

SpaceCube: A Family Of Reconfigurable Hybrid On-Board Science Data Processors

Thomas P. Flatley
Head, Science Data Processing Branch
Software Engineering Division
NASA - Goddard Space Flight Center
Greenbelt, MD USA

SpaceCube

The Challenge

The next generation of NASA science missions will require “order of magnitude” improvements in on-board computing power

Mission Enabling Science Algorithms & Applications

- Real-time Wavefront Sensing and Control
- On-Board Data Volume Reduction
- Real-time Image Processing
- Autonomous Operations
- On-Board Product Generation
- Real-time Event / Feature Detection
- Real-time “Situational Awareness”
- Intelligent Data Compression
- Real-time Calibration / Correction
- On-Board Classification
- Inter-platform Collaboration

Our Approach

- The traditional path of developing radiation hardened flight processor will not work ... they are always one or two generations behind
- Science data does not need to be 100% perfect, 100% of the time ... occasional “blips” are OK, especially if you can collect 100x MORE DATA using radiation tolerant* processing components
- Accept that radiation induced upsets will happen occasionally ... and just deal with them
- Target 10x to 100x improvement in “MIPS/watt”

*Radiation tolerant – susceptible to radiation induced upsets (bit flips) but not radiation induced destructive failures (latch-up)

Our Solution

SpaceCube: a high performance reconfigurable science data processor based on Xilinx Virtex FPGAs

- Hybrid processing ... CPU, DSP and FPGA logic
- Integrated “radiation upset mitigation” techniques
- SpaceCube “core software” infrastructure
- Small “critical function” manager/watchdog
- Standard interfaces

Note: SpaceCube 2.0 and SpaceCube Mini can be populated with either commercial Virtex 5 FX130T parts or radiation hardened Virtex 5 QV parts ... offering system developers the option of trading computing performance for radiation performance

Commercial Processor Trend

Space Processor Trend

Processor Trend Comparison

SpaceCube Closes the Gap

Processor Comparison

Processor	MIPS	Power	MIPS/W
MIL-STD-1750A	3	15W	0.2
RAD6000	35	15W	2.33
RAD750	300	15W	20
LEON 3FT	75	5W	15
LEON3FT Dual-Core	250	10W	25
BRE440 (PPC)	230	5W	46
Maxwell SCS750	1200	25W	48
SpaceCube 1.0	3000	7.5W	400
SpaceCube 2.0	6000	10W	600
SpaceCube Mini	3000	5W	600

Algorithm Acceleration

Application	Xilinx Device	Acceleration vs CPU
SAR Altimeter	Virtex-4 FX60	79x vs PowerPC 405 (250MHz, 300 MIPS)
RNS GN FIR FPU, Edge	Virtex-4 FX60	25x vs PowerPC 405 (250MHz, 300 MIPS)
HHT EMD, Spline	Virtex-1 2000	3x vs Xeon Dual-Core (2.4GHz, 3000 MIPS)
Hyperspectral Data Compression	Virtex-1 1000	2x vs Xeon Dual-Core (2.4GHz, 3000 MIPS)
GOES-8 Ground System Sun correction	Virtex-1 300E	6x vs Xeon Dual-Core (2.4GHz, 3000 MIPS)

All functions involve processing large data sets (1MB+)
 All timing includes moving data to/from FPGA
 SpaceCube 2.0 is 4x to 20x more capable than these earlier systems

Being Reconfigurable ...

... equals BIG SAVINGS (both time and money)

During mission development and testing

- Design changes without PCB changes
- “Late” fixes without breaking integration

During mission operations

- On-orbit algorithm updates
- Adaptive processing modes

From mission to mission

- Avionics reconfigured for new mission

Past Research / Missions

2006 - 2012

On-Board Data Reduction

 Accomplishments

SAR Nadir Altimetry Results (FY07)

Original IDL Output

SpaceCube Output

IDL 0

boardSARSep06.dat

Difference < 0.1%

On-board processing yields lossless 6:1 data volume reduction

5

NASA GODDARD SPACE FLIGHT CENTER

On-Board Data Reduction (cont.)

On-Board Product Generation

- Classification
- Product Generation
- Event Detection
- Atmospheric Correction

SpaceCube Family Overview

v1.0

v1.5

v2.0-EM

v2.0-FLT

2009 STS-125
2009 MISSE-7
2013 STP-H4
2016 STP-H5

2012 SMART

2013 STP-H4
2016 STP-H5

2015 GPS Demo
- Robotic Servicing
- Numerous proposals
for Earth/Space/Helio

“First Generation” Systems

SpaceCube 1.0a

Prototype

SpaceCube 1.5

SpaceCube 1.0b

On-Board Image Processing

Long Range Camera on Rendezvous

STS-125 Payload Bay

Flight Image

RNS Tracking Solution

Flight Image

RNS Tracking Solution

HST-SM4

GSFC SpaceCube 1.0a - Hubble SM 4 (May 2009):

- Autonomous Rendezvous and Docking Experiment
- Hosted camera AGC and two Pose algorithms

MISSE7/8 SpaceCube

SpaceCube Upset Mitigation

“First” to reprogram an FPGA in space!

Orbit	ISS
Days in orbit	1800+
Total SEUs detected & corrected	200+
Total SEU-induced resets	6
Total SEU-induced reset downtime	30 min
Total processor availability	99.99%

GSFC SpaceCube 1.0b (Nov 2009):

- “Radiation Hardened by Software” Experiment (RHBS)
- Autonomous Landing Application
- Collaboration with NRL and the DoD Space Test Program (STP)

On-Orbit Upset Locations

On-Orbit Upset Locations

SMART Sounding Rocket Experiment

SpaceCube 1.5 on the SMART sounding rocket payload (SubTec-5, launched June 2011):

- Multi-function avionics
- Collaboration with ORS

SMART Video

**SpaceCube 1.5 - SMART GigE Camera Clip
NASA Wallops Flight Facility - June 10, 2011**

GSFC Satellite Servicing Lab

Testing with simulated 6-DOF motion of Argon and Target

- Rotopod and FANUC motion platforms simulate target-sensor dynamics
- Up to 13 m separation possible

Testing conducted at GSFC in January–February 2012

- Motion includes closed-loop approach and non-cooperative “tumble”
- Open loop testing to characterize sensor/algorithm performance
- Closed-loop tests - evaluate end-to-end system (sensors, algorithms, control law) in real time

Current Research / Missions

2013 - 2014

ISS SpaceCube Experiment 2.0

FireStation

SpaceCube 2.0

Image Credit: DoD Space Test Program

STP-H4 / ISE 2.0 Location & FOV

ISS Flying Towards You

Camera 1 – SpaceCube Earth View, 8° FOV (35mm lens, ~40m/pixel)

Manta G-125, 1280 x 960 px, up to 30 fps

Camera 2 – SpaceCube Earth View, 32° FOV (8.5mm lens, ~175m/pixel)
Manta G-125, 1280 x 960 px, up to 30 fps

20 mi
50 km

Camera 3 – SpaceCube Earth View, 53° FOV (6mm lens, ~300m/pixel)
Manta G-125, 1280 x 960 px, up to 30 fps

ISE 2.0 on ISS – August 2013

ISE 2.0 Sample Data & Images

STP-H5 On-Orbit Location

ISS SpaceCube Experiment – Mini (ISEM)

STP-H5 Location on ELC1

STP-H5 to be
installed at this location

STP-H5 Pallet Layout

Image Credit: DoD Space Test Program

STP-H5 Configuration Overview

ISEM Experiment Overview

ISEM Stack

- Electro-Hydro Dynamic (EHD) thermal fluid pump experiment
- Fabry-Perot Spectrometer (FPS) for atmospheric methane
- SpaceCube Mini (Virtex 5) science data processor
- CHREC* Space Processor (CSP) and visible camera (Zynq)

*CHREC – National Science Foundation Center for High-performance Reconfigurable Computing (www.chrec.org)

ISEM Stack Components

SpaceCube Mini

FPS

Power Modules

CSP

EHD

ISEM FPS Science

Fabry-perot Spectrometer Measures Absorption By Atmospheric Gases In Sunlight Reflected Off The Earth

