Theory of Statistical Learning Part II

Damien Garreau

Université Côte d'Azur

2021

1

Outline

1. Linear predictors Linear classification Linear regression

Ridge regression
Polynomial regression
Logistic regression

2. Tree-based classifiers Partition rules Random forests

- 3. Boosting Adaboost XGBoost
- 4. Nearest neighbors

1. Linear predictors

3

1.1. Linear classification

Linear functions

- $ightharpoonup \mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$
- ► thus $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,d})^{\top}$
- we consider no bias term (otherwise affine):

$$\{h: x \mapsto w^{\top}x, w \in \mathbb{R}^d\}.$$

▶ **Reminder:** given two vectors $u, v \in \mathbb{R}^d$,

$$\langle u, v \rangle = u^{\top} v = \sum_{j=1}^{d} u_i v_i.$$

- **b** binary classification: 0-1 loss, $\mathcal{Y} = \{-1, +1\}$
- ▶ **Important:** compose h with $\phi : \mathbb{R} \to \mathcal{Y}$ (typically the sign)

5

The sign function

Figure: the sign function

Halfspaces

thus our function class is

$$\mathcal{H} = \{ x \mapsto \operatorname{sign}(w^{\top} x), w \in \mathbb{R}^d \}.$$

 \triangleright gives label +1 to vector pointing in the same direction as w

VC dimension of halfspaces

Proposition: the VC dimension of halfspaces in dimension d is exactly d+1.

Consequence: \mathcal{H} is PAC learnable with sample complexity

$$\Omega\left(rac{d+\log(1/\delta)}{arepsilon}
ight)$$
 .

8

Linearly separable data

- ▶ Important assumption: data is linearly separable
- ▶ that is, there is a $w^* \in \mathbb{R}^d$ such that

$$y_i = \operatorname{sign}(\langle w^*, x_i \rangle) \quad \forall 1 \leq i \leq n.$$

9

Linear programming

► Empirical risk minimization: recall that we are looking for w such that

$$\hat{\mathcal{R}}_{\mathcal{S}}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_i \neq \operatorname{sign}(w^{\top} x_i)}$$

is minimal

- Question: how to solve this?
- we want $y_i = \operatorname{sign}\left(w^\top x_i\right)$ for all $1 \le i \le n$
- equivalent formulation: $y_i \langle w, x_i \rangle > 0$
- \triangleright we know that there is a vector that satisfies this condition (w^*)
- let us set $\gamma = \min_i \{ y_i \langle w^*, x_i \rangle \}$ and $\overline{w} = w^* / \gamma$
- we have shown that there is a vector such that $y_i\langle \overline{w}, x_i \rangle \geq 1$ for any $1 \leq i \leq n$ (and it is an ERM)

Linear programming, ctd.

▶ define the matrix $A \in \mathbb{R}^{n \times d}$ such that

$$A_{i,j} = y_i x_{i,j}$$
.

- ▶ **Intuition:** observations × labels
- ightharpoonup remember that we have the ± 1 label convention
- ightharpoonup define $v = (1, ..., 1)^{\top} \in \mathbb{R}^n$
- ▶ then we can rewrite the above problem as

maximize
$$\langle u, w \rangle$$
 subject to $Aw \leq v$,

with u = 0 for instance

- we call this sort of problems linear programs¹
- solvers readily available, e.g., scipy.optimize.linprog if you use Python

¹Boyd, Vandenberghe, Convex optimization, Cambridge University Press, 2004

The perceptron

- ► another possibility: the *perceptron*²
- ▶ **Idea:** iterative algorithm that constructs $w^{(1)}, w^{(2)}, \dots, w^{(T)}$
- update rule: at each step, find i that is misclassified and set

$$w^{(t+1)} = w^{(t)} + y_i x_i$$
.

- **Question:** why does it work?
- pushes w in the right direction:

$$y_i\langle w^{(t+1)}, x_i\rangle = y_i\langle w^{(t)} + y_ix_i, x_i\rangle = y_i\langle w^{(t)}, x_i\rangle + \|x_i\|^2$$

remember, we want $y_i \langle w, x_i \rangle > 0$ for all i

²Rosenblatt, *The perceptron, a perceiving and recognizing automaton*, tech report, 1957

1.2. Linear regression

Least squares

▶ regression ⇒ squared-loss function

$$\ell(y,y')=(y-y')^2.$$

still looking at linear functions:

$$\mathcal{H} = \{ h : x \mapsto \langle w, x \rangle \text{ s.t. } w \in \mathbb{R}^d \}.$$

empirical risk in this context:

$$\hat{\mathcal{R}}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} (w^{\top} x_{i} - y_{i})^{2} = F(w).$$

- also called mean squared error
- ▶ empirical risk minimization: we want to minimize $w \mapsto F(w)$ with respect to $w \in \mathbb{R}^d$
- F is a convex, smooth function

Least squares, ctd.

let us compute the gradient of *F*:

$$\begin{split} \frac{\partial F}{\partial w_j}(w) &= \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_j} (w^\top x_i - y_i)^2 \\ &= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (w^\top x_i - y_i) \cdot (w^\top x_i - y_i) \\ &= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (\cdots + w_j x_{i,j} + \cdots - y_i) \cdot (w^\top x_i - y_i) \\ \frac{\partial F}{\partial w_j}(w) &= \frac{2}{n} \sum_{i=1}^n x_{i,j} \cdot (w^\top x_i - y_i) \,. \end{split}$$

15

Least squares, ctd.

