

PAA5100JE-Q: Optical Tracking Chip

Product Datasheet

General Description

The PAA5100JE-Q is PixArt Imaging's latest optical navigation chip designed to enable navigation with working range of 15 mm to 35 mm over various surfaces. It is housed in a 28-pin land-grid-array (LGA) package that provides X-Y motion information. Aided by external illumination, it is most suitable for motion and surface detection in robot application.

Key Features

- Working range of 15 to 35 mm
- No lens focusing required during lens mounting process
- Power consumption of 6 mA typical @ run mode (chip only)
- 16-bits motion data registers
- Motion detect pin output
- Internal oscillator no clock input needed

Applications

 Devices that require near field motion detection, e.g Robot Cleaners

Key Parameters

Parameter	Value				
Supply Voltage (V)	V_{DD} : 1.8 – 2.1				
	V _{DDIO} : 1.8 – 3.6				
Working Range (mm)	15 to 35 mm				
Frame Rate (fps)	242				
Interface	4-Wire SPI @ 2 MHz				
Package Type	28-pin LGA Package with				
A*. ()	L214-ZSZ Lens Assembly:				
	6 x 6 x 3.08 mm				

Ordering Information

Part Number	Package Type				
PAA5100JE-Q	28-pin LGA Package				
L214-ZSZ	Lens Assembly				

For any additional inquiries, please contact us at http://www.pixart.com/contact.asp

PixArt Imaging Inc.

Contents

PAA51	100JE-Q: Optical Tracking Chip	1
Pro	oduct Datasheet	1
Ger	neral Description	1
Key	/ Features	1
	plications	
Key	/ Parameters	1
Ord	dering Information	1
List of	Figures	4
	Tables	5
1.0	Introduction	6
1.1		
1.2		
1.3		7
2.0	Operating Specifications	
2.1		
2.2		
2.3		
2.4		
3.0	Mechanical Specifications	
3.1	Package Marking	13
3.2	LGA Package Outline Drawing	13
3.3	L214-ZSZ Lens Assembly Drawings	15
4.0	System Level Description	17
4.1		
4.2	Assembly Recommendation	18
4.3	Manual re-work of chip assembly	18
4.4	Placement of External Illumination with Reference to PAA5100JE	18
5.0	Power States & Sequence	19
5.1	Power-Up Sequence	19
5.2	Power-Down Sequence	20
6.0	Serial Port Interface Communication	21
6.1	Signal Description	21
6.2	Motion Pin Timing	21
6.3	Chip Select Operation	21
Versio	on 1.00 25 July 2018 SEE. FEEL.	тоисн.

PixArt Imaging Inc.

Optical Tracking Chip

6.4	Write Operation	22
6.5	Read Operation	23
6.6	Required Timing between Read and Write Commands (t _{SXX})	24
7.0	Operation	26
7.1	Burst Mode	26
7.2	Motion Read	
7.3	Frame Capture	28
7.4	Surface Coverage	31
7.5	Speed versus Height Table	
7.6	Resolution versus Height Chart	33
7.7	Surface Detection Feature	34
7.8	Cliff Detection Feature	36
7.9	Frame Synchronization (FS)	38
8.0	Registers	41
8.1	Registers List	
8.2	Performance Optimization Registers	42
8.3	Register Description	46

List of Figures

Figure 1. Functional Block Diagram	6
Figure 2. Pin Configuration	7
Figure 3. LGA Package Outline Drawing	13
Figure 4. Recommended PCB Layout	14
Figure 5. System Assembly View with L214-ZSZ	15
Figure 6. Exploded View of System Assembly (with L214-ZSZ)	15
Figure 7. L214-ZSZ Lens Outline Drawing	16
Figure 8. PAA5100JE Reference Schematics with External Illumination	17
Figure 9. Placement of White LED on PAA5100JE's Daughter Board	
Figure 10. Write Operation	
Figure 11. MOSI Set-up and Hold Time	
Figure 12. Read Operation	
Figure 13. MISO Delay and Hold Time	
Figure 14. Timing between two Write Commands	24
Figure 15. Timing between Write and Read commands	24
Figure 16. Timing between Read and either Write or subsequent Read commands	24
Figure 17. Motion Read Timing	27
Figure 18. Raw Data Map	
Figure 19. Surface Types	31
Figure 20. Resolution versus Height Chart	33
Figure 21. Surface and Cliff Detection Flowchart	34
Figure 22. Light Mounting Distance and Angle	
Figure 23. Single Chip Synchronization	40

List of Tables

Table 1. Signal Pins Description	7
Table 2. Absolute Maximum Ratings	8
Table 3. Recommended Operating Conditions	S
Table 4. Characteristics of LTW-216TS5 at T _A = 25°C	10
Table 5. DC Electrical Specifications	10
Table 6. AC Electrical Specifications	11
Table 7. Code Identification	13
Table 8. State of Signal Pins during Power-Up & Reset	19
Table 9. State of Signal Pins during Shutdown.	20
Table 10. Speed vs Height	32
Table 11. Operating Conditions for Surface Detection Feature	
Table 12. Operating Conditions and Parameters for Additional Lighting	36
Table 13. Characteristics of HSDL-4261 at TA = 25°C	
Table 14. Register List	41
Table 15. Performance Optimization Registers	42
Table 16. Product ID Related Registers	46
Table 17. Reset and Shutdown Related Registers	47
Table 18. Operational Control Related Registers	48
Table 19. Motion Related Registers	49
Table 20. Operational Check Related Registers	52
Table 21. Troubleshooting Related Registers	54

1.0 Introduction

1.1 Overview

PAA5100JE-Q is based on Optical Navigation Technology, which measures changes in position by optically acquiring sequential picture elements and mathematically determining the direction and magnitude of movement. PAA5100JE contains a Picture Element Acquisition System (PEAS), a hard-coded Digital Signal Processing System (DSPS), and a four-wire serial port interface. The picture elements acquired by the PEAS are processed by the DSPS to determine the direction and distance of motion. The DSPS calculates the delta X and delta Y relative displacement. An external microcontroller reads and translates the delta X and delta Y information from PAA5100JE into radio frequency signals before sending them to the host.

Figure 1 below shows the functional block diagram of PAA5100JE. Refer to the subsequent chapters for detailed information on the functionality of the different interface blocks.

This datasheet describes the electrical characteristics, configuration specifications, I/O timings, and provides recommendations for handling PAA5100JE and its lens assembly.

