Lehrveranstaltung

Informationstheorie

— Sommersemester 2023 —

Martin Mittelbach (Vorlesung, Tutorium), Anne Wolf (Übung, Tutorium) {martin.mittelbach, anne.wolf}@tu-dresden.de

Professur für Informationstheorie und maschinelles Lernen, TU Dresden

Vorlesung 5 26. April 2023

Wiederholung

Mathematisches Datenmodell:

(stationäre) Folge diskreter Zufallsgrößen = (stationäre) Quelle

$$X_1, X_2, X_3, X_4, \ldots$$

speziell: (stationäre) gedächtnislose Quelle / (stationäre) Markow-Quelle

• Codierung der Werte einzelner Zufallsgrößen X_k mit Alphabet $\mathcal{X} = \{1, 2, \dots, M\}$ und W-Funktion p mit

D-wertige	D-wertigem (Quellen-) Code & variabler Lange.								
Quelle (Folge von Zufallsgrößen): X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 \dots									
mögliche Werte der Zufallsgrößen	: 1	2	1	1	3	2	1	4	
	↓	\downarrow	↓	\downarrow	↓	↓	↓	↓	
Codierung	: 0	10	0	0	110	10	0	111	

• Codeklassen:

Wiederholung

• Bewertungskriterium: Mittlere Codewortlänge

$$\bar{\ell} = \bar{\ell}(\mathcal{C}, p) = \sum_{i=1}^{M} p(i) \, \ell(i)$$

 Optimale Codes: Präfixfreie/eindeutig decodierbare Codes mit minimaler mittlerer Codewortlänge

$$\bar{\ell}_{\mathrm{ud}}^* = \bar{\ell}_{\mathrm{ud}}^*(p) = \min\left\{\bar{\ell}(\mathcal{C},p): \mathcal{C} \text{ eindeutig decodierbar}\right\}$$

$$\bar{\ell}_{\mathrm{pre}}^* = \bar{\ell}_{\mathrm{pre}}^*(p) = \min\left\{\bar{\ell}(\mathcal{C},p): \mathcal{C} \text{ pr\"afixfrei}\right\}$$

Huffman Codes:

Wiederholung

Shannonsche Informationsmaße:

H(X)

$$\begin{split} H(X) &= -\mathbb{E}\Big(\log_2\Big(p_X(X)\Big)\Big) &\quad H(X,Y) = -\mathbb{E}\Big(\log_2\Big(p_{X,Y}(X,Y)\Big)\Big) \\ \\ H(Y|X) &= -\mathbb{E}\Big(\log_2\Big(p_{Y|X}(Y|X)\Big)\Big) \\ \\ D(X||Y) &= \mathbb{E}\Big(\log_2\Big(\frac{p_X(X)}{p_Y(Y)}\Big)\Big) \\ \\ I(X;Y) &= \mathbb{E}\Big(\log_2\Big(\frac{p_{X,Y}(X,Y)}{p_X(X)p_Y(Y)}\Big)\Big) &\quad I(X;Y|Z) = \mathbb{E}\Big(\log_2\Big(\frac{p_{X,Y|Z}(X,Y|Z)}{p_{X|Z}(X|Z)p_{Y|Z}(Y|Z)}\Big)\Big) \end{split}$$

• Grundlegende Zusammenhänge, Kettenregeln:

H(Y)

$$H(X) = H(p_X) = \log_2 |\mathcal{X}| - D(p_X||p_U) \qquad I(X;Y) = D(p_{X,Y}||p_X \cdot p_Y)$$

$$H(X,Y) \qquad \qquad I(X,Y;Z) = I(X;Z) + I(Y;Z|X)$$

Inhalt der letzten Vorlesungen

- 1. Verlustlose Datenkompression mit Codes variabler Länge
- (1.1) Einführendes Beispiel, Modellbildung, Problemstellung
- (1.2) Quellen als Datenmodell
- (1.3) Codes variabler Länge
- (1.4) Huffman-Codes
- 2. Informationsmaße für diskrete Zufallsgrößen
- (2.1) Definition der Shannonschen Informationsmaße
- (2.2) Symmetrien
- (2.3) Grundlegende Zusammenhänge, Kettenregeln
- (2.4) Nichtnegativität

