CE 382 Reinforced Concrete **Fundamentals**

Pure Bending - Design of Beams

Design of Beams

- Ideal
- ρ or $(\rho \rho') \leq \rho_{\ell}$
- ullet Upper limit ho or $(
 hoho') \leq
 ho_m$ Requires deflection check very time consuming & complex

3

 $\rho \leq 0.02$

$$\rho_{\min} = 0.8 \frac{f_{ctd}}{f_{yd}}$$

read the derivation of ρ_{mi}

Design of Beams

Preliminary design

- ▶ Establish structural system; locations of columns and structural walls, selection of the floor system...
- ▶ Establish sizes of the members; using experience & intuition and some simple calculations
- ▶ Reinforcement is not calculated in the preliminary design!

Final Design

Maximum ratio of reinforcement

$$\rho_m = 0.85 \rho_b$$

- ρ_m : ensures ductile behavior; but may result in small crosssectional dimensions which may cause excessive deformations
- Limiting ratio of reinforcement

$$\rho_{\ell} = 0.235 \frac{f_{cd}}{f_{yd}}$$

acceptable

double

reinforcement

increase beam dimensions

2

Single reinforced rectangular beams

- Given: M_d , b_w , d
- ▶ Calculate: $K = \frac{b_W d^2}{M_A}$
- ▶ Compare with $K_{\ell} \& K_m$
- If $K > K_{\ell}$ proceed next step
 - If $K > K_m$ OK, but use compression steel
 - If $K < K_m$ change size of the beam
- $A_{S} = \frac{M_{d}}{f_{vd}jd}$ take j from table
 - ▶ to be on the safe side use $j_{\ell} = 0.86$ if $K > K_{\ell}$
- ▶ Compute shear reinforcement

Limiting values for beams

			Fo	or ρ _m	For ρ _l			
Steel Grade	Concrete Grade	J _m	ρ_{m}	$K_m(*)$ mm ² /kN	jı	ρ_{l}	$K_{l}(*)$ mm ² /kN	
\$220 \$220 \$220 \$220	C16 C18 C20 C25	0.727 0.727 0.727 0.727	0.0267 0.0292 0.0316 0.0413	269 247 228 174	0.86 0.86 0.86	0.0135 0.0148 0.0160 0.0209	449 412 380 291	
\$420 \$420 \$420 \$420 \$420 \$420 \$420 \$420	C16 C18 C20 C25 C30 C35 C40 C45 C50	0.776 0.776 0.776 0.776 0.784 0.792 0.800 0.809 0.816	0.0115 0.0125 0.0136 0.0177 0.0201 0.0223 0.0252 0.0269 0.0283	308 382 260 199 174 155 136 126	0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	0.0071 0.0077 0.0084 0.0109 0.0129 0.0148 0.0174 0.0193 0.0212	449 412 380 291 247 215 183 165	
\$500 \$500 \$500 \$500 \$500 \$500 \$500 \$500	C16 C18 C20 C25 C30 C35 C40 C45 C50	0.791 0.791 0.791 0.791 0.799 0.806 0.813 0.821 0.828	0.0090 0.0098 0.0106 0.0139 0.0157 0.0174 0.0197 0.0210 0.0222	324 297 274 210 183 164 144 133	0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	0.0059 0.0065 0.0070 0.0092 0.0108 0.0124 0.0146 0.0162 0.0178	449 412 380 291 247 215 183 165	

5

Example 1

► C20
$$\rightarrow$$
 $f_{cd} = 13 \text{ MPa}$

▶ \$420 →
$$f_{yd} = 365 \text{ MPa}$$

$$K_{\ell} = 380 \frac{mm^2}{kN} \quad j_{\ell} = 0.861$$

$$K_m = 260 \frac{mm^2}{kN} \quad j_{\ell} = 0.776$$

- $M_d = 150 \, kNm$
- $A_s = ?$

$$K = \frac{b_W d^2}{M_d} = \frac{1000 \times 270^2}{150000} = 486 \frac{mm^2}{kN} > K_\ell$$
 use single reinforcement

$$A_s = \frac{M_d}{f_{yd}jd} = \frac{150000000}{365 \times 0.861 \times 270} = 1768 \, mm^2 \rightarrow 5\%22$$
(1900 mm²)

