UNIT 6 Arithmetic: Multiplication of Decimals

Activities

Activities

- 6.1 Secret Sums
- 6.2 Egyptian Multiplication
- 6.3 Russian Multiplication
- 6.4 Multiplying using Roman Numerals
- 6.5 Napier's Bones (or Rods)
- 6.5 Resource Sheet

Notes and Solutions (2 pages)

Secret Sums

1. Find the missing numbers, marked by * in the following sums:

(a)
$$2 * 3$$
 $+ 1 7 * 6 5$

(b)
$$4 * 7$$
 $\frac{-*18}{17*}$

(c)
$$7 * 0$$
 $-3 6 *$ $* 3 8$

e)
$$1 * 4$$

 $\times \frac{*}{4 \ 0 \ 2}$

2. Find two possible solutions of:

3. Find the missing numbers in the sums:

(There are 2 possible solutions to this sum!)

4. The 10 letters A to K, leaving out I, stand for the 10 digits 0 – 9, but not necessarily in that order. Find which letter stands for each digit, if the following sums hold:

$$A \times B = B$$
 $B \times C = AC$
 $C \times D = BC$
 $D \times E = CH$
 $E \times F = DK$

$$F \times H = CJ$$

$$H \times J = KJ$$

$$J \times K = E$$

$$K \times G = G$$

$$A \times G = G$$

Extension

Find the missing numbers for the sum:

Egyptian Multiplication

The Egyptian method for multiplication was based simply on a continual doubling process. For example, to multiply 27 by 137, follow these instructions:

- 1. In two columns write down 1 and 137 (always choose the larger number)
- 2. Double both sides until the number 27 will be passed on the left hand side on the next double (e.g. $16 \times 2 = 32$ so go no further than *Line 5*)
- 3. Select on the left hand side the numbers that add up to 27
- 4. Delete any number not used in the addition to 27 (i.e. 4), and the corresponding number on the right hand side (see *Line 3*)
- Add up the numbers remaining on the right hand side
- 6. This is the answer, i.e.

$$27 \times 137 = 3699$$

	1	137	Line 1
	2	274	Line 2
delete	4	548	Line 3
	8	1096	Line 4
stop —	16	2192	Line 5

$$27 = 16 + 8 + 2 + 1$$

- 137 from Line 1
- 274 from Line 2
- 1096 from Line 4
- 2192 from Line 5
- 3699

Problems

Use Egyptian multiplication to find:

- 1. 13×250
- 2. 16×135
- 3. 25×49

Extension Analyse the method to see why it works.

(*Hint*: Write
$$27 \times 137 = (16 + 8 + 2 + 1) \times 137$$

= $(16 \times 137) + (8 \times 37) + (2 \times 137) + (1 \times 137)$)

Russian Multiplication

One upon a time, so legend has it, Russian peasants could only add and multiply or divide by 2. So they developed a clever method of multiplying any two numbers.

For example, to multiply 27 by 137, they followed this method:

1.	In two columns write down the numbers	27	137	Line 1
2.	Divide the left hand column by 2 ignoring any remainders, and multiply the right hand column by 2	13 even 6	274	Line 2 Line 3
3.	Repeat this process until the number 1 is reached in the left hand column (Line 5)	3	1096	Line 4
reached in the fer	(1	2192	Line 5
4.	Delete any row which has an <i>even</i> number in the left hand column (<i>Line 3</i>)			
5.	Add up the numbers remaining in the right hand column (Lines 1, 2, 4 and 5)		3699	-

6. Check the answer – it should be 27×137

Problems

Use Russian multiplication to find:

- 1. 13×250
- 2. 16×135
- 3. 25×49

Extension Analyse the method to see why it works.

(Hint: Write
$$27 \times 137 = (26 + 1) \times 137$$

= $26 \times 137 + 137$
= $13 \times 2 \times 137 + 137$
= $13 \times 274 + 137$
= $(12 + 1) \times 274 + 137$, etc.)

Multiplication Using Roman Numerals

You may be familiar with Roman numerals, but, in case not, the first twenty numbers are shown on the right. Note that:

'IV' means 1 before 5, i.e. 4

and that the system is based on '5' rather than '10'.

The next symbols used are:

Number	Roman Numeral
50	L
100	C
500	D
1000	M

Number	Roman Numeral
1	I
2	II
3	III
4	IV
5	V
6	VI
7	VII
8	VIII
9	IX
10	X
11	XI
12	XII
13	XIII
14	XIV
15	XV
16	XVI
17	XVII
18	XVIII
19	XIX
20	XX

Problems

- 1. Write out Roman numerals for 21 to 50 inclusive.
- 2. What is 137 in Roman numerals?

We will now see how to multiply two numbers, expressed in Roman numerals, together. But first, some important multiplication.

