Denoising Diffusion Probabilistic Models \mathcal{O}

変分推論

正田 備也

masada@rikkyo.ac.jp

周辺尤度

ELBO

变分事後分布

観測データのモデリング

周辺尤度 (marginal likelihood)

▶ 結合分布が次のように書ける確率モデルを考える。

$$p_{\theta}(\mathbf{x}_{0:T}) = p_{\theta}(\mathbf{x}_T) \prod_{t=1} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$$

- ightharpoonup \mathbf{x}_0 だけが観測データ。 $\{\mathbf{x}_t: t=1,\ldots,T\}$ は潜在変数。
- ightharpoons \mathbf{x}_{t-1} の分布は \mathbf{x}_t だけに条件付けられている。
- ightharpoonup \mathbf{x}_0 の対数周辺尤度は、次のように書ける。

$$\log p_{\theta}(\mathbf{x}_0) = \log \int p_{\theta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$$

(2)

(1)

周辺尤度

ELBO

变分事後分布

観測データのモデリング

ELBO

▶ Jensen の不等式を使って、対数周辺尤度の下界を得る。

$$\log p_{\theta}(\mathbf{x}_{0}) = \log \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \frac{p_{\theta}(\mathbf{x}_{0:T})}{q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$\geq \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} \equiv L_{\text{VLB}} \quad (3)$$

 $q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0)$ が変分事後分布。VAE 同様、観測データ \mathbf{x}_0 に条件付けられており、パラメータ ψ は、観測データ $\mathcal{X} \equiv \{\mathbf{x}_0^{(1)}, \dots, \mathbf{x}_0^{(N)}\}$ を使って amortized な仕方で training する。

変分事後分布におけるマルコフ性の仮定

▶ 条件付き分布の定義より、

$$q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})} \frac{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{0})} = \frac{q_{\psi}(\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{0})}$$

$$= q_{\psi}(\mathbf{x}_{2},\mathbf{x}_{1}|\mathbf{x}_{0}) = q_{\psi}(\mathbf{x}_{1:2}|\mathbf{x}_{0})$$

$$q_{\psi}(\mathbf{x}_{3}|\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{3},\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})} \frac{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})} \frac{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{0})}$$

$$= q_{\psi}(\mathbf{x}_{3},\mathbf{x}_{2},\mathbf{x}_{1}|\mathbf{x}_{0}) = q_{\psi}(\mathbf{x}_{1:3}|\mathbf{x}_{0})$$

$$\cdots$$

$$q_{\psi}(\mathbf{x}_1|\mathbf{x}_0) \prod_{t=0}^{\infty} q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\dots,\mathbf{x}_1,\mathbf{x}_0) = q_{\psi}(\mathbf{x}_T,\dots,\mathbf{x}_1|\mathbf{x}_0) = q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0)$$
(4)

▶ ここで、 $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},...,\mathbf{x}_1,\mathbf{x}_0) = q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)$ が t=2,...,T について成り立つと 仮定することによって、変分事後分布を単純化する。 6 /

 $lacksymbol{
ho}$ このマルコフ性の仮定により、 $q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0)$ は、次のように分解できることになる。

$$q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0) = q_{\psi}(\mathbf{x}_1|\mathbf{x}_0) \prod_{t=2}^{T} q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)$$
(5)

ightharpoonup このとき、式 (3) の変分下界 L_{VIR} は、以下のように書き直せる。

$$L_{\text{VLB}} = \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0}) \prod_{t=2}^{T} q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log p_{\theta}(\mathbf{x}_{T}) d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \sum_{t=2}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$+ \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$(6)$$

▶ 以下、BP によるパラメータ更新が容易になるように、ELBO を書き直していく。7/24

ELBO の式の変形 (1/5)

▶ 式 (6) に現れる $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)$ についてベイズ則を使うと、次を得る。

$$q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}$$
(7)