• or from table $j = 0.8962 \rightarrow A_s = 1698 \, mm^2$

Single Reinforced Rectangular Sections

			S420 (f,	_=365 N	1Pa)				
CI4	C14 (f _{cd} =9 MPa)		C16 (f _{cd} =11 MPa)			C20 (f _{cd} =13 MPa)			
K (mm²/kN)	j	ρ	K (mm ² /kN)	j	ρ	K (mm ² /kN)	j	ρ	
1435	0.954	0.0020	1426	0.961	0.0020	1417	0.967	0.0020	d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1162	0.942	0.0025	1152	0.951	0.0025	1143	0.959	0.0025	As As
980	0.931	0.0030	970	0.941	0.0030	961	0.950	0.0030	εs
851	0.919	0.0035	840	0.932	0.0035	831	0.942	0.0035	$\leftarrow b_w \longrightarrow$
754	0.903	0.0040		0.922	0.0040	734	0.934	0.0040	
679	0.896	0.0045	668	0.912	0.0045	658		0.0045	
619	0.885	0.0050		0.902	0.0050	597	0.917	0.0050	
570	0.873	0.0055	558	0.893	0.0055	548	0.909	0.0055	
530	0.862	0.0060	517	0.883	0.0060	507	0.901	0.0060	4
									A_{s}
493	0.850	0.0065	483	0.873	0.0065	472	0.893	0.0065	$\rho = \frac{3}{100}$
466	0.839	0.0070	454	0.864	0.0070		0.884	0.0070	r hd
441	0.827	0.0075	428	0.854	0.0075	417	0.876	0.0075	$\rho = \frac{A_S}{b_W d}$ $b_W d^2 = KM_d$
420	0.816	0.0080	406	0.844	0.0080	395		0.0080	$h d^2 - VM$
401	0.804	0.0085	387	0.834	0.0085	375	0.860	0.0085	$\nu_w a - \kappa m_d$
384	0.793	0.0090	370	0.825	0.0090	358	0.852	0.0090	
369	0.781	0.0095	354	0.815	0.0095	342	0.843	0.0095	
307			341	0.805	0.0100	328	0.835	0.0100	M_d
			328	0.795	0.0105	316	0.827	0.0105	$A_{\alpha} = \frac{\alpha}{\alpha}$
									$A_{s} = \frac{M_{d}}{f_{vd}id}$
			317	0.786	0.0110	305		0.0110) ya) w
						294	0.810	0.0115	
						285	0.802	0.0120	
						276	0.794	0.0125	
						269	0.786	0.0130	
						261	0.777	0.0135	

Example 1

Design the beam using analysis:

 $A_s = 1673 \ mm^2$

►
$$M_r = 0.85 f_{cd} k_1 cb_w \left(d - \frac{k_1 c}{2} \right)$$

 $150 \times 10^6 = 0.85 \times 13 \times 0.85 c \times 1000 \left(270 - \frac{0.85 c}{2} \right)$
 $3992 c^2 - 2535975 c + 150 \times 10^6 = 0$
 $c_1 = 66 \ mm \checkmark \qquad c_2 = 569 \ mm \checkmark$
► $F_c = F_s$
 $0.85 f_{cd} k_1 cb_w = A_s f_{yd}$
 $0.85 \times 13 \times 0.85 \times 66 \times 1000 = A_s \times 365$

270 mm

1000 mm

Double reinforced rectangular beams

- ▶ @ span \rightarrow usually positive moment \rightarrow T-Section
- ■ support → usually negative moment → rectangular & double reinforced

