INFORMAZIONE E RAPPRESENTAZIONE

Fondamenti di Programmazione 2022/2023

Cos'è l'informazione

Abbiamo detto che l'informatica rappresenta la convergenza di due aspetti distinti:

l'informazione e la sua elaborazione automatica

- Cosa è esattamente l'informazione?
- Cosa è la sua rappresentazione in un sistema di elaborazione?

Cos'è l'informazione

- La parola *informazione* è molto generale
 - Qualunque notizia o elemento di conoscenza
 - E' qualcosa che se fornita,

dà conoscenza -> dissipa i dubbi -> aumenta la certezza

«L'informazione è tutto ciò che può consentire di ridurre il nostro grado di incertezza su un evento che si può verificare» (Shannon)

Informazione come...Scelta

- Il concetto di informazione è legato indissolubilmente al concetto di scelta
- Quando si ha informazione? -> Quando c'è una scelta!

Informazione → scelta

Quando si riceve informazione, ogni simbolo ricevuto permette di "eliminare alternative", escludendo altri simboli possibili ed il loro significato associato.

Informazione come...Scelta

Si può dire in modo equivalente:

Se non esiste scelta non c'è informazione»

«solo dove esiste una scelta si ha informazione» oppure:

«quanto più ampia è la scelta, maggiore è l'informazione che si riceve».

L'informazione, quindi, riduce l'incertezza di una scelta

- 1. La luce è accesa
- La luce si può trovare in uno dei due possibili stati {accesa, spenta};
- dire che la luce è accesa significa dare un'informazione, precisare che assume uno tra i due stati possibili.
- Situazione più semplice in assoluto: numero minimo di alternative
- Si parla di scelta binaria: la quantità di informazione ad essa associata è la più piccola in assoluto e viene detta bit.

2. la luce accesa del semaforo è VERDE

- Il VERDE è la <u>scelta</u> tra le possibili nell'insieme: {VERDE, ROSSO, GIALLO};
- Scelta più ampia (3 alternative) → aumento della quantità di informazione associata

 Osserva: Nessun altro valore che non fa parte dell'insieme può essere usato per fornire l'informazione sul colore della luce accesa!

3. Mario ha 37 anni

L'informazione associata a questa frase è maggiore o minore delle precedenti?

 MAGGIORE! Dal momento che l'età di una persona può assumere valori interi compresi tra 0 e 130

L'informazione: elementi

- Valore dell'informazione
 - Un elemento tra le possibili scelte

- Tipo dell'informazione
 - Insieme degli elementi tra i quali si compie la scelta
 - Insieme finito!
 - Non esiste un'informazione senza tipo e valore

Ogni informazione ha un valore ed un tipo

L'informazione: elementi

- Oltre al tipo e al valore,
- l'informazione è caratterizzata da un attributo, che rappresenta il significato dell'informazione stessa, un nome che ne chiarisce il significato → cioè descrive la "semantica"

- Domande da porsi:
 - «Cosa significa il valore?»
 - «Quale è il nome da dare all'attributo affinché il valore assunto sia significativo?»

La definizione di informazione

- Da un punto di vista formale un'informazione può essere considerata una terna l={Attributo, Tipo, Valore} dove:
 - Attributo descrive il significato associato all'informazione: chiarisce il ruolo che assume l'informazione nel contesto in cui viene usata
 - Consente di capire di cosa si tratta e mediante un identificativo associato, la distingue da altre informazioni.
 - Tipo è l'insieme (finito) formato da tutti i possibili valori che l'informazione può assumere
 - Valore è lo specifico elemento all'interno del Tipo che l'informazione

La definizione di informazione: esempi

• I_1 = {Attributo= 'luce', Tipo ={accesa, spenta}, Valore= accesa}

I₂ ={Attributo=`semaforo', Tipo ={verde, giallo, rosso}, Valore= verde}

- I_3 = {Attributo = `età di Mario', Tipo = {n ∈ N | 0 ≤ n ≤ 130}, Valore = 37},
 - dove Nè l'insieme dei numeri interi positivi.

