SSD1680A

Product Preview

176 Source x 296 Gate Red/Black/White Active Matrix EPD Display Driver with Controller

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.

Appendix: IC Revision history of SSD1680A Specification

Version	Change Items	Effective Date
0.10	Initial Release	20-Feb-2020
0.20	Update waveform setting, VCOM value was included in each waveform setting Update command table, value of IC version was revised to 0x0D	28-Feb-2020

 SSD1680A
 Rev 0.20
 P 2/47
 Feb 2020
 Solomon Systech

CONTENTS

1	GE	NERAL DESCRIPTION	5
2	FE	ATURES	5
3	OR	DERING INFORMATION	6
4	BL	OCK DIAGRAM	6
5		N DESCRIPTION	
6		NCTIONAL BLOCK DESCRIPTION	
		MCU Interface	
	5.1 5.1.1	MCU INTERFACE SELECTION	
_	5.1.2	MCU SERIAL INTERFACE (4-WIRE SPI)	
	5.1.3	MCU SERIAL PERIPHERAL INTERFACE (3-WIRE SPI)	
	5.2	OSCILLATOR	
	5.3 5.4	BOOSTER & REGULATORVCOM SENSING	
	i.5	RAM	
	5.6	PROGRAMMABLE WAVEFORM FOR GATE, SOURCE AND VCOM	13
	5.7	WAVEFORM SETTING	
	5.8	TEMPERATURE SEARCHING	
	5.8.1 5.8.2	INTERNAL TEMPERATURE SENSOREXTERNAL TEMPERATURE SENSOR I2C SINGLE MASTER INTERFACE	16
	5.8.3	FORMAT OF TEMPERATURE VALUE	
	5.9	WAVEFORM SETTING SEARCHING MECHANISM	
	.10	ONE TIME PROGRAMMABLE (OTP) MEMORY	
	5.11	THE FORMAT FOR TEMPERATURE RANGE (TR)	
	5.12 5.13	VCI DETECTIONHV READY DETECTION	
		OMMAND TABLE	
7			
8	CO	MMAND DESCRIPTION	
	3.1	DRIVER OUTPUT CONTROL (01H)	
	3.2	GATE SCAN START POSITION (0FH)	
	5.3 5.4	DATA ENTRY MODE SETTING (11H)	
	5. 4 5.5	SET RAM Y - ADDRESS START / END POSITION (44H)	
	3.6	SET RAM ADDRESS COUNTER (4EH-4FH)	
9	ОР	PERATION FLOW AND CODE SEQUENCE	39
9	.1	GENERAL OPERATION FLOW TO DRIVE DISPLAY PANEL	39
10	AB	SOLUTE MAXIMUM RATING	
		ECTRICAL CHARACTERISTICS	
		CHARACTERISTICS	
		SERIAL PERIPHERAL INTERFACE	
-	2.1		_
		PLICATION CIRCUIT	
14	PA	CKAGE INFORMATION	45
	4.1 4.2	DIE TRAY DIMENSIONS FOR SSD1680AZ	

 SSD1680A
 Rev 0.20
 P 3/47
 Feb 2020
 Solomon Systech

TABLES

Table 3-1 : Ordering Information	6
TABLE 5-1: POWER SUPPLY PINS	7
Table 5-2: Interface Logic Pins	8
TABLE 5-3: ANALOG PINS	9
Table 5-4: Driver Output Pins	9
Table 5-5: Miscellaneous Pins	9
Table 6-1: Interface pins assignment under different MCU interface	10
Table 6-2 : Control pins status of 4-wire SPI	10
Table 6-3: Control pins status of 3-wire SPI	11
Table 6-4: RAM bit and LUT mapping for 3-color display	13
TABLE 6-5: RAM BIT AND LUT MAPPING FOR BLACK/WHITE DISPLAY	
Table 6-6: VS[nX-LUTm] SETTINGS FOR SOURCE VOLTAGE AND VCOM VOLTAGE	
Table 6-7: Example of 8-bit binary temperature settings for temperature ranges	
Table 6-8: Example of waveform settings selection based on temperature ranges	
Table 7-1: Command Table	
Table 11-1 : Maximum Ratings	
Table 12-1: DC Characteristics	
Table 12-2: Regulators Characteristics	
Table 13-1 : Serial Peripheral Interface Timing Characteristics	
TABLE 14-1: COMPONENT LIST FOR SSD1680A APPLICATION CIRCUIT	44
FIGURES	
FIGURE 4-1 : SSD1680A BLOCK DIAGRAM	
FIGURE 6-1 : WRITE PROCEDURE IN 4-WIRE SPI MODE	
FIGURE 6-2: READ PROCEDURE IN 4-WIRE SPI MODE	
FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI	
FIGURE 6-4: READ PROCEDURE IN 3-WIRE SPI MODE	
FIGURE 6-5: GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTRATION	
FIGURE 6-6: WAVEFORM SETTING MAPPING	
FIGURE 6-7: THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE RANGE	
FIGURE 6-8: FORMAT OF TEMPERATURE RANGE (TR) IN OTP	
FIGURE 8-1: OUTPUT PIN ASSIGNMENT ON DIFFERENT SCAN MODE SETTING	
FIGURE 8-2: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING	
FIGURE 9-1: OPERATION FLOW TO DRIVE DISPLAY PANEL	
FIGURE 9-2: OPERATION FLOW TO DRIVE DISPLAY PANEL WITH DEEP SLEEP MODE 2	
FIGURE 13-1: SPI TIMING DIAGRAM	
FIGURE 14-1: SCHEMATIC OF SSD1680A APPLICATION CIRCUIT	
FIGURE 15-1: SSD1680AZ DIE TRAY INFORMATION (UNIT: MM)	
FIGURE 15-2 · SSD1680478 DIE TRAVINEORMATION (LINIT: MM)	16

 SSD1680A
 Rev 0.20
 P 4/47
 Feb 2020
 Solomon Systech

1 GENERAL DESCRIPTION

SSD1680A is an Active Matrix EPD display driver with controller for Red/Black/White EPD displays.

It consists of 176 source outputs, 296 gate outputs, 1 VCOM and 1VBD (for border), which can support displays with resolution up to 176x 296.

In the SSD1680A, data and commands are sent from MCU through hardware selectable serial peripheral interface. It has embedded booster, regulator and oscillator which is suitable for EPD display applications.

2 FEATURES

- Design for dot matrix type active matrix EPD display, support Red/Black/White color
- Resolution: 176 source outputs, 296 gate outputs, 1 VCOM and 1VBD (for border)
- Power supply:
 - VCI: 2.2 to 3.7VVDDIO: Connect to VCI
 - VDD: 1.8V, regulate from VCI supply
- On chip display RAM
 - Mono B/W: 176x296 bits
 - Mono Red: 176x296 bits
- On-chip booster and regulator for generating VCOM, Gate and Source driving voltage
- Gate driving output voltage: 2-level outputs (VGH, VGL), Max 40Vp-p
 - VGH: 10V to 20V (Voltage adjustment step: 500mV)
 - VGL: -VGH (Voltage adjustment step: 500mV)
- Source driving output voltage: 4-levels outputs (VSH1, VSH2, VSS and VSL)
 - VSH1/VSH2: 2.4V to 17V (Voltage adjustment step: 100mV for 2.4V to 8.8V, 200mV for 8.8V to 17V)
 - VSL: -5V to -17V (Voltage adjustment step: 500mV)
- VCOM output voltage
 - DCVCOM: -3V to -0.2V in 100mV resolution
 - ACVCOM: 3-level outputs (VSH1+DCVCOM, DCVCOM, VSL+DCVCOM)
- On-chip oscillator, adjustable frame rate from 25Hz to 200Hz
- Programmable output Waveform Settings:
 - Individual setting of 4 LUT [LUTC, LUTB, LUTW, LUTR]
 - VS: 2-bit per 4 phases
 - Individual setting of 4 LUT
 - 32 phases (4 phases/group, 8 groups with repeat and state repeat function)
 - TP: Max. 63 frame/phase
 - RP: 0 to 255 times for repeat count
 - SR: 0 to 255 times for state repeat count; state repeat count for phase A,B and 1 state repeat count for phase C,D
 - XON: All Gate On Selection for each phase A,B and phase C,D
- Embedded OTP to store the waveform settings and parameters:
 - 24 sets of Waveform Settings (WS) including
 - waveform look up table (LUT),
 - Gate/Source voltage
 - VCOM value
 - Frame Rate
 - Option for LUT end
 - 24 sets of Temperature Range (TR)
 - Display mode selection
 - 4-byte waveform version
 - 10-byte User ID
- Embedded OTP to store the init code setting
- External or internal generated voltage for burning OTP
- Built-in CRC checking method for RAM content and WS & TR in OTP
- VCI low voltage detection
- Driving voltage ready detection
- Support display partial update
- Auto write RAM command for regular patterns

SSD1680A | Rev 0.20 | P 5/47 | Feb 2020 | **Solomon Systech**

- Internal Temperature Sensor of +/-2degC accuracy from -25degC to 50degC
- I2C single master interface to communicate with external temperature sensor
- MCU interface: 4-wire or 3-wire Serial peripheral interface (maximum SPI write speed 20MHz)
- Available in COG package

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	Package Form	Remark
SSD1680AZ	Gold Bump Die	Bump Face Up On Waffle pack Die thickness: 300um Bump height: 12um
SSD1680AZ8	Gold Bump Die	Bump Face Down On Waffle pack Die thickness: 300um Bump height: 12um