- ▶ it is more convenient to write $\nabla F(w) = 0$ in matrix notation
- ▶ define $X \in \mathbb{R}^{n \times d}$ the matrix such that line i of X is observation x_i
- ▶ one can check that, for any $1 \le j, k \le d$,

$$(X^{\top}X)_{j,k} = \sum_{i=1}^n x_{i,j}x_{i,k}.$$

thus

$$(X^{T}Xw)_{j} = \sum_{k=1}^{d} (X^{T}X)_{j,k} w_{k}$$
$$= \sum_{k=1}^{d} \sum_{i=1}^{n} x_{i,j} x_{i,k} w_{k}$$
$$= \sum_{i=1}^{n} x_{i,j} w^{T} x_{i}.$$

Least squares, ctd.

thus, if we define

$$A = X^{\top}X = \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{d \times d} \text{ and } b = X^{\top}y = \sum_{i=1}^{n} y_i x_i \in \mathbb{R},$$

solving $\nabla F(w) = 0$ is equivalent to solving

$$Aw = b$$
.

▶ if *A* is invertible, straightforward:

$$\hat{w} = A^{-1}b$$

- ightharpoonup computational cost: $\mathcal{O}\left(d^3\right)$ (inversion is actually a bit less)
- what happens when A is not invertible?

Singular value decomposition

▶ since *A* is symmetric, it has an eigendecomposition

$$A = VDV^{\top}$$
,

with $D \in \mathbb{R}^d$ diagonal and V orthonormal

▶ define *D*⁺ such that

$$D_{i,i}^+=0$$
 if $D_{i,i}=0$ and $D_{i,i}^+=\frac{1}{D_{i,i}}$ otherwise.

- ightharpoonup define $A^+ = VD^+V^\top$
- then we set

$$\hat{w} = A^+ b$$
.

Singular value decomposition, ctd.

- why did we do that?
- \triangleright let v_i denote the *i*th column of V, then

$$A\hat{w} = AA^+b$$
 (definition of \hat{w})
$$= VDV^\top VD^+V^\top b$$
 (definition of A^+)
$$= VDD^+V^\top b$$
 (V is orthonormal)
$$A\hat{w} = \sum_{i:D_{i,i}\neq 0} v_i v_i^\top b.$$

- ▶ in definitive, $A\hat{w}$ is the projection of b onto the span of v_i such that $D_{i,i} \neq 0$
- ▶ since the span of these v_i is the span of the x_i and b is in the linear span of the x_i , we have $A\hat{w} = b$
- ▶ cost of SVD: $\mathcal{O}(dn^2)$ if d > n (SVD of X)

Exercise

Exercise: Of course, one does not have to use the squared loss. Instead, we may prefer to use

$$\ell(y,y') = |y-y'| .$$

1. show that, for any $c \in \mathbb{R}$,

$$|c| = \min_{a \geq 0} a$$
 subject to $a \geq c$ and $a \geq -c$.

- 2. use the previous question to show that ERM with the absolute value loss function is equivalent to minimizing the linear function $\sum_{i=1}^{n} s_i$, where the s_i satisfy linear constraints
- 3. write it in matrix form, that is, find $A \in \mathbb{R}^{2n \times (n+d)}$, $v \in \mathbb{R}^{d+n}$, and $b \in \mathbb{R}^{2n}$ such that the LP can be written

minimize
$$c^{\top}v$$
 subject to $Av \leq b$.

Correction of the exercise

- 1. The absolute value is the smallest positive number larger than both c and -c for any real number c.
- 2. In that case, the empirical risk can be written

$$\hat{\mathcal{R}}_S(w) = \frac{1}{n} \sum_{i=1}^n |y_i - w^\top x_i|.$$

We deduce the result from question 1.

3. One possibility is to define $v = (w_1, \ldots, w_d, s_1, \ldots, s_n)^\top \in \mathbb{R}^{n+d}$, $c = (0, \ldots, 0, 1, \ldots, 1)^\top \in \mathbb{R}^{d+n}$, $b = (y_1, \ldots, y_n, -y_1, \ldots, -y_n)^\top \in \mathbb{R}^{2n}$, and

$$A = \begin{pmatrix} -X & -I_n \\ X & -I_n \end{pmatrix} \in \mathbb{R}^{2n \times (n+d)},$$

with $X \in \mathbb{R}^{n \times d}$ the matrix whose lines are the x_i s and I_n the identity matrix.

Recap

- What happens when we invoke sklearn.linear_model.LinearRegression with default parameters?
- ▶ fit_intercept is True → assumes that the data is not centered (our maths are not totally accurate)
- $lackbox{ normalize is False}
 ightarrow ext{we are responsible for the normalization of our data}$
- behind the scenes, calls scipy.linalg.lstsq when fitting, which itself calls LAPACK (Linear Algebra PACKage)³
- ► LAPACK is coded in Fortran90

³http://www.netlib.org/lapack/

1.3. Ridge regression

Ridge regression

> same hypothesis class: linear functions

$$\mathcal{H} = \{ h : x \mapsto w^{\top} x, w \in \mathbb{R}^d \}$$

squared loss:

$$\ell(y, y') = (y - y')^2$$
.

► **Idea:** regularization:

minimize
$$\left\{\frac{1}{n}\sum_{i=1}^{n}(y_i - w^{\top}x_i)^2 + \lambda \|w\|^2\right\}$$
,

with $\|u\|^2 = u_1^2 + \cdots + u_d^2$ and $\lambda > 0$ a regularization parameter

Exercise

Exercise: Let $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$ be n given training samples. For any $w \in \mathbb{R}^d$, set

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2 + \lambda \|w\|^2.$$

Notice that F is a convex smooth function.

