PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 38/00, C07K 5/00, C12P 21/06,
C12Q 1/00, G01N 33/53

(11) International Publication Number: WO 95/07706

(43) International Publication Date: 23 March 1995 (23.03.95)

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

08/121,713

13 September 1993 (13.09.93) US

Published

With international search report.

- (71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 22nd floor, 300 Lakeside Drive, Oakland, CA 94612-3550 (US).
- (72) Inventors: GOODMAN, Corey, S.; UC Berkeley Campus, 519 Life Science Annex, Berkeley, CA 94720 (US). KOLOD-KIN, Alex, L.; UC Berkeley Campus, 519 Life Science Annex, Berkeley, CA 94720 (US). MATTHES, David; UC Berkeley Campus, 519 Life Science Annex, Berkeley, CA 94720 (US). BENTLEY, David, R.; UC Berkeley Campus, 519 Life Science Annex, Berkeley, CA 94720 (US). O'CONNOR, Timothy; UC Berkeley Campus, 519 Life Science Annex, Berkeley, CA 94720 (US).
- (74) Agents: OSMAN, Richard, Aron et al.; Flehr, Hohbach, Test, Albritton & Herbert, Suite 3400, 4 Embarcadero Center, San Francisco, CA 94111-4187 (US).

(54) Title: THE SEMAPHORIN GENE FAMILY

(57) Abstract

A novel class of proteins, semaphorins, nucleic acids encoding semaphorins, semaphorin peptides, and methods of using semaphorins and semaphorin-encoding nucleic acids are disclosed. Semaphorin peptides and receptor agonists and antagonists provide potent modulators of nerve cell growth and regeneration. The invention provides pharmaceutical compositions, methods for screening chemical libraries for regulators of cell growth/differentiation; semaphorin gene-derived nucleic acids for use in genetic mapping, as probes for related genes, and a diagnostic reagents for genetic neurological disease; specific cellular and animal systems for the development of neurological disease therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BG BJ BR CT CG CH CI CM CN CS CZ DE DK ES FI FR GA	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Denmark Spain Finland France Gabon	GB GE GN GR HU IE IT JP KE KG KP KR LU LV MC MD MG ML MN	United Kingdom Georgia Guinea Greece Hungary Ireland Italy Japan Kenya Kyrgystan Democratic People's Republic of Korea Republic of Korea Kazakhstan Liechtenstein Sri Lanka Luxembourg Larvia Monaco Republic of Moldova Madagascar Mali Mongolia	MR MW NE NL NO NZ PL PT RO RU SD SE SI SK SN TD TG TJ TT UA US UZ VN	Mauritania Malawi Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Slovenia Slovakia Senegal Chad Togo Tajikistan Trinidad and Tobago Ukraine United States of America Uzbekistan
---	---	---	---	--	---

THE SEMAPHORIN GENE FAMILY

The research carried out in the subject application was supported in part by grants from the National Institutes of Health. The government may have rights in any patent issuing on this application.

5

INTRODUCTION

Technical Field

The technical field of this invention concerns peptides, polypeptides, and polynucleotides involved in nerve cell growth.

10 Background

15

20

The specificity of the wiring of the nervous system -- the complex pattern of specific synaptic connections -- begins to unfold during development as the growing tips of neurons - the growth cones - traverse long distances to find their correct targets. Along their journey, they are confronted by and correctly navigate a series of choice points in a remarkably unerring way to ultimately contact and recognize their correct target.

The identification of growth cone guidance cues is to a large extent, the holy grail of neurobiology. These are the compounds that tell neurons when to grow, where to grow, and when to stop growing. The medical applications of such compounds and their antagonists are enormous and include modulating neuronal growth regenerative capacity, treating neurodegenerative disease, and mapping (e.g. diagnosing) genetic neurological defects.

Over decades of concentrated research, various hypotheses of chemoattractants and repellant, labeled pathways, cell adhesion molecules, etc. have been

evoked to explain guidance. Recently, several recent lines of experiments suggest repulsion may play an important role in neuron guidance and two apparently unrelated factors ("Neurite Growth Inhibitor" and "Collapsin") capable of inhibiting or collapsing growth cones have been reported.

5

Relevant Literature

For a recent review of much of the literature in this field, see Goodman and Shatz (1993) Cell 72/Neuron 10, 77-98. A description of grasshopper fasciclin IV (now called G-Semaphorin I) appears in Kolodkin et al. (1992) Neuron 9, 831-845. Recent reports on Collapsin and Neurite Growth Inhibitor include Raper and Kapfhammer (1990) Neuron 4, 21-29, an abstract presented by Raper at the GIBCO-BRL Symposium on "Genes and Development/Function of Brain" on July 26, 1993 and Schwab and Caroni (1988) J Neurosci 8, 2381 and Schnell and Schwab (1990) Nature 343, 269, respectively.

15

20

25

30

SUMMARY OF THE INVENTION

A novel class of proteins, semaphorins, nucleic acids encoding semaphorins, and methods of using semaphorins and semaphorin-encoding nucleic acids are disclosed. Semaphorins include the first known family of human proteins which function as growth cone inhibitors and a family of proteins involved in viral, particularly pox viral, pathogenesis and oncogenesis. Families of semaphorin-specific receptors, including receptors found on nerve growth cones and immune cells are also disclosed.

The invention provides agents, including semaphorin peptides, which specifically bind semaphorin receptors and agents, including semaphorin receptor peptides, which specifically bind semaphorins. These agents provide potent modulators of nerve cell growth, immune responsiveness and viral pathogenesis and find use in the treatment and diagnosis of neurological disease and neuro-regeneration, immune modulation including hypersensitivity and graft-rejection, and diagnosis and treatment of viral and oncological infection/diseases.

Semaphorins, semaphorin receptors, semaphorin-encoding nucleic acids, and unique portions thereof also find use variously in screening chemical libraries for regulators of semaphorin or semaphorin receptor-mediated cell activity, in

genetic mapping, as probes for related genes, as diagnostic reagents for genetic neurological, immunological and oncological disease and in the production of specific cellular and animal systems for the development of neurological, immunological, oncological and viral disease therapy.

5

10

15

20

25

DESCRIPTION OF SPECIFIC EMBODIMENTS

The present invention discloses novel families of proteins important in nerve and immune cell function: the semaphorins and the semaphorin receptors. The invention provides agents, including semaphorin peptides, which specifically bind semaphorin receptors and agents, including semaphorin receptor peptides, which specifically bind semaphorins. These agents find a wide variety of clinical, therapeutic and research uses, especially agents which modulate nerve and/or immune cell function by specifically mimicing or interfering with semaphorinreceptor binding. For example, selected semaphorin peptides shown to act as semaphorin receptor antagonists are effective by competitively inhibiting native semaphorin association with cellular receptors. Thus, depending on the targeted receptor, these agents can be used to block semaphorin mediated neural cell growth cone repulsion or contact inhibition. Such agents find broad clinical application where nerve cell growth is indicated, e.g. traumatic injury to nerve cells, neurodegenerative disease, etc. A wide variety of semaphorin- and semaphorin receptor-specific binding agents and methods for identifying, making and using the same are described below.

Binding agents of particular interest are semaphorin peptides which specifically bind and antagonize a semaphorin receptor and semaphorin receptor peptides which specifically bind a semaphorin and prevent binding to a native receptor. While exemplified primarily with semaphorin peptides, much of the following description applies analogously to semaphorin receptor peptides.

The semaphorin peptides of the invention comprise a unique portion of a semaphorin and have semaphorin binding specificity. A "unique portion" of a semaphorin has an amino acid sequence unique to that disclosed in that it is not found in any previously known protein. Thus a unique portion has an amino acid sequence length at least long enough to define a novel peptide. Unique semaphorin portions are found to vary from about 5 to about 25 residues,

preferably from 5 to 10 residues in length, depending on the particular amino acid sequence. Unique semaphorin portions are readily identified by comparing the subject semaphorin portion sequences with known peptide/protein sequence data bases. Preferred unique portions derive from the semaphorin domains (which exclude the Ig-like, intracellular and transmembrane domains as well as the signal sequences) of the disclosed semaphorin sequences, especially regions that bind the semaphorin receptor, especially that of the human varieties. Preferred semaphorin receptor unique portions derive from the semaphorin binding domains, especially regions with residues which contact the semaphorin ligand, especially that of the human varieties. Particular preferred peptides are further described herein.

The subject peptides may be free or coupled to other atoms or molecules. Frequently the peptides are present as a portion of a larger polypeptide comprising the subject peptide where the remainder of the polypeptide need not be semaphorin-or semaphorin receptor-derived. Alternatively, the subject peptide may be present as a portion of a "substantially full-length" semaphorin domain or semaphorin receptor sequence which comprises or encodes at least about 200, preferably at least about 250, more preferably at least about 300 amino acids of a disclosed semaphorin/receptor sequence. Thus the invention also provides polypeptides comprising a sequence substantially similar to that of a substantially full-length semaphorin domain or a semaphorin receptor. "Substantially similar" sequences share at least about 40%, more preferably at least about 60%, and most preferably at least about 80% sequence identity. Where the sequences diverge, the differences are generally point insertions/deletions or conservative substitutions, i.e. a cysteine/threonine or serine substitution, an acidic/acidic or hydrophobic/hydrophobic amino acid substitution, etc.

The subject semaphorin peptides/polypeptides are "isolated", meaning unaccompanied by at least some of the material with which they are associated in their natural state. Generally, an isolated peptide/polypeptide constitutes at least about 1%, preferably at least about 10%, and more preferably at least about 50% by weight of the total peptide/protein in a given sample. By pure peptide/polypeptide is intended at least about 90%, preferably at least 95%, and more preferably at least about 99% by weight of total peptide/protein. Included in the subject peptide/polypeptide weight are any atoms, molecules, groups, or

5

10

15

20

25

polymers covalently coupled to the subject semaphorin/receptor peptide/polypeptide, especially peptides, proteins, detectable labels, glycosylations, phosphorylations, etc.

The subject peptides/polypeptides may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample and to what, if anything, the peptide/polypeptide is covalently linked. Purification methods include electrophoretic, molecular, immunological and chromatographic techniques, especially affinity chromatography and RP-HPLC in the case peptides. For general guidance in suitable purification techniques, see Scopes, R., Protein Purification, Springer-Verlag, NY (1982).

The subject peptides/polypeptides generally comprise naturally occurring amino acids but D-amino acids or amino acid mimetics coupled by peptide bonds or peptide bond mimetics may also be used. Amino acid mimetics are other than naturally occurring amino acids that conformationally mimic the amino acid for the purpose of the requisite semaphorin/receptor binding specificity. Suitable mimetics are known to those of ordinary skill in the art and include β - γ - δ amino and imino acids, cyclohexylalanine, adamantylacetic acid, etc., modifications of the amide nitrogen, the α -carbon, amide carbonyl, backbone modifications, etc. See, generally, Morgan and Gainor (1989) Ann. Repts. Med. Chem 24, 243-252; Spatola (1983) Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol VII (Weinstein) and Cho et. al (1993) Science 261, 1303-1305 for the synthesis and screening of oligocarbamates.

The subject semaphorin peptides/polypeptides have a "semaphorin binding specificity" meaning that the subject peptide/polypeptide retains a molecular conformation specific to one or more of the disclosed semaphorins and specifically recognizable by a semaphorin-specific receptor, antibody, etc. As such, a semaphorin binding specificity may be provided by a semaphorin-specific immunological epitope, lectin binding site, etc., and preferably, a receptor binding site. Analogously, the semaphorin receptor peptides/polypeptides have a "semaphorin receptor binding specificity" meaning that these peptides/polypeptides retain a molecular conformation specific to one or more of the disclosed semaphorin receptors and specifically recognizable by a semaphorin, a receptor-specific antibody, etc.

5

10

15

20

"Specific binding" is empirically determined by contacting, for example a semaphorin-derived peptide with a mixture of components and identifying those components that preferentially bind the semaphorin. Specific binding is most conveniently shown by competition with labeled ligand using recombinant semaphorin peptide either in vitro or in cellular expression systems as disclosed herein. Generally, specific binding of the subject semaphorin has binding affinity of 10⁻⁶M, preferably 10⁻⁸M, more preferably 10⁻¹⁰M, under in vitro conditions as exemplified below.

The peptides/polypeptides may be modified or joined to other compounds using physical, chemical, and molecular techniques disclosed or cited herein or otherwise known to those skilled in the relevant art to affect their semaphorin binding specificity or other properties such as solubility, membrane transportability, stability, binding specificity and affinity, chemical reactivity, toxicity, bioavailability, localization, detectability, in vivo half-life, etc. as assayed by methods disclosed herein or otherwise known to those of ordinary skill in the art. For example, point mutations are introduced by site directed mutagenesis of nucleotides in the DNA encoding the disclosed semaphorin polypeptides or in the course of in vitro peptide synthesis.

Other modifications to further modulate binding specificity/affinity include chemical/enzymatic intervention (e.g. fatty acid-acylation, proteolysis, 20 glycosylation) and especially where the peptide/polypeptide is integrated into a larger polypeptide, selection of a particular expression host, etc. In particular, many of the disclosed semaphorin peptides contain serine and threonine residues which are phosphorylated or dephosphorylated. See e.g. methods disclosed in Roberts et al. (1991) Science 253, 1022-1026 and in Wegner et al. (1992) Science 256, 370-373. Amino and/or carboxyl termini may be functionalized e.g., for the amino group, acylation or alkylation, and for the carboxyl group, esterification or amidification, or the like. Many of the disclosed semaphorin peptides/polypeptides also contain glycosylation sites and patterns which may disrupted or modified, e.g. by enzymes like glycosidases or used to purify/identify the receptor, e.g. with lectins. For instance, N or O-linked glycosylation sites of the disclosed semaphorin peptides may be deleted or substituted for by another basic amino acid such as Lys or His for N-linked glycosylation alterations, or deletions or polar

5

10

substitutions are introduced at Ser and Thr residues for modulating O-linked glycosylation. Glycosylation variants are also produced by selecting appropriate host cells, e.g. yeast, insect, or various mammalian cells, or by in vitro methods such as neuraminidase digestion. Useful expression systems include COS-7, 293, BHK, CHO, TM4, CV1, VERO-76, HELA, MDCK, BRL 3A, W138, Hep G2, MMT 060562, TRI cells, baculovirus systems, for examples. Other covalent modifications of the disclosed semaphorin peptides/polypeptides may be introduced by reacting the targeted amino acid residues with an organic derivatizing (e.g. methyl-3-[(p-azido-phenyl)dithio] propioimidate) or crosslinking agent (e.g. 1,1-bis(diazoacetyl)-2-phenylethane) capable of reacting with selected side chains or termini. For therapeutic and diagnostic localization, semaphorins and peptides thereof may be labeled directly (radioisotopes, fluorescers, etc.) or indirectly with an agent capable of providing a detectable signal, for example, a heart muscle kinase labeling site.

The following are 14 classes of preferred semaphorin peptides where bracketed positions may be occupied by any one of the residues contained in the brackets and "X" signifies that the position may be occupied by any one of the 20 naturally encoded amino acids. These enumerated peptides maintain highly conserved structures which provide important semaphorin binding specificities;

20

35

- (a) [DE]C[QKRAN]N[YFV]I (SEQ ID NO:01)

 C[QKRAN]N[YFV]I[RKQT] (SEQ ID NO:02)
- 25 (b) CGT[NG][ASN][YFHG][KRHNQ] (SEQ ID NO:03)

 CGT[NG][ASN]XXP (SEQ ID NO:04)

 CGT[NG]XXXPX[CD] (SEQ ID NO:05)

 CGTXXXXPX[CD]XX[YI] (SEQ ID NO:06)
 - (c) [RIQV][GA][LVK][CS]P[FY][DN] (SEQ ID NO:07)

 [CS]P[FY][DN]P[DERK][HLD] (SEQ ID NO:08)

 GX[GA]X[CS]PY[DN]P (SEQ ID NO:09)
- (d) L[FY]S[GA]T[VNA]A (SEQ ID NO:10)

 L[FY]SXTXA[DE][FY] (SEQ ID NO:11)

30

[FY]S[GA]T[VNA]A[DE][FY] (SEQ ID NO:12)

- (e) L[ND][AK]PNFV (SEQ ID NO:13)
- 5 (f) FFFRE (SEQ ID NO:14)
 FF[FY]RE[TN] (SEQ ID NO:15)
- FFRE[TN]A (SEQ ID NO:16)

 F[FY]RE[TN]A (SEQ ID NO:17)

YFF[FY]RE (SEQ ID NO:18)

- 15 [FY]FF[FY]RE (SEQ ID NO:19)
 [FY][FY][FY]RE[TN]A (SEQ ID NO:20)
- [IV][FY]F[FY][FY]RE (SEQ ID NO:21)

 D[KFY]V[FY][FYIL][FYIL][FY] (SEQ ID NO:22)

 [VI][FY][FYIL][FYIL]F[RT]X[TN] (SEQ ID NO:23)
- 25 [VI][FY][FYIL][FYIL][FY][RT][EDV][TN] (SEQ ID NO:24)
 - (g) E[FY]IN[CS]GK (SEQ ID NO:25)
 [FY]INCGK[AVI] (SEQ ID NO:26)
 - (h) R[VI][AG][RQ][VI]CK (SEQ ID NO:27)
 R[VI]X[RQ][VI]CXXD (SEQ ID NO:28)
- 35 GK[VAI]XXXR[VAI]XXXCK (SEQ ID NO:29)
 - (i) [RKN]W[TAS][TAS][FYL]L[KR] (SEQ ID NO:30)
- [FY]L[KR][AS]RL[NI]C (SEQ ID NO:31)

 [NI]CS[IV][PS]G (SEQ ID NO:32)

 W[TAS][TAS][FYL]LK[ASVIL]XL (SEQ ID NO:33)
- W[TAS][TAS]XLKXXLXC (SEQ ID NO:34)
 WX[TS]XLKXXLXC (SEQ ID NO:35)
- (j) [FY][FY][ND]EIQS (SEQ ID NO:36) [FY]P[FY][FY][FY][ND]E (SEQ ID NO:37)
 - (k) GSA[VIL]CX[FY] (SEQ ID NO:38)
- 55 SA[VIL]CX[FY]XM (SEQ ID NO:39)
 - (1) NS[NA]WL[PA]V (SEQ ID NO:40)

- (m) [VLI]P[EbysF]PRPG (SEQ ID NO:41)
 [VLI]PXP[RA]PGXC (SEQ ID NO:42)
 5 P[EDYSF]PRPG[TQS]C (SEQ ID NO:43)
 (n) DP[HFY]C[AG]W (SEQ ID NO:44)
- P[HFY]C[AG]WD (SEQ.ID NO:45)
- DPXC[AG]WD (SEQ ID NO:46)

 CXXXXDPXCXWD (SEQ ID NO:47)
- 15 CXXXDPXCXWD (SEQ ID NO:48)
 CXXDPXCXWD (SEQ ID NO:49)
- CXXCXXXXDXXCXWD (SEQ ID NO:50)

 CXXCXXXDXXCXWD (SEQ ID NO:51)
- The following peptides represent particularly preferred members of each class:
 - (a) DCQNYI (subset of SEQ ID NO:01)

CXXCXXDXXCXWD (SEQ ID NO:52)

- (b) CGT[NG][AS]XXP (subset of SEQ ID NO:04)
 - (c) GX[SC]PYDP (subset of SEQ ID NO:09)
 - (d) LYSGT[VNA]A (subset of SEQ ID NO:10)
- 35 (e) LNAPNFV (subset of SEQ ID NO:13)
 - (f) [FY]FF[FY]RE (SEQ ID NO:19)
- (g) E[FY]IN[CS]GK (SEQ ID NO:25)
 - (h) R[VI]ARVCK (SEQ ID NO:27)
 - (i) W[TA][TS][FY]LK[AS]RL (subset of SEQ ID NO:33)
- 45 (j) PFYF[ND]EIQS (subset of SEQ ID NO:36)
 - (k) GSAVCX[FY] (subset of SEQ ID NO:38)
- (1) NSNWL[PA]V (subset of SEQ ID NO:40) 50
 - (m) P[ED]PRPG[TQS]C (subset of SEQ ID NO:43)
 - (n) DPYC[AG]WD (subset of SEQ ID NO:46)

The following 14 classes are preferred peptides which exclude semaphorin peptides encoded in open reading frames of Variola major or Vaccinia viruses.

- (a) [DE]C[QKRAN]N[YFV]I (SEQ ID NO:01)
- 5 C[QKRAN]N[YFV]I[RKQT] (SEQ ID NO:02)
 - (b) CGT[NG][AS][YFHG][KRHNQ] (SEQ ID NO:03)
- CGT[NG][ASN][YFH][KRHNQ] (SEQ ID NO:03)
- CGT[NG][AS]XXP (SEQ ID NO:04)
 - (c) [RIQV][GA][LVK][CS]P[FY][DN] (SEQ ID NO:07)
- 15 [CS]P[FY][DN]P[DERK][HLD] (SEQ ID NO:08)

 GX[GA]X[CS]PY[DN]P (SEQ ID NO:09)
- (d) L[FY]S[GA]T[VNA]A (SEQ ID NO:10)

 L[FY]SXTXA[DE][FY] (SEQ ID NO:11)

 [FY]S[GA]T[VNA]A[DE][FY] (SEQ ID NO:12)
- 25 (e) L[ND][AK]PNFV (SEQ ID NO:13)
 - (f) FFFRE (SEQ ID NO:14)
- FF[FY]RE[TN] (SEQ ID NO:15)
- FFRE[TN]A (SEQ ID NO:16)
 - F[FY]RE[TN]A (SEQ ID NO:17)
- 35 YFF[FY]RE (SEQ ID NO:18)
 - [FY]FF[FY]RE (SEQ ID NO:19)
- [FY][FY][FY]RE[TN]A (SEQ ID NO:20)
- 40 [IV][FY]F[FY][FY]RE (SEQ ID NO:21)
 - D[KFY]V[FY][FYL][FYIL][FY] (SEQ ID NO:22)
- 45 D[KFY]V[FY][FYIL][FYI][FY] (SEQ ID NO:22)
 - [VI][FY][FYL][FYIL]F[RT]X[TN] (SEQ ID NO:23)
- [VI][FY][FYIL][FYI]F[RT]X[TN] (SEQ ID NO:23)
- [VI][FY][FYIL][FYIL]FRX[TN] (SEQ ID NO:23)
 - [VI][FY][FYL][FYIL][FY][RT][EDV][TN] (SEQ ID NO:24)
- 55 (g) E[FY]IN[CS]GK (SEQ ID NO:25)

[FY]INCGA_AVI] (SEQ ID NO:26)

- (h) R[VI][AG][RQ][VI]CK (SEQ ID NO:27)
- 5 R[VI]X[RQ][VI]CXXD (SEQ ID NO:28)

 GK[VAI]XXXR[VAI]XXXCK (SEQ ID NO:29)
- (i) [RKN]W[TA][TAS][FYL]L[KR] (SEQ ID NO:30)

 [FY]L[KR][AS]RL[NI]C (SEQ ID NO:31)

 [NI]CS[IV][PS]G (SEQ ID NO:32)
- 15 W[TA][TAS][FYL]LK[ASVIL]XL (SEQ ID NO:33)
 W[TAS][TAS][FYL]LK[ASIL]XL (SEQ ID NO:34)
 W[TA][TAS]XLKXXLXC (SEQ ID NO:35)
- 20
 (j) [FY][FY][ND]EIQS (SEQ ID NO:36)
 [FY]P[FY][FY][FY][ND]E (SEQ ID NO:37)
- 25 (k) GSA[VIL]CX[FY] (SEQ ID NO:38)
 SA[VI]CX[FY]XM (SEQ ID NO:39)
- (1) NS[NA]WL[PA]V (SEQ ID NO:40)
 - (m) [VLI]P[EDYSF]PRPG (SEQ ID NO:41)

 [VLI]PXPRPGXC (SEQ ID NO:42)
- 35 P[EDYSF]PRPG[TQS]C (SEQ ID NO:43)
 - (n) DP[HFY]C[AG]W (SEQ ID NO:44)
- P[HFY]C[AG]WD (SEQ ID NO:45)
- DPXC[AG]WD (SEQ ID NO:46)

 CXXXXDPXCXWD (SEQ ID NO:47)
- 45 CXXXDPXCXWD (SEQ ID NO:48)
 - CXXDPXCXWD (SEQ ID NO:49)
- CXXCXXXXDXXCXWD (SEQ ID NO:50)

 CXXCXXXDXXCXWD (SEQ ID NO:51)
 - CXXCXXDXXCXWD (SEQ ID NO:52)

The following 2 classes are preferred peptides—nich exclude semaphorin peptides encoded in open reading frames of Variola major or Vaccinia viruses Grasshopper Semaphorin I.

```
(f)
         YFF[FY]RE (SEQ ID NO:14)
 5
         D[KY]V[FY][FYL][FYIL][FY] (SEQ ID NO:22)
         D[KY]V[FY][FYIL][FYI][FY] (SEQ ID NO:22)
10
         [VI]Y[FYL][FYIL]F[RT]X[TN] (SEQ ID NO:23)
         [VI]Y[FYIL][FYI]F[RT]X[TN] (SEQ ID NO:23)
         [VI]Y[FYIL][FYIL]FRX[TN] (SEQ ID NO:23)
15
         V[FY][FYL][FYIL][FY][RT][EDV][TN] (SEQ ID NO:24)
         V[FY][FYIL][FYI][FY][RT][EDV][TN] (SEQ ID NO:24)
20
         V[FY][FYIL][FYIL][FY]R[EDV][TN] (SEQ ID NO:24)
         CXXXDPXCXWD (SEQ ID NO:48)
    (n)
         CXXDPXCXWD (SEQ ID NO:49)
25
         CXXCXXXDXXCXWD (SEQ ID NO:51)
         CXXCXXDXXCXWD (SEQ ID NO:52)
```

- The following 5 classes are peptides which encompass peptides encoded in open reading frames of Variola major or Vaccinia viruses. Accordingly, in the event that these viral peptides are not novel per se, the present invention discloses a hitherto unforseen and unforseeable utility for these peptides as immunosuppressants and targets of anti-viral therapy.
- 35 (b) CGT[NG][ASN][YFHG][KRHNQ] (SEQ ID NO:03)

 CGT[NG][ASN]XXP (SEQ ID NO:04)

 CGT[NG]XXXPX[CD] (SEQ ID NO:05)

 CGTXXXXPX[CD]XX[YI] (SEQ ID NO:06)
- (f) D[KFY]V[FY][FYIL][FYIL][FY] (SEQ ID NO:22)

 45 [VI][FY][FYIL][FYIL]F[RT]X[TN] (SEQ ID NO:23)

 V[FY][FYIL][FYIL][FY][RT][EDV][TN] (SEQ ID NO:24)
- (i) [RKN]W[TAS][TAS][FYL]L[KR] (SEQ ID NO:30)

W[TAS][TAS]XLKXXLXC (SEQ ID NO:34)

- 5 WX[TS]XLKXXLXC (SEQ ID NO:35)
 - (k) SA[VIL]CX[FY]XM (SEQ ID NO:39)
 - (m) [VLI]PXP[RA]PGXC (SEQ ID NO:42)

10

15

20

25

30

35

BNSDOCID: <WO___9607706A1_L>

The disclosed semaphorin sequence data are used to define a wide variety of other semaphorin- and semaphorin receptor-specific binding agents using immunologic, chromatographic or synthetic methods available to those skilled in the art.

Of particular significance are peptides comprising unique portions of semaphorin-specific receptors and polypeptides comprising a sequence substantially similar to that of a substantially full-length semaphorin receptor. Using semaphorin peptides, these receptors are identified by a variety of techniques known to those skilled in the art where a ligand to the target receptor is known, including expression cloning as set out in the exemplification below. For other examples of receptor isolation with known ligand using expression cloning, see, Staunton et al (1989) Nature 339, 61; Davis et al (1991) Science 253, 59; Lin et al (1992) Cell 68, 775; Gearing et al (1989) EMBO 8, 3667; Aruffo and Seed (1987) PNAS 84, 8573 and references therein. Generally, COS cells are transfected to express a cDNA library or PCR product and cells producing peptides/polypeptides which bind a semaphorin/receptor peptide/polypeptide are isolated. For neurosemaphorin receptors, fetal brain cDNA libraries are preferred; for immunosemaphorin receptors, libraries derived from activated lymphoid or myloid cell lines or tissue derived from sites of inflammation or delayed-type hypersensitivity are preferred; and for semaphorin and semaphorin receptor variants used by tumor cells to evade immune survailance or suppress an immune response (oncosemaphorins), libraries derived from cancerous tissue or tumor cell lines resistant to the host immune system are preferred. Alternatively, PCR primers based upon known semahorin/receptor sequences such as those disclosed herein are used to amplify PCR product from such tissues/cells. Other

receptor/ligand isolation methods using immobilized and or antibody are known to those skilled in the art.

