Data-driven design

& fabrication methods

Final Presentation

Jade Therras

Ali Fuat Sahin

Davide Lisi

Antonio Ruiz

RECALL - Design problem description

MODEL

3-links
Jumping Robot

OBJECTIVE

Design a robot capable of executing jumps by applying torque to link (a) as depicted in the Figure.

RECALL - Objective function and encoding

Jumping distance

Measured in a <u>simulation</u> on pybullet

Taking in account the size of the robot

	fitness =	$Jump\ distance$
		L_{max}

Parameters	Upper Bound	Lower Bound
Carrying Link Length	20 [cm]	10 [cm]
Compression Ratio	30 [deg]	5 [deg]
Rest Angle	80 [deg]	10 [deg]
Spring Stiffness	20 [N.mm/deg]	5 [N.mm/deg]
Ground Link Angle	80 [deg]	10 [deg]
Link (c) Coefficient	1.2	0.8
Link (d) Coefficient	0.5	0.9
Link (e) Coefficient	0.6	1.4

Data driven plan **Optimisation process Physical Simulation** prototype Jumping simulation and CAD of the robot collection of the result configuration from the paper Pybullet (python) solidworks **ITERATIVE** Compare Poll production **PROCESS Analysis** simulation/ Variation of the parameters reality of the model using data objective function driven approach simulated model Python Python simulated model **Genetic algorithm** Python/pybullet

Bayesian optimisation

First Prototype

First Prototype

First Prototype

Data generation - simulate the robot

some adventures...

keep going....

Data generation - Simulate the robot

Hyperparameters	Values
Lateral Friction	0.8
Spinning Friction	0.1
Rolling Friction	0.01
Coefficient of Restitution	0.7
Joint Damping	0.001

Sim to Real

max height 10 cm max distance 25 cm energy 0.8 J

- Parameters of simulation optimized with the first prototype
- Instability issues are solved with constraint limits
- Reconfigurable in a loop
- Runtime per simulation ~0.3s

Data driven optimisation - PCA

- No principal components that dominates the performance change
- Eigenvector with the smallest eigenvalue explains 10% of variance in performance

- The biplot shows 'Stiffness' and 'I2' strongly influence PC2, while 'Compression Ratio' and 'Link Angle' impact PC1 negatively.
- Observations cluster based on these variables, revealing distinct patterns in the dataset

Data driven optimisation - Genetic algorithm

algorithm

- several iterations
- 8 parameters
- up to 5000 generations
- 10 solutions per generations
- crossover and mutations

Best solution

max height 38.6 cm max distance 89.1 cm energy 0.73 J

Data driven optimisation - Bayesian optimisation

Data driven optimisation – Best result (simulation)

Best solution

max height 38.9 cm max distance 90.5 cm energy 0.7191 J

Conclusion

•••

We optimised a jumping robot to **maximize the jump distance according to it size**The robot have been simulated using Pybullet

The physical prototype is comparable to the simulated prototype

first result before optimisation

max height 10 cm max distance 25 cm energy 0.8 J

next steps

With genetic algorithm

max height 38.6 cm max distance 89.1 cm energy 0.73 J Produce some of the best results find with Bayesian

With bayesian optimisation

max height 38.9 cm max distance 90.5 cm energy 0.7191 J More in-depth analysis of the best results parameters

