

Listas invertidas (Inverted indexes)

Prof. Dieisson Martinelli

dieisson.martinelli@udesc.br

Programa

- Introdução
- Conceitos básicos
- Listas invertidas completas
- Construção, indexação e busca
- Atividades

- Em ciência da computação, Lista invertida (do inglês inverted list ou inverted index) é uma estrutura de dados que mapeia palavras-chave ao seu conteúdo ou documento relacionado
 - É uma estratégia de indexação que permite a realização de buscas precisas e rápidas
 - É uma das mais populares estratégias para mecanismos de **obtenção ou recuperação de dados** (*information retrieval*), usada em larga escala em sistemas de gerenciamento de bancos de dados e em serviços de busca (como o Google)

- Uma lista invertida geralmente é construída com base em uma lista tradicional de documentos, e é assim chamada por inverter a hierarquia da informação
- Ao invés de uma lista de documentos contendo termos, é obtida uma lista de termos, que <u>referenciam</u> estes documentos. Esta referência é feita, normalmente, através de um identificador único, como uma chave primária
- Junto deste identificador, podem ser armazenadas outras informações, conforme adequado para a natureza das buscas
 - Por exemplo, armazenar a quantidade de vezes que um termo aparece no documento

Funcionamento:

Dada a seguinte lista de documentos...

```
1: "Sei que sou"
2: "Sou o que sei"
3: "Sou especial"
```

Obtém-se a seguinte lista invertida

```
#sei": [1, 2]

"que": [1, 2]

"sou": [1, 2, 3]

"o" : [2]

Aparece na lista 1 e 2

Aparece na lista 2 e 3

Aparece na lista 2

Aparece na lista 3
```

Aplicações:

- Listas invertidas são um elemento central de sistemas de busca, pois estes visam trazer resultados de forma rápida e eficiente
- Buscas por termos em uma lista tradicional exige que se percorra cada documento e cada palavra dentro destes em busca do termo desejado
- Por outro lado, com o uso de uma lista invertida pode-se <u>saltar</u> diretamente para o termo procurado
- O desempenho tende a ser cada vez mais significativo conforme aumenta o espaço de busca (quantidade de documentos)

- O uso de listas invertidas tem o potencial de tornar as buscas mais eficientes, possibilitando o armazenamento de informações adicionais que, acompanhadas de algoritmos adequados, facilitam a classificação e a ordenação dos resultados
- Desvantagem: o custo destes benefícios vem na forma de trabalho adicional para a manutenção da lista
 - É preciso manter a lista invertida atualizada (ou seja, rodar o programa gerador da lista) conforme documentos são inseridos, alterados e excluídos da lista tradicional

- Lista invertida pode ser vista como um mecanismo orientado a palavras utilizado para indexar uma coleção de documentos (geralmente documentos de texto), com o objetivo de acelerar a tarefa de pesquisa
 - A estrutura de uma lista invertida é composta por dois elementos: o vocabulário e as ocorrências
 - Vocabulário se refere ao conjunto de todas as palavras diferentes do documento texto (palavras sem repetição)
 - Para cada palavra do vocabulário há um índice em uma lista que armazena os documentos que contêm aquela palavra

A maneira mais simples de representar os documentos que contêm cada palavra do vocabulário é com uma matriz termo-documento

Vocabulary	n_i
to	2
do	3
is	1
be	4
or	1
not	1
1	2
am	2
what	1
think	1
therefore	1
da	1
let	1
it	1

d_1	d_2	d_3	d_4
4 2 2 2	2	-	-
2	-	3	3
2	-	-	-
2	2	2	- 2 -
-	1	-	-
-	1	-	-
-	2 1 1 2 2	2	-
-	2	- 2 - - 2 1	-
-	1	-	-
-	-	1	-
-	-	1	-
-	-	-	3
-	-	-	3 2 2
-	-	-	2

- n_i → número de documentos onde a palavra aparece
- d_i → quantidade de vezes que a palavra aparece no documento

- O principal problema da solução matriz termo-documento é que ela requer muito espaço
- Possui uma grande quantidade de elementos com valor zero (ou não presentes, desnecessários)
- Como se trata de uma matriz esparsa, a solução é associar uma lista de índices de documentos a cada palavra
- O conjunto de todas essas listas é chamado de ocorrências

Listas invertidas completas

- A lista invertida básica não é adequada para responder a consultas de palavras em frases ou a localização no texto
- Portanto, é preciso adicionar as posições de cada palavra em cada documento, formando uma lista invertida completa

Listas invertidas completas

No caso de **múltiplos documentos**, é necessário armazenar uma lista de ocorrências por par termo-documento

d

d

4 ocorrências

				or 4 doditcholds
Vocabulary	n_i	Ocorrências como lis	stas invertidas com	pletas
to	2	[1,4,[1,4,6,9]],[2,2,[1,5]]]	1 , 4, [1, 4, 6, 9]
do	3	[1,2,[2,10]],[3,3,[6,8,10]],[4,3,[1,2,3]]	+ + + +
is	1	[1,2,[3,8]]		1 1 1 1
be	4	[1,2,[5,7]],[2,2,[2,6]],[3,2	2,[7,9]],[4,2,[9,12]]	posições de 'to
or	1	[2,1,[3]]		no documento
not	1	[2,1,[4]]	To do is to be.	
1	2	[2,2,[7,10]],[3,2,[1,4]]	To be is to do.	To be or not to be.
am	2	[2,2,[8,11]],[3,1,[5]]		I am what I am.
what	1	[2,1,[9]]	d_1	d
think	1	[3,1,[2]]		d_2
therefore	1	[3,1,[3]]	I think therefore I am Do be do be do.	Do do do, da da da.
da	1	[4,3,[4,5,6]]	Do be do be do.	Let it be, let it be.
let	1	[4,2,[7,10]]	d_3	
it	1	[4,2,[8,11]]	as	d_4

Exemplo de lista invertida: construção

 Uma lista invertida pode ser construída com base em uma lista comum, como neste exemplo:

- Onde:
 - palavra é um termo dentro de um arquivo (documento texto)
 - arquivo é um número de identificação do arquivo, dentre uma lista de 1 ou mais arquivos, que representam o espaço de busca
 - posição é a posição da palavra ou termo no aquivo

Exemplo de lista invertida: indexação

 Considerando três arquivos como espaço de busca para o processo de indexação de um lista invertida, tem-se:

 Obs.: os pares (arquivo, posição) poderiam ser tratados externamente, por tuplas em uma lista encadeada para palavras ou termos iguais

Exemplo de lista invertida: busca

 O mecanismo de busca consiste em obter a localização de um ou mais termos (palavras) no espaço de busca

• Se os termos de busca forem "santa,norte,de,disciplina,udesc" no espaço de busca da lista invertida acima (p/ arquivos 1.txt, 2.txt e 3.txt), o resultado seria:

```
santa: 2.txt; norte: 1.txt; de: 1.txt, 2.txt 3.txt; disciplina: 3.txt; udesc: não encontrado.
```

Atividades

 Desenvolver um código de lista invertida básica para Python e enviar via Moodle