TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	U-Tad
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

Durante un examen de Análisis Matemático I, Alicia utiliza su calculadora para calcular el límite $\lim_{x\to 0} \left((x-1)^{1/3}-1\right)^3$ y obtiene como resultado -8, mientras que Bernardo utiliza otro modelo de calculadora y obtiene como resultado 1. Utilizando números complejos, explica de forma razonada por qué ambas respuestas pueden ser consideradas correctas. ¿Podría ocurrir que una tercera calculadora proporcionara un resultado distinto a 1 y -8?

Solución:

Al sustituir en el límite, tenemos que $\lim_{x\to 0} \left((x-1)^{1/3}-1\right)^3=\left((-1)^{1/3}-1\right)^3$. Existe más de una respuesta porque $(-1)^{1/3}$ tiene tres valores en el campo de los números complejos.

$$(-1)^{1/3} = \sqrt[3]{-1} = \sqrt[3]{e^{i\pi}} = \sqrt[3]{1}e^{i\left(\frac{\pi+2k\pi}{3}\right)} = \begin{cases} 1 \cdot e^{i\left(\frac{\pi}{3}\right)} = \frac{1+i\sqrt{3}}{2} \\ 1 \cdot e^{i\left(\frac{\pi+2\pi}{3}\right)} = e^{i\pi} = -1 \\ 1 \cdot e^{i\left(\frac{\pi+4\pi}{3}\right)} = e^{i\left(\frac{5\pi}{3}\right)} = \frac{1-i\sqrt{3}}{2} \end{cases}$$

Si $(-1)^{1/3} = \frac{1 + i\sqrt{3}}{2}$, ocurre lo siguiente:

$$\lim_{x \to 0} \left((x-1)^{1/3} - 1 \right)^3 = \left(\frac{1 + i\sqrt{3}}{2} - 1 \right)^3 = \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^3 = \left(e^{i\frac{2\pi}{3}} \right)^3 = e^{i2\pi} = 1$$

Si $(-1)^{1/3} = -1$, ocurre lo siguiente:

$$\lim_{x \to 0} ((x-1)^{1/3} - 1)^3 = (-1 - 1)^3 = (-2)^3 = -8$$

Finalmente, si $(-1)^{1/3} = \frac{1 - i\sqrt{3}}{2}$, ocurre lo siguiente:

$$\lim_{x \to 0} \left((x-1)^{1/3} - 1 \right)^3 = \left(\frac{1 - i\sqrt{3}}{2} - 1 \right)^3 = \left(-\frac{1}{2} - \frac{i\sqrt{3}}{2} \right)^3 = \left(e^{-i\frac{2\pi}{3}} \right)^3 = e^{-i2\pi} = 1$$

Por lo tanto, los únicos valores posibles que podría devolver la calculadora son 1 y -8.

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	U-Tad
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

Completa los siguientes apartados sobre integración paramétrica:

- a) Calcula la integral $I_1 = \int_0^\infty \frac{dt}{x^2 + t^2}$ cuando x > 0.
- b) A partir del resultado anterior, determina $I_2 = \int_0^\infty \frac{dt}{(x^2 + t^2)^2}$ e $I_3 = \int_0^\infty \frac{dt}{(x^2 + t^2)^3}$.

Solución:

a)
$$\int_0^\infty \frac{dt}{x^2 + t^2} = \frac{1}{x^2} \int_0^\infty \frac{dt}{1 + (t/x)^2} = \frac{1}{x} \int_0^\infty \frac{(1/x)dt}{1 + (t/x)^2} = \frac{1}{x} \left[\arctan\left(\frac{t}{x}\right) \right]_0^\infty = \frac{\pi}{2x}$$

b) Por el resultado del apartado anterior, sabemos que $\int_0^\infty \left(x^2+t^2\right)^{-1}dt=\frac{\pi}{2}x^{-1}$

Derivando la integral paramétrica respecto de x obtenemos lo siguiente:

$$\int_0^\infty -2x \left(x^2 + t^2\right)^{-2} dt = -\frac{\pi}{2} x^{-2} \implies \int_0^\infty \left(x^2 + t^2\right)^{-2} dt = \frac{\pi}{4} x^{-3}$$

Derivando una vez más respecto de x, llegamos al siguiente resultado:

$$\int_0^\infty -2(2x) \left(x^2+t^2\right)^{-3} dt = \frac{-3\pi}{4} x^{-4} \implies \int_0^\infty \left(x^2+t^2\right)^{-3} dt = \frac{3\pi}{16} x^{-5}$$

