Name	Form	Domain		Solution
Infinite Strings	$u_{tt}(x,t) = a^2 u_{xx}(x,t)$ u(x,0) = f(x) $u_t(x,0) = g(x)$	$x \in (-\infty, \infty)$ $t \ge 0$	$u(x,t) = \frac{f(x-at) + f(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} g(s) ds$ Where f is twice differentiable and g is differentiable	
Half-Infinite Strings (fixed boundary)	$u_{tt}(x,t) = a^{2}u_{xx}(x,t)$ $u(x,0) = f(x)$ $u_{t}(x,0) = g(x)$ $u(0,t) = 0$	$0 \le x < \infty$ $t \ge 0$	$\tilde{u}(x,t) = \frac{\tilde{f}(x-t)}{2}$	where $\tilde{f} = \begin{cases} f(x); x \geq 0 \\ -f(-x); x < 0 \end{cases}$ $\tilde{g} = \begin{cases} g(x); x \geq 0 \\ -g(-x); x < 0 \end{cases}$ erentiable, $f(0) = 0$, g is differentiable, and $g(0) = 0$.
Finite Strings (fixed boundary)	$u_{tt}(x,t) = a^{2}u_{xx}(x,t)$ $u(x,0) = f(x)$ $u_{t}(x,0) = g(x)$ $u(0,t) = u(l,t) = 0$	$0 \le x \le l$ $t \ge 0$	Where $ ilde{f}$ and $ ilde{g}$ are	$\tilde{u}(x,t) = \frac{\tilde{f}(x-at) + \tilde{f}(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \tilde{g}(s) ds$ e the $2l$ periodic extensions of the odd extensions of f and g respectively, f is twice $=0,g$ is differentiable, and $g'(0)=0$
Finite Strings (fixed boundary) (Fourier Method)	$\begin{aligned} u_{tt}(x,t) &= a^2 u_{xx}(x,t) \\ u(0,t) &= 0 \\ u(l,t) &= 0 \\ u(x,0) &= f(x) \\ u_t(x,o) &= g(x) \end{aligned}$	$0 \le x \le l$ $t \ge 0$	In gen	$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos\left(\frac{n\pi a}{l}t\right) + B_n \sin\left(\frac{n\pi a}{l}t\right) \right) \sin\left(\frac{n\pi}{l}x\right)$ $A_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{k\pi}{l}x\right) dx \qquad B_n = \frac{2}{n\pi a} \int_0^l g(x) \sin\left(\frac{n\pi}{l}x\right) dx$ Heral, $u(x,t) = \sum_{n=1}^{\infty} T(t)X(x) \mid A_n = \frac{2}{l} \int_0^l f(x)X_n(x) \mid B_n = \frac{2}{a\lambda l} \int_0^l g(x)X_n(x)$
Laplace Equation (Rectangular Domain)	$\begin{array}{l} \Delta u = 0; (x,y) \in D \\ u(x,0) = \varphi_0(x) \\ u(x,b) = \varphi_1(x) \\ u(0,y) = \psi_0(y) \\ u(a,y) = \psi_1(y) \\ \text{In case of non-homo} \\ \text{conditions:} \star \\ u_x(0,y) = \psi_0(y) \\ u_x(a,y) = \psi_1(y) \\ \text{(1) Do Sturm Liouville to} \\ \text{find } X(x) \text{ and } \lambda_n \text{ (consider } \lambda = 0). \\ \text{(2) } Y_n(y) = A_n \sinh(\lambda y) + B_n \sinh(\lambda (b-y) \text{ (consider } \lambda = 0). \end{array}$	$D = \begin{bmatrix} 0, a \end{bmatrix} \times \begin{bmatrix} 0, b \end{bmatrix}$ $^{\star\downarrow}$ (3) $u(x,t) = \sum X(x)Y(y)$, use boundary condition to find some coefficients. (4) For other coefficient use other B.C (non-homogenous). Plug in, then integrate both sides for a coefficient. For the same equation you got from plugging in the non-homo condition, multiply both sides by $X_n(x)$, then integrate.	$A_n = B_n = B_n$	$u(x,y) = v(x,y) + w(x,y)$ ed using separation of variables, detailed at the end of the block) $v(x,y) = \sum_{n=1}^{\infty} \left(A_n \sinh\left(\frac{n\pi}{a}y\right) + B_n \sinh\left(\frac{n\pi}{a}(b-y)\right) \right) \sin\left(\frac{n\pi}{a}x\right)$ $w(x,y) = \sum_{n=1}^{\infty} \left(C_n \sinh\left(\frac{n\pi}{b}x\right) + D_n \sinh\left(\frac{n\pi}{b}(a-x)\right) \right) \sin\left(\frac{n\pi}{a}y\right)$ $= \frac{2}{a \sinh\left(\frac{n\pi}{a}b\right)} \int_0^a \varphi_1(x) \sin\left(\frac{n\pi}{a}x\right) dx \ C_n = \frac{2}{b \sinh\left(\frac{n\pi}{b}a\right)} \int_0^b \psi_1(y) \sin\left(\frac{n\pi}{b}y\right) dy$ $= \frac{2}{a \sinh\left(\frac{n\pi}{a}b\right)} \int_0^a \varphi_0(x) \sin\left(\frac{n\pi}{a}x\right) dx \ D_n = \frac{2}{b \sinh\left(\frac{n\pi}{b}a\right)} \int_0^b \psi_0(y) \sin\left(\frac{n\pi}{b}y\right) dy$ $= \frac{n\pi}{a}, \text{therefore } X_n(x) = \sin(\lambda x) \text{ and } Y_n(y) = A_n \sinh(\lambda y) + B_n \sinh(\lambda (b-y))$
Laplace Equation (Disk Domain)	$\Delta u = 0; (x, y) \in D$ $u(x, y) = f(x, y)$ $(x, y) \in \partial D$	$D = \{(x, y) x^2 + y^2 < R_0^2\}$	For a Ring: $u(r, \theta)$	Inside the disk: $u(r,\theta) = A_0 + \sum_{n=1}^{\infty} r^n (A_n \cos(n\theta) + B_n \sin(n\theta))$ Dutside the disk: $u(r,\theta) = A_0 + \sum_{n=1}^{\infty} r^{-n} (A_n \cos(n\theta) + B_n \sin(n\theta))$ $= A_0 + B_0 \ln(r) + \sum_{n=1}^{\infty} (A_n r^n \cos(n\theta) + A_{-n} r^{-n} \cos(n\theta) + B_n r^n \sin(n\theta) + B_{-n} r^{-n} \sin(n\theta)$ $= \frac{1}{\pi R_0^n} \int_0^{2\pi} h(\theta) \cos(n\theta) d\theta B_n = \frac{1}{\pi R_0^n} \int_0^{2\pi} h(\theta) \sin(n\theta) d\theta A_0 = \frac{1}{2\pi} \int_0^{2\pi} h(\theta) d\theta$
				this case $\lambda=n$, hence $\Theta_n(\theta)=A_n\cos(\lambda\theta)+B_n\sin(\lambda\theta)$ and 2π periodic. $R(r)$ is found from swhere n=0 and $n\neq 0$. In our case $R_0(r)=C_0+D_0\ln(r)$ and $R_n(r)=C_nr^{\lambda_n}+D_nr^{-\lambda_n}$
Heat Equation	and the same of th		$0 \le x \le l$ $0 \le t \le t_1$	For $0 \le t \le t_1$ it is said to be a non-homogenous heat equation. The function $u(x,t)$ represents the temperature of a wire from 0 to l , at position x at time t . The solutions of this equation and its properties are presented later in the sheet.
Definition (Lapla	Definition (Laplacian): $\nabla \cdot \nabla = \nabla^2 = \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}$			ENERGY METHOD TO PROVE UNIQUENESS:

Definition (Laplacian): $\nabla \cdot \nabla = \nabla^2 = \Delta = \frac{1}{\partial x^2} + \frac{1}{\partial y^2}$

Extensions: Even f(-x). Odd -f(-x). Periodic: extension with period 21, $f(x) = f(x \pm 2l)$. Don't actually state the extended function with an even or odd extension. If u(0,t) = 0, or if it's not given, odd extension. If $u_r(0,t) = 0$, even

METHOD OF SEPARATION OF VARIABLES (FOURIER METHOD):

Let u(x,t) = X(x)T(t) Substitute into the original problem Separate T(t) and X(x) in the new equation. Make it to be in the form $rac{T''(t)}{a^2T(t)}$

 $\frac{X''(x)}{X'(x)} = -\lambda^2$ (other things can be used instead of $-\lambda^2$, such as $-\lambda$)

- Convert the result of (2) into two ODEs for X(x) and T(t). For example, $\frac{X''(x)}{Y(x)} = -\lambda^2 \text{ becomes } X''(x) + \lambda^2 X(x) = 0$
- Obtain the boundary conditions for X(x) and T(t) from the original conditions.
- Use the conditions that are equal to 0. For example, u(0,t)=0 o X(0)=05 You will end up with a particular case of the Sturm-Liouville problem Find the eigenvalues (values of λ) and eigenfunction $sX_n(x)$. Some common cases
- are in the Eigen-table Having found $X_n(x)$, find T(t) by using the same λ , and solving the ODE using the characteristic equation (assume solution is in the form e^r , go from there). You will end up with $T_n(t)=e^{ilpha t}$, which, by Euler's formula is $A_n\cos(lpha t)+B_n\sin(lpha t)$
- Find $u_n(x,t)$ according to definition $u_n(x,t)=X_n(x)T_n(t)$ Take the infinite summation $u(x,t)=\sum_{n=1}^\infty u_n(x,t)$
- Find the Fourier Coefficients using: $A_n = \frac{2}{l} \int_0^l f(x) X_n(x)$; $B_n = \frac{2}{a \lambda l} \int_0^l g(x) X_n(x)$. If formulas don't apply, express original eq. in terms of your solution, do the same thing as last steps of Neumann Problem Laplace Equation on a disc.

