الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2012

امتحان بكالوريا التعليم الثانوي

الشعبة : علوم تجريبية

اختبار في مادة: الرياضيات المدة: 3 ساعات ونصف

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (05 نقاط)

 $u_{n+1} = \sqrt{2u_n + 3}: n$ عدد طبيعي $u_0 = 1$ المعرّفة بحدّها الأول $u_0 = 1$ و من أجل كل عدد طبيعي المعرّفة بحدّها الأول

لتكن h الدالة المعرّفة على المجال $\left| \frac{3}{2}; +\infty \right|$ كما يلي: $\left| \frac{3}{2}; +\infty \right|$ $h(x) = \sqrt{2x+3}$

المستقيم ذو معادلة $h(x) = \sqrt{2x} + 3$ و (C) تمتيلها البياني و (Δ) المستقيم ذو معادلة y = x في المستوي المنسوب إلى معلم متعامد ومتجانس. (انظر الشكل المقابل).

أ) – أعد رسم الشكل المقابل على ورقة الإجابة ثم مثل على محور الفواصل الحدود u_1 ، u_2 ، u_3 ، u_4

(دون حسابها و موضحا خطوط الإنشاء).

- ب) ضع تخمينا حول اتجاه تغيّر (u_n) و تقاربها.
- $0 < u_n < 3$: n برهن بالتراجع أنَّه من أجل كل عدد طبيعي (2
 - . (u_n) ادرس اتجاه تغیّر المتتالیة ادرس ا
 - $\lim_{n\to +\infty} u_n$ بستنتج أنّ المتتالية (u_n) متقاربة، ثم احسب (ب

التمرين الثاني: (04 نقاط)

 $z=rac{3i(z+2i)}{z-2+3i}$ المعادلة ذات المجهول z التالية: \mathbb{C} المعادلة ذات المجهول (1

 $(z \neq 2 - 3i)$ حيث

- حل في $\mathbb C$ هذه المعادلة.
- ينسب المستوي المركب إلى المعلم المتعامد و المتجانس ($O; \overrightarrow{u}, \overrightarrow{v}$) ينسب المستوي المركب إلى المعلم المتعامد و المتجانس ($z_B = 1 i\sqrt{5}$) ينسب المستوي المركب إلى المعلم المتعامد و المتجانس $z_A = 1 + i\sqrt{5}$: الترتيب $z_A = 1 + i\sqrt{5}$
 - تحقق أنّ A و B تنتميان إلى دائرة مركزها O يطلب تعيين نصف قطرها.
- $z' = \frac{3i(z+2i)}{z-2+3i}$ کر فق بکل نقطة M من المستوي لاحقتها $z \neq 2-3i$ النقطة M لاحقتها $z \neq 2-3i$ من المستوي لاحقتها $z \neq 2-3i$ النقطة $z \neq 2-3i$ النقطة $z \neq 2-3i$ من المستوي لاحقتها $z \neq 2-3i$ النقطة $z \neq 2-3i$

.
$$[CD]$$
 محور القطعة $z_C=3i$ و $z_D=2-3i$ ، $z_C=-2i$ النقط $z_C=2i$ النقط $z_C=3i$ و القطعة $z_C=2i$

DM و CM بدلالة المسافة OM' عبر عن المسافة OM'

ب- استنتج أنّه من أجل كل نقطة M من (Δ) فإنّ النقطة M تنتمي إلى دائرة (γ) يطلب تعيين مركزها و نصف قطرها. تحقق أن E تنتمي إلى (γ) .

التمرين الثالث: (04 نقاط)

الفضاء منسوب إلى المعلم المتعامد و المتجانس (C; \vec{i} , \vec{j} , \vec{k}) نعتبر المستوي (C) ذا المعادلة: C(-1;3;1) ، B(2;2;-1) ، A(1;-2;5) و النقط (14x + 16y + 13z - 47 = 0

1) أ – تحقق أنّ النقط A، B و C ليست في استقامية.

.(P) هو (ABC) هو بيّن أنّ المستوي

(AB) جد تمثيلا وسيطيا للمستقيم (2

[AB] أ – اكتب معادلة ديكارتية للمستوي المحوري (Q) للقطعة

.
$$(Q)$$
 تنتمي إلى المستوي $D\bigg(-1;-2;\frac{1}{4}\bigg)$ تنتمي إلى المستوي ب

(AB) و المستقيم D النقطة D

التمرين الرابع: (07 نقاط)

 $f(x)=x+5+6\ln\left(rac{x}{x-1}
ight)$: كما يلي: $\int -\infty;0$ لتكن $\int -\infty;0$ الدالة المعرّفة على المجال $\int -\infty;0$ المنسوب إلى المعلم المتعامد والمتجانس (C_f)

المنتيجة هندسيا. المنتيجة هندسيا. $\lim_{x \to 0} f(x)$ أ- احسب المنتيجة هندسيا.

