Coding Sample in R Program

Calculation Automation of Total Energy & Dollar Savings from Using Smart Battery Storage in R

Prepared by: Jenna (HuongKim) Nguyen,

E-mail: hn13@brandeis.edu/ hj.nguye1@gmail.com

This R Markdown documents the steps for processing raw 15 minute Interval data from 'Inverter' Master dataset, and calculating Demand Savings (kW), Energy Savings (kWh) and Total Dollar Savings (\$) generated from the Smart Battery Services for Residential Time-of-Use Rates on the E-19 Schedule invoiced by Pacific Gas and Electric (PG&E).

Calculation Flows for Total Dollar Savings Generated from Battery and Storage Services:

- Divide the "Inverter" Master Dataset into two subsets: Charge (kW > 0) and Discharge (kW < 0)
- Subset 'Charge' and 'Discharge' dataset by Time-of-Use Periods: Summer (On-peak, Partial-Peak, Off-Peak), Winter (On-Peak, Partial-Peak, Off-Peak)
- Calculate Demand Savings generated from Battery Discharging in each ToU period by:
 - Identifying Max_kW 15 minute Intervals discharged by the Battery system in the 'Discharge' dataset for each ToU Period
 - Multiplying the Max_kW 15 minute Interval with the corresponding Demand Rates for Winter_OnPeak, Winter_PartPeak, Winter_OffPeak, Summer_OnPeak, Summer_PartPeak, Summter_OffPeaks
- Calculate Net Energy Charge Savings generated from Battery operation in each ToU period:
 - Calculate Total Charging_kW in the Charge data set and Total of Discharging_kW in Charge and Discharge dataset for each ToU period
 - Calculate the Energy Consumption (kWh) over each ToU by:

Energy (kWh) = Demand (kW) * Time/ Duration (hour)

The duration for each interval is 15 minutes. Thus, the Energy Consumption per each Interval = **Demand (kWh)** * (15/60) minute = kW * 0.25

- Calculate the Energy Cost of Charging kWh for each ToU period:
 - Charging Cost = Energy Rate * Total Charging kWh)
- Calculate the Energy Savings of Discharging kWh for each ToU period:
 - Discharging Savings = Energy Rate * Total Discharging kWh

- Net Energy Savings = |Total Energy Savings of Discharging kWh| Total Energy Cost of Charging kWh
- Calculate Total Dollar Savings from the Smart Battery Services in each ToU period and for the whole year:

Total Savings = Total Demand Savings + Total Energy Savings

Codes and Output:

```
## Read in Master Data: Inverter
Inverter <- read.csv('C:/Battery/Inverter.csv')</pre>
ToU Period <- read.csv('C:/Battery/ToU Periods.csv')
# Rename Variables in the Master Inverter Dataset and ToU Period:
names(Inverter) <- c("Ending Timestamp", 'Battery kW')</pre>
names(ToU_Period) <- c("S_OnPeak", 'S_PartPeak', 'S_OffPeak', 'W_PartP</pre>
eak', "W OffPeak")
head(Inverter)
##
     Ending Timestamp Battery kW
## 1
        1/1/2017 0:15
                         0.28393
## 2
        1/1/2017 0:30
                         0.28387
## 3
       1/1/2017 0:45
                       0.28548
## 4 1/1/2017 1:00
                       0.28636
## 5
       1/1/2017 1:15
                        0.3745
## 6
       1/1/2017 1:30 0.34713
head (ToU Period)
     S OnPeak S PartPeak S OffPeak W PartPeak W OffPeak
##
## 1
        12:00
                    8:00
                             23:15
                                         8:00
                                                  21:15
## 2
        12:15
                    8:15
                             23:30
                                         8:15
                                                  21:30
                             23:45
## 3
       12:30
                    8:30
                                         8:30
                                                  21:45
## 4
       12:45
                    8:45
                              0:00
                                         8:45
                                                  22:00
## 5
        13:00
                    9:00
                              0:15
                                         9:00
                                                  22:15
## 6
        13:15
                    9:15
                              0:30
                                         9:15
                                                  22:30
## Subset Charging Data and Discharging data from the Master Dataset,
'Inverter', on the Condition of Battery kW:
Charge <- sqldf("SELECT *</pre>
                FROM Inverter
                WHERE Battery kW > 0
                OR Battery kW = 0")
```

```
Discharge <- sqldf("SELECT *</pre>
                FROM Inverter
                WHERE Battery kW < 0")
## Data manipulation to label ToU in the Discharge dataset:
## Separate the Ending Timestamp Interval Column into Date and Timesta
mp Variables:
Discharge 1 <- separate(Discharge, Ending Timestamp, c('Date', 'ToU'),</pre>
sep = ' ')
# Create a 'Month' and Weekday column from Date Variable:
Discharge 2 <- Discharge_1 %>%
  mutate(Weekday = weekdays(Date),
         Month = months(Date))
head(Discharge 2)
##
         Date ToU Battery kW Weekday Month
## 1 1/3/2017 8:30 -1.89569
                                  Tue
                                        Jan
## 2 1/3/2017 8:45
                                  Tue
                                        Jan
                     -0.76862
## 3 1/3/2017 9:00 -12.67053
                                  Tue
                                        Jan
## 4 1/3/2017 9:15 -13.80917
                                  Tue
                                        Jan
## 5 1/3/2017 9:30 -17.20109
                                  Tue
                                        Jan
## 6 1/3/2017 9:45 -13.9458
                                  Tue
                                        Jan
# Create a List of Season, Weekday, Weekend, Holiday to label Time of
Use Periods:
Winter_Months <- c ('Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', '
May')
Summer_Months <- c('Jun', 'Jul', 'Aug', 'Sep')</pre>
Off days <- c('Sat', 'Sun')
Holiday 2017 <- c('1/2/2017', '2/20/2017', '5/29/2017', '7/4/2017', '9
/4/2017', '11/11/2017', '11/23/2017', '12/25/2017')
# Create new columns for Winter months, Summer months, Working Day, We
ekend, Holiday in the Discharge dataset:
Discharge 3 <- Discharge_2 %>%
  mutate(W_Month = ifelse(Month %in% Winter_Months, 'True', 'False'),
         S_Month = ifelse(Month %in% Summer_Months, 'True', 'False'),
         Weekend = ifelse(Weekday %in% Off days, 'True', 'False'),
