Unit-6 Computer Arithmetic

Department of Computer Engineering

Computer
Organization and
Architecture
01CE1402

Prof. Kishan Makadiya

Introduction

- The four basic arithmetic operations includes:-
 - Addition
 - Subtraction
 - Multiplication
 - Division

Addition & Subtraction

Addition and subtraction with Signed-Magnitude Data:-

Operation	Add	Subtract Magnitudes					
Operation	Magnitudes	When A > B	When A < B	When A = B			
(+A) + (+B)							
(+A) + (-B)							
(-A) + (+B)							
(-A) + (-B)							
(+A) - (+B)							
(+A) - (-B)							
(-A) - (+B)							
(-A) - (-B)							

Addition & Subtraction

Addition and subtraction with Signed-Magnitude Data:-

Operation	Add	Subtract Magnitudes					
Operation	Magnitudes	When A > B	When A < B	When A = B			
(+A) + (+B)	+ (A + B)						
(+A) + (-B)		+ (A - B)	- (B - A)	+ (A - B)			
(-A) + (+B)		- (A - B)	+ (B - A)	+ (A - B)			
(-A) + (-B)	- (A + B)						
(+A) - (+B)		+ (A - B)	- (B - A)	+ (A - B)			
(+A) - (-B)	+ (A + B)						
(-A) - (+B)	- (A + B)						
(-A) - (-B)		- (A - B)	+ (B - A)	+ (A - B)			

Addition & Subtraction

- Golden Rule
- When sign of magnitude A and B are identical, add the two magnitudes and attach the sign of A to the result.
- When sign of A and B are different, compare the magnitudes using conditions and subtract smaller no from larger.
- Conditions:-
 - If A > B -> Then Choose sign of the result to be same as A.
 - If A < B -> Then Choose sign of complement of sign of A.
 - If A = B -> Then subtract B from A and make sign of result Positive

Flowchart for Addition & Subtraction

Multiplication Algorithms

 Multiplication of two floating-point binary numbers in signed-magnitude representation is done by a process of successive shift and add operations.

Flow chart for multiply operation

110110101

Perform 23 X 19

Multiplicand B = 10111	E	Α	Q	SC
Multiplier in Q	О	00000	10011	101
$Q_n = 1$; add B		10111		
First partial product	О	10111		
Shift right EAQ	О	01011	11001	100
$Q_n = 1$; add B		10111		
Second partial product	1	00010		
Shift right EAQ	О	10001	01100	011
$Q_n = 0$; shift right EAQ	О	01000	10110	010
$Q_n = 0$; shift right EAQ	О	00100	01011	001
$Q_n = 1$; add B		10111		
Fifth partial product	О	11011		
Shift right EAQ	0	01101	10101	000
Final product in AQ = 0110110101				

Perform 23 X 10

Multiplicand B = 10111	E	Α	Q	SC
Multiplier in Q	0	00000	01010	101

Booth's Algorithm for Multiplication

- Prior to shifting, the multiplicand may be added to the partial product, subtracted from the partial product, or left unchanged according to the following rules:
 - The multiplicand is subtracted from the partial product upon encountering the first least significant 1 in a string of 1's in the multiplier.
 - 2. The multiplicand is **added** to the partial product upon encountering the first o (provided that there was a previous 1) in a string of o's in the multiplier.
 - 3. The partial product does not change when the multiplier bit is identical to the previous multiplier bit.

Booth Multiplication Algorithm

Multiply
(-9) x (-13)
using Booth
Multiplication
Algorithm

Q_n	Q_{n+1}	$\frac{BR}{BR} = 10111$ $\overline{BR} + 1 = 01001$	AC	QR	Q_{n+1}	SC
		Initial	00000	10011	0	101
1	0	Subtract BR	01001			
			01001			
		ashr	00100	11001	1	100
1	1	ashr	00010	01100	1	011
О	1	Add BR	10111			
			11001			
		ashr	11100	10110	0	010
О	0	ashr	11110	01011	0	001
1	0	Subtract BR	01001			
			00111			
		ashr	00011	10101	1	000

Multiply (+14) x (-11) using Booth Algorithm

Q_n	Q_{n+1}	$\frac{BR}{BR} = \texttt{01110}$	AC	QR	Q_{n+1}	SC
		Initial	00000	10101	0	5
1	0	Sub BR	10010			
			10010			
		ashr	11001	01010	1	4
0	1	Add BR	01110			
			00111			
		ashr	00011	10101	0	3
1	0	Sub BR	10010			
			10101			
		ashr	11010	11010	1	2
0	1	Add BR	01110			
			01000			
		ashr	00100	01101	0	1
1	0	Sub BR	10010			
			10110			
		ashr	11011	00110	1	0

Division Algorithm

 Division of two fixed-point binary numbers in signedmagnitude representation is done by a process of successive compare, shift and subtract operations.

