We can now prove the following proposition.

Proposition 33.28. Given a vector space E, if $(e_i)_{i \in I}$ is a basis for E, then the family of vectors

$$\left(e_{i_1}^{\odot M(i_1)} \odot \cdots \odot e_{i_k}^{\odot M(i_k)}\right)_{\substack{M \in \mathbb{N}^{(I)}, |M|=m, \\ \{i_1, \dots, i_k\} = \operatorname{dom}(M)}}$$

is a basis of the symmetric m-th tensor power $S^m(E)$.

Proof. The proof is very similar to that of Proposition 33.12. First assume that E has finite dimension n. In this case $I = \{1, ..., n\}$, and any multiset $M \in \mathbb{N}^{(I)}$ of size |M| = m is of the form $M(m, \{1, ..., n\}, k_1, ..., k_n)$, with $k_i = M(i)$ and $k_1 + \cdots + k_n = m$.

For any nontrivial vector space F, for any family of vectors

$$(w_M)_{M\in\mathbb{N}^{(I)},\,|M|=m},$$

we show the existence of a symmetric multilinear map $h : S^m(E) \to F$, such that for every $M \in \mathbb{N}^{(I)}$ with |M| = m, we have

$$h(e_{i_1}^{\odot M(i_1)} \odot \cdots \odot e_{i_k}^{\odot M(i_k)}) = w_M,$$

where $\{i_1, \ldots, i_k\} = \text{dom}(M)$. We define the map $f: E^m \to F$ as follows: for any m vectors $v_1, \ldots, v_m \in E$ we can write $v_k = \sum_{i=1}^n u_{i,k} e_i$ for $k = 1, \ldots, m$ and we set

$$f(v_1, \dots, v_m) = \sum_{\substack{k_1 + \dots + k_n = m \\ I_i \cap I_j = \emptyset, i \neq j, |I_j| = k_j}} \left(\sum_{\substack{i_1 \in I_1 \\ i_2 \in I_n}} \left(\prod_{i_1 \in I_1} u_{1,i_1} \right) \cdots \left(\prod_{i_n \in I_n} u_{n,i_n} \right) \right) w_{M(m,\{1,\dots,n\},k_1,\dots,k_n)}.$$

It is not difficult to verify that f is symmetric and multilinear. By the universal mapping property of the symmetric tensor product, the linear map $f_{\odot} \colon S^m(E) \to F$ such that $f = f_{\odot} \circ \varphi$, is the desired map h. Then by Proposition 33.4, it follows that the family

$$\left(e_{i_1}^{\odot M(i_1)} \odot \cdots \odot e_{i_k}^{\odot M(i_k)}\right)_{\substack{M \in \mathbb{N}^{(I)}, |M|=m, \\ \{i_1, \dots, i_k\} = \operatorname{dom}(M)}}$$

is linearly independent. Using the commutativity of \odot , we can also show that these vectors generate $S^m(E)$, and thus, they form a basis for $S^m(E)$.

If I is infinite dimensional, then for any m vectors $v_1, \ldots, v_m \in F$ there is a finite subset J of I such that $v_k = \sum_{j \in J} u_{j,k} e_j$ for $k = 1, \ldots, m$, and if we write n = |J|, then the formula for $f(v_1, \ldots, v_m)$ is obtained by replacing the set $\{1, \ldots, n\}$ by J. The details are left as an exercise.