Линейная Алгебра и Геометрия Вопросы

Лекторий ПМИ ФКН

3-4 июня 2016

Относитесь к данному материалу критически! Никто не гарантирует, что это абсолютно правильные билеты: в них могут быть недочеты, ошибки, опечатки, что угодно, ведь эти билеты писали студенты, а не преподаватели. Старайтесь вникать в то, что читаете, а не просто зазубривать.

Содержание

1	Понятие поля. Простейшие примеры. Поле комплексных чисел, его построение.	6
2	Алгебраическая форма комплексного числа, его действительная и мнимая часть. Комплексное сопряжение и его свойства.	8
3	Геометрическая модель комплексных чисел, интерпретация сложения и сопряжения в этой модели. Модуль и аргумент комплексного числа, его тригонометрическая форма.	
4	Умножение, деление и возведение в степень комплексных чисел в тригонометрической форме. Формула Муавра.	10
5	Извлечение корней из комплексных чисел.	11
6	Решение квадратных уравнений с комплексными коэффициентами. Форму-	

12

лировка основной теоремы алгебры комплексных чисел.

•	ветствующими размерностями в конечномерном случае.	12
8	Комплексификация действительного векторного пространства; свзязь между соответствующими размерностями в конечномерном случае.	13
9	Сумма двух подпространств векторного пространства. Связь размерностей двух подпространств с размерностями их суммы и пересечения. Прямая сумма двух подпространств.	
10	Описание всех базисов n-мерного векторного пространства в терминах одного базиса и матриц координат.	15
11	Матрица перехода от одного базиса конечномерного векторного пространства к другому. Формула преобразования координат при замене базиса.	16
12	Линейные отображения векторных пространств, их простейшие свойства. Примеры.	17
13	Изоморфизм векторных пространств. Отображение, обратное к изоморфизму. Композиция двух линейных отображений, композиция двух изоморфизмов. Отношение изоморфности на множестве всех векторных пространств. Классы изоморфизма векторных пространств.	
14	Критерий изоморфности двух конечномерных векторных пространств.	20
15	Существование и единственность линейного отображения с заданными образами базисных векторов.	21
16	Матрица линейного отображения. Связь между координатами вектора и его образа при линейном отображении. Сумма двух линейных отображений и её матрица. Произведение линейного отображения на скаляр и его матрица.	
17	Композиия двух линейных отображений и её матрица.	23
18	Ядро и образ линейного отображения. Критерий инъективности линейного отображения в терминах его ядра.	24
19	Связь между рангом матрицы линейного отображения и размерностью его образа. Критерий изоморфности линейного отображения в терминах его матрицы.	
20	Ранг произведения двух матриц.	26
21	Теорема о связи размерностей ядра и образа линейного отображения.	26
22	Линейный оператор. Матрица линейного оператора. Формула преобразования координат вектора при действии линейного оператора. Формула изменения матрицы линейного оператора при перехоле к другому базису.	

23	Инвариантность определителя матрицы линейного оператора относительно замены базиса. Критерий обратимости линейного оператора в терминах его ядра, образа и определителя.	
24	Подпространство, инвариантное относительно линейного оператора. Инвариантность ядра и образа. Матрица линейного оператора в базисе, дополняющем базис инвариантного подпространства.	
25	Собственные векторы и собственные значения линейного оператора. Собственное подпространство и его инвариантность. Диагонализуемый линейный оператор, критерий диагонализуемости.	
26	Характеристический многочлен линейного оператора. Связь собственных значений линейного оператора с его характеристическим многочленом.	32
27	Алгебраическая и геометрическая кратности собственного значения линейного оператора, связь между ними.	33
28	Сумма нескольких подпространств векторного пространства. Прямая сумма нескольких подпространств, эквивалентные условия.	34
29	Сумма собственных подпространств линейного оператора, отвечающих попарно различным собственным значениям. Признак диагонализуемости линейного опеаратора.	
30	Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и кратностей собственных значений.	37
31	Существование одномерного или двумерного инвариантного подпространства у линейного оператора в векторном пространстве над R.	37
32	Корневые векторы линейного оператора. Корневое подпространство. Критерий нетривиальности корневого подпространства. Инвариантность корневого подпространства.	
33	Характеристический многочлен ограничения линейного оператора на корневое подпространство.	39
34	Размерность корневого подпространства линейного оператора.	41
35	Сумма корневых подпространств, отвечающих попарно различным собственным значениям. Признак разложимости пространства в прямую сумму корневых подпространств линейного оператора. Формулировка Теоремы о Жордановой нормальной форме линейного оператора.	
36	Линейная функция на векторном пространстве. Пространство линейных фунций, его размерность. Двойственный (сопряжённый) базис.	к- 43

	ления значений билинейной функции в координатах. Существование и единственность билинейной функции с заданной матрицей. Формула изменения матрицы билинейной функции при переходе к другому базису. Ранг билинейной функции.	44
38	Симметричная билинейная функция. Характеризация симметричности билинейной функции в терминах её матрицы. Квадратичная форма. Соответствие между симметричными билинейными функциями и квадратичными формами. Матрица квадратичной формы.	46
39	Канонический и нормальный вид квадратичной формы. Метод Лагранжа приведения квадратичной формы к каноническому виду. Приведение квадратичной формы над полем R к нормальному виду.	48
40	Закон инерции для квадратичной формы над R.	49
41	Метод Грама-Шмидта ортогонализации квадратичной формы. Теорема Якоби.	50
42	Положительно /неотрицательно определённые, отрицательно /неположитель определённые, неопределённые квадратичные формы. Критерий Сильвестра положительной определённости квадратичной формы. Критерий отрицательной определённости квадратичной формы.	ьно 52
43	Евклидово пространство. Длина вектора. Неравенство Коши-Буняковского. Угол между векторами.	53
44	Матрица Грама системы векторов евклидова пространства. Свойства определителя матрицы Грама.	54
45	Ортогональное дополнение системы векторов евклидова пространства. Свойства ортогонального дополнения к подпространству. Ортогональная проекция вектора на подпространство и ортогональная составляющая вектора относительно подпространства.	55
46	Ортогональный и ортонормированный базисы евклидова пространства. Описание всех ортонормированных базисов в термирнах одного и матриц перехода. Ортогональная матрица.	56
47	Интерпретация процесса ортогонализации в евклидовом пространстве в терминах проекций и ортогональных составляющих. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального базиса. Теорема Пифагора в Евклидовом пространстве.	57
48	Расстояние между векторами евклидова пространства. Неравенство треугольника. Теоремы о расстоянии от вектора до подпространства.	5 8
49	n-мерный параллелепипед в евклидовом пространстве и его объём. Формулы для объёма n-мерного параллелепипеда.	59

37 Билинейная функция. Матрица билинейной функции. Формула для вычис-

50	Изоморфизм евклидовых пространств. Критерий изоморфности двух конечномерных евклидовых пространств.	60
51	Линейный оператор в евклидовом пространстве, сопряжённый к данному: определение, существование и единственность. Матрица сопряжённого оператора в произвольном и ортонормированном базисах.	61
52	Самосопряжённый линейный оператор в евклидовом пространстве: инвариантность ортогонального дополнения к инвариантному подпространству и существование собственного вектора.	62
53	Самосопряжённый линейный оператор в евклидовом пространстве: существование базиса из собственных векторов, ортогональность собственных подпространств, отвечающих различным собственным значениям. Приведение квадратичной формы к главным осям.	
54	Ортогональный линейный оператор в евклидовом пространстве: определение, пять эквивалентных условий.	65
55	Классификация ортогональных линейных операторов в одномерном и двумерном евклидовых пространствах.	66
56	Ортогональный линейный оператор в евклидовом пространстве: инвариантность относительно ортогонального дополнения к инвариантному подпространству, теорема о каноническом виде. Классификация ортогональных линейных операторов в трёхмерном евклидовом пространстве.	67

Понятие поля. Простейшие примеры. Поле комплексных чисел, его построение.

Определение. Скаляры — это элементы некоторого фиксированного поля.

Определение. Полем называется множество F, на котором заданы две операции — «сложение» (+) и «умножение» (\cdot) ,

$$F \times F \to F \Rightarrow \begin{array}{c} +: (a,b) \mapsto a+b \\ \cdot: (a,b) \mapsto a \cdot b \end{array}$$

удовлетворяющие следующим свойствам («аксиомам поля»): $\forall a,b,c \in F$

- 1. a + b = b + a (коммутативность по сложению);
- 2. (a + b) + c = a + (b + c) (ассоциативность по сложению);
- 3. $\exists 0 \in F : 0 + a = a + 0 = a$ (существование нулевого элемента);
- 4. $\exists -a \in F : a + (-a) = (-a) + a = 0$ (существование противоположного элемента);
- 5. a(b+c) = ab + ac (дистрибутивность; связь между сложением и умножением);
- 6. ab = ba (коммутативность по умножению);
- 7. (ab)c = a(bc) (ассоциативность по умножению);
- 8. $\exists 1 \in F \setminus \{0\} : 1 \cdot a = a \cdot 1 = a$ (существование единицы);
- 9. $a \neq 0 \Rightarrow \exists a^{-1} \in F : a \cdot a^{-1} = a^{-1} \cdot a = 1$ (существование обратного элемента).

Замечание.

- 1. Элемент $0 e \partial u$ нственный.
- 2. И элемент -a единственный.
- 3. Даже элемент 1 единственный.
- 4. Как это ни удивительно, но a^{-1} тоже единственный.

Легко увидеть, что пункты 2 и 4 доказываются одинаково с точностью до замены операции, как и пункты 1 и 3.

Докажем пункт 3. Если существует 1' — еще одна единица, тогда по аксиомам $1'=1'\cdot 1=1$.

Докажем теперь пункт 4. Пусть b и c таковы, что $b \neq c$ и ba = ab = ac = ca = 1. Тогда

$$bac = (ba) c = b (ac) = 1 \cdot c = c = 1 \cdot b = b$$

To ects b=c.

Пример.

- \mathbb{Q} рациональные числа;
- \mathbb{R} вещественные числа;
- $\mathbb{C} \kappa$ омплексные числа;
- $F_2 = \{0, 1\}$, при сложении и умножении по модулю 2.

Поле комплексных чисел

Поле действительных чисел $\mathbb R$ плохо тем, что в нем уравнение $x^2+1=0$ не имеет решения. Отсюда возникает идея определить поле, удовлетворяющее следующим требованиям:

- (T1) новое поле содержит \mathbb{R} ;
- (T2) уравнение $x^2 + 1 = 0$ имеет решение.

Давайте формально построим такое поле.

Определение. Полем $\mathbb C$ комплексных чисел называется множество $\{(a,b) \mid a,b \in \mathbb R\}$, на котором заданы операции сложения: $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)$ и умножения: $(a_1,b_1)\cdot(a_2,b_2)=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)$.

Предложение. \mathbb{C} *и впрямь является полем.*

Доказательство. Операции сложения и умножения введены, осталось только проверить выполнение всех аксиом.

- 1. очевидно, так как сложение идет поэлементно;
- 2. также очевидно;
- 3. 0 = (0,0);
- 4. -(a,b) = (-a,-b);
- 5. почти очевидно (т.е. прямая проверка);
- 6. ясно (тоже прямая проверка);
- 7. проверим:

$$((a_1, b_1)(a_2, b_2))(a_3, b_3) = (a_1a_2 - b_1b_2, a_1b_2 + b_1a_2)(a_3, b_3) =$$

$$= (a_1a_2a_3 - b_1b_2b_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3) =$$

$$= (a_1, b_1)(a_2a_3 - b_2b_3, a_2b_3 + b_2a_3) = (a_1, b_1)((a_2, b_2)(a_3, b_3));$$

8. 1 = (1,0);

9.
$$(a,b) \neq 0 \Leftrightarrow a^2 + b^2 \neq 0 \to (a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

Осталось только проверить, правда ли введенное поле С удовлетворяет нашим требованиям:

(T1) Заметим, что в подмножестве \mathbb{C} , состоящим из элементов вида (a,0) операции сложения и умножения будут работать как в поле вещественных чисел.

$$(a,0) + (b,0) = (a+b,0)$$

 $(a,0) \cdot (b,0) = (ab,0)$

Следовательно, отображение $a \mapsto (a,0)$ отождествляет \mathbb{R} с этим подмножеством, то есть $\mathbb{R} \to \mathbb{C}$. Что нам и требуется.

(Т2) Примем i = (0,1). Тогда $i^2 = (0,1) \cdot (0,1) = (-1,0) = -1$. Итого, требование выполнено.

Однако запись комплексных чисел в виде упорядоченной пары (a,b) не очень удобна и громоздка. Поэтому преобразуем запись следующим образом:

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0) \cdot (0,1) = a + bi.$$

Тем самым мы получили реализацию поля \mathbb{C} комплексных чисел как множества $\{a+bi\mid a,b\in\mathbb{R},\ i^2=-1\}$, с обычным сложением и умножением.

Алгебраическая форма комплексного числа, его действительная и мнимая часть. Комплексное сопряжение и его свойства.

Определение. $3anucь\ z=a+bi$ называется алгебраической формой комплексного числа $z\in\mathbb{C}.$

 $a = \operatorname{Re} z - \partial e$ йствительная часть числа z.

 $b = \operatorname{Im} z -$ мнимая часть числа z.

Определение. Числа вида z = bi (m.e. $\operatorname{Re} z = 0$) называются чисто мнимыми.

Определение. Отображение $\mathbb{C} \to \mathbb{C}$: $a+bi \mapsto a-bi$ называется (комплексным) сопряжением. Само число $\overline{z}=a-bi$ называется (комплексно) сопряженным к числу z=a+bi.

Лемма. Для любых двух комплексных числе $z, w \in \mathbb{C}$ выполняется, что

- 1. $\overline{z+w} = \overline{z} + \overline{w}$:
- 2. $\overline{zw} = \overline{z} \cdot \overline{w}$.

Доказательство. Пусть z = a + bi, а w = c + di.

1.
$$\overline{z} + \overline{w} = a - bi + c - di = (a + c) - (b + d)i = \overline{z + w}$$

2.
$$\overline{z} \cdot \overline{w} = (a - bi)(c - di) = ac - adi - bci + bdi^2 = (ac - bd) - (ad + bc)i = \overline{zw}$$

Замечание. Равенство $z=\overline{z}$ равносильно равенству $\mathrm{Im}\,z=0$, то есть $z\in\mathbb{R}$.

Геометрическая модель комплексных чисел, интерпретация сложения и сопряжения в этой модели. Модуль и аргумент комплексного числа, его тригонометрическая форма.

Заметим, что поле комплексных числе $\mathbb{C} = \{(a,b) \mid a,b \in \mathbb{R}\}$ равно \mathbb{R}^2 . Следовательно, комплексные числа можно представить как точки на действительной плоскости \mathbb{R}^2 , или сопоставить их векторам.

В таком представлении сложение комплексных чисел сопоставляется со сложением векторов, а сопряжение — с отражением относительно оси $Ox(\operatorname{Re} z)$.

Определение. Модулем комплексного числа z = a + bi называется длина соответствующего вектора. Обозначение: $|z|; |a + bi| = \sqrt{a^2 + b^2}$.

Свойства модуля:

- 1. $|z| \ge 0$, причем |z| = 0 тогда и только тогда, когда z = 0;
- 2. $|z+w| \leqslant |z| + |w|$ неравенство треугольника;
- $3. \ z \cdot \overline{z} = |z|^2;$

Доказательство.
$$(a+bi)(a-bi)=a^2-(bi)^2=a^2+b^2=|z|^2$$
.

 $4. |zw| = |z| \cdot |w|;$

Доказательство. Возведем в квадрат.

$$|z|^2 \cdot |w|^2 = z\overline{z}w\overline{w} = (zw)\overline{z}\overline{w} = zw\overline{z}\overline{w} = |zw|^2$$

Замечание. Из свойства 3 следует, что при $z \neq 0$ выполняется:

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$(a+bi)^{-1} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2}.$$

Определение. Аргументом комплексного числа $z \neq 0$ называется всякий угол φ такой что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}; \quad \sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

Неформально говоря, аргумент z — это угол между осью Ox и соответствующим вектором.

Замечание.

- 1. Аргумент определен с точностью до 2π .
- 2. Аргумент z = 0 не определен.

Для $z \neq 0$ введем множество $\operatorname{Arg} z = \{$ множество всех аргументов $z\}$ — большой аргумент. Также введем малый аргумент $\operatorname{arg} z$ — это такой $\varphi \in \operatorname{Arg} z$, который удовлетворяет условию $0 \leqslant \varphi < 2\pi$ и, следовательно, определен однозначно.

Используя аргумент, можно представить комплексное число следующим образом:

$$\begin{vmatrix} a = |z|\cos\varphi \\ b = |z|\sin\varphi \end{vmatrix} \Rightarrow z = a + bi = |z|\cos\varphi + i|z|\sin\varphi = |z|(\cos\varphi + i\sin\varphi)$$

Определение. Запись $z=|z|(\cos\varphi+i\sin\varphi)$ называется тригонометрической формой комплексного числа z.

Замечание.

$$r_1(\cos\varphi_1 + i\sin\varphi_1) = r_2(\cos\varphi_2 + i\sin\varphi_2) \Leftrightarrow \begin{cases} r_1 = r_2\\ \varphi_1 = \varphi_2 + 2\pi n, & n \in \mathbb{Z} \end{cases}$$

Умножение, деление и возведение в степень комплексных чисел в тригонометрической форме. Формула Муавра.

Предложение. Пусть
$$z_1 = |z_1| (\cos \varphi_1 + i \sin \varphi_1), \ z_2 = |z_2| (\cos \varphi_2 + i \sin \varphi_2).$$
 Тогда
$$z_1 z_2 = |z_1| |z_2| (\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2))$$

Иными словами, при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Доказательство. Просто раскроем скобки и приведём подобные.

$$z_1 z_2 = |z_1||z_2| (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i (\cos \varphi_1 \sin \varphi_2 + \cos \varphi_2 \sin \varphi_1)) =$$

= $|z_1||z_2| (\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2))$

Следствие.
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

Следствие (Формула Муавра). Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда:

$$z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi)) \quad \forall n \in \mathbb{Z}.$$

Замечание. В комплексном анализе функция $\exp x\colon \mathbb{R} \to \mathbb{R}$ доопределяется до $\exp z\colon \mathbb{C} \to \mathbb{C}$ следующим образом:

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!} .$$

H тогда оказывается, что $\exp z$ обладает теми же свойствами, кроме того:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi \quad \forall \varphi \in \mathbb{C}.$$

Всякое $z \in \mathbb{C}$ можно представить в виде $z = |z|e^{i\varphi}$, где $\varphi \in \text{Arg }(z)$. Тогда формула Муавра приобретает совсем очевидный вид:

$$|z_1|e^{i\varphi_2} \cdot |z_2|e^{i\varphi_2} = |z_1||z_2|e^{i(\varphi_1+\varphi_2)}.$$

Замечание. Отображение $R_{\varphi} \colon \mathbb{C} \to \mathbb{C}, \ z \to ze^{i\varphi}, \ \varphi \in \mathbb{R}$ определяет поворот на угол φ вокруг 0.

Извлечение корней из комплексных чисел.

Пусть $n \in \mathbb{N}$ и $n \geqslant 2$.

Определение. Корнем n-й степени из числа z называется всякое $w \in \mathbb{C}$: $w^n = z$. То есть

$$\sqrt[n]{z} = \{ w \in \mathbb{C} \mid w^n = z \}.$$

Если z=0, то |z|=0, а значит |w|=0, w=0. Получается, 0 — единственное комплексное число, у которого корень определён однозначно.

Далее рассмотрим случай $z \neq 0$.

$$z = |z| (\cos \varphi + i \sin \varphi)$$

$$w = |w| (\cos \psi + i \sin \psi)$$

$$z = w^n \Leftrightarrow \begin{cases} |z| = |w|^n \\ n\psi \in \operatorname{Arg}(z) \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ n\psi = \varphi + 2\pi k, \quad k \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ \psi = \frac{\varphi + 2\pi k}{n}, \quad k \in \mathbb{Z} \end{cases}$$

С точностью до кратного 2π различные значения в формуле $\psi = \frac{\varphi + 2\pi k}{n}$ получаются при $k=0,\,1,\ldots,n-1$. Значит z имеет ровно n корней n-й степени.

$$\sqrt[n]{z} = \left\{ |z| \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) \mid k = 0, \dots, n-1 \right\}$$

Замечание. Точки из множества $\sqrt[n]{z}$ при $z \neq 0$ лежат в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{|z|}$.

Пример. $z=-1=\cos\pi+i\sin\pi$

$$\sqrt[3]{z} = \left\{ \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}; \cos \pi + i \sin \pi; \cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right\}$$

Решение квадратных уравнений с комплексными коэффициентами. Формулировка основной теоремы алгебры комплексных чисел.

Пусть дано квадратное уравнение $az^2+bz+c=0$, где $a,\,b,\,c\in\mathbb{C}$ и $a\neq 0$. Тогда имеем:

$$z^{2} + \frac{b}{a}z + \frac{c}{a} = 0$$

$$z^{2} + 2\frac{b}{2a}z + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

$$\left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$z + \frac{b}{2a} \in \sqrt{\frac{b^{2} - 4ac}{4a^{2}}} = \frac{\sqrt{b^{2} - 4ac}}{2a}$$

То есть все решения — это $z_1 = \frac{-b+d_1}{2a}$, $z_2 = \frac{-b+d_2}{2a}$, где $\{d_1,d_2\} = \sqrt[2]{b^2-4ac}$. В частности, квадратное уравнение всегда имеет комплексный корень, а при $b^2-4ac\neq 0$ два корня.

Теорема (Основная теорема алгебры). Всякий многочлен $P\left(z\right)=a_{n}z^{n}+a_{n-1}z^{n-1}+\ldots+a_{1}z+a_{0}$ степени $n,\ \textit{где}\ n\geqslant 1,\ a_{n}\neq 0,\ u\ a_{0},\ldots,a_{n}\in\mathbb{C}$ имеет корень.

Овеществление комплексного векторного пространства; связь между соответствующими размерностями в конечномерном случае.

Пусть V — векторное пространство над \mathbb{C} .

Определение. Овеществление пространства V — это то же пространство V, рассматриваемое как пространство над \mathbb{R} . Обозначение: $V_{\mathbb{R}}$.

Операция умножения на элементы $\mathbb R$ в V уже есть, так как $\mathbb R$ — подполе в $\mathbb C$.

Пример. $\mathbb{C}_{\mathbb{R}} = \mathbb{R}^2$.

Предложение. V — векторное пространство над \mathbb{C} , $\dim V < \infty$. Тогда $\dim V_{\mathbb{R}} = 2\dim V$.

Доказательство. Пусть e_1, \ldots, e_n — базис в V. Тогда $V = \{z_1e_1 + \ldots + z_ne_n \mid z_k \in \mathbb{C}\}$, причём такая запись единственная в силу определения базиса. Пусть $z_k = a_k + ib_k$, причём такая запись тоже единственная. Тогда будем иметь

$$V = \{(a_1 + ib_1) e_1 + \ldots + (a_n + ib_n) e_n \mid a_k, b_k \in \mathbb{R}\} = \{a_1e_1 + \ldots + a_ne_n + b_1ie_1 + \ldots + b_nie_n \mid a_k, b_k \in \mathbb{R}\}$$

И причём такая запись тоже единственная. Выходит, что $e_1, e_2, \dots, e_n, ie_1, ie_2, \dots, ie_n$ — базис в $V_{\mathbb{R}}$, в котором $2n=2\dim V$ элементов.

Комплексификация действительного векторного пространства; свзязь между соответствующими размерностями в конечномерном случае.

Определение. Комплексификация пространства $W - \mathfrak{I}$ то множество $W \times W = W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\}$ с операциями $(u_1,v_1) + (u_2,v_2) = (u_1+u_2,v_1+v_2), (a+ib)(u,v) = (au-bv,av+bu), где <math>a+ib \in \mathbb{C}$.

 $\mathbf{\Pi}$ ример. $\mathbb{R}^{\mathbb{C}} = \mathbb{C}$.

Утверждение. В нём выполняются все 8 аксиом векторного пространства над \mathbb{C} .

W отождествляется подмножеством $\{(u,0) \mid u \in W\}$. Действительно

$$w \in W \Leftrightarrow (w,0) \in W^{\mathbb{C}}; \ i(w,0) = (0,w) \in W^{\mathbb{C}}$$

В итоге $\forall (u,v) \in W^{\mathbb{C}}$ представим в виде

$$(u,v) = (u,0) + (0,v) = (u,0) + i(v,0) = u + iv$$

To ects $W^{\mathbb{C}} = \{u + iv \mid u, v \in W\}.$

Предложение. $\dim W^{\mathbb{C}} = \dim W$

Замечание. $3 dec_{\mathfrak{b}} \ W^{\mathbb{C}} \ - \ npocmpancmbo \ \ nad \ \mathbb{C}, \ a \ W \ - \ nad \ \mathbb{R}.$

Доказательство. Пусть e_1, \ldots, e_n — базис в W. Тогда

$$W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\} = \{(a_1e_1 + a_2e_2 + \dots + a_ne_n, b_1e_1 + b_2e_2 + \dots + b_ne_n) \mid a_k,b_k \in \mathbb{R}\} = \{(a_1e_1,b_1e_1) + \dots + (a_ne_n,b_ne_n)\} = \{(a_1+ib_1)e_1 + \dots + (a_n+ib_n)e_n\} = \{z_1e_1 + \dots + z_ne_n \mid z_k \in \mathbb{C}\}$$

To есть выходит, что e_1, \ldots, e_n — базис в $W^{\mathbb{C}}$.

Сумма двух подпространств векторного пространства. Связь размерностей двух подпространств с размерностями их суммы и пересечения. Прямая сумма двух подпространств.

Пусть V — конечномерное векторное пространство, а U и W — подпространства (в качестве упражнения лектор предлагает доказать, что их пересечение — тоже подпространство).

Определение. Сумма подпространств $U\ u\ W\ -\$ это множество.

$$U+W=\{u+w\ |\ u\in U,w\in W\}$$

Замечание. $\dim (U \cap W) \leqslant \dim U \leqslant \dim (U + W)$

Пример. Двумерные плоскости в пространстве \mathbb{R}^3 содержат общую прямую.

Теорема. dim $(U \cap W)$ = dim U + dim W - dim (U + W)

Доказательство. Положим $p=\dim(U\cap W),\ k=\dim U,\ m=\dim W.$ Выберем базис $a=\{a_1,\ldots,a_p\}$ в пересечении. Его можно дополнить до базиса W и до базиса U. Значит $\exists b=\{b_1,\ldots,b_{k-p}\}$ такой, что $a\cup b$ — базис в U и $\exists c=\{c_1,\ldots,c_{m-p}\}$ такой, что $a\cup c$ — базис в W. Докажем, что $a\cup b\cup c$ — базис в U+W.

Во-первых, докажем, что U+W порождается множеством $a\cup b\cup c$.

$$v \in U + W \Rightarrow \exists u \in U, w \in W \colon v = u + w$$

$$u \in U = \langle a \cup b \rangle \subset \langle a \cup b \cup c \rangle$$

$$w \in W = \langle a \cup c \rangle \subset \langle a \cup b \cup c \rangle$$

$$\Rightarrow v = u + w \in \langle a \cup b \cup c \rangle \Rightarrow U + W = \langle a \cup b \cup c \rangle$$

Во-вторых, докажем линейную независимость векторов из $a \cup b \cup c$.

Пусть скаляры $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_{k-p}, \gamma_1, \ldots, \gamma_{m-p}$ таковы, что:

$$\underbrace{\alpha_1 a_1 + \ldots + \alpha_p a_p}_{x} + \underbrace{\beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}}_{y} + \underbrace{\gamma_1 c_1 + \ldots + \gamma_{m-p} c_{m-p}}_{z} = 0$$

$$x + y + z = 0$$

$$z = -x - y$$

$$z \in W$$

$$-x - y \in U \cap W$$

$$\Rightarrow \exists \lambda_1, \ldots, \lambda_p \in F \colon z = \lambda_1 a_1 + \ldots + \lambda_p a_p$$

Тогда $\lambda_1 a_1 + \ldots + \lambda_p a_p - \gamma_1 c_1 - \ldots - \gamma_{m-p} c_{m-p} = 0$. Но $a \cup c$ — базис W. Следовательно, $\lambda_1 = \ldots = \lambda_p = \gamma_1 = \ldots = \gamma_{m-p} = 0$. Но тогда $0 = x + y = \alpha_1 a_1 + \ldots + \alpha_p a_p + \beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}$. Но $a \cup b$ — базис $U \Rightarrow \alpha_1 = \ldots = \alpha_p = \beta_1 = \ldots = \beta_{k-p} = 0$. Итого, все коэффициенты равны нулю и линейная независимость тем самым доказана. То есть $a \cup b \cup c$ — базис U + W.

$$\dim(U+W) = |a \cup b \cup c| = |a| + |b| + |c| = p + k - p + m - p = k + m - p =$$

$$= \dim U + \dim W - \dim(U \cap W)$$

Определение. Если $U \cap W = \{0\}$, то U + W называется прямой суммой.

Следствие. В таком случае $\dim (U+W) = \dim U + \dim W$.

Пример. U - nnockocmb, $W - npsmas \ B^3$.

Описание всех базисов n-мерного векторного пространства в терминах одного базиса и матриц координат.

Пусть V — векторное пространство, $\dim V = n, e_1, \dots, e_n$ — базис. То есть

$$\forall v \in V \quad \exists! \ v = x_1 e_1 + \ldots + x_n e_n,$$

где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) . Пусть также есть базис e'_1, \ldots, e'_n :

$$e'_{1} = c_{11}e_{1} + c_{21}e_{2} + \dots + c_{n1}e_{n}$$

$$e'_{2} = c_{12}e_{1} + c_{22}e_{2} + \dots + c_{n2}e_{n}$$

$$\vdots$$

$$e'_{n} = c_{1n}e_{1} + c_{2n}e_{2} + \dots + c_{nn}e_{n}$$

Обозначим матрицу $C = (c_{ij})$. Тогда можно переписать (e'_1, \ldots, e'_n) как $(e_1, \ldots, e_n) \cdot C$.

Предложение. e_1',\ldots,e_n' образуют базис тогда и только тогда, когда $\det C \neq 0$.

Доказательство.

 $[\Rightarrow] e'_1, \dots, e'_n$ — базис, а значит $\exists C' \in M_n$:

$$(e_1, \dots, e_n) = (e'_1, \dots, e'_n) C' = (e_1, \dots, e_n) CC'$$
$$E = CC'$$
$$C' = C^{-1} \Leftrightarrow \exists C^{-1} \Leftrightarrow \det C \neq 0$$

 $[\Leftarrow]$ $\det C \neq 0 \Rightarrow \exists C^{-1}$. Покажем, что e'_1, \ldots, e'_n в таком случае линейно независимы. Пусть $x_1e'_1+x_2e'_2+\ldots+x_ne'_n=0$. Тогда можно записать

$$(e'_1, e'_2, \dots, e'_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

$$(e_1, \dots, e_n) C \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

Поскольку (e_1,\dots,e_n) — базис, то $C\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}=0$. Умножая слева на обратную матрицу, получаем, что $x_1=x_2=\dots=x_n=0$

Матрица перехода от одного базиса конечномерного векторного пространства к другому. Формула преобразования координат при замене базиса.

Пусть V — векторное пространство, $\dim V = n$, вектора e_1, \ldots, e_n — базис, а e'_1, \ldots, e'_n — некий набор из n векторов. Тогда каждый вектор из этого набора линейно выражается через базис.

$$e'_{j} = \sum_{i=1}^{n} c_{ij}e_{i}, \quad c_{ij} \in F$$

 $(e'_{1}, \dots, e'_{n}) = (e_{1}, \dots, e_{n}) \cdot C, \quad C = (c_{ij})$

То есть мы получили матрицу, где в j-ом столбце стоят коэффициенты линейного разложения вектора e'_i в базисе (e_1, \ldots, e_n) .

Теперь пусть e_1', \ldots, e_n' — тоже базис в V. В этом случае $\det C \neq 0$.

Определение. Матрица C называется матрицей перехода от базиса (e_1, \ldots, e_n) κ базису (e'_1, \ldots, e'_n) .

Замечание. Матрица перехода от (e'_1,\ldots,e'_n) κ (e_1,\ldots,e_n) есть C^{-1} .

Небольшое замечание касательно записи: когда базис записан в скобках, то есть (e_1, \ldots, e_n) , то нам важен порядок векторов в нем, в противном случае, при записи e_1, \ldots, e_n , порядок не важен.

Итого, имеем два базиса пространства V, (e_1, \ldots, e_n) и (e'_1, \ldots, e'_n) , и матрицу перехода C такую, что $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C$. Возьмем некий вектор v и разложим его по обоим базисам.

$$v \in V \Rightarrow \begin{cases} v = x_1 e_1 + \dots + x_n e_n, & x_i \in F \\ v = x_1' e_1' + \dots + x_n' e_n', & x_i' \in F \end{cases}$$

Предложение. Формула преобразования координат при переходе к другому базису:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} \qquad u \wedge u \qquad x_i = \sum_{j=1}^n c_{ij} x_j'$$

Доказательство. С одной стороны:

$$v = x_1'e_1' + \ldots + x_n'e_n' = \begin{pmatrix} e_1' & \ldots & e_n' \end{pmatrix} \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = \begin{pmatrix} e_1 & \ldots & e_n \end{pmatrix} C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Однако с другой стороны:

$$v = x_1 e_1 + \ldots + x_n e_n = \begin{pmatrix} e_1 & \ldots & e_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Сравнивая одно с другим, получаем, что:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Линейные отображения векторных пространств, их простейшие свойства. Примеры.

Пусть V и W — два векторных пространства над полем F.

Определение. Отображение $f: V \to W$ называется линейным, если:

- 1. $f(u_1 + u_2) = f(u_1) + f(u_2), \quad \forall u_1, u_2 \in V;$
- 2. $f(\alpha u) = \alpha f(u), \forall u \in V, \forall \alpha \in F.$

Замечание. Свойства 1-2 эквивалентны тому, что

$$f(\alpha_1 u_1 + \alpha_2 u_2) = \alpha_1 f(u_1) + \alpha_2 f(u_2), \quad \forall u_1, u_2 \in V, \ \forall \alpha_1, \alpha_2 \in F.$$

Здесь важно понимать, что сначала сложение векторов и умножение на скаляр происходит в пространстве V, а потом в пространстве W.

Простейшие свойства.

1. $f(\vec{0}_V) = \vec{0}_W$

Доказательство.
$$f(\vec{0}_V) = f(0 \cdot \vec{0}_V) = 0 \\ f(\vec{0}_V) = \vec{0}_W$$

2. $\varphi(-u) = -\varphi(u)$, где (-u) — обратный элемент к u.

Доказательство.
$$\varphi(-u) + \varphi(u) = \varphi(-u+u) = \varphi(\vec{0}_V) = \vec{0}_W \Rightarrow \varphi(-u) = -\varphi(u)$$

Примеры

- (0) $V \to V : v \mapsto v$ тождественное отображение.
- (1) $f: \mathbb{R} \to \mathbb{R}$ линейно $\Leftrightarrow \exists k \in \mathbb{R} : f(x) = kx, \quad \forall x \in \mathbb{R}$

Доказательство.

$$\Rightarrow f(x) = f(x \cdot 1) = xf(1) = kx$$
, где $k = f(1)$

← Проверим необходимые условия линейности.

1.
$$f(x) = kx \Rightarrow f(x_1 + x_2) = k(x_1 + x_2) = kx_1 + kx_2 = f(x_1) + f(x_2)$$

2.
$$f(\alpha x) = k\alpha x = \alpha kx = \alpha f(x)$$

- (2) $f: \mathbb{R}^2 \to \mathbb{R}^2$ декартова система координат.
 - 2.1 Поворот вокруг 0 на угол α линеен.
 - 2.2 Проекция на прямую, проходящую через 0, линейна.
- (3) $P_n = R[x]_{\leq n}$ пространство всех многочленов от x степени не больше n.

$$\Delta: f\mapsto f' \mbox{ (производная)}$$

$$(f+g)'=f'+g' \bigg|\Rightarrow \Delta - \mbox{ линейное отображение из } P_n \mbox{ в } P_{n-1}$$

$$(\alpha f)'=\alpha f'$$

(4) Векторное пространство V, dim $V = n, e_1, ..., e_n$ — базис.

$$V\mapsto \mathbb{R}^n$$
 $x_1e_1+\ldots+x_ne_n\mapsto \begin{pmatrix} x_1\ dots\\ x_n \end{pmatrix}$ — тоже линейное отображение.

(5) $A \in \operatorname{Mat}_{m \times n}, k \geqslant 1$ — любое, $\varphi : \operatorname{Mat}_{n \times k} \to \operatorname{Mat}_{m \times k}$.

$$\varphi(X) = A \cdot X$$

$$A(X_1 + X_2) = AX_1 + AX_2$$

$$A(\alpha X) = \alpha(AX)$$

Частный случай, при $k=1-\varphi:F^n\to F^m.$

Изоморфизм векторных пространств. Отображение, обратное к изоморфизму. Композиция двух линейных отображений, композиция двух изоморфизмов. Отношение изоморфности на множестве всех векторных пространств. Классы изоморфизма векторных пространств.

Определение. Отображение $\varphi:V\to W$ называется изоморфизмом, если φ линейно и биективно. Обозначение: $\varphi:V\xrightarrow{\sim} W$.

Предложение. Пусть $\varphi: V \to W$ — изоморфизм. Тогда $\varphi^{-1}: W \to V$ — тоже изоморфизм.

Доказательство. Так как φ — биекция, то φ^{-1} — тоже биекция.

$$w_1, w_2 \in W \Rightarrow \exists v_1, v_2 \in V : \begin{cases} \varphi(v_1) = w_1 & v_1 = \varphi^{-1}(w_1) \\ \varphi(v_2) = w_2 & v_2 = \varphi^{-1}(w_2) \end{cases}$$

Тогда осталось только доказать линейность обратного отображения. Для этого проверим выполнение необходимых условий линейности.

1.
$$\varphi^{-1}(w_1 + w_2) = \varphi^{-1}(\varphi(v_1) + \varphi(v_2)) = \varphi^{-1}(\varphi(v_1 + v_2)) = \mathrm{id}(v_1 + v_2) = v_1 + v_2$$

2.
$$\alpha \in F$$
, $\varphi^{-1}(\alpha w_1) = \varphi^{-1}(\alpha \varphi(v_1)) = \varphi^{-1}(\varphi(\alpha v_1)) = id(\alpha v_1) = \alpha v_1$.

Определение. Два векторных пространства V и W называются изоморфными, если существует изоморфизм $\varphi: V \xrightarrow{\sim} W$ (и тогда существует изоморфизм $V \xleftarrow{\sim} W$ по предположению). Обозначение: $V \simeq W$ или $V \cong W$.

Отображения можно соединять в композиции:

$$\begin{vmatrix}
\varphi: U \to V \\
\psi: V \to W
\end{vmatrix} \Rightarrow \psi \circ \varphi: U \to W \quad \psi \circ \varphi(u) = \psi(\varphi(u))$$

Предложение.

- 1. Если φ и ψ линейны, то $\psi \circ \varphi$ тоже линейно.
- 2. Если φ и ψ изоморфизмы, то $\psi \circ \varphi$ тоже изоморфизм.

Доказательство.

1. Проверим необходимые условия линейности.

(a)
$$(\psi \circ \varphi)(u_1 + u_2) = \psi(\varphi(u_1 + u_2)) = \psi(\varphi(u_1) + \varphi(u_2)) = \psi(\varphi(u_1)) + \psi(\varphi(u_2)) = (\psi \circ \varphi)(u_1) + (\psi \circ \varphi)(u_2)$$

(b)
$$(\psi \circ \varphi)(\alpha u) = \psi(\varphi(\alpha u)) = \psi(\alpha \varphi(u)) = \alpha \psi(\varphi(u)) = \alpha(\psi \circ \varphi)(u)$$

2. Следует из сохранения линейности и того, что композиция биекций тоже биекция.

Следствие. Изоморфизм это отношение эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Доказательство.

Рефлексивность $V \simeq V$.

Симметричность $V \simeq W \Rightarrow W \simeq V$.

Транзитивность $(V \simeq U) \land (U \simeq W) \Rightarrow V \simeq W.$

То есть множество всех векторных пространств над фиксированным полем F разбивается на попарно непересекающиеся классы, причем внутри одного класса любые два пространства изоморфны. Такие классы называются κ лассами эквивалентности.

Критерий изоморфности двух конечномерных векторных пространств.

Теорема. Два конечномерных векторных пространства V и W над полем F изоморфны тогда и только тогда, когда $\dim V = \dim W$.

Сначала докажем следующую лемму.

Лемма (1). Для векторного пространства V над полем F размерности n верно, что $V \simeq F^n$.

Доказательство. Рассмотрим отображение $\varphi: V \to F^n$ из примера 4. Пусть (e_1, \dots, e_n) — базис пространства V. Тогда:

$$x_1e_1 + \ldots + x_ne_n \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad x_i \in F.$$

Отображение φ линейно и биективно, следовательно φ — изоморфизм. А раз существует изоморфное отображение между пространствами V и F^n , то они изоморфны.

Замечание. Говорят, что функция φ отождествляет пространство V с пространством F^n , если $\varphi:V\stackrel{\sim}{\to} F^n$.

Докажем ещё одну лемму.

Лемма (2). Пусть $\varphi: V \xrightarrow{\sim} W$ — изоморфизм векторных пространств, а e_1, \ldots, e_n — базис V. Тогда $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$ — произвольный вектор. Положим $v \in V$ таковым, что $v = \varphi^{-1}(w)$.

$$v = x_1 e_1 + \ldots + x_n e_n, \quad x_i \in F$$

$$w = \varphi(v) = \varphi(x_1 e_1 + \ldots + x_n e_n) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) \Rightarrow W = \langle \varphi(e_1), \ldots, \varphi(e_n) \rangle$$

Покажем, что $\varphi(e_1), \dots, \varphi(e_n)$ — линейно независимые вектора.

Пусть $\alpha_1, \ldots, \alpha_n \in F$ таковы, что $\alpha_1 \varphi(e_1) + \ldots + \alpha_n \varphi(e_n) = 0$. Это то же самое, что $\varphi(\alpha_1 e_1 + \ldots + \alpha_n e_n) = 0$. Применяя φ^{-1} , получаем $\alpha_1 e_1 + \ldots + \alpha_n e_n = \varphi^{-1}(0) = 0$. Но так как e_1, \ldots, e_n базис в V, то $\alpha_1 = \ldots = \alpha_n = 0$, и потому вектора $\varphi(e_1), \ldots, \varphi(e_n)$ линейно независимы. Следовательно, этот набор векторов — базис в W.

Теперь приступим к доказательству теоремы.

Доказательство.

