

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $\mathsf{Charge} = -\frac{1}{3} \ e \qquad \mathsf{Bottom} = -1$

Created: 5/30/2017 17:22

b-QUARK MASS

b-quark mass corresponds to the "running mass" $\overline{m}_b(\mu=\overline{m}_b)$ in the $\overline{\text{MS}}$ scheme. We have converted masses in other schemes to the $\overline{\text{MS}}$ mass using two-loop QCD perturbation theory with $\alpha_s(\mu=\overline{m}_b)=0.223\pm0.008.$ The value $4.18^{+0.04}_{-0.03}$ GeV for the $\overline{\text{MS}}$ mass corresponds to 4.78 ± 0.06 GeV for the pole mass, using the two-loop conversion formula. A discussion of masses in different schemes can be found in the "Note on Quark Masses."

MS MASS (GeV)	DOCUMENT ID TECN
4.18 $^{+0.04}_{-0.03}$ OUR EVALUATION	of MS Mass. See the ideogram below.
4.197 ± 0.022	1 KIYO 16 THEO
4.183 ± 0.037	² ALBERTI 15 THEO
$4.203 {+0.016 \atop -0.034}$	³ BENEKE 15 THEO
4.176 ± 0.023	⁴ DEHNADI 15 THEO
4.07 ± 0.17	⁵ ABRAMOWICZ14A ZEUS
4.201 ± 0.043	⁶ AYALA 14A THEO
4.21 ± 0.11	⁷ BERNARDONI 14 LATT
$4.169 \pm 0.002 \pm 0.008$	⁸ PENIN 14 THEO
4.166 ± 0.043	9 LEE 130 LATT
4.247 ± 0.034	10 LUCHA 13 THEO
4.236 ± 0.069	11 NARISON 13 THEO
4.213 ± 0.059	12 NARISON 13A THEO
4.171 ± 0.009	13 BODENSTEIN 12 THEO 14 DIMOPOUL 12 LATT
4.29 ±0.14	
$4.235\pm0.003\pm0.055$ 4.177 ± 0.011	16 NARISON 12 THEO
$\begin{array}{cc} +0.05 \\ -0.04 \end{array}$	¹⁷ LASCHKA 11 THEO
$4.186 \pm 0.044 \pm 0.015$	18 AUBERT 10A BABR
4.164 ± 0.023	¹⁹ MCNEILE 10 LATT
4.163 ± 0.016	²⁰ CHETYRKIN 09 THEO
4.243 ± 0.049	²¹ SCHWANDA 08 BELL
	g data for averages, fits, limits, etc. • • •
4.212 ± 0.032	22 NARISON 12 THEO
4.171 ± 0.014	23 NARISON 12A THEO
4.173±0.010	24 NARISON 10 THEO
5.26 ±1.2	25 ABDALLAH 08D DLPH
$4.42 \pm 0.06 \pm 0.08$	26 GUAZZINI 08 LATT
$4.347 \pm 0.048 \pm 0.08$	²⁷ DELLA-MOR 07 LATT ²⁸ KUHN 07 THEO
4.164±0.025 4.19 ±0.40	²⁸ KUHN 07 THEO ²⁹ ABDALLAH 06D DLPH
4.19 ± 0.40 4.205 ± 0.058	30 BOUGHEZAL 06 THEO
4.205 ± 0.056 4.20 ± 0.04	31 BUCHMUEL 06 THEO
4.20 ± 0.04 4.19 ± 0.06	32 PINEDA 06 THEO
4.19 ±0.00	TINEDA OU TITEO

