1. Линейное пространство над числовым полем: определение, свойства и примеры.

Определение:

 \overline{M} ножество \overline{L} называется векторным (линейным) пространством, над числовым полем k, если:

- а) Задан закон (сложение), по которому $\forall x, y \in L$ сопоставляется т.н. сумма $x+y \in L$;
- б) Задан закон (умножение на число), по которому $\forall x \in L \ u \ \forall \alpha \in k$ сопоставляется произведение $ax \in L$;
- в) $\forall x, y, z \in L$ и $\forall \alpha, \beta \in k$ выполнены следующие **аксиомы**:
 - x + y = y + x,
 - (x + y) + z = x + (y + z),
 - $\exists 0 \in L: x + 0 = x$,
 - \exists '-x' $\in L$: x + (-x) = 0,
 - $1 \cdot x = x$,
 - $\alpha(\beta x) = (\alpha \beta)x$,
 - $(\alpha + \beta)x = \alpha x + \beta x$,
 - $\alpha(x+y)=\alpha x+\alpha y$,
- \rightarrow Элементы L называются векторами;
- » **0** называется **нулевым вектором (нулем)**;
- » **'-х'** называется **противоположным** вектору х.

Свойства:

Лемма 1. Любое числовое поле включает в себя подполе рациональных чисел \mathbb{Q} .

Лемма 2.

- 1) B любом векторном пространстве L существует единственный нулевой вектор.
- 2) В любом векторном пространстве для любого вектора существует единственный противоположный вектор.
- 3) $\forall x \in L: 0 \cdot x = 0.$
- 4) $\forall x \in L$: $(-1) \cdot x = -x$.

Примеры:

- 1) V_3 и V_2 над \mathbb{R} пространства геометрических векторов;
- 2) \mathbb{C} над \mathbb{R} ; \mathbb{C} над \mathbb{C} ; \mathbb{C} над k; \mathbb{R} над \mathbb{Q} и m.n.- поле над подполем;
- 3) $k_n = \{x = (\alpha_1, \alpha_2, ..., \alpha_n)^T\}, \alpha_j \in k$ пространство векторов-столбцов;
- 4) $M_{m,n}(k)$ пространство матриц размера $m \times n$;
- 5) k[t] пространство всех многочленов от t;
- 6) $k_{\leq n}[t]$ пространство многочленов степени не выше n;

- 7) $\mathbb{R}(a;b)$ пространство вещественных непрерывных функций на [a;b];
- 8) Пространство решений ОСЛУ;
- 9) $0 = \{0\}$ нулевое пространство.
- 2. Базис и размерность линейного пространства. Координаты вектора. Теорема о существовании базиса.

Определение базиса:

Если в пространстве L (над полем k) существует такая совокупность векторов x_1, x_2, \ldots, x_m , что любой вектор из L является их линейной комбинацией, то эта совокупность называется порождающей системой векторов пространства L.

Упорядоченная порождающая и при этом линейно независимая система векторов называется **Базисом** пространства L.

Определение координат вектора:

Коэффициенты линейной комбинации $\alpha_1, \alpha_2, ..., \alpha_n$ называется координатами вектора x относительно базиса $e_1, e_2, ..., e_n$.

Определение размерности линейного пространства:

Если в пространстве L можно найти n линейно независимых векторов, а всякие n+1 векторов этого пространства линейно зависимы, то число n называется размерностью пространства L, а L называется n-мерным.

$$n = dimL$$
; $dimO = 0$

Векторное пространство, в котором можно указать сколь угодно большое число линейно независимых векторов, называется бесконечномерным.

$$dim_{\mathbb{C}}\mathbb{C}=1$$
, $dim_{\mathbb{R}}\mathbb{C}=2$, $dim_{\mathbb{Q}}\mathbb{C}=\infty$

Теорема о существовании базиса:

В пространстве L размерности n существует базис из n векторов; более того, любая из n линейно независимых векторов пространства L является базисом этого пространства.

Доказательство:

Пусть $e_1, e_2, ..., e_n$ линейно независимы, $x \in L$.

$$\alpha_0 x + \alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n = 0$$

$$\alpha_0 \neq 0$$
 (от противного) $\Rightarrow x = -\frac{\alpha_1}{\alpha_0}e_1 - \frac{\alpha_2}{\alpha_0}e_2 - \dots - \frac{\alpha_n}{\alpha_0}e_0$ **Ч.Т.Д.**

Лемма. Коэффициенты разложения вектора x по базису $e_1, e_2, ..., e_n$ определяются однозначно.

Теорема. При сложении двух векторов пространства L их координаты

складываются. При умножении вектора на число все его координаты умножаются на это число.

3. Признак линейной независимости системы векторов. Следствия.

Теорема линейной независимости системы векторов:

Система из т векторов $x_1, x_2, ..., x_m$ линейно независима тогда и только тогда, когда ранг матрицы из координат векторов $x_1, x_2, ..., x_m$ равен числу этих векторов.

Следствие:

Если в пространстве L имеется базис, то размерность этого пространства равна числу базисных векторов.

Следствие:

Система из **n** векторов в **n-мерном** векторном пространстве л**инейно независима** тогда и только тогда, когда определитель из координат этих векторов относительно произвольного базиса **отличен** от нуля.

4. Преобразование координат вектора при замене базиса пространства.

Два базиса пространства L: «старый» e_1, e_2, \ldots, e_n и «новый» g_1, g_2, \ldots, g_n .

$$x \in L \qquad x = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n = \mu_1 g_1 + \mu_2 g_2 + \dots + \mu_n g_n$$

$$(\lambda_1 = \alpha_{11} \mu_1 + \alpha_{12} \mu_2 + \dots + \alpha_{1n} \mu_n)$$

$$X_{e} = \begin{pmatrix} \lambda_{1} \\ \lambda_{2} \\ \dots \\ \lambda_{n} \end{pmatrix}; \quad X_{g} = \begin{pmatrix} \mu_{1} \\ \mu_{2} \\ \dots \\ \mu_{n} \end{pmatrix}; \quad A_{e \to g} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix}$$

$$X_e = A_{e \to g} X_g$$

Матрица $A_{e \to g}$ называется <u>матрицей перехода</u> от старого базиса $\{e_j\}$ к новому базису $\{g_j\}$. В её столбцах <u>стоят координаты нового базиса в старом.</u>

Правило преобразования координат:

Новый координатный столбец равен произведению матрицы перехода от нового базиса к старому на старый координатный столбец.

$$\left|A_{e \to g}\right| \neq 0 \Rightarrow \exists A_{e \to g}^{-1}$$

$$X_g = A_{e \to g}^{-1} X_e = A_{g \to e} X_e$$

5. Подпространства. Лемма о базисе подпространства. Пересечение подпространств.

