

#### PRACOWNIA FIZYCZNA 1

Instytut Fizyki - Centrum Naukowo Dydaktyczne Politechnika Śląska

# P1-J1. (A) Wyznaczanie maksymalnej energii promieniowania beta metodą absorpcyjną\*

## Zagadnienia

Natura promieniowania  $\beta$ . Źródła promieniowania  $\beta$ . Absorpcja promieniowania, współczynnik pochłaniania. Zasięg masowy promieniowania w materiale.

## 1 Układ pomiarowy

W układzie pomiarowym do rejestracji cząstek  $\beta$  wykorzystano detektor okienkowy Geigera–Müllera (kielichowy licznik G-M). Detektor ten charakteryzuje się prawie 100% wydajnością detekcji cząstek, jeśli okienko licznika wykonane z miki jest dostatecznie cienkie, aby przepuszczane mogły być cząstki  $\beta$  o bardzo niskiej energii. Licznik umieszczony jest w osłonie ołowianej (domku). Wewnątrz domku od strony okienka licznika znajdują się pierścieniowe wycięcia. Do jednego z nich, w pewnej odległości od licznika, należy wstawić preparat promieniotwórczy. Między preparatem a licznikiem będą umieszczane folie absorbującego promieniowanie absorbenta (tutaj z aluminium). Z licznikiem G-M współpracuje aparatura elektroniczna, która zasila detektor stabilizowanym napięciem i zarazem służy do rejestracji i pomiaru szybkości zliczeń impulsów.

### 2 Pomiary

1. Wykonać pomiar tła licznika kilka przy pustym zamkniętym domku ołowianym (bez preparatu) z niepewnością względną  $w(N_T)$  nie większą niż 5%. Niepewność tę określa się z warunku

$$w(N_T) = \frac{u(N_T)}{N_T} = \frac{\sqrt{N_T}}{N_T} = \frac{1}{N_T} \le 0.05,$$

gdzie  $N_T$  oznacza liczbę zliczeń licznika. Zanotować czas jaki był potrzeby do zliczenia żądanej liczby cząstek. Wyznaczyć poziom tła  $I_T = N_T/t$  w jednostkach imp/min.

| $N_T$                   |  |
|-------------------------|--|
| $t, \min$               |  |
| poziom tła              |  |
| $I_T = N_T/t$ , imp/min |  |

- 2. Preparat promieniotwórczy umieścić w domku ołowianym w odległości ok. 1 cm od okienka licznika. Zmierzyć liczbę zliczeń, pilnując żeby niepewność pomiaru była nie większa niż 5%. Wyznaczyć ilość zliczeń przypadających na minutę I=N/t.
- 3. Wykonać pomiary liczby impulsów dla różnych grubości absorbenta, wstawiając między preparat i okienko licznika kolejne folie aluminiowe. Za każdym razem wykonać pomiar grubości wkładanej folii. Pomiary należy prowadzić tak długo aż liczba zliczeń w jednostce czasu zbliży się do poziomu tła.

| grubość |            | czas      | I = N/t, |
|---------|------------|-----------|----------|
| x,  mm  | impulsów N | $t, \min$ | imp/min  |
| 0       |            |           |          |

<sup>\*</sup>Opracowanie: dr inż. Alina Domanowska

# 3 Opracowanie wyników pomiarów

- 1. Sporządzić wykres zależności natężenia wiązki od grubości absorbenta I = f(x). Jest to zależność opisywana wzorem  $I(x) = I_0 \exp(-\mu x)$ , gdzie  $\mu$  liniowy współczynnik pochłaniania promieniowania  $\beta$  dla absorbenta.
- 2. Na wykresie zaznaczyć niepewności u(I).<sup>1</sup>
- 3. Sporządzić wykres zależności logarytmu naturalnego z ilości zliczeń w jednostce czasu od grubości absorbenta  $\ln(I) = f(x)$ .
- 4. Na wykresie zaznaczyć linią prostą logarytm naturalny z poziomu tła  $\ln(I_T)$ .
- 5. Metodą regresji liniowej dopasować prostą do zależności  $\ln(I) = u(x)$  dla początkowej części krzywej (tam, gdzie szybkość zliczeń impulsów jest wyraźnie większa od szybkości zliczeń odpowiadających promieniowaniu tła). Narysować dopasowaną prostą na wykresie (poprowadzić prostą aż do przecięcia z prostą poziomu tła).
- 6. Zapisać wartość współczynnika pochłaniania  $\mu$  wraz z niepewnością w odpowiednim formacie.
- 7. Obliczyć  $x_{max}$  jako wartość przecięcia prostej teoretycznej z prostą poziomu tła.
- 8. Zaznaczyć obliczony punkt na wykresie.
- 9. Korzystając z prawa przenoszenia niepewności, obliczyć niepewność  $u(x_{max})$ .
- 10. Wyznaczyć maksymalny zasięg masowy badanego promieniowania w badanym materiale  $R_{max} = \rho_{Al} \cdot x_{max}$ , mg/c gdzie  $\rho_{Al} = 2.72 \cdot 10^3 kg/m^3$ .
- 11. Korzystając z prawa przenoszenia niepewności, obliczyć niepewność  $u(R_{max})$ .
- 12. Na podstawie tabeli sporządzić wykres maksymalnego zasięgu masowego R promieniowania  $\beta$  od jego energii maksymalnej  $E_{max}$ .

| $E_{max}$ , keV | $R_{max}, \text{ mg/cm}^2$ |
|-----------------|----------------------------|
| 100             | 13.5                       |
| 150             | 26.5                       |
| 200             | 42                         |
| 250             | 59                         |
| 300             | 78                         |
| 400             | 120                        |
| 500             | 165                        |
| 800             | 310                        |
| 1000            | 420                        |

- 13. Odczytać z wykresu  $E_{max}$  dla otrzymanej wartości  $R_{max}$ .
- 14. Oszacować graficznie niepewność  $u(E_{max})$  odczytu wartości  $E_{max}$  z wykresu.
- 15. Wyznaczyć  $E'_{max}$ , korzystając z półempirycznej zależności

$$E'_{max} = \frac{R_{max} + 0.09}{0.52}$$
, MeV,

- 16. Korzystając z prawa przenoszenia niepewności wyznaczyć niepewność  $u(E'_{max})$ .
- 17. Przeprowadzić test zgodności  $E_{max}$  i  $E'_{max}$  i skomentować wyniki.

 $<sup>^1</sup>$ Skorzystać z prawa przenoszenia niepewności, wiedząc że  $u(N)=\sqrt{N}$ 

<sup>&</sup>lt;sup>2</sup> Otrzymaną zależność opisuje zlogarytmowany wzór z punktu 1

<sup>&</sup>lt;sup>3</sup> Konieczne są odpowiednie przeliczenia jednostek