gerandina (n.C. 5080) Millio Vigo pepusa etapian pr.; 201 Obervelika Edul Lider Washi

GEORGIA TECH GT-VDAG VLSI DESIGN VERIFICATION DOCUMENT

VLSI DEVELOPMENT REPORT REPORT NO. VDR-0142-90-008 FEBRUARY 25, 1991

GUIDANCE, NAVIGATION AND CONTROL DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60–89–C–0142
Sponsored By
The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology Atlanta, Georgia 30332–0540

Contract Data Requirements List Item A006

Period Covered: Not Applicable

Type Report: As Required

Approved for Public Release
Distribution Unlimited

20010823 087

ADA

UL9897

DISCLAIMER

<u>DISCLAIMER STATEMENT</u>—The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.

DISTRIBUTION CONTROL

- (1) <u>DISTRIBUTION STATEMENT</u> Approved for public release; distribution is unlimited.
- (2) This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227–7013, October 1988.

GEORGIA TECH GT-VDAG VLSI DESIGN VERIFICATION DOCUMENT

FEBRUARY 25, 1991

Sam H. Russ, Dr. Wei Siong Tan, and Toshiro Kubota

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology Atlanta, Georgia 30332–0540

Eugene L. Sanders

Cecil O. Alford

USASDC

Georgia Tech

Contract Monitor

Project Director

Copyright 1991
Georgia Tech Research Corporation (GTRC)
Centennial Research Building
Atlanta, Georgia 30332

GEORGIA TECH GT-VDAG VLSI DESIGN VERIFICATION DOCUMENT

INTRODUCTION

There are eleven (11) Georgia Tech VLSI designs (see Table 1) in the AHAT Program. Each of these designs has been produced by Georgia Tech using the Genesil Silicon Compiler. Each design has passed the design verification process at Silicon Compiler Systems / Mentor Graphics and each has been fabricated in a bulk CMOS process (fabrication of certain chips was not complete when this document was released). Each of the Georgia Tech designs listed in Table 1 is being delivered to USASDC and to the Harris Corporation for conversion and fabrication in a rad—hard process. The program under which this work is done is AHAT (Advanced Hardened Avionics Technology). This document includes design information for the Georgia Tech data address generation chip, GT–VDAG.

Table 1. Georgia Tech Chip Set for AHAT

Design	DV Passed	Tape Delivered	Fabricated	Tested
GT-VFPU/1A	1/17/89	8/3/90	5/19/89	4/4/90
GT-VNUC				
GT-VTF				
GT-VTHR	12/11/90	2/15/91		
GT-VCLS	1/26/90	7/12/90	7/13/90	
GT-VCTR	2/8/90	7/12/90	7/13/90	
GT-VIAG				
GT–VDAG	2/22/91	2/25/91		
GT-VSNI	1/17/89	5/23/90	4/14/89	4/4/90
GT-VSM8	1/17/89	6/8/90	5/6/89	4/4/90
GT-VSF	9/12/89	7/19/90	7/13/90	

1.	Design Verification Checklist	
2.	Functional Description	
	2.1. Module adr_ptr_mod	
	2.2. Module boot_ctrl	
	2.3. Module decoders	
	2.4. Module error_mod	
	2.5. Module f_adr_gen	
	2.6. Module r_adr_gen	
	2.7. Module s_adr_gen	
	2.8. Module fr1as_mod	
	2.9. Module inst_reg_mod	
	2.10. Module odc_rf_mod	
	2.11. Module r_out_mod	
	2.12. Module rf_off_mode_mod	
	2.13. Module rs_mux_mod	
	2.14. Module task_ptr_mod	
	~1 • •	
3.	Signal Descriptions	
	3.1. Inputs	
	3.2. Outputs	
	3.3. Input/output	
	• • •	
4.	Final Notes	
5.	Block Diagrams and Schematics	
6.	Timing Diagrams	
7.	Pin Description	
8.	Key Parameters	
9.	PADRING.033	
10	. Power Dissipation	
11	Circulation Catara Piles	
11.	Simulation Setup Files	
	11.1. designinit.080	
12	Timing Cotus Files	
12	. Timing Setup Files	
	12.1. cl_out_room.040	
	12.2. cl_out_hot	
	12.3. set_room.040	
	12.4. set_hot.040	
	12.5. clock_output.040	
	12.6. setup_hold.040	
12	Timing Deports	
13	. Timing Reports	
	IN LIYPICAL /NORGCINDV	

13.2.	GUARANTEED, Max T, Min V	66
13.3.	GUARANTEED, Room T, 5.0 V	73
APP	ENDIX A. DV CHECKLIST	82
1.	DV CONTROL NUMBER:	82
2.	CUSTOMER INFORMATION	82
3.	SERVICES INFORMATION	82
4.	DV CONTACT	82
5.	REGRESSION	83
6.	FUNCTIONAL INFORMATION (check when included)	83
7.	PHYSICAL INFORMATION	83
8.	ELECTRICAL INFORMATION	84
9.	SIMULATION	84
10.	TIMING ANALYSIS	88
11.	DC CHARACTERISTICS	90
12.	CUSTOMER COMMENTS Pre–Verification Comments	91
	Post–Verification Comments	91
13.	CUSTOMER APPROVAL	91
14.	SCS APPROVAL Pre-Verification Comments	91

.

GT-VDAG: Data Address Generation Chip

1. Design Verification Checklist

The DV checklist attached in Appendix A.

2. Functional Description

This section describes briefly the function of the chip and the modules at core level.

2.1. Module adr_ptr_mod

This module maintains the adress pointer and address pointer limit. The address pointer may be loaded externally (if so, the task pointer is automatically added in), or it may be changed by an increment or decrement instruction. The amount to increment or decrement may come from data memory (via the f_r_1_as bus) or instruction memory (via s_off). Because the increment/decrement instruction is executed immediately, the module contains a restorable DFF which can be restored in the event of a flush. "adr_ptr" is used by the address generators in certain addressing modes, "adr_ptr_lim" is used by the address generators for range checking, and "ap_apl" is used to examine the contents of either adr_ptr or adr_ptr_lim.

2.2. Module boot ctrl

This module produces outputs that are driven onto the internal control lines "rs_off[11:0]" as well as r, s, and f_adr_mod[3:0]. It is used during booting (booting = 1) to control the DAG chip in parallel with the IAG boot controller. Thus, DAG can execute a simple loading program when first powered up.

2.3. Module decoders

This module decodes load instructions and checks for attempts to execute kernel instructions in the user mode. (Store instructions are decoded in various modules as needed.) Note that all instructions are delayed one cycle in this module except for incr_ap and decr_ap. Instruction cancelling is initiated by reset and flush conditions. Freeze cancelling is handled by individual modules.

2.4. Module error mod

If the r, s or f addresses exceed their limits, it sets a corresponding RS flip-flop in the "error_ff" module. The proper ranges depend on the addressing mode, and range checking is only carried out in the user mode (kernel_mode = 0). Other modules check for a non-zero error condition and provide additional control logic.

2.5. Module f adr gen

This is one of three almost identical modules which generate the three data addresses used by data memory and the ALU. R and S are data memory read addresses and F is the data memory write address.

The address calculations are performed in a datapath named "super_dp". Most of the control logic is found in a logic-compiled module named "super_ctrl". Time-critical control logic (which is the remainder of the control logic) is found in a random logic block named "critical_rl".

The "super_dp" supports the following features. There is an index register that can be added in to form the final address (depending on the addressing mode). It can be loaded from the data bus, the "s_off-set" instruction field, or the post_index adder, and loading is controlled in "idx_ctrl". The operation performed on the index after it is used is controlled by the post index operation stored in a register in "post_idx_ctrl". A base address can be used in place of that specified in the instruction. (The addressing mode determines whether the instruction or the base register is used.) Loading it is controlled in "base_ctrl". Finally, the index (if used) is added to either the base register or the instruction field, and this value is added either to the task pointer or the address pointer. This produces the address, which in the case of the f_adr_gen is the f address. Internal registers, such as the base register and index register, can be read out. Range checking is performed in the user mode. Additional logic permits overflows to be reset, flushed, or frozen.

2.6. Module r adr gen

This module is essentially identical to the f_adr_gen. The R address is a data memory read address, and the R bus can contain data from data memory or from any input device.

2.7. Module s_adr_gen

This module is essentially identical to the f_adr_gen. The only significant difference is that the selection of whether to use the boot instruction or the external instruction is made inside this module. (In the case of R and F address generators, this is carried out in rf_off_mode_mod.

2.8. Module fr1as mod

This module controls the f_r_1_as bus. This bus is used to load the registers. If r_adr_mode is 3, the value to be loaded is in instruction memory, and so the bus is driven by s_offset. Otherwise, it is driven by the RF bus. Depending on the values of the operand dependency check bits, the bus takes on the value of R delayed by one cycle, F delayed by one cycle, or F without delay. When booting, the bus is forced to R delayed by one cycle.

2.9. Module inst_reg_mod

This module performs reading and writing of instruction memory. To read instruction memory, the registers are loaded from the instruction fields and read out over the RF bus in two separate operations. To write instruction memory, the registers are loaded from the f_r_1 as bus (i.e. like any other internal register) and then the instruction bus is enabled as an output bus, the value being driven by the registers.

There are two registers, numbered 2 and 3. Registers 0 and 1 are on the IAG chip. Register 2 is used for RF offsets and address modes. Register 3 is used for S offsets and address modes.

2.10. Module odc rf mod

This module performs operand dependency checking and multiplexes R and F address and S and F address. Operand dependency checking is a means of tracking in hardware the status of intermediate results in the ALU. If an operand is needed but has not been written to data memory from the ALU, the internal feedback paths of the ALU can be used anyway. Thus, variables can be accessed and used in calculations before their values are written out. The operand dependency values can be overridden by a special instruction, and they are forced to zero during booting.

2.11. Module r out mod

This module is used to read out internal registers. It is a series of multiplexers, and it drives the R bus.

2.12. Module rf off mode mod

This module multiplexes either the RF instructions or the boot rom instructions onto the internal RF instruction bus. This bus is used in turn by the R and F address generators.

2.13. Module rs mux mod

This module controls whether the internal instruction bus "rs_off" is driven by r offset or s offset. All DAG load instruction can load values into registers either as constants, which come from "s_offset" in instruction memory, or as variables, which come from data memory via the RF bus. For constant loading, the instruction is specified by r_adr_mode=3 and the rs_off bus is driven by r_offset. For variable loading, the instruction is specified by s_adr_mode =3, and the rs_off bus is driven by s_offset.

2.14. Module task ptr mod

This module contains the task pointer and task pointer limit registers. All addresses in user mode programs have a "task pointer" added in to thier value. This permits multiple user programs to be active in memory at once. The task pointer limit is the upper limit of the current user program's data area. Thus, it is used for range checking.

3. Signal Descriptions

3.1. Inputs

A description of the inputs and outputs to the DAG are described below. All signals are active high except those that start with "N_".

Name	Timing	From	Purpose
Booting	VB(t)	IAG	Puts DAG in booting mode
Guard	VB(t)	IAG	Disables loading of new instructions
Clk	Clock	Ext.	System clock
DAG_R_en	VB(t)	IAG	Enables RF bus output drivers
Flush	VB(t)	IAG	Cancels current and previous instructions
Freeze	VB(t)	IAG	Suspends execution
Ids_eq_ods_1	VB(t)	IAG	I/O device consistency check
Ids_eq_ods_2	VB(t)	IAG	I/O device consistency check
Ids_freeze	VB(t)	IAG	Determines whether in input or output mode
Inst_en	VB(t)	IAG	Enables instruction output drivers
Kernel_mode	VB(t)	IAG	Determines whether in kernel or user mode
Inst_rd	VB(t)	IAG	Enables loading of instruction registers
N_reset	VB(t)	IAG	Resets the system
Ods_freeze	VA(t)	IAG	Determines whether in input or output mode
Pc[3:0]	VB(t)	IAG	Specifies boot instruction
Valid_intr	VB(t)	IAG	Indicates interrupt condition; cancels current instruc-
tion			•

3.2. Outputs

The primary destination is listed below. There are other "destinations" that are not listed. All signals are active high except those that start with " N_{-} ".

Name	Timing	To	Purpose
DAG_Error	SB(t)	IAG	Flags an error condition
$R_{eq_f_2}$	VB(t)	FPU	Operand dependency checking
R_eq_f_1	VB(t)	FPU	Operand dependency checking
RF_adr[25:0]	W(t)	DataMem	Read/Write address
S_eq_f_1	VB(t)	FPU	Operand dependency checking
$S_{eq_f_2}$	VB(t)	FPU	Operand dependency checking
SF_adr[25:0]]	W(t)	DataMem	Read/Write address

3.3. Input/output

These are tri-stated I/O signals. All signals are active high except those that start with "N_".

Name	Timing	From/To	Purpose
RF[31:0]	W(t)	I/O	General system read/write bus. Driven by data mem, fpu,
and I/O.			• • • • • • • • • • • • • • • • • • • •
RF_adr_mode[3:0]	VB(t)	InstMem	R and F address instructions
RF_off[25:0]]	VB(t)	InstMem	R and F address instructions
S_adr_mode[3:0]	VB(t)	InstMem	S address instructions
S_off[25:0]]	VB(t)	InstMem	S address instructions

4. Final Notes

The recompile as part of DV changed the size of DAG slightly (about 2 mils on a side), and timing was not affected substantially. The bonding wire lengths and angles were not approved by Genesil's Padring CCC, but HP has approved it for prototype fabrication.

The DV tape contains a file named "dag.tar.Z". This file is about 28MB in size, and the database, when uncompressed, is about 120 MB. To restore it, do the following.

- 1. Go to the location on the destination machine and destination directory and execute "tar xv".
- 2. After dag.tar.Z has been extracted, type "zcat dag.tar.Z | tar xvf -".

5. Block Diagrams and Schematics

Diagrams showing how DAG is connected into the GT-EP chipset can be found in the list of schematics for GT-VIAG. Included below is a set of drawings for GT-VDAG itself.

I/O Signals

r/s/f-adr-gen

All adr-gen datapaths have been combined into one datapath named "super-dp". All adr-gen random logic blocks have been placed into a module named "super-ctrl" which is logic compiled.

The logic shown here has been removed from super-ctrl and placed into a random logic block named "critical-rl".

Netlist change		
DAG adr-gen		
n-guard	n-om-freeze	

pidx-op	"1" means	"0" means
[2]	bit-reverse adder output	leave adder result intact
[1]	bit-reverse index input	leave index input intact
[0]	subtract post-idx-reg	add post-idx-reg

Default

[2] [1] [0] 0 0 0

super-ctrl/post-idx-ctrl

CONDITION

$$\begin{array}{l} ld-idx=1\\ rs-off[2/3/4]=1 \end{array} \} \hspace{0.2cm} = LOAD-EN \\ LOAD-EN \hspace{0.2cm} load \hspace{0.2cm} f-r-l-as \\ adr-mode[1:0]=10 \hspace{0.2cm} load \hspace{0.2cm} idx-in \\ reset \hspace{0.2cm} or \hspace{0.2cm} f=adr-mode=11 \hspace{0.2cm} load \hspace{0.2cm} "0x1" \\ anything \hspace{0.2cm} else \hspace{0.2cm} don't \hspace{0.2cm} load \end{array}$$

super-ctrl/idx-ctrl

f-adr-gen/base-ctrl

NOTES: f-off[25:0] is not connected. r-adr-gen is idendical except.

	1
f-adr-gen	r-adr-gen
phase A latch	phase B DFF's
rs-off[4]	rs-off[2]
f-off[25:0]	r-off[25:0]
\bigvee	Ų ,
NC*26	NC*14,r-off[11:0]
f-adr-mode[3:0]	r-adr-mode[3:0]

super-ctrl/adr-gen-dp-ctrl

super-ctrl/read-mux-ctrl

super-ctrl/over-under-ctrl

This is the address range associated with each task.

Local variables are accessed by the address pointer and must be located between the apl and the tpl. Global variables are accessed by the data task pointer and must be between the dtp and the apl. Recall that locals are used by internal procedure calls and globals are used by all procedures in a task.

adr<apl -> adr-under adr<tp -> task-under adr>=tpl -> adr-over adr>=apl -> task-over

IF: (reset) <u>OR</u> (clr-err-flag) <u>OR</u> (flush <u>AND</u> ERROR LAST CYCLE <u>AND</u> NO ERROR 2 CYCLES AGO) THEN RESET THE FLAG

(NOTE: flush zeros out errors on current cycle in over-under-mod/ctrl)

task-ptr-mod

task-ptr-ctrl

task-ptr-dp

adr-ptr-mod

*	Time 1 2	r-adr-mode 11 00	(z 1)r-adr-mode 00 11	incr-ap 1 0	incr-mux 1 1	iner-ap-1 0 1	
			adr-ptr-ctr	l .			

fr1as_-mod

inst-reg-mod

Condition	Source	sel bits
r-adr-mode-1=11	s-off-1	11
(z^{-1}) r-eq-f-1	f	01
$(z^{-1})r-eq-f-2&NOT(z^{-1})r-eq-f-1$	f-1	10
else	r-1	00

frlas-ctrl

inst-reg-ctrl

inst-reg-dp

	inst	register
F-adr-mode	89:86	2
R-adr-mode	85:82	2
S-adr-mode	81:78	3
F-off	77:52	2
R-off	51:26	2
S-off	25:0	3

inst-reg-mod

decoders

delay

decoders

decoders

decoders/store-dec

r-out-mod

r-mux-1

	rs-o	ff[11:8]	rs-off	[10,8]	rs-of	[9]
tp-tpl	8	1000	0	0	0	***************************************
ap-apl	9	1001	0	1	0	
adr-read	a,b	1010 1011			1	
rd-inst	С	1100	1	0	Ō	
dag-flag	d	1101	1	1	0	

r-mux-2

r-out-mod

error-mod

odc-rf-mod

 ${\tt error-ctrl}$

error-mod

error-ff

odc-ctrl

rf-off-mode-mod

rs-mux-mod

rs-mux-mod

signals	drives
rs-off-0	rs-off-rom[0]
rs-off-10	rs-off-rom[10]
smode-0-1	s-mode-rom[1,0]
rs-off-4-8-9	rs-off-rom[9,8,4]
fmode-2	f-mode-rom[2]

boot-ctrl

6. Timing Diagrams

Timing diagrams for GT-VDAG are found in the GT-VIAG documentation.

7. Pin Description

Pin#	Loc.	Signal Name	Abbrev. Name	Pad Type	Strength	Timing
1	B 1	S_eq_f_2	Seqf2	DATA OUT	DRVSPEED1	SB
2	C4	Ids_freeze	Ids_frz	DATA IN	NORMAL	VB
3	C2	RF[0]	RF_0	DATA IO	NORM, DRV1	W
4	C 3	Freeze	Freeze	DATA IN	HIGH	VB
5	C1	Pc[2]	Pc_2	DATA IN	NORMAL	VB
6	D4	Pc[3]	Pc_3	DATA IN	NORMAL	VB
7	D2					
8	D3	Pc[1]	Pc_1	DATA IN	NORMAL	VB
9	F4					
10	G4	Pc[0]	Pc_0	DATA IN	NORMAL	VB
11	D1 -	Ids_eq_ods[0]	Idsods_0	DATA IN	NORMAL	VB
12	E4	<pre>Ids_eq_ods[1]</pre>	Idsods_1	DATA IN	NORMAL	VB
13	E1	RF[1]	RF_1	DATA IO	NORM,DRV1	W
14	E3	Ods_freeze	Ods_frz	DATA IN	NORMAL	VA
15	F2	RF[2]	RF_2	DATA IO	NORM,DRV1	W
16	E2	RF[3]	RF_3	DATA IO	NORM,DRV1	W
17	F1	VSS	VSS	VSS EDGE		
18	F3	VDD	VDD	VDD EDGE		
19	G1	VSS	VSS	VSS EDGE		
20	G 3	RF[4]	RF_4	DATA IO	NORM,DRV1	W
21	H2	RF[5]	RF_5	DATA IO	NORM,DRV1	W
22	G2	RF[6]	RF_6	DATA IO	NORM,DRV1	W
23	H1	RF[7]	RF_7	DATA IO	NORM,DRV1	W
24	H4	RF[8]	RF_8	DATA IO	NORM,DRV1	W
25	J1	RF[9]	RF_9	DATA IO	NORM,DRV1	W
26	H3					
27	J2	RF[10]	RF_10	DATA IO	NORM,DRV1	W
28	H5	DAG_R_en	DAG_R_en	DATA IN	NORMAL	VB
29	J5	VDD	VDD	VDD CLOCK		
30	K1	VSS	VSS	VSS CLOCK		
31	J4	Clk	Clk	CLOCK		
32	K2	VDD	VDD	VDD EDGE		
33	J3	VSS	VSS	VSS EDGE		
34	L1	RF[11]	RF_11	DATA IO	NORM, DRV1	W
35	K3	RF[12]	RF_12	DATA IO	NORM,DRV1	W
36	M1	RF[13]	RF_13	DATA IO	NORM, DRV1	W
37	K4	RF[14]	RF_14	DATA IO	NORM, DRV1	W
38	N1	RF[15]	RF_15	DATA IO	NORM,DRV1	W
39	K5	RF[16]	RF_16	DATA IO	NORM,DRV1	W

