UNIVERSITY OF TARTU FACULTY OF MATHEMATICS AND COMPUTER SCIENCE INSTITUTE OF COMPUTER SCIENCE

Egon Elbre Parallel Pattern Discovery

Master's Thesis

Supervisor: Prof. J. Vilo

Author:	 "…"	May 2013
Supervisor:	 "…"	May 2013
Professor:	" "	May 2013

Tartu May 16, 2013

Contents

1	Intr	roduction	4
	1.1	Motivation and background	4
		1.1.1 Pattern Discovery	5
		1.1.2 Algorithm parallelization	6
	1.2	Contributions of this work	6
	1.3	Structure of the thesis	7
2	Def	initions	8
	2.1	Sequence and Dataset	8
	2.2	Pattern	9
	2.3	Query	9
		2.3.1 Query features	10
	2.4	Pool	10
	2.5	Pattern Discovery	11
3	App	proaches to Pattern Discovery	12
	3.1	Pattern rating	12
	3.2	Algorithmic techniques	14
		3.2.1 Counting sequences	14
		3.2.2 Combinatorial and Statistical	14
		3.2.3 Iterative and Division	14
		3.2.4 Online and Offline	14
	3.3	Algorithms	15

	3.4	SPEXS
		3.4.1 TEIRESIAS
		3.4.2 Verbumculus
		3.4.3 MobyDick
		3.4.4 RSAT
		3.4.5 Other
	3.5	Reviews
	3.6	Problems
4	SPE	EXS Generalization 19
	4.1	Algorithm
	4.2	Pools
	4.3	Filtering
	4.4	Extending
		4.4.1 Sequences
		4.4.2 Group tokens
		4.4.3 Star
		4.4.4 Optimized group tokens
		4.4.5 Other possible extensions
		4.4.6 Alternative extensions
	4.5	Summary
5	Par	allelization 27
	5.1	Process
	5.2	Extending
	5.3	Distributed processes
6	Imp	plementation 32
	6.1	Language
	6.2	Architecture
	6.3	Configuration
	6.4	Alphabet and Database

	6.5	Pools	37
	6.6	Query and Location set	38
	6.7	Query features, interestingness and filters	39
	6.8	Synchronized Graph Traversal	41
	6.9	Debugging	43
7	App	plications and experimental results	45
	7.1	Examples	45
		7.1.1 Genomic sequences	45
		7.1.2 Event sequences	45
		7.1.3 Text patterns	47
	7.2	Performance measurements	48
8	Con	nclusions	50
	Bib	liography	51
\mathbf{A}	spe	xs2	56
	A.1	source	56
В	Con	ncise Implementation	58

Chapter 1

Introduction

1.1 Motivation and background

One interesting problem in dataset analysis is the discovery of patterns. Patterns can show how the dataset was formed and how it repeats itself; the patterns can also be characteristic to some particular subset of the data.

For example, a protein motif in a genomic sequence could predict a disease. Patterns in medical diagnoses could show relations between diseases. A repeating pattern in source code could show how the code could be minimized. Patterns in event logs could find causes for error events or detect intrusion attempts.

Research in pattern discovery is mainly driven by biology, which means that most of the discovery algorithms have been designed with genomic sequences in mind. The techniques are usually constrained to the genomic sequences, but these algorithms could be useful in other fields as well. Such benefit was already demonstrated by Wespi et al[WDD99], where they used a biological sequence pattern discovery algorithm for intrusion detection. Searching new ways of using pattern discovery should be actively researched.

Today, the field of genomic sequences is facing problems caused by the increasing amount of data[How+08; GC95]. We need to use more computational resources to analyze the continuously growing amount of collected

data. This means that the pattern discovery algorithms should take advantage of multi-core processors, highly parallel processors and clusters.

1.1.1 Pattern Discovery

Patterns can occur in different types of data: images, text, sounds, sequences, graphs, signals and more. The pattern representation can vary depending on the data itself and the parts that the pattern captures. Patterns in graphs can be sub-graphs with some additional info. Patterns represent in images can be a collection of different features.

Patterns discovery aims to find a priori unknown patterns that can be considered interesting in some specific aspects; for example, we could look for patterns that occur frequently or have an interesting structure. A pattern that occurs more frequently than expected by chance may be considered interesting. Also, a graph pattern with circular shape may be considered interesting.

When choosing a pattern structure we should take into account the data, expected results and efficiency. For example, theoretically we could choose an abstract pattern structure that can represent all possible patterns, but practically this could be inefficient and irrelevant to the problem. Finding image features from a visualization of sound would not probably produce anything meaningful.

When choosing a pattern rating method we should take into account that many patterns can occur by chance. For example, a pattern that matches anything is very frequent although it isn't very meaningful. Many methods have been used for comparing patterns, such as pattern occurrences, ratio of pattern occurrences between datasets, binomial and hypergeometric probability estimate and Z-score.

cite

1.1.2 Algorithm parallelization

Taking an existing algorithm and making it parallel can sometimes be easier than writing a parallel algorithm from scratch. Existing algorithms may have already proven themselves in practice and are based on good optimization concepts. Algorithm parallelization can be divided into three subproblems:

- 1. generalizing the algorithm,
- 2. decomposing algorithm to independent tasks and
- 3. reifying the generalized version with parallelization in mind.

Generalizing the algorithm means loosening the order constraints and using minimal abstract data types for data storage. Mathematical definitions and effective problem formulation are helpful. The less constraints there are the more freedom we have to change the algorithm implementation details.

Decomposing the algorithm means dividing it into independent tasks that could be ran in parallel. This also means trying to minimize the interaction and the dependencies between "algorithm pieces".

Reifying the algorithm means finding suitable data structures for parallelization and mapping the independent tasks to different processes. The suitable structures and efficient mapping to processes is dependent on the target hardware architecture. For example data structures involving vector operations work better on highly parallel processors.

The generalizing and decomposition steps can also make the algorithm simpler. Generalization makes the algorithm more applicable to other fields, since there are less relations to the original pattern discovery problem.

1.2 Contributions of this work

We have derived a new parallel algorithm called SPEXS2 for discovering interesting patterns from a set of sequences. We describe SPEXS2 in a generic

way and show some possibilities for extending it further.

The practical and "ideal" versions of an algorithm can often diverge due to performance and implementation details, therefore we also explain problems and possible solutions with implementing such algorithm. We also have provided a concise implementation of the algorithm that captures the generic description more closely. Then we show some possible applications for the algorithm and analyze the benefits of parallelization.

1.3 Structure of the thesis

In Chapter 2 we introduce the terminology used throughout the thesis. In Chapter 3 we give an overview of the already existing algorithms and discuss reasons for choosing SPEXS[Vil02] as a basis for parallelization. We generalize and decompose the SPEXS algorithm in Chapter 4 and reify it in Chapter 5. We discuss an implementation of the parallelized algorithm in Chapter 6 and in Chapter 7 we show some possible applications and its parallelization benefits. The conclusions are presented in Chapter 8.

Chapter 2

Definitions

Pattern discovery is a research area aiming to discover unknown patterns in a given set of data structures that are frequent and interesting according to some measure. In this chapter we formally define necessary terms used in this thesis.

2.1 Sequence and Dataset

We use Σ to denote the set of tokens in the dataset, an *alphabet*. The *size* of the alphabet is $|\Sigma|$. Tokens can be numbers, letters, words or sentences or any other fixed element.

Any sequence $S = a_1 a_2 ... a_n$, $\forall a_i \in \Sigma$ is called a *sequence* over the alphabet Σ . If the length of the string is 0, it is called an empty sequence or ϵ .

Example 2.1.1. ACGTGCCATC is a sequence over $\Sigma = \{ A, C, G, T \}$.

A dataset is a collection of sequences.

