

Cultivons nos talents
Scalian Academy

FORMATION DEEP LEARNING Détection d'images

UNE BRÈVE HISTOIRE DE **DÉTECTION**

LA DÉTECTION

Classification

Détection

Avez-Vous une idée de comment on pourrait faire de la détection ?

Output:

06-07 novembre 2019

CAT

CAT + bounding box

POURQUOI DE NOUVEAUX MODÈLES?

POURQUOI NE PAS DÉCOUPER NAÏVEMENT L'IMAGE EN RÉGIONS ALÉATOIRES ?

SCALIAN

- -Trop coûteux
- -Procédé hasardeux
- -une infinité de possibilité
- -Impossible en temps réel

APPROCHE SUPERVISÉE

R-CNN

PROPOSER 2000 RÉGIONS À CLASSER

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

CNN features regions

selective search

Pas besoin d'entraînement, extrait, se base sur des régions similaires (couleur, texture, taille, etc.)

- -Se base sur un algorithme pour extraire 2000 régions
- -AlexNEt en feature extractor (transfert learning)
- -SVM classificateur https://towardsdatascience.com/r-cnn-<u>3a9beddfd55a</u> +
- Très long (~47 secondes par image) Algorithme de sélection non apprenant

FAST R-CNN

SCALIAN

COMMENT FAIRE PLUS VITE?

- -On passe toute l'image au CNN pour obtenir une feature map de toute l'image (on utilise le convnet une étape avant)
- On utilise la feature map pour extraire des « region proposals » à l'aide de Selective Search
- On utilise un Region Of Interest layer pour uniformiser la taille des « region proposals ».
- -Feed forward en classifier + Bbox

FAST R-CNN

SCALIAN

BENCHMARK

FASTER R-CNN

SCALIAN

COMMENT FAIRE PLUS VITE?

- On utilise un Neural Network pour extraire les « region proposals »
- L'algorithme de « selective search » basé sur les textures est supprimé

FASTER R-CNN

BENCHMARK

R-CNN Test-Time Speed

You Only Look Once

LES ALGOS DE DÉTECTION

Détéction = Localisation + Classification

Historiquement la localisation et la classification étaient deux tâches successives :

- Engendrent des erreurs
- Plus long

A l'état de l'art, les réseaux de détection fusionnent les deux tâches et donnent en même temps localisations et classifications.

Le premier à le faire était YOLO : You Look Only Once

Il existe de multiples versions qui s'améliorent au fur à mesure yolov4 > yolov3 (attention Yolo v5)

COMMENT ÇA FONCTIONNE?

• Divise l'image en région et prédit des boîtes et des probabilités pour chacune de ces régions avec un indice de confiance

SCALIAN

COMMENT ÇA FONCTIONNE?

- On découpé l'image en plusieurs cellules
- Chaque cellule sera responsable de la prédiction d'un nombre limité de boox (anchors bbox).
- Une Bbox peut être plus grande qu'une cellule, il faut juste que le centre de la bbox soit attribuée à une cellule

S = 7

S = 7

QU'EST CE QUE PRÉDIRE UNE BBOX ?

- Une Bbox est constituée des :
- Dimensions (bx, by, bh, bw)
- Score de confiance
- Classe

MATRICE DE SORTIE

the box (b_x, b_y, b_h, b_w) has detected c = 3 ("car") with probability score: 0.44

- On prédit pour tous les cellules, plusieurs bboxs (=anchors bbox) pour toutes les classes un seuil de confiance
- La shape finale de sortie : (S, S, B×5 + C)

Où, S: Taille de Grille, B: nbr de bbox par cellule (anchors bbox)

LA DÉTECTION

LES PROBLÈMES DE LA DÉTECTION

- Comment mesurer la similarité entre 2 boîtes
- Comment faire pour éviter d'avoir plusieurs prédictions dans la même zone de l'image

COMMENT ÉVALUER LES PERFORMANCES?

L'IOU est un bon moyen de mesurer la performance entre les boîtes (bounding boxes) prédites et les boîtes attendues, théoriques

LA NON-MAX SUPPRESSION

COMMENT FAIRE POUR ÉVITER D'AVOIR PLUSIEURS PRÉDICTIONS DANS LA MÊME ZONE DE L'IMAGE

- 1.Sélectionnez la case qui a le score le plus élevé.
- 2. Calculez son chevauchement avec toutes les autres cases et supprimez les cases qui le chevauchent plus qu'seuil (iou_threshold).
- 3.Revenez à l'étape 1 et parcourez jusqu'à ce qu'il n'y ait plus de cases avec un score inférieur à la case actuellement sélectionnée.

