Assumptions and normal distributions

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Summary stats

Mean

Sum divided by count

Median

Half of values fall above and below the median

Mode

Value that occurs most often

Standard deviation

Measure of variability

Normal distribution

Sample distribution

```
print(p9.ggplot(countrydata)+ p9.aes(x= 'Life_exp')+ p9.geom_density(alpha=0.5))
```


Accessing summary stats

Mean

print(countrydata.Life_exp.mean())

73.68201058201058

Mode

print(countrydata.Life_exp.mode())

78.4

Median

print(countrydata.Life_exp.median())

76.0

Normal distribution

Q-Q (quantile-quantile) plot

Normal probability plot

Use

- Distribution fit expected (normal) distribution?
- Graphical method to assess normality

Basis

Compare quantiles of data with theoretical quantiles predicted under distribution

Creating a Q-Q plot

Q-Q plot for sample

Distribution

Q-Q plot

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

Testing for normality

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Testing for normality

Normal distribution

- Mean, median, and mode are equal
- Symmetrical
- Crucial assumption of certain tests

Approach

Test for normality

Shapiro-Wilk test

Basis

- Test for normality
- Based on same logic as Q-Q plot

Use

- 1) Test normality of each sample
- 2) Choose test/approach
- 3) Perform hypothesis test

```
from scipy import stats

shapiro = stats.shapiro(my_sample)
print(shapiro)
```

Shapiro-Wilk test example

Implementing a Shapiro-Wilk test

```
from scipy import stats

shapiro = stats.shapiro(countrydata.Life_exp)
print(shapiro)
```

(0.39991819858551025, 6.270842690066813e-26)

Test assumptions

Tests based on assumption of normality

- Student's t-test (one and two-sample)
- Paired t-test
- ANOVA

Normality test

Test by group

Normality and test choice

Sample size & sample mean

• Large sample size: sample mean approaches population mean

Small sample sizes

• Important that normality assumption not violated

Large sample sizes

Importance of normality is relaxed

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

Non-parametric tests: Wilcoxon rank-sum test

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden
Instructor

When assumptions don't hold

- Tests are based on assumptions about data
- Normality: assumption underlying t-test

Violation of assumptions

Test no longer valid

Approach

- Non-parametric tests
- "Looser" constraints

Parametric vs non-parametric tests

Parametric tests

- Make many assumptions
- Population modeled by distribution with fixed parameters (eg: normal)

Sensitivity

Higher

Hypotheses

More specific

Non-parametric tests

- Make few assumptions
- No fixed population parameters
- Used when data doesn't fit these distributions

Sensitivity

Lower

Hypotheses

Less specific

Wilcoxon rank-sum vs t-test

Student's t-test

Parametric

Hypothesis

mean sample A == mean sample B?

Assumptions

Relies on normality

Sensitivity

• Higher

Wilcoxon rank-sum test

Non-parametric

Hypothesis

random sample A > random sample B

Assumptions

• No sensitive to distribution shape

Sensitivity

Slightly lower

Wilcoxon rank-sum test example

Implementing a Wilcoxon rank-sum test

```
from scipy import stats

Sample_A = df[df.Fertilizer == "A"]
Sample_B = df[df.Fertilizer == "B"]

wilc = stats.ranksums(Sample_A, Sample_B)
print(wilc)
```

RanksumsResult(statistic=16.085203659039184, pvalue=3.239851573227159e-58)

Wilcoxon signed-rank test

- Non-parametric equivalent to paired t-test
- Tests if ranks differ across pairs

2017 yield	2018 yield
60.2	63.2
12	15.6
13.8	14.8
91.8	96.7
50	53
45	47

Wilcoxon signed-rank test example

```
from scipy import stats

yields2018= [60.2, 12, 13.8, 91.8, 50, 45,32, 87.5, 60.1,88 ]
yields2019 = [63.2, 15.6, 14.8, 96.7, 53, 47, 31.3, 89.8, 67.8, 90]

wilcsr = stats.wilcoxon(yields2018, yields2019)
print(wilcsr)
```

WilcoxonResult(statistic=1.0, pvalue=0.00683774356850919)

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

More nonparametric tests: Spearman correlation

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Correlation

Basis

- Relate one continuous or ordinal variable to another
- Will variation in one predict variation in the other?

Pearson correlation

Based on a linear model

Pearson correlation

- Parametric
- Based on raw values
- Sensitive to outliers

Assumes:

• Linear, monotonic relationship

Effect measure

Pearson's r

Spearman correlation

- Non-parametric
- Based on ranks
- Robust to outliers

Assumes:

• Monotonic relationship

Effect measure

• Spearman's rho

Pearson's r: 1, Spearman's rho = 1

Pearson's r: -1, Spearman's rho = -1

Pearson's r: 0.915, Spearman's rho = 1

Pearson's r: 0.0429, Spearman's rho = 0.0428

Spearman correlation example

Implementing a Spearman correlation

```
from scipy import stats
pearcorr = stats.pearsonr(oly.Height, oly.Weight)
print(pearcorr)
```

(0.6125605419882442, 7.0956520885987905e-190)

```
spearcorr = stats.spearmanr(oly.Height, oly.Weight)
print(spearcorr)
```

SpearmanrResult(correlation=0.728877815423366, pvalue=1.4307959767478955e-304)

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

Summary EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden
Instructor

What you've learned

Chapter 1

Exploratory data analysis & hypothesis testing

Chapter 2

Dealing with multiple factors

Chapter 3

Type I and II errors and the power-sample size-effect size relationship

Chapter 4

Dealing with assumptions of tests

Uncertainty is a theme of statistics

Uncertainty is always present

We can't expect absolute certainty

Approach

- Quantify our uncertainty
- Assess likelihood of competing hypotheses
- Methods may rest on unproven assumptions

Embrace uncertainty!

EXPERIMENTAL DESIGN IN PYTHON

