Esame di Ricerca Operativa del 28/05/14

	(Cognome) sercizio 1. Completare la seguente tabella c			(Nome)		(Co	rso di laurea)
Esercizio	1. Com	pletare la	a seguente tabe	lla considerando il problema	di progra	mmazione line	eare:	
				$\begin{cases} \max & -4 \ x_1 - 7 \ x_2 \\ -x_2 \le 1 \\ -5 \ x_1 + x_2 \le 4 \\ 3 \ x_1 - x_2 \le 7 \\ x_1 + x_2 \le 5 \\ x_2 \le 4 \\ 3 \ x_1 \le 11 \end{cases}$				
	Base	Soluzio	one di base			Ammissibile (si/no)	Degenere (si/no)	
	{1, 2}	x =						
	$\{2, 3\}$	y =						
Esercizio	2. Effet	tuare du	ie iterazioni dell	'algoritmo del simplesso prim	ale per il	l problema del	l'esercizio 1.	
		Base	x	y	Indice		pporti	Indice
1° iterazio	one	$\{4,5\}$						
2° iterazio		(/-)						
Si cerca variabili de				1 2 3 4 5 A 30 40 80 50 55 B 20 70 55 55 30 C 60 20 35 70 40 D 60 60 35 20 60 ioni tali che ogni zona abbia)))	un'agenzia a	non più di 50) minuti.
		CON	MANDI DI MA	ГLAВ (DEL PROBLEMA (DEL R	ILASSATO?)		
C=								
A=				b=				
								1
Aeq=				beq=				

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,4) (3,5)				
(4,6) (5,4) (6,7)	(5,7)	x =		
(1,2) $(2,4)$ $(3,5)$				
(4,6) $(5,4)$ $(5,7)$	(4,3)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,3) (1,4) (2,4) (4,6) (5,7) (6,5)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

 $N_t =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 14 \ x_1 + 9 \ x_2 \\ 10 \ x_1 + 7 \ x_2 \le 49 \\ 9 \ x_1 + 14 \ x_2 \le 68 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =

 $v_S(P) =$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =

 $v_I(P) =$

c) Calcolare un taglio di Gomory.

r =

taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	8	66	67	31
2		23	51	53
3			7	8
4				21

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

3–albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{13} , x_{34} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2^2 + 2x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 - 9 \le 0, \quad x_1 - x_2 - 3 \le 0\}.$$

Soluzioni o	Soluzioni del sistema LKT			Massimo Minime		imo	Sella
x	λ	μ	globale	locale	globale	locale	
	$\left(\frac{1}{3},0\right)$						
	(0, -2))						
	$\left(-\frac{1}{3},0\right)$						
	$\left(-\frac{5}{3}, -12\right)$						

Esercizio 10. Si consideri il seguente problema:

$$\left\{ \begin{array}{ll} \min \ 4 \ x_1^2 - 2 \, x_1 \, x_2 - 6 \ x_2^2 + 3 \ x_1 - 10 \ x_2 \\ x \in P \end{array} \right.$$

e i vertici di P sono (0,1), (2,3), (-5,2) e (1,4). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
(4 7)						
$\left(\frac{1}{3},\frac{1}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -4 x_1 - 7 x_2 \\ -x_2 \le 1 \\ -5 x_1 + x_2 \le 4 \\ 3 x_1 - x_2 \le 7 \\ x_1 + x_2 \le 5 \\ x_2 \le 4 \\ 3 x_1 \le 11 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (-1, -1)	SI	NO
{2, 3}	$y = \left(0, \ \frac{25}{2}, \ \frac{39}{2}, \ 0, \ 0, \ 0\right)$	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{4, 5\}$	(1, 4)	(0, 0, 0, -4, -3, 0)	4	1	2
2° iterazione	{2, 5}	(0, 4)	$\left(0, \frac{4}{5}, 0, 0, -\frac{39}{5}, 0\right)$	5	$5, \frac{55}{2}$	1

Esercizio 3.