- $\Rightarrow V \simeq W \Rightarrow \exists \varphi : V \xrightarrow{\sim} W$. Тогда по лемме 2, если e_1, \ldots, e_n базис V, то $\varphi(e_1), \ldots, \varphi(e_n)$ базис W, и тогда $\dim V = \dim W$.
- \Leftarrow Пусть $\dim V = \dim W = n$. Тогда по лемме 1 существуют изоморфизмы $\varphi: V \xrightarrow{\sim} F^n$ и $\psi: W \xrightarrow{\sim} F^n$. Следовательно, $\psi^{-1} \circ \varphi: V \to W$ изоморфизм.

То есть получается, что с точностью до изоморфизма существует только одно векторное пространство размерности n.

Существование и единственность линейного отображения с заданными образами базисных векторов.

Пусть V, W — векторные пространства над F, и e_1, \ldots, e_n — базис V.

Предложение.

- 1. Всякое линейное отображение $\varphi: V \to W$ однозначно определяется векторами $\varphi(e_1), \dots, \varphi(e_n)$.
- 2. Для всякого набора векторов $f_1, \ldots, f_n \in W$ существует единственное линейное отображение $\varphi: V \to W$ такое, что $\varphi(e_1) = f_1, \varphi(e_2) = f_2, \ldots, \varphi(e_n) = f_n$.

Доказательство.

- 1. Пусть $v \in V$, $v = x_1e_1 + \ldots + x_ne_n$, где $x_i \in F$. Тогда $\varphi(v) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n)$, то есть если мы знаем вектора $\varphi(e_i)$, то сможем задать $\varphi(v)$ для любого $v \in V$.
- 2. Определим отображение $\varphi: V \to W$ по формуле $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1f_1 + \ldots + x_nf_n$. Прямая проверка показывает, что φ линейна, а единственность следует из пункта 1.

Следствие. Если $\dim V = \dim W = n$, то для всякого базиса e_1, \ldots, e_n пространства V и всякого базиса f_1, \ldots, f_n пространства W существует единственный изоморфизм $\varphi : V \xrightarrow{\sim} W$ такой, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$.

Доказательство. Из пункта 2. предложения следует, что существует единственное линейное отображение $\varphi: V \to W$ такое, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$. Но тогда $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n) = x_1f_1 + \ldots + x_nf_n$ для любых $x_i \in F$. Отсюда следует, что φ биекция.

Матрица линейного отображения. Связь между координатами вектора и его образа при линейном отображении. Сумма двух линейных отображений и её матрица. Произведение линейного отображения на скаляр и его матрица.

Пусть V и W — векторные пространства, $\mathbf{e}=(e_1,\ldots,e_n)$ — базис V, $\mathbf{f}=(f_1,\ldots,f_m)$ — базис $W,\,\varphi:V\to W$ — линейное отображение. Тогда:

$$\varphi(e_j) = a_{1j}f_1 + \ldots + a_{mj}f_m = \sum_{i=1}^m a_{ij}f_i.$$

Определение. Матрица $A = (a_{ij}) \in Mat_{m \times n}(F)$ называется матрицей линейного отображения φ в базисах e и f (или по отношению κ базисам e и f).

Замечание. Существует биекция {линейные отображения $V \to W$ } $\rightleftarrows Mat_{m \times n}$.

Замечание. $B A^{(j)}$ стоят координаты $\varphi(e_i)$ в базисе f.

$$(\varphi(e_1),\ldots,\varphi(e_n))=(f_1,\ldots,f_m)\cdot A$$

Рассмотрим пример.

Пусть $P_n = F[x]_{\leqslant n}$ — множество многочленов над полем F степени не выше n. Возьмем дифференцирование $\Delta: P_n \to P_{n-1}$.

Базис $P_n-1, x, x^2, \ldots, x^n$. Базис $P_{n-1}-1, x, \ldots, x^{n-1}$. Тогда матрица линейного отображения будет размерности $n \times (n+1)$ и иметь следующий вид.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & n \end{pmatrix}$$

Предложение. Если $v = x_1e_1 + \ldots + x_ne_n$ и $\varphi(v) = y_1f_1 + \ldots + y_mf_m$, то

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Доказательство. С одной стороны:

$$\varphi(v) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) = (\varphi(e_1), \ldots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \ldots, f_m) A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Однако с другой стороны:

$$\varphi(v) = (f_1, \dots, f_m) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Сравнивая обе части, получаем требуемое.

А теперь проанализируем операции над матрицами линейных отображений.

V и W — векторные пространства. Обозначение: $\mathrm{Hom}(V,W):=$ множество всех линейных отображений $V \to W$.

Пусть $\varphi, \psi \in \text{Hom}(V, W)$.

Определение.

1.
$$\varphi + \psi \in \text{Hom}(V, W) - \mathfrak{smo}(\varphi + \psi)(v) := \varphi(v) + \psi(v)$$
.

2.
$$\alpha \in F, \alpha \varphi \in \text{Hom}(V, W) - \mathfrak{smo}(\alpha \varphi)(v) := \alpha(\varphi(v)).$$

Упражнение.

- 1. Проверить, что $\varphi + \psi$ и $\alpha \varphi$ действительно принадлежат Hom(V, W).
- 2. Проверить, что Hom(V, W) является векторным пространством.

Предложение. Пусть $e = (e_1, \dots, e_n) - \textit{basuc } V$, $f = (f_1, \dots, f_m) - \textit{basuc } W$, $\varphi, \psi \in \text{Hom}(V, W)$. При этом A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица для ψ , $A_{\varphi+\psi}$ — для $\varphi+\psi$, а $A_{\alpha\varphi}$ — для $\alpha\varphi$.

Тогда
$$A_{\varphi+\psi} = A_{\varphi} + A_{\psi} \ u \ A_{\alpha\varphi} = \alpha A_{\varphi}.$$

Доказательство. Проверяется путём применения соответствующих операций с матрицами.

Композиия двух линейных отображений и её матрица.

Возьмем три векторных пространства — U,V и W размерности n,m и k соответственно, и их базисы e,f и g. Также рассмотрим цепочку линейных отображений $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$. Пусть A — матрица φ в базисах f и g, B — матрица ψ в базисах e и f, C — матрица $\varphi \circ \psi$ в базисах e и g.

Предложение. C = AB.

Доказательство. Запишем по определению:

$$(\varphi \circ \psi)(e_r) = \sum_{p=1}^k c_{pr} g_p, \quad r = 1, \dots, n$$

$$\psi(e_r) = \sum_{q=1}^m b_{qr} f_q, \quad r = 1, \dots, n$$

$$\varphi(f_q) = \sum_{p=1}^k a_{pq} g_p, \quad q = 1, \dots, m$$

Тогда:

$$(\psi \circ \psi)(e_r) = \varphi(\psi(e_r)) = \varphi\left(\sum_{q=1}^m b_{qr} f_g\right) = \sum_{q=1}^m b_{qr} \varphi(f_g) = \sum_{q=1}^m b_{qr} \left(\sum_{p=1}^k a_{pq} g_p\right) = \sum_{p=1}^k \left(\sum_{q=1}^m a_{pq} b_{qr}\right) g_p$$

$$\downarrow \downarrow$$

$$c_{pr} = \sum_{q=1}^m a_{pq} b_{qr}$$

$$\downarrow \downarrow$$

$$C = AB$$

Ядро и образ линейного отображения. Критерий инъективности линейного отображения в терминах его ядра.

Пусть V и W — векторные пространства с линейным отображением $\varphi: V \to W$.

Определение. Ядро φ — это множество $\operatorname{Ker} \varphi := \{v \in V \mid \varphi(v) = 0\}.$

Определение. Образ φ — это множество $\operatorname{Im} \varphi := \{w \in W \mid \exists v \in V : \varphi(v) = w\}.$

Пример. Все то жее $\Delta: P_n \to P_{n-1}$. Для него $\operatorname{Ker} \Delta = \{f \mid f = const\}$, $\operatorname{Im} \Delta = P_{n-1}$.

Предложение.

- 1. $\operatorname{Ker} \varphi nodnpocmpaнcmeo \ e \ V$.
- 2. $\operatorname{Im} \varphi nodnpocmpaнcmeo \ e \ W$.

Доказательство. Проверим по определению.

- 1. $\varphi(0_v) = 0_w$ этот факт мы уже доказали.
 - $v_1, v_2 \in \operatorname{Ker} \varphi \Rightarrow \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0_w + 0_w = 0_w \Rightarrow v_1 + v_2 \in \operatorname{Ker} \varphi$.
 - $v \in \text{Ker } \varphi, \alpha \in F \Rightarrow \varphi(\alpha v) = \alpha \varphi(v) = \alpha 0 = 0$, то есть αv тоже лежит в ядре.
- 2. $0_w = \varphi(0_v) \Rightarrow 0_w \in \text{Im } (\varphi)$.
 - $w_1, w_2 \in \text{Im } \varphi \Rightarrow \exists v_1, v_2 \in V : w_1 = \varphi(v_1), w_2 = \varphi(v_2) \Rightarrow w_1 + w_2 = \varphi(v_1) + \varphi(v_2) = \varphi(v_1 + v_2) \Rightarrow w_1 + w_2 \in \text{Im } \varphi.$
 - $w \in \operatorname{Im} \varphi, \alpha \in F \Rightarrow \exists v \in V : \varphi(v) = w \Rightarrow \alpha w = \alpha \varphi(v) = \varphi(\alpha v) \Rightarrow \alpha w \in \operatorname{Im} \varphi.$

То есть все условия подпространства по определению выполнены и предложение доказано.

Предложение.

- 1. Отображение φ интективно тогда и только тогда, когда ${\rm Ker}\ \varphi = \{0\}.$
- 2. Отображение φ сюръективно тогда и только тогда, когда $\operatorname{Im} \varphi = W$.

Доказательство.

- 1. [⇒] Очевидно.
 - $[\Leftarrow] v_1, v_2 \in V : \varphi(v_1) = \varphi(v_2) \Rightarrow \varphi(v_1 v_2) = 0 \Rightarrow v_1 v_2 = 0 \Rightarrow v_1 = v_2.$
- 2. Очевидно из определения образа.

Следствие. Отображение φ является изоморфизмом тогда и только тогда, когда $\operatorname{Ker} \varphi = \{0\}$ и $\operatorname{Im} \varphi = W$.

Связь между рангом матрицы линейного отображения и размерностью его образа. Критерий изоморфности линейного отображения в терминах его матрицы.

Предложение. Пусть $U\subset V$ — подпространство и e_1,\ldots,e_k — его базис. Тогда:

- 1. $\varphi(U)$ подпространство, $\varphi(U) = \langle \varphi(e_1), \dots, \varphi(e_k) \rangle$;
- 2. $\dim \varphi(U) \leqslant \dim U$.

Доказательство.

- 1. $\varphi(x_1e_1 + x_2e_2 + \ldots + x_ke_k) = x_1\varphi(e_1) + \ldots + x_k\varphi(e_k) \in \langle \varphi(e_1), \ldots, \varphi(e_k) \rangle$.
- 2. $\varphi(U) = \langle \varphi(e_1), \dots, \varphi(e_k) \rangle \Rightarrow \dim \varphi(U) \leqslant \dim U$ по основной лемме о линейной зависимости.

Пусть V, W — векторные пространства, $e = (e_1, \dots, e_n)$ — базис $V, f = (f_1, \dots, f_m)$ — базис W, A — матрица φ по отношению k e, f.

Предложение. dim Im $\varphi = \operatorname{rk} A$.

Доказательство.

$$v \in V$$
, $v = x_1 e_1 + \dots x_n e_n$
 $\varphi(v) = y_1 f_1 + \dots y_m f_m$

Тогда:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

 $A^{(j)}$ — столбец координат в базисе f, $\alpha_1, \ldots, \alpha_n \in F$.

$$\alpha_1 \varphi(e_1) + \ldots + \alpha_n \varphi(e_n) = 0 \Leftrightarrow \alpha_1 A^{(1)} + \ldots + \alpha_n A^{(n)} = 0$$

Отсюда следует, что:

$$\operatorname{rk} A = \operatorname{rk} \left\{ \varphi(e_1), \dots, \varphi(e_n) \right\} = \dim \underbrace{\left\langle \varphi(e_1), \dots, \varphi(e_n) \right\rangle}_{\operatorname{Im} \varphi} = \dim \operatorname{Im} \varphi.$$

Следствие. Величина ${\rm rk}\ A$ не зависит от выбора базисов ${\rm e}\ u\ {\rm f}$.

Определение. Величина $\mathrm{rk}A$ называется рангом линейного отображения φ . Обозначение: $\mathrm{rk}\varphi$.

Следствие. Если $\dim V = \dim W = n$, то φ — изоморфизм тогда и только тогда, когда $\det A \neq 0$. Тогда A— квадратная.

Доказательство.

 $[\Rightarrow] \varphi$ — изоморфизм, следовательно:

$$\operatorname{Im} \varphi = W \Rightarrow \dim \operatorname{Im} \varphi = n \Rightarrow \operatorname{rk} A = n \Rightarrow \det A \neq 0.$$

 $[\Leftarrow] \det A \neq 0 \Rightarrow \exists A^{-1}.$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = A^{-1} \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Таким образом, линейное отображение φ является биекцией, а значит, и изоморфизмом. \square

Ранг произведения двух матриц.

Предложение. Пусть $A \in \operatorname{Mat}_{k \times m}$, $B \in \operatorname{Mat}_{m \times n}$. Тогда $\operatorname{rk} AB \leqslant \min \{\operatorname{rk} A, \operatorname{rk} B\}$.

Доказательство. Реализуем A и B как матрицы линейных отображений, то есть $\varphi_A \colon F^m \to F^k$, $\varphi_B \colon F^n \to F^m$. Тогда AB будет матрицей отображения $\varphi_A \circ \varphi_B$.

$$\operatorname{rk}(AB) = \operatorname{rk}(\varphi_A \circ \varphi_B) \begin{cases} \leqslant \dim \operatorname{Im} \varphi_A = \operatorname{rk} A \\ \leqslant \dim \operatorname{Im} \varphi_B = \operatorname{rk} B \end{cases}$$

Первое неравенство следует из того, что Im $(\varphi_A \circ \varphi_B) \subset \text{Im } \varphi_A$, откуда в свою очередь следует, что dim Im $(\varphi_A \circ \varphi_B) \leqslant \text{dim Im } \varphi_A$. Рассматривая второе неравенство, получаем:

$$\operatorname{Im} (\varphi_A \circ \varphi_B) = \varphi_A(\operatorname{Im} \varphi_B) \Rightarrow \dim \operatorname{Im} (\varphi_A \circ \varphi_B) = \dim(\varphi_A(\operatorname{Im} \varphi_B)) \leqslant \dim \operatorname{Im} \varphi_B.$$

Упражнение.

- Если A квадртана $u \det A \neq 0$, то $\operatorname{rk} AB = \operatorname{rk} B$.
- $Ecnu\ B \in M_n\ u \det B \neq 0$, mo rk $AB = \operatorname{rk} A$.

Теорема о связи размерностей ядра и образа линейного отображения.

Теорема. dim Im $\varphi = \dim V - \dim \operatorname{Ker} \varphi$.

Существует 2 способа доказательства. Рассмотрим оба.

 $\mathit{Бескоор}$ динатный способ. Пусть $\dim \mathrm{Ker} \ \varphi = k$ и e_1, \dots, e_k — базис в $\mathrm{Ker} \ \varphi$. Дополним его до базиса V векторами e_{k+1}, \dots, e_n . Тогда:

$$\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_k), \dots, \varphi(e_n) \rangle = \langle 0, 0, \dots, 0, \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle = \langle \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle$$

Пусть $\alpha_{k+1}\varphi(e_{k+1})+\ldots+\alpha_n\varphi(e_n)=0$ для некоторых $\alpha_1,\ldots,\alpha_n\in F$. Тогда:

$$\varphi(\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n) = 0$$

$$\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n \in \operatorname{Ker} \varphi$$

$$\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n = \beta_1 e_1 + \dots \beta_k e_k,$$

для некоторых $\beta_1, \ldots, \beta_k \in F$.

Но так как e_1, \ldots, e_n — базис в V, то $\alpha_{k+1} = \ldots = \alpha_n = \beta_1 = \ldots = \beta_k = 0$. То есть векторы $\varphi(e_1), \ldots, \varphi(e_n)$ линейно независимы, а значит, образуют базис $\operatorname{Im} \varphi$. Что и означает, что $\dim \operatorname{Im} \varphi = n - k = \dim V - \dim \operatorname{Ker} \varphi$.

Координатный способ. Зафиксируем базис $e = (e_1, \dots, e_n)$ в V и базис $f = (f_1, \dots, f_m)$ в W. Пусть A — матрица φ в базисе f. Тогда $v = x_1e_1 + \dots + x_ne_n$, $\varphi(v) = y_1f_1 + \dots + y_mf_m$. Получим,

что
$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
.

Кег φ состоит из векторов, координаты которых удовлетворяют СЛУ $A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$. Ранее в курсе мы уже доказали, что размерность пространства решений равна $n-\operatorname{rk} A$, то есть $\dim\operatorname{Im}\varphi=n-\operatorname{rk} A=\dim V-\dim\operatorname{Ker}\varphi$.

Линейный оператор. Матрица линейного оператора. Формула преобразования координат вектора при действии линейного оператора. Формула изменения матрицы линейного оператора при переходе к другому базису.

Пусть V — конечномерное векторное пространство.

Определение. Линейным оператором (или линейным преобразованием) называется всякое линейное отображение $\varphi \colon V \to V$, то есть из V в себя. Обозначение: $L(V) = \operatorname{Hom}(V,V)$.

Пусть е = (e_1,\ldots,e_n) — базис в V и $\varphi\in L(V)$. Тогда:

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)A,$$

где A — матрица линейного оператора в базисе е. В столбце $A^{(j)}$ стоят координаты $\varphi(e_j)$ в базисе е. Матрица A — квадратная.

Пример.

- 1. $\forall v \in V : \varphi(v) = 0$ нулевая матрица.
- 2. Тождественный оператор: $\forall v \in V : \mathrm{id}(v) = v e \partial u + u + u + a \beta$ матрица.
- 3. Скалярный оператор $\lambda \mathrm{id}(v) = \lambda V$ матрица λE в любом базисе.

Следствие (Следствия из общих фактов о линейных отображениях).

- 1. Всякий линейный оператор однозначно определяется своей матрицей в любом фиксированном базисе.
- 2. Для всякой квадратной матрицы существует, причем единственный, линейный оператор φ такой, что матрица φ есть A.
- 3. Пусть $\varphi \in L(V)$, A матрица φ в базисе \mathfrak{e} . Тогда:

$$v = x_1 e_1 + \dots + x_n e_n$$

$$\varphi(v) = y_1 e_1 + \dots + y_n e_n$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пусть $\varphi \in L(V)$, A — матрица φ в базисе $e = (e_1, \dots, e_n)$. Пусть $e' = (e'_1, \dots, e'_n)$ — другой базис, причём $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$, где C — матрица перехода, и A' — матрица φ в базисе e'. Предложение. $A' = C^{-1}AC$.

Доказательство.

$$(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$$

$$e'_j = \sum_{i=1}^n c_{ij}e_i$$

$$\varphi(e'_j) = \varphi\left(\sum_{i=1}^n c_{ij}e_i\right) = \sum_{i=1}^n c_{ij}\varphi(e_i)$$

$$(\varphi(e'_1), \dots, \varphi(e'_n)) = (\varphi(e_1), \dots, \varphi(e_n))C = (e_1, \dots, e_n)AC = (e'_1, \dots, e'_n)\underbrace{C^{-1}AC}_{A'}$$

Инвариантность определителя матрицы линейного оператора относительно замены базиса. Критерий обратимости линейного оператора в терминах его ядра, образа и определителя.

Пусть $\varphi \colon V \to V$ — линейный оператор, и е — базис в V.

Обозначение. $A(\varphi, e)$ — матрица линейного оператора φ в базисе e.

Если $e' = (e'_1, \dots, e'_n)$ — ещё один базис, причём $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$, где C — матрица перехода, $A = A(\varphi, e)$ и $A' = A(\varphi, e')$. В прошлый раз мы доказали, что $A' = C^{-1}AC$.

Следствие. Величина $\det A$ не зависит от выбора базиса. Обозначение: $\det \varphi$.

Доказательство. Пусть A' — матрица φ в другом базисе. Тогда получается, что:

$$\det A' = \det \left(C^{-1}AC\right) = \det C^{-1} \det A \det C = \det A \det C \frac{1}{\det C} = \det A.$$

Заметим, что $\det A$ — инвариант самого φ .

Определение. Две матрицы $A', A \in M_n(F)$ называются подобными, если существует такая матрица $C \in M_n(F)$, det $C \neq 0$, что $A' = C^{-1}AC$.

Замечание. Отношение подобия на M_n является отношением эквивалентности.

Предложение. Пусть $\varphi \in L(V)$. Тогда эти условия эквивалентны:

- 1. Ker $\varphi = \{0\};$
- 2. Im $\varphi = V$;
- 3. φ обратим (то есть это биекция, изоморфизм);
- 4. $\det \varphi \neq 0$.

Доказательство.

- 1. \Leftrightarrow 2 следует из формулы dim $V = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$.
- $2. \Leftrightarrow 3$ уже было.
- $3. \Leftrightarrow 4$ уже было.

Определение. Линейный оператор φ называется вырожденным, если $\det \varphi = 0$, и невырожденным, если $\det \varphi \neq 0$.

Подпространство, инвариантное относительно линейного оператора. Инвариантность ядра и образа. Матрица линейного оператора в базисе, дополняющем базис инвариантного подпространства.

Определение. Подпространство $U \subseteq V$ называется инвариантным относительно φ (или φ -инвариантным), если $\varphi(U) \subseteq U$. То есть $\forall u \in U : \varphi(u) \in U$.

