第 10 回 不均一分散 (7.4-7.5)

村澤 康友

2022年12月15日

今日のポイント

- 1. 回帰モデルで var(Y|X) が X に依存する ことを条件つき不均一分散という.
- 2. 条件つき不均一分散があるなら標準誤差 の修正が必要. White の標準誤差は条件 つき不均一分散があっても (なくても) 漸 近的に正しい.
- 3. Breusch-Pagan の検定や White の検定で 条件つき不均一分散の有無を検定できる.

目次

1		不均一分散(p. 178)	1	
2		標準誤差の修正	1	
	2.1	OLS 推定量の漸近分散(p. 180)	1	
	2.2	White の標準誤差(p. 180)	2	
3		不均一分散の検定	2	
	3.1	Breusch-Pagan の検定(p. 182) .	2	
	3.2	White の検定(p. 183)	3	
4		今日のキーワード	4	
5		次回までの準備	4	
1	不均	月一分散(p. 178)		
	(V X) を確率ベクトルとする V の X トへの古			

典的線形回帰モデルは

$$E(Y|X) = \alpha + \beta X$$
$$var(Y|X) = \sigma^{2}$$

すなわち古典的線形回帰モデルでは、E(Y|X) のみ X に依存し、var(Y|X) は X に依存しないと仮定 する.

定義 1. var(Y|X) が X に依存せず、一定であるこ とを条件つき均一分散という.

定義 2. var(Y|X) が X に依存することを条件つき 不均一分散という.

標準誤差の修正

2.1 OLS 推定量の漸近分散 (p. 180)

 $((y_1,x_1),\ldots,(y_n,x_n))$ を無作為標本とする. 簡 単化のため定数項のない単回帰モデルで考える. す なわち

$$y_i = \beta x_i + u_i$$
$$E(u_i|x_i) = 0$$

 β の OLS 推定量を b_n とすると

$$b_n = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$$

定理 1.

$$\sqrt{n}(b_n - \beta) \xrightarrow{d} N\left(0, \frac{\operatorname{var}(x_i u_i)}{\operatorname{E}(x_i^2)^2}\right)$$

証明. b_n の式に $y_i = \beta x_i + u_i$ を代入すると

$$b_n = \frac{\sum_{i=1}^{n} x_i (\beta x_i + u_i)}{\sum_{i=1}^{n} x_i^2}$$
$$= \beta + \frac{\sum_{i=1}^{n} x_i u_i}{\sum_{i=1}^{n} x_i^2}$$

式変形すると

$$\sqrt{n}(b_n - \beta) = \frac{(1/\sqrt{n}) \sum_{i=1}^n x_i u_i}{(1/n) \sum_{i=1}^n x_i^2}$$

大数の法則より

$$\underset{n \to \infty}{\text{plim}} \frac{1}{n} \sum_{i=1}^{n} x_i^2 = \mathrm{E}\left(x_i^2\right)$$

 $\mathbf{E}(u_i|x_i)=0 \Longrightarrow \mathbf{E}(x_iu_i)=0$ なので中心極限定理 より

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i u_i \xrightarrow{d} N(0, var(x_i u_i))$$

スルツキーの定理とクラーメルの定理より

$$\frac{(1/\sqrt{n})\sum_{i=1}^{n}x_{i}u_{i}}{(1/n)\sum_{i=1}^{n}x_{i}^{2}} \stackrel{d}{\longrightarrow} N\left(0, \frac{\operatorname{var}(x_{i}u_{i})}{\operatorname{E}(x_{i}^{2})^{2}}\right)$$

注 1. 条件つき均一分散なら $var(u_i|x_i) = \sigma^2 \Longrightarrow var(x_iu_i) = \sigma^2 \operatorname{E}(x_i^2).$

2.2 White の標準誤差 (p. 180)

条件つき不均一分散の下で $var(x_iu_i)$ を推定したい. $E(u_i|x_i)=0 \Longrightarrow E(x_iu_i)=0$ より

$$var(x_i u_i) = E((x_i u_i)^2)$$
$$= E(x_i^2 u_i^2)$$

OLS 残差を e_i とすると

$$e_i := y_i - b_n x_i$$

= $y_i - \beta x_i - (b_n x_i - \beta x_i)$
= $u_i - (b_n - \beta) x_i$

定義 3. $var(x_iu_i)$ の White の推定量は

$$\hat{\text{var}}(x_i u_i) := \frac{1}{n} \sum_{i=1}^{n} x_i^2 e_i^2$$

定理 2.

$$\underset{n \to \infty}{\text{plim}} \frac{1}{n} \sum_{i=1}^{n} x_i^2 e_i^2 = \mathbf{E}\left(x_i^2 u_i^2\right)$$

証明. e_i と u_i の関係式より

$$e_i^2 = [u_i - (b_n - \beta)x_i]^2$$

= $u_i^2 - 2(b_n - \beta)x_iu_i + (b_n - \beta)^2x_i^2$

したがって

$$\frac{1}{n} \sum_{i=1}^{n} x_i^2 e_i^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 \left[u_i^2 - 2(b_n - \beta)x_i u_i + (b_n - \beta)^2 x_i^2 \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 u_i^2 - 2(b_n - \beta) \frac{1}{n} \sum_{i=1}^{n} x_i^3 u_i$$

$$+ (b_n - \beta)^2 \frac{1}{n} \sum_{i=1}^{n} x_i^4$$

 $n \to \infty$ とすると、第1項は大数の法則より

$$\operatorname{plim}_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i^2 u_i^2 = \operatorname{E}\left(x_i^2 u_i^2\right)$$

 $\mathrm{plim}_{n \to \infty} b_n = \beta$ なのでスルツキーの定理より第 2 項と第 3 項は 0 に確率収束.

