The Weiner process is a Gaussian process with mean zero and a non-stationary covariance function $k_w(x, x') = \min(x, x')$, which is defined for $x \ge 0$. Notice that for $x_* = 0$, $\bar{f}_* = 0$ by our prior and $\mathbb{V}[f_*] = k_w(0, 0) = 0$, so the Weiner process always has f(0) = 0.

The Brownian bridge (or *tied-down Weiner process*) is a Weiner process that passes through f(1) = 0. We obtain its equations by conditioning the Weiner process on this.

We have

$$\bar{f}_* = k_w(x_*, x)((k_w(x, x))^{-1}y = 0$$

by equation (2.25) in the book, since x = 1 and y = 0.

We also have

$$\operatorname{cov}(\mathbf{f}_*) = k_w(\mathbf{x}_*^\top, \mathbf{x}_*^\top) - k_w(\mathbf{x}_*^\top, x)(k_w(x, x))^{-1}k_w(x, \mathbf{x}_*^\top)$$
$$= k_w(\mathbf{x}_*^\top, \mathbf{x}_*^\top) - k_w(\mathbf{x}_*^\top, 1)k_w(1, \mathbf{x}_*^\top)$$

by equation (2.24). Note that \mathbf{x}_* is a vector of n_* 1-dimensional test points and \mathbf{k} is a vector of n_* evaluations of the test points against the one training point.

We can use this covariance to define a kernel

$$k_b(x, x') = \cos(f(x), f(x'))$$

= $k_w(x, x') - k_w(x, 1)k_w(1, x')$
= $\min(x, x') - \min(x, 1)\min(x', 1)$.

For
$$0 \le x, x' \le 1$$
,

$$k_b(x, x') = \min(x, x') - xx'.$$

The Brownian bridge is thus a Gaussian process with mean 0 and covariance $k_b(x, x') = \min(x, x') - xx'$.

A computer program that draws samples from this process at a finite grid of points in [0,1] is included in the repository.