

Description

The VSM6N02 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =20V,I_D =6A

 $R_{DS(ON)}$ < 28m Ω @ V_{GS} =4.5V

 $R_{DS(ON)}$ < 37m Ω @ V_{GS} =2.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM6N02-S8	VSM6N02	SOP-8	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

U \ 7.	,			
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	20	V	
Gate-Source Voltage	V _G s	±10	V	
Drain Current-Continuous	I _D	6	Α	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	3.8	А	
Pulsed Drain Current	I _{DM}	25	А	
Maximum Power Dissipation	P _D	1.25	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	100	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	22	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±10V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.5	0.7	1.2	V
Drain-Source On-State Resistance	-	V _{GS} =4.5V, I _D =6A	-	20	28	mΩ
	R _{DS(ON)}	V _{GS} =2.5V, I _D =5A	-	26	37	
Forward Transconductance	g FS	V _{DS} =5V,I _D =6A	20	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =10V,V _{GS} =0V,	-	640	-	PF
Output Capacitance	Coss		-	140	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	80	-	PF
Switching Characteristics (Note 4)	<u> </u>		•			
Turn-on Delay Time	t _{d(on)}		-	8	-	nS
Turn-on Rise Time	t _r	V_{DD} =10 V , I_{D} =1 A V_{GEN} =4.5 V , R_{G} =6 Ω	-	9	-	nS
Turn-Off Delay Time	t _{d(off)}		-	15	-	nS
Turn-Off Fall Time	t _f		-	4	-	nS
Total Gate Charge	Qg	V _{DS} =10V,I _D =3A, V _{GS} =4.5V	-	10	-	nC
Gate-Source Charge	Q _{gs}		-	1.5	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} -4.3V	-	1.6	-	nC
Drain-Source Diode Characteristics	<u> </u>		·			-
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =1.7A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	6	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Rdson On-Resistance(Ω)

I_D- Drain Current (A)

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

T_J-Junction Temperature(°C)

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance