

Extract caridac time series signal from the data. show the plot

In order to extract cardiac time series signal from data following steps were used:

- 1. Loading data set into workspace, Squeezing the Signal
- 2. Saving the reduced data
- 3. Method 1: Using bandpass filter function with frequency 0.8 1.2
- 4. Designing 2nd order filter
- 5. Plotting square Signal
- 6. Repeat steps 1-5 for each data set train/test
- 7. Repeat steps 1-5 for both subjects A and B

Matlab Commands Subject A:

```
load('Subject A Train.mat') % Loading data set A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus P5 = squeeze(Signal(1,39:end,1))
bandpass(singleStimulus P5,[0.8 1.2],fs)
%with normalized frequency
Wp = [1.2 20]/Fn;
                                                     % Passband Frequency (Normalised)
Ws = [0.8]
         21]/Fn;
                                                     % Stopband Frequency (Normalised)
Rp = 1;
                                                     % Passband Ripple (dB)
Rs = 150;
                                                     % Stopband Ripple (dB)
                                                     % Filter Order
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
[z,p,k] = cheby2(n,Rs,Ws);
                                                     % Filter Design
[sosbp,gbp] = zp2sos(z,p,k);
                                                     % Convert To Second-Order-Section
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                     % Filter Bode Plot
```

Matlab Commands Subject B:

```
load('Subject B Train.mat') % Loading data set B
fs= 60; % Setting the frequency to 60 Hz
singleStimulus P5 = squeeze(Signal(1,39:end,1))
figure(1)
bandpass(singleStimulus P5,[0.8 1.2],fs)
Fs = 1000;
                                                              % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                             % Setting value for Nyquist
%with normalized frequency
Wp = [1.2]
            20]/Fn;
                                                             % Passband Frequency (Normalised)
Ws = [0.8]
            21]/Fn;
                                                             % Stopband Frequency (Normalised)
Rp =
     1;
                                                             % Passband Ripple (dB)
                                                             % Stopband Ripple (dB)
Rs = 150;
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                             % Filter Order
[z,p,k] = cheby2(n,Rs,Ws);
                                                             % Filter Design
                                                             % Convert To Second-Order-Section
[sosbp,gbp] = zp2sos(z,p,k);
For Stability
figure (2)
                                                             % Filter Bode Plot
freqz(sosbp, 2^16, Fs)
% filtered signal = filtfilt(sosbp, gbp, singleStimulus P5); % Filter Signal
```

Plots Subject A:

Extract Respiratory time series data. Show the plot.

In order to extract respiratory time series signal from data following steps were used:

- 1. Loading data set into workspace, Squeezing the Signal
- 2. Saving the reduced data
- 3. Method 1: Using bandpass filter function with frequency 0.3 0.6
- 4. Designing 2nd order filter
- 5. Plotting square Signal
- 6. Repeat steps 1-5 for each data set train/test
- 7. Repeat steps 1-5 for both subjects A and B

Matlab Commands Subject A:

```
load('Subject A Train.mat') % Loading data set A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus P5 = squeeze(Signal(1,39:end,1))
figure(1)
bandpass(singleStimulus P5,[0.3 0.6],fs)
%with normalized frequency
Wp = [0.3]
          20]/Fn;
                                                            % Passband Frequency (Normalised)
Ws = [0.6]
          21]/Fn;
                                                            % Stopband Frequency (Normalised)
Rp = 1;
                                                            % Passband Ripple (dB)
Rs = 150;
                                                            % Stopband Ripple (dB)
                                                            % Filter Order
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
[z,p,k] = cheby2(n,Rs,Ws);
                                                            % Filter Design
[sosbp,gbp] = zp2sos(z,p,k);
                                                            % Convert To Second-Order-Section
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                            % Filter Bode Plot
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5); % Filter Signal
```

Matlab Commands Subject B:

```
load('Subject B Train.mat') % Loading data set B
fs= 60; % Setting the frequency to 60 Hz
singleStimulus P5 = squeeze(Signal(1,39:end,1))
figure(1)
bandpass(singleStimulus P5,[0.3 0.6],fs)
Fs = 1000;
                                                              % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                             % Setting value for Nyquist
%with normalized frequency
[0.3] = qW
            20]/Fn;
                                                             % Passband Frequency (Normalised)
Ws = [0.6]
            21]/Fn;
                                                             % Stopband Frequency (Normalised)
Rp =
     1;
                                                             % Passband Ripple (dB)
                                                             % Stopband Ripple (dB)
Rs = 150;
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                             % Filter Order
[z,p,k] = cheby2(n,Rs,Ws);
                                                             % Filter Design
                                                             % Convert To Second-Order-Section
[sosbp,gbp] = zp2sos(z,p,k);
For Stability
figure (3)
                                                             % Filter Bode Plot
freqz(sosbp, 2^16, Fs)
% filtered signal = filtfilt(sosbp, gbp, singleStimulus P5); % Filter Signal
```

Plots Subject A:

Filter the signals and find the different bands corresponding to the mentioned tasks.

