Αριθμητική Ανάλυση - 1η Εργασία

Ονοματεπώνυμο: Νικόλαος Ιλαρίδης ΑΕΜ: 4524

January 10, 2024

1 Εισαγωγή

Τα προγραμματα για την εργασια εχουν υλοποιηθει με **python** και **matlab**. Σε ορισμενα σημεια της εργασιας εχει γινει χρηση γλωσσικου μοντελου "**chatGpt**" στα οποια και αναγραφεται σε σχολια στο εκαστοτε προγραμμα καθως υπαρχει και ο αντιστοιχος σχολιασμος στην περιγραφη της υλοποιησης μου.

2 Πρώτη Ασκηση

(α) Μέθοδος Διχοτόμησης

Στο αρχειο 'bisectionMethod.py' που βρισκεται στον φακελο 'Ex1' υλοποιω την μεθοδο της διχοτομησης για τον υπολογισμο ριζων της δοθεισας συναρτησης

Τα βηματα που ακολουθω είναι τα εξης:

- 1. Αρχικοποιω την συναρτηση που μας ενδιαφερει.
- 2. Ορίζω μια μεταβλητη mid η οποία είναι το μέσο του τρέχοντος διαστηματός.
- 3. Κανω χρηση μιας while η οποια τερματίζει οταν η αποσταση των 2 ακρων ειναι μικροτερη του lim δηλαδη το αποδεκτο σφαλμα των 5 δεκαδικων ψηφιων.
- 4. Μεσα στον βροχο υπολογιζω καθε φορα το νεο mid και αυξανω τον μετρητη times χωριζοντας ετσι το μεγαλο διαστημα σε υποδιαστηματα μεχρι να προσεγγισω την ριζα της συναρτησης.
- 5. Επειδη ομως η συναρτηση στο διαστημα [0,3] εχει ομοσημες τιμες στα ακρα πρεπει να σπασω το διαστημα μου καθως η μεθοδος της διχοτομησης βασιζεται στο θεορημα Bolzano. Για αυτον τον λογο εκτυπωνω το αντιστοιχο μηνυμα και εκτελω τον αλγοριθμο στα διαστηματα [0,1] και [1.5,3]

(β) $M \in θοδος$ Newton-Raphson

Στο αρχειο 'newtonRaphson.py' που βρισκεται στον φακελο 'Ex1' υλοποιω την μεθοδο Newton Raphson για τον υπολογισμο ριζων της δοθεισας συναρτησης

Τα βηματα που αχολουθω είναι τα εξης:

- 1. Αρχικοποιω την συναρτηση f καθως και την πρωτη παραγωγο της derivative1_f
- 2. Ορίζω μια αρχική ϵ κτιμήση $x\theta$
- 3. Χρησιμοποιω ενα βροχο while ο οποιος τερματίζει αν βρεθει η ριζα ή φτασει στον μεγιστο αριθμο επαναληψεων
- 4. Εντος της while υπολογιζω μια εκτιμιση της ριζας και ελεγχω αν η απολυτη τιμη της διαφορας της προηγουμενης και της νεας προσεγγισης ειναι μικροτερη του αποδεκτου σφαλματος

5. Αν δεν συγκλινει τοτε η νεα εκτιμηση x1 γινεται x0 και το i αυξανεται κατα 1

Επιπλέον αν καλεσουμε την συναρτηση 'newtonRaphson' με ορισμα True στην δευτερη παραμέτρο , παρατηρουμε ότι για την πρώτη ρίζα το τετραγώνο της καθε προσεγγισης είναι ισο με την προηγούμενη προσεγγιση αρά υπαρχεί τετραγώνικη συγκλίση σε αντίθεση με την δεύτερη . Αυτό είναι αναμένομενο και από την γραφική παραστάση της f καθώς στη δεύτερη ρίζα η καμπύλη έχει μικρή κλίση αρά και μικρή παραμέτρο.

