

Maestría en Ciencias Naturales y Matemáticas

Clase 11 - Cálculo Avanzado de Varias Variables

Mg: Julián Uribe Castañeda

UPB

15 de diciembre de 2022

Topología en \mathbb{R}^n - Compacidad (continuación).

Lema.

Supongamos que $A\subseteq\mathbb{R}^n$ es un conjunto compacto y $t\in\mathbb{R}$. Entonces $A\times\{t\}$ es un conjunto compacto en \mathbb{R}^{n+1} .

Demostración:

Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^{n+1}$ |a función definida como

$$f(x_1,\ldots,x_n)=(x_1,\ldots,x_n,t)$$

para cada $(x_1,...,x_n) \in \mathbb{R}^n$. Entonces f es continua en \mathbb{R}^n , ya que las componentes son funciones continuas. En particular f es continua en A y así $f(A) = A \times \{t\}$ es compacto en \mathbb{R}^{n+1} .

Lema.

Sean $n, m \in \mathbb{N}$ y $U \subseteq \mathbb{R}^{n+m}$ un conjunto abierto. Si $a = (a_1, ..., a_n) \in \mathbb{R}^n$, $b = (b_1, ..., b_m) \in \mathbb{R}^m$ y $(a, b) = (a_1, ..., a_n, b_1, ..., b_m) \in U$, entonces existe $\varepsilon > 0$ tal que

- (1) $(a,b) \in B(a;\varepsilon) \times B(b;\varepsilon) := \{(x,y) \in \mathbb{R}^{n+m} : x \in B(a;\varepsilon) \text{ y } y \in B(b;\varepsilon)\} \subseteq U$
- (2) $B(a;\varepsilon) \times B(b;\varepsilon)$ es un conjunto abierto en \mathbb{R}^{n+m} .

Demostración:

Debido a que $(a,b) \in U$ y U es abierto en \mathbb{R}^{n+m} , entonces existe $\varepsilon > 0$ tal que $B((a,b); 2\varepsilon) \subseteq U$. De esta manera, tenemos que

(1)
$$B(a; \varepsilon) \times B(b; \varepsilon) \subseteq U$$

Sea $(x,y) \in B(a;\varepsilon) \times B(b;\varepsilon)$, por tanto

$$||(x,y)-(a,b)|| = ||(x_1,...,x_n,y_1,...,y_m)-(a_1,...,a_n,b_1,...,b_m)|| =$$

$$||(x_1-a_1,...,x_n-a_n,y_1-b_1,...,y_m-b_m)|| = \sqrt{\sum_{i=1}^n (x_i-a_i)^2 + \sum_{i=1}^m (y_i-b_i)^2} \le \sqrt{\sum_{i=1}^n (x_i-a_i)^2} + \sqrt{\sum_{i=1}^m (y_i-b_i)^2} = ||x-a|| + ||y-b|| < \varepsilon + \varepsilon = 2\varepsilon$$

de donde, tenemos que $(x,y) \in B((a,b);2\varepsilon)$, y así $B(a;\varepsilon) \times B(b;\varepsilon) \subseteq B((a,b);2\varepsilon) \subseteq U$.

(2) $B(a;\varepsilon) \times B(b;\varepsilon)$ es un conjunto abierto en \mathbb{R}^{n+m}

Sea $(x,y) \in B(a;\varepsilon) \times B(b;\varepsilon)$, entonces existen $\delta_1 > 0$ y $\delta_2 > 0$ tales que $B(x;\delta_1) \subseteq B(a;\varepsilon)$ y $B(y;\delta_2) \subseteq B(b;\varepsilon)$ (ya que $B(a;\varepsilon)$ y $B(b;\varepsilon)$ son abiertos en \mathbb{R}^n y \mathbb{R}^m respectivamente). Si $\delta := \frac{\min\{\delta_1,\delta_2\}}{2} > 0$, entonces afirmamos lo siguiente

Afirmación: $B((x,y);\delta) \subseteq B(a;\varepsilon) \times B(b;\varepsilon)$.

