A. Find Minimum Operations

1 second, 256 megabytes

You are given two integers n and k.

In one operation, you can subtract any power of k from n. Formally, in one operation, you can replace n by $(n-k^x)$ for any non-negative integer x.

Find the minimum number of operations required to make n equal to 0.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The only line of each test case contains two integers n and k ($1 \leq n, k \leq 10^9$).

Output

For each test case, output the minimum number of operations on a new line.

```
input

6
5 2
3 5
16 4
100 3
6492 10
10 1

output

2
3
1
4
21
10
```

In the first test case, n=5 and k=2. We can perform the following sequence of operations:

- 1. Subtract $2^0=1$ from 5. The current value of n becomes 5-1=4. 2. Subtract $2^2=4$ from 4. The current value of n becomes 4-4=0.
- It can be shown that there is no way to make n equal to 0 in less than 2 operations. Thus, 2 is the answer.

In the second test case, n=3 and k=5. We can perform the following sequence of operations:

- 1. Subtract $5^0=1$ from 3. The current value of n becomes 3-1=2. 2. Subtract $5^0=1$ from 2. The current value of n becomes 2-1=1.
- 3. Subtract $\mathbf{5}^0=1$ from 1. The current value of n becomes 1-1=0.

It can be shown that there is no way to make n equal to 0 in less than 3 operations. Thus, 3 is the answer.

B. Brightness Begins

1 second, 256 megabytes

Imagine you have n light bulbs numbered $1,2,\ldots,n$. Initially, all bulbs are on. To *flip* the state of a bulb means to turn it off if it used to be on, and to turn it on otherwise.

Next, you do the following:

• for each $i=1,2,\ldots,n$, flip the state of all bulbs j such that j is divisible by i^{\dagger} .

After performing all operations, there will be several bulbs that are still on. Your goal is to make this number exactly k.

Find the smallest suitable n such that after performing the operations there will be exactly k bulbs on. We can show that an answer always exists.

 † An integer x is divisible by y if there exists an integer z such that $x=y\cdot z$.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The only line of each test case contains a single integer k ($1 \leq k \leq 10^{18}$).

Output

For each test case, output n — the minimum number of bulbs.

```
input

3
1
3
8

output

2
5
11
```

In the first test case, the minimum number of bulbs is 2. Let's denote the state of all bulbs with an array, where 1 corresponds to a turned on bulb, and 0 corresponds to a turned off bulb. Initially, the array is [1,1].

- After performing the operation with i=1, the array becomes [0,0].
- After performing the operation with i=2, the array becomes [0,1].

In the end, there are k=1 bulbs on. We can also show that the answer cannot be less than 2.

In the second test case, the minimum number of bulbs is 5. Initially, the array is [1,1,1,1,1].

- After performing the operation with i=1, the array becomes [0,0,0,0,0].
- After performing the operation with i=2, the array becomes [0,1,0,1,0] .
- After performing the operation with i=3, the array becomes [0,1,1,1,0].
- After performing the operation with i=4, the array becomes [0,1,1,0,0].
- After performing the operation with i=5, the array becomes [0,1,1,0,1].

In the end, there are k=3 bulbs on. We can also show that the answer cannot be smaller than 5.

The problem statement has recently been changed. View the changes.

×

C. Bitwise Balancing

2 seconds, 256 megabytes

You are given three non-negative integers b, c, and d.

Please find a non-negative integer $a \in [0,2^{61}]$ such that $(a \mid b) - (a \& c) = d$, where \mid and & denote the bitwise OR operation and the bitwise AND operation, respectively.

If such an a exists, print its value. If there is no solution, print a single integer -1. If there are multiple solutions, print any of them.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^5$). The description of the test cases follows.

The only line of each test case contains three positive integers b, c, and d ($0 \le b, c, d \le 10^{18}$).

Output

For each test case, output the value of a, or -1 if there is no solution. Please note that a must be non-negative and cannot exceed 2^{61} .

input 3 2 2 2 4 2 6 10 2 14 output 0 -1 12

In the first test case, $(0 \, | \, 2) - (0 \, \& \, 2) = 2 - 0 = 2$. So, a = 0 is a correct answer

In the second test case, no value of a satisfies the equation.