(γ) Μεθοδος Τεμνουσας

Στο αρχειο '**SecantMethod.py**' που βρισκεται στον φακελο 'Ex1' υλοποιω την μεθοδο Secant για τον υπολογισμο ριζων της δοθεισας συναρτησης

Η μεθοδος Τεμνουσας απαιτει δυο αρχικές υποθέσεις και έκτελειται εως ότου ικανοποιηθούν καποιό από τα 2 κρητιρία :

- 1. Η απολυτη τιμη της συναρτησης (abs(f(x1))) ειναι μικροτερη απο την επιθυμητη ακριβεια (tolerance)
- 2. Εχει φτασει τον μεγιστο αριθμο επαναληψεων (MAX)

Ωστοσο στην αποδοση της μεθοδου παιζει σημαντικό ρόλο η επιλογή των αρχικών υποθεσεών , καθώς αν οι υποθεσείς είναι μάκρια μετάξυ τους η συναρτησή μπορεί να έχει λανθάσμενο αποτελέσμα

(δ) Συγκριση Αποτελεσματων

1. Bisection Method

(a) Ριζα: 0.85715 Επαναληψεις: 18

(b) Ριζα: 2.00000 Επαναληψεις: 17

2. Newton Raphson

(a) Ριζα: 0.85714 Επαναληψεις: 6

(b) Ριζα: 2.00000 Επαναληψεις: 33

3. Secant Method

(a) Ριζα: 0.85714 Επαναληψεις: 7

(b) Ριζα: 1.99368 Επαναληψεις: 14

Για την μεθοδο της διχοτομησης παρατηρουμε οτι στην πρωτη ριζα συγκλινει διακριτα πιο αργα απο τις αλλες 2 μεθοδους . Ομως στην δευτερη ριζα η μεθοδος διχοτομησης φαινεται να συγκλινει γρηγορα και με ακριβεια γεγονος που οφειλεται στις τιμες της f κοντα απο την ριζα οι οποιες ειναι αρκετα κοντα στο 0. Απο την αλλη πλευρα οι αλλες 2 μεθοδοι στην πρωτη ριζα συγκλινουν παρομοια ενω στην δευτερη ριζα η Secant φαινεται να ξεχωριζει , ωστοσο οφειλεται στις αρχικες υποθεσεις που δινουμε στην καθε μεθοδο

3 Δεύτερη Ασκηση

(α) Τροποποιημενη Μέθοδος Διχοτόμησης

H διαφορα της τροποποιημένης μεθόδου είναι η χρηση ένος τυχαίου αριθμού σε αντίθεση με την κλασική που αρχικοποίουμε με το μέσο του διαστημάτος.

(β) Τροποποιημενη Newton Raphson

Η μονη διαφορα της τροποποιημένης Newton Raphson με την γνησια είναι η χρηση της δευτέρης παραγωγού για την εκτιμήση της ρίζας.

(γ) Τροποποιημενη Μέθοδος Τέμνουσας

Η διαφορα της τροποποιημένης μεθοδού είναι η χρηση 3 αρχίχων σημείων σε αντίθεση με την γνησία που χρειάζεται μόνο 2 κάθως και ο νέος τύπος βάση του οποίου γίνεται η εκτίμηση

(δ) Συγκριση Αποτελεσματων

1. mod Bisection Method

- (a) Ριζα: -1.38212 Επαναληψεις: 20
- (b) Ριζα: notFound Επαναληψεις: -
- (c) Ριζα: 0.20518 Επαναληψεις: 20
- (d) Ριζα: 0.50008 Επαναληψεις: 20
- (e) Ριζα: 1.17611 Επαναληψεις: 20

2. mod Newton Raphson

- (a) Ριζα: -1.38130 Επαναληψεις: 5
- (b) Ριζα: -0.66667 Επαναληψεις: 14
- (c) Ριζα: 0.20518 Επαναληψεις: 4
- (d) Ριζα: 0.50000 Επαναληψεις: 5
- (e) Ριζα: 1.17612 Επαναληψεις: 5

3. mod Secant Method

(a) Ριζα: -1.38132 Επαναληψεις: 8

(b) Pιζα: -0.66667 Επαναληψεις: 23

(c) Ριζα: 0.20518 Επαναληψεις: 4

(d) Ριζα: 0.50000 Επαναληψεις: 6

(e) Ριζα: 1.17609 Επαναληψεις: 5

Παρατηρουμε οτι με την μεθοδο Διχοτομησης δεν μπορουμε να βρουμε την δευτερη ριζα . Αυτο οφειλεται στο γεγονος οτι η συναρτηση γυρω απο αυτη την ριζα δεν αποκταει θετικες τιμες γεγονος που οδηγει σε αποτυχια λογω του Θ.Βοlzano. Επισης ειναι διακριτο πως η Μεθοδος Διχοτομησης ειναι σημαντικα πιο αργη απο τις υπολοιπες , οι οποιες εμφανιζουν πολυ παρομοα αποτελεσματα τοσο στις ριζες οσο και στις επαναληψεις

