

BUNDESREPUBLIK DEUTSCHLAND

① Off nl gungsschrift① DE 196 43 133 A 1

(5) Int. Cl.⁶: **C 11 D 3/37**

DEUTSCHES PATENTAMT

② Aktenzeichen:

196 43 133.6

② Anmeldetag:

18. 10. 96

43 Offenlegungstag:

23. 4.98

7) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

(74) Vertreter:

Bardehle, Pagenberg, Dost, Altenburg, Frohwitter, Geissler & Partner Patent- und Rechtsanwälte, 68165 Mannheim (72) Erfinder:

Meixner, Hubert, Dr., 67069 Ludwigshafen, DE; Steuerle, Ulrich, Dr., 69124 Heidelberg, DE; Decker, Jürgen, Dr., 54292 Trier, DE; Paulus, Wolfgang, Dr., 55128 Mainz, DE; Boeckh, Dieter, Dr., 67117 Limburgerhof, DE; Lux, Jürgen Alfred, Dr., 67150 Niederkirchen, DE; Ehle, Beate, Dr., 67059 Ludwigshafen, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Verwendung von wasserlöslichen oder in Wasser dispergierbaren vernetzten stickstoffhaltigen Verbindungen in Wasch- und Reinigungsmitteln
- 5) Die Erfindung betrifft die Verwendung von wasserlöslichen oder in Wasser dispergierbaren, vernetzten stickstoffhaltigen Verbindungen, erhältlich durch Vernetzung von

(a) mindestens drei NH-Gruppen enthaltenden Verbindungen mit

(b) mindestens bifunktionellen Vernetzern, die mit NH-Gruppen reagieren,

in Wasch- und Reinigungsmitteln, insbesondere Soil-Release-Mittel.

Vorzugsweise sind die Verbindungen (a) ausgewählt aus der Gruppe bestehend aus Oligo- und Polyaminen, Polyalkylenpolyaminen, Polyamidoaminen, mit (Poly)ethylenimin gepfropften Polyamidoaminen sowie deren Gemischen.

Beschreibung

Die Erfindung betrifft die Verwendung von wasserlöslichen oder in Wasser dispergierbaren vernetzten stickstoffhaltigen Verbindungen in Wasch- und Reinigungsmitteln. Insbesondere betrifft die Erfindung die Verwendung von vernetzten Oligo- und Poly-aminen als Soil Release-Mittel und Enzymstabilisatoren in Wasch- und Reinigungsmitteln.

Die Verwendung von stickstofthaltigen Polymeren in Waschmitteln ist bekannt.

In der DE-A1-31 24 210 sind flüssige Waschmittel mit Zusätzen zur Verhinderung der Farbstoffübertragung beschrieben. Das Waschmittel enthält dabei nicht-ionische oder zwitter-ionische Tenside in Kombination mit Polyethyleniminen, Polyaminen, Polyaminamiden oder Polyacrylamiden, durch die einer Farbstoffübertragung von farbigen Textilien aufweiße oder hellfarbige Textilien während des gemeinsamen Waschens entgegengewirkt wird. Die Polyaminamide sind durch Kondensation von mehrbasischen Säuren wie zweibasischen, gesättigten, aliphatischen C_{3-8} -Säuren und Polyaminen zugänglich.

Die Polymere werden als wasserlöslich beschrieben, jedoch nicht genauer identifiziert.

In der DE-A-19 22 450 sind Wasch- und Reinigungsmittel beschrieben, die Vergrauungsinhibitoren enthalten zur Verhinderung einer Resorption von abgelöstem Schmutz auf den gereinigten Oberflächen. Als Vergrauungsinhibitor werden Polyamide verwendet, die herstellbar sind aus Polyethyleniminen mit einem mittleren Molekulargewicht von 300 bis 6000 und Di- und Tricarbonsäuren. Auch Umsetzungsprodukte mit Diglykolsäure, Thiodiglykolsäure, Aminodiessigsäure und Nitrilotriessigsäure werden erwähnt.

In der DE-A-21 65 900 sind Waschmittel mit einem Gehalt an vergrauungsverhütenden Zusätzen beschrieben. Als Vergrauungsinhibitor wird das Umsetzungsprodukt eines Polyethylenimins mit einem Molekulargewicht von 430 bis 10.000 mit C₈₋₁₈-Alkylglycidethern verwendet, das weiterhin mit Ethylenoxid umgesetzt sein kann.

Es ist weiterhin bekannt, in Waschmitteln Soil Release-Mittel zu verwenden, die beim Waschprozeß aus der Waschflotte auf das Textilgut bzw. die Fasern des Textilguts reversibel aufziehen. Wird ein mit einem solchen Soil Release-Mittel behandeltes Textilgut verschmutzt, so bewirkt das aufgezogene Soil Release-Mittel bei der nachfolgenden Wäsche eine verbesserte Ablösung des Schmutzes. Diese Soil Release-Wirkung ist somit eine reversible Anti-Schmutz-Ausrüstung des Textilguts beim Waschen. Verschiedene Soil Release-Mittel sind bekannt, wie Polyester aus Polyethylenoxiden mit Ethylenglykol und/oder Propylenglykol und aromatischen und/oder aliphatischen Diearbonsäuren. Beispielsweise ist in der DE-A-43 44 357 ein schmutzablösendes Polymer beschrieben, welches Ethylenglykolterephthalatgruppen und Polyethylenglykolterephthalatgruppen aufweist.

Weiterhin wurden modifizierte Cellulosen, wie Methylcellulose, Hydroxypropylcellulose oder Carboxymethylcellulose eingesetzt. In der US 4.138,352 ist die Kombination eines nicht-ionischen Tensides und einer hydroxybutylierten Methylcellulosemit niedrigem Molekulargewicht als Soil Release-Mittel beschrieben.

In der EP-A1-0 042 187 sind Detergenszusammensetzungen beschrieben, die geringe Mengen an substituierten Polyaminen enthalten. Die Polyamine sind dabei substituiert durch einen langkettigen Alkyl- oder Alkenylrest. Sie können zudem durch mindestens zwei Alkylenoxidreste an unterschiedlichen Stickstoffatomen substituiert sein. Die Zusammensetzungen zeigen insbesondere verbesserte Soil Release-Eigenschaften.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Soil Release-Mitteln für Wasch- und Reinigungsmittel, die vorzugsweise gleichzeitig als Enzymstabilisatoren wirken und ein vorteilhaftes Eigenschaftsprofil aufweisen.

Diese Aufgabe wird erfindungsgemäß gelöst durch Verwendung von wasserlöslichen oder in Wasser dispergierbaren, vernetzten stickstoffhaltigen Verbindungen, erhältlich durch Vernetzung von

- (a) mindestens drei NH-Gruppen enthaltenden Verbindungen mit
- (b) mindestens bifunktionellen Vernetzern, die mit NH-Gruppen reagieren,

5 Die NH-Gruppen können in primären (NH₂) und/oder sekundären Aminogruppen (NH) vorliegen.

In Wasch- und Reinigungsmitteln.

Die erfindungsgemäßen stickstoffhaltigen Verbindungen werden dabei vorzugsweise als Soil Release-Mittel und/oder als Enzymstabilisatoren verwendet.

Die Soil Release-Wirkung beruht dabei vermutlich auf dem vorstehend beschriebenen Aufziehen des Mittels aus der Waschflotte auf das Textilgut. Die Soil Release-Wirkung bzw. der Soil Release-Effekt zeigt sich somit bei mehrmaligem Waschen. Er ist zu unterscheiden vom Primärwasch- oder Soil Removal-Effekt. Der Soil Removal-Effekt bezieht sich auf eine Ablösung des Schmutzes direkt beim ersten Waschen eines angeschmutzten, nicht vorbehandelten Gewebes. Mit Ethylenoxid ethoxilierte Polyamine zeigen oft einen Primärwasch- oder Soil Removal-Effekt. Überraschenderweise wurde gefunden, daß insbesondere über Polyetherketten vernetzte Oligo- und Polyamine Soil Release-Eigenschaften zeigen. Die zusätzliche enzymstabilisierende Wirkung war nicht zu erwarten, da bislang hauptsächlich Borsäurederivate mit Polyolen und Alkyl- bzw. Arylboronsäuren als stabilisierende Zusätze eingesetzt wurden.

Die erfindungsgemäß eingesetzten Verbindungen zeigen dabei die vorteilhaften Eigenschaften in einer Vielzahl von Waschmittelformulierungen, wie Vollwaschmitteln, Colortextilwaschmitteln, die in flüssiger oder fester Form vorliegen können.

Verbindungen (a)

Die erfindungsgemäß verwendeten vernetzten stickstoffhaltigen Verbindungen sind erhältlich durch Vernetzung von (a) mindestens drei NH-Gruppen enthaltende Verbindungen. Die Verbindungen (a) sind dabei vorzugsweise ausgewählt aus Oligo- und Polyaminen, Polyalkylenpolyaminen, Polyamidoaminen, mit (Poly)ethylenimin gepfropften Polyamidoaminen sowie deren Gemischen. Als Komponente (a) kommen Polyalkylenpolyamine in Betracht. Unter Polyalkylenpolyaminen sollen im vorliegenden Zusammenhang Verbindungen verstanden werden, die mindestens drei NH-Gruppen enthalten, z. B. Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin, Diaminopropylethy-

lendiamin, Trisaminopropylamin und Polyethylenimine. Die Polyethylenimine haben vorzugsweise eine mittlere Molmasse (M_w) von mindestens 300. Die mittlere Molmasse der Polyethylenimine kann bis zu 1.000.000 betragen. Technisch von besonderem Interesse ist der Einsatz von Polyethyleniminen- mit mittleren Molmassen von 600 bis 25.000.

Bevorzugt sind ferner Polyethyleniminhomopolymerisate mit einem Polymerisationsgrad n von 5, 6, 10, 20, 35 und 100. Diese Polyethyleniminhomopolymerisate können entweder wasserhaltig oder wasserfrei hergestellt werden oder entwässert werden. Die Synthese entsprechender Polyethylenimine ist in den Beispielen beschrieben.

Die Polyethylenimine können ferner teilmodifiziert sein, wie beispielsweise gemäß einer Ausführungsform der Erfindung mit Benzoesäure hydrophobiert sein.

Gemäß einer Ausführungsform der Erfindung ist das Polyalkylenpolyamin ausgewählt aus Aminen der allgemeinen Formel (I)

10

20

2,223

1,148

- V 2 1 4

$$RR'N-[-(CR^1R^2)_x-NR^3-]_a-[-(CR^4R^5)_y-NR^6-]_b-R''$$
 (I)

wobei die Reste R, R' und R'', R¹, R², R⁴ und R⁵ unabhängig voneinander Wasserstoffatome, lineare oder verzweigtkettige C_{1-20} -Alkyl-, -Alkoxy-, -Hydroxyalkyl-, -(Alkyl)carboxy-, -Alkylaminoreste, C_{2-20} -Alkenylrest oder C_{6-20} -Aryl-, -Aryloxy-, -Hydroxyarvl-, -Arylcarboxy- oder -Arylaminoreste sind, die gegebenenfalls weiter substituiert sein können, die Reste R³ und R⁶ unabhängig voneinander Wasserstoffatome, linear oder verzweigtkettige C_{1-20} -Alkylreste, C_{6-20} -Arylreste, die gegebenenfalls substituiert sind, oder Reste $[(CR^7R^8)_z-NR^9]_c-R^{10}$ sind, wobei die Reste R⁷, R⁸, R⁹ und R¹⁰ unabhängig voneinander wie vorstehendfür R, R', R', R', R¹, R², R⁴, R⁵ definiert sind oder Carboxymethyl-, Carboxyethyl-, Phosphonomethyl- oder Carboxamidoethylreste sind,

x, y und z unabhängig voneinander einen Wert von 2, 3 oder 4 aufweisen und a, b und e unabhängig voneinander einen ganzzahligen Wert von 0-300 aufweisen, wobei mindestens drei NH-Gruppen im Molekül vorliegen.

Vorzugsweise liegen in den vorstehenden Aminen 5 bis 100%, insbesondere 10 bis 95% der Stickstoffatome in primären oder sekundären Aminogruppen vor.

Gemäß einer Ausführungsform der Erfindung weisen die vorstehenden Amine ein Zahlenmittel des Molekulargewichts von 80 bis 150.000, vorzugsweise 100 bis 50.000, besonders bevorzugt 110 bis 10.000, insbesondere 129 bis 5.000 auf.

Das Amin bzw. Polyalkylenpolyamin gemäß allgemeiner Formel (I) kann ein Blockpolymer bzw. Blockcopolymer sein oder gemäß einer Ausführungsform der Ertindung ein Polymer mit statistisch verteilten Blöcken oder ein insgesamt statistisch verteiltes Polymer.

Weitere geeignete Verbindungen (a) sind Polvamidoamine. Man erhält sie beispielsweise bei der Umsetzung von Dicarbonsäuren mit 4 bis 10 Kohlenstoffatomen mit Polvalkylenpolyaminen, die vorzugsweise 3 bis 20 basische Stickstoffatome im Molekül enthalten. Dabei sollen in den Umsetzungsprodukten mindestens drei NH-Gruppen vorliegen. Geeignete Dicarbonsäuren sind beispielsweise Bernsteinsäure, Maleinsäure, Adipinsäure, Glutarsäure, Korksäure, Sebaeinsäure oder Terephthalsäure. Man kann auch Mischungen aus Carbonsäuren einsetzen, z. B. Mischungen aus Adipinsäure und Glutarsäure oder Maleinsäure und Adipinsäure oder technische Dicarbonsäure-Mischungen wie Sokalan* DCS der BASF AG. Bevorzugt verwendet man Adipinsäureoder Sokalan DCS zur Herstellung der Polvamidoamine. Geeignete Polvalkylenpolyamine, die mit den Dicarbonsäuren kondensiert werden, wurden oben bereits genannt, z. B. Diethylentriamin, Triethylentetramin, Dipropylentriamin, Tripropylentetramin, Dihexamethylentriamin, Aminopropylethylendiamin und Bis-Amino-propylethylendiamin. Die Polyalkylenpolyamine können auch in Form von Mischungen bei der Herstellung der Polyamidoamine eingesetzt werden. Die Herstellung der Polyamidoamine erfolgt vorzugsweise in Substanz, kann jedoch auch gegebenenfalls in inerten Lösungsmitteln vorgenommen werden. Die Kondensation der Dicarbonsäuren mit dem Polyalkylenpolyaminen erfolgt bei höheren Temperaturen, z. B. in dem Bereich von 100 bis 220°C. Das bei der Reaktion gebildete Wasser wird aus dem Reaktionsgemisch abdestilliert. Die Kondensation kann gegebenenfalls auch in Gegenwart von Lactonen oder Lactamen von Carbonsäuren mit 4 bis 8 Kohlenstoffatomen vorgenommen werden. Pro Mol Dicarbonsäure verwendet man üblicherweise 0,8 bis 1,4 mol eines Polyalkylenpolyamins. Die so erhältlichen Polyamidoamine weisen primäre und sekundäre Aminogruppen auf, enthalten tertiäre Stickstoffatome und sind in Wasser löslich.

