```
In [36]: #importing the necessary libraries
   import pandas as pd
   import numpy as np
   from math import *
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings; warnings.simplefilter('ignore')
```

Looking at the Data

Out[2]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	Total eve calls
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	99
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	103
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	110
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	88
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	122

In [3]: df_test.head()#look at the first few rows for the test dataset

Out[3]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	Total eve calls
0	LA	117	408	No	No	0	184.5	97	31.37	351.6	80
1	IN	65	415	No	No	0	129.1	137	21.95	228.5	83
2	NY	161	415	No	No	0	332.9	67	56.59	317.8	97
3	SC	111	415	No	No	0	110.4	103	18.77	137.3	102
4	HI	49	510	No	No	0	119.3	117	20.28	215.1	109

In [67]: print("Rows in Train:", df_train.shape[0])#Getting number of Rows
 print("\nNumber of Columns in Train:", df_train.shape[1])#Getting number
 of Columns
 print ("\nFeatures : \n" , df_train.columns.tolist())#Getting the column
 names

Rows in Train: 2666

Number of Columns in Train: 20

Features:

['State', 'Account length', 'Area code', 'International plan', 'Voice mail plan', 'Number vmail messages', 'Total day minutes', 'Total day ca lls', 'Total day charge', 'Total eve minutes', 'Total eve calls', 'Total eve charge', 'Total night minutes', 'Total night calls', 'Total night charge', 'Total intl minutes', 'Total intl calls', 'Total intl charge', 'Customer service calls', 'Churn']

In [66]: print("Rows in Test:", df_test.shape[0])#Getting number of Rows
 print("\nNumber of Columns in Test:", df_test.shape[1])#Getting number o
 f Columns
 print ("\nFeatures : \n" , df_test.columns.tolist())#Getting the column n
 ames

Rows in Test: 667

Number of Columns in Test: 20

Features:

['State', 'Account length', 'Area code', 'International plan', 'Voice mail plan', 'Number vmail messages', 'Total day minutes', 'Total day ca lls', 'Total day charge', 'Total eve minutes', 'Total eve calls', 'Total eve charge', 'Total night minutes', 'Total night calls', 'Total night charge', 'Total intl minutes', 'Total intl calls', 'Total intl charge', 'Customer service calls', 'Churn']

In [115]: df_train.info() #looking to see the count of NAN in each column for train and data type

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2666 entries, 0 to 2665
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype	
		2666		
0	State	2666 non-null	object	
1	Account length	2666 non-null		
2	Area code	2666 non-null	int64	
3	International plan	2666 non-null	object	
4	Voice mail plan	2666 non-null	object	
5	Number vmail messages	2666 non-null	int64	
6	Total day minutes	2666 non-null	float64	
7	Total day calls	2666 non-null	int64	
8	Total day charge	2666 non-null	float64	
9	Total eve minutes	2666 non-null	float64	
10	Total eve calls	2666 non-null	int64	
11	Total eve charge	2666 non-null	float64	
12	Total night minutes	2666 non-null	float64	
13	Total night calls	2666 non-null	int64	
14	Total night charge	2666 non-null	float64	
15	Total intl minutes	2666 non-null	float64	
16	Total intl calls	2666 non-null	int64	
17	Total intl charge	2666 non-null	float64	
18	Customer service calls	2666 non-null	int64	
19	Churn	2666 non-null	bool	
٠.	1 7/1 67 (64/6)			

dtypes: bool(1), float64(8), int64(8), object(3)

memory usage: 398.5+ KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 667 entries, 0 to 666
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	State	667 non-null	object
1	Account length	667 non-null	int64
2	Area code	667 non-null	int64
3	International plan	667 non-null	object
4	Voice mail plan	667 non-null	object
5	Number vmail messages	667 non-null	int64
6	Total day minutes	667 non-null	float64
7	Total day calls	667 non-null	int64
8	Total day charge	667 non-null	float64
9	Total eve minutes	667 non-null	float64
10	Total eve calls	667 non-null	int64
11	Total eve charge	667 non-null	float64
12	Total night minutes	667 non-null	float64
13	Total night calls	667 non-null	int64
14	Total night charge	667 non-null	float64
15	Total intl minutes	667 non-null	float64
16	Total intl calls	667 non-null	int64
17	Total intl charge	667 non-null	float64
18	Customer service calls	667 non-null	int64
19	Churn	667 non-null	bool
dtype	es: bool(1), float64(8),	int64(8), objec	t(3)

dtypes: bool(1), float64(8), int64(8), object(3)
memory usage: 99.8+ KB

Therefore, from both of the datasets there are zero missing values.

