

IP Security IK2218/EP2120

Markus Hidell, mahidell@kth.se KTH School of ICT Based partly on material by Vitaly Shmatikov, Univ. of Texas

Acknowledgements

- The presentation builds upon material from
 - Previous slides by Markus Hidell and Peter Sjödin
 - Computer Networking: A Top Down Approach, 5th ed. Jim Kurose, Keith Ross. Addison-Wesley.
 - TCP/IP Protocol Suite, 4th ed, Behrouz Foruzan. McGraw-Hill.

Part 1 IPsec: AH and ESP

Basics, traffic protection

TCP/IP

IP Security Issues

- Eavesdropping
- Modification of packets in transit
- Identity spoofing (forged source IP addresses)
- Denial of service
- Many solutions are application-specific
 - TLS for Web, S/MIME for email, SSH for remote login
- IPsec aims to provide a framework of open standards for secure communications over IP
 - Protect every protocol running on top of IPv4 and IPv6

Operating System Layers

- SSL (Secure Socket Layer) changes the API to TCP/IP
 - Applications change, but OS doesn't
 - TCP does not participate in the cryptography...(DoS attacks)
- IPsec implemented in OS
 - Applications and API remain unchanged (at least in theory)
- To make full use of IPSec, API and apps have to change!
 - and accordingly also the applications (pass on other IDs than IP addr)

Overview of IPsec

- Authenticated Keying
 - Internet Key Exchange (IKE)
 - Next part of the lecture
- Data Encapsulation
 - ESP: IP Encapsulating Security Payload (RFC 4303)
 - AH: IP Authentication Header (RFC 4302)
- Security Architecture (RFC 4301)
 - Tunnel/transport Mode
 - Databases (Security Association, Policy, Peer Authorization)

IPsec: Network Layer Security

IPsec = AH + ESP + IKE

Protection for IP traffic
AH provides integrity and origin authentication
ESP also confidentiality

Sets up keys and algorithms for AH and ESP

- AH and ESP rely on an existing security association
 - Idea: parties must share a set of secret keys and agree on each other's IP addresses and crypto algorithms
- Internet Key Exchange (IKE)
 - Goal: establish security association for AH and ESP
 - If IKE is broken, AH and ESP provide no protection!

IPsec Security Services

- Authentication and integrity for packet sources
 - Ensures connectionless integrity (for a single packet) and protection against packet replay (partial sequence integrity)
- Confidentiality (encapsulation) for packet contents
- Authentication and encapsulation can be used separately or together
- Either provided in one of two <u>modes</u>
 - Transport mode
 - Tunnel mode

IPsec Modes

Transport mode

- Used to deliver services from host to host or from host to gateway
- Usually within the same network, but can also be end-to-end across networks

Tunnel mode

- Used to deliver services from gateway to gateway or from host to gateway
- Usually gateways owned by the same organization
 - With an insecure network in the middle

IPsec in Transport Mode

- End-to-end security between two hosts
- Requires IPsec support at each host

IPsec in Tunnel Mode

- Gateway-to-gateway security
 - Internal traffic behind gateways not protected
 - Typical application: virtual private network (VPN)
- Only requires IPsec support at gateways
 - API /application changes not an issue

Tunnel Mode Illustration

IPsec protects communication on the insecure part of the network

Transport Mode vs Tunnel Mode

 Transport mode secures packet payload and leaves IP header unchanged

 Tunnel mode encapsulates both IP header and payload into IPsec packets

Security Association (SA)

- One-way sender-recipient relationship
 - Manually configured or negotiated through IKE
- SA determines how packets are processed
 - Cryptographic algorithms, keys, AH/ESP, lifetimes, sequence numbers, mode (transport or tunnel)
- SA is uniquely identified by {SPI, dst IP addr, flag}
 - SPI: Security Parameter Index
 - Chosen by destination (unless traffic is multicast...)
 - Flag: ESP or AH
 - Each IPsec implementation keeps a database of SAs
 - SPI is sent with packet, tells recipient which SA to use

