Stochastic Optimization Solution Methods

Alireza Ghaffari-Hadigheh

Azarbaijan Shahid Madani University (ASMU) hadigheha@azaruniv.edu

Fall 2017

Overview

- 1 The L -Shaped Method
 - Basic Idea
 - L -Shaped Algorithm
 - Optimality Cuts
 - Feasibility cuts
 - The multicut version
- Regularized Decomposition
 - The Regularized Decomposition Algorithm
- The Piecewise Quadratic Form of the L -shaped Methods
 - Assumptions
 - Examples
 - An Algorithm
- Bunching and Other Efficiencies
 - Full decomposability
 - Bunching

Basic Idea

Basic two-stage stochastic linear program

min
$$z = c^T x + Q(x)$$

 $s.t.$ $Ax = b$ (1)
 $x \ge 0$,

- $Q(x) = E_{\xi}Q(x,\xi(\omega))$
- $Q(x,\xi(\omega)) = \min_{y} \{q(\omega)^T y | Wy = h(\omega) T(\omega)x, y \ge 0\}.$
- The nonlinear objective term involves a solution of all second-stage recourse linear programs, we want to avoid numerous function evaluations for it.
- The basic idea: To approximate the nonlinear term in the objective.
- A master problem in x,
- Evaluate the recourse function exactly as a subproblem.

Assumption

The random vector ξ has finite support. k = 1, ..., K index its possible realizations p_k are their probabilities.

The deterministic equivalent program

Associate one set of second-stage decisions, say, y_k , to each realization ξ , i.e., to each realization of q_k, h_k , and T_k .

Extensive form (EF)

min
$$z = c^{T}x + \sum_{k=1}^{K} p_{k}q_{k}^{T}y_{k}$$

s.t. $Ax = b$
 $T_{k}x + Wy_{k} = h_{k}, \quad k = 1, ..., K$
 $x \ge 0, y_{k} \ge 0, \quad k = 1, ..., K$ (2)

- This picture has given rise to the name.
- Taking the dual of the extensive form, one obtains a dual block-angular structure.
- Exploit this dual structure by performing a Dantzig-Wolfe [1960] decomposition (inner linearization) of the dual or a Benders [1962] decomposition (outer linearization) of the primal.

L -Shaped Algorithm

Step 0 Set
$$r = s = \nu = 0$$
.
Step 1 Set $\nu = \nu + 1$. Solve

$$\min \quad z = c^T x + \theta \tag{3}$$

$$s.t.$$
 $Ax = b,$

$$D_{\ell}x \geq d_{\ell}, \qquad \ell = 1, \ldots, r,$$
 (4)

$$E_{\ell}x + \theta \ge e_{\ell}, \quad \ell = 1, \dots, s,$$
 (5)

$$x \ge 0, \theta \in \mathbb{R}$$
.

Let (x^{ν}, θ^{ν}) be an optimal solution.

If no constraint (5) is presented, θ^{ν} is set equal to $-\infty$ and is not considered in the computation of x^{ν} .

Step 2 Check if $x \in K_2$ If not, add at least one cut (4) and return to Step 1. Otherwise, go to Step 3.

L -Shaped Algorithm

Step 3 For k = 1, ..., K solve the linear program

min
$$w = q_k^T y$$

s.t. $Wy = h_k - T_k x^{\nu}$, (6)
 $y \ge 0$

Let π_k^{ν} be the simplex multipliers associated with the optimal solution of Problem k of type (6). Define

$$E_{s+1} = \sum_{k=1}^{k} p_k \cdot (\pi_k^{\nu})^T T_k.$$
 (7)

$$e_{s+1} = \sum_{k=1}^{K} p_k . (\pi_k^{\nu})^T h_k.$$
 (8)

Let $w^{\nu}=e_{s+1}-E_{s+1}x^{\nu}$. If $\theta^{\nu}\geq w^{\nu}$, stop; x^{ν} is an optimal solution. Otherwise, set s=s+1, add to the constraint set (5), and return to Step 1. σ

- The method consists of solving an approximation of (4) by using an outer linearization of Q.
- This approximation is program (3)-(5). It is called the master program.
- ullet It consists of finding a proposal x, sent to the second stage.
- Two types of constraints are sequentially added:
 - (i) feasibility cuts (4) determining $\{x|Q(x)<+\infty\}$
 - (ii) optimality cuts (5), which are linear approximations to Q on its domain of finiteness.

Optimality cuts

Example

$$z = \min 100x_1 + 150x_2 + E_{\xi}(q_1y_1 + q_2y_2)$$

 $s.t.$ $x_1 + x_2 \le 120,$
 $6y_1 + 10y_2 \le 60x_1,$
 $8y_1 + 5y_2 \le 80x_2,$
 $y_1 \le d_1, y_2 \le d_2,$
 $x_1 > 40, x_2 > 20, y_1, y_2 > 0$

 $\xi^T = (d_1, d_2, q_1, q_2)$ takes on the values (500, 100, -24, -28) with probability 0.4 and (300, 300, -28, -32) with probability 0.6 The second stage is always feasible ($y = (0, 0)^T$ is always feasible as $x \ge 0$ and $d \ge 0$).

Thus $x \in K_2$ is always true and Step 2 can be omitted.

