```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [2]: df=pd.read_csv(r"C:\Users\Admin\Downloads\18_world-data-2023 - 18_world-data-2023.csv")
df

Out[2]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	Capital/Major City	Co2- Emissions		Out of pocket health expenditure	Phy:
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0	Kabul	8,672		78.40%	
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.0	Tirana	4,536		56.90%	
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0	Algiers	150,006		28.10%	
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0	Andorra la Vella	469		36.40%	
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0	Luanda	34,693		33.40%	
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	58.0	Caracas	164,175		45.80%	
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	84.0	Hanoi	192,668		43.50%	
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	967.0	Sanaa	10,609		81.00%	
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	260.0	Lusaka	5,141		27.50%	
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	263.0	Harare	10,983		25.80%	
195 rows × 35 columns													

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 195 entries, 0 to 194 Data columns (total 35 columns): Non-Null Count Dtype # Column 0 Country 195 non-null object 1 Density (P/Km2) 195 non-null object 2 Abbreviation 188 non-null object Agricultural Land(%) 188 non-null 3 object Land Area(Km2) 194 non-null object 171 non-null object 5 Armed Forces size Birth Rate 189 non-null float64 Calling Code 194 non-null float64 Capital/Major City 192 non-null object Co2-Emissions 188 non-null 9 object 10 CPI 178 non-null object 11 CPI Change (%) 179 non-null object 12 Currency-Code 180 non-null object 13 Fertility Rate 188 non-null float64 14 Forested Area (%) 188 non-null object Gasoline Price 175 non-null 15 object 16 GDP 193 non-null object Gross primary education enrollment (%) 17 188 non-null object 18 Gross tertiary education enrollment (%) 183 non-null object 19 Infant mortality 189 non-null float64 20 Largest city 189 non-null object float64 21 Life expectancy 187 non-null 22 Maternal mortality ratio 181 non-null float64 23 Minimum wage 150 non-null object 24 Official language 194 non-null object Out of pocket health expenditure 188 non-null object Physicians per thousand 188 non-null float64 26 27 Population 194 non-null object Population: Labor force participation (%) 176 non-null object 28 Tax revenue (%) 169 non-null object 183 non-null 30 Total tax rate object Unemployment rate 176 non-null object 32 Urban_population 190 non-null object 33 Latitude 194 non-null float64 34 Longitude 194 non-null float64

dtypes: float64(9), object(26) memory usage: 53.4+ KB

In [4]: df.describe()

Out[4]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	Latitude	Longitude
count	189.000000	194.000000	188.000000	189.000000	187.000000	181.000000	188.000000	194.000000	194.000000
mean	20.214974	360.546392	2.698138	21.332804	72.279679	160.392265	1.839840	19.092351	20.232434
std	9.945774	323.236419	1.282267	19.548058	7.483661	233.502024	1.684261	23.961779	66.716110
min	5.900000	1.000000	0.980000	1.400000	52.800000	2.000000	0.010000	-40.900557	-175.198242
25%	11.300000	82.500000	1.705000	6.000000	67.000000	13.000000	0.332500	4.544175	-7.941495
50%	17.950000	255.500000	2.245000	14.000000	73.200000	53.000000	1.460000	17.273849	20.972652
75%	28.750000	506.750000	3.597500	32.700000	77.500000	186.000000	2.935000	40.124603	48.281523
max	46.080000	1876.000000	6.910000	84.500000	85.400000	1150.000000	8.420000	64.963051	178.065032

```
In [5]: df.columns
```

In [6]: sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x183cbb69f40>

In [7]: sns.distplot(df['Physicians per thousand'])

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x183cef4e040>

In [8]: Fertility Rate', 'Infant mortality', 'Life expectancy', 'Maternal mortality ratio', 'Physicians per thousand', 'Latitude',

Out[8]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	Latitude	Longitude
0	32.49	93.0	4.47	47.9	64.5	638.0	0.28	33.939110	67.709953
1	11.78	355.0	1.62	7.8	78.5	15.0	1.20	41.153332	20.168331
2	24.28	213.0	3.02	20.1	76.7	112.0	1.72	28.033886	1.659626
3	7.20	376.0	1.27	2.7	NaN	NaN	3.33	42.506285	1.521801
4	40.73	244.0	5.52	51.6	60.8	241.0	0.21	-11.202692	17.873887
190	17.88	58.0	2.27	21.4	72.1	125.0	1.92	6.423750	-66.589730
191	16.75	84.0	2.05	16.5	75.3	43.0	0.82	14.058324	108.277199
192	30.45	967.0	3.79	42.9	66.1	164.0	0.31	15.552727	48.516388
193	36.19	260.0	4.63	40.4	63.5	213.0	1.19	-13.133897	27.849332
194	30.68	263.0	3.62	33.9	61.2	458.0	0.21	-19.015438	29.154857

195 rows × 9 columns

In [9]: sns.heatmap(df1.corr())

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x183cfa0f370>

In [16]: df1.fillna(value=2)

Out[16]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	Latitude	Longitude
0	32.49	93.0	4.47	47.9	64.5	638.0	0.28	33.939110	67.709953
1	11.78	355.0	1.62	7.8	78.5	15.0	1.20	41.153332	20.168331
2	24.28	213.0	3.02	20.1	76.7	112.0	1.72	28.033886	1.659626
3	7.20	376.0	1.27	2.7	2.0	2.0	3.33	42.506285	1.521801
4	40.73	244.0	5.52	51.6	60.8	241.0	0.21	-11.202692	17.873887
							•••		
190	17.88	58.0	2.27	21.4	72.1	125.0	1.92	6.423750	-66.589730
191	16.75	84.0	2.05	16.5	75.3	43.0	0.82	14.058324	108.277199
192	30.45	967.0	3.79	42.9	66.1	164.0	0.31	15.552727	48.516388
193	36.19	260.0	4.63	40.4	63.5	213.0	1.19	-13.133897	27.849332
194	30.68	263.0	3.62	33.9	61.2	458.0	0.21	-19.015438	29.154857

195 rows × 9 columns

```
In [20]: df2=df1.head(10)
```

In [21]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 9 columns):

Column Non-Null Count Dtype ---0 Birth Rate 10 non-null float64 1 Calling Code 10 non-null float64 2 Fertility Rate 10 non-null float64 3 Infant mortality 10 non-null float64 Life expectancy 9 non-null float64 Maternal mortality ratio 9 non-null float64 Physicians per thousand 10 non-null float64 Latitude 10 non-null float64 float64 8 Longitude 10 non-null

dtypes: float64(9)
memory usage: 848.0 bytes

```
In [22]: x=df2[['Birth Rate','Calling Code','Fertility Rate','Infant mortality']]
y=df2[['Physicians per thousand']]
```

```
In [23]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

Out[24]: LinearRegression()

```
In [25]: print(lr.intercept_)
```

[26.43627749]

```
In [26]: prediction= lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[26]: <matplotlib.collections.PathCollection at 0x183cfa0f430>
          14
          12
          10
           6
In [27]: print(lr.score(x_test,y_test))
         -18.650113223668782
In [28]: print(lr.score(x_train,y_train))
         0.7319885372217098
In [29]: from sklearn.linear_model import Ridge,Lasso
In [30]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[30]: Ridge(alpha=10)
In [31]: rr.score(x_test,y_test)
Out[31]: 0.765688988525199
In [32]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[32]: Lasso(alpha=10)
In [33]: la.score(x_test,y_test)
Out[33]: 0.30780023250568944
 In [ ]:
```