Page 1

HTTP://PDG.LBL.GOV

4.4 ± 0.3	^{33,34} GRAY	05	LATT
4.22 ± 0.06	³⁵ AUBERT	04X	THEO
4.17 ± 0.03	³⁶ BAUER	04	THEO
4.22 ± 0.11	34,37 HOANG	04	THEO
4.25 ± 0.11	34,38 MCNEILE	04	LATT
4.22 ± 0.09	³⁹ BAUER	03	THEO
4.19 ± 0.05	⁴⁰ BORDES	03	THEO
4.20 ± 0.09	⁴¹ CORCELLA	03	THEO
4.33 ± 0.10	34,42 DEDIVITIIS	03	LATT
4.24 ± 0.10	43 EIDEMULLER	03	THEO
4.207 ± 0.03	44 ERLER	03	THEO
$4.33 \pm 0.06 \pm 0.10$	⁴⁵ MAHMOOD	03	CLEO
4.190 ± 0.032	⁴⁶ BRAMBILLA	02	THEO
4.346 ± 0.070	⁴⁷ PENIN	02	THEO

WEIGHTED AVERAGE 4.176±0.004 (Error scaled by 1.0)

b-QUARK MS MASS (GeV)

 $^{^1}$ KIYO 16 determine $\overline{m}_b(\overline{m}_b)$ from the $\varUpsilon(1S)$ mass at order $lpha_s^3$ (N3LO). We have

converted this to the 1S scheme. ² ALBERTI 15 determine $\overline{m}_b(\overline{m}_b)$ from fits to inclusive $B \to X_c e \overline{\nu}$ decay. We have converted this to the 1S scheme. They also find $m_b^{
m kin}(1~{
m GeV})=4.553\pm0.020~{
m GeV}.$

- ³ BENEKE 15 determine $\overline{m}_b(\overline{m}_b)$ using sum rules for $e^+e^- \rightarrow$ hadrons at order N3LO including finite m_c effects. They find $m_b^{PS}(2 \text{ GeV}) = 4.532^{+0.013}_{-0.039} \text{ GeV}$, and $\overline{m}_b(\overline{m}_b) = 4.193^{+0.022}_{-0.035} \text{ GeV}$. The value quoted is obtained using the four-loop conversion given in BENEKE 16.
- ⁴ DEHNADI 15 determine $\overline{m}_b(\overline{m}_b)$ using sum rules for $e^+e^- \rightarrow$ hadrons at order α_s^3 (N3LO), and fitting to both experimental data and lattice results. We have converted this to the 1S scheme.
- 5 ABRAMOWICZ 14A determine $\overline{m}_b(\overline{m}_b) = 4.07 \pm 0.14 ^{+0.01}_{-0.07} ^{+0.08}_{-0.00}$ from the production of b quarks in ep collisions at HERA. The errors due to fitting, modeling, PDF parameterization, and theoretical QCD uncertainties due to the values of α_s , m_c , and the renormalization scale μ have been combined in quadrature. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- ⁶ AYALA 14A determine $\overline{m}_b(\overline{m}_b)$ from the $\Upsilon(1S)$ mass computed to N³LO order in perturbation theory using a renormalon subtracted scheme. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- ⁷ BERNARDONI 14 determine m_b from $N_f=2$ lattice calculations using heavy quark effective theory non-perturbatively renormalized and matched to QCD at 1/m order. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- ⁸ PENIN 14 determine $\overline{m}_b(\overline{m}_b)=4.169\pm0.008\pm0.002\pm0.002$ using an estimate of the order α_s^3 *b*-quark vacuum polarization function in the threshold region, including finite m_c effects. The errors of ±0.008 from theoretical uncertainties, and ±0.002 from α_s have been combined in quadrature. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- ⁹ LEE 130 determines m_b using lattice calculations of the Υ and B_s binding energies in NRQCD, including three light dynamical quark flavors. The quark mass shift in NRQCD is determined to order α_s^2 , with partial α_s^3 contributions.
- 10 LUCHA 13 determines m_b from QCD sum rules for heavy-light currents using the lattice value for f_B of 191.5 \pm 7.3 GeV.
- ¹¹ NARISON 13 determines m_b using QCD spectral sum rules to order α_s^2 (NNLO) and including condensates up to dimension 6. We have converted the $\overline{\rm MS}$ value to the 1S scheme
- ¹² NARISON 13A determines m_b using HQET sum rules to order α_s^2 (NNLO) and the B meson mass and decay constant.
- ¹³BODENSTEIN 12 determine m_b using sum rules for the vector current correlator and the $e^+e^- \to Q\overline{Q}$ total cross-section. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- ¹⁴ DIMOPOULOS 12 determine quark masses from a lattice computation using $N_f=2$ dynamical flavors of twisted mass fermions. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- ¹⁵ HOANG 12 determine m_b using non-relativistic sum rules for the Υ system at order α_s^2 (NNLO) with renormalization group improvement.
- ¹⁶ Determines m_b to order α_s^3 (N3LO), including the effect of gluon condensates up to dimension eight combining the methods of NARISON 12 and NARISON 12A. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- 17 LASCHKA 11 determine the b mass from the charmonium spectrum. The theoretical computation uses the heavy $Q\overline{Q}$ potential to order $1/m_Q$ obtained by matching the short-distance perturbative result onto lattice QCD result at larger scales. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- ¹⁸ AUBERT 10A determine the *b* and *c*-quark masses from a fit to the inclusive decay spectra in semileptonic *B* decays in the kinetic scheme (and convert it to the MS scheme). We have converted this to the 1S scheme.
- MCNEILE 10 determines m_b by comparing order α_s^3 (N3LO) perturbative results for the pseudo-scalar current to lattice simulations with $N_f=2+1$ sea-quarks by the HPQCD collaboration. We have converted \overline{m}_b (\overline{m}_b) to the 1S scheme.