Figure 1. Functional Block Diagram

1.2 Terminology

Term	Description
DSPS	Digital Signal Processing System
ESD	Electrostatic Discharge
LED	Light Emitting Diode
IC	Integrated Circuit
I/O	Input / Output
IR	Infrared
MCU	Microcontroller Unit
PCB	Printed Circuit Board

1.3 Signal Description

Figure 2. Pin Configuration

Table 1. Signal Pins Description

Pin No.	Signal Name	Туре	Description			
Functiona	al Group:	Power Supplies				
2	VDD	Power	Input power supply			
3	VDDIO	Power	I/O reference voltage			
4	VREG	Power	Internal voltage output			
1	GND	Ground	Ground			
21	GND	Ground	Ground			
Functiona	al Group:	Control Interface				
16	MOSI	Input	Serial data input			
17	SCLK	Input	Serial data clock			
18	MISO	Output	Serial data output			
19	NCS	Input	Chip select			
Function	al Group:	Functional I/O				
7	NRESET	Input	Hardware reset (Active low)			
15	MOTION	Output	Motion interrupt (Active low)			
20	LED_N	Input	External LED control pin (Active low)			
Function	al Group:	Special Function P	in			
5 - 6	NC	NC	No connection (float)			
8 - 14	NC	NC	No connection (float)			
22 - 28	NC	NC	No connection (float)			
29*	GND PAD	Ground Pad	Bottom of LGA package must be connected to circuit ground			

Version 1.00 | 25 July 2018

2.0 Operating Specifications

2.1 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit	Notes
Storage Temperature	Ts	-40	85	°C	
Lead-Free Solder Temperature	T _{SOLDER}		260	°C	• 0
	V_{DD}	-0.5	2.1	V	
Supply Voltage	V_{DDIO}	-0.5	3.6	V	
Input Voltage	V _{IN}	-0.5	3.6	V	All I/O pins
ESD	ESD _{HBM}		2	kV	All pins (Human Body Model)

Notes:

- 1. Maximum Ratings are those values beyond which damage to the device may occur.
- 2. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.
- 3. Functional operation should be restricted to the Recommended Operating Conditions.

2.2 Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T _A	0		60	°C	
	V_{DD}	1.8	2.0	2.1	V	Including supply noise
	V_{DDIO}	1.8	2.0	3.6	V	$V_{DDIO} \ge V_{DD}$
Power Supply Voltage	V_{XLED}			3.6	V	$V_{DDIO} \ge V_{XLED}$ Min V_{XLED} to ensure min I_{XLED} of 15 mA
LED Supply Current	I _{XLED}	15			mA	Refer LED's datasheet for the max current rating
Power Supply Rise Time	t_{RT}	0.15		20	ms	0 to V _{DD} min
Supply Noise (Sinusoidal)	V_{NA}			100	mV_{p-p}	10 kHz – 75 MHz
Serial Port Clock Frequency	f_{SCLK}			2	MHz	50% duty cycle
Working Height	Z	15		35	mm	
Effective Viewing Angle	V_A		42		o	
Frame Rate	F _R		242		fps	
Speed	S		45		ips	At Z = 25mm @ Crimson Carpet, Grey Vinyl & Replicated Wood surfaces
Deposted Free	DE		0.4		%	At Z = 25mm up to 10 ips @ Crimson Carpet & Grey Vinyl & Replicated Wood surfaces
Repeated Error	RE		2.8		%	At Z = 25mm up to 45 ips @ Crimson Carpet, Grey Vinyl & Replicated Wood surfaces

Note: PixArt does not guarantee the performance of the system beyond the recommended operating condition limits.

The recommended external illumination to use with PAA5100JE is White LED with the part number LTW-216TS5. The datasheet for this LED is attached with this document.

Table 4. Characteristics of LTW-216TS5 at T_A = 25°C

Description	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Dissipation				70	mW	
DC Forward Current				20	mA	
Peak Forward Current				100	mA	1/10 duty cycle, 0.1 ms pulse width
Reverse Voltage	V_R			5	V	
Reverse Current	I _R			10	uA	$V_R = 5 V$
Forward Voltage	V _F	2.65		3.20	V	$I_F = 5 \text{ mA}$

Note: Refer to LITE-ON's latest datasheet for up-to-date product characteristics.

2.3 DC Characteristics

Table 5. DC Electrical Specifications

Parameters	Symbol	Min.	Typ.	Max.	Unit	Conditions
Supply Current			6		mA	Average current (chip only)
Supply Current	I _{DD_RUN}					No load on MISO, MOTION.
Power Down Current	I_{PD}		12	<u> </u>	uA	
Input Low Voltage	V _{IL}			0.3*V _{DDIO}	V	SCLK, MOSI, NCS
Input High Voltage	V _{IH}	0.7*V _{DDIO})		V	SCLK, MOSI, NCS
Input Hysteresis	V_{I_HYS}		100		mV	SCLK, MOSI, NCS
Input Leakage Current	Л		± 1	± 10	uA	V _{in} = V _{DDIO} or OV,
input Leakage Current	ILEAK		Ι Ι	1 10	uA	SCLK, MOSI, NCS
Output Low Voltage	Vol			0.45	V	I _{OUT} = 1mA, MISO, MOTION
Output High Voltage	V _{OH}	V _{DDIO} - 0.45			V	I _{OUT} = -1mA, MISO, MOTION

Note: All the parameters are tested under operating conditions: $V_{DD} = 2.0V$, $V_{DDIO} = 2.0V$, $T_A = 25$ °C.

2.4 AC Characteristics

Table 6. AC Electrical Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Motion Delay After Reset	t _{MOT-RST}	50			ms	From reset to valid motion, assuming motion is present
Shutdown	t _{STDWN}			500	us	From Shutdown mode active to low current
Wake from Shutdown	t _{WAKEUP}	50			ms	From Shutdown mode inactive to valid motion. Notes: A RESET must be asserted after a shutdown. Refer to section "Notes on Shutdown", also note t _{MOT-RST} .
MISO Rise Time	t _{r-MISO}		50		ns	C _L = 100pF
MISO Fall Time	t _{f-MISO}		50	A (ns	C _L = 100pF
MISO Delay After SCLK	t _{DLY-MISO}			120	ns	From SCLK falling edge to MISO data valid, no load conditions
MISO Hold Time	t _{hold-MISO}	200			ns Data held until next falling edge	
MOSI Hold Time	t _{hold-MOSI}	200		,	ns	Amount of time data is valid after SCLK rising edge
MOSI Setup Time	t _{setup-MOSI}	120			ns	From data valid to SCLK rising edge
SPI Time Between Write Commands	tsww	10.5			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte.
SPI Time Between Write And Read Commands	t _{swr}	6			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte.
SPI Time Between Read And Subsequent Commands	t _{SRW} t _{SRR}	1.5			μs	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the address byte of the next command.
SPI Read Address-Data Delay	t _{srad}	2			μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read.

NCS Inactive After Motion Burst	t _{BEXIT}	500			ns	Minimum NCS inactive time after motion burst before next SPI usage
NCS To SCLK Active	t _{NCS-SCLK}	120			ns	From last NCS falling edge to first SCLK rising edge
SCLK To NCS Inactive (For Read Operation)	t _{sclk-NCs}	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISO data transfer
SCLK To NCS Inactive (For Write Operation)	t _{sclk-ncs}	2			μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer
NCS To MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high-Z state
MOTION Rise Time	t _{r-MOTION}		50		ns	C _L = 100pF
MOTION Fall Time	t _{f-MOTION}		50	\ (ns	C _L = 100pF
Input Capacitance	C _{in}		50		pF	SCLK, MOSI, NCS
Load Capacitance	C _L			100	pF	MISO, MOTION
Transient Comple Compart	I _{DDT}		0	70	mA	Max supply current during the supply ramp from 0V to V_{DD} with min 150 us and max 20 ms rise time (does not include charging currents for bypass capacitors).
Transient Supply Current	I _{DDTIO}			70	mA	Max supply current during the supply ramp from 0V to V _{DDIO} with min 150 us and max 20 ms rise time (does not include charging currents for bypass capacitors).

Note: All the parameters are tested under operating conditions: $V_{DD} = 2.0V$, $V_{DDIO} = 2.0V$, $T_A = 25$ °C.

3.0 Mechanical Specifications

3.1 Package Marking

Refer Figure 2. Pin Configuration for the code marking location on the device package.

