TRIGONOMETRY (UNIT CIRCLE): 03

1. Find the coordinates of the point P on the following unit circles.

(b)

(d)

2. Find the possible exact values of $\cos \theta$ for:

 $\sin \theta = \frac{1}{2}$

- $\sin \theta = -\frac{1}{2}$
- Find the possible exact values of $\sin \theta$ for:

 $\cos \theta = \frac{4}{5}$

- **b** $\cos \theta = -\frac{3}{4}$
- Find the exact values of

(a) cos 120° (b)

- $\sin 210^{\circ}$ (c) $\cos \frac{7\pi}{4}$ (d) $\tan \frac{5\pi}{4}$
- 5. Without using a calculator, find:

- **a** $\sin\theta$ if $\cos\theta=\frac{2}{3}$ and $0<\theta<\frac{\pi}{2}$ **b** $\cos\theta$ if $\sin\theta=\frac{2}{5}$ and $\frac{\pi}{2}<\theta<\pi$ **c** $\cos\theta$ if $\sin\theta=-\frac{3}{5}$ and $\frac{3\pi}{2}<\theta<2\pi$ **d** $\sin\theta$ if $\cos\theta=-\frac{5}{13}$ and $\pi<\theta<\frac{3\pi}{2}$
- 6. Find exact values for $\sin x$ and $\cos x$ given that:

a $\tan x = \frac{2}{3}$ and $0 < x < \frac{\pi}{2}$

b $\tan x = -\frac{4}{3}$ and $\frac{\pi}{2} < x < \pi$

 $\tan x = \frac{\sqrt{5}}{3}$ and $\pi < x < \frac{3\pi}{2}$

- d $\tan x = -\frac{12}{5}$ and $\frac{3\pi}{2} < x < 2\pi$
- 7. Given that $\cos \theta = k$ and $0 < \theta < \frac{\pi}{2}$ find

(a)

- $\cos(\pi + \theta)$ (b) $\cos(2\pi \theta)$ (c) $\cos(\frac{\pi}{2} + \theta)$
- 8. Find (a) $\sin \theta = \frac{1}{7}, 0^{\circ} < \theta < 360^{\circ}$

(b) $\tan \theta = -\sqrt{3}, 0 < \theta < 2\pi$

 $\cos\theta = 1, 0 < \theta < 2\pi$

9. Simplify

(a)

- (b) $\frac{\sin(\frac{\pi}{2} + \theta)\cos(\frac{\pi}{2} \theta)}{\cos(\pi + \theta)}, \text{ where } 0 < \theta < \frac{\pi}{2}.$
- 10. Find the following function values. Find the exact value, if possible. Otherwise, find the approximate value accurate to 3 significant figures.

a) $\sin \frac{2\pi}{3}$ b) $\cos \frac{5\pi}{4}$ c) $\tan \frac{11\pi}{6}$ d) $\sin \frac{13\pi}{6}$ e) $\cos 3.75$

Find the exact value of 11.

(a)
$$\sin \frac{11\pi}{6} \cos \frac{5\pi}{6} - \sin \frac{5\pi}{6} \cos \frac{11\pi}{6}$$
 (b) $2 \sin \frac{\pi}{6} \cos \frac{\pi}{6}$

(b)
$$2\sin\frac{\pi}{6}\cos\frac{\pi}{6}$$

(c)
$$\frac{\tan \frac{\pi}{3} - \tan \frac{\pi}{6}}{1 + \tan \frac{\pi}{3} \tan \frac{\pi}{6}}$$

(d)
$$\cos \frac{\pi}{4} \cos \frac{\pi}{3} + \sin \frac{\pi}{4} \sin \frac{\pi}{3}$$

Show that the following relationships are true 12.

(a)
$$\sin 2\theta = 2 \sin \theta \cos \theta$$
, where $\theta = \frac{\pi}{3}$

(b)
$$\cos 2\theta = 2\cos^2\theta - 1$$
, where $\theta = \frac{\pi}{6}$

(c)
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$
, where $\theta = \frac{2\pi}{3}$.

(d)
$$\sin(\theta - \phi) = \sin\theta\cos\phi - \sin\phi\cos\theta$$
, where $\theta = \frac{2\pi}{3}$ and $\phi = -\frac{\pi}{3}$.

TRIGONOMETRIC IDENTITIES

13. Simplify the following expressions

(a)
$$\cos\theta + \tan\theta\sin\theta$$

(b)
$$\frac{\cos\theta}{1+\sin\theta} - \frac{1-\sin\theta}{\cos\theta}$$

- 14. Show that $\frac{1-2\cos^2\theta}{\sin\theta\cos\theta} = \tan\theta \cot\theta$.
- 15. Prove the identity

a)
$$\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} = \frac{2}{\sin \theta}$$

a)
$$\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} = \frac{2}{\sin \theta}$$
 b)
$$\tan x + \sec x = \frac{\tan x + \sec x - 1}{\tan x - \sec x + 1}$$

c)
$$\frac{\sec\phi + \csc\phi}{\tan\phi + \cot\phi} = \sin\phi + \cos\phi$$

c)
$$\frac{\sec\phi + \csc\phi}{\tan\phi + \cot\phi} = \sin\phi + \cos\phi$$
 d) $\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} = 1 - \sin x \cos x$

16. (a) If
$$\tan \theta = \frac{3}{4}$$
, $\pi \le \theta \le \frac{3\pi}{2}$, find i. $\cos \theta$ ii.

(b) If
$$\sin\theta = -\frac{3}{4}, \frac{3\pi}{2} \le \theta \le 2\pi$$
, find i. $\sec\theta$ ii.

$$sec\theta$$

i.
$$\cot \theta$$

ANSWER

$$1. \cdot \text{(a)} \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \text{ (b)} \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \text{ (c)} \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \text{ (d)} \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \\ 2 \quad \textbf{a} \quad \cos \theta = \pm \frac{\sqrt{3}}{2} \quad \textbf{b} \quad \cos \theta = \pm \frac{2\sqrt{2}}{3}$$

3. **a**
$$\sin \theta = \pm \frac{3}{5}$$
 b $\sin \theta = \pm \frac{\sqrt{7}}{4}$ 4. $-\frac{1}{2}$ $-\frac{1}{2}$ $\frac{1}{\sqrt{2}}$: 1 5 **a** $\sin \theta = \frac{\sqrt{5}}{3}$ **b** $\cos \theta = -\frac{\sqrt{21}}{5}$ c $\cos \theta = \frac{4}{5}$

6. **a**
$$\sin x = \frac{2}{\sqrt{13}}$$
, $\cos x = \frac{3}{\sqrt{13}}$
7. $-k$ k $-\sqrt{1-k^2}$
8. $\theta = 30^\circ$ or 150°
b $\sin x = \frac{4}{5}$, $\cos x = -\frac{3}{5}$
6. $\sin x = -\sqrt{\frac{5}{14}}$, $\cos x = -\frac{3}{\sqrt{14}}$
7. $-k$ k $-\sqrt{1-k^2}$
8. $\theta = 30^\circ$ or 150°

$$\theta = \frac{2\pi}{3} \text{ or } \theta = \frac{5\pi}{3}$$
2 π
6. $\sin x = -\frac{12}{13}$, $\cos x = -\frac{3}{13}$

9.
$$-\tan\theta$$
 $-\sin\theta$ 10: $\frac{\sqrt{3}}{2}$. $-\frac{\sqrt{2}}{2}$. $-\frac{\sqrt{3}}{3}$. $\frac{1}{2}$. -0.821 . 11 (a) 0 (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1+\sqrt{3}}{2\sqrt{2}}$ 16 (a) (i) $-\frac{4}{5}$ (ii) $-\frac{5}{3}$ (b) (i) $\frac{4}{\sqrt{7}}$ (iii) $-\frac{\sqrt{7}}{3}$