Cardinalità del tipo

- Bisogna prestare attenzione alla cardinalità del tipo (di quanti elementi esso si compone)
- Un tipo deve essere finito, altrimenti non potrà essere adeguatamente rappresentato in un calcolatore elettronico o su un qualunque altro mezzo o supporto fisico.

La rappresentazione è il risultato di un procedimento che adotta delle regole per trovare una codifica non ambigua dell'informazione in un particolare linguaggio.

Si consideri:

 I_3 = {Attributo= `età di Mario', Tipo = {n \in N | 0 \leq n \leq 130}, Valore= 37}

L'età di Mario può essere equivalentemente rappresentata in uno dei seguenti modi:

trentasette: lettere nella lingua italiana;

• 37: un numero nel sistema decimale;

■ XXXVII: numero nel sistema di numerazione romano;

thirthy-seven: lettere in lingua inglese;

■ 100101: numero nel sistema binario

- Quante altre tecniche di rappresentazione?
- Infinite! Ma per trasferire un'informazione tra chi la produce e chi la consulta deve essere noto il metodo di rappresentazione usato.
 - Ad esempio: senza dichiarare il metodo di rappresentazione, la frase «l'età di Mario è 100101» potrebbe generare confusione.

- Tra tutti i metodi adottabili, quello certamente più importante nei sistemi informatici è la rappresentazione binaria.
- Essa si basa sulla rappresentazione nelle due cifre binarie (0 e 1), dette digit da cui il termine rappresentazione digitale

- La stessa informazione potrebbe essere rappresentata in diversi modi
 - "il numero 5": V, 5.00, 101, IIIII, cinque, five, ...
- La stessa rappresentazione/codifica può essere usata per informazioni differenti
 - Nel linguaggio naturale, la parola italiana «pesca»
- L' informazione deve essere "comprensibile" affinchè chi riceve tale informazione sia capace di interpetare quello che il mittente ha inviato
- E' importante conoscere il sistema di codifica (o codifica o codice).

 Rappresenta il processo che porta ad assegnare una rappresentazione all'informazione.

- Un sistema di codifica usa un insieme di simboli (alfabeto),
 combinazioni di questi simboli (configurazioni, stati, stringhe).
- Ogni informazione è rappresentata da una combinazione di questi simboli e ha un significato associato

Dato un insieme di simboli

Identificare:

```
{ Configurazioni } { Valori}
```

Associare gli elementi dei 2 insiemi

- **Definizione**: Sia data un'informazione di tipo T di cardinalità n, e un alfabeto di k simboli $A = \{s_1, s_2, ..., s_k\}$; sia inoltre S l'insieme di tutte le stringhe (o configurazioni) composte da m simboli di A.
- La codifica di T è una funzione C(T) che ad ogni valore $v \in T$ possibile dell'informazione associa una stringa $\sigma \in S$; ovvero:

$$C: \forall v \in T, v \rightarrow \sigma \in S$$

Particolarmente importanti sono le codifiche che a valori diversi associano stringhe codificate diverse:

$$C: \forall v_1, v_2 \in T, v_1 \rightarrow \sigma_1 \in S, v_2 \rightarrow \sigma_2 \in S, v_1 \neq v_2 \Longrightarrow \sigma_1 \neq \sigma_2$$

Rappresentazione delle informazioni numeriche

Rappresentazione dei numeri naturali

- La modalità di rappresentazione dei numeri (naturali) che noi usiamo di consueto corrisponde ad un sistema posizionale e pesato.
- L'alfabeto è composto da 10 cifre (0, 1, 2, ..., 9) ed ogni sequenza corrisponde ad un numero che è la somma pesata delle cifre che la costituiscono.
- $3707 = 3 \times 10^3 + 7 \times 10^2 + 0 \times 10^1 + 7 \times 10^0$
- Fondamentale la presenza dello 0

Rappresentazione dei numeri naturali

La nostra modalità consueta assume 10 come base di numerazione b:

Cifre: 0 1 2 3 4 5 6 7 8 9

Pesi: potenze di 10

• Unica base 10? Che succede se b=8?

Cifre: 0 1 2 3 4 5 6 7

Pesi: potenze di 8

■ Esempio: $757_8 = 7 \times 8^2 + 5 \times 8^1 + 7 \times 8^0 = \text{quattrocentonovantacinque} = 495_{10}$

Rappresentazione dei numeri naturali

- In generale, per una base b:
 - Cifre: 0 1 2 3 ... b-1
 - Pesi: potenze di b (b⁰, b¹, b², b³, ...)
 - La sequenza di cifre $\mathbf{c_k c_{k-1} ... c_0}$ rappresenta il numero $\mathbf{c_k \times b^k + c_{k-1} \times b^{k-1} + ... + c_1 \times b^1 + c_0 \times b^0}$
- Per cui, una sequenza di cifre può indicare numeri diversi, a seconda della base impiegata:
 - $357_{10} = 3 \times 10^2 + 5 \times 10^1 + 7 \times 10^0$
 - $357_8 = 3 \times 8^2 + 5 \times 8^1 + 7 \times 8^0$

Base di numerazione 2

- Che succede per b = 2?
 - Cifre: 0 1
 - Pesi: potenze di 2 (2⁰, 2¹, 2², 2³, ...)

• Quelle cifre ci ricordano qualcosa?

Conversione di base

 Convertire in base 10 un numero rappresentato in base 2 è semplice:

■
$$10011_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 16 + 2 + 1 = 19_{10}$$

- Come convertire in base b un numero rappresentato in base 10?
- Dato un numero T, vogliamo ottenere la sequenza di cifre in base b $\mathbf{c_k c_{k-1}...c_0}$ tale che

$$c_k \times b^k + c_{k-1} \times b^{k-1} + ... + c_1 \times b + c_0 = T$$

Conversione di base

• Se dividiamo T per b: $T = Q_0 \times b + r$ (con r < b)

$$T = c_k \times b^k + c_{k-1} \times b^{k-1} + ... + c_1 \times b + c_0 =$$

$$= (c_k \times b^{k-1} + c_{k-1} \times b^{k-2} + ... + c_1) \times b + c_0$$

- **E** quindi: $Q_0 = c_k \times b^{k-1} + c_{k-1} \times b^{k-2} + ... + c_1$ e $r = c_0$
- Se dividiamo T per b otteniamo un quoziente Q_0 ed un resto che costituisce la prima cifra della sequenza (c_0)
- Possiamo applicare la stessa operazione a Q₀, ottenendo un quoziente Q₁ ed un resto che coincide con c₁
- Ripetiamo il procedimento finché si ottiene un quoziente nullo.

$573_{10}:2_{10} \Rightarrow$	quoziente	286 ₁₀	resto 1
$286_{10}:2_{10} \Rightarrow$	quoziente	143 ₁₀	resto o
$143_{10}:2_{10} \Rightarrow$	quoziente	71 ₁₀	resto 1
$71_{10}:2_{10}\implies$	quoziente	3510	resto 1
$35_{10}:2_{10} \Rightarrow$	quoziente	17 ₁₀	resto 1
$17_{10}:2_{10}\implies$	quoziente	8_{10}	resto 1
$8_{10}:2_{10} \Rightarrow$	quoziente	4_{10}	resto o
$4_{10}:2_{10} \Rightarrow$	quoziente	2 ₁₀	resto o
$2_{10}:2_{10}\implies$	quoziente	1,10	resto o
1_{10} : 2_{10} \Rightarrow	quoziente	O_{10}	resto 1

 $1\ 000\ 111\ 101_2 = 573_{10}$

Esercizio

- Convertire 27 in base 3
- Convertire 31 in base 2

Base 8 e base 16

- Le considerazione fatte per le basi decimale e binaria si possono estendere ad altre basi.
- Due basi comunemente usate sono ottale e esadecimale
 - Ottale: 0, 1, 2, 3, 4, 5, 6, 7
 - Esadecimale: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Utili per rappresentare sinteticamente i valori binari