- ▶ 式 (7) は、 $q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})$ と $q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})$ を、互いに書き換えることを可能にする。
- ▶ 言い換えれば、 \mathbf{x}_{t-1} と \mathbf{x}_t の並び順をひっくり返すことを可能にする。
- ▶ この式 (7) にもとづいて、式 (6) に現れる $q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})$ を $\frac{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}$ で 置き換えると、変分下界 L_{VIR} は以下のように書き換えられる。

$$L_{\text{VLB}} = \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log p_{\theta}(\mathbf{x}_{T}) d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \sum_{t=2}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$
$$+ \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \sum_{t=2}^{T} \log \frac{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$
(8)

ELBO の式の変形 (2/5)
$$L_{VLB} = \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log p_{\theta}(\mathbf{x}_{T}) d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \sum_{t=2}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{0}) \cdots q_{\psi}(\mathbf{x}_{T-1}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{0}) \cdots q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \sum_{t=2}^{T} \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} d\mathbf{x}_{1:T}$$

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log p_{\theta}(\mathbf{x}_{T}) d\mathbf{x}_{1:T} + \sum_{t=2}^{T} \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} d\mathbf{x}_{1:T}$$

$$+ \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{T})}{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \sum_{t=2}^{T} \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$+ \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) d\mathbf{x}_{1:T} \equiv L_{T} + \sum_{t=2}^{T} L_{t-1} + L_{0}$$

$$9^{(9)}/24$$

ELBO の式の変形 (3/5)

▶ ここで、式(7)より

$$q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t-2},\mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})} \cdot \frac{q_{\psi}(\mathbf{x}_{t-2}|\mathbf{x}_{t-1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-2}|\mathbf{x}_{0})} = \frac{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-2}|\mathbf{x}_{0})} q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t-2}|\mathbf{x}_{t-1},\mathbf{x}_{0})$$
(10)

▶ 同様に考えて、

$$\prod_{t=2}^{T} q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})} \prod_{t=2}^{T} q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})$$
(11)

 $lacksymbol{\blacktriangleright}$ 両辺に $q_{\psi}(\mathbf{x}_1|\mathbf{x}_0)$ を掛けて

$$q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0}) \prod q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) = q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0}) \prod q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})$$
(12)

- ▶ 式 (5) より、これは $q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0)$ に等しい。
- $lacksymbol{\triangleright}$ つまり、 $\mathbf{x}_1,\dots,\mathbf{x}_T$ の並び順をひっくり返しても、 $q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0)$ に等しい。

ELBOの式の変形 (4/5)

ightharpoonup 式 (12) を使って式 (9) の L_{t-1} を下のように書き換え、 $q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ を分けて扱う。

$$L_{t-1} \equiv \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int \left(q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0}) \prod_{t'\neq t} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'},\mathbf{x}_{0}) \right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$
(13)

ト ここで、 $q_{\psi}(\mathbf{x}_T|\mathbf{x}_0)q_{\psi}(\mathbf{x}_{T-1}|\mathbf{x}_T,\mathbf{x}_0) = q_{\psi}(\mathbf{x}_{T-1},\mathbf{x}_T|\mathbf{x}_0)$ より、

$$L_{t-1} = \int \left(q_{\psi}(\mathbf{x}_{T-1}, \mathbf{x}_{T} | \mathbf{x}_{0}) \prod_{t' \neq t \ \land \ t' < T} q_{\psi}(\mathbf{x}_{t'-1} | \mathbf{x}_{t'}, \mathbf{x}_{0}) \right) q_{\psi}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

▶ x_T を積分消去すると

ン
$$\mathbf{x}_{T}$$
 を積分消去すると
$$L_{t-1} = \int \left(q_{\psi}(\mathbf{x}_{T-1}|\mathbf{x}_{0}) \prod_{t' \neq t \ \land \ t' < T} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'}, \mathbf{x}_{0}) \right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})} d\mathbf{x}_{1:T-1}$$

同様の手順で $\mathbf{x}_{T-1},\ldots,\mathbf{x}_{t+1}$ を積分消去する。(次ページ)

(15)

(14)

