Organizačné poznámky

- Domáca úloha 1 do stredy 12.11. 22:00
 Otázky k zadaniu emailom
- Pracujte na journal clube (prečítajte si článok, naplánujte si stretnutie pred 21.11.)

Evolučné modely a stromy

Broňa Brejová 30.10.2025

Rekonštrukcia fylogenetických stromov

Vstup:

m **zarovnaných** sekvencií, každá dĺžky n

človek	С	Α	G	Т	Т	Α
elf	Α	Α	Т	Α	G	Α
Glum	С	С	G	Α	G	Α
hobit	С	С	G	Т	Т	С
ork	Α	Α	Т	Т	Т	Α

Výstup:

strom predstavujúci ich evolučnú históriu

Newick format:

(((glum,hobit),človek),(elf,ork))

Zakorenené a nezakorenené stromy

Nezakorenený strom (unrooted tree)

Dve zo siedmich zakorenených verzií stromu

Väčšina metód rekonštruuje nezakorenené stromy

Zakorenenie stormu pomocou vonkajšej skupiny

Do nezakoreneného stromu pridáme psa, vonkajšiu skupinu (outgroup)

Maximum parsimony (úsporné stromy)

Úloha: Dané sú zarovnané sekvencie súčasných organizmov.

Chceme nájsť fylogenetický strom, ktorý vyžaduje **minimálny počet evolučných zmien**.

Evolučná zmena = mutácia jednej bázy na inú bázu

Podotázka: Pre daný fylogenetický strom, doplniť ancestrálne sekvencie tak, aby bol potrebný najmenší počet zmien.

Podotázka: Výpočet ceny konkrétneho stromu

Môžeme rátať **dynamickým programovaním** pre každý stĺpec zarovnania zvlášť (cvičenia informatici).

Časová zložitosť: O(m), lineárna

Zopakujeme pre každý stĺpec zarovnania: O(mn)

Vieme: Výpočet ceny konkrétneho stromu

Chceme: Nájsť strom s najmenšou cenou

Hľadanie najúspornejšieho stromu

NP-ťažký problém

Triviálny algoritmus: vyskúšaj všetky možné stromy.

Pre
$$m$$
 druhov $1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2m-5) = (2m-5)!!$

Napr. pre 10 druhov cca 2 milióny, pre 20 druhov $2 \cdot 10^{20}$

Heuristické prehľadávanie:

- Začneme s "rozumným" stromom
- Pomocou stanovených operácií prehľadávame "podobné" stromy; napr.
 "subtree pruning and regraft":

Neighbor Joining (Metóda spájania susedov)

- Nevyužívame detaily rozdielov medzi sekvenciami
- ullet Zosumarizujeme ich pomocou matice vzdialeností (D_{ij})

Jednoduchý príklad:

								Č	Е	G	Н	0	
človek	С	Α	G	Т	Т	Α	človek	0	4	3	2	2	
elf	Α	Α	Т	Α	G	Α	elf	4	0	3	6	2	
Glum	С	С	G	Α	G	Α	Glum	3	3	0	3	5	
hobit	С	С	G	Т	Т	С	hobit						
ork	Α	Α	Т	Т	Т	Α	ork	2	2	5	4	0	

Idea spájania susedov

ullet Predpokladáme, že vzdialenosti $D_{i,j}$ skutočne zodpovedajú vzdialenostiam v strome (aditivita)

$$D_{\rm hobit.\check{c}lovek} = 2+1+5=8$$

	glun	n hob	it člove	ek elf	ork
glum	0	5	9	15	16
hobit	5	0	8	14	15
človek	9	8	0	16	17
elf	15	14	16	0	3
ork	16	15	17	3	0

Idea spájania susedov

- Predpokladáme, že vzdialenosti $D_{i,j}$ skutočne zodpovedajú vzdialenostiam v strome (aditivita)
- Nájdeme dva listy i a j, o ktorých vieme s určitosťou povedať, že majú vo výslednom strome spoločného rodiča
- i a j spojíme a nahradíme ich ich rodičom k s novými vzdialenosťami:

$$D_{k,\ell} = \frac{D_{i,\ell} + D_{j,\ell} - D_{i,j}}{2}$$

	g h č e o			g h čeo
g	0 5 9 15 16		g	0 5 9 14
h	5 0 8 14 15	Spojíme e a o	h	5 0 8 13
č	9 8 0 16 17	$\stackrel{\cdot}{\rightarrow}$	č	9 8 0 15
е	15 14 16 0 3		ео	14 13 15 0
0	16 15 17 3 0			

Ako určiť dva listy na spájanie?

Prečo nie dva najbližšie?

<i>D</i> :					L:				
	Α	В	С	D		Α	В	С	D
Α	-	3	5	6	Α	-	-22	-24	-22
В	3	-	6	5	В	-22	-	-22	-24
С	5	6	-	9	С	-24	-22	-	-22
D	6	5	9	-	D	-22	-24	-22	-

Vyber listy i, j, ktoré **minimalizujú** nasledujúci výraz:

$$L_{i,j} = (m-2)D_{i,j} - \sum_{k} D_{i,k} - \sum_{k} D_{j,k}$$

m: počet listov

 r_i : súčet riadku resp. stĺpca i

Spájame listy i,j, ktoré majú najnižšiu hodnotu v matici L

$$L_{i,j} = (m-2)D_{i,j} - \sum_{k} D_{i,k} - \sum_{k} D_{j,k}$$

$$D \qquad \qquad L \qquad \text{nov\'e} \ D$$

$$\frac{\text{g h \'e e o } r_i}{\text{g 0 5 9 15 16 45 g .-72 -68 -58 -48 g 0 5 9 14}}$$

$$\text{h 5 0 8 14 15 42 h -72 .-68 -48 -48 h 5 0 8 13}$$

$$\text{\re 9 8 0 16 17 50 \re -68 -68 .-50 -50 \re 9 8 0 15}$$

$$\text{e 15 14 16 0 3 48 e -58 -48 -50 .-90} \qquad \text{eo 14 13 15 0}$$

$$\text{o 16 15 17 3 0 51 o -48 -48 -50 -90} \ .$$

Časová zložitosť spájania susedov: $O(m^3) \quad (m: {\it počet listov})$

V roku 2009 Elias a Lagergren vynašli algoritmus so zložitosťou ${\cal O}(m^2)$

Spájanie susedov: zhrnutie

- Ak je vstupná matica aditívna a zodpovedá skutočným evolučným vzdialenostiam, spájanie susedov nám dá správny strom
- Čím dlhšie sekvencie, tým spoľahlivejší odhad vzdialenosti a tým väčšia šanca dostať správny strom
- Ako však prejdeme od sekvencií k odhadu vzdialenosti?
 Len počítanie rozdielov nestačí

								Č	Е	G	Н	0
človek	С	Α	G	Т	Т	Α	človek	0	4	3	2	2
elf	Α	Α	Т	Α	G	Α	elf					
Glum	С	С	G	Α	G	Α	Glum					
hobit	С	С	G	Т	Т	С	hobit					
ork	Α	Α	Т	Т	Т	Α	ork	2	2	5	4	0

Problém so vzdialenosťami

- Počas evolúcie sa môže stať, že tá istá báza zmutuje viackrát (trebárs aj späť na pôvodnú bázu)
- Pri počítaní rozdielov ale vidíme nanajvýš jednu zmenu na každej pozícii ⇒
 odhad vzdialenosti menší ako v skutočnosti
- Chceme korekciu na odhadovaný počet mutácií, ktoré sa naozaj stali

Jukesov-Cantorov model evolúcie

Pravdepodobnosť zmeny bázy na inú:

$$\Pr(X_{t_0+t} = C \mid X_{t_0} = A) = \frac{1}{4} \left(1 - e^{-\frac{4}{3}\alpha t} \right)$$

 α : rýchlosť evolúcie (počet substitúcií na jednotku času)

Očakávaný počet pozorovaných zmien na bázu za čas t:

$$D(t) = \Pr(X_{t_0+t} \neq X_{t_0}) = \frac{3}{4} \left(1 - e^{-\frac{4}{3}\alpha t}\right)$$

Späť ku spájaniu susedov (Neighbor Joining)

Podľa takéhoto modelu môžeme korigovať pozorované vzdialenosti

$$D = \frac{3}{4} \left(1 - e^{-\frac{4}{3}\alpha t} \right) \qquad \Rightarrow \qquad \alpha t = -\frac{3}{4} \ln \left(1 - \frac{4}{3}D \right)$$

Nabudúce / na cvičeniach uvidíme aj zložitejšie modely evolúcie

Najvierohodnejšie stromy (Maximum likelihood)