- Siccome 8 = 2³, esiste un modo rapido per la conversione di base da 2 a 8
 - 1. Si considera il numero in base 2 e, partendo da destra, si divide in gruppi di 3 cifre binarie. Se dopo l'operazione avanzano una o due cifre si aggiungono tanti zeri quanti bastano a coprire un gruppo di tre
 - 2. Ogni gruppo va poi convertito nella corrispondente cifra ottale.
- Esempi:
 - 11101101₂ = [11] [101] [101] = [011] [101] [101] = 355₈
 - 1100110011₂ = [1] [100] [110] [011] = [001] [100] [110] [011] = 1463₈

- In maniera analoga si realizza la conversione da base 8 a base 2
 - Dato un numero rappresentato in base 8, si sostituisce ogni cifra ottale con la terna di cifre binarie che rappresenta quella cifra in base 2, eliminando alla fine eventuali 0 a sinistra

Esempi:

- 756₈ = [111] [101] [110] = 1111011110₂
- 134₈ = [001] [011] [100] = 001011100₂ = 1011100₂

- Siccome 16 = 2⁴, esiste un modo rapido anche per la conversione di base da 2 a 16
 - 1. Si considera il numero in base 2 e, partendo da destra, si divide in gruppi di 4 cifre binarie. Se dopo l'operazione avanzano una, due o tre cifre si aggiungono tanti zeri quanti bastano a coprire un gruppo di quattro
 - 2. Ogni gruppo va poi convertito nella corrispondente cifra esadecimale.
- Esempi:
 - \blacksquare 11101101₂ = [1110] [1101] = ED₁₆
 - $1100110011_2 = [11][0011][0011] = [0011][0011][0011] = 333_{16}$

- In maniera analoga si realizza la conversione da base 16 a base 2
 - Dato un numero rappresentato in base 16, si sostituisce ogni cifra esadecimale con la quaterna di cifre binarie che rappresenta quella cifra in base 2, eliminando alla fine eventuali 0 a sinistra

Esempi:

- \blacksquare 7A4₁₆ = [0111] [1010] [0100] = 011110100100₂ = 11110100100₂
- $13C_{16} = [0001] [0011] [1100] = 000100111100_2 = 100111100_2$

Quale base usare?

Decimale

naturale per gli esseri umani.

Binaria

rappresentazione ottimale per il calcolatore

Esadecimale

utile (agli esseri umani) per esaminare lunghe stringhe di bit

Vediamo che succede in base 2 ...

Rappresentazione binaria dei numeri naturali

- Consideriamo una rappresentazione che sia basata su un numero prefissato di cifre (chiamiamolo m).
- Qual è l'intervallo di numeri naturali che posso rappresentare?

00	000	0000		
01	001	0001		
10	010	0010	$m = 2 \rightarrow$	[0,3]
11	011	0011	$m = 3 \rightarrow$	[0,7]
	100	0100	$m = 4 \rightarrow$	[0,15]
	101	0101	•••	
	110	0110		
	111	0111		
		1000		
		1001		
		1010		
		1011		
		1100		
		1101		
		1110		
		1111		

Domande fondamentali

- Quanti valori distinti è possibile rappresentare?
- Qual è il valore minimo che è possibile rappresentare?
- Qual è il valore massimo che è possibile rappresentare?

m	Numero valori	Minimo	Massimo
2	4	0	3
3	8	0	7
4	16	0	15

lacktriangle Possibile ricavare delle relazioni generali in funzione di m?

- Che cosa cambia quando si eseguono in base 2 le familiari operazioni aritmetiche? (demo)
- Si svolgono in maniera analoga a quanto si fa in base 10.

