PROBLEMS

855

shift leftward or rightward and does the amplitude of that curve increase or decrease if we slightly increase (a) L, (b) C, and (c) ω_d ?

12 Figure 31-25 shows the current i and driving emf $\mathscr E$ for a series RLC circuit. (a) Does the current lead or lag the emf? (b) Is the circuit's load mainly capacitive or mainly inductive? (c) Is the angular frequency ω_d of the emf greater than or less than the natural angular frequency ω ?

Fig. 31-25 Questions 11 and 12.

PLUS

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign

wwv

WWW Worked-out solution is at

ILW Interactive solution is at

http://www.wiley.com/college/halliday

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec. 31-2 LC Oscillations, Qualitatively

•1 An oscillating LC circuit consists of a 75.0 mH inductor and a 3.60 μ F capacitor. If the maximum charge on the capacitor is 2.90 μ C, what are (a) the total energy in the circuit and (b) the maximum current?

Worked-out solution available in Student Solutions Manual

Number of dots indicates level of problem difficulty

- •2 The frequency of oscillation of a certain LC circuit is 200 kHz. At time t=0, plate A of the capacitor has maximum positive charge. At what earliest time t>0 will (a) plate A again have maximum positive charge, (b) the other plate of the capacitor have maximum positive charge, and (c) the inductor have maximum magnetic field?
- •3 In a certain oscillating LC circuit, the total energy is converted from electrical energy in the capacitor to magnetic energy in the inductor in 1.50 μ s. What are (a) the period of oscillation and (b) the frequency of oscillation? (c) How long after the magnetic energy is a maximum will it be a maximum again?
- •4 What is the capacitance of an oscillating LC circuit if the maximum charge on the capacitor is 1.60 μ C and the total energy is 140 μ J?
- •5 In an oscillating LC circuit, L=1.10 mH and C=4.00 $\mu\mathrm{F}$. The maximum charge on the capacitor is 3.00 $\mu\mathrm{C}$. Find the maximum current.

sec. 31-3 The Electrical – Mechanical Analogy

- **•6** A $0.50 \, \mathrm{kg}$ body oscillates in SHM on a spring that, when extended 2.0 mm from its equilibrium position, has an $8.0 \, \mathrm{N}$ restoring force. What are (a) the angular frequency of oscillation, (b) the period of oscillation, and (c) the capacitance of an LC circuit with the same period if L is $5.0 \, \mathrm{H}$?
- ••7 SSM The energy in an oscillating LC circuit containing a 1.25 H inductor is 5.70 μ J. The maximum charge on the capacitor is 175 μ C. For a mechanical system with the same period, find the (a) mass, (b) spring constant, (c) maximum displacement, and (d) maximum speed.

sec. 31-4 LC Oscillations, Quantitatively

•8 A single loop consists of inductors (L_1, L_2, \ldots) , capacitors (C_1, C_2, \ldots) , and resistors (R_1, R_2, \ldots) connected in series as shown, for example, in Fig. 31-26a. Show that regardless of the sequence of these circuit elements in the loop, the behavior of this circuit is identical to that of the simple LC circuit shown in Fig.

31-26b. (*Hint:* Consider the loop rule and see Problem 47 in Chapter 30.)

Fig. 31-26 Problem 8.

- •9 ILW In an oscillating LC circuit with $L=50\,\mathrm{mH}$ and $C=4.0\,\mu\mathrm{F}$, the current is initially a maximum. How long will it take before the capacitor is fully charged for the first time?
- •10 LC oscillators have been used in circuits connected to loud-speakers to create some of the sounds of electronic music. What inductance must be used with a 6.7 μ F capacitor to produce a frequency of 10 kHz, which is near the middle of the audible range of frequencies?
- ••11 SSM WWW A variable capacitor with a range from 10 to 365 pF is used with a coil to form a variable-frequency *LC* circuit to tune the input to a radio. (a) What is the ratio of maximum frequency to minimum frequency that can be obtained with such a capacitor? If this circuit is to obtain frequencies from 0.54 MHz to 1.60 MHz, the ratio computed in (a) is too large. By adding a capacitor in parallel to the variable capacitor, this range can be adjusted. To obtain the desired frequency range, (b) what capacitance should be added and (c) what inductance should the coil have?
- ••12 In an oscillating LC circuit, when 75.0% of the total energy is stored in the inductor's magnetic field, (a) what multiple of the maximum charge is on the capacitor and (b) what multiple of the maximum current is in the inductor?
- ••13 In an oscillating LC circuit, L = 3.00 mH and C = 2.70 μ F. At t = 0 the charge on the capacitor is zero and the current is 2.00 A. (a) What is the maximum charge that will appear on the capacitor? (b) At what earliest time t > 0 is the rate at which energy is stored in the capacitor greatest, and (c) what is that greatest rate?
- ••14 To construct an oscillating LC system, you can choose from a 10 mH inductor, a 5.0 μ F capacitor, and a 2.0 μ F capacitor. What

are the (a) smallest, (b) second smallest, (c) second largest, and (d) largest oscillation frequency that can be set up by these elements in various combinations?

