AW883XX Android Driver(MTK)

版本: V1.8

时间: 2021年11月16日

修订记录

日期	版本	描述	作者
2021-3-12	V1.0	初版	赵磊
2021-3-24	V1.1	 增加 i2c_log_en , phase_sync , spk_temp 节点描述 增加 re_range 校准命令及节点描述 	周慧栋
2021-6-1	V1.2	1. 修改 MTK 5G 平台移植描述	周慧栋
2021-7-2	V1.3	1. 修改驱动 misc 校准方式 re 值设置指 令描述	周慧栋
2021-7-14	V1.4	1. 修改低温低压描述	周慧栋
2021-7-30	V1.5	1. 增加校准示例代码说明 2. 默认校准 Re 值范围修改为 1000- 40000mohm	王萍
2021-8-3	V1.6	 修改 5G dai_link 描述 修改 bin 文件加载描述 	周慧栋
2021-9-2	V1.6.1	1. 修改校准文件描述 2. 增加声道旋转功能描述	周慧栋
2021-9-24	V1.7	 增加 monitor_switch control 增加 dsp 节点描述 	周慧栋
2021-10-19	V1.7.1	1. 修改 re 校准有效检查描述 2. 增加 aw-cali-check 设备树配置描述	周慧栋
2021-10-21	V1.7.2	1. 删除 aw-cali-check 设备树配置描述	周慧栋
2021-11-17	V1.7.3	 校准描述分章节叙述,增加常见错误分析 删除 platform 与 android-version 删除 aw88363 产品,删除旋转功能 默认开启所有校准功能 增加 condig 选择描述 修改 xml 描述 修改节点与 Kcontrol 描述 	周慧栋

目录

INFORMATION	5
PROJECT CONFIG	5
AUIDO DEVICE	5
添加 AW883XX 选项	5
添加 AW883XX 参数配置	5
添加 AW883XX 描述	6
KERNEL DRIVER	6
AW883XX SMART PA DRIVER	6
添加 DTS 配置	6
添加驱动文件	7
更新 KCONFIG 和 MAKEFILE	7
添加 AW883XXFW&CFG 文件	7
ASOC MACHINE DRIVER	8
4G 平台配置	8
5G 平台配置	9
SPEAKER CALI	9
校准目的	9
校准方式	10
校准值的保存(示例)	11
校准有效性验证	12
校准节点示例代码	12
DEBUG INTERFACE	12
NODE	12
REG	12
RW	12
DRV_VER	13
DSP_RW	13
DSP	
FADE_STEP	
DBG_PROF	
FADE_EN	
MONITORMONITOR_UPDATE	
DSP_RE	
I2C_LOG_EN	

	PHASE_SYNC	15
	SPK_TEMP	15
	CALI_RE	15
	CALI_F0	15
	CALI_F0_Q	
	CALI_TIME	15
	RE_RANGE	
KCON	ITROL	16
	AW_DEV_X_SWITCH	
	AW_DEV_X_PROF	16
	AW883XX_FADEIN_US	16
	AW883XX_FADEOUT_US	
	AW_DEV_X_MONITOR_SWITCH	16
附件		17
党 口 结	· - 诗译分析	17

INFORMATION

HAL File Driver File	AudioParamOptions.xml SmartPa_ParamUnitDesc.xml aw883xx.c, aw883xx.h, aw_pid_2049_reg.h,aw_monitor.c, aw_monitor.h,aw_log.h,aw_init.c,aw_device.c,aw_device.h, aw_data_type.h,aw_calib.h,aw_calib.c,aw_bin_parse.c, aw_bin_parse.h,aw_spin.c,aw_spin.h
Smart PA	aw88394、aw88395
I ² C Address	0x34/0x35/0x36/0x37
ADB Debug	yes

PROJECT CONFIG

在 ProjectXXX.mk 中添加

MTK AUDIO SPEAKER PATH = smartpa awinic aw883xx

在内核配置 config 添加 SmartPa 使能 CONFIG SND SMARTPA AW883XX=y

AUIDO DEVICE

添加 aw883xx 选项

在 xxx/audio_param/AudioParamOptions.xml 中添加 aw883xx 选项。(注: 如果整编,该文件在整编时自动生成,若只编译 kernel,请手动修改 xml)

<Param name="MTK AUDIO SPEAKER PATH" value="smartpa awinic aw883xx" />

添加 aw883xx 参数配置

在 device/mediatek/common/audio_param_smartpa/SmartPa_AudioParam.xml 添加 aw883xx 参数配置添加 aw883xx:

添加 aw883xx 描述

在 device/mediatek/common/audio_param_smartpa/SmartPa_ParamUnitDesc.xml 中添加 <Category name="smartpa awinic aw883xx"/>

KERNEL DRIVER

AW883XX Smart PA Driver

添加 dts 配置

打开 kernel/arch/arm/boot/dts/mediatek/mt6853.dts 文件,添加 aw883xx 的配置。 re-min 与 re-max 分别为校准 Re 值范围的最小值与最大值,不配置时默认范围为 1000-40000mohm。如下为单 PA 配置:

```
diff --git a/arch/arm/boot/dts/mediatek/mt6853.dtsi
b/arch/arm/boot/dts/mediatek/mt6853.dtsi
index f22db2e..a340a32 100644
--- a/arch/arm/boot/dts/mediatek/mt6853.dtsi
+++ b/arch/arm/boot/dts/mediatek/mt6853.dtsi
@@ -549,6 +549,8 @@
               /*x 表示对应的总线号*/
   i2c x {
          /* AWINIC AW883XX mono Smart PA */
          aw883xx smartpa 0: aw883xx smartpa@34 {
              compatible = "awinic, aw883xx smartpa";
              #sound-dai-cells = <0>;
              reg = <0x34>;
              reset-gpio = <&pio 89 0>;
              irq-qpio = <&pio 37 0x0>;
              sound-channel = <0>;
              re-min = <1000>;
              re-max= <40000>;
              status = "okay";
       /* AWINIC AW883XX mono Smart PA End */
```

若为多 PA 项目,则增加 i2c 节点即可,这里以双 PA 为例,注意:不同 i2c 节点 sound-channel 属性需要不同,请根据/*0:pri l 1:pri r 2:sec l 3:sec r*/设置

```
diff --git a/arch/arm/boot/dts/mediatek/mt6853.dtsi
b/arch/arm/boot/dts/mediatek/mt6853.dtsi
index f22db2e..a340a32 100644
--- a/arch/arm/boot/dts/mediatek/mt6853.dtsi
+++ b/arch/arm/boot/dts/mediatek/mt6853.dtsi
@@ -549,6 +549,8 @@
              /*x 表示对应的总线号*/
&i2c x {
       aw883xx_smartpa_0: aw883xx@34 {
          compatible = "awinic, aw883xx";
          #sound-dai-cells = <0>;
          reg = <0x34>;
          reset-gpio = <&pio 89 0x0>;
          irq-gpio = <&pio 37 0x0>;
          sound-channel = <0>;
          re-min = <1000>;
```

```
+ re-max= <40000>;
+ status = "okay";
+ };
+ aw883xx_smartpa_1: aw883xx@35 {
+ compatible = "awinic,aw883xx";
+ #sound-dai-cells = <0>;
+ reg = <0x35>;
+ reset-gpio = <&pio 17 0x0>;
+ irq-gpio = <&pio 19 0x0>;
+ sound-channel = <1>;
+ re-min = <1000>;
+ re-max= <40000>;
+ status = "okay";
+ };
```

添加驱动文件

在 kernel/sound/soc/codecs/aw883xx 目录下添加 aw883xx 驱动文件 aw883xx.c,aw883xx.h,aw_pid_2049_reg.h,aw_monitor.c,aw_monitor.h,aw_log.h,aw_init.c,aw_device.c,aw_device.h,aw_data_type.h,aw_calib.h,aw_calib.c,aw_bin_parse.c,aw_bin parse.h,aw spin.c,aw spin.h

注意: 若在 codec probe 函数中无法加载到 bin 文件,请修改 aw883xx.h 中如下的宏,增加延时加载时间:

```
#define AW883XX_LOAD_FW_DELAY_TIME (3000)
```

或者也可以修改 aw883xx.c 如下表示 retry 加载次数的宏来满足需求,如下:

```
#define AW REQUEST FW RETRIES 5 /* 5 times */
```

更新 Kconfig 和 Makefile

1) 在 kernel/sound/soc/codecs/Kconfig 中添加

```
config SND_SMARTPA_AW883XX
    tristate "SoC Audio for awinic aw883xxseries"
    depends on I2C
    help
        This option enables support for aw883xxseries Smart PA.
```

