CiR2 Eléments de correction des exercices du TD Groupes (suite)

EXERCICE 1:

1. Rappel : Si $(G_1, *)$ et $(G_2, *)$ sont deux groupes, on peut définir le groupe produit $(G_1 \times G_2, \bullet)$ où la loi \bullet est définie par $(x_1, x_2) \bullet (x_1', x_2') = (x_1 * x_1', x_2 * x_2')$

A partir des deux groupes $(\mathbb{R}, +)$ et $(\mathbb{R}^{\times}, .)$ on obtient le groupe produit $(\mathbb{R} \times \mathbb{R}^{\times}, \bullet)$

Montrons que φ est un morphisme de groupes :

Pour tout élément (x, y) et (x', y') de $\mathbb{R} \times \mathbb{R}^{\times}$:

$$\varphi\big((x,y)\bullet(x',y')\big) = \varphi\big((x+x',yy')\big) = \big(\ln|yy'|,sg(yy')e^{x+x'}\big) = \big(\ln(|y||y'|),sg(y)sg(y')e^{x+x'}\big)$$

$$\varphi\big((x,y)\bullet(x',y')\big) = \big(\ln|y| + \ln|y'|, sg(y)e^xsg(y')e^{x'}\big) = \big(\ln|y|, sg(y)e^x\big)\bullet\big(\ln|y'|, sg(y')e^{x'}\big)$$

Donc
$$\varphi((x,y) \bullet (x',y')) = \varphi(x,y) \bullet \varphi(x',y').$$

On a également pour tout élément $(x,y) \in \mathbb{R} \times \mathbb{R}^{\times}$, $\varphi(x,y) \in \mathbb{R} \times \mathbb{R}^{\times}$.

Conclusion : φ est un endomorphisme de groupes.

2. Pour tout élément (x,y) de $\mathbb{R} \times \mathbb{R}^{\times}$ on a $\varphi(x,y) = (\ln |y|, sg(y)e^x)$

Si
$$y > 0$$
 alors $sg(y) = 1$ et $\varphi(x, y) = (\ln y, e^x)$ d'où $\varphi \circ \varphi(x, y) = (\ln e^x, sg(e^x)e^{\ln y}) = (x, y)$

Si
$$y < 0$$
 alors $sg(y) = -1$ et $\varphi(x,y) = \left(\ln(-y), -e^x\right)$ et $\varphi \circ \varphi(x,y) = \left(\ln|-e^x|, sg(-e^x)e^{\ln(-y)}\right) = \left(x, -(-y)\right) = (x,y)$

On a donc pour tout élément (x,y) de $\mathbb{R} \times \mathbb{R}^{\times}$, $\varphi \circ \varphi(x,y) = (x,y)$

Conclusion : φ est involutive donc bijective de $R \times \mathbb{R}^{\times}$ dans $R \times \mathbb{R}^{\times}$ et par suite c'est un automorphisme de $R \times \mathbb{R}^{\times}$.

EXERCICE 2:

1. Si on note φ_1 cette application alors pour tout éléments x et x' appartenant à \mathbb{R}^{\times} :

$$\varphi_1(xx') = \frac{xx'}{|xx'|} = \frac{x}{|x|} \frac{x'}{|x'|} = \varphi_1(x)\varphi_1(x').$$

Si x appartient au noyau de φ_1 alors $x \in \mathbb{R}^{\times}$ et $\varphi_1(x) = \frac{x}{|x|} = 1$.

D'où x = |x| et donc $x \in \mathbb{R}_+^{\times}$

Réciproquement, si $x \in \mathbb{R}_+^{\times}$, alors montrons que $\varphi_1(x) = 1$:

En effet dans ce cas, x = |x| et $\varphi_1(x) = \frac{x}{|x|} = \frac{x}{x} = 1$.

Conclusion : le noyau de φ_1 est \mathbb{R}_+^{\times} .

Si y appartient à l'image de φ_1 alors $y \in \mathbb{R}^{\times}$ et il existe $x \in \mathbb{R}^{\times}$ tel que $\varphi_1(x) = \frac{x}{|x|} = y$.

Or
$$\frac{x}{|x|} \in \{-1,1\}$$
 d'où nécessairement $y \in \{-1,1\}$

Réciproquement, si $y \in \{-1, 1\}$ alors on peut trouver au moins un antécédent $x \in \mathbb{R}^{\times}$ tel que $y = \varphi_1(x) = \frac{x}{|x|}$.

En effet si y = 1 alors tout $x \in \mathbb{R}_+^{\times}$ convient et si y = -1 alors tout $x \in \mathbb{R}_-^{\times}$ convient.