9

Double reinforced rectangular beams

- Assume $\sigma'_s = f_{yd}$
- $M_1 = M_{\ell} = \frac{b_W d^2}{K_{\ell}} \qquad j = j_{\ell} \qquad A_{S1} = A_{Sl} = \frac{M_1}{f_{Vd} j_{\ell} d}$
- $M_2 = M_d M_1$ $A'_s = A_{s2} = \frac{M_2}{f_{vd}(d-d')}$
- $A_s = A_{s1} + A_{s2}$
- Check assumption: $c = \frac{A_{S1}f_{yd}}{0.85f_{cd}k_1b_w}$ $\varepsilon_S' = 0.003\frac{c-d'}{c}$ $\sigma_S' = E_S\varepsilon_S'$ $A_S' = A_{S2}\frac{f_{yd}}{\sigma_S'}$
- generally compression steel yields

Double reinforced rectangular beams

- Given: materials, M_d , $b_w \& d$
- Find: $A_s \& A'_s$

- $If K > K_{\ell} \quad \rightarrow \quad A_{S} = \frac{M_{d}}{f_{yd}j_{\ell}d}$
- $\qquad \qquad \text{If } K_{\mathrm{m}} < K < K_{\ell} \quad \rightarrow \text{compression steel needed}$

10

Double reinforced rectangular beams

- Given: materials, M_d , b_w , d, A_s'
- Assume $\sigma_s' = f_{yd}$ & compute $M_2 = A_s' f_{yd} (d d')$
- $M_1 = M_d M_2$
- $A_{S1} = \frac{M_1}{f_{yd}jd} \quad (j = j_\ell \text{ can be used})$
- ▶ Check assumption: $c = \frac{A_{s1}f_{yd}}{0.85f_{cd}k_1b_w}$ $\varepsilon_s' = 0.003\frac{c-d'}{c}$
- $If \varepsilon_s' > \varepsilon_{sv} \rightarrow A_s = A_s' + A_{s1}$
- If $\varepsilon_s' < \varepsilon_{sy} \rightarrow$ go to general solution

Example 2

► C20
$$\rightarrow$$
 $f_{cd} = 13 \text{ MPa}$

▶ \$420 →
$$f_{yd} = 365 \text{ MPa}$$

$$K_{\ell} = 380 \frac{mm^2}{kN} \quad j_{\ell} = 0.861$$

$$K_m = 260 \frac{mm^2}{kN} \quad j_{\ell} = 0.776$$

$$M_d = 220 \, kNm$$

$$A_s = ?$$

$$K = \frac{b_W d^2}{M_d} = \frac{1000 \times 270^2}{220000} = 331 \frac{mm^2}{kN} < K_\ell$$
, $> K_m$

270 mm

$$M_1 = \frac{b_W d^2}{K_\ell} = \frac{1000 \times 270^2}{380} = 191.8 \text{ kNm}$$

$$A_{s1} = \frac{M_1}{f_{vd}j_\ell d} = \frac{191800000}{365 \times 0.861 \times 270} = 2260 \text{ mm}^2$$

13

Flanged Sections (T-Beams)

- Select proper chart by b/b_w value
- j values are given as a function of $\overline{K} f_{cd}$ & t/d

$$\overline{K}f_{cd} = \frac{bd^2}{M_d}f_{cd}$$

b: flange width instead of $b_{\it w}$

$$A_S = \frac{M_d}{f_{yd}jd}$$

If tables are not available, approximate solution:

$$jd = 0.9d$$

$$jd = 0.9d$$

$$jd = d - \frac{t}{2}$$
take greater value

Example 2

- $M_2 = M_d M_1 = 220 191.8 = 28.2 \, kNm$
- Assume $\sigma'_s = f_{vd}$

$$A_s' = A_{s2} = \frac{M_2}{f_{vd}(d-d')} = \frac{28200000}{365(270-30)} = 322 \text{ mm}^2$$