4 BLOCK DIAGRAM

Figure 4-1: SSD1680A Block Diagram

SSD1680A | Rev 0.20 | P 6/47 | Feb 2020 | **Solomon Systech**

5 PIN DESCRIPTION

Key:

I = Input

O =Output

IO = Bi-directional (input/output)

P = Power pin

C = Capacitor Pin

NC = Not Connected

Table 5-1: Power Supply Pins

Name	Туре	Connect to	Function	Description	When not in use
VCI	Р	Power Supply	Power Supply	Power input pin for the chip.	-
VCIA	Р	Power Supply	Power Supply	Power input pin for the chip Connect to VCI in the application circuit.	-
VDDIO	Р	Power Supply	Power for interface logic pins	Power input pin for the Interface Connect to VCI in the application circuit.	-
VDD	Р	Capacitor	Regulator output	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS under all circumstances.	-
VSS	Р	VSS	GND	Ground (Digital).	-
VSSA	Р	VSS	GND	Ground (Analog) - Connect to VSS in the application circuit.	-
VSSBG	Р	VSS	GND	Ground (Reference) pin Connect to VSS in the application circuit.	-
VSSGS	Р	VSS	GND	Ground (Output) pin Connect to VSS in the application circuit.	-
VPP	Р	Power Supply	OTP power	Power Supply for OTP Programming.	Open

 SSD1680A
 Rev 0.20
 P 7/47
 Feb 2020
 Solomon Systech

Table 5-2: Interface Logic Pins

Name	Туре	Connect to	Function	Description	When not in use
SCL	I	MPU	Data Bus	This pin is serial clock pin for interface. Refer to MCU interface in Section 6.1.	-
SDA	I/O	MPU	Data Bus	This pin is serial data pin for interface. Refer to MCU interface in Section 6.1.	-
CS#	I	MPU	Logic Control	This pin is the chip select input connecting to the MCU. Refer to MCU interface in Section 6.1.	VDDIO or VSS
D/C#	I	MPU	Logic Control	This pin is Data/Command control pin connecting to the MCU. Refer to MCU interface in Section 6.1.	VDDIO or VSS
RES#	I	MPU	System Reset	This pin is reset signal input. Active Low.	-
BUSY	0	MPU	Device Busy Signal	This pin is Busy state output pin. When Busy is High, the operation of the chip should not be interrupted, and command should not be sent. For example., The chip would output Busy pin as High when - Outputting display waveform; or - Programming with OTP - Communicating with digital temperature sensor	Open
M/S#	I	VDDIO	Reserved	- M/S# pin must be connected to VDDIO.	-
CL	I/O	NC	Clock signal	This pin is the clock signal pin. - The CL pin should be left open.	Open
BS1	I	VDDIO/VSS	MCU Interface Mode Selection	This pin is for selecting 3-wire or 4-wire SPI bus. BS1 MCU Interface L 4-wire SPI H 3-wire SPI (9-bit SPI)	
TSDA	I/O	Temperature sensor SDA	Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave.	Open
TSCL	0	Temperature sensor SCL	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave.	Open

 SSD1680A
 Rev 0.20
 P 8/47
 Feb 2020
 Solomon Systech

Table 5-3: Analog Pins

Name	Туре	Connect to	Function	Description	When not in use
GDR	0	POWER MOSFET Driver Control	VGH, VGL Generation	This pin is N-Channel MOSFET gate drive control pin.	-
RESE	I	Booster Control Input		This pin is Current sense input pin for the control Loop.	-
VGH	С	Stabilizing capacitor		This pin is Positive Gate driving voltage. Connect a stabilizing capacitor between VGH and VSS in the application circuit.	-
VGL	С	Stabilizing capacitor		This pin is Negative Gate driving voltage. Connect a stabilizing capacitor between VGL and VSS in the application circuit.	-
VSH1	С	Stabilizing capacitor	VSH1, VSH2, VSL Generation	This pin is Positive Source driving voltage, VSH1 Connect a stabilizing capacitor between VSH1 and VSS in the application circuit.	-
VSH2	С	Stabilizing capacitor		This pin is Positive Source driving voltage, VSH2 Connect a stabilizing capacitor between VSH2 and VSS in the application circuit.	-
VSL	С	Stabilizing capacitor		This pin is Negative Source driving voltage. Connect a stabilizing capacitor between VSL and VSS in the application circuit.	-
VCOM	С	Panel/ Stabilizing capacitor	VCOM Generation	This pins is VCOM driving voltage Connect a stabilizing capacitor between VCOM and VSS in the application circuit.	-

Table 5-4: Driver Output Pins

Name	Туре	Connect to	Function	Description	When not in use
S [175:0]	0	Panel	Source driving signal	Source output pin.	Open
G [295:0]	0	Panel	Gate driving signal	Gate output pin.	Open
VBD	0	Panel	Border driving signal	Border output pin.	Open

Table 5-5: Miscellaneous Pins

Name	Туре	Connect to	Function	Description	When not in use
NC	NC	NC	Not Connected	This is dummy pin. It should not be connected with other NC pins.	Open
RSV	NC	NC	Reserved	This is a reserved pin and should be kept open.	Open
TPA, TPB, TPC, TPD, TPF, FB	NC	NC	Reserved for Testing	Reserved pins. - Keep open. - Do not connect to other NC pins and test pins including TPA, TPB, TPC, TPD, TPE, TPF, TIN and FB.	Open
TIN	I	NC	Reserved for Testing	This is a reserved pin and should be kept open.	Open
TPE	0	NC	Reserved for Testing	This is a reserved pin and should be kept open.	Open

 SSD1680A
 Rev 0.20
 P 9/47
 Feb 2020
 Solomon Systech

6 Functional Block Description

6.1 MCU Interface

6.1.1 MCU Interface selection

The SSD1680A can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

		Pin Name				
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA

Note

6.1.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	↑	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

SSD1680A | Rev 0.20 | P 10/47 | Feb 2020 | **Solomon Systech**

 $^{^{(1)}}$ L is connected to V_{SS} and H is connected to V_{DDIO}

In the read operation (Command 0x1B, 0x1F, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 6-2: Read procedure in 4-wire SPI mode

6.1.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	L

Table 6-3: Control pins status of 3-wire SPI

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI

SSD1680A | Rev 0.20 | P 11/47 | Feb 2020 | **Solomon Systech**

In the read operation (Register 0x1B, 0x1F, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

Figure 6-4: Read procedure in 3-wire SPI mode

6.2 OSCILLATOR

The oscillator module generates the clock reference for waveform timing and analog operations.

6.3 BOOSTER & REGULATOR

A voltage generation system is included in the driver. It provides all necessary driving voltages required for an AMEPD panel including VGH, VGL, VSH1, VSH2, VSL and VCOM. External application circuit is needed to make the on-chip booster & regulator circuit work properly.

6.4 VCOM SENSING

This functional block provides the scheme to select the optimal VCOM DC level. The sensed value can be programmed into OTP.

The flow of VCOM sensing:

- Active Gate is scanning during the VCOM sense Period.
- Source are VSS.
- VCOM pin used for sensing.
- During Sensing period, BUSY is high.
- After Sensing, Active Gate return to non-select stage.

SSD1680A | Rev 0.20 | P 12/47 | Feb 2020 | **Solomon Systech**

6.5 RAM

The On chip display RAM is holding the image data.

1 set of RAM is built for Mono B/W. The RAM size is 176x296 bits.

1 set of RAM is built for Mono Red. The RAM size is 176x296 bits.

Table 6-4: RAM bit and LUT mapping for 3-color display

Data bit in R RAM	Data bit in B/W RAM	Image Color	LUT
0	0	Black	LUTB for driving Black
0	1	White	LUTW for driving White
1	0	Red	LUTR for driving Red

Table 6-5: RAM bit and LUT mapping for black/white display

Data bit in R RAM	Data bit in B/W RAM	Image Color	LUT
0	0	Black	LUTBB for driving Black
0	1	White	LUTWB for driving White
1	1 0		LUTBW = LUTBB
1	1	White	LUTWW = LUTWB

6.6 Programmable Waveform for Gate, Source and VCOM

TP: time of phase length from 0 to 63* frames

0indicates phase skipped

TP, SR, RP are individual set for LUTC, LUTB, LUTW and LUTR

FR: Frame frequency selection

EOPT: Option for LUT end

XON: All Gate On selection for each nAB or nCD.

Figure 6-5: Gate waveform and Programmable Source and VCOM waveform illustration

 SSD1680A
 Rev 0.20
 P 13/47
 Feb 2020
 Solomon Systech

In the programmable waveform for Source and VCOM, there are 8 groups (Group0 to Group7) and each group has 4 phases (Phase A to Phase D) and 2 state repeats (Phase A and B, Phase C and D). Totally, there are 32 phases. In addition, in each phase, the phase length (TP[nX]) can be set by number of frame from 0 to 63 frames. Also, each group can be repeated with repeat counting number (RP[n]) from 0 to 255 times; each AB / CD phases can be repeated with state repeat counting number (SR[nAB]/SR[nCD]) from 0 to 255 times. For the voltage, there is four levels for Source voltage (VSS, VSH1, VSH2, VSL) and four levels for VCOM voltage (DCVCOM, VSH1+DCVCOM, VSL+DCVOM, Floating).

