# Proposition de solutions du concours ENS Filière MP (ex M)

Céline Wang



Défi personnel

Année 2021

# Table des matières

| Sujet 1    | Cachan 1987, Première épreuve       |
|------------|-------------------------------------|
| Sujet 2    | Ulm et Cachan, épreuve commune 1994 |
| Sujet 3    | Cachan, deuxième épreuve, 1990      |
| Sujet 4    | Lyon, deuxième épreuve, 1988        |
| Solution 1 |                                     |
| Solution 2 | 2                                   |
| Solution 3 | 4:                                  |
| Solution 4 |                                     |

# Sujet 1 Cachan 1987, Première épreuve

Dans tout le problème, le mot fonction est mis pour fonction continue de  $\mathbb{R}$  dans  $\mathbb{R}$ . On désigne par q une fonction fixée vérifiant

$$\forall x \in \mathbb{R}, \ q(x) \geqslant 0 \quad \text{et} \quad \exists x \in \mathbb{R}, \ q(x) \neq 0$$

Pour toute fonction f, on désigne par  $(E_f)$  l'équation différentielle

$$y'' - qy = f$$

et par  $\mathcal{E}_f$  l'ensemble des fonctions qui sont solutions sur  $\mathbb{R}$  de  $(E_f)$ . On désigne de même par (E) l'équation

$$y'' - qy = 0$$

et par  $\mathcal{E}$  l'ensemble de ses solutions sur  $\mathbb{R}$ . On note  $\varphi$  (resp.  $\psi$ ) l'élément de  $\mathcal{E}$  vérifiant  $\varphi(0) = 1$  et  $\varphi'(0) = 0$  (resp.  $\psi(0) = 0$  et  $\psi'(0) = 1$ ). Enfin, pour l dans  $\mathbb{R}$ , on note  $y_l$  l'élément de  $\mathcal{E}$  vérifiant  $y_l(0) = 1$  et  $y'_l(0) = l$ .

#### Partie I

- 1. a) Montrer que, si y appartient à  $\mathcal{E}$ ,  $y^2$  est une fonction convexe. Que peut-on dire de la restriction d'une fonction y de  $\mathcal{E}$  à un intervalle de  $\mathbb{R}$  si y garde un signe constant sur cet intervalle?
  - b) Démontrer que le seul élément de  $\mathcal E$  qui soit une fonction bornée est la fonction identiquement nulle.
- 2. a) Démontrer  $\forall x \in \mathbb{R}, \ \varphi(x) \geqslant 1$ .
  - b) Démontrer

$$\forall x \geqslant 0, \ \psi(x) \geqslant 0 \quad \text{et} \quad \forall x \leqslant 0, \ \psi(x) \leqslant 0$$

puis

$$\forall x \geqslant 0, \ \psi(x) \geqslant x \quad \text{et} \quad \forall x \leqslant 0, \ \psi(x) \leqslant x$$

- c) Montrer que  $\frac{\varphi}{\psi}$  est strictement décroissant sur  $]0, +\infty[$  et sur  $]-\infty, 0[$ .
- 3. On pose  $\lambda = -\lim_{x \to +\infty} \frac{\varphi(x)}{\psi(x)}$ .
  - a) Montrer  $\forall x \in \mathbb{R}, \ y_{\lambda}(x) > 0.$
  - b) Montrer

$$\forall x_0 > 0, \ \forall x \in [0, x_0], \ \varphi'(x) \leqslant \frac{\varphi(x_0)}{\psi(x_0)} \psi'(x)$$

(on pourra introduire la fonction  $\varphi - \frac{\varphi(x_0)}{\psi(x_0)}\psi$ ).

c) En déduire  $\forall x \in \mathbb{R}, \ y'_{\lambda}(x) \leq 0.$ 

4. Montrer de façon analogue qu'il existe un réel  $\mu$  tel que

$$\forall x \in \mathbb{R}, \ y_{\mu}(x) > 0 \quad \text{et} \quad y'_{\mu}(x) \geqslant 0.$$

Démontrer que  $\mu$  est strictement plus grand que  $\lambda$ .

5. Exprimer  $y_{\mu}$  en fonction de  $y_{\lambda}$ ,  $\lambda$  et  $\mu$  (on pourra poser  $y_{\mu} = Cy_{\lambda}$  et déterminer la fonction C). En déduire

$$\forall x \geqslant 0, \ y_{\mu}(x)y_{\lambda}(x) \leqslant 1 + (\mu - \lambda)x$$

6. Montrer

$$\forall x \in \mathbb{R}, \ y_{\mu}(x)y_{\lambda}(x) \leq 1 + (\mu - \lambda)|x|$$

#### Partie II

On considère une fonction f.

1. Montrer que, si l'intégrale  $\int_{-\infty}^{+\infty} |f(x)| dx$  est convergente, la fonction

$$h(x) = \frac{1}{\lambda - \mu} \left[ y_{\lambda}(x) \int_{-\infty}^{x} y_{\mu}(t) f(t) dt + y_{\mu}(x) \int_{x}^{+\infty} y_{\lambda}(t) f(t) dt \right]$$

est bien définie et appartient à  $\mathcal{E}_f$ .

- 2. Montrer que, si l'intégrale  $\int_{-\infty}^{+\infty} |xf(x)| dx$  est convergente, la fonction h précédente est une fonction bornée.
- 3. En déduire que, si l'intégrale  $\int_{-\infty}^{+\infty} |xf(x)| dx$  est convergente,  $(E_f)$  admet une et une seule solution bornée.

#### PARTIE III

On suppose, dans cette partie, que l'intégrale  $\int_{-\infty}^{+\infty} |x| q(x) dx$  est convergente.

- 1. Montrer que  $\lim_{x\to +\infty} x \int_x^{+\infty} q(t) dt = 0$  puis démontrer que l'intégrale  $\int_0^{+\infty} \left[ \int_x^{+\infty} q(t) dt \right] dx$  est convergente.
- 2. Soit y une fonction de classe  $C^2$ , bornée sur  $[0, +\infty[$  et vérifiant

$$\forall x \geqslant 0, \ y''(x) - q(x)y(x) \geqslant 0$$

a) Montrer

$$\forall x \geqslant 0, \ y'(x) + \int_{x}^{+\infty} q(t)y(t) \, \mathrm{d}t \leqslant 0$$

- b) En déduire que l'intégrale  $\int_0^{+\infty} x[y''(x)-q(x)y(x)]\,\mathrm{d}x$  est convergente.
- 3. Soit f une fonction telle que  $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$  et l'intégrale  $\int_{-\infty}^{+\infty} |x| f(x) \, dx$  diverge. Montrer que l'équation  $(E_f)$  n'admet pas de solution bornée.

# Partie IV

On suppose que  $\forall x \in \mathbb{R}$ , q(x) = 1. Donner l'exemple de deux fonctions  $f_1$  et  $f_2$  vérifiant les mêmes conditions que la fonction f de III.3. telles que  $(E_{f_1})$  admette une solution bornée et  $(E_{f_2})$  n'admette pas de solution bornée.

(Voir solution page 16)

# Sujet 2 Ulm et Cachan, épreuve commune 1994

# Préambule

Ce préambule comprend divers notations et résultats que les candidats pourront utiliser sans démonstration.

On désigne par E l'espace vectoriel sur le corps des complexes  $\mathbb{C}$  formé par les fonctions continues définies sur  $\mathbb{R}$  à valeurs dans  $\mathbb{C}$  et qui sont **périodiques de période**  $2\pi$ .

Pour  $n \in \mathbb{Z}$ ,  $e_n \in E$  est l'élément  $e_n(x) = e^{inx}$ ,  $x \in \mathbb{R}$ . À f et g dans E, on associe le nombre complexe :

$$(f,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{f}(x)g(x) dx$$

et on note  $||f||_2 = \sqrt{(f, f)}$ . On admettra que  $(\cdot)$  est un produit scalaire qui fait de E un espace préhilbertien sur  $\mathbb{C}$ .

On désigne par  $\|\cdot\|_{\infty}$  la norme de la convergence uniforme sur E:

$$||f||_{\infty} = \sup\{|f(x)|, \ x \in \mathbb{R}\}\$$

On admettra que E muni de cette norme est complet.

Pour  $N \in \mathbb{N}$ ,  $E_N$  désigne l'espace vectoriel engendré par  $e_n$  pour  $n \in \mathbb{Z}$ ,  $n \in [-N, N]$ . On désigne par  $D_N$  l'élément de  $E_N : D_N = \sum_{n=-N}^N e_n$  et on pourra utiliser que, pour tout  $x \in ]0, 2\pi[$ ,

$$D_N(x) = \frac{\sin(N + \frac{1}{2})}{\sin\frac{x}{2}}.$$

Pour  $m \in \mathbb{N}^*$ , on désigne par  $\mathbb{F}_m$  l'anneau  $\mathbb{Z}/m\mathbb{Z}$  des classes d'équivalence dans  $\mathbb{Z}$  modulo m.

Étant donné une suite  $(u_n)_{n\in\mathbb{Z}}$ , on dira que la «série de terme général  $(u_n)_{n\in\mathbb{Z}}$  est absolument convergente» (en abrégé  $(u_n)_{n\in\mathbb{Z}}$  est une série S.A.C.) si la série de terme général  $(|u_{-n}|+|u_n|)_{n\in\mathbb{N}}$  est convergente. On notera alors  $\sum_{n\in\mathbb{Z}}u_n$  ou  $\sum_{n=-\infty}^{+\infty}u_n$  la somme de cette série où :

$$\sum_{n \in \mathbb{Z}} u_n = u_0 + \sum_{n \geqslant 1} (u_{-n} + u_n).$$

On admettra sans démonstration que tous les résultats sur les S.A.C. indexés par  $\mathbb{N}$  s'étendent aux S.A.C. indexées par  $\mathbb{Z}$  et par exemple si  $(a_n)_{n\in\mathbb{Z}}$  et  $(b_n)_{n\in\mathbb{Z}}$  sont telles que  $(|a_n|^2 + |b_n|^2)_{n\in\mathbb{Z}}$  est une S.A.C. alors  $(a_nb_n)_{n\in\mathbb{Z}}$  est une S.A.C. et

$$\left|\sum_{n\in\mathbb{Z}}a_nb_n\right|\leqslant \left(\sum_{n\in\mathbb{Z}}|a_n|^2\right)^{\frac{1}{2}}\left(\sum_{n\in\mathbb{Z}}|b_n|^2\right)^{\frac{1}{2}}(\text{Inégalité de Cauchy-Schwarz}).$$

Dans tout le problème, N désignera un entier supérieur ou égal à 1 qui pourra varier.

#### Partie I

À  $f \in E$ , on associe la suite de ses coefficients de Fourier  $(f_n)_{n \in \mathbb{Z}}$ :

$$f_n = (e_n, f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

1. Soit  $f \in E$ , montrer que  $(|f_n|^2)_{n \in \mathbb{Z}}$  est une S.A.C. et que sa somme est

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 \, \mathrm{d}x.$$

- 2. Soit  $(u_n)_{n\in\mathbb{Z}}$  est une S.A.C., on désigne par  $S_N$  l'élément de  $E: S_N = \sum_{n=-N}^N u_n e_n$ . Montrer que  $(S_N)_{N\geqslant 1}$  converge vers un élément u de E pour la norme  $\|\cdot\|_{\infty}$ . Quels sont les coefficients de Fourier de u?
- 3. Soit  $(u_n)_{n\in\mathbb{Z}}$  définie par  $u_n=0$  pour  $n\leqslant 0$ ,  $u_1=-1$  et  $u_n=\frac{1}{n(n-1)}$  pour  $n\geqslant 2$ . Montrer que l'élément u de E obtenu par le procédé de la question I.2. n'est pas dérivable en x=0 (on pourra écrire pour  $N\geqslant 2$  arbitraire et  $x\neq 0$ ,

$$\operatorname{Im} \frac{u(x) - u(0)}{x} = \operatorname{Im} \frac{S_N(x) - S_N(0)}{x} + \sum_{n=N+1}^{\infty} \frac{\sin nx}{n(n-1)x}$$

Imz désignant la partie imaginaire de  $z \in \mathbb{C}$  et conclure en prenant  $x = \frac{1}{N}$ ).

- 4. On désigne par  $\Sigma_N$  l'élément de  $E: \Sigma_N = \sum_{n=1}^N \frac{e_n}{n}$ . Montrer que la suite  $(\Sigma_N)_{N\geqslant 1}$  est de Cauchy dans E pour la norme  $\|\cdot\|_2$ .
- 5. Montrer que si la suite  $(\Sigma_N)_{N\geqslant 1}$  converge vers  $\sigma\in E$  pour la norme  $\|\cdot\|_2$ , alors pour tout  $x\in\mathbb{R}$ ,

$$u(x) = (e^{ix} - 1)\sigma(x)$$

où u a été défini en I.3.

6. Déduire des questions I.3. et I.5. que E muni de la norme  $\|\cdot\|_2$  n'est pas complet.

#### Partie II

- 1. Étant donné  $f \in E$ , montrer qu'il existe un et un seul élément g de  $E_N$  tel que  $||g f||_2$  réalise le minimum de  $||h f||_2$  lorsque h parcours  $E_N$ . On notera  $P_N f$  au lieu de g.
- 2. Montrer que  $P_N$  est un projecteur de E sur  $E_N$  et que pour tout  $f \in E$ ,

$$||P_N f||_2 \leqslant ||f||_2$$
.

3. a) Montrer que pour tout  $x \in \mathbb{R}$ ,

$$(P_N f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_N(x - y) dy.$$

b) Montrer que pour tout  $x \in \mathbb{R}$ ,

$$(P_N f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y) D_N(y) dy.$$

- 4. On désigne par  $\alpha_N$  la borne supérieure de l'ensemble des nombres  $||P_N f||_{\infty}$  lorsque f décrit la boule unité de  $(E, ||\cdot||_{\infty})$ . Montrer que  $\alpha_N \leq \sqrt{2N+1}$
- 5. On désigne par  $L_N$  le nombre  $L_N = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(x)| dx$ , et pour  $\varepsilon > 0$ ,  $\psi_N^{\varepsilon}$  l'élément de E défini par

$$\psi_N^{\varepsilon}(x) = \frac{D_N(x)}{\sqrt{\varepsilon + D_N^2(x)}}, \ x \in \mathbb{R}.$$

Montrer, en utilisant les  $\psi_N^{\varepsilon}$  que  $\alpha_N \leqslant L_N$  (on pourra monter que pour tout  $y \in \mathbb{R}$ ,

$$0 \leqslant |y| - \frac{y^2}{\sqrt{\varepsilon^2 + y^2}} = \frac{\varepsilon |y|}{\sqrt{\varepsilon + y^2} (\sqrt{\varepsilon + y^2} + |y|)} \leqslant \sqrt{\varepsilon}).$$

- 6. Montrer que lorsque N tend vers l'infini,  $L_N$  est équivalent à  $\frac{4}{\pi^2} \log N$
- 7. Que pouvez-vous conclure (en vous inspirant de la question II.2.)?

#### Partie III

On désigne par  $H_1$  le sous-espace de E formé par les éléments f tels que

$$((1+n^2)|f_n|^2)$$

est une S.A.C.

On note alors pour  $f \in H_1$ ,  $||f||_1 = (\sum_{n \in \mathbb{Z}} (1 + n^2) |f_n|^2)^{\frac{1}{2}}$ .

- 1. Montrer que si  $f \in E$  est de classe  $C^1$  sur  $\mathbb{R}$ , alors  $f \in H_1$  et  $||f||_1^2 = ||f||_2^2 + ||f'||_2^2$ . Réciproquement si  $f \in H_1$ , f est-elle de classe  $C^1$  sur  $\mathbb{R}$ ?
- 2. Montrer que  $E_1 = \mathcal{C}^1(\mathbb{R}, \mathbb{C}) \cap E$  est dans dans E pour la norme  $\|\cdot\|_1$ .
- 3. Soit  $f \in H_1$ , montrer que :

$$||P_N f - f||_2 \leqslant \frac{1}{N+1} ||f||_1.$$

4. En écrivant, pour  $g \in E_1$ , x et y dans  $\mathbb{R}$ ,

$$g^{2}(x) - g^{2}(y) = 2 \int_{y}^{x} g(t)g'(t) dt,$$

montrer qu'il existe une constante  $K_1 \in ]0, +\infty[$  telle que pour tout  $f \in H_1, ||f||_{\infty} \le K_1 ||f||_2^{\frac{1}{2}} ||f||_1^{\frac{1}{2}}.$ 

5. En déduire que pour tout  $f \in H_1$  et  $N \ge 1$ ,

$$||P_N f - f||_{\infty} \leqslant \frac{K_1}{N+1} ||f||_1$$

et expliquer brièvement l'intérêt de cette inégalité en terme d'approximation de fonctions et justifier l'introduction de l'espace  $H_1$ .

## Partie IV

- 1. Montrer que si  $f \in H_1$ ,  $||f||_2 \le ||f||_1$ .
- 2. Montrer que  $\|\cdot\|_1$  est une norme sur  $H_1$  et que  $H_1$  muni de cette norme est complet.
- 3. Montrer qu'il existe une constante  $K_2$  telle que pour tout  $f \in H_1$ ,

$$||f||_{\infty} \leqslant K_2 ||f||_1.$$

4. Soit  $(g^p)_{p\in\mathbb{N}}$  une suite d'éléments de  $H_1$  telle que :

$$\forall p \in \mathbb{N}, \|g^p\|_1 \leqslant 1.$$

- a) Montrer qu'il existe une application strictement croissante  $\psi$  de  $\mathbb{N}$  dans  $\mathbb{N}$  telle que pour tout  $n \in \mathbb{Z}$ , la suite des produits scalaires  $((g^{\psi(p)}, e_n))_{p \in \mathbb{N}}$  soit convergente. On note alors  $\ell_n$  la limite de cette suite.
- b) Montrer que la suite de fonctions  $S_N$ , où  $S_N = \sum_{n=-N}^N \ell_n e_n$  converge vers une fonction  $\ell \in E$  pour la norme  $\|\cdot\|_{\infty}$ .
- c) Montrer que  $\ell \in H_1$ .
- d) Montrer par exemple, qu'en général  $||g^{\psi(p)} \ell||_1$  ne tend pas vers zéro lorsque p tend vers  $+\infty$ .

#### Partie V

On désigne par  $x_j$  le point  $\frac{2\pi}{2N+1}j$  pour  $j \in \mathbb{Z}$ . On observe alors que pour  $f \in E$ ,  $f(x_j)$  ne dépend que de la classe de j modulo 2N+1, ce qui permet de parler de  $f(x_j)$  pour  $j \in \mathbb{F}_{2N+1}$ .

1. Montrer que la matrice carrée d'ordre 2N+1 :  $(e^{i\ell x_j})_{0\leqslant j\leqslant 2N,\ 0\leqslant \ell\leqslant 2N}$  a pour inverse la matrice :

$$\left(\frac{1}{2N+1}e^{-i\ell x_j}\right)_{0\leqslant j\leqslant 2N,\ 0\leqslant \ell\leqslant 2N}$$

2. a) Soit  $f \in E$ . Montrer qu'il existe un unique élément de  $E_N$  (noté  $C_N f$ ) tel que :

$$\forall j \in \mathbb{F}_{2N+1}, \ (C_N f)(x_j) = f(x_j).$$

- b) Montrer que  $C_N$  est une application linéaire de E dans  $E_N$ .
- c) Montrer que  $C_N \neq P_N$  (on pourra remarquer que  $C_N e_{2N+1} = e_0$ ).
- 3. On désigne par  $\mathcal{E}_{2N+1}$  l'ensemble des applications de  $\mathbb{F}_{2N+1}$  dans  $\mathbb{C}$ , on note  $(z_k)_{k \in \mathbb{F}_{2N+1}}$  ces applications.

