IAP20 Rec'd PCTCTO 12 JAN 2006

5

Способ лечения онкологических заболеваний

10

15

20

25

30

Область техники

Изобретение относится к медицине и ветеринарии и может быть использовано для лечения преимущественно солидных опухолей.

Предшествующий уровень техники

Популяции опухолевых клеток, развивающиеся в организме больного, степенью генетической изменчивости, обладают чрезвычайно высокой намного превышающей таковую у здоровых клеток. Генетическая изменчивость популяций раковых клеток позволяет им в процессе заболевания иммунному И фенотипы, нечувствительные К генерировать морфогенетическому контролю, способные к инвазии и метастазированию и нечувствительные к противоопухолевой терапии. Считается, что селекционный отбор и клональная экспансия раковых клеток лежат в основе биологической и клинической "прогрессии" опухолей. В соответствии с этими представлениями стратегия современной противоопухолевой терапии основана на принципе уничтожения клонов опухолевых клеток в организме больного с помощью методов - химиотерапии, радиотерапии, иммунотерапии, биотерапии, хирургического удаления и различных их комбинаций.

Из нехирургических методов лечения онкологических заболеваний наибольшее распространение получили способы химиотерапии, радиотерапии, биотерапии, а в последнее время и иммунотерапии, направленные на

2

уничтожение, повреждение или инактивацию внутриклеточной ДНК опухолевой клетки.

Известны химиотерапевтические методы лечения при помощи препаратов платины, см. "Molecular mechanisms involved in cisplatin cytotoxicity". Jordan P, Carmo-Fonseca M, Cell Mol Life Sci 2000 Aug. v 57: pp.1229-35, антрациклиновых антибиотиков, см. "Daunorubicin and doxorubicin, anthracycline antibiotics, a physicochemical and biological review", Aubel-Sadron G, Londos-Gagliardi D, Biochimie 1984 May v.66: pp. 333-52, алкилирующих агентов, см. "An overview of cyclophosphamide and ifosfamide pharmacology". Fleming RA, Pharmacotherapy 1997 Sep-Oct v.17: pp.146S-154S, и производных подофилотоксинов, см. "Podophyllotoxins: current status and recent developments", Damayanthi Y, Lown JW, Curr Med Chem 1998 Jun 5: v 3 205-52.

5

10

15

20

25

30

Получают распространение радиоиммунотерапевтические методы, позволяющие облучать ядра опухолевых клеток, содержащие внутриклеточную ДНК, альфа-частицами из альфа-эмиттеров, специально доставляемых внутрь раковых клеток для повышения эффективности воздействия на внутриклеточную ДНК, см. "Targeted alpha therapy: evidence for potential efficacy of alpha-immunoconjugates in the management of micrometastatic cancer" Allen BJ, Australas Radiol 1999 Nov v.43: pp 480-6.

Известны биотерапевтические и иммунотерапевтические методы, направленные на индукцию апоптоза опухолевых клеток — процесса гибели раковой клетки, запускаемого активацией внутриклеточных нуклеаз и последующим разрушением внутриклеточной ДНК опухолевой клетки, например, путем введения больному генотерапевтических конструкций, содержащих гены, запускающие процесс апоптоза, см. "Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results" Lang FF, Bruner JM, Fuller GN, Aldape K, Prados MD, Chang S, Berger MS, McDermott MW, Kunwar SM, Junck LR, Chandler W, Zwiebel JA, Kaplan RS, Yung WK, J Clin Oncol 2003 Jul 1 21:13 2508-18, или гены, кодирующие факторы, активирующие внутриклеточные индуцирующие апоптоз нуклеазы, см. "Adenovirus-mediated transfer of caspase-8 augments cell death in gliomas: implication for gene therapy." Shinoura N, Koike H, Furitu T, Hashimoto M, Asai A,

3

Kirino T, Hamada H, Hum Gene Ther 2000 May 20 11:8 1123-37, или путем введения противоопухолевых вакцин, см. "Vaccine-induced apoptosis: a novel clinical trial end point?" Amin S, Robins RA, Maxwell-Armstrong CA, Scholefield JH, Durrant LG, Cancer Res 2000 Jun 60: 3132-6.

Известно использование эндонуклеазы Endo-SR для лечения раковых заболеваний путем ее внутриклеточной доставки в клетку-мишень, US,C, 6455250.

5

10

15

20

25

30

Среди перечисленных способов метод химиотерапевти-ческого лечения опухолей с помощью Этопозида- 4'-Деметилпиподофиллотоксин 9- [4,6- О-R)этилиден]- b -D-гликопиранозида избран нами в качестве прототипа. необходимым клеточным ферментом, Топоизомераза II является регулирующим многие аспекты функционирования внутриклеточной ДНК. Фермент осуществляет интерконверсию различных топологических форм при этом транзиторные разрывы внутриклеточной ДНК, генерируя двухцепочечной ДНК. Этопозид, являясь ингибитором Топоизомеразы II, увеличивает внутриклеточную концентрацию комплексов Топоизомераза II разрезанная ДНК. В результате воздействия препарата происходит накопление большого количества двухнитевых разрывов внутриклеточной ДНК, что и является причиной гибели клетки, см. "Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice". FortuneJM,Osheroff N., Prog Nucleic Acid Res Mol Biol 2000, v. 64: pp.221-53.

Недостатком способа-прототипа, как и других известных способов, является низкая эффективность. Это объясняется следующим. Способпрототип, как и другие известные способы, имеет мишенью терапевтического воздействия опухолевую клетку, в первую очередь ее внутриклеточную ДНК. Опыт подобной терапии свидетельствует, что:

- вследствие высокой генетической изменчивости опухолевые клетки, как правило, приобретают нечувствительность к применяемой терапии до того, как используемая методика позволяет их в необходимой степени уничтожить;

- внутриклеточная ДНК является относительно труднодоступной мишенью, что влечет за собой необходимость применения высоких доз

4

противоопухолевых препаратов и/или сложных систем их доставки (Drug Delivery Systems).