Luego las integrales solicitadas son:

$$\int_0^\infty \frac{dt}{(x^2 + t^2)^2} = \frac{\pi}{4x^3} \qquad \int_0^\infty \frac{dt}{(x^2 + t^2)^3} = \frac{3\pi}{16x^5}$$

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	U-Tad
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

Dada la sucesión de funciones $\{f_n\}$, completa los siguientes apartados:

$$f_n(x) = \begin{cases} \frac{nx}{1 + n^2 x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- a) Determina la función límite puntual en todo \mathbb{R} .
- b) Identifica un intervalo en el que la sucesión funcional sea uniformemente convergente, y otro intervalo en el que la convergencia no sea uniforme.

Solución:

a) Calculamos la función límite puntual cuando $x \neq 0$:

$$f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{nx}{1 + n^2 x^2} = \left\{ \frac{\infty}{\infty} \right\} = 0$$

Por otra parte, cuando x = 0 obtenemos $f(0) = \lim_{n \to +\infty} f_n(0) = \lim_{n \to +\infty} 0 = 0$.

Por lo tanto, la función límite puntual es f(x) = 0 para todo $x \in \mathbb{R}$.

b) Para estudiar la convergencia uniforme vamos a calcular el siguiente límite:

$$\lim_{n \to \infty} \left(\sup \left\{ |f_n(x) - f(x)| : x \in [a, b] \right\} \right) = \lim_{n \to \infty} \left(\sup \left\{ \left| \frac{nx}{1 + n^2 x^2} \right| : x \in [a, b] \right\} \right)$$

Para identificar el valor supremo estudiaremos dónde se encuentran los máximos de $f_n(x)$:

$$f_n(x) = \frac{nx}{1 + n^2 x^2} \implies f'_n(x) = \frac{n(1 + n^2 x^2) - 2n^2 x(nx)}{(1 + n^2 x^2)^2} = \frac{n - n^3 x^2}{(1 + n^2 x^2)^2}$$

Igualamos a cero la derivada para obtener los candidatos a máximos y mínimos:

$$f'_n(x) = 0 \implies \frac{n - n^3 x^2}{(1 + n^2 x^2)^2} = 0 \implies n(1 - n^2 x^2) = 0 \implies x = \pm \frac{1}{n}$$

Comprobamos si se trata de un máximo teniendo en cuenta que $f''_n(x) = \frac{2x(n^5x^2 - 3n^3)}{(1+n^2x^2)^3}$.

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	U-Tad
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

$$x = \frac{1}{n}$$
: $f_n''\left(\frac{1}{n}\right) = -\frac{1}{4n^2} < 0 \implies \text{máximo en } x = \frac{1}{n}$

$$x = -\frac{1}{n}$$
: $f_n''\left(\frac{1}{n}\right) = \frac{1}{4n^2} > 0 \implies \text{mínimo en } x = -\frac{1}{n}$

Puesto que $f_n(x)$ alcanza un máximo en x = 1/n, que claramente es un punto del intervalo [0,1], vamos a estudiar por ejemplo la convergencia en ese intervalo.

$$\lim_{n \to \infty} \left(\sup \left\{ \left| \frac{nx}{1 + n^2 x^2} \right| : x \in [0, 1] \right\} \right) = \lim_{n \to \infty} f_n \left(\frac{1}{n} \right) = \frac{1}{2} \neq 0$$

Luego la convergencia \underline{no} es uniforme en [0, 1].

Por otra parte, como $f'_n(x) = \frac{n - n^3 x^2}{(1 + n^2 x^2)^2}$ es una función continua y los únicos puntos en los que se anula son x = 1/n y x = -1/n, comprobando que $f'_n(x) < 0$ para todo x > 1/n podemos justificar que $f_n(x)$ es decreciente en el intervalo $\left(\frac{1}{n}, \infty\right)$.

Si tomamos un intervalo $[a, \infty)$ con a > 1, al ser $f_n(x)$ una función decreciente en ese intervalo, el máximo de $|f_n(x) - f(x)|$ se dará en x = a, con lo que se tiene lo siguiente:

$$\lim_{n \to \infty} \left(\sup \left\{ \left| \frac{nx}{1 + n^2 x^2} \right| : x \in [a, \infty) \right\} \right) = \lim_{n \to \infty} f_n(a) = \lim_{n \to \infty} \frac{an}{1 + a^2 n^2} = 0$$

Por ello, podemos afirmar que la convergencia \underline{si} es uniforme en $[a, \infty)$ para a > 1.