8

a) À  $z \in \mathcal{E}_{2N+1}$ , on associe  $\hat{z}: k \longmapsto \hat{z}_k$  de  $\mathbb{Z}$  dans  $\mathbb{C}$  défini par :

$$\hat{z}_{\ell} = \frac{1}{2N+1} \sum_{k \in \mathbb{F}_{2N+1}} e^{-i\ell x_k} z_k.$$

Montrer que  $\hat{z}_{\ell}$  ne dépend que de la classe de  $\ell$  modulo 2N+1. Ceci nous permet de considérer  $\hat{z}$  comme un élément de  $\mathcal{E}_{2N+1}$ .

b) On dit que  $\hat{z}$  est la transformée de Fourier discrète (T.F.D.) de z. On note  $\varphi = (\varphi_k)_{k \in \mathbb{F}_{2N+1}}$  la T.F.D. de l'application  $j \longmapsto f(x_j)$ . Montrer que :

$$C_N f = \sum_{k=-N}^N \varphi_{\check{k}} e_k$$

où  $\check{k}$  est la classe de k modulo 2N+1.

4. Soit  $h \in E_{2N}$ , montrer que :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) dx = \frac{1}{2N+1} \sum_{j=-N}^{N} h(x_j).$$

5. a) Pour f et g dans E, on note :

$$[f,g] = \frac{1}{2N+1} \sum_{j=-N}^{N} \overline{f(x_j)} g(x_j).$$

Montrer que si f et g sont dans  $E_N$ , [f,g] = (f,g).

b) Montrer que pour tout f, g dans E,

$$[f - C_N f, g] = 0.$$

- c) Calculer  $[e_n, e_m]$ .
- 6. Soit  $f \in H_1$  et  $\ell \in \mathbb{Z}$ . Montrer que  $(f_{\ell+(2N+1)k})_{k\in\mathbb{Z}}$  est une S.A.C. et que :

$$C_N(f) = \sum_{\ell \in \mathbb{F}_{2N+1}} C_{N,\ell}(f) e_{\ell}$$

$$C_{N,\ell} = \sum_{k \in \mathbb{Z}} f_{\ell+(2N+1)k}.$$

7. a) Montrer que pour tout  $f \in E$ , on a :

$$f - C_N f = g_N - C_N g_N$$
 avec  $g_N = f - P_N f$ .

b) Montrer qu'il existe une constante  $K_3 \in ]0, +\infty[$  telle que pour tout  $f \in H_1$ ,

$$||f - C_N f||_2 \leqslant \frac{K_3}{N+1} ||f||_1.$$

8. Pour quelle raison pratique préfère-t-on  $C_N$  à  $P_N$ ?

## Partie VI

On se donne un entier  $M \geqslant 1$  et on désigne par  $\omega$  un nombre complexe tel que  $\omega^M = 1$ . À tout élément z de  $\mathcal{E}_M$  ( $\mathcal{E}_M$  est l'ensemble des applications de  $\mathbb{F}_M$  dans  $\mathbb{C}$ ), on associe l'élément  $\hat{z}$  de  $\mathcal{E}_M$  défini par :

$$\hat{z}_{\ell} = \sum_{k \in \mathbb{F}_M} \omega^{k\ell} z_k$$

et on note  $\hat{z} = \text{T.F.D.}(\omega, M)(z)$ .

- 1. En considérant que les  $\omega^{k\ell}$  ont été calculés une fois pour toutes, quel est le nombre d'opérations (additions et multiplications) nécessaires pour obtenir  $\hat{z}$  en fonction de z? On notera  $S_M$  ce nombre.
- 2. On suppose que M est pair :  $M = 2M_1$ . En remarquant que :

$$\hat{z}_{\ell} = \sum_{k_1 \in \mathbb{F}_{M_1}} \omega^{2k_1 \ell} z_{2k_1} + \sum_{k_2 \in \mathbb{F}_{M_1}} \omega^{(2k_2 - 1)\ell} z_{2k_2 - 1}$$

montrer que T.F.D. $(\omega, M)$  peut s'effectuer à l'aide de deux opérations T.F.D. $(\omega^2, M_1)$ .

3. On suppose que  $M=2^n, n\in\mathbb{N}$ . On désigne par  $\Sigma_n$  le nombre d'opérations pour effectuer T.F.D. $(\chi,2^n)$  où  $\chi\in\mathbb{C}$  vérifie  $\chi^{(2^n)}=1$ . Montrer que  $\Sigma_n\leqslant 2\Sigma_{n-1}+2^{n+1}$  et en déduire que :

$$\Sigma_n \leqslant 2M \log_2 M$$

(où  $\log_2 M = n$  par définition).

- 4. En supposant que les calculs sont effectués sur un ordinateur faisant  $10^8$  opérations par seconde, comparer les temps de calculs correspondant à  $S_M$  avec  $M=2^n$  et  $\sigma_n$  pour n=20,25 et 30. On représentera les résultats sous forme d'un tableau.
- 5. On suppose plus généralement que M=PQ où P et Q sont deux entiers supérieurs ou égaux à 1. Montrer que T.F.D. $(\omega,M)$  peut se faire en 2M(P+Q) opérations.
- 6. Appliquer ce qui précède au calcul de  $C_N f$  pour  $f \in H_1$

# Sujet 3 Cachan, deuxième épreuve, 1990

Soit k un corps commutatif. On note k[X] l'algèbre des polynômes à une indéterminée à coefficients dans k.

Soit n un entier  $\geq 2$ . On note  $\mathcal{M}_n(k)$  l'algèbre des matrices (n,n) à coefficients dans k,  $\mathcal{GL}_n(k)$  le sous-ensemble de  $\mathcal{M}_n(k)$  formé par les matrices inversibles,  $I_n$  la matrice identité. Si  $M \in \mathcal{M}_n(k)$ , on note  ${}^t\!M$  sa transposée.

Soit  $(a_1, \ldots, a_n)$  dans  $k^n$  et soit  $C = (c_{i,j})$  la matrice (n, n) définie par :

$$\begin{cases} c_{i,j} \text{ si } 1 \leqslant j \leqslant n-1 \text{ et } i=j+1 \\ c_{i,j} = a_j \text{ si } 1 \leqslant i \leqslant n \text{ et } j=n \\ c_{i,j} = 0 \text{ sinon.} \end{cases}$$

Cette matrice est étudiée dans les trois parties du problème.

#### Partie I

- 1. Calculer le polynôme caractéristique de C.
- 2. Soit  $(e_1, \ldots, e_n)$  la base canonique de  $k^n$ . Déterminer l'expression de  $C^i(e_1)$  sur cette base, pour  $1 \le i \le n-1$ .

En déduire que  $\{I_n, C, \ldots, C^{n-1}\}$  est une partie libre de  $\mathcal{M}_n(k)$ .

Montrer que tout polynôme P de k[X], tel que P(C) = 0, est divisible par le polynôme caractéristique de C.

3. Soit  $\sigma = (s_1, \ldots, s_n)$  dans  $k^n$ ; on considère la matrice  $S_{\sigma} = s_{i,j}$  définie par :

$$\begin{cases} s_{i,j} = s_{i+j-n} \text{ si } i+j > n \\ s_{i,j} = 0 \text{ sinon} \end{cases}.$$

Montrer que  $S_{\sigma}$  est une matrice symétrique.

Calculer son déterminant.

- 4. Montrer qu'il existe un unique  $\sigma = (s_1, s_2, \dots, s_n)$  dans  $k^n$  tel que  $s_1 = 1$  et tel que la matrice  $S_{\sigma}C$  est symétrique.
- 5. En déduire qu'il existe une matrice symétrique inversible T et une matrice symétrique R telles que C=TR.
- 6. Montrer qu'il existe une matrice symétrique inversible T telle que  $C = T^tCT^{-1}$ .
- 7. Calculer la matrice  $S_{\sigma}$  dans le cas où

$$a_n = 2, a_{n-1} = -1 \text{ et } a_i = 0, \ \forall i \le n-2$$

#### Partie II

Dans cette partie, on suppose que k est un corps de caractéristique différente de 2 et tel que :

$$\forall a \in k, \exists b \in k \mid a = b^2$$

- 1. Soit B une forme bilinéaire symétrique non dégénérée de  $k^n$ . Montrer qu'il existe x dans  $k^n$  tel que B(x,x)=1.
- 2. Soit  $M \in \mathcal{GL}_n(k)$ . Montrer l'équivalence des assertions :
  - a) La matrice M est symétrique;
  - b)  $\exists P \in \mathcal{GL}_n(k) \mid M = {}^t\!PP$ .
- 3. Montrer que C est semblable à une matrice symétrique.
- 4. Montrer que dans  $M_n(k)$  les matrices symétriques ne sont pas en général diagonalisables. Donner un exemple de matrice symétrique non diagonalisable dans  $\mathcal{M}_n(k)$  lorsque k est le corps des nombres complexes.

### Partie III

Dans cette partie, on suppose que  $k = \mathbb{R}$  le corps des réels. On munit  $\mathcal{M}_n(\mathbb{R})$ ,  $\mathbb{R}$ -espace vectoriel de dimension finie, de la topologie produit.

- 1. Soit  $\Omega$  le sous-ensemble de  $\mathcal{M}_n(\mathbb{R})$  des matrices M qui vérifient la propriété suivante : Si P est un élément de  $\mathbb{R}[X]$  tel que P(M) = 0, alors P est divisible par le polynôme caractéristique de M. Montrer que  $\Omega$  est un ouvert.
- 2. Soit  $\lambda$  une valeur propre de C. Montrer que :

$$|\lambda| \le \max\{1 + |a_i|; i \in \{1, \dots, n\}\}$$

- 3. Soit  $\{M_i\}_{i\in\mathbb{N}}$  une suite de  $\mathcal{M}_n(\mathbb{R})$  telle que
  - $M_i$  est diagonalisable dans  $\mathcal{M}_n(\mathbb{R})$ , pour tout i dans  $\mathbb{N}$ ;
  - la suite  $\{M_i\}_{i\in\mathbb{N}}$  converge vers C.

#### Montrer que:

- a)  $\exists l \in \mathbb{N} | \forall m \geq l, \mathcal{M}_m$  a n valeurs propres distinctes deux à deux.
- b)  $\exists K \in \mathbb{R}^+ | \forall m \in \mathbb{N}, \forall \lambda \text{ valeur propre de } \mathcal{M}_m, \text{ on a : } |\lambda| \leq K.$
- c) Soit  $m \ge l$ . On note  $\lambda_1^m, \ldots, \lambda_n^m$  les n valeurs propres de  $\mathcal{M}_m$  rangées dans l'ordre croissant.

Montrer que la suite  $\{\lambda_i^m\}_{m\geqslant l}$  converge, pour tout i dans  $\{1,\ldots,n\}$  et que le polynômes caractéristique de C admet ses n racines dans  $\mathbb{R}$ .

4. Donner un exemple de matrice de  $\mathcal{M}_n(\mathbb{R})$  qui n'est pas la limite d'une suite de matrices diagonalisables dans  $\mathcal{M}_n(\mathbb{R})$ .

# Sujet 4 Lyon, deuxième épreuve, 1988

### Partie I

1. Soit  $(a_n)_{n\in\mathbb{N}}$  une suite de nombres réels positifs ou nuls, telle que la série entière  $\sum_{x=0}^{+\infty} a_n x^n$  converge pour |x| < 1. On note f(x) sa somme et on suppose qu'il existe  $s \in \mathbb{R}_+$  tel que :

$$\lim_{x \to 1, x < 1} f(x) = s.$$

- a) Montrer que la série de terme général  $a_n$  est convergente de somme s.
- b) Montrer par un exemple que ce résultat est en général faux pour une suite  $(a_n)$  dont les termes ne sont pas tous positifs ou nuls.
- 2. Soit F(x) une fonction de classe  $C^{\infty}$  sur [0,1[, à valeurs réelles, telle que :

$$F^{(n)}(x) \geqslant 0, \ \forall x \in [0, 1[, \ \forall n \geqslant 0,$$

 $F^{(n)}$  désignant la dérivée d'ordre n de F. Pour  $n \ge 0$  on pose :

$$r_n(x) = \frac{x^{n+1}}{n!} \int_0^1 (1-t)^n F^{(n+1)}(tx) dt$$

a) Montrer que pour  $0 \le x < y < 1$  on a :

$$0 \leqslant r_n(x) \leqslant r_n(y) \left(\frac{x}{y}\right)^{n+1}$$

- b) En déduire que pour  $0 \le x < 1$ , F(x) est somme de sa série de Taylor à l'origine.
- c) On remplace l'intervalle [0, 1[ par ]-1, 1[ dans les hypothèses. Montrer que pour -1 < x < 1, F(x) est somme de sa série de Taylor à l'origine.

### Partie II

#### NOTATION

- a) Soit  $a \in \mathbb{R}_+$ . On note E(0, a) l'ensemble des fonctions continues f de [0, a] dans  $\mathbb{R}$ , qui sont de classe  $C^2$  sur [0, a[, et telles que f(x) > 0 pour tout  $x \in [0, a[$  et f(a) = 0.
- b) Soient  $m \in \mathbb{N}$  et  $d \in \mathbb{R}_+$ . On considère le problème (1) associé aux conditions :

$$\begin{cases} G(y)G''(y) + y^{m+1} = 0 \text{ pour } 0 \le y < d\\ G(0) = 1\\ G'(0) = 0. \end{cases}$$
 (1)

1. Supposons qu'il existe d > 0 et une fonction G(0, d), solution du problème (1). Montrer qu'il existe une fonction  $g \in E(0, 1)$  et un nombre  $k \in \mathbb{R}_+$  tels que :

$$\begin{cases} g(x)g''(x) + x^{m+1} = 0 \text{ pour } 0 \le x < 1\\ g'(0) = 0\\ g(1) = 0 \end{cases}$$
 (2)

et de plus g(0) = k.

2. Montrer que l'équation différentielle

$$G(y)G''(y) + y^{m+1} = 0$$

possède une et une seule solution maximale telle que G(0) = 1 et G'(0) = 0. On énoncera avec précision le théorème utilisé pour cela.

On note maintenant I = c, d l'intervalle sur lequel est définie cette solution maximale.

3. On suppose d'abord que  $d = +\infty$ . Montrer qu'on ne peut avoir :

$$G(y) > 0$$
, pour tout  $y > 0$ .

En déduire que ce cas est impossible.

- 4. On a donc  $0 < d < +\infty$ .
  - a) Montrer que G peut être prolongée par continuité en y = d.
  - b) En déduire que le problème (1) possède une solution  $G \in E(0, d)$ .

#### Partie III

On se donne une fonction h de [0,1] dans  $\mathbb{R}_+$ , continue.

On considère le problème (3) associé aux conditions :

$$\begin{cases} g(x)g''(x) + 2xh(x) = 0 \text{ pour } 0 \le x < 1\\ g(1) = 0\\ g'(0) = 0. \end{cases}$$
 (3)

On se propose de montrer que ce problème admet au plus une solution g dans E(0,1). Soient  $g_1$  et  $g_2$  deux éléments de E(0,1), solutions de (2).

- 1. On suppose  $g_1(0) < g_2(0)$ .
  - a) Montrer qu'il existe  $x_0 \in ]0,1]$  tel que

$$g_1(x) < g_2(x), \ \forall x \in [0, x_0[, \text{ et } g_1(x_0) = g_2(x_0)].$$

- b) Montrer que  $g_2''(x) \ge g_1''(x)$  sur  $]0, x_0[$ . En déduire que  $g_2(x) - g_1(x) \ge g_2(0) - g_1(0), \forall x \in ]0, x_0[$ . Conclure.
- 2. On a donc  $g_1(0) = g_2(0)$ . On suppose maintenant que  $g_1(x) g_2(x)$  n'est pas identiquement nul sur [0, 1].
  - a) Montrer qu'il existe  $x_1 \in ]0,1[$  tel que :

$$g_1(x_1) \neq g_2(x_1)$$
 et  $g'_1(x_1) = g'_2(x_1)$ .

b) En exhibant une contradiction, en déduire que  $g_1(x) = g_2(x)$  pour tout  $x \in [0, 1]$ .

### Partie IV

On considère le problème (3) associé aux conditions :

$$\begin{cases} g(x)g'(x) + 2x = 0 \text{ pour } 0 \le x < 1\\ g(1) = 0\\ g'(0) = 0 \end{cases}$$
 (4)

- 1. Montrer que la seule solution g de (4) appartient à E(0,1) est indéfiniment dérivable sur [0,1[.
- 2. Pour  $n \ge 0$ , donner une expression de  $g^{(n+3)}$  en fonction des  $g^{(i)}$  pour  $0 \le i \le n+2$ .
- 3. En déduire que la fonction F(x) = -[g(x) g(0)] vérifie :

$$F^{(n)}(x) \ge 0, \ \forall x \in [0, 1[.$$

4. Montrer que

$$g(x) = \sum_{n=0}^{+\infty} \frac{g^{(n)}(0)}{n!} x^n \text{ pour } x \in [0, 1].$$

5. On pose  $a_0 = g(0)$ . Montrer que  $g^{3n}(0) = -(3n)! \frac{b_n}{a_0^{2n-1}}, \ n = 1, 2, \dots$ 

$$b_1 = \frac{1}{3} \text{ et } b_n = \frac{1}{2} \sum_{p=0}^{n-1} b_p b_{n-p} \left( 1 - \frac{6p(n-p)}{n(3n-1)} \right), \ n \geqslant 2.$$

# Partie V

- 1. On pose  $S_N(x) = \sum_{n=1}^N \frac{b_n}{x^{2n-1}}$ , pour x > 0 et N = 1, 2, ...Montrer que chaque équation  $S_N(x) = x$  admet une et une seule racine positive  $x_N$ , que la suite  $(x_N)_{N \geqslant 1}$  est croissante et qu'elle converge vers  $a_0$ .
- 2. On considère  $x \ge a_0$  les fonctions :

$$P(x) = x - \sum_{n=1}^{+\infty} \frac{b_n}{x^{2n-1}}, \quad Q(x) = x^2 - \frac{2}{3} + \sum_{n=2}^{+\infty} \frac{\Phi(n)}{x^{2n-1}},$$

οù

$$\Phi(n) = \sum_{k=1}^{n-1} \frac{6k(n-k)}{n(3n-1)} b_k b_{n-k}.$$

Quelle relation y a-t-il entre P(x) et Q(x)?