Кроме того, следует отметить, что способ-прототип, предусматривающий воздействие на внутриклеточную ДНК опухолевых клеток, влечет за собой неизбежное разрушение ДНК здоровых клеток, что обуславливает его высокую токсичность.

Раскрытие изобретения.

В основу настоящего изобретения положено решение задачи создания высокоэффективного и малотоксичного способа лечения онкологических заболеваний.

10

15

20

25

30

Согласно изобретению эта задача решается за счет того, что системную циркуляцию вводят агент, разрушающий внеклеточную ДНК крови; этот агент мжет вводиться в дозах, обеспечивающих изменение электрофоретического профиля внеклеточной ДНК крови, выявляемое пульсгельэлектрофорезом; этот агентможет вводиться в дозах и режимах, обеспечивающих уровень ДНК-гидролитической активности плазмы крови, измеряемый в плазме крови и превышающий 150 единиц Кунца на литр плазмы, на протяжении суммарно более 12 часов в сутки; лечение может осуществляться непрерывно не менее 2 суток; в качестве агента, разрушающего внеклеточную ДНК крови, может быть использован фермент ДНКазы, в частности, бычья панкреатическая ДНКаза, которую парэнтерально в дозах от 50 000 единиц Кунца до 250 000 000 единиц Кунца в сутки ежедневно на протяжении 5 - 360 дней, или рекомбинантная человеческая ДНКаза, при этом может быть использована рекомбинантная человеческая ДНКаза I (дорназу-альфа), которую вводят парэнтерально в дозах 0.15-500 мг/кг массы тела в сутки ежедневно на протяжении 5-360 дней; лечение может проводиться пожизненно; дополнительно в системную циркуляцию может вводиться агент, связывающий внеклеточную ДНК крови; в качестве этого агента могут быть использованы анти-ДНК антитела; дополнительно в системную циркуляцию может вводиться модифицирующий

5

агент, изменяющий химический состав и/или конформацию и/или полимерность и/или ассоциацию с белками и/или липидами и/или рибонуклеиновыми кислотами внеклеточной ДНК крови; в качестве модифицирующего агента могут использовать фермент рибонуклеазу; качестве этих агентов может быть использована внеклеточная нуклеаза бактерии Serratia Mercenses.

5

10

15

20

25

30

Факт циркуляции внеклеточной ДНК в крови больных онкологическими заболеваниями описан в ряде работ (P.Anker et al., Clinica Chimica Acta, v.313, 2001, pp.143-146; Fedorov N.A. et.al., Bull.Exp.Biol.Med.,v102,1986, pp. 281-283). В патенте US, C, 5952170 описано определение внеклеточной ДНК в крови для диагностики и прогнозирования течения онкологических заболеваний. В патентах US, C, 6465177 и US, C, 6156504 описано использование внеклеточной ДНК крови для определения мутаций в онкогенах и микросателлитных участках генов, изучения геномной нестабильности в опухолях и использования результатов наблюдений для диагностики, мониторирования и прогнозирования течения заболевания.

Тем не менее, до настоящего времени отсутствовал систематический анализ спектра внеклеточной ДНК крови и ее биологической роли. Данные исследований внеклеточной ДНК крови без проведения полимеразной цепной реакции (ПЦР) в печати не обнаружены. ПЦР может сильно искажать состав внеклеточной ДНК крови в силу специфичности праймеров, применяемых для амплификации. До последнего времени проводился, в основном, генетический анализ ДНК плазмы, произведённый при помощи ПЦР или блот-гибридизации, и направленный на изучение изменений в определённых участках генома (например, в микростателлитах и отдельных генах) при опухолевом процессе (Sanchez-Cespedes M., et al., Ann Oncol, 1993, v9(1), pp.113-116; Sozzi G., et al., Clin Can Res, 1999, v 5(10), pp.2689-2692; Chen X.O., et al., Nat Med, 1996, v 2(9), pp.1033-1035).

Таким образом, в известных заявителю источниках отсутствуют знания о генетическом репертуаре внеклеточной ДНК крови больных при онкопатологии, биологической роли внеклеточной ДНК крови при онкопатологии и возможном терапевтическом эффекте ее уничтожения или

10

15

20

30

инактивации для лечения этих заболеваний, что позволяет сделать вывод о соответствии изобретения критерию «новизна» (N).

Заявителем было установлено, что внеклеточная ДНК крови онкологических больных содержит уникальный по своему качественному и количественному составу репертуар генов и регуляторных генетических элементов, резко отличающийся от репертуара ДНК, описанного в геноме человека. В отличие от внутриклеточной ДНК, внеклеточная ДНК крови онкологических больных содержит, в основном, уникальные гены человека, включая гены, вовлеченные в поддержание и формирование злокачественного поведения раковых клеток.

Показано, что внеклеточная ДНК крови при онкологической патологии способствует злокачественному росту.

Разрушение, в том числе вместе с модификацией и связыванием, внеклеточной ДНК крови при онкопатологии препятствует злокачественному росту. Подобное вмешательство имеет как самостоятельную терапевтическую ценность, так и повышает эффективность традиционных методов терапии.

Указанные выше новые свойства заявленного изобретения, базирующиеся на принципиально новых представлениях о механизме онкологических заболеваний, позволяют сделать вывод о соответствии заявленного способа критерию «изобретательский уровень» (IS).

Краткое описание чертежей

В дальнейшем изобретение поясняется подробным описанием примеров его осуществления без ссылок на чертежи

Лучший вариант осуществления изобретения

Заявленный способ реализуется следующим образом.

Материалы и методы.

