

Licence Pro R&S
2012–2013
Chiffrement et authentification
T.T. Dang Ngoc
dntt@u-cerqy.fr

TD 2 - Bases de la cryptographie moderne

1 Chiffrement par bloc

L'idée générale du chiffrement par blocs est la suivante :

- 1. Remplacer les caractères par un code binaire (ASCII en base 2). On obtient ainsi une longue chaîne de 0 et de 1.
- 2. Découper cette chaîne en blocs de longueur donnée, par exemple 12 bits.
- 3. Déplacer certains bits du bloc.
- 4. Chiffrer un bloc en l'"additionnant" bit par bit à une sous-clef dérivée d'une clef (la dérivation des sous-clef s'appelle key schedule). Le key schedule (préparation des clés) consiste à générer des sous-clés à partir de la clé principale pour un algorithme de chiffrement par bloc.
- 5. Recommencer éventuellement un certain nombre de fois l'opération 3. On appelle cela une ronde.
- 6. Passer au bloc suivant et retourner au point 3 jusqu'à ce que tout le message soit chiffré.

Soit le message "salut" que vous voulez coder à l'aide de la clef de 24 bits "waf" en utilisant une taille de bloc de 12 bits.

1. Remplacer les caractères par un code binaire

Codez	z ie message	sarut	en ASCH 8 b	ons

2. Découpage en blocs

Découpez cette chaîne en blocs de longueur 16 bits. Le remplisage se fera avec des 0.

Bloc 1	:	
Bloc 2	:	
Bloc 3	:	
Bloc 4	:	

3. Ajout de la clef

Nous utiliserons un algorithme simple se contentant de découper la clé de 24 bits en trois morceaux de 8 bits qui sont utilisés dans les différentes rondes. (on utilisera la sous-clef 1 dans la ronde 1, la 2 dans la ronde 2, la 3 dans la ronde 3, la 1 à nouveau dans la ronde 4, la 2 dans la ronde 5, etc.)

On utilisera des 0 comme remplissage de blocs.

Chiffrement de la clef "waf" en ASCII 8 bits :

Sous-clef 1 : ------Sous-clef 2 : ------Sous-clef 3 : -----

On utilisera un réseau de Feistel sur 3 rondes. La fonction f_i utilisée ici à chaque ronde i(mod3) sera simplement un XOR avec la sous-clef i suivi d'une rotation de 1 bit vers la droite.

On réalisera l'opération sur les deux premiers blocs seulement.

Utilisez l'annexe pour effectuer les calculs intermédiaires.

Une fois les 2 premiers blocs ainsi chiffrés au bout des 3 rondes de Feistel obtenus. Réfléchissez comment votre correspondant pourra déchiffrer (c'est à dire reconstituer les 2 blocs initiaux) en connaissant la clef. Effectuez les opérations pour retrouver les 2 blocs initiaux.

2 Diffie-Hellman-Merkle

Soit la fonction $f(x) = Y^x (mod P)$ avec P premier et Y < P. Soit Y = 7 et P = 11. On considère donc dans cet exercice, la fonction suivante :

$$f(x) = 7^x (mod11)$$

- 1. Choisissez chacun un nombre secret A et calculez f(A).
- 2. Choisissez un camarade avec qui vous allez communiquer, envoyez-lui votre f(A).
- 3. De la même manière, lui même choisira un nombre secret B et calculera f(B) qu'il vous communiquera.
- 4. Calculez $(f(B))^A (mod(P))$ (et votre camarade $(f(A))^B (mod(P))$

Constatez que vous obtenez le même nombre. Ce nombre est la clef de session.

Remarquez que si quelqu'un avait intercepté vos échanges et avait capté $f(x) = 2^x \pmod{11}$, f(A) et f(B), il aurait été très difficile pour lui de deviner A, B ou la clef de session.

3 Rivest-Shamir-Adleman (RSA)

3.1 Calcul d'une paire de clef publique/privée

- 1. Choisissez deux nombres p et q premiers (une liste des 147121206 premiers nombres premiers est disponible sur http://www.bigprimes.net/archive/prime
- 2. Prendre un nombre e qui n'a aucun facteur en commun avec (p-1)(q-1).
- 3. Calculer d tel que $e \times dmod(p-1)(q-1) = 1$, c-à-d d est le modulo inverse de e dans Z/(p-1)(q-1)Z: $d = e^{-1}mod((p-1)(q-1))$. Vous vous aiderez pour cela du programme Inverse class que vous pouvez récupérer sur

http://depinfo.u-cergy.fr/~dntt/supports/crypto-applique/Inverse.class

se lance de la manière suivante :

java Inverse $la_valeur_de_e$ $la_valeur_de_(p-1)(q-1)$ et permet de calculer $d = e^{-1}mod(p-1)(q-1)$

- 4. Calculez $n = p \times q$
- 5. (e, n) sera la clef publique et (d, n) la clef privée.
- 6. Publiez votre clef publique (Donnez la à votre voisin).

Clef privée :

n = d =

Clef publique:

n = e =

3.2 Chiffrement

Récupérez la clef publique de votre voisin, puis choisissez un mot (6 lettres max!!!). Puis

- 1. Codez le mot sous forme d'une séquence de nombre :
 - (a) en le codant en nombre à l'aide de la table ASCII
 - (b) en le convertissant en binaire
 - (c) en le découpant par bloc de 6 (remplir avec des 0 finaux si nécessaire)
 - (d) convertir en décimal
- 2. chiffrez avec la clef publique du destinataire en faisant pour chaque nombre $C = M^e(modN)$. Vous utiliserez un calculateur à entier long, par exemple celui sur :

http://www.jpvweb.com/cgi-bin/calculextcgi.py

Ecrivze le message chiffré et transmettez le à votre voisin.

3.3 Déchiffrement

Le destinataire d'un message chiffré (votre voisin) le déchiffrera en :

- 1. Déchiffrant la séquence en calculant pour chacun des nombres : $M = C^d(modN)$
- 2. Décodera la séquence obtenue en :
 - (a) convertissant en binaire
 - (b) en prenant par bloc de 7
 - (c) en convertissant en caractère d'après la table ASCII

4 Annexes

4.1 Table ASCII 8 bits

Code dec.	Code bin.	Signif.
32	00100000	ESPACE
65	01000001	A
66	01000010	В
67	01000011	$^{\mathrm{C}}$
68	01000100	D
69	01000101	E
70	01000110	F
71	01000111	G
72	01001000	H
73	01001001	I
74	01001010	J
75	01001011	K
76	01001100	L
77	01001101	M
78	01001110	N
79	01001111	O
80	01010000	Р
81	01010001	Q
82	01010010	R
83	01010011	S
84	01010100	T
85	01010101	U
86	01010110	V
87	01010111	W
88	01011000	X
89	01011001	Y
90	01011010	Z

4.2 Calculs intermédiaires pour les 3 rondes

Ronde 1

Ronde 2

Ronde 3