- 3. On pose, pour x > 0 et  $N = 2, 3, \ldots, T_N(x) = \sum_{n=2}^N \frac{\Phi(n)}{x^{2(n-1)}}$ . Montrer que chaque équation  $2/3 - x^2 = T_N(x)$  admet deux racines positives  $y_N$  et  $z_N$  telles que la suite  $(y_N)_{N\geqslant 2}$  soit croissante,  $(z_N)_{N\geqslant 2}$  soit décroissante,  $y_N < a_0 < z_N$  et  $\lim y_N = \lim z_N = a_0$  quand N tend vers  $+\infty$ .
- 4. En utilisant les suites  $(x_N)$  et  $(z_N)$  déterminées aux questions 1 et 3 donner une valeur de  $a_0$  avec une erreur inférieure à  $10^{-1}$

# Solution du sujet 1

#### Partie I

1. a) Soit  $y \in \mathcal{E}$ . Alors y'' = qy et

$$(y^2)' = 2yy'$$
 donc  $(y^2)'' = 2(y'^2 + yy'') = 2(y'^2 + qy^2) \ge 0$ 

puisque  $q \geqslant 0$ .

Donc  $y^2$  est convexe.

Soit I un intervalle de  $\mathbb{R}$  tel que y garde un signe constant sur I. Alors y'' = qy est de signe constant sur I.

Ainsi, si  $y \ge 0$  sur I, alors y y est convexe. Sinon, elle y est concave.

b) Soit  $y \in \mathcal{E}$  une fonction bornée. D'après la question précédente,  $y^2$  est convexe. Donc  $y^2$  est constante. En effet, si par l'absurde, il existe  $a, b \in \mathbb{R}$  tels que a < b et  $y^2(a) \neq y^2(b)$  (par exemple  $y^2(a) < y^2(b)$ ), alors par inégalité des pentes,

$$\forall x > a, \ \frac{y^2(b) - y^2(a)}{b - a} \leqslant \frac{y^2(x) - y^2(b)}{x - b}$$

i.e.

$$\forall x > a, \ (x-b)\frac{y^2(b) - y^2(a)}{b-a} + y^2(b) \leqslant y^2(x).$$

Par passage à la limite,  $\lim_{x\to +\infty}y^2(x)=+\infty$ , ce qui est absurde puisque  $y^2$  est bornée. Donc  $y^2$  est constante, et par continuité de y,y est constante. Comme y est constante, qy=y''=0, et comme q n'est pas identiquement nulle, nécessairement, y=0.

Ainsi, le seul élément de  ${\mathcal E}$  qui soit borné est la fonction identiquement nulle.

2. a) Comme  $\varphi \in \mathcal{E}$ , d'après I.1.a),  $\varphi^2$  est convexe. Donc  $(\varphi^2)'$  est croissante. Or  $(\varphi^2)'(0) = 2\varphi(0)\varphi'(0) = 0$ , on en déduit donc le tableau de variations suivant :

| x                         | $-\infty$ | 0                  |   | $+\infty$ |
|---------------------------|-----------|--------------------|---|-----------|
| $(\varphi^2)'(x)$         | _         | 0                  | + |           |
| variations de $\varphi^2$ |           | $\varphi^2(0) = 1$ | 1 | <i></i>   |

Donc

$$\forall x \in \mathbb{R}, \ |\varphi^2(x)| \geqslant 1$$

Par continuité de  $\varphi$ ,

$$\varphi \geqslant 1$$
 ou  $\varphi \leqslant -1$ 

Or, 
$$\varphi(0) = 1$$
.

Donc 
$$\forall x \in \mathbb{R}, \ \varphi(x) \geqslant 1.$$

b) De façon analogue, on a le tableau de variations suivant :

| x                      | $-\infty$ | 0               |   | $+\infty$ |
|------------------------|-----------|-----------------|---|-----------|
| $(\psi^2)'(x)$         | _         | 0               | + |           |
| variations de $\psi^2$ |           | $\psi^2(0) = 0$ |   | <i></i>   |

 $\psi^2$  est monotone sur  $[0, +\infty[$  et  $]-\infty, 0]$ .

Montrons que  $\psi$  est croissante sur  $[0, +\infty[$ . Supposons par l'absurde qu'il existe 0 < a < b tels que  $\psi(a) > \psi(b)$ . Comme  $\psi^2$  est croissante sur  $\mathbb{R}_+$ ,  $\psi^2(a) \leqslant \psi^2(b)$ . Donc  $\psi(b) < 0 < \psi(a)$ . Par continuité de  $\psi$ , il existe  $c \in ]a,b[$  tel que  $\psi(c) = 0$ . Or pour tout  $x \in [a,b]$ ,  $(\psi^2)'(x) = 2\psi(x)\psi'(x) \geqslant 0$ . Donc  $\psi$  et  $\psi'$  sont de même signe sur [a,b]. Donc  $\psi'$  est positive sur [a,c], et donc  $\psi$  est croissante sur [a,c] ce qui est contradictoire puisque  $\psi(a) > 0$ . Par croissance de  $\psi$  sur  $\mathbb{R}_+$ ,  $\forall x \geqslant 0$ ,  $\psi(x) \geqslant \psi(0) = 0$ .

On montre de façon analogue que  $\psi$  est décroissante sur  $|0, +\infty[$ . Par décroissance de  $\psi$  sur  $\mathbb{R}_-$ ,  $\forall x \leq 0$ ,  $\psi(x) \leq \psi(0) = 0$ .

Ainsi, 
$$\forall x \ge 0$$
,  $\psi(x) \ge 0$  et  $\forall x \le 0$ ,  $\psi(x) \le 0$ .

D'après I.1.a) et ce qui précède,  $\psi$  est convexe sur  $[0, +\infty[$  et concave sur  $]-\infty, 0]$ . Donc  $\psi'$  est croissante sur  $[0, +\infty[$  et décroissante sur  $]-\infty, 0]$ , et par théorème des accroissements finis, on a :

$$\forall x \geqslant 0, \ \exists c \geqslant 0, \ \psi(x) - \psi(0) = \psi(x) = x\psi'(0) \geqslant x\psi'(0)$$

 $\operatorname{et}$ 

$$\forall x \leqslant 0, \ \exists c \leqslant 0, \ \psi(x) - \psi(0) = \psi(x) \leqslant x\psi'(0)$$

Ainsi, 
$$\forall x \ge 0$$
,  $\psi(x) \ge x$  et  $\forall x \le 0$ ,  $\psi(x) \le x$ .

c)  $\frac{\varphi}{\psi}$  est définie sur  $\mathbb{R}^*$ , domaine sur lequel elle est dérivable, par quotient de telles fonctions, et

$$\forall x \in \mathbb{R}^*, \ \left(\frac{\varphi}{\psi}\right)'(x) = \frac{\varphi'(x)\psi(x) - \varphi(x)\psi'(x)}{\psi^2(x)}$$

Notons  $h = \varphi'\psi - \varphi\psi'$  qui est dérivable, et pour tout  $x \in \mathbb{R}$ ,

$$h'(x) = \varphi''(x)\psi(x) - \varphi(x)\psi''(x) = q(x)(\varphi(x)\psi(x) - \varphi(x)\psi(x)) = 0$$

Donc h est constante égale à h(0) = -1. Donc  $\left(\frac{\varphi}{\psi}\right)'$  est strictement négative sur  $]-\infty,0[$  et sur  $]0,+\infty[$ .

Ainsi,  $\frac{\varphi}{\psi}$  est strictement décroissante sur  $]0, +\infty[$  et sur  $]-\infty, 0[$ .

3. a)  $(\varphi, \psi)$  est clairement libre.

Donc  $\mathcal{E} = \text{Vect}(\varphi, \psi)$ . Or  $y_{\lambda}(0) = 1$  et  $y'_{\lambda}(0) = 0$ . Donc  $y_{\lambda} = \varphi + \lambda \psi$ .

D'après I.2.c),  $-\frac{\varphi}{\psi}$  est une fonction strictement croissante sur ]  $-\infty$ , 0[ et sur ]0,  $+\infty$ [.

Donc pour tout  $x \ge 0$ ,  $\lambda > -\frac{\varphi(x)}{\psi(x)}$ , i.e.  $\forall x \ge 0$ ,  $y_{\lambda}(x) > 0$  puisque

$$\forall x \geqslant 0, \ \psi(x) \geqslant 0,$$

et  $\forall x < 0, \ \psi(x) < 0 \ \text{et} \ \varphi(x) > 0$ . Donc  $\forall x < 0, \ \lambda < -\frac{\varphi(x)}{\psi(x)}$ , et

$$\forall x < 0, \ y_{\lambda}(x) > 0.$$

Ainsi,  $\forall x \in \mathbb{R}, \ y_{\lambda}(x) > 0.$ 

b) Soit  $x_0 > 0$ . Notons  $f_{x_0} = \varphi - \frac{\varphi(x_0)}{\psi(x_0)} \psi \in \mathcal{E}$ . Comme  $-\frac{\varphi}{\psi}$  est croissante sur  $]0, x_0]$ ,  $f_{x_0}$  y est positive, donc par I.1.a),  $f_{x_0}$  y est convexe, et  $f'_{x_0}$  y est croissante, donc

$$\forall x \in [0, x_0], \ f'_{x_0}(0) \leqslant f'_{x_0}(x),$$

i.e.

$$\forall x \in [0, x_0], \ \varphi'(x) \leqslant \frac{\varphi(x_0)}{\psi(x_0)} \psi'(x)$$

Ainsi,  $\forall x_0 > 0$ ,  $\forall x \in [0, x_0]$ ,  $\varphi'(x) \leqslant \frac{\varphi(x_0)}{\psi(x_0)} \psi'(x)$ .

c) Comme  $y_{\lambda} > 0$ ,  $y'_{\lambda}$  est croissante sur  $\mathbb{R}$ . De plus, par question précédente, en faisant tendre  $x_0$  vers l'infini, on a

$$\forall x \in [0, +\infty[, \varphi'(x) + \lambda \psi'(x) \le 0]$$

Donc  $\forall x \in \mathbb{R}, \ y'_{\lambda}(x) \leq 0.$ 

4. Posons  $\mu = -\lim_{x \to -\infty} \frac{\varphi(x)}{\psi(x)}$ . Une démonstration analogue à I.3.a)-b) permet de montrer que  $y_{\mu} > 0$  et  $y'_{\mu} \geqslant 0$ .

On a alors  $\lambda \leqslant 0 \leqslant \mu$ . Si  $\lambda = \mu = 0$ , alors  $y_{\lambda} = \varphi = y_{\mu}$ , mais  $y_{\lambda}$  est décroissante et  $y_{\mu}$ est croissante, donc  $\varphi$  est constante égale à 1 ce qui est contradictoire puisque q n'est pas identiquement nulle.

Donc  $\lambda < 0 < \mu$ .

Soit C une fonction telle que  $y_{\mu} = Cy_{\lambda}$ . Alors

$$y_{\mu}'' = C''y_{\lambda} + 2C'y_{\lambda}' + Cy_{\lambda}'' = qCy_{\lambda}$$

i.e.

$$C'' + 2\frac{y_{\lambda}'}{y_{\lambda}}C' = 0$$

$$\begin{array}{l} \operatorname{car}\, y_{\lambda} > 0. \; \operatorname{Donc} \; \operatorname{il} \; \operatorname{existe} \; A \in \mathbb{R} \; \operatorname{tel} \; \operatorname{que} \; C' = \frac{A}{y_{\lambda}^2}. \\ \operatorname{Or} \; \left\{ \begin{array}{l} y_{\mu}(0) = C(0) = 1 \\ y_{\mu}'(0) = C'(0) + C(0)\lambda = \mu \end{array} \right. \; \operatorname{donc} \; \left\{ \begin{array}{l} C(0) = 1 \\ C'(0) = \mu - \lambda \end{array} \right. . \end{array}$$

Donc  $C'(0) = A = \mu - \lambda$ , et  $C' = \frac{\mu - \lambda}{y_3^2}$ . Donc il existe  $B \in \mathbb{R}$  tel que

$$\forall x \in \mathbb{R}, \ C(x) = (\mu - \lambda) \int_0^x \frac{\mathrm{d}t}{y_\lambda^2(t)} + B.$$

Or C(0) = 1. Donc  $\forall x \in \mathbb{R}, \ C(x) = (\mu - \lambda) \int_0^x \frac{\mathrm{d}t}{y_\lambda^2(t)} + 1$ .

Considérons  $g(x) = C(x)y_{\lambda}(x)$ . g est clairement  $C^2$ , et pour tout  $x \in \mathbb{R}$ ,

$$g''(x) = C''(x)y_{\lambda}(x) + 2C'(x)y_{\lambda}'(x) + C(x)y_{\lambda}''(x)$$

$$= -2(\mu - \lambda)\frac{y_{\lambda}'(x)}{y_{\lambda}^{2}(x)} + 2(\mu - \lambda)\frac{y_{\lambda}'(x)}{y_{\lambda}^{2}(x)} + \left[(\mu - \lambda)\int_{0}^{x} \frac{dt}{y_{\lambda}^{2}(t)} + 1\right]y_{\lambda}''(x)$$

$$= \left[(\mu - \lambda)\int_{0}^{x} \frac{dt}{y_{\lambda}^{2}(t)} + 1\right]q(x)y_{\lambda}(x)$$

$$= q(x)q(x)$$

Donc  $g \in \mathcal{E}$  De plus,  $g(0) = C(0)y_{\lambda}(0) = 1$  et  $g'(0) = (\mu - \lambda) + \lambda = \mu$ . Par unicité du problème de Cauchy,  $y_{\mu} = g$ 

Donc 
$$\forall x \in \mathbb{R}, \ y_{\mu}(x) = \left[ (\mu - \lambda) \int_0^x \frac{dt}{y_{\lambda}^2(t)} + 1 \right] y_{\lambda}(x).$$

5. D'après la question précédente,

$$\forall x \geqslant 0, \ y_{\lambda}(x)y_{\mu}(x) \leqslant \left[ (\mu - \lambda) \int_{0}^{x} \frac{\mathrm{d}t}{y_{\lambda}^{2}(t)} + 1 \right] y_{\lambda}^{2}(x)$$

Or,  $y'_{\lambda} \leq 0$ . Donc  $y^2_{\lambda}$  est croissante sur  $\mathbb{R}_+$  et  $\frac{1}{y^2_{\lambda}}$  est décroissante sur  $\mathbb{R}_+$ . Donc

$$\begin{aligned} \forall x \geqslant 0, \ [(\mu - \lambda) \int_0^x \frac{\mathrm{d}t}{y_\lambda^2(t)} + 1] y_\lambda^2(x) \leqslant [(\mu - \lambda) \frac{x}{y_\lambda^2(x)} + 1] y_\lambda^2(x) \\ \leqslant (\mu - \lambda) x + y_\lambda^2(x) \\ \leqslant (\mu - \lambda) x + y_\lambda^2(0) \\ = (\mu - \lambda) x + 1 \end{aligned}$$

Ainsi,  $\forall x \ge 0$ ,  $y_{\lambda}(x)y_{\mu}(x) \le 1 + (\mu - \lambda)x$ .

6. Soit  $x \leq 0$ . Comme  $y'_{\mu} \geq 0$ ,  $y_{\mu}$  est croissante,

$$y_{\lambda}(x)y_{\mu}(x) \leq y_{\lambda}(x)y_{\mu}(0) = y_{\lambda}(x) = y_{\mu}(x) + (\lambda - \mu)\psi(x) \leq 1 + (\lambda - \mu)x$$

Ainsi,  $\forall x \in \mathbb{R}, \ y_{\lambda}(x)y_{\mu}(x) \leq 1 + (\mu - \lambda)|x|.$ 

#### Partie II

1. On suppose que f est intégrable. Soit  $x \in \mathbb{R}$ .  $y_{\lambda} > 0$  et  $y_{\lambda}$  est décroissante, et  $y_{\mu} > 0$  et  $y_{\mu}$  est croissante. Alors d'une part,

$$\forall t \in ]-\infty, x], \ y_{\mu}(t)|g(t)| \leqslant y_{\mu}(x) \underbrace{|f(t)|}_{\text{intégrable}}$$

Donc  $\int_{-\infty}^{x} y_{\mu}(t) f(t) dt$  existe.

D'autre part,

$$\forall t \in [x, +\infty[, y_{\lambda}(t)|g(t)] \leq y_{\lambda}(x) \underbrace{|f(t)|}_{\text{intégrable}}$$

Donc  $\int_x^{+\infty} y_{\lambda}(t) f(t) dt$  existe. Donc h est bien définie. On a

$$\forall x \in \mathbb{R}, \ h''(x) = \frac{1}{\lambda - \mu} \left[ y_{\lambda}''(x) \int_{-\infty}^{x} y_{\mu}(t) f(t) \, \mathrm{d}t + 2y_{\lambda}'(x) y_{\mu}(x) f(x) \right.$$
$$+ y_{\lambda}(x) (y_{\mu}'(x) f(x) + y_{\mu}(x) f'(x)) + y_{\mu}''(x) \int_{x}^{+\infty} y_{\lambda}(t) f(t) \, \mathrm{d}t$$
$$- 2y_{\mu}'(x) y_{\lambda}(x) f(x) - y_{\mu}(x) (y_{\lambda}'(x) f(x) + y_{\lambda}(x) f'(x)) \right]$$
$$= \frac{1}{\lambda - \mu} \left[ q(x) h(x) + y_{\lambda}'(x) y_{\mu}(x) f(x) - y_{\lambda}(x) y_{\mu}'(x) f(x) \right]$$

Or,  $y_{\lambda} = y_{\mu} + (\lambda - \mu)\psi$ . Donc

$$\forall x \in \mathbb{R}, \ y_{\lambda}'(x)y_{\mu}(x) - y_{\lambda}(x)y_{\mu}'(x) = (\lambda - \mu)(\psi'(x)\varphi(x) - \psi(x)\varphi'(x)) = \lambda - \mu$$
 (d'après I.2.c) )

Donc  $h \in \mathcal{E}_f$ .

2. Supposons que  $\int_{-\infty}^{+\infty} |xf(x)| dx$  est convergente. Soit  $x \in \mathbb{R}$ . D'une part, puisque  $y_{\lambda}$  est décroissante,

$$\forall t \in ]-\infty, x], \ y_{\lambda}(x)y_{\mu}(t)|f(t)| \leq y_{\lambda}(t)y_{\mu}(t)|f(t)| \leq \left[1 + (\mu - \lambda)|t|\right]|f(t)|$$

(d'après I.6.)

D'autre part, puisque  $y_{\mu}$  est croissante,

$$\forall t \in [x, +\infty[, y_{\lambda}(t)y_{\mu}(x)|f(t)| \leqslant y_{\lambda}(t)y_{\mu}(t)|f(t)| \leqslant [1 + (\mu - \lambda)|t|]|f(t)|$$

Donc

$$|h(x)| \leq \frac{1}{\mu - \lambda} \int_{-\infty}^{+\infty} y_{\mu}(t) y_{\lambda}(t) |f(t)| dt$$
$$\leq \frac{1}{\mu - \lambda} \int_{-\infty}^{+\infty} |f(t)| dt + \int_{-\infty}^{+\infty} |tf(t)| dt < +\infty$$

Donc h est bornée.

3. Soit  $g \in \mathcal{E}_f$  bornée. Comme  $h \in \mathcal{E}_f$  et est bornée,  $g - h \in \mathcal{E}$  est bornée. D'où l'existence. L'unicité de la solution bornée de  $\mathcal{E}$  est assurée par la question I.1.b).

Ainsi, si  $\int_{-\infty}^{+\infty} |xf(x)| dx$  converge, alors  $(\mathcal{E}_f)$  admet une unique solution bornée.