Table 7. Code Identification

Code	Marking	Description	
Product Number	P5100	Part number label	
		Y: Year	
Lot Code	YWX	W: Week	
		X: Reserved as PixArt reference	

3.2 LGA Package Outline Drawing

Notes:

- 1. Dimensions in milimeters [Inches]
- 2. Coplanarity of pads: 0.08 mm
- 3. Non-cumulative pad pitch tolerance: ±0.10 mm
- 4. Maximum flash: ±0.20 mm
- 5. Dimensional tolerance: ±0.10 mm unless otherwise stated
- 6. Package Reference: 28L-6X6-LGA_009

CAUTION: It is advised that normal static discharge precautions be taken in handling and assembling of this component to prevent damage and/or degradation which may be induced by ESD.

Figure 3. LGA Package Outline Drawing

Version 1.00 | 25 July 2018

SEE. FEEL. TOUCH.

Note: Bottom center pad of LGA package must be connected to circuit ground.

Figure 4. Recommended PCB Layout

3.3 L214-ZSZ Lens Assembly Drawings

Figure 5. System Assembly View with L214-ZSZ

Figure 6. Exploded View of System Assembly (with L214-ZSZ)

Figure 7. L214-ZSZ Lens Outline Drawing

4.0 System Level Description

4.1 Reference Schematic

Note:

- 1. All capacitors must be placed as close as possible to VDD, VDDIO & VREG pins.
- 2. Ceramic non-polarity capacitors are recommended.

<u>Note</u>: The jumper set on the external illumination circuitry provides flexibility to enable LED pulsing (via LED_N pin) or set the LED to DC mode. Please refer PAA5100's **User Guide for Evaluation Kit** for more details on how to use the jumper set on the PAA5100's Evaluation Kit.

Figure 8. PAA5100JE Reference Schematics with External Illumination

Version 1.00 | 25 July 2018

4.2 Assembly Recommendation

- Surface mount PAA5100JE and all other electrical components onto PCB.
- Reflow the entire assembly in a no-wash solder process.
 - Note: It is recommended to generate a stencil profile for the reflow process.
- Remove the protective kapton tape on top of the chip's package.
 - Note: Care must be taken to keep contamination from entering the aperture.
 - Recommendation: Hold the PCB assembly vertically when removing kapton tape.
- Place the PCB assembly horizontally with the top of the chip's package facing up.
- Insert the lens onto the optical aperture (the hole on the chip's package).
- Use an appropriate flat tip jig to press the lens onto the aperture until the top surface of the lens is aligned with the top surface of the chip's package.
 - Note: No lens focusing is required.
- Insert the nozzle of glue dispenser vertically inside the gluing slots and dispense glue appropriately.
- Remove the nozzle of glue dispenser and let the glue cure properly.

Note: Refer to L214-ZSZ's lens assembly's Application Note for more information and detailed steps of the assembly process.

4.3 Manual re-work of chip assembly

If there is a need to re-work the chip assembly by de-soldering and re-soldering the chip onto PCB, it is advised to do so before applying glue onto the lens' gluing slots. Please note below precautions for re-work of chip assembly:

- Remove lens from the optical aperture by peeling the lens from the gluing slot using a tweezer.
 - Note: It is important to remove the lens as it will melt under the soldering heat.
- Place kapton tape across the top of the package to keep contamination from entering the aperture.
- Perform de-soldering & soldering activities as needed.
- Remove kapton tape and insert the lens as outlined in the above section.

4.4 Placement of External Illumination with Reference to PAA5100JE

The center of the external illumination should be placed 6 mm away from the center of PAA5100JE package for optimum lighting condition. Refer below figure for illustration on the placement of White LED on PAA5100JE's daughter board.

Figure 9. Placement of White LED on PAA5100JE's Daughter Board

5.0 Power States & Sequence

5.1 Power-Up Sequence

Although PAA5100JE performs an internal power up self-reset, it is still recommended that the Power_Up_Reset register is written every time power is applied. The appropriate sequence is as follows:

- 1. Apply power to VDDIO first and followed by VDD, with a delay of no more than 100ms in between each supply. Ensure all supplies are stable.
- 2. Wait for at least 40 ms.
- 3. Drive NCS high, and then low to reset the SPI port.
- 4. Write 0x5A to Power Up Reset register (or alternatively, toggle the NRESET pin).
- 5. Wait for at least 1 ms.
- 6. Read from registers 0x02, 0x03, 0x04, 0x05 and 0x06 one time regardless of the motion pin state.
- 7. Refer **Section 8.2 Performance Optimization Registers** to configure the needed registers in order to achieve optimum performance of the chip.

The table below shows the state of the various pins during power-up and reset.

Table 8. State of Signal Pins during Power-Up & Reset

State of Signal Pins after VDD is Valid						
Pin	During Reset	After Reset				
NRESET	Functional	Functional				
NCS	Ignored	Functional				
MISO	Undefined	Depends on NCS				
SCLK	Ignored	Depends on NCS				
MOSI	Ignored	Depends on NCS				
MOTION	Undefined	Functional				

<u>Note</u>: The NRESET pin can be used to perform a full chip reset. When asserted, it performs the same function as the Power_Up_Reset register. The NRESET pin needs to be asserted (held to logic 0) for at least 100 ns. The NRESET pin cannot be left floating or unconnected.

5.2 Power-Down Sequence

PAA5100JE can be set to Shutdown mode by writing to Shutdown register. The SPI port should not be accessed when Shutdown mode is asserted, except the power-up command (writing 0x5A to register 0x3A). Other ICs on the same SPI bus can be accessed, as long as the chip's NCS pin is not asserted.

To de-assert Shutdown mode:

- 1. Drive NCS high, and then low to reset the SPI port.
- 2. Write 0x5A to Power Up Reset register (or alternatively, toggle the NRESET pin).
- 3. Wait for at least 1 ms.
- 4. Read from registers 0x02, 0x03, 0x04, 0x05 and 0x06 one time regardless of the motion pin state.
- 5. Refer **Section 8.2 Performance Optimization Registers** to configure the needed registers in order to achieve optimum performance of the chip.

The table below shows the state of various pins during shutdown.

Table 9. State of Signal Pins during Shutdown.

Pin	Status during Shutdown Mode
NRESET	High
NCS	High ¹
MISO	Hi-Z ²
SCLK	Ignore if NCS = 1 ³
MOSI	Ignore if NCS = 1 ⁴
MOTION	Output High

Notes:

- 1. NCS pin must be held to 1 (high) if SPI bus is shared with other devices. It is recommended to hold to 1 (high) during Shutdown unless powering up the chip. It must be held to 0 (low) if the chip is to be re-powered up from shutdown (writing 0x5A to register 0x3A).
- 2. MISO should be either pull up or down during shutdown.
- 3. SCLK is ignored if NCS is 1 (high). It is functional if NCS is 0 (low).
- 4. MOSI is ignored if NCS is 1 (high). If NCS is 0 (low), any command present on the MOSI pin will be ignored except power-up command (writing 0x5A to register 0x3A).

6.0 Serial Port Interface Communication

6.1 Signal Description

The synchronous serial port is used to set and read parameters in PAA5100JE, and to read out the motion information.

The port is a four wire port. The host microcontroller always initiates communication; PAA5100JE never initiates data transfers. SCLK, MOSI, and NCS may be driven directly by a microcontroller. The port pins may be shared with other SPI slave devices. When the NCS pin is high, the inputs are ignored and the output is tri-stated.