Nota: De forma alternativa, se podría demostrar que la convergencia es uniforme en cualquier intervalo $[a, \infty)$ con a > 1 teniendo en cuenta lo siguiente:

$$|f_n(x) - f(x)| = \left| \frac{nx}{1 + n^2 x^2} \right| < \left| \frac{nx}{n^2 x^2} \right| = \left| \frac{1}{nx} \right| < \frac{1}{n} = \alpha_n$$

Y como $\{\alpha_n\}$ es una sucesión de números reales positivos que converge a 0, entonces queda demostrado que la sucesión $\{f_n\}$ converge uniformemente en cualquier intervalo $[a, \infty)$ cuando se cumple que a > 1.

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	ם סידםם
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

Dadas las siguientes secuencias reales, identifica una secuencia cuya transformada DFT sea real y otra secuencia cuya transformada DFT sea imaginaria pura y proporciona el cálculo completo de ambas transformadas.

a)
$$x[n] = [1, 1, 1, 0, 0, 0, 1, 1].$$

b)
$$x[n] = [1, 1, 0, 0, 0, 0, -1, -1].$$

c)
$$x[n] = [0, 1, 1, 0, 0, 0, -1, -1].$$

d)
$$x[n] = [0, 1, 1, 0, 0, 0, 1, 1].$$

Solución:

a)
$$x[n] = [1, 1, 1, 0, 0, 0, 1, 1]$$

$$X[0] = \sum_{n=0}^{7} x[n] e^{-\frac{2\pi}{8}0n} = \sum_{n=0}^{7} x[n] = 1 + 1 + 1 + 0 + 0 + 0 + 1 + 1 = 5$$

$$X[1] = \sum_{n=0}^{7} x[n] e^{-j\frac{\pi}{4}1n} = x[0] + x[1] e^{-j\frac{\pi}{4}} + x[2] e^{-j\frac{\pi}{2}} + x[6] e^{-j\frac{3\pi}{2}} + x[7] e^{-\frac{7\pi}{4}} = 1 + 1 \left(\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) + 1(-j) + 1(j) + 1 \left(\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) = 1 + \sqrt{2}$$

$$X[2] = \sum_{n=0}^{7} x[n] e^{-j\frac{\pi}{4}2n} = \sum_{n=0}^{7} x[n] e^{-j\frac{\pi}{2}n} = x[0] + x[1] e^{-j\frac{\pi}{2}} + x[2] e^{-j\pi} + x[6] e^{-j3\pi} + x[7] e^{-j\frac{7\pi}{2}} = 1 + 1(-j) + 1(-1) + 1(-1) + 1(j) = -1$$

$$X[3] = \sum_{n=-1}^{7} x[n] e^{-j\frac{\pi}{4}3n} = x[0] + x[1] e^{-j\frac{3\pi}{4}} + x[2] e^{-j\frac{3\pi}{2}} + x[6] e^{-j\frac{9\pi}{2}} + x[7] e^{-j\frac{9\pi}{2}} + x[7] e^{-j\frac{\pi}{4}4n} = x[7] e^{-j\frac{\pi}{4}4n} = x[7] e^{-j\pi n} = x[7] + x[7] e^{-j\pi n} = x[7] e^{-j\pi n} + x[7] e^{-j\pi n} = x[7$$

Puesto que x[n] es una secuencia real se cumple que $X[k] = X^*[-k] = X^*[N-k]$, por lo que podemos obtener directamente el resto de elementos:

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	U-Tad
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

$$X[5] = X^*[-5] = X^*[8-5] = X^*[3] = 1 - \sqrt{2}$$

$$X[6] = X^*[-6] = X^*[8-6] = X^*[2] = -1$$

$$X[7] = X^*[-7] = X^*[8-7] = X^*[1] = 1 + \sqrt{2}$$

$$x[n] = [1, 1, 1, 0, 0, 0, 1, 1] \stackrel{DFT}{\longleftrightarrow} X[K] = [5, 1 + \sqrt{2}, -1, 1 - \sqrt{2}, 1, 1 - \sqrt{2}, -1, 1 + \sqrt{2}]$$

Luego claramente la transformada X[k] es una secuencia real.

