## Homework 1

Due: April 9, 2021

- 1. Using the Taylor series representation of the matrix exponential:
  - (a) Verify the identities

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\,\mathrm{e}^{tA} = A\,\mathrm{e}^{tA} = \mathrm{e}^{tA}\,A$$

for an  $n \times n$  matrix A.

(b) Verify that  $u(t) = e^{tA} \eta$  is indeed the solution of the IVP

$$\begin{cases} u'(t) = Au(t), \\ u(0) = \eta. \end{cases}$$

Solution.

(a) 
$$\frac{d}{dt}e^{tA} = \frac{d}{dt}\left(\sum_{j=0}^{\infty} \frac{(tA)^j}{j!}\right) = \sum_{j=1}^{\infty} \frac{jt^{j-1}A^j}{j!} = A\sum_{j=1}^{\infty} \frac{(tA)^{j-1}}{(j-1)!} = Ae^{tA} = e^{tA}A$$

(b) The initial condition is satisfied by  $u(0) = e^0 \eta = \eta$ . Also  $u'(t) = \frac{d}{dt} e^{tA} \eta = A e^{tA} \eta = A u(t)$ .

2. Construct a system (i.e., needs to be not scalar valued)

$$\Big\{u'(t) = f(u(t)),\,$$

and two choices of initial data  $u_0 \neq v_0$  so that two solutions

$$\begin{cases} u'(t) = f(u(t)), & \begin{cases} v'(t) = f(v(t)), \\ u(0) = u_0, \end{cases} \end{cases} v(0) = v_0,$$

satisfy

$$||u(t) - v(t)||_2 = ||u(0) - v(0)||_2 e^{Lt}$$
(1)

where L a Lipschitz constant for f(u). Recall that we have shown that for any solution

$$||u(t) - v(t)||_2 \le ||u(0) - v(0)||_2 e^{Lt}$$
.

So, you are tasked with showing that this is sharp. Then show that equality (1) fails to hold for u'(t) = -f(u(t)), v'(t) = -f(v(t)) with the same intial conditions.

### Solution.

Suppose f(u(t)) = Lu(t), the system is solved trivially with  $u(t) = e^{Lt}u_0$  and  $v(t) = e^{Lt}v_0$ . Clearly, L is a Lipschitz constant for f(u(t)). We have

$$||u(t) - v(t)||_2 = ||e^{Lt}u_0 - e^{Lt}v_0||_2 = ||u(0) - v(0)||_2 e^{Lt}$$

For u'(t) = -Lu(t), the solutions are now  $u(t) = e^{-Lt}u_0$  and  $v(t) = e^{-Lt}v_0$ . Then we would have

$$||u(t) - v(t)||_2 = ||u(0) - v(0)||_2 e^{-Lt}$$

instead of (1).

3. Consider the IVP

$$\begin{cases} u'_1(t) = 2u_1(t), \\ u'_2(t) = 3u_1(t) - u_2(t), \end{cases}$$

with initial conditions specified at time t=0. Solve this problem in two different ways:

- (a) Solve the first equation, which only involves  $u_1$ , and then insert this function into the second equation to obtain a nonhomogeneous linear equation for  $u_2$ . Solve this using (5.8). Check that your solution satisfies the initial conditions and the ODE.
- (b) Write the system as u' = Au and compute the matrix exponential using (D.30) to obtain the solution.

#### Solution.

(a) We get  $u_1(t) = e^{2t}u_1(0)$ . Plugging into the second equation

$$u_2'(t) = 3e^{2t}u_1(0) - u_2(t)$$

Recall (5.8)

$$u(t) = e^{A(t-t_0)}\eta + \int_0^t e^{A(t-\tau)}g(\tau)d\tau$$

In this case, A = -1,  $t_0 = 0$ ,  $\eta = u_2(0)$  and  $g(t) = 3e^{2t}u_1(0)$ . (5.8) then becomes

$$u_2(t) = e^{-t}u_2(0) + 3\int_0^t e^{3\tau - t}d\tau u_1(0)$$
  
=  $e^{-t}u_2(0) + (e^{2t} - e^{-t})u_1(0)$ 

At t = 0,  $u_2(t) = u_2(0)$  as desired. Differentiating  $u_2(t)$ 

$$u_2'(t) = -e^{-t}u_2(0) + (2e^{2t} + e^{-t})u_1(0)$$
  
=  $3e^{2t}u_1(0) - e^{-t}u_2(0) - (e^{2t} - e^{-t})u_1(0)$   
=  $3u_1(t) - u_2(t)$ 

(b) We have

$$u = \left[ \begin{array}{c} u_1 \\ u_2 \end{array} \right] \quad A = \left[ \begin{array}{cc} 2 & 0 \\ 3 & -1 \end{array} \right]$$

Then the solution is  $u(t) = e^{At}u(0)$ , where

$$e^{At} = Re^{\Lambda t}R^{-1}$$

by (D.30). We can find R and  $\Lambda$  by diagonalizing A

$$\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \quad R = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad R^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

Plugging these into  $e^{At}$ 

$$e^{At} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} e^{2t} & 0 \\ e^{2t} - e^{-t} & e^{-t} \end{bmatrix}$$

Clearly, this is the same as the solution we get in (a).

