

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-348340

(43) Date of publication of application: 18.12.2001

(51)Int.CI.

A61K 38/00 A61P 17/00 A61P 31/00 A61P 35/00 A61P 37/00 A61P 43/00

(21)Application number: 2000-171181

(71)Applicant: YAMANOUCHI PHARMACEUT CO

LTD

(22)Date of filing:

07.06.2000

(72)Inventor: SHINTO NOBUAKI

TERADA HIROSHI MORI MASAMICHI AMINO NOBUAKI HAYATA KINYA NAGAI KOJI

HAYAKAWA YOICHI ARAYA KAZUO MASUOKA YUUTAI

(54) HISTONE DEACETYLASE INHIBITOR

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a histone deacetylase(HDAC) inhibitor useful as a prophylactic or a therapeutic agent for diseases associated with the HDAC, especially tumors or cell proliferation diseases. SOLUTION: This HDAC inhibitor comprises a depsipeptide compound represented by the general formula (1) (wherein, R means isopropyl group, sec-butyl group or isobutyl group) or its pharmaceutically acceptable salt as an active ingredient and is useful for treatment and amelioration of diseases or morbid states associated with the acetylation of a histone, especially tumors or cell growth diseases such as infectious diseases, autoimmune diseases or dermatoses.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

BEST AVAILABLE COPY

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-348340 (P2001-348340A)

(43)公開日 平成13年12月18日(2001.12.18)

(51) Int.Cl.		識別記号	FΙ				テーマコード(参考)
A 6 1 K	38/00		A 6 1 P	17/00			4 C 0 8 4
A 6 1 P	17/00			31/00			
	31/00			35/00			
	35/00			37/00			
	37/00			43/00		111	
		審査請求	未請求 請求	は項の数 1	OL	(全 13 頁)) 最終質に続く
(21)出願番	 }	特願2000-171181(P2000-171181)	(71)出願ノ	√ 0000066	677		
				山之内镇	夏菜株	式会社	
(22)出顧日		平成12年6月7日(2000.6.7)		東京都中	中央区	日本橋本町	2丁目3番11号
			(72)発明報	皆 新堂 (信昭		
				茨城県:	つくば	市御幸が丘2	21 山之内製薬株
				式会社	内		
			(72)発明和	新 寺田 !	央		
				茨城県:	つくば	市御幸が丘2	21 山之内製薬株
				式会社	内		
			(74)代理/	人 1000892	200		
				弁理士	長井	省三 (外2名)
					•		
							最終頁に続く

(54) 【発明の名称】 ヒストン脱アセチル化酵素阻害剤

(57) 【要約】

(修正有)

【課題】 医薬、殊にヒストン脱アセチル化酵素(HDAC)阻害剤の提供。

【解決手段】 一般式(1)で示されるデプシペプチド化合物またはその製薬学的に許容される塩を有効成分として含有する本発明のヒストン脱アセチル化酵素(HD AC)阻害剤は、ヒストンのアセチル化の関与する疾患や病態、殊に腫瘍や感染症、自己免疫疾患、皮膚病等の細胞増殖性疾患の治療及び改善に有用である。

(式中Rは、イソプロピル基、secーブチル基または

イソブチル基を意味する。)

【特許請求の範囲】

【請求項1】 一般式(I)で示されるデプシペプチド 化合物またはその製薬学的に許容される塩を有効成分と して含有するヒストン脱アセチル化酵素阻害剤。 【化 1 】

$$0 \xrightarrow{N} \begin{array}{c} H \\ N \\ N \end{array} \begin{array}{c} H \\ S \\ N \end{array} \begin{array}{c} H \\ N \end{array} \begin{array}{c} H \\ N \\ N \end{array} \begin{array}{c} H \\ N \end{array} \begin{array}{c} H \\ N \\ N \end{array} \begin{array}{c} H \\ N \end{array}$$

(式中Rは、イソプロピル基、sec-ブチル基またはイソ ブチル基を意味する。)

【発明の詳細な説明】

[0001]

【発明の属する分野】本発明は医薬、殊に腫瘍や細胞増殖性疾患の治療剤として有用なヒストン脱アセチル化酵素 (HDAC)阻害剤に関する。

[0002]

【従来の技術】細胞の核内のDNAはヌクレオソームを基 本としたクロマチン構造を形成している。ヌクレオソー ムはコアヒストン(ヒストンH2A, H2B, H3, H4それぞれ 2分子ずつから成る8量体)とDNAとが巻き付いた構造体 で、ヒストンN末端に存在する正電荷を帯びたリジン残 基は負電荷を帯びたDNAと電荷的に安定な状態を形成す ることでヌクレオソームは高次に折り畳まれた状態で存 在している (Wolffe, A. P. et al Cell 84, 817-819, 19 96)。核内で遺伝子の転写反応が起こるためにはその構 造を解けた状態にして、様々な転写因子がDNAに接触で きるようにすることが必要である。転写が抑制されてい る遺伝子領域のヒストンはアセチル化の程度は少なく、 活発に転写が起こっている遺伝子領域のヒストンは強く アセチル化されているといったように、ヒストンのアセ チル化と転写活性化の関連性が以前より知られていた (Hebbes, T. R. et al EMBO J. 7, 1395-1402, 1988, Gr unstein, M. et al Nature 389, 349-352, 1997) 。ヌク レオソーム中のヒストンのリジン残基がアセチル化され るとその正電荷は中和され、ヌクレオソーム構造が弛緩 することで様々な転写因子がDNAに接触できるようにな り、転写が起こりやすくなると考えられている(Hong, L. et al J. Biol. Chem. 268, 305-314, 1993) .

