

Classification

Santi Seguí | 2019-2020

Classification

What happens when the response is qualitative (also named categorical)?

Which is the optimal boundary for these datasets?

Supervised Learning

Linear Regression?

Can we use Linear Regression?

• Suppose for the Default classification task that we code as:

$$Y = \begin{cases} 0 \text{ if No} \\ 1 \text{ if Yes} \end{cases}$$

• Can we simply perform a linear regression of Y on X and classify as Yes if $\hat{Y} > 0.5$?

$$p(X) = \beta_0 + \beta_1 X$$

Can we use Linear Regression?

• Suppose for the Default classification task that we code as:

$$Y = \begin{cases} 0 \text{ if No} \\ 1 \text{ if Yes} \end{cases}$$

- Can we simply perform a linear regression of Y on X and classify as Yes if $\hat{Y} > 0.5$?
 - In this case of a binary outcome, linear regression does a good job as a classifier, and is equivalent to linear discriminant analysis which we discuss later.
 - Since in the population E(Y|X=x) = Pr(Y=1|X=x), we might think that regression is perfect for this task.
 - However, linear regression might produce probabilities less than zero or bigger than one. Logistic regression is more appropriate.

Can we use Linear Regression?

- Supose that we are trying to predict medical conditions of a patient in emergency room based on their symptoms. Imagine there is three possible diagnosis: **stroke**, **drug overdose** and **epileptic seizure**.
- We could consider encoding these values as a quantitative responses variable, Y, as follows:

$$Y = \begin{cases} 1 \text{ if stroke} \\ 2 \text{ if drug overdose} \\ 3 \text{ if epileptic seizure} \end{cases}$$

Any problem?

Logistic Regression

The orange marks indicate the response Y, either 0 or 1. Linear regression does not estimate Pr(Y=1|X) well. Logistic regression models the probability the Y belongs to a particular category.

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Logistic Regression

- How should we model the relationship between p(X) = Pr(Y = 1 | X) and X using a function that gives outputs between 0 and 1 for all values of X?
- Logistic regression uses the form:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

(e = 2.71828 is a mathematical constant [Euler's number.])

• Remember the exfunction is:

• It is easy to see that no matter what values 0,1 or X take, p(X) will have values between 0 and 1.

Logistic Regression

- How should we model the relationship between p(X) = Pr(Y = 1 | X) and X using a function that gives outputs between 0 and 1 for all values of X?
- Logistic regression uses the form:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

• A bit of rearrangement we find that:

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}$$

• and taking the logarithm in both sides we arrive at:

$$log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

which is called the log odds or logit transformation of p(X).

D_\S\~\

- As in linear regression, the coefficients β_0 and β_1 are unknown, and must be estimated using the training data.
- To fit the model we use a method called **maximum likelihood**. The basic intuition behind maximum likelihood to fit a logistic regression model as follows: we seek estimates β_0 and β_1 such that the predicted probabilities $\hat{p}(x_i)$ of default for each individual, corresponds as closely as possible to the individual's observed default status.

$$l(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

• This **likelihood** gives the probability of the observed zeros and ones in the data. We pick β_0 and β_1 to maximize the likelihood of the observed data.

$$l(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) - (1 - y)log(h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} -y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) \right]$$

m = number of samples

• Most statistical packages can fit linear logistic regression models by maximum likelihood. In R we use the glm function.

	Coefficient	Std. Error	Z-statistic	p-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

	Coefficient	Std. Error	Z-statistic	p-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

 What is our estimated probability of default for someone with a balance of 1000\$?

$$\hat{p}(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} = \frac{e^{-10.6513 + 0.0055x1000}}{1 + e^{-10.6513 + 0.0055x1000}} = 0.006$$

 What is our estimated probability of default for someone with a balance of 2000\$?

$$\widehat{p}(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} = \frac{e^{-10.6513 + 0.0055x2000}}{1 + e^{-10.6513 + 0.0055x2000}} = 0.586$$

Let's do it again, using student as the predictor.

	Coefficient	Std. Error	Z-statistic	p-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[YES]	0.4049	0.1150	3.52	0.0004

$$\widehat{Pr}$$
 (default = Yes | student = Yes) = $\frac{e^{-3.5041 + 0.4049x1}}{1 + e^{-3.5041 + 0.4049x1}} = 0.0431$

$$\widehat{Pr}$$
 (default = Yes | student = No) = $\frac{e^{-3.5041 + 0.4049x0}}{1 + e^{-3.5041 + 0.4049x0}} = 0.0292$

Logistic regression with several variables

$$log(\frac{p(X)}{1 - p(X)}) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

• Lets do it again, using balance, income and student as the predictors

	Coefficient	Std. Error	Z-statistic	p-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Logistic regression with several variables

$$log(\frac{p(X)}{1 - p(X)}) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

• Lets do it again, using balance, income and student as the predictors

	Coefficient	Std. Error	Z-statistic	p-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Why is coefficient for **student** negative, while it was positive before?

Confounding

Confounding

- Students tend to have higher balances than non-students, so their marginal default rate is higher than for non-students.
- But for each level of balance, students default less than non-students.
- Student is less risky than a non-student with the same credit balance!

Suposa que hem recol·lectat dades d'un grup d'estudiants d'aprenentatge automàtic i mineria de dades amb les següents variables:

 X_1 : hores d'estudi.

X2: nota d'accés a la universitat

Y: Aprovat (1) / Suspès (0)

Hem après una regressió logística i els coeficients obtinguts han estat els següents: $B_0 = -1.3$, $\beta_1 = 0.1$, $\beta_2 = 1$.

Recordeu que el model de la regressió logística té la següent formulació:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

(a) [1 punt] Estima la probabilitat que té l'estudiant si ha dedicat 60 hores i la nota d'accés a la universitat ha estat un 10.

(b) [1 punt] Quantes hores hauria d'estudiar un estudiant per tenir més d'un 50% de possibilitats d'aprovar l'assignatura d'estadística?

Example: South African Heart Disease

- **160 cases of MI** (myocardial infarction) and **302 controls** (all male in age range 15-64), from Western Cape, South Africa in early 80s.
- Overall **prevalence** very high in this region: **5.1%**
- Measurements on seven predictors (risk factors), shown in scatterplot matrix.
- Goal is to identify relative strengths and directions of risk factors.

Scatterplot matrix of the South African Heart Disease data. The response is color coded - The cases (MI) are red, the controls turquoise. famhist is a binary variable, with 1 indicating family history of MI


```
> heartfit <-glm(chd~.,data=heart,family=binomial)
> summary(heartfit)
Call:
glm(formula = chd \sim ., family = binomial, data = heart)
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.1295997 0.9641558 -4.283 1.84e-05 ***
sbp
             0.0057607 0.0056326 1.023 0.30643
tobacco 0.0795256 0.0262150 3.034 0.00242 **
           0.1847793 0.0574115 3.219 0.00129 **
1d1
famhistPresent 0.9391855 0.2248691 4.177 2.96e-05 ***
obesity -0.0345434 0.0291053 -1.187 0.23529
alcohol 0.0006065 0.0044550 0.136 0.89171
            0.0425412 0.0101749 4.181 2.90e-05 ***
age
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 483.17 on 454 degrees of freedom
AIC: 499.17
```

Which is the probability of having a heart attack?

Case-control sampling and logistic regression

- In South African data, there are **160 cases**, **302 controls** $\tilde{\pi} = 0.35$ are cases. Yet the prevalence of MI in this region is $\pi = 0.05$.
- With case-control samples, we can estimate the regression parameters β_j accurately (if our model is correct); the constant term β_0 is incorrect.
- We can correct the estimated intercept by a simple transformation

$$\hat{\beta}_0^* = \hat{\beta}_0 + \log \frac{\pi}{1 - \pi} - \log \frac{\tilde{\pi}}{1 - \tilde{\pi}}$$

• Often cases are rare and we take them all; up to five times that number of controls is sufficient.

Linear Discriminant Analysis

Linear Discriminant Analysis

- Here the approach is to model the distribution of X in each of the classes separately, and then use Bayes theorem to flip things around and obtain Pr(Y|X).
- When these data distribution are assumed to be normal, it turns out that the model is very similar to logistic regression.
- Although, this approach is quite general, and other distributions can be used as well, we will focus on normal distributions.

Linear Discriminant Analysis

 Thomas Bayes was a famous mathematician whose name represents a big subfield of statistical and probabilistic modeling. Here we focus on a simple result, known as Bayes theorem:

$$Pr(Y = k | X = x) = \frac{Pr(X = x | Y = k) \cdot Pr(Y = k)}{Pr(X = x)}$$

• One writes this slightly differently for discriminant analysis:

$$Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

- where,
 - $f_k(x) = Pr(X = x | Y = k)$ is **the density function** for X in class k. Here we will use normal densities for these, separately in each class
 - $\pi_k = Pr(Y = k)$ is the **marginal** or **prior** probability for class k.