注 2. したがって

$$\sqrt{n}(b_n - \beta) \stackrel{a}{\sim} N\left(0, \frac{(1/n)\sum_{i=1}^n x_i^2 e_i^2}{[(1/n)\sum_{i=1}^n x_i^2]^2}\right)$$

または

$$b_n \stackrel{a}{\sim} N\left(\beta, \frac{\sum_{i=1}^n x_i^2 e_i^2}{(\sum_{i=1}^n x_i^2)^2}\right)$$

定義 4. White の推定量を用いた標準誤差を White の標準誤差という.

注 3. 条件つき不均一分散があっても(なくても) 漸近的に正しい標準誤差.

3 不均一分散の検定

3.1 Breusch-Pagan の検定(p. 182)

(1+k) 変量データを $((y_1,x_1),\ldots,(y_n,x_n))$ とする. 次のような y_i の x_i 上への条件つき不均一分散をもつ線形回帰モデルを仮定する.

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + u_i$$
$$E(u_i | \mathbf{x}_i) = 0$$
$$var(u_i | \mathbf{x}_i) = \sigma^2 f(\mathbf{x}_i' \boldsymbol{\gamma})$$

ただし $f(.)>0,\ f(0)=1.$ また γ は $\left(\boldsymbol{\beta},\sigma^2\right)$ に依存しない。条件つき不均一分散の検定問題は

$$H_0: \gamma = \mathbf{0}$$
 vs $H_1: \gamma \neq \mathbf{0}$

 $oldsymbol{eta}$ の OLS 推定量を $oldsymbol{b}$, OLS 残差を $e_i := y_i - oldsymbol{x}_i'oldsymbol{b}$ とする. H_0 の下での誤差分散の推定量は

$$\hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^n e_i^2$$

定理 3. H_0 の下で

$$\mathrm{E}\left(u_i^2 - \sigma^2 | \boldsymbol{x}_i\right) = 0$$

証明. $\mathrm{E}(u_i|\boldsymbol{x}_i) = 0$ より $\mathrm{var}(u_i|\boldsymbol{x}_i) = \mathrm{E}\left(u_i^2|\boldsymbol{x}_i\right)$. したがって H_0 の下で

$$\mathrm{E}\left(u_i^2|\boldsymbol{x}_i\right) = \sigma^2$$

注 4. すなわち H_0 の下で $u_i^2-\sigma^2$ は x_i で予測できない. u_i を e_i , σ^2 を $\hat{\sigma}^2$ に置き換えると, H_0 の下で

$$\mathrm{E}\left(e_i^2 - \hat{\sigma}^2 | \boldsymbol{x}_i\right) \approx 0$$

これを回帰モデルとみなして「 H_0 :全ての回帰係数=0」を検定すればよい.ただし古典的正規線形回帰モデルでないので F 検定でなく漸近 χ^2 検定を用いる.

定義 5. $e_i^2 - \hat{\sigma}^2$ の x_i 上への線形回帰モデルにおける「 H_0 :全ての回帰係数= 0」の漸近 χ^2 検定をBreusch-Pagan の検定という.

注 5. 正確には Breusch-Pagan の検定の Koenker による改良版.

定理 4. Breusch-Pagan の検定統計量を LM とすると, H_0 の下で

$$LM \stackrel{a}{\sim} \chi^2(k)$$

証明. 省略.

3.2 White の検定 (p. 183)

(1+k) 変量データを $((y_1, x_1), \dots, (y_n, x_n))$ とする. y_i の x_i 上への線形回帰モデルは

$$y_i = \mathbf{x}_i' \mathbf{\beta} + u_i$$
$$\mathbf{E}(u_i | \mathbf{x}_i) = 0$$

条件つき不均一分散の検定問題は

$$var(\boldsymbol{x}_i u_i) = E(\boldsymbol{x}_i u_i (\boldsymbol{x}_i u_i)')$$
$$= E(u_i^2 \boldsymbol{x}_i \boldsymbol{x}_i')$$

繰り返し期待値の法則より

$$E(u_i^2 \boldsymbol{x}_i \boldsymbol{x}_i') = E(E(u_i^2 \boldsymbol{x}_i \boldsymbol{x}_i' | \boldsymbol{x}_i))$$
$$= E(E(u_i^2 | \boldsymbol{x}_i) \boldsymbol{x}_i \boldsymbol{x}_i')$$
$$= E(var(u_i | \boldsymbol{x}_i) \boldsymbol{x}_i \boldsymbol{x}_i')$$

