GPS signal structure

Two services are available in the current GPS system:

- SPS: The Standard Positioning Service is an open service, free of charge for worldwide users. It is a single-frequency service in the frequency band L1.
- PPS: The Precise Positioning Service is restricted by cryptographic techniques to military and authorized users. Two navigation signals are provided in two different frequency bands, L1 and L2.
- The GPS uses the CDMA technique to send different signals on the same radio frequency, and the modulation method used is Binary Phase Shift Keying (BPSK)

- GPS employs sinusoidal signal with frequency 1575.42 and 1227.60 MHz as its two carriers.
- Each satellite transmits the same navigation signal at these two frequencies. They are coherently selected multiples of a 10.23-MHz master clock, derived from an atomic standard.

Components of GPS Signal

- Carrier
- Ranging Code
- Navigation Data

- Carrier: RF sinusoidal signal with frequency fL1 or fL2.
- Ranging code: PRN code assigned to each satellite allows receiver to determine signal transit time.
- Navigation data: a binary coded message consisting of data on the satellite health status, ephemeris, clock bias parameters, SVs constellation almanac etc.

Carrier frequency selection criteria

\$------

Performance parameter	UHF (300MHz-1GHz)	L-band (1-2GHz)	C-band (4-6GHz)
Path Loss for omni directional antenna ~f ²	Lowest of three	Acceptable	Path loss≈10dB larger than at L-band
Ionospheric group delay $\Delta R \approx 1/f^2$	Large group delay,20-1500ns	2-150ns at 1.5GHz	≈0-15ns

Carrier

```
2 GHz
L1=1575.42MHz(two signals:one for civil use & one for military)
L3=1381.05MHz (Nuclear Detonation Detection System)
            L2=1227.60MHz(Only one signal for DOD)
                  L4 is reserved for military
                                             1 GHz
```


Figure 1: Legacy GPS signal structure (source [Seeber, 1993]).

Table 1: Legacy GPS signal structure

$f_0 = 10.23 \text{MHz}$	
$154 \times f_0$	
1575.420 MHz	
19.03 cm	
$120 \times f_0$	
1227.600 MHz	
24.42 cm	
$f_0 = 10.23 \text{MHz (Mbps)}$	
29.31 m	
266 days, 7 days/satellite	
$f_0/10 = 1.023 \text{MHz}$	
293.1 m	
1 ms	
50 bps	
30 s	
12.5 min	

Ranging Codes (or) PRN Codes

- The C/A ranging codes are meant for civil users.
- These are short codes with a period of 1023 bits.
- The chip rate is 1.023 MHz, so sequence is of 1-ms duration.
- Short code permits rapid acquisition.
- Gold codes: formed by the products of two equal period 1023 bits PN codes.
- chip λ = 300m

- It is meant for authorized users only.
- It is a long code.
- Chip rate is 10.23 MHz, i.e., 10 times faster than C/A.
- It is a product of two PN codes, X1 and X2.
- X1 has a sequence of 15,345,000 chips and X2 has a sequence of 15,345,037 chips.
- The P code has a period of around 38 weeks.
- In GPS, P code is reset every Saturday/Sunday midnight, so that the period of truncated sequence is one week.
- The P code is difficult to acquire without acquisition aids.
- Chip $\lambda = 30$ m

Navigation Data

Navigation data is formatted into:

- a) Master-frames
- **b)** Frames
- c) Sub-frames
- The duration of Master-Frame is 12.5 min (1500*25 bits).
- Each Master-Frame is subdivided into 25 Frames, each with 30 sec (1500 bits) duration.
- Each Frame is sub divided into 5 sub-frames, each of which lasts 6 sec (ten 30-bit words).

Navigation data

- Navigation data message rate is 50 bits/sec.
- Each bit is 20ms long.
- Subframes 1-3 repeat same info from frame to frame
- Subframes 4-5 contain different pages of the navigation message.
- It takes 25 frames (=One Master frame=12.5min) to transmit the complete navigation message.

Subframe -1	TLM	HOW	SV clock correction data	
Subframe -2	TLM	HOW	Ephemeris data	
Subframe -3	TLM	HOW	Ephemeris data	
Subframe -4	TLM	HOW	Iono parameters, UTC etc.	Sub commuted
Subframe -5	TLM	HOW	Almanac data	in 25 frames
	•	1 Su	bframe = 300 bit, 6 s —	

- Word 1 and 2 have the same format in every subframe.
- Word 1 is the telemetry word. Its first 8 bits constitute the preamble 10,001,011 (8BH) and the rest is the telemetry data.
- Word 2 is the handover word and contains the truncated Z count that indicates the time of end of the subframe in quantum of 1.5 s.

- Sub frames 1,2 and 3 repeat every .5 min
- Sub frames 4 and 5 repeat every 12.5min.
- Sub frames 1,2 and 3 are specific to the transmitting satellites
- Sub frames 4 and 5 are common to all satellites.

Any Questions?