         Working Day = ifelse(Weekday %in% Off days, 'False', 'True'),
         Holiday = ifelse(Date %in% Holiday_2017, 'True', 'False'))
```

```
# Change the "Battery kW" into Numeric Variable:
Discharge 3$Battery kW <- as.numeric(as.character(Discharge 3$Battery
kW))
Discharge 4 <- na.omit(Discharge 3)</pre>
head(Discharge 4)
         Date ToU Battery_kW Weekday Month W Month S Month Weekend
##
## 1 1/3/2017 8:30
                    -1.89569
                                 Tue
                                       Jan
                                              True
                                                     False
                                                             False
## 2 1/3/2017 8:45 -0.76862
                                 Tue
                                       Jan
                                              True
                                                     False
                                                             False
## 3 1/3/2017 9:00 -12.67053
                                 Tue
                                       Jan
                                             True False
                                                             False
## 4 1/3/2017 9:15 -13.80917
                                 Tue
                                       Jan
                                              True False
                                                             False
## 5 1/3/2017 9:30 -17.20109
                                 Tue
                                       Jan
                                             True False False
                                            True False
                                                             False
## 6 1/3/2017 9:45 -13.94580
                                 Tue
                                       Jan
##
    Working_Day Holiday
## 1
           True
                  False
## 2
           True
                  False
## 3
           True
                  False
## 4
           True False
## 5
           True
                  False
           True
                  False
## 6
## Subset Summer and Winter Months in the Discharge dataset:
Discharge_S_ToU <- sqldf("SELECT *</pre>
                       FROM Discharge 4
                       WHERE S_Month = 'True'")
Discharge W ToU <- sqldf("SELECT *
                       FROM Discharge 4
                       WHERE W Month = 'True'")
## Subset Summer ToU Period in Discharge dataset by range of hours:
#Summer on-Peak: 12:00 noon to 6:00 pm Monday through Friday (except
holiday)
Discharge S On <- sqldf("SELECT *</pre>
                       FROM Discharge S ToU
                       WHERE TOU BETWEEN '12:00' AND '18:00'
                       AND Working Day = 'True'
                       AND Holiday = 'False'
                       ORDER BY Date, ToU")
Discharge W Part <- sqldf("SELECT *</pre>
```

```
FROM Discharge W ToU
                        WHERE Working_Day = 'True'
                        AND Holiday = 'False'
                        AND ToU IN
                        (SELECT W PartPeak
                        FROM ToU Period)")
## Subset the Off Peak Period for Summer and Winter in the Discharge
dataset:
# Label Weekend and Holiday in the Summer 2017:
Discharge S Weekend Holiday <- sqldf("SELECT *
                        FROM Discharge S ToU
                        WHERE Weekend = 'True'
                        OR Holiday = 'True'")
Discharge W Weekend Holiday <- sqldf("SELECT *
                        FROM Discharge W ToU
                        WHERE Weekend = 'True'
                        OR Holiday = 'True'")
Discharge_S_Off_1 <- sqldf("SELECT *</pre>
                        FROM Discharge S ToU
                        WHERE Working Day = 'True'
                        AND Holiday = 'False'
                        AND TOU IN
                        (SELECT S OffPeak
                        FROM ToU Period)")
Discharge W Off 1 <- sqldf("SELECT *
                        FROM Discharge W ToU
                        WHERE Working Day = 'True'
                        AND Holiday = 'False'
