

PowerFactory 2021

Technical Reference

Common Result Variables for Terminals and Elements

RMS Simulation

Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88

info@digsilent.de

Please visit our homepage at: https://www.digsilent.de

Copyright © 2020 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

December 1, 2020 PowerFactory 2021 Revision 1

Contents

1	Gen	eral De	escription	1
	1.1	Termir	nals	1
	1.2	Eleme	ents (single and multiple port)	1
		1.2.1	Currents, Voltages and Powers	1
		1.2.2	Bus Results	2
2	Bala	anced I	RMS Simulation	3
	2.1	Result	t variables for terminals	3
		2.1.1	Voltage related variables for terminals	3
		2.1.2	Short circuit variables for terminals	4
		2.1.3	Frequency related variables for terminals	5
	2.2	Result	t variables for elements	6
		2.2.1	Voltage related variables for elements	6
		2.2.2	Current related variables for elements	7
		2.2.3	Power related variables for elements	9
		2.2.4	Miscellaneous variables for elements	10
3	Unb	alance	d RMS simulation	11
	3.1	Result	t variables for terminals	11
		3.1.1	Phase voltage related variables for terminals	11
		3.1.2	Line to line voltage related variables for terminals	13
		3.1.3	Line to neutral voltage related variables for terminals	14
		3.1.4	Short circuit variables for terminals	15
		3.1.5	0,1,2 sequence and neutral voltage related variables for terminals	17
		3.1.6	Neutral short circuit current related variables for terminals	20
		3.1.7	Frequency related variables for terminals	21
	3.2	Result	t variables for elements	21
		3.2.1	Voltage related variables for elements	21
		3.2.2	Current related variables for elements	22
		3.2.3	Miscellaneous variables per phase for elements	25

Contents

3.2.4	0,1,2 sequence voltage related variables for elements	25
3.2.5	0,1,2 sequence current related variables for elements	27
3.2.6	0,1,2 sequence power related variables for elements	31
3.2.7	Miscellaneous variables (min/max values) for elements	32

1 General Description

This document describes the common variables available for monitoring in *PowerFactory* for the terminals and for the single- and multiple-port elements (primary equipment). These are the parameters which are not specific to a certain element, that can be selected to be displayed in the result boxes, in the flexible data page of the elements or can be plotted in the virtual instruments.

Variables starting with capital letters are expressed in absolute values and variables starting with a lower case letters are expressed in per unit values. However for the RMS simulation there are few exceptions for the frequency related variables.

1.1 Terminals

For the terminals ($\mathit{ElmTerm}$) only the set $\mathit{Currents}$, $\mathit{Voltages}$ and Powers displays common result variables that can be monitored after a calculation. The identification name of a result variable contains the letter m to denominate that it is a common monitoring variable (in opposite to c which stands for calculation variable), a semicolon and the name of the variable. For example, the result variable $\mathit{Voltage}$, $\mathit{Magnitude}$ has the following identification name m:u.

For the unbalanced representation, the phase result variables get a slightly different identification name where the name of the phase is added. For example: m:u:A.

1.2 Elements (single and multiple port)

For the single- and multiple-port elements (ex.: *ElmSym*, *ElmLne*, *ElmTr3*, etc.), there are two sets containing common result variables that can be monitored after a calculation:

- · Currents, Voltages and Powers
- · Bus Results

1.2.1 Currents, Voltages and Powers

The identification name of the variables available in this set is similar to the one used for the terminals with the difference that for the elements also the connection point name is added.

For example $m:i1:_LOCALBUS$ is the magnitude of the positive-sequence current of the connected element. If the result variable is shown for a certain type of an element, the real connection point name is used. For example m:i1:bushv is the magnitude of the positive-sequence current flowing through the HV connection of a transformer and m:i1:busi is the magnitude of the positive-sequence current flowing through the connection busi of a line.

For the unbalanced representation, the phase result variables get a slightly different identification name where the name of the phase is added. For example: m:i1:LOCALBUS:A, m:i1:bushv:A, m:I:bus1:A.

The result variables available for the elements in p.u. values are based on the element (not on the terminal). Due to this, the same variable for a port element and a terminal may have a different value. For example, if the nominal voltage of an element differs from the nominal voltage of a terminal, the positive sequence voltage magnitude m:u will have a different value compared to m:u of a terminal.

1.2.2 Bus Results

The result variables available in the *Bus Results* set for the terminals are actually the variables from the connected terminal i.e. they are the same as the variables available in the *Currents*, *Voltages and Powers* set from the terminals.

There are two differences regarding the identification name:

- the letter 'n' is used to denominate that this is a node (terminal) variable
- the connection-point name is also used

The result variables in p.u. values from this set are based on the terminal. Please note that if for example for a certain element n:u1:bus1 and m:u1:bus1 are displayed, the result will be different if the nominal voltage of the element differs from the nominal voltage of the terminal.

2 Balanced RMS Simulation

The balanced RMS simulation uses positive sequence network representation which is valid for balanced symmetrical networks. The resulting quantities are positive sequence quantities.

For DC terminals and elements, the variables displaying imaginary values are zero.

2.1 Result variables for terminals

As described in Section 1.2.2, the result variables from the *Bus Results* set from the port elements are equivalent to the result variables from the *Currents, Voltages and Currents* set for the terminals.

The result variables available for terminals after a balanced RMS simulation are presented in the following sub chapters.

2.1.1 Voltage related variables for terminals

The voltage related variables for the terminals are all based on the positive-sequence, phase to ground complex voltage \underline{u} resulting from the balanced RMS simulation. The relationship between the absolute and per unit value voltage is $\underline{U} = \underline{u} \cdot U_{base}$ where the base voltage is $U_{base} = uknom/\sqrt{3}$ where uknom is the nominal line to line voltage of the terminal.

Name	Unit	Description
u1	p.u.	Positive-Sequence Voltage, Magnitude
u1r	p.u.	Positive-Sequence Voltage, Real-Part
u1i	p.u.	Positive-Sequence Voltage, Imaginary-Part
u	p.u.	Voltage, Magnitude
ur	p.u.	Voltage, Real Part
ui	p.u.	Voltage, Imaginary Part
U	kV	Line-Ground Voltage, Magnitude
Ul	kV	Line-Line Voltage, Magnitude
phiu	deg	Voltage, Angle
phiurel	deg	Voltage, Relative Angle
u1pc	%	Voltage, Magnitude
upc	%	Voltage, Magnitude
du	%	Voltage Deviation

Table 2.1: Voltage related variables for terminals

The result variables from Table 2.1 are calculated as follows:

• $\mathit{u}1$ is obtained as the magnitude of the complex voltage $\underline{\mathit{u}}$ as:

$$u1 = \sqrt{\underline{u} \cdot r^2 + \underline{u} \cdot i^2}$$

• u1r is obtained from the complex voltage \underline{u} as:

$$u1r=\underline{u}.r$$

• *u*1*i* is obtained from the complex voltage *u* as:

$$u1i = u.i$$

• u is equal to the positive sequence voltage magnitude:

$$u = u1$$

• ur is obtained as:

$$ur = u1r$$

• ui is obtained as:

$$ui = u1i$$

• *U* is obtained as:

$$U = u \cdot uknom/\sqrt{3}$$

where *uknom* is the nominal voltage of the terminal.

• *Ul* is obtained as:

$$Ul = u \cdot uknom$$

• phiu is obtained from the complex voltage \underline{u} as:

$$phiu = \arctan\left(\frac{\underline{u}.i}{\underline{u}.r}\right) \cdot \frac{180}{\pi}$$

• phiurel is obtained using the Initial Angle of Bus Voltage phiini basic data parameter as:

$$phiurel = phiu - phiini \cdot \frac{180}{\pi}$$

• u1pc is obtained as:

$$u1pc = u \cdot 100$$

• *upc* is obtained as:

$$upc = u \cdot 100$$

• *du* is obtained as:

$$du = upc - 100$$

2.1.2 Short circuit variables for terminals

If a short circuit event is defined at the terminal, the short circuit current $\underline{I_{shc}}$ can be monitored by these variables.

