第五讲 相似之共边与旋转

模块一

共边型

共边型:

角: $\angle DAC = \angle CAB$, $\angle ACD = \angle B$, $\angle ADC = \angle ACB$.

形: △ACD ∽△ABC

例题精讲

【例题1】

如图,在 $\triangle ABC$ 中,点D在边AC上,AE分别交BD、BC于F、G , $\angle 1=\angle 2$, $\frac{AF}{EF}=\frac{DF}{BF}$. 求证: $BF^2=FG\cdot EF$.

【分析】 $\therefore \frac{AF}{EF} = \frac{DF}{BF}$, $\therefore AD//BE$, $\therefore \angle E = \angle 1 = \angle 2$

 $\therefore \triangle FBG \circ \triangle FEB$ (共边型), $\therefore BF^2 = FG \cdot EF$

【例题2】

已知:如图,在 $\triangle ABC$ 中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F, $AE^2=EF\cdot EC$.

(1)求证: $\angle ADC = \angle DCE + \angle EAF$;

(2)求证: $AF \cdot AD = AB \cdot EF$.

【分析】 (1)证 $\triangle EAF \circ \triangle ECA$, $\angle ADC = \angle ACD = \angle DCE + \angle ACE = \angle DCE + \angle EAF$;

(2) 证
$$\triangle FAE \hookrightarrow \triangle ABC$$
 , 得 $\frac{AF}{AB} = \frac{EF}{AC} = \frac{EF}{AD}$

【例题3】

 $Rt\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, AE 垂直于 AB 边上的中线 CD ,交 BC 于点 E .

(1) 求证: $AC^2 = BC \cdot CE$;

(2) 若CD = 3, AE = 4, 求边AC、BC的长.

【分析】 (1) $\angle CAE = \angle DCB = \angle B$, $Rt \triangle ACB = Rt \triangle ECA$ 有公共角 $\angle ACE$,

$$\therefore \triangle ACB \hookrightarrow \triangle ECA , \quad ^{2}P \frac{AC}{EC} = \frac{CB}{CA} , \quad ^{2}P AC^{2} = CE \cdot CB$$

(2) $\pm (1) \triangle ACB \hookrightarrow \triangle ECA$, $\frac{AC}{EC} = \frac{AB}{EA}$, 4B = 2CD = 6, AE = 4

$$\therefore \frac{AC}{EC} = \frac{3}{2}$$
, 即 $EC = \frac{2}{3}AC$,由勾股定理 $AC^2 + EC^2 = AE^2$, $AC = \frac{12\sqrt{13}}{13}$

$$\therefore BC = \sqrt{AB^2 - AC^2} = \sqrt{6^2 - \left(\frac{12\sqrt{13}}{13}\right)^2} = \frac{18\sqrt{13}}{13}.$$

【例题4】

如图, $\triangle ABC$ 中, $\angle ACB=90^\circ$, $CD\perp AB$ 于点D,E是AC的中点,DE的延长线交BC的延长线于点F,EF=5, $\frac{AC}{BC}=\frac{1}{2}$;

(1) 求证: $\triangle BDF \hookrightarrow \triangle DCF$;

(2) 求 BC 的长.

【分析】

(1) 注: 原题为 $\tan B = \frac{1}{2}$

$$\therefore CD \perp AB$$
, $CE = AE$ $\therefore ED = EC$

$$\therefore \angle EDC = \angle ECD = \angle B \quad \therefore \triangle BDF \backsim \triangle DCF$$

(2) :
$$\triangle BDF \hookrightarrow \triangle DCF$$
, : $\frac{DF}{BF} = \frac{CF}{DF} = \frac{DC}{BD} = \frac{AC}{BC} = \frac{1}{2}$

设
$$DE = a$$
 ,则 $AC = 2DE = 2a$

:
$$CF = \frac{1}{2}DF = \frac{1}{2}(a+5)$$
, $BF = 2DF = 2(a+5)$

$$\therefore BC = BF - CF = \frac{3}{2}(a+5), \quad \mathcal{R} : \frac{AC}{BC} = \frac{1}{2} \quad \therefore BC = 2AC = 4a$$

$$\therefore 4a = \frac{3}{2}(a+5) \quad \therefore a=3 \quad \therefore BC = 4a = 12.$$

模块二

射影型

射影模型:

角: $\angle B = \angle ACD$, $\angle A = \angle BCD$, $\angle ACB = \angle ADC = 90^{\circ}$

边: $BC^2 = BD \cdot BA$, $AC^2 = AD \cdot BA$, $CD^2 = BD \cdot AD$.

形: $\triangle ACB \hookrightarrow \triangle CDB \hookrightarrow \triangle ADC$

注: 遇到直角三角形就想到有互余的角,可以找到两对以上相等的角.

