MULTIPLE CHOICE QUESTIONS (MCQ'S)

1	If	Sin	(- A)		_	= $\cos\theta$ then $\tan(-\theta)$ =						
1.	11	O.III	(0)	_	⊸oin⊌,	$Cos(-\theta)$	=	Cos0	then	tan	(-0)	=

- (a) $-\tan\theta$ (b) $\frac{1}{\tan\theta}$ (c) $-\cot\theta$ (d) $\frac{1}{\cot\theta}$

The value of $2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}$ is ____ 2.

- (a) $-2\sin\frac{\theta}{2}$ (b) $\cos\theta$
- (c) Sin0
- (d) Cotθ

 $\cos^2\theta + \sin^2\theta = \underline{\hspace{1cm}}$ 3.

- (a) l
- (b) -1
- (c) 0
- (d) ∞

 $1 + \tan^2\theta =$ 4.

- (a) Sec²0
- (b) $Cosec^2\theta$ (c) $-Sec^2\theta$ (d) $Cot^2\theta$

 $1 + \cot^2\theta =$

- (a) Cos²θ
- (b) Cosec²θ
- (c) $Sec^2\theta$ (d) $-Cosec^2\theta$

let P (x_1, y_1) and Q (x_2, y_2) be two points. If d be the 6. distance between them then d =

- (a) $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$ (b) $\sqrt{(x_1 x_2) + (y_2 y_1)}$ (c) $\sqrt{(x x_2)^2 + (y y_2)^2}$ (d) $\sqrt{(x x_1)^2 + (y y_1)^2}$

- (a) 5 Untis (b) -5 Units
- (c) 4 Units (d) 8 Units

8. $\cos(\alpha - \beta) =$ _____

- (a) $Cos\alpha Cos\beta + Sin\alpha Sin\beta$
- (b) CosαCosβ SinαSinβ
- (c) $Sin\alpha Cos\beta + Cos\alpha Sin\beta$
- (d) SinαCosβ CosαSinβ

9. $\cos (\alpha + \beta) = \underline{\hspace{1cm}}.$

- (a) $Cos\alpha Cos\beta + Sin\alpha Sin\beta$
- (b) CosαCosβ SinαSinβ
- (c) $Sin\alpha Cos\beta + Cos\alpha Sin\beta$
- (d) SinαCosβ CosαSinβ

10. $\sin(\alpha + \beta) = \underline{\hspace{1cm}}$

- (a) $\cos\alpha\cos\beta + \sin\alpha\sin\beta$
- (b) CosαCosβ SinαSinβ
- (c) $Sin\alpha Cos\beta + Cos\alpha Sin\beta$
- (d) SinαCosβ CosαSinβ

