Theorem 6.11 (Fermat's Little Theorem). For an integer m and a prime p,

$$m^p \equiv m \mod p$$
.

Proof. Fix a prime p. If p = 2, then Fermat's Little Theorem just says that m^2 is even if and only if m is even, which was the content of Proposition 6.7. For the remainder of the proof, p > 2, i.e., p is an odd prime.

We will use induction to first prove $m^p \equiv m \mod p$ for integers $m \geq 0$. The base case m = 0 follows immediately, as $0^p \equiv 0 \mod p$ just says that p|0.

For the induction step, assume that we know $m^p \equiv m \mod p$. Then

$$(m+1)^p = \sum_{k=0}^p \binom{p}{k} m^k 1^{p-k} = \sum_{k=0}^p \binom{p}{k} m^k.$$

However, Proposition 5.16 says that $\binom{p}{k} \equiv 0 \mod p$ for 0 < k < p. Hence

$$(m+1)^p = \sum_{k=0}^p {p \choose k} m^k \equiv {p \choose 0} m^0 + {p \choose p} m^p = 1 + m^p \equiv 1 + m \mod p$$
,

where we have used the induction hypothesis in the last step. We have proved that $(m+1)^p \equiv m+1 \mod p$, which completes the induction step.

This proves $m^p \equiv m \mod p$ for integers $m \geq 0$. If m < 0, let n = -m, so n > 0, and we know from the first part that $n^p \equiv n \mod p$. Since p is odd, $m^p = -n^p$, and so $m^p \equiv m \mod p$ follows from $n^p \equiv n \mod p$.