Использовали следующие агенты, разрушающие внеклеточную ДНК крови: бычью панкреатическую ДНКазу (Sigma и Самсон-Мед),

7

рекомбинантную человеческую ДНКазу I (Дорназу альфа; Genetech), внеклеточную нуклеазу Serratia Mercenses. Раствор ДНКазы для введения готовился растворением матричного раствора ДНКазы в стерильном фосфатном буфере непосредственно перед введением.

5

10

15

20

25

30

ДНК плазмы крови выделяли следующим образом: свежую (не более 3-4 часов после забора) плазму крови с добавленным антикоагулянтом (цитрат натрия) центрифугировали на подушке из Ficoll-PlaquePlus (Amersham-Pharmacia) при 1500g 20 минут при комнатной температуре. Плазму (1/2 от всего количества) аккуратно отбирали, не задевая остаток клеток на подушке фиколла, и откручивали при 10 000g 30 минут, чтобы избавиться от обломков клеток и дебриса. Супернатант отбирали, не затрагивая осадок, добавляли до 1% саркозила, до 50мМ трис-HCl, pH 7,6, до 20 мМ ЭДТА, до 400 мМ NaCl, и равный объем смеси фенол-хлороформ 1:1. Полученную эмульсию инкубировали при 65^OC 2 часа, затем отделяли фенол-хлороформ центрифугированием при 5000g в течение 20 минут при комнатной температуре. Процедуру депротеинизации фенол-хлороформом повторяли идентичным способом трижды, после чего водную фазу обрабатывали хлороформом, затем диэтиловым эфиром. Отделение от органических растворителей производили центрифугированием при 5000g в течение 15 минут. К полученной водной фазе добавляли равный объем изопропанола и инкубировали в течение ночи при 0^оС. После осаждения нуклеиновые кислоты отделяли центрифугированием при 0^OC, 10000g в течение 30 минут. Осадок нуклеиновых кислот растворяли в буфере, содержащем 10мМ трис-НС1, рН 7,6, 5 мМ ЭДТА, и наносили на подушку из ступенчатого клористого цезия (1M, 2.5M, 5.7M) в центрифужной пробирке для ротора SW60Ti. Объем ДНК 1 CsCl по мл. каждой ступеньки 2 мл, объем составлял Ультрацентрифугирование проводили в приборе L80-80 (Beckman) 3 часа при 250000 д. ДНК отбирали с поверхности ступеньки 5.7М по фракциям. Фракции диализировали 12 часов при 4^оС. Наличие ДНК во фракциях определяли агарозным электрофорезом, с визуализацией ДНК бромистым этидием. Количество ДНК определяли спектрофотометрически (Beckman DU70) в кювете объемом 100мкл, снимая спектр от 220 до 320 нм.

10

15

20

25

30

В экспериментах использовались штаммы мышиной карциномы легких Люиса и карциномы Эрлиха. Клетки росли в среде RPMI-1640 с добавлением 10% эмбриональной телячьей сыворотки, 1% пенициллин-стрептомицина в среде с 5% углекислого газа.

Для индукции опухолей у мышей клетки выращивали до монослоя, отделяли с помощью раствора трипсин—ЭДТА. Клетки трижды отмывали центрифугированием в фосфатном буфере и ресуспендировали до $0.5*10^7$ в миллилитре. Жизнеспособность определяли по включению метиленового синего в гемоцитометре. Для введения животным использовались суспензии с не менее 95% жизнеспособных клеток.

Использовались мыши линии C57Bl и белые беспородные мыши, полученные из питомника «Рапполово». Вес животных 24-26 грамм. Животные содержались по 6-7 штук в клетке на стандартной диете без ограничения воды. LLC клетки в дозе 5*10⁵ в 100 мкл фосфатного буфера вводились в мягкие ткани бедра. Опухоль Эрлиха перевивалась под кожу правого бока введением 0,2 мл 10%-ной взвеси опухолевых клеток в изотоническом растворе хлорида натрия

В некоторых экспериментах исследовалось содержание внеклеточной ДНК в плазме крови. ДНК выделялась по ранее описанному протоколу. Содержание ДНК измерялось с помощью наборов PicoGreen. Электрофорез внеклеточной ДНК крови проводили в 1% агарозном геле. ДНК окрашивали этидиум-бромидом. Сравнительное содержание высокомолекулярной (более 300 пар оснований) фракции ДНК в форезах оценивали денситометрически. В качестве маркера использовали фаг лямбда, обработанный рестриктазами ЕсоR и Hind III.

Пример 1. Торможение развития опухоли Эрлика.

Использовали рекомбинантную человеческую ДНКазу I (Genetech).

1 группа — 10 мышей с привитой карциномой Эрлиха - контроль. Мыши получали два раза в день ежедневно с 3 по 7 день после перевивки опухоли внутрибрющинно инъекции 200 мкл фосфатного буфера.

- 2 группа 10 мышей с привитой карциномой Эрлиха, получавших ДНКазу четыре раза в день ежедневно с 3 по 7 день после перевивки опухоли в дозе 1мг/кг внутрибрющинно в 200 мкл фосфатного буфера.
- 3 группа 10 мышей с привитой карциномой Эрлиха, получавших ДНКазу четыре раза в день ежедневно с 3 по 7 день после перевивки опухоли в дозе 0,5 мг/кг внутрибрющинно в 200 мкл фосфатного буфера.
- 4 группа 10 мышей с привитой карциномой Эрлиха, получавших ДНКазу четыре раза в день ежедневно с 3 по 7 день после перевивки опухоли в дозе 0,1 мг/кг внутрибрющинно в 200 мкл фосфатного буфера.
- 5 группа 10 мышей с привитой карциномой Эрлиха, получавших ДНКазу четыре раза в день ежедневно с 3 по 7 день после перевивки опухоли в дозе 0,05 мг/кг внутрибрющинно в 200 мкл фосфатного буфера.