Linear Discriminant Analysis

 $\pi_1 = .5$, $\pi_2 = .5$

• We classify a new point according to which density is highest. When the <u>priors</u> are different, we take them into account as well, and compare $\pi_k f_k(x)$. On the right, we favor the pink class (the decision boundary has shifted to the left).

Why discriminant Analysis?

- When the classes are well-separated, the parameter estimates for the logistic regression model are surprisingly **unstable**. Linear discriminant analysis does not suffer from this problem.
- If n is small and the distribution of the predictors X is approximately normal in each of the classes, the linear discriminant model is again more stable than the logistic regression model.
- Linear discriminant analysis is popular when we have more than two response classes, because it also provides low-dimensional views of the data.

Linear Discriminant Analysis when p = 1

The Gaussian density has the form

$$f_k(x) = \frac{1}{\sigma_k \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu_k}{\sigma_k}\right)^2}$$

- Here μ_k is the mean, and σ_k^2 the variance (in class k). We will assume that all the $\sigma_k = \sigma$ are the same.
- Plugging this into Bayes formula, we get a rather complex expression for $p_k(x) = Pr(Y = k | X = x)$:

$$p_{x}(k) = \frac{\pi_{k} \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{1}{2} \left(\frac{x - \mu_{k}}{\sigma}\right)^{2}}}{\sum_{l=1}^{K} \pi_{l} \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{1}{2} \left(\frac{x - \mu_{l}}{\sigma}\right)^{2}}}$$

Happily, there are simplifications and cancellations.

Discriminate functions

• To classify at the value X = x, we need to see which of the $p_k(x)$ is largest. Taking logs, and discarding terms that do not depend on k, we see that this is equivalent to assigning x to the class with the largest discriminant score:

$$\lambda_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

- Note that $\lambda_k(x)$ is a linear function of x.
- If there are K = 2 classes and $\pi_1=\pi_2=0.5$, then one can see that the decision boundary is at

$$x = \frac{\mu_1 + \mu_2}{2}$$

Example with $\mu_1 = -1.5$, $\mu_2 = 1.5$,

$$\pi_1 = \pi_2 = 0.5 \text{ and } \sigma^2 = 1.$$

Typically we don't know these parameters; we just have the training data. In that case we simply estimate the parameters and plug them into the rule.

Estimating the parameters

$$\hat{\pi}_k = \frac{n_k}{n}$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2 = \sum_{k=1}^K \frac{n_k - 1}{n - K} \cdot \hat{\sigma}_k^2$$

Where

$$\hat{\sigma}_k^2 = \frac{1}{n_k - 1} \sum_{: y_i = k} (x_i - \hat{\mu}_k)^2$$

is the usual formula for the estimated variance in the kth class

Linear Discriminant Analysis when p>1

To extend the <u>LDA</u> classifier to the case of multiple predictors we will assume that $X = (X_1, X_2, \dots, X_p)$ is drawn from a multivariate Gaussian distribution, with a class-specific mean vector and a common covariance matrix Σ .

Linear Discriminant Analysis when p>1

It is defined as $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Many sample points from a multivariate normal distribution with $\pmb{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and

$$\Sigma = \begin{bmatrix} 1 & 3/5 \\ 3/5 & 2 \end{bmatrix}$$
, shown along with the 3-sigma ellipse, the two marginal distributions, and the two 1-d histograms.

Linear Discriminant Analysis when p>1

Density function:
$$f(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

Discriminant function:
$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + log \pi_k$$

Despite its complex form, $\delta_k(x) = c_{k0} + c_{k1}x_1 + c_{k2}x_2 + \dots + c_{kp}x_p$ is a linear combinations

Illustration: p=2 and K=3 classes

Here $\pi_1 = \pi_2 = \pi_3 = 1/3$ the dashed lines are known as the **Bayes decision** boundaries. Where they known, they would yield the fewest misclassification errors, among all possible classifiers.

Classifier Evaluation

How can we evaluate a classifier?

Binary Classification

Classification on Credit Data

		True Default Status No Yes Total		
		No	Yes	Total
Predicted	No	9644	252	9896
Default Status	Yes	23	81	104
	Total	9667	333	10000

- (23 + 252) / 10000 errors 2.75% misclassification rate! Some points to consider:
- This is **training error**, and we may be overfitting. Not a big concern here since n = 10000 and p = 4!
- If we classified to the prior **always to class No in this case** we would make 333/10000 errors, or only 3.33 %.
- Of the true No's, we make 23/9667 = 0.2% errors; of the true Yes's, we make 252/333 = 75.7% errors!

