Extra Problems

D. Zack Garza

Wednesday 10th June, 2020

Contents

1	Prol	Problems				
	1.1	Point Set				
		1.1.1	Compactness	. 1		
		1.1.2	Connectedness	. 1		
		1.1.3	Hausdorff Spaces	. 2		
	1.2	Algebr	raic Topology	. 2		
			Fundamental Group			
		1.2.2	Covering Spaces	. 2		
		1.2.3	Homology	. 2		
2	Solutions					
	2.1	Point	Set	. 2		
		2.1.1	Connectedness	. 2		
		2.1.2	Suggested by Ernest			

1 Problems

1.1 Point Set

1.1.1 Compactness

- Show that \mathbb{R} with the cofinite topology is compact.
- Show that [0,1] is compact without using the Heine-Borel theorem.
- ullet Let X be a compact space and let A be a closed subspace. Show that A is compact. Solution

Suggested by Ernest

• Let $f: X \longrightarrow Y$ be a continuous function, with X compact. Show that f(X) is compact. Solution

Suggested by Ernest

1.1.2 Connectedness

• Show that [0, 1] is connected. Solution

1.1.3 Hausdorff Spaces

 \bullet Let A be a compact subspace of a Hausdorff space X. Show that A is closed. Solution

Suggested by Ernest

- Show that a closed subset of a Hausdorff space need not be compact.
- Show that in a *compact* Hausdorff space, A is closed iff A is compact.
- Show that a local homeomorphism between compact Hausdorff spaces is a covering space.
- Show that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism. Solution

Suggested by Ernest

1.2 Algebraic Topology

1.2.1 Fundamental Group

- Compute $\pi_1(X)$ where $X := S^2 / \sim$, where $x \sim -x$ only for x on the equator $S^1 \hookrightarrow S^2$.
 - Hint: try cellular homology. Should yield $[\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}, 0, \cdots]$.
- Show that if $X = S^2 \coprod_{A \subseteq \mathbb{Z}} S^2$ is a pushout along the equators, then $H_n(X) = [\mathbb{Z}, 0, \mathbb{Z}^3, 0, \cdots]$.

1.2.2 Covering Spaces

• Describe all connected covering spaces of $\mathbb{RP}^2 \vee \mathbb{RP}^2$.

1.2.3 Homology

- Compute the homology of the Klein bottle using the Mayer-Vietoris sequence and a decomposition $K = M \coprod_{f} M$
- Use the Kunneth formula to compute $H^*(S^2 \times S^2; \mathbb{Z})$.
- Known to be $[\mathbb{Z}, 0, \mathbb{Z}^2, 0, \mathbb{Z}, 0, 0, \cdots]$.
 Compute $H^*(S^2 \vee S^2 \vee S^4)$
- - Known to be $[\mathbb{Z}, 0, \mathbb{Z}^2, 0, \mathbb{Z}, 0, 0, \cdots]$.
- Show that $\chi(\Sigma_q + \Sigma_h) = \chi(\Sigma_q) + \chi(\Sigma_h) 2$.