b)
$$x[n] = [1, 1, 0, 0, 0, 0, -1, -1]$$

$$X[0] = \sum_{n=0}^{7} x[n] e^{-\frac{2\pi}{8}0n} = \sum_{n=0}^{7} x[n] = 1 + 1 + 0 + 0 + 0 + 0 - 1 - 1 = 0$$

$$X[1] = \sum_{n=0}^{7} x[n] e^{-j\frac{2\pi}{8}1n} = x[0] + x[1] e^{-j\frac{\pi}{4}} + x[6] e^{-j\frac{3\pi}{2}} + x[7] e^{-j\frac{7\pi}{4}} = 0$$

$$= 1 + 1\left(\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) - 1(j) - 1\left(\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) = 1 - (1 + \sqrt{2})j$$

$$X[2] = \sum_{n=0}^{7} x[n] e^{-j\frac{2\pi}{8}2n} = \sum_{n=0}^{7} x[n] e^{-j\frac{\pi}{2}n} = x[0] + x[1] e^{-j\frac{\pi}{2}} + x[6] e^{-j3\pi} + 0$$

$$x[7] e^{-j\frac{7\pi}{2}} = 1 + 1(-j) - 1(-1) - 1(j) = 2 - 2j$$

$$X[3] = \sum_{n=0}^{7} x[n] e^{-j\frac{2\pi}{8}3n} = x[0] + x[1] e^{-j\frac{3\pi}{4}} + x[6] e^{-j\frac{9\pi}{2}} + x[7] e^{-j\frac{21\pi}{4}} = 0$$

$$= 1 + 1\left(-\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) - 1(-j) - 1\left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) = 1 + (1 - \sqrt{2})j$$

$$X[4] = \sum_{n=0}^{7} x[n] e^{-j\frac{2\pi}{8}4n} = \sum_{n=0}^{7} x[n] e^{-j\pi n} = x[0] + x[1] e^{-j\pi} + x[6] e^{-j6\pi} + x[7] e^{-j7\pi} = 1 + 1(-1) + 11 + 1(-1) = 0$$

$$X[5] = X^*[-5] = X^*[8 - 5] = X^*[3] = 1 - (1 - \sqrt{2})j$$

$$X[6] = X^*[-6] = X^*[8 - 6] = X^*[2] = 2 + 2j$$

$$X[7] = X^*[-7] = X^*[8 - 7] = X^*[1] = 1 + (1 + \sqrt{2})j$$

$$X[k] = [0, 1 - (1 + \sqrt{2})j, 2 - 2j, 1 + (1 - \sqrt{2})j, 0, 1 - (1 - \sqrt{2})j, 2 + 2j, 1 + (1 + \sqrt{2})j$$

Análisis Matemático I (examen extraordinario)

La secuencia trasnformada no es ni real ni imaginaria pura.

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	U-Tad
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

c)
$$x[n] = [0, 1, 1, 0, 0, 0, -1, -1]$$

$$X[0] = \sum_{n=0}^{7} x[n] e^{-j\frac{2\pi}{8}0n} = \sum_{n=0}^{7} x[n] = 0 + 1 + 1 + 0 + 0 + 0 - 1 - 1 = 0$$

$$X[1] = \sum_{n=0}^{7} x[n] e^{-j\frac{\pi}{4}1n} = x[1] e^{-j\frac{\pi}{4}} + x[2] e^{-j\frac{\pi}{2}} + x[6] e^{-\frac{3\pi}{2}} + x[7] e^{-j\frac{7\pi}{4}} = 1$$

$$= 1\left(\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) + 1(-j) - 1(j) - 1\left(\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) = (-2 - \sqrt{2})j$$

$$X[2] = \sum_{n=0}^{7} x[n] e^{-j\frac{\pi}{4}2n} = \sum_{n\neq 0}^{7} x[n] e^{-j\frac{\pi}{2}n} = x[1] e^{-j\frac{\pi}{2}} + x[2] e^{-j\pi}$$

$$+ x[6] e^{-j3\pi} + x[7] e^{-j\frac{7\pi}{2}} = 1(-j) + 1(-1) - 1(-1) - 1(j) = -2j$$

$$X[3] = \sum_{n=0}^{7} x[n] e^{-\frac{2\pi}{8}3n} = x[1] e^{-j\frac{3\pi}{4}} + x[2] e^{-j\frac{3\pi}{2}} + x[6] e^{-j\frac{9\pi}{2}} + x[7] e^{-j\frac{21\pi}{4}} = 1$$

$$= 1\left(-\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) + 1(j) - 1(-j) - 1\left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) = (2 - \sqrt{2})j$$

