Power Calculation

Taryn Heilman Ryan Henning Frank Burkholder Alex Rose

Learning Objectives

- Review relevant concepts
- Define statistical power
- Understand different factors that affect power
- Learn how to apply power to hypothesis testing

- What is the Central Limit Theorem?
- What are the implications of this for hypothesis testing?
- Describe the steps necessary to construct a hypothesis test.
- What is a p-value?
- Describe Type I and Type II Errors and name a situation where each would be the worst error to make.
- Describe the Bonferroni correction and why we would use it.

Review: Central Limit Theorem

Let the underlying distribution have mean and std. dev.

$$\mu$$
 and σ

The sample mean will be normally distributed, with mean and std. dev.

$$\mu' = \mu \\ \sigma' = \sigma / \sqrt{n}$$

Review: Hypothesis Testing Steps

- 1. State the null (H_0) and the alternative (H_1) hypotheses
- 2. Choose a level of significance (α)
- 3. Collect data
- 4. Compute the test statistic
- 5. Calculate the p-value
- 6. Draw conclusions
 - Reject H₀
 - Fail to reject H₀

Statistical Power

galvanize

Suppose H₀ is the True Distribution

 We want to be on the left side of the threshold and fail to reject H₀

What if H₁ was the True Distribution

What if H₁ was the True Distribution

Power

- The "power" of our hypothesis test to detect an effect if there actually is one.
- Given that the true distribution is H₁, the probability our test rejects the (false) null hypothesis.

Power

- The "power" of our hypothesis test to detect an effect if there actually is one.
- Given that the true distribution is H₁, the probability our test rejects the (false) null hypothesis.

Power Formula for One-Tailed z-test:

$$Power = \Phi\left(\frac{\mu_1 - \mu_0}{s/\sqrt{n}} - Z_{1-\alpha}\right)$$

		Reality	
		H ₀ is True (Null)	H ₀ is False (Alternate)
What we choose to	Don't Reject H ₀	Correct! (1-α)	False Negative Type II Error (β)
do	Reject H ₀	False Positive Type I Error (α)	Correct! (1-β)

This is the experiment's **Power**: the probability that we correctly reject H_0 when the null hypothesis is false.

- Power is in relation to a specific alternate hypothesis.
- The **effect size** is how far the mean of the alternate hypothesis is away from the mean of the null.

Breakout: Factors that Affect Power

- Effect Size
- Significance Level (α)
- Sample Size (n)
- Beta

How does varying each of these affect Power? You may use this interactive tool to help answer!

Interactive exploration

http://rpsychologist.com/d3/NHST/

Power In Practice: Required Sample Size

	H ₀ is True	H ₀ is False
Don't Reject H ₀	Correct! (1-α)	False Negative (β)
Reject H ₀	False Positive (α)	Correct! (1-β)

Often, we know:

- 1. The "effect size" that we want to detect, and
- 2. The *power* that we want to achieve.

We then calculate the sample size needed to get what we want!

Hypothesis Testing Steps: Revised

- 1. State the null (H_0) and the alternative (H_1) hypotheses
- 2. Choose a level of significance (α) and power (1 β) (typically 80%)
 - i. Compute the number of samples required for your desired α, power and effect size.
- 3. Collect data
- 4. Compute the test statistic
- 5. Calculate p-value
- 6. Draw conclusions
 - Reject H₀
 - Fail to reject H_0

$$n > \left((Z_{(1-\beta)} - Z_{\alpha}) \frac{s}{\mu_b - \mu_a} \right)^2$$

FYI: derivation

```
from scipy import stats
alpha = 0.05 # allowable Type I error rate (incorrectly rejecting H0)
beta = 0.2 # allowable Type II error rate (failing to reject H0 when we should)
power = 1 - beta

mu_a = val_a # the mean value of a
mu_b = val_b # the mean value of b
s = val_s # effective standard deviation of the difference between a & b distributions

n = ((stats.norm.ppf(1-beta) - stats.norm.ppf(alpha)) * s / (mu_b - mu_a))**2
```

galvanıze

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 6%. (The standard deviation \underline{s} would be 0.24)

We want to test a new homepage design to see if we can get a <u>7% signup rate</u>. We'll want an experiment where <u>alpha is 1%</u> and <u>power is 95%</u>.

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 6%. (The standard deviation \underline{s} would be 0.24)

We want to test a new homepage design to see if we can get a <u>7% signup rate</u>. We'll want an experiment where <u>alpha is 1%</u> and <u>power is 95%</u>.

$$n \ge 9,084$$

galvanıze

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 1%. (The standard deviation <u>s</u> would be 0.10)

We want to test a new homepage design to see if we can get a 1.2% signup rate. We'll want an experiment where alpha is 1% and power is 95%.

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 1%. (The standard deviation <u>s</u> would be 0.10)

We want to test a new homepage design to see if we can get a 1.2% signup rate. We'll want an experiment where alpha is 1% and power is 95%.

$$n \ge 39,427$$

Breakout 3: Calculating Power

Setup: Testing a New Treatment

A hospital has a <u>70% success rate</u> when treating a rare disease (The standard deviation <u>s</u> would be .46)

They want to test a new treatment plan and see if they can obtain a <u>75%</u> success rate. They're willing to tolerate an <u>alpha of 10%</u>, but they currently only have <u>100 patients</u> available for this extended medical trial.

What would be the power of their trial? Do you think they should run it?

Breakout 3: Calculating Power

Setup: Testing a New Treatment

A hospital has a <u>70% success rate</u> when treating a rare disease (The standard deviation <u>s</u> would be .46)

They want to test a new treatment plan and see if they can obtain a <u>75%</u> success rate. They're willing to tolerate an <u>alpha of 10%</u>, but they currently only have <u>100 patients</u> available for this extended medical trial.

What would be the power of their trial? Do you think they should run it?

Power =
$$42\%$$

Learning Objectives

- Review relevant concepts
- Define statistical power
- Understand different factors that affect power
- Learn how to calculate power and how to apply it to hypothesis testing