EECE322-01: 자동제어공학개론

Introduction to Automatic Control

Chapter 3: Response of Control Systems

Kim, Jung Hoon

◆ The main objectives of this chapter are

1. Basic concepts of linear systems

2. Laplace transform and transfer functions

3. Effects of pole locations and Block Diagrams

4. Time-domain specifications

5. Effects of zeros and additional poles

6. Stability

1. Basic Concepts of Linear Systems

Linearity (principle of superposition)

Homogeneity

Linearity (principle of superposition)

Additivity

Linearity (principle of superposition)

Linear system: a system which satisfies the principle of superposition **Principle of superposition: Additivity + Homogeneity**

Alternatively,

Principle of Superposition
$$\alpha_1 u_1 + \alpha_2 u_2 \longrightarrow \text{System} \longrightarrow \alpha_1 y_1 + \alpha_2 y_2$$

Example of linearity

- Linear differential equation $\dot{y} + ky = u$
- Suppose $\dot{y}_1 + ky_1 = u_1$, $\dot{y}_2 + ky_2 = u_2$
- Let $\overline{u} = \alpha_1 u_1 + \alpha_2 u_2$.
- Assume $\overline{y} = \alpha_1 y_1 + \alpha_2 y_2$

$$\dot{\overline{y}} = \alpha_1 \dot{y}_1 + \alpha_2 \dot{y}_2 = \alpha_1 (-ky_1 + u_1) + \alpha_2 (-ky_2 + u_2)$$

$$= -k(\alpha_1 y_1 + \alpha_2 y_2) + (\alpha_1 u_1 + \alpha_2 u_2)$$

$$= -k \overline{y} + \overline{u}$$

$$\Rightarrow \dot{\bar{y}} + k\bar{y} = \bar{u}$$

• Superposition holds for the linear first order differential equation.

Time invariance

- Time invariance (differential equation with constant coeffecients.)
- Consider $\dot{y}_1(t) + ky_1(t) = u_1(t)$
- What would be the solution for the input $u_2(t) = u_1(t-\tau)$?
- Assume $y_2(t) = y_1(t \tau)$
 - $\Rightarrow \dot{y}_2 = \dot{y}_1(t \tau) = -ky_1(t \tau) + u_1(t \tau) = -ky_2(t) + u_2(t)$

• If the system is time invariant, it follows that if the input is delayed by τ sec, then the output is also delayed by τ sec.

Response by convolution – basic concept

- By using the principle of superposition, we can find the response of the system through the basic response with respect to a basic input.
 - basic input: impulse and exponential.
- Response of LTI system w.r.t. short pulses

suppose

input: $u_1(t) = p(t)$

 \rightarrow output: $y_1(t) = h(t)$

Linearity

input: $u_1(t) = u(0)p(t)$

 \rightarrow output: $y_1(t) = u(0)h(t)$

 \rightarrow output: $y_2(t) = h(t - \tau)$

Response by convolution – extension to general input

Response to two pulses

• Response to four pulses

How about arbitrary input signals?

Approximation of input signal

• Representation of a general input signal as the sum of short pulses

• For mathematical representation, define a short pulse $p_{\Delta}(t)$: rectangular pulse having unit area

$$p_{\Delta}(t) = \begin{cases} \frac{1}{\Delta}, & 0 \le t \le \Delta \\ 0, & \text{otherwise} \end{cases}$$

Derivation of convolution integral

- Suppose: input $p_{\Delta}(t) \rightarrow$ output $h_{\Delta}(t)$
- The input pulse applied at $k\Delta$:

$$\Delta u(k\Delta) p_{\Lambda}(t-k\Delta)$$

 \rightarrow The response at t:

$$\Delta u(k\Delta)h_{\Lambda}(t-k\Delta)$$

• Total response to the series of the short impulses at time t:

$$y(t) = \sum_{k=0}^{\infty} \Delta u(k\Delta) h_{\Delta}(t - k\Delta)$$

- Impulse and impulse response: impulse: $\delta(t) := \lim_{\Delta \to 0} p_{\Delta}(t)$, impulse response: $h(t) := \lim_{\Delta \to 0} h_{\Delta}(t)$
- Total response in the limit (as $\Delta \rightarrow 0$): convolution integral

$$y(t) = \sum_{k=0}^{\infty} \Delta u(k\Delta) h_{\Delta}(t - k\Delta) \quad \Rightarrow \quad y(t) = \int_{0}^{\infty} u(\tau) h(t - \tau) d\tau$$

Approximation of input signal

• Impulse from physics: a very intense force for a very short time. (by Paul Dirac)

Impulse function
$$\delta(t)$$
: a function satisfying $\delta(t) = 0$, $t \neq 0$, and $\int_{-\infty}^{\infty} \delta(t) dt = 1$.

Motion of a baseball hit by a bat.

Shifting property of impulse:

for a function f(t) continuous at $t = \tau$.

$$\int_{-\infty}^{\infty} f(\tau) \delta(t - \tau) d\tau = f(t).$$

• The impulse is so short and intense that no value of f matters except over the short range where the impulse occurs. The function f is represented as a sum of impulses.

13

Response by convolution

• Total response: summation of the basic response:

- input:
$$u(t) = \int_{-\infty}^{\infty} u(\tau) \delta(t - \tau) d\tau$$

- for a general linear system, we can express the impulse response as $h(t,\tau)$, the response at t to a unit impulse applied at τ .

$$y(t) = \int_{-\infty}^{\infty} u(\tau)h(t,\tau)d\tau$$

• Linear time invariant case: $h(t,\tau) \rightarrow h(t-\tau)$

$$y(t) = \int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} u(t-\tau)h(\tau)d\tau.$$

Convolution integral

Example of convolution

- $\dot{y} + ky = u = \delta(t)$ with an initial condition y(0) = 0 before the impulse.
- Integrate (just before 0 to just after 0)

$$\int_{0-}^{0+} \dot{y}dt + k \int_{0-}^{0+} ydt = \int_{0-}^{0+} \delta(t)dt$$

$$y(0+) - y(0-) = 1$$
 $\left(\because \int_{0-}^{0+} y dt = 0, \ y(0-) = 0\right)$

$$y(0+) = 1.$$

$$\dot{y} + ky = 0, \ y(0+) = 1.$$

• Solution: $y(t) = e^{-kt}, t > 0.$

Representation by unit step function

• Unit step function: for simplicity (or think physically)

Unit Step Function:
$$1(t) = \begin{cases} 0, t < 0, \\ 1, t \ge 0. \end{cases}$$

• For system (with impulse input)

$$\dot{y} + ky = u = \delta(t), y(0) = 0$$
 before the impulse.

$$y(t) = h(t) = e^{-kt}, t > 0.$$
 $\longrightarrow y(t) = h(t) = e^{-kt}1(t).$

- response for general input u(t) for system

$$y(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau = \int_{-\infty}^{\infty} e^{-k\tau} 1(\tau)u(t-\tau)d\tau = \int_{0}^{\infty} e^{-k\tau}u(t-\tau)d\tau.$$

2. Laplace Transform and Transfer Functions

Derivation of transfer function

- Transfer function is
- the transfer gain from U(s) to Y(s).
- the Laplace transform of the unit impulse response.

$$U(s) \longrightarrow ITI, H(s) \longrightarrow Y(s) = H(s)U(s)$$

• For LTI systems the response for e^{st} is $H(s)e^{st}$ $(s = \sigma + j\omega)$.

$$e^{st} \longrightarrow LTI \text{ system} \longrightarrow H(s)e^{st}$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau \cdot e^{st} = H(s)e^{st}.$$

• Causal system: a system is said to be causal if the output is not dependent on future inputs: h(t) = 0 for t < 0.

