Appendix

Hereinafter, for a set of functors F, Graph(F) stands for the set of every graph G s.t. Funct $(G) \subseteq F$.

Proposition 1. For LMNtal rule $r = T : \neg U$, $G' \xrightarrow{r} G \Leftrightarrow G \xrightarrow{r^{\text{inv}}} G'$

Proof. (\Rightarrow) We will prove by structural induction on the last-used reduction relation rule.

- Case (R1): We assume that G' = P, Q, G = P', Q and $P \xrightarrow{r} P'$. By the induction hypothesis, $P' \xrightarrow{r^{\text{inv}}} P$. By (R1), P', $Q \xrightarrow{r^{\text{inv}}} P$, Q. Therefore, $G \xrightarrow{r^{\text{inv}}} G'$.
- Case (R3): We assume that $G' \equiv P$, $P' \equiv G$, $P \xrightarrow{r} P'$. By the induction hypothesis, $P' \xrightarrow{r^{\text{inv}}} P$. By (R3) and $G' \equiv P$, $P' \equiv G$, we obtain $G \xrightarrow{r^{\text{inv}}} G'$.
- Case (R6) is self-evident by (R6).

Hence $G' \xrightarrow{r} G \Rightarrow G \xrightarrow{r^{\text{inv}}} G'$.

$$(\Leftarrow)$$
 follows from $(r^{\text{inv}})^{\text{inv}} = r$ and (\Rightarrow) .

Lemma 1. For an extensive ShapeType $\tau = (t/m, P, N)$, its weighting function w, and an LMNtal graph $G, G' \in Graph(Funct(\tau))$,

$$G' \xrightarrow{P} G \Rightarrow w(G) \ge w(G')$$

Proof. By $G' \xrightarrow{P} G$, let $p = \alpha : \neg \beta$ be a rule s.t. $G' \xrightarrow{p} G$. We will show $w(G) \ge w(G')$ by structural induction on the last-used reduction rule.

- Case (R1): We assume that $G' = G'_1$, G_2 , $G = G_1$, G_2 and $G'_1 \xrightarrow{p} G_1$. Then $w(G_1) \ge w(G'_1)$ by the induction hypothesis. We have $w(G') = w(G'_1) + w(G_2)$, $w(G) = w(G_1) + w(G_2)$, therefore $w(G) \ge w(G')$ holds.
- Case (R3): We assume that $G_1' \equiv G'$, $G \equiv G_1$, $G_1' \stackrel{p}{\to} G_1$. Then $w(G_1) \ge w(G_1')$ by the induction hypothesis. We have $w(G_1) = w(G)$, $w(G_1') = w(G')$, therefore $w(G) \ge w(G')$ holds.
- Case (R6): We assume that $G' = \alpha$, $G = \beta$. Since the type (t/m, P, N) is extensive, we have $w(\alpha) \le w(\beta)$ i.e. $w(G) \ge w(G')$.

Lemma 2. For an extensive ShapeType $\tau = (t/m, P, N)$, its weighting function w, a non-negative integer n, and a finite set of links L, the number of LMNtal graph G satisfying following formula is *finite* regarding structurally congruent graphs as the same.

$$G \in \operatorname{Graph}(\operatorname{Funct}(\tau)) \wedge w(G) = n \wedge \operatorname{FLink}(G) = L$$

Proof. The number of functors occurring in G is finite and also the number of atoms (excluding non-global connectors) occurring in G is less than n because of w(G) = n. Since the number of graphs consisting of finite kinds of functors and finite atoms is finite, the number of G is finite.

Lemma 3. For any LMNtal graph X, an extensive ShapeType (t/m, P, N), and a finite set of LMNtal graphs G, GGCHECK(X, (t/m, P, N, G)) terminates.

Proof. Let the weighting function of type (t/m, P, N) be w. Y given to the first argument of recursive call at line 5 of GGCHECK satisfies $Y \xrightarrow{P} X$. By Lemma 1, $w(X) \ge w(Y)$. By this and Lemma 2, the number of possible Y is finite (regarding structurally congruent graphs are the same). Also, it is verified at line 3 of GGCHECK that structurally congruent graphs cannot be given again to the argument of recursive calls, so that recursive calls occur finite times at most. Therefore GGCHECK(X, (t/m, P, N), G) terminates. \square

Theorem 1 (Termination of graph type checking). For any LMNtal graph X and an extensive ShapeType τ , GCHECK (X, τ) terminates.

Proof. This follows by Lemma 3 and the fact that Funct(X) and N are finite.

Lemma 4. For any LMNtal graph X, a ShapeType (t/m, P, N), and a finite set of LMNtal graphs G, if GGCHECK(X, (t/m, P, N), G) returns **true**, $X \triangleleft t(L_1, \ldots, L_m)$ holds.

Proof. We will show by induction on the maximum number n of times of recursive calls (i.e. the depth of recursion) of GGCHECK.

- If n = 0, **true** is returned at line 2. Also, we have $X \equiv t(L_1, ..., L_m)$. Then it is clear by the definition that $X \triangleleft t(L_1, ..., L_m)$.
- If n = k + 1 ($k \ge 0$), **true** is returned at line 5 since recursive calls occur one or more times. We have $Y \xrightarrow{P} X$ by the line 3 and $Y \triangleleft t(L_1, \ldots, L_m)$ by the induction hypothesis. Then $t(L_1, \ldots, L_m) \xrightarrow{P} {}^* Y$ follows by the definition of production relations. By $Y \xrightarrow{P} X$, we have $Y \xrightarrow{P} X$, so that $t(L_1, \ldots, L_m) \xrightarrow{P} {}^* X$. Therefore $X \triangleleft t(L_1, \ldots, L_m)$ holds.

Theorem 2 (Soundness of graph type checking). For any LMNtal graph X and a ShapeType (t/m, P, N), if GCHECK(X, (t/m, P, N)) returns **true**, $X : t(L_1, \ldots, L_m)$ holds.

Proof. GCHECK(X, (t/m, P, N)) returns **true** only when $\exists f \in \text{Funct}(X)$. $f \in N$ does not hold and then it just returns the returned value from GGCHECK(X, (t/m, P, N), \varnothing), so that GGCHECK(X, (t/m, P, N), \varnothing) returns **true**. By Lemma 4, we have $X \triangleleft t(L_1, \ldots, L_m)$. Since $\neg \exists f \in \text{Funct}(X)$. $f \in N$ holds, we have $\forall f \in \text{Funct}(X)$. $f \notin N$. Therefore $\text{Funct}(X) \cap N = \varnothing$ holds. Hence we have $X : t(L_1, \ldots, L_m)$. □

Lemma 5. For an LMNtal graph X and a ShapeType (t/m, P, N), if $X \triangleleft t(L_1, ..., L_m)$, GGCHECK $(X, (t/m, P, N), \varnothing)$ returns **true**.

Proof. By $X \triangleleft t(L_1, \ldots, L_m)$, for certain $X_0, \ldots, X_n \ (n \ge 0)$, the following holds:

$$t(L_1, \ldots, L_m) = X_n \xrightarrow{P} \ldots \xrightarrow{P} X_1 \xrightarrow{P} X_0 = X$$

Note that X_i is not the start symbol for every i (i < n) and $i \ne j \Rightarrow X_i \not\equiv X_j$ holds (i.e. no loops in the path). Consider the case when $GGCHECK(Y_i, (t/m, P, N), G_i)$ is called for i (i < n), Y_i s.t. $Y_i \equiv X_i$, and a certain G_i . Since X_i is not the start symbol, Y_i is also not the start symbol, so that the condition of the if statement at line 2 does not hold. Then we have $X_{i+1} \xrightarrow{P} Y_i$ by $X_{i+1} \xrightarrow{P} X_i$ and (R3).

- If $\nexists Y_{i+1} \in G_i$. $X_{i+1} \equiv Y_{i+1}$, the for-loop from the line 3 is executed for $Y \leftarrow X_{i+1}$, and then $GGCHECK(X_{i+1}, (t/m, P, N), G_{i+1})$ is called for a certain G_{i+1} at line 5.
- If $\exists Y_{i+1} \in G_i$. $X_{i+1} \equiv Y_{i+1}$, GGCHECK $(Y_{i+1}, (t/m, P, N), G_{i+1})$ has been called for a certain G_{i+1} elsewhere.

Therefore GGCHECK(Y_{i+1} , (t/m, P, N), G_{i+1}) is called for Y_{i+1} s.t. $Y_{i+1} \equiv X_{i+1}$ and a certain G_{i+1} somewhere in the recursive calls.

From the above reasons, when GGCHECK $(X, (t/m, P, N), \emptyset)$ is called, GGCHECK $(Y_n, (t/m, P, N), G_n)$ is also called for Y_n s.t. $Y_n \equiv X_n$ and a certain G_n . This call returns **true** at line 2 because of $Y_n \equiv X_n = t(L_1, \ldots, L_m)$.

Therefore $GGCHECK(X, (t/m, P, N), \varnothing)$ returns **true** since GGCHECK returns **true** if one or more recursive calls in it return **true**.

Theorem 3 (Completeness of graph type checking). For any LMNtal graph X and an extensive ShapeType (t/m, P, N), if $X : t(L_1, \ldots, L_m)$ holds, GCHECK(X, (t/m, P, N)) returns **true**.

Proof. By $X: t(L_1, ..., L_m)$, we have $X \triangleleft t(L_1, ..., L_m)$ and Funct $(X) \cap N = \emptyset$. Therefore $\forall f \in Funct(X)$. $f \notin X$, so that the condition of the if statement at line 2 of GCHECK does not hold. Then GCHECK(X, (t/m, P, N)) just returns the returned value from GGCHECK $(X, (t/m, P, N), \emptyset)$. By $X \triangleleft t(L_1, ..., L_m)$ and Lemma 5, GGCHECK(X, (t/m, P, N), G) returns **true**. Therefore GCHECK(X, (t/m, P, N)) returns **true**. □

Definition 1. A transition relation \mathcal{T} between LMNtal rules $\alpha_1 := \beta_1$ and $\alpha_2 := \beta_2$ is defined as follows:

$$lpha_1:-eta_1\overset{\mathscr{T}}{\longrightarrow}lpha_2:-eta_2 \ ext{iff} \quad \exists lpha_p:-eta_p\in P.\ \exists \gamma,\gamma'. \ lpha_2\overset{lpha_p:-eta_p}{\longrightarrow}lpha_1$$
, $\gamma\landeta_2\equiveta_1$, $\gamma\landeta_p\equiv\gamma$, $\gamma'\land\gamma'\not\equiv\mathbf{0}$

Next, we define a labeling function $\mathscr{L}: \mathscr{W} \to 2^{\{s,r\}}$ as follows, where \mathscr{W} is the whole set of LMNtal rules:

$$s \in \mathcal{L}(\alpha : -\beta)$$
 iff $\alpha \equiv T$
 $r \in \mathcal{L}(\alpha : -\beta)$ iff $\alpha \xrightarrow{P} * \beta$

If $r \in \mathcal{L}(\alpha : -\beta)$, we say $\alpha : -\beta$ is *reducible*. Then we consider a Kripke structure $\mathcal{S} = (\mathcal{W}, \mathcal{T}, \mathcal{L})$ which represents the state space of the rule type checking algorithm.

Lemma 6. If $\alpha : -\beta$ is reducible and $\alpha : -\beta \xrightarrow{\mathscr{T}} \alpha' : -\beta'$, then $\alpha' : -\beta'$ is reducible.