Inhalt Vorlesung 5

- 2. Informationsmaße für diskrete Zufallsgrößen
- (2.4) Nichtnegativität (Folien VL 4)
 - ⇒ Fortsetzung
- (2.5) Wichtige (Un-)Gleichungen (Folien VL 4)
- (2.6) Beispiel / (Online-Zufallsexperiment)
- (2.7) *n*-dimensionale Verallgemeinerungen
- (2.8) Asymptotische Größen
- (2.9) Konvexitätseigenschaften

Wir werten in diesem Teilabschnitt das dreistufige Online-Zufallsexperiment aus der Vorlesung 3 aus (siehe Folie 21 zu Vorlesung 4).

W-theoretisches Modell:

Ausgang Zufallsexperiment 1 wird mit Zufallsgröße X_1 mit Alphabet \mathcal{X}_1 beschrieben Ausgang Zufallsexperiment 2 wird mit Zufallsgröße X_2 mit Alphabet \mathcal{X}_2 beschrieben Ausgang Zufallsexperiment 3 wird mit Zufallsgröße X_3 mit Alphabet \mathcal{X}_3 beschrieben

$$\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{X}_3 = \{0, 1\}$$

Zufallsexperiment 1 (ZE 1): 2 Münzwürfe

$$p_{X_1}(0) = \mathbb{P}(X_1 = 0) = \mathbb{P}(\text{"zweimal Kopf"}) = 1 - q_1$$

 $p_{X_1}(1) = \mathbb{P}(X_1 = 1) = 1 - p_{X_1}(0) = q_1$

Für den Parameter $q_1 \in [0,1]$ gilt bei unabhängigen Würfen mit einer fairen Münze

$$q_1 = 3/4$$
.

Zufallsexperiment 2 (ZE2): 1 Münzwurf, Ausgang ZE2 unabhängig von Ausgang ZE1

$$\begin{split} p_{X_2}(0) &= \mathbb{P}(X_2=0) = \mathbb{P}(\text{"einmal Kopf"}) = 1 - q_2 \\ p_{X_2}(1) &= \mathbb{P}(X_2=1) = 1 - p_{X_2}(0) \\ &= q_2 \end{split}$$

Für den Parameter $q_2 \in [0,1]$ gilt bei einem Wurf mit einer fairen Münze

$$q_2 = 1/2$$
.

 Zufallsexperiment 3 (ZE3): 2 Münzwürfe, Ausgang ZE3 abhängig von Ausgang ZE2 aber nicht von Ausgang ZE1.

$$\begin{split} p_{X_3|X_2}(1|0) &= \mathbb{P}(X_3=1|X_2=0) \\ &= \mathbb{P}(\text{"zweimal Zahl bei ZE 3 unter der Bedingung Kopf bei ZE 2"}) \\ &= \epsilon_1 \\ p_{X_3|X_2}(0|0) &= \mathbb{P}(X_3=0|X_2=0) \\ &= 1 - p_{X_3|X_2}(1|0) \\ &= 1 - \epsilon_1 \\ p_{X_3|X_2}(0|1) &= \mathbb{P}(X_3=0|X_2=1) \\ &= \mathbb{P}(\text{"zweimal Kopf bei ZE 3 unter der Bedingung Zahl bei ZE 2"}) \\ &= \epsilon_2 \\ p_{X_3|X_2}(1|1) &= \mathbb{P}(X_3=1|X_2=1) \\ &= 1 - p_{X_3|X_2}(0|1) \\ &= 1 - \epsilon_2 \end{split}$$

Für die Parameter $\epsilon_1\in[0,1]$ und $\epsilon_2\in[0,1]$ gilt bei unabhängigen Würfen mit einer fairen Münze

$$\epsilon_1 = 1/4$$
 und $\epsilon_2 = 1/4$.