Результаты экспериментов оценивали по торможению роста опухоли (ТРО, выраженное в процентах) в последний день введения ДНКазы. ТРО определяли по общепринятой методике. Определяли содержание внеклеточной ДНК крови и ее электрофоретическое фракционирование.

Результаты приведены в таблице 1.

Таблица 1.

Размер опухоли, содержание внеклеточной ДНК и ее электрофоретический профиль через 7 дней после перевивки опухоли.

20

5

10

15

Группа	Объем	Торможе-	Содержание	Наличие
	опухоли	ние, (%)	внеклеточной	высокомолекулярных
			ДНК,	фракций во
			(нг/мл)	внеклеточной ДНК
Контроль	98+/-14	-	104,8	100%
1мг\кг	23+/-6	76%	38,3	0
0,5мг\кг	32+/-6	67%	55,1	25%
0,1мг\кг	58+/-12	37%	78,0	70%
0,05мг\кг	87+/-11	10%	98,7	100%

Приведенные данные свидетельствуют, что для достижения наилучшего лечебного эффекта необходимо применение достаточно высоких доз препарата ДНКазы I.

15

20

Пример 2. Торможение развития опухоли Эрлиха.

Использовали рекомбинантную человеческую ДНКазу I (Genetech).

В эксперименте участвовало 5 групп мышей, привитых LLC.

1 группа – 7 мышей - контроль.

2 группа – 6 мышей, получавших внутрибрющинно терапию ДНКазой в дозе 1 мг/кг 2 раза в сутки с 3 по 5 день после перевивки.

3 группа – 6 мышей, получавших внутрибрющинно терапию ДНКазой в дозе 1 мг/кг 2 раза в сутки с 3 по 10 день после перевивки.

4 группа – 6 мыпей, получавших терапию ДНКазой в дозе 1 мг/кг 2 10 раза в сутки с 3 по 15 день после перевивки.

5 группа – 6 мышей, получавших терапию ДНКазой в дозе 1 мг/кг 2 раза в сутки с 3 по 18 день после перевивки.

6 группа – 6 мышей, получавших терапию ДНКазой в дозе 1 мг/кг 2 раза в сутки на 3, 5, 7, 9, 11, 13, 15 и 17 день после перевивки.

7 группа – 6 мышей, получавших внутрибрющинно терапию ДНКазой в дозе 0,5 мг/кг 4 раза в сутки с 3 по 10 день после перевивки.

Результаты эксперимента оценивали по выживаемости животных на 30 и 50 день после перевивки опухоли. Результаты приведены в таблице 2

Таблица 2. Выживаемость животных на 30 и 50 день после перевивки опухоли

Группа	30 день (число живых / павших животных в группе)	50 день (число живых / павших животных в группе)
1	0-7	0-7
2	0-6	0-6
3	3-3	0-6
4	5-1	3-3
5	6-0	6-0
6	0-6	0-6
7	4-2	1-5

Приведенные данные свидетельствуют, что эффективность проводимого лечения увеличивается по мере увеличения длительности лечения.

10

15

20

25

30

Эффективность лечения падает, если оно не является непрерывным. Многократное введение в течение суток является предпочтительным.

Пример 3. Лечение карциномы легких.

Больной мужчина, 54 лет поступил в клинику с диагнозом карцинома легких.

С согласия больного, с учетом исчерпания всех возможных методов лечения, ему были назначены ежедневные подкожные инъекции препарата 50 MKT/KT. дорназы альфа. Лечение начали с введения суточной дозы осуществляли измерение содержания последующий день Каждый внеклеточной ДНК крови и ее электрофоретическое фракционирование. Один раз в неделю осуществляли ЯМР и рентгенологический контроль первичной опухоли и метастазов. Через семь дней ввиду отсутствия изменений в содержании внеклеточной ДНК крови, ее электрофоретической картины и отсутствия реакции со стороны первичной опухоли и метастазов суточную дозу препарата увеличили до 100 мкг/кг. Ввиду отсутствия изменений еще через 7 дней произвели увеличение суточной дозы препарата до 150 мкг/кг. Через 2 дня после первого введения препарата в дозе 150 мкг/кг в препарате внеклеточной ДНК крови на фоне несущественного снижения общего количества внеклеточной ДНК крови (менее 20%) отмечалось существенное (более 50 %) снижение содержания фракции внеклеточной ДНК крови с размером более 300 пар оснований. В последующие 4 дня самочувствие пациента значительно улучшилось, а по результатам контрольного ЯМРисследования в конце семидневного цикла отмечалось уменьшение размера первичной опухоли на 25% и имелись рентгенологические признаки регрессии двух костных метастатических узлов.

Образцы внеклеточной ДНК данного больного, взятые до начала лечения и через 21 день после начала терапии были клонированы с использованием метода, позволяющего конструировать неамплифицированные плазмидные библиотеки внеклеточной ДНК крови с представительностью до миллиона клонов со средним размером в 300-500 пар оснований.

Выделенная по ранее описанному протоколу ДНК была подвергнута дополнительной тщательной депротеинизации с применением

10

15

20

протеиназы К (Sigma) при 65°C для удаления прочно связанных белков. После депротеинизации и однократной обработки фенол-хлороформом при 65°C, ДНК осаждали 2,5 объемами этанола в течение ночи. Затем ДНК либо обрабатывали рестриктазой EcoRI в течение 3 часов, либо Pfu полимеразой (Stratagene) в присутствии 300 мкМ всех дезоксинуклеотидтрифосфатов для Достроенную ЛНК фосфорилировали липких концов. удаления полинуклеотидкиназой Т4 (30U, 2 ч.). Полученные препараты лигировали в pBluescript (Stratagene), переваренную **EcoRI** или PvuII и дефосфорилированную щелочной фосфатазой соответственно, (Fermentas) в течение 1 часа. Для лигирования обычно использовали 1 мкг вектора и 0,1-0,5 мкг сывороточной ДНК. Лигирование проводили при помощи Rapid Ligation Kit (Roche) 10 часов при 16⁰С. Объем лигазной смеси составлял 50 мкл. Лигированную библиотеку трансформировали в клетки DH12S (Life Technologies) с применением электропоратора E. Coli porator (BioRad). Для трансформации одной библиотеки использовали 12-20 электропорационных кювет. Для контроля на чашки с 1,5% агаром и средой LB, содержащей 100 мкг/мл ампициллина высевали разведения библиотеки 10^{-4} , 10^{-5} и 10^{-6} . В обоих случаях представительность библиотеки составляла примерно $2-3*10^6$ клонов.