Proof. By the assumption, we have $\alpha \xrightarrow{P} * \beta$. By the definition of \mathscr{T} , we have $\exists \gamma$. $\alpha' \xrightarrow{P} \alpha$, $\gamma \beta' \equiv \beta$, γ . Then we have $\alpha' \xrightarrow{P} \alpha$, $\gamma \xrightarrow{P} * \beta$, $\gamma \equiv \beta'$, and $\alpha' \xrightarrow{P} * \beta'$ holds.

Lemma 7. If P, $Q \equiv R$, S holds, $P \equiv A_1$, A_2 , $Q \equiv A_3$, A_4 , $R \equiv A_1$, A_3 , $S \equiv A_2$, A_4 holds for certain graphs A_1, A_2, A_3, A_4 .

Proof. This follows by the rules of structural congruence.

Lemma 8. If $P \xrightarrow{\alpha : -\beta} Q$ holds, there exists a graph C that satisfies $P \equiv C$, α , $Q \equiv C$, β .

Proof. This follows by the rules of structural congruence and reduction relation. \Box

Lemma 9. If $X \xrightarrow{p} Y \equiv \alpha$, $C(p = \alpha_p : -\beta_p \in P)$ holds, one of the followings holds:

- $\forall \beta$. $\exists \alpha', \beta', C_1, C_2$. $\alpha := \beta \xrightarrow{\mathscr{T}} \alpha' := \beta' \land C \equiv C_1, C_2 \land X \equiv \alpha', C_2 \land \beta' \equiv \beta, C_1$
- $\exists C'. X \equiv \alpha. C' \land C' \xrightarrow{p} C$

Proof. By $X \xrightarrow{p} Y$ and Lemma 8, there exists C_p s.t. $X \equiv \alpha_p$, C_p , $Y \equiv \beta_p$, C_p . Then we have $Y \equiv \beta_p$, $C_p \equiv \alpha$, C and, by Lemma 7, there exist C_1 , C_2 , C_3 , C_4 s.t. $C \equiv C_1$, C_2 , $\alpha \equiv C_3$, C_4 , $\beta_p \equiv C_1$, C_3 , $C_p \equiv C_2$, C_4 .

Case 1: $C_3 \not\equiv \mathbf{0}$

Let $\alpha' = \alpha_p$, C_4 , $\beta' = \beta$, C_1 . Then we have $\alpha' \equiv \alpha_p$, $C_4 \stackrel{p}{\rightarrow} \beta_p$, $C_4 \equiv C_1$, C_3 , $C_4 \equiv \alpha$, C_1 . Here we consider C_1 , C_3 as γ , γ' in the definition \mathcal{T} respectively, and we have $\alpha := \beta \stackrel{\mathcal{T}}{\rightarrow} \alpha' := \beta'$. Also, we have $X \equiv \alpha_p$, $C_p \equiv \alpha_p$, C_2 , $C_4 \equiv \alpha'$, C_2 .

Case 2: $C_3 \equiv 0$

By $C_1 \equiv \beta_p$, we have $C \equiv \beta_p$, C_2 . Therefore α_p , $C_2 \xrightarrow{p} C$ holds. Here we consider C' s.t. $C' \equiv \alpha_p$, C_2 , then $C' \xrightarrow{p} C$ holds. Besides, by $\alpha \equiv C_4$, we have $C_p \equiv C_2$, α . Then we have $X \equiv \alpha_p$, $C_p \equiv \alpha_p$, C_2 , $\alpha \equiv \alpha$, C'.

Lemma 10. If $\mathscr{S}, r \models \neg s Wr$ holds, r preserves the type T.

Proof. We assume $G \triangleleft T$, $G \xrightarrow{r} G'$, and $\mathscr{S}, r \models \neg s W r$, and we will prove $G' \triangleleft T$.

By $G \triangleleft T$, we have $\forall i < n$. $X_{i+1} \xrightarrow{p_i} X_i$ for a certain non-negative integer n, graphs X_0, \ldots, X_n ($X_0 = G, X_n = T$), and $p_0, \ldots, p_{n-1} \in P$. By $G \xrightarrow{r} G'$, there exists $C \in \mathcal{G}(N \cup \Sigma)$ s.t. $G \equiv \alpha$, C, $G' \equiv \beta$, C where $r = \alpha : -\beta$.

