```
In [1]: # Install gdown if not installed
        !pip install --quiet gdown
        import gdown
        import os
        # Path to csv files folder inside your repo
        BASE DIR = os.getcwd()
        CSV_DIR = os.path.join(BASE_DIR, "csv_files")
        # Dataset 1: Trader Data
        trader url = "https://drive.google.com/uc?id=1IAfLZwu6rJzyWKgBTogwSmmVYU6
        trader_out = os.path.join(CSV_DIR, "trader_data.csv")
        gdown.download(trader url, trader out, quiet=False)
        # Dataset 2: Fear & Greed Index
        sentiment_url = "https://drive.google.com/uc?id=1PgQC0t08XN-wqkNyghWc_-mn
        sentiment_out = os.path.join(CSV_DIR, "fear_greed.csv")
        gdown.download(sentiment_url, sentiment_out, quiet=False)
        print(" Files downloaded to:", CSV_DIR)
       Downloading...
       From: https://drive.google.com/uc?id=1IAfLZwu6rJzyWKgBTogwSmmVYU6VbjVs
       To: /Users/ranjeetamashal/Desktop/ds_ranjeetamashal/csv_files/trader_data.
       CSV
       100%|
                              | 47.5M/47.5M [00:16<00:00, 2.94MB/s]
       Downloading...
       From: https://drive.google.com/uc?id=1PqQC0t08XN-wqkNyqhWc -mnrYv nhSf
       To: /Users/ranjeetamashal/Desktop/ds_ranjeetamashal/csv_files/fear_greed.c
       sv
       100%
                              90.8k/90.8k [00:00<00:00, 624kB/s]
       Files downloaded to: /Users/ranjeetamashal/Desktop/ds_ranjeetamashal/cs
       v files
In [3]: import pandas as pd
        import os
        CSV_DIR = os.path.join(os.getcwd(), "csv_files")
        # Load datasets
        trader = pd.read_csv(os.path.join(CSV_DIR, "trader_data.csv"))
        sentiment = pd.read_csv(os.path.join(CSV_DIR, "fear_greed.csv"))
        # Basic info
        print("Trader data shape:", trader.shape)
        print("Sentiment data shape:", sentiment.shape)
        # Preview first 5 rows of each
        print("\n Trader Data ")
        display(trader.head())
        print("\n Sentiment Data ")
        display(sentiment.head())
```

```
# Check column names
print("\nTrader columns:", trader.columns.tolist())
print("Sentiment columns:", sentiment.columns.tolist())
```

Trader data shape: (211224, 16) Sentiment data shape: (2644, 4)

Trader Data

|   | Account                                    | Coin | Execution<br>Price | Size<br>Tokens | Size<br>USD |
|---|--------------------------------------------|------|--------------------|----------------|-------------|
| 0 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9769             | 986.87         | 7872.16     |
| 1 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9800             | 16.00          | 127.68      |
| 2 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9855             | 144.09         | 1150.63     |
| 3 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9874             | 142.98         | 1142.04     |
| 4 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9894             | 8.73           | 69.75       |

## Sentiment Data

|   | timestamp  | value | classification | date       |
|---|------------|-------|----------------|------------|
| 0 | 1517463000 | 30    | Fear           | 2018-02-01 |
| 1 | 1517549400 | 15    | Extreme Fear   | 2018-02-02 |
| 2 | 1517635800 | 40    | Fear           | 2018-02-03 |
| 3 | 1517722200 | 24    | Extreme Fear   | 2018-02-04 |
| 4 | 1517808600 | 11    | Extreme Fear   | 2018-02-05 |

Trader columns: ['Account', 'Coin', 'Execution Price', 'Size Tokens', 'Size USD', 'Side', 'Timestamp IST', 'Start Position', 'Direction', 'Closed Pn L', 'Transaction Hash', 'Order ID', 'Crossed', 'Fee', 'Trade ID', 'Timesta mp']

