离散数学

命题逻辑 1.5 联结词全功能集

1.5 联结词全功能集

■联结词全功能集

■与非联结词,或非联结词

联结词的全功能集

- 定义 设S是一个联结词集合,如果任何 $n(n \ge 1)$ 元真值函数都可以由仅含S中的联结词构成的公式表示,则称S是联结词全功能集.
- 说明: 若*S*是联结词全功能集,则任何命题公式都可用*S*中的联结 词表示.
- 设 S_1 , S_2 是两个联结词集合,且 $S_1 \subseteq S_2$. 若 S_1 是全功能集,则 S_2 也是全功能集. 反之,若 S_2 不是全功能集,则 S_1 也不是全功能集.

联结词全功能集实例

- 定理 {¬, ∧,∨}、{¬, ∧}、{¬, ∨}、{¬, →}都是联结词全功能集.
- 证明 每一个真值函数都可以用一个主析取范式表示, 故{¬, ∧,∨} 是联结词全功能集.

$$p \lor q \Leftrightarrow \neg (\neg p \land \neg q)$$
, 故 $\{\neg, \land\}$ 是全功能集. $p \land q \Leftrightarrow \neg (\neg p \lor \neg q)$, 故 $\{\neg, \lor\}$ 是全功能集. $p \lor q \Leftrightarrow \neg p \rightarrow q$, $p \land q \Leftrightarrow \neg (p \rightarrow \neg q)$ 故 $\{\neg, \rightarrow\}$ 也是全功能集.

复合联结词

- 与非式: $p \uparrow q \Leftrightarrow \neg (p \land q)$
- 或非式: $p \downarrow q \Leftrightarrow \neg (p \lor q)$
- 个和↓与¬, \land , \lor 有下述关系:
 ¬ $p\Leftrightarrow\neg(p\land p)\Leftrightarrow p\uparrow p$ $p\land q\Leftrightarrow \neg\neg(p\land q)\Leftrightarrow \neg(p\uparrow q)\Leftrightarrow (p\uparrow q)\uparrow(p\uparrow q)$ $p\lor q\Leftrightarrow \neg(\neg p\land \neg q)\Leftrightarrow (\neg p)\uparrow(\neg q)\Leftrightarrow (p\uparrow p)\uparrow(q\uparrow q)$

复合联结词(续)

$$\neg p \Leftrightarrow p \downarrow p$$

$$p \land q \Leftrightarrow (p \downarrow p) \downarrow (q \downarrow q)$$

$$p \lor q \Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)$$

定理 {↑}, {↓}是联结词全功能集.

可以证明: { / , \ } 不是全功能集, 从而{ / }, { \ }也不是全功能集.

例

• 例 将公式 $p \land \neg q$ 化成只含下列各联结词集中的联结词的等值的公式.

(1)
$$\{\neg, \lor\}; (2) \{\neg, \to\}; (3) \{\uparrow\}; (4) \{\downarrow\}.$$

•解 (1) $p \land \neg q \Leftrightarrow \neg (\neg p \lor q)$.

$$(2) p \land \neg q \Leftrightarrow \neg (\neg p \lor q) \Leftrightarrow \neg (p \rightarrow q).$$

$$(3) p \land \neg q \Leftrightarrow p \land (q \uparrow q) \Leftrightarrow \neg (\neg (p \land (q \uparrow q)))$$
$$\Leftrightarrow \neg (p \uparrow (q \uparrow q)) \Leftrightarrow (p \uparrow (q \uparrow q)) \uparrow (p \uparrow (q \uparrow q)).$$

$$(4) p \land \neg q \Leftrightarrow \neg (\neg p \lor q) \Leftrightarrow (\neg p) \downarrow q \Leftrightarrow (p \downarrow p) \downarrow q.$$

作业

• P34/1.14

问题?