Next, we will show that, if $X_i \equiv \alpha_i$, C_i holds, there exist α_{i+1} , β_{i+1} , C_{i+1} such that:

$$\alpha_i := \beta_i \xrightarrow{\mathscr{T}} \alpha_{i+1} := \beta_{i+1} \wedge X_{i+1} \equiv \alpha_{i+1}, C_{i+1} \wedge \beta_{i+1}, C_{i+1} \xrightarrow{P} \beta_i, C_i$$

By $X_{i+1} \xrightarrow{p_i} X_i$ and Lemma 9, one of the following holds:

- 1. $\exists \alpha_{i+1}, \beta_{i+1}, C'_i, C_{i+1}$. $\alpha_i := \beta_i \xrightarrow{\mathscr{T}} \alpha_{i+1} := \beta_{i+1} \land C_i \equiv C'_i, C_{i+1} \land X_{i+1} \equiv \alpha_{i+1}, C_{i+1} \land \beta_{i+1} \equiv \beta_i, C'_i$
- 2. $\exists C_{i+1}. X_{i+1} \equiv \alpha_i, C_{i+1} \land C_{i+1} \xrightarrow{p_i} C_i$

If 1. holds, it is obvious since we have β_{i+1} , $C_{i+1} \equiv \beta_i$, C'_i , $C_{i+1} \equiv \beta_i$, C_i . On the other hand, if 2. holds, it is obvious when we consider $\alpha_{i+1} = \alpha_i$, $\beta_{i+1} = \beta_i$.

Thus, there exist α_n, β_n, C_n s.t. $\alpha := \beta \xrightarrow{\mathscr{T}} \alpha_n := \beta_n$, $T \equiv \alpha_n, C_n$, and $\beta_n, C_n \xrightarrow{P} \beta$, C. Since T consists only of one atom of the start symbol (with no self loops), we have $T \equiv \alpha_n$. Then $s \in \mathscr{L}(\alpha_n := \beta_n)$ holds.

By $r \xrightarrow{\mathcal{F}} \alpha_n := \beta_n$, $\mathcal{S}, r \models \neg s W r$, and Lemma 6, we also have $r \in \mathcal{L}(\alpha_n := \beta_n)$. Therefore we have $\alpha_n \xrightarrow{P} \beta_n$. Thus we have $T \equiv \alpha_n \xrightarrow{P} \beta_n \xrightarrow{P} \beta_n$, $T \equiv G'$, that is, $G' \triangleleft T$.

Theorem 4 (Soundness of rule type checking). For an LMNtal rule $\alpha : -\beta$, a ShapeType (t/m, P, N), and a sequence of links L_1, \ldots, L_m , if RCHECK $(\alpha : -\beta, (t/m, P, N))$ returns **true**, the following formula (the rule preserving property) holds:

$$\forall G: t(L_1,\ldots,L_m). \quad G \xrightarrow{\alpha:-\beta} G' \Rightarrow G': t(L_1,\ldots,L_m)$$

Proof. Since RCHECK($\alpha := \beta$, (t/m, P, N)) returns **true**, on all the paths from the target rule to the start symbol, there exists a state L := R such that REDUCE(R, L, P, \varnothing) returns **true**. Therefore we have $\mathscr{S}, r \models \neg s W r$, and the rule preserving property holds by Lemma 10.

Theorem 5. For a set of production rules $P = P_T \cup P_{t_1} \cup \cdots \cup P_{t_n} \cup \{T : \neg F, t_1, \ldots, t_n\}$, and a set of nonterminal symbols $N = N_T \cup N_{t_1} \cup \cdots \cup N_{t_n}$, if every rule $r \in R$ preserves type $(S_T, P, N), t_1, \ldots, t_n \vdash_R F : T$ holds.