40	M2	RF [17]	RF_17	DATA IO	NORM,DRV1	W
41	L3	RF [18]	RF_18	DATA IO	NORM,DRV1	W
42	P 1	VDD	VDD	VDD EDGE		
43	L2	VSS	VSS	VSS EDGE		
44	R1	RF[19]	RF_19	DATA IO	NORM, DRV1	W
45	M 3	RF[20]	RF_20	DATA IO	NORM, DRV1	W
46	M4	RF[23]	RF_23	DATA IO	NORM, DRV1	W
47	L4	RF[21]	RF_21	DATA IO	NORM, DRV1	W
48	P2	RF[24]	RF_24	DATA IO	NORM, DRV1	W
49	N2	RF[22]	RF_22	DATA IO	NORM, DRV1	W
50	T 1				·	
51	N3	RF[26]	RF_26	DATA IO	NORM,DRV1	W
52	R2	RF[25]	RF_25	DATA IO	NORM, DRV1	W
53	N4	RF[28]	RF_28	DATA IO	NORM, DRV1	W
54	U1	RF[27]	RF_27	DATA IO	NORM, DRV1	w
55	P3	VDD	VDD	VDD EDGE		• •
56	T2	RF[29]	RF 29	DATA IO	NORM,DRV1	W
57	Т3	VSS	VSS	VSS EDGE		••
58	P4	VSS	VSS	VSS CORNER	!	
59	U2	RF[31]	RF_31	DATA IO	NORM,DRV1	W
60	R3	RF[30]	RF_30	DATA IO	NORM,DRV1	w
61	U3	RF_adr[1]	RFadr_1	DATA OUT	DRVSPEED1	w
62	T4	RF_adr[0]	RFadr_0	DATA OUT	DRVSPEED1	w
63	U4	ici _uui[o]	141 441_0	271171 001	DICTOL DEDI	**
64	P5	RF_adr[2]	RFadr_2	DATA OUT	DRVSPEED1	W
65	P6	RF_adr[3]	RFadr_3	DATA OUT	DRVSPEED1	w
66	N7	ici _uci[5]	ICI dui_5	DAIAOUI	DRVSI LLDI	**
67	T5	RF_adr[4]	RFadr_4	DATA OUT	DRVSPEED1	w
68	R4	RF_adr[5]	RFadr_5	DATA OUT	DRVSPEED1	w
69	U5	RF_adr[6]	RFadr_6	DATA OUT	DRVSPEED1	W
70	R5	RF_adr[7]	RFadr_7	DATA OUT	DRVSPEED1	w
71	T6	RF_adr[9]	RFadr_9	DATA OUT	DRVSPEED1	W
72	R6	RF_adr[8]	RFadr_8	DATA OUT	DRVSPEED1	W
73	U6	VSS	VSS	VSS EDGE	DKVSI LEDI	YY
74	P7	VSS	VSS	VSS EDGE VSS EDGE		
7 5	U7	VDD	VDD	VDD EDGE		
76	R7	RF_adr[10]	RFadr_10	DATA OUT	DRVSPEED1	W
77	T8	RF_adr[11]	RFadr_11	DATA OUT	DRVSPEED1	W
78	T7	RF_adr[12]	RFadr_12	DATA OUT		W
79	U8	RF_adr[12]	RFadr_13		DRVSPEED1	
80	P8	RF_adr[13]	RFadr_14	DATA OUT	DRVSPEED1	W
81	U9	RF_adr[14] RF_adr[15]		DATA OUT	DRVSPEED1	W
82	R8	RF_adr[15]	RFadr_15	DATA OUT	DRVSPEED1	W
83	T9	RF_adr[18]	RFadr_16	DATA OUT	DRVSPEED1	W
84	N8		RFadr_18	DATA OUT	DRVSPEED1	W
		RF_adr[17]	RFadr_17	DATA OUT	DRVSPEED1	W
85 86	N9 U10	RF_adr[19]	RFadr_19	DATA OUT	DRVSPEED1	W
80 87		VSS	VSS	VSS EDGE		
	P9	VDD	VDD	VDD EDGE	DDMGDEED	337
88 90	T10	RF_adr[20]	RFadr_20	DATA OUT	DRVSPEED1	W
89	R9	RF_adr[21]	RFadr_21	DATA OUT	DRVSPEED1	W
90	U 11	RF_adr[22]	RFadr_22	DATA OUT	DRVSPEED1	W

91	R10	RF_adr[23]	RFadr_23	DATA OUT	DRVSPEED1	W
92	U12	RF_adr[24]	RFadr_24	DATA OUT	DRVSPEED1	W
93	N10	RF_adr[25]	RFadr_25	DATA OUT	DRVSPEED1	W
94	T12	RF_adr_mode[[0] RFmod_0	DATA IO	HIGH,DRV1	VB
95	P10	RF_adr_mode[-	DATA IO	HIGH,DRV1	VB
96	U13	RF_adr_mode	-	DATA IO	HIGH,DRV1	VB
97	T11	VSS	VSS .	VSS EDGE	111011,21111	
98	T13	VDD	VDD	VDD EDGE		
99	R11	RF_adr_mode[DATA IO	HIGH,DRV1	VB
100	U14	RF_off[0]	RFoff_0	DATA IO	NORM,DRV1	VB
101	P11	RF_off[1]	RFoff_1	DATA IO	NORM,DRV1	VB
102	U15	RF_off[2]	RFoff_2	DATA IO	NORM,DRV1	VB
102	N11	RF_off[3]	RFoff_3		•	
103	P12			DATA IO	NORM,DRV1	VB
		VSS	VSS	VSS EDGE	MODMODAM	T.ID
105	R12	RF_off[4]	RFoff_4	DATA IO	NORM,DRV1	VB
106	T15	D	D = 00 =			
107	R13	RF_off[5]	RFoff_5	DATA IO	NORM,DRV1	VB
108	U16					
109	T14	RF_off[6]	RFoff_6	DATA IO	NORM,DRV1	VB
110	U17					
111	P13	RF_off[7]	RFoff_7	DATA IO	NORM,DRV1	VB
112	T16	VSS	VSS	VSS EDGE		
113	T17	VDD	VDD	VDD EDGE		
114	R14	VDD	VDD	VDD CORNE	R	
115	R16	RF_off[9]	RFoff_9	DATA IO	NORM, DRV1	VB
116	R15	RF_off[8]	RFoff_8	DATA IO	NORM, DRV1	VB
117	R17	RF_off[10]	RFoff_10	DATA IO	NORM, DRV1	VB
118	P14	VDD	VDD	VDD EDGE		. –
119	P16					
120	P15	RF_off[11]	RFoff_11	DATA IO	NORM,DRV1	VB
121	P17	RF_off[12]	RFoff_12	DATA IO	NORM,DRV1	VB
122	L14	RF_off[13]	RFoff_13	DATA IO	NORM,DRV1	VB
123	M14	RF_off[14]	RFoff_14	DATA IO	NORM,DRV1	VB
124	N14	RF_off[15]	RFoff_15	DATA IO	NORM,DRV1	VB
125	N17	RF_off[16]	RFoff_16	DATA IO	•	VB
126	N15	VDD	VDD	VDD EDGE	NOICH, DICVI	V D
127	M16	VSS	VSS	VSS EDGE		
128	N16	VDD	VDD	VDD EDGE		
129	M17	RF_off[17]	RFoff_17	DATA IO	NORM,DRV1	37D
130	M15	RF_off[18]	RFoff_18	DATA IO	•	VB
131	L17		_		NORM,DRV1	VB
132		RF_off[19]	RFoff_19	DATA IO	NORM,DRV1	VB
	L15	RF_off[20]	RFoff_20	DATA IO	NORM,DRV1	VB
133	K16	RF_off[21]	RFoff_21	DATA IO	NORM,DRV1	VB
134	L16	RF_off[22]	RFoff_22	DATA IO	NORM,DRV1	VB
135	K17	RF_off[23]	RFoff_23	DATA IO	NORM,DRV1	VB
136	K14	RF_off[24]	RFoff_24	DATA IO	NORM,DRV1	VB
137	J17	RF_off[25]	RFoff_25	DATA IO	NORM,DRV1	VB
138	K15	S_off[0]	Soff_0	DATA IO	NORM,DRV1	VB
139	J16	S_off[1]	Soff_1	DATA IO	NORM,DRV1	VB
140	K13	S_off[2]	Soff_2	DATA IO	NORM,DRV1	VB
141	J13	S_ off[3]	Soff_3	DATA IO	NORM,DRV1	VB

142	H17	VDD	VDD	VDD EDGE		
143	J14	VSS	VSS	VSS EDGE		
144	H16	S_off[4]	Soff_4	DATA IO	NORM,DRV1	VB
145	J15	S_off[5]	Soff_5	DATA IO	NORM,DRV1	VB
146	G17	S_ off[6]	Soff_6	DATA IO	NORM,DRV1	VB
147	H15	S_off[7]	Soff_7	DATA IO	NORM,DRV1	VB
148	F17	S_off[8]	Soff_8	DATA IO	NORM, DRV1	VB
149	H14	VDD	VDD	VDD CORE		
150	F14	S_off [9]	Soff_9	DATA IO	NORM,DRV1	VB
151	H13	S_off[10]	Soff_10	DATA IO	NORM, DRV1	VB
152	F16	S_off[11]	Soff_11	DATA IO	NORM, DRV1	VB
153	G15	S_off[12]	Soff_12	DATA IO	NORM, DRV1	VB
154	D17	S_off[13]	Soff_13	DATA IO	NORM, DRV1	VB
155	G16	S_off[14]	Soff_14	DATA IO	NORM,DRV1	VB
156	C17	S_off[15]	Soff_15	DATA IO	NORM, DRV1	VB
157	F15	S_off[16]	Soff_16	DATA IO	NORM,DRV1	VB
158	D16	VDD	VDD	VDD EDGE	•	
159	G14	VSS	VSS	VSS EDGE		
160	F14	S_off[17]	Soff_17	DATA IO	NORM, DRV1	VB
161	E16	S_off[18]	Soff_18	DATA IO	NORM, DRV1	VB
162	B17		_			
163	E15	S_off[19]	Soff_19	DATA IO	NORM,DRV1	VB
164	C16		_		•	
165	E14	S_off[21]	Soff_21	DATA IO	NORM, DRV1	VB
166	A17	S_off[20]	Soff_20	DATA IO	NORM, DRV1	VB
167	D15	VDD	VDD	VDD EDGE		. –
168	B16	S_off[22]	Soff_22	DATA IO	NORM,DRV1	VB
169	B15	S_off[23]	Soff_23	DATA IO	NORM,DRV1	VB
170	D14	VSS	VSS	VSS EDGE		
171	A16	S_off[25]	Soff_25	DATA IO	NORM,DRV1	VB
172	C15	S_off[24]	Soff_24	DATA IO	NORM,DRV1	VB
173	A15	SF_adr[24]	SFadr_24	DATA OUT	DRVSPEED1	W
174	B14	SF_adr[25]	SFadr_25	DATA OUT	DRVSPEED1	W
175	A14		_			
176	D13	SF_adr[23]	SFadr_23	DATA OUT	DRVSPEED1	W
177	D12	SF_adr[22]	SFadr_22	DATA OUT	DRVSPEED1	W
178	E11	SF_adr[21]	SFadr_21	DATA OUT	DRVSPEED1	W
179	B13	SF_adr[20]	SFadr_20	DATA OUT	DRVSPEED1	W
180	C14	SF_adr[19]	SFadr_19	DATA OUT	DRVSPEED1	W
181	A13	SF_adr[18]	SFadr_18	DATA OUT	DRVSPEED1	W
182	C13	SF_adr[17]	SFadr_17	DATA OUT	DRVSPEED1	w
183	B12	VSS	VSS	VSS EDGE		
184	C2	VDD	VDD	VDD EDGE		
185	A12	SF_adr[16]	SFadr_16	DATA OUT	DRVSPEED1	W
186	D11	SF_adr[15]	SFadr_15	DATA OUT	DRVSPEED1	W
187	A11	SF_adr[14]	SFadr_14	DATA OUT	DRVSPEED1	w
188	C11	SF_adr[13]	SFadr_13	DATA OUT	DRVSPEED1	w
189	B10	SF_adr[12]	SFadr_12	DATA OUT	DRVSPEED1	w
190	B11	SF_adr[11]	SFadr_11	DATA OUT	DRVSPEED1	w
191	A10	SF_adr[10]	SFadr_10	DATA OUT	DRVSPEED1	w
192	D10	SF_adr[9]	SFadr_9	DATA OUT	DRVSPEED1	w
	0	[/]	~~ ~~ /	2.11.1 001	ומנונו זני דאני	**

193	A9	SF_adr[8]	SFadr_8	DATA OUT	DRVSPEED1	W
194	C10	VSS	VSS	VSS EDGE		
195	B9	VDD	VDD	VDD EDGE		
196	E10	SF_adr[7]	SFadr_7	DATA OUT	DRVSPEED1	W
197	E9	SF_adr[6]	SFadr_6	DATA OUT	DRVSPEED1	W
198	A8	SF_adr[5]	SFadr_5	DATA OUT	DRVSPEED1	W
199	D9	SF_adr[4]	SFadr_4	DATA OUT	DRVSPEED1	W
200	B 8	SF_adr[3]	SFadr_3	DATA OUT	DRVSPEED1	W
201	C9	SF_adr[2]	SFadr_2	DATA OUT	DRVSPEED1	W
202	A7	SF_adr[1]	SFadr_1	DATA OUT	DRVSPEED1	W
203	C8	SF_adr[0]	SFadr_0	DATA OUT	DRVSPEED1	W
204	A6	S_adr_mode[0]	Smode_0	DATA IO	HIGH,DRV1	VB
205	E8	S_adr_mode[1]	Smode_1	DATA IO	HIGH, DRV1	VB
206	B6	S_adr_mode[2]	Smode_2	DATA IO	HIGH, DRV1	VB
207	D8	S_adr_mode[3]	Smode_3	DATA IO	HIGH, DRV1	VB
208	A5	VSS	VSS	VSS EDGE		
209	B7	VDD	VDD	DD EDGE		
210	B5	N_reset	N_reset	DATA IN	HIGH	VB
211	C7	Flush	Flush	DATA IN	HIGH	VB
212	A4	Kernel_mode	Kmode	DATA IN	NORMAL	VB
213	D7	DAG_error	DAG_err	DATA OUT	DRVSPEED1	SB .
214	D6	Booting	Booting	DATA IN	NORMAL	VB Î
215	E7	Guard	Guard	DATA IN	NORMAL	VB
216	A3	Inst_rd	Inst_rd	DATA IN	NORMAL	VB
217	C6	Inst_en	Inst_en	DATA IN	NORMAL	VB
218	B3					
219	C5	Valid_intr	Vld_intr	DATA IN	NORMAL	VB
220	A2					
221	B4	R_eq_f_1	Req_f1	DATA OUT	DRVSPEED1	VB
222	A 1					
223	D5	S_eq_f_1	Seq_f1	DATA OUT	DRVSPEED1	VB
224	B2	R_eq_f_2	Req_f2	DATA OUT	DRVSPEED1	VB

8. Key Parameters

```
) PAD_AREA = 32846.0 SQUARE_MILS
     ( = 21190925. u2 )
 ) ROUTE_AREA = 83275.9 SQUARE_MILS
      ( = 53726279. u2 )
.) PERCENT_ROUTING_OF_CORE = 62 %
 ) PERCENT_ROUTING_OF_CHIP = 49 %
 ) PERCENT_CORE_OF_CHIP = 78 %
 ) PERCENT_PADRING_OF_CHIP = 21 %
 ) PERCENT_PAD_OF_PADRING = 90 %
 ) NETLIST_VERSION = 2.0
 ) NETLIST_EXISTS = 1 (0=NO, 1=YES)
 ) PHASE A TIME = 46.1 NANOSECONDS
 ) PHASE B TIME = 46.6 NANOSECONDS
 ) SYMMETRIC_TIME = 94.0 NANOSECONDS
 ) NUMBER_OF_TRANSISTORS = 54569
 ) POWER_DISSIPATION = 991.97 MILLIWATTS_@5V_10MHZ
 ) ROUTE_ESTIMATE_LVL = 0
 ) FLAT ROUTE = 0 (0=NO, 1=YES)
 ) TECHNOLOGY NAME = CMOS-1
 ) PACKAGE_SPECIFIED = 1 (0=NO,1=YES)
 ) PACKAGE NAME = CPGA224f2
 ) FABLINE NAME = HP2_CN10B
 ) COMPILER TYPE = GCX
 ) FLOORPLAN VERSION = 8.0
 ) BOND PAD CNT = 208
 ) HEIGHT_ESTIMATE = 360.40 MILS
     (=9154.159 u)
 ) WIDTH_ESTIMATE = 361.31 MILS
 )
    ( = 9177.273 u )
 ) FUSED = 1 (0=NO, 1=YES)
 ) FUSION_REQUIRED = 1 (0=NO,1=YES)
 ) PINOUT = 1 (0=NO, 1=YES)
 ) PINOUT_REQUIRED = 1 (0=NO,1=YES)
 ) PLACED = 1 (0=NO, 1=YES)
 ) PLACEMENT_REQUIRED = 1 (0=NO,1=YES)
 ) DOWN_BONDS_ALLOWED = 1 (0=NO,1=YES)
 ) PKG_PIN_COUNT = 224
 ) PKG_WELL_HEIGHT = 480.00 MILS
     ( = 12192.00 u )
 ) PKG_WELL_WIDTH = 480.00 MILS
     (=12192.00 u)
 ) AREA = 169860.6 SQUARE_MILS
     (=109587262. u2)
 ) OBJECT_TYPE = Chip
 ) AREA_PER_TRANSISTOR = 3.112767 SQUARE_MILS
     ( = 2008.23278 u2 )
 ) PHYSICAL_IMPLEMENTATIONS_EXIST = 0 (0=NO,1=YES)
 ) CHECKPOINTS_EXIST = 0 (0=NO,1=YES)
 ) CAN_SET_FABLINE = 1 (0=NO,1=YES)
 ) Key Parameter Listing Complete
```

9. PADRING.033

OUTPUT RINGS REPORT Version 1

Noise contribution: (ma/nh) Speed0: 2.50 Speed1: 5.00 Speed2: 8.33 Speed3: 16.66 Limits: Maximum noise level: 100. Unacceptable level: 150

Combined power pads do not supply clean power to the core. Their use is discouraged

Ring under analysis: VDD

	PAD NAME	EDGE	SPEED	DRIVE TYPE	PAD SUPPLY	COMMENT
	rf_pad[10]	EAST	1	CMOS	1	OK
	rf_pad[9]	EAST	1	CMOS	1	OK
	rf_pad[8]	EAST	1	CMOS	1	OK
	rf_pad[7]	EAST	1	CMOS	1	OK
	rf_pad[6]	EAST	1	CMOS	1	OK
	rf_pad[5]	EAST	1	CMOS	1	OK
	rf_pad[4]	EAST	1	CMOS	2	OK .
	ring_vdd[0]	EAST		POWER		
	rf_pad[3]	EAST	1	CMOS	2	OK
	rf_pad[2]	EAST	1	CMOS	2	OK
	rf_pad[1]	EAST	1	CMOS	2	OK
	rf_pad[0]	EAST	1	CMOS	2	OK
	seqf2_pad	EAST	1	CMOS	2	OK
						R
	seqf1_pad	SOUTH	1	CMOS	2	OK
	reqf2_pad	SOUTH	1	CMOS	2	OK
	reqf1_pad	SOUTH	1	CMOS	2	OK
	dag_error_pad	SOUTH	1	CMOS	2	OK
	ring_vdd[9]	SOUTH		POWER		
	s_mode_pad[3]	SOUTH	1	CMOS	2	OK
	s_mode_pad[2]	SOUTH	1	CMOS	2	OK
	s_mode_pad[1]	SOUTH	1	CMOS	3	OK
	s_mode_pad[0]	SOUTH	1	CMOS	3	OK
•	s_adr_pad[0]	SOUTH	1	CMOS	2	OK
	s_adr_pad[1]	SOUTH	1	CMOS	2	OK
	s_adr_pad[2]	SOUTH	1	CMOS	2	OK
	s_adr_pad[3]	SOUTH	1	CMOS	2	OK
	s_adr_pad[4]	SOUTH	1	CMOS	2	OK
	s_adr_pad[5]	SOUTH	1	CMOS	2	OK
	s_adr_pad[6]	SOUTH	1	CMOS	1	OK
	s_adr_pad[7]	SOUTH	1	CMOS	2	OK
	ring_vdd[10]	SOUTH		POWER		
	s_adr_pad[8]	SOUTH	1	CMOS	2	OK
	s_adr_pad[9]	SOUTH	1	CMOS	2	OK
	s_adr_pad[10]	SOUTH	1	CMOS	2	OK
	s_adr_pad[11]	SOUTH	1	CMOS	2	OK
	s_adr_pad[12]	SOUTH	1	CMOS	2	OK
	s_adr_pad[13]	SOUTH	1	CMOS	2	OK
	s_adr_pad[14]	SOUTH	1	CMOS	2	OK
	s_adr_pad[15]	SOUTH	1	CMOS	2	OK
	s_adr_pad[16]	SOUTH		CMOS	2	OK
	ring_vdd[3]	SOUTH		POWER		
	s_adr_pad[17]	SOUTH	1	CMOS	2	OK
	s_adr_pad[18]	SOUTH	1	CMOS	1	OK
	s_adr_pad[19]	SOUTH	1	CMOS	1	OK

1 ок

s_adr_pad[20] SOUTH 1 CMOS

s_adr_pad[21]	SOUTH	1	CMOS	1	OK
s_adr_pad[22]	SOUTH	1	CMOS	1	OK
s_adr_pad[23]	SOUTH	1	CMOS	1	OK
5_4d1_P4d(25)					
s_adr_pad[24]	SOUTH	1	CMOS	1	OK
s_adr_pad[25]	SOUTH	1	CMOS	2	OK
s_off_pad[25]	SOUTH	1	CMOS	2	OK
s_off_pad[24]	SOUTH	1	CMOS	1	OK
s_off_pad[23]	SOUTH	1	CMOS	1	OK
s_off_pau(23)	300111	1	CHOS	1	
s_off_pad[22]	WEST	1	CMOS	1	OK
s_off_pad[21]	WEST	1	CMOS	1	OK
s_off_pad[20]	WEST	1	CMOS	1	OK
s_off_pad[19]	WEST	1	CMOS	1	OK
s_off_pad[18]	WEST	1	CMOS	1	OK
s_off_pad[17]	WEST	1	CMOS	1	OK
ring_vdd[4]	WEST		POWER		
s_off_pad[16]	WEST	1	CMOS	1	OK
s_off_pad[15]	WEST	1	CMOS	1	OK
s_off_pad[14]	WEST	1	CMOS	1	OK
s_off_pad[13]	WEST	1	CMOS	2	OK
s_off_pad[12]	WEST	1	CMOS	2	OK
s_off_pad[11]	WEST	1	CMOS	2	OK
s_off_pad[10]	WEST	1	CMOS	2	OK
s_off_pad(9)	WEST	1	CMOS	2	OK
s_off_pad[8]	WEST	1	CMOS	2	OK
s_off_pad[7]	WEST	1	CMOS	2	OK
s_off_pad[6]	WEST	1	CMOS	1	OK
s_off_pad[5]	WEST	1	CMOS	1	
					OK
s_off_pad[4]	WEST	1	CMOS	1	OK
ring_vdd[8]	WEST		POWER		
s_off_pad[3]	WEST	1	CMOS	1	OK
s_off_pad[2]	WEST	1	CMOS	1	OK
s_off_pad[1]	WEST	1	CMOS	1	OK
s_off_pad(0)		1			
	WEST		CMOS	2	OK
rf_off_pad[25]	WEST	1	CMOS	2	OK
rf_off_pad[24]	WEST	1	CMOS	2	OK
rf_off_pad[23]	WEST	1	CMOS	2	OK
rf_off_pad[22]	WEST	1	CMOS	2	OK
rf_off_pad[21]	WEST	1	CMOS		
				2	OK
rf_off_pad[20]	WEST	1	CMOS	2	OK
rf_off_pad[19]	WEST	1	CMOS	2	OK
rf_off_pad[18]	WEST	1	CMOS	2	OK
rf_off_pad[17]	WEST	1	CMOS	3	OK
ring_vdd[7]	WEST		POWER		
rf_off_pad[16]	WEST	1		3	OV
			CMOS		OK
rf_off_pad[15]	WEST	1	CMOS	3	OK
rf_off_pad[14]	WEST	1	CMOS	3	OK
rf_off_pad[13]	WEST	1	CMOS	3	OK
rf_off_pad[12]	WEST	1	CMOS	3	ок
rf_off_pad[11]	WEST	1	CMOS	3	
fr_off_pad(ff)					OK
rf_off_pad[10]	WEST	1	CMOS	3	OK
ring_vdd[6]	WEST		POWER		
rf_off_pad[9]	WEST	1	CMOS	3	OK
rf_off_pad[8]	WEST	1	CMOS	4	OK
corner_vdd		-		-3	J10
COTHET Add	WEST		POWER		
rf_off_pad[7]	NORTH	1	CMOS	4	OK
rf_off_pad[6]	NORTH	1	CMOS	3	OK
rf_off_pad[5]	NORTH	1	CMOS	3	ок
rf_off_pad[4]	NORTH	1	CMOS	3	
					OK
rf_off_pad[3]	NORTH	1	CMOS	3	OK
rf_off_pad[2]	NORTH	1	CMOS	3	OK

