The group G is isomorphic to the group labelled by [32, 16] in the Small Groups library. Ordinary character table of $G \cong C16 \times C2$:

	1a	16a	8 <i>a</i>	16b	4a	16c	8b	16d	2a	16e	8c	16f	4b	16g	8d	16h	2b	16i	8e	16j	4c	16k	8 <i>f</i>	16l	2c	16m	8g	16n	4d	160	8h	16p
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_4	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
χ_5	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
χ_6	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)
χ_7	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)		-E(4)	1	E(4)	-1	-E(4)	1	E(4)
χ_8	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)
χ_9	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^3$
χ_{10}	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^3$
χ_{11}	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^3$
χ_{12}	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^3$
χ_{13}	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)
χ_{14}	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)		$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)
χ_{15}	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)
χ_{16}	1	$-E(8)^3$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	$E(8)_{\underline{}}$	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	$-E(8)$ _
χ_{17}	1	E(16)	E(8)	$E(16)^{3}$	E(4)	$E(16)^{5}$	$E(8)^{3}$	$E(16)^{\gamma}$	-1	-E(16)	-E(8)	$-E(16)^3$	-E(4)	$-E(16)^{5}$	$-E(8)^{3}$	$-E(16)^{7}$	1	E(16)	E(8)	$E(16)^{3}$	E(4)	$E(16)^{5}$	$E(8)^{3}$	$E(16)^{\gamma}$	-1	-E(16)	-E(8)	$-E(16)^3$	-E(4)	$-E(16)^{5}$	$-E(8)^{3}$	$-E(16)^{\gamma}$
χ_{18}	1	-E(16)	E(8)	$-E(16)^3$	E(4)	$-E(16)^{5}$	$E(8)^{3}$	$-E(16)^{7}$	-1	E(16)	-E(8)	$E(16)^{3}$	-E(4)	$E(16)^{5}$	$-E(8)^{3}$	$E(16)^{7}$	1	-E(16)	E(8)	$-E(16)^3$	E(4)	$-E(16)^{5}$	$E(8)^{3}$	$-E(16)^{7}$	-1	E(16)	-E(8)	$E(16)^{3}$	-E(4)	$E(16)^{5}$	$-E(8)^{3}$	$E(16)^{\gamma}$
χ_{19}	1	E(16)	E(8)	$E(16)^{3}$	E(4)	$E(16)^{5}$	$E(8)^{3}$	$E(16)^{\gamma}$	-1	-E(16)	-E(8)	$-E(16)^3$	-E(4)	$-E(16)^{5}$	$-E(8)^{3}$	$-E(16)^{7}$	-1	-E(16)	-E(8)	$-E(16)^3$	-E(4)	$-E(16)^{5}$	$-E(8)^{3}$	$-E(16)^{7}$	1	E(16)	E(8)	$E(16)^{3}$	E(4)	$E(16)^{5}$	$E(8)^{3}$	$E(16)^{\gamma}$
χ_{20}	1	-E(16)	E(8)	$-E(16)^3$	E(4)	$-E(16)^5$	$E(8)^{3}$	$-E(16)^{7}$		E(16)	-E(8)	$E(16)^3$	-E(4)	$E(16)^{5}$	$-E(8)^{3}$	$E(16)^{7}$	-1	E(16)	-E(8)		-E(4)	$E(16)^{5}$	$-E(8)^{3}$	$E(16)^{7}$		-E(16)	E(8)	$-E(16)^3$	E(4)	$-E(16)^{5}$	$E(8)^{3}$	$-E(16)^{7}$
χ_{21}	1	$E(16)^{5}$	-E(8)	$-E(16)^{7}$	E(4)	-E(16)	$-E(8)^{3}$	$E(16)^{3}$		$-E(16)^{5}$	E(8)	$E(16)^{7}$	-E(4)	E(16)	$E(8)^{3}$	$-E(16)^3$	1	$E(16)^{5}$	-E(8)	$-E(16)^{7}$	E(4)	-E(16)	$-E(8)^{3}$	$E(16)^{3}$		$-E(16)^5$	E(8)	$E(16)^{7}$	-E(4)	E(16)	$E(8)^{3}$	$-E(16)^3$
