PENDING CLAIMS:

1	1. (previously amended) A process of aligning and connecting at least one
2	C	optical fiber to at least one optoelectronic device to facilitate the coupling of
3	1	ight between at least one optical fiber and at least one optoelectronic device,
4	C	comprising the steps of:
5	position	ing at least one optical element in a position relative to at least one
6		optoelectronic device in such a manner that when the device and element are in
7	á	a position proximate to each other, they would be in optical alignment, wherein
8	t	the at least one optoelectronic device is an array of vertical cavity surface
9	•	emitting lasers;
10	depositi	ng a first non-opaque material on the first end of at least one optoelectronic
11	(device; and
12	fixating	the first end of at least one optical element proximate to the first end of at
13	1	least one optoelectronic device in such a manner that the first non-opaque
14	1	material contacts the first end of at least one optoelectronic device and the first
15	•	end of at least one optical element.
1	2 3.	(previously canceled)
1	4.	(previously amended) A process as in claim 1, wherein the vertical cavity
2	;	surface emitting laser is an oxide vertical cavity surface emitting laser.
1	5.	(original) A process as in claim 1, wherein at least one optoelectronic device is
2		a photo-detector.
-		
1	6.	(original) A process according to claim 1, wherein the first non-opaque
2		material comprises an adhesive.

1	7.	(original) A process according to claim 6, wherein the first non-opaque
2		material comprises an UV optical adhesive.
1	8.	(original) A process according to claim 1, wherein the first non-opaque
2		material functions to provide an optical path.
1	9.	(original) A process according to claim 1, wherein the first non-opaque
2		material functions to provide mechanical stability.
1	10.	(original) A process according to claim 1, wherein the first non-opaque
2		material comprises a gel.
1	11.	(original) A process according to claim 1, wherein the at least one optical
2		element is included in an array of optical elements.
1	12.	(original) A process according to claim 1, wherein at least one optical element
2		is an optical fiber.
1	13.	(original) A process according to claim 1, wherein at least one optical element
2		is a MT-type connector.
1	14.	(original) A process according to claim 1, wherein at least one optical element
2		is a ferrule.
1	15.	(original) A process according to claim 14, wherein at least one optical
2		element is a MT-like ferrule.
1	16.	(original) A process according to claim 1, wherein at least one optical element
2		is a lenslet array.

PALOALTO 38151 (2K) -3-

1	17 .	(original) A process according to claim 1, wherein at least one optical element
2		is a diffractive optical element.
1	18 1	02. (previously canceled).
1	103.	(previously amended) A process of aligning and connecting at least one
2		optical fiber to at least one optoelectronic device to facilitate the coupling of
3		light between at least one optical fiber and at least one optoelectronic device,
4		comprising the steps of:
5	a) hol	ding at least one optical element at the end of a first member of an alignment
6		system, and holding at least one optoelectronic device on a second member of
7		the alignment system, wherein the at least one optoelectronic device is an array
8		of vertical cavity surface emitting lasers;
9	b) vis	ually locating a target associated with at least one optoelectronic device;
10	c) illu	minating at least one optical element with a light so that at least one optical
1		element emits optical energy onto at least one optoelectronic device;
12	d) cha	inging the relative positions of the optical energy and target so that the optical
13		energy is visually aligned with the target, and
14	e) brii	nging the first end of at least one optical element proximate to a first end of at
15		least one optoelectronic device in such a manner that a gap exists between the
16		first end of at least one optoelectronic device and the first end of at least one
17		optical element.
1	104.	(original) A process according to claim 103, wherein visually locating a target
2		comprises employing human vision and a microscope.
1	105.	(original) A process according to claim 103, wherein visually locating a target
2		comprises employing machine vision.

PALOALTO 38151 (2K) -4-

1 2 3	106.	original) A process according to claim 103, wherein visually aligning the optical energy with the target comprises employing human vision and a microscope.
1	107.	(original) A process according to claim 103, wherein visually aligning the
2		optical energy with the target comprises employing machine vision.
1	108. –	109. (previously canceled).
1	110.	(original) An process as in claim 103, wherein the vertical cavity surface
2		emitting laser is an oxide vertical cavity surface emitting laser.
1	111.	(original) An process as in claim 103, wherein the optoelectronic device is a
2		photo-detector.
1	112.	(original) A process according to claim 103, wherein a side-view camera and a
2		video-image-measuring system are used to bring the first end of at least one
3		optical element proximate to the first end of at least one optoelectronic device.
1	113.	(original) A process according to claim 103, wherein laser triangulation is
2		used to bring the first end of at least one optical element proximate to the first
3		end of at least one optoelectronic device.
1	114.	(original) A process according to claim 103, wherein interference microscopy
2		is used to bring the first end of at least one optical element proximate to the
3		first end of at least one optoelectronic device.
1	115.	(original) A process according to claim 103, wherein the first member of an
2		alignment system is a high precision arm.

PALOALTO 38151 (2K) -5-

1	116.	(original) A process according to claim 103, wherein the second member of an
2		alignment system is a high precision stage.
1	117.	(original) A process according to claim 103, wherein at least one optical
2		element is an array of optical fibers.
1	118.	(original) A process according to claim 103, wherein at least one optical
2		element is an array of optical fibers.
1	119.	(original) A process according to claim 103, wherein the optical element is an
2		optical fiber.
1	120.	(original) A process according to claim 103, wherein the optical element is a
2		MT type connector.
1	121.	(original) A process according to claim 103, wherein the optical element is a
2		ferrule.
1	122.	(original) A process according to claim 103, wherein the optical element is a
2		MT-like ferrule.
1	123. ((original) A process according to claim 103, wherein the optical element is a
2		lenslet array.
1	124.	(original) A process according to claim 103, wherein the optical element is a
2		diffractive optical element.
1	125	136. (previously canceled)

PALOALTO 38151 (2K) -6-

1	137.	(original) A process according to claim 1, wherein the positioning at least one
2		optical element in a position relative to at least one optoelectronic device
3		includes aligning 12 optical fibers relative to an optoelectronic device.
1	138.	(previously canceled)
1	139.	(previously added) A method of aligning and connecting at least one optical
2		element to at least one optoelectronic device comprising:
3	positio	oning at least one optical element in a position relative to at least one
4		optoelectronic device in such a manner that when the device and element are in
5		a position proximate to each other, they would be in optical alignment, wherein
6		the at least one optoelectronic device is an array of photo-detectors;
7	deposi	ting a first non-opaque material on the first end of at least one optoelectronic
8		device; and
9	fixatin	g the first end of at least one optical element proximate to the first end of at
10		least one optoelectronic device in such a manner that the first non-opaque
11		material contacts the first end of at least one optoelectronic device and the first
12		end of at least one optical element.
1	140.	(previously added) The method of claim 139, wherein the first non-opaque
1 2	140.	material comprises an adhesive.
2		material comprises an aunesive.
1	141.	(previously added) The method of claim 139, wherein the first non-opaque
2		material comprises an UV optical adhesive.
1	142.	(previously added) The method of claim 139, wherein the first non-opaque
2		material functions to provide an optical path.
		• • •