rf_off_pad[1]	NORTH	1	CMOS	3	OK
rf_off_pad[0]	NORTH	1	CMOS	3	OK
rf_mode_pad[3]	NORTH	1	CMOS	3	ОК
ring_vdd[5]	NORTH		POWER		
rf_mode_pad[2]	NORTH	1	CMOS	3	OK
rf_mode_pad[1]	NORTH	1	CMOS	2	OK
rf_mode_pad[0]	NORTH	1	CMOS	2	OK
rf_adr_pad[25]	NORTH	1	CMOS	2	ок
rf_adr_pad[24]	NORTH	1	CMOS	2	OK
rf_adr_pad[23]	NORTH	1	CMOS	2	ОК
rf_adr_pad[22]	NORTH	1	CMOS	2	OK
rf_adr_pad[21]	NORTH	1	CMOS	2	OK
rf_adr_pad[20]	NORTH	1	CMOS	2	OK
ring_vdd[2]	NORTH	_	POWER	-	
rf_adr_pad[19]	NORTH	1	CMOS	3	ок
rf_adr_pad[17]	NORTH	1	CMOS	2	OK
rf_adr_pad[18]	NORTH	1	CMOS	2	OK
rf_adr_pad[16]	NORTH	1	CMOS	2	OK
		1			
rf_adr_pad[15]	NORTH		CMOS	2	OK
rf_adr_pad[14]	NORTH	1	CMOS	2	OK
rf_adr_pad[13]	NORTH	1	CMOS	2	OK
rf_adr_pad[12]	NORTH	1	CMOS	2	OK
rf_adr_pad[11]	NORTH	1	CMOS	2	OK
rf_adr_pad[10]	NORTH	1	CMOS	2	OK
ring_vdd[1]	NORTH		POWER		
rf_adr_pad[8]	NORTH	1	CMOS	1	OK
rf_adr_pad[9]	NORTH	1	CMOS	1	OK
rf_adr_pad[7]	NORTH	1	CMOS	2	OK
rf_adr_pad[6]	NORTH	1	CMOS	2	OK
rf_adf_pad[5]	NORTH	1	CMOS	2	OK
rf_adr_pad[4]	NORTH	1	CMOS	2 ·	OK
rf_adr_pad[3]	NORTH	1	CMOS	2	OK
rf_adr_pad[2]	NORTH	1	CMOS	2	OK
rf_adr_pad[1]	NORTH	1	CMOS	2	OK
rf_adr_pad[0]	NORTH	1	CMOS	2	OK
rf_pad[31]	NORTH	1	CMOS	1	OK
rf_pad[30]	NORTH	1	CMOS	3	OK
ring_vdd[13]	EAST		POWER		
rf_pad[29]	EAST	1	CMOS	3	OK
rf_pad[28]	EAST	1	CMOS	3	OK
rf_pad[27]	EAST	1	CMOS	3	OK
rf_pad[26]	EAST	1	CMOS	3	OK
rf_pad[25]	EAST	1	CMOS	3	OK
rf_pad[22]	EAST	1	CMOS	3	OK
rf_pad[24]	EAST	1	CMOS	3	OK
rf_pad[21]	EAST	1	CMOS	3	ок
rf_pad[23]	EAST	1	CMOS	3	OK
rf_pad[20]	EAST	1	CMOS	3	ОК
rf_pad[19]	EAST	1	CMOS	2	OK
ring_vdd[12]	EAST		POWER		
rf_pad[18]	EAST	1	CMOS	2	OK
rf_pad[17]	EAST	1	CMOS	2	OK
rf pad[16]	EAST	1	CMOS	2	OK
rf_pad[15]	EAST	1	CMOS	2	OK
rf_pad[14]	EAST	1	CMOS	2	OK
rf_pad[13]	EAST	1	CMOS	2	OK
rf_pad[13]		1	CMOS	2	
rf_pad[11]	EAST	1		2	OK
	EAST	Т	CMOS	2	OK
ring_vdd[11]	EAST		POWER		

This ring has 7 more VDD pads than it needs Ring under analysis: VSS

_	-					
	PAD NAME	EDGE	SPEED	DRIVE	PAD	COMMENT
				TYPE	SUPPLY	
	rf_pad[10]	EAST	1	CMOS	2	OK
	rf_pad[9]	EAST	1	CMOS	2	OK
	rf_pad[8]	EAST	1	CMOS	2	OK
	rf_pad[7]	EAST	1	CMOS	2	OK
	rf_pad[6]	EAST	1	CMOS	2	OK
	rf_pad[5]	EAST	1	CMOS	2	OK
	rf_pad[4]	EAST		CMOS	3	OK
	ring_vss[11]	EAST		POWER		
	ring_vss[10]	EAST		POWER		
	rf_pad[3]	EAST		CMOS	3	OK
	rf_pad[2]	EAST		CMOS	3	OK
	rf_pad[1]	EAST		CMOS	3	OK
	rf_pad[0]	EAST		CMOS	3	OK .
	seqf2_pad	EAST	1	CMOS	3	OK
					_	
	seqf1_pad	SOUTH		CMOS	3	OK
	reqf2_pad	SOUTH		CMOS	3	OK
	reqf1_pad	SOUTH		CMOS	3	OK OY
	dag_error_pad	SOUTH		CMOS	3	OK
	ring_vss[8]	SOUTH		POWER	2	07
	<pre>s_mode_pad[3] s_mode_pad[2]</pre>	SOUTH		CMOS	3 3	OK OK
	s_mode_pad[2] s_mode_pad[1]	SOUTH		CMOS CMOS	3 4	OK OK
	s_mode_pad{1} s_mode pad{0}	SOUTH		CMOS	4	OK OK
	s adr pad[0]	SOUTH		CMOS	2	OK OK
	s_adr_pad[1]	SOUTH		CMOS	2	OK
	s adr pad[2]	SOUTH		CMOS	2	OK
	s_adr_pad[3]	SOUTH		CMOS	2	OK
	s_adr_pad[4]	SOUTH		CMOS	2	OK
	s adr pad[5]	SOUTH		CMOS	2	OK
	s adr pad[6]	SOUTH		CMOS	1	OK
	s_adr_pad[7]	SOUTH	1	CMOS	2	OK
	ring_vss[9]	SOUTH		POWER		
	s_adr_pad[8]	SOUTH	1	CMOS	2	OK
	s_adr_pad[9]	SOUTH	1	CMOS	2	OK
•	s_adr_pad[10]	SOUTH	1	CMOS	2	OK
	s_adr_pad[11]	SOUTH	1	CMOS	2	OK
	s_adr_pad[12]	SOUTH	1	CMOS	2	OK
	s_adr_pad[13]	SOUTH		CMOS	2	OK
	s_adr_pad[14]	SOUTH		CMOS	2	OK
	s_adr_pad[15]	SOUTH		CMOS	2	OK
	s_adr_pad[16]	SOUTH		CMOS	2	OK
	ring_vss[3]	SOUTH		POWER	_	
	s_adr_pad[17]	SOUTH		CMOS	2	OK
	s_adr_pad[18]	SOUTH		CMOS	1	OK OY
	s_adr_pad[19]	SOUTH		CMOS	2	OK OK
	s_adr_pad[20] s_adr_pad[21]	SOUTH		CMOS	2	OK OK
	s_adr_pad[21] s_adr_pad[22]	SOUTH		CMOS CMOS	2 2	OK OK
	s_adr_pad(23)	SOUTH		CMOS	2	OK OK
	s adr pad[24]	SOUTH		CMOS	2	OK OK
	s_adr_pad[25]	SOUTH		CMOS	3	OK OK
	s_off_pad[25]	SOUTH		CMOS	3	OK OK
	s_off_pad[24]	SOUTH		CMOS	2	OK
			-		_	

s_off_pad[23]	SOUTH	1	CMOS	2	OK
corner_vss[1]	SOUTH		POWER		
		_		_	
s_off_pad[22]	WEST	1	CMOS	2	OK
s_off_pad[21]	WEST	1	CMOS	2	OK
s_off_pad[20]	WEST	1	CMOS	2	OK
s_off_pad[19]	WEST	1	CMOS	2	OK
s_off_pad[18]	WEST	1	CMOS	2	OK
s_off_pad[17]	WEST	1	CMOS	2	OK
ring_vss[4] s_off_pad[16]	West West	1	POWER CMOS	2	OK
s_off_pad[15]	WEST	1	CMOS	2	OK
s_off_pad[14]	WEST	1	CMOS	2	OK
s_off_pad[14]	WEST	1	CMOS	3	OK
s_off_pad[13]	WEST	1	CMOS	2	OK
s_off_pad[11]	WEST	1	CMOS	2	OK
s_off_pad[10]	WEST	1	CMOS	2	OK
s_off_pad[9]	WEST	1	CMOS	2	OK
s_off_pad[8]	WEST	1	CMOS	2	OK
s_off_pad[7]	WEST	1	CMOS	2	ок
s_off_pad[6]	WEST	1	CMOS	1	ОК
s_off_pad[5]	WEST	1	CMOS	1	OK
s_off_pad[4]	WEST	1	CMOS	1	OK
ring_vss[7]	WEST		POWER		
s_off_pad[3]	WEST	1	CMOS	1	OK
s_off_pad[2]	WEST	1	CMOS	1	OK
s_off_pad[1]	WEST	1	CMOS	1	OK
s_off_pad[0]	WEST	1	CMOS	2	ОК
rf_off_pad[25]	WEST	1	CMOS	2	ок
rf_off_pad[24]	WEST	1	CMOS	2	OK
rf_off_pad[23]	WEST	1	CMOS	2	OK
rf_off_pad[22]	WEST	1	CMOS	2	OK
rf_off_pad[21]	WEST	1	CMOS	2	OK
rf_off_pad[20]	WEST	1	CMOS	2	OK
rf_off_pad[19]	WEST	1	CMOS	1	OK
rf_off_pad[18]	WEST	1	CMOS	1	OK
rf_off_pad[17]	WEST	1	CMOS	1	OK
ring_vss[6]	WEST		POWER		
rf_off_pad[16]	WEST	1	CMOS	1	OK
rf_off_pad[15]	WEST	1	CMOS	1	OK
rf_off_pad[14]	WEST	1	CMOS	1	OK
rf_off_pad[13]	WEST	1	CMOS	1	OK
rf_off_pad[12]	WEST	1	CMOS	1	OK
rf_off_pad[11]	WEST	1	CMOS	1	OK
rf_off_pad[10]	WEST	1	CMOS	1	OK
rf_off_pad[9]	WEST	1	CMOS	1	OK
rf_off_pad[8]	WEST	1	CMOS	2	ок
rf_off_pad[7]	NODELL	1	CMOC	•	01/
	NORTH	1 1	CMOS	2	OK
rf_off_pad[6] rf_off_pad[5]	NORTH NORTH	1	CMOS CMOS	1 1	OK
rf_off_pad[4]	NORTH	1	CMOS	1	OK OK
rf_off_pad[3]	NORTH	1	CMOS	1	OK
rf_off_pad[2]	NORTH	1	CMOS	1	OK
rf_off_pad[1]	NORTH	1	CMOS	1	OK
rf_off_pad[0]	NORTH	1	CMOS	1	OK
rf_mode_pad[3]	NORTH	1	CMOS	2	OK
ring_vss[5]	NORTH	-	POWER	-	J.1
rf_mode_pad[2]	NORTH	1	CMOS	2	ок
rf_mode_pad[1]	NORTH	1	CMOS	2	OK
rf_mode_pad[0]	NORTH	1	CMOS	2	OK
rf_adr_pad[25]	NORTH	1	CMOS	2	OK
		_		_	

		_		_	
rf_adr_pad[24]	NORTH	1	CMOS	2	OK
rf_adr_pad[23]	NORTH	1	CMOS	2	OK
rf_adr_pad[22]	NORTH	1	CMOS	2	OK
rf_adr_pad[21]	NORTH	1	CMOS	2	OK
rf_adr_pad[20]	NORTH	1	CMOS	2	OK
ring_vss[1]	NORTH		POWER		
rf_adr_pad[19]	NORTH	1	CMOS	3	OK
rf_adr_pad[17]	NORTH	1	CMOS	2	OK
rf_adr_pad[18]	NORTH	1	CMOS	2	OK
rf_adr_pad[16]	NORTH	1	CMOS	2	OK
rf_adr_pad[15]	NORTH	1	CMOS	2	OK
rf_adr_pad[14]	NORTH	1	CMOS	2	OK
rf_adr_pad[13]	NORTH	1	CMOS	2	OK
rf_adr_pad[12]	NORTH	1	CMOS	2	OK
rf_adr_pad[11]	NORTH	1	CMOS	2	OK
rf_adr_pad[10]	NORTH	1	CMOS	2	OK
ring_vss[0]	NORTH		POWER		
rf_adr_pad[8]	NORTH	1	CMOS	1	OK
rf_adr_pad[9]	NORTH	1	CMOS	1	ОК
rf_adr_pad[7]	NORTH	1	CMOS	2	OK
rf_adr_pad[6]	NORTH	1	CMOS	2	OK
rf_adr_pad[5]	NORTH	1	CMOS	2	OK
rf_adr_pad[4]	NORTH	1	CMOS	2	OK
rf_adr_pad[3]	NORTH	1	CMOS	2	OK
	NORTH	1	CMOS	2	OK
rf_adr_pad[2]					
rf_adr_pad[1]	NORTH	1	CMOS	2	OK
rf_adr_pad[0]	NORTH	1	CMOS	2	OK
rf_pad[31]	NORTH	1	CMOS	1	OK
rf_pad[30]	NORTH	1	CMOS	3	OK
corner_vss[0]	NORTH		POWER		
rf_pad[29]	EAST	1	CMOS	3	OK
rf_pad[28]	EAST	1	CMOS	3	ок
rf_pad[27]	EAST	1	CMOS	3	OK
rf_pad[26]	EAST	1	CMOS	3	OK
rf_pad[25]	EAST	1	CMOS	3	OK
rf_pad[22]	EAST	1	CMOS	3	OK
rf_pad[24]	EAST	1	CMOS	3	OK
rf_pad[21]	EAST	1	CMOS	3	OK
rf_pad[23]	EAST	1	CMOS	3	OK
rf_pad[20]	EAST	1	CMOS	3	OK
rf_pad[19]	EAST	1	CMOS	2	OK
ring_vss[2]	EAST	_	POWER	2	OK
rf pad[18]	EAST	1		2	ΟV
rf pad[17]		1	CMOS	2	OK
rf_pad[17] rf_pad[16]	EAST EAST	1	CMOS CMOS	2 2	OK
rf_pad[15]		1		2	
rf_pad[14]	EAST		CMOS		OK
	EAST	1	CMOS	2	OK
rf_pad[13]	EAST	1	CMOS	2	OK
rf_pad[12]	EAST	1	CMOS	2	OK
rf_pad[11]	EAST	1	CMOS	2	OK
ring_vss[12]	EAST		POWER		

This ring has 7 more VSS pads than it needs $% \left(1\right) =\left(1\right) ^{2}$

10. Power Dissipation

11. Simulation Setup Files

11.1. designinit.080

```
func designinit {
          toggle /Clk 0 '(0 5 10)
          tag /Clk step both
          tag /Clk cycle rising
          }
```