For causal systems,
$$y(t) = \int_{0}^{\infty} h(\tau)u(t-\tau)d\tau$$
.

Example of transfer function

- Example: Compute the transfer function of the system $\dot{y} + ky = u(t)$, and find the output y for $u = e^{st}$.
 - (1) $u(t) = \delta(t) \Rightarrow h(t) = e^{-kt} 1(t)$ The transfer function H(s) is defined as the Laplace transform of h(t) $\Rightarrow H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau = \int_{0}^{\infty} e^{-(s+k)\tau} d\tau = -\frac{1}{s+k} e^{-(s+k)\tau} \Big|_{\tau=0}^{\infty} = \frac{1}{s+k}$

$$(2) u(t) = e^{st} \Rightarrow y(t) = H(s)e^{st}, \ \dot{y}(t) = H(s)se^{st}$$
$$\Rightarrow H(s)se^{st} + kH(s)e^{st} = e^{st} \Rightarrow (s+k)e^{st}H(s) = e^{st} \Rightarrow H(s) = \frac{1}{s+k}$$

(3)
$$sY(s) + kY(s) = U(s) \Rightarrow \frac{Y(s)}{U(s)} = \frac{1}{s+k} = H(s)$$

• You can integrate h(t) to get H(s), but it is easier to compute H(s) using the differential equation as shown above.

$$H(s) = \frac{1}{s+k}, y = \frac{e^{st}}{s+k}.$$

Frequency response

Frequency Response: response of the system w.r.t. sinusoidal inputs:

Euler's equation:
$$A\cos(\omega t) = \frac{A}{2}(e^{j\omega t} + e^{-j\omega t})$$

Output to sinusoidal input:

$$y(t) = \frac{A}{2} [H(j\omega)e^{j\omega t} + H(-j\omega)e^{-j\omega t}].$$

Amplitude ratio and phase

• Frequency Response: response of the system w.r.t. sinusoidal inputs:

$$A\cos(\omega t) \longrightarrow LTI \text{ system} \longrightarrow AM(\omega)\cos(\omega t + \phi)$$
$$y(t) = \frac{A}{2}[H(j\omega)e^{j\omega t} + H(-j\omega)e^{-j\omega t}].$$

• $H(j\omega)$ is a complex number: $H(j\omega) = M(\omega)e^{j\phi(\omega)}$

For input
$$u(t) = A\cos\omega t$$
,

$$y(t) = \frac{A}{2}[H(j\omega)e^{j\omega t} + H(-j\omega)e^{-j\omega t}].$$

$$y(t) = \frac{A}{2}M(\omega)(e^{j(\omega t + \phi(\omega))} + e^{-j(\omega t + \phi(\omega))}) = AM(\omega)\cos(\omega t + \phi(\omega)).$$

$$M(\omega) = |H(j\omega)|: \text{ Amplitude ratio}$$

$$\phi(\omega) = \angle H(j\omega): \text{ Phase}$$

Example of frequency response

- Example: For the system $\dot{y} + ky = u(t)$, find the response to $u = A\cos(\omega t)$.
- (a) Find the frequency response and plot the response for k=1.

$$\Rightarrow y(t) = AM(\omega)\cos(\omega t + \phi)$$

$$M(\omega) = |H(j\omega)| = \left|\frac{1}{j\omega + k}\right| = \frac{1}{\sqrt{\omega^2 + k^2}}$$

$$\phi(w) = \angle H(j\omega) = \angle \frac{1}{j\omega + k} = -\tan^{-1}(w/k)$$

$$M(\omega) = \frac{1}{\sqrt{\omega^2 + k^2}}, \phi = -\tan^{-1}(\omega/k).$$

Figure 3.1 Frequency response for k=1

Example of frequency response

• Example: For the system $\dot{y} + ky = u(t)$, k = 1, find the complete response to $u(t) = \sin(10t) \left(= \cos\left(10t - \frac{\pi}{2}\right) \right)$

[1]
$$y(t) = y_h(t) + y_p(t) = Ce^{-kt} + M(\omega)\cos\left(10t - \frac{\pi}{2} + \phi\right)$$

 $= Ce^{-kt} + \frac{1}{\sqrt{w^2 + k^2}}\sin\left(10t - \tan^{-1}\left(\frac{\omega}{k}\right)\right); \ \omega = 10, k = 1$
 $= Ce^{-t} + \frac{1}{\sqrt{101}}\sin(10t - \tan^{-1}(10)); \text{ assume that } y(0) = 0$
 $= \frac{10}{\sqrt{101}}e^{-t} + \frac{1}{\sqrt{101}}\sin(10t - \tan^{-1}(10))$

[2]
$$Y(s) = H(s) \cdot U(s) = \frac{1}{s+1} \cdot \frac{10}{s^2 + 100} \Rightarrow y(t) = \mathcal{L}^{-1} \left(\frac{1}{s+1} \cdot \frac{10}{s^2 + 100} \right)$$

$$y(t) = \frac{10}{101}e^{-t} + \frac{1}{\sqrt{101}}\sin(10t + \varphi) = y_1(t) + y_2(t)$$

$$\varphi = \tan^{-1}(-10) = -84.2^{\circ}$$

 $(y_1(t) := \text{transient response} \xrightarrow{t \to \infty} 0, \ y_2(t) := \text{steady-state response})$

- Output frequency: 10 rad/sec
- Steady-state phase difference:

$$\varphi(j10) = -10\delta t = -1.47 \text{ rad } = -84.2^{\circ}$$

- Steady-state amplitude ratio:
$$M(j10) = \frac{1}{\sqrt{101}} = 0.095$$

Laplace transform and convolution integral

• The evaluation of convolution integral can be difficult \rightarrow an indirect approach has been developed using Laplace transform.

Laplace transform of f(t):
$$F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$
.

