Formale Sprachen und Komplexitätstheorie

WS 2019/20

Robert Elsässer

1. Einführung

Definition

Eine (deterministische 1-Band) Turingmaschine (DTM) wird beschrieben durch ein 7-Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$.

Dabei sind Q, Σ , Γ endliche, nichtleere Mengen und es gilt:

- Σ ist Teilmenge von Γ
- t in $\Sigma \cap \Gamma$ ist das *Blanksymbol* (auch \sqcup)
- *Q* ist die *Zustandsmenge*
- Σ ist das Eingabealphabet
- Γ ist das Bandalphabet
- q₀ in Q ist der Startzustand
- q_{accept} in Q ist der akzeptierende Endzustand
- q_{reject} in Q ist der ablehnende Endzustand
- $\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ ist die (partielle) Übergangsfunktion. Sie ist für kein Argument aus $\{q_{accept}, q_{reject}\} \times \Gamma$ definiert.

1. Einführung

Definition

- Eine Sprache L heißt rekursiv aufzählbar,
 falls es eine Turingmaschine M gibt, die L akzeptiert.
- Eine Sprache L heißt rekursiv oder entscheidbar,
 falls es eine Turingmaschine M gibt, die L entscheidet.

1. Einführung

- Eine Mehrband- oder k-Band Turingmaschine (k-Band DTM) hat k Bänder mit je einem Kopf.
- Die Übergangsfunktion ist dann von der Form $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
- Zu Beginn steht die Eingabe auf Band 1, sonst stehen überall Blanks. Die Arbeitsweise ist analog zu 1-Band-DTMs definiert.

Universelle Turingmaschinen

- Bislang special purpose Computer.
 eine Sprache eine Turing-Maschine
- Allgemein programmierbare Turing-Maschinen: universelle Turing-Maschinen
- Erhalten als Eingabe die Beschreibung einer Turingmaschine und simulieren diese Maschine
- Benötigen dafür eine einheitliche Beschreibung von Turingmaschinen durch sog. Gödel-Nummern

Definition Gödelnummern

Sei *M* eine 1-Band-Turingmaschine mit

$$Q = \{q_0, ..., q_n\},$$
$$q_{accept} = q_{n-1},$$
$$q_{reject} = q_n.$$

Sei
$$X_1 = 0, X_2 = 1, X_3 = t, D_1 = L, D_2 = R$$
.

Wir kodieren $\delta(q_i, X_j) = (q_k, X_l, D_m)$ durch $0^{i+1}10^j 10^{k+1} 10^l 10^m$.

 $Code_r$: Kodierung des r-ten Eintrags für δ , $1 \le r \le 4(n-1)$

Gödelnummer $\langle M \rangle = 111Code_111Code_211 \dots 11Code_g111$

Definition Universelle Turingmaschine

Eine Turingmaschine M_0 heißt **universell**, falls für jede 1-Band-Turingmaschine M und jedes x aus $\{0,1\}^*$ gilt:

- M₀ gestartet mit (M)x hält genau dann, wenn M
 gestartet mit x hält.
- M_0 akzeptiert $\langle M \rangle x$ genau dann, wenn M das Wort x akzeptiert.

Satz

Es gibt eine universelle 2-Band Turingmaschine.

Die Sprache Gödel:

Sprache Gödel $= \{ w \text{ aus } \{0,1\}^* \mid w \text{ ist die Gödel-Nummer einer DTM} \}$

Lemma

Die Sprache Gödel ist entscheidbar.

Die Sprache States:

Sprache States $\coloneqq \{(\langle M \rangle, d) \mid M \text{ besitzt mindestens } d \text{ Zustände}\}$

Lemma

Die Sprache States ist entscheidbar.

Das Halteproblem

 $H := \{(\langle M \rangle, x) \mid M \text{ ist DTM, die gestartet mit Eingabe } x \text{ hält}\}$

Satz

Das Halteproblem ist rekursiv aufzählbar.

Die Sprache Useful

Useful
$$\coloneqq$$
 $\{(\langle M \rangle, q) \mid M \text{ ist DTM mit Zustand } q, \text{ und es gibt eine Eingabe } w,\}$ so dass M gestartet mit w in den Zustand q gerät

Satz

Die Sprache Useful ist rekursiv aufzählbar.

Aufzählung von binären Eingabefolgen:

- für alle natürlichen Zahlen i sei $w_i = w$, falls bin(i) = 1w
- damit werden alle möglichen w aus $\{0,1\}^*$ aufgezählt

Aufzählung von Turingmaschinen:

 M_i ist:

- M_{reject} , falls i keine Gödelnummer ist
- M, falls bin(i) die Gödelnummer der DTM M ist, d.h. $\langle M \rangle = bin(i)$

Die Sprache Diag

Diag := { $w \text{ in } \{0,1\}^* \mid w = w_i \text{ und die DTM } M_i \text{ akzeptiert } w \text{ nicht}$ }

Satz

Die Sprache Diag ist nicht rekursiv aufzählbar.

Reduktionen

Formalisierung von

Sprache A ist nicht schwerer als Sprache B

Idee

 Algorithmus/DTM für B kann genutzt werden, um A zu akzeptieren/entscheiden.

