MS115 Mathematics for Enterprise Computing Tutorial Sheet 1

- 1. Use truth tables to show the following:
 - (i) $(P \vee Q) \vee R$ is logically equivalent to $P \vee (Q \vee R)$.
 - (ii) $(P \wedge Q) \wedge R$ is logically equivalent to $P \wedge (Q \wedge R)$.
 - (iii) $P \vee (Q \wedge R)$ is logically equivalent to $(P \vee Q) \wedge (P \vee R)$.
 - (iv) $P \wedge (Q \vee R)$ is logically equivalent to $(P \wedge Q) \vee (P \wedge R)$.

Note. In class, we used the expression $P \vee Q \vee R$ without using brackets. This is valid because of the "associativity" property of the OR operator, established in (i).

- 2. We have seen that the conditional statement $P \Rightarrow Q$ is logically equivalent to its *contrapositive* not $Q \Rightarrow$ not P. Use a truth table to show that $P \Rightarrow Q$ is also logically equivalent to (not P) $\vee Q$.
- 3. A proposition that is true in every possible case is said to be logically true.
 - (i) Give an example of two propositions P and Q such that $P \Rightarrow Q$ is logically true but $Q \Rightarrow P$ is not. Thus, $P \Rightarrow Q$ should be true in every case but $Q \Rightarrow P$ should be false in at least one case.
 - (ii) Let P and Q be any propositions such that $P \Rightarrow Q$ is logically true but $Q \Rightarrow P$ is not. What are the truth values of P and Q?
- 4. Consider the following propositions:

P: Great Danes are large dogs.

Q: I have lots of money.

R: I have a Great Dane.

(i) Express the following compound proposition as an English sentence:

$$(P \wedge R) \vee (Q \wedge \text{not } R)$$

(ii) Let's agree that P is true. Suppose that $(P \wedge R) \vee (Q \wedge \text{not } R)$ is false. Use a logical argument or a truth table to determine the truth values of Q and R.