Solution

Iteration 1:

- Step 1 Ignoring θ , the master program is $z = \min\{100x_1 + 150x_2 | x_1 + x_2 \le 120, x_1 \ge 40, x_2 \ge 20\}$ with solution $x^1 = (40, 20)^T$ and $\theta^1 = -\infty$.
- Step 3 \blacktriangleright For $\xi = \xi_1$, solve the program $w = \min\{-24v_1 - 28v_2 | 6v_1 + 10v_2 < 2400 \}$ $8v_1 + 5v_2 < 1600, 0 < v_1 < 500, 0 < v_2 < 100$. The solution is $w_1 = -6100$. $y^T = (137.5, 100), \pi_1^T = (0, -3, 0, -13)$. ▶ For $\xi = \xi_2$, solve the program $w = \min\{-28y_1 - 32y_2 | 6y_1 + 10y_2 < 2400,$ $8y_1 + 5y_2 < 1600, 0 < y_1 < 300, 0 < y_2 < 300$. The solution is $w^2 = -8384$. $y^T = (80, 192), \pi_2^T = (-2.32, -1.76, 0, 0)$.

- Using $h_1 = (0, 0, 500, 100)^T$ and $h_2 = (0, 0, 300, 300)^T$ in (8), $e_1 = 0.4.\pi_1^T.h_1 + 0.6.\pi_2^T.h_2 = 0.4.(-1300) + 0.6.(0) = -520.$
- ullet The matrix T is identical in the two scenarios.

$$\begin{bmatrix} -60 & 0 \\ 0 & -80 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Thus, (7) gives
$$E_1 = 0.4 \cdot \pi_1^T T + 0.6 \cdot \pi_2^T T$$

= $0.4(0, 240) + 0.6(139.2, 140.8) = (83.52, 180.48)$.

• Finally, as $x^1=(40,20)^T$, $w^1=-520-(83.52,180.48).x^1=-7470.4$. Thus, $w_1=-7470.4>\theta^1=-\infty$, add the cut

$$83.52x_1 + 180.48x_2 + \theta \ge -520.$$

Iteration 2:

Step 1 . Solve
$$z = \min\{100x_1 + 150x_2 + \theta | x_1 + x_2 \le 120, x_1 \ge 40, x_2 \ge 20, 83.52x_1 + 180.48x_2 + \theta \ge -520\}$$
 with solution $z = -2299.2, x^2 = (40, 80)^T, \theta^2 = -18299.2$.

Step 3 For
$$\xi = \xi_1$$
 the program $w = \min\{-24y_1 - 28y_2 | 6y_1 + 10y_2 \le 2400, 8y_1 + 5y_2 \le 6400, 0 \le y_1 \le 500, 0 \le y_2 \le 100\}$ has solution $w_1 = -9600, y^T = (400, 0), \pi_1^T = (-4, 0, 0, 0)^T$.

For $\xi = \xi_2$ the program $w = \min\{-28y_1 - 32y_2 | 6y_1 + 10y_2 \le 2400, 8y_1 + 5y_2 \le 6400, 0 \le y_1 \le 300, 0 \le y_2 \le 300\}$ has solution: $w_2 = -10320, y^T = (300, 60), \pi_2^T = (-3.2, 0, -8.8, 0)$.

Apply (7) and (8),

$$e_1 = 0.4.(0) + 0.6.(-2640) = -1584.$$

 $E_1 = 0.4 \cdot (240, 0) + 0.6 \cdot (192, 0) = (211.2, 0).$

• As $w_2 = -1584 - 211.2 \times 40 = -10032 > -18299.2$, add the cut $211.2x_1 + \theta \ge -1584$.

Iteration 3:

- Step 1 Master program has solution z=-1039.375, $x^3=\left(66.828,53.172\right)^T$, $\theta^3=-15697.994$.
- Step 3 Add the cut $115.2x_1 + 96x_2 + \theta \ge -2104$.

Iteration 4:

- Step 1 Master program has solution z = -889.5, $x^4 = (40, 33.75)^T$, $\theta^4 = -9952$.
- Step 3 The second-stage program for $\xi=\xi_2$ has multiple solutions. Selecting one of them, add the cut $133.44x_1+130.56x_2+\theta>0$

Iteration 5:

Step 1 Solve first stage program

$$\begin{array}{l} z = \min\{100x_1 + 150x_2 + \theta | x_1 + x_2 \leq 120, x_1 \geq 55, x_2 \geq \\ 25, 83.52x_1 + 180.48x_2 + \theta \geq -520, \\ 211.2x_1 + \theta \geq -1584, 115.2x_1 + 96x_2 + \theta \geq -2104, \\ 133.44x_1 + 130.56x_2 + \theta \geq 0\}. \text{ It has solution} \\ z = -855.833 \text{ , } x^5 = \left(46.667, 36.25\right)^T, \ \theta^5 = -10960 \text{ .} \end{array}$$

Step 3 \blacktriangleright For $\xi = \xi_1$ the program

$$\begin{split} w &= \min\{-24y_1 - 28y_2 | 6y_1 + 10y_2 \leq 2800, \\ 8y_1 + 5y_2 \leq 2900, 0 \leq y_1 \leq 500, 0 \leq y_2 \leq 100\} \\ \text{has the solution } w_1 &= -10000 \text{ , } y^T = (300, 100) \text{ , } \\ \pi_1^T &= (0, -3, 0, -13) \text{ .} \end{split}$$

$$lackbox$$
 For $\xi=\xi_2$ the program

$$w = \min\{-28y_1 - 32y_2 | 6y_1 + 10y_2 \le 2800,$$

$$8y_1 + 5y_2 \le 2900, 0 \le y_1 \le 300, 0 \le y_2 \le 300\}$$

has the solution $w_2 = -11600$, $y^T = (300, 100)$,

$$\pi_2^T = (-2.32, -1.76, 0, 0).$$

Apply formulaes (7) and (8) to obtain

$$e_5 = 0.4 \times (-1300) + 0.6 \times (0) = -520,$$

 $E_5 = 0.4 \cdot (0,240) + 0.6 \cdot (139.2,140.8) = (83.52,180.48).$

As
$$w_5 = -520 - (83.52, 180.48) \cdot x^5 = -10960 = \theta^5$$
, stop. $x^5 = (46.667, 36.25)^T$ is the optimal solution.