# 4. Consider the IVP

$$\begin{cases} u_1'(t) = 2u_1(t), \\ u_2'(t) = 3u_1 + 2u_2(t), \end{cases}$$

with initial conditions specified at time t=0. Solve this problem.

## Solution.

Solving the first equation directly, we get  $u_1(t) = e^{2t}u_1(0)$ . Plugging into the second equation

$$u_2'(t) = 3e^{2t}u_1(0) + 2u_2(t)$$

Recall (5.8)

$$u(t) = e^{A(t-t_0)}\eta + \int_0^t e^{A(t-\tau)}g(\tau)d\tau$$

In this case, A = 2,  $t_0 = 0$ ,  $\eta = u_2(0)$  and  $g(t) = 3e^{2t}u_1(0)$ . (5.8) then becomes

$$u_2(t) = e^{2t}u_2(0) + 3e^{2t} \int_0^t d\tau u_1(0)$$
  
=  $e^{2t}u_2(0) + 3e^{2t}tu_1(0)$ 

5. Consider the Lotka–Volterra system<sup>1</sup>

$$\begin{cases} u_1'(t) = \alpha u_1(t) - \beta u_1(t) u_2(t), \\ u_2'(t) = \delta u_1(t) u_2(t) - \gamma u_2(t). \end{cases}$$

For  $\alpha = \delta = \gamma = \beta = 1$  and  $u_1(0) = 5$ ,  $u_2(0) = 0.8$  use the forward Euler method to approximate the solution with k = 0.001 for  $t = 0, 0.001, \ldots, 50$ . Plot your approximate solution as a curve in the  $(u_1, u_2)$ -plane and plot your approximations of  $u_1(t)$  and  $u_2(t)$  on the same axes as a function of t. Repeat this with backward Euler. What do you notice about the behavior of the numerical solutions? The most obvious feature is most apparent in the  $(u_1, u_2)$ -plane.

#### Solution.

We implement these methods in MATLAB as predator\_prey.m.

If we zoom in the phase plane in Figure 1, we observe limit cycles in the solution. For t = 50, there are six cycles. We also observe a lag between  $u_1$  and  $u_2$ , which makes sense because  $u_2$  is supposed to be the predator.

<sup>&</sup>lt;sup>1</sup>This is a famous model of predator-prey dynamics.



Figure 1: Solutions of the Lotka-Volterra system

- 6. Determine the coefficients  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$  for the third order, 2-step Adams-Moulton method. Do this in two different ways:
  - (a) Using the expression for the local truncation error in Section 5.9.1,
  - (b) Using the relation

$$u(t_{n+2}) = u(t_{n+1}) + \int_{t_{n+1}}^{t_{n+2}} f(u(s)) ds.$$

Interpolate a quadratic polynomial p(t) through the three values  $f(U^n)$ ,  $f(U^{n+1})$  and  $f(U^{n+2})$  and then integrate this polynomial exactly to obtain the formula. The coefficients of the polynomial will depend on the three values  $f(U^{n+j})$ . It's easiest to use the "Newton form" of the interpolating polynomial and consider the three times  $t_n = -k$ ,  $t_{n+1} = 0$ , and  $t_{n+2} = k$  so that p(t) has the form

$$p(t) = A + B(t+k) + C(t+k)t$$

where A, B, and C are the appropriate divided differences based on the data. Then integrate from 0 to k. (The method has the same coefficients at any time, so this is valid.)

### Solution.

(a) A 2-step Adams method have  $\alpha_2 = 1$ ,  $\alpha_1 = -1$ ,  $\alpha_0 = 0$ . Since the method is third order, we want the first four terms in the local truncation error to vanish

$$\sum_{j=0}^{2} j\alpha_j - \beta_j = 0, \quad \sum_{j=0}^{2} \frac{1}{2} j^2 \alpha_j - j\beta_j = 0, \quad \sum_{j=0}^{2} \frac{1}{6} j^3 \alpha_j - \frac{1}{2} j^2 \beta_j = 0$$

Writing this as a linear system

$$\begin{bmatrix} \alpha_1 + 2\alpha_2 \\ \alpha_1 + 4\alpha_2 \\ \alpha_1 + 8\alpha_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 3 & 12 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

Solving yields  $\beta_0 = -\frac{1}{12}$ ,  $\beta_1 = \frac{2}{3}$ ,  $\beta_2 = \frac{5}{12}$ .

(b) We consider a Newton polynomial p(t) for three points  $f(U^n)$ ,  $f(U^{n+1})$ ,  $f(U^{n+2})$  with three times -k, 0, k, which has the form

$$p(t) = f(U^n) + \frac{f(U^{n+1}) - f(U^n)}{k}(t+k) + \frac{f(U^{n+2}) - 2f(U^{n+1}) + f(U^n)}{2k^2}(t+k)t$$

Integrating from 0 to k using Mathematica gives

$$\int_{0}^{k} p(t)dt = \frac{k}{12} \left( -f(U^{n}) + 8f(U^{n+1}) + 5f(U^{n+2}) \right)$$