Handbook of Photovoltaic Science and Engineering

Handbook of Photovoltaic Science and Engineering

Edited by

Antonio Luque

Instituto de Energía Solar, Universidad Politécnica de Madrid, Spain

and

Steven Hegedus

Institute of Energy Conversion, University of Delaware, USA

Some images in the original version of this book are not available for inclusion in the eBook.

Copyright © 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Handbook of photovoltaic science and engineering / edited by Antonio Luque and Steven Hegedus.

p. cm.

Includes bibliographical references and index.

ISBN 0-471-49196-9 (alk. paper)

1. Photovoltaic cells. 2. Photovoltaic power generation. I. Luque, A. (Antonio) II. Hegedus, Steven.

TK8322 .H33 2003 621.31'244 - dc21

2002191033

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-49196-9

Typeset in 10/12 Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

We dedicate this book to all those who have worked so hard for half a century to bring solar electricity to where it is today, and to our colleagues present and future who must work even harder in the next half century to make sure that it fulfills its potential as a widely available clean energy source.

The editors also owe much appreciation to the authors of the chapters contained in this book. Their long hours spent writing the best possible chapter covering their field of expertise, and then suffering through a storm of editorial criticisms, has hopefully made this a high-quality publication of lasting value.

Finally, we want to express our gratitude to our loved ones (Carmen, Ignacio, Sofía, Victoria, Inés, and Debbie, Jordan, Ariel) for the many hours stolen from family life while working on this book.

AL & SH December 2, 2002

Contents

List of (Contributors	xxi
1 Statu	us, Trends, Challenges and the Bright Future of Solar Electricity	
from	Photovoltaics	
Steve	en S. Hegedus and Antonio Luque	
1.1	The Big Picture	
	What Is Photovoltaics?	
	Six Myths of Photovoltaics	
1.4	History of Photovoltaics	1
1.5	PV Costs, Markets and Forecasts	1
	What Are the Goals of Today's PV Research and Manufacturing?	1
	Global Trends in Performance and Applications	2
1.8	Crystalline Silicon Progress and Challenges	2
	Thin Film Progress and Challenges	2
	Concentration PV Systems	3
	Balance of Systems	3
	Future of Emerging PV Technologies	3
1.13	Conclusions	3
	References	4
	vation for Photovoltaic Application and Development	4
	him Luther	4
	Characteristics of Photovoltaic Energy Conversion	4
2.2	A Long-term Substitute for Today's Conventional Electricity	4
	Production – The Ecological Dimension of Photovoltaics	4 5
2.2	2.2.1 In Summary	3
2.3	A Technological Basis for Off-grid Electricity Supply – The	5
	Development Dimension of Photovoltaics	5
2.4	2.3.1 In Summary	3
2.4	Power Supply for Industrial Systems and Products – The	_
2.5	Professional Low Power Dimension	5
2.5	Power for Spacecraft and Satellites – the Extraterrestrial Dimension of Photovoltaics	5
	References	6

3 The Physics of the Solar Cell	61
Jeffery L. Gray	
3.1 Introduction	61
3.2 Fundamental Properties of Semiconductors	64
3.2.1 Crystal Structure	64
3.2.2 Energy Band Structure	65
3.2.3 Conduction-band and Valence-band Densities of State	66
3.2.4 Equilibrium Carrier Concentrations	67
3.2.5 Light Absorption	70
3.2.6 Recombination	74
3.2.7 Carrier Transport	78
3.2.8 Semiconductor Equations	81
3.2.9 Minority-carrier Diffusion Equation	82
3.3 <i>PN</i> -Junction Diode Electrostatics	83
3.4 Solar Cell Fundamentals	87
3.4.1 Solar Cell Boundary Conditions	87
3.4.2 Generation Rate	89
3.4.3 Solution of the Minority-carrier Diffusion Equation	89
3.4.4 Terminal Characteristics	89
3.4.5 Solar Cell $I-V$ Characteristics	92
3.4.6 Properties of Efficient Solar Cells	95
3.4.7 Lifetime and Surface Recombination Effects	96
3.4.8 An Analogy for Understanding Solar Cell Operation: A	
Partial Summary	98
3.5 Additional Topics	99
3.5.1 Efficiency and Band gap	99
3.5.2 Spectral Response	100
3.5.3 Parasitic Resistance Effects	102
3.5.4 Temperature Effects	104
3.5.5 Concentrator Solar Cells	106
3.5.6 High-level Injection	107
3.5.7 <i>p-i-n</i> Solar Cells	109
3.5.8 Detailed Numerical Modeling	109
3.6 Summary	110
References	111
4 Theoretical Limits of Photovoltaic Conversion	113
Antonio Luque and Antonio Martí	
4.1 Introduction	113
4.2 Thermodynamic Background	114
4.2.1 Basic Relationships	114
4.2.2 The Two Laws of Thermodynamics	116
4.2.3 Local Entropy Production	116
4.2.4 An Integral View	117
4.2.5 Thermodynamic Functions of Radiation	117
4.2.6 Thermodynamic Functions of Electrons	119
4.3 Photovoltaic Converters	120

