Lecture Notes - 04: Logistic Regression

Dihui Lai

$March\ 29,\ 2020$

Contents

1 Likelihood Function		2	
	1.1	Definition	2
	1.2	Example: Bernoulli/Binomial Distribution	2
	1.3	Example: Multinomial Distribution	3
2	Log	sistic Regression	4
	2.1	Likelihood Function	4
	2.2	Parameter Model	5
	2.3	Maximum Likelihood Estimation	5
3	New	wton-Raphson Method	5
	3.1	Single Variable	5
	3.2	Multiple Variable	6
4	Арр	pendix	7
	4.1	The Gradient of Equation (11)	7

1 Likelihood Function

1.1 Definition

If a set of random variables $Y_1, Y_2 ... Y_n$ has a joint probability distribution density/mass $f(y_1, y_2, ... y_n; \theta)$, where θ is a set of parameters, the likelihood function is defined as

$$L(\theta) = f(y_1, y_2, \dots y_n; \theta) \tag{1}$$

1.2 Example: Bernoulli/Binomial Distribution

Assuming an event has two possible outcomes y = 1 or y = 0, with probability p of being 1, i.e. the outcome follows a Bernoulli distribution. As we learned in lecture 2, the probability mass function is

$$f(y;p) = \begin{cases} p, & y = 1\\ 1 - p, & y = 0 \end{cases}$$

Or

$$f(y;p) = p^y (1-p)^y$$

The probability mass distribution (or the likelihood function by definition) for n independent events is

$$L(p_1, p_2, ...p_n) = f(y_1, y_2, ...y_n; p_1, p_2, ..., p_n) = \prod_{i=1}^n p_i^{y^i} (1 - p_i)^{1-y^i}$$

To interpreting the likelihood function, let us consider the underlying parameters are the same i.e. $p = p_1 = p_2 \dots = p_n$ for all the data entries observed. And we have the likelihood function as

$$L(p) = \prod_{i=1}^{n} p^{y^{i}} (1-p)^{1-y^{i}}$$

Let us consider the following cases n = 1, n = 2 and any n. What kind of p that can maximize the likelihood function L(p)?

• n=1 (1 observation): The likelihood function is $L(p)=p^y(1-p)^{1-y}$.

Observations
$$L(p)$$
 $L_{max}(p)$ $y=0$ $L(p)=1-p$ $L_{max}=1$ at $p=0$ $y=1$ $L(p)=p$ $L_{max}=1$ at $p=1$

• n=2 (2 observations): The likelihood function is $L(p)=p^{y^1+y^2}(1-p)^{(1-y^1)+(1-y^2)}$. Given the

Observations

$$L(p)$$
 $L_{max}(p)$
 $y^1 = 0, y^2 = 0$
 $L(p) = (1 - p)^2$
 $L_{max} = 1$ at $p = 0$
 $y^1 = 1, y^2 = 1$
 $L(p) = p^2$
 $L_{max} = 1$ at $p = 0$
 $y^1 = 0, y^2 = 1$
 $L(p) = p(1 - p)$
 $L_{max} = 0.25$ at $p = 0.5$

• $n = n_1 + n_0$ (*n* observations with n_1 1s and n_0 0s): The likelihood function is $L(p) = p^{n_1}(1-p)^{n_0}$. The likelihood function is maximized when

$$\frac{\partial \ell}{\partial p} = 0, \text{ where } \ell = \log(L(p)) = n_1 \log(p) + n_0 \log(1 - p)$$
(2)

Solve equation (3) for p, we have

$$\frac{\partial \ell}{\partial p} = \frac{n_1}{p} - \frac{n_0}{1 - p} = 0$$

$$\Rightarrow n_1 - n_1 p - n_0 p = 0$$

$$\Rightarrow p = \frac{n_1}{n_1 + n_0}$$

Overall, p maximize the likelihood function when it takes the value of the mean of observed ys

1.3 Example: Multinomial Distribution

The multinomial distribution has density function

$$f(x_1, x_2, x_3, ...x_c) = \frac{N!}{x_1! x_2! ... x_c!} p_1^{x_1} p_2^{x_2} ... p_c^{x_c}$$

