

INFORME ANALISIS EXPLORATORIO CON IRIS

NICKY ALEXANDER FLOREZ BUSTAMANTE JUAN ANDRES MENENDEZ VILLARRAGA DAVID FERNANDO GOMEZ ARISTIZABAL

LUIS FERNANDO SANCHEZ

2828523 CTMA – SERVICIO NACIONAL DE APRENDIZAJE 2025

INFORME DE ANÁLISIS EXPLORATORIO CON EL DATASET IRIS

Inicialmente importamos el dataset iris, el cual contiene 150 muestras de flores y cada flor tiene 4 características numericas: sepal_length (largo del sépalo), sepal_width (ancho del sépalo), petal_length (largo del pétalo) y petal_width (ancho del pétalo). Además, cada muestra está clasificada en una de tres especies: setosa, versicolor y virginica.

Este fue el código final de nuestro análisis

1. Histograma

Realizamos un histograma para la variable petal length.

En este gráfico se observó que la especie setosa tiene pétalos significativamente más cortos (entre 1.0 y 2.0 cm), virginica tiene los más largos (entre 4.5 y 6.9 cm), y versicolor se encuentra en un punto intermedio (entre 3.0 y 5.0 cm), a lo que podemos concluir petal_length es una variable muy útil para diferenciar especies.

2. Pairplot

En este apartado realizamos un grafico pairplot permitió visualizar las relaciones entre todas las variables numéricas, diferenciando las especies por color. Pudimos ver que las combinaciones petal_length vs petal_width y sepal_length vs petal_length separan claramente las especies

3. Scatter plot

Este gráfico nos muestra cómo el largo y ancho del pétalo están fuertemente relacionados. Los puntos se agrupan por especie, formando tres grupos bien definidos. Esta visualización por sí sola permite identificar la especie con alta precisión.

4. Matriz de correlación

Se calculó la matriz de correlación entre las variables numéricas, y, mediante la visualización podemos observar que las variables del pétalo son las más correlacionadas entre sí y las más útiles para clasificación.

A continuación están las capturas de las graficas resultantes:

♣ Figure 1

☆◆ → + Q = □

Conclusión general

El dataset iris es limpio, balanceado y se puede separar fácilmente por especie.

Este dataset es ideal para practicar análisis exploratorio, visualización de datos y algoritmos de clasificación, debido a la claridad de sus patrones y la simplicidad de su estructura.