1. show that the minimizer \hat{w} satisfies

$$(X^{\top}X + n\lambda I_d) w = X^{\top}y.$$

2. show that $X^{\top}X + n\lambda I_d$ is an invertible matrix

25

Correction of the exercise

1. Let $1 \le j \le d$ and let us compute $\partial_i F$:

$$\frac{\partial F}{\partial w_j}(w) = \frac{\partial}{\partial w_j} \left(\frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 \right) + \frac{\partial}{\partial w_j} (\lambda (w_1^2 + \cdots w_d^2))$$
$$= \frac{2}{n} \sum_{i=1}^n x_{i,j} \cdot (w^\top x_i - y_i) + 2\lambda w_j,$$

where we used the derivation for the least squares. We deduce the result by setting to zero and multiplying by n.

Correction of the exercise, ctd.

2. By contradiction, suppose that $X^{T}X + n\lambda I_d$ is not invertible. Then

$$\det\left(X^{\top}X + n\lambda I_d\right) = 0.$$

In other words, $-n\lambda$ is an eigenvalue of $X^\top X$. Since $X^\top X$ is a symmetric matrix, its spectrum is $\subseteq \mathbb{R}$. Moreover, it is positive definite, thus all eigenvalues are non-negative. Since $\lambda>0$, we deduce that $-n\lambda$ cannot be an eigenvalue of $X^\top X$ and we can conclude.

Recap

- ► What happens when we invoke sklearn.linear_model.Ridge with default settings?
- ▶ alpha = $1 \rightarrow \lambda = 1/n$ with our notation, barely any regularization if n large
- ▶ fit_intercept is True → does not consider centered data (so our analysis is not entirely accurate)
- ightharpoonup normalize is False ightharpoonup we decide whether we normalize our data
- Solver is auto → sklearn will decide how to solve the minimization problem depending on the size of the data: the solution could be not exact!
- ightharpoonup tol tolerance threshold on the residuals

1.4. Polynomial regression

Polynomial regression

- ► linear regression is a powerful tool, especially because we can transform the inputs in a non-linear fashion
- **Example:** polynomial regression in \mathbb{R}
- ▶ inputs $x_1, \ldots, x_n \in \mathbb{R}$
- define the mapping $\phi(x) = (1, x, x^2, \dots, x^p)^{\top}$
- then

$$\langle w, \phi(x) \rangle = w_0 + w_1 x + w_2 x^2 + \cdots + w_p x^p,$$

and we can find the best coefficients by linear regression

lacktriangleright numpy.polyfit ightarrow very handy when we want to fit univariate data

Polynomial regression, ctd.

- Example: data = degree three polynomial + Gaussian noise with small variance
- ▶ fit a degree 3 polynomial:

▶ **Remark:** in practice, we do not know the degree of the polynomial!

Polynomial regression, ctd.

- typical case of under / overfitting:
 - when degree too low, poor fit
 - when degree too high, wiggly function $(n+1 \Rightarrow \text{interpolation})$

1.5. Logistic regression

Logistic regression

- ightharpoonup classification with $\mathcal{Y} = \{0, 1\}$
- ▶ however, we predict the probability of belonging to class 1
- hypothesis class:

$$\mathcal{H} = \{ x \mapsto \phi(\langle w, x \rangle), w \in \mathbb{R}^d \},\,$$

with ϕ the *logistic function* (aka *sigmoid* function)

$$\phi(z) = \frac{1}{1 + \mathrm{e}^{-z}} \,.$$

- ▶ **Intuition:** squeeze the score between 0 and 1 to transform it into a probability
- $ightharpoonup \mathbb{P}(y = 1 \,|\, x) = \phi(w^{\top}x) \text{ and } \mathbb{P}(y = 0 \,|\, x) = 1 \phi(w^{\top}x)$

Logistic function

Figure: the logistic function $\phi: t \mapsto 1/(1 + e^{-t})$.

Logistic loss

- ▶ **Next:** we need to define a loss function
- \blacktriangleright for any y, y', we define the *logistic loss*:

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'$$
.

Logistic regression

- finally, logistic regression = empirical risk minimization with the logistic loss
- ▶ that is, minimize for $w \in \mathbb{R}^d$

$$\hat{\mathcal{R}}_{\mathcal{S}}(w) = \sum_{i=1}^{n} \left\{ -(1 - y_i) \log(1 - \phi(w^{\top} x_i)) - y_i \log \phi(w^{\top} x_i) \right\}.$$

- ► Remark (i): we can show that this is equivalent to maximum likelihood for a certain prior distribution
- ▶ Remark (ii): complicated to optimize (see exercise)

Logistic regression in dimension 1

Example: in dimension one:

Logistic regression in dimension 2

Example: in dimension two:

Exercise

Exercise: Recall that we defined the logistic loss by

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'$$
.

1. Show that ERM with the logistic loss is equivalent to minimizing

$$F(w) = \sum_{i=1}^{n} \log(1 + \exp(-\tilde{y}_i \langle w, x_i \rangle)),$$

where $\tilde{y}_i = \mathrm{sign}\,(y_i - 0.5)$. Deduce that $\hat{\mathcal{R}}$ is a convex function of w.

- 2. Compute the gradient of $\hat{\mathcal{R}}$ with respect to w. Hint: show that $\phi'(z) = \phi(z)(1 \phi(z))$.
- 3. Can you solve $\nabla \hat{\mathcal{R}}(w) = 0$? If not, propose a strategy for finding a good w.