Table 2.2: Short circuit variables for terminals

Name	Unit	Description
Ishc	kA	Short-Circuit Current, magnitude
ishc	p.u.	Short-Circuit Current, magnitude
ishcr	p.u.	Short-Circuit Current, real
ishci	p.u.	Short-Circuit Current, imag

The result variables from Table 2.2 are calculated as follows:

• *Ishc* is the magnitude of the short circuit current at the terminal flowing through the short circuit impedance:

$$Ishc = \sqrt{\underline{I_{shc}}.r^2 + \underline{I_{shc}}.i^2}$$

• ishc is obtained as:

$$ishc = \frac{Ishc}{I_{nom_1MVA}}$$

where $I_{nom_1MVA} = \frac{1}{\sqrt{3} \cdot uknom}$ is the nominal current for 1MVA and uknom is the nominal voltage of the connected terminal.

ishcr is obtained as:

$$ishcr = \frac{\underline{I_{shc}}.r}{I_{nom_1MVA}}$$

ishci is obtained as:

$$ishci = \frac{\underline{I_{shc}}.i}{I_{nom.1MVA}}$$

2.1.3 Frequency related variables for terminals

Table 2.3: Frequency related variables for terminals

Name	Unit	Description
frnom	Hz	Nominal Frequency
fe	p.u.	Electrical Frequency
dfedt	1/s	Derivative of Electrical Frequency
fehz	Hz	Electrical Frequency
dfehz	Hz	Deviation of the Electrical Frequency
frdev	Hz	Average frequency

The result variables from Table 2.3 are calculated as follows:

- frnom is the nominal frequency defined in the Grid (ElmNet).
- fe is calculated by measuring the phase variation between the past and present positive sequence voltage phasors with respect to the integration step size.
- dfedt is calculated using the past and present frequency values and the integration step size.
- fehz is calculated as:

$$fehz = fe \cdot frnom$$

• *dfehz* is calculated as:

$$dfehz = fehz - frnom$$

• frdev is the average frequency value calculated using all terminals.

2.2 Result variables for elements

The result variables available for single- and multiple-port elements after a balanced RMS simulation are presented in the following sub chapters.

2.2.1 Voltage related variables for elements

Similar as for the voltage related variables for the terminals, these variables are calculated from the same positive-sequence, phase to ground complex voltage \underline{u} resulting from the balanced RMS simulation.

For the element based variables, the relationship between the absolute and per unit value voltage is $\underline{U} = \underline{u} \cdot U_{base}$ where the base voltage is $U_{base} = U_{nom_el}/\sqrt{3}$ where U_{nom_el} is the nominal line to line voltage of the element. Due to the change in base, the per unit values are multiplied with the factor $uknom/U_{nom_el}$.

Name	Unit	Description
u1	p.u.	Positive-Sequence-Voltage, Magnitude
u1r	p.u.	Positive-Sequence Voltage, Real-Part
u1i	p.u.	Positive-Sequence Voltage, Imaginary-Part
phiu1	deg	Positive-Sequence-Voltage, Angle
u	p.u.	Voltage, Magnitude
ur	p.u.	Voltage, Real Part
ui	p.u.	Voltage, Imaginary Part
U1	kV	Line-Ground Positive-Sequence-Voltage, Magnitude
U1l	kV	Line-Line Positive-Sequence-Voltage, Magnitude

Table 2.4: Voltage related variables for elements

The result variables from Table 2.4 are calculated as follows:

• u1 is obtained from the complex voltage \underline{u} as:

$$u1 = \sqrt{\underline{u}.r^2 + \underline{u}.i^2} \cdot \frac{uknom}{U_{nom.el}}$$

where uknom is the nominal voltage of the connected terminal and U_{nom_el} is the nominal voltage of the element.

• u1r is obtained from the complex voltage \underline{u} as:

$$u1r = \underline{u}.r \cdot \frac{uknom}{U_{nom_el}}$$

• u1i is obtained from the complex voltage \underline{u} as:

$$u1i = \underline{u}.i \cdot \frac{uknom}{U_{nom,el}}$$

• phiu1 is obtained from the complex voltage \underline{u} as:

$$phiu = \arctan\left(\frac{\underline{u}.i}{\underline{u}.r}\right) \cdot \frac{180}{\pi}$$

• phiurel is obtained using the Initial Angle of Bus Voltage phiini basic data parameter as:

$$phiurel = phiu - phiini \cdot \frac{180}{\pi}$$

ullet u is equal to the positive sequence voltage magnitude:

$$u = u1$$

• ur is obtained as:

$$ur = u1r$$

• ui is obtained as:

$$ui = u1i$$

• U1 is obtained as:

$$U1 = u \cdot U_{nom\ el} / \sqrt{3}$$

• *U*1*l* is obtained as:

$$U1l = u \cdot U_{nom_el}$$

2.2.2 Current related variables for elements

The current related variables for the elements are all based on the positive-sequence complex current resulting from the balanced RMS simulation. The relationship between the absolute and per unit value current is $\underline{I} = \underline{i} \cdot I_{nom_el}$ where $I_{nom_el} = \frac{MVA_{el}}{\sqrt{3} \cdot U_{nom_el}}$ is the nominal current of the element.

Table 2.5: Current related variables for elements

Name	Unit	Description
I1	kA	Positive-Sequence Current, Magnitude
phii1	deg	Positive-Sequence Current, Angle
I	kA	Current, Magnitude
phii	deg	Current, Angle
i1	p.u.	Positive-Sequence Current, Magnitude
i1r	p.u.	Positive-Sequence Current, Real Part
i1i	p.u.	Positive-Sequence Current, Imaginary Part
$\mid i \mid$	p.u.	Current, Magnitude
ir	p.u.	Current, Real Part
ii	p.u.	Current, Imaginary Part
i1P	p.u.	Positive-Sequence Active Current
i1Q	p.u.	Positive-Sequence Reactive Current
I1P	kA	Positive-Sequence Active Current
I1Q	kA	Positive-Sequence Reactive Current
phiui	deg	Angle between Voltage and Current
phiu1i1	deg	Angle between Voltage and Current in positive sequence system
inet	p.u.	Current, Magnitude, referred to network

The result variables from Table 2.5 are calculated as follows:

• I1 is obtained as the amplitude of the complex current \underline{I} :

$$I1 = \sqrt{\underline{I}.r^2 + \underline{I}.i^2}$$

• phii1 is obtained from the complex voltage \underline{i}_{net} as:

$$phii1 = \arctan\left(\frac{\underline{I}.i}{\underline{I}.r}\right) \cdot \frac{180}{\pi}$$

• *I* is equivalent to the positive sequence current magnitude:

$$I = I1$$

• phii is obtained as:

$$phii = phii1$$

• i1 is obtained as:

$$i1 = \frac{I}{I_{nom_el}}$$

where $I_{nom.el}$ is the nominal current of the element.

• *i*1*r* is obtained as:

$$i1r = \frac{\underline{I}.r}{I_{nom\ el}}$$

• *i*1*i* is obtained as:

$$i1i = \frac{\underline{I}.i}{I_{nom_el}}$$

i is obtained as:

$$i = i1$$

• ir is obtained as:

$$ir = i1r$$

• *ii* is obtained as:

$$ii = i1i$$

• i1P is obtained as:

$$i1P = i1 \cdot cosphi$$

where cosphi is the power factor of the element.

• i1Q is obtained as:

$$i1Q = i1 \cdot \sin(\phi)$$

where ϕ is the angle between the active and reactive power and can be also obtained as: $\phi = \arccos(cosphi)$.

• I1P is obtained as:

$$I1P = I1 \cdot cosphi$$

where cosphi is the power factor of the element.

• *I1Q* is obtained as:

$$I1Q = I1 \cdot \sin(\phi)$$

where ϕ is the angle between the active and reactive power and can be also obtained as: $\phi = \arccos(cosphi)$.

· phiui is obtained as:

$$phiui = phiu - phii$$

• phiu1i1 is obtained as:

$$phiu1i1 = phiu1 - phii1$$

• *inet* is obtained as:

$$inet = \frac{I}{I_{nom_1MVA}}$$

where $I_{nom_1MVA} = \frac{1}{\sqrt{3} \cdot uknom}$ is the nominal current for 1MVA and uknom is the nominal voltage of the connected terminal.

2.2.3 Power related variables for elements

The apparent power is calculated as $\underline{S} = 3 \cdot \underline{U}_1 \cdot \underline{I}^*$ where \underline{U}_1 is the positive sequence voltage.