- ► This example is small, it is easy to write down the extensive form and solve it with an LP-solver to check whether (46.667, 36.25)^T is the optimal solution.
 - The second-stage program for $\xi = \xi_2$ at Iteration 4 has multiple solutions. An alternative cut is $165.12x_1 + 46.08x_2 + \theta > -1584$.

Example

$$z = \min E_{\xi}(y_1 + y_2)$$

 $s.t.$ $0 \le x \le 10,$
 $y_1 - y_2 = \xi - x,$
 $y_1, y_2 \ge 0,$

- ξ takes the values 1 , 2 and 4 with probability $\frac{1}{3}$ each.
- $h = \xi$, T = [1] and x are all scalars.
- Step 2 can be omitted.

Iteration 1.

Take $x^1 = 0$ as starting point.

Step 3 For
$$\xi = \xi_1$$
, solve the program $w = \min\{y_1 + y_2 | y_1 - y_2 = 1, y_1, y_2 \ge 0\}$. The solution is $w_1 = 1$, $y^T = (1,0)$, $\pi_1 = (1)$.

For $\xi = \xi_2$, solve the program $w = \min\{y_1 + y_2 | y_1 - y_2 = 2, y_1, y_2 \ge 0\}$. The solution is $w_2 = 2$, $y^T = (2,0)$, $\pi_2 = (1)$.

For $\xi = \xi_3$, solve the program $w = \min\{y_1 + y_2 | y_1 - y_2 = 4, y_1, y_2 \ge 0\}$. The solution is $w_3 = 4$, $y^T = (4,0)$, $\pi_3 = (1)$.

Using $h_k = \xi_k$, one obtains $e_1 = \frac{1}{3} \cdot 1 \cdot (1 + 2 + 4) = \frac{7}{3}$. Formula (7) gives

 $w^1 = \frac{7}{2} > -\infty$; add the cut, $\theta \ge \frac{7}{2} - x$.

 $E_1 = \frac{1}{3} \cdot 1 \cdot (1+1+1) = 1$. Finally, as $x^1 = (0)$,

Iteration 2:

Step 1
$$x^2 = 10$$
,

Step 3 .
$$x^2$$
 is not optimal; add the cut $\theta \ge x - \frac{7}{3}$

Iteration 3:

Step 1
$$x^3 = \frac{7}{3}$$
,

Step 3 .
$$x^3$$
 is not optimal; add the cut $\theta \ge \frac{x-1}{3}$

Iteration 4:

Step 1
$$x^4 = 1.5$$
,

Step 3 .
$$x^4$$
 is not optimal; add the cut $\theta \geq \frac{5-x}{3}$

Iteration 5:

Step 1
$$x^5 = 2$$
,

Step 3 .
$$x^5$$
 is optimal.

• These cuts are supporting hyperplanes of $\mathcal{Q}(x)$.

•
$$Q(x) = E_{\xi}Q(x,\xi) = \sum_{k=1}^{K} p_k Q(x,\xi_k)$$
,

- $Q(x,\xi) = \min\{y_1 + y_2 | y_1 y_2 = \xi x, y_1, y_2 \ge 0\}$.
- If $x \le \xi$, the second-stage optimal solution is $y^T = (\xi x, 0)$ and $y^T = (0, x \xi)$ if $x \ge \xi$.

$$Q(x,\xi) = \begin{cases} \xi - x & \text{if} \quad x \leq \xi, \\ x - \xi & \text{if} \quad x \geq \xi. \end{cases}$$

- Consider Iteration 1. $x^1 = 0$ is the starting point.
- Step 3 obtains the cut $\theta \ge \frac{7}{3} x$.
- \bullet For $x=x^1$, Q(x,1)=1, Q(x,2)=2, Q(x,4)=4 and $Q(x)=\frac{7}{3}.$
- Around $x = x^1$, Q(x,1) = 1 x, Q(x,2) = 2 x, Q(x,4) = 4 x and $Q(x) = \frac{7}{3} x$.
- Around $x = x^1$ is simply $0 \le x \le 1$.
- This can be seen from the construction of Q(x,1) where Q(x,1) changes when x=1 .
- In general, such a range can be obtained by linear programming sensitivity analysis around the second stage optimal solutions.
- We conclude that $Q(x) = \frac{7}{3} x$ within $0 \le x \le 1$.
- The optimality cut at the end of Iteration 1 is $\theta \geq \frac{7}{3} x$

• Step 2 of the *L*-shaped method consists of determining whether a first-stage decision $x \in K_1$ is also second stage feasible, i.e. $x \in K_2$.

Step 2 For k = 1, ..., K solve the linear program

$$\min w' = e^{T} \nu^{+} + e^{T} \nu^{-} \tag{9}$$

s.t.
$$Wy + I\nu^{+} - I\nu^{-} = h_{k} - T_{k}x^{\nu}, \quad (10)$$
$$y \ge 0, \nu^{+} \ge 0, \nu^{-} \ge 0,$$

- ullet $e^T=(1,\ldots,1)$, until, for some k , the optimal value w'>0
- ullet $\sigma^{
 u}$ be the associated simplex multipliers
- Define

$$D_{r+1} = (\sigma^{\nu})^T T_k \tag{11}$$

$$d_{r+1} = (\sigma^{\nu})^T h_k \tag{12}$$

• Set r=r+1 , add to the constraint set (4), and return to Step 1. If for all k , w'=0 , go to Step 3.

