Algebra Lineare

Stefano Piccoli

21 marzo 2022

Indice

In	trod	uzione	4					
	0.1	Equazioni a 3 variabili	4					
	0.2	Caso generale	5					
		0.2.1 Sistema omogeneo	5					
		0.2.2 Sistema omogeneo associato	5					
		0.2.3 Soluzione di un sistema	5					
		0.2.4 Trovare soluzioni comuni	6					
1	Mat	trici	7					
		1.0.1 Operazioni	7					
	1.1	Matrice a scalini	7					
	1.2	Algoritmo di Gauss	8					
		1.2.1 Casi possibili	9					
	1.3		10					
	1.4	Algoritmo di Gauss-Jordan	10					
2	Spazi vettoriali 12							
		2.0.1 Somma	12					
		2.0.2 Moltiplicazione	12					
	2.1		12					
		2.1.1 Somma	13					
		2.1.2 Moltiplicazione	13					
	2.2		14					
	2.3	Combinazioni lineari	15					
	2.4	Span	15					
		2.4.1 Esercizi	16					
	2.5		17					
	2.6	Basi	19					
			19					
	2.7		20					

		2.7.2	Sottospazi						
	0.0	D	Formula di Grassmann						
	2.8	Rango 2.8.1	Trovare il rango						
3	App	olicazio	oni lineari 25						
	3.1	Kernel							
		3.1.1							
	3.2	Immag	gine						
		3.2.1	Trovare l'immagine utilizzando la matrice 27						
		3.2.2	Trovare la dimensione						
	3.3	Dimen	sione						
	3.4	Prodot	tto						
	3.5	Matric	e associata all'applicazione lineare						
	3.6	Isomor	fismo						
	3.7	Compo	osizione di funzioni						
	3.8	Propri	età della moltiplicazione						
	3.9	Cambi	amento di base						
	3.10	Determ	ninante						
		3.10.1	Effetto del determinante sulle operazioni elementari di Gauss						
		3.10.2	Teoremi						
		3.10.3	Formula di Cramer						
4	Autovalori ed Autovettori 38								
	4.1	Autova	alore						
	4.2	Diagor	nalizzazione						
		4.2.1	Definire se φ è diagonalizzabile 40						
			Molteplicità						
	4.3	Numer	ri complessi						
		4.3.1	Operazioni						
5	Pro	dotto s	scalare 43						
		5.0.1	Proprietà						
6	Ortogonalità e ortonormalità 44								
		6.0.1	Trovare sottospazio ortogonale						
		6.0.2	Base ortonormale						
			A cosa serve una base ortonormale? 45						
			Trovare una base ortonormale						

	Algoritmo di Gram-Schmidt	46
7	Teorema spettrale	47

Introduzione

L'**Algebra Lineare** si occupa di trovare soluzioni ad equazioni e sistemi **lineari**.

$$\begin{cases} E1: x + y = 3 \\ E2: x + 2y = 5 \end{cases}$$

E2 - E1 : y = 5-3 = 2Sostituzione: x=1

$$\begin{cases} E1: x + y = 3 \\ E2: 2x + 2y = 6 \end{cases}$$

$$E2 - E1 : 0 = 0$$

Hanno le stesse soluzioni (infinità)

$$\begin{cases} E1: x+y=3\\ E2: 2x+2y=5 \end{cases}$$

$$E2 - E1 : 0 = -1$$

Nessuna soluzione comune

Quindi abbiamo 1, ∞ o 0 soluzioni comuni. Così sarà in generale.

0.1 Equazioni a 3 variabili

Le soluzioni comuni di 3 equazioni lineari a 3 variabili corrispondono all'intersezione di 3 piani nello spazio tridimensionale. L'intersezione può essere di 3 tipi:

- Un punto (unica soluzione)
- Una retta o un piano
- $0 \ (\infty \ soluzioni)$

0.2 Caso generale

Un sistema di n equazioni lineari a m variabili.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_m \end{cases}$$
$$a_{ij}, b_i \in \Re$$
$$n, m > 0$$

0.2.1 Sistema omogeneo

Il sistema (E) è **omogeneo** se $b_1 = b_2 = \ldots = b_n = 0$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0 \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = 0 \end{cases}$$

0.2.2 Sistema omogeneo associato

Un sistema omogeneo associato è un sistema dove la parte prima parte è uguale ad un altro e i coefficienti dopo l'uguale sono $\mathbf{0}$.

0.2.3 Soluzione di un sistema

Soluzione di un sistema = soluzione di un caso particolare + soluzione dell'omogenea associata.

Esempio
$$2x + 3y = 5, n = 1, m = 2$$

Soluzione particolare

$$2x + 3y = 5$$
$$x = y = 1$$

Soluzione omogenea

$$2x + 3y = 0$$
$$x = -\frac{3}{2}y$$

Soluzione generale Definiamo s parametro nel ruolo di y.

$$x = 1 + \left(-\frac{3}{2}\right)s$$
$$y = 1 + s$$

0.2.4 Trovare soluzioni comuni

Per trovare soluzioni comuni di E è necessario semplificare. Le 3 operazioni utili per semplificare sono:

- A) Moltiplicare un'equazione E_i per una costante. $\lambda \neq 0$. $E_i \Rightarrow \lambda E_i$
- B) Moltiplicare un'equazione E_i per $\lambda \neq 0$ e fare la somma con E_j . $E_j \Rightarrow E_j + \lambda E_i$.
- C) Scambiare due equazioni.

Capitolo 1

Matrici

Per semplificare inseriamo i coefficienti delle equazioni in una **matrice** $n \cdot m$.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

1.0.1 Operazioni

Le operazioni che potevamo usare per semplificare il sistema possiamo utilizzarle anche sulle matrici:

- A) Moltiplicare una riga per $\lambda \neq 0$. $R_i \Rightarrow \lambda \cdot R_i$.
- B) Sostituire la riga R_j con una somma. $R_j \Rightarrow R_j + \lambda \cdot R_i$.
- C) Scambiare due righe.

1.1 Matrice a scalini

Una matrice $n \cdot m$ è detta a **a scalini** se:

- 1. Le righe sono **in fondo**.
- 2. Il primo elemento di ogni riga, se esiste, è **a destra** del primo elemento $\neq 0$ della riga precedente. Un tale elemento è detti **Pivot**.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} NO \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} SI \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} NO$$

1.2 Algoritmo di Gauss

- 1. Se la matrice è gia in forma a scalini si termina. END.
- 2. Si cerca il primo elemento $\neq 0$ della prima colonna $\neq 0$.
- 3. Scambiando le righe possiamo supporre che questo elemento è il **pivot** della prima riga. Lo segniamo con p.
- 4. Se siamo in forma a scalini si **termina**. **END**.
- 5. Si annullano tutti gli elementi della colonna di p con operazioni di tipo $R_j \Rightarrow R_j + \lambda \cdot R_i$.
- 6. Se siamo in forma a scalini si **termina**. **END**.
- 7. Si ricomincia con la matrice ottenuta **escludendo** la prima riga.

Esempio

$$\begin{bmatrix} 1 & -1 & 0 & 3 \\ 3 & -1 & 1 & 10 \\ 1 & 5 & 2 & 1 \end{bmatrix}$$

Il **pivot** della prima riga è 1, ora devo annullare tutti gli elementi della colonna del pivot.

$$\xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 2 & 1 & 1 \\ 1 & 5 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - R_1} \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 2 & 1 & 1 \\ 0 & 6 & 2 & -2 \end{bmatrix}$$

La prima riga è **completata**, si ripete l'algoritmo escludendola.

$$\begin{bmatrix}
1 & -1 & 0 & 3 \\
0 & 2 & 1 & 1 \\
0 & 6 & 2 & -2
\end{bmatrix}$$

Nella seconda riga il **pivot** è 2, si procede annullando le colonne sotto il pivot.

La seconda riga è **completata**, si ripete l'algoritmo escludendola.

$$\begin{bmatrix}
1 & -1 & 0 & 3 \\
0 & 2 & 1 & 1 \\
0 & 0 & -1 & 5
\end{bmatrix}$$

L'algoritmo termina poiché -1 è un **pivot** e non ci sono colonne da annullare.