The lines that comprise the SPI port are:

Pin	Description
SCLK	Clock input, generated by the master (microcontroller).
MOSI	Input data (Master Out / Slave In).
MISO	Output data (Master In / Slave Out).
NCS	Chip select input (active low). NCS needs to be low to activate the serial port; otherwise MISO will be high Z, and MOSI & SCLK will be ignored. NCS can also be used to reset the serial port in case of an error.

6.2 Motion Pin Timing

The motion pin is an active low output that signals the micro-controller when motion has occurred. The motion pin is lowered whenever the motion bit is set; in other words, whenever there is non-zero data in the Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers. Clearing the motion bit (by reading Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers, or writing to the Motion register) will put the motion pin high.

6.3 Chip Select Operation

The serial port is activated after NCS goes low. If NCS is raised during a transaction, the entire transaction is aborted and the serial port will be reset. After a transaction is aborted, the normal address-to-data or transaction-to-transaction delay is still required before beginning the next transaction.

To improve communication reliability, all serial transactions should be framed by NCS. In other words, the port should not remain enabled during periods of non-use because ESD and EFT/B events could be interpreted as serial communication and put the chip into an unknown state.

In addition, NCS must be raised after each burst-mode transaction is complete to terminate burst-mode. The port is not available for further use until burst-mode is terminated.

6.4 Write Operation

Write operation, defined as data going from the micro-controller to PAA5100JE, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. PAA5100JE reads MOSI on rising edges of SCLK.

Figure 10. Write Operation

Figure 11. MOSI Set-up and Hold Time

6.5 Read Operation

A read operation, defined as data going from PAA5100JE to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is sent by the micro-controller over MOSI, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by PAA5100JE over MISO. The chip outputs MISO bits on falling edges of SCLK and samples MOSI bits on every rising edge of SCLK.

Figure 12. Read Operation

Figure 13. MISO Delay and Hold Time

<u>Note:</u> The minimum high state of SCLK is also the minimum MISO data hold time of PAA5100JE. Since the falling edge of SCLK is actually the start of the next read or write command, PAA5100JE will hold the state of data on MISO until the falling edge of SCLK.

6.6 Required Timing between Read and Write Commands (tsxx)

There are minimum timing requirements between read and write commands on the serial port.

Figure 14. Timing between two Write Commands

If the rising edge of the SCLK for the last data bit of the second write command occurs before the t_{SWW} delay, then the first write command may not complete correctly.

Figure 15. Timing between Write and Read commands

Figure 16. Timing between Read and either Write or subsequent Read commands

Version 1.00 | 25 July 2018

If the rising edge of SCLK for the last address bit of the read command occurs before the t_{SWR} required delay, the write command may not complete correctly. During a read operation, SCLK should be delayed at least t_{SRAD} after the last address data bit to ensure that the chip has time to prepare the requested data.

The falling edge of SCLK for the first address bit of either the read or write command must be at least t_{SRR} or t_{SRW} after the last SCLK rising edge of the last data bit of the previous read operation. In addition, during a read operation SCLK should be delayed after the last address data bit to ensure that PAA5100JE has time to prepare the requested data.

7.0 Operation

7.1 Burst Mode

Burst mode is a special serial port operation mode which may be used to reduce the serial transaction time for Motion Read. The speed improvement is achieved by continuous data clocking to or from multiple registers without the need to specify the register address, and by not requiring the normal delay period between data bytes.

Note: A single read of any Motion related registers (0x02 to 0x06) should be avoided during burst mode.

7.2 Motion Read

Reading the Motion_Burst register activates Burst Mode. PAA5100JE will respond with the following motion burst report in order.

Motion burst report:

BYTE[00] = Motion

BYTE[01] = Observation

BYTE[02] = Delta X L

BYTE[03] = Delta_X_H

BYTE[04] = Delta_Y_L

BYTE[05] = Delta Y H

BYTE[06] = SQUAL

BYTE[07] = RawData Sum

BYTE[08] = Maximum RawData

BYTE[09] = Minimum_RawData

BYTE[10] = Shutter Upper

BYTE[11] = Shutter Lower

After sending the register address, the microcontroller must wait for t_{SRAD} , and then begin reading data. All data bits can be read with no delay between bytes by driving SCLK at the normal rate. The data are latched into the output buffer after the last address bit is received. After the burst transmission is complete, the microcontroller must raise the NCS line for at least t_{BEXIT} to terminate burst mode. The serial port is not available for use until it is reset with NCS, even for a second burst transmission.

Procedure to start motion burst:

- 1. Lower NCS signal, and wait for $t_{NCS-SCLK}$ delay.
- 2. Send Motion_Burst address (0x16). After sending this address, MOSI should be held either high or low until the burst transmission is complete (MOSI should not be toggling during subsequent SCLK cycles).
- 3. Wait for t_{SRAD} .
- 4. Start reading SPI Data continuously up to 12 bytes. Motion burst may be terminated by pulling NCS high for at least terminated by pulling NCS high for at least
- 5. Read RawData_Sat value by writing and reading below registers in sequence:

Function	Address	Value
Write	0x7F	0x08
Read	0x41	RawData_Sat
Write	0x7F	0x00

- 6. Check SQUAL & Shutter_Upper values. To suppress false motion reports, discard Delta_X and Delta Y values if the SQUAL value < 0x19 and Shutter_Upper = 0x1F.
- 7. To read new motion burst data, repeat from step 1.

Figure 17. Motion Read Timing

7.3 Frame Capture

Frame Capture is the method to download the full array of raw data values using register read operation. This mode disables navigation and no other SPI activity is allowed during this period. A hardware reset is required to restore navigation.

Power-Up sequence should have been completed before performing Frame Capture. Frame Capture procedure is outlined below:

1. To enter Frame Capture mode, perform the below register writes in sequence:

Address	Value
0x7F	0x07
0x4C	0x00
0x7F	0x08
0x6A	0x38
0x7F	0x00
0x55	0x04
0x40	0x80
0x4D	0x11

- 2. Write value 0x00 to register 0x7F, and then write value 0xFF to register 0x58.
- 3. Poll RawData_Grab_Status register until both bits 6 & 7 are set before proceeding to the next step.

4. Read raw data from RawData_Grab register. Each raw data consists of 8-bits and is constructed as described below:

Register Name	RawData_G	irab							
				Add	lress	0x58	0x58		
Access	R/W			Reset	: Value	0x00			
Bit	7	6	5	4	3	2	1	0	
Field	RDG ₇	RDG ₆	RDG ₅	RDG ₄	RDG₃	RDG ₂	RDG ₁	RDG_0	
Description	stationary for information This process per frame).	This register is used to read out the full array of raw data values. PAA5100JE needs to be held stationary for the duration of grabbing raw data until the full array is completely read out, as the information is read out one data at a time. This process is initialized by a single write of any value to this register (only need to be written once per frame). Reading this register will unload 8-bits raw data at a time, toggling between upper 6-bits and lower 2-bits.							
Field	Access	Reset	Value			Description			
DD 0[F 0]	D // 4/	_							

Field	Access	Reset	Value	Description
RDG[5:0]	R/W	0		Raw data values
				Flag to indicate which bits of raw data is being grabbed
	Invalid (raw data not available). Continue to poll RawData_Grab register.			
RDG[7:6]		01	Raw data is valid and available. Upper 6-bits raw data are held in RDG[5:0].	
KDG[7.0]	ry vv		10	Raw data is valid and available. Lower 2-bits raw data are held in RDG[3:2]. Reading of lower 2-bits always follow the read of upper 6-bits of raw data.
			11	Invalid (raw data not available). Continue to poll RawData_Grab register.