In the third test case, $(12\,|\,10)-(12\,\&\,2)=14-0=14$. So, a=12 is a correct answer.

D. Connect the Dots

2 seconds, 512 megabytes

One fine evening, Alice sat down to play the classic game "Connect the Dots", but with a twist.

To play the game, Alice draws a straight line and marks n points on it, indexed from 1 to n. Initially, there are no arcs between the points, so they are all disjoint. After that, Alice performs m operations of the following type:

- She picks three integers a_i , d_i ($1 \le d_i \le 10$), and k_i .
- She selects points $a_i, a_i + d_i, a_i + 2d_i, a_i + 3d_i, \dots, a_i + k_i \cdot d_i$ and connects each pair of these points with arcs.

After performing all m operations, she wants to know the number of connected components † these points form. Please help her find this number

[†] Two points are said to be in one connected component if there is a path between them via several (possibly zero) arcs and other points.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^5$). The description of the test cases follows.

The first line of each test case contains two integers n and m ($1\leq n\leq 2\cdot 10^5, 1\leq m\leq 2\cdot 10^5$).

The i-th of the following m lines contains three integers $a_i,\,d_i,$ and k_i ($1\leq a_i\leq a_i+k_i\cdot d_i\leq n,\,1\leq d_i\leq 10,\,0\leq k_i\leq n).$

It is guaranteed that both the sum of n and the sum of m over all test cases do not exceed $2\cdot 10^5$.

Output

For each test case, output the number of connected components.

input	
3	
10 2	
1 2 4	
2 2 4	
100 1	
19 2 4	
100 3	
1 2 5	
7 2 6	
17 2 31	
output	
2	
96	
61	

In the first test case, there are n=10 points. The first operation joins the points 1,3,5,7, and 9. The second operation joins the points 2,4,6,8, and 10. There are thus two connected components: $\{1,3,5,7,9\}$ and $\{2,4,6,8,10\}$.

In the second test case, there are n=100 points. The only operation joins the points $19,\,21,\,23,\,25$, and 27. Now all of them form a single connected component of size 5. The other 95 points form single-point connected components. Thus, the answer is 1+95=96.

In the third test case, there are n=100 points. After the operations, all odd points from 1 to 79 will be in one connected component of size 40. The other 60 points form single-point connected components. Thus, the answer is 1+60=61.

E. Expected Power

4 seconds, 256 megabytes

You are given an array of n integers $a_1,a_2,\ldots,a_n.$ You are also given an array $p_1,p_2,\ldots,p_n.$

Let S denote the random **multiset** (i. e., it may contain equal elements) constructed as follows:

- Initially, S is empty.
- For each i from 1 to n, insert a_i into S with probability $\frac{p_i}{10^4}$. Note that each element is inserted independently.

Denote f(S) as the bitwise XOR of all elements of S. Please calculate the expected value of $(f(S))^2$. Output the answer modulo 10^9+7 .

Formally, let $M=10^9+7$. It can be shown that the answer can be expressed as an irreducible fraction $\frac{p}{q}$, where p and q are integers and $q\not\equiv 0\pmod M$. Output the integer equal to $p\cdot q^{-1}\mod M$. In other words, output such an integer x that $0\le x< M$ and $x\cdot q\equiv p\pmod M$.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The first line of each test case contains a single integer n ($1 \leq n \leq 2 \cdot 10^5$).

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($1 \leq a_i \leq 1023$).

The third line of each test case contains n integers p_1,p_2,\ldots,p_n ($1\leq p_i\leq 10^4$).

It is guaranteed that the sum of n over all test cases does not exceed $2\cdot 10^5$.

