3 Liquid Types

3.1 Defining the Type System

First, we define some notations:

- \mathbb{N} are the natural numbers starting from 1.
- \mathbb{N}_0 are the natural numbers starting from 0.
- $\mathbb{N}_a^b := \{i \in \mathbb{N}_0 | a \le i \land i \le b\}$ are the natural numbers between a and b.
- We'll use "." to separate a quantifier from a statement: $\forall a.b$ and $\exists a.b$.
- Functions will be written as $a_1 \to \cdots \to a_n \to b$ instead of $a_1 \times \cdots \times a_n \to b$.

For this thesis we will use a Hindley-Milner type system [DM82].

Definition 3.1: Types

We say

T is a $type : \Leftrightarrow T$ is a mono type $\lor T$ is a poly type

We write v : T to declare that v has the type T.

Definition 3.2: Mono types, Poly types

Let $n \in \mathbb{N}$.

We say

T is a $mono\ type:\Leftrightarrow T$ is a symbol

$$\forall T ::= C_1 \ T_{1,1} \dots T_{1,k_1} \ | \dots | C_n \ T_{n,1} \dots T_{n,k_n}$$
$$\forall T ::= \{l_1 : T_1, \dots, l_n : T_n\}$$
$$\forall T ::= T_1 \to T_2$$

T is a $poly\ type:\Leftrightarrow T::=\forall a.T'$

where $T_1,T_2,T_i,T_{i,j}$ are a mono types and l_i,C_i are symbols for all $i\in\mathbb{N}_1^n$ and $j\in\mathbb{N}_0^{k_i}$; T' is a type and a is a symbol in T'.

Definition 3.3: Type variable

T is a *type variable* : \Leftrightarrow *T* is a symbol.

Example 3.1

The symbol string is a type variable. It can be though of as a type, whose implementation is unknown. For real programming languages this is not allowed.

Definition 3.4: Type application, Sort, Value, Constructor

Let $n \in \mathbb{N}$, $k_j \in \mathbb{N}$ $T_{i,j}$ be a mono type C_i be a symbol and $t_j : T_{i,j}$ for all $j \in \mathbb{N}_1^n$ and $i \in \mathbb{N}_1^n$.

We call $T := C_1 T_{1,1} \dots T_{1,k_1} | \dots | C_n T_{n,1} \dots T_{n,k_n}$ a type application.

For a give type application we call

- $C_i T_{i,1} \dots T_{i,k_1}$ a sort of T,
- $C_i t_0 \dots t_{k_i}$ a value of T,
- C_i a terminal of T,
- The function

$$C_i: T_{i,1} \to \cdots \to T_{i,k_1} \to T$$

 $C_i(t_1, \dots, t_n) := C_i t_1 \dots t_n$

a constructor of T.

Note: The vertical line "|" can be read as "or". It's not a predicate but rather separates the sorts from each other.

Example 3.2

 $Bool ::= True \mid False$ is a type application.

Example 3.3

The natural numbers and the integers can be defined as type applications using the peano axioms [Pea89]:

- 1 is a natural number.
- Every natural number has a successor.

These axioms can be used for the definition of the type application.

$$Nat ::= 1 \mid Succ \ Nat$$

For integers, we can use the property that they contain 0 as well as all positive and negative numbers.

$$Int ::= 0 \mid Pos \ Nat \mid Neg \ Nat$$

Definition 3.5: Product type

Let $n \in \mathbb{N}$, T_i be a type and l_i be a unique symbol for all $i \in \mathbb{N}_1^n$.

We call $T = \{l_1 : T_1, ..., l_n : T_n\}$ a product type.

• We call l_i the *labels* of the product type for all $i \in \mathbb{N}_1^n$.

- The values of a product type have the form $\{l_1 = t_1, \dots, l_n = t_n\}$ where $t_i : T_i$ for all $i \in \mathbb{N}_1^n$.
- The types T_i are unordered: $\{a: T_1, b: T_2\} = \{b: T_2, a: T_1\}.$

For ordered product types we write

$$T_1 \times \cdots \times T_n := \{1 : T_1, \dots, n : T_n\}.$$

Values of a ordered product type have the form (t_1, \ldots, t_n) , where $t_i : T_i$ for all $i \in \mathbb{N}_1^n$.

We most general example of a product type is a record. Tuples can be represented as ordered product types.

Definition 3.6: Functions

Let T_1 and T_2 be types.

We call $T_1 \to T_2$ a function. A function type acts exactly the same as a function over sets.

Example 3.4

Let T_1, T_2, T_3 be types.

Then $(T_1 \times T_2 \to T_3)$ is isomorphic to $T_1 \to (T_2 \to T_3)$. This was originally proven by Gottlob Frege [Sch24]. This method for translating multivariable functions into single variable functions is nowadays called *currying* and named after Haskell Curry who further developed the theory [CF58].

Definition 3.7: Bounded, Free, Set of free variables

Let $n \in \mathbb{N}$, a be a type variable, T be a type, $k \in \mathbb{N}_1^n \to \mathbb{N}_0$, and $T_{i,k(j)}$ be a type for all $i \in \mathbb{N}_1^n$ and $j \in \mathbb{N}_1^n$.

 $a \in \mathcal{V}$ is called *bounded*. Unbounded type variables are called *free*.