L'image de φ_1 est donc $\{-1,1\}$

2. On note φ_2 cette application.

On utilise la même démonstration (question 1) pour montrer que φ_2 est un morphisme de groupes puisque ici on généralise dans \mathbb{C}^{\times}

Si z appartient au noyau de φ_2 alors $z\in\mathbb{C}^\times$ et z=|z| d'où $z\in\mathbb{R}_+^\times$

Réciproquement, si
$$z \in \mathbb{R}_+^{\times}$$
, alors $\varphi_2(z) = \frac{z}{|z|} = \frac{z}{z} = 1$

Le noyau de φ_2 est donc \mathbb{R}_+^{\times}

Si z appartient à l'image de φ_2 alors $z \in \mathbb{C}^{\times}$ et il existe $w \in \mathbb{C}^{\times}$ tel que $\varphi_2(w) = \frac{w}{|w|} = z$.

D'où nécessairement $z \in \mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}.$

Réciproquement, si $z \in \mathbb{U}$ alors on peut trouver au moins un antécédent $\omega \in \mathbb{C}^{\times}$ tel que $z = \varphi_2(w) = \frac{w}{|w|}$

En effet, en posant $w = \lambda z$ avec $\lambda \in \mathbb{R}_+^{\times}$ on a bien $\omega \in \mathbb{C}^{\times}$ et $\varphi_2(w) = \frac{\lambda z}{|\lambda z|} = \frac{\lambda z}{\lambda} = z$ d'après $|\lambda| = \lambda$ et |z| = 1 puisque $z \in \mathbb{U}$.

L'image de φ_2 est donc U.

EXERCICE 3:

- 1. Notons φ cette application alors pour tous éléments $z,z'\in\mathbb{C}^{\times}$: $\varphi(zz')=\left(|zz'|,\frac{zz'}{|zz'|}\right)=\left(|z|,\frac{z}{|z|}\right)\bullet\left(|z'|,\frac{z'}{|z'|}\right)=\varphi(z)\bullet\varphi(z').$ Donc φ est un morphisme de groupes.
- 2. Montrons que φ est une bijection de \mathbb{C}^{\times} dans $\mathbb{R}_{+}^{\times} \times \mathbb{U}$

Injectivité :

Soient
$$z, z' \in \mathbb{C}^{\times}$$
 tels que $\varphi(z) = \varphi(z') \Leftrightarrow \begin{cases} z, z' \in \mathbb{C}^{\times} \\ |z| = |z'| \\ \frac{z}{|z|} = \frac{z'}{|z'|} \end{cases}$

Ainsi après résolution on obtient en particulier : $\varphi(z) = \varphi(z') \Rightarrow z = z'$.

Surjectivité:

Soit $y = (u, v) \in \mathbb{R}_+^{\times} \times \mathbb{U}$.

Analyse : s'il existe $z\in\mathbb{C}^{\times}$ vérifiant $\varphi(z)=y$ alors ceci implique, après la résolution du

$$\overline{\text{système}} \left\{ \begin{array}{l} |z| = u \\ \frac{z}{|z|} = v \end{array} \right. \text{ que } z = uv \in \mathbb{C}^{\times}$$

Synthèse : si on pose z = uv, on a bien $z \in \mathbb{C}^{\times}$ et $\varphi(z) = (u, v) = y$.

Conclusion : φ est bien un isomorphisme de groupes.

EXERCICE 4:

Soit G un groupe. On suppose $\forall x \in G, x^2 = 1_G$.

Pour tout $x, y \in G$, $xy \in G$, par conséquent $(xy)^2 = 1_G$.

La loi étant associative on a : $1_G = (xy)^2 = (xy)(xy) = xyxy$

En composant simultanément dans les deux membres de l'égalité à gauche par x puis à droite par y, on obtient:

$$x1_Gy = x(xyxy)y$$
. soit $xy = x^2yxy^2 = 1_Gyx1_G = yx$.

G est donc un groupe commutatif.

EXERCICE 5:

1. Soit g un élément fixé de G. Pour tout $x \in G$, on a bien $gx \in G$

Montrons μ_g est une injection de G dans G:

S'il existe deux éléments x et x' de G tels que $\mu_g(x) = \mu_g(x')$ alors gx = gx'.

En composant par g^{-1} l'inverse de g dans G, on obtient par associativité de la loi :

$$g^{-1}gx=g^{-1}gx^{\prime}$$
d'où $1_{G}x=1_{G}x^{\prime}$ soit $x=x^{\prime}$

Montrons μ_g est une surjection de G sur G:

Soit h un élément quelconque de G. En posant $x = g^{-1}h \in G$, on a $x \in G$ et $\mu_q(x) = gg^{-1}h = h$, x est donc un antécédent de h par l'application μ_g

<u>Conclusion</u>: on montré que pour tout $g \in G$ fixé, l'application μ_g est surjective et injective de G sur G: μ_g est donc une permutation de G.