If we perform one experiemnts (N=1), the likelihood function is accordingly, $L_i = \prod_{j=1}^c p_j^{x_j^i}$ the likelihood function of n experiments is then $L = \prod_{i=1}^n \prod_{j=1}^c p_j^{x_j^i}$. Note x_j^i is either 1 or 0

The log-likelihood function (a.k.a log-loss) is

$$\ell = \log(L) = \sum_{i=1}^{n} \sum_{j=1}^{c} x_{j}^{i} \log(p_{j})$$

The p_k that maximize the log-likelihood function that subject to the constraint $\sum_{j=1}^{c} p_j = 1$ has to satisfy the following condition

$$\begin{cases} \frac{\partial}{\partial p_k} \left(\ell - \lambda \sum_{i=1}^n (1 - \sum_{j=1}^c p_j) \right) = 0 \\ \frac{\partial}{\partial \lambda} \left(\ell - \lambda \sum_{i=1}^n (1 - \sum_{j=1}^c p_j) \right) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \sum_{i=1}^{n} \frac{\partial}{\partial p_{k}} \left(\sum_{j=1}^{c} x_{j}^{i} \log(p_{j}) - \lambda (1 - \sum_{j=1}^{c} p_{j}) \right) = 0 \\ \sum_{i=1}^{n} \frac{\partial}{\partial \lambda} \left(\sum_{j=1}^{c} x_{j}^{i} \log(p_{j}) - \lambda (1 - \sum_{j=1}^{c} p_{j}) \right) = 0 \end{cases}$$

$$\Rightarrow \lambda = -\frac{x_k}{p_k}$$

where x_k is the total number of outcome k. Because

$$\sum_{k=1}^{c} x_k = n$$

We have

$$-\sum_{k=1}^{c} \lambda p_k = n \Rightarrow \lambda = -n$$

Therefore

$$p_k = \frac{x_k}{n} \tag{3}$$

2 Logistic Regression

2.1 Likelihood Function

In general, every events could have its own underlying parameter p. For n-independent events, let us assume the parameters are $p_1, p_2, ..., p_n$ respectively. The corresponding log-likelihood function is thus

$$\ell(p_1, p_2, ...p_n) = \sum_{i=1}^{n} \left(y^i \log(p_i) + (1 - y^i) \log(1 - p_i) \right)$$
(4)

The log-likelihood function is the defined as the log transformation of the likelihood function

$$\ell = \log(L) = \sum_{i=1}^{n} y^{i} \log(p_{i}) + (1 - y^{i}) \log(1 - p_{i})$$
(5)

2.2 Parameter Model

The parameter p_i is modeled as a logistic function of a set of m predictors x_1^i , x_2^i , ... x_m^i or \vec{x}^i in vector notation.

$$p_i = \frac{1}{1 + \exp(-\vec{\beta} \cdot \vec{x}^i)} \tag{6}$$

2.3 Maximum Likelihood Estimation

The optimal model chooses β s that maximize the likelihood function ℓ , at the optimal point β s satisfy the following equations.

$$\frac{\partial \ell}{\partial \beta_j} = 0 , j = 1, 2, ..., m \tag{7}$$

Use ℓ 's definition in equation (4) and formula (5), we have

$$\ell = \sum_{i=1}^{n} y^{i} \log \frac{p_{i}}{1 - p_{i}} + \log(1 - p_{i})$$

$$= \sum_{i=1}^{n} y^{i} (\vec{\beta} \cdot \vec{x}^{i}) - \log(1 + \exp(\vec{\beta} \cdot \vec{x}^{i})))$$

Insert it into equation (6), we have

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n \left(y^i - \frac{1}{1 + \exp(-\vec{\beta} \cdot \vec{x}^i)} \right) x_j^i = 0 , j = 1, 2, 3, ..., m$$

To get the optimal β s, we need to solve the equation set. However, it is hard to do analytically, because of the nonlinear terms that contain $\beta \frac{1}{1+\exp(-\vec{\beta}\cdot\vec{x}^i)}$. However, we can solve the problem numerically, using Newton-Raphson method.

3 Newton-Raphson Method

3.1 Single Variable

Consider a log-likelihood function of one parameter $\ell(\beta)$. In general, ℓ can be of any function and complex. With the hope that its derivative ℓ' is simpler, we use Taylor expansion for approximation around some point β_0

$$\ell(\beta) \sim \ell(\beta_0) + \ell'(\beta_0)(\beta - \beta_0) + \frac{1}{2}\ell''(\beta_0)(\beta - \beta_0)^2$$
 (8)

The derivative of equation (7) is thus

$$\ell'(\beta) \sim 0 + \ell'(\beta_0) + \ell''(\beta_0)(\beta - \beta_0) \tag{9}$$

The β^* that minimizes the log-likelihood function have $\ell'(\beta) = 0$ at the point i.e. $\ell'(\beta)|_{\beta=\beta^*} = 0$. Using equation (8), we have

$$\ell'(\beta_0) + \ell''(\beta_0)(\beta^* - \beta_0) = 0 \tag{10}$$

$$\Rightarrow \beta^* = \beta_0 - \frac{\ell'(\beta_0)}{\ell''(\beta_0)} \tag{11}$$

Recall that this is only an approximation solution and β^* is not exactly the optimal point with an arbitrarily chosen β_0 . However, we can hope that equation (10) brings us a little closer to the optimal point. To get a more accurate solution, we will need to use equation (10) iteratively i.e.

$$\beta_{k+1} = \beta_k - \frac{\ell'(\beta_k)}{\ell''(\beta_k)}$$
, until $|\beta_{k+1} - \beta_k| < \delta$

Here, $|\beta_{k+1} - \beta_k| < \delta$ is the convergence condition and δ is tolerance level. δ is usually set as a small number. The algorithms says that we can stop the iteration if we are very close to the optimal point.

3.2 Multiple Variable

In the case where the log-likelihood function is dependent on multiple parameters $\ell(\beta)$, the Taylor expansion is

$$\ell(\beta) \sim \ell(\beta_0) + \nabla \ell(\beta_0)^T (\beta - \beta_0) + \frac{1}{2} (\beta - \beta_0)^T \mathbf{H}(\beta_0) (\beta - \beta_0)$$
(12)

Here β is a $m \times 1$ column matrix and **H** is the $m \times m$ Hessian matrix, defined as

$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix}, \mathbf{H} = \begin{bmatrix} \frac{\partial^2 \ell}{\partial \beta_1^2} & \frac{\partial^2 \ell}{\partial \beta_1 \partial \beta_2} & \cdots & \frac{\partial^2 \ell}{\partial \beta_1 \partial \beta_m} \\ \frac{\partial^2 \ell}{\partial \beta_2 \partial \beta_1} & \frac{\partial^2 \ell}{\partial \beta_2^2} & \cdots & \frac{\partial^2 \ell}{\partial \beta_2 \partial \beta_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 \ell}{\partial \beta_m \partial \beta_1} & \frac{\partial^2 \ell}{\partial \beta_m \partial \beta_2} & \cdots & \frac{\partial^2 \ell}{\partial \beta_m^2} \end{bmatrix}$$

Apply the gradient against β on equation (11), we have

$$\nabla \ell = \nabla \ell(\beta_0) + \mathbf{H}(\beta - \beta_0)$$
 see Appendix.

At the optimal point we want to have $\nabla \ell = 0$ i.e.

$$\nabla \ell(\beta_0) + \mathbf{H}(\beta - \beta_0) = 0$$

$$\Rightarrow \mathbf{H}^{-1} \nabla \ell(\beta_0) + (\beta - \beta_0) = 0$$

$$\Rightarrow \beta = \beta_0 - \mathbf{H}^{-1} \nabla \ell(\beta_0)$$

The Newton-Raphson algorithm for multivariate model is therefore

$$\beta_{k+1} = \beta_k - \mathbf{H}^{-1} \nabla \ell(\beta_k), \text{ until } |\beta_{k+1} - \beta_k| < \delta$$
(13)

4 Appendix

4.1 The Gradient of Equation (11)

Starting with equation

$$\ell(\beta) = \ell(\beta_0) + \nabla \ell(\beta_0)^T (\beta - \beta_0) + \frac{1}{2} (\beta - \beta_0)^T \mathbf{H}(\beta_0) (\beta - \beta_0)$$
(14)

