Application Serial No. 10/516,583 Attorney Docket No. 46872/308797
Filed; March 24, 2005 Page 2 of 12

Amendments in the Claims

1. (cancelled)

wherein the first path under test and the second path under test have substantially the same
propagation delays in a fault free circuit;
(b) receiving a first output signal indicating that the test pattern has propagated through at
least one of the first path under test and the second path under test;
(c) receiving a second output signal that indicates the test pattern has propagated through
each of the first path under test and the second path under test;
(d) determining the interval between receiving the first output signal and the second
output signal; and
(e) identifying a fault in at least one of the first path under test and the second path under
test when the interval exceeds a threshold; and
(f) causing an indication of the fault to be output,
wherein:
the first path under test comprises a fast path; and
the second path comprises a slow path.
9. (currently amended) The method of claim 1A method for testing a field programmable
gate array comprising:
(a) applying a test pattern approximately simultaneously to a first path under test in the
field-programmable gate array and a second path under test in the field-programmable gate array,
wherein the first path under test and the second path under test have substantially the same
propagation delays in a fault free circuit;
(b) receiving a first output signal indicating that the test pattern has propagated through at
least one of the first path under test and the second path under test;
(c) receiving a second output signal that indicates the test pattern has propagated through
each of the first path under test and the second path under test;
(d) determining the interval between receiving the first output signal and the second
output signal; and
(e) identifying a fault in at least one of the first path under test and the second path under
test when the interval exceeds a threshold; and
test when the interval exceeds a threshold; and (f) causing an indication of the fault to be output,

wherein at least one of the first path under test and the second path under test comprises at least one programmable logic block (PLB) configured as an adder for computing the k-bit sum (S) of two k-bit inputs, A and B, and having a carry-in (Cin) and carry-out (Cout).

10. (original) The method of claim 9, wherein:

applying the test pattern comprises applying a raising transition at Cin and B and a 0 vector at A: and

receiving the first and second output signals comprises receiving raising transition at Cout.

11. (original) The method of claim 9, wherein:

applying the test pattern comprises applying a falling transition at Cin and B and a 1 vector at A; and

receiving the first and second signals comprises receiving a falling transition at Cout.

12. (original) The method of claim 9, wherein:

applying the test pattern comprises applying a raising transition at Cin, a 0 vector at A, and a 1 vector at B; and

receiving the first and second signals comprises receiving a falling transition at S.

13. (cancelled)

14. (currently amended)

The system of claim 13A system for testing a field programmable gate array comprising:

an input;

a first path under test in the field-programmable gate array, the first path under test in communication with the input;

a second path under test in the field-programmable gate array, the second path in

communication with the input, wherein the second path has an expected propagation delay substantially the same as the first path under test; and

an output response analyzer in communication with the first path and the second path and operable to determine an interval between the time a data signal propagates through the first path under test and the second path under test.

communication with the input, wherein the second path has an expected propagation delay

substantially the same as the first path under test; and

an input;

a first path under test in the field-programmable gate array, the first path under test in communication with the input;

a second path under test in the field-programmable gate array, the second path in
communication with the input, wherein the second path has an expected propagation delay
substantially the same as the first path under test; and
an output response analyzer in communication with the first path and the second path and
operable to determine an interval between the time a data signal propagates through the first path
under test and the second path under test,
wherein each of the first path under test and the second path under test comprises at least
one lookup table (LUT) and where each LUT is configured to produce a transition when the
input of the LUT changes to a specified target address,
wherein neither of the first path under test and the second path under test comprises a
flip-flop, and
wherein each LUT comprises k inputs and each of the first path under test and second
path under test comprises consecutive groups of 2k pairs of LUT's, wherein each of the groups
comprises the same configuration and each pair comprises a different target address.
23. (currently amended) The system of claim 13 A system for testing a field programmable
gate array comprising:
an input;
a first path under test in the field-programmable gate array, the first path under test in
communication with the input;
a second path under test in the field-programmable gate array, the second path in
communication with the input, wherein the second path has an expected propagation delay
substantially the same as the first path under test; and
an output response analyzer in communication with the first path and the second path and
operable to determine an interval between the time a data signal propagates through the first path
under test and the second path under test,
wherein each of the first path under test and the second path under test comprises:
a first programmable logic block configured as an adder for computing the k-bit sum (S)
of two k-bit inputs, A and B, and having a carry-in (Cin) and carry-out (Cout).

