Exercise 1

- (a) Two (continuous) variables have a correlation of -0.4 and a covariance of -1.84. One of the variables has a variance of 4. Calculate the variance of the other variable.
- (b) The transformation between Celsius (${}^{\circ}C$) and Fahrenheit (${}^{\circ}F$) degrees for temperatures is given by:

$$X_{\circ F} = X_{\circ C} \cdot 1.8 + 32$$

Assume that the average temperature in summer in Berlin is $25^{\circ}C$ where we have a standard deviation of $3^{\circ}C$.

How could you transform these values into ${}^{\circ}F$? Do also calculate the variances in both degree measures.

We know,

$$r_{x,y} = \frac{s_{x,y}}{s_{x} \cdot s_{y}}$$

$$\Rightarrow s_{y} = \frac{s_{xy}}{r_{xy} \cdot s_{x}}$$

$$\Rightarrow s_{y}^{2} = \left(\frac{s_{xy}}{r_{xy}}\right)^{2} \times \frac{1}{s_{x}^{2}}$$

$$\vdots s_{y}^{2} = 5.20$$

here,
$$F_{xy} = -0.4$$

$$S_{xy} = -1.84$$

$$S_{x} = 4$$

$$S_{x} = 4$$

6 here,
$$X_{oF} = 1.8 \cdot X_{o}C + 32$$

 $T_{oC} = 25^{\circ}C$
 $S_{bC} = 3^{\circ}C$

So,
$$\overline{X}_{0F} = 1.8 \cdot \overline{X}_{0}C + 32$$

= $1.8 \times 25 + 32$,
= $77^{0}F$
 $X_{0}F = 1.8 \times 5_{0}C$
 $X_{0}F = 5.4^{0}F$

$$5x^2 = (3^{\circ}C)^2$$
 or $(5.4^{\circ}F)^2$
= $9^{\circ}C$ or $29^{\circ}16F$

Consider the observations of two variables (quite artificial data! ①):

x_i	1	1	2	2	3	3
y_i	1	3	2	4	3	5

The following tasks should be solved without R:

- (a) Draw a scatterplot.
- (b) Calculate the regression line.
- (c) Check that the line goes through $(\overline{x}, \overline{y})$. (Is that always the case?)
- (d) Calculate the correlation. How do you obtain the coefficient of determination?

$$Sx^{2} = \frac{1}{12} \left(x_{1} - x_{2} \right)^{2}$$

$$= \left((-1)^{2} + (-1)^{2} + (0)^{2} + (0)^{2} + (0)^{2} + (1)^{2} \right)$$

$$= 1 + 1 + 0 + 0 + 2 + 2$$

$$= 4/5$$

$$S_{y} = \frac{1}{m} ((-2) + 10) + (-1) + (4) + (0) + (0)$$

$$= 4 + 0 + 1 + 1 + 0 + 4$$

$$= 10/5 = 2$$

$$S_{y} = \frac{1}{m} \sum_{i=1}^{m} (2i - x_i) \times (3i - y_i)$$

$$= ((-1)\cdot(-2) + (-2)x0 + 0x(-1) + 0.1 + 1.0 + 1.2)$$

$$= 2 + 0 + 0 + 0 + 0 + 2 = 4/5$$

$$b_1 = \frac{5}{\text{Sn}}$$

$$=\frac{q}{q}=1$$

$$\hat{b}_0 = \overline{y} - \hat{b}_1 \cdot \overline{x}$$

$$= 3 - 1 \cdot 2$$

$$= 1$$

$$\therefore \hat{b}_0, \hat{b}_1 = (\underline{1}, \underline{1})$$

For regression line;

slope = 1 and interceptor = 1.

$$\bigcirc$$
 $\bar{\chi}=2$, $\bar{\gamma}=3$

: if
$$x=2$$
, $Y=2+2=3$

. The regression line passes through (2,3).

$$r_{ny} = \frac{sny}{sn \cdot sy}$$

$$= \frac{4/5}{\sqrt{495}}$$

coefficient of determination?