Sentiment columns: ['timestamp', 'value', 'classification', 'date']

```
In [5]: trader.describe()
    #sentiment.describe()
```

| $\cap$ |   | + | Г | 5 | 1  |
|--------|---|---|---|---|----|
| U      | u | L | L | J | J. |
|        |   |   |   |   |    |

|       | Execution<br>Price | Size Tokens  | Size USD     | Start Position | Closed Pn     |
|-------|--------------------|--------------|--------------|----------------|---------------|
| count | 211224.000000      | 2.112240e+05 | 2.112240e+05 | 2.112240e+05   | 211224.00000  |
| mean  | 11414.723350       | 4.623365e+03 | 5.639451e+03 | -2.994625e+04  | 48.74900      |
| std   | 29447.654868       | 1.042729e+05 | 3.657514e+04 | 6.738074e+05   | 919.16482     |
| min   | 0.000005           | 8.740000e-07 | 0.000000e+00 | -1.433463e+07  | -117990.10410 |
| 25%   | 4.854700           | 2.940000e+00 | 1.937900e+02 | -3.762311e+02  | 0.00000       |
| 50%   | 18.280000          | 3.200000e+01 | 5.970450e+02 | 8.472793e+01   | 0.00000       |
| 75%   | 101.580000         | 1.879025e+02 | 2.058960e+03 | 9.337278e+03   | 5.79279       |
| max   | 109004.000000      | 1.582244e+07 | 3.921431e+06 | 3.050948e+07   | 135329.09010  |

## In [6]: sentiment.describe()

| ( )     + | 161     | - |
|-----------|---------|---|
| 17111     | 1 ( ) 1 | - |

|       | timestamp    | value       |
|-------|--------------|-------------|
| count | 2.644000e+03 | 2644.000000 |
| mean  | 1.631899e+09 | 46.981089   |
| std   | 6.597967e+07 | 21.827680   |
| min   | 1.517463e+09 | 5.000000    |
| 25%   | 1.574811e+09 | 28.000000   |
| 50%   | 1.631900e+09 | 46.000000   |
| 75%   | 1.688989e+09 | 66.000000   |
| max   | 1.746164e+09 | 95.000000   |

## In [7]: trader.isnull().sum()

Out[7]: Account 0 0 Coin Execution Price 0 0 Size Tokens Size USD 0 Side 0 0 Timestamp IST Start Position 0 Direction 0 Closed PnL 0 Transaction Hash Order ID 0 Crossed 0 Fee 0 Trade ID Timestamp 0 dtype: int64

In [8]: sentiment.isnull().sum()

```
Out[8]: timestamp
         value
                            0
         classification
                            0
         date
                            0
         dtype: int64
In [13]: import pandas as pd
         import pytz
         import os
         # Paths
         CSV_DIR = os.path.join(os.getcwd(), "csv_files")
         # Load datasets
         trader = pd.read_csv(os.path.join(CSV_DIR, "trader_data.csv"))
         sentiment = pd.read csv(os.path.join(CSV DIR, "fear greed.csv"))
         # Clean column names
         trader.columns = trader.columns.str.strip().str.lower().str.replace(' ',
         sentiment.columns = sentiment.columns.str.strip().str.lower().str.replace
         # Convert Trader Timestamp IST → UTC date
         ist = pytz.timezone('Asia/Kolkata')
         utc = pytz.UTC
         trader['timestamp_ist'] = pd.to_datetime(trader['timestamp_ist'], format=
         trader['timestamp_utc'] = trader['timestamp_ist'].dt.tz_localize(ist).dt.
         trader['trade date'] = trader['timestamp utc'].dt.date
         # Convert Sentiment date to datetime.date
         sentiment['sentiment_date'] = pd.to_datetime(sentiment['date'], errors='d
         # Merge
         merged = pd.merge(
             trader,
             sentiment[['sentiment_date', 'classification', 'value']],
             left_on='trade_date',
             right_on='sentiment_date',
             how='left'
         )
         print("Merged shape:", merged.shape)
         print(merged[['timestamp_ist', 'trade_date', 'classification', 'value']].
        Merged shape: (211224, 21)
                timestamp_ist trade_date classification value
        0 2024-12-02 22:50:00 2024-12-02 Extreme Greed
                                                              80
        1 2024-12-02 22:50:00 2024-12-02 Extreme Greed
                                                              80
        2 2024-12-02 22:50:00 2024-12-02 Extreme Greed
                                                              80
        3 2024-12-02 22:50:00 2024-12-02 Extreme Greed
                                                              80
        4 2024-12-02 22:50:00 2024-12-02 Extreme Greed
                                                              80
In [15]: merged.head()
```

| 25, 00:21 |      | notebook_1                                 |      |                 |           |
|-----------|------|--------------------------------------------|------|-----------------|-----------|
| Out[15]:  |      | account                                    | coin | execution_price | size_toke |
|           | 0    | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9769          | 986.      |
|           | 1    | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9800          | 16.       |
|           | 2    | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9855          | 144.      |
|           | 3    | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9874          | 142.      |
|           | 4    | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9894          | 8.        |
|           | 5 rd | ows × 21 columns                           |      |                 |           |
| In [19]:  | me   | rged.info()                                |      |                 |           |

