Neural Networks

Neural networks

Goal: Build an intuition into how neural networks works and get familiar with the associated vocabulary.

Program:

- Intutiton to neural neworks
- The anatomy of a network
- The training process (gradient descent)
- Backpropagation

Intuition

Neural Networks Intuition

Anatomy of the network

Anatomy of the network (neurons)

Inputs (vector \mathbf{x}) are combined with weights (vector \mathbf{w}), a bias (value \mathbf{b}) and a non-linear activation function ($\mathbf{\sigma}$) to produce an output value, i.e. output = $\mathbf{\sigma}(\mathbf{w}^T\mathbf{x} + \mathbf{b})$

Anatomy of the network (layers)

Layer: column of neurons stacked together that can receive the same inputs.

Hidden layer: intermediate layers between inputs and outputs.

Deep neural network: a neural network that contains many hidden layers, and can therefore provide solutions to more complicated and subtle decision problems.

The training process

Training

- Training is the process of tuning the weights w in a network.
- Usually, to train a network we require input data \boldsymbol{X} and corresponding target labels \boldsymbol{y} .
- We attempt to use the network f to predict make predictions, i.e. $\hat{y}=f(X,w)$.
- The weights should minimise a cost or loss function J, e.g.
 - $J = y \hat{y}$
 - $J = \frac{1}{2} (y \hat{y})^2$

Gradient descent

$$w' = w - \eta \frac{\partial J(w)}{\partial w}$$

A process of following the gradients of the error function towards a minimum value.

We'll now examine backpropagation, a fast algorithm for computing the weight gradients which is based on the chain-rule.

- We want to find the best weights!
- Update weights using gradient descent

•
$$w'_{(x1)1} = w_{(x1)1} - \eta \frac{\partial loss}{\partial w_{(x1)1}}$$

• We find $\frac{\partial loss}{\partial w_{(\chi 1)1}}$ using the chain rule

We need to compute these gradients

• We find $\frac{\partial loss}{\partial w_{(x1)1}}$ using the chain rule

We need to compute these gradients

•
$$\frac{\partial loss}{\partial w_{(x1)1}} = \frac{\partial loss}{\partial f_1(e)} \frac{\partial f_1(e)}{\partial e} \frac{\partial e}{\partial w_{(x1)1}}$$
, where $e = w_{(x1)1}x_1 + w_{(x2)1}x_2$

$$\frac{\partial e}{\partial w_{(x1)1}} = x_1$$

• We find $\frac{\partial loss}{\partial w_{(x1)1}}$ using the chain rule

We need to compute these gradients

•
$$\frac{\partial loss}{\partial w_{(x1)1}} = \frac{\partial loss}{\partial f_1(e)} \frac{\partial f_1(e)}{\partial e} x_1$$

• This is the derivative of our activation function, typically we choose one that is easy to compute, e.g. the sigmoid

$$\sigma'(e) = \sigma(e)(1 - \sigma(e))$$

• We find $\frac{\partial loss}{\partial w_{(\chi 1)1}}$ using the chain rule

We need to compute these gradients

•
$$\frac{\partial loss}{\partial w_{(x1)1}} = \frac{\partial loss}{\partial f_1(e)} \frac{\partial f_1(e)}{\partial e} x_1$$

 We compute this derivative by backpropagating the error through the network.

Epoch

- Forward pass: a data sample is passed forward through the network to determine a prediction.
- Backward pass: recursively compute the error backwards from the last layer following the chain-rule and update the weights w.r.t. the known target output.
- Epoch: training the neural network with all the training data for one cycle.

Forward pass

Feed data through the network.

Forward pass

Feed data through the network.

Compute the error

For example,

$$loss = \frac{1}{2} (\mathbf{y} - \hat{\mathbf{y}})^2$$

Then we can compute the error rate $\delta = \frac{\partial \ loss}{\partial \hat{y}}$

$$\delta = \frac{\partial loss}{\partial \hat{y}} = -(y - \hat{y})$$

Local error contribution

$$\delta_4 = \frac{\partial loss}{\partial f_4} = \frac{\partial loss}{\partial f_6} \frac{\partial f_6(e)}{\partial e} \frac{\partial e}{\partial f_4} = \delta \frac{\partial f_6(e)}{\partial e} w_4$$

where $\hat{y} = f_6 \& e = w_{46}f_4 + w_{56}f_6$

Local error contribution

$$\delta_{1} = \frac{\partial loss}{\partial f_{1}} = \frac{\partial loss}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial e} \frac{\partial e}{\partial f_{4}} = \delta_{4} \frac{\partial f_{4}(e)}{\partial e} w_{14} + \delta_{5} \frac{\partial f_{5}(e)}{\partial e} w_{15}$$

Previously we saw that

$$\frac{\partial loss}{\partial W_{(x1)1}} = \frac{\partial loss}{\partial f_1(e)} \frac{\partial f_1(e)}{\partial e} W_{(x1)1}$$

Thus,
$$\frac{\partial loss}{\partial w_{(x1)1}} = \delta_1 \frac{\partial f_1(e)}{\partial e} x_1$$

We can then optimise weight using gradient descent, e.g.

$$w'_{(x1)1} = w_{(x1)1} - \eta \delta_1 \frac{\partial f_1(e)}{\partial e} x_1$$

We can then optimise weight using gradient descent, e.g.

$$w'_{14} = w_{14} - \eta \delta_4 \frac{\partial f_4(e)}{\partial e} f_1$$

Summary

Summary

In this section we have covered

- Intutiton to neural neworks
- The anatomy of a network
- The training process (gradient descent)
- Backpropagation

In the next exercise we will build a MLP to solve the XOR problem

XOR perceptron

XOR

A XOR gate (or exclusive OR) is a logic gate that returns true (or 1) when one, and only one, of the inputs of the gate is true. Otherwise it returns false.

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Whereas other logical operator, the XOR operator is more complex and must be modeled with a multi-layer perceptron.

MLP

The MLP applies layers of transformations to our input. We compare the output of the model to our actual labels.

The next slide shows a schematic diagram of the MLP we will be creating

XOR MLP

X_1	X_2
-------	-------

W_1	W ₃	W_2			T	
vv 1	vv 3	vv 2		h_1	h_2	h ₃
\mathbf{w}_2	W_4	w_6	<u> </u>	1		3

\mathbf{w}_7				
\mathbf{w}_{8}	→	ŷ		٠
\mathbf{w}_9			(2()	

GO TO DATA DRIVEN

Questions?

