ST2334 (2021/2022 Semester 1) Solutions to Questions in Tutorial 11

Question 1

 $X = \text{lifetime. } X \sim N(\mu, 40^2)$

- (a) Test H_0 : $\mu = 800$ against H_1 : $\mu \neq 800$ $z = \frac{\bar{x} \mu}{\sigma/\sqrt{n}} = \frac{788 800}{40/\sqrt{30}} = -1.64$ Since $|z_{obs}| = 1.64 < z_{0.025}$ (= 1.96), therefore we do not reject H_0 . Alternatively, p-value = $2 \min\{\Pr(Z < -1.64), \Pr(Z > -1.64)\} = 2(0.0505) = 0.1010$. Since p-value > α (= 0.05), we do not reject H_0 .
- (b) 95% confidence interval for μ : $\bar{X} \pm Z \frac{\sigma}{\sqrt{n}} = 788 \pm 1.96 \frac{40}{\sqrt{30}} = (773.69, 802.31)$. Yes, 800 is plausible.
- (c) Under H₀, H₀ is not rejected if -1.96 < Z < 1.96 or $\mu 1.96 \frac{\sigma}{\sqrt{n}} < \bar{X} < \mu + 1.96 \frac{\sigma}{\sqrt{n}}$ or $785.69 < \bar{X} < 814.31$. When $\mu = 790$ (i.e. H₀ is false), $\bar{X} \sim N\left(790, \frac{40^2}{30}\right)$. Pr(Do not reject H₀| $\mu = 790$) = Pr($785.69 < \bar{X} < 814.31 | \mu = 790$) = Pr($\frac{785.69 790}{40/\sqrt{30}} < \frac{814.31 790}{40/\sqrt{30}}$) = Pr(-0.590 < Z < 3.329) = 0.9996 0.2774 = 0.7222.
- (d) When $\mu = 790$, Power = 1 Pr(Type II error $|\mu = 790$) = 1 0.7222 = 0.2778.

Question 2

 $X = \text{content of lubricant. } X \sim N(\mu, \sigma^2)$

- (a) Test H_0 : $\mu = 10$ against H_1 : $\mu \neq 10$ From the data, $\bar{x} = 10.06$, s = 0.24585. Hence, $t_{obs} = \frac{\bar{x}-10}{s/\sqrt{10}} = \frac{10.06-10}{0.246/\sqrt{10}} = 0.772$. Since $|t_{obs}| = 0.772 < t_{9;0.005} (= 3.25)$, therefore we do not reject H_0 Alternatively, p-value = $2 \min\{\Pr(T < 0.772), \Pr(T > 0.772)\} = 0.4600$ (from statistical software). Since p-value > $\alpha (= 0.01)$, therefore we do not reject H_0 .
- (b) Test H_0 : $\sigma^2 = 0.03$ against H_1 : $\sigma^2 \neq 0.03$ $\chi^2_{obs} = \frac{(n-1)s^2}{\sigma^2} = \frac{(9)(0.246)^2}{0.03} = 18.13$ which falls between $\chi^2_{9;0.975}$ (= 2.70) and $\chi^2_{9;0.025}$ (= 19.023). Hence, we do not reject H_0 . p-value = $2 \min\{Pr(\chi^2_9 > 18.13), Pr(\chi^2_9 < 18.13)\} = 0.0673$ from statistical software. Since the p-value > 0.05. We do not reject H_0 .
- (c) 99% confidence interval for $\sigma^2 = \left(\frac{(n-1)s^2}{\chi^2_{9,0.025}}, \frac{(n-1)s^2}{\chi^2_{9,0.975}}\right) = \left(\frac{9(0.246)^2}{19.023}, \frac{9(0.246)^2}{2.7}\right) = (0.0286, 0.2014)$. Note: $\chi^2_{9,0.025}$ satisfies $\Pr(W > \chi^2_{9,0.025}) = 0.025$ with $W \sim \chi^2(9)$.

Ouestion 3

X = amount of soft drink dispensed. $X \sim N(\mu, \sigma^2)$.

