Économétrie des Séries Temporelles

Fiche TD #1

Analyse de Séries Temporelles et Propriétés Stochastiques

- 1. Soit X une variable aléatoire ayant une distribution avec une moyenne μ et une variance σ^2 , et soit $Y_t = X$ pour tout t.
 - (a) Montrez que $\{Y_t\}$ est strictement et faiblement stationnaire.
 - (b) Trouvez la fonction d'autocovariance de $\{Y_t\}$.
 - (c) Grapher une série de temporelle "typique" de Y_t .
- 2. Pour chacun des processus suivants, déterminez s'il est :
- Stationnaire ou non.
- Un bruit blanc.
- Une série iid.
- Une martingale.
 - (a) $X_t = \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, 1)$, indépendants.

 - (b) $Z_t = Z_{t-1} + \eta_t$, $\eta_t \sim \mathcal{N}(0,1)$. (c) $W_t = 0.5W_{t-1} + \xi_t$, $\xi_t \sim \mathcal{N}(0,1)$, indépendants.
- 3. Soit $\{\varepsilon_t\}$ un processus de bruit blanc à moyenne nulle. Supposons que le processus observé soit $Y_t = \varepsilon_t + \theta \varepsilon_{t-1}$, où θ est soit 3, soit $\frac{1}{3}$.
 - (a) Trouvez la fonction d'autocorrélation de $\{Y_t\}$ pour les cas où $\theta = 3$ et $\theta = \frac{1}{3}$. (Note: Pour déterminer la fonction d'autocorrélation de $\{Y_t\}$, il est nécessaire de calculer $cov(Y_t, Y_{t+k})$ pour différentes valeurs de k.)