Colégio BBBB Bandeirantes BBBB BBBB

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 163006
3.0	Matemática Geometria		1.o Ano	М	21/09/2016	
Questões	Testes	Páginas	Professor(es)			
10		9	Fábio Cáceres/Gilson/Oliveira			

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

Aluno(a)	Turma	N.o	
Nota	Professor	Assinatura do Professor	

Instruções

- 1. A prova pode ser resolvida a lápis. Respostas só com tinta azul ou preta.
- 2. Resposta sem resolução não será considerada.
- 3. **Únicos** materiais permitidos: caneta, lápis (ou lapiseira), régua e borracha.

Questões

01. (valor: 1,0) Calcule x nos itens:

a.

b.

Resposta:

Resposta:

C.

d.

Resposta:

Resposta:

02.

a. (valor: 0,5) Sendo O centro da circunferência, calcule a medida do ângulo CÂB

Resposta: CÂB = _____

Rascunho

b. (valor: 0,5) Calcule x e y

03. (valor: 1,0) Calcule x, y e z, sabendo que ABCD é quadrado.

Rascunho

Resposta:
$$x = ____, y = ____, z = _____$$

04. (valor: 1,0) Calcule os raios das circunferências com centros nos pontos O e P, sabendo que A e B são pontos de tangência.

05. Considere o triângulo ABC, retângulo em A.

Pede-se:

a. (valor: 0,25) Escrever uma relação entre x e y, sabendo que a área do triângulo ACH é $54~{\rm cm}^2$.

Resposta:

Rascunho

b. (valor: 0,25) Escrever outra relação entre x e y, que não seja equivalente a relação do item anterior.

Resposta:

c. (valor: 0,5) Calcule o valor de z.

Resposta: z =

Aluno(a)	Turma	N.o	P 163006
			p 5

06. (valor: 1,0) Calcule o raio da circunferência de centro O.

10cm

Rascunho

Resposta:

07. (valor: 1,0) Determine as medidas dos ângulos indicadas por incógnitas, sabendo que **F** | **Rascunho** é ponto de tangência.

Aluno(a)	Turma	N.o	P 163006
			p 7

08. (valor: 1,0) Calcule a área do triângulo ABC, sabendo que seu perímetro vale $40~\rm cm$ e que a altura relativa a hipotenusa mede $10~\rm cm$.

Rascunho

Sugestão:

$$a+b+c=40 \implies (a+b+c)^2=1600 \implies a^2+b^2+c^2+2ab+2ac+2bc=1600$$

(continue, a partir dessa última equação, com o uso de relações métricas).

Resposta:

09. (valor: 1,0) O trapézio ABCD tem bases AB = 10 cm e CD = 2 cm. Quanto deve medir a altura desse trapézio para que o lado do quadrado sombreado tenha 6 cm de lado?

Rascunho

Aluno(a)	Turma	N.o	P 163006
			p 9

10. (valor: 1,0) Na figura abaixo a semicircunferência tem centro em O, a circunferência tem | **Rascunho** centro em P; além disso B e D são pontos de tangência. Calcule a medida AC, sabendo que ED = 4 cm e DC = 3 cm.

Questões

01. (valor: 1,0) Calcule x nos itens:

Semelhança: $\frac{10}{4} = \frac{x+10}{10} \Rightarrow x = 15$

Resposta: 15 cm

b.

Relação métrica:

$$6^2 = 4 \cdot (x+7) \Rightarrow x=2$$

Resposta: 2 cm

C.

Relação métrica: $x \cdot (x + 3x) = 4 (4 + 5)$

$$4x^2 = 36$$

$$x = 3$$

Resposta: 3 cm

d.

$$\frac{x + 30^{\circ} - (90^{\circ} - x)}{2} = 40^{\circ} \Rightarrow x = 70^{\circ}$$

Resposta: 70°

a. (valor: 0,5) Sendo O centro da circunferência, calcule a medida do ângulo CÂB.

- (1) $y + 80^{\circ} = 180^{\circ} \Rightarrow y = 100^{\circ}$
- (2) $z = 180 110^{\circ} \Rightarrow z = 70^{\circ}$
- (3) $\frac{w+100^{\circ}}{2} = z \Rightarrow \frac{w+100^{\circ}}{2} = 70^{\circ} \Rightarrow w = 40^{\circ}$
- (4) $x = \frac{w}{2} \Rightarrow x = \frac{40^{\circ}}{2} \Rightarrow x = 20^{\circ}$

Resposta: $\hat{CAB} = 20^{\circ}$

b. (valor: 0,5) Calcule $x \in y$.

