Solving the Art Gallery Problem Using Gradient Descent

Geo Juglan

Gradient Descent

arbitrary initial position

minimum

Computing the gradient for one guard

$$\nabla f(g) = \nabla \operatorname{Area}_{\triangle_1}(g)$$

$$\nabla f(g) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^{\mathsf{T}}$$

Computing the gradient for one guard

$$\nabla f(g) = \nabla \operatorname{Area}_{\triangle_1}(g)$$

$$\nabla f(g) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^{\mathsf{T}}$$

$$\nabla f(g) = \left(0, \frac{b^2}{2a}\right)^\mathsf{T}$$

Computing the gradient for one guard

$$\nabla f(g) = \nabla \operatorname{Area}_{\triangle_1}(g)$$

$$\nabla f(g) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^{\mathsf{T}}$$

$$\nabla f(g) = \left(0, \frac{b^2}{2a}\right)^{\mathsf{T}}$$

$$g' = g + \alpha \nabla f(g)$$

$$\alpha - \text{learning rate}$$

$$\mathsf{Area}_{\triangle_1 + \triangle_2}(g_1) = (b_1 + b_2)^2 \frac{\partial y}{\partial a}$$

$$\mathsf{Area}_{\triangle_1+\triangle_2}(g_1)=(b_1+b_2)^2rac{\partial y}{2a}$$
 $\mathsf{Area}_{\triangle_1}(g_1)=b_1^2rac{\partial y}{2a}$

$$\begin{aligned} \operatorname{Area}_{\triangle_1+\triangle_2}(g_1) &= (b_1+b_2)^2 \frac{\partial y}{2a} \\ \operatorname{Area}_{\triangle_1}(g_1) &= b_1^2 \frac{\partial y}{2a} \\ \operatorname{Area}_{\triangle_2}(g_1) &= \operatorname{Area}_{\triangle_1+\triangle_2}(g_1) - \operatorname{Area}_{\triangle_1}(g_1) \end{aligned}$$

$$\begin{aligned} \operatorname{Area}_{\triangle_1 + \triangle_2}(g_1) &= (b_1 + b_2)^2 \frac{\partial y}{2a} \\ \operatorname{Area}_{\triangle_1}(g_1) &= b_1^2 \frac{\partial y}{2a} \\ \operatorname{Area}_{\triangle_2}(g_1) &= \operatorname{Area}_{\triangle_1 + \triangle_2}(g_1) - \operatorname{Area}_{\triangle_1}(g_1) \\ &= \left[(b_1 + b_2)^2 - b_1^2 \right] \frac{\partial y}{2a} \end{aligned}$$

Heuristics

No Momentum

No Momentum

With Momentum

$$M_i(g_i) = \gamma M_{i-1}(g_{i-1}) + (1 - \gamma) \nabla f_i(g_i)$$

No Momentum

With Momentum

$$g_i = g_{i-1} + \alpha \bigtriangledown f_i(g_i)$$

$$M_{i}(g_{i}) = \gamma M_{i-1}(g_{i-1}) + (1 - \gamma) \nabla f_{i}(g_{i})$$
$$g_{i} = g_{i-1} + \alpha M_{i}(g_{i-1})$$

No Momentum

With Momentum

All heuristics

No momentum

$$h(g) = \nabla || \nabla f(g)||$$

$$h(g) = \bigtriangledown || \bigtriangledown f(g)||$$

$$h(g) = \left(\frac{\partial \bigtriangledown f(g)}{\partial x}, \frac{\partial \bigtriangledown f(g)}{\partial y}\right)^{\mathsf{T}}$$

$$h(g) = \nabla || \nabla f(g)||$$

$$h(g) = \left(\frac{\partial \nabla f(g)}{\partial x}, \frac{\partial \nabla f(g)}{\partial y}\right)^{\mathsf{T}}$$

$$h(g) = \left(\frac{-b^2}{2a^3}, 0\right)^{\mathsf{T}}$$

$$h(g) = \nabla || \nabla f(g)||$$

$$h(g) = \left(\frac{\partial \nabla f(g)}{\partial x}, \frac{\partial \nabla f(g)}{\partial y}\right)^{\mathsf{T}}$$

$$h(g) = \left(\frac{-b^2}{2a^3}, 0\right)^{\mathsf{T}}$$

$$g' = g + \alpha(\nabla f(g) + h(g))$$

Gradient Computation for Iteration #1

All heuristics

No reflex area

Heuristics: Line Search

s - step size

 \boldsymbol{x} - search factor

Heuristics: Line Search

s - step size

 \boldsymbol{x} - search factor

$$g_1' = g + \frac{1}{x}M(g)$$

$$g_2' = g + \frac{s}{x}M(g)$$

$$g_2' = g + \frac{s}{x}M(g)$$
$$g_3' = g + \frac{s^2}{x}M(g)$$

Heuristics: Line Search

All heuristics

No line search

Heuristics: Angle behind reflex vertex

Heuristics: Angle behind reflex vertex

$$g' = g + (\frac{\theta}{2\pi} + c)(\nabla f(g) + h(g))$$

All heuristics

No hidden movement

Heuristics: Greedy initialisation

Heuristics: Greedy initialisation

Heuristics: Greedy initialisation

Scalability for the comb polygon

2, 3, ..., 10, 15, 20 teeth

Scalability for the comb polygon

Scalability for the comb polygon

Problems encountered

Future work

improve the algorithm's robustness, performance and scalability

implement other heuristics

test the algorithm on larger polygons with more guards

solve existing bugs

 $\mathsf{Area}_{\triangle_1 + \triangle_3 + \ldots + \triangle_{m-1}}(g)$

 $\mathsf{Area}_{\triangle_1+\triangle_3+\ldots+\triangle_{m-1}}(g) = \mathsf{Area}_{\triangle_1+\ldots+\triangle_m}(g) - \mathsf{Area}_{\triangle_{m-1}}(g) + \mathsf{Area}_{\triangle_{m-2}}(g) - \ldots - \mathsf{Area}_{\triangle_2}(g) + \mathsf{Area}_{\triangle_1}(g)$

$$\begin{split} \operatorname{Area}_{\triangle_1+\triangle_3+\ldots+\triangle_{m-1}}(g) &= \operatorname{Area}_{\triangle_1+\ldots+\triangle_m}(g) - \operatorname{Area}_{\triangle_{m-1}}(g) + \operatorname{Area}_{\triangle_{m-2}}(g) - \ldots - \operatorname{Area}_{\triangle_2}(g) + \operatorname{Area}_{\triangle_1}(g) \\ &= \left(b^2 - b_m^2 + b_{(m-1)}^2 - \ldots - b_2^2 + b_1^2\right) \frac{\partial y}{2a} \end{split}$$