Diagrama de Cobweb.

Proceso:

• Dibujo la gráfica.

- Dibujo la gráfica.
- Marco el punto x_0 .

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x_1 .

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x_1 .
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x_1 .
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.
- Mismo procedimiento para x₃.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.
- Mismo procedimiento para x₃.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x_1 .
- Mismo procedimiento para x₂.
- Mismo procedimiento para x₃.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.
- Mismo procedimiento para x₃.
- Así sucesivamente...

$$x_{n+1} = \lambda x_n$$

casos simples

• Si $\lambda = 1$ soluciones constantes.

$$x_{n+1} = \lambda x_n$$

casos simples

- Si $\lambda = 1$ soluciones constantes.
- Si $\lambda = -1$ soluciones "alternadas "y una única solución constante.

$$x_{n+1} = \lambda x_n$$

casos simples

- Si $\lambda = 1$ soluciones constantes.
- Si $\lambda=-1$ soluciones "alternadas "y una única solución constante. Si $\lambda=-1$ soluciones "alternadas "y una única solución constante.
- Si $\lambda=0$ soluciones "eventualmente "constantes. (4,0,0,...) (3,0,0,...)

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

• Caso 1. $0 < \lambda < 1$, Recta de pendiente λ

Escalera hacia cero

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

• Caso 1. $0 < \lambda < 1$, "escalera a cero".

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

- Caso 1. $0 < \lambda < 1$, "escalera a cero".
- Caso 2. $\lambda > 1$,

Escalera hacia oo

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

- Caso 1. $0 < \lambda < 1$, "escalera a cero".
- Caso 2. $\lambda > 1$, "escalera a infinito".

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

- Caso 1. $0 < \lambda < 1$, "escalera a cero".
- Caso 2. $\lambda > 1$, "escalera a infinito".

Soluciones en escalera.

Corresponden a soluciones estrictamente monotonas.

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

- Caso 1. $0 < \lambda < 1$, "escalera a cero".
- Caso 2. $\lambda > 1$, "escalera a infinito".

Soluciones en escalera.

Corresponden a soluciones estrictamente monotonas.

• Caso 3. $-1 < \lambda < 0$,

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

- Caso 1. $0 < \lambda < 1$, "escalera a cero".
- Caso 2. $\lambda > 1$, "escalera a infinito".

Soluciones en escalera.

Corresponden a soluciones estrictamente monotonas.

• Caso 3. $-1 < \lambda < 0$, "telaraña a cero".

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

- Caso 1. $0 < \lambda < 1$, "escalera a cero".
- Caso 2. $\lambda > 1$, "escalera a infinito".

Soluciones en escalera.

Corresponden a soluciones estrictamente monotonas.

- Caso 3. $-1 < \lambda < 0$, "telaraña a cero".
- Caso 4. $\lambda < -1$,

Telaraña a infinita

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

- Caso 1. $0 < \lambda < 1$, "escalera a cero".
- Caso 2. $\lambda > 1$, "escalera a infinito".

Soluciones en escalera.

Corresponden a soluciones estrictamente monotonas.

- Caso 3. $-1 < \lambda < 0$, "telaraña a cero".
- Caso 4. $\lambda < -1$, "telaraña a infinito".

$$x_{n+1} = \lambda x_n$$

donde $\lambda \in \mathbb{R} \setminus \{-1, 0, 1\}$.

- Caso 1. $0 < \lambda < 1$, "escalera a cero".
- Caso 2. $\lambda > 1$, "escalera a infinito".

Soluciones en escalera.

Corresponden a soluciones estrictamente monotonas.

- Caso 3. $-1 < \lambda < 0$, "telaraña a cero".
- Caso 4. $\lambda < -1$, "telaraña a infinito".

Soluciones en telaraña.

Corresponden a soluciones que intercambian su monotonía entre términos pares e impares.

Resumen.

- Si $\lambda = 1$ soluciones constantes.
- Si $\lambda = -1$ soluciones alternadas y una única solución constante.
- Si $\lambda = 0$ soluciones eventualmente constantes.
- Las soluciones tienden a cero si y sólo si $-1 < \lambda < 1$.
- Las soluciones son en escalera si $\lambda > 0$.
- Las soluciones son en telaraña si $\lambda < 0$.

Sea $f : \mathbb{R} \to \mathbb{R}$ es la función de la gráfica:

a)
$$x_0 = 0.5$$

Sea $f : \mathbb{R} \to \mathbb{R}$ es la función de la gráfica:

a)
$$x_0 = 0.5$$
 b) $x_0 = 3$

Sea $f : \mathbb{R} \to \mathbb{R}$ es la función de la gráfica:

a)
$$x_0 = 0.5$$
 b) $x_0 = 3$ c) $x_0 = 4$

Sea $f : \mathbb{R} \to \mathbb{R}$ es la función de la gráfica:

a)
$$x_0 = 0.5$$
 b) $x_0 = 3$ c) $x_0 = 4$ d) $x_0 = 2$

Sea $f: \mathbb{R} \to \mathbb{R}$ es la función de la gráfica:

a)
$$x_0 = 0.5$$
 b) $x_0 = 3$ c) $x_0 = 4$ d) $x_0 = 2$ e) $x_0 = 4.5$ Tiende a Liende a Liend

Sea $f : \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

a)
$$x_0 = -0.2$$

Sea $f : \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

a)
$$x_0 = -0.2$$
 b) $x_0 = 0.4$

Sea $f : \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

a)
$$x_0 = -0.2$$
 b) $x_0 = 0.4$ c) $x_0 = 0.5$

Sea $f: \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

a)
$$x_0 = -0.2$$

a)
$$x_0 = -0.2$$
 b) $x_0 = 0.4$ c) $x_0 = 0.5$ d) $x_0 = -0.8$

c)
$$x_0 = 0.5$$

d)
$$x_0 = -0.5$$