Определение подпространства:

Подмножество М линейного (векторного) пространства L называется подпространством, если оно само является линейным (векторным) пространством относительно тех же самых операций, что были в L(сложение и умножение на число).

 $L \supset M$ M – подпространство конечного пространства L

Леммы:

1. Базис любого подпространства можно дополнить до базиса всего пространства.

Док-во:

Пусть $m=dim < n=dimL u x_1, x_2, ..., x_m$ - базис M.

 $\exists x_{m+1} \notin M \Rightarrow x_1, x_2, ..., x_m, x_{m+1}$ – линейно независимы и т.д.

- 2. $PuQ-nodnpocmpaнcmeaL \Rightarrow P\cap Q-nodnpocmpancmeoL$.
- 6. Сумма подпространств. Теорема о размерностях суммы и пересечения подпространств.

Сумма подпротсранств:

$$\overline{P+Q} \stackrel{\text{def}}{=} \{x+y: x \in P, y \in Q\}$$
 – сумма подпространств $P \cup Q$

Теорема о размерностях суммы и пересечения подпространств:

$$dim(P+Q) + dim(P \cap Q) = dimP + dimQ.$$

There are:

Док-во:

$$\overline{\Pi ycmb}$$
 $S=P+Q$, $T=P\cap Q$ и x_1 , x_2 , ..., $x_t-базис$ $T\neq O$.

$$T \subset P \ x_1, x_2, ..., x_t, x_{t+1}, ..., x_p - 6 a suc P$$

$$T \subset Q$$
 $x_1, x_2, \dots, x_t, x'_{t+1}, \dots, x'_q - \delta a s u c Q$

а)
$$x_1$$
, x_2 , ..., x_t , x_{t+1} , ..., x_p , x'_{t+1} , ..., x'_q - порождающая система для S

$$b) \ \alpha_1 x_1 + \dots \alpha_t x_t + \alpha_{t+1} x_{t+1} + \dots + \alpha_p x_p + \alpha'_{t+1} x'_{t+1} + \dots + \alpha'_q x'_q = 0 \\ \alpha_1 x_1 + \dots \alpha_t x_t + \alpha_{t+1} x_{t+1} + \dots + \alpha_p x_p = -\alpha'_{t+1} x'_{t+1} - \dots - \alpha'_q x'_q = y$$

$$y \in T \Rightarrow \alpha_{t+1} = \dots = \alpha_p = 0 \Rightarrow \alpha_1 = \dots = \alpha_t = \alpha'_{t+1} = \dots = \alpha'_q = 0$$

$$x_1, x_2, ..., x_t, x_{t+1}, ..., x_p, x'_{t+1}, ..., x'_q - \delta a suc S \Rightarrow d im S = p + (q - t)$$

 $Y.T. I.$

7. Теорема о прямой сумме подпространств.

Сумма подпространств P и Q называется прямой (обозначение $P \oplus Q$), если любой вектор $\underline{z} \in P + Q$ записывается в виде $\underline{z} = \underline{x} + \underline{y}$, где $\underline{x} \in P$ и $\underline{y} \in Q$, единственным способом.

Теорема 2.

Eсли P и Q — два подпространства векторного пространства, то равносильны следующие три утверждения:

- 1) Сумма P + Q прямая;
- 2) $P \cap Q = O$;
- 3) Объединение базисов P и Q базис P + Q.
- 8. Евклидово пространство. Неравенство Коши Буняковского. Линейная независимость ортогональной системы векторов.

Определение:

Вещественное векторное пространство L называется <u>евклидовым</u>, если a) задано правило, по которому $\forall x, y \in L$ сопоставляется число (скалярное произведение) $(x, y) \in \mathbb{R}$;

- б) это правило $\forall x,y,z \in L$ и $\forall \lambda \in \mathbb{R}$ удовлетворяет следующим требованиям:
 - 1. (x, y) = (y, x),
 - 2. (x + y, z) = (x, z) + (y, z),
 - $3. (\lambda x, y) = \lambda(x, y),$
 - 4. (x,x) > 0, если $x \neq 0$, u(0,0) = 0.

Неравенство Коши-Буняковского:

Для любых векторов в евклидовом пространстве

$$(x,y)^2 \le \|x\|^2 \cdot \|y\|^2.$$

<u>Док-во:</u>

$$\forall t \in \mathbb{R}(x - ty, x - ty) \ge 0 \Leftrightarrow$$

$$\Leftrightarrow t^2 ||y||^2 - 2t(x, y) + ||x||^2 \ge 0 \Leftrightarrow (x, y)^2 - ||x||^2 \cdot ||y||^2 \le 0$$

Ч.Т.Д.

Определение ортогональных векторов:

Векторы называются ортогональными, если (x, y) = 0.

Линейная независимость ортогональной системы векторов:

Лемма:

Ортогональная система векторов линейно независима.

Док-во:

 Π усть $x_1, x_{2,\dots}, x_k$ ортогональны.

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k = 0$$

$$\alpha_j(x_j, x_j) = \alpha_i ||X_j||^2 = 0 \Rightarrow \alpha_j = 0 \ \forall j$$
 $\forall J.T.J.$

9. Теорема об ортогонализации. Следствия.

Теорема об ортогонализации Грамма-Шмидта:

Пусть $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_k}$ – линейно независимая система векторов в евклидовом пространстве. Исходя из неё, можно построить ортогональную систему векторов $\mathbf{v_1'}$, $\mathbf{v_2'}$, ..., $\mathbf{v_k'}$, такую что $\mathbf{v_1'} = \mathbf{v_1}$, $\mathbf{v_2'} = \mathbf{v_2} + \mathbf{\gamma_{21}}\mathbf{v_1}$; $\mathbf{v_3'} = \mathbf{v_3} + \mathbf{\gamma_{31}}\mathbf{v_1} + \mathbf{\gamma_{32}}\mathbf{v_2}$; ...; $\mathbf{v_k'} = \mathbf{v_k} + \mathbf{\gamma_{k1}}\mathbf{v_1} + \mathbf{\gamma_{k2}}\mathbf{v_2} + \cdots + \mathbf{\gamma_{k,k-1}}\mathbf{v_{k-1}}$.

