Section 4.5 – Diagonalization

When x is an eigenvector, multiplication by A is just multiplication by a single number: $Ax = \lambda x$. The matrix A turns into a diagonal matrix A when we use the eigenvectors property.

Diagonalization

Suppose the *n* by *n* matrix *A* has *n* linearly independent eigenvectors $x_1, ..., x_n$. Put them into the column of an *eigenvector matrix P*. Then $P^{-1}AP$ is the eigenvalue matrix *A*:

$$P^{-1}AP = \Lambda = D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Example

The projection matrix $A = \begin{pmatrix} .5 & .5 \\ .5 & .5 \end{pmatrix}$ has $\lambda = 1$ and 0.

The eigenvectors are: (1, 1) & (-1, 1) that are the value of P. $P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$

$$P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} .5 & .5 \\ -.5 & .5 \end{pmatrix}$$
$$\begin{pmatrix} .5 & .5 \\ -.5 & .5 \end{pmatrix} \begin{pmatrix} .5 & .5 \\ .5 & .5 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$P^{-1} \qquad A \qquad P \qquad = \qquad D$$

Definition

A square matrix A is called *diagonalizable* if there is an invertible matrix P such that $P^{-1}AP$ is diagonal; the matrix P is said to *diagonalize* A.

Theorem

Independent x from different λ - Eigenvectors $x_1, ..., x_n$ that correspond to distinct (all different) eigenvalues are linearly independent. An n by n matrix that has n different eigenvalues (no repeated λ 's) must be diagonalizable.

Proof

Suppose
$$c_1 x_1 + c_2 x_2 = 0$$
 (1)

$$\begin{pmatrix} c_1 x_1 & c_2 x_2 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = 0$$

$$c_1 \lambda_1 x_1 + c_2 \lambda_2 x_2 = 0 \quad (2)$$

Multiply (1) by λ_2 , that implies to

$$c_1 \lambda_2 x_1 + c_2 \lambda_2 x_2 = 0$$
 (3)

$$(2)-(3)$$

$$\begin{split} c_1 \lambda_1 x_1 + c_2 \lambda_2 x_2 - \left(c_1 \lambda_2 x_1 + c_2 \lambda_2 x_2 \right) &= 0 \\ c_1 \lambda_1 x_1 + c_2 \lambda_2 x_2 - c_1 \lambda_2 x_1 - c_2 \lambda_2 x_2 &= 0 \\ c_1 \lambda_1 x_1 - c_1 \lambda_2 x_1 &= 0 \\ c_1 \left(\lambda_1 - \lambda_2 \right) x_1 &= 0 \end{split}$$

Since $x_i \neq 0$ and λ 's are different $\lambda_1 - \lambda_2 \neq 0$, we forced $c_1 = 0$

Similarly; Multiply (1) by λ_1 , that implies to $c_1\lambda_1x_1 + c_2\lambda_1x_2 = 0$ (4)

$$(2)-(4)$$

$$\begin{aligned} c_1 \lambda_1 x_1 + c_2 \lambda_2 x_2 - c_1 \lambda_1 x_1 - c_2 \lambda_1 x_2 &= 0 \\ c_2 \left(\lambda_2 - \lambda_1 \right) x_2 &= 0 \Longrightarrow c_2 &= 0 \end{aligned}$$

Therefore, x_1 and x_2 must be independent.

Theorem

If $v_1, ..., v_n$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, ..., \lambda_n$, then $\{v_1, v_2, ..., v_k\}$ is linearly independent set.

Theorem

If an $n \times n$ matrix A has n distinct eigenvalues, then the following are equivalent:

- a) A is diagonalizable
- b) A has n linearly independent eigenvectors.

Example

Given the Markov matrix $A = \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} .8 - \lambda & .3 \\ .2 & .7 - \lambda \end{vmatrix} = (.8 - \lambda)(.7 - \lambda) - .06$$
$$= \lambda^2 - 1.5\lambda + .56 - .06$$
$$= \lambda^2 - 1.5\lambda + .5 = 0$$

The eigenvalues are: $\lambda_1 = 1$, $\lambda_2 = .5$

For $\lambda_1 = 1$, we have: $(A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -.2 & .3 \\ .2 & -.3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} -.2x + .3y = 0 \\ .2x - .3y = 0 \end{cases} \Rightarrow .2x = .3y$$

If $y = .2 \Rightarrow x = .3$, therefore the eigenvector $V_1 = \begin{pmatrix} .3 \\ .2 \end{pmatrix}$

For $\lambda_2 = .5$, we have: $(A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} .3 & .3 \\ .2 & .2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} .3x + .3y = 0 \\ .2x + .2y = 0 \end{cases} \Rightarrow x = -y$$