- ▶ Check assumption
 - $0.85 \times 13 \times 0.85c \times 1000 = 2260 \times 365$
 - $c = 87.8 \, mm$
 - $\varepsilon_s' = 0.003 \frac{c-d'}{c} = 0.003 \frac{87.8-30}{87.8} = 0.001975 > \varepsilon_{sy} = 0.001825$
- $A_s = A_{s1} + A_{s2} = 2260 + 322 = 2582 \, mm^2 \rightarrow 7022$
- $A_s' = 322 \, mm^2 \rightarrow 3014$ (2660 mm^2) (462 mm^2)

14

Flanged Sections (T-Beams)

t/d 0.18	0.20	0.22	0.24	0.26	0.30
32 0.982		0.22	0.982	0.26	0.982
77 0.982		0.982	0.982	0.982	0.982
74 0.974		0.974	0.974	0.974	0.974
0.970		0.974	0.970	0.970	0.974
70 0.970		0.970	0.970	0.970	0.970
55 0.965		0.965	0.965	0.965	0.965
52 0.962		0.962	0.962	0.962	0.962
8 0.958		0.958	0.958	0.958	0.958
64 0.954		0.954	0.954	0.954	0.954
0.951		0.951	0.951	0.951	0.951
18 0.948		0.948	0.948	0.948	0.948
5 0.945		0.945	0.945	0.945	0.945
1 0.941		0.941	0.941	0.941	0.941
7 0.937		0.937	0.937	0.937	0.937
5 0.935		0.935	0.935	0.935	0.935
0.932		0.932	0.932	0.932	0.932
0.930		0.930	0.930	0.930	0.930
7 0.927		0.927	0.927	0.927	0.927
3 0.923		0.923	0.923	0.923	0.923
0.920		0.920	0.920	0.920	0.920
5 0.916		0.916	0.916	0.916	0.916
0.912	0.912	0.912	0.912	0.912	0.912
0.907	0.907	0.907	0.907	0.907	0.907
78 0.898	0.902	0.902	0.902	0.902	0.902
2 0.884	0.895	0.896	0.896	0.896	0.896
0.861		0.890	0.890	0.890	0.890
- 0.820		0.879	0.872	0.882	0.882
	0.822	0.858	0.862	0.874	0.874
		0.813	0.848	0.862	0.864
		_	0.792	0.833	0.852
	_	_	_	0.714	0.831
$(\overline{K}f_{cd})$	$\Big = \frac{bd^2}{M_d} f_{cd}$	A_s	$= \frac{M_d}{f_{yd}(j)c}$	Ī	
	(Kf _{cc}	$(Kf_{cd}) = \frac{\alpha}{M_d} f_{cd}$	$\left(\overline{K}f_{cd}\right) = \frac{\mathrm{kd}^2}{\mathrm{M}_{\mathrm{d}}}f_{cd}$ A_{s}	$(Kf_{cd}) = \frac{\alpha}{M_d} f_{cd}$ $A_s = \frac{M_d}{f_{yd}(j)c}$	$(Kf_{cd}) = \frac{\omega}{M_d} f_{cd}$ $A_s = \frac{M_d}{f_{yd}(J)d}$

Bending of Bars

- ▶ The required area of reinforcement is calculated for the maximum moment.
- ▶ Can be reduced where smaller moment exists.
 - Cut-off

In practice when adjacent spans are not too different from each other, bars can be bent

- $A_S = \frac{M_d}{f_{vd}jd}$
- $\ell_n/7$ at the exterior supports
- $\ell_n/5$ at the interior supports
- ▶ variation in j insignificant $\rightarrow A_S$ proportional M_d
- ightharpoonup stress concentration @ cut-off or bent ightharpoonup extend bars
 - ▶ Cut-off \rightarrow 20 \emptyset or d
 - ▶ Bent \rightarrow 8Ø or d/3