2) 在 kernel/sound/soc/codecs/Makefile 中添加

```
#for AWINIC AW883XXSmart PA
obj-$(CONFIG_SND_SMARTPA_AW883XX) += aw883xx/aw883xx.o
aw883xx/aw_monitor.o aw883xx/aw_bin_parse.o aw883xx/aw_device.o
aw883xx/aw_init.o aw883xx/aw_calib.o aw883xx/aw_spin.o
```

添加 AW883XXfw&cfg 文件

1) 在 kernel/drivers/base/firmware_class.c 中添加 bin 文件目录,目录由系统决定,一般目录为 vendor/firmware

```
static const char * const fw_path[] = {
    fw_path_para,
    "/vendor/firmware",
```



```
"/lib/firmware/updates/" UTS_RELEASE,
   "/lib/firmware/updates",
   "/lib/firmware/" UTS_RELEASE,
   "/lib/firmware"
};
```

2) 使用 adb 将 config 文件 push 到手机中。 adb push aw883xx_acf.bin vendor/firmware/

关于 config 文件的选择:

config 中各个产品的目录下(如 \config\aw88395\) 包含了 I2S 16bit 及 32bit 位宽模式的默认配置,根据平台输出信号以及 PA 个数来对应选择不同参数。举例:针对 AW88395 单 PA 环境,若平台输出为 16bit 位宽音源,则选择 config\aw88395\16bit\mono 下的 bin 文件。

ASoc Machine Driver

4G 平台配置

若平台为 4G 平台,在 kernel/sound/soc/mediatek/common_int/mtk-soc-machine.c 中的 mt_soc_extspk_dai 添加 aw883xx 的 dai link 配置,其他默认保持平台不变。

若为单 PA 项目,则添加以下信息,注意 6-0034 对应的总线与地址,

若为多 PA 项目,则在该数组中继续添加设备信息,这里以双 PA 为例,一个 PA 的总线与地址为 6-0034,另一个 PA 的总线与地址为 6-0035

```
{
    .name = "Ext_Speaker_Multimedia",
    .stream_name = MT_SOC_SPEAKER_STREAM_NAME,
    .cpu_dai_name = "snd-soc-dummy-dai",
    .platform_name = "snd-soc-dummy",

#ifdef CONFIG_SND_SMARTPA_AW883XX
    .num_codecs = ARRAY_SIZE(awinic_codecs),
    .codecs = awinic_codecs,

#endif
    .ops = &mt_machine_audio_ops,
},
```

5G 平台配置

单 PA 配置时根据前边 dts 配置的 I2C 节点<aw883xx smartpa 0>添加对应 sound-dai 信息,配置 DAI LINK。

```
diff --git a/arch/arm/boot/dts/mediatek/mt6853.dtsi
b/arch/arm/boot/dts/mediatek/mt6853.dtsi
index f22db2e..a340a32 100644
--- a/arch/arm64/boot/dts/mediatek/mt6853.dts
+++ b/arch/arm/boot/dts/mediatek/mt6853.dts
@@ -2824,7 +2824,7 @@
    mtk_spk_i2s_in = <0>;
    /* mtk_spk_i2s_mck = <3>; */
    mediatek,speaker-codec {
        sound-dai = <&speaker_amp>;
        sound-dai = <&aw883xx_smartpa_0>;
        };
    };
```

多 PA 时,根据 DTS 增加的 I2C 节点信息对应配置 DAI LINK,这里以双 PA 为例配置 DAI LINK。

```
diff --git a/arch/arm/boot/dts/mediatek/mt6853.dtsi
b/arch/arm/boot/dts/mediatek/mt6853.dtsi
index f22db2e..a340a32 100644
--- a/arch/arm64/boot/dts/mediatek/mt6853.dts
+++ b/arch/arm/boot/dts/mediatek/mt6853.dts
@@ -2824,7 +2824,7 @@
    mtk_spk_i2s_in = <0>;
    /* mtk_spk_i2s_mck = <3>; */
    mediatek,speaker-codec {
        sound-dai = <&speaker_amp>;
        + sound-dai = <&aw883xx_smartpa_0 &aw883xx_smartpa_1>;
        };
    };
};
```

以上部分主要完成了驱动集成,该部分集成的目的是使 PA 出声音,客户可通过 log 等手段依次确认以下各项,若均无问题,则 RX 部分驱动集成正确,且硬件完好

- 1) 编译可以通过;
- 2) I2C 通信成功;
- 3) 声卡注册成功;
- 4) PA 可以出声音。

SPEAKER CALI

校准目的

针对喇叭保护需求,AW883XX 驱动支持在产线对 speaker 进行测试时进行校准,并将测试符合要求的 speaker 的 re 值写入到 AP 的 persist 分区中。开机时驱动会将读到的校准值写入芯片 DSP 中,完成 speaker 校准流程。

校准方式

Awinic 提供了 misc、class 和 attr 三种校准的方式,驱动对三种校准方式均默认开启。

1) misc 方式

AW883XX 的校准是通过/cali/aw_cali 的可执行文件来实现。将该文件放到 system/bin 目录中,并修改权限:

adb shell chmod 0777 system/bin/aw_cali 指令介绍,adb shell aw cali 会出现指令介绍:

参数解释(注:[]代表该选项可不填)

dev_name 用于校准单个设备,devx,x与dts中配置的 sound-channel 相对应,不填写时默认校准所有设备

校准步骤:

- 1) 正常播放静音音乐;
- 2) 启动校准,结束后会输出校准值:

```
./system/bin/aw_cali start_cali

msm8996:/ # aw_cali start_cali

dev[0]cali_re = 6718

dev[1]cali_re = 6903

dev[0]cali_f0 = 946

dev[1]cali_f0 = 846
```

3) 如果校准值在合理范围内,驱动会默认将 Re 值设置到系统 bin 文件中。客户有客制化需求时可以通过以下命令来对 re 进行设置。

./system/bin/aw cali set cali re 6718 6903

```
msm8996:/ # aw_cali set_cali_re 6718 6903
dev[0]:set cali re 6718
dev[1]:set cali re 6903
```

2) Class 方式

class 方式利用 class 文件系统在/sys/class/smartpa 目录下创建了相关目录与节点:

节点	功能
/sys/calss/smartpa/cali_time	1.可配置校准 re 的延时时间
	2.读取当前校准 re 的延时时间
/sys/calss/smartpa/f0_calib	校准 f0
/sys/calss/smartpa/re25_calib	1.校准 re
	2.设置 re 值
/sys/calss/smartpa/f0_q_calib	校准 f0 和 q 值
/sys/calss/smartpa/re_range	查看 re 值设置范围

校准步骤:

- 1) 正常播放静音文件;
- 2) 可以通过 read re25_calib 以及 f0_calib 来校准 re 与 f0,需要修改校准延时时间时可在校准前通过 write cali time 节点来写入,单位为 ms;
- 3) 校准得到的 re 值如果在正常范围内,驱动会默认设置到系统 bin 文件中。客户有客制化需求时可以 通过 write "dev[0]:6848 dev[1]:6683"对 re 进行设置。(以双 PA 设置来举例)

attr 方式 3)

attr 方式中驱动通过 device 设备属性在/sys/bus/i2c/drivers/aw883xx smartpa/*-00xx/目录下创建了相关 节点, 其中*为 i2c bus number, xx 为 i2c address。以下为节点功能描述。

1 / 1 / 1 / 1 / 1 / 1 / 2 c d d i i i i i d d d d i c d d d i c d d d i c d d d i c d d d i c d d d i c d d d i c d d d i c d d d i c d d d i c d d d i c d d d i c d d d i c d d d i c d d d d		
节点	功能	
cali_time	1.可配置校准 re 的延时时间 2.读取当前校准 re 的延时时间	
cali_re	1.校准 re 2.设置 re 值	
cali_f0	校准 f0	
cali_f0_q	校准 f0、q	
re_range	查看 re 设置范围	

- 1) 正常播放静音文件;
- 2) open cali re 节点,read 该节点,即可开启 re 校准,f0 校准则 open cali f0 节点并 read cali f0 来开 启 f0 校准,需要修改校准延时时间时在校准之前通过 write cali time 来进行设置,单位为 ms。
- 3) 校准得到的 re 值如果在正常范围内,驱动会默认设置到系统 bin 文件中。如果有客制化需求则可 以通过 write dev[0]:xxxx dev[1]:xxxx (根据实际设备个数写入,这里以两个设备为例)字符串到到 cali re 节点。

校准值的保存(示例)

由于 PA 内部没有用于保存校准 re 值的内存, 故校准结束后需要保存校准数据到平台, 在启动 PA 时读 取 re 值,将其设置到 mec 算法中。如下所示为 awinic 提供的将校准值写入 persist 分区文件的参考示例(代 码位于 aw calib.c)

```
/* customer need add function to set cali re to nv or get cali re from nv */
int aw cali write re to nvram(int32 t cali re, int32 t channel)
#ifdef AW CALI STORE EXAMPLE
   return aw cali write cali re to file(cali re, channel);
   return -EBUSY;
#endif
```



```
int aw_cali_read_re_from_nvram(int32_t *cali_re, int32_t channel)
{
  /*custom add, if success return value is 0 , else -1*/
#ifdef AW_CALI_STORE_EXAMPLE
    return aw_cali_get_cali_re_from_file(cali_re, channel);
#else
    return -EBUSY;
#endif
}
```