- ••15 ILW An oscillating LC circuit consisting of a 1.0 nF capacitor and a 3.0 mH coil has a maximum voltage of 3.0 V. What are (a) the maximum charge on the capacitor, (b) the maximum current through the circuit, and (c) the maximum energy stored in the magnetic field of the coil?
- ••16 An inductor is connected across a capacitor whose capacitance can be varied by turning a knob. We wish to make the frequency of oscillation of this LC circuit vary linearly with the angle of rotation of the knob, going from 2×10^5 to 4×10^5 Hz as the knob turns through 180° . If L=1.0 mH, plot the required capacitance C as a function of the angle of rotation of the knob.
- ••17 ILW © In Fig. 31-27, $R = 14.0 \ \Omega$, $C = 6.20 \ \mu\text{F}$, and $L = 54.0 \ \text{mH}$, and the ideal battery has emf $\mathscr{E} = 34.0 \ \text{V}$. The switch is kept at a for a long time and then thrown to position b. What are the (a) frequency and (b) current amplitude of the resulting oscillations?

Fig. 31-27 Problem 17.

- ••18 An oscillating LC circuit has a current amplitude of 7.50 mA, a po-
- tential amplitude of 250 mV, and a capacitance of 220 nF. What are (a) the period of oscillation, (b) the maximum energy stored in the capacitor, (c) the maximum energy stored in the inductor, (d) the maximum rate at which the current changes, and (e) the maximum rate at which the inductor gains energy?
- ••19 Using the loop rule, derive the differential equation for an *LC* circuit (Eq. 31-11).
- ••20 •• In an oscillating LC circuit in which $C=4.00~\mu\text{F}$, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 mA. What are (a) the inductance L and (b) the frequency of the oscillations? (c) How much time is required for the charge on the capacitor to rise from zero to its maximum value?
- ••21 ILW In an oscillating LC circuit with $C = 64.0 \mu F$, the current is given by $i = (1.60) \sin(2500t + 0.680)$, where t is in seconds, i in amperes, and the phase constant in radians. (a) How soon after t = 0 will the current reach its maximum value? What are (b) the inductance L and (c) the total energy?
- ••22 A series circuit containing inductance L_1 and capacitance C_1 oscillates at angular frequency ω . A second series circuit, containing inductance L_2 and capacitance C_2 , oscillates at the same angular frequency. In terms of ω , what is the angular frequency of oscillation of a series circuit containing all four of these elements? Neglect resistance. (*Hint*: Use the formulas for equivalent capacitance and equivalent inductance; see Section 25-4 and Problem 47 in Chapter 30.)
- ****23** In an oscillating LC circuit, L = 25.0 mH and C = 7.80 μ F. At time t = 0 the current is 9.20 mA, the charge on the capacitor is 3.80 μ C, and the capacitor is charging. What are (a) the total energy in the circuit, (b) the maximum charge on the capacitor, and (c) the maximum current? (d) If the charge on the capacitor is given by $q = Q \cos(\omega t + \phi)$, what is the phase angle ϕ ? (e)

Suppose the data are the same, except that the capacitor is discharging at t = 0. What then is ϕ ?

sec. 31-5 Damped Oscillations in an RLC Circuit

- ••24 •• A single-loop circuit consists of a 7.20 Ω resistor, a 12.0 H inductor, and a 3.20 μ F capacitor. Initially the capacitor has a charge of 6.20 μ C and the current is zero. Calculate the charge on the capacitor N complete cycles later for (a) N = 5, (b) N = 10, and (c) N = 100.
- ••25 ILW What resistance R should be connected in series with an inductance L=220 mH and capacitance $C=12.0~\mu\text{F}$ for the maximum charge on the capacitor to decay to 99.0% of its initial value in 50.0 cycles? (Assume $\omega' \approx \omega$.)
- ••26 In an oscillating series RLC circuit, find the time required for the maximum energy present in the capacitor during an oscillation to fall to half its initial value. Assume q = Q at t = 0.
- ****•27 SSM** In an oscillating series RLC circuit, show that $\Delta U/U$, the fraction of the energy lost per cycle of oscillation, is given to a close approximation by $2\pi R/\omega L$. The quantity $\omega L/R$ is often called the Q of the circuit (for *quality*). A high-Q circuit has low resistance and a low fractional energy loss (= $2\pi/Q$) per cycle.

