Reflection Matrices

A matrix $\mathbf{H} \in \mathbb{R}^{m \times m}$ is called a reflection matrix if

H = I - 2P. where **P** is an orthogonal projector (symmetric and idempotent) **Interpretation**: Let $P^{\perp} = I - P$ be the orthogonal complement projector

$$\mathbf{x} = \mathbf{P}\mathbf{x} + \mathbf{P}^{\perp}\mathbf{x}, \qquad \mathbf{H}\mathbf{x} = -\mathbf{P}\mathbf{x} + \mathbf{P}^{\perp}\mathbf{x}$$

The vector $\mathbf{H}\mathbf{x}$ is a reflected version of \mathbf{x} , with $\mathcal{R}(\mathbf{P}^{\perp})$ being the "mirror"

$$Hx = (I - 2P)(Px + P + x)$$

$$= Px - 2P(x + P + x - 2PP + x)$$

$$= Px + P + x$$
A reflection matrix is orthogonal:

$$HH^{T} = H^{T}H = (I - 2P)(I - 2P) = I - 4P + 4P^{2} = I - 4P + 4P = I$$

3 ymmltric

Householder Reflections

Given $\mathbf{x} \in \mathbb{R}^m$, find an orthogonal $\mathbf{H} \in \mathbb{R}^{m \times m}$ such that

$$\mathbf{H}\mathbf{x} = egin{bmatrix} eta \ \mathbf{0} \end{bmatrix} = eta \mathbf{e}_1, \qquad \text{for some } eta \in \mathbb{R}$$

Householder reflection: Let $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{v} \neq \mathbf{0}$, and let

$$\mathbf{H} = \mathbf{I} - \frac{2}{\|\mathbf{v}\|_{2}^{2}} \mathbf{v} \mathbf{v}^{T},$$

which is a reflection matrix with
$$\mathbf{P} = \mathbf{v}\mathbf{v}^T/\|\mathbf{v}\|_2^2$$

$$||\mathbf{v}||_2 = |\mathbf{v}\mathbf{v}^T|\|\mathbf{v}\|_2 = |\mathbf{v}\mathbf{v}^T|\|\mathbf{v}\|\|_2 = |\mathbf{v}\mathbf{v}\|\|_2 = |\mathbf{v$$

Householder Reflections (cont'd)
$$= x - \frac{2\mathbf{v}^{T}\mathbf{x}}{\|\mathbf{v}\|_{2}^{2}}\mathbf{v}\mathbf{v}^{T})$$

$$\mathbf{H}\mathbf{x} = \left(\mathbf{I} - \frac{2}{\|\mathbf{v}\|_{2}^{2}}\mathbf{v}\mathbf{v}^{T}\right)\mathbf{x} = \mathbf{x} - \frac{2\mathbf{v}^{T}\mathbf{x}}{\mathbf{v}^{T}\mathbf{v}}\mathbf{v}^{T}$$

We want $\mathbf{H}\mathbf{x}$ to be a multiple of \mathbf{e}_1 . Hence, we require $\mathbf{v} \in \operatorname{span}\{\mathbf{x}, \mathbf{e}_1\}$ Let $\mathbf{v} = \mathbf{x} + \alpha \mathbf{e}_1$. Then, $\mathbf{v}^T \mathbf{x} = \mathbf{x}^T \mathbf{x} + \alpha \mathbf{x}_1, \quad \mathbf{v}^T \mathbf{v} = \mathbf{x}^T \mathbf{x} + 2\alpha \mathbf{x}_1 + \alpha^2 - \alpha \mathbf{x}_1 + \alpha^2 - \alpha^2 -$

$$\mathbf{v}^T \mathbf{x} = \mathbf{x}^T \mathbf{x} + \alpha x_1, \quad \mathbf{v}^T \mathbf{v} = \mathbf{x}^T \mathbf{x} + 2\alpha x_1 + \alpha^2$$

It follows that

$$\mathbf{H}\mathbf{x} = \frac{\alpha^2 - \mathbf{x}^T \mathbf{x}}{\mathbf{x}^T \mathbf{x} + 2\alpha x_1 + \alpha^2} \mathbf{x} - 2\alpha \frac{\mathbf{v}^T \mathbf{x}}{\mathbf{v}^T \mathbf{v}} \mathbf{e}_1$$