Пример.

- 1. $\{0\}, V$ они инвариантны для любого φ .
- 2. Ker φ φ -инвариантно, φ (Ker φ) = $\{0\} \subset \text{Ker } \varphi$
- 3. Im φ тоже φ -инвариантно, $\varphi(\operatorname{Im} \varphi) \subset \varphi(V) = \operatorname{Im} \varphi$.

Пусть $U \subset V - \varphi$ -инвариантное подпространство. Также пусть (e_1, \dots, e_k) — базис в U. Дополним его до базиса $V \colon \mathbb{Q} = (e_1, \dots, e_n)$.

$$\underbrace{A(\varphi,\,\mathbf{e})}_{ ext{Матрица c углом нулей}} = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}, \quad \text{где } B \in M_k$$

Это нетрудно понять, если учесть, что $\varphi(e_i) \in \langle e_1, \dots, e_k \rangle$, $i = 1, \dots, k$. Если $U = \operatorname{Ker} \varphi$, то B = 0. Если $U = \operatorname{Im} \varphi$, то D = 0.

Обратно, если матрица A имеет в базисе е такой вид, то $U = \langle e_1, \dots e_k \rangle$ — инвариантное подпространство.

Обобщение. Пусть $V = U \oplus W$, где U, W - uнвариантные подпространства, $u \ (e_1, \dots, e_k) - b$ азис W. Тогда $e = (e_1, \dots, e_n) - b$ азис V.

$$A(\varphi, \, \mathbf{e}) = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$$

Обобщение.

$$A(\varphi, e) = \begin{pmatrix} * \ 0 \ 0 \dots 0 \\ 0 * 0 \dots 0 \\ 0 \ 0 * \dots 0 \\ \vdots \vdots \vdots \dots \vdots \\ 0 \ 0 \ 0 \dots * \end{pmatrix} k_1 \\ k_2 \\ k_3 \\ \vdots \\ k_s$$

3десь k_1, \ldots, k_s — размеры квадратных блоков блочно-диагональной матрицы. Матрица $A(\varphi, e)$ имеет такой вид тогда и только тогда, когда:

$$U_1 = \langle e_1, \dots, e_{k_1} \rangle$$

$$U_2 = \langle e_{k_1+1}, \dots, e_{k_2} \rangle$$

$$\vdots$$

$$U_{k_s} = \langle e_{n-k_s+1}, \dots, e_n \rangle$$

Собственные векторы и собственные значения линейного оператора. Собственное подпространство и его инвариантность. Диагонализуемый линейный оператор, критерий диагонализуемости.

Пусть $\varphi \in L(V)$.

Определение. Ненулевой вектор $v \in V$ называется собственным для V, если $\varphi(v) = \lambda v$ для некоторго $\lambda \in F$. При этом число λ называется собственным значением линейного оператора φ , отвечающим собственному вектору v.

Предложение. Вектор $v \in V$, $v \neq 0$ — собственный вектор в V тогда и только тогда, когда линейная оболочка $\langle v \rangle$ является φ -инвариантным подпространством

Доказательство.

- [\Rightarrow] $\varphi(v) = \lambda v \Rightarrow \langle v \rangle = \{kv \mid k \in F\}$. Тогда $\varphi(kv) = \lambda kv \in \langle v \rangle$.
- $[\Leftarrow] \varphi(v) \in \langle v \rangle \Rightarrow \exists \lambda \in F : \varphi(v) = \lambda v.$

Пример. 1. $V = \mathbb{R}^2$, φ — ортогональная проекция на прямуую l.

2. Поворот на угол φ вокруг нуля на угол α .

 $0 \neq v \perp l \Rightarrow \varphi(v) = 0 = 0 \cdot v, \ \lambda = 1$

- $\alpha = 0 + 2\pi k$. Любой ненулевой вектор собственный. $\lambda = 1$.
- $\alpha = \pi + 2\pi k$. Любой ненулевой вектор собственный. $\lambda = -1$.
- $\alpha \neq \pi k$. Собственных векторов нет.
- 3. $V = P_n(F)$ многочлены степени $n, \varphi = \Delta \colon f \to f'$. Тогда $0 \neq f$ собственный вектор тогда, и только тогда, когда f = const.

Собственное подпространство

Пусть $\varphi \in L(V)$, $\lambda \in F$.

Определение. Множество $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda v\}$ называется собственным подпространством линейного оператора, отвечающим собственному значению λ .

Упражнение. Доказать, что $V_{\lambda}(\varphi)$ — действительно подпространство.

Предложение. $V_{\lambda}(\varphi) = \operatorname{Ker}(\varphi - \lambda \operatorname{id}).$

Доказательство.

$$v \in V_{\lambda}(\varphi) \Leftrightarrow \varphi(v) = \lambda v \Leftrightarrow \varphi(v) - \lambda v = 0 \Leftrightarrow (\varphi - \lambda \mathrm{id})(v) = 0 \Leftrightarrow v \in \mathrm{Ker}(\varphi - \lambda \mathrm{id})$$

Следствие. Собственное подпространство $V_{\lambda}(\varphi) \neq \{0\}$ тогда и только тогда, когда $\det(\varphi - \lambda \mathrm{id}) = 0$.

Диагонализуемость

Определение. Линейный оператор φ называется диагонализуемым, если существует базис φ в V такой, что $A(\varphi, \varphi)$ диагональна.

Предложение (Критерий диагонализуемости). Отображение φ диагонализуемо тогда и только тогда, когда в V существует базис из собственных векторов.

Доказательство. Пусть е — базис V. Тогда $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, что равносильно $\varphi(e_i) = \lambda_i e_i$. Это и означает, что все векторы собственные.

В примерах выше:

- 1. φ диагонализуем. $e_1 \in l, e_2 \perp l$. Тогда матрица примет вид $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
- 2. Если $\alpha=\pi k$, то φ диагонализуем ($\varphi=\mathrm{id}$ или $\varphi=-\mathrm{id}$). Не диагонализуем в других случаях.
- 3. φ диагонализуем тогда и только тогда, когда n=0. При n>0 собственных векторов.

Характеристический многочлен линейного оператора. Связь собственных значений линейного оператора с его характеристическим многочленом.

Пусть $\varphi \in L(V)$, $\lambda \in F$.

Определение. Многочлен $\chi_{\varphi}(t)=(-1)^n\det(\varphi-t\mathrm{id})$ называется характеристическим.

Определение. Пусть V- конечномерное векторное пространство над полем F. Рассмотрим линейный оператор $\varphi:V\to V.$ Тогда характеристический многочлен φ имеет вид:

$$\chi_{\varphi}(t) = (-1)^n \det(\varphi - tE) = (-1)^n \begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{vmatrix} =$$

$$= (-1)^n (t^n (-1)^n + \dots) = t^n + c_{n-1} t^{n-1} + \dots + c_0$$

Упражнение. Доказать, что:

$$c_{n-1} = -tr\varphi;$$

$$c_0 = (-1)^n \det \varphi.$$

Предложение. λ — собственное значение линейного оператора φ тогда и только тогда, когда $\chi_{\varphi}(\lambda) = 0$.

Доказательство.
$$\lambda$$
 — собственное значение $\Leftrightarrow \exists v \neq 0 : \varphi(v) = \lambda v \Leftrightarrow (\varphi - \lambda E)v = 0 \Leftrightarrow \text{Ker } (\varphi - \lambda E) \neq \{0\} \Leftrightarrow \det(\varphi - \lambda E) = 0 \Leftrightarrow \chi_{\varphi}(\lambda) = 0.$

Предложение. Если $F = \mathbb{C}$ $u \dim V > 0$, то любой линейный оператор имеет собственный вектор.

Доказательство. Пусть $\varphi: V \to V$ — линейный оператор и $\chi_{\varphi}(t)$ — его характеристический многочлен. У него есть корень λ — собственное значение φ , следовательно существует и собственный вектор v с собственным значением λ .

Пример. Для линейного оператора $\varphi = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (поворот на 90° градусов против часовой стрелки относительно начала координат) характеристический многочлен имеет вид $\chi_{\varphi}(x) = t^2 + 1$.

 $\Pi pu \ F = \mathbb{R} \Rightarrow coбственных значений нет.$

 $\Pi pu \ F = \mathbb{C} \Rightarrow coбcmвенные значения \pm i.$

Алгебраическая и геометрическая кратности собственного значения линейного оператора, связь между ними.

Теорема. Многочлен степени n в поле комплексных чисел имеет n комплексных корней (с учетом кратности).

Доказательство. По основной теореме алгебры каждый многочлен $G(x) \in \mathbb{C}[x]$ степени больше 1 имеет корень. Тогда $G(x) = (x-a_1)G_1(x)$, где a_1 — корень многочлена G(x). В свою очередь, многочлен $G_1(x)$ также имеет корень, и тогда $G(x) = (x-a_1)G_1(x) = (x-a_1)(x-a_2)G_2(x)$. Продолжая по индукции, получаем, что $G(x) = (x-a_1)(x-a_2)\dots(x-a_n)b_n$, где b_n — коэффициент при старшем члене.

Также мы получаем следующее представление:

$$b_n x^n + b_{n-1} x^{n-1} + \ldots + b_0 = b_n (x - a_1)^{k_1} \ldots (x - a_s)^{k_s}$$

Определение. Кратностью корня a_i называется число k_i такое, что в многочлене $b_n(x-a_1)^{k_1} \dots (x-a_s)^{k_s}$ множитель $(x-a_i)$ имеет степень k_i .

Определение. Если k- кратность корня характеристического многочлена, то k- алгебраическая кратность собственного значения.

Определение. Пусть λ — собственное значение φ , тогда $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda v\}$ — собственное подпространство, то есть пространство, состоящее из собственных векторов с собственным значением λ и нуля.

Определение. $\dim V_{\lambda}$ — геометрическая кратность собственного значения λ .

Предложение. Геометрическая кратность не больше алгебраической кратности.

Доказательство. Зафиксируем базис u_1, \ldots, u_p в пространстве V_{λ} , где $p = \dim V_{\lambda}$. Дополним базис u_1, \ldots, u_p до базиса $u_1, \ldots, u_p, u_{p+1}, \ldots, u_n$ пространства V. Тогда матрица линейного оператора φ в том базисе будет выглядеть следующим образом:

$$A_{\varphi} = \begin{pmatrix} \lambda E & A \\ \hline 0 & B \end{pmatrix}, \quad \lambda E \in M_p, A \in M_{n-p}$$

Тогда характеристический многочлен будет следующим:

$$\chi_{\varphi}(t) = (-1)^n \det(A_{\varphi} - tE) = \begin{vmatrix} \lambda - t & 0 \\ & \ddots & A \\ 0 & \lambda - t \end{vmatrix} = (-1)^n (\lambda - t)^p \det(B - tE)$$

Как видим, $\chi_{\varphi}(t)$ имеет корень кратности хотя бы p, следовательно, геометрическая кратность, которая равна p по условию, точно не превосходит алгебраическую.

Пример. Рассмотрим линейный оператор $\varphi = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.

 $V_2 = \langle e_1 \rangle \Rightarrow$ геометрическая кратность равна 1.

 $\chi_{\varphi}(t)=(t-2)^2\Rightarrow$ алгебраическая кратность равна 2.

Сумма нескольких подпространств векторного пространства. Прямая сумма нескольких подпространств, эквивалентные условия.

Определение. Пусть $U_1, \ldots, U_k - noд$ пространства векторного пространства V. Суммой нескольких пространств называется

$$U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}.$$
 (*)

Упражнение. $U_1 + \ldots + U_k - nodnpocmpaнство в V.$

Определение. Сумма (*) называется прямой, если из условия $u_1 + \ldots + u_k = 0$ следует, что $u_1 = \ldots = u_k = 0$. Обозначение: $U_1 \oplus \ldots \oplus U_k$.

Упражнение. Если $v \in U_1 \oplus \ldots \oplus U_k$, то существует единственный такой набор $u_1 \in U_1, \ldots, u_k \in U_k$, что $v = u_1 + \ldots + u_k$.

Теорема. Следующие условия эквивалентны:

- 1. Сумма $U_1 + ... + U_k n$ рямая;
- 2. Если e_i базис U_i , то $e = e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$;

3. $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$.

Доказательство.

 $(1)\Rightarrow (2)$ Пусть мы имеем прямую сумму $U_1\oplus\ldots\oplus U_k$. Покажем, что $e_1\cup\ldots\cup e_k$ — базис $U_1\oplus\ldots\oplus U_k$. Возьмем вектор $v\in U_1\oplus\ldots\oplus U_k$ и представим его в виде суммы $v=u_1+\ldots+u_k$, где $u_i\in U_i$. Такое разложение единственное, так как сумма прямая. Теперь представим каждый вектор этой суммы в виде линейной комбинации базиса соответствующего пространства:

$$v = (c_1^1 e_1^1 + \dots + c_{s_1}^1 e_{s_1}^1) + \dots + (c_1^k e_1^k + \dots + c_{s_k}^k e_{s_k}^k)$$

Здесь e_j^i это j-ый базисный вектор в e_i , базисе U_i . Соответственно, c_j^i это коэффициент перед данным вектором.

Если $e = e_1 \cup \ldots \cup e_k$ не является базисом, то существует какая-то еще линейная комбинация вектора v через эти же векторы:

$$v = (d_1^1 e_1^1 + \ldots + d_{s_1}^1 e_{s_1}^1) + \ldots + (d_1^k e_1^k + \ldots + d_{s_k}^k e_{s_k}^k)$$

Вычтем одно из другого:

$$0 = v - v = ((d_1^1 - c_1^1)e_1^1 + \ldots + (d_{s_1}^1 - c_{s_1}^1)e_{s_1}^1) + \ldots + ((d_1^k - c_1^k)e_1^k + \ldots + (d_{s_k}^k - c_{s_k}^k)e_{s_k}^k)$$

Но по определению прямой суммы, ноль представим только как сумма нулей, то есть d^i_j должно равняться c^i_j . А это значит, что не существует никакой другой линейной комбинации вектора v. Что нам и требовалось.

 $(2) \Rightarrow (1)$ Пусть $e = e_1 \cup \ldots \cup e_k$ — базис $U_1 + \ldots + U_k$. Тогда представим 0 в виде суммы векторов из данных пространств: $0 = u_1 + \ldots + u_k$, где $u_i \in U_i$. Аналогично прошлому пункту, разложим векторы по базисам:

$$0 = (c_1^1 e_1^1 + \ldots + c_{s_1}^1 e_{s_1}^1) + \ldots + (c_1^k e_1^k + \ldots c_{s_k}^k e_{s_k}^k)$$

Но только тривиальная комбинация базисных векторов дает ноль. Следовательно, $u_1 = \ldots = u_k = 0$, и наша сумма по определению прямая.

 $(2)\Rightarrow (3)$ Пусть $e=e_1\cup\ldots\cup e_k$ — базис $U_1+\ldots+U_k$. Тогда:

$$\dim(U_1 + \ldots + U_k) = |e| = |e_1| + \ldots + |e_k| = \dim(U_1) + \ldots + \dim(U_k).$$

 $(3) \Rightarrow (2)$ Пусть $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$.

Векторы е порождают сумму, следовательно, из е можно выделить базис суммы:

$$\dim(U_1 + \ldots + U_k) \leqslant |e| \leqslant |e_1| + \ldots + |e_k| = \dim U_1 + \ldots + \dim U_k.$$

Но по условию $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$. Тогда $\dim(U_1 + \ldots + U_k) = |e|$, и e это базис $U_1 + \ldots + U_k$.

Сумма собственных подпространств линейного оператора, отвечающих попарно различным собственным значениям. Признак диагонализуемости линейного опеаратора.

Пусть V — векторное пространство над полем $F, \varphi \in L(V), \lambda_1, \ldots, \lambda_k$ — набор собственных значений φ , где $\lambda_i \neq \lambda_j$ при $i \neq j$, и $V_{\lambda_i}(\varphi) \subseteq V$ — соответствующее собственное подпространство.

Предложение. Сумма $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_k}(\varphi)$ является прямой.

Доказательство. Докажем индукцией по k.

База: k = 1. Тут все ясно.

Теперь пусть утверждение доказано для всех значений, меньших k. Докажем для k.

Пусть $v_i \in V_{\lambda_i}(\varphi)$ и пусть $v_1 + \ldots + v_k = 0$. Тогда:

$$\varphi(v_1 + \ldots + v_k) = \varphi(0) = 0$$

$$\varphi(v_1) + \ldots + \varphi(v_k) = 0$$

$$\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$$

Теперь вычтем из нижней строчки $v_1 + \ldots + v_k = 0$, домноженное на λ_k . Получим:

$$(\lambda_1 - \lambda_k)v_1 + \ldots + (\lambda_k - \lambda_k)v_k = 0$$

$$(\lambda_1 - \lambda_k)v_1 + \ldots + (\lambda_{k-1} - \lambda_k)v_{k-1} + 0v_k = 0$$

Но из предположения индукции, а также потому что $\lambda_i \neq \lambda_j$ при $i \neq j$, следует, что $v_1 = \ldots = v_{k-1} = 0$. Но тогда и $v_k = 0$.

Следовательно, сумма прямая, что нам и требовалось.

Диагонализуемость

Следствие. Если характеристический многочлен имеет ровно n попарно различных корней, где $n = \dim V$, то φ диагонализируем.

Доказательство. Пусть $\lambda_1,\ldots,\lambda_n$ — корни $\chi_{\varphi}(t),\,\lambda_i\neq\lambda_j$. Тогда для всех i выполняется, что $V_{\lambda_i}(\varphi)\neq\{0\}$ и, следовательно, $\dim V_{\lambda_i}(\varphi)=1$. Но так как сумма $V_{\lambda_1}(\varphi)+\ldots+V_{\lambda_k}(\varphi)$ — прямая, то $\dim(V_{\lambda_1}(\varphi)+\ldots+V_{\lambda_k}(\varphi))=\dim V_{\lambda_1}(\varphi)+\ldots+\dim V_{\lambda_k}(\varphi)=n$. Иными словами, $V=V_{\lambda_1}(\varphi)\oplus\ldots\oplus V_{\lambda_k}(\varphi)$.

Выберем произвольные $v_i \in V_{\lambda_i} \setminus \{0\}$. Тогда (v_1, \dots, v_n) будет базисом в V. И так как все v_i — собственные значения для φ , то φ диагонализируем.

Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и кратностей собственных значений.

Теорема (Критерий диагонализируемости - 2). Линейный оператор φ диагонализируем тогда и только тогда, когда

- 1. $\chi_{\varphi}(t)$ разлагается на линейные множители;
- 2. Если $\chi_{\varphi}(t) = (t \lambda_1)^{k_1} \dots (t \lambda_s)^{k_s}$, где $\lambda_i \neq \lambda_j$ при $i \neq j$, то $\dim V_{\lambda_i}(\varphi) = k_i \, \forall i$ (то есть для любого собственного значения V равны геометрическая и алгебраическая кратности).

Доказательство.

 \Rightarrow Так как φ — диагонализируем, то существует базис $\mathbf{e}=(e_1,\ldots,e_n)$ такой, что:

$$A(\varphi, \mathbb{P}) = \begin{pmatrix} \mu_1 & 0 \\ & \ddots \\ 0 & \mu_n \end{pmatrix} = \operatorname{diag}(\mu_1, \dots, \mu_n).$$

Тогда:

$$\chi_{\varphi}(t) = (-1)^n \begin{vmatrix} \mu_1 - t & 0 \\ & \ddots & \\ 0 & \mu_n - t \end{vmatrix} = (-1)^n (\mu_1 - t) \dots (\mu_n - t) = (t - \mu_1) \dots (t - \mu_n).$$

Итого, первое условие выполняется.

Теперь перепишем характеристический многочлен в виде $\chi_{\varphi}(t)=(t-\lambda_1)^{k_1}\dots(t-\lambda_s)^{k_s}$, где $\lambda_i\neq\lambda_j$ при $i\neq j$ и $\{\lambda_1,\dots,\lambda_s\}=\{\mu_1,\dots,\mu_n\}$. Тогда $V_{\lambda_i}\supseteq\langle e_j\mid \mu_j=\lambda_i\rangle$, следовательно, $\dim V_{\lambda_i}(\varphi)\geqslant k_i$. Но мы знаем, что $\dim V_{\lambda_i}\leqslant k_i$! Значит, $\dim V_{\lambda_i}(\varphi)=k_i$.

 \Leftarrow Так как $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi)$ — прямая, то $\dim(V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi)) = k_1 + \ldots + k_s = n$. Пусть e_i — базис в V_{λ_i} . Тогда $e_1 \cup \ldots \cup e_s$ — базис в V. То есть мы нашли базис из собственных векторов, следовательно, φ диагонализируем.

Существование одномерного или двумерного инвариантного подпространства у линейного оператора в векторном пространстве над R.

Пусть V — векторное пространство над полем \mathbb{C} , $\varphi \in L(V)$. Тогда в V есть собственный вектор (или одномерное φ —инвариантное пространство).

Теперь пусть V — векторное пространство над полем \mathbb{R} , $\varphi \in L(V)$.

Теорема. Существует одномерное или двумерное φ -инвариантное подпространство в V.

Доказательство. Пусть $e = (e_1, \dots, e_n)$ — базис в V. Комплексифицируем V.

$$V^{\mathbb{C}} = \{ u + iv \mid u, v \in V \}$$

$$V^{\mathbb{C}} \supset V = \{ u + i \cdot 0 \mid u \in V \}$$

Рассмотрим линейный оператор $\varphi_{\mathbb{C}} \in L(V^{\mathbb{C}})$, заданный как $\varphi_{\mathbb{C}}(e_i) = \varphi(e_i)$, $\forall i$. Значит, e_1, \ldots, e_n базис в $V^{\mathbb{C}}$. Следовательно, $\chi_{\varphi_{\mathbb{C}}}(t) = \chi_{\varphi}(t)$, так как $A(\varphi_{\mathbb{C}}, e) = A(\varphi, e)$.

