

Interrogación 1 Estática y Dinámica

Facultad de Física

Jueves 3 de Septiembre de 2015

Nombre: #Alumno Sección:	e:	# Alumno	Sección:
--------------------------	----	----------	----------

${\bf Instrucciones:}$

- -Tiene 2 horas para resolver los siguientes problemas.
- -Marque con una CRUZ sólo la alternativa que considere correcta en esta hoja de respuesta.
- -Todos los problemas tienen el mismo peso en la nota final.
- -No está permitido utilizar calculadora ni teléfono celular.

-.

TABLA DE RESPUESTAS

Pregunta	a)	b)	c)	d)	
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					

Enunciado para problemas 1 a 3.

Una partícula se mueve por el interior de un cilindro hueco de radio R en presencia de gravedad. Entre la partícula y el cilindro existe un coeficiente de roce μ

Figura 1: problemas 1 a 3.

Problema 1. Si la partícula se mueve con velocidad angular $\dot{\theta}$, calcule el módulo de la fuerza normal entre la partícula y el interior del cilindro.

- a) N = mgb) $N = \frac{1}{2}mR\dot{\theta}^2$
- c) $N = mR\dot{\theta}^2$
- d) $N = 2mR\dot{\theta}^2$

Problema 2. Calcule $\dot{\theta}$ mínimo tal que la partícula mantenga su altura (que no se mueva en el eje z)

a)
$$\dot{\theta}_{\min} = \sqrt{\frac{mg}{\mu R}}$$

a)
$$\dot{\theta}_{\min} = \sqrt{\frac{mg}{\mu R}}$$

b) $\dot{\theta}_{\min} = \sqrt{\frac{\mu mg}{R}}$

c)
$$\dot{\theta}_{\min} = \sqrt{\frac{mg}{R}}$$

c)
$$\dot{\theta}_{\min} = \sqrt{\frac{mg}{R}}$$

d) $\dot{\theta}_{\min} = \sqrt{\frac{mg}{2\mu R}}$

Problema 3. Suponga que la partícula posee una velocidad angular inicial ω_0 . Encuentre una expresión para $\dot{\theta}$ en función del tiempo

a)
$$\dot{\theta} = \frac{\mu\omega_0}{1+\mu}$$

b)
$$\dot{\theta} = \frac{1 + \omega_0 v}{1 + w v}$$

c)
$$\dot{\theta} = \frac{\omega_0}{\mu + \omega_0 t}$$

d)
$$\dot{\theta} = \frac{\mu\omega_0}{\mu + \omega_0 t}$$

Enunciado para problemas 4 a 7.

En la figura abajo, un cuerpo de masa m puede deslizar sin roce por el interior de un tubo horizontal, dentro del cual hay un resorte de constante k y largo natural ℓ_0 que conecta m con el punto O. El tubo se encuentra clavado al punto O, y rota con una rapidez angular ω constante, como se muestra en la figura. La posición del sistema en t=0 es la indicada en la figura, con el resorte en su largo natural.

Figura 2: problemas 4 a 7.

Llamando θ al ángulo respecto del eje indicado y ρ a la distancia desde Ohasta m,

Problema 4. El ángulo como función del tiempo $\theta(t)$ para t>0 es

a)
$$\theta(t) = \omega t$$

b)
$$\theta(t) = \frac{1}{2}\omega t^2$$

c)
$$\theta(t) = \frac{\pi}{2} + \omega t$$

d)
$$\theta(t) = -\frac{1}{2}\omega t^2$$

Problema 5. La ecuación de Newton que determina $\rho(t)$ es

- a) $k(l_0 + \rho) = m(\dot{\rho}\omega + \rho\omega^2)$
- b) $-k\rho = 2m\dot{\rho}\omega + m\ddot{\rho}$
- c) $k\ell_0 = m\rho\omega^2$
- d) $k(l_0 \rho) = m(\ddot{\rho} \rho\omega^2)$