## Partie III

1. Soit  $x \in \mathbb{R}$ . On a

$$\forall t \geqslant x, \ |xq(t)| \leqslant |tq(t)|$$

Or,

$$\int_{-\infty}^{+\infty} |x| q(x) \, \mathrm{d}x < +\infty$$

, donc

$$\lim_{x \to +\infty} \int_x^{+\infty} |tq(t)| dt = \lim_{x \to +\infty} \int_{-\infty}^{+\infty} |tq(t)| dt - \int_{-\infty}^x |tq(t)| dt = 0.$$

Donc 
$$\lim_{x\to+\infty} x \int_x^{+\infty} |q(t)| = 0.$$

Pour tout  $r \in \mathbb{R}$ ,

$$\int_0^r \left[ \int_x^{+\infty} q(t) \, \mathrm{d}t \right] \mathrm{d}x = \left[ x \int_x^{+\infty} q(t) \, \mathrm{d}t \right]_0^r + \int_0^r x q(x) \, \mathrm{d}x$$
$$= \underbrace{r \int_r^{+\infty} q(t) \, \mathrm{d}t}_{r \to +\infty} + \underbrace{\int_0^r x q(x) \, \mathrm{d}x}_{\text{converge}}$$

Ainsi,  $\int_0^{+\infty} \left[ \int_x^{+\infty} q(t) \, dt \right] dx$  converge.

2. a) Posons, pour tout  $x \in \mathbb{R}_+$ ,  $f(x) = y'(x) + \int_x^{+\infty} q(t)y(t) dt$  qui existe bien puisque y est bornée et q est intégrable donc qy est intégrable. Par hypothèse, pour tout  $x \in \mathbb{R}_+$ ,  $f'(x) \geqslant 0$ . Donc f est croissante, et admet une limite  $l \in \mathbb{R}$ . Comme  $\int_x^{+\infty} q(t)y(t) dt$  converge,  $\lim_{x \to +\infty} y'(x) = l$ . Si par l'absurde, l < 0, il existe  $A \geqslant 0$  tel que pour tout  $x \geqslant A$ ,  $y'(x) \leqslant l/2$ , et donc pour tout  $x \geqslant A$ ,  $y'(x) \leqslant \frac{l}{2}x + y(0) \xrightarrow[x \to +\infty]{} -\infty$  ce qui est absurde car y est bornée. On montre de même que l ne peut être strictement positif.

Ainsi, 
$$\forall x \ge 0$$
,  $y'(x) + \int_x^{+\infty} q(t)y(t) dt \le 0$ .

b) Soit M > 0 tel que  $\forall x \ge 0, |y(x)| \le M$ . Comme  $y'' - qy \ge 0$ ,

$$\int_0^{+\infty} |x[y''(x) - q(x)y(x)]| dx = \int_0^{+\infty} x[y''(x) - q(x)y(x)] dx$$

Par intégration par parties,

$$\int_0^r x[y''(x) - q(x)y(x)] dx = \left[x(y'(x) + \int_x^{+\infty} q(t)y(t) dt)\right]_0^r$$

$$- \int_0^r (y'(x) + \int_x^{+\infty} q(t)y(t)) dt dx$$

$$= r \underbrace{\left(y'(r) + \int_r^{+\infty} q(t)y(t) dt\right)}_{\leqslant 0} - y(r) + y(0)$$

$$- \int_0^r \int_x^{+\infty} q(t)y(t) dt dx$$

$$\leqslant y(0) - y(r) - \int_0^r \int_x^{+\infty} q(t)y(t) dt dx$$

Donc,

$$\int_{0}^{r} \left| x[y''(x) - q(x)y(x)] \right| dx = \int_{0}^{r} x[y''(x) - q(x)y(x)] dx$$

$$\leq |y(r)| + |y(0)| + \left| \int_{0}^{r} \int_{x}^{+\infty} q(t)y(t) dt dx \right|$$

Or,  $|y(r)| \leq M$ , et  $\left| \int_0^r \int_x^{+\infty} q(t)y(t) dt dx \right| \leq M \int_0^r \left[ \int_x^{+\infty} q(t) dt \right] dx < +\infty$ . Donc  $\int_0^{+\infty} |x[y''(x) - q(x)y(x)]| dx < +\infty$ .

Ainsi, l'intégrale  $\int_0^{+\infty} \overline{x[y''(x) - q(x)y(x)]} dx$  est convergente.

3. On suppose que  $f \ge 0$  et que  $\int_{-\infty}^{+\infty} |x| f(x) dx$  diverge. On montre de façon analogue que si y est une fonction  $\mathcal{C}^2$  bornée sur  $]-\infty,0]$ , et vérifie  $\forall x \leq 0, \ y''(x) - q(x)y(x) \geq 0$ , alors  $\int_{-\infty}^{0} x[y''(x) - q(x)y(x)] dx$  est convergente. Supposons par l'absurde qu'il existe  $h \in \mathcal{E}_f$  bornée.

Comme  $\forall x \geqslant 0$ ,  $h''(x) - q(x)h(x) = f(x) \geqslant 0$ ,  $\int_0^{+\infty} x f(x) dx$  est convergente et  $\int_{-\infty}^{0} -xf(x) \, \mathrm{d}x \text{ est convergente.}$  Donc  $\int_{0}^{+\infty} xf(x) \, \mathrm{d}x - \int_{-\infty}^{0} -xf(x) \, \mathrm{d}x = \int_{-\infty}^{+\infty} |x| f(x) \, \mathrm{d}x \text{ est convergente. Absurde.}$ 

Donc  $(E_f)$  n'admet pas de solution bornée.

# Partie IV

En posant  $\forall x \in \mathbb{R}, \ q(x) = 1$ , l'équation  $(E_f)$  devient y'' - y = f. Posons, pour tout  $x \in \mathbb{R}$ ,

$$\begin{cases} f_1(x) = 1\\ f_2(x) = x^2 \end{cases}$$

Les intégrales  $\int_{-\infty}^{+\infty} |x| f_1(x) dx$  et  $\int_{-\infty}^{+\infty} |x| f_2(x) dx$  divergent. y = -1 est une solution bornée de  $E_{f_1}$ . Les solutions de  $E_{f_2}$  sont de la forme  $x \mapsto Ae^x + Be^{-x} - (x^2 + 2)$  qui ne peuvent être bornées.

# Solution du sujet 2

### Partie I

1. D'après le théorème de Parseval, la suite  $(|f_n|^2)_{n\in\mathbb{Z}}$  converge vers

$$||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

2. Soit  $(u_n)$  une suite S.A.C. Soit  $(n, p) \in (\mathbb{N}^*)^2$ .

$$\begin{split} \|S_{n+p} - S_n\|_{\infty} &= \sup |\sum_{k=n-p}^{-n-1} u_k e_k - \sum_{k=n+1}^{n+p} u_k e_k| \\ &\leqslant \sup |\sum_{k=n+1}^{n+p} u_k e_k + u_{-k} e_{-k}| \\ &\leqslant \sup \left(\sum_{k=n+1}^{n+p} |u_k| + |u_{-k}|\right) \\ &\leqslant \sup \left(\sum_{k=n+1}^{+\infty} |u_k| + |u_{-k}|\right) \xrightarrow[n \to \infty]{} 0 \text{ reste d'une série convergente} \end{split}$$

Donc  $(S_N)$  est une suite de Cauchy dans  $(E, \|\cdot\|_{\infty})$  complet, donc converge pour la norme  $\|\cdot\|_{\infty}$  vers un élément u.

Pour tout  $n \in \mathbb{N}$ , pour tout  $k \in \mathbb{Z}$ ,  $x \longmapsto u_k e_k(x) e_n(x)$  est continue. Pour tout  $x \in [-\pi, \pi]$ 

$$|u_k e_k(x) e_{-n}(x)| = |u_k| \text{ S.A.C.}$$

Donc la série  $\sum_{k\in\mathbb{Z}} u_k e_k e_n$  converge normalement sur  $[-\pi, \pi]$ . Par intégration terme à terme d'une série de fonctions,

$$(e_n, u) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left( \sum_{k=-\infty}^{+\infty} u_k e_k(x) \right) e_{-n}(x) dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{+\infty} u_k \int_{-\pi}^{\pi} e_k(x) e_{-n}(x) dx$$
$$= u_n$$

Ainsi, les coefficients de Fourier de u sont les termes de la suite  $(u_n)_{n\in\mathbb{Z}}$ .

3. D'après la question précédente, comme  $(u_n)_{n\in\mathbb{Z}}$  est une S.A.C.,  $(S_N)_{N\geqslant 1}$  converge, et

$$\operatorname{Im}\left(\frac{u(x) - u(0)}{x}\right) = \operatorname{Im}\left(\frac{S_N(x) - S_N(0)}{x}\right) + \sum_{n=N+1}^{+\infty} \frac{\sin(nx)}{n(n-1)x}$$

En posant  $x = \frac{1}{N}$ ,

$$\operatorname{Im}\left(\frac{u(\frac{1}{N}) - u(0)}{\frac{1}{N}}\right) = \operatorname{Im}\left(\frac{S_N(\frac{1}{N}) - S_N(0)}{\frac{1}{N}}\right) + \sum_{n=N+1}^{+\infty} \frac{\sin(\frac{n}{N})N}{n(n-1)}$$
$$= N\left(\operatorname{Im}\left(\sum_{n=2}^N \frac{e^{i\frac{n}{N}} - 1}{n(n-1)}\right) + \sum_{n=N+1}^{+\infty} \frac{\sin(\frac{n}{N})}{n(n-1)}\right)$$

Or

$$- \left| N \sum_{n=N+1}^{+\infty} \frac{\sin(\frac{n}{N})}{n(n-1)} \right| \leqslant N \sum_{n=N+1}^{+\infty} \frac{1}{n(n-1)} = N \sum_{n=N+1}^{+\infty} (\frac{1}{n-1} - \frac{1}{n}) = \frac{N}{N} = 1$$

—  $\forall N \geqslant 2$ ,  $\forall n \leqslant N$ ,  $0 < \frac{n}{N} \leqslant 1 < \frac{\pi}{2}$ . Par concavité de sin sur  $\left[0, \frac{\pi}{2}\right]$ ,  $\frac{2}{\pi(n-1)N} \leqslant \frac{\sin(\frac{n}{N})}{n(n-1)}$ .

Or 
$$\lim_{N\to\infty} N \sum_{n=2}^{N} \frac{2}{\pi(n-1)N} = \lim_{N\to\infty} \sum_{n=2}^{N} \frac{2}{\pi(n-1)} = +\infty$$
.

Donc 
$$\lim_{N\to\infty} \operatorname{Im}\left(\frac{u(\frac{1}{N})-u(0)}{\frac{1}{N}}\right) = +\infty$$

u n'est pas dérivable en 0.

4. Pour tout  $p, q \in \mathbb{N}$ ,

$$\|\Sigma_{p+q} - \Sigma_p\|_2^2 = \|\sum_{n=p+1}^{p+q} \frac{e_n}{n}\|_2^2 = \sum_{n=p+1}^{p+q} \frac{1}{n^2} \leqslant \sum_{n=p+1}^{+\infty} \frac{1}{n^2} \xrightarrow[p \to \infty]{} 0$$

Donc  $\Sigma_N$  est de Cauchy dans E pour la norme  $\|\cdot\|_2$ .

5. Pour tout  $n \in \mathbb{Z}$ ,

$$|(e_n, \Sigma_n) - (e_n, \sigma)|^2 \leqslant ||\Sigma_N - \sigma||_2^2 \underset{N \to \infty}{\longrightarrow} 0$$

Donc

$$\forall k \in \mathbb{Z}, \ (e_k, \sigma) = \begin{cases} 0 \text{ si } k \leq 0\\ \frac{1}{k} \text{ si } k \geqslant 1 \end{cases}$$

D'où,

$$\forall n \in \mathbb{Z}, (e_n, (e^{ix} - 1)\sigma) = (e_n, u)$$

Donc par injectivité des coefficients de Fourier,  $u(x) = (e^{ix} - 1)\sigma(x)$ .

6. On a

$$\frac{u(x) - u(0)}{x} = \frac{e^{ix} - 1}{x} \xrightarrow[x \to 0]{} i\sigma(0)$$

car  $\sigma \in E$ , ce qui est contradictoire puisque u n'est pas dérivable en 0.

E muni de la norme  $\|\cdot\|_2$  n'est donc pas complet.

# Partie II

1. Posons  $g = \sum_{n=-N}^{N} (e_n, f) e_n \in E_N$ . Et

$$\forall n \in [-N, N], (g - f, e_n) = (e_n, f) - (e_n, f) = 0.$$

Donc  $g - f \in E^{\perp}$ 

Pour tout  $h \in E_N$ ,

$$||h_f||_2^2 = ||\underbrace{h - g}_{\in E_N} + \underbrace{g - f}_{\in E^{\perp}}||_2^2 = ||h - g||_2^2 + ||g - f||_2^2$$

par théorème de Pythagore.

Donc  $||h - f||_2^2$  est minimal lorsque h = g.

2. On a

$$P_N^2 f = P_N(P_N f) = \sum_{n=-N}^{N} (e_n, \sum_{k=-N}^{N} (e_k, f) e_k)$$

$$= \sum_{n=-N}^{N} \sum_{k=-N}^{N} (e_k, f) (e_n, e_k)$$

$$= \sum_{n=-N}^{N} (e_k, f)$$

$$= P_N f$$

Donc  $P_N f$  est un projecteur de E sur  $E_N$ . Par théorème de Pythagore, pour tout  $f \in E$ ,

$$||f||_2^2 = ||f - P_N f||_2^2 + ||P_N f||_2^2$$

Donc  $P_N$  est un projecteur de E sur  $E_N$ , et pour tout  $f \in E$ ,  $||P_N f||_2^2 \le ||f||_2^2$ .

3. a) Soit  $x \in \mathbb{R}$ .

$$P_{N}f(x) = \sum_{n=-N}^{N} (e_{n}, f)e_{n}(x)$$

$$= \frac{1}{2\pi} \sum_{n=-N}^{N} \int_{-\pi}^{\pi} f(y)e^{-iny} \, dy e^{inx}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \sum_{n=-N}^{N} e^{in(x-y)} \, dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)D_{N}(x-y) \, dy$$

$$= \frac{1}{2\pi} \int_{x-\pi}^{x+\pi} f(x-u)D_{N}(u) \, du \, (u=x-y)$$

$$= \frac{1}{2\pi} \int_{x-\pi}^{\pi} f(x-u)D_{N}(u) \, du \, car \, f \, est \, 2\pi\text{-p\'eriodique}$$

4. Pour tout  $x \in \mathbb{R}$ ,

$$|P_N f(x)| = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} f(x - y) D_N(y) \, dy \right|$$

$$\leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x - y)| \, |D_N(y)| \, dy$$

$$\leqslant \sqrt{\int_{-\pi}^{\pi} |f(x - y)|^2 \, dy} \sqrt{\int_{-\pi}^{\pi} |D_N(y)|^2 \, dy}$$

(inégalité de Cauchy-Schwarz dans  $L^1([-\pi,\pi])$ ) Or

$$- \sqrt{\int_{-\pi}^{\pi} |f(x-y)|^2} = \sqrt{\int_{-\pi}^{\pi} |f(y)|^2} \, dy = \sqrt{2\pi} ||f||_2 \text{ car } f \text{ est } 2\pi\text{-p\'eriodique}$$

$$- \sqrt{\int_{-\pi}^{\pi} |D_N(y)|^2 \, dy} = \sqrt{2\pi} ||D_N||_2 = \sqrt{2\pi} \sqrt{2N+1}$$

Donc pour tout  $x \in \mathbb{R}, |P_N f(x)| \leq \sqrt{2N+1} ||f||_2$ Donc  $||P_N f||_{\infty} \leq \sqrt{2N+1} ||f||_2$ .

Donc 
$$\alpha_N \leqslant \sqrt{2N+1}$$
.

5. Admettons que pour tout  $y \in \mathbb{R}$ ,

$$0 \leqslant |y| - \frac{y^2}{\sqrt{\varepsilon^2 + y^2}} \frac{\varepsilon |y|}{\sqrt{\varepsilon + y^2} (\sqrt{\varepsilon + y^2} + |y|)} \leqslant \sqrt{\varepsilon}$$

car les calculs sont soit immédiats, soit extrêmement pénibles Je le ferai plus tard

Alors

$$0 \leqslant |D_N(x)| - \frac{D_N(x)^2}{\sqrt{\varepsilon^2 + D_N(x)^2}} \leqslant \sqrt{\varepsilon}$$

Donc, en intégrant entre  $-\pi$  et  $\pi$  et en multipliant par  $\frac{1}{2\pi}$  l'inégalité,

$$L_N \leqslant \sqrt{\varepsilon} + \frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(x) \psi_N^{\varepsilon^2}(x) dx = \sqrt{\varepsilon} + P_N \psi_N^{\varepsilon^2}(0)$$

Or,

$$|P_N \psi_N^{\varepsilon^2}(0)| \leqslant ||P_N \psi_N^{\varepsilon^2}||_{\infty} \leqslant \alpha_N$$

 $\operatorname{car} \|\psi_N^{\varepsilon^2}\|_{\infty} < 1$ Donc

$$\forall \varepsilon > 0, \ L_N \leqslant \sqrt{\varepsilon} + \alpha_N$$

Ainsi,  $\alpha_N \geqslant L_N$ .

6. Soit  $x \in [-\pi, \pi] \setminus \{0\}$ . Pour tout  $N \in N$ ,

$$D_N(x) = \frac{\sin(N + \frac{1}{2})x}{\sin\frac{x}{2}}$$

$$= \frac{\sin(Nx)\cos(\frac{x}{2}) + \sin(\frac{x}{2})\cos(Nx)}{\sin\frac{x}{2}}$$

$$= \sin(Nx)\cot(\frac{x}{2}) + \cos(Nx)$$

$$= 2\frac{\sin(Nx)}{x} + \sin(Nx)(\cot(\frac{x}{2}) - \frac{2}{x}) + \cos(Nx)$$

Or,  $\cot(\frac{2}{x}) \sim \frac{2}{x}$ , donc  $f: x \to \sin(Nx)(\cot(\frac{x}{2}) - \frac{2}{x}) + \cos(Nx)$  est prolongeable par continuité en 0. f étant continue sur  $[-\pi, \pi]$  elle y est bornée indépendamment de N par  $M \geqslant 0$ .

Alors, par inégalité triangulaire,

$$\left| 2 \frac{2 \sin(Nx)}{x} \right| - M \leqslant |D_N(x)| \leqslant \left| \frac{2 \sin(Nx)}{x} \right| + M$$

Par changement de variable,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{2\sin(Nx)}{x} \right| dx = \frac{1}{\pi} \int_{0}^{\pi} \frac{|\sin u|}{u} du$$

Or,

$$\int_{0}^{N\pi} \left| \frac{\sin u}{u} \right| du = \sum_{k=0}^{N-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin u|}{u} du$$

$$\leq \sum_{k=1}^{N-1} \frac{1}{k\pi} \int_{k\pi}^{(k+1)\pi} |\sin(u)| du + \int_{0}^{\pi} \frac{|\sin u|}{u} du$$

$$= \sum_{k=1}^{N-1} \frac{1}{k\pi} \int_{0}^{\pi} |\sin(u)| du + \int_{0}^{\pi} \frac{|\sin(u)|}{u} du$$

$$= \frac{4}{\pi} \sum_{k=1}^{N-1} \frac{1}{k} + \int_{0}^{\pi} \frac{|\sin(u)|}{u} du \underset{N \to \infty}{\sim} \frac{4}{\pi} \ln(N)$$

Et,

$$\int_0^{N\pi} \left| \frac{\sin u}{u} \right| du \geqslant \sum_{k=0}^{N-1} \frac{1}{(k+1)\pi} \int_0^{\pi} |\sin(u)| du \underset{N \to \infty}{\sim} \frac{4}{\pi} \ln(N)$$

Donc  $\frac{2}{\pi} \int_0 \frac{|\sin u|}{u} du \sim_{N \to \infty} \frac{4}{\pi^2} \ln(N)$ 

Ainsi, par encadrement,  $L_N \sim_{N \to \infty} \frac{4}{\pi^2} \ln(N)$ .

