	<pre>import matplotlib from matplotlib import pyplot as plt print(matplotlibversion) 3.5.3</pre>
In [3]:	<pre>import pandas as pd print(pd. version)</pre>
	1.4.3
	<pre>import numpy as np npversion '1.22.4'</pre>
	<pre>import sklearn</pre>
	<pre>from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.dummy import DummyClassifier from sklearn import preprocessing from sklearn.cluster import KMeans print(sklearnversion)</pre> 1.1.2
In [6]:	<pre>import catboost from catboost import CatBoostClassifier print(catboostversion) 1.0.6</pre>
In [7]:	<pre>url = "https://raw.githubusercontent.com/caravanuden/cardio/master/cardio_train.csv" df = pd.read_csv(url, sep=';') df.head()</pre>
Out[7]:	id age gender height weight ap_hi ap_lo cholesterol gluc smoke alco active cardio
	0 0 18393 2 168 62.0 110 80 1 1 0 0 1 0 1 1 20228 1 156 85.0 140 90 3 1 0 0 1 1 2 2 18857 1 165 64.0 130 70 3 1 0 0 0 1
	3 3 17623 2 169 82.0 150 100 1 1 0 0 1 1 4 4 17474 1 156 56.0 100 60 1 1 0 0 0 0
In [8]:	<pre>X = df.drop('cardio', axis=1) y = df.cardio</pre>
	<pre>X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=20221013, test_size=0.25) X_train.shape[0], X_test.shape[0]</pre>
	<pre>(52500, 17500) model = RandomForestClassifier(n_estimators=15, random_state=20221013)</pre>
	<pre>model.fit(X_train, y_train); h = model.predict(X_test)</pre>
4 •	<pre>print(f"RF Accuracy: {(h == y_test).mean()}") RF Accuracy: 0.7070857142857143</pre>
n [11]:	<pre># https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html model_dummy = DummyClassifier(strategy="constant", constant=1) model_dummy.fit(X_train, y_train) h_dummy = model_dummy.predict(X_test) print(f"Constant Accuracy: {(h_dummy == y_test).mean()}")</pre> Constant Accuracy: 0.5010857142857142
In [12]:	<pre>model_random = DummyClassifier(strategy="uniform", random_state=78) model_random.fit(X_train, y_train) h_random = model_random.predict(X_test) print(f"Random Accuracy: {(h_random == y_test).mean()}")</pre> Random Accuracy: 0.5130285714285714
[n [13]:	<pre>def simple_rule(d): return (d.age >= 365*55)</pre>
n [14]:	<pre>h_simple = simple_rule(X_test) print(f"Simple Rule Accuracy: {(h_simple == y_test).mean()}") Simple Rule Accuracy: 0.5958857142857142</pre>
[n [15]:	<pre>model2 = CatBoostClassifier(random_state=20221013, verbose = 0) model2.fit(X_train, y_train);</pre>
In [16]:	<pre>h_catboost = model2.predict(X_test) print(f"CatBoost Accuracy: {(h_catboost == y_test).mean()}") CatBoost Accuracy: 0.7346285714285714</pre>
[n [17]:	# Давайте сделаем всех старше на 5 лет X_aged = X_test.assign(age = lambda x: x.age + 365*5) h_aged = model.predict(X_aged) print(f"RF_Target drift: {h_aged.mean() - h.mean()}") RF_Target drift: 0.07754285714285719
[n [18]:	<pre>h_aged2 = model2.predict(X_aged) print(f"CB_Target drift: {h_aged2.mean() - h.mean()}") CB_Target drift: 0.07211428571428574</pre>
in [19]:	<pre>h_simple_aged = simple_rule(X_aged) print(f"Simple Rule Target Drift: {h_simple_aged.mean() - h_simple.mean()}") Simple Rule Target Drift: 0.2503428571428571</pre>
n [20]:	<pre>h_dummy_aged = model_dummy.predict(X_aged) print(f"Dummy Target Drift: {h_dummy_aged.mean() - h_dummy.mean()}")</pre>
p [01]	<pre>Dummy Target Drift: 0.0</pre>
	<pre>idx_man = (X_test.gender == 2) def slice_accuracy(h, y, idx): acc = dict()</pre>
	<pre>for lbl in np.unique(idx): acc[lbl] = (h[idx == lbl] == y[idx == lbl]).mean() - (h[idx != lbl] == y[idx != lbl]).mean() return acc</pre>
	# Точность RF модели для женщин выше на 0,17% slice_accuracy(h, y_test, idx_man) (False: 0.0017739203519019364 True: -0.0017739203519019364)
n [24]:	{False: 0.0017739203519019364, True: -0.0017739203519019364} # Точность СВ модели для женщин выше на 0,53% slice accuracy(h cathoost, y test, idx man)
out[24]:	slice_accuracy(h_catboost, y_test, idx_man) {False: 0.005326591335765629, True: -0.005326591335765629}
in [25]:	<pre>scaled_X_test = preprocessing.StandardScaler().fit_transform(X_test) kmeans = KMeans(n clusters=4, random state=20221013).fit(scaled X test)</pre>
	# Для uheggs 2 RF-модель работает хуже на 7% slice_accuracy(h, y test, kmeans.labels_)
out[27]:	{0: 0.008310089084933359, 1: -0.010667841868729488, 2: 0.07161491099566786, 3: -0.00942936433783892}
n [28]: ut[28]:	# Похоже, это те, кто пьет алкоголь X_test.loc[kmeans.labels_ == 2] id age gender height weight ap_hi ap_lo cholesterol gluc smoke alco active
	17587 25120 19030 2 170 76.0 120 70 1 1 1 1 1 1 7197 10253 18253 2 175 71.0 130 80 1 1 0 1 1
	15540 22207 23356 2 179 63.0 110 80 2 2 1 1 1 158 213 16028 1 157 69.0 120 80 1 1 0 1 1
	38430 54868 19137
	56100 80040 21979 2 169 68.0 120 80 1 3 0 1 1 28183 40288 21628 2 181 100.0 125 70 1 1 0 1 1 22359 31939 20547 2 170 86.0 120 80 1 1 0 1 1 40784 58279 16721 1 165 94.0 120 60 1 1 0 1 1
	58293 83179 20426 2 160 62.0 120 80 1 1 1 1 1 1 911 rows × 12 columns
n [29]:	# Для тех, кто пьет алкоголь, СВ-модель работает хуже на 4.8% slice_accuracy(h_catboost, y_test, kmeans.labels_)
	{0: 0.008898763189759573, 1: -0.011082390186475943,