Before non-max suppression

After non-max suppression

YOLO: LA LOSS

Slide credit: YOLO Presentation @ CVPR 2016

= 1 if cell i has an object present

47

YOLO: LA LOSS

1 when there is object, 0 when there is no object Bounding Box Location (x, y) when there is object Bounding Box size (w, h) when there is object Confidence when there is object 1 when there is no object, 0 when there is object Confidence when there is no object Class probabilities when there is object

YOLO: LA LOSS

IMPLÉMENTATION PYTHON

```
ciou = tf.expand_dims(bbox_ciou(pred_xywh, label_xywh), axis=-1) # (8, 13, 13, 3, 1)
input_size = tf.cast(input_size, tf.float32)
# 每个预测框xxxiou loss的权重 = 2 - (ground truth的面积/图片面积)
bbox_loss_scale = 2.0 - 1.0 * label_xywh[:, :, :, 2:3] * label_xywh[:, :, :, 3:4] / (input_size ** 2)
ciou_loss = respond_bbox * bbox_loss_scale * (1 - ciou) # 1. respond_bbox作为mask, 有物体才计算xxxiou_loss
# 2, respond bbox作为mask, 有物体才计算类别 loss
prob_loss = respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=label_prob, logits=conv_raw_prob)
# 3. xxxiou loss和类别loss比较简单。重要的是conf loss,是一个focal loss
# 分两步: 第一步是确定 grid_h * grid_w * 3 个预测框 哪些作为反例; 第二步是计算focal_loss。
expand_pred_xywh = pred_xywh[:,:,:, np.newaxis,:] # 扩展为(?, grid_h, grid_w, 3, 1, 4)
expand_bboxes = bboxes[:, np.newaxis, np.newaxis, np.newaxis, :, :] # 扩展为(?, 1, 1, 1, 150, 4)
iou = bbox_iou(expand_pred_xywh, expand_bboxes) # 所有格子的3个预测框 分别 和 150个ground truth 计算iou。 (?, grid_h, grid_w, 3, 150)
max iou = tf.expand dims(tf.reduce max(iou, axis=-1), axis=-1) # 与150个ground truth的iou中, 保留最大那个iou。 (?, grid h, grid w, 3, 1)
# respond_bgd代表 这个分支输出的 grid_h * grid_w * 3 个预测框是否是 反例 (背景)
# label有物体,respond_bgd是0。 没物体的话: 如果和某个gt(共150个)的iou超过iou loss_thresh,respond_bgd是0; 如果和所有gt(最多150个)的iou都小于iou_loss_thresh,respond_bgd是1。
# respond_bgd是0代表有物体,不是反例; 权重respond_bgd是1代表没有物体,是反例。
# 有趣的是,模型训练时由于不断更新,对于同一张图片,两次预测的 grid h * grid w * 3 个预测框(对于这个分支输出) 是不同的。用的是这些预测框来与gt计算iou来确定哪些预测框是反例。
# 而不是用固定大小 (不固定位置) 的先验框。
respond bgd = (1.0 - respond bbox) * tf.cast(max iou < iou loss thresh, tf.float32)
# 二值交叉熵损失
pos_loss = respond_bbox * (0 - K.log(pred_conf + K.epsilon()))
neg_loss = respond_bgd * (0 - K.log(1 - pred_conf + K.epsilon()))
conf_loss = pos_loss + neg loss
# 回顾respond bgd,某个预测框和某个gt的iou超过iou loss thresh,不被当作是反例。在参与"预测的置信位 和 真实置信位 的 二值交叉熵"时,这个框也可能不是正例(label里没标这个框是1的话)。这个
# 这种框一般是gt框附近的框,或者是gt框所在格子的另外两个框。它既不是正例也不是反例不参与置信度loss的计算。(论文里称之为ignore)
ciou_loss = tf.reduce_mean(tf.reduce_sum(ciou_loss, axis=[1, 2, 3, 4])) # 每个样本单独计算自己的ciou_loss, 再求平均值
conf_loss = tf.reduce_mean(tf.reduce_sum(conf_loss, axis=[1, 2, 3, 4])) # 每个样本单独计算自己的conf_loss, 再求平均值
prob_loss = tf.reduce_mean(tf.reduce_sum(prob_loss, axis=[1, 2, 3, 4])) # 每个样本单独计算自己的prob_loss, 再求平均值
return ciou_loss, conf_loss, prob_loss
```

https://github.com/Ma-Dan/keras-yolo4/blob/master/yolo4/model.py

L'architecture

COMMENT ÇA FONCTIONNE?

Améliore les performances en prenant des features adaptées aux tailles de boîtes

YOLO v3 network Architecture

Yolo 3 + bag of specials + bag of freebies = Yolo4

- Fonction d'activation MISH
- SPP
- PAN
- Etc.

Ensemble d'améliorations sans impact sur le réseau :

- la fonction de coût
- l'augmentation des données
- la cross mini-batch normalization
- Etc.

Pour une introduction vulgarisée : <u>source</u>

YOLO 4: FREEBIES

SCALIAN

DATA AUGMENTATION

(a) Crop, Rotation, Flip, Hue, Saturation, Exposure, Aspect.

(b) MixUp

(c) CutMix

(d) Mosaic

(e) Blur

YOLO 4: PRINCIPES D'ARCHITECTURES

SCALIAN

3 PARTIES

- il peut être vu comme un "convertisseur" qui converti l'image en entrée => features
- Habituellement reprend des modèles entrainés sur ImageNEt

- le "neck" a pour rôle d'extraire les features pertinentes de l'ensemble des couches de la backbone, et de les combiner en features utiles à notre tâche de détection
- la tête est responsable de la décision finale du réseau. (identique à yolo V3)

Pour approfondir

https://towardsdatascience.com/yolo-v4-or-yolo-v5-or-pp-yolo-dad8e40f7109

BENCHMARK PAR YOLO

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

source

YOU ONLY LOOK ONCE

- Transfert Learning issu d'un réseau entraîné sur ImageNet
- Bon compromis entre temps d'exécution et performance
- Existe en version « tiny », adaptée pour de l'embarqué
- Utilisable en « temps réel »
- Peut détecter de multiples objets par image