Index

Added mass term 151	Codimension 362, 396
Addition theorem 208	Collocation 363
Adjoint	boundary-multipole 321
classical (of a matrix) 360	Colloid
kernel 367	size range 4
method 83, 93	Compactification of messages 488
operator 360, 407	Compact operator 360
Approximate inverse 410	Completion methods for CDL-BIEM
Axisymmetric particles	384
general resistance formulation 121	Conservation of mass 6
in axisymmetric configuration	Conservation of momentum 7
see resistance matrix	Conservation of energy 11
Jeffrey orbits of 123, 125	Constitutive equation
see also Stokes streamfunction	Newtonian 8
Basset force 151	Container and CDL-BIEM 367
Biorthogonal bases 429	Continuity equation 6
see also adjoint method	Continuity of integral representation
Boltzmann constant 2	generated flows (jumps) 378
Boltzmann distribution 135	Creeping motion 9
Bordering 362, 396, 446	Debye length 137
Boundary conditions for fluid flow	Deflation
10, 371	see Wielandt's —
Boundary element method 366	Diagonalizability
Boundary integral equations	condition for a matrix 445
see integral equations	Diffusion
Boundary-multipole collocation	coefficient for a sphere 2
see collocation	rotary — coefficient 3
Brownian	see also Brownian —
contribution to bulk stress 128	Double layer
forces 3	electric 135
motion 2	hydrodynamic potential 24, 376
Bubble	Drop(s)
see spherical drop	see spherical —
Canonical equations	Eigenvalues and -vectors 361, 362
see integral equation	Electrophoresis 107, 131
Center	thin double layers 213
of resistance 112	Ellipsoid
of mobility 117	electrophoretic mobility 215

singularity solutions 55	Hadamard-Rybczynski problem 91
Ellipsoidal coordinates 55	Hamaker's constant 12
Ellipsoidal harmonics 55	Helmholtz theorem
Energy balance 11	see minimum energy dissipation
Energy dissipation	Hölder continuity 376
particulate flows	Hückel limit 107
see inclusion monotonicity	Hydrodynamic center
rate per volume 14	see center
see also minimum energy dissi-	Ill-posed problems 359, 360, 372, 444
pation	Incident field
Energy relation 368	see reflections (method of)
in unbounded domains 368	Inclusion monotonicity 15
Exterior domains 367	in matrix form 127, 129
Far field expansion 48	theorems of Hill and Power 17,
Faxén laws	465
ellipsoids and spheroids 76	Incompressibility 7
general 48	Inside of a Lyapunov surface 367
sphere 73	Integral equation 20, 358
spherical drop 78	boundary — 355
transient Stokes flow 154	CDL-BIEM 357, 435, 472
Focal ellipse 54	Fourier decomposed 450
Forces of microhydrodynamics 2, 12	in primary variables 368
Fourier analysis	canonical — 399
decomposition of the double layer	first- and second-kind 358
kernel 459	numerical solution of 363, 453
derivation of fundamental solu-	see also ill-posed problems
tion 33	single layer — 368
isotropic PDEs 449	systems of — s 374
transform for transient Stokes flows	weakly singular 359
148	Integral representation 20
Fourier's law of heat conduction 11	for pressure field 39, 368
Fredholm theorems 361	for transient Stokes flow 154
Fredholm-Riesz-Schauder theory 361,	for a viscous drop 48, 80
400	with double layer 386
Free surface problems 372	completed 398
see also surface tension	for axisymmetric flow 447
Fundamental ellipse	with single and double layers 23,
see focal ellipse	368
Fundamental solution	with single layer for rigid parti-
transient Stokes flows 149	cle 25
see also Oseen tensor	Interfacial mobility 231
Galerkin method 128, 365	Interior domains 367
Green's function 20, 386	Jeffrey orbits 125
see also Oseen tensor	Jordan form of a matrix 362
Green's identity 13	see also diagonalizability

