Analytical evaluation of extrapolation error for Homography and Cross ratio

Pranav Kant Gaur January 13, 2014

Abstract

This document describes $Normalized\ DLT$ algorithm and derivation of error expression. Further, it also shows the extrapolation error for cross ratio approach.

1 Problem statement

Given projective mapping between points in two 2D coordinate systems(say S_w and S_i). Points have error associated with them that is $x_{we}^i = x_{wo}^i + \delta e_w^x$ (similarly, for all coordinates on S_w and S_i). Derive error expression for Homography mapping.

2 Normalized Direct linear transformation(DLT)

Direct linear transformation algorithm is used to define transformation between 2 projective planes. This transformation is represented in form of 3X3 matrix called Homography or Collineation. Input data is in the form of pairs of real world points, (x_w, y_w) and corresponding image space projections, (x_i, y_i) . Scale of data in real world coordinate system can be different than that in image coordinate system. Therefore, to avoid possible $numerical\ instability$, input data is normalized.

2.1 Benefits of data normalization

- 1. Reduces condition number of involved matries, thereby increasing numerical stability. It consequently results in increased accuracy of solution.
- 2. Normalization enhances rate of convergence of iterative algorithms.

2.2 Algorithm

Normalized DLT algorithm only introduces data normalization, which is a kind of *preconditioning* of the input.

- 1. Normalize data set by translating and scaling the data(both real world and image space coordinates)
- 2. Compute homography, H_n using DLT algorithm
- 3. Denormalize H_n to get actual homography, H

2.3 DLT algorithm

1. Represent relation between object and image points (x_w, y_w) and (x_i, y_i) respectively in form:

$$Ah = 0 (1)$$

where,

A is 2nX9 matrix and h is 9X1 matrix and n is the number of (object point, image point pairs).

- 2. Compute Singular value decomposition (SVD) of A, such that $A=U\sum V*$
- 3. The right singular vector, v_i corresponding to *smallest* singular value, σ represents desired h
- 4. Convert h(9X1 form) to H(3X3 form) to recover homography

3 Homography estimation algorithm: Error propogation study

Since, acquired image points have error(or noise) this error will propogate to final solution. In this section, we will derive formal expression for propogated error for a chosen homography computation algorithm. Here, we will focus on error analysis of SVD computation algorithm since it forms the major computation part of homography estimation in DLT algorithm.