40

Correction of the exercise

1. Let us set $1 \le i \le n$. We write

$$\begin{split} \ell(y_i, \phi(w^\top x_i)) &= -(1 - y_i) \log(1 - \phi(w^\top x_i)) - y_i \log \phi(w^\top x_i) \\ &= -(1 - y_i) \log \frac{\mathrm{e}^{-w^\top x_i}}{1 + \mathrm{e}^{-w^\top x_i}} - y_i \log \frac{1}{1 + \mathrm{e}^{-w^\top x_i}} \\ &= -(1 - y_i) \log \mathrm{e}^{-w^\top x_i} + \log(1 + \mathrm{e}^{-w^\top x_i}) \,. \end{split}$$

If $y_i = 0$, the last display equals

$$\log(1 + \exp(w^{\top} x_i)),$$

if $y_i = 1$, it is

$$\log(1 + \exp(-w^{\top}x_i))$$
.

One can check directly that $x \mapsto \log(1 + e^{-x})$ is convex. By composition, F is a sum of convex functions, thus convex.

Correction of the exercise, ctd.

2. Let $1 \le j \le d$. We write

$$\begin{split} \frac{\partial \hat{\mathcal{R}}(w)}{\partial w_j} &= -\sum_{i=1}^n \frac{\partial}{\partial w_j} \left\{ (1-y_i) \log(1-\phi(w^\top x_i)) + y_i \log \phi(w^\top x_i) \right\} \\ &= -\sum_{i=1}^n \left\{ \frac{-(1-y_i)}{1-\phi(w^\top x_i)} + \frac{y_i}{\phi(w^\top x_i)} \right\} \frac{\partial}{\partial w_j} \phi(w^\top x_i) \\ &= -\sum_{i=1}^n \left\{ \frac{-(1-y_i)}{1-\phi(w^\top x_i)} + \frac{y_i}{\phi(w^\top x_i)} \right\} \phi(w^\top x_i) (1-\phi(w^\top x_i)) x_{i,j} \\ \frac{\partial \hat{\mathcal{R}}(w)}{\partial w_j} &= -\sum_{i=1}^n \left(y_i - \phi(w^\top x_i) \right) x_{i,j} \,. \end{split}$$

3. It does not seem possible to solve $\nabla F(w) = 0$ in closed-form, one has to use gradient descent.

Recap

- ► What happens when we call sklearn.linear_model.LogisticRegression?
- ▶ penalty is $\ell_2 \rightarrow$ there is regularization by default! (not much though, C=1)
- ▶ fit_intercept is True → again, our maths are not entirely accurate
- lackbox solver is liblinear ightarrow since there is no closed-form, a solver will be used
- ▶ liblinear uses coordinate descent
- will default soon to lbfgs (limited memory Broyden-Fletcher--Goldfarb-Shanno)
- do not worry too much about the solvers, just change if you see that it is not converging

2. Tree-based classifiers

2.1. Partition rules

Introduction

- ightharpoonup let $\mathcal{X}=\mathbb{R}^d$ and $\mathcal{Y}=\mathbb{R}$
- in this section, we consider partition-based classifiers:

$$\mathcal{H} = \left\{ h : x \mapsto \sum_{j=1}^{p} h_{j} \mathbb{1}_{x \in A_{j}} \right\},\,$$

where $a_i \in \mathbb{R}$ and A_1, \ldots, A_p form a partition of the space

► that is,

$$A_1 \cup \cdots \cup A_p = \mathcal{X}$$
 and $A_i \cap A_j = \emptyset \forall i \neq j$.

- ightharpoonup the A_i s are often called *cells*
- \triangleright generally, for practical reasons the A_i s are rectangles

ERM for partition rules

- ightharpoonup assume that the partition is fixed and set A(x) = cell containing x
- Regression: with squared loss, ERM rule gives

$$f(x) = \frac{1}{|\{j \text{ s.t. } x_j \in A(x)\}|} \sum_{i=1}^n x_i \mathbb{1}_{y_i \in A(x)},$$

that is the average of the observations on each cell

► Classification: majority vote:

$$f(x) = \begin{cases} 1 & \text{if } |\{i \text{ s.t. } x_i \in A(x) \text{ and } y_i = 1\}| \geq \\ & |\{i \text{ s.t. } x_i \in A(x) \text{ and } y_i = 0\}| \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ thus ERM \Leftrightarrow finding the best partition (for a fixed p)
- ▶ Problem: this is computationally very hard! pⁿ possibilities to compare
- even if we restrict ourselves to rectangles, intractable

Example of a partition-based predictor

Tree structures

- ightharpoonup one possible solution: start from $\mathcal X$ and *split* the cells iteratively
- we obtain a tree-like structure
- ▶ Remark: not necessary to split in two, but very common
- another advantage in doing so: root the new data efficiently

Not a tree

▶ **Figure:** this partition of $[0,1]^2$ can not be obtained by recursive binary splitting

Growing trees

- Question: how do we make the splits?
- general answer: take an heuristic that makes sense
- ightharpoonup each heuristic yields a different algorithm, completed with stopping criterion (do a split only if gain greater than γ)
- ► complete reference on such procedures: the *yellow book*⁴
- good splitting rules:
 - create many cells (enough to capture the local variations of the distribution);
 - create cells that are large enough (we want sufficiently training data in the cells to compute a relevant average)
- **Notation:** I current node, I_L (resp. I_R) left (resp. right) node after the split

⁴Devroye, Györfi, Lugosi, A probabilistic theory of pattern recognition, 1996

ID3⁶ and C4.5

Definition: Let S be a finite set of points. Then we define the *entropy* of S by

$$H(S) = \sum_{y \in \mathcal{Y}} -p(y) \log_2 p(y),$$

where p(y) is the proportion of elements of S classified as y.

