Image Processing e Machine Learning Basi e Possibili Applicazioni ai Beni Culturali

Christian Salvatore Scuola Universitaria Superiore IUSS Pavia

Machine learning

A Biological Neuron

A Human-Vision Task

'healthy' vs overweighting men

H (cm)	181	184	172	160	170	187	184	176	190
AC (cm)	85	94	102	80	98	110	116	77	84

H OW01

Weights and Bias

Neural Network | Weights and Bias

The Activation Function

Activations should be in this range

Other functions that progressively change from 0 to 1 with no discontinuity

Hyperbolic tangent funtion

INPUT

 a_1 a_2

Cost Function?

Sigmoid ($a_1 w_1 + a_2 w_2 + b$)

OUTPUT

Cost Function = (Predicted-Expected)²

Squared error cost

If the slope is + we must decrease P of a fraction of the slope

If the slope is - we must increase P of a fraction of the slope

If the slope is 0 we have the solution

The Learning Rate

Next P = P - LR*(Tg slope)P LR*=Learning Rate

Next $P = P - LR^* (slope Tg)P$

Slope Tg= derivative of the Cost Function vs P= 2(P-E)

In our case

LR determines how much weights are changed every time Too high \rightarrow output wanders around the expected solutions Too low \rightarrow output fails to converge to acceptable solution

The Training

Different training methods

learning rule that trains the neural network on already known correct output


```
W1 = 0.0006
W2 = 0.0002
b=1
```

the back propagation

Computation of the error (STEP 2)

The Cost Function = $(0.7-0.0)^2=0.49$

 $= (Sigmoid (185x0.0006 + 85x0.0002 + 1) - 0.0)^{2}$

Weights and Bias Adjustment: the Back Propagation

Adjust weights and b to reduce the error (STEP 3)

$$0.0005 = 0.0006 - 0.0001$$

$$0.0001 = 0.0002 - 0.0001$$

$$0.0008 = 1 - 0.0002$$

$$w_1 = w_1 - LR^*$$
 slope = $w_1 - LR^*$ derivative w_1 of the Cost Function

$$w_2 = w_2 - LR^*$$
 slope = w_2 - LR^* derivative w_2 of the Cost Function

$$b = b - LR^* slope = b - LR^* derivative_b of the Cost Function$$

$$w1 = w1 - LR^* \frac{\partial costo}{\partial w1}$$

$$w2 = w2 - LR^* \frac{\partial costo}{\partial w2}$$

$$b = b - LR^* \frac{\partial costo}{\partial b}$$
Esci

$$\frac{\partial costo}{\partial w1} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t}$$

$$\frac{\partial}{\partial t} = \operatorname{sigmoide}(t) = \operatorname{sigmoide}(t)(1 - \operatorname{sigmoide}(t))$$

$$\frac{\partial costo}{\partial w1} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial w1}$$

$$\frac{\partial costo}{\partial w1} = \frac{2(sigmoide(2w1+5w2+b) - 1) \times sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) \times 2}{\partial costo}$$

$$= \frac{2(sigmoide(2w1+5w2+b) - 1) \times sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) \times 5}{\partial w2}$$

$$\frac{\partial costo}{\partial b} = \frac{2(sigmoide(2w1+5w2+b) - 1) \times sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) \times 5}{\partial b}$$

$$\frac{\partial costo}{\partial w1} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial w1}$$

$$= \frac{\partial costo}{\partial w1} = \frac{\partial costo}{\partial p} \times \frac{\partial t}{\partial w1} \times \frac{\partial t}{\partial w1}$$

$$= \frac{\partial costo}{\partial w2} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial w2}$$

$$= \frac{\partial costo}{\partial w2} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial w2}$$

$$= \frac{\partial costo}{\partial w2} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial w2}$$

$$= \frac{\partial costo}{\partial w2} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial b}$$

$$= \frac{\partial costo}{\partial w3} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial b}$$

$$= \frac{\partial costo}{\partial w3} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial b}$$

$$= \frac{\partial costo}{\partial b} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial b}$$

$$= \frac{\partial costo}{\partial b} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial b}$$

$$W_1 = 0.0006$$
 $W_2 = 0.0002$ $b = +1$

The Cost Function $(w_1 w_2 b) = (Sigmoid-0.0)^2 = 0.49$

Back propagation

Weights and bias adjustment

$$W_1 = 0.0005$$
 $W_2 = 0.0001$ $b = 0.0008$

The Cost Function $(w_1, w_2, b) = (Sigmoid-0.0)^2 = 0.43$

Sigmoid (185x0.0005+ 85x0.0001+1) = Sigmoid (0.0925+0.085+0.008)= Sigmoid (1.178)=0.65

