

TP – Comparaison AES HW et AES SW

Antoine Aubert

Yann Birembaux

28/05/2023

Implémentation	3
Programmation de la carte	.14
Lancement et configuration	.14
Test de performance et comparaison	.19

Implémentation

Installation de Quartus

Décompression du fichier « designs_start_0.rar » dans le répertoire C:/altera/13.0sp1/designs/

Copie du contenu du répertoire « copier_dans_HW_SW_AES » dans le répertoire

C:/altera/13.0sp1/designs/ HW_SW_AES/

Lancement de Quartus et ouverture du projet HW_SW_AES

Lancement de Qsys

Ajout de onchip_memory2_0

Ajout du CPU

Connection du CPU

Configuration du CPU

Ajout du module JTAG UART

Ajout du module PIO (Parallèle I/O)

Ajout du module interval Timer

Ajout du module system ID Peripheral

Ajout du module Yassin_AES

Ajout du module Performance Counter UNIT

Connexion des différents modules.

Assignation des adresses de base et exportation des sorties LED et AES

Génération du système

Ouverture du fichier top level file

Ajout de notre CPU

Vérification et modification des connections CPU

Compilation du fichier et résultat :

Programmation de la carte

Lancement et configuration

Utilisation de la fonction hardware setup pour connecter la carte

Connection via le port USB-Blaster

Utilisation de la fonction auto détecte pour trouver le module

Ouverture de Eclipse et création du Workspace

Création du nouveau projet BSP, utilisation de Template par défaut

Injection du code dans l'IDE

Configuration de Target connections puis Refrech connections

Test de performance et comparaison

Ajout des différentes fonctions puis vérification du Run

Ajout des différentes fonctions il faut aussi ajouter la bibliothèque altera_avalon_performance_counter.h

```
#include "sys/alt_stdio.h"
#include <system.h>
#include <io.h>
#define yassinAES_BASEADDR YASSIN_AES_0_BASE
#define PERF_CNTR_BASE 0x12345678 // Remplacez par l'adresse de base du compteur de performances
unsigned int res[4];
void PERF_BEGIN(unsigned int base_addr, unsigned int counter);
void PERF_END(unsigned int base_addr, unsigned int counter);
unsigned int perf_get_section_time(unsigned int base_addr, unsigned int counter);
int main()
    alt_putstr("Hello from Nios II!\n");
    alt_putstr("Load KEY!\n");
    IOWR_32DIRECT(yassinAES_BASEADDR, 0x00, 0x11111111);
    IOWR_32DIRECT(yassinAES_BASEADDR, 1 * 0x04, 0x11111111);
IOWR_32DIRECT(yassinAES_BASEADDR, 2 * 0x04, 0x11111111);
    IOWR_32DIRECT(yassinAES_BASEADDR, 3 * 0x04, 0x11111111);
    alt_putstr("Load data!\n");
    IOWR_32DIRECT(yassinAES_BASEADDR, 4 * 0x04, 0x11111111);
    IOWR_32DIRECT(yassinAES_BASEADDR, 5 * 0x04, 0x11111111);
    IOWR_32DIRECT(yassinAES_BASEADDR, 6 * 0x04, 0x11111111);
    IOWR_32DIRECT(yassinAES_BASEADDR, 7 * 0x04, 0x11111111);
    alt_putstr("retrive output!\n");
    PERF_BEGIN(PERF_CNTR_BASE, 1); // D∲but de la mesure de performance
    printf("template2 0x%X \n", IORD_32DIRECT(yassinAES_BASEADDR, 10 * 0x04));
    printf("template3 0x%X \n", IORD_32DIRECT(yassinAES_BASEADDR, 11 * 0x04));
printf("template3 0x%X 0x%X 0x%X 0x%X\n",
        IORD_32DIRECT(yassinAES_BASEADDR, 11 * 0x04),
IORD_32DIRECT(yassinAES_BASEADDR, 10 * 0x04),
        IORD_32DIRECT(yassinAES_BASEADDR, 9 * 0x04),
        IORD_32DIRECT(yassinAES_BASEADDR, 8 * 0x04));
    PERF_END(PERF_CNTR_BASE, 1); // Fin de la mesure de performance
    unsigned int section_time = perf_get_section_time(PERF_CNTR_BASE, 1);
    printf("Temps de la section mesuree : %u cycles\n", section_time);
    alt_putstr("Hello from Nios II!\n");
    while (1)
    return 0;
void PERF_BEGIN(unsigned int base_addr, unsigned int counter)
    IOWR_32DIRECT(base_addr, counter * 0x04, 0);
    IOWR_32DIRECT(base_addr, counter * 0x04 + 1, 1);
void PERF_END(unsigned int base_addr, unsigned int counter)
    IOWR_32DIRECT(base_addr, counter * 0x04 + 1, 0);
 // Fonctions de mesure de performance
unsigned int perf_get_section_time(unsigned int base_addr, unsigned int counter)
    // Lisez la valeur actuelle du compteur
    unsigned int counter_value = IORD_32DIRECT(base_addr, counter * 0x04);
    return counter_value;
```