Lecture 26, Oct. 28

26.1 Theorem (Properties of GCD). Let $a, b, c \in \mathbb{Z}$

- 1. if $c \mid a$ and $c \mid b$ then $c \mid gcd(a, b)$
- 2. there exist $x, y \in \mathbb{Z}$ such that ax + by = c iff $gcd(a, b) \mid c$
- 3. there exist $x, y \in \mathbb{Z}$ such that ax + by = 1 iff gcd(a, b) = 1
- 4. if $d = \gcd(a, b) \neq 0$ (which is the case unless a = b = 0) then $\gcd(a/d, b/d) = 1$
- 5. if $a \mid bc$ and gcd(a, b) = 1 then $a \mid c$

Proof. 5. Let $a, b, c \in \mathbb{Z}$. Suppose $a \mid bc$ and gcd(a, b) = 1. Since $a \mid bc$, choose $k \in \mathbb{Z}$ such that bc = ak. Since gcd(a, b) = 1, we can choose $s, t \in \mathbb{Z}$ such that as + bt = 1. Then $c = c \cdot 1 = c \cdot (as + bt) = acs + bct = acs + akt = a(cs + kt)$. So $a \mid c$

26.2 Definition (Prime). Let $n \in \mathbb{Z}$. We say that n is a **prime** when n > 1 and n has no factors $a \in \mathbb{Z}$ with 1 < a < n

We say n is composite when n > 1 and n does have a factor $a \in \mathbb{Z}$ with 1 < a < n.

Note. If n > 1 and n = ab with 1 < a < n then we also have 1 < b < n.

26.3 Theorem. Every composite number n has a prime factor p with $p \le \sqrt{n}$.

Proof. We claim that every integer $n \ge 2$ has a prime factor.

Let $n \ge 2$. Suppose, inductively, that for every $a \in \mathbb{Z}$ with $2 \le a < n$, a has a prime factor. If n is prime, then since $n \mid n$, n has a prime factor. Suppose n is not prime, say n = ab with 1 < a < n and 1 < b < n. Since 1 < a < n we have $2 \le a < n$, so a has a prime factor, say $p \mid a$ and p is prime. Since $p \mid a$ and $a \mid n$ then $p \mid n$, so p has a prime factor.

By induction, every integer $n \ge 2$ does have a prime factor.

Let $n \ge 2$ be arbitrary. Suppose n is composite, say n = ab with 1 < a < n and 1 < b < n. Say $a \le b$ (the case $b \le a$ is similar). Note that $a \le \sqrt{n}$ since if $a > \sqrt{n}$ then we have $n = ab \ge aa > \sqrt{n}\sqrt{n} = n$ which is not possible. Since 1 < a < n, we have $a \ge 2$. So a has a prime factor. Let p be a prime factor of a. Since $p \mid a$ and $a \mid n$ then $p \mid n$. Since $p \mid a$ we have $p \le a \le \sqrt{n}$.

Note. There is a method for listing all prime numbers $p \le n$, where $n \ge 2$ is a given integer, called the **Sieve** of **Eratosthenes**.

It works as follows:

We begin by listing all the numbers from 1 to n. We cross off the number 1. We circle the smallest remaining number (namely $p_1=2$). Cross off all the other multiples of $p_1=2$ (they are composites). Circle the smallest remaining number (namely $p_2=3$). Cross off all the other multiples of $p_2=3$ (they are composites). Repeat this procedure until we have circled a prime p_l with $p_l \ge \sqrt{n}$ and crossed off the other multiples of p_l .

Note that after we have circled p_1, p_2, \dots, p_k and crossed off all their multiples, the smallest remaining numbers p_{k+1} must be prime since if it were composite it would have a prime factor $p < p_{k+1}$, but we have already found and crossed off all multiples of all primes p with $p < p_{k+1}$.

Also note that after we have found $p_l \ge \sqrt{n}$ and circled all multiples, all reaming numbers $m \le n$ are prime since if $m \le n$ is composite, then m has a prime factor with $p \le \sqrt{m} \le \sqrt{n}$, but we have already crossed off all multiples of all such primes.

26.4 Example. Find all primes $p \le 100$

Solution.

$$2), 3), 5), 7), \%, (11), (13), \%, (17), (19), \%, (23), \%, \%, (29), (31), \%, \%, (37), \%, (41), (43), \%, (47), \% \\ \%, (53), \%, \%, (59), (61), \%, \%, (67), \%, (71), (73), \%, \%, (79), \%, (83), \%, \%, (89), \%, \%, (97), \%$$

26.5 Theorem (The Infinitude of Primes). There are infinitely many primes.

Proof. Suppose, for a contradiction, that there are finitely many primes, say p_1, p_2, \dots, p_l , consider the number

$$n=p_1p_2\cdots p_l+1.$$

Since n has a prime factor, we know that one of the primes is a factor of n, say $p_k \mid n$. So $gcd(p_k, n) = p_k$ But

$$gcd(p_k, n) = gcd(n, p_k)$$

$$= gcd(p_1p_2 \cdots p_l + 1, p_k)$$

$$= gcd(1, p_k)$$

$$= 1$$