したがって条件つき不均一分散の検定問題は

$$H_0 : \operatorname{var}(\boldsymbol{x}_i u_i) = \sigma^2 \operatorname{E}(\boldsymbol{x}_i \boldsymbol{x}_i')$$

vs $H_1 : \operatorname{var}(\boldsymbol{x}_i u_i) = \operatorname{E}(u_i^2 \boldsymbol{x}_i \boldsymbol{x}_i')$

以下の行列を定義する.

$$egin{aligned} oldsymbol{V}_0 &:= \sigma^2 \operatorname{E}(oldsymbol{x}_i oldsymbol{x}_i') \ oldsymbol{V}_1 &:= \operatorname{E}\left(u_i^2 oldsymbol{x}_i oldsymbol{x}_i'
ight) \end{aligned}$$

すると検定問題は

$$H_0: V_0 = V_1$$
 vs $H_1: V_0 \neq V_1$

または

$$H_0: V_1 - V_0 = \mathbf{O}$$
 vs $H_1: V_1 - V_0 \neq \mathbf{O}$

ここで

$$V_1 - V_0 = \mathrm{E}\left(u_i^2 \boldsymbol{x}_i \boldsymbol{x}_i'\right) - \sigma^2 \, \mathrm{E}(\boldsymbol{x}_i \boldsymbol{x}_i')$$
$$= \mathrm{E}\left(\left(u_i^2 - \sigma^2\right) \boldsymbol{x}_i \boldsymbol{x}_i'\right)$$

ただし

$$egin{aligned} oldsymbol{x}_i oldsymbol{x}_i' = \left[egin{array}{ccc} x_{i,1}^2 & \dots & x_{i,1} x_{i,k} \ dots & \ddots & dots \ x_{i,k} x_{i,1} & \dots & x_{i,k}^2 \end{array}
ight] \end{aligned}$$

この $k \times k$ 行列は対角線を挟んで対称なので,異なる成分は k(k+1)/2 個.これらを並べたベクトルを $z_i := \text{vech}(x_i x_i')$ とする.ただし vech(.) は正方

行列の下三角部分の成分を取り出して並べる関数. すると H_0 の下で

$$E\left(\left(u_i^2 - \sigma^2\right) \boldsymbol{z}_i\right) = \boldsymbol{0}$$

 $oldsymbol{eta}$ の OLS 推定量を $oldsymbol{b}$, OLS 残差を $e_i := y_i - oldsymbol{x}_i'oldsymbol{b}$ とする. H_0 の下での誤差分散の推定量は

$$\hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^n e_i^2$$

定理 5. H₀ の下で

$$cov\left(u_i^2 - \sigma^2, \boldsymbol{z}_i\right) = \boldsymbol{0}$$

証明. $E(u_i|\mathbf{x}_i) = 0$ より $var(u_i|\mathbf{x}_i) = E(u_i^2|\mathbf{x}_i)$. したがって H_0 の下で

$$\mathrm{E}\left(u_i^2|\boldsymbol{x}_i\right) = \sigma^2$$

両辺の期待値をとると、繰り返し期待値の法則より

$$\mathbf{E}\left(u_i^2\right) = \sigma^2$$

したがって H_0 の下で

$$\operatorname{cov}\left(u_{i}^{2}-\sigma^{2},\boldsymbol{z}_{i}\right)=\operatorname{E}\left(\left(u_{i}^{2}-\sigma^{2}\right)\boldsymbol{z}_{i}\right)$$

既に見た通り右辺は 0.

注 $6. u_i$ を e_i , σ^2 を $\hat{\sigma}^2$ に置き換えると, H_0 の下で

$$\operatorname{cov}\left(e_i^2 - \hat{\sigma}^2, \boldsymbol{z}_i\right) \approx 0$$

 $e_i^2 - \hat{\sigma}^2$ の z_i 上への線形回帰モデルを考えると, H_0 の下で全ての回帰係数= 0.

定義 6. $e_i^2 - \hat{\sigma}^2$ の $\mathbf{z}_i := \text{vech}(\mathbf{x}_i \mathbf{x}_i')$ 上への線形回帰モデルにおける「 H_0 :全ての回帰係数= 0」の漸近 χ^2 検定を White の検定という.

定理 6. White の検定統計量を W とすると, H_0 の下で

$$W \stackrel{a}{\sim} \chi^2 \left(\frac{k(k+1)}{2} \right)$$

証明. 省略.

注 7. どのような不均一分散でも使えるが、自由度が大きいため検出力が低い.

4 今日のキーワード

条件つき均一分散,条件つき不均一分散,White の推定量,White の標準誤差,Breusch-Pagan の検定,White の検定

5 次回までの準備

提出 宿題 5

復習 教科書第7章 4-5節,復習テスト10

予習 教科書第8章