Applying Laplace transform to the convolution integral yields

$$Y(s) = H(s)U(s), H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt.$$

$$Y(s) = \int_{-\infty}^{\infty} y(t)e^{-st}dt = \int_{\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau \cdot e^{-st}dt = \int_{\infty}^{\infty} \int_{-\infty}^{\infty} u(t-\tau)e^{-st}dt \cdot h(\tau) d\tau$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(t-\tau)e^{-s(t-\tau)}dt \cdot h(\tau)e^{-s\tau}d\tau = \int_{\infty}^{\infty} h(\tau)e^{-s\tau} \cdot \int_{-\infty}^{\infty} u(\eta)e^{-s\eta}d\eta d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau \cdot \int_{-\infty}^{\infty} u(\eta)e^{-s\eta}d\eta = H(s) \cdot U(s)$$

Transfer Function:
$$H(s) = \int_{-\infty}^{s} h(\tau)e^{-s\tau}d\tau$$
.

Characteristics of Laplace transform

• Laplace Transform: generalized version of the frequency response.

Laplace transform of
$$f(t)$$
: $F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$.

- Laplace transform can be used to study the complete response of feedback system.
- Key property of Laplace transform:

$$Y(s) = H(s)U(s)$$
.

Very important!!

Procedure for obtaining system response

• Getting system response using Laplace transform:

- STEP 1: Determine the transfer function: H(s) H(s)= L{impulse response of the system}
- STEP 2: Determine the Laplace transform of the input: $U(s)=L\{u(t)\}$
- STEP 3: Determine the Laplace transform of the output: Y(s)=U(s)H(s)
- STEP 4: Find the output by computing the inverse Laplace transform: $y(t)=L^{-1}\{Y(s)\}$

L- Laplace transform

One-sided(or unilateral) Laplace transform:

$$L_{-}\left\{f(t)\right\} = \int_{0-}^{\infty} f(t)e^{-st}dt. \quad \text{(two sided: } L\left\{f(t)\right\} = \int_{-\infty}^{\infty} f(t)e^{-st}dt. \text{)}$$

- Uses '0-'.
- The impulse function can be applied at time t=0.
- Most cases we drop '0-' and use '0'. ('0-' will be used if necessary)
- We will use L to mean L_{-} .
- Inverse Laplace transform is seldom used.

$$f(t) = \frac{1}{2\pi i} \int_{\sigma_c - j\infty}^{\sigma_c + j\infty} F(s)e^{st}ds. \qquad \sigma_c : \text{ selected value to the right of all the singularities of F(s).}$$

Example of L- Laplace transform

Step and Ramp:

• Impulse Function:

$$\int_{-\infty}^{\infty} \delta(t)e^{-st}dt = e^{-st}\Big|_{t=0} = 1$$

$$L\{\delta(t)\} = 1.$$

Example of L- Laplace transform

Sinusoid

$$L\{\sin\omega t\} = \int_0^\infty (\sin\omega t)e^{-st}dt$$

$$= \int_0^\infty \left(\frac{e^{j\omega t} - e^{-j\omega t}}{2j}\right)e^{-st}dt$$

$$= \frac{1}{2j}\int_0^\infty \left(e^{(j\omega - s)t} - e^{-(j\omega + s)t}\right)dt = \frac{1}{2j}\left[\frac{e^{(j\omega - s)t}}{j\omega - s} - \frac{e^{-(j\omega + s)t}}{-(j\omega + s)}\right]_{t=0}^\infty = \frac{\omega}{s^2 + \omega^2}$$

$$L\{\cos\omega t\} = \int_0^\infty (\cos\omega t)e^{-st}dt \qquad \qquad L\{\cos\omega t\} = \frac{s}{s^2 + \omega^2}$$

$$= \int_0^\infty \left(\frac{e^{j\omega t} + e^{-j\omega t}}{2}\right)e^{-st}dt$$

$$= \frac{1}{2}\int_0^\infty \left(e^{(j\omega - s)t} + e^{-(j\omega + s)t}\right)dt = \frac{1}{2}\left[\frac{e^{(j\omega - s)t}}{j\omega - s} + \frac{e^{-(j\omega + s)t}}{-(j\omega + s)}\right]_{t=0}^\infty = \frac{s}{s^2 + \omega^2}$$

Laplace transform table

F(s)	$f(t), t \ge 0$
1	$\delta(t)$
1/s	1(t)
$\frac{m!}{s^{m+1}}$	t^m
$\frac{1}{s+a}$	e^{-at}
$\frac{1}{(s+a)^m}$	$\frac{1}{(m-1)!}t^{m-1}e^{-at}$
$\frac{a}{s^2 + a^2}$	sin <i>at</i>
$\frac{s}{s^2 + a^2}$	cosat
$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$
$\frac{b}{(s+a)^2+b^2}$	$e^{-at}\sin bt$

Properties of Laplace transform

- Superposition: $L\{\alpha f_1(t) + \beta f_2(t)\} = \alpha F_1(s) + \beta F_2(s)$.
- Time Delay: $L\{f(t-\lambda)\}=e^{-s\lambda}F(s), \lambda>0.$
- Time Scaling: $L\{f(at)\} = \frac{1}{|a|}F(\frac{s}{a})$.
- Shift in Frequency: $L\{e^{-at}f(t)\}=F(s+a)$.
- Differentiation: $L\left\{\frac{df(t)}{dt}\right\} = -f(0-) + sF(s)$. $L\left\{f^{(m)}(t)\right\} = s^m F(s) - s^{m-1} f(0-) - s^{m-2} \dot{f}(0-) - \cdots - f^{(m-1)}(0-)$.
- Integration: $L\left\{\int_{0}^{t} f(\xi)d\xi\right\} = \frac{1}{s}F(s).$
- Convolution: $L\{f_1(t) * f_2(t)\} = F_1(s)F_2(s)$.
- Time Product: $L\{f_1(t)f_2(t)\} = \frac{1}{2\pi i}F_1(s) * F_2(s)$.
- Multiplication by Time: $L\{tf(t)\} = -\frac{d}{ds}F(s)$.