## In [19]

<class 'pandas.core.frame.DataFrame'> RangeIndex: 211224 entries, 0 to 211223

Data columns (total 21 columns):

```
#
    Column
                     Non-Null Count
                                      Dtype
    _____
0
    account
                      211224 non-null object
1
    coin
                      211224 non-null object
                      211224 non-null float64
    execution_price
 2
 3
    size_tokens
                      211224 non-null float64
 4
    size usd
                     211224 non-null float64
5
    side
                      211224 non-null object
    timestamp_ist
                      211224 non-null datetime64[ns]
7
    start position
                     211224 non-null float64
8
    direction
                     211224 non-null object
                      211224 non-null float64
9
    closed_pnl
10 transaction_hash 211224 non-null object
 11 order_id
                     211224 non-null int64
 12 crossed
                     211224 non-null bool
                      211224 non-null float64
 13
    fee
 14 trade_id
                      211224 non-null float64
 15 timestamp
                     211224 non-null float64
 16 timestamp_utc
                      211224 non-null datetime64[ns, UTC]
 17 trade_date
                      211224 non-null object
18 sentiment_date
                      211224 non-null object
19 classification
                      211224 non-null object
20 value
                      211224 non-null int64
dtypes: bool(1), datetime64[ns, UTC](1), datetime64[ns](1), float64(8), in
t64(2), object(8)
memory usage: 32.4+ MB
```

```
In [20]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import os
         from scipy import stats # for statistical tests
         BASE_DIR = os.getcwd()
         OUT_DIR = os.path.join(BASE_DIR, 'outputs')
         CSV_DIR = os.path.join(BASE_DIR, 'csv_files')
```

```
os.makedirs(OUT_DIR, exist_ok=True)
os.makedirs(CSV_DIR, exist_ok=True)

def save_fig(fig, fname):
    path = os.path.join(OUT_DIR, fname)
    fig.savefig(path, bbox_inches='tight')
    print("Saved:", path)

# Quick inspect
print("merged shape:", merged.shape)
merged.head()
```

merged shape: (211224, 21)

| $\sim$ |    |   | г | $\overline{}$ | $\overline{}$ | т. |  |
|--------|----|---|---|---------------|---------------|----|--|
| 11     | 11 | - |   | - /           | I/I           |    |  |
| v      | u  | t | L | _             | U             |    |  |

|   | account                                    | coin | execution_price | size_toke |
|---|--------------------------------------------|------|-----------------|-----------|
| 0 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9769          | 986.      |
| 1 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9800          | 16.       |
| 2 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9855          | 144.      |
| 3 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9874          | 142.      |
| 4 | 0xae5eacaf9c6b9111fd53034a602c192a04e082ed | @107 | 7.9894          | 8.        |

5 rows × 21 columns

```
In [21]: # Normalize column names if not already
merged.columns = merged.columns.str.strip().str.lower().str.replace(' ',

# Ensure numeric
for col in ['size_usd', 'closed_pnl', 'fee']:
        if col in merged.columns:
            merged[col] = pd.to_numeric(merged[col], errors='coerce')

# If leverage exists
if 'leverage' in merged.columns:
        merged['leverage'] = pd.to_numeric(merged['leverage'], errors='coerce

# Add absolute pnl, sign win flag, and trade_value
merged['abs_pnl'] = merged['closed_pnl'].abs() if 'closed_pnl' in merged.merged['is_win'] = merged['closed_pnl'] > 0
merged['trade_value'] = merged['size_usd'] if 'size_usd' in merged.column

# Count missing sentiment tag
print("Trades without sentiment tag:", merged['classification'].isna().su
```