- easy to see that H(S) = 0 means that the node is pure = only one label $(0 \log 0 = 0)$
- ► C4.5 criterion:⁵ find direction and split that maximizes

$$H(I) - H(I_L) - H(I_R)$$
.

⁵Quinlan, C4.5: Programs for Machine Learning, 1993

⁶Quinlan, Induction of decision trees, Machine Learning, 1986

CART trees, classification

▶ later supplanted by CART trees⁷

Definition: Let S be a finite set of points. We define the *Gini impurity* by

$$G(S) = \sum_{y \in \mathcal{Y}} p(y)(1 - p(y)).$$

- ightharpoonup G(S) = 0 if the leaf is pure
- ► CART trees: find direction and split that maximizes

$$G(I) - G(I_L) - G(I_R)$$
.

⁷Breiman et al., Classification and Regression Trees, 1984

CART trees for regression

slightly different in the regression setting: look at the variance

$$V(S) = \frac{1}{|S|} \sum_{i \in S} (y_i - \overline{y}_S)^2 = \frac{1}{|S|^2} \sum_{i,j \in S} \frac{1}{2} (y_i - y_j)^2.$$

the criterion is the variance reduction due to the split:

$$V(I) - \frac{|I_L|^2}{|I|^2}V(I_L) - \frac{|I_R|^2}{|I|^2}V(I_R).$$

▶ **Intuition:** maximal if data is homogeneous left and right of the split (then $V(I_L) = V(I_R) = 0$)

Other examples

[►] **Figure:** quad trees⁸

 $^{^8 \}text{Finkel}$, Bentley, Quad trees: a data structure for retrieval on composite keys, Acta Informatica, 1974

Other examples, ctd.

Figure: comparison-based splits⁹

⁹Haghiri et al., Comparison-based random forests, ICML, 2018

When to stop?

- usually, many direction to try: CART reduces to a random subset of directions
- also possible to specify T a max height for the tree
- other strategy: grow the trees to the full extent, and then pruning
- one possibility = reduced error pruning
- > starting at the leaves, each node replaced by its most common class
- ▶ if prediction accuracy does not change, ditch the node
- Remark: error computations on a validation set

Recap

- ▶ What happens by default when we invoke the function sklearn.tree.DecisionTreeClassifier? let us look at least at the main options
- lacktriangle criterion is set to Gini ightarrow we are using CART trees
- lacktriangle splitter is set to best ightarrow looking at the best split at each step
- \blacktriangleright max_depth is None \to splitting until leaves are pure or contain less than min_samples_split
- min_samples_split = 2
- max_features is None → no max number of features, log could be a reasonable choice if we have many features
- ightharpoonup max_leaf_nodes: None ightarrow many leaves, we could also restrict this
- \blacktriangleright min_impurity_decrease $=0\rightarrow$ continues to split even if very small gain

2.2. Random forests

Random forests

- one possible problem with tree classifiers: overfitting
- ▶ **Solution:** train many trees and aggregate the prediction
- ► Classification: majority vote
- ▶ Regression: return the mean

Bagging

- ► Additional idea:¹0 train each tree on a random subsample of the data
- usual strategy = bagging
- bagging means bootstrap aggregation
- ightharpoonup sample with replacement a proportion αn of the training data
- train the tree classifier on this subset
- resample for each tree

¹⁰Breiman, Random forests, Machine Learning, 2001

Recap

What happens by default when we invoke the function

sklearn.ensemble.RandomForestClassifier?

- ightharpoonup n_estimators = 100 (T in our notation)
- ightharpoonup criterion = 'Gini' ightharpoonup we are using CART trees
- lacktriangledown max_depth = None o trees are grown until leaves are pure
- ▶ max_features = auto $\rightarrow \sqrt{d}$ features considered
- ▶ bootstrap = True → taking subsamples of the data, but since max_samples is set to None actually sampling the whole data

3. Boosting

Introduction

- ▶ **Important:** classification setting, $\mathcal{Y} = \{-1, +1\}$
- ▶ Idea: aggregate many classifiers together, then majority voting:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right),$$

where h_t are classifiers and α_t weights

- weak classifier = barely better than random guessing
- **Examples:** linear classifier, small trees,...
- Question: how do we decide which weights to put?
- ▶ different strategies, different algorithms¹¹

¹¹Schapire, Freund, Boosting: foundations and algorithms, MIT Press, 2012

Non-linearly separable datasets

▶ Figure: moons datasets from sklearn

Weak classifier

▶ Figure: moons datasets from sklearn

3.1. Adaboost

Introduction

- ▶ we first look at AdaBoost¹² (short for adaptative boosting)
- \triangleright AdaBoost maintains a distribution D_t over time
- start with uniform distribution, then increase the weights of misclassified examples
- ▶ at each step, we pick a classifier that minimizes the weighted error

$$\varepsilon_t := \mathbb{P}_{i \sim D_t} (h_t(x_i) \neq y_i)$$
$$= \sum_{i=1}^n D_t(i) \cdot \mathbb{1}_{h_t(x_i) \neq y_i}.$$

ightharpoonup adjust the weights by multiplying by a quantity depending on ε_t , larger than one if misclassified, smaller if correctly classified

 $^{^{12}}$ Freund and Schapire, *A decision-theoretic generalization of on-line learning and an application to boosting*, Journal of computer and system science, 1997

AdaBoost

Algorithm 1: AdaBoost algorithm

Input: n training examples $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathcal{X}$ and $y_i \in \{-1, 1\}$

Initialize the distribution to $D_1(i) = \frac{1}{n}$

for t = 1 to T do

Train weak learner using distribution D_t

Get weak hypothesis $h_t: \mathcal{X} \to \{-1,1\}$

 h_t minimizes the weighed error $\varepsilon_t := \mathbb{P}_{i \sim D_t} \left(h_t(x_i) \neq y_i \right)$. Set

$$\alpha_t := \frac{1}{2} \log \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

Update, for $i = 1 \dots n$,

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i, \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i. \end{cases}$$

end

Result: final classifier $H(x) := sign \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$.