The description of each parameter is as follows.

- 1) TP[nX] represents the phase length set by the number of frame.
- The range of TP[nX] is from 0 to 63.
- n represents the Group number from 0 to 7; X represents the phase number from A to D.
- When TP[nX] = 0, the phase is skipped. When TP[nX] = 1, the phase is 1 frame, and so on. The maximum phase length is 63 frame.
- 2) RP[n] represents the repeat counting number for the Group.
- The range of RP[n] is from 0 to 255.
- n represents the Group number from 0 to 7.
- RP[n] = 0 indicates that the group is skipped, RP[n] = 1 indicates that the repeat times = 1, and so on. The maximum repeat times is 255.
- 3) SR[nAB] and SR[nCD] represent the state repeat counting number for Phase A & B and Phase C & D respectively.
- The range of SR[nXY] is from 0 to 255.
- n represents the Group number from 0 to 7.
- SR[nXY] = 0 indicates that the sub-group is skipped, SR[nXY] = 1 indicates that the repeat times = 1, and so on. The maximum repeat times is 255.
- 4) VS[nX-LUTm] represents Source and VCOM voltage level which is used in each phase. Table 6-6 shows the voltage settings for source voltage and VCOM voltage.
- n represents the Group number from 0 to 7.
- m represents the LUT number from 0-3.

Table 6-6: VS[nX-LUTm] settings for Source voltage and VCOM voltage

VS[nX-LUTm]	Source voltage	VCOM voltage		
00	VSS	DCVCOM		
01	VSH1	VSH1 + DCVCOM		
10	VSL	VSL + DCVCOM		
11	VSH2	Floating		

5) FR indicates the frame rate

FR[3:0]	Frame Rate	FR[3:0]	Frame Rate
0001	25 Hz	1001	37.5 Hz
0010	50 Hz	1010	62.5 Hz
0011	75 Hz	1011	87.5 Hz
0100	100 Hz	1100	112.5 Hz
0101	125 Hz	1101	137.5 Hz
0110	150 Hz	1110	162.5 Hz
0111	175 Hz	1111	187.5 Hz
1000	200 Hz		

- 6) XON[nAB] and XON[nCD], indicates the gate scan selection.
- n represents the Group number from 0 to 7.
- XON[nXY] = 0 indicates Normal gate scan in Phase[nX] & Phase[nY].
- XON[nXY] = 1 indicates All gate on, that Gate keeps High until the phase for normal gate scan, in Phase[nX] & Phase[nY].

SSD1680A | Rev 0.20 | P 14/47 | Feb 2020 | **Solomon Systech**

6.7 WAVEFORM SETTING

As described in Section 6.6, parameters VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY] are used to define the driving waveform. In the SSD1680A, there are 233 bytes in the waveform setting to store LUTB, LUTW, LUTR and LUTC, gate voltage, source voltage and frame rate. The waveform LUT of a particular temperature range can be loaded from OTP or written by MCU.

- WS byte 0~226, the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR and XON[nXY] are defined by Register 0x32
- WS byte 227, the content of Option for LUT end, is the parameter belonging to register 0x3F.
- WS byte 228, the content of gate level, is the parameter defined by Register 0x03.
- WS byte 229~231, the content of source level, is the parameter defined by Register 0x04.
- WS byte 232, the content of VCOM level, is the parameter defined by Register 0x2C

The SSD1680A waveform setting is shown in in Figure 6-6: Waveform Setting mapping

addr.	D7 D6	D5 D4 D3 D2 D1 D0	addr.	D7 D6	D5 D4 D3 D2 D1 D0		
0		RP LUTC 0	112		RP LUTW 0		
1	VS-0A-LUTC	TP LUTC 0A	113	VS-0A-LUTW	TP LUTW 0A		
2	VS-0B-LUTC	TP LUTC 0B	114	VS-0B-LUTW	TP LUTW 0B		
3	VS-0C-LUTC	TP LUTC 0C	115	VS-0C-LUTW	TP LUTW 0C		
4	VS-0D-LUTC	TP LUTC 0D	116	VS-0D-LUTW	TP LUTW 0D		
5		SR LUTC 0AB	117		SR LUTW 0AB		
6		SR LUTC 0CD	118				
7	VS-1A-LUTC	RP LUTC 1	119	VS-1A-LUTW	RP LUTW 1		
8 9	VS-1A-LUTC VS-1B-LUTC	TP LUTC 1A TP LUTC 1B	120 121	VS-1A-LUTW TP LUTW 1A VS-1B-LUTW TP LUTW 1B			
10	VS-1C-LUTC	TP LUTC 1C	122	VS-1C-LUTW	TP LUTW 1C		
11	VS-1C-LUTC	TP LUTC 1D	123				
	VS-TD-LUTC	SR LUTC 1AB		VS-1D-LUTW TP LUTW 1D			
12 13		SR LUTC 1AB SR LUTC 1CD	124 125		SR LUTW 1AB SR LUTW 1CD		
14		RP LUTC 2	126		RP LUTW 2		
50	VS-7A-LUTC	TP LUTC 7A	162	VS-7A-LUTW	TP LUTW 7A		
51	VS-7B-LUTC	TP LUTC 7B	163	VS-7B-LUTW	TP LUTW 7B		
52	VS-7C-LUTC	TP LUTC 7C	164	VS-7C-LUTW	TP LUTW 7C		
53	VS-7D-LUTC	TP LUTC 7D	165	VS-7D-LUTW	TP LUTW 7D		
54		SR LUTC 7AB	166				
55		SR LUTC 7CD	167				
56		RP LUTR 0	168 169		RP LUTB 0		
57		VS-0A-LUTR 0A		VS-0A-LUTB	TP LUTB 0A		
58	VS-0B-LUTR	TP LUTR 0B	170	VS-0B-LUTB	TP LUTB 0B		
59	VS-0C-LUTR	TP LUTR 0C TP LUTR 0D	171	VS-0C-LUTB VS-0D-LUTB	TP LUTB 0C TP LUTB 0D		
60	VS-0D-LUTR	SR LUTR 0AB	172	A2-0D-F01R	SR LUTB 0AB		
61 62		SR LUTR OCD	173 174		SR LUTB OCD		
63		RP LUTR 1	175		RP LUTB 1		
64	VS-1A-LUTR	TP LUTR 1A	176	VS-1A-LUTB	TP LUTB 1A		
65	VS-1B-LUTR	TP LUTR 1B	177	VS-1B-LUTB	TP LUTB 1B		
66	VS-1C-LUTR	TP LUTR 1C	178	VS-1C-LUTB	TP LUTB 1C		
67	VS-1D-LUTR	TP LUTR 1D	179	VS-1D-LUTB	TP LUTB 1D		
68		SR LUTR 1AB	180		SR LUTB 1AB		
69		SR LUTR 1CD	181		SR LUTB 1CD		
70		RP LUTR 2	182		RP LUTB 2		

106	VC 7A LUTD	 TP LUTR 7A	218	VS-7A-LUTB	 TP LUTB 7A		
106	VS-7A-LUTR VS-7B-LUTR	TP LUTR 7B	219	VS-7A-LUTB VS-7B-LUTB	TP LUTB 7B		
107	VS-7G-LUTR	TP LUTR 7C	219	VS-76-LUTB	TP LUTB 7C		
109	VS-70-LUTR	TP LUTR 7D	221	VS-7D-LUTB	TP LUTB 7D		
110	VO ID LOTT	SR LUTR 7AB	222	VO 7D 201B	SR LUTB 7AB		
111		SR LUTR 7CD	223		SR LUTB 7CD		
			224		FR		
			225	XON3CD XON3AB	XON2CD XON2AB XON1CD XON1AB XON0CD XON0AB		
			226	XON7CD XON7AB	XON6CD XON6AB XON5CD XON5AB XON4CD XON4AB		
			227		EOPT		
			228		VGH		
			229		VSH1		
			230		VSH2		
			231		VSL VCOM		
			232	L	V COIVI		

Figure 6-6: Waveform Setting mapping

SSD1680A | Rev 0.20 | P 15/47 | Feb 2020 | **Solomon Systech**

6.8 Temperature Searching

The SSD1680A has internal temperature sensor to detect the environment temperature or can communicate with the external temperature sensor by I2C single master interface or can communicate with the external MCU to get the temperature value through SPI. In the SSD1680A, there is a dedicated format for the temperature value so that the driver IC can understand it. The format of temperature value is described in Section 6.8.3.

6.8.1 Internal Temperature Sensor

The internal temperature sensor can be selected by command register. The accuracy of it is ±2degC from - 25degC to 50degC.

6.8.2 External Temperature Sensor I2C Single Master Interface

The driver IC can communicate with the external temperature sensor through I2C single master interface (TSDA and TSCL). TSDA will be SDA and TSCL will be SCL. TSDA and TSCL are required to connect with external pull-up resistor. Temperature register value of external temperature sensor can be read by command register.

6.8.3 Format of temperature value

The temperature value is defined by 8-bit binary. The rules are shown as below.

