2023-April Session-04-08-2023-Shift:2-1-15

1

EE24BTECH11026 G.Srihaas

1) Let $A = \left\{ \theta \in (0, 2\pi) : \frac{1 + 2\iota \sin \theta}{1 - \iota \sin \theta} \text{ is purely imaginary } \right\}$. Then sum of elements in A is.

2) Let P be the plane passing through the line $\frac{x-1}{1} = \frac{y-2}{-3} = \frac{z+5}{7}$ and the point (2,4,3). If the image of the point (-1,3,4) in the plane P is (α,β,γ) then $\alpha+\beta+\gamma$ is equal to

c) 4π

d) 2π

(2023-April)

a) π

b) 3π

	(2023-April)						
	a) 12	b) 9	c) 10	d) 11			
3)	3) If $A = \begin{pmatrix} 1 & 5 \\ \lambda & 10 \end{pmatrix}$, $A^{-1} = \alpha A + \beta I$ and $\alpha + \beta = -2$, then $4\alpha^2 + \beta^2 + \lambda^2$ is equal to (2023-April)						
	a) 14	b) 12	c) 19	d) 10			
4)	4) The area of the quadrilateral $ABCD$ with the vertices $\mathbf{A}(2,1,1)$, $\mathbf{B}(1,2,5)$, $\mathbf{C}(-2,-3,5)$ and $\mathbf{D}(1,-6,-7)$ is equal to (2023-April)						
	a) 54	b) $9\sqrt{38}$	c) 48	d) $8\sqrt{38}$			
5)	$25^{190} - 19^{180} - 8^{190}$	+ 2 ¹⁹⁰ is divisble by		(2023-April)			
		c) Both 14 and 34 d) Neither 14 nor	34				
6) Let O be the origin and OP and OQ be the tangents to the circle $x^2+y^2-6x+4y+8=0$ at the points P and Q on it. If the circumcircle of the triangle OPQ passes through the point $(\alpha, 1/2)$ (2023-April)							
	a) -1/2	b) 5/2	c) 1	d) 3/2			
7)	7) Let a_n be the n^{th} term of the series $5 + 8 + 14 + 23 + 35 + 50 + \dots$ and the $S_n = \sum a_k$. Then $S_{30} - a_{40}$ is equal to (2023-April)						

(2023-April)

d) 0

d) 11310

8) If $\alpha > \beta > 0$ are	8) If $\alpha > \beta > 0$ are the roots of the equation $ax^2 + bx + 1 = 0$, and					
	$\lim_{x \to \frac{1}{a}} \left(\frac{1 - \cos\left(x^2 + bx + a\right)}{2\left(1 - \alpha x\right)^2} \right)^{\frac{1}{2}} = \frac{1}{k} \left(\frac{1}{\beta} - \frac{1}{\alpha} \right)$					
then k is equal	to		(2023-April			
a) β	b) 2α	c) 2 <i>β</i>	d) α			
9) If the number of words, with or without meaning, which can be made using all the letters of the word MATHEMATICS in which C and S do not come together, i (6!)k, is equal to (2023-April						
a) 1890	b) 945	c) 2835	d) 5670			
10) Let S be the set of all values of $\theta \in [-\pi, \pi]$ for which the system of linear equations						
		$x + y + \sqrt{7}z = 0$	(10.1			
	$-x + (\tan \theta) y + \sqrt{3}z = 0 $ $x + y + (\tan \theta) z = 0 $ $(10.$					
has non-trivial	has non-trivial solution. Then $\frac{120}{\pi} \sum \theta$ is equal to					
a) 20	b) 40	c) 30	d) 10			
11) For $a, b \in Z$ and $ a - b \le 10$, let the angle between the plane P: $ax + y - z = b$ and the line1: $x - 1 = a - y = z + 1$ be $\cos^{-1}\left(\frac{1}{3}\right)$. If the distance of the point $(6, -6, 4)$ from the plane P is $3\sqrt{6}$, the $a^4 + b^2$ is equal to (2023-April)						
a) 85	b) 48	c) 25	d) 32			
12) Let the vectors vectors $\overline{v_1} = (a$	$\overline{u_1} = \hat{i} + \hat{j} + a\hat{k}, \overline{u_2} = b$ $+ b)\hat{i} + c\hat{j} + c\hat{k}, \overline{v_2} = b$	$= \hat{i} + b\hat{j} + \hat{k} \text{ and } \overline{u_3} = c$ $= a\hat{i} + (b+c)\hat{j} + a\hat{k} \text{ and}$	$c\hat{i} + \hat{j} + \hat{k}$ be coplanar. If the d $\overline{v_3} = b\hat{i} + b\hat{j} + (c + a)\hat{k}$ are			

c) 11290

a) 11260

b) 11280

13) The absolute difference of the coefficients of x^{10} and x^7 in the expansion of $\left(2x^2 + \frac{1}{2x}\right)^{11}$ (2023-April)

c) 6

also coplanar, then 6(a + b + c) is

b) 12

a) 4

- a) $10^3 10$ b) $11^3 11$ c) $12^3 12$ d) $13^3 13$
- 14) Let A= $\{1, 2, 3, 4, 5, 6, 7\}$. Then the relation $R = \{(x, y) \in A \times A : x + y = 7\}$ is (2023-April)
 - a) Symmetric but neither reflexive nor transitive
 - b) Transitive but neither symmetric nor reflexive
 - c) An equivalence relation
 - d) Reflexive but neither symmetric nor transitive
- 15) If the probability that the random variable X takes values x is given by $P(X = x) = k(x + 1)3^{-x}, x = 0, 1, 2, 3,,$ where k is a constant, then $P(X \ge 2)$ is equal to (2023-April)
 - a) $\frac{7}{27}$
- b) $\frac{11}{18}$
- c) $\frac{7}{18}$
- d) $\frac{20}{27}$