Exercise

Exercise: With the notation of the previous slide,

1. show that

$$\mathbb{P}_{i \sim D_{t+1}} (h_t(x_i) \neq y_i) = \frac{\sqrt{\varepsilon_t (1 - \varepsilon_t)}}{Z_t}.$$

2. show that

$$Z_t = 2\sqrt{\varepsilon_t(1-\varepsilon_t)}$$
.

Deduce that

$$\mathbb{P}_{i\sim D_{t+1}}\left(h_t(x_i)\neq y_i\right)=\frac{1}{2}.$$

In other terms, with the weights chosen by AdaBoost, the weak classifier obtained at step t does not better than random guessing at step t+1.

Correction of the exercise

1. We write

71

Correction of the exercise, ctd.

2.

$$\begin{split} Z_t &= \sum_{\substack{i=1\\h_t(x_i) \neq y_i}}^n D_t(i) \cdot e^{\alpha_t} + \sum_{\substack{i=1\\h_t(x_i) = y_i}}^n D_t(i) \cdot e^{-\alpha_t} \\ &= e^{\alpha_t} \sum_{i=1}^n \mathbb{1}_{h_t(x_i) \neq y_i} \cdot D_t(i) + e^{-\alpha_t} \left(1 - \sum_{i=1}^n \mathbb{1}_{h_t(x_i) \neq y_i} \cdot D_t(i) \right) \\ &= \sqrt{\frac{1 - \varepsilon_t}{\varepsilon_t}} \cdot \varepsilon_t + \sqrt{\frac{\varepsilon_t}{1 - \varepsilon_t}} \cdot (1 - \varepsilon_t) \\ Z_t &= 2\sqrt{\varepsilon_t(1 - \varepsilon_t)} \,. \end{split}$$

72

Training error of AdaBoost

- ightharpoonup the choice of α_t and the update of the weights is mysterious
- actually, are we even sure that the train error goes to zero?

Proposition: with the above notation, let $\gamma_t := \frac{1}{2} - \varepsilon_t$. Then the weighted training error of the combined classifier H with respect to D_1 satisfies

$$\mathbb{P}_{i \sim D_t}\left(H(x_i) \neq y_i\right) \leq \prod_{t=1}^T \sqrt{1 - 4\gamma_t^2} \leq \exp\left(-2\sum_{t=1}^T \gamma_t^2\right) \,.$$

- ► Consequence: suppose that our weak classifiers are always doing a bit better than random, *i.e.*, $\gamma_t \ge \gamma > 0$
- ▶ then $\mathbb{P}_{i \sim D_1}(H(x_i) \neq y_i) \leq (1 4\gamma)^{T/2} \rightarrow 0$ when $T \rightarrow +\infty$

Training error of AdaBoost, ctd.

- ▶ **Proof:** we let $F(x) := \sum_{t=1}^{T} \alpha_t h_t(x)$, thus H(x) = sign(F(x))
- ▶ by definition of D_t , for any $i \in \{1, ..., n\}$

$$D_{T+1}(i) = D_1(i) \times \frac{e^{-y_i \alpha_1 h_1(x_i)}}{Z_1} \times \cdots \times \frac{e^{-y_i \alpha_T h_T(x_i)}}{Z_T}$$

$$= \frac{D_1(i) \cdot \exp\left(-y_i \sum_{t=1}^T \alpha_t h_t(x_i)\right)}{\prod_{t=1}^T Z_t}$$

$$= \frac{D_1(i) \cdot \exp\left(-y_i F(x_i)\right)}{\prod_{t=1}^T Z_t}.$$

Training error of AdaBoost, ctd.

- ▶ since H(x) = sign(F(x)), if $H(x) \neq y$, then $yF(x) \leq 0$
- ▶ in that case, $e^{-yF(x)} \ge 1$
- ► therefore $\mathbb{1}_{H(x)\neq v} \leq e^{-yF(x)}$

$$\mathbb{P}_{i \sim D_1} (H(x_i) \neq y_i) = \sum_{i=1}^n D_1(i) \cdot \mathbb{1}_{H(x_i) \neq y_i}
\leq \sum_{i=1}^n D_1(i) \cdot \exp(-y_i F(x_i))
= \sum_{i=1}^n D_{T+1}(i) \cdot \prod_{t=1}^T Z_t
= \prod_{t=1}^T Z_t .$$

Training error of AdaBoost, ctd.

