alesiana	PROYECTO				Calificación:
g galesiana		Titulo: PWM y vúmetro de 8 pasos			
Į VIX 🐉	Alumno: MARTÍNEZ- SPATARO- NUÑEZ- QUINTELA				Firma Profesor:
Obra de Don	Curso: 4	División: A	N°Grupo: 8	Firma Alumno:	Titilia FTOTESOL.
PIO IX	F.L. 20/10	FF: 23/10	F.C.:		

PWM:

Para el diseño del PWM se utilizó una frecuencia de 200Hz, con un duty variable entre el 15% y el 60%

Para calcular el toff del astable, tuvimos que suponer uno que sea menor al ton mínimo que puede entregar el PWM. Con el ton, lográbamos la frecuencia.

Datos PWM:

T = 5ms.

Ton= entre 750µs y 3ms.

Datos astable:

Toff= 700µs.

Ton: 4,3ms.

Datos monoestable:

Ton= entre 750µs y 3ms.

-Calculo astable:

0,693. 1µf. R1= Ton

 $6K2\Omega = R1$

5K6Ω =R1norm

0,693. 1µf. R2= Toff

 $1k01\Omega = R2$

1KΩ =R2norm

-nota: para la realización del PWM en altium, se utilizará uno ya hecho durante el año, cambiando las resistencias que tiene por las que calculamos.

Vúmetro:

Para el vúmetro primero se pensó en hacer un filtro que pase una señal cuadrada a lineal. Para eso

Luego se le colocó un buffer que separa esta etapa de la siguiente.

Para encender los distintos LEDs se utilizaron 8 comparadores con un divisor resistivo en su entrada.

Para sacar la resistencia de cada LED, solo se hizo la siguiente malla:

 $\frac{12V - 2V}{15mA} = \text{Rled}$

15*mA* 680=Rled

Para resolver el divisor resistivo, solo se calculó el valor de tensión máximo y mínimo.

Vcomp máximo= $12V.\frac{R}{10K\Omega+R}$

 $5.5V=12V.\frac{R}{10K\Omega+R}$

Suma de las 8 resistencias de comparación.

 $\mathsf{Rcomp} = \frac{8\mathsf{K}4\Omega}{8}$

Rcomp=1K Ω

Ahora estimamos la última resistencia, intentando que de un valor cercano a $1K\Omega$. De esta forma, el valor de comparación máximo no se verá tan modificado

Vcomp mínimo= $12V.\frac{R27}{10K\Omega+(1K\Omega.7)+R27}$

$$2v = 12V. \frac{R27}{10K\Omega + (1K\Omega.7) + R27}$$

R27= $3k4\Omega$

R27= $3k9\Omega$ (fue redondeado para arriba luego de verificar funcionamiento en la simulación)

-Simulación:

Los distintos valores de comparación son lineales, mientras que el filtro genera una línea que va a oscilando entre dos valores. Este movimiento es tan rápido que, para un led, siempre le está llegando un 1 lógico.

Mediciones hechas en la plaqueta:

PWM:

-15%:

60%:

VÚMETRO:

Valores de comparación de los divisores resistivos:

- -5,8v
- -5,3v
- -4,72v
- -4,14v
- -3,5v
- -2,9v
- -2,4v
- -1,8v

Valores del filtro:

-máximo: 6,5v

-mínimo: 1,46v