Sea $(z, w) \in B((x, y); \delta)$, entonces tenemos que

$$||(z,w)-(x,y)|| = ||(z_1,...,z_n,w_1,...,w_m)-(x_1,...,x_n,y_1,...,y_m)|| =$$

$$= ||(z_1-x_1,...,z_n-x_n,w_1-y_1,...,w_m-y_m)|| = \sqrt{\sum_{i=1}^n (z_i-x_i)^2 + \sum_{i=1}^m (w_i-y_i)^2} < \delta$$

de donde se tiene que

$$\begin{cases} ||z-x|| = \sqrt{\sum_{i=1}^{n} (z_i - x_i)^2} \le \sqrt{\sum_{i=1}^{n} (z_i - x_i)^2 + \sum_{i=1}^{m} (w_i - y_i)^2} < \delta \le \delta_1, \\ ||w-y|| = \sqrt{\sum_{i=1}^{m} (w_i - y_i)^2} \le \sqrt{\sum_{i=1}^{n} (z_i - x_i)^2 + \sum_{i=1}^{m} (w_i - y_i)^2} < \delta \le \delta_2 \end{cases}$$

lo cual implica que $z \in B(x, \delta_1) \subseteq B(a; \varepsilon)$, $w \in B(y; \delta_2) \subseteq B(b; \varepsilon)$ y así $(z, w) \in B(a; \varepsilon) \times B(b; \varepsilon)$. De esta manera $B((x, y); \delta) \subseteq B(a; \varepsilon) \times B(b; \varepsilon)$ y como (x, y) es un punto arbitrario de $B(a; \varepsilon) \times B(b; \varepsilon)$, se tiene que $B(a; \varepsilon) \times B(b; \varepsilon)$ es un conjunto abierto en \mathbb{R}^{n+m} .

Lema (lema del tubo).

Supongamos que $A \subseteq \mathbb{R}^n$ es un conjunto compacto y $t \in \mathbb{R}$. Si U es un conjunto abierto en \mathbb{R}^{n+1} con $A \times \{t\} \subseteq U$, entonces existe $\varepsilon > 0$ tal que $A \times (t-\varepsilon, t+\varepsilon) \subseteq U$.

Demostración:

Para cada $a \in A$, tenemos que $(a,t) \in A \times \{t\} \subseteq U$ y por el lema 2.5.2 tenemos que para cada $a \in A$, existe $\varepsilon_a > 0$ tal que

$$\begin{cases} (a,t)\!\in\!B(a;\varepsilon_a)\!\times\!B(t;\varepsilon_a)\!=\!B(a;\varepsilon_a)\!\times\!(t\!-\!\varepsilon_a,t\!+\!\varepsilon_a)\!\subseteq\!U,\\ \\ B(a;\varepsilon_a)\!\times\!(t\!-\!\varepsilon_a,t\!+\!\varepsilon_a) \text{ es un conjunto abierto en }\mathbb{R}^{n\!+\!1}. \end{cases}$$

Además es fácil notar que $A \subseteq \bigcup B(a; \varepsilon_a) \times (t - \varepsilon_a, t + \varepsilon_a)$ y por la compacidad de $A \times \{t\}$, deben existir $a_1, ..., a_m \in A$ (finitos) tales que

$$A \times \{t\} \subseteq \bigcup_{i=1}^{m} B(a_i; \varepsilon_{a_i}) \times (t - \varepsilon_{a_i}, t + \varepsilon_{a_i}) \subseteq U$$

y al tomar $\varepsilon := \min\{a_1, ..., a_m\}$, tenemos que

$$A \times (t - \varepsilon, t + \varepsilon) \subseteq \bigcup_{i=1}^{m} B(a_i; \varepsilon_{a_i}) \times (t - \varepsilon, t + \varepsilon) \subseteq \bigcup_{i=1}^{m} B(a_i; \varepsilon_{a_i}) \times (t - \varepsilon_{a_i}, t + \varepsilon_{a_i}) \subseteq U$$

o cual prueba que $A \times (t-\varepsilon, t+\varepsilon) \subseteq U$.

Definición (rectángulo cerrado en \mathbb{R}^n).

Un rectángulo cerrado en \mathbb{R}^n es un conjunto que se describe de la forma

$$[a_1,b_1]\times\cdots\times[a_n,b_n]:=\{(x_1,\ldots,x_n)\in\mathbb{R}^n:a_i\leq x_i\leq b_i\ \text{para}\ 1\leq i\leq n\}$$

con $a_i < b_i$ para $1 \le i \le n$.

Lema (los rectángulos cerrados son conjuntos compactos).

El rectángulo cerrado

$$[a_1,b_1]\times\cdots\times[a_n,b_n]:=\{\big(x_1,\ldots,x_n\big)\in\mathbb{R}^n:a_i\leq x_i\leq b_i \text{ para } 1\leq i\leq n\}$$

es un conjunto compacto en \mathbb{R}^n .

Demostración:

Vamos a probar que $[a_1, b_1] \times \cdots \times [a_n, b_n]$ es compacto por inducción sobre n.

