Rocket Problem Equation Sheet

But how do rockets work? Rocket Equation!

$$\Delta v = v_{
m e} \ln rac{m_0}{m_f}$$

 m_o : initial mass of rocket

 m_f : final mass of rocket

 v_e : exit velocity

For this we are working with a three-stage rocket, so each stage has its own ΔV

$$\Delta v_n = v_{e_n} * \ln(\frac{m_{o_n}}{m_{f_n}})$$

The total ΔV is the sum of all Δv_n

The mass of a rocket is broken into 3 different categories

 m_p : mass of the propellant (fuel)

 m_s : mass of the structure (casing, engine, electronics)

 m_L : mass of payload (satellites, passengers, warhead)

For a single stage rocket

 m_o : m_p + m_s + m_L

 m_f : m_L

 v_e : $I_{sp}^* g_o$ (g_o is gravity, I_{sp} is specific impulse

But how do rockets work? Rocket Equation!

$$\Delta v = v_{
m e} \ln rac{m_0}{m_f}$$

 m_o : initial mass of rocket

 m_f : final mass of rocket

 v_e : exit velocity

For this we are working with a three-stage rocket, so each stage has its own ΔV

$$\Delta v_n = v_{e_n} * \ln(\frac{m_{o_n}}{m_{f_n}})$$

The total ΔV is the sum of all Δv_n

The mass of a rocket is broken into 3 different categories

 m_p : mass of the propellant (fuel)

 m_s : mass of the structure (casing, engine, electronics)

 m_L : mass of payload (satellites, passengers, warhead)

For a single stage rocket

 m_o : m_p + m_s + m_L

 m_f : m_L

 v_e : $I_{sp}^* g_o$ (g_o is gravity, I_{sp} is specific impulse

• https://rlg.fas.org/980327-range.htm

• Ballistic missile parametric equations:

$$\bullet \quad \frac{M_f}{M_0} = e^{\left(-\frac{V_g}{V_e}\right)}$$

•
$$R = \frac{V_g^2}{a}$$

•
$$I_{sp} = \frac{v_e}{g}$$

•
$$t_b = \frac{V_g - V_e \ln(\frac{M_f}{M_0})}{g}$$

• Equations taken from:

Range vs. difficulty for ballistic missile development

Author: R.L. Garwin, IBM Fellow

Emeritus

Published: March 27, 1998

- Mass ratio of final weight over initial weight and propellant specific impulse determine the range, burn time, and exhaust velocity
 - $M_f = final mass (16,000 lbs.)$
 - M_0 = initial mass
 - V_g = velocity gain
 - V_e = booster exhaust velocity
 - R = range
 - g = gravity
 - I_{sp} = specific impulse of propellant
 - $t_b = burn time$
- Vary I_{sp} is possible
- Vary Mass ratio of 0.8 to 0.1

Problem for Teams 1-5

- Given
 - Missile Diameter 1 meter
 - Propulsion stack length 10 meters
 - 3 stages, all solid rocket motors, all same Isp
 - 250 kg payload
 - Assume flat earth
 - Mass/propellant fractions should be stage appropriate
 - Upper stages are more efficient
- What is the "optimized" propulsion stack for Max Range or ΔV
- What is the "optimized" propulsion stack for Max Range or ΔV with First Stage booster that burns for 10 seconds

Problem for Teams 6-10

- Given
 - Missile Diameter .75 meter
 - Propulsion stack length 7.5 meters
 - 3 stages, all solid rocket motors, all same Isp
 - 250 kg payload
 - Assume flat earth
 - Mass/propellant fractions should be stage appropriate
 - Upper stages are more efficient
- What is the "optimized" propulsion stack for Max Range or ΔV
- What is the "optimized" propulsion stack for Max Range or ΔV with First Stage booster that burns for 10 seconds