Semaphorin receptor peptides with receptor binding specificity are identified by a variety of ways including having conserved consensus sequences with other semaphorin receptors, by crosslinking to ligand or receptor-specific antibody, or preferably, by screening such peptides for semaphorin binding or disruption of semaphorin-receptor binding. Methods for identifying semaphorin receptor peptides with the requisite binding activity are described herein or otherwise known to those skilled in the art. By analogous methods, semaphorin receptor peptides are used to define additional semaphorin peptides with semaphorin binding specificity, particularly receptor specificity.

The various semaphorin and semaphorin receptor peptides are used to define functional domains of semaphorins, identify compounds that associate with semaphorins, design compounds capable of modulating semaphorin-mediated nerve and immune cell function, and define additional semaphorin and semaphorin receptor-specific binding agents. For example, semaphorin mutants, including deletion mutants are generated from the disclosed semaphorin sequences and used to identify regions important for specific protein-ligand or protein-protein interactions, for example, by assaying for the ability to mediate repulsion or preclude aggregation in cell-based assays as described herein. Further, x-ray crystallographic data of the disclosed protein are used to rationally design binding molecules of determined structure or complementarity for modulating growth cone growth and guidance.

Additional semaphorin- and receptor-specific agents include specific

25 antibodies that can be modified to a monovalent form, such as Fab, Fab', or Fv,
specifically binding oligopeptides or oligonucleotides and most preferably, small
molecular weight organic receptor antagonists. For example, the disclosed
semaphorin and receptor peptides are used as immunogens to generate semaphorinand receptor-specific polyclonal or monoclonal antibodies. See, Harlow and Lane

30 (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, for
general methods. Anti-idiotypic antibody, especially internal imaging anti-ids are
also prepared using the disclosures herein.

10

15

In addition to semaphorin and semaphorin-receptor derived polypeptides and peptides, other prospective agents are screened from large libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of saccharide, peptide, and nucleic acid based compounds.

Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily producible. Additionally, natural and synthetically produced libraries and compounds are readily modified through conventional chemical, physical, and biochemical means. See, e.g. Houghten et al. and Lam et al (1991) Nature 354, 84 and 81, respectively and Blake and Litzi-Davis (1992), Bioconjugate Chem 3, 510.

Useful agents are identified with a range of assays employing a compound comprising the subject peptides or encoding nucleic acids. A wide variety of in vitro, cell-free binding assays, especially assays for specific binding to immobilized compounds comprising semaphorin or semaphorin receptor peptide find convenient use. While less preferred, cell-based assays may be used to determine specific effects of prospective agents on semaphorin-receptor binding may be assayed, see, e.g. Schnell and Schwab (1990) supra. Optionally, the intracellular C-terminal domain is substituted with a sequence encoding a oligopeptide or polypeptide domain that provides a detectable intracellular signal upon ligand binding different from the natural receptor. Useful intracellular domains include those of the human insulin receptor and the TCR, especially domains with kinase activity and domains capable of triggering calcium influx which is conveniently detected by fluorimetry by preloading the host cells with Fura-2. More preferred assays involve simple cell-free in vitro binding of candidate agents to immobilized semaphorin or receptor peptides, or vice versa. See, e.g. Fodor et al (1991) Science 251, 767 for light directed parallel synthesis method. Such assays are amenable to scale-up, high throughput usage suitable for volume drug screening.

Useful agents are typically those that bind to a semaphorin or disrupt the association of a semaphorin with its receptor. Preferred agents are semaphorin-specific and do not cross react with other neural or lymphoid cell membrane proteins. Useful agents may be found within numerous chemical classes, though typically they are organic compounds; preferably small organic compounds. Small organic compounds have a molecular weight of more than 150 yet less than about

10

15

20

4,500, preferably less than about 1500, more preferably, less than about 500. Exemplary classes include peptides, saccharides, steroids, heterocyclics, polycyclics, substituted aromatic compounds, and the like.

Selected agents may be modified to enhance efficacy, stability, pharmaceutical compatibility, and the like. Structural identification of an agent may be used to identify, generate, or screen additional agents. For example, where peptide agents are identified, they may be modified in a variety of ways as described above, e.g. to enhance their proteolytic stability. Other methods of stabilization may include encapsulation, for example, in liposomes, etc.

The subject binding agents may be prepared in a variety of ways known to those skilled in the art. For example, peptides under about 60 amino acids can be readily synthesized today using conventional commercially available automatic synthesizers. Alternatively, DNA sequences may be prepared encoding the desired peptide and inserted into an appropriate expression vector for expression in a prokaryotic or eukaryotic host. A wide variety of expression vectors are available today and may be used in conventional ways for transformation of a competent host for expression and isolation. If desired, the open reading frame encoding the desired peptide may be joined to a signal sequence for secretion, so as to permit isolation from the culture medium. Methods for preparing the desired sequence, inserting the sequence into an expression vector, transforming a competent host, and growing the host in culture for production of the product may be found in U.S. Patent Nos. 4,710,473, 4,711,843 and 4,713,339.

For therapeutic uses, the compositions and agents disclosed herein may be administered by any convenient way. Small organics are preferably administered orally; large molecular weight (e.g. greater than 1 kD, usually greater than 3 kD, more usually greater than 10 kD) compositions and agents are preferably administered parenterally, conveniently in a pharmaceutically or physiologically acceptable carrier, e.g., phosphate buffered saline, saline, deionized water, or the like. Typically, the compositions are added to a retained physiological fluid such as blood or synovial fluid. For CNS administration, a variety of techniques are available for promoting transfer of the therapeutic across the blood brain barrier including disruption by surgery or injection, drugs which transciently open

10

15

20

25

adhesion contact between CNS vasculature endothelial cells, and compounds which fascilitate translocation through such cells.

As examples, many of the disclosed therapeutics are amenable to directly injected or infused, topical, intratracheal/nasal administration, e.g. through aerosal, intraocularly, or within/on implants e.g. fibers (e.g. collagen) osmotic pumps, grafts comprising appropriately transformed cells, etc. A particularly useful application involves coating, imbedding or derivatizing fibers, such as collagen fibers, protein polymers, etc. with therapuetic peptides. Other useful approaches are described in Otto et al. (1989) J Neuroscience Research 22, 83-91 and Otto and Unsicker (1990) J Neuroscience 10, 1912-1921. Generally, the amount administered will be empirically determined, typically in the range of about 10 to $1000~\mu g/kg$ of the recipient. For peptide agents, the concentration will generally be in the range of about 50 to $500~\mu g/ml$ in the dose administered. Other additives may be included, such as stabilizers, bactericides, etc. These additives will be present in conventional amounts.

The invention provides isolated nucleic acid sequences encoding the disclosed semaphorin and semaphorin receptor peptides and polypeptides, including sequences substantially identical to sequences encoding such polypeptides. An "isolated" nucleic acid sequence is present as other than a naturally occurring chromosome or transcript in its natural state and typically is removed from at least some of the nucleotide sequences with which it is normally associated with on a natural chromosome. A complementary sequence hybridizes to a unique portion of the disclosed semaphorin sequence under low stringency conditions, for example, at 50°C and SSC (0.9 M saline/0.09 M sodium citrate) and that remains bound when subject to washing at 55°C with SSC. Regions of non-identity of complementary nucleic acids are preferably or in the case of homologous nucleic acids, a nucleotide change providing a redundant codon. A partially pure nucleotide sequence constitutes at least about 5%, preferably at least about 30%, and more preferably at least about 90% by weight of total nucleic acid present in a given fraction.

Unique portions of the disclosed nucleic acid sequence are of length sufficient to distinguish previously known nucleic acid sequences. Thus, a unique portion has a nucleotide sequence at least long enough to define a novel

10

15

25

oligonucleotide. Preferred nucleic acid portions encode a unique semaphorin peptide. The nucleic acids of the invention and portions thereof, other than those used as PCR primers, are usually at least about 60 bp and usually less than about 60 kb in length. PCR primers are generally between about 15 and 100 nucleotides in length.

Nucleotide (cDNA) sequences encoding several full length semaphorins are disclosed in Figs. 1-8. The invention also provides for the disclosed sequences modified by transitions, transversions, deletions, insertions, or other modifications such as alternative splicing and also provides for genomic semaphorin sequences, and gene flanking sequences, including regulatory sequences; included are DNA and RNA sequences, sense and antisense. Preferred DNA sequence portions include portions encoding the preferred amino acid sequence portions disclosed above. For antisense applications where the inhibition of semaphorin expression is indicated, especially useful oligonucleotides are between about 10 and 30 nucleotides in length and include sequences surrounding the disclosed ATG start site, especially the oligonucleotides defined by the disclosed sequence beginning about 5 nucleotides before the start site and ending about 10 nucleotides after the disclosed start site. Other especially useful semaphorin mutants involve deletion or substitution modifications of the disclosed cytoplasmic C-termini of transmembrane semaphorins. Accordingly, semaphorin mutants with semaphorin binding affinities but with altered intracellular signal transduction capacities are produced.

For modified semaphorin-encoding sequences or related sequences encoding proteins with semaphorin-like functions, there will generally be substantial sequence identity between at least a segment thereof and a segment encoding at least a portion of the disclosed semaphorin sequence, preferably at least about 60%, more preferably at least 80%, most preferably at least 90% identity. Homologous segments are particularly within semaphorin domain-encoding regions and regions encoding protein domains involved in protein-protein, particularly semaphorin-receptor interactions and differences within such segments are particularly conservative substitutions.

Typically, the invention's semaphorin peptide encoding polynucleotides are associated with heterologous sequences. Examples of such heterologous sequences include regulatory sequences such as promoters, enhancers, response elements,

5

10

20

25

signal sequences, polyadenylation sequences, etc., introns, 5 and 3' noncoding regions, etc. Other useful heterologous sequences are known to those skilled in the art or otherwise disclosed references cited herein. According to a particular embodiment of the invention, portions of the semaphorin encoding sequence are spliced with heterologous sequences to produce soluble, secreted fusion proteins, using appropriate signal sequences and optionally, a fusion partner such as β -Gal.

The disclosed sequences are also used to identify and isolate other natural semaphorins and analogs. In particular, the disclosed nucleic acid sequences are used as hybridization probes under low-stringency or PCR primers, e.g. oligonucleotides encoding functional semaphorin domains are ³²P-labeled and used to screen λcDNA libraries at low stringency to identify similar cDNAs that encode proteins with related functional domains. Additionally, nucleic acids encoding at least a portion of the disclosed semaphorin are used to characterize tissue specific expression of semaphorin as well as changes of expression over time, particularly during organismal development or cellular differentiation.

The semaphorin encoding nucleic acids can be subject to alternative purification, synthesis, modification, sequencing, expression, transfection, administration or other use by methods disclosed in standard manuals such as Molecular Cloning, A Laboratory Manual (2nd Ed., Sambrook, Fritsch and Maniatis, Cold Spring Harbor), Current Protocols in Molecular Biology (Eds. Aufubel, Brent, Kingston, More, Feidman, Smith and Stuhl, Greene Publ. Assoc., Wiley-Interscience, NY, NY, 1992) or that are otherwise known in the art. For example, the nucleic acids can be modified to alter stability, solubility, binding affinity and specificity, etc. semaphorin-encoding sequences can be selectively methylated, etc. The nucleic acid sequences of the present invention may also be modified with a label capable of providing a detectable signal, either directly or indirectly. Exemplary labels include radioisotopes, fluorescers, biotinylation, etc.

The invention also provides vectors comprising nucleic acids encoding semaphorin peptides, polypeptides or analogs. A large number of vectors, including plasmid and viral vectors, have been described for expression in a variety of eukaryotic and prokaryotic hosts. Advantageously, vectors may also include a promotor operably linked to the semaphorin-encoding portion. Vectors will often include one or more replication systems for cloning or expression, one or more

5

10

15

20

markers for selection in the host, e.g. antibiotic resistance. The inserted semaphorin coding sequences may be synthesized, isolated from natural sources, prepared as hybrids, etc. Suitable host cells may be transformed/transfected/infected by any suitable method including electroporation, CaCl₂ mediated DNA uptake, viral infection, microinjection, microprojectile, or other methods.

Appropriate host cells include bacteria, archebacteria, fungi, especially yeast, and plant and animal cells, especially mammalian cells. Of particular interest are E. coli, B. subtilis, Saccharomyces cerevisiae, SF9 cells, C129 cells, 293 cells, Neurospora, and CHO, COS, HeLa cells, immortalized mammalian myeloid and lymphoid cell lines, and pluripotent cells, especially mammalian ES cells and zygotes. Preferred replication systems include M13, ColE1, SV40, baculovirus, lambda, adenovirus, AAV, BPV, etc. A large number of transcription initiation and termination regulatory regions have been isolated and shown to be effective in the transcription and translation of heterologous proteins in the various hosts. Examples of these regions, methods of isolation, manner of manipulation, etc. are known in the art. Under appropriate expression conditions, host cells can be used as a source of recombinantly produced semaphorins or analogs.

For the production of stably transformed cells and transgenic animals, nucleic acids encoding the disclosed semaphorins may be integrated into a host genome by recombination events. For example, such a sequence can be microinjected into a cell, and thereby effect homologous recombination at the site of an endogenous gene, an analog or pseudogene thereof, or a sequence with substantial identity to an semaphorin-encoding gene. Other recombination-based methods such as nonhomologous recombinations, deletion of endogenous gene by homologous recombination, especially in pluripotent cells, etc., provide additional applications. Preferred transgenics and stable transformants over-express the disclosed receptor gene and find use in drug development and as a disease model.

Alternatively, knock-out cells and animals find use in development and functional studies. Methods for making transgenic animals, usually rodents, from ES cells or zygotes are known to those skilled in the art.

10

The compositions and methods disclosed herein may be used to effect gene therapy. See, e.g. Zhu et al. (1993) Science 261, 209-211; Gutierrez et al. (1992) Lancet 339, 715-721. For example, cells are transfected with semaphorin sequences operably linked to gene regulatory sequences capable of effecting altered semaphorin expression or regulation. To modulate semaphorin translation, cells may be transfected with complementary antisense polynucleotides. For gene therapy involving the transfusion of semaphorin transfected cells, administration will depend on a number of variables that are ascertained empirically. For example, the number of cells will vary depending on the stability of the transfused cells. Transfusion media is typically a buffered saline solution or other pharmacologically acceptable solution. Similarly the amount of other administered compositions, e.g. transfected nucleic acid, protein, etc., will depend on the manner of administration, purpose of the therapy, and the like.

The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

I. <u>Isolation and characterization of Grasshopper Semaphorin I (SEO ID NOs:57 and 58) (previously referred to as Fasciclin IV)</u>

In order to identify cell surface molecules that function in selective fasciculation, a series of monoclonal antibody (MAb) screens was conducted. The immunogen used for most of these screens was membranes from the longitudinal connectives (the collection of longitudinal axons) between adjacent segmental ganglia of the nervous system of the larval grasshopper. From these screens, MAb 3B11 and 8C6 were used to purify and characterize two surface glycoproteins, fasciclin I and fasciclin II, see, Bastiani et al., 1987; the genes encoding both were subsequently cloned, see, Snow et al. 1989, Zinn et al. 1988, and Harrelson and Goodman, 1988.

Another MAb isolated during these screens, MAb 6F8, was chosen for the present study because, just as with fasciclin I and fasciclin II, the antigen recognized by this MAb is expressed on a different but overlapping subset of axon pathways in the developing CNS. The 6F8 antigen appears to be localized on the outside of cell surfaces, as indicated by MAb binding when incubated both in live

15

20

25

preparations, and in fixed preparations in which no desergents have been added. Because the 6F8 antigen is a surface glycoprotein expressed on a subset of axon fascicles (see below), we call it fasciclin IV.

Fasciclin IV expression begins early in embryonic development before axonogenesis. At 29% of development, expression is seen on the surface of the midline mesectodermal cells and around 5-7 neuroblasts and associated ectodermal cells per hemisegment. This expression is reminiscent of the mesectodermal and neuroblast-associated expression observed with both fasciclin I and fasciclin II; however, in each case, the pattern resolves into a different subset of neuroblasts and associated ectodermal cells.

At 32% of development, shortly after the onset of axonogenesis in the CNS, fasciclin IV expression is seen on the surface of the axons and cell bodies of the three pairs of MP4, MP5, and MP6 midline progeny, the three U motoneurons, and on several unidentified neurons in close proximity to the U's. This is in contrast to fasciclin II, which at this stage is expressed on the MP1 and dMP2 neurons, and fasciclin I, which is expressed on the U neurons but not on any midline precursor progeny.

The expression of fasciclin IV on a subset of axon pathways is best observed around 40% of development, after the establishment of the first longitudinal and commissural axon pathways. At this stage, the protein is expressed on two longitudinal axon fascicles, a subset of commissural axon fascicles, a tract extending anteriorly along the midline, and a subset of fascicles in the segmental nerve (SN) and intersegmental nerve (ISN) roots.

Specifically, fasciclin IV is expressed on the U fascicle, a longitudinal

pathway (between adjacent segmental neuromeres) pioneered in part by the U

neurons, and on the A/P longitudinal fascicle (in part an extension of the U fascicle
within each segmental neuromere. In addition, fasciclin IV is also expressed on a
second narrower, medial, and more ventral longitudinal pathway. The U axons
turn and exit the CNS as they pioneer the ISN; the U's and many other axons

within the ISN express fasciclin IV. The continuation of the U fascicle posterior to
the ISN junction is also fasciclin IV-positive. The specificity of fasciclin IV for
distinct subsets of longitudinal pathways can be seen by comparing fasciclin IV and

10

15

PCT/US94/10151 WO 95/07706

fasciclin II expression in the same embryo; fasciclin IV is expressed on the U and A/P pathways whereas fasciclin II is expressed on the MP1 pathway.

The axons in the median fiber tract (MFT) also express fasciclin IV. The MFT is pioneered by the three pairs of progeny of the midline precursors MP4, 5 MP5, and MP6. The MFT actually contains three separate fascicles. The axons of the two MP4 progeny pioneer the dorsal MFT fascicle and then bifurcate at the posterior end of the anterior commissure; whereas the axons of the two MP6 progeny pioneer the ventral MFT fascicle and then bifurcate at the anterior end of the posterior commissure. Fasciclin IV is expressed on the cell bodies of the six MP4, MP5, and MP6 neurons, and on their growth cones and axons as they extend 10 anteriorly in the MFT and bifurcate in one of the two commissures. However, this expression is regional in that once these axons bifurcate and begin to extend laterally across the longitudinal pathways and towards the peripheral nerve roots, their expression of fasciclin IV greatly decreases. Thus, fasciclin IV is a label for the axons in the MFT and their initial bifurcations in both the anterior and posterior commissures. It appears to be expressed on other commissural fascicles as well. However, the commissural expression of fasciclin IV is distinct from the transient expression of fasciclin II along the posterior edge of the posterior commissure, or the expression of fasciclin I on several different commissural axon fascicles in both the anterior and posterior commissure (Bastiani et al., 1987; 20 Harrelson and Goodman, 1988).

15

25

BNSDOCID: <WO_

9507706A1 | >

Fasciclin IV is also expressed on a subset of motor axons exiting the CNS in the SN. The SN splits into two major branches, one anterior and the other posterior, as it exits the CNS. Two large bundles of motoneuron axons in the anterior branch express fasciclin IV at high levels; one narrow bundle of motoneuron axons in the posterior branch expresses the protein at much lower levels. Fasciclin IV is also expressed on many of the axons in the ISN.

The CNS and nerve root expression patterns of fasciclin IV, fasciclin I, and fasciclin II at around 40% of embryonic development idicate that although there is some overlap in their patterns (e.g., both fasciclin IV and fasciclin I label the U 30 axons), these three surface glycoproteins label distinct subsets of axon pathways in the developing CNS.

Fasciclin IV is expressed on epithelial bands in the developing limb bud

5

10

20

BN6DOCID: <WO_

_9507706A1_L>

Fasciclin IV is expressed on the developing limb bud epithelium in circumferential bands; at 34.5% of development these bands can be localized with respect to constrictions in the epithelium that mark presumptive segment boundaries. In addition to a band just distal to the trochanter/coxa segment boundary, bands are also found in the tibia, femur, coxa, and later in development a fifth band is found in the tarsus. Fasciclin IV is also expressed in the nascent chordotonal organ in the dorsal aspect of the femur. The bands in the tibia, trochanter, and coxa completely encircle the limb. However, the femoral band is incomplete, containing a gap on the anterior epithelia of this segment.

The position of the Ti1 axon pathway with respect to these bands of fasciclin IV-positive epithelia suggests a potential role for fasciclin IV in guiding the Ti1 growth cones. First, the band of fasciclin IV expression in the trochanter, which is approximately three epithelial cell diameters in width when encountered by the Ti1 growth cones, is the axial location where the growth cones reorient from proximal migration to circumferential branch extension. The Tr1 cell, which marks the location of the turn, lies within this band, usually over the central or the proximal cell tier. Secondly, although there is a more distal fasciclin IV expressing band in the femur, where a change in Ti1 growth is not observed, there exists a gap in this band such that fasciclin IV expressing cells are not traversed by the Ti1 growth cones. The Ti1 axons also may encounter a fasciclin IV expressing region within the coxa, where interactions between the growth cones, the epithelial cells, and the Cx1 guidepost cells have not yet been investigated.

In addition to its expression over the surface of bands of epithelial cells,

25 fasciclin IV protein, as visualized with MAb 6F8, is also found on the basal
surface of these cells in a punctate pattern. This punctate staining is not an artifact
of the HRP immunocytochemistry since fluorescent visualization of MAb 6F8 is
also punctate. The non-neuronal expression of fasciclin IV is not restricted to limb
buds. Circumferential epithelial bands of fasciclin IV expression are also seen on

30 subesophageal mandibular structures and on the developing antennae.

PCT/US94/10151 WO 95/07706

MAb directed against fasciclin IV can alter the formation of the Til axon pathway in the limb bud

The expression of fasciclin IV on an epithelial band at a key choice point in the formation of the Til axon pathway led us to ask whether this protein is involved in growth cone guidance at this location. To answer this question, we cultured embryos, or epithelial fillets (e. g., O'Connor et al., 1990), during the 5% of development necessary for normal pathway formation, either in the presence or absence of MAb 6F8 or 6F8 Fab fragments. Under the culture conditions used for these experiments, defective Ti1 pathways are observed in 14% of limbs (Chang et al., 1992); this defines the baseline of abnormalities observed using 10 these conditions. For controls we used other MAbs and their Fab fragments that either bind to the surfaces of these neurons and epithelial cells (MAb 3B11 against the surface protein fasciclin I) or do not (MAb 4D9 against the nuclear protein engrailed; Patel et al., 1989). To assess the impact of MAb 6F8 on Til pathway formation, we compared the percentage of aberrant pathways observed following treatment with MAb 6F8 to that observed with MAbs 3B11 and 4D9. Our cultures began at 32% of development when the Til growth cones have not yet reached the epithelium just distal to the trochanter/coxa boundary and therefore have not encountered epithelial cells expressing fasciclin IV. Following approximately 30 hours in culture (-4% of development), embryos were fixed and immunostained with antibodies to HRP in order to visualize the Ti1 axons and other neurons in the limb bud. Criteria for scoring the Til pathway, and the definition of "aberrant", are described in detail in the Experimental Procedures.

Although MAb 6F8 does not arrest pathway formation, several types of distinctive, abnormal pathways are observed. These defects generally begin where 25 growth cones first contact the fasciclin IV expressing cells in the trochanter. Normally, the Til neurons each have a single axon, and the axons of the two cells are fasciculated in that portion of the pathway within the trochanter. Following treatment with MAb 6F8, multiple long axon branches are observed within, and 30 proximal to, the trochanter. Two major classes of pathways are taken by these branches; in 36% of aberrant limbs, multiple, long axon branches extend ventrally in the region distal to the Cx1 cells which contains the band of fasciclin IV expressing epithelial cells. In the ventral region of the trochanter, these branches

15

often independently turn proximally to contact the Cxx cells, and thus complete the pathway in this region.

In the second major class of pathway defect, seen in 47% of aberrant limbs, axon branches leave the trochanter at abnormal, dorsal locations, and extend proximally across the trochanter/coxa boundary. These axons then veer ventrally, often contacting the Cx1 neurons. The remaining 17% of defects include defasciculation distal to the trochanter, axon branches that fail to turn proximally in the ventral trochanter and continue into the posterior compartment of the limb, and axon branches which cross the trochanter/coxa boundary and continue to extend proximally without a ventral turn.

When cultured in the presence of MAb 6F8, 43% of limbs exhibited malformed Ti1 pathways (n = 381) as compared to 11% with MAb 3B11 (n = 230) and 5% with MAb 4D9 (n = 20). These percentages are pooled from treatments with MAbs concentrated from hybridoma supernatant, IgGs isolated from these supernatants, and Fab fragments isolated from these IgG preparations (see Experimental Procedures). The frequency of malformed Ti1 pathways and the types of defects observed showed no significant variation regardless of the method of antibody preparation or type of antibody used. Since Fabs show similar results as IgGs, the effects of MAb 6F8 are not due to cross linking by the bivalent IgG.

In summary, following treatment with MAb 6F8, the Ti1 pathway typically exhibits abnormal morphology beginning just distal to the trochanter and at the site of fasciclin IV expression. The two most common types of Ti1 pathway defects described above occur in 36% of experimental limbs (treated with MAb 6F8), but are seen in only 4% of control limbs (treated with MAbs 3 B11 and 4D9).

25

10

15

20

Fasciclin IV cDNAs encode a novel integral membrane protein

Grasshopper fasciclin IV was purified by passing crude embryonic grasshopper lysates over a MAb 6F8 column. After affinity purification, the protein was eluted, precipitated, denatured, modified at cysteines, and digested with either trypsin or Lys-C. Individual peptides were resolved by reverse phase HPLC and microsequenced using standard methods.

The amino acid sequences derived from these proteolytic fragments were used to generate oligonucleotide probes for PCR experiments, resulting in products

that were used to isolate cDNA clones from the Zinn embryonic grasshopper cDNA library (Snow et al., 1988). Sequence analysis of these cDNAs reveals a single open reading frame (ORF) encoding a protein with two potential hydrophobic stretches of amino acids: an amino-terminal signal sequence of 20 residues and (beginning at amino acid 627) a potential transmembrane domain of 25 amino acids. Thus, the deduced protein has an extracellular domain of 605 amino acids, a transmembrane domain, and a cytoplasmic domain of 78 amino acids. The calculated molecular mass of the mature fasciclin IV protein is 80 kd and is confirmed by Western blot analysis of the affinity purified and endogenous protein as described below. The extracellular domain of the protein includes 16 cysteine residues that fall into three loose clusters but do not constitute a repeated domain and are not similar to other known motifs with cysteine repeats. There are also six potential sites for N-linked glycosylation in the extracellular domain. Treatment of affinity purified fasciclin IV with N-Glycanase demonstrates that fasciclin IV does indeed contain N-linked oligosaccharides. Fasciclin IV shows no sequence similarity when compared with other proteins in the PIR data base using BLASTP (Altschul et al., 1990), and is therefore a novel type I integral membrane protein.

A polyclonal antiserum directed against the cytoplasmic domain of the protein encoded by the fasciclin IV cDNA was used to stain grasshopper embryos at 40% of development. The observed staining pattern was identical to that seen with MAb 6F8. On Western blots, this antiserum recognizes the protein we affinity purified using MAb 6F8 and then subjected to microsequence analysis. Additionally, the polyclonal serum recognizes a protein of similar molecular mass from grasshopper embryonic membranes. Taken together these data indicate that the sequence we have obtained is indeed fasciclin IV.

Four other cell surface proteins that label subsets of axon pathways in the insect nervous system (fasciclin I, fasciclin II, fasciclin III, and neuroglian) are capable of mediating homophilic cell adhesion when transfected into S2 cells in vitro (Snow et al., 1989; Elkins et al., 1990b; Grenningloh et al., 1990). To ask whether fasciclin IV can function as a homophilic cell adhesion molecule, the fasciclin IV cDNA with the complete ORF was placed under the control of the inducible metallothionein promoter (Bunch et al., 1988), transfected into S2 cells,

10

15

20

and assayed for its ability to promote adhesion in normally non-adhesive S2 cells. Following induction with copper, fasciclin IV was synthesized in these S2 cells as shown by Western blot analysis and cell surface staining of induced S2 cells with the polyclonal antiserum described above.

We observed no evidence for aggregation upon induction of fasciclin IV expression, thus suggesting that, in contrast to the other four proteins, fasciclin IV does not function as a homophilic cell adhesion molecule. Alternatively, fasciclin IV-mediated aggregation might require some further posttranslational modification, or co-factor, not supplied by the S2 cells, but clearly this protein acts differently in the S2 cell assay than the other four axonal glycoproteins previously tested. This is consistent with the pattern of fasciclin IV expression in the embryonic limb since only the epithelial cells and not the Ti1 growth cones express fasciclin IV, and yet antibody blocking experiments indicate that fasciclin IV functions in the epithelial guidance of these growth cones. Such results suggest that fasciclin IV functions in a heterophilic adhesion or signaling system.