                        AND ToU IN
                        (SELECT W OffPeak
                        FROM ToU Period)")
Discharge_S_Off <- rbind(Discharge_S_Off_1, Discharge_S_Weekend_Holida</pre>
y)
Discharge W Off <- rbind(Discharge W Off 1, Discharge W Weekend Holida
y)
```

```
### ??? How much was demand savings that the smart battery system gene
rated for the residential customer in 2017?
## Identify the Monthly Peak Discharging kW for the Summer ToU Period:
Discharge S OffPeak Max kW <- sqldf("SELECT Date, Month, ToU, Min(Batt
ery kW) AS Max Discharge S OffPeak
                                     FROM Discharge S Off
                                      GROUP BY Month
                                      ORDER BY Max Discharge S OffPeak
")
Discharge S PartPeak Max kW <- sqldf("SELECT Date, Month, ToU, Min(Ba
ttery kW) AS Max Discharge S PartPeak
                                      FROM Discharge S Part
                                      GROUP BY Month
                                      ORDER BY Max Discharge S PartPea
k")
Discharge S OnPeak Max kW <- sqldf("SELECT Date, Month, ToU, Min(Batte
ry kW) AS Max Discharge S OnPeak
                                     FROM Discharge S On
                                     GROUP BY Month
                                     ORDER BY Max Discharge S OnPeak")
## Calculate Monthly Demand Savings Generated by Battery System for Su
      ToU Period:
mmer
S OffPeak DemandRate <- 15.89
S PartPeak DemandRate <- 3.88
S OnPeak DemandRate <- 19.89
S OffPeak DemandSavings <- Discharge S OffPeak Max kW %>%
                          mutate(S OffPeak DemandSavings = Max Dischar
ge_S_OffPeak * S_OffPeak_DemandRate)
S PartPeak DemandSavings <- Discharge S PartPeak Max kW %>%
                          mutate(S PartPeak DemandSavings = Max Discha
rge S PartPeak * S PartPeak DemandRate)
S_OnPeak_DemandSavings <- Discharge_S_OnPeak_Max_kW %>%
                          mutate(S OnPeak DemandSavings = Max Discharg
e S OnPeak * S OnPeak DemandRate)
```

```
S_OffPeak_DemandSavings
         Date Month ToU Max Discharge S OffPeak S OffPeak DemandSav
##
ings
## 1 8/4/2017
               Aug 23:45
                                        -25.37321
                                                                -403.
1803
## 2 6/1/2017
                Jun 0:30
                                        -22.32829
                                                                -354.
7965
                                        -22.31732
               Sep 6:30
## 3 9/1/2017
                                                               -354.
6222
## 4 7/29/2017
                Jul 22:15
                                        -20.78428
                                                               -330.
2622
S PartPeak DemandSavings
         Date Month ToU Max Discharge S PartPeak S PartPeak DemandS
##
avings
## 1 7/12/2017 Jul 8:45
                                         -22.56961
                                                                  -87
.57009
## 2 8/24/2017 Aug 19:00
                                         -17.37424
                                                                  -67
.41205
## 3 6/23/2017
               Jun 10:15
                                        -14.79566
                                                                  -57
.40716
## 4 9/28/2017 Sep 8:00
                                         -8.90168
                                                                  -34
.53852
S OnPeak DemandSavings
         Date Month ToU Max Discharge S OnPeak S OnPeak DemandSavin
##
gs
## 1 6/23/2017 Jun 13:30
                                                              -413.12
                                       -20.77046
44
## 2 8/3/2017 Aug 13:30
                                       -18.72287
                                                              -372.39
79
## 3 7/27/2017 Jul 13:15
                                      -14.72424
                                                              -292.86
51
## Identify the Monthly Peak Discharging kW for the Winter ToU Period:
Discharge W OffPeak Max kW <- sqldf("SELECT Date, Month, ToU, Min(Batt
