THE MATRIX OF DIFFERENTIATION

Differentiation is a linear operation:

$$(f(x) + g(x))' = f'(x) + g'(x)$$
 and $(cf(x))' = cf'(x)$.

Does it have a matrix?

In brief, the answer is yes. We need, however, to agree on the domain of the operation and decide on how to interpret functions as vectors. Consider an illustration.

Let \mathcal{P}_2 be the collection of all polynomials of degree at most 2, with real coefficients. Every polynomial $p(x) = a + bx + cx^2$ is completely determined by the vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ of its coefficients. The constant polynomial 1 corresponds to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, x to $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and x^2 to $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Every polynomial in \mathcal{P}_2 is a linear combination of 1, x, and x^2 , just as every vector in \mathbb{R}^3 is a linear combination of the orts $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. In this sense, \mathcal{P}_2 is very much like \mathbb{R}^3 : addition and scaling work in the same way.

View \mathcal{P}_2 as the domain of the derivative operation. Differentiation maps 1 to 0, x to 1, and x^2 to 2x. Using the above vector interpretation, we may write this correspondence as

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}.$$

Thus the derivative operation on \mathcal{P}_2 is represented by the matrix $D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$.

The action $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} b \\ 2c \\ 0 \end{bmatrix}$ does agree with the formula $(a + bx + cx^2)' = b + 2cx$.

D is clearly not invertible: it lacks a pivot. It carries out a linear transformation of \mathbb{R}^3 which is neither one-to-one nor onto. Indeed, every vector of the form $\begin{bmatrix} * \\ 0 \\ 0 \end{bmatrix}$ is mapped to $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, and no vector with nonzero third component is in the range of D.

The range of D consists of vectors with zero third component. That's right, the derivative of a polynomial of degree at most 2 is of degree at most 1. Note that $D^2 = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ represents the second derivative on \mathcal{P}_2 , and, of course, D^3 is the zero transformation.