If $y = -1 \Rightarrow x = 1$, therefore the eigenvector $V_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$P = \begin{pmatrix} .3 & 1 \\ .2 & -1 \end{pmatrix} \Rightarrow P^{-1} = \frac{1}{-.5} \begin{pmatrix} -1 & -1 \\ -.2 & .3 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ .4 & -.6 \end{pmatrix}$$

$$\begin{pmatrix} .3 & 1 \\ .2 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & .5 \end{pmatrix} \quad \begin{pmatrix} 2 & 2 \\ .4 & -.6 \end{pmatrix} \quad = \begin{pmatrix} .3 & .5 \\ .2 & -.5 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ .4 & -.6 \end{pmatrix} \quad = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix}$$

$$D P^{-1} =$$

Eigenvalues of AB and A + B

An eigenvalue of A times an eigenvalue of B usually does not give an eigenvalue of AB.

$$\lambda_A \lambda_B \neq \lambda_{AB}$$

Commuting matrices share eigenvectors: Suppose A and B can be diagonalized. They share the eigenvector matrix P if and only if AB = BA.

Matrix Powers A^k

$$A^{2} = PDP^{-1}PDP^{-1} = PD^{2}P^{-1}$$
$$A^{k} = (PDP^{-1})\cdots(PDP^{-1}) = PD^{k}P^{-1}$$

The eigenvector matrix for A^k is still S, and the eigenvalue matrix is A^k . The eigenvectors don't change, and the eigenvalues are taken to the k^{th} power. When A is diagonalized, $A^k u_0$ is easy. Here are steps (taken from Fibonacci):

- **1.** Find the eigenvalues of *A* and look for *n* independent eigenvectors.
- **2.** Write u_0 as a combination $c_1 x_1 + \cdots + c_n x_n$ of the eigenvectors.
- **3.** Multiply each eigenvector x_i by $(\lambda_i)^k$. Then

$$u_k = A_k u_0 = c_1 \left(\lambda_1\right)^k x_1 + \dots + c_n \left(\lambda_n\right)^k x_n$$

Example

Compute
$$A^k$$
 where $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$

Solution

The matrix
$$A$$
 has $\lambda_1 = 1 \rightarrow x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\lambda_2 = 2 \rightarrow x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$A^{k} = PD^{k}P^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1^{k} & \\ & 2^{k} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2^{k} - 1 \\ 0 & 2^{k} \end{pmatrix}$$

Similar Matrices

Definition

If *A* and *B* are square matrices, then we say that *B* is similar to *A* if there exists an invertible matrix *P* such that $B = P^{-1}AP$ or $A = PBP^{-1}$

↓ Similar matrices B and $M^{-1}AM$ have the same eigenvalues. If x is an eigenvector of A then $M^{-1}x$ is an eigenvector of $B = M^{-1}AM$.

Proof

Since
$$B = M^{-1}AM \Rightarrow A = MBM^{-1}$$

Suppose $Ax = \lambda x$:
 $MBM^{-1}x = \lambda x$
 $BM^{-1}x = \lambda M^{-1}x$

The eigenvalue of *B* is the same λ . The eigenvector is now $M^{-1}x$

Example

The projection
$$A = \begin{bmatrix} .5 & .5 \\ .5 & .5 \end{bmatrix}$$
 is similar to $D = P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

Choose
$$M = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$
; the similar matrix $M^{-1}AM$ is $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Also choose
$$M = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
; the similar matrix $M^{-1}AM$ is $\begin{bmatrix} .5 & -.5 \\ -.5 & .5 \end{bmatrix}$

These matrices $M^{-1}AM$ all have the same eigenvalues 1 and 0. Every 2 by 2 matrix with those eigenvalues is similar to A. The eigenvectors change with M.

Example

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 is similar to every matrix $B = \begin{bmatrix} cd & d^2 \\ -c^2 & -cd \end{bmatrix}$ except $B = 0$.

These matrices B all have zero determinant (like A). They all have rank one (like A). Their trace is cd - cd = 0. Their eigenvalues are 0 and 0 (like A).

42

Choose
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with $ad - cd = 1$ and $B = M^{-1}AM$

Connections between similar matrices *A* and *B*:

Not Changed	Changed
Eigenvalues	Eigenvectors
Trace and determinant	Nullspace
Rank	Column space
Number of independent	Row space
eigenvectors	Left nullspace
Jordan form	Singular values

Example

Jordan matrix J has triple eigenvalues 5, 5, 5. Its only eigenvectors are multiples of (1, 0, 0). Algebraic multiplicity 3, geometric multiplicity 1:

If
$$J = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{bmatrix}$$
 then $J - 5I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ has rank 2.

Every similar matrix $B = M^{-1}JM$ has the same triple eigenvalues 5, 5, 5. Also B - 5I must have the same rank 2. Its nullspace has dimension 3 - 2 = 1. So each similar matrix B also has only one independent eigenvector.