Dirichlets Problem $X'' + \lambda^2 X = 0$ $X(0) = X(l) = 0$ $X_n(x) = \sin\left(\frac{n\pi}{l}x\right)$	Neumann Problem $ X'' + \lambda^2 X = 0 \\ X'(0) = X'(l) = 0 $ $X_n(x) = \cos\left(\frac{n\pi}{l}x\right)$		
Mixed Boundary Value Problem A $X'' + \lambda^2 X = 0$ $X(0) = X'(l) = 0$ $X = \frac{(2k+1)\pi}{2l}$, $k = 0,1,2,$ $X_n(x) = \sin\left(\frac{(2k+1)\pi}{2l}x\right)$			
The Periodic BVP $X'' + \lambda^{2}X = 0$ $X(-l) = X(l) = 0$ $X'(-l) = X'(l) = 0$	$\lambda_n = \frac{n\pi}{l}, n = 0, 1, 2, \dots$ $X_n(x) \in \{1, \cos\left(\frac{n\pi}{l}x\right), \sin\left(\frac{n\pi}{l}x\right)\}$		

Finding Eigenvalues in Sturm Liouville:

- 1. Let $\lambda > 0$ and assume that $\lambda = \omega^2$ where $\omega > 0$.
- 2. Find the characteristic equation of the ODE, and solve it.

Equation	Form	Energy			
Wave Equation	$\rho u_{tt} - T u_{xx} = 0$	$E(t) = \frac{1}{2} \int_0^L (\rho u_t^2 + T u_x^2) dx$			
Heat Equation	$u_t - ku_{xx} = 0$	$E(t) = \frac{1}{2} \int_0^L u(x,t)^2 dx$			

- **1** Define $\omega = u_1 u_2$ where u_1, u_2 are two distinct solutions.
- Rewrite the problem as a homogenous problem in terms of ω , with all conditions, including the original equation equaling 0.
- Write the energy integral that corresponds to the type of equation, and take its derivative with respect to time $\left(\frac{d}{dt}\right)$. When taking the derivative, use Leibnitz rule, and don't actually evaluate the integral yet
- Use integration by parts to rewrite the integral in terms of the homogenous conditions as much as possible
- Manipulate the resultant integral, using initial conditions to cancel terms, until you show that $E'(t) \leq 0$
- 6 Having shown that the energy is decreasing or 0, we say that the energy of the entire system at t = 0 follows: $E(0) \ge E(t) \ge 0$
- Prove that E(0)=0. Once proven, it follows from the sandwich theorem that E(t) = 0, which means that the integrand is 0, and therefore w = 0, which proves uniqueness

UNIQUENESS USING GREEN'S FORMULA:

- Consider the problem: $u_{xx} + u_{yy} = 0$; $(x, y) \in D \mid u(x, y) = g(x, y)$; $(x, y) \in D$
- **2** Let u_1, u_2 be two distinct solutions to the problem. Goal: show that they're equal.
- 3 Let $\omega = u_1 - u_2$. We must show that $\omega = 0$ on $D \cup \partial D$
- Rewrite the PDE in terms of ω , thus forming a new BVP.
- If we restrict x,y to ∂D , we get w(x,y)=g(x,y)-g(x,y)=0, so we get the problem: $\omega_{xx}+\omega_{yy}=0$; $(x,y)\in D$, $\omega(x,y)=0$; $(x,y)\in\partial D$ We will use greens first identity, but u and v are replaced with ω .

$$\oint_{\partial D} \omega \frac{\partial \omega}{\partial r} ds = \oint_{\partial D} \omega \Delta \omega \cdot \vec{n} ds = \iint_{D} (\omega \nabla^{2} \omega + \nabla \omega \cdot \nabla \omega) dA$$

- $\oint_{\partial D} \omega \frac{\partial \omega}{\partial n} ds = \oint_{\partial D} \omega \Delta \omega \cdot \vec{n} ds = \iint_{D} (\omega \nabla^{2} \omega + \nabla \omega \cdot \nabla \omega) dA.$ We take the following part of the identity: $\oint_{\partial D} \omega \Delta \omega \cdot \vec{n} ds = \iint_{D} (\omega \nabla^{2} \omega + \nabla \omega \cdot \nabla \omega) dA$
 - $abla\omega)dA$, and will try to simplify it. $\oint_{\partial D}\omega\Delta\omega\cdotec{n}ds$ is an integral along the boundary of ω . From our boundary condition, we know that $\omega(x,y)=0$ on the boundary.
- Therefore our integrand is 0, and we have $\iint_D (\omega \nabla^2 \omega + \nabla \omega \cdot \nabla \omega) dA = 0$ $\omega \nabla^2 \omega = \omega (\omega_{xx} + \omega_{yy}) = \omega \cdot 0$, so we are left with $\iint_D (\nabla \omega \cdot \nabla \omega) dA = \iint_D (\|\Delta \omega\|^2) dA = 0$ 0. Integral is 0 when its integrand is 0. $\|\Delta\omega\|^2=0$. Norm is 0 if its contents are $\vec{0}$, so $\Delta \omega = \vec{0}$
- Show that all 1st order partials of ω are 0. This means that $\omega=c$. We know that $\omega=0$ on the boundary, and since it is constant and continuous, it must keep same value throughout, so $\omega=0$.

1	Consider the equation: $Au_{xx} + 2Bu_{xy} + Cu_{yy} + F(x, y, u, u_x, u_y)$							
2	Using the coefficients, construct ODE: $Ay'^2 - 2By' + C = 0$. The ODE has two							
	roots: $k_1(x,y) = \frac{B+\sqrt{B^2-AC}}{A}$; $k_2(x,y) = \frac{B-\sqrt{B^2-AC}}{A}$. Also define $y_1' = k_1(x,y)$, $y_2' = k_2(x,y)$. Identify the type of PDE by using the following table:							
	Hyperbolic Parabolic Elliptical							
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
I								

 $\begin{array}{ccc} k_1, k_2 \in \mathbb{R}, k_1 \neq k_2 & k_1, k_2 \in \mathbb{R}, k_1 = k_2 \\ B^2 - AC > 0 & B^2 - AC = 0 \end{array}$ There are two ways to find η and ξ . We can find y_1, y_2 from integrating y_1', y_2' the constant of integration for y_1 is ξ and for y_2 is η . Alternatively, We define η and ξ from k_1 and k_2

Hyperbolic	Parabolic	Elliptic
	$\xi = y_1 - \int k_1 dx$	$\xi = \varphi(x, y) = c, \eta = \overline{\varphi(x, y)} = c$
$\eta = y_2 - \int k_2 dx$	$\eta = x$	c = const. of integration from finding
		y_1, y_2

Convert all partials into partials with respect to ξ , η , and find the new \tilde{A} , \tilde{B} , \tilde{C}

u_x	$u_x = u_{\xi} \xi_x + u_{\eta} \eta_x$					
u_y	$u_{y} = u_{\xi}\xi_{y} + u_{\eta}\eta_{y}$					
u_{xx}	$u_{xx} = \left(u_{\xi\xi}\xi_x + u_{\xi\eta}\eta_x\right)\xi_x + \left(u_{\eta\xi}\xi_x + u_{\eta\eta}\eta_x\right)\eta_x + u_{\xi}\xi_{xx} + u_{\eta}\eta_{xx}$					
u_{xy}	$u_{xy} = \left(u_{\xi\xi}\xi_y + u_{\xi\eta}\eta_y\right)\xi_x + \left(u_{\eta\xi}\xi_y + u_{\eta\eta}\eta_y\right)\eta_x + u_{\xi}\xi_{xy} + u_{\eta}\eta_{xy}$					
u_{yy}	$u_{yy} = (u_{\xi\xi}\xi_y + u_{\xi\eta}\eta_y)\xi_y + (u_{\eta\xi}\xi_y + u_{\eta\eta}\eta_y)\eta_y + u_{\xi}\xi_{yy} + u_{\eta}\eta_{yy}$					
Ã	$\tilde{A} = A\xi_x^2 + 2B\xi_x\xi_y + C\xi_y^2$					
\tilde{B}	$\tilde{B} = A\xi_x\eta_x + B(\xi_x\eta_y + \xi_y\eta_x) + C\xi_y\eta_y$					
Ĉ	$\tilde{C} = A\eta_x^2 + 2B\eta_x\eta_y + C\eta_y^2$					

- Rewrite the original PDE in terms of converted partials and new coefficents from step 4. (This is the canonical form), and simplify, using mixed partial equality
- We proceed to solve the canonical form using classical methods. The final form of the solution will be something like $u(x,y) = H(x,y) + F(\xi) + G(\eta)$. Express η and ξ in terms of x,y using their definitions (from step 3). H(x,y) is some expression. Functions F, G don't matter – add a note saying they're arbitrary.

Laplace Equation: $\Delta u = 0$. A function that satisfies the Laplace equation is called a harmonic function.

Laplace Equation in Polar: $\Delta u = u_{xx} + u_{yy} = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$

Dirichlet's Problem: Let D be an open and bounded domain in \mathbb{R}^2 . Let ∂D be the boundary of the domain D. Then, the problem

 $\Delta u = F(x, y)$ u(x,y) = f(x,y)

For all $(x, y) \in D$ is called the Dirichlet problem. The boundary condition u(x, y) = f(x, y) is called the Dirichlet boundary condition.

Well-Posedness of Dirichlet Problem: If there exists a solution to the Dirichlet problem, where F is defined on D and f is defined on ∂D , then the problem is well posed.

Poisson equation: $\Delta u = F(x, y)$

Maximum/Minimum Principle Poisson: Let u be continuous on a bounded and closed domain $D \cup \partial D$, twice differentiable on the open domain D and satisfying the Poisson equation $\Delta u(x,y) = F(x,y)$.