CONTENTS ix

4.3.1 The Balance Equation of a PV Converter	120
4.3.2 The Monochromatic Cell	124
4.3.3 Thermodynamic Consistence of the Shockley-Queisser	
Photovoltaic Cell	126
4.3.4 Entropy Production in the Whole Shockley–Queisser	
Solar Cell	129
4.4 The Technical Efficiency Limit for Solar Converters	131
4.5 Very High Efficiency Concepts	132
4.5.1 Multijunction Solar Cells	132
4.5.2 Thermophotovoltaic Converters	135
4.5.3 Thermophotonic Converters	136
4.5.4 Higher-than-one Quantum Efficiency Solar Cells	140
4.5.5 Hot Electron Solar Cells	141
4.5.6 Intermediate Band Solar Cell	144
4.6 Conclusions	148
References	149
5 Solar Grade Silicon Feedstock	153
Bruno Ceccaroli and Otto Lohne	
5.1 Introduction	153
5.2 Silicon	154
5.2.1 Physical Properties of Silicon Relevant to Photovoltaics	154
5.2.2 Chemical Properties Relevant to Photovoltaics	156
5.2.3 Health Factors	156
5.2.4 History and Applications of Silicon	157
5.3 Production of Metallurgical Grade Silicon	161
5.3.1 The Carbothermic Reduction of Silica	161
5.3.2 Refining	163
5.3.3 Casting and Crushing	166
5.3.4 Economics	167
5.4 Production of Semiconductor Grade Silicon (Polysilicon)	167
5.4.1 The Siemens Process	168
5.4.2 The Union Carbide Process	172
5.4.3 The Ethyl Corporation Process	173
5.4.4 Economics and Business	175
5.5 Current Silicon Feedstock to Solar Cells	175
5.6 Requirements of Silicon for Crystalline Solar Cells	179
5.6.1 Solidification	179
5.6.2 Effect of Crystal Imperfections	182
5.6.3 Effect of Various Impurities	186
5.7 Routes to Solar Grade Silicon	193
5.7.1 Crystallisation	193
5.7.2 Upgrading Purity of the Metallurgical Silicon Route	194
5.7.3 Simplification of the Polysilicon Process	198
5.7.4 Other Methods	201
5.8 Conclusions	201
References	200

6 Bulk Crystal Growth and Wafering for PV	205
W. Koch, A. L. Endrös, D. Franke, C. Häßler, J. P. Kalejs	
and H. J. Möller	
6.1 Introduction	205
6.2 Bulk Monocrystalline Material	206
6.2.1 Cz Growth of Single-crystal Silicon	207
6.2.2 Tri-crystalline Silicon	211
6.3 Bulk Multicrystalline Silicon	214
6.3.1 Ingot Fabrication	214
6.3.2 Doping	216
6.3.3 Crystal Defects	217
6.3.4 Impurities	219
6.4 Wafering	223
6.4.1 Multi-wire Wafering Technique	224
6.4.2 Microscopic Process of Wafering	226
6.4.3 Wafer Quality and Saw Damage	229
6.4.4 Cost and Size Considerations	230
6.5 Silicon Ribbon and Foil Production	230
6.5.1 Process Description	232
6.5.2 Productivity Comparisons	238
6.5.3 Manufacturing Technology	239
6.5.4 Ribbon Material Properties and Solar Cells	240
6.5.5 Ribbon/Foil Technology – Future Directions	243
6.6 Numerical Simulations of Crystal Growth Techniques	244
6.6.1 Simulation Tools	245
6.6.2 Thermal Modelling of Silicon Crystallisation Techniques	245
6.6.3 Simulation of Bulk Silicon Crystallisation	247
6.6.4 Simulation of Silicon Ribbon Growth	249
6.7 Conclusions	251
6.8 Acknowledgement	252
References	252
7 Crystalline Silicon Solar Cells and Modules	255
Ignacio Tobías, Carlos del Cañizo and Jesús Alonso	
7.1 Introduction	255
7.2 Crystalline Silicon as a Photovoltaic Material	257
7.2.1 Bulk Properties	257
7.2.2 Surfaces	257
7.3 Crystalline Silicon Solar Cells	259
7.3.1 Cell Structure	259
7.3.2 Substrate	260
7.3.3 The Front Surface	263
7.3.4 The Back Surface	266
7.3.5 Size Effects	266
7.3.6 Cell Optics	268
7.3.7 Performance Comparison	270

CONTENTS xi

7.4	Manufacturing Process	271
	7.4.1 Process Flow	271
	7.4.2 Screen-printing Technology	276
	7.4.3 Throughput and Yield	279
7.5	Variations to the Basic Process	280
	7.5.1 Thin Wafers	280
	7.5.2 Back Surface Passivation	281
	7.5.3 Improvements to the Front Emitter	281
	7.5.4 Rapid Thermal Processes	282
7.6	Multicrystalline Cells	283
	7.6.1 Gettering in mc Solar Cells	283
	7.6.2 Passivation with Hydrogen	283
	7.6.3 Optical Confinement	285
7.7	Other Industrial Approaches	288
	7.7.1 Silicon Ribbons	288
	7.7.2 Heterojunction with Intrinsic Thin Layer	288
	7.7.3 Buried Contact Technology	289
7.8	Crystalline Silicon Photovoltaic Modules	291
	7.8.1 Cell Matrix	291
	7.8.2 The Layers of the Module	292
	7.8.3 Lamination and Curing	293
	7.8.4 Postlamination Steps	294
	7.8.5 Special Modules	294
7.9	Electrical and Optical Performance of Modules	295
	7.9.1 Electrical and Thermal Characteristics	295
	7.9.2 Fabrication Spread and Mismatch Losses	297
	7.9.3 Local Shading and Hot Spot Formation	297
	7.9.4 Optical Properties	300
7.10	Field Performance of Modules	301
	7.10.1 Lifetime	301
	7.10.2 Qualification	301
7.11	Conclusions	302
	References	303
Thin	a-film Silicon Solar Cells	307
Bhus	rhan Sopori	
8.1	Introduction	307
8.2	A Review of Current Thin-film Si Cells	310
	8.2.1 Single-crystal Films Using Single-crystal Si Substrates	317
	8.2.2 Multicrystalline-Si Substrates	320
	8.2.3 Non-Si Substrates	321
8.3	Design Concepts of TF-Si Solar Cells	324
	8.3.1 Light-trapping in Thin Si Solar Cells	326
	8.3.2 Description of PV Optics	327
	8.3.3 Electronic Modeling	333
	8.3.4 Methods of Making Thin-Si Films for Solar Cells	341