11. $\sin (\alpha - \beta) = \underline{\hspace{1cm}}.$

- (a) $Cos\alpha Cos\beta + Sin\alpha Sin\beta$
- (b) CosαCosβ SinαSinβ
- (c) $Sin\alpha Cos\beta + Cos\alpha Sin\beta$
- (d) $Sin\alpha Cos\beta Cos\alpha Sin\beta$

```
872
        \tan(\alpha+\beta)=
                                                                   tan\alpha + tan\beta
               tance - tanß
                                                                  1 - tanαtanβ
         (a) 1 + tanctanβ
                                                            (d) \frac{\sin\alpha - \cos\beta}{1 + \sin\alpha \cos\beta}
               Sina + CosB
         (c) 1 - SinαCosβ
13. tan(\alpha - \beta) =
                                                                    tan\alpha - tan\beta
                tan\alpha + tan\beta
                                                                   1 + tanαtanβ
         (a) 1 - \tan \alpha \tan \beta
                                                                    \frac{Sin\alpha - Cos\beta}{1 + Sin\alpha Cos\beta}
                Sin\alpha + Cos\beta
         (c) \frac{\sin \alpha \cos \beta}{1 - \sin \alpha \cos \beta}
14. Cot (\alpha + \beta) =
                                                                    Cot\alpha Cot\beta + 1
         (a) \frac{\cot \cot \cot \beta - 1}{\cot \alpha + \cot \beta}
                                                                     Cot\beta - Cot\alpha
                                                                    tan\alpha tan\beta + 1
               tancx tan \beta - 1
                                                                      tan\beta - tan\alpha
                tan\alpha + tan\beta
15. Cot (\alpha - \beta) =
                                                                     CotaCot\beta - 1
                Cot\alpha Cot\beta + 1
         (a) Cotβ - Cotα
                                                                      Cota - Cotß
                                                                     tan\alpha tan\beta + 1
                tanottanß -1
          (c) \frac{1}{\tan\alpha + \tan\beta}
                                                                      tan\beta - tan\alpha

 Sinα Cosβ =

         (a) \frac{1}{2} [ Sin (\alpha + \beta) + Sin (\alpha - \beta).]
         (b) \frac{1}{2} [ \sin(\alpha + \beta) - \sin(\alpha - \beta) ]
         (c) \frac{1}{2} [ Cos (\alpha + \beta) + Cos (\alpha - \beta)]
          (d) -\frac{1}{2} [ Cos (\alpha + \beta) – Cos (\alpha - \beta) ]
17. \cos\alpha \sin\beta =
         (a) \frac{1}{2} [ Sin (\alpha + \beta) + Sin (\alpha - \beta) ]
         (b) \frac{1}{2} [ Sin (\alpha + \beta) – Sin (\alpha - \beta) ]
         (c) \frac{1}{2} [ Cos (\alpha + \beta) + Cos (\alpha - \beta) ]
         (d) -\frac{1}{2} [Cos (\alpha + \beta) – Cos (\alpha - \beta)]
```

```
18. CosαCosβ =
        (a) \frac{1}{2} [ Sin (\alpha + \beta) + Sin (\alpha - \beta) ]
        (b) \frac{1}{2} [ Sin (\alpha + \beta) – Sin (\alpha - \beta) ]
        (c) \frac{1}{2} [Cos (\alpha + \beta) + Cos (\alpha - \beta)]
        (d) -\frac{1}{2} [Cos (\alpha + \beta) – Cos (\alpha - \beta)]
19. \sin \alpha \sin \beta =
        (a) \frac{1}{2} [ Sin (\alpha + \beta) + Sin (\alpha - \beta) ]
        (b) \frac{1}{2} [Sin (\alpha + \beta) – Sin (\alpha - \beta)]
        (c) \frac{1}{2} [Cos (\alpha + \beta) + Cos (\alpha - \beta)]
        (d) -\frac{1}{2} [ \cos(\alpha + \beta) - \cos(\alpha - \beta)]
20. SinU + SinV =
        (a) 2\sin\left(\frac{U+V}{2}\right)\cos\left(\frac{U-V}{2}\right)
        (b) 2\cos\left(\frac{U+V}{2}\right)\sin\left(\frac{U-V}{2}\right)
     (c) 2\cos\left(\frac{U+V}{2}\right)\cos\left(\frac{U-V}{2}\right)
        (d) -2\sin\left(\frac{U+V}{2}\right)\sin\left(\frac{U-V}{2}\right)
21. SinU - SinV
        (a) 2\sin\left(\frac{U+V}{2}\right)\cos\left(\frac{U-V}{2}\right)
        (b) 2 \cos \left( \frac{U+V}{2} \right) \sin \left( \frac{U-V}{2} \right)
        (c) 2\cos\left(\frac{U+V}{2}\right)\cos\left(\frac{U-V}{2}\right)
        (d) -2Sin\left(\frac{U+V}{2}\right)Sin\left(\frac{U-V}{2}\right)
```

$$\frac{874}{22.} \frac{\text{CosU} + \text{CosV} = }{\text{(a) } 2\text{Sin}\left(\frac{\text{U} + \text{V}}{2}\right) \text{Cos}\left(\frac{\text{U} - \text{V}}{2}\right)}$$

