Topology Course Notes (KSM1C03)

Day 19: 21st October, 2025

 $T_{2\frac{1}{2}} ext{-space}$ -- completely T_2 space -- Arens square

19.1 $T_{2rac{1}{2}}$ -space and completely Hausdorff space

Definition 19.1: $(T_{2\frac{1}{2}}\text{-space})$

A space X is called a $T_{2\frac{1}{2}}$ -space (or a *Urysohn space*) if given any two distinct points $x,y\in X$, there exists disjoint closed neighbrohoods of them, i.e, there are closed sets $A,B\subset X$ such that $x\in \mathring{A}\subset A,y\in \mathring{B}$ and $A\cap B=\emptyset$.

Remark 19.2: $T_{2\frac{1}{2}} \Rightarrow T_2$

Alternatively, we can define $T_{2\frac{1}{2}}$ -space as follows : given any two distinct $x,y\in X$, there exists open sets $U,V\subset X$, such that $x\in U,y\in V$, and $\bar{U}\cap \bar{V}=\emptyset$. Thus, it is immediate that $T_{2\frac{1}{2}}\Rightarrow T_2$.

Example 19.3: $(T_2 \not \Rightarrow T_{2\frac{1}{2}})$

Let us consider the *double origin plane*. Let X be \mathbb{R}^2 , with an additional point 0^* . For any $x \in X$ with $x \neq 0, 0^*$, declare the open neighborhoods of x to be the usual open sets $x \in U \subset \mathbb{R}^2 \setminus \{0\}$. For the origin 0, declare the basic open neighborhoods

$$U_n := \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < \frac{1}{n}, \ y > 0 \right\} \cup \{0\}, \quad n \ge 1,$$

and similarly, for 0^* , declare the basic open neighborhoods to be

$$V_n := \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < \frac{1}{n}, \ y < 0 \right\} \cup \{0^*\}, \quad n \ge 1.$$

It is easy to see that these basic open sets form a basis for a topology on X. With this topology, X is called the double origin plane. It is easy to see that X is T_2 . But for any two open neighborhoods of 0 and 0^* , there is always some point of the form (x,0) with $x \neq 0$, which is a limit point of both open sets. Thus, 0 and 0^* cannot be separated by closed neighborhoods. Hence, X is not a $T_{2\frac{1}{5}}$ -space.

Definition 19.4: (Completely Hausdorff space)

A space X is said to be a *completely Hausdorff space* (or a *functionally Hausdorff space*), if given any two distinct points $x, y \in X$, there exists a continuous function $f: X \to [0,1]$ such that f(x) = 0 and f(y) = 1.

Remark 19.5

Suppose, given $x \neq y \in X$, we have a continuous map $f: X \to \mathbb{R}$ such that $f(x) \neq f(y)$. Without loss of generality, assume f(x) < f(y). Consider the function

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto \begin{cases} f(x), & t \leq f(x), \\ t, & f(x) \leq t \leq f(y), \\ f(y), & f(y) \leq t. \end{cases}$$

By the pasting lemma, g is continuous. Then, $h=g\circ f:X\to [f(x),f(y)]$ is a continuous map. By composing with a suitable homeomorphism $[f(x),f(y)]\to [0,1]$, we can then get a continuous map $F:X\to [0,1]$ such that F(x)=0 and F(y)=1.

Exercise 19.6

Suppose Y is a completely T_2 space. Given a space X, suppose for any $x \neq y \in X$, there is a continuous map $f: X \to Y$ such that $f(x) \neq f(y)$. Verify that X is completely T_2 . In particular, subspaces and products of completely T_2 spaces are again completely T_2 .

Proposition 19.7: (Metric space is completely T_2)

A metrizable space X is completely T_2 . Consequently, given a space Y and a continuous injective map $\iota:Y\hookrightarrow X$, we have X is completely T_2 . A space which admits a continuous injective map into a metrizable space is called a *submetrizable space*.

Proof

Any metrizable space X is T_2 . Thus, we only need to show that it is regular. Suppose d is a metric on X inducing the topology. Then, $\epsilon := d(x,y) \neq 0$. Consider the function,

$$f(z) = d(x, z) + (\epsilon - d(z, y)), \quad z \in X.$$

Since distance function is continuous, it follows that $f:X\to\mathbb{R}$ is a continuous function. Also, $f(y)=2\epsilon\neq 0=f(x)$. But then we can get a continuous map $h:X\to [0,1]$ such that h(x)=0 and h(y)=1. Thus, X is completely T_2 .

Proposition 19.8: (Completely T_2 -spaces are $T_{2\frac{1}{2}}$)

A completely T_2 -space is $T_{2\frac{1}{2}}$.

Proof

Let X be completely T_2 . For any distinct $x,y\in X$, get a continuous function $f:X\to [0,1]$ such that f(x)=0, f(y)=1. Then, consider the closed sets $A:=f^{-1}([0,\frac{1}{4}]), B:=f^{-1}([\frac{3}{4},1])$, which are clearly disjoint. Also, $x\in f^{-1}\left(\left[0,\frac{1}{4}\right]\right)\subset A$, and so, $x\in \mathring{A}$. Similarly, $y\in \mathring{B}$. Thus, X is a open in X

 $T_{2rac{1}{2}} ext{-space}.$

Example 19.9: (Arens square)

Consider $Q:=(0,1)\cap\mathbb{Q}$, and let $Q=\sqcup_{q\in Q}Q_q$ be a disjoint union of dense subsets $Q_q\subset Q$, indexed by $q\in Q$. As an explicit example, index each prime number as $\{p_q\mid q\in Q\}$, and then consider

$$Q_q = \left\{ \frac{a}{p_q^i} \;\middle|\; 1 \leq a \leq p_q^i, \; \gcd(a, p_q) = 1, \; i \geq 1 \right\}.$$

Clearly, Q_q is dense in Q, and they are disjoint. Now, consider $A=Q\setminus\bigcup_{q\in Q}Q_q$. Just modify, say, $Q'_{\frac{1}{2}}=Q_{\frac{1}{2}}\cup A$. We still have disjoint dense sets.