Als Komponente (a) kommen außerdem mit Ethylenimin gepfropfte Polyamidoamine in Betracht. Produkte dieser Art sind dadurch herstellbar, daß man Ethylenimin in Gegenwart von Säuren oder Lewis-Säuren, z. B. Schwefelsäure, Phosphorsäure oder Bortrifluoridetherat, auf die oben beschriebenen Polyamidoamine einwirken läßt. Unter den geschilderten Bedingungen wird Ethylenimin auf das Polyamidoamin aufgepfropft. Beispielsweise kann man pro basischer Stickstoffgruppierung im Polyamidoamin 1 bis 20 Ethylenimineinheiten aufpfropfen, d. h. auf 100 Gewichtsteile eines Polyamidoamins setzt man etwa 10 bis 1.000, vorzugsweise 3 bis 500 Gewichtsteile Ethylenimin ein.

Die oben beschriebenen Polyalkylenpolyamine können partiell amidiert sein. Produkte dieser Art werden beispielsweise durch Reaktion von Polyalkylenpolyaminen mit Monocarbonsäuren oder Estern aus einbasischen Carbonsäuren und einwertigen C₁- bis C₄-Alkoholen hergestellt. Die Polyalkylenpolyamine werden für die nachfolgenden Reaktionen vorzugsweise zu 1 bis 30, meistens nur bis zu 20% amidiert. Die amidierten Polyalkylenpolyamine müssen noch mindestens drei freie NH-Gruppen aufweisen, damit sie mit den Vernetzern (b) umgesetzt werden können. Für die Amidierung der Polyalkylenpolyamine kann man beispielsweise Monocarbonsäuren mit 1 bis 28 Kohlenstollatomen einsetzen. Geeignete Carbonsäuren sind beispielsweise Ameisensäure, Essigsäure, Propionsäure, Benzoesäure, Salicylsäure. Laurinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Linolsäure und Behensäure sowie natürlich vorkommende Gemische von Fettsäuren, wie Kokosfettsäure. Eine Amidierung kann beispielsweise durch Umsetzung der Polyalkylenpolyamine mit Alkyldiketenen vorgenommen werden.

Die Polyalkylenpolyamine können auch in teilweise quaternierter Form als Verbindungen der Gruppe (a) zum Einsatz gelangen. Geeignete Quaternierungsmittel sind beispielsweise Alkylhalogenide, wie Methylchlorid, Ethylchlorid, Butylchlorid, Epichlorhydrin, Hexylchlorid und Benzylchlorid sowie Dimethylsulfat und Diethylsulfat. Falls quaternierte Polyalkylenpolyamine als Verbindung der Gruppe (a) eingesetzt werden, beträgt der Grad der Quaternierung vorzugsweise

1 bis 30, üblicherweise nur bis zu 20%, damit genügend freie NH-Gruppen für die Umsetzung mit dem Vernetzer (b) zu Verfügung stehen.

Von den Verbindungen der Gruppe (a) verwendet man vorzugsweise Polyethylenimine eines mittleren Molekulargewichts von 300 bis 25,000, vorzugsweise 300 bis 3,000, und Polyamidoamine, die mit Ethylenimin geptropft sind.

Ebenfalls erfindungsgemäß verwendbar sind Polymere (a), die Wiederholungseinheiten entsprechend der nachstehenden Formel enthalten:

[CH2-CH(NH2)]-.

Hierunter sind insbesondere Oligo/Polyvinylformamide und Copolymere des Vinylformamids zu verstehen, deren Formanidgruppen zumindest teilweise, vorzugsweise zu 5-100 mol-%, durch Verseifung in Aminogruppen ungewandelt sind. Bevorzugt eingesetzt werden Oligo/Polyvinylformamide, deren Formamidgruppen zu 20-100 mol-\%, insbesondere 40-100 mol-%, durch Verseifung in Aminogruppen umgewandelt sind. Die Verseifung kann sowohl im alkalischen als auch im sauren Medium erfolgen.

Gemäß einer Ausführungsform der Erfindung weisen diese Polymere ein Zahlenmittel des Molekulargewichts von 80 bis 150.000, vorzugsweise 100 bis 50.000, besonders bevorzugt 110 bis 10.000, insbesondere 129 bis 5.000, auf.

Die Herstellung der erfindungsgemäß verwendeten Amine bzw. Polyamine erfolgt nach bekannten Verfahren.

Gemäß einer Ausführungsform der Erfindung ist Komponente (a) ausgewählt aus Aminen der allgemeinen Formel (II)

$(R^{1}R^{1})N-X-N(R^{1}R^{1})$ (II)

wobei die Reste R¹ Wasserstoffatome sind oder Reste (R²R²)N-(CH₂)_n-,

die Reste R² Wasserstoffatome sind oder Reste (R³R³)N-(CH₂)_n-, die Reste R³ Wasserstoffatome sind oder Reste (R⁴R⁴)N-(CH₂)_n-, die Reste R⁴ Wasserstoffatome sind oder Reste (R⁵R⁵)N-(CH₂)_n-, die Reste R⁵ Wasserstoffatome sind oder Reste (R⁶R⁶)N-(CH₂)_n-,

die Reste R⁶ Wasserstoffatome sind,

n einenWert von 2, 3 oder 4 hat und

der Rest X einer der Reste

$$R^7$$
 R^9 R^7 R^9 R^9 R^7 R^9 R^9 R^7 R^9 R^9 R^7 R^9 R^9

 $-(CH_2)_p$ -, $-(CH_2)_3$ -NR¹¹- $(CH_2)_3$ -, $-(CH_2)_1[Q-(CH_2)_k]_m$ -O- $(CH_2)_1$ -, C_{2-20} -Alkylen, der Rest Y ein Sauerstoffatom, ein Rest CR⁷R⁹C=O oder SO₂ ist,

p einen ganzzahligen Wert von 2-20 hat.

l und k unabhängig voneinander einen ganzzahligen Wert von 2-6 haben, in einen ganzzahligen Wert von 1-40 hat, die Reste R⁷, R⁸, R⁹ und R¹⁰ unabhängig voneinander Wasserstoffatome sind oder C_{1-6} -Alkylreste, und der Rest R¹¹ ein C_{1-20} -Alkylrest, C_{2-20} -Dialkylamino- C_{2-10} -alkylrest, C_{1-10} -Alkoxy- C_{2-10} -alkylrest, C_{3-20} -Hydroxyalkylrest, C_{3-20} -Cycloalkyl-alkylrest, C_{2-20} -Alkonylrest, C_{3-30} -Dialkylaminoalkenylrest, C_{3-30} -Alkoxy-alkenylrest, C_{3-20} -Hydroxyalkenylrest, C_{3-20} -Cycloalkylaklenylrest, ein gegebenenfalls durch einen C_{1-8} -Alkylrest, C_{2-8} -Dialkylaminorest, C_{1-8} -Alkoxyrest, Hydroxylrest, C_{3-8} -Cycloalkylrest und/oder C_{4-12} -Cycloalkylakleylrest eine hie fürtfach eubstituierter Arylrest oder C_{3-30} -Aralkylrest eine Reste R¹¹ gemeinsam eine gegelalkylrest ein- bis fünffach substituierter Arylrest oder C₇₋₂₀-Aralkylrest ist oder zwei Reste R¹¹ gemeinsam eine gegebenenfalls durch Stickstoff oder Sauerstoff unterbrochene Alkylenkette ergeben, wie aus Ethylenoxid, Propylenoxid,

Butylenoxid und -CH₂-CH(CH₃)-O- oder Polvisobutylen mit 1 bis 100 iso-Butyleneinheiten,

wobei5–100% der Stickstoffatome in primären oder sekundären Aminogruppen vorliegen.

Die Reste R⁷, R⁸, R⁹, R¹⁰ der allgemeinen Formel II bedeuten C₁₋₆-Alkylreste, bevorzugt C₁₋₃-Alkylreste, wie Methyl-, Ethyl-, n-Propyl- und iso-Propylreste, besonders bevorzugt Methyl- und Ethylreste, insbesondere Methylreste, oder vorzugsweise Wasserstoff, wobei die Reste R⁷ und R⁸ bzw. R⁹ und R¹⁰ vorzugsweise gleich sind.

Beispiele für erfindungsgemäße Reste R¹¹ sind C₁₋₂₀-Alkylreste, vorzugsweise C₁₋₁₂-Alkylreste, wie Methyl-,

Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, iso-Butyl-, sec.-Butyl-, tert.-Butyl-, n-Pentyl-, iso-Pentyl-, sec-Pentyl-, neo-Pentyl-, 1,2-Dimethylpropyl-, n-Hexyl-, iso-Hexyl-, sec-Hexyl-, n-Heptyl-, iso-Heptyl-, n-Octyl-, iso-Octyl-, n-Nonyl-, iso-Nonyl-, n-Decyl-, iso-Decyl-, n-Undecyl-, iso-Undecyl-, n-Dodecyl- und iso-Dodecylreste, besonders bevorzugt C₁₋₄-Alkylreste, wie Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, iso-Butyl-, sec.-Butyl- und tert.-Butylreste, Aryl-

40

reste, wie Phenyl-, 1-Naphthyl- und 2-Naphthylreste, bevorzugt Phenylreste, C_{7-20} -Aralkylreste, bevorzugt C_{7-12} -Phenylatkylreste, wie Benzyl-, 1-Phenethyl-, 2-Phenylpropyl-, 2-Phenylpropyl-, 3-Phenylpropyl-, 1-Phenylbutyl-, 2-Phenylbutyl-, 2-Phenylbutyl- und 4-Phenylbutylreste, besonders bevorzugt Benzyl-, 1-Phenethyl- und 2-Phenethylreste, C_{7-20} -Alkylarylreste, bevorzugt C_{7-12} -Alkylphenylreste, wie 2-Methylphenyl-, 2-Methylphenyl-, 4-Methylphenyl-, 2,4-Dimethylphenyl-, 2,5-Dimethylphenyl-, 2,6-Dimethylphenyl-, 3,4-Dimethylphenyl-, 3,5-Dimethylphenyl-, 2,3,4-Tri-methylphenyl-, 2,3,4-5-Trimethylphenyl-, 2,3,6-Trimethylphenyl-, 2,4-6-Tri-methylphenyl-, 2-Ethyl-phenyl-, 3-n-Propylphenyl- und 4-n-Propylphenylreste oder Polyisobutylenreste mit 1–100, bevorzugt 1–70, besonders bevorzugt 1–50 iso-Butyleneinheiten.

Die Herstellung der Amine gemäß allgemeiner Formel (II) erfolgt vorzugsweise nach dem in WO 96/15097 beschriebenen Verfahren.

10

15

20

25

35

55

60

65

Sie werden vorzugsweise aus Diaminen der allgemeinen Formel NH₂-(CH₂)_n-NH₂ hergestellt, in der n einen ganzzahligen Wert von 2 bis 20 hat. Beispiele geeigneter solcher Diamine sind 1,2-Ethylendiamin, 1,3-Propylendiamin, 1,4-Butylendiamin und 1,6-Hexamethylendiamin. Ebenso werden bevorzugt primäre Tetraaminoalkylalkylendiamine eingesetzt, wie N,N,N',N'-Tetraaminopropyl-1,2-ethylendiamin, N,N,N',N'-Tetraaminopropyl-1,3-propylendiamin, N,N,N',N'-Tetraaminopropyl-1,4-butylendiamin und N,N,N',N'-Tetraaminopropyl-1,6-hexamethylendiamin.

Bevorzugte Beispiele erfindungsgemäßer Amine (II), die auch als dendrimere Amine bezeichnet werden, bzw. deren Vorstufen, sind N.N.N'.N'-Tetraaminopropylethylendiamin, im folgenden als N6-Amin bezeichnet, sowie die daraus durch Aminopropylierung herstellbaren, nach der Anzahl ihrer N-Atonie bezeichneten dendrimeren Amine wie N14-, N30-, N62- und N128-Amin der BASF AG. Diese Amine weisen ein Ethylendiamin-Grundgerüst auf, dessen Wasserstoffatome am Stickstoff durch Amino(n-propyl)reste substituiert sind. Die dabei endständigen Aminogruppen können wiederum durch entsprechende Aminopropylgruppen substituiert sein (N14-Amin), usw. Herstellungsverfahren für diese Amine sind beschrieben in WO 96/15097, ausgehend von Ethylendiamin. Ebenfalls bevorzugte Beispiele dieser erfindungsgemäßen Amine sind entsprechende N-Amine, wie sie in WO 93/14147 beschrieben sind, die ausgehend von Butylendiamin statt wie vorstehend Ethylendiamin hergestellt sind. Solche Amine werden von der DsM N. V. mit Sitz in der Niederlande hergestellt und vertrieben.

