

ESTUDO DE CASO – DESENVOLVIMENTO
DE UM SISTEMA DE GED COM OCR EM PYTHON
PARA AUXILIAR EM GERENCIAMENTO
DE DOCUMENTOS ELETRÔNICOS
EM ÁREAS RURAIS.

1. Introdução

1.1 Desafio

Empresas e clientes em áreas rurais enfrentam desafios significativos no gerenciamento de documentos eletrônicos, devido à falta de acesso a serviços bancários e tecnologia adequada. O processo de coleta, armazenamento e recuperação de documentos muitas vezes é demorado e propenso a erros, causando inconveniência e perda de tempo para as partes envolvidas.

1.2 Justificativa do Estudo

Este estudo busca desenvolver um sistema de Gerenciamento Eletrônico de Documentos (GED) com Reconhecimento Ótico de Caracteres (OCR) em Python para mitigar as dores enfrentadas pelas empresas e clientes em áreas rurais. A implementação deste sistema proporcionará uma solução rápida e precisa para o gerenciamento de documentos eletrônicos, reduzindo o tempo gasto e os erros cometidos durante o processo.

1.3 Objetivos do Projeto

O objetivo principal deste projeto é desenvolver um sistema que permita às empresas e clientes em áreas rurais coletar, armazenar e recuperar documentos eletrônicos de forma eficiente e precisa. Além disso, o projeto visa proporcionar uma experiência mais conveniente e acessível para as partes envolvidas no processo de gerenciamento de documentos.

2. Contextualização do Problema

2.1 Desafios no Gerenciamento de Documentos em Áreas Rurais

Empresas e clientes em áreas rurais enfrentam dificuldades significativas no processo de gerenciamento de documentos eletrônicos. A falta de acesso a serviços bancários e tecnologia adequada torna o processo demorado e propenso a erros, causando frustração e perda de tempo para todos os envolvidos.

2.2 Dores dos Clientes do Rural

Os clientes do rural muitas vezes precisam lidar com documentos importantes, como contratos e registros bancários, que requerem coleta e análise cuidadosas. O processo de escrever à mão e depois passar para o computador é demorado e propenso a erros, resultando em perda de tempo e possíveis retrabalhos.

3. Proposta de Solução

3.1 Descrição do Sistema Proposto

O sistema proposto utilizará tecnologia de Reconhecimento Ótico de Caracteres (OCR) em Python para permitir a rápida digitalização e análise de documentos eletrônicos. Os documentos serão coletados e processados de forma rápida e precisa, reduzindo o tempo gasto e os erros cometidos durante o processo.

3.2 Requisitos do Sistema

3.2.1 Requisitos Funcionais:

- RF1: Coleta de Documentos: O sistema deve permitir que os usuários coletem documentos eletrônicos por meio de upload de arquivos ou digitalização.
- RF2: Reconhecimento Ótico de Caracteres (OCR): O sistema deve ser capaz de extrair texto de documentos digitalizados utilizando tecnologia OCR em Pvthon.
- 3. RF3: Armazenamento de Documentos: Os documentos coletados e os metadados associados devem ser armazenados de forma segura nos bancos de dados.
- 4. RF4: Recuperação de Documentos: Os usuários devem poder buscar e recuperar documentos com base em critérios específicos, como nome do documento, data ou palavras-chave.
- 5. RF5: Visualização de Documentos: Os usuários devem poder visualizar os documentos armazenados no sistema.
- 6. RF6: Preenchimento Automático de Formulários: O sistema deve ser capaz de ler documentos digitalizados por OCR e preencher automaticamente formulários com as informações extraídas, agilizando assim o processo de obtenção de documentos importantes.

3.2.2 Requisitos Não Funcionais:

- RNF1: Tecnologias Utilizadas: O sistema será desenvolvido em Python, utilizando bibliotecas de OCR para reconhecimento ótico de caracteres e com sistemas de gerenciamento de banco de dados.
- RNF2: Interface Intuitiva: A interface do usuário deve ser amigável e de fácil utilização, proporcionando uma experiência intuitiva para os usuários.
- RNF3: Segurança: O sistema deve implementar autenticação de usuários e controle de acesso para garantir a segurança dos documentos armazenados.
- 4. RNF4: Performance: O sistema deve ter uma boa performance, mesmo quando lidando com grandes volumes de documentos, garantindo tempos de resposta rápidos para as operações de busca e recuperação.

4. Metodologia

4.1 Levantamento de Requisitos

O levantamento de requisitos foi realizado por meio de diversas abordagens para identificar as necessidades específicas do sistema. Estas abordagens incluíram:

- 1. Questionários: Foram elaborados questionários estruturados para coletar informações quantitativas e qualitativas sobre os processos atuais de gerenciamento de documentos eletrônicos, as principais dificuldades enfrentadas e as expectativas em relação ao sistema.
- Observação Direta: A equipe realizou observações diretas do processo de gerenciamento de documentos em empresas e clientes em áreas rurais para identificar pontos de fricção, gargalos e oportunidades de melhoria.
- Análise Documental: Foi realizada uma análise detalhada de documentos existentes, como formulários, contratos, registros e outros tipos de documentos utilizados pelas empresas e clientes em áreas rurais, para compreender as informações necessárias e os padrões de uso.

Essas abordagens de pesquisa proporcionaram uma compreensão abrangente das necessidades e requisitos do sistema, garantindo que o sistema proposto seja capaz de atender de forma eficaz às demandas dos usuários e às especificidades do ambiente rural em que será implantado. Com base nesse levantamento, será possível realizar os próximos passos do projeto com maior precisão e eficiência.

