Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Richard Socher et al., 2013

Reporter: Dongyao Hu (胡东瑶)

- Traditional bag of words classifiers
 - Work well in longer documents.
 - Relying on a few words with strong sentiment like 'awesome'
 - Accuracies even for binary positive/negative classification for single sentences < 80% for several years.
 - Ignoring word order
 - hard examples of negation

- Homepage: http://nlp.stanford.edu/sentiment
- Complete analysis of the compositional effects of sentiment.

rottentomatoes.com (烂番茄)

- 11,855 single sentences extracted from movie reviews.
- 215,154 unique phrases parsed with the Stanford parser.
- The first corpus with fully labeled (by Amazon Mechanical Turk).
- each annotated by 3 human judges.

Amazon Mechanical Turk

The labeling interface

- Longer phrases stronger sentiment, vice versa.
- Extreme options were **rarely used** by AMT annotators.
- 5-class labels are enough.

Recursive Neural Models

- Each word is represented as a ddimensional vector.
- tri-gram as example.
- Initialize~ uniform distribution.
- Compositionality functions g.
- Classification into five classes using **softmax**, like [0,0,1,0,0].

RNN: Recursive Neural Network

- *f* = *tanh*
- we omit the bias for simplicity.
- Parent vectors must be of the same dimensionality to be recursively compatible and be used as input to the next composition.

$$p_1 = f\left(W \left[\begin{array}{c} b \\ c \end{array} \right] \right), p_2 = f\left(W \left[\begin{array}{c} a \\ p_1 \end{array} \right] \right)$$

MV-RNN: Matrix-Vector RNN

• Represent word / longer phrase as *Vector & Matrix*.

• When two constituents (成分) are combined the matrix of one is multiplied with the vector of the other and vice versa.

$$p_{1} = f\left(W \begin{bmatrix} Cb \\ Bc \end{bmatrix}\right)$$

$$P_{1} = f\left(W_{M} \begin{bmatrix} B \\ C \end{bmatrix}\right)$$

RNTN: Recursive Neural Tensor Network

- MV-RNN: the number of parameters becomes very large and depends on the size of the vocabulary.
- The main idea of RNTN is to use the same, tensor-based composition function for all nodes.
- Refer to the Lecture Slide.

How to train RNTN

(backpropagation algorithm omitted)

• 5 classes with 0-1 encoding.

- Minimize the cross-entropy error (equivalent to minimizing KLD)
- For this **nonconvex optimization** we use **AdaGrad**.

Fine-grained Sentiment (细粒度情感) For All Phrases Full Sentence Binary Sentiment

- The previous state of the art was below 80% (Socher et al., 2012)
- Pushes by 5.4% for P/N classification.

Fine-grained: 细粒度,这里指5级细

粒度 (--,-,0,+,++)

P/N: 正/负, 这里指简单的二分类(-,+)

All: All phrases

Root: Full sentence

BiNB: Naive Bayes with bag of bigram

VecAvg: 简单地把词向量平均

Model	Fine-grained		Positive/Negative	
	All	Root	All	Root
NB	67.2	41.0	82.6	81.8
SVM	64.3	40.7	84.6	79.4
BiNB	71.0	41.9	82.7	83.1
VecAvg	73.3	32.7	85.1	80.1
RNN	79.0	43.2	86.1	82.4
MV-RNN	78.7	44.4	86.8	82.9
RNTN	80.7	45.7	87.6	85.4

Fine-grained Sentiment (细粒度情感) For All Phrases Full Sentence Binary Sentiment

- Bag of features
 baselines perform well
 only with longer
 sentences.
- The recursive models work very well on shorter phrases.

Contrastive Conjunction (转折、对比类连词)

• 'X but Y' structure

 The example is counted as correct, if the classifications for both phrases X and Y are correct.

 For the resulting 131 cases, the RNTN obtains an accuracy of 41% compared to MV-RNN (37), RNN (36) and biNB (27)

Negating Positive Sentences (否定肯定句)

- the negation changes the overall sentiment of a sentence from positive to negative.
- The RNTN has the highest reversal accuracy, showing its ability to structurally learn negation of positive sentences.

Negating Negative Sentences (否定否定句)

Model	Accuracy			
	Negated Positive	Negated Negative		
biNB	19.0	27.3		
RNN	33.3	45.5		
MV-RNN	52.4	54.6		
RNTN	71.4	81.8		

- When negative sentences are negated, overall sentiment should become less negative, but not necessarily positive.
- The RNTN has the largest shifts in the correct directions. Only the RNTN correctly captures both types.

Most Positive and Negative Phrases

\overline{n}	Most positive n -grams
1	engaging; best; powerful; love; beautiful
2	excellent performances; A masterpiece; masterful
	film; wonderful movie; marvelous performances
3	an amazing performance; wonderful all-ages tri-
	umph; a wonderful movie; most visually stunning
5	nicely acted and beautifully shot; gorgeous im-
	agery, effective performances; the best of the
	year; a terrific American sports movie; refresh-
	ingly honest and ultimately touching
8	one of the best films of the year; A love for films
	shines through each frame; created a masterful
	piece of artistry right here; A masterful film from
	a master filmmaker,

• RNTN selects more strongly positive phrases at most n-gram lengths compared to other models.

Thank you