Федеральное государственное автономное учебное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

Отчёт по лабораторной работе №3 по дисциплине «Вычислительная математика»

Вариант №4

Группа: Р3218

Студент: Горло Евгений Николаевич

Преподаватель: Бострикова Дарья Константиновна

Содержание

1	Цел	ь лабораторной работы	3
2	Зад	ание	3
3	Раб	очие формулы методов	4
4	Лис	стинг программы	5
5	Рез	ультаты выполнения программы	8
6	Вы	нисление заданного интеграла	8
	6.1	Точное вычисление интеграла:	8
	6.2	Вычисление интеграла по формуле Ньютона-Котеса:	9
	6.3	Вычисление интеграла по формуле средних прямоугольников:	10
	6.4	Вычисление интеграла по формуле трапеций:	10
	6.5	Вычисление интеграла по формуле Симпсона:	10
7	Вы	зол	11

1 Цель лабораторной работы

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

2 Задание

Программная реализация

- 1. Реализовать в программе методы по выбору пользователя:
 - Метод прямоугольников (3 модификации: левые, правые, средние)
 - Метод трапеций
 - Метод Симпсона
- 2. Методы должны быть оформлены в виде отдельной (ого) функции/класса.
- 3. Вычисление значений функции оформить в виде отдельной (ого) функции/клас-са.
- 4. Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге.
- 5. Предусмотреть вывод результатов: значение интеграла, число разбиения интервала интегрирования для достижения требуемой точности.

Вычислительная реализация

- 1. Вычислить интеграл, приведенный в таблице 1, точно.
- 2. Вычислить интеграл по формуле Ньютона Котеса при n=6.
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n=10.
- 4. Сравнить результаты с точным значением интеграла.
- 5. Определить относительную погрешность вычислений для каждого метода.
- 6. В отчете отразить последовательные вычисления.

Интеграл из варианта:

$$\int_{-3}^{-1} \left(-2x^3 - 4x^2 + 8x - 4\right) dx$$

3 Рабочие формулы методов

Метод прямоугольников:

На каждом шаге интегрирования функция аппроксимируется полиномом нулевой степени - отрезком, параллельным оси абсцисс. Площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из п прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы n-элементарных прямоугольников.

$$\int_{a}^{b} f(x) \, dx = \sum_{i=1}^{n} yi - 1$$

h = (b - a)/n

 $x_i = a + hi$ для правых

 $x_i = a + hi_{-1}$ для левых

 $x_i = a + hi_{-1} + h/2$ для центральных

Метод трапеции:

Подынтегральную функцию на каждом отрезке $[x_i; x_{i+1}]$ заменяют интерполяционным многочленом первой степени: f(x) = ax + b Используют линейную интерполяцию, т.е. график функции y = f(x) представляется в виде ломаной, соединяющий точки (x_i, y_i)

$$\int_{a}^{b} f(x) dx = h((y_0 + y_n)/2 + \sum_{i=1}^{n} y_{i-1})$$

$$h = (b - a)/n$$
$$x_i = a + h_i$$

Метод Симпсона:

Метод Симпсона - численный метод для приближенного вычисления определенных интегралов. Он основан на аппроксимации подынтегральной функции квадратичной функцией на каждом интервале интегрирования. Для данного отрезка [a,b] с равномерной сеткой, где n - четное число подотрезков, метод Симсона выражается формулой:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} [f(a) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}) + 2 \sum_{i=1}^{n/2-1} f(x_{2i}) + f(b)]$$

где $h = \frac{b-a}{n}$ - шаг интегрирования, $x_i = a + ih$ - узлы сетки.

