李青航 SA22225226

31

穷举得,11种覆盖

38

用Loubere's method方法构建7阶幻方,见表1

表 1: magic square of order 7

		0	1			
30	39	48	1	10	19	28
38	47	7	9	18	27	29
46	6	8	17	26	35	37
5	14	16	25	34	36	45
13	15	24	33	42	44	4
21	23	32	41	43	3	12
22	31	40	49	2	11	20

54

$$A \rightarrow C \rightarrow D \rightarrow E \rightarrow B$$

$$A \rightarrow C \rightarrow D \rightarrow F \rightarrow B$$

$$A \rightarrow D \rightarrow E \rightarrow B$$

$$A \rightarrow D \rightarrow F \rightarrow B$$

$$A \rightarrow E \rightarrow B$$

57

这个游戏不平衡,见表2,第4、3、1位不平衡,玩家I从数量为30的堆中拿26个石头(16+8+2),使得平衡,就能使玩家I赢

表 2: 5-heap Nim $2^{\hat{}}5$ $2^{\hat{}}4$ $2^{\hat{}}3$ $2^{\hat{}}2$ 2^{1} 2^0

记 b_i 为大师在第i天所下的棋局数,且有 $b_i \geq 1$,所以有两组序列

$$\{b_1 + b_2 + b_3 + \dots + b_i\}, 1 \le i \le 77 \tag{1}$$

$${b_0 + b_1 + b_2 \dots + b_j + k}, 0 \le j \le 76, b_0 = 0$$
 (2)

每组序列都满足单增且大小都为77,序列(1)中没有重复元素,序列(2)中也没有重复元素。

序列(1)的上界为 $12 \times 11 = 132$,序列(2)的上界S满足 $S < b_1 + b_2 + \cdots + b_{77} + k \le 12 \times 11 + 22 = 154$,同时S为整数,可以得到 $S \le 153$ 。

综上,序列(1)和序列(2)的上界为153,也即最多有153个不同的数。而序列中一共有154个数,由鸽巢原理序列(1)中至少有一个数 $b_1+b_2+\cdots+b_y$ 与序列(2)中的某个数 $b_1+b_2+\cdots+b_x+k$ 相同,满足,

$$b_1 + b_2 + b_3 + \dots + b_y = b_1 + b_2 + b_3 + \dots + b_x + k$$

可以求出存在

$$k = b_{x+1} + \dots + b_y$$

所以有x+1到y天, 大师下了刚好22盘。