МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г.Шухова)

Лабораторная работа №1 дисциплина «Теория цифровых автоматов» по теме «Синтез и анализ комбинационных схем с одним выходом в базисе И-ИЛИ-НЕ»

Выполнил: студент группы ВТ-31 Макаров Д.С. Проверил: Рязанов Ю.Д.

Лабораторная работа №1

«Синтез и анализ комбинационных схем с одним выходом в базисе И-И.ЛИ-НЕ»

Цель работы: научиться строить эффективные по быстродействию и затратам оборудования комбинационные схемы..

Вариант 9

Задание:

- 1. Составить таблицу истинности заданной булевой функции (см. варианты заданий в таблице 1). Булева функция здесь задана условием, зависящим от значений аргументов булевой функции. Значение булевой функции на наборе аргументов равно значению условия на этом наборе аргументов. В условии значение аргумента отождествляется с двоичной цифрой, а последовательность аргументов с двоичным числом. Для составления таблицы истинности рекомендуется написать программу.
- 2. Получить минимальную дизъюнктивную нормальную форму булевой функции.
- 3. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе **И-ИЛИ-НЕ** с двухвходовыми элементами **И** и **ИЛИ** по минимальной дизъюнктивной нормальной форме булевой функции.
- 4. Получить минимальную конъюнктивную нормальную форму булевой функции.
- 5. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами **И** и **ИЛИ** по минимальной конъюнктивной нормальной форме булевой функции.
- 6. Написать программы, моделирующие работу схем, полученных в пунктах 3 и 5, на всех входных наборах и строящие таблицу истинности каждой схемы. Сравнить полученные таблицы истинности с таблицей истинности исходной функции.
- 7. Сравнить полученные в пунктах 3 и 5 схемы **по Квайну** и **по быстродей- ствию**.

Ход работы

Дана функция

$$3 < (x_4x_5 + x_1x_2x_3) < 8$$

Построем таблицу истинности.

$N_{\overline{0}}$	$x_1x_2x_3x_4x_5$	f
1	00000	0
2	00001	0
3	00010	0
4	00011	0
5	00100	0
6	00101	0
7	00110	0
8	00111	1
9	01000	0
10	01001	0
11	01010	1
12	01011	1
13	01100	0
14	01101	1
15	01110	1
16	01111	1
17	10000	1
18	10001	1
19	10010	1
20	10011	1
21	10100	1
22	10101	1
23	10110	1
24	10111	0
25	11000	1
26	11001	1
27	11010	0
28	11011	0
29	11100	1
30	11101	0
31	11110	0
32	11111	0

Получение минимальной дизъюнктивной нормальной формы булевой функции. СДНФ

$N_{\overline{0}}$	$x_1x_2x_3x_4x_5$	Простая импликанта?
[8]	00111	
[11]	01010	
[12]	01011	

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[14]	01101	
[15]	01110	
[16]	01111	
[17]	10000	
[18]	10001	
[19]	10010	
[20]	10011	
[21]	10100	
[22]	10101	
[23]	10110	
[25]	11000	
[26]	11001	
[29]	11100	

Импликанты первого порядка

$N_{\overline{0}}$	$x_1x_2x_3x_4x_5$	Простая импликанта?
[8, 16]	0-111	*
[11, 12]	0101-	
[11, 15]	01-10	
[12, 16]	01-11	
[14, 16]	011-1	*
[15, 16]	0111-	
[17, 18]	1000-	
[17, 19]	100-0	
[17, 21]	10-00	
[17, 25]	1-000	
[18, 20]	100-1	
[18, 22]	10-01	
[18, 26]	1-001	
[19, 20]	1001-	
[19, 23]	10-10	
[21, 22]	1010-	
[21, 23]	101-0	
[21, 29]	1-100	
[25, 26]	1100-	
[25, 29]	11-00	

Импликанты второго порядка

$N_{ar{0}}$	$x_1x_2x_3x_4x_5$	Простая импликанта?
[11, 12, 15, 16]	01-1-	*
[17, 18, 19, 20]	100-	*
[17, 18, 21, 22]	10-0-	*
[17, 18, 25, 26]	1-00-	*
[17, 19, 21, 23]	10-0	*
[17, 21, 25, 29]	1-00	*

Таблица простых импликант

	8	11	12	14	15	16	17	18	19	20	21	22	23	25	26	29
0-111	*					*										
011-1				*		*										
01-1-		*	*		*	*										
100-							*	*	*	*						
10-0-							*	*			*	*				
1-00-							*	*						*	*	
10-0							*		*		*		*			
1-00							*				*			*		*

 $(\overline{x}_1x_3x_4x_5) \vee (\overline{x}_1x_2x_3x_5) \vee (\overline{x}_1x_2x_4) \vee (x_1\overline{x}_2\overline{x}_3) \vee (x_1\overline{x}_2\overline{x}_4) \vee (x_1\overline{x}_3\overline{x}_4) \vee (x_1\overline{x}_2\overline{x}_5) \vee (x_1\overline{x}_4\overline{x}_5)$

	x_1	\overline{x}_1	x_2	\overline{x}_2	x_3	\overline{x}_3	x_4	\overline{x}_4	x_5	\overline{x}_5	z_1	z_2	z_3	z_4	z_5	z_6
0-		-			_		*		_		*					
111																
011-		-	*		-				-		*					
1																
01-		-	-				*							*		
1-																
100-				-		*									*	
_	-			*				-				*				
0-						.1.						.1.				
_	-					*		-				*				
00-																
10				*									*			
	-			·						-			•			
0								*					*			
1-	-							·		-			·			
00									*							*
z_1		-			-				•							

	x_1	\overline{x}_1	x_2	\overline{x}_2	x_3	\overline{x}_3	x_4	\overline{x}_4	x_5	\overline{x}_5	z_1	z_2	z_3	z_4	z_5	z_6
$\overline{z_2}$	*							*								
z_3	*									*						
		*	*													
$egin{array}{c} z_4 \ z_5 \end{array}$	*			*												
z_6		*			*											

	0-111	011-1	01-1-	100-	10-0-	1-00-	10-0	1-00	v_1	v_2	v_3	v_4	v_5	v_6	v_7
\overline{f}	+	+	+	+	+	+	+	+	-	-	-	-	-	-	*
v_1	*	*	*	*											
$v_2 \ v_3$					*	*									
v_4							*	*							
v_5									*	*	*	*			
$v_6 \ v_7$											·		*	*	

Получение минимальной конъюнктивной нормальной формы булевой функции.

СКНФ

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[1]	00000	
[2]	00001	
[3]	00010	
[4]	00011	
[5]	00100	
[6]	00101	
[7]	00110	
[9]	01000	
[10]	01001	
[13]	01100	
[24]	10111	
[27]	11010	
[28]	11011	
[30]	11101	
[31]	11110	
[32]	11111	

Импликанты первого порядка

$N_{\overline{0}}$	$x_1x_2x_3x_4x_5$	Простая импликанта?
[1, 2]	0000-	
[1, 3]	000-0	
[1, 5]	00-00	
[1, 9]	0-000	
[2, 4]	000-1	
[2, 6]	00-01	
[2, 10]	0-001	
[3, 4]	0001-	
[3, 7]	00-10	
[5, 6]	0010-	
[5, 7]	001-0	
[5, 13]	0-100	
[9, 10]	0100-	
[9, 13]	01-00	
[24, 32]	1-111	*
[27, 28]	1101-	
[27, 31]	11-10	
[28, 32]	11-11	

$N_{\overline{0}}$	$x_1x_2x_3x_4x_5$	Простая импликанта?
[30, 32]	111-1	*
[31, 32]	1111-	

Импликанты второго порядка

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
$\overline{[1, 2, 3, 4]}$	000-	*
[1, 2, 5, 6]	00-0-	*
[1, 2, 9, 10]	0-00-	*
[1, 3, 5, 7]	00-0	*
[1, 5, 9, 13]	0-00	*
[27, 28, 31, 32]	11-1-	*

Таблица простых импликант

	1	2	3	4	5	6	7	9	10	13	24	27	28	30	31	32
1-111											*					*
111-1														*		*
000-	*	*	*	*												
00-0-	*	*			*	*										
0-00-	*	*						*	*							
00-0	*		*		*		*									
0-00	*				*			*		*						
11-1-												*	*		*	*