Exploratory Data Analysis

Churn Percentage in Train Data Set


```
In [13]: Churn_Test = df_test['Churn'].value_counts()#choosing the data in the Ch
    urn column to graph
    my_labels = 'True','False'
    my_colors = ['red','green']
    my_explode = (0, 0.09)
    plt.pie(Churn_Test,labels=my_labels,autopct='%1.1f%%', startangle=15, sh
    adow = True, colors=my_colors, explode=my_explode)
    plt.title('Churn Percentage in Test Data Set')
    plt.axis('equal')
    plt.show()
```

Churn Percentage in Test Data Set


```
In [101]: plt.figure(figsize=(12,8))#establishing figure size
    sns.countplot(x = 'Customer service calls', hue = "Churn", data = df_trai
    n) #using seaborn to do countpolot
    plt.title('Churn distribution due to Customer Service calls for the Trai
    n Data Set')
    plt.xlabel('Customer service calls')
    plt.ylabel('Count')
    plt.show() # Show the plot
```


From looking at the graph from the train dataset some customers left the network without even making a service call, and on the other hand more customers left after making one service call probably because their issue wasn't solved after the first call. Also its evident to see that after making 4 service calls or higher, the customer is more likely to leave the network and churn.

```
In [103]: plt.figure(figsize=(12,8))#establishing figure size
    sns.countplot(x ='Customer service calls', hue = "Churn", data = df_test
) #using seaborn to do countpolot
    plt.title('Churn distribution due to Customer Service calls for the Test
    Data Set')
    plt.xlabel('Customer service calls')
    plt.ylabel('Count')
    plt.show() # Show the plot
```


From looking at the graph from the test dataset some customers left the network without even making a service call, and on the other hand most customers left after making one or two service calls. Also its evident to see that after making 5 service calls or higher, the customer is more likely to leave the network and churn.

```
In [114]: #Going to create the bar chart for the Churn for the train dataset showc
    asing the Total intl calls
    plt.figure(figsize=(12,8))#establishing figure size
    sns.countplot(x ='Total intl calls', hue = "Churn", data = df_train) #us
    ing seaborn to do countpolot
    plt.title('Churn distribution due to Total intl calls for the Train Data
    Set')
    plt.xlabel('Total intl calls ')
    plt.ylabel('Count')
    plt.show() # Show the plot
```


In [23]: #creating a new dataframe without some of the categorical columns new_train = df_train[["Number vmail messages","Total day minutes","Total
day calls","Total day charge","Total eve minutes","Total eve calls","Tot al eve charge", "Total night minutes", "Total night calls", "Total night ch arge", "Total intl minutes", "Total intl calls", "Total intl charge", "Custo mer service calls", "Churn"]] new_train.head()

Out[23]:

	Number vmail messages	Total day minutes	Total day calls	Total day charge	eve	Total eve calls	Total eve charge	Total night minutes	•	Total night charge	Total intl minutes
0	25	265.1	110	45.07	197.4	99	16.78	244.7	91	11.01	10.0
1	26	161.6	123	27.47	195.5	103	16.62	254.4	103	11.45	13.7
2	0	243.4	114	41.38	121.2	110	10.30	162.6	104	7.32	12.2
3	0	299.4	71	50.90	61.9	88	5.26	196.9	89	8.86	6.6
4	0	166.7	113	28.34	148.3	122	12.61	186.9	121	8.41	10.1

Observing the distributions, it clear to see that most of the graphs don't show any correlation/relationship. However few does show some postive correlation, such as the Total day minutes and Total day charge, Total eve minutes and Total eve charge, Total night minutes and Total night charge and finally the Total intl minutes and Total intl charge show a postive correlation.

Preprocessing of Data

In [20]: print("Rows in Test:", new_train.shape[0])#Getting number of Rows
 print("\nNumber of Columns in Test:", new_train.shape[1])#Getting number
 of Columns

Rows in Test: 2666

Number of Columns in Test: 15

Similarly will narrow down the columns for the test dataset as well.

In [57]: #creating a new dataframe without some of the categorical columns
 new_test = df_test[["Number vmail messages","Total day minutes","Total d
 ay calls","Total day charge","Total eve minutes","Total eve calls","Total
 l eve charge","Total night minutes","Total night calls","Total night cha
 rge","Total intl minutes","Total intl calls","Total intl charge","Custom
 er service calls","Churn"]]
 new_test.head(15)

Out[57]:

	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	Total eve calls	Total eve charge	Total night minutes	Total night calls	Total night charge	Total intl minutes
0	0	184.5	97	31.37	351.6	80	29.89	215.8	90	9.71	8.7
1	0	129.1	137	21.95	228.5	83	19.42	208.8	111	9.40	12.7
2	0	332.9	67	56.59	317.8	97	27.01	160.6	128	7.23	5.4
3	0	110.4	103	18.77	137.3	102	11.67	189.6	105	8.53	7.7
4	0	119.3	117	20.28	215.1	109	18.28	178.7	90	8.04	11.1
5	30	146.3	128	24.87	162.5	80	13.81	129.3	109	5.82	14.5
6	0	211.3	120	35.92	162.6	122	13.82	134.7	118	6.06	13.2
7	0	159.1	114	27.05	231.3	117	19.66	143.2	91	6.44	8.8
8	0	186.1	112	31.64	190.2	66	16.17	282.8	57	12.73	11.4
9	0	148.8	70	25.30	246.5	164	20.95	129.8	103	5.84	12.1
10	33	193.7	91	32.93	246.1	96	20.92	138.0	92	6.21	14.6
11	0	235.8	109	40.09	157.2	94	13.36	188.2	99	8.47	12.0
12	0	214.1	72	36.40	164.4	104	13.97	177.5	113	7.99	8.2
13	29	179.3	104	30.48	225.9	86	19.20	323.0	78	14.54	8.6
14	0	203.4	100	34.58	190.9	104	16.23	196.0	119	8.82	8.9

