My Project

Generated by Doxygen 1.8.13

Contents

1	Ising	BornM	achine					1
2	Nam	espace	Index					3
	2.1	Names	space List		 		 	3
3	Nam	espace	Documer	ation				5
	3.1	auxilia	ry_functior	Namespace Reference	 		 	5
		3.1.1	Detailed	escription	 		 	5
		3.1.2	Function	ocumentation	 		 	5
			3.1.2.1	ConvertStringToVector()	 		 	6
			3.1.2.2	EmpiricalDist()	 		 	6
			3.1.2.3	_2NormForStrings()	 		 	6
			3.1.2.4	MiniBatchSplit()	 		 	6
			3.1.2.5	SampleArrayToList()	 		 	6
			3.1.2.6	SampleListToArray()	 		 	6
			3.1.2.7	StringToList()	 		 	7
			3.1.2.8	TotalVariationCost()	 		 	7
			3.1.2.9	FrainTestPartition()	 		 	7
	3.2	file_op	erations_ir	Namespace Reference	 		 	8
		3.2.1	Detailed	escription	 		 	8
		3.2.2	Function	ocumentation	 		 	8
			3.2.2.1	DataDictFromFile()	 		 	8
			3.2.2.2	DataImport()	 		 	9
	3.3	param	_init Name	pace Reference	 		 	9
		3.3.1	Detailed	escription	 		 	9
		3.3.2	Function	ocumentation	 		 	9
			3.3.2.1	NetworkParams()	 		 	9
			3.3.2.2	StateInit()	 		 	10
	3.4	run ar	nd compar	Namespace Reference				10
		3.4.1		escription				11
		3.4.2		ocumentation				11
			3.4.2.1	get_inputs()				11
		3.4.3		ocumentation				11
		···•		olot colour	 	· ·	 	11

•	001177170
	CONTENTS
	CONTENTS

Index 13

Chapter 1

IsingBornMachine

Implementation of Quantum Ising Born Machine using Rigetti Forest Platform, with two approaches:

- 1. Training using MMD as a Cost function.
- 2. Training using Stein Discrepancy as a Cost function

Both of the above have the option to run using a 'Quantum-Hard' Kernel function

To run the, PyQuil is needed, plus a user code which can be gotten by signing up to use the Rigetti simulator online:

Follow instructions online: http://docs.rigetti.com/en/stable/start.html This will allow you to download the Rigetti SDK which includes a compiler and a Quantum Virtual Machine

Also the standard packages, numpy, matplotlib, etc.

In the current form of the above codes, it is necessary to run some functions in file_operations_out.py to generate the data and pre-compute the quantum kernel etc.

MAXIMUM MEAN DISCREPANCY

INSTRUCTIONS FOR USE

run using:

python run_and_compare.py input.txt

Where input.txt should look like:

N_epochs N_qubits N_trials learning_rate_one learning_rate_two

2 IsingBornMachine

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

auxiliary_tunctions
Some additional useful functions
file_operations_in
Import functions
param_init
Initialise some inputted variables
run_and_compare
This is the main module for this project

4 Namespace Index

Chapter 3

Namespace Documentation

3.1 auxiliary_functions Namespace Reference

some additional useful functions

Functions

- def ConvertToString (index, N_qubits)
- def StringToList (string)
- def SampleListToArray (original_samples_list, N_qubits)

Convert list to array.

- def SampleArrayToList (sample_array)
- def EmpiricalDist (samples, N_v, arg)
- def TotalVariationCost (dict_one, dict_two)
- def ConvertStringToVector (string)
- def L2NormForStrings (string1, string2)
- def TrainTestPartition (samples)

This function partitions an array of samples into a training array and a test array.

• def MiniBatchSplit (samples, batch_size)

3.1.1 Detailed Description

some additional useful functions

A collection of sever additional function useful during the running of the code.

3.1.2 Function Documentation

3.1.2.1 ConvertStringToVector()

```
def auxiliary_functions.ConvertStringToVector ( string )

This function converts a string to a np array

3.1.2.2 EmpiricalDist()

def auxiliary_functions.EmpiricalDist ( samples, N\_v, arg )
```

This method outputs the empirical probability distribution given samples in a numpy array as a dictionary, with keys as outcomes, and values as probabilities

3.1.2.3 L2NormForStrings()

This function computes the L2 norm between two strings

3.1.2.4 MiniBatchSplit()

This function takes the first $\begin{cases} $'$ batch_size\end{cases} 's amples out of the full sample set$

3.1.2.5 SampleArrayToList()

```
def auxiliary_functions.SampleArrayToList ( sample\_array \ ) This function converts a np.array where rows are samples into a list of length N_samples
```

3.1.2.6 SampleListToArray()

```
def auxiliary_functions.SampleListToArray ( original\_samples\_list, \\ N\_qubits \ )
```

Convert list to array.

Parameters

in	original_samples_list	The original list
in	N_qubits	The number of qubits
out	sample_array	The list converted into an array

return Converted list

```
This function converts a list of strings, into a numpy array, where each [i,j] element of the new array is the jth bit of the ith string
```

3.1.2.7 StringToList()

This kernel converts a binary string to a list of integers

3.1.2.8 TotalVariationCost()

```
\begin{tabular}{ll} def & auxiliary\_functions. Total Variation Cost ( & dict\_one, \\ & dict\_two ) \end{tabular}
```

This Function computes the variation distace between two distributions

3.1.2.9 TrainTestPartition()

```
\label{lem:constrainTestPartition} \mbox{ def auxiliary\_functions.} \mbox{TrainTestPartition (} \\ \mbox{ samples )}
```

This function partitions an array of samples into a training array and a test array.

