Linear Regression Models

Jeff Goldsmith April 19, 2016

Today's Lecture

- Multilevel models
 - ► Hierarchical / nested models
 - ► Crossed designs
- Bayesian methods

Longitudinal data

- We observe data $\underline{y}_{ij}, \underline{x}_{ij}$ for subjects i = 1, ..., I at visits $j = 1, ..., J_i$
- Overall, we pose the model

where
$$Var(\epsilon) = \sigma^2 V$$
 and $V(\rho)$

$$V = \begin{bmatrix} V_1 & 0 & \dots & 0 \\ \hline 0 & V_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & V_I \end{bmatrix}$$

Longitudinal data

- Extended cross-sectional models to allow repeated subject observations
- Repeated observations had a time element
- One basic approach was random effects

Multilevel models

- Multilevel models are a more general class of models
- Repeated observations don't necessarily have to be taken in time
- Examples of two-level models include students in a class, members in a family, patients in a hospital, etc

Two-level model

The repeated observations structure we developed for longitudinal data helps for two-level models. Specifically for repeated observations *j* within clusters *i*, we could write

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_i + \epsilon_{ij}$$

with

- $b_i \sim N[0, \tau^2]$ $\epsilon \sim N[0, \nu^2]$

Intuition, estimation, induced correlation, interpretation – all of these were established for LDA and transfer here

Example I

Example II

Three level model

- Sometimes, the data have a more complex nested structure
- Each cluster is part of a larger cluster
- Examples include students in classes in universities, members in families in towns, patients in hospitals in regions

Three level model

For a model with three levels (repeated observations *k* within clusters *j*, within super-clusters *i*), we can write

$$y_{ijk}^{(i)} = \beta_0 + \beta_1 x_{ijk} + b_i + b_{ij} + \epsilon_{ijk}$$

with

■
$$b_i \sim N\left[0, \tau_{(1)}^2\right]$$

■ $b_{ij} \sim N\left[0, \tau_{(2)}^2\right]$

■ $\epsilon \sim N\left[0, \nu^2\right]$

$$b_{ij} \sim N \left[0, \tau_{(2)}^2 \right]$$

$$\epsilon \sim N \left[0, \nu^2\right]$$

ICCs

This model gives two levels of correlation (observations within clusters, clusters within super clusters), and therefore a couple of ICCs:

Example

Example

```
Nested model
> nested.mod = lmer(yijk~
> summary (nested.mod)
Linear mixed model fit by REML ['lmerMod']
Formula: yij ~(1 \mid L1) + (1 \mid L2)
REML criterion at convergence: 7464.337
Random effects:
 Groups
         Name
                   Variance Std.Dev.
 L2
         (Intercept) 527.003 22.957
         (Intercept) 2137.453 46.233
                        1.004 1.002
Residual
Number of obs: 2000, groups: L2, 200; L1, 20
Fixed effects:
           Estimate Std. Error t value
(Intercept) 0.7712 10.4646 0.074
```

Crossed designs

- Alternatively to nested (hierarchical) models, sometimes there is a crossed design
- Each subject is observed under multiple "treatments", so there are both subject and treatment effects
- For example, each student is graded in multiple classes; each patient is assayed for multiple genes

Crossed designs

For a crossed model (with subjects i and treatments j), we can write

$$\underline{y_{ij}} = \beta_0 + \beta_1 x_{ij} + \underline{b_i} + b_j + \epsilon_{ij}$$

with

- $\bullet b_i \sim N\left[0, \tau_{(1)}^2\right]$
- $b_j \sim N \left[0, \tau_{(2)}^2 \right]$
- $\quad \blacksquare \ \epsilon \sim N \left[0, \nu^2 \right]$

Here there is covariance within subjects across treatments, and within treatments across subjects.