 $\lim_{x \to -\infty} f(x) \quad (x) \quad -\infty$

.
$$f'(x) = \frac{x^2 - x - 6}{x(x-1)}$$
، $]-\infty;0$ من أجل كل عدد حقيقي x من أجل كل عدد حقيقي (2

استنتج اتجاه تغيّر الدالة f ، ثم شكّل جدول تغيّر اتها.

. $-\infty$ بجو ال (C_f) الذي معادلة له: y=x+5 هو مستقيم مقارب مائل للمنحنى (Δ) الذي معادلة له: y=x+5 النسبة للمستقيم (Δ).

-1,1<eta<-1 و -3,5<lpha<-3,4 و eta حيث $f\left(x
ight)=0$ و $f\left(x
ight)=0$ بيّن أنّ المعادلة و $f\left(x
ight)=0$

 (Δ) أنشئ المنحنى (C_f) و المستقيم (5

$$B\left(-2; \frac{5}{2} + 6\ln\left(\frac{3}{4}\right)\right)$$
 و $A\left(-1; 3 + 6\ln\left(\frac{3}{4}\right)\right)$ و أ- نعتبر النقطتين (6

 $\cdot (AB)$ بيّن أن $y = \frac{1}{2}x + \frac{7}{2} + 6\ln\frac{3}{4}$ بيّن أن

. بيّن أنّ المستقيم (AB) يمس المنحنى (C_f) في نقطة M_0 يطلب تعيين إحداثيتيها ب

 $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$: لتكن $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$

الموضوع الثاني

التمرين الأول: (04,5 نقاط)

$$u_{n+1} = 3 + \sqrt{u_n - 3}$$
 : $u_n = \frac{13}{4}$ و من أجل كل عدد طبيعي $u_0 = \frac{13}{4}$ المتتالية العددية المعرّفة بحدّها الأوّل $u_n = \frac{13}{4}$

 $3 < u_n < 4$: n بر هن بالتراجع أنَّه من أجل كل عدد طبيعي (1

. استنتج أن
$$(u_n)$$
 متز ايدة تماما . $u_{n+1} - u_n = \frac{-u_n^2 + 7u_n - 12}{\sqrt{u_n - 3} + u_n - 3}$: n متز ايدة تماما . (2) بين أنه من أجل كل عدد طبيعي

برر لماذا (u_n) متقاربة.

$$v_n = \ln(u_n - 3)$$
 :ب المنتالية المعرّفة على $\mathbb N$ بية المعرّفة المعرّفة على (4

أ) برهن أنّ
$$(v_n)$$
 متتالية هندسية أساسها $\frac{1}{2}$ ، ثم احسب حدّها الأول.

$$\lim_{n\to +\infty} u_n$$
 بدلالة u ، ثم احسب v_n و v_n و بدلالة v_n اكتب كلاً من v_n

$$P_n = (u_0 - 3)(u_1 - 3)(u_2 - 3) \times ... \times (u_n - 3) : n$$
 عدد طبیعی $n = (u_0 - 3)(u_1 - 3)(u_2 - 3) \times ... \times (u_n - 3) = n$ خصنع من أجل كل عدد طبيعي

$$\lim_{n\to+\infty} P_n = \frac{1}{16}$$
 اکتب P_n بدلالة n ، ثم بیّن أن

التمرين الثاني: (04 نقاط)

، $A\left(-1;0;1
ight)$ انعتبر النقط المتعامد و المتجانس و المتجانس ($O\,;\overrightarrow{i}\,,\overrightarrow{j}\,,\overrightarrow{k}\,$) نعتبر النقط

$$.C\left(1;-1;0
ight)$$
 و $B\left(2;1;0
ight)$

1) بيّن أنّ النقط A ، B و B ، مستويا.

$$.(ABC)$$
 بيّن أنّ $2x-y+5z-3=0$ هي معادلة ديكارتية للمستوي (2

$$H\left(\frac{13}{15}; -\frac{13}{30}; \frac{1}{6}\right)$$
 و $D\left(2; -1; 3\right)$ عن الفضاء حيث: $D\left(2; -1; 3\right)$ و $D\left(2; -1; 3\right)$

(ABC) أ- تحقّق أنّ النقطة D لا تنتمى إلى المستوي (ABC).