Table 2.6: Power related variables for elements

Name	Unit	Description
S	MVA	Apparent Power
P	MW	Active Power
Q	Mvar	Reactive Power
cosphi		Power Factor
tanphi		tan(phi)
Psum	MW	Total Active Power
Qsum	Mvar	Total Reactive Power
Ssum	MVA	Total Apparent Power
cosphisum		Total Power Factor
tanphisum		Total tan(phi)
Spu	MVA/p.u.	Apparent Power per p.u. Voltage

The result variables from Table 2.6 are calculated as follows:

• S is obtained as the magnitude of the apparent power:

$$S = \sqrt{\underline{S}.r^2 + \underline{S}.i^2}$$

• *P* is obtained as:

$$P = S.r$$

• *Q* is obtained as:

$$Q = S.i$$

cosphi is obtained as:

$$cosphi = cos\left(\arctan\left(\frac{Q}{P}\right)\right) = \frac{P}{S}$$

• tanphi is obtained as:

$$tanphi = \frac{Q}{P}$$

• *Psum* is equal to the magnitude of the active power:

$$Psum = P$$

• *Qsum* is equal to the magnitude of the reactive power:

$$Qsum = Q$$

• *Ssum* is equal to the magnitude of the apparent power:

$$Ssum = S$$

• cosphisum is obtained as:

$$cosphisum = cosphi$$

• tanphisum is obtained as:

$$tanphisum = tanphi$$

• Spu is obtained as:

$$Spu = \sqrt{3} \cdot uknom \cdot I$$

2.2.4 Miscellaneous variables for elements

Table 2.7: Miscellaneous variables for elements

Name	Unit	Description
Tfct	s	Fault Clearing Time
Brkload	%	Breaker Loading

The result variables from Table 2.7 are calculated as follows:

- Tfct gives the fault clearing time of a fuse or a relay located in the local cubicle. If the fuse/relay model is not triggered with the current, a default value of 9999,999s is used.
- Brkload is obtained as:

$$Brkload = \frac{I}{BrkInom} \cdot 100$$

where BrkInom is the rated current of a switch (input parameter Inom in TypSwitch).

3 Unbalanced RMS simulation

The balanced RMS simulations uses multi-phase network representation which is valid for unbalanced networks. The resulting quantities are phase quantities.

For DC terminals and elements, the variables displaying imaginary values are zero.

3.1 Result variables for terminals

As described in Section 1.2.2, the result variables from the *Bus Results* set from the port elements are equivalent to the result variables from the *Currents, Voltages and Currents* set for the terminals.

The result variables available for terminals after an unbalanced RMS simulation are presented in the following sub chapters.

3.1.1 Phase voltage related variables for terminals

The voltage related variables for the terminals are all based on the phase to ground complex voltages \underline{u}_A , \underline{u}_B and \underline{u}_C resulting from the unbalanced RMS simulation. The relationship between the absolute and per unit value voltage is $\underline{U}_A = \underline{u}_A \cdot U_{base}$ where the base voltage is $U_{base} = uknom/\sqrt{3}$ where uknom is the nominal line to line voltage of the terminal.

Name	Unit	Description
ur:A	p.u.	Line-Ground Voltage, Real Part
ur:B	p.u.	Line-Ground Voltage, Real Part
ur:C	p.u.	Line-Ground Voltage, Real Part
ui:A	p.u.	Line-Ground Voltage, Real Part
ui:B	p.u.	Line-Ground Voltage, Real Part
ui:C	p.u.	Line-Ground Voltage, Real Part
u:A	p.u.	Line-Ground Voltage, Magnitude
u:B	p.u.	Line-Ground Voltage, Magnitude
u:C	p.u.	Line-Ground Voltage, Magnitude
upc:A	%	Line-Ground Voltage, Magnitude
upc:B	%	Line-Ground Voltage, Magnitude
upc:C	%	Line-Ground Voltage, Magnitude
U:A	kV	Line-Ground Voltage, Magnitude
U:B	kV	Line-Ground Voltage, Magnitude
U:C	kV	Line-Ground Voltage, Magnitude
phiu:A	deg	Line-Ground Voltage, Angle
phiu:B	deg	Line-Ground Voltage, Angle
phiu:C	dea	Line-Ground Voltage, Angle

Table 3.1: Phase voltage related variables for terminals

The result variables from Table 3.1 are calculated as follows:

• ur:A, ur:B, ur:C are the real part quantities of the resulting complex line to ground volt-

ages:

$$ur:A = \underline{u}_A.r$$

 $ur:B = \underline{u}_B.r$
 $ur:C = \underline{u}_C.r$

• ui:A, ui:B, ui:C are the imaginary part quantities of the resulting complex line to ground voltages:

$$\begin{aligned} ui:&A=\underline{u}_{A}.i\\ ui:&B=\underline{u}_{B}.i\\ ui:&C=\underline{u}_{C}.i \end{aligned}$$

• u:A, u:B, u:C are the magnitudes of the resulting line-ground voltages:

$$u:A = \sqrt{ur:A^2 + ui:A^2}$$

$$u:B = \sqrt{ur:B^2 + ui:B^2}$$

$$u:C = \sqrt{ur:C^2 + ui:C^2}$$

• upc:A, upc:B, upc:C are obtained as:

$$upc:A = u:A \cdot 100$$

 $upc:B = u:B \cdot 100$
 $upc:C = u:C \cdot 100$

• *U:A*, *U:B*, *U:C* are obtained as: For AC terminals:

$$U:A = u:A \cdot uknom/\sqrt{3}$$

$$U:B = u:B \cdot uknom/\sqrt{3}$$

$$U:C = u:C \cdot uknom/\sqrt{3}$$

For AC/BI terminals:

$$U:A = u:A \cdot uknom/2$$

 $U:B = u:B \cdot uknom/2$
 $U:C = u:C \cdot uknom/2$

where uknom is the nominal voltage of the terminal.

• phiu:A, phiu:B, phiu:C are obtained as:

$$\begin{aligned} phiu:A &= \arctan\left(\frac{ui:A}{ur:A}\right) \cdot \frac{180}{\pi} \\ phiu:B &= \arctan\left(\frac{ui:B}{ur:B}\right) \cdot \frac{180}{\pi} \\ phiu:C &= \arctan\left(\frac{ui:C}{ur:C}\right) \cdot \frac{180}{\pi} \end{aligned}$$

3.1.2 Line to line voltage related variables for terminals

The line to line voltages are calculated as the difference between the two phases:

For 3-phase and 2-phase (AC) terminals (120°):

$$\underline{u}_{lA} = (\underline{u}_A - \underline{u}_B) / \sqrt{3}$$

$$\underline{u}_{lB} = (\underline{u}_B - \underline{u}_C) / \sqrt{3}$$

$$\underline{u}_{lC} = (\underline{u}_C - \underline{u}_A) / \sqrt{3}$$

For BI-phase terminals (180°):

$$\underline{u}_{lA} = (\underline{u}_A - \underline{u}_B) / 2$$

$$\underline{u}_{lB} = (\underline{u}_B - \underline{u}_C) / 2$$

$$\underline{u}_{lC} = (\underline{u}_C - \underline{u}_A) / 2$$

For a system containing two phases only the corresponding voltage phase difference is available $(\underline{u}_{lA} \text{ or } \underline{u}_{lB} \text{ or } \underline{u}_{lC})$.

For single phase systems, the line to line voltages are not available (cannot be calculated).