8

8.3.5	Methods of Grain Enhancement of a-Si/µc-Si	
	Thin Films	343
8.3.6	Processing Considerations for TF-Si Solar Cell	
	Fabrication	350
8.4 Conclu	sion	353
Referer	nces	354
0 High Efficie	nev III V Multijunetien Selen Celle	359
	ncy III-V Multijunction Solar Cells D. J. Friedman and Sarah Kurtz	333
9.1 Introdu		359
9.2 Applica		363
1.1	Space Solar Cells	363
	Terrestrial Energy Production	363
	s of III-V Multijunction and Single-junction Solar Cells	363
	Wavelength Dependence of Photon Conversion Efficiency	363
	Theoretical Limits to Multijunction Efficiencies	364
	Spectrum Splitting	364
9.4 Cell Co	onfiguration	365
9.4.1	Four-terminal Four-terminal	365
9.4.2	Three-terminal Voltage-matched Interconnections	366
	Two-terminal Series-connected (Current Matched)	366
	tation of Series-Connected Device Performance	366
	Overview	366
	Top and Bottom Subcell QE and J_{SC}	367
	Multijunction $J-V$ Curves	368
	Efficiency versus Band Gap	370
	Top-cell Thinning	372
	Current-matching Effect on Fill Factor and $V_{\rm OC}$	373
	Spectral Effects A.P. Coating Effects	374 375
	AR Coating Effects Concentration	376
	Temperature Dependence	380
	als Issues Related to GaInP/GaAs/Ge Solar Cells	382
	Overview	382
	MOCVD	382
	GaInP Solar Cells	383
	GaAs Cells	393
	Ge Cells	395
	Tunnel-junction Interconnects	396
9.6.7	Chemical Etchants	397
9.6.8	Materials Availability	398
9.7 Trouble		398
	Characterization of Epilayers	398
	Transmission Line Measurements	400
	<i>I-V</i> Measurements of Multijunction Cells	400
	Evaluation of Morphological Defects	401
9.7.5	Device Diagnosis	401

9.8 Future-generation Solar Cells	403
9.8.1 Refinements to the GaInP/GaAs/Ge Cell	403
9.8.2 Mechanical Stacks	404
9.8.3 Growth on Other Substrates	405
9.8.4 Spectrum Splitting	406
9.9 Implementation into Terrestrial Systems	406
9.9.1 Economic Issues	406
9.9.2 Concentrator Systems	406
9.9.3 Terrestrial Spectrum	407
References	407
10 Space Solar Cells and Arrays	413
Sheila Bailey and Ryne Raffaelle	
10.1 The History of Space Solar Cells	413
10.1.1 Vanguard I to Deep Space I	413
10.2 The Challenge for Space Solar Cells	416
10.2.1 The Space Environment	417
10.2.2 Thermal Environment	420
10.2.3 Solar Cell Calibration and Measurement	424
10.3 Silicon Solar Cells	425
10.4 III-V Solar Cells	426
10.4.1 Thin-film Solar Cells	428
10.5 Space Solar Arrays	431
10.5.1 Body-mounted Arrays	432
10.5.2 Rigid Panel Planar Arrays	432
10.5.3 Flexible Fold-out Arrays	433
10.5.4 Thin-film or Flexible Roll-out Arrays	435
10.5.5 Concentrating Arrays	436 438
10.5.6 High-temperature/Intensity Arrays	439
10.5.7 Electrostatically Clean Arrays10.5.8 Mars Solar Arrays	44(
· · · · · · · · · · · · · · · · · · ·	440
10.5.9 Power Management and Distribution (PMAD) 10.6 Future Cell and Array Possibilities	441
10.6.1 Low Intensity Low Temperature (LILT) Cells	441
10.6.2 Quantum Dot Solar Cells	442
10.6.2 Quantum Bot Solar Cens 10.6.3 Integrated Power Systems	442
10.6.4 High Specific Power Arrays	443
10.6.5 High-radiation Environment Solar Arrays	443
10.7 Power System Figures of Merit	444
References	446
11 Photovoltaic Concentrators	449
Richard M. Swanson	
11.1 Introduction	449
11.1.1 The Concentrator Dilemma	450
11.2 Basic Types of Concentrators	452
11.2.1 Types of Optics	452
11.2.2 Concentration Ratio	455

	11.2.3	3 Types of Tracking	456
	11.2.4	Static Concentrators	456
	11.3 Histor	rical Overview	460
	11.3.1	The Sandia National Laboratories Concentrator Program	
		(1976 to 1993)	461
	11.3.2	2 The Martin Marietta Point-focus Fresnel System	462
	11.3.3	The Entech Linear-focus Fresnel System	463
		Other Sandia Projects	465
		The Concentrator Initiative	465
		Early Demonstration Projects	466
		The EPRI High-concentration Program	467
		3 Other Concentrator Programs	471
		History of Performance Improvements	472
		s of Concentrators	474
		Basics	474
		2 Reflection and Refraction	478
		The Parabolic Concentrator	479
		The Compound Parabolic Concentrator	482
		The V-trough Concentrator Refractive Lenses	483 485
		Secondary Optics	489
		S Static Concentrators	409
		Innovative Concentrators	491
		Issues in Concentrator Optics	494
		nt Concentrator Activities	495
		Amonix	496
		2 Australian National University	496
		BP Solar and the Polytechnical University of Madrid	496
		Entech	497
		Fraunhofer-Institut fur Solare Energiesysteme	497
		o Ioffe Physical-Technical Institute	498
		National Renewable Energy Laboratory	498
		Polytechnical University of Madrid	498
		Solar Research Corporation	499
	11.5.10) Spectrolab	499
	11.5.11	SunPower Corporation	499
		2 University of Reading	500
	11.5.13	3 Tokyo A&T University	500
	11.5.14	Zentrum fur Sonnenenergie und Wasserstoff Forschung	
		Baden Wurttenberg (ZSW)	500
	Refer	ences	500
12	Amorphou	s Silicon-based Solar Cells	505
	_	eng and Eric A. Schiff	
	12.1 Overv		505
	12.1.1	Amorphous Silicon: The First Bipolar Amorphous	_
		Semiconductor	505