. (ABC) على المستوي H هي المسقط العمودي للنقطة D على المستوي H

- استنتج أنّ المستويين (ADH) و (ABC) متعامدان، ثم جد تمثيلا وسيطيا لتقاطعهما.

التمرين الثالث: (04,5 نقاط)

$$P(z) = z^3 - 12z^2 + 48z - 72$$
: حيث Z حيث المركب ك عثير الحدود للمتغيّر المركب $P(z) = z^3 - 12z^2 + 48z - 72$

أ- تحقّق أنّ 6 هو جذر لكثير الحدود P(z)

$$P(z) = (z-6)(z^2 + \alpha z + \beta)$$
: عدد مركب عدد مركب و β و α بحيث من أجل كل عدد مركب $z = -1$

P(z)=0 المعادلة \mathbb{C} ، المعادلة الأعداد المركبة

C، B ، A . $(O; \overrightarrow{u}, \overrightarrow{v})$ المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $z_{C}=3-i\sqrt{3}$ و $z_{B}=3+i\sqrt{3}$ ، $z_{A}=6$ المستوي المركب لواحقها على الترتيب $z_{C}=3-i\sqrt{3}$ و $z_{B}=3+i\sqrt{3}$ ، $z_{A}=6$ الشكل الأسي.

ب-اكتب العدد المركب $\frac{z_A-z_B}{z_A-z_C}$ على الشكل الجبري، ثم على الشكل الأسي. -2 المثلث -2 -استنتج طبيعة المثلث -2

. $\frac{\pi}{2}$ و زاویته $\sqrt{3}$ نسبته $\sqrt{3}$ نسبته $\sqrt{3}$ التشابه المباشر الذي مرکزه $\sqrt{3}$. $\sqrt{3}$ د الکتابة المرکبة للتشابه $\sqrt{3}$.

ا جد الحدابه المرحبه للسابه ال

. S النقطة A صورة النقطة A بالتشابه A

ج- بيّن أنّ النقط A '، B ، A في استقامية.

التمرين الرابع: (07 نقاط)

- $g\left(x\right)=1-x\;e^{x}$ كما يلي: $g\left(x\right)=1-x\;e^{x}$ كما يلي (I
 - $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to -\infty} g(x)$ احسب (1
 - 2) ادرس اتجاه تغيّر الدالة g، ثم شكل جدول تغيّراتها.
- . $[-1;+\infty[$ المعادلة α على المجال g(x)=0 تقبل حلاً وحيدا α على المجال g(x)=0 . \mathbb{R} على g(x) ، ثم استنتج إشارة g(x) على g(x) على .
- $f(x) = (x-1)e^x x 1$: كما يلي: $f(x) = (x-1)e^x x 1$ نعتبر الدالة $f(x) = (x-1)e^x x 1$ نعتبر الدالة $f(x) = (x-1)e^x x 1$ نعتبر الدالة $f(x) = (x-1)e^x x 1$ نعتبر المعرفة على المعرفة عل
 - $\lim_{x \to -\infty} f(x)$ احسب (1
- . f'(x) = -g(x) فإن: f فإن: f فإن: f فإن: f التكن f مشتقة الدالة f . بيّن أنّه من أجل كل عدد حقيقي f من f مشتقة الدالة f . f على المجال f المجال f . f شكّل جدول تغيّر ات الدالة f .
 - . (10^{-2} يين أنّ $f(\alpha) = -\left(\frac{\alpha^2 + 1}{\alpha}\right)$ ثم استنتج حصر اللعدد ($f(\alpha) = -\left(\frac{\alpha^2 + 1}{\alpha}\right)$ ثم استنتج حصر اللعدد ($f(\alpha) = -\left(\frac{\alpha^2 + 1}{\alpha}\right)$
- y=-x-1 هو مستقيم مقارب مائل للمنحنى (Δ) ذا المعادلة y=-x-1 هو مستقيم مقارب مائل للمنحنى (Δ) بجوار y=-x-1 بجوار (Δ) بالنسبة إلى (Δ).
 - . $1,5 < x_2 < 1,6$ و $-1,6 < x_1 < -1,5$ و x_2 حيث $x_1 < 1,5$ و $x_2 < 1,6$ و $x_1 < -1,5$ د (5 معادلة $x_1 < 1,5$ د $x_2 < 1,6$ د $x_2 < 1,6$ د $x_1 < -1,5$ د $x_2 < 1,6$ د $x_2 < 1,6$ د $x_1 < -1,5$ د $x_2 < 1,6$ د $x_2 < 1,6$ د $x_2 < 1,6$ د $x_1 < -1,5$ د $x_2 < 1,6$ د x
 - $.\,h\left(x\right)\!=\!\left(ax+b\right)\!e^{x}$ كما يلي: \mathbb{R} كما يلي الدالة المعرّفة على h

