

Neural Network Optimization for Efficient Inference

Alexander Suslov

Neural Network Applications

Self-Driving Car

This image is in the public domain

Machine Translation

This image is in the public domain

Robots

This image is in the public domain

Medical imaging

This image is in the public domain

Image processing

This image is in the public domain

3D scanning

This image is in the public domain

Where does Inference of Neural Networks Compute?

Standalone

Client-Server

All images are in the public domain

Models are Getting Larger

 While models are becoming more efficient, high accuracy still implies high complexity

https://paperswithcode.com/sota/image-classification-on-imagenet

The First Challenge: Model Size

- Hard to distribute large models through over-the-air update
- The first run is slow due to loading weights.

All images are in the public domain

The Second Challenge: Speed

Trade off between accuracy and performance

Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Clustering
- 3. Quantization
- 4. Binary / Ternary Net
- 5. Distillation
- 6. Low Rank Approximation

OpenVINO PUBLIC AND FREE MODELS

- 1 DenseNet-121
- 2 DenseNet-161
- 3 DenseNet-169
- 4 DenseNet-201
- 5 SqueezeNet1.0
- 6 SqueezeNet1.1
- 7 MobileNet-SSD
- 8 Inception-ResNet-v2
- 9 GoogLeNet-v1
- 10 GoogLeNet-v2
- 11 GoogLeNet-v4
- 12 AlexNet
- 13 MTCNN-p
- 14 MTCNN-r
- 15 MTCNN-o
- 16 VGG16
- 17 VGG19
- 18 SSD300
- 19 MobileNetv2-SSD

Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Clustering
- 3. Quantization
- 4. Binary / Ternary Net
- 5. Distillation
- 6. Low Rank Approximation

- Neural network pruning benefits
 - Reducing the binary model size
 - Smaller models reduce memory bandwidth bottlenecks
 - Faster kernels (depends on hardware support)

- Criteria for pruning
 - Connections with low weights
 - Neurons or filters with low impact
- External limitations
 - Spatial structure of pruned weights

Retrain to Recover Accuracy

Iteratively Retrain to Recover Accuracy

Filter Pruning: Main Approaches

Filter Pruning: Filter Importance Criterions

• L1, L2

$$||F||_p = \sqrt[p]{\sum_{c,k_1,k_2=1}^{C,K,K} |F(c,k_1,k_2)|^p}$$

"Geometric Median"

$$G(F_i) = \sum_{F_j \in \{F_1, \dots F_m\}, j \neq i} ||F_i - F_j||_2$$

Learned Global Ranking methods

Filter Pruning: Results

Models	Compression algorithm	Dataset	Top-1 Accuracy FP32 model (%)	Top-1 Accuracy Pruned model (%)
ResNet-18	Filter pruning, 30%, magnitude criterion	ImageNet	69.76	68.69
ResNet-18	Filter pruning, 30%, geometric median criterion	ImageNet	69.76	68.97
ResNet-34	Filter pruning, 30%, magnitude criterion	ImageNet	73.31	72.54
ResNet-34	Filter pruning, 30%, geometric median criterion	ImageNet	73.31	72.60
ResNet-50	Filter pruning, 30%, magnitude criterion	ImageNet	76.13	75.7
ResNet-50	Filter pruning, 30%, geometric median criterion	ImageNet	76.13	75.7

https://github.com/openvinotoolkit/nncf

Sparsification: Main Approaches

- Magnitude Sparsity
 - After each training epoch the method calculates a threshold based on the current sparsity ratio and uses it to zero weights which are lower than this threshold.

- Regularization-Based (RB) Sparsity
 - o The sparsification algorithm based on probabilistic approach and loss regularization.