$$X[4] = \sum_{n=0}^{7} x[n] e^{-j\frac{2\pi}{8}4n} = \sum_{n=0}^{7} x[n] e^{-j\pi} = x[1] e^{-j\pi} + x[2] e^{-j2\pi} + x[6] e^{-j6\pi}$$

$$+ x[7] e^{-j7\pi} = 1(-1) + 1(1) - 1(1) - 1(-1) = 0$$

$$X[5] = X^*[8 - 5] = X^*[3] = -(2 - \sqrt{2})j = (-2 + \sqrt{2})j$$

$$X[6] = X^*[8 - 6] = X^*[2] = 2j$$

$$X[7] = X^*[8 - 7] = X^*[1] = -(-2 - \sqrt{2})j = (2 + \sqrt{2})j$$

$$x[n] = [0, 1, 1, 0, 0, 0, -1, -1] \stackrel{DFT}{\longleftrightarrow}$$

$$X[k] = [0, (-2 - \sqrt{2})j, -2j, (2 - \sqrt{2})j, 0, (-2 + \sqrt{2})j, 2j, (2 + \sqrt{2})j]$$

La secuencia DFT es imaginaria pura.

d)
$$x[n] = [0, 1, 1, 0, 0, 0, 1, 1]$$

$$X[0] = \sum_{n=0}^{7} x[n]e^{-j\frac{2\pi}{8}0n} = \sum_{n=0}^{7} x[n] = 0 + 1 + 1 + 0 + 0 + 0 + 1 + 1 = 4$$

$$X[1] = \sum_{n=0}^{7} x[n]e^{-j\frac{2\pi}{8}1n} = x[1]e^{-j\frac{\pi}{4}} + x[2]e^{-j\frac{\pi}{2}} + x[6]e^{-j\frac{3\pi}{2}} + x[7]e^{-j\frac{7\pi}{4}} =$$

$$= 1\left(\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) + 1(-j) + 1(j) + 1\left(\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) = \sqrt{2}$$

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	U-Tad
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

$$X[2] = \sum_{n=0}^{7} x[n]e^{-j\frac{2\pi}{8}2n} = \sum_{n=0}^{7} x[n]e^{-j\frac{\pi}{2}n} = x[1]e^{-j\frac{\pi}{2}} + x[2]e^{-j\pi} + x[6]e^{-j3\pi} + x[7]e^{-j\frac{7\pi}{2}} = 1(-j) + 1(-1) + 1(-1) + 1(j) = -2$$

$$X[3] = \sum_{n=0}^{7} x[n]e^{-j\frac{2\pi}{8}3n} = x[1]e^{-j\frac{3\pi}{4}} + x[2]e^{-j\frac{3\pi}{2}} + x[6]e^{-\frac{j9\pi}{2}} + x[7]e^{-j\frac{21\pi}{4}} = 1\left(-\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) + 1(j) + 1(-j) + 1\left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) = -\sqrt{2}$$

$$X[4] = \sum_{n=0}^{7} x[n]e^{-j\frac{2\pi}{8}4n} = \sum_{n=0}^{7} x[n]e^{-j\pi n} = x[1]e^{-j\pi} + x[2]e^{-j2\pi} + x[6]e^{-j6\pi} + x[7]e^{-j7\pi} = 1(-1) + 1(1) + 1(1) + 1(-1) = 0$$

$$X[5] = X^*[8 - 5] = X^*[3] = -\sqrt{2}$$

$$X[6] = X^*[8 - 6] = X^*[2] = -2$$

$$X[7] = X^*[8 - 7] = X^*[1] = \sqrt{2}$$

$$x[n] = [0, 1, 1, 0, 0, 0, 1, 1] \stackrel{DFT}{\longleftrightarrow} X[k] = [4, \sqrt{2}, -2, -\sqrt{2}, 0, -\sqrt{2}, -2, \sqrt{2}]$$

Como se puede apreciar, la secuencia transformada es real.

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	ס ידםם
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

Obtén la expresión general del desarrollo en serie de Fourier de la señal periódica x(t) mostrada en la imagen (es decir, la expresión general de los coeficientes c_k o de los coeficientes a_k y b_k). A continuación, proporciona los primeros 5 senos/cosenos del desarrollo.

