Задания к уроку 1

Присылайте фото листочков с вашими решениями (1-4 задание) Прикладывайте ссылку на ваш репозиторий с кодом (5 задание)

1. Задание (на листочке)

Вычислите:

$$7 \cdot \begin{bmatrix} 5 & 10 \\ 7 & 12 \\ 11.3 & 5 \\ 25 & 30 \end{bmatrix} + 2 \cdot \begin{bmatrix} 5 & 10 \\ 7 & 12 \\ 11.3 & 5 \\ 25 & 30 \end{bmatrix} =$$

Решение:

$$7\begin{bmatrix}
5 & 10 \\
7 & 12 \\
11.3 & 5 \\
25 & 30
\end{bmatrix} + 2\begin{bmatrix}
5 & 10 \\
7 & 12 \\
11.3 & 5 \\
25 & 30
\end{bmatrix} = 9\begin{bmatrix}
5 & 10 \\
7 & 12 \\
11.3 & 5 \\
25 & 30
\end{bmatrix} = \begin{bmatrix}
45 & 90 \\
63 & 108 \\
101.7 & 45 \\
225 & 270
\end{bmatrix}$$

2. Задание (на листочке):

1. Решите систему уравнений (на листочке):

$$3x - 2y + 5z = 7$$

 $7x + 4y - 8z = 3$
 $5x - 3y - 4z = -12$

Линейная или нелинейная это система? А каждое уравнение по отдельности?

Решение:

Система и каждое уравнение линейно.

$$\begin{cases} 3x - 2y + 5z = 7 \\ 7x + 4y - 8z = 3 \\ 5x - 3y - 4z = 12 \end{cases} \implies \begin{cases} y = \frac{3x + 5z - 7}{2} \\ 7x + 2(3x + 5z - 7) - 8z = 3 \\ z = \frac{5x - 3y - 12}{4} \end{cases} \implies \begin{cases} y = \frac{3x + 5z - 7}{2} (1) \\ z = \frac{17 - 13x}{2} \\ x = \frac{46 + 3y}{31} \end{cases}$$

подставляем
$$z$$
 в (1) \Longrightarrow

$$y = \frac{3x + 5\left(\frac{17 - 13x}{2}\right) - 7}{2} \implies 2y + 7 = 3x + \frac{5*17 - 5*13x}{2} \implies 4y + 14 = 6x + 85 - 65x \implies 4y = 71 - 59x$$
$$4y = 71 - 59\left(\frac{46 + 3y}{31}\right) \implies 4*31y = 71*31 - 59*46 - 59*3y \implies 301y = -513 \implies y = \frac{-513}{301}$$

$$4*\left(\frac{-513}{301}\right) = 71 - 59x \implies \frac{513*4}{301} + 71 = 59x \implies x = \frac{513*4 + 71*301}{301*59} = \frac{397*59}{301*59} = \frac{397}{301}$$
$$2z = 17 - 13*\frac{397}{301} \implies z = \frac{17*301 - 13*397}{2*301} = \frac{-44}{2*301} = \frac{-22}{301},$$
$$otbox{otbet}: x = \frac{397}{301}, y = \frac{-513}{301}, z = \frac{-22}{301}$$

2. Решите систему уравнений:

$$x^2 + y \cdot x - 9 = 0$$

 $x - y/5 = 0$

Линейная или нелинейная это система? А каждое уравнение по отдельности?

Решение:

Система нелинейная, первое нелинейно, второе линейно.

$$\begin{cases} x^2 + y * x - 9 = 0 \\ x - \frac{y}{5} = 0 \end{cases} \Rightarrow \begin{cases} x^2 + 5x * x = 9 \\ 5x = y \end{cases} \Rightarrow \begin{cases} x = \sqrt{\frac{3}{2}} \\ y = 5 * \sqrt{\frac{3}{2}} \end{cases}$$

3. Задание (на листочке):

Решите задачу:

Площадь пола прямоугольной комнаты равна 48 м²,а его периметр равен 28 м. Найдите длину и ширину комнаты.