Случай 1: $\chi_{\varphi}(t)$ имеет хотя бы один действительный корень. Отсюда следует, что в V есть собственный вектор, что равносильно существованию одномерного φ -инвариантного подпространства (тогда $V^{\mathbb{C}}$ нам не нужно).

Случай 2: χ_{φ} не имеет действительных корней. Пусть $\lambda + i\mu$ — некоторый корень $\chi_{\varphi}(t)$, который, напомним, равен $\chi_{\varphi_{\mathbb{C}}}(t)$. Тогда у $\varphi_{\mathbb{C}}$ существует собственный вектор $u+iv\in V^{\mathbb{C}}$ с собственным значением $\lambda+i\mu$ такой, что:

$$\varphi_{\mathbb{C}}(u+iv) = (\lambda + i\mu)(u+iv)$$

$$\varphi_{\mathbb{C}}(u+iv) = \varphi_{\mathbb{C}}(u) + i\varphi_{\mathbb{C}}(v) = \varphi(u) + i\varphi(v)$$

$$(\lambda + i\mu)(u+iv) = \lambda\mu - \mu\nu + i(\mu u + \lambda v)$$

Сравнивая два последних равенства, получаем:

$$\varphi(u) = \lambda u - \mu v$$
$$\varphi(v) = \mu u + \lambda v$$

Следовательно, $\langle u,v \rangle - \varphi$ —инвариантное подпространство в V, двумерное если u и v линейно независимы и одномерное в противном случае.

Упражнение. Когда нет действительных корней (второй случай), φ -инвариантное подпространство в V всегда двумерно.

Пример. Поворот на α в \mathbb{R}^2 : $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Тогда $u=e_1,\ v=e_2,\ \lambda+i\mu=\cos \alpha+i\sin \alpha$.

Корневые векторы линейного оператора. Корневое подпространство. Критерий нетривиальности корневого подпространства. Инвариантность корневого подпространства.

Определение. Вектор $v \in V$ называется корневым вектором линейного оператора φ , отвечающим значению $\lambda \in F$, если существует целочисленное $m \geqslant 0$ такое, что $(\varphi - \lambda \mathrm{id})^m(v) = 0$. Наименьшее такое m называют высотой корневого вектора v.

Замечание.

- 1. Вектор v = 0 для любого φ имеет высоту θ .
- 2. Корневые векторы высоты 1- это в точности собственные векторы.

Пример. $V = F[x]_{\leq n}, \ \Delta : f \to f'. \ 3 \ decb \ \lambda = 0 - e \ duнc mвенное собственное значение. Все векторы — корневые, отвечающие <math>\lambda = 0$.

Определение. Множество $V^{\lambda}(\varphi) = \{v \in V \mid \exists m \geqslant 0 : (\varphi - \lambda \mathrm{id})^m(v) = 0, m \in \mathbb{Z}\}$ называется корневым пространством для $\lambda \in F$.

Упражнение. $V^{\lambda}(\varphi) - nodnpocmpaнcmво$ в V.

Замечание. $V_{\lambda}(\varphi) \subseteq V^{\lambda}(\varphi) \ \forall \lambda \in F$.

Предложение. Корневое подпространство нетривиально тогда и только тогда, когда λ является собственным значением. Другими словами, $V^{\lambda}(\varphi) \neq \{0\} \Leftrightarrow \chi_{\varphi}(\lambda) = 0$.

Доказательство.

$$\Leftarrow \chi_{\varphi}(\lambda) = 0 \Rightarrow V_{\lambda}(\varphi) \neq \{0\} \Rightarrow V^{\lambda}(\varphi) \neq \{0\}, \text{ так как } V^{\lambda}(\varphi) \supset V_{\lambda}(\varphi).$$

$$\Rightarrow$$
 Пусть $V^{\lambda}(\varphi) \neq \{0\} \Rightarrow \exists v \neq 0 \in V^{\lambda}(\varphi) \Rightarrow \exists m \geqslant 1 : (\varphi - \lambda \mathrm{id})^m(v) = 0.$ Рассмотрим $u = (\varphi - \lambda \mathrm{id})^{m-1}(v) \neq 0$, тогда:

$$(\varphi - \lambda id)(u) = (\varphi - \lambda id)(\varphi - \lambda id)^{m-1}(v) = (\varphi - \lambda id)^m(v) = 0.$$

То есть вектор u — это вектор, для которого $(\varphi - \lambda id)(u) = 0$, то есть собственный вектор. Следовательно λ — собственное значение.

Предложение. Для любого собственного значения $\lambda \in F$ подпространство $V^{\lambda}(\varphi)$ инвариантно относительно φ .

Доказательство. Пусть v — корневой вектор высоты m. Докажем, что $\varphi(v)$ — также корневой вектор.

Заметим, что если $u=(\varphi-\lambda \mathrm{id})(v)$, то u — корневой вектор высоты m-1, и, соответственно, лежит в корневом подпространстве:

$$u = (\varphi - \lambda id)(v) = \varphi(v) - \lambda v \in V^{\lambda}(\varphi).$$

Мы получили, что $\varphi(v) \in \lambda v + V^{\lambda}(\varphi)$. Но $\lambda v \in V^{\lambda}(\varphi)$, то есть $\lambda v + V^{\lambda}(\varphi) = V^{\lambda}(\varphi)$ и $\varphi(v) \in V^{\lambda}(\varphi)$. Что и означает, что пространство инвариантно относительно оператора φ .

Характеристический многочлен ограничения линейного оператора на корневое подпространство.

Пусть V — конечномерное векторное пространство, φ — его линейный оператор.

Положим для краткости, что $\varphi - \lambda id = \varphi_{\lambda}$.

Заметим, что ядра степеней линейного оператора «вкладываются» друг в друга — те векторы, которые стали нулевыми при применении линейного оператора φ_{λ}^{k} , при применении линейного оператора φ_{λ} ещё раз так и остаются нулевыми, а также «добиваются» (переводятся в нулевые) некоторые ранее ненулевые векторы. Итого, получаем следующее:

$$V_{\lambda}(\varphi) = \ker \varphi_{\lambda} \subset \ker \varphi_{\lambda}^{2} \subset \ldots \subset \ker \varphi_{\lambda}^{m} \subset \ldots$$

Причём существует такое m, что $\ker \varphi_{\lambda}^m = \ker \varphi_{\lambda}^{m+1}$, так как V — конечномерно и размерность его не может увеличиваться бесконечно. Выберем наименьшее такое m.

Упражнение. Доказать, что для любого $s\geqslant 0$ выполняется равенство $\ker \varphi_\lambda^m=\ker \varphi_\lambda^{m+s}$.

Заметим также, что $V^{\lambda}(\varphi) = \ker \varphi_{\lambda}^{m}$. Пусть $k_{i} = \dim \ker \varphi_{\lambda}^{i}$. Тогда:

$$\dim V_{\lambda}(\varphi) = k_1 < k_2 < \ldots < k_m = \dim V^{\lambda}(\varphi).$$

Будем обозначать как $\varphi|_V$ ограничение линейного оператора на пространство V.

Предложение.

- 1. Характеристический многочлен линейного отображения $\varphi \mid_{V^{\lambda}(\varphi)}$ равен $(t-\lambda)^{k_m}$.
- 2. Если $\mu \neq \lambda$, то линейный оператор $\varphi \mu \mathrm{id}$ невырожден на $V^{\lambda}(\varphi)$.

Доказательство. Положим для краткости $\varphi_{\lambda} = \varphi - \lambda id$.

Пусть $k_i = \dim \ker \varphi_{\lambda}^i$, для $i = 1, \ldots, m$. Пусть также $k_0 = 0$.

Выберем базис $e = (e_1, \dots, e_{k_m})$ в $V^{\lambda}(\varphi)$ так, чтобы (e_1, \dots, e_{k_i}) также был базисом в $\ker \varphi^i_{\lambda}$. Тогда матрица ограничения φ_{λ} на $V^{\lambda}(\varphi)$ в этом базисе имеет блочный вид:

$$A(\varphi_{\lambda}|_{V^{\lambda}(\varphi)}, \mathfrak{e}) = \begin{pmatrix} 0 & * & * & \dots & * & * \\ 0 & 0 & * & \dots & * & * \\ 0 & 0 & 0 & \dots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & * \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix},$$

где (i,j)-ый блок — это матрица $\mathrm{Mat}_{(k_i-k_{i-1})\times(k_j-k_{j-1})}.$

Но тогда:

$$A(\varphi|_{V^{\lambda}(\varphi)}, \mathbf{e}) = A(\varphi_{\lambda}|_{V^{\lambda}(\varphi)}, \mathbf{e}) + \lambda E = \begin{pmatrix} A_1 & * & * & \dots & * & * \\ 0 & A_2 & * & \dots & * & * \\ 0 & 0 & A_3 & \dots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & A_{m-1} & * \\ 0 & 0 & 0 & \dots & 0 & A_m \end{pmatrix}, \quad \text{где } A_i = \lambda E_{k_i - k_{i-1}} \quad (*)$$

А значит, характеристический многочлен линейного отображения $\varphi|_{V^{\lambda}(\varphi)}$ равен $(t-\lambda)^{k_m}$.

Теперь докажем невырожденность линейного оператора $(\varphi - \mu id)$ при $\mu \neq \lambda$.

Рассмотрим матрицу ограничения этого оператора на корневое подпространство:

$$A((\varphi - \mu \mathrm{id})|_{V^{\lambda}(\varphi)}, e) = A(\varphi|_{V^{\lambda}(\varphi)}, e) - \mu E.$$

Она имеет вид (*), где $A_i = (\lambda - \mu) E_{k_i}$. Следовательно,

$$\det((\varphi - \mu \mathrm{id})|_{V^{\lambda}(\varphi)}) = (\lambda - \mu)^{k_m} \neq 0.$$

Что и означает, что линейный оператор невырожден.

Размерность корневого подпространства линейного оператора.

Предложение. Если λ – собственное значение φ , то dim $V^{\lambda}(\varphi)$ равен кратности λ как корня многочлена $\chi_{\varphi}(t)$.

Доказательство. Пусть (e_1, \ldots, e_k) — базис $V^{\lambda}(\varphi)$, $k = \dim V^{\lambda}(\varphi)$. Дополним (e_1, \ldots, e_k) до базиса $\mathbf{e} = (e_1, \ldots, e_n)$ всего пространства V. Тогда матрица линейного оператора имеет следующий вид:

$$A_{\varphi} = \left(\begin{array}{c|c} B & * \\ \hline 0 & C \end{array}\right), \quad B \in M_k, C \in M_{n-k}$$
$$\chi_{\varphi}(t) = \det(tE - A) = \det(tE - B) \det(tE - C).$$

Заметим, что $\det(tE-B)$ — это характеристический многочлен $\varphi|_{V^{\lambda}(\varphi)},$ следовательно,

$$\chi_{\varphi}(t) = (t - \lambda)^k \det(tE - C).$$

Осталось показать, что λ — не корень $\det(tE-C)$.

Пусть $W = \langle e_{k+1}, \dots, e_n \rangle$. Тогда рассмотрим линейный оператор $\psi \in L(W)$, у которого матрица в базисе (e_{k+1}, \dots, e_n) есть C. Предположим, что $\det(\lambda E - C) = 0$. Это значит, что λ — собственное значение для ψ и существует вектор $w \in W$, $w \neq 0$ такой, что $\psi(w) = \lambda w$.

Тогда:

$$\varphi(w) = \lambda w + u, \quad u \in V^{\lambda}(\varphi)$$
$$\varphi(w) - \lambda w \in V^{\lambda}(\varphi)$$
$$(\varphi - \lambda id)(w) \in V^{\lambda}(\varphi) \Rightarrow w \in V^{\lambda}(\varphi)$$

Получили противоречие. Значит, λ — не корень $\det(tE-C)$.

Следствие. $V^{\lambda}(\varphi) = \ker \varphi_{\lambda}^{s}$, $\varepsilon \partial e \ s \ - \kappa pamhocmb \ \lambda \ \kappa a \kappa \ \kappa oph s \ многочлена \ \chi_{\varphi}(t)$.

Сумма корневых подпространств, отвечающих попарно различным собственным значениям. Признак разложимости пространства в прямую сумму корневых подпространств линейного оператора. Формулировка Теоремы о Жордановой нормальной форме линейного оператора.

Предложение. Если $\lambda_1, \ldots, \lambda_k$, где $\lambda_i \neq \lambda_j$ при $i \neq j$ — собственные значения φ , то сумма $V^{\lambda_1}(\varphi) + \ldots + V^{\lambda_k}(\varphi)$ — прямая.

Доказательство. Докажем индукцией по k.

База при k = 1 - ясно.

Теперь пусть утверждение доказано для всех значений, меньших k. Докажем для k.

Выберем векторы $v_i \in V^{\lambda_i}(\varphi)$ такие, что $v_1 + \ldots + v_k = 0$. Пусть m — высота вектора v_k . Тогда применим к нашей сумме оператор $\varphi^m_{\lambda_k}$, получив следующее:

$$\varphi_{\lambda_k}^m(v_1) + \ldots + \varphi_{\lambda_k}^m(v_{k-1}) + \varphi_{\lambda_k}^m(v_k) = 0.$$

С другой стороны, $\varphi_{\lambda_k}^m(v_k) = 0$, то есть:

$$\varphi_{\lambda_k}^m(v_1) + \ldots + \varphi_{\lambda_k}^m(v_{k-1}) + \varphi_{\lambda_k}^m(v_k) = \varphi_{\lambda_k}^m(v_1) + \ldots + \varphi_{\lambda_k}^m(v_{k-1}) = 0.$$

Тогда по предположению индукции $\varphi_{\lambda_k}^m(v_1)=\ldots=\varphi_{\lambda_k}^m(v_{k-1})=0$. Но $\varphi_{\lambda_k}|_{V^{\lambda_i}(\varphi)}$ невырожден и, следовательно, обратим при $i\neq k$. Значит, $v_1=\ldots=v_{k-1}=0$. Но тогда и $v_k=0$.

Следовательно, сумма прямая, что нам и требовалось.

Теорема. Если характеристический многочлен $\chi_{\varphi}(t)$ разлагается на линейные множители, причём $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, то $V = \bigoplus_{i=1}^s V^{\lambda_i}(\varphi)$.

Доказательство. Так как сумма $V^{\lambda_1}(\varphi) + \ldots + V^{\lambda_s}(\varphi)$ прямая и для любого i выполняется, что $\dim(V^{\lambda_i}(\varphi)) = k_i$, то:

$$\dim(V^{\lambda_1}(\varphi) + \ldots + V^{\lambda_s}(\varphi)) = k_1 + \ldots + k_s = \dim V.$$

Следовательно, $V = \bigoplus_{i=1}^{s} V^{\lambda_i}(\varphi)$.

Жордановы клетки

Определение. Пусть $\lambda \in F$. **Жордановой клеткой** порядка n, отвечающей значению λ , называется матрица вида:

$$J_{\lambda}^{n} = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix} \in M_{n}(F).$$

Пусть V — векторное пространство, φ — линейный оператор.

Теорема (Жорданова нормальная форма линейного оператора). Пусть $\chi_{\varphi}(t)$ разлагается на линейные множители. Тогда существует базис е в V такой, что

$$A(\varphi, e) = \begin{pmatrix} J_{\mu_1}^{n_1} & 0 & \dots & 0 \\ 0 & J_{\mu_2}^{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\mu_p}^{n_p} \end{pmatrix} \quad (*)$$

Кроме того, матрица (*) определена однозначно с точностью до перестановок жордановых клеток.

Определение. *Матрица* (*) называется жордановой нормальной формой линейного оператора.

Следствие. В векторном пространстве над полем комплексных чисел для любого линейного оператора существует жорданова нормальная форма.

Линейная функция на векторном пространстве. Пространство линейных функций, его размерность. Двойственный (сопряжённый) базис.

Рассмотрим функцию $f: \mathbb{R}^n \to \mathbb{R}$.

Пусть $x_0 \in \mathbb{R}^n$ и $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$ — приращение, то есть $x = x_0 + y$. Если функция достаточно

хорошая, то есть дважды дифференцируема в точке x, то

$$f(x) = f(x_0) + a_1 y_1 + \ldots + a_n y_n + b_{11} y_1^2 + \ldots + b_{ij} y_i y_j + \ldots + b_{nn} y_n^2 + \overline{o}(|y|^2).$$

Сумма $a_1y_1+\ldots+a_ny_n$ называется линейной формой, а сумма $b_{11}y_1^2+\ldots+b_{ij}y_iy_j+\ldots+b_{nn}y_n^2$ — квадратичной формой.

Теперь дадим строгое определение:

Определение. Линейной функцией (формой, функционалом) на векторном пространстве V называется всякое линейное отображение $\sigma\colon V\to F$, где F — одномерное векторное пространство.

Обозначение: $V^* = \text{Hom}(V, F)$.

Замечание. Функционалом принято называть, когда векторное пространство состоит из функций.

Пример.

1. $\alpha \colon \mathbb{R}^n \to \mathbb{R}; \ \varphi(v) = \langle v, e \rangle$ — скалярное произведение с некоторым фиксированным е.

2.
$$\alpha: \mathcal{F}(X,F) \to F; \ \alpha(f) = f(x_0). \ 3\partial ecb \ \mathcal{F}(X,F) = \{f: X \to F\}.$$

3.
$$\alpha : C[a,b] \to \mathbb{R}; \ \alpha(f) = \int_a^b f(x) dx.$$

4.
$$\alpha: M_n(F) \to F; \ \alpha(X) = \operatorname{tr} A.$$

Определение. Пространство V^* называется сопряженным (двойственным) к V.

Пусть $e = (e_1, \dots, e_n)$ — базис V. Тогда он определяет изоморфизм $\varphi \colon V^* \to \operatorname{Mat}_{1 \times n}$, $\alpha \mapsto (\alpha_1, \dots, \alpha_n)$, где $\alpha_i = \varphi(e_i)$ и α — линейная функция. При этом, если $x = x_1e_1 + \dots + x_ne_n$,

To
$$\alpha(x) = (\alpha_1, \dots, \alpha_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
.

Следствие. $\dim V^* = n$.

Пусть $e = (e_1, \dots, e_n)$ — базис V. Рассмотрим линейные формы $\varepsilon_0, \dots, \varepsilon_n$ такие, что $\varepsilon_i(e_j) = \delta_{ij}$, где $\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$ — символ Кронекера. То есть $\varepsilon_i = (\delta_{i1}, \dots, \delta_{ii}, \dots, \delta_{in}) = (0, \dots, 1, \dots, 0)$.

Предложение. $(\varepsilon_1,\ldots,\varepsilon_n)$ — базис в V^* .

Доказательство. Возьмем любое $\alpha \in V^*$. Положим $a_i = \alpha(e_i)$. Тогда $\alpha = a_1\varepsilon_1 + \ldots + a_n\varepsilon_n$. То есть мы получили, что через $(\varepsilon_1, \ldots, \varepsilon_n)$ действительно можно выразить любое α .

Теперь покажем, что $\varepsilon_1, \ldots, \varepsilon_n$ — линейно независимы. Пусть $a_1\varepsilon_1 + \ldots + a_n\varepsilon_n = 0$, $a_i \in F$. Применив эту функцию к e_i , получим, что $a_1\varepsilon_1(e_1) + \ldots + a_n\varepsilon_n(e_i) = 0$. Отсюда следует, что $a_i = 0$, а все остальные a_j , при $j \neq i$, равны нулю в силу определения ε_j . Итого, $a_1 = \ldots = a_n = 0$, что и доказывает линейную независимость.

Определение. $\mathit{Basuc}\ (\varepsilon_1,\ldots,\varepsilon_n)$ называется сопряженным κ $\mathfrak e$ базисом.

Упражнение. Всякий базис V^* сопряжен некоторому базису V.

Билинейная функция. Матрица билинейной функции. Формула для вычисления значений билинейной функции в координатах.

Существование и единственность билинейной функции с заданной матрицей. Формула изменения матрицы билинейной функции при переходе к другому базису. Ранг билинейной функции.

Определение. Билинейной функцией (формой) на векторном пространстве V называется всякое билинейное отображение $\beta \colon V \times V \to F$. То есть это отображение, линейное по кажсдому аргументу:

1.
$$\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y);$$

2.
$$\beta(\lambda x, y) = \lambda \beta(x, y);$$

3.
$$\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2);$$

4.
$$\beta(x, \lambda y) = \lambda \beta(x, y)$$
.

Пример.

1.
$$V = \mathbb{R}^n$$
, $\beta(x,y) = \langle x,y \rangle - c$ калярное произведение.

2.
$$V = \mathbb{R}^2$$
, $\beta(x, y) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$.

3.
$$V = C[a, b], \ \beta(f, g) = \int_a^b f(x)g(x)dx.$$

Пусть V — векторное пространство, $\dim V < \infty, \beta \colon V \times V \to F$ — билинейная функция.

Определение. Матрицей билинейной функции в базисе e называется матрица $B = (b_{ij})$, где $b_{ij} = \beta(e_i, e_j)$. Обозначение: $B(\beta, e)$.