+	0	1
0	0	1
1	1	10

*	0	1
0	0	0
1	0	1

"tavola pitagorica" in base 2

lacktriangle Non ci sono problemi nel caso in cui l'operazione produce un risultato rappresentabile su m cifre

Esempio: *m*=8

■ Se l'operazione fornisce un risultato R non rappresentabile su m cifre, si produce un riporto uscente, mentre la parte restante sulle m cifre risulta essere uguale a $R \mod 2^m$

Esempio: *m*=8

366 mod 2⁸

Se fissiamo il numero delle cifre m, avremo un'aritmetica caratterizzata da una congruenza mod 2^m

- Supponiamo m=5
 - Avremo 30+4=2

Se fissiamo il numero delle cifre m, avremo un'aritmetica caratterizzata da una congruenza mod 2^m

- Supponiamo m=5
 - Avremo 2-4=30

- Un'addizione tra numeri naturali può generare un riporto uscente (detto anche carry)
- Una sottrazione tra numeri naturali può generare un prestito uscente (detto anche borrow)
- lacktriangle In entrambi i casi il risultato non è rappresentabile su m cifre

Rappresentazione dei numeri interi

- Nell'affrontare la rappresentazione dei numeri interi va ricordato che si ha a che fare con numeri relativi
- Diverse possibili rappresentazioni:
 - Rappresentazione in segno e modulo
 - Rappresentazione in complementi alla base

Rappresentazione in segno e modulo

Soluzione più immediata: si rappresentano separatamente il segno ed il modulo del numero da rappresentare

Problemi:

- dove mettere il segno ?
- doppia rappresentazione per lo zero (+0, -0)
- operazioni alquanto complicate

Rappresentazione in segno e modulo

Domande fondamentali

- \blacksquare Quanti valori distinti è possibile rappresentare con m cifre?
- Qual è il valore minimo che è possibile rappresentare?
- Qual è il valore massimo che è possibile rappresentare?

Osservazione: che cosa succede con i numeri naturali quando si sottrae un numero da 0? (Es. 9)

- Una stessa sequenza di cifre potrebbe rappresentare un numero positivo o un numero negativo.
 - Esempio: 10111 potrebbe rappresentare +23 o -9
- Ovviamente questo non è possibile e quindi dobbiamo decidere quali sequenze rappresentino numeri positivi e quali numeri negativi

	X	rappresentazione
	+0	00000
	+1	00001
	+2	00010
+	+3	00011
	+14	01110
1	+15	01111
	-16	10000
	-15	10001
•	-14	10010
_		
	-3	11101
	-2	11110
+	-1	11111

- Assumiamo quindi come rappresentazione del numero negativo x su m cifre il valore in binario $2^m + x$
- Come ripartiamo le 2^m configurazioni di m cifre tra valori positivi, valori negativi e 0?
- Scelta simmetrica:
 - $2^m/2$ valori positivi (incluso lo zero)
 - $-2^m/2$ valori negativi

Rappresentazione di $oldsymbol{x}$							
\boldsymbol{x}	se $x \ge 0$						
$2^{m} + x$	se $x < 0$						

Domande fondamentali

- Quanti valori distinti è possibile rappresentare con m cifre?
- Qual è il valore minimo che è possibile rappresentare?
- Qual è il valore massimo che è possibile rappresentare?

Calcolo rapido del complemento alla base

- Per ottenere rapidamente la rappresentazione in complemento alla base di un numero negativo su m bit
 - si estrae la rappresentazione del valore assoluto del numero su m bit
 - si complementano le cifre ad una ad una (i.e. 0 diventa 1 e 1 diventa 0)
 - si aggiunge 1
- Es.: complemento alla base su 8 bit di -33

Aritmetica sugli interi in complementi

- Le addizioni si realizzano direttamente sulle rappresentazioni in quanto Rappr(x+y)=Rappr(x)+ Rappr(y)
- Anche le sottrazioni si valutano tramite addizioni, ponendo x-y come x+(-y); di conseguenza Rappr(x-y)= Rappr(x)+ Rappr(-y)
- Nel caso in cui l'operazione produce un numero al di fuori dell'intervallo di rappresentazione si ha un overflow
- Molto più semplice rispetto alle operazioni in segno e modulo

Aritmetica sugli interi in complementi

- 6 - 3 + 7

1 0 1 0 + 1 1 0 1 = 0 1 1 1

overflow

Rappresentazione dell'informazione

Rappresentazione delle informazioni non numeriche

Non solo numeri ...

