Comparison of Ultrasonic Thermometry Based on the Change in Backscattered Energy with MR Temperature Images

R. Martin Arthur¹, William L Straube², Michael Gach², Michael Altman² & Hong Chen^{2,3}

¹Electrical & Systems Engineering, ²Radiation Oncology & ³Biomedical Engineering Washington University in St. Louis

Supported by National Institute of Health grant R21-CA90531, R01-CA107558, by the Wilkinson Trust at Washington University, St. Louis and via a Philips Corporation Research Agreement

Thermal Therapy

Hynynen, J Mag Res 34, 2011

- Applications include
- > Hyperthermia
- **>**Ablation
- Drug release
- Vascular modification
- Temperature Imaging
- >MRI (*de facto* standard)
- Ultrasound
 (portable, inexpensive, high temporal resolution)

MRI: Uterine fibroid heating

Temperature Elevation Map

CBE: Change in Ultrasonic Backscattered Energy

Ultrasonic backscattered energy increases or decreases with temperature depending on scatterer type as shown in

- Theoretical analyses
- Simulation of scatterer populations
- Measurements in1D, 2D and 3D
- Monotonic to >60°C

 $0.300 \pm 0.016 \, dB/°C$

CBE thermal sensitivity over 20 1cc volumes from 8 specimens of turkey breast

IEEE UFFC 57, 2010.

Objective

- Produce CBE-based temperature images in vitro @ 30 sec intervals with MRI compatible heating source
- Compare to MR temperature images in vitro @ 30 sec intervals

4/15

RM Arthur

Non-uniform Heating Fixture

Tissue fixture For CBE TI

Tissue fixture for MR TI (CBE fixture without thermocouples & guides)

CBE Temperature Imaging Experiment

In vitro Experiments with Turkey Breast

RM Arthur

April 15, 2016

Non-rigid 3D Motion Compensation

Motion in turkey breast over 20 minutes Apparent Motion Between Images $< 15~\mu m$

CBE Temperature Imaging with during Non-uniform Heating in Turkey

CBE Temperature Imaging with during Non-uniform Heating in Turkey

MR Temperature Imaging Experiment

Preparation for hotwater heating

Tissue in fixture under sand bags with silicon tubes from hot-water

2016 ICHO

Hot-water tank with pump for delivery to tissue in

Drift correction for MR TI (Ari Partanen, Philips Corp)

RM Arthur

April 15, 2016

10/15

MR Temperature Elevation Images in Turkey Heated by 75°C Water in Central Tube

Parallel images (separated by 2 mm) after 1200 sec

MR Temperature Elevation over Time

Temperature Images during Non-uniform Heating of Different Turkey Specimens

CBE (short heating tube)

be) MR (long heating tube)

Turkey in air at room temperature

Turkey in water at room temperature

CBE Temperature Images during Nonuniform Heating in Gelatin Phantom

- Phantom in air at room temperature
- Thermocouples outside of the field of view
- CBE temperature within ~1°C of thermocouple readings

Summary & Conclusions

- Volumetric temperature distributions were estimated in turkey breast using
 - CBE ultasonic temperature imaging
 - >MR temperature imaging
- Both modalities are subject to motion artifact, but are accurate to about 1°C
- In this preliminary study both modalities had
 - > Similar temperature elevations, but
 - Differences in heating patterns with distance from heat source
- Further studies comparing both are planned with temperature validation using fiber optics sensors

