Metaheuristic algorithm for timetabling problem

(Seminar III)

Camilo Rodríguez-Garzón Juan Carlos Rivera

Universidad EAFIT Mathematical Modeling Research Group

Medellín, Colombia

June 5, 2018

Updated: November 18, 2018

Overview

- Motivation
- Introduction
- Hard constraints
- Soft constraints
- Methodology
- Problem formulation
- Algorithmic solution
- Computational experiments
- Conclusions

Motivation:

- Currently EAFIT does not have an automated system that allows to schedule university timetabling.
- Each school or university has different characteristics that make the problem particular.
- This is a NP-Hard combinatorial optimization problem Abdelhalim & El Khayat (2016).
- The algorithm in developing can be applied to different topics that are related to timetabling scheduling.

Introduction:

Figure 1.1: Timetabling problem

Hard constraint events:

A factible solution meets the following set of hard constraints $HC_1 - HC_6$ presented below:

- HC₁: Two event can not be scheduled on the same day, period and room.
- HC₂: Assigned rooms must meet the characteristics required by the events.
- HC₃: The time load defined for each event must be satisfied.
- HC₄: Two lessons from the same event must be consecutive when scheduled for the same day, in case it is required by the event.

Hard constraint teachers:

- HC₅: A teacher can not be scheduled to more than one lesson in a given period.
- HC₆: A teacher can not be scheduled to a period in which she/he is unavailable.

Hard constraint students:

- HC₇: For students with perfect curriculum, at least six events for each course must be feasible.
- HC₈: No student can be assigned more than one event at the same time.
- HC₉: The number of students attending the event must be less than or equal to the capacity to the classroom.

Soft constraints:

In addition to the feasibility with respect to mandatory constraints, the requirements of $SC_1 - SC_4$ listed below should be satisfied as much as possible:

- SC₁: Avoid teachers' idle periods.
- SC₂: Students should not have a single course on a day.
- SC₃: Students should not have more than two consecutive courses.

Methodology:

Figure 1.2: Timetabling problem methodology

Methodology:

Figure 1.3: Timetabling problem methodology

Related work:

Techi	niques	Article name			
C 1 C 1 : (CC)		A I . 1 T' TII' 1 M. (100F)			
Graph Coloring (GC)		An Introduction to TimeTabling de Werra (1985)			
Integer/Linear Programming (IP/LP)		New integer linear programming approaches for course timetabling			
		Boland et al. (2008), Integer programming methods for large-scale			
		practical classroom assignment problems Phillips et al. (2015)			
Constraint Satisfaction Programming (CSP)		Timetable planning using the constraint-based reasoning Deris <i>et al.</i> (2000)			
Multi-population	Genetic Algorithm (GA)	A Utilization-based Genetic Algorithm for Solving the University			
		Timetabling Problem (UGA) Abdelhalim & El Khayat (2016)			
	Ant Colony Optimization (ACO)	A MAX - MIN Ant System for the University Course Timetabling			
		Problem Socha et al. (2002), A MAX-MIN Ant System for the			
		University Course Timetabling Problem Brabazon et al. (2015)			
	Artificial Bee Colony (ABC)	University course timetabling using hybridized artificial bee colony			
		with hill climbing optimizer aro Bolaji et al. (2014)			
	Memetic Algorithm (MA)	Using improved memetic algorithm and local search to solve			
		university Course Timetabling problem (UCTP) Joudaki et al. (2011)			
	Harmony Search Algorithm (HSA)	University course timetabling using a hybrid harmony search			
		metaheuristic algorithm Al-Betar et al. (2012)			
Single-population	Local Search (LS)	A fuzzy genetic algorithm with local search for university course			
		timetabling Kohshori et al. (2011), Genetic algorithms with guided and			
		local search strategies for university course timetabling Yang & Jat			
		(2011)			
	Variable Neighborhood Search (VNS)	An Investigation Of Variable Neighbourhood Search For University			
		Course Timetabling Abdullah <i>et al.</i> (2005)			
	Simulated Annealing (SA)	Solving the Course Scheduling Problem Using Simulated Annealing			
		Aycan & Ayav (2009), A hybrid simulated annealing with Kempe			
		Chain neighborhood for the university timetabling problem Tuga <i>et al.</i>			
		(2007)			
	Tabu Search (TS)	The effect of neighborhood structures on tabu search algorithm in			
		solving course timetabling problem Aladag et al. (2009), Design and			
		implementation of a course scheduling system using Tabu Search			
		Alvarez-Valdes et al. (2002)			
Novel Intelligent	Hybrid Algorithms (Hybrid Metaheuristic)	A new hybrid algorithm for university course timetabling problem			
		using events based on groupings of students Badoni et al. (2014)			
	Fuzzy method	Fuzzy genetic heuristic for university course timetable problem			
		Chaudhuri & De (2010), A fuzzy solution based on Memetic			
		algorithms for timetabling Golabpour et al. (2008)			
	Clustering Algorithms	Applying a novel clustering technique based on FP- tree to University			
		timetabling problem: A case study Shatnawi et al. (2010)			
Multi-Agent Systems	Review papers Multi-Agent Systems	A multi-agent system for course timetabling Yanga & Paranjapea			
		(2011), Implementation of class timetabling using multi agents			
		Nandhini & Kanmani (2009)			

