1. (a)
$$x^3 = 9$$

$$f(x) = x^3 - 9$$
$$f(2.05) = 2.05^3 - 9 = -0.3849$$
$$f(3.05) = 3.05^3 - 9 = 19.3726$$

the interval is [2.05, 3.05]

(b)
$$3x^3 + x^2 = x + 5$$

$$f(x) = 3x^3 + x^2 - x - 5$$

$$f(1.1) = 3 \times 1.1^3 + 1.1^2 - 1.1 - 5 = -0.897$$

$$f(2.1) = 3 \times 2.1^3 + 2.1^2 - 2.1 - 5 = 25.093$$

the interval is [1.1, 2.1]

(c)
$$\cos^2 x + 6 = x$$

$$f(x) = \cos^2 x - x + 6$$

$$f(2\pi) = \cos^2(2\pi) - 2\pi + 6 = 7 - 2\pi > 0$$

$$f(2\pi + 1) = \cos^2(2\pi + 1) - (2\pi + 1) + 6 = \cos^2(2\pi + 1) - 1.28 < 0$$
 the interval is $[2\pi, 2\pi + 1]$

2. (a) $x^5 + x = 1$

$$f(x) = x^5 + x - 1$$
$$f(0) = -1 < 0$$
$$f(1) = 1 > 0$$

the interval is [0, 1]

(b)
$$\sin x = 6x + 5$$

$$f(x) = \sin x - 6x - 5$$
$$f(0) = \sin 0 - 5 = -5 < 0$$
$$f(-1) = \sin(-1) + 6 - 5 = \sin(-1) + 1 > 0$$

the interval is [-1, 0]

(c)
$$\ln x + x^2 = 3$$

$$f(x) = \ln x + x^2 - 3$$

$$f(\sqrt{3} - 1) = \ln(\sqrt{3} - 1) + (\sqrt{3} - 1)^2 - 3 = \ln(\sqrt{3} - 1) + 3 - 2\sqrt{3} + 1 - 3 < 0$$

$$f(\sqrt{3}) = \ln\sqrt{3} + \sqrt{3}^2 - 3 = \ln\sqrt{3} > 0$$

the interval is $[\sqrt{3}-1,\sqrt{3}]$

3. (a)

k	a_k	$f(a_k)$	c	$f(c_k)$	b	$f(b_k)$
0	2.05	_	2.55	+	3.05	+
1	2.05	_	2.3	+	2.55	+
2	2.05	_	2.175	+	2.3	+

(b)

k	a_k	$f(a_k)$	c	$f(c_k)$	b	$f(b_k)$
0	1.1	_	1.6	+	2.1	+
1	1.1	_	1.35	+	1.6	+
2	1.1	_	1.225	+	1.35	+

(c)

k	a_k	$f(a_k)$	c	$f(c_k)$	b	$f(b_k)$
0	2π	_	6.7832	_	$2\pi + 1$	+
1	6.7832	_	7.0332	_	$2\pi+1$	+
2	7.0332	_	7.1582	_	$2\pi+1$	+

4. (a)

k	a_k	$f(a_k)$	c	$f(c_k)$	b	$f(b_k)$
0	0	_	0.5	_	1	+
1	0.5	_	0.75	_	1	+
2	0.75	_	0.875	+	1	+

(b)

')							
	k	a_k	$f(a_k)$	c	$f(c_k)$	b	$f(b_k)$
	0	-1	_	-0.5	_	0	+
	1	-0.5	_	-0.25	_	0	+
	2	-0.25	_	-0.125	_	0	+

(c)

k	a_k	$f(a_k)$	c	$f(c_k)$	b	$f(b_k)$
0	$\sqrt{3}-1$	_	1.2321	_	$\sqrt{3}$	+
1	1.2321	_	1.4821	_	$\sqrt{3}$	+
2	1.4821	_	1.6071	+	$\sqrt{3}$	+

5.
$$x^4 = x^3 + 10$$

(a)

$$f(x) = x^4 - x^3 - 10$$

$$f(2) = 2^4 - 2^3 - 10 = -2 < 0$$

$$f(3) = 3^4 - 3^3 - 10 = 44 > 0$$

the interval is [2,3].

(b)

$$\frac{1}{2^{n+1}} < 10^{-10}$$

$$2^{n+1} > \frac{1}{10^{-10}}$$

$$2^{n+1} > 10^{-10}$$

$$n+1 > \frac{10}{\log_{10} 2} = 33.2193$$

33 steps are required.

6. The Bisection Method will converge to a real number, but which is not the root.