Chapter 25

Current, Resistance, and Electromotive Force

Goals for Chapter 25

- To understand current and how charges move in a conductor
- To understand resistivity and conductivity
- To calculate the resistance of a conductor
- To learn how an emf causes current in a circuit
- To calculate energy and power in circuits

Introduction

- Electric currents flow through light bulbs.
- Electric circuits contain charges in motion.
- Circuits are at the heart of modern devices such as computers, televisions, and industrial power systems.

Electrons in Metal

Current

In a metallic conductor, the moving charges are electrons — but the *current* still points in the direction positive charges would flow.

Superconducting Current

At extremely low temperatures, an electron can draw the positive ions in a superconducting material towards it. This movement of the ions creates a more positive region that attracts another electron to the area.

Theory of metallic conduction

- Follow the discussion in the text using Figures 25.26 (right) and 25.27 (below). Both illustrate the random motion of electrons in a conductor.
- Follow Example 25.11.

Theory of metallic conduction

 $10^6 \text{ m/s}, \text{ V.S.} 10^{-4} \text{ m/s}.$

 \cdot mean free time, denoted by τ .

Current

- A *current* is any motion of charge from one region to another. Current is defined as I = dQ/dt.
- An electric field in a conductor causes charges to flow. (See Figure 25.1 at the right.)

E≠ 0 anymore

Theory of metallic conduction

Superconductor

scattering

mean free time, denoted by τ .

Cooper pairs

Direction of current flow

- A current can be produced by positive or negative charge flow.
- Conventional current is treated as a flow of positive charges.
- The moving charges in metals are electrons (see figure below).

(a) \vec{v}_d \vec{v}_d A conventional current is treated as a flow of positive charges, regardless of whether the free charges in the conductor are positive, negative, or both.

(b)

In a metallic conductor, the moving charges are electrons — but the *current* still points in the direction positive charges would flow.

Direction of current flow

(a)

A **conventional current** is treated as a flow of positive charges, regardless of whether the free charges in the conductor are positive, negative, or both.

(b)

In a metallic conductor, the moving charges are electrons — but the *current* still points in the direction positive charges would flow.

Plasma

Conduction via electrons & holes in a semiconductor

Semiconductor

Current, drift velocity, and current density

- Follow the discussion of current, drift velocity, and current density.
- Figure 25.3 at the right shows the positive charges moving in the direction of the electric field.
- Follow Example 25.1.

Current, drift velocity, and current density

$$dQ = q(nAv_{d} dt) = nqv_{d}A dt$$

and the current is

$$I = \frac{dQ}{dt} = nqv_{\rm d}A$$

The current *per unit cross-sectional area* is called the **current density** J:

$$J = \frac{I}{A} = nqv_{\rm d}$$

Resistivity

$$\vec{v} = \vec{v}_0 + \vec{a}\tau$$

mean free time, denoted by τ .

$$\vec{a} = \frac{\vec{F}}{m} = \frac{q\vec{E}}{m}$$

$$\vec{v}_{\rm av} = \vec{a}\tau = \frac{q\tau}{m}\vec{E}$$

$$\vec{\boldsymbol{v}}_{\mathrm{d}} = \frac{q\tau}{m}\vec{\boldsymbol{E}}$$

the drift velocity $\vec{\boldsymbol{v}}_{\rm d}$:

, the initial velocity $\vec{\boldsymbol{v}}_0$ is zero

• The *resistivity* of a material is the ratio of the electric field in the material to the current density it causes:

$$\rho = \frac{E}{I}$$
 (definition of resistivity)

$$\vec{J} = nq\vec{v}_{d} = \frac{nq^{2}\tau}{m}\vec{E}$$

$$\rho = \frac{m}{ne^{2}\tau}$$

Resistivity

• The *resistivity* of a material is the ratio of the electric field in the material to the current density it causes:

$$\rho = \frac{E}{J}$$
 (definition of resistivity)

• The *conductivity* is the reciprocal of the resistivity.