Pour $g \in G$ fixé, on définit l'application $\mu_{g^{-1}}$ par : $\mu_{g^{-1}}: \left\{ \begin{array}{l} G \longrightarrow G \\ x \longmapsto g^{-1}x \end{array} \right.$

$$\mu_{g^{-1}}: \left\{ \begin{array}{c} G \longrightarrow G \\ x \longmapsto g^{-1}x \end{array} \right.$$

On vérifie que $\mu_{g^{-1}} \circ \mu_g = \mu_g \circ \mu_{g^{-1}} = id_G$ où id_G est l'application identité de G qui à tout

élément $g \in G$ associe g.

On note S_G l'ensemble des permutation de G et on définit l'application μ par :

$$\mu: \left\{ \begin{array}{l} G \longrightarrow \mathcal{S}_{\mathcal{G}} \\ g \longmapsto \mu_g \end{array} \right.$$

Montrons que μ est un morphisme de groupes :

Soient g, g' appartenant à G:

Pour tout
$$x \in G$$
: $\mu(gg')(x) = \mu_{gg'}(x) = (gg')x = g(g'x) = g(\mu_{g'}(x)) = \mu_g(\mu_{g'}(x)) = \mu_g \circ \mu_{g'}(x)$
Ainsi $\forall g, g' \in G$, $\mu(gg') = \mu(g) \circ \mu(g')$.

 μ étant un morphisme de G dans $\mathcal{S}_{\mathcal{G}}$, pour montrer que μ est injective il suffit de montrer que le noyau de μ est réduit à $\{1_G\}$.

Soit $g \in G$ tel que $\mu(g) = id_{\mathcal{S}_{\mathcal{G}}}$ où $id_{\mathcal{S}_{\mathcal{G}}}$ est la permutation identité qui est l'élément neutre du groupe $\mathcal{S}_{\mathcal{G}}$.

On a donc pour tout $x \in G$: $\mu(g)(x) = id_{\mathcal{S}_{\mathcal{G}}}(x) \Leftrightarrow \mu_g(x) = x \Leftrightarrow gx = x \Leftrightarrow g = xx^{-1} = 1_G$. Donc le noyau de μ est inclus dans $\{1_G\}$ et puisque $\mu(1_G) = id_{\mathcal{S}_{\mathcal{G}}}$ (vérifiez!) on a bien par double inclusion que $Ker\mu = \{1_G\}$.

Notons $\overrightarrow{\mu}(G)$ l'image de G dans $\mathcal{S}_{\mathcal{G}}$ (voir TD précédent sur les groupes). μ est surjective de G sur $\overrightarrow{\mu}(G)$, étant de plus injective de G sur $\mathcal{S}_{\mathcal{G}}$ donc sur $\overrightarrow{\mu}(G)$, on en déduit que μ est bijective de G sur $\overrightarrow{\mu}(G)$.

Conclusion : μ est un isomorphisme de G sur $\overrightarrow{\mu}(G)$ qui est un sous groupe de $\mathcal{S}_{\mathcal{G}}$ (voir TD précédent sur les groupes) Donc G bien est isomorphe à un sous groupe de $\mathcal{S}_{\mathcal{G}}$.

EXERCICE 6:

- 1. Deux choses sont à vérifier :
 - (a) $\forall x \in G, 1_G \star x = x$
 - (b) $\forall (g_1, g_2) \in G^2, \forall x \in G : (g_1.g_2) \star x = g_1 \star (g_2 \star x)$
 - (a) $\forall x \in G$ puisque 1_G est son propre symétrique dans G alors : $\forall x \in G: 1_G \star x = 1_G x 1_G = x$
 - (b) $\forall (g_1, g_2) \in G^2, \forall x \in G :$ $(g_1.g_2) \star x = g_1.g_2x(g_1.g_2)^{-1} = g_1.g_2xg_2^{-1}g_1^{-1} = g_1(g_2xg_2^{-1})g_1^{-1} = g_1(g_2 \star x)g^{-1} =$ $g_1 \star (g_2 \star x)$
- 2. Dans le cas où $G = S_3$, explicitons les orbites pour cette action : Les orbites sont des classes d'équivalence pour la relation R suivante $xRy \Leftrightarrow il$ existe $g \in G$ tel que $y = gxg^{-1}$ donc elles partitionnent S_3 et le stabilisateur d'un élément de S_3 est un sous groupe de S_3 donc il contient i_d .

