БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра нелинейного анализа и аналитической экономики

В. И. БАХТИН, И. А. ИВАНИШКО, А. В. ЛЕБЕДЕВ, О. И. ПИНДРИК

МЕТОД МНОЖИТЕЛЕЙ ЛАГРАНЖА

Методическое пособие для студентов специальности 1-31 03 01-03 «Математика (экономическая деятельность)»

МИНСК 2012 Рекомендовано Советом механико-математического факультета БГУ 28 февраля 2012 г., протокол № 5

Рецензенты: член-корреспондент НАН Беларуси, доктор физико-математических наук, профессор В. В. Гороховик; доктор физико-математических наук, профессор В. Г. Кротов

Бахтин, В. И.

Б30 Метод множителей Лагранжа : метод. пособие для студентов спец. 1-31 03 01-03 «Математика (экономическая деятельность)» / В. И. Бахтин, И. А. Иванишко, А. В. Лебедев, О. И. Пиндрик. — Минск : БГУ, 2012. — 40 с.

В методическом пособии изложены теоретические основы метода множителей Лагранжа для нахождения экстремальных значений функций, заданных на подмножествах пространства \mathbb{R}^n . С целью лучшего усвоения представленного теоретического материала подробны примеры применения этого метода для решения конкретных задач.

Предназначено для студентов математических и технических специальностей. Может представлять интерес для студентов и преподавателей высших учебных заведений, изучающих и преподающих теорию экстремальных задач.

> УДК 519.85(075.8) ББК 22.18я73-1

- © Бахтин В. И., Иванишко И. А., Лебедев А. В., Пиндрик О. И., 2012
- © БГУ, 2012

Предисловие

Одним из важнейших курсов для студентов математических и прикладных специальностей является курс «Методы оптимизации». В разных вузах в программу данного курса включают различные разделы анализа, такие как вариационное исчисление, теория управления, приближенные методы решения экстремальных задач. В настоящее время на механико-математическом факультете Белорусского государственного университета изучение методов оптимизации разделено на три части: на третьем курсе студенты проходят раздел, который носит общее название «Методы оптимизации» и включает в себя только конечномерные задачи, на четвертом — элементы дискретной оптимизации в курсе «Исследование операций», и, наконец, на пятом курсе студенты знакомятся с классическим вариационным исчислением и с некоторыми вопросами оптимизации в бесконечномерных пространствах в целом. Данное методическое пособие освещает только один раздел оптимизации в конечномерных пространствах, а именно использование метода множителей Лагранжа для нахождения экстремальных значений функций, заданных на подмножествах пространства \mathbb{R}^n .

§ 1. Задачи оптимизации

Пусть Ω — некоторое множество и $f:\Omega\to\mathbb{R}$ — вещественнозначная функция. Точка $a\in\Omega$ называется точкой максимума (минимума) функции f, если для любой точки $x\in\Omega$ выполняется неравенство

$$f(x) \leqslant f(a)$$
 $(f(x) \geqslant f(a)).$

Если при этом для любого $x \neq a$ выполнено

$$f(x) < f(a) \qquad (f(x) > f(a)),$$

то a называется точкой cmpoгого максимума (cmpoгого минимума).

Значение функции f в точке максимума (минимума) называется максимумом (минимумом). Экстремумом функции называется ее максимум или минимум. Точка, в которой экстремум достигается, называется точкой экстремума.

Задача оптимизации — это задача о поиске экстремумов и точек, в которых они достигаются. Обычно такая задача записывается в виде

$$\begin{cases} f(x) \to \text{extr,} \\ x \in \Omega. \end{cases}$$

При этом f называется ueneeou функцией, а множество Ω — oбnacmbo onpedenehus или donycmumым множесством задачи.

Очевидно, что задача максимизации

$$\begin{cases} f(x) \to \max, \\ x \in \Omega, \end{cases}$$

эквивалентна следующей задаче минимизации:

$$\begin{cases} -f(x) \to \min, \\ x \in \Omega; \end{cases}$$

при этом эквивалентность понимается в том смысле, что множества решений этих задач совпадают и, кроме того,

$$\max_{x \in \Omega} f(x) = -\min_{x \in \Omega} \{-f(x)\}.$$

Поэтому с теоретической точки зрения достаточно рассмотреть только одну из этих задач.

Наиболее часто употребляемым достаточным признаком существования экстремума является следующая

Теорема 1.1 (Вейерштрасс). Если Ω — компакт, а $f: \Omega \to \mathbb{R}$ — непрерывная функция, то она достигает на Ω своего максимума и минимума.

Эта теорема, однако, не дает метода нахождения экстремума. Такие методы разработаны для множеств и функций, обладающих рядом дополнительных свойств.

В предлагаемом пособии рассматриваются только конечномерные задачи, то есть задачи вида

$$\begin{cases} f(x) \to \text{extr,} \\ x \in \Omega, \quad \Omega \subset \mathbb{R}^n. \end{cases}$$

Поэтому далее соответствующие объекты и результаты будем определять и описывать лишь для этой ситуации.

Задачу оптимизации называют безусловной (задачей без ограничений), если ее область определения Ω совпадает с пространством \mathbb{R}^n .

Задачу оптимизации называют задачей с ограничениями или задачей условной оптимизации, если ее область определения Ω не совпадает с \mathbb{R}^n .

Важным частным случаем задач с ограничениями является *задача линейного программирования*. Это задача, в которой целевая функция линейна, а допустимое множество есть конечное пересечение замкнутых полупространств.

Помимо такой задачи в пособии также будет рассмотрена общая *задача нелинейного программирования*. В этой задаче допустимое множество задается конечной системой равенств и неравенств:

$$\Omega = \{ x \in \mathbb{R}^n \mid g_i(x) = 0, \ i = 1, \dots, k; \ g_i(x) \leq 0, \ i = k+1, \dots, p \},$$

где $g_i \colon \mathbb{R}^n \to \mathbb{R}, \ i = 1, \ldots, p,$ — некоторые функции.

Следующее понятие весьма важно в теории задач оптимизации.

Определение. Пусть задана функция $f: \mathbb{R}^n \to \mathbb{R}$ и множество $\Omega \subseteq \mathbb{R}^n$. Точку $a \in \Omega$ называют точкой локального минимума (максимума) функции f на множестве Ω , если существует такая окрестность U(a) точки a, что $f(x) \geqslant f(a)$ (или $f(x) \leqslant f(a)$) для всех $x \in U(a) \cap \Omega$.

При этом значение функции f(a) называется локальным минимумом (максимумом) функции f.

 ${\it Локальным экстремумом}$ функции называется ее локальный максимум или минимум. Точка, в которой локальный экстремум достигается называется ${\it mочкой локального экстремума}$.

Часто точки экстремума, в отличие от точек локального экстремума, называют точками *глобального экстремума*.

Важность локальных экстремумов в задачах оптимизации видна из следующего очевидного наблюдения: если a — точка минимума (максимума), то a — точка локального минимума (максимума). Поэтому, если точка экстремума существует, то ее следует искать среди точек локального экстремума. Это наблюдение будет существенно использоваться в представленных в пособии методах исследования задач оптимизации.

В следующем параграфе приводятся эффективные методы поиска локальных экстремумов для дифференцируемых функций.

§ 2. Экстремумы функций одной переменной

В данном параграфе рассмотрим одномерную задачу безусловной оптимизации, то есть ситуацию, когда целевая функция $f: \mathbb{R} \to \mathbb{R}$ определена на вещественной прямой.

Одним из основных результатов, используемых при решении таких оптимизационных задач, является лемма Ферма.

Лемма 2.1 (Ферма). Пусть a - mочка локального экстремума функции f и существует производная f'(a). Тогда f'(a) = 0.

Точки, в которых производная функции обращается в нуль, называются *стационарными* или *критическими*. Стационарные точки и точки, в которых не существует производной, подозрительны на экстремум.

Приводимое ниже следствие из теоремы Вейерштрасса часто используется при решении вопросов о существовании глобального экстремума функции на множестве.

Следствие 2.2. Если функция $f: \mathbb{R} \to \mathbb{R}$ непрерывна и удовлетворяет условию $\lim_{x\to\infty} f(x) = +\infty$ (или $\lim_{x\to\infty} f(x) = -\infty$), то

она достигает своего глобального минимума (максимума) на любом замкнутом подмножестве \mathbb{R} .

Определение. Говорят, что функция f меняет знак c плюса на минус в точке a, если существует такая окрестность U(a), что f(x) > 0 для любых $x \in U(a)$, лежащих левее точки a, и f(x) < 0 для любых $x \in U(a)$, лежащих правее точки a. Аналогично, говорят, что функция f меняет знак c минуса на плюс в точке a, если существует такая окрестность U(a), что f(x) < 0 для любых $x \in U(a)$, лежащих левее точки a, и f(x) > 0 для любых $x \in U(a)$, лежащих правее точки a.

Приведем известные из курса математического анализа достаточные условия экстремума функции одной переменной.

Теорема 2.3 (достаточное условие экстремума первого порядка). Пусть функция f непрерывна в точке a и дифференцируема в проколотой окрестности точки a. Тогда если при переходе через точку a производная меняет знак c плюса на минуc, то a — точка строгого локального максимума, a если при переходе через точку a производная меняет знак c минуca на плюc, то a — точка строгого локального минимума.

Теорема 2.4 (достаточное условие экстремума второго порядка). Пусть функция f дважды дифференцируема в точке a u f'(a) = 0. Тогда

- 1) если f''(a) > 0, то a mочка локального минимума,
- (a) < 0, mo a moчка локального максимума.

