Inhaltsverzeichnis

1		rm und Skalarprodukt	7
	1.1	Norm	7
	1.2	Skalarprodukt	7
		1.2.1 Vom Skalarprodukt induzierte Norm	7
		1.2.2 Cauchy-Schwarzche Ungleichung	7
2	Syn	nmetrische, positiv definite Matrix	8
	2.1	Cholesky-Zerlegung	8
	2.2	[?] diagonaldominant und alle Diagonalelemente größer gleich 0	8
	2.3	Eigenwerte	8
	2.4	Eigenvektor	8
3	Ma	trixnormen	9
	3.1	Natürliche Matrixnorm	9
	3.2	Verträglichkeit	9
	3.3	Zeilensummennorm	9
	3.4	Spaltensummennorm	9
	3.5	Spektralnorm	10
4	Spe	ektralradius, Konditionszahl einer Matrix	11
	4.1	Spektralradius ρ	11
	4.2	Konditionszahl einer Matrix A	11
	4.3	Sonderfall symmetrisch, positiv definite Matrix	11
5	Ähı	nlichkeitstransformation, Invarianz der Eigenwerte	12
	5.1	Reduktionsmethoden	12
6	Gle	sitkommazahlen,	13
	6.1	,	13
	6.2	Gleitkommagitter	
	6.3	Maschienengenauigkeit eps	13
	6.4	Rundungsfehler	13
7	Dar	rstellung des Interpolationsfehlers	14
	7.1	Fehler I	14
	7.2	Fehler II	14
8	Koı	nditionierung einer numerischen Aufgabe, Konditionszah-	
	len	13	15
	8.1	numerische Aufgabe	15

	8.2	Konditionszahl (relativ)							•		•		•	15
9	Stal 9.1	oilität eines Algorithmustabiler Algorithmus								•				16
10	Aus	löschung												17
11		ner-Schema*												18
		Code												18 18
12	Inte	rpolation und Approxi	ma	tio	n									19
	12.2 12.3	Grundproblem												
13	Lag	ransche Interpolationsa	ufg	ab	e									20
	13.1	Aufgabe Eindeutigkeit + Existenz												
	13.3 13.4	Lagransche Basispolynom Eigenschaften Lagransche Darstellung .	e .											
14	14.1 14.2	vtonsche Basispolynome Newton-Polynome 14.1.1 Auswertung 14.1.2 Vorteil Newtonsche Darstellung Dividierte Differenzen*	· · · · · ·		· ·	 	 		 					21 21 21
	15.1	rillsche Darstellung Schema												
16	16.1 16.2	mite-Interpolation Aufgabe												23 23 23 23

17	Extrapolation	24
	17.1 Richardson-Extrapolation	24
	17.2 Lagrange	24
	17.3 Neville	24
	17.4 Extrapolationsfehler	24
18	Spline-Interpolation	26
	18.1 Interpolationsnachteil	26
	18.2 Abhilfe	26
	18.3 Lineare Spline	26
	18.4 Kubischer Spline	26
	18.5 Existenz	
	18.6 Approximationsfehler	26
19	Gauß-Approximation	27
20	Gram-Schmidt-Algorithmus	28
	20.1 Code	28
21	Interpolatorische Quadraturformeln	29
	21.1 Interpolatorische Quadratur Formel	29
	21.2 Ordnung	
	21.3 Newton-Cotes-Formel*	
	21.4 Abgeschlossene Formeln	
	21.5 Offene Formeln	
	21.6 Code	
	21.7 Problem	
	21.8 Abhilfe: Summierte Quadraturformeln *	
	21.8.1 Fehlerdarstellung	
22	Gaußsche Quadraturformeln *	31
	22.1 Gewichtetes Skalarprodukt	31
	22.2 Gauß-Quadratur	31
	22.3 Wahl der Stützstellen	31
	22.4 Kongergenz der Gauß-Quadraturen	31
	22.5 Code	31
23	Störungssattz	32
	23.1 Störungssatz	32
	23.2 gestörte Matrix	32

24	Lösung von Dreieckssystemen+Aufwand*	33
	24.1 Rückwärtseinsetzen	33
	24.2 Vorwärtseinsetzen	33
	24.3 Aufwend	33
25	Gaußsches Eliminationsverfahren	34
	25.1 Gauß-Elimination	34
	25.2 Spaltenpivotisierung	34
	25.3 LR - Zerlegung	34
	25.4 Code	34
26	Symmetrisch positiv definite Systeme	35
	26.1 Cholesky-Zerlegung	35
	26.2 Aufwand	35
	26.3 Code	35
27	Least-Squares-Lösungen, Normalgleichung	36
	27.1 Least-Squares-Lösung	36
	27.2 Eindeutigkeit	
28	QR-Zerlegung,	37
	28.1 QR-Zerlegung	37
	28.2 Least-Squares mit Vollrang	
	28.3 Aufwand	
	28.4 Code	
29	Householder-Transformation,	38
	29.1 Householder Transformation	38
	29.2 Eigenschaften von Householder	
	29.3 Householder-Verfahren	
	29.4 Ergebnis	
30	Intervallschachtelung/Bisektionsverfahren	39
	30.1 Intervallschachtelung/Bisektionsverfahren	39
	30.2 Eigenschaften	39
	30.3 Code	39
31	Konvergenz interativer Methoden	40
	31.1 Konvergenzordnung	40
	31.2 Lineare Konvergenz	40
	31.3 Superlineare Konvergenz	40
	31.4 Quadratische Konvergenz	40

32	Newton Verfahren im \mathbb{R}^n	41
	32.1 Code	41
33	Newton-Kantorisch	42
	33.1 Voraussetzungen	42
	33.2 Fehlerabschätzung	42
34	Sukzessive Approximation *	43
	34.1 Konvergenz	43
	34.2 Code	
35	Newton-Verfahren für affin - lineares $f(x) = Ax - b$	44
	35.1 Problem	44
36	Fixpunktiteration *, Konvergenzaussage	45
	36.1 Problem	45
	36.2 Aufspaltung	45
	36.3 Konvergenz	45
	36.4 Code	
37	Jacobi *, Gauß-Seidel *, SOR *	46
	37.1 Jacobi-Verfahren	46
	37.2 Gauß-Seidel	
	37.3 SOR	46
	37.4 Konvergenz	46
	37.5 Fehler verringern	
38	Allgemeines Abstiegsverfahren	47
	38.1 Voraussetzung	47
	38.2 A-Skalarprodukt, A-Norm	
	38.3 Abstiegsverfahren	
	38.4 Gradient	
	38.5 Schrittweite	47
	38.6 Iteration	47
	38.7 Code	47
39	Gradientenverfahren	48
-0	39.1 Iteration	48
	39.2 Konvergenz	48
	39.3 Lemma von Kantorich	48
	39.4 Fehlerabschätzung	48

40	CG-Verfahren	49
	40.1 Fehlerabschätzung	49
41	Vorkonditionierung	50
42	Satz von Gerschgorin	51
43	Stabilitätsatz	52
44	Potenzmethode *, inverse Iteration *	53
	44.1 Potenzmethode	53
	44.2 Rayleigh-Quotient	53
	44.3 Inverse Iteration	53
45	Hessenberg-Normalform	54
	45.1 Hessengerg-Matrix	54
46	OR-Verfahren	55

1 Norm und Skalarprodukt

1.1 Norm

Definitheit: $||x|| = 0 \Rightarrow x = 0$ absolute Homogenität: $||\alpha x|| = |\alpha| * ||x||$ Dreiecksungleichung: $||x + y|| \le ||x|| + ||y||$

1.2 Skalarprodukt

$$\left. \begin{array}{l} < x+y,z> = < x,z> + < y,z> \\ < x,y+z> = < x,y> + < x,z> \\ < \lambda x,y> = \lambda < x,y> \\ < x,\lambda y> = \lambda < x,y> \end{array} \right\} \text{Linearität}$$

$$< x,y> = < y,x>$$

$$\begin{array}{l} < x, x > \ge 0 \\ < x, x > = 0 \Rightarrow x = 0 \end{array}
brace positiv Definitheit$$

1.2.1 Vom Skalarprodukt induzierte Norm

$$||x|| = \sqrt{\langle x, x \rangle}$$

1.2.2 Cauchy-Schwarzche Ungleichung

$$|\langle x, y \rangle| \le ||x|| * ||y||$$

2 Symmetrische, positiv definite Matrix

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \begin{pmatrix} a & b & c & d \\ b & e & f & g \\ c & f & h & i \\ d & g & i & j \end{pmatrix}$$