(b)
$$2\cos\left(\frac{U+V}{2}\right)\sin\left(\frac{U-V}{2}\right)$$

(c)
$$2\cos\left(\frac{U+V}{2}\right)\cos\left(\frac{U-V}{2}\right)$$

(d)
$$-2\sin\left(\frac{U+V}{2}\right) \sin\left(\frac{U-V}{2}\right)$$

(a)
$$2\operatorname{Sin}\left(\frac{U+V}{2}\right)\operatorname{Cos}\left(\frac{U-V}{2}\right)$$

(b)
$$2\cos\left(\frac{U+V}{2}\right)\sin\left(\frac{U-V}{2}\right)$$

(c)
$$2\cos\left(\frac{U+V}{2}\right)\cos\left(\frac{U-V}{2}\right)$$

(d)
$$-2\sin\left(\frac{U+V}{2}\right)\sin\left(\frac{U-V}{2}\right)$$

(c)
$$\cos\theta$$
 (d) $-\tan\theta$

25.
$$\sin(-\theta) = \underline{\hspace{1cm}}$$

(d)
$$\cos\theta$$
 (d) $-\cos\theta$

26. Cot
$$(-\theta) =$$

(a)
$$\sin\theta$$
 (b) $-\tan\theta$

(c)
$$-\cos\theta$$
 (d) $-\cot\theta$

27.
$$\sin 2\theta =$$
_______(a) $\cos \theta$

(c)
$$2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$$

(d)
$$2\cos^2\frac{\theta}{2}$$

28.
$$\cos\left(\frac{\pi}{2} - \theta\right) = \underline{\hspace{1cm}}$$

(a) Sin₀

(b) -Sinθ

(c) Cos0

(d) 2SinθCosθ

$$29. \quad \sin\left(\frac{\pi}{2} - \theta\right) = \underline{\hspace{1cm}}$$

(a) Cos0

(b) tanθ

Chapter 10 # Trigonometric Identities

(d)
$$2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$$

30.
$$\tan\left(\frac{\pi}{2}-\theta\right) = \underline{\hspace{1cm}}.$$

(c) -Cosθ

(a)
$$\tan\theta$$
 (b) $-\tan\theta$

31.
$$\operatorname{Cot}\left(\frac{\pi}{2}-\theta\right) = \underline{\hspace{1cm}}$$

(a)
$$tan\theta$$
 (b) $-tan\theta$

32.
$$\operatorname{Sin}\left(\frac{\pi}{2} + \theta\right) = \underline{\hspace{1cm}}$$

(a)
$$\sin\theta$$
 (b) $\cos\theta$

(c)
$$-\cos\theta$$
 (d) $-\sin\theta$

33.
$$\operatorname{Cos}\left(\frac{\pi}{2} + \theta\right) = \underline{\hspace{1cm}}$$

34.
$$\tan\left(\frac{\pi}{2} + \theta\right) = \underline{\hspace{1cm}}$$

a)
$$\sin\theta$$
 (b) $\tan\theta$

(c)
$$-\tan\theta$$
 (d) $-\cot\theta$

35.
$$\operatorname{Cot}\left(\frac{\pi}{2} + \theta\right) = \underline{\hspace{1cm}}$$

(a)
$$Sin\theta$$
 (b) $tan\theta$

(c)
$$-\cot\theta$$
 (c) $-\tan\theta$

36.
$$\sin (\pi - \theta) = \underline{\hspace{1cm}}$$

(a) $\cos \theta$ (b) $-\cos \theta$

(b)
$$-\cos\theta$$
 (c) $\sin\theta$ (d) $\sec\theta$

37.
$$\cos (\pi - \theta) = \underline{\hspace{1cm}}$$

(a) $\cos \theta$ (b) $-\cos \theta$

(a)
$$\sec\theta$$
 (b) $-\tan\theta$
40. $\sin(\pi + \theta) =$

(a)
$$-\sin\theta$$
 (b) $\sin\theta$

41.
$$\cos (\pi + \theta) = \frac{(b) \sin \theta}{(b) - \cot \theta}$$

(a)
$$\sin\theta$$
 (b) $-\cot\theta$
42. $\tan(\pi + \theta) = \underline{\hspace{1cm}}$

