Beyond	Poisson's Ey, (ph. 1)
ND Posson's Eq.	
	Fust FD Johners emphalt:
pu=f	=> FF7-based 10 solvers
ulon= g	=> Separable domin
	(Kronecker structure)
5	

What about more complicated PDEs?

- => Variable Coefficients
 - => Nonseparable Geometry
 - => Time-Lependence (parabolic, hyporbolic)
 - => Nonlinearity

Key Ideal: Many "more complicated PDE" solvers
reduce problem to Boundary Value Problems,
or at beest to Linear System's m/smilur structure.

May Idea 2: Many BVPs can be solved efficiently using preconditioned iterative methods.

Norther Intal Value Problem linear, dine-dep. nombrees term E.2. K & V Eq. $\partial_{+}u + \partial_{x}^{3}u = -u\partial_{x}u$ General first-order systems in time: $M_{2}x + 1x = F(x)$ I diffiops. I nonlineur diffi op. Two useful perspectives: LUE -> SUE? 1) Propagator" $M\left(\frac{x^{n}-x^{n}}{n}\right)+Ix^{n}=F(x^{n})$ BUPS -> linear system => Some BVPs 2) "Method of Lines" ops 7 discretized (こハ+エ) パーニーハスキチノスツ) $M \partial_{+} X + L X = F(X)$

=> Integrate system Solvers for A=h"M+L.
of Compted 9DEs

Iterative Methods for BVBs

1) Stephonery Iterative Methods

Goel: Solve Aorb where A=B+C

Indial guess x (5)
for n=2,1,2,...

B x (n+1) = C x (n) + b

and

(1 met-vee with C 1 linear solve w/B)

E.g. $\chi = -\Delta + V(x)$ on periodic [0,1).

 $B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$

Fast Solve (FF7)

C:

unimble

coeff

Coeff

Cii = V(xi)

Fast multiply

 $e^{(n)} = x^{(n)} - x$ (error) Convergence: Beland = Ce(n) from iteration =)
can write

So, the error evolves us

The asymptothe growth or decay of 110°e's!!

i) governed by spectral radius of D, i.e.

ceremetres of D.

p(D) = max 12;1

15isn

If 0 has orthogonal eigenvectors, then $||e^{(n)}|| = ||D^n e^{(0)}|| \le p(0)^n$

and the iteration converges geometricely if

p(0) < 1

However, if the exemcetors of D are far from orthonormal, the convergence rate is only asymptotic - there may be large transient growth of 1/e⁽ⁿ⁾11 before convergence.

SPOA Any A
3) Kryber methods (PCG, PGMRKS,)
Iterative Approximations constructed from
span (b, Ab, A ⁿ⁻¹ b) = Krybr Subspace intell quess Want (a) Fast x-> Ax and (b) Rapid convergence
indul concer
Want (a) Fast x-> Ax and (b) Rapid convergence
iz. PCG Converges geometrically
$\ e^{(n)}\ _{A} \leq \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{n} \ e^{(o)}\ _{A} \leq 2e^{-2n/\kappa} \ e^{(o)}\ _{A}$
error error after n $\sqrt{x^TAx}$ iterations weighted Encliden
Rute of geometriz convergence slows when

is very large => A is ill-conditioned.

Both Skhonery: Krylor methods can be

preconditioned:

Apply iterative nethod to preconditioned system—idea is to improve convergence rede by chever selection of P_L and P_R. (E.g. try to reduce $\rho(A)$ or $\kappa(A)$.)

E.g. | Schnödinger Egn. (time-independent)

With order 4u + v(x)u = fA discretize (B + C)x = b

PL = B' can be applied efficiently

and PA = I + B-C has a much

Smaller conclidion number K than A does. Each iteration involves

(a)
$$X \rightarrow (B+C) \times (fast mat-vee)$$

(b) $X \rightarrow B^{-1} \times (fast solve)$

And only need O(log(E)) A for an E>D accurate approximate solution.