The set of all free type variables of a type is defined as follows:

$$\begin{aligned} \operatorname{free}(a) := & \\ \operatorname{free}(C_1 \, T_{1,1} \ldots \, T_{1,k(1)} \, | \ldots | \, C_n \, T_{n,1} \ldots \, T_{n,k(n)}) := \bigcup_{i \in \mathbb{N}_0^n} \bigcup_{j \in \mathbb{N}_0^{k_i}} \operatorname{free}(T_{i,j}) \\ \operatorname{free}(\{_: T_1, \ldots, _: T_n\}) := \bigcup_{i \in \mathbb{N}_1^n} \operatorname{free}(T_i) \} \\ \operatorname{free}(T_1 \to T_2) := & \operatorname{free}(T_1) \cup \operatorname{free}(T_2) \\ \operatorname{free}(\forall a.T) := & \operatorname{free}(T) \backslash \{a\} \end{aligned}$$

Example 3.5

Let T := C a be a type application.

__

We will later see that a may be substituted by the quantified type $\forall a.a.$ This would lead to $T := C \ (\forall a.a)$, but as quantifiers always move to the upper most level, it results in $\forall a.T := C \ a$ instead.

Example 3.6

 $\forall a.List \ a ::= Empty \mid Cons \ a \ (List \ a)$ is a poly type.

Definition 3.8: partial function

Let T_1, T_2 be types.

_

We define $f \subseteq T_1 \times T_2$ as a partial function from T_1 to T_2 .

When ever we write $f \subseteq T_1 \times T_2$, we assume that f is univariant:

$$(x, y_1) \in f \land (x, y_2) \in f \Rightarrow y_1 = y_2$$

Definition 3.9: Sets of Types

We define

- $\mathcal{V} := \{a | a \text{ is a type variable}\}$ as the set of all type variables, evidently the set of all symbols.
- $\mathcal{T} ::= \{T | T \text{ is a type} \}$ as the set of all types.

A type can be substituted by replacing a bounded type variable with a mono type:

Definition 3.10: Type substitution

Let $n \in \mathbb{N}$, $\Theta \subseteq \mathcal{V} \times \mathcal{T}$, $a \in \mathcal{V}$, $T, T_1, T_2, S \in \mathcal{T}$, $k \in \mathbb{N}_1^n \to \mathbb{N}_0$, and $T_{i,k(j)} \in \mathcal{T}$ for all $i \in \mathbb{N}_1^n$ and $j \in \mathbb{N}_1^n$.

We define the substitute of a type $[.]_{\Theta}: \mathcal{T} \to \mathcal{T}$ as

$$[a]_{\Theta} := \begin{cases} S & \text{if } (a,S) \in \Theta \\ a & \text{else} \end{cases}$$

$$\begin{bmatrix} C_1 T_{1,1} \dots T_{1,k(1)} \\ | \dots \\ | C_n T_{n,1} \dots T_{n,k(n)} \end{bmatrix}_{\Theta} \quad C_1 [T_{1,1}]_{\Theta} \dots [T_{1,k_1}]_{\Theta} \\ := | \dots \\ | C_n [T_{n,1}]_{\Theta} \dots [T_{n,k_n}]_{\Theta} \end{cases}$$

$$[\{l_1 : T_1, \dots, l_n : T_n\}]_{\Theta} := \{l_1 : [T_1]_{\Theta}, \dots, l_n : [T_n]_{\Theta}\}$$

$$[T_1 \to T_2]_{\Theta} := [T_1]_{\Theta} \to [T_2]_{\Theta}$$

$$[\forall a.T]_{\Theta} := \begin{cases} [T]_{\Theta} & \text{if } \exists (b, _) \in \Theta \\ \forall b.[T]_{\Theta} & \text{else.} \end{cases}$$

 Θ is called the set of substitutions.

The type substitution gives raise to a partial order \sqsubseteq :

Axiom 3.1: Type Order

Let
$$n, m \in \mathbb{N}$$
 with $m \le n$, $T_1, T_2 \in \mathcal{T}$, $a_i, b_i \in \mathcal{V}$, $S_i \in \mathcal{T}$, for all $i \in \mathbb{N}_0^n$ and $\Theta = \bigcup \{(a_i, S_i)\}$

We define the partial order \sqsubseteq such that

$$\frac{T_2 = [T_1]_{\Theta} \quad \forall i \in \mathbb{N}_0^m.b_i \not\in \text{free}(\forall a_1 \dots \forall a_n.T) \quad m \leq n}{\forall a_1 \dots \forall a_n.T_1 \sqsubseteq \forall b_1 \dots \forall b_m.T_2}$$

The rule can be read as follows:

- First replace all bounded variables with types.
- Next rebound any new variables (variables that were previously not free).

References

- [CF58] H.B. Curry and R. Feys. *Combinatory Logic*. Combinatory Logic v. 1. North-Holland Publishing Company, 1958. url: https://books.google.at/books?id=fEnuAAAAMAAJ.
- [DM82] Luís Damas and Robin Milner. "Principal Type-Schemes for Functional Programs". In: Conference Record of the Ninth Annual ACM Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA, January 1982. 1982, pp. 207–212. doi: 10.1145/582153.582176. URL: https://doi.org/10.1145/582153.582176.
- [Pea89] G. Peano. *Arithmetices principia: nova methodo*. Trans. by Vincent Verheyen. Fratres Bocca, 1889. url: https://github.com/mdnahas/Peano_Book/blob/master/Peano.pdf.

[Sch24] M. Schönfinkel. "Über die Bausteine der mathematischen Logik". In: *Mathematische Annalen* 92.3 (Sept. 1924), pp. 305–316. ISSN: 1432-1807. DOI: 10.1007/BF01448013. URL: https://doi.org/10.1007/BF01448013.