Symmetrische Matrix

insbesonders: Diagonalmatrizen, Einheitsmatrizen

positiv definit: $x^t A x > 0$ (beliebige Matrix)

alle EW > 0 (symmetrische Matrix)

alle Haupt[TODO: ?] > 0 (symetrische Matrix)

$$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \Rightarrow 3 \text{ Hauptminoren}[?] = \det(a), \det\begin{pmatrix} a & b \\ b & d \end{pmatrix}, \det\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$

2.1 Cholesky-Zerlegung

 $A = GG^t$ G unter der Matrix, invertierbar (symmetrische Matrix)

[?] diagonal dominant und alle Diagonal elemente größer gleich 0

(symmetrische Matrix)

2.3 Eigenwerte

$$det(\lambda En - A) = 0$$

2.4 Eigenvektor

$$f(v) = \lambda v$$

3 Matrixnormen

3.1 Natürliche Matrixnorm

$$\begin{split} ||A||_{\infty} &:= \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \max_{||x||=1} ||Ax||_{\infty} \\ ||A|| &= 0 \Rightarrow A = 0 \\ ||\lambda A|| &= |\lambda| * ||A|| \\ ||A + B|| &\leq ||A|| + ||B|| \\ ||A * B|| &\leq ||A|| * ||B|| \end{split}$$

3.2 Verträglichkeit

$$||Ax|| \le ||A|| * ||x||$$

3.3 Zeilensummennorm

= natürliche Matrixnorm $||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$ $A = \begin{pmatrix} 1 & -2 & -3 \\ 2 & 3 & -1 \end{pmatrix}$ $||A||_{\infty} = \max\{|1| + |-2| + |-3|, |2| + |3| + |-1|\}$ $= \max\{6, 6\} = 6$

3.4 Spaltensummennorm

$$\begin{split} ||A||_1 &:= \max_{x \neq 0} \frac{||Ax||_1}{||x||_1} = \max_{||x||_1 = 1} ||Ax||_1 = \max_{j = 1, \dots, n} \sum_{i = 1}^m |a_{ij}| \\ A &= \begin{pmatrix} 1 & -2 & -3 \\ 2 & 3 & -1 \end{pmatrix} \\ &\qquad \qquad ||A||_1 = \max\{|1| + |2|, |-2| + |3|, |-3| + |-1|\} \\ &\qquad \qquad = \max\{3, 5, 4\} = 5 \\ &\qquad \qquad ||A^t||_1 = ||A||_{\infty} \end{split}$$

3.5 Spektralnorm

$$||A||_{2} := \max_{||x||_{2}=1} ||Ax||_{2}$$

$$= \max_{x \neq 0} \frac{||Ax||_{2}}{||x||_{2}}$$

$$= \max_{||x||_{2}=1} \langle Ax, Ax \rangle$$

$$= \max_{||x||_{2}=1} \langle A^{t}Ax, x \rangle$$

$$= \max \sqrt{|\lambda|}, \lambda * EWvonA^{t}A$$

$$A = \begin{pmatrix} 3 & 2 \\ -2 & 0 \end{pmatrix}, A^{t}A = \begin{pmatrix} 13 & 6 \\ 6 & 4 \end{pmatrix} \det(\mu E_{n} - A^{t}A) = 0 \Leftrightarrow \mu_{1,2} = 16, 1$$

$$||A||_{2} = \sqrt{\max(\mu_{1}, \mu_{2})} = \sqrt{\mu_{1}} = \sqrt{16} = 4$$

4 Spektralradius, Konditionszahl einer Matrix

4.1 Spektralradius ρ

 $\varphi(A) = \max: 1 \leq i \leq n |\lambda_i(A)| = spr(A)$ der betragsmäßig größte Eigenwert von A

 $||A|| \geq |\lambda|$ (für jede Matrixnorm, die mit einer Vektornorm verträglich ist)

4.2 Konditionszahl einer Matrix A

$$cond(A) = ||A|| * ||A^{-1}||$$

4.3 Sonderfall symmetrisch, positiv definite Matrix

$$cond(A) = \frac{\lambda_{max}}{\lambda_{min}}$$

5 Ähnlichkeitstransformation, Invarianz der Eigenwerte

y = Ax

$$\overline{x} = Cx, \overline{y} = Cy$$
 (det $C \neq 0$), $C \in GL$

 λ EW, v EV zu A

$$\Rightarrow Av = C^{-1}\overline{A}Cv = \lambda v$$

 $\Rightarrow \overline{A}$ und A haben dieselben Eigenwerte, algebraisch und geometrische Vielfalten stimmen überein (Invarianz der Eigenwerte)

5.1 Reduktionsmethoden

A duch Ähnlichkeitstransformationen

$$A=A^{(0)}=T_1^{-1}A^{-1}T_1=Q...=T_i^{-1}A^{(i)}T_i=...$$

auf Form bringen, für welche EW und EV leicht zu berechnen sind (z.B. Jordan-Normalform)

6 Gleitkommazahlen, ...

6.1 Gleitkommazahl (normalisiert)

 $b\in\mathbb{N},b\geq 2,x\in\mathbb{R}$ $x=\pm m*b^{\pm e}$ Mantisse: $m=m_1b^{-1}+m_2b^{-2}+\ldots\in\mathbb{R}$ Exponent: $e=e_{s-1}b^{s-1}+\ldots+e_0b^0\in\mathbb{N}$ für $x\neq 0$ eindeutig

6.2 Gleitkommagitter

A = A(b,r,s) größte Darstellbare Zahl: $(1-b^{-r})*b^{b^s-1}$ mit b als Basis, r als Mantissenlänge, s als Exponentenlänge $(b=10):0,314*10^1=3,14$ $0,123*10^6=123.000$ Beispiel: konvertiere von Basis 8 zu Basis 10: $x=(0,5731*10^5)_8\in A(8,5,1)$ $x=(5*8^{-1}+7*8^{-2}+3*8^{-3}+1*8^{-4})*8^5$ $x=5*8^4+7*8^3+3*8^2+1*8^1=24.264*10^0$

6.3 Maschienengenauigkeit eps

$$eps = \frac{1}{2}b^{-r+1}, IEEE : eps = \frac{1}{2} * 2^{-52} \approx 10^{-16}$$

6.4 Rundungsfehler

 $\begin{array}{l} absolut: |x-rd(x)| \leq \frac{1}{2}b^{-r}b^e \\ relativ: |\frac{x-rd(x)}{x}| \leq \frac{1}{2}b^{-r+1} = eps \end{array}$

7 Darstellung des Interpolationsfehlers

7.1 Fehler I

 $f \in C^{n+1}[a, b], \forall x \in [a, b] \exists \xi_x \in (\overline{x_0, ..., x_n, x}),$ wobei das Intervall das kleinst mögliche Intervall, das alle x_i enthällt, s.d.

mögliche Intervall, das alle
$$x_i$$
 enthällt, s.d.
$$f(x) - p(x) = \frac{f^{(n+1)}(\xi x)}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$

7.2 Fehler II

$$\begin{split} &f \in C^{n+1}[a,b], \forall x \in [a,b] \ \backslash x_0, ..., x_n gilt: \\ &f(x) - p(x) = f[x_0, ..., x_n, x] \prod_{j=0}^n (x - x_j) \\ &\text{mit } f[x_i, ..., x_{i+k}] = y[x_i, ..., x_{i+k}] \\ &\text{und } f[x_0, ..., x_n, x] = \int\limits_0^1 \int\limits_0^t ... \int\limits_0^t f^{n+1}(x_0 + t_1(x_1 - x_0) + ... + t_n(x_n - x_{n-1} + t(x - x_n)) dt dt_n ... dt_1 \\ &\text{für } x_0 = x_1 = ... = x_n: \\ &f[x_0, ..., x_n] = \frac{1}{n!} f^{(n)}(x_0) \\ &\frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod\limits_{j=0}^n (x - x_j) = f(x) - p(x) = f[x_0, ..., x_n, x] \prod\limits_{j=0}^n (x - x_j) \\ &\Rightarrow f[x_0, ..., x_n, x] = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \end{split}$$