- If the Temperature value MSByte bit D11 = 0, then the temperature is positive and value (DegC) = + (Temperature value)
- If the Temperature value MSByte bit D11 = 1, then the temperature is negative and value (DegC) = (2's complement of Temperature value)

Table 6-7 shows some examples of 8-bit binary temperature value:

Table 6-7: Example of 8-bit binary temperature settings for temperature ranges

8-bit binary (2's complement)	Hexadecimal Value	TR Value [DegC]
0111 1111	7F	127
0110 0100	64	100
0101 0000	50	80
0100 1011	4B	75
0011 0010	32	50
0001 1001	19	25
0000 0000	00	0
1111 1111	FF	-1
1110 0111	E7	-25
1100 1001	C9	-55

SSD1680A | Rev 0.20 | P 16/47 | Feb 2020 | **Solomon Systech**

6.9 Waveform Setting searching mechanism

As mentioned in Section 6.7, the SSD1680A OTP can store waveform setting and temperature range. If waveform setting and temperature range are programmed in OTP memory, corresponding waveform LUT can be selected according to the sensed temperature to drive the display. The Waveform Setting searching mechanism by driver IC is as follows.

- 1) Read temperature value by command register in the format of 8-bit binary.
- 2) According to read temperature and display mode selection, search LUT in OTP from TR0 to TR23 in sequence. The last match will be selected, then, the corresponding WS will be loaded in the LUT register to drive the display.

Remark: Waveform LUT selection criteria is "Lower temperature bound < Sensed temperature ≤ Upper temperature bound".

Table 6-8 shows an example for the waveform LUT searching from OTP:

- If the read temperature is 25degC, then, WS4 will be selected.
- If the read temperature is 34degC, then, WS7 will be selected. Although 34degC is also in the temperature range TR6, according to searching mechanism, the last match should be selected. Therefore, WS7 is selected.

Waveform **Temperature** TR Lower Limit | TR Upper Limit | Temperature range in OTP **LUT in OTP** Range in OTP [Hex] [Hex] WS0 TR0 80 05 -128 DegC < Temperature ≤ 5 DegC 5 DegC < Temperature ≤ 10DegC WS1 TR1 05 0A TR2 0A 0F 10 DegC < Temperature ≤ 15DegC WS2 WS3 TR3 0F 14 15 DeaC < Temperature ≤ 20DeaC WS4 TR4 14 19 20 DegC < Temperature ≤ 25DegC WS5 TR5 19 1E 25 DegC < Temperature ≤ 30DegC WS6 1E 23 30 DegC < Temperature ≤ 35DegC TR6 WS7 TR7 21 7F 33 DegC < Temperature ≤ 127DegC 00 00 Others Others

Table 6-8: Example of waveform settings selection based on temperature ranges.

Precaution:

Please ensure the temperature range covers whole range of application temperatures, display will not be updated if no suitable temperature range matches the sensed temperature.

SSD1680A | Rev 0.20 | P 17/47 | Feb 2020 | **Solomon Systech**

6.10 One Time Programmable (OTP) Memory

In the SSD1680A, there is an embedded OTP memory which is designed to store the waveform settings of different temperature range and some variables/parameters. The OTP memory can store 24 sets of waveform LUT settings (WS), 24 sets of temperature range (TR), VCOM value, display mode selection, waveform version and user ID. Figure 6 7 shows the address mapping of the 24 waveform setting (WS0 to WS23) and temperature range (TR0 to TR23).

addr.	D7	D6	D5	D4	D3	D2	D1	D0				
0												
				W	S0							
232												
233												
		WS1										
465												
466		WS2										
		WS2										
698 699												
		uu e										
		WS3										
931												
932	I			141	S4							
1164				VV	34							
1164												
5126												
	ł			W	S22							
5358				•••	JLL							
5359												
				W:	S23							
5591	1											
5592				-	20							
5593	1			- 11	₹0							
5594				Т	R1							
5595	<u> </u>				X1							
5596				TI	R2							
5597					-							
5598				TI	R3							
5599					-							
5600	l			TI	R4							
5601												
5636				TF	R22							
5637												
5638	l			TF	R23							
5639												

Figure 6-7: The Waveform setting mapping in OTP for waveform setting and temperature range

6.11 The Format for Temperature Range (TR)

The format of TR Lower limit and Upper limit as shown in Figure 6-8 which temp_L[7:0] is the lower limit and temp_H[7:0] is the upper limit of the temperature range. There has 24sets of TR for waveform LUT searching.

D7	D6	D5	D4	D3	D2	D1	D0			
	temp_L[7:0]									
			temp_	H[7:0]						

Figure 6-8: Format of Temperature Range (TR) in OTP

SSD1680A | Rev 0.20 | P 18/47 | Feb 2020 | **Solomon Systech**

6.12 VCI Detection

The VCI detection function is used to detect the VCI level when it is lower than Vlow, threshold voltage set by register.

In SSD1680A, there is a command to execute the VCI detection function. When the VCI detection command is issued, the VCI detection will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of VCI, which 0 is normal, 1 is VCI<VIow.

6.13 HV Ready Detection

The HV Ready detection function is used to detect whether the analog block is ready.

In SSD1680A, there is a command to execute the HV Ready detection function. When the HV Ready detection command is issued, the HV Ready will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of HV Ready, which 0 is normal, 1 indicate HV is not ready.

SSD1680A | Rev 0.20 | P 19/47 | Feb 2020 | **Solomon Systech**

7 COMMAND TABLE

Table 7-1: Command Table

O O O O O O O O O O	ommand Table											
O	escription											
No	Sate setting											
0	[8:0]= 127h [PC											
B 2 Seligible Seligible	IUX Gate lines s	s setting as (A	\[8:0] + 1).									
0 0 03 0 0 0 0 0 0 1 1 Gate Driving voltage Set A[4 VG A A] A A A A A A A	AUX Gate lines of a line of a li	POR]. sequence and output Gate ate output cha ce is G0,G1, G ate output cha ce is G1, G0, G are of gate and order of gate 3295 (left an	d direction annel, gate 62, G3, annel, gate G3, G2, ate driver. and right gate									
0 1 0 0 0 A ₄ A ₃ A ₂ A ₁ A ₀ Control A[4 VG] A () () () () () () () () ()	B = 0 [POR], sc B = 1, scan fron											
0 1 0 0 A ₄ A ₃ A ₂ A ₁ A ₀ Control A[4 VG] A (((((((((((((((((Set Gate driving	g voltage										
VGI A () () () () () () () () () () () () ()	[4:0] = 00h [PO]											
	GH setting from											
	A[4:0] VGH		VGH									
	00h 20		15									
	03h 10		15.5									
	04h 10.5 05h 11		16									
	05h 11 06h 11.5		16.5 17									
	07h 12		17.5									
	08h 12.5		18									
	07h 12.5		18.5									
	08h 12.5		19									
	09h 13		19.5									
	09h 13.5		20									
	0Bh 14		NA									
	0Ch 14.5		14/1									
	3011 14.3	<u>. </u>										

 SSD1680A
 Rev 0.20
 P 20/47
 Feb 2020
 Solomon Systech

Com	man	d Tak	ole													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comm	nand		Description		
0	0	04	0	0	0	0	0	1	0	0	Source	Driving	voltage	Set Source driving voltage		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A_2	A ₁	A ₀	Contro			Control		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀				B [7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V		
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	C ₀				Remark: VSH1>=VSH2		
A[7]/B[7]	= 1,						A[7]/B[7] = 0	,			C[7] = 0,		
VSI	11/VS	3H2 ν	oltag/	je se	tting	from	2.4V	VS	SH1/V	SH2	voltage	e setting	from 9V	VSL setting from -5V to -17V		
to 8	.8V							to	17V							
A/	B[7:0]	VSH ²	1/VSH2	A/B	3[7:0]	VSH1	/VSH2		A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH2	C[7:0] VSL		
	8Eh	2	2.4	А	.Fh	5	.7		23h		9	3Ch	14	0Ah -5		
	8Fh	2	2.5	В	0h	5	.8		24h		9.2	3Dh	14.2	0Ch -5.5		
	90h	2	2.6	↓	1h	5	.9		25h		9.4	3Eh	14.4	0Eh -6		
	91h	2	2.7	↓	2h	6			26h		9.6	3Fh	14.6	10h -6.5		
	92h	2	2.8	В	3h	6	.1		27h		9.8	40h	14.8	12h -7		
l	93h	1 2	2.9	l B	4h	6	.2		28h	1	10	41h	15			

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2	A/B[7:	0]
8Eh	2.4	AFh	5.7	23h	
8Fh	2.5	B0h	5.8	24h	
90h	2.6	B1h	5.9	25h	
91h	2.7	B2h	6	26h	
92h	2.8	B3h	6.1	27h	
93h	2.9	B4h	6.2	28h	
94h	3	B5h	6.3	29h	
95h	3.1	B6h	6.4	2Ah	
96h	3.2	B7h	6.5	2Bh	
97h	3.3	B8h	6.6	2Ch	
98h	3.4	B9h	6.7	2Dh	
99h	3.5	BAh	6.8	2Eh	
9Ah	3.6	BBh	6.9	2Fh	
9Bh	3.7	BCh	7	30h	
9Ch	3.8	BDh	7.1	31h	
9Dh	3.9	BEh	7.2	32h	
9Eh	4	BFh	7.3	33h	
9Fh	4.1	C0h	7.4	34h	
A0h	4.2	C1h	7.5	35h	
A1h	4.3	C2h	7.6	36h	
A2h	4.4	C3h	7.7	37h	
A3h	4.5	C4h	7.8	38h	
A4h	4.6	C5h	7.9	39h	
A5h	4.7	C6h	8	3Ah	
A6h	4.8	C7h	8.1	3Bh	
A7h	4.9	C8h	8.2		
A8h	5	C9h	8.3		
A9h	5.1	CAh	8.4		
AAh	5.2	CBh	8.5		
ABh	5.3	CCh	8.6		
ACh	5.4	CDh	8.7		
ADh	5.5	CEh	8.8		
AEh	5.6	Other	NA		

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2		
23h	9	3Ch	14		
24h	9.2	3Dh	14.2		
25h	9.4	3Eh	14.4		
26h	9.6	3Fh	14.6		
27h	9.8	40h	14.8		
28h	10	41h	15		
29h	10.2	42h	15.2		
2Ah	10.4	43h	15.4		
2Bh	10.6	44h	15.6		
2Ch	10.8	45h	15.8		
2Dh	11	46h	16		
2Eh	11.2	47h	16.2		
2Fh	11.4	48h	16.4		
30h	11.6	49h	16.6		
31h	11.8	4Ah	16.8		
32h	12	4Bh	17		
33h	12.2	Other	NA		
34h	12.4				
35h	12.6				
36h	12.8				
37h	13				
38h	13.2				
39h	13.4				
3Ah	13.6				
3Bh	13.8				

C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

0	0	80	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting
											J. T. J.	The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	00	0	0	0	0	4	0	0	4	Mrita Daniatar for Initial	Write Degister for Initial Code Cetting
0	0	09	0	0	0	0	1	0	0			Write Register for Initial Code Setting
0	1		A ₇	A_6	A_5	A_4	A ₃	A_2	A ₁	A ₀	Code Setting	Selection
0	1		B ₇	B_6	B_5	B_4	Вз	B_2	B ₁	B ₀		A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0	1		C ₇	C_6	C ₅	C ₄	C ₃	C_2	C_1	C ₀		Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D_3	D ₂	D ₁	D_0		-
0	0	0A	0	0	0	0	1	0	1		Read Register for Initial Code Setting	Read Register for Initial Code Setting

 SSD1680A
 Rev 0.20
 P 21/47
 Feb 2020
 Solomon Systech

Com	Command Table R/W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start		with Phase 1, Phase 2 and Phase 3	
0	1		1	A ₆	A ₅	A_4	A ₃	A ₂	A ₁	A ₀	Control	for soft start cur	rent and duration setting.	
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀			art setting for Phase1	
0	1		1	C ₆	C ₅	C ₄	C ₃	C_2	C ₁	C ₀		= 8Br B[7:0] -> Soft st	n [POR] art setting for Phase2	
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		= 9Ch	n [POR]	
	-		Ū			,	_ 0					C[7:0] -> Soft St = 96h	art setting for Phase3 [POR]	
												D[7:0] -> Duration = 0Fh	on setting [POR]	
													otion of each byte: 6:0] / C[6:0]:	
												Bit[6:4]	Driving Strength Selection	
												000	1(Weakest)	
												001	2	
												010	3	
												011	4	
												100	5	
												101	6	
												110	7	
												111	8(Strongest)	
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]	
												0000	NA	
												0011	IVA	
												0100	2.6	
												0101	3.2	
												0110	3.9	
												0111	4.6	
												1000	5.4	
												1001	6.3	
												1010	7.3	
												1011	8.4	
												1100	9.8	
												1101	11.5	
												1110	13.8 16.5	
													16.5	
												D[5:4]: di D[3:2]: di	ration setting of phase uration setting of phase 3 uration setting of phase 2 uration setting of phase 1	
												Bit[1:0]	Duration of Phase [Approximation]	
												00	10ms	
												01	20ms	
												10	30ms	
												11	40ms	

 SSD1680A
 Rev 0.20
 P 22/47
 Feb 2020
 Solomon Systech

Com	man	d Ta	ble												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Slee	ep mode Control:		
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0]:	Description		
												00	Normal Mode [POR]		
												01	Enter Deep Sleep Mode 1		
												11	Enter Deep Sleep Mode 2		
												enter Dee keep outp Remark: To Exit De	command initiated, the chip will be Sleep Mode, BUSY pad will but high. eep Sleep mode, User required WRESET to the driver		
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define da	ta entry sequence		
-		11									Data Entry mode setting				
0	1		0	0	0	0	0	A2	A ₁	Ao		A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 —Y decrement, X decrement, 01 —Y decrement, X increment, 10 —Y increment, X decrement, 11 —Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.			
0	0	12	0	0	0	1	0	0	1	0	SW RESET	to their S/R10h-Dee	he commands and parameters W Reset default values except ep Sleep Mode peration, BUSY pad will output M are unaffected by this		

 SSD1680A
 Rev 0.20
 P 23/47
 Feb 2020
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	A ₀		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	2	0	0	0	0	0	A2	A ₁	Ao	VOI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
	0	10	0	0	_	1	1	0	0	0	Tomporatura Sanaar	Tomporatura Sangar Salaatian
0	1	18	0 A ₇	0 A ₆	0 A ₅	1 A ₄	1 A ₃	0 A ₂	0 A ₁	0 A ₀	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write to temperature register)	A[7:0] = 7Fh [POR]
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1	טי	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Read from	read nom temperature register.
<u> </u>			, 1/	. 10	, 13	, 14	, 13	, 12	. 11	, 10	temperature register)	
				1	1		1			I	<u> </u>	

 SSD1680A
 Rev 0.20
 P 24/47
 Feb 2020
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	C ₀	sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
U	•		C7	C6	U 5	C4	C ₃	G 2	C1	C ₀		A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature
												sensor starts. BUSY pad will output high during operation.
												during operation.
0	0	1F	0	0	0	1	1	1	1	1	IC revision Read	Read IC revision [POR 0x0D]
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
				ı								
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Update Sequence Option is located at R22h.
												BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
0	1	21	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]
0	1		B ₇	0	0	0	0	0	0	0		
												A[7:4] Red RAM option
												0000 Normal
												0100 Bypass RAM content as 0 1000 Inverse RAM content
												1000 Inverse Kaw Content
												A[3:0] BW RAM option
												0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
												B[7] Source Output Mode
												0 Available Source from S0 to S175
												1 Available Source from S8 to S167

 SSD1680A
 Rev 0.20
 P 25/47
 Feb 2020
 Solomon Systech

Rowell Display Description Description Description Display Update Sequence Option: Enable the stage for Master Activation Art	Com	man	d Ta	ble										
0	R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
A[7:0]= FFh (POR)	-		22											
Parameter (In Hex)	0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control 2		livation
Disable clock signal														
Enable clock signal														
→ Enable Analog Disable Cock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal ← Load LUT with DISPLAY Mode 2 → Disable clock signal ← Load LUT with DISPLAY Mode 2 → Disable clock signal ← Load LUT with DISPLAY Mode 1 → Disable clock signal ← Load LUT with DISPLAY Mode 1 → Disable clock signal ← Load LUT with DISPLAY Mode 1 → Disable clock signal ← Load LUT with DISPLAY Mode 2 → Disable clock signal ← Load LUT with DISPLAY Mode 2 → Disable Analog → Dis													Disable clock signal	01
→ Disable clock signal → Load LUT with DISPLAY Mode 1 91 → Load LUT with DISPLAY Mode 2 → Disable clock signal + Load LUT with DISPLAY Mode 2 99 → Disable clock signal + Load LUT with DISPLAY Mode 2 99 → Disable clock signal + Load LUT with DISPLAY Mode 1 → Disable clock signal + Load LUT with DISPLAY Mode 1 → Disable clock signal + Load LUT with DISPLAY Mode 2 → Disable clock signal + Load LUT with DISPLAY Mode 2 → Disable clock signal + Load LUT with DISPLAY Mode 2 → Disable clock signal + Load the properties of the prope													→ Enable Analog	C0
→ Load LUT with DISPLAY Mode 1 91														03
Load LUT with DISPLAY Mode 2 99 Disable clock signal Load temperature value Load LUT with DISPLAY Mode 1 Plant temperature value Load LUT with DISPLAY Mode 2 Disable clock signal Enable clock signal Enable clock signal													→ Load LUT with DISPLAY Mode 1	91
Disable clock signal													→ Load LUT with DISPLAY Mode 2	99
Dead turn with DISPLAY Mode 2 Disable clock signal Enable clock signal Disable Analog Display with DISPLAY Mode 1 Display with DISPLAY Mode 1 Display with DISPLAY Mode 2 Display Analog Load temperature value Display With DISPLAY Mode 1 Display Analog Display With DISPLAY Mode 2 Display With DISPLAY Mode 2 Display With Display With DISPLAY													→ Load temperature value→ Load LUT with DISPLAY Mode 1	B1
Panable Analog → Disable OSC Enable Cock signal → Enable Analog → Disable OSC Enable Cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable Cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable OSC Enable cock signal → Enable Analog → Disable													→ Load temperature value→ Load LUT with DISPLAY Mode 2	В9
Enable clock signal → Enable Analog → Disable Nanlog → Disable Analog → Disable OSC Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Load temperature value → DispLAY with DISPLAY Mode 1 → Disable Analog → Disable An													→ Enable Analog→ Display with DISPLAY Mode 1→ Disable Analog	C7
O 0 24 0 0 1 0 0 0 Write RAM (Black White) ARAM ox24 After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly													Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog	CF
0 0 24 0 0 1 0 0 0 Write RAM (Black White) ARAM ox24 After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly														
FF Display with Display Mode 2 → Displa													 → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog 	F7
/ RAM 0x24 written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel:													Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog	FF
/ RAM 0x24 written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel:											1			
Content of Write RAM(BW) = 1 For Black pixel:	0	0	24	0	0	1	0	0	1	0	0		written into the BW RAM until a command is written. Address po	nother
Sometical value (State 1) = 0													Content of Write RAM(BW) = for Black pixel:	
													Total of the total	-