Erfindungsgemäß bevorzugte Komponenten (a) sind ferner Polyamine der nachstehenden Formel

$$RR'N-[-(CH_2)_m-NR'']_x-R'''$$

wobei die Reste R, R' oder R" unabhängig voneinander Wasserstoffatome, C_{1-20} -Alkylreste C_{2-20} -Alkenylreste oder C_{6-20} -Arylreste sind,

der Rest R''' ein Wasserstoffatom ist oder ein Rest (CH₂)₀-[NH-(CH₂)_m-]_p-NH₂ oder ein Hydroxyalkyl- oder Alkoxyrest

wobei x einen ganzzahligen Wert von 1-10 hat,

m einen ganzzahligen Wert von 2-4 hat,

o einen ganzzahligen Wert von 2-4 hat, und

p einen ganzzahligen Wert von 0-10 hat.

Insbesondere bevorzugt sind folgende Amine der allgemeinen Formel

$$H_2N-[-(CH_2)_m-NH]_x-H$$

wobei m den Wert 2, 3 oder 4 hat und x einen ganzzahligen Wert von 1--10 hat,

$$RR'N-[-(CH2)m-NH]x-H$$
45

wobei die Reste R und R' unabhängig voneinander C_{1-20} -Alkylreste, C_{2-20} -Alkenylreste oder C_{6-20} -Arylreste sind, m den Wert 2,3 oder 4 hat, und x einen ganzzahligen Wert von 1-10 hat,

$$H_2N-(CH_2)_4-NR-(CH_2)_4-NH_2$$
 50

wobei der RestR ein Wasserstoffatom ist oder ein C_{1-20} -Alkylrest, C_{2-20} -Alkenylrest oder C_{6-20} -Arylrest ist,

wobei in den Wert 2, 3 oder 4 hat.

o den Wert 2, 3 oder 4 hat,

x einen ganzzahligen Wert von 0-10 hat,

p einen ganzzahligen Wert von 0-10 hat, und

 $H_2N-L(CH_2)_mNH]_x-(CH_2)_o-[NH-(CH_2)_m-]_p-NH_2$

die Summe von x und $p \ge 1$ ist.

Bevorzugte Verbindungen (a) sind N,N,N'.N'-Tetraaminopropyl-1,2-ethylendiamin oder Polyethylenimin mit einem Polymerisationsgrad von 5 bis 500, vorzugsweise 5 bis 50.

Vernetzer (b)

Die vorstehend beschriebenen stickstoffhaltigen Verbindungen werden mit mindestens einem mindestens bifunktionellen Vernetzer, der mit NH-Gruppen reagiert, umgesetzt zu wasserlöslichen oder in Wasser dispergierbaren, vernetzten stickstoffhaltigen Verbindungen. Vorzugsweise sind Vernetzer (b) ausgewählt aus der Gruppe bestehend aus den halo-

genfreien Vernetzern

10

15

20

- (1) Polyepoxide,
- (2) Ethylencarbonat, Propylencarbonat und/oder Harnstoff,
- (3) monoethylenisch ungesättigte Carbonsäuren und deren Ester, Amide und Anhydride, mindestens zweibasische Carbonsäuren oder Polycarbonsäuren sowie deren Ester, Amide und Anhydride,
 - (4) Umsetzungsprodukte von Polyetherdiaminen, Alkylendiaminen, Polyalkylenpolyaminen, bifunktionellen oder multifunktionellen Alkoholen, Alkylenglykolen, Polyalkylenglykolen, funktionalisierten Polyestern oder Polyamiden oder deren Gemischen mit monoethylenisch ungesättigten Carbonsäuren oder deren Estern, Amiden oder Anhydriden, wobei die Umsetzungsprodukte mindestens zwei ethylenisch ungesättigte Doppelbindungen, Carbonsäureamid-, Carboxyl- oder Estergruppen als funktionelle Gruppen aufweisen,
 - (5) mindestens zwei Aciridylogruppen enthaltende Umsetzungsprodukte von Dicarbonsäureestern mit Ethylenimin,
 - (6) Kumulene und Polyheterokumule,
 - (7) β -Keto-ester, β -Ketosäuren und β -Ketoaldehyde,
 - (8) funktionalisierte Glycidylether, den halogenhaltigen Vernetzern
 - (9) Polyhalogenide,
 - (10) Glycidylhalogenide,
 - (11) Chlorformiate und Chloressigsäurederivate,
 - (12) Epichlorhydrin, Glycerindichlorhydrin, Polyetherdichlorverbindungen,
 - (13) Phosgen.
 - oder Gemischen davon.

Polyepoxide (1) sind z. B. Polyalkylenglykolbisglycidyleither, die hergestellt werden aus Bischlorhydrinen, wie Bischlorhydrinen von Polyethylenglykolen, unter alkalischen Bedingungen. Die Alkylenglykole weisen vorzugsweise 2 bis 10 C-Atome auf, insbesondere handelt es sich um Ethylenglykol, 1-Methylethylenglykol oder 1-Ethylethylenglykol.

Ebenso verwendbar sind Alkandiolbisglycidylether, vorzugsweise eines C_{2-12} -Alkandiols, das insbesondere linear ist. Beispiele sind Butandiolbisglycidylether und Hexandiolbisglycidylether.

Zudem können Aryldiolbisglycidylether und cyclische Alkylbisglycidylether verwendet werden, die sich insbesondere von Benzolkernen oder Dimethylcyclohexankernen ableiten, weiche wiederum substituiert sein können. Ebenfalls verwendbar sind Bisepoxide, wie Bisethylenoxid und Ethylenoxideinheiten, die durch einen linearen $C_{1/12}$ -Alkylenrest getrennt sind.

Aus der Gruppe (2) Ethylencarbonat, Propylencarbonat und/oder Harnstoff wird vorzugsweise Propylencarbonat eingesetzt.

Monoethylenisch ungesättigte Carbonsäuren und deren Ester, Amide und Anhydride aus Gruppe (3) sind beispielsweise Acrylsäure, Methacrylsäure, Crotonsäure, Acrylate oder Acrylamide aus primären oder sekundären Aminen. Der Alkoholrest weist dabei 1 bis 22, vorzugsweise 1 bis 18 C-Atome auf, der Aminrest 0 bis 12 C-Atome. Mindestens zweibasische Carbonsäuren oder Polycarbonsäuren können entweder gesättigt oder ungesättigt sein. Beispiele sind Weinsäure und deren Analoga, sowie C_{2-50} -Dicarbonsäuren, insbesondere lineare C_{2-50} -Alkylendicarbonsäuren, wie auch deren Ester, Amide oder Anhydride. Ester oder Diester können mit C_{1-2} -Alkoholen gebildet werden. Amide und Diamide können C_{1-22} -Reste aufweisen.

Beispiele geeigneter Dicarbonsäureester sind Oxalsäuredimethylester, Oxalsäurediethylester, Oxalsäurediisopropylester, Bernsteinsäuredimethylester, Bernsteinsäurediisopropylester, Bernsteinsäurediisopropylester, Bernsteinsäurediisobutylester, Adipinsäuredimethylester, Adipinsäurediethylester und Adipinsäurediisopropylester.

Ungesättigte Säuren sind beispielsweise Maleinsäure, Itaconsäure und deren Anhydride oder Ester.

Beispiele für Polycarbonsäuren sind Zitronensäure, Propantricarbonsäure, Ethylendiamintetraessigsäure, Butantetracarbonsäure, wie auch höhere Polycarbonsäuren. Ferner können Polymerisate verwendet werden von Methacrylsäure, Maieinsäure, Itaconsäure oder deren Gemischen. Es können auch Copolymere mit C₂₋₃₀-Olefinen eingesetzt werden, wie Copolymere aus Maleinsäureanhydrid und Isobuten oder Diisobuten. Die Anhydridgruppen können dabei zu Estern oder Amiden umgesetzt sein. Beispiele geeigneter Polymerisate sind beschrieben in EP-A 0 276 464, US-A 3.810,834, GB-A 1 411 063 und US-A 4,818,795.

Ferner können Salze aller genannten Säuren eingesetzt werden.

Beispiele der Gruppe (4) sind Polyetherdiacrylsäure, -diacrylsäureester und -diacrylsäureamide, beispielsweise Verbindungen, die 1 bis 50 Ethylenoxideinheiten aufweisen und in denen der Alkoholrest im Ester 1 bis 22 C-Atome aufweist und die Amide, die aus Ammoniak, primären, oder sekundären Aminen mit C₁₋₂₂-Resten gebildet sein können. Weitere Beispiele sind Ethylendiamin-diacrylate, wie auch Polyetherdiamin-diacrylate. Die Alkoholreste der Acrylate weisen dabei wiederum 1 bis 22 C-Atome auf, der Polyetheranteil kann 0 bis 50 Wiederholeinheiten aufweisen. Der Polyetherblock kann außer aus Ethylenoxideinheiten auch aus Propylenoxideinheiten oder THF-Einheiten aufgebaut sein. Ein Beispiel ist ein Poly-THF-Diamin-diacrylat bzw. -acrylamid oder -acrylsäure. Die Aminfunktionen können auch aus den eingangs erwähnten Aminen stammen.

Die Acrylatgruppen sind dabei durch Michael-Addition an die Amingruppen gebunden. Sie können auch durch Amid-Bildung mit den Amingruppen der Polyetherdiamine verbunden sein, so daß die Moleküle zwei ethylenisch ungesättigte Gruppen aufweisen. Entsprechend sind Poly-THF-Diacrylamide verwendbar. Ferner können Polyimnin-di- und -polyacrylate verwendet werden, in denen zwei oder mehr NH-Gruppen durch Michael-Additionen an Acrylate addiertsind. Entsprechend verwendbar sind Polyamin-Diacrylate sowie Polyimin-MSA-Halbamide bzw. Polyamin-MSA-Halbamide. Dabei sind die endständigen Aminogruppen im Polyimin bzw. Polyamin mit jeweils einem Molekül Maleinsäureanhydrid (MSA) umgesetzt zu den entsprechenden Halbamiden. Die verbleibenden Säurefunktionen der Maleinsäure

können dabei durch Ester oder Amide substituiert sein. Ebenfalls verwendbar ist ein Polyetherdiamin-dimaleinsäurehalbamid, d. h. ein Polyetherdiamin, dessen beide endständigen Aminogruppen jeweils mit einem Maleinsäureanhydridmolekül zu einem Amid umgesetzt sind. Die verbleibenden Säurefunktionen des Maleinsäureanhydrids können ebenfalls als Ester oder Amide vorliegen. Die Polyetherdiamine, Polyimine oder Polyamine weisen dabei vorzugsweise 5 bis 50 Wiederholeinheiten auf.

Allgemein sollten die erhaltenen Produkte mindestens zwei ethylenisch ungesättigte Doppelbindungen, Carbonsäureamid-, Carboxyl- oder Estergruppen als funktionelle Gruppen aufweisen. Umsetzungsprodukte von Aminen oder Glykolen mit Maleinsäureanhydrid, wie Alkylenglykolen, Polyethylenglykolen, Polyethyleniminen oder Polypropyleniminen weisen vorzugsweise Molmassen im Bereich von 400 bis 100.000 auf. Besonders bevorzugt sind Umsetzungsprodukte von Maleinsäureanhydrid mit α,ω-Polyetherdiaminen einer Molmasse von 400 bis 5000, die Umsetzungsprodukte von Polyethyleniminen einer Molmasse von 129 bis 50.000 mit Maleinsäureanhydrid sowie die Umsetzungsprodukte von Ethylendiamin oder Triethylentetramin mit Maleinsäureanhydrid im Molverhältnis von maximal 1: 2. Die Polyetherdiamine, Alkylendiamine und Polyalkylenpolyamine können auch über eine Michael-Addition mit Maleinsäureanhydrid umgesetzt sein.

Beispiele von Verbindungen der Gruppe (5) sind Umsetzungsprodukte von C_{2-50} -Dicarbonsäuren, insbesondere linearen Alkylendicarbonsäuren, mit Ethylenimin. Ein Beispiel ist β -1-Aziridinoethyloxalamid.

Beispiele für Kumulene und Polyheterokumulene der Gruppe (6) sind Tolylen-2,6-diisocyanat, Tolylen-2,4-diisocyanat sowie Verbindungen der Formeln O=C=N-X-N=C=O und S=C=N-X-N=C=S, wobei X ein C_{1-22} -Alkylenrest oder C_{6-20} -Arylenrest ist.

β-Ketoester, β-Ketosäuren und β-Ketoaldehyde (7) können die Formel R^1 -C(=O)- CR^2R^3 -C(H)= R^4 aufweisen, wobei die Reste R^1 bis R^3 Wasserstoffatome oder C_{1-12} -Alkylreste sein können und R^4 Wasserstoff, OH oder ein C_{1-22} -Alkox-vrest sein kann.

Funktionalisierte Glycidylether (8) sind beispielsweise Glycidyletrylat oder Propen-3-glycidylether.

Halogenhaltige Vernetzer sind beispielsweise Polyhalogenide (9), wie lineare C₁₋₁₀-Alkylendichloride, wie Dichlormethan oder 1,2-Dichlorethan. Ferner können sich die Polyhalogenide von Polyethylenoxiden oder durch Methyloder Ethylreste substituierten Ethylenoxiden ableiten. Ebenso können sie in Poly-THF-Molekülen vorliegen, wobei die Halogenide an den Enden der Polymerkette vorliegen. Es können dabei statistische Polymere oder Blockcopolymere der entsprechenden Polyether, die zwei Halogenatome aufweisen, verwendet werden. Das Gewichtsmittel des Molekulargewichts beträgt dabei vorzugsweise 300 bis 3000.

Verwendbare Glycidylhalogenide (10) sind Epichlorhydrin und Glycidylether von Halogenalkanen oder aromatischen Halogenverbindungen. Die Halogenatome der Vernetzer (9) und (10) wie auch der nachstehenden Vernetzer sindvorzugsweise Chloratome oder Bromatome, insbesondere Chloratome.

