研究進捗報告書

ミーティング日: 2021 年 1 月 12 日

学年 D2 氏名 吉田 皓太郎

注意:ミーティング時には、必ず本報告書を作成し、一部を教員に提出すると共に、一部を自分用に持参して下さい。本報告書の提出がない場合、ミーティングは実施しません。また、項目 1) から項目 3) について未記入の箇所がある場合にも、ミーティングは実施しません。なお、本報告書は手書きでも構いません。

テーマの概要

- 機械学習を用いたカップ形状の設計支援
- 着後形状予測のためのカップの変形解析

テーマの目的

- 1. 定性的な機能要求を満たせるようなカップ形状を設計できる
- 2. 布の物性とカップのパターンがどのような結びつきを持っているかを調べることができる.

今週のミーティング事項について

目次

1	研究進捗について	1
1.1	研究会進捗	1
2	定式化の流れ	2
2.1	修正作業の定義	2
2.2	定式化	2
3	曲面論の基本定理など	2
3.1	曲面論の基本定理の成立条件について	2
3.2	数式のおことわり	3
3.3	多様体および外微分形式の導入の概説	3
3.4	曲面における外微分形式	4
3.5	可展面における積分可能条件について	5
3.6	論文調べ	5
3.7	D 論スケジュールや構成・どこまで範囲を広げるか	6
4	To Do List	6

ミーティング事項の具体的な内容について

1 研究進捗について

1.1 研究会進捗

年末年始も挟んでいたため、試行時間が少ないのも手伝い、現状まだうまくいかず、修正中.

2 定式化の流れ

2.1 修正作業の定義

本研究が対象する修正作業は,ブラジャーカップにおける下カップの上下接ぎライン形状の変更作業を対象と する.この修正作業には,

- ▼ 可展面制約を満たす
- ▼ 形状が大きく変化しない
- ▼ 形状がなるべくなめらかである.

という三つに分けられるのではないかと考える.元の可展面が十分なめらかである場合,この大きく変化しないは,なめらかさの要求を包括すると考えると,この大きく変化しないという目的関数の下,形状を最適化することで,修正作業を定式化することを考える.

2.2 定式化

下ワイヤの弧長パラメータを s とし、上下接ぎラインの弧長パラメータを u とする。上下接ぎラインの空間座標 $\tilde{x}_U(s)$ が、ある方向ベクトル e(s) に $\varepsilon(s)$ だけ動いた曲線が、可展開条件を満たすならば、次式が成立する。

$$\det[\tilde{\boldsymbol{\zeta}}_{U} + \varepsilon' \boldsymbol{e} + \varepsilon \boldsymbol{e}', \; \boldsymbol{\zeta}_{L}, \; \tilde{\boldsymbol{x}}_{U} + \varepsilon \boldsymbol{e}(s) - \boldsymbol{x}_{L}] = 0$$
 (1)

この式を整理すると、次式のように整理できる.

$$\det[\boldsymbol{e}, \boldsymbol{\zeta}_L, \boldsymbol{x}_U - \boldsymbol{x}_L] \varepsilon' = -\left(u' \det[\boldsymbol{\zeta}_U, \boldsymbol{\zeta}_L, \boldsymbol{e}] + \det[\boldsymbol{e}', \boldsymbol{\zeta}_L, \boldsymbol{x}_U - \boldsymbol{x}_L]\right) \varepsilon - \det[\boldsymbol{e}', \boldsymbol{\zeta}_L, \boldsymbol{e}] \varepsilon^2$$
(2)

こうすることで、 ε に関する微分方程式に帰結できる.すなわち、 ζ_U の成分を記述するオイラー角 ϕ, θ が決定すれば、式 2 を解き、上下接ぎラインがどれだけ変位したかを知ることができる.

