

第三节 等比数列

第三章 第三节等比数列

一、定义

通项公式

三、数列的前n项和

四、重要性质

一、定义

如果在数列 $\{a_n\}$ 中, $\frac{a_{n+1}}{a_n}=q$ (常数) $(n \in N_+)$,则称数列 $\{a_n\}$ 为等

比数列, q为公比.

等比数列中任何一个元素都不能为0,公比也不能为0

二、通项公式

$$a_n = a_1 q^{n-1} = a_k q^{n-k} = \frac{a_1}{q} q^n$$

二、通项公式

【例1】若2,3
x
 - 1,3 x + 3成等比数列,则 x = ().

A. log_35 B. log_36 C. log_37 D.3

E.4

二、通项公式

【例1】若2,3 x - 1,3 x + 3成等比数列,则x = ().

A. log_35 B. log_36 C. log_37 D.3

E.4

【解析】 2, 3^x-1 , 3^x+3 成等比数列,则 $(3^x-1)^2=2(3^x+3)$, $\mathbb{P}(3^x-1)^2-2\times(3^x-1)-8=(3^x-1-4)(3^x-1+2)=0$ 可得 $3^x = 5$ 或 $3^x = -1$ (舍去), 即 $x = \log_3 5$. 选 A.

$$S_{n} = \begin{cases} nq & q=1 \\ \frac{a_{1}(1-q^{n})}{1-q} = \frac{a_{1}-a_{n}q}{1-q} = \frac{a_{1}-a_{n+1}}{1-q} & q \neq 1 \end{cases}$$

【例3】等比数列 $\{a_n\}$ 中,若 $a_1a_3=36$, $a_2+a_4=60$, $S_n>400$,n的

最小值为().

A.4 B.5

C.6

D.7

E.8

【例3】等比数列 $\{a_n\}$ 中,若 $a_1a_3=36$, $a_2+a_4=60$, $S_n>400$,n的

最小值为().

A.4 B.5

C.6

D.7

E.8

【解析】

因为 $a_1a_3=a_1^2q^2=36$, 所以 $a_1q=\pm 6$,

又因为 $a_2+a_4=a_1q(1+q^2)=60$,且 $1+q^2>0$,所以 $a_1q>0$,

故 $a_1q=6$, $1+q^2=10$, 解得 $\begin{cases} a_1=2\\ q=3 \end{cases}$.

当 $a_1=2$, q=3 时, $S_n=\frac{a_1(1-q^n)}{1-q}=\frac{2(3^n-1)}{2}>400\Rightarrow 3^n>401$,所以 $n\geqslant 6$.

故 n 的最小值为 6, 选 C. $(3^5 = 243, 3^6 = 729)$

【例4】等比数列 $\{a_n\}$ 的前5项和等于2,紧接在后面的10项和等于12,

再紧接其后的15项和为S ,则S = () .

A.112 B.112或-378 C.-112或378 D.-378

E.-112

【例4】等比数列 $\{a_n\}$ 的前5项和等于2,紧接在后面的10项和等于12,

再紧接其后的15项和为S ,则S = () .

A.112 B.112或-378 C.-112或378 D.-378

E.-112

【解析】

$$\begin{cases} S_5 = 2 \\ S_{15} - S_5 = 12 \Rightarrow \begin{cases} S_5 = 2 \\ S_{15} = 14 \\ S_{30} - S_{15} = S \end{cases} \\ \frac{S_{15}}{S_5} = \frac{1 - q^{15}}{1 - q^5} = q^{10} + q^5 + 1 = 7 \Rightarrow q^5 = 2 \ \text{兹} - 3 , \ \frac{S_{30}}{S_{15}} = \frac{1 - q^{30}}{1 - q^{15}} = 1 + q^{15} = 9 \ \text{兹} - 26 , \ \text{FP} \\ S_{30} = 126 \ \text{兹} - 364 , \ \text{又} S_{30} = S + 14 \Rightarrow S = S_{30} - 14 \Rightarrow S = 112 \ \text{చ} - 378 , \ \text{\ref{beta}} B.$$

(1) 若
$$m,n,p,q \in Z_+$$
, $m+n=p+q$, 则 $a_m \cdot a_n = a_p \cdot a_q$

【例5】等比数列 $\{a_n\}$ 中,若 $a_2a_9=-512$, $a_3+a_8=124$,且公比 $q\in$

$$Z$$
 , 则 $a_{10} = ($).

A.124 B.64

C.512

D.-124

E.-512

【例5】等比数列 $\{a_n\}$ 中,若 $a_2a_9=-512$, $a_3+a_8=124$,且公比 $q\in$

$$Z$$
 , 则 $a_{10} = ($).

A.124

B.64

C.512

D.-124

E.-512

【解析】

 $a_3a_8=a_2a_9=-512$, 又 $a_3+a_8=124$, 则将 a_3 , a_8 看成方程 $x^2-124x-512=0$ 的两个根,得 $a_3=-4$, $a_8=128$,则 q=-2, $a_{10}=512$. 进 C.

【例6】等比数列 $\{a_n\}$ 中,若 a_6 , a_{10} 是方程 $2x^2 - 11x + 6 = 0$ 的两根,

则
$$a_8 = ()$$
 .

$$A.\sqrt{3}$$

A.
$$\sqrt{3}$$
 B.3 C. $\pm \sqrt{3}$ D. ± 3 E.-3

$$D.\pm3$$

【例6】等比数列 $\{a_n\}$ 中,若 a_6 , a_{10} 是方程 $2x^2 - 11x + 6 = 0$ 的两根,

则
$$a_8 = ()$$
 .

A. $\sqrt{3}$ B.3 C. $\pm \sqrt{3}$ D. ± 3

E.-3

【解析】

$$a_8^2 = a_6 a_{10} = 3 \Rightarrow a_8 = \pm \sqrt{3}$$
,又 $a_6 + a_{10} = \frac{11}{2}$,则 $a_6 > 0$, $a_{10} > 0$,故 $a_8 = \sqrt{3}$. 选A.

(2) 若 S_n 为等比数列的前n项和,则 S_n , $S_{2n} - S_n$, $S_{3n} - S_{2n}$,…仍

为等比数列,其公比 q^n

【例7】等比数列
$$\{a_n\}$$
中,已知 $S_4=36,S_8=54,$,则 $S_{12}=($).

A.63 B.68 C.76 D.89

E.92

A.63 B.68

C.76

D.89

E.92

【解析】

对于等比数列, S_n , $S_{2n}-S_n$, $S_{3n}-S_{2n}$ 仍为等比数列,即 36, 18, $S_{12}-54$ 为等比数 列, 得 S_{12} - 54 = 9, S_{12} = 63. 选 A.

四.重要性质

(3) 若
$$|q| < 1$$
, $q \neq 0$, 则等比数列所有项和 $S = \lim_{n \to \infty} S_n = \frac{a_1}{1-q}$.