Док-во:

Индукция по k.

k = 1 -очевидно.

Пусть верно для k-1.

$$\nu'_{k} = \nu_{k} + \beta \nu'_{1} + \dots + \beta_{k} \nu'_{k-1}$$

$$(\nu_{n}^{1}, \nu_{i}^{1}) = (\nu_{k}, \nu'_{i}) + \beta_{i}(\nu'_{i}, \nu'_{i}) = 0 \implies \beta_{i} = -\frac{(\nu_{k}, \nu'_{i})}{(\nu'_{i}, \nu'_{i})} \ (1 \le i \le k - 1)$$

 $v'_k = v_k + \beta_1 v_1 + \beta_2 (v_2 + \gamma_{21} v_1) + \dots = v_k + \gamma_{k1} v_1 + \dots + \gamma_{k,k-1}, v'_k \neq 0$ (!)

Следствия:

- 1. В любом евклидовом пространстве существует ортогональный базис.
- 2. В любом евклидовом пространстве существует ортогональный и нормированный (ортонормированный) базис. (если норма каждого базиса равна 1, то базис называется нормированным).
- 10. Ортогональное дополнение подпространства, свойства.

Определение:

$$S \supset P \quad dimS = n \quad dimP = k \quad (0 \le k \le n)$$

Ортогональное дополнение подпространства Р:

$$P^{\perp} \stackrel{\text{def}}{=} \{x \in S: (x, y) = 0 \ \forall y \in P\}$$

Множество, в котором все векторы из пространства S, которые ортогональны всем векторам из P. (определение.)

$$O^{\perp} = S.S^{\perp} = O$$

Лемма.

Oртогональное дополнение P^{\perp} - подпространство евклидова пространства S.

Теорема.

Ортогональное дополнение P^{\perp} подпространства P – это подпространство, натянутое на вектора, дополняющие ортогональный базис P до ортогонального базиса S.

Док-во:

 $e_1, e_2, ..., e_k$ — ортогональный базис подпространства P — дополним до ортогонального базиса пространства $S: e_1, e_2, ..., e_k, e_{k+1}, ..., e_n$.

$$\begin{array}{l} Q = \langle e_{k+1}, \ldots, e_n \rangle - \text{линейная оболочка этих векторов.} \\ a) \ Q \subset P^\perp; \\ b) \ x = \lambda_1 e, + \lambda_2 e_2 + \cdots + \lambda_n e_n \in P^\perp \\ (x, e_i) = \lambda_i (e_i, e_i) = \lambda_i \|e_i\|^2 \Rightarrow \lambda_i = 0 \quad \forall i = 1, 2, \cdots k \\ x \in Q \Rightarrow P^\perp \subset Q \\ P^\perp = Q \end{array}$$

Свойства:

- $dimP^{\perp} = dimS dimP$;
- $(P^{\perp})^{\perp} = P;$
- $P_1 \subset P_2 \Rightarrow P_1^{\perp} \supset P_2^{\perp}$;
- $(P_1 + P_2)^{\perp} = P_1^{\perp} \cap P_2^{\perp}$;
- $(P_1 \cap P_2)^{\perp} = P_1^{\perp} + P_2^{\perp};$
- $S = P \oplus P^{\perp}$ (ортогональная сумма).

11. Проекция вектора на подпространство. Матрица Грама.

Проекция вектора на подпространство:

$$S = P \oplus P^{\perp} \quad \forall c \in S \quad c = a + b \quad \alpha \in P, b \in P^{\perp}$$

a — ортогональная проекция вектора c на подпространство P b — ортогональная составляющая (проекция на P^{\perp})

Пусть
$$e_1, e_2, ..., e_k$$
 — ОНБ пространства P $a = \gamma_1 e_1 + \gamma_2 e_2 + \cdots + \gamma_k e_k$ $b = c - a \perp P \quad (c - a, e_i) = 0 \quad \forall i = 1, 2, 3, ..., k$ $(c, e_i) = (a, e_i) = \gamma_i$

$$a = \sum_{i=1}^{k} (c, e_i)e_i, \quad b = c - a$$

Лемма.

Проекция линейной комбинации векторов равна той же линейной комбинации проекций.

Матрица Грама:

Пусть
$$x_1, x_2, \dots, x_k$$
 – любой базис подпространства P $a = \gamma_1 x_1 + \gamma_2 x_2 + \dots + \gamma_k x_k$ $(c, x_i) = (a, x_i)$ $\forall i = 1, 2, \dots, k$ $(c, x_i) = (x_1, x_i) \gamma_1 + (x_2, x_i) \gamma_2 + \dots + (x_k, x_i) \gamma_k$

Матрица Грама:
$$G = \begin{pmatrix} (x_1, x_1) & (x_2, x_1) & \dots & (x_k, x_1) \\ \dots & \dots & \dots & \dots \\ (x_1, x_k) & (x_2, x_k) & \dots & (x_k, x_k) \end{pmatrix} = \begin{pmatrix} (x_1, x_1) & (x_1, x_2) & \dots & (x_k, x_k) \\ \dots & \dots & \dots & \dots \\ (x_k, x_1) & (x_k, x_2) & \dots & (x_k, x_k) \end{pmatrix}$$

<u>Определитель Грама:</u> $g(x_1, x_2, ..., x_k) = |G| \neq 0$

12. Линейные операторы. Матрица линейного оператора. Изменение матрицы оператора при замене базиса.

Линейные операторы:

L, M – векторные пространства над полем k

 $\mathcal{A}:L o M$ – оператор (отображение) из L в M

 $x \in L \ y = \mathcal{A} x \in M \ y - oбраз вектора x, x - npooбраз вектора y$

A - линейный оператор, если

$$I)\mathcal{A}(\mathbf{x}_1+\mathbf{x}_2)=\mathcal{A}\mathbf{x}_1+\mathcal{A}\mathbf{x}_2 \ \ \forall x_1,x_2\in L;$$

2)
$$\mathcal{A}(\mu x) = \mu \mathcal{A} x \quad \forall \mu \in k, \forall x \in L. \quad (\Rightarrow \mathcal{A}0=0)$$

Матрица линейного оператора:

$$dimL = n$$
, $dim = m$, $\mathcal{A}: L \rightarrow M$

$$e_1, e_2, ..., e_n$$
 – базис L, $g_1, g_2, ..., g_m$ – базис M

$$\begin{cases} \mathcal{A} \, e_1 = \, a_{11} g_1 + a_{21} g_2 + \dots + a_{m1} g_m \\ \mathcal{A} \, e_2 = \, a_{12} g_1 + a_{22} g_2 + \dots + a_{m2} g_m \\ \dots \\ \mathcal{A} \, e_n = \, a_{1n} g_1 + a_{2n} g_2 + \dots + a_{mn} g_m \end{cases}$$

$$\mathcal{A}e_{j} = \sum_{i=1}^{m} a_{ij}g_{i} \quad (j = 1, 2, ..., n)$$

$$A_{g,e} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} - \text{матрица оператора $ \mathcal{A}$ в базисах } \{e_j\} \, u \, \{g_i\}.$$

Столбцами матрицы $A_{g,e}$ являются координаты векторов $\mathcal{A}e_1$, $\mathcal{A}e_2$, ..., $\mathcal{A}e_n$ относительно базиса $g_1,g_2,...,g_m$.

$$x \in L;$$
 $x = \sum_{j=1}^{n} \mu_j e_j;$ $y = \mathcal{A}x = \sum_{i=1}^{m} v_i g_i \in M$

$$y = \sum_{i=1}^{m} v_i g_i = \mathcal{A}\left(\sum_{j=1}^{n} \mu_j e_j\right) = \sum_{i=1}^{n} \mu_j \mathcal{A} e_j = \sum_{i=1}^{n} \mu_j \left(\sum_{i=1}^{m} a_{ij} g_i\right) = \sum_{i=1}^{m} \mu_i \mathcal{A} e_i$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \mu_{j} \right) g_{i}$$

$$v_i = \sum_{i=1}^n a_{ij} \mu_j$$
 $(i = 1, 2, ..., m)$

$$(*) \begin{cases} v_1 = a_{11}\mu_1 + a_{12}\mu_2 + \dots + a_{1n}\mu_n \\ v_2 = a_{21}\mu_1 + a_{22}\mu_2 + \dots + a_{2n}\mu_n \\ \dots \\ v_m = a_{m1}\mu_1 + a_{m2}\mu_2 + \dots + a_{mn}\mu_n \end{cases}$$

$$X_e = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \dots \\ \mu_n \end{pmatrix} \quad Y_g = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_m \end{pmatrix} \quad (*) \quad \boxed{Y_g = A_{g,e} X_e} \qquad (A_{e,e} = A_e)$$

Пусть теперь $A = \left\{a_{ij}\right\}_{m,n}$ — произвольная матрица из $M_{n,k}(k)$.

Eсли $x = \sum_{j=1}^{n} \mu_{j} e_{j}$, то по (*) находим $y = \sum_{i=1}^{m} v_{i} g_{i}$. Получили оператор (линейный!) с матрицей $A_{q,e} = A$ в базисах $\{e_{i}\}$ и $\{g_{i}\}$.

Изменение матрицы оператора при замене базиса:

$$\mathcal{A}: \mathbf{L} \to \mathbf{L}, \quad \{e_i\}$$
 и $\{g_i\}$ – два базиса \mathbf{L} $x \in \mathbf{L}, \ y = \mathcal{A}x \Rightarrow \ Y_e = A_e X_e$ и $Y_g = A_g X_g \ (A_g = ?)$ $X_e = T_{e \to g} X_g, \ Y_e = T_{e \to g} Y_g \Rightarrow T_{e \to g} Y_g = A_e T_{e \to g} X_g$

 $(T_{e o g}$ — матрица перехода от базиса $\{e_i\}$ к базису $\{g_i\}$)

$$Y_g = T_{e \to g}^{-1} A_e T_{e \to g} X_g = T_{g \to e} A_e T_{e \to g} X_g$$

$$A_g = T_{g \to e} A_e T_{e \to g} = T_{e \to g}^{-1} A_e T_{e \to g}$$

Лемма.

Определитель матрицы линейного оператора не зависит от выбора базиса.

13. Ядро и образ линейного оператора. Теорема о размерностях ядра образа.

$$\mathcal{A}: L \to M$$

$$\ker \mathcal{A} = \{x \in L : \mathcal{A}x = 0\}$$
 – ядро оператора \mathcal{A} $\operatorname{im} \mathcal{A} = \mathcal{A}L = \{y \in M : \exists x \in L \text{ такой, что } \mathcal{A}x = y\}$ – образ оператора \mathcal{A}

Теорема.

 \mathcal{A} - подпространства соответствующих пространств L и M.

$$dim\ ker \mathcal{A} = d_{\mathcal{A}} - \partial e \phi e \kappa m\ onepamopa\ \mathcal{A}$$
 $dim\ im \mathcal{A} = r_{\mathcal{A}} - p$ анг onepamopa \mathcal{A}

Теорема.

$$d_{\mathcal{A}}r_{\mathcal{A}}=dimL$$

Док-во:

Пусть $b_1, b_2, ..., b_r$ — базис $im \mathcal{A}$. Пусть $\forall i \ a_i \in L$ такой, что $\mathcal{A}a_i = b_i$ $(1 \le i \le r). \{a_i\}$ линейно независимы.

Пусть $P = \langle \{a_i\} \rangle \subset L$, $\dim P = r$. Докажем, что $L = P \oplus \ker \mathcal{A}$.

$a)\underline{P} \cap ker \mathcal{A} = 0$

Пусть
$$a \in P \cap ker \mathcal{A}$$
. $a = \sum_{i=1}^{\gamma} \gamma_i a_i$ $\mathcal{A} a = \sum_{i=1}^{\gamma} \gamma_i \mathcal{A} a_i = \sum_{i=1}^{\gamma} \gamma_i b_i = 0 \Rightarrow \gamma_i = 0 \ \forall i \Rightarrow a = 0$

$$6) L = P + ker \mathcal{A}$$

Пусть
$$a \in L$$
. $\mathcal{A}a = \sum_{i=1}^{\sigma} \beta_i b_i$
Пусть $a_0 = \sum_{i=1}^{\gamma} \beta_i a_i$, $c = a - a_0$.
 $\mathcal{A}c = \mathcal{A}a - \mathcal{A}a_0 = 0 \Rightarrow c \in ker\mathcal{A}$ $a = a_0 + c$

$$L = P \oplus ker \mathcal{A} \Rightarrow dimL = dimP + dim ker \mathcal{A}$$

Ч.Т.Д.

