

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ENES MÉRIDA LICENCIATURA EN ECOLOGÍA

ESTADÍSTICA APLICADA Tema 4. Análisis de Varianza

Prof. Edlin J. Guerra Castro

Prueba t: Un muestreo / grupo

Diferencia entre media de la muestra y un valor de referencia (fijo)

 $S_{\overline{X}}$ Error estándar: medida de la precisión para estimar la media a partir de la muestra

La distribución de probabilidades de valores de t Student bajo la hipótesis nula de que t= μ_0

Bajo la H₀

Tienen probabilidades altas de ocurrir

Tienen probabilidades bajas de ocurrir

Prueba t: dos muestreos / grupos

Diferencia entre las dos medias

$$t = \frac{\overline{X}_A - \overline{X}_B}{S_p}$$

Error estándar "pooled": medida de la precisión para estimar la diferencia de las medias.

La distribución de probabilidades de valores de t Student bajo la hipótesis nula de que t= μ_0

Bajo la H₀

Tienen probabilidades altas de ocurrir

Tienen probabilidades bajas de ocurrir

Modelos lineales

Casos simples: modelo de la media: una cola, dos colas, tipo de varianzas, tipo de distribución.

Casos más complejos:

- 1. Análisis de varianza: un factor
- 2. Análisis de varianza: dos o más factores
 - a) Diseños ortogonales
 - b) Diseños anidados
 - c) Diseños mixtos
- 3. Regresión lineal simple
- 4. Regresión lineal múltiple
- 5. Análisis de covarianza

Evaluación de supuestos

Normalidad Homocedasticidad Independencia Aditividad

Conflicto entre Argentina y Uruguay por plantas de celulosa (2005-2010)

Las plantas de celulosa se dedican al procesamiento de la madera para la obtención de la principal materia prima para la producción de papel: la pulpa, o pasta.

Residuos tóxicos: varios, principalmente Materia Orgánica.

Desarrollemos el MHD

- Problema
- Modelos
- Hipótesis científica y/o empírica
- Hipótesis estadística
- Hipótesis nula
- Evaluación de la Hipótesis nula... ¿cómo lo hacemos?
- ¿Conclusión?

Evaluar la DBO en 4 puntos a lo largo del Río luego de la instalación de la planta

Métodos

10 muestras por localidad

ANALISIS DE VARIANZA (ANOVA)

Ideal para estudios experimentales o mensurativos

es una prueba que compara **medias**, pero también puede comparar **varianzas**

SE APLICA A **VARIABLES INDEPENDIENTES CATEGÓRICAS** QUE PUEDEN TENER UN EFECTO EN LA VARIABLE RESPUESTA

$$H_{0}: \mu_{1} = \mu_{2} = \mu_{3}... = \mu_{i}$$

Modelo lineal

$$H_0: y_{ij} = \mu + e_{ij}$$

$$H_i: y_{ij} = \mu + \bar{A} + e_{ij}$$

El truco del ANOVA: descomponer la variación total

¿cuánta variación proviene de las diferencias reales? (si es que existen) ¿cuánta variación es producto del <u>azar</u>?

Variación Total = Variación entre muestras + Variación dentro de las muestras

En estadística, el <u>azar</u> es un comodín que incluye todo lo desconocido y no incluido en el modelo

SUMATORIA CUADRÁTICA TOTAL

	Grupo 1	Grupo 2	Grupo 3	Grupo a
1	X ₁₁	X ₂₁	X ₃₁	X _{a1}
2	X ₁₂	X ₂₂	X ₃₂	X _{a2}
3	X ₁₃	X ₂₃	X ₃₃	X _{a3}
4	X ₁₄	X ₂₄	X ₃₄	X _{a4}
5	X ₁₅	X ₂₅	X ₃₅	X _{a5}
n	X _{1n}	X _{2n}	X _{3n}	X _{an}
Media	media1	media2	media3	Media a
Desv. Est	S ₁	S ₂	S ₃	S _a

$$\overline{X} = \frac{\sum\limits_{i=1}^{a} \overline{X}_{i}}{a} = \frac{\sum\limits_{i=1}^{a} \sum\limits_{j=1}^{n} x_{ji}}{an}$$

