Finite fields - existence

Given p, prime and n a positive integer there exists a finite field of size p."

Equivalent to: there exists an irred poly of deg n in IF[t].

We'll donstruct a field of size p^n differently. We'll key role = Frobenius 8 \times^{p^n} X.

Prop. Let F be any field. Let $f(x) \in F[x]$ be a non-const. polynomial. There exists a finite extⁿ of fields FCK such that in K[x], the poly f(x) splits into linear factors. Pf: Example. $f(x) = (gextic) \cdot (cubic) \cdot (quintic)$ in F[x]Let $K_1 = F[t]/(sextic)$ then over $K_1[K]$, have $f(K) = (linear) (quintic) \cdot (cubic) \cdot (quintic)$ Pick an irred factor of deg > 2, say g(x) to Ki[t]/g(t) =: KiH & further factorisation.

it to F = F f(x) = XP'' xTF CK S.t. in K, f(x) factors into linear factors. LCK be L= { d | d - d = 0 } = { d | $\varphi^n(d) = d$ } is a subfield of K.

The iterate of Frob \leftarrow homomorphism. only thing left -> XP-X has no repeated factors.

Detecting repeated and
$$\subseteq$$
 fix) = f(x) + g(x) + f(x) = f(x) + g(x) = f(x) + f(x) = f(x) = f(x) + f(x) = f(

 $\frac{Pf}{f(x)} = (x-\alpha)^2 g(x)$ $f'(x) = (x-\alpha)^2 g'(x) + 2(x-\alpha) g(x)$

f(x) by f'(x) have a non-constant common factor. g(x) f(x), f'(x) is not 1. Does XP_X have repeated factors in K[X]f(x). $f'(x) = p^{\gamma} \cdot x^{p'-1} - 1 = -1$ so there cannot be a common factor to f(x) & f'(x). =) f(x) cannot have repeated souts! $X^{p^{n}} = TT$ distinct lin. Factors in K[x]L= 3 d | d = d } CK a subfield of size p?

1].

Q [x) Q [B]