Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МЭИ"

Институт информационных и вычислительных технологий

Кафедра математического и компьютерного моделирования

Отчёт по лабораторной работе №4 "Доверительные границы и интервалы"

> Студент: Симаков А.М. Преподаватель: Шевченко О.В.

1 Постановки вопросов, формулы

Пусть $(x_1, ..., x_n) \equiv x$ - n независимых наблюдений над случайной величиной с законом распределения F(z; a), зависящим от параметра a, значение которого неизвестно.

Функция наблюдений $a_1(x_1,...,x_n)$ (заметим, что это случайная величина) называется **нижней доверительной границей** для параметра a с уровнем доверия P_d (обычно близким к 1), если при любом значении a

$$P\left\{a1(x_1,...,x_n) \le a\right\} \ge P_d$$

Функция наблюдений $a_2(x_1,...,x_n)$ (заметим, что это случайная величина) называется **верхней доверительной границей** для параметра a с уровнем доверия P_d , если при любом значении a

$$P\{a1(x_1,...,x_n) \ge a\} \ge P_d$$

Интервал со случайными концами (случайный интервал)

$$I(x) = (a_1(x), a_2(x)),$$

определяемый двумя функциями наблюдений, называется доверительным интервалом для параметра a с уровнем доверия P_d , если при любом значении a

$$P\{a \in I(x)\} \equiv P\{a_1(x_1, ..., x_n) \le a \le a_2(x_1, ..., x_n)\} \ge P_d,$$

т.е. вероятность (зависящая от а) накрыть случайным интервалом I(x) истинное значение a - велика: больше или равна P_d .

Для построения доверительного интервала (или границы) необходимо знать **закон распределения** статистики $\zeta = \zeta(\xi_1, \xi_2...\xi_n)$, по которой **оценивается неизвестный параметр** (такой статистикой могут быть сама оценка $\widehat{a}(\xi_1, \xi_2...\xi_n)$, статистика, от которой зависит оценка \widehat{a} , достаточная статистика или статистика, близкая к достаточной).

Один из способов построения состоит в следующем:

- 1) Построим случайную величину $\varphi = \varphi(\zeta, a)$, зависящую от статистики ζ и неизвестного параметра a таким образом, что:
- закон распределения для φ известен и не зависит от a;
- $-\varphi(\zeta,a)$ непрерывна и монотонна по a.

Такая случайная величина $\varphi(\zeta, a)$ называется **центральной статистикой**.

2) Выберем интервал (f_1, f_2) для φ так, чтобы попадание в него случайной величины φ было практически достоверным (с вероятностью P_d):

$$P\{f_1 < \varphi(\zeta, a) < f_2\} = P_d ,$$

для чего достаточно в качестве f_1 и f_2 взять квантили распределения для φ уровня $\frac{1-P_d}{2}$ и $\frac{1+P_d}{2}$ соответственно.

3) Перейдем в равенстве к другой записи случайного события, разрешив неравенства относительно параметра a. Предполагая монотонное возрастание φ по a получим:

$$P\{g(\zeta, f_1) < a < g(\zeta, f_2)\} = P_d$$

Это соотношение верно при любом значении параметра a, поэтому, согласно определению, интервал со случайными концами $(g(\zeta, f_1), g(\zeta, f_2))$ является доверительным для a с уровнем доверия P_d .

Если имеем монотонное убывание φ по a, интервалом будет $(g(\zeta, f_2), g(\zeta, f_1))$. Для построения односторонней границы для a выберем значения f_1 и f_2 так, чтобы

$$P\{\varphi(\zeta, a) \ge f_1\} \ge P_d, \qquad f_1 = Q(1 - P_d)$$

ИЛИ

$$P\{\varphi(\zeta, a) \le f_2\} \ge P_d, \qquad f_2 = Q(P_d)$$

где Q(p) - квантиль уровня p. После разрешения неравенства под знаком P получим односторонние доверительные границы для a.

2 Доверительный интервал для среднего нормальной совокупности при известной и неизвестной дисперсии

Пусть $\xi = (\xi_1, \xi_2...\xi_n)$ — выборка из нормальной $\mathcal{N}(a, \sigma^2)$ совокупности, σ^2 известна. Достаточной оценкой для a является

$$\widehat{a} = \widehat{a}(\xi_1, \xi_2...\xi_n) = \frac{1}{n} \sum_{i=1}^n \xi_i \equiv \overline{\xi},$$

с распределением $\mathcal{N}(a,\sigma^2/n)$. Выполним нормировку и получим

$$\varphi(\overline{\xi}; a) = \frac{\overline{\xi} - a}{\sigma / \sqrt{n}}$$

с распределением $\mathcal{N}(0,1)$ при любом a.

