

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑰ Offenlegungsschrift
⑯ DE 199 32 356 A 1

⑮ Int. Cl. 7:
F 02 M 37/10

DE 199 32 356 A 1

⑯ Aktenzeichen: 199 32 356.9
⑯ Anmeldetag: 10. 7. 1999
⑯ Offenlegungstag: 17. 2. 2000

⑯ Innere Priorität:
198 36 058. 4 10. 08. 1998

⑯ Anmelder:
Mannesmann VDO AG, 60388 Frankfurt, DE

⑯ Erfinder:
Sinz, Wolfgang, Dr., 65843 Sulzbach, DE; Eck, Karl,
60318 Frankfurt, DE; Teichert, Michael, 65824
Schwalbach, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Kraftstoffversorgungsanlage

⑯ Eine Kraftstoffversorgungsanlage für ein Kraftfahrzeug hat zwei in einem Kraftstoffbehälter (1) angeordnete Fördereinheiten (2, 3). Die Fördereinheiten (2, 3) fördern jeweils Kraftstoff aus Schwalltöpfen (9, 10) zu einer Brennkraftmaschine (7) des Kraftfahrzeuges und zu Saugstrahlpumpen (23, 24). Hierdurch wird eine zuverlässige Versorgung der Brennkraftmaschine (7) auch bei einem sehr hohen Kraftstoffbedarf und bei einer verwinkelten Gestaltung des Kraftstoffbehälters (1) sichergestellt.

DE 199 32 356 A 1

Beschreibung

Die Erfindung betrifft eine Kraftstoffversorgungsanlage zum Fördern von Kraftstoff zu einer Brennkraftmaschine eines Kraftfahrzeugs mit einer in einem Kraftstoffbehälter angeordneten Fördereinheit.

Bei solchen Kraftstoffversorgungsanlagen ist die Fördereinheit meist an einem in eine Öffnung des Kraftstoffbehälters eingesetzten Halteteil befestigt und ragt in einen Schwalltopf des Kraftfahrzeugs hinein. Bei heutigen meist verwinkelten oder sattelförmig geformten Kraftstoffbehältern sind in von der Fördereinheit entfernten Bereichen Saugstrahlpumpen angeordnet. Diese Saugstrahlpumpen werden von der Fördereinheit angetrieben und fördern Kraftstoff in den Schwalltopf. Die Leistung der Fördereinheit ist abhängig von der Anzahl und Größe der Saugstrahlpumpen sowie von den Anforderungen der Brennkraftmaschine bezüglich Förderdruck und Fördervolumen.

Nachteilig bei der bekannten Kraftstoffversorgungsanlage ist, daß die Fördereinheit für eine besonders leistungsstarke Brennkraftmaschine oder für einen besonders verwinkelten Kraftstoffbehälter mit mehreren Saugstrahlpumpen sehr stark dimensioniert werden muß. Hierdurch benötigt die Fördereinheit eine hohe Stromaufnahme und große Abmessungen. Weiterhin sind für den Betrieb einer einzelnen Saugstrahlpumpe im Kraftstoffbehälter insgesamt zwei Schläuche zu verlegen. Insbesondere bei den verwinkelten Kraftstoffbehältern gestaltet sich die Verlegung der Schläuche und die Montage der Saugstrahlpumpen deshalb sehr kostenintensiv.

Der Erfindung liegt das Problem zugrunde, eine Kraftstoffversorgungsanlage der eingangs genannten Art so zu gestalten, daß sie bei verwinkelten Kraftstoffbehältern und für besonders leistungsstarke Brennkraftmaschinen eingesetzt werden kann und dabei möglichst kostengünstig aufgebaut ist.

Dieses Problem wird erfindungsgemäß gelöst durch eine zweite in dem Kraftstoffbehälter angeordnete Fördereinheit.