8 Konditionierung einer numerischen Aufgabe, Konditionszahlen $k_{i,j}$

8.1 numerische Aufgabe

 $x_j \in \mathbb{R}$ mit $f(x_1, ..., x_m) \Rightarrow y_i = f_i(x_j)$ fehlerhafte Eingangsgrößen $x_i + \Delta y_i$ $|\Delta y_i|$ ist der absolute Fehler, $|\frac{\Delta y_i}{y_i}|$ ist der relative Fehler

8.2 Konditionszahl (relativ)

$$\begin{split} k_{ij}(x) &= \frac{\partial f_i}{\partial x_i}(x) \frac{\Delta x_j}{x_j} \\ &\frac{\Delta y_i}{y_i} = \sum_{j=1}^m k_{ij}(x) \frac{\Delta x_j}{x_j} \\ &|k_{ij}(x)| >> 1 \Rightarrow \text{schlecht konditioniert} \\ &|k_{ij}(x)| << 1 \Rightarrow \text{gut konditioniert, ohne Fehlerverstärkung} \\ &|k_{ij}(x)| > 1 \Rightarrow \text{Fehlerverstärkung} \\ &|k_{ij}(x)| < 1 \Rightarrow \text{Fehlerdämpfung} \end{split}$$

9 Stabilität eines Algorithmus

9.1 stabiler Algorithmus

akkumulierte Fehler der Rechnung (Rundungsfehler, Auswertungsfehler, etc.) übersteigen den unvermeidbaren Problemfehler der Konditionierung der Aufgabe nicht. Aka Trotz Ungenauigkeiten bei den Eingabe Variablen erhalten wir fast sehr genaue Ergebnisse.

10 Auslöschung

Verlust von Genauigkeit bei der Subtraktion von Zahlen mit gleichem Vorzeichen

TODO: bei bedarf ein Beispiel

11 Horner-Schema*

Das sogenannte "Horner-Schema" $b_n=a_n\quad,\ \mathbf{k}=\mathbf{n}-1,\ \ldots,\ 0\quad b_k=a_k+\xi b_{k+1}\quad \text{liefert den Funktionswert}\\ p(\xi)=b_0\ \text{des Polynoms}\\ p(x)=a_0+x(\ldots+x(a_{n-1}+a_nx)\ldots)$

11.1 Code

 $\begin{array}{l} \operatorname{def\ horner}(Ac,\,Ax,\,n,\,x)\colon\\ y=0.0\\ \operatorname{for\ i\ in\ reversed\ range}(n)\colon\\ y=y^*\;(x-Ax[i])+Ac[i]\\ \operatorname{return\ y}\\ \operatorname{Ac:\ Vektor\ mit\ Koeffizienten,\ ist\ ein\ np\ Array}\\ \operatorname{Ax:\ St\"{u}tzstellen,\ ist\ ein\ np\ Array}\\ \operatorname{n:\ Anzahl\ der\ St\"{u}tzstellen,\ ist\ ein\ int}\\ x\colon\operatorname{Auswertungspunkt,\ ist\ ein\ double}\\ \operatorname{Immer\ Horner-Schema\ zur\ Auswertung\ von\ Polynomen\ verwenden.} \end{array}$

11.2 Auswertung

TODO: subsection

12 Interpolation und Approximation

12.1 Grundproblem

Darstellung und Auswertung von Funktionen

12.2 Aufgabenstellung

f(x) nur auf Diskreter Menge von Argumenten $x_0, ..., x_n$ bekannt und soll rekonstruiert werden

analytisch gegebene Funktion soll auf Reelwerte dargestellt werden, damit jederzeit Werte zu beliebigen ${\bf x}$ berechnet werden können.

Einfach konstruierte Funktionen in Klassen P:

Polynome:
$$p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$
 rationale Funktion: $r(x) = \frac{a_0 + a_1x + \dots + a_nx^n}{b_0 + b_1x + \dots + b_mx^m}$

trigonometrische Funktion:
$$t(x) = \frac{1}{2}a_0 + \sum_{k=1}^{n} (a_k cos(kx) + b_k sin(kx))$$

Exponential summen:
$$e(x) = \sum_{k=1}^{n} a_k exp(b_k x)$$

12.3 Interpolation

Zuordnung von $g \in P$ zu f durch Fixieren von Funktionswerten $g(x_i) = y_i = f(x_i), i = 0, ..., n$

12.4 Approximation

$$\begin{split} g \in P \text{ beste Darstellung, z.B.} \\ \max_{\substack{a \leq x \leq b \\ b}} |f(x) - g(x)| minimal \\ (\int\limits_{a} |f(x) - g(x)|^2 dx)^{\frac{1}{2}} minimal \end{split}$$

Lagransche Interpolationsaufgabe 13

Aufgabe 13.1

Finde zu n + 1 verschiedene Stützstellen/Knoten $x_0, ..., x_n \in \mathbb{R}$ und Werten $y_0, ..., y_n \in \mathbb{R}$ ein Polynom $p \in P_n mitp(x_i) = y_i$

13.2 Eindeutigkeit + Existenz

Die Lagransche Interpolationsaufgabe ist eindeutig lösbar TODO: bei bedarf Beweis rein kopieren den Ich nicht verstanden hab

Lagransche Basispolynome

$$L_i^{(n)}(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} \in P_n, i = 0, ..., n$$

13.4 Eigenschaften

ortogonal: es gilt
$$L_i^{(n)}(x_k) = d_{ik} = \begin{cases} 1 & i = k \\ 0 & sonst \end{cases}$$

bilden Basis von P_n haben Grad n

Lagransche Darstellung

$$p(x) = \sum_{i=0}^{n} y_i L_i^{(n)}(x) \in P_n \text{ mit } p(x_j) = y_j$$

 $p(x)=\sum_{i=0}^ny_iL_i^{(n)}(x)\in P_n\text{ mit }p(x_j)=y_j$ Nachteil: Bei Hinzunahme von (x_{n+1},y_{n+1}) ändert sich das Basispolynom komplett

TODO: Beispiel

14 Newtonsche Basispolynome...

14.1 Newton-Polynome

$$N_0(x) = 1, N_i(x) = \prod_{j=0}^{i-1} (x - x_j) \text{ mit } p(x) = \sum_{i=0}^{n} a_i N_i(x)$$

14.1.1 Auswertung

$$y_0 = p(x_0) = a_0$$

$$y_1 = p(x_1) = a_0 + a_1 * (x_1 - x_0)$$

$$\vdots$$

$$y_n = p(x_n) = a_0 + a_1(x_1 - x_0) + \dots + a_n(x_n - x_0) * \dots * (x_n - x_{n-1})$$

14.1.2 Vorteil

Bei Hinzunahme von (x_{n+1}, y_{n+1}) muss nur eine neue Rechnung durchgeführt werden, und nicht das gesamte Polynom neu berechnet werden

TODO: Beispiel

14.2 Newtonsche Darstellung(stabile Variante)

$$p(x) = \sum_{i=0}^{n} y[x_0, ..., x_i] N_i(x)$$

14.3 Dividierte Differenzen*

$$y[x_i,...,x_{k+1}] = \frac{y[x_{i+1},...,x_{k+1}] - y[x_i,...,x_{i+k-1}]}{x_{i+k} - x_i} \text{ mit } k = 1, ..., j \text{ und } i = k - j$$
 für beliebige [?] $\sigma:0,...,n \to 0,...,n$ gilt $y[\tilde{x_0},...,\tilde{x_n}] = y[x_0,...,x_n]$

15 Nevillsche Darstellung

$$p_{jj}(x) = y_j j = 0, ..., n k = 1, ..., j i = k - j$$

$$p_{i,i+k}(x) = p_{i,i+k-1}(x) + (x - x_i) \frac{p_{i+1,i+k}(x) - p_{i,i+k-1}(x)}{x_{i+k} - x_i}$$

15.1 Schema

TODO: add the diagonal arrows

Hinzunahme von (x_{n+1}, y_{n+1}) ist problemlos

Auswertung von $p_{0,n}(x)$ in $\xi \neq x_i$ ohne vorherige Bestimmung der Koeffizienden der Newton-Darstellung ist einfach und Numerisch stabil möglich

