Uma Introdução à Engenharia de Software

Objetivos

- Apresentar a engenharia de software e explicar a sua importância
- Dirigir as respostas às questões-chave sobre engenharia de software
- Apresentar questões éticas e profissionais e explicar por que elas são assunto para engenheiros de software

Tópicos abordados

- FAQs sobre engenharia de software
- Responsabilidade profissional e ética

Engenharia de software

- As economias de TODAS as nações desenvolvidas são dependentes de software.
- Cada vez mais sistemas são controlados por software.
- A engenharia de software se dedica às teorias, métodos e ferramentas para desenvolvimento de software profissional
- Os dispêndios com software representam uma fração significativa do PIB em todos os países desenvolvidos.

Custos de software

- Os custos de software dominam os custos de sistemas computacionais. Em um PC, os custos de software são frequentemente maiores que o custo do hardware.
- Manter um software custa mais que desenvolvê-lo. Para sistemas com uma longa vida, os custos de manutenção podem ser muito maiores que os custos de desenvolvimento.
- A engenharia de software dedica-se ao desenvolvimento de software com custos adequados.

FAQs sobre engenharia de software

- O que é software?
- O que é engenharia de software?
- Qual é a diferença entre engenharia de software e ciência da computação?
- Qual é a diferença entre engenharia de software e engenharia de sistemas?
- O que é processo de software?
- O que é um modelo de processo de software?

FAQs sobre engenharia de software

- Quais são os custos da engenharia de software?
- Quais são os métodos da engenharia de software?
- O que é CASE (Computer-Aided Software Engeneering)
- Quais são os atributos de um bom software?
- Quais são os desafios-chave enfrentados pela engenharia de software?

O que é software?

- Programas de computador e documentação associada, tais como requisitos, modelos de projetos e manuais de usuário.
- Produtos de software podem ser desenvolvidos para um cliente particular ou para um mercado geral.
- Produtos de software podem ser:
 - Genéricos desenvolvidos para serem vendidos para uma grande variedade de clientes, por exemplo, softwares para PC, tais como Excel e Word.
 - Personalizados desenvolvidos para um único cliente de acordo com as suas especificações.
- Um software novo pode ser criado através do desenvolvimento de novos programas, da configuração de sistemas de software genéricos ou da reutilização de um software existente.

O que é engenharia de software?

- Engenharia de software é uma disciplina de engenharia relacionada com todos os aspectos da produção de software.
- Engenheiros de software devem dependendo do problema a ser resolvido, das restrições de desenvolvimento e dos recursos disponíveis - adotar uma abordagem sistemática e organizada para seu trabalho, além de usar ferramentas e técnicas apropriadas.

Qual é a diferença entre engenharia de software e ciência da computação?

- A ciência da computação dedica-se à teoria e aos fundamentos; já a engenharia de software dedica-se aos aspectos práticos de desenvolvimento e de entrega de software para o uso.
- Teorias de ciência da computação são ainda insuficientes para atuar como uma base completa para a engenharia de software (diferente de, por exemplo, física e engenharia elétrica).

Qual é a diferença entre engenharia de software e engenharia de sistemas?

- A engenharia de sistemas dedica-se aos aspectos de desenvolvimento de sistemas baseados em computador, incluindo a engenharia de hardware, de software e de processo. A engenharia de software é parte desse processo que se dedica ao desenvolvimento da infra-estrutura do software, controle, aplicações e banco de dados no sistema.
- Os engenheiros de sistema estão envolvidos na especificação, no projeto de arquitetura e na integração e implantação do sistema.

O que é processo de software?

- É um conjunto de atividades cuja meta é o desenvolvimento ou evolução de software.
- As atividades genéricas em todos os processos de software são:
 - Especificação o que o sistema deve fazer e suas restrições de desenvolvimento.
 - Desenvolvimento produção do sistema de software.
 - Validação verificação de que o software é o que o cliente deseja.
 - Evolução mudança do software em resposta às demandas de mudança.

O que é um modelo de processo de software?

