Herbst 13 Themennummer 1 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Zwei Funktionen f und g seien in einer Umgebung eines Punktes $z_0 \in \mathbb{C}$ holomorph und es gelte $f(z_0) \neq 0, g(z_0) = 0$ und $g'(z_0) \neq 0$. Beweisen Sie, dass dann

Res
$$\left(\frac{f}{g}; z_0\right) = \frac{f(z_0)}{g'(z_0)}$$

ist. Berechnen Sie unter Benutzung dieses Ergebnisses das Integral

$$I = \int_{|z|=1} \frac{e^z}{\sin z} \mathrm{d}z.$$

Lösungsvorschlag:

Wegen $g'(z_0) \neq 0$ ist g nicht die Nullfunktion. Es gibt daher nach dem Identitätssatz ein $\varepsilon > 0$ sodass für $z \in B_{\varepsilon}(z_0) \setminus \{z_0\}$ auch $g(z) \neq 0$ gilt, denn sonst würden sich die Nullstellen von g in z_0 häufen.

Die Funktion $h: B_{\varepsilon}(z_0) \setminus \{z_0\} \ni z \mapsto \frac{f(z)}{g(z)}$ ist demnach holomorph und besitzt bei z_0 eine isolierte Singularität. Diese ist einfache Nullstelle des Nenners bei nichtverschwindendem Zähler und daher ein Pol erster Ordnung. Wir kürzen $a = \text{Res}\left(\frac{f}{g}; z_0\right)$ ab, dann gibt es eine Laurentreihenentwicklung von h um z_0 und diese ist von der Form $h(z) = \frac{a}{z-z_0} + \sum_{n=0}^{\infty} a_n(z-z_0)^n$. Das Residuum können wir demnach mittels $a = \lim_{z \to z_0} h(z)(z-z_0)$ berechnen. Aus den Voraussetzungen folgt:

$$\lim_{z \to z_0} h(z)(z - z_0) = f(z) \frac{z - z_0}{g(z) - g(z_0)} = f(z_0) \cdot \frac{1}{g'(z_0)} = \frac{f(z_0)}{g'(z_0)},$$

weil f als holomorphe Funktion stetig in z_0 ist und per Definitionem $\frac{g(z)-g(z_0)}{z-z_0}$ gegen $g'(z_0)$ konvergiert. Hier wurde $g(z_0) = 0 \neq g'(z_0)$ benutzt und der Grenzwertsatz für Division durch nichtverschwindende Limiten verwendet.

Für die Integralberechnung benutzen wir die Formel $\int_{\gamma} f(z) dz = 2\pi i \operatorname{Res}(f; z_0)$ für alle Kreiswege um z_0 , deren Radius r so klein ist, dass f auf $B_r(z_0) \setminus \{z_0\}$ holomorph ist. Wegen $e^0 = 1, \sin(0) = 0$ und $\sin'(0) = \cos(0) = 1$ folgt dann $I = 2\pi i \operatorname{Res}\left(\frac{e^z}{\sin z}; 0\right) = 2\pi i \frac{1}{1} = 2\pi i$. Dabei wurde verwendet, dass die komplexen Nullstellen der Sinusfunktion die ganzzahligen Vielfachen von π sind, 0 also die einzige Singularität des Integranden auf $B_2(0)$ ist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$