Analysis1

Mesh:

Entità	Dimensioni	
Nodi	29949	
Elementi	143783	

TIPO DI ELEMENTO:

Connettività	Statistiche
TE4	143783 (100,00%)

Materiali.1

Materiale	Acciaio	
Modulo di Young	2e+011N_m2	
Modulo di Poisson	0,266	
Densità	7860kg_m3	
Coefficiente di dilatazione termica	1,17e-005_Kdeg	
Limite di proporzionalità	2,5e+008N_m2	

Caso di analisi statica

Condizioni di bordo

Figure 1

Calcolo STRUTTURA

Numero di nodi : 29949 Numero di elementi : 143783 Numero di D.O.F. : 89847 Numeri di relazioni di contatto : 0 Numero di elementi cinematici : 0

Tetraedro lineare: 143783

Calcolo REAZIONI

Nome: Vincoli.1

Numero di S.P.C: 522

Calcolo CARICHI

Nome: Carichi.1

Risultante del carico applicato:

Fx = -2.713e-007 NFy = -4.417e-005 N

Fz = -1.031e + 005 N

 $Mx = -3 \cdot 625e + 004 Nxm$

My = -1 . 654e + 004 Nxm

Mz = 6.998e-006 Nxm

Calcolo MASSA STRUTTURALE

Nome: StructuralMassSet.1

Numero di linee : 89847 Numero di coefficienti : 1834038 Numero di blocchi : 4 Numero massimo di coefficienti per blocco : 499992

Dimensione totale della matrice : 21 . 33 Mb

Massa strutturale: 3.195e+002 kg

Coordinate del momento di inerzia centrale

 $Xg: -1.602e+002 \ mm$ $Yg: 3.797e+002 \ mm$

Zg: 2.082e+002 mm

Tensore di inerzia nell'origine: kgxm2

8.780e+001 1.943e+001 1.065e+001

1.943e+001 4.282e+001 -2.620e+001

1.065e+001 -2.620e+001 6.448e+001

Calcolo RIGIDEZZA

Numero di linee : 89847 Numero di coefficienti : 1834038 Numero di blocchi : 4 Numero massimo di coefficienti per blocco : 499992

Dimensione totale della matrice : 21 . 33 Mb

Calcolo SINGOLARITA'

Vincolo: Vincoli.1

Numero di singolarità locali : 0 Numero di singolarità in traslazione : 0 Numero di singolarità in rotazione : 0 Tipo di vincolo generato : MPC

Calcolo VINCOLI

Vincolo: Vincoli.1

Numero di vincoli : 522

Numero di coefficienti : 0

Numero di vincoli fattorizzati : 522

Numero di coefficienti : 0

Numero di vincoli differiti : 0

Calcolo NORMALIZZATO

Metodo : SPARSE

Numero dei gradi di fattorizzazione : 89325

Numero di supernodi : 4200

Numero di indici in sovrapposizione : 503892

Numero di coefficienti : 31589640

Massima ampiezza frontale : 1782

Massima dimensione frontale : 1588653

Dimensione della matrice di fattorizzazione (MB) : 241 . 01

Numero di blocchi : 16

Numero di Mflops per la fattorizzazione : 2 . 658e+004 Numero di Mflops per la soluzione : 1 . 268e+002 Pivot relativo minimo : 9 . 119e-003

Calcolo METODO DIRETTO

Nome: Soluzione del caso di analisi statica.1

Vincolo: Vincoli.1

Viene presa in considerazione la massa della struttura

Carico: Carichi.1

Energia di deformazione: 5.384e+000 J

Equilibrio

Componenti	Forze applicate	Reazioni	Residuo	Errore relativo di ampiezza
Fx (N)	-2.7126e-007	2.6852e-007	-2.7394e-009	1.6498e-013
Fy (N)	-4.4167e-005	4.4183e-005	1.5956e-008	9.6092e-013
Fz (N)	-1.0313e+005	1.0313e+005	-1.0798e-008	6.5027e-013
Mx (Nxm)	-3.6252e+004	3.6252e+004	-3.2232e-009	2.5526e-013
My (Nxm)	-1.6541e+004	1.6541e+004	-8.3674e-010	6.6264e-014
Mz (Nxm)	6.9981e-006	-6.9994e-006	-1.3360e-009	1.0580e-013

Soluzione del caso di analisi statica.1 - Mesh su deformata.2

Figure 2

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Sforzi alla Von Mises (valori nodali).2

Figure 3

Elementi 3D: : Componenti: : Tutti

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Mesh su deformata.1

Figure 4

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Vettore traslazione.1

Figure 5

Elementi 3D: : Componenti: : Tutti

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Simbolo tensore principale degli sforzi.1

Figure 6

Elementi 3D: : Componenti: : Tutti

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Errore locale stimato.1

Figure 7

Elementi 3D: : Componenti: : Tutti

Su tutti gli elementi ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Sforzi alla Von Mises (valori nodali).1

Figure 8

Elementi 3D: : Componenti: : Tutti

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Sensori globali

Nome del sensore	Valore del sensore	
Energia	5,384J	
Percentuale di errore globale (%)	16,569654465	