- Uma representação simplificada de um processo de software, apresentado sob uma perspectiva específica.
- Exemplos de modelos de processo são:
 - Modelo de workflow seqüência de atividades;
 - Modelo de fluxo de dados fluxo de informações;
 - Modelo de papel/ação quem faz o quê.
- Modelos gerais de processo
 - Cascata;
 - Desenvolvimento iterativo;
 - Engenharia de software baseada em componentes.

Quais são os custos da engenharia de software?

- Aproximadamente 60% dos custos são custos de desenvolvimento e 40% são custos de testes. Para software sob encomenda, os custos de evolução normalmente excedem de desenvolvimento.
- Os custos variam dependendo do tipo de sistema que está sendo desenvolvido e dos requisitos de atributos de sistema, tais como desempenho e confiabilidade.
- A distribuição de custos depende do modelo de desenvolvimento que é usado.

Distribuição de custos nas atividades

Figura 1.1
Distribuição de custos nas atividades de engenharia de software

Custos de desenvolvimento de produto

Figura 1.2
Custos de desenvolvimento do produto

Engenharia de Software, 8ª. edição. Capítulo 1

Quais são os métodos de engenharia de software?

- Abordagens estruturadas para desenvolvimento de software que incluem modelos de sistema, notações, regras, recomendações de projeto e guia de processo.
- Descrições de modelo de sistema:
 - Descrições de modelos gráficos que devem ser produzidos;
- Regras
 - Restrições aplicadas aos modelos de sistema;
- Recomendações:
 - Recomendações de boas práticas de projeto;
- Guia de processo:
 - Quais atividades devem ser seguidas.

Engenharia de Software, 8ª. edição. Capítulo 1

O que é CASE (Computer-Aided Software Engineering)

- Sistemas de software que se destinam a fornecer apoio automatizado para as atividades de processo de software.
- Sistemas CASE são usados frequentemente para apoio ao método.
- Upper-CASE
 - Ferramentas para apoiar as atividades iniciais de processo de requisitos e de projeto;
- Lower-CASE
 - Ferramentas para apoiar as atividades finais tais como programação, *debugging* e teste.

Quais são os atributos de um bom software?

- O software deve fornecer a funcionalidade e o desempenho requeridos para o usuário e deve ser manutenível, confiável e aceitável.
- Facilidade de manutenção
 - O software deve evoluir para atender às necessidades de mudança;
- Confiança
 - O software deve ser confiável;
- Eficiência
 - O software não deve desperdiçar os recursos do sistema;
- **Usabilidade**
 - O software deve ser aceito pelos usuários para o qual foi projetado. Isso significa que ele deve ser compreensível, usável e compatível com outros sistemas.

Quais são os desafios-chave enfrentados pela engenharia de software?

- Heterogeneidade, entrega e confiança.
- Heterogeneidade
 - Técnicas de desenvolvimento para construção de software que podem lidar com plataformas heterogêneas e ambientes de execução;
- Entrega
 - Técnicas de desenvolvimento para conduzir a entrega mais rápida de software;
- Confiança
 - Técnicas de desenvolvimento que mostram que o software pode ter a confiança dos seus usuários.

Responsabilidade profissional e ética

- A engenharia de software envolve responsabilidades mais amplas do que simplesmente a aplicação de habilidades técnicas.
- Os engenheiros de software devem se comportar de modo honesto e eticamente responsável para serem respeitados como profissionais.
- O comportamento ético é mais do que simplesmente a sustentação de leis.

Questões de responsabilidade profissional

- Confidencialidade
 - Os engenheiros devem normalmente respeitar a confidencialidade de seus funcionários ou clientes, independentemente de ter ou não assinado um acordo formal.
- Competência
 - Os engenheiros não devem desvirtuar o seu nível de competência. Eles não devem conscientemente aceitar um trabalho que esteja fora de sua competência.

Questões de responsabilidade profissional

- Direitos sobre propriedade intelectual
 - Os engenheiros devem estar cientes das leis locais que regem o uso de propriedade intelectual, tais como patentes, direitos autorais, etc. Eles devem tomar cuidado para assegurar que a propriedade intelectual dos funcionários e clientes seja protegida.
- Mau uso de computadores
 - Os engenheiros de software não devem usar as suas habilidades técnicas para fazer mau uso dos computadores de outras pessoas. O mau uso de computadores varia desde relativamente trivial (execução de jogos na máquina do funcionário, por exemplo) até extremamente sério (disseminação de virus).

