Computational Number Theory Programming HW 2

Due Date: 07/09/2022

- 1. **Arithmetic in** \mathbb{Z}_n Write functions for the following; for (b), (c), (d), you may reuse code/invoke functions from your first assignment.
 - (a) Input: $a \in \mathbb{Z}_n$ and $b \in \mathbb{N}$; output: $a^b \in \mathbb{Z}_n$.
 - (b) Input: $a \in \mathbb{Z}_n$; output: True if $a \in \mathbb{Z}_n^*$ and False otherwise.
 - (c) Input: $a \in \mathbb{Z}_n$; output: $b \in \mathbb{Z}_n$ such that ab = gcd(a, n). This can be thought of as a generalized inverse: when $a \in \mathbb{Z}_n^*$, the value returned is a^{-1} .
 - (d) Input: $a \in \mathbb{Z}_n$; output: if $a \in \mathbb{Z}_n^*$, then $b \in \mathbb{Z}_n$ such that ab = 1; else output an error message.
- 2. Chinese Remainder Theorem Write a function that accepts four integers a,b,m,n with m,n>0 and returns the least positive integer x such that x simultaneously satisfies: $x\equiv a\pmod m$ and $x\equiv b\pmod n$. If no solution exists, you may output an error message. You may reuse code/invoke functions from your first assignment.