DEVOIR SURVEILLÉ 4/06/2018

Consignes:

- Pour cette épreuve de 2 heures aucun document n'est autorisé et la calculatrice collège est tolérée.
- Les 3 exercices qu'il comporte sont indépendants.
- Expliquez vos raisonnements avec un maximum de clarté et avec le vocabulaire adapté.

Exercice 1. (8 points)

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire dont la matrice dans la base canonique est

$$A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{bmatrix}$$

- 1. Soit $u = [x, y, z] \in \mathbb{R}^3$. Écrire f(u).
- 2. L'application f est-elle injective? Surjective? Justifiez vos réponses.
- 3. L'application f est-elle un homomorphisme? Endomorphisme? Automorphisme? Justifiez vos réponses.
- 4. On considère les vecteur $b_1 = [1, -2, 1]$, $b_2 = [0, 1, 0]$ et $b_3 = [1, 0, -1]$. Montrer que $\mathcal{B} = \{b_1, b_2, b_3\}$ est une base de \mathbb{R}^3 .
- 5. Calculer les valeurs propres de A.
- 6. Calculer les vecteurs propres associés aux valeurs propres de A.
- 7. La matrice A est diagonalisable? Justifiez.
- 8. Déterminer $D = Mat_{\mathcal{B}}(f)$ la matrice de f dans la base \mathcal{B} .
- 9. Donner une matrice de passage P de la base canonique à la base \mathcal{B} et calculer P^{-1} .
- 10. Que représente la matrice PDP^{-1} ?
- 11. En déduire A^{2018} .

Exercice 2. (6 points)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction donnée par $f(x,y) = \sin(xy)$.

- 1. Cette fonction appartient-elle à la classe $\mathcal{C}^2(\mathbb{R}^2)$? Justifiez.
- 2. Calculer le gradient de f.
- 3. Calculer la matrice hessienne de f.
- 4. Donner la formule de Taylor de degré 2 pour la fonction f au point $(x_0, y_0) = (\sqrt{\pi/2}, \sqrt{\pi/2})$.
- 5. Le point (x_0, y_0) est-il critique pour f? Peut-on conclure qu'il est un extremum? Justifiez.

Exercice 3. (6 points)

On considère la courbe paramétrée γ de composantes : $\begin{cases} x(t) = \cos^3(t) \\ y(t) = \sin^3(t) \end{cases}$

- 1. Donner le domaine de définition de la courbe γ . Si possible, réduire ce domaine.
- 2. Montrer que la courbe γ admet trois symétries et définir lesquelles. Réduire le domaine de définition.
- 3. Donner la définition de point régulier et de point singulier (ou stationnaire). La courbe possède des points singuliers ? Justifier.
- 4. Déterminer pour quelles valeurs de t la courbe γ possède une tangente horizontale.
- 5. Donner une représentation approximative de la courbe γ .