Table 3.2: Line to line voltage related variables for terminals

Name	Unit	Description
ul:A	p.u.	Line to Line Voltage, Magnitude
ul:B	p.u.	Line to Line Voltage, Magnitude
ul:C	p.u.	Line to Line Voltage, Magnitude
ulpc:A	%	Line to Line Voltage, Magnitude
ulpc:B	%	Line to Line Voltage, Magnitude
ulpc:C	%	Line to Line Voltage, Magnitude
Ul:A	kV	Line to Line Voltage, Magnitude
Ul:B	kV	Line to Line Voltage, Magnitude
Ul:C	kV	Line to Line Voltage, Magnitude
phiul:A	deg	Line to Line Voltage, Angle
phiul:B	deg	Line to Line Voltage, Angle
phiul:C	deg	Line to Line Voltage, Angle

The result variables from Table 3.2 are calculated as follows:

• ul:A, ul:B, ul:C are the magnitudes of the line to line voltages:

$$ul:A = \sqrt{\underline{u}_{lA} \cdot r^2 + \underline{u}_{lA} \cdot i^2}$$

$$ul:B = \sqrt{\underline{u}_{lB} \cdot r^2 + \underline{u}_{lB} \cdot i^2}$$

$$ul:C = \sqrt{\underline{u}_{lC} \cdot r^2 + \underline{u}_{lC} \cdot i^2}$$

• *ulpc:A*, *ulpc:B*, *ulpc:C* are obtained as:

$$ulpc:A = ul:A \cdot 100$$

 $ulpc:B = ul:B \cdot 100$
 $ulpc:C = ul:C \cdot 100$

• Ul:A, Ul:B, Ul:C are obtained as:

$$Ul:A = ul:A \cdot uknom$$

 $Ul:B = ul:B \cdot uknom$
 $Ul:C = ul:C \cdot uknom$

where uknom is the nominal voltage of the terminal.

• phiul:A, phiul:B, phiul:C are obtained as:

$$\begin{split} phiul: & A = \arctan\left(\frac{\underline{u}_{lA}.i}{\underline{u}_{lA}.r}\right) \cdot \frac{180}{\pi} \\ phiul: & B = \arctan\left(\frac{\underline{u}_{lB}.i}{\underline{u}_{lB}.r}\right) \cdot \frac{180}{\pi} \\ phiul: & C = \arctan\left(\frac{\underline{u}_{lC}.i}{\underline{u}_{lC}.r}\right) \cdot \frac{180}{\pi} \end{split}$$

3.1.3 Line to neutral voltage related variables for terminals

The line to neutral voltages are calculated as the difference between the phase and neutral complex voltages:

$$\underline{u}_{lnA} = \underline{u}_A - \underline{u}_n$$

$$\underline{u}_{lnB} = \underline{u}_B - \underline{u}_n$$

$$\underline{u}_{lnC} = \underline{u}_C - \underline{u}_n$$

Table 3.3: Line to neutral voltage related variables for terminals

Name	Unit	Description
uln:A	p.u.	Line-Neutral Voltage, Magnitude
uln:B	p.u.	Line-Neutral Voltage, Magnitude
uln:C	p.u.	Line-Neutral Voltage, Magnitude
Uln:A	kV	Line-Neutral Voltage, Magnitude
Uln:B	kV	Line-Neutral Voltage, Magnitude
Uln:C	kV	Line-Neutral Voltage, Magnitude
phiuln:A	deg	Line-Neutral Voltage, Angle
phiuln:B	deg	Line-Neutral Voltage, Angle
phiuln:C	deg	Line-Neutral Voltage, Angle
upht:A	p.u.	Phase Technology dependent Voltage, Magnitude
upht:B	p.u.	Phase Technology dependent Voltage, Magnitude
upht:C	p.u.	Phase Technology dependent Voltage, Magnitude
Upht:A	kV	Phase Technology dependent Voltage, Magnitude
Upht: B	kV	Phase Technology dependent Voltage, Magnitude
Upht:C	kV	Phase Technology dependent Voltage, Magnitude

If no neutral connection exists the values of the variables from Table 3.3 are set to zero. If neutral connection exists, the result variables are calculated as follows:

• uln:A, uln:B, uln:C are the magnitudes of the line to neutral voltages:

$$uln:A = \sqrt{\underline{u}_{lnA}.r^2 + \underline{u}_{lnA}.i^2}$$
$$uln:B = \sqrt{\underline{u}_{lnB}.r^2 + \underline{u}_{lnB}.i^2}$$
$$uln:C = \sqrt{\underline{u}_{lnC}.r^2 + \underline{u}_{lnC}.i^2}$$

• *Uln:A*, *Uln:B*, *Uln:C* are obtained as: For AC terminals with neutral:

$$Uln:A = uln:A \cdot uknom/\sqrt{3}$$

$$Uln:B = uln:B \cdot uknom/\sqrt{3}$$

$$Uln:C = uln:C \cdot uknom/\sqrt{3}$$

For AC/BI terminals with neutral:

$$Uln:A = uln:A \cdot uknom/2$$

 $Uln:B = uln:B \cdot uknom/2$
 $Uln:C = uln:C \cdot uknom/2$

where uknom is the nominal voltage of the terminal.

• phiuln:A, phiuln:B, phiuln:C are obtained as:

$$\begin{split} phiuln:&A = \arctan\left(\frac{\underline{u}_{lnA}.i}{\underline{u}_{lnA}.r}\right) \cdot \frac{180}{\pi} \\ phiuln:&B = \arctan\left(\frac{\underline{u}_{lnB}.i}{\underline{u}_{lnB}.r}\right) \cdot \frac{180}{\pi} \\ phiuln:&C = \arctan\left(\frac{\underline{u}_{lnC}.i}{\underline{u}_{lnC}.r}\right) \cdot \frac{180}{\pi} \end{split}$$

• $upht:A,\ upht:B,\ upht:C$ are obtained depending if there is neutral connection or not. If there is neutral connection the variables are obtained as:

$$upht:A = uln:A$$

 $upht:B = uln:B$
 $upht:C = uln:C$

If there is no neutral connection as:

$$upht:A = ul:A$$

 $upht:B = ul:B$
 $upht:C = ul:C$

• *Upht:A*, *Upht:B*, *Upht:C* are obtained depending if there is neutral connection or not. If there is neutral connection the variables are obtained as:

$$Upht:A = Uln:A$$

 $Upht:B = Uln:B$
 $Upht:C = Uln:C$

If there is no neutral connection as:

$$Upht:A = Ul:A$$

 $Upht:B = Ul:B$
 $Upht:C = Ul:C$

3.1.4 Short circuit variables for terminals

If a short circuit event is defined at the terminal, the short circuit currents $\underline{I_{shc}}_A$, $\underline{I_{shc}}_B$ and $\underline{I_{shc}}_C$ can be monitored by these variables.

Name	Unit	Description
Ishc:A	kA	Short-Circuit Current, magnitude
Ishc:B	kA	Short-Circuit Current, magnitude
Ishc:C	kA	Short-Circuit Current, magnitude
ishc: A	p.u.	Short-Circuit Current, magnitude
ishc: B	p.u.	Short-Circuit Current, magnitude
ishc: C	p.u.	Short-Circuit Current, magnitude
ishcr:A	p.u.	Short-Circuit Current, real
ishcr:B	p.u.	Short-Circuit Current, real
ishcr:C	p.u.	Short-Circuit Current, real
ishci:A	p.u.	Short-Circuit Current, imag
ishci:B	p.u.	Short-Circuit Current, imag
ishci:C	p.u.	Short-Circuit Current, imag

Table 3.4: Short circuit variables for terminals

The result variables from Table 3.4 are calculated as follows:

• Ishc:A, Ishc:B, Ishc:C are the magnitudes of the short circuit currents at the terminal flowing through the short circuit impedance:

$$\begin{split} Ishc: &A = \sqrt{\underline{I_{shc}}_A.r^2 + \underline{I_{shc}}_A.i^2} \\ &Ishc: B = \sqrt{\underline{I_{shc}}_B.r^2 + \underline{I_{shc}}_B.i^2} \\ &Ishc: C = \sqrt{\underline{I_{shc}}_C.r^2 + \underline{I_{shc}}_C.i^2} \end{split}$$

• *ishc:A*, *ishc:B*, *ishc:C* are obtained as:

$$ishc:A = \frac{Ishc:A}{I_{nom.1MVA}}$$

$$ishc:B = \frac{Ishc:B}{I_{nom.1MVA}}$$

$$ishc:C = \frac{Ishc:C}{I_{nom.1MVA}}$$

where $I_{nom_1MVA} = \frac{1}{\sqrt{3} \cdot uknom}$ is the nominal current for 1MVA and uknom is the nominal voltage of the connected terminal.