- 5. Construct each raw data by assigning upper 6-bits values from RDG[5:0] as RawData[7:2] and assigning lower 2-bits values from RDG[3:2] as RawData[1:0].
- 6. Continue Steps (4) and (5) until all 1225 raw data are read.
- 7. To capture another frame, repeat Steps (2) to (6).
- 8. To exit Frame Capture mode, perform a full reset to restore navigation.

Figure 18. Raw Data Map

7.4 Surface Coverage

While PAA5100JE aided with external illumination is able to track on a variety of common surfaces such as carpets, granite, wooden floor and tiles, there are some challenges to track on plain glossy tiles (highlighted in red below) due to its smooth and low feature characteristics. Tracking degradation may be observed on surfaces with distinct repetitive or parallel patterns. Refer below figure for examples of the surfaces mentioned.

Figure 19. Surface Types

7.5 Speed versus Height Table

The below table provides a reference of speed capability with its corresponding height.

Table 10. Speed vs Height

Working Height (mm)	Maximum Speed (ips)	Notes
15	30	
25	45	@ Crimson Carpet, Grey Vinyl &Replicated Wood surfaces
35	50	Replicated Wood surfaces

7.6 Resolution versus Height Chart

This chart serves as a theoretical reference of resolution count with its corresponding height.

Figure 20. Resolution versus Height Chart

7.7 Surface Detection Feature

PAA5100JE has the capability to detect the surface type that it is operating on (whether hard or soft). There is another feature of PAA5100JE in robot applications, where it is capable to detect if PAA5100JE is operating over a cliff. Please refer to the subsequent section for more details on the Cliff Detection feature.

To implement the Surface and Cliff Detection features, there is a set of algorithm which needs to be applied, which is summarized in the Surface and Cliff Detection flowchart below. To ease coding efforts, the Surface and Cliff Detection algorithm is provided in the Reference Code which is attached with this document.

Figure 21. Surface and Cliff Detection Flowchart

For proper implementation of the surface detection feature, PAA5100JE needs to be in an enclosed environment. Below table summarizes the operating conditions for the surface detection feature.

Table 11. Operating Conditions for Surface Detection Feature

Description	Min.	Тур.	Max.	Unit	Notes
Enclosure over PAA5100JE					Dark and non-reflective material
Area of Interest (AoI)	30 x 30				AoI refers to the minimum surface area for good tracking performance, and should be centered to the center of the lens assembly.
Gap between enclosure and tracking surface			10	mm	

Note: The Surface Detection feature can be turned on independently (without turning on Cliff Detection). Surface detection may be dependent on specific characteristics of certain surfaces (for example, the rug mat, grass, and tatami in Section 7.4).

7.8 Cliff Detection Feature

While the Surface Detection feature can be turned on independently (without turning on Cliff Detection), the Surface Detection is a pre-requisite to enable Cliff Detection feature. The Cliff Detection is aided with additional lighting mounted at a distance away from the center of the lens assembly. The conditions outlined in Table 11 is applicable to Cliff Detection as well, and the conditions and parameters of the additional lighting are listed in below table.

Table 12. Operating Conditions and Parameters for Additional Lighting

Description	Min.	Тур.	Max.	Unit	Notes
Cliff Detection Height	80			mm	Tested on: Dark to Dark surfaces Dark to Light surfaces Light to Dark surfaces Light to Light surfaces
Light Mounting Distance	70			mm	Distance of the additional lighting from the center of the lens assembly. It is advised to place the lighting at the edge of the enclosure.
Light Mounting Angle		30		o	Refer below figure for more details
Light (IR LED) Supply Current	29			mA	IR LED Part Number: HSDL-4261 Note: Refer LED's datasheet for the max current rating

Note: The Cliff Detection algorithm adds to the overhead of the chip operation which may results in tracking degradation on certain surfaces.

The recommended additional lighting to aid Cliff Detection is IR LED with the part number HSDL-4261. The datasheet for this LED is attached with this document.

Table 13. Characteristics of HSDL-4261 at TA = 25°C

Description	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Dissipation	P _{DISS}			190	mW	
DC Forward Current	I _{FDC}			100	mA	
Reverse Voltage	V _R	5			V	I _R = 100 uA
Forward Voltage	V _F	1.7		1.9	V	I _{FDC} = 100 mA

Note: Refer to LITE-ON's latest datasheet for up-to-date product characteristics.

Version 1.00 | 25 July 2018

Figure 22. Light Mounting Distance and Angle

7.9 Frame Synchronization (FS)

A single or multiple PAA5100JE chips can be synchronized to other devices at the desired frame rates through a series of register writes. This is especially useful when PAA5100JE is part of a network or system that requires synchronized operation. For example, in a robot system, the output from PAA5100JE can be matched to the output rate of the IMU sensor to ensure data collection from these devices are from the same time stamp. In the case where multiple PAA5100JE chips are employed in a system, synchronized data output from these multiple chips are crucial to provide accurate results in specific use model.

7.9.1 Hardware Requirement

There is no hardware modification needed for Frame Synchronization (FS). Physical hardware connection is also not needed between multiple PAA5100JE chips.

7.9.2 Single Chip Synchronization

The basis of this operation is to provide the host MCU the flexibility to start or stop the PAA5100JE at any given time. The procedure to synchronize PAA5100JE to the desired frame rate is as below:

- 1. Power-up PAA5100JE as per Section 5.1 in this datasheet. This includes configuring the registers as per Section 8.2 in this datasheet.
- 2. Perform below register writes in sequence. This issues a command to the PAA5100JE to stop operation upon the completion of the current frame.

Address	Value
0x7F	0x07
0x40	0x41
0x7F	0x06
0x62	0x10
0x63	0x00
0x68	0x10
0x69	0x00
0x7F	0x00

- 3. Delay 10 ms to allow the PAA5100JE sufficient time to complete the current frame's activities.
- 4. Start timer period before issuing start operation command to the PAA5100JE. The corresponding timer period with PAA5100JE's frame rate is shown below:

Timer (ms)	Frame Rate (fps)
4.2	242
8.3	121
10.0	100
11.1	90
12.5	80

5. To start the PAA5100JE (to match to another device in the system), perform below register writes in sequence:

Address	Value	Remarks
0x7F	0x00	
0x15	0x00	
0x7F	0x07	
0x40	0x40	
Delay 43	0 ± 50 us	This delay is required for proper issuance of the "start operation" command to the PAA5100JE.
0x40	0x41	
0x7F	0x00	
Read Motion Data		

Motion data is read as the last step as mentioned above. Alternatively, motion data can be read during the delay time. Refer below example:

Value		
0x00		
0x00		
0x07		
0x40		
Data (150 us)		
0 ± 50 us		
0x41		
0x00		

In the above example, reading the motion data takes 150 us. Hence, Host only need to delay a balance of 430 - 150 = 280 us. In the event reading motion data takes only 100 us, host would then need to delay a balance of 430 - 100 = 330 us. All in all, a total delay time of 430 ± 50 us must be observed.

- 6. Upon expiration of the timer period (e.g 4.2 ms), poll register 0x15 and check for bit 5 to be set (bit 5 == 1).