Discussion

5

10

15

20

25

30

Fasciclin IV is expressed on groups of axons that fasciculate in the CNS, suggesting that, much like other insect axonal glycoproteins, it functions as a homophilic cell adhesion molecule binding these axons together. Yet, in the limb bud, fasciclin IV is expressed on a band of epithelium but not on the growth cones that reorient along this band, suggesting a heterophilic function. That fasciclin IV functions in a heterophilic rather than homophilic fashion is supported by the lack of homophilic adhesion in S2 cell aggregation assays. In contrast, fasciclin I, fasciclin II, and neuroglian all can function as homophilic cell adhesion molecules (Snow et al., 1989; Elkins et al., 1990b; Grenningloh et al., 1990).

cDNA sequence analysis indicates that fasciclin IV is an integral membrane protein with a novel sequence not related to any protein in the present data base. Thus, fasciclin IV represents a new type of protein that functions in the epithelial guidance of pioneer growth cones in the developing limb bud. Given its expression on a subset of axon pathways in the developing CNS, fasciclin IV functions in the guidance of CNS growth cones as well.

The results from the MAb blocking experiments illuminate several issues in Til growth cone guidance and axon morphogenesis in the limb. First, the most striking change in growth cone behavior in the limb is the cessation of proximal growth and initiation of circumferential extension of processes upon encountering the trochanter/coxa boundary region (Bentley and Caudy, 1983; Caudy and Bentley, 1987). This could be because the band of epithelial cells within the trochanter promotes circumferential growth, or because the cells comprising the trochanter/coxa boundary and the region just proximal to it are non-permissive or aversive for growth cone migration, or both. The extension of many axon branches across the trochanter/coxa boundary following treatment with MAb 6F8 suggests that the trochanter/coxa boundary cells, which do not express fasciclin IV, are not aversive or non-permissive. Thus the change in behavior at the boundary appears to be due to the ability of fasciclin IV expressing epithelial cells to promote circumferential extension of processes from the Til growth cones.

Secondly, treatment with MAb 6F8 results in frequent defasciculation of the axons of the two Ti1 neurons, and also formation of abnormal multiple axon branches, within the trochanter over fasciclin IV-expressing epithelial cells. Previous studies have shown that treatment with antibodies against ligands expressed on non-neural substrates (Landmesser et al., 1988), or putative competitive inhibitors of substrate ligands (Wang and Denburg, 1992) can promote defasciculation and increased axonal branching. Our results suggest that Ti1 axon:axon fasciculation and axon branching also are strongly influenced by interactions with substrate ligands, and that fasciclin IV appears to be a component of this interaction within the trochanter.

Thirdly, despite the effects of MAb 6F8 on axon branching, and on crossing the trochanter/coxa boundary, there remains a pronounced tendency for branches to grow ventrally both within the trochanter and within the distal region of the coxa. Consequently, all signals which can promote ventral migration of the growth cones have not been blocked by MAb 6F8 treatment. Antibody treatment may have a threshold effect in which ventral growth directing properties of fasciclin IV are more robust, and less incapacitated by treatment, than other features; alternatively, guidance information promoting ventral migration may be

15

25

independent of rasciclin IV. Time lapse video experiments to determine how the abnormal pathways we observe actually form can resolve these issues.

These results demonstrate that fasciclin IV functions as a guidance cue for the Ti1 growth cones just distal to the trochanter/coxa boundary, is required for these growth cones to stop proximal growth and spread circumferentially, and that the function of fasciclin IV in Ti1 pathway formation result from interactions between a receptor/ligand on the Ti1 growth cones and fasciclin IV on the surface of the band of epithelial cells results in changes in growth cone morphology and subsequent reorientation. Fasciclin IV appears to elicit this change in growth cone morphology and orientation via regulation of adhesion, a signal transduction function, or a combination of the two.

Experimental Procedures

Immunocytochemistry

5

10

Grasshopper embryos were obtained from a colony maintained at the U.C. 15 Berkeley and staged by percentage of total embryonic development (Bentley et al., 1979). Embryos were dissected in PBS, fixed for 40 min in PEM-FA [0.1 M PIPES (pH6.95), 2.0 mM EGTA, 1.0 mM MgSO₄, 3.7% formaldehyde], washed for 1 hr with three changes in PBT (1x PBS, 0.5% Triton X-100, 0.2% BSA), blocked for 30 min in PBT with 5% normal goat serum, and incubated overnight at 20 4°C in primary antibody. PBSap (1x PBS, 0.1% Saponin, o.2% BSA) was used in place of PBT with MAb 8G7. Antibody dilutions were as follows: MAb 6F8 1:1, polyclonal antisera directed against a fasciclin IV bacterial fusion protein (#98-3) 1:400; MAb 8G7 1:4; MAb 8C6 1:1. The embryos were washed for one hour in PBT with three changes, blocked for 30 min, and incubated in secondary antibody for at least 2 hr at room temperature. The secondary antibodies were HRPconjugated goat anti-mouse and anti-rat IgG (Jackson Immunoresearch Lab), and were diluted 1:300. Embryos were washed in PBT for one hour with three changes and then reacted in 0.5% diaminobenzidine (DAB) in PBT. The reaction was stopped with several washes in PBS and the embryos were cleared in a 30 glycerol series (50%, 70%, 90%), mounted and viewed under Nomarski or bright field optics. For double-labelled preparations the first HRP reaction was done in PBT containing 0.06% NiCl, followed by washing, blocking, and incubation

overnight in the second primary antibody. The second antibody was visualized with a DAB reaction as described above. Embryos cultured in the presence of monoclonal antibodies were fixed and incubated overnight in goat anti-HRP (Jackson Immunoresearch Labs) conjugated to RITC (Molecular Probes), washed for one hour in PBT with three changes, mounted in 90% glycerol, 2.5% DABCO (Polysciences), and viewed under epifluorescence. S2 cells were stained with polyclonal sera #98-3 diluted 1:400 and processed as described previously (Snow et al., 1989).

10 Monoclonal Antibody Blocking Experiments

In order to test for functional blocking, monoclonal antibody reagents were prepared as follows. Hybridoma supernatant was brought to 20% with H₂Osaturated NH₄SO₄, incubated in ice 1 hr, and spun at 15,000 g at 4°C for 20 min. The supernatant was brought to 56% with H₂O-saturated NH₄SO₄, incubated overnight at 4°C, spun as above. The pellet was resuspended in PBS using approximately 1/40 volume of the original hybridoma supernatant (often remaining a slurry) and dialyzed against 1x PBS overnight at 4°C with two changes. This reagent is referred to as "concentrated hybridoma supernatant." Purified IgG was obtained by using Immunopure Plus Immobilized Protein A IgG Purification Kit (Pierce) to isolate IgG from the concentrated hybridoma supernatant. Fab fragments were obtained using the ImmunoPure Fab Preparation Kit (Pierce) from the previously isolated IgGs. For blocking experiments each reagent was diluted into freshly made supplemented RPMI culture media (O'Connor et al., 1990) and dialyzed overnight at 4°C against 10 volumes of the same culture media. Dilutions were as follows: concentrated hybridoma supernatant 1:4; purified IgG 150mg/ml; Fab 75mg/ml.

Embryos for culture experiments were carefully staged to between 31 and 32% of development. As embryos in each clutch typically differ by less that 1% of embryonic development from each other, the growth cones of the Til neurons at the beginning of the culture period were located approximately in the mid-femur, well distal to the trochanter/coxa segment boundary. From each clutch at least two limbs were filleted and the Til neurons labelled with the lipophillic dye Di I (Molecular Probes) as described (O'Connor et al., 1990) in order to confirm the

15

20

25

precise location of the Ti1 growth cones. Prior to cutering, embryos were sterilized and dissected (Chang et al., 1992). The entire amnion and dorsal membrane was removed from the embryo to insure access of the reagents during culturing. Embryos were randomly divided into groups and cultured in one of the blocking reagents described above. Cultures were incubated with occasional agitation at 30°C for 30 hrs. At the end of the culture period embryos were fixed and processed for analysis as described above in immunocytochemistry.

For each culture experiment, the scoring of the Til pathway in each limb was confirmed independently by a second observer. There was no statistically significant variation between the two observers. Limbs from MAb cultured 10 embryos were compared to representative normal limbs from non-MAb cultured embryos and were scored as abnormal if any major deviation from the normal Til pathway was observed. The Til pathway was scored as abnormal for one or more of the following observed characteristics: (1) defasciculation for a minimum distance of approximately 25 mm anywhere along the pathway, (2) multiple axon 15 branches that extended ventrally within the trochanter, (3) presence of one or more axon branches that crossed the trochanter/coxa boundary dorsal to the Cx1 cells, but then turned ventrally in the coxa and contacted the Cx1 cells, (4) the presence of axon branches that crossed the trochanter/coxa segment boundary, did not turn ventrally, but continued proximally toward the CNS, and (5) failure of 20 ventrally extended axons within the trochanter to contact and reorient proximally to the Cx1 cells. For each MAb tested, the data are presented as a percentage of the abnormal Til pathways observed. The raw data are presented in Table 1.

25 Protein Affinity Purification and Microsequencing

Grasshopper fasciclin IV was purified by passing crude embryonic grasshopper lysate (Bastiani et al., 1987) over an Affi-Gel 15 column (Bio Rad) conjugated with the monoclonal antibody 6F8. Protein was eluted with 50 mM DEA (pH 11.5), 0.1% Lauryldimethylamine oxide (Cal Bio Chem), and 1mM 30 EDTA. Protein was then precipitated, denatured, modified at cysteines, and digested with either trypsin or Lys-C (Boehringer-Mannheim). Individual peptides were resolved by RP-HPLC and microsequenced (Applied Biosystems 4771 Microsequencer) using standard chemistry.

PCR Methods

15

20

25

30

DNA complementary to poly(A)+ RNA from 45%-50% grasshopper embryos was prepared (Sambrook et al., 1989). PCR was performed using Perkin Elmer Taq polymerase (Saiki et al., 1988), and partially degenerate (based on grasshopper codon bias) oligonucleotides in both orientations corresponding to a portion of the protein sequence of several fasciclin IV peptides as determined by microsequencing. These oligonucleotides were designed so as not to include all of the peptide-derived DNA sequence, leaving a remaining 9-12 base pairs that could be used to confirm the correct identity of amplified products. All possible combinations of these sequences were tried. 40 cycles were performed, the parameters of each cycle as follows: 96°C for one min; a sequentially decreasing annealing temperature (2°C/cycle, starting at 65°C and ending at 55°C for remaining 35 cycles) for 1 min; and at 72°C for one min. Reaction products were cloned into the Sma site of M13 mp10 and sequenced. Two products, 1074 bp and 288 bp in length, contained DNA 3' to the oligonucleotide sequences encoded the additional amino acid sequence of the fasciclin IV peptide from which the oligonuceotides were derived. These two fragments have one end in common, and the oligonucleotides used to amplify them correspond to the amino acid sequences MYVQFGEE and MDEAVPAF (fasciclin IV residue 29-386), and HTLMDEA and KNYVVRMDG (fasciclin IV residue 376-472).

cDNA Isolation and Sequence Analysis

Both PCR products were used to screen 1 X 10⁶ clones from a grasshopper embryonic cDNA library (Snow et al., 1988). 21 clones that hybridized to both fragments were recovered, and one 2600 bp clone was sequenced using the dideoxy chain termination method (Sanger et al., 1977) and Sequenase (US Biochemical Corp.). Templates were made from M13 mp10 vectors containing inserts generated by sonication of plasmid clones. One cDNA was completely sequenced on both strands using Oligonucleotides and double strand sequencing of plasmid DNA (Sambrook et al., 1989) to fill gaps. Two additional cDNAs were analyzed by double strand sequencing to obtain the 3' 402 bp of the transcript. All three cDNAs were used to construct a plasmid containing the entire transcript. The complete transcript sequence is 2860 bp in length with 452 bp of 5' and 217

bp of 3' untranslated sequences containing stop codons in all reading frames. The predicted protein sequence was analyzed using the FASTDB and BLASTP programs (Intelligenetics). The fasciclin IV ORF unambiguously contains 10 of the 11 peptide sequences determined by microsequencing the fasciclin IV trypsin and Lys-C peptides.

Generation of Polyclonal Antibodies From Bacterial Fusion Proteins

Bacterial trpE fusion proteins were constructed using pATH (Koerner et al., 1991) vectors, three restriction fragments encoding extracellular sequences, and one fragment (770 bp HindIII/Eco R1, which includes amino acids 476-730) encoding both extracellular and intracellular sequences (designated #98-3). Fusion proteins were isolated by making an extract of purified inclusion bodies (Spindler et al., 1984), and rats were immunized with ~70mg of protein emulsified in RIBI adjuvant (Immunochem Research). Rats were injected at two week intervals and serum was collected 7 days following each injection. Sera were tested histologically on grasshopper embryos at 45% of development. Construct #98-3 showed a strong response and exhibited a staining pattern identical to that of MAb 6F8. Two of the extracellular constructs responded weakly but also showed the fasciclin IV staining pattern. All pre-immune sera failed to stain grasshopper embryos.

S2 Cell Transfections, Aggregation Assays, and Western Analysis

A restriction fragment containing the full length fasciclin IV cDNA was cloned into pRmHa-3 (Bunch et al, 1988) and co-transformed into Drosophila S2 cells (Schneider, 1972) with the plasmid pPC4 (Jokerst et al., 1989), which confers a-amanitin resistance. S2 cells were transformed using the Lipofectin Reagent and recommended protocol (BRL) with minor modifications. All other S2 cell manipulations are essentially as described (Snow et al.,1989), including adhesion assays. Fasciclin IV expression in transformed cell lines was induced for adhesion assays and histology by adding CuSO₄ to 0.7 mM and incubating for at least 48 hrs. Northern analysis confirmed transcription of fasciclin IV and surface-associated staining of the S2 cells with polyclonal serum #98-3 strongly suggests fasciclin IV is being transported to the cell surface. Preparation of membranes

5

15

20

25

from S2 cells and from grasshopper embryos, PAGE, and Western blot were performed as previously described (Elkins et al., 1990b) except that signal was detected using the enhanced chemiluminescence immunodetection system kit (Amersham). Amount of protein per lane in each sample loaded: fasciclin IV protein, ~5 ng; S2 cell membranes, 40 mg; grasshopper membranes 80 mg. Amounts of protein loaded were verified by Ponceau S staining of the blot prior to incubation with the antibody.

References cited in Example I

Altschul et al. (1990) J. Mol. Biol. 215:403-410; Bastiani et al. (1992) Dev. Biol., 10 in press.; Bastiani et al. (1986) J. Neurosci. 6:3518-3531; Bastiani et al. (1986) J. Neurosci. 6:3542-3551; Bastiani et al. (1987) Cell 48:745-755; Bastiani et al. (1984) J. Neurosci. 4:2311-2328; Bentley and Caudy (1983) Nature 304:62-65; Bentley et al. (1979) J. Embryol. Exp. Morph. 54:47-74; Bentley and O'Connor (1992); Letourneau et al. (New York: Raven Press, Ltd.), pp. 265-282; Bunch et 15 al. (1988) Nucleic Acids Res. 16:1043-1061; Chang et al. (1992) Development 114:507-519; Caudy and Bentley (1987) Dev. Biol. 119:454-465; Chou and Fasman (1974) Biochemistry 13:222-245; Elkins et al. (1990a) Cell 60:565-575; Elkins (1990b) J. Cell Biol. 110:1825-1832; Goodman et al. (1981) J. Neurosci. 1:94-102; Grenningloh et al. (1990) Symp. Quant. Biol. 55:327-340; Grenningloh 20 et al. (1991) Cell 67:45-57; Harrelson and Goodman (1988) Science 242:700-708; Jacobs and Goodman (1989) J. Neurosci. 7:2402-2411; Jay and Keshishian (1990) Nature 348:548-551; Jokerst et al. (1989) Mol. Gen. Genet. 215:266-275; Koerner et al. (1991) Methods Enzymol. 194:477-490; Landmesser et al. (1988) Dev. Biol. 130:645-670; Lefcort and Bentley (1987) Dev. Biol. 119:466-480; Lefcort and 25 Bentley (1989) J. Cell. Biol. 108:1737-1749; O'Connor et al. (1990) J. Neurosci. ·10:3935-3946; Patel et al. (1989) Cell 58:955-968; Patel et al. (1987) Cell 48:975-988; Raper et al. (1984) J. Neurosci. 4:2329-2345; Saiki et al. (1988) Science 239:487-494; Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual 30 (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory); Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74:5463-5467; Schneider (1972) J. Embryol. Exp. Morphol. 27:353-365; Snow et al. (1989) Cell 59:313-323; Snow et al. (1988) Proc. Natl. Acad. Sci. USA 85:5291-5295; Spindler et al. (1984) J. Virol.

49:132-141; Wang and Denburg (1992) Neuron. 8:76-714; Wang et al. (1992) J. Cell Biol. 118:163-176; and Zinn et al. (1988) Cell 53:577-587.

Genbank Accession Number:

- 5 The accession number for the sequence reported in this paper is L00709.
- II. Isolation and characterization of Tribolium (SEQ ID NOs: 63 and 64) and Drosophila (SEQ ID NOs: 59 and 60) Semaphorin I, Drosophila Semaphorin II, (SEQ ID NOs: 61 and 62) Human Semaphorin III (SEQ ID NOs: 53 and 54) and Vaccinia Virus Semaphorin IV (SEQ ID NOs: 55 and 56) and Variola Major (smallpox) Virus Semaphorin IV (SEQ ID NOs: 65 and 66).

We used our G-Semaphorin I cDNA in standard low stringency screening methods (of both cDNA and genomic libraries) in an attempt to isolate a potential Semaphorin I homologue from *Drosophila*. We were unsuccessful in these screens. Since the sequence was novel and shared no similarity to anything else in the data base, we then attempted to see if we could identify a Semaphorin I homologue in other, more closely related insects. If possible, we would then compare these sequences to find the most conserved regions, and then to use probes (i.e., oligonucleotide primers for PCR) based on these conserved regions to find a Drosophila homologue.

In the process, we used the G-Semaphorin I cDNA in low stringency screens to clone Semaphorin I cDNAs from libraries made from locust Locusta migratoria embryonic RNA and from a cDNA embryonic library from the cricket Acheta domestica. We used PCR to clone genomic fragments from genomic DNA in the beetle Tribolium, and from the moth Manduca. We then used the Tribolium genomic DNA fragment to isolate cDNA clones and ultimately sequenced the complete ORF for the Tribolium cDNA.

In the meantime, we used the partial *Tribolium* and *Manduca* sequences in combination with the complete grasshopper sequence to identify conserved regions that allowed us to design primers for PCR in an attempt to clone a *Drosophila* Semaphorin I homologue. Several pairs of primers generated several different bands, which were subcloned and sequenced and several of the bands gave partial

sequences of the Drosophila Semaphorin homologue. One of the bands gave a partial sequence of what was clearly a different, more divergent gene, which we call D-Semaphorin II.

Based on the sequence of PCR products, we knew we had identified two different Drosophila genes, one of which appeared to be the Semaphorin I homologue, and the other a second related gene. The complete ORF sequence of the D-Semaphorin I homologue revealed an overall structure identical to G-Semaphorin I: a signal sequence, an extracellular domain of around 550 amino acids containing 16 cysteines, a transmembrane domain of 25 amino acids, and a 10 cytoplasmic domain of 117 amino acids. When we had finished the sequence for D-Semaphorin II, we were able to begin to run homology searches in the data base, which revealed some of its structural features further described herein. The Semaphorin II sequence revealed a different structure: a signal sequence of 16 amino acids, a ~525 amino acid domain containing 16 cysteines, with a single immunoglobulin (Ig) domain of 66 amino acids, followed by a short unique region of 73 amino acids. There is no evidence for either a transmembrane domain or a potential phospholipid linkage in the C-terminus of this protein. Thus, it appears that the D-Semaphorin II protein is secreted from the cells that produce it. The grasshopper, Tribolium, and Drosophila Semaphorin I cDNA sequences, as well as the sequence of the D-Semaphorin II cDNA, are shown herein. In addition, we 20 used this same technique to identify Semaphorin I genes in a moth, Manduca sexta, a locust, Locusta migratoria, and a cricket, Acheta domestica.

With this large family of insect Semaphorin genes, we identified a number of good stretches of the right amino acids (with the least degeneracy based on their codons) with strong homology for designing primers for PCR to look for human genes. We designed a set of oligonucleotide primers, and plated out several human cDNA libraries: a fetal brain library (Stratagene), and an adult hippocampus library. We ultimately obtained a human cDNA PCR bands of the right size that did not autoprime and thus were good candidates to be bonafide Semaphorin-like cDNAs from humans. These bands were purified, subcloned, and sequenced.

Whole-mount in situ hybridization experiments showed that D-Semaphorin I and II are expressed by different subsets of neurons in the embryonic CNS. D-Semaphorin I is expressed by certain cells along the midline as well as by other

25

30

neurons, whereas D-Semaphorin II is not expressed at the midline, but is expressed by a different subset of neurons. In addition, D-Semaphorin II is expressed by a subset of muscles prior to and during the period of innervation by specific motoneuron. On the polytene chromosomes, the D-Semaphorin I gene maps to (gene-band-chromosome) 29E1-22L and that of D-Semaphorin II to 53C9-102R. We have identified loss of function mutations in the D-Semaphorin I gene and a pair of P-element transposon insertions in the D-Semaphorin II gene which appear to cause severe phenotypes.

When we lined up the G-Semaphorin I, T-Semaphorin I, D-Semaphorin I, and D-Semaphorin II sequences and ran the sequences through a sequence data base in search of other sequences with significant similarity, we discovered a curious finding: these Semaphorins share sequence similarity with the A39R open reading frame (ORF) from Vaccinia virus and the A43R ORF from Variola Major (smallpox) virus and we discovered that the amino acids shared with the virus ORF were in the same regions where the insect proteins shared their greatest similarity. The viral ORF began with a putative signal sequence, continued for several hundred amino acids with sequence similarity to the Semaphorin genes, and then ended without any membrane linkage signal (suggesting that the protein as made by the infected cell would likely be secreted).

We reasoned that the virus semaphorins were appropriated host proteins advantageously exploited by the viruses, which would have host counterparts that most likely function in the immune system to inhibit or decrease an immune response, just as in the nervous system they appear to function by inhibiting growth cone extension. Analogous to situations where viruses are thought to encode a secreted form of a host cellular receptor, here the virus may cause the 25 infected cell to make a lot of the secreted ligand to mimic an inhibitory signal and thus help decrease the immune response.

III. Isolation and characterization of Murine CNS Semaphorin III Receptor using Epitope Tagged Human Semaphorin III (hSIII)

mRNA was isolated from murine fetal brain tissue and used to construct a cDNA library in a mammalian exprssion vector, pCMX, essentially as in Davis et al. (1991) Science 253, 59.

5

10

15

20

30

The transfection and screening procedure is modified from Lin et al (1992) Cell 68, 775. COS cells grown on glass slide flaskettes are transfected with pools of the cDNA clones, allowed to bind radioiodinated hSIII truncated at the C-terminus end of the semaphorin domain. In parallel, similarly treated COS cells are allowed to bind unlabelled human semaphorin III truncated at the C-terminus end of the semaphorin domain and there joined to a 10-amino acid extension derived from the human c-myc proto-oncogene product. This modified hSIII allows the identification of hSIII receptors with the use of the tagged ligand as a bridge between the receptor and a murine monoclonal antibody which is specific for an epitope in the c-myc tag. Accordingly, after binding unlabelled hSIII the cells are exposured to the monoclonal which may be labeled directly or subsequently decorated with a secondary anti-mouse labeled antibody for enhanced signal amplification.

Cells are then fixed and screened using dark-field microsopy essentially as

in Lin et al. (supra). Positive clones are identified and sequence analysis of
murine CNS Semphorin III receptor cDNA clones by the dideoxy chain termination
method is used to construct full-length receptor coding sequences.

IV. Protocol for Protein-Protein H-Sema III - H-Sema III Receptor DrugScreening Assay.

A. Reagents:

- Neutralite Avidin: 20 μ g/ml in PBS.
- Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hr, RT.
- Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 0.25 mM EDTA, 1%
- 25 glycerol, 0.5 % NP-40, 50 mM BME, 1 mg/ml BSA, protease inhibitor cocktail.
 - ³³P H-Sema III 10x stock: 10⁻⁸ 10⁻⁶ M "cold" truncated (Semaphorin domain) H-Sema III supplemented with 50,000-500,000 cpm of labeled and truncated H-Sema III (Beckman counter). Store at 4°C during screening.
- Protease inhibitor cocktail (100X): 1 mg Trypsin Inhibitor (BMB # 109894), 1
 30 mg Aprotinin (BMB # 236624), 2.5 mg Benzamidine (Sigma # B-6506), 2.5 mg
 Leupeptin (BMB # 1017128), 1 mg APMSF (BMB # 917575), and 0.2m M NaVo₃
 (Sigma # S-6508) in 10 ml of PBS.

- H-Sema III Receptor: 10⁻⁸ - 10⁻⁶ M of biotinylated H-Sema III biotinylated receptor in PBS.

- B. Preparation of assay plates:
 - Coat with 120 μ l of stock N-Avidin per well at least 1 hr at 25°C or
- 5 overnight at 4°C.
 - Wash 2X with 200 µl PBS.
 - Block with 150 μ l of blocking buffer.
 - Wash 2X with 200 μ l PBS.
 - C. Assay:
- 10 Add 40 μ l assay buffer/well.
 - Add 10 μl candidate agent.
 - Add 10 μ l ³³P-H-Sema III (5,000-50,000 cpm/0.1-10 pmoles/well =10⁻⁹-10⁻⁷ M final concentration).
 - Mix
- Incubate 1 hr. at 25°C.
 - Add 40 µl H-Sema III receptor (0.1-10 pmoles/40 ul in assay buffer)
 - Incubate 1 hr at 25°C.
 - Stop the reaction by washing 4X with 200 μ l PBS.
 - Add 150 μl scintillation cocktail.
- 20 Count in Topcount.
 - D. Assay controls (located on each plate):
 - a. Non-specific binding (no receptor added)
 - b. Soluble (non-biotinylated receptor) at 80% inhibition.
- It is evident from the above results that one can use the methods and compositions disclosed herein for making and identifying diagnostic probes and therapeutic drugs. It will also be clear to one skilled in the art from a reading of this disclosure that advantage can be taken to effect alterations of semaphorin responsiveness in a host.
- All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

 Although the foregoing invention has been described in some detail by way of

illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

SEQUENCE LISTINGS:

Sequences 53-68 show the nucleotide and deduced amino-acid sequences of human semaphorin III, vaccinia virus semaphorin IV, grasshopper semaphorin I, Drosophila semaphorin II, Tribolium semaphorin I and variola major virus semaphorin IV.

