Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 - Bioestatística

Covariância e Correlação

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Baixe a aula (e os arquivos)

- Para aqueles que não clonaram o repositório:
- > git clone https://github.com/tetsufmbio/IMD0601.git
- Para aqueles que já tem o repositório local:
- > cd /path/to/IMD0601
- > git pull

Objetivos da aula

Obter noções básicas de:

- Covariância;
- Correlação.

Até o momento...

Aprendemos a descrever estatisticamente dados que envolve uma variável (análise univariada);

paciente	Força no quadríceps (N)	
1	196	
2	216	
3	216	
4	392	

E se...

... além de termos os dados da força, temos dados da altura de cada paciente que fez o teste. Que tipo de pergunta podemos fazer?

paciente	Força no quadríceps (N)	Altura
1	196	155
2	216	159
3	216	159
4	392	160

Será que estas variáveis estão associadas?

Será que estas variáveis se relacionam?

paciente	Força no quadríceps (N)	Altura
1	196	155
2	216	159
3	216	159
4	392	160

Como se comportariam duas variáveis que estão associadas?

Como se comportariam duas variáveis que não estão associadas?

Como medir a relação entre as variáveis?

Covariância: média do produto do desvio da variável X e Y.

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

Propriedades da Covariância

- $-\infty < Cov(X, Y) < +\infty$
- Cov(X, X) = Var(X)
- Cov(X, Y) = Cov(Y, X)
- Cov(X, C) = 0 se C é uma constante;

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

Sobre o valor numérico da covariância

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

A unidade da covariância seria: (unidade de X) * (unidade de Y);

Comparar covariância de diferentes pares de variável é difícil, pois se alterarmos a escala, a covariância muda também.

Como remover a escala dos dados?

Covariância em dados padronizados

$$Cov(X,Y) = \frac{\sum (X_i - X)^* (Y_i - Y)}{n}$$

Correlação (r ou ρ) (Correlação de Pearson)

$$Correlation = \frac{Cov(x,y)}{\sigma x * \sigma y}$$

Propriedades da correlação

- ρ é a covariância dos dados padronizados de X e Y;
- Adimensional (lida com proporção);
- $-1 < \rho < 1$;

$$Correlation = \frac{Cov(x, y)}{\sigma x * \sigma y}$$