Matlab Commands:

```
load('Subject_A_Train.mat') % Loading data set A
fs= 60; % Setting the frequency to 60 Hz
% points from Subject A, channel 5, trial 3 48,49,53,54
singleStimulus_Train_A_P5 = squeeze(Signal(1,48,39:end,1))
singleStimulus_Train_A_P3 = squeeze(Signal(1,49,39:end,1))
singleStimulus_Train_A_P4 = squeeze(Signal(1,53,39:end,1))
singleStimulus_Train_A_P6 = squeeze(Signal(1,54,39:end,1))
N=length(singleStimulus_Train_A_P5); % Get length
t=(0:N-1)/fs; % Generating time vector
singleStimulus_Train_A_parietal_avg=(singleStimulus_Train_A_P5+single
Stimulus_Train_A_P3+singleStimulus_Train_A_P4+singleStimulus_Train_A_
P6)/4
figure(2)
bandpass(singleStimulus_Train_A_parietal_avg,[0.8 1.2],fs/2)
```

Plots

Extimate the power spectrum of the and lable the compoenets corresponding to activitiies.

Matlab Commands: Power spectrum made in part 1, Coefficients code and plot

```
load('Subject A Train.mat') % Loading data set A
column2 = Signal;
out = reshape(column2(1:100), [], 1)
S=out;
waveletFunction = 'db8';
[ZZ, LE] = wavedec(S, 8, waveletFunction);
%%Coffiecient Vectors
cofD1 = detcoef(ZZ,LE,1);
                                               %NOISE
cofD2 = detcoef(ZZ, LE, 2);
                                               %NOISE
cofD3 = detcoef(ZZ, LE, 3);
                                               %NOISE
cofD4 = detcoef(ZZ, LE, 4);
                                               %NOISE
cofD5 = detcoef(ZZ, LE, 5);
                                              %gamma
cofD6 = detcoef(ZZ, LE, 6);
                                              %beta
cofD7 = detcoef(ZZ, LE, 7);
                                              %alpha
cofD8 = detcoef(ZZ, LE, 8);
                                               %theta
cofA8 = appcoef(ZZ, LE, waveletFunction, 8);
                                             %delta
% Vectors
D1 = wrcoef('d', ZZ, LE, waveletFunction, 1); %noise
D2 = wrcoef('d', ZZ, LE, waveletFunction, 2); %noise
D3 = wrcoef('d', ZZ, LE, waveletFunction, 3); %npise
D4 = wrcoef('d', ZZ, LE, waveletFunction, 4); %noise
Gamma = wrcoef('d', ZZ, LE, waveletFunction, 5); %gamma
Beta = wrcoef('d', ZZ, LE, waveletFunction, 6); %beta
Alpha = wrcoef('d', ZZ, LE, waveletFunction, 7); %alpha
Theta = wrcoef('d',ZZ,LE,waveletFunction,8); %theta
Delta = wrcoef('a', ZZ, LE, waveletFunction, 8); %delta
t=0:ts:99;
hold on
plot(t,Alpha,'r','DisplayName','Alpha')
plot(t, Gamma, 'b', 'DisplayName', 'Gamma')
plot(t, Beta, 'g', 'DisplayName', 'Beta')
plot(t, Theta, 'o', 'DisplayName', 'Theta')
plot(t, Delta, 'p', 'DisplayName', 'Delta')
title('waveform for various bands')
legend
```


5. Detend the signal

P300 Subject A

```
load('Subject_A_Train.mat') % Loading data set A
% points from Subject A, channel 5, trial 3 48,49,53,54
singleStimulus_P5 = squeeze(Signal(1,39:end,1))
detrend_sdata = detrend(singleStimulus_P5);
trend = singleStimulus_P5 - detrend_sdata;
mean(detrend_sdata)
frequency_s=60; % Setting the frequency to 60 Hz
N=length(singleStimulus_P5); % Get length of average per 5 trails
t=(0:N-1)/frequency_s; % Generating time vector
plot(t,detrend_sdata,'k');
title('Detrend_Data_Plot');
```


P300 Subject B

```
load('Subject_B_Train.mat') % Loading data set B
% points from Subject A, channel 5, trial 3 48,49,53,54
singleStimulus_P5 = squeeze(Signal(1,39:end,1))
detrend_sdata = detrend(singleStimulus_P5);
trend = singleStimulus_P5 - detrend_sdata;
mean(detrend_sdata)
frequency_s=60; % Setting the frequency to 60 Hz
N=length(singleStimulus_P5); % Get length of average per 5 trails
t=(0:N-1)/frequency_s; % Generating time vector
plot(t,detrend_sdata,'k');
title('Detrend_Data_Plot');
```


Extract P300 or ERP from the signals based on the type of task.

P300 Subject A

```
load('Subject A Train.mat') % Loading data set A
fs= 60; % Setting the frequency to 60 Hz
% points from Subject A, channel 5, trial 3 48,49,53,54
singleStimulus P5 = squeeze(Signal(1,39:end,1))
singleStimulus Train A P5 = squeeze(Signal(1,48,39:end,1))
singleStimulus Train A P3 = squeeze(Signal(1,49,39:end,1))
singleStimulus Train A P4 = squeeze(Signal(1,53,39:end,1))
singleStimulus Train A P6 = squeeze(Signal(1,54,39:end,1))
N=length(singleStimulus_Train_A_P5); % Get length
t=(0:N-1)/fs; % Generating time vector
singleStimulus Train A parietal avg=(singleStimulus Train A P5+singleStimulus T
rain A P3+singleStimulus Train A P4+singleStimulus Train A P6)/4
figure(1)
bandpass(singleStimulus P5, [0.15 40], fs/2)
figure(2)
bandpass(singleStimulus Train A parietal avg,[0.15 40],fs/2)
figure(3)
Y=fft(singleStimulus P5)
Fs = 1000;
                     % Sampling frequency
T = 1/Fs;
                     % Sampling period
                    % Time vector
t = (0:N-1)*T;
P2 = abs(Y/N);
P1 = P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(N/2))/N;
plot(f,P1)
title('Single-Sided Amplitude Spectrum of Signal(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
```