$$R^{2} = 1 - \frac{RSS}{T3S} \qquad \text{where, } TSS = \text{fold variance}$$

$$= 1 - \frac{TSS - ESS}{TSS}$$

$$= 1 - \frac{TSS}{TSS} + \frac{ESS}{TSS} = \frac{ESS}{TSS}$$

$$= \frac{\sum_{i=1}^{n} (\vartheta_{i} - \overline{y})^{n}}{\sum_{i=1}^{n} (\vartheta_{i} - \overline{y})^{n}} \qquad \text{fine calculated from the regression line}$$

$$= \frac{S^{2}}{S^{2}}$$

Assume we have observations x_1, \ldots, x_n of a variable X. Determine the value a, which minimizes the following criterion:

$$Q(a) = \sum_{i=1}^{n} (x_i - a)^2$$

$$\frac{d(a)}{d(a)} = \frac{d}{da} \cdot \left(\sum_{i=1}^{n} (n_i^2 - 2an_i + a^2) \right)$$

$$= \frac{d}{da} \cdot \left(\sum_{i=1}^{n} (n_i^2) - \sum_{i=1}^{n} 2an_i + \sum_{i=1}^{n} a^2 \right)$$

$$= \frac{d}{da} \cdot \left(\sum_{i=1}^{n} (n_i^2) - \sum_{i=1}^{n} 2an_i + \sum_{i=1}^{n} a^2 \right)$$

$$= 0 - 2 \sum_{i=1}^{n} n_i + n_i 2a$$

$$= 2an - 2 \sum_{i=1}^{n} n_i$$

$$= 2an - 2n \cdot \frac{1}{n} \sum_{i=2}^{n} n_i$$

$$= 2an - 2n \cdot E(x)$$

To minimize the equation.

$$\frac{\partial(O(Q))}{\partial a} = 0$$

$$\therefore 2an - 2n E(X) = 0$$

$$\Rightarrow \alpha - E(X) = 0$$

$$\therefore \alpha = E(X).$$

Exercise 4

Consider $X \sim N(2,9)$. What does that mean?

Calculate the following probabilities (with and without R):

- (a) $P(X \le 0)$
- (b) $P(X \le -1)$
- (c) $P(X \ge 5)$ (d) $P(-2 \le X \le 2)$

X~ N(2,9) means, X is a Random varienble which tollow the normal distribution where the run is 2 and variance of 9.

 $: P(X \leqslant 0) \approx P(2 \leqslant -0.6667)$

Pdf of normal distribution =
$$\frac{1}{6\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\chi-\eta}{6}\right)}$$

= $\frac{1}{6\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\chi}{2}\right)^{2}}$ | here,
 $\frac{1}{6}e^{-\frac{1}{2}\left(\frac{\chi-\eta}{6}\right)}$ | $\frac{1}{6}e^{-\frac{1}{2}\left(\frac{\chi-\eta}{6}\right)}$

$$\begin{array}{ccc}
\chi \sim N(2,0) \\
P(x \leqslant 0) &= P\left(\frac{\chi - 2}{3} \leqslant \frac{0 - 2}{3}\right) &= \phi\left(\frac{\chi - 2}{3}\right) \\
&= \phi\left(-\frac{\chi}{3}\right) \\
&= \phi\left(-\frac{\chi}{3}\right) \\
&= 0.251
\end{array}$$

Consider the following data for the speed versus braking distance (of a car):

Speed X (in km/h)	20	25	30	35	40	45	50	55	60	65	70
Braking distance Y (in m)	18	26	33	40	46	59	72	85	97	120	141

Here are some (possibly) useful values when calculating without R:

$$\overline{x} = 45$$
, $\overline{y} = 67$, $s_X^2 = 275$, $s_Y^2 = 1600.6$, $s_{XY} = 649.5$

- (a) Explain the meaning of: \overline{x} , \overline{y} , s_X^2 , s_Y^2 and s_{XY} .
- (b) What are the R functions to calculate them? (Check with R!)
- (c) Display the data in R using a scatterplot.
- (d) Calculate the correlation and check with R. What could we conclude from this value?
- (e) Calculate the linear regression coefficients (first without R). Do the same using R and display the line in the scatterplot.
- ② Te is the mean of speed X.

 The speed X.

 The mean of braking distance Y.

 The variance of speed X.