Glycerindichlorhydrin sowie Polyetherdichlorhydrinverbindungen (12) werden hergestellt aus Epichlorhydrin und den entsprechenden Alkoholen, d. h. Glycerin oder Polyethylenglykolen. Die polymeren Vernetzer weisen im allgemeinen ein Gewichtsmittel des Molekulargewichts von 100 bis 10.000, vorzugsweise 300 bis 3.000, auf. Besonders bevorzugte Vernetzer sind Bischlorhydrine und Bisglycidylether von Polyethylenglykolen. Die Bisglycidylether sind dabei unter alkalischen Bedingungen herstellbar.

35

40

55

Herstellung der vernetzten stickstoffhaltigen Verbindungen

Die erfindungsgemäßen wasserlöslichen Umsetzungsprodukte sind dadurch erhältlich, daß man die Verbindungen der Komponente (a) mit den Vernetzern der Komponente (b) umsetzt. Die Umsetzung wird vorzugsweise in wäßrigem Medium durchgeführt. Die Kondensation der Komponenten (a) und (b) wird beispielsweise in einem Temperaturbereich von 0 bis 200°C, vorzugsweise 20 bis 160°C, durchgeführt. Falls man die Kondensation in einer wäßrigen Lösung vornimmt und bei Temperaturen oberhalb des Siedepunktes des Wassers arbeitet, führt man die Reaktion in druckdicht verschlossenen Apparaturen durch. Die Kondensation kann jedoch auch in Substanz oder gegenüber den Reaktionspartnern inerten Lösungsmitteln wie z. B. hochsiedenden Ethern (Diethylenglykoldimethylether), Tetrahydrofuran, Polyolen, Toluol, Xvlolen, anderen hochsiedenden substituierten Aromaten oder handelsüblichen Kohlenwasserstofffraktionen mit einem Siedebereich von 50 bis 300°C vorgenommen werden. Beim Kondensieren in wäßriger Lösung beträgt der pH-Wert des Reaktionsgemisches beispielsweise 2 bis 12, vorzugsweise 5 bis 11. In den meisten Fällen wird bei dem pH-Wert kondensiert, der sich beim Lösen der Reaktionspartner in Wasser einstellt. Die Konzentration der entstehenden wasserlöslichen Kondensationsprodukte in der wäßrigenLösung beträgt beispielsweise 10 bis 90 Gew.-% und liegt vorzugsweise im Bereich von 20 bis 80 Gew.-%. Als wasserlöslich werden solche Umsetzungsprodukte betrachtet, die eine mindestens 5 gew.-%ige Lösung in Wasser bei Raumtemperatur bilden können. Die Kondensation der Verbindungen der Komponenten (a) und (b) wird vorzugsweise in wäßriger Lösung vorgenommen und so geführt, daß wasserlösliche Kondensationsprodukte entstehen, die in 20 gew.-%iger wäßriger Lösung bei 20°C eine Viskosität von mindestens 100 mPa · s, vorzugsweise 100 bis 15.000 mPa · s, haben (gemessen bei 20°C und pH 7 in einem Brookfield-Viskosimeter).

Bei der Kondensation setzt man beispielsweise Mischungen um, die 50 bis 99,9 Gew.-%, vorzugsweise 60 bis 99,5 Gew.-%, mindestens einer Verbindung der Komponente (a) und 0,1 bis 50 Gew.-%, vorzugsweise 0,5 bis 40 Gew.-%, mindestens einer Verbindung der Komponente (b) enthalten, wobei die Summe aus den Komponenten (a) und (b) immer 100 Gew.-% beträgt.

Insbesondere bei Verwendung von Oligoaminen oder Polyaminen und bis-funktionalisierten Polyethylenglykolblökken entsteht je nach Reaktionsbedingungen und Molverhältnis ein Polymer mit Netzwerkstruktur, aufgebaut aus aminischen und Polyethylenglykol-Blöcken definierter Größe, Kettenlänge und Molgewichtsverteilung. Die erfindungsgemäßen Verbindungen verbessern die Schmutzablösung beim Waschen von Textilien zum einen durch die Soil Release-Eigenschaften, zum anderen durch die enzymstabilisierende Wirkung, die die Wirksamkeit der Enzyme erhöht. In modernen Waschmitteln enthaltene Enzyme, wie Proteasen, Lipasen, Cellulasen, Amylasen und Peroxidasen, die der Verbesserung der Waschleistung dienen, sind in der Waschmittelformulierung destabilisierenden und desaktivierenden Bedin-

gungen ausgesetzt.

Diese Bedingungen können durch verschiedene Bestandteile der Formulierung, wie beispielsweise das Tensidsystem, das Bleichsystem, die Alkalien usw. ausgelöst sein. Insbesondere in flüssigen Waschmittelformulierungentritt dieses Problem häufig auf, da durch die Mobilität der Waschmittelinhaltsstofte die Enzyme nicht vor dem Kontakt geschützt sind. Die erfindungsgemäßen vernetzten Verbindungen führen hier zu einer Stabilisierung bzw. zu einem Erhalt der Enzyme, die somit ihre volle Wirkung im Waschprozeß entfalten können.

Bei Zusatz sehon geringer Mengen der erfindungsgemäßen vernetzten stickstollhaltigen Verbindungen, insbesondere der vernetzten Polyamine, werden die schmutzlösenden Eigenschaften von Colorwaschmittel-, Vollwaschmittel- oder Kompaktwaschmittel-Formulierungen verbessert. Die erfindungsgemäßen Verbindungen ziehen wahrscheinlich aus der Waschflotte auf das Textilgut auf. Bei Verschmutzung eines so behandelten Textilgutes bewirken die auf das Textilgut aufgebrachten Verbindungen bei der nachfolgenden Wäsche eine deutlich verbesserte Schmutzablösung. Die erfindungsgemäßen Verbindungen sind insbesondere wirksam an Anschmutzungen, die aus einer Kombination von fett- bzw. ölartigem Schmutz und Pigment/Partikel-Teilchen bestehen, wie beispielsweise Anschmutzungen aus gebrauchtem Motoröl. Lippenstift, Make-up oder Schuhcreme. Insbesondere vorteilhaft sind die Verbindungen bei der Reinigung von Polyestergeweben oder polvesterhaltigen Geweben.

Die Erfindung betrifft somit auch Wasch- und Reinigungsmittel, enthaltend mindestens eine vernetzte stickstoffhaltige Verbindung, wie sie vorstehend definiert ist, und mindestens ein Tensid. Vorzugsweise enthält das Wasch- und Reinigungsmittel zusätzlich mindestens ein Enzym.

Diese Waschmittel können erfindungsgemäß zum Waschen von Textilien verwendet werden.

Die erfindungsgemäßen Waschmittel können ferner die üblichen in Waschmitteln verwendeten Bestandteile enthalten, wie Builder, Tenside, Bleichmittel, Enzyme und weitere Inhaltsstoffe, wie sie nachstehend beschrieben sind.

Builder

Zur Kombination mit den erfindungsgemäßen (Polyalkylenpoly)aminen geeignete anorganische Builder (A) sind vor allem kristalline oder amorphe Alumosilicate mit ionenaustauschenden Eigenschaften wie insbesondere Zeolithe.

Verschiedene Typen von Zeolithen sind geeignet, insbesondere Zeolithe A, X, B, P, MAP und HS in ihrer Na-Form oder in Formen, in denen Na teilweise gegen andere Kationen wie Li, K, Ca, Mg oder Aminonium ausgetauscht ist. Geeignete Zeolithe sind beispielsweise beschrieben in EP-A 038591, EP-A 021491, EP-A 087035, US-A 4604224, GB-A 2013259, EP-A 522726, EP-A 384070 und WO-A 94/24251.

Geeignete kristalline Silicate (A) sind beispielsweise Disilicate oder Schichtsilicate, z. B. SKS-6 (Hersteller: Hoechst AG). Die Silicate können in Form ihrer Alkalimetall-, Erdalkalimetall- oder Ammoniumsalze eingesetzt werden, vorzugsweise als Na-, Li- und Mg-Silicate.

Amorphe Silicate wie beispielsweise Natriummetasilicat, welches eine polymere Struktur aufweist, oder Britesil* H20 (Hersteller: Akzo N. V. mit Sitz in den Niederlande) sind ebent'alls verwendbar.

Geeignete anorganische Buildersubstanzen auf Carbonat-Basis sind Carbonate und Hydrogenearbonate. Diese können in Form ihrer Alkalimetall-, Erdalkalimetall oder Aminoniumsalze eingesetzt werden. Vorzugsweise werden Na-, Liund Mg-Carbonate bzw. -Hydrogenearbonate, insbesondere Natriumearbonat und/oder Natriumhydrogenearbonat, eingesetzt.

Übliche Phosphate als anorganische Builder sind Polyphosphate wie z. B. Pentanatriumtriphosphat.

Die genannten Komponenten (A) können einzeln oder in Mischungen untereinander eingesetzt werden. Von besonderem Interesse ist als anorganische Builder-Komponente eine Mischung aus Alumosilicaten und Carbonaten, insbesondere aus Zeolithen, vor allem Zeolith A, und Alkalimetallcarbonaten, vor allem Natriumearbonat, im Gew-Verhältnis von 98 : 2 bis 20 : 80, insbesondere von 85 : 15 bis 40 : 60. Neben dieser Mischung können noch andere Komponenten (A) vorliegen.

In einer bevorzugten Ausführungsform enthält die erfindungsgemäße Textilwaschmittel-Formulierung 0,1 bis 20 Gew.-%, insbesondere 1 bis 12 Gew.-% organische Cobuilder (B) in Form von niedermolekularen, oligomeren oder polymeren Carbonsäuren, insbesondere Polycarbonsäuren, oder Phosphonsäuren oder deren Salzen, insbesondere Naoder K-Salzen.

Geeignete niedermolekulare Carbonsäuren oder Phosphonsäuren für (B) sind beispielsweise:

 C_4 - bis C_{20} -Di-, -Tri- und -Tetracarbonsäuren wie z. B. Bernsteinsäure, Propantricarbonsäure, Butantetracarbonsäure, Cyclopentantetracarbonsäure und Alkyl- und Alkenylbernsteinsäuren mit C_2 - bis C_{16} -Alkyl- bzw. -Alkenyl-Resten; C_4 - bis C_{20} -Hydroxycarbonsäuren wie z. B. Äpfelsäure, Weinsäure, Gluconsäure, Glutarsäure, Citronensäure, Lactobionsäure und Saccharosemono-, -di- und -tricarbonsäure;

Aminopolycarbonsäurenwie z. B. Nitrilotriessigsäure, P-Alanindiessigsäure, Ethylendiamintetraessigsäure, Serindiessigsäure, Isoserindiessigsäure, Methylglycindiessigsäure und Alkylethylendiamintriacetate;

Salze von Phosphonsäuren wie z. B. Hydroxyethandiphosphonsäure.

Geeignete oligomere oder polymere Carbonsäuren für (B) sind beispielsweise:

Oligomaleinsäuren, wie sie beispielsweise in EP-A 0 451 508 und EP-A 0 396 303 beschrieben sind;

60 Co- und Terpolymere ungesättigter C₄-C₈-Dicarbonsäuren, wobei als Comonomere monoethylenisch ungesättigte Monomere

aus der Gruppe (i) in Mengen von bis zu 95 Gew.-%.

aus der Gruppe (ii) in Mengen von bis zu 60 Gew.-% und

aus der Gruppe (iii) in Mengen von bis zu 20 Gew.-%

65 einpolymerisiert sein können.

Als ungesättigte C₄-C₈-Dicarbonsäuren sind hierbei beispielsweise Maleinsäure, Fumarsäure, Itaconsäure und Citraconsäure geeignet. Bevorzugt ist Maleinsäure.

Die Gruppe (i) umfaßt monoethylenisch ungesättigte C₃-C₈-Monocarbonsäuren wie z. B. Acrylsäure, Methacrylsäure,

10

15

20

35

45

50

DE 196 43 133 A

Crotonsäure und Vinylessigsäure. Bevorzugt werden aus der Gruppe (i) Acrylsäure und Methacrylsäure eingesetzt.

Die Gruppe (ii) umfaßt monoethylenisch ungesättigte C_2 - C_{22} -Ölefine, Vinylatkylether mit C_1 - C_8 -Alkylgruppen, Styrol, Vinylester von C_1 - C_8 -Carbonsäuren, (Meth)acrylamid und Vinylpyrrolidon. Bevorzugt werden aus der Gruppe (ii) C_3 - C_6 -Olefine, Vinylatkylether mit C_4 -Alkylgruppen, Vinylacetat und Vinylpropionat eingesetzt.

 C_2 - C_6 -Olefine, Vinvlalkylether mit C_1 - C_4 -Alkylgruppen, Vinylacetat und Vinylpropionat eingesetzt. Die Gruppe (iii) umtaßt (Meth)acrylester von C_1 - bis C_8 -Alkoholen, (Meth)acrylnitril, (Meth)acrylamide von C_1 - bis C_8 -Aminen, N-Vinylformamid und Vinylimidazol.

Falls die Polymeren der Gruppe (ii) Vinylester einpolymerisiert enthalten, können diese auch teilweise oder vollständig zu Vinylalkohol-Struktureinheiten hydrolysiert vorliegen. Geeignete Co- und Terpolymere sind beispielsweise aus US-A 3 887 806 sowie DE-A 43 13 909 bekannt.

Als Copolymere von Dicarbonsäuren eignen sich für die Komponente (B) vorzugsweise:

Copolymere von Maleinsäure und Acrylsäure im Gewichtsverhältnis 100: 90 bis 95: 5, besonders bevorzugt solche im Gewichtsverhältnis 30: 70 bis 90: 10 mit Molmassen von 100.000 bis 150.000;

Terpolymere aus Maleinsäure, Acrylsäure und einem Vinylester einer C₁-C₃-Carbonsäure im Gewichtsverhältnis 10 (Maleinsäure): 90 (Acrylsäure + Vinylester) bis 95 (Maleinsäure): 10 (Acrylsäure + Vinylester), wobei das Gewichtsverhältnis von Acrylsäure zum Vinylester im Bereich von 30: 70 bis 70: 30 variieren kann;

Copolymere von Maleinsäure mit C_2 - C_8 -Olefinen im Molverhältnis 40 : 60 bis 80 : 20,wobei Copolymere von Maleinsäure mit Ethylen, Propylen oder Isobuten im Molverhältnis 50 : 50 besonders bevorzugt sind.

