Министерство науки и высшего образования Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУК «Информатика и управление»</u>	
КАФЕЛРА ИУКЗ «Системы автоматического управления»	

ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА № 5

«Реализация цифровых устройств на простых логических элементах и мультиплексорах»

ДИСЦИПЛИНА: «Общая теория автоматического управления»

Выполнил: студент гр. ИУК3-51Б		_ (Смирнов Ф.С.)
	(Подпись)	(Ф.И.О.)
Проверил:		_ (Коновалов В.Н.)
	(Подпись)	(Ф.И.О.)
Дата сдачи (защиты):		
Результаты сдачи (защиты):		
- Балльная оценк	a:	
- Оценка:		

Цель: Реализовать цифровое устройство на простых логических элементах и мультиплексорах. Сформировать и закрепить практические навыки работы с программным пакетом WebPACK ISE

Задачи:

- 1. Изучить устройство стенда ЛСЦ-003;
- 2. Изучить методы взаимодействия с пакетом WebPACK ISE;
- 3. Создать принципиальную схему в среде редактора ECS;

Теоретическая часть:

Покрытие комбинационных схем двухвходовыми логическими элементами

- 1. Элементы (функции) типа «И» содержат в собственных числовых последовательностях одну единицу.
- 2. Элементы (функции) типа «M2» содержат в собственных числовых 7 последовательностях две единицы.
- 3. Элементы (функции) типа «ИЛИ» содержат в собственных числовых последовательностях три единицы.

Для взаимного преобразования элементов и их числовых последовательностей можно использовать следующие алгоритмы:

- 1) инвертирование выходной числовой последовательности логических элементов позволяет из элементов типа «И» получить элементы типа «ИЛИ»;
- 2) инвертирование входной числовой последовательности с весом р приводит к взаимной перестановке групп из р символов в числовой последовательности элемента. При одновременном инвертировании двух и более входных числовых последовательностей применяется принцип суперпозиции перестановки символов в выходной последовательности производятся группами в соответствии с весовыми коэффициентами

инвертированных входов.

Покрытие производится от выхода к входу схемы. При полном совпадении числовых последовательностей блока и элемента производится замещение блока на элемент. В противном случае необходимо добавить инверторы на входах или выходе логического элемента для обеспечения совпадения с числовой последовательностью замещаемого блока

Покрытие логических схем мультиплексорами

В качестве элемента покрытия логических схем очень удобно использовать мультиплексоры различных типов. Мультиплексор представляет собой электронный коммутатор (переключатель), имеющий 2, 4, 8 или 16 входов данных и один информационный выход. Для управления передачей данных используются адресные входы мультиплексора — номер входа данных, подключенного в данный момент к информационному выходу, определяется комбинацией на адресных входах. Кроме того, у некоторых мультиплексоров имеется вход разрешения Е (Enable), который управляет работой мультиплексора в целом (запрещает или разрешает передачу данных со входов на выход).

Практическая часть:

Рисунок 1 – Общая принципиальная схема цифрового устройства.

Рисунок 2 – Принципиальная схема блока А

Рисунок 3 – Принципиальная схема блока В

Рисунок 4 – Принципиальная схема блока С

Рисунок 5 – Принципиальная схема блока D

Рисунок 6 — Проверка схемы в ModelSim

Покрытие логической схемы мультиплексорами

Рисунок 7 – Принципиальная схема блока А

Рисунок 8 – Принципиальная схема блока В

Рисунок 9 – Принципиальная схема блока С

Рисунок 10 – Принципиальная схема блока D

Рисунок 11 — Проверка схемы в ModelSim