【 O O O 3 】 ヒストンのアセチル化はヒストンアセチル 化酵素 (ヒストンアセチルトランスフェラーゼ (Histone Acetyltransferase): HAT) とヒストン脱アセチル化酵 素 (ヒストンデアセチラーゼ (Histone Deacetylase): H DAC) とのパランスによって制御されていることが知ら れており、近年、いくつかのHAT並びに HDACが同定され その転写調節における重要性が報告されている (Ogryzk o, V. V. et al Cell 87, 953-959, 1996、Brown, C. E. et al Trends Biochem. Sci. 25(1), 15-19, 2000、Grozin ger, C. M. et al Proc. Natl. Acad. Sci. USA 96, 4868-487 3, 1999)。

【OOO4】一方で、細胞周期停止、形質転換細胞の形態正常化、分化誘導など多彩な作用を有する酪酸は、細胞内に高アセチル化ヒストンを蓄積させ、HDAC阻害作用を有することが以前より知られていた(Counsens, L. S. et al J. Biol. Chem. 254, 1716-1723, 1979)。また、微生物代謝産物のトリコスタチンA(TSA)は細胞周期の停止、分化誘導を示し(Yoshida, M. et al Cancer Res 47, 3688-3691, 1987、Yoshida, M. et al Exp. Cell Res 177, 122-131, 1988)、またアポトーシスを誘導することが見出された。TSAは細胞内に高アセチル化ヒストンを蓄積させ、部分精製したHDACを用いた検討からTSAが強力なHDAC阻害剤であることが明らかとなった(Yoshida, M. et al J. Biol. Chem. 265, 17174-17179, 199 0)。

【 O O O 5 】他のHDAC阻害剤についても研究が進んでいる。微生物代謝産物であるトラポキシン(TPX)は細胞増殖を抑制し、v-sis形質転換細胞の形態を正常化する作用が知られていたが(Itazaki, H. et al J. antibiotics 43(12), 1524-1534, 1990)、後にHDAC阻害剤であることが明らかとなった(Kijima, M. et al J. Biol. Chem. 268, 22429-22435, 1993)。その阻害形式は不可逆的であることからこのトラポキシンを分子プローブとしてこれに結合するヒトHDACのクローニングも報告されている(Taunton, J. et al Science 272 408-411, 1996)。その他、Depudecin(Kwon, H. J. et al Proc. Natl. Acad. Sci. USA 95, 3356-3361, 1998)、フェニル酪酸(Warrell, R. P. Jr. et al J. Natl. Cancer Inst. 90(21), 1621-1625, 1998)、FR-901228(Nakajima, H. et al Exp. Cell Res. 241, 126-133, 1998)、MS-27-275 (Saito, A. et a

I Proc. Natl. Acad. Sci. USA 96, 4592-4597, 1999) などの化合物がHDAC阻害作用を有することが報告されている。

【〇〇〇6】HDAC阻害剤は、細胞周期停止、形質転換細胞の形態正常化、分化誘導、アポトーシス誘導作用などを有することから、抗腫瘍剤としての効果が期待されている。また、細胞増殖性疾患の治療・改善薬として、例えば感染症、自己免疫疾患、皮膚病(Darkin-Rattray, S.J. et al Proc. Natl. Acad. Sci. USA 93, 13143-13147, 1996)などの治療・改善薬、さらに遺伝子治療におけるベクター導入の効率化(Dion, L.D. et al Virology 231, 201-209, 1997)、導入遺伝子の発現亢進(Chen, W.Y. et al Proc. Natl. Acad. Sci. USA 94, 5798-5803, 1997)など様々な応用も試みられており、有用な医薬となることが期待されている。既知のHDAC阻害剤のいくつかは医薬として開発が進められているが、今なお、活性強度、安定性、体内動態や毒性などの更に改善された薬剤の創製が切望されている。

[0007]

【発明を解決しようとする課題】本発明は、HDACの関与する疾患、殊に腫瘍や細胞増殖性疾患の予防若しくは治療剤として有用なHDAC阻害剤の提供を目的とするものである。

[0008]

【課題を解決する方法】本発明者等は、天然に存在する多くの微生物が産生する化合物につき、鋭意検討した結果、シュードモナス属に属する新種の微生物を見いだし、該培養物から優れたヒト癌細胞に対する細胞傷害活性及び T G F - β 様作用を有する新規なデプシペプチド化合物を単離し、先に特許出願を行った(PCT/JP00/001 10)。更にこれらの化合物の薬理作用を検討した結果、これらの化合物が優れたHDAC阻害作用を有していることを知見し、本発明を完成した。