Study Example 5.7

17

Minimum requirements for Beams

▶ Reinforcement ratio

$$\rho = \frac{A_S}{b_W d} \ge 0.8 \frac{f_{ctd}}{f_{vd}}$$

$$\rho (\rho - \rho') \le \rho_m = 0.85 \rho_b$$

- ▶ $\rho \le 0.02$
- $(\rho \rho') \le \rho_\ell = 0.235 \frac{f_{cd}}{f_{yd}}$ authors recommendation
- For beams deeper than 600 mm
 - \blacktriangleright two web bars at the mid-depth of the section; minimum $1\% (0.001 b_w d)$
 - For each additional 300 mm, an extra row of web longitudinal steel

Minimum requirements for Beams

- Clear cover
 - > 20 mm TS 500-2000
 - > 25 mm for beams subject to outside atmosphere
 - ▶ 40 mm recommended (for better fire protection)
- ▶ Minimum diameter of bar for tension bar: \$12
- Minimum spacing between adjacent rows of reinforcement: 20 mm or bar diameter
- ▶ Spacing between bars: 20mm, bar diameter or 4/3 of the diameter of the largest aggregate

- 18

Minimum requirements for Beams

- Simply supported beam
 - ▶ $\frac{1}{2}$ of the tension steel @ span → compression steel @ support
- ▶ Continuous beam
 - ▶ $\frac{1}{3}$ of the mid-span steel \rightarrow compression steel @ support
- ▶ Turkish Seismic Code
 - Seismic zone I & 2:50% of tension steel @support → compression steel @ support
 - Seismic zone 3 & 4:30% of tension steel @support → compression steel @ support

Effective flange width; TS 500-2000

- \blacktriangleright Symmetrical flange on two sides $b=b_w+\frac{1}{5}\ell_p$
- Unsymmetrical flange on two sides $b=b_1+\frac{1}{10}\ell_p$
- ℓ_p : distance between the point of inflections
 - ho $\ell_p pprox 0.8 \ell_n$ exterior span of continuous beam
 - $\ell_p \approx 0.6 \ell_n$ interior span
 - ho $\ell_p pprox 1.0 \ell_n$ simply supported
 - $\ell_p \approx 1.5 \ell_n$ cantilever
 - ℓ_n : clear span

21

23

Effect of Material Strength on the Moment Capacity

- Moment capacity is approximately proportional to steel strength
- ightharpoonup concrete strength $\xrightarrow{influences} c \xrightarrow{influences} j$
- ▶ But this influence can be neglected
- For example
 - \blacktriangleright for C16 & $\rho=0.001$
 - for S220: if Δf_c 60% $\searrow \Rightarrow \Delta M_r$ 13% \searrow
 - for \$420: if Δf_c 60% \Rightarrow ΔM_r 20% \Rightarrow
- ▶ This outcomes are valid only for pure flexure
- Concrete strength affect significantly the moment capacity of a column depending on the level of axial load

Design Moments

- Members are represented by their centerlines
- ▶ Moments at the faces of supports should be used
- $M_{df} = M_{dc} \Delta M$

22

Example 3

- ▶ Two span continuous beam
- Exterior supports

$$M_{ext} = -45 \, kNm; \ V_{ext} = 100 \, kN$$

▶ Interior support

$$M_{int} = -125 \ kNm; \ V_{int} = 110 \ kN$$

- Spans
 - $M_{span} = 72 \, kNm$

C20 & S420 Columns 400x400mm Beams 250x400 mm t = 120 mm b = 1000 mm d = 360 mm; d' = 40 mm $K_{\ell} = 380 \frac{mm^2}{kN}$ $j_{\ell} = 0.86$ $K_m = 260 \frac{mm^2}{kN}$ $j_m = 0.776$

Example 3

Modify support moments

Exterior supports

$$M_{d,face} = M_d - \frac{Va}{3} = 45 - \frac{100 \times 0.4}{3} = 32 \text{ kNm}$$