$$\begin{cases} x*y = 48 \\ 2x + 2y = 28 \end{cases} \Longrightarrow \begin{cases} (14 - y)*y = 48 \\ x = 14 - y \end{cases} \Longrightarrow \begin{cases} 14y - y^2 = 48 \\ x = 14 - y \end{cases} \Longrightarrow \begin{cases} -y^2 + 14y - 48 = 0 \\ x = 14 - y \end{cases}$$
$$y_{1,2} = \frac{-14 \pm \sqrt{196 - 4*48}}{-2} = \frac{-14 \pm 2\sqrt{49 - 48}}{-2} = \pm 6,$$

т. к. мы ищем положительные решения, то y = 6, x = 8

4. Задание (в программе): постройте две кривые $y(k,x)=\cos(k^*x)$

Задания к уроку 2

1. Задание

Даны два вектора в трехмерном пространстве: (20,20,20) и (0,0,-20)

1. Найдите их сумму. (на листочке):

Решением будет сумма соответствующих координат, т.е. (20,20,0)

2. Напишите код на Python, реализующий расчет длины вектора, заданного его координатами. (в программе)

2. Задание (на листочке)

Почему прямые не кажутся перпендикулярными?

Ответ: Потому, что шаг отображения по оси х и оси у не равен (по х 2, по у 5)

3. Задание (в программе)

Напишите код на Python, реализующий построение графиков:

- 1. окружности,
- 2. эллипса,
- 3. гиперболы.

Окружность.

```
%matplotlib inline
import matplotlib.pyplot as plt
import math
\# (x - x0)^{**} 2 + (y - y0)^{**} 2 = R ** 2 уравнение круга проходящего
# ((y-y0)**2 = R **2 - (x - x0)**2 через точки x0 и y0
# y = sqrt(R ** 2 - (x - x0)** 2)
x=[];y=[];minusy=[]
def circle(x0,y0,R):
    for i in range(-1000,1000):
        _x=i/100
        underroot=R ** 2 - (_x - x0)** 2
        if underroot>=0:
            _y=math.sqrt(underroot)
            x.append(_x)
            y.append(_y)
            minusy.append(-_y)
   plt.plot(x,y)
   plt.plot(x,minusy)
circle(0,0,3)
```


Эллипс

```
%matplotlib inline
  import matplotlib.pyplot as plt
  import math
  # (x - x0)** 2 / a ** 2 + (y - y0)** 2 / b ** 2 = 1 уравнение эллипса проходящего # ((y - y0)** 2 / b ** 2 = 1 - (x - x0)** 2 / a ** 2 через точки x0 и y0 # ((y - y0)** 2 / b ** 2 = b**2* (1 - <math>(x - x0)** 2 / a ** 2)
  # y = sqrt(b^{**}2^{*} (1 - (x - x0)^{**} 2 / a^{**} 2)) + y0
  x=[];y=[];minusy=[]
  def ellipse(x0,y0,a,b):
        for i in range(-1000,1000):
             _x=i/100
             underroot=b ** 2 * (1- (_x-x0) ** 2 / a ** 2)
             if underroot>=0:
                  _y=math.sqrt(underroot)+y0
                  x.append(_x)
                  y.append(_y)
                  minusy.append(-_y)
        plt.plot(x,y)
       plt.plot(x,minusy)
  elipse(0,0,3,2)
```


Гипербола

```
%matplotlib inline
import matplotlib.pyplot as plt
import math
# (x - x0)^{**} 2 / a ** 2 - (y - y0)^{**} 2 / b ** 2 = 1 уравнение гиперболы проходящего # ((y - y0)^{**} 2 / b ** 2 = (x - x0)^{**} 2 / a ** 2 - 1 через точки x0 и y0 # ((y - y0)^{**} 2 / b ** 2 = b^{**}2* ((x - x0)^{**} 2 / a ** 2 - 1) # y = sqrt(b^{**}2* ((x - x0)^{**} 2 / a ** 2) -1) + y0
x=[];y=[];minusy=[]
def hyper(x0,y0,a,b):
      for i in range(-500,501):
            _x=i/100
            underroot=b ** 2 * ((_x-x0) ** 2 / a ** 2 - 1)
            if underroot>=0:
                  _y=math.sqrt(underroot)+y0
                  x.append(_x)
                  y.append(_y)
                  minusy.append(-_y)
      plt.plot(x,y)
      plt.plot(x,minusy)
hyper(0,0,1,1)
```