【0009】即ち、本発明は、下記一般式(I)で示されるデプシペプチド化合物またはその製薬学的に許容される塩を有効成分として含有するHDAC阻害剤に関する。 【化2】

(式中Rは、イソプロピル基、sec-ブチル基またはイソブチル基を意味する。)

【0010】以下、本発明につき詳述する。 本発明デプシペプチド化合物またはその製薬学的に許容される塩はシュードモナス属 (Pseudomonas) に属する当該化合物生産菌を栄養培地にて培養し、当該化合物を蓄積させた培養物から常法によって得られる。当該化合物の製造方法において使用する微生物は、シュードモナス属に属し当該化合物の生産能を有する微生物であればいずれも用いることができる。このような微生物としては、例 は、長野県北佐久郡望月町で採集された土壌より分離されたシュードモナス属に属する細菌シュードモナス エスピー (Pseudomonas sp.) Q71576株 (工業技術院生命工学工業技術研究所に、受託番号FERM BP-6944号として寄託)を挙げることができる。本菌

株の菌学的性状は次の通りである。

【0011】1)形態的性質

本菌株は、グラム陰性の桿菌であり、極鞭毛により運動性を有する。細胞の大きさは $0.7\sim0.9\,\mu\,m\times1.0\sim1.4\,\mu\,m$ である。胞子の形成は認められない。

2) 培養的性質

肉汁寒天培地上で、薄茶色のコロニーを形成する。コロニーは円形で表面はスムースである。肉汁液体培養では、培地表面に皮膜を形成し、培地全体が混濁した。肉汁ゼラチン穿刺培養では、ゼラチンを液化した。リトマスミルクでの培養では、1週間培養後、凝固およびペプトン化は認められなかった。

【 O O 1 2 】 3)生理学的性質 【 表 1 】

Q71576株の生理的性質 (1)

硝酸塩の還元 陰性 脱窒反応 陰性 MRテスト 陰性 VPテスト 陰性 インドールの生成 陰性 硫化水素の生成 陰性 デンプンの加水分解 陰性 クエン酸の利用 陽性 硝酸塩の利用 陽性 アンモニウム塩の利用 陽性 水溶性蛍光色素の生成 陽性 ウレアーゼ 陰性 オキシダーゼ 陽性 カタラーゼ 陽性 生育温度範囲 3~32℃ 至這生育温度 10~24℃ 生育pH範囲 p H 5~9 至遺生育pH p H 6~8 嫌気条件での生育 陰性 OFテスト 酸化型 アルギニン分解反応 陽性 3%N a C | 添加肉汁培地での生育 陽性

[0013]

【表2】

. . .

Q71576株の生理的性質(2)

	——
糖より酸の産生	
Lーアラピノース	獨性
Dーキシロース	陽性
ローゲルコース	陽性
Dーマンノース	陽性
Dーフルクトース	陰性
シュークロース	陰性
イノシトール	陰性
D-マンニトール	陰性
ローガラクトース	陰性
マルトース	陰性
トレハロース	陰性
ラクトース	陰性
ローソルピトール	陰性
グリセリン	陰性
スターチ	陰性

[0014]

【表3】

Q71576株の生理的性質 (3)

糖の資化性	
レーアラピノース	陰性
Dーキシロース	陰性
Dーグルコース	陽性
Dーマンノース	陽性
D-フルクトース	陽性
シュークロース	陰性
イノシトール	陽性
ラムノース	陰性
ラフィノース	陰性
ローマンニトール	陽性
Dーガラクトース	陽性
マルトース	陰性
トレハロース	陽性
ラクトース	陰性
ローソルビトール	陽性
サリシン	陰性
メリビオース	陰性
グリセリン	陽性
スターチ	陰性
キサンチン	陽性
キチン 	陰性

【0015】以上の微生物学的性質をまとめると、本菌株はグラム陰性好気性の桿菌で運動性を有する。生育温度範囲は3~32℃で、オキシダーゼ試験、カタラーゼ試験、ゼラチンの液化反応、クエン酸の利用性、無機窒素源の利用性、アルギニン分解反応が陽性であり、Lーアラビノース、Dーキシロース、Dーグルコース、Dーマンノースより酸を産生し、OFテストの結果は酸性である。一方、硫化水素の生成、インドールの生成、VP試験、硝酸塩の還元、脱窒反応の結果は陰性である。なお、微生物は人工的に又は自然に変異を起こしやすいので、本発明において用いられるシュードモナス エスピー (Pseudomonas sp.) Q71576株は、天然から分離された微生物の他に、これに紫外線、X線、化学薬剤などで人工的に変異させたもの及びそれらの天然変異株についても包含する。