Example

$$\begin{aligned} &\min & & 3x_1 + 2x_2 - E_{\xi}(15y_1 + 12y_2) \\ &s.t. & & 3y_1 + 2y_2 \leq x_1, \\ & & & 2y_1 + 5y_2 \leq x_2, \\ & & & 0.8\xi_1 \leq y_1 \leq \xi_1, \\ & & & 0.8\xi_2 \leq y_2 \leq \xi_2, \\ & & & & x, y \geq 0, a.s., \end{aligned}$$

▶ $\xi_1 = 4$ or 6 and $\xi_2 = 4$ or 8 , independently, with probability $\frac{1}{2}$ each and $\xi = (\xi_1, \xi_2)^T$.

To keep the discussion short, assume the first considered realization of ξ is $(6,8)^T$.

Starting from an initial solution $x^1 = (0,0)^T$, Program (9)-(10) reads as follows

$$w' = \min \nu_{1}^{+} + \nu_{1}^{-} + \nu_{2}^{+} + \nu_{2}^{-} + \nu_{3}^{+} + \nu_{3}^{-} + \nu_{4}^{+} + \nu_{4}^{-} + \nu_{5}^{+} + \nu_{5}^{-} + \nu_{6}^{+} + \nu_{6}^{-}$$

$$s.t. \qquad \nu_{1}^{+} - \nu_{1}^{-} + 3y_{1} + 2y_{2} \le 0,$$

$$\nu_{2}^{+} - \nu_{2}^{-} + 2y_{1} + 5y_{2} \le 0,$$

$$\nu_{3}^{+} - \nu_{3}^{-} + y_{1} \ge 4.8,$$

$$\nu_{4}^{+} - \nu_{4}^{-} + y_{2} \ge 6.4,$$

$$\nu_{5}^{+} - \nu_{5}^{-} + y_{1} \le 6,$$

$$\nu_{6}^{+} - \nu_{6}^{-} + y_{2} \le 8,$$

$$\nu^{+}, \nu^{-}, \nu > 0$$

- The optimal solution is w'=11.2 with non-zero variables $\nu_3^+=4.8$ and $\nu_4^+=6.4$.
- The dual variables are $\sigma^1 = (-3/11, -1/11, 1, 1, 0, 0)$.
- $h = (0, 0, 4.8, 6.4, 6, 8)^T$ and T consists of the two columns $(-1, 0, 0, 0, 0, 0)^T$ and $(0, -1, 0, 0, 0, 0)^T$.
- Thus, $D_1=(-0.273,-0.091,1,1,0,0)$ T=(0.273,0.091) , and $d_1=(-0.273,-0.091,1,1,0,0)$ h=11.2 , creating the feasibility cut $\frac{3}{11}x_1+\frac{1}{11}x_2\geq 11.2$ or $3x_1+x_2\geq 123.2$.
- The first-stage solution is then $x^2 = (41.067, 0)^T$.
- A second feasibility cut is $x_2 \ge 22.4$.
- The first-stage solution becomes $x^3 = (33.6, 22.4)^T$.
- A third feasibility cut $x^2 \ge 41.6$ is generated.
- The first-stage solution is: $x^4 = (27.2, 41.6)^T$, which yields feasible second-stage decisions.

In some cases, Step 2 can be simplified.

- When the second stage is always feasible. The stochastic program is then said to have complete recourse.
- When it is possible to derive some constraints that have to be satisfied to guarantee second-stage feasibility. These constraints are sometimes called induced constraints. They can be obtained from a good understanding of the model.
- When Step 2 is not required for all k = 1, ..., K, but for one h_k .

Theorem

When ξ is a finite random variable, the L -shaped algorithm finitely converges to an optimal solution when it exists or proves the infeasibility of Problem

min
$$c^T x + Q(x)$$

s.t. $x \in K_1 \cap K_2$.

- In Step 3 of the L -shaped method, all K realizations of the second-stage program are optimized to obtain their optimal simplex multipliers.
- These multipliers are aggregated in (11) and (12) to generate one cut (5).
- In the multicut version, one cut per realization in the second stage is placed.
- Adding multiple cuts at each iteration corresponds to including several columns in the master program of an inner linearization algorithm.

The Multicut L -Shaped Algorithm

Step 0 . Set $r=\nu=0$ and $s_k=0$ for all $k=1,\ldots,K$.

Step 1 Set $\nu=\nu+1$. Solve the linear program (13)-(16):

$$\min z = c^T x + \sum_{k=1}^K \theta_k \tag{13}$$

$$s.t. Ax = b, (14)$$

$$D_{\ell}x \ge d_{\ell}, \ell = 1, \dots, r, \tag{15}$$

$$E_{\ell(k)}x + \theta_k \geq e_{\ell(k)}, \ell(k) = 1, \ldots, s_k, (16)$$

$$x \geq 0, k = 1, \ldots, K$$

Let $(x^{\nu}, \theta_1^{\nu}, \dots, \theta_K^{\nu})$ be an optimal solution of (13)-(16). If no constraint (16) is presented for some k, θ_k^{ν} is set equal to $-\infty$ and is not considered in the computation of x^{ν} .

Step 2 As before.

Step 3 For k = 1, ..., K solve the linear program (10).