- Aus den zuvor angegebenen Wahrscheinlichkeiten lassen sich sämtliche gemeinsame/bedingte W-Funktionen berechnen.
- (Gemeinsame) W-Funktion von X_1 und X_2 :

$$p_{X_1,X_2}(x_1,x_2) = p_{X_1}(x_1)p_{X_2}(x_2), \qquad x_1,\, x_2 \in \{0,1\}$$

p_{X_1,X_2}	(x_1, x_2)	x_2	1	$p_{X_1}(x_1)$
x_1	0	$(1-q_1)(1-q_2)$	$(1-q_1)q_2$	$1 - q_1$
	1	$q_1(1-q_2)$	q_1q_2	q_1
p_{X_2}	$x_2)$	$1 - q_2$	q_2	

• (Gemeinsame) W-Funktion von X_2 und X_3 :

$$p_{X_2,X_3}(x_2,x_3) = p_{X_2}(x_2)p_{X_3|X_2}(x_3|x_2), \qquad x_2,\, x_3 \in \{0,1\}$$

$p_{X_2,X_3}(x_2,x_3)$		x_3 0 1		$p_{X_2}(x_2)$
x_2	0 1	$(1 - q_2)(1 - \epsilon_1)$ $q_2 \epsilon_2$	$(1 - q_2)\epsilon_1$ $q_2(1 - \epsilon_2)$	$1 - q_2$ q_2
p_{X_3}	x ₃)	$(1-q_2)(1-\epsilon_1)+q_2\epsilon_2$	$(1-q_2)\epsilon_1 + q_2(1-\epsilon_2)$	

• Gemeinsame W-Funktion von X_1 , X_2 , X_3 :

$$\begin{split} p_{X_1,X_2,X_3}(x_1,x_2,x_3) &= p_{X_1}(x_1) p_{X_2,X_3}(x_2,x_3) \\ &= p_{X_1}(x_1) p_{X_2}(x_2) p_{X_3|X_2}(x_3|x_2), \qquad x_1,\, x_2,\, x_3 \in \{0,1\} \end{split}$$

x_1	x_2	x_3	$p_{X_1,X_2,X_3}(x_1,x_2,x_3)$					
0	0	0	$(1 - q_1)$		$(1 - q_2)$		$(1-\epsilon_1)$	$\frac{3}{32}$
0	0	1	$(1 - q_1)$		$(1 - q_2)$		ϵ_1	$\frac{1}{32}$
0	1	0	$(1 - q_1)$		q_2		ϵ_2	$\frac{1}{32}$
0	1	1	$(1 - q_1)$		q_2		$(1-\epsilon_2)$	$\frac{3}{32}$
1	0	0	q_1		$(1-q_2)$		$(1-\epsilon_1)$	$\frac{9}{32}$
1	0	1	q_1		$(1 - q_2)$		ϵ_1	$\frac{3}{32}$
1	1	0	q_1		q_2		ϵ_2	$\frac{3}{32}$
1	1	1	q_1		q_2		$(1-\epsilon_2)$	$\frac{9}{32}$

Letzte Spalte für
$$q_1 = \frac{3}{4}$$
, $q_2 = \frac{1}{2}$, $\epsilon_1 = \epsilon_2 = \frac{1}{4}$.

- Das Online-Zufallsexperiment wurde 33 mal durchgeführt.
 Vielen Dank an alle Teilnehmer:innen!
- Gemeinsame W-Funktion p_{X_1,X_2,X_3} für $q_1=\frac{3}{4},$ $q_2=\frac{1}{2},$ $\epsilon_1=\epsilon_2=\frac{1}{4}$ im Vergleich zu den gemessenen relativen Häufigkeiten des Zufallsexperimentes:

	x_1	x_2	x_3	$p_{X_1,X_2,X_3}(x_1,x_2,x_3)$	Relative Häufigkeiten
,	0	0	0	$\frac{3}{32} \approx 0.09375$	$\frac{4}{33} \approx 0.121212$
	0	0	1	$\frac{1}{32} \approx 0.03125$	$\frac{2}{33} \approx 0.060606$
	0	1	0	$\frac{1}{32} \approx 0.03125$	$\frac{3}{33} \approx 0.090909$
	0	1	1	$\frac{3}{32} \approx 0.09375$	$\frac{3}{33} \approx 0.090909$
	1	0	0	$\frac{9}{32} \approx 0.28125$	$\frac{6}{33} \approx 0.181818$
	1	0	1	$\frac{3}{32} \approx 0.09375$	$\frac{2}{33} \approx 0.030303$
	1	1	0	$\frac{3}{32} \approx 0.09375$	$\frac{2}{33} \approx 0.060606$
	1	1	1	$\frac{9}{32} \approx 0.28125$	$\frac{11}{33} \approx 0.3333333$

Genauere Übereinstimmung erhält man durch eine größere Stichprobe.

