

Ayudantía 3 - Teoremas de Thévenin y Norton

Pedro Morales Nadal

pedro.morales1@mail.udp.cl

© +56 9 30915977

Edicson Solar Salinas

edicson.solar@mail.udp.cl

© +56 9 92763279

Shi Hao Zhang

shi.zhang@mail.udp.cl

\(\Omega\) +56 9 90787770

Ingeniería Civil en Informática y Telecomunicaciones

¿Qué veremos?

- Potencia
- Teoremas de Thévenin y Norton
- Encontrar circuitos equivalentes
- Calcular diferencia de potencial entre 2 puntos

Potencia

En circuitos nos ayuda a estimar la energía entregada, absorbida o disipada por los componentes del mismo, lo denotamos como P.

$$P = V \cdot I = I^2 \cdot R = \frac{V^2}{R}$$

Donde:

- P es potencia en Watts
- V es voltaje en Volts
- *I* es corriente en *Amperes*
- R es resistencia en Ohms

Thévenin y Norton

- Métodos para simplificar circuitos eléctricos complejos
- Facilitan la evaluación rápida de voltaje y corriente
- Son equivalentes entre sí y fácilmente intercambiables

Circuitos equivalentes

Circuito equivalente de Thévenein

Un circuito se reduce a una fuente de tensión (V_{TH}) en serie con una resistencia equivalente (R_{TH})

Circuito equivalente de Norton

Un circuito se reduce a una fuente de corriente (I_N) en paralelo con una resistencia equivalente (R_N)

Equivalencia Thévenin - Norton

$$V_{TH} = I_N \times R_{TH}$$
 $I_N = \frac{V_{TH}}{R_{TH}}$
 $\Rightarrow R_{TH} = R_N$

Pasos para encontrar circuitos equivalentes

- 1 Retirar la carga
- 2 Calcular resistencia equivalente
 - 2.a Si hay fuente de tensión: cortocircuito
 - 2.b Si hay fuente de corriente: circuito abierto
- 3 Calcular voltaje entre terminales abiertas: **Thévenin**
- 4 Calcular corriente entre terminales cortocircuitadas: Norton
- 5 Dibujar circuito equivalente
- 6 (Opcional) Sacarse un 7

Ejemplo híper fome

Potencia máxima

La potencia es máxima cuando $R_{TH} = R_L$ Considerando $P = V \cdot I$

$$P_{max} = V_{R_L} \cdot I_N$$

$$= I_N \cdot R_L \cdot I_N$$

$$= \frac{V_{TH}}{R_{TH} + R_L} \cdot R_L \cdot \frac{V_{TH}}{R_{TH} + R_L}$$

$$= \left(\frac{V_{TH}}{R_{TH} + R_L}\right)^2 \cdot R_L$$

$$= \left(\frac{V_{TH}}{2R_{TH}}\right)^2 \cdot R_{TH}$$

$$= \frac{V_{TH}^2}{4R_{TH}}$$

Ejercicio 1

Algebraico

Encuentre el circuito equivalente de Thévenin y su corriente de Norton en función de V_1, R_1, R_2, R_3 y R_4

Pasos 1 y 2

$$2.1: R_1 + R_3 = R_{eq1}$$

- Paso 1: Al no haber carga, evidentemente no se retira.
- Paso 2: Cortocircuitar la única fuente de tensión (V₁) y se procede al cálculo de la resistencia equivalente.
 - 1. R_1 y R_3 se encuentran en serie, llamemos esa resistencia equivalente R_{eq1} .
 - 2. R_{eq1} está en paralelo con R_2 , su equivalente será R_{eq2} .
 - 3. R_{eq2} está en serie con R_4 , su equivalente será R_{TH} .

Pasos 2.2 y 2.3

$$2.3: R_{eq2} + R_4 = R_{TH}$$

$$R_{TH} = ((R1 + R3) / / R_2) + R_4$$

$$= \left(\frac{1}{R_1 + R_3} + \frac{1}{R_2}\right)^{-1} + R_4$$

Paso 3 (y 4)

$$V_{AB} = V_{R2} = IR_4$$

Paso 3: Notamos que al ser (A y B) terminales abiertas, no existe corriente que pase por ellas y no hay una caída de tensión en R₄, por lo que podemos decir con seguridad que la diferencia de potencial entre las terminal es simplemente la caída de tensión en R₂

Encontrar I_N y V_{TH}

Por KVL:

$$V_1 = \frac{I(R_1 + R_2 + R_3)}{I(R_1 + R_2 + R_3)}$$

$$\Leftrightarrow \frac{I}{R_1 + R_2 + R_3} = I_N$$

Por Ley de Ohm:

Finalmente el circuito equivalente de Thévenin queda (como cualquier otro):

Donde:

•
$$I_N = \frac{V_1}{R_1 + R_2 + R_3}$$

•
$$R_{TH} = \left(\frac{1}{R_1 + R_3} + \frac{1}{R_2}\right)^{-1} + R_4$$

$$V_{TH} = \left(\frac{V_1}{R_1 + R_2 + R_3}\right) \cdot R_2$$

Ejercicio 2

Encuentre el equivalente de Thévenin para el siguiente circuito entre los terminales A y B e indique su corriente de Norton.

Pasos 1 y 2

 $2.1: R_1//R_6 = R_{eq1}$ $2.2: R_2 + R_6 = R_{eq2}$

- Paso 1: Al no haber carga, evidentemente no se retira.
- Paso 2: Cortocircuitar las fuentes de tensión (V₁, V₂ y V₃) y se procede al cálculo de la resistencia equivalente.
 - 1. R_1 y R_6 están en paralelo, llamemos esa resistencia equivalente R_{eq1} .
 - 2. R_2 y R_3 están en serie, llamemos esa resistencia equivalente R_{eq2} .
 - 3. R_{eq1} y R_7 están en serie, llamemos esa resistencia equivalente R_{eq3} .