Анализ случайно выбранных 96 клонов с длиной от 300 до 1000 пар оснований из библиотеки, полученной из внеклеточной ДНК крови больного до начала лечения показал, что 55 из 96 клонов представляют собой уникальные последовательности ДНК человека. Из 55 фрагментов уникальной ДНК, функция или продукт соответствующего гена с помощью HumanGeneBank были идентифицированы для 15 последовательностей:

Gene or corresponding protein product	Reported role in cancerogenesis and cancer progression
G-protein coupled receptor protein	Key role in neoplastic transformation, apoptosis inhibition, hormone independence and metastasis
Snf2 coupled CBP activator (SCARP)	Transcription activator, reported in synovial sarcoma and leukemia.
SRY-box containing	Transcription modulator expressed in embryogenesis.

gene	Reported in medulloblastoma, gonadal tumors, highly metastatic melanoma.	
Tyrosine kinase	Key role in cancer cell regulation network. Some class	
	homologues are the products of cellular oncogenes.	
Fibroblast activation	Involved into cancer invasion and metastasis.	
protein, cell surface		
protease		
Brain testican	Reported in embryonic rhabdomyosarcoma.	
KRAB domain, Zn-	Reported in early embryogenesis, neuroblastoma, Ewing	
finger protein.	sarcoma, T-cell lymphoma, linked with acquisition of	
	drug resistance in lung cancer.	
Melanoma associated	Antigen expressed in melanoma cells.	
antigen	·	
N-cadherin	Involved into cancer invasion and metastasis.	
Interleukin 7	Proposed essential autocrine -paracrine growth factor	
	for many cancers	
DEAD Box RNA	Expressed in highly proliferating and cancer cells.	
helicase-like protein		
Lipin-1	Involved into cancer cell response to cytotoxic drugs.	
Dynein	Participate in p53 intracellular traffic, reported in	
	prostate cancer and hepatocellular carcinoma.	
Ramp protein	Reported in human embryonic carcinoma	

Анализ случайно выбранных 100 клонов из библиотеки, полученной из внеклеточной ДНК крови больного через 21 день после начала лечения показал, что более 90% выявленных последовательностей клонов представляют собой короткие фрагменты повторяющейся ДНК генома человека, в основном альфа сателлитную ДНК.

5

Таким образом, применение доз ДНКазы, достаточных для разрушения внеклеточной ДНК крови с размером более 300 пар оснований, ведет к исчезновению из внеклеточной ДНК крови уникальных фрагментов генома человека, в том числе вовлеченных в процесс формирования и поддержание

злокачественного поведения раковых клеток. При этом наблюдается регрессия опухоли согласно заявляемому способу.

Пример 4. Лечение злокачественной низкодифференцированной лимфомы с диффузным поражением селезенки и ворот печени с метастатическими узлами в печени.

5

10

15

20

25

30

Женщина 49 лет поступила в клинику в тяжелом состоянии, с пихорадкой до 39°C, прогрессирующей желтухой и проявлениями печеночной недостаточности с подозрением на острый гепатит. При исследовании выявлена злокачественная низкодифференцированная лимфома с диффузным поражением селезенки и ворот печени с многочисленными метастатическими узлами в печени. С согласия больной, с учетом невозможности применения специфического лечения и постоянно прогрессирующей картины заболевания, ей была прописана внутривенная инфузия бычьей панкреатической ДНКазы. Два раза в сутки осуществляли измерение содержания внеклеточной ДНК крови и ее электрофоретическое фракционирование В первые сутки было введено 500 000 ЕД фермента в виде двух шестичасовых инфузий. В дальнейшем суточную дозу увеличивали на 1 000 000 ЕД в сутки ежедневно.

При достижении суточной дозы в 5 500 000 ЕД отмечено значительное (более 50%) снижение содержания внеклеточной ДНК крови и исчезновение фракции ДНК с размером более 300 пар оснований при электрофоретическом фракционировании. На фоне продолжающихся инфузий в дозе 5 500 000 ЕД в сутки состояние больной начало улучшаться, исчезли лихорадка и желтуха, улучшились бнохимические показатели крови. Контрольное ультразвуковое исследование, проведенное на 20 день после начала лечения, выявило значительное (более 40%) сокращение площади поражения селезенки и исчезновение более половины метастатических узлов в печени. Больная была лечебное учреждение для проведения переведена В другое химиотерапевтического лечения.

Таким образом, применение доз ДНКазы, достаточных для разрушения внеклеточной ДНК крови с размером более 300 пар оснований ведет к регрессии опухоли согласно заявляемому способу.

10

15

20

25

Пример 5. Исследование влияния поликлональной сыворотки, содержащей антитела против ДНК, на рост карциномы Эрлиха у мышей, получающих лечение ДНКазой.

Антитела против ДНК выделялись из крови больных системной красной волчанкой по методике Shuster A.M. (Shuster A.M. et.al., Science, v. 256, 1992, pp. 665-667). Подобные анти-ДНК антитела способны не только связывать, но и осуществлять гидролиз ДНК. В качестве ДНКазы использовалась человеческая рекомбинантная ДНКаза I (Genetech).