Strom s danými dĺžkami hrán môžeme chápať ako jednoduchý generatívny model

Pravdepodobnosť, že vygeneruje konkrétne bázy vo vrcholoch:

$$\begin{split} &\Pr(X_g = A, X_h = A, X_c = G, X_e = C, X_o = C, X_{gh} = A, \\ &X_{ghc} = A, X_{eo} = C, X_{root} = A) \\ &= \Pr(X_{root} = A) \cdot \Pr(A \xrightarrow{t_1} A) \cdot \Pr(A \xrightarrow{t_2} C) \cdot \Pr(A \xrightarrow{t_3} A) \cdot \Pr(A \xrightarrow{t_4} C) \cdot \Pr(A \xrightarrow{t_5} A) \cdot \Pr(A \xrightarrow{t_6} A) \cdot \Pr(C \xrightarrow{t_7} C) \cdot \Pr(C \xrightarrow{t_8} C) \\ &\Pr(A \xrightarrow{t_2} C) \text{ je skratka z } \Pr(X_{t+t_2} = C \mid X_t = A) \text{ t.j. } \Pr(X_{eo} = C \mid X_{root} = A) \end{split}$$

Vieme počítať (súčin):

Chceme počítať

vierohodnosť stromu:

Vierohodnosť (likelihood) stromu:

$$\Pr(X_q = A, X_h = A, X_c = G, X_e = C, X_o = C)$$

sčítame pravdepodobnosti pre všetky kombinácie písmen v predkoch X_{gh} ,

$$X_{ghc}, X_{eo}, X_{root}$$

Rátame pomocou Felsensteinovho algoritmu

(jednoduché dynamické programovanie, podobne ako pre úspornosť)

Pre dané zarovnanie, strom a dĺžky hrán spočíta vierohodnosť v čase O(nm)

Ako nájsť najvierohodnejší strom?

- Problém je NP-ťažký;
 navyše komplikovaný tým, že na výpočet vierohodnosti potrebujeme aj dĺžky
 hrán
- Opäť použijeme heuristické vyhľadávanie:
 - Začneme s "rozumným" stromom
 - Vypočítame vierohodnosť tohto stromu:
 - * Začneme s "rozumnými" dĺžkami hrán
 - * Vypočítame vierohodnosť stromu s dĺžkami
 - * Mierne zmeníme dĺžky tak, aby sa zlepšila vierohodnosť a opakujeme
 - Pomocou stanovených operácií (ako v prípade parsimony) skúšame
 "podobné" stromy, až kým nevieme zlepšiť

Konzistentnosť fylogenetických algoritmov

- "Rozumne" správajúce sa algoritmy: ak dĺžka sekvencií n rastie, ich odpoveď by sa mala približovať ku správnej odpovedi.
- Uvažujme dáta generované z modelu podľa nejakého stromu
 (t.j. nie reálne biologické dáta, ale simulované)
- Hovoríme, že algoritmus pre hľadanie fylogenetického stromu je konzistentný, ak pre n idúce do nekonečna pravdepodobnosť správneho stromu konverguje k 1.

Porovnanie algoritmov

	Zložitosť	Konzistentný	Využitie dát
Parsimony (úspornosť)	NP-ťažký	NIE	celé sekvencie
Neighbor Joining	$O(m^2)$	ÁNO	iba vzdialenosti
Likelihood (vierohodnosť)	NP-ťažký	ÁNO	celé sekvencie

Odkiaľ zohnať dáta pre fylogenetiku?

Často sa používajú špeciálne sekvencie (napr. gény ribozomálnej RNA, mitochondriálny genóm)

Chceme využiť aj dalšie časti genómu. Čo tak:

- Vybrať si sympatický gén
- Nájsť jeho homológy v iných genómoch
- Použiť tieto na konštrukciu fylogenetického stromu (DNA sekvencie alebo proteíny)

Problém: počas evolúcie sa časť genómu s vybraným génom mohla duplikovať

História duplikovaného génu

Príklad: organizmy a, b, c, gény $a_1, a_2, a_3, b_1, b_2, c_1, c_2$

- Homológ: vyvinuli sa zo spoločného predka, podobná sekvencia
- Ortológ: najbližší spoločný predok je speciácia (napr. dvojice génov $a_1 b_1$, $a_2 b_1$)
- Paralóg: najbližší spoločný predok je duplikácia (napr. dvojice génov $a_1-a_2,\,a_1-b_2$)

Zložitejší príklad duplikácie génu:

Zhrnutie

- Modely evolúcie nukleotidov nám dávajú možnosť:
 - Odhadovať skutočnú evolučnú vzdialenosť (počet substitúcií) z počtu pozorovaných zmien medzi sekvenciami
 - Počítať pravdepodobnosť, že uvidíme zmenu nukleotidu za určitý čas t
- Tri metódy na vytváranie evolučných stromov:
 - Úsporné stromy (parsimony)
 - Spájanie susedov (neighbour joining)
 - Vierohodnosť stromov (maximum likelihood)
- Praktické komplikácie: génové a druhové stromy, hľadanie ortológov, zakoreňovanie stromu
- Moderné trendy: efektívne algoritmy na spracovanie veľkých dát (veľa génov a organizmov naraz)