Теорема 2.5 (достаточное условие экстремума n-го порядка). Пусть функция f дифференцируема в точке a вплоть до порядка n, причем $f'(a) = \ldots = f^{(n-1)}(a) = 0$ и $f^{(n)}(a) \neq 0$. Тогда

- 1) если n четное число и $f^{(n)}(a) > 0$, то a точка строгого локального минимума,
- 2) если n четное число и $f^{(n)}(a) < 0$, то a точка строгого локального максимума,
 - 3) если n нечетное число, то в точке а нет экстремума.

Упражнение. Выведите теоремы 2.4 и 2.5 из формулы Тейлора

$$f(x) = f(a) + \sum_{i=1}^{n} \frac{1}{i!} f^{(i)}(a)(x-a)^{i} + \alpha(x)(x-a)^{n},$$

где $\alpha(x)$ — бесконечно малая при $x \to a$ функция.

Рассмотрим несколько примеров, иллюстрирующих эти теоремы.

Пример 2.6. Исследовать на экстремум функцию

$$f(x) = 2x^3 - 9x^2 + 12x + 6.$$

Peшение. Вычислим производную этой функции и найдем стационарные точки, в которых она обращается в нуль:

$$f'(x) = 6x^2 - 18x + 12 = 0.$$

Решая это уравнение, находим корни $x_1 = 1$ и $x_2 = 2$. Они являются подозрительными на экстремум в данной задаче. При этом знаки производной нашей функции распределены следующим образом:

Согласно теореме 2.3, полученные точки являются точками локального экстремума, а именно: $x_1 = 1$ — точка локального максимума, причем $f(x_1) = 11$, а $x_2 = 2$ — точка локального минимума, причем $f(x_2) = 10$.

Глобальных экстремумов в этой задаче нет. Это видно из того, что

$$\lim_{x \to +\infty} f(x) = +\infty, \qquad \lim_{x \to -\infty} f(x) = -\infty.$$

Итак, локальный максимум достигается в точке x=1 и равен 11, локальный минимум достигается в точке x=2, и равен 10.

Пример 2.7. Исследовать на экстремум функцию $f(x) = e^x + e^{-x}$.

Решение. Найдем производную $f'(x) = e^x - e^{-x}$. Чтобы найти критические точки функции f(x), приравняем эту производную к нулю:

$$f'(x) = e^x - e^{-x} = 0.$$

Очевидно, что точка x=0 является решением последнего уравнения. Функция f'(x) строго возрастает (поскольку $f''(x)=e^x+e^{-x}>0$). Поэтому она отрицательна при x<0 и положительна при x>0.

Следовательно, точка x=0 является точкой строгого локального минимума функции f(x), и f(0)=2 — соответствующее минимальное значение.

В данной ситуации можно также применить теорему 2.4. Поскольку f''(0)=2>0, функция f(x) имеет строгий локальный минимум в точке x=0.

Кроме того, из следствия 2.2 вытекает, что этот минимум глобальный, потому что $\lim_{x\to\infty} f(x) = +\infty$.

Omsem: точка x=0 является точкой глобального минимума для исследуемой функции и $f_{\min}=f(0)=2$.

Пример 2.8. Исследовать на экстремум функцию

$$f(x) = e^x + e^{-x} + 2\cos x.$$

Peweнue. Как обычно, начнем с нахождения производной исследуемой функции и точек, подозрительных на экстремум:

$$f'(x) = e^x - e^{-x} - 2\sin x = 0.$$

Легко видеть, что точка x = 0 является критической.

Найдем вторую производную:

$$f''(x) = e^x + e^{-x} - 2\cos x.$$

Очевидно, f''(0) = 0. Воспользуемся теоремой 2.5 и будем дифференцировать функцию до того момента, пока не появится отличная от нуля производная:

$$f'''(x) = e^x - e^{-x} + 2\sin x, \qquad f'''(0) = 0,$$
$$f^{(4)}(x) = e^x + e^{-x} + 2\cos x, \qquad f^{(4)}(0) = 4 > 0.$$

Значит, x = 0 — точка локального минимума функции f(x).

Из предыдущего примера следует, что $e^x + e^{-x} > 2$ при $x \neq 0$. В то же время $|2\cos x| \leq 2$. Поэтому f''(x) > 0 при $x \neq 0$. Отсюда следует, что производная f'(x) обращается в нуль в единственной точке x = 0.

Так как $\lim_{x\to\infty} f(x) = +\infty$, в силу следствия 2.2 минимум в точке x=0 является глобальным.

Omsem: есть один глобальный минимум f(0) = 4.

§ 3. Экстремумы функций нескольких переменных

Рассмотрим теперь случай, когда функция f действует из \mathbb{R}^n в \mathbb{R} . Напомним определения дифференцируемости в этой ситуации.

Определение. Функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке x, если существует такой линейный функционал $f'(x): \mathbb{R}^n \to \mathbb{R}$, что

$$f(x + \Delta x) - f(x) = f'(x)\Delta x + \alpha(\Delta x)|\Delta x|,$$

где Δx — произвольный вектор из \mathbb{R}^n , $|\Delta x|$ — его евклидова длина, а $\alpha(\Delta x)$ — бесконечно малая при $\Delta x \to 0$ функция.

Линейный функционал f'(x) называется производной функции f в точке x, вектор Δx — приращением аргумента, а значение $f'(x)\Delta x$ — $\partial u \phi \phi$ еренциалом функции в точке x. После того, как определена производная, приращение аргумента Δx начинают обозначать как dx, а для дифференциала используют обозначение df(x) = f'(x)dx.

Если функция f дифференцируема в точке x, то ее дифференциал вычисляется по формуле

$$df(x) = f'(x)dx = \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_i} dx_i.$$

Определение. Производной от функции $f: \mathbb{R}^n \to \mathbb{R}$ по вектору $h \in \mathbb{R}^n$ в точке $x \in \mathbb{R}^n$ называется выражение

$$\frac{df(x)}{dh} = \lim_{t \to 0} \frac{f(x+th) - f(x)}{t}$$

(при условии, что этот предел существует и конечен).

Из этого определения следует, что частная производная $\partial f(x)/\partial x_i$ совпадает с производной от функции f(x) по i-му базисному вектору $e_i = (0, \dots, 1, \dots, 0)$, у которого i-ая координата равна единице, а все остальные — нулю.

Если существует производная f'(x), то имеет место равенство

$$\frac{df(x)}{dh} = f'(x)h = \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_i} h_i.$$

Как и в одномерной ситуации, для поиска экстремума функций нескольких переменных используется следующая

Лемма 3.1 (Ферма). Пусть a-mочка локального экстремума функции $f: \mathbb{R}^n \to \mathbb{R}$. Если в этой точке существует производная по вектору h, то она равна нулю.

Из этой леммы сразу же получаем

Следствие 3.2. Пусть a-mочка локального экстремума функции f. Если в этой точке существует частная производная по переменной x_i , то она равна нулю.

Следствие 3.3. Пусть a — точка локального экстремума функции f. Если существует производная f'(a), то она равна нулю.

Точки a, в которых производная функции f обращается в нуль, называются $\kappa pumuчec\kappa umu$ или cmauuonaphumu. Вышеприведенные результаты показывают, что такие точки являются подозрительными на экстремум.

Подобно одномерной ситуации, для анализа критических точек на экстремум может применяться вторая производная. Напомним в связи с этим необходимые определения и результаты.

Определение. Функция $f: \mathbb{R}^n \to \mathbb{R}$ дважды дифференцируема в точке x, если она дифференцируема в некоторой окрестности x, и все ее частные производные (первого порядка) дифференцируемы в этой точке. Вообще, функция k раз дифференцируема в точке x, если она k-1 раз дифференцируема в окрестности x, и все ее частные производные порядка k-1 дифференцируемы в этой точке.

Второй производной дважды дифференцируемой функции называется квадратичная форма

$$f''(x)\Delta x^2 = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \Delta x_i \Delta x_j$$

от переменной $\Delta x = (\Delta x_1, \ldots, \Delta x_n)$. При использовании обозначения $dx = \Delta x$ она же называется дифференциалом второго порядка:

$$d^{2}f(x) = f''(x)dx^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}f(x)}{\partial x_{i}\partial x_{j}} dx_{i}dx_{j}.$$

Совершенно аналогично определяют производные и дифференциалы высших порядков:

$$f^{(k)}(x)\Delta x^k = \sum_{i_1=1}^n \dots \sum_{i_k=1}^n \frac{\partial^k f(x)}{\partial x_{i_1} \dots \partial x_{i_k}} \Delta x_{i_1} \dots \Delta x_{i_k},$$
$$d^k f(x) = \sum_{i_1=1}^n \dots \sum_{i_k=1}^n \frac{\partial^k f(x)}{\partial x_{i_1} \dots \partial x_{i_k}} dx_{i_1} \dots dx_{i_k}.$$

В курсе математического анализа доказывается, что если у некоторой функции f в окрестности точки x существуют все частные производные вплоть до порядка k, и все они непрерывны в точке x, то эта функция k раз дифференцируема в точке x.

Квадратичная форма

$$Q(\Delta x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \Delta x_i \Delta x_j, \quad \text{где } a_{ij} = a_{ji},$$

называется положительно определенной (обозначение Q>0), если $Q(\Delta x)>0$ для всех $\Delta x\neq 0$. Она же называется неотрицательно определенной $(Q\geqslant 0)$, если $Q(\Delta x)\geqslant 0$ для всех Δx . Аналогично определяются отрицательные и неположительные квадратичные формы. Если же квадратичная форма принимает значения разных знаков, то она называется знакопеременной.

Для определения знака квадратичной формы можно использовать критерий Сильвестра.

