DASC 3240, L05 R and Rstudio – II: R basics

2024/25 SPRING SEMESTER

MASAYUKI USHIO, ASSISTANT PROFESSOR AT OCES USHIO@UST.HK (RM CYT-2013)

Outline (L05)

- 6. R basics
- 7. Package repositories
- 8. Hands-on
 - Creating objects in R
 - Data types
 - Missing data

R basics

SUMMARY OF KEY POINTS COMPARED WITH PYTHON

Difference btwn R & Python 1 | Creating an object

You can use "=" or "<-". Recommendation is "<-"

Difference btwn R & Python 2 | Indexing

Indexing start with "1", not "0"

indexing: getting a specific element

grades =
$$[88, 72, 93, 94]$$

slicing: selecting a set of elements

grades =
$$\begin{bmatrix} 88, 72, 93, 94 \end{bmatrix}$$

> grades[2:3]

Difference btwn R & Python 3 | No indent

• You can use "{}" for "for" loop and "if" statement.

```
# Create a for loop
for (i in 1:10) {
          print(i)
}

for (i in 1:10) { print(i) }

for (i in 1:10) print(i)
```

Difference btwn R & Python 3 | No indent

• You can use "{}" for "for" loop and "if" statement.

Go to "Tool" menu => "Global Options"

You have to make your code readable...

"iris" is a famous dataset included in R by default. After loading the "iris" dataset by typing "data(iris)", press "Shift + Enter" on Windows or "Command + Enter" on macOS to execute the command.

Console	Terminal ×	Jobs ×				-0
R 4.1	l.0 · ~/ ≈					A
iris						
Sep	al.Length	Sepal.Width	Petal.Length	Petal.Width	Species	
1	5.1	3.5	1.4	0.2	setosa	
2	4.9	3.0	1.4	0.2	setosa	
3	4.7	3.2	1.3	0.2	setosa	
4	4.6	3.1	1.5	0.2	setosa	
5	5.0	3.6	1.4	0.2	setosa	
6	5.4	3.9	1.7	0.4	setosa	
7	4.6	3.4	1.4	0.3	setosa	
8	5.0	3.4	1.5	0.2	setosa	
9	4.4	2.9	1.4	0.2	setosa	
10	4.9	3.1	1.5	0.1	setosa	
11	5.4	3.7	1.5	0.2	setosa	
12	4.8	3.4	1.6	0.2	setosa	
13	4.8	3.0	1.4	0.1	setosa	
14	4.3	3.0	1.1	0.1	setosa	
15	5.8	4.0	1.2	0.2	setosa	
16	5 7	4 4	1 5	0 4	setosa	

https://en.wikipedia.org/wiki/Iris_flower_d ata_set#/media/File:Iris_versicolor_3.jpg

Cons	ole	Terminal ×	Jobs ×				
R	R 4.1	0 ⋅ ~/ 🖈					8
> ir	cis						
	Sep	al.Length	Sepal.Width	Petal.Length	Petal.Width	Species	
1		5.1	3.5	1.4	0.2	setosa	
2		4.9	3.0	1.4	0.2	setosa	
3		4.7	3.2	1.3	0.2	setosa	
4		4.6	3.1	1.5	0.2	setosa	
5		5.0	3.6	1.4	0.2	setosa	
6		5.4	3.9	1.7	0.4	setosa	
7		4.6	3.4	1.4	0.3	setosa	
8		5.0	3.4	1.5	0.2	setosa	
9		4.4	2.9	1.4	0.2	setosa	
10		4.9	3.1	1.5	0.1	setosa	
11		5.4	3.7	1.5	0.2	setosa	
12		4.8	3.4	1.6	0.2	setosa	
13		4.8	3.0	1.4	0.1	setosa	
14		4.3	3.0	1.1	0.1	setosa	
15		5.8	4.0	1.2	0.2	setosa	
16		5 7	4 4	1 5	0 4	setosa	

Visualize the relationship between variables using plot() function.

- "\$" after "iris" is used to access a variable in the data frame.
- Visualize the relationship between
 "iris\$Sepal.Length" and "iris\$Sepal.Width"

Select the command, press "Shift+Enter" (Win) or "Command+Enter" (Mac). Then, the command will be executed and a plot will be shown at right-bottom.

