Machine Learning Lecture 7

Agenda

- ► Gradient Descent/Ascend (GD)
 - ightharpoonup Concave/Convex functions (z = f(x, y))
 - Contourplot/contour lines/level curves (f(x, y) = const)
 - ▶ Gradient (∇f or grad f)
 - Learning rate (η)
- Stochastic Gradient Descent (SGD)
 - Epochs
 - Batches
- ► Regularization Techniques
 - ► Ridged (*L*₂)
 - ightharpoonup Lasso (L_1)
 - ► Elastic (L₂ and L₁ combined)

Motivation

$$a(x^{(i)}) = w_0 + w_1 x_1^{(i)} + \ldots + w_d x_d^{(i)} = w^T \tilde{x},$$

$$w^* = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{y}^T \mathbf{X})^T.$$

- $ightharpoonup X^T X$ is (number of features) \times (number of features)
- $ightharpoonup \exists (\mathbf{X}^T\mathbf{X})^{-1}?$

Convex/Concave Functions

Gradient and Level Curves

(Batch) Gradient Descent

- 1. Choose w^{start}
- w^{new} = w^{old} ∇Loss(Xw^{old}, y),
 Stop after M iterations or |w^{new} w^{old}| < ε.

Learning Rate

- 1. Choose w^{start}
- w^{new} = w^{old} η∇Loss(Xw^{old}, y),
 Stop after M iterations or |w^{new} w^{old}| < ε.

Stochastic Gradient Descent

- 1. Choose w^{start}
- 2. $w^{new} = w^{old} \frac{\eta}{\eta} \nabla Loss((w^{old})^T \tilde{x}^{(i)}, y^{(i)}),$
- 3. Stop after $N \times M$ epoch iterations or $|w^{new} w^{old}| < \varepsilon$.

Mini-Batch SGD

Batch X ₁	x ⁽¹⁾	y ⁽¹⁾
	$\frac{x^{(1)}}{x^{(2)}}$	$y^{(1)}$ $y^{(2)}$
	$\chi^{(N_1)}$	$y^{(N_1)}$
Batch X 2	$\chi^{(N_1+1)}$ $\chi^{(N_1+2)}$	$y^{(N_1+1)}$ $y^{(N_1+2)}$
	$\chi^{(N_1+2)}$	$y^{(N_1+2)}$
	$\chi^{(2N_1)}$	$y^{(2N_1)}$
Batch X _B	$\chi^{((B-1)N_1+1)}$	$v^{((B-1)N_1+1)}$
	$\chi^{((B-1)N_1+1)}$ $\chi^{((B-1)N_1+2)}$	$y^{((B-1)N_1+1)}$ $y^{((B-1)N_1+2)}$
	$\chi^{(N_B)}$	$v^{(N_B)}$

SGD

$$Loss_{batch} = \frac{1}{N} \sum_{i=1}^{N} \left(a(x^{i}) - y^{(i)} \right)^{2}$$

$$Loss_{SGD} = \left(a(x^i) - y^{(i)}\right)^2$$

$$\textit{Loss}_{\textit{mini}-\textit{batch}} = \frac{1}{\textit{N}_1} \sum_{(b-1)\textit{N}_1+1}^{b\textit{N}_1} \left(\textit{a} \left(\textit{x}^i \right) - \textit{y}^{(i)} \right)^2$$

Early Stopping

https://github.com/ageron/handson-ml2/blob/master/04_training_linear_models.ipynb

Regularization

Ridged (L_2) :

$$Loss + \alpha \|\mathbf{w}_{-0}\|_2^2 \rightarrow min$$

Lasso (L_1)

$$Loss + \beta \|w_{-0}\|_1 \rightarrow min$$

Elastic (L_2 and L_1 combined)

$$Loss + \alpha \|w_{-0}\|_2 + \beta \|w_{-0}\|_1 \to min$$

Usually, w_0 is not included, i.e., $||w_{-0}||_1 = |w_1| + \ldots + |w_d|$ and $||w_{-0}||_2^2 = w_1^2 + \ldots + w_d^2$.