15.2 Code

```
\begin{array}{l} \operatorname{def} \operatorname{divDiffs}(xi,\,yi,\,x) \colon \\ n = \operatorname{len}(xi) \\ p = n \ ^* [0] \\ \operatorname{for} \ k \ \operatorname{in} \ \operatorname{range}(n) \colon \\ & \operatorname{for} \ i \ \operatorname{in} \ \operatorname{range}(n - k) \colon \\ & \operatorname{if} \ k == 0 \colon \\ & p[i] = yi[i] \\ & \operatorname{else} \colon \\ & p[i] = \left( (x - xi[i + k]) \ ^* p[i] + (xi[i] - x) \ ^* p[i + 1] \right) / \left( xi[i] - xi[i + k] \right) \\ & \operatorname{return} \ p[0] \end{array}
```

16 Hermite-Interpolation

16.1 Aufgabe

$$Gegeben: \quad x_i \qquad i=0,...,m \qquad paarweiseverschieden \\ y_i^{(k)} \qquad i=0,...,m \qquad k=0,...,\mu_i(\mu_i \geq 0) \\ Gesucht: \, p \in P_n, \, n=m+\sum_{i=0}^m \mu_i: \, p^{(k)}(x_i)=y_i^{(k)} \\ x_i \, \text{sind} \, (\mu_i+1)\text{-fache Stützstellen} \\ x_0=-1, \, x_1=1, \, m=1, \, y_0^{(0)}=0, \, y_1^{(0)}, \, y_1^{([l?])}=2 \\ \Rightarrow \mu_0=0, \, \mu_1=1 \\ \Rightarrow n=1+0+1=2 \\ \Rightarrow p(\mathbf{x})=x^2$$

16.2 Existenz + Eindeutig

analog zur Lagrange-Interpolation

16.3 Fehler

$$f \in C^{n+1}[a,b] : \forall x \in [a,b] \exists \xi_x \in (\overline{x_0, ..., x_m, x}), \text{ s.d.}$$

$$f(x) - p(x) = f[x_0, ..., x_0, ..., x_m, ..., x_m, x] \prod_{i=0}^m (x - x_i)^{\mu_i + 1}$$

$$= \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^m (x - x_i)^{\mu_i + 1}$$

Extrapolation zum Limes + Fehler 17

17.1Richardson-Extrapolation

nicht direkt berechenbare Größe

$$a(0) = \lim_{k \to 0} a(k), \qquad k \in \mathbb{R}_+$$

berechne $a(k_i)$ für gewisse k_i , i = 0, ..., n und [?] $p_n(0)$ des Interpolations Polynoms zu $(h_i,a(h_i))$ als Schätzung für a
(0)

$$a(0) := \lim_{x \to 0^+} \frac{\cos(x) - 1}{\sin(x)} \quad (= 0)$$

$$a(x) := \frac{(\cos(x) - 1)}{\sin(x)}$$

Interpolation a(x) an Stützstellen
$$k_i$$
 nahe bei 0:
 $k_0 = \frac{1}{8}$ $a(k_0) = -6,258151 * 10^{-2}$
 $k_1 = \frac{1}{16}$ $a(k_1) = -3,126018 * 10^{-2}$
 $k_2 = \frac{1}{32}$ $a(k_2) = -1,562627 * 10^{-2}$

17.2 Lagrange

$$p_2(x) = a(k_0) \frac{(x - \frac{1}{16})(x - \frac{1}{32})}{(\frac{1}{8} - \frac{1}{16})(\frac{1}{8} - \frac{1}{32})} + a(k_1) \frac{(x - \frac{1}{8})(x - \frac{1}{32})}{(\frac{1}{16} - \frac{1}{8})(\frac{1}{16} - \frac{1}{32})} + a(k_2) \frac{(x - \frac{1}{8})(x - \frac{1}{16})}{(\frac{1}{32} - \frac{1}{8})(\frac{1}{32} - \frac{1}{16})}$$

$$\Rightarrow a(0) \sim p_2(0) = -1, 02 * 10^{-5}$$

17.3 Neville

$$p_{i,i+k}(0) = p_{i,i+k-1}(0) + \frac{p_{i,i+k-1}(0) - p_{i+1,i+k}(0)}{\frac{x_{i+k}}{x_{i-1}}}, k = 1, 2$$

$$\frac{i \mid x_i \mid p_{i,i}(0) = a(k_i) \mid p_{i,i+1}(0) \mid p_{i,i+2}(0)}{0 \mid x_0 = \frac{1}{8} \mid -6, 258151 * 10^{-2} \mid 6, 115 * 10^{-5} \mid -1, 02 * 10^{-5}}$$

$$1 \mid x_1 = \frac{1}{16} \mid -3, 126018 * 10^{-2} \mid 7, 64 * 10^{-6}$$

$$2 \mid x_2 = \frac{1}{32} \mid -1, 562627 * 10^{-2} \mid$$

Extrapolationsfehler

a(n) habe die Entwickling:

$$a(h) = a_0 + \sum_{j=1}^n a_j h^{jq} + a_{n+1}(h) h^{(n+1)q}$$
 mit $q > 0$, Koeffizienten a_j und $a_{n+1}(h) = a_{n+1} + a(1[?????])$ $(h_k)_{k \in \mathbb{N}}$ erfülle: $0 \le \frac{h_{k+1}}{h_k} \le p < 1 \ (\Rightarrow h_k \text{ positiv monoton fallend})$

Dann gilt für
$$p_1^{(k)} \in P_n$$
 (in h^q) durch $(h_k^q, a(h_k)), ..., (h_{k+n}^q, a(h_{k+1}))$

$$a(0) - p_n^{(k)}(0) = O(h_k^{(n+1)q})$$
 $(k \to \infty)$

Spline-Interpolation 18

18.1 Interpolationsnachteil

Starke Oszillation von Polynomen höheren Grades

Abhilfe 18.2

Spline-Interpolation, d.h. stückweise polynomielle Interpolation mit (n - 1)mal stetig diff.baren Knoten

18.3 Lineare Spline

alle Abschnitt-Splines sind lineare Funktionen

Kubischer Spline

 $s_n : [a, b] \to \mathbb{R}$ kubischer Spline bezüglich $a = x_0 < x_1 < ... < x_n = b$, wenn gillt

- 1. $s_n \in C^2[a, b]$
- 2. $S_n|_{I_i} \in P_3$, i = 1, ..., n

natürlicher Spline:

3.
$$s_n''(a) = s_n''(b) = 0$$

18.5 Existenz

Der interpolierende kubische Spline existiert und ist eindeutig bestimmt durch zusammen Vorgabe von $s_n''(a), s_n''(b)$

für natürlichen Spline
$$s_n$$
 durch $x_0, ..., x_n, y_0, ..., y_n$ gilt:
$$\int_a^b |s'(x)|^2 dx \le \int_a^b |g''(x)|^2 dx$$
 bezüglich $g \in C^2[a, b]$ mit $g(x_i) = y_i$, $i = 1, ..., n$

Approximationsfehler 18.6

$$f \in C^4[a, b], s_1''(a) = f''(a) \land s_n''(b) - f''(b):$$

$$\max_{x \in [a, b]} |f(x) - s : n(x)| \le \frac{1}{2} h^4 \max_{x \in [a, b]} |f^{(4)}(x)|$$

19 Gauß-Approximation

$$< f,g> := \int\limits_a^b f(t)\overline{g(t)}dt \qquad ||f|| = \sqrt{< f,f>}$$
 H Prähilbertraum, $\delta \subset H$ endlich Dimensional $\exists f \in H$ eindeutig bestimmte "beste Approximation" $g \in S$ $||f-g|| = \min_{\varphi \in S} ||f-\varphi||$ bes. einfache Lösung, wenn $\{\varphi_1,...,\varphi_n\}$ eine ONB ist, d.h. $(\varphi_i,\varphi_j) = \delta_{i,j} \Rightarrow \alpha_i = < f,\varphi_i> \qquad \text{i} = 1, ..., n$ $\Rightarrow g = \sum\limits_{i=1}^n < f,\varphi_i> \varphi_i \text{ ist beste Approximation}$

20 Gram-Schmidt-Algorithmus

$$w_1 := \frac{v_1}{||v_1||} \quad \tilde{w_k} := v_k - \sum_{i=1}^{k-1} \gamma < v_k, w_i > w_i, \quad w_k := \frac{\tilde{w_k}}{||\tilde{w_k}||}$$