14. Собственные векторы и собственные значения линейного оператора. Свойства собственных векторов.

L – пространство над полем $k,\,\mathcal{A}:L\to L$

Если существует ненулевой вектор $x \in L$ и число $\lambda \in k$, такие что $\mathcal{A} x = \lambda x$,

то число λ называется собственным значением (собственным числом) оператора \mathcal{A} , а вектор x – собственным вектором оператора \mathcal{A} .

Лемма 1. Любому собственному вектору соответствует единственное собственное значение.

$$\mathcal{A}x = \lambda_1 x$$
, $\mathcal{A}x = \lambda_2 x \Rightarrow (\lambda_1 - \lambda_2)x = 0 \Rightarrow \lambda_1 = \lambda_2$

Лемма 2. Если x_1 и x_2 — собственные вектора оператора \mathcal{A} с одним и тем же собственным значением λ , то любая их линейная комбинация или равна 0, или является собственным вектором оператора \mathcal{A} с собственным значением λ .

$$\mathcal{A}(\mu_1 x_1 + \mu_2 x_2) = \mu_1 \mathcal{A} x_1 + \mu_2 \mathcal{A} x_2 = \mu_1 \lambda x_1 + \mu_2 \lambda x_2 = \lambda(\mu_1 x_1 + \mu_2 x_2)$$

Следствие. Для любого собственного значения λ все собственные вектора вместе с нулевым вектором образуют подпространства пространства L.

Следствие. В п-мерном пространстве линейный оператор не может иметь более п собственных векторов с различными собственными значениями.

15. Теорема о характеристическом многочлене линейного оператора.

Теорема 1. Все собственные значения линейного оператора совпадают с корнями характеристического многочлена матрицы этого оператора в какомнибудь базисе.

Замечание. Характеристические многочлены подобных матриц равны:

 Π усть $B = T^{-1}AT$, тогда

$$B-\lambda E=T^{-1}AT-\lambda E=T^{-1}AT-\lambda T^{-1}ET=T^{-1}(A-\lambda E)T$$

По лемме $|B-\lambda E|=|A-\lambda E|$

 $T.o., \varphi(\lambda)$ можно называть характеристическим многочленом <u>оператора</u> \mathcal{A} .

$$n = 2$$

$$A \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \Rightarrow \varphi(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Для произвольного п:

$$A = \{a_{ij}\}_{n,n} \Rightarrow \varphi(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} (a_{11} + a_{22} + \dots + a_{nn}) \lambda^{n-1} + \dots + |A|$$

Теорема 2.(Γ амильтона-Kэли) Если $\varphi(\lambda)$ – характеристический многочлен

onepamopa \mathcal{A} , mo $\varphi(\mathcal{A}) = 0$.

16. Теорема о линейной независимости собственных векторов. Матрица линейного оператора в базисе из собственных векторов.

Теорема. Собственные вектора $x_1, x_2, ..., x_m$ оператора \mathcal{A} , имеющие попарно различные собственные значения $\lambda_1, \lambda_2, ..., \lambda_m$, линейно независимы.

Док-во (индукцией по т):

- 1) m=1.
- 2) Пусть теорема верна для m-1.
- 3) Предположим, что x_1, x_2, \dots, x_m линейно независимы.

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_m x_m = 0 \quad (*)$$

u пусть $\alpha_1 \neq 0$

$$\begin{array}{c} \alpha_{1}\mathcal{A}x_{1}+\alpha_{2}\mathcal{A}x_{2}+\cdots+\alpha_{m}\mathcal{A}x_{m}=0\\ \alpha_{1}\lambda_{1}x_{1}+\alpha_{2}\lambda_{2}x_{2}+\cdots+\alpha_{m}\lambda_{m}x_{m}=0\\ (*)\cdot\lambda_{m}=\alpha_{1}\lambda_{m}x_{1}+\alpha_{2}\lambda_{m}x_{2}+\cdots+\alpha_{m}\lambda_{m}x_{m}=0\\ \alpha_{1}(\lambda_{1}-\lambda_{m})x_{1}+\alpha_{2}(\lambda_{2}-\lambda_{m})x_{2}+\cdots+\alpha_{m-1}(\lambda_{m-1}-\lambda_{m})x_{m-1}=0\\ \alpha_{1}=\alpha_{2}=\cdots=\alpha_{m-1}=0-npomusopeuue. \end{array}$$

Ч.Т.Д.

Матрица:

$$\mathcal{A}g_{1} = \lambda_{1}g_{1} + 0 \cdot g_{2} + \dots + 0 \cdot g_{n} \ u \ m.\partial. \Rightarrow A_{g} = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n} \end{pmatrix}$$

<u>Теорема.</u> Пусть \mathcal{A} — действующий в n-мерном пространстве над полем k линейный оператор. Если характеристический многочлен оператора в \mathcal{A} имеет k празличных корней в поле k, то матрица этого оператора в базисе из собственных векторов является диагональной, и диагональные элементы этой матрицы — это собственные значения оператора \mathcal{A} .

<u>Геометрический смысл.</u> В пространстве L имеется п таких «направлений», что любой вектор, имеющий одно из этих «направлений», преобразуется оператором Я в коллинеарный.

<u>Замечание.</u> В случае кратных корней характеристического многочлена оператора его матрица всё равно <u>может</u> оказаться диагонализируемой (если число линейно независимых собственных векторов совпадет с размерностью пространства).

17. Сопряженные операторы в евклидовом пространстве.

Пусть \mathcal{A} – линейный оператор в евклидовом пространстве S. Линейный оператор \mathcal{A}^* называется сопряженным c \mathcal{A} , если для всех $x,y \in S$

$$(\mathcal{A}x,y)=(x,\mathcal{A}^*y)$$

Теорема 1. Для любого линейного оператора \mathcal{A} существует единственный сопряженный оператор. Его матрица в любом ОНБ является транспонированной к матрице оператора \mathcal{A} .