Test H_0 : $\sigma^2 = 1.15$ against H_1 : $\sigma^2 > 1.15$

From the data, we have n = 25, $s^2 = 2.03$. Hence $\chi_{obs}^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{(24)(2.03)}{1.15} = 42.37$

Since the observed test statistic $> \chi^2_{24;0.05}$ (= 36.415), we reject H₀ at 5% significance level.

Alternatively, *p*-value is between 0.01 and 0.025 as $Pr(\chi_{24}^2 > 39.364) = 0.025$ and $Pr(\chi_{24}^2 > 42.98) = 0.01$ [Exact *p*-value = 0.0117]

Question 4

 X_A = tensile strength of thread A. $E(X_A) = \mu_A$ and $V(X_A) = 6.28^2$

 X_B = tensile strength of thread B. $E(X_B) = \mu_B$ and $V(X_B) = 5.61^2$

Test H₀: $\mu_A - \mu_B = 12$ against H₁: $\mu_A - \mu_B > 12$ Let $Z = \frac{(\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B)}{\sqrt{\sigma_A^2/50 + \sigma_B^2/50}}$. Z approx $\sim N(0,1)$ by CLT since both n_A and n_B are large.

From the data, we have $n_A = 50$, $\bar{x}_A = 86.7$, $n_B = 50$, $\bar{x}_B = 77.8$. Hence $z_{obs} = \frac{(86.7 - 77.8) - (12)}{\sqrt{\frac{6.28^2}{50} + \frac{5.61^2}{50}}} = -2.60$

$$z_{obs} = \frac{(86.7-77.8)-(12)}{\sqrt{\frac{6.28^2}{50} + \frac{5.61^2}{50}}} = -2.60$$

Since $z_{obs} < z_{0.05}$ (= 1.645), we do not reject H₀.

Alternatively, p-value = Pr(Z > -2.60) = 1 - 0.0047 = 0.9953.

Since p-value $> \alpha$ (= 0.05). We do not reject H₀.

We committed an error if our decision of not rejecting H₀ is wrong. Hence it is Type II error. (Type I error is committed if our decision of rejecting H₀ is wrong.)

Question 5

 X_A = grades of students in the 3-semester-hour course ~ $N(\mu_A, \sigma^2)$

 X_B = grades of students in the 4-semester-hour course ~ $N(\mu_B, \sigma^2)$

From the data, $n_A = 18$, $\bar{x}_A = 77$, $s_A = 6$; $n_B = 12$, $\bar{x}_B = 84$, $s_B = 4$. Hence, $s_p = \sqrt{\frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{n_A + n_B - 2}} = 5.3050$

$$s_p = \sqrt{\frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{n_A + n_B - 2}} = 5.3050$$

99% confidence interval for $\mu_B - \mu_A = (\bar{X}_B - \bar{X}_A) \pm t_{28,0.005} s_p \sqrt{\frac{1}{n_B} + \frac{1}{n_A}} =$

$$(84-77) \pm (2.763)(5.304)\sqrt{\frac{1}{12} + \frac{1}{18}} = (1.537, 12.463).$$

Or 99% confidence interval for $\mu_A - \mu_B = (\bar{X}_A - \bar{X}_B) \pm t_{28,0.005} s_p \sqrt{\frac{1}{n_B} + \frac{1}{n_A}} =$

$$(77 - 84) \pm (2.763)(5.304)\sqrt{\frac{1}{12} + \frac{1}{18}} = (-12.463, -1.537).$$

(b) Test
$$H_0$$
: $\mu_A - \mu_B = 0$ against H_1 : $\mu_A - \mu_B > 0$

$$t_{obs} = \frac{\bar{x}_A - \bar{x}_B}{s_p \sqrt{\frac{1}{n_B} + \frac{1}{n_A}}} = \frac{77 - 84}{(5.304) \sqrt{\frac{1}{12} + \frac{1}{18}}} = -3.541$$

Since $t_{obs} = -3.541 < t_{28;0.05} (= 1.701)$, therefore, we do not reject H₀.