CONTENTS xv

	12.1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour	508
	12.1.3 Staebler–Wronski Effect	511
	12.1.4 Synopsis of this Chapter	512
12.2	Atomic and Electronic Structure of Hydrogenated Amorphous	-10
	Silicon	513
	12.2.1 Atomic Structure	513
	12.2.2 Defects and Metastability	514 515
	12.2.3 Electronic Density-of-states12.2.4 Bandtails, Bandedges, and Band Gaps	515 516
	12.2.4 Bandtans, Bandeuges, and Band Gaps 12.2.5 Defects and Gap States	517
	12.2.6 Doping	518
	12.2.7 Alloying and Optical Properties	518
12 3	Depositing Amorphous Silicon	520
12.5	12.3.1 Survey of Deposition Techniques	520
	12.3.2 RF Glow Discharge Deposition	521
	12.3.3 Glow Discharge Deposition at Different Frequencies	523
	12.3.4 Hot-wire Chemical Vapor Deposition	525
	12.3.5 Other Deposition Methods	526
	12.3.6 Hydrogen Dilution	526
	12.3.7 Alloys and Doping	528
12.4	Understanding a-Si pin Cells	528
	12.4.1 Electronic Structure of a pin Device	528
	12.4.2 Photocarrier Drift in Absorber Layers	530
	12.4.3 Absorber Layer Design of a pin Solar Cell	533
	12.4.4 The Open-circuit Voltage	534
	12.4.5 Optical Design of a-Si:H Solar Cells	537
	12.4.6 Cells under Solar Illumination	540
	12.4.7 Light-soaking Effects	541
12.5	Multiple-Junction Solar Cells	542
	12.5.1 Advantages of Multiple-junction Solar Cells	542
	12.5.2 Using Alloys for Cells with Different Band Gaps	544
	12.5.3 a-Si/a-SiGe Tandem and a-Si/a-SiGe/a-SiGe Triple-junction	
	Solar Cells	546
	12.5.4 Microcrystalline Silicon Solar Cells	551
10.0	12.5.5 Micromorph and Other μc-Si-based Multijunction Cells	552
12.6	Module Manufacturing	553
	12.6.1 Continuous Roll-to-roll Manufacturing on Stainless Steel	550
	Substrates	553
	12.6.2 a-Si Module Production on Glass Superstrate	555 556
	12.6.3 Manufacturing Cost, Safety, and Other Issues 12.6.4 Module Performance	557
12.7	Conclusions and Future Projections	557 558
12.7	12.7.1 Status and Competitiveness of a-Si Photovoltaics	558
	12.7.1 Status and Competitiveness of a-Si Fhotovoltaics 12.7.2 Critical Issues for Further Enhancement and Future	330
	Potential	559
12.8	Acknowledgments	559
12.0	References	560
		200

13 Cu(InGa)Se ₂ Solar Cells	567
William N. Shafarman and Lars Stolt	
13.1 Introduction	567
13.2 Material Properties	570
13.2.1 Structure and Composition	571
13.2.2 Optical Properties	574
13.2.3 Electrical Properties	574
13.2.4 The Surface and Grain Boundaries	576
13.2.5 Substrate Effects	578
13.3 Deposition Methods	578
13.3.1 Substrates	579
13.3.2 Back Contact	580
13.3.3 Coevaporation of Cu(InGa)Se ₂	580
13.3.4 Two-step Processes	583
13.3.5 Other Deposition Approaches	584
13.4 Junction and Device Formation	584
13.4.1 Chemical Bath Deposition	585
13.4.2 Interface Effects	586
13.4.3 Other Deposition Methods	587
13.4.4 Alternative Buffer Layers	588
13.4.5 Transparent Contacts	590
13.4.6 Buffer Layers	591
13.4.7 Device Completion	592
13.5 Device Operation	592
13.5.1 Light-generated Current	593
13.5.2 Recombination	595
13.5.3 The Cu(InGa)Se ₂ /CdS Interface	599
13.5.4 Wide and Graded Band Gap Devices	600
13.6 Manufacturing Issues	602
13.6.1 Processes and Equipment	602
13.6.2 Module Fabrication	604
13.6.3 Module Performance	604
13.6.4 Production Costs	607
13.6.5 Environmental Concerns	608
13.7 The Cu(InGa)Se ₂ Outlook	609
References	611
14 Cadmium Telluride Solar Cells	617
Brian E. McCandless and James R. Sites	
14.1 Introduction	617
14.2 CdTe Properties and Thin-film Fabrication Methods	621
14.2.1 Condensation/Reaction of Cd and Te ₂ Vapors on a Surface	628
14.2.2 Galvanic Reduction of Cd and Te Ions at a Surface	629
14.2.3 Precursor Reaction at a Surface	630
14.3 CdTe Thin-Film Solar Cells	631
14.3.1 Window Layers	631
14.3.2. CdTe. Absorber Layer and CdCl ₂ Treatment	633

