

Project 4: West Nile Virus Prediction

Dillon, Shaalini, Vee Vian & ZheQin

Contents

*

- 1. Introduction
- 2. Problem Statement
- 3. Data Cleaning
- 4. Exploratory Data Analysis (EDA)
- 5. Pre-processing and Feature Engineering
- 6. Modelling
- 7. Cost Benefit Analysis
- 8. Conclusion and Recommendation

Introduction

Due to the recent epidemic of **West Nile Virus (WNV)** in **Chicago**, we've had the Department of Public Health set up a surveillance and control system. Through data collection, we will learn about mosquito population to **derive an effective plan to deploy pesticides** throughout the city.

Primary stakeholders: CDC, Centers for Disease Control and Prevention **Secondary stakeholders:** Government of Chicago.

Problem Statement

As Data Scientists from the **DATA-SCIENCE**, *Disease And Treatment Agency, division of Societal Cures in Epidemiology and New Creative Engineering*, our task is to:

- 1) Build a model(LR/RF) and make predictions to determine the period and location of pesticide spraying in Chicago
- 2) Conduct a cost-benefit analysis for cost of spraying vs economic/social cost and provide feasible recommendations to reduce WNV infection rate

West Nile virus

Transmission

Spread to people by the *bite of an infected mosquito* (feed on infected birds).

Symptoms

- No symptoms in most people.
- Febrile illness (fever) in some people 1/5 people
- Serious symptoms in a few people 1 / 150 people

Treatment

No vaccine or specific medicines are available yet

Data Cleaning

Pre-processing & Feature Engineering

Exploratory Data Analysis (EDA)

Overview of Datasets

Train and Test Dataset	Main datasets where public health workers set up mosquito traps across the city to capture mosquitoes and test for the presence of West Nile virus.		
Weather Dataset	Contains information about the weather condition of Chicago from 2 different Weather Stations		
Spray Dataset	Contains details of pesticide spraying in Chicago such as location, date and time of spraying		

Data Cleaning

Lowercase	All column names to lowercase	
Duplicates/Missing values	Drop rows with missing values and duplicates	
Removal of Columns	Spray dataset - time Weather dataset - snowfall, depth, water1	
	Train and Test dataset nearest station to identify which weather station is nearest to the coordinates of the trap	
Creating new features	Weather dataset trange for temperature range between tmax and tmin	
	Train, Test and Weather dataset year, month, day	
Reshape	Traps with > 50 mosquitos combined for the same location	
Conversion of Dtype	Date to Datetime type	

Summary of the Datasets

			Period						Rows		Columns	
Dataset	2007	2008	2009	2010	2011	2012	2013	2014	Bef.	Aft.	Bef.	Aft.
Train	*		*		*		*		10,506	8,475	12	16
Test		*		*		*		*	116,293	116,293	11	15
Spray					*		*		14,835	14,294	4	3
Weather	*	*	*	*	*	*	*	*	2,944	2,918	22	22

Data Cleaning

Pre-processing & Feature Engineering

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) Train Dataset

WNV Present, in %

- 95% train data with no WNV present, while only 5% with WNV present
- Highly unbalanced dataset

Exploratory Data Analysis (EDA) Train Dataset

WNV Present, in # by species

- Top 3 species made up > 96% of the sample of the species sampled
- They are the only species detected with WNV presents

Correlation: Train Dataset

Exploratory Data Analysis (EDA) Train Dataset

Exploratory Data Analysis (EDA) *Spray & Train Datasets

Spray and Train trap locations

- Traps are spread out across the Windy City
- Area with darker orange region with more spray concentration
- Previous sprays did not cover most of the WNV outbreak area

Probability of WNV by nummosquitos

Exploratory Data Analysis (EDA) Weather Dataset

- Highest average temperature are generally in August
- However, for 2010-2012, highest average temperature were recorded in July instead

Data Cleaning

Pre-processing & Feature Engineering

Exploratory Data Analysis (EDA)

Pre-processing and Feature Engineering

00	
	0

Merge	Weather data to train & test data
Created additional features	 heat_cool - between heat and cool columns tavg, trange - between tmax and tmin
Removed Column Before & after Correlation plot	Columns from Weather dataset ['tmax']; ['tmin']; ['heat']; ['cool']; ['dewpoint']; ['wetbulb']; ['heat_cool']; ['sunrise']; ['sunset']; ['avgspeed']; ['sealevel']; ['codesum'] Columns from Train and Test dataset [date]', ['address'], ['nummosquitos'], ['block'], ['street]', ['trap'], [year'], ['station']
Dummify	Use pd.getdummies on 'species' column
Data Imputation	On weather data, used SimpleImputer with the mean value
Data Imbalance	Set 'class_weight' to 'balanced' for both models
Train_test_split (Train Dataset)	70:30

Modelling

Cost Sensitive Learning for the Imbalance date

"Class weighs" set to balanced

Logistic Regression

1. Set up parameters

- **C**: [0.001, 0.01, 0.1, 1, 10],
- **penalty** : ['l1', 'l2']

2. GridsearchCV

- Parameter Pipelines (from #1)
- class_weight argument to 'balanced' to address the imbalance data
- **Cross-Validation** RepeatedStratifiedKFold (n_splits=10, n_repeats=3, random_state=1)