ASSIGNMENT 3 PART 2

Bio Robotics

ABSTRACT

Data Analysis and Extraction for: Data set p3a

Zunera Zahid 00000359368

Extract caridac time series signal from the data. show the plot

In order to extract cardiac time series signal from data following steps were used:

- 8. Loading data set into workspace, Squeezing the Signal
- 9. Saving the reduced data
- 10. Method 1: Using bandpass filter function with frequency 0.8 1.2
- 11. Designing 2nd order filter
- 12. Plotting square Signal
- 13. Repeat steps 1-5 for each data set train/test
- 14. Repeat steps 1-5 for both subjects A and B and C

Matlab Commands Subject A:

```
load('k3b.mat') % Loading data 3a Subject A
column2 = s;
out = reshape(column2(1:100), [], 1)
N=length(out); % Get length
frequency s=1000; % Setting the frequency to 60 Hz
t=(0:N-1)/frequency_s; % Generating time vector
means5 = mean(out, \overline{2})
figure(1)
bandpass (means5, [0.8 1.2], fs/2)
hold on
Fs = 1000;
                                                               % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                              % Setting value for Nyquist
Frequency (Hz)
Wp = [1.2 20]/Fn;
                                                              % Passband Frequency (Normalised)
Ws = [0.8 21]/Fn;
                                                              % Stopband Frequency (Normalised)
Rp = 1;
                                                              % Passband Ripple (dB)
Rs = 150;
                                                              % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                              % Filter Order
[z,p,k] = cheby2(n,Rs,Ws);
                                                              % Filter Design
                                                              % Convert To Second-Order-Section
[sosbp,gbp] = zp2sos(z,p,k);
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                              % Filter Bode Plot
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5);  % Filter Signal
```

Plots Subject A:

Matlab Commands Subject B:

```
load('k6b.mat') % for Subject B and comment rest of data files
load('k3b.mat') % Loading data 3a Subject A
column2 = s;
out = reshape(column2(1:100), [], 1)
N=length(out); % Get length
frequency s=1000; % Setting the frequency to 60 Hz
t=(0:N-1)/frequency s; % Generating time vector
means 5 = \text{mean}(\text{out}, \overline{2})
figure(1)
bandpass (means 5, [0.8 1.2], fs/2)
hold on
Fs = 1000;
                                                                % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                               % Setting value for Nyquist
Frequency (Hz)
Wp = [1.2 20]/Fn;
                                                               % Passband Frequency (Normalised)
Ws = [0.8 \ 21]/Fn;
                                                               % Stopband Frequency (Normalised)
Rp = 1;
                                                               % Passband Ripple (dB)
Rs = 150;
                                                               % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                               % Filter Order
[z,p,k] = cheby2(n,Rs,Ws);
                                                               % Filter Design
                                                               % Convert To Second-Order-Section
[sosbp, gbp] = zp2sos(z, p, k);
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                               % Filter Bode Plot
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5);  % Filter Signal
```


Matlab Commands Subject C:

```
load('l1b.mat') % for Subject B and comment rest of data files
load('k3b.mat') % Loading data 3a Subject A
column2 = s;
out = reshape(column2(1:100), [], 1)
N=length(out); % Get length
frequency s=1000; % Setting the frequency to 60 Hz
t=(0:N-1)/frequency s; % Generating time vector
means5 = mean(out, 2)
figure(1)
bandpass (means5, [0.8 1.2], fs/2)
hold on
Fs = 1000;
                                                             % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                             % Setting value for Nyquist
Frequency (Hz)
Wp = [1.2 \ 20]/Fn;
                                                             % Passband Frequency (Normalised)
Ws = [0.8 21]/Fn;
                                                             % Stopband Frequency (Normalised)
Rp = 1;
                                                             % Passband Ripple (dB)
Rs = 150;
                                                             % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                            % Filter Order
                                                             % Filter Design
[z,p,k] = cheby2(n,Rs,Ws);
                                                             % Convert To Second-Order-Section
[sosbp,gbp] = zp2sos(z,p,k);
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                            % Filter Bode Plot
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5);  % Filter Signal
```


Extract Respiratory time series data. Show the plot.

In order to extract respiratory time series signal from data following steps were used:

- 8. Loading data set into workspace, Squeezing the Signal
- 9. Saving the reduced data
- 10. Method 1: Using bandpass filter function with frequency 0.3 0.6
- 11. Designing 2nd order filter
- 12. Plotting square Signal
- 13. Repeat steps 1-5 for each data set train/test
- 14. Repeat steps 1-5 for both subjects A and B