Properties of Laplace transform - proof

• Superposition: $L\left\{\alpha f_1(t) + \beta f_2(t)\right\} = \alpha F_1(s) + \beta F_2(s)$.

$$\int_0^\infty (\alpha f_1(t) + \beta f_2(t))e^{-st}dt = \alpha \int_0^\infty f_1(t)e^{-st}dt + \beta \int_0^\infty f_2(t)e^{-st}dt$$
$$= \alpha F_1(s) + \beta F_2(s)$$

• Differentiation: $L\left\{\frac{df(t)}{dt}\right\} = -f(0-) + sF(s)$.

$$L(f'(t)) = \int_0^\infty f'(t)e^{-st}dt = f(t)e^{-st}\Big|_{t=0}^\infty - \int_0^\infty f(t) \cdot (-s)e^{-st}dt$$
$$= 0 - f(0 - t) + s \int_0^\infty f(t)e^{-st}dt = -f(0 - t) + sF(s)$$

$$L\left\{f^{(m)}(t)\right\} = s^{m}F(s) - s^{m-1}f(0-) - s^{m-2}\dot{f}(0-) - \cdots - f^{(m-1)}(0-).$$
₃₄

Properties of Laplace transform - proof

• Integration: $L\left\{\int_{0}^{t} f(\xi)d\xi\right\} = \frac{1}{s}F(s)$.

$$L\left(\int_{0}^{t} f(\xi)d\xi\right) = \int_{0}^{\infty} \left(\int_{0}^{t} f(\xi)d\xi\right) e^{-st}dt$$

$$= -\frac{1}{s}e^{-st} \int_{0}^{t} f(\xi)d\xi \Big|_{t=0}^{\infty} + \frac{1}{s} \int_{0}^{\infty} f(t)e^{-st}dt$$

$$= 0 - 0 + \frac{1}{s} \int_{0}^{\infty} f(t)e^{-st}dt$$

$$= \frac{1}{s}F(s)$$

Inverse Laplace transform by partial fraction expansion

- Example: For $Y(s) = \frac{(s+2)(s+4)}{s(s+1)(s+3)}$, find y(t).
 - -distinct poles: Y(s) can be represented by

$$Y(s) = \frac{C_1}{s} + \frac{C_2}{s+1} + \frac{C_3}{s+3}.$$

$$C_1 = sY(s)\Big|_{s=0} = \frac{(s+2)(s+4)}{(s+1)(s+3)}\Big|_{s=0} = \frac{8}{3}$$

$$C_2 = (s+1)Y(s)\Big|_{s=-1} = \frac{(s+2)(s+4)}{s(s+3)}\Big|_{s=-1} = \frac{-3}{2}$$

$$C_3 = (s+3)Y(s)\Big|_{s=-3} = \frac{(s+2)(s+4)}{s(s+1)}\Big|_{s=-3} = \frac{-1}{6}$$

$$y(t) = \frac{8}{3}L^{-1}\left(\frac{1}{s}\right) - \frac{3}{2}L^{-1}\left(\frac{1}{s+1}\right) - \frac{1}{6}L^{-1}\left(\frac{1}{s+3}\right) = \frac{8}{3}1(t) - \frac{3}{2}e^{-t}1(t) - \frac{1}{6}e^{-3t}1(t)$$

Inverse Laplace transform by partial fraction expansion

For the rational function

$$F(s) = \frac{b_1 s^m + b_2 s^{m-1} + \dots + b_{m+1}}{s^n + a_1 s^{n-1} + \dots + a_n},$$

express F(s) as

$$F(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}.$$

- pole: p_i , zero: z_i

• If poles are distinct, $F(s) = \frac{C_1}{s - p_1} + \frac{C_2}{s - p_2} + \dots + \frac{C_n}{s - p_n}$

where $C_i = (s - p_i) F(s) \Big|_{s=p_i}$.

$$\rightarrow f(t) = \sum_{i=1}^{n} C_i e^{p_i t} 1(t).$$

Inverse Laplace transform by partial fraction expansion

For the rational function

$$F(s) = \frac{b_1 s^m + b_2 s^{m-1} + \dots + b_{m+1}}{s^n + a_1 s^{n-1} + \dots + a_n},$$

express F(s) as

$$F(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}.$$

- pole: p_i , zero: z_i
- If poles are not distinct, $m, l \le n$, multiple poles

$$F(s) = \frac{K\Pi_{i=1}^{m}(s-z_{i})}{\Pi_{i=1}^{l}(s-p_{i})^{k_{i}}} = \sum_{i=1}^{l} \sum_{j=1}^{k_{i}} \frac{\overline{C}_{ij}}{(s-p_{i})^{j}} \xrightarrow{L^{-1}} f(t) = \sum_{i=1}^{l} \sum_{j=1}^{k_{i}} C_{ij}t^{j-1}e^{p_{i}t}$$

The final value theorem

• Useful when compute the constant steady state value of a time function given its Laplace transform.

If all poles of sY(s) are in the OLHP, then
$$\lim_{t\to\infty} y(t) = \lim_{s\to 0} sY(s).$$

- It can be used only when the limit exists and is constant.
- DC gain: the steady state value of the output of a system w.r.t. the unit step input.

DC gain =
$$\lim_{s \to 0} sG(s) \frac{1}{s} = \lim_{s \to 0} G(s)$$
.

The final value theorem - proof

- Proof recall: $L\left\{\frac{dy}{dt}\right\} = sY(s) y(0^-) = \int_{0^-}^{\infty} e^{-st} \frac{dy}{dt} dt$.

$$\lim_{s \to 0} \int_0^\infty e^{-st} \frac{dy}{dt} dt = \int_0^\infty \lim_{s \to 0} e^{-st} \frac{dy}{dt} dt = \int_0^\infty dy = \lim_{t \to \infty} [y(t) - y(0)]$$

Another way: consider the case $Y(s) = \frac{C_1}{s} + \frac{C_2}{s - p_2} + \frac{C_3}{s - p_3}$.

$$\rightarrow y(t) = C_1 1(t) + C_2 e^{p_2 t} 1(t) + C_3 e^{p_3 t} 1(t), \quad \lim_{s \to 0} sY(s) = C_1$$

Example of the final value theorem

• Example: Find the final value of the system corresponding to

$$Y(s) = \frac{3(s+2)}{s(s^2 + 2s + 10)}.$$

$$\to \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{3(s+2)}{s^2 + 2s + 10} = \frac{3}{5}$$

: The poles of sY(s) are $p = -1 \pm 3j$

• Example: Incorrect use of the final value theorem.

$$Y(s) = \frac{3}{s(s-2)}.$$

$$L^{-1}(Y(s)) = L^{-1}\left(\frac{3}{2}\left(-\frac{1}{s} + \frac{1}{s-2}\right)\right) = -\frac{3}{2} + \frac{3}{2}e^{2t}$$