12. Timing Setup Files

12.1. cl_out_room.040

```
LABEL Clock time, output delay -- Room Temp
TEMP_VOLT 62 5.00
HOLDTIME_MARGIN 2.00
SELECT_EXT_CLOCK Clk
INPUT Booting 1 0 14.70 0.00 0.00 0.00
INPUT DAG_R en 1 0 59.70 0.00 9.70 0.00
INPUT DAG_R_en 0 1 27.50 0.00 0.00 0.00
INPUT Flush 1 0 38.50 0.00 0.00 0.00
INPUT Freeze 1 0 45.70 0.00 0.00 0.00
INPUT Freeze 0 1 27.70 0.00 0.00 0.00
INPUT Guard 1 0 78.50 0.00 0.00 0.00
INPUT Guard 0 1 30.20 0.00 0.00 0.00
INPUT Ids_eq_ods_1 1 0 20.20 0.00 0.00 0.00
INPUT Ids_eq_ods_2 1 0 21.10 0.00 0.00 0.00
INPUT Ids_freeze 1 0 16.60 0.00 0.00 0.00
INPUT Ids_freeze 0 1 22.90 0.00 0.00 0.00
INPUT Inst_en 0 1 12.90 0.00 0.00 0.00
INPUT Kernel_mode 1 0 26.60 0.00 0.00 0.00
INPUT Inst_rd 1 0 52.70 0.00 0.00 0.00
INPUT Inst_rd 0 1 2.70 0.00 0.00 0.00
INPUT N_reset 1 0 23.10 0.00 0.00 0.00
INPUT Ods_freeze 1 0 40.50 0.00 0.00 0.00
INPUT Ods_freeze 0 1 16.60 0.00 0.00 0.00
INPUT Pc[0] 1 0 65.00 0.00 15.00 0.00
INPUT Pc[1] 1 0 65.00 0.00 15.00 0.00
INPUT Pc[2] 1 0 65.00 0.00 15.00 0.00
INPUT Pc[3] 1 0 65.00 0.00 15.00 0.00
INPUT Pc[0] 0 1 15.00 0.00 0.00 0.00
INPUT Pc[1] 0 1 15.00 0.00 0.00 0.00
INPUT Pc[2] 0 1 15.00 0.00 0.00 0.00
INPUT Pc[3] 0 1 15.00 0.00 0.00 0.00
INPUT Valid_intr 1 0 29.70 0.00 0.00 0.00
INPUT RF[0] 1 0 40.50 0.00 0.00 0.00
INPUT RF[1] 1 0 40.50 0.00 0.00 0.00
INPUT RF[2] 1 0 40.50 0.00 0.00 0.00
INPUT RF[3] 1 0 40.50 0.00 0.00 0.00
INPUT RF[4] 1 0 40.50 0.00 0.00 0.00
INPUT RF[5] 1 0 40.50 0.00 0.00 0.00
INPUT RF[6] 1 0 40.50 0.00 0.00 0.00
INPUT RF[7] 1 0 40.50 0.00 0.00 0.00
INPUT RF[8] 1 0 40.50 0.00 0.00 0.00
INPUT RF[9] 1 0 40.50 0.00 0.00 0.00
INPUT RF[10] 1 0 40.50 0.00 0.00 0.00
```

```
INPUT RF[11] 1 0 40.50 0.00 0.00 0.00
INPUT RF[12] 1 0 40.50 0.00 0.00 0.00
INPUT RF[13] 1 0 40.50 0.00 0.00 0.00
INPUT RF[14] 1 0 40.50 0.00 0.00 0.00
INPUT RF[15] 1 0 40.50 0.00 0.00 0.00
INPUT RF[16] 1 0 40.50 0.00 0.00 0.00
INPUT RF[17] 1 0 40.50 0.00 0.00 0.00
INPUT RF[18] 1 0 40.50 0.00 0.00 0.00
INPUT RF[19] 1 0 40.50 0.00 0.00 0.00
INPUT RF[20] 1 0 40.50 0.00 0.00 0.00
INPUT RF[21] 1 0 40.50 0.00 0.00 0.00
INPUT RF[22] 1 0 40.50 0.00 0.00 0.00
INPUT RF[23] 1 0 40.50 0.00 0.00 0.00
INPUT RF[24] 1 0 40.50 0.00 0.00 0.00
INPUT RF[25] 1 0 40.50 0.00 0.00 0.00
INPUT RF[26] 1 0 40.50 0.00 0.00 0.00
INPUT RF[27] 1 0 40.50 0.00 0.00 0.00
INPUT RF[28] 1 0 40.50 0.00 0.00 0.00
INPUT RF[29] 1 0 40.50 0.00 0.00 0.00
INPUT RF[0] 0 1 43.60 0.00 0.00 0.00
INPUT RF[1] 0 1 43.60 0.00 0.00 0.00
INPUT RF[2] 0 1 43.60 0.00 0.00 0.00
INPUT RF[3] 0 1 43.60 0.00 0.00 0.00
INPUT RF[4] 0 1 43.60 0.00 0.00 0.00
INPUT RF[5] 0 1 43.60 0.00 0.00 0.00
INPUT RF[6] 0 1 43.60 0.00 0.00 0.00
INPUT RF[7] 0 1 43.60 0.00 0.00 0.00
INPUT RF[8] 0 1 43.60 0.00 0.00 0.00
INPUT RF[9] 0 1 43.60 0.00 0.00 0.00
INPUT RF[10] 0 1 43.60 0.00 0.00 0.00
INPUT RF[11] 0 1 43.60 0.00 0.00 0.00
INPUT RF[12] 0 1 43.60 0.00 0.00 0.00
INPUT RF[13] 0 1 43.60 0.00 0.00 0.00
INPUT RF[14] 0 1 43.60 0.00 0.00 0.00
INPUT RF[15] 0 1 43.60 0.00 0.00 0.00
INPUT RF[16] 0 1 43.60 0.00 0.00 0.00
INPUT RF[17] 0 1 43.60 0.00 0.00 0.00
INPUT RF[18] 0 1 43.60 0.00 0.00 0.00
INPUT RF[19] 0 1 43.60 0.00 0.00 0.00
INPUT RF[20] 0 1 43.60 0.00 0.00 0.00
INPUT RF[21] 0 1 43.60 0.00 0.00 0.00
INPUT RF[22] 0 1 43.60 0.00 0.00 0.00
INPUT RF[23] 0 1 43.60 0.00 0.00 0.00
INPUT RF[24] 0 1 43.60 0.00 0.00 0.00
INPUT RF[25] 0 1 43.60 0.00 0.00 0.00
INPUT RF[26] 0 1 43.60 0.00 0.00 0.00
INPUT RF[27] 0 1 43.60 0.00 0.00 0.00
INPUT RF[28] 0 1 43.60 0.00 0.00 0.00
INPUT RF[29] 0 1 43.60 0.00 0.00 0.00
INPUT RF_adr_mode[0] 1 0 40.00 0.00 0.00 0.00
INPUT RF_adr_mode[1] 1 0 40.00 0.00 0.00 0.00
INPUT RF_adr_mode[2] 1 0 40.00 0.00 0.00 0.00
INPUT RF_adr_mode[3] 1 0 40.00 0.00 0.00 0.00
INPUT RF_adr_mode[0] 0 1 40.00 0.00 0.00 0.00
INPUT RF_adr_mode[1] 0 1 40.00 0.00 0.00 0.00
INPUT RF_adr_mode[2] 0 1 40.00 0.00 0.00 0.00
INPUT RF_adr_mode[3] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[0] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[1] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[2] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[3] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[4] 1 0 25.00 0.00 0.00 0.00
```

```
INPUT RF off[5] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[6] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[7] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[8] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[9] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[10] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[11] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[12] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[13] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[14] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[15] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[16] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[17] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[18] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[19] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[20] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[21] 1 0 25.00 0.00 0.00 0.00
INPUT RF off[22] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[23] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[24] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[25] 1 0 25.00 0.00 0.00 0.00
INPUT RF_off[0] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[1] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[2] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[3] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[4] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[5] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[6] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[7] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[8] 0 1 40.00 0.00 0.00 0.00
INPUT RF off[9] 0 1 40.00 0.00 0.00 0.00
INPUT RF off[10] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[11] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[12] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[13] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[14] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[15] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[16] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[17] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[18] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[19] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[20] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[21] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[22] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[23] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[24] 0 1 40.00 0.00 0.00 0.00
INPUT RF_off[40] 0 1 25.00 0.00 0.00 0.00
INPUT S_adr_mode[0] 0 1 40.00 0.00 0.00 0.00
INPUT S_adr_mode[1] 0 1 40.00 0.00 0.00 0.00
INPUT S_adr_mode[2] 0 1 40.00 0.00 0.00 0.00
INPUT S_adr_mode[3] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[0] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[1] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[2] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[3] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[4] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[5] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[6] 0 1 40.00 0.00 0.00 0.00
INPUT S off[7] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[8] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[9] 0 1 40.00 0.00 0.00 0.00
INPUT S off[10] 0 1 40.00 0.00 0.00 0.00
```

```
INPUT S_off[11] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[12] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[13] 0 1 40.00 0.00 0.00 0.00
INPUT S off[14] 0 1 40.00 0.00 0.00 0.00
INPUT S off[15] 0 1 40.00 0.00 0.00 0.00
INPUT S off[16] 0 1 40.00 0.00 0.00 0.00
INPUT S off[17] 0 1 40.00 0.00 0.00 0.00
INPUT S off[18] 0 1 40.00 0.00 0.00 0.00
INPUT S off[19] 0 1 40.00 0.00 0.00 0.00
INPUT S off[20] 0 1 40.00 0.00 0.00 0.00
INPUT S off[21] 0 1 40.00 0.00 0.00 0.00
INPUT S off[22] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[23] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[24] 0 1 40.00 0.00 0.00 0.00
INPUT S_off[40] 0 1 25.00 0.00 0.00 0.00
NO_PROP Booting 2
NO_PROP Flush 2
NO_PROP Ids_eq_ods_1 2
NO_PROP Ids_eq_ods_2 2
NO PROP Kernel mode 2
NO PROP N reset 2
NO_PROP Valid_intr 2
IGNORE_PATH rf pad[0]/r out rf pad[0]/rf
IGNORE_PATH rf pad[1]/r out rf pad[1]/rf
IGNORE_PATH rf_pad(2)/r out rf pad(2)/rf
IGNORE_PATH rf pad[3]/r out rf pad[3]/rf
IGNORE_PATH rf_pad[4]/r out rf pad[4]/rf
IGNORE_PATH rf_pad[5]/r_out rf_pad[5]/rf
IGNORE_PATH rf_pad(6)/r_out rf_pad(6)/rf
IGNORE_PATH rf_pad@7]/r_out rf_pad[7]/rf
IGNORE_PATH rf_pad[8]/r out rf pad[8]/rf
IGNORE_PATH rf pad[9]/r out rf pad[9]/rf
IGNORE_PATH rf_pad[10]/r_out rf_pad[10]/rf
IGNORE_PATH rf_pad[11]/r_out rf_pad[11]/rf
IGNORE_PATH rf_pad[12]/r_out rf_pad[12]/rf
IGNORE_PATH rf_pad[13]/r_out rf_pad[13]/rf
IGNORE PATH rf pad[14]/r out rf pad[14]/rf
IGNORE PATH rf pad[15]/r out rf pad[15]/rf
IGNORE_PATH rf_pad[16]/r_out rf_pad[16]/rf
IGNORE_PATH rf_pad[17]/r_out rf_pad[17]/rf
IGNORE_PATH rf_pad[18]/r_out rf_pad[18]/rf
IGNORE_PATH rf_pad[19]/r_out rf_pad[19]/rf
IGNORE_PATH rf_pad[20]/r_out rf_pad[20]/rf
IGNORE_PATH rf_pad[21]/r_out rf_pad[21]/rf
IGNORE_PATH rf_pad[22]/r_out rf_pad[22]/rf
IGNORE_PATH rf_pad[23]/r_out rf_pad[23]/rf
IGNORE_PATH rf_pad[24]/r_out rf_pad[24]/rf
IGNORE_PATH rf_pad[25]/r_out rf_pad[25]/rf
IGNORE_PATH rf_pad[26]/r_out rf_pad[26]/rf
IGNORE_PATH rf_pad[27]/r_out rf_pad[27]/rf
IGNORE_PATH rf_pad[28]/r_out rf_pad[28]/rf
IGNORE_PATH rf_pad[29]/r_out rf_pad[29]/rf
IGNORE_PATH rf_pad[0]/dag_r_dis rf_pad[0]/rf
IGNORE_PATH rf_pad(1)/dag_r_dis rf_pad(1)/rf
IGNORE_PATH rf_pad[2]/dag_r_dis rf_pad[2]/rf
IGNORE_PATH rf_pad[3]/dag_r_dis rf_pad[3]/rf
IGNORE_PATH rf_pad[4]/dag r dis rf pad[4]/rf
IGNORE_PATH rf_pad[5]/dag_r_dis rf_pad[5]/rf
IGNORE_PATH rf_pad[6]/dag_r_dis rf_pad[6]/rf
IGNORE_PATH rf_pad[7]/dag_r_dis rf_pad[7]/rf
IGNORE_PATH rf_pad[8]/dag_r_dis rf_pad[8]/rf
IGNORE_PATH rf_pad[9]/dag_r_dis rf pad[9]/rf
```

```
IGNORE_PATH rf_pad[10]/dag_r_dis rf_pad[10]/rf
IGNORE_PATH rf_pad[11]/dag_r_dis rf_pad[11]/rf
IGNORE_PATH rf_pad[12]/dag r dis rf pad[12]/rf
IGNORE PATH rf pad[13]/dag r dis rf pad[13]/rf
IGNORE PATH rf pad[14]/dag r dis rf pad[14]/rf
IGNORE PATH rf pad[15]/dag r dis rf pad[15]/rf
IGNORE_PATH rf_pad[16]/dag_r_dis rf_pad[16]/rf
IGNORE_PATH rf_pad[17]/dag r dis rf pad[17]/rf
IGNORE_PATH rf pad[18]/dag r dis rf pad[18]/rf
IGNORE_PATH rf_pad[19]/dag_r_dis rf_pad[19]/rf
IGNORE_PATH rf_pad[20]/dag_r_dis rf pad[20]/rf
IGNORE_PATH rf_pad[21]/dag r dis rf pad[21]/rf
IGNORE_PATH rf_pad[22]/dag_r_dis rf_pad[22]/rf
IGNORE_PATH rf_pad[23]/dag_r_dis rf_pad[23]/rf
IGNORE_PATH rf_pad[24]/dag_r_dis rf_pad[24]/rf
IGNORE_PATH rf_pad[25]/dag_r_dis rf_pad[25]/rf
IGNORE_PATH rf_pad[26]/dag_r_dis rf_pad[26]/rf
IGNORE_PATH rf_pad[27]/dag_r_dis rf_pad[27]/rf
IGNORE_PATH rf_pad[28]/dag_r_dis rf_pad[28]/rf
IGNORE_PATH rf_pad[29]/dag_r_dis rf_pad[29]/rf
IGNORE_PATH rf_mode_pad[0]/rfadr_mode_ou rf_mode_pad[0]/rf_adr_mode
IGNORE_PATH rf_mode_pad[1]/rfadr_mode_ou rf_mode_pad[1]/rf_adr_mode
IGNORE_PATH rf_mode_pad[2]/rfadr_mode_ou rf_mode_pad[2]/rf_adr_mode
IGNORE_PATH rf_mode_pad[3]/rfadr_mode_ou rf_mode_pad[3]/rf_adr_mode
IGNORE_PATH s_mode_pad[0]/s_adr_mode_ou s_mode_pad[0]/s_adr_mode in
IGNORE_PATH s_mode_pad[1]/s_adr_mode_ou s_mode pad[1]/s adr mode in
IGNORE_PATH s_mode_pad[2]/s_adr_mode_ou s_mode pad[2]/s adr mode in
IGNORE_PATH s_mode_pad[3]/s_adr_mode ou s mode pad[3]/s adr mode in
IGNORE_PATH rf_mode_pad[0]/inst_dis rf_mode_pad[0]/rf_adr_mode
IGNORE_PATH rf_mode_pad[1]/inst_dis rf_mode_pad[1]/rf_adr_mode
IGNORE_PATH rf_mode_pad[2]/inst_dis rf_mode_pad[2]/rf adr mode
IGNORE_PATH rf_mode_pad[3]/inst_dis rf_mode pad[3]/rf adr mode
IGNORE_PATH s_mode_pad[0]/inst_dis s_mode_pad[0]/s_adr mode in
IGNORE_PATH s_mode_pad[1]/inst_dis s_mode_pad[1]/s adr mode in
IGNORE_PATH s_mode_pad[2]/inst_dis s_mode_pad[2]/s adr mode in
IGNORE_PATH s_mode_pad[3]/inst_dis s_mode_pad[3]/s adr mode in
```

12.2. cl_out_hot

```
LABEL Clock time, output delay -- Max T, Min V
TEMP_VOLT 112 4.50
HOLDTIME_MARGIN 2.00
SELECT_EXT_CLOCK Clk
```

The rest of this file is identical to cl_out_room's INPUT and IGNORE PATH statements.

12.3. set_room.040

```
LABEL Setup/Hold time, Violations -- Room Temp
TEMP_VOLT 62 5.00
HOLDTIME_MARGIN 2.00
SELECT_EXT_CLOCK Clk
```

The rest of this file is identical to cl_out_room's INPUT and IGNORE_PATH statements.

12.4. set hot.040

```
LABEL Setup/Hold time, Violations -- Max T, Min V TEMP_VOLT 112 4.50
```

HOLDTIME_MARGIN 2.00 SELECT_EXT_CLOCK Clk

The rest of this file is identical to cl_out_room's INPUT and IGNORE_PATH statements.

12.5. clock output.040

LABEL Clock time, output delay TEMP_VOLT 75 5.00 HOLDTIME_MARGIN 2.00 SELECT_EXT_CLOCK Clk

The rest of this file is identical to cl_out_room's INPUT and IGNORE_PATH statements.

12.6. setup hold.040

LABEL Setup/Hold time, Violations TEMP_VOLT 75 5.00 HOLDTIME_MARGIN 2.00 SELECT_EXT CLOCK Clk

The rest of this file is identical to cl_out_room's INPUT and IGNORE_PATH statements.

13. Timing Reports

13.1. TYPICAL, 75 deg C, 5.0 V

```
****************
          Genesil Version v8.0.2 -- Thu Jan 24 14:15:16 1991
Chip: /tmp_mnt/net/yoda/mnta/iag/iag/gt_vic/dag
                                          Timing Analyzer
*********************
CLOCK REPORT MODE
Fabline: HP2 CN10B
 abline: HP2_CN10B Corner: TYPICAL
Junction Temperature:75 deg C Voltage:5.00v
 External Clock: Clk
Included setup files:
 #0 clock_output
                  (Clock time, output delay)
CLOCK TIMES (minimum)
Phase 1 High: 46.1 ns Phase 2 High: 46.6 ns
Cycle (from Ph1): 94.0 ns Cycle (from Ph2): 81.9 ns
           _____
Minimum Cycle Time: 94.0 ns Symmetric Cycle Time: 94.0 ns
CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 46.1 ns set by:
 ** Clock delay: 2.0ns (48.1-46.1)
  Node
                      Cumulative Delay Transition
  <dr gen/critical rl/(internal) 48.1</pre>
                                      rise
  f_adr_gen/critical rl/mnz
                         46.8
                                      fall
  rise
                                      rise
```

<adr_gen critical_rl="" n_mode[1]<="" td=""><td>44.7</td><td>fall</td></adr_gen>	44.7	fall
<pre><en critical_rl="" pre="" rf_adr_mode[1]<=""></en></pre>	44.4	rise
rf_mode_pad[1]/rf_adr_mode	44.4	rise
rf_mode_pad[1]/rf_adr_mode'	42.0	rise
RF_adr_mode[1]	40.0	rise
Minimum Phase 2 high time is 46	6.6 ns set by:	
** Clock delay: 1.7ns (48.4-46.6	·	m
Node	Cumulative Delay 48.4	Transition
<pre><rlas_mod (internal)="" frlas_mod="" frlas_mux="" pre="" rf[0]<=""></rlas_mod></pre>	47.5	fall
frlas_mod/frlas_mux/rf[0]	47.5	rise rise
rf_pad[0]/rf	47.5	
rf_pad[0]/rf' RF[0]	43.6	rise rise
RF [0]	43.0	rise
Minimum cycle time (from Ph1) is	94.0 ns set by	:
-		
** Clock delay: 3.4ns (97.5-94.0))	
Node	Cumulative Delay	Transition
adr_ptr_mod/adr_ptr_dp/8	97.5	fall
<pre>*<tr_mod (internal)<="" adr_ptr_dp="" pre=""></tr_mod></pre>	96.3	rise
<pre><_mod/adr_ptr_dp/ld_restore_ap</pre>	96.1	fall
<pre><od adr_ptr_ctrl="" ld_restore_ap<="" pre=""></od></pre>	96.1	fall
<d adr_ptr_ctrl="" ld_restore_ap'<="" td=""><td>95.1</td><td>fall</td></d>	95.1	fall
<d adr_ptr_ctrl="" ld_rs_ap_no_fr<="" td=""><td>94.2</td><td>fall</td></d>	94.2	fall
<tr_mod adr_ptr_ctrl="" change_ap<="" td=""><td>92.9</td><td>fall</td></tr_mod>	92.9	fall
<r_mod adr_ptr_ctrl="" change_ap'<="" td=""><td>92.8</td><td>fall</td></r_mod>	92.8	fall
<r_mod adr_ptr_ctrl="" ld_inc_dec<="" td=""><td>91.7</td><td>fall</td></r_mod>	91.7	fall
<tr_mod adr_ptr_ctrl="" decrement<="" td=""><td>90.1</td><td>fall</td></tr_mod>	90.1	fall
<r_mod adr_ptr_ctrl="" decrement'<="" td=""><td>88.6</td><td>fall</td></r_mod>	88.6	fall
<_ptr_mod/adr_ptr_ctrl/dec_mux	87.5	fall
<pre><ptr_mod adr_ptr_ctrl="" dec_mux'<="" pre=""></ptr_mod></pre>	87.4	fall
<r_mod adr_ptr_ctrl="" decr_ap_in<="" td=""><td>86.4</td><td>fall</td></r_mod>	86.4	fall
<pre><_mod/adr_ptr_ctrl/decr_ap_in'</pre>	86.1	fall
<_mod/adr_ptr_ctrl/n_res_fl_fr	85.0	fall
<mod adr_ptr_ctrl="" n_res_fl_fr'<="" td=""><td>85.0</td><td>fall</td></mod>	85.0	fall
<r_ptr_mod adr_ptr_ctrl="" freeze<="" td=""><td>83.8</td><td>rise</td></r_ptr_mod>	83.8	rise
<mod adr_ptr_ctrl="" n_freeze_buf<="" td=""><td>83.3</td><td>fall</td></mod>	83.3	fall
<od adr_ptr_ctrl="" n_freeze_buf'<="" td=""><td>83.2</td><td>fall</td></od>	83.2	fall
<pre><ptr_mod adr_ptr_ctrl="" n_freeze<="" pre=""></ptr_mod></pre>	82.3	fall
freeze_pad/n_freeze	82.3	fall
freeze_pad/n_freeze'	79.2	fall
Freeze	77.7	rise
Minimum cycle time (from Ph2) is	81.9 ns set by	:
** Clock delay: 3.2ns (85.1-81.9	9)	
Node	Cumulative Delay	Transition
error_mod/error_ff/s_eq_f_2	85.1	rise
odc_rf_mod/odc_mux/odc_out[1]	85.1	rise
odc_rf_mod/odc_mux/odc_out[1]'	84.4	rise
<_rf_mod/odc_mux/INTERO_ST1[1]	82.6	rise
odc_rf_mod/odc_mux/odc_in[1]	81.6	rise
odc_rf_mod/odc_ctrl/s2	81.6	rise
odc_rf_mod/odc_ctrl/s2'	81.1	rise
<rf_mod gb.lp.nnz5fn2<="" odc_ctrl="" td=""><td>80.9</td><td>fall</td></rf_mod>	80.9	fall
odc_rf_mod/odc_ctrl/s2_int	80.6	rise
odc_rf_mod/odc_rf_dp/s_eq_f_2	80.6	rise
odc_rf_mod/odc_rf_dp/s_eq_f_2'	80.3	rise
odc_rf_mod/odc_rf_dp/s_adr[25]	77.6	rise
s_adr_gen/super_dp/adr[25]	77.6	rise

s_adr_gen/super_dp/adr[25]'	77.2	rise
<_gen/super_dp/ea_tpap_OUT[25]	75.1	rise
<adr_gen no_tp_st2[2]<="" super_dp="" td=""><td>58.7</td><td>fall</td></adr_gen>	58.7	fall
<_gen/super_dp/eff_adr1_OUT[2]	57.8	fall
<_gen/super_dp/eff_adr1_IN1[0]	53.1	fall
<dr_gen mode_not_zero<="" super_dp="" td=""><td>50.8</td><td>fall</td></dr_gen>	50.8	fall
<pre><gen critical_rl="" mode_not_zero<="" pre=""></gen></pre>	50.8	fall
<pre><en critical_rl="" mode_not_zero'<="" pre=""></en></pre>	50.0	fall
* <r_gen (internal)<="" critical_rl="" td=""><td>48.4</td><td>fall</td></r_gen>	48.4	fall
s_adr_gen/critical_rl/mnz	47.2	fall
s_adr_gen/critical_rl/mode[0]	45.8	rise
s_adr_gen/critical_rl/mode[0]'	45.5	rise
<pre></pre>	44.3	rise
s_mode_pad[0]/s_adr_mode_in	44.3	rise
s_mode_pad[0]/s_adr_mode_in'	42.0	rise
S_adr_mode[0]	40.0	rise

Genesil Version v8.0.2 -- Thu Jan 24 14:15:21 1991

OUTPUT DELAY MODE

Fabline: HP2_CN10B Corner: TYPICAL
Junction Temperature:75 deg C Voltage:5.00v

External Clock: Clk Included setup files:

#0 clock_output (Clock time, output delay)

	OUTP	UT DELAYS	(ns)			
Output				Delay	Loading	(pf)
•	Min	Max	Min	Max		12/
DAG Error	16.2	19.2			50.00	PATH
RF [0]	13.9	89.3	38.9	39.3	50.00	PATH
RF [10]	13.4	89.3	38.9	39.3	50.00	PATH
RF[11]	13.3	89.3	38.9	39.3	50.00	PATH
RF[12]	13.4	89.3	38.9	39.3	50.00	PATH
RF[13]	15.0	89.3	38.9	39.3	50.00	PATH
RF[14]	15.0	89.3	38.9	39.3	50.00	PATH
RF [15]	15.0	89.3	38.9	39.3	50.00	PATH
RF[16]	15.0	89.3	38.9	39.3	50.00	PATH
RF[17]	15.4	89.3	38.9	39.3	50.00	PATH
RF[18]	16.2	89.3	38.9	39.3	50.00	PATH
RF[19]	16.1	89.3	38.9	39.3	50.00	PATH
RF[1]	13.7	89.3	38.9	39.3	50.00	PATH
RF[20]	16.3	89.3	38.9	39.3	50.00	PATH
RF[21]	16.3	89.3	38.9	39.3	50.00	PATH
RF [22]	15.6	89.3	38.9	39.3	50.00	PATH
RF [23]	16.2	89.3	38.9	39.3	50.00	PATH
RF [24]	16.2	89.3	38.9	39.3	50.00	PATH
RF [25]	16.2	89.3	38.9	39.3	50.00	PATH
RF[26]	16.8	89.3	38.9	39.3	50.00	PATH
RF[27]	16.8	89.3	38.9	39.3	50.00	PATH
RF[28]	16.7	89.3	38.9	39.3	50.00	PATH
RF[29]	16.7	89.3	38.9	39.3	50.00	PATH
RF[2]	13.7	89.3	38.9	39.3	50.00	PATH
RF[30]	89.3	89.3	39.3	39.3	50.00	PATH
RF[31]	89.3	89.3	39.3	39.3	50.00	PATH
RF[3]	13.7	89.3	38.9	39.3	50.00	PATH
RF [4]	13.5	89.3	38.9	39.3	50.00	PATH
RF[5]	13.5	89.3	38.9	39.3	50.00	PATH
RF[6]	13.4	89.3	38.9	39.3	50.00	PATH

RF[7]	13.4	89.3	38.9	39.3	50.00	PATH
RF[8]	13.9	89.3	38.9	39.3	50.00	PATH
RF[9]	13.4	89.3	38.9	39.3	50.00	PATH
RF_adr[0]	12.7	44.9	14.0	15.3	50.00	PATH
RF adr[10]	12.9	45.0	14.2	15.4	50.00	PATH
RF_adr[11]	12.9	45.0	14.2	15.4	50.00	PATH
RF_adr[12]	12.9	45.0	14.2	15.4	50.00	PATH
RF adr[13]	12.9	45.0	14.2	15.4	50.00	PATH
RF adr[14]	12.9	45.0	14.2	15.4	50.00	PATH
RF_adr[15]	12.9	45.0	14.2		50.00	PATH
RF adr[16]	12.9	45.0	14.2	15.4	50.00	PATH
RF_adr[17]	12.9	45.1	14.2	15.5	50.00	PATH
RF_adr[18]	12.9	45.0	14.2	15.5	50.00	
RF adr[19]	12.9	45.1	14.3		50.00	PATH
-						PATH
RF_adr[1]	12.8	44.9	14.1	15.3	50.00	PATH
RF_adr[20]	13.0	45.1	14.3	15.5	50.00	PATH
RF_adr[21]	13.0	45.1	14.3	15.5	50.00	PATH
RF_adr [22]	13.0	45.1	14.3		50.00	PATH
RF_adr[23]	13.1	45.2	14.4		50.00	PATH
RF_adr[24]	13.1	45.2		15.6	50.00	PATH
RF_adr[25]	13.1	45.2		15.6	50.00	PATH
RF_adr[2]	12.8	44.9	14.1		50.00	PATH
RF_adr[3]	12.8	45.0	14.1	15.4	50.00	PATH
RF_adr[4]	12.8	45.0	14.1	15.4	50.00	PATH
RF_adr[5]	12.8	45.0	14.1	15.4 15.4	50.00	PATH
RF_adr[6]	12.8	45.0			50.00	PATH
RF_adr[7]	12.9	45.0	14.2	15.4	50.00	PATH
RF_adr[8]	12.9	45.0	14.2	15.4	50.00	PATH
RF_adr[9]	12.9	45.0	14.2	15.4	50.00	PATH
RF_adr_mode[0]	10.1	10.6	9.9	23.5	50.00	PATH
RF_adr_mode[1]	10.1	10.6	9.9	23.5	50.00	PATH
RF_adr_mode[2]	10.1	10.6	9.9	23.5	50.00	PATH
RF_adr_mode[3]	10.1	10.6	9.8	23.5	50.00	PATH
RF_off[0]	11.0	11.5	9.9	24.4	50.00	PATH
RF_off[10]	11.0	11.5	10.2	24.4	50.00	PATH
RF_off[11]	11.0	11.5	10.2		50.00	PATH
RF_off[12]	11.0	11.5	10.2	24.4	50.00	PATH
RF_off[13]	11.0	11.5	10.2	24.4	50.00	PATH
RF_off[14]	11.0	11.5	10.2	24.4	50.00	PATH
RF_off[15]	11.0	11.5	10.3		50.00	PATH
RF_off[16]	11.0	11.5	10.3	24.4	50.00	PATH
RF_off[17]	11.0	11.5	10.0	24.4	50.00	
RF_off[18]	11.0	11.5	10.1	24.4	50.00	PATH
RF off[19]	11.0		10.1	24.4	50.00	PATH
RF off[1]	11.0	11.5	9.9	24.4	50.00	PATH
RF_off[20]	11.0	11.5	10.2	24.4	50.00	PATH
RF off[21]	11.0	11.5	10.2	24.4	50.00	PATH
RF off[22]	11.0	11.5	10.2	24.4	50.00	PATH
RF off[23]	11.0	11.5	10.2	24.4	50.00	PATH
RF off[24]	11.0	11.5	10.2	24.4	50.00	PATH
RF_off[25]	11.0	11.5	10.2	24.4	50.00	PATH
RF_off[2]	11.0	11.5	9.9	24.4	50.00	
RF off[3]	11.0	11.5	9.9	24.4		PATH
RF_off[4]	11.0				50.00	PATH
RF_off[5]	11.0	11.5	10.0	24.4	50.00	PATH
RF_off[6]		11.5	10.0	24.4	50.00	PATH
RF off[7]	11.0 11.0	11.5	10.0	24.4	50.00	PATH
RF off[8]		11.5	10.1	24.4	50.00	PATH
RF_off[9]	11.0	11.5 11.5	10.1	24.4 24.4	50.00 50.00	PATH
					50 00	PATH
	11.0					
R_eq_f_1	13.4	57.6			50.00	PATH
R_eq_f_1 R_eq_f_2 SF adr[0]						