Pour $\sigma \in S_3$ et (i, j, k) un cycle de S_3 , on a $\sigma(i, j, k)\sigma^{-1} = (\sigma(i), \sigma(j), \sigma(k))$ Ainsi l'orbite de l'identité i_d est $\{i_d\}$ et $Stab(i_d) = S_3$ puisque $\forall \sigma \in S_3$ on a $\sigma i_d \sigma^{-1} = i_d$

L'orbite des transpositions est constituée de $\{(1,2),(1,3),(2,3)\}$ avec $\operatorname{Stab}(i,j)=\{i_d,(i,j)\}$ et l'orbite des 3-cycles est $\{(1,2,3),(1,3,2)\}$ avec $\operatorname{Stab}(1,2,3)=\{id,(1,2,3),(1,3,2)\}$ (A vérifier)

Pour les exercices 7 et 8, on fait agir un groupe d'isométries G sur un ensemble X:

Pour les roulettes : G est engendré par une rotation ρ d'angle $\frac{2\pi}{12} = \frac{\pi}{6}$ et X est l'ensemble des coloriages possibles avec les couleurs bleu, vert ou rouge

Pour les colliers de perles : G laisse invariant les sommets d'un dodécagone régulier, il est composé de 12 rotations et de 12 symétries axiales et X est l'ensemble des partitions possibles de l'ensemble des sommets du décagone régulier

Pour les boites de chocolats : G est engendré par une rotation d'angle $\frac{2\pi}{6} = \frac{\pi}{3}$ et X est l'ensemble des assortiments possibles.

Par exemple le nombre de colliers différents est exactement le nombre d'orbites dans l'action de G sur X.

On utilise l'isomorphisme μ entre G et S_X qui à g associe μ_g définie par : $\forall x \in X, \, \mu_q(x) = g(x)$ (voir exercice 5) pour identifier les isométries de G et les permutations de S_X .

EXERCICE 7:

1. Ainsi on identifie:

$$\begin{array}{l} \rho & \mapsto (1,2,3,4,5,6,7,8,9,10,11,12) \\ \rho^2 & \mapsto (1,3,5,7,9,11)(2,4,6,8,10,12) \\ \rho^3 & \mapsto (1,4,7,10)(2,5,8,11)(3,6,9,12) \\ \rho^4 & \mapsto (1,5,9)(2,6,10)(3,7,11)(3,6,9)(4,8,12) \\ \rho^5 & \mapsto (1,5,9)(2,6,10)(3,7,11)(3,6,9)(4,8,12) \\ \rho^6 & \mapsto (1,6,11,4,9,2,7,12,5,10,3,8) \end{array}$$

Par conséquent puisque $(\rho^k)^{-1} = \rho^{12-k}$ et $|Fix(\rho^k)| = |Fix((\rho^k)^{-1})|$, on a :

Rotations d'ordre 1 :
$$|Fix(I_d)| = {12 \choose 2,3,7} = 7920$$

Rotations d'ordre 12 : $|Fix(\rho)| = 0 = |Fix(\rho^{11})|$

Rotations d'ordre 6 : $|Fix(\rho^2)| = 0$

Rotations d'ordre $4: |Fix(\rho^3)| = 0 = |Fix(\rho^9)|$

Rotations d'ordre 3 : $|Fix(\rho^4)| = 0 = |Fix(\rho^8)|$

Rotations d'ordre 12 : $|Fix(\rho^5)| = 0 = |Fix(\rho^7)|$

Rotations d'ordre 2 : $|Fix(\rho^6)| = 0$

Donc, d'après le théorème de Cauchy-Frobenius, le nombre de roulettes différentes est égal à :

$$\frac{1}{|G|} \sum_{g \in G} |Fix(g)| = \frac{1}{12} \times 7920 = 660$$

2. Correction demain

EXERCICE 8:

Ainsi on identifie:

$$\rho \mapsto (1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 10, 12)(13, 14, 15, 16, 17, 18)$$

$$\rho^2 \mapsto (1, 5, 9)(3, 7, 11)(2, 6, 10)(4, 8, 12)(13, 15, 17)(14, 16, 18)$$

$$\rho^3 \mapsto (1,7)(3,9)(5,11)(2,8)(4,10)(6,12)(13,16)(14,17)(15,18)$$

Puisque ρ ne laisse fixe que 19 et est associé à une décomposition en 6-cycles à supports disjoints : en 19 ne peut être placé qu'un praliné.

$$|Fix(I_d)| = {19 \choose 6,6,7} = 46558512$$

$$|Fix(\rho)| = |Fix(\rho^5)| = {3 \choose 1,1,1} = 6$$

$$|Fix(\rho^2)| = |Fix(\rho^4)| = {6 \choose 2,2,2} = 90$$

$$|Fix(\rho^3)| = {9 \choose 3,3,3} = 1680$$

Donc, d'après le théorème de Cauchy-Frobenius, le nombre d'assortiments différents est égal à :

$$\frac{1}{6} \sum_{g \in G} |Fix(g)| = \frac{1}{6} (46558512 + 2 \times 6 + 2 \times 90 + 1680) = 7760064$$