DigitalHouse>

DATA SCIENCE

Machine Learning – Modelos em Produção

ML – MODELOS EM PRODUÇÃO

Evidentemente – os **Modelos Preditivos** desenvolvidos e treinados por **Cientistas de Dados** precisam chegar até o "mundo real" – o chamado ambiente produtivo. Também conhecido como o ambiente de **Produção**.

Why do 87% of data science projects never make it into production?

VB STAFF JULY 19, 2019 4:10 AM

"If your competitors are applying AI, and they're finding insight that allow them to accelerate, they're going to peel away really, really quickly," Deborah Leff, CTO for data science and AI at IBM, said on stage at Transform 2019.

On their panel, "What the heck does it even mean to 'Do Al'? Leff and Chris Chapo, SVP of data and analytics at Gap, dug deep into the reason so many companies are still either kicking their heels or simply failing to get Al strategies off the ground, despite the fact that the inherent advantage large companies had over small companies is gone now, and the paradigm has changed

in Q2 2020 revenue: Azure up 62%, Surface up 6%, and LinkedIn up 24%

Why Google Assistant supports so many more languages than Siri, Alexa, Bixby, and Cortana

Meena is Google's attempt at making true conversational Al

completely. With All the fast companies are outperforming the slow companies

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/

Digital House > CIENT. DADOS NÃO SABEM ESCREVER CÓDIGO PARA PRODUÇÃO?

https://insidebigdata.com/2019/08/13/help-my-data-scientists-cant-write-production-code/

https://dzone.com/articles/learn-how-to-setup-a-cicd-pipeline-from-scratch

Neste contexto é fundamental que Cientistas de Dados tenham o conhecimento do fluxo de atividades e operações que leva o software até o ambiente produtivo – o *PIPELINE* de desenvolvimento. Permitindo então desta maneira que o software desenvolvido seja feito, desde sua concepção, com todos os requisitos necessários para a entrega no ambiente produtivo, o mundo real.

VAMOS COLOCAR UM WEB APP EM PRODUÇÃO (NA INTERNET)

Streamlit. The fastest way to build data apps

Streamlit's open-source app framework is the easiest way for data scientists and machine learning engineers to create beautiful, performant apps in only a few hours! All in pure Python. All for free.

https://www.streamlit.io/

pip install streamlit

Observação – poderá ser necessário colocar o caminho do streamlit.exe no PATH (Windows)

C:\Users\[USUÁRIO]\AppData\Roaming\Python\Python37\Scripts

```
(base) C:\streamlit>streamlit hello

Welcome to Streamlit. Check out our demo in your browser.

Local URL: http://localhost:8501
Network URL: http://192.168.0.10:8501

Ready to create your own Python apps super quickly?
Just head over to https://docs.streamlit.io

May you create awesome apps!
```

Vamos rodar o "Hello World" do Streamlit no prompt e ver o resultado no Browser:

- > streamlit hello Depois iremos rodar também:
- > streamlit run tutorial.py
- > streamlit run bandrec-streamlit.py

Recomendação de Bandas

Escolha o país		

Digite o nome da Banda / Artista

megadeth

Submeter

Recommendations for megadeth:

1: black sabbath, with distance of 0.3221987029536757:

2: koЯn, with distance of 0.3742111519629977:

3: slipknot, with distance of 0.37701311363710077:

Descompactar arquivos recebidos do pacote webapp.zip

PASSO 1 – CRIAR UMA CONTA NO GITHUB

https://github.com/

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere? Import a repository.

Great repository names are short and memorable. Need inspiration? How about ubiquitous-pancake?

Description (optional)

Public

Anyone on the internet can see this repository. You choose who can commit.

You choose who can see and commit to this repository.

Create repository

CRIAR NOVO REPOSITÓRIO

Subir todos arquivos que estavam no webapp.zip, descompactados previamente

COMMIT CHANGES!

E nesta mesma tela dar "commit changes".

REPOSITÓRIO CRIADO!

https://www.heroku.com/

Selecionar "Sign Up", preencher todos os dados e confirmar a inscrição no e-mail enviado

CREATE A NEW APP

Looking for help getting started with your language?

