Course Assignment – Basic inferential data analysis

Author: Sahil Grover

Analyzing the ToothGrowth data

head(ToothGrowth) len supp dose 1 4.2 VC 0.5 2 11.5 VC 0.5 3 7.3 VC 0.5 4 5.8 VC 0.5 5 6.4 VC 0.5 6 10.0 VC 0.5

table(ToothGrowth\$len)

Some random values

```
table(ToothGrowth$supp)
OJ VC
30 30

table(ToothGrowth$dose)
0.5 1 2
20 20 20
```

Hence, we could see that this data provides values named "len" for different amounts of doses (0.5,1,2) for 2 types of supplements (VC,OJ).

```
# Subsetting the data
ToothGrowth_VC<-ToothGrowth[ToothGrowth$supp=="VC",]
ToothGrowth_OJ<-ToothGrowth[ToothGrowth$supp=="OJ",]
# Plotting the both subsets for different doses
qplot(y=len,data=ToothGrowth_OJ,facets = .~dose) + ggtitle("For supplement OJ")
qplot(y=len,data=ToothGrowth_VC,facets = .~dose) + ggtitle("For supplement VC")
```

Please see the next page to see some exploratory analysis of the data.

Means, variances and 90% confidence intervals of the data

	supp	dose	average	variance	confidenceleft	confidenceright
	(fctr)	(dbl)	(dbl)	(dbl)	(dbl)	(dbl)
1	OJ	0.5	13.23	19.889000	10.644791	15.815209
2	OJ	1.0	22.70	15.295556	20.432894	24.967106
3	OJ	2.0	26.06	7.049333	24.520913	27.599087
4	VC	0.5	7.98	7.544000	6.387828	9.572172
5	VC	1.0	16.77	6.326778	15.311923	18.228077
6	VC	2.0	26.14	23.018222	23.358846	28.921154

Hypothesis 1

Let's make a <u>null hypothesis</u> that the tooth growth from both supplements is same.

To check it, we will perform a hypothesis test on the data.

Assumption

Here we are assuming that the tooth growth is supplement dependent only

Computation:

Let's compute the statistics of data based only on "supp"

	supp	average	variance	confidenceleft	confidenceright
	(fctr)	(dbl)	(dbl)	(dbl)	(dbl)
1	OJ	20.66333	43.63344	18.61418	22.71249
2	VC	16.96333	68.32723	14.39907	19.52759

Hence we compute mean(OJ)-mean(VC)+c(-1,1)*qt(0.95,58)*sqrt(var(OJ)/30+var(VC)/30)*sqrt(1/30+1/30).

[1] 2.866229 4.533771

Conclusions

We can conclude that since the confidence intervals of the difference does not contain zero. Therefore, we can *reject* the null hypothesis.

Hypothesis 2

Let's make a null hypothesis that there is no difference in tooth growth based on the dose.

Assumption

Here we are assuming that the tooth growth is dose dependent only

Computation:

Let's compute the statistics of data based only on "dose"

```
        dose average variance confidenceleft (dbl)
        (dbl)
        (dbl)
        (dbl)
        (dbl)
        (dbl)
        (dbl)
        (dbl)

        1 0.5 10.605 20.24787
        8.865185
        12.34481

        2 1.0 19.735 19.49608
        18.027790
        21.44221

        3 2.0 26.100 14.24421
        24.640740
        27.55926
```

Hence we compute relation between "0.5" and "1.0" mean(dose_0.5)-mean(dose_1.0)+c(-1,1) * qt(0.95,38) * sqrt(var(0.5)/20+var(1.0)/20) * sqrt(1/20+1/20) $\begin{bmatrix} 1 \end{bmatrix} = 9.881565 = 8.378435$

```
Now, let's compute relation between "1.0" and "2.0" mean(dose_1.0)-mean(dose_2.0)+c(-1,1) * qt(0.95,38) * sqrt(var(1.0)/20+var(2.0)/20) * sqrt(1/20+1/20)  
[1] -7.143726 -5.586274
```

Even if it is evident from the respective averages that "0.5" and "2.0" have very different tooth growth, lets double check it by computing

```
mean(dose_0.5)-mean(dose_2.0)+c(-1,1) * qt(0.95,38) * sqrt(var(0.5)/20+var(2.0)/20) * sqrt(1/20+1/20) \begin{bmatrix} 1 \end{bmatrix} = -16.29373 = -14.69627
```

Conclusions:

We can conclude that since the confidence intervals of the difference in all three cases does not contain zero. Therefore, we can *reject* the null hypothesis.