Intelligent Robotics Mapping and Navigation

Luís Paulo Reis (University of Porto)

Nuno Lau (University of Aveiro)

Armando Sousa (University of Porto)

Background

Localization – Where am I?

- Mapping My (dynamic?) surroundings
- Navigation How do I get where I want to go?
- TREND: SLAM
 - Simultaneous Localization and Mapping

The Representation Problem

Representation is the form in which information is stored or encoded in the robot (Mataric)

- Representation is more than memory
- It has a significant impact on robot control

What can the robot represent

Self

Stored proprioception, self-limitations, goals, intentions, plans

Environment

Navigable spaces, structures

Objects, people, other robots

Detectable things in the world

Actions

Outcomes of specific actions in the environment

Task

What needs to be done, where, in what order, how fast, etc.

Navigation challenges

Path planning problem

Robot has a map, knows own and target positions

Localization problem

Robot has a map showing target, doesn't know own position

Coverage problem

 Robot has a map, knows where it is, but doesn't know where the target is

Mapping problem

Robot does not have a map, may known own position

Simultaneous localization and mapping

Robot does not have a map, and doesn't know own position

Navigation questions

- Where am I going?
 - Usually defined by human operator or mission planner
- What is the best way to get there?
 - Path planning problem
- Where have I been?
 - Mapping problem
- Where am I?
 - Localization problem

Different types of representation

Maze navigator robot

- Exact path it has taken: "Go straight 2m, turn left 90 deg, go straight...". This is an odometric path
- Sequence of moves at particular landmarks: "Left at 1st junction, right at 2nd junction, straight...". This is a landmark-based path
- What to do at each landmark: "At the green/red junction go left, at the red/blue junction go right, ...".
 This is a landmark-based map
- The map of the maze. This is a metric map

Metric maps and Topological maps

Figure from Meyer, "Map-based navigation in mobile robotics", 2003, some other figures follow

Path Planning

Methodologies

- Roadmap
- Cell decomposition

Roadmap

- Derive a graph from free space
- Graph building
 - Visibility graph
 - Voronoi Diagram

- Free space is decomposed into simple regions (cells)
- Path between two cells can be easily generated

Visibility graph

- Nodes are obstacles angles
- Edges connect nodes that are visible from each other

Visibility graph

- Nodes are obstacles angles
- Edges connect nodes that are visible from each other

Voronoi diagram

- Voronoi edges are equidistant to closest obtacles
- Nodes are situated at the points where edges meet

Voronoi diagram

- Voronoi edges are equidistant to closest obtacles
- Nodes are situated at the points where edges meet

Graph based planning

- Search the graph to find optimal path
- Which path is optimal?
 - Minimal distance
 - Safest
 - Best view!
- Searching algorithms
 - Dikjstra
 - A*
 - (...) D*

Dijkstra algorithm

1. Init

 Assign starting node with a 0 distance, all other nodes with infinite distance, current = start, visited = {}

2. Update minimum distances of neighbors to current node

- While updating minimum distance keep track of previous node in minimum path
- 3. Add current to visited set
- 4. Current = minimum distance node AND not in visited
- 5. Repeat from step 2 until current = target

A* algorithm

Similar to Dijkstra but selection takes into distance to target into account:

- 4. Current = minimum distance to start + euclidian distance to target node AND not in visited
- Returns optimal path
- Tends to search in the direction of the target

A* algorithm

- Exact cell decomposition
- Rectangular cell decomposition
- Regular cell decomposition
- Quadtree cell decomposition

- Exact cell decomposition
 - Partition the free space into convex polygons

- Exact cell decomposition
 - Partition the free space into convex polygons

Rectangular cell decomposition

Regular cell decomposition

Quadtree cell decomposition

Planning

Metric map of the environment

Planning using cell borders

Planning using cell centers

Planning using roadmaps

·**\(\sigma\)**

Optimized path Optimized path 24

Wavefront planning

Metric map of the environment

Potential Field Local Planning

Potential Field Planning

http://www.cs.mcgill.ca/~hsafad/robotics/index.html

Also in Swarm

http://youtu.be/r9FD7P76zJs

Also Manipulators...