1 группа – 7 мышей с привитой карциномой Эрлиха - контроль.

2 группа - 6 мышей с привитой карциномой Эрлиха, получивших на третий день после перевивки опухоли внутривенную инъекцию фракции человеческих анти-ДНК антител (IgG) по 200 мкг на одно животное. Животные также получали внутрибрющинно терапию ДНКазой в дозе 0,5 мг/кг 4 раза в сутки с 3 по 7 день после перевивки.

3 группа - 6 мышей с привитой карциномой Эрлиха, получивших на третий день после перевивки опухоли внутривенную инъекцию фракции неспецифического человеческого иммуноглобудина (IgG) по 200 мкг на одно животное. Животные также получали внутрибрющинно терапию ДНКазой в дозе 0,5 мг/кг 4 раза в сутки с 3 по 7 день после перевивки.

4 группа - 6 мышей с привитой карциномой Эрлиха получали внутрибрющинно терапию ДНКазой в дозе 0,5 мг/кг 4 раза в сутки с 3 по 7 день после перевивки.

Эффект определяли по торможению роста опухоли на 7 день после перевивки (ТРО, выраженное в процентах). Результаты приведены в таблице 3.

Таблица 3 Размер опухоли через 7 дней после перевивки опухоли

Группа	Объем опухоли	Т%.
1	105+/-12	-
2	25+/-5	~75%
3	37+/-6	~66%
4	35+/-7	~67%

10

15

Приведенные данные свидетельствуют, что совместное применение ДНКазы и агента, связывающего внеклеточную ДНК крови, приводит к более выраженному противоопухолевому эффекту.

Изучение Пример 6. кинетики деградации фракции высокомолекулярной фракции (размер более 300 пар оснований) внеклеточной ДНК крови больной раком молочной железы в присутствии бычьей панкреатической ДНКазы, Протеиназы К и бычьей панкреатической ДНКазы, панкреатической . ДНКазы внеклеточной Липазы бычьей обладающей дезоксирибонуклеазы Serratia Mercenses, рибонуклеазной активностью и являющейся как разрушающим, так и модифицирующим агентом.

В образцы плазмы больной добавляли фермент и инкубировали 45 минут при 37°С. Через 45 минут реакцию прекращали и осуществляли выделение и электрофоретическое фракционирование с денситометрией внеклеточной ДНК крови. Результаты представлены в таблице 4.

Таблица 4 Кинетика деградации высокомолекулярной фракции

Способ обработки	Деградация высокомолекулярной фракции, %
Необработанный контроль	0
Протеиназа К (0,1 мкг/мл)	0
Панкреатическая липаза (0,1мкг/мл)	0
Бычья панкреатическая ДНКаза	25
(1 Kuntz Units /ml)	
Бычья панкреатическая ДНКаза	35
(1 Kuntz Units \ml)+ Протеиназа К (0,1 мкг\мл)	
Бычья панкреатическая ДНКаза	40
(1 Kuntz Units /ml)+ Панкреатическая липаза (0,1мкг/мл)	
Внеклеточная дезоксирибонуклеазы Serratia Mercenses	45
(1 Kuntz Units /ml)	

10

15

20

25

30

Приведенные данные свидетельствуют, что совместное применение ДНКазы и агента, модифицирующего связь внеклеточной ДНК крови с белками, липидами и рибонуклеиновыми кислотами, приводит к более эффективной деградации высокомолекулярной (более 300 пар оснований) фракции внеклеточной ДНК крови.

Пример 7. Изучение влияния различных способов разрушения внеклеточной ДНК на ее патогенные свойства.

Мыши C57B1 получили прививку высокометастатического или низкометастатического штамма опухоли LLC. На 9 день после перевивки животных усыпляли и собирали суммарную плазму крови мышей. Суммарная фракция внеклеточной ДНК крови после выделения хранилась при -20° C в фосфатном буфере.

В эксперименте участвовало 7 групп мышей, привитых низкометастатическим штаммом LLC.

1 группа – 6 мышей с привитым низкометастатическим штаммом LLC.

2 группа – 6 мышей с привитым низкометастатическим штаммом LLC + внутривенное двукратное (на седьмой и восьмой день после перевивки) введение суммарной фракции внеклеточной ДНК мышей с привитым высокометастатическим штаммом (0,05 мкг ДНК перед введением растворялись в 500 мкл свежей гепаринизированной крови).

3 группа — 6 мышей с привитым низкометастатическим штаммом LLC + внутривенное двукратное (на седьмой и восьмой день после перевивки) введение суммарной фракции ДНК мышей с привитым высокометастатическим штаммом (0,05 мкг ДНК перед введением растворяли в 500 мкл. свежей плазмы). Перед введением образец ДНК подвергали фотохимической дезинфекции (добавление 1 мкМ метиленового синего с последующим облучением красным светом в течение 10 минут (~60 000 Люкс).

4 группа – 6 мышей с привитым низкометастатическим штаммом LLC + внутривенное двукратное (на седьмой и восьмой день после перевивки) введение суммарной фракции ДНК мышей с привитым

10

15

20

25

30

высокометастатическим штаммом (0,05 мкг ДНК перед введением растворяли в 500 мкл свежей плазмы). Перед введением образец ДНК смешивали с 10 мкг гидролитических анти-ДНК антител.