Теорема 3.4 (критерий Сильвестра). 1) Квадратичная форма Q положительно определена тогда и только тогда, когда все главные миноры ее матрицы (a_{ij}) положительны:

$$\Delta_k > 0, \qquad k = 1, \dots, n.$$

2) Квадратичная форма отрицательно определена тогда и только тогда, когда главные миноры ее матрицы (a_{ij}) чередуют знак:

$$(-1)^k \Delta_k > 0, \qquad k = 1, \dots, n.$$

Теорема 3.5 (необходимое условие экстремума второго порядка). Пусть функция f дважды дифференцируема в точке a, которая является стационарной для f (то есть f'(a) = 0). Если в этой ситуации

a-mочка локального минимума, то $f''(a) \geqslant 0$, а если a-mочка локального максимума, то $f''(a) \leqslant 0$. Если жее f''(a)- знакопеременная квадратичная форма, то а не является точкой экстремума.

Теорема 3.6 (достаточное условие экстремума второго порядка). Пусть функция f дважды дифференцируема в точке a, которая является стационарной для f. Если f''(a) > 0, то a -точка локального минимума, a если f''(a) < 0, то a -точка локального максимума.

Упражнение. Выведите теоремы 3.5 и 3.6 из формулы Тейлора

$$f(x + \Delta x) = f(x) + \sum_{i=1}^{k} \frac{1}{i!} f^{(i)}(x) \Delta x^{i} + \alpha(\Delta x) |\Delta x|^{k},$$

где $\alpha(\Delta x)$ — бесконечно малая при $\Delta x \to 0$ функция.

Пример 3.7. Исследовать на экстремум функцию

$$f(x, y, z) = 6x - 4y - 2z - x^2 - y^2 - z^2.$$

Решение. Подозрительные на экстремум точки найдем с помощью леммы Ферма. Так как

$$\frac{\partial f}{\partial x} = 6 - 2x, \qquad \frac{\partial f}{\partial y} = -4 - 2y, \qquad \frac{\partial f}{\partial z} = -2 - 2z,$$

то единственная подозрительная на экстремум точка (в которой все частные производные обращаются в нуль) — это точка a = (3, -2, -1).

Определим, есть ли в этой точке экстремум. Для этого найдем все частные производные второго порядка

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial z^2} = -2, \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial y \partial z} = 0,$$

и составим из них матрицу полной второй производной f''(a):

$$f''(a) = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

Главные миноры этой матрицы чередуют знаки:

$$\Delta_1 = -2, \qquad \Delta_2 = 4, \qquad \Delta_3 = -8.$$

По теореме 3.6 в точке a локальный максимум.

Omsem: локальный максимум достигается в точке a=(3,-2,-1) и равен 14.

Пример 3.8. Найти экстремумы функции $f(x,y) = x^2 + y^3$.

Peшение. Подозрительные на экстремум точки найдем с помощью леммы Ферма. Так как

$$\frac{\partial f}{\partial x} = 2x, \qquad \frac{\partial f}{\partial y} = 3y^2,$$

то единственной стационарной точкой будет точка a = (0,0).

Посмотрим, есть ли в ней экстремум. Для этого вычислим частные производные второго порядка

$$\frac{\partial^2 f}{\partial x^2} = 2,$$
 $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 0,$ $\frac{\partial^2 f}{\partial y^2} = 6y,$

и составим из них матрицу второй производной в точке a:

$$f''(a) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}.$$

Очевидно, ее определитель равен нулю. Значит, достаточные условия экстремума из теоремы 3.6 в данном случае не применимы.

Придется использовать определение экстремума. Рассмотрим разность $f(0,y) - f(0,0) = y^3$. Она больше нуля при всех y > 0 и меньше нуля при y < 0. Поэтому в точке a = (0,0) нет экстремума.

Omeem: у функции f нет экстремумов.

Пример 3.9. Найти экстремумы функции $f(x,y) = x^2 + y^4$.

Решение. Очевидно,

$$\frac{\partial f}{\partial x} = 2x, \qquad \frac{\partial f}{\partial y} = 4y^3,$$

и единственная стационарная точка — это a = (0,0).

Далее вычисляем частные производные второго порядка

$$\frac{\partial^2 f}{\partial x^2} = 2,$$
 $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 0,$ $\frac{\partial^2 f}{\partial y^2} = 12y^2,$

и выписываем матрицу второй производной в точке a:

$$f''(a) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}.$$

Ее определитель равен нулю. Достаточные условия экстремума опять не работают. С другой стороны, $f(x,y) \ge f(0,0) = 0$. Поэтому в точке (0,0) глобальный минимум.

Ответ: есть один глобальный минимум f(0,0) = 0.

Задания. Найдите экстремумы следующих функций.

3.1.
$$f(x,y) = (1-x)^2 + 10(y-x^2)^2$$
.

3.2.
$$f(x,y,z) = -x^2 - y^2 - z^2 - x + xy + 2z$$
.

3.3.
$$f(x, y, z) = x^3 + 2y^2 + z^2 + yz - 3x + 6y + 2$$
.

3.4.
$$f(x, y, z) = -x^2 + 2xy - y^2 - 4z^2$$
.

3.5.
$$f(x, y, z) = 4x^2 + 3y^2 - 4xy + x$$
.

§ 4. Метод Лагранжа для задач с ограничениями типа равенств

Рассмотрим следующую задачу на условный экстремум:

$$\begin{cases} \varphi_0(x) \to \text{extr,} \\ \varphi_i(x) = 0, \quad i = 1, \dots, m. \end{cases}$$
 (1)

Ее область определения (допустимое множество) Ω имеет вид

$$\Omega = \{ x \in \mathbb{R}^n \mid \varphi_i(x) = 0, \quad i = 1, \dots, m \}.$$

Напомним, что функция $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ называется непрерывно дифференцируемой (обозначение $\varphi \in C^1(\mathbb{R}^n)$), если все ее частные производные первого порядка являются непрерывными функциями.

Будем считать, что все функции φ_i , $i=0,1,\ldots,m$, непрерывно дифференцируемы. Тогда задача (1) называется гладкой конечномерной задачей с ограничениями типа равенств.

При решении таких задач используется метод Лагранжа. Чтобы привести его формулировку, вначале определим функцию Лагранжа.

Функцией Лагранжа для задачи (1) называется функция

$$L(x,\lambda) = \sum_{i=0}^{m} \lambda_i \varphi_i(x), \qquad \lambda = (\lambda_0, \lambda_1, \dots, \lambda_m) \in \mathbb{R}^{m+1},$$

от пары переменных x, λ . При этом координаты вектора λ называют множителями Лагранжа.

Сформулируем необходимое условие экстремума в задаче (1).

Теорема 4.1 (принцип Лагранжа). Если $a \in \Omega$ является точкой условного экстремума в задаче (1), то существует такой ненулевой вектор $\lambda \in \mathbb{R}^{m+1}$, что

$$L_x'(a,\lambda) = 0, (2)$$

где через $L_x'(a,\lambda)$ обозначена производная от функции Лагранжа по переменной x.

Уравнение (2) называется уравнением Лагранжа.

Метод множителей Лагранжа для задач с ограничениями типа равенств

Основываясь на теореме 4.1, при решении задачи (1) поступаем следующим образом.

1) Составляем функцию Лагранжа:

$$L(x,\lambda) = \sum_{i=0}^{m} \lambda_i \varphi_i(x).$$

2) Выписываем необходимое условие экстремума:

$$\begin{cases} \frac{\partial L}{\partial x_j} = \sum_{i=0}^m \lambda_i \frac{\partial \varphi_i(x)}{\partial x_j} = 0, & j = 1, \dots, n, \\ \varphi_i(x) = 0, & i = 1, \dots, m. \end{cases}$$
(3)

3) Решаем полученную систему. Если точка a является решением задачи (1), то в силу теоремы 4.1 существует такой вектор $\lambda \neq 0$, что пара (a,λ) удовлетворяет системе (3). Поэтому экстремальные точки задачи (1) находятся среди решений системы (3), у которых $\lambda \neq 0$.

Система (3) состоит из n+m уравнений относительно n+m+1 независимых переменных. При этом она однородна по λ : если пара (a,λ) является ее решением, то и любая пара вида $(a,t\lambda)$, где $t\in\mathbb{R}$, тоже будет решением.

Все решения системы (3) естественно разбиваются на две группы: те, у которых $\lambda_0 = 0$, и те, у которых $\lambda_0 \neq 0$. Решения из первой группы называются нерегулярными, а решения из второй группы — регулярными. Для регулярных решений λ_0 можно положить равным произвольной (отличной от нуля) константе.

4) Проверяем, являются ли найденные точки экстремальными для задачи (1).

Для проверки из пункта 4) можно использовать теорему Вейерштрасса и следствия из нее. Если все функции φ_i в задаче (1) дважды непрерывно дифференцируемы, то можно также использовать следующее достаточное условие экстремума.

Теорема 4.2 (достаточное условие экстремума). Пусть $a \in \Omega$ и существует такой вектор λ , что $\lambda_0 \geqslant 0$ и $L_x'(a,\lambda) = 0$. Если для любого вектора $dx \neq 0$, удовлетворяющего условиям $\varphi_i'(a)dx = 0$, $i = 1, \ldots, m$, выполняется неравенство

$$L_{xx}''(a,\lambda)dx^2 > 0,$$

то в точке а достигается строгий локальный минимум функции $\varphi_0(x)$ на множестве Ω . Если же имеет место неравенство

$$L_{mm}^{\prime\prime}(a,\lambda)dx^2 < 0$$
,

то в точке а достигается строгий локальный максимум.

Рассмотрим несколько примеров.

Пример 4.3. Найти экстремумы функции F(x,y) = 4x + 3y на множестве, заданном уравнением $x^2 + y^2 = 1$.

