Κεφάλαιο 16

Εξελιγμένες Τεχνικές Σχεδιασμού

Τεχνητή Νοημοσύνη - Β' Έκδοση

Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Σχεδιασμός Βασισμένος σε Γράφους

Γράφος σχεδιασμού (1/2)

- Ο γράφος σχεδιασμού αποτελείται από αριθμημένα επίπεδα κόμβων
 - □ Κόμβοι των γεγονότων ή προτάσεων (fact nodes ή proposition nodes), στα άρτια επίπεδα.
 - □ Κόμβοι των ενεργειών (action nodes), στα περιττά επίπεδα
- Επαναλαμβανόμενη εναλλαγή δύο φάσεων:
 - □ Επέκταση του γράφου (graph expansion).
 - \Box Εξαγωγή λύσης (solution extraction).
- Οι ακμές συνδέουν:
 - Τα γεγονότα ενός επιπέδου με τις ενέργειες του επόμενου επιπέδου που τα έχουν ως προϋποθέσεις.
 - Τις ενέργειες ενός επιπέδου με τα γεγονότα των λιστών προσθήκης αυτών στο επόμενο επίπεδο.
- Ενέργειες διατήρησης
 - **Σ**υμβολίζονται με noop (no-operator)

Σχέσεις Αμοιβαίου Αποκλεισμού

- Μια σχέση αμοιβαίου αποκλεισμού αναφέρεται πάντα σε δύο κόμβους του ίδιου επιπέδου και δηλώνει ότι αυτοί δεν μπορούν να βρίσκονται ταυτόχρονα στο ίδιο έγκυρο πλάνο.
- ❖ Δύο γεγονότα στο επίπεδο i είναι αμοιβαία αποκλειόμενα, εάν όλες οι ενέργειες στο επίπεδο i-1, συμπεριλαμβανομένων των ενεργειών noop, που επιτυγχάνουν αυτά τα γεγονότα είναι μεταξύ τους αμοιβαίως αποκλειόμενες (ασύμβατη υποστήριξη inconsistent support).

Σχεδιασμός Βασισμένος σε Γράφους

Εξαγωγή λύσης

- Ξεκινά μόλις σε κάποιο επίπεδο γεγονότων i εμφανιστούν όλα τα γεγονότα των στόχων, χωρίς καμιά σχέση αμοιβαίου αποκλεισμού μεταξύ τους.
- * Τα γεγονότα των στόχων πρέπει να υποστηριχθούν από μη αμοιβαία αποκλειόμενες ενέργειες του προηγούμενου επιπέδου.
- Αναδρομικά, οι προϋποθέσεις των ενεργειών αυτών πρέπει να υποστηριχθούν από μη αμοιβαία αποκλειόμενες ενέργειες του προηγούμενού τους επιπέδου, μέχρι να φθάσουμε στο πρώτο επίπεδο.
- Εάν δεν βρεθεί τέτοιο πλάνο, ο γράφος επεκτείνεται κατά 2 ακόμη επίπεδα και η διαδικασία επαναλαμβάνεται.
- Συνθήκη τερματισμού είναι η εύρεση δύο εντελώς ίδιων επιπέδων γεγονότων.

- Υπόθεση σχετικά με τον αριθμό των βημάτων του πλάνου-λύσης.
- * Κωδικοποίηση σαν πρόβλημα ικανοποίησης προτάσεων σε μορφή σύζευξης διαζεύξεων (conjunctive normal form, CNF).
- Επίλυση με στοχαστικές ή συστηματικές μεθόδους.
- Εάν δεν βρεθεί λύση, επαναλαμβάνεται η διαδικασία για μεγαλύτερο αριθμό βημάτων.

Τεχνητή Νοημοσύνη, Β' Έκδοση

Κωδικοποίηση (1/2)

- Η σύζευξη των γεγονότων της αρχικής κατάστασης πρέπει να αληθεύει.
 - on $(b,a)_0 \wedge on (a,table)_0 \wedge clear (b)_0$
- Η σύζευξη των γεγονότων των στόχων πρέπει επίσης να αληθεύει.

```
on (a,b)_4 \wedge on(b,table)_4 \wedge clear(a)_4
```

Οι ενέργειες συνεπάγονται τις προϋποθέσεις τους και τα αποτελέσματά τους.

```
move-A-from-table-to-B<sub>3</sub>\Rightarrowon(a,table)<sub>2</sub> \wedge clear(a)<sub>2</sub> \wedge clear(b)<sub>2</sub> \wedge on(a,b)<sub>4</sub> \wedge clear(a)<sub>4</sub> \wedge -on(a,table)<sub>4</sub> \wedge -clear(b)<sub>4</sub>
```

ή ισοδύναμα σε μορφή CNF

```
(-move-A-from-table-to-B<sub>3</sub> ∨ on(a,table)<sub>2</sub>) ∧
(-move-A-from-table-to-B<sub>3</sub> ∨ clear(a)<sub>2</sub>) ∧
(-move-A-from-table-to-B<sub>3</sub> ∨ clear(b)<sub>2</sub>) ∧
(-move-A-from-table-to-B<sub>3</sub> ∨ on(a,b)<sub>4</sub>) ∧
(-move-A-from-table-to-B<sub>3</sub> ∨ clear A)<sub>4</sub>) ∧
(-move-A-from-table-to-B<sub>3</sub> ∨ -on(a,table)<sub>4</sub>) ∧
(-move-A-from-table-to-B<sub>3</sub> ∨ -clear(b)<sub>4</sub>)
```