• *ishcr:A*, *ishcr:B*, *ishcr:C* are obtained as:

$$ishcr:A = \frac{I_{shc_A}.r}{I_{nom.1MVA}}$$

$$ishcr:B = \frac{I_{shc_B}.r}{I_{nom.1MVA}}$$

$$ishcr:C = \frac{I_{shc_C}.r}{I_{nom.1MVA}}$$

• *ishci:A*, *ishci:B*, *ishci:C* are obtained as:

$$\begin{split} ishci:&A = \frac{I_{shc_A}.i}{I_{nom.1MVA}}\\ ishci:&B = \frac{I_{shc_B}.i}{I_{nom.1MVA}}\\ ishci:&C = \frac{I_{shc_C}.r}{I_{nom.1MVA}} \end{split}$$

3.1.5 0,1,2 sequence and neutral voltage related variables for terminals

In addition to the phase, line to line and line to neutral voltage quantities, also quantities in the positive, negative and zero sequence are available. \underline{u}_1 , \underline{u}_2 and \underline{u}_0 are obtained when the phase values are transformed to symmetrical components.

For 3-phase terminals:

$$\begin{split} \underline{u}0 &= \frac{1}{3} \left(\underline{u}_A + \underline{u}_B + \underline{u}_C \right) \\ \underline{u}1 &= \frac{1}{3} \left(\underline{u}_A + a \cdot \underline{u}_B + a^2 \cdot \underline{u}_C \right) \\ \underline{u}2 &= \frac{1}{3} \left(\underline{u}_A + a^2 \cdot \underline{u}_B + a \cdot \underline{u}_C \right) \end{split}$$

where $a = \angle 120^{\circ}$

For BI-phase terminals (180°):

$$\underline{u}0 = \frac{1}{2} (\underline{u}_A + \underline{u}_B)$$

$$\underline{u}1 = \frac{1}{2} (\underline{u}_A - \underline{u}_B)$$

$$\underline{u}2 = 0$$

For 2-phase terminals (120°):

$$\begin{split} \underline{u}0 &= \frac{1}{\sqrt{3}} \left(\underline{u}_A + \underline{u}_B \right) \\ \underline{u}1 &= \frac{1}{\sqrt{3}} \left(\underline{u}_A - \underline{u}_B \right) \\ \underline{u}2 &= 0 \end{split}$$

For 1-phase terminals:

$$\underline{u}0 = 0$$
 $\underline{u}1 = \underline{u}_A$
 $u2 = 0$

Name Unit Description Neutral-Ground Voltage, Magnitude unp.u.Neutral-Ground Voltage, Magnitude UnkVNeutral-Ground Voltage, Angle phiundegumAverage-Voltage, Magnitude p.u.Average-Voltage, Magnitude UmkVZero-Sequence Voltage, Magnitude u0p.u.Zero-Sequence Voltage, Magnitude U0kVkV3*U0 $U0\times3$ Zero-Sequence Voltage, Angle phiu0degu1Positive-Sequence Voltage, Magnitude p.u.% Positive-Sequence Voltage, Magnitude u1pcPositive-Sequence Voltage, Real Part u1rp.u.Positive-Sequence Voltage, Imaginary Part u1ip.u.U1kVLine-Ground Positive-Sequence Voltage, Magnitude phiu1Positive-Sequence Voltage, Angle degVoltage, Relative Angle phiurel degNegative-Sequence Voltage, Magnitude u2p.u.U2kVLine-Ground Negative-Sequence Voltage, Magnitude phiu2degNegative-Sequence Voltage, Angle Line to Line Positive-Sequence Voltage, Magnitude U1lkVLine to Line Negative-Sequence Voltage, Magnitude U2lkV

Table 3.5: 0,1,2 sequence voltage related variables for terminals

The variables from Table 3.5 are calculated as follows:

• un is obtained from the neutral complex voltage as:

$$un = \sqrt{\underline{u}_n.r^2 + \underline{u}_n.i^2}$$

 Un is obtained as: for AC terminals:

$$Un = un \cdot uknom/\sqrt{3}$$

for AC/BI terminals:

$$Un = un \cdot uknom/2$$

where uknom is the nominal voltage of the terminal.

phiun is obtained as:

$$phiun = \arctan\left(\frac{\underline{u}_n.i}{\underline{u}_n.r}\right) \cdot \frac{180}{\pi}$$

- um is calculated by dividing the sum of phase voltage magnitudes of all phases by the number of phases.
- Um is obtained as: for AC terminals:

$$Um = um \cdot uknom/\sqrt{3}$$

for AC/BI terminals:

$$Um = um \cdot uknom / 2$$

where *uknom* is the nominal voltage of the terminal.

• u0 is obtained from the zero sequence complex voltage as:

$$u0 = \sqrt{\underline{u}_0.r^2 + \underline{u}_0.i^2}$$

 U0 is obtained as: for 3-phase, 1-phase and 2-phase terminals:

$$U0 = u0 \cdot uknom/\sqrt{3}$$

for AC/BI terminals:

$$U0 = u0 \cdot uknom/2$$

where uknom is the nominal voltage of the terminal.

- $U0\times3$ is calculated as $3\cdot U0$ for three phase, as $2\cdot U0$ for two phase and as U0 for single phase systems.
- phiu0 is obtained as:

$$phiu0 = \arctan\left(\frac{\underline{u}_0.i}{\underline{u}_0.r}\right) \cdot \frac{180}{\pi}$$

• u1 is obtained from the positive sequence complex voltage as:

$$u1 = \sqrt{\underline{u}_1.r^2 + \underline{u}_1.i^2}$$

• u1pc is obtained as:

$$u1pc = u1 \cdot 100$$

• u1r is obtained from the positive sequence complex voltage as:

$$u1r = \underline{u}_1.r$$

• u1i is obtained from the positive sequence complex voltage as:

$$u1i = \underline{u}_1.i$$

 U1 is obtained as: for AC terminals:

$$U1 = u1 \cdot uknom/\sqrt{3}$$

for AC/BI terminals:

$$U1 = u1 \cdot uknom / 2$$

where *uknom* is the nominal voltage of the terminal.

phiu1 is obtained as:

$$phiu1 = \arctan\left(\frac{\underline{u}_1.i}{u_1.r}\right) \cdot \frac{180}{\pi}$$

 phiurel is obtained by using the Initial Angle of Bus Voltage phiini basic data parameter as:

$$phiurel = phiu_1 - phiini \cdot \frac{180}{\pi}$$

• u2 is obtained from the negative sequence complex voltage as:

$$u2 = \sqrt{\underline{u}_2.r^2 + \underline{u}_2.i^2}$$

• U2 is obtained as (only for 3-phase terminals):

$$U2 = u2 \cdot uknom/\sqrt{3}$$

where uknom is the nominal voltage of the terminal.

• phiu2 is obtained as:

$$phiu2 = \arctan\left(\frac{\underline{u}_2.i}{\underline{u}_2.r}\right) \cdot \frac{180}{\pi}$$

• *U*1*l* is obtained as: for 2-phase and 3-phase terminals:

$$U1l = u1 \cdot uknom$$

for 1-phase terminals:

$$U1l = U1$$

• *U2l* is obtained as (only for 3-phase terminals):

$$U2l = u2 \cdot uknom$$

3.1.6 Neutral short circuit current related variables for terminals

If a short circuit event is defined at the terminal, the short circuit current flowing through the neutral can be monitored by these variables.

Table 3.6: Neutral short circuit current related variables for terminals

Name	Unit	Description
Inshc	kA	Neutral Short-Circuit Current, Magnitude
inshc	p.u.	Neutral Short-Circuit Current, Magnitude

The variables from Table 3.6 are calculated as follows:

• *Inshc* is the magnitudes of the short circuit currents at the terminal flowing through the short circuit impedance:

$$Inshc = \sqrt{\underline{I_{shc}}_{n}.r^{2} + \underline{I_{shc}}_{n}.i^{2}}$$

• *inshc* is obtained as:

$$inshc = \frac{Inshc}{I_{nom_1MVA}}$$

where $I_{nom_1MVA}=\frac{1}{\sqrt{3}\cdot uknom}$ is the nominal current for 1MVA and uknom is the nominal voltage of the connected terminal.

3.1.7 Frequency related variables for terminals

Hz

Hz

The frequency calculation is based on the positive sequence voltage which is transformed from the phase values through the symmetrical components.