Interior support

$$M_{d,face} = M_d - \frac{Va}{3} = 125 - \frac{110 \times 0.4}{3} = 110 \text{ kNm}$$

ightharpoonup Calculate the span first ightharpoonup T-beam

 $ightarrow jd = 0.9d = 0.9 \times 360 = 324 \, mm \, \checkmark$

$$jd = d - \frac{t}{2} = 360 - \frac{120}{2} = 300 \ mm$$

$$A_S = \frac{M_d}{f_{Vd}jd} = \frac{72 \times 10^6}{365 \times 324} = 609 \text{ mm}^2$$

▶ Use 4ϕ 14 (615 mm²) \rightarrow 2ϕ 14 bent + 2ϕ 14 straight

25

Example 3

- $A_{s1} = \frac{85300000}{365 \times 0.86 \times 360} = 755 \text{ mm}^2$
- $M_2 = M_d M_1 = 110 85.3 = 24.7 \ kNm$
- ightharpoonup assume $\sigma_s' = f_{vd}$
- $A_S' = A_{S2} = \frac{24.7 \times 10^6}{365(360 40)} = 211 \text{ mm}^2$
- ▶ Check assumption: $c = \frac{755 \times 365}{0.85 \times 13 \times 0.85 \times 250} = 117.4 \ mm$
- $\varepsilon_s' = 0.003 \frac{117.4 40}{117.4} = 0.001978 > \varepsilon_{sy} = 0.001825$
- $A_s = A_{s1} + A_{s2} = 755 + 211 = 966 \, mm^2$
- Available: $2\phi 14 + 2\phi 14 + 2\phi 12$ (842 mm²)
- ▶ add I | 14 (I54 mm²)

Example 3

▶ Exterior supports → rectangular beam

$$K = \frac{b_W d^2}{M_d} = \frac{250 \times 360^2}{32000} = 1013 > K_\ell \rightarrow \text{use single reinf.}$$

$$A_S = \frac{M_d}{f_{\gamma d} j d} = \frac{32000000}{365 \times 0.86 \times 360} = 283 \ mm^2$$

- Available: bent-up + hanger = $2\phi 14+2\phi 12$ (534 mm²)
- $\min A_s = 0.8 \frac{f_{ctd}}{f_{vd}} b_w d = 0.8 \frac{1.1}{365} 250 \times 360 = 217 \text{ mm}^2$

▶ Interior support → rectangular beam

$$K = \frac{b_W d^2}{M_d} = \frac{250 \times 360^2}{110000} = 295 < K_\ell; > K_m \rightarrow \text{double reinf.}$$

$$M_1 = \frac{b_W d^2}{K_\ell} = \frac{250 \times 360^2}{380} = 85.3 \text{ kNm}$$

26

Example 3

Serviceability – TS 500

- ▶ For serviceability limit state calculations → Material Factors = 1.0 ($\gamma_{mc} = 1.0$ & $\gamma_{ms} = 1.0$)
- ▶ Beams and slabs do not require deflection calculation if depth to span length ratio is greater than:

Member	Simple support	Edge span	Interior Span	Cantilever
One way slab	1/20	1/25	1/30	1/10
Two way slab (with short side span)	1/25	1/30	1/35	-
Joist slab	1/15	1/18	1/20	1/8
Beam	1/10	1/12	1/15	1/5

29

Instantaneous Deflection

▶ For uncracked members $(M_{max} \le M_{cr})$ → use gross sectional moment of inertia

•
$$M_{cr} = 2.5 f_{ctd} \frac{I_{gross}}{y}$$
 & $E_c = 3250 \sqrt{f_{ck}} + 14000$

▶ For cracked members $(M_{max} > M_{cr})$ → use effective moment of inertia

$$I_{ef} = \left(\frac{M_{cr}}{M_{max}}\right)^3 I_{gross} + \left[1 - \left(\frac{M_{cr}}{M_{max}}\right)^3\right] I_{cracked}$$

30

- ▶ Calculate deflection in accordance with structural mechanics principles and by considering support conditions
- ▶ For continuous beams, take average of the two supports and one span effective moment of inertias.