Let f(n) = f(Vn) + 1 and f(1) = 0. Prove or disprove that $f(n) \in \Theta(\log(n))$. (f(2) = 1)

Disprove by counterexample

 $f(n) \in \Theta(\log(n))$ if and only if there exist positive constants c_1, c_2 , and n_0 such that $c_1 * \log(n) < f(n) < c_2 * \log(n)$, whenever $n \ge n_0$

Take $n=2^k$ such that $k=\log(n)$ and $\log(k)\in N$ and $2^k>n_0$

$$f(2^{k}) = f\left(2^{\frac{k}{2}}\right) + 1$$

$$f(2^{k}) = f\left(2^{\frac{k}{4}}\right) + 1 + 1$$

$$f(2^{k}) = f\left(2^{\frac{k}{4}}\right) + 1 + 1 + 1$$
*

We can divide k, log(k) times to get 1.

$$f(2^k) = f(2^1) + \log(k) * 1$$

Since f(2) = 1 also given

$$f(n) = 1 + \log(k)$$

Replace k with log(n)

$$f(n) = 1 + \log(\log(n))$$

Therefore $f(n) \in O(\log(\log(n)))$ when $n = 2^k$

Since log(n) grows slower than n, log(log(n)) grows slower than log(n)

Therefore f(n) is bounded by a function grows slower than log(n)

Therefore there is no c_1 that can satisfy $c_1 * log(n) < f(n)$

Therefore we found a counterexample that doesn't satisfy $f(n) \in \Theta(log(n))$

Therefore we disproved that $f(n) \in \Theta(\log(n))$