The coefficient of x has to be zero, so that $\alpha^2 = ||\mathbf{x}||_2^2$. Therefore,

$$\mathbf{v} = \mathbf{x} \mp \|\mathbf{x}\|_2 \mathbf{e}_1 \implies \mathbf{H}\mathbf{x} = \pm \|\mathbf{x}\|_2 \mathbf{e}_1$$

The sign in the expression of \mathbf{v} may be determined to be the one that maximizes $\|\mathbf{v}\|_2$ for the sake of numerical stability

Householder QR

1. Let $\mathbf{H}_1 \in \mathbb{R}^{m \times m}$ be the Householder reflection w.r.t. \mathbf{a}_1 . Transform \mathbf{A} as

$$\mathbf{A}^{(1)} = \mathbf{H}_1 \mathbf{A} = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & & \vdots \\ 0 & \times & \dots & \times \end{bmatrix} \qquad \mathcal{H}_1 \mathcal{A}_1 = \begin{bmatrix} \mathbf{A} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

2. Let $\tilde{\mathbf{H}}_2 \in \mathbb{R}^{(m-1)\times (m-1)}$ be the Householder reflection w.r.t. $\mathbf{A}^{(1)}(2:m,2)$ (marked red above). Transform $\mathbf{A}^{(1)}$ as

$$\mathbf{A}^{(2)} = \underbrace{\begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \end{bmatrix}}_{=\mathbf{H}_2} \mathbf{A}^{(1)} = \begin{bmatrix} \times & \times & \dots & \times \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \mathbf{A}^{(1)} (2:m, 2:n) \end{bmatrix} = \begin{bmatrix} \times & \times & \times & \dots & \times \\ 0 & \times & \times & \dots & \times \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \times & \dots & \times \end{bmatrix}$$

3. By repeating this, A is transformed to R

Householder QR (cont'd)

WLOG, assume $m \ge n$

$$\mathbf{A}^{(0)} = \mathbf{A}$$
for $k = 1, ..., n-1$

$$\mathbf{A}^{(k)} = \mathbf{H}_k \mathbf{A}^{(k-1)}, \text{ where}$$

$$\mathbf{H}_k = \begin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_k \end{bmatrix}$$

$$\mathbf{H}_k = \begin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_k \end{bmatrix}$$

 $\tilde{\mathbf{H}}_k$ is the Householder reflection of $\mathbf{A}^{(k-1)}(k:m,k)$ end

The above procedure results in

$$\mathbf{A}^{(n-1)} = \mathbf{H}_{n-1} \cdots \mathbf{H}_2 \mathbf{H}_1 \mathbf{A}, \quad \mathbf{A}^{(n-1)}$$
 is upper triangular

QR decomposition is obtained by letting

$$A = QR$$

$$= Q(1+n-1 \cdots H_1 A)$$

R = $\mathbf{A}^{(n-1)}$ and $\mathbf{Q} = (\mathbf{H}_{n-1} \cdots \mathbf{H}_2 \mathbf{H}_1)^T$ = $\mathbf{Q}(\mathbf{H}_{n-1} \cdots \mathbf{H}_1)^T$ = \mathbf{A} widely used method for QR decomposition $\mathbf{Q} = (\mathbf{H}_{n-1} \cdots \mathbf{H}_1)^T$

Householder QR (cont'd)

$$\mathbf{A}^{(0)} = \mathbf{A}$$
 for $k=1,\ldots,n-1$ $\mathbf{A}^{(k)} = \mathbf{H}_k \mathbf{A}^{(k-1)}$, where

$$\mathbf{H}_k = \begin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_k \end{bmatrix}$$

 $\tilde{\mathbf{H}}_k$ is the Householder reflection of $\mathbf{A}^{(k-1)}(k:m,k)$

Complexity (for $m \ge n$):

end

- $O(n^2(m-n/3))$ for **R** only
 - A direct implementation of the above pseudo-code does not lead to this complexity–Need to exploit the structures of H_k in the implementations
- $O(m^2n mn^2 + n^3/3)$ if **Q** is also wanted
- See Section 5.2.2 of textbook