Conclusioni La matrice ritrasformata in sistema di equazioni è la seguente:

$$\begin{cases} x_1 - x_2 + 3x_4 = 0 \\ 2x_2 + x_3 + x_4 = 0 \\ -x_3 - 5x_4 = 0 \end{cases}$$

La colonna di x_4 è senza pivot quindi x_4 è detta variabile libera, e può assumere qualsiasi valore nel sistema. Sostituiamo la variabile libera x_4 con il parametro t.

$$\begin{cases} x_1 - x_2 + 3t = 0 \\ 2x_2 + x_3 + t = 0 \\ -x_3 - 5t = 0 \end{cases} \begin{cases} x_1 - x_2 + 3t = 0 \\ 2x_2 + x_3 + t = 0 \\ x_3 = -5t \end{cases} \begin{cases} x_1 - x_2 + 3t = 0 \\ 2x_2 - 5t + t = 0 \\ x_3 = -5t \end{cases}$$

$$\begin{cases} x_1 - x_2 + 3t = 0 \\ x_2 = 2t \\ x_3 = -5t \end{cases} \begin{cases} x_1 - 2t + 3t = 0 \\ x_2 = 2t \\ x_3 = -5t \end{cases} \begin{cases} x_1 = -t \\ x_2 = 2t \\ x_3 = -5t \end{cases}$$

L'equazione ha infinite soluzioni che possono essere parametrizzate in t.

1.2.1 Casi possibili

Se nella forma a scalini:

- 1. Ogni colonna "non aggiunta" ha un pivot $\Leftrightarrow \exists$ unica soluzione
- 2. C'è un pivot nell'ultima colonna ⇔ ∄ soluzione
- 3. C'è una colonna "non aggiunta" senza pivot e l'ultima colonna non ne ha $\Leftrightarrow \exists \infty$ soluzioni

1.3 Matrice ridotta a scalini

Una matrice è in forma ridotta a scalini se:

- È in forma a scalini
- Ogni **pivot** $\grave{e} = 1$
- Ogni **pivot** è l'unico elemento $\neq 0$ nella sua colonna

Esempi

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{SI} \quad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{NO (A scalini ma non ridotta)}$$

1.4 Algoritmo di Gauss-Jordan

L'algoritmo produce una matrice in forma **ridotta** a scalini attraverso operazioni del tipo A, B, C.

- 1. Con l'algoritmo di Gauss si riduce a scalini la matrice.
- 2. Nelle colonne dei pivot gli elementi della colonna superiore e a sinistra nella riga sono già = 0. Annullare gli elementi sopra il pivot nella colonna con **operazioni del tipo B** $(R_j \Rightarrow R_j + \lambda \cdot R_i)$.
- 3. In ogni riga si **cerca il pivot** (se esiste). Se il pivot $\lambda \neq 1$, si moltiplica la riga per $\frac{1}{\lambda}$.

Esempio Partiamo da una matrice già ridotta a scalini dall'algoritmo di Gauss.

$$\begin{bmatrix} 2 & 1 & -1 & | & -1 \ 3 & 2 & -1 & | & 0 \ 4 & -3 & 1 & | & -1 \ 5 & -2 & 2 & | & 2 \end{bmatrix} \xrightarrow{\text{Algoritmo di Gauss}} \begin{bmatrix} 2 & 1 & -1 & | & -1 \ 0 & 1 & 1 & | & 3 \ 0 & 0 & 1 & | & 2 \ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Ora applichiamo l'algoritmo di Gauss-Jordan alla matrice a scalini per trasformarla in matrice ridotta a scalini.

$$\begin{bmatrix} 2 & 1 & -1 & | & -1 \\ 0 & 1 & 1 & | & 3 \\ 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Si azzerano gli elementi nelle colonne dei pivot che sono $\neq 0$.

$$\begin{bmatrix} 2 & 1 & -1 & & -1 \\ 0 & 1 & 1 & & 3 \\ 0 & 0 & 1 & & 2 \\ 0 & 0 & 0 & & 0 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 2 & 0 & -2 & & -4 \\ 0 & 1 & 1 & & 3 \\ 0 & 0 & 1 & & 2 \\ 0 & 0 & 0 & & 0 \end{bmatrix} \xrightarrow{R_1 + 2R_3} \begin{bmatrix} 2 & 0 & 0 & & 0 \\ 0 & 1 & 0 & & 1 \\ 0 & 0 & 1 & & 2 \\ 0 & 0 & 0 & & 0 \end{bmatrix}$$

Ora nelle colonne dei pivot tutti gli elementi sono = 0 eccetto il pivot. Si individuano i pivot $\neq 1$ e si procede con la loro trasformazione a 1. Si moltiplicano le righe con i pivot $\neq 1$ per il loro reciproco.

$$\begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 \to \frac{1}{2}R_1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Conclusioni

$$\begin{cases} x_1 = 0 \\ x_2 = 1 \\ x_3 = 2 \end{cases}$$

Capitolo 2

Spazi vettoriali

Si parla di **spazi vettoriali** quando definiamo punti e vettori nel piano \mathbb{R}^2 . Un **punto** di \mathbb{R}^2 si può descrivere con **due coordinate** (x_1, x_2) , ma anche con un **vettore** (una freccia) dall'**origine** (0,0) a (x_1, x_2)

2.0.1 Somma

Si può fare la **somma** di due vettori:

- Sulle coordinate: $(x_1, x_2) + (x'_1 + x'_2) := (x_1 + x'_1, x_2 + x'_2)$
- Geometricamente: Legge del parallelogramma dove la diagonale del parallelogramma è la somma dei due vettori.

2.0.2 Moltiplicazione

Un vettore può essere moltiplicato con uno scalare $\lambda \in \mathbb{R}$.

- Sulle coordinate: $\lambda(x_1, x_2) := (\lambda x_1, \lambda x_2)$
- \bullet Geometricamente: La lunghezza è moltiplicata da λ ma l'angolo non cambia.

2.1 Spazi vettoriali di dimensione n

Si definisce
$$\mathbb{R}^n := \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} : x_i \in \mathbb{R} \right\}$$
 uno **spazio n-dim standard** o spazio dei vettori colonna.

Un spazio vettoriale di dimensione 2 corrisponde ad un piano, di dimensione 3 ad uno spazio euclideiano.

Definizione Uno spazio vettoriale su \mathbb{R} è un insieme V che ammette due tipi di operazioni:

• Somma: $v_1, v_2 \in V \to v_1 + v_2 \in V$.

• Prodotto con $\lambda \in \mathbb{R}$: $v \in V \to \lambda \cdot v \in V$.

Le operazioni devono soddisfare:

1.
$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$
 5. $(\lambda_1 + \lambda_2) \cdot v = \lambda_1 \cdot v + \lambda_2 \cdot v$

5.
$$(\lambda_1 + \lambda_2) \cdot v = \lambda_1 \cdot v + \lambda_2 \cdot v$$

2.
$$v_1 + v_2 = v_2 + v_1$$

6.
$$\lambda \cdot (v_1 + v_2) = \lambda \cdot v_1 + \lambda \cdot v_2$$

3.
$${}^{1}\exists !0 \in V : 0 + v = v + 0 = v \ \forall v$$

$$7 \quad (\lambda_1 \cdot \lambda_2) \cdot v = \lambda_1 \cdot (\lambda_2 \cdot v)$$

3.
$${}^{1}\exists !0 \in V : 0 + v = v + 0 = v \ \forall v$$

4. $\forall v \ \exists ! - v \in V : v + (-v) = (-v) + v = 0$
7. $(\lambda_{1} \cdot \lambda_{2}) \cdot v = \lambda_{1} \cdot (\lambda_{2} \cdot v)$
8. $1 \cdot v = v$

8.
$$1 \cdot v = v$$

2.1.1Somma

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix} := \begin{bmatrix} x_1 + x'_1 \\ x_2 + x'_2 \\ \vdots \\ x_n + x'_n \end{bmatrix}$$

Moltiplicazione 2.1.2

$$\lambda \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} := \begin{bmatrix} \lambda \cdot x_1 \\ \lambda \cdot x_2 \\ \vdots \\ \lambda \cdot x_n \end{bmatrix} \lambda \in \mathbb{R}.$$

 $^{^{1}\}exists !=$ Esiste un unico

2.2 Sottospazi vettoriali

Sia V uno spazio vettoriale. Un sottospazio $W \subset V$ è un sottoinsieme tale che

• Dati due vettori nel sottospazio, la loro somma sarà nel sottospazio.

$$v_1, v_2 \in W \Rightarrow v_1 + v_2 \in W$$

• Dato un vettore nel sottospazio, il prodotto con un qualsiasi scalare è contenuto nel sottospazio.

$$v \in W \Rightarrow \lambda v \in W \ \forall \lambda$$

Un sottospazio $W \subset V$ è uno spazio vettoriale.

Esempio

1.
$$\left\{ \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \in \mathbb{R}^2 : t_1 + t_2 = 0 \right\} \subset \mathbb{R}^2$$
 è un sottospazio. In generale

$$\left\{ \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_m \end{bmatrix} \in \mathbb{R}^m : \begin{cases} a_{11}t_1 + a_{12}t_2 + \dots + a_{1m}t_m = 0 \\ a_{21}t_1 + a_{22}t_2 + \dots + a_{2m}t_m = 0 \\ \vdots \\ a_{n1}t_1 + a_{n2}t_2 + \dots + a_{nm}t_m = 0 \end{cases} \right\} \subset \mathbb{R}^m$$

è sottospazio.

