ETG Turbulence Isotropization

Stefan Tirkas¹
Hoatian Chen¹ Gabriele Merlo² Scott Parker¹

¹CIPS, University of Colorado, Boulder ²University of Texas, Austin

October 19, 2020

Outline

Drift Wave Instabilities

2 Hasegawa-Mima Fluid Model

3 Zonal Flow Excitation

Drift Wave Instabilities

- Drift waves are most simply characterized as density, temperature and electrostatic potential fluctuations in low- β plasmas.
- Modes relevant to tokamak physics include ion-temperature-gradient modes (ITG), electron-temperature-gradient modes (ETG), and collisionally-trapped electron modes (CTEM).
- Low-frequency drift wave turbulence is largely responsible for the anomalous transport of plasma particles across magnetic field lines.

Ion-Temperature-Gradient Mode

Figure: Simple pciture of ITG instability.

ETG Simulation in GENE

Hasegawa-Mima Fluid ETG Model

- Partial differential equation derived from fluid continuity and momentum equations.
- Approximations made that are useful to describing turbulence in tokamak plasmas.
 - Cyclotron motion periods much smaller than time scales that quantities of interest change on (B, Φ, n) .
 - Long length scales along \hat{b} -direction k_{\parallel} ignorable.
 - Quasi-neutrality of particle densities is enforced.
 - Isothermal equation of state, with adiabatic ions that have negligible temperatures.
- Shown to cause isotropic behavior for long wavelength modes as well as an inverse energy-cascade.

Hasegawa-Mima Equations

We start with the fluid continuity and momentum equations and $\tau = T_e/T_i$, where we have already taken the ion approximations discussed on the previous slide:

$$\frac{\partial n_e}{\partial t} + \nabla \cdot (n_e \vec{v}_e) = 0, \tag{1}$$

$$m_e \frac{d\vec{v}_e}{dt} = (1+\tau) e \nabla \delta \Phi - \frac{e}{c} \vec{v}_e \times \vec{B} - \frac{\nabla P_e}{n_e} . \qquad (2)$$

We break equation (2) up into parallel and perpendicular components, and break up $\vec{v_e}$ in terms of higher and lower order terms to find,

$$\vec{v}_{e,0} = \vec{v}_{||} + \vec{v}_{\perp,0} = \vec{v}_{||} + (1+\tau)\vec{v}_E + \vec{v}_D$$

$$\vec{v}_{e,1} = \vec{v}_{|\perp,1}$$
(3)

8 / 17

Hasegawa-Mima Equations

Taking the standard electron dyanamic normalization,

$$\Phi = \frac{e\delta\Phi}{T_i}, \quad -\frac{1}{r_n} = \frac{\partial_x n_e}{n_e}, \quad -\frac{1}{r_t} = \frac{\partial_x T_e}{T_e}, \quad \eta_e = \frac{r_n}{r_t},$$

$$\rho_e = \sqrt{\frac{\tau m_e}{m_i}} \rho_i, \quad \vec{x} = \frac{\vec{x}}{\rho_e}, \quad t = \frac{\rho_e}{r_n} \omega_{ce} t$$
(4)

and plugging into equation () gives the form of the H-M ETG model,

$$\begin{split} &-(1-\frac{1+\tau}{2\tau}\nabla_{\perp}^{2})\partial_{t}\Phi+\frac{1+\tau}{2\tau}\frac{r_{n}^{2}}{\rho_{e}^{2}}\partial_{t}^{-1}\nabla_{\parallel}^{2}\Phi+\frac{(1+\tau)(1+\eta_{e})}{4\tau}\partial_{y}\nabla_{\perp}^{2}\Phi\\ &+\frac{1+\eta_{e}}{2\tau}\partial_{y}\Phi+\frac{(1+\tau)^{2}}{\tau^{2}}\frac{r_{n}}{4\rho_{e}}(\hat{b}\times\nabla_{\perp}\Phi\cdot\nabla_{\perp})\nabla_{\perp}^{2}\Phi=0\;. \end{split} \tag{5}$$

Hasegawa-Mima Equations

Finally we drop the parallel gradient term since $k_{\parallel}^2/k_{\perp}^2\sim\epsilon^2$, and simplify the bracketed expression for a 2-D slab geometry to find the final form of our model,

$$\partial_{t} [\Phi - \frac{1+\tau}{2\tau} \zeta] = \frac{(1+\tau)(1+\eta_{e})}{4\tau} \zeta_{y} + \frac{1+\eta_{e}}{2\tau} \phi_{y} + \frac{(1+\tau)^{2}}{\tau} \frac{r_{n}}{4\rho_{e}} [\Phi_{x} \zeta_{y} - \zeta_{x} \Phi_{y}],$$
(6)

where $\zeta = \nabla^2 \Phi$.

Pseudo-Spectral Solver

- Equation (6) is solved numerically using the pseudo-spectral method.
 - Fourier transform the equations and get $\zeta = (k_x^2 + k_y^2)\Phi$.
 - Inverse Fourier transform $\zeta_{x,y}$ and $\Phi_{x,y}$ back into real space.
 - Calculate the non-linear products between ζ and Φ in real space and then Fourier transform the products so they can be added to the other Fourier terms.
 - Time advance Φ discretely.
- ullet Time advancement is done using the 4 th order Runge-Kutta method.
- The Hasegawa-Mima equations will conserve generalized energy and enstrophy values as a 2-d incompressible fluid conserves the kinetic energy and enstrophy of the fluid.

ETG H-M Results

GENE ETG Streamer Test

Effects of Isotropization

Zonal Flow Excitation

Acknowledgments

The author is extremely thankful to Prof. Antnio F. R. T. Piza for the short, yet wonderful, conversations about this seminar.

References

