

Quarternian
$$s < v_1 | v_2 | v_3 > 0$$

 $q = s + v_1$
 $q = s + v_1 | v_2 | v_3 > 0$
 $i^2 = j^2 = k^2 = ijk = -1$

$$\begin{cases}
q_0 = q_w = S \\
q_1 = q_x = V_1 \\
q_2 = q_y = V_2 \\
q_3 = q_z = V_3
\end{cases}$$

In ROS: notation (x,y,z, w)

- · Eulen Rotation & sequence · Candan Rotation Sequence
- · Euler's Rotation Theorem
- · Reduigues Formula

· If : It allows us to find the post of any object in any frame using transformations.

· A subbot is a collection of frames attached to its different

joints, (red): X-axis (green): Y-axis (blue): Z-axis_ · URDF: Language for the Description of transformation in a Robot Model

. If package nodes

view- frames - th-monitor -th-echo HOSWE static_transform_publisher

- view-frames

 alias if= 'ed /vor/tmp & bosumen if view frames & evince frames. pdf &
- Methods provided by to package consider angle in readions In code (the triansformations guatourion form euler (Holl, pitch, yaw) . euler_from_quaternion (9)

topic D1 - quaternian: seripts

Af
gratation-conversions. py

The 2 to functions mentioned

Tab

Total

Af _orientation_tb3_
robot. py

(Takes pose from /odom
orientation
quatornion -> enler
porints your
)

In view-frames.pdf,

/nobot_state_publisher: node that publishes transformation based on URDF description

echo rate proprional)

\$ session to the echo odom camera-rgb-frame 2.

Gives homogeneous

the monitor of all broad casters.

· static_transform_publisher
Tab1: & mascare thanslation
Tab 2: \$ separum of static_transform_publisher 1 2 3 0.1 0.2 0.3
frame_a frame_b 10
powent child
broadcast
flequency
to times (8)
topicoz tetatorials: tomas
tatic_transform_publisher. lounch <pre></pre>
6" augo = "1 2 3 0.1 0.2 0.3 frame a frame b 10" />
L prame_a_to_frame_b_broadcaster.cpp
· Py
Listener. py 4. Transform Broadcaster()
+1 Tours laum listeney()
waittoitsiansform() . Lookuptsiansform()
4 seconds max
Sin code]
Map-Based Navigation
-Localization Financiation stack:
- Mapping - move to goal post
- Motion/path planning grapping : creates maps using laws son data
21 AM
- surson Fusion = and localization (using existing map)
a marin Guid Map
- Occupancy Guid Map SLAM apposeaches in ROS:- Grandping Cartographor Cartographor Cartographor Cartographor
grapping . grapping (white)
· cantographor Occupied (black)
, helder storm
· quality of the sensors (adomitry+laverscanner) affects the quality of the

map_source: package for publishing and manipulating maps
grupcale image occupied three feel-threes
These 3 frames: base-frame, odom and map are mandatory for any subbot navigation mission. delta > resolution of the map "0.05" means 0.05m or 5cm/px
· 2D Pose Estimate -> 2D Now Goal Motion Planners Global Path Planners (static obstacle-free) (avoid dynamic) (static obstacle-free) (abstacles) path Recovery Behaviour: initiated when the local planners linds obstacles while following the planned global path
cleaning and marking processes
· Navigation launch file include: 1. twillebot3_remote.launch > substradel 3. substrate_publisher node
2. map server (takes yam) file as argument) 3. arnelser Adaptive Monte Carlo Localization
of slober against a known map 4. more base, som, Most important: supresents the navigation stack
Topic 03 - map - navigation:
navigate-goal.py navigate-goal.epp

Writing a ROS Node for Robot Navigation P.1] How to determine coordinates of goal location? in sucotopic echo intialpose Goraphical [In Rviz, 20 Pose Estimate (counting sprid squares) at goal location? ii, \$ nostopic echo amel-pose Method: In the script move_to_goal (x-goal, y-goal) "navigate. Py" 1. actionlib client La defines a client-server application where tasks are pre-emptable Ly means they can be interrupted -> communication is fully asynchronous 2. more_base -> navigation stack server [Reason why more-base is action lib and not resservice] action-goal action-result action-feedback More Base Action Move Base Groal set reference frame of robot [V. Imp] Timestamp goal target pose pase orientation x = 0.0 · More-base Default Recovery Behaviours Conservative stuck cleaning stuck Agaresive stuck Cleaving Reset stack Aboutes Navigating Stuck

· Robot setup to support the ROS Navigation stack (Would be more Paravide node delevant later) global/planner global - costmap Optional provided node recovery behavious and map-souver local-costmap local-planner Platform specific node Spauls that need ! senson Sonoon odometry 50 WHCes teransforms source' Configuration & Tuning of the Navigation (Reference): SECTION Ros Navigation Stack Turing Guide Tuning Max/Min Velocities & Accelerations ~ Kaiyu Zhung \$ 91000d twitlebot3_navigation \$ cd parlam & more dwa-local-planner-params_waffle Global Planner Parameter Tuning nav core: Base Global Planner destructor initialize makePlan makePlan (with cost) (Another threead here: "Writing a Global Path Planner as a Plugin in Ros") 3 built-in global planners 3global-planner Ocaviol planner - can use gold path @navin - Djiksha's - support of A* Local Path Planner Overview nav coru:: Baselocal Planner -destructor * setPlan compute Velocity Commands initialize is Goal Reached

DWA Algorithm ~ Dieter Fox [Dynamic Window Approach] · highest-scoring trajectory (xandom values then foreward simulations) Tuning the simulation Time of the DWA Algorithm time allowed for the slobat to more with the sampled velocities - DWA Trajectory Scorling * cost = path_distance_bias x (distance to path from the endpoint of the trajectory) It goal-distance - bias x (distance to local goal from the Slocal trajectories endpoint of the triajectory) closer to global + occdist_scale * (maximum obstacle cost along the trajectory in obstacle cost (0-254)) trajectory closer to the goal, may (occlusion distance) be four from global help selecting trajectories fai from obstacles - Tuning the DWA Trajectory Scores_ -> in the yard file & novum ngt-necoonfigure ngt-neconfigure allows to change parameter values dynamically without changing tonfiguration files 1) init-node: suppy init node (node-name; anonymous - Trace) 29 Subscriber - 4) callback (mgg) a) spin : suspy.spin() hospy Subscriber ("topic_name", MessageType), call backfunction)