Erasmus School of Economics

MOOC Econometrics

Lecture 2.5 on Multiple Regression:
Application

Christiaan Heij

Erasmus University Rotterdam

Regression outcomes

Dependent variable: log(Wage)

Sample size: 500

Sample Size: 500				
	Coefficient	Standard error	t-Statistic	p-value
	b_j	$SE(b_j)$	t_j	$H_0: \beta_j = 0$
Constant	3.053	0.055	55.168	0.000
Female	-0.041	0.025	-1.663	0.097
Age	0.031	0.001	24.041	0.000
Educ	0.233	0.011	21.874	0.000
Parttime	-0.365	0.032	-11.576	0.000
R-squared	0.704			
SE of regression	0.245			

Ezafus

Wage equation

- Wage data of Lecture 2.1 with model of Lecture 2.2.
- Model: $log(Wage)_i = \beta_1 + \beta_2 Female_i + \beta_3 Age_i + \beta_4 Educ_i + \beta_5 Parttime_i + \varepsilon_i$
- OLS gives: $log(Wage)_i = 3.05 0.04$ Female_i +0.03Age_i + 0.23Educ_i - 0.37Parttime_i + e_i
- $R^2 = 0.704$ and s = 0.245.
- Data are random sample from population of employees.

OLS results depend on these data, hence also random.

Ezafus

Lecture 2.5, Slide 2 of 14, Erasmus School of Economics

Two scatter diagrams

- Left diagram: Actual log-wage against fitted log-wage.
- Right diagram: Residuals against fitted log-wage.

Ezafus

Regression outcomes

- Age, Education, and Parttime are significant (p-values 0.000).
 Female is not significant at 5% level (p-value 0.097).
- Interpretation in terms of average wage effects:

Extra year of age: $e^{0.031} - 1 = 3\%$

Extra level of education: $e^{0.233} - 1 = 26\%$

Part-time job: $e^{-0.365} - 1 = -31\%$

- After controlling for age, education, and part-time job effects, the (partial) gender effect of -4% for females is not significant.
- Lecture 2.1: Significant gender effect of -25% for females: total effect, including education and part-time jobs.

Lecture 2.5, Slide 5 of 14, Erasmus School of Economics

Wage or log-wage?

• Age, Education, and Parttime are significant (p-values 0.000). Female is not significant at 5% level (p-value 0.501).

Test

Why can we not choose between the two models (with log-wage and wage) on the basis of \mathbb{R}^2 and \mathbb{S} ?

- Answer: R^2 and s are based on sum of squares of y and e = y Xb, and y differs in the two models.
- Graphical check of regression assumptions:
 scatter diagram of residuals against fitted values.

Lafins

Model with absolute (instead of relative) effects

• If explained variable is log-wage, parameters

$$\beta_j = \partial \log(\mathsf{Wage})/\partial x_j = (\partial \mathsf{Wage}/\partial x_j)/\mathsf{Wage}$$

measure relative wage effects of each factor.

- If explained variable is wage (instead of log-wage), parameters $\beta_i = \partial \mathsf{Wage}/\partial x_i$ measure wage level effects.
- OLS in this model gives:

Wage_i =
$$-77.87 - 2.12$$
Female_i
+3.62Age_i + 29.47Educ_i - 43.10Parttime_i + e_i.

• $R^2 = 0.681$ and s = 31.276.

- Eafins

Lecture 2.5, Slide 6 of 14, Erasmus School of Economics

Scatter diagrams of residuals against fitted values

- Left for wage: nonlinear and heteroskedastic
- Right for log-wage: no indication violation regression assumptions

Ezafus

Testing for constant education effects

• Allow that education effect varies per education level:

$$\begin{split} \log(\mathsf{Wage})_i &= \beta_1 + \beta_2 \mathsf{Female}_i + \beta_3 \mathsf{Age}_i \\ &+ \beta_4 \mathsf{DE2}_i + \beta_5 \mathsf{DE3}_i + \beta_6 \mathsf{DE4}_i + \beta_7 \mathsf{Parttime}_i + \varepsilon_i \end{split}$$

- DE2_i = 1 if employee i has education level 2
 DE2_i = 0 if employee i has education level 1, 3, or 4
 (similar definitions for DE3 and DE4)
- Effect of education is constant if $\beta_5 = 2\beta_4$ and $\beta_6 = 3\beta_4$.
- Test H_0 : $\beta_5 = 2\beta_4$ and $\beta_6 = 3\beta_4$ against H_1 : H_0 not true.

Lecture 2.5, Slide 9 of 14, Erasmus School of Economics

Outcomes

• OLS in unrestricted model (under H_1) gives:

$$log(Wage)_i = 3.32 - 0.03$$
Female_i + 0.03Age_i
+0.17DE2_i + 0.38DE3_i + 0.77DE4_i - 0.37Parttime_i + e_i.

- $R^2 = 0.716$ and s = 0.241.
- All factors are significant, except for 'Female' (p-value 0.206).
- Test for constant education effects:

Test $H_0: \beta_5 = 2\beta_4, \beta_6 = 3\beta_4$ against $H_1: H_0$ not true.

Test

Compute the F-test, using $R_1^2 = 0.716$ and $R_0^2 = 0.704$.

Regression outcomes

Dependent variable: log(Wage)

Sample size: 500

	Coefficient b_j	Standard error $SE(b_j)$	t-Statistic t_j	p-value $H_0: \beta_j = 0$
Constant	3.318	0.051	64.554	0.000
Female	-0.031	0.024	-1.267	0.206
Age	0.030	0.001	24.269	0.000
DE2	0.171	0.027	6.308	0.000
DE3	0.380	0.029	12.996	0.000
DE4	0.767	0.035	21.610	0.000
Parttime	-0.366	0.031	-11.813	0.000
R-squared	0.716			
SE of regression	0.241			_

Capus

Lecture 2.5, Slide 10 of 14, Erasmus School of Economics

Computation of F-test

- $R_1^2 = 0.716$ and $R_0^2 = 0.704$
- g = 2, n = 500, k = 7 (under H_1), n k = 500 7 = 493 $F = \frac{(R_1^2 R_0^2)/g}{(1 R_1^2)/(n k)} = \frac{(0.716 0.704)/2}{(1 0.716)/493} = 10.4$
- 5% critical value of F(2,493) is 3.0. As F = 10.4 > 3.0, H_0 is rejected (at 5% level).
- Conclusion: Wage effect of one extra level of education differs significantly across education levels.

Ezafus,

Wage effect of extra education

• Coefficients of education dummies:

level 2: 0.171

level 3: 0.380

level 4: 0.767

• Wage increase for higher education level:

$$1 \rightarrow 2$$
: $e^{0.171} - 1 = 0.19 = 19\%$

$$2 \rightarrow 3$$
: $e^{(0.380-0.171)} - 1 = e^{0.209} - 1 = 23\%$

$$3 \rightarrow 4$$
: $e^{(0.767-0.380)} - 1 = e^{0.387} - 1 = 47\%$

• Effect much larger for highest education level.

Ezafus,

Lecture 2.5, Slide 13 of 14, Erasmus School of Economics

TRAINING EXERCISE 2.5

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Erafus

Lecture 2.5, Slide 14 of 14, Erasmus School of Economics