Causality and biases

Rafał Urbaniak, Nikodem Lewandowski (LoPSE research group, University of Gdansk)

Some hypotheses to consider

Newsworthiness

"It seems the most newsworthy scientific studies the least trustworthy." What could explain this?

Jerks

"It seems good-looking men are jerks." What could explain this?

Selection-distortion effect

```
N <- 800 #proposals/candidates
p <- .5 #proportion to select
# uncorrelated newsworthiness/looks and trustworthiness/kindness
nwl <- rnorm(N)
twk <- rnorm(N)
cor(nwl,twk)</pre>
```

[1] -0.06152328

Uncorrelated newsworthiness/looks and trustworthiness/kindness

Selection-distortion effect

```
s <- nwl + twk # total score
q <- quantile(s , 1-p) # top 10% threshold
selected <- ifelse(s >= q , TRUE , FALSE )
cor( twk[selected] , nwl[selected] )

## [1] -0.5433415

cor( twk[!selected] , nwl[!selected] )

## [1] -0.5040041
```

Selection-distortion effect

```
ggplot() + geom_point(aes(
    x = twk, y = nwl, color = selected, shape = selected))+
geom_smooth(aes(
    x = twk, y = nwl, group = selected), method = "lm")+th+
ggtitle("Correlations arise after selection")
```

Correlations arise after selection

Multiple regression will not save you

```
news <- list(nwl = nwl, twk = twk,
             sel = as.integer(selected+1))
newsTWK <- quap(</pre>
  alist(
    nwl ~ dnorm( mu , sigma ) ,
    mu \leftarrow a + t * twk,
    a \sim dnorm(0, 2),
    t ~ dnorm(0, .2),
    sigma ~ dexp(1)
  data= news )
precis(newsTWK)
```

```
## mean sd 5.5% 94.5%

## a -0.01252908 0.03613758 -0.07028391 0.045225751

## t -0.06223462 0.03627592 -0.12021054 -0.004258699

## sigma 1.02131620 0.02550846 0.98054875 1.062083648
```

Multiple regression will not save you

```
newsTWKselected <- quap(</pre>
  alist(
    nwl ~ dnorm( mu , sigma ) ,
    mu \leftarrow a[sel] + t[sel] * twk ,
    t[sel] ~ dnorm( 0 , .2 ) ,
    a[sel] \sim dnorm(0, 2),
    sigma ~ dexp(1)
  data= news )
precis(newsTWKselected, depth = 2)
```

```
## mean sd 5.5% 94.5%

## t[1] -0.4583950 0.04047583 -0.5230832 -0.3937068

## t[2] -0.5129769 0.04012847 -0.5771100 -0.4488439

## a[1] -0.8693598 0.04099812 -0.9348828 -0.8038369

## a[2] 0.8342353 0.03918357 0.7716123 0.8968582

## sigma 0.6967769 0.01741858 0.6689387 0.7246152
```

Collider bias

```
newsDAG <- dagitty (
   "dag{
   nwl -> sel <- twk
   }"
)
coordinates(newsDAG) <- list(
   x=c(nwl=0,sel=1,twk=2) , y=c(nwl=0,sel=1,twk=0) )
drawdag(newsDAG, cex = 2,
   radius = 3, goodarrow = TRUE, xlim = c(-.2,2.2), ylim = c(-1.2,.2))</pre>
```


Post-treatment bias

Blindly tossing in predictors is never a good idea

Choosing prior for proportional change

Modeling aggression change

```
set.seed(12)
aggressionModel <- quap(
  alist(
    aggression1 ~ dnorm( mu , sigma ),
    mu <- aggression0*p,
    p ~ dlnorm( .9 , 0.6 ),
    sigma ~ dexp( 1 )
    ), data=d )

precis(aggressionModel)[,-5]</pre>
```

```
## mean sd 5.5% 94.5%
## p 3.230631 0.12417941 3.032169 3.429094
## sigma 1.375921 0.09630769 1.222003 1.529840
```

Throwing in all predictors

```
aggressionModelAll <- quap(
  alist(
    aggression1 ~ dnorm( mu , sigma ),
    mu <- aggression0 * p,
    p <- a + bv*vaccine + bc*cordyceps,
    a ~ dnorm(1,2),
    bv ~ dnorm(1 , 1 ),
    bc ~ dlnorm( .9 , 0.6 ),
    sigma ~ dexp( 1 )
    ), data=d )

precis(aggressionModelAll)[,-5]</pre>
```

```
## mean sd 5.5% 94.5%

## a 1.7361277 0.2838563 1.2824704 2.1897849

## bv 0.2785707 0.2290837 -0.0875492 0.6446906

## bc 1.8454706 0.2607080 1.4288088 2.2621323

## sigma 1.1118171 0.0779973 0.9871624 1.2364719
```

Throwing in all predictors

```
aggressionModelVaccine <- quap(
   alist(
     aggression1 ~ dnorm( mu , sigma ),
     mu <- aggression0 * p,
   p <- a + bv*vaccine,
   a ~ dnorm(1,2),
   bv ~ dnorm(1 , 1 ),
   sigma ~ dexp( 1 )
   ), data=d )

precis(aggressionModelVaccine)[,-5]</pre>
```

```
## mean sd 5.5% 94.5%
## a 3.4774336 0.16402146 3.2152956 3.7395716
## bv -0.5186644 0.23454769 -0.8935169 -0.1438119
## sigma 1.3340238 0.09356404 1.1844904 1.4835572

cordyceps <- rbinom( N , size=1 , prob=0.95 - vaccine * 0.5 )</pre>
```

C d-separates V from A1

C d-separates V from A1

$\verb|impliedConditionalIndependencies(aggressionDAG)|$

```
## A_O _||_ C
## A_O _||_ V
## A_1 _||_ V | C
```

The counterfactual model of data analysis

- individual: i
- potential outcomes: Y_i^0 , Y_i^1 (only one observable)
- look at groups, with defendable assumptions estimate the average effect

Example: status attainment tradition

Implicit Wisconsin model

Students follow their own aspirations.

Critics

You can have all aspirations you want, resources will limit you

Example: economic theory of human capital

Example: economic theory of human capital

Example: political participation

Example: political participation

Example: Catholic schooling

Catholic schooling (self selection)

Example: manpower training

Manpower training (Ashenfelter's dip)

The straightforward solution

Randomize

Cut the arrows coming into the predictors.

The straightforward solution

Randomize

Cut the arrows coming into the predictors.

The problem

- most data are observational
- randomization is often impossible, impractical, or unethical