[Llenar con letra mayúscula de imprenta GRANDE]

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Teoría de la Computación

Parcial 2, tema 1 [Lunes 23 de Mayo de 2011]

Instrucciones: la evaluación dura 3 hs (tres horas). NO se asignan puntos a las respuestas aún correctas pero sin justificación o desarrollo. Respuestas incompletas reciben puntajes incompletos. Entregar en hojas separadas por ejercicio, numeradas, cada una con APELLIDO en el margen SUPERIOR DERECHO.

- 1) a) Demuestre usando inducción que $\sum_{k=1}^{n} 1/2^k = (2^n 1)/2^n$, para enteros positivos n.
 - b) Defina los números de Fibonacci f_i y demuestre que $f_1 + f_3 + ... + f_{2n-1} = f_{2n}$.
 - c) Escriba una definición recursiva (matemática!) de la función min de tal forma que $\min(a_1, a_2, ..., a_n)$ sea el mínimo de los valores $a_1, a_2, ..., a_n$ y, a continuación, un pseudocódigo (recursivo!) que lo implemente.
- 2) a) ¿Cuántas funciones $f: A \to B$ hay desde un conjunto A de 5 elementos hacia otro conjunto B de 4 elementos? ¿Cuántas son inyectivas? ¿Cuántas son inyectivas si B tiene 7 elementos?
 - b) ¿De cuántas maneras puede un fotógrafo de boda ordenar a un grupo de 6 personas si: (i) los novios deben salir juntos en la foto?; (ii) los novios no pueden salir juntos en la foto?; (iii) la novia debe salir en algún puesto a la derecha del novio?
 - c) Sean $P_i(x_i, y_i, z_i)$, con $i \in \mathbb{Z}_1^9$, un conjunto de 9 puntos distintos del espacio con coordenadas enteras. Probar que, de entre los segmentos que unen cada pareja de puntos, hay al menos 1 cuyo punto medio tiene coordenadas enteras.
- 3) a) ¿Cuántas soluciones tiene la inecuación diofántica $x_1+x_2<19$, en enteros nonegativos tales que $x_1\geq 2$ y $1\leq x_2\leq 3$?
 - b) ¿De cuántas maneras se pueden distribuir 6 bolas indistinguibles en 9 cajas distintas?
 - c) ¿De cuántas maneras se pueden distribuir 7 bolas distinguibles en 3 cajas distintas, de modo que las cajas contengan 2, 4 y 1 bolas cada una ?
- 4) a) Defina identidad combinatoria. Luego demuestre que C(n+1,k) = C(n,k-1) + C(n,k) para enteros positivos n,k, con $n \geq k$.
 - b) Defina y dé un ejemplo de Relación de Recurrencia (RR), lineal, homogénea, de coeficientes constantes, y de orden k. A continuación, resuelva la RR $a_n = 5a_{n-1} 6a_{n-2}$ para $n \geq 2$, con $a_0 = 1$, $a_1 = 0$ y verifique su solución.
 - c) Sean c_1 y c_2 números reales tales que $c_2 \neq 0$. Suponga que $r^2 c_1 r c_2 = 0$ tiene una única raíz r_0 . Demuestre que la sucesión $\{a_n\}$ es solución de la RR $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, ssi $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$ para n = 0, 1, ..., donde α_1 y α_2 son constantes.
- 5) a) ¿Cuántas cadenas de bits de longitud 8 comienzan con 1 o bien terminan con 000 ?
 - b) Defina relación reflexiva y relación simétrica en un conjunto A, dé su notación, un ejemplo y un contraejemplo de cada una.
 - c) Sea un conjunto A de n elementos. Usando los principios de conteo demuestre que el número z de relaciones R simétricas es $z = 2^n 2^{(n^2 n)/2}$.