 SSD1680A
 Rev 0.20
 P 26/47
 Feb 2020
 Solomon Systech

	man		ble			_						
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
	<u> </u>						<u> </u>	<u> </u>	<u> </u>	<u> </u>	I	
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
												The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		0	1	0	0	A ₃	A ₂	A ₁	A ₀		sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
										J		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

 SSD1680A
 Rev 0.20
 P 27/47
 Feb 2020
 Solomon Systech

Com	man	d Ta	ble												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	COM registe	er from M	ICU interface
0	1	•	A ₇	A ₆	A_5	A_4	A_3	A ₂	A ₁	A_0		A[7:0] =	00h [POR]		
												Λ[7:0]	VCOM	Λ[7 :0]	VCOM
												A[7:0] 08h	-0.2	A[7:0] 44h	-1.7
												0Ch	-0.2	48h	-1.7
												10h	-0.3	4Ch	-1.9
												14h	-0.4	50h	-1.9
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
												11			
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Display Option				
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀			VCOM OTI		on
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C_2	C ₁	C ₀		(Comm	and 0x37,	byte A)	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0]:	VCOM Reg	gister	
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		(Comm	and 0x2C)		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		0[7.0]	O[7:0], D:a	nlov Mos	la.
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀			G[7:0]: Dis and 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		[5 bytes		Dyte D te	, byte i ,
1	1					-				I ₀			-		
			l ₇	l ₆	l ₅	I ₄	l ₃		l ₁				K[7:0]: Wa		
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		(Comm	and 0x37,	Byte G to	Byte J)
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K_2	K ₁	K ₀		[4 bytes	9]		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Pood 10	Byte User	ID store	od in OTD:
		4 □							-		עו ושפען עו אפרו וער Keau				Byte A and
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀			[10 bytes]	(,	
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		,			
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	C ₀					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go					
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	H ₀					
1	1		I ₇	I 6	I ₅	I 4	l ₃	l ₂	I ₁	I ₀					
1	1		J_7	J_6	J_5	J_4	J_3	J_2	J_1	J_0					
						1	1			1	ı	1			

 SSD1680A
 Rev 0.20
 P 28/47
 Feb 2020
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A ₅	A ₄	0	0	A ₁	A ₀		A[5]: HV Ready Detection flag [POR=0]
				_						· ·		0: Ready
												1: Not Ready
												A[4]: VCI Detection flag [POR=0] 0: Normal
												1: VCI lower than the Detect level
												A[3]: [POR=0]
												A[2]: Busy flag [POR=0]
												0: Normal
												1: BUSY
												A[1:0]: Chip ID [POR=01]
												Remark:
												A[5] and A[4] status are not valid after
												RESET, they need to be initiated by command 0x14 and command 0x15
												respectively.
												i especiavoly.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting
											Ŭ	The contents should be written into RAM
												before sending this command.
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												BUSY pad will output high during
												operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The common discount of CLICEN A
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												There is integrated on the state.
												BUSY pad will output high during
												operation.
	0	20	0	0	4	1	0	_	4	0	Write LLIT register	M/rito LLIT register from MCLL interfer
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface [227 bytes], which contains the content of
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		FR and XON[nXY]
-	1		:	•	•	•	:	•	•	•		Refer to Session 6.7 WAVEFORM SETTING
0	1		•	••	•	•	•	•	•	•		SETTING.
	^	0.4	_	_		4	_		_	_	ODO sala latia	ODO astrutation and the
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680A
												application note.
												BUSY pad will output high during operation.
					<u> </u>							opolation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈		A[15:0] is the CRC read out value
1	1		A ₇	A ₆	A ₅	A ₄	A_3	A_2	A ₁	A ₀		

 SSD1680A
 Rev 0.20
 P 29/47
 Feb 2020
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
			_	I _						l .	I	I
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0	1		A ₇	0	0	0	0	0	0	0	Орион	0: Default [POR]
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	D ₃	C ₂	C ₁	C ₀	-	B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		D[7:0] Display Mode for WS[23:16]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G₀		0: Display Mode 1 1: Display Mode 2
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		
0	1		l ₇	l ₆	l ₅	I ₄	l ₃	l ₂	I ₁	I ₀		F[6]: Ping-Pong for Display Mode 2 0: RAM Ping-Pong disable [POR]
0	1		J_7	J_6	J ₅	J_4	J_3	J_2	J ₁	J_0		1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks:
												1) A[7:0]~J[7:0] can be stored in OTP
												2) RAM Ping-Pong function is not support for Display Mode 1
												Tot Display Wede 1
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1		A ₇	A ₆	A ₅	A_4	A_3	A_2	A ₁	A_0		A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F₁ G₁	F ₀		
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	G₁ H₁	H ₀		
0	1		I ₇	I ₆	I ₅	I ₄	I ₃	I ₂	I ₁	I ₀		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP
												programming voltage
												Libraria da FVACTIV fallaccatha
												: User is required to EXACTLY follow the reference code sequences

 SSD1680A
 Rev 0.20
 P 30/47
 Feb 2020
 Solomon Systech

Com	man	d Ta	ble										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	-	waveform for VBD
0	1		A ₇	A ₆	A ₅	A ₄	0	0	A ₁	A ₀		A[7:0] = C0h	[POR], set VBD as HIZ.
	•		,	0						0			ct VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
												01	Defined in A[2] and A[1:0]
												01	Fix Level, Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
													vel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10 11	VSL VSH2
												11	V 31 12
												A [1:0] GS Tr	ansition setting for VBD
												VBD Level Se	
												00b: VCOM;	
												10b: VSL; 11	
												A[1:0]	VBD Transition
												00	LUT0
												01 10	LUT1 LUT2
												11	LUT3
												11	2019
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LU	T end
0	1	01	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀			nould be set for this
0	'		A 7	A 6	A 5	A 4	A 3	A 2	A1	A 0			programmed into Waveform
												setting.	
												22h Norm	
													ce output level keep
												previo	ous output before power off
				_							D 15446 #		
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM O A[0]= 0 [POR	
0	1		0	0	0	0	0	0	0	A_0			I description of the second of
												RAM0x24	n corresponding to
												1 : Read RAN	A corresponding to
												RAM0x26	
	_				l _		_			_	<u> </u>	T	
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address		tart/end positions of the
0	1		0	0	A ₅	A_4	A ₃	A ₂	A ₁	A_0	Start / End position	address unit	ess in the X direction by an
0	1		0	0	B 5	B ₄	Вз	B ₂	B ₁	B_0		addiess uill	IOI IVAIVI
												A[5:0]: XSA[5	5:0], XStart, POR = 00h
												B[5:0]: XEA[5	5:0], XEnd, POR = 15h
	· · · · · · · · · · · · · · · · · · ·										<u> </u>		
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address		tart/end positions of the
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position	window addre	ess in the Y direction by an
0	1		0	0	0	0	0	0	0	A ₈		address unit	for RAM
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		A [0.0], VO A [0	0.01 VCtort DOD 000h
												A[8:0]: Y5A[8	3:0], YStart, POR = 000h 3:0], YEnd, POR = 127h
0	1		0	0	0	0	0	0	0	B ₈		טנט.טן. דבאנט	7.0], TEHO, TOR - 12711