校准有效性验证

a. 查看 re 值是否写入文件中,可直接 cat 保存 re 值的文件。文件路径默认使用 aw_calib.c 中的定义,根据客户情况可以修改:

#define AWINIC CALI FILE "/mnt/vendor/persist/factory/audio/aw cali.bin"

- b.重新播放音乐后, cat dsp re 节点,确认 dsp 中的值与写入值相同
- c.重启手机,播放音乐,再次 cat dsp re 节点,确认 dsp 中的值与文件中的 re 值
- d. 查看校准 re 是否非恒定值,且在有效范围内变化。(校准 re 与喇叭相关,有效范围与硬件同事或客户确认)

校准节点示例代码

Awinic 在 cali\example_source_code 里提供了 attr 属性节点和 class 属性节点的校准调用示例代码,可以参考使用。

DEBUG INTERFACE

Node

AW883XX Driver 会创建多个不同功能的设备节点文件,路径是 sys/bus/i2c/drivers/aw883xx_smartpa/*-00xx,其中*为 i2c bus number,xx 为 i2c address。可以使用 adb 读写节点调试 aw883xx。

reg

节点名字	reg
功能描述	用于读写 aw883xx 的所有寄存器
使用方法	读寄存器值: cat reg 写寄存器值: echo reg_addr reg_data > reg (16 进制操作)
参考例程	cat reg (获取所有可读寄存器上的值) echo 0x04 0x0241 > reg (向 0x04 寄存器写值 0x0241)

rw

节点名字	rw

功能描述	用于读写 aw883xx 的单个寄存器	
使用方法	读寄存器值: echo reg_addr > rw cat rw	(16 进制操作)
	写寄存器值: echo reg_addr reg_o	data > rw (16 进制操作)
参考例程	echo 0x04 > rw cat rw	(读取 0x04 寄存器值)
	echo 0x04 0x0241 > rw	(向 0x04 寄存器写值 0x0241)

drv_ver

节点名字	drv_ver
功能描述	用于获取驱动版本号
使用方法	获取版本号: cat drv_ver

dsp_rw

节点名字	dsp_rw	
功能描述	用于设置或者获取算法中设定的 re f	
	读寄存器值:	
	echo reg_addr > dsp_rw	(16 进制操作)
使用方法	cat dsp_rw	
	写寄存器值:	
	echo reg_addr reg_data > dsp_rw	(16 进制操作)
	echo 0x8601 > dsp_rw	(读取 dsp 的 0x8604 寄存器值)
参考例程	cat dsp_rw	
多·与 内住		
	echo 0x8604 0x4011 > dsp_rw	(向 dsp 的 0x8604 寄存器写值 0x4011)

dsp

节点名字	dsp
功能描述	用于获取 dsp firmware 与 dsp config
使用方法	获取 dsp firmware 与 dsp config: cat dsp
参考例程	cat dsp

fade_step

节点名字	fade_step
功能描述	设置淡入淡出步进
使用方法	设置步进 echo step > fade_step 获取步进 cat fade_step

参考例程	echo 6 > fade_step	(设置步进为6)
参考例性	cat fade_step	(获取当前淡入淡出步进)

dbg_prof

节点名字	dbg_prof
功能描述	用于控制是否开启场景切换
使用方法	开启场景切换 echo 1 > dbg_prof 关闭场景切换 echo 0 > dbg_prof

fade_en

节点名字	fade_en
功能描述	用于控制淡入淡出使能
使用方法	开启淡入淡出 echo 1 > fade_en 关闭淡入淡出 echo 0 > fade_en

monitor

节点名字	monitor
功能描述	用于控制低温低压开关
使用方法	开启低温低压 echo 1 > monitor 关闭低温低压 echo 0 > monitor