Does not converge to 0 as time increases

Solution to differential equations

- Laplace transform can be used to solve differential equations.
- Example: Find the solution to the differential equation

$$\ddot{y}(t) + y(t) = 0, \ y(0) = \alpha, \ \dot{y}(0) = \beta.$$

$$\to s^{2}Y(s) - (sy(0) + \dot{y}(0)) + Y(s) = 0$$

$$\to s^{2}Y(s) - (s\alpha + \beta) + Y(s) = 0$$

$$\to Y(s) = \frac{\alpha s}{s^{2} + 1} + \frac{\beta}{s^{2} + 1}.$$

$$y(t) = (\alpha \cos t + \beta \sin t)1(t)$$

Solutions to differential equations - example

Example: Forced Differential Equation

$$\ddot{y}(t) + 5\dot{y}(t) + 4y(t) = 3, \ y(0) = \alpha, \ \dot{y}(0) = \beta$$
Sol.)
$$s^{2}Y(s) - \alpha s - \beta + 5[sY(s) - \alpha] + 4Y(s) = \frac{3}{s}$$

$$Y(s) = \frac{s(\alpha s + \beta + 5\alpha) + 3}{s(s+1)(s+4)}$$

$$= \frac{\frac{3}{4} - \frac{3 - \beta - 4\alpha}{3} + \frac{3 - 4\beta - 4\alpha}{s + 4}$$

$$\xrightarrow{L^{-1}} y(t) = \left(\frac{3}{4} - \frac{3 - \beta - 4\alpha}{3} e^{-t} + \frac{3 - 4\beta - 4\alpha}{12} e^{-4t}\right) 1(t)$$

Solutions to differential equations - example

Example: Forced Differential Equation with Zero I.C.

$$\ddot{y}(t) + 5\dot{y}(t) + 4y(t) = u(t), \ \dot{y}(0) = 0, \ y(0) = 0, \ u(t) = 2e^{-2t}1(t)$$
Sol.)
$$s^{2}Y(s) + 5sY(s) + 4Y(s) = \frac{2}{s+2}$$

$$Y(s) = \frac{2}{(s+2)(s^{2}+5s+4)} = \frac{2}{(s+2)(s+1)(s+4)}$$

$$= -\frac{1}{s+2} + \frac{2/3}{s+1} + \frac{1/3}{s+4} \xrightarrow{L^{-1}} y(t) = \left(-1e^{-2t} + \frac{2}{3}e^{-t} + \frac{1}{3}e^{-4t}\right)1(t)$$

Poles and zeros

A rational transfer function

$$H(s) = \frac{b_1 s^m + b_2 s^{m-1} + \dots + b_{m+1}}{s^n + a_1 s^{n-1} + \dots + a_n} = \frac{N(s)}{D(s)}$$

can be described in the form

$$H(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}.$$
 $K:$ transfer function gain $z_i:$ zero $p_i:$ pole

- Zero: $H(s)|_{s=z_i} = 0$.
 - can block some signal: $u = u_0 e^{z_1 t}$, $y(t) \equiv 0$.
 - → will be clear if we use state space approach.
- Pole: $|H(s)|_{s=p_s} = \infty$.
 - related to the system's stability.
 - determines the natural (or unforced) behavior of the system, referred to as the modes of the system.

3. Effects of pole locations and Block Diagrams

Poles and zeros - review

A rational transfer function

$$H(s) = \frac{b_1 s^m + b_2 s^{m-1} + \dots + b_{m+1}}{s^n + a_1 s^{n-1} + \dots + a_n} = \frac{b(s)}{a(s)}$$

can be described in the form

$$H(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}.$$
 $K:$ transfer function gain $z_i:$ zero $p_i:$ pole

- Pole: roots of a(s): $|H(s)|_{s=n} = \infty$.
- Zero: roots of b(s): $H(s)|_{s=z} = 0$.
- Impulse response $h(t) = L^{-1} \left\{ H(s) \right\} = L^{-1} \left\{ K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} \right\} = \text{natural response}$
 - Poles identify the classes of signals contained in the impulse response.

Effect of pole locations – first order pole

• First order pole:

$$H(s) = \frac{1}{s + \sigma} \xrightarrow{L^{-1}} h(t) = e^{-\sigma t} 1(t)$$
(one pole at $s = -\sigma$)
$$\sigma > 0: \text{ stable}$$

$$\sigma < 0: \text{ unstable}$$

$$\tau = 1/\sigma := \text{ time constant}$$

$$\left(h(\tau) = h(1/\sigma) = e^{-\sigma(1/\sigma)} = e^{-1} = 1/e\right)$$

• Step response for $H(s) = \frac{\sigma}{s + \sigma}$

48

Example – multiple poles

Response versus pole locations, real roots

$$H(s) = \frac{2s+1}{s^2+3s+2} = \frac{2(s+1/2)}{(s+1)(s+2)}$$

$$= -\frac{1}{s+1} + \frac{3}{s+2}$$
poles: $-1(slow)$, $-2(fast)$

$$zeros: -0.5$$

$$\xrightarrow{L^{-1}} h(t) = \begin{cases} -e^{-t} + 3e^{-2t}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$0 = Zero$$

$$\times = Pole$$

$$-j$$

• Role of numerator: determines the size of the coefficient of each mode in the natural response

numH = [2 1]; % form numerator

 $denH = [1 \ 3 \ 2];$ % form denominator

sysH = tf(numH,denH) % define system from its numerator and denominator

Impulse(sysH) % compute impulse response

Damping ration and natural frequency

• Complex poles: $s = -\sigma \pm j\omega_d$

$$a(s) = (s + \sigma - j\omega_d)(s + \sigma + j\omega_d) = (s + \sigma)^2 + \omega_d^2$$

Related transfer function:

$$H(s) = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\sigma \coloneqq \zeta \omega_n, \ \omega_d \coloneqq \omega_n \sqrt{1 - \zeta^2}$$

$$\zeta = \frac{\sigma}{\omega_n} := \text{damping ratio}$$

 $\omega_n := \text{undamped natural frequency}$

 $\omega_d := \text{damped natural frequency}$

plot of a pair of complex poles

• Impulse response: $h(t) = \frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\sigma t} (\sin \omega_d t) l(t)$.

Response for complex poles – impulse response

• Impulse response of
$$H(s) = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$H(s) = \frac{\omega_n}{\sqrt{1 - \zeta^2}} \frac{\omega_d}{(s + \sigma)^2 + \omega_d^2}$$

$$\xrightarrow{L^{-1}} h(t) = \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\sigma t} \left(\sin \omega_d t\right) 1(t)$$

$$= \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\zeta(\omega_n t)} \left(\sin\left(\sqrt{1 - \zeta^2}\right)(\omega_n t)\right) 1(t)$$

- Normalization: $\tau := \omega_n t \to \omega_n = 1$
- The actual frequency decreases as the damping ratio increases.
- For very low damping, the response is oscillatory.