Código de Ética do ACM/IEEE

- As sociedades profissionais nos EUA têm cooperado para produzir uma prática de código de ética.
- Os membros destas organizações assinam o código de prática quando eles se inscrevem como membros.
- O Código contêm oito Princípios relacionados ao comportamento e às decisões tomadas pelos engenheiros de software profissionais, incluindo praticantes, educadores, gerentes, supervisores e responsáveis pela criação de políticas, assim como estagiários e estudantes da profissão.

Código de ética - preâmbulo

Preâmbulo

- A versão resumida do código apresenta as aspirações no nível alto de abstração: as cláusulas que estão incluídas na versão completa fornecem exemplos e detalhes de como essas aspirações mudam a maneira que agimos como profissionais de engenharia de software. Sem essas aspirações, os detalhes podem se tornar formais e tediosos; sem os detalhes, as aspirações podem se tornar aparentemente importantes, mas vazias; juntos, aspirações e detalhes formam um código coeso.
- Os engenheiros de software devem se comprometer a fazer da análise, especificação, desenvolvimento, teste e manutenção de software uma profissão benéfica e respeitada. De acordo com o seu comprometimento com a saúde, segurança e bem-estar do público, os engenheiros de software devem aderir aos seguintes Oito Princípios:

Código de ética - princípios

PÚBLICO

Os engenheiros de software devem agir consistentemente com o interesse público.

CLIENTE E EMPREGADOR

Os engenheiros de software devem agir dentro dos melhores interesses do seu cliente e empregador, de forma consistente com o interesse público.

PRODUTO

Os engenheiros de software devem assegurar que seus produtos e as modificações a eles relacionadas atendam aos mais altos padrões profissionais possíveis.

Código de ética - princípios

JULGAMENTO

Os engenheiros de software devem manter integridade e independência no seu julgamento profissional.

GERENCIAMENTO

Os gerentes e líderes de engenharia de software devem contribuir e promover uma abordagem ética para o gerenciamento de desenvolvimento e manutenção de software.

PROFISSÃO

Os engenheiros de software devem promover a integridade e a reputação da profissão de forma consistente com o interesse público.

Código de ética - princípios

COLEGAS

Os engenheiros de software devem se honestos e colaborativos com seus colegas.

INDIVÍDUO

Os engenheiros de software devem participar, ao longo da vida, aprendendo, respeitando e promovendo uma abordagem ética na prática da profissão.

Dilemas éticos

- Discordância, em princípio, das políticas da gerência sênior.
- Seu funcionário age de uma forma não ética e libera um sistema de segurança crítico sem finalizar o teste do sistema.
- Participação no desenvolvimento de sistemas de armamentos militares ou de sistemas nucleares.

Pontos-chave

- A engenharia de software é uma disciplina de engenharia relacionada com todos os aspectos de produção de software.
- Os produtos de software consistem em programas desenvolvidos e documentação associada. Os atributos essenciais do produto são: manutenibilidade, confiança, eficiência e aceitabilidade.
- O processo de software compreende todas as atividades envolvidas no desenvolvimento de produtos de software. As atividades básicas são especificação, desenvolvimento, validação e evolução de software.
- Métodos são meios organizados de produção de software. Eles incluem sugestões para o processo a ser seguido, as notações a serem usadas, modelos de sistemas a serem desenvolvidos, regras que regem estes modelos e diretrizes para o projeto.

Engenharia de Software, 8ª. edição. Capítulo 1

Pontos-chave

- Ferramentas CASE são sistemas de software projetados para apoiar as atividades rotineiras no processo de software, tais como edição de diagramas de projeto, verificação da consistência de diagramas e rastreabilidade de testes de programa realizados.
- Engenheiros de software têm responsabilidades com a profissão de engenharia e a sociedade. Eles não devem se preocupar apenas com assuntos técnicos.
- Sociedades profissionais publicam códigos de conduta que definem os padrões de comportamento esperados de seus membros.