- Vergleich "Theorie / Praxis" mit Hilfe der relativen Entropie.
 - Wir fassen die im Zufallsexperiment gemessenen relativen Häufigkeiten als Wen auf und nennen die zugehörige W-Funktion $p^{({
 m ZE})}.$
 - Den Unterschied zur theoretischen W-Funktion p_{X_1,X_2,X_3} können wir mit der relativen Entropie quantifizieren.

$$\begin{split} D\Big(p^{(\mathrm{ZE})}||p_{X_1,X_2,X_3}\Big) &= \sum_{x_1,x_2,x_3 \in \{0,1\}} p^{(\mathrm{ZE})}(x_1,x_2,x_3) \log_2 \frac{p^{(\mathrm{ZE})}(x_1,x_2,x_3)}{p_{X_1,X_2,X_3}(x_1,x_2,x_3)} \\ &\approx 0.129848 \text{ (bit)} \end{split}$$

• Mit wachsender Stichprobengröße werden die beiden $\mathbb W$ -Funktionen "immer gleicher" und $D\left(p^{(\mathrm{ZE})}||p_{X_1,X_2,X_3}\right)$ konvergiert gegen 0.

- Wir berechnen nun einige Informationsmaße auf Basis der theoretischen W-Funktionen.
- Für die Entropien der Zufallsgrößen $X_1,\,X_2$ und X_3 erhalten wir gemäß Definition der Entropie

$$H(X_1)=H_b(q_1), \quad H(X_2)=H_b(q_2), \quad H(X_3)=H_b\Big((1-q_2)\epsilon_1+q_2(1-\epsilon_2)\Big)$$
 wobei H_b die binäre Entropiefunktion darstellt.

$$H_b(q) = -q \log_2 q - (1-q) \log_2 (1-q), \quad q \in [0,1]$$

Diese einfachste Entropiefunktion illustriert bereits die generelle Konkavitätseigenschaft der Entropie.

 \longrightarrow allgemein siehe (2.9.2)

• Für die Parameter $q_1=rac{3}{4}$, $q_2=rac{1}{2}$, $\epsilon_1=\epsilon_2=rac{1}{4}$ erhalten wir

$$H(X_1) pprox 0.811278 \; \mathrm{bit} \; , \quad H(X_2) = 1 \; \mathrm{bit} \; , \quad H(X_3) = 1 \; \mathrm{bit}$$

d.h. die Unbestimmtheit in ZE1 ist geringer als in ZE2 und ZE3.

• Wegen der Unabhängigkeit von X_1 und X_2 gilt nach (2.5.2)

$$H(X_2|X_1) = H(X_2)$$

und mit der Definition der bedingten Entropie erhalten wir

$$\begin{split} H(X_3|X_2) &= p_{X_2}(0) H\Big(p_{X_3|X_2}(\cdot|0)\Big) + p_{X_2}(1) H\Big(p_{X_3|X_2}(\cdot|1)\Big) \\ &= (1-q_2) H_b(\epsilon_1) + q_2 H_b(\epsilon_2). \end{split}$$

• Wegen der Unabhängigkeit von X_1 und X_2 gilt nach (2.5.4) und (2.4.4)

$$\begin{split} H(X_1,X_2) &= H(X_1) + H(X_2) & \quad \text{und} \quad I(X_1;X_2) = 0. \\ &= H_b(q_1) + H_b(q_2). \end{split}$$

Mit (2.3.1) erhalten wir

$$H(X_2, X_3) = H(X_2) + H(X_3|X_2)$$

= $H_b(q_2) + (1 - q_2)H_b(\epsilon_1) + q_2H_b(\epsilon_2)$.

Mit (2.3.3) folgt

$$I(X_2; X_3) = H(X_3) - H(X_3 | X_2).$$

= $H_b ((1 - q_2)\epsilon_1 + q_2(1 - \epsilon_2)) - [(1 - q_2)H_b(\epsilon_1) + q_2H_b(\epsilon_2)].$

Selbststudium: Warum gilt

$$I(X_1; X_3|X_2) = 0$$
?