Python

- PyPi (https://pypi.org/)
- Anaconda (https://anaconda.org/)

R

- CRAN (https://cran.r-project.org/)
- Bioconductor (https://www.bioconductor.org/)

Q Search Anaconda.org

anaconda / packages

The Comprehensive R Archive Network

R packages are registered in **The Comprehensive R Archive Network (CRAN)**https://cran.r-project.org/

Available CRAN Packages By Name

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Accurate, Adaptable, and Accessible Error Metrics for Predictive Mode	els
---	-----

aaSEA Amino Acid Substitution Effect Analyser

AATtools

Reliability and Scoring Routines for the Approach-Avoidance Task

ABACUS

Apps Based Activities for Communicating and Understanding Statistics

abbyyR Access to Abbyy Optical Character Recognition (OCR) API

abc Tools for Approximate Bayesian Computation (ABC)

<u>abc.data</u> Data Only: Tools for Approximate Bayesian Computation (ABC)

ABC.RAP Array Based CpG Region Analysis Pipeline

<u>abcADM</u> Fit Accumulated Damage Models and Estimate Reliability using ABC

ABCanalysis Computed ABC Analysis

<u>abcdeFBA</u>

ABCDE_FBA: A-Biologist-Can-Do-Everything of Flux Balance Analysis with this package

ABCoptim Implementation of Artificial Bee Colony (ABC) Optimization

ABCp2 Approximate Bayesian Computational Model for Estimating P2

- Select "Tools" in the RStudio menu bar → Select "Install Packages"
- Select "CRAN" in the "Install from" tab and input a package name you want to install
- Click "Install"

The Comprehensive R Archive Network

install.packages(XXXXX)

If (!require("BiocManager", quietly = TRUE))
 install.packages("BiocManager")
BiocManager::install("XXXXX", version ="XXX")

install.packages("remotes")
remotes::install_github("XXXXX")

install.packages("devtools")
devtools::install_github("XXXXX")

:: (specify namespace)

- In R, "::" is used to specify "namespace". In each namespace, many functions are defined. If you specify namespace, you can avoid conflicts (e.g., different packages define functions with the same name).
- "xxxx::yyyy" means that you will use a function "yyyy" defined by a package "xxxx"


```
install.packages("remotes")
remotes::install_github("XXXXX")
```

```
install.packages("devtools")
devtools::install_github("XXXXX")
```

Course materials

Option 1:

If you do not have R and RStudio in your PC, you can execute the code using Google Colab.

colab

Option 2:

If you have R and RStudio in your PC, you can download the code and open them using RStudio.

If you have a trouble(s), you can utilize a face-toface assistant opportunity in the tutorial.

Jupyter notebook

- Data Analysis and Visualization in R for Ecologists: https://datacarpentry.org/R-ecology-lesson
- R basics: https://datacarpentry.org/R-ecology-lesson/01-intro-to-r.html
- Zenodo archive: http://doi.org/10.5281/zenodo.3264888
- · License: https://github.com/datacarpentry/R-ecology-lesson?tab=License-1-ov-file

Contents

- 1. Creating objects in R
- 2. Vectors and data types
- 3. Missing data

Jupyter notebook

- If you cannot change the kernal (language), please try the following in R console.
 - Launch R or Rstudio
 - In R console, type

```
install.packages(c('repr', 'IRdisplay', 'evaluate', 'crayon', 'pbdZMQ', 'devtools', 'uuid', 'digest'))
install.packages('IRkernel')
IRkernel::installspec()
```

Data Carpentry

The contents of this lecture generally follow the tutorial below.

Data Analysis and Visualization in R for Ecologists

DATA CARPENTRY

BUILDING COMMUNITIES TEACHING UNIVERSAL DATA LITERACY

https://datacarpentry.org/ https://datacarpentry.github.io/R-ecology-lesson/ Licensed under CC-BY 4.0

Hands-on files

কা GPL-3.0 license

DASC3240 Data Visualization in Science

This repository contains lecture PDFs and R code for 2024-25 Spring Semester to learn data visualization using R and RStudio.

DASC3240_code

This folder contains R code files.

- L05 R Basics: Open in Colab or Download L05_Basics.Rmd
- L06 Data manipulation and ggplot2
- L07 Plot Basics