

Aunt Elisa

Endpräsentation des Projektes der Vorlesung Data Exploration Project

Referenten: Johannes Deufel, Jannik Fischer, Simone Marx & Simon Scapan

Agenda

01 Idee

02 Recherche

03 Technologien und Methoden

04 Weitere Ansätze

05 Bewertung

1 Idee

Das Problem

Zunehmende
Vereinsamung von
Menschen in
Pflegeheimen und in ihren
Häusern, vor allem durch
den Corona Lockdown

Ideen

Lösungsansätze neben anderen digitalen Kommunikationswegen

Die Lösung

Ein Chatbot, der mit dem Nutzer chattet

Die Umsetzung

Software soll über Sprachsteuerung von jeder Altersgruppe nutzbar sein

Recherche

Wirtschaftsanalysen Related Work

Kosten-Nutzen Analyse

Langfristiger Ertrag soll sichergestellt sein

Break-even Point soll möglichst früh erreicht werden

SWOT

Stärken

- starkes Bedürfnis für menschlichen Kontakt
- wenig Konkurrenz
- Nutzerfreundlichkeit
- Anwendung optimal auf die Zielgruppe abgestimmt

Schwächen

- immer noch hohe Barriere bei der technischen Nutzung bei älteren Menschen
 - Einarbeitung der Pfleger im Umgang mit dem System

Möglichkeiten

- alternde Gesellschaft, hohes Bedürfnis nach Kontakten
- Entlastung für die Pfleger
- digitaler Wandel bei Rentnern

Gefahren

- verringerte Nachfrage, wenn Corona-Krise vorbei ist
 - keine Akzeptanz bei der Zielgruppe/kein Bedarf

A Marketing

Marketing Mix	Umsetzung
Produkt	Fokus auf Anwenderfreundlichkeit
Preis	Niedrigpreispolitik: Produkt möglichst günstig anbieten
Kommunikation	Werbung unter anderem in Tageszeitungen
Distribution	Indirekte Distribution über Pflegeheime
Marketing Mix	Umsetzung

Related Work

Seq2Seq als Deep Learning Algorithmus

Umsetzung durch Word2Vec Modell

Anwendung über RNNs

Architektur

Gesamtkonzept Sprachverarbeitung

Gesamtkonzept

Sprachverarbeitung

Das Modell

Verworfene Ansätze Data Preprocessing Das Training

Naïve Bayes &

Entscheidungsbäume

Erkennung der Wortart durch

Wortstruktur

Großer vielfach gelabelter Datensatz notwendig

Deep Learning ist besser für dieses Projekt geeignet

Verworfene Ansätze

Modell 1

- Implementiertes Seq2Seq Modell
- Verwendung der Seq2Seq Tensorflow
- Programmierung des Pre- Processings
- Problem mit negativen Wahrscheinlichkeiten beim Training

Modell 0

- Seq2Seq Modell über RNN selbst implementiert
- Eigenständige Verbindung der Layer
- Kein lauffähiges Training möglich

Data Preprocessing

Zusammenführung

Bereinigung

Message-Response Pairs Vokabelliste Indizierung der Vokabeln

Das Training

Embeddingmatrix

Attention

Dropout

https://jeddy92.github.io/images/ts_intro/seq2seq_ts.png

Das Ergebnis

Evaluation

Training und Test

Bewertung

positiv

Smalltalk möglich

Modell erfüllt Anforderungen

negativ

keine tiefgehenden Gespräche möglich

Bedienung komplexer als erwartet

Ausblick

Zeit

Sehr zeitaufwendiges
Projekt
→ Mehr Zeit für optimale
Lösungen

Technologie

Verwendung von Beam Search

Die Anwendung soll nutzerfreundlicher werden

Ressourcen

Reinvestition des Ertrags in höhere Ressourcen für das Projekt

Vielen Dank

Literatur und Quellen

- Goyal, Palash; Jain, Karan; Pandey, Sumit. 2018, Deep Learning for Natural Language Processing: Creating Neural Networks with Python (Apress, Berkeley) 277
- Jackson, Christy; Nawas, Khadar; Prassanna, J.; R. Parabakaran; Ramanath, Sakkaravarthi.
 2020, Towards Building A Neural Conversation Chatbot Through Seq2Seq Model. In: International journal of scientific & technology research. Volume 9 (Nextgen) 1219 1222
- Koehrsen, Will. 2018, Recurrent Neural Networks by Example in Python. (towards data science)
 URL: https://towardsdatascience.com/recurrent-neural-networks-by-example-in-python ffd204f99470 (Zugriff: 02.07.2020)
- Kostadinov, Simeon. 2017, Understanding GRU Networks. (towards datascience) URL: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be (Zugriff: 14.07.2020)
- Hasani, Moein. 2020, Chatbot-with-TensorFlow-and-Keras. (GitHub)
 URL:https://github.com/Moeinh77/Chatbot-with-TensorFlow-and-Keras (Zugriff:05.07.2020)