Cl2613: Algoritmos y Estructuras III

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Enero-Marzo 2015

Caminos entre todos los pares de vértices

El algoritmo de Floyd-Warshall calcula las distancias y caminos más cortos entre todos los pares de vértices en tiempo $\Theta(V^3)$

En grafos densos, donde $E = \Omega(V^2)$, Floyd-Warshall es asintóticamente el mejor algoritmo conocido

En grafos dispersos, donde $E = o(V^2)$, existen mejores algoritmos:

- Si los costos son no-negativos, podemos correr Dijkstra V veces en tiempo $O(V^2 \log V + VE)$ para obtener un mejor algoritmo
- El algoritmo de Johnson obtiene el mismo tiempo de corrida $O(V^2 \log V + VE)$ pero sin restricción en los pesos. Si existe un ciclo de costo negativo, el algoritmo reporta su existencia y termina

Caminos de costo mínimo en grafos Algoritmo de Johnson

© 2014 Blai Bonet CI2613

Caminos entre todos los pares de vértices

El algoritmo de Johnson utiliza la técnica de cambio de pesos:

- Si todos las aristas tienen costos no negativos, se corre Dijkstra desde cada vértice s utilizando un heap de Fibonacci
- Si existen costos negativos pero no ciclos de costo negativo, se calculan nuevo pesos no negativos \hat{w} y volvemos al caso anterior

Los nuevos pesos \hat{w} deben satisfacer:

- $\textbf{1} \ \ \text{Para todo par de v\'ertices} \ u,v\in V\colon p \text{ es un mejor camino de }u \text{ a} \\ v \text{ con respecto a }w \text{ si y s\'olo si }p \text{ es un mejor camino de }u \text{ a }v \text{ con } \\ \text{respecto a }\hat{w}$
- **2** Para todas las aristas $(u,v) \in E$: $\hat{w}(u,v) \geq 0$

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

Cambio de peso: Repesaje

El **repesaje** de $w:E\to\mathbb{R}$ lo hacemos con una función $h:V\to\mathbb{R}$ que mapea vértices en valores

El repesaje de w es $\hat{w}: E \to \mathbb{R}$ defnida por

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

Lema

Sea G=(V,E) un digrafo con pesos $w:E\to\mathbb{R}$. Considere el repesaje $\hat{w}:E\to\mathbb{R}$. Sea p un camino de u a v en G. Entonces, p es un camino más corto con respecto a w si y sólo si p es un camino más corto con respecto a \hat{w} .

También, G tiene un costo de ciclo negativo con respecto a w si y sólo si G tiene un ciclo de costo negativo con respecto a \hat{w} .

Claramente, el Lema garantiza la propiedad 1

© 2014 Blai Bonet CI2613

Pesos no negativos

Propiedad 2: $\hat{w}(u,v) \geq 0$ para toda arista $(u,v) \in E$

Dado digrafo G=(V,E), aumentamos G con un vértice fuente s: G'=(V',E') donde $V'=V\cup\{s\}$ y $E'=E\cup\{(s,u):u\in V\}$

Los pesos también son extendidos:

$$w'(u,v) \ = \ \left\{ \begin{array}{ll} w(u,v) & \mathrm{si} \ (u,v) \in E \\ 0 & \mathrm{si} \ (u,v) = (s,v) \ \mathrm{con} \ v \in V \end{array} \right.$$

Observación: G tiene un ciclo de costo negativo si y sólo si G' tiene un ciclo de costo negativo alcanzable desde s

Cambio de peso: Repesaje

Prueba del Lema: Sea $p = (v_0, \dots, v_k)$ con $v_0 = u$ y $v_k = v$

Primero mostramos $\hat{w}(p) = w(p) + h(u) - h(v)$:

$$\hat{w}(p) = \sum_{i=1}^{k} \hat{w}(v_{i-1}, v_i)$$

$$= \sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)$$

$$= \sum_{i=1}^{k} w(v_{i-1}, v_i) + \sum_{i=1}^{k} h(v_{i-1}) - h(v_i)$$

$$= w(p) + h(v_0) - h(v_k)$$

$$= w(p) + h(u) - h(v)$$

Como h(u) y h(v) no dependen de p, p es óptimo relativo a w si y sólo si p es óptimo relativo a \hat{w}

Si $c = (v_0, \dots, v_k)$ es un ciclo con $v_0 = v_k$,

$$\hat{w}(c) = w(c) + h(v_0) - h(v_k) = w(c)$$

Por lo tanto, w(c) < 0 si y sólo si $\hat{w}(c) < 0$

© 2014 Blai Bonet CI2613

П

CI2613

Pesos no negativos

Considere $h:V\to\mathbb{R}$ dada por $h(u)=\delta'(s,u)$

Por la desigualdad triangular en G', para arista $(u, v) \in E$:

$$\delta'(s,v) \leq \delta'(s,u) + w'(u,v) \implies \delta'(s,u) - \delta'(s,v) \geq -w'(u,v)$$

Por lo tanto, para arista $(u, v) \in E$,

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)
= w'(u,v) + \delta'(s,u) - \delta'(s,v)
\ge w'(u,v) - w'(u,v)
= 0$$

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet

Algoritmo de Johnson

- 1. Dado un digrafo G=(V,E), se construye el digrafo aumentado G'=(V',E') con pesos $w':E'\to\mathbb{R}$ [Tiempo: O(V+E)]
- 2. Correr Bellman-Ford para calcular las distancias $\delta'(s,u)$ en el digrafo G' para $u\in V$ [Tiempo: $O(V'E')=O(VE+V^2)$]
- 3. Calcular repesaje $\hat{w}: E \to \mathbb{R}$ relativo a $h(u) = \delta'(s, u)$ para $u \in V$ [Tiempo: O(E)]
- 4. Corremos el algoritmo de Dijkstra |V| veces desde todos los vértices $s \in V$ [Tiempo: $O(V^2 \log V + VE)$]
- 5. Distancias finales: $\delta(u,v) = \hat{\delta}(u,v) h(u) + h(v)$ [Tiempo: $O(V^2)$]

© 2014 Blai Bonet Cl2613

Algoritmo de Johnson: Ejemplo

Digrafo G = (V, E)

© 2014 Blai Bonet

CI2613

Algoritmo de Johnson: Ejemplo

Digrafo aumentado G' = (V', E')

CI2613

© 2014 Blai Bonet

Algoritmo de Johnson: Ejemplo v_0 Después de correr Bellman-Ford desde v_0 © 2014 Blai Bonet

