Сьогодні 10.10.2024

Υροκ №10

Нуклід. Ізотопи. Сучасне формулювання періодичного закону

Повідомлення мети уроку

Ви зможете:

- зрозуміти фізичну суть наявних у періодичній системі перестановок хімічних елементів;
 - зрозуміти поняття «ізотопи», «нуклід»;
 - з'ясувати фізичний зміст порядкового номера елемента в періодичній системі хімічних елементів;
 - формулювати сучасне визначення періодичного закону.

Актуалізація опорних знань

Заповніть схему:

ядро електрони

протони нейтрони

Мотивація навчальної діяльності

На час створення Д. І. Менделєєвим періодичної системи порядкові номери хімічних елементів не пов'язували з будовою атома. Їх наявність у таблиці була потрібна, щоб засвідчити послідовність розташування хімічних елементів за принципом зростання їхньої атомної маси. Та чи для всіх хімічних елементів порядок їх розміщення в періодичній системі відповідає збільшенню відносної атомної маси?

Робота з періодичною системою хімічних елементів

ПЕРЕСТАНОВКИ В ПЕРІОДИЧНІЙ СИСТЕМІ. Звернемося до періодичної системи й

побачимо, що в ній є декілька невідповідностей у розміщенні елементів за зростанням атомної маси. Наприклад, це стосується пар елементів із порядковими номерами:

a) 18 i 19;

б) 27 і 28;

в) 52 i 53;

r) 90 i 91.

Робота з періодичною системою хімічних елементів

Попрацюйте групами

Знайдіть ці елементи в періодичній системі та переконайтеся в тому, що в цих випадках елемент із меншою відносною атомною масою поступився місцем елементу, у якого вона є більшою. Поміркуйте, як виглядала б періодична система без цих перестановок та яким чином це відобразилося б на періодичності зміни властивостей елементів та їх розташуванні у природних родинах.

Вивчення нового матеріалу

Якби у випадку з Аргоном і Калієм першу перестановку не було зроблено, то інертний неметалічний елемент Аргон опинився б у підгрупі найактивніших лужних металічних елементів. Подібні невідповідності з'явилися б і в деяких інших місцях.

3 історії хімії

Генрі Ґвін Джефріс Мозлі

Наукове пояснення перестановки елементів у періодичній системі отримали після того, як у 1913-1914 рр. англійський фізик Генрі Мозлі (1887-1915) експериментально підтвердив періодичний закон. Завдяки його дослідженням було встановлено, що всі хімічні елементи (без винятку!) розміщено в періодичній системі за зростанням заряду ядер їхніх атомів. Тобто порядковий номер (протонне число) елемента в періодичній системі вказує на таку його важливу характеристику, як величина заряду ядра атома.

Сьогодні

Вивчення нового матеріалу

Оскільки позитивний заряд ядра врівноважується негативним зарядом електронів, що утворюють електронну оболонку атома, то протонне число (порядковий номер) елемента вказує також на загальне число електронів в атомі.

Це відкриття вчених дозволило сформулювати сучасне визначення періодичного закону.

Властивості елементів, а також утворених ними сполук перебувають у періодичній залежності від величини зарядів ядер їхніх атомів.

Робота в групах

Вправа 1. Скільки електронів містить атом елемента з протонним числом 15? До якого періоду та групи він належить? Який сусідній з ним по періоду елемент має на 2 електрони більше?

Вправа 2. Який заряд ядра та скільки електронів має атом, електронна оболонка якого складається з 11 електронів?

Вивчення нового матеріалу

Ядро кожного атома одного й того самого хімічного елемента містить однакову кількість протонів, що дорівнює порядковому номеру елемента в періодичній системі.

Оскільки атоми — нейтральні частинки, то й кількість електронів у них однакова з протонами, чого не можна сказати про нейтрони.

Число нейтронів у ядрах таких атомів може бути різним. Для розрізнення таких атомів уведено поняття нуклід.

Нуклід — це сукупність атомів з певним числом протонів і нейтронів у ядрі.

Сьогодні

Вивчення нового матеріалу

Нуклід — будь-який вид атома, що характеризується певним числом протонів та нейтронів.

