

BIOLOGY & DATA SCIENCE

Justin Waterfield, MMCi

Bioinformaticist RTI, International Winthrop, Class of 2009

OUTLINE

- ➤ Personal Background & Introduction
- > The Data Science Process
- ➤ What is Bioinformatics?
- ➤ Use Case #1 Biology
- ➤ Use Case #2 Healthcare
- > Informatics TLDR
- ➤ Thinking Ahead, Tips & Tricks!
- Closing Thoughts Q&A

MY STORY...

SURPRISE!

Justin Waterfield
Bioinformaticist
RTI International

Justin Waterfield
Oncology Data Steward
LabCorp

DATA SCIENCE PROCESS

DATA COLLECTION + STORAGE

Data Engineer

DATA PREPARATION

Data Scientist

Data Analyst

EXPERIMENTATION &PREDICATION

Machine Learning Scientist

WHAT IS A BIOINFORMATICIST?

Unofficial Definition:

A scientist or analyst who uses data, often biological in origin, to interpret results and derive insights.

AKA - Someone who knows something about science, biology, or healthcare. Who can use that expertise to interpret data and do something useful with it.

Official Definition:

A discipline that develops software and tools for understanding biological data.

Example:

Genomics, Proteomics, Metabolomics, Pharmacogenomics, etc. etc.

These all fuse the base study (Genetics) + technology (-omics).

SO WHAT?

AKA - Why should you care?

- > The future of science, healthcare, and business is all data focused.
- > The average scientist, clinician, and researcher will need to have critical data skills to advance their career.
- Our generational problems such as cancer, climate change, precision medicine, and artificial intelliegence all need data science skills.

USE CASE #1 - BIOLOGY

GENOMIC SEQUENCING

- Genome-Wide Assocation Studies (GWAS)
- Standard approach for querying genetic data for disease risk
- Technological advances have lowered cost (think 23&me)
- National Human Genome Research Institute (NHGRI) publishes large amount of data
- All of Us! → Precision Medicine/Health

DATA CATALOGUING

- GWAS data must be encoded, variables set, phenotypes determined
- What is your population?
- Biases, concerns, variables?
- This is the field of population health, which has a major undercurrent of data literacy
- Can be extrapolated to ecology, evolution, botany, entomology, virology, etc. etc.

GWAS VISUAL

USE CASE #2 - HEALTHCARE

DIGITAL PATHOLOGY

- Pathology is the study of disease processes
- A biopsy (muscle/kidney/brain/etc) is removed and examined for cancer/disease/virus/etc
- Traditionally, that biopsy was viewed microscopically by technologists and pathologists via norma light microscopy
- Now, slides are scanned via slide scanner and enables work from home (WFH) and remote diagnosis. As well as artificial inelligence

LABORATORY DATA + EHR

- The Electronic Health Record (EHR) / Electronic Medical Record (EMR) is the core of all healthcare informatics
- The patient's entire data history/record is stored here
- Your data is stored in terms of variables/resources: Patient / Age/ Name / Medication
- Artificial Intelligence/Machine Learning is huge right now in this area

PATHOLOGY VISUAL

INFORMATICS IN A NUTSHELL

DATA GOVERNANCE

- A good data model goes a long way
- Understanding what, where, and why your data exists
- Data is cheap (usually), time is not
- Privacy and security are crucial, more than ever
- In biology, linking your physical samples to your databases - as well as well defined metadata

DATA QUALITY

- Bad data costs money
- Costs USA ~\$3 trillion annually!
- Biological data is often uncurated, especially not by experts in specific field
- As databases grow, the problem becomes exponential, but the talent/staff is not growing at same rate
- Scientists rarely agree...

TIPS AND TRICKS!

LEARN 2 CODE

- Start to learn some basic form of programming and coding.
 - R / Python / SQL
 - DataCamp

T-SHAPE

Science rewards

 having deep
 expertise in one area,
 but a breadth of
 domain knowledge.

GET INVOLVED!

Communities,
 organizations,
 memberships. Say
 yes to things...but
 also know your limits!

FAILURE IS OKAY!

DATA SCIENCE IS STILL SCIENCE!

THANK YOU Justin Waterfield www.justinwaterfield.com www.linkedin.com/in/waterfieldj