Formulas & Definitions: Section 12-5

Definition:

• Parametric equations for a line through the point $(x_0, y_0 z_0)$ and parallel to the direction vector $\langle a, b, c \rangle$ are

$$x=x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct$$

• Symmetric equations are:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Definition: The line segment from r_0 to r_1 is given by the vector equation

$$r(t) = (1-t)r_0 + tr_1, \quad 0 \le t \le 1$$

Definition: A vector equation of the plane is either

$$n \cdot (r - r_0) = 0$$
, or $n \cdot r = n \cdot r_0$.

Definition: A scalar equation of the plane through point $P_0(x_0, y_0, z_0)$ with normal vector $n = \langle a, b, c \rangle$ is

$$a(x-x_0) + b(y - y_0) + c(z - z_0) = 0$$

Definition: A linear equation of the plane in x, y, and z is

$$ax+by+cz+d=0$$

Definition: The distance D from a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$