 Note: If bit 5 is not set (bit 5 == 0), continue polling at 1 ms interval. If bit 5 is not set after 3 continuous polling, please exit the routine, power cycle PAA5100JE and repeat from Step 1.
- 7. Repeat Step 4 to 6 to continue the synchronization routine and normal operation of the chip. If these steps are not repeated, there will be no data output from PAA5100JE.
- 8. To exit the synchronization routine, issue a soft reset command to PAA5100JE and configure the registers as per Section 8.2 in this datasheet.

Figure 23. Single Chip Synchronization

7.9.3 Multiple Chips Synchronization

To synchronize multiple PAA5100JE chips, repeat the steps in **Section 7.9.2 Single Chip Synchronization** but with all the chips receiving the register writes at the same time. To reiterate, every chip's NCS pin should be active low during the register writes. This ensures all the chips start the frame at the same time as close as possible.

All motion data should be read immediately from one chip to another, in a sequential manner. The maximum period to read motion data for all the chips should not exceed 0.6 ms (regardless of timer period used). This helps to ensure the motion data read from all the chips are synchronized. If motion data for the chips are read outside the 0.6 ms time frame, the motion data obtained (for some of the chips) might not be from the same frame.

8.0 Registers

8.1 Registers List

PAA5100JE registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.

Table 14. Register List

Address	Register Name	Access	Reset	Address	Register Name	Access	Reset
0x00	Product_ID	RO	0x49	0x0B	Shutter_Lower	RO	0x00
0x01	Revision_ID	RO	0x00	0x0C	Shutter_Upper	RO	0x00
0x02	Motion	R/W	0x00	0x15	Observation	R/W	0x00
0x03	Delta_X_L	RO	0x00	0x16	Motion_Burst	RO	0x00
0x04	Delta_X_H	RO	0x00	0x3A	Power_Up_Reset	WO	N/A
0x05	Delta_Y_L	RO	0x00	0x3B	Shutdown	WO	N/A
0x06	Delta_Y_H	RO	0x00	0x4E	Resolution	R/W	0x14
0x07	Squal	RO	0x00	0x58	RawData_Grab	R/W	0x00
0x08	RawData_Sum	RO	0x00	0x59	RawData_Grab_Status	RO	0x00
0x09	Maximum_RawData	RO	0x00	0x5B	B Orientation		0xE0
0x0A	Minimum_RawData	RO	0x00	0x5F	Inverse_Product_ID	RO	0xB6

8.2 Performance Optimization Registers

Upon power-up of PAA5100JE, there are a number of registers to configure in order to achieve optimum performance of the chip. These registers are PixArt proprietary information, thus no additional information is provided in this datasheet with regards to these register's descriptions. These registers should be written or read in sequence as outlined below:

Table 15. Performance Optimization Registers

Function	Address	Value	Remarks
Write	0x7F	0x00	
Write	0x55	0x01	
Write	0x50	0x07	
Write	0x7F	0x0E	
Write	0x43	0x10	
Read	0x67	Bit 7 set	Write register 0x48 with value 0x04
Reau	0x67	Bit 7 not set	Write register 0x48 with value 0x02
Write	0x7F	0x00	
Write	0x51	0x7B	
Write	0x50	0x00	
Write	0x55	0x00	
Write	0x7F	0x0E	
Read	0x73	Not 0x00	*Skip the next segment with rows highlighted with asterisk*
Read	0x73	0x00	Proceed with the next segment with rows highlighted with asterisk*
*Read	0x70	"C1"	Assign C1 as the value read back from register 0x70
			If C1 ≤ 28, then C1 = C1 + 14
			If C1 > 28, then C1 = C1 + 11
*5 1	0.71	((C))	* C1 should be capped to a maximum value of 0x3F
*Read	0x71	"C2"	Assign C2 as the value read back from register $0x71$ $C2 = (C2 \times 45) / 100$
*Write	0x7F	0x00	C2 - (C2 X 45)/ 100
*Write	0x61	OxAD	
*Write	0x51	0x70	
*Write	0x7F	0x0E	
*Write	0x70	"C1"	C1 value as calculated above
*Write	0x71	"C2"	C2 value as calculated above
Write	0x7F	0x00	
Write	0x61	0xAD	
Write	0x7F	0x03	
Write	0x40	0x00	
Write	0x7F	0x05	
Write	0x41	0xB3	
Write	0x43	0xF1	
Write	0x45	0x14	

Function	Address	Value	Remarks
Write	0x5F	0x34	
Write	0x7B	0x08	
Write	0x5E	0x34	
Write	0x5B	0x11	
Write	0x6D	0x11	
Write	0x45	0x17	
Write	0x70	0xE5	
Write	0x71	0xE5	
Write	0x7F	0x06	
Write	0x44	0x1B	
Write	0x40	0xBF	
Write	0x4E	0x3F	
Write	0x7F	0x08	
Write	0x66	0x44	
Write	0x65	0x20	
Write	0x6A	0x3A	
Write	0x61	0x05	
Write	0x62	0x05	
Write	0x7F	0x09	
Write	0x4F	0xAF	
Write	0x5F	0x40	
Write	0x48	0x80	
Write	0x49	0x80	
Write	0x57	0x77	
Write	0x60	0x78	
Write	0x61	0x78	
Write	0x62	0x08	
Write	0x63	0x50	
Write	0x7F	0x0A	
Write	0x45	0x60	
Write	0x7F	0x00	
Write	0x4D	0x11	
Write	0x55	0x80	
Write	0x74	0x21	
Write	0x75	0x1F	
Write	0x4A	0x78	
Write	0x4B	0x78	
Write	0x44	80x0	

Function	Address	Value	Remarks
Write	0x45	0x50	
Write	0x64	0xFF	
Write	0x65	0x1F	
Write	0x7F	0x14	
Write	0x65	0x67	
Write	0x66	0x08	
Write	0x63	0x70	
Write	0x6F	0x1C	
Write	0x7F	0x15	
Write	0x48	0x48	
Write	0x7F	0x07	
Write	0x41	0x0D	
Write	0x43	0x14	
Write	0x4B	0x0E	A
Write	0x45	0x0F	
Write	0x44	0x42	
Write	0x4C	0x80	
Write	0x7F	0x10	
Write	0x5B	0x02	
Write	0x7F	0x07	
Write	0x40	0x41	
	Delay 10 ms		
Write	0x7F	0x00	
Write	0x32	0x00	
Write	0x7F	0x07	
Write	0x40	0x40	
Write	0x7F	0x06	
Write	0x68	0xF0	
Write	0x69	0x00	
Write	0x7F	0x0D	
Write	0x48	0xC0	
Write	0x6F	0xD5	
Write	0x7F	0x00	
Write	0x5B	0xA0	
Write	0x4E	0xA8	
Write	0x5A	0x90	
Write	0x40	0x80	
Write	0x73	0x1F	

Function	Address	Value	Remarks
	Delay 10 ms		
Write	0x73	0x00	

8.3 Register Description

8.3.1 Product ID

Table 16. Product ID Related Registers

Usage	Register Addresses
Product identification	0x00, 0x01, 0x5F

Register Name	Product_ID								
				Add	ress	0x00			
Access	RO			Reset	: Value	0x49			
Bit	7	6	5	4	3	2	1	0	
Field	PID ₇	PID ₆	PID ₅	PID ₄	PID ₃	PID ₂	PID_1	PID ₀	
Description		This value is a unique identification assigned to this model only. The value in this register does not change; it can be used to verify that the serial communications link is functional.							