Types of errors

- **False positive rate**: The fraction of negative examples that are classified as positive 0.2% in example.
- **False negative rate**: The fraction of positive examples that are classified as negative 75.7% in example.
- We produced this table by classifying to class Yes if

$$Pr(Default = Yes | Balance, Student) \ge 0.5$$

• We can change the two error rates by changing the threshold from 0.5 to some other value in [0, 1]:

$$Pr(Default = Yes | Balance, Student) \ge threshold$$

and vary threshold

Varying the threshold

In order to reduce the false negative rate, we may want to reduce the threshold to 0.1 or less.

Classification Error

- **FP** = Negative considered Positive, also considered Type I Error
- **FN** = Positive considered Negative, also know as Type II error

- What is best, FP or FN?
 - It depends on the problem.
 - A FP may lead a subject to undergo an unnecessary treatment
 - A FN may not receive an intervention when one would have been beneficial

relevant elements

How many selected items are relevant?

Precision =

How many relevant items are selected?

Example: We want to train a model that for the diagnosis of Colon Cancer

Training:

Positive Cases: 10

Negative Cases: 90

Test:

Positive Cases: 10

Negative Cases: 90

Example: We want to train a model that for the diagnosis of Colon Cancer

Training:

Positive Cases: 10

Negative Cases: 90

Test:

Positive Cases: 10

Negative Cases: 90

Evaluate Model

Positive Cases:

Negative Cases

7 classified as Positive

3 classified as Negative

81 classified as Negative

9 classified as Positive

Accuracy or Classification Error

Confusion Matrix

Precision

Recall/Sensitivity

Specificity

F1-Score

ROC Curve

AUC

Accuracy =
$$(TP + TN) / N$$

$$(7 + 81) / 100 = 0.88$$

Accuracy or Classification Error

Confusion Matrix

Precision

Recall/Sensitivity

Specificity

F1-Score

ROC Curve

AUC

		Predicted		
		Positive	Negative	
Real	Positive	TP	FN	
Re	Negative	FP	TN	

		Predicted		
		Positive	Negative	
<u>a</u>	Positive	7	3	
Real	Negative	9	81	

Accuracy or Classification Error

Confusion Matrix

Precision

Recall/Sensitivity

Specificity

F1-Score

ROC Curve

AUC

Precision = TP / (TP + FP)

$$\frac{7}{7+9} = \frac{7}{16} = 0.4375$$

Accuracy or Classification Error

Confusion Matrix

Precision

Recall/Sensitivity

Specificity

F1-Score

ROC Curve

AUC

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{P}$$

$$\frac{7}{7+3} = \frac{7}{10} = 0.7$$

Accuracy or Classification Error

Confusion Matrix

Precision

Recall/Sensitivity

Specificity

F1-Score

ROC Curve

AUC

$$Specificity = \frac{TN}{TN + FP} = \frac{TN}{N}$$

$$\frac{81}{81+9} = \frac{81}{90} = 0.9$$

Accuracy or Classification Error

Confusion Matrix

Precision

Recall/Sensitivity

Specificity

F1-Score

ROC Curve

AUC

h is half the harmonic mean

Accuracy or Classification Error

Confusion Matrix

Precision

Recall/Sensitivity

Specificity

F1-Score

ROC Curve

AUC

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

$$2 \cdot \frac{0.4375 \cdot 0.7}{0.4375 + 0.7} = 0.538$$

ROC-Curve & AUC

- There is, usually, a trade-off between sensitivity and specificity: this is controlled by the classification threshold θ , and can be displayed graphically through the receiver operating curve.
- The area under the ROC curve (AUC) provides a measure of the performance of the classification model over all values θ .
- The AUC is independent on the amount of positive and negative cases.

ROC-Curve & AUC

Which is the best?

MODEL A

MODEL B

-Result——-

Positive Cases:

7 classified as Positive

3 classified as Negative

Negative Cases

81 classified as Negative

9 classified as Positive

-Result-

Positive Cases:

9 classified as Positive

1 classified as Negative

Negative Cases

78 classified as Negative

12 classified as Positive

Which is the best?

MODEL A

MODEL B

	Model A	Model B
Accuracy	0.88	0.87
Precision	0.43	0.42
Recall/Sensitivity	0.70	0.9
Specificity	0.90	0.86
F1-Score	0.53	0.58

MultiClass Classification

Definitions

- **Multi-Class:** classification task with more than two classes such that the input is to be classified into one, and only one of these classes. Example: classify a set of images of fruits into any one of these categories apples, bananas, and oranges.
- **Multi-labels:** classifying a sample into a set of target labels. Example: tagging a blog into one or more topics like technology, religion, politics etc. Labels are isolated and their relations are not considered important.
- **Hierarchical:** each category can be grouped together with similar categories, creating meta-classes, which in turn can be grouped again until we reach the root level (set containing all data). Examples include text classification & species classification.