нуклонне число (маса)

протонне число (порядковий номер)

A Z

16₈0

12₆C

⁴₂He

Сьогодні

Відносна атомна маса елемента

- Атом складається з протонів, нейтронів, електронів. Маса протона=1,
- Маса нейтрона = 1,
- Маса електрона дорівнює майже 0.
- Кількість протонів і нейтронів не може бути дробовим (не буває пів протона, чверть нейтрона)

Якою має бути маса атома, цілим числом чи дробовим?

3Li 3p 4n

3+4= 7, але Ar(Li)= 6,941 Чому?

З історії хімії

Англійський хімік Фредерик Содді в 1910 р. запропонував називати нукліди одного хімічного елемента ізотопами. У перекладі з грецької ізо означає «однаковий», топос — «місце».

Щоб не плутати поняття «нукліди» та «ізотопи», у 1950 р. була прийнята міжнародна домовленість про розмежування цих термінів.

Фредерик Содді

Поняття про ізотопи

Більшість елементів існує у вигляді кількох нуклідів. Називають ці нукліди ізотопами.

Ізотопи - це нукліди одного й того самого елемента.

Ізотопи - це різновиди атомів одного елемента, які мають однакові заряди ядер, але різні маси.

Ізотопи – це нукліди одного хімічного елемента, які мають однакове протонне число (заряд ядра), але різне нуклонне число (маса).

¹²₆C

Карбон-12

 $^{13}_{\ 6}{
m C}$

Карбон-13

146C

Карбон-13

Ізотопи Гідрогену

Ізотопи Літію

Ізотопи Хлору

35Cl

37 17 17

Поняття про ізотопи

Порівняйте будову ізотопів. Знайдіть спільні і відмінні ознаки.

 $^{63}_{29}$ Си, $^{65}_{29}$ Си - ізотопи Купруму

Спільне в будові ізотопів:

- 1. Заряд ядра
- 2. Кількість протонів
- 3. Кількість електронів

Відмінне в будові ізотопів:

- 1. Maca
- 2. Кількість нейтронів

ATOM STRUCTURE

WHAT IS AN ATOM?

Сьогодні

За рахунок чого ізотопи одного хімічного елемента мають різні нуклонні числа?

Зазначте, скільки протонів, нейтронів та електронів мають нукліди Калію: 39К, 40К, 41К.

Поясніть, чому в окремих клітинках періодичної системи хімічні елементи розташовано не за зростанням відносної атомної маси.

У «Хімічній енциклопедії» подано такі відомості про Магній: «складається з трьох стабільних ізотопів: 24Мg (78,6 %), 25Mg (10,11 %), 26Mg (11,29 %)». Обчисліть за цими даними середню відносну атомну масу Магнію та порівняйте її із зазначеною в періодичній системі хімічних елементів.

Робота в зошиті

Обчисліть, скільки нейтронів має кожний з нуклідів Оксигену: $N(^{16}_{8}O)$ -?

N(17₈O) - ?

N(18₈O) - ?

Кількість нейтронів (N) обчислюємо за формулою : N = A - Z , де A- нуклонне число, а Z – протонне число.

$$N(^{16}_{8}O) = 16 - 8 = 8$$

$$N(^{17}_{8}O) = 17 - 8 = 9$$

$$N(^{18}_{8}O) = 18 - 8 = 10$$

Робота в зошиті

Прокоментуйте запис якомога більшою кількістю наукової інформації: ¹³⁰Ва, ¹³²Ва, ¹³⁴Ва, ¹³⁸Ва.

Нукліди запропонуваного ряду є ізотопами хімічного елемента Барій з протонним числом (порядковий номер елемента) 56 і числом електронів 56. Нуклонні числа згідно формул запропонованих ізотопів є такими:130,132, 134 і 138. Оскільки нейтронне число є різницею нуклонного та протонного чисел, тому у ядрах атомів запропонуваних ізотопів будуть міститися відповідно 74,76, 78,82 нейтрони.

Домашнє завдання

1. Опрацювати параграф №7;

2. Користуючись різними джерелами інформації, підготуйте повідомлення про корисний лікувальний вплив малих доз і згубний вплив великих доз радіонуклідів на людину, рослини, тварин.