The Abelian Hidden Subgroup Problem

Clayton W. Seitz

April 27, 2023

Introduction

Dimension of *n*-qubit Hilbert space $N=2^n$

The quantum fourier transform (QFT) transforms a quantum state $|\psi\rangle \to |\phi\rangle$ via the transformation of basis states:

$$\text{QFT} \ket{j} = \frac{1}{2^{n/2}} \sum_{k=1}^{2^n} e^{2\pi i j k/2^n} \ket{k}$$

Equivalently, on the state $|\psi\rangle = \sum_{i} \psi_{j} |j\rangle$ reads

$$\operatorname{QFT} |\psi\rangle = |\phi\rangle = \frac{1}{2^{n/2}} \sum_{j=1}^{2^n} \psi_j \left(\sum_{k=1}^{2^n} e^{2\pi i j k/2^n} |k\rangle \right)$$

which turns out to be a unitary transformation

Clayton W. Seitz

Product representation of the QFT

Computational basis ket $|j\rangle = |j_1j_2...j_n\rangle$

Fourier basis ket $|k\rangle = |k_1 k_2 ... k_n\rangle$

Converting k to binary: $k = \sum_{l} k_{l} 2^{l}$

Also, note that $|k\rangle = |k_1k_2...k_n\rangle = \bigotimes_{l=1}^n |k_l\rangle$

Product representation of the QFT

$$QFT |j\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^{n-1}} e^{2\pi i j k/2^{n}} |k\rangle
= \frac{1}{2^{n/2}} \sum_{k=0}^{2^{n-1}} e^{2\pi i j \sum_{l} k_{l} 2^{-l}} \bigotimes_{l=1}^{n} |k_{l}\rangle
= \frac{1}{2^{n/2}} \sum_{k=0}^{2^{n-1}} \bigotimes_{l=1}^{n} e^{2\pi i j k_{l} 2^{-l}} |k_{l}\rangle
= \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \sum_{k_{l}=0}^{1} e^{2\pi i j k_{l} 2^{-l}} |k_{l}\rangle
= \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \left(|0\rangle + e^{2\pi i j 2^{-l}} |1\rangle \right)$$

Clayton W. Seitz

Phase estimation of a unitary operator

An important module in many quantum algorithms that uses QFT

Consider an eigenvector $|u\rangle$ of a Unitary operator U. Its eigenvalue can be written as $u=e^{2\pi i\theta}$

$$U|u\rangle = u|u\rangle = e^{2\pi i\theta}|u\rangle$$

The Hidden Subgroup Problem

Let G be a group and X a finite set and $f: G \to X$ a function that *hides* a subgroup $H \leq G$. The problem is to determine a generating set for H

Simon's problem. Given a 2-1 function $f:\{0,1\}^n \to \{0,1\}^n$ such that there is a secret string $s \in \{0,1\}^n$ where f(x) = f(y) if and only if $x \oplus y = s$. Equivalently $f(x) = f(y) = f(x \oplus y)$ which gives the periodicity of f

The function f is a black box. Clasically you would solve the problem by drawing pairs x, y and checking if f(x) = f(y). If they match, you can obviously retrieve $s = x \oplus y$

Clasically the problem scales as $\mathcal{O}(2^{n/2})$ but we Simon designed a quantum algorithm that scales as $\mathcal{O}(n)$.

Bell's Inequality Clayton W. Seitz

The standard solution to the HSP

The first register in Simon's algorithm is a uniform superposition over all possible input strings x. The second register are ancillary bits that will store f(x). We assume we have some oracle function U_f which will compute and store f(x) in the ancillary bits

$$|\psi\rangle = H^{\otimes n} |0^n\rangle = \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x\rangle$$

As in the standard solution, the oracle function then does

$$O_f(\ket{\psi}\ket{0^m}) = \frac{1}{2^{n/2}} \sum_{\mathbf{x} \in \{0,1\}^n} \ket{\mathbf{x}} \ket{f(\mathbf{x})}$$

Then we measure the second register which collapses the system to a superposition of the two inputs that map to our measured output $|f(a)\rangle$

$$\frac{1}{2^{n/2}}\sum_{x\in\{0,1\}^n}|x\rangle\,|f(x)\rangle\to\big(|a\rangle+|a\oplus s\rangle\big)\otimes|f(a)\rangle$$

Bell's Inequality Clayton W. Seitz

The standard solution to the HSP

Essentially when we measure the second register we end up with an equal superposition of x and $x \oplus s$. But how do we use that superposition to actually find s?