Example 2.1.2. In a document, sentences can be considered as a *dataset*, where a single sentence is a *sequences* and each word is a *token* in the alphabet. The text This is some example. This is an other example. has sequences $\{ [This is an example], [This is an other example] \}$ and the alphabet is $\Sigma = \{ this, is, an, example, other \}$.

2.2 Pattern

Our aim is to discover repetitive and common structures in data. We call such structures *patterns*. One generic way to define a *pattern* is as a set of all the sub-structures it represents. This means that we can say whether some data sub-structure is represented by a pattern.

The pattern structure is usually dependent on the data-structures which it represents. For example, sequence patterns are usually represented as sequences, graph patterns are represented as graphs; but in some situations sequence patterns could also be represented as graphs.

We denote the set of structures that a pattern structure p defines as all(p). If $\alpha \in all(p)$, where α is a structure then we say that the structure α matches exactly the pattern p. We say that α matches p if any structure from all(p) is a sub-structure of α .

In this thesis we only consider sequential pattern structures and use pattern in the meaning sequential pattern structure. One very common way of describing patterns is by using regular expressions [Kle51; Wik13a]. In this thesis we use regular expressions to describe the patterns and introduce the regular expression syntax where needed.

Pattern size is the length of the pattern sequence.

Example 2.2.1. . [AT] is a pattern of size 2 and denotes a set { AA, AT, CA, CT, GA, GT, TA, TT}; it matches CCTC and exactly matches AT.

We denote the set of all pattern p matches in a dataset D as $matches(p, D) = \{match(p, \alpha) | \alpha \in D, matches(p, \alpha)\}.$

2.3 Query

We need to somehow understand where a given pattern p is located in the dataset D. This compound structure $q = \langle D, p, matches(p, D) \rangle$ is called a query.

Example 2.3.1. Let our dataset be D = [ACGT, TXCGA] and our pattern be p = [C]. The corresponding query is $\{C, p, \{[1, 3], [2, 4]\}\}$, which means that in the sequence 1, pattern p ends at position 3, and in the sequence 2, the pattern ends at position 4.

The position representation is largely dependent on the dataset and pattern representation, but irrelevant for this generic algorithm.

2.3.1 Query features

When we talk about how "interesting" a pattern is, we are actually evaluating the query, since the pattern requires a context where it can be "interesting".

Queries can have different properties: length, number of matches in the dataset, pattern textual representation etc. Such properties can be represented by a function that takes a query as an input and returns the property. Formally a query feature is a function $f: Query \mapsto Any$.

We also need to see how "interesting" one query is compared to the others. Query interestingness is a function $f: Query \mapsto Value$ where the Value-s are well-ordered. This gives a measure to compare two different queries. We can often represent such interestingness measures as a real number.

We should also be able to somehow specify criteria for query. Query filter is a function $f: Query \mapsto Boolean$ and shows whether the query matches the criteria.

Example 2.3.2. Pattern occurrences in a document can be considered an interestingness measure. Whether query pattern is at least 3 tokens long is a query filter.

2.4 Pool

Pool is an abstract data type for a storing the queries. The only operations that pool must provide is "push", for adding a query, and "pop", for getting a query.

Example 2.4.1. Stacks and queues both satisfy the pool requirement. We could also define pools that store the queries on the disk; it could internally pack or reorder the queries for performance reasons.

2.5 Pattern Discovery

In this thesis, *pattern discovery* is defined as a process for finding, according to a query interestingness measure, the most interesting subset of sequential patterns that meet certain criteria in a sequence dataset.

Example 2.5.1. Let our research problem be "Finding the most common nucleotide patterns, which are at least 3 nucleotides long, from a shotgun sequencing output." *Most common* defines our interestingness measure. At least 3 nucleotides is the criteria for selecting a subset of patterns. Sequencing output is used as our dataset and nucleotides define how the sequence looks like.

Chapter 3

Approaches to Pattern Discovery

There have been suggested several ways of organizing patten discovery algorithms [DD07; SD06; P+00; HN05]. Here we give a overview of the different ideas; for thorough descriptions we suggest "Motif Discovery on Promotor Sequences" by M. Häußler and J. Nicolas [HN05] and "A survey of motif discovery methods in an integrated framework" by Sandve and Drabløs [SD06].

3.1 Pattern rating

There are many ways of comparing patterns to find the "most interesting" pattern. Of course, pairwise comparison is often wasteful and it is better to have a interestingness measure. For practical purposes it is useful to represent that measure with a floating point value.

One useful property an interestingness measure can have is monotonicity when patterns are ordered by length. This means that when we move from a small pattern to a larger pattern the interestingness always either grows or decreases. For example, if we make a pattern more specific the number of matches can only decrease. This can be very helpful for pruning the search space. Mostly monotonic functions could provide probabilistic pruning, but this area doesn't have much research.

Example 3.1.1. Lets assume we are looking patterns that should have at least 10 matches. If we encounter a pattern ACT that has 8 matches then we do not have to examine patterns **xACT** and **ACTx**, where **x** is some token from the alphabet.

The most trivial measure for patterns is the number of pattern matches in the dataset. When calculating number of matches we must be aware that we can have multiple matches per sequence. For example, a pattern AA matches in sequence AAAAAA 6 times. It is better to count the number of sequences that contain the matches to account for such pathological cases.

Many patterns can occur by chance and removing such false positives from output is important. As previously mentioned a frequent pattern is not necessarily interesting. We can use a reference dataset to compare the frequencies of patterns. There are different possibilities for a reference dataset: background sequence, shuffled input sequences, background Markov-Model, binomial/multinomial models. The background sequence is usually a similar dataset to the dataset we are analyzing; for example, if we select a subset from data for analyzing we can use the rest as a background sequence. If there are no background sequences we can simply shuffle the input sequences to get a "randomized" sample. To preserve more of the data characteristic we can build more complex models for randomization such as hidden Markov Model[Thi+01] or binomial and multinomial models.

Many rating functions are specified using the reference dataset as a measurement for false positives. One trivial way is to use the ratio between the input sequence occurrence and background sequence occurrences. One problem with ratios is that, if the frequencies are small then the ratios may be very high. Using binomial or hypergeometric model we can estimate how probable is the number of occurrences in input and background dataset. There are also measures Z-score, which estimates how many standard deviations an observation differs from the mean, and χ^2 -Value, which estimates whether a frequency distribution differs from theoretical distribution.

If we have several patterns with the same "score" then we can break the "tie" by comparing more measures. One such measure is complexity of a pattern. For example, when we have patterns AATTGGG and C and both have the same number of occurrences then the more specific pattern is probably more interesting.

3.2 Algorithmic techniques

Work in progress

3.2.1 Counting sequences

To find the most frequent sequences the simplest approach is to enumerate all possible sequences with the number of occurrences. A trie or an hash-table can be used for effective storage and lookup for occurrences. We can use the frequency table to prune sequences that are infrequent.

word counting combinatorial sampling online/offline iterative division alignment

3.2.2 Combinatorial and Statistical

3.2.3 Iterative and Division

3.2.4 Online and Offline

The algorithms can be online or offline. Online algorithms take a stream input and process it piece-by-piece without having the entire input available

from the start. Offline algorithm can examine the whole data immediately as needed.

Online algorithms respond better to change and can incrementally adjust to new data. This is especially useful when we are working with real-time data, such as network monitoring and financial data analysis.

Offline algorithms can find more complicated patterns and provide more "interesting" results. Of course more complicated patterns require more resources to find.

Pattern discovery algorithms in

In this chapter we give a overview of different algorithms used for pattern discovery.

Reorganize somehow

3.3 Algorithms

Overview of different combinatorial algorithms.

3.4 SPEXS

SPEXS is an pattern discovery algorithm described in "Pattern Discovery from Biosequences" [Vil02]. This algorithm finds patterns from a sequence. We take this as our basis for developing a new parallel algorithm. In this chapter we describe original algorithm so that we can later show the changes made to this algorithm.

