EJERCICIOS 1

- (1) (a) Demuestre que los tres vectores (1,1,0), (1,1,1), (0,1,-1) son linealmente independientes en \mathbb{R}^3 . Exprese los vectores e_1 , e_2 , e_3 de la base estándar como combinaciones lineales de ellos.
- (b) Demuestre que los tres polinomios $\frac{1}{2}t(t-1)$, $1-t^2$, $\frac{1}{2}t(t+1)$ son linealmente independientes en $\mathbb{Q}[t]$. Exprese los monomios 1, t, t^2 como combinaciones lineales de ellos.
 - (2) Si $p, q, r, s \in \mathbb{R}$ son distintos, demuestre que los cuatro vectores

$$(1,1,1,1), (p,q,r,s), (p^2,q^2,r^2,s^2), (p^3,q^3,r^3,s^3)$$

son linealmente independientes en \mathbb{R}^4 .

- (3) Demuestre que $(\mathbb{Z}/n\mathbb{Z})$ es un cuerpo si y solo si n es primo.
- (4) Sea α un símbolo, y define

$$K := \{ a + b\alpha \mid a, b \in \mathbb{Q} \}.$$

Definimos

• un operación de addition sobre K:

$$(a+b\alpha) + (c+d\alpha) = (a+c) + (b+d)\alpha$$

• una operación de multiplicación escalar:

$$c \cdot (a + b\alpha) = (ca) + (cb)\alpha.$$

Claro, K es un espacio vectorial isomorfo a \mathbb{Q}^2 . Finalmente, fije $k \in \mathbb{Q}$ y definimos una operación de multiplicación:

$$(a + b\alpha) \cdot (c + d\alpha) = (ac + kbd) + (bc + ad)\alpha.$$

Demostrar que esta definición da un cuerpo $(K, +, \cdot)$ si y sólo si $\sqrt{k} \notin \mathbb{Q}$.

Indicación: La mayoridad de los axiomas son claros - la tarea principal es demostrar que todos los elementos de K tiene inversos si y sólo si $\sqrt{k} \notin \mathbb{Q}$.

- (5) Un monomio en k variables t_1, \ldots, t_k es un producto $c t_1^{m_1} t_2^{m_2} \ldots t_k^{m_k}$; su grado es la suma $m_1 + \cdots + m_k$ de los exponentes. Un **polinomio homogéneo** de grado m es una suma finita de monomios de grado m; ellos forman un espacio vectorial $P_m^{(k)}$. ¿Cuál es la dimensión de $P_m^{(k)}$?
- (6) Sea X una parte de V. Demuestre que hay un subespacio único W tal que W contiene X y, si Y es un subespacio de V que contiene X, entonces Y contiene W.
 - (7) Sea V el conjunto de secuencias infinitas con entradas en \mathbb{R} :

$$\{(a_1, a_2, a_3, \dots) \mid a_1, a_2, a_3 \in \mathbb{R}\}.$$

- (1) Demuestre que V es un espacio vectorial.
- (2) Sea e_i el secuencia con 0 in todas entradas excepto en entrada i que es igual a 1. Cual es la subespacio generado por $\{e_i \mid i = 1, 2, 3, ...\}$?
- (8) Encuentre los subespacios ker T y $T(\mathbb{R}^3)$ y las dimensiones n(T) y r(T), si $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ y la matriz de T respecto de la base estándar $\{\underline{e_1}, \underline{e_2}, \underline{e_3}\}$ es

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}.$$

(9) Calcular (por inducción sobre n) las potencias A^n , B^n , C^n de las siguientes matrices:

$$A:=\begin{bmatrix} a & 1 \\ 0 & a \end{bmatrix}, \qquad B:=\begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}, \qquad C:=\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}, \qquad \text{donde} \quad a\in\mathbb{F}.$$

(10) Sea A una matriz triangular superior con ceros en la diagonal:

$$A := \begin{bmatrix} 0 & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & 0 & a_{23} & \dots & a_{2n} \\ 0 & 0 & 0 & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix},$$

así que $a_{ij} = 0$ para $i \geq j$. Demostrar que $A^n = O$. Concluir que $I_n + A$ es inversible, con

$$(I_n + A)^{-1} = I_n - A + A^2 - \dots + (-1)^{n-1}A^{n-1}.$$

Usar esta relación para calcular el inverso de la matriz $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}.$

(11) Sea \mathbb{F} un cuerpo, $n \in \mathbb{Z}^+$, y sea V el espacio vectorial de polinomios con $\operatorname{grd}(f) \leq n$. Demuestre que, dado $c \in \mathbb{F}$, el conjunto

$$\{(x-c)^0, (x-c)^1, \dots, (x-c)^n\}$$

es un base de V.

- (12) Demuestre que $(GL(V), \circ)$ es un grupo.
- (13) Supongo que

$$V_1 \xrightarrow{T_1} V_2 \xrightarrow{T_2} V_1$$

son transformaciones lineales tal que $T_2 \circ T_1$ es inversible. Demuestre que $T_1 \circ T_2$ es inversible si y sólo si $\dim(V_1) = \dim(V_2)$.

(14) Demuestre que, si $U, W \leq V$, con

$$\dim(U) + \dim(W) > \dim(V),$$

entonces $U\cap V$ es un espacio vectorial non-trivial.

Más dificil es la siguiente declaración mas fuerte: Demuestre que,

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W)$$

 $\mathrm{donde}\; U+W:=\{u+w\mid u\in U, w\in W\}.$

(15) Calcular r(A), encontrar una base para el espacio de soluciones de $A\underline{x} = \underline{0}$ y describir el conjunto de soluciones de $A\underline{x} = b$, donde

$$[A \mid b] := \begin{bmatrix} 1 & -1 & 2 & 0 & 3 & -1 \\ 0 & 2 & 1 & 3 & 1 & -4 \\ -1 & 1 & 5 & 1 & 0 & 3 \\ -1 & 0 & 1 & -1 & -2 & 4 \end{bmatrix}.$$

(16) Considere el ideal en $\mathbb{R}[x]$,

$$I := (x^2 + 3x + 2)\mathbb{R}[x] + (x^4 - 2)\mathbb{R}[x].$$

Escribe el polinomio mónico f(x) tal que $I = f(x)\mathbb{R}[x]$.

(17) Demuestre que el polinomio $x^2 + 1$ es irreducible sobre $\mathbb{F} = \mathbb{Z}/p\mathbb{Z}$ si y sólo si $p \equiv 3 \pmod{4}$.