変位した可展面の任意のパラメータ $s,\hat{t}\in[0,L_L]\times[0,D(s)]$ における空間座標は,次式のように表される.

$$\hat{\boldsymbol{x}}_U = \boldsymbol{x}_L + \hat{t}\hat{\boldsymbol{g}} \tag{3}$$

ただし、 \hat{g} は、 $\hat{x}_U + \varepsilon e(s) - x_L$ を自身のノルムで割り、正規化したベクトルを表している.この時、ある s に対する曲面の二つの空間座標間の総移動量は、三つの空間座標 $x_L, x_U, x_U + \varepsilon e$ からなる三角形の面積であると定義する.すなわち、目的関数は次式のように表される.

$$\int_{0}^{L_{L}} |\varepsilon \boldsymbol{e} \times (\boldsymbol{x}_{U} - \boldsymbol{x}_{L})| ds \tag{4}$$

3 曲面論の基本定理など

3.1 曲面論の基本定理の成立条件について

曲線論の基本定理は、曲率 κ および振率 τ が与えられる場合、曲線は回転・平行移動を除いて一意に決定されるという定理であった。この基本定理は、フレネ・セレの公式からも明らかである。

一方,曲面論における基本定理は,曲面の第一基本形式および第二基本形式が与えられる場合,その曲面が一意に決定できるというものである.この基本定理の成立条件は

$$K = \det\{b_{ij}\}\tag{5}$$

$$b_{i2,1} = b_{i1,2} \tag{6}$$

が成立することである。ただし、 $\{a_{ij}\}$ は、 a_{ij} を成分に持つ行列全体を表す。この b に関しては、曲面に関する係数だが、これについては外微分形式を導入したのち、説明する。

我々が定式化した曲面モデルが、上記の2式を満たすことを証明する.

3.2 数式のおことわり

本式において, R^n は n 次元ユークリッド空間を表し,その座標を $\mathbf{x} = \{x_i\}_{i=0,\cdots,n-1}$ と表す。 $\{a_{ij}\}$ は, a_{ij} を成分に持つ行列全体を表す。また,行列式は $\det A$ のように表す。また,当研究室において用いられていた主曲率方向 \mathbf{d}_1 , \mathbf{d}_2 や物体標構の各軸回転率,母線角はそれぞれ同様のものを用いるとする。

3.3 多様体および外微分形式の導入の概説

n 次元空間における n 次元多様体とは、空間 M と局所座標近傍の系 $\{U_i\}_{i=0,\cdots,N}$ からなり、特に n 次元微分可能多様体は、次の定義を満たす。

- ▼ M は位相空間(点の近傍が定義可能な空間)である.
- ▼ M は開集合の族 $\{U_i\}$ と、各 U_i から R^n への写像 $\phi_i(U_i)$ を持つ.
- ▼ $\{U_i\}$ は M を覆う. すなわち, $\bigcup_i U_i = M$
- $lack \{\phi_j|U_j o R^n\}$ は、開集合で、 ϕ_j は、 U_j から $\phi_j(U_j)$ 上の同相写像である.
- ▼ $U_j \cap U_i \neq 0$ となる i,j の組に対して, $\phi_i(U_i \cap U_j)$ から, $\phi_j(U_i \cap U_j)$ への写像 $\phi_j \circ \phi_i^{-1}$ は,無限回微分可能である.

上記の内,(2) (5) を満たす族 $\{U_i, \phi_i\}$ を座標近傍系といい,個々の要素を座標近傍という.

多様体上の微分を考えるにあたって、微分積分における外積 ∧ を次のような性質を満たす演算と定義する.

- ▼ 分配則 $(x_1 + x_2) \wedge y = x_1 \wedge y + x_2 \wedge y$
- ▼ 結合則 $x \wedge (y \wedge z) = (x \wedge y) \wedge z$

また、空間基底 $\{\sigma_i\}$ に対し、 $a=\sum a_i\sigma_i, b=\sum b_j\sigma_j$ と表されるベクトル集合を、1-ベクトルと呼び、外積によって定義される次のような空間

$$\boldsymbol{a} \wedge \boldsymbol{b} = \sum_{i} \sum_{j} a_{i} b_{j} (\boldsymbol{\sigma}_{i} \wedge \boldsymbol{\sigma}_{j}) \tag{7}$$

によって得られるベクトルを 2-ベクトルと呼ぶ. これを一般化すると p-ベクトルは, 次式のように表される.