Example: We want to train a model that predict the type of Colon Cancer (A;B;C and D):

MODEL A

	Predicted				
	Type A	Type A Type B Type C Type D			
Type A	10	0	0	0	
Type B	0	5	3	2	
Type C	0	1	8	1	
Type D	0	1	0	9	

MODEL A

	Predicted Predic				
	Type A	Type A Type B Type C Type D			
Type A	8	2	0	0	
Type B	1	7	3	2	
Type C	0	1	9	1	
Type D	2	3	0	5	

Example: We want to train a model that predict the type of Colon Cancer (A;B;C and D):

MODEL A

	Predicted				
	Type A	Type A Type B Type C Type D			
Type A	10	0	0	0	
Type B	0	5	3	2	
Type C	0	1	8	1	
Type D	0	1	0	9	

Accuracy = (10+5+8+9)/40 = 0.8

MODEL A

	Predicted					
	Type A	Type A Type B Type C Type D				
Type A	8	2	0	0		
Type B	1	7	3	2		
Type C	0	1	9	1		
Type D	2	3	0	5		

Accuracy = (8+7+9+5)/40 = 0.725

Example: We want to train a model that predict the type of Colon Cancer (A;B;C and D): with imabalanced dataset

MODEL A

MODEL A

	Predicted					
	Type A	Type A Type B Type C Type D				
Type A	100	80	10	10		
Type B	0	9	0	1		
Type C	0	1	8	1		
Type D	0	1	0	9		
Precision	100/100	9/91	8/18	9/21		

Average Accuracy = (0.5+0.9+0.8+0.9)/4 = 0.775

Average Precisions = 0.492

	Predicted					
	Type A	Type A Type B Type C Type D				
Type A	198	2	0	0		
Type B	7	1	0	2		
Type C	0	8	1	1		
Type D	2	3	4	1		
Precision	198/207	1/14	1/5	1/4		

Average Accuracy = (0.99+0.1+0.1+0.1)/4 = 0.3225

Table 3 Measures for multi-class classification based on a generalization of the measures of Table 1 for many classes C_i : tp_i are true positive for C_i , and fp_i – false positive, fn_i – false negative, and tn_i – true negative counts respectively. μ and M indices represent micro- and macro-averaging.

Measure	Formula	Evaluation focus
Average Accuracy	$\frac{\sum_{i=1}^{l}\frac{tx_{i}+tx_{i}}{tt_{i}+tt_{i}+tt_{i}+tx_{i}}}{I}$	The average per-class effectiveness of a classifier
Error Rate	$\frac{\sum_{i=1}^l \frac{f_{ij} + f_{ij}}{g_{ij} + f_{ij} + f_{ij} + f_{ij}}}{I}$	The average per-class classification error
Precision _µ	$\frac{\sum_{i=1}^{l} (\mathbf{p}_{i}}{\sum_{i=1}^{l} (\mathbf{p}_{i} + \mathbf{\hat{p}}_{i})}$	Agreement of the data class labels with those of a classifiers if calculated from sums of per-text decisions
$Recall_{\mu}$	$\frac{\sum_{i=1}^{l} t \mathbf{p}_i}{\sum_{i=1}^{l} (t \mathbf{p}_i + f \mathbf{n}_i)}$	Effectiveness of a classifier to identify class labels if calculated from sums of per-text decisions
Fscore _µ	$\frac{(\beta^2+1) Precision_{\mu} Recall_{\mu}}{\beta^2 Precision_{\mu} + Recall_{\mu}}$	Relations between data's positive labels and those given by a classifier based on sums of per-text decisions
Precision _M	$\frac{\sum_{i=1}^{l}\frac{tp_i}{tp_i+tp_i}}{l}$	An average per-class agreement of the data class labels with those of a classifiers
Recall _M	$\sum_{i=1}^{l} \frac{p_i}{p_i + h_i}$	An average per-class effectiveness of a classifier to identify class labels
Fscore _M	(β^2+1) Precision _M Recall _M β^2 Precision _M +Recall _M	Relations between data's positive labels and those given by a classifier based on a per-class average

https://www.sciencedirect.com/science/article/pii/S0306457309000259

- In Micro-average method, you sum up the individual true positives, false positives, and false negatives of the system for different sets and then apply them to get the statistics.
- In Macro-average, you take the average of the precision and recall of the system on different sets
- Micro-average is preferable if there is a class imbalance problem.