SF_adr[10]	13.0	45.3	14.3	16.0	50.00	PATH
SF_adr[11]	13.0	45.3	14.3	16.0	50.00	PATH
SF_adr[12]	13.0	45.3	14.3	16.0	50.00	PATH
SF_adr[13]	13.0	45.3	14.3	16.0	50.00	PATH
SF_adr[14]	13.0	45.4	14.3	16.0	50.00	PATH
SF_adr[15]	13.1	45.4	14.4	16.1	50.00	PATH
SF_adr[16]	13.1	45.4	14.4	16.1	50.00	PATH
SF_adr[17]	13.1	45.4	14.4	16.1	50.00	PATH
SF_adr[18]	13.2	45.4	14.5	16.1	50.00	PATH
SF_adr[19]	13.2	45.5	14.5	16.1	50.00	PATH
SF_adr[1]	12.7	45.2	14.0	15.8	50.00	PATH
SF_adr[20]	13.2	45.5	14.5	16.2	50.00	PATH
SF adr[21]	13.2	45.5	14.5	16.2	50.00	PATH
SF adr[22]	13.2	45.5	14.5	16.2	50.00	PATH
	13.3		14.6	16.2	50.00	PATH
SF_adr[24]	13.3	45.6		16.2	50.00	PATH
SF adr[25]	13.3	45.6		16.2	50.00	PATH
SF adr[2]	12.7	45.2	14.1	15.8	50.00	PATH
SF_adr[3]	12.8	45.2	14.1	15.8	50.00	PATH
SF adr[4]	12.8	45.2	14.1		50.00	PATH
SF adr[5]	12.8	45.2			50.00	PATH
SF_adr[6]	12.8	45.2	14.1	15.9	50.00	PATH
SF_adr[7]	12.9	45.3	14.2	15.9	50.00	PATH
SF_adr[8]	12.9		14.2	15.9	50.00	PATH
SF adr[9]	12.9	45.3			50.00	PATH
S_adr_mode[0]	10.3	10.7	11.7	23.6	50.00	PATH
S_adr_mode[1]	10.3	10.7	11.7	23.6	50.00	PATH
S_adr_mode[2]	10.3		11.7	23.6	50.00	PATH
S_adr_mode[3]	10.3	10.7	11.7	23.6	50.00	PATH
S_eq_f_1	13.0				50.00	PATH
S_eq_f_2	12.9	57.2			50.00	
S_64_1_2 S_off[0]	11.1	11.6	10.1	24.5	50.00	PATH
S_off[10]	11.1	11.6	10.6	24.5		PATH
S_off[11]	11.1	11.6	10.7	24.5	50.00	PATH
S_off[12]	11.1	11.6	10.7	24.5	50.00	PATH
S_off[13]	11.1	11.6	10.7	24.5	50.00 50.00	PATH
S off[14]	11.1	11.6	10.7	24.5	50.00	PATH
S_off[15]	11.1	11.6	10.9	24.5	50.00	PATH
S off[16]	11.1	11.6	11.0	24.5	50.00	PATH PATH
S off[17]	11.1		10.9	24.5	50.00	PATH
S_off[18]	11.1	11.6	11.0	24.5	50.00	PATH
S_off[19]		11.6			50.00	
S_off[1]	11.1	11.6	10.1			
S_off[20]	11.1		11.0	24.5	50.00	PATH
S_off[21]		11.6		24.5	50.00	PATH
S_off[22]	11.1	11.6	11.1	24.5	50.00	PATH
S off[23]	11.1	11.6	11.2	24.5	50.00	PATH
S_off[24]	11.1	11.6	11.4	24.5	50.00	PATH
	11.1	11.6	11.3	24.5	50.00	PATH
S_off(25)	11.1	11.6	11.3	24.5	50.00	PATH
S_off[2]	11.1	11.6	10.2	24.5	50.00	PATH
S_off[3]	11.1	11.6	10.2	24.5	50.00	PATH
S_off[4]	11.1	11.6	10.3	24.5	50.00	PATH
S_off[5]	11.1	11.6	10.3	24.5	50.00	PATH
S_off[6]	11.1	11.6	10.4	24.5	50.00	PATH
S_off[7]	11.1	11.6	10.4	24.5	50.00	PATH
S_off[8]	11.1	11.6	10.4	24.5	50.00	PATH
S_off[9]	11.1	11.6	10.7	24.5	50.00	PATH
*********	******	*****	******	******	******	******

Genesil Version v8.0.2 -- Thu Jan 24 14:16:44 1991

PATH DELAY MODE

```
Fabline: HP2_CN10B
                             Corner: TYPICAL
 Junction Temperature:75 deg C
                         Voltage:5.00v
 External Clock: Clk
Included setup files:
 #0 clock_output
                    (Clock time, output delay)
PATH DELAY (ns)
                                  Max
Source Object Connector
                       (Ph1) Min
  Dest. Object Connector
                         (Ph2) Min Max
clock pad PHASE A
                             5.4 16.7
  odc rf mod/odc_> rf_adr[0]___
                                8.7 8.8 PATH
clock pad PHASE A
                              2.5 3.9
  odc rf mod/odc_> ods_sel___
                                4.0 4.0 PATH
odc_rf_mod/odc_ ods_sel____
                              8.6 11.3
  rf_adr_pad[0]___ RF_adr___
                                8.6 11.3 PATH
clock_pad____PHASE_A_
                              0.0 0.0
  odc_rf_mod/odc_> PHASE_A___
                                0.0 0.0 PATH
odc_rf_mod/odc_PHASE_A
                              9.6 11.3
  rf_adr_pad[0] RF_adr_
                                --- PATH
odc_rf_mod/odc_ ods_sel_
                              9.0 11.5
  rf_adr_pad[25]__ RF_adr____
                              9.0 11.5 PATH
odc_rf_mod/odc_ ods_sel
                              8.6 10.8
  s_adr_pad[0]____SF_adr____
                               8.6 10.8 PATH
odc_rf_mod/odc_ ods_sel___
                              9.2 11.2
                               9.2 11.2 PATH
  s_adr_pad[25]___ SF_adr____
************************
          Genesil Version v8.0.2 -- Thu Jan 24 14:20:52 1991
Chip: /tmp_mnt/net/yoda/mnta/iag/iag/gt vic/dag
                                              Timing Analyzer
***********************
SETUP AND HOLD MODE
_____
Fabline: HP2 CN10B
                            Corner: TYPICAL
 Junction Temperature:75 deg C Voltage:5.00v
 External Clock: Clk
Included setup files:
 #0 setup_hold
                  (Setup/Hold time, Violations)
                 INPUT SETUP AND HOLD TIMES (ns)
Input
                  Setup Time Hold Time
                 Ph1(f) Ph2(f)
                                Ph1(f) Ph2(f)
                        12.2
Booting
                                 ---
                                       -5.0
                                               PATH
```

DAG_R_en					PATH
Flush		22.1		-0.7	PATH
Freeze		21.7		-2.6	PATH
Guard		7.3		-3.9	PATH
Ids_eq_ods_1		7.2		-5.6	PATH
Ids_eq_ods_2		7.0		-5.4	PATH
Ids_freeze		2.6		-0.9	PATH
Inst_en		3.3		-1.5	PATH
Inst_rd		7.5		-3.4	PATH
Kernel_mode		30.5		-2.7	PATH
N_reset		23.8		-1.6	PATH
Ods_freeze	2.6		-1.0		PATH
Pc[0]		11.9		-1.8	PATH
Pc[1]		12.2		-1.9	PATH
Pc[2]		12.9		-1.8	PATH
Pc[3]		12.6		-3.2	PATH
RF[0]	2.4	3.4	-1.7	-2.5	PATH
RF[10]	1.8	2.8	-1.1	-1.9	PATH
RF[11]	1.8	2.8	-1.0	-1.8	PATH
RF[12]	1.7	2.7	-0.9	-1.7	PATH
RF[13]	1.7	2.7	-0.9	-1.7	PATH
RF [14]	1.7	2.7	-0.9	-1.7	PATH
RF[15]	1.7	2.7	-0.9	-1.7	PATH
RF [16]	1.6	2.6	-0.9	-1.7	PATH
RF[17]	1.6	2.6	-0.8	-1.6	PATH
RF[18]	1.6	2.6	-0.8	-1.6	PATH
RF[19]	2.0	3.0	-1.2	-2.0	PATH
RF[1]	2.0	3.0	-1.3	-2.1	PATH
RF[20]	1.9	2.9	-1.2	-2.0	PATH
RF [21]	1.7	2.7	-1.0	-1.8	PATH
RF [22]	1.7	2.7	-0.9	-1.7	PATH
RF [23]	1.9	2.9	-1.1	-1.9	PATH
RF [24]	1.7	2.7	-0.9	-1.7	PATH
RF [25]	1.6	2.6	-0.9	-1.7	PATH
RF [26]	1.6	2.6	-0.8	-1.6	PATH
RF [27]	1.6	2.6	-0.8	-1.6	PATH
RF [28]	1.4	2.4	-0.6	-1.4	PATH
RF[29]	0.8	1.8	0.1	-0.7	PATH
RF[2]	2.0	3.0	-1.2	-2.0	PATH
RF[30]					PATH
RF[31]					PATH
RF[3]	2.0	3.0	-1.3	-2.1	PATH
RF[4]	1.9	2.9	-1.2	-2.0	PATH
RF[5]	1.9	2.9	-1.2	-2.0	PATH
RF[6]	1.9	2.9	-1.1	-1.9	PATH
RF[7]	1.9	2.9	-1.1	-1.9	PATH
RF[8]	1.9	2.9	-1.1	-1.9	PATH
RF[9] ·	1.8	2.8	-1.1	-1.9	PATH
RF_adr_mode[0]	6.1	6.4	-2.8	-3.6	PATH
RF_adr_mode[1]	6.2	6.5	-2.8	-3.5	PATH
RF_adr_mode[2]	4.9	5.2	-2.8	-3.6	PATH
RF_adr_mode[3]	4.6	4.8	-2.2	-3.2	PATH
RF_off[0]	4.5	5.4	-4.0	-3.4	PATH
RF_off[10]	4.4	5.3	-3.9	-3.3	PATH
RF_off[11]	4.3	5.2	-3.8	-3.3	PATH
RF_off[12]	4.3	5.2	-3.8	-3.2	PATH
RF_off[13]	4.3	5.2	-3.8	-3.2	PATH
RF_off[14]	4.3	5.2	-3.8	-3.3	PATH
RF_off[15]	4.3	5.2	-3.8	-3.3	PATH
RF_off[16]	4.3	5.2	-3.8	-3.3	PATH
RF_off[17]	4.4	5.3	-3.9	-3.4	PATH
RF_off[18]	4.4	5.3	-3.9	-3.3	PATH
_					

RF_off[19]	4.5	5.5	-4.1	-3.5	PATH	
RF_off[1]	4.5	5.4	-4.0	-3.4	PATH	
RF_off[20]	4.6	5.5	-4.1	-3.5	PATH	
RF_off[21]	4.6	5.5	-4.1	-3.5	PATH	
RF_off[22]	4.6	5.5	-4.1	-3.6	PATH	
RF_off[23]	4.6	5.6	-4.1	-3.6	PATH	
RF_off[24]	4.7	5.6	-4.2	-3.6	PATH	
RF_off[25]	4.7	5.6	-4.2	-3.7	PATH	
RF_off[2]	4.7	5.6	-4.2	-3.6	PATH	
RF_off[3]	4.7	5.6	-4.2	-3.6	PATH	
RF_off[4]	4.6	5.5	-4.1	-3.6	PATH	
RF_off[5]	4.6	5.5	-4.1	-3.6	PATH	
RF_off[6]	4.5	5.5	-4.1	-3.5	PATH	
RF_off[7]	4.5	5.4	-4.0	-3.5	PATH	
RF_off[8]	4.2	5.2	-3.8	-3.2	PATH	
RF_off[9]	4.4	5.3	-3.9	-3.4	PATH	
S_adr_mode[0]		6.6		-3.1	PATH	
S_adr_mode[1]		6.6		-3.0	PATH	
S_adr_mode[2]		5.0		-3.0	PATH	
S_adr_mode[3]		5.0		-3.1	PATH	
S_off[0]		4.0		-2.6	PATH	
S off[10]		4.2		-2.8	PATH	
S_off[11]		4.2		-2.8	PATH	
S_off[12]		4.2		-2.8	PATH	
_ S_off[13]		4.3		-2.9	PATH	
S off[14]		4.3		-2.9	PATH	
S off[15]		4.4		-3.0	PATH	
S_off[16]		4.4		-3.0	PATH	
S_off[17]		4.5		-3.1	PATH	
S_off[18]		4.5		-3.1	PATH	
S_off[19]		4.5		-3.2	PATH	
S_off[1]		4.0		-2.6	PATH	
S_off[20]		4.6		-3.2	PATH	
S_off[21]		4.6		-3.2	PATH	
S_off[22]		4.6		-3.3	PATH	
S_off[23]		4.7		-3.4	PATH	
S_off[24]		4.8		-3.4	PATH	
S_off[25]		4.7		-3.3	PATH	
S_off[2]		4.0		-2.6	PATH	
S_off[3]		4.0		-2.6	PATH	
S_off[4]		4.0		-2.6	PATH	
S_off[5]		4.0		-2.6	PATH	
S_off[6]		4.0		-2.6	PATH	
S_off[7]		4.0		-2.6	PATH	
S_off[8]		4.0		-2.6	PATH	
S_off[9]		4.1		-2.7	PATH	
Valid_intr		20.5		-1.9	PATH	
*****	******	******	*****	******	*******	**
(Genesil Version v8	.0.2 I	hu Jan 24 14	:21:57 19	91	
Chip: /tmp_mnt/	net/yoda/mnta/iag/:	iag/gt_vi	.c/dag		Timing Analyz	er
******	******	******	******	******	******	**
VIOLATION MODE						
Fabline: HP2_CN			rner: TYPICA	L		
=	erature:75 deg C	Vo	ltage:5.00v			
External Clock	k: Clk					

NO VIOLATIONS

#0 setup_hold (Setup/Hold time, Violations)

Hold time check margin: 2.0ns

External Clock: Clk Included setup files:

13.2. GUARANTEED, Max T, Min V

```
*********************
             Genesil Version v8.0.2 -- Fri Jan 18 12:11:37 1991
                                                       Timing Analyzer
Chip: /tmp_mnt/net/yoda/mnta/iag/iag/gt_vic/dag
CLOCK REPORT MODE
Fabline: HP2 CN10B
                                   Corner: GUARANTEED
 Junction Temperature:112 deg C
                                  Voltage:4.50v
 External Clock: Clk
Included setup files:
                      (Setup/Hold time, Violations -- Ma>
 #0 set_hot
______
                        CLOCK TIMES (minimum)
Phase 1 High: 51.1 ns Phase 2 High: 64.6 ns
Cycle (from Ph1): 113.1 ns Cycle (from Ph2): 125.2 ns
Minimum Cycle Time: 125.2 ns Symmetric Cycle Time: 129.2 ns
                        CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 51.1 ns set by:
 ** Clock delay: 4.4ns (55.5-51.1)
                             Cumulative Delay
                                               Transition
  <dr_gen/critical_rl/(internal) 55.5</pre>
                                                   rise
   f adr gen/critical rl/mnz
                                 53.0
                                                   fall
  f_adr_gen/critical_ri/muiz

<en/critical_rl/f_boot_mode[0] 51.0

<n/critical_rl/f_boot_mode[0]' 50.0

<adr_gen/critical_rl/n_mode[0] 49.2

<en/critical_rl/rf_adr_mode[0] 48.7
                                                  rise
                                                  rise
                                                   fall
                                                  rise
  rf_mode_pad[0]/rf_adr_mode
                                 48.3
                                                   rise
   rf_mode_pad[0]/rf_adr_mode'
                                 43.6
                                                  rise
  RF_adr_mode[0]
                                  40.0
                                                   rise
Minimum Phase 2 high time is 64.6 ns set by:
  ** Clock delay: 4.1ns (68.7-64.6)
                              Cumulative Delay Transition
   <ptr mod/adr ptr dp/(internal)</pre>
                                                   rise
   < mod/adr ptr dp/INTER4 ST1[4]
                                 63.5
                                                   fall
   58.0
                                                   fall
   < mod/adr ptr_ctrl/adr_ptr_sel</pre>
                                 58.0
                                                   fall
   <mod/adr ptr ctrl/adr ptr sel'
                                 56.0
                                                   fall
   <tr_mod/adr ptr ctrl/decrement
                                 54.2
                                                   fall
   <r mod/adr ptr ctrl/decrement'
                                 51.2
                                                   fall
   < ptr mod/adr ptr ctrl/dec mux
                                 49.3
                                                   fall
   <ptr mod/adr ptr ctrl/dec mux'</pre>
                                  49.2
                                                   fall
   <r_mod/adr_ptr_ctrl/decr_ap_in
                                 47.2
                                                   fall
   <_mod/adr_ptr_ctrl/decr_ap_in'</pre>
                                  46.6
                                                   fall
   <_mod/adr ptr_ctrl/n res fl fr</pre>
                                  44.7
                                                   fall
   <mod/adr_ptr_ctrl/n_res_fl_fr'
                                  44.6
                                                   fall
   <r_ptr_mod/adr_ptr_ctrl/freeze
                                  42.5
                                                   rise
   <mod/adr_ptr_ctrl/n_freeze_buf
                                                   fall
                                  41.5
   <od/adr_ptr_ctrl/n_freeze_buf'</pre>
                                  41.4
                                                   fall
                                 39.8
   <ptr_mod/adr_ptr_ctrl/n_freeze</pre>
                                                   fall
                                                   fall
   freeze_pad/n_freeze
                                  35.3
   freeze pad/n freeze'
                                  29.3
                                                   fall
   Freeze
                                  26.7
                                                    rise
```

Minimum cycle time (from Ph1) is 113.1 ns set by:

** Clock delay: 7.0ns (120.1-113	3.1)		
Node	Cumulative	Delay	Transition
<pre><toz5fnowz2eresetz5fsigz5b0z5d< pre=""></toz5fnowz2eresetz5fsigz5b0z5d<></pre>	120.1		fall
<pre><gen gb.lp.nnz5fn49<="" pre="" super_ctrl=""></gen></pre>	119.7		rise
<.NNflagsZ2ftoZ5fnowZ2esetZ5fy	118.6		fall
* <en gb.lp.nnz5fn45<="" super_ctrl="" td=""><td>115.7</td><td></td><td>fall</td></en>	115.7		fall
<_gen/super_ctrl/GB.LP.NNZ5fN2	115.2		rise
<dr_gen n_adr_under<="" super_ctrl="" td=""><td>114.4</td><td></td><td>fall</td></dr_gen>	114.4		fall
f_adr_gen/super_dp/n_adr_under	114.3		fall
<adr_gen n_adr_under'<="" super_dp="" td=""><td>112.8</td><td></td><td>fall</td></adr_gen>	112.8		fall
f_adr_gen/super_dp/adr[2]	81.9		fall
f_adr_gen/super_dp/adr[2]'	81.0		fall
<r_gen ea_tpap_out[2]<="" super_dp="" td=""><td>76.8</td><td></td><td>fall</td></r_gen>	76.8		fall
<adr_gen no_tp_st2[1]<="" super_dp="" td=""><td>69.4</td><td></td><td>fall</td></adr_gen>	69.4		fall
<_gen/super_dp/eff_adr1_OUT[1]	67.8		fall
<_gen/super_dp/eff_adr1_IN1[0]	60.7		fall
<dr_gen mode_not_zero<="" super_dp="" td=""><td>56.4</td><td></td><td>fall</td></dr_gen>	56.4		fall
<pre><gen critical_rl="" mode_not_zero<="" pre=""></gen></pre>	56.4		fall
<pre><en critical_rl="" mode_not_zero'<="" pre=""></en></pre>	55.9		fall
f_adr_gen/critical_rl/mnz	53.0		fall
<pre><en critical_rl="" f_boot_mode[0]<="" pre=""></en></pre>	51.0		rise
<n critical_rl="" f_boot_mode[0]'<="" td=""><td>50.0</td><td></td><td>rise</td></n>	50.0		rise
<adr_gen critical_rl="" n_mode[0]<="" td=""><td>49.2</td><td></td><td>fall</td></adr_gen>	49.2		fall
<pre><en critical_rl="" pre="" rf_adr_mode[0]<=""></en></pre>	48.7		rise
rf_mode_pad[0]/rf_adr_mode	48.3		rise
rf_mode_pad[0]/rf_adr_mode'	43.6		rise
RF_adr_mode[0]	40.0		rise

Minimum cycle time (from Ph2) is 125.2 ns set by:

** Clock delay: 6.5ns (131.7-125.2)

Node	Cumulative Delay	Transition
error_mod/error_ff/s_eq_f_2	131.7	rise
odc_rf_mod/odc_mux/odc_out[1]	131.7	rise
odc_rf_mod/odc_mux/odc_out[1]'	130.3	rise
<_rf_mod/odc_mux/INTER0_ST1[1]	127.0	rise
odc_rf_mod/odc_mux/odc_in[1]	125.1	rise
odc_rf_mod/odc_ctrl/s2	125.1	rise
odc_rf_mod/odc_ctrl/s2'	124.0	rise
<rf_mod gb.lp.nnz5fn2<="" odc_ctrl="" td=""><td>123.6</td><td>fall</td></rf_mod>	123.6	fall
odc_rf_mod/odc_ctrl/s2_int	123.1	rise
odc_rf_mod/odc_rf_dp/s_eq_f_2	123.1	rise
odc_rf_mod/odc_rf_dp/s_eq_f_2'	122.4	rise
odc_rf_mod/odc_rf_dp/s_adr[25]	117.8	rise
s_adr_gen/super_dp/adr[25]	117.1	rise
s_adr_gen/super_dp/adr[25]'	116.4	rise
<_gen/super_dp/ea_tpap_OUT[25]	112.5	rise
<r_gen bring_b_st1[0]<="" super_dp="" td=""><td>79.9</td><td>fall</td></r_gen>	79.9	fall
<pre>s_adr_gen/super_dp/adr_ptr[0]</pre>	77.6	fall
<pre><ptr_mod adr_ptr[0]<="" adr_ptr_dp="" pre=""></ptr_mod></pre>	77.0	fall
<tr_mod adr_ptr[0]'<="" adr_ptr_dp="" td=""><td>73.9</td><td>fall</td></tr_mod>	73.9	fall
<pre><mod adr_ptr_dp="" inter5_val1[0]<="" pre=""></mod></pre>	71.8	fall
* <tr_mod (internal)<="" adr_ptr_dp="" td=""><td>69.1</td><td>fall</td></tr_mod>	69.1	fall
<pre><_mod/adr_ptr_dp/INTER4_ST1[0]</pre>	63.5	fall
<tr_mod adr_ptr_dp="" adr_ptr_sel<="" td=""><td>58.0</td><td>fall</td></tr_mod>	58.0	fall
<pre><_mod/adr_ptr_ctrl/adr_ptr_sel</pre>	58.0	fall
<pre><mod adr_ptr_ctrl="" adr_ptr_sel'<="" pre=""></mod></pre>	56.0	fall
<tr_mod adr_ptr_ctrl="" decrement<="" td=""><td>54.2</td><td>fall</td></tr_mod>	54.2	fall
<r_mod adr_ptr_ctrl="" decrement'<="" td=""><td>51.2</td><td>fall</td></r_mod>	51.2	fall
<pre><_ptr_mod/adr_ptr_ctrl/dec_mux</pre>	49.3	fall

49.2	fall
47.2	fall
46.6	fall
44.7	fall
44.6	fall
42.5	rise
41.5	fall
41.4	fall
39.8	fall
35.3	fall
29.3	fall
26.7	rise
	47.2 46.6 44.7 44.6 42.5 41.5 41.4 39.8 35.3 29.3

Genesil Version v8.0.2 -- Fri Jan 18 12:11:40 1991

Chip: /tmp_mnt/net/yoda/mnta/iag/iag/gt_vic/dag Timing Analyzer

OUTPUT DELAY MODE

Fabline: HP2_CN10B Corner: GUARANTEED
Junction Temperature:112 deg C Voltage:4.50v

External Clock: Clk
Included setup files:
#0 set_hot

#0 set_hot (Setup/Hold time, Violations -- Ma>

	OUTPUT DELAYS (ns)						
Output				Delay	Loading	(pf)	
	Min	Max	Min	Max			
DAG_Error	30.7	34.9			50.00	PATH	
RF[0]	26.6	77.9	45.5		50.00	PATH	
RF[10]	25.3	77.7	45.3	45.5	50.00	PATH	
RF[11]	25.2	77.9	45.5	45.7	50.00	PATH	
RF[12]	25.3	77.9	45.5	45.7	50.00	PATH	
RF[13]	28.1	78.0	45.6	45.8	50.00	PATH	
RF[14]	28.1	78.0	45.6	45.8	50.00	PATH	
RF[15]	28.1	78.0	45.6	45.8	50.00	PATH	
RF[16]	28.1	78.0	45.6	45.8	50.00	PATH	
RF [17]	29.0	78.1	45.7	45.9	50.00	PATH	
RF [18]	30.0	78.1	45.7	45.9	50.00	PATH	
RF [19]	29.9	78.1	45.7	45.9	50.00	PATH	
RF[1]	26.3	77.8	45.4	45.6	50.00	PATH	
RF [20]	30.3	78.2	45.8	46.0	50.00	PATH	
RF[21]	30.2	78.2	45.8	46.0	50.00	PATH	
RF[22]	28.3	78.2	45.8	46.0	50.00	PATH	
RF[23]	30.1	78.2	45.8	46.0	50.00	PATH	
RF [24]	30.0	78.2	45.8	46.0	50.00	PATH	
RF[25]	29.8	78.2	45.8	46.0	50.00	PATH	
RF[26]	31.6	78.2	45.8	46.0	50.00	PATH	
RF[27]	31.4	78.2	45.8	46.0	50.00	PATH	
RF[28]	31.3	78.2	45.8	46.0	50.00	PATH	
RF[29]	31.2	78.2	45.9	46.1	50.00	PATH	
RF[2]	26.2	77.8	45.4	45.6	50.00	PATH	
RF[30]	78.3	78.3	46.1	46.1	50.00	PATH	
RF[31]	78.3	78.3	46.1	46.1	50.00	PATH	
RF[3]	26.1	77.8	45.4	45.6	50.00	PATH	
RF[4]	25.8	77.8	45.4	45.6	50.00	PATH	
RF[5]	25.5	77.8	45.4	45.6	50.00	PATH	
RF[6]	25.4	77.8	45.4	45.6	50.00	PATH	
RF[7]	25.4	77.8	45.4	45.6	50.00	PATH	
RF[8]	26.3	77.8		45.6	50.00	PATH	
RF[9]	25.3	77.7			50.00	PATH	
RF_adr[0]	23.5	60.4	25.9	27.4	50.00	PATH	

RF_adr[10]	23.9	60.8	26.3	27.7	50.00	PATH
RF_adr[11]	23.9	61.5	26.3	27.8	50.00	PATH
RF_adr[12]	23.9	62.6	26.3	27.8	50.00	PATH
RF_adr[13]	23.9	63.6		27.8	50.00	PATH
RF adr[14]	23.9	64.8	26.3	27.8	50.00	PATH
RF adr[15]	24.0	65.8		27.8	50.00	PATH
RF adr[16]	24.0	67.0		27.9	50.00	PATH
RF adr[17]	24.1	68.1	26.5	27.9	50.00	PATH
RF adr[18]	24.0	69.2	26.4	27.9	50.00	
RF adr[19]	24.1	70.2		28.0	50.00	PATH
RF_adr[1]	23.5					
		60.5	25.9	27.5	50.00	PATH
RF_adr[20]	24.3	71.5	26.7 26.8	28.1	50.00	
RF_adr[21]	24.4	72.6	26.8	28.2	50.00	
RF_adr[22]	24.5	73.8		28.2	50.00	
RF_adr[23]	24.6	75.0	27.0	28.4		PATH
RF_adr[24]	24.7	76.2	27.1	28.4	50.00	PATH
RF_adr[25]	24.7	77.1	27.1	28.4	50.00	PATH
RF_adr[2]	23.5	60.5	25.9	27.4	50.00	PATH
RF_adr[3]	23.7	60.6	26.1	27.6	50.00	PATH
RF_adr[4]	23.7	60.6	26.1	27.6	50.00	PATH
RF adr[5]	23.8	60.6	26.2	27.6	50.00	PATH
RF_adr[6]	23.8	60.7	26.2	27.7	50.00	PATH
RF adr[7]	23.8	60.7	26.2	27.7	50.00	PATH
RF_adr[8]	23.9	60.8	26.3	27.8	50.00	PATH
RF adr[9]	23.8	6N 7	26.2	27.7	50.00	PATH
RF_adr_mode[0]	18.8	19.0	18.3	31.9	50.00	PATH
RF adr mode[1]	18.8	19.0	18.2	31.9	50.00	PATH
RF_adr_mode[2]	18.8	19.0			50.00	PATH
RF adr mode[3]	18.8	10.0	100	31.9	50.00	PATH
RF_off[0]	21.8	19.0	18.3	34.9	50.00	
RF off[10]	21.7	22.0 21.9	18.9	34.8	50.00	
-						PATH
RF_off[11]	21.7	21.9		34.8	50.00	PATH
RF_off[12]	21.7	21.9	18.9	34.8	50.00	PATH
RF_off[13]	21.7	21.9	19.0	34.8	50.00	PATH
RF_off[14]	21.7	21.8	19.0		50.00	PATH
RF_off[15]	21.6	2.1.8	19.1		50.00	PATH
RF_off[16]	21.6	21.8	19.1	34.7	50.00	PATH
RF_off[17]	21.5	21.7	18.5	34.6	50.00	
RF_off[18]	21.5	21.7	18.6	34.6	50.00	
RF_off[19]	21.5	21.7		34.6	50.00	PATH
RF_off[1]	21.8	22.0	18.2	34.9	50.00	PATH
RF_off[20]	21.5	21.7	19.0	34.6	50.00	PATH
RF_off[21]	21.5	21.7	18.8	34.6	50.00	PATH
RF_off[22]	21.5	21.7	18.9	34.6	50.00	PATH
RF_off[23]	21.5	21.7	18.8	34.6	50.00	PATH
RF_off[24]	21.5	21.7	18.9	34.6	50.00	PATH
RF_off[25]	21.5	21.7	19.0	34.6	50.00	PATH
RF_off[2]	21.8	22.0	18.1	34.9	50.00	PATH
RF_off[3]	21.8	22.0	18.2	34.9	50.00	PATH
RF_off[4]	21.8	22.0	18.5	34.9	50.00	PATH
RF_off[5]	21.8	22.0	18.5	34.9	50.00	PATH
RF off[6]	21.8	22.0	18.5	34.9	50.00	PATH
RF off[7]	21.8	22.0	18.6	34.9	50.00	PATH
RF_off[8]	21.8	22.0	18.7	34.9	50.00	PATH
RF off[9]	21.7	21.9	18.6	34.8	50.00	
R_eq_f_1						PATH
	22.9	82.2			50.00	PATH
R_eq_f_2	22.6	82.5	25.0		50.00	PATH
SF_adr[0]	23.4	62.1	25.8	28.3	50.00	PATH
SF_adr[10]	24.0	62.5	26.4	28.8	50.00	PATH
SF_adr[11]	24.1	63.2	26.5	28.9	50.00	PATH
SF_adr[12]	24.2	64.4	26.6	28.9	50.00	PATH
SF_adr[13]	24.3	65.4	26.7	29.0	50.00	PATH

SF_adr[14]	24.4	66.7	26.8	29.1	50.00	PATH
SF_adr[15]	24.6	67.8	27.0	29.2	50.00	PATH
SF_adr[16]	24.6	69.0	27.0	29.2	50.00	PATH
SF_adr[17]	24.7	70.1	27.1	29.4	50.00	PATH
SF_adr[18]	24.8	71.3	27.2	29.5	50.00	PATH
SF_adr[19]	24.9	72.4	27.3	29.5	50.00	PATH
SF_adr[1]	23.4	62.0	25.8	28.2	50.00	PATH
SF adr[20]	25.0	73.7	27.4	29.6	50.00	PATH
SF_adr[21]	25.0	74.7	27.4	29.6	50.00	PATH
SF_adr[22]	25.1	76.0	27.5	29.7	50.00	PATH
SF_adr[23]	25.2	77.1	27.6	29.8	50.00	PATH
SF adr[24]	25.3	78.3	27.7	29.8	50.00	PATH
SF_adr[25]	25.5	79.5	27.9	30.0	50.00	PATH
SF adr[2]	23.4	62.0	25.8	28.2	50.00	PATH
SF_adr[3]	23.5	62.1	25.9	28.3	50.00	PATH
SF_adr[4]	23.5	62.1	25.9	28.4		PATH
SF adr[5]	23.6	62.2	26.0	28.4	50.00	PATH
SF_adr[6]	23.7	62.2	26.1	28.5	50.00	PATH
SF_adr[7]	23.8	62.3	26.2	28.5	50.00	PATH
SF adr[8]	23.9	62.4	26.3	28.7	50.00	PATH
SF_adr[9]	24.0	62.5	26.4	28.8		PATH
S_adr_mode[0]	19.3	19.5	23.9	32.4	50.00	PATH
S adr mode[1]	19.3	19.5	23.8	32.4	50.00	PATH
S_adr_mode[2]	19.3	19.5	23.6	32.4	50.00	PATH
S_adr_mode[3]	19.3	19.5	23.5	32.4	50.00	PATH
S_eq_f_1	23.4	83.4			50.00	PATH
S eq f 2	23.2	83.4			50.00	PATH
S_off[0]	21.7	21.9	18.7	34.8	50.00	PATH
S off[10]	22.1	22.3	20.1	35.2		PATH
S off[11]	22.1	22.3	20.2	35.2	50.00	PATH
S_off[12]	22.2	22.4	20.2	35.3	50.00	PATH
S_off[13]	22.2	22.4	20.3	35.3	50.00	PATH
S_off[14]	22.2	22.4	20.4	35.3	50.00	PATH
S_off[15]	22.2	22.4	20.7	35.3	50.00	PATH
S_off[16]	22.2	22.4	20.8	35.3	50.00	PATH
S_off[17]	22.3	22.5	20.8	35.4	50.00	PATH
S off[18]	22.3	22.5	20.9	35.4	50.00	PATH
S off[19]	22.3	22.5	21.1	35.4	50.00	PATH
S_off[1]	21.8	22.0	18.7	34.9	50.00	PATH
S_off[20]	22.3	22.5	21.2	35.4	50.00	PATH
S_off[21]	22.3	22.5	21.3	35.4	50.00	PATH
S_off[22]	22.3	22.5	21.6	35.4	50.00	PATH
S_off[23]	22.3	22.5	22.2	35.4	50.00	PATH
S_off[24]	22.3	22.5	21.9	35.4	50.00	PATH
S off[25]	22.3	22.5	21.8	35.4	50.00	PATH
S_off[2]	21.8	22.0	19.0	34.9	50.00	PATH
S off[3]	21.9	22.0	18.9	34.9	50.00	PATH
S_off[4]	21.9	22.1	19.2	35.0	50.00	PATH
S off[5]	22.0	22.2	19.3	35.0	50.00	
S_off[6]	22.0	22.2	19.3	35.1		PATH
S off[7]	22.0	22.2	19.4	35.1	50.00 50.00	PATH
S_off[8]	22.0	22.2	19.5			PATH
S_011[8] S off[9]	22.0	22.2	20.1	35.1 35.2	50.00 50.00	PATH
**************					******	PATH

Genesil Version v8.0.2 -- Fri Jan 18 12:12:18 1991

Chip: /tmp_mnt/net/yoda/mnta/iag/iag/gt_vic/dag Timing Analyzer

PATH DELAY MODE

Fabline: HP2_CN10B

Junction Temperature:112 deg C Voltage:4.50v

External Clock: Clk

Corner: GUARANTEED

Included setup files: #0 set_hot (Setup/Hold time, Violations -- Ma> PATH DELAY (ns) Source Object Connector (Phl) Min Dest. Object Connector (Ph2) Min dag_ren_pad___ DAG_R_en_ rf_pad[0] PATH dag_ren_pad___ _ DAG_R_en_ rf_pad[25]_ --- PATH Genesil Version v8.0.2 -- Fri Jan 18 12:16:18 1991 Chip: /tmp_mnt/net/yoda/mnta/iag/iag/gt_vic/dag Timing Analyzer SETUP AND HOLD MODE Fabline: HP2_CN10B Corner: GUARANTEED Junction Temperature:75 degree C Voltage:5.00v External Clock: Clk Included setup files: default setup file INPUT SETUP AND HOLD TIMES (ns)

	INPUT SE	TUP AND HOL	D TIMES (ns	5)		
Input	Setup	Time	Hold Ti	lme		
	Ph1(f)	Ph2(f)	Ph1(f)	Ph2(f)		
Booting		21.8		-9.1	PATH	
DAG_R_en					PATH	
Flush		34.9		-1.0	PATH	
Freeze		37.1		-4.5	PATH	
Guard		12.9		-7.9	PATH	
Ids_eq_ods_1		11.1		-8.5	PATH	
Ids_eq_ods_2		10.7		-8.2	PATH	
Ids_freeze	,	3.7		-1.3	PATH	
Inst_en		4.7		-2.0	PATH	
Inst_rd		12.6		-6.6	PATH	
Kernel_mode		48.2		-3.9	PATH	
N_reset		37.4		-3.0	PATH	
Ods_freeze	3.6		-1.1		PATH	
Pc[0]		20.2		-3.8	PATH	
Pc[1]		20.4		-3.9	PATH	
Pc[2]		21.7		-3.9	PATH	
Pc[3]		20.8		-5.6	PATH	
RF[0]	3.6	4.9	-2.8	-3.8	PATH	
RF[10]	2.5	3.8	-1.6	-2.6	PATH	
RF[11]	2.5	3.8	-1.6	-2.6	PATH	
RF[12]	2.4	3.6	-1.4	-2.4	PATH	
RF [13]	2.3	3.6	-1.4	-2.4	PATH	
RF[14]	2.3	3.6	-1.3	-2.4	PATH	
RF[15]	2.2	3.5	-1.3	-2.3	PATH	
RF[16]	2.2	3.5	-1.3	-2.3	PATH	
RF[17]	2.2	3.5	-1.2	-2.2	PATH	
RF [18]	2.1	3.4	-1.1	-2.1	PATH	
RF [19]	2.9	4.2	-2.0	-3.0	PATH	
RF[1]	2.9	4.2	-2.1	-3.1	PATH	
RF[20]	2.8	4.1	-1.9	-2.9	PATH	

RF[21]	2.4	3.7	-1.5	-2.5	PATH
RF[22]	2.3	3.6	-1.4	-2.4	PATH
RF[23]	2.7	4.0	-1.8	-2.8	PATH
RF [24]	2.3	3.6	-1.4	-2.4	PATH
RF[25]	2.2	3.5	-1.2	-2.3	PATH
RF[26]	2.1	3.4	-1.1	-2.1	PATH
RF [27]	2.1	3.4	-1.2	-2.2	PATH
RF[28]	1.8	3.0	-0.8	-1.8	PATH
RF [29]	0.7	2.0	0.4	-0.6	PATH
RF[2]	2.9	4.2	-2.0	-3.0	PATH
RF [30]					PATH
RF [31]					PATH
RF [3]	2.9	4.2	-2.0	-3.0	PATH
RF [4]	2.8	4.1	-1.9	-2.9	PATH
RF [5]	2.8	4.1	-1.9	-2.9	PATH
RF [6]	2.7	4.0	-1.8	-2.8	PATH
RF [7]	3.1	4.4			
			-2.2	-3.3	PATH
RF[8]	3.0	4.3	-2.2	-3.2	PATH
RF[9]	2.6	3.9	-1.7	-2.7	PATH
RF_adr_mode[0]	9.3	9.9	-4.1	-5.4	PATH
RF_adr_mode[1]	8.3	8.9	-3.2	-4.4	PATH
RF_adr_mode[2]	6.3	7.1	-3.1	-4.5	PATH
RF_adr_mode[3]	6.5	7.3	-3.1	-4.7	PATH
RF_off[0]	7.1	8.8	-6.2	-5.0	PATH
RF_off[10]	7.1	8.7	-6.1	-4.6	PATH
RF_off[11]	6.9	8.6	-6.0	-4.5	PATH
RF_off[12]	6.9	8.5	-5.9	-4.4	PATH
RF_off[13]	6.9	8.5	-5.9	-4.4	PATH
RF_off[14]	6.9	8.6	-5.9	-4.5	PATH
RF_off[15]	6.9	8.6	-6.0	-4.5	PATH
RF_off[16]	6.9	8.6	-6.0	-4.5	PATH
RF_off[17]	7.0	8.7	-6.0	-4.6	PATH
RF_off[18]	7.0	8.7	-6.0	-4.7	PATH
RF_off[19]	7.5	9.1	-6.5	-5.1	PATH
RF_off[1]	7.1	8.8	-6.2	-5.0	PATH
RF off[20]	7.5	9.2	-6.5	-5.1	PATH
RF off[21]	7.6	9.3	-6.6	-5.2	PATH
RF_off[22]	7.7	9.3	-6.7	-5.2	PATH
RF off[23]	7.7	9.4	-6.7	-5.3	PATH
RF off[24]	7.8	9.4	-6.8	-5.4	PATH
RF off[25]	7.8	9.5	-6.8	-5.5	PATH
RF_off[2]	7.8	9.4	-6.8	-5.4	PATH
RF_off[3]	7.8	9.4		-5.4	PATH
RF_off[4]	7.7	9.3	-6.7	-5.3	PATH
RF_off[5]	7.6	9.2	-6.6	-5.2	PATH
RF off[6]	7.5	9.2	-6.5	-5.1	PATH
RF off[7]	7.4	9.0	-6.4	-5.1 -5.0	PATH
RF off[8]	6.9	8.5	-5.9	-4.4	
RF off[9]	7.2	8.9	-6.2		PATH
S adr mode[0]			-6.2	-4.8	PATH
S_adr_mode[0] S_adr_mode[1]		10.2		-5.1	PATH
		10.1		-5.0	PATH
S_adr_mode[2]		8.0		-4.9	PATH
S_adr_mode[3]		8.1		-5.1	PATH
S_off[0]		5.3		-3.4	PATH
S_off[10]		5.7		-3.7	PATH
S_off[11]		5.8		-3.8	PATH
S_off[12]		5.8		-3.9	PATH
S_off[13]		5.9		-3.9	PATH
S_off[14]		6.0		-4.0	PATH
S_off[15]		6.0		-4.1	PATH
s_off[16]		6.1		-4.2	PATH
S_off[17]		6.3		-4.3	PATH
	•				

	6.5		-4.5	PATH	
	6.5		-4.6	PATH	
	5.3		-3.4	PATH	
	6.6		-4.7	PATH	
	6.7		-4.7	PATH	
	6.7		-4.8	PATH	
	6.9		-5.0	PATH	
	7.0		-5.0	PATH	
	6.9		-5.0	PATH	
	5.3		-3.4	PATH	
	5.3		-3.4	PATH	
	5.4		-3.4	PATH	
	5.4		-3.4	PATH	
	5.4		-3.4	PATH	
	5.4		-3.5	PATH	
	5.5		-3.5	PATH	
	5.5		-3.5	PATH	
	31.8		-2.6	PATH	
*****	*****	*****	******	******	**
		6.5 5.3 6.6 6.7 6.7 6.9 7.0 6.9 5.3 5.3 5.4 5.4 5.4 5.4 5.5 31.8	6.5 5.3 6.6 6.7 6.9 6.9 5.3 5.3 5.4 5.4 5.4 5.4 5.4 5.4 5.5 5.5 5.5 5.5 31.8	6.54.6 5.33.4 6.64.7 6.74.7 6.74.8 6.95.0 6.95.0 5.35.0 5.33.4 5.43.4 5.43.4 5.43.4 5.43.4 5.53.5 5.53.5 31.82.6	6.54.6 PATH 5.33.4 PATH 6.64.7 PATH 6.74.8 PATH 6.95.0 PATH 6.95.0 PATH 5.33.4 PATH 5.33.4 PATH 5.43.4 PATH 5.43.4 PATH 5.43.4 PATH 5.53.5 PATH 5.53.5 PATH 5.53.5 PATH

Genesil Version v8.0.2 -- Fri Jan 18 12:16:24 1991

Chip: /tmp_mnt/net/yoda/mnta/iag/iag/gt vic/dag Timing Analyzer *************************

