Cavallaro, Jeffery Math 221b Homework #3

- 1). Let R be a ring and let I and J be ideals in R:
 - a). Prove: $I \cap J$ and I + J are both ideals in R.

From group theory, we already know that $I\cap J$ is an additive subgroup of R. Furthermore, since R is an additive abelian group, $I\cap J$ is an additive abelian subgroup of R.

Assume $a\in I\cap J$ $a\in I$ and $a\in J$ Assume $b\in R$ But I is an ideal in R, so $ab,ba\in I$ Similarly, $ab,ba\in J$ So $ab,ba\in I\cap J$

Therefore, by the ideal test, $I \cap J$ is an ideal in R

From group theory, we know that $I+J=I\vee J$ (join) when either subgroup is normal in R. But since R is abelian, all subgroups are normal. Therefore I+J is an additive subgroup of R. Furthermore, since R is an additive abelian group, I+J is an additive abelian subgroup of R.

Now, assume $a\in I+J$ By definition, there exists $i\in I$ and $j\in J$ such that a=i+j Assume $b\in R$ ab=(i+j)b=ib+jb But I is an ideal, so $ib\in I$ Similarly, $jb\in J$ Thus, $ab=ib+jb\in I+J$ ba=b(i+j)=bi+bj But I is an ideal, so $bi\in I$ Similarly, $bj\in J$ Thus $ba=bi+bj\in I+J$

Therefore, by the ideal test, I + J is an ideal in R.

b). Prove that there is an isomorphism of rings:

$$I/(I \cap J) \simeq (I+J)/J$$

From part (a) we know that I+J is a ring Since $0\in I$ we have $J\subseteq I+J$ J is a ring and is thus an additive abelian subgroup of I+J

 There exists $i \in I$ and $j \in J$ such that b = i + j

$$ab = a(i+j) = ai + aj$$

But J is an ideal in R, so $ai, aj \in J$

So by closure, $ab = ai + aj \in J$

$$ba = (i+j)a = ia + ja$$

But J is an ideal in R, so $ia, ja \in J$

So by closure, $ba = ia + ja \in J$

Thus, by the ideal test, J is an ideal in I+J, and therefore (I+J)/J is a factor ring.

Now, consider $\phi: I \to (I+J)/J$ defined by $\phi(i) = i+J$.

Assume $i, i' \in I$

$$\phi(i+i') = (i+i') + J = (i+J) + (i'+J) = \phi(i) + \phi(i')$$

$$\phi(ii') = (ii') + J = (i+J)(i'+J) = \phi(i)\phi(i')$$

Therefore ϕ is a ring homomorphism.

Now, assume $a \in (I+J)/J$

There exists $b \in (I + J)$ such that a = b + J

But, there exists $i \in I$ and $j \in J$ such that b = i + j

So,
$$a = (i + j) + J$$

Now, since J is the additive identity for (I + J)/J:

$$\phi(i) = i + J = (i + J) + J$$

And since $j \in J$:

$$\phi(i) = (i+J) + (j+J) = (i+j) + J$$

Therefore, ϕ is surjective.

Now, consider $i \in I$ such that $\phi(i) = i + J = J$

This means that $i \in J$ as well, so $\ker(\phi) = I \cap J$

Therefore, by the first fundamental theorem:

$$I/(I \cap J) \simeq (I+J)/J$$

- 2). Let R be a commutative ring with $1 \neq 0$ and suppose S is a multiplicatively-closed subset of $R \setminus \{0\}$ containing no zero divisors. Define \sim on $R \times S$ by $(a,b) \sim (c,d) \iff ad = bc$.
 - a). Prove: \sim is an equivalence relation.

R: Assume
$$(a,b) \in R \times S$$

$$ab=ab$$
 and so, by definition, $(a,b)\sim (a,b)$

Therefore \sim is reflexive.

S: Assume $(a,b) \sim (c,d)$

$$ad = bc$$

But R is commutative, so da = cb

Furthermore, equality is symmetric, so cb=daThus, by definition, $(c,d)\sim (a,b)$

Therefore \sim is symmetric.

T: Assume
$$(a, b) \sim (c, d)$$
 and $(c, d) \sim (e, f)$

$$ad = bc$$
 and $cf = de$

R is a ring, so using ring properties:

$$adcf = bcde$$

$$adcf - bcde = 0$$

$$(af)(dc) - (be)(cd) = 0$$

$$(af)(cd) - (be)(cd) = 0$$

$$(af - be)(cd) = 0$$

But since R has no zero-divisors: af - be = 0 or cd = 0

Case 1:
$$cd = 0$$

By construction,
$$d \neq 0$$
, and so $c = 0$

$$ad = b0 = 0$$
, and thus $a = 0$

Similarly,
$$0f = de = 0$$
, and thus $e = 0$

So
$$af = 0f = 0$$
 and $be = b0 = 0$

$$af = be$$

Thus, by definition, $(a,b) \sim (e,f)$

Case 2:
$$af - be = 0$$

$$af = be$$

Thus, by definition, (a, b) = (e, f)

Therefore, \sim is transitive.