Maximum value of u in $D \cup \partial D$ is on the boundary ∂D . F < 0 on D: Minimum value of u in $D \cup \partial D$ is on the boundary ∂D . F = 0 on D: Minimum and maximum value of u in $D \cup \partial D$ are on

the boundary ∂D . If $\max(u)=M$, $\min(u)=m$, then $m\leq u(x,y)\leq M$ Poisson kernel: $I=\frac{R_0^2-r^2}{R_0^2-2R_0r\cos(\theta-\psi)+r^2}$. Green Function for the Dirichlet

Problem of the Laplace Equation in a disk: $G(r, \theta - \psi) = \frac{1}{2\pi}I$

Solution to Laplace Equation in Polar Coordinates: The solution to

$$\begin{aligned} u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} &= 0 \\ u(R_0, \theta) &= h(\theta) \end{aligned} \qquad \text{Where } 0 \leq r \leq R_0 \text{ , } 0 \leq \theta \leq 2\pi$$

$$u(r, \theta) = \int_0^{2\pi} G(r, \theta - \psi) h(\psi) d\psi = \frac{1}{2\pi} \int_0^{2\pi} \frac{R_0^2 - r^2}{R_0^2 - 2R_0 r cos(\theta - \psi) + r^2} h(\psi) d\psi$$

And the boundary condition is $h(\theta_0) = \lim_{(r,\theta) \to (R_0,\theta_0)} u(r,\theta)$

Green's First Formula: Let $\frac{\partial u}{\partial n}$ be the directional derivative of u(x,y) w.r.t the outward unit normal \hat{n} to ∂D . Then: $\iint_D u \Delta v dx dy = \int_{\partial D} u \frac{\partial v}{\partial n} ds - \iint_D \nabla u \cdot \nabla v dx dy$

Green's Second Formula: Let $\frac{\partial u}{\partial n}$ be the directional derivative of u(x,y) w.r.t the outward unit normal \hat{n} to ∂D . Then: $\iint_D (u\Delta v - v\Delta u) dx dy = \int_{\partial D} \left(u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}\right) ds$

Existence of Solution of Neumann Problem of the Poisson Equation: A necessary condition for existence of a solution of the equation $\Delta u = F(x,y)$ for $(x,y) \in D$, with a boundary condition $\frac{\partial u(x,y)}{\partial n} = g(x,y)$ for $(x,y) \in \partial D$ is $\iint_D F(x,y)dxdy = \int_{\partial D} g(x,y)ds$

Property of solutions to the Neumann problem of Poisson Equation: Let $u_1(x,y),\,u_2(x,y)$ be solutions to the Neumann problem of the Poisson equation: $\Delta u = F(x,y)$ for $(x,y) \in D$, with a boundary condition $\frac{\partial u(x,y)}{\partial x} = g(x,y)$ for $(x,y) \in \partial D$. Then: $u_1(x,y) - u_2(x,y) = c$, where c is a constant

Existence of Solution of Neumann Problem of the Laplace Equation: A

conditions for existence of a solution to the equation $\Delta u = 0$ for $(x, y) \in D$, with a boundary condition $\frac{\partial u(x,y)}{\partial n} = f(x,y)$ for $(x,y) \in \partial D$ is $\int_D f(x(s),y(s))ds = 0$

Neumann Problem Laplace Equation on a disc:

Convert everything into polar coordinates. For the Neumann condition $\frac{\partial u(x,t)}{\partial x} = f(x,t)$ the conversion is $\frac{\partial u(R_0,\theta)}{\partial x} = f(R_0,\theta)$ where R_0 is the radius of the disk. You will end up with the following problem

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0 , 0 < r < R_0 ; 0 \le \theta \le 2\pi$$

$$\frac{\partial u(R_0,\theta)}{\partial r} = f(R_0,\theta) ; 0 \le \theta \le 2\pi$$

Our boundary condition is a partial with respect to r, and in the general solution formula, the only r dependent term is r^n . Therefore we have

$$\frac{\partial u(R_0, \theta)}{\partial r} = f(R_0, \theta) = \sum_{n=1}^{\infty} nR_0^{n-1} (A_n \cos(n\theta) + B_n \sin(n\theta))$$

$$f(R_0, \theta) \text{ such that it becomes a sum of } 1^{\text{st}} \text{ order trigonometric f}$$

Simplify $f(R_0, \theta)$ such that it becomes a sum of 1st order trigonometric functions. From the processed $f(R_0, \theta)$, find the non-zero coefficients. For example, if you have a term $8\cos(2\theta)$ inside $f(R_0,\theta)$, then the coefficient A_n that gives that term is given by n=2, $nA_nR_0^{n-1}=8$. Find all the coefficients that you can using this method. All the others are 0. Write $u(r,\theta)$ using only the coefficients you found. Convert back to Cartesian coordinates, and you're done.

Polar Coordinates: $\mathbf{x} = r \cos(\theta)$, $y = r \sin(\theta)$, $r = \sqrt{x^2 + y^2}$, $\theta = \tan^{-1}(y/x)$

Maximum Principle for the Heat Equation:

Domain D: $0 \le x \le l, 0 \le t \le t_1$					
Equation Form	Assumption				
$u_t = a^2 u_{xx} + F(x, t)$	u(x,t) and $F(x,t)$ continuous on D				
Maximum	Minimum				
Let $F(x,t) \le 0$. Let $u(x,t) \le M$ for	Let $F(x,t) \ge 0$. Let $u(x,t) \ge m$ for $t = 0, x = 0$, or $x = l$				
t = 0, x = 0, or x = l					
$u(x,t) \leq M$ in the domain. The	$u(x,t) \ge m$ in the domain. The minimum				
maximum of $u(x,t)$ is on the	of $u(x,t)$ is on the boundary of the				
boundary of the domain, excluding	domain, excluding HWthe top boundary				
the top boundary					
General: If $m \le u(x,t) \le M$, For $t = 0$, $x = 0$, or $x = l$					
Then: $m \le u(x,t) \le M$, For $0 \le x \le l, 0 \le t \le t_1$.					

Heat Equation Well Posedness: If there exists a solution to the heat equation, then the problem is well posed.

Heat Equation Separation of Variables: The solution to the heat equation, where $0 \le x \le l, t \ge 0$ is:

$$\begin{array}{c|c} u_t = a^2 u_{xx} + F(x,t) \\ u(x,0) = f(x) \\ u(0,t) = u(l,t) = 0 \end{array} \qquad u(x,t) = \sum_{n=1}^{\infty} \left(\frac{2}{l} \int_0^l f(x,t) dx dx \right)$$

$$u(x,t) = \sum_{n=1}^{\infty} \left(\frac{2}{l} \int_{0}^{l} f(x) \sin\left(\frac{n\pi}{l}x\right) dx\right) e^{-\left(\frac{n\pi\alpha}{l}\right)^{2} t} \sin\left(\frac{n\pi}{l}x\right)$$

 $X_n(t)$ is found via classical separation method. $T_n(t)$ is as follows:

$$T_n(t)+\left(\frac{n\pi}{l}\right)^2a^2T_n(t)=0$$
, therefore $T_n(t)=A_ne^{\left(-\frac{n\pi a}{l}\right)^2t}$. Therefore,

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{\left(-\frac{n\pi\alpha}{l}\right)^2 t} \sin\left(\frac{n\pi}{l}x\right), A_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi}{l}x\right) dx$$

Heat Equation Cauchy Problem Solution:

$u_t = a^2 u_{xx}$ u(x,0) = f(x)	$u(x,t) = \int_{-\infty}^{\infty} G(x,y,t) f(y) dy$
$G(x,y,t) = \frac{1}{2a\sqrt{\pi t}}e^{\frac{(x-y)^2}{4a^2t}}$ Green function for the Cauchy problem of the heat equation	
an infinite interval.	In integration, use substitution: $\alpha = \frac{y-x}{2a\sqrt{t}}$

Gaussian Error function: $\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-s^2} ds$.

$\operatorname{erf}(0) = 0$	$\operatorname{erf}(\pm \infty) = \pm 1$	$\operatorname{erf}(0) = 0$
$\operatorname{erf}(-z) = -\operatorname{erf}(z)$	$\frac{d\operatorname{erf}(z)}{dz} = \frac{2}{\sqrt{\pi}}e^{-z^2}$	$\operatorname{erf}(z) \approx \frac{2}{\sqrt{\pi}} e^{-z^2}, z \ll 1$
$\frac{d^2\operatorname{erf}(z)}{dz^2} = -\frac{4}{\sqrt{\pi}}ze^{-z^2}$	erfc(z) = 1 - erf(z)	$\int_0^\infty erfc(z)dz = \frac{1}{\pi}$
$erfc(z) \approx \frac{1}{\sqrt{\pi}} \frac{e^{-z^2}}{z}, z \gg 1$	$\int_0^z erfc(y)dy = z \cdot erfc(z) + \frac{1}{\sqrt{z}}$	$\frac{1}{\pi} \left(1 - e^{-z^2} \right) \left \frac{2}{\sqrt{\pi}} \int_{-\infty}^0 e^{-\alpha^2} d\alpha = 1 \right $
	$=\phi(z)$ $\left \frac{2}{\sqrt{\pi}}\int_0^{-z}e^{-\alpha^2}d\alpha\right =\phi(-1)$	$(-z) = -\phi(z) \left \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-\alpha^2} d\alpha = 1 \right $

Solution of Poisson Equation on a Disk: For the problem

$$u_{xx} + u_{yy} = F(x, y), x^2 + y^2 < R_0^2$$
 $u(x, y) = 0, x^2 + y^2 = R_0^2$

1. Convert to polar coordinates

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = F(r,\theta), 0 < r < R_0, 0 \le \theta \le 2\pi$$

$$u(R_0,\theta) = 0$$

2. Express $u(r,\theta)$ as a Fourier series w.r.t θ , coefficients depend on r.

$$u(r,\theta) = \frac{a_0(r)}{2} + \sum_{n=1}^{\infty} a_n(r) \cos(n\theta) + \sum_{n=1}^{\infty} b_n(r) \sin(n\theta)$$

3. Express the non-homogenous part $F(r,\theta)$ as a series too:

$$F(r,\theta) = \frac{A_0(r)}{2} + \sum_{n=1}^{\infty} A_n(r) \cos(n\theta) + \sum_{n=1}^{\infty} B_n(r) \sin(n\theta)$$

$$A_n(r) = \frac{1}{\pi} \int_{-\pi}^{\pi} F(r, \varphi) \cos(n\varphi) \, d\varphi$$

$$B_n(r) = \frac{1}{\pi} \int_{-\pi}^{\pi} F(r, \varphi) \sin(n\varphi) \, d\varphi$$
4. Calculate the derivatives of $u(r, \theta)$ that a relevant to the equation.

$$\begin{split} u_r(r,\theta) &= \frac{a_0'(r)}{2} + \sum_{n=1}^{\infty} a_n'(r) \cos(n\theta) + \sum_{n=1}^{\infty} b_n'(r) \sin(n\theta) \\ u_{rr}(r,\theta) &= \frac{a_0'(r)}{2} + \sum_{n=1}^{\infty} a_n''(r) \cos(n\theta) + \sum_{n=1}^{\infty} b_n''(r) \sin(n\theta) \\ u_{\theta\theta}(r,\theta) &= -\sum_{n=1}^{\infty} n^2 a_n(r) \cos(n\theta) - \sum_{n=1}^{\infty} n^2 b_n \sin(n\theta) \end{split}$$

