Miscellaneous Problem Set

- 1) Let $n \ge 1$ be an integer. Then
- a)Prove that $X^n + Y^n + Z^n$ can be written as a polynomial with integers coefficients in the variables

$$\alpha = X + Y + Z$$
, $\beta = XY + YZ + ZX$ and $\gamma = XYZ$.

- b) Let $G_n = x^n \sin(nA) + y^n \sin(nB) + z^n \sin(nC)$, where x, y, z, A, B, C are real numbers such that A + B + C is an Integral multiple of π . Using (a) or otherwise show that if $G_1 = G_2 = 0$, then $G_n = 0$ for all positive integers n.
- 2) The Fibonacci sequence is defined by

$$a_1 = 1, a_2 = 1, a_{n+2} = a_{n+1} + a_n$$
. Find number of n for which

$$\frac{1}{2} + \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \frac{5}{2^5} + \dots + \frac{a_n}{2^n} > 2$$

3) Suppose that x_1, x_2, \ldots, x_n are nonnegative real numbers for

which
$$x_1 + x_2 + x_3 + ... + x_n < \frac{1}{2}$$
. Prove that

$$(1-x_1)(1-x_2)...(1-x_n) > \frac{1}{2}$$

4) If z_1, z_2, z_3 are non-zero complex numbers such that

$$\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$$
 Then prove that z_1, z_2, z_3 lie on a circle passing through the origin.

5) Let $a = \sqrt[2023]{2023}$ which is greater between 2023 and $a^{a^{-1/3}}$, where a appears 2023 times.

6) Prove that the sum of entries of the table situated in different rows and different columns is not less than 1.

7) How many distinct integers are in the sequence

$$\left[\frac{1^2}{2023}\right], \left[\frac{2^2}{2023}\right], \left[\frac{3^2}{2023}\right], \dots, \left[\frac{2023^2}{2023}\right].$$

8)Consider three circles, C_1 , C_2 and C_3 . Say, the center of C_1 is O. The center of C_2 is A and C_3 is C. Radius of $C_2 \neq Radius$ of C_3 . C_2 and C_3 touches circle C_1 at B and D respectively. Now AC and BD extends to meet at P. BP meets C_3 at E. Prove that

$$\frac{PE}{PB} = \frac{PC}{PA}.$$