Continuando con Paso 2

 $2.3: R_{eq3} = R_{eq1} + R_7$

- 4. R_{eq3} y R_4 están en paralelo, llamemos esa resistencia equivalente R_{eq4} .
- 5. R_{eq2} y R_{eq4} están en serie, llamemos esa resistencia equivalente R_{eq5} .
- 6. R_{eq5} y R_5 están en paralelo, su equivalente será R_{TH} .

Continuando con Paso 2

$$2.4: R_{eq3}//R_4 = R_{eq4}$$

$$2.5: R_{eq2} + R_{eq4} = R_{eq5}$$

$$2.6: R_{eq5}//R_5 = R_{TH}$$

Algebraicamente:

$$R_{TH} = \left(rac{1}{\left(rac{1}{\left(rac{1}{R_1} + rac{1}{R_6}
ight)^{-1} + R_7} + rac{1}{R_4}
ight)^{-1} + R_2 + R_3}
ight)^{-1}$$

Continuando con Paso 2 - Cálculo feo

$$R_{TH} = \left(rac{1}{\left(rac{1}{\left(rac{1}{8} + rac{1}{8}
ight)^{-1} + 6} + rac{1}{10}
ight)^{-1}} + 2 + 3
ight)^{-1} = 5 \,\Omega$$

MUY FEO? SIGUIENTE SLIDE PARA ALGO MÁS AMIGABLE

Cálculo amigable para Paso 2

1.
$$R_1//R_6 = R_{eq1} \Leftrightarrow R_{eq1} = \left(\frac{1}{8} + \frac{1}{8}\right)^{-1} = 4\Omega$$

2.
$$R_2 + R_3 = R_{eq2} \Leftrightarrow R_{eq2} = 3 + 2 = 5 \Omega$$

3.
$$R_{eq1} + R_7 = R_{eq3} \Leftrightarrow R_{eq3} = 4 + 6 = 10 \,\Omega$$

4.
$$R_{eq3}//R_4 = R_{eq4} \Leftrightarrow R_{eq4} = \left(\frac{1}{10} + \frac{1}{10}\right)^{-1} = 5 \Omega$$

5.
$$R_{eq2} + R_{eq4} = R_{eq5} \Leftrightarrow R_{eq5} = 5 + 5 = 10 \,\Omega$$

6.
$$R_{eq5}//R_5 = R_{TH} \Leftrightarrow R_{TH} = \left(\frac{1}{10} + \frac{1}{10}\right)^{-1} = 5 \Omega$$

Pasos 3 y 4

Paso 3 (y 4): Evidentemente para obtener la diferencia de voltaje entre **A** y **B** (V_{TH}) basta con ver la caída de tensión en Rs correspondiente al producto entre la corriente que pasa por la misma, que corresponde a i3 en el dibujo. Usaremos método de mallas para obtener la corriente en la malla 3 (azul) y completar el ejercicio.

Ecuaciones de malla

$$M_{1}: R_{4}(i_{1}-i_{3}) + R_{6}(i_{1}-i_{2}) + R_{7}i_{1} = V_{1} - V_{3}$$

$$: (R_{4} + R_{6} + R_{7})i_{1} - R_{6}i_{2} - R_{4}i_{3} = V_{1} - V_{3}$$

$$: 24i_{1} - 8i_{2} - 10i_{3} = -10$$

$$: 12i_{1} - 4i_{2} - 5i_{3} = -5$$

$$M_{2}: R_{1}i_{2} + R_{6}(i_{2} - i_{1}) = V_{2}$$

$$: (R_{1} + R_{6})i_{2} - R_{6}i_{1} = V_{2}$$

$$: 16i_{2} - 8i_{1} = 20$$

$$: -2i_{1} + 4i_{2} = 5$$

$$M_{3}: (R_{2} + R_{3} + R_{4} + R_{5})i_{3} - R_{4}i_{1} = V_{3}$$

$$: 25i_{3} - 10i_{1} = 30$$

$$: -2i_{1} + 5i_{3} = 6$$

Sistema de ecuaciones

Pasando el sistema a forma matricial:

$$\begin{cases} M_1: 12i_1 - 4i_2 - 5i_3 = -5 \\ M_2: -2i_1 + 4i_2 = 5 \\ M_3: -2i_1 + 5i_3 = 6 \end{cases} \sim \begin{pmatrix} 12 & -4 & -5 \\ -2 & 4 & 0 \\ -2 & 0 & 5 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \\ i_3 \end{pmatrix} = \begin{pmatrix} -5 \\ 5 \\ 6 \end{pmatrix}$$

Se obtienen:

- $i_1 = 0.75 A$
- $i_2 = 1.625 A$
- $i_3 1.5 A \Rightarrow V_{TH} = V_{R5} = 1.5 \cdot R_5 = 1.5 \cdot 10 = 15 V$

Además:
$$I_N = \frac{V_{TH}}{R_{TH}} = \frac{15}{5} = 3 A$$

Finalmente, el circuito equivalente de Thévenin:

Donde:

- $I_N = 3 A$
- $R_{TH} = 5 \Omega$
- $V_{TH} = 15 V$

Ejercicio 3

Obtener el equivalente de Thévenin entre los terminales A y B, para el siguiente circuito

¿DUDAS?

CHAO GENTE