The last 20% of the original set is used for testing

Parameters

in	samples	A list of samples
out	train_test	array of lists

return Split array

3.2 file_operations_in Namespace Reference

import functions

Functions

- def FileLoad (file)
- def DataDictFromFile (N_qubits, N_samples)

Reads data dictionary from file.

• def DataImport (approx, N_qubits, N_data_samples, stein_approx)

Returns relevant data.

• def KernelDictFromFile (N_qubits, N_samples, kernel_choice)

Reads kernel dictionary from file.

• def ParamsFromFile (N_qubits)

3.2.1 Detailed Description

import functions

A collection of functions for imported pre-computed data

3.2.2 Function Documentation

3.2.2.1 DataDictFromFile()

```
def file_operations_in.DataDictFromFile ( N\_qubits, N\_samples \ )
```

Reads data dictionary from file.

Parameters

in	N_qubits	The number of qubits
in	N_samples	The number of samples

Returns

A dictionary containing the appropriate data

3.2.2.2 DataImport()

Returns relevant data.

Parameters

in	approx	The approximation type
in	N_qubits	The number of qubits
in	N_data_samples	The number of data samples
in	stein_approx	The approximation type
out	data_samples	The requested list of samples
out	data_exact_dict	The requested dictionary of exact samples

Returns

Requested data

3.3 param_init Namespace Reference

Initialise some inputted variables.

Functions

- def HadamardToAll (prog, N_qubits)
- def NetworkParams (N_qubits)
 Initialise weights and biases as random.
- def StateInit (N_qubits, circuit_params, p, q, r, s, circuit_choice, control, sign)

3.3.1 Detailed Description

Initialise some inputted variables.

3.3.2 Function Documentation

3.3.2.1 NetworkParams()

```
\label{eq:continuit.NetworkParams} \mbox{ (} \\ N\_qubits \mbox{ )}
```

Initialise weights and biases as random.

This function computes the initial parameter values, J, b randomly chosen on interval [0, pi/4], gamma_x, gamma_y set to constant = pi/4 if untrained

Parameters

in N_qubits The r	number of qubits
-------------------	------------------

Returns

initialised parameters

3.3.2.2 StateInit()

This function computes the state produced after the given circuit, either QAOA, IQP, or IQPy, depending on the value of circuit_choice.

3.4 run_and_compare Namespace Reference

This is the main module for this project.

Functions

• def get_inputs (file_name)

This function gathers inputs from file.

- def **SaveAnimation** (N_trials, framespersec, fig, N_epochs, N_qubits, learning_rate, N_born_samples, cost_func, kernel_type, approx, data_exact_dict1, data_exact_dict2, born_probs_list1, axs)
- def **PlotAnimate** (N_trials, N_qubits, N_epochs, learning_rate, N_born_samples, cost_func, kernel_type, approx, data_exact_dict1, data_exact_dict2)
- def **animate** (i, N_trials, N_qubits, learning_rate, N_born_samples, kernel_type, approx, data_exact_dict1, born_probs_list1, axs)
- def main ()

This is the main function.

Variables

• list plot_colour = []

If kernel is to be computed exactly set N_kernel_samples = 'infinite'.

3.4.1 Detailed Description

This is the main module for this project.

More details.

3.4.2 Function Documentation

3.4.2.1 get_inputs()

This function gathers inputs from file.

Parameters

in	file_name	name of file to gather inputs from
out	N_epochs	number of epochs
out	N_qubits	number of qubits
out	N_trials	number of trials
out	learning_rate_one	first learning rate
out	learning_rate_two	second learning rate

Returns

listed parameters

3.4.3 Variable Documentation

3.4.3.1 plot_colour

```
list run_and_compare.plot_colour = []
```

If kernel is to be computed exactly set $N_{exactly} = 'infinite'$.

list of colours

Index

auxiliary_functions, 5 ConvertStringToVector, 5 EmpiricalDist, 6 L2NormForStrings, 6 MiniBatchSplit, 6 SampleArrayToList, 6 SampleListToArray, 6 StringToList, 7 TotalVariationCost, 7 TrainTestPartition, 7
ConvertStringToVector auxiliary_functions, 5
DataDictFromFile file_operations_in, 8 DataImport
file_operations_in, 8
EmpiricalDist auxiliary_functions, 6
file_operations_in, 8 DataDictFromFile, 8 DataImport, 8
get_inputs run_and_compare, 11
L2NormForStrings auxiliary_functions, 6
MiniBatchSplit auxiliary_functions, 6
NetworkParams param_init, 9
param_init, 9 NetworkParams, 9 StateInit, 10
plot_colour run_and_compare, 11
run_and_compare, 10 get_inputs, 11 plot_colour, 11
SampleArrayToList auxiliary_functions, 6 SampleListToArray auxiliary_functions, 6

StateInit
 param_init, 10
StringToList
 auxiliary_functions, 7
TotalVariationCost
 auxiliary_functions, 7
TrainTestPartition
 auxiliary_functions, 7