GEOG 653: Lab 6 (Surface Analysis)

Jaemin Eun

Overview

For lab 6, we will explore Surface Analysis.

Question 1.

Figure 1: IDW Interpolation for "Stations" layer.

Question 2.

Minimum estimated value: 1,786.909. Maximum estimated value: 6,879.917. Range of original sample: 6880-995.

The range of the estimated values is no larger than the range of the original sample points.

Question 3.

Figure 2: Kriging Interpolation for "Stations" layer.

Question 4.

Figure 3: Raster calculation of absolute difference between IDW and Kriging method.

Question 5.

Figure 4: Euclidean distance calculation of PG County Hospitals.

Question 6.

Figure 5: Euclidean distance calculation of PG County Hospitals (with extent of PG County Boundary).

Question 7.

Figure 6: Allocation distance of PG County Hospitals (with PG County Boundary Mask).

- Question 8.
- Question 9.
- Question 10.
- Question 11.

Question 12.

Figure 7: "Ithaca_West" Slope Output Raster.

Question 13.

Figure 8: Slope Output Raster sequestered between values less than or greater than 16.

Question 14.

From the figure below we can see that the raster has a total of 69,487 cells with value 1, in our case the slope values which are greater than or equal to 16. Therefore we can make the calculation:

$$Area = 69,487 * cell area$$

Given that our cell sizes are 10x10m, the calculation becomes:

$$Area = 69,487 * 10 * 10 = 6,948,700 m^2$$

4	OBJECTID	Value	Count
	1	0	1353252
	2	1	69487

Figure 9: Screenshot of Attribute Table Count.

Question 15.

Figure 10: Aspect surface of Ithaca DEM.

Question 16.

Figure 11: Viewshed Analysis with Tower Layer.

Question 17.

- A cell value of 1 means that it is observable to only 1 observer, however there is no discerning to which points those are.
- A cell value of 2 means that to an observer, 2 towers are observable.
- There is no value of 3 because as there are 3 towers, you cannot "observe" a tower which you are occupying, or more generally, you will always be facing away from a specific feature.

Question 18.

Figure 12: Suitability Analysis of "Middle Earth" layer, (Red: Unsuitable, Green: Suitable)

Question 19.

From the figure below we can see that the raster has a total of 18,783 cells with value 1, therefore we can make the calculation:

$$Area = 18,783 * 10 * 10 = 1,878,300 m^2$$

⊿	OBJECTID	Value	Count
	1	0	1399135
	2	1	18783
	Click to add	l new row	<i>/</i> .

Figure 13: Screenshot of Attribute Table Count.

Question 20.

Figure 14: Viewshed analysis of DC Monuments

Question 21.

From the figure below we can see that the raster has a total of 86,182 cells with value 3, therefore we can make the calculation:

$$Area = 86,182*10*10 = 8,618,200 \ m^2$$

⊿	OBJECTID	Value	Count
	1	0	1379220
	2	1	118581
	3	2	190714
	4	3	86182

Figure 15: Screenshot of Attribute Table Count.

Question 22.

Figure 16: Observer Points Analysis.

Question 23.

There are 37,018 total cells that are visible only to the Capitol, therefore we can make the calculation:

$$Area = 37,018 * 10 * 10 = 3,701,800 \, m^2 \, or \, 3.7018 \, km^2$$

There are 159,826 total cells that are visible to both the Washington Monument and the White House but not the Capitol, therefore we can make the calculation:

$$Area = 159,826 * 10 * 10 = 15,982,600 \, m^2 \, or \, 15.9826 \, km^2$$

Question 24.

Figure 17: Viewshed2 analysis of DC Monuments

Question 25.

- -A cell value of 1 means that it is observable to only 1 observer, however there is no discerning to which points those are.
- A cell value of 2 means that to an observer, 2 locations are observable.
- -Unlike in regular viewshed, the additional variable of height allows us to observe all 3.

Question 26.

Figure 18: Visibility analysis with observer offset by Height (Frequency Analysis).

Question 27.

- -A cell value of 1 means that it is observable to only 1 observer, however there is no discerning to which points those are.
- A cell value of 2 means that to an observer, 2 locations are observable.
- A cell value of 3 means that to an observer, 3 locations are observable.

Question 28.

From our output, we can see there are a few difference between questions 22 and 23. When we run the analysis by observers, we are identifying the features which are observable from the surface locations.

⊿	OBJECTID	Value	Count	OBS1	OBS2	OBS3	
ı	1	0	662842	0	0	0	
	2	1	416	1	0	0	
	3	2	168686	0	1	0	
	4	3	15108	1	1	0	
	5	4	30694	0	0	1	
	6	5	496	1	0	1	
	7	6	340696	0	1	1	
	8	7	555759	1	1	1	

Figure 19: Visibility analysis with observer offset by Height (Observer Analysis).