Durch diese Gestaltung benötigt die erfindungsgemäße Kraftstoffversorgungsanlage zumindest eine Saugstrahlpumpe weniger als die bekannte Kraftstoffversorgungsanlage. Dies führt zu einer Verringerung der Anzahl der im Kraftstoffbehälter zu verlegenden Schläuche. Da sich die Volumenströme der Fördereinheiten addieren, lassen sich dank der Erfindung auch für leistungsstarke Brennkraftmaschinen leistungsschwache Fördereinheiten einsetzen. Die leistungsschwachen Fördereinheiten benötigen jeweils eine geringe Stromaufnahme und damit kostengünstige elektrische Anschlußleitungen. Weiterhin können die Fördereinheiten wegen ihrer geringen Abmessungen in besonders verwinkelten Kraftstoffbehältern eingesetzt und durch entsprechend kleine Montageöffnungen im Kraftstoffbehälter montiert werden.

Die zweite Fördereinheit kann gemäß einer vorteilhaften Weiterbildung der Erfindung als einfach zu montierender Ersatz für eine Saugstrahlpumpe eingesetzt werden, wenn die zweite Fördereinheit zum Betrieb zumindest einer Kraftstoff in einen Schwalltopf der ersten Fördereinheit fördern den Saugstrahlpumpe gestaltet ist.

Eine gleichmäßige Leerung von Schwallköpfen der Fördereinheiten läßt sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung gewährleisten, wenn jede der Fördereinheiten mit einer Saugstrahlpumpe verbunden ist und wenn die Saugstrahlpumpen zum Fördern in Schwallköpfen der jeweils anderen Fördereinheit ausgebildet sind.

Zur weiteren Vergleichmäßigung des Befüllens der Schwallköpfen trägt es gemäß einer anderen vorteilhaften Weiterbildung der Erfindung bei, wenn eine von einem

Druckregler zurückführende Rücklaufleitung in die Schwallköpfen beider Fördereinheiten geführt ist.

In einer weiteren vorteilhaften Ausgestaltung ist in jeder, der in die Schwallköpfen führenden Rücklaufleitungen, je ein Schwimmerventil angeordnet. Durch diese Schwimmerventile läßt sich der Rücklaufstrom des Kraftstoffs steuern. In gewissen Fahrsituationen kann es sich ergeben, daß sich der Kraftstoff nur in einer der Kammern des Kraftstoffbehälters ansammelt. Zusätzlich würde der aus dem Rücklauf stammende Kraftstoff ohne die Schwimmerventile bevorzugt dem in dieser Kammer angeordneten und bereits gefüllten Schwalltopf zufließen. Dadurch kann die kritische Situation entstehen, daß die in der anderen Kammer angeordnete Fördereinheit nicht mehr ausreichend Kraftstoff in die Vorlaufleitung fördert und der Vorlaufdruck daraufhin zusammenbricht. Dieser Fall wird durch die Anordnung der Schwimmerventile vermieden. Das Schwimmerventil in der gefüllten Kammer schließt aufgrund des hohen Kraftstoffniveaus den in diesen Schwalltopf führenden Teil der Rücklaufleitung, während das Schwimmerventil im anderen Teil der Rücklaufleitung offen ist. Somit wird der gesamte Kraftstoff des Rücklaufs der Fördereinheit in der leeren Kammer zugeführt und eine ausreichende Versorgung beider Fördereinheiten mit Kraftstoff sichergestellt.

Ebenso ist es vorteilhaft, wenn beide Saugstrahlpumpen in eine gemeinsame Leitung fördern, die sich anschließend auf beide Schwallköpfen aufteilt. Durch die Anordnung von je einem Schwimmerventil in jeder der zu den Schwallköpfen führenden gemeinsamen Leitung, läßt sich der Förderstrom der Saugstrahlpumpen analog dem Rücklaufstrom steuern.

Eine Parallelschaltung der Fördereinheiten erfordert gemäß einer anderen vorteilhaften Weiterbildung der Erfindung einen besonders geringen baulichen Aufwand, wenn die Fördereinheiten jeweils eine zu der Vorlaufleitung führende Förderleitung haben. Hierdurch können zwei baugleiche Fördereinheiten eingesetzt werden, so daß sich eine Serienfertigung der erfindungsgemäßen Kraftstoffversorgungsanlage besonders kostengünstig gestaltet.