5 группа – 6 мышей с привитым низкометастатическим штаммом LLC + внутривенное двукратное (на седьмой и восьмой день после перевивки) суммарной фракции ДНК мышей С привитым введение высокометастатическим штаммом (0,05 мкг ДНК перед введением растворяли в 500 мкл свежей гепаринизированной крови). Перед введением в образец добавляли 1 мкг фрагмента А растительного токсина Рицина и инкубировали 1 час при 37^оС. Рицин является представителем семейства RIP (белки инактивирующие рибосомы) токсинов, широко используемых для создания иммунотоксинов. Кроме способности инактивировать рибосомы эти белки обладают способностью деаденилировать и гидролизовать реализации токсического эффекта каталитическая единица А токсинов RIP II типа должна быть доставлена в клетку субъединицей В. В отсутствие A однако полинуклеотид-В цепь не токсична, субъединицы аденингликозидазная активность цепи А может быть использована для разрушения ДНК, циркулирующей в плазме.

6 группа – 6 мышей с привитым низкометастатическим штаммом LLC + внутривенное двукратное (на седьмой и восьмой день после перевивки) привитым фракции ДНК мышей С суммарной введение высокометастатическим штаммом (0,05 мкг ДНК перед введением растворяли ДНК перед мкл свежей гепаринизированной крови. ДНК. Образец в 500 введением подвергалась ферментативному метилированию (I.Muiznieks et.al., FEBS Letters, 1994, v.344, pp.251-254).

7 группа - 6 мышей мышей с привитым низкометастатическим штаммом LLC + внутривенное двукратное (на седьмой и восьмой день после перевивки) введение суммарной фракции внеклеточной ДНК мышей, привитых низкометастатическим штаммом LLC.

8 группа - 6 мышей мышей с привитым низкометастатическим штаммом LLC+ внутривенное двукратное (на седьмой и восьмой день после перевивки) введение суммарной фракции ДНК мышей с привитым

высокометастатическим штаммом (0,05 мкг ДНК перед введением растворяли в 500 мкл свежей гепаринизированной крови. Образец ДНК перед введением инкубировали в присутствии 200 нг/мл дорназы –альфа 30 минут при 37°C.

Оценивали количество метастатических узлов в легких на 15 день после перевивки. Результаты эксперимента приведены в таблице 5.

Таблица 5 Количество метастатических узлов (N ср.) в легких на 15 день после перевивки опухоли в зависимости от способа разрушения внеклеточной ДНК

Группа	Ncp.
1	12,0
2	22,5
3	14,1
4	15,5
5	15,1
6	12,3
7	13,3
8	13,5

Таким образом, внеклеточная ДНК крови мышей с высокозлокачественным штаммом опухоли усиливает метастазирование менее злокачественной опухоли. Разрушение, связывание и модификация внеклеточной ДНК крови препятствуют этому согласно заявляемому способу.

Промышленная применимость

15

10

Для реализации данного способа применены известные материалы и оборудование, изготовляемое в заводских условиях, что обусловливает соответствие изобретения критерию «промышленная применимость». (IA)

Формула изобретения

1. Способ лечения онкологических заболеваний, отличающий сятем, что в системную циркуляцию вводят агент, разрушающий внеклеточную ДНК крови.

5

20

- 2. Способ по п. 1, о т л и ч а ю щ и й с я т е м, что агент, разрушающий внеклеточную ДНК крови, вводят в дозах, обеспечивающих изменение электрофоретического профиля внеклеточной ДНК крови, выявляемое пульстельэлектрофорезом
- 3. Способ по п.1, о т л и ч а ю щ и й с я т е м, что агент, разрушающий внеклеточную ДНК крови, вводят в дозах и режимах, обеспечивающих уровень ДНК-гидролитической активности плазмы крови, измеряемый в плазме крови и превышающий 150 единиц Кунца на литр плазмы, на протяжении суммарно более 12 часов в сутки.
- 4. Способ по п.3, отличающийся тем, что лечение осуществляют непрерывно не менее 2 суток
 - 5. Способ по п.1, отличающийся тем, что в качестве агента, разрушающего внеклеточную ДНК крови, используют фермент ДНКазу.
 - 6. Способ по п.5, отличающийся тем, что используют бычью панкреатическую ДНКазу, которую вводят парэнтерально в дозах от 50 000 единиц Кунца до 250 000 000 единиц Кунца в сутки ежедневно на протяжении 5 360 дней.
 - 7. Способ по п.5, отлячающийся тем, что используют рекомбинантную человеческую ДНКазу.
- 25 8. Способ по п.7, отличающийся тем, что используют рекомбинантную человеческую ДНКазу I (дорназу-альфа), которую вводят парэнтерально в дозах 0,15-500 мг/кг массы тела в сутки ежедневно на протяжении 5-360 дней.
- 9. Способ по п.1, отличающийся тем, что лечение проводят 30 пожизненно.
 - 10. Способ по п.1, отличающийся тем, что дополнительно в системную циркуляцию вводят агент, связывающий внеклеточную ДНК крови.

- 11. Способ по п. 10, о т л и ч а ю щ и й с я т е м, что в качестве агента, связывающего внеклеточную ДНК крови, используют анти-ДНК антитела.
- 12. Способ по п. 1, отличающийся тем, что дополнительно в системную циркуляцию вводят модифицирующий агент, изменяющий химический состав и/или конформацию и/или полимерность и/или ассоциацию с белками и/или липидами и/или рибонуклеиновыми кислотами внеклеточной ДНК крови.
- 13. Способ по п. 12, отличающийся тем, что в качестве модифицирующего агента используют фермент рибонуклеазу.
- 14. Способ п. 12, отличающийся тем, что в качестве агентов, разрушающих и модифицирующих внеклеточную ДНК крови, используют внеклеточную нуклеазу бактерии Serratia Mercenses.