ICCs

Here there is covariance within subjects across treatments, and within treatments across subjects.

$$lacksquare$$
 $cov(y_{ij}, y_{ij'}) =$

$$lacksquare$$
 $cov(y_{i'j}, y_{ij}) =$

LDA and MLM

- Estimation works basically the same for these models as for random intercept models
- Intuition is the same as well you want to borrow strength for one subject from the population of other subjects
- Interpretation of fixed effects is marginal; interpretation of random effects is conditional $\neg E(y) = E(E(y)b)$
- Using randomness both decreases the number of = E(y|b=0) parameters and induces correlation structures

Bayesian methods

Longitudinal data analysis and multilevel models are a good place to start "thinking Bayesian"

- Even though they're <u>frequentist</u>, they include randomness at subject levels
- The idea of "shrinking toward a population mean" or "borrowing strength" is a pretty Bayesian concept
- Even writing down random effect distributions is reminiscent of defining prior distrubtions

Basic Bayes

LDA and MLM are fairly advanced topics, so we'll start with a simpler example

- Suppose I gather data y_i and want to learn about E(y)
- Suppose even more I think I already know *something* about E(y)
- I might write down something about what I want to learn and what I think I know

Basic Bayes

19 of 30

Basic Bayes

Luckily, this is all related through Bayes' formula:

■ For the Normal likelihood with a Normal prior for the mean, the posterior is also Normal:

$$\mu|y_{i} \sim N \left[\frac{\sigma_{\mu}^{2} \underbrace{y}_{i} + \frac{\sigma_{y}^{2}}{\sigma_{n}^{2} + \sigma_{\mu}^{2}} \underbrace{\frac{\sigma_{y}^{2}}{n} + \sigma_{\mu}^{2}}_{n}, \frac{\frac{\sigma_{y}^{2}}{n} \sigma_{\mu}^{2}}{\frac{\sigma_{y}^{2}}{n} + \sigma_{\mu}^{2}} \right]$$

Effect of Prior

Effect of Prior

Bayesian regression

How can we pose the regression model

$$y = \underline{X\beta} + \epsilon \qquad \text{if } \beta \sim \mathcal{N}(x\beta, \sigma^* Z)$$

$$\text{Vesian framework?} \qquad (x^* x)^* x^* y$$

with $\epsilon \sim N[0, I_n]$ in a Bayesian framework?

- lacksquare By making distributional assumptions about the eta
- Normal priors seemed to work well in the past ...
- Try $\beta \sim N\left[0, \sigma_{\beta}^2 I_p\right]$ where p includes the intercept

Bayesian regression

We want to obtain the posterior

$$p(\beta|y,X) \propto p(y|\beta,X)p(\beta)$$
 $e_{X}p\left\{\frac{-i}{2},\dots,\frac{3}{2}\right\}$

Bayesian regression

Can show that $[oldsymbol{eta}|oldsymbol{y},oldsymbol{X}]\sim \mathrm{N}\left[\mu_p,\Sigma_p
ight]$ where and $\mu_p = \sum_{p} \left(\frac{1}{\sigma_{\epsilon}^2} X^t y \right)$ $= \left(\chi^{7}\chi + \frac{\sigma^{2}}{\sigma^{2}}\right)^{T}\chi^{7}$

So, about the variances

- Throughout all of this we have implicitly conditioned on the variances σ_{ϵ}^2 and σ_{β}^2
- Doesn't affect any of our calculations the terms involving μ don't overlap with terms involving σ_{ϵ}^2 or σ_{β}^2
- \bullet σ_{β}^2 is often treated as fixed; σ_{ϵ}^2

The full posterior

- Need $[\beta, \sigma_{\epsilon}^2 | y, X]$ "Intractible" problem
- Just as good: sample from the posterior

Sampling from the posterior

MCMC

- aka where Bayes gets really weird
- You can draw a sample from the posterior even if you can't write down exactly what it is
- That sample is your basis for inference
 - ✓ ► Posterior sample average is your estimate
 - Quantiles on the posterior sample define your credible interval
- Sample describes the *joint distribution* of all model parameters

Some notes on this business

$$V_{uz}(\hat{\rho}_{ols}) = \frac{\hat{\sigma}^{z}(\hat{x}^{T}x)^{-1}}{1}$$

- Joint distributions are often worth the trouble
- Bayesian methods were really controversial for a long time, but are at least less controversial now
- The introduction of "prior knowledge" happens even in frequentist methods, although it is often not explicitly acknowledged

Today's big ideas

- Nested and crossed random effects models
- Bayesian stuff