Register Name	Revision_ID								
				Address		0x01			
Access	RO			Reset Value		0x00			
Bit	7	6	5	4	3	2	1	0	
Field	RID ₇	RID ₆	RID ₅	RID ₄	RID ₃	RID ₂	RID_1	RID ₀	
Description	This registe released.	r contains t	he current I	C revision. It	is subject to	change wh	en new IC v	ersions are	

Register Name	Inverse_Pro	duct_ID						
				Add	lress	0x5F		
Access	RO			Reset	Value	0xB6		
Bit	7	6	5	4	3	2	1	0
Field	IPID ₇	IPID ₆	IPID ₅	IPID ₄	IPID₃	IPID ₂	IPID ₁	IPID ₀
Description	This value is	the inverse	of the Produ	ct_ID. It is use	ed to test the	SPI port har	dware.	

8.3.2 Reset and Shutdown Related Registers

Table 17. Reset and Shutdown Related Registers

Usage	Register Addresses	
Reset / shutting down the chip	0x3A, 0x3B	

Register Name	Power_Up_	Power_Up_Reset									
				Add	lress	0x3A					
Access	WO			Reset	: Value	N/A	N/A				
Bit	7	6	5	4	3	2	1	0			
Field	PUR ₇	PUR ₆	PUR ₅	PUR ₄	PUR ₃	PUR ₂	PUR ₁	PUR ₀			
Description		rite 0x5A to this register to reset the chip. All settings will revert to default values. Reset is required recovering from shutdown mode and to restore normal operation after Frame Capture.									

Register Name	Shutdown	Shutdown								
				Ado	lress	0x3B				
Access	WO			Reset Value		N/A				
Bit	7	6	5	4	3	2	1	0		
Field	SD ₇	SD ₆	SD ₅	SD ₄	SD ₃	SD ₂	SD_1	SD ₀		
Description		te 0xB6 to this register to set the chip to shutdown mode. Refer Section 5.2 Power-Deuence for more details and on the recovery procedure.								

8.3.3 Operational Control

Table 18. Operational Control Related Registers

Usage	Register Addresses
Programmable settings of chip	0x4E, 0x5B
performance	

Register Name	Resolution								
				Add	lress	0x4E			
Access	R/W			Reset Value 0x14					
Bit	7	6	5	4	3	2	1	0	
Field	RES ₇	RES ₆	RES ₅	RES ₄	RES ₃	RES ₂	RES ₁	RES ₀	
	This register of each regi	oximate reso	lution value						
Description	Approximate Resolution = (Register Value + 1) * $(50 / 8450) \approx 0.6\%$ of data poir Resolution versus Height Chart.								
	The maximu	ım register v	alue is 0xA8.	The minimur	m register val	ue is 0.			

Register Name	Orientation				•			
				Add	ress	0x5B		
Access	R/W			Reset	: Value	0xE0		
Bit	7	6	5	4	3	2	1	0
Field	ORT ₇	ORT ₆	ORT ₅	Reserved	Reserved	Reserved	Reserved	Reserved
Description	_			the reported 2 on of X and Y	•			•

Field	Access	Reset	Value	Description
				Invert X direction
ORT ₅	R/W	1	0	Not inverted
A A			1	Inverted
				Invert Y direction
ORT ₆	R/W	1	0	Not inverted
			1	Inverted
				Swap X and Y
ORT ₇	R/W	1	0	No swap
			1	Swap

8.3.4 Motion Related Registers

Table 19. Motion Related Registers

Usage	Register Addresses
Motion report status, accessing &	0x02, 0x03, 0x04, 0x05, 0x06, 0x16
logging data output	

Access R/W Reset Value 0x00 Bit 7 6 5 4 3 2 1 0 Field MOT7 Reserved Reser	Dogistov Noves	Disting							
Access R/W Reset Value 0x00 Bit 7 6 5 4 3 2 1 0 MOT7 Reserved Re	Register Name	Motion			۸da	trocc	0v02		
Bit Field MOT7 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved This register allows user to determine if motion has occurred since the last time it was read. The procedure to read the motion registers is as follows: 1. Read the Motion register. This will freeze the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H register values. Note: Burst read will clear the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers, and thus should not be executed at this stage. 2. If Bit 7 is set, Delta_X_L, Delta_X_H, Delta_Y_L, Delta_Y_H, SQUAL and Shutter_Upper registers should be read in sequence to get the accumulated motion. Note: If Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers are not read before the motion register is read for the second time, the data in Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H will be lost. 3. To suppress false motion reports, discard Delta_X and Delta Y values if the SQUAL value < 0x19 and Shutter_Upper = 0x1F. 4. To read a new set of motion data (Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H), repeat from Step (1). Note: Writing anything to this register clears the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H and Delta_Y_H	Access	R/M/							
This register allows user to determine if motion has occurred since the last time it was read. The procedure to read the motion registers is as follows: 1. Read the Motion register. This will freeze the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H register values. Note: Burst read will clear the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers, and thus should not be executed at this stage. 2. If Bit 7 is set, Delta_X_L, Delta_X_H, Delta_Y_L, Delta_Y_H, SQUAL and Shutter_Upper registers should be read in sequence to get the accumulated motion. Note: If Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers are not read before the motion register is read for the second time, the data in Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H will be lost. 3. To suppress false motion reports, discard Delta_X and Delta Y values if the SQUAL value < 0x19 and Shutter_Upper = 0x1F. 4. To read a new set of motion data (Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H), repeat from Step (1). Note: Writing anything to this register clears the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H		· .						1	0
This register allows user to determine if motion has occurred since the last time it was read. The procedure to read the motion registers is as follows: 1. Read the Motion register. This will freeze the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H register values. Note: Burst read will clear the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers, and thus should not be executed at this stage. 2. If Bit 7 is set, Delta_X_L, Delta_X_H, Delta_Y_L, Delta_Y_H, SQUAL and Shutter_Upper registers should be read in sequence to get the accumulated motion. Note: If Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers are not read before the motion register is read for the second time, the data in Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H will be lost. 3. To suppress false motion reports, discard Delta_X and Delta Y values if the SQUAL value < 0x19 and Shutter_Upper = 0x1F. 4. To read a new set of motion data (Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H), repeat from Step (1). Note: Writing anything to this register clears the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H									
	Description	procedure to 1. Read the register Note: Bu should n 2. If Bit 7 is should but Note: If I register will be lo 3. To supply and Shurt 4. To read Step (1).	o read the me walues. Instread will to be execused set, Delta_to e read in second for the post. The ress false most a new set of the set of t	otion register gister. This was clear the Delted at this state at this state at the policies of the policies at the policies a	rs is as follow vill freeze the ta_X_L, Delta ageH, Delta_Y_l t the accumu elta_Y_L and E ne, the data in discard Delta (Delta_X_L, E	Delta_X_L, [_X_H, Delta_Y L, Delta_Y_H, lated motion Delta_Y_H reg n Delta_X_L, a_X and Delta Delta_X_H, De	Delta_X_H, D Y_L and Delta SQUAL and gisters are no Delta_X_H, D a Y values if the	elta_Y_L and a_Y_H registed Shutter_Upp tread before Delta_Y_L and the SQUAL value Delta_Y_H), r	I Delta_Y_H ers, and thus eer registers the motion I Delta_Y_H lue < 0x19 repeat from

Field	Access	Reset	Value	Description			
				Motion since last report			
MOT ₇	R/W	0	0	No motion			
WOTY	IV VV		1	Motion occurred, data ready for reading in Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers.			