 SSD1680A
 Rev 0.20
 P 31/47
 Feb 2020
 Solomon Systech

New Octa Hext Or Des Os Os Os Os Os Os Os	Name	Command Table																	
0	0					D6	D5	D4	D3	D2	D1	D0	Command	Description					
Name	1	0	0	46	0	1	0	0	0	1		0	Auto Write RED RAM for	_		M for Reg	ular Pattern		
Aig.:4]: Step Height, PQR= 000 Step of after RAM in Y-direction according to Gate Aig.:4] Height Aig.:4]	A A A A A A A A A A										A ₁					J			
000 8 100 128 001 16 101 256 010 32 110 296 011 64 111 NA 011 64 111 01 01 01 01 01 01 01 01 01 01 01 01	000													A[6:4]: Ste Step of all according	ep Height, ter RAM ir to Gate	POR= 00 Y-direction	0 on		
0	0														Height				
0	010 32 110 296 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 176 010 32 110 NA 011 64 111 NA 011 64 111 NA 011 64 111 NA 011 64 111 NA 012 A7 A8 A8 A4 O A2 A1 A0 A8 A9 A1 O A2 A1 A0 A9 A1 A1 A1 A1 A1 A1 A1																		
0 0 47 0 1 0 0 0 1 1 1 1 0 0	0																		
A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Alto Write B/W RAM for Regular Pattern Auto Write B/W RAM for Regular Pattern A[7:0] = 00h [POR] A	A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source																		
Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] A[2:0]	Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] A[7:0] A[7:0]													011	64	111	NA		
0 0 47 0 1 0 0 0 1 1 1 Auto Write B/W RAM for Regular Pattern	0													Step of all	ter RAM ir	X-direction			
001 16 101 176	0													A[2:0]	Width	A[2:0]	Width		
010 32 110 NA 011 64 111 NA BUSY pad will output high during operation.	0													000	8	100	128		
0	0													001	16	101	176		
BUSY pad will output high during operation.	BUSY pad will output high during operation.													010					
O 0 47 0 1 0 0 0 1 1 1 Auto Write B/W RAM for Regular Pattern A[7:0] = 00h [POR]	O O 47 O 1 O O O Az At Az Az Az Az Az Az													011	64	111	NA		
A7 A6 A5 A4 O A2 A1 A0 Regular Pattern A[7:0] = 00h [POR]	A														•	ut high dui	ring		
A7 A6 A5 A4 O A2 A1 A0 Regular Pattern A[7:0] = 00h [POR]	1		_	4-7	_	4					4	_	A	10 , 10, 1	D 444 D 44	4.6	I D "		
A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR=000 Step of alter RAM in Y-direction according to Gate A[6:4]	A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR=000 Step of alter RAM in Y-direction according to Gate A[6:4] Height A[6:4] Height 000 8 100 128 001 16 101 256 010 32 110 296 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 176 010 32 110 NA 011 64 111 NA During operation, BUSY pad will output			47												vi for Regi	ılar Pattern		
Note	Note		-		A 7	A 6	A5	A4	U	A2	A1	A 0		A[7]: The A[6:4]: Ste Step of all according	1st step variet step variet step Height, ter RAM in to Gate	POR= 00 Y-direction	0 on		
001	O01																		
O10 32 110 296 O11 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width O00 8 100 128 O11 16 101 176 O10 32 110 NA O11 64 111 NA During operation, BUSY pad will output	010 32 110 296 011 64 111 NA NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 176 010 32 110 NA 011 64 111 NA During operation, BUSY pad will output																		
O11 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 176 010 32 110 NA 011 64 111 NA During operation, BUSY pad will output	O11 64 111 NA																		
A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 176 010 32 110 NA 011 64 111 NA During operation, BUSY pad will output	A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 176 010 32 110 NA 011 64 111 NA During operation, BUSY pad will output																		
														Step of all according A[2:0] 000 001 010 011 During op	ter RAM in to Source Width 8 16 32 64	A X-direction A[2:0] 100 101 110 111	Width 128 176 NA NA		

 SSD1680A
 Rev 0.20
 P 32/47
 Feb 2020
 Solomon Systech

Com	man	d Ta	ble													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description				
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X				
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[5:0]: 00h [POR].				
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y				
0	1		A ₇	A ₆	A ₅	A_4	A ₃	A_2	A ₁	A ₀	counter	address in the address counter (AC)				
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 000h [POR].				
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.				

 SSD1680A
 Rev 0.20
 P 33/47
 Feb 2020
 Solomon Systech

8 COMMAND DESCRIPTION

8.1 Driver Output Control (01h)

This triple byte command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
PC	R	0	0	1	1	1	1	1	1
W	1								MUX8
PC	R								1
W	1						GD	SM	TB
PC	R						0	0	0

MUX[8:0]: Specify number of lines for the driver: MUX[8:0] + 1. Multiplex ratio (MUX ratio) from 16 MUX to 296MUX.

GD: Selects the 1st output Gate

This bit is made to match the GATE layout connection on the panel. It defines the first scanning line.

SM: Change scanning order of gate driver.

When SM is set to 0, left and right interlaced is performed.

When SM is set to 1, no splitting odd / even of the GATE signal is performed,

Output pin assignment sequence is shown as below (for 296 MUX ratio):

	SM=0	SM=0	SM=1	SM=1
Driver	GD=0	GD=1	GD=0	GD=1
G0	ROW0	ROW1	ROW0	ROW148
G1	ROW1	ROW0	ROW148	ROW0
G2	ROW2	ROW3	ROW1	ROW149
G3	ROW3	ROW2	ROW149	ROW1
:	:	:	:	:
G146	ROW146	ROW147	ROW73	ROW222
G147	ROW147	ROW146	ROW222	ROW73
G148	ROW148	ROW149	ROW74	ROW223
G149	ROW149	ROW148	ROW223	ROW74
:	:	:	:	:
G292	ROW292	ROW293	ROW146	ROW294
G293	ROW293	ROW292	ROW294	ROW146
G294	ROW294	ROW295	ROW147	ROW295
G295	ROW295	ROW294	ROW295	ROW147

See "Scan Mode Setting" on next page.

TB: Change scanning direction of gate driver.

This bit defines the scanning direction of the gate for flexible layout of signals in module either from up to down (TB = 0) or from bottom to up (TB = 1).

SSD1680A | Rev 0.20 | P 34/47 | Feb 2020 | **Solomon Systech**

Figure 8-1: Output pin assignment on different Scan Mode Setting

SSD1680A Rev 0.20 P 35/47 Feb 2020 **Solomon Systech**

8.2 Gate Scan Start Position (0Fh)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
POR		0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0	SCN8
POR		0	0	0	0	0	0	0	0

This command is to set Gate Start Position for determining the starting gate of display RAM by selecting a value from 0 to 295. Figure 8-2 shows an example using this command of this command when MUX ratio= 295 and MUX ratio= 148. "ROW" means the graphic display data RAM row.

Figure 8-2: Example of Set Display Start Line with no Remapping

	MUX ratio (01h) = 127h	MUX ratio (01h) = 093h	MUX ratio (01h) = 095h
GATE Pin	Gate Start Position (0Fh)	Gate Start Position (0Fh)	Gate Start Position (0Fh)
	= 000h	= 000h	= 04Ah
G0	ROW0	ROW0	-
G1	ROW1	ROW1	-
G2	ROW2	ROW2	-
G3	ROW3	ROW3	-
:	:	:	:
:	:	:	:
G72	:	:	-
G73	:	:	-
G74	:	:	ROW74
G75	:	:	ROW75
:	:	:	:
:	:	:	:
G146	ROW146	ROW146	:
G147	ROW147	ROW147	:
G148	ROW148	-	:
G149	ROW149	-	:
:	:	:	:
	:	:	:
G220	:	:	:
G221	:	· ·	:
G222	:	:	ROW222
G223	:		ROW223
	:	:	:
:	:	:	:
G292	ROW292	-	-
G293	ROW293	-	-
G294	ROW294	-	-
G295	ROW295	-	-
Display Example	SOLOMON		SOLOMON

SSD1680A | Rev 0.20 | P 36/47 | Feb 2020 | **Solomon Systech**

8.3 Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	ID0
PC	OR .	0	0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

The pixel sequence is defined by the ID [0],

SSD1680A | Rev 0.20 | P 37/47 | Feb 2020 | **Solomon Systech**

8.4 Set RAM X - Address Start / End Position (44h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1				XSA4	XSA3	XSA2	XSA1	XSA0
POR		0	0	0	0	0	0	0	0
W	1				XEA4	XEA3	XEA2	XEA1	XEA0
POR		0	0	0	1	0	1	0	1

XSA[4:0]/XEA[4:0]: Specify the start/end positions of the window address in the X direction by 8 times address unit. Data is written to the RAM within the area determined by the addresses specified by XSA [4:0] and XEA [4:0]. These addresses must be set before the RAM write.

It allows on XEA [4:0] \leq XSA [4:0]. The settings follow the condition on 00h \leq XSA [4:0], XEA [4:0] \leq 15h. The windows is followed by the control setting of Data Entry Setting (R11h)

8.5 Set RAM Y - Address Start / End Position (45h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	YSA7	YSA6	YSA5	YSA4	YSA3	YSA2	YSA1	YSA0
PC)R	0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0	YSA8
PC)R	0	0	0	0	0	0	0	0
W	W 1		YEA6	YEA5	YEA4	YEA3	YEA2	YEA1	YEA0
POR		0	0	1	0	0	1	1	1
W	1	0	0	0	0	0	0	0	YEA8
POR		0	0	0	0	0	0	0	1

YSA[8:0]/YEA[8:0]: Specify the start/end positions of the window address in the Y direction by an address unit. Data is written to the RAM within the area determined by the addresses specified by YSA [8:0] and YEA [8:0]. These addresses must be set before the RAM write.

It allows YEA [8:0] \leq YSA [8:0]. The settings follow the condition on 00h \leq YSA [8:0], YEA [8:0] \leq 127h. The windows is followed by the control setting of Data Entry Setting (R11h)

8.6 Set RAM Address Counter (4Eh-4Fh)

Reg#	R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
4Eh	W	1				XAD4	XAD3	XAD2	XAD1	XAD0
72	PC	R	0	0	0	0	0	0	0	0
	W	1	YAD7	YAD6	YAD5	YAD4	YAD3	YAD2	YAD1	YAD0
	PC)R	0	0	0	0	0	0	0	0
4Fh	W	1								YAD8
	POR									0

XAD[4:0]: Make initial settings for the RAM X address in the address counter (AC). **YAD[8:0]:** Make initial settings for the RAM Y address in the address counter (AC).

After RAM data is written, the address counter is automatically updated according to the settings with AM, ID bits and setting for a new RAM address is not required in the address counter. Therefore, data is written consecutively without setting an address. The address counter is not automatically updated when data is read out from the RAM. RAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses which is controlled by the Data Entry Setting (R11h) {AM, ID[1:0]}; RAM Address XStart / XEnd Position (R44h) and RAM Address Ystart / Yend Position (R45h). Otherwise undesirable image will be displayed on the Panel.