7. On a

$$L_N \leqslant ||D_N||_2$$

Donc

$$\lim_{N \to \infty} \|D_N\|_2 = +\infty$$

Donc la norme de la suite d'opérateurs  $(P_N)_N$  tend vers l'infini.

# Partie III

1. Soit  $f \in E$  de classe  $C^1$  sur  $\mathbb{R}$ . On a

$$- ||f||_2^2 = \sum_{n \in \mathbb{Z}} |f_n|^2$$

— 
$$||f'||_2^2 = \sum_{n \in \mathbb{Z}} |f'_n|^2$$
. Or, pour tout  $n \in \mathbb{Z}$ 

$$f'_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(x)e^{-inx} dx$$

$$= \frac{1}{2\pi} \left( \left[ f(x)e^{-inx} \right]_{-\pi}^{pi} + in \int_{-\pi}^{\pi} f(x)e^{-inx} dx \right) \text{ intégration par parties}$$

$$= \frac{in}{2\pi} f_n$$

Donc  $||f'||_2^2 = \sum_{n \in \mathbb{Z}} n^2 f_n$ .

Ainsi,  $||f||_2^2 + ||f'||_2^2 = ||f||_1^2$ .

Réciproquement, en considérant la suite  $(u_n)_{n\in\mathbb{Z}}$  définie dans la question I.3,  $\frac{(1+n^2)}{n^2(n-1)^2} \sim \frac{1}{n^2}$ , donc  $(u_n)_{n\in\mathbb{Z}}$  est une S.A.C., mais n'est pas de classe  $\mathcal{C}^1$ .

La réciproque est fausse.

2. Soit  $f \in E$ .  $P_N f \in \mathcal{C}^1(\mathbb{R}, \mathbb{C}) \cap E$ . Donc par question précédente,

$$||P_N||_2^2 + ||(P_N f)'||_2^2 = ||P_N f||_1^2$$

Or,

 $||P_N f(x)||_2^2 = \sum_{n=-N}^N |f_n|^2 \text{ et } ||(P_N f)'(x)||_2^2 = \sum_{n=-N}^N n^2 |f_n|^2.$ Donc  $||P_N f(x)||_2^2 + ||(P_N f)'(x)||_2^2 = \sum_{n=-N}^N (1+n^2)|f_n|^2 \underset{N \to \infty}{\longrightarrow} ||f||_1^2.$ 

Ainsi,  $P_N f \xrightarrow[N \to \infty]{\|\cdot\|_1} f$ .

Ainsi,  $E_1$  est dense dans E pour la norme  $\|\cdot\|_1$ .

3. Soit  $f \in H_1$ .

$$||P_N f - f||_2^2 = \sum_{|n| \ge N} |f_n|^2$$

$$= \sum_{|n| > N} \frac{(1 + n^2)|f_n|}{1 + n^2}$$

$$\leqslant \frac{1}{1 + N^2} \sum_{|n| \ge N} (1 + n^2)|f_n|^2$$

$$\leqslant \frac{1}{N + 1} \sum_{|n| > N} (1 + n^2)|f_n|^2$$

$$= \frac{1}{N + 1} ||f||_1^2$$

Ainsi, pour tout  $N \in \mathbb{N}$ ,  $||P_N f - f||_2 \leqslant \frac{1}{N+1} ||f||_1$ .

4. Soient  $f \in E_1$  et  $x, y \in [-\pi, \pi]$ . On a

$$f^{2}(x) = f^{2}(x) + 2 \int_{y}^{x} f(t)f'(t) dt$$

Alors, par inégalité triangulaire,

$$|f(x)|^2 \le |f(y)|^2 + 2\int_y^x |f(t)f'(t)| dt \le |f(y)|^2 + 2\int_{-\pi}^{\pi} |f(t)f'(t)| dt$$

En intégrant par rapport à y, et en multipliant par  $\frac{1}{2\pi}$ 

$$|f(x)|^2 \le ||f||_2^2 + 2 \int_{-\pi}^{\pi} |f(t)f'(t)| dt$$

Or, par inégalité de Cauchy-Schwarz,

$$\int_{-\pi}^{\pi} |f(t)f'(t)| \, \mathrm{d}t \leqslant 2\pi ||f||_2 ||f'||_2$$

Donc

$$|f(x)|^2 \le ||f||_2^2 + 4\pi ||f||_2 ||f'||_2 \le 4\pi ||f||_2 (||f||_2 + ||f'||_2)$$

Par convexité de  $t \longmapsto t^2$ ,

$$||f||_2 + ||f'||_2 \le \sqrt{2}(||f||_2^2 + ||f'||_2^2)^{1/2} = \sqrt{2}||f||_1$$

Donc

$$|f(x)|^2 \le 4\pi\sqrt{2}||f||_1||f||_2$$

D'où par passage au sup, comme f est  $2\pi$ -périodique,

$$||f||_{\infty} \leqslant 4\pi\sqrt{2}||f||_{1}^{1/2}||f||_{2}^{1/2}$$

Par densité, de  $E_1$  dans  $H_1$  et continuité des normes, pour tout  $f \in E$ ,

$$||f||_{\infty} \leqslant 4\pi\sqrt{2}||f||_1^{1/2}||f||_2^{1/2}$$

5. Par question précédente,

$$||P_N f - f||_{\infty} \leqslant K_1 ||P_N - f||_2^{1/2} ||P_N f - f||_1^{1/2}$$

Or, par théorème de Pythagore,  $||P_N f - f||_2 \le ||f||_2$  et par question III.2,

$$||P_N f - f||_2 \leqslant \frac{1}{N+1} ||f||_1.$$

Donc 
$$||P_N f - f||_{\infty} \leqslant \frac{K_1}{\sqrt{N+1}} ||f||_1$$
.

 $E_1$  est dense dans  $H_1$  pour la norme  $\|\cdot\|_{\infty}$ . On peut approcher par la norme infinie les fonctions de  $H_1$  par des fonctions  $\mathcal{C}^{\infty}$ 

# Partie IV

1. Soit  $f \in H_1$  En remplaçant N par 0 dans l'inégalité de III.2,

$$||P_0f - f||_2 = \sqrt{\sum_{|n| \ge 0} |f_n|^2} = \sqrt{\sum_{n \in \mathbb{Z}} |f_n|^2} = ||f||_2 \le ||f||_1.$$

Ainsi, si  $f \in H_1$ ,  $||f||_2 \le ||f||_1$ .

- 2. Soient  $f, g \in H_1$  et  $\lambda \in \mathbb{C}$ .
  - $||f||_1 \leq 0$  par somme de termes positifs

$$- \|\lambda f\|_1 = \left(\sum_{n \in \mathbb{Z}} (1+n^2) |(e_n, \lambda f)|^2\right)^{1/2} = \left(|\lambda|^2 \sum_{n \in \mathbb{Z}} (1+n^2) |f_n|^2\right)^{1/2} = |\lambda| \|f\|_1$$

- $||f||_1 = 0$  si, et seulement si  $\forall n \in \mathbb{N}, |f_n| = 0$  i.e. f = 0
- Si f+g=0, l'inégalité est clairement vraie. Supposons que  $f+g\neq 0$

$$\begin{split} \|f+g\|_1^2 &= \sum_{n \in \mathbb{Z}} (1+n^2) |f_n+g_n|^2 \\ &\leqslant \sum_{n \in \mathbb{Z}} (1+n^2) |f_n| |f_n+g_n| + \sum_{n \in \mathbb{Z}} (1+n^2) |g_n| |f_n+g_n| \\ &\leqslant \left( \sqrt{\sum_{n \in \mathbb{Z}} |f_n|^2} + \sqrt{\sum_{n \in \mathbb{Z}} |g_n|^2} \right) \sqrt{\sum_{n \in \mathbb{Z}} (1+n^2) |f_n+g_n|^2} \\ &= (\|f\|_2 + \|g\|_2) \|f+g\|_1 \\ &\leqslant (\|f\|_1 + \|g\|_1) \|f+g\|_1 \text{ inégalité de la question précédente} \end{split}$$

Alors  $||f + g||_1 \le ||f||_1 + ||g||_1$ .

Donc  $\|\cdot\|_1$  est une norme sur  $H_1$ .

Soit  $(f^p)_{p\in\mathbb{N}}$  une suite de Cauchy.

Soit  $\varepsilon > 0$ . Il existe  $n_0 \in \mathbb{N}$  tel que pour tout  $p \geqslant q \geqslant n_0$ ,  $||f^p - f^q||_1 \leqslant \varepsilon$ Pour  $n_0 \in \mathbb{N}$  ainsi fixé, on a en particulier

$$\forall j \in \mathbb{Z}, \forall p \geqslant q \geqslant n_0, |f_j^p - f_j^q| \leqslant \sqrt{\varepsilon}$$

Donc à j fixé,  $(f_j^p)_p$  est une suite de Cauchy dans  $\mathbb C$  qui est complet. Donc la suite  $(f_j^p)_p$  est convergente dans  $\mathbb C$  vers un certain  $f_j=(e_j,f)$  où  $f\in E$  par continuité du produit scalaire.

De plus, pour tout  $k \in \mathbb{N}$ ,

$$\sum_{j=-k}^{k} (1+j^2)|f_j^p - f_j^q|^2 \leqslant \varepsilon$$

Donc en faisant tendre q vers  $+\infty$ ,

$$\sum_{j=-k}^{k} (1+j^2)|f_j^p - f_j|^2 \leqslant \varepsilon$$

Par passage à la limite, quand  $k \to +\infty$ ,

$$\sum_{j \in \mathbb{Z}} (1+j^2)|f_j^p - f_j|^2 \leqslant \varepsilon$$

Donc  $\lim_{p\to\infty} ||f^p - f||_1 = 0$  donc en particulier,  $f - f^p \in H_1$ . D'où  $f = (f - f^p) + f^p \in H_1$ .

Ainsi, toute suite de Cauchy dans  $H_1$  converge dans  $H_1$  donc  $H_1$ , donc  $H_1$  est complet.

3. D'après III.4, pour tout  $f \in H_1$ ,  $||f||_{\infty} \leq K_1 ||f||_1^{1/2} ||f||_1^{1/2}$ . D'après IV.1,  $||f||_2 \leq ||f||_1$ . Donc  $||f||_{\infty} \leq K_1 ||f||_1$  avec  $K_1 \in ]0, +\infty[$ .

Ainsi, il existe  $K_2$  telle que pour tout  $f \in H_1$ ,  $||f||_{\infty} \leqslant K_2 ||f||_1$ .

4. a) Soit  $(g^p)_{p\in\mathbb{N}}$  une suite d'éléments de  $H_1$  telle que pour tout  $p\in\mathbb{N}$ ,

$$||g^p||_1 \leqslant 1.$$

Comme  $\mathbb{Z}$  est dénombrable, notons ses éléments  $(a_n)_{n\in\mathbb{N}}$ .

Soit  $p \in \mathbb{N}$ . Comme  $||g^p||_1 \leq 1$ , en particulier,  $|(g^p, e_{a_0})| \leq \frac{1}{1+a_0^2}$ . Donc la suite  $((g^p, e_{a_0}))_{p \in \mathbb{N}}$  est bornée. Par théorème de Bolzano-Weierstrass, il existe  $\varphi_0 : \mathbb{N} \longrightarrow \mathbb{N}$  strictement croissante telle que  $((g^{\varphi_0(p)}, e_{a_0}))_{p \in \mathbb{N}}$  converge.

Comme la suite  $((g^p, e_{a_1}))_{p \in \mathbb{N}}$  est bornée, en particulier,  $((g^{\varphi_0(p)}, e_{a_1}))_{p \in \mathbb{N}}$  est bornée. Par théorème de Bolzano-Weierstrass, il existe  $\varphi_1 : \mathbb{N} \longrightarrow \mathbb{N}$  strictement croissante telle que  $((g^{\varphi_0(\varphi_1(p))}, e_{a_1}))_{p \in \mathbb{N}}$  converge.

Par récurrence, comme  $((g^{\varphi_0 \circ \varphi_1 \circ \cdots \circ \varphi_n(p)}, e_{a_{n+1}}))_{p \in \mathbb{N}}$  est bornée, par thorème de Bolzano-Weierstrass, il existe  $\varphi_{n+1} : \mathbb{N} \longrightarrow \mathbb{N}$  strictement croissante telle que  $((g^{\varphi_0 \circ \varphi_1 \circ \cdots \circ \varphi_{n+1}(p)}, e_{a_{n+1}}))_{p \in \mathbb{N}}$  soit convergente.

Posons, pour  $n \in \mathbb{N}$ ,  $\psi(n) = \varphi_0 \circ \dots \varphi_n(n)$ 

 $\psi(n+1) = \varphi_0 \circ \cdots \circ \varphi_n(\varphi_{n+1}(n+1))$ . Or  $\varphi_{n+1}(n+1) \geqslant n+1 > n$ . Donc  $\varphi_0 \circ \cdots \circ \varphi_n(\varphi_{n+1}(n+1)) > \varphi_0 \circ \cdots \circ \varphi_n(n) = \psi(n)$ . Donc  $\psi$  est strictement croissante, et pour tout  $n \in \mathbb{Z}$ ,  $((g^{\psi(p)}, e_n))_{p \in \mathbb{N}}$  est convergente.

Ainsi, il existe une application strictement croissante  $\psi$  de  $\mathbb{N}$  dans  $\mathbb{N}$  telle que pour tout  $n \in \mathbb{Z}$ , la suite  $((g^{\psi(p)}, e_n))_{p \in \mathbb{N}}$  soit convergente.

b) Par passage à la limite, pour tout  $n \in \mathbb{Z}$ ,  $|\ell_n| \leqslant \frac{1}{1+n^2}$ . Donc  $(\ell_n)_{n \in \mathbb{Z}}$  est une S.A.C.

# D'après I.2, $S_N$ converge vers un élément $\ell \in E$ pour la norme $\|\cdot\|_{\infty}$ .

c) Par unicité de la limite,  $\ell = \sum_{n=-\infty}^{+\infty} \ell_n e_n$ . Pour tout  $n \in \mathbb{Z}$ ,  $(e_n, \ell) = \ell_n$ , et  $(1+n^2)|\ell_n|^2 \leqslant \frac{1}{1+n^2}$ , terme général d'une série convergente. Donc  $((1+n^2)|\ell_n|^2)$  est une S.A.C.

Ainsi,  $\ell \in H_1$ .

d) Posons, pour  $n \in \mathbb{Z}$  et  $p \in \mathbb{N}$ ,

$$g_n^p = \begin{cases} \frac{1}{4(1+n^2p^2)} & \text{si } p \neq n \\ \frac{1}{4(1+n^2p^2)} + \frac{1}{4\sqrt{1+p^2}} & \text{si } p = n \end{cases}$$

La série de terme général  $(g_n^p e_n)$  est normalement convergente, donc  $g^p = \sum_{n \in \mathbb{Z}} g_n^p$  est bien défini.

De plus,  $(1+n^2)|g_n^p|^2$  est le terme général d'une série convergente, et

$$\|g^p\|_1^2 = \frac{1}{4} \sum_{n \in \mathbb{Z}} \frac{1 + n^2}{(1 + n^2 p^2)^2} + \frac{1}{4} \leqslant \frac{1}{4} \sum_{n \in \mathbb{Z}} \frac{1}{1 + n^2} + \frac{1}{4} \leqslant 1$$

On a, pour tout  $n \in \mathbb{N}$ ,

$$\ell_n = \lim_{p \to +\infty} g_n^p = 0.$$

Pour tout  $p \in \mathbb{N}$ ,

$$||g^p - \ell||_1^2 = \frac{1}{4} \left( \sum_{n \in \mathbb{Z}} \frac{1 + n^2}{(1 + n^2 p^2)^2} + 1 \right).$$

Or, par le théorème de convergence dominé,

$$\lim_{p \to \infty} \sum_{n \in \mathbb{Z}} \frac{1 + n^2}{(1 + n^2 p^2)^2} = 0$$

Donc

$$\lim_{p \to \infty} \|g^p - \ell\|_1 = \frac{1}{4}$$

#### Partie V

1. Notons  $A = (e^{ilx_j})_{0 \leqslant l,j \leqslant 2N}$  et  $B = (\frac{1}{2N+1}e^{-ilx_j})_{0 \leqslant l,j \leqslant 2N}$ . Soit  $a, b \in \mathbb{F}_{2N+1}$ .

$$[AB]_{a,b} = \sum_{k=0}^{2N} A_{a,k} B_{k,b}$$

$$= \sum_{k=0}^{2N} e^{iax_k} e^{-kx_b}$$

$$= \frac{1}{2N+1} \sum_{k=0}^{2N} e^{i\frac{2\pi}{2N+1}k(a-b)}$$

$$= \begin{cases} 1 \text{ si } a=b \\ 0 \text{ sinon} \end{cases}$$

On montre de même que  $[BA]_{a,b} = \delta_{a,b}$ 

Ainsi, la matrice carrée d'ordre 2N+1  $(e^{ilx_j})_{0\leqslant l,j\leqslant 2N}$  a pour inverse  $(\frac{1}{2N+1}e^{-ilx_j})_{0\leqslant j\leqslant 2N,0\leqslant \ell\leqslant 2N}.$ 

2. a) Soit  $f \in E$ .

Notons 
$$F = \begin{pmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}$$

Pour tout  $\ell \in [0, 2N]$ ,

$$[BF]_{\ell} = \sum_{j=0}^{2N} B_{\ell,j} F_j = \frac{1}{2N+1} \sum_{j=0}^{2N} e^{-i\ell x_j} f(x_j) = \frac{1}{2N+1} \sum_{j=-N}^{N} e^{-i\ell x_j} f(x_j)$$

car f est  $2\pi$ -périodique.

Donc

$$[ABF]_k = \sum_{\ell=0}^{2N} A_{k,\ell} [BF]_{\ell}$$

$$= \sum_{\ell=0}^{2N} e^{ikx_{\ell}} \frac{1}{2N+1} \sum_{j=-N}^{N} e^{-i\ell x_j} f(x_j)$$

$$= \sum_{\ell=-N}^{N} e^{i\ell x_k} \frac{1}{2N+1} \sum_{j=-N}^{N} e^{-i\ell x_j} f(x_j)$$

Or  $AB = I_{2N+1}$ . Donc

$$\forall k \in F_{2N+1}, [ABF]_k = F_k$$

i.e.

$$\forall k \in F_{2N+1}, \ f(x_k) = \sum_{\ell=-N}^{N} e^{i\ell x_k} \frac{1}{2N+1} \sum_{i=-N}^{N} e^{-i\ell x_j} f(x_j)$$

Posons  $C_N f = \frac{1}{2N+1} \sum_{j=-N}^N \sum_{l=-N}^N f(x_j) e^{-i\ell x_j} e_\ell \in E_N$ . Pour tout  $j \in \mathbb{F}_{2N+1}$ ,

$$C_N f(x_j) = \frac{1}{2N+1} \sum_{a=-N}^{N} f(x_a) \sum_{b=-N}^{N} e^{ib(x_a - x_j)} = f(x_j)$$

Soient  $C_N$  et  $C'_N$  vérifiant pour tout  $j \in \mathbb{F}_{2N+1}$ ,  $C_N f(x_j) = C'_N(x_j)$ . Alors pour tout  $j \in \mathbb{F}_{2N+1}$ ,  $C_N - C'_N(x_j) = 0$ . Or,  $C_N - C'_N$  est un polynôme trigonométrique de degré inférieur à 2N ayant 2N + 1 racine. Donc  $C_N = C'_N$ .