Док-во:

$$A = \left\{a_{ij}\right\}_{n,n}, X = (x_1, x_2, \dots, x_n)^T, Y = (y_1, y_2, \dots, y_n)^T$$

$$(\mathcal{A}x, y) = (AX, Y)_n = \left(\left(\sum_{i=1}^n a_{1i}x_i, \dots, \sum_{i=1}^n a_{ni}x_i\right)^T, (y_1, \dots, y_n)^T\right) =$$

$$= \sum_{i=1}^n a_{1i}x_iy_1 + \dots + \sum_{i=1}^n a_{ni}x_iy_n = x_1 \sum_{j=1}^n a_{j1}y_j + \dots + x_n \sum_{j=1}^n a_{jn}y_j =$$

$$= (X, A^TY)_n = (x, \mathcal{A}^*y)$$

Ч.Т.Д.

Единственность доказывается от противного:

$$(\widetilde{\mathcal{A}}x,y) = (x,\widetilde{\mathcal{A}}^*y) = (x,\widetilde{\widetilde{\mathcal{A}}}y) \Rightarrow (x,(\widetilde{\mathcal{A}}^*-\widetilde{\widetilde{\mathcal{A}}})y) = 0 \quad \forall x \Rightarrow (\widetilde{\mathcal{A}}^*-\widetilde{\widetilde{\mathcal{A}}})y = 0 \quad \forall y \\ \Rightarrow \widetilde{\mathcal{A}}^*-\widetilde{\widetilde{\mathcal{A}}} = 0 \Rightarrow \widetilde{\mathcal{A}}^* = \widetilde{\widetilde{\mathcal{A}}}$$

Замечание. Свойства \mathcal{A}^* соответствуют всем свойствам A^T .

18. Ортогональные матрицы. Ортогональные операторы.

Определение ортогональной матрицы:

Вещественная матрица P называется ортогональной, если $P^{-1} = P^{T}$.

 $PP^T = E \Rightarrow cmpoки матрицы P ортогональны и нормированы <math>P^TP = E \Rightarrow cmon\delta$ цы матрицы P ортогональны и нормированы

Определение ортогонального оператора:

Оператор \mathcal{F} называется ортогональным, если для всех $x, y \in S$ $(\mathcal{F}x,\mathcal{F}y) = (x,y)$.

Свойства ортогонального оператора У:

- 1) $\mathcal{P}^* = \mathcal{P}^{-1}$;
- $2) \forall x \| \mathcal{P}x \| = \|x\|;$
- 3) \mathcal{F} сохраняет углы;
- 4) У переводит любую ортонормированную систему векторов;
- 5)Матрица Рв ОНБ ортогональна;
- 6)Все вещественные собственные значения ${\mathcal F}$ равны или 1, или -1.

Замечание. Все мнимые корни характеристического многочлена оператора \mathcal{F} , если они есть, также имеют модуль, равный 1.

19. Свойства собственных значений симметричного оператора.

Все собственные значения симметричного оператора – вещественные. <u>Док-во:</u>

$$\mathcal{A}x = \lambda x, x \neq 0, \lambda \in \mathbb{C}$$

В выбранном ОНБ $AX = \lambda X, X \in \mathbb{C}_n$

a)
$$\overline{AX} = \overline{\lambda X} \Rightarrow A\overline{X} = \overline{\lambda}\overline{X} \Rightarrow X^T A \overline{X} = \overline{\lambda} X^T \overline{X} = \overline{\lambda} \sum_{k=1}^n |x_k|^2$$

6)
$$(AX)^T = (\lambda X)^T \Rightarrow X^T A = \lambda X^T \Rightarrow X^T A \overline{X} = \lambda X^T \overline{X} = \lambda \sum_{k=1}^n |x_k|^2$$

 $\overline{\lambda} = \lambda \iff \lambda \in \mathbb{R}$

Ч.Т.Д.

20. Свойства собственных векторов симметричного оператора.

Собственные вектора симметричного оператора, принадлежащие разным собственным значениям, ортогональны.

<u>Док-во:</u>

$$\mathcal{A}x = \lambda x, \mathcal{A}y = \mu y, (\mathcal{A}x, y) = (x, \mathcal{A}y)$$
$$(\lambda x, y) = (x, \mu y) \Rightarrow \lambda(x, y) = \mu(x, y) \Rightarrow (\lambda - \mu)(x, y) = 0 \Rightarrow (x, y) = 0$$
$$\mathbf{\Psi}.T.\mathcal{A}.$$

Теорема 2.

Если \mathcal{A} — симметричный оператор в евклидовом пространстве S, то в S существует OHE, состоящий из собственных векторов оператора \mathcal{A} .

21. Квадратичные формы, матричная запись. Линейное преобразование переменных в квадратичной форме.

Квадратичной формой называется однородный многочлен $f = f(x_1, x_2, ..., x_n) \in k[x_1, x_2, ..., x_n]$ второй степени от n переменных.

$$[f(tx_1, tx_2, ..., tx_n) = t^2 f(x_1, x_2, ..., x_n)]$$

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + a_{12}x_1x_2 + \dots + a_{1n}x_1x_n + (*)$$

$$a_{21}x_2x_1 + a_{22}x_2^2 + \dots + a_{2n}x_2x_n + \dots + (*)$$

$$+a_{n1}x_nx_1 + a_{n2}x_nx_2 + \dots + a_{nn}x_n^2$$

$$a_{ij} = a_{ji} \quad \forall i, j$$

$$A = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 — матрица квадратичной формы (симметрическая!)

<u>Линейное преобразование:</u>

$$\begin{cases} x_1 = c_{11}y_1 + c_{12}y_2 + \dots + c_{1n}y_n \\ x_2 = c_{21}y_1 + c_{22}y_2 + \dots + c_{2n}y_n \\ \dots \\ x_n = c_{n1}y_1 + c_{n2}y_2 + \dots + c_{nn}y_n \end{cases} X = CY$$

Если $|C| \neq 0$, то $Y = C^{-1}X$ (невырожденное линейное преобразование).

$$f(x_1, x_2, ..., x_n) = X^T A X = (CY)^T A C Y = Y^T C^T A C Y = Y^T (C^T A C) Y$$

 $B = C^T A C, B^T = C^T A^T C = C^T A C = B, Y^T B Y = g(y_1, y_2, ..., y_n)$

22.Метод Лагранжа приведения квадратичной формы к диагональному виду. Закон инерции (без док-ва).