The transpose matrix J^T has the same eigenvalues 5, 5, 5, and $J^T - 5I$ has the same rank 2. **Jordan's theory says that** J^T is similar to J. The matrix that produces the similarity happens to be the reserve identity M:

$$J^{T} = M^{-1}JM \quad is \quad \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

There is one line of eigenvectors $(x_1, 0, 0)$ for J and another line $(0, 0, x_3)$ for J^T .

Fibonacci Numbers

Every new Fibonacci number is the sum of the two previous F's.

The sequence 0, 1, 1, 2, 3, 5, 8, 13, comes from
$$F_{k+2} = F_{k+1} + F_k$$

Problem

Find the Fibonacci number F_{100}

We can apply the rule one step at a time, or just use Linear algebra.

Let consider the matrix equation: $u_{k+1} = Au_k$. Fibonacci rule gave us a two-step rule for scalars.

Let
$$u_k = \begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$$
, the rule $\begin{pmatrix} F_{k+2} = F_{k+1} + F_k \\ F_{k+1} = F_{k+1} \end{pmatrix}$ becomes $u_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} u_k$.

Every step multiplies by $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, after 100 steps we reach $u_{100} = \begin{pmatrix} F_{101} \\ F_{100} \end{pmatrix}$

$$u_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $u_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $u_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $u_3 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$... $u_{100} = \begin{pmatrix} F_{101} \\ F_{100} \end{pmatrix}$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{vmatrix} = -\lambda (1 - \lambda) - 1 = \lambda^2 - \lambda - 1$$

The characteristic equation is $\lambda^2 - \lambda - 1 = 0$ and the solutions are

$$\lambda_1 = \frac{1+\sqrt{5}}{2} \approx 1.618$$
 and $\lambda_2 = \frac{1-\sqrt{5}}{2} \approx -.618$

The eigenvectors are:

$$\begin{aligned} & \left(A - \lambda_1 I\right) v_1 = \begin{bmatrix} 1 - \lambda_1 & 1 \\ 1 & -\lambda_1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \lambda_1 - \lambda_1 y_1 = 0 \end{aligned} \Rightarrow v_1 = \begin{pmatrix} \lambda_1 \\ 1 \end{pmatrix}$$

$$& \left(A - \lambda_2 I\right) v_2 = \begin{bmatrix} 1 - \lambda_2 & 1 \\ 1 & -\lambda_2 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \lambda_2 - \lambda_2 y_2 = 0 \end{aligned} \Rightarrow v_2 = \begin{pmatrix} \lambda_2 \\ 1 \end{pmatrix}$$

$$& S = \begin{pmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{pmatrix}$$

The combination of these eigenvectors that give $u_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\lambda_1 - \lambda_2} \left(\begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix} - \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix} \right) = \frac{v_1 - v_2}{\lambda_1 - \lambda_2}$$

$$\begin{aligned} u_{100} &= \frac{\left(\lambda_1\right)^{100} v_1 - \left(\lambda_2\right)^{100} v_2}{\lambda_1 - \lambda_2} \\ F_{100} &= \frac{1}{\lambda_1 - \lambda_2} \left[\left(\lambda_1\right)^{100} - \left(\lambda_2\right)^{100} \right] \\ &= \frac{1}{\frac{1 + \sqrt{5}}{2} - \frac{1 + \sqrt{5}}{2}} \left[\left(\frac{1 + \sqrt{5}}{2}\right)^{100} - \left(\frac{1 + \sqrt{5}}{2}\right)^{100} \right] \\ &\approx 2.54 \times 10^{20} \end{aligned}$$

The Jordan Form

For every A, we want to choose M so that $M^{-1}AM$ is as nearly diagonal as possible. When A has a full set of n eigenvectors, they go into the columns of M. Then M = P. The matrix $P^{-1}AP$ is diagonal.

If A has s independent eigenvectors, it is similar to a matrix J that has s Jordan blocks on its diagonal. There is a matrix M such that

$$M^{-1}AM = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_s \end{bmatrix} = J$$

Each block in J has one eigenvalue λ_i , one eigenvector, and 1's above the diagonal:

$$\boldsymbol{J}_i = \begin{bmatrix} \boldsymbol{\lambda}_i & 1 & & 1 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \boldsymbol{\lambda}_i \end{bmatrix}$$

A is similar to B if they share the same Jordan form J – not otherwise.