Решение. Запишем задачу в стандартном виде

$$\begin{cases} 4x + 3y \to \text{extr,} \\ x^2 + y^2 - 1 = 0. \end{cases}$$

Составим для нее функцию Лагранжа

$$L(x, y, \lambda) = \lambda_0(4x + 3y) + \lambda_1(x^2 + y^2 - 1)$$

и вычислим частные производные

$$\frac{\partial L}{\partial x}(x, y, \lambda) = 4\lambda_0 + 2\lambda_1 x, \qquad \frac{\partial L}{\partial y}(x, y, \lambda) = 3\lambda_0 + 2\lambda_1 y.$$

После этого нужно решать систему

$$\begin{cases} 4\lambda_0 + 2\lambda_1 x = 0, \\ 3\lambda_0 + 2\lambda_1 y = 0, \\ x^2 + y^2 - 1 = 0. \end{cases}$$

Рассмотрим два случая.

а) Пусть $\lambda_0=0$. Тогда система принимает вид

$$\begin{cases} 2\lambda_1 x = 0, \\ 2\lambda_1 y = 0, \\ x^2 + y^2 = 1. \end{cases}$$

Она разрешима лишь при $\lambda_1 = 0$. Следовательно, $\lambda = (0,0)$, и в этом случае подозрительных на экстремум точек нет.

б) Пусть $\lambda_0 \neq 0$. Тогда можно положить $\lambda_0 = 1$:

$$\begin{cases} 4 + 2\lambda_1 x = 0, \\ 3 + 2\lambda_1 y = 0, \\ x^2 + y^2 = 1. \end{cases}$$

Из последней системы вытекает, что

$$x = -\frac{2}{\lambda_1}, \qquad y = -\frac{3}{2\lambda_1}, \qquad \frac{4}{\lambda_1^2} + \frac{9}{4\lambda_1^2} = \frac{25}{4\lambda_1^2} = 1.$$

Значит, $\lambda_1 = \pm 5/2$, и мы получаем две подозрительные на экстремум точки

$$(x,y) = \left(\frac{4}{5}; \frac{3}{5}\right), \qquad (x,y) = \left(-\frac{4}{5}; -\frac{3}{5}\right).$$

По условию задачи экстремумы целевой функции требуется найти на множестве, задаваемом уравнением $x^2+y^2=1$, то есть на окружности. Поскольку окружность компактна, а целевая функция непрерывна, то по теореме Вейерштрасса она достигает своих максимума и минимума на этой окружности.

Для определения точек максимума и минимума найдем значения целевой функции F в подозрительных на экстремум точках:

$$F\left(\frac{4}{5}; \frac{3}{5}\right) = 5, \qquad F\left(-\frac{4}{5}; -\frac{3}{5}\right) = -5.$$

Так как других подозрительных точек нет, то глобальный максимум достигается в точке (x,y) = (4/5;3/5) и равен он 5, а глобальный минимум достигается в точке (x,y) = (-4/5;-3/5) и равен он -5.

Ответ: один глобальный максимум F(4/5; 3/5) = 5 и глобальный минимум F(-4/5; -3/5) = -5. Других локальных экстремумов нет.

Пример 4.4. Найти экстремум функции $F(x,y) = e^{xy}$ на прямой x+y=1.

Решение. Запишем задачу в стандартном виде

$$\begin{cases} e^{xy} \to \text{extr,} \\ x + y - 1 = 0. \end{cases}$$

Составим функцию Лагранжа

$$L(x, y, \lambda) = \lambda_0 e^{xy} + \lambda_1 (x + y - 1),$$

найдем ее частные производные

$$\frac{\partial L}{\partial x}(x, y, \lambda) = \lambda_0 e^{xy} y + \lambda_1, \qquad \frac{\partial L}{\partial y}(x, y, \lambda) = \lambda_0 e^{xy} x + \lambda_1,$$

и образуем с их помощью систему

$$\begin{cases} \lambda_0 e^{xy} y + \lambda_1 = 0, \\ \lambda_0 e^{xy} x + \lambda_1 = 0, \\ x + y = 1. \end{cases}$$

Далее рассмотрим два случая.

а) Пусть $\lambda_0=0$. Тогда система принимает вид

$$\begin{cases} \lambda_1 = 0, \\ \lambda_1 = 0, \\ x + y = 1. \end{cases}$$

Получается, что $\lambda_0=\lambda_1=0,$ и экстремальных точек нет.

б) Пусть $\lambda_0 \neq 0$. Положим тогда $\lambda_0 = 1$:

$$\begin{cases} e^{xy}y + \lambda_1 = 0, \\ e^{xy}x + \lambda_1 = 0, \\ x + y = 1. \end{cases}$$

Из первых двух уравнений следует, что x = y, а из третьего — что x = y = 1/2. Итак, мы получили единственную подозрительную на экстремум точку (x, y) = (1/2; 1/2).

Так как прямая x + y = 1 не компактна, теорема Вейерштрасса в этой задаче не применима. Попробуем определить тип экстремума в найденной точке с помощью достаточного условия (теоремы 4.2).

Оно утверждает, что тип экстремума определяется знаком второго дифференциала функции Лагранжа

$$L(x, y, \lambda) = e^{xy} + \lambda_1(x + y - 1)$$

по отношению к переменным x, y на множестве векторов $(dx, dy) \neq 0$, удовлетворяющих условию

$$d(x+y-1) = dx + dy = 0.$$

Найдем второй дифференциал от функции Лагранжа:

$$\frac{\partial^2 L}{\partial x^2} = e^{xy}y^2, \qquad \frac{\partial^2 L}{\partial y^2} = e^{xy}x^2, \qquad \frac{\partial^2 L}{\partial x \partial y} = e^{xy}(xy+1);$$

$$d^{2}L(1/2, 1/2, \lambda) = \frac{1}{4}e^{1/4}dx^{2} + 2\frac{5}{4}e^{1/4}dxdy + \frac{1}{4}e^{1/4}dy^{2}.$$

При условии dx + dy = 0 получаем, что dy = -dx и

$$d^{2}L(1/2, 1/2, \lambda) = -2e^{1/4}dx^{2} < 0.$$

Значит, в точке (1/2, 1/2) строгий локальный максимум.

Выясним, будет ли он глобальным. Очевидно, на прямой x+y=1 выполняется соотношение y=1-x. Поэтому

$$F(x,y) = F(x,1-x) = e^{x(1-x)} \to 0$$
 при $x \to \pm \infty$.

В силу этих соотношений на прямой x + y = 1 можно выбрать такой большой отрезок [A, B], что вне него функция F будет строго меньше,

чем F(1/2, 1/2), а на самом отрезке [A, B] у нее будет единственная точка максимума (1/2, 1/2). Значит, этот максимум глобальный.

Ответ: единственный глобальный максимум достигается в точке (x,y)=(1/2,1/2) и равен $e^{1/4}$, а других экстремумов нет.

Задания. Найдите все экстремумы функции f на множестве Ω в следующих случаях.

4.1.
$$f(x,y) = x^2 + y^2$$
, $\Omega: 3x + 4y = 1$.

4.2.
$$f(x,y) = 5x^2 + 4xy + y^2$$
, $\Omega: x + y = 1$.

4.3.
$$f(x,y) = 3x^2 + 4xy + y^2$$
, $\Omega: x + y = 1$.

4.4.
$$f(x, y, z) = xy^2z^3$$
, $\Omega: x + y + z = 1$.

4.5.
$$f(x, y, z) = xyz$$
, $\Omega: x + y + z = 0$, $x^2 + y^2 + z^2 = 1$.

§ 5. Метод Лагранжа для задач с ограничениями типа равенств и неравенств

Пусть функции $\varphi_i: \mathbb{R}^n \to \mathbb{R}$, где i = 0, 1, ..., m + k, непрерывно дифференцируемы. Гладкой конечномерной задачей с ограничениями типа равенств и неравенств называется следующая задача на условный экстремум:

$$\begin{cases} \varphi_0(x) \to \text{extr,} \\ \varphi_i(x) = 0, & i = 1, \dots, m, \\ \varphi_i(x) \leqslant 0, & i = m + 1, \dots, m + k. \end{cases}$$
 (4)

Ее область определения (допустимое множество) имеет вид

$$\Omega = \left\{ x \in \mathbb{R}^n \mid \varphi_i(x) = 0, \ i = \overline{1, m}; \quad \varphi_i(x) \leqslant 0, \ i = \overline{m+1, m+k} \right\}.$$

Метод решения таких задач, как и задач с ограничениями типа равенств, основан на принципе Лагранжа. В данном случае функция Лагранжа имеет вид

$$L(x,\lambda) = \sum_{i=0}^{m+k} \lambda_i \varphi_i(x), \qquad \lambda = (\lambda_0, \dots, \lambda_{m+k}) \in \mathbb{R}^{n+m+1}.$$

Теорема 5.1 (принцип Лагранжа). Если в точке $a \in \Omega$ достигается локальный минимум в задаче (4), то найдется такой ненулевой вектор $\lambda \in \mathbb{R}^{m+k+1}$, для которого выполняются три условия:

- a) $L'_x(a,\lambda) = 0;$
- 6) $\lambda_{m+j}\varphi_{m+j}(a) = 0$ npu $j = 1, \ldots, k;$
- B) $\lambda_0 \geqslant 0$ If $\lambda_{m+j} \geqslant 0$ npu $j = 1, \ldots, k$.

B точке локального максимума условия a) u b) остаются b силе, а условие b заменяется на

в')
$$\lambda_0 \ge 0$$
 и $\lambda_{m+j} \le 0$ при $j = 1, ..., k$.

Условия а), б) и в) из этой теоремы принято называть соответственно условиями стационарности, дополняющей нежесткости и согласования знаков.

МЕТОД МНОЖИТЕЛЕЙ ЛАГРАНЖА ДЛЯ ЗАДАЧ С ОГРАНИЧЕНИЯМИ ТИПА РАВЕНСТВ И НЕРАВЕНСТВ

Основываясь на теореме 5.1, при решении задачи (4) поступаем следующим образом.