4 Листинг программы

Метод прямоугольников (левый):

```
def rectangle_method_left(quation, a, b, e, parts):
       integral = 99999
2
       answer = []
3
4
       while integral > e and parts < 10000000:</pre>
5
           h = (b - a) / parts
6
           h2 = (b - a) / (parts // 2)
           integral_1 = sum(integrand(quation, a + (i - 1) * h) for i in range(parts
           integral_2 = sum(integrand(quation, a + (i - 1) * h2) for i in range(
               parts // 2))
           integral_1 *= h
12
           integral_2 *= h2
14
           integral = abs((integral_2 - integral_1) / (2 ** 2 - 1))
           parts *= 2
16
17
       if integral_1 < float("inf"):</pre>
18
           answer.append(integral_1)
19
           answer.append(parts // 2)
20
           answer.append(integral)
21
           return answer
22
       else:
           return "The integral doesn't converge."
24
```

Метод прямоугольников (средний):

```
def rectangle_method_centre(quation, a, b, e, parts):
       integral = 99999
2
3
       answer = []
4
       while integral > e and parts < 10000000:</pre>
5
           h = (b - a) / parts
           h2 = (b - a) / (parts // 2)
           integral_1 = sum(integrand(quation, a + (i - 1 + h / 2) * h) for i in
               range(parts))
           integral_2 = sum(integrand(quation, a + (i - 1 + h2 / 2) * h2) for i in
               range(parts // 2))
           integral_1 *= h
           integral_2 *= h2
14
           integral = abs((integral_2 - integral_1) / (2 ** 2 - 1))
           parts *= 2
17
       if integral_1 < float("inf"):</pre>
18
           answer.append(integral_1)
19
           answer.append(parts // 2)
20
           answer.append(integral)
21
           return answer
22
       else:
23
           return "The integral doesn't converge."
```

Метод прямоугольников (правый):

```
def rectangle_method_right(quation, a, b, e, parts):
       integral = 99999
2
       answer = []
3
       while integral > e and parts < 10000000:</pre>
4
           h = (b - a) / parts
5
           h2 = (b - a) / (parts // 2)
6
           integral_1 = sum(integrand(quation, a + (i) * h) for i in range(parts))
           integral_2 = sum(integrand(quation, a + (i) * h2) for i in range(parts //
9
                2))
           integral_1 *= h
           integral_2 *= h2
13
           integral = abs((integral_2 - integral_1) / (2 ** 2 - 1))
14
           parts *= 2
16
       if integral_1 < float("inf"):</pre>
           answer.append(integral_1)
18
           answer.append(parts // 2)
19
           answer.append(integral)
20
           return answer
21
       else:
22
           return "The integral doesn't converge."
23
```

Метод трапеций:

```
def trapezoidal_method(quation, a, b, e, parts):
       integral = 99999
2
       answer = []
3
4
       while integral > e and parts < 10000000:</pre>
5
            i = 1
6
           h = (b - a) / parts
           h2 = (b - a) / (parts // 2)
            integral_1 = 0.5 * (
9
                     integrand(quation, a) + integrand(quation, b)
            integral_2 = 0.5 * (
12
                     integrand(quation, a) + integrand(quation, b)
14
            for i in range(parts // 2):
16
                integral_2 += integrand(quation, a + i * h2)
17
            integral_2 *= h2
            i = 1
19
20
21
            for i in range(parts):
                integral_1 += integrand(quation, a + i * h)
22
            integral_1 *= h
23
24
            integral = abs((integral_2 - integral_1) / (2 ** 2 - 1))
25
            parts *= 2
26
27
       if integral_1 < float("inf"):</pre>
2.8
            answer.append(integral_1)
29
            answer.append(parts // 2)
30
            answer.append(integral)
31
            return answer
32
33
       else:
```

