Python Numpy / Matplotlib 辞典

Numpy編 ~インポート (import numpy as np) を忘れずに~

配列の生成

np.array([a1, a2, a3,])	リストから, Numpy 配列を作成します.
np.array([[a1, a2, a3], [b1, b2, b3]])	2次元以上の配列も作ることができます.
In: np.arange(5, 30, 5) Out: np.array([5, 10, 15, 20, 25])	5から始まり、30未満で間隔が5の等差数列を 生成します。30は含まれないことに注意。
In: np.arange(6) Out: np.array([0, 1, 2, 3, 4, 5])	引数を省略すると、間隔1で0始まりの等差数 列を生成します.
In: np.linspace(0, 10, 5) Out: np.array([0, 2, 4, 6, 8, 10])	0以上10以下の数直線を5等分します. (<mark>10も含む</mark> ので要素数は6個になります.)
np.append(array, [a1, a2, a3,])	配列に要素を追加します.
np.random.rand(N)	N個の乱数を生成できます.

形状変換

np.flatten()	多次元配列を一次元に直します.
np.transpose()	配列を転置(行, 列の入れ替え)します.
In: a = np.array([[1, 2, 3], [4, 5, 6]]) a.shape Out: (2, 3)	配列の形状を確認できます. ()をつける必要はありません.
In: np.array([1, 2, 3, 4, 5, 6).reshape(2, 3) Out: np.array([[1, 2, 3], [4, 5, 6]])	配列の形状を変換します.

演算 (1) ~四則演算~

array1 + array2, array + 5, array - 2.2	配列同士の加減算は簡単です. 数字を足す(引く)と配列全ての要素に対して計算されます.
array1 * array2, array * 5	掛け算 (*) や
array1 / array2, array / 5, 1 / array	割り算(/)についても同様にできます.

演算 (2) ~応用編~

array.max(), array.min(), array.sum()	最大値, 最小値, 合計値を計算できます.
array.mean(), array.median()	平均値や中央値も計算できます.
np.dot(A, B)	行列積やベクトルの内積を計算します.

Python Numpy / Matplotlib 辞典

判定

np.all(array > 20)	全ての要素が () 内の条件を満たすと True
np.any(array > 20)	1つでも () 内の条件を満たすと True
np.where(array > 20)	条件を満たす要素の index を配列で返す

Matplotlib編 ~インポート (import matplotlib.pyplot as plt) を忘れずに~

1. グラフの種類を選択

折れ線グラフ	plt.plot(x, y, color=色, linewidth=線の太さ, linestyle=線のスタイル)	
棒グラフ	plt.bar(x軸上の数値, height=データ, width=太さ, bottom=余白の高さ)	
散布図	散布図 plt.scatter(x, y, c=色, s=点のサイズ, alpha=透明度)	
円グラフ	plt.pie(数値, labels=ラベル, colors=色)	

2-1. グラフの属性に関する指定

plt.title('グラフのタイトル')	タイトルを指定します.
plt.figure(figsize=(縦の長さ, 横の長さ))	グラフのサイズ (inch) を指定します.
plt.legend(['凡例名1', '凡例名2',], loc='upper right')	リスト型で凡例を指定します. locを用いて, 位置も指定できます.
plt.xlabel('x軸のラベル名') plt.ylabel('y軸のラベル名', fontsize=20)	グラフの軸ラベルを指定します. フォントの大きさも指定できます.
plt.text(x, y, 表示する数 or 文字の配列, ha='center', va='bottom')	データラベルを挿入できます. x, yで入れる 位置を指定し, 表示したい数や文字を配列 で与えます. haで水平位置, vaで垂直位置 を細かく設定できます.

2-2. グラフの目盛に関する指定

plt.xlim([min, max]), plt.ylim([min, max])	x軸, y軸の表示範囲を指定します.
plt.grid(True)	グリッドを挿入します.
plt.xscale('log')	対数目盛で表示します.
plt.xticks(rotation=Ω)	軸目盛をΩ度回転させます.

3. 描画

グラフの種類を選択し、設定をいじった後、最後に plt.show() で描画できます!