1) Составляем функцию Лагранжа:

$$L(x,\lambda) = \sum_{i=0}^{m+k} \lambda_i \varphi_i(x).$$

2) Выписываем необходимое условие экстремума:

$$\begin{cases}
\frac{\partial L}{\partial x_j} = \sum_{i=0}^{m+k} \lambda_i \frac{\partial \varphi_i(x)}{\partial x_j} = 0, & j = 1, \dots, n, \\
\varphi_i(x) = 0, & i = 1, \dots, m, \\
\lambda_{m+j} \varphi_{m+j}(x) = 0, & j = 1, \dots, k.
\end{cases}$$
(5)

3) Решаем полученную систему. При этом бывает удобно отдельно рассмотреть два случая: $\lambda_0 = 0$ и $\lambda_0 \neq 0$. Во втором случае λ_0 можно положить равным единице или произвольной положительной константе (положительность нужна для условия согласования знаков). Если

точка a является решением задачи (4), то в силу теоремы 5.1 существует такой вектор $\lambda \neq 0$, что пара (a,λ) удовлетворяет системе (5). Значит, все экстремальные точки задачи (4) находятся среди решений системы (5), у которых $\lambda \neq 0$.

4) Проверяем, лежат ли найденные точки в области Ω и являются ли они экстремальными для задачи (4).

Для проверки экстремальности в пункте 4) можно использовать теорему Вейерштрасса и следствия из нее. Если все функции φ_i в задаче (4) дважды непрерывно дифференцируемы, то можно также использовать следующее достаточное условие экстремума.

Теорема 5.2 (достаточное условие минимума). *Пусть для точки* $a \in \Omega$ существует такой вектор параметров λ , что

- a) $L'_x(a,\lambda) = 0;$
- 6) $\lambda_{m+j}\varphi_{m+j}(a) = 0$ npu $j = 1, \ldots, k;$
- B) $\lambda_0 \geqslant 0$ If $\lambda_{m+j} \geqslant 0$ npu $j = 1, \ldots, k$.

Если для любого вектора $dx \neq 0$, удовлетворяющего условиям

$$\varphi_i'(a)dx = 0, \qquad i = 1, \dots, m,$$

$$\lambda_{m+j}\varphi_{m+j}'(a)dx = 0, \qquad j = 1, \dots, k,$$
(6)

выполняется неравенство $L''_{xx}(a,\lambda)dx^2 > 0$, то a-mочка строгого локального условного минимума в задаче (4).

Замечание 5.3. Достаточное условие для максимума получается, если в теореме 5.2 условия $\lambda_{m+j} \geqslant 0, \ j=1,\ldots,k$ и $L''_{xx}(a,\lambda)dx^2>0$ заменить соответственно на $\lambda_{m+j}\leqslant 0, \ j=1,\ldots,k$ и $L''_{xx}(a,\lambda)dx^2<0.$

Замечание 5.4. Специально подчеркнем, что если не существует вектора $dx \neq 0$, удовлетворяющего всем условиям (6), то неравенство $L''_{xx}(a,\lambda)dx^2 > 0$ (так же как и $L''_{xx}(a,\lambda)dx^2 > 0$) считается автоматически выполненным (потому что по правилам формальной логики про несуществующий объект можно утверждать что угодно).

Наконец, доказать *отсутствие* экстремума в стационарной точке можно с помощью следующей теоремы.

Теорема 5.5. Пусть точка $a \in \Omega$ удовлетворяет принципу Лагранжа (то есть всем условиям теоремы 5.1), и

$$I = \{ i \in \overline{1, m+k} \mid \varphi_i(a) = 0 \}.$$

Если производные $\varphi_i'(a)$, $i \in I$, линейно независимы, и существует такой вектор dx, для которого

$$\varphi_i'(a)dx = 0, \quad i \in I, \quad \text{if} \quad L_{xx}''(a,\lambda)dx^2 < 0 \ (>0),$$

то в точке а нет локального минимума (максимума).

Рассмотрим несколько примеров на применение вышеизложенного метода.

Пример 5.6. Найти экстремумы функции f(x,y,z) = xyz на множестве $x^2 + y^2 + z^2 \leqslant 1$.

Решение. Составим функцию Лагранжа и вычислим ее частные производные:

$$L(x, y, z, \lambda) = \lambda_0 xyz + \lambda_1 (x^2 + y^2 + z^2 - 1),$$

$$\frac{\partial L}{\partial x}(x, y, z, \lambda) = \lambda_0 yz + 2\lambda_1 x,$$

$$\frac{\partial L}{\partial y}(x, y, z, \lambda) = \lambda_0 xz + 2\lambda_1 y,$$

$$\frac{\partial L}{\partial z}(x, y, z, \lambda) = \lambda_0 xy + 2\lambda_1 z.$$

Затем выпишем необходимое условие (5):

$$\begin{cases} \lambda_0 yz + 2\lambda_1 x = 0, \\ \lambda_0 xz + 2\lambda_1 y = 0, \\ \lambda_0 xy + 2\lambda_1 z = 0, \\ \lambda_1 (x^2 + y^2 + z^2 - 1) = 0. \end{cases}$$

Для решения этой системы рассмотрим 2 случая.

а) Пусть $\lambda_0 = 0$. Тогда система принимает вид

$$\begin{cases} 2\lambda_1 x = 0, \\ 2\lambda_1 y = 0, \\ 2\lambda_1 z = 0, \\ \lambda_1 (x^2 + y^2 + z^2 - 1) = 0. \end{cases}$$

Очевидно, при $\lambda_1 \neq 0$ она несовместна. А при $\lambda_1 = 0$ весь вектор λ становится нулевым, и подозрительных точек в этом случае нет.

б) Рассмотрим случай $\lambda_0 \neq 0$. Тогда удобно положить $\lambda_0 = 2$. В результате получится система

$$\begin{cases} yz + \lambda_1 x = 0, \\ xz + \lambda_1 y = 0, \\ xy + \lambda_1 z = 0, \\ \lambda_1 (x^2 + y^2 + z^2 - 1) = 0. \end{cases}$$

Из последнего уравнения системы следует, что либо $\lambda_1=0$, либо $x^2+y^2+z^2=1$. В первом случае из первых трех уравнений следует, что yz=xz=xy=0. Поэтому решениями будут все точки вида

$$(a,0,0), (0,b,0), (0,0,c).$$
 (7)

В область Ω попадают те из них, для которых $|a|,|b|,|c| \leq 1$.

Чтобы решить систему во втором случае, домножим первое уравнение на x, второе на y, а третье на z. Получится, что

$$2\lambda_1 x^2 = 2\lambda_1 y^2 = 2\lambda_1 z^2 = -xyz.$$

Следовательно, $x^2=y^2=z^2$. Подставив эти равенства в уравнение $x^2+y^2+z^2=1$, получим, что $3x^2=1$ и $x=\pm 1/\sqrt{3}$. В итоге возникает восемь подозрительных на экстремум точек

$$\left(\pm\frac{1}{\sqrt{3}}, \pm\frac{1}{\sqrt{3}}, \pm\frac{1}{\sqrt{3}}\right) \tag{8}$$

(со всеми возможными комбинациями знаков).

Поскольку область $x^2+y^2+z^2\leqslant 1$ компактна (это единичный шар), то можно применить теорему Вейерштрасса. Во всех точках (8) целевая функция принимает одно из двух значений $\pm\sqrt{3}/9$, а во всех точках (7) она равна нулю. Следовательно, точки, в которых значение функции равно $\sqrt{3}/9$, будут точками глобального максимума, а точки, в которых значение функции равно $-\sqrt{3}/9$, будут точками глобального минимума.

Покажем, что точки вида (7) не экстремальные. Действительно, каждая из них лежит на какой-то из трех координатных осей и, следовательно, принадлежит границам как минимум четырех координатных октантов. На внутренностях этих октантов целевая функция xyz

принимает значения обоих знаков. Поэтому точки (7) не могут быть экстремальными.

Ответ: экстремальными будут все точки (8), причем те из них, в которых значение целевой функции равно $\sqrt{3}/9$, являются точками глобального максимума, а те, в которых значение целевой функции равно $-\sqrt{3}/9$ — точками глобального минимума.

Пример 5.7. Найти экстремумы функции $f(x_1, \dots, x_n) = \sum_{i=1}^n x_i^2$ на множестве $\sum_{i=1}^n x_i^4 \leqslant 1$, то есть решить задачу

$$\begin{cases} x_1^2 + \dots + x_n^2 \to \text{extr,} \\ x_1^4 + \dots + x_n^4 - 1 \le 0. \end{cases}$$

Решение. Составим функцию Лагранжа и вычислим ее частные производные:

$$L(x,\lambda) = \lambda_0 \left(x_1^2 + \dots + x_n^2 \right) + \lambda_1 \left(x_1^4 + \dots + x_n^4 - 1 \right);$$
$$\frac{\partial L(x,\lambda)}{\partial x_i} = 2\lambda_0 x_i + 4\lambda_1 x_i^3, \qquad i = 1, \dots, n.$$

Выпишем необходимое условие экстремума

$$\begin{cases} 2\lambda_0 x_i + 4\lambda_1 x_i^3 = 0, & i = 1, \dots, n, \\ \lambda_1 (x_1^4 + \dots + x_n^4 - 1) = 0. \end{cases}$$

а) Рассмотрим случай $\lambda_0 = 0$:

$$\begin{cases} 4\lambda_1 x_i^3 = 0, & i = 1, \dots, n, \\ \lambda_1 (x_1^4 + \dots + x_n^4 - 1) = 0. \end{cases}$$

Очевидно, эта система разрешима лишь при $\lambda_1=0,$ и подозрительных на экстремум точек не возникает.

