Introduction to Computer Networks

TCP Ack Clocking (§6.5.10)

Topic

- The self-clocking behavior of sliding windows, and how it is used by TCP
 - The "ACK clock"

Sliding Window ACK Clock

- Each in-order ACK advances the sliding window and lets a new segment enter the network
 - ACKS "clock" data segments

Benefit of ACK Clocking

 Consider what happens when sender injects a burst of segments into the network

Benefit of ACK Clocking (2)

Segments are buffered and spread out on slow link

Benefit of ACK Clocking (3)

ACKS maintain the spread back to the original sender

Benefit of ACK Clocking (4)

- Sender clocks new segments with the spread
 - Now sending at the bottleneck link without queuing!

Benefit of ACK Clocking (4)

- Helps the network run with low levels of loss and delay!
- The network has smoothed out the burst of data segments
 - ACK clock transfers this smooth timing back to the sender
 - Subsequent data segments are not sent in bursts so do not queue up in the network

TCP Uses ACK Clocking

- TCP uses a sliding window because of the value of ACK clocking
- Sliding window controls how many segments are inside the network
 - Called the <u>congestion window</u>, or <u>cwnd</u>
 - Rate is roughly cwnd/RTT
- TCP only sends small bursts of segments to let the network keep the traffic smooth

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey