

GPU Programming with CUDA

Optimization

Prof. Dr. Matthias S. Müller

Dr. Christian Terboven

Dr. Sandra Wienke

Julian Miller

What is This Chapter About?

- How to optimize an application with CUDA
 - Data access patterns
 - Memory coalescing
 - Branching
 - Synchronization
 - Heterogeneous computing

Data Access Patterns

Coalescing

- Coalescing: concept to maximize global memory throughput
- Global memory access per warp
 - Segments of 128-byte ("cache lines") can be accessed by a warp in a single instruction
 - Determine which segments are needed
 - Request the needed segments
- Degree of coalescing = $\frac{\text{#bytes requested}}{\text{#bytes read}}$ describes overhead of reading more data than requested

Coalescing

Coalesced access: accesses combined into "one" single access

Range of accesses

Address alignment

Coalescing - Impact of Address Alignment

- Benchmark to investigate impact of address alignment
 - Copy of 64 MB of integers
 - NVIDIA V100, 256 threads/block
 - → Misaligned accesses can drop memory throughput

Sources: https://github.com/NVIDIA-developer-blog/code-samples/blob/master/series/cuda-cpp/coalescing-global

Example 3D Points

Array of Structures (AoS)

```
struct Pt {
    float x;
    float y;
    float z;
Struct Pt myPts[N];
// Offload to GPU
for (int i = 0; i < N; i++) {
    myPts[i].x = i; // Do something with x
   Address
                                    12
                                           16
                                                        24
                                                                      32
                                                               28
              x[0]
                     y[0]
                            z[0]
                                   x[1]
                                                        x[2]
                                          y[1]
                                                 z[1]
                                                               y[2]
                                                                     z[2]
```


Example 3D Points

Structure of Arrays (SoA)

```
struct Pt {
    float x[N];
    float y[N];
    float z[N];
Struct Pt myPts;
  Offload to GPU
for (int i = 0; i < N; i++) {
    myPts.x[i] = i; // Do something with x
 Address
                             8
                                   12
                                          16
                                                 20
                                                         24
                                                                28
                                                                       32
             x[0]
                                   x[1]
 AoS
                           [0]
                                          y[1]
                                                 z[1]
                                                        x[2]
                                                               y[2]
                                                                      z[2]
                     v[0]
             x[0]
                           x[2]
 SoA
                    x[1]
                                   y[0]
                                          y[1]
                                                 y[2]
                                                        z[0]
                                                               z[1]
                                                                      z[2]
```

Recommended
Paper: Mei, G. and
Tian, H., 2016.
Impact of data
layouts on the
efficiency of GPUaccelerated IDW
interpolation. Sprin
gerPlus, 5(1),
p.104.

Coalescing - Impact of Strided Memory Access

- Benchmark to investigate impact of address alignment
 - Copy of 64 MB of integers
 - NVIDIA V100, 256 threads/block
 - → Strided accesses can drop memory throughput

<u>Sources:</u> https://github.com/NVIDIA-developer-blog/codesamples/blob/master/series/cuda-cpp/coalescing-global

Branching

Example Finite Difference Method

What happens if threads within a warp execute different instructions?

```
__global___ void finiteDifference(int n, double *u, double *u_new) {
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    // Calculate the central difference at u[i] if u[i] is
        not at the boundary of the domain
    if (isBoundary(tid))
        u_new[tid] = 0;
    else
        u_new[tid] = (u[tid + 1] - u[tid - 1]) * 0.5;
}
```


Branch Divergence

- Remember threads are organized in warps which share a program counter
 - Hardware serializes the different execution paths
 - Up to 32x performance loss
- Branch Efficiency: The ratio of executed uniform flow control decisions over all executed conditionals

Dealing with Branch Divergence

- Avoid different execution paths within the same warp
 - Typically, avoid flow control instructions wherever possible
 - Compiler tries to mitigate the effect of branch divergence by e.g. predication, but performance implications (instruction throughput) can be significant
- Common case: function depends on thread ID
 - Align controlling condition on warp granularity
 - e.g. if (threadIdx.x / WARP_SIZE) { }
- Example Finite Difference Method
 - Two separate kernels for the boundaries and the inner points

Synchronization

Synchronization

- By default: all calls are placed in the default stream
 - Stream: queue of kernels that are executed sequentially
 - However: calls return on the CPU once placed in the stream
- GPUs only allow for synchronization within a streaming multiprocessor
 - Synchronization or memory fences across SMs not supported due to limited control logic
 - Barriers, critical regions, locks, atomics only apply to the threads within a team
 - No cache coherence between L1 caches