We describe the general representation of the SPEXS algorithm. The original algorithm was as follows:

move algorithm to generalization

Algorithm 1 The SPEXS algorithm

```
Input: String S, pattern class \mathcal{P}, output criteria, search order, and fitness measure \mathcal{F}
Output: Patterns \pi \in \mathcal{P} fulfilling all criteria, and output in the order of
```

Output: Patterns $\pi \in \mathcal{P}$ fulfilling all criteria, and output in the order of fitness \mathcal{F}

```
1: Convert input sequences into a single sequence
```

```
2: Initiate data structures
```

```
3: Root \leftarrow new node
```

```
4: Root.label \leftarrow \epsilon
```

11:

```
5: Root.pos \leftarrow (1,2,...,n)
```

```
6: enqueue(Q, Root, order)
```

```
7: while N \leftarrow \text{dequeue}(\mathcal{Q}) \text{ do}
```

8: Create all possible extensions $p \in \mathcal{P}$ of N using N.pos and S

```
9: for extension p of N do
```

if pattern p and position list p.pos fulfill the criteria **then**

 $N.\text{child} \leftarrow p$

12: calculate $\mathcal{F}(p,S)$

13: enqueue(Q, p, order)

14: **if** p fulfills the output criteria **then**

15: store p in output queue \mathcal{O}

16: Report the list of top-ranking patterns from output queue \mathcal{O}

The main idea of the algorithm is that first we generate a pattern and a query that matches all possible positions in the sequence. We then put this query into a queue for extending. Extending a query means finding all queries whose patterns length is longer by 1. If any of the queries is fit, by some criteria, it will be put into the main queue, for further extension, and output queue for possible output.

3.4.1 TEIRESIAS

TEIRESIAS[RF98] is an algorithm for the discovery of rigid patterns in biological sequences.

write more

TEIRESIAS operates in two phases: scanning and convolution. Scanning phase identifies elementary patterns that are frequent. During convolution these elementary patterns are combined to make larger patterns.

This method is a divide and conquer method to only consider frequent patterns.

patterns with any symbol

write more

3.4.2 Verbumculus

Verbumculus [AGL03] is...

statistical analysis, pattern matching

no complex patterns

write more

3.4.3 MobyDick

MobyDick[BLS00]... statistical prediction of frequent

no complex patterns

write more

3.4.4 RSAT

RSAT[Tho+08] is ...

matrix based pattern

write more

3.4.5 Other

[RSK09; Jen+06]

3.5 Reviews

[P+00; DD07; SD06]

write about some reviews

3.6 Problems

Work in progress

Algorithms are fixed and hard to extend with new pattern types, structures and optimizations. Generalization usually comes at the cost of performance and complexity.

write more

Sequential algorithms do not take advantage of multicore processors.

write more

Data that exceeds computer memory can't work efficiently... can't be distributed efficiently.

write more

Chapter 4

SPEXS Generalization

In this chapter we show how to make SPEXS algorithm more abstract by allowing flexibilty through function composition and finding minimal requirements for the data-structures.

4.1 Algorithm

The algorithm in a more conventional view is:

Algorithm 2 The spexs2 algorithm

Input: dataset, in and out are pools, extend is an extender function, extend?, output? are filters

Output: Patterns satisfying filters and extender are in out pool

```
1: function SPEXS2(dataset, in, out, extend, extend?, output?)
2:
      prepare(in, dataset)
      while q \leftarrow \text{in.pop}() do
3:
          extended \leftarrow extend(q, dataset)
4:
          for qx \in \text{extended do}
5:
              if extend?(qx) then
6:
                  in.push(qx)
7:
                  if output?(qx) then
8:
                      out.push(qx)
9:
```

When the algorithm starts by initializing the *in* pool. The *in* pool shall contain queries which we wish to further examine. In the simplest case this means we create an empty pattern query and put it into the *in* pool. We could also start the process with an already existing pattern.

As the next step we pick a query from the *in* pool for extending. The extending means generating all queries whose pattern size is larger by one. There can be several such queries.

If any of the queries should be further examined as defined by the *extendable* query filter, it will be put into the *in* pool.

If the query is suitable for output as defined by the *outputtable* filter, it will be put into the *out* pool.

If we extend each pattern at each step by one we guarantee that we examine all the patterns that conform to our criteria as defined by *extendable* filter.

4.2 Pools

Since pools act independently from the rest of the algorithm they are free to reorder, store on disk or even discard the queries, if needed. If we wish to get 100 best results the output pool could immediately discard the bad ones.

We can also use different types of structures as pools. For example using a queue would make it start examining breadth first, using a stack would make it run depth first. We can use priority queue to choose the best queries to reach faster the good results as suggested in "Patterns Discovery from Biosequences" [Vil02].

4.3 Filtering

Filtering allows us to reduce the number of queries we have to examine and allows to select a subset of queries by some criteria.

The filters can make the decision, whether the query should be extended, based on any available information. For example query pattern, number of occurences, metadata in sequences, metadata in dataset or use data from configuration.

Example 4.3.1. We can add metadata to the sequence about the datafile. We count the occurences of a query in each datafile and then if the ratio between counts is smaller than some number defined in the configuration.

Although there is only one filter "function" specified the filter could be a composite of multiple filters.

Example 4.3.2. Pattern length is greater than three and pattern occurs at least 10 times in the dataset can be seen as a single filter that is composed of two filters.

4.4 Extending

The extending process is at the core of the algorithm and there are several ways of doing it. The main criteria is that the extending should guarantee that all possible patterns get eventually enumerated.

Extender is analogous to an inductive step. Our base case is formulated by *prepare* step in the SPEXS2 algorithm and the induction steps are carried out by the extender.

Example 4.4.1. We start with an empty query and we know all the locations of it. If our extender generates all the queries where the patterns are longer by 1 then we are guaranteed to enumarate all the patterns.

Example 4.4.2. We can start with the empty query and all queries with patterns of length 1. Now if our extender generates queries where the patterns are longer by 2 we can also examine all of the queries.

The extender determines which patterns and pattern classes will be generated. We can modify and compose different extenders to get new patterns. Often more complex patterns can adversely affect performance.

The general idea for extending is to find all the following patterns from all the previous query positions and then group the similar patterns into queries.

This process can be visualized with graphs. We make the sequence into a graph where the links between nodes are the sequence tokens. Each pattern then can walk the edges and match find the ending position for each pattern.

For example the sequence ACGCCGATCGC would look like:

For simplicity we use nucleotides as our alphabet $\Sigma = \{ A, C, G, T \}$ in the following examples.

4.4.1 Sequences

The simplest case how the next function behaves is when we are only looking for simple sequences. Let's consider a sequence ACGCCGATCGC and a pattern CG.

Initially we have matches only for query CG. Then by taking the *next* token from the sequence we can build up querys CGA and CGC.

4.4.2 Group tokens

One common addition in a pattern language is matching a group of tokens. For example we can use $\mathbf{x} = [\mathbf{AC}]$ to denote both tokens \mathbf{A} , \mathbf{C} . By adding where either one transitions we can capture such groups in the extension process.

There is a universal group ... or *wildcard* that matches any token in the alphabet.

Example 4.4.3. Pattern T. would match patterns TA, TC, TG, TT.

4.4.3 Star

Another possible extension is capturing a run of wildcards.

Example 4.4.4. A pattern A.*T would match ACT, ATTC, ATTTC and so on.

On the graph instead of .* we use only * symbol.

Constructing more complicated patterns increases the amount of queries required to enumerate. There are of course optimizations to avoid intermediary steps and repeated walking on the dataset. For example we can skip the extension with only .* and instead extend with .*Y, where Y is a token from the alphabet. This means we avoid this one large query and instead have multiple smaller queries.