SSD1680A | Rev 0.20 | P 38/47 | Feb 2020 | **Solomon Systech**

9 Operation Flow and Code Sequence

9.1 General operation flow to drive display panel

Figure 9-1: Operation flow to drive display panel

SSD1680A | Rev 0.20 | P 39/47 | Feb 2020 | **Solomon Systech**

Figure 9-2: Operation flow to drive display panel with deep sleep mode 2

SSD1680A | Rev 0.20 | P 40/47 | Feb 2020 | **Solomon Systech**

10 Absolute Maximum Rating

Table 10-1: Maximum Ratings

Symbol	Parameter	Rating	Unit
Vcı	Logic supply voltage	-0.5 to +6.0	V
VIN	Logic Input voltage	-0.5 to V _{DDIO} +0.5	V
Vouт	Logic Output voltage	-0.5 to V _{DDIO} +0.5	V
Topr	Operation temperature range	-40 to +85	°C
T _{STG}	Storage temperature range	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{CI} be constrained to the range $V_{SS} < V_{CI}$. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DDIO}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11 Electrical Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, VDD=1.8V, T_{OPR}=25°C.

Table 11-1: DC Characteristics

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Vcı	VCI operation voltage	VCI	-	2.2	3.0	3.7	V
V_{DD}	VDD operation voltage	VDD	-	1.7	1.8	1.9	V
V _{COM_DC}	VCOM_DC output voltage	VCOM	-	-3.0	-	-0.2	V
dV _{COM_DC}	VCOM_DC output voltage deviation	VCOM	-	-200	-	200	mV
V _{СОМ_АС}	VCOM_AC output voltage	VCOM	-	V _{SL} + V _{COM_DC}	V _{СОМ_DС}	V _{SH1} + V _{COM_DC}	V
V _{GATE}	Gate output voltage	G0~G295	-	-20	-	+20	V
V _{GATE(p-p)}	Gate output peak to peak voltage	G0~G295	-	-	-	40	V
V _{SH1}	Positive Source output voltage	VSH1	-	+2.4	+15	+17	V
dV _{SH1}	VSH1 output voltage	VSH1	From 2.4V to 8.8V	-100	-	100	mV
	deviation		From 9.0V to 17V	-200	-	200	mV
V _{SH2}	Positive Source output voltage	VSH2	-	+2.4	+5	+17	V
dV _{SH2}	VSH2 output voltage	VSH2	From 2.4V to 8.8V	-100	-	100	mV
	deviation		From 9.0V to 17V	-200	-	200	mV
V _{SL}	Negative Source output voltage	VSL	-	-17	-15	-9	V
dV _{SL}	VSL output voltage deviation	VSL	-	-200	-	200	mV
V _{IH}	High level input voltage	SDA, SCL, CS#, D/C#, RES#, BS1,	-	0.8V _{DDIO}	-	-	V
V _{IL}	Low level input voltage	M/S#, CL	-	-	-	0.2V _{DDIO}	V
Vон	High level output voltage	SDA, BUSY, CL	IOH = -100uA	0.9V _{DDIO}	-	-	V
V _{OL}	Low level output voltage		IOL = 100uA	-	-	$0.1V_{DDIO}$	V
V_{PP}	OTP Program voltage	VPP	-	7.25	7.5	7.75	V

SSD1680A | Rev 0.20 | P 41/47 | Feb 2020 | **Solomon Systech**

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Islp_VCI	Sleep mode current	VCI	DC/DC offNo clockNo output loadMCU interface accessRAM data access	-	20	35	uA
Idslp_VCI1	Current of deep sleep mode 1	VCI	- DC/DC off - No clock - No output load - No MCU interface access - Retain RAM data but cannot access the RAM	-	1	3	uA
ldslp_VCI2	Current of deep sleep mode 2	VCI	- DC/DC off - No clock - No output load - No MCU interface access - Cannot retain RAM data	-	0.7	3	uA
lopr_VCI	Operating Mode current	VCI	VCI=3.0V	-	1000	-	uA
V _{GH}	Operating Mode Output Voltage	VGH	Enable Clock and Analog by Master Activation Command	19.5	20	20.5	V
V _{SH1}		VSH1	VGH=20V VGL=-VGH	14.8	15	15.2	V
V _{SH2}		VSH2	VSH1=15V VSH2=5V	4.9	5	5.1	V
VsL		VSL	VSL=-15V VCOM = -2V	-15.2	-15	-14.8	V
V _{COM}		VCOM	No waveform transitions. No loading. No RAM read/write No OTP read /write	-2.2	-2	-1.8	V

Table 11-2: Regulators Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
IVSH	VSH1 current	VSH1 = +15V	VSH1	-	-	800	uA
IVSH1	VSH2 current	VSH2 = +5V	VSH2	-	-	800	uA
IVSL	VSL current	VSL = -15V	VSL	-	-	800	uA
IVCOM	VCOM current	VCOM = -2V	VCOM	-	-	100	uA

 SSD1680A
 Rev 0.20
 P 42/47
 Feb 2020
 Solomon Systech

12 AC Characteristics

12.1 Serial Peripheral Interface

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, TopR = 25°C, CL=20pF

Table 12-1: Serial Peripheral Interface Timing Characteristics

Write mode

Symbol	Parameter		Тур	Max	Unit
fscL	SCL frequency (Write Mode)	-	-	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65	-	-	ns
tcsнigh	Time CS# has to remain high between two transfers	100	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	25	-	-	ns
t _{SCLLOW}	Part of the clock period where SCL has to remain low	25	-	-	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	-	-	ns
t _{SIHLD}	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	-	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)	-	-	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50	-	-	ns
tcsнigh	Time CS# has to remain high between two transfers	250	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	180	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	180	-	-	ns
t _{SOSU}	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	-	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

tckper CS# tcshigh t sclhigh tcshld tcssu SCL → tsihld SDA (Write Mode) tsosu 🔾 \leftrightarrow t_{SOHLD} SDA (Read Mode)

Figure 12-1: SPI timing diagram

SSD1680A Rev 0.20 P 43/47 Feb 2020 **Solomon Systech**

13 Application Circuit

C2 GDR RESE VSH2 VSH2 VSS C6 TSCI TSDA BS1 TSCL CONNECTION BUSY TSDA EXTERNAL TEMP SENSOR BS1 SCL BUSY SDA 14 15 CONNECTION VDDIO D/C# 16 MCU VCI CS# vss SCL 18 SDA 19 VPP 20 VSH1 VGH VSL VSS VDD CO VGI VCOM VPP C1 VSH1 VGH C5 VSL C7 VCOM C8

Figure 13-1: Schematic of SSD1680A application circuit

Table 13-1: Component list for SSD1680A application circuit

Part Name	Value Requirements/Reference Part			
C0-C1	1uF X5R/X7R; Voltage Rating : 6V or 25V			
C2-C7	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V		
C8	0.47uF, 1uF	0402/0603/0805; X7R; Voltage Rating : 25V		
R1	2.2 ohm	0402/0603/0805; 1% variation, ≥ 0.05W		
D1-D3	MBR0530 1) Reverse DC voltage ≥ 30V 2) Io ≥ 500mA 3) Forward voltage ≤ 430mV			
Q1	NMOS	Si1304BDL/NX3008NBK 1) Drain-Source breakdown voltage ≥ 30V 2) Vgs(th) = 0.9V (Typ), 1.3V (Max) 3) Rds on ≤ 2.1Ω @ Vgs = 2.5V		
L1	47uH	CDRH2D18 / LDNP-470NC lo= 500mA (Max)		
U1	U1 0.5mm ZIF socket 24pins, 0.5mm pitch			

Remarks:

- 1) The recommended component value and reference part in Table 14-1 is subject to change depending on panel loading.
- 2) Customer is required to review if the selected component value and part is suitable for their application.

SSD1680A | Rev 0.20 | P 44/47 | Feb 2020 | **Solomon Systech**

14 Package Information

14.1 Die Tray Dimensions for SSD1680AZ

Figure 14-1: SSD1680AZ die tray information (unit: mm)

SECTION A-A

Symbol	Spec(mm)
W1	101.60±0.10
W2	91.55±0.10
W3	91.85±0.10
Н	4.55±0.10
Dx	11.25±0.10
TPx	79.10±0.10
Dy	7.60±0.10
TPy	86.40±0.10
Px	11.30±0.05
Ру	2.70±0.05
X	9.661±0.05
Υ	1.125±0.05
Z	0.40±0.05
N	264(pocket number)

SSD1680A | Rev 0.20 | P 45/47 | Feb 2020 | **Solomon Systech**

14.2 Die Tray Dimensions for SSD1680AZ8

Figure 14-2 : SSD1680AZ8 die tray information (unit: mm)

Symbol	Spec (mm)
W1	101.60±0.10
W2	91.55±0.10
W3	91.75±0.10
Н	4.55±0.10
Px	11.20±0.05
Ру	2.70±0.05
Dx	11.60±0.05
TPx	78.40±0.10
Dy	7.60±0.05
TPy	86.40±0.10
X	9.661±0.05
Y	1.125±0.05
Z	0.40±0.05
X1	9.661±0.05
Y1	1.125±0.05
Z1	0.35±0.05
N	8x33=264 (pocket number)

SSD1680A | Rev 0.20 | P 46/47 | Feb 2020 | **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard GB/T 26572-2011 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子电器产品中限用物質的限用要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

 SSD1680A
 Rev 0.20
 P 47/47
 Feb 2020
 Solomon Systech