

GEOMETRIC CHARACTERISTICS OF DARPA SUBOFF MODELS (DTRC MODEL NOS. 5470 AND 5471)

DAVID TAYLOR RESEARCH CENTER BETHESDA, MD

MAR 89

		1 1 1 1

DTRC/SHD-1298-01

David Taylor Research Center

Bethesda, MD 20084-5000

DTRC/SHD-1298-01 March 1989

Ship Hydromechanics Department

GEOMETRIC CHARACTERISTICS OF DARPA SUBOFF MODELS (DTRC MODEL NOS. 5470 and 5471)

bу

Nancy C. Groves

Thomas T. Huang

Ming S. Chang

Approved for public release; Distribution unlimited.

MAJOR DTRC TECHNICAL COMPONENTS

- CODE 011 DIRECTOR OF TECHNOLOGY, PLANS AND ASSESSMENT
 - 12 SHIP SYSTEMS INTEGRATION DEPARTMENT
 - 14 SHIP ELECTROMAGNETIC SIGNATURES DEPARTMENT
 - 15 SHIP HYDROMECHANICS DEPARTMENT
 - 16 AVIATION DEPARTMENT
 - 17 SHIP STRUCTURES AND PROTECTION DEPARTMENT
 - 18 COMPUTATION, MATHEMATICS & LOGISTICS DEPARTMENT
 - 19 SHIP ACOUSTICS DEPARTMENT
 - 27 PROPULSION AND AUXILIARY SYSTEMS DEPARTMENT
 - 28 SHIP MATERIALS ENGINEERING DEPARTMENT

DTRC ISSUES THREE TYPES OF REPORTS:

- 1. **DTRC reports, a formal series,** contain information of permanent technical value. They carry a consecutive numerical identification regardless of their classification or the originating department.
- 2. **Departmental reports, a semiformal series,** contain information of a preliminary, temporary, or proprietary nature or of limited interest or significance. They carry a departmental alphanumerical identification.
- 3. **Technical memoranda, an informal series,** contain technical documentation of limited use and interest. They are primarily working papers intended for internal use. They carry an identifying number which indicates their type and the numerical code of the originating department. Any distribution outside DTRC must be approved by the head of the originating department on a case-by-case basis.

UNCLASSIFIED

2 2	TY CLASSIFICA		FIA12 BA. C
SECTION	I V (I ASSIPILA	HUN OF	INIS PAGE

		· · · · · · · · · · · · · · · · · · ·	REPORT DOCUM	ENTATION F	PAGE		
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY			3 DISTRIBUTION	AVAILABILITY OF	REPORT		
2b. DECLASSIFI	CATION / DOWI	NGRADING SCHEDU	LΕ	•		•	
	- 0864412471	ON 050007 WWW.				2007 244 2550/5	
		ON REPORT NUMBE	.H(S)	5. MONITORING (ORGANIZATION RE	PORT NUMBER(S	'
	/SHD-1298-						
		ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a. NAME OF MC	INITORING ORGAN	VIZATION	
ν.		earch Center	Code 1542				
6c. ADDRESS (***		į	7b. ADDRESS (City	y, State, and ZIP C	(ode)	
Bethesd	a, MD 200	084-5000					
8a. NAME OF ORGANIZA		NSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATION NU	MBER
8c. ADDRESS (City, State, and	ZIP Code)			UNDING NUMBER	Ş	
				PROGRAM ELEMENT NO.	PROJECT NO	TASK NO.	WORK UNIT ACCESSION NO
				63569N		S1974030	DN509067
11. TITLE (Incl	ude Security C	lassification)				, , , ,	
GEOM	ETRIC CHAR	RACTERISTICS	of darpa suboff M	ODELS (DTR	C MODEL NOS.	5470 and	5471)
12 PERSONAL	AUTHOR(S)	Nancy C. G	roves Thomas T	Huang	Ming S. Char	na	
13a. TYPE OF	REPORT	13b. TIME (RT (Year, Month, I		COUNT
	rtmental	FROM	то	1989	March		
10 SUPPLEME	NTARY NOTAT	ION					
17	COSATI	·	18. SUBJECT TERMS (C	ontinue on revers	e if necessary and	i identify by bloc	k number)
FIELD	GROUP	SUB-GROUP	DARPA SUBOFF hull fairw			ern appenda	ages
			pressure	tans de	ometry.	u strut ·	
19 ABSTRACT	(Continue on	reverse if necessary	and identify by block n	umber)	-		
An axisymmetric body , fairwater, symmetric stern appendages, two ring wings and ring wing support struts were designed for the Defense Advanced Research Projects Agency (DARPA) SUBOFF Project. Two geometrically identical models, designed to a linear scale ratio (λ) of 24, will be constructed to allow simultaneous testing in different facilities. Geometrical details of all components, including defining equations with computer code listings, are provided. The locations of velocity measurement stations and of surface pressure taps are also given. This information is intended for use by the model test engineer and the CFD engineer.							
		BILITY OF ABSTRACT			ECURITY CLASSIFIC	ATION	
	SSIFIED/UNLIMI DE RESPONSIBLI	TED SAME AS	RPT DTIC USERS	226 TELEPHONE	ASSIFIED (Include Area Code	e) 22c. OFFICE S	YMBOL
Nar	ncy C. Gro	ves		(301) 22	7-1605	Code	1542

		1 1 1 1

CONTENTS

	Page	
ABSTRACT	1	
ADMINISTRATIVE INFORMATION	1	
INTRODUCTION	1	
MODEL GEOMETRY	3	
AXISYMMETRIC HULL	3	
FAIRWATER	6	
STERN APPENDAGES	6	
RING WINGS	12	
RING WING STRUTS	18	
VELOCITY MEASUREMENT STATIONS	18	
PRESSURE TAP LOCATIONS	24	
MODEL NO. 5471	25	
MODEL NO. 5470	. 37	
RING WINGS	47	
ACKNOWLEDGMENTS	48	
APPENDIX A. LISTING OF COMPUTER CODE TO		
GENERATE AXISYMMETRIC HULL	. 53	
APPENDIX B. LISTING OF COMPUTER CODE TO		,
GENERATE FAIRWATER	. 57	(g
APPENDIX C. LISTING OF COMPUTER CODE TO		(" a ga e
GENERATE STERN APPENDAGES	. 61	
APPENDIX D. LISTING OF COMPUTER CODE TO		; - J
GENERATE RING WINGS	. 67	ं <u>⊡</u> श 2य
APPENDIX E. LISTING OF COMPUTER CODES TO		^d 0
GENERATE RING WING STRUTS	. 73	
L		1

FIGURES

		Page
1.	Sample grid representation of MODEL Nos.	
	5470 and 5471	3
2.	Hull profile	5
3.	Fairwater section profile	9
4.	Cross sectional shape of fairwater cap	10
5.	Stern appendage locations	11
6.	Stern appendage section profile	13
7.	Ring wing section profile and placement	17
8.	Ring wing struts	21
9.	Typical cross section showing ring wing	
	strut arrangement	22
10.	Velocity measurement planes	23
11.	Axisymmetric hull pressure taps - MODEL	
	No. 5471	27
12.	Fairwater pressure taps - MODEL No. 5471	29
13.	Hull/fairwater intersection region	
	pressure taps - MODEL No. 5471	32
14.	Baseline stern appendage pressure taps -	
	MODEL No. 5471	34
15.	Baseline stern appendage/hull region	
	pressure taps - MODEL No. 5471	36
16.	Surface pressure taps identification	
	scheme on MODEL No. 5470	38
17.	Ring wing 1 pressure taps	50
18.	Ring wing 2 pressure taps	50

TABLES

		Page
1.	Equations to define axisymmetric hull	4
2.	Equations to define fairwater	7
3.	Equations to define stern appendages	14
4.	Equations to define ring wings	15
5.	Equations to define ring wing struts	19
6.	Surface pressure tap identification scheme -	
	MODEL No. 5471	25
7.	Axisymmetric hull pressure tap locations -	•
	MODEL No. 5471	26
8.	Fairwater pressure tap locations -	
	MODEL No. 5471	28
9.	Fairwater/hull intersection region pressure	
	tap locations - MODEL No. 5471	30
LO.	Baseline stern appendage pressure tap	
	locations - MODEL No. 5471	33
11.	Baseline stern appendage/hull region pressure	
	tap locations - MODEL No. 5471	35
12.	Surface pressure tap identification scheme -	
	MODEL No. 5470	37
13.	Axisymmetric hull pressure tap locations -	
	MODEL No. 5470	39
14.	Fairwater pressure tap locations - MODEL	
	No. 5470	43
15.	Baseline stern appendage pressure tap	
	locations - MODEL No. 5470	45

TABLES (Continued)

		Page
16.	Surface pressure tap identification scheme -	
	Ring wing 1	48
17.	Surface pressure tap identification scheme -	
	Ring wing 2	48
18.	Ring wing 1 pressure tap locations	49
19.	Ring wing 2 pressure tap locations	51

ABSTRACT

An axisymmetric body, fairwater, symmetric stern appendages, two ring wings and ring wing support struts were designed for the Defense Advanced Resear pjects Agency (DARPA) SUBOFF project. Two observed it cally identical models, designed to a linear scale ratio (A) of 24, will be constructed as we simultaneous testing in different facilities. Geometrical details of all components, including defining equations with computer code istings, are provided. The locations of velocity measurement stations and of surface pressure taps are also given. This information is intended for use by both the model test engineer and the CFD engineer.

Keycords: Submania half models; Shrand struts pressure measurement; Geometric forms, (dc) forms, (d

This work was funded under DARPA, Task Area S1974-030, Program Element 63569N, with internal DTRC Work Unit Number 1542-123.

INTRODUCTION

The Submarine Technology Program (STP) Office of DARPA funded a concerted and coordinated Computational Fluid Dynamics (CFD) Program to assist in the development of advanced submarines for the future. The DARPA SUBOFF project will evaluate, in a competitive environment directly against model test results, flow field predictions of an axisymmetric hull model with and without appendages. The model configurations were designed at DTRC and are given in this report.

The SUBOFF project will provide a forum for the CFD community to compare the numerical predictions of the flow field over an axisymmetric hull model with as a without various typical appendage components with experimental data. The CFD predictions of flow fields of typical submarine configurations will be made without the prior knowledge of the actual experimental data. Experimental

and computational comparisons can then be made to demonstrate the current CFD capability on design problems relevant to STP problem areas.

The three-dimensional steady flow field for several geometrical configurations will be investigated. These configurations are

- (1) axisymmetric body at zero angle of attack and drift,
- (2) axisymmetric body with fairwater at several angles of attack and zero drift, (3) axisymmetric body with symmetric stern appendages at several angles of attack and zero drift, (4) axisymmetric body with two different ring wings at zero angle of attack and drift, and (5) cambered body of circular cross section in a uniform stream with fairwater. Configuration 1 will serve as a baseline geometry for the numerical evaluations. Configurations 2, 3, and 5 will evaluate the non-axisymmetric properties of the numerical codes. The ring wing of Configuration 4 is added to alter the pressure distribution and to assess its influence on flow separation. Configurations 2 through 5 are designed to test the numerical prediction codes to the maximum extent.

Two geometrically identical models, DTRC MODEL Nos. 5470 and 5471, will be constructed to allow for simultaneous testing in different facilities. The models differ only in the location of the surface pressure taps. It is planned that DTRC MODEL No. 5470 will be used in the Boeing Wind Tunnel, the DTRC Towing Tank, and the Hydronautics Ship Model Basin and that DTRC MODEL No. 5471 will be used in the DTRC Anechoic Flow Facility.

The equations and model details to define the axisymmetric body, fairwater, symmetric stern appendages, two ring wings, and

ring wing support struts are given in the main body of this report.

The computer code listings to define the geometric components are given in the Appendices. The detailed experimental test agenda will be given in a separate report.

MODEL GEOMETRY

The overall model geometry for the two SUBOFF models, DTRC MODEL Nos. 5470 and 547,1 are identical. The two models differ only in the location of the surface pressure taps. Each model component is described by equations giving either the axial and radial values for an axisymmetric component or the Cartesian coordinates (x, y, z) of nonaxisymmetric components. All equations and computer code listings give model scale coordinates in units of feet. A grid representation of the axisymmetric hull, fairwater, and stern appendages is shown in Figure 1.