χ_{22}		$-E(16)^{5}$	-E(8)	$E(16)^{7}$	E(4)	E(16)	$-E(8)^{3}$	$-E(16)^3$		$E(16)^{5}$	E(8)	$-E(16)^{7}$	-E(4)	-E(16)	$E(8)^{3}$	$E(16)^{3}$		$-E(16)^5$	-E(8)	$E(16)^{7}$	E(4)	E(16)	$-E(8)^{3}$	$-E(16)^3$		$E(16)^{5}$	E(8)	$-E(16)^{7}$	-E(4)	-E(16)	$E(8)^{3}$	$E(16)^3$
χ_{23}		$E(16)^5$	-E(8)	$-E(16)^{7}$	E(4)	-E(16)	$-E(8)^{3}$	$E(16)^3$		$-E(16)^{5}$	E(8)	$E(16)^{7}$	-E(4)	E(16)	$E(8)^{3}$	$-E(16)^3$	-1	$-E(16)^5$	E(8)	$E(16)^{7}$	-E(4)	E(16)	$E(8)^{3}$	$-E(16)^3$		$E(16)^5$	-E(8)	$-E(16)^{7}$	E(4)	-E(16)	$-E(8)^{3}$	$E(16)^3$
χ_{24}	1 .	$-E(16)^5$	-E(8)	$E(16)^{7}$	E(4)	E(16)	$-E(8)^{3}$	$-E(16)^3$		$E(16)^5$	E(8)	$-E(16)^7$	-E(4)	-E(16)	$E(8)^{3}$	$E(16)^3$	-1	$E(16)^5$	E(8)	$-E(16)^{7}$	-E(4)	-E(16)	$E(8)^{3}$	$E(16)^3$		$-E(16)^5$	-E(8)	$E(16)^{7}$	E(4)	E(16)	$-E(8)^{3}$	$-E(16)^{3}$
χ_{25}	1	$E(16)^3$	$E(8)^{3}$	-E(16)	-E(4)	$-E(16)^{7}$	E(8)	$E(16)^{5}$		$-E(16)^3$	$-E(8)^{3}$	E(16)	E(4)	$E(16)^7$	-E(8)	$-E(16)^{5}$	1	$E(16)^3$	$E(8)^{3}$	-E(16)	-E(4)	$-E(16)^{7}$	E(8)	$E(16)^{5}$		` ′	$-E(8)^{3}$	E(16)	E(4)	$E(16)^{\gamma}$	-E(8)	$-E(16)^{5}$
χ_{26}	1 .	$-E(16)^3$	$E(8)^{3}$	E(16)	-E(4)	$E(16)^{7}$	E(8)	$-E(16)^{5}$		$E(16)^3$	$-E(8)^{3}$	-E(16)	E(4)	-E(16)'	-E(8)	$E(16)^{5}$		$-E(16)^3$	$E(8)^{3}$	E(16)	-E(4)	$E(16)^{7}$	E(8)	$-E(16)^{5}$	-1	` / ~	$-E(8)^{3}$	-E(16)	E(4)	-E(16)'	-E(8)	$E(16)^{5}$
χ_{27}	1	$E(16)^3$	$E(8)^{3}$	-E(16)	-E(4)	$-E(16)^{7}$	E(8)	$E(16)^{5}$	-1	$-E(16)^3$	$-E(8)^{3}$	E(16)	E(4)	$E(16)^{7}$	-E(8)	$-E(16)^{5}$	-1	$-E(16)^3$	$-E(8)^{3}$	E(16)	E(4)	$E(16)^{7}$	-E(8)	$-E(16)^5$	1	$E(16)^3$	$E(8)^{3}$	-E(16)	-E(4)	$-E(16)^{7}$	E(8)	$E(16)^{5}$
χ_{28}		$-E(16)^3$	$E(8)^{3}$	E(16)	-E(4)	$E(16)^{7}$	E(8)	$-E(16)^5$	-1	$E(16)^3$	$-E(8)^{3}$	-E(16)	E(4)	$-E(16)^{7}$	-E(8)	$E(16)^{5}$	-1	$E(16)^3$	$-E(8)^{3}$	-E(16)	E(4)	$-E(16)^{7}$	-E(8)	$E(16)^5$		$-E(16)^3$	$E(8)^{3}$	E(16)	-E(4)	$E(16)^{7}$	E(8)	$-E(16)^{5}$
χ_{29}		$E(16)^7$	$-E(8)^{3}$	$E(16)^5$	-E(4)	$E(16)^3$	-E(8)	E(16)		$-E(16)^{7}$	$E(8)^3$	$-E(16)^5$	E(4)	$-E(16)^3$	E(8)	-E(16)	1	$E(16)^{7}$	$-E(8)^{3}$	$E(16)^5$	-E(4)	$E(16)^3$	-E(8)	E(16)		$-E(16)^7$	$E(8)^{3}$	$-E(16)^5$	E(4)	$-E(16)^3$	E(8)	-E(16)
χ_{30}		$-E(16)^{7}$	$-E(8)^{3}$	$-E(16)^5$	-E(4)	$-E(16)^3$	-E(8)	-E(16)	-1	$E(16)^7$	$E(8)^3$	$E(16)^5$	E(4)	$E(16)^3$	E(8)	E(16)		$-E(16)^{7}$	$-E(8)^{3}$	$-E(16)^5$	-E(4)	$-E(16)^3$	-E(8)	-E(16)		$E(16)^7$	$E(8)^3$	$E(16)^5$	E(4)	$E(16)^3$	E(8)	E(16)
χ_{31}		$E(16)^7$	$-E(8)^{3}$	$E(16)^5$	-E(4)	$E(16)^3$	-E(8)	E(16)	-1	$-E(16)^{7}$	$E(8)^{3}$	$-E(16)^5$	E(4)	$-E(16)^3$	E(8)	-E(16)		$-E(16)^7$	$E(8)^{3}$	$-E(16)^5$	E(4)	$-E(16)^3$	E(8)	-E(16)		\ /	$-E(8)^{3}$	$E(16)^5$	-E(4)	$E(16)^3$	-E(8)	$\frac{E(16)}{E(16)}$
χ_{32}	1 -	$-E(16)^{\gamma}$	$-E(8)^{3}$	$-E(16)^{5}$	-E(4)	$-E(16)^3$	-E(8)	-E(16)	-1	$E(16)^7$	$E(8)^{3}$	$E(16)^5$	E(4)	$E(16)^3$	E(8)	E(16)	-1	$E(16)^{7}$	$E(8)^{3}$	$E(16)^5$	E(4)	$E(16)^3$	E(8)	E(16)	1 .	$-E(16)^{7}$	$-E(8)^{3}$	$-E(16)^{5}$	-E(4)	$-E(16)^3$	-E(8)	-E(16)