14.3.3 CdS/CdTe Intermixing	637
14.3.4 Back Contact	642
14.3.5 Solar Cell Characterization	644
14.3.6 Summary of CdTe-cell Status	650
14.4 CdTe Modules	651
14.5 The Future of CdTe-based Solar Cells	653
14.6 Acknowledgments	657
References	657
15 Due consistend Colon Colle	663
15 Dye-sensitized Solar Cells Kohjiro Hara and Hironori Arakawa	00.
15.1 Introduction to Dye-Sensitized Solar Cells (DSSC)	663
15.1.1 Background	663
15.1.2 Structure and Materials	664
15.1.3 Mechanism	670
15.1.4 Charge-transfer Kinetics	673
15.1.5 Characteristics	678
15.1.5 Characteristics 15.2 DSSC Fabrication ($\eta = 8\%$)	678
15.2.1 Preparation of TiO_2 Colloid	678
15.2.2 Preparation of the TiO ₂ Electrode	679
15.2.3 Dye Fixation onto the TiO ₂ Film	680
15.2.4 Redox Electrolyte	681
15.2.5 Counter Electrode	681
15.2.6 Assembling the Cell and Cell Performance	681
15.3 New Developments	682
15.3.1 New Oxide Semiconductor Film Photoelectrodes	683
15.3.2 New Dye Photosensitizers	683
15.3.3 New Electrolytes	688
15.3.4 Quasi-solid-state and Solid-state DSSCs	689
15.4 Approach to Commercialization	691
15.4.1 Stability of the DSSC	691
15.4.2 Module Fabrication and Other Subjects for	
Commercialization	694
15.5 Summary and Prospects	695
References	696
16 Measurement and Characterization of Solar Cells and Modules	70 1
Keith Emery	
16.1 Introduction	701
16.2 Rating PV Performance	701
16.2.1 Standard Reporting Conditions	702
16.2.2 Alternative Peak Power Ratings	715
16.2.3 Energy-based Performance Rating Methods	716
16.2.4 Translation Equations to Reference Conditions	719
16.3 Current Versus Voltage Measurements	721
16.3.1 Measurement of Irradiance	721
16.3.2 Simulator-based $I-V$ Measurements: Theory	722

16.3.3 Primary Reference Cell Calibration Methods	123
16.3.4 Uncertainty Estimates in Reference Cell Calibration	
Procedures	726
16.3.5 Intercomparison of Reference Cell Calibration	
Procedures	727
16.3.6 Multijunction Cell Measurement Procedures	728
16.3.7 Cell and Module $I-V$ Systems	731
16.3.8 Solar Simulators	736
16.4 Spectral Responsivity Measurements	738
16.4.1 Filter-based Systems	739
16.4.2 Grating-based Systems	741
16.4.3 Spectral Responsivity Measurement Uncertainty	742
16.5 Module Qualification and Certification	745
Acknowledgements	746
References	747
17 Photovoltaic Systems	753
Klaus Preiser	
17.1 Introduction to PV Systems and Various Forms of Application	753
17.2 Principles of photovoltaic Power System Configuration and their	
Application	755
17.2.1 Grid-independent Photovoltaic Systems for Small Devices	
and Appliances	755
17.2.2 Photovoltaic Systems for Remote Consumers of Medium	
and Large Size	761
17.2.3 Decentralised Grid-connected Photovoltaic Systems	774
17.2.4 Central Grid-connected Photovoltaic Systems	779
17.2.5 Space Application	780
17.3 Components for PV Systems	784
17.3.1 Battery Storage	784
17.3.2 Charge Controller	787
17.3.3 Inverters	788
17.3.4 Auxiliary Generators	790
17.3.5 System Sizing	791
17.3.6 Energy-saving Domestic Appliances	793
17.4 Future Developments in Photovoltaic System Technology	794
17.4.1 Future Developments in Off-grid Power Supply with	
Photovoltaics	794
17.4.2 Future Developments in Grid-connected Photovoltaic	
Systems	796
References	797
18 Electrochemical Storage for Photovoltaics	799
Dirk Uwe Sauer	
18.1 Introduction	799
18.2 General Concept of Electrochemical Batteries	801
18.2.1 Fundamentals of Electrochemical Cells	801

	18.2.2 Batteries with Internal and External Storage	807
	18.2.3 Commonly Used Technical Terms and Definitions	809
	18.2.4 Definitions of Capacity and State of Charge	811
	18.3 Typical Operation Conditions of Batteries in PV Applications	812
	18.3.1 An Example of an Energy Flow Analysis	812
	18.3.2 Classification of Battery-operating Conditions in PV	
	Systems	813
	18.4 Secondary Electrochemical Accumulators with Internal Storage	817
	18.4.1 Overview	817
	18.4.2 NiCd Batteries	818
	18.4.3 Nickel-metal Hydride (NiMH) Batteries	821
	18.4.4 Rechargeable Alkali Mangan (RAM) Batteries	822
	18.4.5 Lithium-ion and Lithium-polymer Batteries	822
	18.4.6 Double-layer Capacitors	824
	18.4.7 The Lead Acid Battery	826
	18.5 Secondary Electrochemical Battery Systems with External Storage	849
	18.5.1 Redox-flow Batteries	850
	18.5.2 Hydrogen/Oxygen Storage Systems	852
	18.6 Investment and Lifetime Cost Considerations	857
	18.7 Conclusion	859
	References	860
10	Power Conditioning for Photovoltaic Power Systems	863
1)	Jürgen Schmid, Heribert Schmidt	005
	19.1 Charge Controllers and Monitoring Systems for Batteries in PV	
	Power Systems	864
	19.1.1 Charge Controllers	864
	19.1.2 Charge Equaliser for Long Battery Strings	877
	19.2 Inverters	881
	19.2.1 General Characteristics of PV Inverters	881
	19.2.2 Inverters for Grid-connected Systems	881
	19.2.3 Inverters for Stand-alone Operation	883
	19.2.4 Inverter Principles	884
	19.2.5 Power Quality of Inverters	896
	19.2.6 Active Quality Control in the Grid	900
	19.2.7 Safety Aspects with Grid-connected Inverters	900
	19.2.7 Safety Aspects with Grid-connected inverters 19.3 Acknowledgement	902
	References	902
20		005
20	Edward Lawrence Edward Delivered by PV Modules	905
	Eduardo Lorenzo	005
	20.1 Introduction	905
	20.2 Movement between Sun and Earth	906
	20.3 Solar Radiation Components	912
	20.4 Solar Radiation Data and Uncertainty	915
	20.4.1 Clearness Index	920
	20.5 Radiation on Inclined Surfaces	920