the back propagation

Training set: 'healthy' vs overweighting men

Н	185	178	184	190	169	188	185	192	175	Н	168	179	170	180	169	189	188	190	178	Н	185	192	175	185	192	168	190	186	168
С	85	94	102	80	98	110	116	77	84	С	88	90	68	120	112	109	89	92	94	С	77	103	119	98	99	100	98	96	78
Н	188	190	178	169	188	185	192	190	188	Н	185	192	168	179	188	185	192	175	180	Н	169	189	188	190	169	188	185	192	188
С	90	79	68	120	98	99	102	104	89	С	87	90	102	98	96	78	90	103	110	С	90	89	90	79	68	120	96	99	79
Н	168	179	170	182	168	178	190	188	177	Н	175	188	178	169	176	168	179	170	180	Н	178	193	190	169	188	185	177	186	165
H C	168 113	179 90	170 90	182 79	168 68	178 120	190 98	188	177 78	H C	175 119	188	178 106	169	176 77	168	179 119	170 98	180 77	H C	178 90	193 79	190 68	169	188	185	177 89	186 92	165 78

Calculate the error (STEP 2)

Adjust weights and b to reduce the error (STEP 3)

Repeat step 2 and step 3 for all training data until the error is within acceptable level

These steps are similar to supervised machine learning (model adjusting vs learning rules adjusting) (model adjusting vs weights and bias adjusting)

Sigmoid (185x0.0006+ 85x0.0002 +1) = 0.7

Sigmoid (178x0.0004+ 94x0.0003 +0.008) =0.65

Sigmoid (184x0.0003+ 102x0.0001+0.007)=0.64

Sigmoid (100x0.0005+80x0.0002+0.008) =0.55

(Sigmoid-0.0)²=0.49

(Sigmoid-0.0)²=0.43

(Sigmoid-0.0)²=0.41

 $(Sigmoid-0.0)^2=0.30$

Generalized delta rule

SGD (Stochastic Gradient Descent) method (error is calculated for each training data, weights updated immediately)

Batch method (error is calculated for all training data, each of the weight update are calculated but the avarage of all weight updates are used only once in each epoch)

Mini-Batch method (mix) →

- Small values give a learning process that converges quickly at the cost of noise in the training process.
- Large values give a learning process that converges slowly with accurate estimates of the error gradient.

Mini-Batch method

Training data 1

Training data 2

Training data 3

Training using batch method

Part of the training data is selected

Training data N

Mini-Batch method

1-10

11-20

21-40

41-60

61-80

Batch method applied

5 weight update will be performed to complete the training process

Robusteness of SGD Efficiency of batch

SOFTWARE CODES

Matlab: essential functions and scripts

Matlab: simple examples

```
Sigmoid.m X
   y = 1/(1+exp(-x));
3
    end
4
5
```

```
SGD_method.m ×
   Sigmoid.m X
1
       function Weight = SGD method(Weight, input, correct Output)
2 -
       alpha = 0.9;
 3
       N = 4:
5 -
      for k = 1:N
           transposed Input = input(k, :)';
           d = correct_Output(k);
       weighted Sum = Weight*transposed Input;
9 -
       output = Sigmoid(weighted Sum);
10
11 -
       error
                 = d - output;
12 -
       delta = output* (1-output) *error;
13
14 -
       dWeight = alpha*delta*transposed Input;
15
16 -
       Weight(1) = Weight(1) + dWeight(1);
17 -
      Weight(2) = Weight(2) + dWeight(2);
```

```
SGD_method.m* × +
   Sigmoid.m X
 3
 4 -
        N = 4;
 5 -
      - for k = 1:N
 6 -
            transposed Input = input(k, :)';
 7 -
            d = correct Output(k);
8 -
        weighted Sum = Weight*transposed Input;
9 -
        output = Sigmoid(weighted Sum);
10
11 -
                  = d - output;
        error
12 -
        delta = output* (1-output) *error;
13
14 -
        dWeight = alpha*delta*transposed Input;
15
16 -
        Weight(1) = Weight(1) + dWeight(1);
17 -
        Weight(2) = Weight(2) + dWeight(2);
18 -
        Weight(3) = Weight(3) + dWeight(3);
19 -
        end
20 -
        end
21
```

```
Sigmoid.m
                 SGD_method.m
                                  Training.m X
                                               +
        input = [ 0 0 1;
                   0 1 1;
 2
 3
                   1 0 1;
 4
                   1 1 1;
                  ];
 5
        correct Output = [0
10
                            1;
        Weight = 2*rand(1, 3) - 1;
11 -
12 -
      - for epoch = 1:10000
13 -
            Weight = SGD method (Weight, input, correct Output);
14 -
        end
15
16 -
        save ('Trained Network.mat')
17
```

```
Sigmoid.m
                 SGD_method.m
                                               testing.m*
                                  Training.m X
                                                            +
        load('Trained Network.mat');
        input = [ 0 0 1;
                   0 1 1;
 3
                   1 0 1;
 4
 5
                   1 1 1;
 6
                 ];
        N = 4;
      - for k = 1:N
 8 -
 9 -
            transposed Input = input(k, :)';
10 -
            weighted Sum = Weight*transposed Input;
11 -
            output = Sigmoid (weighted Sum)
12
        end
```