4.2 Design do Sistema

Com base nos requisitos levantados, será elaborado o design do sistema, incluindo arquitetura de software e interface de usuário.

4.3 Entidades

Com base nos requisitos levantados, as seguintes entidades serão definidas para o sistema:

- 1. **Usuário**: Representa os usuários do sistema, como funcionários da empresa responsáveis pelo gerenciamento de documentos ou clientes que interagem com o sistema para acessar documentos. Cada usuário terá informações como nome, endereço de e-mail, senha e papel no sistema (por exemplo, administrador, funcionário, cliente).
- Documento: Refere-se aos documentos eletrônicos a serem gerenciados pelo sistema, como formulários, contratos, registros, entre outros. Cada documento terá informações como título, tipo de documento, conteúdo e metadados associados.
- 3. **Metadados do Documento**: Informações adicionais associadas a cada documento, como nome do documento, data de criação, autor, palavras-chave, entre outros. Os metadados são importantes para facilitar a busca e a recuperação de documentos no sistema.
- 4. Cadastro de Clientes: Representa os dados dos clientes que precisam ser preenchidos pelos usuários, como parte do processo de coleta de informações. Cada formulário terá um conjunto de campos a serem preenchidos, e o sistema será capaz de preencher automaticamente esses formulários com base nas informações extraídas dos documentos digitalizados.
- 5. Registro de Atividades: Registra todas as atividades realizadas no sistema, como upload de documentos, preenchimento de formulários, buscas realizadas, entre outros, para fins de rastreabilidade e auditoria. Cada registro de atividade incluirá as seguintes informações:
 - Data e hora da atividade
 - Usuário responsável
- 6. **Configurações do Sistema**: Entidade responsável por armazenar as configurações do sistema, como detalhes de conexão com bancos de dados, configurações de segurança e preferências do usuário. Isso permite uma fácil personalização e manutenção do sistema.

Essas entidades serão essenciais para o desenvolvimento do sistema de GED com OCR em Python, garantindo que todas as informações necessárias sejam devidamente estruturadas e gerenciadas para atender às demandas dos usuários e do ambiente rural em que será implantado.

4.4 Implementação

O sistema será desenvolvido em Python, utilizando as tecnologias especificadas. Testes unitários e de integração serão realizados durante o desenvolvimento.

4.5 Testes e Validação

Serão realizados testes de sistema para garantir a funcionalidade e a qualidade do sistema. Os usuários finais serão convidados a testar o sistema e fornecer feedback.

4.6 Implantação

Após a conclusão dos testes e validação, o sistema será implantado em ambiente de produção e disponibilizado para uso.

4.7 Cronograma

A seguir, apresenta-se o cronograma detalhado para o desenvolvimento do sistema:

Etapa	Data
Levantamento de Requisitos	06/04/2024
Design do Sistema	06/04/2024
Entidades	06/04/2024
Implementação	17/04/2024
Testes e Validação	18/04/2024
Implantação	19/04/2024

4.8 Ferramentas

- Analise de imagens
 - o OpenCV, OCR, Tesseract
- Interface
 - ⇒ PyQt
- Banco de dados e Autenticação de usuário
 - Psycopg2 Para acessar o PostgreSQL
 - Psycopg PostgreSQL database adapter for Python Psycopg 2.9.9 documentation
 - SQLAlchemy para relacionar com as classes do sistema

- SQLAlchemy Documentation SQLAlchemy 2.0 Documentation
- Passlib Para criptografar senhas da autenticação
 - Documentação do Passlib 1.7.4 Documentação do Passlib v1.7.4
- Documentação e Gerenciamento de tasks
 - o Notion
- Controle de Versão
 - Git e Github

5. Resultados Esperados

O sistema desenvolvido proporcionará uma solução eficiente para o gerenciamento de documentos eletrônicos em áreas rurais, reduzindo o tempo gasto e os erros cometidos durante o processo.

6. Discussão e Análise

O desenvolvimento do sistema pode enfrentar desafios técnicos relacionados à integração com bancos de dados e implementação de OCR em Python. A precisão do OCR pode ser afetada por diferentes tipos de documentos e qualidade da digitalização. Para resolver esses desafios, será fundamental realizar testes extensivos durante o processo de desenvolvimento, além de implementar estratégias de otimização para melhorar a precisão do OCR. O uso de algoritmos avançados de reconhecimento de caracteres e a calibração adequada dos parâmetros do sistema também podem contribuir significativamente para a melhoria da precisão e eficácia do sistema. Além disso, a equipe de desenvolvimento estará preparada para lidar proativamente com quaisquer problemas técnicos que possam surgir, buscando soluções criativas e eficientes para garantir o sucesso do projeto.

7. Conclusão

O sistema proposto atenderá às necessidades das empresas e clientes em áreas rurais, proporcionando uma solução eficiente e acessível para o gerenciamento de documentos eletrônicos.

Este estudo de caso destaca a dor enfrentada pelas empresas e clientes em áreas rurais relacionada ao processo demorado e propenso a erros de escrever à mão e depois passar para o computador. A solução proposta visa proporcionar uma maneira rápida e precisa de coletar, analisar e armazenar documentos eletrônicos, reduzindo assim o tempo gasto e os erros cometidos durante o processo. Com essa solução, as partes envolvidas poderão

economizar tempo e, se necessário, corrigir erros no mesmo dia, sem a necessidade de retrabalhos ou viagens adicionais.