Divisor:	11010	Quotient = Q
B = 10001)0111000000 01110 011100 -10001	Dividend = A 5 bits of $A < B$, quotient has 5 bits 6 bits of $A \ge B$ Shift right B and subtract; enter 1 in Q
	-010110 10001	6 bits of remainder $\geq B$ Shift right B and subtract; enter 1 in Q
	001010 010100 10001	Remainder $< B$; enter 0 in Q ; shift right B Remainder $\ge B$ Shift right B and subtract; enter 1 in Q
	000110 00110	Remainder $< B$; enter 0 in Q Final remainder

Example

Divisor $B = 10001$,	$\overline{B} + 1 = 01111$					
	E	A	2	SC		
Dividend: shl EAQ add \overline{B} + 1	0	01110 11100 01111	00000	5		
E = 1 Set $Q_n = 1$ shl EAQ Add $\overline{B} + 1$	1 1 0	01011 01011 10110 01111	00001 00010	4		
E = 1 Set $Q_n = 1$ shl EAQ Add $\overline{B} + 1$	1 1 0	00101 00101 01010 01111	00011 00110	3		
$E = 0$; leave $Q_n = 0$ Add B	0	11001 10001	00110			
Restore remainder shl EAQ Add $\overline{B} + 1$	1 0	01010 10100 01111	01100	2		
E = 1 Set $Q_n = 1$ shl $E\underline{A}Q$ Add $\overline{B} + 1$	1 1 0	00011 00011 00110 01111	01101 11010	1		
$E = 0$; leave $Q_n = 0$ Add B	0	10101 10001	11010			
Restore remainder Neglect E Remainder in A:	1	00110	11010	0		
Quotient in Q:		00110	11010			

Decimal Arithmetic Unit - BCD Adder

- Two BCD digits are applied to 4-bit binary adder which produce result ranging from 0 to 19 i.e. 9 + 9 + 1 = 19
- Output sum of two decimal numbers must be represented in BCD.
- Problem is to find rule by which binary number is to be converted to correct BCD

	Bin	ary S	um			ВС				
K	Z ₈	Z ₄	Z ₂	Z ₁	С	S ₈	S ₄	S ₂	S ₁	Decimal
0	0	0	0	0	0	0	0	0	0	О
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9

Binary Sum						ВС				
K	Z ₈	Z ₄	Z ₂	Z ₁	С	S ₈	S ₄	S ₂	S ₁	Decimal
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

- Correction from binary to BCD is needed in following conditions
 - K = 1
 - Z_8 and Z_4 or Z_8 and Z_2 must have 1

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

ThankYou

Extra Example

- Step by step multiplication process using booth's
- 1) (+15) * (+13)
- 2) (+15) * (-13)

Extra Example

 $(+15) \times (+13) = +195 = (0.011000011)_2$ BR = 01111 (+15); $\overline{BR} + 1 = 10001 (-15)$; QR = 01101 (+13)

$Q_n Q_r$	n+1	AC QR	<u>Q</u> _{n+1}	SC
	Initial	00000 01101	0	101
10	Subtract BR	10001		
		10001		
	ashr ———	11000 10110	1	100
0 1	Add BR	01111		
		00111		
	ashr ———	00011 11011	0	011
10	Subtract BR	10001		
		10100		
	ashr ———	11010 01101	1	010
1 1	ashr ———	11101 00110	1	001
0 1	Add BR	01111		
		01100		
	ashr ———	00110 00011	O	000
		+195		

Extra Example

$$(+15) \times (-13) = -195$$
 = $(1100 \ 111101)_{2's \ comp.}$
BR = 0 11111 (+15); = $(1100 \ 111101)_{2's \ comp.}$

Q_nQ_{n+}	· <u>1</u>	<u>AC</u>	<u>QR</u>	<u>Q</u> n+1	SC
	Initial	00000	10011		101
1 0	Subtract BR	<u>10001</u>			
		10001			
	ashr ———	11000	11001	1	100
1 1	ashr ———	11100	01100	1	011
0 1	add BR	<u>01111</u>			
		01011			
	ashr ———	00101	10110	0	010
0 0	ashr ———	00010	11011	0	001
1 0	Subtract BR	10001			
		10011			
	ashr ———	<u>11001</u>	11101	1	000
		-1	95		