- ▶ finally, recall that $\varepsilon_t = \frac{1}{2} \gamma_t$ and $Z_t = 2\sqrt{\varepsilon_t(1 \varepsilon_t)}$ according to the previous exercise
- we deduce that $Z_t = \sqrt{1-4\gamma_t^2}$
- ▶ the exponential bound is obtained using the classical inequality $e^x \ge 1 + x$ with $x = -4\gamma_t^2$ and taking the logarithm

Links with optimization

- there is a deeper reason why the training error of AdaBoost is decreasing
- more precisely, let us look at the training error with exponential loss:

$$\hat{\mathcal{R}}_{\mathcal{S}}(F) = \frac{1}{n} \sum_{i=1}^{n} \exp\left(-y_i F(x_i)\right).$$

- optimizing directly on F can be complicated
- ▶ greedy¹³ procedure: assume that F_t is already known and pick $\alpha > 0$ and $h \in \mathcal{H}$ that minimize

$$\sum_{i=1}^n \exp\left(-y_i(F_t(x_i) + \alpha h(x_i))\right) \propto \sum_{i=1}^n D_t(i) \cdot \exp\left(-y_i \alpha h(x_i)\right).$$

¹³= make the optimal choice at each step

Links with optimization, ctd.

let us rewrite this objective:

$$\sum_{i=1}^{n} D_t(i) \cdot \exp\left(-y_i \alpha h(x_i)\right) = \sum_{y_i = h(x_i)} D_t(i) \cdot e^{-y_i \alpha h(x_i)} + \sum_{y_i \neq h(x_i)} D_t(i) \cdot e^{-y_i \alpha h(x_i)}$$

$$= e^{-\alpha} \cdot \sum_{y_i = h(x_i)} D_t(i) + e^{\alpha} \cdot \sum_{y_i \neq h(x_i)} D_t(i)$$

$$= \left(e^{\alpha} - e^{-\alpha}\right) \sum_{y_i \neq h(x_i)} D_t(i) + e^{-\alpha}.$$

▶ for fixed α , since $e^{\alpha} - e^{-\alpha} > 0$, this is equivalent to minimizing in h

$$\sum_{y_i \neq h(x_i)} D_t(i) = \sum_{i=1}^n D_t(i) \cdot \mathbb{1}_{h(x_i) \neq y_i} = \varepsilon_t!!!$$

Links with optimization, ctd.

let us go back one step: we want to minimize

$$(e^{\alpha} - e^{-\alpha}) \cdot \varepsilon_t + e^{-\alpha} = \varepsilon_t e^{\alpha} + (1 - \varepsilon_t) e^{-\alpha}$$

with respect to α

 \blacktriangleright this is a smooth, convex function of α , standard procedure:

$$\frac{\mathrm{d}}{\mathrm{d}\alpha} \left(\varepsilon_t \mathrm{e}^\alpha + (1 - \varepsilon_t) \mathrm{e}^{-\alpha} \right) = \varepsilon_t \mathrm{e}^\alpha - (1 - \varepsilon_t) \mathrm{e}^{-\alpha} = 0,$$

which yields

$$e^{2\alpha} = \frac{1 - \varepsilon_t}{\varepsilon_t}$$
.

► finally,

$$\alpha = \frac{1}{2} \log \frac{1 - \varepsilon_t}{\varepsilon_t} = \alpha_t!!!$$

Conclusion

- sklearn.ensemble.AdaBoostClassifier in Python
- base_estimator defaults to None, which calls DecisionTreeClassifier → CART tree
- ▶ n_estimator is 50 by default (you can increase this value)
- learning rate fixed to one

3.2. XGBoost

Introduction

- boosting is a very powerful framework
- ► AdaBoost is no longer state-of-the-art
- ▶ XGBoost¹⁴ is the latest Wunderkind
- remarkable empirical results, winning a lot of Kaggle compatitions
- does not require as much tuning as deep neural nets
- not very well understood
- ▶ **Important:** we present XGBoost in the *regression* setting

 $^{^{14}\}text{Chen}$ and Guestrin, XGBoost: a scalable tree boosting system, SIGKDD, 2016

Tree boosting

► First important idea: as we have seen, at each step t, boosting optimizes

$$\sum_{i=1}^n \ell(y_i, F_t(x_i) + f(x_i))$$

for $f \in \mathcal{H}$ (the class of models that we are considering)

- loss function can be complicated: just take a Taylor approximation (at order 2) of ℓ !
- formally, replace $\ell(y_i, F_t(x_i) + f(x_i))$ by

$$\ell(y_i, F_t(x_i)) + g_i f(x_i) + \frac{1}{2} h_i f(x_i)^2$$
,

where

$$\begin{cases} g_i &= \frac{\partial}{\partial y'} \ell(y, y') \Big|_{y = y_i, y' = F_t(x_i)} \\ h_i &= \frac{\partial^2}{\partial y'^2} \ell(y, y') \Big|_{y = y_i, y' = F_t(x_i)} \end{cases}$$

Quadratic loss

Example: let us consider the quadratic loss

$$\ell(y, y') := (y - y')^2$$
.

▶ then we can compute

$$\frac{\partial}{\partial y'}\ell(y,y')=-2(y-y')\,,$$

and

$$\frac{\partial^2}{\partial y'^2}\ell(y,y')=2.$$

in that particular case, the approximation is exact

Regularization

▶ after simplifications, the objective becomes:

$$\sum_{i=1}^n \left[g_i f(x_i) + \frac{1}{2} h_i f(x_i)^2 \right] .$$

- Second important idea: regularization
- very typical to work with trees, we do not want them to grow to deep
- ightharpoonup add $\Omega(f)$, a term that *penalizes* such situations:

$$\mathrm{obj}(f) := \sum_{i=1}^n \left[g_i f(x_i) + \frac{1}{2} h_i f(x_i)^2 \right] + \Omega(f).$$

▶ in XGBoost:

$$\Omega(f) = \gamma L_f + \frac{1}{2} \lambda \sum_{j=1}^{L_f} w_j^2,$$

where L_f is the number of leaves of f, $\lambda > 0$ is a constant, and w_j is the value of f on leaf j

Structure score

Exercise:

1. assume that the structure of the tree f is known. Show that the objective function can be written

$$\sum_{j=1}^{L_f} \left[\left(\sum_{i \in I_j} g_i \right) w_j + \frac{1}{2} \left(\sum_{i \in I_j} h_i + \lambda \right) w_j^2 \right] + \gamma L_f,$$

where I_i is the set of points falling inside leaf j.