【0016】(製造方法)本発明化合物はシュードモナス属に属し、本発明化合物生産能を有する微生物を培養することによって得られる。培養は一般微生物の培養方法に準じて行われる。培養に用いられる培地としては、シュードモナス エスピー Q71576株が利用する栄養源を含有する培地であればよく、合成培地、

半合成培地または天然培地が用いられる。培地に添加す る栄養物として公知のものを使用できる。培地の組成 は、例えば炭素源としてはD-グルコース、D-マンノ ース、D-フルクトース、イノシトール、D-マンニト ール、D-ガラクトース、トレハロース、キサンチン、 デジプン、ブドウ糖、デキストリン、グリセリン、植物 油等が挙げられる。窒素源としては肉エキス、ペプト ン、グルテンミール、綿実粕、大豆粉、落花生粉、魚 粉、コーンスチーブリカー、乾燥酵母、酵母エキス、塩 化アンモニウム、硫酸アンモニウム、硝酸アンモニウ ム、尿酸その他の有機、無機の窒素源が用いられる。ま た、金属塩としては、ナトリウム、カリウム、マグネシ ウム、カルシウム、亜鉛、鉄、コパルトなどの硫酸塩、 硝酸塩、炭酸塩、リン酸塩などが必要に応じて添加され る。さらに、必要に応じてメチオニン、システイン、シ スチン、チオ硫酸塩、オレイン酸メチル、ラード油、シ リコン油、界面活性剤などの生成促進化合物または消泡 剤を添加することもできる。

【 O O 1 7 】 培養条件としては好気的条件下で培養するのが一般的に有利で、培養温度は3~32℃(上記生理学的性質の記載参照)の範囲、好ましくは20~25℃

付近で行われる。培地のpHは約4.5~9、好ましく は約5~7.5の範囲に調整すると好結果が得られる。 培養期間は培地の組成、温度条件に応じて適宜設定され るが、通常1~7日程度、好ましくは2~4日程度であ る。培養物より目的とする本発明化合物を単離するに は、微生物が産生する代謝産物に用いる通常の抽出、精 製の手段が適宜利用できる。例えば培養化合物中の該化 合物は培養液をそのままか、又は遠心分離あるいは培養 物に濾過助剤を加えて濾過して得られた培養液に酢酸エ チル等の水と混和しない有機溶剤を加えて抽出する。ま た、培養液を適宜の担体に接触させ、濾液中の生産化合 物を吸着させ、次いで適当な溶媒で溶出することにより 該化合物を抽出することができる。例えば、アンパーラ イトXAD-2、ダイヤイオンHP-20、ダイヤイオ ンCHP-20、又はダイヤイオンSP-900のよう な多孔性吸着樹脂に接触させて該化合物を吸着させる。 次いでメタノール、エタノール、アセトン、ブタノー ル、アセトニトリル又はクロロホルム等の有機溶媒を単 独若しくは混合した溶媒を、又は当該溶媒と水の混合液 を用いて該化合物を溶出させる。このときの有機溶媒の 混合比率を低濃度より段階的に又は連続的に高濃度まで 上げていくことにより、該化合物の含まれる比率のより 高い画分を得ることができる。酢酸エチル、クロロホル ム等の有機溶媒で抽出する場合には、培養濾液にこれら の溶媒を加え、良く振盪し、該化合物を抽出する。次 に、上記の各操作法を用いて得た該化合物含有画分は、 シリカゲル、ODS等を用いたカラムクロマトグラフィ 一、遠心液々分配クロマトグラフィー、ODSを用いた 高速液体クロマトグラフィー(HPLC)等の定法によ り、さらに純粋に分離精製することができる。一方、T・・・ GF-B様作用等を指標として、適当な溶剤に対する溶 解性及び溶解度の差等を利用する一般の生理活性化合物 の製造に用いられる手段によって、分離、精製すること もできる。これらの方法は必要に応じて単独に用いら れ、又は任意の順序に組合せ、反復して適用できる。 【〇〇18】本発明デプシペプチド化合物の製薬学的に 許容される塩は、無機若しくは有機塩基との塩であり. 製薬学的に許容しうる塩が好ましい。これらの塩として は、具体的にはナトリウム、カリウム、マグネシウム、 カルシウム、アルミニウムなど無機塩基、メチルアミ ン、エチルアミン、エタノールアミンなどの有機塩基、 リジン、オルニチンなどの塩基性アミノ酸との塩等を挙 げることができる。また、本発明化合物は不斉炭素原子 及び二重結合を有するので、これに基づく立体異性体 (ラセミ体、光学異性体、ジアステレオマー等) 及び幾 何異性体(シス体又はトランス体)が存在する。従って 本発明化合物は、これらの立体異性体又は幾何異性体の 混合物もしくは単離されたものを包含する。さらに、本 発明は、当該化合物の水和物または各種溶媒和物を、又