ELBOの式の変形(5/5)

$$L_{t-1} = \int \left(q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0}) \prod_{t=0}^{t-1} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'}, \mathbf{x}_{0}) \right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})} d\mathbf{x}_{1:t}$$
(16)

 $lacksymbol{ iny}$ ここで、再び式 ig(12ig) を使って、今度は $\mathbf{x}_1,\dots,\mathbf{x}_{t-2}$ を積分消去する。

$$L_{t-1} = \int \left(\frac{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})\prod_{t'=2}^{t-1}q_{\psi}(\mathbf{x}_{t'}|\mathbf{x}_{t'-1},\mathbf{x}_{0})\right)q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})\log\frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}d\mathbf{x}_{1:t}$$

$$= \int \left(\frac{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{0})\prod_{t'=3}^{t-1}q_{\psi}(\mathbf{x}_{t'}|\mathbf{x}_{t'-1},\mathbf{x}_{0})\right)q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})\log\frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}d\mathbf{x}_{2:t}$$

. .

$$= \int \left(\frac{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})\right)q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})\log\frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}d\mathbf{x}_{t-1:t}$$

$$= \int q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})\left(\int q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})\log\frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}d\mathbf{x}_{t-1}\right)d\mathbf{x}_{t}$$

$$\equiv -\mathbb{E}_{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}\left[D_{\mathsf{KL}}(q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))\right]$$

周辺尤度

ELBO

变分事後分布

観測データのモデリング

変分事後分布の一つの設定方法

▶ 変分事後分布 $q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0) = q_{\psi}(\mathbf{x}_1|\mathbf{x}_0) \prod_{t=2}^T q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)$ は、 $\psi \equiv \{\alpha_1,\ldots,\alpha_T\}$ を パラメータとする以下のような多変量正規分布の積として構成されていると仮定する。

$$q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t};\sqrt{\alpha_{t}}\mathbf{x}_{t-1},(1-\alpha_{t})\mathbf{I}) \quad \text{for } t = 2,\dots,T$$
(18)

- ▶ すると、 $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0) = q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1})$ となり、 \mathbf{x}_1 以外は \mathbf{x}_0 に依存しなくなる。
- $lacksymbol{\triangleright}$ ところで、Appendix の式 (35) より、 $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-2})$ は、下のように書き換えられる。

$$q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-2}) = \mathcal{N}(\mathbf{x}_{t}; \sqrt{\alpha_{t}\alpha_{t-1}}\mathbf{x}_{t-2}, (1 - \alpha_{t}\alpha_{t-1})\mathbf{I})$$
(19)

lacktriangle 同じ議論を繰り返すと、 $q_{\psi}(\mathbf{x}_t|\mathbf{x}_0)$ は、下のように書き換えられる。

$$q_{\psi}(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$$
 where $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$ (20)

- ightharpoonup この $q_{\psi}(\mathbf{x}_t|\mathbf{x}_0)$ からは、簡単にサンプルを得られる(式 (25) を参照)。
- ▶ よって、式 (17) の期待値は、モンテカルロ近似できる。

14 / 24

変分事後分布の導出(1/3)

- lacktriangle ψ を自由パラメータとみなし、これ以降、 ψ を notations から脱落させることにする。
- ▶ 式 (18) と式 (20) より、式 (17) の $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ は、以下のように書き換えられる。

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0}) = \frac{q(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \mathbf{x}_{0})q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \quad \text{(cf. Eq. (7))}$$

$$\propto \exp\left(-\frac{1}{2}\left(\frac{(\mathbf{x}_{t} - \sqrt{\alpha_{t}}\mathbf{x}_{t-1})^{2}}{1 - \alpha_{t}} + \frac{(\mathbf{x}_{t-1} - \sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_{0})^{2}}{1 - \bar{\alpha}_{t-1}} - \frac{(\mathbf{x}_{t} - \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0})^{2}}{1 - \bar{\alpha}_{t}}\right)\right)$$

$$\propto \exp\left(-\frac{1}{2}\left(\left(\frac{\alpha_{t}}{1 - \alpha_{t}} + \frac{1}{1 - \bar{\alpha}_{t-1}}\right)\mathbf{x}_{t-1}^{2} - 2\left(\frac{\sqrt{\alpha_{t}}}{1 - \alpha_{t}}\mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}\mathbf{x}_{0}\right)\mathbf{x}_{t-1}\right)\right)$$