Ainsi, il existe un unique élément de  $E_N$  noté  $C_N(f)$  tel que  $\forall j \in \mathbb{F}_{2N+1}$ ,  $(C_N f)(x_j) = f(x_j)$ .

b) Soient  $f, g \in E$  et  $\lambda \in \mathbb{C}$ . Pour tout  $j \in \mathbb{F}_{2N+1}$ 

$$(C_N(f + \lambda g))(x_j) = (f + \lambda g)(x_j) = f(x_j) + \lambda g(x_j) = C_N f(x_j) + \lambda C_N(g)(x_j)$$

Donc

$$C_N(f + \lambda g) = C_N f + \lambda C_N g$$

c) Par définition,  $C_N(e_{2N+1}) \in E_N$ . Donc

$$C_N(e_{2N+1}) = \sum_{j=-N}^{N} (e_j, C_N(e_{2N+1}))$$

Or, pour tout  $k \in \mathbb{F}_{2N+1}$ ,

$$(e_k, C_N(e_{2N+1})) = \frac{1}{2N+1} \sum_{j=-N}^{N} e^{-ikx_j} = \begin{cases} 0 \text{ si } k \neq 0\\ 1 \text{ sinon} \end{cases}$$

Donc  $C_N(e_{2N+1}) = e_0$ . Mais  $P_N(e_{2N+1}) = 0$ .

Donc  $C_N \neq P_N$ .

3. a) Soit  $\ell \in \mathbb{Z}$ . Par définition de  $\hat{z}$ ,  $\hat{z}$  ne dépend que de  $\ell$ . Or,

$$\hat{z}_{\ell+2N+1} = \frac{1}{2N+1} \sum_{k \in \mathbb{F}_{2N+1}} e^{-i(\ell+2N+1)x_k} z_k = \frac{1}{2N+1} \sum_{k \in \mathbb{F}_{2N+1}} e^{-i\ell x_k} z_k = \hat{z}_{\ell}$$

Ainsi,  $\hat{z}_{\ell}$  ne dépend que de la classe de  $\ell$  modulo 2N+1.

b) On a, d'après V.2:

$$C_N f = \frac{1}{2N+1} \sum_{j=-N}^{N} \sum_{\ell=-N}^{N} f(x_j) e^{-i\ell x_j} e_{\ell}$$

$$= \sum_{\ell=-N}^{N} \left( \frac{1}{2N+1} \sum_{j=-N}^{N} f(x_j) e^{-i\ell x_j} \right) e_{\ell}$$

$$= \sum_{k=-N}^{N} \varphi_{\hat{k}} e_k$$

Ainsi,  $C_N f = \sum_{k=-N}^N \varphi_{\hat{k}} e_k$ .

4. Soit  $h \in E_{2N}$ .

$$\frac{1}{2N+1} \sum_{j=-N}^{N} h(x_j) = \frac{1}{2N+1} \sum_{j=-N}^{N} \sum_{\ell=-N}^{N} (e_{\ell}, h) e_{\ell}(x_j)$$

$$= \frac{1}{2N+1} \sum_{j=-N}^{N} \sum_{\ell=-N}^{N} \left[ \frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) e^{-i2\pi \ell x_j} \, \mathrm{d}x \right] e^{2i\pi \ell x_j}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2N+1} \sum_{j=-N}^{N} \sum_{\ell=-N}^{N} h(x) \underbrace{e^{2i\pi \ell (x_j - x)}}_{=0 \text{ si } \ell \neq 0} \, \mathrm{d}x$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2N+1} \sum_{j=-N}^{N} h(x) \, \mathrm{d}x$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) \, \mathrm{d}x$$

Ainsi, pour tout  $h \in E_{2N}$ ,  $\frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) dx = \frac{1}{2N+1} \sum_{j=-N}^{N} h(x_j)$ .

5. a) Soient f et g dans E. Alors  $f\overline{g} \in E_{2N}$ . Donc d'après la question précédente,

$$[f,g] = \frac{1}{2N+1} \sum_{j=-N}^{N} h(x_j) = \frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) dx = (f,g)$$

Ainsi, pour tous  $f, g \in E_N$ , [f, g] = (f, g).

b) Soient  $f, g \in E$ .

$$[f - C_N f, g] = \frac{1}{2N+1} \sum_{j=-N}^{N} \underbrace{(f(x_j) - C_N f(x_j))}_{=0} g(x_j) = 0$$

Ainsi, pour tous  $f, g \in E$ ,  $[f - C_N f, g] = 0$ .

c) Soit  $m, n \in \mathbb{Z}$ .

$$[e_n, e_m] = \frac{1}{2N+1} \sum_{j=-N}^{N} e^{\frac{2i\pi}{2N+1}(m-n)j} = \begin{cases} 1 \text{ si } m = n[2N+1] \\ 0 \text{ sinon} \end{cases}$$

6. Soit  $f \in H_1$ . Soit  $\ell \in Z$ .

$$\sum_{n \in \mathbb{Z}} |f_n| = \sum_{n \in \mathbb{Z}} \frac{\sqrt{1 + n^2}}{\sqrt{1 + n^2}} |f_n| \leqslant \left( \sum_{n \in \mathbb{Z}} \frac{1}{1 + n^2} \right)^{1/2} \left( \sum_{n \in \mathbb{Z}} (1 + n^2) |f_n|^2 \right)^{1/2} < +\infty$$

par inégalité de Cauchy Schwarz et hypothèse sur f.

Donc en particulier, la suite extraite  $(f_{\ell+(2N+1)k})_{k\in\mathbb{Z}}$  est une S.A.C.

On a

$$C_N(f) = \sum_{\ell=-N}^{N} \left[ \frac{1}{2N+1} \sum_{j=-N}^{N} f(x_j) e^{-i\ell x_j} \right] e_{\ell}$$

Or, pour tout  $\ell \in \mathbb{F}_{2N+1}$ ,

$$\frac{1}{2N+1} \sum_{j=-N}^{N} f(x_j) e^{-i\ell x_j} = [e_{\ell}, f] = [e_{\ell}, C_N f]$$

Avec  $f = \sum_{n \in \mathbb{Z}} (e_n, f) e_n = \sum_{\ell=-N}^N \sum_{k \in \mathbb{Z}} (e_{\ell+(2N+1)k}, f) e_{\ell+(2N+1)k}$ , par linéarité de  $C_N$ ,

$$C_N f = \sum_{k \in \mathbb{Z}} (e_{\ell+(2N+1)k}, f) C_N (e_{\ell+(2N+1)k})$$

Or, pour tous  $\ell \in \mathbb{F}_{2N+1}$ ,  $k \in \mathbb{Z}$ ,  $C_N(e_{\ell+(2N+1)k}) = e_{\ell}$ .

Donc  $C_N f = \sum_{k \in \mathbb{Z}} (e_{\ell+(2N+1)k}, f) e_{\ell}$ . Par linéarité à droite de  $[\cdot, \cdot]$ , pour tout  $j \in \mathbb{F}_{2N+1}$ ,

$$[e_j, C_N f] = \sum_{k \in \mathbb{Z}} (e_{\ell+(2N+1)k}, f)[e_j, e_{\ell}] = \sum_{k \in \mathbb{Z}} (e_{j+(2N+1)k}, f)$$

Donc pour tout  $\ell \in \mathbb{F}_{2N+1}$ ,

$$\frac{1}{2N+1} \sum_{j=-N}^{N} f(x_j) e^{-i\ell x_j} = \sum_{k \in \mathbb{Z}} (e_{\ell+(2N+1)k}, f) = \sum_{k \in \mathbb{Z}} f_{\ell+(2N+1)k} = C_{N,\ell}(f)$$

Ainsi, 
$$C_N(f) = \sum_{\ell \in \mathbb{F}_{2N+1}} C_{N,\ell}(f) e_{\ell}$$
.

#### 7. a) Soit $f \in E$ .

$$C_{N}(P_{N}f) = \frac{1}{2N+1} \sum_{j=-N}^{N} \sum_{\ell=-N}^{N} P_{N}f(x_{j})e^{-i\ell x_{j}}e_{\ell}$$

$$= \sum_{\ell=-N}^{N} \left[ \frac{1}{2N+1} \sum_{j=-N}^{N} P_{N}f(x_{j})e^{-i\ell x_{j}} \right] e_{\ell}$$

$$= \sum_{\ell=-N}^{N} [e_{\ell}, P_{N}f]e_{\ell}$$

Or  $P_N f$  et  $e_\ell$  sont des éléments de  $E_N$ . D'après V.5)a,

$$[e_{\ell}, P_N f] = (e_{\ell}, P_N f) = (e_{\ell}, f).$$

Donc 
$$C_N(P_N f) = \sum_{\ell=-N}^{N} (e_{\ell}, P_N f) e_{\ell} = P_N f$$
.,

$$f - C_N f = f - P_N f + P_N f - C_N f = g_N + C_N P_N f - C_N f = g_N - C_N g_N.$$

Ainsi, 
$$f - C_N f = g_N - C_N g_N$$
.

b) D'après la question précédente,

$$||f - C_N f||_2^2 = ||g_N - C_N g_N||_2^2$$

Or,  $g_N \in E_N^{\perp}$  et  $C_N g_N \in E_N$ .

Dono

$$||g_N - C_N g_N||_2^2 = ||g_N||_2^2 + ||C_N g_N||_2^2$$

et

$$||C_N g_N||_2^2 = (C_N g_N, C_N g_N)$$

$$= [C_N g_N, C_N g_N]$$

$$= \frac{1}{2N+1} \sum_{j=-N}^N C_N g_N(x_j) \overline{C_N g_N(x_j)}$$

$$= \frac{1}{2N+1} \sum_{j=-N}^N g_N(x_j) \overline{g_N(x_j)}$$

$$||g_N||_2^2.$$

Or, d'après la question 3,

$$||g_N||_2^2 \leqslant \frac{K_1}{N+1} ||f||_1$$

Ainsi, 
$$||f - C_N f||_2 \leqslant \frac{2K_1}{N+1} ||f||_1$$
.

8. Le calcul de  $C_N$  requiert des évaluations en un certain nombre de points tandis que celui de  $P_N$  nécessite de connaître la valeur des intégrales, ce qui est plus pénible.

### Partie VI

1. Soit  $\ell \in \mathbb{F}_M$ . Pour calculer  $\hat{z}_{\ell}$ , il faut 2M+1 multiplications. La somme ayant (2M+1) termes, il faut 2M additions, soit 4M+1 opérations.

 $\hat{z}$  étant entièrement définie par le calcul de tous les  $\hat{z}_{\ell}$ , le calcul de  $\hat{z}$  nécessite (4M+1)(2M+1) opérations.

2. Supposons que  $M=2M_1$ . Il est clair que

$$\hat{z}_{\ell} = \sum_{k_1 \in \mathbb{F}_{M1}} \omega^{2k_1 \ell} z_{2k_1} + \sum_{k_2 \in \mathbb{F}_{M_1}} \omega^{(2k_2 - 1)\ell} z_{2k_2 - 1}$$

Alors

$$\hat{z} = \text{T.F.D.}(\omega^2, M_1)(x) + \text{T.F.D.}(\omega^2, M_1)(y).$$

Ainsi, T.F.D. $(\omega^2, M_1)$  peut s'effectuer à l'aide de deux opérations T.F.D. $(\omega^2, M_1)$ .

3. On suppose que  $M = 2^n$ Notons  $\hat{z} = \text{T.F.D.}(\chi, 2^n)(z)$ . D'après ce qui précède,

$$\hat{z}_{\ell} = \sum_{k_1 \in \mathbb{F}_{M_1}} \chi^{2k_1 \ell} z_{2k_1} + \frac{1}{\chi^{\ell}} \sum_{k_2 \in \mathbb{F}_{M_1}} \chi^{(2k_2)\ell} z_{2k_2 - 1}$$

Le calcul de  $\hat{z}_{\ell}$  peut s'effectuer à l'aide de deux T.F.D. $(\chi^2, 2^{n-1})$  et une multiplication. Comme pour  $\hat{z}_0$ , la multiplication n'est pas nécessaire, on pourra effectuer  $2^n - (-2^n) = 2^{n+1}$  multiplications supplémentaires pour calculer  $\hat{z}$ .

Ainsi, 
$$\Sigma_n \leqslant 2\Sigma_{n-1} + 2^{n+1}$$
.

Par récurrence immédiate,  $\Sigma_n \leq 2^n \Sigma_0 + n2^{n+1}$ . Pour M = 1, il n'y a pas de calcul à faire, donc  $\Sigma_0 = 0$ .

Ainsi, 
$$\Sigma_n \leqslant 2M \log_2(M)$$

|    | n  | temps $S_M$    | temps de $\Sigma_n$ |
|----|----|----------------|---------------------|
| 4. | 20 | $8,80.10^4$    | $4,19.10^7$         |
|    | 25 | $9,01.10^7$    | $1,68.10^9$         |
|    | 30 | $9,22.10^{18}$ | $6,44.10^{10}$      |

- 5. Soient  $p \in \mathbb{N}$  tel que  $2^{p-1} \leqslant PQ \leqslant 2^p$ . On peut majorer le nombre d'opérations par  $2.2^p p$ .
- 6. On considère M défini comme dans la question précédente. Le calcul de  $C_M f$  nécessite d'effectuer la transformée de Fourier discrète de f que l'on peut faire en 2M(P+Q) opérations. À cela s'ajoutent les opérations élémentaires, soit 2M+1 multiplications et 2M additions. Donc le calcul de  $C_M f$  nécessite 2M(P+Q+2)+1 opérations.

# Solution du sujet 3

# Partie I

1. Méthode 1

Posons  $P(X) = X^n - \sum_{k=0}^{n-1} a_{k+1} X^k$ .

Par définition,

$$C = \begin{pmatrix} 0 & \cdots & \cdots & 0 & a_1 \\ 1 & 0 & & & \vdots \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & a_{n-1} \\ & & & 1 & a_n \end{pmatrix}.$$

Donc

En développant par rapport à la première ligne,

$$\chi_C = (-1)^{n+1} (-1)^{n-1} P(X) = P(X)$$

$$\chi_C = -a_1 - a_2 X - \dots - a_n X^{n-1} + X^n$$

Méthode 2

On développe par rapport à la dernière colonne.

2. Remarquons que

$$\forall k \in [1, n-1], \ C(e_k) = e_{k+1}, \text{ et } C(e_n) = a_n e_n.$$

Donc par récurrence immédiate, pour tout  $i \in [1, n-1]$ ,  $C^i(e_1) = e_{i+1}$ . Soient  $\lambda_1, \ldots, \lambda_n$  tels que  $\lambda_1 I_n + \lambda_2 C + \cdots + \lambda_n C^{n-1} = 0$ . Alors, en particulier,

$$\lambda_1 e_1 + \lambda_2 C^2(e_1) + \dots + \lambda_n C^{n-1}(e_1) = 0,$$

i.e.

$$\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n = 0$$

Or,  $(e_1, \ldots, e_n)$  est une base. Donc  $\lambda_1 = \cdots = \lambda_n = 0$ .

Donc  $(I_n, C, \ldots, C^{n-1})$  est une famille libre de  $\mathcal{M}_n(k)$ .

Soit  $P \in k[X]$  tel que P(C) = 0. Notons m son degré. Si  $m \leq n-1$ , P(C) est une combinaison linéaire nulle d'une sous famille de  $(I_n, C, \ldots, C^{n-1})$  est une partie libre de  $\mathcal{M}_n(k)$ ., Donc P est nul. Si  $\deg(P) \geqslant n$ , effectuons la division euclidienne de P par  $\chi_C$ . Donc il existe  $Q, R \in k[X]$  tels que  $P = \chi_C Q + R$ , où  $\deg(R) \leq n-1$  Or, par théorème de Kayley Hamilton,  $\chi_C(C) = 0$ . Donc R(C) = 0. Donc, d'après le premier cas R = 0, et  $P = \chi_C Q$ .

Ainsi, tout polynôme P tel que P(C) = 0 est divisible par  $\chi_C$ .0

3. Pour tous  $i, j \in [1, n]$ ,

$$s_{j,i} = \begin{cases} s_{j+i-n} & \text{si } j+i > n \\ 0 & \text{sinon.} \end{cases} = s_{i,j}$$

Donc  $S_{\sigma}$  est une matrice symétrique.

Par définition,

$$\det(S_{\sigma}) = \sum_{\tau \in \mathcal{S}_n} \prod_{i=1}^n [S_{\sigma}]_{i,\tau(i)}$$

Or, pour tout  $\tau \in \mathcal{S}_n$ , s'il existe  $i \in [\![1,n]\!]$  tel que  $i+\tau(i) \leqslant n$ , alors  $\prod_{i=1}^n [S_\sigma]_{i,\tau(i)} = 0$ . Soit  $\tau \in \mathcal{S}$  tel que pour tout  $i \in [\![1,n]\!]$ ,  $i+\tau(i) > n$ . Alors  $\tau(1) > n-1$ , donc  $\tau(1) = n$ . Par suite, comme  $\tau(2) \neq \tau(n)$ , et  $\tau(2) > n-2$ , nécessairement,  $\tau(2) = n-1$ . Par récurrence finie immédiate, pour tout  $i \in [\![1,n]\!]$ ,  $\tau_i = n-i+1$ .

Donc 
$$\det(S_{\sigma}) = \prod_{i=1}^{n} s_1 = s_1^n$$
.

4. Soit  $\sigma = (s_1, \dots, s_n)$  dans  $k^n$  tel que  $s_1 = 1$  et tel que la matrice  $S_{\sigma}C$  est symétrique. Soient  $i, j \in [1, n]$ 

$$[S_{\sigma}C]_{i,j} = \sum_{k=1}^{n} [S_{\sigma}]_{i,k}[C]_{k,i}$$

$$= \begin{cases} [S_{\sigma}]_{i,j+1} & \text{si } j \neq n \\ \sum_{k=n-i+1}^{n} [S_{\sigma}]_{i,k} a_{k} & \text{si } i+j \geqslant n \end{cases}$$

$$= \begin{cases} s_{i+j+1-n} & \text{si } i+j \geqslant n \text{ et } j \neq n \\ \sum_{k=n-i+1}^{n} s_{i+k-n} a_{k} & \text{si } j = n \\ 0 & \text{si } i+j < n \end{cases}$$

Donc pour tout  $i \in [1, n]$ , pour tout  $j \in [1, n-1]$ ,  $[S_{\sigma}C]_{i,j} = [S_{\sigma}C]_{j,i}$ .

