Prime Number: - No. mhich has enactly 2 factors i.e. (1) & Number 9450y.

Count of factors $\Rightarrow O(N)$ $\longrightarrow O(Sgst(N))$

N=24		N= 100	N= 100	
i \	NIĈ	Ĉ	NI°	
	24	T	001	
7	1	2	20	
2	8	4	25	
3	6	5	20	
- 4		i = N [10]	10	
	3	20	5	
8	2_	25	4	
12		50	2	
24	1 -	100	1	

$$i < = \frac{N}{i}$$

$$i < = N$$

$$i < = Sqrt(N)$$

* factors appears in pairs.

```
Count = 0 \Rightarrow i <= \sqrt{N}
for (i=1; i*1 <= N; i++){
      if ( N/1 = = 0 ) 1
          î + ( î = = N|î) Count++;
          else count += 2;
                                TC: 0(JD)
                                 86:011)
  return Count;
if (count == 2): Prime No.
Use: Not a prime no
bool istrine (N) ( N71
    for ( i= 2; i*i <= N; i++){
          (0 = = 9 / Hi
             utern false;
```

Bi Given N, print all the prime Numbers from $N=10 \Rightarrow 2,3,5,7$ Brute Porce for (l= 2; l<= N; l++)1 o(IN)

3

+c: O(Negrt(N)) > upper bound

of TC If (istoine (1)) 1

SC: 0(1)

N=20

Steps:-

- 1) Create a boolean Array of size N+1 bool istrine [N+1] = {Toue 3;
- 2) for every no from i = 2 + 0 N* if istrine [i] == + ove \Rightarrow mark all the multiples of i to false in istrine

 Array.

```
bool Prime (N+17 = { + rue 3;
  istrime [0] = false;
   istrime [+] = false;
   for( ?= 2; ? <= N; i++) (
         if ( Prime(i)) {
            for (j= 2*i; j<=N; j+=i) {
                       Prime[i] = false;
   11 Frint Prime No's
   for ( i = 2; i <= N; i++) {

if (Prime [i])
                 Print (1)
Time Complenity analysis:
 Recations = \frac{N}{2} + \frac{N}{3} + \frac{N}{5} + \frac{N}{7} + \frac{N}{11} + \cdots
                      Sum of reciprocal of prime mos.
```

=
$$N = N \times (\log N)$$

= $N \times (\log N)$
Sc: $O(N) \times \log (\log N)$
 $O(N \times \log (\log N))$
 $\log N \rightarrow \log (\log (N))$
 $\log N = (4)$
 $\log (\log N) = \log (4) = 6$
Sieve of Eratosthenes

Observation (1)

Observation 2

SPF[i] = = i => i is a prime number.

| Put Spf[N+1];

$$fos(i=2; i<=N; i++) () (N)$$
 $spf[i]=i;$
 $fos(i=2; i*i<=N; i++) () (N)$
 $if(spf[i]==i) () (spf[i]==i) () (spf[i]==i)$

Divisors:

$$N = 72$$
 $2 | 72$
 $2 | 36$
 $2 | 18$
 $3 | 9$
 $3 | 3$
 1

$$N = 42 = 2x2x2x3x3$$

$$= 2^{3} \cdot 3^{2}$$

Prime factosisation

$$N = 32 = 2^{3} \cdot 3^{2}$$

$$2^{0}$$

$$2^{1}$$

$$2^{2}$$

$$3^{2}$$

$$2^{3}$$

At the divisors of $N=72. \Rightarrow 12$

Count of divisors =
$$(3+1)(2+1)$$

= (4.3)
= (12) *

$$2^{3} \Rightarrow 2^{0}, 2', 2^{2}, 2^{3}$$
 $3' \Rightarrow 3^{0}, 3'$
 $5^{2} \Rightarrow 5^{0}, 5', 5^{2}$

$$N = P_1^{\chi_1} \times P_2^{\chi_2} \times P_3^{\chi_3} - \cdots \times P_n^{\chi_n}$$

of divisors = $(x_1+1)(x_2+1)(x_3+1)----(x_n+1)$ Steps

1) Create
$$\underline{SPF} \Rightarrow O(N \log(\log N))$$

while
$$(N71)$$
 $X = SPF[N]$
Power = 0

divisors = divisor * (Power+1);

return divisors.

$$N = 600 = 2^3$$
 $X = 5$
 $C = 0 \times 2$
 $N = 600 = 906$
 $N = 4 \times (2) = 8$
 $N = 8 \times (2+1) = 24$
 $N = 600 = 906$
 $N = 906 =$

get the no. of factors.

N=10

Doubts

$$2^{10} = 1024 \approx 1000 = 10^{3}$$

$$2^{60} = 2^{10} \cdot 2^{10} \cdot 2^{10} \cdot 2^{10} \cdot 2^{10}$$

$$= 10^{18}$$