Get started by reading one of our language guides in the Dev Center

Python

App name webappauladh webappauladh is available Choose a region United States Add to pipeline... Create app

CONECTAR O HEROKU AO GIT

AUTORIZAR A CONEXÃO

INFORMAR REPO CRIADO NO GITHUB E DAR CONNECT

Aguardar alguns segundos para que seja feita a conexão / download do repo ou dê reload na página

CLIQUE EM "DEPLOY BRANCH"

CLIQUE EM "DEPLOY BRANCH"

Receive code from GitHub	\odot
Build master b25299e3	⊗
Release phase	⊗
Deploy to Heroku	②
Your app was successfully de	oloyed.
☑ View	

CLIQUE EM "OPEN APP"

Recomendação de Bandas

Procfile – indica os comandos que vão ser executados

```
1  | numpy==1.17.3
2  pandas==1.0.5
3  streamlit==0.62.0
4  scipy==1.4.1
5  fuzzywuzzy==0.18.0
6  sklearn
7
```

requirements.txt – libs a serem instaladas

```
mkdir -p ~/.streamlit/

echo "\
   [server]\n\
   headless = true\n\
   port = $PORT\n\
   renableCORS = false\n\
   \n\
   " > ~/.streamlit/config.toml
```

setup.sh – preparação e configuração do ambiente

VAMOS COLOCAR UM WEB SERVICE EM PRODUÇÃO (NA INTERNET)

Agora vamos criar um webservice com o Flask e fazer o deploy do mesmo no Heroku.

Descompactar arquivos em webservice.zip e abrir o notebook deploy_api_heroku_v1.ipynb no Jupyter.

COMO O SOFTWARE CHEGA AO AMBIENTE PRODUTIVO?

https://www.devmedia.com.br/introducao-ao-modelo-cascata/29843

Importante lembrarmos do modelo mais tradicional de desenvolvimento de software – o "V Model" para entendermos sua evolução e o estágio atual dos conceitos de entrega e desenvolvimento de software.

- Desenvolvimento
 - Estação de trabalho dos desenvolvedores
- Testes
 - Ambiente para testar a integração das unidades desenvolvidas
- Homologação
 - Ambiente similar ao de produção utilizado para realizar os testes de aceitação
- Produção
 - Ambiente real de produção da aplicação

Outra denonimação muito comum para o modelo tradicional de desenvolvimento de software é *Waterfall* ou Cascata em português.

No modelo tradicional de desevolvimento o programador faz o *Build* de seu programa e entrega o executável produzido para a equipe de Operações. Esta equipe faz a *Movimentação* do programa entre os ambientes.

No modelo tradicional de desenvolvimento tínhamos uma divisão clara e distinta entre as equipes de **Desenvolvimento** e **Operações**. Hoje é consenso que havia entre os dois um "**Muro de Confusão**" causando uma série de problemas.

https://pt.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

Porém em 2009 John Allspaw e Paul Hammond fizeram a apresentação "10 deploys per day – Dev & Ops cooperation at Flickr" – introduzindo o conceito de DevOps.

O conceito de DevOps propõe então eliminar esta barreira entre as duas equipes – principalmente através da **Automatização** dos processos de entrega de software ao ambiente produtivo.

E junto com a automação, além da maior integração entre as equipes, a ideia é que o processo de entrega de software com valor ao cliente possa ocorrer com uma frequência bem maior – baseada em um processo iterativo.

192018 - All training materials are sole property of van Haren Publishing by and are not to be reproduced in any form or shape without written permission. **2** 1.5 18

Essa nova maneira de entregar software foi impulsionada também pelo advento das metodologias ágeis (Agile) de desenvolvimento de software – que também propôs a entrega de software com valor em intervalos menores – num processo iterativo.

Agile Methodology

DEV E OPS EM CIÊNCIA DE DADOS

DEV

OPS

"It has been said that a data scientist is someone who is better at statistics than any software engineer, and better at software engineering than any statistician"

MACHINE LEARNING OPERATIONS ML - OPS

https://blog.jdriven.com/2019/10/machine-learning-systems-require-paradigm-shift-in-software-engineering/

https://medium.com/@cbreuel/ml-ops-machine-learning-como-disciplina-de-engenharia-a058770b93dc

O ML Ops é um conjunto de práticas que combina Machine Learning, DevOps e Engenharia de Dados, que visa implantar e manter sistemas de ML em produção de maneira confiável e eficiente.