• Für $\epsilon_1 = \epsilon_2 = \epsilon$ erhalten wir die Transinformation

$$I(X_2; X_3) = H_b((1 - q_2)\epsilon + q_2(1 - \epsilon)) - H_b(\epsilon).$$

Diese einfache Transinformationsfunktion illustriert bereits die generellen Konkavitäts-/ Konvexitätseigenschaften der Transinformation:

Bzgl. eines Arguments konvex, bzgl. des anderen Arguments konkav.

→ allgemein siehe (2.9.3/4)

• Für die Parameter $q_1=rac{3}{4}$, $q_2=rac{1}{2}$, $\epsilon_1=\epsilon_2=rac{1}{4}$ erhalten wir

$$H(X_3|X_2) \approx 0.811278 \; \mathrm{bit} \leq H(X_3) = 1 \; \mathrm{bit}$$

 $H(X_1,X_2) \approx 1.811278 \; \mathrm{bit}, \quad H(X_2,X_3) \approx 1.811278 \; \mathrm{bit}, \quad I(X_2;X_3) \approx 0.188722 \; \mathrm{bit}$

 Vergleich mit Werten der Informationsmaße für "gemessene" W-Funktion $p^{(\mathrm{ZE})}$ \Longrightarrow Selbststudium

 X_1,X_2,\ldots,X_n seien n diskrete Zufallsgrößen und $X=(X_1,X_2,\ldots,X_n)$ der entsprechende n-dimensionale Zufallsvektor.

• (2.7.1) Kettenregel Entropie für n Zufallsgrößen:

$$H(X_1, X_2, \dots, X_n) = \sum_{k=1}^n H(X_k | X_{k-1}, X_{k-2}, \dots, X_1)$$

• (2.7.2) Kettenregel Transinformation für n Zufallsgrößen:

$$I(X_1, X_2, \dots, X_n; Y) = \sum_{k=1}^n I(X_k; Y | X_{k-1}, X_{k-2}, \dots, X_1)$$

(2.7.3) Unabhängigkeit maximiert Entropie für n Zufallsgrößen:

$$\begin{split} &H(X_1,X_2,\dots,X_n)\leq \sum_{k=1}^n H(X_k)\\ &H(X_1,X_2,\dots,X_n)=\sum_{k=1}^n H(X_k) &\iff X_1,X_2,\dots,X_n \text{ sind unabhängig} \end{split}$$

• Herleitung zu (2.7.1):

• Herleitung zu (2.7.2):

• Herleitung zu (2.7.3):

• (2.7.4) Kettenregel bedingte Entropie für n Zufallsgrößen:

$$H(X_1, X_2, \dots, X_n | Y) = \sum_{k=1}^n H(X_k | X_{k-1}, X_{k-2}, \dots, X_1, Y)$$

• (2.7.5) Kettenregel bedingte Transinformation für n Zufallsgrößen:

$$I(X_1, X_2, \dots, X_n; Y|Z) = \sum_{k=1}^n I(X_k; Y|X_{k-1}, X_{k-2}, \dots, X_1, Z)$$

 (2.7.6) Bedingte Unabhängigkeit maximiert bedingte Entropie für n Zufallsgrößen:

$$\begin{split} H(X_1,X_2,\dots,X_n|Y) &\leq \sum_{k=1}^n H(X_k|Y) \\ H(X_1,X_2,\dots,X_n|Y) &= \sum_{k=1}^n H(X_k|Y) \iff X_1,X_2,\dots,X_n \text{ sind} \\ & \text{bedingt unabhängig gegeben } Y \end{split}$$

• (2.8.1) Entropierate: Die Größe

$$\overline{H}(X) = \lim_{n \to \infty} \frac{H(X_1, X_2, \dots, X_n)}{n}$$

nennen wir Entropierate der Folge $X=(X_k)_{k\in\mathbb{N}}$ diskreter Zufallsgrößen, sofern der Grenzwert existiert.

$$X = \left(\underbrace{X_1, X_2, X_3, \dots, X_n, X_{n+1}, X_{n+2}, \dots} \right)$$
...

