Integer Programming ISE 418

Lecture 19

Dr. Ted Ralphs

Reading for This Lecture

- Achterburg "Constraint Integer Programming" (2007)
- M.W.P. Savelsbergh "Preprocessing and Probing for Mixed Integer Programming Problems."
- A. Atamturk, G. Nemhauser, and M.W.P. Savelsbergh, "Conflict Graphs in Solving Integer Programming Problems."
- T. Achterberg, R.E. Bixby, Z. Gu, E Rothberg, And D. Weninger, "Presolving Reductions in Mixed Integer Programming."

Preprocessing and Probing

- Often, it is possible to simplify a model using logical arguments.
- Most commercial IP solvers have a built-in preprocessor.
- Effective preprocessing can pay large dividends.
- Let the upper and lower bounds on x_j be u_j and l_j .
- The most basic type of preprocessing is calculating *implied bounds*.
- Let (π, π_0) be a valid inequality.
- If $\pi_1 > 0$, then

$$x_1 \le (\pi_0 - \sum_{j:\pi_j > 0} \pi_j l_j - \sum_{j:\pi_j < 0} \pi_j u_j) / \pi_1$$

• If $\pi_1 < 0$, then

$$x_1 \ge (\pi_0 - \sum_{j:\pi_j > 0} \pi_j l_j - \sum_{j:\pi_j < 0} \pi_j u_j) / \pi_1$$

Basic Preprocessing

- Again, let (π, π_0) be any valid inequality for S.
- The constraint $\pi x \leq \pi_0$ is redundant if

$$\sum_{j:\pi_j>0} \pi_j u_j + \sum_{j:\pi_j<0} \pi_j l_j \le \pi_0.$$

• S is empty (IP is infeasible) if

$$\sum_{j:\pi_j > 0} \pi_j l_j + \sum_{j:\pi_j < 0} \pi_j u_j > \pi_0.$$

- For any IP of the form $\max\{cx|Ax \leq b, l \leq x \leq u\}, x \in \mathbf{Z}^n$,
 - If $a_{ij} \geq 0 \forall i \in [1..m]$ and $c_j < 0$, then $x_j = l_j$ in any optimal solution.
 - If $a_{ij} \leq 0 \forall i \in [1..m]$ and $c_j > 0$, then $x_j = u_j$ in any optimal solution.

Probing for Integer Programs

- It is also possible in many cases to fix variables or generate new valid inequalities based on logical implications.
- Consider (π, π_0) , a valid inequality for 0-1 integer program.
- If $\pi_k > 0$ and $\pi_k + \sum_{j:\pi_j < 0} \pi_j > \pi_0$, then we can fix x_k to zero.
- Similarly, if $\pi_k < 0$ and $\sum_{j:\pi_j < 0, j \neq k} \pi_j > \pi_0$, then we can fix x_k to one.
- Example: Generating logical inequalities

Generation of the Conflict Graph

- As describe earlier, a *conflict* is a pair of variables and associated values that are mutually incompatible.
- For example, we may derive that binary variables x_1 and x_2 cannot both take value 1 simultaneously.
- These conflicts can be generated in a number of ways:
 - during preprocessing;
 - during cut generation; or
 - when the LP relaxation is infeasible;
- The list of known conflicts can be stored in a *conflict graph* in which the nodes correspond to variable-value pairs and the edges correspond to conflicts.
- The graph can be used to guide branching decisions, fix variable values, etc.

Improving Coefficients

- Suppose again that (π, π_0) is a valid inequality for a 0-1 integer program.
- Suppose that $\pi_k > 0$ and $\sum_{j:\pi_j > 0, j \neq k} \pi_j < \pi_0$.
- If $\pi_k > \pi_0 \sum_{j:\pi_j > 0, j \neq k} \pi_j$, then we can set
 - $\pi_k \leftarrow \pi_k (\pi_0 \sum_{j:\pi_j > 0, j \neq k} \pi_j)$, and
 - $-\pi_0 \leftarrow \sum_{j:\pi_i>0, j\neq k} \pi_j$).
- Similarly, suppose that $\pi_k < 0$ and $\pi_k + \sum_{j:\pi_i > 0, j \neq k} \pi_j < \pi_0$.
- Then we can again set $\pi_k \leftarrow \pi_k (\pi_0 \pi_j \sum_{j:\pi_j > 0, j \neq k} \pi_j)$

Preprocessing and Probing in Branch and Bound

- In practice, these rules are applied iteratively until none applies.
- Applying one of the rules may cause a new rule to apply.
- Bound improvement by reduced cost can be reapplied whenever a new bound is computed.
- Furthermore, all rules can be reapplied after branching.
- These techniques can make a very big difference.

Preprocessing Based on Problem Structure

- Example: Preprocessing Methods in Set Partitioning
 - Duplicate columns
 - Dominated rows
 - Column is a sum of other columns
 - Extended row clique
 - Singleton row
 - Rows differ by two entries

Root Node Processing

 Typically, more effort is put into processing the root node than other nodes in the tree.

 Work done in the root node will impact the processing of every subsequent node.

Dual bounding

- Cut generation in the root node can be thought of as an additional pre-processing step to strengthen the formulation before enumeration.
- Cut generation in the root node can also be used to predict effectiveness of such techniques elsewhere in the tree.

Primal bounding

- Primal bounds found in the root node can have a big impact on the search.
- They help to improvement variable bounds by reduced cost and can also lead to more effective/efficient search strategies.
- As with cut generation, we use performance in the root node as an indicator of efficacy throughout the tree.

Node Pre/Post-Processing: Bound Improvement by Reduced Cost

- Consider an integer program $\max_{x \in \mathbb{Z}^n} \{cx \mid Ax \leq b, 0 \leq x \leq u\}$.
- Suppose the linear programming relaxation has been solved to optimality and row zero of the tableau looks like

$$z = \bar{a}_{00} + \sum_{j \in NB_1} \bar{a}_{0j} x_j + \sum_{j \in NB_2} \bar{a}_{0j} (x_j - u_j)$$

where NB_1 are the nonbasic variables at 0 and NB_2 are the nonbasic variables at their upper bounds u_j .

- In addition, suppose that a lower bound <u>z</u> on the optimal solution value for IP is known.
- Then in any optimal solution

$$x_j \leq \left\lfloor \frac{\bar{a}_{00} - \underline{z}}{-\bar{a}_{0j}} \right\rfloor \text{ for } j \in NB_1, \text{ and}$$

$$x_j \geq u_j - \left\lceil \frac{\bar{a}_{00} - \underline{z}}{\bar{a}_{0j}} \right\rceil \text{ for } j \in NB_2.$$

Node Pre/Post-Processing: Other Techniques

- Bound improvement in the root node
 - Whenever a new lower bound is found by a heuristic or otherwise, we can apply bound improvement in the root node.
 - To do so, we save the reduced costs of the variables in the root node.
 - We can do this for multiple bases obtained during the processing of the root node.
 - The bound improvements found in this way can be immediately applied to all candidate and active nodes.
- Techniques similar to those applied in the root node can also be applied during the processing of individual nodes.
- New implications may be available once branching constraints are applied.

Node Pre/Post-Processing: Conflict Analysis

- Whenever a node is found to be infeasible, we derive a conflict.
- The branching constraints imposed to arrive at that node cannot all be imposed simultaneously.
- These conflicts can be used to derive cuts and may also contribute to enhancement of the conflict graph.