Κωδικοποίηση (2/2)

Ενέργειες ενός επιπέδου που είναι αμοιβαία αποκλειόμενες μεταξύ τους δεν μπορούν να εκτελεστούν ταυτόχρονα.

```
-move-A-from-table-to-B<sub>3</sub> ∨ -move-B-from-table-to-A<sub>3</sub>
```

Κάθε γεγονός ενός επιπέδου (εκτός του επιπέδου 0) συνεπάγεται τη διάζευξη όλων των ενεργειών του προηγούμενου επιπέδου που το επιτυγχάνουν (συμπεριλαμβανομένων των ενεργειών διατήρησης).

```
on (b,a)_4 \Rightarrow move-B-from-table-to-A_3 \lor (noop on <math>(b,a)_3)
```

ή ισοδύναμα σε μορφή CNF

```
-on(b,a)_4 \vee move-B-from-table-to-A_3 \vee (noop on(b,a))_3
```

Συστηματική Επίλυση Προβλημάτων

Αλγόριθμος DPLL (CNF έκφραση φ)

Εάν η φ είναι κενή, επέστρεψε αληθές, αλλιώς εάν υπάρχει πρόταση στη φ που να αποτιμάται ψευδής, επέστρεψε ψευδές, αλλιώς εάν υπάρχει μια καθαρή μεταβλητή X στη φ , επέστρεψε DPLL($\varphi(X)$), αλλιώς εάν υπάρχει μια μοναδιαία πρόταση $\{X\}$ στη φ , επέστρεψε DPLL($\varphi(X)$),

αλλιώς

επέλεξε μια μεταβλητή X που εμφανίζεται στη φ , Εάν DPLL($\varphi(X)$)=αληθές, επέστρεψε αληθές, αλλιώς επέστρεψε DPLL($\varphi(\neg X)$).

Στοχαστική Επίλυση Προβλημάτων

Αλγόριθμος GSAT (CNF έκφραση φ , integer: N_{restarts} , N_{flips})

Aπό i=1 μέχρι $i=N_{\text{restarts}}$

Έστω A μια τυχαία ανάθεση τιμών σε όλες τις μεταβλητές της φ .

Aπό j=1 μέχρι $i=N_{flips}$

Εάν η ανάθεση Α ικανοποιεί την φ, επέστρεψε αληθές

Αλλιώς

Έστω Χ η μεταβλητή εκείνη της φ, της οποίας η αντιστροφή της τιμής δίνει το μεγαλύτερο αριθμό ικανοποιημένων προτάσεων στην πρόταση φ (σε περίπτωση ύπαρξης πολλών τέτοιων μεταβλητών, επέλεξε μια τυχαία)

Τροποποίησε την Α, αντιστρέφοντας την τιμή της μεταβλητής Χ.

Επέστρεψε ψευδές.

Άλλες Εξελιγμένες Τεχνικές Σχεδιασμού

- Εφαρμογή Ικανοποίησης Περιορισμών στο σχεδιασμό
- Αναπαράσταση προβλημάτων σχεδιασμού ως προβλήματα
 - Ελέγχου Μοντέλων
 - 🗖 Μαρκοβιανές Διαδικασίες Απόφασης
 - □ Επίλυση προβλημάτων σχεδιασμού με αβεβαιότητα (uncertainty)

Σχεδιασμός σε Ιεραρχικά Δίκτυα Διεργασιών

Hierarchical Task Network Planning-HTN

- Κατηγορία σχεδιασμού με τις περισσότερες πρακτικές εφαρμογές.
- * Επιχειρείται η εύρεση πλάνου με ζητούμενο την επίτευξη μιας ανώτερου επιπέδου διεργασίας (high level task)
- * Βασική ιδέα: Ιεραρχική αποδόμηση της αρχικής διεργασίας στόχου σε απλούστερες μέχρις ότου ο σχεδιαστής να καταλήξει σε άμεσα εκτελέσιμες διεργασίες.
- * Μέθοδος σχεδιασμού: Αποδομεί μια διεργασία σε ένα σύνολο από απλούστερες του αμέσως κατώτερου επιπέδου, οι οποίες είναι μερικώς διατεταγμένες.
- Επιτυγχάνεται η κωδικοποίηση γνώσης για την εύρεση πλάνου που χρησιμοποιείται από ανθρώπους ειδικούς
- Πλεονέκτημα: Σημαντικά αποδοτικότερη λύση του προβλήματος σχεδιασμού
- **Φ** Μειονέκτημα: Ανάγκη για κωδικοποίηση των μεθόδων
- ❖ Ιεραρχικοί σχεδιαστές: SHOP, JSHOP, SHOP2

Παράδειγμα Αποδόμησης Διεργασιών

- ❖ Πρόβλημα μετακίνησης φορτίου p1 από μια τοποθεσία loc1 σε μια τοποθεσία loc2
 - □ Το ζητούμενο είναι μια διεργασία transport(p1,loc1,loc2)
 - Η επίτευξη της transport(p1,loc1,loc2) μπορεί να πραγματοποιηθεί με τη μεταφορά του φορτίου αεροπορικώς move_by_air(p1,loc1,loc2) ή οδικώς move_by_truck(p1,loc1,loc2)