Министерство науки и высшего образования российской федерации Федеральное государственное автономное образовательное учреждение высшего образования

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет	Программной Инженерии и Компьютерной Техники	
Направление подготовки (специальность)	Компьютерные технологии в дизайне	
Дисциплина	Компьютерные сети	

ЛАБОРАТОРНАЯ РАБОТА 1

ОТЧЕТ

Выполнил студент: Хоанг Ван Куан (345124)

Группа: Р3366

Преподаватель: Болдырева Елена Александровна (157150)

Содержание

ТЕКСТ ЗАДАНИЯ	3
ОТЧЕТ О ХОДЕ ВЫПОЛНЕНИЯ	3
ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ	13
ЗАКЛЮЧЕНИЕ	20

ТЕКСТ ЗАДАНИЯ

Цель работы: познакомиться с интерфейсом симулятора, изучить режим реального времени, основные операции с устройствами.

Программа работы:

- 1. Создание топологии сети;
- 2. Добавление конечных узлов;
- 3. Подключение к конечным узлам сетевых устройств;
- 4. Настройка IP-адресов и масок сети на узлах;
- 5. Проверка работы сети в режиме реального времени;
- 6. Разбор простых протоколов низких уровней

ОТЧЕТ О ХОДЕ ВЫПОЛНЕНИЯ

1. Построение топологии сети

Загрузим и запускаем Cisco Packet Tracer.

Выбираем необходимые устройства и соединения.

Рисунок 1.1: Виды устройств и соединений

- 4 компьютера (РС).
- 1 концентратор (Hub-PT).
- 1 коммутатор (Switch-2950-24).

Расположим устройства на рабочей области (Workspace).

Рисунок 1.2: Рабочая область "Workspace"

2. Добавление конечных узлов

Один клик по конечным устройствам

Рисунок 2.1: Виды конечных устройств

Один клик по выбранному устройству – РС

Рисунок 2.1: Выбор конечного устройства

С помощью мыши перетащите 4 РС в рабочее пространство.

Рисунок 2.3: Четыре ПК

3. Подключение к конечным узлам сетевых устройств

Выбираем группу устройств концентраторы (Hubs), из этой группы берем первую модель (Hub-PT).

Рисунок 3.1: Рабочая область "Hubs" Разместим концентратор между PC0 и PC1

Рисунок 3.2: Четыре ПК и Ниь1

Выбираем группу коммутаторы (Switches), из этой группы берем первую модель (Switch-2950-24).

Рисунок 3.3: Рабочая область "Switches"

Разместим коммутатор между РС2 и РС3

Рисунок 3.4: Четыре ПК, Hub1 и Switch

Подключим концентратор к PC0 и PC1. Персональные компьютеры и концентраторы — это не одно и то же устройство, мы используем "Copper Straight-Through".

Рисунок 3.5: Рабочая область "Connections"

Один раз щелкним мышью на PC0, потом выберим тип интерфейса FastEthernet

Рисунок 3.6: Подключение к порту ПК Нажмим на Hub0 один раз и выберите порт 0

Рисунок 3.7: Подключение порта концентратора Аналогично для поключения PC1 к концентратору

Рисунок 3.8: После подключения Hub1 к PC0 и PC1

Далле, подключим PC2 и PC3 к коммутатору Switch-2950-24

Один раз щелкним мышью на PC2, потом выберим тип интерфейса FastEthernet

Рисунок 3.9: Подключение к порту ПК Нажмим один раз на Switch0 и выберим FastEthernet0/1

Рисунок 3.10: Подключение коммутатора

Аналогично для поключения PC3 к коммутатору, выбрав один из его интерфейсов FastEthernet0/2

Рисунок 3.11: После подключения Switch3 к РС2 и РС3 Соединим Hub0 и Switch0 с помощью кроссового кабеля (Crossover Cable).

