JOISC 原题典题不可做题选讲

ningago

兰州树人中学

2023 年 7 月 14 日

颗意简述:

城市布局为 $n\times m$ 的网格图。在第 i 条横向路径上行走一单位长度的时间是 A_i ,在第 i 条纵向路径上行走一单位长度的时间是 B_i 。 请求出从 (1,1) 到达 (n,m) 的最短时间。

 $n, m \le 10^5, A_i, B_i \le 10^9$.

考虑 $A_1 \rightarrow B_2$ 优于 $B_1 \rightarrow A_2$ 的条件:

(L 是指两道路之间的距离,初始时所有 $\Delta L=1$,随着删边的过程 增大。)

考虑 $A_1 \rightarrow B_2$ 优于 $B_1 \rightarrow A_2$ 的条件:

(L 是指两道路之间的距离,初始时所有 $\Delta L=1$,随着删边的过程增大。)

$$A_{1} \cdot L_{1} + B_{2} \cdot L_{2} \ge A_{2} \cdot L_{1} + B_{1} \cdot L_{2}$$

$$\implies \frac{A_{1} - A_{2}}{L_{2}} \ge \frac{B_{1} - B_{2}}{L_{2}}$$

$$\implies \frac{A_{2} - A_{1}}{L_{2}} \le \frac{B_{2} - B_{1}}{L_{2}}$$

考虑 $A_1 \rightarrow B_2$ 优于 $B_1 \rightarrow A_2$ 的条件:

(L 是指两道路之间的距离,初始时所有 $\Delta L=1$,随着删边的过程增大。)

$$A_{1} \cdot L_{1} + B_{2} \cdot L_{2} \ge A_{2} \cdot L_{1} + B_{1} \cdot L_{2}$$

$$\implies \frac{A_{1} - A_{2}}{L_{2}} \ge \frac{B_{1} - B_{2}}{L_{2}}$$

$$\implies \frac{A_{2} - A_{1}}{L_{2}} \le \frac{B_{2} - B_{1}}{L_{2}}$$

所以 $rac{\Delta A_i/\Delta B_i}{\Delta L_i}$ 最大的道路必然劣于其他道路。

所以策略为: 每次选择 $\frac{\Delta A_i/\Delta B_i}{\Delta L_i}$ 最大的道路,将其删去。

如果其为最后一条纵/横向边,则统计其对答案的贡献。﴿ 🖹 🔻 🗟 🔊 🥸

图示:(红色表示删去边,蓝色表示计入答案)

形象化: https://www2.ioi-jp.org/camp/2022/2022-sp-tasks/contest1/kyoto-review.pdf#page=33&zoom=auto,-85,540。

给定带权无向联通图,n 个点 m 条边。每条边初始权值为 val_i 。 询问 Q 次,每次给定 q_i ,求每条边 j 的权值变为 $|q_i-val_j|$ 时的最小生成树。

 $n \le 500, m \le 10^5, Q \le 10^6, q_i$ 单调递增。

首先根据 kruskal 的过程易得最小生成树具有可合并性 即令 $MST(E)\subseteq E$ 表示构成 E (边集) 的最小生成树的边集,则有:

 $MST(E1 \cup E2) \subseteq MST(E1) \cup MST(E2)$

首先根据 kruskal 的过程易得最小生成树具有可合并性 即令 $MST(E)\subseteq E$ 表示构成 E (边集) 的最小生成树的边集,则有:

 $MST(E1 \cup E2) \subseteq MST(E1) \cup MST(E2)$

所以现在可以口糊一个算法: 动态维护边权 $\leq q_i$ 和 $> q_i$ 的两个边集 E_L, E_R ,每次 q_i 的增大相当于从 E_R 中拿出一些边到 E_L 中去,然后求 $E_L \cup E_R$ 的 MST。

考虑绝对值函数 f(x) = |x - a| 的性质。

考虑绝对值函数 f(x) = |x - a| 的性质。 由于斜率对于所有的 a 来说都恒定为 -1 和 1,所以对于两个绝对 值函数 $f_1, f_2(a_1 \le a_2)$ 来说:

若
$$x < \frac{a_1 + a_2}{2}$$
,则 $f_1(x) > f_2(x)$,否则 $f_1(x) < f_2(x)$ 。

考虑绝对值函数 f(x) = |x - a| 的性质。

由于斜率对于所有的 a 来说都恒定为 -1 和 1,所以对于两个绝对值函数 $f_1, f_2(a_1 \le a_2)$ 来说:

若
$$x < \frac{a_1 + a_2}{2}$$
,则 $f_1(x) > f_2(x)$,否则 $f_1(x) < f_2(x)$ 。

应用到 kruskal 的过程中,如果一条边 e_1 在 q_i 等于某个值时替代了以往 MST 中的 e_2 这条边,那么不论 e_1 在 E_L 内还是 E_R 内, e_2 都不会再被加入到 MST 中。

考虑绝对值函数 f(x) = |x - a| 的性质。

由于斜率对于所有的 a 来说都恒定为 -1 和 1,所以对于两个绝对值函数 $f_1, f_2(a_1 \leq a_2)$ 来说:

若
$$x < \frac{a_1 + a_2}{2}$$
,则 $f_1(x) > f_2(x)$,否则 $f_1(x) < f_2(x)$ 。

应用到 kruskal 的过程中,如果一条边 e_1 在 q_i 等于某个值时替代了以往 MST 中的 e_2 这条边,那么不论 e_1 在 E_L 内还是 E_R 内, e_2 都不会再被加入到 MST 中。

所以我们得到了边存在的性质:对于一条边 e_i 来说,在 q_i 增大到某一阈值时, e_i 通过替代某一条边被加入到 MST 中,在此之前都不在其内。而当 q_i 继续增大到另一阈值时, e_i 被另一条被替代,在此之后都不参与 MST。

也就是说,使得 e_i 在其对应的 MST 中的 q_i 构成一个区间 $[l_i, r_i]$ 。

如果对于每个 e_i ,求出了 $[l_i, r_i]$,那么计算答案是简单的。 按边权从小到大加入边,维护当前的 MST。

如果对于每个 e_i ,求出了 $[l_i,r_i]$,那么计算答案是简单的。 按边权从小到大加入边,维护当前的 MST。 当加入边 $e_i(u_i \xrightarrow{val_i} v_i)$ 时,若 u_i 与 v_i 不联通,则将其加入 MST。 否则,我们需要在当前树上 $u_i \leadsto v_i$ 的路径上选择一条边 e_i 将其替

代。

如果对于每个 e_i ,求出了 $[l_i, r_i]$,那么计算答案是简单的。 按边权从小到大加入边,维护当前的 MST。

当加入边 $e_i(u_i \xrightarrow{val_i} v_i)$ 时,若 u_i 与 v_i 不联通,则将其加入 MST。 否则,我们需要在当前树上 $u_i \leadsto v_i$ 的路径上选择一条边 e_j 将其替代。

为了保证生成树边权最小,替代的边肯定是路径上边权最小的边, 因为权越小,绝对值造成的贡献越大。

那么 e_i 替代 e_j 的时刻就是 $r_j = l_i = \frac{val_i + val_j}{2}$ 。

如果对于每个 e_i ,求出了 $[l_i, r_i]$,那么计算答案是简单的。 按边权从小到大加入边,维护当前的 MST。

当加入边 $e_i(u_i \xrightarrow{val_i} v_i)$ 时,若 u_i 与 v_i 不联通,则将其加入 MST。 否则,我们需要在当前树上 $u_i \leadsto v_i$ 的路径上选择一条边 e_j 将其替代。

为了保证生成树边权最小,替代的边肯定是路径上边权最小的边, 因为权越小,绝对值造成的贡献越大。

那么 e_i 替代 e_j 的时刻就是 $r_j = l_i = \frac{val_i + val_j}{2}$.

至此我们可以贪心地求解出 $[l_i,r_i]$ 。由于需要支持路径最值,加边,断边,可以使用 LCT 维护。

复杂度 $O(m\log(n+m)+q)$ 。

如果对于每个 e_i ,求出了 $[l_i, r_i]$,那么计算答案是简单的。 按边权从小到大加入边,维护当前的 MST。

当加入边 $e_i(u_i \xrightarrow{val_i} v_i)$ 时,若 u_i 与 v_i 不联通,则将其加入 MST。 否则,我们需要在当前树上 $u_i \leadsto v_i$ 的路径上选择一条边 e_j 将其替代。

