Lecture 14. Recurrent Neural Networks, Attention, and the Transformer

COMP90051 Statistical Machine Learning

Christine de Kock

This lecture

- Recurrent networks for modelling sequences
 - * recurrent units
 - * back-propagation through time
 - * long-short term memory
- Transformers and attention

Recurrent Networks

A DNN tailored to variable length sequential inputs

Sequential input

- Until now, we have assumed fixed-sized input
 - * Vectors of features x in d dimensions
 - Matrices of pixels in an image
- What if our input is a sequence?
 - Frames in a video clip
 - Time steps in an audio clip
 - * Words in a sentence
 - A protein sequence
 - Stock prices over time ...
- How can we model this in a DNN?

FCNNs are poor for sequences

fully connected NN (vanilla NN)

- Consider classifying sentences
 - * "This is the worst movie of all time, a real stinker" $\rightarrow \otimes$
 - * "The movie is a real stinker" → ③
- Issue: inputs are different lengths
 - * pad them with empty "words" to be a fixed size
- Issue: how do we represent words as vectors?
 - * learn an "embedding" vector for each word
- Issue: phrases have <u>similar meaning</u> even when at different locations
 - "a real stinker" is a key predictive feature
 - * if we naively apply FCNN needs to learn this concept repeatedly

ConvNets for Sequences?

- Sequences are just rectangular shaped images (e.g., embedding dim. times length): apply CNNs
 - * With 1D filters
 - * The filter parameters are shared across time, and can find patterns in the input
- This is called the time delay neural network
- Downside:
 - receptive field of filters are limited to finite size, i.e., the width of the convolutional filters, which can be expanded with deeper networks

Recurrent Neural Nets (RNNs)

- RNNs create networks dynamically, based on input sequence
 - * given sequence of inputs $x^{(1)}, x^{(2)}, ..., x^{(t)}$
 - * process each symbol from left to right, to form a sequence of hidden states $m{h}^{(t)}$
 - * each $h^{(t)}$ encodes all inputs up to t

RNNs as Very Deep Networks

- Compared to NNets we've seen before:
 - unfolded RNN has depth equal to input sequence length
 - parameters shared between layers
- Can easily be 'unrolled' to cater to any input length

RNN Applications: Seq. Classification

Sequence classification: labelling sequence

Sequence Tagging RNN

- Assign each item/token a label in sequence
 - Given targets per item, can measure loss per item

Encoder-Decoder for Sequence Translation

E.g., English to French

Encoder RNN encodes input sequence into a context

Decoder RNN acts like a tagger, where we're trying to (re)generate next inputs

RNN Parameterisation

 Consider tagging RNN: define f as follows

$$egin{array}{lll} oldsymbol{a}^{(t)} &=& oldsymbol{b} + oldsymbol{W} oldsymbol{h}^{(t-1)} + oldsymbol{U} oldsymbol{x}^{(t)}, \ oldsymbol{h}^{(t)} &=& anh(oldsymbol{a}^{(t)}), \ oldsymbol{o}^{(t)} &=& oldsymbol{c} + oldsymbol{V} oldsymbol{h}^{(t)}, \ oldsymbol{\hat{y}}^{(t)} &=& ext{softmax}(oldsymbol{o}^{(t)}), \end{array}$$

- Parameters are b, W, U, c, V
 - * not specific to timestep t, but shared across all positions
 - * this "template" can get unrolled arbitrarily

Training RNNs: Backprop. Thru. Time

- Backpropagation algorithms can be applied to network
 - Called backpropagation through time (BPTT)
 - * Gradients from the loss at every position must be propagated back to the very start of the network
- Suffers from gradient vanishing problem
 - * Consider linear RNN, gradients of $\frac{\partial \mathbf{h}^{(T)}}{\partial \mathbf{h}^{(1)}} = \mathbf{W}^{T-1}$, thus can explode or vanish with large T, depending on largest eigenvalue of \mathbf{W} (i.e., greater than / less than one).
 - * Can't *learn* long distance phenomena (over 10+ steps)

Long Short-Term Memory (LSTM)

- In RNN, previous state is provided as an input
 - Multiplied by weight matrix, and non-linearity applied
- LSTM introduces state self-loop, based on copying
 - Takes copy of previous state, scaled by sigmoid forget gate
- Gradient magnitude now maintained
 - Can handle 100+ distance phenomena (vs 5-10 for RNN)

Mini-summary

- Recurrent networks for modelling sequences
 - * recurrent units
 - * back-propagation through time
 - * long-short term memory
 - * applications

next: Transformers

Transformers

A method for processing sequence inputs in highly parallelizable manner, using **attention**.

Attention

- RNNs over long sequences not to good at representing properties of the full sequence
 - * Biased towards the end (or ends) of the sequence
 - * Last hidden layer / context: A bottleneck!
- Attention averages over hidden sequence

* $c = \sum_j \alpha_j \boldsymbol{h}^{(j)}$ summary weighted average

* $\alpha_j = \exp(e_j)/(\sum_{j'} \exp(e_{j'}))$ softmax

* $e_j = f(\boldsymbol{h}^{(j)})$

• E.g., key phrase in review

Repeated attention in Seq2seq models

 Consider multiple sequential outputs

*
$$s_i = f(s^{(i-1)}, y^{(i-1)}, c_i)$$

*
$$c_i = \sum_j \alpha_{ij} h^{(j)}$$

*
$$\alpha_{ij} = \exp(e_{ij})/(\sum_{j'} \exp(e_{ij'}))$$

*
$$e_{ij} = a(s^{(i-1)}, h^{(j)})$$

Avoids bottleneck, and uncovers meaningful structure

Neural Machine Translation by Jointly Learning to Align and Translate. Bahdanau, Cho, Bengio, ICLR 2015

Attention in Vision

- Can attend to other representations, e.g., images
 - Attention over matrix input
 - Roves during generation of caption

Self-attention

- Transformers use attention as means of representing sequences directly, instead of RNN
 - Representation of item i is based on attention to the rest of the sequence
 - * Use item i as the query in attention against all items $j \neq i$
- Compared to RNNs
 - No explicit position information (add to each symbol position index)
 - * Cheap: easily done in parallel

Transformer

- The Transformer uses self-attention as its main step
 - * Alongside residual, and normalization layers
 - Using multiple "attention heads", and deep stacking
- Applied first to translation
 - * Then raw text, e.g., BERT, RoBERTa, GPT
 - Highly scalable
 - Large performance gains over RNN models

The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/

This lecture

- Recurrent networks for modelling sequences
 - * recurrent units
 - * back-propagation through time
 - * long-short term memory
- Transformers and attention