Class 1: PWF 2021 - BMZ	11/29/2021
1901: Black body rockation —> Planch law 1927: double-slif experiments : 1405: Binsten quo	ntization EM
Postulates of Quartom Mechanism	
Postulate 1 [State Vector]:	
Associated with an inner product (Hilbert space) state space of the system.	complex vector., Knoon as the
The system is described by the state vector	
Hilbert space Il - Cd	
State vector [2,) (dx1) complex vector u	oith a noun = 1
<2145 ² = 1	
Postulate 2 L Evolution 3:	
The evolution of a closed system is described transformation.	by a unitary
124> at time t	
$(4) - \sim t' \text{with} t' > t$ $\Rightarrow 14' > = U(t, t) 14 > (4)$	U(t;t)U+(t;t)=1 U+(t;t)U(t;t)=1
LSchrödinger's Equation of the state of system is described by Scröding	
$i + \frac{\partial(2)}{\partial t} = H(2) \qquad (4)$	
H is the Hamistanian of the systems. for any 1x> 2x1H1x) is	eal
of H is independent of t $U(t) = e^{-itH} $ (4)	

Postulate 3 L avantum Measurements]: Countour measurents are described by a collection. Plus of measurement operators. The index m refers to the measurement outcome. If the state of the system was 14), immediately after measurement the probability that outcom in occurs is p(m) = 22/4 m /m (2) and the state of the system post-measurement is Mm (2) The operators ? Man? satisfy & Min Min = 1 (completness) 1 = & p(m) = & 22 | Mundin 12) = 221 & Mont Man 12> = 23/1/12> = 1 A special type of meosoremts: Projective measuremts. Described by an observables: Hermitian operator M M= 2 m Par Pui-Pint = Put Par = Put Sm, m' ELM] = 2 Pm m = 2 m (2|Pn (2) = 22 (412) Usually when we measure G.C = Guartoun Computing, in the eigenbasis of Z. $2 = \begin{pmatrix} 1 & 0 \\ 0 - 1 \end{pmatrix} = 1 |0 \times 0| - 1 |1 \times 1|$

Properties: S > S Y > S > S

o Pore States $S=12\times21$ $T(LS^2)=1$ $S^2=S$

· Mixed States T. 1827 < 1

QU - GC