Trades without sentiment tag: 0

```
In [22]: group = merged.groupby('classification')
summary = group.agg(
    trades_count = ('trade_id','count') if 'trade_id' in merged.columns e
    avg_pnl = ('closed_pnl','mean'),
    median_pnl = ('closed_pnl','median'),
    win_rate = ('is_win','mean'),
```

```
avg_trade_value = ('trade_value', 'mean'),
    total_volume = ('trade_value', 'sum'),
    avg_fee = ('fee', 'mean') if 'fee' in merged.columns else ('closed_pnl).reset_index()

# leverage stats if present
if 'leverage' in merged.columns:
    lev_stats = group['leverage'].agg(['mean', 'median', 'max']).reset_inde
    summary = summary.merge(lev_stats, on='classification', how='left')

display(summary)
summary.to_csv(os.path.join(CSV_DIR, 'summary_by_sentiment.csv'), index=F
```

|   | classification   | trades_count | avg_pnl   | median_pnl | win_rate | avg_trade_value |
|---|------------------|--------------|-----------|------------|----------|-----------------|
| 0 | Extreme Fear     | 21303        | 50.337228 | 0.0        | 0.417875 | 5465.257597     |
| 1 | Extreme<br>Greed | 40180        | 65.085144 | 0.0        | 0.463265 | 3164.879128     |
| 2 | Fear             | 61510        | 46.626827 | 0.0        | 0.420663 | 7906.820952     |
| 3 | Greed            | 48668        | 50.124579 | 0.0        | 0.393195 | 5537.641554     |
| 4 | Neutral          | 39563        | 32.910163 | 0.0        | 0.362510 | 4846.490928     |

```
In [32]: import matplotlib.pyplot as plt
         import seaborn as sns
         import os
         # Ensure outputs folder exists
         os.makedirs('outputs', exist_ok=True)
         # Function to annotate bars with values
         def annotate_bars(ax, fmt="{:.2f}", fontsize=10):
             for p in ax.patches:
                 height = p.get_height()
                 ax.annotate(fmt.format(height),
                              (p.get_x() + p.get_width() / 2., height),
                              ha='center', va='bottom',
                              fontsize=fontsize, color='black', xytext=(0, 3),
                              textcoords='offset points')
         # Apply clean style
         sns.set(style="whitegrid", palette="muted", font_scale=1.1)
         # Average PnL by Sentiment
         fig, ax = plt.subplots(figsize=(8,5))
         sns.barplot(data=summary, x='classification', y='avg_pnl', ax=ax)
         annotate_bars(ax, fmt="{:.2f}")
         ax.set_title("Average PnL by Market Sentiment")
         ax.set_ylabel("Average PnL (USD)")
         ax.set_xlabel("Market Sentiment")
         plt.xticks(rotation=20)
         plt.tight_layout()
         plt.savefig("outputs/avg_pnl_by_sentiment.png", dpi=300)
         plt.show()
         # Win Rate by Sentiment
         fig, ax = plt.subplots(figsize=(8,5))
```

```
sns.barplot(data=summary, x='classification', y='win_rate', ax=ax)
annotate_bars(ax, fmt="{:.1%}") # win_rate is in proportion
ax.set_title("Win Rate by Market Sentiment")
ax.set_ylabel("Win Rate (%)")
ax.set_xlabel("Market Sentiment")
ax.set ylim(0, 1)
plt.xticks(rotation=20)
plt.tight layout()
plt.savefig("outputs/win_rate_by_sentiment.png", dpi=300)
plt.show()
# Average Trade Value by Sentiment
fig, ax = plt.subplots(figsize=(8,5))
sns.barplot(data=summary, x='classification', y='avg_trade_value', ax=ax)
annotate_bars(ax, fmt="{:,.0f}") # no decimals, commas for thousands
ax.set_title("Average Trade Value by Market Sentiment")
ax.set_ylabel("Average Trade Value (USD)")
ax.set_xlabel("Market Sentiment")
plt.xticks(rotation=20)
plt.tight_layout()
plt.savefig("outputs/avg_trade_value_by_sentiment.png", dpi=300)
plt.show()
# Total Volume by Sentiment
fig, ax = plt.subplots(figsize=(8,5))
sns.barplot(data=summary, x='classification', y='total_volume', ax=ax)
annotate_bars(ax, fmt="{:,.0f}")
ax.set_title("Total Volume by Market Sentiment")
ax.set_ylabel("Total Volume (USD)")
ax.set xlabel("Market Sentiment")
plt.xticks(rotation=20)
plt.tight layout()
plt.savefig("outputs/total_volume_by_sentiment.png", dpi=300)
plt.show()
print("Annotated charts saved in 'outputs/' folder")
```