б) Рассмотрим теперь случай, когда $\lambda_0 = 2$:

$$\begin{cases} 4x_i + 4\lambda_1 x_i^3 = 0, & i = 1, \dots, n, \\ \lambda_1 (x_1^4 + \dots + x_n^4 - 1) = 0. \end{cases}$$

Последнее уравнение системы распадается на два уравнения: $\lambda_1=0$ и $x_1^4+\ldots+x_n^4=1.$

Если $\lambda_1 = 0$, то $x_1 = \ldots = x_n = 0$. Получаем одну подозрительную точку $(0, \ldots, 0)$. В ней целевая функция принимает нулевое значение. Так как во всех остальных точках целевая функция положительна, в найденной точке достигается глобальный минимум.

Пусть теперь $\lambda_1 \neq 0$. Тогда наша система равносильна такой:

$$\begin{cases} x_i (1 + \lambda_1 x_i^2) = 0, & i = 1, \dots, n, \\ x_1^4 + \dots + x_n^4 = 1. \end{cases}$$

Если $\lambda_1 \geqslant 0$, то из первых n уравнений системы получаем равенства $x_1=0,\ldots,\,x_n=0$, которые противоречат последнему уравнению. Если же $\lambda_1<0$, то каждое из первых n уравнений имеет три решения относительно x_i : $x_i=0$ и $x_i=\pm\sqrt{-1/\lambda_1}$.

Обозначим через I множество индексов $i \in \{1, \ldots, n\}$, для которых $x_i = \pm \sqrt{-1/\lambda_1}$, и положим k = |I|. Тогда

$$x_1^4 + \ldots + x_n^4 = \sum_{i \in I} x_i^4 + \sum_{i \notin I} x_i^4 = \sum_{i \in I} \frac{1}{\lambda_1^2} = \frac{k}{\lambda_1^2} = 1,$$

откуда вытекает, что $\lambda_1 = -\sqrt{k}$, и соответственно

$$x_i = \pm \sqrt[4]{1/k}, \quad i \in I, \qquad x_i = 0, \quad i \notin I.$$

Все точки с такими координатами подозрительны на экстремум. В каждой из них целевая функция принимает значение

$$\sum_{i=1}^{n} x_i^2 = \sum_{i \in I} x_i^2 = \frac{k}{\sqrt{k}} = \sqrt{k}.$$

Это значение максимально, когда k = n, то есть когда все координаты подозрительной на экстремум точки ненулевые. Отсюда следует, что целевая функция f достигает глобального максимума в тех точках x, у которых все координаты x_i равны $\pm \sqrt[4]{1/n}$. При этом $f_{\text{max}} = \sqrt{n}$.

Рассмотрим остальные подозрительные на экстремум точки. Так как $\lambda_1 = -\sqrt{k} < 0$, то в них по условию согласования знаков либо локальный максимум, либо нет экстремума. Проверим для этих точек условия второго порядка. Для этого вычислим частные производные

и полный дифференциал второго порядка от функции Лагранжа:

$$\frac{\partial^2 L(x,\lambda)}{\partial x_i^2} = 2\lambda_0 + 12\lambda_1 x_i^2, \qquad \frac{\partial^2 L(x,\lambda)}{\partial x_i \partial x_j} = 0, \quad i \neq j;$$

$$L_{xx}''(a,\lambda)dx^2 = \sum_{i=1}^n (4 - 12\sqrt{k}a_i^2)dx_i^2 = 4\sum_{i \notin I} dx_i^2 - 8\sum_{i \in I} dx_i^2.$$

Положим $\varphi(x) = x_1^4 + \ldots + x_n^4 - 1$ и выпишем условие $\varphi'(a)dx = 0$:

$$\varphi'(a)dx = \sum_{i=1}^{n} 4a_i^2 dx_i = 4\sum_{i \in I} a_i^3 dx_i = 0.$$

Рассмотрим вектор dx, у которого все координаты нулевые, за исключением одной координаты dx_i , отвечающей какому-то индексу $i \notin I$. Для него будут выполняться условия

$$\varphi'(a)dx = 0, \qquad L''_{xx}(a,\lambda)dx^2 > 0.$$

По теореме 5.5 отсюда следует, что в точке a нет максимума. Значит, там вообще нет экстремума.

Ответ: глобальный минимум достигается в точке x = 0 и равен 0, глобальный максимум достигается в точках, все координаты которых имеют вид $\pm \sqrt[4]{1/n}$, и равен \sqrt{n} . Других экстремумов нет.

Пример 5.8. Вписать в круг радиуса R прямоугольник максимальной площади.

Peшение. Обозначим стороны прямоугольника через x и y, а его площадь через S. Тогда задача формализуется следующим образом:

$$\begin{cases} S = xy \to \max, \\ x^2 + y^2 = 4R^2, \\ -x \leqslant 0, \\ -y \leqslant 0. \end{cases}$$

Далее можно применять стандартный метод Лагранжа. Однако его ни в коем случае не следует считать непреложной догмой! Такие простые школьные задачи в decsmku раз быстрее решаются обычными школьными методами.

Очевидно, $y = \sqrt{4R^2 - x^2}$, откуда следует, что $S = x\sqrt{4R^2 - x^2}$. Найдем производную от S по переменной x и приравняем ее к нулю:

$$\frac{dS}{dx} = \sqrt{4R^2 - x^2} - \frac{x \cdot 2x}{2\sqrt{4R^2 - x^2}} = \frac{4R^2 - 2x^2}{\sqrt{4R^2 - x^2}} = 0.$$

У последнего уравнения есть единственное неотрицательное решение $x = \sqrt{2}R$. На нем и достигается максимум.

Попробуйте теперь решить этот пример методом Лагранжа и сравните затраченное время.

Omsem: максимальную площадь имеет квадрат со стороной $\sqrt{2}R$.

Покажем теперь, как метод множителей Лагранжа применяется для доказательства неравенств в конечномерных пространствах.

Пример 5.9. Доказать, что среднее геометрическое чисел $x_i \ge 0$, $i = 1, \ldots, n$, не превосходит их среднего арифметического:

$$\sqrt[n]{x_1 x_2 \cdots x_n} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}.$$
 (9)

Решение. Вначале следует поставить такую гладкую задачу оптимизации с ограничениями типа равенств и неравенств, решение которой приведет к требуемому результату. Положим $s^n = x_1 x_2 \cdots x_n$ и рассмотрим задачу

$$\begin{cases}
 f(x_1, \dots, x_n) = x_1 + \dots + x_n \to \min, \\
 x_1 x_2 \cdots x_n - s^n = 0, \\
 -x_i \leqslant 0, \quad i = 1, \dots, n.
\end{cases}$$
(10)

Очевидно, что если хотя бы одна из координат x_i равна нулю, то неравенство (9) выполняется. Поэтому можно считать, что s > 0.

Неравенство (9) равносильно тому, что $f(x_1, ..., x_n) \ge ns$ в (10). Следовательно, нам достаточно проверить, что глобальный минимум в задаче (10) больше или равен ns.

Решим эту задачу методом множителей Лагранжа. Вначале составим функцию Лагранжа и найдем ее частные производные:

$$L(x,\lambda) = \lambda_0(x_1 + \dots + x_n) - \sum_{i=1}^n \lambda_i x_i + \lambda_{n+1}(x_1 x_2 \cdots x_n - s^n);$$

$$\frac{\partial L(x,\lambda)}{\partial x_i} = \lambda_0 - \lambda_i + \lambda_{n+1} x_1 \cdots x_{i-1} x_{i+1} \cdots x_n, \qquad i = 1, \dots, n.$$

Затем выпишем необходимое условие экстремума

$$\begin{cases} \lambda_0 - \lambda_i + \lambda_{n+1} x_1 \cdots x_{i-1} x_{i+1} \cdots x_n = 0, & i = 1, \dots, n, \\ x_1 x_2 \cdots x_n - s^n = 0, \\ \lambda_i x_i = 0, & i = 1, \dots, n. \end{cases}$$

Мы считаем, что все $x_i > 0$. Тогда из условий дополняющей нежесткости следует, что $\lambda_i = 0$ при $i = 1, \ldots, n$. Получается система

$$\begin{cases} \lambda_0 + \lambda_{n+1} x_1 \cdots x_{i-1} x_{i+1} \cdots x_n = 0, & i = 1, \dots, n, \\ x_1 x_2 \cdots x_n - s^n = 0. & \end{cases}$$

Домножим в ней каждое из первых n уравнений на соответствующую переменную x_i . Тогда она примет следующий вид:

$$\begin{cases} \lambda_0 x_i + \lambda_{n+1} s^n = 0, & i = 1, \dots, n, \\ x_1 x_2 \cdots x_n = s^n. \end{cases}$$

Предположим, что λ_0 равно нулю. Тогда λ_{n+1} тоже равно нулю, и весь вектор λ оказывается нулевым. В этом случае подозрительных на экстремум точек не возникает.

Если $\lambda_0 > 0$, то из первых n уравнений системы следует, что все x_i равны друг другу, а из последнего уравнения следует, что их общее значение есть s. В результате мы получили единственную стационарную точку $a = (s, \ldots, s)$.

Рассмотрим область определения задачи (10)

$$\Omega = \{ x = (x_1, \dots, x_n) \mid x_1 x_2 \dots x_n = s^n; \quad x_i \geqslant 0, \quad i = 1, \dots, n \}.$$

Она не компактна, но на ней выполняется условие

$$\lim_{|x| \to \infty} f(x) = +\infty.$$

По следствию из теоремы Вейерштрасса целевая функция f достигает глобального минимума на множестве Ω . Единственная точка, где он может быть — это $a=(s,\ldots,s)$. Значит, $f_{\min}=f(a)=ns$. Тем самым задача (10) решена и неравенство (9) доказано.

