Sales Prediction Hacking Process - Approach Notes

Objective

To minimize RMSE in predicting (Item_Outlet_Sales) using advanced feature engineering and multiple regression models (Linear, Polynomial, Random Forest, XGBoost).

Baseline Models

Without feature engineering, models quickly saturated:

• XGBoost RMSE: 1089

• Linear Regression RMSE: 1212

Polynomial Regression RMSE: 1090

• Random Forest RMSE: 1132

Observation: Baseline models could not capture complex item-outlet interactions.

Feature Engineering Process

Feature engineering was done iteratively, using domain knowledge and experimental tuning. Each feature was added, tested, and refined based on RMSE reduction.

1. Item_Sales_Frequency

Goal: Capture item popularity relative to outlet age, price, visibility, and weight.

Formulas:

Trial 1:

```
Item_Sales_Frequency = (Outlet_Age × (Item_MRP - Item_Visibility)) / (Item_Weight + 1)
```

Trial 2:

```
Item_Sales_Frequency = log(1 + Outlet_Age) × (Item_MRP / (Item_Weight + 1)) × Item_Popularity
```

Trial 3 (Best - Polynomial Regression RMSE: 1038.26):

```
Item\_Sales\_Frequency = log(1 + Outlet\_Age) \times ((Item\_MRP - mean(Item\_MRP)) / (std(Item\_MRP) + 1)) \times (Item\_Popularity + 0.01)
```

Explanation: Combines outlet age effect, standardized price, and item popularity with smoothing to prevent zero-frequency bias.

2. Customer_Outlet_Preference

Goal: Model customer preference for outlet types based on item price, visibility, and outlet popularity.

Final Formula (Polynomial Regression RMSE: 1038.26):

```
\label{eq:customer_Outlet_Preference} $$ = \sqrt{(Item\_MRP / median\_MRP)} \times (1 / (1 + log(1 + Item\_Visibility))) \times (Outlet\_Type\_Percentage / Outlet\_Location\_Type) $$
```

Explanation: This feature captures the relationship between item pricing relative to market median, adjusted for visibility effects, and weighted by outlet type preferences in different location categories.

Key Insights

- 1. **Feature Engineering Impact:** Advanced feature engineering reduced RMSE from ~1089-1212 to 1038.26, representing a significant improvement in prediction accuracy.
- 2. **Iterative Refinement:** Multiple trials of feature formulation were necessary to achieve optimal performance, with Trial 3 of Item_Sales_Frequency providing the best results.
- 3. **Domain Knowledge Integration:** Successful features incorporated business logic around outlet age, item popularity, price positioning, and customer preferences.
- 4. **Model Performance:** Polynomial Regression emerged as the best-performing model with the engineered features, achieving RMSE of 1038.26.

Technical Notes

- All features included appropriate smoothing terms (e.g., +0.01, +1) to prevent division by zero and extreme values
- Standardization was applied where necessary to ensure feature stability
- Logarithmic transformations were used to handle skewed distributions and reduce the impact of outliers

Document generated for Sales Prediction Model Development Process