ery kW) AS Max Discharge W OffPeak
                                    FROM Discharge W Off
                                     GROUP BY Month
                                     ORDER BY Max Discharge W OffPeak
")
```

```
Discharge_W_PartPeak_Max_kW <- sqldf("SELECT Date, Month, ToU, Min(Ba</pre>
ttery_kW) AS Max_Discharge_W_PartPeak
                                     FROM Discharge W Part
                                     GROUP BY Month
                                     ORDER BY Max Discharge W PartPea
k")
## Calculate Monthly Demand Savings Generated by the Battery system fo
r the Winter ToU Period:
W OffPeak DemandRate <- 15.89
W PartPeak DemandRate <- ∅
W OffPeak DemandSavings <- Discharge W OffPeak Max kW %>%
                         mutate(W OffPeak DemandSavings = Max Dischar
ge W OffPeak * W OffPeak DemandRate)
W PartPeak DemandSavings <- Discharge W PartPeak Max kW %>%
                         mutate(W PartPeak DemandSavings = Max Discha
rge W PartPeak * W PartPeak DemandRate)
W OffPeak DemandSavings
          Date Month ToU Max Discharge W OffPeak W OffPeak DemandSa
##
vings
## 1 10/29/2017
                 Oct 19:15
                                         -30.65717
                                                                 -487
.1424
## 2 5/24/2017 May 21:45
                                         -22.93991
                                                                 -364
.5152
## 3 2/22/2017 Feb 22:30
                                         -19.93954
                                                                 -316
.8393
## 4 11/26/2017
                 Nov 2:00
                                         -15.22970
                                                                 -241
.9999
                                         -15.13168
## 5 3/25/2017
                 Mar 6:30
                                                                 -240
.4424
## 6 12/11/2017 Dec 1:15
                                         -11.02745
                                                                 -175
.2262
## 7 4/29/2017 Apr 17:15
                                         -10.45252
                                                                 -166
.0905
                 Jan 21:30
## 8 1/20/2017
                                         -10.27472
                                                                 -163
.2653
W PartPeak DemandSavings
                       ToU Max Discharge W PartPeak W PartPeak Demand
##
          Date Month
Savings
```

```
Jan 10:15
                                           -22.15351
## 1
      1/3/2017
0
                  Oct 20:30
                                           -20.46500
## 2 10/27/2017
## 3 3/28/2017
                  Mar 11:30
                                           -19.66640
## 4 11/24/2017
                  Nov 20:00
                                           -18.17849
## 5 5/24/2017
                  May 20:15
                                           -16.25294
## 6 4/21/2017
                 Apr 15:15
                                           -14.94967
## 7 12/18/2017
                  Dec 11:30
                                           -12.16475
## 8
       2/2/2017
                  Feb 18:30
                                           -10.27345
## Calculate Total Demand Savings generated by the battery system for
       whole year 2017:
Total S OffPeak DemandSavings <- sum(S OffPeak DemandSavings$S OffPeak
DemandSavings)
Total S OnPeak DemandSavings <- sum(S OnPeak DemandSavings$S OnPeak De
mandSavings)
Total S PartPeak DemandSavings <- sum(S PartPeak DemandSavings$S PartP
eak DemandSavings)
Total W OffPeak DemandSavings <- sum(W OffPeak DemandSavings$W OffPeak
DemandSavings)
Total W PartPeak DemandSavings <- 0
### Total Demand Savings for 2017:
Total_2017DemandSavings <- <pre>sum(Total_S_OnPeak_DemandSavings, Total_S_P
artPeak DemandSavings, Total S OffPeak DemandSavings, Total W OffPeak
DemandSavings, Total W PartPeak DemandSavings )
Total 2017DemandSavings
## [1] -4923.698
### ??? Question: How much total dollar savings did the battery system
generated for the customer in 2017?
```