Let π_k^{ν} be the simplex multipliers associated with the optimal solution of problem k . If

$$\theta_k^{\nu} < p_k(\pi_k^{\nu})^T (h_k - T_k x^{\nu}), \tag{17}$$

define

$$E_{s_k+1} = \rho_k(\pi_k^{\nu})^T T_k,$$
 (18)

$$e_{s_k+1} = p_k(\pi_k^{\nu})^T h_k,$$
 (19)

and set $s_k = s_k + 1$. If (17) does not hold for any k = 1, ..., K, stop; x^{ν} is an optimal solution. Otherwise, return to Step 1.

illustration on Example in Page 16. Starting from $x^1 = 0$,

• Iteration 1: x^1 is not optimal, add the cuts

$$\theta_1 \ge \frac{1-x}{3}; \theta_2 \ge \frac{2-x}{3}; \theta_3 \ge \frac{4-x}{3}$$

• Iteration 2: $x^2=10$, $\theta_1^2=-3, \theta_2^2=-\frac{8}{3}, \theta_3^2=-2$ is not optimal; add the cuts

$$\theta_1 \ge \frac{x-1}{3}; \theta_2 \ge \frac{x-2}{3}; \theta_3 \ge \frac{x-4}{3}$$

• Iteration 3: $x^3 = 2, \theta_1^3 = \frac{1}{3}, \theta_2^3 = 0, \theta_3^3 = \frac{2}{3}$ is the optimal solution.

- Regularized decomposition is a method that combines a multicut approach for the representation of the second-stage value function with the inclusion in the objective of a quadratic regularizing term.
- This additional term is included to avoid two classical drawbacks of the cutting plane methods.
 - Initial iterations are often inefficient.
 - Iterations may become degenerate at the end of the process.

The Regularized Decomposition Algorithm

Step 0 Set $r = \nu = 0$, $s_k = 0$ for all k = 1, ..., K. Select a^1 a feasible solution.

Step 1 Set u =
u + 1 . Solve the regularized master program

min
$$c^{T}x + \sum_{k=1}^{K} \theta_{k} + \frac{1}{2} ||x - a^{\nu}||^{2}$$
 (20)
s.t. $Ax = b$,
 $D_{\ell}x \ge d_{\ell}, \ell = 1, \dots, r$,
 $E_{\ell(k)}x + \theta_{k} \ge e_{\ell(k)}, \ell(k) = 1, \dots, s_{k}, k = 1, \dots, K$,
 $x \ge 0$.

Let (x^{ν}, θ^{ν}) be an optimal solution to (20) where $(\theta^{\nu})^{T} = (\theta_{1}^{\nu}, \dots, \theta_{K}^{\nu})^{T}$. If $s_{k} = 0$ for some k, θ_{k}^{ν} is ignored in the computation. If $c^{T}x^{\nu} + e^{T}\theta^{\nu} = c^{T}a^{\nu} + \mathcal{Q}(a^{\nu})$, stop; a^{ν} is optimal.

- Step 2 As before, if a feasibility cut (4) is generated, set $a^{\nu+1} = a^{\nu}$ (null infeasible step), and go to Step 1.
- Step 3 For $k=1,\ldots,K$, solve the linear subproblem (10). Compute $\mathcal{Q}_k(x^\nu)$. If (17) holds, add an optimality cut (16) using formulas (18) and (19). Set $s_k=s_k+1$.
- Step 4 If (17) does not hold for any k, then $a^{\nu+1} = x^{\nu}$ (exact serious step); go to Step 1.
- Step 5 . If $c^T x^{\nu} + \mathcal{Q}(x^{\nu}) \leq c^T a^{\nu} + \mathcal{Q}(a^{\nu})$, then $a^{\nu+1} = x^{\nu}$ (approximate serious step); go to Step 1. Else, $a^{\nu+1} = a^{\nu}$ (null feasible step), go to Step 1.

When a serious step is made, the value $\mathcal{Q}(a^{\nu+1})$ should be memorized, so that no extra computation is needed in Step 1 for the test of optimality.

Example

- Consider Exercise 1 of Section 5.1d.
- Take $a^1=-0.5$ as a starting point. It corresponds to the solution of the problems with $\xi=\overline{\xi}$ with probability 1.
- We have $Q(a^1) = \frac{3}{8}$.

Iteration 1: Cuts $\theta_1 \ge 0$, $\theta_2 \ge -\frac{3}{4}x$ are added. Let $a^2=a^1$. Iteration 2: The regularized master is

min
$$\theta_1 + \theta_2 + \frac{1}{2}(x + 0.5)^2$$

s.t. $\theta_1 \ge 0, \theta_2 \ge -\frac{3}{4}x,$

with solution $x^2=0.25$: $\theta_1=0, \theta_2=-\frac{3}{16}$. A cut $\theta_2\geq 0$ is added. As $\mathcal{Q}(0.25)=0<\mathcal{Q}(a^1), a^3=0.25$ (approximate serious step 1).

Iteration 3: The regularized master is

min
$$\theta_1 + \theta_2 + \frac{1}{2}(x - 0.25)^2$$

s.t. $\theta_1 \ge 0, \theta_2 \ge -\frac{3}{4}x, \theta_2 \ge 0,$

with solution $x^3=0.25,\, \theta_1=0$, $\theta_2=0$. Because $\theta^\nu=\mathcal{Q}(a^\nu)$, a solution is found.