NameUnitDescriptionfrnomHzNominal Frequencyfep.u.Electrical Frequencydfedt1/sDerivative of Electrical FrequencyfehzHzElectrical Frequency

Deviation of the Electrical Frequency

Table 3.7: Frequency related variables for terminals

The result variables from Table 3.7 are calculated same as the result variables from Table 2.3.

Average frequency

3.2 Result variables for elements

dfehz

frdev

The result variables available for for single- and multiple-port elements after an unbalanced RMS simulation are presented in the following sub chapters.

3.2.1 Voltage related variables for elements

The voltage related variables for the terminals are all based on the phase to ground complex voltages \underline{u}_A , \underline{u}_B , \underline{u}_C and \underline{u}_N resulting from the unbalanced RMS simulation.

For the element based variables, the relationship between the absolute and per unit value voltage is $\underline{U}_A = \underline{u}_A \cdot U_{base}$ where the base voltage is $U_{base} = U_{nom_el}/\sqrt{3}$ where U_{nom_el} is the nominal line to line voltage of the element. Due to the change in base, the per unit values are multiplied with the factor $uknom/U_{nom_el}$.

Table 3.8: Voltage related variables for elements

Name Unit Description

Name	Unit	Description
ur:A	p.u.	Phase Voltage, Real Part
ur:B	p.u.	Phase Voltage, Real Part
ur:C	p.u.	Phase Voltage, Real Part
ur:N	p.u.	Phase Voltage, Real Part
ui:A	p.u.	Phase Voltage, Imaginary Part
ui:B	p.u.	Phase Voltage, Imaginary Part
ui:C	p.u.	Phase Voltage, Imaginary Part
ui:N	p.u.	Phase Voltage, Imaginary Part
u:A	p.u.	Phase Voltage, Magnitude
u: B	p.u.	Phase Voltage, Magnitude
u: C	p.u.	Phase Voltage, Magnitude
u:N	p.u.	Phase Voltage, Magnitude

The result variables from Table 3.8 are calculated as follows:

• ur:A, ur:B, ur:C, ur:N are obtained from the complex phase voltages as:

$$\begin{split} ur:&A = \underline{u}_A.r \cdot \frac{uknom}{U_{nom_el}} \\ ur:&B = \underline{u}_B.r \cdot \frac{uknom}{U_{nom_el}} \\ ur:&C = \underline{u}_C.r \cdot \frac{uknom}{U_{nom_el}} \\ ur:&N = \underline{u}_N.r \cdot \frac{uknom}{U_{nom_el}} \end{split}$$

where uknom is the nominal voltage of the connected terminal and U_{nom_el} is the nominal voltage of the element.

• ui:A, ui:B, ui:C, ui:N are obtained from the complex phase voltages as:

$$\begin{split} ui:&A = \underline{u}_{A}.i \cdot \frac{uknom}{U_{nom_el}} \\ ui:&B = \underline{u}_{B}.i \cdot \frac{uknom}{U_{nom_el}} \\ ui:&C = \underline{u}_{C}.i \cdot \frac{uknom}{U_{nom_el}} \\ ui:&N = \underline{u}_{N}.i \cdot \frac{uknom}{U_{nom_el}} \end{split}$$

where uknom is the nominal voltage of the connected terminal and U_{nom_el} is the nominal voltage of the element.

• u:A, u:B, u:C, u:N are obtained from the complex phase voltages as:

$$\begin{split} u:&A = \sqrt{\underline{u}_A.r^2 + \underline{u}_A.i^2} \cdot \frac{uknom}{U_{nom_el}} \\ u:&B = \sqrt{\underline{u}_B.r^2 + \underline{u}_B.i^2} \cdot \frac{uknom}{U_{nom_el}} \\ u:&C = \sqrt{\underline{u}_C.r^2 + \underline{u}_C.i^2} \cdot \frac{uknom}{U_{nom_el}} \\ u:&N = \sqrt{\underline{u}_N.r^2 + \underline{u}_N.i^2} \cdot \frac{uknom}{U_{nom_el}} \end{split}$$

3.2.2 Current related variables for elements

The current related variables for the elements are all based on the complex phase current resulting from the unbalanced RMS simulation. The relationship between the absolute and per unit value current is $\underline{I}_A = \underline{i}_A \cdot I_{nom_el}$ where $I_{nom_el} = \frac{MVA_{el}}{\sqrt{3} \cdot U_{nom_el}}$ is the nominal current of the element.

Table 3.9: Current related variables for elements

The result variables from Table 3.9 are calculated as follows:

p.u.

inet:N

• *I:A, I:B, I:C, I:N* are obtained as amplitudes of the complex currents:

$$\begin{split} I:&A=\sqrt{\underline{I}_A.r^2+\underline{I}_A.i^2}\\ I:&B=\sqrt{\underline{I}_B.r^2+\underline{I}_B.i^2}\\ I:&C=\sqrt{\underline{I}_C.r^2+\underline{I}_C.i^2}\\ I:&N=\sqrt{\underline{I}_N.r^2+\underline{I}_N.i^2} \end{split}$$

Phase Current, Magnitude, referred to network

• phii:A, phii:B, phii:C, phii:N are obtained as:

$$\begin{split} phii:A &= \arctan\left(\frac{\underline{I}_A.i}{\underline{I}_A.r}\right) \cdot \frac{180}{\pi} \\ phii:B &= \arctan\left(\frac{\underline{I}_B.i}{\underline{I}_B.r}\right) \cdot \frac{180}{\pi} \\ phii:C &= \arctan\left(\frac{\underline{I}_C.i}{\underline{I}_C.r}\right) \cdot \frac{180}{\pi} \\ phii:N &= \arctan\left(\frac{\underline{I}_N.i}{\underline{I}_N.r}\right) \cdot \frac{180}{\pi} \end{split}$$

• ir:A, ir:B, ir:C, ir:N are obtained as:

$$ir:A = \frac{\underline{I}_A.r}{I_{nom.el}}$$

$$ir:B = \frac{\underline{I}_B.r}{I_{nom.el}}$$

$$ir:C = \frac{\underline{I}_C.r}{I_{nom.el}}$$

$$ir:N = \frac{\underline{I}_N.r}{I_{nom.el}}$$

• ii:A, ii:B, ii:C, ii:N are obtained as:

$$\begin{split} ii:&A = \frac{\underline{I}_A.i}{I_{nom_el}}\\ ii:&B = \frac{\underline{I}_B.i}{I_{nom_el}}\\ ii:&C = \frac{\underline{I}_C.i}{I_{nom_el}}\\ ii:&N = \frac{\underline{I}_N.i}{I_{nom_el}} \end{split}$$

• i:A, i:B, i:C, i:N are obtained as:

$$i:A = \frac{I:A}{I_{nom_el}}$$

$$i:B = \frac{I:B}{I_{nom_el}}$$

$$i:C = \frac{I:C}{I_{nom_el}}$$

$$i:N = \frac{I:N}{I_{nom_el}}$$

• phiui:A, phiui:B, phiui:C, phiui:N are obtained as:

$$\begin{split} phiui:&A = \arctan\left(\frac{\underline{u}_A.i}{\underline{u}_A.r}\right) \cdot \frac{180}{\pi} - phii:A \\ phiui:&B = \arctan\left(\frac{\underline{u}_B.i}{\underline{u}_B.r}\right) \cdot \frac{180}{\pi} - phii:B \\ phiui:&C = \arctan\left(\frac{\underline{u}_C.i}{\underline{u}_C.r}\right) \cdot \frac{180}{\pi} - phii:C \\ phiui:&N = \arctan\left(\frac{\underline{u}_N.i}{\underline{u}_N.r}\right) \cdot \frac{180}{\pi} - phii:N \end{split}$$

• *inet:A*, *inet:B*, *inet:C*, *inet:N* are obtained from the amplitude of the phase currents as:

$$inet:A = \frac{I:A}{I_{nom.1MVA}}$$

$$inet:B = \frac{I:B}{I_{nom.1MVA}}$$

$$inet:C = \frac{I:C}{I_{nom.1MVA}}$$

$$inet:N = \frac{I:N}{I_{nom.1MVA}}$$

where $I_{nom_1MVA}=\frac{1}{\sqrt{3}\cdot uknom}$ is the nominal current for 1MVA and uknom is the nominal voltage of the connected terminal.