Givens Rotations

Example: Let

$$\mathbf{J} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$

where $c = \cos(\theta)$, $s = \sin(\theta)$ for some θ

$$\mathbf{y} = \mathbf{J}\mathbf{x} \Longleftrightarrow \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 + sx_2 \\ -sx_1 + cx_2 \end{bmatrix}$$

Observe that

- **J** is orthogonal
- $y_2 = 0$ if $\theta = \tan^{-1}(x_2/x_1)$, or if

$$c = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \quad s = \frac{x_2}{\sqrt{x_1^2 + x_2^2}}$$

Givens Rotations (cont'd)

Givens rotations:

$$\mathbf{J}(i,k,\theta) = \begin{bmatrix} i & k \\ \downarrow & \downarrow \\ & c & s \\ & & \mathbf{I} \\ & -s & c \end{bmatrix} \leftarrow i$$

where $c = \cos(\theta)$, $s = \sin(\theta)$

- $\mathbf{J}(i, k, \theta)$ is orthogonal
- Let $\mathbf{y} = \mathbf{J}(i, k, \theta)\mathbf{x}$. Then,

$$y_j = \begin{cases} cx_i + sx_k, & j = i \\ -sx_i + cx_k, & j = k \\ x_j, & j \neq i, k \end{cases}$$

• y_k is forced to zero if we choose $\theta = \tan^{-1}(x_k/x_i)$

Givens QR

Example: Consider a 4×3 matrix.

where $\mathbf{B} \xrightarrow{\mathbf{J}} \mathbf{C}$ means $\mathbf{C} = \mathbf{J}\mathbf{B}$; $\mathbf{J}_{i,k} = \mathbf{J}(i,k,\theta)$, with θ chosen to zero out the (k,i)th entry of the matrix transformed by $\mathbf{J}_{i,k}$

Givens QR (cont'd)

Givens QR $(m \ge n)$: Perform a sequence of Givens rotations to annihilate the lower triangular parts of **A**

$$\underbrace{(\mathbf{J}_{n,m}\ldots\mathbf{J}_{n,n+2}\mathbf{J}_{n,n+1})\ldots(\mathbf{J}_{2m}\ldots\mathbf{J}_{24}\mathbf{J}_{23})(\mathbf{J}_{1m}\ldots\mathbf{J}_{13}\mathbf{J}_{12})}_{=\mathbf{Q}^T}\mathbf{A}=\mathbf{R}$$

where ${f R}$ is upper triangular and ${f Q}$ is orthogonal

- Complexity (for $m \ge n$): $O(n^2(m-n/3))$ for **R** only (see Section 5.2.5 of textbook)
- Not as efficient as Householder QR for general (and dense) A's
 - The flop count for Householder QR is $2n^2(m n/3)$
 - The flop count for Givens QR is $3n^2(m n/3)$
- Givens QR can be faster than Householder QR if A has certain sparse structures and we exploit them

Matrix Computations Chapter 3: Least-squares Problems and QR Decomposition

Section 3.4 Problems Related to Least Squares

Jie Lu ShanghaiTech University

Matrix Factorization

Matrix Factorization: Given $\mathbf{Y} \in \mathbb{R}^{m \times n}$ and a positive integer $k < \min\{m, n\}$, solve

$$\min_{\mathbf{A} \in \mathbb{R}^{m \times k}, \mathbf{B} \in \mathbb{R}^{k \times n}} \|\mathbf{Y} - \mathbf{A}\mathbf{B}\|_F^2$$

$$\mathbf{Y} = \mathbf{A}$$

Also called low-rank matrix approximation

• $rank(AB) \le k$

Principal Component Analysis

Aim: Given a collection of data points $y_1, \ldots, y_n \in \mathbb{R}^m$, perform a low-dimensional representation

$$\mathbf{y}_i = \mathbf{A}\mathbf{b}_i + \mathbf{c} + \mathbf{v}_i, \quad i = 1, \ldots, n,$$

where $\mathbf{A} \in \mathbb{R}^{m \times k}$ is a basis matrix, $\mathbf{b}_i \in \mathbb{R}^k$ is the coefficient for \mathbf{y}_i , $\mathbf{c} \in \mathbb{R}^m$ is the base or mean in statistics terms, and \mathbf{v}_i is noise or modeling error

Principal component analysis (PCA):

- 1. Choose $\mathbf{c} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_i$

Applications: dimensionality reduction, visualization of high-dimensional data, compression, extraction of meaningful features from data, etc.

