Zadání Cvičení #8

Popis dat: Pracovní data jsou uložena v souboru data.csv, který je k dispozici ke stažení na Moodle stránce tohoto předmětu, ve složce příslušného cvičení. Pro načtení dat do Matlabu využijte funkce readtable.

Data jsou ve formátu tabulky, která obsahuje data od pacientů s Parkinsonovou nemocí (label **PD**). Tabulka obsahuje identifikační kód pacienta, pohlaví, identifikátor skupiny a řadu parametrů:

- Parametry vyhodnocené počítačem z nahrávek řeči během diadochokinetického (DDK) testu, viz Reference Novotný et al. 2014:
 - o **DDKR DDK rate**: rychlost opakování hlásek *pa-ta-ka*, jednotka *syll/s* (hlásky za sekundu).
 - VOT Voice Onset Time: parametr popisující motorickou kontrolu nad délkami souhlásek, jednotka milisekundy ms.
- Parametry vyhodnocené pomocí programu PRAAT (Reference Boersma and Weenink 2017)
 - Z nahrávek souvislé řeči:
 - stdPWR Směrodatná odchylka intenzity řeči, jednotka dB.
 - stdF0 Směrodatná odchylka F0, jednotka půltóny semitones.
 - Z nahrávek testu prodloužené fonace hlásky "a":
 - **jitter** odchylka od pravidelné periodicity chvění hlasivek při fonaci, jednotka %.
- <u>PPT Purdue Pegboard Test</u>: manuální test, při kterém vyšetřovaný vkládá či vytahuje kolíčky do speciální desky. Hodnotí se tak zručnost, jemná i hrubá motorika, koordinace, bez jednotky.
- AmpDec Amplitude Decrement: hodnocení změny maximální vzdálenosti mezi prsty během finger tapping úlohy, která byla zaznamenána 3D kamerovým systémem. Vyhodnocené pomocí počítače, detaily k výpočtu parametru viz Reference Krupička et al. 2020, bez jednotky.
- VFT Video Finger Tapping: klinické expertní hodnocení finger tapping úlohy z videozáznamu (bez jednotky).
- Klinické hodnocení neurologem prostřednictvím škály UPDRS III (bez jednotky):
 - o **UPDRS III**: celkové skóre z dotazníku.
 - o **UPDRS III axial**: souhrnné skóre z položek, které hodnotí axiální¹ motoriku.
 - o **UPDRS III bradykinesia**: souhrnné skóre z položek, které hodnotí *bradykinezii*².
- **L-dopa equivalent**: Síla medikace množství *Levodopy*, které by mělo stejný výsledný efekt jako kolektivní účinek všech léků, které pacient bere za jeden den, jednotka miligramy, mg.

-

¹ <u>Axiální</u> – týkající se těch částí těla, které se nachází na svislé ose (hlava, krk, hrudník, trup, ...), opak je apendikulární (týkající se končetin)

² Bradykinezie – zpomalení pohybů, snížení rozsahu a rychlosti pohybů, těžší cílená iniciace pohybů

