ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ИРАКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Д.В. БУША»

Арбузолитейный факультет

Специальность «Фундаментальный исламизм и физическая софистика»

Кафедра общей демократии

Дипломная работа

ВОССТАНОВЛЕНИЕ АРХИТЕКТУРЫ РАЗРУШЕННЫХ ГОРОДОВ ПО МНОГОБАХЧЕВЫМ ДЫННЫМ ПОЛЯМ МЕТОДОМ ВСЕОБЩЕГО ГОЛОСОВАНИЯ

«К защите допущен»:	
Зав. кафедрой общей демократии, профессор, д.фм.н.	Иванов И.И.
Научный руководитель, профессор, в.н.с. ЁКЛ ЭМЭН, д.фм.н.	Петров П.П.
Рецензент, зав. лаб. ЖЗ ИКЛ, д.фм.н.	Сидоров С.С.
Консультант по технике безопасности, ассистент	
каф. софистики	Рейсфейдер Р.Р.
Дипломник	Ватманн В.В.

Содержание

Глава I.	Введение	9
Глава II.	Основные определения	4
Глава III.	Формулы	4
3.1. Ан	алитический функтор для h-species	4
3.2. Де	котигорификация аналитического функтора	
3.3. Фр	обениусова характеристика	Ļ

Глава I. Введение

Гипероктаэдральные или кубические комбинаторные виды — развите идеи комбинаторных типов (species). Мы будем обозначать их h-species для краткости. ТООО:добавить введение (видимо взять часть из Bergeron)

План: Изложить теорию для species, параллельно строить ее для h-species species — сложение умножение — аналитический функтор — композиция аналитических функторов — композиция species — декатегорификация аналитического функтора — примеры

Глава II. Основные определения

species HSet h-species аналитический функтор

Глава III. Формулы

3.1. Аналитический функтор для h-species

Аналитический функтор \mathcal{F} соответствующий species F является продуктивной конструкцией, позволяющей определить композиционное произведение species. Вводить его можно разными способами, мы ограничимся универсальным свойством и явной конструкцией (TODO: дописать и возможно добавить определение Дурова). Аналитический функтор является левым расширением по Кану функтора F относительно i

Эта диаграмма не коммутативна, а почти коммутативна. Иммется в виду, что из F существует естественное преобразование в $i \circ \mathcal{F}$. Это естественное преобразование обозначим κ . Универсальность заключаеться в том, что для любого другого функтора $M \colon Set \to Set$ и морфизма функторов $\eta \colon F \to i \circ M$ этот морфизм пропускаеться через \mathcal{F} при помощи κ .

Явная формула для аналитического функтора. Для доказательства см (TODO)

$$\mathcal{F} = \sum_{n} F[n] \times A^{n} / S_{n} \tag{3.1}$$

Хочется построить аналог аналитического функтора для h-species

$$\mathcal{F} = \sum_{n} F[\bar{n}] \times A^{\bar{n}}/B_n \tag{3.2}$$

Где $A^{\bar{n}}$ задает отображение, сохраняющее инволюцию.

TODO:Здесь нужно добавить проверук универсальности картинки

3.2. Декотигорификация аналитического функтора

Напомним ситуацию с обычными species. Мы хотим посчитать

3.3. Фробениусова характеристика

В этом разделе мы напишем формулу для Фробениусовой характеристики. То есть подчитаем количество неподвижных раскрасок.

Напомним, что в случае обычных species формула выглядит так:

$$\sum_{\lambda \vdash n} \chi(\sigma_{\lambda}) \frac{\phi^{\lambda}}{z_{\lambda}} \tag{3.3}$$

Где χ — характер (перестановочного) представления, σ — перестановка цикленного типа λ , $\phi^{\lambda} = (x_1^{\lambda_1} + x_2^{\lambda_1} + x_3^{\lambda_1} + \dots)(x_1^{\lambda_2} + x_2^{\lambda_2} + x_3^{\lambda_2} + \dots)(x_1^{\lambda_3} + x_2^{\lambda_3} + x_3^{\lambda_3} + \dots)$..., z_{λ} — индекс класса сопряженности σ . Появляется она из следующих соображений: в числителе стоит симметрическая функция считающая все неподвижные раскраски. Цвета это x_1, x_2, x_3, \dots

Формула для h-species будет следующей

$$\sum_{\lambda^1 + \lambda^2 \vdash n} \chi(\sigma_{\lambda^1 \lambda^2}) \frac{\bar{\phi}^{\lambda^1} \phi^{\lambda^2}}{z_{\lambda^1 \lambda^2}} \tag{3.4}$$

Циклы в каждом элементе H_n бывают двух типов: длинные — каждая грань входит в цикл вместе со своей противоположной гранью и короткие — пара граней лежит в симметричных, различных циклах. Здесь λ^1 — цикленный тип коротких перестановок.

В пояснении нуждается числитель. Дело в том что длинный цикл соответсвует одному цвету, а пара симметричных коротких может быть либо покрашена в один цвет, либо в два оттенка одного цвета (???что-то тут не то???).