Operads for number theory

Daniel Miller

August 7, 2016

Our main source is [HS87]. Let \mathcal{C} be a strict monoidal category. Our main example is the category $\mathsf{Com}(k)$ of chain complexes over a (commutative, unital) ring k. The main objects of interest will be collections $O = \{O_n : n \ge 0\}$ in \mathcal{C} . To handle these, we introduce some formalism. Note that $\mathbf{N} = \{1, 2, \ldots\}$.

Let $\mathsf{tup} = \coprod_{d \geqslant 0} \mathsf{tup}_d$ be the set of tuples. For $d \geqslant 0$, tup_d is the set of pairs (m, S), where S is a finite subset of \mathbf{N}^d and $m: S \to \mathbf{Z}_{\geqslant 0}$. We write $\dim(m) = d$ if $m \in \mathsf{tup}_d$. Define

$$\begin{split} |\cdot|: \mathsf{tup} &\to \mathbf{Z}_{\geqslant 0} & |(m,S)| = \sum_{s \in S} m_s \\ l: \mathsf{tup}_{d+1} &\to \mathsf{tup}_d & l(m,S) = \left((s_1,\ldots,s_d) \mapsto \sup_{(s_1,\ldots,s_{d+1}) \in S} s_{d+1}, \{(s_d,\ldots,s_d) \in S_{d+1}, \{(s_$$

We will write $m=(m_1,\ldots,m_n)$ for an *n*-tuple of integers; we put l(m)=n and $|m|=\sum m_i$. In general, we say a tuple $m=(m_{i_1,\ldots,i_d})$ has dimension d, write $\dim(m)=d$, $|m|=\sum m_{i_1,\ldots,i_d}$ and

Definition 1. An operad O in C consists of the following data:

- A family of objects $\{O_n : n \ge 0\}$ in C. For $m = (m_1, \dots, m_n)$, we put $O_m = O_{m_1} \otimes \cdots \otimes O_{m_n}$.
- Multiplication maps $\gamma_m : O_{\ell(m)} \otimes O_m \to O_{|m|}$.
- A unit $e: 1 \to O_0$.

If m is a two-dimensional tuple, put $O_m = \bigotimes_{i_1,i_2} O_{m_{i_1},m_{i_2}}$. This data is required to satisfy the following properties:

1 Application

Here our inspiration is from [Bei12]. The fundamental idea is that a ring like \mathbf{Z}_p , a limit of non-free \mathbf{Z} -modules, should be "resolved." More precisely, consider

$$\mathbf{Z}_p^{\flat} = \operatorname{holim}_n \operatorname{cone}(\mathbf{Z} \xrightarrow{p^n} \mathbf{Z}).$$

The functor $F \widehat{\otimes} \mathbf{Z}_p := \text{holim cone}$

References

- [Bei12] A. Beilinson. p-adic periods and derived de Rham cohomology. J. Amer. Math. Soc., 25(3):715–738, 2012.
- [HS87] V. A. Hinich and V. V. Schechtman. On homotopy limit of homotopy algebras. In K-theory, arithmetic and geomtry (Moscos, 1984–1986), volume 1289 of Lecture Notes in Math., pages 240–264. Springer, 1987.