Proyecto 1 = Procedure | Proce

Juan Esteban Trujillo Camilo Alvarez Samuel Calderon

Entorno de Desarrollo

- Sistema operativo: Windows 11 usando WSL (Windows Subsystem for Linux)
- Distribución de Linux en WSL: Ubuntu 24.04.2 LTS
- Compilador utilizado: g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0

Funcionamiento

- Carga procesos desde archivo .txt con PID, registros (AX, BX, CX), quantum y estado inicial.
- Utiliza un planificador Round Robin que ejecuta procesos en turnos fijos, guardando y restaurando su estado en cada cambio de contexto.
- Las instrucciones simuladas (ADD, SUB, MUL, INC, NOP, JMP) se interpretan conforme estén definidas en el .txt de cada proceso

- La ejecución es paso a paso: se actualizan registros, PC y quantum, y se registran los cambios en consola y en un archivo .log.
- El simulador finaliza cuando todos los procesos han completado sus instrucciones o han agotado su quantum o si se bloquea algún proceso, mostrando el estado final de cada proceso.

Resultados

				chivo:		
	PC	AX	BX	CX	Quantur	n Estado
						Listo
						Listo
						Listo
1						Listo
						Listo
-= II	IICIO DE	PLANIFI	CACIÓN R	OUND ROE	IN ===	
> Eje	ecutando	PID 1 d	urante 8	ciclos	o hasta qu	ue no hayan m
Ci	lo 1	PC = 1	Quantum	restant	e = 7 In	nst: ADD AX
ID	PC	AX	BX	CX	Quantur	n Estado
	1			1		Ejecutando
	0		2	4		Listo
<u>.</u>	0	8		6	6	Listo
3 1	0	3		2	4	Listo
5	0	9	0	0	3	Listo
,		v	v			LISTO
Cie	lo 2 I	PC = 2	Quantum	restant	e = 6 Tr	nst: SUB BX
PID	PC	AX	BX	CX		n Estado
					Quantu	
	2		1		6	Ejecutando
	0		2	4	5	Listo
3	0	8		6	6	Listo
i	0	3		2	4	Listo
5	0	9	0	0	3	Listo
	U	Ø	0	U		LISTO
Ci	lo 3	PC = 3	Quantum	restant	e = 5 Ir	nst: INC CX
ID	PC	AX	BX	CX	Quantur	n Estado
						Ejecutando
						Listo
						Listo
1	ø			2	4	Listo
5	0	0	0	0		Listo
Ci	lo 4	PC = 4	Quantum	restant	e = 4 In	nst: NOP
ID	PC	AX	BX	CX	Quantur	n Estado
						Ejecutando
						Listo
3						Listo

Conclusiones

- El simulador muestra claramente cómo el algoritmo Round Robin reparte el tiempo de CPU y gestiona los cambios de contexto.
- Se observa que los procesos pueden ser interrumpidos y bloqueados antes de agotar su quantum, reflejando situaciones reales.
- El registro de ciclos y estados facilita el análisis del comportamiento de los procesos.
- El uso de archivos de texto permite adaptar el simulador a distintos escenarios.
- La eficiencia depende del quantum, las instrucciones y las interrupciones.