は当該化合物の結晶多型も包含する。

【OO19】以下に本発明のHDAC阻害剤の製剤化法及び 投与方法を詳述する。本発明デプシペプチド化合物やそ の製薬学的に許容される塩の1種又は2種以上を有効成 分として含有するHDAC阻害剤の医薬組成物は、通常用い られている製剤用の担体や賦形剤、その他の添加剤を用 いて、錠剤、散剤、細粒剤、顆粒剤、カプセル剤、丸 剤、液剤、注射剤、坐剤、軟膏、貼付剤等に調製され、 経口的又は非経口的に投与される。本発明デプシペプチ ド化合物のヒトに対する臨床投与量は、通常経口投与の 場合、1日の投与量は、体表面積当たり約1から100 00mg/m^2 、好ましくは $10 \sim 5000 \text{mg/m}^2$ が 適当であり、これを1回であるいは2乃至4回に分けて 投与する。静脈投与される場合は、1日の投与量は、体 表面積当たり約0. 1から1000mg/m²が適当 で、1日1回乃至複数に分けて投与する。投与量は症 状、年令、性別等を考慮して個々の場合に応じて適宜決 定される。

【0020】本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、一つ又はそれ以上の活性化合物が、少なくとも一つの不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウムと混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤や繊維素グリコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、溶解補助剤を含有していてもよい。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロース。ヒドロキシプロピルメチェルセルロースフタレートなどの糖衣または胃溶性あるいは腸溶性化合物のフィルムで被膜してもよい。

【〇〇21】経口投与のための液体組成物は、薬剤的に 許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリ キシル剤等を含み、一般的に用いられる不活性な希釈 剤、例えば精製水、エチルアルコールを含む。この組成 物は不活性な希釈剤以外に溶解補助剤、湿潤剤、懸濁剤 のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含 有していてもよい。非経口投与のための注射剤として は、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を 包含する。水性の溶液剤、懸濁剤の希釈剤としては、例 えば注射剤用蒸留水及び生理食塩水が含まれる。非水溶 性の溶液剤、懸濁剤の希釈剤としては、例えばプロピレ ングリコール、ポリエチレングリコール、オリーブ油の ような植物油、エチルアルコールのようなアルコール 類、ポリソルベート80(商品名)等がある。このよう な組成物は、さらに等張化剤、防腐剤、湿潤剤、乳化・ 剤、分散剤、安定化剤(例えば、ラクトース)、溶解補 助剤のような添加剤を含んでもよい。これらは例えばバ クテリア保留フィルターを通す濾過、殺菌剤の配合又は

照射によって無菌化される。これらは又無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。

【0022】本発明化合物の溶解性が低い場合には、可 溶化処理を施してもよい。可溶化処理としては、医薬製 剤に適用できる公知の方法、例えば界面活性剤(ポリオ キシエチレン硬化ヒマシ油類、ポリオキシエチレンソル ビタン高級脂肪酸エステル類、ポリオキシエチレンポリ オキシプロピレングリコール類、ショ糖脂肪酸エステル 類等)を添加する方法,薬物と可溶化剤例えば高分子 (ハイドロキシプロピルメチルセルロース (HPM C), ポリビニルピロリドン(PVP), ポリエチレン グリコール(PEG)等の水溶性高分子、カルボキシメ チルエチルセルロース(CMEC)、ハイドロキシプロ ピルメチルセルロースフタレート(HPMCP)、メタ アクリル酸メチルーメタアクリル酸共重合体(オイドラ ギットL、S、商品名:ローム・アンド・ハース社製) 等の腸溶性高分子)との固体分散体を形成する方法が挙 げられる。更に必要により、可溶性の塩にする方法、サ イクロデキストリン等を用いて包接化合物を形成させる 方法等も採用できる。可溶化の手段は、目的とする薬物 に応じて適宜変更できる[「最近の製剤技術とその応用 I」、内海勇ら、医薬ジャーナル157-159(19 83) 及び「薬学モノグラフNo. 1, 生物学的利用 能」、永井恒司ら、ソフトサイエンス社、78-82] (1988)参照]。

[0023]

【実施例】以下、製造例にて本発明化合物の具体的な製造方法を、また、実施例にて本発明のHDAC阻害剤の作用を詳細に説明するが、本発明はこれらに限定されるものではない。

【0024】製造例1

グルコース10g、ポテトスターチ20g、ポリペプト ン5g、酵母エキス5g、炭酸カルシウム4g、蒸留水 1Lを含む培地 (pH7.0) 100 mを、500 mと容 の三角フラスコに分注し、120℃で20分間滅菌し た。ベネット寒天培地に良く生育させたシュードモナス エスピーQ71576株を掻き取って接種し、28 ℃、200回転/分の条件で3日間振盪培養し、種培養 液とした。次にグリセロール30g、グルコース1g、 ポリペプトン5g、肉エキス5g、NaCl 5g、消泡剤 (NKL5430) O. 5g、蒸留水1Lを含む培地 (pH7.0)を100mLずつ500mL容の三角フラス コに分注し、120℃で20分間滅菌した。この培地に 前記種培養液を2心ずつ接種し、28℃、200回転/ 分の条件で3日間、振盪培養した。このようにして培養 した培養液2. 5 L について、6000 r p mで10分 間遠心分離を行った。上清液を酢酸エチルにて抽出し、 硫酸ナトリウムを添加して脱水した後、減圧下で濃縮乾 固した。油状の粗抽出物をシリカゲルカラムクロマトグ

