Lösungen Serie 1 Imperative Programmierung

Bearbeitende Studenten:

John-Patric Palent MNR: 219203122 Etienne Rickert MNR: 219202845 Jannik Wöhl MNR: 219202844 Martin Tarnow MNR: 219203292

Die Bearbeitung der Aufgaben beginnt auf der nächsten Seite mit der Aufgabe 1a.

Alter Zustand	Geles. Symbol	Schr.Symbol	Neuer Zustand	Kopf richtg.
s1	1	0	s2	R
s2	1	1	s2	R
s2	0	0	s3	R
s3	0	1	s4	L
s4	0	0	s5	L
s5	1	1	s5	L
s5	0	1	s1	R
s1	1	0	s2	R
s2	0	0	s3	R
s3	1	1	s3	R
s3	0	1	s4	L
s4	1	1	s4	L
s4	0	0	s5	L
s5	0	1	s1	R
s1	1	0	s2	R
s2	0	0	s3	R
s3	1	1	s3	R
s3	1	1	s3	R
s3	0	1	s4	L
s4	1	1	s4	L
s4	1	1	s4	L
s4	0	0	s5	L
s5	0	1	s1	R
s1	0	0	s6	0

b) $\Sigma = \{s1, s2, s3, s4\}, A = \{1, +, =\}, Z_0 = s1, F = \{s4\}, \delta =$

Alter Zustand	Gelesenes Symbol	Geschriebenes Symbol	Neuer Zustand	Kopfrichtung
s1	1	1	s2	R
s2	1	1	s2	R
s2	+	1	s2	R
s2	=		s3	L
s3	1		s4	0

2. Alternative Ableitungen von a := a + b + 1 aus Zuweisung für G_0 :

Zuweisung → Variable := Ausdruck Variable := Ausdruck	[Regel 1]
Variable := Ausdruck + Ausdruck	[Regel 4]
Variable := Ausdruck + Ausdruck	[Regel 4]
Variable := Ausdruck + Ausdruck + Konstante	[Regel 3]
Variable := Variable + Ausdruck + Konstante	[Regel 2]
Variable := Variable + Variable + Konstante	[Regel 2]
a := Variable + Variable + Konstante	[Regel 5]
a := a + Variable + Konstante	[Regel 6]
a := a + b + Konstante	[Regel 5]
a := a + b + 1	[Regel 7]
Zuweisung → Variable := Ausdruck Variable := Ausdruck	[Regel 1]
Variable := Ausdruck + Ausdruck	[Regel 4]
Variable := Ausdruck + Ausdruck + Ausdruck	[Regel 4]
Variable := Ausdruck + Ausdruck + Konstante	[Regel 3]
Variable := Ausdruck + Ausdruck + 1	[Regel 7]
a := Variable + Ausdruck + 1	[Regel 2]
a := Variable + Variable + 1	[Regel 2]
a := a + Variable + 1	[Regel 5]
a := a + b + 1	[Regel 6]
Zuweisung → Variable := Ausdruck	[Regel 1]
Variable := Ausdruck	[116Ber 1]
Variable := Ausdruck + Ausdruck	[Regel 4]
Variable := Ausdruck + Ausdruck + Ausdruck	[Regel 4]
Variable := Ausdruck + Ausdruck + Konstante	[Regel 3]
Variable := Variable + Ausdruck + Konstante	[Regel 2]
Variable := Variable + Variable + Konstante	[Regel 2]
a := Variable + Variable + Konstante	[Regel 5]
a := Variable + b + Konstante	[Regel 6]
a := a + b + Konstante	[Regel 5]
a := a + b + 1	[Regel 7]

3. $G_0 = (T_0, N_0, P_0, S_0)$ mit

 $T_0 = \{a, b, :=, +, 1, 0\}$

 N_0 = {Zuweisung, Variable, Ausdruck, Konstante}

 $P_0 = \{$ Zuweisung = Variable := Ausdruck (Regel 1),

Ausdruck := Variable + Konstante (Regel 2),

Konstante := Konstante + Ausdruck (Regel 3),

Variable = a (Regel 4), Variable = b (Regel 5),

Konstante = 1 (Regel 6), Konstante = 0 (Regel 7)}

 $S_o = Zuweisung$

4. Syntaxdiagramm

EBNF Diagramm

Lösung zu 5.)

Zu 6. Die Sinusfunktion ist kein Algorithmus weil der Quelltext eine unendliche Länge hat und der Speicherplatz dadurch nicht begrenzt ist.