· Used for Supervised learning · Typical learning ago for MLP metwork also called BACK PROPOGATION ALGORITHM 1/P layer receives 1/P signals, then it is given to shidden lagen. · Hedden layen + op layen penlonms computational la · Op layer geres prediction of on classification of · Hødden lægen in the comprisation Engine. . Dabitary no of hidden layers are placed fin blu / layer + op layer, and the drue computation Engine of me · Data New Pon forward direction (1/p -> 0/p) . The wengons for Mip age trained, with the back Poropogation leasuring algo which can solve perobleme which are not dimeasey Separable . The major Janeas of MIP age: D'Pattern Recognition. 2 classification 3 Prediction + Approximation. · The computation taking place at Every meuron in hidden layer & olp layer. 1/p -> h(z) hidden: h(x) = s(b(1) + w(1))J bras worght headan layen Activation func: Output: $O(x) = G_1(b(a) + w(a)h(x))$ · b(1), b(2) and bias rectors. · w(1), w(2) are weight metrices.

· 5 & Gr age Activation function. · Set of possensesses so leasen and Set(0) = {6(1), b(a), w(1), w(a)} by using back Propogation Algorithm · Fox MIP, we typically use Tann og Sigmoid activation function Op loyer 4 Penceptaon a 1/p bias No = (-2) Black odge sepseents W=-1 blue edge fundicates W=+1 Bras of each pencephon wo. = -2. * Each posseptson well fine only of wighted sucm of 1/p is greater than or equal to a. * Each of these peaceptaon en the hidden læyer is conn ected to the penceptaion en output layer by weights. * All those Weight should be leagent. * Rod Black & blue edges ane called layer i weights. * WI, Wa, N3, W4 age called layera weights. * checking this in/w can be used to implement any Boolean burne. (19 nearly Sepanable on not) > each penceptnon in the hidden layer fines

ously for the Specific imput (log (h), $x_1 = -1$ & $x_2 = -1$ (h) $x_1 = +1$ 4 $x_2 = -1$ (h), $x_1 = -1$ 4 $x_2 = +1$ (h) $x_1 = +1$ 4 $x_2 = +1$ Constitution of the second of

XOR Openation

20,	71 a	y		
0	0	0		
. 0	1	0		
1	0	1		
1	1	0		

No is the bios of the moveron. It will fine of E with > wo. (4 pencoptnon)

xixa		XOR	hi	ha	ha	hu	E wihi	> W =
0	0		1	and the second second	0		NI 1	
,		1	0	1	0	0	Wa	velah
	· ·	1,	0			0	Wa Wa	factos
		0	0	0	0	1	W4 .	line of

* Those sesuelts for the 4 coundition to simplement

wa ≥ wo(1). W1 < W0(0)

w3 > wo (1)

N4 2 NO (0)

* Each no: is now responsible for one of the 4 possible Purpuss & can be adjusted so get the desired for short 1/p.

Ainy Boolean function of n' imput com be depresente exactly by a methodo of perception combaining one hidden layer with a perceptions 4 one output layer countaining one perception $n'/p \longrightarrow P$

Eg: A prouson would like to buy a con or mot with single imput x -> salary.

Salin Koo y (buy on not)

80
1

65