Calculate total kW that the Battery system DISCHARGED for the Summe

r ToU Period:

```
Total_Discharge_S_OffPeak <- sum(Discharge_S_Off$Battery_kW)</pre>
Total Discharge S PartPeak <- sum(Discharge S Part$Battery kW)
Total Discharge S OnPeak <- sum(Discharge S On$Battery kW)
## Calculate total kW that Battery discharged for the Winter ToU Perio
d:
Total Discharge W OffPeak <- sum(Discharge W Off$Battery kW)
Total Discharge W PartPeak <- sum(Discharge W Part$Battery kW)
## Calculate total energy consumption kWh that Battery system DISCHARG
ED in 2017 with 15 minute interval data:
## kWh = kW * 0.25
Total Discharge S OnPeak kwh <- 0.25*Total Discharge S OnPeak
Total Discharge S PartPeak kwh<- 0.25*Total Discharge S PartPeak
Total Discharge S OffPeak_kwh <- 0.25*Total_Discharge_S_OffPeak
Total Discharge W PartPeak kwh <- 0.25* Total Discharge W PartPeak
Total Discharge W OffPeak kwh <- 0.25 * Total Discharge W OffPeak
Total Discharge S OnPeak kwh
## [1] -208.3935
Total Discharge S PartPeak kwh
## [1] -319.3843
Total Discharge S OffPeak kwh
## [1] -1167.445
Total_Discharge_W_PartPeak_kwh
## [1] -864.5874
Total_Discharge_W_OffPeak_kwh
## [1] -843.6629
## Calculate the Total Energy Charge Savings from the kW that Battery
system Discharged for each ToU and total 2017:
S OnPeak EnergyRate <- 0.12
S PartPeak EnergyRate <- 0.08
S OffPeak EnergyRate <- 0.06
```

```
W PartPeak EnergyRate <- 0.08
W_OffPeak_EnergyRate <- 0.06
Total 2017Discharge EnergySavings = sum(S OnPeak EnergyRate*Total Disc
harge S OnPeak kwh, S PartPeak EnergyRate*Total Discharge S PartPeak k
wh, S OffPeak EnergyRate*Total Discharge S OffPeak kwh, W PartPeak Ene
rgyRate * Total Discharge W PartPeak kwh, W OffPeak EnergyRate*Total D
ischarge W OffPeak kwh)
Total 2017Discharge EnergySavings
## [1] -240.3914
### ???? Question: How much total dollar savings did the battery syste
            for the customer in 2017?
m generated
## Calculate total kW that the Battery CHARGED for the Summer ToU Peri
od:
## Data manipulation to label ToU in the CHARGING dataset:
## Separate the Ending Timestamp Interval Column into Date and Timesta
mp Variables:
Charge 1 <- separate(Charge, Ending Timestamp, c('Date', 'ToU'), sep =
' ')
# Create a 'Month' and Weekday column from Date Variable:
Charge 2 <- Charge 1 %>%
 mutate(Weekday = weekdays(Date),
         Month = months(Date))
# Create new columns for Winter months, Summer months, Working Day, We
ekend, Holiday in the Charging dataset:
Charge 3 <- Charge 2 %>%
  mutate(W_Month = ifelse(Month %in% Winter_Months, 'True', 'False'),
         S_Month = ifelse(Month %in% Summer_Months, 'True', 'False'),
         Weekend = ifelse(Weekday %in% Off days, 'True', 'False'),
         Working Day = ifelse(Weekday %in% Off days, 'False', 'True'),
         Holiday = ifelse(Date %in% Holiday 2017, 'True', 'False'))
# Change the "Battery kW" into Numeric Variable:
Charge_3$Battery_kW <- as.numeric(as.character(Charge_3$Battery_kW))</pre>
Charge 4 <- na.omit(Charge 3)</pre>
head(Charge 4)
```

```
Date ToU Battery_kW Weekday Month W_Month S_Month Weekend
## 1 1/1/2017 0:15
                     0.28393
                                              True
                                                     False
                                 Sun
                                        Jan
                                                              True
## 2 1/1/2017 0:30
                     0.28387
                                 Sun
                                        Jan
                                              True
                                                     False
                                                              True
## 3 1/1/2017 0:45 0.28548
                                 Sun
                                       Jan
                                              True
                                                     False
                                                              True
## 4 1/1/2017 1:00
                    0.28636
                                 Sun
                                       Jan
                                              True False
                                                              True
## 5 1/1/2017 1:15
                     0.37450
                                 Sun
                                       Jan
                                              True False
                                                              True
                                       Jan True False
## 6 1/1/2017 1:30
                     0.34713
                                 Sun
                                                              True
    Working_Day Holiday
##
## 1
           False
                  False
## 2
           False
