

$f_{1^-}^{\#2}\alpha$	0	0	0	0	0	0	0
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{3k^2r_3}{2}$	0	0	0
$f_{1}^{\#1}{}_{lphaeta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}$ \vec{i} k t_2	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
,	$+^{\alpha eta}$	$\dagger^{\alpha \beta}$	$+^{\alpha eta}$	1 $^{+}$	2 $^{+}$	1 $^{+}$	2 $^{+}$
	$\omega_{1}^{\#1}$	$\omega_{1}^{\#2}$	$f_1^{\#1}$	$\omega_{1^{\bar{-}}}^{\#1}$	$\omega_{1}^{\#2}$.	$f_1^{\#1}$	$f_{1}^{#2}$

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{2}{3k^2r_3}$	0	0	0
$\tau_{1}^{\#1}_{+}{}_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
,	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0

Source constraints
SO(3) irreps
$\tau_{0+}^{\#2} == 0$
$\tau_{0+}^{\#1} == 0$
$\sigma_{0^{+}}^{\#1} == 0$
$\tau_{1}^{\#2\alpha} == 0$
$\tau_{1}^{\#1\alpha} == 0$
$\sigma_1^{\#2\alpha} == 0$
$\tau_{1+}^{\#1}{}^{\alpha\beta} + \bar{\imath} k \sigma_{1+}^{\#1}{}^{\alpha\beta} ==$
$\sigma_{1+}^{\#1\alpha\beta} = \sigma_{1+}^{\#2\alpha\beta}$

SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} == 0$	1
$\sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\sigma_1^{\#2\alpha} == 0$	3
$\tau_{1^{+}}^{\#1\alpha\beta} + ik\sigma_{1^{+}}^{\#1\alpha\beta} == 0$	3
$\sigma_{1}^{\#1\alpha\beta} == \sigma_{1}^{\#2\alpha\beta}$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	5
Total #:	28

$\tau_0^{\#1}$	0	0	0	0			
$\sigma_{0}^{\#1}$	0	0	0	0			
	$\sigma_0^{\#1} +$	$ au_{0}^{\#1} +$	$\tau_{0}^{\#2}$ †	$\sigma_{\tilde{\sigma}^{-1}}^{\#1}$ +	- -		
	μ)#1 0+	$f_{0}^{#1}$	$f_{0}^{#2}$	C	$\nu_{0}^{\#1}$	
$\omega_0^{\sharp 1}$	†	0	0	0		0	
$f_{0^{+}}^{#1}$	†	0	0	0		0	

	Massive particle			
?	Pole residue:	$-\frac{1}{r_2} > 0$		
$J^P = 0^-$	Polarisations:	1		
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$		
?	Spin:	0		
	Parity:	Odd		

(No massless particles)