Пусть $x = x_1 e_1 + \ldots + x_n e_n \in V$ и $y = y_1 e_1 + \ldots + y_n e_n \in V$. Тогда:

$$\beta(x,y) = \beta\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{i=1}^{n} x_i \beta\left(e_i, \sum_{j=1}^{n} y_j e_j\right) =$$

$$= \sum_{i=1}^{n} x_i \sum_{j=1}^{n} y_j \beta(e_i, e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i b_{ij} y_j =$$

$$= (x_1, \dots, x_n) B\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad (*)$$

Предложение.

- 1. Всякая билинейная функция однозначно определяется своей матрицей в базисе e (u, следовательно, в любом другом базисе).
- 2. Для любой матрицы $B \in M_n(F)$ существует единственная билинейная функция β такая, что $B = B(\beta, e)$.

Доказательство.

- 1. Уже доказано, это следует из формулы (*).
- 2. Определим β по формуле (*). Тогда β это билинейная функция на V и ее матрица есть в точности B. Единственность следует из все той же формулы.

Пусть $e = (e_1, \dots, e_n)$ и $e' = (e'_1, \dots, e'_n)$ — два базиса V, β — билинейная функция на V. Пусть также e' = eC, где C — матрица перехода, также $B(\beta, e) = B$ и $B(\beta, e') = B'$.

Предложение. $B' = C^T B C$.

Доказательство. Рассмотрим представление вектора $x \in V$ в обоих базисах.

$$x = x_1 e_1 + \dots + x_n e_n = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$x = x_1' e_1' + \dots + x_n' e_n' = (e_1', \dots, e_n') \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

Аналогично для $y \in V$:

$$y = (e_1, \dots, e_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \Longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

$$y = (e'_1, \dots, e'_n) \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix} \Longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Тогда, если мы транспонируем формулу для x, получаем:

$$\beta(x,y) = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (x'_1, \dots, x'_n) C^T B C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Одновременно с этим:

$$\beta(x,y) = (x'_1, \dots, x'_n)B'\begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Сравнивая эти две формулы, получаем, что $B' = C^T B C$.

Следствие. Число ${\rm rk}\ B$ не зависит от выбора базиса.

Определение. Число $\operatorname{rk} B$ называется рангом билинейной функции β . Обозначение: $\operatorname{rk} \beta$.

Симметричная билинейная функция. Характеризация симметричности билинейной функции в терминах её матрицы. Квадратичная форма. Соответствие между симметричными билинейными функциями и квадратичными формами. Матрица квадратичной формы.

Определение. Билинейная функция называется симметричной, если $\beta(x,y) = \beta(y,x)$ для любый $x,y \in V$.

Предложение. Билинейная функция β симметрична тогда и только тогда, когда матрица $B(\beta, e)$ — симметрическая (т.е. она равна своей транспонированной).

Доказательство. Пусть $B = B(\beta, e)$.

$$\Rightarrow \beta(e_i,e_j) = b_{ij} = b_{ji} = \beta(e_j,e_i) \Rightarrow B$$
 симметрична.

 \Leftarrow Пусть $x = x_1e_1 + \dots x_ne_n$ и $y = y_1e_1 + \dots + y_ne_n$. Также воспользуемся тем, что данная нам матрица симметрична, то есть равна своей транспонированной.

$$\beta(y,x) = (y_1, \dots, y_n) B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{bmatrix} (y_1, \dots, y_n) B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \end{bmatrix}^T =$$

$$= (x_1, \dots, x_n) B^T \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \beta(x,y)$$

То есть $\beta(y,x) = \beta(x,y)$, что и означает, что β симметрична.

Квадратичные функции

Определение. Пусть β : $V \times V \to F$ — билинейная функция. Тогда Q_{β} : $V \to F$, заданная формулой $Q_{\beta}(x) = \beta(x,x)$, называется квадратичной функцией (формой), ассоциированной с билинейной функцией β .

Покажем, что такая квадратичная функция по своему виду является однородным многочленом степени 2 от n переменных. Пусть $e = (e_1, \ldots, e_n)$ — базис $V, B = B(\beta, e), x = (x_1, \ldots, x_n)$. Тогда:

$$Q_{\beta}(x) = (x_1, \dots, x_n)V\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^n b_{ij}x_ix_j$$

Пример. $3decb \ e - cmandapmnый базис.$

1.
$$V = \mathbb{R}^n$$
, $\beta(x,y) = x_1 y_1 + \ldots + x_n y_n \implies Q_{\beta}(x) = x_1^2 + \ldots + x_n^2$, $B(\beta, e) = E$.

2.
$$V = \mathbb{R}^2$$
, $\beta(x,y) = 2x_1y_2 \implies Q_{\beta}(x) = 2x_1x_2$, $B(\beta,e) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.

3.
$$V = \mathbb{R}^2$$
, $\beta(x,y) = x_1 y_2 + x_2 y_1 \implies Q_{\beta}(x) = 2x_1 x_2$, $B(\beta, e) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Замечание. Kвадратичная функция задает билинейную функцию не однозначно (примеры 2 и 3).

Предположим, что в нашем поле F можно делить на два. То есть: рассматриваем такие поля F, в которых $1+1\neq 0$. В терминах поля, это уже гораздо более осмысленное и понятное условие.

Теорема. Отображение $\beta \mapsto Q_{\beta}$ является биекцией между симметричными билинейными функциями на V и квадратичными функциями на V.

Доказательство.

Суръективность. Пусть β — билинейная функция. Рассмотрим тогда ассоциированную с ней квадратичную функцию $Q_{\beta}(x) = \beta(x,x)$. Пусть $\sigma(x,y) = \frac{1}{2}(\beta(x,y) + \beta(y,x))$ — симметричная билинейная функция на V. Тогда:

$$Q_{\sigma}(x) = \sigma(x, x) = \frac{1}{2}(\beta(x, x) + \beta(x, x)) = \beta(x, x) = Q_{\beta}(x)$$

Итого, $Q_{\sigma} = Q_{\beta}$. Следовательно, отображение суръективно.

<u>Инъективность</u>. Пусть $\beta(x,y)$ – симметричная билинейная функция. Аналогично, рассмотрим $Q_{\beta}(x) = \beta(x,x)$. Посмотрим на $Q_{\beta}(x+y)$:

Полученная выше формула как раз и означает, что значения билинейной функции однозначно задаются соответствующей квадратичной функцией. \Box

Замечание.

- 1. Билинейная функция $\sigma(x,y)=\frac{1}{2}(\beta(x,y)+\beta(y,x))$ называется симметризацией билинейной функции β . Причем если $B=B(\beta,\mathbb{e})$ и $S=B(\sigma,\mathbb{e}),$ то $S=\frac{1}{2}(B+B^T).$
- 2. Симметричная билинейная функция $\beta(x,y) = \frac{1}{2} \left(Q_{\beta}(x+y) Q_{\beta}(x) Q_{\beta}(y) \right)$ называется поляризацией квадратичной функции Q.

Пример. Для предыдущих двух примеров:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{2} \left(\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}^T \right)$$

Пусть V — векторное пространство, $\dim V < \infty, \ \beta \colon V \times V \to F$ — билинейная функция, $Q_\beta \colon V \times F$ — ассоциированная с ней квадратичная форма.

Матрица Q_{β} равна матрице β .

Канонический и нормальный вид квадратичной формы. Метод Лагранжа приведения квадратичной формы к каноническому виду. Приведение квадратичной формы над полем R к нормальному виду.

Пусть V — векторное пространство, $\dim V = n$, $e = (e_1, \dots, e_n)$ — базис V, $Q: V \to F$ — квадратичная функция на V.

Теорема. Для любой квадратичной функции Q существует такой базис, в котором Q имеет канонический вид.

Доказательство. Метод Лагранжа.

Докажем индукцией по n.

При n=1 имеем, что $Q(x)=ax^2$, то есть уже имеем канонический вид.

Предположим, что для всех значений меньших n доказано. Докажем тогда для n.

Пусть $A = (a_{ij})$ — матрица квадратичной функции Q в исходном базисе. Тогда:

$$Q(x) = Q(x_1, \dots, x_n) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

<u>Случай 0</u>: пусть $a_{ij} = 0$ для всех пар (i, j). Тогда $Q(x) = 0x_1^2 + \ldots + 0x_n^2$ — уже канонический вид.

Случай 1: пусть существует такое i, что $a_{ii} \neq 0$. Перенумеровав переменные, считаем, что $a_{11} \neq 0$. Тогда:

$$Q(x_1, \dots, x_n) = (a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n) + Q_1(x_2, \dots, x_n) =$$

$$= \frac{1}{a_{11}} \left((a_{11}x_1 + \dots + a_{1n}x_n)^2 - (a_{12}x_2 + \dots + a_{1n}x_n)^2 \right) + Q_1(x_2, \dots, x_n) =$$

$$= \frac{1}{a_{11}} (a_{11}x_1 + \dots + a_{1n}x_n)^2 + Q_2(x_2, \dots, x_n)$$

Теперь сделаем следующую замену переменных:

$$x'_1 = a_{11}x_1 + \ldots + a_{1n}x_n$$

 $x'_2 = x_2, \ldots, x'_n = x_n$

Получаем:

$$Q(x'_1, \dots, x'_n) = \frac{1}{a_{11}} x'_1 + Q_2(x'_2, \dots, x'_n)$$

Дальше пользуемся предположением индукции для Q_2 , окончательно получая канонический вид для исходной Q.

<u>Случай 2</u>: пусть $a_{ii} = 0$ для всех i, но существует такая пара (i,j), где i < j, что $a_{ij} \neq 0$. Переименовываем переменные так, чтобы $a_{12} \neq 0$ и делаем замену:

$$x_1 = x'_1 - x'_2$$

$$x_2 = x'_1 + x'_2$$

$$x_3 = x'_3, \dots, x_n = x'_n$$

Тогда $2a_{12}x_1x_2 = 2a_{12}x_1^2 - 2a_{12}x_2^2$. Следовательно:

$$Q(x'_1, \dots, x'_n) = 2a_{12}x_1^2 - 2a_{12}x_2^2 + 2\sum_{1 \le i < j \le n} a_{ij}x_i^2x_j^2$$

Таким образом, мы пришли к случаю 1, который уже умеем решать.

Следствие. Всякую квадратичную функцию над полем \mathbb{R} можно заменой базиса привести κ нормальному виду.

Доказательство. Существует такой базис, в котором $Q(x_1, \ldots, x_n) = a_1 x_1^2 + \ldots + a_n x_n^2$. Сделаем замену:

$$x_i' = \begin{cases} \sqrt{|a_i|} x_i, & \text{если } a_i \neq 0 \\ x_i, & \text{если } a_i = 0 \end{cases}$$

Второе условие нужно для того, чтобы можно было выразить старые переменные через новые, не деля при этом на ноль.

Получаем, что $Q(x'_1, \ldots, x'_n) = \varepsilon_1 x'_1^2 + \ldots + \varepsilon_n x'_n^2$, где $\varepsilon_i = \operatorname{sgn} a_i \in \{-1, 0, 1\}$. Что нам и было надо.

Замечание. Если $F=\mathbb{C}$, то любую квадратичную функцию Q можно привести κ виду $Q(x_1,\ldots,x_n)=x_1^2+\ldots+x_k^2$, где $k\leqslant n$ $(k=\operatorname{rk} Q)$, то есть $B(Q,\mathbb{e})=\operatorname{diag}(1,\ldots,1,0,\ldots,0)$.

Закон инерции для квадратичной формы над R.

Пусть Q — квадратичная функция над \mathbb{R} , которая в базисе \mathbb{R} имеет нормальный вид:

$$Q(x_1, \dots, x_n) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2,$$

где s — это количество положительных слагаемых, а t — отрицательных.

Теорема (Закон инерции). $Числа\ s,\ t\ не\ зависят\ от\ выбора\ базиса,\ в\ котором\ Q\ имеет\ нормальный\ вид.$

Доказательство. Пусть $e=(e_1,\ldots,e_n)$ — базис такой, что $v=x_1e_1+\ldots+x_ne_n$ и Q имеет в нем нормальный вид: $Q(v)=x_1^2+\ldots+x_s^2-x_{s+1}^2-\ldots-x_{s+t}^2$.

Пусть также $\mathbb{f}=(f_1,\ldots,f_n)$ — другой базис такой, что $v=y_1e_1+\ldots+y_ne_n$ и Q также имеет в нем нормальный вид: $Q(v)=y_1^2+\ldots+y_p^2-y_{p+1}^2-\ldots-y_{p+q}^2.$

Заметим, что s+t=p+q, так как обе эти суммы равны rk Q. В допущении, что $s\neq p$, не умоляя общности будем считать, что s>p.

Положим $L_1 = \langle e_1, \dots, e_s \rangle$, $\dim L_1 = s$ и $L_2 = \langle f_{p+1}, \dots, f_n \rangle$, $\dim L_2 = n - p$. Видно, что $L_1 + L_2 \subset V$, а значит, $\dim(L_1 + L_2) \leqslant n$. Тогда:

$$\dim(L_1 \cap L_2) = \dim L_1 + \dim L_2 - \dim(L_1 + L_2) \geqslant s + n - p - n = s - p > 0.$$

Следовательно, существует ненулевой вектор $v \in L_1 \cap L_2$. Разложим тогда этот вектор в базисах данных линейных оболочек:

$$v = x_1 e_1 + \dots + x_s e_s, \exists x_i \neq 0 \Rightarrow Q(v) = x_1^2 + \dots + x_s^2 > 0$$

 $v = y_{p+1} f_{p+1} + \dots + y_n f_n \Rightarrow Q(v) = -y_{p+1}^2 - \dots - y_{p+q}^2 \leq 0$

Получили противоречие. Значит, исходное предположение неверно и s=p. Откуда в свою очередь следует, что t=q.

Определение. Эти числа имеют свои названия:

- 1. $i_{+} := s n$ оложительный индекс инерции;
- 2. $i_{-}:=t- отрицательный индекс инерции;$
- 3. $i_0 := n s t$ нулевой индекс инерции.

Метод Грама-Шмидта ортогонализации квадратичной формы. Теорема Якоби.

Пусть V — векторное пространство над полем F размерности n, и $e = (e_1, \ldots, e_n)$ — его базис. Пусть также $Q \colon V \to F$ — квадратичная форма, $\beta \colon V \times V \to F$ — соответствующая билинейная функция и $B = B(\beta, e)$ — ее матрица.

$$B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & \vdots \\ b_{21} & b_{22} & b_{23} & \vdots \\ b_{31} & b_{32} & b_{33} & \vdots \\ \dots & \dots & \dots \end{pmatrix}$$

Рассмотрим B_i — левые верхние $i \times i$ -подматрицы. Например, $B_1 = (b_{11}), B_2 = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ и так далее.

Матрица B_i — это матрица ограничения билинейной функции β на подпространство, натянутое на векторы (e_1, \ldots, e_i) . Назовем верхним угловым минором число $\delta_i = \det(B_i)$. Также будем считать, что $\delta_0 = 1$.

Определение. Базис @ называется ортогональным (по отношению κ β), если $\beta(e_i, e_j) = 0$ для любых $i \neq j$. В ортогональном базисе матрица квадратичной формы имеет канонический вид.

Теорема (Метод ортогонализации Грама – Шмидта). Предположим, что $\delta_i \neq 0$ для всех i. Тогда существует единственный базис $e' = (e'_1, \dots, e'_n)$ в V такой, что

1. e' — ортогональный

2.
$$e'_1 = e_1,$$

 $e'_2 \in e_2 + \langle e'_1 \rangle,$
 $e'_3 \in e_3 + \langle e'_1, e'_2 \rangle,$
...
 $e'_n \in e_n + \langle e'_1, \dots, e'_{n-1} \rangle$

3.
$$Q(e_i') = \frac{\delta_i}{\delta_{i-1}} \text{ dis } acex i.$$

Доказательство. Индукция по n. База для n=1 очевидна.

Теперь пусть всё доказано для всех k < n. Докажем для n. По предположению индукции, существует единственный базис $(e'_1, e'_2, \ldots, e'_n)$ с требуемыми свойствами.

Наблюдение: $\langle e_i, \ldots, e_n \rangle = \langle e'_i, \ldots, e'_n \rangle$.

Ищем e'_n в виде $e'_n = e_n + \lambda_1 e'_1 + \ldots + \lambda_{n-1} e'_{n-1}$. Тогда для всех i:

$$\beta(e'_n, e'_i) = \beta(e_n, e'_i) + \sum_{j=1}^{n-1} \lambda_j \beta(e'_j, e'_i)$$

Чтобы выполнялись требуемые условия, необходимо, чтобы эта сумма равнялась нулю.

Заметим, что последнее слагаемое обращается в нуль при $i \neq j$ по свойству выбранного базиса. Тогда остается только следующее:

$$0 = \beta(e_n, e'_i) + \lambda_i \beta(e'_i, e'_i) = \beta(e_n, e'_i) + \lambda_i Q(e'_i) = \beta(e_n, e'_i) + \lambda_i \underbrace{\frac{\delta_i}{\delta_{i-1}}}_{\neq 0}.$$

Выбирая $\lambda_i = -\frac{\beta(e_n, e_i')}{\beta(e_i', e_i')}$, получаем нужное равенство и однозначность разложения. Таким образом, условия 1 и 2 выполнены.

Проверим условие 3. Пусть C — матрица перехода от \mathfrak{e} к \mathfrak{e}' . Тогда легко понять, что C — верхнетреугольная с единицами на главной диагонали. Значит, матрица $B' = C^T B C$ тоже диагональна. Заметим также, что C_i (та самая верхняя $i \times i$ -подматрица) является матрицей перехода от (e_1, \ldots, e_i) к (e'_1, \ldots, e'_i) . Тогда:

$$B_i' = C_i^T B_i C_i \Rightarrow \det B_i' = 1 \cdot \det(B_i) \cdot 1 = \delta_i.$$

Но поскольку
$$B'=\begin{pmatrix}Q(e_1')&&0\\&\ddots&\\0&&Q(e_n')\end{pmatrix}$$
, то $\delta_n=Q(e_1')\cdot\ldots\cdot Q(e_n')$. Отсюда и получаем, что

$$\frac{\delta_n}{\delta_{n-1}} = Q(e'_n).$$

Пример. Пусть $V = \mathbb{R}^2$. Тогда $e_1' = e_1$, а e_2' получается, если спроецировать вектор e_2 на прямую, ортогональную e_1 . Если $V = \mathbb{R}^3$, то e_3' является проекцией на прямую, ортогональную плоскости (e_1', e_2') .

Рассмотрим следствия данной теоремы для случая, когда $F = \mathbb{R}$.

Теорема (Якоби). Пусть $\delta_i \neq 0$ для всех i. Тогда $\operatorname{rk} Q = n$ и $i_-(Q)$ равен числу перемен знака последовательности $\delta_0, \delta_1, \ldots, \delta_n$ (напомним, что $\delta_0 = 1$).

Доказательство. Применим процесс ортогонализации. Получим базис (e'_1,\ldots,e'_n) , в котором $Q(y_1,\ldots,y_n)=\frac{\delta_1}{\delta_0}y_1^2+\ldots+\frac{\delta_n}{\delta_{n-1}}y_n^2$, где y_1,\ldots,y_n — координаты некоторого вектора в данном

базисе. Если для некоторого i выполняется, что $\frac{\delta_i}{\delta_{i-1}} < 0$, то значит, $\operatorname{sgn} \delta_i \neq \operatorname{sgn} \delta_{i-1}$. Что и означает, что отрицательный индекс равен количеству перемен знака в последовательности $\delta_0, \delta_1, \ldots, \delta_n$.

Что касательно определителя, то условие $\operatorname{rk} Q = n$ равносильно условию $\det B \neq 0$. Но $\det B = \delta_n \neq 0$, а значит, все верно.

Положительно /неотрицательно определённые, отрицательно /неположительно определённые, неопределённые квадратичные формы. Критерий Сильвестра положительной определённости квадратичной формы. Критерий отрицательной определённости квадратичной формы.

Определение. Kвадратичная функция Q над полем \mathbb{R} называется

Термин	Обозначение	Условие
положительно определенной	Q > 0	$Q(x) > 0 \ \forall x \neq 0$
отрицательно определенной	Q < 0	$Q(x) < 0 \ \forall x \neq 0$
неотрицательно определенной	$Q \geqslant 0$	$Q(x) \geqslant 0 \ \forall x$
неположительно определенной	$Q \leqslant 0$	$Q(x) \leqslant 0 \ \forall x$
неопределенной	_	$\exists x, y \colon Q(x) > 0, \ Q(y) < 0$

Термин	Нормальный вид	Индексы инерции
положительно определенной	$x_1^2 + \ldots + x_n^2$	$i_{+} = n, i_{-} = 0$
отрицательно определенной	$-x_1^2-\ldots-x_n^2$	$i_{+} = 0, i_{-} = n$
неотрицательно определенной	$x_1^2 + \ldots + x_k^2, \ k \leqslant n$	$i_+ = k, i = 0$
неположительно определенной	$-x_1^2 - \ldots - x_k^2, \ k \leqslant n$	$i_+ = 0, i = k$
неопределенной	$x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2, \ s, t \ge 1$	$i_+ = s, i = t$

Пример. $V = \mathbb{R}^2$.

1.
$$Q(x,y) = x^2 + y^2$$
, $Q > 0$;

2.
$$Q(x,y) = -x^2 - y^2$$
, $Q < 0$;

3.
$$Q(x,y) = x^2 - y^2$$
;

4.
$$Q(x,y) = x^2, Q \ge 0$$
;

5.
$$Q(x,y) = -x^2, Q \leq 0.$$

Теорема (Критерий Сильвестра). Q > 0 тогда и только тогда, когда $\delta_i > 0$ для всех i.

Доказательство.

[←] Следует из теоремы Якоби.

