Category Theory

Based on notes by Tom Leinster
Notes taken by Rieunity

April 1, 2021 — April 12, 2021

The learning notes are a collection of some notions and important theorems about category theory. I learned it from the notes *Basic Category Theory* written by Tom Leinster.

0 Basic notions

Definition 0.1. A functor $F: \mathscr{A} \to \mathscr{B}$ is *faithful* (respectively, *full*) if for each $A, A' \in \mathscr{A}$, the function

$$\operatorname{Mor}(A, A') \longrightarrow \operatorname{Mor}(F(A), F(A'))$$

 $f \longmapsto F(f).$

is injective (respectively, surjective).

1 Natural transformations

Definition 1.1. Let \mathscr{A} and \mathscr{B} be categories and let $\mathscr{A} \xrightarrow{F \atop G} \mathscr{B}$ be functors. A natural transformation $\alpha : F \to G$ is a family $\left(F(A) \xrightarrow{\alpha_A} G(A)\right)_{A \in \mathscr{A}}$ of morphisms in \mathscr{B} for every map $A \xrightarrow{f} A'$ in \mathscr{A} , the square

$$F(A) \xrightarrow{F(f)} F(A')$$

$$\alpha_{A} \downarrow \qquad \qquad \downarrow \alpha_{A'}$$

$$G(A) \xrightarrow{G(f)} G(A')$$

$$(1)$$

commutes. The morphisms α_A are called the components of α . We also write

$$\mathscr{A} = \mathbb{A}$$

to mean that α is a natural transformation from F to G.

Given natural transformations

There is a composite natural transformation

$$\mathscr{A} = \mathbb{A}$$

$$\mathscr{A}$$

$$\mathscr{B}$$

defined by $(\beta \circ \alpha)_A = \beta_A \circ \alpha_A$ for all $A \in \mathscr{A}$. There is also an identity natural transformation

$$\mathscr{A} = \mathbb{A}$$

on any functor F, defined by $(1_F)_A = 1_{F(A)}$.

Definition 1.2. For any two categories \mathscr{A} and \mathscr{B} , there is a category whose objects are the functors between \mathscr{A} and \mathscr{B} and whose morphisms are the natural transformation between thenm. The composition law and identity morphism are defined and shown above. This is called the *functor category* from \mathscr{A} t \mathscr{B} and written as $[\mathscr{A}, \mathscr{B}]$.

Definition 1.3. Let \mathscr{A} and \mathscr{B} be categories. A natural isomorphism between functors from \mathscr{A} to \mathscr{B} is an isomorphism in $[\mathscr{A},\mathscr{B}]$. In other words, let α be a natural transformation from F to G where F and G are functors from \mathscr{A} to \mathscr{B} , then α is a natural isomorphism if and only if $\alpha_A : F(A) \to G(A)$ is an isomorphicsm for all $A \in \mathscr{A}$.

Definition 1.4. Let F, G be two functors from \mathscr{A} to \mathscr{B} , we say that

$$F(A) \cong G(A)$$
 naturally in A

if F and G are naturally isomorphic.

Definition 1.5. An *equivalence* between categories \mathscr{A} and \mathscr{B} consists of a pair of functiors $\mathscr{A} \xleftarrow{F} \mathscr{B}$ such that

$$G \circ F \cong 1_{\mathscr{A}}$$
 and $F \circ G \cong 1_{\mathscr{B}}$.

We say that \mathscr{A} and \mathscr{B} are equivalent if there is an equivalence between them and write $\mathscr{A} \simeq \mathscr{B}$. The functors F and G are equivalences.

Definition 1.6. Let $F: \mathscr{A} \to \mathscr{B}$ be a functor, we say F is essentially surjective on objects if for all $B \in \mathscr{B}$, there exists $A \in \mathscr{A}$ such that $F(A) \cong B$.

Proposition 1.7. A functor $F : \mathcal{A} \to \mathcal{B}$ is an equivalence if and only if it is full, faithfull and essentially surjective on objects.

Proof. First assume two natural isomorphisms

$$\eta: G \circ F \to 1_{\mathscr{A}}, \quad \varepsilon: F \circ G \to 1_{\mathscr{B}}.$$

Let $f, f': A \to A'$ and $F(f) = F(f'): F(A) \to F(A')$, then $G \circ F(f) = G(F(f)) = G(F(f')) = G \circ F(f'): G(F(A)) \to G(F(A'))$. Then $\eta \circ (G \circ F(f)) = \eta \circ (G \circ F(f')) \Rightarrow f = f'$. Hence F is faithuful. Let $g \in \text{Mor}(F(A), F(A'))$, then $g = (F \circ G) \circ (\varepsilon(g))$. Then there exists $f = G \circ \varepsilon(g)$ s.t. F(f) = g, hence F is full. Given any $B \in \mathcal{B}$, let A = G(B), then $F(A) = F \circ G(B) \cong B$. The converse is to construct natural isomorphisms η and ε by reversing the deduction above. \square