Lec 25 反常积分

25.1 反常积分的概念与分类

称有限区间 [a,b] 上的有界函数 f(x) 的积分为正常积分或常义积分,记作 $\int_a^b f(x) dx$.

若积分区间为无穷区间或被积函数在积分区域上某处无界,则称其为反常积分或广义积分.

设 f(x) 在区间 $[a, +\infty)$ 上有定义, 若极限 $\lim_{b\to +\infty} \int_a^b f(x) \, \mathrm{d}x$ 存在, 设为 A_0 , 则称反常积分 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛, 并称 A_0 为反常积分 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 的值, $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛于 A_0 . 若极限不存在, 则称反常积分 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 发散.

设 f(x) 在区间 $(-\infty, b]$ 上有定义, 若极限 $\lim_{a \to -\infty} \int_a^b f(x) \, \mathrm{d}x$ 存在, 设为 A_1 , 则称反常积分 $\int_{-\infty}^b f(x) \, \mathrm{d}x$ 收敛, 并称 A_1 为反常积分 $\int_{-\infty}^b f(x) \, \mathrm{d}x$ 的值, $\int_{-\infty}^b f(x) \, \mathrm{d}x$ 收敛于 A_1 . 若极限不存 在, 则称反常积分 $\int_{-\infty}^b f(x) \, \mathrm{d}x$ 发散.

设 f(x) 在区间 $(-\infty, +\infty)$,则定义反常积分 $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{a} f(x) \, \mathrm{d}x + \int_{a}^{+\infty} f(x) \, \mathrm{d}x$, 其中 a 为任意实数. 且规定 $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x$ 收敛的充要条件是 $\int_{-\infty}^{a} f(x) \, \mathrm{d}x$ 和 $\int_{a}^{+\infty} f(x) \, \mathrm{d}x$ 均收敛.

设 f(x) 在 (a,b] 上连续或可积, $f(a+0) = \infty$, 则称 a 为 f(x) 的瑕点, 称 $\int_a^b f(x) dx$ 为瑕积 分, 记 $\int_a^b f(x) dx = \lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx$. 若极限存在, 则称瑕积分收敛, 否则发散.

设 f(x) 在 [a,b) 上连续或可积, $f(b-0) = \infty$, 则称 b 为 f(x) 的瑕点, 称 $\int_a^b f(x) dx$ 为瑕积 分, 记 $\int_a^b f(x) dx = \lim_{\varepsilon \to 0+} \int_a^{b-\varepsilon} f(x) dx$. 若极限存在, 则称瑕积分收敛, 否则发散.

设 f(x) 在 [a,b] 的内点 $x_0 \in (a,b)$ 处无界, 即 $f(x_0-0)=\infty$, $f(x_0+0)=\infty$, 则称 x_0 为 f(x) 的瑕点, 称 $\int_a^b f(x) \, \mathrm{d}x$ 为瑕积分, 记 $\int_a^b f(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0^+} \int_a^{x_0-\varepsilon} f(x) \, \mathrm{d}x + \lim_{\varepsilon \to 0^+} \int_{x_0+\varepsilon}^b f(x) \, \mathrm{d}x$. 当 $\lim_{\varepsilon \to 0^+} \int_a^{x_0-\varepsilon} f(x) \, \mathrm{d}x$ 和 $\lim_{\varepsilon \to 0^+} \int_{x_0+\varepsilon}^b f(x) \, \mathrm{d}x$ 均存在时, 称瑕积分收敛, 否则发散.

注 事实上, 积分区间无界的反常积分, 和瑕积分本质上是一样的. 如 $\int_0^1 \frac{1}{x} dx$ 和 $\int_1^{+\infty} \frac{1}{t} dt$ 的敛 散性是一样的, 令 $x = \frac{1}{t}$, 则 $\int_0^1 \frac{1}{x} dx = \int_{+\infty}^1 t d\frac{1}{t} = \int_1^{+\infty} \frac{1}{t} dt$.

对于 $\int_0^\infty \frac{1}{x} \, \mathrm{d}x$, 积分区间既是无界的, 也有瑕点, 我们应该将其分为两部分, 即 $\int_0^1 \frac{1}{x} \, \mathrm{d}x + \int_1^{+\infty} \frac{1}{x} \, \mathrm{d}x$. 然后对两个反常积分分别讨论, 当两个反常积分均收敛时, 才能说 $\int_0^\infty \frac{1}{x} \, \mathrm{d}x$ 收敛. 因此, 反常积分中, 重点是掌握 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 这种类型积分的计算.

25.2 例题

命题 25.1 (第一类 p 积分)

$$I(p) = \int_{1}^{+\infty} \frac{1}{x^{p}} dx, a > 0$$
, 当 $p > 1$ 时, 积分收敛, 当 $p \leqslant 1$ 时, 积分发散.

命题 25.2 (第二类 p 积分)

$$J(p) = \int_0^1 \frac{1}{x^p} dx, a > 0$$
, 当 $p \ge 1$ 时, 积分发散, 当 $p < 1$ 时, 积分收敛.

我们也可以给出更一般的结论,证明过程同上

命题 25.3 (p 积分)

第一类
$$p$$
 积分 $I(p) = \int_a^{+\infty} \frac{1}{x^p} dx, a > 0$, 当 $p > 1$ 时, 积分收敛, 当 $p \leqslant 1$ 时, 积分发散. 第二类 p 积分 $J(p) = \int_a^b \frac{dx}{(x-a)^p}, a < b$, 当 $p \geqslant 1$ 时, 积分发散, 当 $p < 1$ 时, 积分收敛.

