物理实验报告

学号: 114514 姓名: SUSTech 日期: 2025/03/01 时间: 周二下午

- 1 实验名称:示波器原理及其应用
- 2 实验目的
 - 1. 了解示波器的基本结构和原理
 - 2. 学习使用示波器观察波形和测量信号周期及时间参数等。

3 实验原理

示波器主要由示波管和相关的电子线路构成,其基本结构如图所示。

Figure 1: 示波管示意图

3.1 偏转电场控制电子束在视屏上的轨迹

偏转电压 U 与偏转位移 Y (或 X)成正比关系。如果只在竖直偏转板(Y 轴)上加一正弦电压,则电子只在竖直方向随电压变化而往复运动。要能够显示波形,必须在水平偏转板(X 轴)上加一扫描电压。

Figure 2: 示波器显示波形原理图

3.2 同步扫描

若没有"扫描",则显示不出信号随时间的变化;若没有"整步",则得不到稳定的信号图象。示波器常有三种整步形式:

1. "内整步": 将待测信号一部分加到扫描发生器,它使扫描频率 f_x 追随外信号 f_y 的变化而变化;

- 2. "外整步": 从外部电路取出信号至扫描发生器追踪;
- 3. "电源整步": 从电源变压器取得整步信号。一般观察时采用内整步(又称触发)。

3.3 李萨如图形

实质:沿 Y 轴方向的简谐运动与沿 X 轴方向的简谐振动合成的一种合运动两信号频率相同,振幅(相位)不同时,会产生图 2.3 所示的(类)椭圆曲线;两信号相位差一定,频率比为有理数时,会产生稳定闭合曲线。该曲线可用于测量两信号的频率比: $\frac{f_u}{f_y} = \frac{n_u}{n_y}$ 其中 n_x, n_y 分别为图形在水平方向和竖直方向上的叶数(即外切线的切点数)。

3.4 测正弦波的峰一峰值 Vpp、周期 T

若信号正负峰间为 a 格、周期宽度为 b 格,扫描参数为 v(V/div) 和 t (s/div),则 $V_{pp}=av,T=bt$ 。

4 实验仪器

双踪示波器,函数信号发生器,接线板,导线若干

5 实验内容

- 5.1 用示波器测量信号的周期与幅度
 - 1. 测量示波器自带校准信号的周期与幅度,并与理论值比较 0.1ms/div 更好;在能看到完整波形的前提下,时基越小,长度越长,读数误差越小,数据越准确。
 - 2. 信号发生器产生 $f=2000\,\mathrm{Hz},\,V_{pp}=0.5\,\mathrm{V},\,1\,\mathrm{V},\,1.5\,\mathrm{V},\,2\,\mathrm{V},\,2.5\,\mathrm{V},\,3\,\mathrm{V},\,3.5\,\mathrm{V}$ 的正弦波,分别接示波器 Y 输入口,选择示波器合适的灵敏度,测量信号幅度,并作测得的幅度 $y(V_{pp})$ ——发生幅度 $x(V_{pp})$ 曲线。
 - 3. 信号发生器产生 $V_{pp} = 5$ V, f = 0.2, 0.5, 1.2, 5, 10, 20 kHz 的正弦波,分别接示波器 Y 输入口,选择示波器合适的时基,测量信号周期,换算为频率,并作测得频率 y(kHz) ——发生频率 x(kHz) 曲线。

5.2 观察李萨如图形并测频率

信号发生器两通道分别产生正弦波接示波器 X、Y,取 $f_x=1200\,\mathrm{Hz}$ 。调节 $f_y,\,\phi_y$ 获得李萨如图形,记录相应的 $f_y,\,\phi_y$ 与图形,验证上述关系式。

6 数据记录与处理

根据实验结果记录数据,并使用 excel 整合处理

測量信号周期和幅度							
理论周期ms	1						
理论频率Hz	1000						
时基ms/div	0.1	0.2	0.5				
格数div	5.2*2	5.3*2	2.2*2				
測量周期ms	1.04	1.06	1.1				
測量频率Hz	961.54	943.34	909.1				
输入幅度Vpp	0.5	1	1.5	2	2.5	3	3.5
一格量度V/div	0.1	0.2	0.2	0.5	0.5	0.5	0.5
占格div	5.2	5.2	7.8	4.2	5.2	6.2	7.2
測量幅度V	0.52	1.04	1.56	2.1	2.6	3.1	3.6
输入频率Hz	200	500	1000	2000	5000	10000	20000
时基ms/div	1	0.5	0.2	0.1	0.05	0.02	0.0
占格div	5	4	5.05	5	4.1	5	
測量周期ms	5	2	1.01	0.5	0.205	0.1	0.0
測量频率Hz	200	500	990.1	2000	4878	10000	20000

Figure 3: 数据记录

6.1 用示波器测量信号的周期与幅度

根据以上数据,绘制测得幅度-发生幅度曲线及测得频率-发生频率曲线,如下图:

Figure 4: 测得幅度与发生幅度、测得频率与发生频率曲线

6.2 观察李萨如图形并测频率

同频率不同相位的李萨如图形 $f_x = f_y = 1200 \, \mathrm{Hz}$

Figure 5: 逐步变化的相位差图(以 $\pi/4$ 间隔)

不同频率同相位的李萨如图形

Figure 6: 不同频率同相位的李萨如图形(分数已化简)

7 误差分析

- 1. 仪器有固有误差,如各信号处理,放大器有精度限制。可换用精度更高的示波器。
- 2. 处理信号时可能有噪声,产生随机误差。
- 3. 波形有一定宽度,箱光线与腔线间有视差,有读数误差。可调节扫描描参改成大波形, 提升读数准确度。

8 思考题

1V 峰峰值的正弦波,它的有效值是多少? 对于正弦波,1V 峰峰值表示波形正、负峰间的总电压为1V,故其峰值为

$$V_p = \frac{1 \text{ V}}{2} = 0.5 \text{ V},$$

从而有效值为

$$V_{\text{RMS}} = \frac{V_p}{\sqrt{2}} = \frac{0.5}{\sqrt{2}} \approx 0.3536 \,\text{V}.$$

(注:若题目中给定 1V 为峰值,则有效值为 $1/\sqrt{2}\approx 0.7071\,\mathrm{V.}$)

示波器稳定显示周期信号的条件? 要使示波器稳定显示周期信号,必须满足以下条件:

- 1. 正确的触发设置: 触发电平选在信号幅值范围内,并选择合适的触发沿(上升或下降),确保每次触发采样到相同波形部分;
- 2. 合理的时基设置:扫描时基应与信号周期匹配,保证屏幕上能完整显示一个或多个周期的波形;
- 3. 信号的稳定性:输入信号必须为稳定的周期信号,即频率和幅值基本保持恒定。

9 实验结论

本实验利用示波器测量了内置校准信号,信号发生器输出的方波、正弦波的周期、频率及幅度,绘制了校准曲线,验证了李萨如图形。