20.5.1 Estimation of the Direct and Diffuse Components of	
Horizontal Radiation, Given the Global Radiation	920
20.5.2 Estimation of the Hourly Irradiation from the Daily	
Irradiation	925
20.5.3 Estimation of the Radiation on Surfaces on Arbitrary	
Orientation, Given the Components Falling on a Horizontal	
Surface	927
20.6 Diurnal Variations of the Ambient Temperature	933
20.7 Effects of the Angle of Incidence and of the Dirt	934
20.8 Some Calculation Tools	937
20.8.1 Generation of Daily Radiation Sequences	937
20.8.2 The Reference Year	937
20.8.3 Shadows and Trajectory Maps	939
20.9 Irradiation on Most Widely Studied Surfaces	940
20.9.1 Fixed Surfaces	943
20.9.2 Sun-tracking Surfaces	945
20.9.3 Concentrators	946
20.10 PV Generator Behaviour under Real Operation Conditions	947
20.10.1 The Selected Methodology	949
20.10.2 Second-order Effects	953
20.11 Reliability and Sizing of Stand-alone PV Systems	956
20.12 The Case of Solar Home Systems	962
20.13 Energy Yield of Grid-connected PV Systems	964
20.14 Conclusions	966
Acknowledgements	967
References	967
21 Facusaria Analysis and Environmental Acasata of Photovoltais	
21 Economic Analysis and Environmental Aspects of Photovoltaic	97 1
Systems Pickard A. Whimant Stankan A. Johnston and James H. Hutakhu	971
Richard A. Whisnant, Stephen A. Johnston and James H. Hutchby 21.1 Background	972
21.2 Economic Analysis	972 973
21.2.1 Key Concepts	97. 97.
21.2.1 Rey Concepts 21.2.2 General Methodology	980
21.2.2 General Methodology 21.2.3 Case Studies	984
	997
21.3 Energy Payback and Air Pollution Reduction21.4 Prospects for the Future	999
References	1003
References	100.
22 PV in Architecture	1005
Tjerk H. Reijenga	
22.1 Introduction	1005
22.1.1 Photovoltaics (PV) as a Challenge for Architects and	
Engineers	1005
22.1.2 Definition of Building Integration	1006

22	2.2 PV in Architecture	1008
	22.2.1 Architectural Functions of PV Modules	1008
	22.2.2 PV as Part of "Green Design"	1011
	22.2.3 PV Integrated as Roofing Louvres, Facades and Shading	1011
	22.2.4 Well-integrated Systems	1014
	22.2.5 Integration of PV Modules in Architecture	1019
	22.2.6 Brundtland Centre, Toftlund (DK) – a Case Study	1022
22	2.3 BIPV Basics	1026
	22.3.1 Categories and Type of Buildings	1026
	22.3.2 Cells and Modules	1029
22	2.4 Steps in the Design Process with PV	1036
	22.4.1 Urban Aspects	1036
	22.4.2 Practical Rules for Integration	1037
	22.4.3 Step-by-step Design	1038
	22.4.4 Design Process: Strategic Planning	1039
22	2.5 Conclusions	1040
	References	1041
	Further Reading	1042
23 Ph	notovoltaics and Development	1043
Jo	rge M. Huacuz and Lalith Gunaratne	
23	3.1 Electricity and Development	1043
	23.1.1 Energy and the Early Man	1043
	23.1.2 Let There be Electricity	1044
	23.1.3 One Third of Humanity Still in Darkness	1044
	23.1.4 The Centralized Electrical System	1045
	23.1.5 Rural Electrification	1045
	23.1.6 The Rural Energy Scene	1046
23	3.2 Breaking the Chains of Underdevelopment	1046
	23.2.1 Electricity Applications in the Rural Setting	1046
	23.2.2 Basic Sources of Electricity	1047
23	3.3 The PV Alternative	1048
	23.3.1 PV Systems for Rural Applications	1049
	23.3.2 Barriers to PV Implementation	1051
	23.3.3 Technical Barriers	1052
	23.3.4 Nontechnical Issues	1055
	23.3.5 Trained Human Resources	1059
23	4.4 Four Examples of PV Rural Electrification	1061
	23.4.1 Argentina	1061
	23.4.2 Bolivia	1061
	23.4.3 Brazil	1063
	23.4.4 Mexico	1064
	23.4.5 Sri Lanka	1065
	23.4.6 Water Pumping in the Sahel	1067
23	5.5 Toward a New Paradigm for Rural Electrification	1068
	References	1069

