Medical Robotics

Some definitions

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College Vellore

What is a Robot?

 ${\bf Coming\ soon.}$

Configuration Space: Describing the state of a robot

Configuration Space or C-space

Degrees of Freedom

 ${\bf Coming\ soon.}$

Task space and Workspace

 ${\bf Coming\ soon.}$

Mathematical Preliminary

Concepts in Vector Spaces

▶ **Vectors** are ordered list of numbers (scalars). $\mathbf{v} = \begin{bmatrix} 1.2 \\ -0.1 \\ \vdots \\ -1.24 \end{bmatrix}$.

Note: Small bold letter will represent vectors. e.g. $\mathbf{a}, \mathbf{x}, \dots$

- ▶ Scalars can be any *field* \mathbb{R} , \mathbb{C} , \mathbb{Z} , \mathbb{Q} . Scalars will be represented using lower case normal font, e.g. $x, y, \alpha, \beta, \ldots$
- ▶ Addition/multiplication operations performed on vectors will follow the rules of addition/multiplication of the corresponding scalar fields.
- ightharpoonup We will typically encounter only $\mathbb R$ and $\mathbb C$ in this course.

- ▶ Individual elements of a vector \mathbf{v} are indexed. The i^{th} element of \mathbf{v} is referred to as v_i .
- ▶ Dimension or size of a vector is number of elements in the vector.
- ▶ Set of *n*-real vectors is denoted by \mathbb{R}^n (similarly, \mathbb{C}^n)
- ▶ Vectors **a** and **b** are equal, if
 - both have the same size; and
 - \bullet $a_i = b_i, i \in \{1, 2, 3, \dots n\}$

▶ Geometrically, real *n*-vectors can be thought of as points in \mathbb{R}^n space.

▶ **Vector scaling**: Multiplication of a scalar and a vector.

$$\mathbf{w} = a\mathbf{v} = a \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} av_1 \\ av_2 \\ av_3 \\ \vdots \\ av_n \end{bmatrix} \quad a \in \mathbb{R}; \ \mathbf{w}, \mathbf{v} \in \mathbb{R}^n$$

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \\ \vdots \\ u_n + v_n \end{bmatrix} \quad \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$

▶ **Vector addition**: Adding two vectors of the same dimension, element by element.

$$\mathbf{u}+\mathbf{v}=egin{bmatrix} u_1\u_2\u_3\ dots\ u_2\ dots\ u_3\ \dots\ u_3\ \d$$

Medical Robotics

Vector spaces

ightharpoonup A set of vectors V that is closed under **vector addition** and **vector scaling**.

$$\forall \mathbf{x}, \mathbf{y} \in V, \ \mathbf{x} + \mathbf{y} \in V$$

$$\forall \mathbf{x} \in V, \text{ and } \alpha \in F, \ \alpha \mathbf{x} \in V$$

ightharpoonup A subspace S of a vector space V is a subset of V and is itself a vector space.

$$S \subset V, \ \forall \mathbf{x}, \mathbf{y} \in S, \alpha \mathbf{x} + \beta \mathbf{y} \in S, \ \alpha, \beta \in F$$

▶ For example, in \mathbb{R}^3 all planes and lines passing through the origin are subspaces of \mathbb{R}^3 .

Linear independence

A collection of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots \mathbf{x}_n\}$, $\mathbf{x}_i \in \mathbb{R}^m$ $i \in \{1, 2, 3, \dots n\}$ is called *linearly dependent* if,

$$\sum_{i=1}^{n} \alpha_i \mathbf{x}_i = 0, \text{ hold for some } \alpha_1, \alpha_2, \dots \alpha_n \in \mathbb{R}, \text{ such that } \exists \alpha_i \neq 0$$

Another way to state this: A collection of vectors is *linearly dependent* if at least one of the vectors in the collection can be expressed as a linear combination of the other vectors in the collection, i.e.

$$\mathbf{x}_i = -\sum_{j=1, j \neq i}^n \left(\frac{\alpha_j}{\alpha_i}\right) \mathbf{x}_j$$

A collection of vectors is linearly independent if it is **not** linearly dependent.

$$\sum_{i=1}^{n} \alpha_i \mathbf{x}_i = 0 \implies \alpha_1 = \alpha_2 = \alpha_3 \dots = \alpha_n = 0$$

Span of a set of vectors

- ▶ Consider a set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \dots \mathbf{v}_r\}$ where $\mathbf{v}_i \in \mathbb{R}^n, 1 \leq i \leq r$.
- ▶ The span of the set S is defined as the set of all linear combination of the vectors \mathbf{v}_i ,

$$span(S) = \{\alpha_1 \mathbf{v}_1 = \alpha_2 \mathbf{v}_2 + \dots + \alpha_r \mathbf{v}_r\}, \ \alpha_i \in \mathbb{R}$$

- ▶ Is span(S) a subspace of \mathbb{R}^n ?
- ▶ We say that the subspace span(S) is spanned by the $spanning set S. \longrightarrow S spans <math>span(S)$.
- ▶ Sum of subspaces X, Y is defined as the sum of all possible vectors from X and Y.

$$X + Y = \{ \mathbf{x} + \mathbf{y} \mid \mathbf{x} \in X, \mathbf{y} \in Y \}$$

► Sum of two subspace is also a subspace.