34

Метод Симпсона:

```
def simpson_method(quation, a, b, e, parts):
1
       integral = 99999
2
       answer = []
3
4
       while integral > e and parts < 10000000:</pre>
5
           h = (b - a) / parts
           h2 = (b - a) / (parts // 2)
           integral_1 = 0
8
           integral_2 = 0
9
           x_values = [a + i * h for i in range(parts + 1)]
10
           x_values_2 = [a + i * h2 for i in range(parts // 2 + 1)]
11
12
           integral_2 = integrand(quation, a) + integrand(quation, b)
13
           for i in range(1, parts // 2, 2):
14
                integral_2 += 4 * integrand(quation, x_values_2[i])
16
           for i in range(2, parts // 2 - 1, 2):
17
                integral_2 += 2 * integrand(quation, x_values_2[i])
18
           integral_2 *= h2 / 3
19
20
           integral_1 = integrand(quation, a) + integrand(quation, b)
21
22
           for i in range(1, parts, 2):
                integral_1 += 4 * integrand(quation, x_values[i])
23
           for i in range(2, parts - 1, 2):
24
                integral_1 += 2 * integrand(quation, x_values[i])
25
           integral_1 *= h / 3
26
           integral = abs((integral_2 - integral_1) / (2 ** 2 - 1))
27
           parts *= 2
2.8
29
30
       if integral_1 < float("inf"):</pre>
           answer.append(integral_1)
31
           answer.append(parts // 2)
32
           answer.append(integral)
33
           return answer
34
       else:
35
           return "The integral doesn't converge."
36
```

5 Результаты выполнения программы

Рис. 1: Пример работы программы

6 Вычисление заданного интеграла

$$\int_{-3}^{-1} \left(-2x^3 - 4x^2 + 8x - 4 \right) dx$$

6.1 Точное вычисление интеграла:

Найдем первообразную подынтегральной функции:

$$F(x) = -\frac{1}{2}x^4 - \frac{4}{3}x^3 + 4x^2 - 4x$$

По формуле Ньютона-Лейбница вычислим определенный интеграл:

$$F(-1) = -\frac{1}{2} + \frac{4}{3} + 4 + 4 = \frac{53}{6} \approx 8,84$$

$$F(-3) = -\frac{81}{2} + 72 + 12 = \frac{87}{2} \approx 43,5$$

$$F(-1) - F(-3) = 8,84 - 43,5 = -34,66667$$

Ответ: -34,66667

6.2Вычисление интеграла по формуле Ньютона-Котеса:

$$n = 6$$

Разбиение интервала и определение узлов:

Разбиваем интервал на 6 равных подотрезков, это нам даст 7 узлов (точек)

$$x_0 = -3$$

$$x_1 = -2,6667$$

$$x_2 = -2,3333$$

$$x_3 = -2$$

$$x_4 = -1,6667$$

$$x_5 = -1,3333$$

$$x_6 = -1$$

Вычисление значений функций в узлах:

$$y_0 = f(-3) = -10$$

$$y_1 = f(-2,6667) = -15,8518$$

$$y_2 = f(-2, 3333) = -19,0372$$

$$y_3 = f(-2) = -20$$

$$y_4 = f(-1,6667) = -19,1851$$

$$y_5 = f(-1, 3333) = -17,037$$

$$y_6 = f(-1) = -14$$

Вычисление коэффициентов Ньютона-Котеса для $\mathbf{n}=\mathbf{6}$:

Вычисление коэффициенто
$$c_6^0 = \frac{41(b-a)}{840} = \frac{82}{840} \approx 0.09761905$$
 $c_6^1 = \frac{216(b-a)}{840} = \frac{432}{840} \approx 0.51428571$ $c_6^2 = \frac{27(b-a)}{840} = \frac{54}{840} \approx 0.06428571$ $c_6^3 = \frac{272(b-a)}{840} = \frac{544}{840} \approx 0.64761905$ $c_6^4 = c_6^2$

$$c_6^1 = \frac{216(b-a)}{840} = \frac{432}{840} \approx 0.51428571$$

$$c_6^2 = \frac{27(b-a)}{840} = \frac{54}{840} \approx 0.06428571$$

$$c_6^3 = \frac{272(b-a)}{840} = \frac{544}{840} \approx 0.64761905$$

$$c_6 - c_6$$

$$c_6^5 = c_6^1$$

$$c_6^{\S} = c_6^{\S}$$

Подстановка значений в формулу Ньютона-Котеса:

$$\int_{-3}^{-1} (-2x^3 - 4x^2 + 8x - 4) \, dx \approx \sum_{i=0}^{6} c_i \cdot f(x_i)$$

$$\frac{82}{840} \cdot (-10) + \frac{432}{840} \cdot (-15,8514) + \frac{54}{840} \cdot (-19,0372) + \frac{544}{840} \cdot (-20) + \frac{54}{840} \cdot (-19,1853) + \frac{432}{840} \cdot (-17,0367) + \frac{82}{840} \cdot (-14) = -34.66667$$