Raven Experiment Overview

Raven is a technology development experiment to the ISS with the objective to

- Demonstrate cooperative and non-cooperative rendezvous can be accomplished with *similar* hardware suite
- Provide an orbital *testbed* for servicing-related relative navigation algorithms and software
- Demonstrate an *independent* visiting vehicle (VV) monitoring capability

Raven utilizes a complex, but compact, complement of hardware to accomplish these goals:

- Two-axis gimbal provides sensor pointing
- Relative navigation sensors provide tracking in three bands—visible, SWIR, and LWIR
- High-performance SpaceCube avionics provide efficient, reliable, and reconfigurable computing environment
- State-of-the-art pose and navigation algorithms provide non-cooperative operations

Raven tracking representative visiting vehicle

Raven Movie

More SpaceCube Applications

- Navigator GPS
- Goddard Reconfigurable Solid-state Scanning LiDAR (GRSSLi)

SpaceCube Navigator GPS
(sounding rocket flight August 2015)

GRSSLi LIDAR High-Speed Digitizer Card

GRSSLi SpaceCube and Front End Box

Future Research / Missions?

2014 – 20??

SpaceCube 2.0 Flight Unit

SpaceCube 2.0 Flight Processor

Four Card Flight Unit

- Dimensions: 5 x 7 x 9 inches
- Weight: 5.8 kg
- Power: 20 watts (typical)

Robotic Satellite Servicing

- Autonomous rendezvous & docking
- Robotic servicing

- Inspect
- Refuel
- Repair
- Replace
- Relocate

Imaging Spectrometers

Image Credit: HypIRI Mission Concept Team

- Direct broadcast
- Real-time products
- Data volume reduction
- Adaptive processing
- Sensor webs

TRN for Mars Missions

Terrain Relative Navigation (TRN)

- Works by taking images during parachute descent and matching them to an onboard map
 - Uses a dedicated compute element and camera
 - Yields a position solution
- Performs terrain relative navigation while the spacecraft is priming the descent engines
- Executed by the Lander Vision System (LVS)

Multi-Point Divert

- Uses position solution and list of safe landing locations to select a landing target
- Augments original MSL backshell avoidance divert (requires slightly higher backshell separation altitude)
- Lives within MSL fuel and control authority constraints

Credit: JPL Mars EDL Team

Mars Sample Caching High Priority Sites

- TRN Enables Landing at NE Syrtis and E Margaritifer
- **MSL could not land at these sites**

End of mission hazard

Not end of mission, but hard to drive

Landing hazards, but OK to land on

No landing hazards

Real-time Mars Terrain Analysis

Figure by Garvin for MSL Science team: MARDI-based DEM derived from sidewalk video imaging mode data collection on the 22 m drive to "Book Cliffs" illustrating the power of fixed-nadir video imaging for terrain analysis of Mars in support of engineering (geotechnical) assessments.

More Rover Applications?

Fast traverse

Terrain mapping (while driving)

Background science (while driving)

Entry/Descent/Landing documentation (video)

- Landing
- Parachute release
- Sky Crane

On-board processing for efficient use of downlink

Image Credit: JPL / MSSS MARDI Team

SpaceCube “Next”

- Xilinx Zynq?
- Multi-core / Many-core?
- GPU?
- Other devices (Altera, etc.)?

Future Collaborations?

- NASA Centers
- DoD Space Test Program
- CHREC (Florida, BYU)
- CubeSats
- Commercialization
- Universities / Industry
- You?

Conclusions

SpaceCube is a MISSION ENABLING technology

- Delivers 10x to 100x on-board computing power
- Cross-cutting (Earth/Space/Planetary/Exploration)
- Being reconfigurable equals BIG SAVINGS
- Past research / missions have proven viability
- Ready for infusion into operational missions

The SpaceCube Team

Thanks you! Questions?

tom.flatley@nasa.gov
spacecube.nasa.gov

Special thanks to our sponsors: NASA/GSFC IR&D, NASA Satellite Servicing Capabilities Office (SSCO), NASA Earth Science Technology Office (ESTO) , DoD Space Test Program (STP), DoD Operationally Responsive Space (ORS)