Standard Inner Product

Standard inner product is defined as the following,

$$\mathbf{x}^{\top}\mathbf{y} = \sum_{i=1}^{n} x_i y_i, \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

For complex vectors: $\mathbf{x}^*\mathbf{y} = \sum_{i=1}^n \overline{x}_i y_i, \ \mathbf{x}, \mathbf{y} \in \mathbb{C}^n$

Orthogonality. Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}$ are orthogonal or perpendicular to each other if,

$$\mathbf{x}^{\mathsf{T}}\mathbf{y} = 0 \iff \mathbf{x} \perp \mathbf{y}$$

Norm of a vector

Norm is a measure of the size or length of a vector.

Euclidean norm of a n-vector $\mathbf{x} \in \mathbb{R}^n$ is defined as.

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^\top \mathbf{x}} = \sqrt{\sum_{i=1}^n x_i^2}.$$

 $\|\mathbf{x}\|_2$ is a measure of the length of the vector \mathbf{x} .

p-norm:
$$\|\mathbf{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$$

Consider a vector $\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$. What can we say about the coefficients α_i s when the collection $\{\mathbf{x}_i\}_{i=1}^n$ is,

- ightharpoonup linearly independent $\implies \alpha_i$ s are unique.
- ightharpoonup linearly dependent $\implies \alpha_i$ s are not unique.

Consider
$$\mathbb{R}^2$$
 vector space. $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\mathbf{x}_3 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Independence-Dimension inequality: What is the maximum possible size of a linearly independent collection?

A linearly independent collection of n-vectors can at most have n vectors.

Medical Robotics Sivakumar Balasubramanian

How many vectors can we choose from the following vectors spaces before the set becomes linearly dependent?

 \blacktriangleright A linearly independent set of *n*-vectors from \mathbb{R}^n , of size *n*, is called a *basis* for \mathbb{R}^n .

Any *n*-vector from \mathbb{R}^n can be represented as a *unique* linear combination of the elements of the basis.

► Consider the basis $\{\mathbf{x}_i\}_{i=1}^n$, $\mathbf{x}_i \in \mathbb{R}^n$. Any vector $\mathbf{y} \in \mathbb{R}^n$ can be represented as a linear combination of \mathbf{x}_i s, $\mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{x}_i$. This is called the *expansion of* \mathbf{y} in the $\{\mathbf{x}_i\}_{i=1}^n$ basis.

▶ The numbers α_i are called the *coefficients* of the expansion of **y** in the $\{\mathbf{x}_i\}_{i=1}^n$ basis.

▶ Orthogonal vectors: A set of vectors $\{\mathbf{x}_i\}_{i=1}^n$ is (mutually) orthogonal if $\mathbf{x}_i \perp \mathbf{x}_j$ for all $i, j \in \{1, 2, 3, ... n\}$ and $i \neq j$.

▶ This set is called **orthonormal** if its elements are all of unit length $\|\mathbf{x}_i\|_2 = 1$ for all $i \in \{1, 2, 3, ... n\}$.

$$\mathbf{x}_i^{\top} \mathbf{x}_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Representing a Vector in an Orthonormal Basis

▶ An orthonormal collection of vectors is linearly independent.

▶ Consider an orthonormal basis $\{\mathbf{x}_i\}_{i=1}^n$. The expansion of a vector \mathbf{y} is given by,

$$\mathbf{y} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \alpha_3 \mathbf{x}_3 + \dots + \alpha_n \mathbf{x}_n$$

$$\mathbf{x}_i^{\mathsf{T}}\mathbf{y} = \alpha_1 \mathbf{x}_i^{\mathsf{T}}\mathbf{x}_1 + \alpha_2 \mathbf{x}_i^{\mathsf{T}}\mathbf{x}_2 + \alpha_3 \mathbf{x}_i^{\mathsf{T}}\mathbf{x}_3 + \dots + \alpha_n \mathbf{x}_i^{\mathsf{T}}\mathbf{x}_n = \alpha_i$$

Representing a Vector in an Orthonormal Basis

▶ Thus, we can rewrite this as,

$$\mathbf{y} = \left(\mathbf{y}^{\top} \mathbf{x}_{1}\right) \mathbf{x}_{1} + \left(\mathbf{y}^{\top} \mathbf{x}_{2}\right) \mathbf{x}_{2} + \left(\mathbf{y}^{\top} \mathbf{x}_{3}\right) \mathbf{x}_{3} + \dots + \left(\mathbf{y}^{\top} \mathbf{x}_{n}\right) \mathbf{x}_{n}$$

Dimension of a Vector Space

- ▶ There an infinite number of bases for a vector space.
- ▶ There is one thing that is common among all these bases the number of bases vectors.
- ▶ This number is a property of the vector space, and represents the "degrees of freedom" of the space. This is called the **dimension** of the vector space.
- ightharpoonup A subspace of dimension m can have at most m independent vectors.
- ▶ Notice that the word "dimension" of a vector space is different from the "dimension" of a vector.
- ▶ E.g. Vectors from \mathbb{R}^3 are three dimensional vectors. But the yz-plane in \mathbb{R}^3 is a 2 dimensional subspace of \mathbb{R}^3 .

