Ch 9.1: Maximum Margin Classifier

Lecture 25 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Weds, Nov 16, 2022

Announcements

Last time:

• Ch 8: Random Forests

This lecture:

- Maximal Margin Classifier
- No jupyter notebook for this class

Announcements:

- HW #8 Due Friday
- No class (virtual OH only) Weds, Nov 23

20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2	
21	М	Nov 7	Step Functions	7.2	
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4	
23	F	Nov 11	Decision Trees	8.1	HW #7 Due
24	М	Nov 14	Random Forests	8.2.1, 8.2.2	
25	W	Nov 16	Maximal Margin Classifier	9.1	
26	F	Nov 18	SVC	9.2	HW #8 Due
27	М	Nov 21	SVM	9.3, 9.4, 9.5	
28	W	Nov 23	Extended virtual office hours		
	F	Nov 25	No class - Thanksgiving		
29	М	Nov 28	Single layer NN	10.1	HW #9 Due
30	W	Nov 30	Multi Layer NN	10.2	
31	F	Dec 2	CNN	10.3	
32	М	Dec 5	Unsupervised Learning & Clustering	12.1, 12.4	HW #10 Due
	W	Dec 7	Review		
	F	Dec 9	Midterm #3	Bring your cheat sheet and a non-internet-connected calculator	

Section 1

Maximal Margin Classifier

The Island of Dr Brain

4 / 28

https://classicreload.com/island_of_dr_brain.html

Dr. Munch (MSU-CMSE) Weds, Nov 16, 2022

The goal

What is a hyperplane?

Dr. Munch (MSU-CMSE) Weds, Nov 16, 2022

Mathematical definition of a hyperplane

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p = 0$$

Hyperplane for p = 2

There are two sides to every hyperplane

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p < 0$$

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p > 0$$

Dr. Munch (MSU-CMSE)

Classification Setup

Data matrix:

$$X = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ & \vdots & \\ - & x_n^T & - \end{pmatrix}_{n \times p}$$

$$x_1 = \begin{pmatrix} x_{11} \\ \vdots \\ x_{1p} \end{pmatrix}, \cdots, x_n = \begin{pmatrix} x_{n1} \\ \vdots \\ x_{np} \end{pmatrix}$$

Observations in one of two classes, $y_i \in \{-1, 1\}$

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Separate out a test observation

$$x^* = (x_1^* \cdots x_p^*)^T$$

Separating Hyperplane

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} > 0 \text{ if } y_i = 1$$

 $eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} < 0 \text{ if } y_i = -1$

Another way to say it

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} > 0 \text{ if } y_i = 1$$

 $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} < 0 \text{ if } y_i = -1$

For all *i*:

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) > 0$$

Dr. Munch (MSU-CMSE) Weds, Nov 16

Separating hyperplane becomes a classifier

If you have a separating hyperplane:

Check

$$f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \dots + \beta_p x_p^*$$

- If positive, assign $\hat{y} = 1$
- If negative, assign $\hat{y} = -1$

Dr. Munch (MSU-CMSE

How do we pick?

Distance from an observation to a hyperplane

15 / 28

. Munch (MSU-CMSE) Weds, Nov 16, 2022

Maximal margin classifier

Example

- Sketch the maximal margin hyperplane.
- What is the equation of this line in the form $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$?
- Circle the support vectors. What is their distance from the line?

desmos.com/calculator/lqms253gfq

Extra work space

desmos.com/calculator/lqms253gfq

Dr. Munch (MSU-CMSE) Weds, Nov 16, 2022

Mathematical Formulation

$$\begin{aligned} & \underset{\beta_0,\beta_1,\dots,\beta_p,M}{\text{maximize}} \, M \\ & \text{subject to } \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \geq M \ \, \forall \, i = 1,\dots,n \end{aligned}$$

First constraint

Second constraint

- Blue circles: $y_i = -1$
- Red Xs: $y_i = 1$
- $-2\sqrt{2} + \frac{\sqrt{2}}{2}X_1 + \frac{\sqrt{2}}{2}X_1 = 0$

 $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}) \geq M$

An example with a bad choice of hyperplane

What is $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2})$ for the point $x_i = (0,3)$?

• Blue circles: $y_i = -1$

• Red Xs: $y_i = 1$

 $-\frac{4}{\sqrt{5}} + \frac{1}{\sqrt{5}}X_1 + \frac{2}{\sqrt{5}}X_1 = 0$

Second constraint extra space

• Blue circles: $y_i = -1$

• Red Xs: $y_i = 1$

$$-2\sqrt{2} + \frac{\sqrt{2}}{2}X_1 + \frac{\sqrt{2}}{2}X_1 = 0$$

 $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}) \ge M$

Dr. Munch (MSU-CMSE)

Mathematical Formulation

$$\begin{aligned} & \underset{\beta_0,\beta_1,\dots,\beta_p,M}{\text{maximize}} \, M \\ & \text{subject to } \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \geq M \ \, \forall \, i = 1,\dots,n \end{aligned}$$

Dr. Munch (MSU-CMSE)

Section 2

Issues with Maximal Margin Classifier

But what if....

Sensitivity to new points

Next time

	20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2		
	21	M	Nov 7	Step Functions	7.2		
	22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4		
	23	F	Nov 11	Decision Trees	8.1	HW #7 Due	
	24	M	Nov 14	Random Forests	8.2.1, 8.2.2		
	25	W	Nov 16	Maximal Margin Classifier	9.1		
	26	F	Nov 18	SVC	9.2	HW #8 Due	
	27	M	Nov 21	SVM	9.3, 9.4, 9.5		
	28	W	Nov 23	Extended virtual office hours			
		F	Nov 25	No class - Thanksgiving			
	29	M	Nov 28	Single layer NN	10.1	HW #9 Due	
	30	W	Nov 30	Multi Layer NN	10.2		
	31	F	Dec 2	CNN	10.3		
	32	M	Dec 5	Unsupervised Learning & Clustering	12.1, 12.4	HW #10 Due	
		W	Dec 7	Review			
		F	Dec 9	Midterm #3	non-interr	ing your cheat sheet and a non-internet-connected calculator	

Dr. Munch (MSU-CMSE) Weds, Nov 16, 2022