(ε) Διαφορα Αποτελεσματων

Εκτελώντας τον αλγοριθμο modBisection 20 φορες διαπιστωνουμε οτι η τροποποιημενη μεθοδος διχοτομησης εμφανίζει διαφορετικό αποτελέσμα επαναληψέων γεγονός που οφείλεται στην χρηση τυχαίου αρίθμου.

(στ) Διαφορα Χρονου Εκτελεσης

Υπολογιζοντας τον συνολικό χρονό εκτελέσης του κάθε αλγοριθμού διαπιστώστα ότι οι τροποποιήμενες μεθόδοι κάτα μέσο όρο συγκλινούν πιο γρηγορά από τις γνησιές.

(a) Bisection: 0.000459

(b) Newton Raphson: 0.000656

(c) Secant: 0.00011

(a) mod Bisection: 0.00037

(b) mod Newton Raphson: 0.00133

(c) mod Secant: 0.00003

4 Τρίτη Ασκηση

(α) PA = LU

Στο προγραμμα $PA_LU.py$ βρισκώ την λυση του συστηματός Ax=b με την μεθόδο PA=LU. Πιο συγκεκριμένα αρχικά πραγματοποιώ διασπάση LU στον πινάκα A με την μεθόδο gauss δημιουργοντάς έτσι ένα ανώ και ένα κατώ τριγωνικό πινάκα. Στην συνέχεια λυνώ το συστημά Ly=b ή αλλιώς κανώ Forward Substitution και έπειτα λυνώ το συστημά Ux=y ή αλλιώς Backward Substitution . Κατάυτον τον τροπό έχω λυσεί το αρχικό συστημά Ax=b

(β) Cholesky

Ο αλγοριθμος **Cholesky** λαμβανει ενα πινακα συμμετρικο και θετικα ορισμενο και επιστρεφει ενα κατω τριγωνικο πινακα L καθως και τον αναστροφο του. Ωστοσο η εκφωνηση ζηταει μονο τον πινακα L. Η μεθοδος Cholesky μοιζει με την αναλυση PA=LU ωστοσο ειναι αρκετα πιο αποδοτικος.

Στην υλοποιηση μου έχω κανεί χρηση γλωσσίκου μοντέλου 'chatGpt' . Στο αρχείο cholesky.py έχω γραψεί σε σχολία τα σημεία που έχω χρησιμοποιησεί το γλωσσίκο μοντέλο καθως και τον κωδίκα μου πριν γίνει η χρηση. Μαλίστα ο δίκος μου κωδίκας είχε προβλημα στον υπολογίσμο της μεταβλητης Sum η οποία χρησιμοποιόταν στον τυπο υπολογίσμου του L

γ) Gauss-Seidel

Η μεθοδος **Gauss-Seidel** χρησιμοποιειται για την επιλυση γραμμικων συστηματων . Πιο συγκεκριμενα η συναρτηση που εχω υλοποιησει δεχεται εισοδο ενα πινακα Α και ενα διανυσμα b και επιστρεφει το διανυσμα x το οποιο υπολογίζεται με βαση τον τυπο που δινεται στην εκφωνηση . Η διαδικασια σταματαει οταν η διαφορα των 2 διαδοχικών επαναληψεών ειναι μικροτερη του αποδεκτου σφαλματος ή αν εκτελεστει ο βροχος πανώ απο τις μεγιστες επιθυμητες επαναληψεις

5 Τέταρτη Ασκηση

4.1) Αποδειξη Στοχαστικου

Για να είναι ο πιναχας ${\bf G}$ στοχαστίχος θα πρέπει το αθροισμά χαθε στηλης του πιναχά να ισουται με 1. Ετσι στο προγραμμά ${\bf Ex4.py}$ υπολογίζω το αθροισμά χαθε στηλης του πιναχά το οποίο είναι ισο με 1 , αρά οντώς είναι στοχαστίχος .

