Parametric Curves

Suppose that x and y are both given as functions of a third variable t (called a **parameter**) by the equations

$$x = f(t), \qquad y = g(t)$$

(called **parametric equations**). Each value of t determines a point (x, y), which we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t), g(t)) varies and traces out a curve C, which we call a **parametric curve**.

EXAMPLE: Sketch and identify the curve defined by the parametric equations

$$x = \cos t$$
, $y = \sin t$ $0 \le t \le 2\pi$

Solution: If we plot points, it appears that the curve is a circle (see the figure below and page 6). We can confirm this impression by eliminating t. If fact, we have

$$x^2 + y^2 = \cos^2 t + \sin^2 t = 1$$

Thus the point (x, y) moves on a unit circle $x^2 + y^2 = 1$

EXAMPLE: Sketch and identify the curve defined by the parametric equations

$$x = \sin 2t$$
, $y = \cos 2t$ $0 \le t \le 2\pi$

EXAMPLE: Sketch and identify the curve defined by the parametric equations

$$x = \sin 2t$$
, $y = \cos 2t$ $0 \le t \le 2\pi$

Solution: If we plot points, it appears that the curve is a circle (see the Figure below). We can confirm this impression by eliminating t. If fact, we have

$$x^2 + y^2 = \sin^2 2t + \cos^2 2t = 1$$

Thus the point (x, y) moves on a unit circle $x^2 + y^2 = 1$.

EXAMPLE: Sketch and identify the curve defined by the parametric equations

$$x = 5\cos t$$
, $y = 2\sin t$ $0 \le t \le 2\pi$

Solution: If we plot points, it appears that the curve is an ellipse (see page 8). We can confirm this impression by eliminating t. If fact, we have

$$\frac{x^2}{25} + \frac{y^2}{4} = \left(\frac{x}{5}\right)^2 + \left(\frac{y}{2}\right)^2 = \cos^2 t + \sin^2 t = 1$$

Thus the point (x, y) moves on an ellipse $\boxed{\frac{x^2}{25} + \frac{y^2}{4} = 1}$.

EXAMPLE: Sketch and identify the curve defined by the parametric equations

$$x = t \cos t, \quad y = t \sin t \quad t > 0$$

EXAMPLE: Sketch and identify the curve defined by the parametric equations

$$x = t \cos t, \quad y = t \sin t \quad t > 0$$

Solution: If we plot points, it appears that the curve is a spiral (see page 9). We can confirm this impression by the following algebraic manipulations:

$$x^{2} + y^{2} = (t\cos t)^{2} + (t\sin t)^{2} = t^{2}\sin^{2}t + t^{2}\cos^{2}t = t^{2}(\sin^{2}t + \cos^{2}t) = t^{2}$$
 \implies $x^{2} + y^{2} = t^{2}$

To eliminate t completely, we observe that

$$\frac{y}{x} = \frac{t \sin t}{t \cos t} = \frac{\sin t}{\cos t} = \tan t \implies t = \arctan\left(\frac{y}{x}\right)$$

Substituting this into $x^2 + y^2 = t^2$, we get $x^2 + y^2 = \arctan^2\left(\frac{y}{x}\right)$.

 $x=t \cos(t), y=t \sin(t), 0 < t < 12Pi/4$

EXAMPLE: Sketch and identify the curve defined by the parametric equations

$$x = t^2 + t, \qquad y = 2t - 1$$

EXAMPLE: Sketch and identify the curve defined by the parametric equations

$$x = t^2 + t, \qquad y = 2t - 1$$

Solution: If we plot points, it appears that the curve is a parabola (see page 10). We can confirm this impression by eliminating t. If fact, we have

$$y = 2t - 1 \implies t = \frac{y+1}{2} \implies x = t^2 + t = \left(\frac{y+1}{2}\right)^2 + \frac{y+1}{2} = \frac{1}{4}y^2 + y + \frac{3}{4}$$