(c)
$$-\cos\theta$$
 (d) $-\sec\theta$

43.
$$\cot \theta$$
 (b) $\tan \theta$

(c)
$$-\cot\theta$$
 (d) $-\tan\theta$

0.0	$(3\pi \ \alpha)$		··		
44.	$\sin\left(\frac{3\pi}{2} - \theta\right)$	(b) Sinθ	(c) -Sinθ	(d) Seco	
	(a) -Cosθ	(0) 51110		,	

45.
$$\cos\left(\frac{3\pi}{2} - \theta\right) = \frac{1}{(a) - \cos\theta}$$
 (b) $\sin\theta$ (c) $-\sin\theta$ (d) $\sec\theta$

46.
$$\tan\left(\frac{3\pi}{2} - \theta\right) = \frac{1}{(a) \tan \theta}$$
 (b) $-\tan \theta$ (c) $-\cot \theta$ (d) $\cot \theta$

47.
$$\cot\left(\frac{3\pi}{2} - \theta\right) =$$
 (c) $-\cot\theta$ (d) $\cot\theta$

48.
$$\operatorname{Sin}\left(\frac{3\pi}{2} + \theta\right) = \underline{\hspace{1cm}}$$
(a) $\operatorname{Cos}\theta$ (b) $-\operatorname{Cos}\theta$ (c) $\operatorname{Sin}\theta$ (d) $-\operatorname{Sin}\theta$

(a)
$$\cos\theta$$
 (b) $-\cos\theta$ (c) $\sin\theta$ (d) $-\sin\theta$
49. $\cos\left(\frac{3\pi}{2} + \theta\right) =$ (c) $\sin\theta$ (d) $-\sin\theta$
(a) $\cos\theta$ (b) $-\cos\theta$ (c) $\sin\theta$ (d) $-\sin\theta$

50.
$$\tan\left(\frac{3\pi}{2} + \theta\right) = \underline{\hspace{1cm}}$$

(a) $-\tan\theta$ (b) $-\cot\theta$ (c) $\cot\theta$ (d) $\tan\theta$

51.
$$\cot\left(\frac{3\pi}{2} + \theta\right) =$$
 _____.

(a) $\tan\theta$ (b) $-\tan\theta$ (c) $\sec\theta$ (d) $\sin\theta$

52.
$$\sin (2\pi - \theta) = \underline{\hspace{1cm}}$$

(a) $-\sin \theta$ (b) $\sin \theta$ (c) $\cos \theta$ (d) $-\cos \theta$

(a)
$$-\sin\theta$$
 (b) $\sin\theta$ (c) $\cos\theta$ (d) $-\cos\theta$
53. $\cos(2\pi - \theta) =$ _____

(a)
$$\cos\theta$$
 (b) $-\cos\theta$ (c) $\tan\theta$ (d) $-\tan\theta$
54. $\tan(2\pi - \theta) =$ _____.