Рисунок 3.12: Рабочая область "Connections"

Рисунок 3.13: Топология построенной сети

Проверим индикаторы подключения:

- Зеленый соединение успешно
- Красный или желтый проверить подключение

4. Настройка IP-адресов и масок сети на узлах

Щелкните мышью один раз на PC0. Откроется окно свойств конечного узла на вкладке Physical

 $Pисунок \ 4.1: \ B$ кладка $Physical \$ конечного устройства (компьютера) Нажмим на Config \rightarrow FastEthernet

Рисунок 4.2: Таблица настройки РС0

Введим конфигурацию сети, включая «IP-адрес» и «Маску подсети»

Рисунок 4.3: Таблица ввода IP-адреса и маски Аналогично с другими компьютерами.

Хост	ІР-адрес	Маска подсети
PC0	192.168.1.10	255.255.255.0
PC1	192.168.1.11	255.255.255.0
PC2	192.168.1.12	255.255.255.0
PC3	192.168.1.13	255.255.255.0

Получается построенная схема

Рисунок 4.4: Топология построенной сети

Установим имя компьютера с соответствующим IP-адресом.

Рисунок 4.5: Топология построенной сети с присвоенными адресами

5. Проверка работы сети в режиме реального времени;

Убедившись, что мы нахожумся в режиме реального времени

Рисунок 5.1: Панель инструментов "реального времени" Сформируем простой пакет ping-запроса для проверки работы сети,

воспользовавшись Add Simple PDU. Нажим на Add Simple PDU.

Выбраем два узла: источник и приемник ping-запроса. Наведим курсор на PC0 (192.168.1.10) и щелкним на нем мышью (источник ping-запроса), затем переместим курсор на PC3 (192.168.1.13)

Получается результат: Succesful

Рисунок 5.2: Панель статуса успешного запроса

Изменим IP-адрес 192.168.1.13 узла PC3 на IP-адрес 192.168.2.13, с той же маской подсети 255.255.255.0, подтверждение смены и успешного подключения (зеленый сигнал) показан на рисунке 4.

Рисунок 5.3: Устройство с измененным адресом и успешным подключением

Получается результат: Failed. так как ПК находятся в разных сетях и между ними нет маршрутизатора

				_				
							Realti	me
Fire	Last Status	Source	Destination	Туре	Color	Time (sec)	Periodic	Num
•	Successful	PC0 - 192.168.1.10	PC3 - 192.168.2.13	ICMP		0.000	N	0
•	Failed	PC0 - 192.168.1.10	PC3 - 192.168.2.13	ICMP		0.000	N	1
_							_	

Рисунок 5.4: Панель статуса непрошедшего запроса

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ

Вариант: 345124 => IP-адрес: 192.90.124.*.

Номер компьютера в локальной сети: 192.168.5.116

Создаем следующую топологию сети, состоящую из конечных узлов (РС), коммутаторов и маршрутизатора:

На устройствах PC0-PC4 установим заданные IP-адреса и маску подсети

Хост	ІР-адрес	Маска подсети
PC0	192.90.124.116	255.255.255.0
PC1	192. 90.124.117	255.255.255.0
PC2	192. 90.124.118	255.255.255.0
PC3	192. 90.124.119	255.255.255.0
PC4	192. 90.124.120	255.255.255.0

На устройствах РС5-РС7 установим заданные ІР-адреса и маску подсети

Хост	ІР-адрес	Маска подсети
PC5	191.90.124.116	255.255.255.0
PC6	191. 90.124.117	255.255.255.0
PC7	191. 90.124.118	255.255.255.0

Рис. 1: Схема компьютерной сети

Один клик по устройству. Выбираем вкладку "Config" → FastEthernet0/0

Рис. 2: Настройка интерфейса марирутизатора

Зеленые индикаторы состояния на линии связи между Router0 и Switch0 сигнализируют, что интерфейс подключен правильно

PC-PT 192.90.124.117 192.90.124.117 PC-PT 192.90.124.118 PC-PT 192.90.124.119 PC-PT 192.90.124.119

Рис. 3: Вид рабочей области

Аналогично производим настройку интерфейса FastEthernet0/1

Рис. 4: Настройка интерфейса маршрутизатора

Кликним на иконку симуляции в правом нижнем углу рабочей области

симулятора Simulation

Откроемся окно событий, в котором увидим список событий, управляющие кнопки, заданные фильтры