 $[\Rightarrow]$ Докажем, что $\delta_i = \det(B_i) > 0$. Действительно, B_i — это матрица ограничения $Q|_{\langle e_1, \dots, e_i \rangle}$. Оно так же будет строго положительным, следовательно, существует матрица $C_i \in M_n(\mathbb{R})$, $\det(C_i) \neq 0$, такая, что $C_i^T B C_i = E$. Но тогда $\det C_i^T \det B_i \det C_i = \det E = 1$. Следовательно, $\det B_i = \frac{1}{(\det C_i)^2} > 0$, что и требовалось.

Теорема.
$$Q < 0 \Leftrightarrow \begin{cases} \delta_i < 0, & 2 \nmid i \\ \delta_i > 0, & 2 \mid i \end{cases}$$

Доказательство. Применяя критерий Сильвестра для B(Q, e) = -B(-Q, e), получаем требуемое.

Евклидово пространство. Длина вектора. Неравенство Коши-Буняковского. Угол между векторами.

Определение. Евклидово пространство — это векторное пространство \mathbb{E} над полем \mathbb{R} , на котором задана положительно определённая симметрическая билинейная функция (\cdot, \cdot) , которую мы будем называть скалярным произведением.

Пример.

1.
$$\mathbb{R}^n$$
, $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, $(x,y) = \sum_{i=1}^n x_i y_i$.

2.
$$\mathbb{E} = C[0,1], (f,g) = \int_0^1 f(x)g(x)dx, (f,f) = \int_0^1 f^2(x)dx > 0.$$

Замечание. Важно отметить, что евклидово пространство можно определить только над полем \mathbb{R} .

Определение. Пусть $x \in \mathbb{E}$. Тогда длиной вектора называют величину $|x| = \sqrt{(x,x)}$.

Очевидно, что $|x| \ge 0$, причем |x| = 0 тогда и только тогда, когда x = 0.

Предложение (Неравенство Коши-Буняковского). Пусть $x, y \in \mathbb{E}$. Тогда $|(x,y)| \leq |x||y|$, причём знак равенства возможен тогда и только тогда, когда x и y пропорциональны.

Доказательство.

1. x,y пропорциональны, т.е. $x = \lambda y$ для некоторого λ . Тогда:

$$|(x,y)| = |(x,\lambda x)| = \lambda |(x,x)| = |x|\lambda |x| = |x||y|.$$

2. x,y линейно независимы. Тогда они будут базисом своей линейной оболочки. Тогда матрица B билинейной функции $(\cdot,\cdot)\big|_{\langle x,y\rangle}$ равна:

$$B = \begin{pmatrix} (x,x) & (x,y) \\ (y,x) & (y,y) \end{pmatrix}$$

Так как $\det B > 0$, то $(x,x)(y,y) - (x,y)^2 > 0$. Следовательно:

$$|(x,y)|^2 < |x|^2 |y|^2$$

 $|(x,y)| < |x||y|$

Определение. Углом между векторами x и y называют такой α , что $\cos \alpha = \frac{(x,y)}{|x||y|}$.

Матрица Грама системы векторов евклидова пространства. Свойства определителя матрицы Грама.

Рассмотрим систему векторов (v_1, \ldots, v_k) , где $v_i \in \mathbb{E}$.

Определение. Mampuya $\Gamma pama$ cucmemu v_1, \ldots, v_k это

$$G(v_1, \dots, v_k) := (g_{ij}), \quad g_{ij} = (v_i, v_j).$$

Предложение.

- 1. $\det G(v_1,\ldots,v_k)\geqslant 0$
- 2. $\det G(v_1,\ldots,v_k)=0$ тогда и только тогда, когда v_1,\ldots,v_k линейно зависимы.

Доказательство.

- 1. v_1, \ldots, v_k линейно независимы. Следовательно, матрица $G(v_1, \ldots, v_k)$ является матрицей ограничения (\cdot, \cdot) на $\langle v_1, \ldots, v_k \rangle$, базисом в котором является (v_1, \ldots, v_k) . А значит, $\det G(v_1, \ldots, v_k) > 0$.
- 2. v_1, \ldots, v_k линейно зависимы. Значит, существуют коэффициенты $(\lambda_1, \ldots, \lambda_k) \neq (0, \ldots, 0)$ такие, что $\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$. Если обозначить матрицу Грама $G(v_1, \ldots, v_k)$ за G, то тогда

$$\lambda_1 G_{(1)} + \ldots + \lambda_k G_{(k)} =$$

$$= (\lambda_1 v_1 + \ldots + \lambda_k v_k, v_1) + (\lambda_1 v_1 + \ldots + \lambda_k v_k, v_2) + \ldots + (\lambda_1 v_1 + \ldots + \lambda_k v_k, v_k) =$$

$$= 0 + 0 + \ldots + 0$$

To есть строки линейно зависимы и $\det G = 0$.

Ортогональное дополнение системы векторов евклидова пространства. Свойства ортогонального дополнения к подпространству. Ортогональная проекция вектора на подпространство и ортогональная составляющая вектора относительно подпространства.

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} = n$.

Определение. Векторы x,y называются ортогональными, если (x,y) = 0. Обозначение: $x \perp y$.

Определение. Пусть $S \subseteq \mathbb{E}$ — произвольное подпространство. Ортогональным дополнением к S называется множество $S^{\perp} = \{x \in \mathbb{E} \mid (x,y) = 0 \ \forall y \in S\}.$

Замечание.

- 1. S^{\perp} nodnpocmpaнcmeo в \mathbb{E} .
- 2. $S^{\perp} = \langle S \rangle^{\perp}$.

Предложение. Пусть S-nodnpocmpaнство в \mathbb{E} . Тогда:

- 1. $\dim S^{\perp} = n \dim S$;
- 2. $\mathbb{E} = S \oplus S^{\perp}$;
- 3. $(S^{\perp})^{\perp} = S$.

Доказательство.

1. Выделим в S базис (e_1, \ldots, e_k) и дополним его векторами (e_{k+1}, \ldots, e_n) до базиса \mathbb{E} . Рассмотрим вектор $x \in \mathbb{E}$ и представим его в виде $x_1e_1 + \ldots + x_ne_n$. Если $x \in S^{\perp}$, то это то же самое, если $(x, e_i) = 0$ для $i = 1 \ldots k$. Итого:

$$(x,e_i) = (e_1,e_i)x_1 + (e_2,e_i)x_2 + \dots, (e_n,e_i)x_n = 0, \quad i = 1\dots k$$

Получим однородную СЛУ $G\begin{pmatrix} x_1\\x_2\\ \vdots\\x_n \end{pmatrix}=0$, где $G\in Mat_{k\times n}(\mathbb{R})$ и $g_{ij}=(e_i,e_j)$. Заметим,

что $\mathrm{rk}\,G=k$, так как это часть матрицы Грама, и ее левый верхний $k\times k$ минор больше нуля. Следовательно, размерность пространства решений $\dim S^{\perp}=n-\mathrm{rk}\,G=n-\dim S$.

- 2. Из предыдущего пункта получаем, что $\dim S + \dim S^{\perp} = n$. Вместе с тем, поскольку (x,x) = 0 тогда и только тогда, когда x = 0, то $S \cap S^{\perp} = \{0\}$. Следовательно, $\mathbb{E} = S \oplus S^{\perp}$.
- 3. $S \subset (S^{\perp})^{\perp}$ всегда. Вместе с тем, $\dim(S^{\perp})^{\perp} = n \dim S^{\perp} = n (n k) = k = \dim S$. И так как размерности совпадают, то $S = (S^{\perp})^{\perp}$.

 $\mathbb{E}=S\oplus S^{\perp}.$ Значит, для $x\in\mathbb{E}$ существует единственное представление его в виде x=y+z, где $y\in S, z\in S^{\perp}.$

Определение. Вектор у называется ортогональной проекцией вектора x на подпространство S. Обозначение: $\operatorname{pr}_S x$.

Вектор z называется ортогональной составляющей вектора x вдоль подпространства S. Обозначение: $\operatorname{ort}_S x$.

Ортогональный и ортонормированный базисы евклидова пространства. Описание всех ортонормированных базисов в термирнах одного и матриц перехода. Ортогональная матрица.

Определение. Базис (e_1, \ldots, e_n) в \mathbb{E} называется ортогональным, если $(e_i, e_j) = 0 \ \forall i \neq j$. Это равносильно тому, что $G(e_1, \ldots, e_n)$ диагональна.

Базис называется ортонормированным, если дополнительно $(e_i, e_i) = 1 \, \forall i$. Это равносильно тому, что $G(e_1, \ldots, e_n) = E$.

Замечание. Если (e_1,\ldots,e_n) ортогональный базис, то $\left(\frac{e_1}{|e_1|},\ldots,\frac{e_n}{|e_n|}\right)$ ортонормированный.

Теорема. В любом конечномерном евклидовом пространстве существует ортонормированный базис.

Доказательство. Следует из того, что всякую положительно определенную квадратичную форму можно привести к нормальному виду. □

Пусть (e_1, \ldots, e_n) — ортонормированный базис в \mathbb{E} . Пусть также есть ещё один базис (e'_1, \ldots, e'_n) , причём $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$.

Предложение. (e'_1,\ldots,e'_n) — ортонормированный тогда и только тогда, когда $C^TC=E$ или, что то же самое, $C^{-1}=C^T$.

Доказательство. Условие, что базис (e'_1,\ldots,e'_n) является ортонормированным, равносильно тому, что $G(e'_1,\ldots,e'_n)=E$. С другой стороны, $G(e'_1,\ldots,e'_n)=C^TG(e_1,\ldots,e_n)C$, причем аналогично $G(e_1,\ldots,e_n)=E$. Откуда и следует, что $C^TC=E$.

Определение. Матрица С в таком случае называется ортогональной.

Свойства.

1. $C^TC = E$, значит, $C^T = C^{-1}$, и тогда $CC^T = E$. Итого, получаем:

$$\sum_{k=1}^{n} c_{ki} c_{kj} = \delta_{ij} = \sum_{k=1}^{n} c_{ik} c_{jk}$$

Напомним, что δ_{ij} это символ Кронекера.

2. $\det C = \pm 1$.

Пример.
$$C = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
 — матрица поворота на угол φ в \mathbb{R}^2 .

Интерпретация процесса ортогонализации в евклидовом пространстве в терминах проекций и ортогональных составляющих. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального базиса. Теорема Пифагора в Евклидовом пространстве.

Пусть $S \subseteq \mathbb{E}$ — подпространство, (e_1, \ldots, e_k) — его ортогональный базис, $x \in \mathbb{E}$.

Пусть есть базис (e_1, \ldots, e_n) в \mathbb{E} . Процесс ортогонализации Грама-Шмидта даёт ортогональный базис (f_1, \ldots, f_n) , причем:

$$f_1 = e_1$$

$$f_2 \in e_2 + \langle e_1 \rangle$$

$$\dots$$

$$f_n \in e_n + \langle e_1, \dots, e_{n-1} \rangle$$

Точно так же можно заметить, что $\langle f_1, \ldots, f_i \rangle = \langle e_1, \ldots, e_i \rangle$ для всех $i = 1, \ldots, n$.

Предложение. $\operatorname{pr}_S x = \sum_{i=1}^k \frac{(x,e_i)}{(e_i,e_i)} e_i$. В частности, если базис ортонормированный, $\operatorname{pr}_S x = \sum_{i=1}^k (x,e_i) e_i$

Доказательство. Представим вектор x в виде суммы $x = \operatorname{pr}_S x + \operatorname{ort}_S x$. Тогда:

$$(x, e_i) = (\operatorname{pr}_S x, e_i) + \underbrace{(\operatorname{ort}_S x, e_i)}_{=0} = (\operatorname{pr}_S x, e_i) \quad i = 1, \dots, k.$$

Вместе с тем, $\operatorname{pr}_S x = \sum\limits_{j=1}^k \lambda_j e_j$, следовательно, $(x,e_i) = \sum\limits_{j=1}^k \lambda_j (e_j,e_i)$. Но так как базис ортогональный, все слагаемые, кроме одного, занулятся, и останется только $(x,e_i) = \lambda_i (e_i,e_i)$. Откуда и следует, что $\lambda_i = \frac{(x,e_i)}{(e_i,e_i)}$.

Предложение. $f_i = \text{ort}_{(e_1, \dots, e_{i-1})} e_i$ для всех $i = 1, \dots, n$.

Доказательство. Воспользовавшись равенством линейных оболочек, получаем, что $e_i \in f_i + \langle f_1, \dots, f_{i-1} \rangle$. Следовательно, данный базисный вектор можно представить в виде $e_i = f_i + \lambda_1 f_1 + \dots + \lambda_{i-1} f_{i-1}$. И из того, что $f_i \perp \langle e_1, \dots, e_{i-1} \rangle = \langle f_1, \dots, f_{i-1} \rangle$ как раз и получаем, что $f_i = \operatorname{ort}_{\langle e_1, \dots, e_{i-1} \rangle} e_i$.

Пример. Данное рассуждение проще понять, если представить себе частный случай для $\mathbb{E} = \mathbb{R}^3.$

У нас зафиксированы векторы e_1, e_2, e_3 , и мы их ортогонализируем. Для начала, $f_1 = e_1$. Вектор f_2 получается как проекция вектора e_2 на прямую, ортогональную f_1 . А вектор f_3 — как проекция e_3 на прямую, ортогональную плоскости, образованной векторами f_1 и f_2 . Аналогично для пространств большей размерности.

Теорема (Пифагора). *Если* $x, y \in \mathbb{E}$ $u \ x \perp y, \ mo \ |x+y| = |x|^2 + |y|^2.$

Доказательство.

$$|x+y|^2 = (x+y,x+y) = (x,x) + (y,y) + \underbrace{(x,y)}_{=0} + \underbrace{(y,x)}_{=0} = (x,x) + (y,y) = |x|^2 + |y|^2$$

Расстояние между векторами евклидова пространства. Неравенство треугольника. Теоремы о расстоянии от вектора до подпространства.

Рассмотрим векторы $x, y \in \mathbb{E}$.

Определение. Расстоянием между векторами x и y называется число $\rho(x,y) := |x-y|$.

Предложение (Неравенство треугольника). $\rho(a,b) + \rho(b,c) \geqslant \rho(a,c) \ npu \ a,b,c \in \mathbb{E}$.

Доказательство. Пусть x = a - b, y = b - c. Тогда a - c = x + y. Теперь достаточно доказать, что $|x| + |y| \geqslant |x + y|$. Для этого рассмотрим $|x + y|^2$.

$$|x+y|^2 = (x,x) + 2(x,y) + (y,y) = |x|^2 + 2(x,y) + |y|^2 \le |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2$$

Сравнивая начало и конец неравенства, получаем, что $|x+y| \le |x| + |y|$.

Пусть P и Q — два произвольных подмножества \mathbb{E} .

Определение. Расстоянием между Р и Q называют величину

$$\rho(P,Q) := \inf \{ \rho(x,y) \mid x \in P, y \in Q \}.$$

Пусть $x \in \mathbb{E}$ и $U \subseteq \mathbb{E}$ — подпространство.

Теорема. $\rho(x,U) = |\operatorname{ort}_{U} x|$, причём $\operatorname{pr}_{U} x - e \partial u$ нственный ближайший к x вектор из U.

Доказательство. Пусть $y=\operatorname{pr}_U x$ и $z=\operatorname{ort}_U x$. Пусть также $y'\in U\backslash\{0\}$, тогда:

$$\rho(x, y + y') = |x - y - y'| = |z - y'| = \sqrt{|z|^2 + \underbrace{|y'|^2}_{>0}} > |z| = \rho(x, y).$$

Из того, что вектор z, которым мы огранили снизу, определяется однозначно, и следует, что существует единственный ближайший вектор к x из U.

Пусть $U \subseteq \mathbb{E}$ — подпространство, $x \in \mathbb{E}$, (e_1, \dots, e_k) — базис U.

Теорема.
$$(\rho(x,U))^2 = \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)}$$

- 1. $x \in U$. Тогда $\rho(x,U) = 0$. Но с другой стороны, $\det G(e_1,\ldots,e_k,x) = 0$, поскольку эти векторы линейно зависимы, и значит, равенство выполняется.
- 2. $x \notin U$. Тогда $\rho(x,U) = |\operatorname{ort}_{U}x| = |z|$. Ортогонализация Грама-Шмидта к (e_1,\ldots,e_k,x) даст нам (f_1,\ldots,f_k,z) , причём $|z|^2 = (z,z) = \frac{\delta_{k+1}}{\delta_k} = \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)}$.

п-мерный параллелепипед в евклидовом пространстве и его объём. Формулы для объёма n-мерного параллелепипеда.

Пусть \mathbb{E} — евклидово пространство. Вспомним, что такое расстояния в нем.

Для векторов $x, y \in E$ расстояние это $\rho(x, y) := |x - y|$.

Для подмножеств $P,Q\subseteq\mathbb{E}$ расстояние это $\rho(P,Q):=\inf_{x\in P,\ y\in Q}\rho(x,y).$

Для подпространства $U\subseteq\mathbb{E}$ и вектора $x\in\mathbb{E}$ известны следующие вещи:

- 1. $\rho(x, U) = |\operatorname{ort}_U x|$
- 2. $\rho(x,U)^2 = \frac{\det G(e_1,\dots,e_k,x)}{\det G(e_1,\dots,e_k)}$, где e_1,\dots,e_k базис в U.

Рассмотрим теперь векторы $a_1, \ldots, a_n \in \mathbb{E}$, причем n — необязательно размерность \mathbb{E} .

Определение. N-мерным параллелепипедом, натянутым на векторы a_1, \ldots, a_n называется подмножество

$$P(a_1, \dots, a_n) := \left\{ x = \sum_{i=1}^n x_i a_i \mid 0 \leqslant x_i \leqslant 1 \right\}.$$

Пример.

- 1. При n=2 это обычный двухмерный параллелограмм.
- 2. При n = 3 это трехмерный параллелепипед.

Определение. Для параллелепипеда $P(a_1, ..., a_n)$ основание это $P(a_1, ..., a_{n-1})$, а высота — $h = \operatorname{ort}_{\langle a_1, ..., a_{n-1} \rangle} a_n$.

Определение. Объем n-мерного парамеленипеда $P(a_1, \ldots, a_n)$ — это число vol $P(a_1, \ldots, a_n)$, определяемое рекурсивно следующим образом:

$$n = 1$$
 vol $P(a_1) = |a_1|$
 $n > 1$ vol $P(a_1, ..., a_n) = \text{vol } P(a_1, ..., a_{n-1}) \cdot |h|$

Теорема. vol $P(a_1, ..., a_n)^2 = \det G(a_1, ..., a_n)$.

Доказательство. Докажем это утверждение по индукции.

База: при n=1 имеем vol $P(a_1)^2=|a_1|^2=(a_1,a_1)=\det G(a_1)$.

Теперь пусть утверждение доказано для всех меньших значений. Докажем для n.

$$\operatorname{vol} P(a_1, \dots, a_n)^2 = \operatorname{vol} P(a_1, \dots, a_{n-1})^2 \cdot |h|^2 = \det G(a_1, \dots, a_{n-1}) \cdot |\operatorname{ort}_{\langle a_1, \dots, a_{n-1} \rangle} a_n|^2 = \\ = \begin{cases} 0 = \det G(a_1, \dots, a_n), & \operatorname{ecли} a_1, \dots a_{n-1} \text{ линейно зависимы} \\ \det G(a_1, \dots, a_{n-1}) \frac{\det G(a_1, \dots, a_n)}{\det G(a_1, \dots, a_{n-1})} = \det G(a_1, \dots, a_n), & \operatorname{ecли} a_1, \dots, a_{n-1} \text{ линейно независимы} \end{cases}$$

Следствие. Объем параллелепипеда не зависит от выбора основания.

Теорема. Пусть (e_1, \ldots, e_n) — ортогональный базис в \mathbb{E} , u $(a_1, \ldots, a_n) = (e_1, \ldots, e_n)A$ для некоторой матрицы $A \in M_n(\mathbb{R})$. Тогда vol $P(a_1, \ldots, a_n) = |\det A|$.

Замечание. Это — геометрический смысл определителя!

Доказательство. Вспомним, что матрица Грама ортогонального базиса равна единичной матрице:

$$G(a_1, \dots, a_n) = A^T G(e_1, \dots, e_n) A = A^T A.$$

Тогда для определителя справедливо следующее:

$$\det G(a_1,\ldots,a_n) = \det(A^T A) = (\det A)^2.$$

Осталось воспользоваться предыдущей теоремой:

$$\operatorname{vol} P(a_1, \dots, a_n) = \sqrt{\det G(a_1, \dots, a_n)} = |\det A|.$$

Изоморфизм евклидовых пространств. Критерий изоморфности двух конечномерных евклидовых пространств.

Рассмотрим два евклидовых пространства, \mathbb{E} и \mathbb{E}' .

Определение. Изоморфизм евклидовых пространств $\mathbb{E}\ u\ \mathbb{E}'$ — это биективное отображение $\varphi: \mathbb{E} \to \mathbb{E}'$ такое, что

- 1. φ изоморфизм векторных пространств.
- 2. $(\varphi(x), \varphi(y))' = (x, y)$ для любых $x \in \mathbb{E}$ и $y \in \mathbb{E}'$. Здесь через ()' обозначается скалярное произведение в \mathbb{E}' .

Определение. Евклидовы пространства $\mathbb{E}\ u\ \mathbb{E}'$ называются изоморфными, если между ними существует изоморфизм. Обозначение: $\mathbb{E}\simeq\mathbb{E}'$.

Теорема. Два конечномерных евклидовых пространства $\mathbb{E}\ u\ \mathbb{E}'\ u$ зоморфны тогда $u\ т$ олько тогда, когда $ux\ p$ азмерност $u\ c$ овпадают.