- ²⁰ CHETYRKIN 09 determine m_c and m_b from the $e^+e^- \to Q \overline{Q}$ cross-section and sum rules, using an order α_s^3 (N3LO) computation of the heavy quark vacuum polarization. We have converted their m_b to the 1S scheme.
- ²¹ SCHWANDA 08 measure moments of the inclusive photon spectrum in $B \to X_S \gamma$ decay to determine m_h^{1S} . We have converted this to $\overline{\rm MS}$ scheme.
- ²² NARISON 12 determines m_b using exponential sum rules for the vector current correlator to order α_s^3 , including the effect of gluon condensates up to dimension eight. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- ²³ NARISON 12A determines m_b using sum rules for the vector current correlator to order α_s^3 , including the effect of gluon condensates up to dimension eight. We have converted $\overline{m}_b(\overline{m}_b)$ to the 1S scheme.
- ²⁴ NARISON 10 determines m_b from ratios of moments of vector current correlators computed to order α_s^3 and including the dimension-six gluon condensate. These values are taken from the erratum to that reference.
- ²⁵ ABDALLAH 08D determine $\overline{m}_b(M_Z)=3.76\pm1.0$ GeV from a leading order study of four-jet rates at LEP. We have converted this to $\overline{m}_b(\overline{m}_b)$ and $m_b^{1.5}$.
- ²⁶ GUAZZINI 08 determine $\overline{m}_b(\overline{m}_b)$ from a quenched lattice simulation of heavy meson masses. The ± 0.08 is an estimate of the quenching error. We have converted these values to the 1*S* scheme.
- ²⁷ DELLA-MORTE 07 determine $\overline{m}_b(\overline{m}_b)$ from a computation of the spin-averaged B meson mass using quenched lattice HQET at order 1/m. The ± 0.08 is an estimate of the quenching error.
- ²⁸ KUHN 07 determine $\overline{m}_b(\mu=10~\text{GeV})=3.609\pm0.025~\text{GeV}$ and $\overline{m}_b(\overline{m}_b)$ from a four-loop sum-rule computation of the cross-section for $e^+e^-\to \text{hadrons}$ in the bottom threshold region. We have converted this to the 1S scheme.
- ²⁹ ABDALLAH 06D determine $m_b(M_Z)=2.85\pm0.32$ GeV from Z-decay three-jet events containing a b-quark. We have converted this to $\overline{m}_b(\overline{m}_b)$ and m_b^{1S} .
- 30 BOUGHEZAL 06 $\overline{\text{MS}}$ scheme result comes from the first moment of the hadronic production cross-section to order α_s^3 . We have converted it to the 1S scheme.
- ³¹BUCHMUELLER 06 determine m_b and m_c by a global fit to inclusive B decay spectra. We have converted this to the 1S scheme.
- ³² PINEDA 06 $\overline{\text{MS}}$ scheme result comes from a partial NNLL evaluation (complete at order α_s^2 (NNLO)) of sum rules of the bottom production cross-section in e^+e^- annihilation. We have converted it to the 1S scheme.
- 33 GRAY 05 determines $\overline{m}_b(\overline{m}_b)$ from a lattice computation of the Υ spectrum. The simulations have 2+1 dynamical light flavors. The b quark is implemented using NRQCD.
- 34 We have converted m_b to the 1S scheme.
- 35 AUBERT 04X obtain m_b from a fit to the hadron mass and lepton energy distributions in semileptonic B decay. The paper quotes values in the kinetic scheme. The $\overline{\rm MS}$ value has been provided by the BABAR collaboration, and we have converted this to the 1S scheme.
- 36 BAUER 04 determine m_b , m_c and $m_b m_c$ by a global fit to inclusive B decay spectra.
- ³⁷ HOANG 04 determines $\overline{m}_b(\overline{m}_b)$ from moments at order α_s^2 of the bottom production cross-section in e^+e^- annihilation.
- ³⁸ MCNEILE 04 use lattice QCD with dynamical light quarks and a static heavy quark to compute the masses of heavy-light mesons.
- 39 BAUER 03 determine the b quark mass by a global fit to B decay observables. The experimental data includes lepton energy and hadron invariant mass moments in semileptonic $B \to X_c \ell \nu_\ell$ decay, and the inclusive photon spectrum in $B \to X_s \gamma$ decay. The theoretical expressions used are of order $1/\text{m}^3$, and $\alpha_s^2 \beta_0$.

