Q1. What type of cipher is AES?

Stream cipher

Block cipher

Substitution cipher

Transposition cipher

Answer: Block cipher

Explanation: AES is a block cipher that encrypts data in fixed-size blocks.

Q2. What is the block size of AES?

128 bits

192 bits

256 bits

64 bits

Answer: 128 bits

Explanation: AES operates on 128-bit blocks regardless of key size.

Q3. Which key sizes does AES support?

128, 192, and 256 bits

56, 112, and 168 bits

64, 128, and 256 bits

32, 64, and 128 bits

Answer: 128, 192, and 256 bits

Explanation: AES supports three key sizes: 128, 192, and 256 bits.

Q4. How many rounds does AES-128 use?

10

12

14

16

Answer: 10

Explanation: AES-128 uses 10 rounds of processing.

Q5. How many rounds does AES-256 use?

10

12

14

16

Answer: 14

Explanation: AES-256 uses 14 rounds of processing.

Q6. AES is based on which mathematical structure?

Substitution-permutation network

Feistel network

Hill cipher

One-time pad

Answer: Substitution-permutation network

Explanation: AES uses a substitution-permutation network for encryption.

Q7. What is the size of the AES state?

4x4 bytes

8x8 bytes

2x2 bytes

16x16 bytes

Answer: 4x4 bytes

Explanation: AES state is a 4x4 matrix of bytes (128 bits).

Q8. Which step in AES provides diffusion?

ShiftRows

SubBytes

AddRoundKey

KeyExpansion

Answer: ShiftRows

Explanation: ShiftRows shifts bytes in rows to spread the data (diffusion).

Q9. Which AES step provides non-linearity?

SubBytes

MixColumns

AddRoundKey

ShiftRows

Answer: SubBytes

Explanation: SubBytes uses S-box substitutions introducing non-linearity.

Q10. What does the MixColumns step do?

Performs matrix multiplication to mix bytes within a column Shifts the bytes in each row

Adds the round key

Expands the key

Answer: Performs matrix multiplication to mix bytes within a column

Explanation: MixColumns mixes the data within each column to enhance diffusion.

Q11. What is the AddRoundKey step in AES?

XORing the state with the round key Substituting bytes with S-box Shifting rows Mixing columns

Answer: XORing the state with the round key

Explanation: AddRoundKey mixes the current round key by XOR operation.

Q12. How is the AES key schedule generated?

Using the Riindael key schedule algorithm Using a Feistel network Randomly for each round Using DES key schedule

Answer: Using the Rijndael key schedule algorithm

Explanation: AES uses Rijndael key schedule to derive round keys.

Q13. Which AES mode provides confidentiality without integrity?

ECB GCM

CCM

Authenticated Encryption

Answer: ECB

Explanation: ECB mode encrypts blocks independently and is vulnerable to pattern

leaks.

Q14. Which mode of AES combines encryption and authentication?

GCM (Galois/Counter Mode)

CBC CFB ECB

Answer: GCM (Galois/Counter Mode)

Explanation: GCM mode provides both confidentiality and data authenticity.

Q15. Why is ECB mode generally discouraged?

Because it leaks data patterns

Because it is slow

Because it requires a large key Because it is only for streaming

Answer: Because it leaks data patterns

Explanation: ECB encrypts identical plaintext blocks to identical ciphertext blocks.

Q16. AES was selected as the standard by which organization?

NIST

NSA.

FBI

IBM

Answer: NIST

Explanation: NIST selected AES as the encryption standard in 2001.

Q17. Which algorithm was AES designed to replace?

DES

Blowfish

RC4

Twofish

Answer: DES

Explanation: AES replaced DES due to DES's shorter key size and vulnerabilities.

Q18. How does AES resist differential and linear cryptanalysis?

Through multiple rounds of substitution and permutation By using very large keys

By hashing the plaintext

By compressing data

Answer: Through multiple rounds of substitution and permutation

Explanation: The design of AES provides strong resistance to such attacks.

Q19. What is the minimum recommended key size for AES to be secure today?

128 bits

56 bits

64 bits

256 bits

Answer: 128 bits

Explanation: AES-128 is currently considered secure, though 256-bit is preferred for

extra security.

Q20. In AES, which operation is applied last in each round except the final?

MixColumns

AddRoundKey

SubBytes

ShiftRows

Answer: AddRoundKey

Explanation: AddRoundKey is the last step in each round to combine data with the

round key.