Example DAXPY: Kernel Timing

```
int main(int argc, const char* argv[]) {
    ...
    double runtime = GetRealTime();
    daxpyGPU<<<(n+255)/256, 256>>>(n, a, d_x, d_y); // kernel
    runtime = GetRealTime() - runtime;
    ...
    printf("Time Elapsed: %f s\n", runtime);
    ...
}
```

- Output:
- \$ nvcc daxpy.cu
- \$ a.out

Max error: 0.00000

Time elapsed: 70us

- Kernel launches are asynchronous
 - Control returns to CPU immediately

Example DAXPY: Kernel Timing

```
int main(int argc, const char* argv[]) {
    ...
    double runtime = GetRealTime();
    daxpyGPU<<<(n+255)/256, 256>>>(n, a, d_x, d_y); // kernel
    cudaDeviceSynchronize();
    runtime = GetRealTime() - runtime;
    ...
    printf("Time Elapsed: %f s\n", runtime);
    ...
}
```

- Output:
- \$ nvcc daxpy.cu
- \$ a.out

Max error: 0.00000

Time elapsed: 2.91ms

- Kernel launches are asynchronous
 - Control returns to CPU immediately
- cudaDeviceSynchronize()
 - Blocks until all outstanding CUDA calls are complete

Reduction

Can this be parallelized?

Naïve Reduction on GPU

22.25s for 2³⁰ elements

Parallel Reduction

- Natural parallelization approach is to perform a tree reduction, delivering a speedup of n / lg n
 - employs an associative combiner function
 - consequently, different ordering are possible
- Reduce result on each block
- But how do we communicate partial results between thread blocks?

Reduction Pattern

- No global synchronization on the GPU
 - Inefficient and expensive to build in hardware
- Solution: Synchronize via kernel launch
 - Decomposition into multiple kernels

Reduction

```
template <unsigned int blockSize>
global void reduce6(int *g idata, int *g odata, unsigned int n)
extern shared int sdata[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) { sdata[tid] += g idata[i] + g idata[i+blockSize]; i += gridSize; }</pre>
syncthreads();
if (blockSize \geq 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize \geq 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } syncthreads(); }
if (tid < 32) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
                                                               0.38s for 2^{30} elements for
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
                                                               an optimized version
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
                                                      Efficient reduction implementations with
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
```

CUDA are hard! Use a library like Thrust or CUB or see the NVIDIA SDK for hints.

if (tid == 0) g odata[blockIdx.x] = sdata[0];

Heterogeneous Computing

- Heterogeneous Computing
 - CPU & GPU are (fully) utilized
- Challenge: load balancing
- Domain decomposition
 - If load is known beforehand, static decomposition
 - Exchange data if needed (e.g. halos)

matrix vector multiplication

Asynchronous Operations

- Definition
 - Synchronous: Control does not return until accelerator action is complete
 - Asynchronous: Control returns immediately
- Asynchronicity allows, e.g.,
 - 1. Heterogeneous computing (CPU + GPU) —
 - 2. Overlap of PCIe transfers in both directions
 - 3. Overlap of data transfers and computation
 - 4. Simultaneous execution of several kernels (if resources are available)

<num>* Can be executed simultaneously

Asynchronous Operations

- Asynchronous operations with streams
 - Declare a stream handle: cudaStream t stream;
 - Allocate a stream: cudaStreamCreate (&stream);
 - Deallocate and synchronize host until queue is empty: cudaStreamDestroy(stream);
- Place work in streams: kernel<<<blocks , threads, smem, stream>>>();
- Asynchronous data transfers: cudaMemcpyAsync(dst, src, size, dir, stream);

```
cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
foo<<<blooks, threads, 0, stream1>>>();
bar<<<blooks, threads, 0, stream2>>>(); // concurrent execution of foo and bar cudaStreamDestroy(stream1);
cudaStreamDestroy(stream2); // CPU waits until both functions are executed
```


GPU Performance Summary

- Data parallelism
 - Massive parallelism required
 - Use data parallel friendly data structures
- GPU is best for simple instructions
 - Leave tough operations to CPU
- Latency hiding
 - Keep the GPU busy: needs enough parallelism
- Avoid data dependencies and branch divergence
 - Can lead to wrong results or may require serialization
- Load balancing
 - Divide work into equal chunks