COMANDI DI MATLAB DEL RILASSATO

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,4) (3,5)				
(4,6) $(5,4)$ $(6,7)$	(5,7)	x = (-5, 0, 12, 0, 3, 0, 0, -6, 5, 0, -2)	NO	SI
(1,2) (2,4) (3,5)				
(4,6) (5,4) (5,7)	(4,3)	$\pi = (0, 4, -5, 12, 4, 19, 14)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione				
Archi di T	(1,3) $(1,4)$ $(2,4)$ $(4,6)$ $(5,7)$ $(6,5)$	(1,3) $(1,4)$ $(2,4)$ $(4,6)$ $(5,7)$ $(6,7)$				
Archi di U	(3,5)	(3,5)				
x	(0, 4, 3, 5, 7, 0, 2, 0, 3, 0, 0)	(0, 4, 3, 5, 7, 0, 2, 0, 3, 0, 0)				
π	(0, -4, 4, 4, 19, 11, 29)	(0, -4, 4, 4, 8, 11, 18)				
Arco entrante	(6,7)	(3,5)				
ϑ^+,ϑ^-	6, 0	4,3				
Arco uscente	(6,5)	(5,7)				

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2	2 3		4		(;	Ţ	Ď	7	7	
nodo 2	4	1	4	1	4	1	4	1	4	1	4	1	4	1
nodo 3	14	1	8	2	8	2	8	2	8	2	8	2	8	2
nodo 4	11	1	11	1	11	1	11	1	11	1	11	1	11	1
nodo 5	$+\infty$	-1	22	2	19	3	19	3	19	3	19	3	19	3
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	18	4	18	4	18	4	18	4
nodo 7	$+\infty$	-1	$+\infty$	-1	24	3	24	3	23	6	23	6	23	6
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3, 4	, 5	4, 5	, 7	5, 6	5, 7	5,	7	7	7	()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	5	(0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0)	5
1 - 2 - 5 - 7	12	(12, 5, 0, 0, 12, 0, 5, 0, 0, 12, 0)	17
1 - 3 - 5 - 7	2	(12, 7, 0, 0, 12, 2, 5, 0, 0, 14, 0)	19
1 - 4 - 6 - 7	9	(12, 7, 9, 0, 12, 2, 5, 0, 9, 14, 9)	28

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 14 \ x_1 + 9 \ x_2 \\ 10 \ x_1 + 7 \ x_2 \le 49 \\ 9 \ x_1 + 14 \ x_2 \le 68 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{49}{10}, 0\right)$$
 $v_S(P) = 68$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(4,0)$$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	8	66	67	31
2		23	51	53
3			7	8
4				21

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

3-albero:
$$(1,2)(1,5)(3,4)(3,5)(4,5)$$
 $v_I(P) = 75$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo:
$$1 - 2 - 3 - 4 - 5$$
 $v_S(P) = 90$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{13} , x_{34} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2^2 + 2x_1$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 - 9 \le 0, x_1 - x_2 - 3 \le 0}.$$

Soluzioni del s	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(-3, 0)	$\left(\frac{1}{3},0\right)$		NO	NO	SI	SI	NO
(2, -1)	(0, -2)		NO	NO	NO	NO	SI
(3, 0)	$\left(-\frac{1}{3},0\right)$		NO	NO	NO	NO	SI
(-3, -6)	$\left(-\frac{5}{3}, -12\right)$		NO	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ 4 \ x_1^2 - 2 x_1 x_2 - 6 \ x_2^2 + 3 \ x_1 - 10 \ x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (0,1), (2,3), (-5,2) e (1,4). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(\frac{4}{3},\frac{7}{3}\right)$	(1, -1)	$\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$	$\left(\frac{95}{6}, \frac{95}{6}\right)$	$\frac{4}{95}$	$\frac{4}{95}$	(2,3)