Quindi le soluzioni di un sistema di equazioni lineari omogenei a n variabili definiscono un sottospazio di \mathbb{R}^m .

Non definiscono un sottospazio di \mathbb{R}^m le soluzioni di equazioni lineari non omogenee (coefficiente $\neq 0$).

2.3 Combinazioni lineari

Sia V uno spazio vettoriale, $v_1, v_2, \ldots, v_m \in V$. Una **combinazione lineare** di v_1, \ldots, v_m è una somma $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m \in V$, dove $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$.

La combinazione lineare è detta **banale** se $\lambda_1 = \cdots = \lambda_m = 0$.

Esempio

$$V = \mathbb{R}^2, \ v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Allora $-2v_1 + 1v_2 = 0$ è combinazione lineare non banale.

2.4 Span

Siano $v_1, \ldots, v_m \in V$ m vettori. Il **sottospazio generato** da v_1, \ldots, v_m è:

$$Span(v_1, v_2, ..., v_m) := \{\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m : \lambda_1, ..., \lambda_m \in \mathbb{R}\}$$

Quindi Span è l'insieme di tutte le combinazioni lineari. $Span(v_1, v_2, \dots, v_m) \subset V$ è un sottospazio.

Esempi

1.

$$\mathbb{R}^2 = Span\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$

 $Span\left\{\begin{bmatrix}0\\1\end{bmatrix}\right\}, Span\left\{\begin{bmatrix}1\\0\end{bmatrix}\right\} \subset \mathbb{R}^2$ sono due rette, rispettivamente dell'asse x e y.

2.

$$W := \left\{ \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} \in \mathbb{R}^3 : t_1 = 0 \right\}$$

Allora $W = Span \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} = Span \left\{ \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\-1 \end{bmatrix} \right\}.$

Quindi un sottospazio può essere lo span di vettori diversi.

2.4.1 Esercizi

Verificare che $Span(v_1,v_2,v_3)=Span(v_1,v_2,v_3,v_4)=\mathbb{R}^3$

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

Se $v = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^3$ applicando l'**Algoritmo di Gauss** si ottiene:

$$\begin{bmatrix} 1 & 1 & 0 & b_1 \\ 2 & 0 & 0 & b_2 \\ 3 & 1 & 1 & b_3 \end{bmatrix} \xrightarrow[R_3 - 3R_1]{R_2 - 2R_1} \begin{bmatrix} 1 & 1 & 0 & b_1 \\ 0 & -2 & 0 & b_2 - 2b_1 \\ 0 & -2 & 1 & b_3 - 3b_1 \end{bmatrix}$$

$$\xrightarrow{R3-R2} \begin{bmatrix} 1 & 1 & 0 & b_1 \\ 0 & -2 & 0 & b_2 - 2b_1 \\ 0 & 0 & 1 & b_3 - b_1 - b_2 \end{bmatrix}$$

3 pivots nelle 3 colonne a sinistra (non ci interessa a destra) quindi

$$\begin{cases} x_1 + x_2 = b_1 \\ 2x_1 = b_2 \\ 3x_1 + x_2 + x_3 = b_3 \end{cases}$$

ammette un' **unica soluzione** $\lambda_1, \lambda_2, \lambda_3$:

$$\lambda_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Il vettore generale v è contenuto in $Span(v_1, v_2, v_3)$.

In generale Se $v_1, v_2, \ldots, v_n \in V$ sono vettori tali che v_n è combinazione lineare di $v_1, v_2, \ldots, v_{n-1} \Rightarrow Span(v_1, v_1, \ldots, v_n) = Span(v_1, v_1, \ldots, v_{n-1})$.

Trovare sistema di equazioni lineari omogenee tale che il sottospazio di \mathbb{R}^n associato sia $Span(v_1, \ldots, v_m)$

1. Si sceglie una base di $Span(v_1, v_2, ..., v_m)$. Possiamo supporre la base $(v_1, ..., v_r)$ con $r \leq m$.

2. Siano
$$v_1 = \begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix}, \dots, v_r = \begin{bmatrix} a_{1r} \\ \vdots \\ a_{nr} \end{bmatrix} \Rightarrow A = \begin{bmatrix} a_{11} & \dots & a_{1r} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nr} \end{bmatrix}$$

 v_1, \ldots, v_n linearmente indipendenti \Leftrightarrow nella forma a scalini di A c'è un pivot in ogni colonna.

3. Sia
$$v = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$
 qualsiasi.

 $v \in Span(v_1, ..., v_r) \Leftrightarrow \boldsymbol{v}, v_1, ..., v_r$ sono linearmente dipendenti \Leftrightarrow

nella forma a scalini della matrice $\begin{bmatrix} a_{11} & \dots & a_{1r} & b_1 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nr} & b_n \end{bmatrix}$ ci sono sempre \mathbf{r}

pivot nelle prime r colonne ovvero l'ultima colonna non contiene pivots.

Questo dà equazioni lineari per b_1, \ldots, b_n .

Esempio

 $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ sono vettori **linearmente indipendenti** perché non sono multipli tra loro.

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 3 & b_2 \\ 1 & 1 & b_3 \end{bmatrix} \xrightarrow[R_3 - R_1]{R_2 - R_1} \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 2 & b_2 - b_1 \\ 0 & 0 & b_3 - b_1 \end{bmatrix}$$

Il **pivot** da controllare è nell'ultima colonna quindi se $b_3 - b_1 = 0 \Leftrightarrow$ **non** è un pivot della terza colonna.

Quindi $Span(v_1, v_2) = \{\text{soluzioni di } x_3 - x_1 = 0\}$

2.5 Dipendenza lineare

I vettori $v_1, v_2, \dots, v_m \in V$ sono linearmente indipendenti se

$$\lambda v_1 + \lambda_2 v_2 + \dots + \lambda_m V_m = 0$$

vale solo per $\lambda_1 = \cdots = \lambda_m = 0$. Altrimenti sono linearmente dipendenti.

Geometricamente Vettori linearmente dipendenti hanno la stessa retta.

Proposizione v_1, v_2, \dots, v_m sono **linearmente dipendenti** $\Leftrightarrow \exists i : v_i$ è combinazione lineare dei $v_i \forall j \neq i$.

Verificare se m vettori sono linearmente indipendenti

$$v_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}, v_{2} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix}, \dots, v_{m} = \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix}$$

L'equazione $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m = 0$ vale se e solo se $(\lambda_1, \dots, \lambda_m)$ è soluzione del sistema

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1m}x_m = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = 0 \end{cases}$$

dove **x** sostituisce λ e lo 0 dell'equazione corrisponde al vettore $\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$.

Quindi v_1, \ldots, v_m sono linearmente indipendenti \Leftrightarrow il sistema ammette solo la soluzione banale, cioè $x = (0, \ldots, 0)$.

Esempio Verificare che i seguenti vettori di \mathbb{R}^3 siano linearmente indipendenti.

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

Dobbiamo cercare le soluzioni del sistema lineare omogeneo con la matrice dei coefficienti associata.

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 0 & 0 & 2 \\ 3 & 1 & 1 & 4 \end{bmatrix}$$

Algoritmo di Gauss:

$$\frac{R_2 - 2R_1}{R_3 - 3R_1} \left[\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & -2 & 0 & -2 \\
0 & -2 & 1 & -2
\end{array} \right] \xrightarrow{R_3 - R_2} \left[\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & -2 & 0 & -2 \\
0 & 0 & 1 & 0
\end{array} \right]$$

Ci sono 3 pivots e una variabile libera $\Rightarrow \infty$ soluzioni. Il sistema ammette soluzioni non banali \Rightarrow i vettori sono linearmente dipendenti.

2.6 Basi

Un sistema v_1, \ldots, v_n di vettori è una **base** di V se:

- i vettori v_1, \ldots, v_n sono linearmente indipendenti
- $Span(v_1,\ldots,v_n)=V$

Esempio Base standard di \mathbb{R}^n :

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Si osserva
$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n.$$

Dunque $Span(e_1, ..., e_n) = \mathbb{R}^n$ e $\lambda_1 e_1 + \cdots + \lambda_n e_n = 0$ se e solo se $\lambda_1 = \cdots = \lambda_n = 0$.

2.6.1 Coordinate

Sia v_1, \ldots, v_n una base di V e $v \in V$ un vettore. Allora

$$\exists ! \alpha_1, \ldots, \alpha_n : v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$$

ovvero **ogni vettore** si scrive in un modo **unico** come **combinazione lineare** degli **elementi della base**.

