Proof of Theorem 6: We denote $\theta_n = (\widehat{\mathbf{B}}_n, \widehat{\Sigma}_n)$ and $\theta_0 = (\mathbf{B}_0, \sigma_0^2 \Sigma_0)$.

Since we assumed that the distribution of errors \mathbf{u} is elliptical with density of the form (4.1), for any function h we have $E_{H_0}\left(x_ju_ih(\mathbf{u}'\boldsymbol{\Sigma}_0^{-1}\mathbf{u})\right)=0$. This implies that

$$E_{H_0} \frac{1}{\sigma_0^2} W\left(d(\mathbf{B}, \sigma_0^2 \mathbf{\Sigma}_0)\right) (\mathbf{y} - \mathbf{B}' \mathbf{x}) \mathbf{x}'$$
(A.53)

vanishes at $\mathbf{B} = \mathbf{B}_0$. Then $\boldsymbol{\theta}_0$ is a zero of the function $\Phi(\boldsymbol{\theta}) = E_{H_0} \phi(\mathbf{z}; \boldsymbol{\theta})$.

By Lemma 19 there exists a bounded subset \mathcal{C} and a function $\boldsymbol{\theta}(\xi)$ such that $\boldsymbol{\theta}_0$ is an interior point of $\boldsymbol{\theta}(\mathcal{C})$ and since $\boldsymbol{\theta}_n \to \boldsymbol{\theta}_0$ a.s., $\boldsymbol{\theta}_n \in \boldsymbol{\theta}(\mathcal{C})$ for n large enough, i.e., $\phi_{kj}(\mathbf{z};\boldsymbol{\theta}_n)$ and $\phi_{kj}(\mathbf{z};\boldsymbol{\theta}_0)$ belong to the Euclidean class \mathfrak{F}_{kj} for n sufficiently large. By (A5), the functions $\phi_{kj}(\mathbf{z};\boldsymbol{\theta}_n)$ and $\phi_{kj}(\mathbf{z};\boldsymbol{\theta}_0)$ are in the class $[\delta]$ of Lemma 20 for each $\delta > 0$ and n sufficiently large. Hence,

$$|\sqrt{n}\{\nu_n(\phi_{kj}(\cdot;\boldsymbol{\theta}_n)) - \nu_n(\phi_{kj}(\cdot;\boldsymbol{\theta}_0))\}| \longrightarrow 0$$
(A.54)

in probability. Then since $\nu_n(\phi_{kj}(\cdot;\boldsymbol{\theta}_n)) - \nu_n(\phi_{kj}(\cdot;\boldsymbol{\theta}_0)) = o_P(1/\sqrt{n})$ for all $k = 1, \ldots, q$ and $j = 1, \ldots, p$ and $\phi_{kj}(\mathbf{z};\boldsymbol{\theta})$ corresponds to the element h = (j-1)q + k of the function ϕ , we conclude that

$$\nu_n(\phi(\cdot;\boldsymbol{\theta}_n)) - \nu_n(\phi(\cdot;\boldsymbol{\theta}_0)) = o_P(1/\sqrt{n}). \tag{A.55}$$

Since $\partial \Phi / \partial \text{vec}(\mathbf{B}')'$ is continuous in $\boldsymbol{\theta}_0$, we have that

$$\Phi(\mathbf{B}, \mathbf{\Sigma}) = \Phi(\mathbf{B}_0, \mathbf{\Sigma}) + \left(\frac{\partial \Phi(\mathbf{B}, \mathbf{\Sigma})}{\partial \text{vec}(\mathbf{B}')'}(\mathbf{B}_0, \mathbf{\Sigma})\right) \text{vec}(\mathbf{B}' - \mathbf{B}'_0) + r(\boldsymbol{\theta}) \text{vec}(\mathbf{B}' - \mathbf{B}'_0)$$
(A.56)

where $r(\boldsymbol{\theta}) \to \mathbf{0}$ when $\boldsymbol{\theta} \to \boldsymbol{\theta}_0$.