We can limit the length of the run to speed up the process. Limiting the run length to be either 2 or 3 would look like:

4.4.4 Optimized group tokens

Instead of immediately extending the group tokens we can take the output of an other extender and combine its results. If we have a group token γ that contains $tokens(\gamma)$ then the matches for such group is

$$matches(p\gamma, D) = \bigcup_{t \in tokens(\gamma)} matches(pt, D)$$

.

Example 4.4.5. A pattern A[CTG] is located in document D at positions matches(AC, D) + matches(AT, D) + matches(AG, D).

4.4.5 Other possible extensions

By adding a multi-step from a node to itself and to the next node we can capture optional tokens.

Example 4.4.6. An optional token Y? means that the token Y can occur either zero or one time. For example AT? matches A and AT.

The graph for such token would look like:

Similarly we can use the same technique for optimization as for the group tokens $(matches(pY, D) = matches(p) \cup matches(pY)$, where Y is a token).

4.4.6 Alternative extensions

We mentioned that we can also extend by different number of tokens at a time as long as we guarantee that all patterns will be searched. For optimality we also do not want to iterate over the same pattern multiple times. As a simple example the sequence ACGCGA could be iterated with setup:

Since at the starting point we have all the patterns of length 0 and 1, by adding patterns with length 2 we can be sure to enumerate all of them. Of course the previous methods for group and star patterns require modification.

4.5 Summary

The extender was shown to work via graphs, practically it is much more reasonable to minimize it as simple sequence as already mentioned in "Pattern Discovery from Biosequences" [Vil02]. The additional extension links shown in the graphs can either be precalculated or calculated at runtime.

From the previous results we can also derive the minimal requirements for the dataset. First we need to get the initial empty query - which means we should be somehow be able to get all the positions where a pattern could start. The other operator is finding the next position and token from a given position. Finding of next positions from a given positions on sequence can be interpreted as a forward iterator.

Since the best way to visualize was on graphs suggests that the *spexs2* algorithm could be made to work on trees and then on graphs. Finding sequential patterns from a tree should be straightforward since the generic algorithm is oblivious to the amount of following tokens any position can have. Graphs are more difficult since we need to remove duplicates caused by extending previous pattern graphs[Wik13b].

To use this generic version of the SPEXS algorithm we need to 1. choose our pool structures, 2. choose our filters, 3. choose our extender and preparation and 4. dataset implementation.

Chapter 5

Parallelization

Here we discuss different ways how we can reify the algorithm to support parallelism. There are often several ways of making program parallel. Using parallelization means that there is additionally a need for some communication and synchronization to make the processes arrive at the final result. So it is useful to find as many possible parallelizations, but it is not wise to use all of them.

5.1 Process

The main process of the algorithm as described by data flow diagram. [Kah74; LP95] Circles denote processes and unfinished rectangles denote data stores.

We can see that the different query extensions do not share a dependency, except the dataset. Since dataset itself is read-only for a given process, it means we can use multiple extender processes. The same applies for extendability and output filter.

We can add more processes in a similar fashion without affecting the end result. Although such concurrency will introduce a source of indeterminism.

5.2 Extending

The extender can be parallelized via map and reduce concepts [DG08; Jr09]. The extender was based on two concepts finding the *next* positions from previous pattern position and then group those positions together to find the next queries.

The finding the next position from a position can be easily implemented

via mapping by using the *next* function of the dataset. The grouping requires some attention - the grouping is itself a reduction into a map by key with joining.

The pseudo-code representation for such function compositions would be very difficult and would require a lot of new syntax. Therefore we present this idea in Clojure[Hic08] which should be readable to people who know lisp. We use the reducers library to show how the extension can be implemented.

Algorithm 3 Parallel extender

```
(require '[clojure.core.reducers :as r])
     fold-join\ based\ grouping\ function
   (defn group-map-by [g f coll]
     (r/fold
       (r/monoid (partial merge-with into) (constantly {}))
      (fn [ret x]
         (let [k (g x)]
9
           (assoc ret k (conj (get ret k []) (f x)))))
10
11
   (defn extend [dataset query]
12
13
      (let steps
                     (r/mapcat #(walk dataset %) (:positions query))
              grouped (group-map-by :token :position steps)]
14
15
            (r/map \#(child-query q \%) grouped))))
```

Such approach may not give much improvement on desktop CPUs, since we already can process multiple queries at the same time. This parallelization could be benefitial for highly parallel processors such as GPGPUs or FPGAs.

5.3 Distributed processes

Since the dataset and the process memory consumption can get quite large it would also be benefitial to be able to partition the dataset between multiple machines. This can also help on a single machine since we can interlace running the different processes and store the non-running process in non-volatile memory.

The extension results for a given query stays inside the sequence which means we can partition by assigning sequences to separate datasets.

The whole dataset is required only for filtering, since even one of the simplest operations ("counting matches in dataset") requires full knowledge of all matches over the dataset. We can calculate partial results and let the filters communicate the results. This could be also done in a seprate process instead of directly communicating.

Example 5.3.1. For example to see whether some query is over some count

limit we first count matches in the partial datasets. Then send the partial results to a each other and add these results together locally. Depending on that result we know how to proceed.

Such distribution could be used to separate the process into more manageable chunks, but adds significant communication overhead.

Chapter 6

Implementation

In this chapter we will discuss a practical implementation, *spexs2*, for pattern discovery in sequences. We only discuss parts that we consider non-trivial or interesting and could be useful in implementing other algorithms.

Information about the full source code is in the Appendix A.

6.1 Language

The language choice in a project is very subjective. Usually the language chosen is either the language that the author feels most comfortable with or widely used language that has many libraries. The decision to use Go was based on several informal sources[Mac13; Ful13; Hun11; GPT13; Hic08; Bez+12] and the following discussion should be seen as opinions rather than facts.

This project should be a reference implementation and should be as readable as possible; languages such as C++, Java are probably not the best choices due to their complexity. The project deals with a lot of generic code; this means Clojure, Haskell and OCaml would be useful, but they would require a lot of effort if someone wishes to contribute and doesn't know the language. Languages such as Matlab, Octave or R would be ideal due to their ease of use, but their speed or memory performance is worse than C.

There are newer languages Go, D and Julia that suit the problem better. D is an high performance language that was designed as an replacement for C++, but still has a steep learning curve. Julia is a high-performance dynamic language designed for technical computing, but at the time of starting the project it had significant language runtime bugs. Go is a systems language designed to be simple, but it is worse in performance than D and Julia.

Go seemed to be the best choice due its simplicity, stability and concurrency support. The performance characteristics also seemed good enough. Language simplicity has several benefits: ease of learning, readability and simplicity. Ease of learning means people can more easily contribute to the project. Readability means that it serves a better reference implementation. Simplicity means that most of the language semantics and structures can be directly translated to other languages if there is a need for better performance.

In summary, Go is a nice compromise between Python and C. It adds additional rigidity and concurrency primitives and is a simple language.

6.2 Architecture

The main criteria for designing program have been described in D. Parnas paper "On the Criteria To Be Used in Decomposing Systems into Modules" [Par72]. It suggests decomposing into isolated units and parts that are likely to change together.

We chose the following module decomposition for the application:

Configuration structure for holding the configuration data

Setup based on the configuration initializes data-structures and functions for the algorithm

Reader reads in the data from files Database a collection of datasets Algorithm the SPEXS2 algorithm

Printer prints the result queries

The program starts by interpreting flags, then it marshals configuration file onto an internal data structure, this configuration structure as an input to the setup module. Setup module initializes (as defined by configuration) a reader, a printer and also prepares structures for algorithm. Then the reader reads input to the database. Then the algorithm is activated and finally it is printed out with Printer.

This structure is universal for algorithm implementations and allows easily to add more configuration options, different input formats and different output formats. By changing the configuration, reader and printer we could make it a web service instead of running it on a command line.

6.3 Configuration

One problem with flexible algorithms is that there are a lot of ways to be run. This can lead to having tens or hundreds of command-line flags for the application.

