Vetores - O Tratamento Geométrico

Noção Intuitiva

Casos Particulares de Vetores

Operações com Vetores

Ângulo de Dois Vetores

Noção Intuitiva

Grandezas – existem dois tipos de grandezas:

• Escalares: são aquelas que ficam completamente definidas por um número real.

Exemplos: comprimento, massa, temperatura, etc.

• **Vetoriais:** são grandezas que não ficam completamente definidas pelo módulo, ou seja, pelo número com sua unidade correspondente. Para caracterizá-la precisamos conhecer módulo, direção e sentido.

Exemplos: força, velocidade, aceleração, etc.

Direção: a figura a seguir apresenta três retas para exemplificação da direção.

A reta r_1 determina, ou define, uma direção.

A reta r_2 determina outra direção, diferente da direção de r_1 .

A reta r₃, por ser paralela a r₁, possui a mesma direção de r₁.

Logo, a noção de direção é dada por uma reta e por todas as que lhe são paralelas.

Portanto, retas paralelas têm a mesma direção.

Sentido: na figura a seguir a direção é definida pela reta que passa pelos pontos A e B.

O deslocamento de uma pessoa nessa mesma direção pode ser feito de duas maneiras, de A para B e de B para A.

Então, para cada direção podemos associar dois sentidos.

Segmento Orientado

Um segmento orientado é determinado por um par ordenado de pontos, o primeiro chamado **origem** do segmento, o segundo é chamado de **extremidade**.

O segmento orientado de origem A e extremidade B será representado por \overrightarrow{AB} e, geometricamente, indicado por uma seta que caracteriza visualmente o sentido do segmento.

Exemplo

Considere um avião com velocidade constante 400km/h, deslocando-se para nordeste, sob um ângulo de 40°(a partir da direção norte, no sentido horário).

Essa velocidade seria representada por um *segmento orientado*, com módulo dado pelo comprimento (4cm, e cada 1cm corresponde a 100km/h), com direção e sentido definidos pelo ângulo de 40°.

O sentido será indicado por uma seta na extremidade superior do seguimento.

Observemos que no caso de o ângulo ser 220° (40° + 180°), a direção é a mesma, porém, o sentido é o oposto.

Esse exemplo de grandeza vetorial sugere a noção de vetor.

Vetor

Por definição, um vetor é um segmento de reta orientado, que em linguagem habitual chamamos de seta. Cada vetor tem uma origem (também denominada ponto inicial) e uma extremidade (também denominada ponto terminal), sua direção é da origem para a extremidade.

Vetor é a quantidade que para sua especificação completa, requer comprimento, direção e sentido.

Dois ou mais segmentos orientados de mesmo comprimento, direção e mesmo sentido são representantes do mesmo vetor.

Notação: \overrightarrow{AB}

O vetor também costuma ser indicado por letras minúsculas \vec{v} ou em negrito \vec{v} , então $\vec{v} = B - A$.

Ou algumas vezes por letras maiúsculas em negrito, por exemplo, \mathbf{F} , para denotar força.

Quando escrevemos $\vec{v} = \overrightarrow{AB}$, significa que o vetor \vec{v} é determinado pelo segmento de reta orientado AB.

Um mesmo vetor \overrightarrow{AB} é determinado por uma infinidade de segmentos orientados, chamados representantes desse vetor.

Assim, um segmento determina um conjunto que é o vetor, e qualquer um destes representantes determina o mesmo vetor.

Seja \overrightarrow{AB} um segmento orientado, o vetor $\overrightarrow{v} = \overrightarrow{AB}$ é determinado por \overrightarrow{AB} . O módulo (comprimento ou norma) do vetor é denotado por $|\overrightarrow{v}|$ ou $||\overrightarrow{v}||$.

Ainda, dados um vetor $\vec{v} = \overrightarrow{AB}$ e um ponto P, existe um só ponto Q (figura 1.5) tal que o segmento orientado PQ tem o mesmo comprimento, a mesma direção e o mesmo sentido de AB.

Portanto, temos também $\vec{v} = \overrightarrow{PQ}$, o que vem reforçar o fato de que um representante de \vec{v} pode ter sua origem em qualquer ponto P do espaço.

Figura 1.5

Casos Particulares de Vetores

Vetores paralelos: dois vetores \vec{v} e \vec{u} são **paralelos**, e indica-se por \vec{v} // \vec{u} , se tiverem a mesma direção.

Na figura a seguir tem-se \vec{v} // \vec{u} // \vec{w} , onde \vec{v} e \vec{u} tem o mesmo sentido, enquanto \vec{v} e \vec{u} , tem sentido contrário ao de \vec{w} .