Figure 1. Sample grid representation of MODEL Nos. 5470 and 5471

AXISYMMETRIC HULL

The axisymmetric hull has an overall length of 14.291667 Ft $(4.356 \ m)$ and a maximum diameter of 1.666667 Ft $(0.508 \ m)$. The

x = Model Scale Axial Length in Feet R = Model Scale Radial Length in Feet

Forebody Length = 3.333333 Ft (1.016 m)

Parallel Middle Body Length = 7.3125 Ft (2.229 m)

Afterbody Length = 3.645833 Ft (1.111 m)

Aft Perpendicular at x = 13.979167 Ft (4.461 m)

Total Body Length = 14.291666 (4.356 m)

Maximum Body Diameter = 1.666667 Ft (0.508 m)

\[\lambda = (FU)_{10}/MODEL) \] SCALE RATIO = 24

BOW EQUATION

For 0 Ft \leq x \leq 3.333333 Ft

$$R = R_{\text{MAX}} \left\{ 1.126395101 \times (0.3 \times -1)^4 + 0.442874707 \times^2 (0.3 \times -1)^3 + 1 - (0.3 \times -1)^4 (1.2 \times +1) \right\}^{1/2.1}$$

$$R_{\text{MAX}} = \frac{5}{6} \text{ Ft}$$

PARALLEL MIDDLE BODY EQUATION

For 3.333333 Ft $\leq x \leq 10.645833$ Ft $R = R_{MAX}$

AFTERBODY EQUATION

(valid up to and including aft perpendicular x = 13.979167 Ft)

For 10.645833 ft
$$\leq x \leq 13.979167$$
 ft

$$R = R_{MAX} \left\{ r_h^2 + r_h K_o \xi^2 + (20 - 20 r_h^2 - 4 r_h K_o - \frac{1}{3} K_1) \xi^3 + (-45 + 45 r_h^2 + 6 r_h K_o + K_1) \xi^4 + (36 - 36 r_h^2 - 4 r_h K_o - K_1) \xi^5 + (-10 + 10 r_h^2 + r_h K_o + \frac{1}{3} K_1) \xi^6 \right\}^{1/2}$$

$$r_h = 0.1175 \qquad K_o = 10 \qquad K_1 = 44.6244$$

$$\xi = \frac{13.979167 - x}{3.3333333}, \quad x \text{ in Feet}$$

AFTERBODY CAP

For 13.979167 Ft $\leq x \leq 14.291667$ Ft R = 0.1175 R_{MAX} $[1 - (3.2x - 44.733333)^2]^{1/2}$

Figure 2. Hull profile

hull is composed of a forebody of length 3.333333 Ft (1.016 m), a parallel middle body section of length 7.3125 Ft (2.229 m), an afterbody of length 3.645833 Ft (1.111 m) and an afterbody cap of length 0.3125 Ft (0.095 m). The equation for each hull component, in terms of axial and radial length, is provided in Table 1. Figure 2 shows the hull profile and Appendix 1 lists the computer program to generate the hull offsets.

FAIRWATER

The fairwater is located on the hull at top dead center with its leading edge positioned at x=3.032986 Ft (0.924 m) and trailing edge at x=4.241319 Ft (1.293 m) for a total length of 1.208333 Ft (0.368 m). A sail cap attaches to the top of the sail at a height y=1.507813 Ft (0.460 m). In addition to the sail cap, the fairwater is defined in terms of a forebody, a parallel middle body, and an afterbody region. Table 2 gives the equations as well as pertinent geometric details for the fairwater. Figure 3 shows the fairwater section profile and Figure 4 gives the cross-sectional shape of the cap over the length of the fairwater. The computer code listing of the fairwater equations is given in Appendix 2

STERN APPENDAGES

The stern appendages consist of four identical appendages mounted on the model hull at angles of 0 degrees (top dead center), 90 degrees, 180 degrees, and 270 degrees. The basic stern appendage assembly can be shifted to attach to the hull at

Table 2. Equations to define fairwater

(x,y,z) = Cartesian coordinates in Ft

The sail is defined by 4 sections: the forebody, parallel middle body, afterbody and cap. The sail dimensions and equations follow.

Sail Forebody Length = .325521 Ft (.099m)

Sail Parallel Middle Body Length = .200521 Ft (.061m)

Sail Afterbody Length = .682292 Ft (.208m)

Total Sail Length = 1.208333 Ft (.368m)

Span of Sail with Uniform Profile = .674479 Ft (.206m)

 Z_{max} = One-Half the Maximum Sail Thickness = 0.109375 (.033m)

SAIL FOREBODY EQUATION

For 3.032986 Ft
$$\leq x \leq 3.358507$$
 Ft
 $y \leq 1.507813$ Ft
 $Z_1 = Z_{max} [2.094759(A) + .2071781(B) + (C)]^{1/2}$
 $A = 2D (D-1)^4$
 $B = 1/3 (D^2) (D-1)^3$
 $C = 1 - (D-1)^4 (4D+1)$
 $D = 3.072000 (x-3.032986)$

Table 2. (Continued)

SAIL PARALLEL MIDDLE BODY EQUATION

For 3.358507 Ft $\leq x \leq$ 3.559028 Ft $y \leq 1.507813 \text{ Ft}$ $Z_1 = Z_{max} = .109375 \text{ Ft} = 1.3125 \text{ inch}$

SAIL AFTERBODY EQUATION

(Revised 11 January 1989)

For 3.559028 Ft $\leq x \leq 4.241319$ Ft $y \leq 1.507813$ Ft $z_1 = .1093750$ [2.238361 (E(E-1)⁴) + + 3.106529 (E²(E-1)³) + $(1-(E-1)^4(4E+1))$]

E = (4.241319-x)/0.6822917

SAIL CAP EQUATION

The sail is closed at top with an ellipsoid defined as For 3.032986 Ft \leq x \leq 4.241319 Ft 1.507813 Ft \leq y \leq (Z₁/2) + 1.507813 Ft $Z_2 = \left[Z_1^2 - (2(y-1.507813))^2 \right]^{1/2}$ Z₁ is defined previously as a function of x.

HULL/SAIL INTERSECTION

$$[R_{HB}(x)]^2 = y^2 + z_1^2$$

where $R_{HB}(x)$ = the hull bow equation (See Table 1)

Figure 3. Fairwater section profile

Figure 4. Cross sectional shape of fairwater cap

Figure 5. Stern appendage locations

three different axial positions as shown in Figure 5. The stern appendage position with the appendage trailing edge at x=13.146284 Ft (4.007 m) is denoted the baseline stern appendage location. To provide for stern appendage movement to different sternplane angles, the appendages are offset slightly from the axisymmetric hull surface. The stern appendage with trailing edge at x=13.562950 Ft (4.134 m) is contoured to fit the axisymmetric hull centerline exactly with a uniform clearance at the centerline of 0.05 in (1.524 cm). The stern appendages at the remaining two axial positions are cut along a straight plane and the clearance between the hull and the appendage centerlines varies with axial distance x. The gap between the hull and the forward stern appendage, trailing edge at x=12.729167 Ft (3.880 m), is 0.0584 in (1.780 cm) at the leading edge centerline and 0.0632 in (1.928 cm) at the trailing edge centerline. The gaps for the baseline stern appendage location are 0.0287 in (0.875 cm) and 0.0355 in (1.082 cm) for the leading and trailing edge centerlines, respectively.

Both the nondimensional and dimensional section profiles are given in Figure 6. The stern appendage equation is given in Table 3 and the computer code listing is in Appendix 3.

RING WINGS

Two ring wings have been designed for the SUBOFF models. The wings, designated Ring Wing 1 and Ring Wing 2, have the same section shape and differ only in their angle of attack. Table 4 gives the defining equations for the two wings, Figure 7 shows the placement

Figure 6. Stern appendage section profile

Table 3. Equations to define stern appendages

These equations define the upper rudder stern appendage.

The three remaining stern appendages are located on the hull at 90° azimuthal increments.

(x,y,z) = Cartesian coordinates in ft.

STERN APPENDAGE EQUATION

$$\frac{z(\xi)}{c(y)} = 0.29690 \sqrt{\xi} - 0.12600\xi - 0.35160\xi^{2} + 0.28520\xi^{3} - 0.10450\xi^{4}$$

$$\text{for } 0 \le \xi = \frac{x-h}{c(y)} + 1.0 \le 1$$

where h = x coordinate of the stern appendage trailing edge

$$c(y) = -0.466308y + 0.88859$$

= chord length

Three values of h are considered:

$$h = 12.729617$$

h = 13.146284 = BASELINE

h = 13.562950

HULL/STERN APPENDAGE INTERSECTION

$$\left[R_{yA}(\overline{\xi})\right]^2 = y^2 + \left[z(\xi)\right]^2$$

where $R_{HA}(\overline{\xi})$ = the hull afterbody equation (See Table 1)

Table 4. Equations to define ring wings

Two Ring Wings are Defined:

Ring Wing 1:
$$(x_{LE} = 13.46990, R_{LE} = 0.43004)$$

 $(x_{TE} = 14.21661, R_{TE} = 0.35659)$
Ring Wing 2: $(x_{LE} = 13.46990, R_{LE} = 0.47681)$

BASIC GEOMETRY FOR RING WING

 $(x_{TE} = 14.2074, R_{TE} = 0.33856)$

Camber:

$$y_c(x) = -0.049921 [0.5D^2 ln | D | -0.5 E^2 ln (E) + 0.25 E^2 - 0.25D^2]$$

+ 0.029953 [x lnx + 0.227828 = 0.531076x]
where $0 \le x \le 1$
 $D = 0.4 - x$
 $E = 1.0 - x$

Thickness:

$$y_t(x) = 0.1 \begin{bmatrix} 17 \\ \Sigma \\ n=1 \end{bmatrix} b_n \sin nw$$
 for $0.0 \le x \le 0.45$
where $w = \cos^{-1} [2x-1]$

n	b _n	n	b _n	n	$\mathfrak{b}_{\mathbf{n}}$
<u> </u>	0.43756	7	0.00156	13	-0.00027
2	-0.08136	8	-0.00113	14	-0.00033
3	-0.06496	9	-0.00058	15	0.00005
4	-0.01926	10	0.00027	16	0.00014
5	-0.00185	11	0.00080	17	0.00008
6	0.00348	12	0.00006		

Table 4. (Continued)

$$y_t(x) = 0.1 [0.033333 * 1.696969 (1-x) - 1.441945 (1-x)^2$$

$$- 0.366363 (1-x)^3 + 0.333049 (1-x)^4] \text{ for } 0.45 \le x \le 1.0$$

Upper and Lower Surfaces:

$$x_{U}(x) = x - y_{t}(x) \sin\theta$$

$$R_{U}(x) = y_{c}(x) + y_{t}(x) \cos\theta$$

$$x_{L}(x) = x + y_{t}(x) \sin\theta$$

$$R_{L}(x) = y_{c}(x) - y_{t}(x) \cos\theta$$

Physical Ring Wing Geometry:

$$\begin{aligned} \mathbf{x}_{\mathrm{DU}} &= \mathbf{x}_{\mathrm{LE}} + \mathbf{C} \left(\mathbf{x}_{\mathrm{U}}(\mathbf{x}) \, \cos \phi - \mathbf{R}_{\mathrm{U}}(\mathbf{x}) \, \sin \phi \right) \\ \mathbf{R}_{\mathrm{DU}} &= \mathbf{R}_{\mathrm{LE}} + \mathbf{C} \left(\mathbf{x}_{\mathrm{U}}(\mathbf{x}) \, \sin \phi + \mathbf{R}_{\mathrm{U}}(\mathbf{x}) \, \cos \phi \right) \\ \mathbf{x}_{\mathrm{DL}} &= \mathbf{x}_{\mathrm{LE}} + \mathbf{C} \left(\mathbf{x}_{\mathrm{L}}(\mathbf{x}) \, \cos \phi - \mathbf{R}_{\mathrm{L}}(\mathbf{x}) \, \sin \phi \right) \\ \mathbf{R}_{\mathrm{DU}} &= \mathbf{R}_{\mathrm{LE}} + \mathbf{C} \left(\mathbf{x}_{\mathrm{L}}(\mathbf{x}) \, \sin \phi + \mathbf{R}_{\mathrm{L}}(\mathbf{x}) \, \cos \phi \right) \end{aligned}$$

where

$$\phi = \tan^{-1} \left(\frac{R_{TE} - R_{LE}}{x_{TE} - x_{LE}} \right)$$

$$C = \left[(R_{TE} - R_{LE})^2 + (x_{TE} - x_{LE})^2 \right]^{1/2}$$

Figure 7. Ring wing section profile and placement

of the wings relative to the axisymmetric hull and baseline stern appendage location, and Appendix 4 gives the computer code listing used to define the wing geometries.