Solución:

$$T_{0} = 2\pi \longrightarrow \omega_{0} = \frac{2\pi}{T_{0}} = 1$$

$$a_{0} = \frac{1}{T_{0}} \int_{\langle T_{0} \rangle} x(t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} t dt = 0$$

$$a_{k} = \frac{2}{T_{0}} \int_{\langle T_{0} \rangle} x(t)\cos(kw_{0}t) dt = \frac{2}{2\pi} \int_{-\pi}^{\pi} t\cos(kt) dt =$$

$$= \begin{cases} u = t & \to du = dt \\ dv = \cos(kt) dt & \to v = \frac{\sin(kt)}{k} \end{cases} = \frac{1}{\pi} \left(\left[\frac{t \sin(kt)}{k} \right]_{-\pi}^{\pi} - \frac{1}{k} \int_{-\pi}^{\pi} \sin(kt) dt \right) =$$

$$= \frac{1}{\pi} \left(\left[\frac{t \sin(kt)}{k} + \frac{1}{k^{2}} \cos(kt) \right]_{-\pi}^{\pi} \right) =$$

$$= \frac{\pi \sin(k\pi)}{\pi k} + \frac{\cos(k\pi)}{\pi k^{2}} - \frac{(-\pi) \sin(-k\pi)}{\pi k} - \frac{\cos(-k\pi)}{k^{2}\pi} =$$

$$= \frac{\sin(k\pi)}{k} + \frac{\cos(k\pi)}{\pi k^{2}} - \frac{\sin(k\pi)}{k} - \frac{\cos(k\pi)}{\pi k^{2}} = 0$$

Al mismo resultado se podría llegar argumentando que se trata de la integral de una función impar en un intervalo de integración simétrico respecto al origen.

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	27/06/2023	U-Tad
CURSO	2^{0}	HORA	15:00	CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	3 HORAS	
ALUMNO	SOLUCIÓN DEL EXAMEN			

$$b_{k} = \frac{2}{T_{0}} \int_{\langle T_{0} \rangle} x(t) \operatorname{sen}(kw_{0}t) dt = \frac{2}{2\pi} \int_{-\pi}^{\pi} t \operatorname{sen}(kt) dt =$$

$$= \begin{cases} u = t & \to du = dt \\ dv = \operatorname{sen}(kt) dt & \to v = \frac{-\cos(kt)}{k} \end{cases} = \frac{1}{\pi} \left(\left[\frac{-t \cos(kt)}{k} \right]_{-\pi}^{\pi} + \frac{1}{k} \int_{-\pi}^{\pi} \cos(kt) dt \right) =$$

$$= \frac{1}{\pi} \left(\left[\frac{-t \cos(kt)}{k} + \frac{\sin(kt)}{k^{2}} \right]_{-\pi}^{\pi} \right) =$$

$$= \frac{-\pi \cos(k\pi)}{\pi k} + \frac{\sin(k\pi)}{\pi k^{2}} - \frac{\pi \cos(-k\pi)}{\pi k} - \frac{\sin(-k\pi)}{\pi k^{2}} =$$

$$= \frac{-\cos(k\pi)}{k} + \frac{\sin(k\pi)}{\pi k^{2}} - \frac{\cos(k\pi)}{k} + \frac{\sin(k\pi)}{\pi k^{2}} = -\frac{2\cos(k\pi)}{k} + \frac{2\sin(\pi k)}{\pi k^{2}} =$$

$$= -\frac{2\cos(k\pi)}{k} = \begin{cases} -\frac{2}{k}, & \text{si } \cos(k\pi) = 1 \implies k \text{ es par} \\ \frac{2}{k}, & \text{si } \cos(k\pi) = -1 \implies k \text{ es impar} \end{cases} = \frac{2(-1)^{k+1}}{k}$$

El desarrollo en serie de Fourier a partir de los coeficientes a_k y b_k quedaría tal como se muestra a continuación:

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_n \cos(kw_0 t) + \sum_{k=1}^{\infty} b_n \sin(kw_0 t) =$$

$$= \sum_{k=1}^{\infty} b_n \sin(kt) = \sum_{k=1}^{\infty} \frac{-2\cos(k\pi)}{k} \sin(kt) = 2\sum_{k=1}^{\infty} \frac{(-1)^{k+1}\sin(kt)}{k}$$

Los primeros 5 senos y cosenos del desarrollo son:

$$x(t) \approx \frac{2}{1}\sin(t) - \frac{2}{2}\sin(2t) + \frac{2}{3}\sin(3t) - \frac{2}{4}\sin(4t) + \frac{2}{5}\sin(5t) =$$

$$= 2\sin(t) - \sin(2t) + \frac{2}{3}\sin(3t) - \frac{1}{2}\sin(4t) + \frac{2}{5}\sin(5t)$$