                  False
## 3
          False False
## 4
           False False
## 5
           False False
## 6
           False False
## Subset Summer and Summer Months in the Charge dataset:
Charge S ToU <- sqldf("SELECT *
                        FROM Charge 4
                        WHERE S_Month = 'True'")
Charge W ToU <- sqldf("SELECT *
                        FROM Charge 4
                       WHERE W Month = 'True'")
## Subset the ToU Period in the Charge dataset:
Charge S Part <- sqldf("SELECT *
                        FROM Charge S ToU
                       WHERE Working Day = 'True'
                        AND Holiday = 'False'
                        AND TOU IN
                        (SELECT S PartPeak
                        FROM ToU Period)")
Charge S On <- sqldf("SELECT *
                        FROM Charge S ToU
                        WHERE Working_Day = 'True'
                        AND Holiday = 'False'
                        AND TOU IN
                        (SELECT S OnPeak
                        FROM ToU Period)")
Charge W Part <- sqldf("SELECT *
                        FROM Charge W ToU
                        WHERE Working Day = 'True'
                        AND Holiday = 'False'
```

```
AND TOU IN
                        (SELECT W_PartPeak
                        FROM ToU Period)")
## Subset the Off Peak Period for Summer and Winter in the CHARGE data
set:
# Label Weekend and Holiday in the Summer 2017 in the Charge dataset
Charge_S_Weekend_Holiday <- sqldf("SELECT *</pre>
                        FROM Charge S ToU
                        WHERE Weekend = 'True'
                        OR Holiday = 'True'")
Charge W Weekend Holiday <- sqldf("SELECT *
                        FROM Charge W ToU
                        WHERE Weekend = 'True'
                        OR Holiday = 'True'")
Charge S Off 1 <- sqldf("SELECT *
                        FROM Charge S ToU
                        WHERE Working Day = 'True'
                        AND Holiday = 'False'
                        AND TOU IN
                        (SELECT S OffPeak
                        FROM ToU Period)")
Charge W Off 1 <- sqldf("SELECT *
                        FROM Charge W ToU
                        WHERE Working_Day = 'True'
                        AND Holiday = 'False'
                        AND ToU IN
                        (SELECT W OffPeak
                        FROM ToU Period)")
Charge S Off <- rbind(Charge S Off 1, Charge S Weekend Holiday)
Charge W Off <- rbind(Charge W Off 1, Charge W Weekend Holiday)
## Calculate total kW that Battery CHARGED for the Summer ToU Period:
Total Charge S OffPeak <- sum(Charge S Off$Battery kW)
Total Charge S PartPeak <- sum(Charge S Part$Battery kW)
Total Charge S OnPeak <- sum(Charge S On$Battery kW)
## Calculate total kW that the Battery Charged for the Winter ToU Peri
od:
```

```
Total_Charge_W_OffPeak <- sum(Charge_W_Off$Battery_kW)</pre>
Total Charge W PartPeak <- sum(Charge W Part$Battery kW)
### Caculate Total Energy Consumpton kWh that the Battery system charg
ed in 2017 with the 15 minute interval data:
## kWh = kW * 0.25
Total_Charge_S_OnPeak_kwh <- Total_Charge_S_OnPeak*0.25
Total Charge S PartPeak kwh <- Total Charge S PartPeak*0.25
Total Charge S OffPeak kwh <- Total Charge S OffPeak*0.25
Total_Charge_W_PartPeak_kwh <- Total_Charge_W_PartPeak*0.25
Total Charge W OffPeak kwh <- Total Charge W OffPeak*0.25
Total Charge S OnPeak kwh
## [1] 398.2857
Total Charge S PartPeak kwh
## [1] 593.015
Total Charge S OffPeak kwh
## [1] 1874.239
Total Charge W PartPeak kwh
## [1] 1331.128
Total_Charge_W_OffPeak_kwh
## [1] 2202.452
## Calculate the Total Cost of Energy Charge that the Battery system C
harged for each ToU and total 2017 (Energy Rate * kWh)
Total 2017Charge EnergyCost = sum(S OnPeak EnergyRate*Total Charge S O
nPeak kwh, S PartPeak EnergyRate*Total Charge S PartPeak kwh, S OffPea
k EnergyRate*Total Charge S OffPeak kwh, W PartPeak EnergyRate * Total
Charge W PartPeak kwh, W OffPeak EnergyRate*Total Charge W OffPeak kw
h)
Total 2017Charge EnergyCost
## [1] 446.3272
```

??? Question: How much total savings did the Battery system genera
te for the residential customer in 2017?
Calculate The Net Dollar Savings in 2017 that the smart Battery gen
erated for the customer: Energy Savings of Discharging kWh - Energy Co
st of Charging kWh:

Total_2017EnergySavings = Total_2017Discharge_EnergySavings * (-1) - T
otal_2017Charge_EnergyCost

Total_2017EnergySavings
[1] -205.9358

??? Question: How much total dollar savings did the smart Battery
system generate for the residential customer in 2017?

Total Savings = Demand Savings + Energy Savings

Total_2017_Savings = Total_2017DemandSavings*(-1) + Total_2017EnergySa
vings
Total 2017 Savings

[1] 4717.762