SEQUENCE LISTING

```
10
      (1) GENERAL INFORMATION:
           (i) APPLICANT: Goodman, Corey S.
                            Kolodkin, Alex L.
                           Matthes, David
 15
                           Bentley, David R.
                           O'Connor, Timothy
          (ii) TITLE OF INVENTION: The Semaphorin Gene Family
 20
         (iii) NUMBER OF SEQUENCES: 66
          (iv) CORRESPONDENCE ADDRESS:
                 (A) ADDRESSEE: FLEHR HOHBACH TEST ALBRITTON & HERBERT
                 (B) STREET: 4 Embarcadero Center, Suite 3400
 25
                 (C) CITY: San Francisco
                (D) STATE: CA
                (E) COUNTRY: USA
                (F) ZIP: 94111-4187
30
           (v) COMPUTER READABLE FORM:
                (A) MEDIUM TYPE: Floppy disk
                (B) COMPUTER: IBM PC compatible
                (C) OPERATING SYSTEM: PC-DOS/MS-DOS
                (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
35
          (vi) CURRENT APPLICATION DATA:
                (A) APPLICATION NUMBER: Not yet assigned (B) FILING DATE: 13-SEP-1994
                (C) CLASSIFICATION:
40
       (viii) ATTORNEY/AGENT INFORMATION:
                (A) NAME: Osman, Richard A. (B) REGISTRATION NUMBER: 36,627
                (C) REFERENCE/DOCKET NUMBER: FP-58750-PC/RAO
45
         (ix) TELECOMMUNICATION INFORMATION:
                (A) TELEPHONE: (415) 781-1989
                (B) TELEFAX: (415) 398-3249
                (C) TELEX: 910 277299 FHT UR
50
     (2) INFORMATION FOR SEQ ID NO:1:
          (i) SEQUENCE CHARACTERISTICS:
55
                (A) LENGTH: 6 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
60
         (ii) MOLECULE TYPE: peptide
         (ix) FEATURE:
```

```
(A) Name / KEY: Peptide
               (B) LOCATION: 1..6
               (D) OTHER INFORMATION: /label= SEQ01
                      /note= "Xaa denotes D or E at residue #1; Q,K,R,A
5
                      or N at residue #3; and Y,F or V at residue #5"
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
         Xaa Cys Xaa Asn Xaa Ile
10
    (2) INFORMATION FOR SEQ ID NO:2:
15
         (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 6 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
20
        (ii) MOLECULE TYPE: peptide
        (ix) FEATURE:
               (A) NAME/KEY: Peptide
25
               (B) LOCATION: 1..6
               (D) OTHER INFORMATION: /label= SEQ02
                      /note= "Xaa denotes Q,K,R,A or N at residue #2;
                      Y,F or V at residue #4; and R,K,Q or T at residue
30
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
         Cys Xaa Asn Xaa Ile Xaa
35
    (2) INFORMATION FOR SEQ ID NO:3:
          (i) SEQUENCE CHARACTERISTICS:
40
               (A) LENGTH: 7 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
45
         (ii) MOLECULE TYPE: peptide
         (ix) FEATURE:
               (A) NAME/KEY: Peptide
               (B) LOCATION: 1..7
50
               (D) OTHER INFORMATION: /label= SEQ03
                      /note= "Xaa denotes N or G at residue #4; A,S or N
                      at residue #5; Y,F,H or G at residue #6; and
                      K,R,H,N or Q at residue #7"
55
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
          Cys Gly Thr Xaa Xaa Xaa Xaa
60
     (2) INFORMATION FOR SEQ ID NO:4:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 8 amino acids (B) TYPE: amino acid
65
               (C) STRANDEDNESS: single
```

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide 5 (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ04 /note= "Xaa denotes N or G at residue #4; and A,S or N at residue #5" 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: Cys Gly Thr Xaa Xaa Xaa Pro 15 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids 20 (B) TYPE: amino acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..10 (D) OTHER INFORMATION: /label= SEQ05 30 /note= "Xaa denotes N or G at residue #4; and C or D at residue #10" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: 35 Cys Gly Thr Xaa Xaa Xaa Xaa Pro Xaa Xaa 5 (2) INFORMATION FOR SEQ ID NO:6: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: peptide (ix) FEATURE: 50 (A) NAME/KEY: Peptide (B) LOCATION: 1..13 (D) OTHER INFORMATION: /label= SEQ06 /note= "Xaa denotes C or D at residue #10; and Y or I at residue #13" 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Cys Gly Thr Xaa Xaa Xaa Xaa Pro Xaa Xaa Xaa Xaa Xaa 60

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS: 65
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 5 (D) OTHER INFORMATION: /label= SEQ07 /note= "Xaa denotes R,I,Q or V at residue #1; G or A at residue #2; L,V or K at residue #3; C or S at residue #4; F or Y at residue #6; and D or N at residue #7" 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: Xaa Xaa Xaa Yaa Pro Xaa Xaa 15 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 25 (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 30 (D) OTHER INFORMATION: /label= SEQ08 /note= "Xaa denotes C or S at residue #1; F or Y at residue #3; D or N at residue #4; D,E,R or K at residue #6; and H,L or D at residue #7" 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Xaa Pro Xaa Xaa Pro Xaa Xaa 40 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (\bar{A}) LENGTH: 9 amino acids 45 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 50 (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..9 (D) OTHER INFORMATION: /label= SEQ09 55 /note= "Xaa denotes G or A at residue #3; C or S at residue #5; and D or N at residue #8" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: 60 Gly Xaa Xaa Xaa Pro Tyr Xaa Pro 5 1 (2) INFORMATION FOR SEQ ID NO:10: 65 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7 amino acids

TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 10 (D) OTHER INFORMATION: /label= SEQ10 /note= "Xaa denotes F or Y at residue #2; G or A at residue #4; and V,N or A at residue #6" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: 15 Leu Xaa Ser Xaa Thr Xaa Ala 20 (2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid 25 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 30 (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..9 (D) OTHER INFORMATION: /label= SEQ11 /note= "Xaa denotes F or Y at residue #2; D or E 35 at residue #8; and F or Y at residue #9" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: Leu Xaa Ser Xaa Thr Xaa Ala Xaa Xaa 40 (2) INFORMATION FOR SEQ ID NO:12: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide 55 (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ12 /note= "Xaa denotes F or Y at residue #1; G or A at residue #3; V,N or A at residue #5; D or E at residue #7; and F or Y at residue #8" 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: Xaa Ser Xaa Thr Xaa Ala Xaa Xaa

(2) INFORMATION FOR SEQ ID NO:13:

65

```
(i) SEQUEN
                       CHARACTERISTICS:
               (A) LENGTH: 7 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
 5
        (ii) MOLECULE TYPE: peptide
        (ix) FEATURE:
               (A) NAME/KEY: Peptide (B) LOCATION: 1..7
10
               (D) OTHER INFORMATION: /label= SEQ13
                      /note= "Xaa denotes N or D at residue #2; and A or
                      K at residue #3"
15
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
         Leu Xaa Xaa Pro Asn Phe Val
20
    (2) INFORMATION FOR SEQ ID NO:14:
          (i) SEQUENCE CHARACTERISTICS:
25
               (A) LENGTH: 5 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
30
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
          Phe Phe Phe Arg Glu
35
     (2) INFORMATION FOR SEQ ID NO:15:
          (i) SEQUENCE CHARACTERISTICS:
40
               (A) LENGTH: 6 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
45
         (ii) MOLECULE TYPE: peptide
         (ix) FEATURE:
               (A) NAME/KEY: Peptide
50
               (B) LOCATION: 1..6
                (D) OTHER INFORMATION: /label= SEQ15
                       /note= "Xaa denotes F or Y at residue #3; and T or
                       N at residue #6"
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
55
          Phe Phe Xaa Arg Glu Xaa
                           5
          1
60
     (2) INFORMATION FOR SEQ ID NO:16:
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 6 amino acids
65
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
```

(ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..6 5 (D) OTHER INFORMATION: /label= SEQ16 /note= "Xaa denotes T or N at residue #5" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: 10 Phe Phe Arg Glu Xaa Ala 1 15 (2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid 20 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..6 (D) OTHER INFORMATION: /label= SEQ17 /note= "Xaa denotes F or Y at residue #2; and T or 30 N at residue #5" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17: Phe Xaa Arg Glu Xaa Ala 35 (2) INFORMATION FOR SEQ ID NO:18: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide 50 (B) LOCATION: 1..6 (D) OTHER INFORMATION: /label= SEQ18 /note= "Xaa denotes F or Y at residue #4" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: 55 Tyr Phe Phe Xaa Arg Glu (2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS:

- 60
 - - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

65

(ix) FEATUR (A) NAME/KEY: Peptide (B) LOCATION: 1..6 (D) OTHER INFORMATION: /label= SEQ19 /note= "Xaa denotes F or Y at residue #1; and F or 5 Y at residue #4" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: 10 Xaa Phe Phe Xaa Arg Glu (2) INFORMATION FOR SEQ ID NO:20: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 20 (ii) MOLECULE TYPE: peptide (ix) FEATURE: 25 (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ20 /note= "Xaa denotes F or Y at residue #1; F or Y
at residue #2; F or Y at residue #3; and T or N at residue #6" 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: Xaa Xaa Xaa Arg Glu Xaa Ala 35 (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 50 (D) OTHER INFORMATION: /label= SEQ21 /note= "Xaa denotes I or V at residue #1; F or Y at residue #2; F or Y at residue #4; and F or Y at residue #5" 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: Xaa Xaa Phe Xaa Xaa Arg Glu 60 (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids 65

49

(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

```
(ii) MOLECULE TYPE: peptide
           (ix) FEATURE:
                  (A) NAME/KEY: Peptide
   5
                  (B) LOCATION: 1...7
                  (D) OTHER INFORMATION: /label= SEQ22
                         /note= "Xaa denotes K,F or Y at residue #2; F or Y
                         at residue #4; F,Y,I or L at residue #5; F,Y,I or L at residue #6; and F or Y at residue #7"
 10
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
           Asp Xaa Val Xaa Xaa Xaa
 15
      (2) INFORMATION FOR SEQ ID NO:23:
            (i) SEQUENCE CHARACTERISTICS:
 20
                 (A) LENGTH: 8 amino acids
                 (B) TYPE: amino acid
                 (C) STRANDELNESS: single
                 (D) TOPOLOGY: linear
 25
          (ii) MOLECULE TYPE: peptide
          (ix) FEATURE:
                 (A) NAME/KEY: Peptide
                 (B) LOCATION: 1..8
 30
                 (D) OTHER INFORMATION: /label= SEQ23
                        /note= "Xaa denotes V or I at residue #1; F or Y
                        at residue #2; F,Y,I or L at residue #3; F,Y,I or L at residue #4; R or T at residue #6; and T or N
                        at residue #8"
35
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
           Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa
40
     (2) INFORMATION FOR SEQ ID NO:24:
           (i) SEQUENCE CHARACTERISTICS:
45
                (A) LENGTH: 8 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
50
         (ii) MOLECULE TYPE: peptide
         (ix) FEATURE:
                (A) NAME/KEY: Peptide
(B) LOCATION: 1..8
55
                (D) OTHER INFORMATION: /label= SEQ24
                       /note= "Xaa denotes V or I at residue #1; F or Y
                       at residue #2; F,Y,I or L at residue #3; F,Y,I or
                       L at residue #4; F or Y at residue #5; R or T at
                       residue #6; E,D or V at residue #7; and T or N at
60
                       residue #8"
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
          Xaa Xaa Xaa Xaa Xaa Xaa Xaa
65
```

(2) INFORMATION FOR SEQ ID NO:25:

```
CHARACTERISTICS:
         (i) SEQUEN
              (A) LENGTH: 7 amino acids
              (B) TYPE: amino acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
5
        (ii) MOLECULE TYPE: peptide
        (ix) FEATURE:
              (A) NAME/KEY: Peptide
10
              (B) LOCATION: 1..7
              (D) OTHER INFORMATION: /label= SEQ25
                     /note= "Xaa denotes F or Y at residue #2; and C or
                     S at residue #5"
15
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
         Glu Xaa Ile Asn Xaa Gly Lys
20
    (2) INFORMATION FOR SEQ ID NO:26:
         (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 7 amino acids
25
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
30
         (ix) FEATURE:
               (A) NAME/KEY: Peptide
               (B) LOCATION: 1..7
               (D) OTHER INFORMATION: /label= SEQ26
35
                      /note= "Xaa denotes F or Y at residue #1; and A,V
                      or I at residue #7"
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
40
          Xaa Ile Asn Cys Gly Lys Xaa
                          5
          1
     (2) INFORMATION FOR SEQ ID NO:27:
45
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 7 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
50
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
         (ix) FEATURE:
55
               (A) NAME/KEY: Peptide
               (B) LOCATION: 1..7
               (D) OTHER INFORMATION: /label= SEQ27
                      /note= "Xaa denotes V or I at residue #2; A or G
                      at residue #3; R or Q at residue #4; and V or I at
 60
                      residue #5"
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
          Arg Xaa Xaa Xaa Cys Lys
 65
```

```
(2) INFORMATION FOR SEQ ID NO:28:
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 9 amino acids (B) TYPE: amino acid
  5
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
 10
          (ix) FEATURE:
                 (A) NAME/KEY: Peptide
                 (B) LOCATION: 1..9
                 (D) OTHER INFORMATION: /label= SEQ28
 15
                        /note= "Xaa denotes V or I at residue #2; R or Q
                        at residue #4; and V or I at residue #5"
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
 20
           Arg Xaa Xaa Xaa Cys Xaa Xaa Asp
      (2) INFORMATION FOR SEQ ID NO:29:
 25
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 13 amino acids
                (B) TYPE: amino acid
(C) STRANDEDNESS: single
30
                (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
          (ix) FEATURE:
35
                (A) NAME/KEY: Peptide
                (B) LOCATION: 1..13
                (D) OTHER INFORMATION: /label= SEQ29
                       /note= "Xaa denotes V, A or I at residue #3; and
                       V,A or I at residue #8"
40
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:
          Gly Lys Xaa Xaa Xaa Xaa Arg Xaa Xaa Xaa Cys Lys
45
     (2) INFORMATION FOR SEQ ID NO:30:
          (i) SEQUENCE CHARACTERISTICS:
50
                (A) LENGTH: 7 amino acids
                (B) TYPE: amino acid (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
55
         (ii) MOLECULE TYPE: peptide
         (ix) FEATURE:
               (A) NAME/KEY: Peptide
               (B) LOCATION: 1..7
60
               (D) OTHER INFORMATION: /label= SEQ30
                       /note= "Xaa denotes R,K or N at residue #1; T,A or
                       S at residue #3; T,A or S at residue #4; F,Y or L
                       at residue #5; and K or R at residue #7"
65
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:
          Xaa Trp Xaa Xaa Xaa Leu Xaa
```

```
(2) INFORMATION OR SEQ ID NO:31:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 8 amino acids
              (B) TYPE: amino acid
5
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: peptide
10
        (ix) FEATURE:
              (A) NAME/KEY: Peptide
              (B) LOCATION: 1..8
               (D) OTHER INFORMATION: /label= SEQ31
                     /note= "Xaa denotes F or Y at residue #1; K or R
15
                     at residue #3; A or S at residue #4; and N or I at
                     residue #7"
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:
20
         Xaa Leu Xaa Xaa Arg Leu Xaa Cys
                          5
    (2) INFORMATION FOR SEQ ID NO:32:
25
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 6 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
30
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
35
         (ix) FEATURE:
               (A) NAME/KEY: Peptide
               (B) LOCATION: 1..6
               (D) OTHER INFORMATION: /label= SEQ32
                      /note= "Xaa denotes N or I at residue #1; I or V
                      at residue #4; and P or S at residue #5"
40
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
          Xaa Cys Ser Xaa Xaa Gly
45
     (2) INFORMATION FOR SEQ ID NO:33:
          (i) SEQUENCE CHARACTERISTICS:
 50
               (A) LENGTH: 9 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
 55
         (ii) MOLECULE TYPE: peptide
         (ix) FEATURE:
                (A) NAME/KEY: Peptide
                (B) LOCATION: 1..9
 60
                (D) OTHER INFORMATION: /label= SEQ33
                       /note= "Xaa denotes T, A or S at residue #2; T, A or
                       S at residue #3; F,Y or L at residue #4; and
                       A,S,V,I or L at residue #7"
 65
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
```

Trp Xaa Xaa Xaa Leu Lys Xaa Xaa Leu 1

```
(2) INFORMATION FOR SEQ ID NO:34:
            (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 11 amino acids
                 (B) TYPE: amino acid
 10
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
 15
          (ix) FEATURE:
                 (A) NAME/KEY: Peptide (B) LOCATION: 1..11
                 (D) OTHER INFORMATION: /label= SEQ34
                        /note= "Xaa denotes T, A or S at residue #2; and
 20
                        T,A or S at residue #3"
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
           Trp Xaa Xaa Xaa Leu Lys Xaa Xaa Leu Xaa Cys
 25
      (2) INFORMATION FOR SEQ ID NO:35:
 30
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 11 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
35
          (ii) MOLECULE TYPE: peptide
          (ix) FEATURE:
                (A) NAME/KEY: Peptide (B) LOCATION: 1..11
40
                (D) OTHER INFORMATION: /label= SEQ35
                       /note= "Xaa denotes T or S at residue #3"
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:
45
          Trp Xaa Xaa Xaa Leu Lys Xaa Xaa Leu Xaa Cys
                           5
50
     (2) INFORMATION FOR SEQ ID NO:36:
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 7 amino acids
               (B) TYPE: amino acid
55
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
60
         (ix) FEATURE:
               (A) NAME/KEY: Peptide
               (B) LOCATION: 1..7
               (D) OTHER INFORMATION: /label= SEQ36
                      /note= "Xaa denotes F or Y at residue #1; F or Y
65
                      at residue #2; and N or D at residue #3"
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
```

Xaa Xaa Xaa Ju Ile Gln Ser

```
(2) INFORMATION FOR SEQ ID NO:37: .
5
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 7 amino acids (B) TYPE: amino acid
               (C) STRANDEDNESS: single
10
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
15
         (ix) FEATURE:
               (A) NAME/KEY: Peptide
               (B) LOCATION: 1..7
               (D) OTHER INFORMATION: /label= SEQ37
                       /note= "Xaa denotes F or Y at residue #1; F or Y
                       at residue #3; F or Y at residue #4; F or Y at
20
                       residue #5; and N or D at mesidue #6"
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:
          Xaa Pro Xaa Xaa Xaa Glu
25
     (2) INFORMATION FOR SEQ ID NO:38:
30
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 7 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single (D) TOPOLOGY: linear
35
         (ii) MOLECULE TYPE: peptide
          (ix) FEATURE:
                (A) NAME/KEY: Peptide
40
                (B) LOCATION: 1..7
                (D) OTHER INFORMATION: /label= SEQ38
                        /note= "Xaa denotes V,I or L at residue #4; and F or Y at residue #7"
45
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
          Gly Ser Ala Xaa Cys Xaa Xaa
50
     (2) INFORMATION FOR SEQ ID NO:39:
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 8 amino acids
 55
                 (B) TYPE: amino acid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
 60
          (ix) FEATURE:
                 (A) NAME/KEY: Peptide (B) LOCATION: 1..8
                 (D) OTHER INFORMATION: /label= SEQ39
 65
                        /note= "Xaa denotes V,I or L at residue #3; and F
                         or Y at residue #6"
```

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39
           Ser Ala Xaa Cys Xaa Xaa Xaa Met
  5
      (2) INFORMATION FOR SEQ ID NO:40:
           (i) SEQUENCE CHARACTERISTICS:
 10
                 (A) LENGTH: 7 amino acids
                 (B) TYPE: amino acid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
 15
          (ii) MOLECULE TYPE: peptide
          (ix) FEATURE:
                (A) NAME/KEY: Peptide
                (B) LOCATION: 1..7
 20
                (D) OTHER INFORMATION: /label= SEQ40
                        /note= "Xaa denotes N or A at residue #3; and P or
                       A at residue #6"
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
 25
           Asn Ser Xaa Trp Leu Xaa Val
                            5
 30
     (2) INFORMATION FOR SEQ ID NO:41:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 7 amino acids
                (B) TYPE: amino acid
(C) STRANDEDNESS: single
35
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
40
         (ix) FEATURE:
                (A) NAME/KEY: Peptide
                (B) LOCATION: 1..7
                (D) OTHER INFORMATION: /label= SEQ41
                       /note= "Xaa denotes V,L or I at residue #1; and
45
                       E,D,Y,S or F at residue #3"
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
          Xaa Pro Xaa Pro Arg Pro Gly
50
     (2) INFORMATION FOR SEQ ID NO:42:
55
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 9 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
60
         (ii) MOLECULE TYPE: peptide
         (ix) FEATURE:
               (A) NAME/KEY: Peptide (B) LOCATION: 1..9
65
               (D) OTHER INFORMATION: /label= SEQ42
                      /note= "Xaa denotes V,L or I at residue #1; and R
```

or A at residue #5"

(xi) SEQUENCE SECRIPTION: SEQ ID NO: 42: Xaa Pro Xaa Pro Xaa Pro Gly Xaa Cys 5 (2) INFORMATION FOR SEQ ID NO:43: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids 10 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 15 (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ43 20 /note= "Xaa denotes E,D,Y,S or F at residue #2; and T,Q or S at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43: 25 Pro Xaa Pro Arg Pro Gly Xaa Cys (2) INFORMATION FOR SEQ ID NO:44: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 35 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 40 (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..6 (D) OTHER INFORMATION: /label= SEQ44 /note= "Xaa denotes H,F or Y at residue #3; and A or G at residue #5" 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44: Asp Pro Xaa Cys Xaa Trp 50 (2) INFORMATION FOR SEQ ID NO:45: (i) SEQUENCE CHARACTERISTICS: 55 (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 60 (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..6 65 (D) OTHER INFORMATION: /label= SEQ45 /note= "Xaa denotes H,F or Y at residue #2; and A

or G at residue #4"

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:
           Pro Xaa Cys Xaa Trp Asp
  5
      (2) INFORMATION FOR SEQ ID NO:46:
           (i) SEQUENCE CHARACTERISTICS:
 10
                (A) LENGTH: 7 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
 15
          (ii) MOLECULE TYPE: peptide
          (ix) FEATURE:
                (A) NAME/KEY: Peptide
                (B) LOCATION: 1..7
 20
                (D) OTHER INFORMATION: /label= SEQ46
                       /note= "Xaa denotes A or G at residue #5"
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:
 25
          Asp Pro Xaa Cys Xaa Trp Asp
     (2) INFORMATION FOR SEQ ID NO:47:
30
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 12 amino acids
                (B) TYPE: amino acid
(C) STRANDEDNESS: single
35
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:
40
          Cys Xaa Xaa Xaa Asp Pro Xaa Cys Xaa Trp Asp
45
    (2) INFORMATION FOR SEQ ID NO:48:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 11 amino acids
               (B) TYPE: amino acid
50
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
55
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:
         Cys Xaa Xaa Xaa Asp Pro Xaa Cys Xaa Trp Asp
                          5
                                               10
60
    (2) INFORMATION FOR SEQ ID NO:49:
         (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 10 amino acids
65
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
```

(D) TOPOLOGY: linear

		(ii)	MOLE	CUL	TYP	E: p	epti	.de				•				
		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q II	NO:	49:					
5		Cys 1	Xaa	Xaa .	Asp	Pro 5	Xaa	CÀa	Xaa	Trp	Asp 10					
10	(2)	INFO	RMATI	ON F	OR S	EQ I	D NC	:50:	:							
15		(i)	(B)	LENCE TYP STR TOP	GTH: E: & ANDE	: 15 mino EDNES	amir o aci SS: s	no ad id sing:	cids							
		(ii)	MOLE	CULE	TYI	PE: 1	pept:	ide								
20		(xi)	SEQU	JENCE	DES	SCRIE	PTIO	1: S	EQ II	ои с	:50:					
20		Cys 1	Xaa	Xaa	Сув	Xaa 5	Xaa	Xaa	Xaa	Asp	Xaa 10	Xaa	Cys	Xaa	Trp	Asp 15
25	(2)	INFO	RMAT	ON F	OR S	SEQ :	ID N	0:51	:							
30		(i)	(B)	JENCE) LEN) TYP) STF) TOP	IGTH PE: 3 RANDI	: 14 amine EDNE:	ami: o ac SS:	no a id sing	cids						٠	
		(ii)	MOL	ECULI	TY:	PE:	pept	ide								
35		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	סא ס	:51:					
		Cys 1	Xaa	Xaa	Сув	Xaa 5	Xaa	Xaa	Asp	Хаа	10	СЛв	Хаа	Trp	Asp	
40	(2)	INFO	ORMAT	ION I	FOR	SEQ	ID N	0:52	:							
45		(i)	(B	UENC:) LEI) TY:) ST:) TO	NGTH PE: RAND	: 13 amin EDNE	ami o ac SS:	no a id sinq	cids	3						
50		(ii)) MOL	ECUL.	E TY	PE:	pept	ide								
50		(xi) SEQ	UENC	E DE	SCRI	PTIC	on: s	SEQ I	D NO	52:					
55		Cys 1	в Хаа	. Xaa	Сув	5 Xaa	a Xaa	a Yal	y Xaa	a Xa	a Cys 10	s Xaa	Tr) Asp	•	
	(2)) INF	ORMAI	NOI	FOR	SEQ	ID I	10:5	3:							
60		(i	(E	QUENC A) LE B) TY C) SI O) TO	NGTI PE: RANI	nuc DEDNI	501 15 c E 5 :	base aci dou	pai: d	rs						
65		(ii) MOI	LECUI	E T	YPE:	cDN.	A			•					
		(ix) FE	ATURE A) NA	E:	KEY:	CDS									

(B) LOCATION: 16..2331

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

5	G	` SAAT	TCC			GC A	TG G	GC I	GG I	TA A	CT A	GG A	ATT C	TC 7	rgr d Cys I	TT Teu F	TC TGO	G 51
10	GG Gl	SA G	TA ? al 1	TTA Leu 15	ne.	r ac.	A GC r Al	A AG a Ar	d WT	A AA a As O	C TA'n Ty:	T CA r Gl	G AA	n Gl	G AA .y Ly !5		C AAT	99
15		:	30	y	Dec	. Ly	o Le	3.	г ту 5	г цу	8 GI1	u Me	t Le 4	u Gl O	u Se	r As	C AAT n Asn	147
20	4	5		•••	* * * * * * * * * * * * * * * * * * * *	. noi	50) Let	1 AT	a As	n Ser	5 Se:	r Se 5	r Ty	r Hi	s Th	C TTC r Phe 60	195
25				-CP	O1u	65	HIG	, ser	AFÇ	a re	70	Va.	L Gl	y Al	a Ly:	s As _i		243
25					80	voř	, ner	. Acrī	. ASI	85	F TAa	Asp	Phe	∋ Gli	n Lys 90	Ile)	r grg ≥ Val	291
30	-			95		-1-	1111	ALY	100) Yet	GIU	Сув	Lys	109	Ala S	ı Gly	A AAA / Lys	339
35	•	11	0		_, _	014	Cys	115	ABII	Pne	ire	rya	120	. Leu	Lye	Ala	TAT	387
40	125			•••		Deu	130	AIG	Cys	GIY	Thr	135	Ala	Phe	His	Pro	ATT Ile 140	435
	-1-		1	•	116	145	116	GIĀ	HIS	HIS	CCT Pro 150	Glu	Aap	Asn	Ile	Phe 155	Lys	483
45				1	160	1116	rne	GIU	Asn	165	CGT Arg	Gly	Lys	Ser	Pro 170	Tyr	Asp	531
50	CCT Pro	AAC Lys	CT Le 17	G (u I 5	CTG Leu	ACA Thr	GCA Ala	TCC Ser	CTT Leu 180	TTA Leu	ATA Ile	GAT Asp	GGA Gly	GAA Glu 185	TTA Leu	TAC Tyr	TCT Ser	579
55	•	190		- •		p	1 116	195	GIY	Arg	GAC Asp	Pne	200	Ile	Phe	Arg	Thr	627
60	205	,					210	116	Arg	Thr		GIn 215	His	Asp	Ser	Arg	Trp 220	675
-			1	-	2	225		116	ser	Ala	CAC His 230	Leu	Ile	Ser	Glu	Ser 235	Asp	723
65	TAA Asn	CCT Pro	GA# Glu	• •••	AT 0 8p # 40	Asp	Lys '	GTA Val	TAL	TTT Phe 245	TTC : Phe 1	TTC Phe	CGT Arg	GAA Glu	AAT Asn 250	GCA Ala	ATA Ile	771

