

Forschungs- und Entwicklungsseminar Sommersemester 2021

Machine Learning in der sich selbst organisierenden Produktion

Semester 2

Referenten: Max Weickert

Max Schwerdtner

Datum: 21.06.2021

Gliederung

- Erläuterung der Problemstellung
- 2. Methode zur Vorhersage des optimalen Freigabezeitpunktes
- 3. Anwendung von Machine Learning in der sich selbst organisierenden Produktion
- 4. Kennzahlenvergleich nach Anwendung von Machine Learning
- 5. Alternativer Ansatz zur Optimierung der Produktionsplanung
- 6. Zusammenfassung und Ausblick

1. Erläuterung der Problemstellung

1. Erläuterung der Problemstellung

1. Erläuterung der Problemstellung

Problemstellung

Ein flexibles ML-Modell für die Terminierung beliebiger Produkte

- Verringerung der Lagerkosten
- Verringerung der Systemlast
- Verbesserung der Pünktlichkeit

2. Methode zur Vorhersage des optimalen Freigabezeitpunkts

2. Methode zur Vorhersage des optimalen Freigabezeitpunkts

Vorhersage der Durchlaufzeit für Kundenaufträge

→ Vorhersage der Durchlaufzeit eines Kundenauftrags und Abzug dieser vom Liefertermin

2. Methode zur Vorhersage des optimalen Freigabezeitpunkts

HOCHSCHULE FÜR TECHNIK UND WIRTSCHAFT DRESDEN UNIVERSITY OF APPLIED SCIENCES

Vorhersage der Durchlaufzeit für Kundenaufträge

Beschreibung eines Kundenauftrags anhand von Produkteigenschaften

Produkteigenschaften

- Summe der Durchlaufzeit aller Teilprodukte
- Summe der Operationen
- Summe der Produktionsaufträge

Beschreibung der Produktion anhand von aktuellen Systemparametern

Systemparameter

- Lagerbestand
- Auftragsbestand
- Auslastung aller Maschinen

3. Anwendung von Machine Learning in der sich selbst organisierenden Produktion

Kundenauftrag

Trainingsdatengenerierung

Produkteigenschaften

- Summe der Durchlaufzeit aller Teilprodukte
- Summe der Operationen
- Summe der Produktionsaufträge

Systemparameter

- Lagerbestand
- Auftragsbestand
- Auslastung aller Maschinen

Reale Durchlaufzeit des Auftrags

Herausforderung: Produkte sind erst bei Eintritt in Produktion bekannt

- → Trainieren möglichst vieler verschiedener Produktstrukturen
- → Verwendung eines Produktgenerators zur Erzeugung ähnlicher Produkte

Machine Learning Bibliotheken

 Automatisches Trainieren und Evaluieren des besten Regressionsmodells

Python ML-Bibliothek für Deep Learning

Vorhersage mittels Deep Learning in der SSOP

Vorteile

- Verwendung aktuellster ML Frameworks
- Umfangreiche Dokumentation
- Beständig und zuverlässig
- Läuffähig im Docker-Container

Vorhersage mittels RESTful API

Vergleich AutoML und Deep Learning

	AutoML	Deep Learning
Einfachheit der Anwendung	- Einfach anwendbar	Entwicklung komplexzeitaufwendiges Experimentieren
Vorhersageleistung	- mittlere Abweichung von 10,4 %	- mittlere Abweichung von 10,3 %
Gründe für unzureichende Vorhersageleistung	- Ausschließlich Regression	 Parameter des Neuronalen Netzes
	 Produkte wurden durch zu wenig Eigenschaften beschrieben Systemparameter werden nur aller acht Stunden erfasst Zu wenig Trainingsdaten für Möglichkeiten an Produkten 	
Verbesserung der Vorhersageleistung		 Optimierung der Parameter des Neuronalen Netzes
	Produkte durch weitere Eigenschaften beschreibenGranularere Systemwerte verwendenMehr Trainingsdaten erzeugen	

Auslastung des Systems

→ 1,7% weniger Last im System

Lagerkosten für Produkte

→ Keine Verbesserung oder Verschlechterung

Schlussfolgerung

- Vorhersage der Durchlaufzeit eines Kundenauftrags eignet sich nur bedingt zur Optimierung der Produktionsperformance
- Nur zu späte Freigabe eines Kundenauftrags ist problematisch
- → Alternative Ansätze sollten in Betracht gezogen werden

5. Alternativer Ansatz zur Optimierung der Produktionsplanung

5. Alternativer Ansatz zur Optimierung der Produktionsplanung

→ Vorhersage der Dauer der Übergangszeiten vor Maschinen, Ermittlung der Durchlaufzeit eines Produktionsauftrags

5. Alternativer Ansatz zur Optimierung der Produktionsplanung

HOCHSCHULE FÜR
TECHNIK UND WIRTSCHAFT
DRESDEN
UNIVERSITY OF APPLIED SCIENCES

 Anhand Parameter der Maschine und Eigenschaften des Produktionsauftrags

Beschreibung der Maschinen anhand ihrer aktuellen und vergangenen Parameter

Maschinenparameter

- Auslastung der Maschine(-ngruppe)
- Wartezeit der Maschine(-ngruppe)

Eigenschaften des Produktionsauftrags

- Anzahl der offenen Operationen der Maschine(-ngruppe)
- Dauer der offenen Operationen der Maschine(-ngruppe)

6. Zusammenfassung und Ausblick

6. Zusammenfassung und Ausblick

Ergebnis des Forschungs- und Entwicklungsseminars

- Ähnlich gute Vorhersageleistung von AutoML und Deep Learning
- Keine oder nur marginale Verbesserungen der Performance der Produktion
- Bestimmung des Freigabezeitpunkts nur bedingt sinnvoll
- Alternative Ansätze sollten in Betracht gezogen werden

Ausblick

- Umsetzung des alternativen Ansatzes
- Mögliche Verbesserungen der Vorhersageleistung testen
- Optimierung der Hyperparameter des Deep Learning Modells
- Training während der Simulation

Vielen Dank für Ihre Aufmerksamkeit!

...und Danke an unsere Betreuer!

Bildquellen

- [11] ML.NET <a href="https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F0%2F02%2FMldotnet.svg%2F1200px-Mldotnet.svg.png&f=1&nofb=1
- [11] Keras http%3A%2F%2Fwww.dobitaobyte.com.br%2Fwp-content%2Fuploads%2F2016%2F10%2Fkeras0.png&f=1&nofb=1
- [12] Keras.NET https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftse4.mm.bing.net%2Fth%3Fid%3DOIP.c7exAHmUplr6GV61WYO1VQHaCm%26pid%3DApi&f=1
- [12] Tensorflow.NET: <a href="https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fraw.githubusercontent.com%2FSciSharp%2France-content.com%2FSciS
- [12,13] Python Logo: <a href="https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftalhasariyuerek.com%2Fwp-content%2Fuploads%2Fsites%2F4%2F2019%2F03%2Fpython-logo-png-big-image-png-2400-1280x905.png&f=1&nofb=1