Gli α_i sono le **coordinate** di v rispetto alla **base**.

Trovare le coordinate di un vettore rispetto alla base

Sappiamo da esercizi precedenti che
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 sono

una **base** di \mathbb{R}^3 . Trovare le coordinate di $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ rispetto a questa base.

$$\alpha_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

Applichiamo l'algoritmo di Gauss-Jordan.

$$\begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 2 & 0 & 0 & | & 2 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 0 & -2 & 0 & | & 2 \\ 0 & -2 & 1 & | & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

Quindi
$$\begin{cases} \alpha_1 = 1 \\ \alpha_2 = -1 \\ \alpha_3 = -1 \end{cases}$$
 e 1 $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ + -1 $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ + -1 $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ = $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$

2.7 Dimensione

La dimensione di uno spazio V sarà definita come il numero degli elementi di una base. Questo numero è lo stesso per ogni base.

2.7.1 Proprietà

Se dim V = n e $v_1, \ldots, v_r \in V$ i casi sono:

- $r > n \Leftrightarrow v_1, \ldots, v_r$ sono linearmente dipendenti
- r = n e v_1, \ldots, v_n linearmente indipendenti \Leftrightarrow è una base
- r < n e v_1, \ldots, v_n linearmente indipendenti \Leftrightarrow si completa³ in una base

²Dimostrazione a fine lezione 06.

³Posso aggiungere vettori affinché diventi una base

Esempio

Decidiamo se
$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ è una base di \mathbb{R}^3

 $dim \mathbb{R}^3 = 3 \Rightarrow$ se sono **indipendenti** formano una **base**. Verifichiamo con **Gauss**:

$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

 $2 \text{ pivots} \Rightarrow i \text{ vettori sono linearmente dipendenti}.$

Però i **pivots** sono nelle colonne 1,3 quindi escludendo la colonna 2:

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
 sono linearmente indipendenti.⁴

Ora $dim\ Span(v_1, v_2) = 2, dim\ \mathbb{R}^3 = 3.$

Troviamo ora un vettore di \mathbb{R}^3 non contenuto nello $Span(v_1, v_2)$.

Una strategia può essere partire dalla **base standard**: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ Una

delle 3 basi standard non è sicuramente contenuta nello $Span(v_1, v_2)$ altrimenti esso sarebbe una base.

Cerchiamo quindi il vettore della base standard che è linearmente indipendente agli altri 2 vettori. Proviamo con e_3 :

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 0 \\ 0 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3 pivots $\Rightarrow e_3$ completa la nostra base. e_1 invece non la completa.

Proposizione Sia $W \subset V$ un sottospazio. Allora

- 1. $dim W \leq dim V$
- 2. Se $W \neq V$, allora $\dim W < \dim V$

Questa proposizione è utile per calcolare le dimensioni dei sottospazi.

 $^{^4}$ Il vettore v_2 è il vecchio vettore v_3 , cambio di notazione per proseguire l'esercizio

Esempio

Sia
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2x2}\left(\mathbb{R}\right) : b = c \right\}$$
 (Matrici simmetriche)

 $dim \ M_{2x2} (\mathbb{R}) = 4$ (base standard).

$$V \neq M_{2x2}(\mathbb{R}) \Rightarrow dim \ V \leq 3.$$

$$\operatorname{Ma}\begin{bmatrix}1&0\\0&0\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix},\begin{bmatrix}0&1\\1&0\end{bmatrix}\text{ sono linearmente indipendenti}\Rightarrow dim\ V=3$$

2.7.2 Sottospazi

Intersezioni di sottospazi

Se $W_1, W_2 \subset V$ sottospazi $\Rightarrow W_1 \cap W_2$ è sottospazio.

Formula di Grassmann

Siano $V_1, V_2 \subset V$ due sottospazi allora

$$V_1 + V_2 := \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$$

Osservazione $V_1 + V_2$ è un sottospazio.

Esempio

$$V_1 = \left\{ \begin{bmatrix} 0 \\ a_2 \\ a_3 \end{bmatrix} : a_2, a_3 \in \mathbb{R}^3 \right\}, V_2 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ 0 \end{bmatrix} : a_1, a_2 \in \mathbb{R}^3 \right\} \subset \mathbb{R}^3$$

$$V_1+V_2=\mathbb{R}^3$$
, ma anche $V_1\cap V_2=\left\{egin{bmatrix}0\\a_2\\0\end{bmatrix}:a_2\in\mathbb{R}^3\right\}$

Formula di Grassmann Se $dim < \infty, V_1, V_2 \subset V$ sottospazi allora

$$dim(V_1 + V_2) = dim \ V_1 + dim \ V_2 - dim(V_1 \cap V_2)$$

Esempio In \mathbb{R}^4 consideriamo i sottospazi

$$V = \left\{ \text{soluzioni di} \left\{ \begin{aligned} x_1 + 2x_2 + x_3 &= 0 \\ -x_1 - x_2 + 3x_4 &= 0 \end{aligned} \right\}$$

$$W = Span \left(v_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ -2 \\ -2 \\ 0 \end{bmatrix} \right)$$

Calcoliamo $dim(V \cap W), dim(V + W)$

Soluzione

 $\operatorname{dim} \mathbf{W} = \mathbf{2}$ perché ovviamente $W_1 \neq \lambda W_2$.

Calcoliamo dim V

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & -1 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 3 \end{bmatrix} \rightarrow \begin{cases} x_1 + 2x_2 + x_3 = 0 \\ x_2 + x_3 + 3x_4 = 0 \end{cases}$$

Soluzione generale
$$\begin{bmatrix} x_3 + 6x_4 \\ -x_3 - 3x_4 \\ x_3 \\ x_4 \end{bmatrix}$$

Posso scrivere in forma parametrizzata $x_3 \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 6 \\ -3 \\ 0 \\ 1 \end{bmatrix}$ e ora sappiamo

che $\dim V = 2 e v_1, v_2$ è una base.

Cerchiamo ora dim(V+W).

$$V + W = Span(v_1, v_2, w_1, w_2)$$

Troviamo una base con Gauss:

$$\begin{bmatrix} 1 & 6 & 2 & 3 \\ -1 & -3 & 0 & -2 \\ 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 3 & 2 & 1 \\ 0 & -6 & -1 & -5 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 - 2R_1} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & 3 & -3 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\xrightarrow{R_2 \cup R_4} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 3 & 2 & 1 \end{bmatrix} \xrightarrow{R_4 - 3R_2} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_4 + \frac{1}{3}R_3} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

3 pivots quindi le prime 3 colonne sono indipendenti.

Quindi $dim \ Span(v_1, v_2, w_1, w_2) = dim(V + W) = 3.$

Grassmann: $dim(V \cap W) = dim \stackrel{\cdot}{V} + dim \stackrel{\cdot}{W} - dim(\stackrel{\cdot}{V} + W) = 2 + 2 - 3 = 1$

Potevamo anche calcolare direttamente $dim(V \cap W)$:

$$Y \cap W = \left\{ \lambda_1 \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ -2 \\ -2 \\ 0 \end{bmatrix} \text{ che soddisfano } \left\{ \begin{aligned} x_1 + 2x_2 + x_3 &= 0 \\ -x_1 - x_2 + 3x_4 &= 0 \end{aligned} \right\}$$

Sostituiamo e otteniamo:

$$\begin{cases} (2\lambda_1 + 3\lambda_2) + 2(-2\lambda_2) + (\lambda_1 - 2\lambda_2) = 0 \\ -(2\lambda_1 + 3\lambda_2) + (-2\lambda_2) + 3\lambda_1 = 0 \end{cases}$$

$$\begin{cases} 3\lambda_1 - 3\lambda_2 = 0\\ \lambda_1 - \lambda_2 = 0 \end{cases}$$

$$\lambda_1 = \lambda_2 \Rightarrow dim(V \cap W) = 1$$
 perché $V \cap W = \{\lambda(w_1 + w_2) : \lambda \in \mathbb{R}\}$

2.8 Rango

Se
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & & \\ a_{n1} & \dots & a_{mn} \end{bmatrix}$$
, il **rango** di A è

$$rg(A) := dim \ Span \left(\begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}, ..., \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} \right)$$

2.8.1 Trovare il rango

Per calcolare rg(A) bisogna:

- estrarre una base di *Span*(colonne).
- usare l'algoritmo di Gauss sulla matrice A

Se numero colonne linearmente indipendenti = numero dei pivots della forma a scalini $\Rightarrow rg(A)$ = numero di pivot nella forma a scalini.