VIOLATION MODE

Fabline: HP2 CN10B Junction Temperature: 75 degree C Voltage: 5.00v

Corner: GUARANTEED

External Clock: Clk

Included setup files: default setup file

NO VIOLATIONS

Hold time check margin: 2.0ns

13.3. GUARANTEED, Room T, 5.0 V

```
*********************
          Genesil Version v8.0.2 -- Fri Jan 18 12:19:19 1991
Chip: /tmp_mnt/net/yoda/mnta/iag/iag/gt_vic/dag
**************************
CLOCK REPORT MODE
Fabline: HP2 CN10B
                            Corner: GUARANTEED
 Junction Temperature:62 deg C
                           Voltage:5.00v
 External Clock: Clk
Included setup files:
 #0 cl_out_room
                   (Clock time, output delay -- Room >
------
                   CLOCK TIMES (minimum)
Phase 1 High: 49.0 ns
                     Phase 2 High: 57.3 ns
Cycle (from Ph1): 99.2 ns Cycle (from Ph2): 106.4 ns
Minimum Cycle Time: 106.4 ns
                          Symmetric Cycle Time: 114.5 ns
                    CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 49.0 ns set by:
 ** Clock delay: 3.5ns (52.6-49.0)
                       Cumulative Delay
                                      Transition
  <dr_gen/critical_rl/(internal) 52.6</pre>
                                        rise
```

f_adr_gen/critical_rl/mnz	50.5	fall
<pre><en critical_rl="" f_boot_mode[0]<="" pre=""></en></pre>	48.9	rise
<n critical_rl="" f_boot_mode[0]'<="" td=""><td>48.0</td><td>rise</td></n>	48.0	rise
<adr_gen critical_rl="" n_mode[0]<="" td=""><td>47.5</td><td>fall</td></adr_gen>	47.5	fall
<pre><en critical_rl="" pre="" rf_adr_mode[0]<=""></en></pre>	47.1	rise
rf_mode_pad[0]/rf_adr_mode	46.7	rise
rf_mode_pad[0]/rf_adr_mode'	43.0	rise
RF_adr_mode[0]	40.0	rise
	•	

Minimum Phase 2 high time is 57.3 ns set by:

** Clock delay: 3.3ns (60.6-57.3)

Node	Cumulative Delay	Transition
<pre><ptr_mod (internal)<="" adr_ptr_dp="" pre=""></ptr_mod></pre>	60.6	rise
<pre><_mod/adr_ptr_dp/INTER4_ST1[4]</pre>	56.3	fall
<tr_mod adr_ptr_dp="" adr_ptr_sel<="" td=""><td>51.9</td><td>fall</td></tr_mod>	51.9	fall
<pre><_mod/adr_ptr_ctrl/adr_ptr_sel</pre>	51.9	fall
<mod adr_ptr_ctrl="" adr_ptr_sel'<="" td=""><td>50.2</td><td>fall</td></mod>	50.2	fall
<pre><tr_mod adr_ptr_ctrl="" decrement<="" pre=""></tr_mod></pre>	48.8	fall
<r_mod adr_ptr_ctrl="" decrement'<="" td=""><td>46.5</td><td>fall</td></r_mod>	46.5	fall
<_ptr_mod/adr_ptr_ctrl/dec_mux	44.9	fall
<pre><ptr_mod adr_ptr_ctrl="" dec_mux'<="" pre=""></ptr_mod></pre>	44.8	fall
<r_mod adr_ptr_ctrl="" decr_ap_in<="" td=""><td>43.2</td><td>fall</td></r_mod>	43.2	fall
<pre><_mod/adr_ptr_ctrl/decr_ap_in'</pre>	42.7	fall
<pre><_mod/adr_ptr_ctrl/n_res_fl_fr</pre>	41.2	fall
<mod adr_ptr_ctrl="" n_res_fl_fr'<="" td=""><td>41.1</td><td>fall</td></mod>	41.1	fall
<r_ptr_mod adr_ptr_ctrl="" freeze<="" td=""><td>39.3</td><td>rise</td></r_ptr_mod>	39.3	rise
<mod adr_ptr_ctrl="" n_freeze_buf<="" td=""><td>38.6</td><td>fall</td></mod>	38.6	fall
<pre><od adr_ptr_ctrl="" n_freeze_buf'<="" pre=""></od></pre>	38.4	fall
<pre><ptr_mod adr_ptr_ctrl="" n_freeze<="" pre=""></ptr_mod></pre>	37.2	fall
freeze_pad/n_freeze	33.6	fall
freeze_pad/n_freeze'	28.9	fall
Freeze	26.7	rise

Minimum cycle time (from Ph1) is 99.2 ns set by:

** Clock delay: 5.6ns (104.9-99.2)

0100x dc14j. 0.005 (104.5 55	• ~ 1		
Node	Cumulative	Delay	Transition
<pre><toz5fnowz2eresetz5fsigz5b0z5d< pre=""></toz5fnowz2eresetz5fsigz5b0z5d<></pre>	104.9		fall
<pre><gen gb.lp.nnz5fn49<="" pre="" super_ctrl=""></gen></pre>	104.5		rise
<pre><.NNflagsZ2ftoZ5fnowZ2esetZ5fy</pre>	103.6		fall
* <en gb.lp.nnz5fn45<="" super_ctrl="" td=""><td>101.3</td><td></td><td>fall</td></en>	101.3		fall
<pre><_gen/super_ctrl/GB.LP.NNZ5fN2</pre>	100.9		rise
<pre><dr_gen n_adr_under<="" pre="" super_ctrl=""></dr_gen></pre>			fall
<pre>f_adr_gen/super_dp/n_adr_under</pre>	100.1		fall
<adr_gen n_adr_under'<="" super_dp="" td=""><td>99.0</td><td></td><td>fall</td></adr_gen>	99.0		fall
f_adr_gen/super_dp/adr[2]	73.9		fall
f_adr_gen/super_dp/adr[2]'	73.2		fall
<r_gen ea_tpap_out[2]<="" super_dp="" td=""><td>69.8</td><td></td><td>fall</td></r_gen>	69.8		fall
<adr_gen no_tp_st2[1]<="" super_dp="" td=""><td>63.8</td><td></td><td>fall</td></adr_gen>	63.8		fall
<_gen/super_dp/eff_adr1_OUT[1]	62.5		fall
<_gen/super_dp/eff_adr1_IN1[0]	56.7		fall
<dr_gen mode_not_zero<="" super_dp="" td=""><td>53.3</td><td></td><td>fall</td></dr_gen>	53.3		fall
<pre><gen critical_rl="" mode_not_zero<="" pre=""></gen></pre>	53.3		fall
<pre><en critical_rl="" mode_not_zero'<="" pre=""></en></pre>	52.9		fall
f_adr_gen/critical_rl/mnz	50.5		fall
<pre><en critical_rl="" f_boot_mode[0]<="" pre=""></en></pre>	48.9		rise
<n critical_rl="" f_boot_mode[0]'<="" td=""><td>48.0</td><td></td><td>rise</td></n>	48.0		rise
<adr_gen critical_rl="" n_mode[0]<="" td=""><td>47.5</td><td></td><td>fall</td></adr_gen>	47.5		fall
<pre><en critical_rl="" pre="" rf_adr_mode[0]<=""></en></pre>	47.1		rise
rf_mode_pad[0]/rf_adr_mode	46.7		rise

```
43.0
  rf_mode_pad[0]/rf_adr_mode'
                                                       rise
  RF_adr_mode[0]
                                    40.0
                                                       rise
Minimum cycle time (from Ph2) is 106.4 ns set by:
  ** Clock delay: 5.2ns (111.6-106.4)
  Node
                               Cumulative Delay
                                                    Transition
  error_mod/error_ff/s_eq_f_2
                                   111.6
  odc_rf_mod/odc_mux/odc_out[1]
                                   111.5
  odc_rf_mod/odc_mux/odc_out[1]' 110.4
                                                       rise
  <_rf_mod/odc_mux/INTER0_ST1[1]
odc_rf_mod/odc_mux/odc_in[1]
odc_rf_mod/odc_ctrl/s2</pre>
                                   107.7
                                                       rise
                                   106.3
                                                       rise
                                   106.2
                                                       rise
                                  105.3
   odc_rf_mod/odc_ctrl/s2'
                                                       rise
   <rf_mod/odc_ctrl/GB.LP.NNZ5fN2 105.0
                                                       fall
                                104.6
   odc rf mod/odc ctrl/s2 int
                                                      rise
                                  104.6
   odc_rf_mod/odc_rf_dp/s_eq_f_2
                                                       rise
  odc_rf_mod/odc_rf_dp/s_eq_f_2' 104.1
                                                       rise
   odc_rf_mod/odc_rf_dp/s_adr[25] 100.3
                                                      rise
   s_adr_gen/super_dp/adr[25]
                                   99.8
                                                       rise
                                    99.2
   s_adr_gen/super_dp/adr[25]'
                                                       rise
   <_gen/super_dp/ea_tpap_OUT[25]
                                   96.0
                                                       rise
   <r_gen/super_dp/bring_b_ST1[0]
                                   69.6
                                                       fall
   s_adr_gen/super_dp/adr_ptr[0]
                                    67.7
                                                       fall
   <ptr_mod/adr_ptr_dp/adr_ptr[0]
                                   67.2
                                                       fall
   <tr_mod/adr ptr dp/adr ptr[0]'
                                   64.8
                                                       fall
   <mod/adr_ptr_dp/INTER5_VAL1[0]</pre>
                                   63.1
                                                       fall
   *<tr_mod/adr_ptr_dp/(internal)</pre>
                                    60.9
                                                      fall
   <_mod/adr_ptr_dp/INTER4_ST1[0]
                                   56.3
                                                      fall
   <tr_mod/adr_ptr_dp/adr_ptr_sel
                                   51.9
                                                      fall
   <_mod/adr_ptr_ctrl/adr_ptr_sel
                                    51.9
                                                      fall
   <mod/adr_ptr_ctrl/adr_ptr_sel'
                                    50.2
                                                      fall
   <tr_mod/adr_ptr_ctrl/decrement
                                    48.8
                                                       fall
   <r_mod/adr_ptr_ctrl/decrement'
                                    46.5
                                                       fall
   <_ptr_mod/adr_ptr_ctrl/dec_mux
                                    44.9
                                                       fall
   <ptr_mod/adr_ptr_ctrl/dec_mux'</pre>
                                    44.8
                                                       fall
   <r_mod/adr_ptr_ctrl/decr_ap_in
                                    43.2
                                                       fall
   <_mod/adr_ptr_ctrl/decr_ap in'</pre>
                                    42.7
                                                      fall
   <_mod/adr_ptr_ctrl/n res fl fr
                                    41.2
                                                      fall
   <mod/adr ptr ctrl/n res fl fr'
                                    41.1
                                                      fall
                                   39.3
   <r_ptr_mod/adr_ptr_ctrl/freeze
   <mod/adr_ptr_ctrl/n_freeze_buf
                                   38.6
   <od/adr_ptr_ctrl/n_freeze_buf'
                                   38.4
   <ptr_mod/adr ptr ctrl/n freeze</pre>
                                   37.2
   freeze_pad/n freeze
                                    33.6
   freeze pad/n freeze'
              Genesil Version v8.0.2 -- Fri Jan 18 12:19:22 1991
Chip: /tmp mnt/net/yoda/mnta/iag/iag/gt vic/dag
                                                             Timing Analyzer
*************************
OUTPUT DELAY MODE
Fabline: HP2 CN10B
                                     Corner: GUARANTEED
  Junction Temperature:62 deg C
                                   Voltage:5.00v
 External Clock: Clk
 Included setup files:
  #0 cl out room
                         (Clock time, output delay -- Room >
                            OUTPUT DELAYS (ns)
Output
                          Phl(r) Delay Ph2(r) Delay Loading(pf)
```

220 2	Min	Max	Min	Max	50.00	D 3 mm
DAG_Error	24.6 21.4	27.9 74.3	41.9	42.1	50.00 50.00	PATH
RF[0] RF[10]	20.4	74.2	41.9	42.1	50.00	PATH PATH
RF [11]	20.4	74.3	42.0	42.1	50.00	PATH
RF [12]	20.3	74.3	42.0	42.1	50.00	PATH
RF [13]	22.6	74.3	42.0	42.1	50.00	PATH
RF [14]	22.6	74.4	42.0	42.2	50.00	PATH
RF [15]	22.6	74.4	42.0	42.2	50.00	PATH
RF [16]	22.7	74.4	42.1	42.2	50.00	PATH
RF [17]	23.3	74.4	42.1	42.2	50.00	PATH
RF [18]	24.2	74.4	42.1	42.2	50.00	PATH
RF [19]	24.1	74.5	42.1	42.3	50.00	PATH
RF[1]	21.1	74.2	41.9	42.0	50.00	PATH
RF[20]	24.5	74.5	42.2	42.3	50.00	PATH
RF[21]	24.4	74.5	42.2	42.3	50.00	PATH
RF[22]	22.8	74.5	42.2	42.3	50.00	PATH
RF[23]	24.3	74.5	42.2	42.3	50.00	PATH
RF [24]	24.2	74.5	42.2	42.3	50.00	PATH
RF [25]	24.1	74.5	42.2	42.3	50.00	PATH
RF [26]	25.5	74.6	42.2	42.4	50.00	PATH
RF[27]	25.3	74.6	42.2	42.4	50.00	PATH
RF[28]	25.3	74.6	42.2	42.4	50.00	PATH
RF [29]	25.2	74.6	42.2	42.4	50.00	PATH
RF[2]	21.0	74.2	41.9	42.0	50.00	PATH
RF[30]	74.6	74.6	42.4	42.4	50.00	PATH
RF [31]	74.6	74.6	42.4		50.00	PATH
RF [3]	21.0	74.2	41.9	42.0	50.00	PATH
RF [4]	20.7	74.2	41.9	42.0	50.00	PATH
RF [5]	20.5	74.2	41.9	42.0	50.00	PATH
RF [6]	20.4	74.2		42.0	50.00	PATH
RF[7]	20.5 21.1	74.2 74.2	41.8 41.8	42.0 42.0	50.00 50.00	PATH
RF[8] RF[9]	20.4	74.2	41.8	42.0	50.00	PATH PATH
RF adr[0]	18.9	53.8	20.9	22.0	50.00	PATH
RF adr[10]	19.2	54.0	21.1	22.3	50.00	PATH
RF adr[11]	19.2	54.1	21.2	22.3	50.00	PATH
RF_adr[12]	19.2	54.0	21.2		50.00	PATH
RF_adr[13]	19.2	54.0	21.2	22.3	50.00	PATH
RF adr[14]	19.2	54.1	21.2	22.3	50.00	PATH
RF adr[15]	19.3	54.1	21.2	22.4	50.00	PATH
RF adr[16]	19.3	54.2	21.3	22.4	50.00	PATH
RF_adr[17]	19.4	55.0	21.3	22.4	50.00	PATH
RF_adr[18]	19.3	55.9	21.3	22.4	50.00	PATH
RF_adr[19]	19.4	56.8	21.3	22.5	50.00	PATH
RF_adr[1]	18.9	53.8	20.9	22.1	50.00	PATH
RF_adr[20]	19.5	57.8	21.5	22.6	50.00	PATH
RF_adr[21]	19.6	58.7	21.6	22.7	50.00	PATH
RF_adr [22]	19.7	59.7	21.6	22.7	50.00	PATH
RF_adr[23]	19.8	60.6	21.8	22.8	50.00	PATH
RF_adr [24]	19.8	61.6	21.8	22.8	50.00	PATH
RF_adr[25]	19.8	62.4	21.8	22.8	50.00	PATH
RF_adr[2]	18.9	53.8	20.9	22.1	50.00	PATH
RF_adr[3]	19.0	53.9	21.0	22.1	50.00	PATH
RF_adr[4]	19.1	53.9	21.0	22.2	50.00	PATH
RF_adr[5] RF adr[6]	19.1 19.1	54.0	21.0	22.2	50.00	PATH
RF_adr[7]	19.1	54.0 54.0	21.1 21.1	22.2	50.00 50.00	PATH
RF adr[8]	19.2	54.0	21.1	22.3 22.3	50.00	PATH PATH
RF_adr[9]	19.2	54.1	21.2	22.3	50.00	PATH
RF adr mode[0]	15.1	15.2	14.7	28.1	50.00	PATH
RF adr mode[1]	15.1	15.2	14.6	28.1	50.00	PATH
		10.5	2		22.00	T 1.3 T.1.3

RF_adr_mode[2]	15.1	15.2	14.6	28.1	50.00	PATH
RF_adr_mode[3]	15.1	15.2	14.4	28.1	50.00	PATH
RF_off[0]	17.5	17.7	14.7	30.6	50.00	PATH
RF_off[10]	17.4	17.6	15.1	30.5	50.00	PATH
RF_off[11]	17.4	17.5	15.2	30.4	50.00	PATH
RF_off[12]	17.4	17.5	15.2	30.4	50.00	PATH
RF off[13]	17.4	17.5	15.2	30.4	50.00	PATH
RF_off[14]	17.4	1/.5	15.3	30.4	50.00	PATH
RF_off[15]	17.3	17.5		30.4	50.00	PATH
RF off[16]	17.3	17.5	15.3		50.00	PATH
RF_off[17]	17.3	17.4	14.9	30.3	50.00	PATH
RF_off[18]	17.2		14.9	30.3	50.00	PATH
RF_off[19]	17.3	17.4 17.4	14.9 15.0	30.3	50.00	PATH
RF off[1]	17.5	17.7	14.6	30.6	50.00	PATH
RF_off[20]	17.3	17.4	15.3		50.00	PATH
RF_off[21]	17.3	17.4		30.3	50.00	PATH
RF_off[22]	17.3	17.4	15.2	30.3	50.00	PATH
RF_off[23]	17.3	17.4	15.1	30.3	50.00	PATH
RF_off[24]	17.3	17.4	15.1	30.3	50.00	
RF off[25]	17.3		15.1			PATH
RF off[2]	17.5	17.4	15.2	30.3	50.00	PATH
		17.7	14.5	30.6	50.00	PATH
RF_off[3]	17.5	17.7 17.6	14.6 14.8	30.6 30.5	50.00	PATH
RF_off[4]	17.5				50.00	PATH
RF_off[5]	17.5	17.6			50.00	PATH
RF_off[6]	17.5	17.6	14.9	30.5	50.00	PATH
RF_off[7]	17.5	17.6	14.9	30.5	50.00	PATH
RF_off[8]	17.4	17.6			50.00	PATH
RF_off[9]	17.4	17.6	15.0		50.00	PATH
R_eq_f_1	18.3	66.5			50.00	PATH
R_eq_f_2	18.1	66.7			50.00	PATH
SF_adr[0]	18.8	55.1	20.8		50.00	PATH
SF_adr[10]	19.3	55.4	21.3		50.00	PATH
SF_adr[11]	19.4	55.5	21.3	23.2	50.00	PATH
SF_adr[12]	19.5	55.5	21.4	23.3	50.00	PATH
SF_adr[13]	19.5	55.6	21.5	23.3	50.00	PATH
SF_adr[14]	19.6	55.6	21.5	23.4	50.00	PATH
SF_adr[15]	19.7	55.7	21.7	23.5	50.00	PATH
SF_adr[16]	19.7	55.7	21.7	23.5	50.00	PATH
SF_adr[17]		56.6	21.8	23.6	50.00	PATH
SF_adr[18]	19.9	57.6		23.7	50.00	PATH
SF_adr[19]	20.0	58.5	22.0	23.7	50.00	PATH
SF_adr[1]	18.8	55.0	20.7	22.7	50.00	PATH
SF_adr[20]	20.1	59.5	22.0	23.8	50.00	PATH
SF_adr[21]	20.1	60.4	22.1	23.8	50.00	PATH
SF_adr[22]	20.2	61.4	22.1	23.9	50.00	PATH
SF_adr[23]	20.2	62.3	22.2	23.9	50.00	PATH
SF_adr [24]	20.3	63.2	22.3	24.0	50.00	PATH
SF_adr [25]	20.5	64.2	22.4	24.1	50.00	PATH
SF_adr[2]	18.8	55.0	20.8	22.7	50.00	PATH
SF_adr[3]	18.9	55.1	20.8	22.8	50.00	PATH
SF_adr[4]	18.9	55.1	20.9	22.8	50.00	PATH
SF_adr[5]	19.0	55.2	20.9	22.9	50.00	PATH
SF_adr[6]	19.0	55.2	21.0	22.9	50.00	PATH
SF_adr[7]	19.1	55.2	21.1	23.0	50.00	PATH
SF_adr[8]	19.2	55.4	21.2	23.1	50.00	PATH
SF_adr[9]	19.3	55.4	21.3	23.1	50.00	PATH
S_adr_mode[0]	15.5	15.6	19.1	28.5	50.00	PATH
S_adr_mode[1]	15.5	15.6	19.1	28.5	50.00	PATH
S_adr_mode[2]	15.5	15.6	18.9	28.5	50.00	PATH
S_adr_mode[3]	15.5	15.6	18.8	28.5	50.00	PATH
S_eq_f_1	18.8	67.5			50.00	PATH
S_eq_f_2	18.6	67.5			50.00	PATH

17.4

17.6 15.0

30.5

50.00 PATH

S_off[0]

2_011(0)	17.7	17.0	13.0	30.3		FAID
S_off[10]	17.7	17.9	16.1	30.8	50.00	PATH
_off[11]	17.7	17.9	16.2	30.8	50.00	PATH
_off[12]	17.8	17.9	16.2	30.8	50.00	PATH
off[13]	17.8	17.9	16.3	30.8	50.00	PATH
off[14]	17.8	17.9	16.4	30.8	50.00	PATH
off[15]	17.8	17.9	16.6	30.9	50.00	PATH
off[16]	17.8	18.0	16 7	30 0		PATH
off[17]	17.8	18.0	16.7	30.9	50.00	PATH
off[18]	17.9	18.0	16.8	30.9	50.00	PATH
off[19]	17.9			30.9		PATH
off[1]	17.5					PATH
off[20]	17.9	18.0	17.0	30.9	50.00	
off[21]	17.9	18.0	17.1	30.9		PATH
					50.00	PATH
off[22]	17.9	18.0	17.3	30.9	50.00	PATH
off[23]	17.9					PATH
off[24]	17.9					PATH
off[25]	17.9		17.5		50.00	PATH
off[2]	17.5	17.6	15.3	30.5	50.00	PATH
off[3]	17.5		15.2	30.6		PATH
off[4]	17.6				50.00	PATH
off[5]	17.6	17.8		30.7	50.00	PATH
off[6]	17.6	17.8	15.6	30.7	50.00	PATH
off[7]	17.7	17.8	15.7	30.7	50.00	PATH
_off[8]	17.7	17.8	15.7	30.7	50.00	PATH
off[9]	17.7	17.9	16.1	30.8	50.00	PATH
abline: HP2_CN10B Junction Temperat External Clock: C Included setup fil	lk es:	Vo.	_	Οv		
#0 cl_out_room						
		ATH DELAY				
ource Object Co		(Ph1)		Max		
Dest. Object		(Ph2)				
Desc. Object	Connector	(Ph2)	MIU	Max		
dag_ren_pad DA	.G_R_en	٠.				
rf_pad[0]	RF			P	АТН	
dag_ren_padDA	.G_R_en					
rf_pad[25]	RF			P	ATH	