		_		1								- 1			•		
	GAT (GGA Gly	GAA Glu 255	CAC His	Ser	GGA Gly	Lys	GCT Ala 260	ACT Thr	CAC His	GCT Ala	AGA Arg	ATA Ile 265	GGT Gly	CAG Gln	ATA Ile	819
5	TGC Cys	AAG Lys 270	TAA Asn	GAC Asp	TTT Phe	GlÀ	GGG Gly 275	CAC His	AGA Arg	AGT Ser	CTG Leu	GTG Val 280	AAT Asn	TÀB	TGG Trp	ACA Thr	867
10	ACA Thr 285	TTC Phe	CTC Leu	AAA Lys	GCT Ala	CGT Arg 290	CTG Leu	ATT Ile	CAa CAa	TCA Ser	GTG Val 295	CCA Pro	GGT Gly	CCA Pro	AAT Asn	GGC Gly 300	915
15	ATT Ile	GAC Asp	ACT Thr	CAT His	TTT Phe 305	GAT Asp	GAA Glu	CTG Leu	CAG Gln	GAT Asp 310	GTA Val	TTC Phe	CTA Leu	ATG Met	AAC Asn 315	TTT Phe	963
	AAA Lys	GAT Asp	CCT Pro	AAA Lys 320	TAA nsA	CCA Pro	GTT Val	GTA Val	TAT Tyr 325	GGA Gly	GTG Val	TTT Phe	ACG Thr	ACT Thr 330	TCC Ser	AGT Ser	1011
20	AAC Asn	ATT Ile	TTC Phe 335	AAG Lys	GGA Gly	TCA Ser	GCC Ala	GTG Val 340	TGT Cys	ATG Met	TAT Tyr	AGC Ser	ATG Met 345	AGT Ser	GAT Asp	GTG Val	1059
25	AGA Arg	AGG Arg 350	GTG Val	TTC Phe	CTT Leu	GGT Gly	CCA Pro 355	TAT Tyr	GCC Ala	CAC His	AGG Arg	GAT Asp 360	GGA Gly	CCC Pro	AAC Asn	TAT Tyr	1107
30	CAA Gln 365	TGG Trp	GTG Val	CCT Pro	TAT Tyr	CAA Gln 370	GGA Gly	AGA Arg	GTC Val	CCC Pro	TAT Tyr 375	CCA Pro	CGG Arg	CCA Pro	GGA Gly	ACT Thr 380	1155
35	TGT Cys	CCC Pro	AGC Ser	AAA Lys	ACA Thr 385	TTT Phe	GGT Gly	GGT Gly	TTT Phe	GAC Asp 390	Ser	ACA Thr	AAG Lys	GAC Asp	CTT Leu 395	CCT Pro	1203
	GAT Asp	GAT Asp	GTT Val	ATA Ile 400	Thr	TTT Phe	GCA Ala	AGA Arg	AGT Ser 405	HIS	CCA Pro	GCC Ala	ATG Met	TAC Tyr 410	Man	CCA Pro	1251
40	GTG Val	TTT Phe	CCT Pro 415	Met	AAC Asn	AAT Asn	CGC	CCA Pro 420	TTE	GTG Val	ATC Ile	AAA Lys	ACG Thr 425	LOF	GTA Val	TAA Asn	1299
45	TAT Tyr	CAA Glr 430	n Phe	ACA Thr	CAA Gln	ATT	GTC Val 435	. Vai	Yai Y GYO	CGA Arg	GTC J Val	G GAT L Asp 440) WIG	GAZ Glu	A GAT	GGA Gly	1347
50	CAG Gln 445	Туз	GAT Asp	GTI Val	ATG Met	TTT Phe 450	: Ile	GGA Gly	A ACI	A GAT	GTT Val 455	r Gr	ACC Thr	GT: Vai	r CTI l Leu	Lys 460	1395
55	GTA Val	GT:	r TCF l Ser	A ATT	CCI Pro) Lye	GAC Glu	AC:	r TG(r Tr)	TA: p Ty: 470	r Asi	r TTI p Le	A GAZ 1 Glu	A GAO	G GT: u Va: 47!	r CTG L Leu 5	1443
	CTG Lev	GAI Gli	A GAZ u Glu	A ATO 1 Met 480	Thi	GTT Val	r TT:	r CGG	G GA g Gl	u Pro	G AC'	r GC' r Al	r ATT	TC. Se 49		A ATG a Met	1491
60	Glu	ı Le	u Sei 49!	r Thi 5	c Ly	3 Gli	n Gl	n G1 50	n Le O	u Ty	r 11	e GI	50 50	5		r GGG a Gly	1539
65	GT: Val	r GC l Al 51	a Gl	G CTO	c cc	r TT	A CA u Hi 51	s Ar	G TG g Cy	T GA s As	T AT p Il	T TA e Ty 52	ī Gī	G AA y Ly	A GC s Al	g TGT a Cys	1587

	GCT Ala	GAG	TGI Cys	∓GC C∨R	CTC	GCC	CGA	GAC	CCT	TAC	TGT	A	TGG	GAT	GGT	TCT	1635
	525			-7-		530	••••			-7-	535		. IIp	Asp	GLY	540	
5	GCA Ala	TGT Cys	TCT Ser	CGC	TAT Tyr 545	TTT Phe	CCC Pro	ACT Thr	GCA Ala	AAG Lys 550	Arg	CGC	ACA Thr	AGA Arg	CGA Arg 555	CAA Gln	1683
10	GAT Asp	ATA Ile	AGA Arg	AAT Asn 560	Gly	GAC Asp	CCA Pro	CTG Leu	ACT Thr 565	CAC His	TGT Cys	TCA Ser	GAC Asp	TTA Leu 570	His	CAT His	1731
15	GAT Asp	TAA Asn	CAC His 575	CAT	GLY	CAC His	AGC Ser	CCT Pro 580	GAA Glu	GAG Glu	AGA Arg	ATC Ile	ATC Ile 585	TAT Tyr	GGT Gly	GTA Val	1779
20	GAG Glu	AAT Asn 590	AGT Ser	AGC Ser	ACA Thr	TTT Phe	TTG Leu 595	GAA Glu	TGC	AGT Ser	CCG Pro	AAG Lys 600	TCG Ser	CAG Gln	AGA Arg	GCG Ala	1827
	CTG Leu 605	GTC Val	TAT Tyr	TGG Trp	CAA Gln	TTC Phe 610	CAG Gln	AGG Arg	CGA Arg	AAT Asn	GAA Glu 615	GAG Glu	CGA Arg	AAA Lys	GAA Glu	GAG Glu 620	1875
25	ATC Ile	AGA Arg	GTG Val	GAT Asp	GAT Asp 625	CAT His	ATC Ile	ATC Ile	AGG Arg	ACA Thr 630	GAT Asp	CAA Gln	GGC Gly	CTT Leu	CTG Leu 635	CTA Leu	1923
30	CGT Arg	AGT Ser	CTA Leu	CAA Gln 640	CAG Gln	AAG Lys	GAT Asp	TCA Ser	GGC Gly 645	TAA Asn	TAC Tyr	CTC Leu	TGC Cys	CAT His 650	GCG Ala	GTG Val	1971
35	GAA Glu	CAT His	GGG Gly 655	TTC Phe	ATA Ile	CAA Gln	ACT Thr	CTT Leu 660	CTT Leu	AAG Lys	GTA Val	ACC Thr	CTG Leu 665	GAA Glu	GTC Val	ATT Ile	2019
40	GAC Asp	ACA Thr 670	GAG Glu	CAT His	TTG Leu	GAA Glu	GAA Glu 675	CTT Leu	CTT Leu	CAT His	AAA Lys	GAT Asp 680	GAT Asp	GAT Asp	GGA Gly	GAT Asp	2067
	GGC Gly 685	TCT Ser	AAG Lys	ACC Thr	AAA Lys	GAA Glu 690	ATG Met	TCC Ser	AAT Asn	AGC Ser	ATG Met 695	ACA Thr	CCT Pro	AGC Ser	CAG Gln	AAG Lys 700	2115
45	GTC Val	TGG Trp	TAC Tyr	AGA Arg	GAC Asp 705	TTC Phe	ATG Met	CAG Gln	CTC Leu	ATC Ile 710	AAC Asn	CAC His	CCC Pro	AAT Asn	CTC Leu 715	AAC Asn	2163
50	ACG Thr	ATG Met	GAT Asp	GAG Glu 720	TTC Phe	TGT Cys	GAA Glu	CAA Gln	GTT Val 725	TGG Trp	AAA Lys	AGG Arg	GAC Asp	CGA Arg 730	AAA Lys	CAA Gln	2211
55	CGT Arg	CGG Arg	CAA Gln 735	AGG Arg	CCA Pro	GGA Gly	CAT His	ACC Thr 740	CCA Pro	GGG Gly	AAC Asn	AGT Ser	AAC Asn 745	AAA Lys	TGG Trp	AAG Lys	2259
60	His	TTA Leu 750	CAA Gln	GAA Glu	AAT . Asn .	Lys	AAA Lys 755	GGT Gly	AGA Arg	AAC Asn	AGG Arg	AGG Arg 760	ACC Thr	CAC His	GAA Glu	TTT Phe	2307
	GAG Glu 765	AGG Arg	GCA Ala	CCC Pro	Arg .	AGT Ser 770	GTC Val	TGAG	CTGC	AT T	ACCT	CTAG	A AA	CCTC	AAAC		2358
65	AAGT.	AGAA	AC T	TGCC	TAGA	C AA	TAAC'	TGGA	AAA	ACAA	ATG	CAAT.	ATAC:	AT G	AACT'	TTTTT	2418
	CATG	GCAT	TA T	GTGG:	ATGT'	r ta	CAAT	GGTG	GGA	TTAA	CAG	CTGA	GTTC	CA C	CAAT'	TATAA	2478

BNSDOCID: <WO__9507706A1_L>

ATTAAATCCA TGAGA...CTT TCCTAATAGG CTTTTTTTC CTAATACCAC CGGGTTAAAA 2538
GTAAGAGACA GCTGAACCCT CGTGGAGCCA TTCATACAGG TCCCTATTTA AGGAACGGAA 2598
TTC

- (2) INFORMATION FOR SEQ ID NO:54:
- 10 (i) SEQUENCE CHARACTERISTICS:

5

- (A) LENGTH: 771 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- 15 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:
- Met Gly Trp Leu Thr Arg Ile Val Cys Leu Phe Trp Gly Val Leu Leu 20 1 5 10 15
 - Thr Ala Arg Ala Asn Tyr Gln Asn Gly Lys Asn Asn Val Pro Arg Leu 20 25 30
- 25 Lys Leu Ser Tyr Lys Glu Met Leu Glu Ser Asn Asn Val Ile Thr Phe 35 40 45
 - Asn Gly Leu Ala Asn Ser Ser Ser Tyr His Thr Phe Leu Leu Asp Glu 50 55 60
- 30
 Glu Arg Ser Arg Leu Tyr Val Gly Ala Lys Asp His Ile Phe Ser Phe
 65
 70
 75
 80
- Asp Leu Val Asn Ile Lys Asp Phe Gln Lys Ile Val Trp Pro Val Ser 85 90 95
 - Tyr Thr Arg Arg Asp Glu Cys Lys Trp Ala Gly Lys Asp Ile Leu Lys 100 105 110
- 40 Glu Cys Ala Asn Phe Ile Lys Val Leu Lys Ala Tyr Asn Gln Thr His 115 120 125
 - Leu Tyr Ala Cys Gly Thr Gly Ala Phe His Pro Ile Cys Thr Tyr Ile 130 135 140
- Glu Ile Gly His His Pro Glu Asp Asn Ile Phe Lys Leu Glu Asn Ser 145 150 155 160
- His Phe Glu Asn Gly Arg Gly Lys Ser Pro Tyr Asp Pro Lys Leu Leu 165 170 175
 - Thr Ala Ser Leu Leu Ile Asp Gly Glu Leu Tyr Ser Gly Thr Ala Ala 180 185 190
- Asp Phe Met Gly Arg Asp Phe Ala Ile Phe Arg Thr Leu Gly His His 195 200 205
 - His Pro Ile Arg Thr Glu Gln His Asp Ser Arg Trp Leu Asn Asp Pro 210 215 220
- 60
 Lys Phe Ile Ser Ala His Leu Ile Ser Glu Ser Asp Asn Pro Glu Asp
 225
 230
 240
- Asp Lys Val Tyr Phe Phe Phe Arg Glu Asn Ala Ile Asp Gly Glu His 245 250 255
 - Ser Gly Lys Ala Thr His Ala Arg Ile Gly Gln Ile Cys Lys Asn Asp 260 265 270

Phe Gly Gly His Arg Ser Leu Val Asn Lys Trp Thr Thr Phe Leu Lys 280 285 Ala Arg Leu Ile Cys Ser Val Pro Gly Pro Asn Gly Ile Asp Thr His 5 Phe Asp Glu Leu Gln Asp Val Phe Leu Met Asn Phe Lys Asp Pro Lys 10 Asn Pro Val Val Tyr Gly Val Phe Thr Thr Ser Ser Asn Ile Phe Lys 330 Gly Ser Ala Val Cys Met Tyr Ser Met Ser Asp Val Arg Arg Val Phe 15 Leu Gly Pro Tyr Ala His Arg Asp Gly Pro Asn Tyr Gln Trp Val Pro Tyr Gln Gly Arg Val Pro Tyr Pro Arg Pro Gly Thr Cys Pro Ser Lys 20 Thr Phe Gly Gly Phe Asp Ser Thr Lys Asp Leu Pro Asp Asp Val Ile Thr Phe Ala Arg Ser His Pro Ala Met Tyr Asn Pro Val Phe Pro Met Asn Asn Arg Pro Ile Val Ile Lys Thr Asp Val Asn Tyr Gln Phe Thr 425 30 Gln Ile Val Val Asp Arg Val Asp Ala Glu Asp Gly Gln Tyr Asp Val Met Phe Ile Gly Thr Asp Val Gly Thr Val Leu Lys Val Val Ser Ile 35 Pro Lys Glu Thr Trp Tyr Asp Leu Glu Glu Val Leu Leu Glu Glu Met 40 Thr Val Phe Arg Glu Pro Thr Ala Ile Ser Ala Met Glu Leu Ser Thr 490 Lys Gln Gln Leu Tyr Ile Gly Ser Thr Ala Gly Val Ala Gln Leu 45 Pro Leu His Arg Cys Asp Ile Tyr Gly Lys Ala Cys Ala Glu Cys Cys Leu Ala Arg Asp Pro Tyr Cys Ala Trp Asp Gly Ser Ala Cys Ser Arg 50 Tyr Phe Pro Thr Ala Lys Arg Arg Thr Arg Arg Gln Asp Ile Arg Asn Gly Asp Pro Leu Thr His Cys Ser Asp Leu His His Asp Asn His His Gly His Ser Pro Glu Glu Arg Ile Ile Tyr Gly Val Glu Asn Ser Ser 585 60 Thr Phe Leu Glu Cys Ser Pro Lys Ser Gln Arg Ala Leu Val Tyr Trp 600 Gln Phe Gln Arg Arg Asn Glu Glu Arg Lys Glu Glu Ile Arg Val Asp 65 Asp His Ile Ile Arg Thr Asp Gln Gly Leu Leu Arg Ser Leu Gln 630 635

BN6DOCID: <WO_

_<u>96</u>07706A1___

	Gln	Lys	Asp	Ser	01y 645	Asn	Tyr	Leu	Cys	His 650	Ala	Val	GIU	His	Gly 655	Phe	
5	Ile	Gln	Thr	Leu 660	Leu	Lys	Val	Thr	Leu 665	Glu	Val	Ile	Asp	Thr 670	Glu	His	
	Leu	Glu	Glu 675	Leu	Leu	His	Lys	Asp 680	Asp	Asp	Gly	Asp	Gly 685	Ser	Lys	Thr	
10	Lys	Glu 690	Met	Ser	Asn	Ser	Met 695	Thr	Pro	Ser	Gln	Lys 700	Val	Trp	Tyr	Arg	
15	Asp 705	Phe	Met	Gln	Leu	Ile 710	Asn	His	Pro	Asn	Leu 715	Asn	Thr	Met	Asp	Glu 720	
15				Gln	725					730					, 55		
20				740					/45					, 50		Glu	
	Asn	Lys	Lys 755	Gly	Arg	Asn	Arg	Arg 760	Thr	His	Glu	Phe	Glu 765	Arg	Ala	Pro	
25	Arg	Ser 770															
30	(2)			TION QUEN													
35		(±	(A) L B) T C) S D) T	ENGT YPE: TRAN	H: 1 nuc DEDN	332 leic ESS:	base aci dou	pai d	rs							
		(ii) мс	LECU	LE T	YPE:	CDN	A									
40		(ix	(ATUR A) N B) L	AME/	KEY:	CDS	1329)								
45		-		QUEN ATG									ATA	GTC	TTT	GTA	48
45	GGA	ATA	Met 1	Met	Val	Leu	Leu 5	His	Ala	Val	Tyr	Ser 10	Ile	Val	Phe	Val	
50	GAT Asp	val	T ATA	A ATC	ATA	A AAA E Lys 20	y Va.	A CAG	g AGO	TA:	r ATO	a Wai	C GA:	r AT' p Il	r CTI e Le	A ACT Thr 30	96
55	CT: Le	C GAC	C AT	r TTT e Phe	TATE	r Le	A TT:	r aa E Ly	A ATO	G AT	e Pro	r TT o Le	G TT u Le	A TT u Ph	T AT' e Il 4	T TTA e Leu 5	144
	TT(Pho	C TAT	r TT	r GC: e Ala	A As	C GG n Gl	r AT	C GA e Gl	A TG	р ит	r AA s Ly	G TT s Ph	T GA e Gl	u 11.	G AG r Se O	T GAA r Glu	192
60	GA.	A AT	A AT e Il 6	e Se	r AC	T TA r Ty	C TT r Le	u Le	A GA u As O	C GA p As	C GT p Va	A TT l Le	u iy	C AC r Th 5	G GG r Gl	T GTT y Val	240
65	AA As	n Gl	G GC y Al O	G GT. a Va	А ТА 1 Ту	C AC r Th	r Ph	T TC e Se 5	A AA r As	AA T. n As	T AA n Ly	8 Le	A AA u As O	C AA	A AC	T GGI	288

	TTI Let 95	ı Th	T AAT	r AAl	TAA T AST	TAT Tyr 100	: Ile	A ACI	A ACA	TCI Ser	ATA 116	e Lya	GTA Va.	A GA	G GA	T GCG p Ala 110	336
5	GAT Asi	C AAG	G GA1 B Asp	T ACA	TTA Leu 115	. Val	TGC Cys	GG# Gly	A ACC	AAT Asn 120	Ası	C GGZ	A AA? Y Asi	r cc	C AAI D Ly:	A TGT s Cys 5	384
10	TG0 Trp	AA Lyi	A ATA	GAC Asp 130	Gly	TCA Ser	GAC Asp	GAC Asp	CCA Pro 135	Lys	CAT His	R AGA	A GGT g Gly	7 AG2 7 Arc 140	g Gl	A TAC	432
15	ATA	Pro	145	Gin	Asn	Ser	Lys	Val 150	Thr	Ile	Ile	e Ser	Hie 155	a Ası	ı Gly	A TGT / Cys	480
20	Val	160	ser	Asp	Ile	Asn	Ile 165	Ser	Lys	Glu	Gly	170	Lys	Arç	J Tri	AGA Arg	528
	Arg 175	Phe	Asp	GGA	Pro	Cys 180	GCT	TAT	Asp	TTA Leu	TAC Tyr 185	Thr	GCG Ala	GAT Asp	AAC Asr	GTA Val 190	576
25	ATT Ile	CCA	AAA Lys	GAT Asp	GGT Gly 195	TTA Leu	CGA Arg	GGA Gly	GCA Ala	TTC Phe 200	GTC Val	GAT Asp	AAA Lys	GAT	GGT Gly 205		624
30	TAT Tyr	GAC Asp	Lys	GTT Val 210	TAC Tyr	ATT Ile	CTT Leu	TTC Phe	ACT Thr 215	GAT Asp	ACT Thr	ATC Ile	GGC Gly	TCA Ser 220	Lys	AGA Arg	672
35	iie	val	AAA Lys 225	IIe	Pro	Tyr	Ile	Ala 230	Gln	Met	Cys	Leu	Asn 235	Asp	Glu	Gly	720
40	GIÀ	240	TCA Ser	Ser	Leu	Ser	Ser 245	His	Arg	Trp	Ser	Thr 250	Phe	Leu	Lys	Val	768
4.5	255	red	GAA Glụ	Сув	Asp	260	Asp	Gly	Arg	Ser	Tyr 265	Arg	Gln	Ile	Ile	His 270	816
45	ser	Arg	ACT Thr	IIe	275	Thr	Asp	Asn	Asp	Thr 280	Ile	Leu	Tyr	Val	Phe 285	Phe	864
50	yab	ser	CCT Pro	290	ser	ràs	ser	Ala	Leu 295	СЛВ	Thr	Tyr	Ser	Met 300	Asn	Thr	912
55	116	гля	CAA Gln 305	ser	Pue	ser	Thr	310	Lys	Leu	Glu	Gly	Tyr 315	Thr	Lys	Gln	960
60	TTG Leu	CCG Pro 320	TCG Ser	CCA Pro	GCC Ala	ser	GGT Gly 325	ATA Ile	TGT Cys	CTA Leu	CCA Pro	GCT Ala 330	GGA Gly	AAA Lys	GTT Val	GTT Val	1008
	335	HIS	ACC Thr	Thr	Phe (Glu 340	Val	Ile	Glu	Lys	Tyr 345	Asn	Val	Leu	Asp	Asp 350	1056
65	ATT . Ile	ATA Ile	AAG Lys	Pro .	TTA : Leu : 355	TCT . Ser .	AAC (Asn (CAA Gln	Pro	ATC Ile 360	TTC Phe	GAA Glu	GGA Gly	CCG Pro	TCT Ser 365	GGT Gly	1104

BNSDOCID: <WO__9507706A1_L>

	GTT Val	AAA Lys	TGG '	TTC Phe	Asp	ATA Ile	AAG Lys	GAG Glu	AAG Lys 375	GAA Glu	AAT Asn	GAA Glu	III	CGG (Arg (GAA ' Glu	TAT Tyr	1152
5	AGA Arg	ATA Ile	TAC Tyr 385	TTC I	ATA Ile	AAA Lys	GAA Glu	AAT Asn 390	TCT Ser	ATA Ile	TAT Tyr	TCG Ser	TTC Phe 395	GAT Asp	ACA Thr	AAA	1200
10	TCT Ser	AAA Lys 400	CAA Gln	ACT Thr .	CGT Arg	AGC Ser	TCG Ser 405	CAA Gln	GTC Val	GAT Asp	GCG Ala	CGA Arg 410	CTA Leu	TTT Phe	TCA Ser	GTA Val	1248
15	ATG Met 415	GTA Val	ACT Thr	TCG Ser	LY8 LY8	CCG Pro 420	TTA Leu	TTT Phe	ATA Ile	GCA Ala	GAT Asp 425	ATA Ile	GGG Gly	ATA Ile	GGA Gly	GTA Val 430	1296
20	GGA Gly	ATG Met	CCA Pro	Gln	ATG Met 435	AAA Lys	TÀ2 YYY	ATA Ile	CTT Leu	AAA Lys 440	ATG Met	TAA					1332
20	(2)	TNEC	ORMAT	TON	FOR	SEO	ID I	NO: 5	6:								
25	(2)		(i) S	EQUE (A) (B)	NCE LEN TYP	CHAF	RACTI 44:	ERIS'	TICS ino a	: acid:	3						
30		•	ii) M xi) S							Q ID	NO:	56:					
		Met	Val	Leu	Leu 5	His	Ala	Val	Tyr	Ser 10	Ile	Val	Phe	Val	Asp 15	Val	
35	1 Ile	Ile	Ile	Lys 20		Gln	Arg	Tyr	Ile 25	Asn	Asp	Ile	Leu	Thr 30	Leu	Asp	
40			Tyr 35					40)				45				
	Phe	Ala 50	Asn	Gly	Ile	Glu	Trp 55	His	Lye	Phe	Glu	Thr 60	Ser	Glu	Glu	Ile	
45	Ile 65		Thr	Tyr	Leu	Leu 70	Asp	Asp	val	. Leu	Tyr 75	Thr	Gly	Val	Asn	Gly 80	
	Ala	Val	Tyr	Thr	Phe 85	Ser	Asr	a Asr	ı Lys	Leu 90	Asn	. Lys	Thr	Gly	Leu 95	Thr	
50			Asn	100					105	•				110			
55	Asp	Thr	Leu 115		СЛв	Gly	Thi	120	n Ası	ı Gly	/ Asr	Pro	Lys 125	Сув	Trp	Lys	
	Ile	130		Ser	Aap	Asp	Pro 13	b Ly	s Hi	a Arg	g Gly	7 Arg	Gly	Tyr	Ala	Pro	
60	Tyr 145		n Asn	Ser	Lye	Val 150	L Th:	r Il	e Il	e Sei	15	a Asr	Gly	Cye	val	160	
	Ser	c Asj	p Ile	e Asn	Ile 165	s Sei	r Ly	s Gl	u Gl	y Ile 17	e Ly:	в Arç	Tr	Arç	175	Phe	
65	Asi	p Gl	y Pro	Cye 180		у Туз	r As	p Le	u Ty 18	r Th	r Al	a Ası	Ası	n Val 190	l Ile	e Pro	

Leu Arg Gly Ala Phe Val Asp Lys Lys Asp Gly Gly Thr Tyr Asp 200 Lys Val Tyr Ile Leu Phe Thr Asp Thr Ile Gly Ser Lys Arg Ile Val 5 Lys Ile Pro Tyr Ile Ala Gln Met Cys Leu Asn Asp Glu Gly Gly Pro 10 Ser Ser Leu Ser Ser His Arg Trp Ser Thr Phe Leu Lys Val Glu Leu Glu Cys Asp Ile Asp Gly Arg Ser Tyr Arg Gln Ile Ile His Ser Arg 15 Thr Ile Lys Thr Asp Asn Asp Thr Ile Leu Tyr Val Phe Phe Asp Ser Pro Tyr Ser Lys Ser Ala Leu Cys Thr Tyr Ser Met Asn Thr Ile Lys 20 295 Gln Ser Phe Ser Thr Ser Lys Leu Glu Gly Tyr Thr Lys Gln Leu Pro Ser Pro Ala Ser Gly Ile Cys Leu Pro Ala Gly Lys Val Val Pro His Thr Thr Phe Glu Val Ile Glu Lys Tyr Asn Val Leu Asp Asp Ile Ile 30 Lys Pro Leu Ser Asn Gln Pro Ile Phe Glu Gly Pro Ser Gly Val Lys 360 Trp Phe Asp Ile Lys Glu Lys Glu Asn Glu His Arg Glu Tyr Arg Ile 35 Tyr Phe Ile Lys Glu Asn Ser Ile Tyr Ser Phe Asp Thr Lys Ser Lys 395 40 Gln Thr Arg Ser Ser Gln Val Asp Ala Arg Leu Phe Ser Val Met Val Thr Ser Lys Pro Leu Phe Ile Ala Asp Ile Gly Ile Gly Val Gly Met 45 Pro Gln Met Lys Lys Ile Leu Lys Met 435 440 50 (2) INFORMATION FOR SEQ ID NO:57: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2854 base pairs (B) TYPE: nucleic acid 55 (C) STRANDEDNESS: double (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- 60 (ix) FEATURE:

BNSDOCID: <WO_

_9507706A1_L>

- (A) NAME/KEY: CDS
- (B) LOCATION: 451..2640
- 65 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:
 - ATTCCACCTC CCGCTGACCG CCTACGCCGC GACGATCTTT CCTCTCGCCA GGCGAAAACT 60
 ACGACGTGTC AACAACATTT TTGTTTTTTC TGCTTCCGTG TTTTCATGTT CCGTGAAACC 120

	Gerrereden innen brei indentitien meretrati indentitien in	180
	GGAIGIIIIG IIIIGGIGIA GCGAGIGACG AGGIANIGIG MINAMAGON CASTALAGA	240
5	GICGGIRIRI IGGIGIGIGA IRIIIIAGIA IIAIMIIII MOOMIOMO IGGIGGGIRIA	300
	GAAAAATTTT TGAAAGTGGA GAGGAAAAAG AAAAGGCGCA GAAGGCTTTT TAAGCTTCAT	360
10	GGATATGTGC TCTACGCTTC AACTACTGTC GCAGAATCAT CTTCCGGGAA AGGAAATTTC	420
	GCCTGAAATG GTGCCGCGGC CGCACTGAAC ATG CGG GCG GCG CTG GTG GCC GTC Met Arg Ala Ala Leu Val Ala Val 1 5	474
15	GCG GCG CTG CTT TGG GTG GCG CTG CAC GCC GCC GCA TGG GTC AAC GAC Ala Ala Leu Leu Trp Val Ala Leu His Ala Ala Trp Val Asn Asp 10 15 20	522
20	GTC AGC CCC AAG ATG TAC GTC CAG TTC GGT GAG GAA CGG GTG CAA CGC Val Ser Pro Lys Met Tyr Val Gln Phe Gly Glu Glu Arg Val Gln Arg 25 30 35 40	570
25	TTC CTG GGC AAT GAA TCG CAC AAA GAC CAC TTC AAG CTG CTG GAG AAG Phe Leu Gly Asn Glu Ser His Lys Asp His Phe Lys Leu Leu Glu Lys 45 50 55	618
30	GAC CAC AAC TCG CTC CTC GTA GGA GCT AGG AAC ATC GTC TAC AAT ATC Asp His Asn Ser Leu Leu Val Gly Ala Arg Asn Ile Val Tyr Asn Ile 60 65 70	666
30	AGC CTT CGA GAC CTC ACA GAA TTC ACC GAG CAG AGG ATC GAG TGG CAC Ser Leu Arg Asp Leu Thr Glu Phe Thr Glu Gln Arg Ile Glu Trp His 75 80 85	714
35	TCG TCA GGT GCC CAT CGC GAG CTC TGC TAC CTC AAG GGG AAG TCA GAG Ser Ser Gly Ala His Arg Glu Leu Cys Tyr Leu Lys Gly Lys Ser Glu 90 95 100	762
40	GAC GAC TGC CAG AAC TAC ATC CGA GTC CTG GCG AAA ATT GAC GAT GAC Asp Asp Cys Gln Asn Tyr Ile Arg Val Leu Ala Lys Ile Asp Asp Asp 105	810
45	CGC GTA CTC ATC TGC GGT ACG AAC GCC TAT AAG CCA CTA TGT CGG CAC Arg Val Leu Ile Cys Gly Thr Asn Ala Tyr Lys Pro Leu Cys Arg His 125	858
50	TAC GCC CTC AAG GAT GGA GAT TAT GTT GTA GAG AAA GAA TAT GAG GGA Tyr Ala Leu Lys Asp Gly Asp Tyr Val Val Glu Lys Glu Tyr Glu Gly 140 145 150	906
50	AGA GGA TTG TGC CCA TTT GAC CCT GAC CAC AAC AGC ACT GCA ATA TAC Arg Gly Leu Cys Pro Phe Asp Pro Asp His Asn Ser Thr Ala Ile Tyr 155 160 165	954
55	AGT GAG GGA CAA TTG TAC TCA GCA ACA GTG GCA GAC TTC TCT GGA ACT Ser Glu Gly Gln Leu Tyr Ser Ala Thr Val Ala Asp Phe Ser Gly Thr 170 175 180	1002
60	GAC CCT CTC ATA TAC CGC GGC CCT CTA AGA ACA GAG AGA TCT GAC CTC Asp Pro Leu Ile Tyr Arg Gly Pro Leu Arg Thr Glu Arg Ser Asp Leu 185 190 195 200	1050
65	AAA CAA TTA AAT GCT CCT AAC TTT GTC AAC ACA ATG GAG TAC AAT GAT Lys Gln Leu Asn Ala Pro Asn Phe Val Asn Thr Met Glu Tyr Asn Asp 205 210 215	1098
	TTT ATA TTC TTC TTC CGA GAG ACT GCT GTT GAG TAC ATC AAC TGC	1146