Capitolo 3

Applicazioni lineari

Definizione Siano V_1, V_2 spazi vettoriali su \mathbb{R} . Un'applicazione lineare è una funzione $\varphi: V_1 \to V_2$ che soddisfa:

- $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) \ \forall v_1, v_2 \in V_1$
- $\lambda \varphi(v) = \varphi(\lambda v) \ \forall \lambda \in \mathbb{R}, \forall v \in V_1$

3.1 Kernel

Il **Kernel o nucleo** è un sottospazio:

$$Ker(\varphi) := \{ v \in V_1 : \varphi(v) = 0 \}$$

Proposizione $Ker(\varphi_1) \subset V_1$ è un sottospazio.

3.1.1Trovare il Kernel utilizzando la matrice

Se
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & & \\ a_{n1} & \dots & a_{mn} \end{bmatrix}, v = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$v \in Ker(\varphi) \Leftrightarrow Av = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
è soluzione di
$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

Quindi per trovare $Ker(\varphi)$ bisogna **risolvere il sistema omogeneo** (ad esempio con Gauss).

Esempio Sia $\varphi : \mathbb{R}^4 \to \mathbb{R}^3$ della matrice $\begin{bmatrix} 1 & 2 & -1 & -2 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 4 \end{bmatrix}$ Trovare $Ker(\varphi)$.

Applichiamo Gauss alla matrice di φ .

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & -2 & 4 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Ker(\varphi) \Leftrightarrow \text{soluzioni di} \begin{cases} x_1 + 2x_2 - 3x_3 - 2x_4 = 0 \\ -x_2 + 2x_3 + 3x_4 = 0 \end{cases}$$

$$Ker(\varphi) \Leftrightarrow \text{soluzioni di} \begin{cases} x_1 + 2x_2 - 3x_3 - 2x_4 = 0 \\ -x_2 + 2x_3 + 3x_4 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x_2 = 2x_3 + 3x_4 \\ x_1 = -3x_3 - 4x_4 \end{cases} \Rightarrow \begin{bmatrix} -3 \\ 2 \\ 1 \\ 0 \end{bmatrix} x_3 \begin{bmatrix} -4 \\ 3 \\ 0 \\ 1 \end{bmatrix} x_4 \text{ soluzione generale del sistema.}$$

Quindi
$$\begin{bmatrix} -3\\2\\1\\0 \end{bmatrix} x_3 \begin{bmatrix} -4\\3\\0\\1 \end{bmatrix} x_4$$
 è la **base** di $Ker(\varphi)$.

3.2 Immagine

L'immagine è un sottospazio:

$$Im(\varphi) := \{ w \in V_2 : \exists v \in V_1 \text{ tale che } w = \varphi(v) \}$$

Proposizione $Ker(\varphi) \subset V_2$ è un sottospazio.

3.2.1 Trovare l'immagine utilizzando la matrice

Sappiamo che se e_1, \ldots, e_n è la base standard,

$$\varphi(e_1) = \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}, \dots, \varphi(e_n) = \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Ma $Im(\varphi) = Span(\varphi(e_1), \dots, \varphi(e_n))$

Quindi $\boldsymbol{Im}(\boldsymbol{\varphi})$ è lo span delle colonne di A in \mathbb{R}^m

3.2.2 Trovare la dimensione

Per trovare la $\dim Im(\varphi)$ bisogna determinare la dimensione dello span, ovvero il rango.

Se φ ha matrice A allora $\dim Im(\varphi) = rg(A)$

Esempio Sia $\varphi : \mathbb{R}^4 \to \mathbb{R}^3$ della matrice $\begin{bmatrix} 1 & 2 & -1 & -2 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 4 \end{bmatrix}$ Trovare $Im(\varphi)$.

Applichiamo Gauss alla matrice di φ .

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & -2 & 4 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Ci sono **pivots** nelle prime due colonne $\Rightarrow \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}$ è la base di $Im(\varphi)$ e il **rango** è 2.

3.3 Dimensione

Teorema Se $dim V_1 < \infty$ allora

$$dim Ker(\varphi) + dim Im(\varphi) = dim V_1$$

in $\varphi:V_1\to V_2.$ La dimensione di V_2 non riguarda questo teorema.

3.4 Prodotto

Se $A \in M_{mxn}(\mathbb{R}), v \in \mathbb{R}^n$, il loro **prodotto** è il vettore in \mathbb{R}^m :

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} := \begin{bmatrix} a_{11}b_1 + a_{12}b_2 + \dots + a_{1n}b_n \\ a_{21}b_1 + a_{22}b_2 + \dots + a_{2n}b_n \\ \vdots \\ a_{m1}b_1 + a_{m2}b_2 + \dots + a_{mn}b_n \end{bmatrix} \in \mathbb{R}^m$$

Il vettore moltiplicato deve avere lo stesso numero di colonne della matrice.

Proposizione Se $v = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$ è un vettore generale, allora $\varphi(v) = A \cdot v$.

Esempio 1 Sia $\varphi : \mathbb{R}^3 \to R$, $\varphi \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = x + 2y + 3z$. Trovare $\varphi \begin{pmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \end{pmatrix}$.

Naturalmente $1 \cdot 1 + -2 \cdot 1 + 1 \cdot 3 = 2$. Ma anche:

$$\varphi\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = 1, \ \varphi\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = 2, \ \varphi\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = 3.$$

$$\varphi\left(\begin{bmatrix}1\\-1\\1\end{bmatrix}\right) = \begin{bmatrix}1 & 2 & 3\end{bmatrix} \cdot \begin{bmatrix}1\\-1\\1\end{bmatrix} = 1 \cdot 1 + 2 \cdot -1 + 1 \cdot 3 = 2$$

Esempio 2
$$\varphi : \mathbb{R}^2 \to \mathbb{R}^2$$
, $\varphi \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \left(\begin{bmatrix} x+y \\ x-y \end{bmatrix} \right)$

$$\varphi \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \varphi \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} b_1 + b_2 \\ b_1 - b_2 \end{bmatrix} \text{ Vettore generico}$$

Conclusione Se $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ lineare, $\varphi(e_1), ..., \varphi(e_n)$ base standard allora:

- $\varphi(e_1), \ldots, \varphi(e_n)$ determina φ in maniera unica
- $\forall v$ possiamo calcolare $\varphi(v) = A \cdot v$ dove $A \in M_{mxn}(\mathbb{R})$ è la matrice definita nel punto precedente.

3.5 Matrice associata all'applicazione lineare

Sia $\varphi: V \to W$ lineare.

Sia $B = \{e_1, \dots, e_n\}$ una base di V [dim V = n] Sia $B' = \{e'_1, \dots, e'_m\}$ una base di W [dim W = m]

Scriviamo

$$\varphi(e_1) = a_{11}e'_1 + a_{21}e'_2 + \dots + a_{m1}e'_m$$

$$\varphi(e_2) = a_{12}e'_1 + a_{22}e'_2 + \dots + a_{m2}e'_m$$

$$\vdots$$

$$\varphi(e_n) = a_{1n}e'_1 + a_{2n}e'_2 + \dots + a_{mn}e'_m$$

La matrice di φ rispetto alla base B, B' è:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in M_{mxn}(\mathbb{R})$$

Quindi

$$A = \left[\varphi(e_1) \mid \varphi(e_2) \mid \dots \mid \varphi(e_n) \right]$$

dove le colonne sono le coordinate di $\varphi(e_i)$ rispetto a e'_1, \ldots, e'_m .

Teorema Se $v=b_1e_1+\cdots+b_ne_n$ è un vettore di V consideriamo il vettore colonna in \mathbb{R}^n : $\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$.

Allora le coordinate di $\varphi(v)$ rispetto a $B' = \{e'_1, \dots, e'_m\}$ sono date dal vettore colonna

$$A \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \in \mathbb{R}^m$$

Importante La matrice A è sempre definita con due basi B, B'.

Esempio
$$\varphi: \mathbb{R}^2 \to \mathbb{R}^2, \ \varphi\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{pmatrix} x+2y \\ x+2y \end{pmatrix}$$

Matrice rispetto alla base standard:

$$\varphi\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}, \varphi\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\2\end{bmatrix} \Rightarrow A = \begin{bmatrix}1 & 2\\1 & 2\end{bmatrix}$$

Matrice rispetto alla base $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ di \mathbb{R}^2

$$\varphi\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix} = \mathbf{0} \cdot \begin{bmatrix}1\\0\end{bmatrix} + \mathbf{1} \cdot \begin{bmatrix}1\\1\end{bmatrix}$$

$$\varphi\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\3\end{bmatrix} = 0 \cdot \begin{bmatrix}1\\0\end{bmatrix} + \frac{3}{3} \cdot \begin{bmatrix}1\\1\end{bmatrix}$$
$$A = \begin{bmatrix}0 & 0\\1 & 3\end{bmatrix}$$

Matrice rispetto alla base $\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\-1\end{bmatrix}$ di \mathbb{R}^2

$$\varphi\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\3\end{bmatrix} = 3 \cdot \begin{bmatrix}1\\1\end{bmatrix} + \mathbf{0} \cdot \begin{bmatrix}2\\-1\end{bmatrix}$$

$$\varphi\left(\begin{bmatrix}2\\-1\end{bmatrix}\right) = \begin{bmatrix}0\\0\end{bmatrix} = 0 \cdot \begin{bmatrix}1\\1\end{bmatrix} + 0 \cdot \begin{bmatrix}2\\-1\end{bmatrix}$$
$$A = \begin{bmatrix}3 & 0\\0 & 0\end{bmatrix}$$

Quindi scrivendo le coordinate **non** rispetto alla base standard ma ad **altre** basi, φ può diventare molto più semplice. Per trovare basi ottimali si utilizzeranno gli autovettori.