Two-stage quadratic stochastic programs

min
$$z(x) = c^{T}x + \frac{1}{2}x^{T}Cx + E_{\xi}[\min[q^{T}(\omega)y(\omega) + \frac{1}{2}y^{T}(\omega)D(\omega)y(\omega)]]$$
s.t.
$$Ax = b, \qquad T(\omega)x + Wy(\omega) = h(\omega), \qquad (21)$$

$$x \ge 0, \qquad y(\omega) \ge 0$$

- c, C, A, b , and W are fixed matrices of size $n_1 \times 1$, $n_1 \times n_1$, $m_1 \times n_1$, $m_1 \times 1$, and $m_2 \times n_2$, respectively
- q, D, T, and h are random matrices of size $n_2 \times 1$, $n_2 \times n_2$, $m_2 \times n_1$, and $m_2 \times 1$.
- The random vector ξ is obtained by piecing together the random components of q, D, T, and h.

Assumption 1

The random vector ξ has a discrete distribution.

Assumption 2

The matrix C is positive semi-definite and the matrices $D(\omega)$ are positive semi-definite for all ω . The matrix W has full row rank.

- The first assumption guarantees the existence of a finite decomposition of the second-stage feasibility set K_2 .
- The second assumption guarantees that the recourse functions are convex and well-defined.

Recourse function for a given $\xi(\omega)$

$$Q(x,\xi(\omega)) = \min\{q^{T}(\omega)y(\omega) + \frac{1}{2}y^{T}(\omega)D(\omega)y(\omega)|$$

$$T(\omega)x + Wy(\omega) = h(\omega), y(\omega) \ge 0\}, \qquad (22)$$

Example

min
$$z(x) = 2x_1 + 3x_2 + E_{\xi} \min -6.5y_1 - 7y_2 + \frac{y_1^2}{2} + y_1y_2 + \frac{y_2^2}{2}$$

s.t. $3x_1 + 2x_2 \le 15, y_1 \le x_1, y_2 \le x_2$
 $x_1 + 2x_2 \le 8, y_1 \le \xi_1, y_2 \le \xi_2$
 $x_1 + x_2 \ge 0, x_1, x_2 \ge 0, y_1, y_2 \ge 0.$

- This problem consists of finding some product mix (x_1, x_2) that satisfies some first-stage technology requirements.
- In the second stage, sales cannot exceed the first-stage production and the random demand.
- In the second stage, the objective is quadratic convex because the prices are decreasing with sales.
- We might also consider financial problems where minimizing quadratic penalties on deviations from a mean value leads to efficient portfolios.

- ξ_1 can take the three values 2, 4, and 6 with probability $\frac{1}{3}$,
- ξ_2 can take the values 1, 3, and 5 with probability $\frac{1}{3}$,
- ξ_1 and ξ_2 are independent of each other.
- For very small values of x_1 and x_2 , it always is optimal in the second stage to sell the production, $y_1=x_1$ and $y_2=x_2$. $0 \le x_1 \le 2$ and $0 \le x_2 \le 1$, $y_1=x_1, y_2=x_2$ is the optimal solution of the second stage for all ξ .
- If needed, the reader may check this using the Karush-Kuhn-Tucker conditions.
- $Q(x,\xi) = -6.5x_1 7x_2 + \frac{x_1^2}{2} + x_1x_2 + \frac{x_2^2}{2}$ for all ξ and $Q(x) = -6.5x_1 7x_2 + \frac{x_1^2}{2} + x_1x_2 + \frac{x_2^2}{2}$.
- Here, the cell is $\{(x_1,x_2)|0\leq x_1\leq 2,0\leq x_2\leq 1\}$. Within that cell, $\mathcal{Q}(x)$ is quadratic.

Definition

A finite closed convex complex $\mathcal K$ is a finite collection of closed convex sets, called the cells of $\mathcal K$, such that the intersection of two distinct cells has an empty interior.

Definition

A piecewise convex program is a convex program of the form $\inf\{z(x)|x\in S\}$ where f is a convex function on \mathbb{R}^n and S is a closed convex subset of the effective domain of f with nonempty interior.

The region where f is finite is called the effective domain of f (dom f).

Assumption

Let $\mathcal K$ be a finite closed convex complex such that

- (a) the n -dimensional cells of $\mathcal K$ cover $\mathcal S$,
- (b) either f is identically $-\infty$ or for each cell C_{ν} of the complex there exists a convex function $z_{\nu}(x)$ defined on S and continuously differentiable on an open set containing C_{ν} which satisfies
 - $z(x) = z_{\nu}(x) \forall x \in C_{\nu}$,
 - $\nabla z_{\nu}(x) \in \partial z(x) \forall x \in C_{\nu}$.

Definition

A piecewise quadratic function is a piecewise convex function where on each cell C_{ν} the function z_{ν} is a quadratic form.

Initialization Let
$$S_1=S$$
 , $x^0\in S$, $\nu=1$.

- Step 1 Obtain C_{ν} , a cell of the decomposition of S containing $x^{\nu-1}$. Let $z_{\nu}(.)$ be the quadratic form on C_{ν} .
- Step 2 Let $x^{\nu} \in argmin\{z_{\nu}(x)|x \in S_{\nu}\}$ and $w_{\nu} \in argmin\{z_{\nu}(x)|x \in C_{\nu}\}$. If w_{ν} is the limiting point of a ray on which $z_{\nu}(x)$ is decreasing to $-\infty$, the original PQP is unbounded and the algorithm terminates.

Step 3 If

$$\nabla^T z_{\nu}(w^{\nu})(x^{\nu} - w^{\nu}) = 0, \tag{23}$$

then stop; w^{ν} is an optimal solution.

Step 4 Let $S_{\nu+1} = S_{\nu} \cap \{x | \nabla^T z_{\nu}(w^{\nu})x \leq \nabla^T z_{\nu}(w^{\nu})w^{\nu}\}$. Let $\nu = \nu + 1$; go to Step 1.