Pfroptpolymere ungesättigter Carbonsäuren auf niedermolekulare Kohlenhydrate oder hydrierte Kohlenhydrate, vgl. US-A 5 227 446, DE-Λ 44 15 623 und DE-A 43 13 909, eignen sich ebenfalls als Komponente (B).

Geeignete ungesättigte Carbonsäuren sind hierbei beispielsweise Maleinsäure, Fumarsäure, Itaconsäure, Citraconsäure, Aerylsäure, Methaerylsäure, Crotonsäure und Vinylessigsäure sowie Mischungen aus Aerylsäure und Maleinsäure, die in Mengen von 40 bis 95 Gew.-%, bezogen auf die zu ptroptende Komponente, aufgepfropti werden.

Zur Modifizierung können zusätzlich bis zu 30 Gew.-%, bezogen auf die zu pfropfende Komponente, weitere monoethylenisch ungesättigte Monomere einpolymerisiert vorliegen. Geeignete modifizierende Monomere sind die oben genannten Monomere der Gruppen (ii) und (iii).

Als Ptropfgrundlage sind abgebaute Polysaccharide wie z. B. saure oder enzymatisch abgebaute Stärken. Inuline oder Zellulose, Eiweißhydrolysate und reduzierte (hydrierte oder hydrierend aminierte) abgebaute Polysaccharide wie z. B. Mannit. Sorbit, Aminosorbit und N-Alkylglucamin geeignet sowie auch Polyalkylenglycole mit Molmassen mit bis zu M_w=5.000 wie z. B. Polyethylenglycole, Ethylenoxid/Propylenoxid- bzw. Ethylenoxid/Butylenoxid- bzw. Ethylenoxid/Propylenoxid/Butylenoxid- bzw. Ethylenoxid/Propylenoxid/Butylenoxid- bzw. US-A 5 756 456

Bevorzugt werden aus dieser Gruppe gepfropfte abgebaute bzw. abgebaute reduzierte Stärken und gepfropfte Polyethylenoxide eingesetzt, wobei 20 bis 80 Gew.-% Monomere, bezogen auf die Pfropfkomponente, bei derPfropfpolymerisation eingesetzt werden. Zur Pfropfung wird vorzugsweise eine Mischung von Maleinsäure und Acrylsäure im Gewichtsverhältnis von 90: 10 bis 10: 90 eingesetzt.

Als Komponente (B) geeignete Polyglyoxylsäuren sind beispielsweise beschrieben in EP-B 0 001 004, US-A 5 399 286, DE-A 41 06 355 und EP-A 0 656 914. Die Endgruppen der Polyglyoxylsäuren können unterschiedliche Strukturen aufweisen.

Als Komponente (B) geeignete Polyamidocarbonsäuren und modifizierte Polyamidocarbonsäuren sind beispielsweise bekannt aus EP-A 0 454 126, EP-B 0 511 037, WO-A 94/01486 und EP-A 0 581 452.

Als Komponente (B) verwendet man insbesondere auch Polyasparaginsäuren oder Cokondensate der Asparaginsäure mit weiteren Aminosäuren, C_4 - C_{25} -Mono- oder -Dicarbonsäuren und/oder C_4 - C_{25} -Mono- oder -Diaminen. Besonders bevorzugt werden in phosphorhaltigen Säuren hergestellte, mit C_6 - C_{22} -Mono- oder -Dicarbonsäuren bzw. mit C_6 - C_{22} -Mono- oder -Diaminen modifizierte Polyasparaginsäuren eingesetzt.

Als Komponente (B) geeignete Kondensationsprodukte der Zitronensäure mit Hydroxycarbonsäuren oder Polyhydroxyverbindungen sind z. B. bekannt aus WO-A 93/22362 und WO-A 92/16493. Solche Carboxylgruppen enthaltende Kondensate haben üblicherweise Molmassen bis zu 10.000, vorzugsweise bis zu 5.000.

Als Komponente (B) eignen sich weiterhin Ethylendiamindibernsteinsäure, Oxydibernsteinsäure, Aminopolycarboxylate, Aminopolyalkylenphosphonate und Polyglutamate.

Weiterhin können zusätzlich zur Komponente (B) oxidierte Stärken als organische Cobuilder verwendet werden.

Tenside

Geeignete anionische Tenside (C) sind beispielsweise Fettalkoholsulfate von Fettalkoholen mit 8 bis 22, vorzugsweise 10 bis 18 Kohlenstoffatomen, z. B. C₉- bis C_{14} -Alkoholsulfate, C_{12} - bis C_{14} -Alkoholsulfate, Cetylsulfat, Myristylsulfat, Palmitylsulfat, Stearylsulfat und Talgfettalkoholsulfat.

Weitere geeignete anionische Tenside sind sulfatierte ethoxylierte C_8 - bis C_{22} -Alkohole (Alkylethersulfate) bzw. deren lösliche Salze. Verbindungen dieser Art werden beispielsweise dadurch hergestellt, daß man zunächst einen C_8 - bis C_{22} -, vorzugsweise einen C_{10} - bis C_{18} -Alkohol, z. B. einen Fettalkohol, alkoxyliert und das Alkoxylierungsprodukt anschließend sulfatiert. Für die Alkoxylierung verwendet man vorzugsweise Ethylenoxid, wobei man pro Mol Alkohol 2 bis 50, vorzugsweise 3 bis 20 mol Ethylenoxid einsetzt. Die Alkoxylierung der Alkohole kann jedoch auch mit Propylenoxid allein und gegebenenfalls Butylenoxid durchgeführt werden. Geeignet sind außerdem solche alkoxylierte C_5 - bis C_{22} -Alkohole, die Ethylenoxid und Propylenoxid oder Ethylenoxid oder Ethylenoxid und Propylenoxid und Butylenoxid enthalten. Die alkoxylierten C_8 - bis C_{22} -Alkohole können die Ethylenoxid-, Propylenoxid- und Butylenoxideinheiten in Form von Blöcken oder in statistischer Verteilung enthalten. Je nach Art des Alkoxylierungskatalysators kann man Alkylethersulfate mit breiter oder enger Alkylenoxid-Verteilung erhalten.

Weitere geeignete anionische Tenside sind Alkansulfonate wie C_{8^+} bis C_{24^+} , vorzugsweise C_{10^+} bis C_{18} -Alkansulfonate sowie Seiten wie beispielsweise die Na- und K-Salze von C_{8^+} bis C_{24} -Carbonsäuren.

Weitere geeignete anionische Tenside sind C₉- bis C₂₀-linear-Alkylbenzolsulfonate (LAS) und -Alkyltoluolsulfonate. Weiterhin eignen sich als anionische Tenside (C) noch C₈- bis C₂₄-Oletinsulfonate und -disulfonate, welche auch Gemische aus Alken- und Hydroxyalkansulfonaten bzw. -disulfonate darstellen können, Alkylestersulfonate, sulfonierte Polycarbonsäuren, Alkylglycerinsulfonate, Fettsäureglycerinestersulfonate, Alkylphenolpolyglykolethersulfate, Paraffinsulfonate mit ca. 20 bis ca. 50 C-Atomen (basierend auf aus natürlichen Quellen gewonnenem Paraffin oder Paraffingemischen), Alkylphosphate, Acylisethionate, Acyliaurate, Acylmethyltaurate, Alkylbernsteinsäuren, Alkenylbernsteinsäuren oder deren Halbester oder Halbamide, Alkylsulfobernsteinsäuren oder deren Antide, Mono- und Diester von Sulfobernsteinsäuren, Acylsarkosinate, sulfatierte Alkylpolyglucoside, Alkylpolyglykolcarboxylate sowie Hydroxyalkylsarkosinate.

Die anionischen Tenside werden dem Waschmittel vorzugsweise in Form von Salzen zugegeben. Geeignete Kationen in diesen Salzen sind Alkalimetallionen wie Natrium-, Kalium-, Lithium- und Aminoniumionen wie z. B. Hydroxyethylammonium-, Di(hydroxyethyl)ammonium- und Tri(hydroxyethyl)ammoniumionen.

Die Komponente (C) liegt in der erfindungsgemäßen Textilwaschmittel-Formulierung vorzugsweise in einer Menge von 3 bis 30 Gew.-%, insbesondere 5 bis 15 Gew.-% vor. Werden C₉- bis C₂₀-linear-Alkylbenzolsulfonate (LAS) mitverwendet, kommen diese üblicherweise in einer Menge bis zu 10 Gew.-%, insbesondere bis zu 8 Gew.-%, zum Einsatz. Es kann nur eine Klasse an anionischen Tensiden allein eingesetzt werden, beispielsweise nur Fettalkoholsulfate oder nur Alkylbenzolsulfonate, man kann aber auch Mischungen aus verschiedenen Klassen verwenden, z. B. eine Mischung aus Fettalkoholsulfaten und Alkylbenzolsulfonaten. Innerhalb der einzelnen Klassen an anionischen Tensidenkönnen auch Mischungen unterschiedlicher Species zum Einsatz gelangen.

Als nichtionische Tenside (D) eignen sich beispielsweise alkoxylierte C₈- bis C₂₂-Alkohole wie Fettalkoholalkoxylate oder Oxoalkoholalkoxylate. Die Alkoxylierung kann mit Ethylenoxid, Propylenoxid und/oder Butylenoxid durchgeführt werden. Als Tenside einsetzbar sind hierbei sämtliche alkoxylierten Alkohole, die mindestens zwei Moleküle eines vorstehend genannten Alkylenoxids addiert enthalten. Auch hierbei kommen Blockpolymerisate von Ethylenoxid, Propylenoxid und/oder Butylenoxid in Betracht oder Anlagerungsprodukte, die die genannten Alkylenoxide in statistischer Verteilung enthalten. Pro Mol Alkohol verwendet man 2 bis 50, vorzugsweise 3 bis 20 mol mindestens eines Alkylenoxids. Vorzugsweise setzt man als Alkylenoxid Ethylenoxid ein. Die Alkohole haben vorzugsweise 10 bis 18 Kohlenstoffatome. Je nach Art des Alkoxylierungskatalysators kann man Alkoxylate mit breiter oder enger Alkylenoxid-Verteilung erhalten.

Eine weitere Klasse geeigneter nichtionischer Tenside sind Alkylphenolalkoxylate wie Alkylphenolethoxylate mit C_6 bis C_{14} -Alkylketten und 5 bis 30 mol Alkylenoxideinheiten.

Eine andere Klasse nichtionischer Tenside sind Alkylpolyglucoside oder Hydroxyalkylpolyglucoside mit 8 bis 22, vorzugsweise 10 bis 18 Kohlenstoffatomen in der Alkylkette. Diese Verbindungen enthalten meist 1 bis 20, vorzugsweise 1, 1 bis 5 Glucosideinheiten.

Eine andere Klasse nichtionischer Tenside sind N-Alkylglucamide mit C_6 - bis C_{22} -Alkylketten. Derartige Verbindungen erhält man beispielsweise durch Acylierung von reduzierend aminierten Zuckern mit entsprechenden langkettigen Carbonsäurederivaten.

Weiterhin eignen sich als nichtionische Tenside (D) noch Blockcopolymere aus Ethylenoxid, Propylenoxid und/oder Butylenoxid (Pluronic - und Tetronic - Marken der BASF AG), Polyhydroxy- oder Polyalkoxyfettsäurederivate wie Polyhydroxyfettsäureamide, N-Alkoxy- oder N-Aryloxy-polyhydroxyfettsäureamide, Fettsäureamidethoxylate, insbesondere endgruppenverschlossene, sowie Fettsäurealkanolamidalkoxylate.

Die Komponente (D) liegt in der erfindungsgemäßen Textilwaschmittel-Formulierung vorzugsweise in einer Menge von 1 bis 20 Gew.-%, insbesondere 3 bis 12 Gew.-% vor. Es kann nur eine Klasse an nichtionischen Tensiden allein eingesetzt werden, insbesondere nur alkoxylierte C₈- bis C₂₂-Alkohole, man kann aber auch Mischungen aus verschiedenen Klassen verwenden. Innerhalb der einzelnen Klassen an nichtionischen Tensiden können auch Mischungen unterschiedlicher Species zum Einsatz gelangen.

Da die Balance zwischen den genannten Tensidsorten von Bedeutung für die Wirksamkeit der erfindungsgemäßen Waschmittel-Formulierung ist, stehen anionische Tenside (C) und nichtionische Tenside (D) vorzugsweise im Gew.-Verhältnis von 95 : 5 bis 20 : 80, insbesondere von 70 : 30 bis 50 : 50.

Des weiteren können auch kationische Tenside (E) in den erfindungsgemäßen Waschmitteln enthalten sein.

Als kationische Tenside eignen sich beispielsweise Ammoniumgruppen enthaltende grenzflächenaktive Verbindungen wie z. B. Alkyldimethylammoniumhalogenide und Verbindungen der allgemeinen Formel

 $RR^{1}R^{2}R^{3}N^{+}X^{-}$

in denen die Reste R bis R³ für Alkyl-, Aryl-, Alkylalkoxy-, Arylalkoxy-, Hydroxyalkyl(alkoxy)-, Hydroxyaryl(alkoxy)- Gruppen stehen und X ein geeignetes Anion ist.

Die erfindungsgemäßen Waschmittel können gegebenenfalls auch ampholytische Tenside (F) enthalten, wie z. B. aliphatische Derivate von sekundären oder tertiären Aminen, die in einer der Seitenketten eine anionische Gruppe enthalten, Alkyldimethylaminoxide oder Alkyl- oder Alkoxymethylaminoxide.

Komponenten (E) und (F) können bis 25%, vorzugsweise 3-15% in der Waschmittelformulierung enthalten sein.

Bleichmittel

In einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Textilwaschmittel-Formulierung zusätzlich 0.5 bis 30 Gew.-%, insbesondere 5 bis 27 Gew.-%, vor allem 10 bis 23 Gew.-% Bleichmittel (G). Beispiele sind Alkaliperborate oder Alkalicarbonat-Perhydrate, insbesondere die Natriumsalze.

