EXERCISE - V

- **1.** Find real values of x for which, $27^{\cos 2x}$. $81^{\sin 2x}$ is minimum. Also find this minimum value. [REE 2000, 3]
- 2. Solve the following system of equation for x and y $5^{(\cos ec^2x - 3\sec^2y)} = 1$ and $2^{(2\csc x + \sqrt{3}|\sec y|)} = 64$.

[REE 2001 (mains), 3]

- **3.** The number of integral values of k for which the equation $7 \cos x + 5 \sin x = 2k + 1$ has a solution is (A) 4 (B) 8(C) 10 (D) 12 [JEE 2002 (Screening), 3]
- **4.** $cos(\alpha \beta) = 1$ and $cos(\alpha + \beta) = 1/e$, where $\alpha, \beta \in [-\pi, \pi]$, number of pairs of α , β which satisfy both the equations is [JEE 2005 (Screening)] (A) 0(B) 1 (C) 2 (D) 4
- **5.** If $0 < \theta < 2\pi$, then the intervals of values of θ for which $2 \sin^2 \theta - 5 \sin \theta + 2 > 0$, is [JEE 2006, 31

(A)
$$\left(0, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, 2\pi\right)$$
 (B) $\left(\frac{\pi}{8}, \frac{5\pi}{6}\right)$

(B)
$$\left(\frac{\pi}{8}, \frac{5\pi}{6}\right)$$

(C)
$$\left(0, \frac{\pi}{8}\right) \cup \left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$$
 (D) $\left(\frac{41\pi}{48}, \pi\right)$

(D)
$$\left(\frac{41\pi}{48},\pi\right)$$

- **6.** The number of solutions of the pair of equations $2\sin^2\theta - \cos 2\theta = 0$ and $2\cos^2\theta - 3\sin\theta = 0$ in the interval $[0, 2\pi]$ is [JEE 2007, 3] (A) zero (B) one (C) two (D) four
- **7.** For $0 < \theta < \pi/2$, then solution(s) of

$$\sum_{m=1}^{6} \csc (\theta + (m-1)\pi/4) \csc(\theta + m\pi/4) = 4\sqrt{2}$$

is(are)

[JEE 2009]

- (A) $\pi/4$
- (B) $\pi/6$
- (C) $\pi/12$
- (D) $5\pi/12$
- **8.** The number of values of θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

such that $\theta \neq \frac{n\pi}{5}$ for n=0, ±1, ±2 and tan θ = cot 5 θ as well as $\sin 2\theta = \cos 4\theta$ is [JEE 2010]

JEE PROBLEMS

9. The number of all possible values of θ when $\theta \in (0, \pi)$ for which the system of equation [JEE 2010] $(y + z) \cos 3\theta = (xyz) \sin 3\theta$

$$x \sin 3\theta = \frac{2\cos 3\theta}{y} + \frac{2\sin 3\theta}{z}$$

- $(xyz) \sin 3\theta = (y + 2z)\cos 3\theta + y \sin 3\theta$ have a solution (x_0, y_0, z_0) with $y_0, z_0 \neq 0$ is
- **10.** Let $P = \{\theta : \sin \theta \cos \theta = \sqrt{2} \cos \theta\}$ and

Q =
$$\{\theta : \sin \theta + \cos \theta = \sqrt{2} \sin \theta\}$$
 be two sets. Then
(A) P \subset Q and Q \rightarrow P $\neq \emptyset$ (B) Q $\not\subset$ P [JEE 2011]

(C)
$$P \not\subset Q$$
 (D) $P = Q$