2. set $G_j := \sum_{i \in I_j} g_i$ and $H_j := \sum_{i \in I_j} h_i$. Show that, for a given tree structure, the best w_j s and the best objective function value are given by

$$w_j^\star := \frac{-G_j}{H_j + \lambda}, \quad \text{and} \quad \mathrm{obj}^\star := \frac{-1}{2} \sum_{j=1}^{L_f} \frac{G_j^2}{H_j + \lambda} + \gamma L_f \,.$$

86

Learning the tree structure

- essentially, the exercise tells us that we just need to optimize over all possible tree structures
- unfortunately, as for CART, this is not realistic
- instead, we use a heuristic to choose where to split a node:

$$\operatorname{gain} = \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right]$$

- ▶ **Intuition:** score on the new left + right leaves − score on the node
- then iterative splitting and stopping criterion

Conclusion

- ▶ Python implementation: xgboost package
- ► XGBRegressor object
- ▶ n_estimator = 100 by default
- $ightharpoonup \gamma = 0$ by default (!)
- max_depth = 6
- $ightharpoonup \lambda = 1$ by default

4. Nearest neighbors

Introduction

- $ightharpoonup \mathcal{X}$ some metric space
- ▶ there is a distance function $\delta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$
- properties:
 - $\delta(x,y) = 0$ if, and only if, x = y;
 - $\delta(x,y) = \delta(y,x);$
 - $\delta(x,z) \leq \delta(x,y) + \delta(y,z).$
- **Example (i):** Euclidean distance:

$$\delta(x,y) = \|x - y\|.$$

Example (ii): Mahalanobis distance:

$$\delta(x,y) = \sqrt{(x-y)^{\top} S^{-1}(x-y)}.$$

Example (iii): Hamming distance: number of substitutions between two strings

Nearest neighbors rule

- ▶ training examples $x_1, ..., x_n \in \mathcal{X}$
- ▶ Idea: memorize the training set and predict the label of a new instance according to the labels of its k nearest neighbors¹⁵
- ▶ for any $x \in \mathcal{X}$, define $\pi(x)$ an ordering according to $\delta(x, x_i)$
- namely:

$$\delta(x, x_{\pi_i(x)}) \leq \delta(x, x_{\pi_{i+1}(x)}).$$

Regression: empirical average:

$$h(x) = \frac{1}{k} \sum_{i=1}^k y_{\pi_i(x)}.$$

- Classification: majority vote
- ▶ when k = 1, 1 NN rule: $h(x) = y_{\pi_1(x)}$

¹⁵Fix, Hodges, *Discriminatory analysis. Nonparametric discrimination: consistency properties*, tech report, 1951

Weighted nearest neighbors

- possible to take into account the distances
- for instance:

$$h(x) = \sum_{i=1}^{k} \frac{\delta(x, x_{\pi_i(x)})}{\sum_{j=1}^{k} \delta(x, x_{\pi_j(x)})} y_{\pi_i(x)}.$$

possible to extend to arbitrary weights

Generalization error of 1 - NN

- focus on k = 1, possible to generalize 16
- binary classification $(\mathcal{Y} = \{0,1\})$ on $[0,1]^d$
- ▶ 0-1 loss: $\ell(y,y') = \mathbb{1}_{v \neq v'}$
- recall

$$\eta(x) = \mathbb{P}\left(y = 1 \,|\, x\right)\,,$$

and

$$h^*(x) = \mathbb{1}_{\eta(x) > 1/2}$$
.

▶ **Assumption:** the conditional probability of the labels is *c*-Lipschitz:

$$\forall x, x' \in \mathcal{X}, \quad |\eta(x) - \eta(x')| \le c \|x - x'\|.$$

 $^{^{16}\}mbox{Cover},$ Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, 1967

Generalization error, ctd.

Theorem: let $\mathcal{X} = [0,1]^d$ and $\mathcal{Y} = \{0,1\}$. Let \mathcal{D} be a distribution on $\mathcal{X} \times \mathcal{Y}$ such that the conditional distribution η is c-Lipschitz. Let $S = (x_1, y_1), \ldots, (x_n, y_n)$ be an i.i.d. sample from \mathcal{D} and let h_S be its 1 - NN associated hypothesis. Let h^* be the Bayes optimal rule for η . Then

$$\mathbb{E}_{S}[\mathcal{R}(h_{S})] \leq 2\mathcal{R}(h^{\star}) + 4c\sqrt{d}n^{\frac{-1}{n+1}}.$$

- ▶ **Intuition:** risk of 1 NN is bounded by twice the Bayes error + some term depending on the regularity of η
- ▶ if we want consistency, we actually have to take $k \to +\infty$ with $k/n \to 0$ (Stone's theorem¹⁷)

¹⁷Stone, Consistent nonparametric regression, The Annals of Statistics, 1977

Conclusion

- sklearn.neighbors.KNeighborsClassifier
- ightharpoonup n_neighbors = k = 5 by default
- weights defaults to uniform
- default distance is Euclidean