 \mathbb{R} على $x\mapsto x\,e^x$ المحددين الحقيقيين a و a بحيث تكون a دالة أصلية للدالة a على \mathbb{R} على \mathbb{R} على \mathbb{R} .

الإجابة لموضوع مقترح لدورة2012 رياضيات/علوم تجريبية

المجموع	مجزأة	الموضوع الأول	
		التمرين الأول: (05 نقاط)	المتتاليات
	01	ا) نقل الشكل و إنشاء u_0 ، u_1 ، u_2 ، u_3 و u_3 (دون حسابها).	
	2×0,25	(u_n) حسب الشكل نخمن أنّ (u_n) متزايدة و متقاربة نحو 3.	
	01	$0 < u_n < 3$ ، \mathbb{N} من $n < 0$ البرهان بالتراجع أن : من أجل كل n من $n < 0$	
05	01	دراسة اتجاه تغیر المتتالیة (u_n) :	العددية
		$\mathbb N$ من أجل كل n من n من $u_{n+1}-u_n>0$ أذن u_n منتالية منز ايدة تماما على	•
	0,5	ب) بما أنّ (u_n) متزايدة تماما و محدودة من الأعلى فهي متقاربة.	
		$l>0$ مع $-l^2+2l+3=0$ مع $\lim_{n\to+\infty}u_n=l$ حساب	
	1	. $\lim_{n\to+\infty} u_n = 3$: مرفوض اذن $l_2 = -1$ مقبول و منه $l_1 = 3$	
		التمرين الثاني: (04 نقاط)	
	0,25	$z^2 - 2z + 6 = 0$ تعني $z = \frac{3i(z+2i)}{z-(2-3i)}$ $z \neq 2-3i$ (1)	
	3x0,25	$z_2 = 1 + i\sqrt{5} = z_A$ $z_1 = 1 - i\sqrt{5} = z_B$ $\Delta = (2i\sqrt{5})^2$	
04	2×0,5	O النقطتان A و B تتنميان إلى دائرة مركزها $ z_A = z_B =\sqrt{6}$ (2 و نصف قطرها $\sqrt{6}$.	الأعداد المركبة
	01	$OM' = z' = 3 \times \frac{CM}{DM} (1) (3)$	
	0,5	ب) CM = DM أي CM = 3 أي	
	2x0,25	OE=3 تتنمي إلى الدائرة التي مركزها O و نصف قطرها3، $E=0$.	
		التمرين الثالث: (04 نقاط)	
04	0,75	ومنه \overrightarrow{AC} و \overrightarrow{AC} ومنه \overrightarrow{AC} ومنه \overrightarrow{AC} ومنه عير مرتبطين \overrightarrow{AB} ومنه خطيا.	
	0,75	$(P)=(ABC)$ ب $(P)=(ABC)$ إذن $(A,B,C\in P)$ أو طريقة أخرى	

The state of the s	0,5	$\begin{cases} x=1+\lambda \ y=-2+4\lambda \ (\lambda\in\mathbb{R}): (AB) \ z=5-6\lambda \end{cases}$ مثيل وسيطي للمستقيم (2	الهندسة
	01	3) أ) Q):2x+8y-12z+21=0 (أي طريقة تقبل).	في
	0,25	$D \in (Q)$ (φ	الفضاء
	0,75	$d\left(D;\left(AB\right)\right) = \frac{\sqrt{213}}{4} \ (\Rightarrow$	