2 Solutions

2.1 Point Set

2.1.1 Connectedness

1. Problem Statement

Reference

A potentially shorter proof

• Let $I = [0,1] = A \bigcup B$ be a disconnection, so $-A, B \neq \emptyset$

$$-A \prod B = I$$

$$-\operatorname{cl}_I(A) \cap B = A \cap \operatorname{cl}_I(B) = \emptyset.$$

- Let $a \in A$ and $b \in B$ where WLOG a < b
 - (since either a < b or b < a, and $a \neq b$ since A, B are disjoint)
- Let K = [a, b] and define $A_K := A \cap K$ and $B_K := B \cap K$.
- Now A_K, B_K is a disconnection of K.
- Let $s = \sup(A_K)$, which exists since \mathbb{R} is complete and has the LUB property
- Claim: $s \in \operatorname{cl}_I(A_K)$. Proof:
 - If $s \in A_K$ there's nothing to show since $A_K \subset \operatorname{cl}_I(A_K)$, so assume $s \in I \setminus A_K$.
 - Now let N_s be an arbitrary neighborhood of s, then using ??? we can find an $\varepsilon > 0$ such that $B_{\varepsilon}(s) \subset N_s$
 - Since s is a supremum, there exists an $a \in A_K$ such that $s \varepsilon < a$.
 - But then $a \in B_{\varepsilon}(s)$ and $a \in N_s$ with $a \neq s$.
 - Since N_s was arbitrary, every N_s contains a point of A_K not equal to s, so s is a limit point by definition.
- Since $s \in \operatorname{cl}_I(A_K)$ and $\operatorname{cl}_I(A_K) \cap B_K = \emptyset$, we have $s \notin B_K$.
- Then the subinterval $(x, b] \cap A_K = \emptyset$ for every x > c since $c := \sup A_K$.
- But since $A_K \coprod B_K = K$, we must have $(x, b] \subset B_K$, and thus $s \in \operatorname{cl}_I(B_K)$.
- Since A_K , B_K were assumed disconnecting, $s \notin A_K$
- But then $s \in K$ but $s \notin A_K \prod B_K = K$, a contradiction.

2.1.2 Suggested by Ernest

- 1. Problem Statement
- Let X be compact, $A \subset X$ closed, and $\{U_{\alpha}\} \rightrightarrows A$ be an open cover.
- By definition of the subspace topology, each $U_{\alpha} = V_{\alpha} \bigcap A$ for some open $V_{\alpha} \subset X$, and $A \subset \bigcup V_{\alpha}$.
- Since A is closed in $X, X \setminus A$ is open.
- Then $\{V_{\alpha}\}\bigcup\{X\setminus A\}\rightrightarrows X$ is an open cover, since every point is either in A or $X\setminus A$.
- By compactness of X, there is a finite subcover $\{U_j \mid j \leq N\} \bigcup \{X \setminus A\}$
- Then $(\{U_j\} \bigcup \{X \setminus A\}) \cap A := \{V_j\}$ is a finite cover of A.
- 2. Problem Statement
- Let $f: X \longrightarrow Y$ be continuous with X compact, and $\{U_{\alpha}\} \rightrightarrows f(X)$ be an open cover.
- Then $\{f^{-1}(U_{\alpha})\} \rightrightarrows X$ is an open cover of X, since $x \in X \implies f(x) \in f(X) \implies f(x) \in U_{\alpha}$ for some α , so $x \in f^{-1}(U_{\alpha})$ by definition.
- By compactness of X there is a finite subcover $\{f^{-1}(U_j) \mid j \leq N\} \Rightarrow X$.
- Then the finite subcover $\{U_j \mid j \leq N\} \Rightarrow f(X)$, since if $y \in f(X)$, $y \in U_\alpha$ for some α and thus $f^{-1}(y) \in f^{-1}(U_j)$ for some j since $\{U_j\}$ is a cover of X.
- 3. Problem Statement

Note, alternative definition of "open":

- Let A be a compact subset of X a Hausdorff space, we will show $X \setminus A$ is open
- Fix $x \in X \setminus A$.
- Since X is Hausdorff, for every $y \in A$ we can find $U_y \ni y$ and $V_x(y) \ni x$ depending on y such that $U_x(y) \cap U_y = \emptyset$.
- Then $\{U_y \mid y \in A\} \rightrightarrows A$, and by compactness of A there is a finite subcover corresponding to a finite collection $\{y_1, \dots, y_n\}$.
- Set $U = \bigcup U_{y_i}$ and $V = \bigcap V_x(y_i)$;
 - Note $A \subset U$ and $x \in V$
 - Note $U \cap V = \emptyset$.
- Done: for every $x \in X \setminus A$, we have found an open set $V \ni x$ such that $V \cap A = \emptyset$, so x is an interior point and a set is open iff every point is an interior point.

4. Problem Statement

- Since $f: X \longrightarrow Y$ is a bijection, set $g := f^{-1}: Y \longrightarrow X$ (to distinguish images from preimages), we will show g is continuous by showing that $U \in X$ closed implies $g^{-1}(U) \in X$ closed.
- Let $U \in X$ be closed; since X is closed, U is compact (since closed subsets of compact spaces are compact)
- Since f is continuous, f(U) is compact (since the continuous image of a compact set is compact)
- Since Y is Hausdorff and f(U) is compact, f(U) is closed (since compact subsets of Hausdorff spaces are closed)
- Since $f := g^{-1}$, $f(U) = g^{-1}(U)$ is thus closed.