3.6 Isomorfismo

Un'applicazione lineare $\varphi: V_1 \to V_2$ è un **isomorfismo** se

- $Im(\varphi) = V_2$
- per $v_1, v_1' \in V_1 \varphi(v_1) = \varphi(v_1') \Leftrightarrow v_1 = v_1'$. Notazione: $v_1 \tilde{\to} v_2$

Dunque φ è un isomorfismo se $\forall v_2 \in V_2 \exists ! v_1 \in V_1 : \varphi(v_1) = v_2$.

Osservazione φ è un isomorfismo $\Leftrightarrow Im(\varphi) = V_2, Ker(\varphi) = V_1.$

Esempio $V_1 = M_{2x2}(\mathbb{R}), V_2 = \mathbb{R}^4 \ \varphi : M_{2x2}(\mathbb{R}) \to \mathbb{R}^4$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
è un **isomorfismo**.

Ma anche $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ definisce un **isomorfismo**. $\psi : \mathbb{R}^4 \rightarrow M_{2x2}(\mathbb{R})$.

Osservazione Sia V uno spazio vettoriale, $dim\ V = n$ e $B = (e_1, \ldots, e_n)$ una base di V. Ogni $v \in V$ si scrive in modo unico come $v = a_1e_1 + \cdots + a_ne_n$.

Allora $v = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$ definisce un **isomorfismo** $V \tilde{\to} \mathbb{R}^n$.

Infatti φ è lineare, $Im(\varphi) = \mathbb{R}^4$, $Ker(\varphi) = \{0\}$.

Osservazione Sia $\varphi: V_1 \to V_2$ una qualsiasi applicazione lineare,

 $\dim V_1 = n, \dim V_2 = m.$

 $B = (e_1, \ldots, e_n)$ base di V_1 .

 $B' = (e'_1, \dots, e'_m)$ base di V_2 .

Sia A la matrice di φ rispetto a $B \in B'$.

B definisce $\psi: V_1 \tilde{\to} \mathbb{R}^n$.

B' definisce $\psi': V_2 \tilde{\to} \mathbb{R}^m$.

Lemma

- ψ^-1 induce un **isomorfismo** $Ker(v \mapsto Av) \tilde{\to} Ker(\varphi)$
- ψ' induce un **isomorfismo** $Ker(\varphi) \tilde{\rightarrow} Ker(v \mapsto Av)$

3.7 Composizione di funzioni

Siano $V_1 \xrightarrow{\varphi} V_2 \xrightarrow{\psi} V_3$ applicazioni lineari.

Allora $\psi \circ \varphi : V_1 \to V_3$ è **lineare**.

Siano

 $B_1 = (e_1, \dots, e_n)$ base di V_1

 $B_2 = (f_1, \dots, f_n)$ base di V_2

 $B_3 = (g_1, \ldots, g_n)$ base di V_3

Siano

 $B = \text{ matrice di } \varphi \text{ rispetto a } B_1, B_2$

 $A = \text{matrice di } \psi \text{ rispetto a } B_2, B_3$

Allora la matrice di $\psi \circ \varphi$ rispetto a $B_1, B_3 \in \mathbf{A} \cdot \mathbf{B}$.

3.8 Proprietà della moltiplicazione

- 1. A(BC) = (AB)C
- 2. $A \cdot B = B \cdot A$ non è vero in generale
- 3. Sia $I = \begin{bmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{bmatrix}$ la matrice **identità** di $M_{mxn}(\mathbb{R})$. Allora $\forall A \in M_{nxn}(\mathbb{R}): \mathbf{I} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{I} = \mathbf{A}$
- 4. Se $\varphi: V_1 \tilde{\to} V_2$ isomorfismo $\Rightarrow \exists \varphi^{-1}: V_2 \tilde{\to} V_1$ tale che $\varphi \circ \varphi^{-1} = id_{V_2}$ e $\varphi^{-1} \circ \varphi = id_{V_1}^{-1}$.

Se fissiamo le basi

 B_1 di V_1 , B_2 di V_2 , φ ha matrice $A \in \varphi^{-1}$ ha matrice $A^{-1} \Rightarrow$

$$A \cdot A^{-1} = I$$
. $A^{-1} \cdot A = I$

5. Matrice inversa: Esiste solo se è la matrice di φ isomorfismo.

¹id=identità

3.9 Cambiamento di base

Sia V uno spazio vettoriale di dim n e B, B' due basi. La **matrice di cambiamento di base** rispetto a (B, B') è definita da²

$$P:=[id_V]_B^{B^\prime}$$

Esempio Siano
$$V = \mathbb{R}^2, B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, B' = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

$$\varphi : v \mapsto A \cdot v, \text{ dove } A = \begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix} \text{ Allora:}$$

$$[\varphi]_B = A, \text{ calcoliamo } [\varphi]_{B'}:$$

$$\varphi\left(\begin{bmatrix}2\\1\end{bmatrix}\right) = \begin{bmatrix}2 & -2\\1 & -1\end{bmatrix} \cdot \begin{bmatrix}2\\1\end{bmatrix} = \begin{bmatrix}2\\1\end{bmatrix} = 1 \cdot \begin{bmatrix}2\\1\end{bmatrix} + 0 \cdot \begin{bmatrix}1\\1\end{bmatrix}$$

$$\varphi\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}2 & -2\\1 & -1\end{bmatrix} \cdot \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} = 0 \cdot \begin{bmatrix}2\\1\end{bmatrix} + 0 \cdot \begin{bmatrix}1\\1\end{bmatrix}$$

Quindi
$$[\varphi]_{B'} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Calcoliamo ora $P = [id_V]_B^{B'}$

Calcoliamo con Gauss la matrice del cambiamento di base. Scriviamo la base B usando le coordinate della base B'.

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = (-1) \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$P = egin{bmatrix} 1 & -1 \ -1 & 2 \end{bmatrix}$$
 è la matrice del cambio di base da B a B' $^3 \begin{bmatrix} 2 & 1 \ 1 & 1 \end{bmatrix}$ è la matrice di cambio di base da B' a B

Si nota che:

$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $^{^{2}}id_{V}$ che va da B a B'

 $^{^3}$ Usando lo stesso metodo ma è banale poiché B, ovvero la base di destinazione, è la matrice identità

In generale $[id_V]_{B'}^B = [id_V]_B^{B'} = [id_V \circ id_V]_B = [id_V]_B$ è la matrice identità.

Quindi $P = [id_V]_B^{B'}$ è invertibile e $P^{-1} = [id_V]_{B'}^B$

Teorema Se B, B' sono due basi di V, P matrice di cambiamento di base. $\varphi: V \to V$ applicazione lineare con $A = [\varphi]_B$ allora $[\varphi]_{B'} = PAP^{-1}$

Esempio Con l'esempio precedente:

$$PAP^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

3.10 Determinante

Il determinante sarà un funzione $det: M_{nxn}(\mathbb{R}) \to \mathbb{R}$ con la proprietà fondamentale:

- $det(A) = 0 \Leftrightarrow le righe di A sono linearmente indipendenti$
- $det(A) = 0 \Leftrightarrow$ le colonne di A sono linearmente indipendenti

Esempi

- n = 1 A = [a] det(A) = a
- n = 2 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ det(A) = ad bc

Geometricamente

$$det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{area} \ \mathbf{del} \ \mathbf{parallelogramma} \ \mathrm{costruito} \ \mathrm{sui} \ \mathrm{lati} \ \begin{bmatrix} a \\ c \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix}$$

Definizione generale Per induzione su n-1, sapendo n=1,2: Per $A = [a_{ij}]$ sia A_{ij} la matrice ottenuta cancellando la riga i e la colonna j:

- $\sum_{i} (-1)^{i+j} a_{ij} \det(A_{ij})$ per i fisso (sviluppo secondo la riga i)
- $\sum_{i} (-1)^{i+j} a_{ij} \det(A_{ij})$ per j
 fisso (sviluppo secondo la colonna j)

Il risultato sarà uguale per entrambe le formule e per qualsiasi i,j scelto.