20.1 Code

```
\begin{split} n &= size(v,\,1) \\ k &= size(v,\,2) \\ u &= np.zeros(n,\,k) \\ u[:,\,1] &= v[:,\,1]/sqrt(v[:,\,1] \,\,{}^*\,\,v[:,\,1]) \\ for \,\,i\,\,in\,\,range(2,\,k): \\ u[:,\,i] &= v[:,\,i] \\ for \,\,j\,\,in\,\,range(1,\,i\,-\,1): \\ u[:,\,i] &= u[:,\,i] \,-\,\,(u[:,\,i] \,\,{}^*\,\,u[:,\,j]) \,\,/\,\,(u[:,\,j] \,\,{}^*\,\,u[:,\,j]) \,\,{}^*\,\,u[:,\,j] \\ u[:,\,i] &= u[:,\,i] \,\,/\,\,sqrt(u[:,\,i] \,\,{}^*\,\,u[:,\,i]) \end{split}
```

21 Interpolatorische Quadraturformeln

$$I(f) = \int_{a}^{b} f(x)dx \approx I^{(n)}(f) = \sum_{i=1}^{n} \alpha_{i} f(x_{i})$$

Stützstellen a $\leq a_{0} < x_{1} < \dots < x_{n} \leq b$ und Gewichte $\alpha_{i} \in \mathbb{R}$

21.1 Interpolatorische Quadratur Formel

$$I^{(n)}(f) = \int_{a}^{b} p_{n}(x)dx = \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} L_{i}^{(n)}(x)dx^{1}$$
Lagrange:
$$I(f) - I^{(n)}(f) = \int_{a}^{b} f[x_{0}, ..., x_{n}, x] \prod_{i=0}^{n} (x - x_{i})dx$$

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p_{0}(x)dx = (b - a) * \sum_{i=0}^{n} w_{i}f(x_{i})$$

$$w_{i} = \frac{1}{(b-a)} \int_{a}^{b} L_{i}(x)dx$$

21.2 Ordnung

$$I^{(n)}vonderOrdnungm \Leftrightarrow \forall p \in P_{m-1}$$

$$\int_{a}^{b} p(x)dx = I^{(n)}(p) \qquad \text{exakt}$$

 \Rightarrow Interpolatorische Quadraturformel zu (n + 1)-Stützstellen sind mindestens von der Ordnung n + 1

 \Rightarrow höchstens Ordnung 2n + 2, mindestens n + 1

21.3 Newton-Cotes-Formel*

äquidistante Stützstellen

21.4 Abgeschlossene Formeln

$$\begin{split} H &= \frac{b-a}{n}, x_i = a+iH, a = x_0, b = x_n \\ &\text{Trapezregel: } I^{(1)}(f) = \frac{b-a}{2}[f(a)+f(b)] \\ &\text{Simpsonregel: } I^{(2)}(f) = \frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)] \\ &^3/_8 - Regel: I^{(3)}(f) = \frac{b-a}{8}[f(a)+3f(a+H)+3f(b-h)+f(b)] \end{split}$$

 $^{^{1}\}alpha_{i}$

21.5 Offene Formeln

$$(H = \frac{b-a}{n+2}, x_i = a + (i+1)H, a < x_0, x_n < b)$$

$$I^{(0)}(f) = (b-a)f(\frac{a+b}{2}) \qquad \text{Mittelpunktregel}$$

$$I^{(1)}(f) = \frac{(b-a)}{2}(f(a+H) + f(b-H))$$

$$I^{(2)}(f) = \frac{(b-a)}{3}(2f(a+H) - f(\frac{a+b}{2}) + 2f(b-H))$$

21.6 Code

21.7 Problem

negative Gewichte $\alpha_i \Rightarrow$ Auslöschungsgefah Oszilationen des Lagrange Interpolanten (Runge-Phänomen) $\Rightarrow I^{(n)}(f) \xrightarrow{n \to \infty} I(f)$

21.8 Abhilfe: Summierte Quadraturformeln *

$$I - n^{(n)}(f) = \sum_{i=1}^{N-1} I_{[x_i, x_i+1]}^{(n)}(f)$$
 $h = \frac{b-a}{N}, x_i = a + iH$

21.8.1 Fehlerdarstellung

$$I_{[x_i,x_{i+1}]}(f) - I_{[x_i,x_{i+1}]}^{(n)}(f) = w_n h^{n+2} f^{(m+1)}(\xi_i), \qquad \xi_i \in [a,b]$$

$$m \ge n : I(f) - I_n^{(n)}(f) = w_n h^{(m+1)}(b-a) f^{(m+1)}(\xi)$$

22 Gaußsche Quadraturformeln *

22.1 Gewichtetes Skalarprodukt

$$\langle f, g \rangle_{\omega} = \int_{a}^{b} f(x)g(x)\omega(x)dx, \qquad \omega(x) \ge 0, x \in (a, b)$$

22.2 Gauß-Quadratur

 \exists ! interpolierte Quadraturformel [?] (n + 1) paarweise verschiedene Stützstellen auf [-1, b] mit Ordnung 2n + 2. Stützstellen = Nullstellen

$$\alpha_{i} = \int_{-1}^{1} \prod_{j=0, j \neq i} (\frac{x - \lambda_{j}}{\lambda_{i} - \lambda_{j}})^{2} dx > 0^{2}, \qquad i = 0, ..., n$$

$$f \in C^{2n+2}([-1, 1]) Restglied :$$

$$R^{(n)} = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{-1}^{1} \prod_{j=0}^{n} (x - \lambda_{j})^{2} dx, \qquad \xi \in (-1, 1)$$

22.3 Wahl der Stützstellen

Nullstellen $\lambda_0,...,\lambda_n\in (-1,1)$ des (n + 1)-sten Legendre-Polynomes $L_{n+1}\in P_{n+1}$

22.4 Kongergenz der Gauß-Quadraturen

Sei $I^{(n)}(f)$ die (n + 1) punktige [?] Gauß-Formel zu $I(f) = \int_{-1}^{1} f(x)dx \forall f \in C[-1,1]: I^{(n)}(f) \xrightarrow{n \to \infty} I(f)$

22.5 Code

²Positivität der Gewichte

23 Störungssattz...

23.1 Störungssatz

 $A \in \mathbb{K}^{nxn}$ regulär mit $||\delta A|| \leq \frac{1}{||A^{-1}||},$ dann gilt für die

gestörte Matrix 23.2

 $\tilde{A} = A + \delta A$ ist regulär

Für den relativen Fehler der Lösung gilt mit Konditionszahl von A:

$$cond(A) = ||A|| * ||A^{-1}||$$

$$cond(A) = ||A|| * ||A^{-1}||$$
die Ungleichung:
$$\frac{||\delta_x||}{||x||} \leq \frac{cond(A)}{1-cond(A)\frac{||\delta_A||}{||A||}} \left[\frac{||\delta b||}{||b||} + \frac{||\delta A||}{||A||}\right]$$

24 Lösung von Dreieckssystemen+Aufwand*

24.1 Rückwärtseinsetzen

$$x_{j} = \begin{cases} \frac{b_{n}}{a_{nn}} & j = n\\ \frac{1}{a_{jj}} (b_{j} - \sum_{k=j+1}^{n} a_{jk} x_{k}) & j = n-1, ..., 1 \end{cases}$$

24.2 Vorwärtseinsetzen

$$x_{j} = \begin{cases} \frac{b_{n}}{a_{nn}} & j = n\\ \frac{1}{a_{jj}} (b_{j} - \sum_{k=j+1}^{n} a_{jk} x_{k}) & j = 1, ..., n-1 \end{cases}$$

