1.5.6 Методы определения массовой доли жира

Жиры и жироподобные вещества объединяются под общим названием липиды. Эти вещества играют весьма важную роль в клетках растений, участвуя в регуляции проницаемости клеточной мембраны, через которую осуществляется обмен веществ в клетках.

Липиды широко распространены в природе. Они участвуют в построении клеточных структур растительных тканей, в биохимиических процессах, протекающих на клеточном уровне. Липиды образуют многочисленные комплексы с углеводами, белками и органическими соединениями, которые выполняют важные окислительновосстановительные процессы в клетках, участвуют в биосинтезе белков, обеспечивают одностороннюю проницаемость и перенос веществ через клеточные мембраны, принимают участие в высшей нервной деятельности.

Жиры — самые распространенные соединения среди липидов. По химическому строению это триглицериды — сложные эфиры высших жирных кислот и глицерина. В состав природных триглицеридов входят десятки органических кислот. В больших количествах в состав жиров входят олеиновая и пальмитиновая кислоты.

Жиры могут быть *растительного и животного* происхождения. Они существенно отличаются.

В составе растительных жиров преобладают ненасыщенные жирные кислоты – линолевая, линоленовая, олеиновая.

Животные жиры богаты по набору высших жирных кислот. В их состав входят кислоты с числом углеродных атомов от 20 до 24, причем преобладают насыщенные жирные кислоты.

Высшие жирные кислоты, входящие в состав жира, и определяют его основные физические свойства. Если в составе триглицерида преобладают ненасыщенные жирные кислоты с высокой температурой плавления, то и жир считается твердым (какао-масло, пальмовое масло, говяжий, бараний жир), если же в его составе ненасыщенные жирные кислоты — при обычных условиях это жир жидкий (подсолнечное, кукурузное, горчичное масла).

В организме человека жиры окисляются и обеспечивают его энергией: при распаде 1 г жира на диоксид углерода и воды выделяется $40,0\times10^3$ Дж. К липидам относятся и жироподобные вещества — воски, фосфолипиды, стероиды и др. За счет энергетической ценности жиров, входящих в состав пищевого рациона, организм человека покрывает до 30 % расходуемой энергии. Пищевая ценность жиров определяется их составом, усвояемостью и наличием в них жирорастворимых витаминов, а также фосфатидов и др.

Общим свойством липидов является их нерастворимость в воде, но хорошая растворимость в органических растворителях. На этом свойстве В основаны количественные методы определения жира. качестве петролейный растворителя используют или этиловый эфир. При экстрагировании одновременно с жиром из навески исследуемого объекта извлекаются воски, свободные жирные кислоты, стерины.

Вещества, извлекаемые из навески с помощью растворителя, называют сырой жир.

По ГОСТ предусматривается три метода для определения жира в хлебобулочных изделиях:

- экстракционный с предварительным гидролизом навески (арбитражный);
 - бутирометрический (ускоренный);
 - рефрактометрический (ускоренный).

Арбитражный метод с предварительным гидролизом навески

Арбитражным методом определения массовой доли жира является метод, основанный на извлечении жира растворителем из предварительно гидролизованной навески сырья и определении массовой доли жира взвешиванием после удаления растворителя из определенного количества полученного раствора.

Рефрактометрический метод

Рефрактометрический метод определения массовой доли жира основан на объемной аддитивности показателя преломления, т. е. показатель преломления раствора жира является средневзвешенной величиной (по объему) показателей преломления жира и чистого растворителя.

Из навески исследуемого объекта жир извлекают нелетучим растворителем с высоким показателем преломления. Объем растворителя отмеряют точно.

Измеряют показатель преломления смеси (раствора жира в растворителе), по которому с учетом заранее известных показателей преломления используемого растворителя и определяемого жира, объема и плотности растворителя рассчитывают массу извлеченного жира. Результат получают в процентах, отнеся полученную массу жира к массе навески объекта исследования.

Метод определения массовой доли жира жиромером (бутирометрический метод)

Метод основан на извлечении жира изоамиловым спиртом после разрушения белков исследуемого продукта серной кислотой при нагревании с последующим отделением жира центрифугированием. Количество жира

определяют в жиромере, представляющем фасонную стеклянную трубку, закрытую с одного конца. Средняя часть ее градуирована. Каждое деление соответствует 0,01133г жира.