Best score: 0.715

Best parameters set:

C: 10

penalty: 'I1'

Logistic Regression Confusion Matrix

Logistic Regression Confusion Matrix

		Train	Test
	ROC AUC	0.725	0.736
p	F1	0.164	0.172
	Recall	0.685	0.172
	Precision	0.093	0.098

Random Forest Classifier

1. Set up parameters

- **n_estimators**: [80, 100, 200, 300]
- max_depth: [6, 8, 10, 15, 20]
- max_leaf_nodes: [20, 30, 50, 70, 100, 120]

2. GridsearchCV

- Parameter Pipelines (from #1)
- class_weight argument to 'balanced' to address the imbalance data

Best score: 0.839

Best parameters set:

n_estimators: 80 max depth: 20

max leaf nodes: 100

Random Forest Classifier Confusion Matrix

Random Forest Classifier

Scores

	Train	Test
ROC AUC	0.958	0.859
F1	0.441	0.308
Recall	0.913	0.610
Precision	0.291	0.206

- F1 score has been improved to ~0.44 for the train set.
- BUT, ROC AUC score for the train and test split shows sign of overfitting:
 - ☐ To fix:
 - n_estimators
 - max_depth
 - max_leaf_nodes

Random Forest Classifier Final

Parameters

- n_estimators: 70 (vs. previous: 80)
- max_depth: 15 (vs. previous: 20)
- max_leaf_nodes: 20 (vs. previous: 100)
- class_weight argument to 'balanced' to address the imbalance data
- Cross-Validation RepeatedStratifiedKFold (n_splits=10, n_repeats=3, random_state=1)

CV Mean ROC AUC score: 0.826

CV Std ROC AUC score: 0.033

Random Forest Classifier Confusion Matrix - Final

Model Results

Model	Logistic Regression		Final Ra	andom 🗘 est
Scores	Train	Test	Train	Test
ROC AUC	0.725	0.736	0.876	0.852
F1	0.164	0.172	0.269	0.257
Recall	0.685	0.706	0.860	0.809
Precision	0.093	0.098	0.160	0.153

Top 10 Important Features

Cost Benefit Analysis

The potential of West Nile virus present is widely spread across Chicago, with the north side of the city being the worst.

Cost of Spraying:

- Area size of Chicago: ~150k acres
- Spray Used: Zenivex E4 (active ingredient Etofenprox)¹
- Cost of Zenivex E4 per acre: USD 0.92/acre²
- Cost of spraying(whole Chicago): USD 138k

https://www.chicago.gov/content/dam/city/depts/cdph/Mosquito-Borne-Diseases/Zenivex.pdf

²http://www.centralmosquitocontrol.com/-/media/files/centralmosquitocontrol-na/us/resources-lit% 20files/2015%20zenivex%20pricing%20brochure.pdf

Cost Benefit Analysis

Benefit of Spraying:

- 6 cases of West Nile virus infection detected in Chicago in 20201
- Mean medical costs and productivity costs for 6 cases: USD 197k²
- Calculation:
- 1) Mean acute medical care costs to be avoided (for 6 cases): 6/10,000 X USD 252,115,100 = USD 151,26
- 2) Mean acute lost productivity to be avoided (for 6 cases): 6/10,000 X USD 22,081,260 = USD 13,249
- 3) Mean long-term medical care to be avoided (for 6 cases): 6/10,000 X USD 27,570,280 = USD 16,542
- 4) Mean long-term lost productivity to be avoided (for 6 cases): 6/10,000 X USD 26,866,800 = USD 16,120

Cost of USD 138k vs. Benefit of USD 197k

¹⁻https://www.chicago.gov/city/en/depts/cdph/provdrs/healthy_communities/news/2020/september/first-human-cases-of-west-nile-virus-in-chicago-for-2020.html)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945683/

Conclusion and Recommendations

Insecticide spraying has not proven to be significant in reducing infection rates and requires more data and more campaigns for us to optimise its impact. In the meantime, we should also focus on other courses of action based on our finding

Solutions:

- **1. Targets -** around Top Traps and Top WNV Addresses which are high-occurrence areas
- 2. Intensify spraying cluster in June/July leading up to August/September
- **3. Concurrent campaigns -** targeted at mosquito breeding and transmission prevention best practices

Limitations & Improvements

Our solutions are a good starting point, but other major factors should be borne in mind, including:

- 1. COVID-19 risk prioritization needs to be adjusted in light of the pandemic
- 2. Surveillance Applies AML to procedurally track spraying clusters vs WNV clusters in the event that there are any gaps in spray coverage.
- **3. Concurrent Demographic Segmentation -** specific modelling and measures could be trained on critical population features, e.g.: age groups

We hoped to improve the model by:

- 1. To **collect more data** to have a more balance dataset
- 2. To better understand the **impact of environment to the number of mosquitoes** by having lesser missing data

Thank You Q&A

AppendixSupplementary Slides

Exploratory Data Analysis (EDA) Train Dataset

• 136 traps in the train data and trap no. T900(at Ohare airport) has the most sampled data.

Exploratory Data Analysis (EDA)

- 2009 has the lowest average wetbulb temperature
- 2007 and 2010 have the highest average wetbulb temperature