- Oltre ai tipi numerici, è necessario rappresentare anche altri tipi di informazione non numerici.
- Esempi:
 - Colori, note musicali, ...
- Possibile utilizzare una codifica che utilizzi gli stessi elementi?
- Rivediamo quanto avevamo detto sulla codifica ...

 Rappresenta il processo che porta ad assegnare una rappresentazione all'informazione.

- Un sistema di codifica usa un insieme di simboli (alfabeto),
 combinazioni di questi simboli (configurazioni, stati, stringhe).
- Ogni informazione è rappresentata da una combinazione di questi simboli e ha un significato associato

Dato un insieme di simboli

Identificare:

```
{ Configurazioni } { Valori}
```

Associare gli elementi dei 2 insiemi

- Definizione: Sia data un'informazione di tipo T di cardinalità n, e un alfabeto di k simboli $A = \{s_1, s_2, ..., s_k\}$; sia inoltre S l'insieme di tutte le stringhe (o configurazioni) composte da m simboli di A.
- La codifica di T è una funzione C(T) che ad ogni valore $v \in T$ possibile dell'informazione associa una stringa $\sigma \in S$; ovvero:

$$C: \forall v \in T, v \rightarrow \sigma \in S$$

Particolarmente importanti sono le codifiche che a valori diversi associano stringhe codificate diverse:

$$C: \forall v_1, v_2 \in T, v_1 \rightarrow \sigma_1 \in S, v_2 \rightarrow \sigma_2 \in S, v_1 \neq v_2 \Longrightarrow \sigma_1 \neq \sigma_2$$

In particolare, si considera una codifica su m bit, per cui:

```
• A = \{0,1\}
• S = \{0 ... 00, 0 ... 01, 0 ... 10, ..., 1 ... 11\} stringhe di m bit
```

- Se l'insieme T che si vuole codificare ha cardinalità n, affinché l'informazione si possa codificare in maniera biunivoca (i.e. a elementi distinti di T corrispondono elementi distinti di S e viceversa), la cardinalità di S deve essere maggiore o uguale a n
- In altre parole: $2^m \ge n$ per cui: $m = \lceil log_2 n \rceil$

Esempi

- lacktriangle Qual è il valore minimo di m per codificare in bit
 - l'insieme formato dalle sette note musicali
 - l'insieme formato dai giorni in un anno
 - caratteri

Rappresentazione dati: caratteri

- Si consideri l'insieme dei caratteri più comuni:
 - 26 lettere maiuscole + 26 minuscole ⇒ 52
 - 10 cifre
 - Circa 30 segni d'interpunzione
 - Circa 30 caratteri di controllo (EOF, CR, LF, ...)

circa 120 oggetti complessivi \Rightarrow k = $log_2 120$ = 7

- Codice ASCII: utilizza 7 bit e quindi può rappresentare al massimo
 2⁷=128 caratteri
 - Con 8 bit (= byte) si raddoppia rappresentando 256 caratteri (ASCII esteso)

Codifica ASCII a 7 bit

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
010	sp	!	"	#	\$	%	&	•	()	*	+	,	-	•	/
011	0	1	2	3	4	5	6	7	8	9	•	•	<	=	>	?
100	@	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	M	N	0
101	Р	Q	R	S	Т	U	V	W	X	Υ	Z	[١]	^	
110	`	a	b	С	d	е	f	g	h	I	j	k	l	m	n	O
111	р	q	r	S	t	u	٧	W	X	Υ	Z	{		}	~	del

