Stochastic Finance (FIN 519) Homework Solutions

Instructor: Jaehyuk Choi

2020-21 Module 3 (Spring 2021)

1. **HW 1-1** Consider the gambler's fortune with an unfair coin:

$$S_n = X_1 + X_2 + \cdots + X_n$$
 where $X_n = \begin{cases} 1 & \text{(probability } p) \\ -1 & \text{(probability } q) \end{cases}$.

- (a) Prove that $M_n = (q/p)^{S_n}$ is a martingale.
- (b) If τ is the first time n that S_n hits A or -B, find $Prob(S_{\tau} = A)$ using the martingale property,

$$1 = M_0 = E(M_{n \wedge \tau}) \text{ for all } n = E(M_{\tau}).$$

Solution:

(a)

$$E(M_{n+1}|\mathcal{F}_n) = M_n E\left((q/p)^{X_{n+1}}\right) = \left(\frac{q}{p}p + \frac{p}{q}q\right)M_n = M_n$$

(b)

$$1 = E(M_{\tau}) = \operatorname{Prob}(S_{\tau} = A)(q/p)^{A} + (1 - \operatorname{Prob}(S_{\tau} = A))(q/p)^{-B}$$
$$\operatorname{Prob}(S_{\tau} = A) = \frac{1 - (q/p)^{-B}}{(q/p)^{A} - (q/p)^{-B}} = \frac{(q/p)^{B} - 1}{(q/p)^{A+B} - 1}$$

2. **HW 1-2** Prove that, if B_t is a standard BM, the inverted process,

$$Y_0 = 0$$
 and $Y_t = t B_{1/t}$ for $t > 0$,

is also a standard BM.

Solution: Y_t satisfy the following requirements to be a standard BM:

- (i) $Y_0 = 0$ by definition.
- (ii) The increments of Y_t are independent because they are the (negative) increments of B_t . For example, $Y_{t_2} Y_{t_1} = B_{1/t_2} B_{1/t_1} = B_{t'_2} B_{t'_1}$ with $t'_1 = 1/t_1$ and $t'_2 = 1/t_2$.
- (iii) For $s \leq t$,

$$Y_t - Y_s = tB_{1/t} - sB_{1/s} = (t - s)B_{1/t} + s(B_{1/t} - B_{1/s}).$$

Since

$$(t-s)B_{1/t} \sim N(0, (t-s)^2/t)$$
 and $s(B_{1/t} - B_{1/s}) \sim N(0, s-s^2/t)$,

and $B_{1/t}$ and $B_{1/t} - B_{1/s}$ are independent from (iii), $Y_t - Y_s$ are normally distribute with variance

$$Var(Y_t - Y_s) = (t - s)^2/t + s - s^2/t = t - s.$$

- (iv) Y_t is continuous for t > 0. Y_t is also continuous at t = 0. $\lim_{t\to 0} Y_t \to Y_0 = 0$ because $E(Y_t) \to 0$ and $Var(Y_t) = t^2/t = t \to 0$ as $t \to 0$.
- 3. **HW 2-1** The OU process is given by

$$dX_t = -\alpha X_t dt + \sigma dB_t$$
 for $\alpha > 0$.

- (a) Find $Cov(X_s, X_t)$ and $Corr(X_s, X_t)$.
- (b) When $\alpha \to 0$, the OU process converges to the BM with volatility σ . Therefore, show that

$$\lim_{s \to 0} \operatorname{Cov}(X_s, X_t) \to \sigma^2 \min(s, t).$$

4. **HW 2-2** The inhomogeneous geometric brownian motion (IGBM) is the geometric BM with mean reversion. The SDE is given by

$$dX_t = \lambda (X_{\infty} - X_t) dt + \sigma X_t dB_t$$
 for $\lambda, \sigma > 0$.

Prove that the solution for X_t is given by

$$X_t = e^{-\left(\lambda + \frac{\sigma^2}{2}\right)t + \sigma B_t} \left(X_0 + \lambda X_\infty \int_0^t e^{\left(\lambda + \frac{\sigma^2}{2}\right)s - \sigma B_s} ds \right).$$

What happens if $\lambda = 0$? **Hint:** consider the stochastic derivative (i.e., dY_t) of

$$Y_t = X_t e^{\left(\lambda + \frac{\sigma^2}{2}\right)t - \sigma B_t}.$$