24.3 Aufwend

$$\sum_{j=1}^{n} j = \frac{(n+1)n}{2} = \frac{n^2}{2} + O(n)$$

25 Gaußsches Eliminationsverfahren...

25.1 Gauß-Elimination

Umformen von Ax = b auf Rx = c, R ist eine rechte obere Dreieck Matrix

25.2 Spaltenpivotisierung

$$|a_{r_{k,k}}^{(k-1)}| = \max_{j=k,\dots,n} |a_{jk}^{(k-1)}|$$

25.3 LR - Zerlegung

Ax = b

$$\begin{pmatrix} 2 & 1 & 7 \\ 8 & 8 & 33 \\ -4 & 10 & 4 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 15 \\ 73 \\ 12 \end{pmatrix} \underbrace{(-4)*}_{2*} \begin{pmatrix} 8 & 8 & 33 \\ 2 & 1 & 7 \\ -4 & 10 & 4 \end{pmatrix} P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Eliminierung
$$\begin{pmatrix} 8 & 8 & 33 \\ 2 & 1 & 7 \\ -4 & 10 & 4 \end{pmatrix} L_1 = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 8 & 8 & 33 \\ 0 & 4 & 5 \\ 0 & 28 & 41 \end{pmatrix} P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 8 & 8 & 33 \\ 0 & 28 & 41 \\ 0 & 4 & 5 \end{pmatrix} L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{7} & 1 \end{pmatrix} \leadsto \begin{pmatrix} 8 & 8 & 33 \\ 0 & 28 & 41 \\ 0 & 0 & 6 \end{pmatrix} = R$$

$$PA = LR \Rightarrow L_2L_1P_2P_1A = F \Rightarrow P_2P_1A = L_1^{-1}L_2^{-1}R, P_2P_1 = P$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$L_2L_1 = (\dot{}\cdot\dot{}\cdot), (L_2L_1)^{-1} = L = ([linkeunteredreiecksmatrix])$$

 $Ax = b \Rightarrow LRx = Pb, Pb = \tilde{b}$
 $\Rightarrow Ly = \tilde{b}, Rx = y$

A regulär + diagonaldominant \Rightarrow A = LR kann ohne Pivot bezeichnet werden

25.4 Code

26 Symmetrisch positiv definite Systeme

26.1 Cholesky-Zerlegung

Jede symmetrische positiv definite Matrix A hat eine sogenannte Cholesky - Zerlegung:

$$A = LDL^{t} = \tilde{L}\tilde{L}^{t}, \ \tilde{L} := LD^{\frac{1}{2}}$$

$$\begin{pmatrix} \tilde{l}_{1,1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ \tilde{l}_{n,1} & \dots & \tilde{l}_{n,n} \end{pmatrix} \begin{pmatrix} \tilde{l}_{1,1} & \dots & \tilde{l}_{n,1} \\ \vdots & \ddots & \vdots \\ 0 & \dots & \tilde{l}_{n,n} \end{pmatrix} = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix}$$

$$i \geq j : a_{i,j} = \sum_{k=1}^{j} \tilde{l}_{i,k} \tilde{l}_{j,k} = \sum_{k=1}^{j-1} \tilde{l}_{i,k} \tilde{j}, k + \tilde{l}_{i,j} \tilde{l}_{j,j}$$

$$i = 1, \dots, n \qquad \tilde{l}_{i,i} = \sqrt{a_{i,i} - \sum_{k=1}^{i-1} \tilde{l}_{i,k}^{2}}$$

$$j = i + 1, \dots, n \qquad \tilde{l}_{i,j} = \frac{1}{\tilde{l}_{i,i}} (a_{i,j} - \sum_{k=1}^{i-1} \tilde{l}_{i,k} \tilde{l}_{j,k})$$

Dandmatrizen: Nullen nicht speichern/berechnen Diagonal-Dominante: keine Pivotisierung notwendig symmetrisch positiv definite: keine Pivotisierung notwending

26.2 Aufwand

$$N_{Cholesky}(n) = \frac{n^3}{6} + O(n^2)$$
 (billiger als A = LR)

26.3 Code

27 Least-Squares-Lösungen, Normalgleichung

$$A \in \mathbb{R}^{m \times n} Ax = b$$

keine Lösung, $b \notin im(A)$
unendlich viele Lösungen $\bar{x} + \delta x \Leftrightarrow A\bar{x} = b, \ \delta x \in ker(A) \neq \{0\}$

27.1 Least-Squares-Lösung

Es existiert immer eine "Lösung" $\bar{x} \in \mathbb{R}^n$ mit kleinsten Fehlerquadraten

27.2 Eindeutigkeit

$$R(A) = n \Leftrightarrow \bar{x} \text{ eindeutig, jede weitere L\"osung: } \bar{x} + y, y \in ker(A)$$

$$Gerade: b = C + Dt \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$

$$\Rightarrow C + x_1 D = y_1$$

$$C + x_2 D = y_2$$

$$C + x_3 D = y_3$$

$$\Rightarrow A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix} x = \begin{bmatrix} C \\ D \end{bmatrix} b = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$1. C = A^t A = [\], b' = A^t b = [\]$$

$$2. Cholesky Zerlegung: G^t G = C \Rightarrow G = [\]$$

$$3. G^t y = b' \Rightarrow y = [\], Gx = y \Rightarrow x = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\Rightarrow Gerade: b = a_1 + a_2 t$$

$$Alternativ: Q^t A = R = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, Gx = y \Rightarrow x = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$R_1 x = \tilde{b}_1 \Rightarrow D = a_1, C = A_2$$

QR-Zerlegung, ... 28

28.1 QR-Zerlegung

$$A \in \mathbb{K}^{m \times n}, Rang(A) = n \le m$$

$$\exists \text{oindowtin hostimato Matrix } Q \in \mathbb{K}^{m \times n} \qquad Q^tQ = En($$

 $\exists \text{eindeutig bestimmte Matrix Q} \in \mathbb{K}^{m \times n} \quad \begin{array}{l} Q^tQ = En(\text{für } \mathbb{K} = \mathbb{R}) \\ \overline{Q}^tQ = En(\text{für } \mathbb{K} = \mathbb{C}) \\ \text{und eindeutig bestimmte obere Dreiecks Matrix } R \in \mathbb{K}^{n \times n} r_{i,i} < 0 \text{ reell,} \\ \end{array}$ s.d.

$$\begin{aligned} \mathbf{A} &= \mathbf{Q}\mathbf{R} & \mathbf{Q} \text{ orthonormale Matrix } (\mathbf{m} = \mathbf{n} \text{ unit"ar}) \ Q^t = Q^{-1} \\ \mathbf{u} &:= \mathbf{v} + \mathfrak{S}||v|| * e_n \\ \mathfrak{S} & \begin{cases} -1 & v_1 < 0 \\ 1 & v_1 > 0 \end{cases} \text{ Householder Matrix } H = E_n - 2\frac{uu^t}{u^t u} \end{aligned}$$

Least-Squares mit Vollrang

$$A = Q_1 R = (Q_1 | Q_2) \quad \binom{R}{0} \quad , \ Q = (Q_1 | Q_2) \in \mathbb{R}^{m \times n}$$

$$Rx = Q^t b \qquad \qquad R = \binom{R}{0} \in \mathbb{R}^{m \times n}$$

$$Rang(A) = n$$

$$||Ax - b||_2^2 = ||Rx - Q_1^t b||_2^2 + ||Q_2^t b||_2^2 \text{ minimal für } x = R^{-1} Q_1^t b$$

28.3 Aufwand

Doppelter Aufwand für QR wie für LR $N_{QR}(n) = \frac{2}{3}n^3 + O(n^2)$

28.4 Code

Householder-Transformation, ... 29

29.1 **Householder Transformation**

$$v \in \mathbb{K}, ||v||_2 = 1$$
$$H = E_n - 2\frac{vv^t}{v^t v}$$

 $H = E_n - 2\frac{vv^t}{v^tv}$ Spiegelung eines Vektors an einer Hyperebene durch Null im euklidischen Raum $H_{\overrightarrow{x}} = x - 2vv^t x$

$$v\overline{v}^t = \begin{pmatrix} v_1\overline{v}_1 & \dots & v_1\overline{v}_n \\ \vdots & \ddots & \vdots \\ v_n\overline{v}_1 & \dots & v_n\overline{v}_n \end{pmatrix}$$

TODO: skizze

Eigenschaften von Householder 29.2

Symmetrisch: $H = H^t$

Orthogonal: $H^tH = E_n$ Involutorisch: $h^2 = E_n$

EW: -1 einfach, 1 (n - 1)-fach

Mantisse-Vektor-Multiplikationen mit Householder sind schnell berechenbar

29.3 Householder-Verfahren

Gruppe numerischer Verfahren zur Bestimmung von Nullstellen einer skalaren, reellen Funktion

Zur Berechnung der QR-Zerlegung

 $S_t A^{(t-1)} = A^{(t)}, S_t$ ist Householder-Transformation

29.4 Ergebnis

QR-Zerlegung von A (aber <u>nicht</u>eindeutig!)