<u>Теорема (Лагранжа).</u> Любая квадратичная форма при помощи невырожденного линейного преобразования может быть приведена к диагональному виду.

Док-во: индукция по числу переменных.

- 1) n = 1
- 2) Пусть для n 1 утверждение теоремы верно.
- 3) см. (*) из 21 вопр. Считаем, что $a_{11} \neq 0$.

$$\begin{split} f(x_1,x_2,\dots,x_n) &= a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n + g(x_2,x_3,\dots,x_n) \\ &= a_{11}\left(x_1 + \frac{a_{12}}{a_{11}}x_2 + \dots + \frac{a_{1n}}{a_{11}}x_n\right)^2 + f_1(x_2,x_3,\dots,x_n) \\ \left\{ \begin{aligned} y_1 &= x_1 + \frac{a_{12}}{a_{11}}x_2 + \dots + \frac{a_{1n}}{a_{11}}x_n \\ y_k &= x_k & \forall k \geq 2 \end{aligned} \right. \\ \left\{ \begin{aligned} x_1 &= y_1 + \frac{a_{12}}{a_{11}}y_2 + \dots + \frac{a_{1n}}{a_{11}}y_n \\ x_k &= y_k & \forall k \geq 2 \end{aligned} \right. \end{split}$$

$$f(x_1, x_2, ..., x_n) = a_{11}y_1^2 + f_1(y_2, y_3, ..., y_n)$$

 $y_1 = z_1$; существует невырожденное преобразование:

$$f_1(y_2, y_3, ..., y_n) = \alpha_2 z_2^2 + \alpha_3 z_3^2 + \dots + \alpha_n z_n^2 \Rightarrow f = a_{11} z_1^2 + \alpha_2 z_2^2 + \dots + \alpha_n z_n^2$$

Закон инерции. Число положительных и отрицательных коэффициентов в диагональном виде вещественной квадратичной формы не зависит от способа приведения этой формы вещественными невырожденными преобразованиями к диагональному виду.

23. Приведение квадратичной формы к диагональному виду ортогональным преобразованием.

$$k = \mathbb{R}$$

Теорема (приведение квадратичной формы к главным осям). Любая вещественная квадратичная форма $f(x_1, x_2, ..., x_n)$ с матрицей A при помощи некоторого ортогонального преобразования переменных X = CY может быть приведена к диагональному виду

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 \tag{1}$$

Коэффициенты $\lambda_1, \lambda_2, ..., \lambda_n$ совпадают с собственными значениями матрицы A. Столбцы $T_1, T_2, ..., T_n$ ортогональной матрицы C являются собственными векторами матрицы A, соответствующими собственным значениям $\lambda_1, \lambda_2, ..., \lambda_n$.

Док-во:

1) Пусть получен вид (1), тогда

$$C^{T}AC = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n} \end{pmatrix} = B \quad (2)$$

$$\varphi_B(\lambda) = |B - \lambda E| = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \dots (\lambda_n - \lambda)$$

$$C^TAC = C^{-1}AC = B \Rightarrow \varphi_A(\lambda) = \varphi_B(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda)...(\lambda_n - \lambda)$$

$$(2) \Rightarrow AC = CB: A(T_1T_2...T_n) = (T_1T_2...T_n)B \Rightarrow AT_1 = \lambda, T_1$$
 и т. д.

2) Существование преобразования - по индукции. n = 1 (любая форма от одной переменной диагональна)

Пусть для n-1 утверждение верно.

$$AT=\lambda T, \|T\|=1; \quad \lambda\in\mathbb{R},$$
 $m.\kappa.$ $A^T=A;$ $T,T_2,T_3,\ldots,T_n-OHE\ \mathbb{R}_n$ $C_1=(TT_2\ldots T_n)-opmoгoнальная матрица$

$$X = C_{1}Y \qquad C_{1}^{T}AC_{1} = C_{1}^{T}A(TT_{2} \dots T_{n}) = C_{1}^{T}(AT AT_{2} \dots AT_{n}) = \begin{pmatrix} T^{T} \\ T_{2}^{T} \\ \dots \\ T_{n}^{T} \end{pmatrix} (\lambda T \dots \dots) = \begin{pmatrix} \lambda T^{T}T & \dots & \dots \\ \lambda T_{2}^{T}T & \dots & \dots \\ \dots & \dots \\ \lambda T_{n}^{T}T & \dots & \dots \end{pmatrix} = \begin{pmatrix} \lambda & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \end{pmatrix} = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \dots & \dots \\ 0 & \dots & \dots \end{pmatrix}$$

$$f(x_1, x_2, ..., x_n) = \lambda y_1^2 + g(y_2, y_3, ..., y_n)$$

Пусть $g(y_2, y_3, ..., y_n) = \lambda_2 z_2^2 + \cdots + \lambda_n z_n^2 - c$ помощью ортогонального преобразования с матрицей D (порядка n-1).

$$C_2 = \begin{pmatrix} 1 & 0 \\ 0 & D \end{pmatrix}$$
 — ортогональная матрица. $Y = C_2Z$: $y_1 = z_1 u g(y_2, y_3, ..., y_n) = \lambda_2 z_2^2 + \cdots + \lambda_n z_n^2$

$$C = C_1 C_2$$
 — ортогональная матрица. $X = CZ$:
$$f(x_1, x_2, ..., x_n) = \lambda_1 z_1^2 + \lambda_2 z_2^2 + \cdots + \lambda_n z_n^2$$

Ч.Т.Д.

Замечания.

- 1. Если C ортогональная матрица из собственных векторов матрицы A, то X = CY и приводит форму к диагональному виду.
- 2. Собственные векторы, соответствующие разным собственным значениям уже ортогональны.
- 24. Классификация центральных поверхностей второго порядка.

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + b_1x + b_2y + b_3z + d = 0$$

$$\left(\exists a_{ij} \neq 0\right)$$

$$A = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 — матрица (симметрическая) квадратичной формы $a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$

$$C^{T}AC = \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{pmatrix}, \ \lambda_{1} > 0, \ C^{-1} = C^{T}$$

 $a_{11}x^2+a_{22}y^2+a_{33}z^2+2a_{12}xy+2a_{13}xz+2a_{23}yz=\lambda_1x_1^2+\lambda_2y_1^2+\lambda_3z_1^2$ I) $r_A=3$ (центральные поверхности 2-го порядка)

а)
$$\lambda_1 > 0$$
, $\lambda_2 > 0$, $\lambda_3 > 0$: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ или -1, или 0

$$\frac{x^2}{a^2} + \frac{y^2}{h^2} + \frac{z^2}{c^2} = 1 -$$
эллипсоид

Симметричен относительно координат плоскостей, осей и НК. (0;0;0) — центр эллипсоида;

Точки пересечения с координатными осями — вершины эллипсоида; a, b, c — полуоси эллипсоида ($a \ge b \ge c$ в каноническом уравнении).

