Tutorial 3

1. Show that Cauchy Riemann equation take the form:

$$u_r = \frac{1}{r}v_\theta$$
 and $v_r = -\frac{1}{r}u_\theta$

in polar coordinates.

- 2. Prove Cauchy's theorem assuming Cauchy integral formula.
- 3. Let γ be the boundary of the triangle $\{0 < y < 1-x;\ 0 \le x \le 1\}$ taken with the anticlockwise orientation. Evaluate:
- a) $\int_{\gamma} Re(z)dz$ b) $\int_{\gamma} z^2 dz$
- 4. Compute $\int_{|z-1|=1}^{\infty} \frac{2z-1}{z^2-1} dz$
- 5. Show that if γ is a simple closed curve traced counter clockwise, the integral $\int_{\gamma} \bar{z} dz$ equals $2i Area(\gamma)$. Evaluate $\int_{\gamma} \bar{z}^m dz$ over a circle γ centered at the origin.
- 6. Let $\mathbb{H} = \{z \in \mathbb{C} | Re(z) > 0\}$ be the (strict) open right half plane. Construct a function f which is holomorphic on \mathbb{H} and such that $f(\frac{1}{n}) = 0$ for $n \in \mathbb{N}$.
- 7. Let f be a holomorphic function on \mathbb{C} such that $f(\frac{1}{n}) = 0$ for $n \in \mathbb{N}$. Show that f is a constant.
- 8. Expand $\frac{1+z}{1+2z^2}$ into a power series around 0. Find the radius of convergence.