To avoid this problem we decided to use a *json* file for the program configuration. This format is widely known and well structured. For example a configuration file for pattern discovery in protein sequences:

```
{
    "Dataset": {
         "fore" : { "File" : "$inp$" },
"back" : { "File" : "$ref$" }
    "Reader" : {
         "Method" : "Delimited"
    "Extension": {
         "Method": "Group",
         "Groups" : {
              "." : { "elements" : "ACDEFGHIKLMNPRQSTVWY"}
         },
"Extendable": {
              "PatGroups()" : {"max" : 3},
              "PatLength()" : {"max" : 6},
             "Matches(fore)" : {"min" : 20},
"NoStartingGroup()" : {}
         },
    "Output": {
         "SortBy": ["-Hyper(fore, back)"],
         "Count": 100
    "Printer" : {
         "Method" : "Formatted",
         "Format": "Pat?()\t...\tHyper(fore,back)\n"
}
```

In hindsight *json* for configuration may not be the best option due to rigidity. Users can often forget to add or remove leading commas or forget to add quotes. This suggests that formats such as *rson*or *yaml* would be better choices.

cite rson

Other problem with configuration files is that they are harder to modify than command-line flags. By mixing command-line flags and configuration files we can get a solution that works better in practice than either of them independently.

cite yaml

One easy way to implement is to add custom syntax into the configuration file:

```
"Datasets" : {
    "fore" : { "File" : "$argument:default$"
    ...
```

Now some command-flags can be interpreted as replacements into the configuration file. Using spexs2 -conf conf.json argument=other would transform the configuration file into:

```
"Datasets" : {
    "fore" : { "File" : "other"
    ...
```

If no such parameter is given then the default value "main" can be used.

Configuration files are also problematic for running the first time. As a user you need to find a configuration file that suits your needs, then modify it and finally run it. To remedy this problem the application can embed sample configuration files so called "profiles" that can be used directly from the command line. This means you can directly use spexs2 -p=protein input=some.data min-p=1.0

6.4 Alphabet and Database

spexs2 was designed also to work with texts and words. To support such large alphabets we first needed to map each token to an identifier (an integer) and convert the sequences to a sequence of these identifiers. Unfortunately this is problematic for large datasets since this can take a lot of time as compared to just copying the file to memory.

There are analyses that may require many datasets. For example instead of comparing two datasets at a time you may want to compare pair-wise multiple datasets at the same time. Supporting multiple datasets in the code is rather trivial, but exposing this to the user is more interesting.

To support multiple datasets we first added a name for each dataset in the configuration:

```
"Datasets" : {
    "A" : { "File" : "$A$" },
    "B" : { "File" : "$B$" },
    "C" : { "File" : "$C$" },
    ...
```

We also use the command-line argument syntax to make it easier to use. Now when we are defining filters we need to specify how exactly they are calculated. For example we can not just say ratio of occurrences in dataset since that would be ambigous. We used syntax similar to function calls in the configuration:

```
...
"Extension": {
    "Outputtable": {
        "OccurencesRatio(A, B)" : {"min" : 2},
        ...
```

This allows to clearly see that the occurrences ratio between datasets A and B must be at least 2. Obviously we can also define features that take more arguments.

6.5 Pools

The input pool can direct the flow of extending process, which in turn can affect performance and memory. The performance doesn't get affected as much because the algorithm is exhaustive and hence every query gets examined, unless it is terminated early or the filters tuned during runtime.

There are several ways run the extension process: breadth first, depth first, most frequent first, least frequent first and others. Breadth first and depth first can easily be achieved by a queue and a stack respectively. We can use priority queues to implement other ways of extending.

The major concern was running on large datasets which meant that the memory consumption important. Although the most frequent first can arrive to the interesting results faster it can also use a lot of memory due to unextended less frequent nodes.

The least frequent approach would minimize the memory use since the least frequent would be most likely to be discarded by filters. This requires the use of a priority queue. The depth first approach would also use little memory but can use a stack.

Since we need concurrent access to the pool it requires very fast adding and removing operations. The depth-first ordering is more suitable since stack operations are faster than priority queues.

For the output queue a priority queue is the obvious choice since we usually only want a limited number of the most interesting results.

6.6 Query and Location set

The structure of query required some special consideration. The proposed solution in "Pattern Discovery from Biosequences" was to use a trie for remembering each pattern and then use optimized set for storing locations inside the database. Since the algorithm must now work concurrently using a simple trie was not an option because adding a child to the parent from multiple processes causes a race condition.

The first approach was to flip the trie, which means instead of parent pointing to the child the child points to the parent. The original tree can be extracted by reversing the links after the algorithm has finished. This started causing problems since we are working in a garbage collected environment and each pointer adds overhead to the garbage collection. Rough estimation also suggested that memory benefit from using trie is minimal.

The second approach was just to copy the any needed content to the child and not to link them. This worked out very well. The other problem was how to store the position list. Initially it seemed that a very tightly packed set structure is required to keep the memory usage of the program minimal. This of course would have impacted the performance. This actually turned out not to be the case since all the queries could be packed with any packing algorithm when they are stored in the pools and that had similar memory benefit with a simpler code.

One interesting optimization we found was a related to storing sparse positions. A simple way to implement large bitset is using a hash map to a small bit array. We use the first bits as the key and the rest store as a position in the bit array. We know that the occurrences of a pattern are likely to be sparse, hence it is also quite likely there are only bit arrays where only a single bit is set. The solution is to move last bits to the front of the integer. This makes the last bits to be less uniform and hence the packing will be better. Rough memory testing showed that this made the structure use about 2x less memory.

6.7 Query features, interestingness and filters

When we first described the query features we showed that filters and interestingness are a special case query features. In *spexs2* the features are used to print information about the results.

Since most of the features implemented could also be used as a interestingness measure we used a simplification for the "Feature" function definition:

```
type Feature func(q *Query) (float64, string)
```

Which means that the function returns two types, a real value and a string. In the implementation there are only few features that return arbitrary types so it was easier to convert it into a string. The only place where such features were needed is for printing. For example one of such features is the representation of the pattern.

And an implementation of a Feature constructor:

```
// the count of matching sequences
func Matches(datasets []int) Feature {
   return func(q *Query) (float64, string) {
      matches := q.Matches()
      return countf(matches, group), ""
   }
}
```

The argument to the function defines over which datasets the resulting function counts matches. To bind this constructor to the configuration we register it and with reflection use the function name as the name used in the configuration file.

The filters can be very similar to features in their implementation. For example a filter for pattern length is similar to the pattern length feature. Although implementing all combinations is possible we can use function composition to avoid such repetition.

By specifying a minimum or a maximum value for a feature we can turn it into a filter. One way to do it is using a lexical closure. For example:

```
func MakeFeatureFilter(fn Feature, min, max float64) Filter {
   return func(q *Query) bool {
      v, _ := feature(q)
      return (min <= v) && (v <= max)
   }
}</pre>
```

There are some filters that cannot be defined by features so there is still a possibility to make separate filters. For example disallowing certain tokens in pattern is defined as a separate filter.

In languages which do not support such composition we could use object composition and/or function pointers.

6.8 Synchronized Graph Traversal

spexs2 can be seen as a pattern tree traversal algorithm with some extra logic. Implementing search over a tree requires synchronization such that there are only a certain number of workers and that they wouldn't die of starvation. For universality we describe the principle for graphs.

Without synchronization the parallel version looks like:

```
Algorithm 4 Graph traversal
```

```
Output: All nodes in tree get processed with fn
 1: function VISIT(tree, start, fn, examine?)
       unvisited \leftarrow \{ \text{ start } \} )
 2:
       start workers
 3:
           while unvisited not empty do
 4:
               node \leftarrow unvisited.take()
 5:
               fn(node)
 6:
               for child \in children(node) do
 7:
                   if examine?(child) then
 8:
                       unvisited.put(child)
 9:
10:
       wait for workers
11:
```

This would not work correctly with multiple workers since there are race conditions and the workers can die early due to starvation.