- One big issue in the efficient implementation of the L -shaped method is in Step 3.
- The second-stage program (6) has to be solved K times to obtain the optimal multipliers, π_k^{ν} .
- For a given x^{ν} and a given realization k, let B be the optimal basis of the second stage.
- It is well-known from linear programming that B is a square submatrix of W such that $(\pi_k^{\nu})^T = q_{kB}^T B^{-1}, q^T - (\pi_k^{\nu})^T W \ge 0, B^{-1}(h_k - T_k x^{\nu}) \ge 0$, where $q_{k,B}$ denotes the restriction of q_k to the selection of columns that define B.
- Important savings can be obtained in Step 3 when the same basis B is optimal for several realizations of k.
- This is especially the case when q is deterministic.
- Then, two different realizations that share the same basis also share the same multipliers π_{k}^{ν} .

assumptions

- q is deterministic.
- Define the set of possible right-hand sides in the second stage.

$$\tau = \{t | t = h_k - T_k x^{\nu} \text{ for some } k = 1, ..., K\}$$
 (24)

- ullet Let B be a square submatrix and $\pi^T=q_B^TB^{-1}$.
- B satisfies the optimality criterion $q^T \pi^T W \ge 0$.
- Define a bunch as

$$Bu = \{ t \in \tau | B^{-1}t \ge 0 \}$$
 (25)

the set of possible right-hand sides that satisfy the feasibility condition.

- Thus, π is an optimal dual multiplier for all $t \in Bu$.
- By virtue of Step 2 of the L -shaped method, only feasible first-stage $x^{\nu} \in K_2$ are considered.
- By construction, $\tau \subseteq \text{pos} W = \{t | t = Wy, y \ge 0\}$.

Full decomposability

- Full decomposition of pos W into component bases.
- Can only be done for small problems or problems with a well-defined structure.

Farming example: The second stage

$$Q(x,\xi) = \min 238y_1 - 170y_2 + 210y_3 - 150y_4 - 36y_5 - 10y_6$$

$$s.t. \quad y_1 - y_2 - w_1 = 200 - \xi_1 x_1,$$

$$y_3 - y_4 - w_2 = 240 - \xi_2 x_2,$$

$$y_5 + y_6 + w_3 = \xi_3 x_3,$$

$$y_5 + w_4 = 6000,$$

$$y, w \ge 0,$$

 w_1 to w_4 are slack variables.

- This second stage has complete recourse, so $pos W = \mathbb{R}^4$.
- The matrix

- Theoretically, $\binom{10}{4} = 210$ bases could be found.
- w_1 , w_2 , and w_3 are never in the basis, as they are always dominated by y_2 , y_4 , and y_6 , respectively.
- y_5 is always in the basis.
- y_1 or y_2 and y_3 or y_4 are always basic.

 not only is a full decomposition of pos W available, but an immediate analytical expression for the multipliers is also obtained.

$$\pi_{1}(\xi) = \begin{cases} 238 & \text{if } \xi_{1}x_{1} < 200, \\ -170 & \text{otherwise} \end{cases}$$

$$\pi_{2}(\xi) = \begin{cases} 210 & \text{if } \xi_{2}x_{2} < 240, \\ -150 & \text{otherwise} \end{cases}$$

$$\pi_{3}(\xi) = \begin{cases} -36 & \text{if } \xi_{3}x_{3} < 6000, \\ 0 & \text{otherwise} \end{cases}$$

$$\pi_{4}(\xi) = \begin{cases} 10 & \text{if } \xi_{3}x_{3} > 6000, \\ 0 & \text{otherwise} \end{cases}$$

- The decomposition is thus (1,3,5,6) , (1,3,5,10) , (1,4,5,6) , (1,4,5,10) , (2,3,5,6) , (2,3,5,10) , (2,4,5,6) , (2,4,5,10),
- The four variables in a basis are described by their indices (the index is 6 + j for the j -th slack variable).

- the set of possible right-hand sides in the second stage: $\tau = \{t | t = h_k T_k x \text{ for some } k = 1, ..., K\}$
- Consider some k. Denote $t_k = h_k T_k x$.
- Arbitrarily be k=1 , or if available, a value of k such that $h_k-T_kx=\overline{t}$, the expectation of all $t_k\in \tau$.
- Let B_1 be the corresponding optimal basis and $\pi(1)$ the corresponding vector of simplex multipliers.
- ullet Then, $Bu(1)=\{t\in au|B_1^{-1}t\geq 0\}$. Let $au_1= auackslash Bu(1)$.
- Repeat the same operations.
- Some element of τ_1 is chosen.
- The corresponding optimal basis B_2 and its associated vector of multipliers $\pi(2)$ are formed .
- Then, $Bu(2) = \{t \in \tau 1 | B_2^{-1} t \ge 0\}$ and $\tau_2 = \tau_1 \backslash Bu(2)$.
- The process is repeated until all $t_k \in \tau$ are in one of b total bunches.

• Then, (7) and (8) are replaced by

$$E_{s+1} = \sum_{\ell=1}^{b} \pi(\ell)^{T} \sum_{t_{k} \in Bu(\ell)} p_{k} T_{k}$$
 (26)

$$e_{s+1} = \sum_{\ell=1}^{b} \pi(\ell)^{T} \sum_{t_{k} \in Bu(\ell)} p_{k} h_{k}$$
 (27)

- This procedure still has some drawbacks.
 - The same $t_k \in \tau$ may be checked many times against different bases.
 - A new optimization is restarted every time a new bunch is considered.
- Some savings can be obtained in organizing the work in such a way that the optimal basis in the next bunch is obtained by performing only one (or a few) dual simplex iterations from the previous one.