Annotated charts saved in 'outputs/' folder

```
In [23]: # 1. Trades count
         fig = plt.figure()
         summary.plot(kind='bar', x='classification', y='trades_count', legend=Fal
         plt.title('Trades count by sentiment')
         plt.ylabel('Number of trades')
         save_fig(fig, 'trades_count_by_sentiment.png')
         plt.show()
         # 2. Avg PnL
         fig = plt.figure()
         summary.plot(kind='bar', x='classification', y='avg_pnl', legend=False)
         plt.title('Average Closed PnL by sentiment')
         plt.ylabel('Avg Closed PnL (USD)')
         save_fig(fig, 'avg_pnl_by_sentiment.png')
         plt.show()
         # 3. Total volume
         fig = plt.figure()
         summary.plot(kind='bar', x='classification', y='total_volume', legend=Fal
         plt.title('Total traded volume (USD) by sentiment')
         plt.ylabel('Total Volume (USD)')
         save_fig(fig, 'total_volume_by_sentiment.png')
         plt.show()
```

Saved: /Users/ranjeetamashal/Desktop/ds\_ranjeetamashal/outputs/trades\_coun
t\_by\_sentiment.png
<Figure size 640x480 with 0 Axes>



Saved: /Users/ranjeetamashal/Desktop/ds\_ranjeetamashal/outputs/avg\_pnl\_by\_sentiment.png

<Figure size 640x480 with 0 Axes>



Saved: /Users/ranjeetamashal/Desktop/ds\_ranjeetamashal/outputs/total\_volume\_by\_sentiment.png

<Figure size 640x480 with 0 Axes>



```
In [24]: # Compute per-account stats
acct_cols = {
        'num_trades': ('trade_id','count') if 'trade_id' in merged.columns el
        'total_pnl': ('closed_pnl','sum'),
        'avg_pnl': ('closed_pnl','mean'),
        'win_rate': ('is_win','mean'),
        'avg_trade_value': ('trade_value','mean'),
        'total_volume': ('trade_value','sum')
}

per_account = merged.groupby('account').agg(**acct_cols).reset_index()

# Mark profitable vs not
per_account['profitable'] = per_account['total_pnl'] > 0

# Save
per_account.to_csv(os.path.join(CSV_DIR, 'per_account_metrics.csv'), indeper_account.head()
```

Out [24]: account num\_trades total\_pnl 0x083384f897ee0f19899168e3b1bec365f52a9012 3818 1.600230e+06 419 0x23e7a7f8d14b550961925fbfdaa92f5d195ba5bd 4.788532e+04 1 7280 6 3809 -7.043619e+04 -18 **2** 0x271b280974205ca63b716753467d5a371de622ab 0x28736f43f1e871e6aa8b1148d38d4994275d72c4 13311 1.324648e+05 ( 0x2c229d22b100a7beb69122eed721cee9b24011dd 3239 1.686580e+05 5

|   | classification   | profitable | trades_count | avg_pnl     | avg_trade_value | win_rate |
|---|------------------|------------|--------------|-------------|-----------------|----------|
| 0 | Extreme Fear     | False      | 1598         | -6.621660   | 8185.814718     | 0.367960 |
| 1 | Extreme Fear     | True       | 19705        | 54.956376   | 5244.630838     | 0.421923 |
| 2 | Extreme<br>Greed | False      | 260          | 52.585505   | 3151.748846     | 0.323077 |
| 3 | Extreme<br>Greed | True       | 39920        | 65.166555   | 3164.964646     | 0.464178 |
| 4 | Fear             | False      | 3452         | 44.074293   | 3197.688705     | 0.331402 |
| 5 | Fear             | True       | 58058        | 46.778595   | 8186.815518     | 0.425971 |
| 6 | Greed            | False      | 2075         | -172.238530 | 3563.271706     | 0.534458 |
| 7 | Greed            | True       | 46593        | 60.027428   | 5625.569299     | 0.386904 |
| 8 | Neutral          | False      | 1840         | -36.468069  | 7116.578114     | 0.194022 |
| 9 | Neutral          | True       | 37723        | 36.294198   | 4735.763774     | 0.370729 |
|   |                  |            |              |             |                 |          |

```
In [26]: # pivot for bar plot
    pivot = pc.pivot(index='classification', columns='profitable', values='av
    fig = plt.figure()
    pivot.plot(kind='bar')
    plt.title('Average PnL: Profitable vs Not - by sentiment')
    plt.ylabel('Avg Closed PnL (USD)')
    save_fig(fig, 'avgpnl_profitable_vs_not_by_sentiment.png')
    plt.show()
```

