微分形式梳理

刘思雨

2024年8月11日

目录

1	前言	1
2	Differentiable Manifolds	1
	2.1 Differentiable Manifolds	1
	2.2 Tangent Space	2
1	前言	
	太玄列的目的具梳理一下微分形式的一此概今 学习的时候发现这	r iEE

本系列的目的是梳理一下微分形式的一些概念。学习的时候发现这些知识没过几个礼拜就会遗忘,而且记号有些混乱,因此做一下梳理。

2 Differentiable Manifolds

2.1 Differentiable Manifolds

Definition 1 (Differentiable Manifolds). M is a set (even without topological structure). M is an n-dimensional differentiable manifold, if there exists a family of injective maps $f_{\alpha}: U_{\alpha} \subset \mathbf{R}^n \to M$, where all U_{α} are open sets in \mathbf{R}^n and,

- (1) $\bigcup_{\alpha} f_{\alpha}(U_{\alpha}) = M$
- (2) for each pair $\alpha \neq \beta$, if $W := f_{\alpha}(U_{\alpha}) \cap f_{\beta}(U_{\beta}) \neq \phi$, then $f_{\alpha}^{-1}(W)$ and $f_{\beta}^{-1}(W)$ are also open sets in \mathbf{R}^{n} , satisfying $f_{\alpha}^{-1} \circ f_{\beta}$ and $f_{\beta}^{-1} \circ f_{\alpha}$

are differentiable on their own domain(which are open sets by the previous restriction).

Remark 1. A differentiable manifold intrinsically induces a topological structure. A set $A \subset M$ is an open set iff $f_{\alpha}^{-1}(A \cap f_{\alpha}(U_{\alpha}))$ is an open set in \mathbf{R}^n for all α .

It follows that this defines a topology in M and all f_{α} are homeomorphisms.

Remark 2. If M is born with a topological structure, how can we prove that M is a differentiable manifold while matching its induced topology with its inborn topology (which is often we hope). If we are able to additionally prove that all f_{α} are homeomorphisms, the induced topology can be fit into the inborn topology.

Remark 3. From now on, to develop calculus, we fix a Hausdorff and second countable n-dim differentiable manifold M.

2.2 Tangent Space

Definition 2 (Differentiable). M, N are differentiable manifolds. $p \in M$. A map $F : M \to N$ is **differentiable at p** if for the parameterization of $p(U_{\alpha}, f_{\alpha})$ and the parameterization of $F(p)(V_{\alpha}, g_{\alpha})$, $g_{\alpha}^{-1} \circ F \circ f_{\alpha}$ is differentiable at $f_{\alpha}^{-1}(p)$.

It's necessary to check that this definition is independent of the choice of the parameterization.

Definition 3 (tangent space). Fix a point p in M, denote the set of all curves passing p as C, where a curve passing p is a differentiable map γ : $(-\epsilon, \epsilon) \to M$ with $\gamma(0) = p$. Two curves γ_1 , γ_2 are tangent at p if for every differentiable function $F: M \to \mathbb{R}$, $\frac{d}{dt}|_{t=0}(F \circ \gamma_1) = \frac{d}{dt}|_{t=0}(F \circ \gamma_2)$, which is an equivalence relation. The tangent space of M at p T_pM is defined by the quotient space of C under the tangent relation.

Remark 4 (The inspiration). In normal geometry in \mathbb{R}^n , we define tangent vector v of a curve $\gamma(t) = (x^1(t), x^2(t), ..., x^n(t))$ by letting $v = (x^{1\prime}(t), x^{2\prime}(t), ..., x^{n\prime}(t))$.

It follows that for every differentiable function $F: \mathbf{R}^n \to \mathbf{R}$,

$$\frac{d}{dt}|_{t=0}(F \circ \gamma)(t) = \sum_{i=1}^{n} \partial_{i}F \cdot x^{i\prime}(0)$$

$$= (\sum_{i=1}^{n} x^{i\prime}(0) \cdot \frac{\partial}{\partial x^{i}})(F)$$

$$= \frac{\partial}{\partial v}F$$
(1)

which turns out to be the same when two curves have the same tangent vector v, i.e. two curves are tangent.

Remark 5. From Remark 4, we have an explicit definition for T_pM . Let D be the set of all differentiable functions $F: M \to \mathbf{R}$. γ is a curve passing p. The **tangent vector to** γ **at** p is the map $v: D \to R$ defined by

$$vF = \frac{d}{dt}|_{t=0}(F \circ \gamma)$$

 T_pM is defined by all tangent vectors to all curves passing p.

Remark 6. The two definitions are equivalent in the sense of isomorphism. Moreover, the second definition holds a linear structure naturally. To figure out its dimension, given a parameterization (U_{α}, f_{α}) at p, the **coordinate** curves are curves

$$\gamma_i(t) = f_{\alpha}(f_{\alpha}^{-1}(p) + (0, ..., \underset{i-th}{t}, ..., 0))$$

 γ_i play the same role as The tangent vector of γ_i can be denoted as $\frac{\partial}{\partial x^i}$ under the second definition and (1). T_pM has a basis $\{\frac{\partial}{\partial x^i}\}_{i=1}^n$, so it's n-dimensional.

Definition 4 (Differential). Let M, N be differentiable manifolds