9.2

Propriété du produit scalaire

Spé Maths 1ère - JB Duthoit

9.2.1 règles de calculs

Propriété 9. 26

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} , pour tout nombre réel λ :

- 1. $\vec{u}.\vec{v} = \vec{v}.\vec{u}$
- 2. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w}$
- 3. $(\vec{u} + \vec{v}).\vec{w} = \vec{u}.\vec{w} + \vec{v}.\vec{w}$
- 4. $\vec{u}.(\lambda \vec{v}) = \lambda \times (\vec{u}.\vec{v})$
- 5. $(\lambda \vec{u}) \cdot \vec{v} = \lambda \times (\vec{u} \cdot \vec{v})$

Exemple

$$\vec{u}.(2\vec{v} - 3\vec{w}) =$$

Savoir-Faire 9.30

SAVOIR UTILISER LA RELATION DE CHASLES POUR CALCULER UN PRODUIT SCALAIRE ABCD est le trapèze rectangle ci-dessous avec AB=5 et AD=2 et CD=3. Calculer $\overrightarrow{AC}.\overrightarrow{DB}$

9.2.2 Carré scalaire

Définition 9.22

l Le carré scalaire d'un vecteur \vec{u} , noté \vec{u}^2 , est le produit scalaire $\vec{u}.\vec{u}$.

Conséquence 9.27

- Pour tout vecteur \vec{u} , $\vec{u}^2 = ||\vec{u}||^2$.
- Pour tous points A et B, $\overrightarrow{AB}^2 = \left\| \overrightarrow{AB} \right\|^2 = AB^2$

9.2.3 Identités remarquables

Propriété 9. 28

Pour tous vecteurs \vec{u} et \vec{v} :

- $(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u}.\vec{v} + \vec{v}^2$ $(\vec{u} \vec{v})^2 = \vec{u}^2 2\vec{u}.\vec{v} + \vec{v}^2$ $(\vec{u} + \vec{v})(\vec{u} \vec{v}) = \vec{u}^2 \vec{v}^2$

↑Démonstration 9.8

→ Démontrer les 3 identités remarquables.

Savoir-Faire 9.31

Savoir démontrer l'orthogonalité de deux vecteurs - Méthode 1 ABCD est le rectangle ci-dessous avec AB=5 et BC=2. E et F sont les points tels que $\overrightarrow{AE} = \frac{1}{5}\overrightarrow{AB}$ et $\overrightarrow{DF} = \frac{4}{5}\overrightarrow{DC}$. Monter que (AF) et (DE) sont perpendiculaires.