Table 1.1: Brief literature about University Timetabling Problem

Problem formulation:

Symbols	Definition
Sets	
$s \in S$	Set of slot composed of days D and periods P
$r \in R$	Set of rooms
$e \in E$	Set of event composed of courses <i>C</i> and groups <i>G</i>

Parameters

w_r	Unit cost of using the room <i>r</i>			
f_e	frequency with which an event e is given in the week			
dem_e	Intensity in hours with which an e event is imparted in a day			
cap_s	Capacity in hours the slot <i>s</i> has			
com _{er}	$\int 1$ if the event e can be assigned to the room r			
	0 Otherwise.			
$\phi_{\scriptscriptstyle S}$	Subset of incompatible slots with slot s			

Decision variables

x_{esr}	1	if the event e is programmed to a time slot s that is assigned to the room r
	Cesr	0

Table 1.2: Notation used for modeling events at EAFIT University

Model:

The objective (1) is to minimize the use of artificial salons. The IP restrictions are described below:

$$\min \sum_{e \in E} \sum_{s \in S} \sum_{r \in R} w_r \cdot x_{esr} \tag{1}$$

s. t.

$$\sum_{e \in E} x_{esr} \le 1, \quad \forall s \in S, r \in R \tag{2}$$

$$\sum_{r \in R} \sum_{s \in S} x_{esr} = f_e, \quad \forall \ e \in E$$
 (3)

$$x_{esr} \le com_{er}, \quad \forall \ e \in E, \ s \in S, \ r \in R$$
 (4)

$$\sum_{e \in E} \sum_{s' \in \phi(s)} x_{es'r} \le 1, \quad \forall \ r \in R, \ s \in S$$
 (5)

$$M \cdot (x_{esr} - 1) \le -\frac{dem_e}{cap_s} + 1, \quad \forall \ e \in E, \ s \in S, \ r \in R$$
 (6)

Constraints:

- 2 satisfies the restriction HC_1 .
- 3 satisfies the restriction HC_3 .
- 4 satisfies the restriction HC_2 .
- 5 only one event can be assigned to one of the slots of the subset of incompatible slots ϕ_s .
- 6 satisfies the restriction HC_4 .

Algorithmic solution:

Figure 1.4: Chain Responsability to Timetabling problem

Algorithmic solution:

```
1: procedure GRASP METAHEURÍSTIC
   f^* \leftarrow \alpha
   input \leftarrow \mathbf{ReadInput()};
   if validate(input) then
           for i \leq i_{max} do
               x \leftarrow GreedyRandomized();
               x \leftarrow \text{LocalSearch}(x);
              if f(x) < f^* then
              f^* \leftarrow f(x);
                   x^* \leftarrow x;
10:
               end if
11:
           end for
12:
      end if
13:
      WriteOutput(x^*);
15: end procedure
```

Computational experiments:

According to (aro Bolaji *et al.*, 2014; McCollum, 2007) the algorithm will be tested using the following instances:

Instance	small	medium	large	
Events	100	400	400	
Room	5	5	10	
Day Slot	5	5	5	
Slot	8	8	8	