Problema 6. Si conociéramos la función $\rho(t)$, el valor de la fuerza normal que ejerce el tubo sobre m es

- a) $N = \frac{1}{2}m\dot{\rho}(t)\omega$ b) $N = 2m\dot{\rho}(t)\omega$
- c) No se puede determinar con los datos entregados
- d) 0

Problema 7. Suponga para este problema que el movimiento es tal que m se mantiene a un radio Rconstante de O. El valor que debe tener R es

a)
$$R = 2\ell$$

a)
$$R = 2\ell_0$$

b) $R = \sqrt{\frac{k}{k + m\omega^2}}\ell_0$
c) $R = \frac{k\ell_0}{k - m\omega^2}$
d) $R = \frac{m\omega^2\ell_0}{k}$

c)
$$R = \frac{k\ell_0}{k - m\omega^2}$$

$$d) R = \frac{m\omega^2 \ell_0}{k}$$

Enunciado para problemas 8 a 11.

El avión A vuela horizontalmente con una velocidad horizontal v_A respecto a tierra remolcando al planeador B de masa m_B . El cable que remolca a B tiene largo constante r. Analicemos el despegue del planeador durante el cual la velocidad angular $\dot{\theta} = \omega$ es constante (ver figura abajo). Durante todo el despegue el piloto del planeador maniobra de manera que la fuerza F que ejerce el aire sobre las alas apunta en la dirección vertical hacia arriba. Usaremos como marco de referencia \hat{x} (horizontal hacia la derecha) e \hat{y} (vertical hacia arriba) fijos en tierra.

Figura 3: problemas 8 a 11.

Suponga primero que la velocidad v_A del avión es constante.

Problema 8. La velocidad del planeador respecto a tierra cuando $\theta = \theta_0$ es

- a) $\vec{v_B} = (v_A + r\omega \sin \theta_0)\hat{x} + r\omega \cos \theta_0 \hat{y}$ b) $\vec{v_B} = (v_A + r\omega \sin \theta_0)\hat{x} r\omega \cos \theta_0 \hat{y}$
- c) $\vec{v_B} = (v_A + r\omega \cos \theta_0)\hat{x} + r\omega \sin \theta_0 \hat{y}$
- d) $\vec{v_B} = (v_A + r\omega \cos \theta_0)\hat{x} r\omega \sin \theta_0 \hat{y}$

Problema 9. La tensión T de la cuerda cuando $\theta = \theta_0$ es

- a) $T = m_B r \omega^2$
- $b) T = m_B r \omega^2 \sin \theta_0$
- c) $T = m_B r \omega^2 \cos \theta_0$
- d) $T = m_B r \omega^2 \tan \theta_0$

Problema 10. La fuerza F cuando $\theta = \theta_0$ es

- a) $F = m_B g + T \operatorname{sen} \theta_0$
- $b) F = m_B g + T \cos \theta_0$
- c) $F = m_B g T \operatorname{sen} \theta_0$
- d) $F = m_B g$

Problema 11. Suponga ahora que el avión tiene una aceleración constante $a\hat{x}$. La tensión T de la cuerda cuando $\theta = \theta_0$ es

- a) $T = m_B \sec \theta_0 (r\omega^2 \sin \theta_0 + a)$
- b) $T = m_B \csc \theta_0 (r\omega^2 \cos \theta_0 + a)$
- c) $T = m_B \sec \theta_0 (r\omega^2 \cos \theta_0 + a)$
- d) $T = m_B \csc \theta_0 (r\omega^2 \sin \theta_0 + a)$

Enunciado para problemas 12 a 14.

El sistema de poleas mostrado en la figura abajo está formado por una cuerda y poleas ideales, en el cual el bloque B tiene masa M y el aro A de masa m puede deslizar libre de roce por la guía vertical. Si en un instante t_0 el sistema se deja evolucionar libremente desde el reposo desde la configuración inicial mostrada en la figura, en la cual $y_A(t_0) = L$, determine

Figura 4: problemas 12 a 14.