5. Substitute into the polar fo	orm of the equation			$\int -ax^2$, $\frac{1}{a} -ax^2$			
$\frac{a_0''(r)}{2} + \frac{1}{r} \frac{a_0'(r)}{2} + \sum_{n=1}^{\infty} \left(\frac{1}{r} + \frac{1}{r} \frac{a_0'(r)}{2} + \frac{1}{r} \frac{a_0'(r)}{2} + \frac{1}{r} \frac{a_0''(r)}{2} + \frac{1}{$		$\frac{n^2}{2}a_n(r)$	$\cos(n\theta)$	$\int xe^{-ax^2} dx = -\frac{1}{2a}e^{-ax^2} \qquad \int x^2 e^{-ax^2} dx = \frac{1}{4} \sqrt{\frac{\pi}{a^3}} \operatorname{erf}(x\sqrt{a}) - \frac{x}{2a}e^{-ax^2}$			
- ', - \				$\int \sqrt{x}e^{ax} dx = \frac{1}{a}\sqrt{x}e^{ax} + \frac{i\sqrt{\pi}}{2a^{3/2}}$	$\operatorname{erf}(i\sqrt{ax})$, wh	here $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$	
$+\sum_{n=1}^{\infty} \left(b_n''(r) + \frac{1}{r} b_n'(r) - \frac{n^2}{r^2} b_n(r) \right) \sin(n\theta) =$			Integrals with Trigonometric Functions $\int \sin ax \ dx = -\frac{1}{c}\cos ax \qquad \int \sin^2 ax \ dx = \frac{x}{c} - \frac{\sin 2ax}{c}$				
$\frac{A_n(r)}{2} + \sum_{n=1}^{\infty} A_n(r) \cos(n\theta) + \sum_{n=1}^{\infty} B_n(r) \sin(n\theta)$ 6. Get a system of equations			$\int \cos ax \ dx = \frac{1}{a} \sin ax$		$\int_{0}^{2} dx dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$		
6. Get a system of equations			$\int \sin^2 x \cos x \ dx = \frac{1}{2} \sin^3 x$		$\frac{dx}{dx} = \frac{1}{2} \cos^3 ax$		
$\begin{cases} a_n''(r) + \frac{1}{2} \end{cases}$	$a_n'(r) - \frac{n^2}{r^2} a_n(r) = A$	_	= 1,2	$\int \sin^2 ax \cos^2 ax \ dx = \frac{x}{8} - \frac{\sin 4a}{32a}$		$ax dx = -\frac{1}{a} \ln \cos ax$	
1	$b'_{n}(r) - \frac{n^{2}}{r^{2}}b_{n}(r) = B$			$\int \tan^2 ax \ dx = -x + \frac{1}{a} \tan ax$			
7. Substitute the polar bound	dary condition $u(R_0,$	θ) = 0:	:	$\int \sin^2 ax \cos bx \ dx = -\frac{\sin[(2a-b)^2]}{4(2a-b)^2}$		$\frac{\sin[(2a+b)x]}{4(2a+b)}$	
$0 = u(R_0, \theta) = \frac{a_0(R_0)}{2} + \sum_{n=0}^{\infty} \frac{1}{2} e^{-\frac{2n}{2}} = \frac{1}{2} e^{-\frac{2n}{2}}$				$\int \cos^2 ax \sin bx \ dx = \frac{\cos[(2a-b)x]}{4(2a-b)} - \frac{\cos bx}{2b} - \frac{\cos[(2a+b)x]}{4(2a+b)}$			
There	fore $\begin{cases} a_n(R_0) = 0 \text{ , } n \\ b_n(R_0) = 0 \text{ , } n \end{cases}$	a = 0.1.2	2	$\int \cos ax \sin bx \ dx = \frac{\cos[(a-b)x]}{2(a-b)}$	coc[(a+h)x]	$z \neq b$	
8. The system in (6) contains				Products of Trigonometric Functions and Exponentials			
Solve the system using bou $a_n(0) \& b_n(0)$ are bounded				$\int e^x \sin x \ dx = \frac{1}{2} e^x (\sin x - \cos x)$		$\frac{e^{bx}\sin ax}{bx} \frac{dx}{dx} = \frac{1}{a^2 + b^2} e^{bx} (b\sin ax - a\cos ax)$	
$a_n(0) \& b_n(0)$ are bounded the origin).	u (since $u(r, \theta)$ is co	ntinuou	s on the disc including	$\int e^x \cos x \ dx = \frac{1}{2} e^x (\sin x + \cos x) \qquad \int e^{bx} \cos x \ dx = \frac{1}{a^2 + b^2} e^{bx} (a \sin ax + b \cos ax)$ $\int x e^x \sin x \ dx = \frac{1}{2} e^x (\cos x - x \cos x + x \sin x) \qquad \int x e^x \cos x \ dx = \frac{1}{2} e^x (x \cos x - \sin x + x \sin x)$			
$\sin(-\theta) = -\sin(\theta)$	$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\left(\frac{\pi}{2} - \theta\right)$	$s(\theta)$	$\sin(\pi - \theta) = \sin(\theta)$	2		$xe^{x}\cos x \ dx = \frac{1}{2}e^{x}(x\cos x - \sin x + x\sin x)$ c Functions and Monomials	
$\cos(-\theta) = \cos(\theta)$	$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\left(\frac{\pi}{2}\right)$	$n(\theta)$	$\cos(\pi - \theta) = -\cos(\theta)$	$\int x \cos x \ dx = \cos x + x \sin x$		$\int x \cos ax \ dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$	
$\tan(-\theta) = -\tan(\theta)$	$\tan\left(\frac{\pi}{2} - \theta\right) = \cos\left(\frac{\pi}{2} - \theta\right)$	$t(\theta)$	$\tan(\pi - \theta) = -\tan(\theta)$	$\int x^2 \cos x \ dx = 2x \cos x + (x^2 - x^2)$	– 2)sin <i>x</i>	$\int x^2 \cos ax \ dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax$	
$\sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$	$\frac{\sin(2^{-\theta})}{\sin(\theta + \pi) = -\sin(2^{-\theta})}$		$\sin(\theta + 2\pi) = \sin(\theta)$	$\int x \sin x \ dx = -x \cos x + \sin x$		$\int x \sin ax \ dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2}$	
$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta)$	$\cos(\theta + \pi) = -\cos(\theta + \pi)$	$os(\theta)$	$\cos(\theta + 2\pi) = \cos(\theta)$	$\int x^2 \sin x \ dx = (2 - x^2) \cos x + \frac{1}{2} \sin x + $		$\int x^2 \sin ax \ dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}$	
$\frac{\cos\left(\theta + \frac{1}{2}\right) = -\sin(\theta)}{\sin(\alpha + \beta) = \sin(\alpha)\cos(\alpha)}$		` '	` , , ,	$\int x \cos^2 x \ dx = \frac{x^2}{4} + \frac{1}{8} \cos 2x + \frac{1}{$	$\frac{1}{4}x\sin 2x$	$\int x \sin^2 x \ dx = \frac{x^2}{4} - \frac{1}{8} \cos 2x - \frac{1}{4} x \sin 2x$	
			$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$			roblem, Wave Equation (Just the Integral)	
$\cos(\alpha + \beta) = \cos(\alpha) c$	$os(\beta) - sin(\alpha) sin(\beta)$?)	$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$	The problem: $u_{tt} - 4u_{xx} = 0, 0 < x < 1, t > 0$	$E(t) = \begin{cases} E(t) = \\ 4w_x w_{xt} \end{cases}$	$\frac{1}{2} \int_0^1 (w_t^2 + 4w_x^2) dx. E'(t) = \int_0^1 (w_t w_{tt} + w_t^2) dx.$	
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$os(\theta) = \frac{2\tan(\theta)}{\cos(\theta)}$		$\sin^2(\theta) + \cos^2(\theta) = 1$	$u(x,0) = \cos^2(\pi x), 0 \le x \le$	1 $\int_{1}^{1} \dots$	$\int_{tt} dx + [4w_x w_t]_0^1 - 4 \int_0^1 w_t w_{xx} dx = [4w_x w_t]_0^1 =$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) =$	$\frac{1 + \tan^2(\theta)}{2\cos^2(\theta) - 1} = 1 - 2$	$2\sin^2(\theta)$	$\sin(\theta) = \pm \sqrt{1 - \cos^2(\theta)}$	$u_t(x,0) = \sin^2(\pi x)\cos(\pi x), 0 \le u_x(0,t) = u_x(1,t) = 0, t \ge 0$	λ ⊇ 1 ₁ , (1	$t)w_t(1,t) - 4w_x(0,t)w_t(0,t) \equiv 0$	
	• •	. ,	Sign depends on quadrant of θ	Energy Method Uniqueness for Dirichlet Problem of the Wave Equation			
$\sin(3\theta) = -4\sin^{2}(\theta)$		200($\cos(\theta) = \pm \sqrt{1 - \sin^2(\theta)}$ $3\theta) = 4\cos^3(\theta) - 3\cos(\theta)$	Prove uniqueness the solution to the following. $u_{tt}-u_{xx}=xt,\ 0< x<1, t>0 \\ u_x(0,t)=g(t),\ u(1,t)=h(t), t\geq 0 \\ u(x,0)=x^2-1,\ u_t(x,0)=x^{2016}-1, 0\leq x\leq 1 \\ \frac{1}{2}\int_0^1(w_t^2+w_x^2)dx.$ Derivative of the energy			
$\sin^2\left(\frac{\theta}{2}\right) = \frac{(1-\cos(\theta))}{2}$	$\frac{\cos^2\left(\frac{\theta}{2}\right) = (1 + \cos(\theta))}{2}$	-					
$\frac{2\cos(\theta)\cos(\phi) = \cos(\theta - \phi)}{2\sin(\theta - \phi)}$	$\frac{+\cos(\theta+\phi)}{\cos(\phi)} = \sin(\theta+\phi)$		$\phi) = \cos(\theta - \phi) - \cos(\theta + \phi)$ $(\theta - \phi)$			$\frac{1}{2} \int_{0}^{1} (w_{t}^{2} + w_{x}^{2}) dx$. Derivative of the energy $v_{tt} dx + [w_{x}w_{t}]_{0}^{1} - \int_{0}^{1} w_{t}w_{xx} dx = [w_{x}w_{t}]_{0}^{1} = 0$	
2 cos(t	θ) $\sin(\phi) = \sin(\theta + e^{-\theta})$		$\theta(\theta - \phi)$	$w_x(1,t)w_t(1,t) - w_x(0,t)w_t(0,t)$	$\equiv 0$. Here we u	used that $w_{tt} - w_{xx} = 0$ and homogenous B.Cs	
<u> </u>	-isin(ix)	cosh(x	4			nce $E'(t) \equiv 0$, then $E(t) \equiv \text{const.}$, but $w(x, 0) = 0$, then $E(0) = 0$. Hence, $E(t) = 0 \rightarrow 0$	
Eule	$r's$ formula: $e^{ix} = \cos \frac{1}{2}$			$w_t(x,t) = w_x(x,t) = 0 \rightarrow w(x,t)$			
$\int x^n dx = \frac{1}{n+1} x^{n+1} \int u dv =$	II TEGILIED DUDI	C I OI III	$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b $	·		ciple, Domain Shenanigans	
