

Krishna Priya Gajula Brian Hoang Anjani Mallampati Archana Yadawa

Instructor: Professor Sithu Aung

Introduction

Purpose: It is a common struggle and necessity for many social media platforms to be able to identify toxic comments

Kaggle Competition: Toxic Comment Classification Challenge

Dataset: comments from Wikipedia

Overview

Part 1: Kaggle Competition

Part 2: Chrome Extension

Part 1: Kaggle Competition

Correlation Matrix

Class Distribution

Data Preprocessing

- (1) Check for null values and remove
- (2) Convert into lowercase

```
#covert the text into lower case
X_train_lower = X_train["comment_text"].str.lower()
```

```
checking for missing values in train data id 0 comment_text 0 toxic 0 severe_toxic 0 obscene 0 threat 0 insult 0 identity_hate 0 dtype: int64 checking for missing data in test data id 0 comment_text 0 dtype: int64
```

(3) Remove stop words

```
def clean_stopwords(text):
    text = ' '.join(word for word in text.split() if word not in STOPWORDS)
    return text
```

(5) Tokenizer

This class allows to vectorize a text corpus, by turning each text into either a sequence of words or tokens. A filter is applied to remove punctuations.

(6) Keras Pad Sequence

pad_sequences is used to ensure that all sequences in a list have the same length. By default this is done by padding 0 in the beginning of each sequence until each sequence has the same length as the longest sequence.

(7) GloVe Embedding(Global Vector for Word Representation)

- GloVe aims to achieve two goals:
 - (1) Create word vectors that capture meaning in vector space
 - (2) Takes advantage of global count statistics instead of only local information
- Unlike word2vec which learns by streaming sentences
 - GloVe learns based on a co-occurrence matrix and trains word vectors so their differences predict co-occurrence ratios
- GloVe weights the loss based on word frequency

LSTM (Long Short Term Memory)

- Recurrent neural network that addresses machine learning's inability to evaluate words based on meaning of previous words.
 - Capable of learning long-term dependencies.
- Core structure relies on cell states. Information is regulated through gates.
 - Gates comprised of sigmoid and pointwise multiplication operation.
 - Sigmoid value (between 0-1) determines how much data can be added to cell state.

LSTM (Long Short Term Memory)

- Sigmoid layer called the "input gate layer" decides which values will be updated.
- 2. tanh layer creates a vector of new candidate values, C~t, that could be added to the state.
- Previous steps combined to create an update to the state.

Model

Layer (type)	Output	Shape	Param #	Connected to
<pre>input_1 (InputLayer)</pre>	(None,	100)	0	
	/27	100 200	1500000	1.01.01
<pre>embedding_1 (Embedding)</pre>	(None,	100, 300)	15000000	input_1[0][0]
spatial dropout1d 1 (SpatialDro	(None	100 300)	0	embedding 1[0][0]
spacial_dropodcid_r (spacialbro	(None,	100, 300)	· ·	embedding_i[0][0]
bidirectional 1 (Bidirectional)	(None,	100, 256)	329472	spatial dropout1d 1[0][0]
_	,	,		-F
convld_1 (ConvlD)	(None,	100, 64)	81984	bidirectional_1[0][0]
<pre>global_max_pooling1d_1 (GlobalM</pre>	(None,	64)	0	conv1d_1[0][0]
				
<pre>global_average_pooling1d_1 (Glo</pre>	(None,	64)	0	conv1d_1[0][0]
	/None	120)	0	alabal man maalimald 1001001
concatenate_1 (Concatenate)	(None,	128)	U	<pre>global_max_pooling1d_1[0][0] global average pooling1d 1[0][0]</pre>
				global_average_poolingid_i[0][0]
dense 1 (Dense)	(None,	128)	16512	concatenate 1[0][0]
	(1.01.0)	,		[,,[,,
dropout 1 (Dropout)	(None,	128)	0	dense 1[0][0]
dense_2 (Dense)	(None,	64)	8256	dropout_1[0][0]
		<u> </u>	<u> </u>	
dropout_2 (Dropout)	(None,	64)	0	dense_2[0][0]
			200	1.000100
dense_3 (Dense)	(None,	6)	390	dropout_2[0][0]

Total params: 15,436,614
Trainable params: 436,614
Non-trainable params: 15,000,000

Results

Loss: 0.04627001273694052

Accuracy: 0.9835087821617776

Part 2: Chrome Extension

Chrome Extension Basics

Languages: HTML, CSS, Javascript

HTML - Format of plugin

CSS - Styling

Javascript - used API key for http, calculation of toxic or harmless percentages

Chrome Extension Structure

Existing APIs

Google's Cloud Natural Language API provides natural language understanding technologies to developers.

- sentiment analysis
- entity analysis
- entity sentiment analysis
- content classification
- syntax analysis

Articles

Woman, 88, waved to students from her window for years. They gathered outside her home for one final goodbye

Adam Sandler returns to 'SNL' with a song about how he was fired

References

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

https://thoughtbot.com/blog/how-to-make-a-chrome-extension

https://medium.com/@subodhgarg/how-to-build-chrome-extension-with-angularjs-googles-natural-language-api-370f9a4953e

https://cloud.google.com/docs/

Thank You!