Consider the following functions:

$$f(n) = n \log \log n$$

$$g(n) = n(\log n)^2$$

Which of the following is true?

Options:

6406532239756.
$$f(n)$$
 is $O(g(n))$ and $g(n)$ is $O(f(n))$

6406532239757.
$$\checkmark f(n)$$
 is $O(g(n))$, but $g(n)$ is not $O(f(n))$

6406532239758.
$$f(n)$$
 is not $O(g(n))$ and $g(n)$ is not $O(f(n))$

Consider the following functions:

•
$$f(n) = 102n^4 + 26n^3$$

•
$$g(n) = 103n^3 + 20n^2$$

•
$$h(n) = 110n^3 \log n + 36n^2$$

Which of the following is/are true?

Options:

6406531929589.
$$* f(n) = O(g(n))$$

6406531929590.
$$\checkmark g(n) = O(h(n))$$

6406531929591. *
$$f(n) = O(h(n))$$

6406531929592.
$$*$$
 $h(n) = O(g(n))$

6406531929593.
$$\checkmark h(n) = O(f(n))$$

```
def insertionsort(L):
2
       n = len(L)
       if n < 1:
3
           return(L)
4
5
       for i in range(n):
          j = i
6
7
           while(j > 0 and L[j] < L[j-1]):
               (L[j],L[j-1]) = (L[j-1],L[j])
8
               j = j-1
9
10
       return(L)
```

Suppose L is a list of distinct integer elements. Let x, y and z be the largest, second largest, and third largest elements in the list L. Suppose z appears before x in the list. Which of the following is true, with respect to the implementation above?

Options:

```
6406531929602. * and z are always compared in a run of insertion sort, regardless of the position of y.
```

```
6406531929603. * and z are compared in a run of insertion sort if and only if y appears before z in the list L.
```

6406531929604. \checkmark x and z are compared in a run of insertion sort if and only if y appears after x in the list L.

6406531929605. * x and z are compared in a run of insertion sort if and only if y appears after z but before x in the list L.

4 sorted lists each of length n/2 are merged into a single sorted list of 2n elements using two way merging. What will be the minimum number of element comparisons needed for this process?

Options:

```
6406531561926. * n-1
```

6406531561928.
$$\checkmark$$
 $4n-3$