(a)
$$\cos\theta$$
 (b) $-\cos\theta$ (c) $-\sin\theta$ (d) $-\tan\theta$

55. Cot
$$(2\pi - \theta) =$$
_____.

(a)
$$-\tan\theta$$
 (b) $-\sin\theta$ (c) $-\cot\theta$ (d) $\sec\theta$
56. $\sin(2\pi + \theta) =$

(a)
$$\cos\theta$$
 (b) $\sin\theta$ (c) $-\cos\theta$ (d) $\cot\theta$
57. $\cos(2\pi + \theta) = ____.$

(a)
$$\cos\theta$$
 (b) $\sin\theta$ (c) $-\cos\theta$ (d) $\tan\theta$

Cha	pter 10 # Trigonometric Ide	entities	877
58.	$\tan (2\pi + \theta) = \underline{\hspace{1cm}}.$		
	(a) $\cot \theta$ (b) $-\tan \theta$	(c) tanθ	(d) –Cotθ
59.			
	(a) $\tan\theta$ (b) $-\sin\theta$	(c) –Cotθ	(d) Cotθ
60.	$\frac{1}{\sin\theta} = \underline{\hspace{1cm}}$	•	
	(a) Secθ (b) Cosθ	(c) Cosecθ	(d) tanA
	• •	(c) Coseco	(u) tano
1.	$\frac{1}{\cos\theta} = \underline{\hspace{1cm}}$		
	(a) Cosecθ (b) Cotθ	(c) Sin't	(d) Secθ
2.	$\frac{1}{\tan \theta} = \underline{\hspace{1cm}}$		
۷.	· •	•	
	(a) Cosecθ (b) Secθ	(c) Cotθ	(d) Cosθ
3.	$\frac{\cos\theta}{\tan\theta} = \underline{\hspace{1cm}}$		
2	(a) \tan (b) $\cot \theta$ $\cos \theta = \pm \sqrt{\underline{}}$	(c) Cosecθ	(d) Secθ
•	(a) $1 + \sin^2\theta$ (b) $1 - \sin^2\theta$	(a) 1 Co.	$s^2\theta(d) 1 - Cot^2\theta$
5.		(c) 1 – Cos	3 6(a) 1 – Cot-6
•	(a) $1 - \cos^2\theta$ (b) $1 - \sin^2\theta$	(c) 1 + Co	s ² O(d) 1 S:= ² O
		(6) 1 + 60:	s 6(a) 1 – Sin 6
). ·	$Cosec\theta = \frac{1}{Cosec\theta}$		
	(a) $\cos\theta$ (b) $\sin\theta$	(c) tanθ	(d) Secθ
7.	$Sec\theta = \frac{1}{1}$.(=) 5555
	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	9	
8.	(a) Sinθ (b) Cosecθ	(c) Cosθ	(d) Cotθ
o.	the distance between th	e points (5,	(1) and (6,2) is
	units. (a) $\sqrt{2}$ (b) 3		
9.		(c) 2	(d) 4
	(a) $\sin^2\theta - \cos^2\theta$	a 2.	
		(b) $Cos^2\theta$	+ Sin ² θ
	(c) $\frac{2\tan\theta}{1-\tan^2\theta}$	(d) Cos²θ	- Sin ² 0
0.	$\cos 2\theta = \underline{\qquad}$	(=, 200 0	J V
	(a) 1 2 2 3		

(b) $2\sin^2\theta - 1$

(d) $2\cos\theta - 1$

(a) $1 - 2\cos^2\theta$

(c) $2\cos^2\theta - 1$

```
viumematics XI
```

(b)
$$\frac{2\tan\theta}{1+\tan^2\theta}$$

(b) $1 - 2\cos^2\theta$

(d) $1 - 2\sin^2\theta$

$$(c) \frac{1 + \tan^2 \theta}{1 + \tan^2 \theta}$$

$$(d) \frac{1 + \tan^2 \theta}{1 - \tan^2 \theta}$$

73.
$$\sin 2\theta = \frac{1 + \tan^2 \theta}{2 \tan \theta}$$

$$1 - \tan^2 \theta$$

(b)
$$\frac{2\tan\theta}{1+\tan^2\theta}$$

74.
$$\tan^2\theta$$

(a) $\frac{2\tan\theta}{1-\tan^2\theta}$ (b) $\frac{1+\tan^2\theta}{2\tan\theta}$