Table 1.3: Set of test instances at EAFIT University

Computational experiments:

Room	Type Room	Capacity	Event	Group	Max Student	Day	Start Time	End Time
35401	Aula Normal	50	METODOLOGÍA DEL APRENDIZAJE	024	26	T	7.0	9.0
35401	Aula Normal	50	MODELACIÓN Y SIMULACIÓN I	001	30	T	9.0	12.0
35401	Aula Normal	50	METODOLOGÍA DEL APRENDIZAJE	024	26	W	14.0	15.0
35401	Aula Normal	50	MATEMÁTICAS I	002	40	TH	18.0	21.0
35401	Aula Normal	50	MATEMÁTICAS 1	010	37	F	6.0	9.0
35403	Aula Normal	36	MATEMÁTICAS III (ECONOMÍA)	003	32	F	6.0	9.0
35501	Aula Normal	50	BIOLOGÍA MOLECULAR	101	30	F	6.0	9.0
35501	Aula Normal	50	MATEMÁTICAS 1	001	37	S	12.0	15.0
38107	Aula Normal	25	FUNDAMENTOS DE FISICOQUÍMICA	156	20	T	15.0	17.0
38107	Aula Normal	25	FUNDAMENTOS DE FISICOQUÍMICA	156	20	S	9.0	12.0
38201	Aula Normal	50	BIOÉTICA	001	30	M	6.0	8.0
38201	Aula Normal	50	METODOLOGÍA DEL APRENDIZAJE	022	26	W	14.0	15.0
38201	Aula Normal	50	ESTADÍSTICA 2 (ECONOMÍA)	001	26	W	9.0	12.0
38201	Aula Normal	50	BIOÉTICA	001	30	F	11.0	12.0

Table 1.4: Timetabling Events at EAFIT University

Conclusions:

- The first stage of the problem was successfully modeled, which corresponds to the assignment of events.
- An algorithm was proposed for the scheduling of events at the EAFIT University.
- An algorithm was proposed for the scheduling of teacher at the EAFIT University.

Bibliography

- Abdelhalim, Esraa A., & El Khayat, Ghada A. 2016. A Utilization-based Genetic Algorithm for Solving the University Timetabling Problem (UGA). *Alexandria Engineering Journal*, **55**(2), 1395–1409. 3, 11
- Abdullah, Salwani, Abdullah, Salwani, Burke, Edmund K., & Mccollum, Barry. 2005. An Investigation Of Variable Neighbourhood Search For University Course Timetabling. IN THE 2 ND MULTIDISCIPLINARY INTERNATIONAL CONFERENCE ON SCHEDULING: THEORY AND APPLICATIONS (MISTA, 413—427. 11
- Al-Betar, Mohammed Azmi, Khader, Ahamad Tajudin, & Zaman, Munir. 2012. University course timetabling using a hybrid harmony search metaheuristic algorithm. *IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews*, **42**(5), 664–681. 11
- Aladag, Cagdas Hakan, Hocaoglu, Gulsum, & Basaran, Murat Alper. 2009. The effect of neighborhood structures on tabu search algorithm in solving course timetabling problem. *Expert Systems with Applications*, **36**(10), 12349–12356. 11
- Alvarez-Valdes, Ramon, Crespo, Enric, & Tamarit, Jose M. 2002. Design and implementation of a course scheduling system using Tabu Search. *European Journal of Operational Research*, **137**(3), 512–523. 11
- aro Bolaji, Asaju La, Khader, Ahamad Tajudin, Al-Betar, Mohammed Azmi, & Awadallah, Mohammed A. 2014. University course timetabling using hybridized artificial bee colony with hill climbing optimizer. *Journal of Computational Science*, **5**(5), 809–818. 11, 17
- Aycan, E., & Ayav, T. 2009. Solving the Course Scheduling Problem Using Simulated Annealing. 2009 IEEE International Advance Computing Conference, 6–7. 11
- Badoni, Rakesh P., Gupta, D.K., & Mishra, Pallavi. 2014. A new hybrid algorithm for university course timetabling problem using events based on groupings of students. *Computers & Industrial Engineering*, **78**(dec), 12–25. 11
- Boland, Natashia, Hughes, Barry D., Merlot, L. T G, & Stuckey, Peter J. 2008. New integer linear programming approaches for course timetabling. *Computers and Operations Research*, **35**(7), 2209–2233. 11
- Brabazon, Anthony, O'Neill, Michael, & McGarraghy, Seán. 2015. A MAX-MIN Ant System for the University Course Timetabling Problem. *Pages 141–170 of: Natural Computing Series*, vol. 28. 11

