Name:

Reg No.:_

		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY A EDUCAT	On 18
		Third Semester B.Tech Degree Examination December 2021 (2019 scheme)	15
			16
			4)
		Course Code: CST203	
		Course Name: Logic System Design	
M	ax. N	Marks: 100 Duration: 3	3 Hour
		PART A Answer all questions. Each question carries 3 marks	Mark
	1	Do the following base conversions	(3)
	1	a) (96DE) ₁₆ to octal	(3)
		b) (1011011000) ₂ to octal	
	2		(3)
	2	Subtract -12 from 23 using 2's complement representation and 1's complement	(3)
	2	representation State and approximated De Margan's theorem	(3)
	3	State and prove extended De Morgan's theorem	
	4	Using Huntington's postulates prove that	(3)
		a) x + x = x	
		b) $x + 1 = 1$	(2)
	5	Distinguish between decoder and demultiplexer	(3)
	6	Design a half adder circuit from its truth table	(3)
	7	Distinguish between T flip-flop and D flip-flop	(3)
	8	Explain race around problem. How can it be eliminated?	(3)
	9	Write the algorithm for addition of two binary numbers in 2's complement form	(3)
	10	What is programmable logic array? Where is it useful?	(3)
		PART B	
		Answer any one full question from each module. Each question carries 14 marks Module 1	,
	11	a) Convert i) (214) ₁₀ to binary, octal, BCD and hexadecimal	(4)
		ii) (128) to binary, octal, BCD and hexadecimal	(4)
		b) Represent -219 and -114 in	(6)
		i) sign magnitude formii) 1's complement form	
	12	a) Add 127 and 765 assuming the numbers are i) octal ii) BCD iii) hexadecimal	(6)
		b) Subtract 157 from 615 assuming the numbers are i) octal ii) BCD	(6)
		iii) hexadecimal iv) 2's complement form	(2)

0800CST203122004

Module 2

13	a) Define Boolean algebra. Give an example	(8)
	b) Show that any digital circuit can be implemented using universal gates	(6)
14	a) Simplify the Boolean function $F(a,b,c,d) = \sum_{i=1}^{n} (0,1,2,5,7,8,9,10,11,13,15)$	(7)
	using K map	
	b) Verify your answer using tabulation method.	(7)
	Module 3	
15	a) Explain parallel adder/subtractor circuit with a logic diagram	(8)
	b) Design a carry look ahead adder circuit for four bit binary addition	(6)
16	a) Design a code converter circuit for converting binary number to BCD	(8)
	number	
8	b) Design a 4x2 encoder circuit	(6)
	Module 4	
17	a) Explain 3 bit binary asynchronous counter with a logic diagram and timing	(8)
	sequence	
	b) Explain asynchronous BCD counter	(6)
18	a) Explain i) SR flip-flop ii) JK flip-flop iii) master-slave flip-flop with	(12)
	excitation table and characteristic equation	
	b) Explain edge triggered flip-flop	(2)
	Module 5	
19	a) Explain a ring counter with a logic diagram, timing sequence and state	(10)
	diagram	
	b) Explain with a logic diagram a serial in parallel out shift register	(4)
20	a) Illustrate the algorithm for addition and subtraction of two BCD numbers	(8)
	with an example	
	b) Explain with an example how simple functions can be implemented using	(6)
	PT A	