Ordinary convolution

$$output = conv(x, w)$$

Sparsifing weights we reparametrize weights as:

$$\overline{w} = w * z$$

Where:

$$w - weights, w \in R$$

 $z - binary mask, z \in [0, 1]$

We train these masks using modificated loss

$$Loss = Loss_{task} + \alpha \left(\sum_{l}^{Layers} ||z|| - target \right)^{2}$$

Sparsification: Results

Models	Compression algorithm	Dataset	Top-1 Accuracy FP32 model (%)	Top-1 Accuracy Pruned model (%)
inception-v3	RB-sparsity, 50% sparsity rate	ImageNet	77.46	77.25
inception-v3	Magnitude sparsity, 50% sparsity rate	ImageNet	77.46	77.24
inception-v3	RB-sparsity, 92% sparsity rate	ImageNet	77.46	76.6
mobilenet-v2	RB-sparsity, 50% sparsity rate	ImageNet	71.8	71.2
mobilenet-v2	Magnitude sparsity, 50% sparsity rate	ImageNet	71.8	70.8
mobilenet-v2	RB-sparsity, 78% sparsity rate	ImageNet	71.8	69.98

Pruning Happens in Human Brain

Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.

Slide credits by Song Han

Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Clustering
- 3. Quantization
- 4. Binary / Ternary Net
- 5. Distillation
- 6. Low Rank Approximation

Weight sharing

Pruning + Weight sharing + Huffman Encoding

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB -	→ 27KB	40x	98.36% -	→ 98.42%
LeNet-5	1720KB -	→ 44KB	39x	99.20% -	→ 99.26%
AlexNet	240MB -	→ 6.9MB	35x	80.27% -	→ 80.30%
VGGNet	550MB -	→11.3MB	49x	88.68% -	→ 89.09%
GoogleNet	28MB -	→ 2.8MB	10x	88.90% -	→ 88.92%
ResNet-18	44.6MB -	→ 4.0MB	11x	89.24% -	→ 89.28%

Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Clustering
- 3. Quantization
- 4. Binary / Ternary Net
- 5. Distillation
- 6. Low Rank Approximation

Quantization: Overview

This is the process of transforming a neural network such that it can be represented and executed at a lower precision by discretizing the original neural network weights and activations.

Quantization: Overview

- Quantization function is a mapping of values from high to low precision
- Neural network transformation is the process of getting g' from g
- Quantization algorithm computes quantization parameters required by new neural network g' and optimizes g' via fine-tuning or post-training algorithms.
 - Post-training quantization without dataset (POT OpenVINO)
 - Post-training quantization with dataset (<u>POT OpenVINO</u>)
 - Quantization aware training (<u>NNCF OpenVINO</u>)

Quantization: Quantization function

- Quantization refers to mapping values from fp32 to a lower precision format with specified parameters:
 - o Precision
 - Quantization type
 - Granularity

Quantization: Quantization types

Asymmetric Mode

Symmetric Mode

Asymmetric Quantization

Quantization:

$$x_{int} = round(\frac{x}{\Delta}) + z$$
$$x_Q = clamp(0, N_{levels} - 1, x_{int})$$

- ullet Δ specifies the step size of the quantizer and floating point zero maps to zero-point.
- z zero-point.
- $N_{levels} = 256$ for 8-bits of precision
- De-quantization:

$$x_{float} = (x_Q - z)\Delta$$

Symmetric Quantization

- Quantization, zero-point = 0
 - Activations:

$$\begin{split} x_{int} &= round \left(\frac{x}{\Delta}\right) \\ x_Q &= clamp (-N_{levels}/2, N_{levels}/2 - 1, x_{int}) & \text{if signed} \\ x_Q &= clamp (0, N_{levels} - 1, x_{int}) & \text{if un-signed} \end{split}$$

Weights

$$x_Q = clamp(-(N_{levels}/2 - 1), N_{levels}/2 - 1, x_{int})$$
 if signed
 $x_Q = clamp(0, N_{levels} - 2, x_{int})$ if un-signed

Calculations with symmetric vs asymmetric

W and X the weight matrix and input for a fully connected layer

- Symmetric quantization requires less computation
- Symmetric weights/Asymmetric activations are the best option

Quantization granularity

- We consider different granularities of quantization:
 - Per-layer quantization
 - Same mapping for all elements in a layer.
 - Per-channel quantization:
 - Choose quantizer parameters independently for each row (fc layers) or for each conv kernel (conv layers)

How to optimize quantization parameters?