 The variance of speed X and braking distance Y.
- # Solution X <- c(20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70)
 Y <- c(18, 26, 33, 40, 46, 59, 72, 85, 97, 120, 141)

 X_mean <- mean(X); X_mean # 45

 Y_mean <- mean(Y); Y_mean # 67

 Sx2 <- var(X); Sx2 # 275

 Sy2 <- var(Y); Sy2 # 1600.6

 Sxy <- cov(X,Y); Sxy # 649.5

58 # Solution (d) 59 cor(X, Y) # 0.9789746

conclution: Variable X and I are highly correlated.

$$\beta = \bar{y} - \hat{\beta} \bar{\chi} = 6\bar{\chi} - (45\chi 2.3618) = -39.28$$

Solution (e) $lreg_model \leftarrow lm(Y \sim X)$ summary(lreg_model) abline(lreg_model, col = 'red', lwd = 2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -39.282 7.824 -5.021 0.000719 ***

X 2.362 0.164 14.398 1.61e-07 ***

On Moodle you find the file MunichRent2003.csv. This is a sample of 2053 appartments in Munich from 2003 (Munich was already an expensive city at this time ...). The variables are coded as follows:

Variable	Meaning	Values
netrent	net rent (per month)	in Euro
netrent.sqm	net rent per square metre	in Euro
living.space	living space	in square metres
rooms	no. of rooms	1,,6
year	year of construction	year
district	Munich district	1,,25
location	quality of location	best, good, simple
warm.water	warm water provided	yes, no
central.heating	central heating	yes, no
bath.tiles	bath room with tiles	yes, no
bath.extras	bath room with extras	yes, no
upscale.kitchen	kitchen with upscale equipment	yes, no

Original source: https://doi.org/10.5282/ubm/data.2

- (a) For which pairs of variables would it be useful to estimate a simple linear regression model? (Choose at least two different examples. Explain which of the variables do you consider the dependent and the independent one.)
- (b) Load the data into R. If you don't know what to do, check ?read.csv. (Extra task: Try also to load the original data into R!)
- (c) Estimate the model that you have chosen in (a), i.e. calculate the coefficients, draw scatterplots and regression lines, determine \mathbb{R}^2 .
- a nethent and living space where living space is independent varo inble.

netrent and year also muy be usefull for regression estimation, where year would be independent varifable.

Solution (b)

data <- read.csv('Dataset/MunichRent2003.csv')

Snapshot of the data
str(data)

```
'data.frame': 2053 obs. of 12 variables: 
$ netrent : num 741 716 528 554 698 ...
                           : num 10.9 11.01 8.38 8.52 6.98 ...
 $ netrent.sqm
 $ living.space : int 68 65 63 65 100 81 55 79 52 77 ... $ rooms : int 2 2 3 3 4 4 2 3 1 3 ...
 $ year
$ district
$ location
                          : num 1918 1995 1918 1983 1995 ...
                         : int 2 2 2 16 16 16 6 6 6 6 ...
: chr "good" "good" "simple" ...
 $ location : chr "good" "good" "good" "simple warm.water : chr "yes" "yes" "yes" "yes" ... $ central.heating: chr "yes" "yes" "yes" "yes" "yes" ... $ bath.tiles : chr "yes" "yes" "yes" "yes" ... $ bath.extras : chr "no" "no" "no" "no" "no" ... $ upscale.kitchen: chr "no" "no" "no" "no" "no" ...
                                   Regression Analysis of
living space and
not rent.
# Solution (c)
X <- living.space
Y <- netrent
# variance
Sx2 \leftarrow var(X)
Sy2 \leftarrow var(Y)
# Covariance
Sxy \leftarrow cov(X, Y)
# Regression Co-efficient
b1 <- Sxy / Sx2
b0 <- mean(Y) - (b1 * mean(X))
cat('b0= ', b0, ' | b1= ', b1)
# b0= 89.84691 | b1= 6.90056
# Plotting
abline(b0, b1, col = 'seagreen', lwd = 3)
                             Scatterplot of Munchen Rent
     1000
Net
     500
            0
                              50
                                                100
                                                                  150
                                        Living Space
 # R2 Score calculation
 Y_hat <- b0 + (b1 * X)
 Sy_hat2 <- var(Y_hat)
 r2 <- Sy_hat2 / Sy2
 r2 # 0.5005034
```

use regression with netrent and fear.

```
# Regression analysis of net rent and year
11_model <- lm(netrent ~ year)
summary(11_model)</pre>
abline(ll_model, col = 'seagreen', lwd = 2)
Call:
lm(formula = netrent ~ year)
Residuals:
    Min
              1Q Median
                               3Q
 -488.15 -179.30 -36.78 127.38 1202.74
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -338.8859 426.0683 -0.795
year 0.4642 0.2176 2.134
                                               0.426
                                               0.033 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 245.2 on 2051 degrees of freedom Multiple R-squared: 0.002215, Adjusted R-squared: 0.001728
F-statistic: 4.552 on 1 and 2051 DF, p-value: 0.033
```

Scatterplot of Munchen Rent

Comments Too low R2-score, which obserbed in the plat.