Index 505

Jump conditions 378	Multipole expansion for Stokes flow
Kernel	14, 27
of an integral equation 358	axisymmetric flows 103
of a linear operator	ellipsoid in linear field 53
see null space	two spheres 208
polar or potential 359	see also collocation (boundary-
Lamb's general solution 84	multipole)
boundary conditions for 88	see also far field expansion
connection with multipole expan-	see also Lamb's solution
sion 86	Natural coordinate system 431
force calculation 88, 103	see also center of resistance/mobilit
stresslet calculation 88, 103	Natural inner product 367
torque calculation 88, 103	Navier-Stokes equations 8
Langevin equation 3	Neumann series 374
Lee's reflection lemma 318	Newtonian constitutive equation
London-van der Waals attraction 12	see constitutive equation
Lorentz image for a wall 312	No-slip condition
Lorentz reciprocal theorem 13, 19,	see boundary conditions
38, 183	Null space of an operator 362, 402
complex Stokes solutions 411	Oseen-Burgers tensor 20
inner product notation 404	Oseen image 448
unbounded domains 370	Oseen tensor 20, 33, 37
Lorentz reflection 314, 319	Outside of a Lyapunov surface 367
Lubrication theory 175, 219	Parallel processing
Lyapunov surface 367, 375, 393	MIMD/SIMD classification 483
Material derivative 6	Particulate flows
Material surface 6	energy dissipation in 16
Maxwell's equations 12	see also integral representation
Maxwell stresses 12, 142	Péclet number 127
Minimum energy dissipation theorem	Picard iterations 374
15	see also spectral radius
Mirror reflection operator 313	Platonic solids
Mirror symmetric flows 326	sedimentation of 477
Mobility 2	Point force solution 20
CDL-BIEM algorithm 357	see Stokeslet
electrophoretic 132, 215	Poiseuille flow 9
two spheres 272	Poisson equation 137
Mobility problems 357	Poisson-Boltzmann equation 137
energy dissipation in — 18	Principal vector 362
method of reflections solution 196	Pythagorean theorem 15, 388
Mobility tensor 115	Quadrature collocation method 364,
multiple particles 179	470
relation to resistance tensor 118,	see also singularity subtraction
180	Range of an operator 362, 408
Momentum conservation equation 7	deficiency in — 363

Rate of deformation 8	Slip velocity
Rate-of-strain	see Smoluchowski —
implications of zero field 31	Smoluchowski limit 107
see also rate of deformation	Smoluchowski slip velocity 142
Reciprocal theorem	Solenoidal field 7
transient Stokes flows 154	Spectral radius
see also Lorentz —	convergence of Picard iterations
Reflections, method of 187, 196	409
convergence proof 387	definition 409
Regularization 360	Spectrum
Renormalization theory 202	of the double layer operator 410
Resistance functions	ellipsoid 418
ellipsoids 56	single sphere 412
oblate spheroids 68	two spheres 425
prolate spheroids 64	of an operator 360
two spheres 272	of the single layer operator 445
Resistance problems 371	Sphere
method of reflections solution 189	electrophoresis of 145
Resistance tensor 109	in rate-of-strain field 51, 104, 398
axisymmetric particle(s) 121, 180	402
multiple particles 178	mobility far from a plane wall
relation to mobility tensor 118,	314
180	oscillating 150
Retardation force, electrophoretic 138	oscillatory rotation 153
Reynolds equation 223	released from rest 151
Reynolds number 9	rotating 51, 90, 398, 402
Riesz representation theorem 403	translating 50, 89, 398, 400
Rigid particle	two — s, electrophoresis 213
single layer representation	two — s, large and small 261
see integral representations	two — s, lubrication results 176
Rotlet 29, 51	two — s, resistance and mobility
image near plane wall 320	functions 189, 190, 196, 197,
Roton 53	209,272,476
Self-adjointness of Oseen tensor 37	see also collocation
Shear rate 8	see also multipole expansions
Single layer hydrodynamic potential	see also Faxén laws
23, 376	Spherical drop
Singularity solutions 48, 49	in rate-of-strain field 81
Stokeslet and rigid sphere 240,	near fluid-fluid interface 317
444	oscillating 158
Stokeslet and viscous drop 249	squeezing flow between — s 231
Singularity subtraction 366, 453	translating in fluid 52, 91
Slender body theory 47, 67	two — s, large and small 266
Slip	two — s, lubrication results 176
see boundary conditions	two — s, mobilities 200

Spheroids
collocation error analysis 339
electrophoresis of — 145
sedimentation of two — s 200
singularity solutions —
oblate 66
prolate 61
see also suspension rheology Stokeslet 20
image near fluid interface 317
image near rigid wall 312, 319
streamfunction 99
see also singularity solutions
Stokeson 53
Stokes dipole 49
image system in sphere 254
Stokes equations 9
homogeneous 9
inhomogeneous 9
Stokes flow, transient 147
Stokes law for drag 1, 51, 90
Stokes quadrupole 51
image system in sphere 259
Stokes streamfunction 97
Stresslet
from double layer density 407
from multipole expansion 28
rigid sphere
see Faxén laws
transmission in Stokes flow 32
viscous drop 80 Stresson 53
Stress tensor 7
effective — in a suspension 28,
30
Strouhal number 147
Substantial derivative 6
Surface tension 11
Suspension rheology
dilute suspension of spheroids 126
Three-body effects 193
Toroidal functions 452
Tractions
CDL-BIEM iterative solution 440
Transient Stokes flow 147

Translation theorems
mobility tensor 117
resistance tensor 115
Uniqueness of Stokes solutions
velocity boundary conditions 14
unique decomposition of multiparticle disturbance field 408
Variational principles 387
see also Helmholtz theorem
see also inclusion monotonicity
Wielandt's deflation of double layer
operator 428, 446
container 434
multiparticles and container 435
single particle 431