IN THE NAME OF ALLAH

ASSESSMENTS OF THE STRUCTURAL DUCTILITY DAMAGE INDEX OF ULTRA-HIGH STRENGTH CONCRETE (UHSC) FRAME USING OPENSEES.

WRITTEN BY SALAR DELAVAR GHASHGHAEI (QASHQAI)

CORE AND COVER CONCRETE REALTION

WITHOUT HARDENING AND ULTIMATE STRAIN

WITH HARDENING AND ULTIMATE STRAIN

COLUMN SECTION

BEAM SECTION

 $Structure\ Ductility\ Damage\ Index = \frac{\Delta_d - \Delta_y}{\Delta_u - \Delta_y}$ $\Delta_d = Lateral\ Displaement\ from\ Dynamic\ Analysis$ $\Delta_y = Lateral\ Yield\ Displaement\ from\ Pushover\ Analysis$

 $\Delta_u = Lateral\ Ultimate\ Displaement\ from\ Pushover\ Analysis$

Spyder (Python 3.12) Edit Search Source Run Debug Consoles Projects Tools View Help ..ILES\CONCRETE_FRAME_EXAMPLES\ULTRA_HIGH_STRENGTH_CONCRETE C:\Users\Del\Desktop\OPENSEES_FILES\CONCRETE_FRA...TE\CONCRETE_FRAME_ULTRA_HIGH_STRENGTH_CONCRETE.py a = CONCRETE FRAME ULT...RENGTH CONCRETE.py X Last Data of BaseAvial-Displacement Analysis - Ductility Ratio: 251.5349 - Over Strenoth Factor: 0.7409 IN THE NAME OF ALLAH ASSESSMENTS OF THE STRUCTURAL DUCTILITY DAMAGE INDEX OF ULTRA-HIGH STRENGTH CONCRETE (UHSC) FRAME U THIS PROGRAM WRITTEN BY SALAR DELAVAR GHASHGHAEI (OASHOAI) EMAIL: salar.d.ghashghaei@gmail.com # Ultra-High Strength Concrete (UHSC) is concrete with compressive strength over 100 MPa. # It is used in advanced structures like tall buildings, bridges, tunnels, and military facilities. # Main Properties of UHSC: # - Compressive strength: >100 MPa (often up to 150 MPa or more) # - High tensile and flexural strength (due to steel or polymer fibers) # - High density: 2400-2600 kg/m3 # - Very low permeability (resistant to water, chloride, and sulfate) Help Variable Explorer Debugger Plots Files # - High elastic modulus (low deformation under load) # - Excellent durability Console 1/A X Lobatto # 1. High-quality Portland cement End 1 Forces (P V M): 0.227544 1.75728 4330.36 # 2. Silica fume (to reduce pores and improve strength) End 2 Forces (P V M): -0.227544 -1.75728 941.468 # 3. Steel or polypropylene fibers (for crack control and toughness) # 4. Superplasticizer (to reduce water/cement ratio, typically W/C ≤ 0.25) # 5. Well-graded sand and aggregates Element: 3 Type: ForceBeamColumn2d Connected Nodes: 3 4 27 Number of Sections: 5 Mass density: 3.75 # 6. Mineral powders (e.g., quartz powder in some mixes) Lobatto End 1 Forces (P V M): -7.14309e-06 -0.268992 -941.477 # Advantages: End 2 Forces (P V M): 7.14309e-06 0.268992 -941.468 # - High strength in compression, tension, and bending In [3]: # - Allows smaller sections and lighter structures IPython Console History

Li. Inline Conda: anaconda3 (Python 3.12.7) ✓ LSP: Python Line 27, Col 16 UTF-8 CRLF RW Mem 48%

ROTATIONAL STIFFNESS-LATERAL STIFFNESS DIAGRAM

ROTATIONAL STIFFNESS-LATERAL STIFFNESS DIAGRAM