ラフィー (30 i.d.×200 mm) に供し、クロロホルムー メタノール(20:1)で洗浄後、クロロホルムーメタ ノール(5:1)で溶出し、活性画分を濃縮した。次 に、セファデックスLH-20カラムクロマトグラフィー(2 0 i.d.×500 mm) に供し、クロロホルムーメタノール (1:1) でゲル濾過を行った。活性画分を濃縮後、C PC (centrifugal partition chromatography) に供 し、クロロホルムーメタノールー水(5:6:4)の溶 媒系にて上昇法を用いて不純物を除去した。最終的に活 性画分を濃縮乾固した後、メタノールに溶解し、センシ ュー科学社製 PEGASIL ODSカラム(20 i.d.×250 mm) を用い、35%アセトニトリル水溶液にて逆相HPLC (流速10mL/分)を行った。その結果、化合物Aは1 O. 8分に、化合物Bは15. 4分にピークが認めら れ、それぞれのピークを分取することにより化合物A及 びBの白色粉末を各10mg得た。

【0025】製造例2

グルコース10g、ポテトスターチ20g、ポリペプトン5g、 酵母エキス5g、炭酸カルシウム4g、蒸留水1Lを含む培地 (pH7.0)を100mLずつ500mL容の付き三角フラスコに分注 し、120℃で20分間滅菌した。ベネット寒天培地に良く 生育させたシュードモナス エスピー 071576株を掻き 取って接種し、28℃、200回転/分の条件で3日間振盪培 養した。同培地400mLを2L容の三角フラスコに分注し、1 20℃で20分間滅菌した後、前記培養液8mLを植菌し、28 ℃、200回転/分の条件で3日間振盪培養し、種培養液と した。次にマンニトール30g、ポリペプトン5g、肉エキ ス5g、塩化ナトリウム5g、水道水1Lを含む培地(pH7.0) を18Lずつ30L容ジャーファーメンター3基に分注し、120 1 ℃で20分間滅菌した。この培地に前記種培養液を360mL ... ずつ接種し、24℃、150回転/分、1vvmで64時間培養を 行った。シャープレスにて菌体と分離した培養液50 Lを HP-20を充填したカラムに供し、水、20%アセトン水溶 液、40%メタノール水溶液で洗浄後、80%アセトン水溶液 で溶出した。溶出画分を濃縮して得られた水溶液につい てクロロホルム、酢酸エチルで抽出を行い、各抽出物を 混合して濃縮後、シリカゲルを充填したカラムに供し た。クロロホルム-メタノール(50:1)、(20:1)、(10: 1) で溶出し、クロロホルム-メタノール(20:1) および (10:1) 溶出画分の一部を混合して濃縮後、エタノー ルに溶解して再結晶を行い、化合物A、B及びCを含む 混合物として、白色粉末776mgを得た。得られた粉末に ついて、ODS-HPLCカラム(cosmosil AR-II20 i.d. ×250 mm)による化合物C溶出画分の分取を行い、化合物Cの 白色粉末として20 mgを得た。上記の製造例で得られた 化合物A、B及びCの物理化学的性状を後記表4~7に 示す。これらの物理化学的性状から決定された化合物 A、B及びCの化学構造式は以下の通りである。

[0026]

【化3】

化合物A

化合物B

化合物C

[0027]

【表4】

_ , ,			124 7 1		
atternaria s	al no contrat	化合物A	···化合物B	化合物C	
	色及び形状	白色粉末	白色粉末	白色粉末	
	融点	135-138℃	132−135°C	N. T.	
	旋光度 [α]。20	-63.6° (σΩ 14, MbCH)	-58.8° (o 0.11, MeOH)	-80, 0° (c 0, 10, MeOH)	
	分子式	C ₂₀ H ₃₁ N ₃ O ₄ S ₂	Cz,Hz,NzOvSz	Cz, H ₃₅ N ₂ O ₆ Sz	
	高分解能FAB マスス・ケトラム Found Calcd 紫外可視吸収 スペ・ケトラム	474. 1735 (MH)* 474. 1733	488. 1889	488. 1889 (W+++()* 488. 1889	
	λ _{max} ^{Boott} rum (ε)	End absorption	End absorption	End absorption	
	赤外吸収 スペクトラム ν _{max} cm ⁻¹	(VBr法) 3400, 3350, 1720, 1660, 1520, 1260, . 980	(昭·法) 3400, 3350, 1720, 1880, 1520, 1260, 980	(反射測定法) 3400, 3320, 1730, 1660, 1550, 1280, 980	

N. T. : 試験せず

[0028]

【表5】 化合物Aの ¹H 及び ¹³C NMR 化学シフト値(重クロロホルム中)