Bemerkung:

Die Entropierate ist u. a. eine untere Schranke für die (asymptotisch) verlustlose, "blockweise" Datenkompression, speziell bei gedächtnisbehafteten Modellen.

• (2.8.2) Transinformationsrate: Die Größe

$$\overline{I}(X;Y) = \lim_{n \to \infty} \frac{I(X_1, X_2, \dots, X_n; Y_1, Y_2, \dots, Y_n)}{n}$$

nennen wir Transinformationsrate der Folgen $X=(X_k)_{k\in\mathbb{N}}$ und $Y=(Y_k)_{k\in\mathbb{N}}$ diskreter Zufallsgrößen, sofern der Grenzwert existiert.

$$X = \left(\underbrace{X_1, X_2, X_3, \dots, X_n, X_{n+1}, X_{n+2}, \dots} \right)$$

$$Y = \left(\underbrace{Y_1, Y_2, Y_3, \dots, Y_n, Y_{n+1}, Y_{n+2}, \dots} \right)$$

Bemerkung: Mit der Transinformationsrate kann man u.a. eine obere Schranke für die Datenrate für eine zuverlässige Datenübertragung erhalten, speziell bei gedächtnisbehafteten Modellen.

• (2.8.3) Beispiel: Entropierate einer stationären gedächtnislosen Quelle Die Entropierate einer stationären gedächtnislosen Quelle (siehe (1.2) in VL 2) $X=(X_k)_{k\in\mathbb{N}}$ is gegeben durch

$$\overline{H}(X) = \lim_{n \to \infty} \frac{H(X_1, X_2, \dots, X_n)}{n} = H(X_1).$$

⇒ Konkretes Beispiel siehe 2. Übung, Aufgabe 10 g)

• Herleitung zu (2.8.3):

• (2.8.4) Beispiel: Entropierate einer stationären Markow-Quelle Die Entropierate einer stationären Markow-Quelle (siehe (1.2) in VL 2) $X=(X_k)_{k\in\mathbb{N}}$ is gegeben durch

$$\overline{H}(X) = \lim_{n \to \infty} \frac{H(X_1, X_2, \dots, X_n)}{n} = H(X_2 | X_1).$$

- ⇒ Konkrete Beispiele siehe 2. Übung, Aufgabe 11 c), sowie
 2. Hausaufgabe, Aufgabe 15 d)
- Herleitung zu (2.8.4):

• Herleitung zu (2.8.4):

- (2.9.1) Konvexkombination von $\mathbb{W} ext{-}\mathsf{Funktionen}$
 - ullet Sei X eine diskrete Zufallsgröße mit dem Alphabet ${\mathcal X}.$
 - Seien $p_X^{(1)}$ und $p_X^{(2)}$ zwei $\mathbb W$ -Funktionen von X auf dem Alphabet $\mathcal X$.
 - Dann definieren wir für $\lambda \in [0,1]$ die W-Funktion

$$p_X = \lambda p_X^{(1)} + (1 - \lambda) p_X^{(2)}$$

elementweise, d. h. für alle $x \in \mathcal{X}$

$$p_X(x) = \lambda p_X^{(1)}(x) + (1 - \lambda)p_X^{(2)}(x).$$

- Die $\mathbb W$ -Funktion p_X heißt Konvexkombination der $\mathbb W$ -Funktionen $p_X^{(1)}$ und $p_X^{(2)}$.
- Zahlenbeispiel: Alphabet $\mathcal{X} = \{1, 2, 3, 4\}$ und W-Funktionen

⇒ Konvexkombination

x	1	2	3	4
$p_X(x)$	$\frac{1}{4}(1+\lambda)$	$\frac{1}{4}$	$\frac{1}{8}(2-\lambda)$	$\frac{1}{8}(2-\lambda)$

- (2.9.1) Konvexkombination von W-Funktionen [...]
 - Illustration:

Menge der W-Funktionen auf dem Alphabet ${\mathcal X}$

ullet Eine Konvexkombination von ${\mathbb W}$ -Funktionen entsteht folgendermaßen:

 X_1 diskrete Zufallsgröße mit endlichem Alphabet $\mathcal X$ — und $\mathbb W$ -Funktion p_{X_1}

 X_2 diskrete Zufallsgröße mit endlichem Alphabet ${\mathcal X}$ — und ${\mathbb W}$ -Funktion p_{X_2}