Index

4	Fina	ncing PV Growth	1073
	Mich	ael T. Eckhart, Jack L. Stone and Keith Rutledge	
	24.1	Historical Development of PV Financing	1073
	24.2	Capital Requirements	1075
		24.2.1 Market Drivers	1075
		24.2.2 Growth Outlook	1075
		24.2.3 Capital Requirements	1076
		Financial Characteristics of PV	1077
	24.4	Financing PV for Grid-connected Residences	1079
		24.4.1 Impact of Loan Terms on End-user Cost	1079
		24.4.2 Types of Residential Financing	1080
		24.4.3 Lender's Issues	1081
		24.4.4 Borrowers' Experience	1081
		24.4.5 Example Calculation	1082
		24.4.6 Improving the Financing of Residential PV	1082
	24.5	Financing PV in Rural Areas of Developing Countries	1083
		24.5.1 Rural Applications	1083
		24.5.2 Impact of Financing on Market Demand	1084
		24.5.3 Examples of PV Financing in Rural Areas	1085
	24.6	Sources of International Financing	1086
		24.6.1 International Aid and Donor Funding	1086
		24.6.2 United Nations	1087
		24.6.3 World Bank Solar Home System Projects	1088
		24.6.4 International Finance Corporation (IFC)	1089
		24.6.5 Global Environment Facility	1089
	24.7	Financing the PV Industry	1091
		24.7.1 Financing Working Capital in the Distribution Channels	1092
	24.8	Government Incentives and Programs	1092
		24.8.1 Potential Impact of Financing as a Government Policy	
		Option	1092
		24.8.2 Direct Subsidies ("Buy-downs")	1094
		24.8.3 Soft Loans (Interest Subsidies)	1095
		24.8.4 Income Tax Deductions and Credits	1096
	24.9	Funding Government Research and Development	1096
		24.9.1 PV Programs in the United States	1096
		24.9.2 PV Programs in Japan	1097
		24.9.3 PV Programs in Europe	1097
		24.9.4 Future PV R&D Programs	1099
		24.9.5 Sources of R&D Funding	1099
		Annex	1100
		References	1114

1117

List of Contributors

Jesús Alonso

Departamento de I+D

ISOFOTON

C/Caleta de Velez, 52

Pol. Ind. Santa Teresa

29006 Malaga

Spain

Phone: +3495 224 3790 Fax: +3495 224 3449

email: j.alonso@isofoton.es

Hironori Arakawa

National Institute of Advanced Industrial Science and Technology (AIST)

1-1-1 Higashi, Tsukuba, Ibaraki

305-8565, Japan Phone: 29-861-4410 Fax: 29-856-3445

email: h.arakawa@aist.go.jp

Sheila Bailey

NASA Lewis Research Center MS 302-1, 21000 Brookpark Road Cleveland, OH 44135

USA

Phone: +1 216 433 2228 Fax: +1 216 433 6106

email: Sheila.bailey@lerc.nasa.gov

Carlos del Cañizo

Instituto de Energía Solar

Universidad Politécnica de Madrid

E.T.S.I. Telecomunicación 28040 Madrid

Spain

Phone: +34 91 544 1060 Fax: +34 91 544 6341

email: canizo@ies-def.upm.es

Bruno Ceccaroli

Silicon Technologies AS P.O. Box 8309 Vaagsbygd N-4676 Kristiansand

Norway

Phone: +47 38 08 58 81 Fax: +47 38 11 99 61 email: br-c@online.no

Xunming Deng

Department of Physics and

Astronomy

University of Toledo Toledo, OH 43606

USA

USA

Phone: +1 419 530 4782 Fax: +1 419 530 2723 email: dengx@physics.utoledo.edu

Michael T. Eckhart

Solar Bank Program Solar International Management Inc. 1825 I Street, NW, Suite 400 Washington, DC 20006 USA

Phone: +1 202-429-2030 Fax: +1 202-429-5532 email: eckhart@solarbank.com

Keith Emery

NREL 1617 Cole Boulevard Golden, CO 80401-3393 USA

Phone: +1 303 384 6632 Fax: +1 303 384 6604 email: keith_emery@nrel.gov

Arthur Endrös

Corporate R&D department Siemens and Shell Solar GmbH Siemens AG Munich, Germany

Dieter Franke ACCESS e.V. Aachen Germany

D. J. FriedmanNREL1617 Cole BoulevardGolden, CO 80401-3393USA

Jeffery L. Gray
Purdue University
West Lafayette
Indiana
USA
email: grayj@ecn.purdue.edu

Lalith Gunaratne
Solar Power & Light Co, Ltd
338 TB Jayah Mawatha
Colombo 10
Sri Lanka

Phone: +94 014 818395 Fax: + 94 014 810824 email: laithq@sri.lanka.net

Christian Haessler Central Research Physics Bayer AG Krefeld Germany

email: christian.haessler@ bayerpolymers.com

Steven S. Hegedus
Institute of Energy Conversion
University of Delaware
Newark DE 19716
USA
email: ssh@udel.edu

Jorge Huacuz
Unidad de Energías no
Convencionales
Instituto de Investigaciones
Eléctricas
P.O. Box 1-475
Cuernavaca, Morelos
62490 Mexico
Phone/Fax: +52 73 182 436
email: jhuacuz@iie.org.mx

J. A. Hutchby Semiconductor Research Corporation P.O. Box 12053 Research Triangle Park North Carolina 27709 USA

S. A. Johnston P.O. Box 12194 Research Triangle Park North Carolina 27709 USA

Juris Kalejs

RWE Schott Solar Inc. 4 Suburban Park Drive Billerica, MA 01821 USA

Phone: 978-947-5993 Fax: 978-663-2868 email: *jkalejs@asepv.com*

Wolfgang Koch

Central Research, Physics (ZF-FPM), Photonic Materials Chemicals-Bayer Solar, (CH-BS),

Projects Bayer AG Geb.R82, PF111107 D-47812 Krefeld

Germany Phone: +49215

Phone: +492151-883370 Fax: +492151-887503

email: wolfgang.koch.wk2@bayer-ag.de

Hara Kohjiro

National Institute of Advanced Industrial Science and Technology (AIST)