Matlab Commands Subject A:

```
load('k3b.mat') % Loading data 3a Subject A
column2 = s;
out = reshape(column2(1:100), [], 1)
N=length(out); % Get length
frequency s=1000; % Setting the frequency to 60 Hz
t=(0:N-1)/frequency s; % Generating time vector
means5 = mean(out, 2)
figure(1)
bandpass (means5, [0.3 0.6], fs/2)
hold on
Fs = 1000;
                                                                       % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                                      % Setting value for Nyquist
Frequency (Hz)
0.0] = qW
              20]/Fn;
                                                                      % Passband Frequency (Normalised)
Ws = [0.3]
              21]/Fn;
                                                                      % Stopband Frequency (Normalised)
                                                                      % Passband Ripple (dB)
Rp =
      1;
Rs = 150;
                                                                      % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                                      % Filter Order
[z,p,k] = cheby2(n,Rs,Ws);
                                                                      % Filter Design
[sosbp,gbp] = zp2sos(z,p,k);
                                                                      % Convert To Second-Order-Section
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                                      % Filter Bode Plot
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5);
                                                                      % Filter Signal
Figure 1
                                              X Figure 2
                                                                                                   ×
File Edit View Insert Tools Desktop Window Help
                                                      File Edit View Insert Tools Desktop Window Help
Bandpass Filtering (Fpass = [300 600] mHz)
                                                          150
     20
                                           Original
                                                          100
                                                        (gB)
     10
                                                        Magnitude
                                                          50
                                                           0
                                                          -50
                                                         -100
      0
            0.5
                   1
                                     2.5
                                            3
                                                                   100
                                                                       150
                                                                            200
                                                                                250
                                                                                    300
                                                                                        350
                                                                                                450
                         Time (s)
                                                                            Frequency (Hz)
                                                         2000
   ectrum (dB)
                                           Original
                                                       ees)
                                                         1000
                                                       (degr
   g -40
                                                         -1000
   € -60
                                                         -2000
      0
                                                                   100
                                                                              250
                                                                                    300
                                                                                        350
                                                                                            400
                       Frequency (Hz)
                                                                            Frequency (Hz)
```

```
Matlab Commands Subject B:
load('k6b.mat') % Loading data 3a Subject A
column2 = s;
out = reshape(column2(1:100), [], 1)
N=length(out); % Get length
frequency s=1000; % Setting the frequency to 60 Hz
t=(0:N-1)/frequency s; % Generating time vector
means5 = mean(out, 2)
figure(1)
bandpass (means5, [0.3 0.6], fs/2)
hold on
Fs = 1000;
                                                                         % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                                       % Setting value for Nyquist
Frequency (Hz)
0.0] = qW
                                                                       % Passband Frequency (Normalised)
              20]/Fn;
Ws = [0.3]
                                                                       % Stopband Frequency (Normalised)
              21]/Fn;
Rp = 1;
                                                                       % Passband Ripple (dB)
Rs = 150;
                                                                       % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                                       % Filter Order
                                                                       % Filter Design
[z,p,k] = cheby2(n,Rs,Ws);
[sosbp,gbp] = zp2sos(z,p,k);
                                                                       % Convert To Second-Order-Section
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                                        % Filter Bode Plot
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5);
                                                                          % Filter Signal
Figure 1
                                            Figure 2
                                                                                    File Edit View Insert Tools Desktop Window Help
                                            File Edit View Insert Tools Desktop Window Help
*1 😅 🔛 🗳 📳 📗 🔡 🖟 🔳
                                            🖺 🖨 📓 🦫 😓 📗 🔡 🖟 🛅
             Bandpass Filtering (Fpass = [300 600] mHz)
    10
                                      Original
                                               100
                                              Magnitude (dB)
                                                50
                                                0
                                                -50
     0
                      1.5
                                                        100
                                                            150
                                                               200
                                                                   250
                                                                      300
                                                                          350
                                                                              400
                      Time (s)
                                                                Frequency (Hz)
                                               2000
                                      Original
  Spectrum (
                                               1000
                                             Phase (degre
   Š-60
```

-2000

0

100 150

19 - [sosbp,gbp] = zp2sos(z,p,k);

200 250

Frequency (Hz)

400 450 500

350

0

100x1 double

Frequency (Hz)

Matlab Commands Subject C:

```
load('l1b.mat') % Loading data 3a Subject A
column2 = s;
out = reshape(column2(1:100), [], 1)
N=length(out); % Get length
frequency s=1000; % Setting the frequency to 60 Hz
t=(0:N-1)/frequency s; % Generating time vector
means5 = mean(out, \overline{2})
figure(1)
bandpass (means 5, [0.3 0.6], fs/2)
hold on
Fs = 1000;
                                                                         % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                                        % Setting value for Nyquist
Frequency (Hz)
                                                                        % Passband Frequency (Normalised)
0.0] = qW
              201/Fn;
Ws = [0.3]
              21]/Fn;
                                                                        % Stopband Frequency (Normalised)
Rp =
                                                                        % Passband Ripple (dB)
        1;
Rs = 150;
                                                                        % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                                        % Filter Order
[z,p,k] = cheby2(n,Rs,Ws);
                                                                        % Filter Design
[sosbp,gbp] = zp2sos(z,p,k);
                                                                        % Convert To Second-Order-Section
For Stability
figure(2)
                                                                        % Filter Bode Plot
freqz(sosbp, 2^16, Fs)
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5);
                                                                        % Filter Signal

♠ MATLAB R2019b

Figure 1
                                              Figure 2
                                                                                       X
 File Edit View Insert Tools Desktop Window Help
                                              File Edit View Insert Tools Desktop Window Help
 Bandpass Filtering (Fpass = [300 600] mHz)
                                                  150
                                       - Original
                                                (gp)
                                        Filtered
                                                  50
                                                Magnitude
                                                  -50
                                                 -100
                                                                     250
                                                                                400
                        Time (s)
                                                                  Frequency (Hz)
                                                 2000
    (dB)
                                                (degrees)
                                        Filtered
                                                 1000
    or Spectrum (
× × ×
                                                  0
                                               -1000
    Power
9
                                                 -2000
                      Frequency (Hz)
                                                                  Frequency (Hz)
```

Filter the signals and find the different bands corresponding to the mentioned tasks.

