Graph each of the following curves and their inverses.

a)
$$y = \sin x$$

a)
$$y = \sin x$$
 b) $y = \cos x$ **c)** $y = \tan x$

The inverse trigonometric functions are defined as:

Function	Definition	Range
$y = \arcsin x$	$x = \sin y, -1 \leqslant x \leqslant 1$	$-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}$
$y = \arccos x$	$x = \cos y, -1 \leqslant x \leqslant 1$	$0 \leqslant y \leqslant \pi$
$y = \arctan x$	$x = \tan y, x \in \mathbb{R}$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

Example #1

Calculate each of the following:

a)
$$arcsin(1)$$

a)
$$arcsin(1)$$

b)
$$arccos(-1)$$

a)
$$\arcsin(1)$$
 b) $\arccos(-1)$ c) $\arctan\left(\frac{\sqrt{3}}{1}\right)$

$$\cos x = -1$$

$$x = \frac{\pi}{3}$$

$$x = \frac{\pi}{3}$$

Derivatives of Inverse Trig Functions

Find the derivatives of each of the following:

b) $y = \arccos x$

$$\chi = \cos y$$

$$\int \frac{1}{1 + \sin y} \frac{dy}{dx}$$

$$\frac{dy}{dx} = -\frac{1}{\sin y} = -\frac{1}{1 + x^2}$$

c) $y = \arctan x$

tany:
$$x$$

$$1 = \sec^2 y \frac{dy}{dx} = \cos^2 y = \left(\frac{1}{\sqrt{x^2+1}}\right)^2 = \frac{1}{x^2+1}$$

d)
$$y = \arcsin(5x)$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-(7\pi)^2}} (5)$$

$$\frac{dy}{dx} = \frac{5}{\sqrt{1-25x^2}}$$

$$ey \quad y = \arccos\left(\frac{x}{2}\right)$$

$$\frac{dy}{dx} = -\frac{1}{\sqrt{1-\left(\frac{x}{2}\right)^{2}}}\left(-\frac{1}{2}\right)$$

$$\frac{dy}{dx} = -\frac{1}{2\sqrt{1-\frac{x}{4}}} = -\frac{1}{2\sqrt{1-\frac{x}{4}}}$$

$$= -\frac{1}{\sqrt{1-\frac{x}{4}}} = -\frac{1}{\sqrt{1-\frac{x}{4}}}$$