Task: TRE

Tree reconstruction

english

ONTAK 2022, day 4. Available memory: 512 MB.

02.07.2022

Consider the following operation – given an original graph G = (V, E), we build a new graph L(G) such that:

- the vertices of L(G) are the edges of G;
- two vertices e_1 , e_2 of L(G) are connected if and only if in G the edges e_1 , e_2 share an endpoint.

You are given a graph H. Determine whether a tree T such that L(T) = H exists. If it does, find one.

Input

The first line of input has the number t of independent test cases that follow.

Each test case starts with a line with two numbers n and m: the number of vertices and the number of edges in the given graph H. The vertices of H are numbered from 1 to n. The rest of the test case are m lines, each containing a pair of vertices of H that are connected by an edge. The graph H is guaranteed to be simple – there are no self-loops and no multiple edges.

In all inputs: $1 \le t \le 10\,000$, $1 \le n \le 1000$ and $0 \le m \le n(n-1)/2$. Additionally, in each input the sum of n^2 over all tests it contains will not exceed 10^6 .

Output

For each test case, first output one line with YES if a tree T with the desired property exists or NO if it does not exist.

If T exists, pick any one such tree. Let v be the number of its vertices. Number the vertices of your T from 1 to v in an arbitrary way. Output a line containing v. Then, for each edge of your T, output a line with the numbers of vertices it connects.

Grading

There are following subtasks:

Subtask	Conditions	Points
1	T always exists and is a path/star	15
2	$n \le 100, \sum n^2 \le 10000$	55
3	$n \leq 7$	7
4	$n \le 500$	11
5	no additional constraints	12

In subtask 1 each test case has an answer YES and the tree T is either a path or a star. (A star with v vertices is a tree that has exactly v-1 leaves.)

In subtask 2 it is guaranteed that $n \le 100$ and within an input the sum of n^2 over all tests does not exceed 10 000.

Examples

For the input data:	a correct result is:
2	YES
5 7	6
3 2	1 2
3 5	1 3
3 1	3 4
2 5	3 5
2 1	3 6
1 5	NO
1 4	
3 1	
1 2	

Zadanie: TRE

Odtwarzanie drzewa

polish

ONTAK 2022, dzień 4. Dostępna pamięć: 512 MB.

02.07.2022

Wyobraźmy sobie następującą operację – mając dany graf G=(V,E), budujemy nowy graf L(G), w którym:

- wierzchołki L(G) są krawędziami G;
- dwa wierzchołki e_1 , e_2 z L(G) są połączone, jeśli krawędzie e_1 , e_2 mają wspólny wierzchołek w w G.

Masz dany graf H. Rozstrzygnij, czy istnieje drzewo T takie, że L(T)=H. Jeśli tak, znajdź takie drzewo i je wypisz.

Wejście

Pierwszy wiersz wejścia zawiera liczbę zestawów danych t, z których każdy musi być rozwiązany osobno.

Każdy zestaw zaczyna się wierszem zawierającym dwie liczby n i m: liczbę wierzchołków i krawędzi danego grafu H. Wierzchołki H są numerowane od 1 do n. Później następuje m wierszy, każdy zawierający parę wierzchołków z H połączonych krawędzią. Graf H jest grafem prostym, bez pętli i krawędzi wielokrotnych.

We wszystkich testach zachodzi: $1 \le t \le 10\,000$, $1 \le n \le 1000$ oraz $0 \le m \le n(n-1)/2$. Dodatkowo, suma wartości n^2 we wszystkich zestawach danych nie przekracza 10^6 .

Wyjście

Dla każdego zestawu danych, wypisz YES jeśli drzewo T o pożądanych własnościach istnieje, zaś NO jeśli nie istnieje.

Jeśli T istnieje, wypisz jedno z możliwych rozwiązań. Niech v będzie liczbą wierzchołków. Wierzchołki Twojego drzewa T ponumeruj od 1 do v w dowolnej wybranej kolejności. Na wyjście wypisz wiersza zawierający liczbę v, a potem dla każdej krawędzi T, wypisz w osobnym wierszu parę wierzchołków, które łączy.

Ocenianie

Zestaw testów dzieli się na następujące podzadania:

Podzadanie	Ograniczenia	Punkty
1	T zawsze istnieje i jest ścieżką/gwiazdą	15
2	$n \le 100, \sum n^2 \le 10000$	55
3	$n \leq 7$	7
4	$n \le 500$	11
5	bez dodatkowych ograniczeń	12

W podzadaniu 1 odpowiedź to zawsze YES, a drzewo T jest albo ścieżką, albo gwiazdą. (Gwiazda o v wierzchołkach to drzewo, które ma dokładnie v-1 liści.)

W podzadaniu 2 zachodzi $n \leq 100$, a dodatkowo suma wartości n^2 we wszystkich zestawach danych nie przekracza $10\,000$.

Przykłady

Dla danych wejściowych:	poprawnym wynikiem jest:
2	YES
5 7	6
3 2	1 2
3 5	1 3
3 1	3 4
2 5	3 5
2 1	3 6
1 5	NO
1 4	
3 1	
1 2	

Úloha: TRE

Rekonštrukcia stromu

slovak

ONTAK 2022, deň 4. Pamäťový limit: 512 MB.