Attorney Docket No. 46872/308797 Page 8 of 12

Application Serial No. 10/516,583 Filed: March 24, 2005

24. (original) The system of claim 23, wherein the output response analyzer is connected to the Cout output.

- 25. (original) The system of claim 23, further comprising a second programmable logic block configured identically to the first programmable logic block, wherein the Cin input of the second programmable logic block is connected to the B and Cout outputs of the first programmable logic block.
- 26. (original) The system of claim 23, wherein the output response analyzer is connected to the S output.
- 27. (original) The system of claim 23, further comprising a second programmable logic block configured identically to the first programmable logic block, wherein the A input of the second programmable logic block is connected to the S output of the first programmable logic block.
- 28. (original) The system of claim 23, further comprising:

a third programmable logic block configured identically to the first programmable logic block, wherein the Cin input of the third programmable logic block is connected to the Cout output of the second programmable logic block; and

a fourth programmable logic block configured identically to the first programmable logic block, wherein the A input of the third programmable logic block is connected to the S output of the third programmable logic block

29. (original) The system of claim 23, further comprising:

a second programmable logic block configured identically to the first programmable logic block, wherein the Cin input of the second programmable logic block is connected to the Cout output of the first programmable logic block;

a third programmable logic block configured identically to the first programmable logic block, wherein the A input of the third programmable logic block is connected to the S output of the second programmable logic block; and Application Serial No. 10/516,583 Attorney Docket No. 46872/308797 Filed: March 24, 2005 Page 9 of 12

a fourth programmable logic block configured identically to the first programmable logic block, wherein the Cin input of the fourth programmable logic block is connected to the Cout output of the third programmable logic block

Claims 30-31 (cancelled)

32. (currently amended) The system of claim 13 A system for testing a field programmable
gate array comprising:
an input;
a first path under test in the field-programmable gate array, the first path under test in
communication with the input;
a second path under test in the field-programmable gate array, the second path in
communication with the input, wherein the second path has an expected propagation delay
substantially the same as the first path under test; and
an output response analyzer in communication with the first path and the second path and
operable to determine an interval between the time a data signal propagates through the first path
under test and the second path under test,
wherein each path under test comprises a horizontal segments contained in a H-STAR
and a vertical segment contained in a V-STAR, and further comprising a configurable
interconnect point configured at the intersection of the V-STAR and the H-STAR connecting the
said horizontal and vertical segments.
33. (original) The system of claim 32, wherein the test pattern generator drives the horizontal
segment and the output response analyzer observes the vertical segment of the paths under test.
34. (currently amended) A system for delay-fault testing of an FPGA, wherein the FPGA
under test comprises a plurality of parallel vertical self-testing areas (V-STAR's), and each V-
STAR comprises: the delay-fault testing system of claim 13
an input;
a first path under test in the field-programmable gate array, the first path under test in
communication with the input;

a second path under test in the field-programmable gate array, the second path in
communication with the input, wherein the second path has an expected propagation delay
substantially the same as the first path under test; and
an output response analyzer in communication with the first path and the second path and
operable to determine an interval between the time a data signal propagates through the first path
under test and the second path under test.
35. (currently amended) A system for delay-fault testing of an FPGA, wherein the FPGA
under test comprises a plurality of parallel vertical self-testing areas (H-STAR's), and each H-
STAR comprises: the delay-fault testing system of claim 13
an input;
a first path under test in the field-programmable gate array, the first path under test in
communication with the input;
a second path under test in the field-programmable gate array, the second path in
communication with the input, wherein the second path has an expected propagation delay
substantially the same as the first path under test; and
an output response analyzer in communication with the first path and the second path and
operable to determine an interval between the time a data signal propagates through the first path
under test and the second path under test.