_

Доказательство.

- [⇒] Очевидно из первого пункта определения изоморфизма евклидовых пространств.
- [\Leftarrow] Зафиксируем ортонормированные базисы $e = (e_1, \ldots, e_n)$ в \mathbb{E} и $e' = (e'_1, \ldots, e'_n)$ в \mathbb{E}' , где $n = \dim \mathbb{E} = \dim \mathbb{E}'$. Зададим изоморфизм $\varphi : \mathbb{E} \to \mathbb{E}'$ векторных пространств по формуле

$$\varphi(e_i) = e'_i \quad \forall i = 1, \dots, n.$$

Тогда имеем следующее (напомним, что δ_{ij} это символ Кронекера):

$$(\varphi(e_i), \varphi(e_j))' = (e'_i, e'_j)' = \delta_{ij} = (e_i, e_j).$$

Теперь рассмотрим векторы $x=\sum_{i=1}^n x_i e_i$ и $y=\sum_{j=1}^n y_j e_j$ и проверим второй пункт определения изоморфизма евклидовых пространств. Будем пользоваться билинейностью скалярного произведения.

$$(\varphi(x), \varphi(y))' = \left(\varphi\left(\sum_{i=1}^{n} x_{i}e_{i}\right), \varphi\left(\sum_{j=1}^{j=n} y_{j}e_{j}\right)\right)' = \left(\sum_{i=1}^{n} x_{i}\varphi(e_{i}), \sum_{j=1}^{n} y_{j}\varphi(e_{j})\right)' = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}y_{j}\varphi(e_{i}, e_{j})' = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}y_{j}(e_{i}, e_{j}) = (x, y)$$

Линейный оператор в евклидовом пространстве, сопряжённый к данному: определение, существование и единственность. Матрица сопряжённого оператора в произвольном и ортонормированном базисах.

Пусть \mathbb{E} — евклидово пространство, φ — его линейный оператор. Тогда ему можно сопоставить две билинейные функции на \mathbb{E} :

$$\beta_{\varphi}(x,y) = (x,\varphi(y))$$
$$\beta_{\varphi}^{T}(x,y) = (\varphi(x),y)$$

Введем базис $e = (e_1, \dots, e_n)$ в \mathbb{E} , матрицу Грама $G = G(e_1, \dots, e_n)$, матрицу оператора $A_{\varphi} = A(\varphi, e)$, а также два вектора $x = \sum_{i=1}^n x_i e_i$ и $y = \sum_{j=1}^n y_j e_j$. Тогда имеем следующее:

$$\varphi(x) = A_{\varphi} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \qquad \varphi(y) = A_{\varphi} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$\beta_{\varphi}(x, y) = (x_1, \dots, x_n) G A_{\varphi} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \qquad \beta_{\varphi}^T(x, y) = (x_1, \dots, x_n) A_{\varphi}^T G \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Отсюда мы можем вывести матрицы данных билинейных форм:

$$B(\beta_{\varphi}, \mathbf{e}) = GA_{\varphi}$$
$$B(\beta_{\varphi}^{T}, \mathbf{e}) = A_{\varphi}^{T}G$$

Замечание. Отображения $\varphi \mapsto \beta_{\varphi} \ u \ \varphi \mapsto \beta_{\varphi}^T$ являются биекциями между $L(\mathbb{E}) \ u$ пространством всех билинейных форм на \mathbb{E} .

Определение. Линейный оператор $\psi \in L(\mathbb{E})$ называется сопряженным к φ , если для всех векторов $x, y \in \mathbb{E}$ верно, что $(\psi(x), y) = (x, \varphi(y))$. Это также равносильно тому, что $\beta_{\psi}^T = \beta_{\varphi}$. Обозначение: $\psi = \varphi^*$.

Предложение.

- 1. φ^* существует и единственен.
- 2. $A_{\varphi^*} = G^{-1}A_{\varphi}^T G$, где $A_{\varphi^*} = A(\varphi^*, e)$, а все остальные обозначения прежние. В частности, если e- ортонормированный базис, то $A_{\varphi^*} = A_{\varphi}^T$.

Доказательство. Снова обозначим φ^* как ψ . Мы уже знаем, что $B(\beta_{\psi}^T, e) = A_{\psi}^T G$ и $B(\beta_{\varphi}, e) = GA_{\varphi}$. Мы хотим, чтобы эти две матрицы были равны. Транспонируем их и, воспользовавшись тем, что $G = G^T$, получаем:

$$GA_{\psi} = A_{\varphi}^T G.$$

Выразив A_{ψ} , получаем, что такая матрица (и, соответственно, оператор) единственная:

$$A_{\psi} = G^{-1} A_{\varphi}^T G.$$

Существование же напрямую следует из того, что линейный оператор с матрицей $G^{-1}A_{\varphi}^TG$ обладает нужными свойствами.

Самосопряжённый линейный оператор в евклидовом пространстве: инвариантность ортогонального дополнения к инвариантному подпространству и существование собственного вектора.

Определение. Линейный оператор φ называется самосопряженным (симметрическим), если $\varphi^* = \varphi$. Это равносильно тому, что $(\varphi(x), y) = (x, \varphi(y))$) для любых векторов $x, y \in \mathbb{E}$.

Замечание. В случае, когда e — ортонормированный базис в E и $A_{\varphi} = A(\varphi, e)$, то самосопряженность линейного оператора φ равносильно тому, что $A_{\varphi} = A_{\varphi}^T$. Отсюда и второе название таких операторов — симметрические.

Здесь важно, что мы работаем именно над евклидовым пространством, так как мы использовали скалярное произведение для проведения биекции с билинейными формами.

Пример. Пусть $U \subseteq \mathbb{E} - noд$ пространство. Отображение $\varphi : x \mapsto \operatorname{pr}_U x$ является самосо-пряженным.

Доказательство.

I способ (координатный).

Пусть (e_1, \ldots, e_k) — ортонормированный базис в U, а (e_{k+1}, \ldots, e_n) — ортонормированный базис в U^T . Тогда $e = (e_1, \ldots, e_n)$ — ортонормированный базис в E. А значит, матрица φ будет иметь в таком базисе следующий вид:

$$A(\varphi, e) = \operatorname{diag}(\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{n-k})$$

При транспонировании диагональная матрица не меняется, следовательно, $A(\varphi, e)^T = A(\varphi, e)$. Что и означает, что $\varphi = \varphi^*$.

II способ (бескоординатный).

Проверим условие $(x, \varphi(y)) = (\varphi(x), y)$:

$$(\varphi(x), y) = (\operatorname{pr}_{U} x, \operatorname{pr}_{U} y + \operatorname{ort}_{U} y) = (\operatorname{pr}_{U} x, \operatorname{pr}_{U} y) + \underbrace{(\operatorname{pr}_{U} x, \operatorname{ort}_{U} y)}_{=0} =$$

$$= (\operatorname{pr}_{U} x, \operatorname{pr}_{U} y) + \underbrace{(\operatorname{ort}_{U} x, \operatorname{pr}_{U} y)}_{=0} = (\operatorname{pr}_{U} x + \operatorname{ort}_{U} x, \operatorname{ort}_{U} y) = (x, \varphi(y)).$$

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} = n, \, \varphi \in L(\mathbb{E})$. Вспомним, что по определению сопряжённый линейный оператор φ^* это такой линейный оператор, для которого выполняется следующее:

$$(x, \varphi(y)) = (\varphi^*(x), y).$$

Вспомним также, что самосопряженным называется такой оператор φ , для которого $\varphi^* = \varphi$.

Предложение. Пусть φ — самосопряженный линейный оператор в \mathbb{E} . Если $U \subseteq \mathbb{E}$ — φ -инвариантное подпространство в \mathbb{E} , то U^{\perp} тоже φ -инвариантно.

Поясним, что означает этот факт.

Пусть $\dim U = m$ и $U = \langle e_1, \dots, e_m \rangle$. Так как $\mathbb{E} = U \oplus U^{\perp}$, то $\dim U^{\perp} = n - m$ и $U^{\perp} = \langle e_{m+1}, \dots, e_n \rangle$, где $\mathbb{e} = (e_1, \dots, e_n)$ — базис \mathbb{E} .

Тогда матрица φ в базисе \mathbb{C} имеет следующий блочный вид:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad A \in M_m, \ D \in M_{n-m}.$$

Когда $U-\varphi$ -инвариантно, то есть $\varphi(U)\subseteq U$, эта матрица принимает вид $\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$, так как базисные векторы $e_1,\ldots e_m$ переходят в себя, не затрагивая векторы e_{m+1},\ldots,e_n . И мы хотим доказать, что U^\perp тоже является φ -инвариантным подпространством, то есть блок B также равен нулю, то есть матрица φ в базисе $\mathbb P$ имеет вид $\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$.

Доказательство. Известно, что $\varphi = \varphi^*$ и $\varphi(U) \subseteq U$. Мы хотим, чтобы $\varphi(U^\perp) \subseteq U^\perp$. Для этого нам достаточно показать, что $(x, \varphi(y)) = 0$ для любых векторов $x \in U$ и $y \in U^\perp$.

$$(x,\varphi(y)) = (\varphi^*(x), y) = (\underbrace{\varphi(x)}_{\in U}, \underbrace{y}_{\in U^{\perp}}) = 0$$

Предложение. У самосопряжённого оператора φ есть собственный вектор над \mathbb{R} .

Доказательство. Ранее в курсе мы уже доказывали, что у φ существует одномерное или двумерное φ -инвариантное подпространство. Рассмотрим соответствующие случаи.

- 1. Если существует одномерное φ -инвариантное подпространство, то его порождающий вектор является собственным.
- 2. Пусть $U \subseteq \mathbb{E}$ двумерное φ -инвариантное подпространство и $\mathfrak{e} = (e_1, e_2)$ его ортонормированный базис. Пусть $\psi \in L(U)$ ограничение φ на U. В прошлый раз мы уже доказывали, что матрица ψ имеет симметрический вид, то есть $A(\psi, \mathfrak{e}) = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$. Рассмотрим его характеристический многочлен:

$$\chi_{\psi}(t) = (-1)^2 \begin{vmatrix} a - t & b \\ b & c - t \end{vmatrix} = t^2 - (a + c)t + ac - b^2 = 0;$$
$$D = (a - c)^2 + 4b^2 \geqslant 0.$$

Так как дискриминант неотрицательный, то у $\chi_{\psi}(t)$ есть хотя бы один корень. Следовательно, у ψ есть собственный вектор v. Но ψ — ограничение φ , так что вектор v тоже является для него собственным.

Самосопряжённый линейный оператор в евклидовом пространстве: существование базиса из собственных векторов, ортогональность собственных подпространств, отвечающих различным собственным значениям. Приведение квадратичной формы к главным осям.

Теорема. У всякого самосопряжённого линейного оператора есть ортонормированный базис из собственных векторов. В частности, φ диагонализуем над $\mathbb R$ и его характеристический многочлен разлагается в произведение линейных сомножителей.

Следствие. Всякая симметричная матрица над \mathbb{R} подобна диагональной.

Доказательство. Докажем индукцией по n.

Для n=1 всё очевидно. Если n>1, то у φ есть собственный вектор v. Положим $e_1=\frac{v}{|v|}$ и $U=\langle e_1\rangle^\perp$. Тогда $\dim U=n-1$, причем $U-\varphi$ -инвариантное подпространство (см. предыдущее предложение). По предположеню индукции в U есть ортонормированный базис из собственных векторов (e_2,\ldots,e_n) . Тогда (e_1,\ldots,e_n) — искомый базис.

Следствие. Пусть φ — самосопряженный линейный оператор, u λ, μ — его собственные значения. Тогда $V_{\lambda}(\varphi) \perp V_{\mu}(\varphi)$ при $\lambda \neq \mu$.

1. <u>Координатный способ.</u> Пусть $e = (e_1, \dots, e_n)$ — ортонормированный базис из собственных векторов, где $\varphi(e_i) = \lambda_i e_i$. Тогда для произвольного вектора $x = x_1 e_1 + \dots + x_n e_n$ из V верно, что $\varphi(x) = x_1 \lambda_1 e_1 + \dots + x_n \lambda_n e_n$.

Несложно понять, что если $x \in V_{\lambda}(\varphi)$, то есть $\varphi(x) = \lambda x$, то тогда x принадлежит линейной оболочке тех базисных векторов, чье собственное значение равно λ : $x \in \langle e_i \mid \lambda_i = \lambda \rangle$. А так как базисные векторы попарно ортогональны в силу свойств выбранного базиса, то как раз получаем, что $V_{\lambda}(\varphi) \perp V_{\mu}(\varphi)$, если $\lambda \neq \mu$.

2. Бескоординатный способ. Возьмем произвольные векторы $x \in V_{\lambda}(\varphi)$ и $y \in V_{\mu}(\varphi)$. Тогда:

$$\lambda(x,y) = (\lambda x, y) = (\varphi(x), y) = (x, \varphi(y)) = (x, \mu y) = \mu(x, y).$$

A поскольку $\lambda \neq \mu$, то (x,y) = 0.

Следствие (Приведение квадратичной формы к главным осям). Для любой квадратичной формы Q над \mathbb{E} существует ортонормированный базис, в котором Q имеет канонический вид.

$$Q(x_1, \dots, x_n) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2.$$

Причем числа $\lambda_1, \ldots, \lambda_n$ определены однозначно с точностью до перестановки.

Доказательство. Существует единственный самосопряжённый линейный оператор φ в $\mathbb E$ такой, что $Q(v)=(v,\varphi(v))$. Если е — ортонормированный базис, то матрица Q в базисе е будет равна матрице φ в базисе е. Числа $\lambda_1,\ldots,\lambda_n$ являются собственными значениями φ .

Следствие. Пусть $A \in M_n(\mathbb{R}), A = A^T$. Тогда существует ортогональная матрица C такая, что

$$C^T A C = C^{-1} A C = D = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Ортогональный линейный оператор в евклидовом пространстве: определение, пять эквивалентных условий.

Определение. Линейный оператор $\varphi \in L(\mathbb{E})$ называется ортогональным, если

$$(\varphi(x), \varphi(y)) = (x,y), \quad \forall x, y \in \mathbb{E}.$$

Другими словами, φ сохраняет скалярное произведение, осуществляет изоморфизм $\mathbb E$ на себя

Предложение. Пусть φ — линейный оператор в \mathbb{E} . Тогда следующие условия эквивалентны:

- 1. φ ортогональный линейный оператор;
- 2. $|\varphi(x)| = |x|$ для всех $x \in \mathbb{E}$, то есть φ сохраняет длины;

- 3. существует φ^{-1} , причем $\varphi^{-1} = \varphi^*$, то есть $\varphi \cdot \varphi^* = \varphi^* \cdot \varphi = \mathrm{id}$;
- 4. если e ортонормированный базис, то $A(\varphi, e)$ ортогональная матрица;
- 5. если (e_1, \ldots, e_n) ортонормированный базис, то $(\varphi(e_1), \ldots, \varphi(e_n))$ тоже ортонормированный базис.

Доказательство. Везде здесь $x, y \in \mathbb{E}$.

$$(1) \Rightarrow (2)$$

$$|\varphi(x)| = \sqrt{(\varphi(x), \varphi(x))} = \sqrt{(x, x)} = |x|$$

 $(2) \Rightarrow (1)$ Используем поляризацию (см. лекция 26).

$$(\varphi(x), \varphi(y) = \frac{1}{2}(|\varphi(x+y)|^2 - |\varphi(x)|^2 - |\varphi(y)|^2) = \frac{1}{2}(|x+y|^2 - |x|^2 - |y|^2) = (x, y)$$

 $(1)\&(2) \Rightarrow (3)$ Найдем ядро φ :

$$\varphi(x) = 0 \quad \Rightarrow \quad |\varphi(x)| = 0 \quad \Rightarrow \quad |x| = 0 \quad \Rightarrow \quad x = 0$$

Итого, $\operatorname{Ker} \varphi = \{0\}$. Значит, существует φ^{-1} . Теперь докажем, что $\varphi^{-1} = \varphi^*$:

$$(\varphi^{-1}(x), y) = (\varphi(\varphi^{-1}(x)), \varphi(y)) = (x, \varphi(y))$$

Получили, что φ^{-1} является сопряженным к φ по определению.

$$(3) \Rightarrow (1)$$

$$(\varphi(x), \varphi(y)) = (\varphi^*(\varphi(x)), y) = (x, y)$$

 $(4)\Leftrightarrow (5)$ Пусть е = (e_1,\ldots,e_n) — ортонормированный базис. Тогда верно, что

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)\cdot C,\quad C=A(\varphi,e)$$

Матрица C является ортогональной тогда и только тогда, когда $(\varphi(e_1), \dots, \varphi(e_n))$ — ортонормированный базис.

(3) \Leftrightarrow (4) Пусть е — ортонормированный базис, $C = A(\varphi, e)$. Тогда $A(\varphi^*, e) = C^T$ и условие, что $\varphi \cdot \varphi^* = id$ равносильно тому, что $C \cdot C^T = E$, то есть C — ортогональная матрица.

Пример. Тут надо придумать, как записывать.

Классификация ортогональных линейных операторов в одномерном и двумерном евклидовых пространствах.

Пусть $\mathbb E$ — евклидово пространство, е — его базис, φ — его ортогональный линейный оператор, A — матрица φ в базисе е.

Если dim $\mathbb{E} = 1$, то $\varphi = \pm id$.

Если $\dim \mathbb{E} = 2$, то возможны два случая:

- 1. φ это поворот пространства на угол α , $A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$;
- 2. φ это отражение относительно некоторой прямой, $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Ортогональный линейный оператор в евклидовом пространстве: инвариантность относительно ортогонального дополнения к инвариантному подпространству, теорема о каноническом виде. Классификация ортогональных линейных операторов в трёхмерном евклидовом пространстве.

Предложение. Пусть φ — ортогональный линейный оператор в \mathbb{E} . Если $U \subseteq \mathbb{E}$ — φ -инвариантное подпространство в \mathbb{E} , то U^{\perp} тоже φ -инвариантно.

Доказательство. Рассмотрим ψ — ограничение φ на U. Оно, очевидно, тоже сохраняет длины, то есть также является ортогональным оператором. Следовательно, существует ψ^{-1} .

Достаточно показать, что $(x, \varphi(y)) = 0$ для любых векторов $x \in U$ и $y \in U^{\perp}$.

$$(x,\varphi(y)) = (\psi(\psi^{-1}(x)),\varphi(y)) = (\varphi(\psi^{-1}(x)),\varphi(y)) = (\underbrace{\psi^{-1}(x)}_{\in U},\underbrace{y}_{\in U^{\perp}}) = 0$$

Пусть $\Pi(\alpha) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.

Теорема. Пусть φ — ортогональный линейный оператор в \mathbb{E} . Тогда существует ортонормированный базис \mathfrak{e} такой, что матрица $A(\varphi,\mathfrak{e})$ имеет следующий блочно-диагональный вид:

$$\begin{pmatrix}
\Pi(\alpha_1) & & & & & & & \\
& \ddots & & & & & & \\
& \Pi(\alpha_k) & & & & & \\
& & -1 & & & & \\
& & & \ddots & & & \\
& & & & 1 & & \\
& & & & \ddots & & \\
& & & & 1
\end{pmatrix},$$

 $\operatorname{гde}\Pi(\alpha_i) = \begin{pmatrix} \cos \alpha_i & \sin \alpha_i \\ \sin \alpha_i & \cos \alpha_i \end{pmatrix}$ — матрица поворота на угол α_i . Этот вид называется каноническим.

- n = 1 и n = 2 рассмотрены в предыдущем билете.
- n > 2. Тогда, как было доказано ранее, существует одномерное или двумерное φ -инвариантное подпространство $U \subseteq E$. Разберём оба случая:
 - 1. $\dim U=1$. $\exists \ e_1\in U, \ |e_1|=1. \ \text{Так как подпространство } \varphi\text{-инвариантно, то } \varphi(e_1)= \begin{cases} e_1\\ -e_1 \end{cases}.$
 - 2. $\dim U = 2$. Тогда существует ортонормированный базис $e = \langle e_1, e_2 \rangle$, такой, что $A(\varphi_U, e) = \Pi(\alpha)$, либо $A(\varphi_U, e) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, где φ_U ограничение оператора φ на подпространство U.

Как было доказано ранее, U^{\perp} тоже φ -инвариантно. Но тогда, по предположению индукции, в U^{\perp} существует ортонормированный базис $\mathbb F$ такой, что $A(\varphi_{U^{\perp}}, \mathbb F)$ имеет канонический вид.

Но тогда $A(\varphi, e \cup f)$ имеет требуемый вид с точностью до перестановки блоков.

Классификация ортогональных линейных операторов в трехмерного евклидовом пространстве.

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E}=3,\,\varphi$ — его ортогональный линейный оператор, $A(\varphi,\mathbb{e})$ — матрица φ в некотором базисе \mathbb{e} .

Предложение. Возможны два случая:

- 1. φ это поворот на угол α вокруг оси $\langle e_3 \rangle$, где $e = (e_1, e_2, e_3)$ некоторый ортонормированный базис, $A(\varphi, e) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & 1 \end{pmatrix}$;
- 2. φ это «зеркальный поворот», то есть поворот на угол α вокруг прямой e_3 и зеркальное отражение относительно $\langle e_1, e_2 \rangle = \langle e_3 \rangle^{\perp}$, где $e = (e_1, e_2, e_3)$ некоторый ортонормированный базис, $A(\varphi, e) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & -1 \end{pmatrix}$.

Доказательство. По Теореме о каноническом виде ортогонального оператора сразу же получаем либо первый, либо второй вид. \Box