Paso base (n=1): Previamente se probó que $[a_1,b_1]$ es compacto en \mathbb{R} , lo cual es precisamente nuestro paso base.

Paso inductivo: Supongamos que $[a_1,b_1] \times \cdots \times [a_{n-1},b_{n-1}]$ es un conjunto compacto en \mathbb{R}^{n-1} y veamos que $[a_1,b_1] \times \cdots \times [a_{n-1},b_{n-1}] \times [a_n,b_n]$ es un conjunto compacto en \mathbb{R}^n . Sea $\{U_\alpha\}_{\alpha \in J}$ un cubrimiento abierto de $[a_1,b_1] \times \cdots \times [a_{n-1},b_{n-1}] \times [a_n,b_n]$, entonces tenemos que:

- (\checkmark) Por el lema anterior, tenemos que para cada $t \in [a_n,b_n]$ se tiene que $[a_1,b_1] \times \cdots \times [a_{n-1},b_{n-1}] \times \{t\}$ es un conjunto compacto en \mathbb{R}^n .
- (\checkmark) Para cada $t \in [a_n, b_n]$ se tiene que $[a_1, b_1] \times \cdots \times [a_{n-1}, b_{n-1}] \times \{t\} \subseteq \bigcup_{\alpha \in J} U_\alpha$ y por lo tanto por compacidad de $[a_1, b_1] \times \cdots \times [a_{n-1}, b_{n-1}] \times \{t\}$, existen $U_{\alpha_1}, \dots, U_{\alpha_{m_t}}$ (finitos) tales que

$$[a_1,b_1]\times\cdots\times[a_{n-1},b_{n-1}]\times\{t\}\subseteq\bigcup_{i=1}^{m_t}U_{\alpha_i}$$

(\checkmark) Dado que $[a_1,b_1]\times\cdots\times[a_{n-1},b_{n-1}]\times\{t\}\subseteq\bigcup_{i=1}^{m}U_{\alpha_i}$ y que $[a_1,b_1]\times\cdots\times[a_{n-1},b_{n-1}]$ es un subconjunto compacto de \mathbb{R}^{n-1} , entonces por el lema del tubo tenemos que existe $\varepsilon_t>0$ tal que

$$[a_1, b_1] \times \cdots \times [a_{n-1}, b_{n-1}] \times (t - \varepsilon_t, t + \varepsilon_t) \subseteq \bigcup_{j=1}^{m_t} U_{a_j}$$

para cada $t \in [a_n, b_n]$.

 $(\checkmark) \ [a_n,b_n] \subseteq \bigcup_{t \in [a_n,b_n]} (t-\varepsilon_t,t+\varepsilon_t) = \bigcup_{t \in [a_n,b_n]} B(t,\varepsilon_t) \ \text{y por compacidad de } [a_n,b_n], \ \text{tenemos que existen} \ t_1,\ldots,t_k \in [a_n,b_n] \ (\text{finitos}) \ \text{tales que}$

$$[a_n,b_n]\subseteq \bigcup_{i=1}^k (t_i-\varepsilon_{t_i},t_i+\varepsilon_{t_i}).$$

De lo anterior, podemos concluir que

$$\begin{split} &[a_1,b_1]\times\dots\times[a_{n-1},b_{n-1}]\times[a_n,b_n]\subseteq[a_1,b_1]\times\dots\times[a_{n-1},b_{n-1}]\times\bigcup_{i=1}^k\big(t_i-\varepsilon_{t_i},t_i+\varepsilon_{t_i}\big)=\\ &=\bigcup_{i=1}^k\big([a_1,b_1]\times\dots\times[a_{n-1},b_{n-1}]\times\big(t_i-\varepsilon_{t_i},t_i+\varepsilon_{t_i}\big)\big)\subseteq\bigcup_{i=1}^k\bigcup_{j=1}^{m_{t_i}}U_{\alpha_j} \text{ (finitos)}. \end{split}$$

El anterior análisis prueba que todo cubrimiento abierto de $[a_1,b_1]\times\cdots\times[a_{n-1},b_{n-1}]\times[a_n,b_n]$ tiene un subcubrimiento finito, lo cual muestra que $[a_1,b_1] \times \cdots \times [a_{n-1},b_{n-1}] \times [a_n,b_n]$ es un conjunto compacto en \mathbb{R}^n .

Corolario (los conjuntos cerrados y acotados en \mathbb{R}^n son conjuntos compactos).