Let us now consider the set

$$X = \{(0,0), (1,0)\} \cup \bigcup_{q \in Q} \{q\} \times Q_q \subset \mathbb{R}^2$$

Let us topologize X by declaring basic open neighborhoods for each point.

• For (0,0), declare basic open neighborhoods as the collection

$$U_n := \{(0,0)\} \cup \left\{ (x,y) \in X \mid 0 < x < \frac{1}{4}, \ 0 < y < \frac{1}{n} \right\}, \quad n \ge 1$$

• For (1,0), declare basic open neighborhoods as the collection

$$V_n := \{(1,0)\} \cup \left\{ (x,y) \in X \mid \frac{3}{4} < x < 1, \ 0 < y < \frac{1}{n} \right\}, \quad n \ge 1$$

 \bullet For any $\left(\frac{1}{2},r\right)\in\frac{1}{2}\times Q_{\frac{1}{2}}$, , declare basic open neighborhoods as the collection

$$W_n(r) := \left\{ (x,y) \mid \frac{1}{4} < x < \frac{3}{4}, |y - r| < \frac{1}{n} \right\}, \quad n \ge 1.$$

• Let $X\setminus\{(0,0),(1,0)\}\cup\left\{\frac{1}{2}\right\}\times Q_{\frac{1}{2}}$ inherit the usual subspace topology from \mathbb{R}^2 .

These neighborhoods form a basis for a topology on X. This space is called the *Arens square*.

Proposition 19.10: $(T_{2\frac{1}{5}} \not\Rightarrow \text{Completly } T_2: \text{Arens square space})$

Arens square is $T_{2\frac{1}{2}}$ -space, but not completely T_2 .

Proof

Let us consider the points a=(0,0) and some $b=\left(\frac{1}{2},r\right)$. Fix some $m,n\geq 1$ such $0<\frac{2}{m}< r-\frac{1}{n}< r+\frac{1}{n}<1$. Then, it is easy to see that $\overline{U_m}\cap \overline{W_n}=\emptyset$. Similar argument can be applied to b and a'=(1,0). For any point c=(q,s) with $q\neq \frac{1}{2}$, observe that the y-coordinate s cannot be repeated as $\left(\frac{1}{2},s\right)$, since we started with a disjoint partition. Thus, using the denseness, we can again get some closed neighborhoods. Hence, the Arens square is a $T_{2\frac{1}{3}}$ -space.

Let us show that it is not completely T_2 . If possible, suppose $f: X \to [0,1]$ is a continuous map, where X is the Arens square, such that f(0,0)=0 and f(1,0)=1. Since f is continuous, we must have some $m,n\geq 1$ such that

$$(0,0) \in U_n \subset f^{-1}\left[0,\frac{1}{4}\right), \quad (1,0) \in V_m \subset f^{-1}\left(\frac{3}{4},1\right].$$

Let us fix some $r \in Q_{\frac{1}{2}}$, with $r < \min\left\{\frac{1}{n}, \frac{1}{m}\right\}$. This is possible since $Q_{\frac{1}{2}}$ is dense in Q. Now, $f\left(\frac{1}{2}, r\right)$ cannot be in both $\left[0, \frac{1}{4}\right)$ and $\left(\frac{3}{4}, 1\right]$. Without loss of generality, we can assume that exists some open interval $U \subset [0, 1]$ such that

$$f\left(\frac{1}{2},r\right)\in U,\quad \left[0,\frac{1}{4}\right]\cap \bar{U}=\emptyset.$$

Then, the pre-images $f^{-1}\left[0,\frac{1}{4}\right]$ and $f^{-1}\bar{U}$ are disjoint closed neighborhoods of (0,0) and $\left(\frac{1}{2},r\right)$ respectively. Now, $U_n\subset f^{-1}\left[0,\frac{1}{4}\right)\subset f^{-1}\left[0,\frac{1}{4}\right]$. Since $r<\frac{1}{n}$, it follows (Check!) that $\overline{U_n}\cap\overline{W_k}\neq\emptyset$ for any $k\geq 1$. This contradicts $f^{-1}\left[0,\frac{1}{4}\right]\cap\bar{U}=\emptyset$. Hence, the Arens quare is not completely T_2 . \square

Remark 19.11: (Totally disconnected spaces may not be completely T_2)

It is easy to see that \mathbb{Q} , which is a totally disconnected set, is completely T_2 . Indeed, for any $r,s\in\mathbb{Q}$, with r< s, get some irrational r< x< s. Then,

$$f(t) = \begin{cases} 0, & t < x \\ 1, & x < t, \end{cases}$$

is a continuous function, with f(r)=0, f(s)=1. But in general, a totally disconnected space need not be completely T_2 .

Indeed, we have seen that the Arens square X is not completely T_2 . Let us show that it is totally disconnected. Firstly, observe that the second component projection $\pi:X\to [0,1]\cap \mathbb{Q}$ is a continuous map (but the first component projection is not continuous). Now, any two points of X cannot share the same second component, and thus π is injective. Hence, if a connected set $A\subset X$ contains more than one point, $\pi(A)$ will be a connected set of $[0,1]\cap \mathbb{Q}$, with more than one point, a contradiction. Thus, X is totally disconnected.