Iı	ntegrals of Rational	Function	ns	_		and let \mathcal{C} be the boundary of \mathcal{D} . Define) are twice differentiable by x and y in the	
$\int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a}$			$x = \tan^{-1}x$			0 and $\Delta u=0$ in the domain D , and $u=v$ $(x,y), \forall (x,y) \in \overline{D}$. Solution : Define	
$\int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, n \neq 0$	-1		$dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$	w = v - u and get the new pro	$w=v-u$ and get the new problem: $\Delta w=\Delta v-\Delta u\geq 0, (x,y)\in D, w=v-u=0$		
$\int x(x+a)^n dx = \frac{(x+a)^{n+1}((n+1))}{(n+1)(n+2)}$) <u>(x-a)</u>	$\int \frac{x}{a^2 + x^2} dx = \frac{1}{2} \ln a^2 + x^2 $		$0,(x,y)\in\mathcal{C}$. By the maximum principle, w gets the maximum on the boundary \mathcal{C} . Since $w=0$ on the boundary, then $w\leq 0$ in \overline{D} , i.e., $w=v-u\leq 0$, $\forall (x,y)\in\overline{D}$, or			
$\int \frac{x^3}{a^2 + x^2} dx = \frac{1}{2} x^2 - \frac{1}{2} a^2 \ln a^2 $	$+x^2$	$\int \frac{x^2}{a^2 + x^2} dx = x - a \tan^{-1} \frac{x}{a}$		$v \le u, \forall (x, y) \in \overline{D}. \text{ QED.}$			
$\int \frac{a^{2}+x^{2}}{1} \frac{2}{a^{2}+bx+c} dx = \frac{2}{\sqrt{4ac-b^{2}}} \tan^{-1}$	$\sqrt{4ac-b^2}$	$\int \frac{1}{(x+a)(x-a)}$	$\frac{1}{(a+b)}dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, a \neq b$	4	,	cal Form	
$\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln ax^2 + bx + c - \frac{1}{2a} \ln ax^2 + bx + c $	$\frac{b}{a\sqrt{4ac-b^2}} \tan^{-1} \frac{2ax+b}{\sqrt{4ac-b^2}}$ Integrals with R		$dx = \frac{a}{a+x} + \ln a+x $	$u_{xx} + 2u_{xy} + (\cos^2(x))u_{yy} - \cot\left(x(u_x + u_y)\right) = 0$. Solution : The characteristic equation is: $(y')^2 - 2(y') + \cos^2(x) = 0$. Roots : $(y')_{1,2} = 1 \pm \sin(x)$. Solutions : $y - x + \cos(x) = C$,			
$\int \sqrt{x-a} \ dx = \frac{2}{3}(x-a)^{3/2}$	T —		$\overline{(x+x)} - a\ln\left[\sqrt{x} + \sqrt{x+a}\right]$	$y-x-\cos(x)=\mathcal{C}$. Variables: $\xi=y-x+\cos(x)$, $\eta=y-x-\cos(x)$. Calculate derivatives :			
-				$u_x = u_{\xi}\xi_x + u_{\eta}\eta_x = u_{\xi}(-1 - \sin(x)) + u_{\eta}(-1 + \sin(x)) \cdot u_y = u_{\xi}\xi_y + u_{\eta}\eta_y = u_{\xi} + u_{\eta}.$ $u_{xx} = -\cos(xu_{\xi}) + (-1 - \sin(x)) \left(u_{\xi\xi}(-1 - \sin(x)) + u_{\xi\eta}(-1 + \sin(x))\right) + \cos(xu_{\eta}) + u_{\xi\eta}(-1 + \sin(x)) + u_{\eta}(-1 + \sin($			
$\int \frac{1}{\sqrt{x \pm a}} dx = 2\sqrt{x \pm a} \qquad \int \int \frac{1}{\sqrt{a - x}} dx = -2\sqrt{a - x}$	150		$+ abx + 3a^2x^2)\sqrt{ax+b}$ $\frac{1}{4a^{3/2}}\left[(2ax+b)\sqrt{ax(ax+b)} - \frac{1}{4a^{3/2}}\right]$	$u_{xx} = -\cos(xu_{\xi}) + (-1 - \sin(x))(u_{\xi\xi}(-1 - \sin(x)) + u_{\xi\eta}(-1 + \sin(x))) + \cos(xu_{\eta}) + (-1 + \sin(x))(u_{\eta\xi}(-1 - \sin(x)) + u_{\xi\xi}(-1 + \sin(x))) = u_{\xi\xi}(1 + 2\sin(x) + \sin^2(x)) + (-1 + \cos^2(x)) + (-1$			
$\int \sqrt{a-x} ux = -2\sqrt{u} - x$	$b^2 \ln a\sqrt{x} + b$		ти .				
$\int \sqrt{ax+b} \ dx = \left(\frac{2b}{3a} + \frac{2x}{3}\right) \sqrt{ax}$			$= \left[\frac{b}{12a} - \frac{b^2}{8a^2x} + \frac{x}{3} \right] \sqrt{x^3(ax+b)} +$	$u_{xy} = (-1 - \sin(x))(u_{\xi\xi} + u_{\xi\eta}) + (-1 + \sin(x))(u_{\eta\xi} + u_{\eta\eta}) = -u_{\xi\xi}(1 + \sin(x)) - 2u_{\xi\eta} - u_{\eta\xi}(1 + \sin(x)) - 2u_{\xi\eta}(1 + \sin(x)) = -u_{\eta\xi}(1 + \sin(x)) - 2u_{\eta\eta}(1 + \sin(x)) - 2u_{\eta\eta}(1 + \sin(x)) = -u_{\eta\eta}(1 + \sin(x)) - 2u_{\eta\eta}(1 + \sin(x)) - 2u_{\eta\eta}(1 + \cos(x)) = -u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) = -u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) = -u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) = -u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) = -u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) = -u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) = -u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) - 2u_{\eta\eta}(1 + \cos(x)) = -u_{\eta\eta}(1 + \cos(x)) - 2u_{$			
$\int_{\frac{b^3}{8a^{5/2}}} \ln a\sqrt{x} + \sqrt{a(ax+b)} ^{\frac{12a}{8a^2x} + \frac{3}{3}} \sqrt{x} $ (at t b)							
$\int \frac{x}{\sqrt{x+a}} dx = \frac{2}{3} (x \mp 2a) \sqrt{x \pm a} \qquad \int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$			Substitute into the equations and get $-4(\sin^2(x))u_{\xi\eta}=0$. The canonical form is: $u_{\xi\eta}=0$.				
$\int \frac{\sqrt{x^2 + x^2}}{\sqrt{x^2 - x^2}} dx = -\sqrt{x(a - x)} - a \tan^{-1} \frac{\sqrt{x(a - x)}}{x - a} \qquad \int x \sqrt{x^2 \pm a^2} dx = \frac{1}{3} (x^2 \pm a^2)^{3/2}$					with respect to ξ : $u(\xi, \eta) = F(\xi) + G(\eta)$, and $-\cos(x)$ where F and G are arbitrary functions		
$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln\left x + \sqrt{x^2 \pm a^2}\right \qquad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\frac{x}{a} \int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2}$			of a single variable, twice different	iable.			
$\int \frac{1}{\sqrt{x^2 \pm a^2}} \frac{dx - \sin x + \sqrt{x} \pm a }{\sqrt{x^2 \pm a^2}} \int \frac{1}{\sqrt{a^2 - x^2}} \frac{dx - \sin a }{\sqrt{a^2 - x^2}} \int \frac{1}{\sqrt{ax^2 + bx + c}} \frac{1}{\sqrt{ax^2 + bx + c}} \frac{1}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a} \sqrt{ax^2 + bx + c} - \frac{1}{a} \sqrt{ax^2 + bx + c}$			Uniquene Show solution uniqueness	ess Proof Usin	g Green's First Identity: $(\Delta V - e^x v = 0, x^2 + v^2 < 2)$		
$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2} $ $\int \frac{1}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{\sqrt{a}} \ln 2ax + b + \frac{b}{2a^{3/2}} \ln 2ax + b + 2\sqrt{a(ax^2 + bx + c)} $			$\Delta u - e^x u = 1, x^2 + y^2 < 2$	Define $v = u_1$	$-u_2. \text{ Then: } \begin{cases} \Delta V - e^x v = 0, & x^2 + y^2 < 2\\ \frac{\partial v}{\partial n} = 0, & x^2 + y^2 = 2 \end{cases}.$		
$\int \frac{1}{\sqrt{ax^2 + bx + c}} \frac{dx - \sqrt{a} \ln 2dx + c }{2\sqrt{a(ax^2 + bx + c)}}$	$2a^{3/2}$ 11	- =un 1	- 1 2γ u(un Dn C)	$\frac{\partial u}{\partial n} = x^2, \ x^2 + y^2 = 2$	Multiply both s	sides of the equation by v and integrate: $\frac{\partial u}{\partial x} dx dy - \iint_{x^2+y^2<2} e^x v^2 dx dy = 0$ (1). Using	
, , , , , , , , , , , , , , , , , , ,	Integrals with Expo						
$\int e^{ax} dx = \frac{1}{a}e^{ax}$	$\int xe^x dx$	` `	*	Green's First formula: $\iint_{x^2+y^2<2} v\Delta v dx dy = \oint_{x^2+y^2<2} v\frac{\partial v}{\partial n} ds - \iint_{x^2+y^2<2} \Delta v^2 dx dy.$ By the			
$\int xe^{ax} dx = \left(\frac{x}{a} - \frac{1}{a^2}\right)e^{ax}$			$(2-2x+2)e^x$	B.C $\frac{\partial v}{\partial n} = 0$ we get: $\iint_{x^2+y^2<2} v \Delta v dx dy = -\iint_{x^2+y^2<2} \Delta v^2 dx dy$. Plug this into (1) , get: $-\left(\iint_{x^2+y^2<2} \Delta v^2 dx dy + \iint_{x^2+y^2<2} e^x v^2 dx dy\right) = 0$. This will only hold when $v(x,y) \equiv 0$			
$\int x^2 e^{ax} dx = \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right) e^{ax} \qquad \int x^3 e^x dx = (x^3 - 3x^2 + 6x - 6) e^x$			$-\left(\iint_{x^2+y^2<2} \Delta v^2 dxdy+\iint_{x^2+y^2<2}e^{\lambda v^2}dxdy\right)=0. \text{ I his will only hold when } v(x,y)\equiv 0$ on $x^2+y^2\leq 2$, so the solution is unique.				
$\int e^{ax^2} dx = -\frac{i\sqrt{\pi}}{2\sqrt{a}} \operatorname{erf}(ix\sqrt{a}) \qquad \qquad \int e^{-ax^2} dx = \frac{\sqrt{\pi}}{2\sqrt{a}} \operatorname{erf}(x\sqrt{a})$			Neumann Problem for the Laplace equation in a disc: Existence, Solution, Min/Max				