The solution is to control worker startup and only terminate workers if all have finished and there are no more items in unvisited set.

Algorithm 5 Synchronized graph traversal

```
Output: All nodes in graph get processed with fn
 1: function Visit(graph, start, fn, examine?)
        added \leftarrow new semaphore(0)
        terminate \leftarrow false
 3:
        mutex \leftarrow new mutex()
 4:
        workers \leftarrow 0
 5:
        unvisited \leftarrow \{ \text{ start } \}
 6:
        added.signal()
 7:
        start workers
 8:
            while true do
 9:
               added.wait()
10:
               mutex.lock()
11:
               if terminate then
12:
                   added.signal()
13:
14:
                   mutex.unlock()
15:
                   break
               node \leftarrow unvisited.take()
16:
                workers \leftarrow workers + 1
17:
               mutex.unlock()
18:
               fn(node)
19:
               for child \in children(node) do
20:
21:
                   mutex.lock()
                   if examine?(child) then
22:
                       unvisited.put(child)
23:
                       added.signal()
24:
25:
                   mutex.unlock()
               mutex.lock()
26:
                workers \leftarrow workers - 1
27:
               if workers = 0 and unvisited = \{\} then
28:
29:
                   terminate \leftarrow true
                   added.signal()
30:
               mutex.unlock()
31:
32:
33:
        wait for workers
```

We use *mutex* to protect variables and data structures. Semaphore *added* tracks how many items are in the *unvisited* set, if the process finally terminates it is turned into a turnstile on line 31 and 13. Variable *workers* tracks how many workers are busy.

6.9 Debugging

Seeing how the algorithm runs is very useful to get an understanding how the algorithm works. This often can help to either improve the input configuration or debug the program itself. Often such tracing is implemented by adding debug statements.

For example:

```
func Spexs(s *Setup) {
   for q, ok := s.In.Pop(); ok {
      trace("started extending %v", q)
      extended := s.Extend(q)
      trace("extension result %v", extended)
   for qx := range extended {
      if s.Extendable(qx) {
           trace(" > extendable %v" qx)
           s.In.Push(qx)
      }
      if s.Outputtable(qx) {
           trace(" > outputtable %v" qx)
           s.Out.Push(qx)
      }
   }
}
```

Such statements make it harder to read the actual code, also it's hard to modify the statements for debugging or provide different ways of debugging.

We can use lexical closures to make it simpler:

```
type Extender func(q Query) []Query
func AddDebuggingStatements(s *Setup) {
    fn := s.Extend
    s.Extend := func(q Query) []Query {
        trace("started extending %v", q)
        extended := fn(q)
        trace("extension result %v", extended)
        for qx := range extended {
            trace(" > %v", qx)
            trace(" > extendable %v", s.Extendable(qx))
            trace(" > outputtable %v", s.Outputtable(qx))
        return extended
    }
}
func Spexs(s *Setup) {
    for q, ok := s.In.Pop(); ok {
        extended := s.Extend(q)
        for qx := range extended {
            if s.Extendable(qx) {
                s.In.Push(qx)
                if s.Outputtable(qx) {
                    s.Out.Push(qx)
            }
        }
    }
}
func run(){
    S := CreateSpexsSetup()
    if debugMode {
        AddDebuggingStatements(S)
    Spexs(S)
}
```

We have removed the debugging statements from the algorithm. We could define other "debug statement injectors" that provide different levels of details. This method of course has a slight performance impact due to the additional indirection. This can be extended to provide user interaction and other features.

Chapter 7

Applications and experimental results

Work in progress

7.1 Examples

Here we show examples for the program:

7.1.1 Genomic sequences

make an example

7.1.2 Event sequences

To see whether it would be plausible to analyze event sequences we generated a dataset of 5000 sequences of length 20 to 50. The events [A,B,C,D,F,G,H,I,X,Y,Z] in the dataset are non-uniformly distributed and additionally there is an error event E, which will happen if there is a "trigger pattern" X.*Y.*Z. Examples of the sequences:

without errors
AIBBFCACCADAHABXCHCG
GBACDBHBDAIBHYDIHAAADAFAHFGGDBFFYFZBFBAGDIDDX
CAGZHGBAXHFIGBAFBIABDYBABBFDBAFGGAAAAHHC
CGDCHHAAAABFBDBCHBBFGICDBGGDGCDFIFADCA
with errors
ADDDBBCYDFCCHXFDDXBAYDYBHACAZE
DXFDIHBXYDBFGGCBHAYBDHZE
IXBBXHBBACYCFHADHGFDACDHCGYABYBHADZE
AHAFFFGABIXBCAYCBBHBDCDDXZE

It is easy to notice the distinguishing ZE part, but the X.*Y.* part is very hard to notice, even when you know that it is there.

To prepare the dataset we extracted sequences into a separate file. Since there can be a lot of patterns by chance we use the whole dataset as a background. This allows us to compare the count of matches in the errors and the whole dataset. If the pattern occurs in both datasets at the same frequency, it is most doesn't distinguish the error dataset.

pattern	errors	all	ratio	p-value	
A.*Z	330/343	1706/5000	2.818	4.952-126	
B.*Z	329/343	1676/5000	2.860	1.041-126	
X.*G.*Z	254/343	654/5000	5.659	5.511-132	
Y.*B.*Z	256/343	596/5000	6.258	1.954-142	
X.*Y	343/343	1771/5000	2.822	9.879-147	
X.*F.*Z	274/343	717/5000	5.568	2.409-147	
X.*C.*Z	285/343	758/5000	5.478	7.304-156	
X.*D.*Z	281/343	718/5000	5.701	4.570-156	
A.*A.*Y.*Z	250/343	452/5000	8.055	1.304-158	
G.*Y.*Z	265/343	515/5000	7.494	1.656-166	
F.*Y.*Z	272/343	522/5000	7.588	1.639-174	
X.*A.*Z	305/343	811/5000	5.478	1.798-176	
X.*B.*Z	304/343	785/5000	5.641	1.540-178	
D.*Y.*Z	281/343	557/5000	7.347	1.066-180	
C.*Y.*Z	285/343	584/5000	7.107	1.056-181	
B.*Y.*Z	292/343	610/5000	6.971	2.370-187	
A.*Y.*Z	300/343	616/5000	7.092	3.163-198	
X.*Z	343/343	1054/5000	4.740	1.276-215	
Y.*Z	343/343	805/5000	6.204	1.009-249	
X.*Y,*Z	343/343	343/5000	14.537	0	
'	•	•			

As we can see this X*Y*Z pattern can be found very easily. We picked 20 best patterns based on p-value, which was calculated according to hypergeometric distribution.

This example is an ideal situation for the problem and the conclusions should be verified against real world data.

7.1.3 Text patterns

As an example how text patterns could provide useful feedback is to run it on a chapter of thesis. It could find overused words and phrases. To test this claim we ran the algorithm on Chapter 6.

To prepare the text we separated each sentence to a separate sequence. Then we removed all the non-textual characters and replaced them with spaces. The text was then converted to lowercase. We could additionally stem the text, but it didn't provide any useful improvements for this text.

We use a group "bind" = [and, or, if, then, else, the, a, an, my] do define words that do not carry much meaning.

