20.23. LOG N COMPLEXITY

EXAMPLE 1

```
for(i = 1; i \le n; i = i * 1){
c = c + 1;
```

ANSWER

This is a perception building as we know the increment will go from 1 to n as $1^n = 1$. $1^n \Rightarrow log_1(1) = n = 1 \ i.e \ log_a \ a = 1$ Similarly,

```
for(i = 1; i \le n; i = i * 2){
c = c + 1;
```

ANSWER

Here c=c+1 prints 1 time, then i will be $1\times 2=2$, then $2\times 2=4$, $4\times 2=8$... till $2^k\geq n$ i. e. number of iteration will be 2^k but the iteration will not be greater than that of n.

i	$i \times 2$	n
1	$1 \times 2 = 1$	n
2	$2 \times 2 = 4$	n
2^{k-1}	$2^{k-1} \times 2^k = 2^k \ge$	n

THEREFORE,

$$2^k \ge n$$

 $k = log_2 n \text{ or } log n$

Where k is number of iterations that will run upto n.

Now say n = 5:

$$k = log_2 5 = 2.3$$

BUT THE ACTUAL ITERATIONS THAT WE HAVE IS:

1, 2, 4 *i. e.* 3 *times*.

HENCE EITHER WE DO: $\lfloor \log n \rfloor + 1 \ or \ \lceil \log n \rceil$

floor(logn) + 1 or ceil(logn)

HENCE NUMBER OF ITERATIONS:

 $\lfloor \log n \rfloor + 1 \ or \lceil \log n \rceil$

AND COMPLEXITY STANDS AS:

 $O(\lfloor \log n \rfloor + 1)$ or $O(\lceil \log n \rceil) = O(\log n)$

EXAMPLE 2

```
for(i = 1; i \le n; i = i * 3){
c = c + 1;
```

Number of iterations: $\lfloor \log_3 n \rfloor + 1$ or $\lceil \log_3 n \rceil$

COMPLEXITY:

 $O(\lfloor \log_3 n \rfloor + 1) \text{ or } O(\lceil \log_3 n \rceil) = O(\log n)$