CHAPTER 6. Ruang Hasil Kali Dalam

- Hasil Kali Dalam
- Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam
- Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition
- Best Approximation; Least Squares
- Orthogonal Matrices; Change of Basis

6.1. HASIL KALI DALAM

Ingatlah Definisi Hasil Kali dalam Euclidean → Perkalian titik Euclidean 2 buah vektor dalam Rⁿ yang dinotasikan u.v

• Jika $\mathbf{u}=(u_1,u_2,...,u_n)$, $\mathbf{v}=(v_1,v_2,...,v_n)$ adalah vektorvektor dalam R^n , maka **Euclidean Inner Product** \mathbf{u} \mathbf{v} dinyatakan oleh

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n$$

Pada bab ini u.v dinotasikan juga dalam <u,v>

Definisi Inner Product

Suatu hasil kali dalam pada suatu ruang vektor real V adalah suatu fungsi yang menghubungkan suatu bilangan real (u, v) dengan setiap pasangan vektor u dan v dalam V sehingga aksioma2 berikut dipenuhi untuk semua vektor u, v dan w dalam V dan semua skalar k.

- $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- $\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$
- $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$

Semua ruang vektor real V dengan suatu hasil kali dalam disebut suatu ruang hasil kali dalam.

Definisi Inner Product

Jika $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n)$ dan $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ adalah vektor – vektor dalam R^n , maka;

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n$$

Mendefinisikan $\langle \mathbf{u}, \mathbf{v} \rangle$ sebagai hasil kali dalam Euclidean pada R^n .

- Jika terdapat $w_1, w_2, ..., w_n$ sebagai bilangan real positif dan $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n)$ dan $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ adalah vektor2 dalam R^n ,
 - $\rightarrow \langle u, v \rangle = u \cdot v = w_1 u_1 v_1 + w_2 u_2 v_2 + ... + w_n u_n v_n$

mendefinisikan suatu hasil kali dalam Euclidean terboboti dengan bobot $w_1, w_2, ..., w_n$.

• $w_1, w_2, ..., w_n \rightarrow weights/bobot$

Example

Jika $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ dan $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2)$ adalah vektor-vektor dalam R^2 . Tunjukkan bahwa hasil kali dalam Euclidean terboboti $\langle \mathbf{u}, \mathbf{v} \rangle = 3\mathbf{u}_1\mathbf{v}_1 + 2\mathbf{u}_2\mathbf{v}_2$ memenuhi ke-4 aksioma hasil kali dalam.

Jawab:

1.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$
.

2.
$$\mathbf{w} = (w_1, w_2)$$

$$\rightarrow \langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = (3u_1v_1) w_1 + (2u_2v_2)w_2$$

$$\rightarrow \langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = (3\mathbf{u}_1\mathbf{w}_1 + 2\mathbf{u}_2\mathbf{w}_2) + (3\mathbf{v}_1\mathbf{w}_1 + 2\mathbf{v}_2\mathbf{w}_2) = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

$$3.\langle ku, v \rangle = 3(ku_1)v_1 + 2(ku_2)v_2 = k(3u_1v_1 + 2u_2v_2) = k \langle u, v \rangle$$

4.
$$\langle \mathbf{v}, \mathbf{v} \rangle = 3v_1v_1 + 2v_2v_2 = 3v_1^2 + 2v_2^2$$
.

$$\langle \mathbf{v}, \mathbf{v} \rangle = 3v_1^2 + 2v_2^2 \ge 0$$
.

$$\rightarrow \langle \mathbf{v}, \mathbf{v} \rangle = 3v_1^2 + 2v_2^2 = 0$$
 if and only if $v_1 = v_2 = 0$.

That is, if and only if $\mathbf{v} = (v_1, v_2) = 0$.