- Fake-quantization operation emulates quantization by quantizing and dequantizing:
 - Values are still in floating point, but with reduced precision

$$\operatorname{clamp}(r; a, b) \coloneqq \min\left(\max(x, a), b\right)$$

$$s(a, b, n) \coloneqq \frac{b - a}{n - 1}$$

$$q(r; a, b, n) \coloneqq \left\lfloor \frac{\operatorname{clamp}(r; a, b) - a}{s(a, b, n)} \right\rfloor s(a, b, n) + a,$$

$$(12)$$

Quantization: Neural Network Transformation

Quantization: Workflow

Step1: Insert Fake Quantization Layers

Step2: Choose optimal quantization parameters (precision, type, granularity)

Step3: Initialize fake quantization layer parameters

Step4: Optimization

Quantization algorithms

- Post-Training Quantization without dataset (Data Free Quantization) (<u>POT</u> <u>OpenVINO</u>)
- Post-Training Quantization with dataset (<u>POT OpenVINO</u>)
- Quantization Aware Training (<u>NNCF OpenVINO</u>)

Quantization algorithms: Usage scenario

Quantization algorithms: Usage scenario

Quantization algorithms: Usage scenario

Data-Free Quantization (Level 1)

- The basic idea is to use BatchNorm statistics to estimate the range of activations.
- Algorithm Flow:

Weight tensor channel ranges alignment

Quantization with represented dataset (Level 2)

Weights:

- input_low = min(W)
- Input_high = max(W)

Activations:

- Run N examples through the FP32 model and collect for each layer the perchannel pre-activation statistics:
 - moving average of the minimum and maximum values across batches to determine the quantizer parameters for activations.
 - Our observations show that the use of robust statistic boosts accuracy metric (Hodges-Lehmann estimator)

Bias correction

It is iterative procedure. This procedure is ran on a network with quantized weights only:

- 1. Run N examples through the FP32 model and collect for each layer the perchannel pre-activation means E[y].
- 2. For each layer L in the quantized model:
 - Collect the per-channel pre-activation means E[ȳ] of layer L for the same N examples as in step 1.
 - Compute the per-channel biased quantization error $E[\epsilon] = E[\bar{y}] E[y]$
 - Subtract $E[\epsilon]$ from the layer's bias parameter

Quantization aware training (Level 3)

Algorithm:

- 1. Create a training graph of the floating-point model.
- 2. Insert fake quantization operations in locations where tensors will be downcasted to fewer bits during inference.
- 3. Train in simulated quantized mode until convergence.
- 4. Create and optimize the inference graph for running in a low bit inference engine.
- 5. Run inference using the quantized inference graph.

Summary: Quantization approaches

	\sim D	\sim BP	~AC	Mobile	eNetV2	Mobile	eNetV1		ResNet18	3
				FP32	INT8	FP32	INT8	FP32	INT8	INT6
DFQ (ours)	✓	✓	✓	71.7%	71.2%	70.8%	70.5%	69.7%	69.7%	66.3%
Per-layer [18]	✓	✓	✓	71.9%	0.1%	70.9%	0.1%	69.7%	69.2%*	63.8%*
Per-channel [18]	✓	✓	✓	71.9%	69.7%	70.9%	70.3%	69.7%	69.6%*	67.5%*
QT [16] ^	Х	Х	✓	71.9%	70.9%	70.9%	70.0%	-	70.3% [†]	67.3% [†]
$SR+DR^{\dagger}$	Х	X	✓	-	_	-	71.3%	-	68.2%	59.3%
QMN [31]	X	X	X	-	-	70.8%	68.0%	-	-	-
RQ [21]	Х	Х	Х	-	-	-	70.4%	-	69.9%	68.6%

Table 5. Top1 ImageNet validation results for different models and quantization approaches. The top half compares level 1 approaches (~D: data free, ~BP: backpropagation-free, ~AC: Architecture change free) whereas in the second half we also compare to higher level approaches in literature. Results with * indicates our own implementation since results are not provided, ^ results provided by [18] and † results from table 2 in [21].

Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Binary / Ternary Net
- 5. Distillation
- 6. Low Rank Approximation
- 7. Winograd Transformation

Binary / Ternary Net

Binary Net

We have only 1 XNOR and 1POPCOUNT operations

Credited by Konstantin Rodyushkin

Binary Net

- Convolution layers of the original CNN are replaced with binary convolution alternatives, where inputs activations and weights values are converted into two pretrained values.
- Stage quantization.

Credited by Konstantin Rodyushkin

Binary Net

Credited by Konstantin Rodyushkin

Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Binary / Ternary Net
- 5. Distillation
- 6. Low Rank Approximation

Distillation

- L2 Ba [14]
 - L2 loss between teacher and student logits
 - No labels required

Figure 6. Teacher-Student model, L2

^[14] J. Ba and R. Caruana, "Do deep nets really need to be deep?" In Advances in neural information processing systems, 2014, pp. 2654-2662.

^[15] G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a neural network," ArXiv preprint arXiv:1503.02531, 2015.

^[16] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, "Fitnets: Hints for thin deep nets," ArXiv preprint arXiv:1412.6550, 2015.

Distillation

- L2 Ba [14]
 - L2 loss between teacher and student logits
 - No labels required

Knowledge Distillation [15]

- Soft target: softmax cross entropy with teacher logits
- Hard target: softmax cross entropy with correct labels

Figure 7. Teacher-Student model, KD

^[14] J. Ba and R. Caruana, "Do deep nets really need to be deep?" In Advances in neural information processing systems, 2014, pp. 2654-2662.

^[15] G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a neural network," ArXiv preprint arXiv:1503.02531, 2015.

^[16] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, "Fitnets: Hints for thin deep nets," ArXiv preprint arXiv:1412.6550, 2015.

Distillation

- L2 Ba [14]
 - L2 loss between teacher and student logits
 - No labels required
- Knowledge Distillation [15]
 - Soft target: softmax cross entropy with teacher logits
 - Hard target: softmax cross entropy with correct labels

FitNets [16]

- Knowledge Distillation with hints in the middle points of the network
- Student is deeper than the teacher

Figure 8. Teacher-Student model, FitNets

^[14] J. Ba and R. Caruana, "Do deep nets really need to be deep?" In Advances in neural information processing systems, 2014, pp. 2654–2662.

^[15] G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a neural network," ArXiv preprint arXiv:1503.02531, 2015.

^[16] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, "Fitnets: Hints for thin deep nets," ArXiv preprint arXiv:1412.6550, 2015.

Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Binary / Ternary Net
- 5. Distillation
- 6. Low Rank Approximation

Low Rank Approximation

- Basis filter set => Basis feature maps
- Final feature map = linear combination of basis feature maps
- Rank-1 basis filter => decomposed into a sequence of horizontal and vertical filters
- ~2.4x speedup, no performance drop

Figure 1: (a) The original convolutional layer acting on a single-channel input *i.e.* C=1. (b) The approximation to that layer using the method of Scheme 1. (c) The approximation to that layer using the method of Scheme 2. Individual filter dimensions are given above the filter layers.

Summary

Method	Advantages	Disadvantages		
Binarization & Quantization	Low latency and memory usage	High loss of accuracy num_bits <= 4		
Pruning	Prevents overfitting, the accuracy can increase	Slow		
Weight Clustering	Can achieve state of the art results while decreasing the computation cost	Dependent on framework		
Distillation	Applicable to all architectures Doesn't change the network	only applicable to classification task		

Thank you for your attention!