为了保证生成树边权最小,替代的边肯定是路径上边权最小的边, 因为权越小,绝对值造成的贡献越大。

那么 e_i 替代 e_j 的时刻就是 $r_j = l_i = rac{val_i + val_j}{2}$ 。

至此我们可以贪心地求解出 $[l_i,r_i]$ 。由于需要支持路径最值,加边,断边,可以使用 LCT 维护。

复杂度 $O(m\log(n+m)+q)$ 。

n 很小,所以此题暴力 Link-Cut 即可通过。

给定长度为 2n 的 01 序列, 其中 n 个 0, n 个 1。

给定 m, 问在至少多少次相邻项交换后,序列可以被恰好划分为 m个子序列(非连续),每个子序列满足性质:

- 子序列内 0 数量和 1 数量相同;
- 所有的 1 在所有的 0 右边;
- ◎ 即形态为: 00 · · · 0011 · · · 11。

 $n \le 10^6$,但 6s。

考虑类似卡塔兰数地将其刻画为二维网格上的折线, 0 代表向右走, 1 代表向上走。

考虑类似卡塔兰数地将其刻画为二维网格上的折线, 0 代表向右走, 1 代表向上走。

首先容易发现若存在答案,一定有 01 构成合法括号序列,即不超过对角线。

所以若原串不是合法括号序列,我们可以贪心 swap 将其强制合法。

不考虑 m 的限制,有一个贪心构造解的方法:

每次选择任意数量 (x) 个最靠前的没被选择过的 0,选择最靠前的没被选择过的 1 与其匹配。

不考虑 m 的限制,有一个贪心构造解的方法:

每次选择任意数量 (x) 个最靠前的没被选择过的 0,选择最靠前的没被选择过的 1 与其匹配。

该方法合法,当且仅当每次选择的 0 的数量小于等于当前位置前缀 0 的数量。

在图中体现为: 若把每个子序列拎出来按顺序排成新序列(形态为000011110011···), 图中新折线被原折线与对角线完全包含。

接下来加入修改,假设我们有一中并没有被完全包含的构造方案, 我们可以通过 swap 操作使其恰好被包含:

不难发现修改的代价即为超出原折线的面积。

所以现在可以设计一个 DP,每次加入一个子序列,计算其贡献。 把网格的 n+1 条竖线编号为 $0\sim n$,定义 a_i 表示 i 这条竖线与原 折线相交的最大高度 $(0\sim n)$ 。

所以现在可以设计一个 DP,每次加入一个子序列,计算其贡献。

把网格的 n+1 条竖线编号为 $0 \sim n$,定义 a_i 表示 i 这条竖线与原 折线相交的最大高度 $(0 \sim n)$ 。

记 $dp_{i,j}$ 表示现在子序列放到了 i 号竖线,放了 j 个子序列的最小代价。转移即为:

$$dp_{i,j} \leftarrow dp_{k,j-1} + \sum_{p=k}^{i-1} \max\{0, a_i - k\}$$

$$dp_{i,j} \leftarrow dp_{k,j-1} + \sum_{p=k}^{i-1} \max\{0, a_i - k\}$$

容易发现对于每个 k 来说,存在一个 R(k) 满足 $a_{R(k)} - k \le 0$ (不存在即为 k-1)。

则令 pre_i 表示 a_i 的前缀和,转移系数可以优化到 O(1) 计算:

$$dp_{i,j} \leftarrow dp_{k,j-1} + \begin{cases} 0 & R(k) \geq i-1 \\ pre_{i-1} - pre_{R(k)} - (i-R(k)-1) \times k & \text{otherwise} \end{cases}$$

其中 R(k) 由于是单调的,容易线性计算。

接下来,由于 dp 状态中出现了每次只增加 1 的第二维,可以证明其具有凸性。使用 wqs 二分即可优化。

接下来,由于 dp 状态中出现了每次只增加 1 的第二维,可以证明 其具有凸性。使用 wqs 二分即可优化。

对于转移系数,可以证明其满足四边形不等式,故可以使用决策单 调性对其优化。

复杂度为 $O(n\log^2 n)$, 常数小可以过。

接下来,由于 dp 状态中出现了每次只增加 1 的第二维,可以证明 其具有凸性。使用 wqs 二分即可优化。

对于转移系数,可以证明其满足四边形不等式,故可以使用决策单 调性对其优化。

复杂度为 $O(n\log^2 n)$, 常数小可以过。

更加直观的做法,观察到转移式内有乘法,并且前缀和数组单调,故使用单调队列斜率优化即可解决。转移时进行判负取零即可复杂度为 $O(n\log n)$ 。