- (1) Relação métrica: $x^2 = 4 \cdot 2x \Rightarrow x = 0$ (não convém) ou x = 8
- (2) Relação métrica: $y^2 = 4 \cdot (4 + 2x) \Rightarrow$ $\Rightarrow y^2 = 4 \cdot (4 + 16) \Rightarrow y = 4\sqrt{5}$

Resposta: x = 8 cm, $y = 4\sqrt{5}$ cm

03. (valor: 1,0) Calcule x, y e z, sabendo que ABCD é quadrado.

Resposta: x = 15 cm, y = 17 cm, $z = \frac{51}{5}$ cm

(1) Por semelhança:

$$\frac{24 - x}{24} = \frac{x}{40} \Rightarrow x = 15$$

(2) Por pitágoras:

$$y^2 = 8^2 + 15^2 \Rightarrow y = 17$$

(3) Por semelhança:

$$\frac{z}{z+y} = \frac{x}{40} \Rightarrow \frac{z}{z+17} = \frac{15}{40} \Rightarrow$$
$$\Rightarrow \frac{z}{z+17} = \frac{3}{8} \Rightarrow z = \frac{51}{5}$$

04. (valor: 1,0) Calcule os raios das circunferências com centros nos pontos O e P, sabendo que A e B são pontos de tangência.

A y = x 3y x + y = 5yA y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x x + y = 5y

Resposta: x = 24 cm, y = 6 cm

1.o modo

- 1) Por Pitágoras: $(x-y)^2 + 24^2 = (x+y)^2 \Rightarrow xy = 144$
- (2) Por semelhança: $\frac{x}{v} = \frac{32}{8} \Rightarrow 8x = 32y$

Substituindo (1) em (2):

$$8x = 32 \cdot \frac{144}{x} \Rightarrow 8x^2 = 32 \cdot 144 \Rightarrow$$
$$\Rightarrow x^2 = 4 \cdot 144 \Rightarrow x = 24$$

Voltando em (1):

$$24 \cdot y = 144 \Rightarrow y = 6$$

2.o modo

(1) Por semelhança:

$$\frac{x}{y} = \frac{32}{8} \Rightarrow x = 4y$$

(2) Por Pitágoras no triângulo destacado:

$$(5y)^2 = (3y)^2 + (24)^2 \Rightarrow$$

$$\Rightarrow 16y^2 = (24)^2 \Rightarrow y^2 = 36 \Rightarrow y = 6$$

$$\Rightarrow x = 24$$

05. Considere o triângulo ABC, retângulo em A.

Pede-se:

a. (valor: 0,25) Escrever uma relação entre x e y, sabendo que a área do triângulo ACH é 54 cm².

$$\frac{xy}{2} = 54 \Rightarrow xy = 108$$

Resposta: xy = 108

b. (valor: 0,25) Escrever outra relação entre x e y, que não seja equivalente a relação do item anterior.

Usando relações métricas: $y^2 = 16 \cdot x$

Resposta: $v^2 = 16x$

c. (valor: 0,5) Calcule o valor de z.

(1)
$$xy = 108 \Rightarrow x = \frac{108}{v}$$

(2)
$$y^2 = 16 \cdot x \Rightarrow y^2 = \frac{16 \cdot 108}{y} \Rightarrow y^3 = 4^3 \cdot 3^3 \Rightarrow y = 12$$

(3) Por Pitágoras:
$$z^2 = y^2 + 16^2 \Rightarrow z^2 = 12^2 + 16^2 \Rightarrow z = 20$$

Resposta: z = 20 cm

06. (valor: 1,0) Calcule o raio da circunferência de centro O.

- (1) Relação métrica no círculo: $3 \cdot (3 + x) = 2(2 + 10) \Rightarrow x = 5$
- (2) A reta perpendicular a uma corda da circunferência, e que passa pelo centro da circunferência, é mediatriz dessa corda.
- (3) Aplicando (2) a ambas as cordas da circunferência, temos as medidas indicadas.
- (4) Por Pitágoras:

$$R^{2} = \left(\frac{5}{2} + 3\right)^{2} + 5^{2} \Rightarrow$$

$$\Rightarrow R^{2} = \left(\frac{11}{2}\right)^{2} + 5^{2} \Rightarrow$$

$$\Rightarrow R^{2} = \frac{121}{4} + 25 \Rightarrow R = \frac{\sqrt{221}}{2} \text{ cm}$$
Resposta: $\frac{\sqrt{221}}{2} \text{ cm}$

07. (valor: 1,0) Determine as medidas dos ângulos indicadas por incógnitas, sabendo que \mathbf{F} é ponto de tangência.