	Ph	e I	le P	ne Pi	ne Ph	ne Ph	e Ar	g Gl	u Th 22	r Al.	a Va	1	ту	r Il 23		ın Cys	ı
5	GG G1	A Al	AG G0 78 Al 23	.a 11	C TA e Ty	T TC r Se	A AG r Ar	A GT g Va 24	T YI	C AG	A GT	C TG 1 Cy	T AA s Ly 24	A CA s Hi	_ 	C AAG	1194
10		C GC y G1 25	.у г	T CA	T CA s Gl	G GG n Gl	T GG y G1: 25:	y As	C AG. p Ar	A TGO	AC:	T TC r Se: 26	r Ph	T TT e Le	G AA u Ly	A TCA s Ser	1242
15	26	9 46	G AA u As	C TG n Cy	T TC s Se	C GT0 r Va: 270	Pro	r GG: o Gl:	A GA! Y As	TAT p Tyr	CC2 Pro 275	o Phe	TAC	C TT r Ph	C AA e As	T GAA n Glu 280	1290
	AT:	r ca ≥ Gl	G TC n Se	A AC	A AG r Se: 28	r asi	C ATO	C ATS	r GAA	A GGA 1 Gly 290	Asr Asr	TA1	GG?	r GG 7 Gl	T CA y G1: 29:	A GTG n Val 5	1338
20	GA0 Glu	AA Ly	A CT s Le	C AT0	= TAI	C GGT c Gly	GTO Val	TTC Phe	C ACC Thr 305	Thr	CCA Pro	A GTO Val	AAC Asn	TC: Sei 310	r Ile	T GGT = Gly	1386
25	GGC Gly	TC' Se:	T GC r Ala 31		TG1 L Cys	GCC Ala	TTC Phe	AG1 Ser 320	Met	AAG Lys	TCA Ser	ATA	CTI Leu 325	Gli	TC!	A TTT	1434
30	GAT Asp	GG: Gl: 330	, ,,,,	A TTT	Lys	GAG Glu	CAG Gln 335	GIU	ACG Thr	ATG Met	AAC Asn	TCA Ser 340	Asn	TGG	TTO Lev	GCA Ala	1482
35	GTG Val 345		A AGO Ser	CTI Leu	'AAA Lys	GTG Val 350	CCA Pro	GAA Glu	CCA Pro	AGG Arg	CCT Pro 355	GGA Gly	CAA Gln	TGT	GTC Val	AAT Asn 360	1530
	GAC Asp	AG1 Ser	CGI Arg	ACA Thr	CTT Leu 365	CCT Pro	GAT Asp	GTG Val	TCT Ser	GTC Val 370	AAT Asn	TTT Phe	GTA Val	AAG Lys	TCA Ser 375	CAT	1578
40	ACA Thr	CTG	ATG Met	GAT Asp 380	GAG Glu	GCC Ala	GTG Val	CCA Pro	GCA Ala 385	TTT Phe	TTT Phe	ACT Thr	CGG Arg	CCA Pro 390	ATT Ile	CTC Leu	1626
45	ATT Ile	CGG Arg	Ile 395	AGC Ser	TTA Leu	CAG Gln	TAC Tyr	AGA Arg 400	TTT Phe	ACA Thr	AAA Lys	ATA Ile	GCT Ala 405	GTT Val	GAT Asp	CAA Gln	1674
50	CAA Gln	GTC Val 410	ary	ACA Thr	CCA Pro	GAT Asp	GGG Gly 415	AAA Lys	GCG Ala	TAT Tyr	GAT Asp	GTC Val 420	CTG Leu	TTT Phe	ATA Ile	GGA Gly	1722
55	ACT Thr 425	GAT Asp	GAT Asp	GGC Gly	AAA Lys	GTG Val 430	ATA Ile	AAA Lys	GCT Ala	TTG Leu	AAC Asn 435	TCT Ser	GCC Ala	TCC Ser	TTT Phe	GAT Asp 440	1770
	TCA Ser	TCT Ser	GAT Asp	ACT Thr	GTA Val 445	GAT Asp	AGT Ser	GTT Val	Val	ATA Ile 450	GAA Glu	GAA Glu	CTG Leu	CAA Gln	GTG Val 455	TTG Leu	1818
60	CCA Pro	CCT Pro	GGA Gly	GTA Val 460	CCT Pro	GTT Val	AAG Lys	Asn	CTG Leu 465	TAT (GTG Val	GTG Val	Arg	ATG Met 470	GAT Asp	GGG Gly	1866
65	GAT Asp	GAT Asp	AGC Ser 475	AAG Lys	CTG Leu	GTG Val	A GT T	GTG Val 480	TCT Ser	GAT (Asp)	GAT (Glu	ATT Ile: 485	CTG Leu	GCA Ala	ATT Ile	1914
	AAG	CTT	CAT	CGT	TGT	GGC 1	TCA (GAT .	AAA	ATA A	ACA A	AAT 1	IGT (CGA	GAA	TGT	1962

				4													
	Lys	Leu 490	His	Arg	- E	Gly	Ser 495	Asp	Lys	Ile	Thr	Asn 500	Сув	Arg	Glu	Сув	
5	GTG Val 505	TCC Ser	TTG Leu	CAA Gln	GAT Asp	CCT Pro 510	TAC Tyr	TGT Cys	GCA Ala	TGG Trp	GAC Asp 515	AAT Asn	GTA Val	GAA Glu	TTA Leu	AAA Lys 520	2010
	TGT	ACA	GCT	GTA	GGT	TCA	CCA	GAC	TGG	AGT	GCT	GGA	AAA	AGA	CGC	TTT	2058
10	Cys	Thr	Ala	Val	Gly 525	Ser	Pro	Asp	Trp	Ser 530	Ala	Gly	Lys	Arg	Arg 535	Phe	
15	ATT Ile	CAG Gln	AAC Asn	ATT Ile 540	TCA Ser	CTC Leu	GGT Gly	GAA Glu	CAT His 545	Lys	GCT Ala	TGT Cys	GGT Gly	GGA Gly 550	CGT Arg	CCA Pro	2106
20	Gln	ACA Thr	GAA Glu 555	ATC Ile	GTT Val	GCT Ala	TCT Ser	CCT Pro 560	GTA Val	CCA Pro	ACT Thr	CAG Gln	CCG Pro 565	ACG Thr	ACA Thr	Lys Lys	2154
20		AGT Ser 570	GGC Gly	GAT Asp	CCC Pro	GTT Val	CAT His 575	TCA Ser	ATC Ile	CAC His	CAG Gln	GCT Ala 580	GIU	TTT Phe	GAA Glu	CCT Pro	2202
25	GAA Glu 585	ATT Ile	GAC Asp	AAC Asn	GAG Glu	ATT Ile 590	GTT Val	ATT Ile	GGA Gly	GTA Val	GAT Asp 595	Aab	AGC Ser	AAC Asn	GTC Val	ATT Ile 600	2250
30	CCT Pro	TAA neA	ACC Thr	CTG Leu	GCT Ala 605	GAA Glu	ATA Ile	TAA Asn	CAT His	GCA Ala 610	GGT Gly	TCA Ser	AAG Lys	CTG Leu	CCT Pro 615	TCC Ser	2298
35	Ser	CAG Gln	GAA Glu	AAG Lys 620	TTG Leu	CCT Pro	ATT Ile	TAT Tyr	ACA Thr 625	GCG Ala	GAG Glu	ACT Thr	CTG Leu	ACT Thr 630	ATT	GCT Ala	2346
	Ile	GTT Val	ACA Thr 635	Ser	TGC Cys	CTT Leu	GGA Gly	GCT Ala 640	Leu	GTT Val	GTT Val	GGC	Phe 645	TTE	: TCT : Ser	GGA Gly	2394
40		CTT Leu 650	Phe	TCT Ser	CGG Arg	CGA Arg	TGC Cys 655	Arg	GGA Gly	GAG Glu	GAT Asp	TAC TY1 660	THE	GAC Bag	ATG Met	CCT	2442
45	TTT Phe 665	CCA Pro	GAT Asp	CAA	. CGC . Arg	CAT His 670	Gln	CTA Lev	AAT Asn	AGG Arg	CTC Leu 675	Tini	r GAG	GCT Ala	GGT Gly	Leu 680	2490
50	AAT Asn	GCA Ala	Ast Ast	TCA Ser	CCC Pro 685	Tyr	CTI	CCF Pro	CCC Pro	TGI Cys 690	S Ala	AA S	AA 1 n Ası	AAC 1 Ly:	G GCA B Ala 695	GCC Ala	2538
55	Ile	AAT Asr	CTI Leu	T GT0	Leu	TAA :	GTC Val	C CCI	A CCF Pro 709) Lye	AA E	r GC. n Al	A AA' a Asi	r GG n Gl	ă răs	TAA A	2586
	Ala	AAC ABI	TC: 1 Se: 71	c Se	A GCT	GAA A Glu	A AA(AAI Ly: 72	B Pro	A ATA	A CAC	G AA n Ly	A GT s Va 72	т тА	A AAG B Lys	G ACA Thr	2634
60	TAC	AT: 116	2	GCAG	TAAA	CTT	rggt	ATC '	TGTT:	rtgg'	TG C	AGAC	CCAT	G CC	ACTA	GAGT	2690
6:	5 AAC			CTA	TTGA	GAA .	ATGT	CCTC	AA G	AAAG	AATT	A AA	GATG	TAGA	CTT	CTGTA	AT 2750
٥.			_														

CGAGAGCACC ACTITCCATA GTAATACAGA ACAATGTGAA ATAAATACTA CAGAAGAAGT 2810

BNSDOCID: <WO___9607706A1_J_>

35

50

- (2) INFORMATION FOR SEQ ID NO:58: 5
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 730 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 10 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:
- Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu
- His Ala Ala Trp Val Asn Asp Val Ser Pro Lys Met Tyr Val Gln 20
 - Phe Gly Glu Glu Arg Val Gln Arg Phe Leu Gly Asn Glu Ser His Lys
- Asp His Phe Lys Leu Leu Glu Lys Asp His Asn Ser Leu Leu Val Gly 25
 - Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asp Leu Thr Glu Phe
- Thr Glu Gln Arg Ile Glu Trp His Ser Ser Gly Ala His Arg Glu Leu
 - Cys Tyr Leu Lys Gly Lys Ser Glu Asp Asp Cys Gln Asn Tyr Ile Arg
 - Val Leu Ala Lys Ile Asp Asp Asp Arg Val Leu Ile Cys Gly Thr Asn
- Ala Tyr Lys Pro Leu Cys Arg His Tyr Ala Leu Lys Asp Gly Asp Tyr 40
 - Val Val Glu Lys Glu Tyr Glu Gly Arg Gly Leu Cys Pro Phe Asp Pro
- Asp His Asn Ser Thr Ala Ile Tyr Ser Glu Gly Gln Leu Tyr Ser Ala 45
 - Thr Val Ala Asp Phe Ser Gly Thr Asp Pro Leu Ile Tyr Arg Gly Pro
 - Leu Arg Thr Glu Arg Ser Asp Leu Lys Gln Leu Asn Ala Pro Asn Phe
- Val Asn Thr Met Glu Tyr Asn Asp Phe Ile Phe Phe Phe Arg Glu 55
 - Thr Ala Val Glu Tyr Ile Asn Cys Gly Lys Ala Ile Tyr Ser Arg Val
- 60 Ala Arg Val Cys Lys His Asp Lys Gly Gly Pro His Gln Gly Gly Asp
- Arg Trp Thr Ser Phe Leu Lys Ser Arg Leu Asn Cys Ser Val Pro Gly 260 265 65
 - Asp Tyr Pro Phe Tyr Phe Asn Glu Ile Gln Ser Thr Ser Asp Ile Ile 285

	Glu	Gly 290	Asn	Tyr	Y	Gly	Gln 295	Val'	Glu	Lys	Leu	Ile 300	Tyr	Gly	Val	Phe
5	Thr 305	Thr	Pro	Val	Asn	Ser 310	Ile	Gly	Gly	Ser	Ala 315	Val	Cys	Ala	Phe	ser 320
	Met	Lys	Ser	Ile	Leu 325	Glu	Ser	Phe	Asp	Gly 330	Pro	Phe	Lys	Glu	Gln 335	Glu
10	Thr	Met	Asn	ser 340	Asn	Trp	Leu	Ala	Val 345	Pro	Ser	Leu	Lys	Val 350	Pro	Glu
15	Pro	Arg	Pro 355	Gly	Gln	Cys	Val	Asn 360	Aap	Ser	Arg	Thr	Leu 365	Pro	Asp	Val
	Ser	Val 370	Asn	Phe	Val	Lys	Ser 375	His	Thr	Leu	Met	Asp 380	Glu	Ala	Val	Pro
20	Ala 385	Phe	Phe	Thr	Arg	Pro 390	Ile	Leu	Ile	Arg	Ile 395	Ser	Leu	Gln	Tyr	Arg 400
25	Phe	Thr	ГЛа	Ile	Ala 405	Val	Asp	Gln	Gln	Val 410	Arg	Thr	Pro	Asp	Gly 415	Lys
25	Ala	Tyr	Asp	Val 420	Leu	Phe	Ile	Gly	Thr 425	Aap	Asp	Gly	ГÀа	Val 430	Ile	Lys
30	Ala	Leu	Asn 435	Ser	Ala	Ser	Phe	Asp 440	Ser	Ser	Asp	Thr	Val 445	Asp	Ser	Val
	Val	Ile 450	Glu	Glu	Leu	Gln	Val 455	Leu	Pro	Pro	Gly	Val 460	Pro	Val	Lys	Asn
35	Leu 465	Tyr	Val	Val	Arg	Met 470	Asp	Gly	Asp	Asp	Ser 475	Lys	Leu	Val	Val	Val 480
40	Ser	Asp	Asp	Glu	Ile 485	Leu	Ala	Ile	Lys	Leu 490	His	Arg	Сув	Gly	Ser 495	Asp
40	Lys	Ile	Thr	Asn 500	Сув	Arg	Glu	Сла	Val 505	Ser	Leu	Gln	Asp	Pro 510	Tyr	САв
45	Ala	Trp	Asp 515		Val	Glu	Leu	Lys 520	Cys	Thr	Ala	Val	Gly 525	Ser	Pro	Asp
	Trp	Ser 530		Gly	Lys	Arg	Arg 535	Phe	Ile	Gln	Asn	Ile 540	Ser	Leu	Gly	Glu
50	His 545		Ala	Сув	Gly	Gly 550	Arg	Pro	Gln	Thr	-555	Ile	Val	Ala	Ser	Pro 560
E E	Val	Pro	Thr	Gln	Pro 565		Thr	Lys	Ser	Ser 570	: Gly	Asp	Pro	Val	His 575	ser
55	Ile	His	Gln	Ala 580		Phe	Glu	Pro	585	Ile	e Asp	Asn	Glu	1le 590	Val	. Ile
60	Gly	· Val	. Asp 595		Ser	. Asn	Val	. Ile	Pro	Asr	Thr	: Leu	Ala 605	Glu	Ile	e Asn
	His	Ala 610		ser Ser	Lys	Leu	Pro 615	Ser	Ser	Glr	n Glu	620	Leu)	ı Pro	Ile	e Tyr
65	Thr 625		Glu	ı Thr	Leu	Thr 630		e Ala	a Ile	e Val	1 Th'r 635	: Ser	Cys	s Lev	Gly	Ala 640

BNSDOCID: <WO__9607706A1_L>

	Le	eu V	al V	al e.	Ty Pi 64	ne I: 15	Le Se	er G	ly Pl	he Le	eu Pi 50	ne 🨓	Aı	rg Ai		ys Arg 55	ī
5	G]	Ly G	lu A	вр Т <u>у</u> 66	yr Ti 50	nr As	sp Me	et Pi	o Pi 66	ne Pr 55	:0 As	p G	ln Ai	eg Hi 67		ln Leu	
		n Ai	eg Le	eu Th 75	r Gl	u Al	a Gl	y Le 68	eu As 30	sn Al	a As	sp Se	er Pr 68		r Le	eu Pro	•
10	Pr	69 69	/B A:	la As	n As	n Ly	s Al 69	.a Al '5	a Il	.e As	n Le	u Va 70		eu As	in Va	l Pro	
15	, 0	-				/1	U				71	r Se .5	r Al	a Gl	u As	n Lys 720	
	Pr	0 Il	.e Gl	n Ly	s Va 72	l Ly 5	s Ly	s Th	т Ту	r Il 73							
20	(2) IN	FORM	ATIO	n fo	R SE	Q ID	NO:	59:								
25		(EQUE (A) (B) (C) (D)	LENG' TYPE STRAI	TH: nuc NDEDI	3560 clei NESS	base c ac.	e pa id	irs							
30				OLEC		TYPE:	cDI	A									
50		(1.		EATUI (A) 1 (B) I	NAME	KEY:	CDS	1953	3								
35				EQUEN													
	GAG Glu 1	·	r GA	r TGT o Cys	CAC Gln	AAT Asn	TAC	Ile	C CGC	ATO Ile	Met	GTC Val	G GTC	CCA Pro	TCC Ser 15	CCG Pro	4
40	GGT Gly	CGC	CT? J Le	TTC Phe 20	. val	Cys	GGC	ACC Thr	AAC Asn 25	ı Ser	TTC Phe	CGG Arg	CCC Pro	ATG Met	Cys	AAC Asn	9
45	ACG Thr	TAT	TATO	TIE	AGT Ser	GAC Asp	AGC Ser	AAC Asn 40	Tyr	ACG Thr	CTG Leu	GAG Glu	GCC Ala 45	Thr	AAG Lys	AAC Asn	144
50	GGA Gly	CAG Gln 50	- ATO	GTG Val	TGC Cys	CCC Pro	TAC Tyr 55	GAT Asp	CCA Pro	CGT Arg	CAC	AAC Asn 60	TCC Ser	ACC Thr	TCT Ser	GTG Val	192
55	CTG Leu 65	GCC Ala	GAC Asp	AAC Asn	GAA Glu	CTG Leu 70	TAT Tyr	TCC Ser	GGT Gly	ACC Thr	GTG Val 75	GCG Ala	GAT Asp	TTC Phe	AGT Ser	GGC Gly 80	240
55	AGC Ser	GAT Asp	CCG Pro	ATT Ile	ATC Ile 85	TAC Tyr	CGG Arg	GAG Glu	CCC Pro	CTG Leu 90	CAG Gln	ACC Thr	GAG Glu	CAG Gln	TAC Tyr 95	GAT Asp	288
60	AGC Ser	CTA Leu	AGT Ser	CTC Leu 100	AAC Asn	GCA Ala	CCG Pro	AAC Asn	TTT Phe 105	GTG Val	AGC Ser	TCA Ser	TTT Phe	ACG Thr 110	CAG Gln	GGC Gly	336
65	GAC Asp	TTT Phe	GTC Val 115	TAT Tyr	TTC Phe	TTC Phe	TTT Phe	CGG Arg 120	GAA Glu	ACC Thr	GCC Ala	GTT Val	GAG Glu 125	TTT Phe	ATC Ile	AAC Asn	384
	TGT	GGC	AAG	GCG	ATT	TAT	TCG	CGC	ርጥጥ	GCC	CCC	CTC			m cc		

)			-
		13Ō	-		_		135					140	•				
5	AAA Lys 145	GGT Gly	GGC Gly	CCG Pro	CAT	CGA Arg 150	TTC Phe	CGC Arg	AAC Asn	arg	TGG Trp 155	ACA Thr	TCC Ser	TTC Phe	CTC Leu	AAG Lys 160	480
10	TCC Ser	CGC Arg	CTC Leu	AAC Asn	TGC Cys 165	TCC Ser	ATT Ile	CCC Pro	GGC Gly	GAT Asp 170	TAT Tyr	CCT Pro	TTC Phe	TAC Tyr	TTT Phe 175	AAT Asn	528
	GAA Glu	ATC Ile	CAA Gln	TCT Ser 180	GCC Ala	AGC Ser	TAA neA	CTG Leu	GTG Val 185	GAG Glu	GGA Gly	CAG Gln	TAT Tyr	GGC Gly 190	TCG Ser	ATG Met	576
15	AGC Ser	TCG Ser	AAA Lys 195	CTG Leu	ATC Ile	TAC Tyr	GGA Gly	GTC Val 200	TTC Phe	AAC Asn	ACG Thr	CCG Pro	AGC Ser 205	AAC Asn	TCA Ser	ATT Ile	624
20	CCC Pro	GGC Gly 210	TCA Ser	GCG Ala	GTT Val	TGT Cys	GCC Ala 215	TTT Phe	GCC Ala	CTC Leu	CAG Gln	GAC Asp 220	ATT Ile	GCC Ala	GAT Asp	ACG Thr	672
25	TTT Phe 225	GAG Glu	GGT Gly	CAG Gln	TTC Phe	AAG Lys 230	GAG Glu	CAG Gln	ACT Thr	GGC Gly	ATC Ile 235	AAC Asn	TCC Ser	AAC Asn	TGG	CTG Leu 240	720
30	CCA Pro	GTG Val	AAC Asn	AAC Asn	GCC Ala 245	AAG Lys	GTA Val	CCC Pro	GAT Asp	CCT Pro 250	CGA Arg	CCC Pro	GGT Gly	TCC Ser	TGT Cys 255	CAC His	768
	AAC Asn	GAT Asp	TCG Ser	AGA Arg 260	Ala	CTT Leu	CCG Pro	GAT Asp	CCC Pro 265	ACA Thr	CTG Leu	AAC Asn	TTC Phe	ATC Ile 270	-1-	A ACA	816
35	CAT His	TCG Ser	CTA Leu 275	Met	GAC Asp	GAG Glu	AAT Asn	GTG Val 280	. Pro	GCA Ala	TTT Phe	TTC Phe	AGT Ser 285	U	CCC Pro	ATT o Ile	864
40	TTG Leu	GTC Val 290	. Arg	ACG Thr	AGC Ser	ACA Thr	ATA Ile 295	Tyr	CGC Arg	TTC Phe	ACT	CAP Glr 300	1 11-	GCC Ala	C GT	A GAT l Asp	912
45	GCG Ala 305	Glr	ATI	AAA Lys	ACT Thr	CCT Pro	G L A	GGC Gly	AAG Lys	ACA Thr	TAT	. Wal	r GTI o Val	ATO Ile	C TT' ∋ Ph	r GTG e Val 320	•
50	GGC Gly	ACF	A GAT	CAT His	GGF G Gly 325	, Lys	ATT	T ATT	r AAC ≥ Lys	TCA Ser 330	va.	AA E l Ası	r GCT n Ala	GA Gli	A TC u Se 33	T GCC r Ala 5	1008
	GAT Asp	TCI Sei	A GCC	G GA: a Asj 340	p Ly	A GTO	C ACC	C TC	C GTA r Val 345	Lvai	ATO	C GA	G GAC u Glu	35		T GTO p Val	1056
55	CT(Lev	ACO 1 Th:	C AAG r Ly: 35	s Se	r GA	A CCC	C AT	A CG e Ar 36	g Asi	r CTO	G GA	G AT u Il	A GT0 e Va: 36!	· AL	A AC g Th	C ATO	1104
60	CA(Gl:	TA n Ty 37	r As	T CA p Gl	A CC n Pr	C AA	A GA B As 37	p G1	C AG y Se	C TAC	C GA r As	C GA p As 38	Ď GT	T AA y Ly	A TI	CA ATO	C 1152 e
65	AT 11 38	e Va	G AC 1 Th	G GA r As	C AG p Se	T CA r Gl 39	n va	G GT l Va	A GC	C AT. a Il	A CA e Gl 39		CG CA	T CG s Ar	T TO	T CA B Hi 40	
	AA	T GA	C AA	A AI	C AC	C AG	C TG	C AG	C GA	G TG	C GI	C GC	A TT	G CF	AG G	AT CC	G 1248

	Ası	n Asp	Lys		e Th 40	r Se: 5	r Cy	s Se	r Gl	.u Cy 41	s V	al	Le	u Gl	n As 41	p Pro	•
	TAC Tyr	C TGC	GCC Ala	Tr ₁	, ,,,,,	C AAI o Lys	A ATO	C GC e Al	T GG a Gl 42	й гй	G To	GC CG /s Ar	T TC	C CA r Hi 43	s Gl	C GCT y Ala	1296
10)		435	DGC	2 010	GI	ı ASI	44	o D	е ту	r Gl	.n As	n Vai 445	l Al	a Th	T GGC r Gly	
15		450			· Oyc	, ,,	455	5	у гу	B II(e As	n Se:	r Lys O	a Asj	p Al	C AAC a Asn	
	465				. , .	470	FILE	: Mrc	, ASI	n Asj	9 Me 47	t Asp 5) Leu	ı Lei	ı As _l	TCG Ser 480	1440
20	Arg				485	vab	GIII	GIU	, TTE	490	As;	p Asr	lle	Asp	495	-	1488
25				500			VIG	GIII	505	Thr	va.	L Glu	Thr	Leu 510	Val		1536
30			515		1	501	116	520	ser	reu	rei	ı Val	Gly 525	Phe	Phe		1584
3 5	•	530		-1-	1		535	Сув	uis	rås	Asp	GAG Glu 540	Asp	Asp	Asn	Leu	1632
40	545	•		F		550	171	GIU	ıyr	Pne	555		Arg	Gln	Asn	Val 560	1680
40					565		Cy B	ary	TIE	570	GIN	GAG Glu	Pro	Lys	Leu 575	Leu	1728
45	CCC (5	80				-71	585	ивр	AIA	vai	Leu	Leu 590	Pro	Gln	1776
50	CCT (5	95			.	ne c	600	ser	Pro	rys	Asn	Thr :	Leu	Arg	Lys	1824
55		510		(J	100 1	615	GIN	GIĀ	Pro	Asn	Ser 620	Glu '	Thr	Leu	Phe	1872
	CAG I Gln P 625		'		6	30		IIIE .	Pro	ser	Ser 635	Arg	Ile V	Val '	Val	Ala 640	1920
60	ACA A Thr T	CT To	CG G. er G		AC T lis C	GC G	TT (al E	CCC Pro	ine i	AGG Arg 650	TGAT	GGGC	GA CA	ATT	ACAG	G	1970
65	CGCGG	CGAT	G GC	TTTT	CCAC	CAC	CCGC	CAGC	GTC	AAGA	AGG	TTTAC	CCTTI	G AC	GACG	GGAGT	2030
	GGGGC																
	ACACG:	TAACA	A GAZ	AGTC	TTGG	TCG	CGCA	AGA	AGAC	CAGCO	CGC	CCCGI	CATG	G CA	TTG	TAACT	2150