$$\sum_{i_1, \dots i_p} a_{i_1, \dots, i_p} (\boldsymbol{\sigma}_1 \wedge \dots \wedge \boldsymbol{\sigma}_n)$$
 (8)

p-ベクトル μ および q-ベクトル ν に対し、外積は次のような性質を持つ。

$$\mu \wedge \nu = (-1)^{pq} \nu \wedge \mu \tag{9}$$

 R^n 上の n 次元微分可能多様体 M において,多様体上のある点 P における 1 次外微分形式を 1-形式と呼び, $\sum a_i(P)dx_i$ と定義する.次式を,点 P における p 次微分形式と呼び, p-形式と表す.

$$\sum_{h_1} \cdots \sum_{h_p} a_{h_1, \cdots, h_p} dx_{h_1} \wedge \cdots \wedge dx_{h_p} \tag{10}$$

外微分作用素 Δ は、p-形式を (p+1)-形式にする線形写像であり、次の性質を持つと定義する.

- $\Delta(\omega + \eta) = d\omega + d\eta$
- ightharpoons λ が p-形式の場合において、 $\Delta(\lambda \wedge \mu) = \Delta \lambda \wedge \mu + (-1)^p \lambda \wedge \Delta \mu$
- $\nabla \Delta(\Delta\omega) = 0$
- ▼ 関数 f に対して $\Delta f = \sum \frac{\partial f}{\partial x_i} \Delta x_i$

3.4 曲面における外微分形式

曲面の全体は n=2 の場合における多様体として考えることができる. 曲面 M において、各点で接平面内のベクトル e_1,e_2 を

$$\mathbf{e}_1 \cdot \mathbf{e}_1 = \mathbf{e}_2 \cdot \mathbf{e}_2 = 1, \quad \mathbf{e}_1 \cdot \mathbf{e}_2 = 0 \tag{11}$$

となるように選び, $e_3=e_1\times e_2$ となるように定める.この e_3 は曲面に対する法線ベクトルと符号を除いて一致する.以降では,曲面に対する法線ベクトルと一致すると仮定する.点 r が曲面上に沿って移動するとき,その変化量は

$$\Delta r = \sigma_1 e_1 + \sigma_2 e_2 \tag{12}$$

と表すことができる. この σ_i (i=1,2) は 1-形式であり、2-形式 $\sigma_1 \wedge \sigma_2$ は面積要素を表す.

また、 e_i は正規直交基底の性質を満たすため、

$$\Delta \mathbf{e}_i = \sum_j \omega_{i,j} \mathbf{e}_j \tag{13}$$

と書ける. 1-形式 $\omega_{i,j}$ は、次式の性質を満たす.

$$\omega_{i,j} = -\omega_{j,i}, \quad \omega_{i,i} = 0 \tag{14}$$

 $\Delta(\Delta r) = 0 \ \sharp \ \emptyset$

$$\Delta \mathbf{e}_i = \sum_j \sigma_j \wedge \omega_{j,i} \quad (i = 1, 2) \tag{15}$$

$$\mathbf{e}_1 \cdot \mathbf{e}_1 \tag{16}$$

を得る.式 (16) を第一構造式と呼ぶ.また, $\Delta \Delta e_i = 0$ から,

$$\Delta\omega_{i,k} = \sum_{j=1}^{3} \omega_{i,j} \wedge \omega_{j,k} \tag{17}$$

を得る. また,式 (16) より, $\omega_{i,3}$ は, $b_{i,j}$ を係数とし, σ_1,σ_2 の線形結合によって次式で表現することができる.

$$\omega_{i,3} = \sum_{j=1}^{2} b_{i,j} \sigma_j \tag{18}$$

この $b_{i,j}$ を用いて、ガウス曲率は $K=\det\{b_{i,j}\}$ と表すことができる.また、 $\Delta\omega_{2,1}=K\sigma_1\wedge\sigma_2$ が成立し、これを第二構造式という. $\Delta\omega_{i,3}-\sum_{j=1}^3\omega_{i,j}\wedge\omega_{j,3}=0$ より、

$$\sum_{k=1}^{2} (\Delta b_{i,k} - \sum_{j=1}^{2} b_{i,j} \omega_{k,j} - \sum_{j=1}^{2} b_{j,k} \omega_{i,j}) \wedge \sigma_k = 0$$
(19)