Matlab Commands and Plots for Subject A:

```
load('k3b.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus_C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```


Matlab Commands and Plots for Subject B:

```
load('k6b.mat') % Loading data 3a Subject B
fs= 60; % Setting the frequency to 60 Hz
singleStimulus_C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```


Matlab Commands and Plots for Subject C:

```
load('l1b.mat') % Loading data 3a Subject B
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```


Extimate the power spectrum of the and lable the compoenets corresponding to activitiies.

Matlab Commands: Power spectrum made in part 1, Coefficients code and plot

```
load('k3b.mat') % Loading data 3a Subject A
column2 = s;
out = reshape(column2(1:100), [], 1)
S=out;
waveletFunction = 'db8';
[ZZ, LE] = wavedec(S, 8, waveletFunction);
%%Coffiecient Vectors
cofD1 = detcoef(ZZ, LE, 1);
                                                 %NOISE
cofD2 = detcoef(ZZ, LE, 2);
                                                 %NOISE
                                                 %NOISE
cofD3 = detcoef(ZZ, LE, 3);
cofD4 = detcoef(ZZ, LE, 4);
                                                 %NOISE
cofD5 = detcoef(ZZ, LE, 5);
                                                 %gamma
                                                 %beta
cofD6 = detcoef(ZZ, LE, 6);
cofD7 = detcoef(ZZ, LE, 7);
                                                 %alpha
cofD8 = detcoef(ZZ, LE, 8);
                                                 %theta
cofA8 = appcoef(ZZ, LE, waveletFunction, 8);
                                                 %delta
D1 = wrcoef('d', ZZ, LE, waveletFunction, 1); %noise
D2 = wrcoef('d', ZZ, LE, waveletFunction, 2); %noise
D3 = wrcoef('d', ZZ, LE, waveletFunction, 3); %npise
D4 = wrcoef('d', ZZ, LE, waveletFunction, 4); %noise
Gamma = wrcoef('d', ZZ, LE, waveletFunction, 5); %gamma
Beta = wrcoef('d', ZZ, LE, waveletFunction, 6); %beta
Alpha = wrcoef('d', ZZ, LE, waveletFunction, 7); %alpha
Theta = wrcoef('d', ZZ, LE, waveletFunction, 8); %theta
Delta = wrcoef('a', ZZ, LE, waveletFunction, 8); %delta
ts=1;
t=0:ts:99;
hold on
plot(t,Alpha,'r','DisplayName','Alpha')
plot(t, Gamma, 'b', 'DisplayName', 'Gamma')
plot(t,Beta,'g','DisplayName','Beta')
plot(t,Theta,'o','DisplayName','Theta')
plot(t,Delta,'p','DisplayName','Delta')
title('waveform for various bands')
```


Subject A

```
load('k3b.mat') % Loading data set A
% points from Subject A, 50
singleStimulus_P5 = squeeze(s(1:50,end))
detrend_sdata = detrend(singleStimulus_P5);
trend = singleStimulus_P5 - detrend_sdata;
mean(detrend_sdata)
frequency_s=60; % Setting the frequency to 60 Hz
N=length(singleStimulus_P5); % Get length of average per 5 trails
t=(0:N-1)/frequency_s; % Generating time vector
plot(t,detrend_sdata,'k');
hold on
plot(t,singleStimulus_P5,'b');
```


Subject B

```
load('k6b.mat') % Loading data set B
% points from Subject b 50
singleStimulus_P5 = squeeze(s(1:50,end))
detrend_sdata = detrend(singleStimulus_P5);
trend = singleStimulus_P5 - detrend_sdata;
mean(detrend_sdata)
frequency_s=60; % Setting the frequency to 60 Hz
N=length(singleStimulus_P5); % Get length of average per 5 trails
t=(0:N-1)/frequency_s; % Generating time vector
plot(t,detrend_sdata,'k');
hold on
plot(t,singleStimulus_P5,'b');
```

```
load(l1b.mat') % Loading data set c
% points from Subject C 50
singleStimulus_P5 = squeeze(s(1:50,end))
detrend_sdata = detrend(singleStimulus_P5);
trend = singleStimulus_P5 - detrend_sdata;
mean(detrend_sdata)
frequency_s=60; % Setting the frequency to 60 Hz
N=length(singleStimulus_P5); % Get length of average per 5 trails
t=(0:N-1)/frequency_s; % Generating time vector
plot(t,detrend_sdata,'k');
hold on
plot(t,singleStimulus_P5,'b');
```

Extract P300 or ERP from the signals based on the type of task.

Subject A

```
load('k3b.mat') % Loading data set A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus_C7 = squeeze(s(1:50,36))
singleStimulus_C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singleStimulus C3+singleSt
imulus C4+singleStimulus C5+singleStimulus C6+singleStimulus C7+singleStimulus C8+singleSt
imulus C9+singleStimulus C10+singleStimulus C11+singleStimulus C12)/12
t=(0:N-1)/fs; % Generating time vector
figure(1)
bandpass(singleStimulus P5, [0.15 40], fs/2)
figure(2)
bandpass(singleStimulus Train A parietal avg, [0.15 40], fs/2)
figure(3)
Y=fft(singleStimulus P5)
Fs = 1000;
                       % Sampling frequency
T = \frac{1}{Fs}
                      % Sampling period
t = |(0:N-1)*T;
                     % Time vector
P2 = abs(Y/N);
P1 \neq P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = |Fs*(0:(N/2))/N;
plot(f,P1)
title('Single-Sided Amplitude Spectrum of Signal(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')
```


ASSIGNMENT 3 PART 3

Bio Robotics

ABSTRACT

Data Analysis and Extraction for: Data set p3a

Zunera Zahid 00000359368

Extract caridac time series signal from the data. show the plot

In order to extract cardiac time series signal from data following steps were used:

- 15. Loading data set into workspace, Squeezing the Signal
- 16. Saving the reduced data
- 17. Method 1: Using bandpass filter function with frequency 0.8 1.2
- 18. Designing 2nd order filter
- 19. Plotting square Signal
- 20. Repeat steps 1-5 for each data set train/test
- 21. Repeat steps 1-5 for both subjects A and B and C

Matlab Commands Subject A without average:

```
load('train subject1 psd01.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus = squeeze(X)
figure(1)
bandpass(singleStimulus,[0.8 1.2],fs)
Fs = 1000;
                                                             % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                             % Setting value for Nyquist
Frequency (Hz)
Wp = [1.2 20]/Fn;
                                                             % Passband Frequency (Normalised)
Ws = [0.8 \ 21]/Fn;
                                                             % Stopband Frequency (Normalised)
Rp = 1;
                                                             % Passband Ripple (dB)
Rs = 150;
                                                            % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                            % Filter Order
[z,p,k] = cheby2(n,Rs,Ws);
                                                            % Filter Design
                                                            % Convert To Second-Order-Section
[sosbp,gbp] = zp2sos(z,p,k);
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                            % Filter Bode Plot
%filtered signal = filtfilt(sosbp, qbp, singleStimulus P5); % Filter Signal
```

Plots Subject A:

Matlab Commands Subject A with average:

```
load('train subject1 psd01.mat') % Loading data 5 Subject 1
column2 = s;
out = reshape(column2(1:100), [], 1)
N=length(out); % Get length
frequency s=1000; % Setting the frequency to 60 Hz
t=(0:N-1)/frequency_s; % Generating time vector
means5 = mean(out, 2)
figure(1)
bandpass(means5,[0.8 1.2],fs/2)
hold on
Fs = 1000;
                                                                        % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                                       % Setting value for Nyquist
Frequency (Hz)
Wp = [1.2]
              201/Fn;
                                                                       % Passband Frequency (Normalised)
Ws = [0.8]
              21]/Fn;
                                                                       % Stopband Frequency (Normalised)
Rp =
      1;
                                                                       % Passband Ripple (dB)
Rs = 150;
                                                                       % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                                       % Filter Order
[z,p,k] = cheby2(n,Rs,Ws);
                                                                       % Filter Design
                                                                       % Convert To Second-Order-Section
[sosbp, gbp] = zp2sos(z,p,k);
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                                       % Filter Bode Plot
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5);
                                                                          % Filter Signal
                                         Figure 2
                                         File Edit View Insert Tools Desktop Window Help
 File Edit View Insert Tools Desktop Window Help
  Bandpass Filtering (Fpass = [0.8 1.2] Hz)
                                    Origina
                                           (dB)
                                            100
                                            -100
                                                    100
                                                       150
                                                           200
                                                             250
                                                                    350
                                                                       400
                                                                           450
                                                           Frequency (Hz)
                                            2000
    (B)
                                    Original
                                           S 1000
                                           (degr
                                          -1000
                                            -2000
                                                          200 250 300
Frequency (Hz)
                                                                    350 400 450 500
                    Frequency (Hz)
```

In order to extract <u>respiratory time</u> series signal from data following steps were used :

Extract Respiratory time series data. Show the plot.

- 15. Loading data set into workspace, Squeezing the Signal
- 16. Second method was taking data average
- 17. Saving the reduced data
- 18. Method 1: Using bandpass filter function with frequency 0.3 0.6
- 19. Designing 2nd order filter
- 20. Plotting square Signal
- 21. Repeat steps 1-5 for each data set train/test
- 22. Repeat steps 1-5 for both subjects A and B

Matlab Commands Subject A without avarage:

```
load('train subject1 psd01.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus = squeeze(X)
figure(1)
bandpass(singleStimulus,[0.3 0.6],fs)
Fs = 1000;
                                                              % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                             % Setting value for Nyquist
Frequency (Hz)
Wp = [0.6 20]/Fn;
                                                             % Passband Frequency (Normalised)
Ws = [0.3 21]/Fn;
                                                             % Stopband Frequency (Normalised)
Rp = 1;
                                                             % Passband Ripple (dB)
Rs = 150;
                                                             % Stopband Ripple (dB)
                                                             % Filter Order
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
[z,p,k] = cheby2(n,Rs,Ws);
                                                             % Filter Design
[sosbp,gbp] = zp2sos(z,p,k);
                                                             % Convert To Second-Order-Section
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                             % Filter Bode Plot
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5);  % Filter Signal
```


Matlab Commands Subject A with average:

```
load('train subject1 psd01.mat') % Loading data 3a Subject A
column2 = s;
out = reshape(column2(1:100), [], 1)
N=length(out); % Get length
frequency s=1000; % Setting the frequency to 60 Hz
t=(0:N-1)/frequency s; % Generating time vector
means 5 = \text{mean}(\text{out}, \overline{2})
figure(1)
bandpass (means5, [0.3 0.6], fs/2)
hold on
Fs = 1000;
                                                                % Setting the frequency to 60 Hz
Fn = Fs/2;
                                                               % Setting value for Nyquist
Frequency (Hz)
Wp = [0.6 20]/Fn;
                                                               % Passband Frequency (Normalised)
Ws = [0.3 21]/Fn;
                                                               % Stopband Frequency (Normalised)
Rp = 1;
                                                               % Passband Ripple (dB)
Rs = 150;
                                                               % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);
                                                               % Filter Order
[z,p,k] = cheby2(n,Rs,Ws);
                                                               % Filter Design
[sosbp,gbp] = zp2sos(z,p,k);
                                                               % Convert To Second-Order-Section
For Stability
figure(2)
freqz(sosbp, 2^16, Fs)
                                                               % Filter Bode Plot
%filtered signal = filtfilt(sosbp, gbp, singleStimulus P5);
                                                                  % Filter Signal
```


Filter the signals and find the different bands corresponding to the mentioned tasks.

Matlab Commands and Plots for Subject 1:

```
load('train subject1 psd01.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus_C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus_C9 = squeeze(s(1:50,38))
singleStimulus_C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
figure(1)
bandpass(singleStimulus frontal avg, [0.8 1.2], fs/2)
```


Matlab Commands and Plots for Subject 1:

```
load('train subject1 psd02.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus_C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```

Matlab Commands and Plots for Subject 1:

```
load('train subject1 psd03.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus_C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus_C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avq=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
figure(1)
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```

```
Matlab Commands and Plots for Subject 2:
load('train subject2 psd01.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus_C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus_C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
figure(1)
bandpass(singleStimulus frontal avg, [0.8 1.2], fs/2)
load('train subject1 psd02.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
```

Matlab Commands and Plots for Subject 2:

```
load('train subject2 psd02.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus_C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
figure(1)
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```

```
Matlab Commands and Plots for Subject 2:
load('train subject2 psd03.mat') % Loading data Subject 2
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```

Matlab Commands and Plots for Subject 3:

```
load('train subject3 psd01.mat') % Loading data 3a Subject A
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus_C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avq=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
figure(1)
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```

Matlab Commands Subject 3:

```
load('train subject3 psd02.mat') % Loading data Sub 3
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus_C2 = squeeze(s(1:50,31))
singleStimulus_C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus_C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
figure(1)
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```

Matlab Commands Subject 3:

```
load('train subject3 psd03.mat') % Loading data Sub 3
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus_C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avq=(singleStimulus C1+singleStimulus C2+singl
eStimulus C3+singleStimulus C4+singleStimulus C5+singleStimulus C6+si
ngleStimulus C7+singleStimulus C8+singleStimulus C9+singleStimulus C1
O+singleStimulus C11+singleStimulus C12)/12
figure(1)
bandpass(singleStimulus frontal avg,[0.8 1.2],fs/2)
```

Extimate the power spectrum of the and lable the compoenets corresponding to activitiies.

Matlab Commands: Power spectrum made in part 1, Coefficients code and plot:

```
load('train subject3 psd03.mat') % Loading data 3a Subject A
column2 = X;
out = reshape(column2(1:100), [], 1)
S=out;
waveletFunction = 'db8';
[ZZ, LE] = wavedec(S, 8, waveletFunction);
%%Coffiecient Vectors
cofD1 = detcoef(ZZ,LE,1);
                                               %NOTSE
cofD2 = detcoef(ZZ, LE, 2);
                                               %NOISE
cofD3 = detcoef(ZZ, LE, 3);
                                               %NOISE
cofD4 = detcoef(ZZ, LE, 4);
                                               %NOISE
cofD5 = detcoef(ZZ, LE, 5);
                                               %gamma
cofD6 = detcoef(ZZ, LE, 6);
                                               %beta
cofD7 = detcoef(ZZ, LE, 7);
                                               %alpha
cofD8 = detcoef(ZZ, LE, 8);
                                               %theta
cofA8 = appcoef(ZZ, LE, waveletFunction, 8);
                                             %delta
% Vectors
D1 = wrcoef('d', ZZ, LE, waveletFunction, 1); %noise
D2 = wrcoef('d', ZZ, LE, waveletFunction, 2); %noise
D3 = wrcoef('d', ZZ, LE, waveletFunction, 3); %npise
D4 = wrcoef('d',ZZ,LE,waveletFunction,4); %noise
Gamma = wrcoef('d', ZZ, LE, waveletFunction, 5); %gamma
Beta = wrcoef('d', ZZ, LE, waveletFunction, 6); %beta
Alpha = wrcoef('d', ZZ, LE, waveletFunction, 7); %alpha
Theta = wrcoef('d', ZZ, LE, waveletFunction, 8); %theta
Delta = wrcoef('a', ZZ, LE, waveletFunction, 8); %delta
ts=1:
t=0:ts:99;
hold on
plot(t,Alpha,'r','DisplayName','Alpha')
plot(t, Gamma, 'b', 'DisplayName', 'Gamma')
plot(t,Beta,'g','DisplayName','Beta')
plot(t, Theta, 'o', 'DisplayName', 'Theta')
plot(t,Delta,'p','DisplayName','Delta')
title('waveform for various bands')
legend
```


Subject A

```
load('train_subject1_psd01.mat') % Loading data 3a Subject A
% points from Subject A, 50
singleStimulus_P5 = squeeze(s(1:50,end))
detrend_sdata = detrend(singleStimulus_P5);
trend = singleStimulus_P5 - detrend_sdata;
mean(detrend_sdata)
frequency_s=60; % Setting the frequency to 60 Hz
N=length(singleStimulus_P5); % Get length of average per 5 trails
t=(0:N-1)/frequency_s; % Generating time vector
plot(t,detrend_sdata,'k');
hold on
plot(t,singleStimulus_P5,'b');
title('Actual Data Plot in Blue vs Detrend Data in Black for 50 samples');
hold off
```


Subject 2