- Come si legge?
- Il carattere "A" in codifica binaria corrisponde a 1000001

Codifica ASCII a 8 bit

		Il control		ASCII printable characters							Extended ASCII characters								
		aracters																	
00	NULL	(Null character)	70.00	2 space	64	@	96	•		128	Ç	160	á	192	L	224	Ó		
01	SOH	(Start of Header)	10000	3 !	65	Α	97	а		129	ü	161	ĺ	193	Τ.	225	ß		
02	STX	(Start of Text)	3	4 "	66	В	98	b		130	é	162	Ó	194	Т	226	Ô		
03	ETX	(End of Text)	3	5 #	67	С	99	С		131	â	163	ú	195	Ţ	227	Ò		
04	EOT	(End of Trans.)	3	6 \$	68	D	100	d		132	ä	164	ñ	196	_	228	Ö		
05	ENQ	(Enquiry)	3	7 %	69	E	101	е		133	à	165	Ñ	197	+	229	Õ		
06	ACK	(Acknowledgement)	3	8 &	70	F	102	f		134	å	166	a	198	ä	230	μ		
07	BEL	(Bell)	3	9 '	71	G	103	g		135	ç	167	0	199	Ã	231	þ		
08	BS	(Backspace)	4	0 (72	Н	104	h		136	ê	168	Š	200	L	232	Þ		
09	HT	(Horizontal Tab)	4	1)	73		105	i		137	ë	169	®	201	1	233	Ú		
10	LF	(Line feed)	4	2 *	74	J	106	j		138	è	170	7	202	止	234	Û		
11	VT	(Vertical Tab)	4	3 +	75	K	107	k		139	ï	171	1/2	203	īī	235	Ù		
12	FF	(Form feed)	4	4 ,	76	L	108	- 1		140	î	172	1/4	204	F	236	ý Ý		
13	CR	(Carriage return)	4	5 -	77	M	109	m		141	1	173	i	205	=	237	Ý		
14	SO	(Shift Out)	4	6.	78	N	110	n		142	Ä	174	«	206	#	238	-		
15	SI	(Shift In)	4	7 1	79	0	111	0		143	Α	175	>>	207		239			
16	DLE	(Data link escape)	4	8 0	80	P	112	р		144	É	176	#	208	ð	240	=		
17	DC1	(Device control 1)	4	9 1	81	Q	113	q		145	æ	177		209	Ð	241	±		
18	DC2	(Device control 2)		0 2	82	R	114	r		146	Æ	178		210	Ê	242			
19	DC3	(Device control 3)		1 3	83	S	115	s		147	ô	179	T	211	Ë	243	3/4		
20	DC4	(Device control 4)		2 4	84	Т	116	t		148	Ö	180	-	212	È	244	1		
21	NAK	(Negative acknowl.)		3 5	85	U	117	u		149	ò	181	À	213	- 1	245	§		
22	SYN	(Synchronous idle)		4 6	86	V	118	V		150	û	182	Â	214	ĺ	246	÷		
23	ETB	(End of trans. block)		5 7	87	W	119	w		151	ù	183	À	215	Î	247			
24	CAN	(Cancel)		6 8	88	Х	120	X		152	ÿ	184	©	216	Ï	248	0		
25	EM	(End of medium)		7 9	89	Υ	121	У		153	Ö	185	4	217	J	249			
26	SUB	(Substitute)		8 :	90	Z	122	z		154	Ü	186		218	Г	250			
27	ESC	(Escape)		9 ;	91	[123	{		155	Ø	187		219		251	1		
28	FS	(File separator)	6	0 <	92	Ĭ	124	i		156	£	188]	220		252	3		
29	GS	(Group separator)	6	1 =	93	1	125	}		157	Ø	189	¢	221	T	253	2		
30	RS	(Record separator)	6	2 >	94	Ā	126	~		158	×	190	¥	222	ĺ	254			
31	US	(Unit separator)	6	3 ?	95	_				159	f	191	7	223		255	nbsp		
127	DEL	(Delete)																	