 $(\overline{x}_1 \vee \overline{x}_3 \vee \overline{x}_4 \vee \overline{x}_5 \vee) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_5 \vee) \wedge (x_1 \vee x_2 \vee x_3 \vee) \wedge (x_1 \vee x_2 \vee x_4 \vee) \wedge (x_1 \vee x_3 \vee x_4 \vee) \wedge (x_1 \vee x_2 \vee x_5 \vee) \wedge (x_1 \vee x_4 \vee x_5 \vee) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_4 \vee)$

x_1	\overline{x}_1	x_2	\overline{x}_2	x_3	\overline{x}_3	x_4	\overline{x}_4	x_5	\overline{x}_5	z_1	z_2	z_3	z_4	z_5	z_6
1-	-				-		*		-	*					
111															
111-	-		*		-				-	*					
1															
000-		-		*							*				
0.0						*					*				
00		-				不					不				
0-															
0				*		_							*		
00-															

	x_1	\overline{x}_1	x_2	\overline{x}_2	x_3	\overline{x}_3	x_4	\overline{x}_4	x_5	\overline{x}_5	z_1	z_2	z_3	z_4	z_5	z_6
00-			*						_				*			
0																
0—							*		-				*			
00				*											*	
11- 1-	-	-		71				-							٠,٠	
1-																
z_1		*														*
z_2	*		*													
$z_2 \\ z_3 \\ z_4$	*								*							
	*	*					*	*								
z_5		7				*		イ		*						
z_6						*				*						

	1-111	111-1	000-	00-0-	00-0	0-00	0-00-	11-1-	v_1	v_2	v_3	v_4	v_5	v_6	$\overline{v_7}$
\overline{f}	+ *	+ *	+	+	+	+	+	+	-	-	-	-	-	-	*
$v_1 \\ v_2$			*	*	ماد	ماد									
v_3 v_4					*	*	*	*							
v_5									*	*	*	*			
$v_6 \ v_7$											·		*	*	

Приложение

Содержимое файла funcTest.py

```
from binVectors import gen_bin_vector_5 as gen_bin_vector
from tabulate import tabulate
def truth_table(vector,f,f_min):
    result = []
    for i in range(0,len(vector)):
         result.append([
             i+1,
              vector[i][0],
              int(f(vector[i][0])),
              int(f_min(vector[i][0]))
         ])
    return result
def sdnf_function_min(str_val):
    x1 = bool(int(str_val[0]))
    x2 = bool(int(str_val[1]))
    x3 = bool(int(str_val[2]))
    x4 = bool(int(str_val[3]))
    x5 = bool(int(str_val[4]))
    z6 = (not x3) or (not x5)
    z2 = x1 \text{ or } x2
    z4 = x1 \text{ or } x4
    z5 = (not x1) or (not x4)
    z3 = x1 \text{ or } x5
    z1 = z6 \text{ or } x1
    #1-111
    u1 = z1 \text{ or } (not x4)
    #111-1
    u2 = z1 \text{ or } (not x2)
    #000--
    u3 = z2 \text{ or } (not x3)
    #00-0-
    u4 = z2 \text{ or } (not x4)
    #0-00-
    u5 = z4 \text{ or } x3
    #11-1-
    u6 = z5 \text{ or (not } x2)
    #00--0
    u7 = z3 \text{ or } x2
    #0--00
    u8 = z3 \text{ or } x4
    v1 = u1 and u2
    v2 = u3 and u4
    v3 = u5 and u6
    v4 = u7 and u8
    v5 = v1 and v2
    v6 = v3 and v4
    v7 = v5 and v6
    return v7
```

```
def sknf_function_min(str_val):
    x1 = bool(int(str_val[0]))
    x2 = bool(int(str_val[1]))
    x3 = bool(int(str_val[2]))
    x4 = bool(int(str_val[3]))
    x5 = bool(int(str_val[4]))
    print(x1,x2,x3,x4,x5)
    z2 = x1 and (not x4)
    z3 = x1 and x2
    z4 = (not x1) and x2
    z5 = x1 and (not x2)
    z6 = (not x1) and x3
    z1 = z6 and x5
    #0-111
    u1 = z1 and x4
    #011-1
    u2 = z1 and x2
    #10-0-
    u3 = z2 and (not x2)
    #1-00-
    u4 = z2 and (not x3)
    #01-1-
    u5 = z4 and x4
    #100--
    u6 = z5 and (not x3)
    u7 = z3 and (not x2)
    #1--00
    u8 = z3 and (not x4)
    v1 = u1 \text{ or } u2
    v2 = u3 \text{ or } u4
    v3 = u5 \text{ or } u6
    v4 = u7 \text{ or } u8
    v5 = v1 \text{ or } v2
    v6 = v3 \text{ or } v4
    v7 = v5 \text{ or } v6
    return v7
def function(str_val):
    x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        3 < (int(str_val[3] + str_val[4],2) + int(str_val[0] + str_val[1] + str_val[2],2)) < 8
table_head = ["M","$x_1x_2x_3x_4x_5$","f","f_min"]
table = truth_table(gen_bin_vector(),function,sknf_function_min)
print(tabulate(table,table_head,tablefmt="simple"))
```