Table 25.1 Resistivities at Room Temperature (20 °C)

	Substance	$\rho(\Omega \cdot m)$	Substance	$\rho(\Omega \cdot m)$
Conductors			Semiconductors	
Metals	Silver	1.47×10^{-8}	Pure carbon (graphite)	3.5×10^{-5}
	Copper	1.72×10^{-8}	Pure germanium	0.60
	Gold	2.44×10^{-8}	Pure silicon	2300
	Aluminum	2.75×10^{-8}	Insulators	
	Tungsten	5.25×10^{-8}	Amber	5×10^{14}
	Steel	20×10^{-8}	Glass	$10^{10} - 10^{14}$
	Lead	22×10^{-8}	Lucite	$>10^{13}$
	Mercury	95×10^{-8}	Mica	$10^{11} - 10^{15}$
Alloys	Manganin (Cu 84%, Mn 12%, Ni 4%)	44×10^{-8}	Quartz (fused)	75×10^{16}
	Constantan (Cu 60%, Ni 40%)	49×10^{-8}	Sulfur	10^{15}
	Nichrome	100×10^{-8}	Teflon	$>10^{13}$
			Wood	$10^8 - 10^{11}$

Resistivity and temperature

$$\rho(T) = \rho_0[1 + \alpha(T - T_0)]$$
 (temperature dependence of resistivity)

$$\rho = \frac{m}{ne^2\tau}$$

mean free time, denoted by τ .

Table 25.2 Temperature Coefficients of Resistivity (Approximate Values Near Room Temperature)

(b)	ho	
		Semiconductor: Resistivity decreases with increasing
	\	temperature.
	0	T

Material	$\alpha [(^{\circ}\mathrm{C})^{-1}]$	Material	$\alpha[(^{\circ}C)^{-1}]$
Aluminum	0.0039	Lead	0.0043
Brass	0.0020	Manganin	0.00000
Carbon (graphite)	-0.0005	Mercury	0.00088
Constantan	0.00001	Nichrome	0.0004
Copper	0.00393	Silver	0.0038
Iron	0.0050	Tungsten	0.0045

Conduction via electrons & holes in a semiconductor

Theory of metallic conduction

Superconductor

scattering

Cooper pairs

Resistance (Material + Geo.)

- The *resistance* of a conductor is $R = \rho L/A$ (see Figure 25.7 below).
- The potential across a conductor is V = IR.
- If V is directly proportional to I (that is, if R is constant), the equation V = IR is called Ohm's law.

Resistors are color-coded for easy identification

• This resistor has a resistance of 5.7 k Ω with a tolerance of $\pm 10\%$.

Table 25.3 Color Codes for Resistors

Color	Value as Digit	Value as Multiplier
Black	0	1
Brown	1	10
Red	2	10^{2}
Orange	3	10^{3}
Yellow	4	10^{4}
Green	5	10^{5}
Blue	6	10^{6}
Violet	7	10^{7}
Gray	8	10^{8}
White	9	10^{9}

Ohmic and nonohmic resistors

(a)

Ohmic resistor (e.g., typical metal wire): At a given temperature, current is proportional to voltage.

Slope = $\frac{1}{R}$

Semiconductor diode: a nonohmic resistor

For a conductor to have a steady current, it must be part of a path that forms a closed loop or **complete circuit.** Here's why. If you establish an electric field \vec{E}_1

(a) An electric field \vec{E}_1 produced inside an isolated conductor causes a current.

(b) The current causes charge to build up at the ends.

The charge buildup produces an opposing field \vec{E}_2 , thus reducing the current.

(c) After a very short time \vec{E}_2 has the same magnitude as \vec{E}_1 ; then the total field is $\vec{E}_{total} = 0$ and the current stops completely.

$$\vec{I} = 0 \quad \vec{E}_1 \longrightarrow \vec{E}_2$$

$$\vec{J} = 0 \quad \vec{E}_{\text{total}} = 0$$

The Hall Effect

- Follow the discussion of the Hall effect in the text using Figure 27.41 below.
- Follow Example 27.12.
 - (a) Negative charge carriers (electrons)

The charge carriers are pushed toward the top of the strip ...