Trivial source character table of $G \cong C16 \times C2$ at p = 2:

Invial source character table of $G = C10 \times C2$ at $p = 2$.									
Normalisers N_i	$N_1 \mid N$	$_{2}$ N_{3}	$N_4 \mid N$	$_{5}$ N_{6}	$N_7 \mid N_{\xi}$	$_{8}$ N_{9} N	$I_{10} N_{11}$	$N_{12} \mid N_{12} \mid N_{12}$	$N_{13} N_{14} $
p-subgroups of G up to conjugacy in G	P_1 P	P_3	P_4 P	$_{5}$ P_{6}	P_7 P_8	$_{8}$ P_{9} F	$P_{10} P_{11}$	P_{12} P	$P_{13} P_{14} $
Representatives $n_j \in N_i$	$1a \mid 1a$	$a \mid 1a$	1a 1a	$a \mid 1a \mid$	$1a \mid 1a$	$a \mid 1a \mid 1$	1a $1a$	1a 1	$a \mid 1a$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 1 \cdot \chi_{29} + 1 \cdot \chi_{30} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 1 \cdot \chi_{31} + 1 \cdot \chi_{31} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 1 \cdot \chi_{31} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 1 \cdot $	32 0	0	0 0	0	0 0	0 (0 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	16 16	$\hat{o} = 0$	0 0	0	0 0	0 0	0 0	0	$\mathcal{J} = 0$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 1 \cdot \chi_{29} + 1 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot $	16 0) 16	0 0	0	0 0	$\frac{1}{2}$	0 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot $	16 0	0	16 0	0	0 0	$\frac{1}{2}$	0 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot $	8 8	5 0	0 8	, 0	0 0	$\frac{1}{2}$	0 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot $	8 8	8	8 0	8	0 0	$\frac{1}{2}$	0 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot $	8 8	5 0	0 0	0	8 0	0 (0 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot $	4 4	<u>t</u> 0	0 4	1 0	0 4	1 0 (0 0	0 /	$\overline{\mathcal{I}}$ 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot $	4 4	4	4 4	. 4	4 0	$4 \mid 4 \mid 6$	0 0	0 /	$\overline{\mathcal{I}}$ 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot $	4 4	. 0	0 4	. 0	0 0	0	4 0	0	$\overline{\mathcal{I}}$ 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	2 2	1 0	0 2	. 0	0 2	0 0	0 2	0	$\overline{\mathcal{I}}$ 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot $	2 2	2	2 2	2	2 2	2 '	2 0	2	$\overline{\mathcal{I}}$ 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} +$	2 2	0	0 2	2 0	0 2	2 0 (0 0	0 ,	2 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	1 1	. 1	1 1	1	1 1	1	1 1	1	$1 \mid \overline{1}$