Promemoria per i segni

$$(-1)^{i+j} : \begin{bmatrix} + & - & + & - & + & - & \dots \\ - & + & - & + & - & + & \dots \\ + & - & + & - & + & - & \dots \\ - & + & - & + & - & + & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \end{bmatrix}$$

Esempio Per n=3:

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

Sviluppo secondo la prima riga:

$$1\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} - 0 + (-1)\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} = 2 - (-1) = \mathbf{3}$$

Sviluppo secondo la seconda colonna:

$$0+1\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} + 0 = 2+1 = 3$$

Esempio Matrice triangolare superiore ovvero $a_{ij} = 0$ se i¿j.

$$A = \begin{bmatrix} a_{11} & * & * & * \\ 0 & a_{22} & * & * \\ 0 & 0 & \ddots & * \\ 0 & 0 & 0 & a_{nn} \end{bmatrix}$$

$$det(A) = \prod_{i=1}^{n} a_{ij}$$

3.10.1 Effetto del determinante sulle operazioni elementari di Gauss

1. Scambio di due righe

adiacenti: $det(A) \rightarrow -det(A)$

scambio tra riga i e j
 qualsiasi: si eseguono cambi successivi adiacenti.

2. Sostituzione della riga R_i con $R_i + \lambda R_j (j \neq i)$: det(A) non cambia

3.10.2 Teoremi

Teorema Se $A, B \in M_{nxn}(\mathbb{R})$

$$det(A \cdot B) = det(A) \cdot det(B)$$

Corollario Se $A \in M_{nxn}(\mathbb{R})$

$$A^{-1}$$
 esiste $\Leftrightarrow det(A) \neq 0$ allora $det(A^{-1}) = \frac{1}{det(A)}$)

Proposizione Sia $\varphi: V \to V$ una mappa lineare, B, B' due basi di V, A la matrice di φ rispetto a B, A' la matrice di φ rispetto a B'.

$$det(A) = det(A')$$

Quindi det(A) dipende solo da φ e non dalla base.

Corollario Se $\varphi:V\to V$ è un'applicazione lineare, A la matrice di φ rispetto ad una qualsiasi base

$$Ker(\varphi) \neq 0 \Leftrightarrow Im(\varphi) \neq V \Leftrightarrow det(A) = 0$$

3.10.3 Formula di Cramer

Definizione Se $A \in M_{nxn}(\mathbb{R})$, la matrice **aggiunta** di A è

$$\tilde{A} = [\tilde{a}_{ij}] \text{ dove } \tilde{a}_{ij} = (-1)^{i+j} \det(A_{ji})$$

Formula di Cramer

$$A \cdot ilde{A} = det(A) \cdot I$$

dove $I \in M_{nxn}\mathbb{R}$ è la matrice identità.

Corollario Se $det(A) \neq 0$,

$$A^{-1} = \frac{1}{det(A)} \cdot \tilde{A}$$

Esempio Per n=2

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \to \tilde{A} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Esempio Per n=3

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 0 \\ 4 & 0 & 1 \end{bmatrix} \quad det(A) = 2 \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix} = -22$$

$$det(A) \neq 0 \Rightarrow \exists \ A^{-1}$$

$$\tilde{A} = \begin{bmatrix} 2 & 0 & -6 \\ 0 & -11 & 0 \\ -8 & 0 & 2 \end{bmatrix}$$

$$A^{-1} = -\frac{1}{22} \cdot \tilde{A} = \begin{bmatrix} -\frac{1}{11} & 0 & \frac{3}{11} \\ 0 & \frac{1}{2} & 0 \\ \frac{4}{11} & 0 & -\frac{1}{11} \end{bmatrix}$$

Autovalori ed Autovettori

Definizione Sia V uno spazio vettoriale su \mathbb{R} , $dim\ V < \infty$, $\varphi: V \to V$ applicazione lineare.

 $\lambda \in \mathbb{R}$ è un autovalore di φ se $\exists v \neq 0 \in V : \varphi(v) = \lambda \cdot v$. In questo caso v è un autovettore associato a λ .

Osservazioni

- \bullet v può essere autovettore per un solo λ
- ullet λ può essere autovalore di molti vettori

Proposizione

• Se $\lambda \in \mathbb{R}$, gli autovettori per λ formano un sottospazio di V:

V_{λ} Autospazio

• Se $\lambda_1 \neq \lambda_2$, $V_{\lambda_1} \cap V_{\lambda_2} = (0)$

4.1 Autovalore

 λ autovalore di $\varphi \Leftrightarrow Ker(\varphi - \lambda \cdot id) \neq 0$

Ma se A è la matrice di φ rispetto ad una base $\Rightarrow A - \lambda I$ è la matrice di $\varphi - \lambda \cdot id$.

$$Ker(\varphi - \lambda \cdot id) \neq 0 \Leftrightarrow Ker(A - \lambda I) \neq 0 \Leftrightarrow$$

$$det(A - \lambda I) = 0$$

Definizione Se $A \in M_{nxn}(\mathbb{R})$, il **polinomio caratteristico** di A è:

$$P_A(t) := det(A - t \cdot I) \in \mathbb{R}[t]$$

dove t è una variabile.

Conclusione λ è autovalore di $\varphi \Leftrightarrow \lambda$ radice di $P_A(t)$ dove A è matrice di φ rispetto ad una base.

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{22} - t & \dots & a_{nn} - t \end{bmatrix}$$

4.2 Diagonalizzazione

Definizione φ è diagonalizzabile se \exists una base di V dove la matrice di φ è diagonale.

Proposizione φ è diagonalizzabile $\Leftrightarrow \exists$ base di V costituita di autovettori di φ .

Proposizione Se $\lambda_1, \ldots, \lambda_n$ sono autovalori distinti di φ , v_i autovettore associato a λ_i dove $i = 1, \ldots, n \Rightarrow v_1, \ldots, v_n$ sono linearmente indipendenti

Corollario

- 1. Ci sono un **numero finito** di **autovalori** distinti perché $\dim V < \infty$.
- 2. φ é diagonalizzabile \Leftrightarrow se $\lambda_1, \ldots, \lambda_n$ sono gli autovalori distinti di φ allora

$$dim\ V_{\lambda_1} + dim\ V_{\lambda_2} + \dots + dim\ V_{\lambda_n} = dim\ V$$

3. Se $n=\dim V$ e arphi ha n autovalori distinti $\Rightarrow arphi$ è diagonalizzabile

4.2.1 Definire se φ è diagonalizzabile

1. Trovare gli **autovalori**

Se ci sono n=dim V distinti \Rightarrow diagonalizzabile

2. Trovare gli autovettori per ogni λ_i e calcolare $\dim V_{\lambda_i}$.

Se
$$\sum_i dim \ V_{\lambda_i} = dim \ V \Rightarrow$$
 è diagonalizzabile
Se $\sum_i dim \ V_{\lambda_i} < dim \ V \Rightarrow$ NON è diagonalizzabile

Molteplicità

Definizione Sia λ un autovalore di φ .

La molteplicità algebrica di λ è la molteplicità di λ come radice di $P_A(t)$. La molteplicità geometrica di λ è $dim V_{\lambda}$.

Proposizione Molteplicità geometrica di $\lambda \leq$ molteplicità algebrica di λ .

Conclusione φ è diagonalizzabile $\Leftrightarrow \forall$ autovalore λ di φ è reale e molteplicità algebrica = molteplicità geometrica.

In particolare se troviamo λ con molteplicità geometrica < molteplicità algebrica $\Rightarrow \varphi$ non è diagonalizzabile.

Esempio Determinare se la matrice $A = \begin{bmatrix} 0 & 3 & 0 \\ 1 & -2 & 0 \\ 1 & -3 & 1 \end{bmatrix}$ è diagonalizzabile.

$$P_A(t) = \det \begin{bmatrix} -t & 3 & 0 \\ 1 & -2t & 0 \\ 1 & -3 & 1 - t \end{bmatrix} = (1 - t) \begin{bmatrix} -t & 3 \\ 1 & -2 - t \end{bmatrix} = (1 - t)(t^2 + 2t - 3) = (1 - t)(t - 1)(t + 3) = (t - 1)^2(t + 3)$$

Autovalori: 1,-3,1

Autovettori per 1: $\begin{bmatrix} 0 & 3 & 0 \\ 1 & -2 & 0 \\ 1 & -3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \begin{cases} 3y = x \\ x - 2y = y \\ x - 3y + z = z \end{cases}$

 $x = 3y \Rightarrow dim(V_1) = 2$

Una base di V_1 : $\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$

Autovettori per -3: $\begin{bmatrix} 0 & 3 & 0 \\ 1 & -2 & 0 \\ 1 & -3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3x \\ -3y \\ -3z \end{bmatrix} \Rightarrow \begin{cases} 3y = -3x \\ x - 2y = -3y \\ x - 3y + z = -3z \end{cases}$

 $x = -y, -4y = -4z \Rightarrow x = -y = -z \Rightarrow dim(V_{-3}) =$ Una base di V_{-3} : $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$

A è diagonalizzabile nella base $\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ dove diventa $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

4.3 Numeri complessi

Un **numero complesso** è un'espressione z = a + bi dove $a, b \in \mathbb{R}$ ed **i** è un parametro formale con la proprietà $i^2 = 1$. Ogni $a \in \mathbb{R}$ è anche un numero complesso: a = a + 0i.