Thus the point (x, y) moves on a parabola $x = \frac{1}{4}y^2 + y + \frac{3}{4}$

 $x=t^2+t$, y=2t-1, -2<t<-2+12/4

EXAMPLE: Sketch and identify the curve defined by the parametric equations

$$x = \sin^2 t, \qquad y = 2\cos t$$

Solution: If we plot points, it appears that the curve is a restricted parabola (see page 11). We can confirm this impression by eliminating t. If fact, we have

$$y = 2\cos t \implies y^2 = 4\cos^2 t \implies 4x + y^2 = 4\sin^2 t + 4\cos^2 t = 4 \implies x = 1 - \frac{y^2}{4}$$

We also note that $0 \le x \le 1$ and $-2 \le y \le 2$. Thus the point (x,y) moves on the restricted parabola

$$x = 1 - \frac{y^2}{4}.$$

 $x=\sin^2(t), y=2\cos(t), 0 < t < 12Pi/6$

The Cycloid

EXAMPLE: The curve traced out by a point P on the circumference of a circle as the circle rolls along a straight line is called a **cycloid** (see the Figure below). If the circle has radius r and rolls along the x-axis and if one position of P is the origin, find parametric equations for the cycloid.

Solution: We choose as parameter the angle of rotation θ of the circle ($\theta = 0$ when P is at the origin). Suppose the circle has rotated through θ radians. Because the circle has been in contact with the line, we see from the Figure below that the distance it has rolled from the origin is

$$|OT| = \operatorname{arc} PT = r\theta$$

Therefore, the center of the circle is $C(r\theta, r)$. Let the coordinates of P be (x, y). Then from the Figure above we see that

$$x = |OT| - |PQ| = r\theta - r\sin\theta = r(\theta - \sin\theta)$$

$$y = |TC| - |QC| = r - r\cos\theta = r(1 - \cos\theta)$$

Therefore, parametric equations of the cycloid are

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta) \quad \theta \in \mathbb{R}$$
 (1)

One arch of the cycloid comes from one rotation of the circle and so is described by $0 \le \theta \le 2\pi$. Although Equations 1 were derived from the Figure above, which illustrates the case where $0 < \theta < \pi/2$, it can be seen that these equations are still valid for other values of θ .

Although it is possible to eliminate the parameter θ from Equations 1, the resulting Cartesian equation in x and y is very complicated and not as convenient to work with as the parametric equations:

$$\left| \frac{x}{r} + 2\pi \left[\frac{1}{2} - \frac{x}{\pi r} \right] - 1 \right| = \cos^{-1} \left(1 - \frac{y}{r} \right) - 2\sqrt{2\frac{y}{r} - \left(\frac{y}{r}\right)^2}$$

Unit Circle

Parametric equations:

$$x = \cos t, \quad y = \sin t$$

where
$$t = k\pi/6, \ k = 0, \dots, 12.$$

Unit Circle

Parametric equations:

$$x = \sin t, \quad y = \cos t$$

where
$$t = k\pi/6, \ k = 0, \dots, 12.$$

0.5

-0.5

-1.0

-0.5

$$x=\sin(t), y=\cos(t), 0 < t < 5Pi/6$$

-1.0

 $x=\sin(t), y=\cos(t), 0 < t < 6Pi/6$

 $x=\sin(t), y=\cos(t), 0 < t < 7Pi/6$

 $x=\sin(t), y=\cos(t), 0 < t < 8Pi/6$

 $x=\sin(t), y=\cos(t), 0 < t < 9Pi/6$

 $x=\sin(t), y=\cos(t), 0 < t < 10Pi/6$

 $x=\sin(t), y=\cos(t), 0 < t < 11Pi/6$

 $x=\sin(t), y=\cos(t), 0< t< 12Pi/6$

Ellipse

Parametric equations:

$$x = 5\cos t, \quad y = 2\sin t$$

where $t = k\pi/6, \ k = 0, ..., 12.$

Spiral

Parametric equations:

$$x = t \cos t, \quad y = t \sin t$$

where
$$t = k\pi/4, \ k = 0, ..., 12.$$

$$x=t\cos(t), y=t\sin(t), 0< t<2Pi/4$$

$$x=t \cos(t), y=t \sin(t), 0 < t < 3Pi/4$$

-1.0 -1.5

 $x=t \cos(t)$, $y=t \sin(t)$, 0 < t < 5Pi/4

 $x=t \cos(t), y=t \sin(t), 0 < t < 6Pi/4$

 $x=t \cos(t)$, $y=t \sin(t)$, 0 < t < 7Pi/4

 $x=t \cos(t)$, $y=t \sin(t)$, 0 < t < 8Pi/4

 $x=t \cos(t), y=t \sin(t), 0 < t < 9Pi/4$

 $x=t \cos(t), y=t \sin(t), 0 < t < 10Pi/4$

 $x=t \cos(t), y=t \sin(t), 0 < t < 11Pi/4$

 $x=t \cos(t), y=t \sin(t), 0 < t < 12Pi/4$

Parabola

Parametric equations:

$$x = t^2 + t, \quad y = 2t - 1$$

where
$$t = -2 + k/4$$
, $k = 0, ..., 12$.

Restricted Parabola

Parametric equations:

$$x = \sin^2 t, \quad y = 2\cos t$$

where
$$t = k\pi/6, \ k = 0, ..., 12.$$

$$x=\sin^2(t), y=2\cos(t), 0< t< 2Pi/6$$

$$x=\sin^2(t), y=2\cos(t), 0< t<3Pi/6$$

$$x=\sin^2(t), y=2\cos(t), 0 < t < 4Pi/6$$

$$x=\sin^2(t), y=2\cos(t), 0 < t < 5Pi/6$$

$$x=\sin^2(t), y=2\cos(t), 0 < t < 6Pi/6$$

$$x=\sin^2(t), y=2\cos(t), 0 < t < 7Pi/6$$

$$x=\sin^2(t), y=2\cos(t), 0< t< 8Pi/6$$

$$x=sin^2(t), y=2cos(t), 0< t< 9Pi/6$$

$$x=\sin^2(t), y=2\cos(t), 0 < t < 10\text{Pi}/6$$

$$x=\sin^2(t), y=2\cos(t), 0 < t < 11Pi/6$$

 $x=sin^2(t), y=2cos(t), 0 < t < 12Pi/6$

Butterfly Curve

Parametric equations:

$$x = \sin t \left[e^{\cos t} - 2\cos(4t) + \sin^5\left(\frac{t}{12}\right) \right], \qquad y = \cos t \left[e^{\cos t} - 2\cos(4t) + \sin^5\left(\frac{t}{12}\right) \right]$$

where $t = k\pi/6, \ k = 0, \dots, 12.$

Butterfly Curve

Parametric equations:

$$x = \sin t \left[e^{\cos t} - 2\cos(4t) + \sin^5\left(\frac{t}{12}\right) \right], \qquad y = \cos t \left[e^{\cos t} - 2\cos(4t) + \sin^5\left(\frac{t}{12}\right) \right]$$

where $t = k\pi/2, \ k = 0, ..., 12.$

Parametric Curve

Parametric equations:

$$x = t + 2\sin 2t, \quad y = t + 2\cos 5t$$

where $t = -2\pi + k\pi/3, \ k = 0, \dots, 12.$

Parametric Curves

Parametric equations:

$$x = 1.5\cos t - \cos kt, \quad y = 1.5\sin t - \sin kt$$

where k = 1, ..., 20.

Parametric Curves

Parametric equations:

 $x = 1.5\cos t - \cos 5t, \quad y = 1.5\sin t - \sin kt$

where k = 1, ..., 20.

