Mathematiques pour physiciens.

Marco Biroli

19 novembre 2019

1 Analyse Complexe.

1.1 Rappels.

Definition 1.1. Un ensemble E est connexe ssi il ne peut être écrit comme la reunion de deux ouverts disjoints.

Proposition 1.1. L'image d'un connexe par une application continue est connexe.

Proposition 1.2. Les seuls ouverts-fermés de E sont E et \emptyset .

Theorem 1.1. f analytique sur U ouvert connexe. Si f n'est pas la fonction nulle, si z_0 est un zéro de f alors $\exists \epsilon > 0 | z_0$ soit le seul zéro de $f|_{D(z_0,\epsilon)}$

Theorem 1.2. Si la restriction de 2 fonctions analytiques sur U ouvert coincide sur $U \subset D$ connexe alors ces fonctions sont égales sur D.

Theorem 1.3. Si U ouvert connexe, si f atteint une maximum local sur U alors f est constante.

1.2 Théorème de Cauchy.

1.2.1 Chemins et lacets.

Definition 1.2. Soit $\gamma: I = [a, b] \to \mathbb{C}$, \mathcal{C}^1 par morceaux, alors γ' est le vecteur tangent à la courbe. On appele $\gamma(a)$ l'origine, $\gamma(b)$ l'extremité et γ le chemin.

Definition 1.3. Un lacet est un chemin tq l'éxtrémité et l'origine sont confondues.

Definition 1.4. Le chemin opposé à γ est :

$$\gamma^0: t \longmapsto \gamma(a+b-t)$$

Definition 1.5. On dit que γ_1 et γ_2 sont equivalents si il existe une bijection φ croissante \mathcal{C}^1 , φ^{-1} soit aussi \mathcal{C}^1 :

$$\gamma_2(t) = \gamma_1(\varphi(t))$$

1.3 Intégration le long d'un chemin.

Definition 1.6. Si $\gamma: I \Rightarrow \mathbb{C}$ est un chemin, f continue sur $\gamma(I)$ alors $t \Rightarrow f(\gamma(t))\gamma'(t)$ et on définit :

$$\int_{\gamma} f(z)dz = \gamma_a^b f(\gamma(t))\gamma'(t)dt$$

Remark. Cette définition coincide avec la circulation du champ vectoriel $(\Re f, \Im f)$ le long de $\gamma(I)$. De plus, on constate $\int_{\gamma} f = -\int_{\gamma^0} f$. Aussi si γ est un lacet alors l'integrale ne depend pas du point de départ choisi.

Definition 1.7. On aussi un règle de la chaine : si Γ : $t \to u(\gamma(t))$, u analytique alors $\int_{\gamma} f(u(z))u'(z)dz = \int_{\Gamma} f(z)dz$.

1.4 Primitives.

Theorem 1.4. Pour qu'une fonction analytique sur un domaine D ouvert admette une primitive sur D il faut et il suffi que pour tout lacet $\int_{\gamma} f = 0$.

Proposition 1.3. Lorsqu'il en est ainsi une primitive F de f s'écrit $F(z) = C + \int_{\gamma} f(w)dw$ ou γ est un chemin d'origine arbitraire d'extrimite z.

Remark. L'exemple récurrent est $f: z \mapsto \frac{1}{z}$. Alors soit $\gamma: [0, 2\pi] \to U, t \mapsto e^{it}$. Alors :

$$\int_{\gamma} f(z)dz = \int_{0}^{\pi} f(e^{it})ie^{it}dt = i\int_{0}^{\pi} dt = 2\pi i$$

1.5 Homotopie

Definition 1.8. Une homotopie entre deux chemins $\gamma_0:[a,b]\to\mathbb{C}$ et $\gamma_1:[c,d]\to\mathbb{C}$ est une application continue:

$$\varphi:I\times J\to D$$

telle que $\varphi(t,c) = \gamma_0(t)$ pour tout t dans I et $\varphi(b,t) = \gamma_1(t)$ pour tout t dans J.

Remark. On note que si on defini $\gamma_s(t) = \varphi(s,t)$ peut être vu comme une famille de lacets qui morphes du chemin γ_0 vers γ_1 .

Definition 1.9. D connexe est simplement connexe ssi tout lacet est homotope à un point.

1.6 Théorème de Cauchy.

Theorem 1.5. Soit D ouvert convexe, f analytique sur D alors pour tout lacet $\gamma \subset D$ on a :

$$\int_{\gamma} f = 0$$

Démonstration. Soit $z_0 \in D, z \in D, [z_0, z] \subset D$, alors on definit :

$$F(z) = \int_{z_0}^z f$$

Si h est suffisament petit, $[z, z+h] \subset D$, $[z+h, z_0] \subset D$ alors l'intégrale autour du triangle $z_0, z, z+h$ est nulle. Il s'ensuit que en definissant :

$$F(z+h) - F(z) = \int_{z}^{z+h} f = \int_{0}^{1} dt f(z+th)h$$

On en deduit si $h \to 0$ que :

$$F'(z) = f(z)$$

Theorem 1.6. Soit D un ouvert connexe, f analytique, γ_1, γ_2 deux lacets de D, homotopes alors :

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$$

Corollary 1.6.1. Si D est simplement connexe alors l'integrale est nulle pour tout lacet.

1.7 Indince d'un point par rapport à un lacet.

Definition 1.10. Soit γ un lacet de I = [a, b] et $w \notin \gamma(I)$ alors on defini l'indice comme étant :

$$\operatorname{Ind}_{\gamma}(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - w} dz$$

C'est un entier relatif qui quantifie l'enroulement de γ autour de w.

Remark. On a $\operatorname{Ind}_{\gamma_0}(w) = -\operatorname{Ind}_{\gamma}(w)$ et si deux lacets sont homotopes leur indices coincides.

Proposition 1.4. Si γ est un lacet, et D connexe tel que $\gamma(I) \cap D = \emptyset$ alors $w \to Ind_{\gamma}(w)$ est constante.

1.8 Formule de Cauchy

Theorem 1.7. Soit D simplement connexe, $\gamma: I \to D$ alors pout toute function f analytique on a :

$$\forall w \in D \setminus \gamma(I), 2\pi i f(w) Ind_{\gamma}(w) = \int_{\gamma} dz \frac{f(z)}{z - w}$$

1.9 Conditions de Cauchy.

Theorem 1.8. Si f est continument derivable dans D ouvert alors f est analytique.