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)]) \cong C2$

 $P_3 = Group([(1,2)]) \cong C2$

 $P_4 = Group([(1,2)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)]) \cong C2$

 $P_5 = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18), (3,7,11,15)(4,8,12,16)(5,9,13,17)(6,10,14,18)]) \cong \mathbb{C}4$

 $P_6 = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18),(1,2)]) \cong C2 \times C2$

 $P_7 = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18),(1,2)(3,7,11,15)(4,8,12,16)(5,9,13,17)(6,10,14,18)]) \cong \mathbb{C}4$

 $P_8 = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18), (3,7,11,15)(4,8,12,16)(5,9,13,17)(6,10,14,18), (3,5,7,9,11,13,15,17)(4,6,8,10,12,14,16,18)]) \cong \mathbb{C} 8$

 $P_9 = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18), (3,7,11,15)(4,8,12,16)(5,9,13,17)(6,10,14,18), (1,2)]) \cong C4 \times C2$

 $P_{10} = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18), (3,7,11,15)(4,8,12,16)(5,9,13,17)(6,10,14,18), (1,2)(3,5,7,9,11,13,15,17)(4,6,8,10,12,14,16,18)]) \cong \mathbb{C} 8$

 $P_{11} = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18), (3,7,11,15)(4,8,12,16)(5,9,13,17)(6,10,14,18), (3,5,7,9,11,13,15,17)(4,6,8,10,12,14,16,18), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]) \cong C16$

 $P_{12} = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18), (3,7,11,15)(4,8,12,16)(5,9,13,17)(6,10,14,18), (3,5,7,9,11,13,15,17)(4,6,8,10,12,14,16,18), (1,2)]) \cong \mathbf{C8} \times \mathbf{C2}$

 $P_{13} = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18), (3,7,11,15)(4,8,12,16)(5,9,13,17)(6,10,14,18), (3,5,7,9,11,13,15,17)(4,6,8,10,12,14,16,18), (1,2)(3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]) \cong C16$

 $P_{14} = Group([(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18), (3,7,11,15)(4,8,12,16)(5,9,13,17)(6,10,14,18), (3,5,7,9,11,13,15,17)(4,6,8,10,12,14,16,18), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18), (1,2)]) \cong C16 \times C2$

 $N_1 = Group([(1,2), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]) \cong C16 \times C2$

 $N_2 = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$

 $N_3 = Group([(1,2), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]) \cong C16 \times C2$

 $N_4 = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$ $N_5 = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$

 $N_6 = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$

 $N_7 = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$ $N_8 = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$

 $N_9 = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$

 $N_{10} = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$

 $N_{11} = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$

 $N_{12} = Group([(1,2), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]) \cong C16 \times C2$

 $N_{13} = Group([(1,2), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]) \cong C16 \times C2$

 $N_{14} = Group([(1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)]) \cong C16 \times C2$