3.2.3 Miscellaneous variables per phase for elements

Table 3.10: Miscellaneous variables per phase for elements

Name	Unit	Description
TfctPh:A	s	Fault Clearing Time
TfctPh:B	s	Fault Clearing Time
TfctPh:C	s	Fault Clearing Time
TfctPh:N	s	Fault Clearing Time
BrkloadPh:A	%	Breaker Loading
BrkloadPh:B	%	Breaker Loading
BrkloadPh:C	%	Breaker Loading
BrkloadPh:N	%	Breaker Loading

The result variables from Table 3.10 are calculated as follows:

- TfctPh:A, TfctPh:B, TfctPh:C, TfctPh:N give the fault clearing time of a fuse or a relay located in the local cubicle. If the fuse/relay model is not triggered with the current, a default value of 9999.999s is used.
- BrkloadPh:A, BrkloadPh:B, BrkloadPh:C, BrkloadPh:N are calculated as:

$$\begin{split} BrkloadPh:&A = \frac{I:A}{BrkInom} \cdot 100 \\ BrkloadPh:&B = \frac{I:B}{BrkInom} \cdot 100 \\ BrkloadPh:&C = \frac{I:C}{BrkInom} \cdot 100 \\ BrkloadPh:&N = \frac{I:N}{BrkInom} \cdot 100 \end{split}$$

where BrkInom is the rated current of a switch (input parameter Inom in TypSwitch) located in the cubicle.

3.2.4 0,1,2 sequence voltage related variables for elements

In addition to the phase, line to line and line to neutral voltage quantities, also quantities in the positive, negative and zero sequence are available.

For 3-phase elements:

$$\underline{u}0 = \frac{1}{3} (\underline{u}_A + \underline{u}_B + \underline{u}_C)$$

$$\underline{u}1 = \frac{1}{3} (\underline{u}_A + a \cdot \underline{u}_B + a^2 \cdot \underline{u}_C)$$

$$\underline{u}2 = \frac{1}{3} (\underline{u}_A + a^2 \cdot \underline{u}_B + a \cdot \underline{u}_C)$$

where $a = \angle 120^{\circ}$

For BI-phase elements (180°):

$$\underline{u}0 = \frac{1}{2} (\underline{u}_A + \underline{u}_B)$$

$$\underline{u}1 = \frac{1}{2} (\underline{u}_A - \underline{u}_B)$$

$$\underline{u}2 = 0$$

For 2-phase elements (120°):

$$\underline{u}0 = \frac{1}{\sqrt{3}} (\underline{u}_A + \underline{u}_B)$$

$$\underline{u}1 = \frac{1}{\sqrt{3}} (\underline{u}_A - \underline{u}_B)$$

$$u2 = 0$$

For 1-phase elements:

$$\underline{u}0 = 0$$
 $\underline{u}1 = \underline{u}_A$
 $\underline{u}2 = 0$

Table 3.11: 0,1,2 sequence voltage related variables for elements

Name	Unit	Description
u0	p.u	Zero-Sequence-Voltage, Magnitude
phiu0	deg	Zero-Sequence-Voltage, Angle
u1r	p.u	Positive-Sequence-Voltage, Real Part
u1i	p.u	Positive-Sequence-Voltage, Imaginary Part
u1	p.u	Positive-Sequence-Voltage, Magnitude
U1	kV	Line-Ground Positive-Sequence-Voltage, Magnitude
U1l	kV	Line-Line Positive-Sequence-Voltage, Magnitude
phiu1	deg	Positive-Sequence-Voltage, Angle
u2	p.u	Negative-Sequence-Voltage, Magnitude
phiu2	deg	Negative-Sequence-Voltage, Angle

The variables from Table 3.11 are calculated as follows:

• u0 is obtained from the zero sequence complex voltage as:

$$u0 = \sqrt{\underline{u}_0.r^2 + \underline{u}_0.i^2} \cdot \frac{uknom}{U_{nom_el}}$$

where uknom is the nominal voltage of the connected terminal and U_{nom_el} is the nominal voltage of the element.

• phiu0 is obtained as:

$$phiu0 = \arctan\left(\frac{\underline{u}_0.i}{\underline{u}_0.r}\right) \cdot \frac{180}{\pi}$$

• u1r is obtained from the positive sequence complex voltage as:

$$u1r = \underline{u}_1.r \cdot \frac{uknom}{U_{nom_el}}$$

• u1i is obtained from the positive sequence complex voltage as:

$$u1i = \underline{u}_1.i \cdot \frac{uknom}{U_{nom_el}}$$

• u1 is obtained from the positive sequence complex voltage as:

$$u1 = \sqrt{\underline{u}_1.r^2 + \underline{u}_1.i^2} \cdot \frac{uknom}{U_{nom,el}}$$

 U1 is obtained as: for AC elements:

$$U1 = u1 \cdot U_{nom_el} / \sqrt{3}$$

for AC/BI elements:

$$U1 = u1 \cdot U_{nom_el} / 2$$

 U1l is obtained as: for 2-phase and 3-phase terminals:

$$U1l = u1 \cdot U_{nom_el}$$

for 1-phase terminals:

$$U1l = U1$$

phiu1 is obtained as:

$$phiu1 = \arctan\left(\frac{\underline{u}_1.i}{\underline{u}_1.r}\right) \cdot \frac{180}{\pi}$$

• *u*2 is obtained from the negative sequence complex voltage as:

$$u2 = \sqrt{\underline{u}_2.r^2 + \underline{u}_2.i^2} \cdot \frac{uknom}{U_{nom.el}}$$

• phiu2 is obtained as:

$$phiu2 = \arctan\left(\frac{\underline{u}_2.i}{\underline{u}_2.r}\right) \cdot \frac{180}{\pi}$$

3.2.5 0,1,2 sequence current related variables for elements

In addition to the phase quantities, also quantities in the positive, negative and zero sequence are available. \underline{I}_1 , \underline{I}_2 and \underline{I}_0 are obtained when the phase values are transformed to symmetrical components.

For 3-phase elements:

$$\underline{i}0 = \frac{1}{3} (\underline{i}_A + \underline{i}_B + \underline{i}_C)
\underline{i}1 = \frac{1}{3} (\underline{i}_A + a \cdot \underline{i}_B + a^2 \cdot \underline{i}_C)
\underline{i}2 = \frac{1}{3} (\underline{i}_A + a^2 \cdot \underline{i}_B + a \cdot \underline{i}_C)$$

where $a = \angle 120^{\circ}$

For BI-phase elements (180°):

$$\begin{split} \underline{i}0 &= \frac{1}{2} \left(\underline{i}_A + \underline{i}_B \right) \\ \underline{i}1 &= \frac{1}{2} \left(\underline{i}_A - \underline{i}_B \right) \\ i2 &= 0 \end{split}$$

For 2-phase elements (120°):

$$\begin{split} \underline{i}0 &= \frac{1}{\sqrt{3}} \left(\underline{i}_A + \underline{i}_B \right) \\ \underline{i}1 &= \frac{1}{\sqrt{3}} \left(\underline{i}_A - \underline{i}_B \right) \\ \underline{i}2 &= 0 \end{split}$$

For 1-phase elements:

$$\underline{i}0 = 0$$
 $\underline{i}1 = \underline{i}_A$
 $i2 = 0$

Table 3.12: 0,1,2 sequence current related variables for elements

Name	Unit	Description
<i>I</i> 0	kA	Zero-Sequence Current, Magnitude
$I0\times3$	kA	3*10
phii0	deg	Zero-Sequence Current, Angle
i0	p.u	Zero-Sequence Current, Magnitude
i0r	p.u	Zero-Sequence Current, Real Part
i0i	p.u	Zero-Sequence Current, Imaginary Part
I1	kA	Positive-Sequence Current, Magnitude
phii1	deg	Positive-Sequence Current, Angle
i1	p.u	Positive-Sequence Current, Magnitude
i1r	p.u	Positive-Sequence Current, Real Part
i1i	p.u	Positive-Sequence Current, Imaginary Part
I2	kA	Negative-Sequence Current, Magnitude
phii2	deg	Negative-Sequence Current, Angle
i2	p.u	Negative-Sequence Current, Magnitude
i2r	p.u	Negative-Sequence Current, Real Part
i2i	p.u	Negative-Sequence Current, Imaginary Part
i1P	p.u.	Positive-Sequence Active Current
i1Q	p.u.	Positive-Sequence Reactive Current
I1P	kA	Positive-Sequence Active Current
I1Q	kA	Positive-Sequence Reactive Current
i2P	p.u.	Negative-Sequence Active Current
i2Q	p.u.	Negative-Sequence Reactive Current
I2P	kA	Negative-Sequence Active Current
I2Q	kA	Negative-Sequence Reactive Current
phiu0i0	deg	Angle between Voltage and Current in zero sequence system
phiu1i1	deg	Angle between Voltage and Current in positive sequence system
phiu2i2	deg	Angle between Voltage and Current in negative sequence system