RING WING STRUTS

Strut supports are necessary to mount the ring wings to the hull. Four separate, identical struts are mounted equally-spaced along the hull girth. The struts attach at the same axial position on the hull, x=13.589 Ft (4.142 m) and have the same secton profile for each ring wing. At the inner surface of each wing, the struts are contoured to match each wing. The strut equations and attachment locations to the hull and wings are given in Table 5. Figure 8a shows the nondimensional section profile of the strut and Figures 8b and 8c show the placement of the strut on Ring Wing 1 and Ring Wing 2, respectively. Figure 9 gives a typical cross section showing the arrangement of the strut to the hull and the ring wing. Also indicated in Figure 9 are the placement and designation of surface pressure taps on the wings relative to the struts. Finally, the computer code listing for the strut geometry is given in Appendix 5.

VELOCITY MEASUREMENT STATIONS

A critical goal of the DARPA SUBOFF project is to evaluate the CFD code predictions of velocities relative to experimental velocity data. These measurements will include axial and radial mean velocities, three components of turbulence intensities and one Reynolds stress (axial-radial) on the transverse plane at five axial locations. These locations are the aft perpendicular

Table 5. Equations to define ring wing struts

MODEL SCALE EQUATIONS

(x,y,z) Cartesian coordinates in Ft

These equations define a single strut which attaches to the DARPA2 axisymmetric hull along the upper surface (i.e., the surface with the fairwater). Four identical, equally-spaced struts will attach the hull to the ring wing at a 45° increment from the wing surface pressure tap locations.

$$x = x_0 + 0.243995 \xi$$

$$y = y_0 - 0.054465 \xi$$

$$z = \pm 0.15 (0.29690 \sqrt{\xi} - 0.12600 \xi$$

$$- 0.35160 \xi^2 + 0.28520\xi^2 - 0.10450 \xi^4)$$
where $x_0 = 0.223221 y_0 + 13.556128$

$$R_1 \leq y_0 \leq R_2$$

Ring Wing 1: R1 = 0.14726, R2 = 0.36886

Ring Wing 2: R1 = 0.14726, R2 = 0.39755

$$0 \le \xi = \frac{x - x_0}{0.243995} \le 1$$

Table 5. (Continued)

Strut leading edge attaches to:

Hull at
$$x = 13.589$$
, $R = 0.14726$

Ring Wing 1 at
$$x = 13.63845$$
, $R = 0.36886$ ($x/c = 0.233$)

Ring Wing 2 at
$$x = 13.64487$$
, $R = 0.39755$ ($x/c = 0.25$)

Strut trailing edge attaches to:

Hull at
$$x = 13.83582$$
, $R = 0.10547$

Ring Wing 1 at
$$x = 13.88818$$
, $R = 0.34002$ ($x/c = 0.5651$)

Ring Wing 2 at
$$x = 13.89023$$
, $R = 0.34932$ ($x/c = 0.5804$)

HULL/STRUT INTERSECTION

$$[R_{HA}(x)]^2 = y^2 + z^2$$

where $R_{HA}(x)$ = the hull afterbody equation

(See Table 1)

RING WING/STRUT INTERSECTION

$$\left[R_{WL}(x)\right]^2 = y^2 + z^2$$

where $R_{WI}(x)$ = the ring wing lower surface equation

(See Table 4)

Figure 8a. Nondimensional section profile

Figure 8b. Placement of strut on Ring Wing 1

Figure 8c. Placement of strut on Ring Wing 2

Figure 8. Ring wing struts

Figure 9. Typical cross section showing ring wing strut arrangement

Figure 10. Velocity measurement planes

x=13.979167 Ft (4.261 m), two stations [x=12.0 Ft (3.658 m) and x=12.916667 Ft (3.937 m)] upstream of and two stations [x=15.666667 Ft (4.775 m) and x=18.583333 Ft (5.664 m)] downstream from the aft perpendicular. The relative positions of the velocity measurement stations on the hull are shown in Figure 10. The location of boundary-layer transition from laminar to turbulent flow will be artificially induced by a 0.025 in (0.0635 cm) trip wire located at x=8.5 in (21.59 cm).

PRESSURE TAP LOCATIONS

For both DTRC MODEL No. 5471 (the wind tunnel model) and DTRC MODEL No. 5470 (the towing basin model), a number of pressure taps are located on the hull surface. On both models, the pressure taps are located on the hull surface (H), the fairwater surface (FW) and the baseline stern appendage surface (SA). On MODEL No. 5471, taps are also located on the fairwater/hull intersection surface (FH) and the baseline stern appendage/hull intersection surface (AH). In addition, surface pressure taps are located on both Ring Wing 1 and Ring Wing 2.

An alphanumeric identification system is adopted to identify each surface pressure tap. Pressure taps on MODEL No. 5470 (the towing basin model) are prefixed with a 'TB' to easily distinguish them from MODEL No. 5471 (the wind tunnel model). Pressure taps on Ring Wing 1 are prefixed with a 'Wl' and taps on Ring Wing 2 are prefixed with a 'W2'. Model scale Cartesian offsets in units of feet are given for each surface pressure tap location.

MODEL NO. 5471

A total of 222 surface pressure taps are located on the wind tunnel MODEL No. 5471. Table 6 presents the surface pressure tap identification scheme used for MODEL No. 5471. Table 7 and Figure 11 identify the tap locations on the axisymmetric hull, Table 8 and Figure 12 identify the tap locations on the fairwater surface, Table 9 and Figure 13 show the tap locations in the fairwater/hull intersection region, Table 10 and Figure 14 give the tap locations on the baseline stern appendage, and, finally, Table 11 and Figure 15 identify the taps locations in the baseline

Table 6. Surface pressure tap identification scheme - MODEL No. 5471

Pressure Tap Identification	Pressure Tap Location	Number of Pressure Tap
HUi	Upper hull surface	21
HPi	Port side hull surface	7
ĦLi	Lower hull surface	7
HSi	Starboard side hull surface	7
FWi	Fairwater (sail) surface	30
FHi	Fairwater/hull intersection region	76
SAi	Upper rudder stern appendage	33
AHi	Stern appendage/hull intersection region	41
	Total surface pressure taps DTRC MODEL No. 5471 (wind tunnel model)	222

stern appendage/hull region.

Table 7. Axisymmetric hull pressure tap locations - MODEL No. 5471

Tap No.	x	У	z
HU1	0.00000	0.00000	0.00000
HU2	0.50000	0.53273	0.00000
HP2	0.50000	0.00000	0.53273
HL2	0.50000	-0.53273	0.00000
HS2	0.50000	0.00000	-0.53273
HU3 HU4	1.00000	0.64836	0.00000
HU5	1.50000 2.58333	0.71857 0.81862	0.00000
HP5	2.58333	0.00000	0.00000
HL5	2.58333	-0.81862	0.00000
HS5.	2.58333	0.00000	-0.81862
HU6	3.41667	0.83333	0.00000
HU7	5.75000	0.83333	0.00000
HU8	7.16667	0.83333	0.00000
HP8	7.16667	0.00000	0.83333
HL8	7.16667	-0.83333	0.00000
HS8	7.16667	0.00000	-0.83333
HU9	8.58333	0.83333	0.00000
HU10	10.00000	0.83333	0.00000
HU11	10.58333	0.83333	0.00000
HP11	10.58333	0.00000	0.83333
HL11	10.58333	-0.83333	0.00000
HS11 HU12	10.58333	0.00000	-0.83333
HP12	11.16667 11.16667	0.81635	0.00000
HL12	11.16667	0.00000 -0.81635	0.81635
HS12	11.16667	0.00000	0.00000 -0.81635
HU13	11.50000	0.77254	0.00000
HU14	12.00000	0.65467	0.00000
HP14	12.00000	0.00000	0.65467
HL14	12.00000	-0.65467	0.00000
HS14	12.00000	0.00000	-0.65467
HU15	12.25000	0.57766	0.00000
HU16	12.50000	0.49338	0.00000
HU17	12.91667	0.34795	0.00000
HP17	12.91667	0.00000	0.34795
HL17	12.91667	-0.34795	0.00000
HS17	12.91667	0.00000	-0.34795
HU18	13.25000	0.23871	0.00000
HU19 HU20	13.66667	0.13103	0.00000
HU21	13.97917 14.29167	0.09792	0.00000
11021	14.4710/	0.00000	0.00000

Note: All dimensions are model scale in feet

Table 8. Fairwater pressure tap locations - MODEL No. 5471

Tap No.	×	У	z
FW1	3.03299	1.44036	0.00000
FW2	3.03299	1.30549	0.00000
FW3	3.03299	1.17057	0.00000
FW4	3.03299	1.03567	0.00000
FW5	3.03299	0.90078	0.00000
FW6	3.12965	1.44036	0.09581
FW7	3.12965	1.30549	0.09581
FW8	3.12965	1.17057	0.09581
FW9	3.12965	1.03567	0.09581
FW10	3.12965	0.90078	0.09581
FW11	3.33507	1.44036	0.10937
FW12	3.33507	1.30549	0.10937
FW13	3.33507	1.17057	0.10937
FW14	3.33507	1.03567	0.10937
FW1.5	3.33507	0.90078	0.10937
FW16	3.63715	1.44036	0.10893
FW17	3.63715	1.30549	0.10893
FW18	3.63715	1.17057	0.10893
FW19	3.63715	1.03567	0.10893
FW20	3.63715	0.90078	0.10893
FW21	3.93924	1.44036	0.07908
FW22	3.93924	1.30549	0.07908
FW23	3.93924	1.17057	0.07908
FW24	3.93924	1.03567	0.07908
FW25	3.93924	0.90078	0.07908
FW26	4.24132	1.44036	0.00000
FW27	4.24132	1.30549	0.00000
FW28	4.24132	1.17057	0.00000
FW29	4.24132	1.03567	0.00000
FW30	4.24132	0.90078	0.00000

Figure 12. Fairwater pressure taps - MODEL No. 5471

Table 9. Fairwater/hull intersection region pressure tap locations - MODEL No. 5471

Tap No.	x	у .	z
FH1	3.03299	0.87379	0.00000
FH2	3.03299	0.85295	0.00000
FH3	3.03299	0.84045	0.00000
FH4	3.02466	0.83202	0.00000
FH5	3.01632	0.83192	0.00000
FH6	3.00799	0.83181	0.00000
FH7	2.99132	0.83158	0.00000
FH8	2.97049	0.83126	0.00000
FH9	2.94966	0.83091	0.00000
FH10	2.90799	0.83011	0.00000
FH11	2.86632	0.82917	0.00000
FH12	3.01325	0.83102	0.03782
FH13	2.98770	0.83025	0.04612
FH14	2.96221	0.82934	0.05440
FH15	2.91136	0.82715	0.07093
FH16	3.04311	0.82985	0.06288
FH17	3.03168	0.82905	0.07118
FH18	3.02028	0.82816	0.07946
FH19	2.99752	0.82611	0.09600
FH20	3.07036	0.82849	0.08161
FH21	3.06434	0.82758	0.08989
FH22	3.05833	0.82658	0.09816
FH23	3.04633	0.82433	0.11468
FH24	3.09885	0.82732	0.09479
FH25 FH26	3.09616	0.82631	0.10307
FH27	3.09347 3.08812	0.82521 0.82278	0.11135
FH28	3.12965		0.12782
FH29	3.12965	0.86908 0.84824	0.09581
FH30	3.12965		0.09581
FH31	3.12965	0.83574 0.82641	0.09581
FH32	3.12965	0.82533	0.10408
FH33	3.12965		0.11234
FH34	3.12965	0.82416	0.12060
FH35	3.33507	0.82158	0.13706
FH36	3.33507	0.86779 0.84695	0.10937
FH37	3.33507	0.84695	0.10937
FH38	3.33507	0.83445	0.10937 0.13409
FH39	3.33507	0.82247	
FH40	3.33507	0.81561	0.15052 0.17095

Table 9. (Continued)

Tap No.	x	У	Z
FH41	3.33507	0.81108	0.19128
FH42	3.63715	0.86788	0.10877
FH43	3.63715	0.84704	0.10877
FH44	3.63715	0.83454	0.10877
FH45	3.63715	0.82257	0.13351
FH46	3.63715	0.81973	0.14993
FH47	3.63715	0.81573	0.17037
FH48	3.63715	0.81122	0.19070
FH49	3.93924	0.87130	0.07850
FH50	3.93924	0.85046	0.07850
FH51	3.93924	0.83796	0.07850
FH52	3.93924	0.82690	0.10335
FH53	3.93924	0.82467	0.11987
FH54 FH55	3.93924	0.82141	0.14044
FH56	3.93924	0.81765	0.16092
FH57	4.84549	0.72169	0.41667
FH58	5.44965 4.84549	0.72169	0.41667
FH59	5.44965	0.75525 0.75525	0.35218
FH60	4.84549		0.35218
FH61	5.44965	0.78307 0.78307	0.28502
FH62	4.84549	0.80493	0.28502 0.21568
FH63	5.44965	0.80493	0.21568
FH64	4.84549	0.82067	0.14471
FH65	5.44965	0.82067	0.14471
FH66	4.84549	0.83016	0.07263
FH67	5.44965	0.83016	0.07263
FH68	4.24132	0.87501	0.00000
FH69	4.24132	0.85417	0.00000
FH70	4.24132	0.84167	0.00000
FH71	4.24965	0.83333	0.00000
FH72	4.26215	0.83333	0.00000
FH73	4.28299	0.83333	0.00000
FH74	4.32365	0.83333	0.00000
FH75	4.84549	0.83333	0.00000
FH76	5.44965	0.83333	0.00000