... so point a is at a higher potential than point b.

$$qE_z + qv_{\rm d}B_{\rm y} = 0$$

$$J_x = nqv_d$$

(b) Positive charge carriers

The charge carriers are again pushed toward the top of the strip ...:

... so the polarity of the potential difference is opposite to that for negative charge carriers.

$$nq = \frac{-J_x B_y}{E_z} \qquad \text{(Hall effect)}$$

For a conductor to have a steady current, it must be part of a path that forms a closed loop or **complete circuit.** Here's why. If you establish an electric field \vec{E}_1

Ohm's
$$I = \frac{V}{R}$$
 Electric current = Voltage / Resistance

- An *electromotive force* (*emf*) makes current flow. In spite of the name, an emf is *not* a force.
- The figures below show a source of emf in an open circuit (left) and in a complete circuit (right).

When the emf source is not part of a closed circuit, $F_n = F_e$ and there is no net motion of charge between the terminals.

$$W_{\rm n} = q\mathcal{E}$$
 qV_{ab} , $q\mathcal{E} = qV_{ab}$, $V_{ab} = \mathcal{E}$ (ideal source of emf)

- An *electromotive force* (*emf*) makes current flow. In spite of the name, an emf is *not* a force.
- The figures below show a source of emf in an open circuit (left) and in a complete circuit (right).

Potential across terminals creates electric field in circuit, causing charges to move.

 $\mathcal{E} = V_{ab} = IR$ (ideal source of emf)

Copyright © 2012 Pearson Education Inc.

Internal resistance

- Real sources of emf actually contain some *internal* resistance r.
- The *terminal voltage* of an emf source is $V_{ab} = \xi Ir$.
- The terminal voltage of the 12-V battery shown at the right is less than 12 V when it is connected to the light bulb.

$$V_{ab} = \mathcal{E} - Ir$$

(terminal voltage, source with internal resistance)

Faraday's law

• The flux depends on the orientation of the surface with respect to the magnetic field. See Figure 29.4 below.

Surface is face-on to magnetic field:

- \vec{B} and \vec{A} are parallel (the angle between \vec{B} and \vec{A} is $\phi = 0$).
- The magnetic flux $\Phi_B = \vec{B} \cdot \vec{A} = BA$.

Surface is tilted from a face-on orientation by an angle ϕ :

- The angle between B and A is ϕ .
- The magnetic flux $\Phi_B = \vec{B} \cdot \vec{A} = BA \cos \phi$.

Surface is edge-on to magnetic field:

- \vec{B} and \vec{A} are perpendicular (the angle between \vec{B} and \vec{A} is $\phi = 90^{\circ}$).
- The magnetic flux $\Phi_B = \vec{B} \cdot \vec{A} = BA \cos 90^\circ = 0.$

Symbols for circuit diagrams

Table 25.4 shows the usual symbols used in circuit diagrams.

Table 25.4 Symbols for Circuit Diagrams

A source in an open circuit

• Follow Conceptual Example 25.4 using Figure 25.16 below.

Source in a complete circuit

Follow Example 25.5 using Figure 25.17 below.

Potential changes around a circuit

- The net change in potential must be zero for a round trip in a circuit.
- Follow Figure 25.20 at the right.

Energy and power in electric circuits

- The rate at which energy is delivered to (or extracted from) a circuit element is $P = V_{ab}I$. See Figures 25.21 (below) and 25.22 (at right).
- The power delivered to a pure resistor is $P = I^2R = V_{ab}^2/R$.

- (a) Diagrammatic circuit
- The emf source converts nonelectrical to electrical energy at a rate *EI*.
- Its internal resistance *dissipates* energy at a rate I^2r .
- The difference $\mathcal{E}I I^2r$ is its power output.

(b) A real circuit of the type shown in (a)