- Chaudhuri, Arindam, & De, Kajal. 2010. Fuzzy genetic heuristic for university course timetable problem. *International Journal of Advances in Soft Computing and its Applications*, **2**(1), 100–123. 11
- de Werra, D. 1985. An introduction to timetabling. European Journal of Operational Research, 19(2), 151–162. 11
- Deris, Safaai, Omatu, Sigeru, & Ohta, Hiroshi. 2000. Timetable planning using the constraint-based reasoning. *Computers and Operations Research*, **27**(9), 819–840. 11
- Golabpour, Amin, Farahi, Ahmad, Beigi, Hossein, Shirazi, Hossein Mozdorani, & Kootiani, Ahmad Zadali Mohammad. 2008. A fuzzy solution based on Memetic algorithms for timetabling. *Pages 108–110 of: Proceedings 2008 International Conference on MultiMedia and Information Technology, MMIT 2008.* 11
- Joudaki, M., Imani, M., & Mazhari, N. 2011. Using improved memetic algorithm and local search to solve university Course Timetabling problem (UCTP). *In: Proceedings of the 2011 International Conference on Artificial Intelligence, ICAI 2011*, vol. 2. 11
- Kohshori, M S, Abadeh, M S, & Sajedi, H. 2011. A fuzzy genetic algorithm with local search for university course timetabling. *Pages 250–254 of: Data Mining and Intelligent Information Technology Applications (ICMiA), 2011 3rd International Conference on.* 11
- McCollum, B. 2007. *International Timetabling Competition*. http://www.cs.qub.ac.uk/itc2007/. [Online; accessed 23-September-2017]. 17
- Nandhini, M., & Kanmani, S. 2009. Implementation of class timetabling using multi agents. *In:* 2009 International Conference on Intelligent Agent and Multi-Agent Systems, IAMA 2009. 11
- Phillips, Antony E., Waterer, Hamish, Ehrgott, Matthias, & Ryan, David M. 2015. Integer programming methods for large-scale practical classroom assignment problems. *Computers & Operations Research*, **53**, 42–53. 11
- Shatnawi, Safwan, Al-Rababah, Khaleel, & Bani-Ismail, Basel. 2010. Applying a novel clustering technique based on FP- tree to University timetabling problem: A case study. *Pages 314–319 of: Proceedings, ICCES'2010 2010 International Conference on Computer Engineering and Systems*. 11
- Socha, Krzysztof, Knowles, Joshua, & Sampels, Michael. 2002. A MAX MIN Ant System for the University Course Timetabling Problem. *Ant algorithms*, 1–13. 11
- Tuga, Mauritsius, Berretta, Regina, & Mendes, Alexandre. 2007. A hybrid simulated annealing with Kempe Chain neighborhood for the university timetabling problem. *Pages 400–405 of: Proceedings 6th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2007; 1st IEEE/ACIS International Workshop on e-Activity, IWEA 2007.* 11
- Yang, Shengxiang, & Jat, Sadaf Naseem. 2011. Genetic algorithms with guided and local search strategies for university course timetabling. *IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews*, **41**(1), 93–106. 11

Yanga, Yan, & Paranjapea, Raman. 2011. A multi-agent system for course timetabling. *Intelligent Decision Technologies*, **5**(2), 113–131. 11

(Bonus Slides)

Solution construction flow:

```
procedure GREEDYRANDOMIZED

teacher ← SetOutData( GetInData(event));

event ← SetNext(teacher);

room ← SetOutData( GetInData(event) );

room ← SetNext(event);

slot ← SetSlotFree( GetInData(slot) );

slot ← SetOutData( GetInData(room) );

slot ← SetNext(room);

processor(slot);

end procedure
```

Processor:

```
    procedure PROCESSOR
    MakeObject(inData);
    if Next() ≠ null then
    Next().processor()
    end if
    end procedure
```