Relatório ITP

Thiago Oliveira Coelho

15 de abril de 2020

Sumário

1	Intr	odução	2			
2	Metodologia					
	2.1	Modelos de gravidade	2			
	2.2	Obtenção de estimadores	2			
	2.3	Variáveis do modelo	3			
3	Dados e fontes					
4	Resultados					
	4.1	Regressão Com base de dados CEPII	4			

1 Introdução

Com o advento da globalização, as barreiras tradicionais ao comércio internacional, como as tarifárias, têm se tornado menores o que diminui as oportunidades para implementação de medidas protecionistas.(MASKUS; WILSON; OTSUKI, 2000). Isso tem causado aparecimento de diversas barreiras não tarifárias (BNTs), que impedem o fluxo internacional de bens. Apesar de estas barreiras poderem ser legítimas, por exemplo para corrigir eventuais externalidades negativas advindas do produto importado, o fato é que estas terão impacto nas importações do país. Este impacto pode ser positivo ou negativo, dependendo do setor analisado. Em geral, normas de importação tendem a diminuir o comércio para bens primários e impulsionar o comércio de bens mais complexos (MOENIUS, 2006).

2 Metodologia

Considerando os trabalhos que visam estabelecer quantitativamente o impacto das notificações, será utilizado um modelo de gravidade cujos estimadores serão estabelecidos por PPML (Poisson Pseudo Maximum Likelihood).

2.1 Modelos de gravidade

Os modelos de gravidade são utilizados majoritariamente desde a década de 60 para a explicação de fluxos de comércio internacional. Originalmente derivado do modelo de Newton, utilizava a distância entre os dois objetos (países) e a massa deles (PIB), para explicar tal fluxo. Com o tempo, o desenvolvimento da área de economia internacional têm tornado o modelo cada vez mais teóricamente embasado e representativo da realidade.

2.2 Obtenção de estimadores

Dada a característica de haver grandes quantidades de fluxos de troca com valor zero, o estimador utilizado será o de *Poisson Pseudo Maximum Likelihood* (PPML). Isso se deve pelo fato de tal metodologia se portar melhor dados muitos valores nulos. Tal método de estimação também gera resultados consistentes na presença de heterocedasticidade.

2.3 Variáveis do modelo

$$\ln X_D = \ln GDP_O + \ln GDP_D + \ln dist + \ln Tariff + \sum_{i=1}^n P + Eu_D + contig + gatt_o + gatt_D$$
(1)

Onde:

- X = Valor de exportação do Brasil para o país de destino no período;
- *GDP_O* = Renda do Brasil no período;
- GDP_D = Renda do país de destino no período;
- dist = Distância em Quilômetros do Brasil para o país de destino;
- Tariff = Valor da tarifa efetivamente aplicada pelo país de destino ao Brasil no período;
- $\sum_{i=1}^{n} P$ = Conjunto de variáveis que indicam a quantidade de notificações emitidas por cada país e objetivo;
- Eu_D = Dummy que indica se o país de destino faz parte da União Europeia.
- contig = Dummy que indica se o Brasil possui fronteiras em comum com o país de destino;
- $gatt_O$ = Se o país (origem) é membro da Organização mundial do comércio;
- $gatt_D$ = Se o país (destino) é membro da Organização mundial do comércio.

Obs: Todas aquelas variáveis que não são dummies estão sendo transformadas por meio de logaritmo natural, assim como pede a especificação de (SANTOS SILVA; TENREYRO, 2006).

Obs²: O período utilizado na análise é anual.

3 Dados e fontes

Bases de dados utilizadas:

- 1. Notificações: https://www.epingalert.org/en;
- 2. Valor de exportações: https://comtrade.un.org/;

3. PIB: Banco mundial, (BANK, s.d.);

4. Distanciamento: (MAYER; ZIGNAGO, 2011);

5. Tarifas: WITS

4 Resultados

4.1 Regressão Com base de dados CEPII

Os resultados a seguir foram obtidos a partir da base de dados para modelos de gravidade da CEPII. Esta foi unificada com base própria criada a partir da quantidade de notificações de diferentes objetivos emitidas por diferentes países para diferentes commodities. Esta regressão possui efeitos fixos para cada ano e país,

	coef	std err	t	P> t
Animal.health	-0.0038	0.002	-1.631	0.103
Consumer.information	0.0268	0.020	1.311	0.190
Food.safety	-0.0023	0.001	-2.074	0.038
Harmonization	1.0352	0.338	3.059	0.002
Lower.barriers.to.trade	-0.0189	0.058	-0.328	0.743
Other	-0.0139	0.025	-0.559	0.576
Plant.protection	-0.0037	0.002	-1.920	0.055
Prevention.of.deceptive.practices.and.consumer.protection	0.0124	0.016	0.757	0.449
Protect.humans.from.animal.plant.pest.or.disease	0.0108	0.003	3.756	0.000
Protect.territory.from.other.damage.from.pests	-0.0234	0.008	-2.760	0.006
Protection.of.Human.health.or.Safety	-0.0349	0.007	-5.201	0.000
Protection.of.animal.or.plant.life.or.health	-0.1018	0.037	-2.770	0.006
Protection.of.the.environment	-0.2536	0.085	-2.995	0.003
Quality.requirements	-0.0028	0.032	-0.087	0.931
ln_gdp_d	0.0186	0.002	7.490	0.000
ln_gdp_o	0.0454	0.027	1.686	0.092
comrelig	-0.0442	0.017	-2.541	0.011
gatt_d	-0.1335	0.024	-5.509	0.000
gatt_o	0.8291	0.763	1.087	0.277
eu_d	-0.3117	0.090	-3.465	0.001
ln_dist	0.0170	0.010	1.660	0.097
contig	0.0492	0.016	3.068	0.002
ln_Tariff	0.0042	0.005	0.781	0.435

Referências

BANK, The World. **World Development Indicators**. [S.l.: s.n.].

MASKUS, Keith E; WILSON, John S; OTSUKI, Tsunehiro. Quantifying the impact of technical barriers to trade: a framework for analysis. World Bank, Washington, DC, 2000.

MAYER, Thierry; ZIGNAGO, Soledad. Notes on CEPII's distances measures: The GeoDist database. [S.l.], 2011. Disponível em: http://www.cepii.fr/CEPII/en/publications/wp/abstract.asp?NoDoc=3877;.

MOENIUS, Johannes. The Good, the Bad and the Ambiguous: Standards and Trade in Agricultural Products, jan. 2006.

SANTOS SILVA, João; TENREYRO, Silvana. The Log of Gravity. **The Review of Economics and Statistics**, v. 88, n. 4, p. 641–658, 2006. Disponível em: https://EconPapers.repec.org/RePEc:tpr:restat:v:88:y: 2006:i:4:p:641-658;.