Sea $A \subseteq \mathbb{R}^n$ un conjunto cerrado y acotado, entonces A es compacto.

Demostración:

Dado que A es acotado, existe M > 0 tal que

$$A \subseteq B(O; M) = \{x \in \mathbb{R}^n : ||x|| < M\}.$$

Además es claro que $B(O; M) \subseteq [-M, M] \times \cdots \times [-M, M]$, lo cual implica que

Mg: Julián Uribe Castañeda (UPB)

Maestría en Ciencias Naturales y Matemátic

15 de diciembre de 2022

$$A \subseteq [-M, M] \times \cdots \times [-M, M]$$

y como $[-M,M] \times \cdots \times [-M,M]$ es compacto y A es cerrado, se tiene que A es compacto (clase 8 - problema 7).

Corolario (Compacto en $\mathbb{R}^n \Leftrightarrow$ cerrado y acotado).

Sea $A \subseteq \mathbb{R}^n$, entonces

A es compacto en $\mathbb{R}^n \iff A$ es cerrado y acotado.

Demostración:

"⇒" Esta dirección ya había sido probada anteriormente (clase 8).

"

Esta direccion es precisamente el corolario previo.

Problemas.

(1) Sea $\mathbb{S}^{n-1}:=\{x\in\mathbb{R}^n:\|x\|=1\}$. Demostrar que \mathbb{S}^{n-1} es un conjunto cerrado en \mathbb{R}^n .

Ayuda: Considerar la función $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ definida como

$$f(x) = f(x_1,...,x_n) := ||x||^2 = x_1^2 + \cdots + x_n^2$$

para cada $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$. Entonces f es una función continua en \mathbb{R}^n y además $f^{-1}(\{1\})=\mathbb{S}^{n-1}$.

(2) Demostrar que \mathbb{S}^{n-1} es un conjunto compacto en \mathbb{R}^n .

Ayuda: Recordar que en \mathbb{R}^n ser compacto equivale a ser cerrado y acotado.

(3) Sea $\mathbb{D}^n := \{x \in \mathbb{R}^n : ||x|| \le 1\}$. Demostrar que \mathbb{D}^n es un conjunto compacto en \mathbb{R}^n .

Ayuda: Considerar la función $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ definida como

$$f(x) = f(x_1,...,x_n) := ||x||^2 = x_1^2 + \dots + x_n^2$$

para cada $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Entonces f es una función continua en \mathbb{R}^n y además $f^{-1}([0,1]) = \mathbb{D}^{n-1}$.

- (4) Sea A un subconjunto compacto y no vacío de \mathbb{R}^n , y supongamos que $\{D_a\}_{a\in J}$ es una colección de conjuntos cerrados en \mathbb{R}^n que satisfacen las siguientes propiedades:
- ★ $D_{\alpha} \subseteq A$ para cada $\alpha \in J$.
- * Para cada colección finita $\alpha_1, ..., \alpha_m \in J$ se tiene que $\bigcap_{i=1}^m D_{\alpha_i} \neq \emptyset$.

Demostrar que $\bigcap_{\alpha\in I} D_{\alpha} \neq \emptyset$.

<u>Ayuda:</u> Suponer por reducción al absurdo que $\bigcap_{\alpha \in J} D_\alpha = \emptyset$, entonces se tienen las siguientes cosas:

- (a) Si $\bigcap_{\alpha \in J} D_{\alpha} = \emptyset$, entonces $\left(\bigcap_{\alpha \in J} D_{\alpha}\right)^{c} = \bigcup_{\alpha \in J} D_{\alpha}^{c} = \mathbb{R}^{n}$.
- (b) D_{α}^{c} es un conjunto abierto para cada $\alpha \in J$.
- (c) Como $A \subseteq \bigcup_{\alpha \in J} D_{\alpha}^c$, entonces por compacidad de A deben existir $\alpha_1, ..., \alpha_m \in J$ (finitos) tales que

$$A \subseteq D_{\alpha_{\mathbf{1}}}^{c} \cup \dots \cup D_{\alpha_{m}}^{c} \iff A \cap \left(D_{\alpha_{\mathbf{1}}}^{c} \cup \dots \cup D_{\alpha_{m}}^{c}\right)^{c} = \emptyset.$$

(d)
$$A \cap (D_{\alpha_1}^c \cup \cdots \cup D_{\alpha_m}^c)^c = A \cap (D_{\alpha_1} \cap \cdots \cap D_{\alpha_m}) = D_{\alpha_1} \cap \cdots \cap D_{\alpha_m} \neq \emptyset.$$