Prática	DevOps	Engenharia de Dados	ML Ops
Controle de versões	Versionamento de código	Versionamento de código Linhagem de dados	Versionamento de código + dados + modelos (conectados)
Pipeline	n/a	Pipeline de dados/ETL	Pipeline ML de treinamento, Pipeline ML de predição
Validação de comportamento	Testes unitários	Testes unitários	Validação de modelo
CI/CD	Implanta código em produção	Implanta código do pipeline de dados	Implanta código dos pipelines de ML
Validação de dados	n/a	Validação de negócio e formato	Validação estatística
Monitoramento	Baseado em SLOs	Baseado em SLOs	SLOs + monitoramento diferencial e estatístico, em fatias

https://medium.com/@cbreuel/ml-ops-machine-learning-como-disciplina-de-engenharia-a058770b93dc

Como uma diferença fundamental em relação ao modelo de DevOps observamos que em ML também precisamos fazer o deploy adicional de Dados e Modelos para funcionamento e Validação da solução preditiva.

FERRAMENTAS ENVOLVIDAS ML - OPS

DOCKER

https://stack.desenvolvedor.expert/appendix/docker/oquee.html

Docker é uma plataforma aberta, criada com o objetivo de facilitar o desenvolvimento, a implantação e a execução de aplicações em ambientes isolados. Foi desenhada especialmente para disponibilizar uma aplicação da forma mais rápida possível – com a possibilidade de escalonamento horizontal quase que imediato.

Container Based Implementation

Virtual Machine Implementation

O Docker se diferencia por trabalhar com **CONTEINERS** que podem ser entendidos como mini-máquinas virtuais - muito leves e simples que podem ser instanciadas com diferentes imagens (bases de dados, sistemas operacionais, etc). Por serem leves e diretamente conectadas ao kernel do sistema operacional elas podem rapidamente ser criadas e destruídas, otimizando a utilização do hardware.

IMAGENS DOCKER

https://hub.docker.com/search?image_filter=official&type=image

KUBERNETES

https://www.concrete.com.br/2018/02/22/tudo-o-que-voce-precisa-saber-sobre-kubernetes/

O Kubernetes é uma ferramenta que faz o **Gerenciamento de Conteiners** gerados por aplicações com o Docker.

https://www.slideshare.net/renatogroff1/docker-kubernetes-orquestrando-containers-e-escalando-rapidamente-suas-aplicaes-devops-professionals-setembro2018

Docker + Kubernetes: Orquestrando containers e escalando rapidamente suas aplicações - DevOps Professionals - Setembro-2018

KUBEFLOW

Kubeflow Pipelines

Kubeflow Pipelines is a platform for building and deploying portable, scalable machine learning (ML) workflows based on Docker containers.

- End-to-end orchestration: enabling and simplifying the orchestration of machine learning pipelines.
- Easy experimentation: making it easy for you to try numerous ideas and techniques and manage your various trials/experiments.
- Easy re-use: enabling you to re-use components and pipelines to quickly create end-to-end solutions without having to rebuild each time.

Kubeflow Pipelines

Two key takeaways : A Pipeline and a Pipeline Component

A *pipeline* is a description of a machine learning (ML) workflow, including all of the components of the workflow and how they work together.

[Sample] ML - TFX - Taxi Tip Prediction Model Trainer Source validation preprocess training analysis prediction deploy confusion-matrix roc

Kubeflow Pipelines

Each pipeline component is a container that contains a program to perform the task required for that particular step of your workflow.

MODELOS NA CLOUD

On Premise x laaS x PaaS x SaaS

https://www.ibm.com/br-pt/cloud/learn/iaas-paas-saas

Amazon SageMaker

JUPYTER NOTEBOOKS EM PRODUÇÃO

JUPYTER NOTEBOOKS EM PRODUÇÃO!

https://youtu.be/XJAx9dS0k7I

NBCONVERT

https://pypi.org/project/nbconvert/

Notebook Pipelines using NBConvert

Jupyter NBConvert enables executing and converting notebooks to different file formats.

Advantages

- Support notebook chaining
- Convert results to immutable formats
 Limitations
- No support for parameters

Jupyter NBConvert

https://nbconvert.readthedocs.io/en/latest/

\$ pip install nbconvert

\$ jupyter nbconvert -- to html -- execute overview_with_run.ipynb

[NbConvertApp] Converting notebook overview_with_run.ipynb to html

[NbConvertApp] Executing notebook with kernel; python3

[NbConvertApp] Writing 300558 bytes to overview_with_run.html

\$ open overview_with_run.html

Papermill

Papermill is an open source tool contributed by Netflix which enables parameterizing, executing, and analyzing Jupyter Notebooks.

Papermill lets you:

- Parameterize notebooks
- Execute notebooks

DigitalHouse>

DATA SCIENCE

Machine Learning – Modelos em Produção