Sending IPsec Packets

- When Alice is sending to Bob:
- Consult "security policy database" (SPD) to check if packet should be protected with IPsec or not (defined by selectors)
 - SPD can be compared with a firewall table
- SPD provides pointer to the associated SA entry in the security association database (SAD)
- SA provides SPI, algorithm, key, sequence number, etc.
- Include the SPI in the message

Outbound IPsec Processing

Receiving IPsec Packets

- When Bob receives a message:
- Lookup the SA based on the destination address and SPI (in a multicast message the address is not Bob's own)
 - If the packet is unsecured (no IPsec) search through SPD for match—if no matching entry or if policy is PROTECT or DISCARD, the packet is discarded
- Find algorithm, key, sequence number, etc.
- After decrypting message, deliver packet to the next higher layer (such as TCP)

Encapsulation Formats

- AH
 - Authentication Header
 - Provides integrity
- ESP
 - Encapsulating Security Payload
 - Provides integrity and/or privacy

AH: Authentication Header

- RFC 4302
- Sender authentication
- Integrity for packet contents and IP header
- Sender and receiver must share a <u>secret key</u>
 - This key is used in HMAC computation (message authentication code computed with a hash)
 - The key is set up by IKE key establishment protocol and recorded in the Security Association (SA)

Let authentication header implement IP integrity by holding a hash of a shared secret and the content of an IP packet

AH and IP Header

Mutable fields may change:

Service type, Fragm. Offset, TTL, Header checksum

Predictable fields may change in a predictable way:

Dst address (source routing)

Immutable fields will not change:

The rest....

Mutable fields can't be included in the AH's end-to-end integrity check

©The McGraw-Hill Companies, Inc., 2000

Authentication Header Format

- Provides integrity and origin authentication
- Authenticates portions of the IP header
- Anti-replay service (to counter denial of service)
- No confidentiality

ESP: Encapsulating Security Payload

- RFC 4303
- Adds new header and trailer fields to packet
- Transport mode
 - Confidentiality of packet between two hosts
 - Complete hole through firewalls (for IPsec from a particular IP address)
 - Used sparingly
- Tunnel mode
 - Confidentiality of packet between two gateways or a host and a gateway
 - Implements VPN tunnels
 - FW filtering can be done on packets before they enter tunnel

ESP Security Guarantees

- Confidentiality and integrity for packet payload
 - Symmetric cipher negotiated as part of security assoc
- Optionally provides authentication (similar to AH)
- Can work in transport... Encrypted (inner)

Original IP header TCP/UDP segment ESP trailer ESP auth

Authenticated (outer)

...or tunnel mode (problem with NAT)

New IP header | Original IF TCP/UDP segment | ESP trailer | ESP auth

Tunnel Mode and NAT

- Tunnel mode can be problematic together with NAT
- If we set up a tunnel between our host and a public gateway, it won't work:
 - Our private addresses will be in the original IP header
- It is OK to set up a tunnel between our host and a private intranet:
 - Private intranet addresses will be in the original IP header
 - New IP header will contain our home private address, which will be translated by the NAT

ESP Packet

IPsec and IPv6

- IPsec is a mandatory component for IPv6
- IPv6 header:

Version	Class	Flow Label		
Payload Length		Next Header	Hop Limit	
Source A dress				
stination Address				

Extension headers are used for IPsec

IPsec Tunnel Mode in IPv6

- IPv6 IPsec is implemented using
 - Authentication extension header
 - ESP extension header

Encryption (inner)

Authenication/Integrity (outer)

Virtual Private Networks (VPN)

- ESP is often used to implement a VPN
 - Packets go from internal network to a gateway with TCP/IP headers for address in another network
 - Entire packet hidden by encryption
 - Including original headers so destination addresses are hidden
 - Receiving gateway decrypts packet and forwards original IP packet to receiving address in the network that it protects
- This is known as a VPN tunnel
 - Secure communication between parts of the same organization over public Internet
- The term IPsec VPN is sometimes used for secure VPNs in general
 - Even though they don't use the IPsec protocols...