As a starting point we searched patterns that may have group symbols and are at least 4 patterns long. We limited the output to 10 results:

```
matches
         pattern
2
         this means that the
2
         a practical implementation spexs2 for
2
         a practical implementation spexs2
         discuss a practical implementation spexs2
         discuss a practical implementation
2
         discuss a practical implementation spexs2 for
2
         discuss (bind) practical implementation spexs2 for
2
         discuss (bind) practical implementation
2
         discuss (bind) practical implementation spexs2
2
         for pattern discovery in
```

Repetition of such long word sequences looks very interesting. Further investigation revealed that there was a sentence that was rewritten and the previous version wasn't removed. After removing the repeating sentence we reran and also lowered the pattern length limit to 3.

```
matches
         pattern
         the configuration file
5
4
         a lot of
3
         this means that
3
         in the configuration
3
         means that the
3
         there are only
3
         in (bind) configuration
3
         pattern discovery in
3
         we can use
3
         of (bind) pattern
2
         into (bind) configuration file
2
         in (bind) configuration file
2
         pattern discovery in sequences
2
         into the configuration file
2
         for pattern discovery in
2
         this means that the
2
         in the configuration file
2
         be the best
2
         go is a
2
         the algorithm is
```

We see repetitions such as "this means that", "in the configuration", "we can use" and "pattern discover in", which suggests we can improve the text in such places. So it can find rather simple patterns. Usefulness of the algorithm for such natural language processing tasks should be further examined.

7.2 Performance measurements

To verify that the parallelization improves the performance we need to see a speedup when using multiple cores. As a comparison we also compare with the original spexs. The exact versions used were spexs2@6b14edd compiled with go1.1rc3 and spexs.0.2.a01.

For performance analysis we used 400,000 random protein sequences with length 12. Limited number of wildcards to 3 and searched all patterns with at least 5 matches in the dataset. We calculated the average of 5 runs for spexs and average of 3 runs for spexs2.

The original spexs works faster than spexs2 which is to be expected due to the runtime differences. At single core spexs2 performance is about 7 times slower than spexs. We can expect 2x performance difference due to the Go runtime and compiler. The rest of the difference 3.5x are most likely due to more general algorithm and some simplifications that were made to increase code readability.

The parallelization has significant benefit up to 20 cores. Amdahl's Law [Gus88] states that the parallel algorithms will be limited by their sequential parts; so this falloff is to be expected.

We showed that the algorithm benefits from parallelization although the runtime has significant impact on the performance of the program. Which suggests that spexs2 performance could be significantly improved with optimizations.

Chapter 8

Conclusions

In this thesis we analyzed how to develop a parallel pattern discovery algorithm. We showed how we can take an already existing algorithm and parallelize it by generalizing, decomposing and then reifying. Finding the general idea of the algorithm can simplify the algorithm and provide more intuitive way of interpreting it. Decomposing allows us to talk about separate parts of algorithm and modify them without affecting the general idea of the algorithm. If we have an abstract algorithm we can substitute those parts with parallel structures and algorithms.

As a practical part we implemented a parallelized algorithm based on spexs [Vil02]. We discussed several problems of implementing an algorithm and discussed interesting approaches to these problems. The program has been designed to be easily extendable for different inputs, filters and interestingness criteria. We discussed different possible uses for the implementation and analyzed the performance gained from parallelization.

Further work on spexs2 should investigate the best configurations for different applications. We discussed that spexs2 could be made to find tree and graph patterns, it could be an interesting research topic.

Approaches suggested in this thesis could be used to generalize and parallelize other algorithms. Finding generic algorithms can be an easy way of discovering new optimizations, new algorithms and new potential applications for algorithms. If these generalizations can be implemented practically we make the implementation easily extendable and also usable for wider range of problems.

Bibliography

- [AGL03] A. Apostolico, F. Gong, and S. Lonardi. "Verbumculus and the Discovery of Unusual Words". In: Journal of Computer Science and Technology 19.1 (2003), pp. 22-41. URL: http://www.cs.ucr.edu/~stelo/papers/verb03.ps.gz.
- [Bez+12] Jeff Bezanson et al. "Julia: A Fast Dynamic Language for Technical Computing". In: CoRR abs/1209.5145 (2012).
- [BLS00] Harmen J. Bussemaker, Hao Li, and Eric D. Siggia. "Building a dictionary for genomes: Identification of presumptive regulatory sites by statistical analysis". In: *Proceedings of the National Academy of Sciences* 97.18 (2000), pp. 10096-10100. DOI: 10.1073/pnas.180265397. eprint: http://www.pnas.org/content/97/18/10096.full.pdf+html.url:http://www.pnas.org/content/97/18/10096.abstract.
- [Bra+98] Alvis Brazma et al. "Approaches to the automatic discovery of patterns in biosequences". In: *Journal of computational biology* 5.2 (1998), pp. 279–305.
- [DD07] Modan Das and Ho-Kwok Dai. "A survey of DNA motif finding algorithms". In: *BMC bioinformatics* 8.Suppl 7 (2007), S21.
- [DG08] Jeffrey Dean and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters". In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. ISSN: 0001-0782. DOI: 10.1145/1327452.1327492. URL: http://doi.acm.org/10.1145/1327452.1327492.
- [Ful13] Brent Fulgham. The Computer Language Benchmarks Game. [Online; accessed 12-May-2013]. 2013. URL: http://benchmarksgame.alioth.debian.org/.

- [GC95] Mark S Guyer and Francis S Collins. "How is the Human Genome Project doing, and what have we learned so far?" In: *Proceedings of the National Academy of Sciences* 92.24 (1995), pp. 10841–10848.
- [GPT13] Robert Griesemer, Rob Pike, and Ken Thompson. *The Go Programming Language*. [Online; accessed 12-May-2013]. 2013. URL: http://golang.org/.
- [Gus88] John L Gustafson. "Reevaluating Amdahl's law". In: Communications of the ACM 31.5 (1988), pp. 532–533.
- [Hic08] R. Hickey. "The Clojure programming language". In: *Proceedings of the 2008 symposium on Dynamic languages*. ACM New York, NY, USA. 2008.
- [Hic12a] R. Hickey. Anatomy of a Reducer. [Online; accessed 12-May-2013]. May 2012. URL: http://clojure.com/blog/2012/05/15/anatomy-of-reducer.html.
- [Hic12b] R. Hickey. Reducers A Library and Model for Collection Processing.

 [Online; accessed 12-May-2013]. May 2012. URL: http://clojure.

 com/blog/2012/05/08/reducers-a-library-and-model-forcollection-processing.html.
- [HN05] Maximilian Häußler and Jacques Nicolas. Motif Discovery on Promotor Sequences. Anglais. Rapport de recherche RR-5714. INRIA, 2005,
 p. 136. URL: http://hal.inria.fr/inria-00070303.
- [How+08] Doug Howe et al. "Big data: The future of biocuration". In: Nature 455.7209 (2008), pp. 47-50.
- [Hun11] Robert Hundt. "Loop Recognition in C++/Java/Go/Scala". In: Proceedings of Scala Days 2011. 2011. URL: https://days2011.scalalang.org/sites/days2011/files/ws3-1-Hundt.pdf.
- [Jen+06] Kyle L. Jensen et al. "A generic motif discovery algorithm for sequential data". In: Bioinformatics 22.1 (2006), pp. 21-28. DOI: 10. 1093/bioinformatics/bti745. eprint: http://bioinformatics.oxfordjournals.org/content/22/1/21.full.pdf+html. URL: http://bioinformatics.oxfordjournals.org/content/22/1/21. abstract.