Output

For each test case, output the expected value of $(f(S))^2$, modulo $10^9 + 7$.

```
input

4
2
1 2
5000 5000
2
1 1
1000 2000
6
343 624 675 451 902 820
6536 5326 7648 2165 9430 5428
1
1
10000

output

500000007
820000006
280120536
```

In the first test case, a=[1,2] and each element is inserted into S with probability $rac{1}{2}$, since $p_1=p_2=5000$ and $rac{p_i}{10^4}=rac{1}{2}$. Thus, there are 4outcomes for S, each happening with the same probability of $\frac{1}{4}$:

- $S=\varnothing$. In this case, f(S)=0, $(f(S))^2=0$.
- $S = \{1\}$. In this case, f(S) = 1, $(f(S))^2 = 1$.
- ullet $S=\{2\}.$ In this case, f(S)=2, $(f(S))^2=4$.
- $S = \{1,2\}$. In this case, $f(S) = 1 \oplus 2 = 3$, $(f(S))^2 = 9$.

Hence, the answer is

$$0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} + 9 \cdot \frac{1}{4} = \frac{14}{4} = \frac{7}{2} \equiv 500\,000\,007 \text{ (mod } 10^9 + 7)$$

In the second test case, a=[1,1], a_1 is inserted into S with probability 0.1, while a_2 is inserted into S with probability 0.2. There are 3 outcomes for S:

- ullet S=arnothing . In this case, f(S)=0, $(f(S))^2=0$. This happens with probability $(1-0.1) \cdot (1-0.2) = 0.72$.
- $S=\{1\}$. In this case, f(S)=1, $(f(S))^2=1$. This happens with probability $(1-0.1) \cdot 0.2 + 0.1 \cdot (1-0.2) = 0.26$.
- $S=\{1,1\}$. In this case, f(S)=0, $(f(S))^2=0$. This happens with probability $0.1 \cdot 0.2 = 0.02$.

Hence, the answer is

$$0 \cdot 0.72 + 1 \cdot 0.26 + 0 \cdot 0.02 = 0.26 = \frac{26}{100} \equiv 820\,000\,006 \pmod{10^9}$$
 The final number of leaves is $1+2+2+3+2+4=14$.

The problem statement has recently been changed. View the changes.

F. Count Leaves

4 seconds, 256 megabytes

Let n and d be positive integers. We build the *the divisor tree* $T_{n,d}$ as follows:

- The root of the tree is a node marked with number n. This is the 0-th laver of the tree
- For each i from 0 to d-1, for each vertex of the i-th layer, do the following. If the current vertex is marked with x, create its children and mark them with all possible distinct divisors † of x. These children will be in the (i+1)-st layer.
- The vertices on the d-th layer are the leaves of the tree.

For example, $T_{6,2}$ (the divisor tree for n=6 and d=2) looks like this:

Define f(n,d) as the number of leaves in $T_{n,d}$.

Given integers n, k, and d, please compute $\sum_{i=1}^{n} f(i^k, d)$, modulo $10^9 + 7$.

 † In this problem, we say that an integer y is a divisor of x if $y \geq 1$ and there exists an integer z such that $x = y \cdot z$.

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The only line of each test case contains three integers n, k, and d ($1 \le n \le 10^9$, $1 \le k, d \le 10^5$).

It is guaranteed that the sum of n over all test cases does not exceed 10^{9} .

Output

×

For each test case, output $\sum_{i=1}^{n} f(i^k,d)$, modulo 10^9+7 .

```
input
6 1 1
1 3 3
10 1 2
output
53
```

In the first test case, n=6, k=1, and d=1. Thus, we need to find the total number of leaves in the divisor trees $T_{1,1}$, $T_{2,1}$, $T_{3,1}$, $T_{4,1}$, $T_{5,1}$, $T_{6,1}$.

- $T_{1,1}$ has only one leaf, which is marked with 1.
- T_{2.1} has two leaves, marked with 1 and 2.
- T_{3.1} has two leaves, marked with 1 and 3.
- $T_{4,1}$ has three leaves, marked with 1, 2, and 4.
- $T_{5,1}$ has two leaves, marked with 1 and 5.
- $T_{6,1}$ has four leaves, marked with $1,\,2,\,3$, and 6.

In the second test case, $n=1,\,k=3,\,d=3$. Thus, we need to find the number of leaves in $T_{1,3}$, because $1^3=1$. This tree has only one leaf, so <u>Codeforces</u> (c) Copyright 2010-2024 Mike Mirzayanov The only programming contests Web 2.0 platform