По заданному уровню доверия P_d определим для φ симметричный интервал $(-f_p,f_p)$ так, чтобы он содержал в себе вероятность P_d , т.е.

$$P\{-f_p < \varphi < f_p\} = P_d$$

Ясно, что f_p есть квантиль порядка $\frac{1+P_d}{2}$ стандартного нормального распределения $\mathcal{N}(0,1)$. Заметим, что φ зависит от a, и равенство верно при любом значении a.

Подставим в равенство выражение для φ и разрешим неравенство под знаком вероятности относительно a. Получим соотношение

(1)
$$P\left\{\overline{\xi} - f_p \frac{\sigma}{\sqrt{n}} < a < \overline{\xi} + f_p \frac{\sigma}{\sqrt{n}}\right\} = P_d,$$

верное по-прежнему при любом значении a. Под знаком вероятности слева и справа имеем две функции наблюдений

$$a_1(\xi_1, \xi_2...\xi_n) \equiv \overline{\xi} - f_p \frac{\sigma}{\sqrt{n}}; \qquad a_2(\xi_1, \xi_2...\xi_n) \equiv \overline{\xi} + f_p \frac{\sigma}{\sqrt{n}},$$

определяющие случайный интервал

$$I(\xi_1, \xi_2...\xi_n) = (a_1(\xi), a_2(\xi))$$

который в силу (1) накрывает неизвестное значение параметра a с большой вероятностью, равной P_d , при любом значении параметра a, и потому, по определению доверительного интервала, он является доверительным для a с уровнем доверия P_d .

Испытаем полученный интервал на 50 выборках объема n=10 для трех уровней доверия P_d : 0.9, 0.99, 0.999 (соответственно, три значения f_p). Предполагаем:

При $P_d=0.9$ число неверных из k=50 результатов окажется в окрестности 5, так как среднее число неверных $k(1-P_d)=5;$

При $P_d=0.99$ появление хотя бы одного неверного из k=50 весьма вероятно: вероятность этого события $1-P_d^k=1-0.99^{50}\approx 0.4;$

При $P_d=0.999$ появление хотя бы одного неверного весьма сомнительно: вероятность этого события $1-P_d^k=1-0.999^{50}\approx 0.05$.

1)
$$P_d = 0.95 \implies f_p = 1.65$$

Как видим, из 50 испытаний 6 раз доверительный интервал оказался неверен.

2)
$$P_d = 0.995 \implies f_p = 2.57$$

3)
$$P_d = 0.9995 \implies f_p = 3.29$$

Видим, что для случаев 2) и 3) доверительный интервал оказался верным для всех испытаний.

Теперь пусть $x_1, ..., x_n$ - выборка с распределением $\mathcal{N}(a, \sigma^2)$. Значения среднего a и дисперсии σ^2 неизвестны.

Оценки для a и σ^2 :

$$\widehat{a} = \frac{1}{n} \sum_{i=1}^{n} x_i \equiv \overline{x}$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$

Как известно, доверительным интервалом **для среднего** a с уровнем доверия P_d при неизвестной дисперсии является интервал (2)

$$I(x) = (a_1(x), a_2(x)),$$

где

$$a_1 = \overline{x} - t_p \frac{s}{\sqrt{n}}$$
 $a_2 = \overline{x} + t_p \frac{s}{\sqrt{n}}$

Здесь t_p - квантиль порядка $\frac{1+P_d}{2}$ распределения Стьюдента с (n-1) степенями свободы.

Доверительным интервалом **для стандартного отклонения** σ с уровнем доверия P_d является интервал (3)

$$I(x) = (\sigma_1(x), \sigma_2(x)),$$

где

$$\sigma_1 = s\sqrt{\frac{n-1}{t_1}} \qquad \sigma_2 = s\sqrt{\frac{n-1}{t_2}}$$

Испытаем интервал (2) на 50 выборках объема n=10 для трех уровней доверия P_d : 0.95, 0.995, 0.995 (соответственно, три значения t_p). Приведу результаты в форме таблицы.