例 25.1 设
$$\alpha > 0$$
, 证明 $I = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+x^\alpha)}$ 收敛.
证明 令 $t = \frac{1}{t} \Rightarrow I = \int_0^{+\infty} \frac{t^\alpha + 1 - 1}{(t^2 + 1)(t^\alpha + 1)} \, \mathrm{d}t = \int_0^{+\infty} \frac{1}{t^2 + 1} \, \mathrm{d}t - I$. 即 $I = \frac{1}{2} \int_0^{+\infty} \frac{\mathrm{d}x}{1+x^2}$. 易知 I 收敛.

$$\mathbb{E} I = \frac{1}{2} \int_0^{+\infty} \frac{\mathrm{d}x}{1+x^2} = \frac{1}{2} \arctan x \Big|_0^{+\infty} = \frac{\pi}{4}.$$

例 25.2 求 $I = \int_0^{\pi/2} \ln \sin x \, \mathrm{d}x.$

解 这是无界积分, 瑕点为 x=0. 利用 Cauchy 判别法, 容易验证其收敛性.

$$I = \int_0^{\frac{\pi}{4}} \ln \sin x + \ln \cos x \, dx = \int_0^{\frac{\pi}{4}} \ln \sin 2x \, dx - \ln 2 \, dx$$
$$= \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin y \, dy - \frac{\pi}{4} \ln 2 = \frac{1}{2} I - \frac{\pi}{4} \ln 2.$$

所以

$$I = -\frac{\pi}{2} \ln 2.$$

解 先作代换 x = 2t, 得到

$$I = \int_0^{\frac{\pi}{4}} 2 \ln \sin 2t \, dt = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{4}} 2 \ln \sin t \, dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2 \ln \cos t \, dt.$$

对右边最后一个积分用代换 $t = \frac{\pi}{2} - u$, 得到

$$I = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{4}} 2 \ln \sin t \, dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2 \ln \cos u \, du$$
$$= \frac{\pi}{2} \ln 2 + 2 \int_0^{\frac{\pi}{4}} \ln \sin t \, dt = \frac{\pi}{2} \ln 2 + 2I.$$

所以

$$I = -\frac{\pi}{2} \ln 2.$$

例 25.3 求
$$I = \int_0^{+\infty} e^{-\alpha x} \cos \beta x \, dx, \alpha > 0, \beta \neq 0.$$

解

$$I = \frac{1}{\beta} \int_0^{+\infty} e^{-\alpha x} \operatorname{dsin} \beta x = \frac{1}{\beta} \left(e^{-\alpha x} \sin \beta x \Big|_0^{+\infty} + \alpha \int_0^{+\infty} e^{-\alpha x} \sin \beta x \, \mathrm{d}x \right)$$

$$= \frac{-\alpha}{\beta^2} \int_0^{+\infty} e^{-\alpha x} \operatorname{dcos} \beta x = \frac{-\alpha}{\beta^2} \left(e^{-\alpha x} \cos \beta x \Big|_0^{+\infty} + \alpha \int_0^{+\infty} e^{-\alpha x} \cos \beta x \, \mathrm{d}x \right)$$

$$= \frac{-\alpha}{\beta^2} (-1 + \alpha I).$$

所以

$$I = \frac{\alpha}{\alpha^2 + \beta^2}.$$

例 **25.4** 求
$$I = \int_0^1 \ln x \, \mathrm{d}x$$
.

解 作分部积分, 得到 $I = x \ln x \Big|_0^1 - \int_0^1 x \frac{1}{x} dx = -1.$

例 25.5 求
$$I = \int_{-\infty}^{+\infty} \frac{x^2 + 1}{x^4 + x^2 + 1} \, \mathrm{d}x.$$

解解法1

$$I = \frac{1}{2} \left(\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2 + x + 1} + \frac{\mathrm{d}x}{x^2 - x + 1} \right)$$
$$= \frac{1}{\sqrt{3}} \arctan \frac{2x + 1}{\sqrt{3}} \Big|_{-\infty}^{+\infty} + \frac{1}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} \Big|_{-\infty}^{+\infty}$$
$$= \frac{\pi}{\sqrt{3}} + \frac{\pi}{\sqrt{3}} = \frac{2\pi}{\sqrt{3}}.$$

解解法 2 先考虑
$$\int_0^\infty \frac{x^2+1}{x^4+x^2+1} \,\mathrm{d}x$$
,取 $\varepsilon > 0$,则 $\int_\varepsilon^{+\infty} \frac{x^2+1}{x^4+x^2+1} \,\mathrm{d}x = \frac{1}{\sqrt{3}} \arctan x - x^{-1}\sqrt{3} \Big|_\varepsilon^{+\infty} = \frac{\pi}{\sqrt{3}} - \frac{1}{\sqrt{3}} \arctan \varepsilon - \varepsilon^{-1}\sqrt{3}$. 当 $\varepsilon \to 0^+$ 时,有 $\frac{1}{\sqrt{3}} \arctan \varepsilon - \varepsilon^{-1}\sqrt{3} \to 0$,所以 $\int_0^{+\infty} \frac{x^2+1}{x^4+x^2+1} \,\mathrm{d}x = \frac{\pi}{\sqrt{3}}$. 同理可得 $\int_{-\infty}^0 \frac{x^2+1}{x^4+x^2+1} \,\mathrm{d}x = \frac{\pi}{\sqrt{3}}$, 所以 $I = \int_0^{+\infty} \frac{x^2+1}{x^4+x^2+1} \,\mathrm{d}x + \int_{-\infty}^0 \frac{x^2+1}{x^4+x^2+1} \,\mathrm{d}x = \frac{2\pi}{\sqrt{3}}$.

体业 ex5.4:1(1)(2)(4)(5)(6)(9)(11)(12),3,4.5