No.	δ _C	δ _H
1	171.3	
2	52,2	4.21(dq,J=4.0, 7.5 Hz)
3	16.5	1.48(d, <i>J=</i> 7.5 Hz)
NH		6.28(m)
1'	169.1	
2'	54.9	4.84(dt, <i>J</i> =3.5, 9.0 Hz)
3'	40.9	3.13(m), 3.28(m)
NH		6.79(d,J=9.0 Hz)
1"	171.7	
2**	39.5	2.68(d, <i>J</i> =4.0 Hz)
3"	69. 1	4.52(m)
4"	63.4	2.77(m)
5"	29.7	2.34(m)
6"	19.7	0.90(d, <i>J=</i> 7,0 Hz)
7"	20.6	1.00(d, <i>J</i> =7.0 Hz)
NH		7.38(d, <i>J=</i> 7.0 Hz)
ОН		3.09(d,J=10.0 Hz)
1""	170.8	
2""	40.3	2.59(d,J=13.0 Hz), 3.31(dd,J=7.0, 13.0 Hz)
3"'	70.7	5.48(m)
4""	128.9	5.68(d, <i>J</i> =15.0)
5"'	133.3	6.31(m)
6"'	33.1	2.43(m), 2.68(m)
7"'	40.9	2.73(m), 3.24(m)

表中番号(No.)は前配化合物Aの化学構造式中の炭素原子の位置を示す。

化合物Bの ¹H 及び ¹³C NMR 化学シフト値(重クロロホルム中)

No.	$\delta_{\mathbf{c}}$	δ_{H}
1	171.2	
2	52.2	4.22(dq, <i>J</i> =4.0, 7.0 Hz)
3	16.6	1.48(d, <i>J</i> =7.0 Hz)
NH		6.18(m)
1'	169.2	
2'	54.5	4.87(dt, =3.0, 9.0 Hz)
3'	41,3	3.10(m), 3.33(m)
NH		6.75(d, <i>J</i> =9.0 Hz)
1"	171,8	
2"	39.5	2.70(d, /=4.0 Hz)
3 "	68.2	4.60(m)
4"	61.7	2.94(m)
5"	36.3	2.05(m)
6"	27.1	1.21(m), 1.53(m)
7"	11.5	0.89(t, <i>J</i> =7.5 Hz)
8"	15.4	0,90(d, <i>J</i> =7.0 Hz)
NH		7.25(d, <i>J=</i> 7.0 Hz)
OH		2.93(m)
1""	170.6	
2"'	40,7	2.58(d, /=13.0 Hz), 3.31(dd, /=7.0, 13.0 Hz)
3"'	70.6	5.48(m)
4"'	128.6	5.67(d, J=15.0 Hz)
5"'	133,4	6.36(m)
6"'	33.3	2.44(m), 2.71(m)
7"	40.5	2.72(m), 3.20(m)

表中番号(No.)は前記化合物Bの化学構造式中の炭素原子の位置を示す。

[003.0.].......

No. δc δ_{H} 1 171.3 2 52.3 4.22(dq,J=7.3,3.7 Hz) 3 16.5 1.50(d.J=7.3 Hz) NH 6.40(br) 1' 168.9 21 55.1 4.81(m) 3' 41.1 3.20(m)NH 6.82(d,J=9.1 Hz) 1" 171.4 2" 38.8 2.68(m) 3" 70.7 4.35(m) 4" 56.0 3.08(m) 5" 38.8 1.51(m), 2.06(m) 6" 25.2 1.62(m) 7" 21.3 0.91(d,J=6.7 Hz) 8" 23.4 0.91(d,J=6.7 Hz) NH 7.49(d,J=6.7 Hz) OH 2.96(br) 17 170.9 2™ 40.3 $2.62(d_J=12.8 \text{ Hz}), 3.36(d_J=12.8, 7.3 \text{ Hz})$ 3m 70.7 5.48(m) 4111 129.0 5.72(d,J=15.8 Hz) 5^m 133.2 6.29(m)

化合物Cの ¹H および ¹³C NMR 化学シフト値(重クロロホルム中)

表中番号(No.)は前配化合物Cの化学構造式中の炭素原子の位置を示す。

2.43(m), 2.72(m)

2.74(m), 3.31(m)

....【O O.3 1】 実施例 1: HDAC阻害試験

(1) [³H] アセチルヒストンの調整

ヒト白血病細胞K562細胞(1.3x10⁹個)を2時間10mM酢酸ナトリウム存在下で [³H] 一酢酸ナトリウム(第一化学薬品株式会社: NET-003H) 標識し、吉田らの方法(Yoshida; M. et al J. Biol. Chem 265, 17174-17179, 1990)に従ってヒストン抽出を行った。抽出ヒストンは水で溶解し、ブラッドフォード法で蛋白質定量を行った(7mg/ml)。

6"