Rows in Test: 667

Number of Columns in Test: 15

Now have to establish the attributes and lables for the model going forward.

```
In [29]: x_train = new_train.iloc[:, :-1].values #selecting the all the columns e
    xcept the last one
    y_train = new_train.iloc[:, 14].values #selecting the churn column

    x_test = new_test.iloc[:, :-1].values #selecting the all the columns exc
    ept the last one
    y_test = new_test.iloc[:, 14].values #selecting the churn column
```

Feature Scaling

Best practice is to scale the features/columns so the rage is normalized.

Training the Data and Predicting

weights='uniform')

In [108]: y_pred = classifier.predict(X_test) #using the y_pred on the Xtest print(len(y_pred))#printing the length of the prediction for churn print(y_pred) #printing the predicted values from the algorithem for chu 667 [False False True False False Fals False False True False F False True False True False True False True False Tru False True True Fals False Tru False True False False False False True False False False Fals False True False True False F False True Fals False True False True False False False False False True False Fals False False False False False False False False True False False False False False False False False True True False Fals False True True False False]

Eavaluating the Algorithm

In [44]: from sklearn.metrics import classification_report, confusion_matrix #imp orting the library print(confusion_matrix(y_test, y_pred)) #using the confusing matrix funt ion to describe the functionality of the classifier print(classification_report(y_test, y_pred))

[63 32]]	precision	recall	f1-score	support
False	0.90	0.99	0.94	572
True	0.89	0.34	0.49	95
accuracy			0.90	667
macro avg	0.89	0.66	0.72	667
weighted avg	0.90	0.90	0.88	667

Out[100]: Text(0.5, 1, 'KNN Classifier')

Error Rate comparison with the K value

```
In [50]: error = [] #creating an empty error list

# Calculating error for K values between 1 and 30
for i in range(1, 30):
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train, y_train)
    pred_i = knn.predict(X_test)
    error.append(np.mean(pred_i != y_test))
```

Out[54]: Text(0, 0.5, 'Mean Error')

From observing the graph it is evident that the mean error is at the lowest level of 0.10 when the K is 7, 9, and 11. The algorithm used a K or the n_neighbours value of 7, which showed an accuracy of 90%.

Evaluating the results from the Algorithm

In [105]: #creating a new dataframe with the new test and going to add the y pred list to it

> pred_test = new_test[["Number vmail messages","Total day minutes","Total day calls", "Total day charge", "Total eve minutes", "Total eve calls", "Tot al eve charge", "Total night minutes", "Total night calls", "Total night ch arge", "Total intl minutes", "Total intl calls", "Total intl charge", "Custo mer service calls", "Churn"]]

> pred_test['KNN_Churn'] = y_pred #adding the predicted churn in the datas

pred_test.head(15) #showing the first 15 rows

Out[105]:

	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	Total eve calls	Total eve charge	Total night minutes	Total night calls	Total night charge	Total intl minutes
0	0	184.5	97	31.37	351.6	80	29.89	215.8	90	9.71	8.7
1	0	129.1	137	21.95	228.5	83	19.42	208.8	111	9.40	12.7
2	0	332.9	67	56.59	317.8	97	27.01	160.6	128	7.23	5.4
3	0	110.4	103	18.77	137.3	102	11.67	189.6	105	8.53	7.7
4	0	119.3	117	20.28	215.1	109	18.28	178.7	90	8.04	11.1
5	30	146.3	128	24.87	162.5	80	13.81	129.3	109	5.82	14.5
6	0	211.3	120	35.92	162.6	122	13.82	134.7	118	6.06	13.2
7	0	159.1	114	27.05	231.3	117	19.66	143.2	91	6.44	8.8
8	0	186.1	112	31.64	190.2	66	16.17	282.8	57	12.73	11.4
9	0	148.8	70	25.30	246.5	164	20.95	129.8	103	5.84	12.1
10	33	193.7	91	32.93	246.1	96	20.92	138.0	92	6.21	14.6
11	0	235.8	109	40.09	157.2	94	13.36	188.2	99	8.47	12.0
12	0	214.1	72	36.40	164.4	104	13.97	177.5	113	7.99	8.2
13	29	179.3	104	30.48	225.9	86	19.20	323.0	78	14.54	8.6
14	0	203.4	100	34.58	190.9	104	16.23	196.0	119	8.82	8.9

Predicted Churn Percentage in Test Data Set

Reference

Article Name: K-Nearest Neighbors Algorithm in Python and Scikit-Learn URL: https://stackabuse.com/k-nearest-neighbors-algorithm-in-python-and-scikit-learn/ (https://stackabuse.com/k-nearest-neighbors-algorithm-in-python-and-scikit-learn/)

Data Source

Data Source Link- https://www.kaggle.com/mnassrib/telecom-churn-datasets This is a public use data set, which is updated annually Dataset owner- Baligh Mnassri