Math 239 Lecture 27

Graham Cooper

July 13, 2015

Platonic Solids

Platonic graph, planar, vertices have the same degree, faces have the same degree

 $d_v = \text{vertex degree}$ $d_f = \text{face degree}$

Non-Planar Graphs

To prove that a graph is planar, we give a planar embedding

Theorem: When $n \geq 3$ a connected planar graph with n vertices has at most 3n-6 edges

Proof: Let G be a planar graph with a planar embedding with $n \geq 3$ in edges, S faces. We claim that every face has degree at least 3. If G is not a tree, then G has at least one cycle. So every face contains a cycle, which has at least 3 edges. So each face has degree ≥ 3 . If G is a tree, then it has only once face. Its degree must be twice the number of edges, 2(n-1) = 2n-2 (by handshaking lemma for faces). Since $n \geq 3$, $2n-2 \geq 3$. This proves the claim.

Using Handshaking Lemma for faces, $2\mathbf{m} = \sum_{f \in F} deg(f) \ge \sum_{f \in F} 3 = 3S$ $m \ge \frac{3}{2}S$ By Euler's formula: $(\mathbf{n} - \mathbf{m} + \mathbf{s} = 2)$ $= \frac{3}{2}(2 - n + m)$ $= 3 - \frac{3}{2}n + \frac{3}{2}m$ $\implies \frac{3}{2}n - 3 \ge \frac{1}{2}m$ $\implies 3n - 6 \ge m$

Corollary: K_5 is not planar

Proof: K_5 has 5 vertices and 10 edges. Any planar graph with 5 vertices has at most $3 \cdot 5$ - 6 = 9 edges. So K_5 is not planar

The converse of the theorem is false

Theorem: when $n \ge 3$, a connected bipartite planar graph with n vertice has at most 2n-4 edges

Proof: (Similar to the proof of hte previous theorem)

IF G has a cycle, then every face is bounded by a cycle of length ≥ 4 (since no triangle exists in a bipartite graph)

If G is a tree, its only face has deg $2n - 2 \ge 4$. Since $n \ge 3$.

Using Hand shaking lemma for faces,

$$2m \ge 4s = 4(2-n+m)$$

= 8 - 4n + 4m

 \implies 4n-8 ≥ 2 m

 \implies 2n-4 \ge m

Corollary: $k_{3,3}$ has 6 vertices and 9 edges. Any planar bipartite graph with 6 vertices has at most $2 \cdot 6 - 4 = 8$ edes. So $k_{3,3}$ is not planar