sec. 31-8 Three Simple Circuits

- •28 A 1.50 μ F capacitor is connected as in Fig. 31-10 to an ac generator with $\mathscr{E}_m = 30.0$ V. What is the amplitude of the resulting alternating current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz?
- •29 ILW A 50.0 mH inductor is connected as in Fig. 31-12 to an ac generator with $\mathcal{E}_m = 30.0$ V. What is the amplitude of the resulting alternating current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz?
- •30 A 50.0 Ω resistor is connected as in Fig. 31-8 to an ac generator with $\mathcal{E}_m = 30.0$ V. What is the amplitude of the resulting alternating current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz?
- •31 (a) At what frequency would a 6.0 mH inductor and a 10 μ F capacitor have the same reactance? (b) What would the reactance be? (c) Show that this frequency would be the natural frequency of an oscillating circuit with the same L and C.
- ••32 •• An ac generator has emf $\mathscr{E} = \mathscr{E}_m \sin \omega_d t$, with $\mathscr{E}_m = 25.0 \text{ V}$ and $\omega_d = 377 \text{ rad/s}$. It is connected to a 12.7 H inductor. (a) What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c) When the emf of the generator is -12.5 V and increasing in magnitude, what is the current?
- **33 SSM An ac generator has emf $\mathscr{E} = \mathscr{E}_m \sin(\omega_d t \pi/4)$, where $\mathscr{E}_m = 30.0 \text{ V}$ and $\omega_d = 350 \text{ rad/s}$. The current produced in a connected circuit is $i(t) = I \sin(\omega_d t 3\pi/4)$, where I = 620 mA. At what time after t = 0 does (a) the generator emf first reach a maximum and (b) the current first reach a maximum? (c) The circuit contains a single element other than the generator. Is it a capacitor, an inductor, or a resistor? Justify your answer. (d) What is the value of the capacitance, inductance, or resistance, as the case may be?
- ••34 •• An ac generator with emf $\mathscr{E} = \mathscr{E}_m \sin \omega_d t$, where $\mathscr{E}_m = 25.0 \text{ V}$ and $\omega_d = 377 \text{ rad/s}$, is connected to a 4.15 μF capacitor. (a) What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c) When the emf of the generator is -12.5 V and increasing in magnitude, what is the current?

sec, 31-9 The Series RLC Circuit

- •35 ILW A coil of inductance 88 mH and unknown resistance and a $0.94 \mu F$ capacitor are connected in series with an alternating emf of frequency 930 Hz. If the phase constant between the applied voltage and the current is 75°, what is the resistance of the coil?
- •36 An alternating source with a variable frequency, a capacitor with capacitance C, and a resistor with resistance R are connected in series. Figure 31-28 gives the impedance Z of the circuit versus the driving angular frequency ω_d ; the curve reaches an asymptote of $500~\Omega$, and the horizontal scale is set by $\omega_{ds} = 300~\text{rad/s}$. The figure also gives the reactance X_C for the capacitor versus ω_d . What are (a) R and (b) C?

Fig. 31-28 Problem 36.

- •37 An electric motor has an effective resistance of 32.0 Ω and an inductive reactance of 45.0 Ω when working under load. The rms voltage across the alternating source is 420 V. Calculate the rms current.
- •38 The current amplitude I versus driving angular frequency ω_d for a driven RLC circuit is given in Fig. 31-29, where the vertical axis scale is set by $I_s = 4.00$ A. The inductance is 200 μ H, and the emf amplitude is 8.0 V. What are (a) C and (b) R?

Fig. 31-29 Problem 38.

- •39 Remove the inductor from the circuit in Fig. 31-7 and set $R=200~\Omega$, $C=15.0~\mu\text{F}, f_d=60.0~\text{Hz}$, and $\mathscr{E}_m=36.0~\text{V}$. What are (a) Z, (b) ϕ , and (c) I? (d) Draw a phasor diagram.
- •40 An alternating source drives a series RLC circuit with an emf amplitude of 6.00 V, at a phase angle of $+30.0^{\circ}$. When the potential difference across the capacitor reaches its maximum positive value of +5.00 V, what is the potential difference across the inductor (sign included)?
- **•41** SSM In Fig. 31-7, set $R=200~\Omega,~C=70.0~\mu\text{F},~L=230~\text{mH},~f_d=60.0~\text{Hz},~\text{and}~\mathcal{E}_m=36.0~\text{V}.$ What are (a) Z, (b) ϕ , and (c) I? (d) Draw a phasor diagram.
- •42 An alternating source with a variable frequency, an inductor with inductance L, and a resistor with resistance R are connected in series. Figure 31-30 gives the impedance Z of the circuit versus the driving angular frequency ω_d , with the horizontal axis scale set

by $\omega_{ds} = 1600$ rad/s. The figure also gives the reactance X_L for the inductor versus ω_d . What are (a) R and (b) L?