		_					
	CAACACCGCT	CGAA	CCAGCAGCAG	CAGCAGCAGT	CGCALLAGCC	GCACTCCAGT	2210
	TCGGGCTCCT	CGCCCGTAAT	GTCCAACAGC	AGCAGCAGTC	CGGCTCCGCC	CTCCAGCAGT	2270
5	CCCAGTCCGC	AGGAGAGCCC	CAAGAACTGC	AGCTACATCT	ACCGTGATTG	ATTGATATGC	2330
	AACACCAAAT	CGATGCCACT	CATCCAGGCC	CAGTCCACGC	ACGCCCAGCC	ACACTCACAC	2390
	CCGCACCCGC	ACCCGCTTCC	GCCACCCGGT	CCGACCACGC	CCCCAGCACA	GCCACGCGCC	2450
10	AGAAGTCCAA	TGATCGGCAG	GACATATGCC	AAGTCCATGC	CCGTGACACC	AGTTCAACCG	2510
	CAATCGCCGC	TGGCTGAGAC	GCCCTCCTAT	GAGCTCTACG	AACGCCACTC	GGATGCGGCC	2570
15	ACCTTCCACT	TTGGGGATGA	GGACGATGAC	GATGATGATG	AGCACGACCA	GGAGGACACC	2630 ·
	TCATCGCTGG	CCATGATCAC	ACCGCCGCCG	CCCTACGACA	CTCCGCATCT	GATTGCATCG	2690
••	CCACCGCTGC	CGCCGCCTCG	TAGATTTCGC	TTTGGCAACA	GGGAGCTGTT	CAGCATGAGT	2750
20	CCAGCCGGAG	GTGGAACCAC	GCCCACCGCC	TCGGCAGGCC	AACGCGGCAG	CAGCGCCATC	2810
	ACGCCCACAA	AGTTGAGTGC	GGCGGCAGCG	GCCATGTTTG	CCGCACCCCA	AATGGCCACC	2870
25	CAACTCAACC	GGAAGTGGGC	TCATTTGCAA	AGGAAGCGGC	GCAGGCGCAA	CAGCAGCTCC	2930
	GGCGATTCTA	AGGAGCTCGA	CAAACTGGTC	CTGCAATCGG	TCGACTGGGA	TGAGAATGAG	2990
	ATGTACTAGA	ACGCAAACCA	ACAATGAGAT	AGCAGAAACA	CTTTGATTCG	GAATTTATAC	3050
30	ACCTTTGCAT	ATTTTGAATA	TGACTTCAAT	TTTAAAATGC	GTAATTATGT	TCTTATTTTT	3110
	TAAAGAACGC	TTTAGAGAAG	TTTTCTGCTA	CCTTAAATAG	TACACACAAC	TCATATCTAA	3170
35	CGTGGCGCTG	CGATATAGGA	ATAACCACTC	CCCCTTCCCT	TAAACTTAAA	GTAGCAATCG	3230
	AAAAGATCAT	TCATTAGCGA	CAGAAACTGG	ATGGGGATTT	ACTTACACAC	AAAAAGCCAG	3290
40	AGAAGTTATA	CACGAAGTTT	ATAGTTATAT	AGCCTTTATA	CATACTCCCC	GATCTGCTAA	3350
40	GTATACACAA	GCAAGCATAA	CATAACATAC	GTATATATGA	CTCTATATAT	ACCAATAGAT	3410
	TTCATAGACG	ATTCACATGG	ATCGGCTACG	CTAAATTAGA	GCTGCAAAAT	GATATTGTTA	3470
45	ATTACGATTA	GAGAAAAAA	AAAAGGAATT	CGATATCAAG	CKTATCGATA	CCNTCGACCT	3530
	CGNNNNNGGG	GCCCGGTACC	CAATTCGCCC	:			3560

- 50 (2) INFORMATION FOR SEQ ID NO:60:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 650 amino acids
 - (B) TYPE: amino acid
- 55 (D) TOPOLOGY: linear

BNSDOCID: <WO__9607706A1_L>

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:
- Glu Asp Asp Cys Gln Asn Tyr Ile Arg Ile Met Val Val Pro Ser Pro 1 5 10 15
- Gly Arg Leu Phe Val Cys Gly Thr Asn Ser Phe Arg Pro Met Cys Asn 20 25 30
 - Thr Tyr Ile Ile Ser Asp Ser Asn Tyr Thr Leu Glu Ala Thr Lys Asn 35 40 45

Gly Gln Ala Val Cys Pro Tyr Asp Pro Arg His And Ser Thr Ser Val Leu Ala Asp Asn Glu Leu Tyr Ser Gly Thr Val Ala Asp Phe Ser Gly 5 Ser Asp Pro Ile Ile Tyr Arg Glu Pro Leu Gln Thr Glu Gln Tyr Asp 10 Ser Leu Ser Leu Asn Ala Pro Asn Phe Val Ser Ser Phe Thr Gln Gly Asp Phe Val Tyr Phe Phe Phe Arg Glu Thr Ala Val Glu Phe Ile Asn 15 Cys Gly Lys Ala Ile Tyr Ser Arg Val Ala Arg Val Cys Lys Trp Asp Lys Gly Gly Pro His Arg Phe Arg Asn Arg Trp Thr Ser Phe Leu Lys 20 Ser Arg Leu Asn Cys Ser Ile Pro Gly Asp Tyr Pro Phe Tyr Phe Asn Glu Ile Gln Ser Ala Ser Asn Leu Val Glu Gly Gln Tyr Gly Ser Met Ser Ser Lys Leu Ile Tyr Gly Val Phe Asn Thr Pro Ser Asn Ser Ile 30 Pro Gly Ser Ala Val Cys Ala Phe Ala Leu Gln Asp Ile Ala Asp Thr Phe Glu Gly Gln Phe Lys Glu Gln Thr Gly Ile Asn Ser Asn Trp Leu 35 Pro Val Asn Asn Ala Lys Val Pro Asp Pro Arg Pro Gly Ser Cys His Asn Asp Ser Arg Ala Leu Pro Asp Pro Thr Leu Asn Phe Ile Lys Thr His Ser Leu Met Asp Glu Asn Val Pro Ala Phe Phe Ser Gln Pro Ile 45 Leu Val Arg Thr Ser Thr Ile Tyr Arg Phe Thr Gln Ile Ala Val Asp Ala Gln Ile Lys Thr Pro Gly Gly Lys Thr Tyr Asp Val Ile Phe Val 50 Gly Thr Asp His Gly Lys Ile Ile Lys Ser Val Asn Ala Glu Ser Ala 55 Asp Ser Ala Asp Lys Val Thr Ser Val Val Ile Glu Glu Ile Asp Val Leu Thr Lys Ser Glu Pro Ile Arg Asn Leu Glu Ile Val Arg Thr Met 60 Gln Tyr Asp Gln Pro Lys Asp Gly Ser Tyr Asp Asp Gly Lys Leu Ile Ile Val Thr Asp Ser Gln Val Val Ala Ile Gln Leu His Arg Cys His 65 Asn Asp Lys Ile Thr Ser Cys Ser Glu Cys Val Ala Leu Gln Asp Pro 405 410

BNSDOCID: <WO_

_9507706A1 L >

PCT/US94/10151 WO 95/07706

												. 1		•••	~1	21-	
			Ala	420					425					430			
5	Pro	Arg	Trp 435	Leu	Glu	Glu	Asn	Tyr 440	Phe	Tyr	Gln	Asn	Val 445	Ala	Thr	Gly	
	Gln	His 450	Ala	Ala	Сув	Pro	Ser 455	Gly	Lys	Ile	Asn	Ser 460	Lys	Asp	Ala	Asn	
10	Ala 465	Gly	Glu	Gln	ГЛв	Gly 470	Phe	Arg	Asn	Asp	Met 475	Asp	Leu	Leu	Asp	Ser 480	
	Arg	Arg	Gln	Ser	Lys 485	Asp	Gln	Glu	Ile	Ile 490	Asp	Asņ	Ile	Asp	Lys 495	Asn	
15	Phe	Glu	Asp	Ile 500	Ile	Asn	Ala	Gln	Tyr 505	Thr	Val	Glu	Thr	Leu 510	Val	Met	
20	Ala	Val	Leu 515	Ala	Gly	Ser	Ile	Phe 520	Ser	Leu	Leu	Val	Gly 525	Phe	Phe	Thr	
	Gly	Tyr 530	Phe	Сув	Gly	Arg	Arg 535	Cys	His	Lys	Asp	Glu 540	Asp	Asp	Asn	Leu	
25	Pro 545	Tyr	Pro	Asp	Thr	Glu 550	Tyr	Glu	Tyr	Phe	Glu 555	Gln	Arg	Gln	Asn	Val 560	
	Asn	Ser	Phe	Pro	Ser 565	Ser	Cys	Arg	Ile	Gln 570	Gln	Glu	Pro	Lys	Leu 575	Leu	
30	Pro	Gln	Val	Glu 580	Glu	Val	Thr	Tyr	Ala 585	Asp	Ala	Val	Leu	Leu 590	Pro	Gln	
35	Pro	Pro	Pro 595		Asn	Lys	Met	His 600	Ser	Pro	Lys	Asn	Thr 605	Leu	Arg	Lys	
	Pro	Pro 610		His	Gln	Met	His 615	Gln	Gly	Pro	Asn	Ser 620	Glu	Thr	Leu	Phe	
40	Gln 625		His	Val	Thr	Ala 630	Thr	Thr	Pro	Ser	Ser 635	Arg	Ile	. Val	Val	Ala 640	
45	Thr	Thr	Ser	Glu	His 645		Val	Pro	Thr	Arg 650							
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: 6	1:								
50		i)	(QUEN A) L B) T C) S D) T	ENGT YPE: TRAN	H: 2 nuc DEDN	670 leic ESS:	base aci dou	e pai .d	.rs							
55		(ii	L) MC	LECU	LE I	YPE:	CDN	IA									
60		·	•	(A) N (B) I	AME / OCAT	: NOI:	268	324									
-0		•	i) SI												062		60
																AGCCTAA	60 120
65	TGO	CATT	TCAG	AKAT	MTT	AMC (GATG	CGAA	AC A	AGTT	CCGC	CAC	GAAA	J'I'GA	ACA(STGGTAA	120

BNSDOCID: <WO__9607706A1_L>

AATGCCCAAG AATCTCGAGC GGAAACACCA AACACAAAAG AACAAGCAAC CGCCTCTCAC 180

	TC	GCTC	TTGC	Ac I	TTAA	TCC I	AATT	GAGG	TT G	GTGG	GGTC	ce C	TCG	cccc	CCG	GTCGA	CC 240
	AC	CCCT	CTCG	CTC	GCAC	CGC (CCTC	GCA	ATG	TCT	CTT	CTA	CAG	СТА	TCG	CCG C	TC 294
5	CTC	4 27	A CTO	C CT	G CT u Le	A CTO	ı rei	C TG	l C Agʻ	T AG'	r Gr r Va	'G AG	5 C GA	G AC	e cc	Pro L T GCG a Ala 25	3.40
10		TAC Tyl	GAC Glu	AA S	C ACC	TIL	AA G	TTO Phe	C TAG E Ty	TAC Ty:	r Gl	G CG u Ar	T CC g Pr	C TG	T TG	C ACT s Thr O	390
15	GGA Gly	AAC Asr	GAT Asp	CAC Gl:	ir erz	AAC Asn	AAC Asn	AA Asr	TAC 1 Ty: 50	C G13	A AA / Ly	A CA s Hi	C GG(s Gl)	C GC Y Ala	a As	r CAT p His	438
20	GTG Val	CGG	GAG Glu 60	Pile	C AAC B Asn	TGC Cys	GGC Gly	AAC Lys	Leu	TAC Tyr	TA'	T CG	T ACI	Phe	C CA:	r ATG B Met	486
25	AAC Asn	GAA Glu 75	nap	CGA	A GAT	ACG Thr	CTC Leu 80	Tyr	GTG Val	GGA Gly	GCC Ala	C ATO	. Asi	CGC Arg	GT! Val	A TTC Phe	534
	CGT Arg 90	GTG Val	AAC Asn	CTG Leu	CAG Gln	AAT Asn 95	ATC Ile	TCC	TCA Ser	TCC Ser	AAT Asr 100	ı Cys	TAA T Aan	CGG Arg	GAT Asp	GCG Ala 105	582
30	-10	non	Den	Gru	110	Inf	Arg	Asp	Asp	Val 115	Val	. Ser	: Cys	Val	Ser 120		630
35	GGC Gly	AAA Lys	AGT Ser	CAG Gln 125	ATC Ile	TTC Phe	GAC Asp	TGC Cys	AAG Lys 130	AAC Asn	CAT His	GTG Val	CGT Arg	GTC Val 135	ATC Ile	CAG Gln	678
40	002	1100	140	GIII	GIY	GAT Asp	Arg	145	Tyr	Val	Сув	Gly	Thr 150	Asn	Ala	His	726
45		155	Lys	veħ	TAL	GTT Val	160	Tyr	Ala	Asn	Leu	Thr 165	His	Leu	Pro	Arg	774
50	170		-7-	***	***	GGC Gly 175	Val	GTĀ	rea	GIĀ	11e 180	Ala	Lys	Сув	Pro	Tyr 185	822
50	GAT Asp	110	Deu	лвр	190	ser	Thr	Ala	IIe	Tyr 195	Val	Glu	Asn	Gly	Asn 200	Pro	870
55	GGT Gly	Oly	Dea	205	GIY	rea	TYF	ser	210	Thr	Asn	Ala	Glu	Phe 215	Thr	Lys	918
60	GCG (p	220	Vai	TIE	rne .	Arg	225	Asp	Leu	Tyr	Asn	Thr 230	Ser	Ala	Lys	966
65	CGT :	TTG (Leu (235	GAA ' Glu '	TAT Tyr	AAA Lys	rne i	AAG Lys 240	AGG Arg	ACT Thr	CTG Leu	AAA Lys	Tyr	Asp	TCC Ser	AAG Lys	TGG Trp	1014
	TTG (AAA (CCA	AAC '			GGC	TCC	TTT (GAT	245 ATT	GGG	GAG	TAC	GTG	1062

	Leu		T	Bro		Phe '	Val	Glv	Ser	Phe i	Авр	Ile		Glu	Tyr	Val	
	250					255				•	200						1110
5	TAT Tyr	TTC Phe	TTT Phe	TTC Phe	CGT Arg 270	GAA Glu	ACC Thr	GCC Ala	vai	GAA Glu 275	Tyr	Ile	Asn	Cys	Gly 280	Lys	
10	Ala	Val	Tyr	Ser 285	Arg	ATC Ile	Ala	Arg	290	Cyb	2,0	2,0	F	295	•	-	1158
	AAG Lys	AAT Asn	CTG Leu 300	CTG Leu	GCC Ala	CAC His	AAC Asn	TGG Trp 305	GCC Ala	ACC Thr	TAC Tyr	CTG Leu	AAG Lys	GCC Ala	AGA Arg	CTC Leu	1206
15	AAC Asn	TGC Cys 315	AGC Ser	ATC Ile	TCC Ser	GGC Gly	GAA Glu 320	TTT Phe	CCG Pro	TTC Phe	TAT Tyr	TTC Phe 325	AAC Asn	GAG Glu	ATC Ile	CAA Gln	1254
20	TCG Ser 330	GTC Val	TAC Tyr	CAG Gln	CTG Leu	CCC Pro 335	TCC Ser	GAT Asp	AAG Lys	AGT Ser	CGA Arg 340	TTC Phe	TTC Phe	GCC Ala	ACA Thr	TTC Phe 345	1302
25	ACG Thr	ACG Thr	AGC Ser	ACT Thr	AAT Asn 350	GGC Gly	CTG Leu	ATT Ile	GGA Gly	TCT Ser 355	GCC Ala	GTA Val	TGC Cys	AGT Ser	TTC Phe 360	CAC His	1350
30	ATT Ile	AAC Asn	GAG Glu	ATT Ile 365	Gln	GCT Ala	GCC Ala	TTC Phe	AAT Asn 370	GGC Gly	AAA Lys	TTC Phe	AAG Lys	GAG Glu 375	CAA Gln	TCT	1398
	TCA Ser	TCG Ser	AAT Asn 380	Ser	GCA Ala	TGG Trp	CTG Leu	CCG Pro 385	GTG Val	CTT Leu	AAC Asn	TCC Ser	CGG Arg 390	GTG Val	CCG	GAA Glu	1446
35	CCA Pro	CGG Arg	Pro	GGT Gly	ACA Thr	TGT	GTC Val 400	Asn	GAT Asp	ACA Thr	TCA Ser	AAC Asn 405		CCC	GAT Asp	ACC Thr	1494
40	GTA Val 410	Le	AA :	TTC Phe	ATC	AGA Arg 415	Ser	CAT His	CCA Pro	CTT Leu	ATG Met 420	. nor	AAA Lys	GCC Ala	GTA Val	A AAT L Asn 425	1542
45	CAC His	GAG	G CAG	s Asr	a Asr	CCA Pro) vai	. туғ	TAT	. Lys		GAT Asp	TTC Lev	GTC Val	TT(Pho 44)	C ACC E Thr	1590
50	AAC Lys	CT	C GTO	C GT: 1 Va: 44!	J yal	AAP D Lys	ATT	CGC Arg	ATT J 116 450	s waf	ATO	C CTO	AAC 18A L	CAC Gli 45	-	A TAC u Tyr	1638
	ATT	r GT e Va	G TA 1 Ty 46	r Ty	T GTO	G GGG	C ACC	C AAC ASI 465	ı re	G GGT	CG Ar	C ATT	TAC TY:		A AT	C GTG e Val	1686
55	CA(G TA n Ty 47	r Ty	C CG r Ar	T AA g As	C GG n Gl	A GAG y Gl	u se:	G CTO	G TCC u Sei	C AA	G CT s Le 48		G GA	T AT p Il	C TTC e Phe	1734
60	GA G1 49	u Va	G GC	T CC a Pr	AA AB o As	C GA n Gl 49	u Al	C AT	C CA e Gl	A GTO	G AT 1 Me 50		A AT u Il	C AG e Se	C CA r Gl	G ACA n Thr 505	1782
65	CG Ar	T AF g L	AG AG	C CI	C TA	r II	T GG e Gl	C AC y Th	C GA r As	T CA p Hi 51	a wr	C AT	C AA e Ly	G CA	A A7 n I3 52	C GAC Le Asp 20	1830
	CT	G G	CC AT	rg To	C AA	T CG	c cg	T TA	C GA	AA O	C TO	C TI	C CG	C TO	C G	rc cgi	1878

	Leu	ı Ala	Met	y _B	Asn	Arg	Arg	Tyr			. Cys		Arg	Cys	Val	Arg	
	GAT	י כככ	ጥልሮ	525 TGC		- TCC	Cam		530					535			
5	Asp	Pro	Tyr 540	Сув	Gly	Trp	Asp	Lys 545	Glu	Ala	AAT Asn	ACG Thr	Cys Cys	CGA Arg	Pro	TAC Tyr	1926
10	GAG Glu	CTG Leu 555	GAT Asp	TTA Leu	CTG Leu	CAG Gln	GAT Asp 560	Val	GCC Ala	AAT Asn	GAA Glu	ACG Thr 565	AGT Ser	GAC Asp	ATT Ile	TGC Cys	1974
15	GAT Asp 570	Ser	AGT Ser	GTG Val	CTG Leu	AAA Lys 575	AAG Lys	AAG Lys	ATT Ile	GTG Val	GTG Val 580	ACC Thr	TAT Tyr	GGC Gly	CAG Gln	AGT Ser 585	2028
15	GTA Val	CAT His	CTG Leu	GGC Gly	TGT Cys 590	TTC Phe	GTC Val	Lys	ATA Ile	CCC Pro 595	GAA Glu	GTG Val	CTG Leu	AAG Lys	AAT Asn 600	GAG Glu	2070
20	CAA Gln	GTG Val	ACC Thr	TGG Trp 605	TAT Tyr	CAT His	CAC His	TCC Ser	AAG Lys 610	GAC Asp	AAG Lys	GGA Gly	CGC Arg	TAC Tyr 615	GAG Glu	ATT Ile	2118
25	CGT Arg	TAC Tyr	TCG Ser 620	CCG Pro	ACC Thr	AAA Lys	TAC Tyr	ATT Ile 625	GAG Glu	ACC Thr	ACC Thr	GAA Glu	CGT Arg 630	GGC Gly	CTG Leu	GTT Val	2166
30	GTG Val	GTT Val 635	TCC Ser	GTG Val	AAC Asn	GAA Glu	GCC Ala 640	GAT Asp	GGT Gly	GGT Gly	CGG Arg	TAC Tyr 645	GAT Asp	TGC Cys	CAT His	TTG Leu	2214
35	GGC Gly 650	GGC Gly	TCG Ser	CTT Leu	TTG Leu	TGC Cys 655	AGC Ser	TAC Tyr	AAC Asn	ATT Ile	ACA Thr 660	GTG Val	GAT Asp	GCC Ala	CAC His	AGA Arg 665	2262
25	TGC Cys	ACT Thr	CCG Pro	CCG Pro	AAC Asn 670	AAG Lys	AGT Ser	AAT Asn	GAC Asp	TAT Tyr 675	CAG Gln	AAA Lys	ATC Ile	TAC Tyr	TCG Ser 680	GAC Asp	2310
40	TGG Trp	TGC Cys	UIR	GAG Glu 685	TTC Phe	GAG Glu	AAA Lys	TAC Tyr	AAA Lys 690	ACA Thr	GCA Ala	ATG Met	Lys	TCC Ser 695	TGG Trp	GAA Glu	2358
45	AAG Lys	rlan .	CAA Gln 700	GGC (CAA Gln	TGC C ys	Ser	ACA Thr 705	CGG Arg	CAG Gln	AAC Asn	TTC . Phe	AGC Ser (TGC Cys	AAT Asn	CAG Gln	2406
50	UIB	CCG 1 Pro 1 715	AAT (Asn (GAG :	ATT Ile	Pne .	CGT Arg 720	AAG Lys	CCC ;	AAT Asn	GTC Val	TGAT	ATCA	CG A	AGAG	AGTAT	2459
	CGCC	CTCA	AA A	rgcc	GTCA	T CG	TCGT	CCAA	TCA	ATTT	TAG	TTAA:	rcgaz	AA G	CGAA	GAGGA	2519
55	TAAT	AACA	GT G	CGGAI	ATAG	A AA	GCC:	AGGA	CGA	GAAG.	AAC	TCAT	LATAI	AT C	ATTA'	TATC	2579
-	AGCG	ACATO	CA TO	CATAC	GACA!	r ac	rttc:	TTCA	GCA	ATGA	ACA	GAAA	ACTCI	T C	CTAA	AGGAT	2636
	TATG	CATTI	ra co	GAAC	CAT!	TAC	CAAT	GCAT	С								2670
60		TNEOT															

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 724 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein

(xi) SEQUE : DESCRIPTION: SEQ ID NO:62:

Ara Val Cys Ser Phe His Ile Asn 👊 Ile Gln Ala Ala 360 Phe Asn Gly Lys Phe Lys Glu Gln Ser Ser Ser Asn Ser Ala Trp Leu 5 375 Pro Val Leu Asn Ser Arg Val Pro Glu Pro Arg Pro Gly Thr Cys Val Asn Asp Thr Ser Asn Leu Pro Asp Thr Val Leu Asn Phe Ile Arg Ser 405 His Pro Leu Met Asp Lys Ala Val Asn His Glu His Asn Asn Pro Val 15 Tyr Tyr Lys Arg Asp Leu Val Phe Thr Lys Leu Val Val Asp Lys Ile Arg Ile Asp Ile Leu Asn Gln Glu Tyr Ile Val Tyr Tyr Val Gly Thr 20 455 Asn Leu Gly Arg Ile Tyr Lys Ile Val Gln Tyr Tyr Arg Asn Gly Glu Ser Leu Ser Lys Leu Leu Asp Ile Phe Glu Val Ala Pro Asn Glu Ala Ile Gln Val Met Glu Ile Ser Gln Thr Arg Lys Ser Leu Tyr Ile Gly 30 Thr Asp His Arg Ile Lys Gln Ile Asp Leu Ala Met Cys Asn Arg Arg Tyr Asp Asn Cys Phe Arg Cys Val Arg Asp Pro Tyr Cys Gly Trp Asp 35 Lys Glu Ala Asn Thr Cys Arg Pro Tyr Glu Leu Asp Leu Leu Gln Asp Val Ala Asn Glu Thr Ser Asp Ile Cys Asp Ser Ser Val Leu Lys Lys Lys Ile Val Val Thr Tyr Gly Gln Ser Val His Leu Gly Cys Phe Val 585 45 Lys Ile Pro Glu Val Leu Lys Asn Glu Gln Val Thr Trp Tyr His His Ser Lys Asp Lys Gly Arg Tyr Glu Ile Arg Tyr Ser Pro Thr Lys Tyr 50 Ile Glu Thr Thr Glu Arg Gly Leu Val Val Val Ser Val Asn Glu Ala 55 Asp Gly Gly Arg Tyr Asp Cys His Leu Gly Gly Ser Leu Leu Cys Ser Tyr Asn Ile Thr Val Asp Ala His Arg Cys Thr Pro Pro Asn Lys Ser 60 Asn Asp Tyr Gln Lys Ile Tyr Ser Asp Trp Cys His Glu Phe Glu Lys 680 Tyr Lys Thr Ala Met Lys Ser Trp Glu Lys Lys Gln Gly Gln Cys Ser 65 Thr Arg Gln Asn Phe Ser Cys Asn Gln His Pro Asn Glu Ile Phe Arg 710

5	(2) IN	FORMAT	ION	FOR S	SEQ I	ID NO	0:63	:								
-	(:	(B) LE	NGTH PE: : RAND:	: 250 nucle EDNE:	04 ba eic a ss: (ase p acid doub	pair	3							
10	,;	D) i) MOL) TO													
	-					,										
15		(B) NA) LO	ME/K CATI	ON:	355.										
	•	i) SEÇ												_		
20	GGCCGG															60
	ACGGAG															120
25	GTGTTC	TTGA P	GATG	CTTC	C CT	TGGT	TTTC	GGA	TAAG	CTT	TCCT	GTGG	AT T	GTTG	TGTTC	180
23	TTGAAG	ATGC 1	TCCC	TTGG	T TT	TCGG	ATAA	GCT	TTCC	AGC	GTGG	TTTC	AG C	CTCG	GCTTG	240
	TTTGGA	cccc c	ACAT	AATC	T TC	GAAC	TACA	ATG	AAGA	GGA	AATT	TTGA	AA C	GCGT	TTCAG	300
30	ACGCGT	ACAA 1	CGAC	AAAA:	T GT	TTGG	TTTC	CAA	TTGA	TCT	TGCA	ATGT	AG C	TAC	ATG Met 1	357
35	GTG GT Val Va	G AAG 1 Lys	ATC Ile 5	TTG Leu	GTT Val	TGG Trp	TCG Ser	ATA Ile 10	TGT Cys	CTG Leu	ATA Ile	GCG Ala	CTG Leu 15	TGT Cys	CAT His	405
40	GCT TG Ala Tr	G ATG p Met 20	Pro	GAT Asp	AGT Ser	TCT Ser	TCC Ser 25	AAA Lys	TTA Leu	ATA Ile	AAC Asn	CAT His 30	TTT Phe	AAA Lys	TCA Ser	453
15	GTT GA Val Gl	A AGT u Ser	AAA Lys	AGC Ser	TTT Phe	ACC Thr 40	GGG Gly	AAC Asn	GCC Ala	ACG Thr	TTC Phe 45	CCT Pro	GAT Asp	CAC His	TTT Phe	501
45	ATT GT Ile Va 50	C TTG	AAT Asn	CAA Gln	GAC Asp 55	GAA Glu	ACT Thr	TCG Ser	ATA Ile	TTA Leu 60	GTA Val	GGC Gly	GGT Gly	AGA Arg	AAT Asn 65	549
50	AGG GT Arg Va	TT TAC	AAT Asn	TTA Leu 70	AGT Ser	ATA Ile	TTC Phe	GAC Asp	CTC Leu 75	AGT Ser	GAG Glu	CGT Arg	AAA Lys	GGG Gly 80	GGG Gly	597
55	CGA AT	rc GAC le Asp	TGG Trp 85	CCA Pro	TCG Ser	TCC Ser	GAT Asp	GCA Ala 90	CAT His	GGC Gly	CAG Gln	TTG Leu	TGT Cys 95	ATA Ile	TTG Leu	645
60	AAA GO	GG AAA ly Lys 100	Thr	GAC Asp	GAC Asp	GAC Asp	TGC Cys 105	CAA Gln	TAA neA	TAC Tyr	ATT Ile	AGA Arg 110	ATA Ile	CTG Leu	TAC Tyr	693
65	Ser S	CA GAA er Glu 15	CCG Pro	GGG Gly	AAA Lys	TTA Leu 120	GTT Val	ATT	TGC Cys	GGG Gly	ACC Thr 125	TAA neA	TCG Ser	TAC Tyr	AAA Lys	74:
65	CCC C Pro L 130	TC TG1 eu Cys	CGG Arg	ACG Thr	TAC Tyr 135	Ala	TTT Phe	AAG Lys	GAG Glu	GGA Gly 140	rya	TAC Tyr	CTG Leu	GTT Val	GAG Glu 145	789

