Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4 Вычислительная математика

Вариант: №17

Группа	P3208
Студент	Щетинин С.В.
Преподаватель	Машина Е.А.

Цель работы:

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Вычислительная реализация задачи:

Исследуемый интервал:

$$x \subseteq [0, 2]; h = 0.2$$

Функция:

$$y = \frac{2x}{x^4 + 17}$$

1. Сформировать таблицу табулирования заданной функции на указанном

x_{i}	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
y_i	0	0.024	0.047	0.07	0.091	0.111	0.13	0.134	0.136	0.13	0.121

2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала

Линейное приближение:

$$\phi_1(x) = ax + b$$

$$SX = \sum_{i=1}^{n} x_i = 11$$
 $SXX = \sum_{i=1}^{n} (x_i)^2 = 15.4$

$$SY = \sum_{i=1}^{n} y_i = 0.992$$
 $SXY = \sum_{i=1}^{n} x_i^* y_i = 1.2847$

$$\begin{cases} a = \frac{SXY \cdot n - SX \cdot SY}{SXX \cdot n - SX \cdot SX} \\ b = \frac{SXX \cdot SY - SX \cdot SXY}{SXX \cdot n - SX \cdot SX} \\ a = 0.0203323 \\ b = 0.0235792 \end{cases}$$

$$\phi_{_{1}}(x) = 0.02x + 0.024$$

x_{i}	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
y_i	0	0.024	0.047	0.07	0.091	0.111	0.13	0.134	0.136	0.13	0.121
ϕ_{1i}	0.023	0.028	0.032	0.036	0.04	0.044	0.048	0.052	0.056	0.060	0.064
ϵ_i	0.023	0.004	-0.015	-0.034	-0.052	-0.067	-0.077	-0.082	-0.079	-0.07	-0.056

$$\sigma_{1} = \sqrt{\frac{\sum_{i=1}^{n} \varepsilon_{i}^{2}}{n}} \simeq 0.0577$$

Квадратичное приближение:

$$\phi_2(x) = a + bx + cx^2$$

$$SX = \sum_{i=1}^{n} x_i = 11$$

$$SXX = \sum_{i=1}^{n} (x_i)^2 = 15.4$$

$$\sum_{i=1}^{n} (x_i)^4 = 40.533$$

$$SXY = \sum_{i=1}^{n} x_i^* y_i = 1.2847$$

$$SXX = \sum_{i=1}^{n} (x_i)^2 = 15.4$$

$$\sum_{i=1}^{n} (x_i)^3 = 24.2$$

$$SY = \sum_{i=1}^{n} y_i = 0.992$$

$$\sum_{i=1}^{n} (x_i)^2 * y_i = 1.90495$$

$$\begin{cases} n \cdot a + SX \cdot b + SXX \cdot c = SY \\ SX \cdot a + SXX \cdot b + S3X \cdot c = SXY \\ SXX \cdot a + S3X \cdot b + S4X \cdot c = SXXY \end{cases}$$

$$a = 0.017$$

$$b = 0.19$$

$$c = -0.059$$

$$\phi_2(x) = -0.059 + 0.19x + 0.017x^2$$

x_{i}	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
y_i	0	0.024	0.047	0.07	0.091	0.111	0.13	0.134	0.136	0.13	0.121
Φ_{2i}	-0.05 9	-0.02 0	0.020	0.061	0.104	0.148	0.193	0.240	0.289	0.338	0.389
ε_{i}	-0.059	-0.044	-0.027	-0.009	0.012	0.037	0.068	0.106	0.153	0.207	0.268

$$\sigma_{2} = \sqrt{\frac{\sum_{i=1}^{n} \varepsilon_{i}^{2}}{n}} \simeq 0.121$$

 $\sigma_{2}^{} < \sigma_{1}^{} = >$ линейное приближение — наилучшее

Красная - линейное приближение

Зеленая - исходная функция

Синий - квадратичное приближение