Fig. 31-30 Problem 42.

- •43 Remove the capacitor from the circuit in Fig. 31-7 and set $R = 200 \Omega$, L = 230 mH, $f_d = 60.0 \text{ Hz}$, and $\mathcal{E}_m = 36.0 \text{ V}$. What are (a) Z, (b) ϕ , and (c) I? (d) Draw a phasor diagram.
- ••44 •• An ac generator with $\mathcal{E}_m = 220 \text{ V}$ and operating at 400 Hz causes oscillations in a series RLC circuit having $R = 220 \Omega$, L = 150 mH, and $C = 24.0 \mu\text{F}$. Find (a) the capacitive reactance X_C , (b) the impedance Z, and (c) the current amplitude I. A second capacitor of the same capacitance is then connected in series with the other components. Determine whether the values of (d) X_C , (e) Z, and (f) I increase, decrease, or remain the same.
- ••46 An alternating emf source with a variable frequency f_d is connected in series with a 50.0 Ω resistor and a 20.0 μ F capacitor. The emf amplitude is 12.0 V. (a) Draw a phasor diagram for phasor V_R (the potential across the resistor) and phasor V_C (the potential across the capacitor). (b) At what driving frequency f_d do the two phasors have the same length? At that driving frequency, what are (c) the phase angle in degrees, (d) the angular speed at which the phasors rotate, and (e) the current amplitude?
- ••47 SSM WWW An *RLC* circuit such as that of Fig. 31-7 has $R = 5.00 \Omega$, $C = 20.0 \mu$ F, L = 1.00 H, and $\mathcal{E}_m = 30.0 V$. (a) At what angular frequency ω_d will the current amplitude have its maximum value, as in the resonance curves of Fig. 31-16? (b) What is this maximum value? At what (c) lower angular frequency ω_{d1} and (d) higher angular frequency ω_{d2} will the current amplitude be half this maximum value? (e) For the resonance curve for this circuit, what is the fractional half-width $(\omega_{d1} \omega_{d2})/\omega$?
- ••48 •• Figure 31-31 shows a driven RLC circuit that contains two identical capacitors and two switches. The emf amplitude is set at 12.0 V, and the driving frequency is set at 60.0 Hz. With both switches open, the current leads the emf by 30.9°. With switch S_1 closed and switch S_2 still open, the emf leads the current by 15.0°. With both switches closed, the current amplitude is 447 mA. What are (a) R, (b) C, and (c) L?

Fig. 31-31 Problem 48.

858 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

••49 In Fig. 31-32, a generator with an adjustable frequency of oscillation is connected to resistance $R=100~\Omega$, inductances $L_1=1.70~\text{mH}$ and $L_2=2.30~\text{mH}$, and capacitances $C_1=4.00~\mu\text{F}$, $C_2=2.50~\mu\text{F}$, and $C_3=3.50~\mu\text{F}$. (a) What is the resonant fre-

Fig. 31-32 Problem 49.

quency of the circuit? (*Hint:* See Problem 47 in Chapter 30.) What happens to the resonant frequency if (b) R is increased, (c) L_1 is increased, and (d) C_3 is removed from the circuit?

••50 An alternating emf source with a variable frequency f_d is connected in series with an 80.0 Ω resistor and a 40.0 mH inductor. The emf amplitude is 6.00 V. (a) Draw a phasor diagram for phasor V_R (the potential across the resistor) and phasor V_L (the potential across the inductor). (b) At what driving frequency f_d do the two phasors have the same length? At that driving frequency, what are (c) the phase angle in degrees, (d) the angular speed at which the phasors rotate, and (e) the current amplitude?

••51 SSM The fractional half-width $\Delta\omega_d$ of a resonance curve, such as the ones in Fig. 31-16, is the width of the curve at half the maximum value of I. Show that $\Delta\omega_d/\omega=R(3C/L)^{1/2}$, where ω is the angular frequency at resonance. Note that the ratio $\Delta\omega_d/\omega$ increases with R, as Fig. 31-16 shows.

sec. 31-10 Power in Alternating-Current Circuits

•52 An ac voltmeter with large impedance is connected in turn across the inductor, the capacitor, and the resistor in a series circuit having an alternating emf of 100 V (rms); the meter gives the same reading in volts in each case. What is this reading?

