Breakthrough Power JFET Technology

PWRLITE LD1014D

High Performance N-Channel **POWERJFET** with PN Diode

Features

- Superior gate charge x Rdson product (FOM)
- ❖ Trench Power JFET with low threshold voltage Vth.
- ❖ Device fully "ON" with Vgs = 0.7V
- ❖ Optimum for "Low Side" Buck Converters
- ❖ Excellent for high frequency dc/dc converters
- Optimized for Secondary Rectification in isolated DC-DC
- ❖ Low Rg and low Cds for high speed switching

Description

The Power JFET transistor from Lovoltech is a device that presents a Low Rdson allowing for improved efficiencies in DC-DC switching applications. The device is designed with a low threshold such that drivers can operate at 5V, which reduces the driver power dissipation and increases the overall efficiency. Lower threshold produces faster turn-on/turn-off, which minimizes the required dead time. A PN Diode is added for applications where a freewheeling diode is required. This product has tin plated leads.

Applications ❖ DC-DC Converters

- Synchronous Rectifiers
- PC Motherboard Converters
- Step-down power supplies
- Brick Modules
- VRM Modules

DPAK Lead-free Pin Assignments

N - Channel Power JFET with PN Diode

Pin Definitions

1 in Definitions							
Pin Number	Pin Name	Pin Function Description		Product Summary			
1	Gate	Gate. Transistor Gate		$V_{DS}(V)$	Rdson (Ω)	$I_{D}(A)$	
2	Drain	Drain. Transistor Drain		24V	0.0065	50 ¹	
3	Source	Source. Transistor Source					

Absolute Maximum Ratings

Absolute Maximum Ratings							
Parameter	Symbol	Ratings	Units				
Drain-Source Voltage	$ m V_{DS}$	24	V				
Gate-Source Voltage	V_{GS}	-12	V				
Gate-Drain Voltage	$ m V_{GD}$	-28	V				
Continuous Drain Current	I_D	50 ¹	A				
Pulsed Drain Current	I_D	100	A				
Single Pulse Drain-to-Source Avalanche Energy at 25°C	E _{AS}	200	mJ				
$(V_{DD} = 6V_{DC}, IL = 60A_{PK}, L = 0.3mH, R_G = 100 \Omega)$							
Junction Temperature	T_{J}	-55 to 150°C	°C				
Storage Temperature	T_{STG}	-65 to 150°C	°C				
Lead Soldering Temperature, 10 seconds	T	260°C	°C				
Power Dissipation (Derated at 25°C)	P_{D}	69	W				

Thermal Resistance

Symbol	Parameter	DPAK	Units
		Ratings	
$R\Theta_{JA}$	Thermal Resistance Junction-to-Ambient	90	°C/W
$R\Theta_{JC}$	Thermal Resistance Junction-to-Case	1.8	°C/W

Electrical Specifications

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

The ϕ denotes a specification which apply over the full operating temperature range.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units	
-	Static						
$\mathrm{BV}_{\mathrm{DSX}}$	Breakdown Voltage	$I_D = 0.5 \text{ mA}$	24	28		V	
	Drain to Source	$V_{GS} = -4 \text{ V}$					
$\mathrm{BV}_{\mathrm{GDO}}$	Breakdown Voltage	$I_G = -50\mu A$		-32	-28	V	
	Gate to Drain	·					
$\mathrm{BV}_{\mathrm{GSO}}$	Breakdown Voltage	$I_G = -50 \mu A$		-14	-12	V	
	Gate to Source						
$R_{DS(ON})$	Drain to Source On	$I_G = 40 \text{ mA}, I_D = 10 \text{A}$		4.6	6.5	mΩ	
	Resistance ²	$I_G = 10 \text{ mA}, I_D = 10 \text{ A}$		4.8	7.0	$m\Omega$	
		$I_G = 5 \text{ mA}, I_D = 10 \text{A}$		4.9			
$V_{GS(TH)}$	Gate Threshold Voltage	V_{DS} =0.1 V, I_D =250 μ A		-1		V	
TCV_{GSTH}	Temperature Coefficient of	$V_{DS}=0.1 \text{ V}, I_{D}=250 \mu\text{A}$		-2.6		mV/°C	
	Gate Threshold Voltage						
	Dynamic						
Q_{Gsync}	Total Gate Charge Sync JFET	ΔV_{Drive} =5V, V_{DS} =0.1V (Fig. 2)		9.8		nC	
Q_G	Total Gate Charge	ΔV_{Drive} =5V, I_D =10A, V_{DS} =15V		12.4		nC	
Q_{GD}	Gate to Drain Charge	$V_{DS} = 13.5 \text{V to } V_{DS} = 1.5 \text{V}$		8.1		nC	
Q_{GS}	Gate to Source Charge	$V_{GS} = -4.5 \text{V to } V_{DS} = 13.5 \text{V}$		4.3		nC	
Q_{SW}	Switching Charge	V_{GS} =-2V to V_{DS} =1.5V		9.1		nC	
R_G	Gate Resistance			0.7		Ω	
$T_{D(ON})$	Turn-on Delay Time			5.5			
T_R	Rise Time	$V_{DD}=15V$, $I_D=10A$		12.6		ns	
T _{D(OFF)}	Turn-off Delay	V _{Drive} = 5 V		10.3]	
$T_{\rm F}$	Fall Time	Resistive Load		6.6			
C _{ISS}	Input Capacitance			1147			
C _{OSS}	Output Capacitance]		467			
C_{GS}	Gate-Source Capacitance	$V_{DS}=10V, V_{GS}=-5 V, 1MHz.$		784		pF	
C_{GD}	Gate-Drain Capacitance	(see Fig. 4)		363			
C_{DS}	Drain-Source Capacitance			104			
	PN Diode						
I_R	Reverse Leakage	$V_R=20V$, $Vgs=-4V$			0.3	mA	
$V_{\rm F}$	Forward Voltage	$I_F = 1 A$		812		mV	
$V_{\rm F}$	Forward Voltage	$I_F = 10 A$		932		mV	
$V_{\rm F}$	Forward Voltage	$I_F = 20 A$		1010		mV	
Qrr	Reverse Recovery Charge	$I_s = 10 \text{ A di/dt} = 100 \text{A/us},$		7		nC	
Trr	Reverse Recovery Time	$I_s = 10 \text{ A di/dt} = 100 \text{A/us},$		13.3		ns	