Response for complex poles – step response

• Step response of
$$H(s) = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$Y(s) = H(s)\frac{1}{s} = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

$$= \frac{1}{s} - \frac{(s+\zeta\omega_n) + \frac{\zeta}{\sqrt{1-\zeta^2}}\omega_n\sqrt{1-\zeta^2}}{(s+\zeta\omega_n)^2 + \omega_n^2(1-\zeta^2)}$$

$$\xrightarrow{L^{-1}} y(t) = I(t) - e^{-\zeta(\omega_n t)} \left(\cos\left(\sqrt{1-\zeta^2}(\omega_n t)\right) + \frac{\zeta}{\sqrt{1-\zeta^2}}\sin\left(\sqrt{1-\zeta^2}(\omega_n t)\right)\right)I(t)$$

$$= I(t) - \frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta(\omega_n t)}\cos\left(\sqrt{1-\zeta^2}(\omega_n t) + \beta\right)I(t)$$

$$\left(\beta = \tan^{-1}\frac{\zeta}{\sqrt{1-\zeta^2}} = \tan^{-1}\frac{\sigma}{\omega_d}\right), \text{ Normalization: } \tau := \omega_n t \to \omega_n = 1$$

Simulation results

Impulse response

(*t*)

$$y(t) = \frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta(\omega_n t)} \left(\sin\left(\sqrt{1-\zeta^2}(\omega_n t)\right) \right) 1(t)$$
$$\tau := \omega_n t \to \omega_n = 1$$

Step response

$$y(t) = 1(t)$$

$$-\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta(\omega_n t)} \cos\left(\sqrt{1-\zeta^2}(\omega_n t) + \beta\right) 1(t)$$

Pole locations and damping ratio

Pole locations corresponding to damping ratio

Effect of pole locations – negative real part

• The negative real part of the pole determines the decay rate of the exponential envelope.

$$h(t) = \frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\sigma t} \left(\sin \omega_d t\right) 1(t), \ \left(\sigma = \zeta \omega_n\right)$$

 Stability of complex poles (Complex poles at $s = -\sigma \pm j\omega_d$)

 $\begin{cases} \sigma < 0 : \text{ unstable} \\ \sigma = 0 : \text{ neutrally stable} \\ \sigma > 0 : \text{ stable} \end{cases}$

Example – effect of negative real part

Oscillatory time response

$$H(s) = \frac{2s+1}{s^2 + 2s + 5}$$

$$\omega_n^2 = 5 \Rightarrow \omega_n = \sqrt{5} = 2.24$$

$$2\varsigma\omega_n = 2 \Rightarrow \varsigma = \frac{1}{\sqrt{5}} = 0.447$$

$$H(s) = \frac{2s+1}{(s+1)^2 + 2^2}$$
$$= 2\frac{s+1}{(s+1)^2 + 2^2} - \frac{1}{2}\frac{2}{(s+1)^2 + 2^2}$$

$$\xrightarrow{L^{-1}} h(t) = \left(2e^{-t}\cos 2t - \frac{1}{2}e^{-t}\sin 2t\right)1(t)$$

$$= \left(2\cos 2t - \frac{1}{2}\sin 2t\right)e^{-t}1(t)$$

Summary of effect of pole locations

• Pole locations determine "the shape" or "the way it behaves" for impulse response (as well as other responses) of the system.

Block diagram

- In many cases, the control system is composed of systems called components (which can be dynamic systems) that interact with others
- Block diagrams can be used to illustrate the relationship between the components of given system.
- Important block diagrams: series, parallel, and feedback.

Transfer function corresponding to block diagram

Transfer function of elementary block diagram

$$\frac{Y(s)}{U(s)} = G_2(s)G_1(s) \qquad \frac{Y(s)}{U(s)} = C$$

$$\frac{Y(s)}{U(s)} = G_2(s)G_1(s) \qquad \frac{Y(s)}{U(s)} = G_1(s) + G_2(s) \qquad \frac{Y(s)}{U(s)} = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$$

The gain of a single-loop negative feedback system is given by [forward gain] divided by (1+ [loop gain])

Equivalence of block diagram

• Transformation of block diagram may make the topology simple

Example- computation of transfer function

• Transfer function from a simple block diagram

$$T(s) = \frac{Y(s)}{R(s)} = \frac{\frac{1}{s} \frac{2s+4}{s}}{1 + \frac{1}{s} \frac{2s+4}{s}} = \frac{\frac{2s+4}{s^2}}{1 + \frac{2s+4}{s^2}} = \frac{2s+4}{s^2+2s+4}$$

Example- computation of transfer function

Transfer function from a block diagram

Computation of transfer function using MATLAB

```
num1 = [2];
den1 = [1];
sysG1 = tf(num1, den1);
num2 = [4]; den2 = [1 0];
sysG2 = tf(num2,den2);
                                      % define subsystem G2
% parallel combination of G1 and G2 to form subsystem G3
sysG3 = parallel(sysG1,sysG2);
%then we combine the result G3, with the G4 in series by
num4=[1]; den4=[1 0];
sysG4=tf(num4,den4);
                                      % form G4
sysG5=series(sysG3,sysG4);
                                       % series combination of G3 and G4
%complete the reduction of the system
num6 = [1];
                                      % form G6
den6 = [1];
sysG6=tf(num6, den6);
                                      % define subsystem G6
[sysCL] = feedback(sysG5, sysG6, -1)
                                      % feedback
```

4. Time-Domain Specifications

Introduction to time-domain specifications

- Rise time t_r : the time to reach the vicinity of its target point.
- Settling time t_s : the time the transients to decay.
- Overshoot M_p : the maximum amount the system overshoots its final value divided by its final value.
- Peak time t_n : the time to reach the maximum overshoot point.

Characteristics of second-order systems

• Time-domain specifications for second-order systems

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}.$$

Rise time: $t_r \cong 1.8/\omega_n$.

Settling time: $t_s = 4.6/\sigma$. Overshoot: $M_p = e^{-\pi \zeta/\sqrt{1-\zeta^2}}$, $0 \le \zeta < 1$.

Peak time: $t_p = \pi/\omega_d$.

$$y(t) = L^{-1} \left\{ \frac{1}{s} \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \right\}$$
$$= 1 - e^{-\sigma t} (\cos \omega_d t + \frac{\sigma}{\omega_d} \sin \omega_d t).$$
$$\sigma = \zeta \omega_n, \omega_d = \omega_n \sqrt{1 - \zeta^2}.$$

Time-domain specifications for second-order systems

Rise Time: All the curves rises in roughly the same time, and the rise time from y=0.1 to y=0.9 is $\omega_n t_r = 1.8$ for $\zeta = 0.5$.

$$\Rightarrow t_r \cong \frac{1.8}{\omega_n}$$
 (for 2nd-order systems with no zeros)

Overshoot and Peak Time

- Step response: $H(s)\frac{1}{s}$ $\xrightarrow{L^{-1}} y(t) = 1 - e^{-\sigma t} \left(\cos \omega_d t + \frac{\sigma}{\omega_d} \sin \omega_d t\right)$ $= 1 - e^{-\sigma t} \sqrt{1 + \frac{\sigma^2}{\omega_d^2}} \cos(\omega_d t - \beta) \qquad \left(\beta = \tan^{-1} \left(\frac{\sigma}{\omega_d}\right)\right)$ $= 1 - e^{-\sigma t} \frac{1}{\sqrt{1 - c^2}} \cos(\omega_d t - \beta)$

$$\dot{y}(t) = \sigma e^{-\sigma t} \left(\cos \omega_d t + \frac{\sigma}{\omega_d} \sin \omega_d t \right) - e^{-\sigma t} \left(-\omega_d \sin \omega_d t + \sigma \cos \omega_d t \right)$$

$$= e^{-\sigma t} \left(\frac{\sigma^2}{\omega_d} \sin \omega_d t + \omega_d \sin \omega_d t \right) = e^{-\sigma t} \left(\frac{\sigma^2}{\omega_d} + \omega_d \right) \sin \omega_d t = 0$$

$$\Rightarrow \sin \omega_d t = 0 \Rightarrow \omega_d t_p = \pi \Rightarrow t_p = \frac{\pi}{\omega_d}$$

$$y(t_p) := 1 + M_p = 1 - e^{-\sigma \pi/\omega_d} \left(\cos \pi + \frac{\sigma}{\omega_d} \sin \pi \right)$$

$$=1+e^{-\sigma\pi/\omega_d}$$

$$\Rightarrow M_p = e^{-\sigma\pi/\omega_d} = e^{-\pi\zeta/\sqrt{1-\zeta^2}}, \quad 0 \le \zeta < 1$$

$$\left(M_p = 0.16 \text{ for } \zeta = 0.5, M_p = 0.05 \text{ for } \zeta = 0.7\right)$$

Overshoot and damping ratio

Overshoot versus damping ratio

$$M_p = e^{-\sigma\pi/\omega_d}$$

$$= e^{-\pi\zeta/\sqrt{1-\zeta^2}}, \quad 0 \le \zeta < 1$$

Time-domain specifications for second-order systems

Settling Time (1 %, not correct)

$$y(t) = 1 - e^{-\zeta \omega_n t} \left(\cos \omega_d t + \frac{\sigma}{\omega_d} \sin \omega_d t \right) = 1 - e^{-\zeta \omega_n t} \frac{1}{\sqrt{1 - \zeta^2}} \cos(\omega_d t - \beta)$$

$$e^{-\zeta \omega_n t_s} = 0.01, \quad \zeta \omega_n t_s = 4.6$$

$$4.6, \quad 4.6$$

$$t_s = \frac{4.6}{\zeta \omega_n} = \frac{4.6}{\sigma} \quad \longleftarrow$$

They are roughly the same

Settling Time (1 %, correct)

$$e^{-\zeta\omega_n t_s} \frac{1}{\sqrt{1-\zeta^2}} = 0.01$$

$$\zeta\omega_n t_s = -\ln\left(0.01\sqrt{1-\zeta^2}\right)$$

$$t_s = \frac{-\ln\left(0.01\sqrt{1-\zeta^2}\right)}{\zeta\omega} = \frac{-\ln\left(0.01\sqrt{1-\zeta^2}\right)}{\zeta}$$

Summary of time-domain specifications

• Design synthesis (systems with no finite zeros and two complex poles): for specified values of t_r , M_p and t_s ,

$$\omega_n \ge \frac{1.8}{t_r}, \ \zeta \ge \zeta(M_p)$$
 (from Fig. 3.21), $\sigma \ge \frac{4.6}{t_s}$

Example

System response requirements: $t_r \le 0.6$ sec, $M_p \le 10$ %, $t_s \le 3$ sec

$$\omega_n \ge \frac{1.8}{t_r} = 3.0 \text{ rad/sec}, \ \zeta \ge 0.6 \text{ (from Fig. 3.21)}, \ \sigma \ge \frac{4.6}{t_s} = 1.5 \text{ sec}$$

5. Effects of Zeros and Additional Poles

Review of effects of poles and zeros

- Depends on the situation
 - In principle, poles determine the shape of basic functions (if we recall the partial fraction), and zeros determine the weighting of basic functions.
- For the simple second-order system:
 - · Rise time too slow $\left(\omega_n \ge \frac{1.8}{t_r}\right)$ → Raise the natural frequency.
 - · Too much overshoot $(\zeta \ge \zeta(M_p)) \to$ Increase damping.
 - · Transient too long $\left(\sigma \ge \frac{4.6}{t_s}\right)$ → Move the poles to the left.
 - → Used only as guidelines for more complicated systems.

Example – effect of zero near a pole

$$H(s) = \frac{2}{(s+1)(s+2)} = \frac{2}{s+1} - \frac{2}{s+2}$$

$$H(s) = \frac{2(s+1.1)}{1.1(s+1)(s+2)} = \frac{0.18}{s+1} + \frac{1.64}{s+2}$$

→ The component of the natural response corresponding to the pole near the zero is decreased.

Effects of zeros

How zero affects the transient response?

System with 2 poles and 1 zero:
$$H_1(s) = \frac{(s/\alpha\zeta\omega_n) + 1}{(s/\omega_n)^2 + 2\zeta(s/\omega_n) + 1}$$

- zero at
$$-\alpha \zeta \omega_n = -\alpha \sigma$$
:
$$\begin{cases} \alpha >> 0 \text{ (little influence)} \\ \alpha \cong 1 \text{ (substantial influence)} \end{cases}$$

- \rightarrow Increase in the overshoot M_p , little influence on the settling time.
- For the system with 2 poles and no zero with $\zeta = 0.5$, $M_p = 0.16$.

Effects of zeros

• How zero affect the transient response?

$$H(s) = \frac{s/\alpha\zeta + 1}{s^2 + 2\zeta s + 1} = \frac{1}{s^2 + 2\zeta s + 1} + \frac{1}{\alpha\zeta} \frac{s}{s^2 + 2\zeta s + 1}.$$

- The zero has little effect on the overshoot M_p if $\alpha > 3$.

Effects of zeros

- Step response:

$$Y(s) = \frac{s/\alpha\zeta + 1}{s^2 + 2\zeta s + 1} \frac{1}{s} = \frac{1}{s^2 + 2\zeta s + 1} \frac{1}{s} + \frac{1}{\alpha\zeta} \frac{s}{s^2 + 2\zeta s + 1} \frac{1}{s}$$

$$= Y_0(s) + Y_d(s)$$

$$y(t) = y_0(t) + y_d(t)$$

$$Y_d(s) = \frac{1}{\alpha\zeta} sY_0(s)$$

$$\xrightarrow{L^{-1}} y_d(t) = \frac{1}{\alpha\zeta} \frac{dy_0(t)}{dt}$$

$$(\alpha >> 1 \rightarrow h_d(t) \text{ is small})$$

$$0$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.7$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.7$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.7$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

 $\cdot \alpha > 0 \rightarrow \text{zero at } -\alpha \zeta \text{ is in the LHP (minimum-phase system)}$

 $\cdot \alpha < 0 \rightarrow \text{zero at } -\alpha \zeta \text{ is in the RHP}$ (nonminimum-phase system)

Effects of additional poles

Effect of extra pole

$$H(s) = \frac{1}{\left(s/\alpha\zeta\omega_n + 1\right)\left[\left(s/\omega_n\right)^2 + 2\zeta\left(s/\omega_n\right) + 1\right]}$$

 $\omega_n t$

→ Increase in rise time

6. Stability

Stability

- One of the most important concepts in control engineering.
 - Quite difficult to identify in general.
 - Easy for linear time invariant systems.

