A PyTorch implementation of Object Detection with Single Shot Detector

1. Import Required Libraries Import necessary libraries:

- torch and torchvision for deep learning and model loading.
- PIL for image loading and manipulation.
- matplotlib.pyplot and matplotlib.patches for displaying results.
- google.colab.files for uploading images in Colab.

2. Load Pre-trained SSD300 VGG16 Model

Load the ssd300_vgg16 pretrained model from torchvision and set it to evaluation mode (.eval()).

Move the model to GPU if available, otherwise, it will run on the CPU.

3. Upload Image

Use files.upload() from google.colab to allow users to upload an image. After uploading, extract the filename of the image.

4. Define Preprocessing and Load Image

- Convert the uploaded image to RGB format using PIL.
- Apply preprocessing steps: resizing the image to 300x300, converting it to a tensor, and normalizing it using ImageNet's standard mean and standard deviation.
- Return the original and preprocessed tensor.

5. Run Inference

Pass the preprocessed image tensor through the SSD model for inference using torch.no_grad() (to disable gradient calculation). The model outputs the detected bounding boxes, labels, and scores.

6. Visualize Detections

Define a function visualize_detections to visualize the bounding boxes and labels:

- o Plot the image.
- Loop through the detections and filter out those with low confidence (below the threshold, 0.5).
- Draw a bounding box for each detected object with a label and score above the threshold.
- Use matplotlib to display the image with bounding boxes and labels.

7. Show Results

Finally, call the visualize_detections() function to display the image with detected objects.