Quiz W08

Bilinear Transform Filter Design

Use a **second-order** lowpass Butterworth filter and the bilinear transform to design a digital lowpass filter with bandwidth 1600 Hz. Assume sampling frequency is 7200 Hz.

- Derive H(z).
- Prepare an Excel spreadsheet & plot the impulse response.
- Draw a direct form realization for this filter.

Solution

BUTTERWORTH FILTER

A Butterworth filter (of order L and cutoff frequency v_c) is defined by the equation:

$$H(s) = \frac{1}{\prod_{k=1}^{L} \frac{s - s_k}{v_c}}$$
where $s_k = v_c e^{j(2k + L - 1)\pi/2L}$ $k = 1, 2, ..., L$.

For a second-order Butterworth filter L=2. Thus, the poles are:

$$\begin{split} s_k = & v_c e^{j(2k+1)\pi/4} \quad k = 1, 2. \\ s_1 = & v_c e^{j3\pi/4}, \quad s_2 = & v_c e^{j5\pi/4} \\ s_1 = & v_c e^{j3\pi/4} = & v_c e^{j(4\pi-\pi)/4} = & v_c e^{j\pi} e^{-j\pi/4} = & v_c (-1) e^{-j\pi/4} \\ s_1 = & -v_c (\cos(-\pi/4) + j\sin(-\pi/4)) = & -v_c (1/\sqrt{2} - j/\sqrt{2}) = & -v_c (1-j)/\sigma \\ where \quad \sigma = & \sqrt{2} \end{split}$$

Similarly,

$$s_{2} = v_{c}e^{j5\pi/4} = v_{c}e^{j(4\pi+\pi)/4} = v_{c}e^{j\pi}e^{j\pi/4} = v_{c}(-1)e^{j\pi/4}$$

$$s_{2} = -v_{c}(\cos(\pi/4) + j\sin(\pi/4)) = -v_{c}(1/\sqrt{2} + j/\sqrt{2}) = -v_{c}(1+j)/\sigma$$

$$s_{1} = \beta(-1+j) \quad and \quad s_{2} = \beta(-1-j) \quad where \quad \beta = v_{c}/\sigma = v_{c}/\sqrt{2}$$

And the transfer function is:

$$H(s) = \frac{1}{\prod_{k=1}^{2} \frac{s - s_{k}}{v_{c}}} = \frac{1}{\left(\frac{s - s_{1}}{v_{c}}\right)\left(\frac{s - s_{2}}{v_{c}}\right)}$$

$$H(s) = \frac{v_{c}^{2}}{\left(s - s_{1}\right)\left(s - s_{2}\right)}$$

FILTER PARAMETERS

Given the sampling frequency f_s=7200 Hz, the sampling interval is calculated as:

$$f_s = 7200 \, Hz$$
 $T = 1/f_s = 0.139 ms$

Desired bandwidth = lowpass cutoff frequency = f_c = 1600 Hz. Converting this to normalized frequency ω_c :

$$\omega_c = 2\pi \frac{f_c}{f_s} = 2\pi \frac{1600 \text{Hz}}{7200 \text{Hz}} = 1.396 \text{ radians}$$

Since the bilinear transform is non-linear, it will warp all the frequencies, so 1.396 radians will end up somewhere other than 1.396 after the transforms. To offset this, we pre-warp the target cutoff frequency 1.396 so that after the transform it ends up at 1.396.

$$v_C = \frac{2}{T} \tan \left(\frac{\omega_C}{2} \right) = \frac{2}{T} \tan \left(\frac{1.396}{2} \right) = \frac{2 \tan 0.698}{T} = \frac{1.678}{0.139 ms} = 12070 Hz$$

BILINEAR TRANSFORM

Second order lowpass Butterworth filter with cutoff v_c = 12070 Hz is:

$$H(s) = \frac{{v_c}^2}{(s-s_1)(s-s_2)} \text{ where}$$

$$s_1 = \beta(-1+j) \quad and \quad s_2 = \beta(-1-j) \quad where \quad \beta = v_c/\sigma = v_c/\sqrt{2}$$