A linear time-invariant system is said to be **stable** if all the roots of the transfer function denominator polynomial have negative real parts and **unstable** otherwise.

Roots of the transfer function denominator polynomial=pole

- stable if all the poles of the system are in OLHP.
- unstable if any pole of the system is in RHP, or CRHP.
- special case of unstable system: oscillatory system (called unstable because it is not stable).

Bounded input-bounded output stability

- A system is said to **bounded input-bounded output (BIBO) stable** if every bounded input results in a bounded output.
- Response by convolution:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau.$$

- if u(t) is bounded, there is a constant M such that $|u| \le M < \infty$.

$$\Rightarrow |y(t)| = \left| \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau \right| \leq \int_{-\infty}^{\infty} |h(\tau)| |u(t-\tau)|d\tau \leq M \int_{-\infty}^{\infty} |h(\tau)|d\tau.$$

 \rightarrow The output is bounded if $\int_{-\infty}^{\infty} |h(\tau)| d\tau$ is bounded.

The system with impulse response h(t) is BIBO-stable if and only if $\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty.$

Example of bounded input-bounded output stability

Capacitor driven by a current source.

$$u(t) = C \frac{dy(t)}{dt}, C = 1.$$

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau = \int_{0}^{\infty} 1 d\tau$$

$$\to h(t) = I(t)$$

$$\to \text{Not bounded!!}$$

- Transfer function $H(s) = \frac{1}{s}$: has a pole on the imaginary axis.
- In general, if an LTI system has any pole on the imaginary axis or in the RHP, the response will not be BIBO stable.
- If every pole is inside the LHP, then the response will be BIBO stable.

Stability of LTI systems

- Stability of a system with the transfer function
 - Characteristic equation: $s^n + a_1 s^{n-1} + a_2 s^{n-2} + \cdots + a_n = 0$.
 - Assume that poles $\{p_i\}$ are **distinct**:

$$H(s) = \frac{b(s)}{a(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n + a_1 s^{n-1} + \dots + a_n} = \frac{K \prod_{i=1}^m (s - z_i)}{\prod_{i=1}^n (s - p_i)}, m \le n.$$

- We allow $z_i = p_i$, for some i (before pole-zero cancellation).
- The solution: $y(t) = \sum_{i=1}^{\infty} K_i e^{p_i t}$. K_i depends on the initial conditions and zeros.
- The system is stable if and only if $e^{p_i t} \rightarrow 0$, $\forall p_i$.
- Equivalently, the system is stable if and only if $Re\{p_i\} < 0$, $\forall i$.
- If any poles are repeated, $y(t) = \sum_{i=1}^{n} K_i(t)e^{p_i t}$, $K_i(t)$: polynomial of t.
- For any case, the system is stable if and only if $Re\{p_i\} < 0$, $\forall i$.
- Neutrally stable if the system has non-repeated poles on the imaginary axis.

Stability analysis for LTI systems

- Stability and the characteristic equation: Is it possible to determine the stability of a system without obtaining the poles? YES.
- Characteristic equation: $a(s) = s^n + a_1 s^{n-1} + a_2 s^{n-2} + \cdots + a_n$.

(Necessary condition) If an LTI system is stable, then all the coefficients of the characteristic polynomial are positive.

$$a_1 = -\sum$$
 all roots
 $a_2 = +\sum$ product of roots taken 2 at a time
 $a_3 = -\sum$ product of roots taken 3 at a time
 \vdots
 $a_n = (-1)^n$ product of all roots

Necessary and sufficient condition for stability

- Stability and the characteristic equation.
 - Characteristic equation: $a(s) = s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_n$.

Routh's Stability Criterion

(Necessary and sufficient condition) An LTI system is stable if and only if all the elements in the first column of the Routh array are positive.

Construction of Routh array

Routh array:

$$b_{1} = -\frac{\det\begin{bmatrix} 1 & a_{2} \\ a_{1} & a_{3} \end{bmatrix}}{a_{1}} = \frac{a_{1}a_{2} - a_{3}}{a_{1}},$$

$$b_{2} = -\frac{\det\begin{bmatrix} 1 & a_{4} \\ a_{1} & a_{5} \end{bmatrix}}{a_{1}} = \frac{a_{1}a_{4} - a_{5}}{a_{1}},$$

$$b_{3} = -\frac{\det\begin{bmatrix} 1 & a_{6} \\ a_{1} & a_{7} \end{bmatrix}}{a_{1}} = \frac{a_{1}a_{6} - a_{7}}{a_{1}},$$

$$c_{1} = -\frac{\det\begin{bmatrix} a_{1} & a_{3} \\ b_{1} & b_{2} \end{bmatrix}}{b_{1}} = \frac{b_{1}a_{3} - a_{1}b_{2}}{b_{1}},$$

$$c_{2} = -\frac{\det\begin{bmatrix} a_{1} & a_{5} \\ b_{1} & b_{3} \end{bmatrix}}{b_{1}} = \frac{b_{1}a_{5} - a_{1}b_{3}}{b_{1}},$$

- The number of roots in the RHP equals the The number of roots in the KHP equals the number of sign changes in the first column in $c_3 = -\frac{\det\begin{bmatrix} a_1 & a_7 \\ b_1 & b_4 \end{bmatrix}}{c} = \frac{b_1 a_7 - a_1 b_4}{b}$. the Routh array.

Example of Routh array

• Example: $a(s) = s^6 + 4s^5 + 3s^4 + 2s^3 + s^2 + 4s + 4$

$$s^6$$
 1 3 1 4 s^5 4 2 4 0 s^4 2.5 0 4 0 s^3 2 -2.4 0 s^2 3 4 0 s^1 -76/15 0

- \rightarrow 2 poles in the RHP
- The coefficients of any row may be multiplied or divided by a positive number without changing the signs of the first column.

Example of stability – one degree of freedom

Stability versus one parameter range.
Determine the range of *K* over which the system is stable.

$$\frac{4K - 30}{5} > 0 \quad \text{and} \quad K > 0$$

 s^0

K > 7.5 and K > 0.

Example of stability – two degree of freedom

• Stability versus two parameter ranges. Determine the range of (K, K_I) over which the system is stable.

$$K_I > 0$$
 and $K > \frac{1}{3}K_I - 2$.