Пример 5.9 можно решать другим способом, а именно, искать максимум произведения $x_1x_2\cdots x_n$ при фиксированном значении суммы $x_1 + \ldots + x_n$. Этот способ даже несколько предпочтительнее, потому что область определения экстремальной задачи будет компактна.

Наконец, приведем пример, при исследовании которого приходится пользоваться всеми необходимыми и достаточными условиями первого и второго порядков.

Пример 5.10. Найти условные экстремумы в задаче

$$\begin{cases} x^3 + 8y^3 - 6xy \to \text{extr,} \\ 0 \leqslant x \leqslant 2, & |y| \leqslant 1. \end{cases}$$

Решение. Полезно сразу нарисовать область определения задачи. Практика показывает, что те, кто ленится это сделать, примерно в половине случаев выписывают в ответе лишние точки.

Запишем нашу задачу в стандартной форме

$$\begin{cases} x^3 + 8y^3 - 6xy \to \text{extr,} \\ x - 2 \le 0, & -x \le 0, \\ y - 1 \le 0, & -y - 1 \le 0. \end{cases}$$

Ей отвечает функция Лагранжа

$$L(x, y, \lambda) = \lambda_0 (x^3 + 8y^3 - 6xy) + \lambda_1 (x - 2) - \lambda_2 x + \lambda_3 (y - 1) - \lambda_4 (y + 1).$$

Вычисляем ее частные производные

$$\frac{\partial L}{\partial x}(x, y, \lambda) = 3\lambda_0 x^2 - 6\lambda_0 y + \lambda_1 - \lambda_2,$$

$$\frac{\partial L}{\partial y}(x, y, \lambda) = 24\lambda_0 y^2 - 6\lambda_0 x + \lambda_3 - \lambda_4$$

и составляем систему для нахождения подозрительных на экстремум точек (то есть выписываем условия стационарности и дополняющей нежесткости)

$$\begin{cases} 3\lambda_0 x^2 - 6\lambda_0 y + \lambda_1 - \lambda_2 = 0, \\ 24\lambda_0 y^2 - 6\lambda_0 x + \lambda_3 - \lambda_4 = 0, \\ \lambda_1 (x - 2) = 0, \quad \lambda_2 x = 0, \\ \lambda_3 (y - 1) = 0, \quad \lambda_4 (y + 1) = 0. \end{cases}$$

Рассмотрим два случая: $\lambda_0 = 0$ и $\lambda_0 \neq 0$.

В случае $\lambda_0=0$ из первых двух уравнений системы следует, что $\lambda_1=\lambda_2$ и $\lambda_3=\lambda_4.$

Если $\lambda_1=\lambda_2\neq 0$, то из условий дополняющей нежесткости следует, что x=2 и в то же время x=0. Значит, $\lambda_1=\lambda_2=0$. Если $\lambda_3=\lambda_4\neq 0$, то, аналогично, y=1 и одновременно y=-1. Значит, $\lambda_3=\lambda_4=0$. Поскольку при $\lambda_0=0$ все параметры λ_i оказались нулевыми, в этом случае подозрительных на экстремум точек нет.

Пусть $\lambda_0 \neq 0$. Не ограничивая общности, можно взять $\lambda_0 = 1/3$. Тогда система примет вид

$$\begin{cases} x^{2} - 2y + \lambda_{1} - \lambda_{2} = 0, \\ 8y^{2} - 2x + \lambda_{3} - \lambda_{4} = 0, \\ \lambda_{1}(x - 2) = 0, \quad \lambda_{2}x = 0, \\ \lambda_{3}(y - 1) = 0, \quad \lambda_{4}(y + 1) = 0. \end{cases}$$
(11)

Чтобы найти все ее решения, рассмотрим по отдельности все возможные случаи равенства или неравенства параметров λ_1 , λ_2 , λ_3 , λ_4 нулю. Всего таких случаев будет 16. Полученные результаты будем записывать в таблице, расположенной на следующей странице. Если $\lambda_i=0$, то в соответствующей клетке таблицы пишем 0, а если $\lambda_i\neq 0$, то пишем 1 (что вовсе не означает равенства $\lambda_i=1$).

Случай 1. Все λ_i равны нулю, и система (11) принимает вид

$$\begin{cases} x^2 - 2y = 0, \\ 8y^2 - 2x = 0, \end{cases} \iff \begin{cases} y = x^2/2, \\ 2x^4 - 2x = 0. \end{cases}$$

Решив ее, получаем две критические точки (0,0) и (1,1/2). Помещаем их в таблицу.

Nº	λ_1	λ_2	λ_3	λ_4	точки и знаки λ_i	тип extr
1	0	0	0	0	(0,0) $(1,1/2)$	нет extr loc min
2	0	0	0	1	Ø	
3	0	0	1	0	$(\sqrt{2},1), \lambda_3 < 0$	нет extr
4	0	0	1	1	Ø	
5	0	1	0	0	Ø	
6	0	1	0	1	$(0,-1), \lambda_2 > 0, \ \lambda_4 > 0$	glob min
7	0	1	1	0	$(0,1), \lambda_2 < 0, \ \lambda_3 < 0$	loc max
8	0	1	1	1	Ø	
9	1	0	0	0	$ (2, 1/\sqrt{2}), \lambda_1 < 0 $ $ (2, -1/\sqrt{2}), \lambda_1 < 0 $	нет extr glob max
10	1	0	0	1	$(2,-1), \lambda_1 < 0, \ \lambda_4 > 0$	нет extr
11	1	0	1	0	$(2,1), \lambda_1 < 0, \ \lambda_3 < 0$	loc max
12	1	0	1	1	Ø	
13	1	1	0	0	Ø	
14	1	1	0	1	Ø	
15	1	1	1	0	Ø	
16	1	1	1	1	Ø	

Случай 2. Из (11) получается система

$$\begin{cases} x^2 - 2y = 0, \\ 8y^2 - 2x - \lambda_4 = 0, \\ y = -1. \end{cases}$$

Из нее следует, что $x^2 = -2$. Значит, в этом случае решений нет. Случай 3. Получается система

$$\begin{cases} x^2 - 2y = 0, \\ 8y^2 - 2x + \lambda_3 = 0, \\ y = 1. \end{cases}$$

Из нее находим $x = \pm \sqrt{2}$ и $\lambda_3 = \pm 2\sqrt{2} - 8$. Получаем две критические точки $(\sqrt{2},1)$ и $(-\sqrt{2},1)$. Но вторая из них не лежит в области определения нашей задачи. В итоге остается одна подозрительная на экстремум точка $(\sqrt{2},1)$. Для нее $\lambda_3 = 2\sqrt{2} - 8 < 0$. Значит, в этой точке может быть максимум (а минимума не может быть).

Случай 4. У нас $\lambda_3 \neq 0$ и $\lambda_4 \neq 0$. Из последних двух уравнений системы (11) получаем, что y=1 и одновременно y=-1. Значит, в этом случае решений нет.

Случай 5. Из (11) получается система

$$\begin{cases} x^2 - 2y - \lambda_2 = 0, \\ 8y^2 - 2x = 0, \\ x = 0. \end{cases}$$

Из нее следует, что y=0 и $\lambda_2=0$. Но мы рассматриваем случай, в котором $\lambda_2\neq 0$. Значит, в этом случае решений нет.

Случай 6. Система (11) принимает форму

$$\begin{cases} x^2 - 2y - \lambda_2 = 0, \\ 8y^2 - 2x - \lambda_4 = 0, \\ x = 0, \quad y = -1. \end{cases}$$

Из нее получаем одну критическую точку (0,-1), для которой $\lambda_2=2$ и $\lambda_4=8$. Эта точка подозрительна на минимум.

Случай 7. Получается система

$$\begin{cases} x^2 - 2y - \lambda_2 = 0, \\ 8y^2 - 2x + \lambda_3 = 0, \\ x = 0, \quad y = 1. \end{cases}$$

Из нее находим одну критическую точку (0,1), для которой $\lambda_2 = -2$ и $\lambda_3 = -8$. Она подозрительна на максимум.

Случай 8. Как и в случае 4, здесь одновременно y=1 и y=-1. Поэтому решений нет.

Случай 9. Получается система

$$\begin{cases} x^2 - 2y + \lambda_1 = 0, \\ 8y^2 - 2x = 0, \\ x = 2. \end{cases}$$

Из нее находим $y = \pm 1/\sqrt{2}$ и $\lambda_1 = \pm \sqrt{2} - 4 < 0$. Получаем две подозрительные на максимум точки с координатами $(2, \pm 1/\sqrt{2})$.

Случай 10. Получается система

$$\begin{cases} x^2 - 2y + \lambda_1 = 0, \\ 8y^2 - 2x - \lambda_4 = 0, \\ x = 2, \quad y = -1. \end{cases}$$

Из нее находим $\lambda_1 = -6$ и $\lambda_4 = 4$. Для множителей Лагранжа λ_1 и λ_4 не выполняется условие согласования знаков. Поэтому в критической точке (2,-1) не может быть экстремума.

Случай 11. Система (11) принимает вид

$$\begin{cases} x^2 - 2y + \lambda_1 = 0, \\ 8y^2 - 2x + \lambda_3 = 0, \\ x = 2, \quad y = 1. \end{cases}$$

Из нее находим $\lambda_1 = -2$ и $\lambda_3 = -4$. Значит, в точке (2,1) может быть максимум.

В оставшихся случаях решений не будет, потому что в случае 12 получаются несовместные равенства y=1 и y=-1, а в случаях 13–16 получаются несовместные равенства x=2 и x=0.

Заметим, что область определения решаемой задачи (квадрат на плоскости) компактна, а целевая функция непрерывна. По теореме Вейерштрасса целевая функция достигает максимума и минимума на области определения задачи. А в силу принципа Лагранжа все точки экстремума исследуемой задачи находятся среди критических точек, выписанных в таблице. Поэтому для нахождения глобальных экстремумов достаточно вычислить значения целевой функции во всех найденных критических точках и выбрать из них максимум и минимум.