(c)
$$\frac{2\tan\theta}{\cos\theta}$$
 (d) $\frac{1+\tan\theta}{\cos\theta}$

75.
$$\cos\theta = \frac{1}{2}$$
(a) $1 - 2 \sin^2 \frac{\theta}{2}$

(b)
$$\sin^2\frac{\theta}{2}-1$$

(c)
$$1 - 2 \cos^2 \frac{\theta}{2}$$

(d)
$$1 - 2 \sin^2 \frac{\theta}{2}$$

(a)
$$1-2\cos^2\frac{\theta}{2}$$

(b)
$$1 + \sin^2 \frac{\theta}{2}$$

(c)
$$2 \cos^2 \frac{\theta}{2} - 1$$

(d)
$$1 + 2 \cos^2 \frac{0}{2}$$

77.
$$1 - \cos\theta =$$
_____.

(a)
$$2\cos^2\frac{\theta}{2}$$
 (b) $2\tan^2\frac{\theta}{2}$

(c)
$$2Sec^2 \frac{\theta}{2}$$
 (d) $2 Sin^2 \frac{\theta}{2}$

78.
$$1 + \cos\theta =$$

(a)
$$2\cos^2\frac{\theta}{2}$$

(b)
$$2 \sin^2 \frac{\theta}{2}$$

(c)
$$2 \operatorname{Cosec}^2 \frac{\theta}{2}$$
.

(d)
$$2 \operatorname{Sec}^2 \frac{\theta}{2}$$

79.
$$\sin 3\theta = \underline{\hspace{1cm}}$$
(a)
$$3\sin \theta - 4\sin^3 \theta$$

(b)
$$4\cos^3\theta - 3\cos\theta$$

(c)
$$3\sin\theta + 4\sin^3\theta$$

(d)
$$4\cos^3\theta + 3\cos\theta$$

$$\cos 3\theta = \underline{\qquad \qquad }$$
(a) $3\sin \theta - 4\sin^3 \theta$

(b)
$$4\cos^3\theta - 3\cos\theta$$

(c)
$$3\sin\theta + 4\sin^3\theta$$

(d)
$$4\cos^3\theta - 3\cos\theta$$

81.
$$\tan 3\theta = \underline{\qquad \qquad }$$
(a)
$$\frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

(b)
$$\frac{3\tan\theta + \tan^3\theta}{1 - 3\tan^2\theta}$$

(c)
$$\frac{3\tan\theta + \tan^3\theta}{1 + 3\tan^2\theta}$$

(d)
$$\frac{3\tan\theta - \tan^3\theta}{1 + 3\tan^2\theta}$$

82.
$$\sin \frac{\alpha}{2} = \underline{\hspace{1cm}}$$

(a)
$$\pm \sqrt{\frac{1 + \cos\alpha}{2}}$$

(b)
$$\pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}$$

(c)
$$\pm \sqrt{\frac{1-\cos\alpha}{2}}$$

83.
$$\cos \frac{\alpha}{2} = \underline{\hspace{1cm}}$$

(a)
$$\pm \sqrt{\frac{1 + \cos\alpha}{2}}$$

(b)
$$\pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}$$

(c)
$$\pm \sqrt{\frac{1-\cos\alpha}{2}}$$

84.
$$\tan \frac{\alpha}{2} = \underline{\hspace{1cm}}$$

(a)
$$\pm \sqrt{\frac{1 - \cos\alpha}{2}}$$

(b)
$$\pm \sqrt{\frac{1 + \cos\alpha}{2}}$$

(c)
$$\pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}$$

$$(d) \pm \sqrt{\frac{1 + Coso}{1 - Coso}}$$

85. Evaluate
$$\frac{\sin{(\alpha + \beta)}}{\cos{\alpha} \cos{\beta}} =$$

(a)
$$tan\alpha + tan\beta$$

(c)
$$\cot \alpha + \cot \beta$$

86.
$$\frac{\sin (\alpha + \beta) + \sin (\alpha - \beta)}{\cos (\alpha + \beta) + \cos (\alpha - \beta)}$$