Eine gegenseitige Beeinflussung der beiden Fördereinheiten läßt sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung vermeiden, wenn in jeder der Förderleitungen ein Rückschlagventil angeordnet ist.

Die Erfindung läßt zahlreiche Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips sind zwei davon in den Zeichnungen dargestellt und werden nachfolgend beschrieben.

Die Fig. 1 zeigt schematisch eine Kraftstoffversorgungsanlage mit zwei in einem Kraftstoffbehälter 1 angeordneten Fördereinheiten 2, 3. Der Kraftstoffbehälter 1 hat einer Satz 4. Von dem Kraftstoffbehälter 1 führt eine Vorlaufleitung 5 über einen Druckregler 6 zu einer Brennkraftmaschine 7. An dem Druckregler 6 ist eine in den Kraftstoffbehälter 1 geführte Rücklaufleitung 8 angeschlossen.

Die Fördereinheiten 2, 3 saugen jeweils Kraftstoff aus Schwallköpfen 9, 10 und fördern diesen mittels zweier Kraftstoffpumpen 11-14 zu zwei Auslässen 15-18. Jeweils an einem der Auslässe 15, 17 der Fördereinheiten 2, 3 sind jeweils zu der Vorlaufleitung 5 führende Förderleitungen 19, 20 mit Rückschlagventilen 21, 22 angeschlossen. Die Fördereinheiten 2, 3 sind hierdurch parallel geschaltet. Die Rückschlagventile 21, 22 verhindern eine gegenseitige Beeinflussung der Fördereinheiten 2, 3. Der jeweils andere Auslaß 16, 18 der Fördereinheiten 2, 3 ist mit zwei im Kraftstoffbehälter 1 angeordneten Saugstrahlpumpen 23, 24 verbunden. Die Saugstrahlpumpen 23, 24 fördern Kraftstoff aus dem Kraftstoffbehälter 1 zu den jeweils gegenüberliegenden Schwallköpfen 9, 10. Hierdurch wird sichergestellt, daß die Schwallköpfen 9, 10 der Fördereinheiten 2, 3 auch bei

längerer Kurvenfahrten oder Bergfahrten des Kraftfahrzeugs ständig mit Kraftstoff aus allen Bereichen des Kraftstoffbehälters 1 befüllt werden. Weiterhin teilt sich die Rücklaufleitung 8 innerhalb des Kraftstoffbehälters 1 in zwei jeweils zu den Schwallköpfen 9, 10 führende Teilstücke 5 25, 26 auf. Die beiden Schwallköpfe 9, 10 werden hierdurch gleichmäßig mit Kraftstoff befüllt.

Fig. 2 zeigt eine Kraftstoffversorgungsanlage mit einem Grundaufbau wie in Fig. 1. Einziger Unterschied ist eine gemeinsame Leitung 27 in die beide Saugstrahlpumpen 23, 24 10 fördern. Im weiteren Verlauf teilt sich die gemeinsame Leitung 27 auf die Schwallköpfe 9, 10 der Fördereinheiten 2, 3 auf. Jeder dieser beiden Leitungen ist in den jeweiligen Schwallköpfen 9, 10 je ein Schwimmerventil 28, 29 zugeordnet. Damit läßt sich der Förderstrom der Saugstrahlpumpen 15 23, 24 in Abhängigkeit von der Befüllung der Schwallköpfe 9, 10 steuern.

