Solution for Exercise sheet 11

Yikai Teng, You Zhou

Exercise session: Thu. 8-10

Exercise 11.1

- (i) We make two claims: Let $i \leq m$ and $j \leq n$, $\alpha \colon [k] \to [i]$ and $\beta \colon [k] \to [j]$ be two surjective weakly monotone maps. Then
 - 1. If k > m + n, then α and β can always both factor through one weakly monotone surjection γ : $[k] \to [m+n]$.
 - 2. If k = m + n, then there exist i, j and α, β as above such that for every p < m + n and every $\gamma : [k] \to [p]$, it is impossible that α and β both factor through γ .

We show that it suffices to prove these two claims. Suppose that our claims hold and X and Y be m and n-dimensional simplicial sets, respectively. On one hand, for every k > m + n and $(x, y) \in X_k \times Y_k$, we can write $x = \alpha^*(x')$ and $y = \beta^*(y')$, where $\alpha \colon [k] \to [i]$ and $\beta \colon [k] \to [j]$ are weakly monotone surjections with $i \le m$ and $j \le n$. By the first claim, we can write $\alpha = \alpha' \circ \gamma$ and $\beta = \beta' \circ \gamma$ with $\gamma \colon [k] \to [m+n]$ weakly monotone and surjective. Then $(x, y) = \gamma^*(\alpha'^*(x'), \beta'^*(y'))$ is degenerate. On the other hand, let α and β be as in the second claim. Consider $(\alpha^*(x), \beta^*(y)) \in X_{m+n} \times Y_{m+n}$ with $x = X_m$ and $y \in Y_n$ both non-degenerate. If $(x, y) = (\gamma^*(x'), \gamma^*(y'))$, then by the uniqueness of minimal representative of a simplex proven in the lecture, we must have factorizations $\alpha = \alpha' \circ \gamma$ and $\beta = \beta' \circ \gamma$, which is impossible by our second claim.

Now we prove the claims, which are purely combinatoric problems. Consider the following model: Put k+1 balls in one row. There are k spaces between adjacent balls. Giving a weakly monotone surjection $\alpha \colon [k] \to [i]$ is equivalent to putting i bars in the spaces to separate the balls into i+1 groups. Surjection means that we cannot put several bars in one space. (Then numbers in [k] corresponding to balls in the l-th group are mapped by α to l.) For the first claim, to say that $\alpha \colon [k] \to [i]$ and $\beta \colon [k] \to [j]$ both factor through one weakly monotone surjection $\gamma \colon [k] \to [m+n]$ is equivalent to say that after putting i+j bars in the spaces, we can still add some bars (this "some" can be 0) in some spaces to separate the k balls into m+n+1 groups. Since k>m+n and $i+j\leq m+n$, this is always achievable. This proves the first claim.

For the second claim, let i = m and j = n, $\alpha : [m+n] \to [m]$ be the unique surjection such that $\alpha(m) = m$ and $\beta : [m+n] \to [n]$ be the unique surjection such that $\beta(m) = 0$. In our model, given such α and β is equivalent to having exactly one bar in each of the m+n spaces between m+n+1 balls. It is then impossible to add any bar to separate the balls into p groups for p < m+n. So this proves the second claim.

- (ii) When n=0 we can show by hand that the only non-degenerate element of $\Delta_1^0 \times \Delta_1^1$ is $(\mathrm{id}_{[0]},\mathrm{id}_{[1]})$. So then assume $n \geq 1$. For $m \leq n+1$, giving a non-degenerate pair $(f,g) \in \Delta_m^n \times \Delta_m^1$ is equivalent to using n red bars and 1 blue bar to fill in the m spaces between m+1 adjacent balls such that in each space there is at least one bar. This means that a non-degenerate m-simplex of $\Delta^n \times \Delta^1$ is a pair $(f,g) \colon [m] \to [n] \times [1]$ such that for every $k \in \{0, 1, \ldots, m\}$ exactly one of the following three conditions hold (for simplicity assume that f(-1) = g(-1) = -1 and f(n+1) = g(2) = n+1)
 - 1. f(k-1) < f(k) < f(k+1) (i.e. the k-th ball is between 2 red bars)
 - 2. f(k) < f(k+1) and g(k-1) < g(k) (i.e. the k-th ball is on the left of a red bar and right of the blue bar)
 - 3. f(k-1) < f(k) and g(k) < g(k+1) (i.e. the k-th ball is on the right of a red bar and left of the blue bar)

In particular, when m = n + 1, the place of the blue bar uniquely determines the places for the red bars and there are n + 1 available places for the blue bar, so there are n + 1 non-degenerate (n + 1)-simplicies.