Definisi : Panjang dan Jarak dalam Ruang Hasil Kali Dalam

Dalam ruang berdimensi n Euclidean dengan 2 titik sebarang $u = (u_1, u_2, ..., u_n)$ dan $v = (v_1, v_2, ..., v_n)$ maka:

 Jika V adalah suatu ruang hasil kali dalam, maka norma (panjang) suatu vektor u dalam V dinyatakan dengan:

$$\|\mathbf{u}\| = (\mathbf{u} \cdot \mathbf{u})^{1/2}$$

$$\|\mathbf{u}\| = (\mathbf{u} \cdot \mathbf{u})^{1/2} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

Jarak antara dua titik (vektor) u dan v dinyatakan d(u,v)

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = [(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})]^{1/2}$$

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = (\mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v})^{1/2} = [(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})]^{1/2}$$

$$= \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Contoh

• Misal $\mathbf{u} = (1,0)$; $\mathbf{v} = (0,1)$ dalam R^2 dengan hasil kali dalam Euclidean;

$$\|\mathbf{u}\| = \sqrt{1^2 + 0^2} = 1$$

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \|(1, -1)\| = \sqrt{1^2 - (-1)^2} = \sqrt{2}$$

· Untuk Hasil Kali Dalam Euclidean terboboti:

$$\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1 v_1 + 2u_2 v_2$$

Didapat
$$\rightarrow$$
 $\|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2} = [3(1)(1) + 2(0)(0)]^{1/2} = \sqrt{3}$

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \left\{ (1, -1), (1, -1) \right\}^{1/2}$$
$$= [3(1)(1) + 2(-1)(-1)]^{1/2} = \sqrt{5}$$

Lingkaran dan Bola Satuan Ruang Hasil Kali Dalam

Jika V adalah suatu ruang hasil kali dalam, maka himpunan titik-titik dalam V yang memenuhi

 $||u|| = 1 \rightarrow bola satuan / lingkaran satuan dalam V.$

Dalam R^2 an R^3 ini adalah titik-titik yang terletak 1 satuan dari titik asal.

Contoh: Lingkaran dalam R²

 Sketsa lingkaran satuan dalam suatu xy-coordinate system dalam R² dengan menggunakan Euclidean inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2$$

Jawab

Jika
$$\mathbf{u} = (\mathbf{x}, \mathbf{y})$$
, maka $\|\mathbf{u}\| = (\mathbf{u}, \mathbf{u})^{1/2} = \sqrt{x^2 + y^2}$
Shg pers. Lingkaran satuan :

$$\sqrt{x^2 + y^2} = 1$$

Dengan mengkuadratkan kedua ruas:

$$x^2 + y^2 = 1$$

Hasil Kali Dalam by Matriks

• Jika
$$\mathbf{u} = \begin{vmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{vmatrix}$$
 and $\mathbf{v} = \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{vmatrix}$ adalah vektor-vektor dalam \mathbb{R}^n

(dinyatakan dalam matriks $n\times1$), dan anggap matriks standard A $n\times n$ invertible, maka :

Jika u .v adalah hasil kali dalam Eucl. pada Rⁿ;

$$\langle u, v \rangle = Au \cdot Av$$

→ mendefinisikan hasil kali dalam pada Rⁿ yang dibangkitkan oleh A

Hasil Kali Dalam by Matriks

$$\langle u, v \rangle = Au \cdot Av$$

• Hasil kali dalam Eucl. $\langle \mathbf{u}, \mathbf{v} \rangle$ bisa ditulis sebagai hasil kali matrik $\mathbf{v}^{\mathsf{T}}\mathbf{u}$ sehingga $\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$ dapat ditulis dalam bentuk alternatif

$$u.v = v^T u \rightarrow \langle u, v \rangle = (Av)^T A u,$$

secara ekivalen, $\langle u, v \rangle = v^T A^T A u$

 Hasil kali dalam pada Rⁿ yang dibangkitkan oleh matriks identitas nxn adalah hasil kali dalam Euclidean, dan dengan mensubsitusikan A= I didapat:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{I}\mathbf{u} \cdot \mathbf{I}\mathbf{v} = \mathbf{u} \cdot \mathbf{v}$$

Example: Inner Product Generated by the Identity Matrix

Untuk hasil kali dalam Euclidean terboboti

$$\langle u, v \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + ... + w_n u_n v_n$$

→ adalah hasil kali dalam Rⁿ yang dibangkitkan oleh:

$$A = \text{diagonal}(\sqrt{w_1}, \sqrt{w_2}, \dots, \sqrt{w_n})$$

$$A = \begin{bmatrix} \sqrt{w_1} & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{w_2} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sqrt{w_n} \end{bmatrix}$$

Inner Product Generated by the Identity Matrix

Contoh:

Hasil kali dalam Euclidean terboboti $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$ merupakan hasil kali dalam R² yang dibangkitkan oleh:

$$\langle u, v \rangle = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = 3u_1v_1 + 2u_2v_2$$

Example: An Inner Product on M22

Jika
$$U = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}$$
 and $V = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}$

Adalah matriks 2 \times 2, maka definisi hasil kali dalam M_{22}

$$(U, V) = \operatorname{tr}(U^T V) = \operatorname{tr}(V^T U) = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$$

- Norma matriks $U: \|U\| = \langle U, U \rangle^{1/2} = \sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2}$
- Bola satuan dalam ruang terdiri dari semua matriks U, 2x2, yang semua anggotanya memenuhi persamaan $\|u\|=1$
- Dan dengan mengkuadratkannya didapat:

$$u_1^2 + u_2^2 + u_3^2 + u_4^2 = 1$$

Example: An Inner Product on M22

• Misal:
$$U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $V = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$

maka
$$\langle U, V \rangle = 1(-1) + 2((0) + 3(3) + 4(2) = 16$$

Example: An Inner Product on P_2

- Jika $\mathbf{p} = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{x} + \mathbf{a}_2 \mathbf{x}^2$ dan $\mathbf{q} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x} + \mathbf{b}_2 \mathbf{x}^2$ adalah sembarang dua vektor dalam P_2 ,
 - \rightarrow hasil kali dalam pada P_2 :

$$\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

Norma polinom p relatif terhadap hasil kali dalam adalah;

$$\|\mathbf{p}\| = \langle \mathbf{p}, \mathbf{p} \rangle^{1/2} = \sqrt{a_0^2 + a_1^2 + a_2^2}$$

• Bola satuan dalam ruang ini terdiri dari semua polinom $\bf p$ dalam P_2 yang koefisien-koefisiennya memenuhi $|| \bf p || = 1$, dan dengan mengkuadratkan didapat:

$$a_0^2 + a_1^2 + a_2^2 = 1$$

Theorema 6.1.1

Beberapa Sifat Hasil Kali Dalam:

Jika **u**, **v**, dan **w** adalah vektor-vektor dalam suatu ruang hasil kali dalam real, dan k adalah sebarang skalar, maka:

•
$$\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$$

•
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$$

•
$$\langle \mathbf{u}, k\mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$$

•
$$\langle \mathbf{u} - \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle - \langle \mathbf{v}, \mathbf{w} \rangle$$

•
$$\langle \mathbf{u}, \mathbf{v} - \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{w} \rangle$$

Sifat Hasil Kali Dalam

Contoh:

$$\langle \mathbf{u} - 2\mathbf{v}, 3\mathbf{u} + 4\mathbf{v} \rangle = \langle \mathbf{u}, 3\mathbf{u} + 4\mathbf{v} \rangle - \langle 2\mathbf{v}, 3\mathbf{u} + 4\mathbf{v} \rangle$$

$$= \langle \mathbf{u}, 3\mathbf{u} \rangle + \langle \mathbf{u}, 4\mathbf{v} \rangle - \langle 2\mathbf{v}, 3\mathbf{u} \rangle - \langle 2\mathbf{v}, 4\mathbf{v} \rangle$$

$$= 3\langle \mathbf{u}, \mathbf{u} \rangle + 4\langle \mathbf{u}, \mathbf{v} \rangle - 6\langle \mathbf{v}, \mathbf{u} \rangle - 8\langle \mathbf{v}, \mathbf{v} \rangle$$

$$= 3\|\mathbf{u}\|^2 + 4\langle \mathbf{u}, \mathbf{v} \rangle - 6\langle \mathbf{u}, \mathbf{v} \rangle - 8\|\mathbf{v}\|^2$$

$$= 3\|\mathbf{u}\|^2 - 2\langle \mathbf{u}, \mathbf{v} \rangle - 8\|\mathbf{v}\|^2$$

- $\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$
- $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$
- \(\mathbf{u}\), \(k\mathbf{v}\) = \(k\alpha\)
- \(u v, w \) = \(u, w \) \(v, w \)
- $\langle \mathbf{u}, \mathbf{v} \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle \langle \mathbf{u}, \mathbf{w} \rangle$

6.2 Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam

Just Remind: DOT PRODUCT

Formula
$$\overline{u}.\overline{v} = \|\overline{u}\| \|\overline{v}\| \cos \theta$$
 can be written as

$$\cos\theta = \frac{\overline{u}.\overline{v}}{\|\overline{u}\| \|\overline{v}\|}$$