[Note: Exact p-value= Pr(T > -3.541) = 0.9993 (from statistical software)]

Question 6

 X_R = gasoline consumption by radial tires

 X_B = gasoline consumption by belted tires

$$d = X_R - X_B$$
. $d \sim N(\mu_d, \sigma_d^2)$

From the data, $n_d = 12$, $\bar{x}_d = 0.1417$, $s_d = 0.1975$

- 95% confidence interval for $\mu_d = \bar{x}_d \pm t_{11,0.025} \frac{s_d}{\sqrt{n_d}} = 0.1417 \pm 2.201 \frac{0.1975}{\sqrt{12}} =$ (0.0162, 0.2672)

Test
$$H_0$$
: $\mu_d = 0$ against H_1 : $\mu_d > 0$
 $t_{obs} = \frac{\bar{x}_d}{s_d/\sqrt{n}} = \frac{0.14167}{0.1975/\sqrt{12}} = 2.485 > t_{11; 0.05} \ (= 1.796)$. Reject H_0

Alternatively, p-value = $2 \min\{\Pr(T > 2.485), \Pr(T < 2.485)\} = 2(0.01515) =$ 0.0303 < 0.05. Reject H₀.

Question 7

 X_M = the length of time taken to assemble a product by men $\sim N(\mu_M, \sigma_M^2)$

 X_W = the length of time taken to assemble a product by women $\sim N(\mu_W, \sigma_W^2)$

Test H_0 : $\sigma_M^2 = \sigma_W^2$ against H_1 : $\sigma_M^2 > \sigma_W^2$

From the data,
$$n_M = 11$$
, $s_M = 6.1$, $n_W = 14$, $s_W = 5.3$
Hence, $F_{obs} = \frac{s_M^2}{s_W^2} = \frac{6.1^2}{5.3^2} = 1.325$

Since $F_{obs} = 1.325 < F_{10.13:0.05} (= 2.67)$, therefore, we do not reject H₀.

[Note: Exact p-value= Pr(F > 1.325) = 0.3117 (from statistical software)]

At $\alpha = 0.05$, we do not have enough evidence to conclude that the variance of the times for women is less than that for men.

Question 8

 X_1 = the running times of film produced by company 1. Assume $X_1 \sim N(\mu_1, \sigma_1^2)$ X_2 = the running times of film produced by company 2. Assume $X_2 \sim N(\mu_2, \sigma_2^2)$

Test H_0 : $\sigma_1^2 = \sigma_2^2$ against H_1 : $\sigma_1^2 \neq \sigma_2^2$ From the data, $n_1 = 5$, $s_1^2 = 78.8$, $n_2 = 7$, $s_2^2 = 913.3333$ Hence, $F_{obs} = \frac{s_1^2}{s_2^2} = \frac{78.8}{913.3333} = 0.0863 < F_{4,6;0.975} (= 1/F_{6,4;0.025} = 1/9.20 = 1/9.20)$ 0.1087). Reject H₀.

Alternatively, p-value = $2 \min\{\Pr(F < 0.086), \Pr(F > 0.086)\} = 2 \min\{0.01639, \Pr(F > 0.086)\}$ 0.98361} = 2(0.01639) = 0.0328 < 0.05. Reject H₀.

- 95% confidence interval for $\frac{{\sigma_1}^2}{{\sigma_2}^2} = \left(\frac{s_1^2}{s_2^2} \frac{1}{F_{4,6,0.025}}, \frac{s_1^2}{s_2^2} F_{6,4,0.025}\right) =$ $\left(\frac{78.8}{913.33} \frac{1}{6.23}, \frac{78.8}{913.33} (9.20)\right) = (0.01385, 0.79375)$
- 95% confidence interval for $\frac{\sigma_1}{\sigma_2} = (\sqrt{0.01385}, \sqrt{0.79375}) = (0.1177, 0.8909)$

Question 9

We have $E(W) = E(a_1X_1 + \dots + a_nX_n) = a_1E(X_1) + \dots + a_nE(X_n) = a_1\mu_1 + \dots + a_n\mu_n$. Also recall variance of sum of independent random variables is the sum of their variances. Therefore, $V(W) = V(a_1X_1 + \cdots + a_nX_n) = V(a_1X_1) + \cdots + V(a_nX_n) + V(a_nX_n) + V(a_nX_n) + V(a_nX_n) + V(a_nX_n) + V(a_nX_n)$ $a_1^2 \sigma_1^2 + \cdots + a_n^2 \sigma_n^2$.