

Projeto No. 2 – Potenciômetro

O objetivo deste projeto é controlar a frequência de acender e apagar (frequência de pisca-pisca) e a intensidade da luminosidade de um LED. Nesse workshop teremos dois experimentos para alcançar esses objetivos. Um potenciômetro um resistor variável no formato de um botão giratório que fornece um valor analógico. Se girarmos o potenciômetro, alteramos a resistência em cada lado do contato elétrico que vai conectado ao terminal central do botão. Essa mudança implica em uma mudança no valor analógico de entrada. Quando o cursor for levado até o final da escala, teremos 0 volts e assim obtendo o valor 0 na entrada analógica. Quando giramos o cursor até o outro extremo da escala, teremos 5 volts e assim tendo o valor 1023 na entrada analógica. Outro conceito que podemos notar é a utilização dos pinos digitais com a marcação "~" (til) como, por exemplo, o pino digital "~9" usado no Programa 2.

Material necessário:

- 1 Arduino
- 1 Potenciômetro
- 1 Resistor de 220 ohms (vermelho, vermelho, marrom) ou 330 ohms (laranja, laranja, marrom) para o Led
- 1 LED de qualquer cor
- 1 Protoboard
- Jumper cable

Passo 1: Montagem do circuito

Conforme ilustra a figura ao lado:

- a. Conecte o pino 5v do Arduino à linha de alimentação positiva (vermelha) do protoboard;
- b. Conecte o pino GND do Arduino à linha de alimentação negativa (preta) do protoboard;
- c. Conecte um LED utilizando um resistor de 220 ohms (ou 330 ohms);

d. Conecte o LED no pino digital 13;

- e. Conecte o potenciômetro na protoboard conforme a figura ao lado (botão de girar virado para você);
- f. Conecte o pino da esquerda do potenciômetro na linha de alimentação GND;
- g. Conecte o pino da direita do potenciômetro na linha de alimentação positiva;
- h. Conecte o pino do centro do potenciômetro no pino analógico A1 do Arduino;

Passo 2: Programa 1 – Controlando a frequência do pisca-pisca

Inicie o ambiente de desenvolvimento do Arduino e digite o sketch (programa) a seguir:

Passo 3: Montagem do circuito

Conforme ilustra a figura ao lado:

- a. Conecte o pino 5v do Arduino à linha de alimentação positiva (vermelha) do protoboard;
- b. Conecte o pino GND do Arduino à linha de alimentação negativa (preta) do protoboard;
- c. Conecte um LED utilizando um resistor de 220 ohms (ou 330 ohms);

d. Conecte o LED no pino digital 9;

- e. Conecte o potenciômetro na protoboard conforme a figura ao lado (botão de girar virado para você);
- f. Conecte o pino da esquerda do potenciômetro na linha de alimentação GND;
- g. Conecte o pino da direita do potenciômetro na linha de alimentação positiva;
- h. Conecte o pino do centro do potenciômetro no pino analógico A1 do Arduino;

fritzing

Passo 4: Programa 2 – Controle da intensidade da luminosidade

Inicie o ambiente de desenvolvimento do Arduino e digite o sketch (programa) a seguir:

```
//Controla a intensidade da luminosidade de um LED pela frequência determinada pelo
potenciômetro.
int pot = 1;
              // selecione o pino de entrada ao potenciômetro
int led = 9; // selecione o pino ao LED
int valor = 0; // variável p/ guardar o valor do potenciômetro
void setup() {
  Serial.begin(9600);
  pinMode(led, OUTPUT);
}
void loop() {
  valor = analogRead(pot);
  if(valor > 0){
    analogWrite(led, (valor/4)); //acende o led com intensidade proporcional ao
valor obtido
    Serial.println(valor);
                            //mostra
                                     no
                                           Serial
                                                    Monitor
                                                                 valor
                                                                         obtido
                                                                                 do
potenciômetro
  }
```


Dicas:

Como funciona o PWM?

A Modulação por Largura de Pulso (*Pulse Width Modulation* - **PWM**) é uma técnica que consiste em fornecer um sinal analógico através de meios digitais. A forma de onda do sinal digital consiste em uma onda quadrada que alterna seu estado em nível lógico alto e um nível lógico baixo (pode ser representado por ligado/desligado ou pelo sistema binário 1 e 0).

A razão entre o período de pico e o período total da onda é chamada de *Duty Cycle*. Podemos, então, entender que para termos uma onda quadrada real (que possui picos e vales iguais) é necessário que o *Duty Cycle* seja de 50%, ou seja, 50% de pico e 50% de vale.

No Arduino UNO, as portas digitais que permitem PWM são as portas 3, 5, 6, 9, 10 e 11. Essas portas são facilmente identificadas pelo símbolo "~" abaixo de cada porta.

Fonte: Tradução e imagem de "PWM" em http://arduino.cc/en/Tutorial/PWM