtxbox{params}{x}{y}	commence à 1) avec les paramètres tikz
	params

Exemples avec \tmatrix

 $\det(M) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ est produit par $\mathrm{M}=\mathrm{M}_{a}^{a}$ est produit par $\mathrm{M}=\mathrm{M}_{a}^{a}$ est produit par M_{a}^{a} est par M_{a}^{a} est produit par M_{a}^{a} est produit par M_{a}^{a}

$$I_{n,p,r} = \left(\frac{I_r \mid 0_{r,p-r}}{0_{n-r,r} \mid 0_{n-r,p-r}}\right) \text{ est produit par}$$

 $I_{n,p,r}=\operatorname{tmatrix}$

[\mtxvline{line width = 0.05em}{1}\mtxhline{line width = 0.05em}{1}]
[minimum height = 5ex, row sep = 1ex, minimum width = 5ex,

column sep = 1ex,] $(\{I_r\&0_{r,p-r}\\\0_{n-r,r}\&0_{n-r,p-r}\))$

\$

Φ

\tmatrix

[\mtxbox{red, dashed}{1}{1}\mtxbox{teal, dotted, ultra thick}{2}{2}\mtxbox{}{4}{4}]

```
[minimum height = 5ex, minimum width = 5ex, row sep = 10pt,
   inner sep = 5pt, column sep = 10pt,]
{{[}} % Le crochet est entouré de deux paires d'accolades
{A_1\&0\&0\&0\\0\&A_2\&\ddots\&0\\0\&\ddots\&\ddots\&0\\
        0\&0\&0\&A_n\\}
{\}}
```

\$

10 Polynomes.sty

Commande	Résultat
\pol{K}{X}	$\mathbb{K}[X]$
\fr{K}{X}	$\mathbb{K}(X)$
$ackslash$ olddeg 35	deg
\deg{P}	$\deg(P)$
\oldval	val
\val{P}	$\operatorname{val}(P)$
\oldcar	car
\car{\mathbb{K}}	$\operatorname{car}(\mathbb{K})$

^{35.} Correspond à la commande usuelle \deg

11 Probas.sty

Commande	Résultat
\p{A}	$\mathbb{P}(A)$
\p[B]{A}	$\mathbb{P}_B(A)$
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	Ω
\Omega ³⁷	Ω
\sq ³⁸	
\bor ³⁹	\mathcal{B}
\esp{X}	$\mathbb{E}(X)$
\var{X}	$\mathbb{V}(X)$
\ect{X}	$\sigma(X)$
\oldcov	COV
\cov{X}{Y}	cov(X,Y)

^{36.} Correspond à la commande usuelle Ω

^{37.} Correspond à la commande usuelle \varOmega

^{38.} Doit être utilisé entre \left et \right, ou dans la commande \p : $\mathbb{P}\left(A \mid \bigcap_{k=1}^{n} (B_i)\right)$

^{39.} Correspond à la commande usuelle \mathcal{B}

12 Structures.sty

Commande	Résultat
\oldhom	Hom
\hom{E}	$\operatorname{Hom}(E)$
\oldaut	Aut
\aut{E}	$\operatorname{Aut}(E)$
$ackslash$ oldker 40	ker
\ker{f}	$\ker(f)$
\oldim	im
\im{f}	$\operatorname{im}(f)$
\la ⁴¹	(
\ra ⁴²	>
\oldord	ord
\ord{x}	$\operatorname{ord}(x)$

^{40.} Correspond à la commande usuelle \ker

^{41.} Correspond à la commande usuelle \left\langle

^{42.} Correspond à la commande usuelle \right\rangle

13 Tables.sty

Ce package sert à mettre en forme des tables an latex grâce à tikz.

Pour insérer une table, il faut appeler \setrowcol{ncols}{nrows} avec le nombre de colonnes et de lignes de la table, puis rentrer la table tikz.

Une table a une largeur de 10cm et une hauteur de 6,5cm.

Il est possible d'utiliser [ampersand replacement=\&] puis \& pour la matrice lorsqu'elle est dans un environnement où & est déjà défini.

Par exemple, la table

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	_
cot	_	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

est produite avec le code suivant

```
\setcolrow{6}{5}
\begin{tikzpicture}
                 \matrix[table] {
                                  \$90\% \circ \frac{\pi^{4}}{4} \
                                                   \alpha(\pi){2}
                                 \oldsin$&$0$&$\oldfrac{1}{2}$&$\oldfrac{\sqrt{2}}{2}$&$
                                                   $\oldfrac{\sqrt{3}}{2}$&$1$\\
                                 \oldcos $\oldcos$ & $1$ & $\oldfrac{\sqrt{3}}{2}$ & $\oldfrac{\sqrt{2}}{2}$ & $\oldfrac{\sqrt
                                                   $\oldfrac{1}{2}$&$0$\\
                                 $\oldtan$&$0$&$\oldfrac{1}{\sqrt{3}}$&$1$&$\sqrt{3}$$&--\\
                                 };
                 \frac{1}{2} \operatorname{draw} \left[ \lim \operatorname{dith} -0.5 \operatorname{mm} \right] \left( -10 \operatorname{cm} / 3, -6.5 \operatorname{cm} / 2 \right) -- \left( -10 \operatorname{cm} / 3, 6.5 \operatorname{cm} / 2 \right);
                 \draw [line width=0.5mm] (-10cm/2,3*6.5cm/10) -- (10cm/2,3*6.5cm/10);
                 \draw [line width=0.5mm] (-5cm,-3.25cm) rectangle (5cm,3.25cm);
\end{tikzpicture}
```

14 Trigo.sty

Commande	Résultat		
$ackslash$ oldcos 43	cos		
\cos{x}	$\cos(x)$		
\cos[n]{x}	$\cos^n(x)$		
\oldsin 44	sin		
\sin{x}	$\sin(x)$		
$\sin[n]{x}$	$\sin^n(x)$		
\oldtan 45	tan		
$\tan\{x\}$	$\tan(x)$		
\tan[n]{x}	$\tan^n(x)$		
$ackslash$ oldcot 46	cot		
\cot{x}	$\cot(x)$		
\cot[n]{x}	$\cot^n(x)$		
\acos{x}	$\arccos(x)$		
\acos[n]{x}	$\arccos^n(x)$		
\asin{x}	$\arcsin(x)$		
\asin[n]{x}	$\arcsin^n(x)$		
\atan{x}	$\arctan(x)$		
\atan[n]{x}	$\arctan^n(x)$		
\oldch	ch		
\ch{x}	$\operatorname{ch}(x)$		
\ch[n]{x}	$\operatorname{ch}^n(x)$		
\oldsh	sh		
$\sh\{x\}$	$\operatorname{sh}(x)$		
\sh[n]{x}	$\operatorname{sh}^n(x)$		
\oldth	th		
\th{x}	$\operatorname{th}(x)$		
\th[n]{x}	$ h^n(x)$		
\oldach	argch		
\ach{x}	$\operatorname{argch}(x)$		
\ach[n]{x}	$\operatorname{argch}^n(x)$		
\oldash	argsh		
\ash{x}	$\operatorname{argsh}(x)$		
$\ash[n]{x}$	$\operatorname{argsh}^n(x)$		
\oldath	argth		
\ath{x}	$\operatorname{argth}(x)$		
\ath[n]{x}	$\operatorname{argth}^n(x)$		

^{43.} Correspond à la commande usuelle \cos

^{44.} Correspond à la commande usuelle \sides

^{45.} Correspond à la commande usuelle \tan

^{46.} Correspond à la commande usuelle \cot