- lack つまり、 $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ は正規分布であることが分かる。
- lacktriangle そこで、その平均を $ilde{oldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0)$ 、分散を $ilde{eta}_t$ と書くことにする。つまり

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) \equiv \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t)$$
 (22)

と設定する。

変分事後分布の導出(2/3)

▶ すると、以下を得る。

 $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}$ for $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

▶ よって

 $\mathbf{x}_0 = \frac{\mathbf{x}_t}{\sqrt{\bar{\alpha}_t}} - \frac{\sqrt{1 - \bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} \epsilon \quad \text{for } \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ (26) 16 / 24

(25)

変分事後分布の導出(3/3)

ightharpoonup 式 (26) を式 (24) に代入することで、 $ilde{\mu}$ を以下のように書き換えることができる。

$$\tilde{\boldsymbol{\mu}}(\mathbf{x}_{t}, \boldsymbol{\epsilon}) = \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} \mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_{t})}{1 - \bar{\alpha}_{t}} (\frac{\mathbf{x}_{t}}{\sqrt{\bar{\alpha}_{t}}} - \frac{\sqrt{1 - \bar{\alpha}_{t}}}{\sqrt{\bar{\alpha}_{t}}} \boldsymbol{\epsilon})$$

$$= \left(\frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} + \frac{1 - \alpha_{t}}{(1 - \bar{\alpha}_{t})\sqrt{\alpha_{t}}}\right) \mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}$$

$$= \frac{1}{\sqrt{\alpha_{t}}} \left(\left(\frac{\alpha_{t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} + \frac{1 - \alpha_{t}}{1 - \bar{\alpha}_{t}}\right) \mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}\right)$$

$$= \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}\right)$$

$$(27)$$

▶ 変分事後分布 $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ の平均 $\tilde{\boldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0)$ は、 \mathbf{x}_t と、 $\epsilon \sim \mathcal{N}(\mathbf{0},\mathbf{I})$ から、計算できることがわかる。

周辺尤度

ELBO

变分事後分布

観測データのモデリング

観測データのモデリング

▶ ここで初めて、生成モデルの詳細を以下のように指定する。

$$p_{\theta}(\mathbf{x}_{T}) = \mathcal{N}(\mathbf{x}_{T}; \mathbf{0}, \mathbf{I})$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$$
(28)

- ightharpoonup ただし、 $\Sigma_{ heta}(\mathbf{x}_t,t)=\sigma_t^2\mathbf{I}$ と仮定する([1] を参照)。
- ▶ 式 (22) と式 (29) より、式 (17) にある KL 情報量は、一つの正規分布から別の正規分布への KL 情報量であると分かる。
- ▶ したがって、式 (17) の L_{t-1} は、以下のように書き直せる。 ¹

$$L_{t-1} = -\mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[\frac{1}{2\sigma_t^2} \|\tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \boldsymbol{\epsilon}) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t)\|^2 \right] + const. \tag{30}$$

¹https://scoste.fr/posts/dkl_gaussian/

ELBO revisited (1/3)

▶ 式 (27) を使うと、 L_{t-1} は、さらに、以下のように書き直せる。

$$L_{t-1} = -\mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon} \right) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \right\|^2 \right] + const.$$
 (31)

ightharpoonup ここで、 $\mu_{\theta}(\mathbf{x}_{t},t)$ を、関数 ϵ_{θ} を使って次のように parameterize する([1] を参照)。

$$\mu_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \epsilon_{\theta}(\mathbf{x}_{t}, t) \right)$$
(32)

ightharpoonup この式 (32) と、式 (25) の \mathbf{x}_t を使うと、 L_{t-1} は、以下のように書き換えられる。

$$L_{t-1} = -\mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\frac{(1 - \alpha_t)^2}{2\sigma_t^2 (1 - \bar{\alpha}_t)} \|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2 \right] + const.$$
 (33)