•53 SSM An air conditioner connected to a 120 V rms ac line is equivalent to a 12.0 Ω resistance and a 1.30 Ω inductive reactance in series. Calculate (a) the impedance of the air conditioner and (b) the average rate at which energy is supplied to the appliance.

•54 What is the maximum value of an ac voltage whose rms value is 100 V?

•55 What direct current will produce the same amount of thermal energy, in a particular resistor, as an alternating current that has a maximum value of 2.60 A?

••56 A typical light dimmer used to dim the stage lights in a theater consists of a variable inductor L (whose inductance is adjustable between zero and $L_{\rm max}$) connected in series with a lightbulb B, as shown in

Fig. 31-33 Problem 56.

Fig. 31-33. The electrical supply is 120 V (rms) at 60.0 Hz; the light-bulb is rated at 120 V, 1000 W. (a) What $L_{\rm max}$ is required if the rate of energy dissipation in the lightbulb is to be varied by a factor of 5 from its upper limit of 1000 W? Assume that the resistance of the lightbulb is independent of its temperature. (b) Could one use a variable resistor (adjustable between zero and $R_{\rm max}$) instead of an inductor? (c) If so, what $R_{\rm max}$ is required? (d) Why isn't this done?

••57 In an RLC circuit such as that of Fig. 31-7 assume that $R=5.00~\Omega, L=60.0~\mathrm{mH}, f_d=60.0~\mathrm{Hz},$ and $\mathscr{E}_m=30.0~\mathrm{V}$. For what values of the capacitance would the average rate at which energy is dissipated in the resistance be (a) a maximum and (b) a minimum? What are (c) the maximum dissipation rate and the corresponding (d) phase angle and (e) power factor? What are (f) the minimum

dissipation rate and the corresponding (g) phase angle and (h) power factor?

••58 For Fig. 31-34, show that the average rate at which energy is dissipated in resistance R is a maximum when R is equal to the internal resistance r of the ac generator. (In the text discussion we tacitly assumed that r = 0.)

Fig. 31-34 Problems 58 and 66.

••59 In Fig. 31-7, $R=15.0~\Omega$, $C=4.70~\mu\text{F}$, and L=25.0~mH. The generator provides an emf with rms voltage 75.0 V and frequency 550 Hz. (a) What is the rms current? What is the rms voltage across (b) R, (c) C, (d) L, (e) C and L together, and (f) R, C, and L together? At what average rate is energy dissipated by (g) R, (h) C, and (i) L?

••60 ••60 •• In a series oscillating RLC circuit, $R=16.0~\Omega$, $C=31.2~\mu$ F, $L=9.20~\mathrm{mH}$, and $\mathscr{E}_m=\mathscr{E}_m$ sin $\omega_d t$ with $\mathscr{E}_m=45.0~\mathrm{V}$ and $\omega_d=3000~\mathrm{rad/s}$. For time $t=0.442~\mathrm{ms}$ find (a) the rate P_g at which energy is being supplied by the generator, (b) the rate P_C at which the energy in the capacitor is changing, (c) the rate P_L at which the energy in the inductor is changing, and (d) the rate P_R at which energy is being dissipated in the resistor. (e) Is the sum of P_C , P_L , and P_R greater than, less than, or equal to P_g ?

••61 SSM WWW Figure 31-35 shows an ac generator connected to a "black box" through a pair of terminals. The box contains an *RLC* circuit, possibly even a multiloop circuit, whose elements and connections we do not know. Measurements outside the box reveal that

$$\mathscr{E}(t) = (75.0 \text{ V}) \sin \omega_d t$$

 $i(t) = (1.20 \text{ A}) \sin(\omega_d t + 42.0^\circ).$

(a) What is the power factor? (b) Does the current lead or lag the emf? (c) Is the circuit in the box largely inductive or largely capacitive? (d) Is the circuit in the box in resonance? (e) Must there be a capacitor in the box? (f) An inductor? (g) A resistor? (h) At what average rate is energy delivered to the box by the generator? (i) Why don't you need to know ω_d to answer all these questions?

Fig. 31-35 Problem 61.

sec. 31-11 Transformers

•62 A generator supplies 100 V to a transformer's primary coil, which has 50 turns. If the secondary coil has 500 turns, what is the secondary voltage?

•63 SSM ILW A transformer has 500 primary turns and 10 sec-

and