To simplify the equation, we introduce the notation $\Delta \beta = \beta - \beta_0$. It is easy to see the derivative of each element of $\Delta \beta$ against β_j has the following property

$$\frac{\partial}{\partial \beta_i} \Delta \beta_i = \delta_{ij} \tag{15}$$

Here, δ_{ij} is the Kronecker delta, having the property $\delta_{ij} = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$

On the other hand, if we write the log likelihood using the elements in the matrices, we have

$$\ell(\beta) = \ell(\beta_0) + \sum_{a=1}^{m} \frac{\partial \ell(\beta_0)}{\partial \beta_a} (\Delta \beta_a) + \sum_{a,b=1}^{m} \frac{1}{2} \Delta \beta_a H_{ab}(\beta_0) \Delta \beta_b$$
 (16)

Let us look at each term on the R.H.S of the equation when we take the partial derivative of ℓ against β_j .

• The first term becomes 0 as it is constant $\nabla \ell(\beta_0) = 0$.

• In the second term, only $\Delta \beta_a$ is dependent on β and we have

$$\frac{\partial}{\partial \beta_j} \left(\sum_{a=1}^m \frac{\partial \ell(\beta_0)}{\partial \beta_a} (\Delta \beta_a) \right) \\
= \sum_{a=1}^m \frac{\partial \ell(\beta_0)}{\partial \beta_a} \frac{\partial \Delta \beta_a}{\partial \beta_j} \\
= \sum_{a=1}^m \frac{\partial \ell(\beta_0)}{\partial \beta_a} \delta_{aj} \\
= \frac{\partial \ell(\beta_0)}{\partial \beta_j}$$

In matrix format, we have

$$\nabla \left(\sum_{a=1}^{m} \frac{\partial \ell(\beta_0)}{\partial \beta_a} (\Delta \beta_a) \right) = \nabla \ell(\beta_0)$$

• the third term has two variables dependent on β $\Delta\beta_a$ and $\Delta\beta_b$

$$\frac{\partial}{\partial \beta_{j}} \left(\sum_{a,b=1}^{m} \frac{1}{2} \Delta \beta_{a} H_{ab}(\beta_{0}) \Delta \beta_{b} \right)$$

$$= \sum_{a,b=1}^{m} \frac{1}{2} \delta_{aj} H_{ab}(\beta_{0}) \Delta \beta_{b} + \sum_{a,b=1}^{m} \frac{1}{2} \Delta \beta_{a} H_{ab}(\beta_{0}) \delta_{bj}$$

$$= \sum_{b=1}^{m} \frac{1}{2} H_{jb}(\beta_{0}) \Delta \beta_{b} + \sum_{a=1}^{m} \frac{1}{2} \Delta \beta_{a} H_{aj}(\beta_{0})$$

$$= \sum_{b=1}^{m} \frac{1}{2} H_{jb}(\beta_{0}) \Delta \beta_{b} + \sum_{a=1}^{m} \frac{1}{2} H_{ja}(\beta_{0}) \Delta \beta_{a}, \text{ use the fact that } H_{aj} = H_{ja}$$

$$= \sum_{d=1}^{m} H_{jd}(\beta_{0}) \Delta \beta_{c}, \text{ (a, b are dummy indices, set them to be c)}$$

In matrix format we have

$$\nabla \left(\sum_{a,b=1}^{m} \frac{1}{2} \Delta \beta_a H_{ab}(\beta_0) \Delta \beta_b \right) = \mathbf{H} \Delta \beta$$

Therefore we have

$$\nabla \ell(\beta) = \nabla \ell(\beta_0) + \nabla \left(\sum_{a=1}^m \frac{\partial \ell(\beta_0)}{\partial \beta_a} (\Delta \beta_a) \right) + \nabla \left(\sum_{a,b=1}^m \frac{1}{2} \Delta \beta_a H_{ab}(\beta_0) \Delta \beta_b \right)$$
 (17)

$$= 0 + \nabla \ell(\beta_0) + \mathbf{H} \Delta \beta \tag{18}$$