Ein Beispiel einer verwendbaren organischen Persäure ist Peressigsäure, die vorzugsweise bei der gewerblichen Textilwäsche oder der gewerblichen Reinigung verwendet wird.

Vorteilhaft verwendbare Bleich- oder Textilwaschmittelzusammensetzungen enthalten C_{1-12} -Percarbonsäuren, C_{8-16} -Dipercarbonsäuren, Imidopercapronsäuren, oder Aryldipercapronsäuren. Bevorzugte Beispiele verwendbarer Säuren sind Peressigsäure, lineare oder verzweigte Octan-, Nonan-, Decan- oder Dodecanmonopersäuren, Decan- und Dodecandipersäure, Mono- und Diperphthalsäuren, -isophthalsäuren und -terephthalsäuren, Phthalimidopercapronsäure und Terephthaloyldipercapronsäure. Ebenfalls können polymerePersäuren verwendet werden, beispielsweise solche, die Acrylsäuregrundbausteine enthalten, in denen eine Peroxifunktion vorliegt. Die Percarbonsäuren können als freie Säuren oder als Salze der Säuren, vorzugsweise Alkali- oder Erdalkalimetallsalze, verwendet werden. Diese Bleichmittel (G) werden gegebenenfalls in Kombination mit 0 bis 15 Gew.-%, vorzugsweise 0,1 bis 15 Gew.-%, insbesondere 0,5 bis 8 Gew.-% Bleichaktivatoren (H) verwendet. Bei Color-Waschmitteln wird das Bleichmittel (G) (wenn vorhanden) in der Regel ohne Bleichaktivator (H) eingesetzt, ansonsten sind üblicherweise Bleichaktivatoren (H) mit vorhanden.

Als Bleichaktivatoren (H) eignen sich:

- polyacylierte Zucker, z. B. Pentaacetylglucose;
- Acyloxybenzolsulfonsäuren und deren Alkali- und Erdalkalimetallsatze, z. B. Natrium-p-isononanoyloxy-benzolsulfonat oder Natrium-p-benzoyloxy-benzolsulfonat;

10

15

20

25

35

50

55

60

65

春春

- N,N-diacylierte und N,N,N',N'-tetraacylierte Amine, z. B. N,N,N',N'-Tetraacetyl-methylendiamin und -ethylendiamin (TAED), N,N-Diacetylanilin, N,N-Diacetyl-p-toluidin oder 1,3-diacylierte Hydantoine wie 1,3-Diacetyl-5,5-dimethylhydantoin;
- N-Alkyl-N-sultonyl-carbonamide, z. B. N-Methyl-N-mesyl-acetamid oder N-Methyl-N-mesyl-benzamid;
- N-acylierte cyclische Hydrazide, acylierte Triazole oder Urazole, z. B. Monoacetyl-maleinsäurehydrazid;
- O.N.N-trisubstituierte Hydroxylamine, z. B. O-Benzoyl-N.N-succinylhydroxylamin, O-Acetyl-N.N-succinylhydroxylamin oder O.N.N-Triacetylhydroxylamin;
- N,N'-Diacyl-sulfurylamide, z. B. N,N'-Dimethyl-N,N'-diacetylsulfurylamid oder N,N'-Diethyl-N,N'-dipropionyl-sulfurylamid;
- Triacylevanurate, z. B. Triacetylevanurat oder Tribenzoylevanurat;
- Carbonsäureanhydride, z. B. Benzoesäureanhydrid, m-Chlorbenzoesäureanhydrid oder Phthalsäureanhyrid;
- 1,3-Diacyl-4,5-diacyloxy-imidazoime, z. B. 1'.3-Diacetyl-4,5-diacetoxyimidazolin;
- Tetraacetylglycoluril und Tetrapropionylglycoluril;
- diacylierte 2.5-Diketopiperazine, z. B. 1,4-Diacetyl-2.5-diketopiperazin;
- Acylierungsprodukte von Propylendiharnstoff und 2,2-Dimethylpropylendiharnstoff, z. B. Tetraacetylpropylendiharnstoff,
- α -Acyloxy-polyacyl-malonamide, z. B. α -Acetoxy-N,N'-diacetylmalonamid;
- Diacyl-dioxohexahydro-1,3,5-triazine, z. B. 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin;
- Benz-(4H)1,3-oxazin-4-one mit Alkylresten, z. B. Methyl, oder aromatischen Resten z. B. Phenyl, in der 2-Position.

Das beschriebene Bleichsystem aus Bleichmitteln und Bleichaktivatoren kann gegebenenfalls noch Bleichkatalysatoren enthalten. Geeignete Bleichkatalysatoren sind beispielsweise quaternierte Intine und Sulfonimine, die beispielsweise beschrieben sind in US-A 5 360 569 und EP-A 0 453 003. Besonders wirksame Bleichkatalysatoren sind Mangankomplexe, die beispielsweise in der WO-A 94/21777 beschrieben sind. Solche Verbindungen werden im Falle ihres Einsatzes in den Waschmitteln-Formulierungen höchstens in Mengen bis 1,5 Gew.-%, insbesondere bis 0,5% Gew.-% eingearbeitet. Ebenfalls verwendbare Bleichkatalysatoren sind die in der gleichzeitig mit dieser Anmeldung eingereichten Anmeldung mit dem Titel "Bleichkraftverstärker für Bleichmittel- und Textilwaschmittelzusammensetzungen" beschriebenen Amine.

Neben dem beschriebenen Bleichsystem aus Bleichmitteln, Bleichaktivatoren und gegebenenfalls Bleichkatalysatoren ist für die erfindungsgemäße Textilwaschmittel-Formulierung auch die Verwendung von Systemen mit enzymatischer Peroxidfreisetzung oder von photoaktivierten Bleichsystemen denkbar.

Enzyme

In einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Textilwaschmittel-Formulierung zusätzlich 0,05 bis 4 Gew.-% Enzyme (J). Vorzugsweise in Waschmitteln eingesetzte Enzyme sind Proteasen, Amylasen, Lipasen und Cellulasen. Von den Enzymen werden vorzugsweise Mengen von 0,1–1,5 Gew.-%, insbesondere vorzugsweise 0,2 bis 1,0 Gew.-%, des konfektionierten Enzyms zugesetzt. Geeignete Proteasen sind z. B. Savinase und Esperase (Hersteller: Novo Nordisk). Eine geeignete Lipase ist z. B. Lipolase (Hersteller: Novo Nordisk). Eine geeignete Cellulase ist z. B. Celluzym (Hersteller: Novo Nordisk). Auch die Verwendung von Peroxidasen zur Aktivierung des Bleichsystems ist möglich. Man kann einzelne Enzyme oder eine Kombination unterschiedlicher Enzyme einsetzen. Gegebenenfalls kanndie erfindungsgemäße Textilwaschmittel-Formulierung noch Enzymstabilisatoren, z. B. Calciumpropionat, Natriumformiat oder Borsäuren oder deren Salze, und/oder Oxidationsverhinderer enthalten.

Weitere Inhaltsstoffe

Die erfindungsgemäße Textilwaschmittel-Formulierung kann neben den genannten Hauptkomponenten (A) bis (J) noch folgende weitere übliche Zusätze in den hierfür üblichen Mengen enthalten:

Vergrauungsinhibitoren und weitere Soil Release-Polymere.
 Geeignete weitere Soil Release-Polymere und/oder Vergrauungsinhibitoren für Waschmittel sind beispielsweise:
 Polyester aus Polyethylenoxiden mit Ethylenglycol und/oder Propylenglycol und aromatischen Dicarbonsäuren

oder aromatischen und aliphatischen Dicarbonsäuren;

Polyester aus einseitig endgruppenverschlossenen Polyethylenoxiden mit zwei- und/oder mehrwertigen Alkoholen und Dicarbonsäure.

Derartige Polyester sind bekannt, beispielsweise aus US-A 3,557,039, GB-A 1154 730, EP-A-0 185 427, EP-A-0 241 984, EP-A-0 241 985, EP-A-0 272 033 und US-A 5,142,020.

Weitere geeignete Soil Release-Polymere sind amphiphile Pfropf- oder Copolymere von Vinyl-und/oder Acrylestern auf Polyalkylenoxide (vgl. US-A 4.746.456, US-A 4.846,995, DE-A-37 11 299, US-A 4.904.408, US-A 4.846,994 und US-A 4.849,126) oder modifizierte Cellulosen wie z. B.Methylcellulose, Hydroxypropylcellulose oder Carboxymethylcellulose.

- Farbübertragungsinhibitoren, beispielsweise Homo- und Copolymerisate des Vinylpyrrolidons, des Vinylmidazols, des Vinyloxazolidons oder des 4-Vinylpyridin-N-oxids mit Molmassen von 15.000 bis 100.000 sowie vernetzte feinteilige Polymere auf Basis dieser Monomere;
 - nichttensidartige Schaumdämpfer oder Schauminhibitoren, beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure;
 - Komplexbildner (auch in der Funktion von organischen Cobuildern);
 - optische Autheller:
 - Polyethylenglykole:
 - Partüme oder Duftstoffe;
- 20 Füllstoffe;

5

01

15

- anorganische Stellmittel, z. B. Natriumsulfat;
- Konfektionierhilfsmittel:
- Löslichkeitsverbesserer;
- Trübungs- und Perlglanzmittel;
- 25 Farbstoffe;
 - Korrosionsinhibitoren;
 - Peroxidstabilisatoren;
 - Elektrolyte.

Die erfindungsgemäße Waschmittelformulierung ist fest, d. h. liegt üblicherweise pulver- oder granulatförmig oder in Extrudat- oder Tablettenform vor.

Die erfindungsgemäßen pulver- oder granulatförmigen Waschmittel können bis zu 60 Gew.-% anorganischer Stellmittel enthalten. Üblicherweise wird hierfür Natriumsulfat verwendet. Vorzugsweise sind die erfindungsgemäßen Waschmittel aber arm an Stellmitteln und enthalten nur bis zu 20 Gew.-%, besonders bevorzugt nur bis zu 8 Gew.-% an Stellmitteln, insbesondere bei Kompakt- oder Ultrakompaktwaschmitteln. Die erfindungsgemäßen festen Waschmittel können unterschiedliche Schüttdichten im Bereich von 300 bis 1,300 g/l, insbesondere von 550 bis 1,200 g/l besitzen. Moderne Kompaktwaschmittel besitzen in der Regel hohe Schüttdichten und zeigen einen Granulataufbau. Zur erwünschten Verdichtung der Waschmittel können die in der Technik üblichen Verfahren eingesetzt werden.

Die erfindungsgemäße Waschmittelformulierung wird nach üblichen Methoden hergestellt und gegebenenfalls konfektioniert.

Im folgenden werden typische Zusammensetzungen für Kompakt-Vollwaschmittel und Color-Waschmittel angegeben (die Prozentangaben beziehen sich im folgenden sowie in den Beispielen auf das Gewicht; die Angaben in Klammern bei den Zusammensetzungen sind Vorzugsbereiche):

Zusammensetzung Kompakt-Vollwaschmittel (pulver- oder granulatförmig):

- 45 1-60% (8-30%) mindestens eines anionischen (C) und eines nichtionischen Tensids (D);
 - 5-50% (10-45%) mindestens eines anorganischen Builders (A);
 - 0,1-20% (0,5-15%) mindestens eines organischen Cobuilders (B);
 - 5-30% (10-25%) eines anorganischen Bleichmittels (G):
 - 0,1-15% (1-8%) eines Bleichaktivators (G);
- 50 0-1% (höchst. 0,5%) eines Bleichkatalysators;
 - 0.05-5% (0.2-2.5%) eines Farbübertragungsinhibitors;
 - 0,3-1,5% erfindungsgemäßes Soil Release-Mittel;
 - 0,14% (0,2-2%) Enzym oder Enzymmischung (H).

Weitere übliche Zusätze:

Natriumsulfat, Komplexbildner, Phosphonate, optische Autheller, Parfumöle, Schaumdämpfer, Vergrauungsinhibitoren, Bleichstabilisatoren.

Zusammensetzung Color-Waschmittel (pulver- oder granulatförmig):

3-50% (8-30%) mindestens eines anionischen (C) und eines nichtionischen Tensids (D);

10-60% (20-55%) mindestens eines anorganischen Builders (A);

60 0-15% (0-5%) eines anorganischen Bleichmittels (G);

0.05-5% (0.2-2.5%) eines Farbübertragungsinhibitors;

0.1-20% (1-8%) mindestens eines organischen Cobuilders (B);

0.2-2% Enzym oder Enzymmischung (J);

0.2-1.5% erfindungsgemäßes Soil Release-Mittel.

Weitere übliche Zusätze:

Natriumsulfat, Komplexbildner, Phosphonate, optische Autheller, Parfümöle, Schaumdämpfer, Vergrauungsinhibitoren, Bleichstabilisatoren.

Die erfindungsgemäßen vernetzten stickstoffhaltigen Verbindungen (Soil Release-Mittel) sind in Waschmitteln erfin-

dungsgemäß in Mengen von 0.05 bis 5 Gew.-%, vorzugsweise 0.1 bis 4 Gew.-%, insbesondere 0.2 bis 2 Gew.-%, enthalten.

Die Erfindung wird anhand der nachstehenden Beispielenäher erläutert.

Beispiele

Allgemeine Vorschrift 1

Vernetzung von Polyethylenimin bzw. Polyethylenimin-Derivaten mit dem Bisglycidylether eines Polyethylenglykols der Molmasse 1.500

10

5

Eine 25%ige wäßrige Lösung des Polyethylenimins/-Derivats wird bei 70°C portionsweise mit einer 20 bis 22%igen wäßrigen Lösung eines Polyethylenglykolbisglycidylethers der mittleren Molmasse 1.600 (bzw. dessen Bis-Chlorhydrin) versetzt, bis die Reaktionslösung eine Viskosität von etwa 500 bis 1.000 mPa · s aufweist. Der pH-Wert der Lösung wird mittels 85%iger Ameisensäure auf 7.5 bis 8.0 eingestellt.