Formula of dot product can be used to obtain information about the angle (θ) between two vectors

θ is acute	if and only if	u.v > 0
θ is obtuse	if and only if	u.v < 0
$\theta = \pi/2$	if and only if	u.v = 0

Ketidaksamaan Cauchy-Schwarz; Sifat Panjang; Jarak Dalam Ruang Hasil Kali Dalam

Teori Ketidaksamaan Cauchy-Schwarz
 Jika u dan v adalah vektor-vektor dalam ruang hasil kali dalam real, maka

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|$$

- Teori Sifat Panjang Dalam Ruang Hasil Kali Dalam
 Jika u dan v adalah vektor-vektor dalam ruang hasil kali dalam V dan k adalah sebarang skalar, maka:
 - || u || ≥ 0
 - || u || = 0 if and only if u = 0
 - || ku || = | k | || u ||
 - $|| \mathbf{u} + \mathbf{v} || \le || \mathbf{u} || + || \mathbf{v} ||$ (ketidaksamaan segitiga)

Properties of Distance

- Teori Jarak Dalam Ruang Hasil Kali Dalam
 Jika u, v dan w adalah vektor-vektor dalam ruang hasil kali dalam V dan k adalah sebarang skalar, maka:
 - $d(u, v) \ge 0$
 - $d(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$
 - $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
 - $d(u, v) \le d(u, w) + d(w, v)$ (Ketidaksamaan segitiga)

Sudut Antar Vektor

- Ketidaksamaan Cauchy-Schwarz dapat digunakan untuk mendefinisikan sudut dalam ruang hasil kali dalam berdasark $\hat{\mathbf{u}}$ - $\hat{\mathbf{v}}$ $\stackrel{\mathbf{i}}{=}$ $\|\hat{\mathbf{u}}\| \|\mathbf{v}\| \cos \theta$
- O adalah sudut antara u dan v dimana

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \quad \text{and} \quad 0 \le \theta \le \pi$$

$$-1 \le \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$$

$$-1 \le \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$$

Sudut Antar Vektor

Contoh:

Anggap R^4 memiliki Euclidean inner product. Tentukan cosinus sudut θ antara u dan v dimana $\mathbf{u} = (4, 3, 1, -2)$; $\mathbf{v} = (-2, 1, 2, 3)$.

$$\|\mathbf{u}\| = \sqrt{30}$$
, $\|\mathbf{v}\| = \sqrt{18}$, and $\{\mathbf{u}, \mathbf{v}\} = -9$

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} = -\frac{9}{\sqrt{30}\sqrt{18}} = -\frac{3}{2\sqrt{15}}$$

Orthogonality

Dua vektor \mathbf{u} dan \mathbf{v} dalam suatu hasil kali dalam disebut **ortogonal** jika $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Contoh:

Jika M₂₂ memiliki hasil kali
$$U = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $V = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$

maka u dan v orthogonal karena

$$\langle U, V \rangle = 1(0) + 0(2) + 1(0) + 1(0) = 0.$$

Example: Orthogonal Vectors in P2

- Anggap P_2 mempunyai hasil kali dalam $<\mathbf{p},\ \mathbf{q}>=\int\limits_{-1}^{}p(x)q(x)dx$ dimana $\mathbf{p}=\mathbf{x}$ and $\mathbf{q}=\mathbf{x}^2$.
- Maka $\|\mathbf{p}\| = \langle \mathbf{p}, \mathbf{p} \rangle^{1/2} = \left[\int_{-1}^{1} xx dx\right]^{1/2} = \left[\int_{-1}^{1} x^2 dx\right]^{1/2} = \sqrt{\frac{2}{3}}$ $\|\mathbf{q}\| = \langle \mathbf{q}, \mathbf{q} \rangle^{1/2} = \left[\int_{-1}^{1} x^2 x^2 dx\right]^{1/2} = \left[\int_{-1}^{1} x^4 dx\right]^{1/2} = \sqrt{\frac{2}{5}}$ $\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} xx^2 dx = \int_{-1}^{1} x^3 dx = 0$

karena $\langle \mathbf{p}, \mathbf{q} \rangle = 0$, vektor-vektor $\mathbf{p} = x$ dan $\mathbf{q} = x^2$ ortogonal relatif terhadap hasil kali dalam.