- ⁴⁰ BORDES 03 determines m $_b$ using QCD finite energy sum rules to order α_s^2 .
- ⁴¹ CORCELLA 03 determines \overline{m}_b using sum rules computed to order $lpha_s^2$. Includes charm quark mass effects.
- 42 DEDIVITIIS 03 use a quenched lattice computation of heavy-heavy and heavy-light meson masses. 43 EIDEMULLER 03 determines \overline{m}_b and \overline{m}_c using QCD sum rules.

- 44 ERLER 03 determines \overline{m}_b and \overline{m}_c using QCD sum rules. Includes recent BES data. 45 MAHMOOD 03 determines m_b^{1S} by a fit to the lepton energy moments in $B\to~X_c\,\ell\nu_\ell$ decay. The theoretical expressions used are of order $1/\text{m}^3$ and $\alpha_s^2\beta_0$. We have converted
- their result to the $\overline{\rm MS}$ scheme. 46 BRAMBILLA 02 determine $\overline{m}_b(\overline{m}_b)$ from a computation of the $\Upsilon(1S)$ mass to order $\alpha_{\rm s}^4$, including finite $m_{\rm c}$ corrections. We have converted this to the 1S scheme.
- ⁴⁷ PENIN 02 determines \overline{m}_b from the spectrum of the Υ system.