Vetores iguais: dois vetores \vec{v} e \vec{u} são iguais se tiverem mesmo módulo, direção e sentido, indica-se por $\vec{v} = \vec{u}$.

Vetores nulo: é o vetor que tem como representante um segmento orientado nulo. É indicado por $\overrightarrow{0}$ ou \overrightarrow{AA} . Pelo fato de não possuir direção e sentido, considera-se que o vetor nulo é paralelo a qualquer vetor.

Vetor oposto: para cada vetor não nulo \vec{v} existe um vetor oposto $-\vec{v}$, de mesmo comprimento e direção, porém sentido contrário. Se $\vec{v} = \overrightarrow{AB}$, o vetor oposto é $-\vec{v} = \overrightarrow{BA}$.

Vetor unitário: um vetor \vec{v} é unitário se $|\vec{v}| = 1$.

Versores: são vetores unitários (\vec{u} e $-\vec{u}$) com a mesma direção de um vetor qualquer \vec{v} .

Vetores ortogonais: dois vetores \vec{u} e \vec{v} são ortogonais se algum representante de \vec{u} formar um ângulo reto com algum representante de \vec{v} , indica-se por $\vec{u} \perp \vec{v}$.

Vetores colineares: dois vetores \vec{u} e \vec{v} são colineares se tiverem a mesma direção, ou seja, são colineares se pertencerem a mesma reta ou retas paralelas.

Vetores coplanares: dois ou mais vetores são coplanares se pertencem ao mesmo plano.

Para refletir:

1) Dois vetores são sempre coplanares?

2) Três vetores são sempre coplanares?

Exercícios

 A Figura 1.12 é constituída de nove quadrados congruentes (de mesmo tamanho). Decidir se é verdadeira ou falsa cada uma das seguintes afirmações:

2) A Figura 1.13 representa um paralelepípedo retângulo. Decidir se é verdadeira ou falsa cada uma das afirmações:

a)
$$\overrightarrow{DH} = \overrightarrow{BF}$$

b)
$$\overrightarrow{AB} = -\overrightarrow{HG}$$

c)
$$\overrightarrow{AB} \perp \overrightarrow{CG}$$

d)
$$\overrightarrow{AF} \perp \overrightarrow{BC}$$

e)
$$|\overrightarrow{AC}| = |\overrightarrow{HF}|$$

f)
$$|\overrightarrow{AG}| = |\overrightarrow{DF}|$$

- i) \overrightarrow{AB} , \overrightarrow{FG} e \overrightarrow{EG} são coplanares
- j) EG, CB e HF são coplanares
- k) \overrightarrow{AC} , \overrightarrow{DB} e \overrightarrow{FG} são coplanares
- 1) AB, BG e CF são coplanares
- m) \overrightarrow{AB} , \overrightarrow{DC} e \overrightarrow{CF} são coplanares
- n) AE é ortogonal ao plano ABC
- o) AB é ortogonal ao plano BCG
- p) DC é paralelo ao plano HEF

Operações com vetores

Adição de Vetores: dados \vec{u} e \vec{v} , sejam \overrightarrow{AB} representante de \vec{u} e \overrightarrow{BC} representante de \vec{v} , que tem origem B. O vetor soma de \vec{u} e \vec{v} é dado por $\vec{u} + \vec{v} = \overrightarrow{AC}$.

Adição de Vetores:

Vetores paralelos

Figura 1.15

Adição de Vetores:

Vetores não paralelos

Adição de Vetores:

Três vetores ou mais

(b)

Operações com vetores

Propriedades:

Sejam \vec{u} , \vec{v} e \vec{w} , vetores quaisquer, a adição admite as seguintes propriedades:

- Comutativa: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$;
- Associativa: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w});$
- Elemento neutro: $\vec{u} + \vec{0} = \vec{u}$;
- Elemento oposto: $\vec{u} + (-\vec{u}) = \vec{0}$.

Operações com vetores

Diferença: O vetor $\vec{u} + (-\vec{v})$, escreve-se $\vec{u} - \vec{v}$, é chamado diferença entre \vec{u} e \vec{v} .