30 Intervallschachtelung/Bisektionsverfahren

30.1 Intervallschachtelung/Bisektionsverfahren

n = 1 Erzeugen einen konvergenten Folge von Intervallschachtelungen $a_0, b_0 \in [a, b]$ mit $f(a_0)f(b_0) < 0$ Konvergenz: $a_k \le a_{k+1} \le b_{k+1} \le b_k$ $b_{k+1} - a_{k+1}| = \frac{1}{2}|b_k - a_k| = 2^{-k-1}|b_0 - a_0|$

30.2 Eigenschaften

sehr stabil, langsam, Erweiterung für $x \in \mathbb{R}^n \vee x \in \mathbb{C}$ nicht möglich

30.3 Code

```
\begin{array}{l} \text{for } k=0,\,1,\,\dots\,\mathrm{do:} \\ x[k]=0.5(a[k]+b[k]) \\ \text{if } f(a[k])f(x[k]) \ ; \, 0; \\ a[k+1]=a[k] \\ b[k+1]=x[k] \\ \text{else:} \\ a[k+1]=x[k] \\ b[k+1]=b[k] \\ \text{if } abs(b[k+1]-a[k+1]) \ ; \, TOL \, abs(a[k+1]); \\ \text{Ende L\"{o}sung:} \, 0.5(b[k+1]+a[k+1]) \end{array}
```

31 Konvergenz interativer Methoden

31.1 Konvergenzordnung

$$\alpha > 1$$

 $|x_{k+1} - x_*| \le C|x_k - x_*|^{\alpha}$ $k = 0, 1, ...$

31.2 Lineare Konvergenz

 $\alpha = 1 \Rightarrow ClineareKontraktionsrate$

31.3 Superlineare Konvergenz

$$|x_{k+1} - x_k| \le C_k |x_k - x_*| \qquad \text{mit } c_k \to 0$$

31.4 Quadratische Konvergenz

$$|x_{k+1} - x_*| \le C|x_k - x_*| \qquad \text{also } \alpha = 2$$

Konvergenz der Ordnung α (quadratische Konvergenz, kubische, etc.) \Rightarrow superlineare Konvergenz \Rightarrow lineare Konvergenz

Newton Verfahren im \mathbb{R}^n **32**

 $x_{k+1} = x_k - j_f(x_k)^{-1} f(x_k)$ $j_f(x_k)^{-1} = \frac{1}{\det(j_f)} * j_f^*, \ j_f^* = \begin{pmatrix} a_{2,2} & -a_{1,2} \\ -a_{2,1} & a_{1,1} \end{pmatrix}$ guter Startwert: superlineare Konvergenz schlechter Startwert³: lineare Konvergenz

32.1 Code

33 Newton-Kantorisch

33.1Voraussetzungen

 $f:x\subset\mathbb{R}^n\to\mathbb{R}^n$ mit f' L-stetig, d.h.

- 1. $||j_f(x) j_f(y)|| \le L||x y||$ 2. $||j_f^{-1}(x)|| \le \beta$ 3. $x_0 \in D_f(x)$ 4. $q := \frac{1}{2}\alpha\beta L$ mit $\alpha = ||j_f^{-1}(x_0)f(x_0)||$ auf der Nieveaumenge D(x) = 0 $y \in D|||f(x)|| \le ||x||$
 - \Rightarrow Dann konvergiert (x_k) quadratisch gegen Nullstelle $z \in D$ von f

33.2 Fehlerabschätzung

$$||x_k - x_*|| \le \frac{\alpha}{1 - q} q^{(2^k - 1)}$$
, $k \ge 1$

34 Sukzessive Approximation *

34.1 Konvergenz

 $g:G\to G[?]$ Kontraktion, \exists Fixpunkt $z\in Gvongx_t\to z,$ q Kontraktionskonstante

$$||x_t - z|| \le \frac{q}{1-q} ||x_t - x_{t-1}| \le \frac{q_t}{1-q} ||x_1 - x_0||$$

34.2 Code

35 Newton-Verfahren für affin - lineares f(x)= Ax - b

35.1 Problem

Direkte Methoden \rightarrow großen Speicheraufwand für große n

36 Fixpunktiteration *, Konvergenzaussage

36.1 Problem

für sehr große n ist Gauß-Elimination zu speicherintensiv

$$Ax = b \Leftrightarrow a_{j,j} * x_j + \sum_{k=1}^n a_{j,k} x_k = b_j$$

36.2 Aufspaltung

$$A = D + L + R$$

$$D = \begin{pmatrix} a_{1,1} & 0 \\ & \ddots & \\ 0 & & a_{n,n} \end{pmatrix} L = \begin{pmatrix} 0 & \dots & 0 & 0 \\ a_{2,1} & \ddots & \dots & \vdots \\ \vdots & \ddots & \dots & \vdots \\ a_{n,1} & \dots & a_{n,n-1} & 0 \end{pmatrix} R = \begin{pmatrix} 0 & a_{1,2} & \dots & a_{1,n} \\ \vdots & \ddots & \dots & \vdots \\ \vdots & \ddots & \dots & a_{n-1,n} \\ 0 & \dots & \dots & 0 \end{pmatrix}$$

 $x_t = Bx_{t-1} + c$, B Iterationsmatrix

36.3 Konvergenz

$$\begin{array}{l} x_t \xrightarrow[t \to \infty]{x} \Rightarrow x = Bx + c \\ x_t \to x \Leftrightarrow spr(B) = max|\lambda||\lambda EWvonB < 1 \\ \text{Asymptotisches Konvergenzverhalten:} \\ \sup_{x_0 \in \mathbb{R}^n} \lim\sup_{t \to \infty} (\frac{||x_t - x||}{x_0 - x})^{\frac{1}{t}} = spr(B) \end{array}$$

36.4 Code

37 Jacobi *, Gauß-Seidel *, SOR *

37.1 Jacobi-Verfahren

$$B = J = -D^{-1}(L + R)$$
 mit $A = D + L + R$

37.2 Gauß-Seidel

$$B = H_1 = -(D+L)^{-1}R$$

37.3 SOR

$$H_w = (D + wL)^{-1}((1 - w)D - wR)$$
 (für w = 1: Gauß-Seidel)

37.4 Konvergenz

für positiv definiti symetrische Matrizen:

- (I) starke/strikte Diagonaldominanz \Rightarrow J/G-S konvergiert
- (II) diagonaldominanz + ireduzibel⁴ \Rightarrow J/G-S konvergiert
- (III) Beachte EW von: $J=-D^{-1}(L+R)$ J konvergiert für spr(J)<1 $H=-(D+L)^{-1}R$ G-S konvergiert für spr(H)<1

37.5 Fehler verringern

Wie viele Iterationsschritte t
 bis Fehler um 10^k verbessert ist?

$$t \ge -\frac{k}{\log_{10} f}$$
 $f = spr(B)$

 $^{^4}$ Knotenmodell

38 Allgemeines Abstiegsverfahren

38.1 Voraussetzung

A symmetrisch positiv definiert $\Rightarrow \langle Ax, y \rangle = \langle x, Ay \rangle, \langle Ax, x \rangle > 0$

38.2 A-Skalarprodukt, A-Norm

$$< x, y>_A = < x, Ay>, ||x||_A = \sqrt{< Ax, y>}$$

A hat nur reelle EW
 $\lambda_{min} := \lambda_1 \le ... \le \lambda_n =: \lambda_{max} \Rightarrow spr(A) = \lambda_{max}, cond_2(A) \frac{\lambda_{max}}{\lambda_{min}}$

38.3 Abstiegsverfahren

Iteratives Verfahren, um lokales Minimum einer Funktion zu finden. In jedem Schritt entlang einer bestimmten Richtung minimieren

38.4 Gradient

 $g_t = Ax_t - b$, Abstiegsrichtung r_t

38.5 Schrittweite

$$\alpha_t = -\frac{\langle g_t, r_t \rangle}{\langle Ar_t, r_t \rangle}$$

38.6 Iteration

 $\begin{aligned} x_{t+1} &= x_t + \alpha_l r_t \\ &\Rightarrow \text{Minimierung von Q minimiert} \\ &\text{Defektnorm } ||A_y - b||_{A^{-1}} \text{ und Fehlernorm } ||y - x||_A \end{aligned}$

