Real Analysis - Assignment 9

Philip Warton

December 9, 2020

A finite dimensional normed vector space is complete.

Proof. Let $(V, ||\cdot||)$ be a normed n-dimensional vector space. Then we say that any vector $v \in V$ consists of n real or complex numbers. Let $(v_k) \subset V$ be an arbitrary sequence in our space, then it follows that we can write this sequence out as

$$v_1 = \begin{bmatrix} x_{1_1} \\ x_{2_1} \\ \vdots \\ x_{n_1} \end{bmatrix}, v_2 = \begin{bmatrix} x_{1_2} \\ x_{2_2} \\ \vdots \\ x_{n_2} \end{bmatrix}, \cdots$$

Then for any sequence $(x_{i_k}) \subset F$ where F is either the real or complex numbers, F is complete and therefore there exists some subsequence that converges to $x_i \in F$. We say that this subsequence relies on some $K_1 \subset \mathbb{N}$. Take the intersection of all the K_i sets, and you have a Cauchy subsequence of (v_k) that converges to some vector $v \in V$.

Since a linear subspace of a normed vector space is also a normed vector space, thus it is complete.

Show that \mathcal{P}_n is closed in C[a,b]. Then show that $P=\bigcup_{i\in\mathbb{N}}\mathcal{P}_n\neq C[a,b]$.

Proof. We know that \mathcal{P}_n is a finite dimensional linear subspace of a normed vector space. Thus it is complete, and then it contains its limit points and is therefore closed.

Proof. Take some function with an infinite polynomial expansion, such as e^x . Then $\forall i \in \mathbb{N}$ we say that $e^x \notin \mathcal{P}_n$ thus there exists some continuous function on [a,b] that is not contained in the set \mathcal{P} .

Let p_n be a polynomial of degree m_n . The suppose that $p_n \to f$ in C[a,b]. That is, it converges uniformly to f on this interval where f is not a polynomial. Show that $m_n \to \infty$.

Proof. Suppose that m_n does not diverge to infinity. Then it must be eventually bounded by some integer $k \in \mathbb{N}$. So some polynomial of degree k will be a function such that $\forall \epsilon > 0, ||p_n - f|| < \epsilon$. Then it follows that f must be a polynomial of degree k (contradiction). \square

Show that the set of all polynomials \mathcal{P} is first category.

Proof. We know that $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$. Then we wish to show that for any $n \in \mathbb{N}$, $int(cl(\mathcal{P}_n)) = \emptyset$. We know already that \mathcal{P}_n is closed so $cl(\mathcal{P}_n) = \mathcal{P}_n$. Let $n \in \mathbb{N}$ and $p \in \mathcal{P}_n$ arbitrarily. Choose some $p' \in \mathcal{P}_{n+1}$ with all n coefficients identical. This function can be made arbitrarily close to p, so we say that no neighborhood of p lies in \mathcal{P}_n . Thus $int(cl(\mathcal{P}_n))$ is empty, and we say \mathcal{P}_n is nowhere dense. Thus \mathcal{P} is a first category set.

Suppose that $f:[1,\infty)\to\mathbb{R}$ is continuous and that $\lim_{x\to\infty}f(x)$ exists. For $\epsilon>0$ there is a polynomial p such that $|f(x)-p(1/x)|<\epsilon$ for all $x\geqslant 1$.

Proof. Let $g:[0,1]\to\mathbb{R}$ where $g(x)=f(x^{-1})$ for $x\in(0,1]$ and $g(x)=\lim_{x\to\infty}f(x)$ at x=0. Then by the Weierstrass Approximation Theorem it follows that for any arbitrary $\epsilon>0$ there exists some polynomial $p\in\mathcal{P}$ such that $||p-g||_{\infty}<\epsilon$. Then it follows that

$$|f(x) - p(x^{-1})| < \epsilon$$