طراحی و پیادهسازی سیستم تشخیص چهره در تصاویر با رزولوشن کم

استاد راهنما:

دكتر محمد رحمتي

ارائه دهنده:

محمد حسین دانش

فروردین ۱۳۹۶

سير مطالب

- مقدمه 🕨
- معرفی ابزار
- پیادهسازی 🕨
 - نتايج 🕨
 - معبندی 🕨
- کارهای آینده
 - مراجع 🕨

- پردازش تصویر
- تشخیص چهره
- فراتفکیک پذیری

- پردازش تصویر 🕨
- نشخیص چهره
- فراتفکیک پذیری

- پردازش تصویر
- نشخیص چهره
- فراتفکیک پذیری

- پردازش تصویر 🕨
- نشخیص چهره
- فراتفکیک پذیری

معرفی ابزار

ربان پایتون 🕨

- پیدایش در سال ۱۹۹۰
- متن باز اسکرییتی
- مناسب جهت پردازشهای یادگیری ماشین

کتابخانه OpenCV

- پشتیبانی قوی
- کتابخانه مخصوص پردازش تصویر و بینایی ماشین

پیادهسازی

- مراحل پیادهسازی
- ا آموزش سیستم
- فراتفکیک پذیری
 - نشخیص چهره 🕨

پیادهسازی – آموزش سیستم

- (Caltech Frontal Face Dataset)دیتاست مورد نظر
 - ا تصاویر متعدد از افراد
 - متفاوت در روشنایی/پسزمینه/حالت چهره
 - حداسازی داده آموزش و آزمایش

ا آموزش

- انتخاب الگوريتم استخراج ويژگى
- یادگیری ویژگیهای چهره اشخاص

پیادهسازی – فرانفکیک پذیری

- (Classical) کلاسیک
- با استفاده از روابط خطی

$$L_j(p) = (H * B_j)(q) = \Sigma_{q_i \in Support(B_j)} H(q_i) B_j(q_i - q)$$

پیادهسازی – فرانفکیک پذیری

- (Example–Based) برپایهی نمونه
 - حل مشكل روش كلاسيك
 - با یادگیری تناظر بین نواحی مختلف
- ▶ دیتاستی از تصاویر با وضوح مختلف
 - → بهبود تصویر با وضوح پایین

$$\mathcal{P}_0(p) \stackrel{findNN}{\longrightarrow} \mathcal{P}_{-l}(\tilde{p}) \stackrel{parent}{\longrightarrow} \mathcal{Q}_0(s_l \cdot \tilde{p}) \stackrel{copy}{\longrightarrow} \mathcal{Q}_l(s_l \cdot p)$$

پیادهسازی – فرانفکیک پذیری

- ترکیب روشها در یک چارچوب
 - ا بدون نیاز به دیتاست
- استفاده از تکرار نواحی متشابه در یک تصویر

ییادهسازی – فرانفکیک پذیری

نرکیب روشها در یک چارچوب

- برپایهی نمونه
 - کلاسیک
- یافتن ناحیه با وضوح بالای مورد نظر

پیادهسازی – نشخیص چهره

- 🕨 شناسایی چهره
- استخراج ویژگیها
 - نشخیص چهره

پیادهسازی – تشخیص چهره

🔸 شناسایی چهره

- با استفاده از پسزمینه
 - با استفاده از حرکت
 - با استفاده از رنگ
 - استخراج ویژگیها
 - نشخیص چهره 🕨

پیادهسازی – نشخیص چهره

- 🕨 شناسایی چهره
- استخراج ویژگیها
- متد Eigenface 🍑
- متد Fisherface
 - ا متد Ibph
 - نشخیص چهره

پیادهسازی – تشخیص چهره

- 🕨 شناسایی چهره
- استخراج ویژگیها
 - نشخیص چهره
 - SVM >
- 🕨 شبکههای عصبی
 - محاسبه فاصله

- بررسی میزان دقت در تشخیص چهره
 - بررسی زمان اجرا

مقایسه الگوریتمها و متدهای مختلف

Cascade	HAAR Cascade			LBP Cascade		
Feature Extraction Algorithm	lbphFace Recognizer	fisherFace Recognizer	eigenFace Recognizer	lbphFace Recognizer	fisherFace Recognizer	eigenFace Recognizer
Preprocessed Face Images	92.86%	82.14%	85.17%	89.28%	67.86%	67.86%
Down-Sampled Face Images	17.86%	67.86%	42.86%	28.57%	62.28%	64.28%
Super-Resolution Face Images	42.86%	78.57%	78.57%	32.14%	75%	67.86%

نتایج

نتايج

بررسی زمان اجرا

جمعبندی

- پردازش تصویر
- ابزارهای استفاده شده
 - پیادهسازی 🕨
 - ا آموزش
 - فراتفکیک پذیری
 - نشخیص چهره 🕨
 - نتایج پیادهسازی

كارهاىآينده

- بهبود الگوریتم فراتفکیک پذیری جهت کاهش بار پردازشی و زمان
 - ابداع الگوریتم فراتفکیک پذیری مخصوص تشخیص چهره
 - استفاده از الگوریتم تشخیص چهره برای زوایای مختلف

- ▶ [1] W. Zhao, R. Chellappa, P.J. Phillips and A. Rosenfeld, "Face Recognition: A Literature Survey" in ACM Computing Surveys, Vol. 53, No. 4, 3005, pp. 533— .434
- ▶ [2] S. Biswas, K. W. Bowyer, and P. J. Flynn, "Multidimensional scaling for matching low—resolution face images" in IEEE Transactions on Pattern Analysis and Machine Intelligence, 54(10):3013–3050, 3013.
- > [3] "10 great uses of image and face recognition", by Martin Bryant, Available: https://thenextweb.com/apps/3011104113110_great_uses_of_image_and_face_recognition. [Accessed: 04_Apr_3012]
- ▶ [4] R. Brunelli, T. Poggio, "Face Recognition: Features versus Templates", in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, pp. 1043—.1033
- ▶ [5] "Better Face—Recognition Software", by Mark Williams Pontin, Available: https://www.technologyreview.com/s/402324/better—face—recognition—software. [Accessed: 02—Apr—3012]
- ▶ [6] A. M. Bronstein, M. M. Bronstein, R. Kimmel, "Three—Dimensional Face Recognition" in Int J Comput Vision (3003), 44: 3. doi:1001002/s11345—003—1043—y
- ▶ [7] L. J. Harris, "Resolving power and decision making", J. opt. soc. Am. 34, 404—.411
- ▶ [8] D. Glasner, S. Bagon, M. Irani, "Super—Resolution from a Single Image" in Proc. of ICCV. (3003)

با تشكر از توجهتان