Вычислим погрешность интеграла:

$$\Delta I_n = I - I_n = 34,66667 - 34,66667 = 0 (\approx 0\%)$$

Ответ: -34,66667

6.3 Вычисление интеграла по формуле средних прямоугольников:

$$n = 10$$

Разобьем отрезок интегрирования на 10 равных частей:

$$h = \frac{b-a}{n} = 0,2$$

i	1	2	3	4	5	6	7	8	9	10
	-2,9									
$y_{i-\frac{1}{2}}$	55,218	42,926	32,25	23,094	15,362	8,958	3,786	-0,25	-3,246	-5,298

Вычислим значение интеграла:

$$I_{avg} = h \sum_{i=1}^{n} y_{i-\frac{1}{2}} = 34,56$$
 Вычислим погрешность интеграла:

$$\Delta I_{avg} = I - I_{avg} = 34,66667 - 34,56 = 0,10667 (\approx 0,31\%)$$

Ответ: 34,56

6.4 Вычисление интеграла по формуле трапеций:

$$n = 10$$

$$h = \frac{b-a}{n} = 0, 2$$

	n	,	,									
- 1					3		I					
					-2,4							
	$y_{i-\frac{1}{2}}$	62	48,864	37,392	27,488	19,056	12	6,224	1,632	-1,872	-4,384	-6

Вычислим значение интеграла:

$$I_{trap} = \frac{1}{2} \sum_{i=0}^{n} h_i (y_{i-1} + y_i) = 34,88$$

Вычислим погрешность интеграла:

$$\Delta I_{trap} = I - I_{trap} = 34,66667 - 34,88 = 0,021333 (\approx 0,615\%)$$

Ответ: 34,88

6.5 Вычисление интеграла по формуле Симпсона:

$$n = 10$$

 $h = \frac{b-a}{n} = 0, 2$

	,										
i	0	1			4					9	10
$x_{i-\frac{1}{2}}$	-3	-2,8	-2,6	-2,4	-2,2	-2	-1,8	-1,6	-1,4	-1,2	-1
$y_{i-\frac{1}{2}}$	62	48,864	37,392	27,488	19,056	12	6,224	1,632	-1,872	-4,384	-6

Вычислим значение интеграла:

$$I_{sim} = \frac{h}{3}[(y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n)] = 34,66667$$

$$\Delta I_{sim} = I - I_{sim} = 34,66667 - 34,66667 = 0 (\approx 0\%)$$

Ответ: 34,66667

7 Вывод

В ходе выполнения лабораторной работы были исследованы и реализованы три численных метода для приближенного вычисления определенных интегралов: метод прямоугольников (левый, правый, средний), метод трапеций и метод Симпсона.

Метод прямоугольниов (в частности центральный) обеспечивает наименьшую точность приближенного вычисления интегралов сравнительно с методом трапеций и Симпсона. Это связано с тем, что при использовании метода прямоугольников аппроксимация подынтегральной функции происходит с помощью прямоугольников, что может приводить к значительной потери точности, особенно на функциях с большими изменениями.

Метод трапеций демонстриурет большую точность по сравнению с методом прямоугольников, так как использует трапеции для аппроксимации функций, что более точно приближает интеграл. Однако, он все еще может оказаться менее точным по сравнению с методом Симпсона.

Метод Симпсона, использующий квадратичные интерполяционные полиномы для аппроксимации функции, предоставляет наибольшую точность среди рассмотренных методов. Он обеспечивает хорошее приближение к интегралу даже на функциях с большими изменениями и устойчив к различным формам функций.