4.2) Ιδιοδιανυσμα Μεγιστης Ιδιοτιμης

Ο πινακας Google υπολογιζεται απο την συναρτηση $calc_G(A,q)$, η οποια αρχικοποιει τον πινακα με 0 και στην συνεχεια με β αση τον τυπο που δινεται υπολογιζει τις τιμες του .

Η ευρεση του ιδιοδιανυσματος με την μεγαλυτερη ιδιοτιμη γινεται με την μεθοδο δυναμεως (**Power Method**) ακολουθοντας τα εξης βηματα:

- (1) Δημιουργω ενα τυχαιο διανυσμα χ
- (2) Το αναλυω σε συνιστωσες x0 x1
- (3) Ελεγχω αν πληρουνται τα κρητιρα συγκλισης
- (4) Ενημερωνω καταλληλα το ιδιοδιανυσμα
- (5) Κανονικοποιω

4.3) $N\epsilon o\varsigma \Pi \nu \alpha \kappa \alpha \varsigma G$

Για το συγκεκριμένο ερωτημα επέλεξα να βελτιώσω τον βαθμο σημαντικότητας της Σελιδας 15.Ετσι δημιουργήσα 4 νέες ακμές:

- (1) 12-15
- (2) 8-15
- (3) 15-11
- (4) 10-15

Ετσι υπολογιζοντας την σημαντικοτητα της Σελιδας 15 πριν και μετα την αλλαγη παρατηρουμε οτι αυξηθηκε απο 1.2125 σε 2.1333333333

4.4) $A\lambda\lambda\alpha\gamma\eta$ q

Αλλαζοντας την πιθανοτητα q σε 0.02 και 0.6 διακρινουμε οτι οσο μεγαλυτερη τιμη εχει η πιθανοτητα q τοσο πιο 'αχρηστο' γινεται το pagerank καθως ολες οι τιμες ειναι πιο κοντα μεταξυ τους .

Ο σκοπος της πιθανοτητας q είναι να προσομοίωνει την συμπεριφορά του χρηστή που μεταπήδαει τυχαία από μια σελίδα σε μια αλλή .

4.5) Αλλαγη στον πινακα γειτνιασης

Μετα την αλλαγη των χελιων [8,11] χαι [12,11] σε 3 παρατηρουμε μια αυξηση στην συμαντιχοτητα της Σελιδας 11. Ετσι μπορουμε να πουμε πως η στρατηγιχη αυτη δουλευει χαθως υπηρξε σημαντιχη αλλαγη στο pagerank

4.6) Διαγραφη Σελιδας 10

- (1) Page 1: 0.0268236 Page 1 after: 0.0470966
- (2) Page 2: 0.0298616 Page 2 after: 0.0409113
- (3) Page 3: 0.0298613 Page 3 after: 0.0359354
- (4) Page 4: 0.0268228 Page 4 after: 0.0320696
- (5) Page 5: 0.0395888 Page 5 after: 0.0428002
- (6) Page 6: 0.0395886 Page 6 after: 0.0413910
- (7) Page 7: 0.0395877 Page 7 after: 0.0516587
- (8) Page 8: 0.0395876 Page 8 after: 0.0502495
- (9) Page 9: 0.0745681 Page 9 after: 0.0482228
- (10) Page 10: 0.1063182 Page 10 after: -
- (11) Page 11: 0.0745663 Page 11 after: 0.1709634
- (12) Page 12: 0.1063163 Page 12 after: 0.1035985
- (13) Page 13: 0.1250889 Page 13 after: 0.0411622
- (14) Page 14: 0.1163333 Page 14 after: 0.1074622
- (15) Page 15: 0.1250867 Page 15 after: 0.1864787

Παρατηροντας τις αλλαγες διαχρινουμε μια μεγαλη πτωση στην τιμη της Σελιδας 13. Αυτο συμβαινει καθως ηταν η μοναδικη ακμη με αρχη την Σελιδα 10 και εφοσον η Σελιδα 10 ειχε υψηλη επισκεψιμοτητα , ειναι αναμενομενη η πτωση της.