

华中科技大学 2020~2021 学年第一学期

" 微积分 (A) (上) " 考试试卷(A卷)

考试	方式:_	闭卷	考试日期:		021/01/10	_ 考试时长	:: <u>120</u> 分钟
院 (系):		·		专	业班级:_		
9	学 号	:		姓	名: _		
题号		_			三	四	总分
分数							
分评卷		一、选	择题(每题 4	4 分	,共 16 分	۲)	
1. 曲线 $y = x(x-1)^2(x-2)^3(x-3)^4$ 的拐点为							
A	. (0,0)		B.	(1,0)		
C.	(2,0))		D.	(3,0)		
2. 计	·算∫ ₀ ² m	$\max\{x^2, x\} \ dx$	c				
A	. 2		B.	$\frac{17}{6}$			
C.	. <u>8</u> 3		D.	$\frac{11}{6}$			
3. 下	列那个	点不是 $f(x)$	$=\int_0^x (t^2-3)$	t + 1	2)arctan <i>t</i>	dt的极值。	5.
A	. <i>x</i> =	0		B.	x = 1		
C.	x =	2		D.	x = 3		
4. 근	上午 \int_0^{x-s}	$ \ln x \ln(1+t) $	dt是x ⁿ 在x	= 0	处的同阶	无穷小,则	n为
A	. 3		B.	4			
C.	. 5		D.	6			

分数 评卷人

二、 填空题(每题5分,共20分)

- 5. $\Re \lim_{n\to\infty} \frac{1}{n^2} \left(\sqrt[4]{n^3} + \sqrt[4]{2n^3} + \dots + \sqrt[4]{n^4} \right) = \underline{\qquad}_{\circ}$
- 6. 设f(x)连续,且 $\int_0^{x^3-1} f(t) dt = x$,则f(7) =______。
- 7. 己知两曲线y = f(x)与y = g(x)在点(0,0)处的切线相同,其中 $g(x) = \int_0^{\arcsin x} e^{t^2} \ dt, \ x \in [-1,1],$ 求极限 $\lim_{n \to \infty} nf\left(\frac{4}{n}\right) = \underline{\qquad}$
- 8. 由曲线y = 2x, $y = \frac{1}{2}x$, y = 1, y = 2所围成的图形面积为_____。

分数 评卷人

三、计算题(每题8分,共40分)

9. 计算 $\int x^2 \sqrt{4-x^2} \ dx$ 。

10.计算 $\int_0^1 x \arctan x \, dx$ 。

解答内容不得超过装订线

11.计算
$$\int_{-\sqrt{2}}^{1} \frac{1+x^2}{1+x^4} dx$$
。

12.求抛物线 $y^2 = x - 5x^2 + y^2 = 6$ 所围成的图形的面积并计算该区域绕x 轴旋转而成的立体的体积。

13.设f(x)在 $(0,+\infty)$ 上二阶连续可微,f(0)=f'(0)=0,且f''(x)>0($0 \le x < +\infty$)。若 $\psi(x)$ 表示曲线y=f(x)过切点(x,f(x))的切线在x轴上的截距,求极限 $\lim_{x\to 0^+} \frac{\int_0^{\psi(x)} f(t) \, dt}{\int_0^x f(t) \, dt}$ 。

分数 评卷人

四、证明题(每题8分,共24分)

14.设f(x)为定义在[a,b]区间上的非负连续函数。若

$$\int_a^b f(x) \ dx = 0,$$

证明: 在区间[a,b]上 $f(x) \equiv 0$ 。

15.设 $I_n = \int \sec^n x \ dx$,应用分部积分证明

$$I_n = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} I_{n-2}$$

16.若函数f(x), g(x)在 $[\alpha,\beta]$ 上可积, 应用

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \le \left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right)$$

证明 Schwarz 不等式:

$$\left(\int_{\alpha}^{\beta} f(x)g(x) \ dx\right)^{2} \leq \left(\int_{\alpha}^{\beta} f^{2}(x) \ dx\right) \left(\int_{\alpha}^{\beta} g^{2}(x) \ dx\right).$$