Figure 13. Hull/fairwater intersection region pressure taps - MODEL No. 5471

Table 10. Baseline stern appendage pressure tap locations - MODEL No. 5471

Tap No.	x	У	z
SA1	12.62576	0.78932	0.00000
SA2	12.58471	0.70129	0.00000
5A3	12.54366	0.61327	0.00000
SA4	12.52255	0.56799	0.00000
SA5	12.50435	0.52896	0.00000
SA6	12.60283	0.61327	0.04672
SA7	12.58388	0.55745	0.04999
SA8	12.56691	0.50746	0.05285
SA9	12.69903	0.78932	0.04552
SA10	12.67951	0.70129	0.05167
SA11	12.66000	0.61327	0.05721
SA12	12.64528	0.54690	0.06112
SA13	12.63161	0.48522	0.06459
SA14	12.77128	0.78932	0.05199
SA15	12.77128	0.70129	0.05596
SA16	12.77128	0.61327	0.05903
SA17	12.77128	0.52525	0.06149
SA18	12.77128	0.43722	0.06352
SA19	12.89628	0.78932	0.04476
SA20	12.89628	0.70129	0.04595
SA21	12.89628	0.61327	0.04694
SA22	12.89628	0.50376	0.04797
SA23	12.89628	0.39426	0.04884
SA24	13.02184	0.78932	0.02621
SA25	13.02184	0.70129	0.02648
SA26	13.02128	0.61327	0.02672
SA27	13.02128	0.48229	0.02703
SA28	13.02128	0.35130	0.02729
5A29	13.14628	0.78932	0.00000
SA3()	13.14628	0.70129	0.00000
SA31	13.14628	0.61327	0.00000
SA32	13.14628	0.46081	0.00000
SA33	13.14628	0.30834	0.00000

Figure 14. Baseline stern appendage pressure taps - MODEL No. 5471

Table 11. Baseline stern appendage/hull region pressure tap locations - MODEL No. 5471

Tap No.	x	Y	z
AH1	12.50707	0.53479	0.00000
AH2	12.49827	0.51591	0.00000
AH3	12.46977	0.50382	0.00000
AH4	12.45006	0.51060	0.00000
AH5	12.41065	0.52408	0.00000
АН б	12.37119	0.53746	0.00000
AH7	12.77128	0.43490	0.06357
AH8	12.77128	0.41406	0.06400
AH9	12.77128	0.38218	0.11278
AH10	12.77128	0.36519	0.15941
AH11	12.77128	0.34255	0.20356
AH12	12.77128	0.31460	0.24456
AH13	12.77128	0.28176	0.28176
AH14	12.89628	0.39322	0.04885
AH15	12.89628	0.37238	0.04900
AH16	12.89628	0.34228	0.09407
AH17	12.89628	0.32729	0.13742
AH18	12.89628	0.30684	0.17847
AH19	12.89628	0.28127	0.21654
AH20	12.89628	0.25100	0.25100
AH21	13.02182	0.35286	0.02718
AH22 AH23	13.02182	0.33202	0.02722
AH24	13.02182 13.02182	0.30436	0.07038
AH25	13.02182	0.29161 0.27320	0.11203
AH26	13.02182	0.24947	0.15150
AH27	13.02182	0.22089	0.18802 0.22089
AH28	13.16711	0.22916	0.22009
AH29	13.18795	0.22343	0.12900
AH30	13.22961	0.21216	0.12249
AH31	13.16711	0.24865	0.09050
AH32	13.18795	0.24244	0.08824
AH33	13.22961	0.23021	0.08379
AH34	13.16711	0.26059	0.04595
AH35	13.18795	0.25408	0.04480
AH36	13.22961	0.24126	0.04254
AH37	13.14628	0.31296	0.00000
АН38	13.14628	0.29212	0.00000
AH39	13.16711	0.26461	0.00000
AH40	13.18795	0.25800	0.00000
AH41	13.22961	0.24498	0.00000

Figure 15. Baseline stern appendage/hull region pressure taps - MODEL No. 5471

MODEL NO. 5470

The pressure taps on DTRC MODEL No. 5470 (the towing basin model) are located on the hull surface (TBH-), the port side of the fairwater (TBFWP), the starboard side of the fairwater (TBFWS), the port side of the baseline upper rudder stern appendage (TBSAP), and the starboard side of the baseline upper rudder stern appendage (TBSAS). A total of 266 pressure taps are located on MODEL No. 5470 as given in Table 12. The axisymmetric hull surface pressure taps are located at 8 axial positions and up to 32 azimuthal positions as shown in Figure 16. The port side pressure taps on the fairwater are located at the

Table 12. Surface pressure tap identification scheme - MODEL No. 5470

Pressure Tap Identification	Pressure Tap Location	Number of Pressure Taps
твн-і ј	Hull surface i is an alphabetic character denoting axial position and j is a numerical character denoting azimuthal position	170
TBFWPi	Port side fairwater (sail) surface	30
TBFWSi	Starboard side fairwater (sail) surface	20
TBSAPi	Port side of upper rudder stern appendage	28
TBSASî	Starboard side of upper rudder stern appendage	18
	Total surface pressure taps DTRC MODEL No. 5470 (towing basin model)	266

Table 13. Axisymmetric hull pressure tap locations - MODEL NO. 5470

Tap No.	×	У	z
TBH-A1	0.0000	0.00000	0.00000
TBH-B1	0.50000	0.53273	0.00000
TBH-B2	0.50000	0.53070	0.04643
TBH-B3	0.50000	0.52464	0.09251
TBH-B4	0.50000	0.50060	0.18220
TBH-B5	0.50000	0.37670	0.37670
TBH-B6	0.50000	0.18220	0.50060
TBH-B7	0.50000	0.09251	0.52464
TBH-B8	0.50000	0.04643	0.53070
TBH-B9	0.50000	0.00000	0.53273
TBH-B10	0.50000	-0.04643	0.53070
TBH-B11	0.50000	-0.09251	0.52464
TBH-B12 TBH-B13	0.50000	-0.18220	0.50060
TBH-B14	0.50000 0.50000	-0.37670	0.37670
TBH-B15	0.50000	-0.50060	0.18220
TBH-B16	0.50000	-0.52464 -0.53070	0.09251
TBH-B17	0.50000	-0.53273	0.04643
TBH-B18	0.50000	-0.53273	0.00000 -0.04643
TBH-B19	0.50000	-0.52464	-0.09251
TBH-B20	0.50000	-0.50060	-0.18220
TBH-B21	0.50000	-0.37670	-0.37670
TBH-B22	0.50000	-0.18220	-0.50060
TBH-B23	0.50000	-0.09251	-0.52464
TBH-B24	0.50000	-0.04643	-0.53070
TBH-B25	0.50000	0.00000	-0.53273
TBH-B26	0.50000	0.04643	-0.53070
TBH-B27	0.50000	0.09251	-0.52464
TBH-B28	0.50000	0.18220	-0.50060
TBH-B29	0.50000	0.37670	-0.37670
TBH-B30	0.50000	0.50060	-0.18220
TBH-B31	0.50000	0.52464	-0.09251
TBH-B32	0.50000	0.53070	-0.04643
TBH-C1	2.58333	0.81862	0.00000
TBH-C2	2.58333	0.81550	0.07135
TBH-C3	2.58333	0.80618	0.14215
TBH-C4	2.58333	0.76925	0.27998
TBH-C5	2.58333	0.57885	0.57885
TBH-C6	2.58333	0.27998	0.76925
TBH-C7	2.58333	0.14215	0.80618
TBH-C8	2.58333	0.07135	0.81550
TBH-C9	2.58333	0.00000	0.81862
TBH-C10	2.58333	-0.07135	0.81550
TBH-C11	2.58333	-0.14215	0.80618

Table 13. (Continued)

Tap No.	×	У	Z
TBH-C12	2.58333	-0.27998	0.76925
TBH-C13	2.58333	-0.57885	0.57885
TBH-C14	2.58333	-0.76925	0.27998
TBH-C15	2.58333	-0.80618	0.14215
TBH-C16	2.58333	-0.81550	0.07135
TBH-C17	2.58333	-0.81862	0.00000
TBH-C18	2.58333	-0.81550	-0.07135
TBH-C19	2.58333	-0.80618	-0.14215
TBH-C20	2.58333	-0.76925	-0.27998
TBH-C21	2.58333	-0.57885	-0.57885
TBH-C22	2.58333	-0.27998	-0.76925
TBH-C23	2.58333	-0.14215	-0.80618
TBH-C24	2. 58333.	0.07135	-0.81550
TBH-C25	2.58333	0.0000	-0.81862
TBH-C26	2.58333	0.07135	-0.81550
TBH-C27	2.58333	0.14215	-0.80618
TBH-C28	2.58333	0.27998	-0.76925
TBH-C29	2.58333	0.57885	-0.57885
TBH-C30	2.58333	0.76925	-0.27998
TBH-C31	2.58333	0.80618	-0.14215
TBH-C32	2.58333	0.81550	-0.07135
TBH-D1	5.00000	0.83333	0.00000
TBH-D2	5.00000	0.83016	0.07263
TBH-D3	5.00000	0.82067	0.14471
TBH-D4	5.00000	0.78307	0.28502
TBH-D5	5.00000	0.58925	0.58925
TBH-D6	5.00000	0.28502	0.78307
TBH-D7	5.00000	0.14471	0.82067
TBH-D8	5.00000	0.07263	0.83016
TBH-D9	5.00000	0.00000	0.83333
TBH-D10	5.00000	-0.07263	0.83016
TBH-D11	5.0000	-0.14471	0.82067
TBH-D12	5,00000	-0.28502	0.78307
TBH-D13	5.00000	-0.58925	0.58925
TBH-D14	5.00000	-0.78307	0.28502
TBH-D15	5.00000	-0.82067	0.14471
TBH-D16	5.00000	-0.83016	0.07263
TBH-D17	5.00000	-0.83333	0.00000
TBH-D18	5.00000	-0.83016	0.07263
TBH-D19	5.00000	-0.82067	-0.14471
TBH-D20	5.00000	-0.78307	-0.28502
TBH-D21	5.00000	-0.58925	
TBH-D22	5.00000	-0.28502	-0.58925 -0.78307
TBH-D23	5.00000	-0.14471	
	3.0000	~U.144/1	-0.82067

Table 13. (Continued)