例题精讲

【例题5】

已知,如图,在 $Rt \triangle BDC$ 中,点E在CD上, $DF \perp BC$, $DG \perp BE$,F、G分别为垂足.求证: $FG \cdot BC = CE \cdot BG$.

【分析】 可证明 $\triangle BGF \hookrightarrow \triangle BCE$. 从而可得 $\frac{BG}{BC} = \frac{FG}{CE}$,则 $FG \cdot BC = CE \cdot BG$.

【例题6】

 $Rt\triangle ABC$ 斜边 AB 上的高 CD=3, 延长 DC 到 P 令 CP=2, 过 B 作 $BF\perp AP$ 交 CD 于 E , 交 AP 于 F ,则 DE= _______.

【分析】 由
$$\angle P = \angle DBE$$
, $\triangle ADP \hookrightarrow \triangle EDB$, $\frac{DE}{BD} = \frac{AD}{PD} \Rightarrow DE = \frac{AD \cdot BD}{PD} = \frac{CD^2}{PD} = \frac{9}{5}$

【例题7】

如图, E 为斜边 AB 的三等分点靠近 B , $\angle AEC = 45^{\circ}$,则 $\frac{AC}{BC} =$ ______.

【分析】
$$\frac{AC}{BC} = \frac{\sqrt{17}-3}{2}$$
.

旋转型

旋转模型可看做是 A 字模型变化而来, 其中

角: $\angle B = \angle D$, $\angle DAB = \angle EAC$

形: $\triangle ADE \hookrightarrow \triangle ABC$

注: 当联结 BD 和 CE 时,可得 $\triangle ABD \hookrightarrow \triangle ACE$.

例题精讲

【例题8】

已知:如图,在 $\triangle ABC$ 中,点D在边BC上,且 $\angle BAC = \angle DAG$, $\angle CDG = \angle BAD$.

(1) 求证: $\frac{AD}{AB} = \frac{AG}{AC}$;

(2) 当 $GC \perp BC$ 时,求证: $\angle BAC = 90^{\circ}$.

【分析】

(1) : $\angle CDG = \angle BAD$, $\angle ADG + \angle GDC = \angle B + \angle BAD$, : $\angle B = \angle ADG$

 $\therefore \angle BAC = \angle DAG \;, \; \therefore \triangle ADG \hookrightarrow \triangle ABC \; \therefore \frac{AD}{AB} = \frac{AG}{AC}$

(2) $\therefore \frac{AD}{AB} = \frac{AG}{AC}$, $\angle BAD = \angle CAG$, $\therefore \triangle BAD \hookrightarrow \triangle CAG$ $\therefore \angle B = \angle ACG$

 \mathbb{R} : $\angle ACG + \angle ACB = 90^{\circ}$: $\angle ACB + \angle B = 90$: $\angle BAC = 90^{\circ}$

【例题9】

如图, 四边形 ABCD 和 BEFG 均为正方形, 求 AG: DF: CE = _____.

【分析】 联结 BD, BF. $: AB \perp BC$, $BG \perp BE \Rightarrow \angle ABG = \angle CBE$,

AB = BC, BG = BE, $\therefore \triangle ABG \cong \triangle CBE$ $\therefore AG = CE$

 $\therefore EF \perp BE$, EF = BE $\therefore \angle EBF = 45^{\circ}$, $BF = \sqrt{2}BE$

 $BC \perp CD$, BC = CD $\therefore \angle CBD = 45^{\circ}$, $BD = \sqrt{2}BC$

 $\therefore \angle FBD = \angle CBE$, $\frac{BD}{BC} = \frac{BF}{BE} = \sqrt{2}$ $\therefore \triangle FBD \hookrightarrow \triangle EBC$

 $\therefore \frac{DF}{EC} = \frac{BD}{BF} = \sqrt{2} \qquad \therefore AG: DF: CE = 1: \sqrt{2}: 1$

本讲巩固

【巩固1】

已知:如图,在 $Rt \triangle ABC$ 中,AB = AC, $\angle DAE = 45^{\circ}$.

求证: (1) $\triangle ABE \hookrightarrow \triangle DCA$; (2) $BC^2 = 2BE \cdot CD$.

【分析】 (1) 在 $Rt \triangle ABC$ 中, :: AB = AC, $:: \angle B = \angle C = 45^{\circ}$.

 \mathfrak{X} : $\angle BAE = \angle BAD + \angle DAE$, $\angle DAE = 45^{\circ}$, $\therefore \angle BAE = \angle BAD + 45^{\circ}$.

 $\exists ADC = \angle BAD + \angle B = \angle BAD + 45^{\circ}$ ∴ $\angle BAE = \angle ADC$.

 $\therefore \triangle ABE \Leftrightarrow \triangle DCA$

(2) 由 △ABE \hookrightarrow △DCA, 得 $\frac{BE}{AC} = \frac{AB}{CD}$, ∴ $BE \cdot CD = AB \cdot AC$

fig AB = AC, $BC^2 = AB^2 + AC^2$, $\therefore BC^2 = 2AB^2$.