4. Задание (на листочке)

1) Пусть задана плоскость:

$$A \cdot x + B \cdot y + C \cdot z + D = 0$$

Напишите уравнение плоскости, параллельной данной и проходящей через начало координат.

Решение: Плоскость, заданная уравнением A*x+B*y+C*z=0 будет параллельна исходной и будет пересекать начало координат.

2) Пусть задана плоскость: $A_1x + B_1y + C_1z + D_1 = 0$ и прямая:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

Как узнать, принадлежит прямая плоскости или нет?

Решение:

Необходимо проверить взаимное расположение прямой и плоскости, сделать это можно получив скалярное произведение нормали плоскости и направляющего вектора прямой. Если скалярное произведение раввно нулю - плоскоть парралельна прямой, если отлично от нуля, то прямая пересекает плоскоть. В первом случае следует проверить принадлежит ли какая-либо точка прямой плоскости, если принадлежит это означает, что и вся прямая лежит в плоскости, в противном случае прямая не имеет общих точек с плоскостью.

$$n(A_1,B_1,C_1)$$
 — нормальный вектор заданной плоскости $M_0(x_1,y_1,z_1)$ — произвольная точка на прямой $s(x_2-x_1,y_2-y_1,z_2-z_1)$ — направляющий вектор прямой

Найдём скалярное произведение нормали плоскости и направляющего вектора прямой: $n \circ s = A_1*(x_2-x_1) + B_1*(y_2-y_1) + C_1*(z_2-z_1)$

для того, чтобы прямая была парралельна плоскости необходимо, чтобы выполнялось условие $n \circ s = 0$, а также, чтобы $A_1 * x_1 + B_1 * y_1 + C_1 * z_1 + D_1 = 0$, таким образом, если x_1, y_1, z_1 и x_2, y_2, z_2 удовлетворяют следующим уравнениям, то прямая лежит на плоскости:

$$\begin{cases} A_1*(x_2-x_1)+B_1*(y_2-y_1)+C_1*(z_2-z_1)=0\\ A_1*x_1+B_1*y_1+C_1*z_1+D_1=0 \end{cases}$$

преобразуем систему прибавив второе уравнение к первому =>

$$\begin{cases} A_1 * x_2 + B_1 * y_2 + C_1 * z_2 + D_1 = 0 \\ A_1 * x_1 + B_1 * y_1 + C_1 * z_1 + D_1 = 0 \end{cases}$$

5. Задание (в программе)

1. Нарисуйте трехмерный график двух параллельных плоскостей.

```
In [3]: %matplotlib inline
    import numpy as np
    import matplotlib.pyplot as plt
    from pylab import *
    from mpl_toolkits.mplot3d import Axes3D

ax=Axes3D(figure())

x=np.arange(-5,5.5,0.5)
y=np.arange(-5,5.5,0.5)

x,y=np.meshgrid(x,y)
z=2*x+3*y
z2=2*x+3*y+20

ax.plot_surface(x,y,z)
ax.plot_surface(x,y,z2)
```

Out[3]: <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x1191e2ef0>

2. Нарисуйте трехмерный график двух любых поверхностей второго порядка.

```
In [1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
from mpl_toolkits.mplot3d import Axes3D

ax=Axes3D(figure())

x=np.arange(-5,5.5,0.5)
y=np.arange(-5,5.5,0.5)

x,y=np.meshgrid(x,y)
z=np.sqrt(x**2+y**2)
z2=-np.sqrt(x**2+y**2)
ax.plot_surface(x,y,z)
ax.plot_surface(x,y,z2)
```

Out[1]: <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x118eb1f60>