TBH-D24
TBH-D26
TBH-D27 TBH-D28 5.00000 0.28502 -0.78307 TBH-D29 5.00000 0.58925 -0.58925 TBH-D30 5.00000 0.78307 -0.28502 TBH-D31 5.00000 0.82067 -0.14471 TBH-D32 5.00000 0.83016 -0.07263 TBH-E1 9.00000 0.83016 0.07263 TBH-E3 9.00000 0.82067 0.14471 TBH-E4 9.00000 0.83016 0.07263 TBH-E5 9.00000 0.78307 0.28502 TBH-E5 9.00000 0.58925 TBH-E6 9.00000 0.28502 0.78307 TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 0.07263 0.83016 TBH-E1 9.00000 0.00000 0.78307 0.28502 0.78307 TBH-E1 9.00000 0.000000
TBH-D27 TBH-D28 5.00000 0.28502 -0.78307 TBH-D29 5.00000 0.58925 -0.58925 TBH-D30 5.00000 0.78307 -0.28502 TBH-D31 5.00000 0.82067 -0.14471 TBH-D32 5.00000 0.83016 -0.07263 TBH-E1 9.00000 0.83016 0.07263 TBH-E3 9.00000 0.82067 0.14471 TBH-E4 9.00000 0.83016 0.07263 TBH-E5 9.00000 0.78307 0.28502 TBH-E5 9.00000 0.58925 TBH-E6 9.00000 0.28502 0.78307 TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 0.07263 0.83016 TBH-E1 9.00000 0.00000 0.78307 0.28502 0.78307 TBH-E1 9.00000 0.000000
TBH-D29
TBH-D30
TBH-D31 5.00000 0.82067 -0.14471 TBH-D32 5.00000 0.83016 -0.07263 TBH-E1 9.00000 0.83333 0.00000 TBH-E2 9.00000 0.83016 0.07263 TBH-E3 9.00000 0.82067 0.14471 TBH-E4 9.00000 0.78307 0.28502 TBH-E5 9.00000 0.58925 0.58925 TBH-E6 9.00000 0.28502 0.78307 TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 0.07263 0.83016 TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.07263 0.83016 TBH-E12 9.00000 -0.14471 0.82067 TBH-E13 9.00000 -0.14471 0.82067 TBH-E14 9.00000 -0.28502 0.78307 TBH-E15 9.00000 -0.83016 0.58925 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83016 0.07263 TBH-E18 9.00000 -0.83016 -0.07263
TBH-D32 5.00000 0.83016 -0.07263 TBH-E1 9.00000 0.83333 0.00000 TBH-E2 9.00000 0.83016 0.07263 TBH-E3 9.00000 0.82067 0.14471 TBH-E4 9.00000 0.78307 0.28502 TBH-E5 9.00000 0.58925 0.58925 TBH-E6 9.00000 0.14471 0.82067 TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 0.00000 0.83333 TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.14471 0.82067 TBH-E13 9.00000 -0.28502 0.78307 TBH-E14 9.00000 -0.28502 0.78307 TBH-E15 9.00000 -0.83016 0.07263 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83016 -0.07263 TBH-E17 9.00000 -0.83016 -0.07263
TBH-E1 9.00000 0.83333 0.00000 TBH-E2 9.00000 0.83016 0.07263 TBH-E3 9.00000 0.82067 0.14471 TBH-E4 9.00000 0.78307 0.28502 TBH-E5 9.00000 0.58925 0.58925 TBH-E6 9.00000 0.14471 0.82067 TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 0.00000 0.83333 TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.14471 0.82067 TBH-E13 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.28502 0.78307 TBH-E14 9.00000 -0.58925 0.58925 TBH-E15 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.83016 0.07263 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83333 0.00000
TBH-E2 9.00000 0.83016 0.07263 TBH-E3 9.00000 0.82067 0.14471 TBH-E4 9.00000 0.78307 0.28502 TBH-E5 9.00000 0.58925 0.58925 TBH-E6 9.00000 0.14471 0.82067 TBH-E7 9.00000 0.07263 0.83016 TBH-E8 9.00000 0.00000 0.83333 TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.82067 0.14471 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E3 9.00000 0.82067 0.14471 TBH-E4 9.00000 0.78307 0.28502 TBH-E5 9.00000 0.58925 0.58925 TBH-E6 9.00000 0.28502 0.78307 TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.82067 0.14471 TBH-E15 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E4 9.00000 0.78307 0.28502 TBH-E5 9.00000 0.58925 0.58925 TBH-E6 9.00000 0.28502 0.78307 TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.00000 0.83333 TBH-E9 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.83016 0.07263 TBH-E16 9.00000 -0.83333 0.00000 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E5 9.00000 0.58925 0.58925 TBH-E6 9.00000 0.28502 0.78307 TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 0.00000 0.83333 TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.58925 0.58925 TBH-E13 9.00000 -0.78307 0.28502 TBH-E14 9.00000 -0.82067 0.14471 TBH-E15 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E6 9.00000 0.28502 0.78307 TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 0.00000 0.83333 TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E7 9.00000 0.14471 0.82067 TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 0.00000 0.83333 TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E8 9.00000 0.07263 0.83016 TBH-E9 9.00000 0.00000 0.83333 TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E9 9.00000 0.00000 0.83333 TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E10 9.00000 -0.07263 0.83016 TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E11 9.00000 -0.14471 0.82067 TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E12 9.00000 -0.28502 0.78307 TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E13 9.00000 -0.58925 0.58925 TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E14 9.00000 -0.78307 0.28502 TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E15 9.00000 -0.82067 0.14471 TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E16 9.00000 -0.83016 0.07263 TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E17 9.00000 -0.83333 0.00000 TBH-E18 9.00000 -0.83016 -0.07263
TBH-E18 9.00000 -0.83016 -0.07263
MDV 770
TBH-E19 9.00000 -0.82067 -0.14471 TBH-E20 9.00000 -0.78307 -0.28502
TBH-E25 9.00000 -0.07263 -0.83016 TBH-E25 9.00000 0.00000 -0.83333
TBH-E26 9.00000 0.07263 -0.83016
TBH-E27 9.00000 0.14471 -0.82067
TBH-E28 9.00000 0.28502 -0.78307
TBH-E29 9.00000 0.58925 -0.58925
TBH-E30 9.00000 0.78307 -0.28502
TBH-E31 9.00000 0.82067 -0.14471
TBH-E32 9.00000 0.83016 -0.07263
TBH-F1 12.00000 0.65467 0.00000
TBH-F2 12.00000 0.65218 0.05706
TBH-F3 12.00000 0.64472 0.11368

Table 13. (Continued)

Tap No.	x	У	z
TBH-F4	12.00000	0.61519	0.22391
TBH-F5	12.00000	0.46292	0.46292
TBH-F6	12.00000	0.22391	0.61519
TBH-F7	12.00000	0.11368	0.64472
TBH-F8	12.00000	0.05706	0.65218
TBH-F9	12.00000	0.0000	0.65467
TBH-F10	12.00000	-0.05706	0.65218
TBH-F11	12.00000	-0.11368	0.64472
TBH-F12	12.00000	-0.22391	0.61519
TBH-F13	12.00000	-0.46292	0.46292
TBH-F14	12.00000	-0.61519	0.22391
TBH-F15	12.00000	-0.64472	0.11368
TBH-F16	12.00000	-0.65218	0.05706
TBH-F17	12.00000	-0.65467	0.00000
TBH-F18	12.00000	-0.65218	-0.05706
TBH-F19	12.00000	-0.64472	-0.11368
TBH-F20	12.00000	-0.61519	-0.22391
TBH-F21	12.00000	-0.46292	-0.46292
TBH-F22	12.00000	-0.22391	-0.61519
TBH-F23	12.00000	-0.11368	-0.64472
TBH-F24	12.00000	-0.05706	-0.65218
TBH-F25	12.00000	0.00000	-0.65467
TBH-F26	12.00000	0.05706	-0.65218
TBH-F27	12.00000	0.11368	-0.64472
TBH-F28	12.00000	0.22391	-0.61519
TBH-F29	12.00000	0.46292	-0.46292
TBH-F30	12.00000	0.61519	-0.22391
TBH-F31	12.00000	0.64472	-0.11368
TBH-F32	12.00000	0.65218	-0.05706
TBH-G1	13.64583	0.13515	0.00000
TBH-G5	13.64583	0.09557	0.09557
TBH-G9	13.64583	0.00000	0.13515
TBH-G13	13.64583	-0.09557	0.09557
TBH-G17 TBH-G21	13.64583	-0.13515	0.00000
TBH-G21	13.64583	-0.09557	-0.09557
TBH-G25	13.64583	0.00000	-0.13515
TBHH1	13.64583	0.09557	-0.09557
TDUUT	14.29167	0.0000	0.00000

Table 14. Fairwater pressure tap locations - MODEL No. 5470

Table 14a. Port side

Tap No.	x	У	Z
TBFWP1	3.03299	1.44036	0.00000
TBFWP2	3.03299	1.30549	0.00000
TBFWP3	3.03299	1.17057	0.00000
TBFWP4	3.03299	1.03567	0.00000
TBFWP5	3.03299	0.90078	0.00000
TBFWP6	3.12965	1.44036	0.09581
TBFWP7	3.12965	1.30549	0.09581
TBFWP8	3.12965	1.17057	0.09581
TBFWP9	3.12965	1.03567	0.09581
TBFWP10	3.12965	0.90078	0.09581
TBFWP11	3.33507	1.44036	0.10937
TBFWP12	3.33507	1.30549	0.10937
TBFWP13	3.33507	1.17057	0.10937
TBFWP14	3.33507	1.03567	0.10937
TBFWP15	3.33507	0.90078	0.10937
TBFWP16	3.63715	1.44036	0.10893
TBFW1P7	3.63715	1.30549	0.10893
TBFWP18	3.63715	1.17057	0.10893
TBFWP19	3.63715	1.03567	0.10893
TBFWP20	3.63715	0.90078	0.10893
TBFWP21	3.93924	1.44036	0.07908
TBFWP22	3.93924	1.30549	0.07908
TBFWP23	3.93924	1.17057	0.07908
TBFWP24	3.93924	1.03567	0.07908
TBFWP25	3.93924	0.90078	0.07908
TBFWP26	4.24132	1.44036	0.00000
TBFWP27	4.24132	1.30549	0.00000
TBFWP28	4.24132	1.17057	0.00000
TBFWP29	4.24132	1.03567	0.00000
TBFWP30	4.24132	0.90078	0.00000

Table 14. (Continued)
Table 14b. Starboard side

Tap No.	· x	У	2;
TBFWS6 TBFWS7 TBFWS8 TBFWS9 TBFWS10 TBFWS11 TBFWS12 TBFWS13 TBFWS14	3.12965 3.12965 3.12965 3.12965 3.12965 3.33507 3.33507 3.33507	1.44036 1.30549 1.17057 1.03567 0.90078 1.44036 1.30549 1.17057	-0.09581 -0.09581 -0.09581 -0.09581 -0.09581 -0.10937 -0.10937 -0.10937
TBFWS15 TBFWS16 TBFWS17 TBFWS18 TBFWS19 TBFWS20 TBFWS21 TBFWS21 TBFWS22 TBFWS23 TBFWS24 TBFWS25	3.33507 3.63715 3.63715 3.63715 3.63715 3.63715 3.93924 3.93924 3.93924 3.93924	0.90078 1.44036 1.30549 1.17057 1.03567 0.90078 1.44036 1.30549 1.17057 1.03567 0.90078	-0.10937 -0.10893 -0.10893 -0.10893 -0.10893 -0.10893 -0.07908 -0.07908 -0.07908 -0.07908

Table 15. Baseline stern appendage pressure tap locations - MODEL No. 5470

Table	15a	Port	ahia
1441		FUL.	2145

Tap No.	x	У	z
TBSAP1	12.62576	0.78932	0.00000
TBSAP2	12.58471	0.70129	0.00000
TBSAP3	12.54366	0.61327	0.00000
TBSAP4	12.52255	0.56799	0.00000
TBSAP5	12.50435	0.52896	0.00000
TBSAP6	12.60283	0.61327	0.04672
TBSAP7	12.58388	0.55745	0.04999
TBSAP8	12.56691	0.50746	0.05285
TBSAP9	12.69903	0.78932	0.04552
TBSAP10	12.67951	0.70129	0.05167
TBSAP11	12.66000	0.61327	0.05721
TBSAP12	12.64528	0.54690	0.06112
TBSAP13	12.63161	0.48522	0.06459
TBSAP19	12.89628	0.78932	0.04476
TBSAP20	12.89628	0.70129	0.04595
TBSAP21	12.89628	0.61327	0.04694
TBSAP22	12.89628	0.50376	0.04797
TBSAP23	12.89628	0.39426	0.04884
TBSAP24	13.02184	0.78932	0.02621
TBSAP25	13.02184	0.70129	0.02648
TBSAP26	13.02128	0.61327	0.02672
TBSAP27	13.02128	0.48229	0.02703
TBSAP28	13.02128	0.35130	0.02729
TBSAP29	13.14628	0.78932	0.00000
TBSAP30	13.14628	0.70129	0.00000
TBSAP31	13.14628	0.61327	0.00000
TBSAP32	13.14628	0.46081	0.00000
TBSAP33	13.14628	0.30834	0.00000

Table 15. (Continued)
Table 15b. Starboard side

Tap No.	x	У	Z
TBSAS6	12.60283	0.61327	-0.04672
TBSAS7	12.58388	0.55745	-0.04999
TBSAS8	12.56691	0.50746	-0.05285
TBSAS9	12.69903	0.78932	-0.04552
TBSAS10	12.67951	0.70129	-0.05167
TBSAS11	12.66000	0.61327	-0.05721 -0.06112
TBSAS12	12.64528	0.54690	
TBSAS13	12.63161	0.48522	-0.06459
TBSAS19	12.89628	0.78932	-0.04476
TBSAS20	12.89628	0.70129	-0.04595
TBSAS21 · TBSAS22	12.89628	0.61327	-0.04694
	12.89628	0.50376	-0.04797
TBSAS23	12.89628	0.39426	-0.04884
TBSAS24	13.02184	0.78932	-0.02621
TBSAS25	13.02184	0.70129	-0.02648
TBSAS26	13.02128	0.61327	-0.02672
TBSAS27	13.02128	0.48229	-0.02703
TBSAS28	13.02128	0.35130	-0.02729

same positions as on the wind tunnel model. On the MODEL No. 5470 baseline stern appendage, there are no surface pressure taps at the location x=12.77128 Ft (3.893 m) whereas there are pressure taps at this location on the MODEL No. 5471 baseline stern appendage. However, for convenience, the tap identification scheme remains the same as on MODEL No.5471. The starboard side pressure taps on these two appendages occur at the same positions as on the port surface. Therefore, figures of the surface pressure taps on the fairwater and baseline stern appendage of MODEL No. 5470 are not given. However, to avoid any confusion, Cartesian offsets are given for each surface pressure tap location on MODEL No. 5470 in Tables 13 through 15 for the axisymmetric hull, the fairwater, and the baseline stern appendage, respectively.