 $\therefore BC^2 = 2BE \cdot CD.$

【巩固2】

 $\triangle ABC$ 中,点 E 在中线 AD 上, $\angle DEB = \angle ABC$.

求证: (1) $DB^2 = DA \cdot DE$; (2) $\angle DCE = \angle DAC$.

【分析】 (1) \therefore $\angle DEB = \angle ABC$, $\angle BDE = \angle ADB$, $\therefore \triangle BDE \hookrightarrow \triangle ADB$

$$\therefore \frac{BD}{AD} = \frac{DE}{DB} , \quad \text{Pr } BD^2 = AD \cdot DE$$

(2) : CD = BD, $\frac{BD}{AD} = \frac{DE}{DB}$: $\frac{CD}{AD} = \frac{DE}{DC}$, \mathcal{R} : $\angle CDE = \angle ADC$

 $\therefore \triangle CDE \hookrightarrow \triangle ADC$ $\therefore \angle DCE = \angle DAC$

【巩固3】

如图,在 $\triangle ABC$ 中, $\angle ACB = 120^{\circ}$, $AC = \sqrt{7}$, $BC = 2\sqrt{7}$,D 、E 是线段 AB 上两点且 $\triangle CDE$ 为等边三角形,(1) 求线段 AD 的长; (2) 求 $\triangle CDB$ 的面积.

【分析】 (1)易证
$$\triangle ADC \hookrightarrow \triangle CEB$$
, 所以 $\frac{AD}{CE} = \frac{CD}{BE} = \frac{AD}{BC} = \frac{1}{2}$

设AD = x,则CD = 2x,CE = 2x,DE = 2x,BE = 4x

由共边相似,可得 $\triangle ADC \hookrightarrow \triangle ACB$

故 $AC^2 = AD \cdot AB$, 代入可得 $7x^2 = 7$, 解得 x = 1

故 AD=1.

(2)作 $CF \perp AB$ 于 F 点. 则 $AF = \sqrt{3}$

$$S_{\triangle CBD} = \frac{1}{2}BD \cdot CF = \frac{1}{2} \times 6 \times \sqrt{3} = 3\sqrt{3}$$

【巩固4】

如图,已知在 $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,点 D 在边 BC 上, $CE \perp AB$, $CF \perp AD$, $E \setminus F$ 分别是垂足;

- (1) 求证: $AC^2 = AF \cdot AD$.
- (2) 联结 EF , 求证: $AE \cdot DB = AD \cdot EF$.

【分析】 (1) $: \triangle AFC \hookrightarrow \triangle ACD$, $: AC^2 = AF \cdot AD$

(2)
$$ACE \hookrightarrow \triangle ABC$$
, $AC^2 = AE \cdot AB$, $AF \cdot AD = AE \cdot AB$, $AF \cdot AD = AE \cdot AB$

$$\begin{tabular}{ll} \mathbb{X} $\angle EAF = \angle DAB \ , & $\therefore \triangle EAF \\ $\hookrightarrow \triangle DAB \ , \\ \end{tabular} \begin{tabular}{ll} $AE \cdot DB = AD \cdot EF \\ \end{tabular}$$

【巩固5】

已知:在等腰直角 $\triangle ABC$ 中,AC = BC,斜边 AB 的长为 4,过点 C 作射线 CP//AB, D 为射线 CP 上一点,E 在边 BC 上(不与 B 、 C 重合), $\angle DAE = 45^\circ$,AC 与 DE 交于点 O .

求证: $\triangle ADE \hookrightarrow \triangle ACB$.

【分析】
$$:: \angle ACD = \angle CAB = \angle B = 45^{\circ}, \ \angle CAD = \angle BAE = 45^{\circ} - \angle CAE$$

$$\therefore \triangle ADC \hookrightarrow \triangle AEB \; , \quad \therefore \frac{AD}{AE} = \frac{AC}{AB} \; , \quad \text{for } \frac{AD}{AC} = \frac{AE}{AB}$$

$$X : \angle DAE = \angle CAB = 45^{\circ}, : \triangle ADE \hookrightarrow \triangle ACB$$

试题拓展

【拓展1】

如图,点F、E分别在正方形ABCD的边AB、AD上,且AF=BF, $AE=\frac{1}{3}DE$, $FH\perp CE$ 于H.求

$$\text{iff.} \quad \frac{FC^2}{FH^2} = 1 + \frac{CH}{EH} .$$

【分析】 联结
$$EF$$
, 易得 $\Delta AFE \sim BCF$, $CF \perp EF$

可得
$$FC^2 = CH \cdot CE$$
, $FH^2 = CH \cdot EH$

$$\therefore \frac{FC^2}{FH^2} = \frac{CE}{EH} = \frac{EH + CH}{EH} = 1 + \frac{CH}{EH}$$