Uber Trip Analysis Project Report

1 Project Overview

This project aims to build machine learning models to:

- 1. Predict ride price (Regression)
- 2. Classify cab type (Classification)
- 3. Detect whether **surge pricing** is applied (Binary Classification)

We used a dataset containing Uber trip information including ride metadata (time, location, distance), cab type, pricing, and weather data.

2 Dataset Summary

- Total Rows: 693,071
- Numerical Columns: 40+
- Categorical Columns: 10
- Target Variables: price, cab_type, surge_multiplier

Sample Features:

- Time: hour, day, month
- Trip Info: distance, source, destination
- Weather: temperature, humidity, windSpeed, summary, etc.

3 Preprocessing Steps

- 1. Missing Values: Dropped rows with missing price values.
- 2. Feature Selection: Selected relevant numerical and categorical features.
- 3. Encoding: Used LabelEncoder on categorical features; saved encoders as .pkl files
- 4. Feature Engineering: Added a new binary column is_surge (1 if surge_multiplier 1).

4 Target Variables

Table 1: Overview of Target Variables Used in the Uber Trip Analysis Project

Task	Target Variable	Type	Description
Price Prediction	price	Regression	Predicts the es-
			timated cost (in
			dollars) of the
			Uber/Lyft trip.
Cab Type Classification	cab_type	Multi-class Classification	Predicts the
			type of cab (e.g.,
			Uber, Lyft,
			Shared, etc.).
Surge Detection	is_surge (created) $(0/1)$	Binary Classification $(0/1)$	Predicts
			whether surge
			pricing is ap-
			plied (1) or not
			(0).

5 Models Used

Task	Model	Metrics
Price Prediction Cab Type Classification	RandomForestRegressor RandomForestClassifier	MSE, RMSE Accuracy, Confusion Matrix
Surge Detection	RandomForestClassifier	Accuracy, Precision, Recall

6 Model Evaluation

Price Prediction

• MSE: 7.45

• RMSE: ≈ 2.73

• Interpretation: On average, predicted prices deviate by \$2.73 from actual values.

Cab Type Classification

• **Accuracy:** ∼99%

• Classes: Lyft, Uber, Shared, etc. (LabelEncoded)

Surge Detection

• Accuracy: $\sim 97\%$

• Binary Classification: 0 = No Surge, 1 = Surge Applied

7 Model Persistence

All trained models and encoders are saved using joblib:

- price_model.pkl
- cabtype_model.pkl
- $\bullet \ \ surge_model.pkl$
- $\bullet \ \ source_encoder.pkl, \ destination_encoder.pkl, \ etc.$

8 Sample Prediction

• Input:

- hour = 14, day = 15, month = 12
- distance = 2.5
- temperature = 45.0, humidity = 0.6
- windSpeed = 5.0
- source = Haymarket Square, destination = North Station
- name = Shared, weather = Clear

• Predictions:

- Predicted Price: \$7.24

- Predicted Cab Type: Uber

- Surge Applied: No

9 Directory Structure

```
uber_trip_analysis/
 models/
    price_model.pkl
    cabtype_model.pkl
    surge_model.pkl
 encoders/
    source_encoder.pkl
    destination_encoder.pkl
 data/
   uber_data.xlsx
    about_uber_data.txt
notebook/
    EDA.ipynb
    Model Training.ipynb
    prediction.ipynb
 README.md
```

10 Conclusion

This project demonstrates the practical use of machine learning for:

- Predicting ride prices from features
- Classifying cab types
- Detecting surge pricing

It can benefit riders, drivers, and companies in ride fare estimation, service selection, and demand forecasting.