3.5 可展面における積分可能条件について

本章では、可展面において二つの条件が成立することを示す。線織面の一般座標 X(s,t) は、次式で表される。

$$\boldsymbol{X}(s,t) = \boldsymbol{x}_L + t\boldsymbol{d}_2 \tag{20}$$

ここで x_L は、曲面上の基準となる曲線を表す.この一般座標に外微分作用素を作用させると以下のように表される.

$$\Delta \mathbf{X} = \frac{\partial \mathbf{X}}{\partial s} ds + \frac{\partial \mathbf{X}}{\partial t} dt \tag{21}$$

ここで、 $\frac{\partial \mathbf{X}}{\partial s}$ 、 $\frac{\partial \mathbf{X}}{\partial t}$ は次式のように計算される.

$$\frac{\partial \mathbf{X}}{\partial s} = \zeta - t(\alpha' + \omega_{\eta})\mathbf{d}_{1} \tag{22}$$

$$\frac{\partial \mathbf{X}}{\partial t} = \mathbf{d}_2 \tag{23}$$

また、 ζ , ξ , d_1 , d_2 には、次式が成り立つ.

$$\begin{bmatrix} \mathbf{d}_1 & \mathbf{d}_2 \end{bmatrix} = \mathbf{R}(\alpha) \begin{bmatrix} \boldsymbol{\zeta} & \boldsymbol{\xi} \end{bmatrix}$$
 (24)

ただし, $\mathbf{R}(\alpha)$ は,対象とする 2 つの基底のなす平面内で角度 α の回転を与える行列である.これを用いて式を整理すると,

$$\Delta X = \{(\cos \alpha - t(\alpha' + \omega_n))d_1 + -\sin \alpha d_2\}ds + d_2dt$$
(25)

$$= \{(\cos \alpha - t(\alpha' + \omega_n))ds\}d_1 + (-\sin \alpha ds + dt)d_2$$
(26)

 d_1, d_2 は、曲面の接平面の基底ベクトルであることから、式 (12) と比較することにより、曲面における 1-形式 σ_i は

$$\sigma_1 = (\cos \alpha - t(\alpha' + \omega_\eta))ds \tag{27}$$

$$\sigma_2 = -\sin\alpha ds + dt \tag{28}$$

と表される. また、 $\Delta d_1, \Delta d_2, \Delta \eta$ 、を計算することにより、 $\Omega = \{\omega_{i,j}\}$ は次式で表される.

$$\mathbf{\Omega} = \begin{bmatrix}
0 & (\alpha' + \omega_{\eta})ds & -\frac{\omega_{\xi}}{\cos \alpha}ds \\
-(\alpha' + \omega_{\eta})ds & 0 & 0 \\
\frac{\omega_{\xi}}{\cos \alpha}ds & 0 & 0
\end{bmatrix}$$
(29)

式 (27), 式 (??) および式 (29) の結果から, $\mathbf{B} = \{b_{ij}\}$ は次式で求められる.

$$\boldsymbol{B} = \begin{bmatrix} -\frac{\omega_{\xi}}{\cos\alpha(\cos\alpha - t(\alpha' + \omega_{\eta}))} & 0\\ 0 & 0 \end{bmatrix}$$
 (30)

したがって、ここから、 $b_{i2,1}=b_{i1.2}=0$ を導くことができ、 $K=\det {\bf B}=0$ を導くことができる.したがって、可展面においては曲面の基本定理が成立することが示された.

3.6 論文調べ

可展面関係をいくつか読みました.

3.7 D 論スケジュールや構成・どこまで範囲を広げるか

話し合いできればと思います.

4 To Do List

▼ 論文流れについて考え始める

4)メモ欄(ミーティング中に記載)
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5) 次回のミーティングまでの課題 (ノルマ) (ミーティング終了時に記載) ※学生、教員共に記載
5) 次回のミーティングまでの課題 (ノルマ) (ミーティング終了時に記載) ※学生、教員共に記載
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5) 次回のミーティングまでの課題 (ノルマ) (ミーティング終了時に記載) ※学生、教員共に記載
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載