RING WINGS

There are 37 surface pressure taps located on the surface of both Ring Wing 1 and Ring Wing 2 as indicated in Tables 16 and 17, respectively. Taps identified as 'WlUi' and 'W2Ui' are located on the section profile, both inner and outer wing surface at 19 locations. Pressure taps prefixed 'WlPi' and 'W2Pi', 'WlLi' and 'W2Li', and 'WlSi' and 'W2Si' are located at 90 degree girthwise increments at six locations along the section profile. The pressure taps are arranged on the wings at a 45 degree angle from the support struts, as shown in Figure 9 for a typical cross section. Table 18 and Figure 17 identify the surface pressure taps on Ring Wing 1 and Table 1 and Figure 18 identify the surface pressure taps on Ring Wing 2.

Table 16. Surface pressure tap identification scheme - Ring Wing 1

Pressure Tap Identification	Pressure Tap Location Pr	Number ressure	
Wlui	Ring Wing 1, top of submarine,	19	
	both inner & outer wing surface		
W1Pi	Ring Wing 1, port side of submarine,	6	
e. 4 4 2	both inner & outer wing surface	_	
W1Li	Ring Wing 1, bottom of submarine, both inner & outer wing surface	6	
W1Si	Ring Wing 1, starboard side of submarine,	6	
	both inner & outer wing surface		
	Total surface pressure taps Ring Wing 1	37	

Table 17. Surface pressure tap identification scheme - Ring Wing 2

Pressure Tap Identification	Pressure Tap Location Pr	Number essure	
W2Ui	Ring Wing 2, top of submarine,	19	
	both inner & outer wing surface		
W2Pi	Ring Wing 2, port side of submarine,	6	
•	both inner & outer wing surface		
W2Li	Ring Wing 2, bottom of submarine,	6	
	both inner & outer wing surface		
W2Si	Ring Wing 2, starboard side of submarine,	6	
	both inner & outer wing surface		
	Motal gurface proggues tang	37	_
	Total surface pressure taps Ring Wing 2	31	

ACKNOWLEDGMENTS

The authors would like to thank Mr. Gary Jones of DARPA for for his support in this project. We also thank Larry Mulvihill and Ken Ward for their participation in the generation of various components of the geometry.

Table 18. Ring wing 1 pressure tap locations

Tap No.	x	У	z	x/c
W1U1	13.46990	0.43004	0.00000	0.0000
W1U2	13.49061	0.43627	0.00000	0.0250
W1U3	13.50970	0.43700	0.00000	0.0500
WlU4	13.54744	0.43669	0.00000	0.1000
W1P4	13.54744	0.0000	0.43669	0.1000
W1L4	13.54744	-0.43669	0.00000	0.1000
W154	13.54744	0.0000	-0.43669	0.1000
W1U5	13.62227	0.43351	0.00000	0.2000
W1U6	13.77071	0.42301	0.00000	0.4000
W1P6	13.77071	0.00000	0.42301	0.4000
W1L6	13.77071	-0.42301	0.00000	0.4000
W156	13.77071	0.0000	-0.42301	0.4000
W1U7	13.91906	0.40936	0.00000	0.6000
W1U8	14.06802	0.38895	0.00000	0.8000
W1P8	14.06802	0.0000	0.38895	0.8000
W1L8	14.06802	-0.38895	0.00000	0.8000
W158	14.06802	0.0000	-0.38895	0.8000
W1U9	14.14250	0.37536	0.00000	0.9000
W1U10	14.17968	0.36759	0.00000	0.9500
W1U11	14.17862	0.35043	0.00000	0.9500
W1U12	14.14085	0.34715	0.00000	0.3000
W1U13	14.06538	0.34211	0.0000	0.8000
W1P13	14.06538	0.00000	0.34211	0.8000
W1L13	14.06538	-0.34211	0.00000	0.8000
W1S13 W1U14	14.06538	0.00000	-0.34211	0.8000
W1U15	13.91452	0.33951	0.00000	0.6000
W1015 W1P15	13.76358 13.76358	0.34903	0.00000	0.4000
W1L15	13.76358	0.00000	0.34903	0.4000
W1515	13.76358	-0.34903	0.00000	0.4000
W1U16	13.61394	0.00000	-0.34903	0.4000
W1U17	13.54022	0.37413	0.00000	0.2000
W1017 W1P17	13.54022	0.39366	0.00000	0.1000
W1L17	13.54022	0.00000 -0.39366	0.39366	0.1000
W1S17	13.54022	0.00000	0.00000	0.1000
W1U18	13.50387	0.40656	-0.39366	0.1000
W1U19	13.48600	0.41476	0.00000	0.0500
******	23.40000	0.414/0	0.00000	0.0250

Figure 17. Ring Wing 1 pressure taps

Figure 18. Ring Wing 2 pressure taps

Table 19. Shroud 2 pressure tap locations

Tap No.	x	У	z	x/c
S2U1	13.46990	0.47681	0.00000	0.0000
52U2	13.49107	0.48121	0.00000	0.0250
S2U3	13.51016	0.48028	0.00000	0.0500
S2U4	13.54773	0.47667	0.00000	0.1000
52P4	13.54773	0.00000	0.47667	0.1000
S2L4	13.54773	-0.47667	0.00000	0.1000
S2S4	13.54773	0.00000	-0.47667	0.1000
S2U5	13.62200	0.46698	0.00000	0.2000
S2U6	13.76897	0.44359	0.00000	0.4000
S2P6	13.76897	0.00000	0.44359	0.4000
S2L6	13.76897	-0.44359	0.00000	0.4000
S2S6	13.76897	0.00000	-0.44359	0.4000
S2U7	13.91557	0.41706	0.00000	0.6000
S2U8	14.06219	0.38375	0.00000	0.8000
S2P8	14.06219	0.00000	0.38375	0.8000
S2L8	14.06219	-0.38375	0.00000	0.8000
S2S8	14.06219	0.0000	-0.38375	0.8000
S2U9	14.13520	0.36372	0.00000	0.9000
S2U10	14.17157	0.35274	0.00000	0.9500
S2U11	14.16902	0.33574	0.00000	0.9500
S2U12	14.13110	0.33576	0.00000	0.9000
S2U13	14.05548	0.33731	0.00000	0.8000
S2P13	14.05548	0.00000	0.33731	0.8000
S2L13	14.05548	-0.33731	0.00000	0.8000
S2S13	14.05548	0.0000	-0.33731	0.8000
S2U14	13.90496	0.34787	0.00000	0.6000
S2U15	13.75541	0.37052	0.00000	0.4000
S2P15	13.75541	0.00000	0.37052	0.4000
S2L15	13.75541	-0.37052	0.00000	0.4000
S2S15	13.75541	0.0000	-0.37052	0.4000
S2U16	13.60853	0.40855	0.00000	0.2000
S2U17	13.53679	0.43444	0.00000	0.1000
S2P17	13.53679	0.0000	0.43444	0.1000
S2L17	13.53679	-0.43444	0.00000	0.1000
52517	13.53679	0.00000	-0.43444	0.1000
S2U18	13.50169	0.45046	0.00000	0.0500
s2u19	13.48460	0.46018	0.00000	0.0250

APPENDIX A LISTING OF COMPUTER CODE TO GENERATE AXISYMMETRIC HULL

Appendix A. Listing of computer code to generate axisymmetric hull

```
0000
                  DARPA2GEN.FOR
C
    ************
C
C
           THIS PROGRAM CONTAINS FOLLOWING EQUATIONS FOR
GENERATING OFFSETS IN FEET FOR DARPA2 MODEL
           WITH (FULL/MODEL) SCALE RATIO = 24.
     INCLUDED ARE:
       BOW EQ.
                             FOR
                                        0.0 FT <= X <= 3.333333 FT,
                                   3.333333 FT <= X <= 10.645833 FT,
       PARALLEL MID-BODY EQ.
                             FOR
       AFTERBODY EQ.
                             FOR
                                  10.645833 FT <= X <= 13.979167 FT.
       AFTERBODY CAP EQ.
                             FOR
                                  13.979167 FT <= X <= 14.291667 FT.
   AS SET UP HERE, OFFSETS ARE COMPUTED EVERY 0.1 FT. (EXCEPT IN FIRST 0.5 FT, WHERE THEY ARE EVERY 0.01 FT)
Č
C
     DIMENSION X(300), Y(300)
     REAL KO, K1
C
 *******
C
C
        DEFINE CONSTANTS
C
     *********
     RMAX = 0.8333333
     XB = 3.333333
     XM = 10.645833
     XA - 13.979167
     XC = 14.291667
     CB1 = 1.126395101
     CB2 = 0.442874707
     CB3 = 1.0/2.1
     RH = 0.1175
     K0 = 10.0
     K1 = 44.6244
C
     xx = -0.01
     DX = 0.01
     DO 1000 I=1,300
     NP = I
     XX = XX + DX
     IF(XX.GE.0.5) DX = 0.1
     IF(XX.GE.XA) DX = 0.01
     IF(XX.GE.XB) GO TO 200
  ********
Č
         BOW EQUATION
C
C
     A = 0.3*XX - 1.0
     A3 = A**3
     A4 = A**4
```

```
B = 1.2*XX + 1.0
                        R = CB1*XX*A4 + CB2*XX*XX*A3 + 1.0 - A4*B
                        R = RMAX*(R**CB3)
                        x(x) = xx
                        Y(I) = R
                        GO TO 1000
         200 CONTINUE
                         IF(XX.GE.XM) GO TO 400
C
       ***********
C
Č
                 PARALLEL MID-BODY EQUATION
C
       ******
C
C
                        X(I) = XX
                         Y(I) = RMAX
                        GO TO 1000
         400 CONTINUE
                         IF(XX.GE,XA) GO TO 600
       *******
C
                                 AFTERBODY EQUATION
        *********
                        XI = (13.979167 - XX)/3.333333
                         C1 =
                                                                                                         RH*RH
                         C2 -
                                                                                                                                                            RH*KO
                                                                                                                                                                                                                                                 *XI*XI
                         C3 = (20.0 - 20.0 \text{*RH*RH} - 4.0 \text{*RH*K0} - 0.333333 \text{*K1}) \text{*XI**3}
                         C4 = (-45.0 + 45.0*RH*RH + 6.0*RH*KO +
                                                                                                                                                                                                                                    K1)*XI**4
                          C5 = (36.0 - 36.0 \times RH \times RH - 4.0 \times RH \times KO 
                                                                                                                                                                                                                                    K1)*XI**5
                        C6 = (-10.0 + 10.0*RH*RH +
                                                                                                                                                           RH*KO + 0.333333*K1)*XI**6
                         R = RMAX*(C1+C2+C3+C4+C5+C6)**0.5
                         X(I) = XX
                         Y(I) = R
                         GO TO 1000
C
         600 CONTINUE
                         IF(XX.GE.XC) GO TO 1100
       ********
C
                         AFTERBODY CAP EQUATION
C
                                      ******
C
                         R = 1.0 - (3.2*xx - 44.733333)**2
                         R = RH*RMAX*(R**0.5)
                          X(I) - XX
                         Y(I) = R
     1000 CONTINUE
     1100 CONTINUE
                         X(NP) = XC
                          Y(NP) = 0.0
 C *******************
```

