This is the $(p+q+2) \times 2(p+q)$ matrix A given by

$$A = \begin{pmatrix} \mathbf{1}_{p}^{\top} & -\mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} \\ \mathbf{1}_{p}^{\top} & \mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} \\ I_{p} & 0_{p,q} & I_{p} & 0_{p,q} \\ 0_{q,p} & I_{q} & 0_{q,p} & I_{q} \end{pmatrix}.$$

We leave it as an exercise to prove that A has rank p + q + 2. The right-hand side is

$$c = \begin{pmatrix} 0 \\ 1 \\ K \mathbf{1}_{p+q} \end{pmatrix}.$$

The symmetric positive semidefinite $(p+q)\times(p+q)$ matrix P defining the quadratic functional is

$$P = 2X^{\top}X$$
, with $X = \begin{pmatrix} -u_1 & \cdots & -u_p & v_1 & \cdots & v_q \end{pmatrix}$,

and

$$q = 0_{p+q}.$$

Since there are 2(p+q) Lagrange multipliers $(\lambda, \mu, \alpha, \beta)$, the $(p+q) \times (p+q)$ matrix $X^{\top}X$ must be augmented with zero's to make it a $2(p+q) \times 2(p+q)$ matrix P_a given by

$$P_a = \begin{pmatrix} X^\top X & 0_{p+q,p+q} \\ 0_{p+q,p+q} & 0_{p+q,p+q} \end{pmatrix},$$

and similarly q is augmented with zeros as the vector $q_a = 0_{2(p+q)}$.

Since the constraint $w^{\top}w \leq 1$ causes troubles, we trade it for a different objective function in which $-\delta$ is replaced by $(1/2) \|w\|_2^2$. This way we are left with purely affine constraints. In the next section we discuss a generalization of Problem (SVM_{h2}) obtained by adding a linear regularizing term.

54.3 Soft Margin Support Vector Machines; (SVM_{s2})

In this section we consider the generalization of Problem (SVM_{h2}) where we minimize $(1/2)w^{\top}w$ by adding the "regularizing term" $K\left(\sum_{i=1}^{p} \epsilon_i + \sum_{j=1}^{q} \xi_j,\right)$ for some K>0. Recall that the margin δ is given by $\delta=1/\|w\|$.

Soft margin SVM (SVM $_{s2}$):

minimize
$$\frac{1}{2}w^{\top}w + K(\epsilon^{\top} \xi^{\top})\mathbf{1}_{p+q}$$

subject to $w^{\top}u_i - b \ge 1 - \epsilon_i, \quad \epsilon_i \ge 0 \qquad i = 1, \dots, p$
 $-w^{\top}v_j + b \ge 1 - \xi_j, \quad \xi_j \ge 0 \qquad j = 1, \dots, q.$