Нажимаем на кнопку "Edit Filters" → "Show All/None" → ARP и ICMP

Рис. 6: Добавление фильтров на протоколы ARP и ICMP

1. Посылка ping-запроса во внутреннюю сеть

Отправим тестовый ping-запрос с конечного узла с IP-адресом 192.90.124.116 на хост с IP-адресом 192.90.124.118

- Один клик по выбранному устройству 192.90.124.116
- Выбираем вкладку Desktop, в которой содержатся симуляторы некоторых программ, доступных на компьютере

• Выбираем "Command Prompt", программу, имитирующую командную строку компьютера.

• С помощью утилиты ping отправляем ping-запрос

Рис. 7: Вид рабочей области

Нажимаем на кнопку "Auto Capture/play" или "Capture/Forward", последняя позволит управлять движением пакетов от устройства к устройству самим.

Рис. 8: Вид рабочей области

```
Packet Tracer PC Command Line 1.0
PC>ping 192.90.124.118 with 32 bytes of data:

Reply from 192.90.124.118: bytes=32 time=111ms TTL=128
Reply from 192.90.124.118: bytes=32 time=63ms TTL=128
Reply from 192.90.124.118: bytes=32 time=63ms TTL=128
Reply from 192.90.124.118: bytes=32 time=4ms TTL=128
Reply from 192.90.124.118: bytes=32 time=4ms TTL=128

Ping statistics for 192.90.124.118:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 4ms, Maximum = 111ms, Average = 45ms
```

Puc. 9: Вывод программы ping

Рис. 9: Окно событий режима симуляции

2. <u>Посылка ping-запроса во внешнюю сеть</u>

Отправим тестовый ping-запрос с конечного узла с IP-адресом 192.90.124.117 на хост с IP-адресом 191.90.124.118

Открываем "Command Promt", имитирующую командную строку, на компьютере 192.90.124.117 и посылаем на хост 191.90.124.118 ping-запрос

Рис. 10: Командная строка узла 192.90.124.117

Рис. 11.1: Вид рабочей области

Рис. 11.2: Вид рабочей области

Рис. 11.3: Вид рабочей области

```
Command Prompt

Packet Tracer PC Command Line 1.0
PC>ping 191.90.124.118

Pinging 191.90.124.118 with 32 bytes of data:

Request timed out.
Reply from 191.90.124.118: bytes=32 time=8ms TTL=127
Reply from 191.90.124.118: bytes=32 time=8ms TTL=127
Reply from 191.90.124.118: bytes=32 time=8ms TTL=127

Ping statistics for 191.90.124.118: bytes=32 time=8ms TTL=127

Ping statistics for 191.90.124.118:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
Minimum = 8ms, Maximum = 8ms, Average = 8ms
```

Рис. 12: Вывод программы ріпд

Рис. 13: Окно событий режима симуляции

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы было установлено, что передача данных внутри одной локальной сети осуществляется успешно. Это подтверждает корректную работу коммутатора, который пересылает кадры на основе МАС-адресов и обеспечивает связь между узлами в пределах одной подсети.

Однако при попытке взаимодействия с устройством из другой подсети без маршрутизатора передача данных оказалась невозможной. Это связано с тем, что обмен между разными подсетями требует участия маршрутизатора, который анализирует IP-адреса пакетов и направляет их в нужное направление.

Кроме того, в ходе работы была продемонстрирована разница между командами arp и ping. Первая используется для просмотра таблицы ARP, содержащей соответствие IP- и MAC-адресов, а вторая — для проверки доступности узлов в сети. Также был рассмотрен процесс формирования и использования таблиц ARP и MAC в передаче данных.

Таким образом, лабораторная работа показала важность маршрутизатора для связи между различными сетевыми сегментами, а также значимость таблиц MAC и ARP в работе сети.