APPENDIX B LISTING OF COMPUTER CODE TO GENERATE FAIRWATER

Appendix B. Listing of computer code to generate fairwater

```
REVISED 11-JANUARY-1989
C
           DARPA2GEN2.FOR
C
THIS PROGRAM CONTAINS FOLLOWING EQUATIONS FOR
C
   GENERATING OFFSETS IN FEET FOR THE SAIL OF
   THE DARPA2 MODEL WITH (FULL/MODEL) SCALE
   RATIO = 24.
Č
  INCLUDED ARE:
C
   SAIL FOREBODY EQ.
                    FOR
                         3.032986 FT <= X <= 3.358507 FT
                         0.833333 FT <= Z <= 1.507813 FT
3.358507 FT <= X <= 3.559028 FT
000000000
  SAIL MID-BODY EQ.
                    FOR
                          0.833333 FT <= Z <= 1.507813 FT
  SAIL AFTERBODY EQ.
                    FOR
                          3.559028 FT <- X <- 4.241319 FT
                          0.833333 FT <= Z <= 1.507813 FT
  SAIL CAP EQ.
                    FOR
                          3.032986 FT <= X <= 4.241319 FT
                          1.507813 FT <= 2 <= 1.562501 FT
   OFFSETS ARE COMPUTED EVERY .005 FT.
   DIMENSION
           NP(300),
           X(300,50,3)
C
C********************
C
č
   DEFINE CONSTANTS
Č
C****************
   A1
         = 2.094759
   B1
         = 0.207178
   A3
         2.908891
   B3
         = 1.234491
   C3
         = 3.444817
   D3
         = 3.850435
   E3
         = 2.080019
   XAMH
         = 0.109375
   DX
         = 0.005
   DXO
         = 0.005
   XXCST - 3.032986
   XXAFN = 4.241319
   XXFFN - 3.358507
   XXMFN - 3.559028
   XZST
         = 1.507813
******************
C
C
   CALCULATE
¢
**********************
           XX=XXCST-DX
   DO 1000 I = 1,300
   XZ=XZST
   X(I,1,3)=XZ
```

```
Jul
  XX=XX+DX
  X(I,1,1)=XX
  IF (XX .GT. XXAFN) THEN
           NI=I-1
           GOTO 1014
  ENDIF
  IF (XX .GT. XXFFN) GOTO 1002
**********************
C
C
  SAIL FOREBODY EQUATION
C************
  D=3.072000*(XX-3.032986)
  DM1=D-1
  A=2*D*(DM1**4)
  B=D*D*(DM1**3)/3
   C=1-((DM1**4)*(4*D+1))
  X(I,1,2)=HMAX*(SQRT(A1*A+B1*B+C))
   GOTO 1004
C**********
C
C
  SAIL MID-BODY EQUATION
C***********
1002
           CONTINUE
   IF (XX .GT. XXMFN) GOTO 1003
   X(1,1,2)=HMAX
   GOTO 1004
C************
   SAIL AFTER BODY EQUATION
    *******
C***
 1003
           CONTINUE
   E=(4.241319-XX)/.6822917
   F=E-1
   G=2.238361*E*F**4
   H=3.106529*(E**2)*(F**3)
   P=1-(F**4)*(4*E+1)
   X(I,1,2)=.1093750*(G+H+P)
C
**********************
   SAIL CAP EQUATION
**********************
 1004
           CONTINUE
   XZEND=(X(I,1,2)/2)+1.507813
   NP(I)=1
   DO 1008 J=2,50
   ICON1=0
 1005
           XZ=XZ+DX
   X(I,J,3)=XZ
   IF (XZ .GT. XZEND) THEN
           ICON1=ICON1+1
```

```
IF (ICON1 .EQ. 1) THEN
                                XZ=XZ-DX
                      DX=.0005
                      GOTO 1005
            ENDIF
            IF (ICON1 .EQ. 2) THEN
                      X(I,J,2)=0.0
                      X(I,J,3)=XZEND
                      NP(I)=J
                      ICON1=0
                      DX=DX0
                      GOTO 1000
            ENDIF
   ENDIF
   ADUM=(X(I,1,2)**2)-((2*(XZ-XZST))**2)
   X(I,J,2)=SQRT(ADUM)
1008
             CONTINUE
1000
             CONTINUE
C
C**********
C
   WRITE OFFSETS TO TAPE6
C
     IN IPLOT FORMAT
C
C*****************
C
             OPEN(6, STATUS='NEW', FORM='FORMATTED', FILE='TP6')
   VRITE(6,1015)
 1015
             FORMAT('DARPA2 SAIL')
   WRITE(6,1016)
             FORMAT('HODEL WITH (MODEL/FULL) = 24')
 1016
   VRITE(6,1017)NI
            FORMAT(15)
 1017
   VRITE(6,1018) (X(I,1,1),X(I,1,2),I=1,NI)
             FORMAT(2F10.5, 3X, 2F10.5, 3X, 2F10.5)
 1018
   DO 1013 I=1,NI,8
   WRITE(6,1009)I
 1009
             FORMAT(13)
   WRITE(6,1010)X(I,1,1)
             FORMAT(' X=' ,F7.3,' FEET')
   VRITE(6,1011) (NP(I)+1)
 1011
             FORMAT(I5)
   WRITE(6,1012) X(I,1,2),1.5
   VRITE(6,1012) (X(I,J,2),X(I,J,3),J=1,NP(I))
 1012
             FORMAT(2F10.5,3%,2F10.5,3%,2F10.5)
 1013
             CONTINUE
  666
             STOP
   END
```

APPENDIX C LISTING OF COMPUTER CODE TO GENERATE STERN APPENDAGES

Appendix C. Listing of computer code to generate stern appendages

```
C
C
            DARPA2STERNAPP.FOR
C
 ************
C
C
C
C
         THIS PROGRAM DEFINES THREE-DIMENSIONAL (X, Y, Z)
         OFFSETS FOR DARPA2 STERN APPENDAGES WITH TRAILING
C
         EDGE LOCATED AT THREE DIFFERENT VALUES OF AXIAL
C
         LENGTH X. FOR EACH AXIAL POSITION, FOUR IDENTICAL
C
         STERN APPENDAGES ARE MOUNTED ON THE AXISYMMETRIC
         HULL SURFACE AT TOP-DEAD-CENTER, 90 DEG, 180 DEG,
C
C
         AND 270 DEG AZIMUTHALLY.
Ċ
C
     (X, RR, Z) = CARTESIAN COORDINATES IN FEET
C
C
                - X COORDINATE OF STERN APPENDAGE TRAILING EDGE.
     H·
                   H(1) = 12.729617
C
                   H(2) = 13.146284 = BASELINE
                   H(3) = 13.562950
Ç
C
     CY
                = CHORD LENGTH = -0.466308*RR + 0.88859
     DIMENSION XXI(19), H(3)
C
     PARAMETER RH = 0.1175, AK0 = 10.0, AK1 = 44.6244
     PARAMETER NP = 19, RMAX = 0.833333
C
              0.0, 0.005, 0.0125, 0.025, 0.050, 0.075, 0.100, 0.150, 0.200, 0.2500, 0.300, 0.400, 0.500, 0.600, 0.700, 0.800, 0.9000, 0.950, 1.000/
     DATA XXI/0.0,
C
     DATA H/12.729617, 13.146284, 13.562950/
 **********
Ç
     LOOP ON THE LOCATION OF STERN
C
       APPENDAGE TRAILING EDGE
C
C
       *********
     DO 900 K-1,3
     HH = H(K)
     WRITE(6,1) HH
   1 FORMAT(//2x,'STERN APPENDAGE TRAILING EDGE LOCATED AT X ='
              F10.5)
     DX = 0.05
     X = HH + DX
C
 *****
C
C
       LOOP ON THE AXIAL POSITION X.
C
     BEGIN AT STERN APPENDAGE TRAILING
C
        EDGE AND MOVE FORWARD IN X.
C
  *****
```

```
DO 300 J = 1.32
    X = X - DX
    IF(X.GT.HH) GO TO 800
C
 **********
Ç
C
C
    DE INE HULL RADIUS AT VALUE OF X
C
  *********
C
    XIB = (13.979167 - X)/3.333333
                   RH*RH +
                            RH*AKO
    E = (20.0 - 20.0*RH*RH - 4.0*RH*AK0 - 0.333333*AK1)*XIB**3
    C = (-45.0 + 45.0*RH*RH + 6.0*RH*AKO +
                                          AK1)*XIB**4
    D = (36.0 - 36.0*RH*RH - 4.0*RH*AKO -
                                          AK1)*XIB**5
    E = \{-10.0 + 10.0*RH*RH + 
                           RH*AKO + 0.333333*AK1)*XIB**6
    RHA = A + B + C + D + E
    RHA = RMAX*SQRT(RHA)
    RHAS = RHA*RHA
    RR = 0.075
    DELR = 0.025
    ITR = 0
 *********
¢
C
C
           LOOP ON RADIUS.
C
          BEGIN WITH R = 0.1
C
Ç
 **********
    DO 700 I=1,31
    RR = RR + DELR
 620 CONTINUE
    CY = -0.466308*RR + 0.88859
    XI = (X-HH)/CY + 1.0
    IF(XI.LT.0.0 .OR. XI.GT.1.0) GO TO 700
C
 **********
C
C
  DEFINE STERN APPENDAGE
C
    z = 0.29690*SQRT(XI) - 0.12600*XI - 0.35160*XI*XI
   SRS = RR*RR + Z*Z
C
C
C
C
       IF STERN APPENDAGE LOCATED
        INSIDE BODY, INCREASE R
C
 *********
C
    IF(SRS.LT.RHAS. AND. ITR.EQ.0) GO TO 700
C
C
 ****
C
C
        IF STERN APPENDAGE LOCATED
C
           ON BODY SURFACE,
```

```
GO TO 710 TO DEFINE
C
Č
         STERN APPENDAGE SECTION.
Č
C
C
     IF(ABS(SRS-RHAS).LE.0.00001) GO TO 710
C
 *********
C
C
C
        STERN APPENDAGE IS "CLOSE"
C
        TO HULL RADIUS, GET CLOSER.
 **********
    ITR = ITR + 1
IF(ITR.GT.20) STOP1
    DELR = 0.5*DELR
    IF(SRS.GT.RHAS) RR = RR - DELR
     IF(SRS.LE.RHAS) RR = RR + DELR
    GO TO 620
 700 CONTINUE
    GO TO 800
 710 CONTINUE
C
CC
 *****
Č
     SOLVE FOR STERN APPENDAGE SECTION
Ċ
           AT GIVEN RADIUS
C
      ******
C
     CY = -0.466308*RR + 0.88859
     1750 = 0
     XINIT = (X-HH)/CY + 1.0
C
 *********
C
C
C
              LOOP ON XI
Ç
C
     DO 750 I=1,NP
     XI = XXI(I)
     IF(XI.LT.XXNIT) GO TO 750
 740 CONTINUE
    XI = XXI(I)
     IF(1750.EQ.0) XI = XINIT
     XXX = (XI-1.0)*CY + HH
     IF(XI.LT.0.0 .OR. XI.GT.1.0) GO TO 750
     z = 0.29690*SQRT(XI) - 0.12600*XI - 0.35160*XI*XI
    1 + 0.28520*XI**3 - 0.10450*XI**4
     z = cy * z
C
  ************
C
C
C
        FRINT X, Y, (+/-)Z VALUES
C
          TO PRINTER FILE 6
     ********
C
```

```
IF(1750.EQ.0) WRITE(6,2)
   2 FORMAT(/6x,1hx,9x,1hy,6x,5h(+/-)z)
   WRITE(6,3) XXX, RR, Z
3 FORMAT(3F10.5)
     1750 = 1750 + 1
     RBSMAX = RR
     IF(1750.EQ.1) GO TO 740
 750 CONTINUE
 800 CONTINUE
 ******
CCC
    COMPUTED ALL STERN APPENDAGE SECTIONS
           WHICH INTERSECT HULL.
C
         NOW COMPUTE STERN SECTIONS
C:
     WITH RADIUS LARGER THAN HULL RADIUS.
Ç
 *********
     DELR = 0.05
     DO 850 I=1,NP
     RO = RR
     RR = RBSMAX + I*DELR
     IF(RR.GT.RMAX) RR = RMAX
     IF(RR.EQ.RO) GO TO 900
     CY = -0.466308 * RR + 0.88859
     WRITE(6,2)
     DO 840 J=1,NP
     XI = XXI(J)
     XXX = (XI-1.0)*CY+HH
     z = 0.29690*sQRT(XI) - 0.12600*xI - 0.35160*xI*XI
    1 + 0.28520*XI**3 - 0.10450*XI**4
     2 \times CY \times Z
 *********
CCC
         PRINT X, Y, (+/-)Z VALUES
           TO PRINTER FILE 6
 *********
     WRITE(6,3) XXX, RR, Z
 840 CONTINUE
 850 CONTINUE
 900 CONTINUE
     STOP
```