Pour j = n, pour tout  $i \in [1, n]$ ,

$$[S_{\sigma}C]_{i,n} = \sum_{k=n-i+1}^{n} s_{i+k-n}a_k$$

Et

$$[S_{\sigma}C]_{n,i} = s_{1+i}$$

Donc

$$s_{1+i} = \sum_{k=n-i+1}^{n} s_{i+k-n} a_k.$$

Pour tout  $i \in [1, n]$ ,  $s_i$  s'exprime en fonction de  $(s_1, \ldots, s_{i-1})$ , donc par récurrence immédiate, tous les  $s_i$  s'expriment en fonction de  $s_1$ .

Réciproquement, on vérifie que  $\sigma$  défini précédemment convient.

5. D'après la question précédente,  $S_{\sigma}C$  est symétrique. Comme  $s_1 = 1 \neq 0$ ,  $S_{\sigma}$  est inversible. Or  $C = S_{\sigma}^{-1}(S_{\sigma}C)$ . En posant  $T = S_{\sigma}^{-1}$ , et  $R = S_{\sigma}C$ , T est une matrice symétrique inversible, et R une matrice symétrique.

Ainsi, il existe une matrice symétrique inversible T et une matrice symétrique R telles que C=TR.

6. On a  $T^tCT^{-1} = T({}^tR^tT)T^{-1} = TRTT^{-1} = TR = C$ .

Ainsi, il existe une matrice symétrique inversible T telle que  $T^t\!CT^{-1}$ .

7.  $s_1 = 1, s_2 = s_1 a_n = 2, s_3 = s_2 a_n + s_1 a_{n-1} = 4 - 1 = 3,...$ Montrons par récurrence sur  $i \in [1, n]$  que :

$$s_i = i \tag{H}$$

- $-i=1: s_1=1$  par définition de  $\sigma$
- Soit  $i \in [1, n-1]$  tel que (H) soit vraie. On a

$$s_{i+1} = s_i a_n + s_{i-1} a_{n-1} = 2i - (i-1) = i+1$$

### Partie II

1. Soit B une forme bilinéaire symétrique non dégénérée. Elle admet une base orthogonale  $(e_1,\ldots,e_n)$ . Comme B est non dégénérée,  $\det B\neq 0$ , donc pour tout  $i\in [\![1,n]\!]$ ,  $B(e_i,e_i)=\lambda_i\neq 0$ . Par définition de k, pour tout  $i\in [\![1,n]\!]$ , il existe  $\mu_i\in k$  tel que  $\lambda_i=\mu_i^2$ . Donc  $\frac{1}{\mu_i^2}B(e_i,e_i)=1$ . Par bilinéarité de  $B,\,B(\frac{e_i}{\mu_i},\frac{e_i}{\mu_i})=1$ .

Ainsi, il existe  $x \in k^n$  tel que B(x,x) = 1, et dans la base  $(\frac{e_1}{\mu_1}, \dots, \frac{e_n}{\mu_n})$ , B a pour matrice  $I_n$ .

- 2. Soit  $M \in \mathcal{GL}(k)$ . L'implication réciproque est immédiate. Supposons que M est symétrique. Comme, M est inversible, il existe une forme bilinéaire symétrique non dégénérée B qui a pour matrice M dans la base canonique. D'après la question précédente, il existe une base orthogonale dans laquelle B a pour matrice  $I_n$ . Autrement dit, il existe  $P \in \mathcal{GL}(k)$  tel que  $M = {}^t P P$ .
- 3. D'après la question 5, il existe une matrice symétrique inversible T et une matrice symétrique R telles que C = TR. D'après la question précédente,  $T = {}^t\!PP$ . Donc

$$C = {}^{t}PPR = {}^{t}P(PR^{t}P)({}^{t}P)^{-1}$$

Donc C est semblable à  $PR^{t}P$  qui est symétrique puisque R l'est.

Ainsi, C est semblable à une matrice symétrique.

4. Considérons la matrice C avec  $a_i = 0$  pour tout  $i \in [1, n]$ . Alors C a pour polynôme caractéristique  $X_n$ , dont la seule racine est 0. Or, C est non nulle, donc C n'est pas diagonalisable. De plus C est semblable à une matrice symétrique. Donc cette matrice symétrique n'est pas diagonalisable.

### Partie III

1. Il s'agit de montrer que l'ensemble des matrices telles que leur polynôme minimal est égal à leur polynôme caractéristique est un ouvert.

Soit  $M \in \mathcal{M}_n(\mathbb{R})$ . Montrons que les deux propositions suivantes sont équivalentes :

- si P annule M, alors  $\chi_M$  divise P
- il existe  $x \in k^n$  tel que  $(x, Mx, ..., M^{n-1}x)$  est libre

Considérons les morphismes d'algèbres suivants :

$$\varphi: \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ P & \longmapsto & P(M) \end{array}$$

et pour  $x \in \mathbb{R}^n$ ,

$$\varphi_x: \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathbb{R}^n \\ P & \longmapsto & P(M)(x) \end{array}$$

Notons  $\mu$  le générateur unitaire du noyau de  $\varphi$ , et  $\mu_x$  celui du noyau de  $\varphi_x$ .

Soient  $\mu = P_1^{\alpha_1} \cdots P_r^{\alpha_r}$  la décomposition de  $\mu$  en facteurs irréductibles et  $E_i = \operatorname{Ker}(P_i^{\alpha_i}(M))$ . Soit  $i \in [\![1,n]\!]$ . Soit  $x_i \in E_i$  tel que  $P_i^{\alpha_i-1}(M)(x_i) \neq 0$ . Comme  $P_i^{\alpha_i}$  est irréductible,  $\mu_{x_i} = P_i^{\alpha_i}$ .

Posons  $x = x_1 + \dots + x_r$ .

$$\mu_x(M)(x) = \mu_x(M)(x_1) + \dots + \mu_x(M)(x_r)$$

Or, pour tout  $i \in [1, n]$ ,  $\mu_x(M)(x_i) \in E_i$ . Comme les  $E_i$  sont en somme directe,  $\mu_x(M)(x_i) = 0$ , pour tout i.

Ainsi,  $\mu_{x_i}|\mu_x$ . Et comme  $\mu_x|\mu_x$ ,  $\mu_x = \mu$  (car les deux polynômes sont unitaires).

Soit  $x \in \mathbb{R}^n$  tel que  $\mu_x = \mu$  En considérant le morphisme  $\psi_{M,x} = \varphi_x \circ \varphi$ , on a, par le théorème d'isomorphisme,  $\mathbb{R}[X]/(\mu_x) \simeq E_x$ , où  $E_x = \text{Vect}(x, Mx, \dots M^{n-1}x)$ . Or  $\deg(\mu_x) = \deg(\mu)$ .

Donc  $\chi_M = \mu$  si, et seulement si  $\mu_x = \chi$ , *i.e.*  $\deg(\mu_x) = n$ , soit  $\dim(E_x) = n$ , *i.e.*  $(x, Mx, \dots, M^{n-1}x)$  est base de son propre Vect.

Soit  $x \in \mathbb{R}^n$  tel que  $(x, Mx, \dots, M^{n-1}x)$  est une famille libre.

Considérons l'application  $u: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$  $A \longmapsto \det(x, Ax, \dots, A^{n-1}x)$ . Par définition de  $x, u(M) \neq 0$ . Comme u est continue, il existe un voisinage  $\mathcal{W}$  de M tel que u soit non nulle sur  $\mathcal{W}$ . Donc d'après la propriété énoncée au début,  $\chi_A = \mu_A$  pour toute matrice  $A \in \mathcal{W}$ .

Ainsi,  $\Omega$  est un ouvert.

2. Soit  $\lambda$  une valeur propre de C. Alors, il existe un vecteur propre  $x = (x_1, \dots, x_n)$  tel que  $Cx = \lambda x$ . Soit  $i \in [1, n]$ .

$$\sum_{j=1}^{n} c_{i,j} x_j = \lambda x_i$$

Donc

$$\lambda x_i = (\lambda - \alpha_{i,i}) x_i = \sum_{\substack{j=1\\j \neq i}}^n c_{i,j} x_j$$

Donc

$$|\lambda||x_i| \leqslant \sum_{\substack{j=1\\j\neq i}}^n |c_{i,j}||x_j| \leqslant ||x||_{\infty} \sum_{\substack{j=1\\j\neq i}}^n |c_{i,j}| \leqslant ||x||_{\infty} \sum_{j=1}^n |c_{i,j}| = 1 + |a_i| \leqslant ||x||_{\infty} \max_{1 \leqslant k \leqslant n} (1 + a_k)$$

Donc

$$|\lambda| ||x||_{\infty} \leqslant ||x||_{\infty} \max_{1 \leqslant i \leqslant n} (1 + |a_i|)$$

Comme  $x \neq 0$ ,  $|\lambda| \leq \max_{1 \leq i \leq n} (1 + |a_i|)$ .

Ainsi, si  $\lambda$  est une valeur propre de C, alors  $|\lambda| \leq \max_{1 \leq i \leq n} (1 + |a_i|)$ .

3. a) Comme on est en dimension finie, toutes les normes sont équivalentes. Nous utiliserons dans la suite la norme infinie. Comme  $\Omega$  est un ouvert, il existe  $\varepsilon > 0$  tel que  $B(C, \varepsilon) \subset \Omega$ . Comme  $(M_i)_{i \in \mathbb{N}}$  converge vers C, il existe  $l \in \mathbb{N}$  tel que pour tout  $m \geqslant l$ ,  $\|C - M_m\| < \varepsilon$ . Soit  $m \geqslant l$ . Comme  $M_m$  est diagonalisable et son polynôme caractéristique est égal à son polynôme minimal, nécessairement, ses valeurs propres sont distinctes deux à deux.

Ainsi, il existe  $l \in \mathbb{N}$  tel que pour tout  $m \ge l$ ,  $M_m$  a n valeurs propres distinctes deux à deux.

b) Soient  $\varepsilon > 0$  et l définis comme dans la question précédente. Posons  $K_1 = \max_{1 \le n} |\lambda_i^m|$  et  $K_2 = \varepsilon + \|C\|$ .

Pour tout  $m \leq l$ , pour tout  $\lambda$  valeur propre de  $M_m$ , il est clair que  $|\lambda| \leq K_1$ . Pour tout  $m \geq l$ ,

$$|\lambda| \le ||M_m|| \le ||M_m - C|| + ||C|| \le \varepsilon + ||C||.$$

Donc, en posant  $K = \max(K_1, K_2)$ , pour tout  $m \in \mathbb{N}$ , pour toute valeur propre  $\lambda$  de  $M_m$ ,  $|\lambda| \leq K$ .

- c) Le polynôme caractéristique étant à coefficients qui sont fonction continue des coefficients de la matrice, et comme  $(M_m)$  converge vers C, la suite de polynômes caractéristiques  $(\chi_{M_m})$  converge vers  $\chi_C$ . Donc les suites  $(\lambda_i^m)_{m\in\mathbb{N}}$  convergent vers les racines de  $\chi_C$  qui sont nécessairement dans  $\mathbb{R}$ .
- 4. Considérons la matrice C avec  $a_1 = 1$  et  $a_i = 0$  pour tout  $i \in [1, n-1]$ . C n'est pas limite d'une suite de matrices diagonalisables dans  $\mathcal{M}_n(\mathbb{R})$  car toutes ses racines ne sont pas dans  $\mathbb{R}$ .

# Solution du sujet 4

## Partie I

1. a) Comme  $(a_n)_{n\in\mathbb{N}}$  est une suite de termes positifs ou nuls, on a, pour tout  $n\in\mathbb{N}$ , pour tout  $x\geqslant 0$ ,

$$\sum_{k=0}^{n} a_n x^n \leqslant f(x) \leqslant s$$

A n fixé, par passage à la limite, lorsque x tend vers 1,

$$\sum_{k=0}^{n} a_n \leqslant s$$

La série de terme général  $(a_n)_{n\in\mathbb{N}}$  est donc majorée, elle est donc convergente puisque les termes sont positifs ou nuls. Donc la série est normalement convergente sur [-1,1], et donc f est continue sur cet intervalle.

Pour tout  $n \in \mathbb{N}$ , pour tout  $|x| \leq 1$ ,  $a_n |x|^n \leq a_n$ .

Donc par théorème de convergence dominée,

$$\lim_{x \to 1, x < 1} \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} a_n = s$$

Ainsi, la série de terme général  $a_n$  est convergente de somme s.

- b) Considérons  $\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n$  sur ] -1,1[. La série de terme général  $(-1)^n$  n'est pas convergente.
- 2. a) Soient  $0 \le x < y < 1$ . Soit  $n \in \mathbb{N}$ . Par hypothèse,  $F^{n+2} \ge 0$  sur [0,1[, donc  $F^{n+1}$  est croissante. Donc,

$$\forall t \in [0, 1[, (1-t)^n F^{(n+1)}(tx) \le (1-t)^n F^{(n+1)}(ty)$$

Donc, par croissance de l'intégrale,

$$0 \leqslant r_n(x) \leqslant \frac{x^{n+1}}{n!} \int_0^1 (1-t)^n F^{(n+1)}(ty) \, \mathrm{d}t = \left(\frac{x}{y}\right)^{n+1} r_n(y)$$

Ainsi, pour 
$$0 \leqslant x < y < 1$$
,  $0 \leqslant r_n(x) \leqslant r_n(y) \left(\frac{x}{y}\right)^{n+1}$ .

b) Soit  $0 \le x < 1$ . Soit  $y \in ]x, 1[$ . Comme F est  $\mathcal{C}^{\infty}$ , elle admet un développement de Taylor avec reste intégral en 0 à l'ordre n et n + 1, pour  $n \in \mathbb{N}$ :

$$F(y) = \sum_{k=0}^{n} \frac{F^{(k)}(0)}{k!} y^{k} + r_{n}(y) \text{ et } \sum_{k=0}^{n+1} \frac{F^{(k)}(0)}{k!} y^{k} + r_{n+1}(y)$$

Donc, pour tout  $n \in \mathbb{N}$ ,

$$r_{n+1}(y) = r_n(y) - \frac{F^{(n+1)}(0)}{(n+1)!}y^{n+1}$$

Or,  $x \ge 0$ , et  $F^{n+1} \ge 0$ . Donc la suite  $(r_n(y))_{n \in \mathbb{N}}$  est décroissante et minorée par 0, donc converge dans  $\mathbb{R}_+$ .

D'après la question précédente,

$$0 \leqslant r_n(x) \leqslant \frac{x^{n+1}}{n!} \int_0^1 (1-t)^n F^{(n+1)}(ty) \, \mathrm{d}t = \left(\frac{x}{y}\right)^{n+1} r_n(y)$$

Donc par passage à la limite à droite, comme  $(r_n(y))_{n\in\mathbb{N}}$  converge, et par théorème d'encadrement,

$$\lim_{n \to \infty} r_n(x) = 0$$

Donc  $F(x) = \sum_{n=0}^{+\infty} \frac{F^{(n)}(0)}{n!} x^n$ .

Ainsi, pour  $0 \le x < 1$ , F(x) est somme de sa série de Taylor à l'origine.

c) Soit  $x \in ]-1,0[$ . L'égalité de I.2.a reste valable pour  $y \in ]0,1[$ . De même pour  $y \in ]0,1[$ ,  $(r_n(y))_{n \in \mathbb{N}}$  est décroissante. Donc les arguments précédents restent valables, et le reste intégral  $(r_n(x))_{n \in \mathbb{N}}$  tend vers 0.

Ainsi, pour -1 < x < 1, F(x) est somme de sa série de Taylor à l'origine.

### Partie II

1. Posons, pour tout  $0 \le x < 1$ ,  $g(x) = \frac{1}{d^{(m+3)/2}}G(dx)$ , de sorte que, pour tout  $x \in [0,1[$ 

$$g(x)g''(x) + x^{m+1} = \frac{1}{d^{m+1}}G(dx)G''(dx) + x^{m+1}$$

Or, si  $x \in [0, 1]$ ,  $dx \in [0, d]$ , donc  $G(dx)G''(dx) + d^{m+1}x^{m+1} = 0$ .

Donc  $g(x)g''(x) + x^{m+1} = 0$ .

De plus,  $g'(0) = \frac{1}{d^{(m+1)/2}}G'(0) = 0$ , et  $g(0) = \frac{1}{d^{(m+3)/2}}G(d) = 0$  par hypothèse sur G. Enfin,  $g(0) = \frac{1}{d^{(m+3)/2}}G(0) = \frac{1}{d^{(m+3)/2}} > 0$ .

Ainsi, il existe  $g \in E(0,1)$  et un nombre  $k \in \mathbb{R}_+$  tels que :

$$\begin{cases} g(x)g''(x) + x^{m+1} = 0 \text{ pour } 0 \leqslant x < 1\\ g'(0) = 0\\ g(1) = 0\\ g(0) = k \end{cases}$$

2. Considérons la fonction  $f: \begin{bmatrix} 0, 1[\times \mathbb{R}^*_+ \times \mathbb{R} & \longrightarrow \mathbb{R}^2 \\ (x, \begin{pmatrix} g \\ g' \end{pmatrix}) & \longmapsto \begin{pmatrix} g' \\ -\frac{x^{m+1}}{a} \end{pmatrix}$ . Elle définit l'équation

différentielle donnée :

$$\begin{pmatrix} g' \\ g'' \end{pmatrix} = f(x, \begin{pmatrix} g \\ g' \end{pmatrix})$$

La fonction f est clairement continue.

Soient  $g_1$  et  $g_2$  deux solutions de l'équation différentielle. Comme  $g_1$  et  $g_2$  sont continues sur [0,1], elles y sont bornées. De plus, elle sont nécessairement non nulles. Donc il existe  $m \in \mathbb{R}_+^*$  tel que  $m \ge |g_1|$  et  $m \ge |g_2|$ 

$$||f(x, \begin{pmatrix} g \\ g' \end{pmatrix}) - f(x, \begin{pmatrix} g \\ g' \end{pmatrix})||_{2} = \sqrt{(g'_{1} - g'_{2})^{2} + (\frac{x^{m+1}}{g_{1}} - \frac{x^{m+1}}{g_{2}})^{2}}$$

$$\leq \sqrt{(g'_{1} - g'_{2})^{2} + \frac{1}{m^{2}}(g_{1} - g_{2})^{2}} \leq \max(1, \frac{1}{m^{2}}) || \begin{pmatrix} g_{1} \\ g'_{1} \end{pmatrix} - \begin{pmatrix} g_{2} \\ g'_{2} \end{pmatrix} ||_{2}$$

Donc f est lipschitzienne par rapport à la deuxième variable.

D'après le théorème de Cauchy-Lipschitz, il existe une unique solution maximale g telle que  $\begin{cases} g'(0)=0\\ g(0)=\frac{1}{d^{(m+3)/2}} \end{cases}.$ 

Via le changement de variable inverse, l'équation différentielle possède une et une seule solution maximale telle que  $\left\{ \begin{array}{l} G(0)=1 \\ G'(0)=0 \end{array} \right. .$ 

3. On suppose que  $d=+\infty$ . Supposons par l'absurde G(y)>0 pour tout y>0. Alors, pour tout y>0, G''(y)<0. Donc G' est décroissante sur  $\mathbb{R}_+^*$ . Or, G'(0)=0, donc  $G'(y)\langle 0$ , pour tout y>0. On peut trouver  $\varepsilon>0$  et  $\delta>0$  tels que pour tout  $y\geqslant \delta$ ,  $G'(x)\leqslant -\varepsilon<0$ . D'après le théorème fondamental de l'analyse, on a, pour tout  $y\geqslant \delta$ ,

$$G(y) = G(\delta) + \int_{\delta}^{y} G'(x) dx \leqslant G(\delta) - \varepsilon(y - \delta)$$

En faisant tendre y vers  $+\infty$ , ce qui est possible puisque  $d=+\infty$ ,

$$\lim_{y \to \infty} G(y) = -\infty$$

ce qui est contradictoire avec l'hypothèse G(y) > 0 pour tout y > 0.