Notazione \mathbb{C} è l'insieme dei numeri complessi.

Osservazione Se $\Delta \in \mathbb{R}$, $\Delta < 0$, $(\sqrt{-\Delta} i)^2 = \Delta \Rightarrow \forall$ polinomio $ax^2 + bx + c \in \mathbb{R}[x]$ ha radici in \mathbb{C} .

Teorema Ogni polinomio $f \in \mathbb{C}[x]$ a coefficienti **complessi** ammette una radice in \mathbb{C} .

Definizione Se $z = a + bi \in \mathbb{C}$, il suo coniugato è $\overline{z} = a - bi$.

Teorema Se $f \in \mathbb{R}, z \in \mathbb{C}$ tale che $f(z) = 0 \Rightarrow$ anche $f(\overline{z}) = 0$. Quindi le radici di $f \in \mathbb{R}[x]$ sono reali o coppie di numeri complessi coniugati.

4.3.1 Operazioni

- Se z = a + bi, z' = a' + b'i
- Se $\lambda \in \mathbb{R}$

Somma

$$z + z' = (a + a') + (b + b')i$$

Prodotto con scalare

$$\lambda z = \lambda (a + bi) = \lambda a + \lambda bi$$

Prodotto di numeri complessi

$$z \cdot z' = (a+bi)(a'+b'i) = (aa'-bb') + (ab'+a'b)i$$

Prodotto scalare

Siano
$$v = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, w = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$
 due vettori in \mathbb{R}^2 .

Il loro prodotto scalare è $\langle v, w \rangle := a_1b_1 + \cdots + a_nb_n \in \mathbb{R}$. $\langle , \rangle : \mathbb{R}^n \cdot \mathbb{R}^n \to \mathbb{R}$ si chiama prodotto scalare standard.

5.0.1 Proprietà

- 1. $\langle v, w \rangle = \langle w, v \rangle \ \forall \ v, w \in \mathbb{R}^n$
- 2. Per $v \in \mathbb{R}$ fisso, la funzione $w \mapsto \langle v, w \rangle \in \mathbb{R}$ è un'applicazione lineare $\mathbb{R} \to \mathbb{R}^n$.

Per $w \in \mathbb{R}$ fisso, la funzione $v \mapsto \langle v, w \rangle \in \mathbb{R}$ è un'applicazione lineare $\mathbb{R} \to \mathbb{R}^n$.

3.
$$\forall v \in \mathbb{R}^n \langle v, v \rangle \ge 0 \in \langle v, v \rangle = 0 \Leftrightarrow v = 0$$

Definizione Se $v \in \mathbb{R}^n$, la sua norma è $||v|| := \sqrt{\langle v, v \rangle}$

Ortogonalità e ortonormalità

Definizione $v, w \in \mathbb{R}^n$ sono ortogonali se $\langle v, w \rangle = 0$ Un sistema v_1, \ldots, v_n è un sistema ortogonale se $\langle v_i, v_j \rangle = 0 \ \forall i \neq j$. Un sistema v_1, \ldots, v_n è un sistema ortonormale se è ortonormale e $\langle v_i, v_i \rangle = 1 \ \forall i$

Proposizione Un sistema ortogonale di vettori è linearmente indipendente.

Osservazione Sia $v \in \mathbb{R}^n$. Consideriamo $\varphi_v : \mathbb{R}^n \to \mathbb{R}$. Allora:

 $Ker(\varphi_v) = \{ w \in \mathbb{R}^n : \langle v, w \rangle = 0 \}$

Notazione: $Ker(\varphi_v) =: \langle v \rangle^{\perp}$.

Terminologia: $\langle v \rangle^{\perp}$ è il sottospazio ortogonale a v.

6.0.1 Trovare sottospazio ortogonale

Generalizzazione Se $v_1 = \begin{bmatrix} a_{11} \\ \vdots \\ a_{1n} \end{bmatrix}, \dots, \begin{bmatrix} a_{r1} \\ \vdots \\ a_{rn} \end{bmatrix}$ allora:

 $\langle v_1, \ldots, v_r \rangle^{\perp} = \text{soluzioni del sistema omogeneo:}$

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ \vdots \\ a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rn}x_n = 0 \end{bmatrix}$$

Esempio Siano
$$v = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \ w = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^4$$
. Troviamo il sottospazio $\langle v, w \rangle^{\perp}$.

 $\langle v,w \rangle^{\perp} \ \text{\`e il sottospazio delle soluzioni:} \ \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 + x_3 + x_4 = 0 \end{cases}$ Troviamo una base: $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{cases} x_1 = x_4 \\ x_2 = -x_3 - x_4 \end{cases}$

Soluzione generale:

$$\begin{bmatrix} s \\ -s - t \\ t \\ s \end{bmatrix} = s \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \boldsymbol{v_1}, \boldsymbol{v_2} \text{ sono una base di } \langle \boldsymbol{v}, \boldsymbol{w} \rangle^{\perp}.$$

6.0.2Base ortonormale

Teorema Ogni sottospazio $V \subset \mathbb{R}^n$ ammette una base **ortonormale**.

Corollario Sia v_1, \ldots, v_r un sistema ortonormale in \mathbb{R}^n . Allora $\exists v_{r+1}, \ldots, v_n \in \mathbb{R}^n : v_1, \ldots, v_r, v_r + 1, \ldots, v_n$ è una base ortonormale (ON) di \mathbb{R}^n .

Corollario $dim \langle v_1, \ldots, v_r \rangle^{\perp} = n - r.$

Corollario

Sia $V \subset \mathbb{R}^n$ un sottospazio, sia $V^{\perp} := \{ w \in \mathbb{R}^n : \langle v, w \rangle = 0, \forall v \in V \}$ allora $V \cap V^{\perp} = \{0\} \in Span(V, V^{\perp}) = \mathbb{R}^n \text{ e in :particolare}$

$$dim \; V + dim \; V^{\perp} = n$$

A cosa serve una base ortonormale?

Se v_1, \ldots, v_n è una base **ortonormale** di \mathbb{R}^n allora

$$oldsymbol{v} = \sum_{i=1}^n \langle oldsymbol{v}, oldsymbol{v}_i
angle oldsymbol{v}_i \ orall oldsymbol{v} \in \mathbb{R}^n$$

Trovare una base ortonormale

- $\dim V = 1$ Se $V = \langle v \rangle, \overline{v_1} = \frac{v}{||v||}$ è una base ortonormale.
- $dim V = 1 \text{ Se } v_1, v_2 \text{ base di } V, \overline{v_1}$

Algoritmo di Gram-Schmidt

Se $v_1, ..., v_n$ sono vettori linearmente indipendenti di V costruiamo un insieme di vettori ortogonali $w_1, ..., w_n$.

- $\bullet \ w_1 = v_1$
- $w_2 = v_2 \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1$
- $w_3 = v_3 \frac{\langle v_3, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 \frac{\langle v_3, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2$
- ...

•
$$w_n = v_n - \frac{\langle v_n, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_n, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 - \dots - \frac{\langle v_n, w_{n-1} \rangle}{\langle w_{n-1}, w_{n-1} \rangle} w_{n-1}$$

Trovati w_1, \ldots, w_n vettori **ortogonali** li **normalizziamo**:

$$w_i' = rac{w_i}{||w_i||}$$

I vettori w_1', \dots, w_n' formeranno una base ortonormale.

Teorema spettrale

Definizione $A \in \mathbb{M}_{nxn}$ è simmetrica se $a_{ij} = a_{ji} \ \forall i, j$ oppure se $A = A^T$ dove A^T è la matrice trasposta.

Lemma Se $A \in M_{nxn}(\mathbb{R})$ è simmetrica, allora

$$\langle Av, w \rangle = \langle v, Aw \rangle \ \forall v, w \in \mathbb{R}^n$$

Teorema spettrale per matrici simmetriche

Se $A \in M_{nxn}(\mathbb{R})$ è simmetrica, ogni autovalore di A è reale ed A è diagonalizzabile in una base ortonormale di autovalori.