الإجابة لموضوع مقترح لدورة2012 رياضيات/علوم تجريبية

		التمرين الرابع: (07 نقاط)	
	2×0,25	دي C_f ن المنحنى	
	0,25	$\lim_{x \to -\infty} f(x) = -\infty (\psi$	
	0,5 0,5	$f'(x) = \frac{x^2 - x - 6}{x(x - 1)} (2)$ $-\infty + \frac{-2}{0} - 0$ $f'(x) = \frac{x^2 - x - 6}{x(x - 1)} (2)$	
	0,5	جدول تغیرات الدالة $f'(x)$ $-\infty$ -2 0 $f'(x)$ $+$ 0 $ f(-2)=3+6\ln\left(\frac{2}{3}\right)$ $f(-2)\approx 0,56$	الدوال
	0,5	$\lim_{x \to -\infty} f(x) - (x+5) = 0 \text{ (1)}$	العددية
07	0,5	$f(x)-(x+5)=6\ln\left(rac{x}{x-1} ight)$ (ب (Δ) يقع تحت $f(x)-(x+5)<0$ یقع تحت $f(x)-(x+5)<0$ یقع تحت من أجل کل $f(x)$	حساب المساحات
	2×0,5	4) \bullet تطبيق مبرهنة القيم المتوسطة على المجال $[-3,5;-3,4]$. \bullet تطبيق مبرهنة القيم المتوسطة على المجال $[-1,1;-1]$.	
	0,75	(Δ) و المستقيم (Δ) و المستقيم (Δ	
	0,5	$y = \frac{1}{2}x + \frac{7}{2} + 6\ln\left(\frac{3}{4}\right) : (AB)$ أ- معادلة المستقيم (6	
	01	$x_0 < 0$ مع $x_0^2 - x_0 - 12 = 0$ ب- $x_0^2 - x_0 - 12 = 0$ مع $x_0^2 - x_0 - 12 = 0$ مع $x_0 = -3$	
	0,5	$g'(x) = f(x)$ ، $]-\infty;0[$ من أجل كل x من أجل كل (7	
		الموضوع الثاني	
	0,75	التمرين الأول: ($04,5$ نقط) $u_n < 4$ ، $n \in \mathbb{N}$ کل $u_n < 4$ ، $n \in \mathbb{N}$ کا (1) البر هان بالتراجع أنّ من أجل كل	
04,5	0,5	$u_{n+1} - u_n = \frac{-u_n^2 + 7u_n - 12}{\sqrt{u_n - 3} + u_n - 3}$ (2)	
U4,3	0,5 0,25	استنتاج أنّ (u_n) متزايدة تماما (u_n) محدودة من الأعل و متزايدة.	
	0,43	((((((((((((((((((((

الإجابة لموضوع مقترح لدورة 2012 رياضيات/علوم تجريبية

		الإجاب لموصوع معترج لدور 20126 رياضيات العوم لجريبية	
	0,75	$v_0 = \ln \frac{1}{4}$ متتالیة هندسیة اساسها $\frac{1}{2}$ و حدّها الأول (v_n) (۱	Ġ
	0,5+0,25	$u_n = 3 + e^{\left(\frac{1}{2}\right)^n \times \ln\frac{1}{4}} \text{if } v_n = \left(\frac{1}{2}\right)^n \times \ln\frac{1}{4} \text{(} $	
	0,25	$\lim_{n \to +\infty} u_n = 4$ $P_n = e^{v_0} \times e^{v_1} \times e^{v_1} \times \dots \times e^{v_n} (\Rightarrow)$	
	0,25+0,5	$\lim P_n = \frac{1}{16}$ $P_n = e^{2\left(\ln\frac{1}{4}\right)\left[1-\left(\frac{1}{2}\right)^{n+1}\right]}$ و منه $P_n = e^{\nu_0 + \nu_1 + \dots + \nu_n}$	
		التمرين الثاني: (04 نقاط)	
	0,75	ب خیر مرتبطین خطیا \overline{AC} ، \overline{AC} غیر مرتبطین خطیا \overline{AC} ، غیر مرتبطین خطیا \overline{AC} ، غیر مستویا.	
	01	(ABC) هي معادلة لـ $2x - y + 5z - 3 = 0$	
	0,25	$D \notin (ABC)^{-1}(3)$	
04	01	$(H \in (ABC)) \circ \overrightarrow{DH} \cdot \overrightarrow{AC} = 0 \circ \overrightarrow{DH} \cdot \overrightarrow{AB} = 0) \circ \overrightarrow{DH} \left(\frac{-17}{15}; \frac{17}{30}; \frac{-17}{6}\right) - \cdots$ $(H \in (ABC)) \circ \overrightarrow{DH} = k \cdot \overrightarrow{n} \circ (ABC)$	الهندسة
		$\overline{AH}\left(\frac{28}{15};\frac{-13}{30};\frac{-5}{6}\right)$ متعامدان. (ABC) و (ADH) متعامدان. $x = \frac{28}{15}t - 1$	في الفضاء
	2×0,5	$\overline{AH}\left(\frac{28}{15};\frac{-13}{30};\frac{-5}{6}\right)$ متعامدان. (ABC) و (ADH) و (ABC) متعامدان. $\begin{cases} x=\frac{28}{15}t-1 \\ y=\frac{-13}{30}t \end{cases}$ $(t\in\mathbb{R})$ $z=\frac{-5}{6}t+1$	
		التمرين الثالث: (04,5 نقطة)	
	0,5	P(6) = 0 - 1 (1)	الأعداد
	0,5	$P(z) = (z-6)(z^2-6z+12)$	المركبة
	0,75	$z=3+i\sqrt{3}$ او $z=3-i\sqrt{3}$ او $z=6$ او $z=3+i\sqrt{3}$	
	0,75	$z_C = 3 - i\sqrt{3} = 2\sqrt{3}e^{-i\frac{\pi}{6}}, z_B = 3 + i\sqrt{3} = 2\sqrt{3}e^{i\frac{\pi}{6}}, z_A = 6 = 6e^{i0} (1/2)$	
04,5	+0,25 0,25	$\frac{z_A - z_B}{z_A - z_C} = e^{i(-\frac{\pi}{3})} : \frac{z_A - z_B}{z_A - z_C} = \frac{1}{2} - i\frac{\sqrt{3}}{2} (+ \frac{1}{2} $	
	0,5	A جن B بالدور ان الذي مركزه C الذي مركزه C جن C الذي مركزه C بالدور ان الذي مركزه C و زاويته C أو طريقة أخرى) . إذن المثلث C متقايس الأضلاع.	
	44		

