Encodificador

Tabla 1: Encodificación de 4bits a 2bits de salida

	Entr	Salida			
A	В	C	D	Y 1	Y2
1	0	0	0	0	0
1	1	0	0	0	1
1	1	1	0	1	0
1	1	1	1	1	1

Por ende, la siguiente tabla representa el número de la columna del dedo según la salida:

Tabla 2: Encodificación del número de dedos a 2bits de salida

Número de la Columna del	Salida			
Dedo	Y1	Y2		
1	0	0		
2	0	1		
3	1	0		
4	1	1		

Continuando con el desarrollo se desarrollarán las dos respuestas en términos de suma de productos:

$$f_{Y1}(A, B, C, D) = (A \cdot B \cdot C \cdot \neg D) + (A \cdot B \cdot C \cdot D)$$

$$f_{Y2}(A, B, C, D) = (A \cdot B \cdot \neg C \cdot \neg D) + (A \cdot B \cdot C \cdot D)$$

Estas operaciones se intentarán simplificar utilizando algebra booleana. Empezando con la primera función:

$$f_{Y1}(A, B, C, D) = (A \cdot B \cdot C \cdot \neg D) + (A \cdot B \cdot C \cdot D)$$
$$= (A \cdot B \cdot C) \cdot [\neg D + D]$$

$$f_{Y1}(A,B,C,D) = A \cdot B \cdot C$$

Y ahora esto se verificará en una tabla:

A	В	С	D	A·B·C	Y1
1	0	0	0	0	0
1	1	0	1	0	0
1	1	1	0	1	1
1	1	1	1	1	1

CORRECTO

Ahora con la siguiente función tenemos:

$$f_{Y2}(A, B, C, D) = (A \cdot B \cdot \neg C \cdot \neg D) + (A \cdot B \cdot C \cdot D)$$
$$= (A \cdot B) \cdot [\neg C \cdot \neg D + C \cdot D]$$
$$f_{Y2}(A, B, C, D) = (A \cdot B) \cdot [C \odot D]$$

Y ahora esto se verificará en una tabla:

A	В	С	D	$\neg C$	$\neg D$	$(A \cdot B) \cdot [(\neg C \cdot \neg D) + (C \cdot D)]$	Y2
1	0	0	0	1	1	0	0
1	1	0	0	1	1	1	1
1	1	1	0	0	1	0	0
1	1	1	1	0	0	1	1

CORRECTO

Esto implica que el circuito final sería:

B AND AND Y2

D XNOR

Figura 1: Circuito final del Encodificador

Componentes necesarios:

- Tres compuertas AND
- Una compuerta XNOR

Decodificador

Tabla 3: Decodificación de 4bits a 2bits de salida

Entrada		Salida		Valor Numerico	Valor	Dogultada	Salida			
1D	2D	Y1	Y2	R1	R2	Υ	Numerico D	Resultado	R1	R2
0	0	0	0	X	X	1	0	1	0	1
0	0	0	1	X	X	2	0	2	1	0
0	0	1	0	X	X	3	0	3	1	1
0	0	1	1	X	X	4	0	0	0	0
0	1	0	0	X	X	1	1	2	1	0
0	1	0	1	X	X	2	1	3	1	1
0	1	1	0	X	X	3	1	0	0	0
0	1	1	1	X	X	4	1	1	0	1
1	0	0	0	X	X	1	2	3	1	1
1	0	0	1	X	X	2	2	0	0	0
1	0	1	0	X	X	3	2	1	0	1
1	0	1	1	X	X	4	2	2	1	0
1	1	0	0	X	X	1	3	0	0	0
1	1	0	1	X	X	2	3	1	0	1
1	1	1	0	X	X	3	3	2	1	0
1	1	1	1	X	X	4	3	3	1	1

Continuando con el desarrollo se desarrollarán las tres respuestas en términos de suma de productos:

Función#1:

$$\begin{split} f_{R1}(1D, 2D, Y1, Y2) &= (\neg 1D \cdot \neg 2D \cdot \neg Y1 \cdot Y2) + (\neg 1D \cdot \neg 2D \cdot Y1 \cdot \neg Y2) \\ &+ (\neg 1D \cdot 2D \cdot \neg Y1 \cdot \neg Y2) + (\neg 1D \cdot 2D \cdot \neg Y1 \cdot Y2) + (1D \cdot \neg 2D \cdot \neg Y1 \cdot \neg Y2) \\ &+ (1D \cdot \neg 2D \cdot Y1 \cdot Y2) + (1D \cdot 2D \cdot Y1 \cdot \neg Y2) + (1D \cdot 2D \cdot Y1 \cdot Y2) \end{split}$$

Esto simplificado da lo siguiente:

$$f_{R1}(1D, 2D, Y1, Y2) = [(\neg 1D \cdot \neg 2D) \cdot (Y1 \oplus Y2)] + [(\neg 1D \cdot 2D) \cdot (\neg Y1)] + [(1D \cdot \neg 2D) \cdot (Y1 \oplus Y2)] + [(1D \cdot 2D) \cdot (Y1)]$$

Función#2

La siguiente función será:

$$\begin{split} f_{R2}(1D,2D,Y1,Y2) \\ &= (\neg 1D \cdot \neg 2D \cdot \neg Y1 \cdot \neg Y2) + (\neg 1D \cdot \neg 2D \cdot Y1 \cdot \neg Y2) \\ &+ (\neg 1D \cdot 2D \cdot \neg Y1 \cdot Y2) + (\neg 1D \cdot 2D \cdot Y1 \cdot Y2) + (1D \cdot \neg 2D \cdot \neg Y1 \cdot \neg Y2) \\ &+ (1D \cdot \neg 2D \cdot Y1 \cdot \neg Y2) + (1D \cdot 2D \cdot \neg Y1 \cdot Y2) + (1D \cdot 2D \cdot Y1 \cdot Y2) \end{split}$$

Esto simplificado da lo siguiente:

$$f_{R2}(1D, 2D, Y1, Y2) = [(\neg Y2) \cdot (\neg 2D)] + [(Y2) \cdot (2D)]$$

 $f_{R2}(1D, 2D, Y1, Y2) = Y2 \odot 2D$

Figura 2: Circuito Final del Decodificador

Componentes necesarios:

- Ocho compuertas AND
- Tres compuerta OR
- Tres compuerta NOT
- Una compuerta XOR
- Dos compuerta XNOR

Desacople

Debido a que queremos agarrar el valor en memoria y en base a esto saber si se debe prender o no un motor, se puede usar una compuerta OR entre el 1D y el 2D tal que así:

Figura 3: Circuito Final del Decodificador con Desacople

Componentes necesarios:

- Una compuerta OR

Componentes Totales Finales

Compuertas:

- -11 = AND
- -3 = XNOR
- -4 = OR
- 3 = NOT
- 1 = XOR

Componentes:

- -3 = 74LS08(AND)
- -1 = 74LS266(XNOR)
- -1 = 74LS32(OR)
- 1 = 74LS04(NOT)
- 1 = 74LS86(XOR)