P_d	t_p
0.95	1.83
0.995	3.25
0.9995	4.78

1)
$$P_d = 0.95 \implies t_p = 1.83$$

2)
$$P_d = 0.995 \implies t_p = 3.25$$

3)
$$P_d = 0.9995 \implies t_p = 4.78$$

Сгенерируем выборку объема n=20 с распределением $\mathcal{N}(10,2^2)$ и определим доверительные интервалы для a с уровнями доверия $P_d:0.8,0.9,0.95,0.98,0.99$. Результаты выпишем в виде таблицы.

P_d	a_1	a_2
0.8	8.92	10.26
0.9	8.72	10.46
0.95	8.54	10.64
0.98	8.3	10.87
0.99	8.15	11.03

С ростом P_d интервал расширяется.

Определим верхнюю доверительную границу для σ с уровнем доверия $P_d=0.95$. Верхней границей для σ с уровнем доверия P_d является

$$\sigma_2 = s\sqrt{\frac{n-1}{t_2}},$$

где t_2 - квантиль порядка $1-P_d$ распределения χ^2_{n-1} (хи-квадрат с n-1 степенями свободы).

Квантиль порядка $1-P_d=0.05$ распределения χ^2_{n-1} , где n-1=19 степенями свободы $t_2=10.12$. Тогда получаем

$$\sigma_2 = s\sqrt{\frac{n-1}{t_2}} = 2.254\sqrt{\frac{19}{10.12}} = 3.0885$$

3 Задание на самостоятельную работу

Некоторое неизвестное расстояние a измерялось с аддитивной случайной ошибкой ε , распределенной по закону Коши с плотностью

$$p_{\varepsilon}(x) = \frac{1}{\pi} \frac{b}{b^2 + x^2}$$

По результатам $x_1, ..., x_n$ независимых измерений методом порядковых статистик построить оценку для a и приближенный доверительный интервал с коэффициентом доверия P_d .

$$n = 50;$$
 $b = 5;$ $P_d = 0.95;$ $a = 25$

Измерения получить моделированием с заданным параметром a. Полученное измерение — это CB ξ следующего вида: $\xi = a + \varepsilon$

Здесь ε — это CB, распределённая по закону Коши с заданной плотностью. Поэтому плотность для одного наблюдения ξ имеет вид:

$$p_{\xi}(x) = \frac{1}{\pi} \frac{b}{b^2 + (x-a)^2}$$

Будем оценивать параметр a с помощью порядковых статистик. Заметим, что в силу симметрии данного распределения параметр a является медианой.

$$a = x_{1/2}$$

Поэтому имеем следующую оценку через выборочную медиану

$$\widehat{a} = x_{([n/2]+1)}$$

Нам известна **теорема Крамера**, которая гласит следующее: для непрерывных распределений с плотностью q(x) оценка ζ_p асимптотически нормальна с параметрами

$$M\zeta_p = x_p$$
 $D\zeta_p = \frac{1}{n} \frac{p(1-p)}{q^2(x_p)}$

Для нашего случая имеем

$$M\zeta_p = a$$
 $D\zeta_p = \frac{(\pi b)^2}{4n}$

Тогда нормированная величина

$$\varphi(a,\widehat{a}) = \frac{\widehat{a} - a}{\sigma} = \frac{(\widehat{a} - a)2\sqrt{n}}{\pi b}$$

имеет распределение $\mathcal{N}(0,1)$ при любом a

По заданному уровню доверия P_d определим для φ отрезок $[-f_p,f_p]$ так, чтобы

$$P\left\{ -f_p < \varphi < f_p \right\} = P_d$$

т.е. f_p - квантиль порядка $\frac{1+P_d}{2}$ распределения $\mathcal{N}(0,1)$.

Заметим, что φ зависит от a, но равенство верно при любом значении a. Подставим в него выражение для φ и разрешим неравенство под знаком вероятности относительно a. Тогда получим

$$P\left\{\widehat{a} - f_p \frac{\pi b}{2\sqrt{n}} < a < \widehat{a} + f_p \frac{\pi b}{2\sqrt{n}}\right\} = P_d$$

Таким образом мы нашли доверительный интервал для a.

Сгенерируем выборку размера n=50, распределенную по закону Коши с плотностью

$$p_{\xi}(x) = \frac{1}{\pi} \frac{b}{b^2 + (x-a)^2}$$
 $b = 5$ $a = 25$

По данным выборки найдем статистическую оценку a и приближенный доверительный интервал с уровнем доверия $P_d = 0.95$.

51	52	53
A	A1	A2
24,669	22,837	26,502