REPRESENTAÇÃO DE NÚMEROS EM VÍRGULA FLUTUANTE

TeSP de Aplicações Móveis André Martins Pereira

REPRESENTAÇÃO EM VÍRGULA FIXA

 Valores "reais" (fracionários) são representados com um nº de bits fixo antes e depois da vírgula/ponto:

$$0.4.5_{10} = 1*2^2 + 0*2^1 + 0*2^0 + 1*2^{-1} + 0*2^{-2} = 100.10_2$$

- Problema:
 - o Como representar números muito próximos de zero? 4.00001, por exemplo?
 - Muitos bits depois da vírgula/ponto...
 - \rightarrow 4.000001₁₀ = 100.???₂
 - o E um número muito grande?
 - $4*2^{365}_{10} = 01000000000...0_2$ ("100" seguido de 365 zeros)
- Existe forma mais eficiente de representar estes casos?

REPRESENTAÇÃO EM VÍRGULA FLUTUANTE

- · Solução: usar uma norma, uma notação científica
 - \circ 20 000 000 = 2*10⁷,
 - o 400 000 000 000 = 4E11
- Representação de valores na seguinte forma: V = (-1)^s * M * Radix^E
 - o RADIX = 2 -> binário ; RADIX = 10 -> decimal
- S -> Bit do sinal
 - \circ S = 0 -> V > 0; S = 1 -> V < 0
- M -> Mantissa (ou parte fracionária F)
 - ∨alor fracionário em binário (1≤M<2, ou 0≤M<1).
- **E** -> Expoente
 - o Usado para aumentar a amplitude do valor

FLOATING POINT - NORMALIZAÇÃO

- Notação científica permite representar o mesmo nº de várias formas
 - \circ 43.789*10¹² = 0.43789*10¹⁴, 43789*10⁹
- Objetivo: normalizar!
 - o Impedir que o mesmo número tenha representações diferentes
- Um número está normalizado se a Mantissa (M) se encontra no intervalo]Radix, 1]
 - Ou seja, existe sempre um dígito diferente de 0 à esquerda do ponto decimal
 - \circ 1.4*10⁵ -> Normalizado!
 - 0.14*10⁶-> Desnormalizado!
- E em binário? Qual o valor de M para que esteja normalizado?
 - 2 > M >= 1

FLOATING POINT — BIT "ESCONDIDO"

- Valor normalizado tem sempre um dígito diferente de zero
 - o À esquerda do ponto decimal
- Se um valor é normalizado, não faz sentido representar um valor que é sempre igual!
- Só é necessário para efetuar as operações
- Logo, aquando da representação, não se representa a parte inteira

FLOATING POINT - EXPOENTE

- Representação: Excesso 2ⁿ⁻¹-1
- · Porquê?
 - o É uma representação contínua
 - Mais fácil o hardware comparar grandezas
 - Exemplo: comparar dois números
 - > 0 01011011 10110011010010101101101
 - > 0 10000100 01101010110010111101101

FLOATING POINT - NORMALIZAÇÃO

- Representação normalizada: V = (-1)^S * 1.M * 2^E
 - \circ E = Exp Excesso
- Problema: Números muito próximos do zero não estão abrangidos!
- Solução: Considerar menor valor possível do expoente para representação APENAS de valores desnormalizados
- Todos as outras representações designam-se por não normalizadas
- Representação desnormalizada: V = (-1)^S * 0.M * 2^E
 - \circ E = (Excesso 1)

FLOATING POINT — INTERVALO VALORES REPRESENTÁVEIS

- O objetivo passa sempre por:
 - Obter o maior intervalo de representação possível: representar o maior número possível de valores
 - o Conseguir melhor precisão: diminuir distância entre 2 valores consecutivos
- Número limitado de bits para M e Exp
 - o O que acontece ao aumentar um e outro?
 - o Intervalo depende de Exp; Precisão depende de N
- · Número total de bits tem de ser um múltiplo de 8
 - o Uma célula de memória tem... 8 bits!
 - o Se nº bits não for múltiplo de 8 vão ser desperdiçados bits em memória
 - o Exemplo: S -> 1 bit; M -> 5 bits; Exp -> 13 bits

FLOATING POINT — INTERVALO VALORES REPRESENTÁVEIS

- Número total de bits deve ser pelo menos 32
 - o Com 16 -> 1 bit para sinal, 15 bits para M + Exp
 - 15 bits são insuficientes apenas para M
 - o Precisão seria apenas de 4 algarismos
- Assim, com 32 *bits* usamos:
 - o 8 para Exp: permite representar uma gama da ordem de grandeza dos 10³⁹
 - o 23 para M: permite uma precisão equivalente a 7 algarismos decimais

FLOATING POINT - FORMATO BINÁRIO

• Sinal **S**:

o Ficando mais à esquerda, permite usar o mesmo hardware (que trabalha com valores inteiros) para testar o sinal de um valor em fp;

• Expoente, **E**:

o Ficando logo a seguir vai permitir fazer comparações quanto à grandeza relativa entre valores absolutos em fp: basta comparar os valores como se de valores meramente binários se tratassem;

• Parte fraccionária, **F**:

o É o campo mais à direita.

FLOATING POINT – NORMA IEEE 754 (1985)

- Representação com o formato definido até aqui ainda tem imprecisões
 - Várias combinações para representar o mesmo número
 - Como representar valores desnormalizados?
 - o E valores fora do intervalo permitido com a notação normalizada?
- Norma IEEE 754 define claramente estas imprecisões
- · Representação do sinal e parte fracionária
 - o Formato definido anteriormente
- Representação do expoente
 - o Excesso 127
 - o Varia entre -127 e 128

FLOATING POINT – NORMA IEEE 754 (1985)

- Valor decimal de um fp em binário (normalizado):
 - \circ V = $(-1)^S$ * (1.F) * 2^{E-127}
- Representação de valores desnormalizados
 - \circ V = $(-1)^S$ * (0.F) * 2^{-126}
 - o Norma IEEE reserva o valor de E = 0000 0000₂ para representar valores desnormalizados
- Representação do zero
 - \circ E = 0 e F = 0
- Representação de ±∞
 - o $E = 1111 \ 1111_2 \ e \ F = 0$
- Representação de n.º não real
 - o $E = 1111 \ 1111_2 \ e \ F \neq 0$

FLOATING POINT – NORMA IEEE 754 (1985)

Normalized	±	0 < Exp < Max	Any bit pattern
Denormalized	±	0	Any nonzero bit pattern
Zero	±	0	0
Infinity	±	1111	0
Not a number	±	1111	Any nonzero bit pattern
Sign bit			

FLOATING POINT - EXERCÍCIOS

• Pequeno 1

 \circ V= $(-1)^S * 1.F * 2^{E-7}$

> Expoente: 4 bits

> Mantissa: 3 bits

• Pequeno 2

 \circ V= $(-1)^S * 1.F * 2^{E-3}$

> Expoente: 3 bits

Mantissa: 4 bits

REPRESENTAÇÃO DE NÚMERO EM VÍRGULA FLUTUANTE