15

Diese allgemeine Vorschrift kann beispielsweise auf Polvethylenimine und deren Amidierungsprodukte angewendet werden.

Beispiel A

20

Polyethylenimin aus 10 mol Ethylenimin, vernetzt mit Bisglycidylether eines Polyethylenglykols der Molmasse 1.500

6.0 g (0.10 mol) Ethylendiamin, 2.2 g (0.05 mol) CO2 und 17 g VE-Wasser werden als Katalysatorlösung vorgelegt und bei 90°C tropfenweise mit einer 60%igen Ethyleniminlösung aus 43 g (1 mol) Ethylenimin und 29 g Eis versetzt. Der Ansatz wird bei 90°C nachgerührt, bis der Test auf alkylierende Substanzen nach Preußmann* negativ ist. Das so erhaltene Produkt wird nach der allgemeinen Vorschrift 1 mit dem Bisglycidylether vernetzt.

Beispiel B

Polvethylenimin aus 20 mol Ethylenimin, vernetzt mit Bisglycidylether eines Polyethylenglykols der Molmasse 1,500

3.0 (0.05 mol) Ethylendiamin, 1.1 g (0.025 mol) CO₂ and 17 g VE-Wasser werden als Katalysatorlösung vorgelegt und troptenweise bei 90°C mit einer 60%igen Ethyleniminlösung aus 43 g (1 mol) Ethylenimin und 29 g Eis versetzt. Der Ansatz wird bei 90°C nachgerührt, bis der Test auf alkvlierende Substanzen nach Preußmann* negativ ist. Das so erhaltene Produkt wird nach der allgemeinen Vorschrift 1 mit dem Bisglycidylether vernetzt.

35

Beispiel C

Amidierung von Polyethylenimin mit Benzoesäure 20: 1, vernetzt mit Bisglycidylether eines Polyethylenglykols der Molmasse 1.500

40

1290 g Polyethylenimin wasserfrei (= 30 Äq. N), hergestellt gemäß Beispiel A, werden unter Stickstoff vorgelegt. Bei 140°C werden 183,18 g Benzoesäure (1,5 mol) portionsweise eingetragen. Der Ansatz wird bei 180°C nachgerührt, bis die Säurezahl unter 5% des Einsatzwertes liegt. Das so erhaltene Produkt wird nach der allgemeinen Vorschrift 1 mit dem Bisglycidylether vernetzt.

45

Beispiel D

Amidjerung von Polyethylenimin mit Benzoesäure 10:1, vernetzt mit Bisglycidylether eines Polyethylenglykols der Molmasse 1.500

50

645 g Polyethylenimin wasserfrei (= 15 Äq. N), hergestellt gemäß Beispiel B, werden unter Stickstoff vorgelegt. Bei 140°C werden 183.2 g Benzoesäure (1,5 mol) portionsweise eingetragen. Man erhöht die Reaktionstemperatur auf 180°C und destilliert das gebildete Reaktionswasser mit einem schwachen Stickstoffstrom ab, bis die Säurezahl unter 5% des Einsatzwertes liegt. Das so erhaltene Produkt wird nach der allgemeinen Vorschrift 1 mit dem Bisglycidylether vernetzt.

55

Allgemeine Vorschrift 2

Vernetzung von Tetraaminopropylethylendiamin und Derivaten mit Bisglycidylether eines Polyethylenglykols der Molmasse 1.500.

Eine 25%ige wäßrige Lösung des Tetraaminopropylethylendiamins wird bei 70°C portionsweise mit einer etwa 20% igen wäßrigen Lösung eines Polyethylenglykolbisglycidylethers der Molmasse 1.600 (bzw. dessen Bis-Chlorhydrin) versetzt, bis die Reaktionslösung eine Viskosität von etwa 500 bis 1.000 mPa · s aufweist. Falls der pH-Wert unter pH=9 absinkt, gibt man portionsweise NaOH (50%ig) hinzu, bis der PH-Wert von 10,5 erreicht wird.

Diese Vorschrift kann für Tetraaminopropylethylendiamin, dessen höhere Homologe wie auch für deren Amidierungs-

produkte mit verschiedenen Amidierungsgraden verwendet werden.

Beispiel E

N,N,N',N'-Tetraaminopropyl-1,2-ethylendiamin (N6-Amin), vernetzt mit Bisglycidylether eines Polyethylenglykols der Molmasse 1.500

Darstellung von N,N,N',N'-Tetracyanoethyl-1,2-ethylendiamin:

Zu einer Lösung von 100 g (1.67 mol) 1,2-Ethylendiamin in 1176 ml Wasser werden innerhalb von 90 Minuten 443 g (8,35 mol) Acrylnitril zugegeben. Dabei darf die Temperatur 40°C nicht übersteigen. Der Kolben wird nach beendigter Zugabe des Acrylnitrils noch eine Stunde bei 40°C und zwei weiteren Stunden bei 80°C nachgerührt. Anschließend wird überschüssiges Acrylnitril abdestilliert und danach durch Anlegen eines Wasserstrahl- bzw. eines Ölpumpenvakuums das Wasser weitgehend abdestilliert. Das tetracyanoethylierte Ethylendiamin wird aus Methanol umkristallisiert undabgesaugt. Die Ausbeute beträgt 478 g (1.58 mol).

Darstellung von N,N,N',N'-Tetraaminopropyl-1,2-ethylendiamin (N6-Amin):

Man leitet 400 ml/h eines Gemisches aus 20 Gew.-% N,N,N',N'-Tetracyanoethyl-1,2-ethylendiamin und 80 Gew.-% N-Methylpyrrolidon und 3,500 ml/h Ammoniak bei 130°C und 200 bar Wasserstoffdruck in einem 5-I-Festbettreaktor über 41 eines Festbettkatalysators der Zusammensetzung 90 Gew.-% CoO, 5 Gew.-% MnO, 5 Gew.-% P₂O₅. Nach Entfernung des N-Methylpyrrolidons im Vakuum und fraktionierter Destillation (Siedepunkt: 218°C bei 6 mbar) erhält man N,N,N',N'-Tetraaminopropyl-1,2-ethylendiamin (N6-Amin) in 95%iger Ausbeute. Das Produkt wurde mittels ¹³C-und H-NMR- sowie Massenspektroskopie auf Einheitlichkeit und Vollständigkeit der Reaktion überprüft.

Das so erhaltene Produkt wird nach der allgemeinen Vorschrift 2 mit dem Bisglyeidylether vernetzt.

(* Preußmann Test = Test auf alkylierende Verbindungen, Durchführung gemäß J. Epstein et al., Analyt. Chem. 27 (1955) 1435 bzw. R. Preußmann et al., Arzneimittelforsch. 19 (1969) 1059.)

Waschversuche

25

5

Die Soil Release-Wirkung der erfindungsgemäßen Verbindungen wurde in Waschversuchen im Launder-O-meter unter standardisierten Bedingungen bestimmt. Zur Prüfung wurde die Waschmittel-Formulierung (Zusammensetzung I in Tabelle 4) verwendet. Die Verwendung der Waschmittel-Formulierungen II bis XI ist ebenfalls erfindungsgemäß möglich.

Die Waschmittel-Formulierung I wurde zunächst ohne erfindungsgemäße Verbindung untersucht und anschließend mit den erfindungsgemäßen Verbindungen aus Beispielen A bis E in Konzentrationen von 2 Gew.-%, bezogen auf die Gesamtmenge an Waschmittel. Mit der so additivierten Waschmittel-Formulierung I wurden die Prüfgewebe dreimal vorgewaschen (Vorwäsche: Waschbedingungen nachstehend), getrocknet und mit 0,2 g gebrauchtem Motoröl angeschmutzt. Die Ölflecken wurden 14 Stunden altern gelassen. Anschließend wurden die Prüfgewebe nochmals mit der additivierten Waschmittel-Formulierung I gewaschen (Hauptwäsche) und die Schmutzablösung bestimmt.

Waschbedingungen

Gerät: Launder-O-meter der Fa. Atlas, Chicago;

Waschflotte: 250 ml;

Waschdauer: 30 min bei 60°C; Waschmitteldosierung: 6 g/l; Wasserhärte: 3 mmol; Ca: Mg 4 : 1;

Flottenverhältnis: 1:12,5;

45 Prüfgewebe: BW221, PES850, Mischgewebe PES/BW 65: 35.

Waschergebnis

Zur Bewertung des Waschergebnisses wurden die Remissionswerte des Prüfgewebes vor der Wäsche (R₀), des angeschmutzten Prüfgewebes vor der Hauptwäsche (R vor) und nach der Hauptwäsche (R nach) bestimmt. Sodann wurde der Prozentwert für den Soil Release bestimmt nach

% Soil Release = $(R \text{ nach} - R \text{ vor})/(R_0 - R \text{ vor}) \times 100$.

Je höher der Prozentwert % Soil Release ist, desto besser wurde der Fleck entfernt. Eine vollständige Fleckentfernung entspricht 100%. Entscheidend ist dabei der Unterschied in % Soil Release zwischen der Waschmittel-Formulierung ohne und mit erfindungsgemäßer Verbindung. Je höher die Differenz zwischen % Soil Release ohne und mit erfindungsgemäßer Verbindung ausfällt, desto stärker verbessert der Zusatz der erfindungsgemäßen Verbindung das Waschergebnis der Waschmittel-Formulierung. Die Ergebnisse der Waschversuche sind in Tabellen 1 und 2 angegeben.

60

Tabelle 1

Verbesserung der Schmutzablösung durch 2% Zusatz der erfindungsgemäßen Verbindungen

Gewebe: Polyester PES 850

5

10

15

20

25

30

45

55

60

Beispiel	R vor	R nach	Differenz	% Soil Release
ohne	23,6	50,5	26,9	45,3
A	24,1	64,4	40,3	68,5
В	25,4	65,8	40,4	70,3
С	24,7	96,2	44,5	76,4
D	24,6	67,7	43,1	73,8
Е	25,1	64,5	39,4	68,2

Tabelle 2

Unterscheidung zwischen Primärwasch- und Soil Release-Effekt

Gewebe: Polyester PES 850

Beispiel	Modus	R vor	R nach	% Soil Release	% SR mit - % SR ohne*
A	mit/ohne	22,4	55	53,8	13,2
	ohne/mit	23,8	44,5	34,9	-5,7
D	mit/ohne	23,7	63,7	67,4	26,8
	ohne/mit	23,8	46,4	38,2	-2,4
Е	mit/ohne	23,9	60,2	61,4	20,8
	ohne/mit	23,8	47,2	39,5	-1,1

*: % SR ohne = 40,6

Aus den Tabellen 1 und 2 ist ersichtlich, daß die erfindungsgemäßen Verbindungen der Beispiele A bis E die Schmutzablösung bei der Wäsche deutlich verbessern. Der Weißgrad des Gewebes nach der Wäsche, R nach, wird signifikant verbessert durch Zusatz der erfindungsgemäßen Verbindungen.

In Tabelle 2 sind Ergebnisse angegeben, aus denen hervorgeht, daß es sich bei der verbesserten Schmutzablösung um einen Soil Release-Eifekt handelt und nicht um einen Primärwasch-Eifekt. In der dieser Tabelle zugrundeliegenden Versuchsserie wurden zwei verschiedene Applikationsvarianten durchgeführt:

Modus 1:

dreimalige Vorwäsche mit additiviertem Waschmittel, Hauptwäsche (nach dem Anschmutzen) ohne Additiv im Waschmittel (= mit/ohne).

Modus 2:

dreimalige Vorwäsche ohne Additiv im Waschmittel, Hauptwäsche (nach dem Anschmutzen) mit additiviertem Waschmittel (= ohne/mit).

Wird nach Modus 1 eine Verbesserung der Schmutzablösung im Vergleich zum Versuch mit Vorwäsche und Hauptwäsche mit Waschmittel, aber ohne Additiv (% SR ohne) erzielt, so handelt es sich um einen Soil Release-Effekt. Wird nach Modus 2 eine verbesserte Schmutzablösung erzielt, so handelt es sich um einen Primärwasch-Effekt. Aus den Ergebnissen aus Tabelle 2 geht hervor, daß nur nach Modus 1 eine verbesserte Schmutzablösung erreicht werden kann, so daß der durch die erfindungsgemäßen Produkte erzielte Effekt auf einer Soil Release-Wirkung beruht.

Ferner wurden die vernetzten Polyamine in Kombination mit den entsprechenden, jedoch nicht vernetzten Polyaminen eingesetzt. Die Ergebnisse sind in Tabelle 3 dargestellt.

Tabelle 3

Verbesserung der Schmutzablösung durch Zusatz von Kombinationen unvernetzter und vernetzter Polyamine

jeweils 2 + 2% Prüfsubstanz

Beispiel	P	taumwolle		М	lischgewel	be	P	olyester	
	R vor	R nach	% SR	R vor	R nach	% SR	R vor	R nach	% SR
ohne	22,7	63	69,4	25,4	60,1	60,3	19,2	41,9	35,9
A + A'	21,6	65,9	74,4	21,9	64,5	96,8	16,4	55,2	58,9
C + C'	21,8	67,8	77,9	24,8	70,9	79,3	18,3	62	68,4
E + E'	21,7	68,3	78,7	24,3	70,8	79,3	19,3	56,3	59,2
C + OA	21,9	77,3	94	21,7	71,2	80,8	19,4	74	86,9

A' = Beispiel A, unvernetzt

C' = Beispiel C, unvernetzt

E' = Beispiel E, unvernetzt

OA = Octylamin

5

10

15

20

25

40

45

50

55

60

65

Aus den Ergebnissen aus Tabelle 3 geht hervor, daß die Gemische aus vernetzten und unvernetzten Polyaminen vorteilhaft zur Wäsche aller gängigen Textilien, wie Baumwolle, Polyester und Mischgeweben aus Baumwolle und Polyester, eingesetzt werden können.

