ANZAC 2014 - Round 1

Problem I: Exponential Towers

The number 729 can be written as a power in several ways: 3^6 , 9^3 and 27^2 . It can be written as 729^1 , of course, but that does not count as a power. We want to go some steps further. To do so, it is convenient to use '^' for exponentiation, so we define $a \hat{b} = a^b$. The number 256 then can be also written as $2^2 \hat{a}$, or as $4^2 \hat{a}$. Recall that '^' is right associative, so $2^2 \hat{a}$ means $2^2 \hat{a}$.

We define a tower of powers of height k to be an expression of the form $a_1 \hat{a}_2 \hat{a}_3 \dots \hat{a}_k$, with k > 1, and integers $a_i > 1$. Given a tower of powers of height 3, representing some integer n, how many towers of powers of height at least 3 represent n?

Input

The input file contains several test cases, each on a separate line. Each test case has the form $a \hat{b} c$, where a, b and c are integers, $1 < a, b, c \le 9585$.

Output

For each test case, print the number of ways the number $n = a \hat{b} c$ can be represented as a tower of powers of height at least three.

The magic number 9585 is carefully chosen such that the output is always less than 2^{63} .

Sample Input	Sample Output
4 ² ²	2
8 ¹ 2 ²	10
8192 ⁸ 192 ⁸ 192	1258112
2 ⁹ 00 ⁵ 76	342025379