第四次电路仿真实验

傅世平 2021K8009926014

- 一:正弦波发生器
 - 1. (1) 频率计算过程如下

(2) 仿真电路如下:

示波器图像如下图所示:

从图中看出, U_o 与 U_i 同相,且比值为 $\frac{328.952}{985.543} \approx 0.3338$,与理论结果 1/3 大致相等。

2. (1)根据运算放大器的计算结果,可确定 R_1 为 15K Ω , R_2 为 30K Ω 。 仿真电路图如下:

(2) 示波器波形如下:

可发现电压之比为 $\frac{2.986}{0.993}$ = 3.01,大致符合预测结果。

3. (1) 原因:

由附表原理可知,文氏电路得到的世号。引见。= F·Ui + F=⅓, 即 Uo = F·Ui + F=⅓, 而在同租放大器中,Uo = A·Ui,要使 Uo, Ui 维持频率稳定的正弦波,应有 A·F=1,即 A= 卡=3,故应设计放大倍数为3的放大器.

(2) 仿真电路图如下:

(3) 示波器波形如下:

可见两个电压同相,且频率 $f = \frac{1}{T} = \frac{1}{633.588} \times 10^6 = 1.58 kHz$,与文氏电路计算的结果(1.592kHz)大致相等。

(4) 解决方案:

仿真电路如下所示:

示波器波形如下所示,可看出周期 T=322.307 变为原来周期的 $\frac{1}{2}$,即频率 变为原来的 2 倍。

二: 电容倍增器

(1) 原理如下:

(2) 由于本题中 $\frac{C_{eq}}{c}=11$,故 $\frac{R_2}{R_1}=10$,这里取 $R_1=1k\Omega$, $R_2=10k\Omega$ 。仿 真电路如下图所示:

示波器 A 通道测端口电压, B 通道通过电流探针将电流表示为电压, 波形如下图所示:

可发现电流(绿色)超前电压(红色)90°,由公式计算可得
$$C = \frac{1}{\omega} \frac{I_c}{U_i} = \frac{685.781 \mu A}{1000 \times 980.675 mA} = 0.111 \mu F$$

结果与理论值相符。

对于端口电压的范围,下面是推导过程: