

Gene Diffusion

Philip Kenneweg¹ Rangaram Dandinasivara Raghuram¹ Hammer ¹

Alexander Schönhuth¹

Barbara

¹University Bielefeld

24-02-2023, Bielefeld

Introduction

Motivation

There is great promise in **disease prediction**, **functional understanding**, **drug synthesis** and other applications of artificial intelligence in the field of genetics.

(a) disease prediction

(b) protein folding

Challenges

Very sensitive personal data, which should not be distributed.

Challenges

Genetic data is expensive to obtain, even though sequencing it is getting cheaper each year.

Challenges

Annotated data is costly to obtain and labels are unreliable, Especially true for medical data.

Idea

We want to adapt learning paradigms from the recently, successful area of natural fariguage and image processing. I.e. processing large scales of unlabeled data which enable models to be trained with few labeled examples.

We are taking a closer look at **diffusion models**. These kind of models can help us with:

- Semi-supervised learning: Through the diffusion process we can learn on data without labels.
- Privacy: Generalizing from sensitive personal data to synthetic data.

Background

Diffusion Models

Diffusion Models

Architecture Unet 1D with Attention

Faculty of Technology

Genetic Data SNPs

of Technology

```
Individual 1
Maternal . . . CGATATTCCTATCGAATGTC . . .
Paternal . . . CGATATTCCCATCGAATGTC . . .
Individual 2
Maternal . . . CGATATTCCCATCGAATGTC . . .
Paternal . . . CGATATTCCCATCGAATGTC . . .
Individual 3
Maternal . . . CGATATTCCTATCGAATGTC . . .
Paternal . . . CGATATTCCTATCGAATGTC . . .
Individual 4
Maternal . . . CGATATTCCCATCGAATGTC . . .
Paternal . . . CGATATTCCTATCGAATGTC . . .
```

Genetic Data preprocessing

Latent Space Analysis

To evaluate the Diffusion Model it is paramount to look at a variety of metrics. Since high dimensional gene pca data is not understandable for humans we use a variety of other metrics.

- loss curves
- UMAP
- classification task performance (ALS disease detection)
- diversity measures (closest sample etc.)

Loss Curves

Figure: Performance differences for different network architectures

In general:

- ► Bigger = Better (no overfitting observed)
- some additional preprocessing beneficial (a custom dense layer for each pca)

of Technology

Figure: UMAPs for different network backbones using cosine similarity as a distance metric. Euclidean distance UMAPs are not informative.

ALS classifier performance

Figure: Comparison between synthetic and real training data. Performance is measured on a hold out test set.

Training Curves

Figure: Loss curves during training for different Model Architectures.

Transformer Masked Token Modeling

Figure: Loss and Accuracy for Transformer during pre-training and fine-tuning.

Discussion

Improvements?

- More data
- Different validation task (ALS seems problematic)
- ... your ideas?

Thank you!