- (1) AÊD é excêntrico interior $\Rightarrow z = \frac{120^{\circ} + 100^{\circ}}{2} \Rightarrow z = 110^{\circ}$
- (2) $x + z = 180^{\circ} \Rightarrow x + 110^{\circ} = 180^{\circ} \Rightarrow x = 70^{\circ}$
- (3) FĜI é excêntrico exterior $\Rightarrow w = \frac{120^{\circ} 100^{\circ}}{2} \Rightarrow w = 10^{\circ}$
- (4) FĤI é inscrito $\Rightarrow t = 2y$

(5)
$$w = \frac{t - (180^{\circ} - t)}{2} \Rightarrow 10^{\circ} = \frac{2t - 180^{\circ}}{2} \Rightarrow 10^{\circ} = t - 90^{\circ} \Rightarrow t = 100^{\circ}$$

Logo,
$$2y = 100^{\circ} \Rightarrow y = 50^{\circ}$$

Resposta: $x = 70^{\circ}$, $y = 50^{\circ}$

08. (valor: 1,0) Calcule a área do triângulo ABC, sabendo que seu perímetro vale 40 cm e que a altura relativa a hipotenusa mede 10 cm.

Sugestão:

$$a+b+c=40 \Rightarrow (a+b+c)^2=1600 \Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=1600$$

(continue, a partir dessa última equação, com o uso de relações métricas).

$$a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc = 1600$$

$$a^{2} + a^{2} + 2ab + 2ac + 2 \cdot a \cdot 10 = 1600$$

$$2a^{2} + 2a (b + c + 10) = 1600 \Rightarrow 2a^{2} + 2a (40 - a + 10) = 1600 \Rightarrow 2a^{2} + 2a (50 - a) = 1600 \Rightarrow$$

$$\Rightarrow 2a^{2} + 100a - 2a^{2} = 1600 \Rightarrow 100a = 1600 \Rightarrow a = 16$$
Logo, área (ABC) = $\frac{a \cdot 10}{2}$ \Rightarrow área (ABC) = $5 \cdot a$ \Rightarrow área (ABC) = $5 \cdot 16$ \Rightarrow área (ABC) = 80 cm^{2}

Resposta: 80 cm²

5

09. (valor: 1,0) O trapézio ABCD tem bases AB = 10 cm e CD = 2 cm. Quanto deve medir a altura desse trapézio para que o quadrado sombreado tenha 6 cm de lado?

1.o modo:

Prolongando os lados \overline{AD} e \overline{BC} do trapézio obtemos três triângulos que têm o vértice E em comum e cujas alturas são H, H – 6 e H – x. Pela semelhança entre esses triâgulos, temos:

(1)
$$\frac{H-6}{H} = \frac{6}{10} \Rightarrow 10H - 60 = 6H \Rightarrow H = 15$$

(2)
$$\frac{H-x}{H} = \frac{2}{10} \Rightarrow \frac{15-x}{15} = \frac{1}{5} \Rightarrow x = 12$$

2.o modo:

- (1) $\overline{\text{CE}} /\!/ \overline{\text{AD}} \Rightarrow \text{ADCE} \text{ \'e paralelogramo}.$
- (2) Por semelhança:

$$\frac{x-6}{x} = \frac{4}{8} \Rightarrow \frac{x-6}{x} = \frac{1}{2} \Rightarrow 2x-12 = x \Rightarrow x = 12$$

Resposta: x = 12 cm

10. (valor: 1,0) Na figura abaixo a semicircunferência tem centro em O, a circunferência tem centro em P; além disso P0 são pontos de tangência. Calcule a medida P0, sabendo que P1 em P2 cm.

- Seja AB = y. Como \overline{AB} e \overline{AD} tangenciam a circunferência em B e D, temos y = x + 3 (I)
- Usando relação métrica no semicírculo $y^2 = x \cdot (x+7)$ (II)
- Substituindo (I) em (II): $(x+3)^2 = x(x+7) \Rightarrow x^2 + 6x + 9 = x^2 + 7x \Rightarrow x = 9$

Resposta: x = 9 cm