Si G est solution de l'équation différentielle, nécessairement, G(y) > 0, pour tout y > 0. En effet, si G change de signe, comme G est continue, par le théorème des valeurs intermédiaires, il existe  $y_0$  tel que  $G(y_0)$ , alors  $0 = G(y_0)G''(y_0) = -y_0^{m+1}$ . Donc  $y_0 = 0$ . Or G(0) = 1, ce qui est contradictoire. Donc G est de signe constant, et G > 0.

- 4. a) D'après la question précédente, G est décroissante, donc admet une limite finie ou infinie en d. Or, G(y) > 0 pour tout  $y \in I$ , donc la limite est finie. On peut donc prolonger G en d par continuité.
  - b) Il suffit de montrer que G(d) = 0, puisque G est continue sur [0,d] et  $\mathcal{C}^2$  sur [0,d[. Si G(d)>0,  $G''(y)=-\frac{y^{m+1}}{G(y)}$  est prolongeable par continuité en d et G' l'est également, donc G vérifie l'équation différentielle sur [0,d]. D'après le théorème de Cauchy-Lipschitz, G est prolongeable dans un voisinage de d, ce qui est absurde car elle est supposée maximale.

### Partie III

1. a) Soit  $E = \{x \in [0,1], g_1(x) = g_2(x)\}$ . Posons E est un ensemble non vide car contient 1 et est minoré par 0 donc admet une borne inférieur  $x_0 \le 1$ . Il existe une suite  $(x_n)_n$  de E qui converge vers  $x_0$ .

Or, pour tout  $n \in \mathbb{N}$ ,  $(g_2 - g_1)(x_n) = 0$ . Par passage à la limite et continuité de  $g_2 - g_1$ ,

$$(g_2 - g_1)(x_0) = 0$$

Comme  $x_0 = \inf(E)$  et  $g_2 - g_1$  est continue, pour tout  $x \leq x_0$ ,  $g_2(x) > g_1(x)$ .

Ainsi, il existe  $x_0 \in ]0,1]$  tel que

$$\forall x \in ]0,1], g_1(x) < g_2(x) \text{ et } g_1(x_0) = g_2(x_0).$$

b) Par hypothèse sur  $g_1, g_2$  et h, pour tout  $x \in [0, x_0]$ ,

$$g_1(x) < g_2(x)$$

donc

$$-\frac{2xh(x)}{q_1(x)} \leqslant -\frac{2xh(x)}{q_2(x)}$$

i.e.

$$g_1''(x) \leqslant g_2''(x)$$

Donc  $(g_2 - g_1)''$  est positive sur  $[0, x_0[$ , donc  $(g_2 - g_1)'$  est croissante sur  $[0, x_0[$ . Or,  $(g_2 - g_1)'(0) = 0$  donc  $(g_2 - g_1)'$  est positive sur cet intervalle. Donc  $g_2 - g_1$  est croissante sur  $[0, x_0[$ .

Ainsi, pour tout  $x \in [0, x_0[, g_2(x) - g_1(x) \ge g_2(0) - g_1(0) > 0$ . Par passage à la limite en  $x_0^-$ ,  $g_2(x_0) - g_1(x_0) > 0$ , ce qui est contradictoire avec la question précédente.

2. a)  $g_1 - g_2$  est continue sur [0,1], dérivable sur ]0,1[ et  $(g_1 - g_2)(0) = (g_1 - g_2)(1) = 0$ . D'après le théorème de Rolle, il existe  $x_1 \in ]0,1[$  tel que  $(g_1 - g_2)'(x_1) = 0$ . Supposons par l'absurde que  $g_1(x_1) = g_2(x_1)$ . On a alors  $\begin{cases} g_1(x_1) = g_2(x_1) \\ g_1'(x_1) = g_2'(x_1) \end{cases}$ . D'après le théorème de Cauchy-Lipschitz,  $g_1 = g_2$ , ce qui est contradictoire avec l'hypothèse.

Ainsi, il existe  $x_1 \in ]0,1[$  tel que

$$g_1(x_1) \neq g_2(x_1)$$
 et  $g'_1(x_1) = g'_2(x_1)$ 

b) Comme  $(g_1 - g_2)'$  est continue sur  $[0, x_1]$ , dérivable sur  $]0, x_1[$ , et  $(g_1 - g_2)'(0) = (g_1 - g_2)'(x_1) = 0$ , d'après il le théorème de Rolles, il existe  $x_2 \in ]0, 1[$  tel que  $(g_1 - g_2)''(x_2) = 0$ , ce qui est contradictoire avec le théorème de Cauchy-Lipschitz.

#### Partie IV

- 1. L'existence d'une unique solution dans E(0,1) est donnée par le théorème de Cauchy-Lipschitz. Par récurrence immédiate, on montre que pour tout  $n \in \mathbb{N}$ ,  $g^{(n)}$  est dérivable sur [0,1[.
- 2. Soit  $n \ge 1$ . D'après la formule de Leibniz, pour tout  $x \in [0, 1[$ ,

$$0 = (gg'')^{(n+1)}(x) = \sum_{k=0}^{n+1} \binom{n+1}{k} g^{(k)}(x)g^{(n+3-k)}(x)$$

Donc pour tout  $x \in [0, 1[$ ,

$$g^{(n+3)}(x) = -\frac{\sum_{k=1}^{n+1} {n+1 \choose k} g^{(k)}(x) g^{(n+3-k)}(x)}{g(x)}$$

Pour n = 0, on a, pour tout  $x \in [0, 1[$ ,

$$g^{(3)}(x) = -\frac{2 + g'(x)g''(x)}{g(x)}.$$

3. Comme  $g \in E(0,1), g''$  est négative sur [0,1]. Montrons par récurrence sur  $n \geqslant 2$  que :

$$\forall k \leqslant n, \forall x \in [0, 1], \ F^{(n)}(x) \geqslant 0 \tag{\mathcal{H}_1}$$

- -n=2: vrai d'après ce qui précède
- Soit  $n \ge 2$  tel que  $\mathcal{H}_1$ . D'après la question précédente,

$$F^{(n+1)}(x) = -\frac{\sum_{k=1}^{n-1} {\binom{n-1}{k}} g^{(k)}(x) g^{(n+1-k)}(x)}{g(x)}$$
$$= \frac{\sum_{k=1}^{n-1} {\binom{n-1}{k}} F^{(k)}(x) F^{(n+1-k)}(x)}{g(x)}$$
$$\geqslant 0$$

par hypothèse de récurrence et g(0) > 0.

Comme g'' est négative, g' est décroissante. Or, g'(0) = 0, donc F' = -g' est positive, et F(x) = -(g(x) - g(0)) est positive (car g est décroissante).

Ainsi, pour tout 
$$n \in \mathbb{N}$$
,  $F^{(n)}(x) \ge 0$ .

4. Comme F est  $\mathcal{C}^{\infty}$  sur [0,1[, et pour tout  $n \in \mathbb{N}$ , pour tout  $x \in [0,1[$ ,  $F^{(n)}(x) \ge 0$ , d'après la question c, F est somme de sa série de Taylor en 0. Soit  $x \in [0,1[$ .

$$F(x) = \sum_{n=0}^{+\infty} \frac{F^{(n)}(0)}{n!} x^n$$

De plus, par hypothèse sur g,

$$\lim_{x \to 1, x < 1} F(x) = g(0) \ge 0.$$

et d'après la question précédente,

$$F^{(n)}(x) \geqslant 0, \ \forall x \in [0, 1[.$$

Donc d'après la question a, pour tout  $x \in [0, 1]$ ,

$$F(x) = \sum_{n=0}^{+\infty} \frac{F^{(n)}(0)}{n!} x^n$$

$$g(0) - g(x) = -\sum_{n=1}^{+\infty} \frac{g^{(n)}(0)}{n!} x^n$$

i.e.

$$g(x) = \sum_{n=0}^{+\infty} \frac{g^{(n)}(0)}{n!} x^n$$

5. Montrons par récurrence sur  $n \ge 1$  que

$$\forall k \leqslant n, \ g^{(k)}(0) \neq 0 \text{ si } 3|k, \text{ et } g^k(0) = 0 \text{ sinon}$$
  $(\mathcal{H}_2)$ 

- -n=1: comme  $g \in E(0,1)$ , nécessairement, g(0)>0. Par hypothèse, g'(0)=0.
- Soit  $n \geqslant 1$  tel que  $\mathcal{H}_2$ 
  - Si  $n + 1 = 0 \mod 3$ ,

$$g^{(n+1)} = -\frac{1}{g(0)} \sum_{k=1}^{n-1} {n-1 \choose k} g^{(n+1-k)}(0) g^{(k)}(0)$$
$$= -\frac{1}{g(0)} \sum_{\substack{k=1, \\ k=0 \mod 3}}^{n-1} g^{(n+1-k)}(0) g^{(k)}(0)$$

Or, par hypothèse de récurrence, comme  $n+1-k=0 \mod 3$  pour tout  $k=0 \mod 3, g^{(n+1)}(0) \neq 0.$ 

— Si  $n+1 \neq 0 \mod 3$ , pour tout  $k \in [1, n-1]$ , on ne peut avoir simultanément  $n+1-k=0 \mod 3$  et  $k=0 \mod 3$ . Donc par hypothèse de récurrence,  $g^{(n+1)}(0)=0$ .

Donc  $\mathcal{H}_{n+1}$  est vérifiée.

6. Montrons par récurrence sur  $n \ge 1$  que

$$\forall 1 \leqslant k \leqslant n, \ g^{(3k)}(0) = -(3k)! \frac{b_k}{a_0^{2k-1}} \tag{H_3}$$

-- n = 1 : on a

$$g^{(3)}(0) = -\frac{2}{a_0} = \frac{-3!b_1}{a_0}$$

— Soit  $n \geqslant 1$  tel que  $\mathcal{H}_3$ .

$$\begin{split} g^{(3n+3)}(0) &= -\frac{1}{g(0)} \sum_{k=1}^{3n+1} \binom{3n+1}{k} g^{(k)}(0) g^{(3n+3-k)}(0) \\ &= -\frac{1}{g(0)} \sum_{p=1}^{n} \binom{3n+1}{3p} g^{(3p)}(0) g^{(3n+3-3p)}(0) \\ &= -\frac{1}{g(0)} \sum_{p=1}^{n} \binom{3n+1}{3p} (3p)! \frac{b_p}{a_0^{2p-1}} (3n+3-3p)! \frac{b_{n+1-p}}{a_0^{2n+2-2p-1}} \\ &= -\frac{(3n+3)!}{a_0^{2n+1}} \sum_{p=1}^{n} \frac{(3n+2-3p)(3n+3-3p)}{(3n+2)(3n+3)} b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{a_0^{2n+1}} \sum_{p=1}^{n} \frac{(3n+2-3p)(n+1-p)}{(3n+2)(n+1)} b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{(3n+2)(n+1-p)}{(3n+2)(n+1)} - \frac{3p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} - \frac{3p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{2(n+1-p)}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= \inf(1, n+1) \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{p}{n+1} - \frac{6p(n+1-p)}{(3n+2)(n+1)} \right) b_p b_{n+1-p} \\ &= -\frac{(3n+3)!}{2a_0^{2n+1}} \sum_{p=1}^{n} \left( \frac{n+1-p}{n+1} + \frac{n+1}{2n} + \frac{n+1}{2n} + \frac{n+1}{2n} + \frac{n+1}{2n} + \frac{n+1}{2n} + \frac{n+$$

### Partie V

1. Soit  $N \in \mathbb{N}$ . Posons, pour tout x > 0,  $f_N(x) = S_N(x) - x$ .  $f_N$  est clairement  $\mathcal{C}^2$  sur  $\mathbb{R}_+^*$ , et

$$\forall x > 0, \ S_N'(x) = -\sum_{n=1}^N \frac{(2n-1)b_n}{x^{2n}} - 1 < 0$$

car  $b_n$  est strictement positif par définition. Donc  $f_N$  est strictement décroissante sur  $\mathbb{R}_+^*$ . Or.

$$\lim_{x \to 0^+} f_N(x) = +\infty$$
, et  $\lim_{x \to +\infty} f_N(x) = -1 < 0$ 

D'après le théorème de la bijection, il existe un unique  $x_N > 0$ , tel que  $f_N(x_N) = x$ .

Ainsi, chaque équation  $S_N(x) = x$  admet une et une seule racine positive  $x_N$ .

Comme  $b_n > 0$  pour tout  $n \in \mathbb{N}$ , et la suite  $(f_N)_{N \in \mathbb{N}^*}$  est une suite croissante de fonctions décroissantes,  $(x_N)_{N \geqslant 1}$  est croissante donc admet une limite finie ou infinie. De plus,

$$f_N(a_0) = -\sum_{n=0}^{N} \frac{g^{(3n)}(0)}{(3n)!} < -\sum_{n=0}^{+\infty} \frac{g^{(3n)}(0)}{(3n)!} = -g(1) = 0.$$

Donc  $\forall N \geq 1, x_N \leq a_0$ . Notons x la limite de  $(x_N)$ 

 $(S_N)_{N\geqslant 1}$  est une suite croissante de fonctions décroissantes, donc admet une limite S. Pour  $N\geqslant 1$ , on a, pour tout  $p\geqslant 0$ ,

$$S_N(x_{N+p}) \leqslant S_N(x_N) \leqslant S_{N+p}(x_N)$$

i.e.

$$S_N(x_{N+p}) \leqslant x_N \leqslant S_{N+p}(x_N)$$

Par passage à la limite, par continuité de  $S_N$  sur  $\mathbb{R}_+^*$ ,

$$S_N(a_0) \leqslant S_N(x) \leqslant x \leqslant S(x_N) \leqslant S(a_0)$$

puisque  $x_N \leqslant a_0$ . Or,

$$S(a_0) = \lim_{N \to \infty} S_N(a_0) = \lim_{N \to \infty} -\sum_{n=1}^N \frac{g^{(3n)}(0)}{(3n)!} = -\sum_{n=0}^{+\infty} \frac{g^{(3n)}(0)}{(3n)!} + g(0) = g(1) + g(0) = a_0$$

Donc par passage à la limite quand  $N \to \infty$ .

$$a_0 \leqslant x \leqslant a_0$$
.

Donc la suite  $(x_N)$  converge vers  $a_0$ .

2. Soit  $x \geqslant a_0$ .

!!!!! Justifier la séparation de la somme

$$P(x) = x - \sum_{n=1}^{+\infty} \frac{b_n}{x^{2n-1}}$$

$$= x - \frac{1}{3x} - \frac{1}{2} \sum_{n=2}^{+\infty} \frac{1}{x^{2n-1}} \sum_{k=1}^{n-1} b_p b_{n-k} \left( 1 - \frac{6k(n-k)}{n(3n-1)} \right)$$

$$= x - \frac{1}{3x} - \frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{x^{2n-1}} \sum_{k=1}^{n-1} b_k b_{n-k} + \frac{1}{2x} \sum_{n=2}^{+\infty} \frac{1}{x^{2(n-1)}} \sum_{k=1}^{n-1} \frac{6k(n-k)}{n(3n-1)} b_k b_{n-k}$$

$$= x - \frac{1}{3x} - \frac{1}{2} \sum_{n=2}^{+\infty} \frac{1}{x^{2n-1}} \sum_{k=1}^{n-1} b_k b_{n-k} + \frac{1}{2x} (Q(x) - x^2 + \frac{2}{3})$$

$$= \frac{1}{2x} \left( Q(x) - \left( \sum_{n=2}^{+\infty} \frac{b_n}{x^{2n}} \right)^2 \right)$$

Ainsi, pour tout 
$$x \geqslant a_0$$
,  $P(x) = \frac{1}{2x} \left( Q(x) - \left( \sum_{n=2}^{+\infty} \frac{b_n}{x^{2n}} \right)^2 \right)$ 

3. Posons, pour tout x > 0,  $g_N(x) = T_N(x) - \frac{2}{3} + x^2$ . On a,  $g_N$  est  $\mathcal{C}^2$  sur  $\mathbb{R}_+^*$ , et

$$g_N''(x) = \sum_{n=2}^N \frac{(2n-2)(2n-1)\Phi(n)}{x^{2n}} + 2 > 0$$

 $\lim_{x\to 0} g_N(x) = +\infty$ ,  $\lim_{x\to +\infty} g_N(x) = +\infty$ . On a donc le tableau de signes et de variations suivant :

| x          | 0         | $+\infty$ |
|------------|-----------|-----------|
| $g_N''(x)$ | +         | +         |
| $g'_N(x)$  | _         | +         |
| $g_N$      | $+\infty$ | +∞        |

!!!! On a de plus,

$$g_N(a_0) \leqslant \sum_{n=2}^{+\infty} \frac{\Phi(n)}{a_0^{2(n-1)}} - \frac{2}{3} + a_0^2 = Q(a_0)$$

Or,  $a_0$  est racine de P. Donc

$$a_0 - \sum_{n=2}^{+\infty} \frac{1}{a_0^{2n-1}} \sum_{k=1}^{n-1} b_k b_{n-k} + \frac{Q(a_0)}{a_0} = 0$$

i.e.

$$Q(a_0) = a_0 \left(\sum_{n=2}^{+\infty} \frac{1}{a_0^{2n-1}} \sum_{k=1}^{n-1} b_k b_{n-k} - a_0\right) = \sum_{n=1}^{+\infty} \frac{1}{a_0^{2n}} \sum_{k=1}^{n} b_k b_{n+1-k} - a_0^2 = 1 - a_0^2$$

pas sûre du résultat

ça serait bien que ça soit négatif ce truc...

Donc  $g_N$  admet deux racines positives  $y_N < z_N$ .  $(g_N)_{\mathbb{N} \geqslant 2}$  étant une suite croissante, donc nécessairement  $(y_N)_{N\geqslant 2}$  est croissante et  $(z_N)_{N\geqslant 2}$  est décroissante.

4. Il suffit par exemple de calculer  $x_2$  et  $z_2$ . On a  $b_1 = \frac{1}{3}$ ,  $b_2 = \frac{1}{45}$ ,  $\Phi(2) = \frac{1}{15}$ ,  $\Phi(3) = \frac{1}{90}$ .  $x_2^2$  est racine du polynôme  $X^2 - \frac{1}{3}X - \frac{1}{45}$  qui a une racine positive  $\frac{1}{3} + \frac{1}{\sqrt{5}}$ . Donc  $x_2 = (\frac{1}{3} + \frac{1}{\sqrt{5}})^{1/2} \simeq 0$ , 89. De même,  $z_2^2$  est la plus grande racine du polynôme  $X^2 - \frac{2}{3}X + \frac{1}{15}$ . Donc  $z_2 \simeq 1$ , 09.