32.7

40.5

【OO32】 (2) HDACの部分精製

K562細胞より単離した核を吉田らの方法 (Yoshida, M. et al J. Biol. Chem 265, 17174-17179, 1990) に従って抽出し、その抽出液をQ Sepharose FFカラム (ファルマシア社: 17-0510-01) を用い、0-0.5MのNaClの濃度勾配によりHDACの部分精製を行った。その後、HDA緩衝液 [15mMリン酸カリウム (pH7.5)、5%グリセロール、0.2mM EDTA] で透析を行った。

(3) HDAC阻害活性の測定

(1) で調整した [3 H] アセチルヒストンをHDA緩衝液で280 μ g/mlに希釈しこれを $^{25}\mu$ lと、(2) で精製・透析したHDAC画分 $^{25}\mu$ lとを混合し室温にて4時間反応させ

た後、 $1 \pm \nu$ 塩酸を 50μ 1 添加して反応を停止させ、さらに酢酸エチル 800μ 1 を加え混合・遠心を行い、酢酸エチル層 400μ 1 をシンチレーターバイアルに採取し、5m 1 のシンチレーターを添加して遊離した [3H] 酢酸の放射活性を液体シンチレーションカウンターにて測定した。基質と酵素とを混合する前に予めDMSOで溶解・希釈した薬物を 2μ 1 添加し、上記のアッセイを行うことで薬物のHD ACに対する阻害活性を検討した。その結果、化合物 A は 0.3μ Mの濃度で50%以上のHDAC阻害活性を示した。また化合物 B についても同様の阻害作用が見られた。

【0033】実施例2:腫瘍組織内アセチル化ヒストン の亢進試験

(1) 化合物 A 投与後の腫瘍サンプルの取得 BALB/C-nu/nuマウスにヒト大腸癌WiDr細胞を2×10⁶ cells/100 μ I PBS/mouseでうえつけ、約2週間後に腫瘍体積が300 mm³程度になったマウスに尾静脈より化合物 A 3 mg/kgを投与し、さらに8時間後に腫瘍を摘出した。また対照群として薬剤未処置のマウスからも腫瘍を摘出した。

【 O O 3 4 】 (2)腫瘍組織内アセチル化ヒストン亢進 作用の検討

テーパー型ホモジナイザー (WHEATON社: 358103) に (1) で取得した腫瘍組織とTNE溶解緩衝液(50mM Tris HCI (pH8.0), 150mM NaCI, 1% NP-40, 1mM EDTA, comp lete (ペーリンガーインゲルハイム社: No. 1873580), 10 μg/ml aprotinin) を加えホモジナイズした後に、遠 心し上清部分を採取した。この上清をブラッドフォード 法にて蛋白質定量後、それぞれの検体を等蛋白質量に揃 えて定法に従いSDS-PAGE、ウェスタンブロットを行っ た。その際に一次抗体には抗アセチル化ヒストンH3抗 体 (UPSTATE biotechnology社: #06-599) を、二次抗体 にはHRP標識抗ウサギ抗体(アマシャム社: code NA 934 0) を使用し、ECL (アマシャム社: RPN2106) にて発光 を検出した。結果、化合物 A 3mg/kg投与サンプルでは対 照サンプルに比較して顕著なアセチル化ヒストンH3の パンドが検出されたことから、化合物Aはマウスにうえ つけた腫瘍組織内においてもヒストン脱アセチル化酵素

を阻害しヒストンのアセチル化を亢進させていることが 確認された。

[0035]

【発明の効果】一般式(I)に示される本発明化合物は、前記実施例に示したように、HDAC阻害作用を有し、in vivoにおいてもHDAC阻害に基づくヒストンアセチル化の亢進を示すことが確認された。従って、一般式

(I)で示されるデプシペプチド化合物またはその製薬学的に許容される塩を有効成分として含有する本発明のHDAC阻害剤は、ヒストンのアセチル化の関与する疾患や病態、殊に腫瘍や細胞増殖性疾患の治療及び改善に有用である。細胞増殖性疾患としては、例えば感染症、自己免疫疾患、皮膚病が挙げられる。また、本発明のHDAC阻害剤は遺伝子治療におけるベクター導入の効率化や導入遺伝子の発現亢進にも有用である。

フロントページの続き

(51) Int. Cl. 7

識別記号

A61P 43/00

111

(72) 発明者 森 政道

茨城県つくば市御幸が丘21 山之内製薬株

式会社内

(72)発明者 網野 伸明

茨城県つくば市御幸が丘21 山之内製薬株

式会社内

茨城県つくば市御幸が丘21 山之内製薬株 式会社内 FΙ

テーマコード(参考)

A61K 37/02

(72)発明者 永井 浩二

東京都板橋区小豆沢1-1-8 山之内製

薬株式会社内

(72)発明者 早川 洋一

千葉県柏市新富町2-6-57

(72) 発明者 新家 一男

(72) 発明者 升岡 優太

東京都豊島区要町1-1-10-802

Fターム(参考) 4C084 AA02 BA01 BA15 BA26 CA04

DC50 ZA891 ZA892 ZB071 ZB072 ZB211 ZB212 ZB261 ZB262