b-QUARK REFERENCES

BENEKE	16	arXiv:1601.02949	M. Beneke <i>et al.</i>	
KIYO	16	PL B752 122	Y. Kiyo, G. Mishima, Y. Sumino	
ALBERTI	15	PRL 114 061802	A. Alberti <i>et al.</i>	
BENEKE	15	NP B891 42	M. Beneke <i>et al.</i>	
DEHNADI	15	JHEP 1508 155	B. Dehnadi, A.H. Hoang, V. Mateu	
ABRAMOWICZ		JHEP 1409 127	H. Abramowicz et al.	(ZEUS Collab.)
AYALA	14A	JHEP 1409 045	C. Ayala, G. Cvetic, A. Pineda	(ZEOS CONAD.)
BERNARDONI		PL B730 171	F. Bernardoni <i>et al.</i>	(ALPHA Collab.)
PENIN	14	JHEP 1404 120	A.A. Penin, N. Zerf	(ALITIN COMBD.)
LEE	130	PR D87 074018	A.J. Lee <i>et al.</i>	(HPQCD Collab.)
LUCHA	13	PR D88 056011	W. Lucha, D. Melikhov, S. Simula	(VIEN, MOSU+)
NARISON	13	PL B718 1321	S. Narison	(MONP)
NARISON	13A	PL B721 269	S. Narison	(MONP)
BODENSTEIN	12	PR D85 034003		, VALE, MANZ+)
DIMOPOUL	12	JHEP 1201 046	P. Dimopoulos <i>et al.</i>	(ETM Collab.)
HOANG	12	JHEP 1210 188	A.H. Hoang, P. Ruiz-Femenia, M. Stah	(
NARISON	12	PL B707 259	S. Narison	(MONP)
NARISON	12A	PL B706 412	S. Narison	(MONP)
LASCHKA	11	PR D83 094002	A. Laschka, N. Kaiser, W. Weise	(1110111)
AUBERT	10A	PR D81 032003	B. Aubert <i>et al.</i>	(BABAR Collab.)
MCNEILE	10	PR D82 034512	C. McNeile <i>et al.</i>	(HPQCD Collab.)
NARISON	10	PL B693 559	S. Narison	(MONP)
Also		PL B705 544 (errat.)	S. Narison	(MONP)
CHETYRKIN	09	PR D80 074010	K.G. Chetyrkin <i>et al.</i>	(KARL, BNL)
ABDALLAH	08D	EPJ C55 525	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
GUAZZINI	08	JHEP 0801 076	D. Guazzini, R. Sommer, N. Tantalo	(
SCHWANDA	08	PR D78 032016	C. Schwanda et al.	(BELLE Collab.)
DELLA-MOR	07	JHEP 0701 007	M. Della Morte et al.	(
KUHN	07	NP B778 192	J.H. Kuhn, M. Steinhauser, C. Sturm	
ABDALLAH	06D	EPJ C46 569	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
BOUGHEZAL	06	PR D74 074006	R. Boughezal, M. Czakon, T. Schutzme	eier ´
BUCHMUEL	06	PR D73 073008	O.L. Buchmueller, H.U. Flacher	(RHBL)
PINEDA	06	PR D73 111501	A. Pineda, A. Signer	, ,
GRAY	05	PR D72 094507	A. Gray et al. (HPQCD	, UKQCD Collab.)
AUBERT	04X	PRL 93 011803	B. Aubert et al.	(BABAR Collab.)
BAUER	04	PR D70 094017	C. Bauer et al.	,
HOANG	04	PL B594 127	A.H. Hoang, M. Jamin	
MCNEILE	04	PL B600 77	C. McNeile, C. Michael, G. Thompson	(UKQCD Collab.)
BAUER	03	PR D67 054012	C.W. Bauer et al.	,
BORDES	03	PL B562 81	J. Bordes, J. Penarrocha, K. Schilcher	
CORCELLA	03	PL B554 133	G. Corcella, A.H. Hoang	
DEDIVITIIS	03	NP B675 309	G.M. de Divitiis et al.	
EIDEMULLER	03	PR D67 113002	M. Eidemuller	
ERLER	03	PL B558 125	J. Erler, M. Luo	
MAHMOOD	03	PR D67 072001	A.H. Mahmood <i>et al.</i>	(CLEO Collab.)
BRAMBILLA	02	PR D65 034001	N. Brambilla, Y. Sumino, A. Vairo	
PENIN	02	PL B538 335	A. Penin, M. Steinhauser	