	AA: Ly:	A GA B Gl	A GT. u Va	À GAZ l Glu	A GGC 1 Gly 150	, Ile	GGC Gly	TTC Let	G TG1	CC# B Pro	Ty:	Asi	r cc	G GA	A CAG u Hi: 160	C AAC 8 Asn 0	837
5	AG(Se)	C AC	A TC'	r GTC r Val 165	. Ser	TAC Tyr	TAA : Asn	GGC Gly	C CAP 7 Glr 170	. Lev	TTI Phe	TC Sei	A GCC	G ACC	r Vai	C GCC L Ala	885
10	GA(Pho	T TCC Ser 180	r Gly	GGC Gly	GAC Asp	CCT Pro	Leu 185	ı Ile	TAC Tyr	AGG Arg	G GAC	9 CC0 1 Pro 190	Gli	G CGG	C ACC	933
15	GIU	19:	ı Sei	. Yeb	Leu	Lys	Gln 200	Leu	. Asn	Ala	Pro	205	Phe	e Val	l Asr	TCG Ser	981
20	210	. Ala	а Туг	. GIA	Asp	1yr 215	Ile	Phe	Phe	Phe	Tyr 220	Arg	Glu	Thr	Ala	GTC Val 225	1029
	Glu	туг	. Met	AAC Asn	Cys 230	Gly	Lys	Val	Ile	Tyr 235	Ser	Arg	Val	Ala	240	Val	1077
25	Сув	ГÀв	Asp	GAC Asp 245	Lys	Gly	Gly	Pro	His 250	Gln	Ser	Arg	Asp	Arg 255	Trp	Thr	1125
30	TCG Ser	TTC Phe	Leu 260	Lys	GCA Ala	CGT Arg	CTC Leu	AAT Asn 265	TGT Cys	TCA Ser	ATT	CCC Pro	GGC Gly 270	Glu	TAC Tyr	CCC Pro	1173
35	Pne	275	Pne	GAT Asp	Glu	Ile	Gln 280	Ser	Thr	Ser	Asp	Ile 285	Val	Glu	Gly	Arg	1221
40	290	Asn	ser	GAC Asp	Asp	Ser 295	Lys	Lys	Ile	Ile	Tyr 300	Gly	Ile	Leu	Thr	Thr 305	1269
	PIO	vai	Asn	GCC Ala	310	Gly	Gly	Ser	Ala	11e 315	Сув	Ala	Tyr	Gln	Met 320	Ala	1317
45	мвр	TIE	Leu	CGC Arg 325	val	Pne	Glu	Gly	330	Phe	Lys	His	Gln	Glu 335	Thr	Ile	1365
50	Asn	ser	340	TGG Trp	Leu	Pro	Val	Pro 345	Gln	Asn	Leu	Val	Pro 350	Glu	Pro	Arg	1413
55	Pro	355	GIn	TGC Cys	Val	Arg .	Asp 360	Ser	Arg	Ile	Leu	Pro 365	Asp	Lys	Asn	Val	1461
60	AAC Asn 370	TTT Phe	ATT	AAG Lys	Thr	CAC His 375	TCT Ser	TTG Leu	ATG Met	Glu	GAC Asp 380	GTT Val	CCG Pro	GCT Ala	CTT Leu	TTC Phe 385	1509
	GGA Gly	AAA Lys	CCA Pro	GTT Val	CTG Leu 390	GTC (CGA Arg	GTG Val	Ser	CTG Leu 395	CAG Gln	TAT Tyr	CGG Arg	TTT Phe	ACA Thr 400	GCC Ala	1557
65	ATA Ile	ACA Thr	GTG Val	GAT Asp 405	CCA (CAA (Gln '	GTG /	Lys	ACA Thr 410	ATC .	TAA Asn	TAA neA	CAG Gln	TAT Tyr 415	CTC Leu	GAT Asp	1605

	GTT Val	TTG Leu	TAT Tyr 420	ATC Ile	A Gly	ACA Thr	GAT Asp	GAT Asp 425	GGG Gly	AAG Lys	GTA Val	CTA Leu	Д Lyв 430	GCT Ala	GTT Val	AAT Asn	1653
5	ATA Ile	CCA Pro 435	AAG Lys	CGA Arg	CAC His	GCT Ala	AAA Lys 440	GCG Ala	TTG Leu	TTA Leu	TAT Tyr	CGA Arg 445	AAA Lys	TAC Tyr	CGT Arg	ACA Thr	1701
10	TCC Ser 450	GTA Val	CAT His	CCG Pro	CAC His	GGA Gly 455	GCT Ala	CCC Pro	GTA Val	AAA Lys	CAG Gln 460	CTG Leu	AAG Lys	ATC Ile	GCT Ala	CCC Pro 465	1749
15	Gly	Tyr	Gly	Lys	Val 470	Val	Val	Val	Gly	Lys 475	Asp	GAA Glu	Ile	Arg	Leu 480	Ala	1797
20	Asn	Leu	Asn	His 485	Сув	Ala	Ser	Lys	Thr 490	Arg	Cys	AAG Lys	Asp	Cys 495	Val	Glu	1845
	Leu	Gln	Asp 500	Pro	His	Сув	Ala	Trp 505	Asp	Ala	Lys	CAA Gln	Asn 510	Leu	Cys	Val	1893
25	AGC Ser	ATT Ile 515	GAC Asp	ACC Thr	GTC Val	ACT Thr	TCG Ser 520	TAT Tyr	CGC Arg	TTC Phe	CTG Leu	ATC Ile 525	CAG Gln	GAC Asp	GTA Val	GTT Val	1941
30	Arg 530	Gly	Asp	Asp	Asn	Lys 535	Cys	Trp	Ser	Pro	Gln 540	ACA Thr	Asp	Lys	Lys	Thr 545	1989
35	Val	Ile	Lys	Asn	Lys 550	Pro	Ser	Glu	Val	Glu 555	Asn	GAG Glu	Ile	Thr	Asn 560	Ser	2037
40	Ile	Asp	Glu	Lys 565	Asp	Leu	Asp	Ser	Ser 570	Asp	Pro	CTC Leu	Ile	Lys 575	Thr	Gly	2085
	Leu	Asp	Asp 580	Asp	Ser	yab	Cys	Asp 585	Pro	Val	Ser	GAG Glu	Asn 590	Ser	Ile	GIÀ	2133
45	Gly	Сув 595	Ala	Val	Arg	Gln	Gln 600	Leu	Val	Ile	Tyr	ACA Thr 605	Ala	Gly	Thr	Leu	2181
50	His 610	Ile	Val	Val	Val	Val 615	Val	Ser	Ile	Val	Gly 620		Phe	Ser	Trp	Leu 625	2229
55	Tyr	Ser	Gly	Leu	Ser 630	Val	Phe	Ala	Lys	Phe 635	His	TCG Ser	Asp	Ser	Gln 640	Tyr	2277
60	Pro	Glu	Ala	Pro 645	Phe	Ile	Glu	Gln	His 650	Asn	His	Leu	Glu	Arg 655	Leu		2325
	Ala	Asn	Gln 660	Thr	Gly	Tyr	Leu	Thr 665	Pro	Arg	Ala	. Asn	Lys 670	Ala	Val	AAT Asn	2373
65	TTG Leu	GTG Val 675	Val	AAG Lys	GTG Val	TCT Ser	AGT Ser 680	Ser	ACG Thr	CCG Pro	CGG Arg	CCG Pro 685	Lys	AAG Lys	GAC	AAT Asn	2421

CTC GAT GTC GC AAA GAC TTG AAC ATT GCG AGT GGG ACT TTG CAA 2469 Leu Asp Val Ser Lys Asp Leu Asn Ile Ala Ser Asp Gly Thr Leu Gln 690 695 700 705

AAA ATC AAG AAG ACT TAC ATT TAGTGCGACT TTTT
Lys Ile Lys Lys Thr Tyr Ile
710

2504

10 (2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 712 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:
- Met Val Val Lys Ile Leu Val Trp Ser Ile Cys Leu Ile Ala Leu Cys
 1 5 10 15
- His Ala Trp Met Pro Asp Ser Ser Lys Leu Ile Asn His Phe Lys
 25 25 30
 - Ser Val Glu Ser Lys Ser Phe Thr Gly Asn Ala Thr Phe Pro Asp His 35 40 45
- 30 Phe Ile Val Leu Asn Gln Asp Glu Thr Ser Ile Leu Val Gly Gly Arg
- Asn Arg Val Tyr Asn Leu Ser Ile Phe Asp Leu Ser Glu Arg Lys Gly 65 70 75 80
 - Gly Arg Ile Asp Trp Pro Ser Ser Asp Ala His Gly Gln Leu Cys Ile 85 90 95
- Leu Lys Gly Lys Thr Asp Asp Asp Cys Gln Asn Tyr Ile Arg Ile Leu 100 105 110
 - Tyr Ser Ser Glu Pro Gly Lys Leu Val Ile Cys Gly Thr Asn Ser Tyr 115 120 125
- 45 Lys Pro Leu Cys Arg Thr Tyr Ala Phe Lys Glu Gly Lys Tyr Leu Val 130 135 140
- Glu Lys Glu Val Glu Gly Ile Gly Leu Cys Pro Tyr Asn Pro Glu His 145 150 155 160
 - Asn Ser Thr Ser Val Ser Tyr Asn Gly Gln Leu Phe Ser Ala Thr Val 165 170 175
- Ala Asp Phe Ser Gly Gly Asp Pro Leu Ile Tyr Arg Glu Pro Gln Arg 55 180 185 190
 - Thr Glu Leu Ser Asp Leu Lys Gln Leu Asn Ala Pro Asn Phe Val Asn 195 200 205
- 60 Ser Val Ala Tyr Gly Asp Tyr Ile Phe Phe Phe Tyr Arg Glu Thr Ala 210 215 220
- Val Glu Tyr Met Asn Cys Gly Lys Val Ile Tyr Ser Arg Val Ala Arg 225 230 235 240
- Val Cys Lys Asp Asp Lys Gly Gly Pro His Gln Ser Arg Asp Arg Trp
 245 250 255

ys Ala Arg Leu Asn Cys Ser Ile Pro Gly Glu Tyr Thr Ser Phe Leu 265 Pro Phe Tyr Phe Asp Glu Ile Gln Ser Thr Ser Asp Ile Val Glu Gly 5 Arg Tyr Asn Ser Asp Asp Ser Lys Lys Ile Ile Tyr Gly Ile Leu Thr Thr Pro Val Asn Ala Ile Gly Gly Ser Ala Ile Cys Ala Tyr Gln Met Ala Asp Ile Leu Arg Val Phe Glu Gly Ser Phe Lys His Gln Glu Thr 330 15 Ile Asn Ser Asn Trp Leu Pro Val Pro Gln Asn Leu Val Pro Glu Pro Arg Pro Gly Gln Cys Val Arg Asp Ser Arg Ile Leu Pro Asp Lys Asn Val Asn Phe Ile Lys Thr His Ser Leu Met Glu Asp Val Pro Ala Leu 25 Phe Gly Lys Pro Val Leu Val Arg Val Ser Leu Gln Tyr Arg Phe Thr 395 Ala Ile Thr Val Asp Pro Gln Val Lys Thr Ile Asn Asn Gln Tyr Leu 30 Asp Val Leu Tyr Ile Gly Thr Asp Asp Gly Lys Val Leu Lys Ala Val 420 425 430 Asn Ile Pro Lys Arg His Ala Lys Ala Leu Leu Tyr Arg Lys Tyr Arg Thr Ser Val His Pro His Gly Ala Pro Val Lys Gln Leu Lys Ile Ala 40 Pro Gly Tyr Gly Lys Val Val Val Gly Lys Asp Glu Ile Arg Leu Ala Asn Leu Asn His Cys Ala Ser Lys Thr Arg Cys Lys Asp Cys Val 45 Glu Leu Gln Asp Pro His Cys Ala Trp Asp Ala Lys Gln Asn Leu Cys 505 Val Ser Ile Asp Thr Val Thr Ser Tyr Arg Phe Leu Ile Gln Asp Val Val Arg Gly Asp Asp Asn Lys Cys Trp Ser Pro Gln Thr Asp Lys Lys 55 Thr Val Ile Lys Asn Lys Pro Ser Glu Val Glu Asn Glu Ile Thr Asn Ser Ile Asp Glu Lys Asp Leu Asp Ser Ser Asp Pro Leu Ile Lys Thr 60 Gly Leu Asp Asp Asp Ser Asp Cys Asp Pro Val Ser Glu Asn Ser Ile Gly Gly Cys Ala Val Arg Gln Gln Leu Val Ile Tyr Thr Ala Gly Thr 65

BNSDOCID: <WO___9607706A1_L>

	Le	u Hi 61	s Il O	e Va	l Va	l Va	l Va 61	l Va 5	l'Se	r Il	e Va	62		u Ph	e Se	r Trp	•
5	Le:	и Ту: 5	r Se	r Gl	y Le	u Se 63	r Va O	l Ph	e Al	a Ly	s Ph 63		s Se	r As	p Se	r Gln 640	
	Туз	r Pr	o G1	u Ala	a Pr 64	o Pho	e Il	e Gl	u Gl	n Hi 65	s As O	n Hi	s Le	u Gl	u Ar	g Leu 5	
10	Sei	Ala	a As	n Gl: 660	n Th:	r Gl	у Ту	r Le	u Th 66	r Pro	o Ar	g Ala	a Ası	n Ly 67		a Val	
15	Asr	Let	1 Va 67	l Vai	L Ly	s Vai	l Se	r Se:	r Se: O	r Th	r Pro	o Arq	9 Pro 689		s Ly	s Asp	
15	Asr	Let 690	ı Ası	p Val	l Sei	c Lys	8 Asp 699	p Let	u Ası	n Ile	e Ala	a Sei 700		o Gl	y Thi	r Leu	
20	Gln 705	Lys	3 Ile	e Lys	J Lys	710		r Ile	€								
	(2)	INF	ORM	ATION	FOF	SEÇ	O ID	NO: 6	55:								
25		(i	(EQUEN (A) L (B) I	ENGI	H: 3	69 b	ase	pair	s							
30		,,,	(C) S	TRAN	DEDN OGY:	IESS: lin	dou lear	ble								
				LECU		YPE:	CDN	A									
35			(A) N B) L	ame/ ocat	ION:	1	369									
	ATG			QUEN													
40	Met 1	Ile	Tyr	Leu	Tyr 5	Thr	Ala	yab	Asn	Val 10	Ile	Pro	Lys	Asp	GGT Gly 15		48
45	CAA Gln	GGA Gly	GCA Ala	TTT Phe 20	GTC Val	GAT Asp	AAA Lys	GAC Asp	GGT Gly 25	Thr	TAT Tyr	GAC Asp	AAA Lys	GTT Val 30	Tyr	ATT Ile	96
50	CTT Leu	TTC Phe	ACT Thr 35	GTT Val	ACT Thr	ATC Ile	GGC Gly	TCA Ser 40	AAG Lys	AGA Arg	ATT	GTT Val	AAA Lys 45	ATT Ile	CCG Pro	TAT Tyr	144
50	ATA Ile	GCA Ala 50	CAA Gln	ATG Met	TGC Cys	TTA Leu	AAC Asn 55	GAC Asp	GAA Glu	TGT Cys	GGT Gly	CCA Pro 60	TCA Ser	TCA Ser	TTG Leu	TCT Ser	192
55	AGT Ser 65	CAT His	AGA Arg	TGG Trp	TCG Ser	ACG Thr 70	TTG Leu	CTC Leu	AAA Lys	GTC Val	GAA Glu 75	TTA Leu	GAA Glu	TGT Cys	GAC Asp	ATC Ile 80	240
60	GAC Asp	GGA Gly	AGA Arg	AGT Ser	TAT Tyr 85	AGT Ser	CAA Gln	ATT Ile	AAT Asn	CAT His 90	TCT Ser	AAA Lys	ACT Thr	ATA Ile	AAA Lys 95	CAG Gln	288
65	ATA Ile	ATG Met	ATA Ile	CGA Arg 100	TAC Tyr	TAT Tyr	ATG Met	TAT Tyr	TCT Ser 105	TTG Leu	ATA Ile	GTC Val	CTT Leu	TTC Phe 110	CAA Gln	GTC Val	336
	CGC	ATT	ATG	TAC	CTA	TTC	TAT	GAA	TAC	CAT	TA						369

Arg Ile Met Tyr eu Phe Tyr Glu Tyr His

5	(2)	INFORMATION	FOR	SEQ	ID	NO:66:
_	ι – ,					

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 122 amino acids
 - (B) TYPE: amino acid
- 10 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Met Ile Tyr Leu Tyr Thr Ala Asp Asn Val Ile Pro Lys Asp Gly Leu 1 5 10 15

20 Gln Gly Ala Phe Val Asp Lys Asp Gly Thr Tyr Asp Lys Val Tyr Ile 20 25 30

Leu Phe Thr Val Thr Ile Gly Ser Lys Arg Ile Val Lys Ile Pro Tyr 35 40 45

Ile Ala Gln Met Cys Leu Asn Asp Glu Cys Gly Pro Ser Ser Leu Ser 50 55 60

Ser His Arg Trp Ser Thr Leu Leu Lys Val Glu Leu Glu Cys Asp Ile 30 65 70 75 80

Asp Gly Arg Ser Tyr Ser Gln Ile Asn His Ser Lys Thr Ile Lys Gln 85 90 95

35 Ile Met Ile Arg Tyr Tyr Met Tyr Ser Leu Ile Val Leu Phe Gln Val 100 105 110

Arg Ile Met Tyr Leu Phe Tyr Glu Tyr His 115 120

5

10

15

20

WHAT IS CLAIMED IS:

- 1. An isolated peptide of at least 5 amino acids comprising a unique portion of a semaphorin, and said peptide has a semaphorin binding specificity.
- 2. An isolated peptide according to claim 1 wherein said semaphorin comprises a human semaphorin.
- 3. An isolated antibody that specifically binds a peptide according to claim 1.
- 4. An isolated nucleic acid comprising a nucleotide sequence encoding a peptide according to claim 1 wherein said sequence is joined to a nucleotide not naturally joined to said sequence and said sequence is other than that of the A39 ORF of vaccinia virus.

5. A cell comprising a nucleic acid according to claim 3.

- 6. A transgenic rodent comprising a nucleic acid according to claim 7 wherein said nucleic acid is xenogeneic to said rodent.
- 7. A process for the production of a recombinant unique portion of a semaphorin comprising culturing the cell of Claim 4 under conditions suitable for the expression of said peptide, and recovering said peptide.
- 8. A method of identifying a pharmacological agent useful in the diagnosis or treatment of disease associated with the binding of a semaphorin to a semaphorin receptor, said method comprising the steps of:

contacting a panel of prospective agents with a peptide according to claim 1;

measuring the binding of a plurality of said prospective agents to said peptide;

identifying from said plurality a pharmacological agent which specifically binds said peptide;

wherein said pharmacological agent is useful in the diagnosis or treatment of disease associated with the binding of a semaphorin to a cellular receptor.

9. A method of diagnosing a patient for a predisposition to neurological disease associated with a genetic locus, said method comprising the steps of:

isolating somatic cells from a patient;

isolating genomic DNA from said somatic cells;

contacting said genomic DNA with a with a probe comprising a DNA sequence encoding a peptide according to claim 1 under conditions wherein said probe hybridizes to homologous DNA;

identifying a region of said genomic DNA which hybridizes with said probe;

wherein the presence, absence or sequence of said region correlates with a predisposition to a neurological disease.

15

20

10. A method of treating a patient with neurological injury or disease or a pathological viral infection, said method comprising the steps of:

administering to a patient a therapeutically effective dosage of a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a peptide according to claim 1;

wherein said peptide modulates neural cell growth cone function or viral pathogenicity in said patient.

- 11. An isolated polypeptide comprising an amino acid sequence substantially25 similar to that of a semaphorin, and said polypeptide has a semaphorin binding specificity.
- 12. An isolated peptide of at least about 5 amino acids comprising a unique portion of a semaphorin receptor, and said peptide has a semaphorin receptor30 binding specificity.
 - 13. An isolated antibody that specifically binds a peptide according to claim 12.

14. An isolated nucleic acid comprising a nucleotide sequence encoding a peptide according to claim 12 wherein said sequence is joined to a nucleotide not naturally joined to said sequence.

- 5 15. A cell comprising a nucleic acid according to claim 14.
 - 16. A process for the production of a recombinant unique portion of a semaphorin receptor peptide according to claim 12 comprising culturing the cell of Claim 14 under conditions suitable for the expression of said peptide, and recovering said peptide.
 - 17. A method of identifying a pharmacological agent useful in the diagnosis or treatment of disease associated with the binding of a semaphorin to a cellular receptor, said method comprising the steps of:
- contacting a panel of prospective agents with a peptide according to claim 12;

measuring the binding of a plurality of said prospective agents to said peptide;

identifying from said plurality a pharmacological agent which specifically 20 binds said peptide;

wherein said pharmacological agent is useful in the diagnosis or treatment of disease associated with the binding of a semaphorin to a cellular receptor.

18. A method of diagnosing a patient for a predisposition to neurological disease associated with a genetic locus, said method comprising the steps of:

isolating somatic cells from a patient;

isolating genomic DNA from said somatic cells;

contacting said genomic DNA with a with a probe comprising a DNA sequence encoding a peptide according to claim 12 under conditions wherein said probe hybridizes to homologous DNA;

identifying a region of said genomic DNA which hybridizes with said probe;

30

wherein the presence, absence or sequence of said region correlates with a predisposition to a neurological disease.

19. A method of treating a patient with neurological injury or disease or a pathological viral infection, said method comprising the steps of:

administering to a patient a therapeutically effective dosage of a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a peptide according to claim 12.

wherein said peptide modulates neural cell growth cone function or viral pathogenicity in said patient.

20. An isolated polypeptide comprising an amino acid sequence substantially similar to that of a semaphorin receptor, and said polypeptide has a semaphorin receptor binding specificity.

Int....ational application No. PCT/US94/10151

A. CL	ASSIFICATION OF SUBJECT MATTER						
US CL	:A61K 38/00; C07K 5/00; C12P 21/06; C12Q 1/0 :435/7.1, 69.1; 530/300	00; G01N 33/53					
According	to International Patent Classification (IPC) or to be	oth national classification and IPC					
	LDS SEARCHED						
Minimum	documentation searched (classification system follow	ved by classification symbols)					
U.S. :	435/7.1, 69.1; 530/300						
Documenta	ation searched other than minimum documentation to	the extent that such documents are included	d in the fields searched				
Electronic	data base consulted during the international search (name of data base and, where practicable	:, search terms used)				
APS, CA	A, BIOSIS, EMBASE, MEDLINE, DERWENT BIO terms: semaphorin, fasciclin		,				
C. DOO	CUMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.				
X, P	Cell, Volume 75, issued 31 Decer		1, 2, 11				
Y, P	The second control of						
	Transmembrane and Secreted Growth Cone Guidance 7, 8 Molecules", pages 1389-1399, see the entire document.						
Y	Neuron, Volume 9, issued November 1992, A.L. Kolodkin et 1, 2, 7, 8, 11						
	Neuron, Volume 9, issued November 1992, A.L. Kolodkin et 1, 2, 7, 8, 11 al, "Fasciclin IV: Sequence, expression and function during						
	growth cone guidance in the gra	asshopper embryo", pages					
	831-845, see the entire document.						
γ	Cons. Volume 00 to 1 4000						
	Gene, Volume 93, issued 1990,	, T. Deng et al, "A novel	1, 2, 7, 8, 11				
Í	expression vector for high-level s foreign proteins in <i>Escherichia col</i>	synthesis and secretion of					
	pancreatic phospholipase A ₂ ", pag	res 229-234 see the entire					
	document.						
Ī							
 _							
X Furth	er documents are listed in the continuation of Box (C. See patent family annex.					
=	cial categories of cited documents:	"T" later document published after the inter date and not in conflict with the applica	mational filing date or priority				
to b	ument defining the general state of the art which is not considered to of particular relevance	principle or theory underlying the inve	ntion				
	Considered novel of cannot be considered to involve an investing stee						
cite	document which may throw doubts on priority claim(s) or which is when the document is taken alone cited to establish the publication date of another citation or other						
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art							
the	ument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent f	amily				
ate of the a	actual completion of the international search	Date of mailing of the international sear	rch report				
	MBER 1994	DEC 3 0 1994					
ame and ma Commission	ailing address of the ISA/US er of Patents and Trademarks	Authorized officer	l Da				
Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 BRUCE CAMPELL BRUCE CAMPELL							
acsimile No. (703) 305-3230 Telephone No. (703) 308-0196							
rm PCT/IS	A/210 (second sheet)(July 1992)*						

BNSDOCID: <WO___9507706A1_L>

International application No. T/US94/10151

	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category*	Citation of document, with more and appropriate	
Y	Science, Volume 251, issued 15 February 1991, S.P.A. Fodor et al, "Light-Directed, Spatially Addressable Parallel Chemical Synthesis", pages 767-773, see the entire document.	8
	Symmetry (1 g	
·		
,		
	•	1

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

Inte ..ional application No.
PCT/US94/10151

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
,
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1, 2, 7, 8, 11
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1, 2, 7, 8 and 11, drawn to semaphorin peptides with semaphorin binding specificity, a method for producing said peptides, and a method for screening potential pharmaceuticals using said peptides.

Group II, claim 3, drawn to an antibody against the peptide of I.

Group III, claim 4, drawn to a nucleic acid encoding a peptide of I.

Group IV, claims 5 and 6, drawn to a cell and a rodent containing the nucleic acid of III.

Group V, claim 9, drawn to a diagnostic method using the nucleic acid of III.

Group VI, claim 10, drawn to a treatment method using the peptide of I.

Group VII, claims 12, 17 and 20, drawn to semaphorin peptides having semaphorin receptor binding specificity, and a method for screening potential pharmaceuticals using said peptides.

Group VIII, claim 13, drawn to an antibody against the peptide of VII.

Group IX, claim 14, drawn to a nucleic acid encoding the peptide of VII.

Group X, claims 15 and 16, drawn to a cell containing the nucleic acid of IX and a method of producing the peptide of VII.

Group XI, claim 18, drawn to a diagnostic method using the nucleic acid of IX.

Group XII, claim 19, drawn to a treatment method using the peptide of VII.

The inventions listed as Groups I-XII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Groups I-VI are distinct from each of groups VII-XII because I-VI and VII-XII are drawn to compositions and methods containing and utilizing two different classes of peptides, those which bind semaphorin and those which bind semaphorin receptor. The compositions and methods of I-VI do not require the compositions and methods of VII-XII, and the compositions and methods of VII-XII do not require the compositions and methods of I-VI.

Group II is distinct from each of I and III-VI because the antibody of II is not required for the methods and compositions of I and III-VI, and the methods and compositions of III-VI are not required to produce the antibody of II. While the peptide of I can be used to elicit production of the antibody of II, the peptide can be used for other purposes as well, such as the screening and treatment methods of I and VI.

Group III is distinct from each of Groups I and V, because they are related as product and process of use. The product of III can be used for several different processes, for example the divergent processes of I and V.

Group I is distinct from each of groups IV and V because the compositions and methods of I are not required for the compositions and methods of IV and V, and the compositions and methods of IV and V are not required for I. The peptides of I can be obtained without the cells of IV, for example by chemical synthesis.

Groups I and VI are distinct because the method of VI is not required for the compositions and methods of I, and the peptide of I can be used for other methods, such as the screening method of claim 8.

Groups III and IV are distinct because they are related as intermediate and final product. The intermediate (III) can be used for other purposes, such as the methods of I and V.

Groups III and VI are distinct because the composition of III is not required for the method of VI and the method of VI is not required for the composition of III.

Form PCT/ISA/210 (extra sheet)(July 1992)*

Group IV is distinct from each of groups V and VI because the compositions of IV are not required for the methods of V and VI, and the methods of V and VI are not required to produce the compositions of IV.

Groups V and VI are distinct because the two methods require different procedures and starting materials to achieve divergent ends.

Group VIII is distinct from each of VII and IX-XII because the antibody of VIII is not required for the methods and compositions of VII and IX-XII, and the methods and compositions of IX-XII are not required to produce the antibody of VIII. While the peptide of VII can be used to elicit production of the antibody of VIII, the peptide can be used for other purposes as well, such as the screening and treatment methods of VII and XII.

Group IX is distinct from each of Groups X and XI, because they are related as product and process of use. The product of IX can be used for several different processes, for example the divergent processes of X and XI.

Group VII is distinct from each of groups IX and XI because the compositions and methods of VII are not required for the compositions and methods of XI and XI, and the compositions and methods of IX and XI are not required for VII.

Groups VII and X are related as product and process of making. The peptide of VII can be produced without the method of X, for example by chemical synthesis.

Groups VII and XII are distinct because the method of XII is not required for the compositions and methods of VII, and the peptide of VII can be used for other methods, such as the screening method of claim 17.

Groups IX and XII are distinct because the composition of IX is not required for the method of XII and the method of XII is not required for the composition of IX.

Group X is distinct from each of groups XI and XII because the compositions of X are not required for the methods of XI and XII, and the methods of XI and XII are not required to produce the compositions of X.

Groups XI and XII are distinct because the two methods require different procedures and starting materials to achieve divergent ends.

Accordingly the claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept.

Form PCT/ISA/210 (extra sheet)(July 1992)*