BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI HYDERABAD CAMPUS

First Semester 2020-2021 Course Handout (Part-II)

Date: 17/08/2016

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHE F414

Course Title : **Transport Phenomena**

Instructor-in-charge : **Dr. Vikranth Kumar Surasani**

Course Description:

Analogy among momentum, heat and mass transport phenomena; Shell balance approach for all three transport phenomena, Boundary layer concepts, velocity, temperature and concentration distribution in laminar flow; Velocity distributions in turbulent flow.

Scope and Objective of the Course:

Transport phenomena are a subject of importance both in science and engineering. All the three transport mechanisms such as momentum, heat and mass transfer frequently occur in chemical processes either individually or simultaneously. The aim of this course is to feel the physics of the process and then use the knowledge of the transport phenomena to represent the process behavior. Finally the aim is to analyze a few real life problems to understand the complexity of the chemical processes in view of three transport mechanisms.

Books:

Text Book

- 1. Bird, Stewart and Lightfoot, 'Transport Phenomena', John Wiley & Sons, 2002, 2nd edition Reference Books
- 1. Fox and McDonald, 'Introduction to fluid dynamics,' John Wiley & Sons, 2008, 7th edition
- 2. Holman, J.P., 'Heat transfer', McGraw Hill, 1997, 8th edition

Course Plan:

7415€ 1 1411.						
Lectu re No.	Learning Objectives	Topics to be covered	Text Book Chap./Sec			
1	Introduction	Scope and objectives of course, methodology	Ch. 0			
2 - 3	Molecular momentum transport	Newton's law and molecular theories of viscosity	1.1-1.5			
4	Convective momentum transport	Convective momentum transport	1.7			
5	Momentum balances	Shell momentum balances, boundary conditions	2.1			
6 - 8	Velocity distributions in laminar flow	Examples	2.2-2.5			
9	Equations of change for isothermal systems	Equations of continuity, motion and mechanical energy	3.1-3.3			
10 - 11	Applications of equations of change	Examples	3.5-3.6			
12	Applications of equations of change	Dimensional analysis	3.7			
13	Velocity distributions	Time-dependent flow of Newtonian	4.1			

	with more than one independent variables	fluids	
14 - 15	Stream functions and velocity potential	Solving flow problems using stream functions and velocity potential	4.2-4.3
16	Flow near solid surfaces	Boundary layer theory	4.4
17	Turbulent flow	Time-smoothed equations of change and velocity profiles	5.1-5.3
18 - 19	Velocity distributions in turbulent flow	Empirical expressions for turbulent momentum flux; turbulent flow in ducts etc.	5.4-5.6
20	Molecular energy transport	Fourier's law of heat conduction, molecular theories of thermal conductivity	
21	Convective energy transport	Convective transport of energy, work associated with molecular motions	9.7-9.8
22 - 23	Energy balances	Shell energy balances, examples	10.1-10.7
24	Convection	Forced and free convection	10.8-10.9
25	Equations of change for non isothermal systems	Various forms of energy equations	11.1-11.3
26 - 27	Applications of equations of change	Examples	11.4
28	Applications of equations of change	Dimensional analysis	11.5
29 - 30	Temperature distributions with more than one independent variable	Unsteady state heat conduction in solids and in laminar flow	12.1-12.3
31	Boundary layer theory	Boundary layer theory for non- isothermal flow	12.4
32	Molecular mass transport	Fick's law of binary diffusion, molecular theories of diffusion	17.1-17.6
33	Convective mass transport	Mass and molar transport by convection, summary of mass and molar fluxes	17.7-17.8
34	Mass balances	Mass balances Shell mass balance, boundary conditions	
35 - 37	Concentration distributions in solids and laminar flow	Examples	18.2-18.7
38	Equations of change for multicomponent systems	Equations of continuity, summary of multicomponent equations of change	19.1-19.3
39	Applications of equations of change for multicomponent systems	Examples/Dimensional Analysis	19.4
40 - 41	Temperature distributions in turbulent flow	Time-smoothed equations of change and temperature profiles for turbulent flow in tubes	13.1-13.4

Evaluation Scheme:

EC No.	Evaluation Component	Duration	Weightage (%)	Date & Time	Nature
1	Test I	30 min	10	September 10 –September 20 (During scheduled class hour)	ОВ
2	Test II	30 min	15	October 09 –October 20 (During scheduled class hour)	ОВ
3	Test III	30 min	15	November 10 – November 20 (During scheduled class hour)	ОВ
4	Class Quiz		10		OB
5	Assignments		15		OB & Matlab
5	Comprehensive Exam	3 hrs	35		ОВ

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable

CAD Lab Practice Hours: 5-8 pm (All days)

Chamber Consultation Hour: 5-5:30 pm (Mon, Wed, Friday)

Notices: All notices concerning this course will be displayed on the Chemical Engineering Notice Board and Course Management System (CMS) portal.

Make-up Policy: Make-up is granted only for genuine cases having 75 % attendance with valid justification. A prior permission from the Instructor-in-charge is required.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge (CHE F414)