```
load('train_subject2_psd01.mat') % Loading data 3a Subject A
% points from Subject A, 50
singleStimulus_P5 = squeeze(s(1:50,end))
detrend_sdata = detrend(singleStimulus_P5);
trend = singleStimulus_P5 - detrend_sdata;
mean(detrend_sdata)
frequency_s=60; % Setting the frequency to 60 Hz
N=length(singleStimulus_P5); % Get length of average per 5 trails
t=(0:N-1)/frequency_s; % Generating time vector
plot(t,detrend_sdata,'k');
hold on
plot(t,singleStimulus_P5,'b');
title('Actual Data Plot in Blue vs Detrend Data in Black for 50 samples');
hold off
```

```
load('train subject3 psd01.mat') % Loading data 3a Subject A
% points from Subject A, 50
singleStimulus P5 = squeeze(s(1:50,end))
detrend sdata = detrend(singleStimulus_P5);
trend = singleStimulus P5 - detrend sdata;
mean (detrend sdata)
frequency s=60; % Setting the frequency to 60 Hz
N=length(singleStimulus P5); % Get length of average per 5 trails
t=(0:N-1)/frequency s; % Generating time vector
plot(t,detrend sdata,'k');
hold on
plot(t, singleStimulus P5, 'b');
title('Actual Data Plot in Blue vs Detrend Data in Black for 50 samples');
hold off
title('Actual Data Plot in Blue vs Detrend Data in Black for 50 samples');
hold off
```

Extract P300 or ERP from the signals based on the type of task.

The desired task was achieved using

- 1. Band pass filter
- 2. Fast Fourier transform
- 3. Focused channels

```
load('train subject1 psd01.mat') % Loading data
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus_C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singleStimulus C3+singleStimul
us C4+singleStimulus C5+singleStimulus C6+singleStimulus C7+singleStimulus C8+singleStimulus C
9+singleStimulus C10+singleStimulus C11+singleStimulus C12)/12
t=(0:N-1)/fs; % Generating time vector
figure(1)
bandpass(singleStimulus P5,[0.15 40],fs/2);
figure(2)
bandpass(singleStimulus Train A parietal avg, [0.15 40], fs/2)
figure (3)
Y=fft(singleStimulus P5);
Fs = 1000;
                      % Sampling frequency
T = 1/Fs;
                      % Sampling period
t = (0:N-1)*T;
                     % Time vector
P2 = abs(Y/N);
P1 = P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(N/2))/N;
plot(f,P1)
title('Single-Sided Amplitude Spectrum of Signal(t)');
xlabel('f (Hz)');
ylabel('|P1(f)|');
```



```
load('train_subject2 psd01.mat') % Loading data
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus_C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singleStimulus C3+singleStimul
us C4+singleStimulus C5+singleStimulus C6+singleStimulus C7+singleStimulus C8+singleStimulus C
9+singleStimulus C10+singleStimulus C11+singleStimulus C12)/12
t=(0:N-1)/fs; % Generating time vector
figure(1)
bandpass(singleStimulus P5,[0.15 40],fs/2);
figure(2)
bandpass(singleStimulus Train A parietal avg, [0.15 40], fs/2)
figure(3)
Y=fft(singleStimulus P5);
Fs = 1000;
                      % Sampling frequency
T = 1/Fs;
                      % Sampling period
t = (0:N-1)*T;
                      % Time vector
P2 = abs(Y/N);
P1 = P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(N/2))/N;
plot(f,P1)
title('Single-Sided Amplitude Spectrum of Signal(t)');
xlabel('f (Hz)');
ylabel('|P1(f)|');
```

```
load('train subject3 psd01.mat') % Loading data
fs= 60; % Setting the frequency to 60 Hz
singleStimulus C1 = squeeze(s(1:50,30))
singleStimulus C2 = squeeze(s(1:50,31))
singleStimulus C3 = squeeze(s(1:50,32))
singleStimulus C4 = squeeze(s(1:50,33))
singleStimulus_C5 = squeeze(s(1:50,34))
singleStimulus C6 = squeeze(s(1:50,35))
singleStimulus C7 = squeeze(s(1:50,36))
singleStimulus C8 = squeeze(s(1:50,37))
singleStimulus C9 = squeeze(s(1:50,38))
singleStimulus C10 = squeeze(s(1:50,22))
singleStimulus C11 = squeeze(s(1:50,23))
singleStimulus C12 = squeeze(s(1:50,24))
N=length(singleStimulus C12); % Get length
singleStimulus frontal avg=(singleStimulus C1+singleStimulus C2+singleStimulus C3+singleStimul
us C4+singleStimulus C5+singleStimulus C6+singleStimulus C7+singleStimulus C8+singleStimulus C
9+singleStimulus C10+singleStimulus C11+singleStimulus C12)/12
t=(0:N-1)/fs; % Generating time vector
figure(1)
bandpass(singleStimulus P5,[0.15 40],fs/2);
figure(2)
bandpass(singleStimulus Train A parietal avg, [0.15 40], fs/2)
figure(3)
Y=fft(singleStimulus P5);
Fs = 1000;
                      % Sampling frequency
T = 1/Fs;
                      % Sampling period
t = (0:N-1)*T;
                      % Time vector
P2 = abs(Y/N);
P1 = P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(N/2))/N;
plot(f,P1)
title('Single-Sided Amplitude Spectrum of Signal(t)');
xlabel('f (Hz)');
ylabel('|P1(f)|');
```