Problema 12. La relación entre los módulos de las velocidades del anillo y del bloque para un instante de tiempo $t > t_0$, en el cual el anillo se desliza por la guía vertical (ninguno de los cuerpos ha tocado el techo o el suelo).

a)
$$\frac{v_B}{v_A} = \frac{y_A}{2\sqrt{y_A^2 + L^2}}$$

b)
$$\frac{v_B}{v_A} = \frac{g_B}{2\sqrt{y_A^2 + L^2}}$$

c)
$$\frac{v_B}{v_A} = \frac{y_B}{\sqrt{y_A^2 + L^2}}$$

$$d) \frac{v_B}{v_A} = \frac{2y_A}{\sqrt{y_A^2 + L^2}}$$

Problema 13. El módulo de la aceleración del anillo en el instante t_0^+ (justo después de soltarlo).

a)
$$a_A = g \frac{2\sqrt{2}M - 8m}{M + 8m}$$

b)
$$a_A = g \frac{2\sqrt{2}M + 8m}{M + 8m}$$

c)
$$a_A = g \frac{\sqrt{2}M + 4m}{M + 4m}$$

a)
$$a_A = g \frac{2\sqrt{2}M - 8m}{M + 8m}$$

b) $a_A = g \frac{2\sqrt{2}M + 8m}{M + 8m}$
c) $a_A = g \frac{\sqrt{2}M + 4m}{M + 4m}$
d) $a_A = g \frac{2\sqrt{2}M - 4m}{M + 4m}$

Problema 14. La tensión de la cuerda que sostiene al bloque B en el instante t_0^+

a)
$$T = \sqrt{2} Mmg \frac{2\sqrt{2} + 1}{M + 8m}$$

b)
$$T = \sqrt{2} M m g \frac{\sqrt{2} + 1}{M + 8m}$$

c)
$$T = \sqrt{2}Mmg \frac{2\sqrt{2} + 1}{M + 4m}$$

a)
$$T = \sqrt{2}Mmg \frac{2\sqrt{2} + 1}{M + 8m}$$

b) $T = \sqrt{2}Mmg \frac{\sqrt{2} + 1}{M + 8m}$
c) $T = \sqrt{2}Mmg \frac{2\sqrt{2} + 1}{M + 4m}$
d) $T = \sqrt{2}Mmg \frac{2\sqrt{2} - 1}{M + 4m}$

Enunciado para problemas 15 a 16.

Un proyectil es lanzado desde el punto A con una rapidez inicial v_0 en un ángulo θ_1 . Un segundo proyectil es lanzado después, también desde A y con la misma rapidez inicial, en un ángulo θ_2 .

Figura 5: problemas 15 a 16.

 ${f Problema~15.}$ ¿A qué altura H debe estar un pájaro para ser golpeado horizontalmente por uno de los proyectiles?

- proyectiles?
 a) $H = \frac{v_0^2}{4g}$ b) $H = \frac{v_0^2 \sin^2 \theta}{2g}$ c) $H = \frac{v_0^2 \sin \theta}{2g}$ d) $H = \frac{v_0^2 \sin \theta}{4g}$

Problema 16. Determine la diferencia de tiempo Δt entre los lanzamientos si ambos proyectiles chocan en el punto B (Podría serle útil la siguente identidad trigonométrica: $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$).

- en el punto B (Podria serle utilità) $a) \Delta t = \frac{2v_0 \sin(\theta_1 \theta_2)}{g(\cos\theta_1 + \cos\theta_2)}$ $b) \Delta t = \frac{2v_0 \sin(\theta_1 \theta_2)\cos\theta_2}{g(\cos^2\theta_1 \cos^2\theta_2)}$ $c) \Delta t = \frac{2v_0 \sin^2(\theta_1 \theta_2)}{g(\cos\theta_1 + \cos\theta_2)}$ $d) \Delta t = \frac{2v_0 \sin(\theta_1 \theta_2)}{g(\cos\theta_1 + \cos\theta_2)^2}$