Therefore, \sim is an equivalence relation.

b). Let R_S denote the set of equivalence classes $\frac{a}{b}$ of (a,b). Prove that addition in R_S :

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

is well-defined. (Given: multiplication is well-defined)

Assume
$$(a, b)$$
 and $(c, d) \in R_S$

Assume
$$(a, b) \sim (a', b')$$
 and $(c, d) \sim (c', d')$

By definition: ab' = ba' and cd' = dc'

Consider $(1,1) \in R_S$:

$$(a,b)(1,1) = (a1,b1) = (a,b)$$

$$(1,1)(a,b) = (1a,1b) = (a,b)$$

Thus (1,1) is a multiplicative identity for R_S

By construction, $b,d\in S$ are non-zero and S has no zero divisors, so $bd\neq 0$

Thus, $\frac{bd}{bd} \in R_S$

Furthermore: (bd)1 = 1(bd), so $(bd,bd) \sim (1,1)$

Similarly: $(b'd', b'd') \sim (1, 1)$

Adding the two alternate representatives we get:

$$\frac{a'}{b'} + \frac{c'}{d'} = \frac{a'd' + b'c'}{b'd'}$$

Since multiplication is assumed to be well-defined:

$$\frac{a'}{b'} + \frac{c'}{d'} = \frac{1}{1} \cdot \frac{a'd' + b'c'}{b'd'} = \frac{bd}{bd} \cdot \frac{a'd' + b'c'}{b'd'} = \frac{(bd)(a'd' + b'c')}{(bd)(b'd')}$$

But R is a commutative ring, so using ring properties:

$$\frac{a'}{b'} + \frac{c'}{d'} = \frac{bda'd' + bdb'c'}{bdb'd'}$$

$$= \frac{(ba')(dd') + (dc')(bb')}{(b'd')(bd)}$$

$$= \frac{(ab')(dd') + (cd')(bb')}{(b'd')(bd)}$$

$$= \frac{(b'd')(ad) + (b'd')(bc)}{(b'd')(bd)}$$

$$= \frac{(b'd')(ad + bc)}{(b'd')(bd)}$$

$$= \frac{b'd'}{b'd'} \cdot \frac{ad + bc}{db}$$

$$= \frac{1}{1} \cdot \frac{ad + bc}{db}$$

$$= \frac{ad + bc}{db}$$

Therefore, addition in R_S is well-defined.

c). Prove that there are exactly two prime ideals in $\mathbb{Z}_{(p)}$: one corresponding to the zero ideal and one corresponding to the prime p.

We know that the ideals of $\mathbb{Z}_{(p)}$ are of the form $p\mathbb{Z}_{(p)}$ and that they form a chain:

$$\{0\} \subset \ldots \subset p^3 \mathbb{Z}_{(p)} \subset p^2 \mathbb{Z}_{(p)} \subset p \mathbb{Z}_{(p)} \subset \mathbb{Z}_{(p)}$$

Assume $x, y \in \mathbb{Z}_{(p)}$

Since $\mathbb{Z}_{(p)}$ is an integral domain and thus has no zero divisors:

$$xy=0 \implies x=0 \text{ or } y=0$$

Thus, the zero ideal is prime.

Now, assume $k \in \mathbb{Z}^+$

Case 1: k > 1:

$$\begin{aligned} p^{k-1} &\in p^{k-1}\mathbb{Z}_{(p)} \\ p &\in p\mathbb{Z}_{(p)} \\ p^{k-1}p &= p^k \in p^k\mathbb{Z}_{(p)} \\ \text{But } p^{k-1}, p \not\in p^k \end{aligned}$$

Therefore $p^k \mathbb{Z}_{(p)}$ is not prime.

Case 2: k = 1

Let $x = \frac{a}{b}$ and $y = \frac{c}{d}$

Since p divides neither b nor d, $xy \in p\mathbb{Z}_{(p)}$ means that one of x,y must be in $p\mathbb{Z}_{(p)}$ and the other must be in $\mathbb{Z}_{(p)}$. Otherwise, xy would fall in one of the other ideals.

Therefore, $p\mathbb{Z}_{(p)}$ is prime.