Выпишем эти значения:

$$f(0,0) = 0,$$
 $f(1,1/2) = -1,$ $f(\sqrt{2},1) = 8 - 4\sqrt{2},$
 $f(0,-1) = -8,$ $f(0,1) = 8,$ $f(2,1/\sqrt{2}) = 8 - 4\sqrt{2},$
 $f(2,-1/\sqrt{2}) = 8 + 4\sqrt{2},$ $f(2,1) = 4.$

Отсюда видно, что глобальный максимум равен $8+4\sqrt{2}$ и достигается в точке $(2,-1/\sqrt{2})$, а глобальный минимум равен -8 и достигается в точке (0,-1).

Исследуем остальные критические точки с помощью достаточных условий второго порядка. Вычислим вторые частные производные от функции Лагранжа:

$$L''_{xx}(x, y, \lambda) = 2x,$$
 $L''_{yy}(x, y, \lambda) = 16y,$ $L''_{xy}(x, y, \lambda) = -2$

и второй дифференциал (по отношению к переменным x, y)

$$d^2L(x, y, \lambda) = 2xdx^2 - 4dxdy + 16ydy^2.$$

Далее определяем знак d^2L в критических точках.

1. В точке (0,0) второй дифференциал $d^2L(0,0,\lambda) = -4dxdy$ будет знакопеременный. Из-за этого достаточное условие экстремума тут не работает. С другой стороны, достаточное условие отсутствия экстремума тут тоже не работает, потому что в рассматриваемой точке есть активное условие x=0, и из равенства dx=0 следует, что $d^2L=0$.

Это редкий случай, когда приходится доказывать отсутствие экстремума по определению. Заметим, что точка (0,y) лежит в области определения нашей задачи при |y| < 1. Целевая функция $f(0,y) = 8y^3$ больше нуля при y > 0 и меньше нуля при отрицательных y. Поэтому в точке (0,0) не может быть экстремума.

$$d^{2}L(1, 1/2, \lambda) = 2dx^{2} - 4dxdy + 8dy^{2} = 2(dx - dy)^{2} + 6dy^{2}$$

положительно определен. Значит, в этой точке локальный минимум.

3. В точке $(\sqrt{2},1)$ есть одно активное условие $\lambda_3(y-1)=0$, и

$$d^{2}L(\sqrt{2}, 1, \lambda) = 2\sqrt{2}dx^{2} - 4dxdy + 16dy^{2}.$$

Знак d^2L следует смотреть не на всех векторах $(dx,dy) \neq 0$, а лишь на тех, для которых дифференциал от активного условия обращается в нуль: dy=0. Очевидно, для них $d^2L=2\sqrt{2}dx^2>0$. В силу этого неравенства в рассматриваемой точке не может быть максимума. А в силу неравенства $\lambda_3<0$ не может быть минимума. Значит, здесь нет экстремума.

- 4. В точке (0,-1) два активных условия $\lambda_2 x = 0$ и $\lambda_4 (y+1) = 0$. Поэтому знак $d^2 L$ нужно смотреть на ненулевых векторах (dx,dy), для которых dx = 0 и dy = 0. Очевидно, таких векторов просто нет, и знак $d^2 L$ можно выбрать произвольно. Поскольку в рассматриваемой точке параметры λ_2 и λ_4 положительны, скажем, что $d^2 L > 0$. Тогда по достаточному условию экстремума здесь расположен минимум. На самом деле выше мы установили, что этот минимум глобальный.
- 5. В точке (0,1) два активных условия $\lambda_2 x = 0$ и $\lambda_3 (y-1) = 0$. Поэтому знак $d^2 L$ нужно смотреть на ненулевых векторах (dx, dy), для которых одновременно dx = 0 и dy = 0. Но таких векторов нет, и знак $d^2 L$ можно выбрать произвольно. Поскольку в рассматриваемой точке параметры λ_2 и λ_3 отрицательны, скажем, что $d^2 L < 0$. Тогда по достаточному условию экстремума здесь локальный максимум.
 - 6. В точке $(2, 1/\sqrt{2})$ одно активное условие $\lambda_1(x-2) = 0$ и

$$d^{2}L(2, 1/\sqrt{2}, \lambda) = 4dx^{2} - 4dxdy + 8\sqrt{2}dy^{2}.$$

Смотрим знак d^2L на ненулевых векторах, удовлетворяющих условию dx=0. Для них $d^2L=8\sqrt{2}dy^2>0$. Значит, в данной точке нет максимума. А в силу неравенства $\lambda_1<0$ не может быть минимума. Поэтому здесь нет экстремума.

7. В точке $(2, -1/\sqrt{2})$ одно активное условие $\lambda_1(x-2) = 0$ и

$$d^{2}L(2, 1/\sqrt{2}, \lambda) = 4dx^{2} - 4dxdy - 8\sqrt{2}dy^{2}.$$

Смотрим знак d^2L на ненулевых векторах, удовлетворяющих условию dx=0. Для них $d^2L=-8\sqrt{2}dy^2<0$. Кроме того, $\lambda_1<0$. Поэтому в данной точке максимум. Выше мы установили, что он глобальный.

- 8. В точке (2,-1) параметры λ_1 и λ_4 имеют разные знаки. В силу принципа Лагранжа здесь нет экстремума.
- 9. В точке (2,1) два активных условия $\lambda_1(x-2) = 0$ и $\lambda_3(y-1) = 0$, причем оба параметра λ_1 и λ_3 отрицательны. По принципу Лагранжа здесь может быть максимум. Знак d^2L нужно смотреть на ненулевых

векторах (dx, dy), для которых dx = 0 и dy = 0. Поскольку таких нет, можно объявить, что $d^2L < 0$. Тогда по достаточному условию здесь будет локальный максимум.

Ответ: глобальный минимум f(0,-1)=-8, глобальный максимум $f(2,-1/\sqrt{2})=8+4\sqrt{2}$, локальный минимум f(1,1/2)=-1, локальный максимум f(0,1)=8, локальный максимум f(2,1)=4.

Задания.

- 5.1. Решить пример 5.9 другим способом.
- 5.2. Найти экстремумы функции $x_1^4 + \ldots + x_n^4$ на единичном шаре $x_1^2 + \ldots + x_n^2 \leqslant 1$.
- 5.3. Найти экстремумы функции $e^{x-y}-x-y$ на множестве, определяемом условиями $x+y\leqslant 1,\ x\geqslant 0,\ y\geqslant 0.$
- 5.4. (Задача Ферма). Найти прямоугольный треугольник наибольшей площади, если сумма длин его катетов равна заданному числу.
- 5.5. (Задача Евклида). На стороне BC треугольника ABC найти точку E такую, для которой параллелограмм ADEF, у которого точки D и F лежат соответственно на сторонах AB и AC, имеет наибольшую площадь.
 - 5.6. Вписать в круг радиуса R треугольник максимальной площади.
- 5.7. (Задача Кеплера). Среди цилиндров, вписанных в шар единичного радиуса, найти цилиндр максимального объема.
 - 5.8. Вписать в единичный шар конус наибольшего объема.
- 5.9. Среди треугольников данного периметра найти треугольник наибольшей площади.
- 5.10. Вписать в круг треугольник с максимальной суммой квадратов сторон.
 - 5.11. Доказать неравенство для средних степенных

$$\left(\frac{1}{n}\sum_{i=1}^{n}|x_{i}|^{p}\right)^{1/p} \leqslant \left(\frac{1}{n}\sum_{i=1}^{n}|x_{i}|^{q}\right)^{1/q}$$

при условиях $-\infty$

5.12. Доказать неравенство

$$\left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \leqslant \left(\sum_{i=1}^{n} |x_i|^q\right)^{1/q}, \quad 0 < q \leqslant p \leqslant \infty.$$

5.13. Доказать неравенство Гёльдера

$$\sum_{i=1}^{n} x_i y_i \leqslant \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |a_i|^q\right)^{1/q}, \qquad \frac{1}{p} + \frac{1}{q} = 1.$$

5.14. Доказать неравенство Минковского

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \leqslant \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{1/p}, \quad p \geqslant 1.$$

Оглавление

Пред	дисловие	3
§ 1.	Задачи оптимизации	4
§ 2.	Экстремумы функций одной переменной	6
§ 3.	Экстремумы функций нескольких переменных	10
§ 4.	Метод Лагранжа для задач с ограничениями типа равенств	15
§ 5.	Метод Лагранжа для задач с ограничениями типа равенств	
	и неравенств	21

Учебное издание

Бахтин Виктор Иванович Иванишко Ия Александровна Лебедев Андрей Владимирович Пиндрик Ольга Исааковна

МЕТОД МНОЖИТЕЛЕЙ ЛАГРАНЖА

Методическое пособие для студентов специальности 1-31 03 01-03 «Математика (экономическая деятельность)»

В авторской редакции

Ответственный за выпуск O . $\mathit{И}$. $\mathit{\Pi}\mathit{u}\mathit{h}\mathit{\partial}\mathit{p}\mathit{u}\mathit{\kappa}$

Подписано в печать 18.05.2012. Формат $60 \times 84/16$. Бумага офсетная. Гарнитура Computer Modern. Усл. печ. л. 2,33. Уч.-изд. л. 1,97. Тираж 50 экз. Заказ

Белорусский государственный университет. ЛИ $\ ^{1}\ 02330/0494425$ от 08.04.2009. Пр. Независимости, 4, 220030, Минск.

Отпечатано с оригинала-макета заказчика на копировально-множительной технике механико-математического факультета Белорусского государственного университета. Пр. Независимости, 4, 220030, Минск.