monitor_update

节点名字	monitor_update
功能描述	用于临时更新 monitor 配置
使用方法	更新配置 echo 1 > monitor_update

dsp_re

节点名字	dsp_re
功能描述	用于获取 dsp 中的 re 值
使用方法	cat dsp_re

i2c_log_en

节点名字	I2c_log_en
功能描述	用于控制寄存器读写 log

使用方法	开启 i2c 读写 log echo 1 > i2c_log_en	
	关闭 i2c 读写 log echo 0 > i2c_log_en	

phase_sync

节点名字	phase_sync
功能描述	用于控制是否每次开启 pa 时均更新寄存器
使用方法	开启更新使能标志 echo 1 > phase_sync 关闭更新使能标志 echo 0 > phase_sync

spk_temp

节点名字	spk_temp
功能描述	用于查看喇叭实时状态
使用方法	cat spk_temp

cali_re

节点名字	cali_re
功能描述	校准 re 设置校准 re 值到 bin 与 dsp 中
使用方法	校准 re: cat cali_re 设置 re 值: echo dev[0]:6848 dev[1]:6683 > cali_re (以双 PA 配置举例,多 PA 时按照格式增加)

cali_f0

节点名字	cali_f0
功能描述	校准 f0
使用方法	校准 f0: cat cali_f0

cali_f0_q

节点名字	cali_f0_q
功能描述	校准 f0,q
使用方法	校准 f0,q: cat cali_f0_q

cali_time

节点名字	cali_time
功能描述	查看校准时间
	设置校准延时时间

使用方法	查看校准时间:
	cat cali_time
	设置校准延时时间:
	echo 3000 > cali_time (单位为 ms)

re_range

节点名字	re_range
功能描述	查看校准 re 值范围
使用方法	查看校准 re 值范围: cat re_range

Kcontrol

其中x代表设备号

aw_dev_x_switch

PA 开关

tinymix aw_dev_x_switch Enable 第 x 个 PA 允许开启 tinymix aw_dev_x_switch Disable 第 x 个 PA 不允许开启

aw_dev_x_prof

模式切换(假设 bin 文件中配置了 Music 和 Receive 模式)

tinymix aw_dev_x_prof Receive 切换到 Receive 模式

aw883xx_fadein_us

每个步进的淡入时间设置

tinymix aw883xx_fadein_us 500 将每个步进淡入时间间隔设置为 500us

aw883xx_fadeout_us

每个步进的淡出时间设置

tinymix aw883xx_fadeout_us 500 将每个步进淡出时间间隔设置为 500us

aw_dev_x_monitor_switch

PA monitor 功能开关

tinymix aw_dev_x_switch Enable 第 x 个 PA 允许 monitor 开启 tinymix aw_dev_x_switch Disable 第 x 个 PA 不允许 monitor 开启

附件

常见错误分析

- 1.校准 re/f0 错误:
 - 1) 检查 AP 音乐播放状态,是否正常播放静音文件;
 - 2) 检查校准之后 re 值是否正常写入文件中

错误 log:

```
[Awinic] [6-0035] aw_cali_svc_get_smooth_ca:r__
[Awinic] [6-0035] aw_cali_svc_get_dev_re: real_r0:[6640]
[Awinic] [6-0035] aw_cali_svc_get_dev_re: real_r0:[6655]
[Awinic] [6-0035] aw_cali_svc_get_dev_re: real_r0:[6668]
[Awinic] [6-0035] aw_cali_svc_get_dev_re: real_r0:[6660]
[Awinic] [6-0035] aw_cali_svc_get_dev_re: real_r0:[6612]
[Awinic] [6-0035] aw_cali_svc_get_dev_re: real_r0:[6628]
[Awinic] [6-0035] aw_cali_svc_get_dev_re: real_r0:[6620]
[Awinic] [6-0035] aw_cali_svc_get_dev_re: real_r0:[6650]
[Awinic] [6-0035] aw_cali_svc_get_dev_re: real_r0:[6650]
[Awinic] [6-0035] aw_cali_svc_get_smooth_cali_re: write re failed
[Awinic] [6-0035] aw_cali_svc_get_smooth_cali_re: write re failed
[Awinic] [6-0035] aw_rum_mute_for_cali: enter
[Awinic] [6-0035] aw_rum_mute_for_cali: cali check disable
```

```
C:\Users\zhouhuidong.AWINIC>adb shell
msm8996:/ # aw_cali start_cali_
aw883xx_svc_write_data:write data to dev node failed
aw883xx_svc_write_cmd write cmd start_cali faild 255|msm8996:/ # _
```

解决方法:

首先需要去确认手机路径/mnt/vendor/persist/factory/audio/是否完整,若不完整,则需要创建完整 路径。

3) 检查校准 IV 数据是否正常, 抓取数据进行分析, 并确认 PA 参数配置是否正常。