The result variables from Table 3.12 are calculated as follows:

ullet I0 is obtained as the magnitude of the zero sequence current:

$$I0=\sqrt{\underline{I}_0.r^2+\underline{I}_0.i^2}$$

- $I0 \times 3$ is obtained as $3 \cdot I0$ for three phase, as $2 \cdot I0$ for two phase and as I0 for single phase systems.
- phii0 is obtained as:

$$phii0 = \arctan\left(\frac{\underline{I}_0.i}{\underline{I}_0.r}\right) \cdot \frac{180}{\pi}$$

• *i*0 is obtained as:

$$i0 = \frac{I0}{I_{nom,el}}$$

where I_{nom_el} is the nominal current of the element.

• *i*0*r* is obtained as:

$$i0r = \frac{\underline{I}_0.r}{I_{nom,el}}$$

• *i*0*i* is obtained as:

$$i0i = \frac{\underline{I}_0.i}{I_{nom_el}}$$

• I1 is obtained as the magnitude of the positive sequence current:

$$I1 = \sqrt{\underline{I}_1.r^2 + \underline{I}_1.i^2}$$

• phii1 is obtained as:

$$phii1 = \arctan\left(\frac{\underline{I}_1.i}{I_1.r}\right) \cdot \frac{180}{\pi}$$

• i1 is obtained as:

$$i1 = \frac{I1}{I_{nom_el}}$$

where I_{nom_el} is the nominal current of the element.

• i1r is obtained as:

$$i1r = \frac{\underline{I}_1.r}{I_{nom\ el}}$$

• *i*1*i* is obtained as:

$$i1i = \frac{\underline{I}_1.i}{I_{nom_el}}$$

• I2 is obtained as the magnitude of the negative sequence current:

$$I2 = \sqrt{\underline{I}_2.r^2 + \underline{I}_2.i^2}$$

• phii2 is obtained as:

$$phii2 = \arctan\left(\frac{\underline{I}_2.i}{\underline{I}_2.r}\right) \cdot \frac{180}{\pi}$$

• i2 is obtained as:

$$i2 = \frac{I2}{I_{nom_el}}$$

where I_{nom_el} is the nominal current of the element.

• i2r is obtained as:

$$i2r = \frac{\underline{I}_2.r}{I_{nom_el}}$$

• *i*2*i* is obtained as:

$$i2i = \frac{\underline{I}_2.i}{I_{nom_el}}$$

• *i*1*P* is obtained as:

$$i1P = i1 \cdot \cos(\phi_1)$$

where ϕ_1 is the angle between the active and reactive power in the positive sequence.

• *i*1*Q* is obtained as:

$$i1Q = i1 \cdot \sin(\phi_1)$$

• *I*1*P* is obtained as:

$$I1P = I1 \cdot \cos(\phi_1)$$

• I1Q is obtained as:

$$I1Q = I1 \cdot \sin(\phi_1)$$

• i2P is obtained as:

$$i2P = i2 \cdot \cos(\phi_2)$$

where ϕ_2 is the angle between the active and reactive power in the negative sequence.

• i2Q is obtained as:

$$i2Q = i2 \cdot \sin(\phi_2)$$

• I2P is obtained as:

$$I2P = I2 \cdot \cos(\phi_2)$$

• I2Q is obtained as:

$$I2Q = I2 \cdot \sin(\phi)$$

• phiu0i0 is obtained as:

$$phiu0i0 = phiu0 - phii0$$

• phiu1i1 is obtained as:

$$phiu1i1 = phiu1 - phii1$$

• phiu2i2 is obtained as:

$$phiu2i2 = phiu2 - phii2$$

3.2.6 0,1,2 sequence power related variables for elements

The total complex apparent power is the sum of apparent powers of all phases:

$$\underline{S}_{sum} = \underline{S}_A + \underline{S}_B + \underline{S}_C + \underline{S}_N$$

where:

$$\underline{S}_{A} = \underline{U}_{A} \cdot \underline{I}_{A}^{*}$$

$$\underline{S}_{B} = \underline{U}_{B} \cdot \underline{I}_{B}^{*}$$

$$\underline{S}_{C} = \underline{U}_{C} \cdot \underline{I}_{C}^{*}$$

$$\underline{S}_{N} = \underline{U}_{N} \cdot \underline{I}_{N}^{*}$$

and the sequence powers:

For 3-phase elements:

$$\begin{split} \underline{S}_1 &= 3 \cdot \underline{U1} \cdot \underline{I1}^* \\ \underline{S}_2 &= 3 \cdot \underline{U2} \cdot \underline{I2}^* \\ \underline{S}_0 &= 3 \cdot \underline{U0} \cdot \underline{I0}^* \end{split}$$

For AC/BI elements (180°):

$$\begin{split} \underline{S}_1 &= 2 \cdot \underline{U1} \cdot \underline{I1}^* \\ \underline{S}_2 &= 0 \\ \underline{S}_0 &= 2 \cdot \underline{U0} \cdot \underline{I0}^* \end{split}$$

For 2-phase elements (120°):

$$\begin{split} \underline{S}_1 &= 3/2 \cdot \underline{U1} \cdot \underline{I1}^* \\ \underline{S}_2 &= 0 \\ \underline{S}_0 &= 3/2 \cdot \underline{U0} \cdot \underline{I0}^* \end{split}$$

where

$$\underline{S}_{sum} = \underline{S}_1 + \underline{S}_2 + \underline{S}_0$$

Table 3.13: 0,1,2 sequence power related variables for elements

Name	Unit	Description
Psum	MW	Total Active Power
Qsum	Mvar	Total Reactive Power
Ssum	MVA	Total Apparent Power
cosphisum		Total Power Factor
tanphisum		Total tan(phi)
P1	MW	Positive Sequence Active Power
Q1	Mvar	Positive Sequence Reactive Power
P2	MW	Negative Sequence Active Power
Q2	Mvar	Negative Sequence Reactive Power

The result variables from Table 3.13 are calculated as follows:

• Psum is obtained as:

$$Psum = \underline{S}_{sum}.r$$

• Qsum is obtained as:

$$Qsum = \underline{S}_{sum}.i$$

• Ssum is obtained as:

$$Ssum = \sqrt{\underline{S}_{sum}.r^2 + \underline{S}_{sum}.i^2}$$

• cosphisum is obtained as:

$$cosphisum = cos(\phi_s)$$

where the angle is defined as:

$$\phi_s = \arctan\left(\frac{\underline{S}_{sum}.i}{\underline{S}_{sum}.r}\right)$$

• *tanphisum* is obtained as:

$$tanphisum = tan(\phi_s)$$

• P1 is the positive sequence active power of the element.

$$P1 = S1.r$$

• Q1 is the positive sequence reactive power of the element.

$$Q1 = \underline{S1}.i$$

• P2 is the negative sequence active power of the element.

$$P2 = \underline{S2}.r$$

• Q2 is the negative sequence reactive power of the element.

$$Q2 = \underline{S2}.i$$

3.2.7 Miscellaneous variables (min/max values) for elements

Table 3.14: Miscellaneous variables (min/max values) for elements

Name	Unit	Description
Tfct	s	Fault Clearing Time
Brkload	%	Breaker Loading

The result variables from Table 3.14 are calculated as follows:

- Tfct is the minimum from the fault clearing times: TfctPh:A, TfctPh:B, TfctPh:C, TfctPh:N.
- Brkload is the maximum breaker loading from: BrkloadPh:A, BrkloadPh:B, BrkloadPh:C, BrkloadPh:N.