Tabelle 4

Zusammensetzung der Waschmittel-Formulierungen

Bestandteile					Zusa	mmense(Zusammensetzung in %	%				
	1	П	Ш	IV	>	М	III	MM	IX	×	×	臣
lineares C ₁₂ -Alkylbenzolsulfonat (Na-Salz)	6		11	=	11							
C ₁₂ -C ₁₈ -Alkylsulfat	1,5	6	_	-		∞	8	10	92	10		8
C ₁₂ -Fettalkohol x 2EO-sulfat												2
Oleoylsarkosin-Na-Salz											6	
C ₁₂ -C ₁₈ -Fettalkohol x 4EO												3
C ₁₂ -C ₁₈ -Fettalkohol x 7EO		7				7	7					
C ₁₃ -C ₁₅ -Oxoalkohol x 7EO	L		9	9	9						8	
C ₁₆ -C ₁₈ -Glucamid												4
C ₁₂ -C ₁₄ -Alkylpolyglucosid								6	6			
C ₈ -C ₈ -Fettsäuremethyltetraglykolamid										6		
Seife	2	2	2	2	2	1	1	1	-	1	-1	2
Na-Metasilikat x 5,5H ₂ O								3	3	3	3	

to

60	55	50	45	40		35	30		25	20		15	10		5
	Bestandteile							Zusa	ntmense	Zusammensetzung in %	%				
			1			ш	IV.	٧	M	МП	шл	IX	×	X	DX.
Mg-Silikat			-		_										
Na-Silikat						2	2	2	3	3					
Zeolith A			45		45	40	9	8	36	20	30	30	30	30	92
Zeolith P										10					
Schichtsilikat SKS6	KS6														15
Natriumcarbonat	11		7		7	9	9	9	12	10	8	8	8	8	
Natriumcitrat			12		12				5						5
Natriumcitrat x 2H ₂ O	2H ₂ O		7	_		18	18	18							
MGDA-Tri-Na			30							5	5	5			
				_											
Phosphonat							1						1	2	
TAED									4	4	4	4	4	4	5
Natrium-perborat x 4H2O	at x 4H ₂ O											20			
Natrium-perborat x 1H ₂ O	at x 1H ₂ O										14,4		14,4	14,4	
Natrium-percarbonat	bonat								15	15					15

Carboxymethylcellulose I I Lipase 0,2 0,2 Protease 0,3 0,3 Cellulase 0,5 0,5 Natriumsulfat 3 3					D. L.		第二日間から続ける	The second second		こう ちゅうの ののの しょう
ymethylcellulose 1 2 6,2 6,3 6 7 1 1 1 1 1 1 1 1 1 1 1 1		IV	V	VI	M	ΛШ	X	×	X	DX.
ymethylcellulose 1 e 0,2 e 0,3 e 0,5 se 0,5 isulfat 3										
e 0,2 Ee 0,3 Isulfat 3	1	1	1	1,5	1	1,2	1,2	1,2	1,2	
e 0,2 E 0,3 Re 0,5 Isulfat 3										
0,3 0,5 ulfat 3			0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
9.5			0,3	6,0	0,3	0,3	6,0	6,0	0,3	6,0
3			0,5	6,0	6,0	0,5	6,0	0,5	0,5	0,5
3										
	3	3	3	2	3	3	3	3	3	3
Polymer (AS/MS-Copolymer) 5 5	5	5	5	3	5	5	5	5	5	5
Soil Release-Polymer 2 1		1	1	5,0	5,0	5,0	, 5,0	6,5	6,0	0,5
Farbübertragungsinhibitor 1,5	1	1	1	5,0						
Wasser ad 100 ad 100 ad	001 pa	ad 100	ad 100	ad 100	ad 100	ad 100	ad 100	ad 100	ad 100	ad 100

Enzymstabilisierende Wirkung

Zur Prüfung der enzymstabilisierenden Wirkung der erfindungsgemäßen Verbindungen wurden sie in eine flüssige Waschmittelformulierung eingearbeitet und dieser eine Protease zugegeben: Nach 25 und 50 Tagen wurden Waschver-

suche mit Testschmutzgewebe durchgeführt. Als Vergleich dienten Waschmittelformulierungen ohne Enzymzusatz und mit Enzymzusatz, aber ohne Zusatz der erfindungsgemäßen Verbindungen.

Die Auswertung der Waschversuche erfolgte durch Messung der Farbstärke der Prüfgewebe und Ermittlung der Primärwasch-Wirkung Aabs, aus der Farbstärke nach dem in A. K. ud, Seifen, Öle, Fette, Wachse, 119, S. 590-594 beschriebenen Verfahren.

Prütbedingungen

Lagerung:

Lagertemperatur der flüssigen Waschmittelformulierung: 30°C; Enzym: Protease, Savinase 16L (Hersteller Novo Nordisk):

Menge Enzym: 0,4% Savinase 16L:

Lagerdauer: 50 Tage;

Waschbedingungen:

Apparatur: Launder-O-meter;

Schmutzgewebe: 2,5 g CFT AS 10 (Pigment/Öl/Milch):

Ballastgewebe: 5,0 g Baumwolle;

Waschmittel: nachstehende Formulierung XII;

Menge: 4,0 g/l; Flottennienge: 250 g;

Waschtemperatur: 20°C; Wasserhärte:3 mmol/l; Ca/Mg-Verhältnis: 4,0:1,0;

Waschdauer: 15 min;

Waschmittelformulierung XII: lineares Alkylbenzolsulfonat: 19.5;

Kokosfettsäure: 8.3;

C₁₃/₁₅-Oxoalkoholethoxylat: 16,8;

Ethanol: 0,7;

1.2-Propandiol: 11,0; Ethanolamin: 9,4; Zitronensäure: 4,8; Sokalan CP5 : 0.9; Dequest 2006 : 1.0;

(Hersteller . . .)

40

45

50

55

60

65

Savinase ³ 16L: 0,4 (bzw. 0 im Vergleichsversuch ohne Enzym);

erfindungsgemäßes Polymer: 2,5 (bzw. 0 im Vergleichsversuch ohne Polymer).

Die Ergebnisse sind in der nachstehenden Tabelle 5 aufgeführt.

Tabelle 5

Prüfergebnisse zur Enzymstabilisierung

Versuch	Lagerdauer [Tage]	Enzymmenge [%]	Polymer	Polymermenge [%]	Primärwasch- wirkung A _{abs} [%]
1	25	-	-	-	38
2	25	0,4	17-11	-	55
3	25	- 1	С	2,5	37
4	25	0,4	С	2,5	66
5	50	-	-	-	41
6	50	0,4		-	46
7	50	0,4	С	2,5	68

Als Polymer wurde das Polymer aus Beispiel C verwendet. Die Ergebnisse der Tabelle 5 zeigen, daß mit den erfindungsgemäßen vernetzten Verbindungen eine deutlich verbesserte Enzymaktivität bei längerer Lagerung im Vergleich zu den Versuchen ohne Polymerzusatz erreicht wird. Nach 50 Tagen Lagerung bei 30°C ist im Flüssigwaschmittel ohne erfindungsgemäße Verbindung die Proteasewirkung nahezu vollständig verloren, während in den Formulierungen mit Verbindung C nach 50 Tagen noch hohe Protease-Aktivität beobachtet wird.

Patentansprüche

- 1. Verwendung von wasserlöslichen oder in Wasser dispergierbaren, vernetzten stickstoffhaltigen Verbindungen, erhältlich durch Vernetzung von
 - (a) mindestens drei NH-Gruppen enthaltenden Verbindungen mit
 - (b) mindestens bifunktionellen Vernetzern, die mit NH-Gruppen reagieren,
 - in Wasch- und Reinigungsmitteln.
- 2. Verwendung nach Anspruch 1. dadurch gekennzeichnet, daß die Verbindungen (a) ausgewählt sind aus der Gruppe bestehend aus Oligo- und Polyaminen, Polyalkylenpolyaminen, Polyamidoaminen, mit (Poly)ethylenimin gepfropften Polyamidoaminen sowie deren Gemischen.
- 3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Vernetzer (b) ausgewählt sind aus der Gruppe bestehend aus den halogenfreien Vernetzern
 - (1) Polyepoxide,
 - (2) Ethylencarbonat, Propylencarbonat und/oder Harnstoff,
 - (3) monoethylenisch ungesättigte Carbonsäuren und deren Ester, Amide und Anhydride, mindestens zweibasische Carbonsäuren oder Polycarbonsäuren sowie deren Ester, Amide und Anhydride,
 - (4) Umsetzungsprodukte von Polvetherdiaminen, Alkylendiaminen, Polvalkylenpolyaminen, bifunktionellen oder multifunktionellen Alkoholen, Alkylenglykolen, Polyalkylenglykolen, funktionalisierten Polyestern oder Polyamiden oder deren Gemischen mit monoethylenisch ungesättigten Carbonsäuren oder deren Estern. Amiden oder Anhydriden, wobei die Umsetzungsprodukte mindestens zwei ethylenisch ungesättigte. Doppelbindungen, Carbonsäureamid-, Carboxyl- oder Estergruppen als funktionelle Gruppen aufweisen.
 - (5) mindestens zwei Aziridinogruppen enthaltende Umsetzungsprodukte von Dicarbonsäureestern mit Ethylenimin.
 - (6) Kumulene und Polyheterokumulene,
 - (7) β -Ketoester, β -Ketosäuren und β -Ketoaldehyde,
 - (8) funktionalisierte Glycidylether,
 - den halogenhaltigen Vernetzern
 - (9) Polyhalogenide,
 - (10) Glycidylhalogenide,
 - (11) Chlorformiate und Chloressigsäurederivate,
 - (12) Epichlorhydrin, Glycerindichlorhydrin, Polyetherdichlorhydrinverbindungen,
 - (13) Phosgen,
 - oder Gemischen davon.

4. Verwendung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Verbindung (a) ausgewählt ist aus N,N,N',N'-Tetraaminopropyl-1,2-ethylendiamin oder Polyethylenimin mit einem Polymerisationsgrad von 5 bis 50, und der Vernetzer (b) ein Bisglycidylether eines Polyethylenglykols mit einem Gewichtsmittel des Molekulargewichts von 300 bis 3000 ist.

- 5. Verwendung nach einem der vorstehenden Ansprüche als Soil-Release-Mittel.
- Verwendung nach einem der Ansprüche 1 bis 4 als Enzymstabilisatoren.
- 7. Wasch- und Reinigungsmittel, enthaltend mindestens eine vernetzte stickstoffhaltige Verbindung, wie sie in einem der Ansprüche 1 bis 4 definiert ist, und mindestens ein Tensid.
- Wasch- und Reinigungsmittel nach Anspruch 7, zusätzlich mindestens ein Enzym enthaltend.
- Wasserlösliches Vernetzungsprodukt, erhältlich durch Vernetzung von Aminen der allgemeinen Formel (II)

$(R^{\dagger}R^{\dagger})N-X-N(R^{\dagger}R^{\dagger})$ (II)

- die ResteR¹ Wasserstoffatome sind oder Reste $(R^2R^2)N-(CH_2)_{n-1}$
- die Reste R^2 Wasserstoffatome sind oder Reste $(R^3R^3)N$ - $(CH_2)_{n^2}$, die Reste R³ Wasserstoffatonie sind oder Reste (R⁴R⁴)N-(CH₂)_n-,
- die Reste R⁴ Wasserstoffatome sind oder Reste (R⁵R⁵)N-(CH₂)_n-,
- die Reste R⁵ Wasserstoffatome sind oder Reste (R⁶R⁶)N-(CH₂)_n-,
- die Reste R⁶ Wasserstoffatome sind,
- n einen Wert von 2, 3 oder 4 hat und
- der Rest X einer der Reste

65

20

30

35

40

45

50

55

1.

 $\hbox{-(CH$_2)$_p$-, -(CH$_2)$_3$-NR11-(CH$_2)$_3$-, -(CH$_2)$_1$-[O-(CH$_2)$_k]_m$-O-(CH$_2)$_1$-C$_2$_20$-Alkylen, der Rest Y ein Sauerstoffatoni, ein Rest CR7R^9C-H) oder SO$_2 ist, }$

20 p einen ganzzahligen Wert von 2-20 hat,

I und k unabhängig voneinander einen ganzzahligen Wert von 2-6 haben

m einen ganzzahligen Wert von 1-40 hat,

m einen ganzzahligen wert von 1–40 nat, die Reste R^7 , R^8 , R^9 und R^{10} unabhängig voneinander Wasserstoffatome sind oder C_{1-6} -Alkylreste, und der Rest R^{11} ein C_{1-20} -Alkylrest, C_{2-20} -Dialkylamino- C_{2-10} -alkylrest, C_{1-10} -Alkoxy- C_{2-10} -alkylrest, C_{2-20} -Hydroxyalkylrest, C_{3-12} -Cycloalkylrest, C_{4-20} -Cycloalkyl-alkylrest, C_{2-20} -Alkenylrest, C_{4-30} -Dialkylaminoalkenylrest, C_{3-30} -Alkoxy-alkenylrest, C_{3-20} -Hydroxyalkenylrest, C_{5-20} -Cycloalkyl-alkenylrest, ein gegebenenfalls durch C_{1-8} -Alkylrest, C_{2-8} -Dialkylaminorest, C_{1-8} -Alkoxyrest, Hydroxylrest, C_{3-8} -Cycloalkyl-sit, ein-bis fünffach substituierter Arylrest oder C_{7-20} -Aralkylrest ist oder zwei Reste R^{11} gemeinsam eine gegebenenfalls durch Stickstoff oder Sauerstoff unterbrochene Alkylenkette ergeben, wie aus Ethylenoxid, Propylenoxid, Butylenoxid und -CH₅-CH(CH₃)-O- oder Polyisobutylen mit 1 bis 100 iso-Butyleneinheiten, mit mindestens einem Vernetzer (b), wie er in Anspruch 1, 3 oder 4 definiert ist.

10. Verwendung eines Wasch- und Reinigungsmittels nach einem der Ansprüche 7 oder 8 zum Waschen von Textilien.

35

25

30

4()

45

50

55

65

60