

What are the key components of a VPC?

Component	What It Is	Why It's Essential
		Organization & Availability: Enable
	Subdivisions of your VPC's IP	resource isolation, implement security
	address range that segment	boundaries, and distribute workloads
	resources across different	across multiple AZs for high availability
Subnets	availability zones	and fault tolerance

	A horizontally scaled,	Internet Connectivity: Essential for
	component that provides	public-facing resources like web servers,
Internet Gateway	internet access to resources	load balancers, and bastion hosts that
(IGW)	in public subnets	need bidirectional internet access
	Collections of rules (routes)	
	that determine where	Traffic Control: Critical for defining
	network traffic is directed	network paths, controlling traffic flow, and
	within your VPC and to	ensuring packets reach their intended
Route Tables	external networks	destinations efficiently
		Instance-Level Security: Provide granular
	Stateful virtual firewalls that	access control, support application-
	operate at the instance	specific security policies, and maintain
	level, controlling inbound	connection state for simplified rule
Security Groups	and outbound traffic	management
	Stateless subnet-level	Defense in Depth: Add an additional
Network Access	security filters that control	security layer beyond security groups,
Control Lists	traffic at the subnet	provide subnet-wide protection, and
(NACLs)	boundary	enable network-level access control
		Secure Internet Access: Allow private
	Managed service that	resources to download updates, patches,
	enables outbound internet	and external data while maintaining
NAT	connectivity for resources in	security by preventing inbound internet
Gateway/Instance	private subnets	connections
	Private connectivity points	Security & Cost Optimization: Eliminate
	that allow direct access to	internet gateway dependencies, reduce
	AWS services without	data transfer costs, and improve security
VPC Endpoints	internet routing	posture for AWS service communications
		Multi-VPC Communication: Enable
	Direct network connections	secure, low-latency connections between
Peering	between VPCs that enable	VPCs across regions or accounts without
Connections	resource sharing	internet routing
	AWS-managed VPN	Hybrid Cloud Connectivity: Essential for
	concentrator that connects	extending on-premises infrastructure to
Virtual Private	your VPC to on-premises	AWS, enabling secure site-to-site
Gateway (VGW)	networks	connections and hybrid architectures

MCQ: What are the key components of a VPC?

Q1. Which of the following are key components of a VPC? (Select all that apply)

- A) Subnets
- B) Security Groups

- C) Route Tables
- D) IAM Policies

Correct Answer: A) Subnets, B) Security Groups, C) Route Tables (IAM Policies are part of access control, not core VPC networking components)

Q2. What is the function of an Internet Gateway in a VPC?

- A) It provides DNS resolution for EC2 instances
- B) It allows instances in the VPC to connect to the internet
- C) It stores encrypted traffic logs
- D) It restricts traffic within the subnet

Correct Answer: B) It allows instances in the VPC to connect to the internet

Q3. What is the purpose of a NAT Gateway in a VPC?

- A) To route public traffic to private subnets
- B) To enable **outbound internet** access for instances in private subnets
- C) To store static website content
- D) To attach IAM roles to EC2 instances

Correct Answer: B) To enable outbound internet access for instances in private subnets

Q4. What does a route table in a VPC do?

- A) It encrypts the traffic flowing between subnets
 - B) It controls the traffic flow between resources and networks
 - C) It stores the metadata for EC2
 - D) It handles autoscaling for the VPC

Correct Answer: B) It controls the traffic flow between resources and networks

Q5. What role do Network Access Control Lists (NACLs) play in a VPC?

- A) They assign IP addresses to instances
- B) They monitor billing and usage
- C) They provide stateless, subnet-level traffic filtering
- D) They manage user login credentials

Correct Answer: C) They provide stateless, subnet-level traffic filtering