Notes:

- 1. Current is limited by bondwire; with an Rthjc = 1.8 °C/W the chip is able to carry 80A.
- 2. Pulse width $\leq 500 \mu s$, duty cycle $\leq 2\%$

2 **Lovoltech, Inc. -** 3970 Freedom Circle - Santa Clara, CA 95054 -USA Tel. 1 408 654 1980 Fax 1 408 654 1988 www.lovoltech.com

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Figure 1 – R_{DSON} vs Gate Current at I_D – 10A

Figure 2 – Gate Charge Qg_{sync} for V_{DS}=0.1V

Figure 3 – Breakdown Voltage Vds vs Id

Figure 4 – Capacitance vs Drain Voltage Vds

Figure 5 – I_G vs Gate Voltage V_{GS}

Figure 6 – Transfer Characteristic

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

 $I_{G} = 1 \text{ mA}$ ID vs VDS LD1014D, Tc = 25°C 45 40 35 30 25 20 15 10 VDS(V)

Figure 7 – $R_{DSON} = f(T)$; $I_D = -10A$; $I_G = 40mA$

0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -0.90 -0.80 -0.70 -0.60 -1.10 -1.00 -0.50VDS (Volts)

Figure 8 – I_D vs V_{DS} Characteristics

Figure 9 – PN Diode Voltage vs Current

Figure 11 – Total Power Dissipation

Figure 12 – Normalized Thermal Response

Ordering Information

Product Number	PN Marking	Package	Notes:
LD1014D	LD1014D	TO252 (DPAK)	This product is Pb-Free and has Tin Plated leads

Package and Marking Information:

DIMENSIONS						
DIM.	mm.			inch		
DIM.	TYP.	MIN.	MAX.	TYP.	MIN.	MAX.
A		2.19	2.40		0.086	0.094
A 1		0.89	1.14		0.035	0.045
A2		0.03	0.13		0.001	0.005
b		0.76	1.14		0.030	0.045
b1		0.55	0.90		0.022	0.035
B2		5.20	5.46		0.205	0.215
C		0.45	0.60		0.017	0.023
C2		0.45	0.58		0.017	0.023
D		5.97	6.22		0.235	0.245
D1	5.30			0.208		
E		6.35	6.73		0.250	0.265
e	2.28			0.090		
Н		9.35	10.42		0.368	0.410
L2		0.88	1.27		0.035	0.050
L3		1.86	3.57		0.073	0.140
L4		0.64	1.02		0.025	0.040
R	0.20			0.008		
Alternate						
D		5.40	5.60		0.213	0.220
L2		1.25	1.75		0.049	0.069
L3		2.60	2.80		0.102	0.110
Н		9.65	9.75		0.380	0.384

Life Support Policy

LOVOLTECH'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF LOVOLTECH, Inc. As used herein:

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	In definition or in	This datasheet contains the design specifications for product development.
	Design	Specifications may change without notice.
Preliminary	Initial Production	This datasheet contains preliminary data; additional and application data will be
		published at a later date. Lovoltech, Inc. reserves the right to make changes at any
		time without notice in order to improve design.
No Identification Needed	In Production	This datasheet contains final specifications. Lovoltech reserves the right to make
		changes at any time without notice in order to improve the design.