Z diskrete Zufallsgröße mit binärem Alphabet $\{1,2\}$ und \mathbb{W} -Funktion p_Z

$$p_Z(1) = \mathbb{P}(Z=1) = \lambda \qquad \text{und} \qquad p_Z(2) = \mathbb{P}(Z=2) = (1-\lambda)$$

Die Zufallsgröße $X=X_Z$ hat die W-Funktion

$$p_X = \lambda p_{X_1} + (1 - \lambda) p_{X_2}.$$

- (2.9.1) Konvexkombination von W-Funktionen [...]
 - Erläuterungen: Die Zufallsgröße Z hat die Wirkung eines Schalters, der zwischen den Zufallsgrößen X_1 und X_2 mit den \mathbb{W} en λ und $1-\lambda$ auswählt.

Die W-Funktion p_X von $X=X_Z$ erhält man als Rand-W-Funktion von $p_{X,Z}$.

$$\begin{split} p_X(x) &= \sum_{z \in \mathcal{Z}} p_{X,Z}(x,z) \\ &= \sum_{z \in \mathcal{Z}} p_Z(z) p_{X|Z}(x|z) \\ &= p_Z(1) p_{X|Z}(x|1) + p_Z(2) p_{X|Z}(x|2) \\ &= \lambda p_{X_1}(x) + (1-\lambda) p_{X_2}(x) \end{split}$$

• (2.9.2) Konkavität der Entropie:

Die Entropie $H(X)=H(p_X)$ einer diskreten Zufallsgröße X ist konkav bezüglich der W-Funktion p_X . D. h. für alle W-Funktionen $p_X^{(1)}$ und $p_X^{(2)}$ von X und alle $\lambda \in [0,1]$ gilt

$$H\Big(\lambda p_X^{(1)} + (1-\lambda)p_X^{(2)}\Big) \geq \lambda H\Big(p_X^{(1)}\Big) + (1-\lambda)H\Big(p_X^{(2)}\Big).$$

Bemerkung: Die Konkavität ist relevant bei der Maximierung der Entropie.

• Herleitung zu (2.9.2):

• (2.9.3) Konkavität der Transinformation $I(p_X,p_{Y|X})$ bezüglich p_X :

Die Transinformation $I(X;Y) = I(p_X,p_{Y|X})$ zwischen den diskreten Zufallsgrößen X und Y ist konkav bezüglich der W-Funktion p_X bei fester bedingter W-Funktion $p_{Y|X}$. D. h. für alle W-Funktionen $p_X^{(1)}$, $p_X^{(2)}$ von X und alle $\lambda \in [0,1]$ gilt

$$I \Big(\lambda p_X^{(1)} + (1-\lambda) p_X^{(2)}, p_{Y|X} \Big) \geq \lambda I \Big(p_X^{(1)}, p_{Y|X} \Big) + (1-\lambda) I \Big(p_X^{(2)}, p_{Y|X} \Big).$$

Bemerkung:

Die Konkavität ist relevant bei der Maximierung der Transinformation bzgl. p_X .

• Herleitung zu (2.9.3):

• (2.9.4) Konvexität der Transinformation $I(p_X,p_{Y|X})$ bezüglich $p_{Y|X}$: Die Transinformation $I(X;Y)=I(p_X,p_{Y|X})$ zwischen den diskreten Zufallsgrößen X und Y ist konvex bezüglich der bedingten W-Funktion $p_{Y|X}$ bei fester W-Funktion p_X . D. h. für alle bedingten W-Funktionen $p_{Y|X}^{(1)}$, $p_{Y|X}^{(2)}$ von Y unter der Bedingung X und alle $\lambda \in [0,1]$ gilt

$$I\Big(p_X, \lambda p_{Y|X}^{(1)} + (1-\lambda)p_{Y|X}^{(2)}\Big) \leq \lambda I\Big(p_X, p_{Y|X}^{(1)}\Big) + (1-\lambda)I\Big(p_X, p_{Y|X}^{(2)}\Big).$$

Bemerkung:

Die Konvexität ist relevant bei der Minimierung der Transinformation bzgl. $p_{Y\mid X}$. Herleitung: Bei Bedarf später.