Figura 1.18

Exemplos:

1) Com base na Figura 1.12, determinar os vetores abaixo, expressando-os com origem no ponto A:

a)
$$\overrightarrow{AC} + \overrightarrow{CN}$$

g)
$$\overrightarrow{AK} + \overrightarrow{AN}$$

b)
$$\overrightarrow{AB} + \overrightarrow{BD}$$

h)
$$\overrightarrow{AO} - \overrightarrow{OE}$$

c)
$$\overrightarrow{AC} + \overrightarrow{DC}$$

i)
$$\overrightarrow{MO}$$
 - \overrightarrow{NP}

d)
$$\overrightarrow{AC} + \overrightarrow{AK}$$

$$\overrightarrow{BC} - \overrightarrow{CB}$$

e)
$$\overrightarrow{AC} + \overrightarrow{EO}$$

$$k)$$
 LP + PN + NF

f)
$$\overrightarrow{AM} + \overrightarrow{BL}$$

$$1) \quad \overrightarrow{BL} + \overrightarrow{BN} + \overrightarrow{PB}$$

2) Com base na Figura 1.13, determinar os vetores abaixo, expressando-os com origem no ponto A:

a)
$$\overrightarrow{AB} + \overrightarrow{CG}$$

b)
$$\overrightarrow{BC} + \overrightarrow{DE}$$

c)
$$\overrightarrow{BF} + \overrightarrow{EH}$$

e)
$$\overrightarrow{CG} + \overrightarrow{EH}$$

g)
$$\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$$

h)
$$\overrightarrow{EG} + \overrightarrow{DA} + \overrightarrow{FH}$$

Multiplicação de número real por vetor

Seja um vetor $\vec{v} \neq \vec{0}$, e um número real $\alpha \neq 0$, chama-se *produto* do número real α pelo vetor \vec{v} , o vetor $\alpha \vec{v}$ tal que

- Módulo: $|\alpha \vec{v}| = |\alpha| |\vec{v}|$, isto é, o comprimento de $\alpha \vec{v}$ é igual ao comprimento de \vec{v} multiplicado por $|\alpha|$;
- Direção: $\alpha \vec{v}$ é paralelo a \vec{v} ;
- Sentido: $\alpha \vec{v}$ e \vec{v} tem mesmo sentido se $\alpha > 0$, e sentido contrário se $\alpha < 0$.

Se $\alpha = 0$ ou $\vec{v} = \vec{0}$, então $\alpha \vec{v} = \vec{0}$.

A figura 1.20 apresenta o vetor \vec{v} e alguns de seus múltiplos.

Versor

O vetor unitário $\frac{\vec{v}}{|\vec{v}|}$ de mesmo sentido de \vec{v} é o versor de \vec{v} .

Exemplos:

- 1) Se $|\vec{v}| = 5$, o versor de $\vec{v} \in \frac{\vec{v}}{5}$;
- 2) Se $|\vec{v}| = \frac{1}{3}$, o versor de \vec{v} é $3\vec{v}$;
- 3) Se $|\vec{v}| = 10$, o versor de $\vec{v} \in -\frac{\vec{v}}{10}$.

Multiplicação de número real por vetor

Propriedades: seja \vec{u} e \vec{v} vetores, α e β números reais, a multiplicação de um escalar por um vetor admite as propriedades:

•
$$(\alpha\beta)\vec{v} = \alpha(\beta\vec{v})$$

•
$$(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$$

•
$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$$

•
$$1 \cdot \vec{v} = \vec{v}$$

Exercícios

1) Dados os vetores \vec{u} e \vec{v} da figura, mostrar, num gráfico, um representante do vetor:

a)
$$\overrightarrow{u} - \overrightarrow{v}$$

b) $\overrightarrow{v} - \overrightarrow{u}$
c) $-\overrightarrow{v} - 2\overrightarrow{u}$
d) $2\overrightarrow{u} - 3\overrightarrow{v}$

Ângulo entre dois vetores

O ângulo entre dois vetores não-nulos \vec{u} e \vec{v} é o ângulo θ formado por duas semirretas \overrightarrow{OA} e \overrightarrow{OB} de mesma origem 0, onde $\vec{u} = \overrightarrow{OA}$,

 $v = \overrightarrow{0B} e 0^{\circ} \le \theta \le 180^{\circ}$.

- Se \vec{u} // \vec{v} e \vec{u} e \vec{v} tem o mesmo sentido, então $\theta = 0$.
- Se $\theta = 180^{\circ}$, \vec{u} e \vec{v} tem mesma direção e sentido contrário;
- Se $\theta = 90^{\circ}$, \vec{u} e \vec{v} são ortogonais;
- O ângulo formado pelos vetores $-\vec{v}$ e \vec{u} é o suplemento do ângulo de \vec{v} e \vec{u} .

Exercício

Sabendo que o ângulo entre o vetores \vec{u} e \vec{v} é de 60°, determinar o ângulo formado pelos vetores:

a)
$$\overrightarrow{u}$$
 e \overrightarrow{v}
b) $\overrightarrow{-u}$ e \overrightarrow{v}
c) $\overrightarrow{-u}$ e $\overrightarrow{-v}$
d) $\overrightarrow{2u}$ e $\overrightarrow{3v}$