$$\frac{\cos{(\alpha+\beta)}+\cos{(\alpha-\beta)}}{\cos{(\alpha-\beta)}}$$

87.
$$\cos^2\theta =$$
 (b) $\tan\alpha$

(a)
$$\frac{1 + \cos 2\theta}{2}$$
 (b) $\frac{1 - \cos 2\theta}{2}$ (c) $\frac{1 - \sin 2\theta}{2}$ (d) $\frac{1 + \sin 2\theta}{2}$

(c)
$$\frac{1 - \sin 2\theta}{2}$$
 (d) $\frac{1 + \sin 2\theta}{2}$

(b) $1 - 3\sin^2\theta \cos^2\theta$

(d) $\sin^2\theta - \sin^2\phi$

97. $\cos(\theta + \phi) \cos(\theta - \phi) =$

(c) $\cos^2\theta - \sin^2\phi$

(a) $\frac{1 - \cos\theta}{1 + \cos\theta}$

(b) Three Sides

(d) None of these

(a) Two Sides

(c) Two angles

		Waterematics XI
882	A triangle is right angle triang	le then two angles of triangle
107.	A mangio to to	(4) 000
		(c) 90° (d) 180°
108.	TA A CIMAS OI DATE	and equal in lengths then
	narallelogianii is	(b) Square
	(a) Rhombus	(d) Parallelogram
	(c) Rectangle If all the angles of parallelo second is called	grain are equal in magnitude
109.	then parallelogram is called _	
	(a) Rhombus	(o) odamo
		(d) Parallelogram
110	(c) Rectangle The law $Cos.(\alpha - \beta) = Co$	$s\alpha Cos\beta + Sin\alpha Sin\beta$ is called
,	(a) Fundamental law of Trigo	(c) law of Sine
	(b) law of Cosine	(c) law of Sine
	(d) None of these	
111.	$C\alpha \frac{\alpha}{2} = $	
	$(a) \pm \sqrt{\frac{2}{1 - \cos \alpha}}$	(b) $\pm \sqrt{\frac{2}{1 + \cos\alpha}}$
	$\sqrt{1-\cos\alpha}$	· · · · · · · · · · · · · · · · · · ·
	(c) $\pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}$	(d) $\pm \sqrt{\frac{1 + \cos\alpha}{1 - \cos\alpha}}$
	$(c) \perp \sqrt{1 + \cos \alpha}$	$\sqrt{1-\cos\alpha}$
112	$Sec \frac{\alpha}{2} = \underline{\hspace{1cm}}$	
112		
	(a) $\pm \sqrt{\frac{2}{1 - \cos \alpha}}$	(b) $\pm \sqrt{\frac{2}{1 + \cos\alpha}}$
		<u>-</u>
	(c) $\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$	(d) $\sqrt{\frac{1 + \cos\alpha}{1 - \cos\alpha}}$
113.	Coseca =	*
	(a) $\pm \sqrt{\frac{2}{1 - \cos\alpha}}$	(b) $\pm \sqrt{\frac{2}{1 + \cos \alpha}}$
	(c) $\pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$	(d) $\pm \sqrt{\frac{1 + \cos\alpha}{1 - \cos\alpha}}$
114.	Sec $(90^{\circ} - \theta) = $	• •
	(a) $Sec\theta$ (b) $-Sec\theta$	(c) Cosecθ (d) - Cosecθ

```
Chapter 10 # Trigonometric Identities
  115. Sec (90^{\circ} + \theta) =
        (a) Secθ
                             (b) - Secθ
                                                   (c) Cosecθ (d) - Cosecθ
 116. Cosec (90^{\circ} - \theta) = _
        (a) Secθ
                            (b) -Sec0
                                                   (c) Cosecθ
                                                                     (d) - Coseco
 117. Cosec (90^{\circ} + \theta) = _
        (a) Secθ
                            (b) -Secθ
                                                  (c) Cosecθ
                                                                     (d) - Cosec0
  118. \sin 2\theta \cos \theta - \cos 2\theta \sin \theta =
        (a) Sinθ
                            (b) Sin3θ
                                                  (c) Cosθ
                                                                      (d) Cos2θ
  119. \cos 2\theta \cos \theta - \sin 2\theta \sin \theta =
        (a) Sin0
                           (b) Sin3θ
                                                  (c) Cosθ
                                                                     (d) Cos20
 120. If \sin \alpha = \frac{1}{\sqrt{2}} and \cos \alpha = \frac{1}{\sqrt{2}} then \sin 2\alpha = \frac{1}{\sqrt{2}}
                         (b) Zero
 121. If \sin\alpha = \frac{1}{\sqrt{2}} and \cos\alpha = \frac{1}{\sqrt{2}} then \cos 2\alpha = \frac{1}{\sqrt{2}}
      (a) \frac{2}{\sqrt{5}} (b) Zero
                                                                     (d) 1
122. If \cos\alpha = \frac{1}{2} then \cos 2\alpha =
123. If \tan \alpha = 1 then \tan 2\alpha =
      (a) 2
                                                 (b) \frac{1}{2}
     ·(c) Zero
                                                 (d) ∞ (Undefined)
124. Which one is a pair of allied angles _____
      (a) (60^{\circ} - \theta, 60^{\circ} + \theta)
                                                 (b) (180^{\circ} - \theta, 180^{\circ} + \theta)
     (c) (120^{\circ} - \theta, 120^{\circ} + \theta)
                                                (d) (150^{\circ} - \theta, 150^{\circ} + 0)
125. Sec (-\theta) =
      (a) -Cos0
                          (b) - Sec\theta
                                                 (c) Sec0
126. Cosec (-\theta) =
                                                                     (d) -Cosec0
     (a) -Cos0
                                                 (c) Sec0
                                                                     (d) -Coseco
```

