Course Name: Homework #1

Daniel Deng

March 1, 2021

Problem 1

Give an appropriate positive constant c such that $f(n) \leq c \cdot g(n)$ for all n > 1.^[1]

1.
$$f(n) = n^2 + n + 1$$
, $g(n) = 2n^3$

2.
$$f(n) = n\sqrt{n} + n^2$$
, $g(n) = n^2$

3.
$$f(n) = n^2 - n + 1$$
, $g(n) = n^2/2$

Solution

We solve each solution algebraically to determine a possible constant c .

Part One

$$n^{2} + n + 1 =$$
 $\leq n^{2} + n^{2} + n^{2}$
 $= 3n^{2}$
 $\leq c \cdot 2n^{3}$

Thus a valid c could be when c=2.

Part Two

$$n^{2} + n\sqrt{n} =$$

$$= n^{2} + n^{3/2}$$

$$\leq n^{2} + n^{4/2}$$

$$= n^{2} + n^{2}$$

$$= 2n^{2}$$

$$\leq c \cdot n^{2}$$

Thus a valid c is c = 2.

Part Three

$$n^{2} - n + 1 =$$

$$\leq n^{2}$$

$$\leq c \cdot n^{2}/2$$

Thus a valid c is c = 2.

Daniel Deng Problem 2

Problem 2

Let $\Sigma = \{0, 1\}$. Construct a DFA A that recognizes the language that consists of all binary numbers that can be divided by 5.

Let the state q_k indicate the remainder of k divided by 5. For example, the remainder of 2 would correlate to state q_2 because 7 mod 5 = 2.

Figure 1: DFA, A, this is really beautiful, ya know?

Justification

Take a given binary number, x. Since there are only two inputs to our state machine, x can either become x0 or x1. When a 0 comes into the state machine, it is the same as taking the binary number and multiplying it by two. When a 1 comes into the machine, it is the same as multiplying by two and adding one.

Using this knowledge, we can construct a transition table that tell us where to go:

	$x \mod 5 = 0$	$x \mod 5 = 1$	$x \mod 5 = 2$	$x \mod 5 = 3$	$x \mod 5 = 4$
x_0	0	2	4	1	3
x1	1	3	0	2	4

Therefore on state q_0 or $(x \mod 5 = 0)$, a transition line should go to state q_0 for the input 0 and a line should go to state q_1 for input 1. Continuing this gives us the Figure 1.

Daniel Deng Problem 3

Problem 3

Write part of Quick-Sort(list, start, end)

```
1: function QUICK-SORT(list, start, end)
2: if start \ge end then
3: return
4: end if
5: mid \leftarrow \text{Partition}(list, start, end)
6: QUICK-SORT(list, start, mid - 1)
7: QUICK-SORT(list, mid + 1, end)
8: end function
```

Algorithm 1: Start of QuickSort

Daniel Deng Problem 4

Problem 4

Suppose we would like to fit a straight line through the origin, i.e., $Y_i = \beta_1 x_i + e_i$ with i = 1, ..., n, $\mathbf{E}[e_i] = 0$, and $\mathbf{Var}[e_i] = \sigma_e^2$ and $\mathbf{Cov}[e_i, e_j] = 0, \forall i \neq j$.

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

Solution

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta_1}$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta}_1$.

Solution

For the bias, we need to calculate the expected value $E[\hat{\beta_1}]$:

$$\begin{aligned} \mathbf{E}[\hat{\beta}_1] &= \mathbf{E}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i \mathbf{E}[Y_i]}{\sum x_i^2} \\ &= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2} \\ &= \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \end{aligned}$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\begin{aligned} \operatorname{Var}[\hat{\beta}_1] &= \operatorname{Var}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i^2}{\sum x_i^2 \sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{\sum x_i^2}{\sum x_i^2 \sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \sigma^2 \\ &= \frac{\sigma^2}{\sum x_i^2} \end{aligned}$$

Daniel Deng

References

