CLAIMS

based on the attenuation determination, selectively attenuating the received analog spread-

digitizing the selectively attenuated analog spread-spectrum signal to generate a digital spread-

filtering the digital spread-spectrum signal in an attempt to compensate for interference in the

determining whether to attenuate the received analog spread-spectrum signal;

spectrum signal to generate a selectively attenuated analog spread-spectrum signal;

(original) In a spread-spectrum receiver, a method for processing a received analog

1

2

3

4

5

6

7

8

1.

spectrum signal;

spread-spectrum signal, comprising:

9	received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal; and			
10	de-spreading the filtered digital spread-spectrum signal to generate a de-spread digital signal,			
11	wherein the attenuation determination is based on the amplitude of the digital spread-spectrum signal			
12	prior to the interference-compensation filtering and the de-spreading.			
1	2. (original) The invention of claim 1, wherein the filtering attempts to compensate for off-			
2	channel interference in the received analog spread-spectrum signal.			
1	3. (original) The invention of claim 1, wherein the selectively attenuated analog spread-			
2	spectrum signal has a negative signal-to-noise ratio (SNR).			
1	4. (original) The invention of claim 1, wherein:			
2	the received analog spread-spectrum signal is attenuated when the amplitude of the digital			
3	spread-spectrum signal is greater than an upper threshold; and			
4	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital			
5	spread-spectrum signal is less than a lower threshold, wherein the upper threshold is greater than the			
6	lower threshold.			
1	5. (original) The invention of claim 4, wherein the upper threshold is greater than the lower			
2	threshold by an amount greater than the level of selective attenuation in order to provide hysteresis in the			
3	attenuation determination.			
1	6. (original) The invention of claim 1, wherein:			
2	the received analog spread-spectrum signal is a radio frequency (RF) signal; and			
3	further comprising:			
	Serial No. 10/766.347 -2- Andrew 1168 (1052.045)			
	Serial No. 10/7/00 ₀ 947 -22 Aligrew 1108 (1032,045)			

4	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and
5	converting the IF signal to baseband after digitization.
1	7. (original) The invention of claim 6, wherein the filtering and the de-spreading are
2	implemented at baseband.
1	8. (original) The invention of claim 1, wherein:
2	the filtering attempts to compensate for off-channel interference in the received analog spread-
3	spectrum signal;
4	the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio
5	(SNR);
6	the received analog spread-spectrum signal is attenuated when the amplitude of the digital
7	spread-spectrum signal is greater than an upper threshold;
8	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital
9	spread-spectrum signal is less than a lower threshold;
10	the upper threshold is greater than the lower threshold by an amount greater than the level of
11	selective attenuation in order to provide hysteresis in the attenuation determination;
12	the received analog spread-spectrum signal is a radio frequency (RF) signal;
13	further comprising:
14	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and
15	converting the IF signal to baseband after digitization; and

(original) A spread-spectrum receiver, comprising:

the filtering and the de-spreading are implemented at baseband.

16

2

3

4

5

6

7

8

9

10

a variable attenuator adapted to selectively attenuate a received analog spread-spectrum signal to generate a selectively attenuated analog spread-spectrum signal;

an analog-to-digital converter (ADC) adapted to digitize the selectively attenuated analog spreadspectrum signal to generate a digital spread-spectrum signal;

an interference-compensation filter adapted to filter the digital spread-spectrum signal in an attempt to compensate for interference in the received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal;

a digital processor adapted to de-spread the filtered digital spread-spectrum signal to generate a de-spread digital signal; and

a co	ntroller adapted to control the variable attenuator based on the amplitude of the digital
spread-spect	rum signal prior to the interference-compensation filter and the digital processor.
10.	(original) The invention of claim 9, wherein the filter is adapted to attempt to
compensate	for off-channel interference in the received analog spread-spectrum signal.
11.	(original) The invention of claim 9, wherein the selectively attenuated analog spread-
spectrum sig	nal has a negative signal-to-noise ratio (SNR).
12.	(original) The invention of claim 9, wherein:
the c	ontroller is adapted to control the variable attenuator to attenuate the received analog
spread-spect	rum signal when the amplitude of the digital spread-spectrum signal is greater than an upper
threshold; ar	d
the c	ontroller is adapted to control the variable attenuator not to attenuate the received analog
spread-spect	rum signal when the amplitude of the digital spread-spectrum signal is less than a lower
threshold, w	nerein the upper threshold is greater than the lower threshold.
13.	(original) The invention of claim 12, wherein the upper threshold is greater than the
lower thresh	old by an amount greater than the level of selective attenuation in order to provide hysteresis
in the attenu	ation determination.
14.	(original) The invention of claim 9, wherein:
the r	eceived analog spread-spectrum signal is a radio frequency (RF) signal; and
furth	er comprising:
	a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the
digitization;	and
	a digital downconverter adapted to convert the IF signal to baseband after digitization.
15.	(original) The invention of claim 14, wherein the filter and the digital processor are

16.

spread-spectrum signal;

the filter is adapted to attempt to compensate for off-channel interference in the received analog

(original) The invention of claim 9, wherein:

the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio (SNR):

the controller is adapted to control the variable attenuator to attenuate the received analog spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an upper threshold:

the controller is adapted to control the variable attenuator not to attenuate the received analog spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower threshold:

the upper threshold is greater than the lower threshold by an amount greater than the level of selective attenuation in order to provide hysteresis in the attenuation determination;

the received analog spread-spectrum signal is a radio frequency (RF) signal;

15 further comprising:

4

5

6

7

8

9

10

11

12

13

14

16

17 18

19

20

1

2

2

2

and

a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the digitization; and

a digital downconverter adapted to convert the IF signal to baseband after digitization;

the filter and the digital processor are adapted to operate at baseband.

- (new) The invention of claim 1, wherein the attenuation determination is independent of any determination of bit error rate.
 - 18. (new) The invention of claim 1, wherein the attenuation determination is based on the amplitude of the digital spread-spectrum signal in a time domain.
- (new) The invention of claim 6, wherein the attenuation determination is based on the amplitude of the digital IF signal.