CRYPTOGRAPHY MISSION 05 DOSSIER

Deadline: Thursday, 5 October 2017 at 10:50am

This mission covers Sections 3.1, 3.2, 3.3, 3.4, 3.6.

Check one:
☐ I received help from the following classmate(s) on this assignment:
\square I did not receive any help on this assignment.
1. Graded Problems
1. Let $F_1=1, F_2=1, F_{n+1}=F_n+F_{n-1}$ define the Fibonacci numbers $1,1,2,3,5,\cdots$. a. List the first 15 Fibonacci numbers.
b. Compute the greatest common divisor for the following pairs: F_{10} and F_7 , F_6 and F_9 , F_6 and F_{12} , F_{10} and F_{13} .

c. Look at your previous examples. It turns out that $gcd(F_m, F_n) = F_{gcd(m,n)}$. two specific and detailed examples to verify that you believe this is true.	Write ou
d. Play with some examples, and make a conjecture about $gcd(F_n, F_{n-1})$ for r there any patterns? Describe them here.	$n \geq 1$. As
a. Use the Euclidean algorithm to compute gcd(8207, 4811).	

	b. Factor 8207 and 4811 by using CoCal's factor(a,b). In a sentence or two, explain why the Euclidean algorithm is the faster method of computing the gcd (rather than factoring and using the definition of gcd).
3.	You can also compute a gcd using CoCalc's gcd(a,b). For this problem, determine the solution for the following gcd computations. a. gcd(234,6013)
	b. $gcd(74951, 26269)$
	c. $gcd(5223389, 188434513)$
4.	(Fermat's Little Theorem and Euler's Theorem) Recall that $(a^b)^c = a^{bc}$. Compute each of the following without a calculator or computer (you can double-check with code). a. $\varphi(35)$
	b. $514^{372} \mod 13$
	c. 2 ⁴⁹ mod 15
1	

5.	(Honors) This problem is going to walk you through another way of thinking about the proof of Fermat's Little Theorem but using combinatorics. Recall that we have $a^{p-1} \equiv 1 \mod p$ for a number a and a prime p in which $\gcd(a,p)=1$. This can be rewritten as $a^p \equiv a \mod p$ or that a^p-a is divisible by p . a. Suppose $p=5$. Consider all the possible strings of $p=5$ symbols, using an alphabet with $a=2$ different symbols. For example, if your letters are A and B , then a possible string is $ABAAA$. How many different strings are there? List them.
	b. Think of each letter in the string as a bead, and tie them into a "necklace." If you rotate one necklace corresponding to a string and get another string, they are considered the same. For example: $ABAAA$ and $AABAA$ form the same necklace. Group your necklaces together. How many unique necklaces are there?
	c. Notice that 2 of the strings only have one letter of the alphabet. All of the other necklaces have 5 strings. So this shows that $2^5 - 2$ is divisible by 5. Use this reasoning and a sentence or two to explain how this proves Fermat's Little Theorem in general.

2. RECOMMENDED EXERCISES

These will not be graded but are recommended if you need more practice.

- Section 3.13: # 1, 3, 5, 7, 9, 15
 Section 3.14: # 1, 5, 7