END

APPENDIX D LISTING OF COMPUTER CODE TO GENERATE RING WINGS

Appendix D. Listing of computer code to generate ring wings

```
**********************
C
C
                            DARPA2WINGS
       PROGRAM
C
 ************************************
C
C
C
     THIS PROGRAM DEFINES THE DARPA2 RING WINGS
C
C
     THE DARPA2 WINGS USE THE NACA66 (DTNSRDC MOD)
C
                THICKNESS DISTRIBUTION
Ċ
                        AND
               THE NACA A=0.4 MEANLINE
C
      DIMENSION XC(26), YC(26), YCP(26)
      DIMENSION B(17), YT(26)
      DIMENSION XU(26), YU(26), XL(26), YL(26)
      DIMENSION XDLE(2), YDLE(2), XDTE(2), YDTE(2)
C
  XC ARRAY ARE THE X/C VALUES CURRENTLY USED TO DEFINE WING.
      DATA XC/0.0, 0.005, 0.0075, 0.0125, 0.025, 0.05, 0.075, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55,
              0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0/
  B ARRAY CONTAINS COEFFICIENTS FOR CALCULATION OF THICKNESS DISTR.
      DATA B/0.43756, -0.08136, -0.06496, -0.01926, -0.00185,
             0.00348, 0.00156, -0.00113, -0.00058, 0.00027,
     1
     2
             0.00080.
                       0.00006, -0.00027, -0.00033, 0.00005,
     3
             0.00014,
                       0.00008/
   XDLE, YDLE ARE LEADING EDGE X, R OF WING
   XDTE, YDTE ARE TRAILING EDGE X, R OF WING
      DATA XDLE/13.46990, 13.46990/
      DATA YDLE/0.43004, 0.47681/
      DATA XDTE/14.21661,14.2074/
      DATA YDTE/0.35659, 0.33856/
   THE ENTIRE PROGRAM IS EXERCISED TWO TIMES.
     THE FIRST TIME, WING 1 IS DEFINED.
        WING 1 HAS LEADING EDGE AT (X=13.46990, Y=0.43004)
C
C
               AND TRAILING EDGE AT (X=14.23, Y=0.3558)
C
     THE SECOND TIME, WING 2 IS DEFINED.
C
        WING 2 HAS LEADING EDGE AT (X=13.46990, Y=0.3558)
C
               AND TRAILING EDGE AT (X=14.23, Y=0.33628)
C
      NXC = 26
      DO 1000 \text{ KK} = 1.2
      WRITE(6,2)
C
C
   ******
C
C
    DEFINE MEAN LINE
C
```

```
******
     DO 100 I=1.NXC
     X = XC(I)
     D = 0.4 - X
     E = 1.0 - X
     IF(ABS(X-0.0).LE.1.0E-20) X = 1.0E-30
     IF(ABS(D).LE.1.OE-20) D = 1.OE-30
     IF(ABS(E), LE.1, OE-20) E = 1.0E-30
     YC(I) = -0.049921*(0.5*D*D*ALOG(ABS(D)) - 0.5*E*E*ALOG(E)
    1
                  + 0.25 \times E \times E - 0.25 \times D \times D
     YC(I) = YC(I) +0.029953*(X*ALOG(X) + 0.227828 - 0.531076*X)
C
     YCP(I) = -0.049921*(E*ALOG(E) - D*ALOG(ABS(D)))
    1
              + 0.02995253*(ALOG(X) + 0.4689244)
C
        WRITE(6,1) I, 100.*XC(I), 100.*YC(I), YCP(I)
       FORMAT(I5,2F10.3,F10.5)
  100 CONTINUE
      WRITE(6,2)
    2 FORMAT(//)
  ***********
C
C
     DEFINE THICKNESS DISTRIBUTION
C
C
   *********
      NSER = 17
      DO 200 I=1.NXC
        X = XC(I)
        IF(I.GE.16) GO TO 150
        OM = ACOS(2.0*X-1.0)
        YY = 0.0
        DO 125 J=1,NSER
           YY = YY + B(J)*SIN(J*OM)
  125
        CONTINUE
        YT(I) = YY
        GO TO 199
  150
        CONTINUE
        XC1 = 1.0-XC(I)
        YT(I) = 0.033333 + 1.696969*XC1 - 1.441945*XC1*XC1
                -0.366363*XC1**3 + 0.333049*XC1**4
  199
        CONTINUE
        YT(I) = 0.1*YT(I)
         WRITE(6,3) I,X,YT(I)
        FORMAT(15, F10.3, F10.5)
  200 CONTINUE
       WRITE(6,2)
C
C *********
C
C
     DEFINE DARPA2 WING
C *********
      XLINIT = 0.9425
      YLINIT = 0.0258
      CHORD = 0.0525
      XU(1) = 0.0
      YU(1) = 0.0
      XL(1) = 0.0
      YL(1) = 0.0
      I = 1
```

```
C
      WRITE(6,6)
   6 FORMAT(2X,1HI,3X,4H XU ,5X,4H YU ,5X,4H XL ,5X,4H YL ,6X,3HX/C,
            7X, 2HYT, 7X, 2HYC, 4X, 7HDYC/DXC/)
   5 FORMAT(I3, 4F9.5, F9.4,4F9.5)
        WRITE(6,5) I, XU(1), YU(1), XL(1), YL(1), XC(1), YT(1), YC(1), YCP(1)
     DO 300 I=2,NXC
       TH = ATAN(YCP(I))
       SINTH = SIN(TH)
       COSTH = COS(TH)
       XU(I) = XC(I) - YT(I)*SINTH
       YU(I) = YC(I) + YT(I)*COSTH
       XL(I) = XC(I) + YT(I)*SINTH
       YL(I) = YC(I) - YT(I)*COSTH
        WRITE(6,5) I,XU(1),YU(1),XL(1),YL(1),XC(1),YT(1),YC(1),YCP(1)
  300 CONTINUE
C **********
C
C
  DEFINE PHYSICAL WING DIMENSIONS
C
C *************
C
      PHI = ATAN2((YDTE(KK)-YDLE(KK)),(XDTE(KK)-XDLE(KK)))
     CS = COS(PHI)
      SN = SIN(PHI)
      CHORD = SQRT((YDTE(KK)-YDLE(KK))**2 + (XDTE(KK)-XDLE(KK))**2)
      WRITE(6,444) XDLE(KK), YDLE(KK), XDTE(KK), YDTE(KK)
  444 \quad FORMAT(2X,'(XDLE,YDLE) = ',F10.5/2X,'(XDTE,YDTE) = ',F10.5)
      WRITE(6,6)
      DO 400 I=1.NXC
      XUU = XU(I)
      XU(I) = XDLE(KK) + CHORD*(XU(I)*CS - YU(I)*SN)
      YU(I) = YDLE(KK) + CHORD*(XUU*SN + YU(I)*CS)
      XLL = XL(I)
      XL(I) = XDLE(KK) + CHORD*(XL(I)*CS - YL(I)*SN)
      YL(I) = YDLE(KK) + CHORD*(XLL*SN + YL(I)*CS)
        WRITE(6,5) I,XU(1),YU(1),XL(1),YL(1),XC(1),YT(1),YC(1),YCP(1)
        FORMAT(I5, 4F10.5)
  400 CONTINUE
C **************
C
C
    WRITE WING OFFSETS TO FILE 7 FOR IPLOT
C
  ****************
C
      IF(KK.EQ.1) VRITE(7.10)
   10 FORMAT('S1')
      IF(KK.EQ.2) WRITE(7,11)
   11 FORMAT('S2')
      IF(KK.EQ.1) WRITE(7,12)
   12 FORMAT('DARPA2 RING WING 1 ')
      IF(KK.EQ.2) VRITE(7,15)
   15 FORMAT('DARPA2 RING WING 2 ')
      NXC2 = 2*NXC
      WRITE(7,13) NXC2
   13 FORMAT(15)
      DO 500 I=1,NXC2
        IF(I.GT.NXC) GO TO 450
        WRITE(7,14) XU(I), YU(I)
        GO TO 500
  450
        CONTINUE
        J = NXC2-I+1
```

```
GO TO 500
 450
       CONTINUE
       J = NXC2-I+1
       WRITE(7,14) XL(J),YL(J)
  500 CONTINUE
  14 FORMAT(2F10.5)
 *********
Č
  PRINT OFFSETS IN AMI FORMAT
C
        ONTO FILE 9.
 ******
     DO 600 I=1,NXC2
     IF(I.GT.NXC) GO TO 550
     J = NXC-I+1
WRITE(9,14) XL(J), YL(J)
     GC TO 600
  550 CONTINUE
     K = I - NXC
 WRITE(9,14) XU(K), YU(K)
600 CONTINUE
 1000 CONTINUE
     STOP
     END
```

APPENDIX E LISTING OF COMPUTER CODE TO GENERATE RING WING STRUTS

Appendix E. Listing of computer code to generate ring wing struts

```
**********
C
C
     PROGRAM
                      DARPA2STRUT
C
  *************
C
C
C
C
    THIS PROGRAM DEFINES THE STRUT WHICH ATTACHES THE
C
     DARFA2 AXISYMMETRIC HULL TO THE DARPA2 RING WINGS.
C
     THE SAME BASIC STRUT IS USED TO ATTACH BOTH
C
     RING WING 1 AND RING WING 2. THE UPPER PORTION OF
C
     THE STRUT MUST BE MODIFIED TO FIT EACH WING.
C
C
    THIS PROGRAM DEFINES A SINGLE STRUT WHICH WOULD
C
     ATTACH TO THE DARPA2 AXISYMMETRIC HULL ALONG
     THE UPPER SURFACE (I.E., THE SURFACE WITH THE
C
     FAIRWATER). FOUR IDENTICAL AXIMUTHALLY EQUALLY-
C
C
     SPACED STRUTS WILL ATTACH THE RING WING AND THE HULL
C
     AT A 45 DEGREE INCREMENT FROM THE SURFACE PRESSURE
     TAP LOCATIONS. THE STRUTS WILL BE PLACED
C
C
     AT 90 DEGREE INCREMENTS.
C
C
    THE BASIC STRUT SHAPE IS A NACA 0012 THICKNESS
     DISTRIBUTION MODIFIED TO END AT A POINT.
C
C
     THE CHORD LENGTH IS 0.25 FEET.
C
C
   STRUT LEADING EDGE ATTACHES TO:
C.
                    AT X=13.589, R=0.14726
        HULL
C
        RING WING 1 AT X=13.63845, R=0.36886
                                                 (X/C=0.233)
Č
        RING WING 2 AT X=13.64487, R = 0.39755 (X/C=0.25)
CCCC
   STRUT TRAILING EDGE ATTACHES TO:
                    AT X=13.83582, R=0.10547
        HULL
        RING WING 1 AT X=13.88818, R=0.34002
                                                 (X/C=0.5651)
C
        RING WING 2 AT X=13.89023, R=0.34932
                                                (X/C=0.5804)
C
      DIMENSION XC(19), XUL(19), YUL(19), ZU(19), ZL(19)
C
      DATA XC/0., 0.005, 0.0125, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0/
C
      NP = 19
      NR = 10
C
   R1 = LE RADIUS OF STRUT AT HULL ATTACHMENT
C
                                                     = 0.14726
C
   R2 = LE RADIUS OF STRUT AT RING WING 2 ATTACHMENT = 0.39755
C
      R1 = 0.14726
      R2 = 0.39755
      DELR = (R2-R1)/(NR-1)
      R = R1 - DELR
C
```

```
2 FORMAT(/8x,'STRUT OFFSETS (IN FEET) AT RADIUS = ',F10.5/
           3X,'X PORT '3X,'Y PORT ',3X,'Z PORT ',5X,'X STBD ',3X,
'Y STBD ',3X,'Z STBD '/)
       x0 = 0.223221 *R + 13.556128
C
   100 LOOP OVER STRUT CHORD
       DO 100 I=1,NP
       XI = XC(I)
       XUL(I) = X0 + 0.243995*XI
YUL(I) = R - 0.054465*XI
       ZT = 0.15*(0.29690*SQRT(XI) - 0.12600*XI - 0.35160*XI*XI
     1
                      + 0.28520*XI**3 - 0.10450*XI**4)
       ZU(I) = ZT
       ZL(I) = -ZT
    WRITE(6,3) XUL(1), YUL(1), ZU(1), XUL(1), YUL(1), ZL(1)
3 FORMAT(3F10.5,2x,3F10.5)
  100 CONTINUE
  200 CONTINUE
       STOP
       END
```

permit return of items for credit provided if an replacement will TIS does not

Reproduced by NTIS

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are printed for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available. If you have any questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 487-4660.

About NTIS

NTIS collects scientific, technical, engineering, and business related information — then organizes, maintains, and disseminates that information in a variety of formats — from microfiche to online services. The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; audiovisual products; computer software and electronic databases developed by federal agencies; training tools; and technical reports prepared by research organizations worldwide. Approximately 100,000 new titles are added and indexed into the NTIS collection annually.

For more information about NTIS products and services, call NTIS at (703) 487-4650 and request the free NTIS Catalog of Products and Services, PR-827LPG, or visit the NTIS Web site http://www.ntis.gov.

NTIS

Your indispensable resource for government-sponsored information—U.S. and worldwide

			1 1 1
•			

			1 1 1
•			

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 487-4650