3. What is:

(a)
$$I \times V$$

(b)
$$V \times V$$

(c)
$$V \times X$$

(d)
$$V \times L$$

(e)
$$I \times X$$

(f)
$$X \times X$$

(g)
$$L \times X$$

(h)
$$I \times C$$

(i)
$$V \times C$$

(j)
$$X \times C$$

4. For 27×137 , copy and complete this long multiplication calculation:

5. Calculate 16×135 using Roman numerals. Check your answer.

You probably know now why this system is no longer in everyday use for calculations of this type!

You will need a copy of the Resource Sheet in order to first obtain a set of *Napier's Bones*. Note how they are constructed. The first row is the whole numbers 1 to 9, and the following rows are $2 \times, 3 \times, 4 \times, \ldots, 9 \times$ the first row, but note that two-digit numbers are placed either side of the diagonals. From your copy of the sheet, cut out each column – these are the *bones* or *rods*!

To multiply, for example, 137×27 :

- 1. Pick out the rods which start with 1, 3 and 7
- 2. Pick out the 2nd row, and add up along the diagonals

This shows that $2 \times 137 = 274$

For 27

3. Pick out the 7th row, and add up along the diagonals

This shows that $7 \times 137 = 959$

4. As we want 27×137 , the final calculation is

$$27 \times 137 = (20 \times 137) + (7 \times 137)$$
$$= 2740 + 959$$
$$= 3699$$

Problems

Use your Napier's Rods to find:

1. 16×135

2. 25×49

3. 13×250

ACTIVITY 6.5 RESOURCE SHEET

Napier's Bones (or Rods)

1	2	3	4	5	6	7	8	9
2	/ 4	/ 6	/ 8	1/0	1/2	1/4	1/6	1/8
3	6	9	1/2	1/5	1/8	2/1	2/4	2 / 7
4	8	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	1 / 6	2/0	2 / 4	2 / 8	3/2	3/6
5	1,0	1 / 5	2 / 0	2/5	3/0	/ J	4 / 0	4 / 5
6	1/2	1/8	2 / 4	3/0	3 / 6	4 / 2	4 / 8	5 / 4
7	1/4	2/1	2/8	3/5	4 / 2	4 / 9	5/6	6 / 3
8	1/6	2/4	3/2	4/0	4 / 8	5/6	6 / 4	7 / 2
9	1/8	2 / 7	3/6	4 / 5	5 / 4	6/3	7 / 2	8/1

ACTIVITIES 6.1 - 6.3

Notes and Solutions

Notes and solutions are given only where appropriate.

(b)
$$497$$
 -318 $\overline{179}$

(c)
$$700$$
 -362 $\overline{338}$

(d)
$$37$$
 (e) $\frac{\times 4}{148}$

(e)
$$134 \times 3 \over 402$$

$$\begin{array}{r}
 4 2 8 \\
 \times 2 \\
 \hline
 8 5 6
 \end{array}$$

3.(a)
$$\begin{array}{r} 127 \\ \times 27 \\ \hline 889 \\ \hline 2540 \\ \hline 3429 \end{array}$$

$$\begin{array}{r}
4 \ 3 \\
5 \ 2 \ 1 \ 5 \\
2 \ 0 \\
\hline
1 \ 5 \\
\underline{1 \ 5}
\end{array}$$

(c)
$$2 \ 1 \ 6$$
 $\times \frac{7 \ 4}{8 \ 6 \ 4}$ $\frac{1 \ 5 \ 1 \ 2 \ 0}{1 \ 5 \ 9 \ 8 \ 4}$

4.
$$A = 1$$
, $B = 3$, $C = 5$, $D = 7$, $E = 8$, $F = 9$, $G = 0$, $H = 6$, $J = 4$, $K = 2$

(b)

Extension 19 107 divided by 99

- **6.2** 1. 3250
 - 2. 2160
 - 3. 1225
- **6.3** 1. 3250
 - 2. 2160
 - 3. 1225

ACTIVITIES 6.4 - 6.5

Notes and Solutions

22 X X I I 37 X 23 X X I II I 38 X 24 X X I V 39 X

35 X X X V

36 X X X V I

44 X X X X I V 45 X X X X V

48 | X X X X V I I I 49 | X X X X I X

50 L

2. CXXXVII

3. (a) V

(b) X X V

(c) L

(d) CCL

(e) X

(f) C

(g) D

(h) C

(i) D

MMMDCIC

(j) M

4.

 $\begin{array}{c} & & C X X X V I I \\ & & X X V I I \\ \hline C X X X X V I I \times I & \rightarrow & C X X X V I I \\ C X X X V I I \times I & \rightarrow & C X X X V I I \\ C X X X V I I \times V & \rightarrow & D L L L (X X V) V V \\ C X X X V I I \times X & \rightarrow & M C C C L X X \\ C X X X V I I \times X & \rightarrow & M C C C L X X \end{array}$

(after adding and simpifying!)

5. MMCLX

6.5 1. 2160

2. 1225

3. 3250