38.7 Code

39 Gradientenverfahren

Richtung des steilsten Abstiegs $r_t = -\text{grad } Q(x_t) = -g_t$

39.1 Iteration

$$x_{0} \in \mathbb{R}^{n}, g_{0} = Ax_{0} - b, t \ge 0$$

$$\alpha_{t} = \frac{||g_{t}||^{2}}{\langle Ag_{t}, g_{t} \rangle}$$

$$x_{t+1} = x_{t} - \alpha_{t}g_{t}$$

$$g_{t+1} = g_{t} - \alpha_{t}Ag_{t}$$

$$\langle Ag_{t}, g_{t} \rangle = 0 \Rightarrow g_{t} = 0 \Rightarrow Ax_{t} = b$$

39.2 Konvergenz

A positiv definit symmetrisch \Rightarrow Gradientenverfahren konvergiert $\forall x_0$ gegen Ax = b

39.3 Lemma von Kantorich

$$4 \frac{\lambda_{min} \lambda_{max}}{(\lambda_{min} + \lambda_{max})^2} \le \frac{||<^4||}{< y, Ay > < y, A^{-1}y >}$$

39.4 Fehlerabschätzung

$$\begin{aligned} ||x_t - x||_A &\leq (\frac{1 - K^{-1}}{1 + K^{-1}})^t ||x_0 - x||_a &, t \in \mathbb{N} \\ &\Rightarrow \text{Lagransche Konvergenz für } cond_2(A) >> 1 \end{aligned}$$

40 CG-Verfahren

Effiziente numerische Methode zur Lösung großen LGS mit symmetrisch positiv definitem A

Liefert nach spätestens m
 Schritten die exakte Lösung für $A \in \mathbb{R}^{m \times m}$ für exakte Arithmetik)

Fehler fällt monoton

Wähle Abstiegsrichtung d_t mit $\langle i, d_j \rangle = 0 \forall i \neq j$

$$x_{t} = x_{0} + \sum_{i=0}^{t-1} \alpha_{i} d_{i} \alpha x_{0} + B_{t}$$

$$\Rightarrow x_{t+1} = x_{t} + \alpha_{t} d_{t}$$

$$\alpha_{t} = \frac{||g_{t}||^{2}}{\langle d_{t}, A d_{t} \rangle} \qquad \beta_{t} = \frac{||g_{t}+1||^{2}}{||g_{t}||^{2}}$$

$$x_{t+1} = x_{t} + \alpha_{t} d_{t}$$

$$g_{t+1} = g_{t} + \alpha_{t} A d_{t}$$

$$d_{t+1} = -g_{t+1} + \beta_{t} d_{t}$$

$$d_{0} = g_{0} = b - A x_{0}$$

40.1 Fehlerabschätzung

$$||x_t - x||_A \le 2\left(\frac{1 - \frac{1}{\sqrt{K}}}{1 + \frac{1}{\sqrt{K}}}\right)^t ||x_0 - x||_A \qquad t \in \mathbb{N}$$

$$K = cond_2(A) = \frac{\lambda_{max}}{\lambda_{min}}$$

Reduzierung des Anfangsfehlers: $maxt(\epsilon) \leq \frac{1}{2}\sqrt{K}\ln(\frac{2}{\epsilon}) + 1Schritte$ \Rightarrow CG konvergiert schneller als Gradientenverfahren schneller, je näher $cond_2(A)$ bei 1 liegt, da $cond_2(A) = \frac{\lambda_{max}}{\lambda_{min}}$ aber, falls $\lambda_{max} >> \lambda_{min} \Rightarrow$ CG verfahren langsam Lösung: Vorkonditionierung

Vorkonditionierung **41**

 $\mathbf{A}\mathbf{x}=\mathbf{b}$ umformen in $\tilde{A}\tilde{x}=\tilde{b}$ mit besser konditioniertem $\tilde{A}\mathbf{C}$ symmetrisch positiv definit, K regulär: $C = KK^t$

$$Ax = b \Leftrightarrow K^{-1}A(K^{t})^{-15}K^{t}x^{6} = K^{-1}b^{7}$$

Dann CG anwenden auf $\tilde{A}\tilde{x} = \tilde{b}$

Wähle C so, dass
$$cond_2(\tilde{A}) << cond_2(A)$$

Startwerte: $\tilde{x}_0 \in \mathbb{R}^n$ $\tilde{d}_0 = -\tilde{g}_0 = \tilde{b} - \tilde{A}\tilde{x}_0$

 $g_0 = A_x 0 - b$

$$C_{\rho_{t+1}} = g_{t+1} \quad C_{\rho_0} = g_0 \quad d_0 = -\rho_0$$

 $^{{^5} ilde{A}}^{6 ilde{x}}$

42 Satz von Gerschgorin

Alle EW von A $in\mathbb{K}^{n\times n}$ liegen in den Vereinigung der sogenannten Gerschgorin-Kreise

eise
$$k_{j} = \zeta \in \mathbb{C}||\zeta * a_{j,j}| \leq \sum_{k=1, k \neq j}^{n} |a_{j}k|$$

$$U = \bigcup_{i=1}^{m} k_{j,i}, V = \bigcup_{j=1}^{n} k_{j} \setminus U$$
 Sind $U \cup V = \emptyset \Rightarrow m$ EW in U, n - m in V

43 Stabilitätsatz

$$\begin{split} A \in \mathbb{K}^{n \times n} \text{ mit n linear unabhängig EV, } B \in \mathbb{K}^{n \times n} \\ \Rightarrow \forall \lambda_B \text{ EW von B } \exists \lambda_A \text{ EW von A:} \\ |\lambda_A - \lambda_B| &\leq cond_2(W) ||A - B||_2 \\ W &= (w_1, ..., w_n) \in \mathbb{K}^{n \times n} \text{ EV von A} \end{split}$$

Potenzmethode *, inverse Iteration * 44

Verfahren, um einen (nicht alle) EW zu finden

44.1 Potenzmethode

$$\begin{split} & \zeta \in \mathbb{C}^n \quad ||\zeta_0|| = 0 \quad t \ge 1 \\ & \tilde{\zeta}_t = A_{\zeta_{t_1}} \quad \zeta_t = \frac{\tilde{\zeta}_t}{||\tilde{\zeta}||_t} \quad \lambda_t := \frac{\tilde{\zeta}_t^t}{\zeta_k^t} \quad \zeta_\zeta^t \ne 0 \end{split}$$

Rayleigh-Quotient 44.2

A diagonalisierbar mit
$$|\lambda_n| > |\lambda_i|$$

$$\lambda_t = \frac{\langle \zeta_t, A\zeta_t \rangle_2}{\langle \zeta_t, \zeta_t \rangle_2}$$

44.3 **Inverse Iteration**

1.
$$q_k = \frac{x_{k-1}}{\|x_{k-1}\|}$$

A quadratisch
$$x_0 \in \mathbb{R}^n$$
, $\theta \in \mathbb{R}$ s.d.:
1. $q_k = \frac{x_{k-1}}{||x_{k-1}||}$
2. Löse $(A - \theta E n)x_k = q_k$ $(A - \theta E n)$ regulär

EW ergibt sich mit Rayleigh-Quadratur: $\lambda_k = \frac{x_k^t A x_k}{x_k^t x_k}$

45 Hessenberg-Normalform

 $\forall A \in \mathbb{R}^{n \times n} \exists$ Folge T_i von Householder-Matrizen, so dass: i=1, ..., n-2 TAT^t Hessenberg-Matrix ist

45.1 Hessengerg-Matrix

$$H \in \mathbb{C}^{n \times n} \text{ mit } h_{i,j} = 0 \forall i > j+1$$

$$\begin{pmatrix} h_{1,1} & \dots & \dots & h_{1,n} \\ h_{2,1} & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & h_{n,n-1} & h_{n,n} \end{pmatrix}$$
alla Firttöra untarkalla dar austan la

alle Einträge unterhalb der ersten Nebendiagonalen sind 0 (obere H-Matrix) analog definiert man untere H-Matrix

sowohl obere als auch untere H-Matrix

 \Rightarrow Tridiagonalmatrix

46 QR-Verfahren

Berechnung aller EW einer quadratischen Matrix $A_1 = A \in \mathbb{K}^{n \times n}$ $A_t = Q_t R_t \to A_{t+1} = R_t * Q_t = Q_{t+1} * R_{t+1} \to \cdots \to A_{t+n}$ Diagonalmatrix für die im QR-Verfahren erzeugten Matrix A_t gilt: $\{\lim_{t \to \infty} a_{j,j}^{(t)} | j=1,...,n\} = \{\lambda_1,...,\lambda_n\}$