Saved: /Users/ranjeetamashal/Desktop/ds\_ranjeetamashal/outputs/avgpnl\_prof
itable\_vs\_not\_by\_sentiment.png
<Figure size 640x480 with 0 Axes>



classification

pnl\_fear = merged.loc[merged['classification'].str.contains('Fear', na=Fa

```
pnl_greed = merged.loc[merged['classification'].str.contains('Greed', na=
         print("N fear:", len(pnl_fear), "N greed:", len(pnl_greed))
         # Mann-Whitney U
         u_stat, p_value = stats.mannwhitneyu(pnl_fear, pnl_greed, alternative='tw
         print("Mann-Whitney U stat:", u_stat, "p-value:", p_value)
        N fear: 82813 N greed: 88848
        Mann-Whitney U stat: 3648592583.5 p-value: 0.001625431202902836
In [33]: import matplotlib.pyplot as plt
         import seaborn as sns
         from scipy import stats
         # Select Fear & Greed trades
         pnl_fear = merged.loc[merged['classification'].str.contains('Fear', na=Fa
         pnl_greed = merged.loc[merged['classification'].str.contains('Greed', na=
         # Statistical Test
         print(f"N Fear trades: {len(pnl_fear)}, N Greed trades: {len(pnl_greed)}"
         u_stat, p_value = stats.mannwhitneyu(pnl_fear, pnl_greed, alternative='tw
         print(f"Mann-Whitney U statistic: {u_stat:.2f}, p-value: {p_value:.6f}")
         if p_value < 0.05:
```

In [27]: # take two groups

N Fear trades: 82813, N Greed trades: 88848 Mann-Whitney U statistic: 3648592583.50, p-value: 0.001625 Statistically significant difference in PnL between Fear & Greed periods.

/var/folders/vb/bg19thz9629cgzg6f4mnrlg00000gn/T/ipykernel\_45042/111657300
9.py:22: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be remove d in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x=merged['classification'].where(merged['classification'].st
r.contains('Fear|Greed', na=False)),



```
if 'leverage' in merged.columns:
    lev_by_sent = merged.groupby('classification')['leverage'].describe()
    display(lev_by_sent)
    lev_by_sent.to_csv(os.path.join(CSV_DIR,'leverage_by_sentiment.csv'),
```

```
In [29]: # top 1% by trade value
    threshold = merged['trade_value'].quantile(0.99)
    large_trades = merged[merged['trade_value'] >= threshold]
```

```
print("Large trades count:", large_trades.shape[0])
         print(large_trades['classification'].value_counts())
        Large trades count: 2113
        classification
        Fear
                         984
        Greed
                         466
        Neutral
                         313
                         223
        Extreme Fear
        Extreme Greed
                         127
        Name: count, dtype: int64
In [30]: merged['trade_date'] = pd.to_datetime(merged['trade_date'])
         daily = merged.groupby('trade_date').agg(
             daily trades=('account','count'),
             daily_volume=('trade_value','sum'),
             daily_avg_pnl=('closed_pnl', 'mean'),
             daily_avg_sentiment=('value','mean')
         ).reset_index().sort_values('trade_date')
         # rolling 7-day
         daily['vol_7d'] = daily['daily_volume'].rolling(7, min_periods=1).mean()
         daily['pnl_7d'] = daily['daily_avg_pnl'].rolling(7, min_periods=1).mean()
         fig = plt.figure()
         plt.plot(daily['trade_date'], daily['vol_7d'])
         plt.title('7-day rolling volume')
         plt.xticks(rotation=30)
         save_fig(fig, 'rolling_volume_7d.png')
         plt.show()
```

Saved: /Users/ranjeetamashal/Desktop/ds\_ranjeetamashal/outputs/rolling\_volume\_7d.png