Register Name	Delta_X_L							
				Add	lress	0x03		
Access	RO			Reset	: Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	X ₇	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁	X ₀
Description	X movemen the register		ce last report	t. Absolute va	o +1		olution. Read 66 +32767	ing it clears
		Delta_X 8	3000 8001	FFFE FFFF	00 01	02 7F	FE 7FFF	

Register Name	Delta_X_H							
				Ado	dress	0x04		
Access	RO			Reset	: Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	X ₁₅	X ₁₄	X ₁₃	X ₁₂	X ₁₁	X ₁₀	X ₉	X ₈
	Delta_X_H n	nust be read	after Delta_	X_L to have t	he full motio	n data. Readi	ng it clears th	ne register.
Description	Note: It is re	commende	d that registe	ers 0x02, 0x03	3, 0x04, 0x05	and 0x06 be	read sequen	tially.

Register Name	Delta_Y_L							
				Add	lress	0x05		
Access	RO			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	Y ₇	Y ₆	Y ₅	Y_4	Y ₃	Y ₂	Y ₁	Y ₀
	Y movementhe register.		ce last report	. Absolute va	lue is detern	nined by reso	lution. Read	ing it clears
Description		Motion -32	2768 -32767 	-2 -1	0 +1	+2 +327	66 +32767 	
		Delta_Y 8	3000 8001	FFFE FFFF	00 01	02 7F.	FE 7FFF	

Register Name	Delta_Y_H								
				Add	lress	0x06			
Access	RO			Reset	Value	0x00			
Bit	7	6	5	4	3	2	1	0	
Field	Y ₁₅	Y ₁₄	Y ₁₃	Y ₁₂	Y ₁₁	Y ₁₀	Y ₉	Y ₈	
	Delta_Y_H r	nust be reac	l after Delta_	Y_L to have t	he full motio	n data. Readi	ing it clears th	ne register.	
Description	Note: It is re	ecommende	d that registe	ers 0x02, 0x03	3, 0x04, 0x05	and 0x06 to	be read sequ	entially.	

Register Name	Motion_Bu	rst						
				Add	lress	0x16		
Access	RO			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	MB ₇	MB_6	MB ₅	MB ₄	MB ₃	MB ₂	MB_1	MB_0
Description	The Motion_ Motion Read	_		r high-speed	access of up	to 12 registe	er bytes. See	Section 7.2

8.3.5 Operational Check Related Registers

Table 20. Operational Check Related Registers

Usage	Register Addresses
Read only registers - Provide information related to chip's performance.	0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C

Register Name	SQUAL							
				Add	lress	0x07		
Access	RO			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	SQ ₇	SQ_6	SQ ₅	SQ ₄	SQ ₃	SQ ₂	SQ_1	SQ_0
Description	in the curre Number of I The maximus changes in S	nt frame. Us Features = SC um SQUAL re SQUAL, varia	e the following <i>QUAL Registe</i> register value	is 0xFF. Since AL when look	find the total	I number of v ges in the cur	valid features rent frame c	:: ::

Register Name	RawData_S	Sum						
				Add	lress	0x08		
Access	RO			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	RDS ₇	RDS ₆	RDS ₅	RDS ₄	RDS ₃	RDS ₂	RDS_1	RDS_0
Description	formula bel	ow:		age raw data v * 2048) / 122		the average	raw data va	lue, use the
Description:	The maximu	_	alue is 0x98.	. The minimur	m register va	lue is 0. The I	RawData_Sur	m value can

Register Name	Maximum_	RawData						
				Add	lress	0x09		
Access	RO			Reset	: Value	0x00		_
Bit	7	6	5	4	3	2	1	0
Field	MRD ₇	MRD ₆	MRD ₅	MRD ₄	MRD ₃	MRD ₂	MRD_1	MRD ₀
Description			e in current f ge every frar	rame. Minimi ne.	um value = 0,	maximum va	lue = 255. Th	e maximum

Register Name	Minimum_	RawData				X		
				Address 0x0A				
Access	RO			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	MinRD ₇	MinRD ₆	MinRD ₅	MinRD ₄	MinRD ₃	MinRD ₂	$MinRD_1$	MinRD ₀
Description			e in current fr ge every frar	rame. Minimu ne.	um value = 0,	maximum va	llue = 255. Th	e minimum

Register Name	Shutter_Lo	nutter_Lower								
						Add	lress	0x0B		
Access	RO					Reset	Value	0x00		
Bit	7	6	5			4	3	2	1	0
Field	S ₇	S ₆	S ₅			S ₄	S ₃	S ₂	S_1	S ₀
Description	Lower byte	ower byte of the 13-bit Shutter register.								

Register Name	Shutter_Up	per						
				Add	dress	0x0C		
Access	RO			Reset	: Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	Reserved	Reserved	Reserved	S ₁₂	S ₁₁	S ₁₀	S ₉	S ₈
Description	Shutter_Up to keep the	per first, the average raw	n Shutter_Lo data values v	register. Unit wer. They showithin normal e if needed o	ould be read of operating ra	consecutivel [,] nge. The shu	y. The shutter tter value is c	r is adjusted checked and

SEE. FEEL. TOUCH.

8.3.6 Troubleshooting Related Registers

Table 21. Troubleshooting Related Registers

Usage	Register Addresses
Dumping datalogs / information	0x15, 0x58, 0x59

Register Name	Observation									
				Add	lress	0x15				
Access	R/W			Reset Value		0x00				
Bit	7	6	5	4	3	2	1	0		
Field	Reserved	Reserved	OB ₅	OB ₄	OB ₃	OB ₂	OB ₁	OB ₀		
Description	User must clear the register by writing 0x00, wait for 15 ms, and read the register. The active processes OB[5:0] will have set their corresponding bits. The read back value should be 0xBF.									

Register Name	RawData_Grab									
				Address		0x58				
Access	R/W			Reset Value		0x00				
Bit	7	6	5	4	3	2	1	0		
Field	RDG ₇	RDG ₆	RDG₅	RDG ₄	RDG₃	RDG ₂	RDG ₁	RDG₀		
Description	stationary f information This process 8-bits raw o	This register is used to read out the full array of raw data values. PAA5100JE needs to be held stationary for the duration of grabbing raw data until the full array is completely read out, as the information is read out one data at a time. This process is initialized by a single write of any value to this register. Reading this register will unload 8-bits raw data at a time, toggling between upper 6-bits and lower 2-bits. Refer Section 7.3 Frame Capture for more details.								

Field	Access	Reset	Value	Description					
RDG[5:0]	R/W	0		Raw data values					
				Flag to indicate which bits of raw data is being grabbed					
			00	Invalid (raw data not available).					
RDG[7:6]	R/W	0	01	Raw data is valid and available. Upper 6-bits raw data are held in RDG[5:0].					
			10	Raw data is valid and available. Lower 2-bits raw data are held in RDG[3:2].					
			11	Invalid (raw data not available).					

Register Name	RawData_G	rab Status									
				Add	lress	0x59					
Access	RO			Reset Value		0x00					
Bit	7	6	5	4	3	2	1	0			
Field	RDGS ₇	RDGS ₆	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved			
Description	This register provides status of raw data grab process. Refer Section 7.3 Frame Capture for more details.										
Field	Access	Reset	Value	Description							
DDCC	DO.	DO O	0	Raw data is not from location 0,0							
RDGS ₆	RO	0	1	Raw data is	from locatior	0,0					
BDCs	P.O.	0	0	Raw data grab is not valid							
RDGS ₇	, RO	RO 0 1 Raw dat			data grab is valid						