Corolario

Sean d_1, d_2, \ldots, d_n enteros positivos que sumen 2(n-1), entonces existen exactamente

$$\frac{(n-2)!}{\prod_{i=1}^{n}(d_i-1)!}$$

árboles con conjunto de vértices [n] tales que para todo i, $d(v_i) = d_i$.

$$n(T) = n, \ e(T) = n - 1, \ \sum_{v \in V(T)} d(v_i) = 2e(T)$$

Árboles de expansión

Contracción

Sea G un grafo y e una arista con extremos u, v. La **contracción** de la arista e consiste en reemplazar u, v con un único vértice x cuyas aristas incidentes son las aristas distintas de e que eran incidentes a u o v. El grafo resultante, notado $G \cdot e$ tiene una arista menos que G.

G. e

(G.e) • f

و - (م , م)

G: 2

G.e.: <u>f</u> ح ل

7: P

H-e:

Teorema

sin e

Sea $\tau(G)$ el número de árboles de expansión de un grafo G. Si $e \in E(G)$ no es un bucle, entonces

$$\tau(G) = \tau(G - e) + \tau(G \cdot e)$$

Clave: Los arboles de expansión que no incluyen e Son los arboles de expansión de G=e

#arboles que contienen e = T(G.e)!

Se define una función:

· Cuando se contrae una arista e en un árbol de expansión que contiene a e, se obtiene un árbol de expansión de G.E

G ~ T (contrere a e)

· Cada arbol de expansión de Gie

surge de esta manera pues al expandir

el número de vértices de regreso a e

se ostiene un arbol de expansión de G (que contiene a e)

Teorema (Matrix Tree Theorem)

Dado G un grafo sin bucles con vértices $\{v_1, v_2, \dots, v_n\}$, sea a_{ij} el número de aristas con extremos v_i y v_j . Sea Q la matriz definida por:

$$q_{ij} := egin{cases} -a_{ij} & ext{si } i
eq j \ d(v_i) & ext{si } i = j \end{cases}$$

Entonces

$$\tau(G) = Q_{ij} = (-1)^{i+j} |M_{ij}|$$

$$Q_{4,4} = (-1)^{4+4} \begin{vmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{vmatrix} = 8$$