SUMATORIA CUADRÁTICA TOTAL

	Grupo 1	Grupo 2	Grupo 3	Grupo a
1	X ₁₁	X ₂₁	X ₃₁	X _{a1}
2	X ₁₂	X ₂₂	X ₃₂	X _{a2}
3	X ₁₃	X ₂₃	X ₃₃	X _{a3}
4	X ₁₄	X ₂₄	X ₃₄	X _{a4}
5	X ₁₅	X ₂₅	X ₃₅	X _{a5}
n	X _{1n}	X _{2n}	X _{3n}	X _{an}
Media	media1	media2	media3	Media a
Desv. Est	S ₁	S ₂	S ₃	S _a

$$SCT = \sum_{i=1}^{a} \sum_{j=1}^{n} (x_{ij} - \overline{X})^{2}$$

SUMATORIA CUADRÁTICA TOTAL

	Grupo 1	Grupo 2	Grupo 3	Grupo a
1	X ₁₁	X ₂₁	X ₃₁	X _{a1}
2	X ₁₂	X ₂₂	X ₃₂	X _{a2}
3	X ₁₃	X ₂₃	X ₃₃	X _{a3}
4	X ₁₄	X ₂₄	X ₃₄	X _{a4}
5	X ₁₅	X ₂₅	X ₃₅	X _{a5}
n	X _{1n}	X _{2n}	X _{3n}	X _{an}
Media	media1	media2	media3	Media a
Desv. Est	S ₁	S ₂	S ₃	Sa

$$SCT = \sum_{i=1}^{a} \sum_{j=1}^{n} (x_{ij} - \overline{x}_i)^2 + \sum_{i=1}^{a} (\overline{x}_i - \overline{x})^2$$

Variabilidad dentro + Variabilidad entre

TABLA ANOVA

$$|\nabla \mathbf{E}| \frac{\sum_{i=1}^{a} \sum_{j=1}^{n} (A_i - \overline{A})^2}{a - 1} + \sigma_e^2$$

 $\mathsf{VD} \mid c$

Fuente de variación	Sumatoria cuadrática	Grados de libertad	Cuadrados medios	Valor <i>F</i>	Probabilidad
Entre (modelo)	$n\sum_{i=1}^{a}(\bar{x}_i-\bar{\bar{x}})^2$	a-1	$rac{SC_{entre}}{gl_{entre}}$	$\frac{\mathit{CM}_{entre}}{\mathit{CM}_{dentro}}$	۶۶ /
Dentro (residual)	$\sum_{i=1}^{a} \sum_{j=1}^{n} (x_{ij} - \bar{x}_i)^2$	a(n-1)	$rac{SC_{dentro}}{gl_{dentro}}$		
Total	$\sum_{i=1}^{a} \sum_{j=1}^{n} (x_{ij} - \bar{\bar{x}})^2$	<i>an</i> − 1			↓

CRITERIO Y TABLA FISHER

Criterios:

<u>Fisher</u>: si p < 0.05 se rechaza Ho (si repetimos el experimento 20 veces, el resultado se obtendría una sola vez si Ho es verdadera)

Neyman Y Pearson: Si el estadístico es mayor que el tabulado se rechaza Ho

 $Fa(gI_{entre}/gI_{dentro})$

SUPUESTOS DEL ANOVA

Dadas las operaciones aritméticas y las propiedades de la tabla de contraste *F*, se debería cumplir con:

- 1. Independencia entre réplicas y entre tratamientos
- 2. Los datos se deben aproximar a una dist. Normal
- 3. Homocedasticidad de las varianzas

Tema de última clase!!

¿Lo reconocen?

Ronald A. Fisher 1890-1962

The Design of Experiments, 1935 Statistical Methods for Research Workers, 1925

-Matemático, Biólogo teórico (agronomía y genética cuantitativa)

ANOVA