Вписанные углы.

Вписанный угол и ортоцентр.

- 1. В треугольнике ABC точка O центр описанной окружности, BB_1 высота. Докажите, что $\angle ABO = \angle CBB_1$.
- 2. Докажите, что точки, симметричные ортоцентру H треугольника ABC относительно прямых, содержащих его стороны, лежат на окружности, описанной около этого треугольника.
- 3. Докажите, что расстояние от ортоцентра треугольника ABC до вершины B равно радиусу описанной окружности тогда и только тогда, когда $\angle ABC = \frac{\pi}{3}$ или $\angle ABC = \frac{2\pi}{3}$.
- 4. На окружности фиксированы точки A и B, а точка C перемещается по этой окружности. Найдите ГМТ ортоцентров треугольника ABC.
- 5. В треугольнике ABC угол ABC равен $\frac{\pi}{3}$. Докажите, что точки A, центр описанной окружности O, инцентр I, ортоцентр H и C лежат на одной окружности.
- 6. (а) Точка H ортоцентр треугольника ABC. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.
 - (b) Три окружности равных радиусов проходят через точку H и попарно пересекаются в трёх других точках A, B и C. Докажите, что H ортоцентр треугольника ABC.
- 7. Пусть AA_1, BB_1 и CC_1 высоты треугольника ABC. Докажите, что перпендикуляры, опущенные из точки B на A_1C_1 , из точки A на B_1C1 и из точки C на A_1B_1 пересекаются в одной точке. Что это за точка?
- 8. В неравнобедренном треугольнике ABC проведены медиана CM и высота CH (точка H лежит на отрезке AB). Докажите, что $\angle ACM = \angle BCH$ тогда и только тогда, когда $\angle ACB = \frac{\pi}{2}$.
- 9. Докажите, что точки, симметричные ортоцентру H треугольника ABC относительно середин его сторон, лежат на окружности, описанной около этого треугольника, и диаметрально противоположные его вершинам.
- 10. В треугольнике ABC угол A равен $\frac{\pi}{3}$; O центр описанной окружности, H ортоцентр, I центр вписанной окружности, а I_a центр вневписанной окружности, касающейся стороны BC. Докажите, что IO = IH и $I_aO = I_aH$.
- 11. Даны окружность и хорда AB, отличная от диаметра. По большей дуге AB движется точка C. Окружность, проходящая через точки A,C и точку H ортоцентр треугольника ABC, повторно пересекает прямую BC в точке P. Докажите, что прямая PH проходит через фиксированную точку, не зависящую от положения точки C.