***	******	****				*****
**************************************	**************************************	**************************************	ri Jan 18		1991	
**************************************	**************** sil Version v8 yoda/mnta/iag/	**************************************	ri Jan 18 c/dag	12:26:01	1991 Timin	g Analyzei
**************************************	**************************************	**************************************	ri Jan 18 c/dag	12:26:01	1991 Timin	g Analyzei
**************************************	************* sil Version v8 yoda/mnta/iag/ ********	*********** .0.2 F: iag/gt_vic *******	ri Jan 18 c/dag	12:26:01	1991 Timin	g Analyzer
**************************************	**************************************	********** .0.2 F: iag/gt_vic *******	ri Jan 18 c/dag ******	12:26:01 ******	1991 Timin	g Analyzer
**************************************	************* sil Version v8 yoda/mnta/iag/ *******	*********** .0.2 F; iag/gt_vic ********	ri Jan 18 c/dag	12:26:01 ********** RANTEED	1991 Timin	g Analyzer

External Clock: Clk

Included setup files:

#0 set_room (Setup/Hold time, Violations -- Ro>

			LD TIMES (ns		
Input	Setup		Hold Ti	ime	
	Ph1(f)	Ph2(f)	Ph1(f)	Ph2(f)	
Booting					PATH
DAG_R_en					PATH
Flush					PATH
Freeze		35.8		-4.3	PATH
Guard		12.4		-7.6	PATH
Ids_eq_ods_1					PATH
Ids_eq_ods_2					PATH
Ids_freeze		3.6		-1.3	PATH
Inst_en		4.5		-1.9	PATH
Inst_rd		12.2		-6.4	PATH
Kernel_mode					PATH
N_reset					PATH
Ods_freeze	3.4		-1.1		PATH
Pc[0]		19.5		-3.6	PATH
Pc[1]		19.7		-3.8	PATH
Pc[2]		20.9		-3.8	PATH
Pc[3]		20.1		-5.4	PATH
RF[0]	3.5	4.7	-2.7	-3.6	PATH
RF[10]	2.4	3.7	-1.6	-2.6	PATH
RF[11]	2.4	3.7	-1.6	-2.5	PATH
RF[12]	2.3	3.5	-1.4	-2.4	PATH
RF[13]	2.2	3.5	-1.3	-2.3	PATH
RF[14]	2.2	3.4	-1.3	-2.3	PATH
RF[15]	2.1	3.4	-1.3	-2.2	PATH
RF[16]	2.1	3.4	-1.2	-2.2	PATH
RF[17]	2.1	3.3	-1.2	-2.2	PATH
RF[18]	2.0	3.3	-1.1	-2.1	PATH
RF [19]	2.8	4.0	-1.9	-2.9	PATH
RF[1]	2.8	4.1	-2.0	-3.0	PATH
RF [20]	2.7	4.0	-1.9	-2.8	PATH
RF[21]	2.3	3.6	-1.5	-2.5	PATH
RF[22]	2.2	3.5	-1.3	-2.3	PATH
RF[23]	2.6	3.9	-1.7	-2.7	PATH
RF[24]	2.2	3.5	-1.4	-2.3	PATH
RF[25]	2.1	3.4	-1.2	-2.2	PATH
RF[26]	2.0	3.3	-1.1	-2.1	PATH
RF[27]	2.0	3.3	-1.1	-2.1	PATH
RF[28]	1.7	2.9	-0.7	-1.7	PATH
RF[29]	0.7	1.9	0.4	-0.6	PATH
RF[2]	2.8	4.0	-1.9	-2.9	PATH
RF[30]					PATH
RF [31]					PATH
RF[3]	2.8	4.0	-1.9	-2.9	PATH
RF [4]	2.7	4.0	-1.8	-2.8	PATH
RF[5]	2.7	3.9	-1.8	-2.8	PATH
RF[6]	2.6	3.9	-1.8	-2.8	PATH
RF[7]	3.0	4.3	-2.2	-3.1	PATH
RF[8]	2.9	4.2	-2.1	-3.1	PATH
RF[9]	2.5	3.7	-1.6	-2.6	PATH
RF adr mode[0]	9.0	9.6	-4.0	-5.2	PATH
RF_adr_mode[1]	8.0	8.6	-3.0	-4.3	PATH
RF_adr_mode[2]	6.1	6.9	-2.9	-4.4	PATH
RF adr mode[3]	6.2	7.0	-3.0	-4.5	PATH
RF_off[0]	6.9	8.5	-5 . 9	-4.8	PATH
RF_off[10]	6.8	8.4	-5.9	-4.5	PATH
RF_off[11]	6.7	8.3	-5.7	-4.3	PATH
,	· · ·	0.0	J.,	7.5	LUIII

RF_off[12]	6.6	8.2	-5.7	-4.3	PATH
RF_off[13]	6.7	8.3	-5.7	-4.3	PATH
RF_off[14]	6.7	8.3	-5.7	-4.3	PATH
RF_off[15]	6.7	8.3	-5.7	-4.3	PATH
RF off[16]	6.7	8.3	-5.8	-4.4	PATH
RF off[17]	6.8	8.4	-5.8	-4.5	PATH
RF off[18]	6.8	8.4	-5.8	-4.5	PATH
RF off[19]	7.2	8.8	-6.3	-4.9	PATH
RF_off[1]	6.9	8.5	-5.9	-4.8	PATH
RF off[20]	7.3	8.9	-6.3	-5.0	PATH
RF off[21]	7.3	8.9	-6.4	-5.0	PATH
RF_off[22]	7.4	9.0	-6.4	-5.1	PATH
RF_off[23]	7.5	9.1	-6.5	-5.1	PATH
RF_off[24]	7.5	9.1	-6.5	-5.2	PATH
RF_off[25]	7.5	9.1	-6.6	-5.3	PATH
RF_off[2]	7.5	9.1	-6.5	-5.2	PATH
RF off[3]	7.5	9.1	-6.5	-5.2 -5.2	
RF off[4]	7.4	9.0	-6.4	-5.1	PATH
RF_off[5]					PATH
-	7.3	8.9	-6.3	-5.0	PATH
RF_off[6] RF off[7]	7.2	8.8	-6.3	-5.0	PATH
-	7.1	8.7	-6.2	-4.8	PATH
RF_off[8]	6.6	8.2	-5.7	-4.3	PATH
RF_off[9]	7.0	8.6	-6.0	-4.6	PATH
S_adr_mode[0]		9.8		-4.9	PATH
S_adr_mode[1]		9.8		-4.8	PATH
S_adr_mode[2]		7.7		-4.7	PATH
S_adr_mode[3]		7.8		-4.9	PATH
s_off[0]		5.1		-3.3	PATH
s_off[10]		5.5		-3.6	PATH
S_off[11]		5.6		-3.7	PATH
S_off[12]		5.6		-3.8	PATH
s_off[13]		5.7		-3.8	PATH
S_off[14]		5.8		-3.9	PATH
S_off[15]		5.8		-4.0	PATH
s_off[16]		5.9		-4.0	PATH
S_off[17]		6.1		-4.2	PATH
S_off[18]		6.2		-4.4	PATH
S_off[19]		6.3		-4.4	PATH
S_off[1]		5.1		-3.3	PATH
s_off[20]		6.4		-4.5	PATH
S_off[21]		6.4		-4.6	PATH
S_off[22]		6.5		-4.6	PATH
S_off[23]		6.6		-4.8	PATH
S_off[24]		6.7		-4.9	PATH
S_off[25]		6.7		-4.8	PATH
S_off[2]		5.1		-3.3	PATH
S_off[3]		5.1		-3.3	PATH
S_off[4]		5.2		-3.3	PATH
S_off[5]		5.2		-3.3	PATH
S_off[6]		5.2		-3.3	PATH
S_off[7]		5.2		-3.3	PATH
S_off[8]		5.3		-3.4	PATH
S_off[9]		5.3		-3.4	PATH
Valid_intr					PATH
************	*****	******	******	******	*****

Genesil Version v8.0.2 -- Fri Jan 18 12:26:07 1991

Chip: /tmp_mnt/net/yoda/mnta/iag/iag/gt_vic/dag Timing Analyzer

VIOLATION MODE

Fabline: HP2_CN10B

Junction Temperature:62 deg C

Corner: GUARANTEED Voltage:5.00v

External Clock: Clk Included setup files:

#0 set_room

(Setup/Hold time, Violations -- Ro>

NO VIOLATIONS

Hold time check margin: 2.0ns

DV CHECKLIST

1. DV	CONTROL NUM	IBER :				
2. CU	STOMER INFOR	RMATION				
	Customer Name:	Georgia Tech / CERL	Chip Na	me : <u>GT-VDAG</u>		
	Address: 400 Ten	th Street	FAX:	(404) 894–3120		
	CRB Ro	om 377				
	Atlanta.	GA 30332-0540				
	Project Manager:	Dr. C. O. Alford	Phone:	(404) 894–2505		
	Design Engineer:	Samuel H. Russ	Phone:	(404) 894–7472		
		Toshiro Kubota	Phone:	(404) 894–2506		
		Dr. Wei Siong Tan	Phone:	(404) 894–2508		
	Test Engineer:	Joseph I, Chamdani	Phone:	(404) 894–2527		
3. SEF	RVICES INFORM	IATION				
	xx Design Veri	fication Service only. PO #				
	Prototype S	ervice and Design Verification. Pe	O #			
	1.8% Maintenance					
	SCS Test	Foundry Test	Customer T	est		
	When DV is compl	lete, send verified physical databa	se tape to			
	Customer	Y N Silicon Vendor	Y N			
4. DV	CONTACT: Yin	g Chow	Phone : <u>(4</u>	08) 371–2900		

	5.2. 5.3.	GENESIL Version : 8.0.2 Name of Session Log from recompile :com_force_build.001 Include DV regression.CMD : DV regression.001 (simulation and timing) Size of database (MB) :110 Guess Density : 62501600 TK50 Tar _xx wbak Apollo Cartridge
	FUN	NCTIONAL INFORMATION (check when included)
	6.2. 6.3. 6.4. 6.5. 6.6. 6.7.	Number of Transistors : _xx
		Sun Cartridge_xx
•	PH	YSICAL INFORMATION
	7.1.	Fabline Name: HP2 CN10B Customer-Specific: Y N Fabline GENECAL Directory on tape: Y N Fabline GENESIL Directory on tape: Y N Fabline Calibration Status: Production: Beta: Alpha: xx NOTE: If not a production fabline, then approval from SCS is required.
	7.2.	Plots: (check when included or indicate filename) Chip Route (D size): _xx
	7.3.	Die Size : Reported Die Size : 414.8 x 409.5 square-mils
		Maximum Acceptable Die Size (+/- 2%) : 450 x 450 square-mils Minimum Acceptable Die Size (+/- 2%) : 280 x 280 square-mils
	7.4.	GENESIL Package Name : <u>CPGA224f2</u> Spec included? Y N Cavity/Well Size : <u>480</u> mils by <u>480</u> mils Non-GENESIL Supplied Package? Y <u>N</u> Vendor Name/Part # : <u>KYOCERA KD-P86077C</u> Foundry Approval? <u>Y</u> N
	7.5.	External Block: none
	7.6.	LRAM: Y N LROM: Y N LPLA: Y N LogicCompiler Blocks: Y N
		Test Pad (PM Pad) is included? Y N (Required for PS)

5. REGRESSION

	7.8.	. Power Pad : VCC: Core <u>4</u> VSS: Core <u>4</u> Ring <u>14</u> Ring <u>13</u>	<u>-</u> -
		NP protection for nwell pad? Y N	
		TTL output pads or N Protection for inputs? Y N If yes, have you received silicon vendor approval? Y N	
		Error in PADRING.033 (PADRING.DRC)? Y N	ardcopy attached? Y N
		ESD requirements A ₁	pproved by SCS? Y N
8.	ELF	ECTRICAL INFORMATION	
	8.2.	. Chip Frequency Specified in netlist: 10.0 MHz Ta Power Dissipation: GENESIL = 0.946 W at 10 MHz Operating Voltage: from 4.5 Volts to 5.5 Volts	Spec = 1.0 W at 10.0 MHz
9.	SIM	MULATION	•
	9.1.	. Number of Clocking Regimes : _1 Clock Pad Name DIV/NO DIV Ext Clock Name 1Clock pad NO DIV Clk 2 3	PHASE A / PHASE B
	9.2.	. Simulation Setup Files: Name:designinit.080 Description:default clock setup	
		Affected Tests: All	
		Name :	
		Affected Tests :	
		Name :	Listings attached:
		Affected Tests :	
		Name :	
		Description :	
		Affected Tests :	

	st Vector Set: stal No. of Vectors: <u>36.2</u>	23		
10				m test frequency on the IMS Tester of m test frequency on the IMS Tester of
1.	Name: <u>vec1 trace.083</u> Description: <u>test the load</u>			No of vectors :6,133
	Portions of Chip Tested :	all		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes _yes _yes	Use for PS testing?	Y N
2.	Name: <u>vec2 trace.083</u> Description: <u>continuati</u>			No of vectors :
	Portions of Chip Tested :	all		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	Y N
3.	Name: vec3 trace.083 Description: continuati		trace	No of vectors : _3,719
	Portions of Chip Tested	all		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes_ _yes_ _yes_	Use for PS testing?	Y N
4.	Name : vec4 trace.083 Description : continuation	on of vec1	irace	No of vectors :
	Portions of Chip Tested	all		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	<u>Y</u> N

	Portions of Chip Tested :
٠	Pass with GFL model? yes Pass with GSL model? yes Use for PS testing? Y N Pass Fight Test? yes
5.	Name:iosat_trace.083 No of vectors: _3,833 Description:created as part of multichip simulation involving GT_VIAG and GT_VFPU/1a
	Portions of Chip Tested :all
	Pass with GFL model?
7.	Name: sort4 trace.083 No of vectors: 4.517 Description: same with iosat trace.083
	Portions of Chip Tested : all
	Pass with GFL model?yes Use for PS testing?Y N Pass Fight Test?yes Use for PS testing?Y N
3.	Name : No of vectors : Description :
	Portions of Chip Tested :

	Name:		
	Description :		
	Portions of Chip Tested :		
	Pass with GFL model?		
	Pass with GSL model? Pass Fight Test?	Use for PS testing?	YN
	. Name :		
De	escription:		
	Portions of Chip Tested :		
	Pass with GFL model? Pass with GSL model?	Use for PS testing?	YN
	Pass Fight Test?	0 20 201 2 3 3021-19 1	
11	.Name :		
	Description :		
	Portions of Chip Tested :		
	Pass with GFL model?		
	Pass with GSL model? Pass Fight Test?	Use for PS testing?	Y N
	48 Grouping within limitation? V N		
Te	ster clock frequency = 10.0 MHz	(Required for PS only	y)
Te			
Te	ster clock frequency = 10.0 MHz	Ran glitc	GSL with h detection are on?
Te	ster clock frequency = 10.0 MHz gnals that must be glitch free: Y N Signal Name	Ran glitc featt	GSL with h detection
Te	ster clock frequency = 10.0 MHz gnals that must be glitch free: Y N Signal Name 1. 2.	Ran glitc featu Y	GSL with h detection are on? N N
Te	ster clock frequency = 10.0 MHz gnals that must be glitch free: Y N Signal Name 1 2 3	Ran glitc featt	GSL with h detection ure on? N N N N
Te	ster clock frequency = 10.0 MHz gnals that must be glitch free: Y N Signal Name 1. 2. 3. 4.	Ran glitc featu Y	GSL with h detection ure on? N N N N N N N
Te	ster clock frequency = 10.0 MHz gnals that must be glitch free: Y N Signal Name 1. 2. 3. 4. 5.	Ran glitc featu Y	GSL with h detection are on? N N N N N N N N N N N N N N N N N N
Te	Signal Name 1 2 3 4 5 6	Ran glitc featu	GSL with h detection ure on? N N N N N N N
Te	ster clock frequency = 10.0 MHz gnals that must be glitch free: Y N Signal Name 1. 2. 3. 4. 5.	Ran glitc featt	GSL with h detection are on? N N N N N N N N N N N N N N N N N N

10. TIMING ANALYSIS

. System Environment		
Temperature Coefficient: _3:	5 Degrees C / Watt ((theta JA)
Operating Temp : from	25 C (min) to 75	C (max)
Operating Voltage : from		
room junction temp = $25 + ($	theta JA * Power) = 61.5	degrees C
maximum junction temp = n	naximum ambient temp + (tl	neta JA * Power) = 111.5 degrees C
. Reports (Include the following r	reports)	
(required for PS)*	(required for PS)*	
guaranteed corner	guaranteed corner	typical corner
5.0V	min operating V	min operating V
room junc temp	max junction temp	max junction temp
Cycle :_xx_	Cycle :_xx_	Cycle :
Setup/Hold : xx	Setup/Hold : xx	Setup/Hold :
Output Delay : xx	Output Delay : xx	Output Delay :
Violation : xx	Violation : xx	Violation :
	· · · · · · · · · · · · · · · · · · ·	
Timing Setup Files:		
Name: cl out room		Listings attached:yes
Temperature : 62 degrees C	V	oltage : 5,00 V
Description: clock, output del	ay with room temprature an	d normal voltage
Temperature : 112 degrees C Description : clock, output de		oltage: 4,50 V ure and minimum voltage
Name: set room		Listings attached :yes
Temperature: 62 degrees C	·	oltage : 5.00V
Description: setup and hold t	ime and violations at room t	temp and normal voltage
Name: <u>set hot</u> Temperature: <u>112 degrees C</u>	V	Listings attached:yesoltage: 4.50V
Description: setup and hold t		
Name: clock output		Listings attached :yes
Temperature : 75 degrees C		oltage: 5.00 V
Description: clock, output del	lay with room temprature and	d normal voltage

	ees C	Vo	Listings attached: <u>yes</u> Voltage: 5.00V			
Description: setup an	d hold time a	nd violations at room t	ons at room temp and normal voltage			
(used for	TYPICAL ar	nalysis)	······································			
				 		
ritical Boundary Condi	tione:					
List critical paths here		he timing report.				
Attach additional page		no uning report.				
. •						
Clock Name:	Clk					
	report	limit	repor	t limit		
	-opoit	(+/-5%)	ropor	(+/-5%		
1. Phase 1 High	46.1 ns	50.0 ns	<u> </u>	• •		
2. Phase 2 High	46.6 ns	50.0 ns				
	94.0 ns	_100.0_ns				
4. Minimum Cycle	94.0 ns	100.0 ns				
Outputs						
	Name	load (nF) de	elay limit		
1			_			
2						
3						
4		 -				
5	· · · · · · · · · · · · · · · · · · ·					
6						
8.				· · · · · · · · · · · · · · · · · · ·		
9.						
						
•						
Inputs	I Mama e		.	1-11		
Signa	Name		tup t / limit	hold report / limit		
1.			/ /	/ / / / / / / / / / / / / / / / / / /		
2.						
3.			1			
4.						
5						
6						
6 7 8			1			

10.5. Hold Time Violations : <u>none</u> (At <u>2.0</u> nsec.)

11. DC CHARACTERISTICS

		CONDITIONS	CONDITIONS		
METER	RS DESCRIPTION	0 to 70	-55 to +125	MIN	MAX
DATA F	PAD INPUT ONLY				
VIH	Input High Voltage			2.0V	-
VIL	Input Low Voltage				0.8V
IIL	Input Leakage	VSS <vin<vdd< td=""><td>VSS<vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<></td></vin<vdd<>	VSS <vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<>	-10uA	10uA
CIN	Input Capacitance				6.0pf
DATA F	PAD OUTPUT ONLY				
VOH	Output High Voltage	VDD= 4.5V	VDD= 4.5V	2.4V	
		IOH=-2.2	IOH=-2mA		
VOL	Output Low Voltage	VDD= 4.5V	VDD= 4.5V		0.4V
107	Outmut I aslesse	IOL= 6mA	IOL=5mA	10 A	10 A
IOZ	Output Leakage current(high Z)	VSS <vout<vdd< td=""><td>VSS<vout<vdd< td=""><td>–10uA</td><td>10uA</td></vout<vdd<></td></vout<vdd<>	VSS <vout<vdd< td=""><td>–10uA</td><td>10uA</td></vout<vdd<>	–10uA	10uA
COUT	Output Capacitance			ę	7.0pf
DATA F	PAD INPUT/OUTPUT				
DATA F	PAD INPUT/OUTPUT Output High Voltage	VDD= 4.5V	VDD= 4.5V	2.4V	
VOH	Output High Voltage	IOH=-2.2	IOH=-2mA	2.4V	
		IOH=-2.2 VDD= 4.5V	IOH=-2mA VDD= 4.5V	2.4V	0.4V
VOH VOL	Output High Voltage Output Low Voltage	IOH=-2.2	IOH=-2mA		0.4V
VOH VOL VIH	Output High Voltage Output Low Voltage Input High Voltage	IOH=-2.2 VDD= 4.5V	IOH=-2mA VDD= 4.5V	2.4V 2.0V	
VOH VOL	Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage	IOH=-2.2 VDD= 4.5V	IOH=-2mA VDD= 4.5V		0.4V 0.8V 10uA
VOH VOL VIH VIL	Output High Voltage Output Low Voltage Input High Voltage	IOH=-2.2 VDD= 4.5V IOL= 6mA	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V
VOH VOL VIH VIL	Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage Output leakage	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V
VOH VOL VIH VIL IOZ	Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitan	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V 10uA</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V 10uA
VOH VOL VIH VIL IOZ CIO CLOCK VIH	Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitan	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V 10uA</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V 10uA
VOH VOL VIH VIL IOZ CIO CLOCK VIH VIL	Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitan Input High Voltage Input High Voltage Input Low Voltage	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA VSS<vout<vdd< td=""><td>2.0V -10uA</td><td>0.8V 10uA 7.0pf</td></vout<vdd<></td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA VSS <vout<vdd< td=""><td>2.0V -10uA</td><td>0.8V 10uA 7.0pf</td></vout<vdd<>	2.0V -10uA	0.8V 10uA 7.0pf
VOH VOL VIH VIL IOZ CIO CLOCK VIH	Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitan	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V -10uA</td><td>0.8V 10uA 7.0pf</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V -10uA	0.8V 10uA 7.0pf

NOTE: All parameters at a supply voltage of VDD = 5V (+/-10%).

Pre-Verification Comments	
1. tnet reports 6 "undriven nets". These are correct, and do not repre	sent an actual error.
2. Genesil's Padring CCC flags bond angle, bond length, and wire cro	essing problems. A copy of the
bonding diagram has been sent to HP for approval.	
Post-Verification Comments	
1. Power and ground routing forced re-placement of one datapath.	
2. Die Size is now approximately 412.5 by 412.9 mils.	
3. Timing Analysis revealed hold time violations in error mod/error	ff. Spice analysis indicated that
this would not be a problem.	· · · · · · · · · · · · · · · · · · ·
4. Genesil flagged bonding angle, length, and wire crossing problems	s. HP as checked the bonding
and found it acceptable for prototype purposes.	
either the Design Verification Terms & Conditions or the Prototype S addition, such changes require the DV process to be started from t extended DV schedules.	the beginning, which results in
Customer Approval :	Date/_/
Title :	
14. SCS APPROVAL Pre-Verification Comments	
SCS Approval : Regional Field Application Consultant	Date//
SCS Approval :	Date//

12. CUSTOMER COMMENTS