02.07.2022

Uvažujme nasledujúcu operáciu – máme daný graf G = (V, E), a chceme vytvoriť nový graf L(G) pre ktorý platí, že:

- vrcholy L(G) sú hrany G;
- dva vrcholy e_1 , e_2 z L(G) sú spojené hranou práve vtedy, ak v G hrany e_1 , e_2 zdieľajú spoločný vrchol.

Daný je graf H. Zistite, či existuje strom T, pre ktorý platí L(T) = H. Ak áno, nájdite ho.

Vstup

Prvý riadok obsahuje počet testov t, ktoré budú následovať.

Každý test začína riadkom s dvoma číslami n a m: počet vrcholov a počet hrán v danom grafe H. Vrcholy grafu H sú očíslované od 1 do n.

Zvyšok testu tvorí m riadkov, z ktorých každý obsahuje dvojicu vrcholov H, ktoré sú spojené hranou. Graf H bude zaručene jednoduchý – nie sú v ňom žiadne slučky a žiadne viacnásobné hrany.

Pre všetky vstupy platí: $1 \le t \le 10\,000$, $1 \le n \le 1000$ a $0 \le m \le n(n-1)/2$. Taktiež pre každý vstup platí, že súčet n^2 vo všetkých testoch neprekročí 10^6 .

Výstup

V každom teste najprv vypíšte na jeden riadok "YES", ak existuje strom T s požadovanými vlastnosťami alebo "NO", ak neexistuje.

Ak T existuje, vyberte ktorýkoľvek strom, čo spĺňa podmienky. Nech v je počet jeho vrcholov. Očíslujte vrcholy vášho stromu T od 1 do v ľubovoľným spôsobom. Vypíšte na jeden riadok riadok hodnotu v. Potom pre každú hranu vášho T vypíšte riadok s číslami vrcholov, ktoré spája.

Hodnotenie

Je 5 sád vstupov:

Podúloha	Ďalšie ohraničenia	Body
1	T určite existuje a je to buď cesta alebo	15
	hviezda	
2	$n \le 100, \sum n^2 \le 10000$	55
3	$n \le 7$	7
4	$n \le 500$	11
5	bez ďalších obmedzení	12

V sade 1 je v každom teste odpoveď YES a strom T je buď cesta alebo hviezda. (Hviezda s v vrcholmi je strom, ktorý má presne v-1 listov.)

V sade 2 je zaručené, že $n \le 100$ a v rámci vstupu súčet n^2 vo všetkých testoch nepresiahne 10 000.

Príklady

Pre vstup:	je správny výsledok:
2	YES
5 7	6
3 2	1 2
3 5	1 3
3 1	3 4
2 5	3 5
2 1	3 6
1 5	NO
1 4	
3 1	
1 2	

Завдання: TRE

Tree reconstruction

ukrainian

ONTAK 2022, день 4. Обмеження пам'яті: 512 MB.

02.07.2022

Розглянемо таку операцію: задано початковий граф G=(V,E), ми будуємо новий граф L(G) так, що:

- вершини L(G) є ребрами G;
- дві вершини e_1 , e_2 графа L(G) з'єднані тоді і тільки тоді, коли в G ребра e_1 , e_2 мають спільну вершину.

Вам надано граф H. Визначте, чи існує дерево T таке, що L(T) = H. Якщо так, знайдіть його.

Вхідні дані

У першому рядку вхідних даних міститься число t — кількість незалежних тестових випадків, які йдуть далі.

Кожен тест починається з рядка з двома числами n і m: кількістю вершин і кількістю ребер у даному графі H. Вершини H пронумеровані від 1 до n. Решта тесту — це m рядків, кожен з яких містить пару вершин H, з'єднаних ребром. Граф H гарантовано простий — у ньому немає петель і кратних ребер.

У всіх вхідних даних: $1 \le t \le 10\,000$, $1 \le n \le 1000$ і $0 \le m \le n(n-1)/2$. Крім того, у кожному вході сума n^2 по всім тестам, які він містить, не перевищуватиме 10^6 .

Вихідні дані

Для кожного тесту спочатку виведіть YES, якщо дерево T з потрібною властивістю існує або NO, якщо ні.

Якщо T існує, виберіть будь-яке таке дерево. Нехай v — кількість його вершин. Пронумеруйте вершини вашого T від 1 до v будь-яким способом. Виведіть v. Потім для кожного ребра вашого T виведіть вершини, які воно з'єднує.

Оцінювання

Дано наступні підзадачі:

Блок	Обмеження	Бали
1	Т завжди існує, а також є або шляхом, або	15
	зіркою	
2	$n \le 100, \sum n^2 \le 10000$	55
3	$n \le 7$	7
4	$n \le 500$	11
5	no без додаткових обмежень	12

У підзадачі 1 кожен тест має відповідь YES, а дерево T є або шляхом, або зіркою. (Зірка з v вершин — це дерево, яке має рівно v-1 листів.)

У підзадачі 2 гарантується, що $n \leq 100$ і в межах вхідних даних сума n^2 за всіма тестами не перевищує $10\,000$.

Приклади

D			
Розглянемо	наступні	вх1лн1	лані:
1 0011111101110	1100 1 3 11111	2117,4111	

		 	 Ο.
2			
5	7		
3	2		
3	5		
3	1		
2	5		
2	1		
1	5		
1	4		
3	1		
1	2		

Можливою коректною відповіддю може бути:

YES		
6		
1 2		
1 3		
3 4		
3 5		
3 6		
NO		