Neumann Problem for Laplace in disc: $\Delta u(x, y) = 0, x^2 + y^2 < 4$ And $u(0,0) = \frac{1}{2}$.

a)Find the constant K for which exists a necessary condition for solution existence. b)Solve the problem for K $(x,y) = x^2 - 2y^2 + K$, $x^2 + y^2 = 4$ you found c)Find the maximum value of the solution in the given disc. a) The Neumann problem existence condition for the Laplace equation is: $\int_{\partial D} f(x(s), y(s)) ds = 0$,

where $\left[\frac{\partial u}{\partial n}\right]_{\partial D} = f(x,y) = x^2 - 2y^2 + K$. Here, $\partial D = \{(x,y)|x^2 + y^2 = 4\}$, Hence: $\int_{\partial D} f(x(s), y(s)) ds = R \int_{0}^{2\pi} f(R\cos(\phi), R\sin(\phi) d\phi) = 2 \int_{0}^{2\pi} (4\cos^{2}(\phi) - 8\sin^{2}(\phi) + K) d\phi = 2 \int_{0}^{2\pi} f(x(s), y(s)) ds = R \int_{0}^{2\pi} f(R\cos(\phi), R\sin(\phi) d\phi) = 2 \int_{0}^{2\pi} f(x(s), y(s)) ds = R \int_{0}^{2\pi} f(R\cos(\phi), R\sin(\phi) d\phi) = 2 \int_{0}^{2\pi} f(x(s), y(s)) ds = R \int_{0}^{2\pi} f(R\cos(\phi), R\sin(\phi) d\phi) = 2 \int_{0}^{2\pi} f(x(s), y(s)) ds = R \int_{0}^{2\pi} f(R\cos(\phi), R\sin(\phi) d\phi) = 2 \int_{0}^{2\pi} f(x(s), y(s)) ds = R \int_{0}^{$ $4\pi(K-2)=0 \to K=2$. **b)** Now, substitute K=2. The normal is in the radial direction: $\frac{\partial}{\partial n}=\frac{\partial}{\partial r}$. Then, the boundary condition in polar coordinates is: $\frac{\partial u}{\partial r}(2,\phi) = 4\cos^2(\phi) - 8\sin^2(\phi) + 2$. The general solution for the Laplace equation in a disc is: $u(r,\phi) = A_0 + \sum_{n=1}^{\infty} (A_n \cos(n\phi) + A_n \cos(n\phi))$ $B_n \sin(n\phi))r^n \cdot \frac{\partial u}{\partial r}(r,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \sin(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \cos(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \cos(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2,\phi) = \sum_{n=1}^{\infty} (A_n \cos(n\phi) + B_n \cos(n\phi))nr^{n-1} \cdot \frac{\partial u}{\partial r}(2$ $B_n \sin(n\phi) (n^2)^{-1} = 4\cos^2(\phi) - 8\sin^2(\phi) + 2 = 6\cos(2\phi)$. $4A_2 = 6 \rightarrow A_2 = \frac{3}{2}$, $A_n = 0$, $\forall n \neq 1$ 2, $B_n = 0$, $\forall n$. So: $u(r, \phi) = A_0 + \frac{3}{2}r^2\cos(2\phi)$. As we know, the Neumann problem is unique up to a constant. The given point $u(0,0)=\frac{1}{2}$ lets us determine $u(0,0)=A_0=\frac{1}{2}$. The solution: $u(r,\phi)=\frac{1}{2}$ $\frac{1}{2} + \frac{3}{2}r^2\cos(2\phi)$. c) The Maximum is on the boundary, by the maximum principle. Hence: $\max_{\bar{D}} u(r,\phi) = \max_{\partial D} u(r,\phi) = \frac{13}{2}$, for $r=2,\phi=0$. Remember, by the way, that the minimum for the Laplace equation is also on the boundary, so $\min_{\bar{D}} u(r,\phi) = \min_{\partial D} u(r,\phi) = -\frac{11}{a} \left(2,\frac{\pi}{a}\right)$

Maximum/Minimum For Heat Equation with Dirichlet Conditions, and an initial condition

 $u_t = u_{xx}$ $u(x, 0) = \sin^2(x), 0 \le x \le \pi$ Prove that $0 \le u(x,t) \le 1$ in the rectangle Q. Solution: By the Max/Min principle for the heat equation, the maximum and $u(0,t) = u(\pi,t) = 0, 0 \le t \le T$ minimum of the solution are on the boundary of the domain $Q = \{(x,t)|0 < x < \pi, 0 < t < T\}$ $Q = [0,\pi] \times [0,T]$, without the upper part. Denote the boundary by ∂Q . Then: $\min_{\partial Q} u(x,t) = 0$, $\max_{\partial Q} u(x,t) = \max_{\partial Q} \sin^2(x) = 1$. Hence, $0 \leq 1$

Wave Equation Separation of Variables:

Find a solution to Separation of variables: $u(x,t) = X(x)T(t) \rightarrow \frac{X''}{x} = \frac{1}{2}\frac{Y''}{x} = \frac{1}{2}\frac{Y''}{x}$ $u_{tt} = a^2 u_{xx}$ $-\lambda$. First, we'll solve for $X: X'' + \lambda X = 0$, X(0) = X'(1) = 0. u(x,0)=0Case a: $\lambda < 0 \rightarrow \text{trivial}$. Case b: $\lambda = 0 \rightarrow \text{trivial}$. Case c: $\lambda > 0$: $u_t(x,0) = \sin\left(\frac{\pi x}{l}\right)$ $X(x) = c_1 \cos(\sqrt{\lambda}x) + c_2 \sin(\sqrt{\lambda}x)$. By the B.Cs: $X(0) = 0 \rightarrow$ $u(0,t) = u_x(l,t) = 0$ $c_1 = 0 \rightarrow X(x) = c_2 \sin(\sqrt{\lambda}x) \cdot X'(l) = c_2 \sqrt{\lambda} \cos(\sqrt{\lambda}l) =$ t > 0, 0 < x < l $0 \to \sqrt{\lambda_k} l = \frac{\pi(2k+1)}{2}, k = 0,1,2 \dots$

The eigenvalues: $\sqrt{\lambda_k} = \frac{\pi(2k+1)}{2l}$, k = 0,1,2 ..., and the eigenfunction: $X_k(x) = c_k \sin(\sqrt{\lambda_k}x)$. Solve for $T: T''(t) + a^2 \lambda_k T(t) = 0$. General solution of form: $T_k(t) = a_k \cos(\sqrt{\lambda_k} at) + b_k \sin(\sqrt{\lambda_k} at)$. We get: $u(x,t) = \sum_{k=0}^{\infty} \left(\widetilde{a_k} \cos \left(\sqrt{\lambda_k} at \right) + \widetilde{b_k} \sin \left(\sqrt{\lambda_k} at \right) \right) \sin \left(\sqrt{\lambda_k} x \right). \ u(x,0) = 0 \rightarrow \widetilde{a_k} = 0.$ $u_t(x,t) = \sum_{k=0}^{\infty} \left(\sqrt{\lambda_k} a \widetilde{b_k} \cos\left(\sqrt{\lambda_k} a t\right) \right) \sin\left(\sqrt{\lambda_k} x\right). \ u_t(x,0) = \sum_{k=0}^{\infty} \left(\sqrt{\lambda_k} a \widetilde{b_k}\right) \sin\left(\sqrt{\lambda_k} x\right) = g(x) = 0$ $\frac{\sin(\pi x)}{r}$. To find series coefficents, multiply both sides by $\sin(\sqrt{\lambda_n}x)$, and integrate w.r.t to x over [0,t]. Using orthogonality of the system $\{\sin(\sqrt{\lambda_k}x)\}$, get $\widetilde{b_n} = \frac{4}{\pi(2n+1)a} \int_0^l \sin(\frac{\pi x}{l}) \sin(\frac{\pi(2n+1)}{2l}x) dx = \frac{2}{\pi(2n+1)a} \int_0^l \left[\cos(\frac{\pi x}{2l})(2n-1) - \cos(\frac{\pi x}{2l})(2n+3)\right] dx = \cdots = \frac{4l}{\pi^2(2n+1)a} \left[\frac{(-1)^{n+1}}{2n-1} - \frac{(-1)^{n+1}}{2n+3}\right] = \frac{(-1)^{n+1} \int_0^l \left[\cos(\frac{\pi x}{2l})(2n-1) - \cos(\frac{\pi x}{2l})(2n+1)\right] dx}{(-1)^{n+1} \int_0^l \left[\cos(\frac{\pi x}{2l})(2n-1) - \cos(\frac{\pi x}{2l})(2n+1)\right] dx} dx$ (-1)ⁿ⁺¹ $\frac{(-1)^{n+1}16l}{\pi^2(2n-1)(2n+1)(2n+3)a}.$ Solution: $u(x,t) = \frac{16l}{\pi^2a} \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n-1)(2n+1)(2n+3)} \sin\left(\frac{(2n+1)\pi at}{2l}\right) \sin\left(\frac{(2n+1)\pi at}{2l}\right)$

Separation of variables for non-standard PDEs (e.g. heat equation with extra u term)