Use Cases Summary

- Host-Host
 - Transport mode
 - (Or tunnel mode)
- Gateway-Gateway
 - Tunnel mode
- Host-Gateway
 - Tunnel mode

Part 2 IPsec: IKE

Internet key exchange

Secure Key Establishment

- Goal: generate and agree on a session key using some public initial information
- What properties are needed?
 - Authentication (know identity of other party)
 - Secrecy (generated key not known to any others)
 - Forward secrecy (compromise of one session key does not compromise of keys in other sessions)
 - Prevent replay of old key material
 - Prevent denial of service
 - Protect identities from eavesdroppers

IKE

- Internet Key Exchange—setting up the SAs for IPsec (ESP and AH SA's)
- We assume that the two nodes have some long term key
 - Pre-shared secret key
 - Public encryption key
 - Public signature key
- Use IKE protocol to do mutual authentication and to create a session key
 - Use Diffie-Hellman to derive shared symmetric key
- IKE does not define exactly which ciphers to use, but a mechanism in which the nodes will negotiate this

Diffie-Hellman

- Secret keys are created only when needed
 - No need to store secret keys for a long period of time, exposing them to increased vulnerablility
- Exchange requires no preexisting infrastructure
 - other than an agreement on the global parameters
 - A large prime number, p
 - A primitive root of p, g
 - Each partie has its own secret: a and b respectively
 - Secret shared key is g^{ab} mod p
- For IKE to use Diffie-Hellman we need to add
 - Cookies for protection against denial-of-service attacks
 - Nonces to ensure against replay attacks
 - A number any given user of a protocol uses only once (large random number or sequence number, for instance)

Cookies for Key Management in IPsec

- Protect against denial-of-service/clogging
 - Impostor launches the attack packets with forged IP src addr
- Solution:
 - When Bob receives connection initiation from IP addr S
 - Send unpredictable number (cookie) to S—should be stateless!
 - Do nothing until same cookie is received from S
 - Assures that initiator can receive packets sent to S

IKE Phases

- Phase 1
 - do mutual authentication and establish IKE session keys
 - Sets up the "main" SA (or IKE SA)
- Phase 2
 - Set up one or more IPsec SAs (child SAs) between the nodes using the keys derived in phase 1
- Why two phases?
 - Mutual authentication is expensive
 - If multiple SAs are needed or if SA parameters need to be changed, this can be done without repeating mutual authentication

IKE Phase 1—Main Mode

- Proof of identity different for different key types
 - Pre-shared secret, private encryption or signature key,...
- Proof is a hash of
 - key, Diffie-Hellman values, nonces, crypto choices, cookies

IKE Phase 1—Main Mode cont,d

More details: cookies and nonces

Recommended method for creating the cookie:

- Fast hash (e.g., MD5) over
 - IP src/dst addr, UDP src/dst port, locally generated secret value

IKE Phase 1—Session keys

gab mod p {"Alice", proof I'm Alice}

- Previous pictures show the general idea
- What are the actual session keys?
 - Integrity key and encryption key
- To calculate various keys:
 - IKE first calculates a quantity known as SKEYID
 - Prf(nonces, cookeis, Diffie-Hellman values)
 - IKE then calculates secret bits called SKEYID_d
 - Prf(SKEYID, and some other values)
 - Use Prf again to create SKEYID_a and SKEYID_e
 - a = authentication and e = encryption

IKE Phase 2, Setting up IPsec SAs

- X is a pair of cookies from phase 1
- Y is a 32-bit number
 - ID to distinguish between multiple phase 2 sessions
- The rest is encrypted using SKEYID_e and authenticated using SKEYID_a
 - This part is simplified—more info can be exchanged

IKEv2

- IKE has a history
 - ISAKMP (RFC 2408): framework rather than protocol
 - OAKLEY (RFC 2412) and SKEME: protocols working within ISAKMP
 - IKE (RFC 2409)
- IKEv2 (RFC 5996)
 - One single document for the standard
 - Simpler message exchange
 - Increased robustness (avoiding deadlocks)
 - Supporting NAT traversal
 - Supporting mobility
 - Supporting SCTP

Thanks for listening