- http://taylorwang.files.wordpress.com/2012/04/potential-field1_robot.jpg
- http://taylorwang.wordpress.com/2012/04/06/collision-free-path-planning-using-potential-field-method-for-highly-redundant-manipulators/
- http://youtu.be/QTp1HRjXSSc

- Mapping is the process of building an internal estimate of the metric map of the environment
- What should be represented?
 - Each cell is occupied or unoccupied
 - Each cell has a continuous value (high-occupied, low unoccupied)
 - Probability that each cell is occupied P(H) and probability that each cell is unoccupied P(~H)

$$0 <= P(H) <= 1$$

 $1 - P(H) = P(\sim H)$

- Mapping is the process of building an internal estimate of the metric map of the environment
- What should be represented?
 - Each cell is occupied or unoccupied
 - Each cell has a continuous value (high-occupied, low unoccupied)
 - Probability that each cell is occupied P(H) and probability that each cell is unoccupied P(~H)

$$0 <= P(H) <= 1$$

 $1 - P(H) = P(\sim H)$

Conditional probabilities

- We want to determine P(H|s)
 - · Probability cell is occupied given a certain measure s
- Let's start by determining P(s|H)
 - Probability of getting measure s if there is H is occupied
 - In general P(H|s) is not equal to P(s|H)
 - This is the sensor model

Conditional probabilities

- We want to determine P(H|s)
- From Bayes' Rule:

$$P(H \mid s) = \frac{P(s \mid H).P(H)}{P(s \mid H)P(H) + P(s \mid \sim H)P(\sim H)}$$

- P(s|H) and P(s|~H) are known from the sensor model
- P(H) and P(~H) are unconditional probabilities or prior probabilities
 - If no information is available P(H)=P(~H)=0.5 can be assumed

Updating with the Bayes' rule

– How to fuse the computed probabilities with new sensor readings?

$$P(H \mid s_n) = \frac{P(s_n \mid H).P(H \mid s_{n-1})}{P(s_n \mid H)P(H \mid s_{n-1}) + P(s_n \mid \sim H)P(\sim H \mid s_{n-1})}$$

- This is the recursive version of the update formula
- Each time a new observation is made it can be employed to update the occupancy grid

Dempster-Schafer Theory

- Belief functions instead of probabilities
 - Measure belief mass
 - Each sensor contributes with a belief mass of 1.0
 - Can distribute the mass to a set of propositions
- Set of propositions is the Frame of Discernement (FOD)
 - In the case of occupancy grid FOD={Occupied, Empty}
 - It may include non exclusive propositions
 - A sensor reading may be considered as ambiguous

Dempster-Schafer Belief function properties

- Bel(X) measures the likelihood that previous evidence supports X
- $Bel({}) = 0$
- Bel (set of all subsets of FOD) = 1
- In the case of the occupancy grid:

```
Bel = m({Occupied}), m({Empty}), m(dontknow)
dontknow={Occupied,Empty}
```

Belief function for sonar

- Region that supports evidence of having an obstacle
 - m(occupied)=evidence
 - m(empty)=0
 - m(dontknow)=1-evidence
- Region that supports evidence of being empty
 - m(occupied)=0
 - m(empty)=evidence
 - m(dontknow)=1-evidence
- The main difference from probabilities is that uncertainties in the reading count as belief mass for dontknow

Rule of combination

- Bel₁ = m(occupied)=0.4, m(empty)=0, m(dontknow)=0.6
- $Bel_2 = m(occupied)=0.6$, m(empty)=0, m(dontknow)=0.4

- $Bel_3 = m(occupied) = 0.76$, m(empty) = 0.0, m(dontknow) = 0.16

Rule of combination

- $Bel_1 = m(occupied)=0.4$, m(empty)=0, m(dontknow)=0.6
- $Bel_2 = m(occupied)=0.0$, m(empty)=0.6, m(dontknow)=0.4

Rule of combination

Be

- As m({}) must be 0, a normalization is needed
- Bel₃ = m(occupied)=0,16/(1-0,24)=0,21 m(empty)=0,36/(1-0,24)=0,47m(dontknow)=0,24/(1-0,24)=0,32

Rule of combination

$$m(C_k) = \frac{\sum_{A_i \cap B_j = C_k; C_k \neq \{\}} m(A_i).m(B_j)}{1 - \sum_{A_i \cap B_j = \{\}} m(A_i).m(B_j)}$$

It must be repeated for every subset of the orthogonal sum

Additional Sources

https://www.youtube.com/watch?v=Ls8EBoG_SEQ

Intelligent Robotics Mapping and Navigation

Luís Paulo Reis (University of Porto)

Nuno Lau (University of Aveiro)

Armando Sousa (University of Porto)