CSC165H1 Problem Set 1

Xiaoyu Zhou, Yichen Xu

December 29, 2020

1. Pets

- (a) $\forall p \in P, Attacks(p, p) \Rightarrow \neg House(p)$
- (b) $\forall p_1 \in P, \exists p_2 \in P, p_2 \neq p_1 \land Attacks(p_1, p_2) \Rightarrow \neg Behaved(p_1)$
- (c) There is at least one dog who do not attack any cats.
- (d) $\forall p_1, p_2 \in P, p_1 \neq p_2 \land \left(Attacks(p_1, p_2) \land Attacks(p_2, p_1)\right) \Rightarrow \left(\neg House(p_1) \lor \neg House(p_2)\right)$

2. Working with strings

- (a) HasCSC(s): $\exists i \in \mathbb{N}, \ 0 \le i < (|s| 2) \land s[i] = C \land s[i + 1] = S \land s[i + 2] = C$
- (b) Substring (s_1, s_2) : $\left(|s_1| \le |s_2| \land \left(\exists x \in \mathbb{N} \land 0 \le x \le |s_2| |s_1|, (\forall i \in \mathbb{N}, 0 \le i < |s_1| \Rightarrow s_1[i] = s_2[i+x]) \right) \lor |s_1| = 0$
- (c) Palindrome(s): $\forall i \in \mathbb{N}, 0 \le i < |s| \Rightarrow s[i] = s[|s|-i-1]$
- (d) False.

Even $|s_1| \leq |s_2|$, s_1 can be not the substring of s_2 because their characters can be different. And if s_1 is not substring of s_2 , the length of s_1 can be bigger, smaller or equal to the length of s_2 .

3. Properties of functions

- (a) $\exists x, y \in \mathbb{R}, x < y \land f_1(x) \ge f_2(y)$
- (b) $\left(\exists x, y \in \mathbb{R}, x < y \land f_2(x) \ge f_2(y)\right) \land \left(\exists x, y \in \mathbb{R}, x < y \land f_2(x) \le f_2(y)\right)$
- (c) $\forall x \in \mathbb{R}, \exists a, b \in \mathbb{R}, a \neq b \land f_3(a) \geq f_3(x) \land f_3(b) \geq f_3(x)$
- (d) $\forall f : \mathbb{R} \to \mathbb{R}, \ \left(\forall x, y \in \mathbb{R}, x < y \Rightarrow f(x) < f(y) \right) \Rightarrow \left(\forall a \in \mathbb{R}, \exists x \in \mathbb{R}, f(a) < f(x) \right)$

4. Choosing a universe and predicates

- (a) If the statement is true: P(n,m): n > m, where $n,m \in \mathbb{N}$. Because for natural number x, if x > 165, then x > 3.
 - If the statement is false: P(n,m): n < m, where $n,m \in \mathbb{N}$. Because for natural number x, if x < 165, then x might smaller or greater than 3, so the statement is false.
- (b) If the statement is true:

Let
$$\mathbb{U} = \{0, 1, 2, 3, 4, 5, 6\}$$

$$P(x):x < 9, x \in \mathbb{U}$$

$$Q(x):x < 8, x \in \mathbb{U}$$

$$R(x):x < 7, x \in \mathbb{U}$$

Explanation: Since all the items in U are smaller than 9, 8 and 7, so P(x),

$$Q(x)$$
, $R(x)$ are always True. Thus the statement " $\forall x \in \mathbb{U}$, $\left(\left(P(x) \Rightarrow \right) \right)$

$$Q(x)$$
 \Rightarrow $R(x)$ \Leftrightarrow $\left(P(x)\Rightarrow\left(Q(x)\Rightarrow R(x)\right)\right)$ is always true

• If the statement is false:

Let
$$\mathbb{U} = \{0, 1, 2, 3, 4, 5, 6\}$$

$$P(x):x < 5, x \in \mathbb{U}$$

$$Q(x):x < 4, x \in \mathbb{U}$$

$$R(x):x < 3, x \in \mathbb{U}$$

Explanation: When x = 4, P(x) is True, Q(x) is False and R(x) is False.

Thus
$$(P(x) \Rightarrow Q(x)) \Rightarrow R(x)$$
 is False and $P(x) \Rightarrow (Q(x) \Rightarrow R(x))$ is True.

Thus
$$\left(\left(P(x) \Rightarrow Q(x)\right) \Rightarrow R(x)\right) \Leftrightarrow \left(P(x) \Rightarrow \left(Q(x) \Rightarrow R(x)\right)\right)$$
 is True.

Which means that not all x in U can make the statement True. So, the whole statement is False.