				Ansv	ver	S			
1.	a	2.	c	3.	a	4.	a.	5.	\overline{b}
6.	a	7.	а	8.	b	9.	а	10.	$\frac{c}{c}$
11.	d	12.	^{+}b	13.	b	14.	a	15.	a
16.	a	17.	b	18.	C	19.	d	20.	a
21.	b	22.	\boldsymbol{c}	23.	d	24.	C	25.	$\frac{a}{b}$
26.	· d	27.	b	28.	a	29.	a	30.	·c
31.	a	32.	b	33.	\boldsymbol{b}	34.	d	35.	\overline{d}
36.	C	37.	b	38.	b	39.	d	40.	a
41.	C	42.	b	43.	a	44.	а	45.	С
46.	d	47.	a	48.	b	49.	С	50.	b
51.	b	52.	a	53.	а	54.	d	55.	С
56.	, b	57.	а	58.	c	59.	d	60.	C
61.	d	62.	C	63.	C	64.	b	65.	a
66.	b	67.	<i>c</i>	68.	a	69.	d	70.	С
71.	d	72.	· c	73.	b	74.	a	75.	a
76.	<i>c</i>	77.	d	78.	а	79.	а	80.	b
81.	a	82.	C	83.	a	84.	С	85.	а
86.	b	87.	a	88.	b	89.	a	90.	b
91.	C	92.	d	93.	а	94.	С	95.	C
96.	d	97.	C	98.	a.	99.	. b	100.	b
101.	a	102.	Ċ	103.	a	104.	b	105.	а
106.	b	107.	а	108.	b	109.	С	110.	а
111.	d	112.	b	113.	a	114.		115.	d
116.	a	117.	a	118.	а	119.	C	120.	d
121.	b	122.	a	123.	d	124.	b	125.	, C
26.	d				•1				