# Numerical Modeling of Rectangular Quantum Dot



Chatdanai Lumdee Natapong Thongkamkoon

International School of Engineering, Chulalongkorn University
May, 2010

## Outline

- Introduction
- Modeling
- \* Result
  - One-Dimensional Structure
  - Three-Dimensional Structure
- Conclusion

# Introduction

Quantum Dot



#### Introduction

Schrödinger equation

$$\left[ -\frac{\bar{h}^2}{2} \nabla \cdot \left( \frac{1}{m^*(\vec{r})} \nabla \right) + V(\vec{r}) \right] \psi(\vec{r}) = E \psi(\vec{r})$$

$$(E) \qquad (\psi(\vec{r})) \qquad (p(\vec{r}) = |\psi(\vec{r})|^2)$$

#### Introduction

#### Rectangular Quantum Dot

$$\left[ -\frac{\bar{h}^2}{2} \nabla \cdot \left( \frac{1}{m^*(\vec{r})} \nabla \right) + V(\vec{r}) \right] \psi(\vec{r}) = E \psi(\vec{r})$$





$$E = E_x + E_y + E_z$$

$$\psi(\vec{r}) = \psi_x(x)\psi_y(y)\psi_z(z)$$

$$V(\vec{r}) \sim V_x(x) + V_y(y) + V_z(z)$$



$$\left[ -\frac{\bar{h}^2}{2} \frac{d}{dx} \left( \frac{1}{m^*} \frac{d}{dx} \right) + V_x \right] \psi_x = E_x \psi_x$$



# Modeling

Finite Difference Method

$$\left[ -\frac{\overline{h}^2}{2} \frac{d}{dx} \left( \frac{1}{m^*} \frac{d}{dx} \right) + V_x \right] \psi_x = E_x \psi_x$$

$$-\frac{\overline{h}^2}{2} \left[ \frac{d}{dx} \left( \frac{1}{m^*} \right) \frac{d\psi}{dx} + \frac{1}{m^*} \frac{d^2 \psi}{dx^2} \right] + V_x \psi_x = E_x \psi_x$$

$$f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \qquad f''(x) = \frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{\Delta x^2}$$

Boundary condition for bound states

# Modeling

Modified 1D Schrödinger equation

$$\overline{\underline{M}}\Psi = E\Psi$$

$$M_{ij} = -\frac{\overline{h}^{2}}{2} \begin{cases} -\frac{2}{m_{i}} - \frac{2}{\overline{h}^{2}} V_{i} & i = j \\ \frac{1}{m_{i}} + \frac{1}{4} \left( \frac{1}{m_{i+1}} - \frac{1}{m_{i-1}} \right) & i = j-1 \\ \frac{1}{m_{i}} - \frac{1}{4} \left( \frac{1}{m_{i+1}} - \frac{1}{m_{i-1}} \right) & i = j+1 \\ 0 & otherwise \end{cases}$$

# Result (1D Schrödinger)

#### ⇒ GaAs/AlGaAs Quantum well\*



| Exact solutions (meV)* | Numerical solutions (meV) | Error (%) |
|------------------------|---------------------------|-----------|
| 64.2                   | 64.6                      | 0.62      |
| 220.8                  | 221.1                     | 0.14      |

\*H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, J. Appl. Phys., vol.68, no.8, 1990.

# Modeling: continue

Quantum Dot (3D)

$$E = E_x + E_y + E_z$$

$$\psi(\vec{r}) = \psi_x(x)\psi_y(y)\psi_z(z)$$

$$p(\vec{r}) = \left| \psi(\vec{r}) \right|^2$$

#### Result

InGaAs/GaAs Quantum dot\*\*

$$\Delta E_c = 0.324 \text{ eV}$$

$$L_z = 2.5 \text{ nm}$$









$$E_1 = 0.2310 \text{ eV}$$

$$E_2 = 0.2887 \text{ eV}$$

$$E_3 = 0.2887 \text{ eV}$$

## Result



### Conclusion

- The model can solve for
  - The energy states
  - The wave functions
  - The probability distributions
- Analytical tool for the electronic structure of a quantum dot

# References

- [1] G. W. Bryant and G. S. Solomon, *Optics of Quantum Dots and Wires*, 1st ed. Norwood, MA: Artech House, Inc., 2005.
- [2] G. A. Narvaez, G. Bester, and A. Zunger, "Dependence of the electronic structure of self-assembled (In,Ga)As/GaAs quantum dots on height and composition," J. Appl. Phys., vol. 98, 043708, 2005.
- [3] O. L. Lazarenkova and A. A. Balandin, "Miniband formation in a quantum dot crystal," J. Appl. Phys., vol. 89, no. 10, 2001.
- [4] I. H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, "A Self-Consistent solution of Schrodinger-Poisson Equation Using a Nonuniform Mesh," J. Appl. Phys., vol.68, no.8, 1990.
- [5] N. Thudsalingkarnsakul, *Effective One-Dimensional Electronic Structure of InGaAs Quantum Dot Molecules*, Master's Thesis, Department of Electrical Engineering, Faculty of Engineering, 2008.

# Thank you

Q&A