1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Phone: 29-861-4494 Fax: 29-861-6771 email: *k-hara@aist.go.jp*

Sarah Kurtz

NREL

1617 Cole Boulevard Golden, CO 80401-3393

USA

Phone: +1 303 384 6475 Fax: +1 303 384 6531 email: sarah_kurtz@nrel.gov

Otto Lohne

Norwegian University of Science and Technology

Department of Materials

Technology

N-7491 Trondheim

Norway

Phone: +47 73 59 27 94 Fax: +47 43 59 48 89 email: Otto.Lohne@sintef.no

Eduardo Lorenzo

Instituto de Energía Solar Universidad Politécnica de Madrid E.T.S.I. Telecomunicación Ciudad Universitaria 28040 Madrid

Spain

Phone: +3491 366 7228 Fax: +3491 544 6341 email: lorenzo@ies-def.upm.es

Antonio Luque

Instituto de Energía Solar Universidad Politécnica de Madrid E.T.S.I. Telecomunicación

28040 Madrid Spain

Phone: +34 91 336 7229 Fax: +34 91 544 6341 email: luque@ies-def.upm.es

Joachim Luther

Fraunhofer Institute for Solar Energy Systems ISE Heidenhofstrasse 2 79110 Freiburg Germany

Phone: +49 (0) 761 4588-5120 Fax: +49 (0) 761 4588-9120

email: luther@ise.fhg.de

Antonio Martí

Instituto de Energía Solar Universidad Politécnica de Madrid E.T.S.I. Telecomunicación

28040 Madrid

Spain

Phone: +34 91 544 1060 Fax: +34 91 544 6341 email: amarti@etsit.upm.es

Brian McCandless

Institute of Energy Conversion University of Delaware Newark, DE 19716 USA

Phone: +1 302 831 6240 Fax: +1 302 831 6226

email: bem@udel.edu

H. J. Moeller

Institut für Experimentelle Physik TU Bergakademie Freiberg Silbermannstr. 1 09599 Freiberg Germany Phone: +493731-392896

Fax: +493731-392896 Fax: +493731-394314

email: moeller@physik.tu-freiberg.de

J. M. Olson NREL

> 1617 Cole Boulevard Golden, CO 80401-3393

USA

Klaus Preiser

Produktion Energie badenova AG & Co. KG Tullastraße 61 79108 Freiburg i.Br. Telefon 0761/279-2207 Telefax 0761/279-2731 Mobil 0160/7154879

email: klaus.preiser@badenova.de

www.badenova.de

Ryne Raffaelle

Rochester Institute of Technology

84 Lomb Memorial Drive Rochester, NY 14623-5603 USA

Tjerk Reijenga

BEAR Architecten Gravin Beatrixstraat 34 NL 2805 PJ Gouda The Netherlands

Phone: +31 182 529 899 Fax: +31 182 582 599

email: Tjerk@bear.nl

Keith Rutledge

USA

Renewable Energy Development Institute Willits, CA 95490

Dirk Uwe Sauer

Electrical Energy Systems -Storage Systems Fraunhofer Institut für Solare Energiesysteme ISE Heidenhofstrasse 2 D-79110 Freiburg Germany

Phone: +49 761 4588 5219 Fax: +49 761 4588 9217 email: sauer@ise.fhg.de

Eric A. Schiff

Department of Physics Syracuse University Syracuse, New York 13244-1130 USA

http://physics.syr.edu/~schiff

Jürgen Schmid

ISET-Institut für Solare Energieversorgungstechnik e.V., Universität Kassel Königstor 59

34119 Kassel

Germany

Phone: +49 (0)5 61/72 94-3 45 Fax: +49 (0)5 61/72 94-3 00 email: jschmid@iset.uni-kassel.de

Heribert Schmidt

Fraunhofer Institut für Solare Energiesysteme ISE, Freiburg

Heidenhofstr. 2 79110 Freiburg

Germany

Phone: +49 (0)7 61/45 88-52 26 Fax: +49 (0)7 61/45 88-92 26

email: heri@ise.fhg.de

William Shafarman

Institute of Energy Conversion University of Delaware Newark, DE 19716 USA

Phone: 1 302 831 6215 Fax: 1 302 831 6226 email: wns@udel.edu

James Sites

Department of Physics Colorado State University Fort Collins, CO 80523-1875 USA

Phone: +1 970 491 5850 Fax: +1 970 491 7947 email: sites@lamar.colostate.edu

Bushan Sopori

NREL 1617 Cole Boulevard Golden, CO 80401-3393 USA

Phone: +1 303 384 6683 Fax: +1 303 384 6684 email: bsopori@nrel.gov Lars Stolt

Ångström Solar Center Uppsala University P.O. Box 534 SE-751 21 Uppsala

Sweden

Phone: +46 18 471 3039 Fax: +46 18 555 095

email: Lars.Stolt@angstrom.uu.se

Jack L. Stone

NREL

1617 Cole Boulevard Golden, CO 80401-3393

USA

Richard Swanson

SUNPOWER Corporation

435 Indio Way

Sunnyvale, CA 94086

USA

Phone: +1 408 991 0900 Fax: +1 408 739 7713

email: Rswanson@sunpowercorp.com

Ignacio Tobías

Instituto de Energía Solar Universidad Politécnica de Madrid ETSI Telecomunicación

Ciudad Universitaria

28040 Madrid

Spain

Phone: +3491 5475700-282

Fax: +3491 5446341 email: Tobias@ies-def.upm.es

Richard A. Whisnant

Parameters, Inc.

1505 Primrose Lane

Cary, NC 27511

(919) 467-8710 (phone, fax)

(919) 523-0456 (cell phone)