

2020 Fall: Business Analytics (ITS504)

Pilsung Kang
School of Industrial Management Engineering
Korea University

Overview

Course Description

- ✓ This module aims to provide students with the theoretical and practical knowledge and skills to obtain, modify, and analyze a large amount of data from various sources
- ✓ Topics covered in this module include basic association rules, supervised learning algorithms (classification & regression) such as linear/logistic regression, decision tree, artificial neural networks, and unsupervised learning algorithms (clustering) such as K-Means clustering and hierarchical clustering
- ✓ This module comprises lectures and lab exercises with R (optional) to develop the practical skills

Lecturer & Course Homepage

- Pilsung Kang, Associate professor at School of Industrial Management Engineering,
 Korea University
 - √ E-mail: pilsung_kang@korea.ac.kr
 - ✓ Course homepage: https://github.com/pilsung-kang/Business-Analytics-ITS504-

Lecturer & Course Homepage

Lecture Video

- DSBA Lab Youtube Channel
 - √ https://www.youtube.com/channel/UCPq01cgCcEwhXI7BvcwlQyg
- Playlist for this course
 - ✓ <a href="https://www.youtube.com/playlist?list=PLetSIH8YjIfXMOuS4piqz]RvSZorDnNUm&playnext=I&index=I <a href="https://www.youtube.com/playlist?list=PLetSIH8YjIfXMOuS4piqz]RvSZorDnNUm&playnext=I&index=I

Communication Channel

- Slack will be used for real-time communication channel
 - ✓ ime504-koreauniv.slack.com
 - ✓ The invitation link will be sent to the enrolled students via e-mail

Lecture Modules & Self-Introduction

Textbook

- √ No textbook is needed.
- ✓ Lecture notes (PDF format) and recommended paper lists will be provided.

Introduce Yourself

- ✓ Submit your self-introduction slide (max. 5 pages) to the lecturer via E-mail (due date: 2020-09-11)
- √ Required information: Name, department, e-mail, cell phone number, recent photo(s)

Assessments

- 2 Exams (Midterm & Final, 30% each)
 - √ Two sheets (A4 size) of cheating paper is allowed
- I Final Project
 - ✓ Students are required to design "Data Analytics Project" for their own domain
 - ✓ Project report must include
 - The problem definition
 - Description on available data
 - Appropriate analytics algorithms and process
 - Expected result
 - Quantitative and qualitative effect when the designed project succeed

Introduction to Yourself

- ✓ Submit your self-introduction slide (max. 5 pages) to the lecturer via E-mail
 - Due date: 2020-09-11

Schedule

Week	Topics
1	Orientation
2	Multiple Linear Regression
3	R Exercise: Multiple Linear Regression
4	Logistic Regression
5	R Exercise: Logistic Regression
6	Decision Tree
7	R Exercise: Decision Tree
8	Midterm Exam
9	Dimensionality reduction
10	R Exercise: Dimensionality reduction
11	Artificial Neural Network
12	R Exercise: Dimensionality reduction
13	Clustering
14	R Exercise: Clustering
15	Association Rule Mining & R Exercise
16	Final Exam & Project Report Submission