- ▶ 関数 ϵ_{θ} は、 ϵ を予測する役割を果たすと言える。
- ▶ これにともなって、外側の期待値も、標準正規分布に関する期待値に書き換えてある。

ELBO revisited (2/3)

▶ 次に、式 (9) の L_T を考える。

$$L_T \equiv \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0) \log \frac{p_{\theta}(\mathbf{x}_T)}{q_{\psi}(\mathbf{x}_T|\mathbf{x}_0)} d\mathbf{x}_{1:T}$$
(34)

- ▶ ノイズ分布 $p_{\theta}(\mathbf{x}_T)$ は trainable なパラメータを持たない。
- ▶ 近似事後分布 $q_{\psi}(\mathbf{x}_T|\mathbf{x}_0)$ についても、 ψ は自由パラメータ。
- ightharpoonup したがって、 L_T は定数と見なせる。
 - ト なお、自由パラメータ $\psi \equiv \{\alpha_1, \dots, \alpha_T\}$ の値の設定は、いわゆる noise scheduling に相当する。

ELBO revisited (3/3)

- ▶ 最後に、式 (9) の *L*₀ を考える。
- ▶ L_0 をどのように最大化するかは、 $p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)$ をどのように指定するかに依存する。
- ト そして、この $p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)$ は、直接的に観測データをモデル化する分布である。
 - ▶ 例えば、[1] の Section 3.3 を参照されたい。
- 注意 ここでは、denoising diffusion probabilistic models の変分推論 だけを議論している。このモデルがどこから来たのかについては、議論していない。(この点については [2] を参照。)

周辺尤度

ELBO

变分事後分布

観測データのモデリング

$$\int \exp\left(-\frac{(x-ay)^2}{2s^2} - \frac{(y-bz)^2}{2t^2}\right) dy = \int \exp\left(-\frac{t^2(x-ay)^2 + s^2(y-bz)^2}{2s^2t^2}\right) dy$$

$$= \int \exp\left(-\frac{(s^2 + t^2a^2)y^2 - 2(s^2bz + t^2ax)y + t^2x^2 + s^2b^2z^2}{2s^2t^2}\right) dy$$

$$= \exp\left(-\frac{t^2x^2 + s^2b^2z^2}{2s^2t^2}\right) \int \exp\left(-\frac{s^2 + t^2a^2}{2s^2t^2}\left(y^2 - \frac{2(s^2bz + t^2ax)}{s^2 + t^2a^2}y\right)\right) dy$$

$$= \exp\left(-\frac{t^2x^2 + s^2b^2z^2}{2s^2t^2} + \frac{(s^2bz + t^2ax)^2}{2s^2t^2(s^2 + t^2a^2)}\right) \int \exp\left(-\frac{s^2 + t^2a^2}{2s^2t^2}\left(y - \frac{s^2bz + t^2ax}{s^2 + t^2a^2}\right)^2\right) dy$$

$$\propto \exp\left(-\frac{s^2t^2x^2 + s^4b^2z^2 + t^4a^2x^2 + s^2t^2a^2b^2z^2 - t^4a^2x^2 - 2s^2t^2abzx - s^4b^2z^2}{2s^2t^2(s^2 + t^2a^2)}\right)$$

$$= \exp\left(-\frac{x^2 - 2abzx + a^2b^2z^2}{2(s^2 + t^2a^2)}\right) = \exp\left(-\frac{(x - abz)^2}{2(s^2 + t^2a^2)}\right)$$
(35)

- [1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. CoRR, abs/2006.11239, 2020.
- [2] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli.

Deep unsupervised learning using nonequilibrium thermodynamics.

CoRR, abs/1503.03585, 2015.