Example

Consider the following second stage:

max
$$6y_1 + 5y_2 + 4y_3 + 3y_4$$

s.t. $2y_1 + y_2 + y_3 \le \xi_1$,
 $y_2 + y_3 + y_4 \le \xi_2$,
 $y_1 + y_3 \le x_1$,
 $2y_2 + y_4 \le x_2$

- $\xi_1 \in \{4, 5, 6, 7, 8\}$ with equal probability 0.2 each
- $\xi_2 \in \{2, 3, 4, 5, 6\}$ with equal probability 0.2 each

- Theoretically $\binom{8}{4} = 70$ different possible bases.
- \bullet In view of the possible realizations of ξ , at most 25 different bases can be optimal.
- t^1 to t^{25} : the possible right-hand sides

$$t^{1} = \begin{pmatrix} 4 \\ 2 \\ x_{1} \\ x_{2} \end{pmatrix}, t^{2} = \begin{pmatrix} 4 \\ 3 \\ x_{1} \\ x_{2} \end{pmatrix}, \dots, t^{25} = \begin{pmatrix} 8 \\ 6 \\ x_{1} \\ x_{2} \end{pmatrix}$$

- Consider the case where $x_1 = 3.1$ and $x_2 = 4.1$.
- Start from $\xi = \overline{\xi} = (6,4)^T$.
- Represent a basis again by the variable indices with 4 + j the index of the j th slack.
- The optimal basis is $B_1 = \{1, 4, 7, 8\}$ with $y_1 = 3, y_4 = 4, w_3 = 0.1, w_4 = 0.1$, the values of the basic variables.

The optimal dictionary associated with B₁

$$z = 3\xi_1 + 3\xi_2 - y_2 - 2y_3 - 3w_1 - 3w_2,$$

$$y_1 = \frac{1}{2}\xi_1 - \frac{1}{2}y_2 - \frac{1}{2}y_3 - \frac{1}{2}w_1,$$

$$y_4 = \xi_2 - y_2 - y_3 - w_2,$$

$$w_3 = 3.1 - \frac{1}{2}\xi_1 + \frac{1}{2}y_2 - \frac{1}{2}y_3 + \frac{1}{2}w_1,$$

$$w_4 = 4.1 - \xi_2 - y_2 + y_3 + w_2.$$

• This basis is optimal and feasible as long as $\frac{\xi_1}{2} \leq 3.1$ and $\xi_2 \leq 4.1$, which in view of the possible values of ξ amounts to $\xi_1 \leq 6$ and $\xi_2 \leq 4$, so that $Bu(1) = \{t^1, t^2, t^3, t^6, t^7, t^8, t^{11}, t^{12}, t^{13}\}$.

- Neighboring bases can be obtained by considering either $\xi_1 \geq 7$ or $\xi_2 \geq 5$.
- Let us start with $\xi_2 \geq 5$.
- This means that w_4 becomes negative and a dual simplex pivot is required in Row 4.
- This means that w_4 leaves the basis, and, according to the usual dual simplex rule, y_3 enters the basis.
- The new basis is $B_2 = \{1, 3, 4, 7\}$

$$z = 3\xi_1 + \xi_2 + 8.2 - 3y_2 - 3w_1 - w_2 - 2w_4,$$

$$y_1 = \frac{\xi_1}{2} - \frac{\xi_2}{2} + 2.05 - y_2 - \frac{w_1}{2} + \frac{w_2}{2} - \frac{w_4}{2},$$

$$y_3 = \xi_2 - 4.1 + y_2 - w_2 + w - 4,$$

$$y_4 = 4.1 - 2y_2 - w - 4,$$

$$w_3 = 5.15 - \frac{\xi_1}{2} - \frac{\xi_2}{2} + \frac{w_1}{2} + \frac{w_2}{2} - \frac{w_4}{2}.$$

- The condition $\xi_1 \xi_2 + 4.1 \ge 0$ always holds.
- ullet This basis is optimal as long as $\xi_2 \geq 5$ and $\xi_1 + \xi_2 \leq 10$,
- So that $Bu(2) = \{t^4, t^5, t^9\}$.
- Neighboring bases are B_1 when $\xi_2 \le 4$ and B_3 obtained when $w_3 < 0$, i.e., $\xi_1 + \xi_2 \ge 11$.
- This basis corresponds to w_3 leaving the basis and w_2 entering the basis.

$$B_{1} = \{1, 4, 7, 8\} \quad Bu(1) = \{t^{1}, t^{2}, t^{3}, t^{6}, t^{7}, t^{8}, t^{11}, t^{12}, t^{13}\}$$

$$B_{2} = \{1, 3, 4, 7\} \quad Bu(2) = \{t^{4}, t^{5}, t^{9}\}$$

$$B_{3} = \{1, 3, 4, 6\} \quad Bu(3) = \{t^{10}, t^{14}, t^{15}\}$$

$$B_{4} = \{1, 4, 5, 6\} \quad Bu(4) = \{t^{19}, t^{20}, t^{24}, t^{25}\}$$

$$B_{5} = \{1, 2, 4, 5\} \quad Bu(5) = \{t^{18}, t^{22}, t^{23}\}$$

$$B_{6} = \{1, 2, 4, 8\} \quad Bu(6) = \{t^{16}, t^{17}, t^{21}\}$$

$$B_{7} = \{1, 2, 5, 8\} \quad Bu(7) = \emptyset.$$

Several paths are possible, as one may have chosen B_6 instead of B_2 as a second basis.