Optimising the fibroblast-to-sensoryneuron differentiation protocol

BY

KAVYA KRISHNAMURTHY

Associate Scientist

virtual work experience

at

Introduction

In vitro-derived sensory neurons are gaining momentum in pain research and drug development

Chrysostomidou et al., Neurobiol Pain2021

Introduction

 A fibroblast-to-sensory-neuron differentiation protocol (Blanchard et al., Nat Neursci 2015, with modifications)

Aims

Optimisethe differentiation protocol conditions with respect to:

- •The concentration of lentivirus delivering inducible *NGN2*
- •Should the NT3 supplement be added to the neural induction media?

Experimental design

- Treatments tested:
 - •0, 2, 5, 10 MOI of the virus
 - •0, 10 ng/mL NT3
- •Testing all combinations of these treatments (4 MOIs x 2 NT3 = 8), each combination in triplicate
- •Using 5 MOI of the empty vector virus in the 0 MOI condition

 Assessing the expression of mature neuronal marker MAP2 (by immunostaining with anti-MAP2 Ab) after 14 days

Results

 One outlier replicate (~0% MAP2+ cells) was removed from 2 MOI+NT3, without much effect on the overall results 5 MOI of NGN2 virus + NT3 seems to be the most effective combination for generating MAP2-expressing cells

Results

- Establish the statistical significance of differences between conditions using logistic regression
- Chose logistic regression, because:
 - The outcome is a proportion (over 10,000 scanned cells)
 - Have combinations of treatments and want to establish the effect of each one

Logit(Fraction MAP2+) = k1*NGN2_MOI + k2*NT3_ng

- Using treatment doses as factors to allow for discontinuous trends
- 0 MOI works significantly worse than all other virus concentrations (p<2.2e-16)
 5 MOI works significantly better than all
- other virus concentrations (p<2.2e-16; tested by setting it as the control dose)
- NT3 has a smaller effect, but is also highly significant (p<2.2e-16)

Follow-up analysis (performed by Ela)

- MAP2 is not a specific marker of sensory/nociceptor neurons
- Does NT3 help generate nociceptors?
- Ela's analyses using MAP2-GFP fibroblasts
 - TRPA is a marker of nociceptors
 - No significant difference in % TRPA+ neurons with and w/o NT3
 - Ca2+ response to mustard oil is a functional feature
 of nociceptors. Assessed by FURA-2AM Ca2+ reporter
 A lower proportion of mustard oil responders
 - A **lower** proportion of mustard oil responders with NT3

Conclusions

- 5 MOI of NGN2 virus is the best concentration for generating mature neurons from fibroblasts
- •NT3 increases the yield of MAP2+ cells, but negatively affects %Ca2+ responders to mustard oil
- I suggest using NGN2 virus at 5 MOI and no NT3
- The overall efficiency of generating nociceptor neurons in these conditions is ~2.4% (~8% MAP2-expressing cells, of which ~30% respond to mustard oil).

Next steps

- MAP2 may not be the most reliable marker of differentiation efficiency
 - Consider testing Ca2+ response to mustard oil routinely
- The overall efficiency of our protocol remains quite low
 - Consider further protocol optimisation
 - Consider selecting for cells expressing neuronal markers
 - Antibiotic resistance
 - Fluorescent reporters