صفحة 3 من 4

الإجابة لموضوع مقترح لدورة 2012 رياضيات/علوم تجريبية

		الإجابة لموصوع مفترح لدوره2012 رياضيات/علوم بجريبية	
	0,5	$z'=i\sqrt{3}z-4i\sqrt{3}$: S العبارة المركبة للتشابه S : S العبارة المركبة للتشابه $z'=i\sqrt{3}z-4i\sqrt{3}$	
	0,25	$z_{A'} = 2i\sqrt{3}$ ب	
	0,25	ج- z_A-z_A الإن z_A-z_A في استقامية. $z_A-z_A=0$	
		التمرين الرابع: (07 نقطة)	
	$2 \times 0,25$	$\lim_{x \to +\infty} g(x) = -\infty : \lim_{x \to -\infty} g(x) = 1 \text{ (1 (I)}$	
	0.75	$e^x > 0$ لأنّ $-(1+x)$ ، إشارتها هي إشارة $g'(x) = -(1+x)e^x$ (2	
	0,75	 ♦ جدول تغیرات الدالة g 	
	0,25	3) أ- إثبات أنّ المعادلة $g(x)=0$ تقبل حلا وحيدا على المجال $g(x)=0$.	
	0,5	$-\infty$ + α - + ∞ $g(x)$ أشارة $g(x)$ أشارة $\alpha < 0,6$ أن $\alpha < 0,6$	
	0,25	$\lim_{x \to -\infty} f(x) = +\infty \ (1 \ (II)$	
· *	0,25	$f'(x) = -g(x)$ ، $]-\infty;2]$ من أجل كل x من أجل كل (2	
	0,25	$\frac{-\infty}{\phi}$ - $\frac{\alpha}{\phi}$ + $\frac{2}{2}$ $\frac{+\infty}{2}$: $f'(x)$ ϕ	الدو ال
	0,5	♦ جدول التغيرات.	العددية
07	0,5	$f(\alpha) = \frac{-1-\alpha^2}{\alpha}$ تبیان آن (3	حساب
	0,5	$2,72 < f(\alpha) < -2,08 $	المساحات
	0,25	$\lim_{x \to -\infty} f(x) - (-x - 1) = 0 (1) (4)$	
	+	$\frac{-\infty}{2} - \frac{1}{2} + \frac{2}{2}$ اشارتها $f(x) - (-x - 1) = (x - 1)e^{x}$ ب	
	0,25		
	0,25	الوضع النسبي	
	2x0,25	5) أ) مبرهنة القيم المتوسطة	
	0,75	$\cdot(C_f)$ ، (Δ) ب $)$ رسم	
	0,5	b = -1, a = 1 (1) (6)	
	0,25	$G(x) = x - (x - 1)e^{x} (\because$	