Международная заявки № PCT/RU 2004/000261

ЗАКЛЮЧЕНИЕ МЕЖДУНАРОДНОЙ ПРЕДВАРИТЕЛЬНОЙ ЭКСПЕРТИЗЫ

Ī	Осно	ва заключения	
1.	Х	тельно языкв, данное сообщение подготовлено на ос международной заявки, на языке, на котором она б перевода международной заявки на следующий яз представленного для следующих целей: международный поиск (в соответствии с Пра публикация международной заявки (в соответ международная предварительная экспертиза	ыла подана ж , который является языком перевода, вилом 12.3 (а) и 23.1 (b))
	и предст		заключение составлено на основе (заменяющие листы, которые дложение в соответствии со статьей 14, в данном заключении отому заключению):
		международная заявка в том виде, в том виде, в кот описание: страницы страницы страницы	
		формула изобретения: страницы страницы страницы страницы	первоначально поданные/представленные полученные данным Органом на дату полученные даппым Органом на дату
	L	чертсжи: страницы страницы страницы	порвоначально поданные/представленные полученные данным Органом на дату
3.		перечень последовательностей и/или соответству перечно последовательностей Изменения привели к изъятию: страниц описания пунктов формулы №№	ющие таблицы - см. Дополнительный раздел, относящийся к
4.		страниц/фиг. чертежей перечня последовательностей таблицы, относящийся к перечню послел Настоящее заключение составлено без учега (некото так как они выходят за рамки первоначально пол (Правнию 70.2(с)).	овательностей рых) изменений, приложенных к этому отчету и отмеченных ниже; анных материалов заявки, как указано в Дополнительном разделе
	Fogu -	пунктов формулы №№ странни/фиг. чертежей перечня последовательностей таблицы, относящийся к перечню послед	овательностей

Дополнительная графа

разрушать ДНК, при введении в организм будет эффективен как для клеточной, так и внеклеточной ДНК.

При этом заявители согласны с тем, что ВДНКК является патогенетически значимой для возникновения и развития онкологических заболеваний (Д2 и Д3). Поэтому с учетом Д1 противоопухолевый эффект при введении агента, разрушающего, в том числе, ВДНКК очевиден для специалиста.

На основании этого способы, охарактеризованные в пунктах 1, 5, 7, 12 и 13 не соответствуют критерию «изобретательский уровень».

Другие частные случаи выполнения способа по пунктам 2-6, 8, 9-11 и 14 могут быть признаны соответствующими критерию «изобретательский уровень», поскольку из Д1-Д4 явным образом не следуют эти способы.

Способы, охарактеризованные в пунктах 1-11, соответствуют критерию «промышленная применимость».

Однако, способы по пункту 12-14 не соответствуют критерию «промышленная применимость». Это связано с тем, что из уровня техники не выявлены, а в материалах заявки не представлены сведения о том, что существуют агенты, которые могут обеспечить одновременное изменение химического состава, и конформации, и полимерности, и ассоциации с другими веществами ВДНКК. Поэтому осуществить такие варианты способа по пунктам 12,13 и 14 не представляется возможным.

В своем ответе заявители приводят сведения о том, какие агенты следует считать изменяющими химический состав, какие агенты – конформацию или полимерность ДНК, или ее ассоциацию с белками, липидами и нукленновыми кислотами. Эти сведения, однако, не снимают вопрос об осуществимости ряда вариантов способа, поскольку в них предлагают использовать агенты, характеристика которых представлена так, что идет речь о средстве одновременно изменяющем химический состав, конформацию, полимерность и ассоциацию с белками, липидами и рибонукленновыми кислотами. При этом еще раз следует отметить, что в уровне техники не выявлены именно такие агенты, а доводы заявителей не убеждают в возможности их существования. Таким образом, ни первоначальные материалы заявки, ни ответ заявителей не подтверждают возможность лечения онкологических заболеваний всеми способами-вариантами по пунктам 12-14 формулы изобретения.

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (second sheet) (July 1992)

International application No. PCT/RU 2004/000261

A. CLASSIFICATION OF SUBJECT MATTER A61K 38/43, 39/395, A61P 35/00					
According t	According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIEL	DS SEARCHED				
Minimum d	ocumentation searched (classification system followed by	y classification symbols)			
	A61	K 38/43, 39/395, A61P 35/00			
D					
Documentati	ion searched other than minimum documentation to the c	xtent that such documents are included in th	e fields searched		
Electronic de	ata base consulted during the international search (name	of data base and, where practicable, search to	erms used)		
		•	,		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.		
	RU 2001104426 A (RESEARCH DEVELOP 20.01.2003 Claims 86-115	MENT FOUNDATION)			
Y A			1, 5, 7, 12, 13		
,,	US 6521409 A (PENN STATE RES FOUND) 18.0	02.2003	2 - 4, 6, 8-11,14		
Y A	the abstract		1, 5, 7, 12, 13 2 - 4, 6, 8-11,14		
	110 5494590 A (DITTEL D DIG) 16 01 1006				
Υ	US 5484589 A (RUFELD INC) 16.01.1996, the abstract		1 5 7 10 12		
А	100000000		1, 5, 7,12,13 2- 4, 6, 8-11,14		
	MUTIRANGURA A. Serum/plasma viral DNA: med	-			
	applications to nasopharyngeal an cervical carcinom Sci. 2001 Sep; 945: 59-67,	a. Ann N Y Acad			
Y	the abstract		1, 5, 7,12,13		
Α			2-4, 6, 8-11,14		
			····		
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.			
"A" docume	Special categories of cited documents.				
"E" earlier d "L" docume cited to	"E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be				
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a room of the such documents, such combination being obvious to a room of the such documents.					
'P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
Date of the actual completion of the international search Date of mailing of the international search report					
Name and n	nailing address of the ISA/	Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No. PCT/RU 2004/000261

			,
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No
A	RU 2099080 C1 (FINKO DMITRY IVANOVICH et al) 20.12.19 the abstract	997,	1-14
A	EL HASSAN NO et al. Rescue use of Dnase in critical lung atelectas mucu retention in premature neonates. Pediatrics. 2001 Aug; 108 (2): 468-70, the abstract	is	1-14

Form PCT/ISA/210 (continuation of second sheet) (July 1992)