Teorema Phytagoras

Jika u dan v adalah vektor-vektor orthogonal dalam suatu ruang hasil kali dalam, maka

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

Example

• Jika $\mathbf{p} = x$ dan $\mathbf{q} = x^2$ orthogonal relatif terhadap hasil kali dalam P_2 .

$$<\mathbf{p},\,\mathbf{q}> = \int_{-1}^{1} p(x)q(x)dx \longrightarrow \|\mathbf{p}+\mathbf{q}\|^{2} = \|\mathbf{p}\|^{2} + \|\mathbf{q}\|^{2}$$

- Dari contoh sebelumnya didapat: $\|\mathbf{p}+\mathbf{q}\|^2 = (\sqrt{\frac{2}{3}})^2 + (\sqrt{\frac{2}{5}})^2 = \frac{2}{3} + \frac{2}{5} = \frac{16}{15}$
- Yang dapat dicek dengan integral secara langsung:

$$\|\mathbf{p}+\mathbf{q}\|^2 = \langle \mathbf{p}+\mathbf{q}, \mathbf{p}+\mathbf{q} \rangle = \int_{-1}^{1} (x+x^2)(x+x^2)dx$$
$$= \int_{-1}^{1} x^2 dx + 2 \int_{-1}^{1} x^3 dx + \int_{-1}^{1} x^4 dx = \frac{2}{3} + 0 + \frac{2}{5} = \frac{16}{15}$$

Orthogonality

Semua himpunan vektor-vektor di dalam ruang perkalian dalam disebut himpunan ortogonal jika semua pasangan vektor-vektor yang beda didalam himpunan tersebut ortogonal.

Komplemen Orthogonal

Jika V adalah suatu bidang yang melalui titik asal R³ dengan hasil kali dalam Euclidean, maka himpunan semua vektor yang ortogonal terhadap setiap vektor dalam V membentuk garis L yang melalui titik asal yang tegak lurus dengan bidang V. Garis dan bidang disebut komplemen ortogonal satu sama lain.

Anggap W adalah suatu subruang dari suatu hasil kali dalam V.

- Jika u ortogonal terhadap setiap vektor dalam W→ vektor u dalam V orthogonal terhadap W; dan
- Himpunan semua vektor dalam V yang ortogonal terhadap W disebut komplemen ortogonal dari W.

Sifat Komplemen Orthogonal

Jika **W** adalah subruang dari suatu ruang hasil kali dalam berdimensi terhingga **V**, maka:

- \mathbf{W}^{\perp} (W perp : komponen orthogonal dari suatu sub ruang W) adalah sub ruang dari \mathbf{V} .
- Satu-satunya vektor dimana W dan W[⊥] adalah 0;
- Komplemen ortogonal dari W^{\perp} adalah W yaitu $(W^{\perp})^{\perp} = W$.

Karena W^{\(\perp}\) adalah W adalah komplemen orthogonal satu sama lain maka W^{\(\perp}\) adalah W adalah komplemen-komplemen orthogonal}}

Kaitan Geometris, Ruang Baris, Ruang Kolom, Ruang Kosong

Jika A adalah m×n matrix, maka:

- Ruang Kosong A & Ruang baris A adalah komplemen-komplemen ortogonal dalam Rⁿ berkenaan dengan Euclidean inner product.
- Ruang Kosong A^T & Ruang Kolom A adalah komplemen-komplemen ortogonal dalam R^m berkenaan dengan Euclidean inner product.

Equivalent Statements

If A is an $m \times n$ matrix, and if $T_A \colon R^n \to R^n$ is multiplication by A, then the following are equivalent:

- A isinvertible.
- $A \times = 0$ has only the trivial solution.
- The reduced row-echelon form of A is I_n .
- A is expressible as a product of elementary matrices.
- $A \times = b$ is consistent for every $n \times 1$ matrix b.
- $A \times = b$ has exactly one solution for every $n \times 1$ matrix b.
- $det(A) \neq 0$.
- The range of T_A is R^n .
- T_A is one-to-one.
- The column vectors of A are linearly independent.
- The row vectors of A are linearly independent.
- The column vectors of A span \hat{R}^n .
- The row vectors of A span R^n .
- The column vectors of A form a basis for R^n .
- The row vectors of A form a basis for R^n .
- A has rank n.
- A has nullity 0.
- The orthogonal complement of the nullspace of A is R^{-n} .
- The orthogonal complement of the row of A is { 0}.