Now this analog filter may be transformed into the z domain using the bilinear transform:

$$s = \frac{2}{T} \left(\frac{z - 1}{z + 1} \right) = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

$$\begin{split} H(z) &= H(s)\big|_{S=} 2(z-1) / T(z+1) = \begin{bmatrix} v_c^2 \\ \overline{T(z+1)} - s_1 \end{bmatrix} \underbrace{\frac{2(z-1)}{T(z+1)} - s_2} \\ T(z+1) &= \begin{bmatrix} v_c^2 T^2(z+1)^2 \\ \overline{2(z-1) - s_1} T(z+1) \end{bmatrix} \underbrace{2(z-1) - s_2} T(z+1) \end{bmatrix} \quad where \quad \alpha = v_c T \\ H(z) &= \underbrace{\alpha^2 (z+1)^2}_{\left[2(z-1) - s_1 T(z+1)\right]} \underbrace{2(z-1) - s_2} T(z+1)}_{\left[2(z-1) - s_2 T(z+1)\right]} \quad where \quad \alpha = v_c T \\ H(z) &= \underbrace{\alpha^2 (z+1)^2}_{\left[2z - 2 - \beta(-1+j)T(z+1)\right]} \underbrace{2z - 2 - \beta(-1-j)T(z+1)}_{\left[2z - 2 - \beta(-1-j)T(z+1)\right]} \\ H(z) &= \underbrace{\alpha^2 (z^2 + 2z+1)}_{\left[2z - 2 - \beta T(-z-1+jz+j)\right]} \underbrace{2z - 2 - \beta T(-z-1-jz-j)}_{\left[2(z+\beta T-j\beta T) + (-2+\beta T-j\beta T)\right]} \underbrace{2(z+\beta T+j\beta T) + (-2+\beta T+j\beta T)}_{\left[2(\beta T+2-j\beta T) + (\beta T-2-j\beta T)\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\beta T+2-j\beta T) + (\beta T-2-j\beta T)\right]} \underbrace{2(\beta T+2+j\beta T) + (\beta T-2+j\beta T)}_{\left[2(\beta T+2-j\beta T) + (\lambda-j\beta T)\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda-j\beta T)\right]} \underbrace{2(\kappa+j\beta T) + (\lambda+j\beta T)}_{\left[2(\kappa-j\beta T) + (\lambda-j\beta T)\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda-j\beta T)\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda-j\beta T) + z\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda+j\beta T) + z\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda+j\beta T) + z\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda+j\beta T) + z\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda+j\beta T) + z\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda+j\beta T) + z\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda+j\beta T) + z\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda+j\beta T) + z\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + z\right]} \underbrace{2(z^2 + 2z+1)}_{\left[2(\kappa-j\beta T) + (\lambda+j\beta T) + (\kappa+j\beta T) + (\kappa+$$

$$H(z) = \frac{\alpha^2(z^2 + 2z + 1)}{z^2(2\beta^2T^2 + 4\beta T + 4) + 2z\Big[((\beta^2T^2 - 4) + \beta^2T^2)\Big] + (2\beta^2T^2 - 4\beta T + 4)}$$

$$H(z) = \frac{\alpha^2 (z^2 + 2z + 1)}{z^2 (2\beta^2 T^2 + 4\beta T + 4) + 2z(2\beta^2 T^2 - 4) + (2\beta^2 T^2 - 4\beta T + 4)}$$

Substituting

$$\beta = v_c / \sigma$$
 and $\beta T = v_c T / \sigma = \alpha / \sigma$ where $\sigma = \sqrt{2}$

$$H(z) = \frac{\alpha^{2}(z^{2} + 2z + 1)}{z^{2}(2\alpha^{2}/\sigma^{2} + 4\alpha/\sigma + 4) + 2z(2\alpha^{2}/\sigma^{2} - 4) + (2\alpha^{2}/\sigma^{2} - 4\alpha/\sigma + 4)}$$
Let $\delta = \alpha/\sigma = \alpha/\sqrt{2} = v_{c}T/\sqrt{2}$