 $u_t = au_{xx} - cu, 0 < x < 1, t > 0$ a) Find the solution of the problem, where a > 0, c are $u_x(\hat{0},t) = u_x(1,t) = 0$ constants. Hint: define the cases of the solution by separation of u(x,0) = f(x)variables for $\tilde{\lambda} = \left(\lambda - \frac{c}{a}\right)$, b) find the solution for f(x) =

 $\cos^2(\pi x)$. A): Look for a solution of the form u(x,t) = X(x)T(t). $XT' = aTX'' - cXT \rightarrow \frac{T'}{aT} = \frac{X''}{v}$ $\frac{c}{a}=-\lambda$. We get the **Sturm-Liouville problem for** $X:X''+\left(\lambda-\frac{c}{a}\right)X=0$, X'(0)=X'(1)=0. **For** $\lambda < \frac{c}{a}$, we get a trivial solution. For $\lambda = \frac{c}{a}$ the general solution is X(x) = ax + b, and from the B.Cs we get $X_0(x) = b$. The corresponding $T_0(t) = a_0 e^{-ct}$. For $\lambda > \frac{c}{c}$, general solution is

 $X(x) = c_1 \cos\left(\sqrt{\lambda - \frac{c}{a}x}\right) + c_2 \sin\left(\sqrt{\lambda - \frac{c}{a}x}\right)$. From the B.C $X'(0) = 0 \rightarrow c_2 = 0$ and $X'(1) = 0 \rightarrow c_3 = 0$ $\sin\left(\sqrt{\lambda-\frac{c}{a}}\right)=0$. Hence, the eigenvalues are $\lambda_n=n^2\pi^2+\frac{c}{a}$, n=1,2,3..., and the eigenfunctions are $X_n(x) = \cos(n\pi x)$. For T(t), we get the problem $T'(t) + a\lambda T(t) = 0$, and the general solution is $T_n(t)=A_ne^{-a\lambda_nt}=A_ne^{-(an^2\pi^2+c)t}$. The general solution of the problem is: $u(x,t)=X_0(x)T_0(t)+C(x)$ $\sum_{n=1}^{\infty} X_n(x) T_n(t) = A_0 e^{-ct} + \sum_{n=1}^{\infty} A_n e^{-(an^2\pi^2 + c)t} \cos(n\pi x).$ Using the initial conditions: $u(x, t) = A_0(x) T_0(t) + C_0(x) T_0(t)$ $A_0 + \sum_{n=1}^{\infty} A_n \cos(n\pi x) = f(x)$. Then, $A_0 = \int_0^1 f(x) dx$, $A_n = 2 \int_0^1 f(x) \cos(n\pi x) dx$. Substitute into the general solution to get unique u(x,t).B) $f(x) = \cos^2(\pi x) = \frac{1}{2}(1 + \cos(2\pi x))$. $A_0 = A_2 = \frac{1}{2}$ $A_n = 0, \forall n \neq 0, 2. \ u(x, t) = \frac{e^{-ct}}{2} + \frac{e^{-(4a\pi^2 + c)t}}{2} \cos(2\pi x).$

Heat Equation Cauchy Problem Solution Using Green's Function & ERF

By formula (green funct.): $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{\frac{(x-y)^2}{4a^2t}} f(y) dy = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{\frac{(x-y)$ $\frac{1}{2a\sqrt{\pi t}} \int_0^\infty e^{-\frac{(x-y)^2}{4a^2t}} dy + \frac{T_2}{2a\sqrt{\pi t}} \int_{-\infty}^0 e^{-\frac{(x-y)^2}{4a^2t}} dy. \text{ Change of variables:}$ $\alpha = \frac{y-x}{2a\sqrt{t}} : y = -\infty \to \alpha = -\infty \text{ ; } y = \infty \to \alpha = \infty; y = 0 \to \alpha =$ $u(x,0) = \begin{cases} T_1, x \ge 0 \\ T_2, x < 0 \end{cases}$ $\frac{-x}{2a\sqrt{t}} = -z. \text{ Then, } u(x,t) = \frac{T_1}{\sqrt{\pi}} \int_{-z}^{\infty} e^{-\alpha^2} d\alpha + \frac{T_2}{\sqrt{\pi}} \int_{-\infty}^{-z} e^{-\alpha^2} d\alpha. \ u(x,t) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^2} d\alpha + \frac{T_2}{2a\sqrt{t}} \right) = \frac{T_1}{2} \left(\frac{2}{\sqrt{\pi}} \right) = \frac{T_1}{2} \left($ $\frac{2}{\sqrt{\pi}} \int_0^\infty e^{-\alpha^2} d\alpha + \frac{T_2}{2} \left(\frac{2}{\sqrt{\pi}} \int_{-\infty}^0 e^{-\alpha^2} d\alpha + \frac{2}{\sqrt{\pi}} \int_0^{-z} e^{-\alpha^2} d\alpha \right). \text{ Here, } \varphi(z) = \text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-s^2} ds. \text{ Since:}$ $\frac{2}{\sqrt{\pi}} \int_{-z}^{0} e^{-\alpha^{2}} d\alpha = -\varphi(-z) = \varphi(z), \frac{2}{\sqrt{\pi}} \int_{0}^{-z} e^{-\alpha^{2}} d\alpha = \varphi(-z) = -\varphi(z),$ $\frac{2}{\sqrt{\pi}} \int_{-\infty}^{0} e^{-\alpha^2} d\alpha = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-\alpha^2} d\alpha = 1, \text{ we get: } u(x,t) = \frac{T_1}{2} (\varphi(z) + 1) + \frac{T_2}{2} (1 - \varphi(z)) = \frac{T_1 + T_2}{2} + \frac{T_2}{2} + \frac{T_2$

Non Homogenous Heat Equation Neumann B.C.

Look for the solution in the form u(x,t) = v(x,t) + z(x,t). Since $u_t = a^2 u_{xx}, t > 0, 0 < x < L$ we are dealing with Neumann B.Cs, we take for z the function u(x,0) = x $u_x(0,t) = 1, u_x(L,t) = 2$ $z(x,t) = x + \frac{x^2}{2L}$. Put this into the PDE: $v_t = u_t = a^2 u_{xx} = a^2 v_{xx} + a^2 v_{xx}$ $\int_{a^2} z_{xx} = a^2 v_{xx} + \frac{a^2}{L} \to v_t = a^2 v_{xx} + \frac{a^2}{L}, v(x, 0) = -\frac{x^2}{2L}, v_x(0, t) =$ $v_x(L,t)=0$. We get the non-homog, heat equation with non-homog. Initial condition but homog. B.Cs. We separate the problem into 2 problems: v(x,t) = w(x,t) + h(x,t), so $w_t = a^2 w_{xx}, 0 < x < L, t > 0$ $h_t = a^2 h_{xx} + \frac{a^2}{L}, 0 < x < L, t > 0$ $w(x,0)=-\tfrac{x^2}{2L}$. We solved a similar $W_x(0,t) = W_x(L,t) = 0$ $h_x(0,t)=h_x(L,t)=0$ problem in class. Using solution from class, we define $A = \frac{a^2}{L}$, $f(x) = -\frac{x^2}{2L}$. Denoting the new coefficients for f(x) as $\widetilde{a_0}$, $\widetilde{a_n}$: $a_0 = -\frac{1}{2L}a_0 = -\frac{L}{6}$. $\widetilde{a_n} = \frac{1}{2L}a_n = -\frac{1}{2L}\left(\frac{4L^2}{\pi^2}\frac{(-1)^n}{n^2}\right) = \frac{2L(-1)^{n+1}}{\pi^2n^2}$, $n = \frac{2L(-1)^n}{n^2}$ 1,2 Therefore, $w(x,t) = -\frac{L}{6} + \frac{2L}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} e^{-a^2 \left(\frac{n\pi}{L}\right)^2 t} \cos\left(\frac{n\pi}{L}x\right), h(x,t) = \frac{a^2}{L}t, u(x,t) = \frac{a^2}{L}t$ $\underline{z(x,t) + h(x,t) + w(x,t)} \to \underline{u(x,t)} = x + \frac{x^2}{2L} + \frac{a^2}{L}t - \frac{L}{6} + \frac{2L}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} e^{-a^2 \left(\frac{n\pi}{L}\right)^2 t} \cos\left(\frac{n\pi}{L}x\right)$

Non-Homogenous Heat Equation, other B.C.

We look for the solution u(x,t) = v(x,t) + z(x,t). Using the $u_t = u_{xx} + 1, t > 0, 0 < x < 1$ table, $z(x,t) = 1 - \frac{x}{2}$. New problem: v(x,t) = u(x,t) - z(x,t) $u(x,0) = \frac{1 - \cos(x\pi)}{1 - \cos(x\pi)}$ By substituting u(x,t) into the problem we get for v(x,t): $v_t = v_{xx} + 1$ $u(0,t) = 1, u(1,t) = \frac{1}{2}$ $v(x,0) = u(x,0) - 1 + \frac{x}{2} = \frac{1-\cos(x\pi)}{4} - 1 + \frac{x}{2}$. We get the nonv(0,t) = v(1,t) = 0

nomog. Heat equation with non-homog. I.C but homog. B.Cs. **Separate the problem** to 2 problems: $(w_t = w_{xx}, 0 < x < 1, t > 0) \quad (h_t = h_{xx} + 1, 0 < x < 1, t > 0)$ v(x,t) = w(x,t) + h(x,t), so that: $\begin{cases} w(x,0) = -\frac{3}{4} + \frac{x}{2} - \frac{\cos(\pi x)}{4}; \end{cases}$ h(x,0)=0h(0,t) = h(1,t) = 0w(0,t) = w(1,t) = 0