Definition Reduktionen

L' heißt reduzierbar auf L, falls es eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$ gibt mit

- 1. Für alle w aus $\{0,1\}^*$ gilt: w ist in L' genau dann, wenn f(w) in L
- 2. Funktion f ist berechenbar, d.h., es gibt eine DTM M_f , die die Funktion f berechnet.

f heißt Reduktion von L' auf L, geschrieben $L' \leq L$.

Definition

Eine DTM M berechnet die Funktion $f: \Sigma^* \to \Gamma$, falls für alle w aus Σ^* die Berechnung von M mit Eingabe w in einer akzeptierenden Konfiguration hält und dabei der Bandinhalt f(w) ist.

Hierbei werden ▶ und alle *t* ignoriert.

Lemma

Seien L' und L Sprachen mit $L' \leq L$. Dann gilt:

- 1. Ist L entscheidbar, so ist auch L' entscheidbar.
- 2. Ist L rekursiv aufzählbar, so ist auch L' rekursiv aufzählbar.

Lemma

Seien L' und L Sprachen mit $L' \leq L$. Dann gilt:

- 1. Ist L entscheidbar, so ist auch L' entscheidbar.
- 2. Ist L rekursiv aufzählbar, so ist auch L' rekursiv aufzählbar.

Korollar

Seien L' und L Sprachen mit $L' \leq L$. Dann gilt:

- 1. Ist L' nicht entscheidbar, so ist auch L nicht entscheidbar.
- 2. Ist L' nicht rekursiv aufzählbar, so ist auch L nicht rekursiv aufzählbar.

Von L und f zu L'

M' bei Eingabe w

- 1. Berechne mit M_f die Folge f(w).
- 2. Simuliere M mit Eingabe f(w).
- 3. Falls M die Eingabe f(w) akzeptiert, akzeptiere w.
- 4. Falls M die Eingabe f(w) ablehnt, lehne w ab.

Akzeptanz- und Halteproblem

 $H := \{\langle M \rangle x \mid M \text{ ist DTM, die gestartet mit Eingabe } x \text{ hält} \}$

 $A := \{\langle M \rangle x \mid M \text{ ist DTM, die die Eingabe } x \text{ akzeptiert}\}$

Lemma

Das Halteproblem kann auf das Akzeptanzproblem reduziert werden.

$$H \leq A$$

Akzeptanzproblem und die Sprache Useful

 $A \coloneqq \{\langle M \rangle x \mid M \text{ ist DTM, die die Eingabe } x \text{ akzeptiert}\}$

Useful
$$\coloneqq$$
 $\{(\langle M \rangle, q) \mid M \text{ ist DTM mit Zustand } q, \text{ und es gibt eine Eingabe } w,\}$ so dass M gestartet mit w in den Zustand q gerät

Lemma

Das Akzeptanzproblem kann auf die Sprache Useful reduziert werden.

Halteproblem

 $H := \{\langle M \rangle x \mid M \text{ ist DTM, die gestartet mit Eingabe } x \text{ hält} \}$

Satz

Das Halteproblem ist nicht entscheidbar.

Das Komplement des Halteproblems

$$\overline{H} \coloneqq \left\{ \begin{array}{l} w \text{ aus } \{0,1\}^* \mid w \text{ ist nicht von der Form} \langle M \rangle x \text{ für eine DTM } M, \text{ oder } \\ w = \langle M \rangle x, \text{ wobei } M \text{ gestartet mit Eingabe } x \text{ nicht hält} \right\}$$

Korollar

Das Komplement des Halteproblems ist nicht rekursiv aufzählbar.

Korollar

Die Klasse der rekursiv aufzählbaren Sprachen ist von der Klasse der entscheidbaren Sprachen verschieden und nicht gegen Komplementbildung abgeschlossen.

Akzeptanzproblem und die Sprache Useful

 $A \coloneqq \{\langle M \rangle x \mid M \text{ ist DTM, die die Eingabe } x \text{ akzeptiert}\}$

Useful
$$\coloneqq \begin{cases} (\langle M \rangle, q) \mid M \text{ ist DTM mit Zustand } q, \text{ und es gibt eine Eingabe } w, \\ \text{so dass } M \text{ gestartet mit } w \text{ in den Zustand } q \text{ gerät} \end{cases}$$

Satz

Das Akzeptanzproblem A und die Sprache Useful sind nicht entscheidbar.

Halteproblem mit leerem Band

 $H_0 := \{\langle M \rangle \mid M \text{ ist DTM, die gestartet mit Eingabe } \varepsilon \text{ hält}\}$

Satz

Das Halteproblem mit leerem Band H_0 ist nicht entscheidbar.

Totalitätsproblem

 $T_o := \{\langle M \rangle \mid M \text{ hält bei jeder Eingabe}\}$

Endlichkeitsproblem

 $E_o := \{\langle M \rangle \mid M \text{ hält für endlich viele Eingaben}\}$

Äquivalenzproblem

 $Q_o := \{\langle M \rangle, \langle M' \rangle \mid M \text{ und } M' \text{ akzeptieren die gleiche Sprache} \}$

Satz

Das Äquivalenzproblem und das Totalitätsproblem sind nicht rekursiv aufzählbar.

Der Satz von Rice

Satz

Sei \mathcal{R} die Menge aller berechenbaren Funktionen und sei \mathcal{S} eine nicht-triviale Teilmenge von \mathcal{R} . Dann ist die Sprache

 $L(S) := \{\langle M \rangle \mid M \text{ berechnet eine Funktion aus } S\}$

nicht entscheidbar.