Example of senate voting: http://livebooklabs.com/keeppies/c5a5868ce26b8125

Topic Modeling

Aim: Discover thematic information or topics from a large collection of documents (e.g., books, articles, news, blogs)

Bag-of-words representation: Represent each document as a vector of word counts

bag-of-words representation

- Let *n* be the number of documents
- Let $\mathbf{y}_i \in \mathbb{R}^m$ be the bag-of-words representation of the *i*th document
- $\mathbf{Y} = [\mathbf{y}_1, \dots \mathbf{y}_n] \in \mathbb{R}^{m \times n}$ is called the term-document matrix
- Hypotheses:¹
 - If documents have similar columns vectors in Y or similar usage of words, they tend to have similar meanings
 - The topic of a document will probabilistically influence the author's choice of words when writing the document

 $^{^{1}\}mathrm{P.~D.}$ Turney and P. Pantel, "From frequency to meaning: Vector space models of semantics," Journal of

Problem: Apply matrix factorization to a term-document matrix Y

A is called a term-topic matrix and **B** is called a topic-document matrix **Interpretation**:

- Each column a_i of A represents a theme topic (e.g., local affairs, foreign affairs, politics, sports)
- $\mathbf{y}_i \approx \mathbf{A} \mathbf{b}_i$: each document is postulated as a linear combination of topics
- Matrix factorization aims at discovering topics from the documents

Topic modeling via matrix factorization has been used in or is tightly connected to information retrieval, natural language processing, machine learning; document clustering, classification and retrieval; latent semantic analysis, latent semantic indexing: finding similarities of documents, similarities of terms, etc.

Source: D. Blei, "Probabilistic topic models," *Communications of the ACM*, vol. 55, no. 4, pp. 77–84, 2012.

Topics found in a real set of documents. The document set consists of 17,000 articles from the journal *Science*. The topics are discovered using a technique called *latent Dirichlet allocation*, which is not the same as, but has strong connections to, matrix factorization [Blei'12]

4日 × 4周 × 4 国 × 4 国 × 国

Matrix Factorization

Problem:

$$\min_{\mathbf{A} \in \mathbb{R}^{m \times k}, \mathbf{B} \in \mathbb{R}^{k \times n}} \|\mathbf{Y} - \mathbf{A}\mathbf{B}\|_F^2$$

The problem has non-unique solutions

- If $(\mathbf{A}^{\star}, \mathbf{B}^{\star})$ is an optimal solution to the problem, then $(\mathbf{A}^{\star}\mathbf{Q}^{-1}, \mathbf{Q}\mathbf{B}^{\star})$ is also an optimal solution for any nonsingular $\mathbf{Q} \in \mathbb{R}^{k \times k}$
- The non-uniqueness of solution makes it a bad formulation for problems such as topic modeling

The problem is non-convex, but can be solved by singular value decomposition (beautifully)

It can also be solved by LS approach

Alternating LS for Matrix Factorization

Alternating LS (ALS): Given a starting point $(\mathbf{A}^{(0)}, \mathbf{B}^{(0)})$, do

$$\mathbf{A}^{(i+1)} = \arg\min_{\mathbf{A} \in \mathbb{R}^{m \times k}} \|\mathbf{Y} - \mathbf{A}\mathbf{B}^{(i)}\|_F^2$$

$$\mathbf{B}^{(i+1)} = \arg\min_{\mathbf{B} \in \mathbb{R}^{k \times n}} \|\mathbf{Y} - \mathbf{A}^{(i+1)}\mathbf{B}\|_F^2$$

$$(2)$$

for i = 0, 1, 2, ..., and stop when a termination criterion is satisfied Make a mild assumption that $\mathbf{A}^{(i)}, \mathbf{B}^{(i)}$ have full rank at every i

Make a mild assumption that
$$A^{(i)}$$
, $B^{(i)}$ have full rank at every I

Look at (2) fint.

min

 $A^{(i+1)}$ B
 $A^{(i+1)}$ B
 $A^{(i+1)}$ B
 $A^{(i+1)}$ B
 $A^{(i+1)}$ $A^{(i+1)}$