Solving for w(x,t) using separation of variables: $w(x,t) = X(x)T(t) \to \frac{X''}{x} = \frac{Y'}{x} = -\lambda$. This is a Sturm-Liouville problem with non-trivial solution only for $\lambda > 0$. The e.values and e.functions are: $X_n(x) = \sin(n\pi x)$, $\lambda_n = n^2\pi^2$, n = 1,2,3 For $T: T_n' + n^2\pi^2T_n = 0 \to T_n = a_ne^{-n^2\pi^2t}$. Hence: $w(x,t) = \sum_{n=1}^{\infty} a_n e^{-n^2 \pi^2 t} \sin(n\pi x)$. Put it into the initial condition: $w(x,0) = \sum_{n=1}^{\infty} a_n \sin(n\pi x) = \sum_{n=1}^{\infty} a_n \sin(n\pi x)$ $-\frac{3}{4} + \frac{x}{2} - \frac{\cos(\pi x)}{4}$. Calculate the coefficients: $a_n = 2\int_0^1 \left(-\frac{3}{4} + \frac{x}{2} - \frac{\cos(\pi x)}{4}\right) \sin(n\pi x) dx$. $\int_{0}^{4} \left(-\frac{3}{4}\right) \sin(n\pi x) dx = \left[\frac{3}{4} \frac{\cos(n\pi x)}{n\pi}\right]_{0}^{1} = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \int_{0}^{1} \left(\frac{x}{2}\right) \sin(n\pi x) dx = \frac{1}{2} \left(\left[-\frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi} = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \int_{0}^{1} \left(\frac{x}{2}\right) \sin(n\pi x) dx = \frac{1}{2} \left(\left[-\frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi} = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \left(-\frac{3}{2}\right) \sin(n\pi x) dx = \frac{1}{2} \left(\left[-\frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi} = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \left(-\frac{3}{2}\right) \sin(n\pi x) dx = \frac{1}{2} \left(\left[-\frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi} = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \left(-\frac{3}{2}\right) \sin(n\pi x) dx = \frac{1}{2} \left(\left[-\frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi}\right) = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \left(-\frac{3}{2}\right) \sin(n\pi x) dx = \frac{1}{2} \left(\left[-\frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi} = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \left(-\frac{3}{2}\right) \sin(n\pi x) dx = \frac{1}{2} \left(\left[-\frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi} = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \left(-\frac{3}{2}\right) \sin(n\pi x) dx = \frac{1}{2} \left(\left[-\frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi} = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \left(-\frac{3}{2}\right) \sin(n\pi x) dx = \frac{1}{2} \left(\left[-\frac{x\cos(n\pi x)}{n\pi}\right]_{0}^{1} + \frac{x\cos(n\pi x)}{n\pi} = \frac{3}{4n\pi} \left((-1)^{n} - 1\right) \cdot \left(-\frac{3}{2}\right) \cdot \left(-\frac{3}\right) \cdot \left(-\frac{3}{2}\right) \cdot \left(-\frac{3}{2}\right) \cdot \left(-\frac{3}{2}\right) \cdot \left(-\frac{3}{2}\right)$ $\frac{1}{n\pi} \int_0^1 \cos(n\pi x) \, dx = -\frac{1}{2} \frac{(-1)^n}{n\pi} \int_0^1 \left(-\frac{\cos(n\pi x)}{4} \right) \sin(n\pi x) \, dx = -\frac{1}{8} \int_0^1 [\sin(\pi (n+1)x) + \frac{1}{2} \sin(n\pi x)] \, dx$ $\sin(\pi(n-1)x)]dx = \frac{1}{8} \left(\left[\frac{\cos(\pi(n+1)x)}{\pi(n+1)} \right]_0^1 + \left[\frac{\cos(\pi(n-1)x)}{\pi(n-1)} \right] \right) = \frac{1}{8\pi} \left(\frac{(-1)^{n+1}-1}{n+1} + \frac{(-1)^{n-1}-1}{n-1} + \frac{(-1)^{n-1}-1}{n-1} \right) = \frac{1}{8\pi} \left(\frac{(-1)^{n+1}-1}{n+1} + \frac{(-1)^{n-1}-1}{n-1} + \frac{(-1)^{n \frac{-1)^{n+1}-1}{8\pi}\left(\frac{1}{n+1}+\frac{1}{n-1}\right)=\frac{n((-1)^{n+1}-1)}{4\pi(n^2-1)}. \ a_n=\frac{1}{2n\pi}((-1)^n-3)+\frac{n((-1)^{n+1}-1)}{4\pi(n^2-1)} \text{ for } n\neq 1, \text{ and } a_1=\frac{1}{2n\pi}(n+1)$ $\sum_{n=1}^{8\pi} A_n = 0. \text{ For } h(x,t) \text{ we get: } h(x,t) = \sum_{n=1}^{\infty} h_n(t) \sin(n\pi x), F(x,t) = \sum_{n=1}^{\infty} F_n(t) \sin(n\pi x) = 1,$ $F_n(t) = 2 \int_0^1 \sin(n\pi x) dx = \frac{2}{n\pi} (1 - (-1)^n)$. Put these h and F into the problem for h: $\{h_n'(t) + n^2\pi^2h_n(t) = F_n(t) \}$, and the solution: $h_n(t) = \int_0^t e^{-n^2\pi^2(t-\tau)}F_n(\tau)d\tau = \frac{2}{n^3\pi^3}\Big(1-\frac{2}{n^3\pi^3}\Big)$ $n^{2}n^{2}t$) $(1-(-1)^{n})$. For an even n: $h_{n}(t)=0$, so we define n=2k-1, and so: h(x,t)=1 $\frac{4}{\pi^3} \sum_{k=1}^{\infty} \frac{1 - e^{-(2k-1)^2 \pi^2 t}}{(2k-1)^3} \sin((2k-1)\pi x).$ The final solution: $u(x,t) = z(x,t) + w(x,t) + h(x,t) = \frac{4}{\pi^3} \sum_{k=1}^{\infty} \frac{1 - e^{-(2k-1)^2 \pi^2 t}}{(2k-1)^3} \sin((2k-1)\pi x).$ $-\frac{x}{2} + \frac{1}{2\pi} \sum_{n=2}^{(2k-1)^3} \left[\frac{1}{n} ((-1)^n - 3) + \frac{n((-1)^{n+1} - 1)}{(n^2 - 1)} \right] e^{-n^2 \pi^2 t} \sin(n\pi x) + \left(-\frac{2}{\pi} \right) e^{-\pi^2 t} \sin(\pi x) +$ $\frac{4}{\pi^3} \sum_{k=1}^{\infty} \frac{1 - e^{-(2k-1)^2 \pi^2 t}}{(2k-1)^3} \sin((2k-1)\pi x)$

Harmonic Function , Specific Solution, Min/Max

Let $u(r,\theta)$ be a harmonic function in the disk $x^2 + y^2 < R^2$ and satisfies the following condition on the boundary of the disk: $u(R, \theta) = f(\theta) =$ $\begin{cases} \sin^2(2\theta), |\theta| \le \frac{\pi}{2} \\ 0, \pi \end{cases}$ A) Find u(0,0) $0, \frac{\pi}{2} < |\theta| \le \pi$

without solving the boundary problem. B) Prove that for any (r, heta) in the disk it is true that $0 \le u(r, \theta) \le 1$

A) Use the Poisson formula (pay attention, $\int_0^{2\pi} = \int_{-\pi}^{\pi} \text{ for } 2\pi \text{ periodic functions}.$ $u(r,\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{R^2 - r^2}{R^2 - 2Rrcos(\theta - \varphi) + r^2} f(\varphi) d\varphi$. For (x,y) = (0,0) take $(r,\theta) = (0,0)$. It is given that $f(\varphi) = \begin{cases} \sin^2(2\varphi), |\varphi| \le \frac{\pi}{2} \\ 0, \frac{\pi}{2} < |\varphi| \le \pi \end{cases}, \text{ so: } u(0,0) = \begin{cases} \sin^2(2\varphi), |\varphi| \le \frac{\pi}{2} \end{cases}$ $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\varphi) d\varphi = \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2(2\varphi) d\varphi = \frac{1}{4},$ $u(0,0) = \frac{1}{4}$ B) By the maximum principle, the

max/min of the harmonic function is on the boundary. $\max_{x^2+y^2=R^2} u(R,\theta) =$ $\max_{-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}} \sin^2(2\theta) = 1, \text{ and } \min_{x^2 + y^2 = R^2} u(r, \theta) = \min_{\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq |\theta| \leq \pi} \{\sin^2(2\theta), 0\} = \max_{-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}} \sin^2(2\theta) = 1, \text{ and } \min_{x^2 + y^2 = R^2} u(r, \theta) = \min_{\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq |\theta| \leq \pi} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 + y^2 = R^2} u(r, \theta) = \min_{\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq |\theta| \leq \pi} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 + y^2 = R^2} u(r, \theta) = \min_{\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq |\theta| \leq \pi} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \min_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \frac{\pi}{2} \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \theta} \{\sin^2(2\theta), 0\} = 1, \text{ and } \max_{x^2 = \theta \leq \theta} \{\sin^2($ 0, therefore, $0 \le u(r, \theta) \le 1 \ \forall (r, \theta)$ in the disk.

Finding a Harmonic Function under certain constraints/conditions

Find a harmonic function in the disk $x^2 + y^2 < 6$, which satisfies u(x, y) = $y + y^2$ on the boundary of the disk. Write the final answer in x, y coordinates.

Rewrite the problem in polar coordinates: $\int u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\varphi\varphi} = 0, 0 < r < \sqrt{6}, 0 \le \varphi \le 1$ $u(\sqrt{6}, \varphi) = \sqrt{6}\sin(\varphi) + 6\sin^2(\varphi)$ A general solution is $u(r, \varphi) = A_0 +$

 $\sum_{n=1}^{\infty} (A_n \cos(n\varphi) + B_n \sin(n\varphi) r^n. \text{ Then, } u(\sqrt{6}, \varphi) = A_0 + \sum_{n=1}^{\infty} (A_n \cos(n\varphi) + A_n \cos$ $B_n \sin(n\varphi) \sqrt{6}^n = \sqrt{6} \sin(\varphi) + 6 \sin^2(\varphi) = \sqrt{6} \sin(\varphi) + \frac{6}{2} (1 - \cos(2\varphi)) \rightarrow A_0 = 3,$ $6A_2 = -3 \rightarrow A_2 = -\frac{1}{2}, A_n = 0 \ \forall n \neq 0, 2. \ \sqrt{6}B = \sqrt{6} \rightarrow B_1 = 1, B_n = 0, \forall n \neq 1.$ $u(r,\varphi) = 3 - \frac{1}{2}\cos(2\varphi)r^2 + \sin(\varphi)r$. Go back to (x,y): $r\sin(\varphi) = y$, $r^2\cos(2\varphi) = \frac{1}{2}\cos(2\varphi)r^2 + \sin(\varphi)r$. $r^{2}(\cos^{2}(\varphi) - \sin^{2}(\varphi)) = x^{2} - y^{2} \rightarrow u(x, y) = 3 + y - \frac{1}{2}(x^{2} - y^{2})$