Patentansprüche

1. Kraftstoffversorgungsanlage zum Fördern von Kraftstoff zu einer Brennkraftmaschine eines Kraftfahrzeugs mit einer in einem Kraftstoffbehälter angeordneten Fördereinheit, gekennzeichnet durch eine zweite in dem Kraftstoffbehälter (1) angeordnete Fördereinheit (2, 3).
2. Kraftstoffversorgungsanlage nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Fördereinheit (2, 3) zum Betrieb zumindest einer Kraftstoff in einen Schwalltopf (9, 10) der ersten Fördereinheit (2, 3) fördern den Saugstrahlpumpe (23, 24) gestaltet ist.
3. Kraftstoffversorgungsanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß jede der Fördereinheiten (2, 3) mit einer Saugstrahlpumpe (23, 24) verbunden ist und daß die Saugstrahlpumpen (23, 24) zum 30 Fördern in Schwallköpfen (9, 10) der jeweils anderen Fördereinheit (2, 3) ausgebildet sind.
4. Kraftstoffversorgungsanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß jede der Fördereinheiten (2, 3) mit einer Saugstrahlpumpe (23, 24) verbunden ist und daß die Saugstrahlpumpen (23, 24) in eine gemeinsame Leitung (27) fördern, daß die gemeinsame Leitung zur Befüllung der Schwallköpfe (9, 10) beider Fördereinheiten (2, 3) ausgebildet ist und daß in jeder zu den Fördereinheiten (2, 3) führenden Leitung (27) je 40 45 ein Schwimmerventil angeordnet ist.
5. Kraftstoffversorgungsanlage nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine von einem Druckregler (6) zurückführende Rücklaufleitung (8) in die Schwallköpfe (9, 10) 50 beider Fördereinheiten (2, 3) geführt ist.
6. Kraftstoffversorgungsanlage nach Anspruch 5, dadurch gekennzeichnet, daß in jeder zu den Fördereinheiten (2, 3) führenden Rücklaufleitung (8) je ein Schwimmerventil angeordnet ist.
7. Kraftstoffversorgungsanlage nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fördereinheiten (2, 3) jeweils eine zu der Vorlaufleitung (5) führende Förderleitung (19, 20) haben. 55
8. Kraftstoffversorgungsanlage nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in jeder der Förderleitungen (19, 20) ein Rückschlagventil (21, 22) angeordnet ist.

- Leerseite -

Fig. 1

Fig. 2

1/9/1

DIALOG(R)File 351:Derwent WPI
(c) 2004 Thomson Derwent. All rts. reserv.

012977632 **Image available**

WPI Acc No: 2000-149483/200014

XRPX Acc No: N00-110715

Fuel supply system for vehicle, including supply pump in fuel tank

Patent Assignee: MANNESMANN VDO AG (MANS)

Inventor: ECK K; SINZ W; TEICHERT M

Number of Countries: 026 Number of Patents: 003

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
EP 979939	A2	20000216	EP 99114993	A	19990731	200014
B						
DE 19932356	A1	20000217	DE 1032356	A	19990710	200016
US 6276342	B1	20010821	US 99370418	A	19990809	200150

Priority Applications (No Type Date): DE 1032356 A 19990710; DE 1036058 A 19980810

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 979939 A2 G 5 F02M-037/10

Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT

LI LT LU LV MC MK NL PT RO SE SI
US 6276342 B1 F02M-037/04

Abstract (Basic): EP 979939 A2

NOVELTY - The fuel supply system has two supply units (2, 3) in the

fuel tank (1). The supply units supply fuel from flooding vessels (9,

10) to the vehicle engine (7) and to induction jet pumps (23, 24). The

engine is thus reliably supplied with fuel even where fuel consumption

is high and the fuel tank is at an angle.

USE - For a vehicle.

ADVANTAGE - Can be used for angled tanks and high-load engines.

DESCRIPTION OF DRAWING(S) - The drawing shows a system with two

supply units.

Supply units (10 Fuel tank(2, 3)

Engine (7)

Flooding vessels (9, 10)

Induction jet pumps (23, 24)

pp; 5 DwgNo 1/2

Title Terms: FUEL; SUPPLY; SYSTEM; VEHICLE; SUPPLY; PUMP; FUEL; TANK

THIS PAGE BLANK (USPTO)

Derwent Class: Q53

International Patent Class (Main): F02M-037/04; F02M-037/10

File Segment: EngPI

THIS PAGE BLANK (USPTO)