Exercises Section 4.5 – Diagonalization

- The Lucas numbers are like Fibonacci numbers except they start with $L_1 = 1$ and $L_2 = 3$. 1. Following the rule $L_{k+2} = L_{k+1} + L_k$. The next Lucas numbers are 4, 7, 11, 18. Show that the Lucas number $L_{100} = \lambda_1^{100} + \lambda_2^{100}$.
- Find all eigenvector matrices *S* that diagonalize *A* (rank 1) to give $S^{-1}AS = \Lambda$: 2.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

What is A^n ? Which matrices B commute with A (so that AB = BA)

3. Determine whether the matrix is diagonalizable

$$a) \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$

$$b) \begin{bmatrix} -3 & 2 \\ -2 & 1 \end{bmatrix}$$

$$c) \begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{bmatrix}$$

$$d) \begin{bmatrix} 2 & -1 & 0 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Find a matrix P that diagonalizes A, and compute $P^{-1}AP$ 4.

$$a) \quad A = \begin{bmatrix} -14 & 12 \\ -20 & 17 \end{bmatrix}$$

$$b) \quad A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$

$$c) \quad A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

5. Determine if the matrices are diagonalizable. If so, find a matrix P that diagonalizes A and determine $P^{-1}AP$.

$$a) \quad A = \begin{bmatrix} 3 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$c) \quad A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

a)
$$A = \begin{bmatrix} 3 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 c) $A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$ d) $A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 5 & -5 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$ b) $A = \begin{bmatrix} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4 \end{bmatrix}$

$$A = \begin{bmatrix} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4 \end{bmatrix}$$

6. The 4 by 4 triangular Pascal matrix P_L and its inverse (alternating diagonals) are

$$P_{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix} \quad and \quad P_{L}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

Check that P_L and P_L^{-1} have the same eigenvalues. Find a diagonal matrix D with alternating signs that gives $P_L^{-1} = D^{-1}P_LD$, so P_L is similar to P_L^{-1} . Show that P_LD with columns of alternating signs is its own inverse.

Since P_L and P_L^{-1} are similar they have the same Jordan form J. Find J by checking the number of independent eigenvectors of P_L with $\lambda = 1$.

- 7. If x is in the nullspace of A show that $M^{-1}x$ is in the nullspace of $M^{-1}AM$. The nullspaces of A and $M^{-1}AM$ have the same (vectors) (basis) (dimension)
- **8.** These Jordan matrices have eigenvalues 0, 0, 0, 0. They have two eigenvectors (one from each block). But the block sizes don't match and they are not similar:

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad and \quad K = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix}$$

For any matrix M compare JM with MK. If they are equal show that M is not invertible. Then $M^{-1}JM = K$ is Impossible; J is not similar to K.

- **9.** Prove that A^T is always similar to A (λ 's are the same):
 - a) For one Jordan block J_i , find M_i so that $M_i^{-1}J_iM_i = J_i^T$.
 - b) For any J with blocks J_i , build M_0 from blocks so that $M_0^{-1}JM_0 = J^T$.
 - c) For any $A = MJM^{-1}$: Show that A^T is similar to J^T and so to J and so to A.
- **10.** Why are these statements all true?
 - a) If A is similar to B then A^2 is similar to B^2 .
 - b) A^2 and B^2 can be similar when A and B are not similar.
 - c) $\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$ is similar to $\begin{pmatrix} 3 & 1 \\ 0 & 4 \end{pmatrix}$

d)
$$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$
 is not similar to $\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$

- e) If we exchange rows 1 and 2 of A, and then exchange columns 1 and 2 the eigenvalues stay the same. In this case M = ?
- 11. If an $n \times n$ matrix A has all eigenvalues $\lambda = 0$ prove that A^n is the zero matrix.
- **12.** If A is similar to A^{-1} , must all the eigenvalues equal to 1 or -1?.
- 13. Show that A and B are not similar matrices

a)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 0 \\ 3 & -2 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 4 & -1 \\ 2 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 4 & 1 \\ 2 & 4 \end{pmatrix}$

c)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- **14.** Prove that two similar matrices have the same determinant. Explain geometrically why this is reasonable.
- **15.** Prove that two similar matrices have the same characteristic polynomial and thus the same eigenvalues. Explain geometrically why this is reasonable.
- **16.** Suppose that *A* is a matrix. Suppose that the linear transformation associated to *A* has two linearly independent eigenvectors. Prove that *A* is similar to a diagonal matrix.
- 17. Prove that if A is a 2×2 matrix that has two distinct eigenvalues, then A is similar to a diagonal matrix.
- 18. Suppose that the characteristic polynomial of a matrix has a double root. Is it true that the matrix has two linearly independent eigenvectors? Consider the example $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Is it true that matrices with equal characteristic polynomial are necessarily similar?
- **19.** Show that the given matrix is not diagonalizable. $\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$

- **20.** Determine if the given matrix is diagonalizable. If, so, find matrices S and $\Lambda(D)$ such that the given matrix equals $S\Lambda S^{-1}$
 - $\begin{array}{c} a) \begin{bmatrix} 3 & 3 \\ 4 & 2 \end{bmatrix}$
 - $b) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & -1 \end{bmatrix}$