ÁLGEBRA LINEAL - Clase 02/06

Para hacer en clase (y después)

Ejercicio 1. Sea $S \subseteq C^{\infty}(\mathbb{R})$ el subespacio generado por el conjunto

$$B = {\cos(x), \sin(x), \sin^2(x), \cos^2(x), \sin(x)\cos(x)}.$$

(Notar que, más aun, B es una base ordenada de S).

- i) Sea $\partial: S \to S$ definida por $\partial(f) = f'$. Hallar $|\partial|_B$. ¿Es ∂ un isomorfismo? En caso afirmativo, hallar su inversa. Si no lo es, hallar bases de $\operatorname{Im}(\partial)$ y $\operatorname{Nu}(\partial)$.
- ii) Sea $\beta = \{ \operatorname{sen}(x), \cos(x) \}$. Sea $U \subseteq S$ el subespacio dado por $U = \langle \beta \rangle$.
 - a) Notar que la restricción (y correstricción) $\partial|_U:U\to U$ está bien definida.
 - b) Hallar $|\partial|_U|_{\beta}$. ¿Es $\partial|_U$ inversible?
 - c) Hallar una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que $A^2 = -I_2$.

Ejercicio 2. Sea V un \mathbb{K} -espacio vectorial de dimensión 3, y sean $B = \{v_1, v_2, v_3\}$, $B' = \{-v_1 - v_3, 3v_1 + 3v_2 + 3v_3, 3v_1 + 5v_3\}$ bases (ordenadas) de V. Sean $f, g \in \text{End}(V)$ tales que

$$|f|_B = \begin{pmatrix} 1 & 4 & 0 \\ 0 & 2 & -1 \\ 3 & 0 & -1 \end{pmatrix}$$
 $y \qquad |g|_{B'B} = \begin{pmatrix} 1 & 3 & 1 \\ 4 & 9 & 0 \\ -1 & 0 & 3 \end{pmatrix}.$

- i) Sea $N = \{v \in V : f(v) = g(v)\}$. Hallar una base de N.
- iii) Describir el conjunto $(f-g)^{-1}(v_2)$
- ii) Hallar $|g|_{B'}$. Comparar el subespacio de \mathbb{K}^3 generado por las columnas de $|g|_{B'}$ y $|g|_{B'B}$. ¿Qué relación tienen con el conjunto Im(g)?
- iv) Hallar bases B_1, B_2 de V tales que

$$|g|_{B_1B_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

¿Es posible encontrar bases B_1, B_2 de V tales que

$$|g|_{B_1B_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}?$$

Ejercicios de la guía relacionados: 17 al 26.