Zadání úlohy	body
 Vyhledejte lineární vztahy mezi parametry. Pomocí korelační analýzy najděte mezi možnými dvojicemi nezávislých parametrů takové, které budou vykazovat významný lineární vztah. Nezávislá dvojice například není celkové skóre dotazníku UPDRS a skóre z nějaké z jeho podsekcí. Hranici pro určení toho, který vztah je významný, a který ne, určete buď na základě vámi zvolené hraniční hodnoty korelačního koeficientu nebo pomocí statistické významnosti korelace vůči vybrané úrovni alfa. Uveďte, jak jste nastavili hranici významnosti a korektně reportujte výsledky korelační analýzy pro nejvýznamnější dvojice. 	1
 Vyberte jednu libovolnou významnou dvojici a vizualizujte jí ve 2D. Vytvořte lineární regresní model pro vybraná data. Parametry modelu (tj. v tomto případě směrnici a posun přímky) vypočítejte pomocí vztahu: y = X · b kde: y = [y₁, y₂,, y_n]^T X =	0.5
Naprogramujte výpočet robustního lineárního model pomocí <i>Theil-Senovy</i> metody: 1. Pro všechny <u>unikátní</u> dvojice bodů z vybraného datasetu vypočtěte směrnici přímky k_i , která i-tou dvojicí prochází, tj.: $k_i = \frac{\Delta y}{\Delta x} = \frac{y_{1,i} - y_{2,i}}{x_{1,i} - x_{2,i}} \text{ přes všechny unikátní dvojice bodů: } i \in \langle 1, \frac{N(N-1)}{2} \rangle$ 2. Vypočtěte medián \hat{k} ze všech směrnic. Výsledkem je směrnice výsledné robustní regresní přímky. 3. Vypočtěte posun robustní regresní přímky \hat{b} (bias, intercept): $b_n = y_n - \hat{k} \cdot x_n \hat{b} = \text{medián } b_n \text{ přes } n \in N$ Pomocí vypočtených parametrů vykreslete robustní lineární regresní přímku do stejného obrázku jako v přechozím bodě. Odpovídá výsledek očekávání?	1

Korelace UPDRS - UPDRS axial nebo UPDRS - UPDRS bradyk. nema cenu delat, protoze jsou to obviously zavisly data. Stejne tak asi bude AmpDec - VFT. Nedelat Bonferroniho korekci pro velke mnozstvi testu.

Analyzujte, jak dobře vámi vytvořené lineární modely popisují výchozí data. Pro oba vaše modely (klasický lineární a robustní Theil-Senův) manuálně vypočtěte následující "goodness-of-fit" (GOF) veličiny:

- 1. <u>Dvouvzorkový</u> **Kolmogorov-Smirnov test** (kstest2): zapište hypotézy, které bude test ověřovat, výsledek korektně reportujte.
- 2. **SSE** (Sum squared error)
- 3. **RMSE** (Root mean squared error)
- 4. Koeficient determinace R²
- 5. Adjusted R²

$$RMSE = \sqrt{\left(\frac{SSE}{n-m}\right)}$$
 $R_{adj}^2 = 1 - \frac{(1-R^2)(n-1)}{n-m-1}$

Ve vzorcích výše je *n* je množství dat, na kterých je model založen (délka *y*) a *m* je počet parametrů, které jsou použity pro výpočet modelu (řád modelu).

Nakonec vytvořte pomocí funkce fitlm vícedimenzionální lineární regresní model, který bude mít stejnou výstupní proměnnou y a pro výpočet modelu použije všechny dostupné nezávislé parametry z tabulky. Nechte si vypsat výstup funkce fitlm, který obsahuje automaticky vypočtené *GOF* veličiny.

- Porovnejte výsledky GOF klasického a robustního modelu. Vysvětlete rozdíly mezi nimi.
- Vysvětlete rozdíly v GOF mezi modelem založeným na jednom parametru a vícedimenzionálním modelem. Jaké jsou výhody a nevýhody obou modelů?

Reference

Boersma, P. and Weenink, D. (2017). *Praat: doing phonetics by computer* [Computer program]. Version 6.0.30, retrieved 22 July 2017 from http://www.praat.org/

Novotný, M., Rusz, J., Čmejla, R., and Růžička, E. (2014). *Automatic evaluation of articulatory disorders in Parkinson's disease*. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22, 1366-1378, DOI: 10.1109/TASLP.2014.2329734

Krupička R., Krýže P., Neťuková S., Duspivová T., Klempíř O., Szabó Z., Dušek P., Šonka K., Rusz J. and Růžička E. (2020). *Instrumental analysis of finger tapping reveals a novel early biomarker of parkinsonism in idiopathic rapid eye movement sleep behaviour disorder*. Sleep Medicine, 75, 45-49, https://doi.org/10.1016/j.sleep.2020.07.019

1.5