$$H(z) = \frac{2\delta^{2}(z^{2} + 2z + 1)}{z^{2}(2\delta^{2} + 4\delta + 4) + 4(\delta^{2} - 2)z + (2\delta^{2} - 4\delta + 4)}$$
where $\delta = v_{c}T/\sqrt{2} = 12070Hz \times 0.139ms/1.414 = 1.187$

$$H(z) = \frac{2.816(z^{2} + 2z + 1)}{z^{2}(2.816 + 4.746 + 4) + 4(1.409 - 2)z + (2.816 - 4.746 + 4)}$$

$$H(z) = \frac{2.816(z^{2} + 2z + 1)}{11.562z^{2} - 2.364z + 2.07}$$

$$H(z) = 0.2436\frac{z^{2} + 2z + 1}{z^{2} - 0.205z + 0.179}$$

$$H(z) = 0.244\frac{1 + 2z^{-1} + z^{-2}}{1 - 0.205z^{-1} + 0.179z^{-2}}$$

$$H(z) = \frac{0.244 + 0.488z^{-1} + 0.244z^{-2}}{1 - 0.205z^{-1} + 0.179z^{-2}}$$

The IIR filter coefficients are:

$$b_0 = 0.244$$
, $b_1 = 0.488$, $b_2 = 0.244$, $a_1 = -0.205$, $a_2 = 0.179$.

The filter output is:

$$y(n) = \sum_{l=0}^{L-1} b_l x(n-l) - \sum_{m=1}^{M} a_m y(n-m)$$

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) - a_1 y(n-1) - a_2 y(n-2)$$

$$y(n) = 0.244 x(n) + 0.488 x(n-1) + 0.244 x(n-2) + 0.205 y(n-1) - 0.179 y(n-2)$$

EXCEL SPREADSHEET

1	Coefficients=	-0.2050	0.1790	Ī	0.2440	0.4880	0.2440
<u>n</u>	<u>y(n)</u>	<u>y(n-1)</u>	<u>y(n-2)</u>		<u>x(n)</u>	<u>x(n-1)</u>	<u>x(n-2)</u>
	-	-		=	-		
	-	-		-	-		
•	0.0440	<u>-</u>	0.0000	=	4 0000	0.0000	0.0000
0	0.2440	0.0000	0.0000		1.0000	0.0000	0.0000
1	0.5380	0.2440	0.0000		0.0000	1.0000	0.0000
2	0.3106	0.5380	0.2440		0.0000	0.0000	1.0000
3	-0.0326	0.3106	0.5380		0.0000	0.0000	0.0000
4	-0.0623	-0.0326	0.3106		0.0000	0.0000	0.0000
5	-0.0069	-0.0623	-0.0326		0.0000	0.0000	0.0000
6	0.0097	-0.0069	-0.0623		0.0000	0.0000	0.0000
7	0.0032	0.0097	-0.0069		0.0000	0.0000	0.0000
8	-0.0011	0.0032	0.0097		0.0000	0.0000	0.0000
9	-0.0008	-0.0011	0.0032		0.0000	0.0000	0.0000
10	0.0000	-0.0008	-0.0011		0.0000	0.0000	0.0000
11	0.0001	0.0000	-0.0008		0.0000	0.0000	0.0000
12	0.0000	0.0001	0.0000		0.0000	0.0000	0.0000
13	0.0000	0.0000	0.0001		0.0000	0.0000	0.0000
14	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
15	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
16	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
17	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
18	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
19	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
20	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000

DIRECT FORM REALIZATION

Second order IIR Filter:

$$y(n) = \sum_{l=0}^{2} b_{l} x(n-l) - \sum_{m=1}^{2} a_{m} y(n-m)$$

$$y(n) = b_{0} x(n) + b_{1} x(n-1) + b_{2} x(n-2) - a_{1} y(n-1) - a_{2} y(n-2)$$

$$b_{0} = 0.244$$

$$b_{1} = 0.488$$

$$b_{2} = 0.244$$

$$a_{1} = -0.205$$

$$a_{2} = 0.179$$

$$y(n) = 0.244x(n) + 0.488x(n-1) + 0.244x(n-2) + 0.205y(n-1) - 0.179y(n-2)$$