- [Jr09] Guy L. Steele Jr. "Organizing functional code for parallel execution or, foldl and foldr considered slightly harmful". In: *ICFP*. 2009, pp. 1–2.
- [Kah74] G. Kahn. "The semantics of a simple language for parallel programming". In: *Information processing*. Ed. by J. L. Rosenfeld. Stockholm, Sweden: North Holland, Amsterdam, Aug. 1974, pp. 471–475.
- [Kle51] Stephen Cole Kleene. "Representation of events in nerve nets and finite automata". In: (1951).
- [LP95] E.A. Lee and T.M. Parks. "Dataflow process networks". In: *Proceedings of the IEEE* 83.5 (May 1995), pp. 773–801. ISSN: 0018-9219. DOI: 10.1109/5.381846.
- [Mac13] David R. MacIver. *Hammer Principle*. [Online; accessed 12-May-2013]. 2013. URL: http://hammerprinciple.com/.
- [P+00] Pavel A Pevzner, Sing-Hoi Sze, et al. "Combinatorial approaches to finding subtle signals in DNA sequences". In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology. Vol. 8, 2000, pp. 269–278.
- [Par72] D. L. Parnas. "On the criteria to be used in decomposing systems into modules". In: Commun. ACM 15.12 (Dec. 1972), pp. 1053-1058. ISSN: 0001-0782. DOI: 10.1145/361598.361623. URL: http://doi.acm.org/10.1145/361598.361623.
- [RF98] I Rigoutsos and A Floratos. "Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm." In: Bioinformatics 14.1 (1998), pp. 55-67. DOI: 10.1093/bioinformatics/14.1.55. eprint: http://bioinformatics.oxfordjournals.org/content/14/1/55.full.pdf+html.URL: http://bioinformatics.oxfordjournals.org/content/14/1/55.abstract.
- [RSK09] Pedro Ribeiro, Fernando Silva, and Marcus Kaiser. "Strategies for network motifs discovery". In: e-Science, 2009. e-Science'09. Fifth IEEE International Conference on. IEEE. 2009, pp. 80–87.
- [SD06] Geir Kjetil Sandve and Finn Drablos. "A survey of motif discovery methods in an integrated framework". In: *Biol Direct* 1.11 (2006).

- [Thi+01] Gert Thijs et al. "A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling". In: *Bioinformatics* 17.12 (2001), pp. 1113–1122.
- [Tho+08] Morgane Thomas-Chollier et al. "RSAT: regulatory sequence analysis tools". In: Nucleic Acids Research 36.suppl 2 (2008), W119-W127.

 DOI: 10.1093/nar/gkn304. eprint: http://nar.oxfordjournals.org/content/36/suppl_2/W119.full.pdf+html. URL: http://nar.oxfordjournals.org/content/36/suppl_2/W119.abstract.
- [Vil02] Jaak Vilo. "Pattern Discovery from Biosequences". PhD thesis. University of Helsinki, 2002.
- [WDD99] Andreas Wespi, Marc Dacier, and Hervé Debar. An Intrusion-Detection System Based on the Teiresias Pattern Discovery Algorithm. 1999.
- [Wik13a] Wikipedia. Regular expression Wikipedia, The Free Encyclopedia. [Online; accessed 12-May-2013]. 2013. URL: http://en.wikipedia.org/wiki/Regular_expression.
- [Wik13b] Wikipedia. Subgraph isomorphism problem Wikipedia, The Free Encyclopedia. [Online; accessed 16-May-2013]. 2013. URL: http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem.

Appendix A

spexs2

The program can be found at github.com/egonelbre/spexs.

Several configurations can be found in the folder *examples*. It is best to start with an already existing configuration and modify it to your needs.

If the running spexs2 –details will print extended help about all the available features, filters, extenders.

A.1 source

The source code in *src* has the following structure:

dataset.godataset reader					
features.goparses and creates feature functions					
help.go prints help for the program					
printer.goprints the final output					
runtime.goprofiling and live-view setup					
setup.go prepares everything for algorithm					
spexs2.go main-entry point					
There are also additional packages:					
src/					
debugger/ debugger for concurrent processes					
stats/statistical function					
binom/binomial p-value calculation					
hyper/ hypergeometric p-value calculation					
utils/ additional utility functions					
bit/functions for bitmanipulation					
set/set implementations					
hash/hash table with entry per value					
bin/ hash table with bitvectors					
trie/2-level hashtable with bitvectors					
For compilation there are two scripts make.bat and make.sh that build					
the program into bin directory.					

Appendix B

Concise Implementation

This is a concise implementation of the generic parallel spexs2 algorithm. It is presented in Clojure[Hic08].

Algorithm 6 Definitions

```
(require '[clojure.core.reducers :as r])
    ; a parallel grouping function
    (defn group-map-by [g f coll]
       (r/fold
        (r/monoid (partial merge-with into) (constantly {}))
        (fn [ret x]
           (let [k (g x)]
             (\mathbf{assoc} \ \mathtt{ret} \ \mathtt{k} \ (\mathtt{conj} \ (\mathbf{get} \ \mathtt{ret} \ \mathtt{k} \ []) \ (\mathtt{f} \ \mathtt{x}))))))
10
11
12
      these are the minimal requirements for a dataset
13
    (defprotocol Dataset
                             "return _ all _ possible _ positions _ on _ the _ dataset")
             [this]
14
               [this pos] "return_coll_of_Step_from_pos"))
16
17
    (defrecord Query [pattern positions])
    (defrecord Step [token position])
18
19
20
      create an empty query for a dataset
21
    (defn- empty-query [dataset]
       (Query. [] (all dataset)))
23
    ; create a child query for parent given a token and positions (defn-child-query [parent [token positions]]
       (Query. (conj (:pattern parent) token) positions))
```

Algorithm 7 Extenders

```
; \quad simple \quad extension \quad function
1
   (defn walk-extend [dataset positions]
     (let [steps (mapcat #(walk dataset %) positions)]
       (group-map-by :token :position steps)))
     group extender
   (defn-select-merged [m ks]
     (mapcat second (select-keys m ks)))
   (defn extend-grouper [extend groups]
10
      (fn [dataset positions]
11
12
        (let [ extended (extend dataset)
               groupings (for [[token items] groups]
13
14
                             [token (select-merged extended items)])]
          (apply merge extended groupings))))
15
16
    ; function to combine multiple extension functions
17
   (defn combine-extenders [extenders]
18
19
      (fn [dataset positions]
        (apply merge-with concat (map #(% dataset positions) extenders))))
20
```

Algorithm 8 The main algorithm

```
; finally the algorithm itself:
   (defn- spexs-step [ds q extend]
     (\textbf{map} \ \#(\texttt{child-query} \ q \ \%) \ (\texttt{extend} \ ds \ (:\textbf{positions} \ q)))))
3
   (defn spexs [{
       ds :dataset ; dataset
       in :in
                    ; input coll
                    ; output coll
       out :out
       10
        output? : output? ; query filter for output
11
12
13
      (let [e (empty-query ds)]
        (loop [in (conj in e)
14
              out out
15
          (if-not (empty? in)
16
17
            (let [[q & qs] in
18
                  querys (spexs-step ds q extend)
                  new-in (concat qs (filter extend? querys))
19
                  new-out (concat out (filter output? new-in))]
20
21
              (recur new-in new-out))
22
            out))))
```

Algorithm 9 Sequence Dataset

```
; here is an example how to implement a dataset
   (defn-posify [row-index row-item]
     (map (fn [pos] [row-index pos]) (range (count row-item))))
   (defrecord SequenceDataset [items]
     (token [this [row pos]]
          (nth (nth (:items this) row) pos))
     Dataset ; satisfy dataset interface
10
     (all
           [this]
             (mapcat posify (range) (:items this)))
11
12
     (walk
             [this [row i]]
             (let [row-item (nth (:items this) row)]
13
14
              (if (> (count row-item) i)
                 [(Step. (token this [row i]) [row (inc i)])]
15
                 []))))
```

Algorithm 10 Example how to use

Non-exclusive licence to reproduce thesis and make thesis public

- I, Egon Elbre (date of birth: July 27, 1988),
- 1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:
 - (a) reproduce, for the purpose of preservation and making available to the public, including for addition to the DSpace digital archives until expiry of the term of validity of the copyright, and
 - (b) make available to the public via the web environment of the University of Tartu, including via the DSpace digital archives until expiry of the term of validity of the copyright, "Parallel Pattern Discovery", supervised by Jaak Vilo.
- 2. I am aware of the fact that the author retains these rights.
- 3. I certify that granting the non-exclusive licence does not infringe the intellectual property rights or rights arising from the Personal Data Protection Act.

Tartu, May 16, 2013