б)
$$\lambda_1 > 0, \lambda_2 > 0, \lambda_3 < 0$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ или -1, или 0

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 - oднополостный гиперболоид$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 - \partial sy(x)$$
полостный гиперболоид

Симметричны относительно координатных плоскостей, осей и HK. (0;0;0) – центр гиперболоидов;

Точки пересечения с координатными осями — вершины гиперболоидов; a, b — поперечные полуоси гиперболоидов ($a \ge b$ в канонических уравнениях), c — продольная полуось.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
 — конус 2-го порядка $(a \ge b \ в \ канонических уравнениях)$

Симметричен относительно координатных плоскостей, осей и HK. (0;0;0) — центр и вершина конуса.

Сечение конуса может быть эллипсом (если плоскость пересекает все образующие), гиперболой (если плоскость параллельна двум образующим), параболой (если плоскость параллельна одной образующей).

25. Классификация нецентральных поверхностей второго порядка.

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + b_1x + b_2y + b_3z + d = 0$$
 ($\exists a_{ij} \neq 0$)

$$A=egin{pmatrix} a_{11}&a_{12}&a_{13}\ a_{21}&a_{22}&a_{23}\ a_{31}&a_{32}&a_{33} \end{pmatrix}$$
 — матрица (симметрическая) квадратичной формы $a_{11}x^2+a_{22}y^2+a_{33}z^2+2a_{12}xy+2a_{13}xz+2a_{23}yz$

$$\begin{split} C^TAC &= \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \ \lambda_1 > 0, \ C^{-1} = C^T \\ a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz = \lambda_1x_1^2 + \lambda_2y_1^2 + \lambda_3z_1^2 \end{split}$$

II)
$$r_A=2$$
a) $\lambda_1>0$, $\lambda_2>0$, $\lambda_3=0$: $\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$ или 1, или -1, или 0
 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$ – эллиптический параболоид
($a\geq b$ в каноническом уравнении)

(0;0;0) – вершина эллиптического параболоида.

Oz-ось симметрии (есть плоскости симметрии, как и у всех поверхностей 2-го порядка)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 — эллиптический цилиндр

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0 - npямая \frac{x}{0} = \frac{y}{0} = \frac{z}{0}$$

 $(a \ge b \ в \ каноническом \ уравнении)$

б)
$$\lambda_1 > 0$$
, $\lambda_2 < 0$, $\lambda_3 = 0$: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$ или 1, или 0 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$ – гиперболический параболоид

(0;0;0) — вершина гиперболического параболоида.

Оz – ось симметрии

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 - гиперболический цилиндр$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 — две пересекающиеся плоскости $bx \pm ay = 0$

$$III) r_A = 1$$

$$a) \lambda_1 > 0, \lambda_2 = \lambda_3 = 0$$
: $\frac{x^2}{a^2} = y$ или 1, или -1, или 0

$$\frac{x^2}{a^2} = y - napaболический цилиндр$$

Замечания.

1) уравнения вида $\lambda_1 x^2 + c_2 y + c_3 z + d = 0$ ортогональным преобразованием (поворотом плоскости Оух) приводится к виду $\lambda_1 x^2 + c_2' y + d = 0$.

2) Ортогональным преобразованием уравнение параболического цилиндра можно привести к виду $y^2 = 2px \ (p > 0)$.

$$y^2 = 2px - параболический цилиндр$$

 $x^2 = a^2 - две параллельные плоскости $x \pm a = 0$$

$$x^2 = 0 - n$$
лоскость $x = 0$

26. Группы. Симметрические группы. Подгруппы.

Множество G с бинарной операцией «·» называется группой, если: Операция «·» ассоциативна; в G существует нейтральный элемент е; для

любого $a \in G$ существует обратный элемент, т.е. такой элемент $a' \in G$, что $a \cdot a' = a' \cdot a = e$.

Eсли, кроме того, операция «·» коммутативна, то группа G называется коммутативной, или абелевой.

<u>Теорема.</u> Пусть группа G – группа c нейтральным элементом e. Тогда e – единственный нейтральный элемент b группе. Кроме того, любой элемент группы b обладает единственным обратным элементом.

<u>Док-во:</u> предположим, что какой-то элемент с также является нейтральным элементом группы G. Тогда c = ce = e. Если же a' и b - dва обратных элемента для $a \in G$, то b = be = b(ad) = (ba) a' = ea' = a'.

<u>Ч.Т.Д.</u>

Eсли $M=\{1,2,...,n\}$, то любое отображение M на себя — это подстановка $s=\begin{pmatrix} 1 & 2 & ... & n \ a_1 & a_2 & ... & a_n \end{pmatrix}$, где $a_i=s(i) \quad \forall i=1,2,...,n.$

 $\{a_1,a_2,...,a_n\}$ – это перестановка $\{1,2,...,n\}$, их число n! равно числу элементов группы $S(\{1,2,...,n\})=S_n$. Она называется симметрической группой степени n.

Подгруппой группы $G = (G, \cdot)$ называется такое подмножество $H \subset G$, которое само является группой относительно операции (\cdot) , заданной в G (запись: H < G).

Теорема. $H < G = (G, \cdot) \Leftrightarrow \forall a, b \in H \ ab \in H; \ \forall a \in H \ a^{-1} \in H.$ Замечания:

- 1) $H < G, \cdot) \Leftrightarrow \forall a, b \in H \ ab^{-1} \in H$
- 2) Если H конечное подмножество группы G, то $H < G \Leftrightarrow \forall a,b \in H \ ab \in H$

Теорема 2. Пересечение двух (и вообще любого количества) подгрупп группы является подгруппой той же группы.

27. Гомоморфизмы групп. Гомоморфный образ и полный прообраз подгруппы. Теорема Кэли (без док-ва).

Пусть (G_1,\cdot) и $(G_2,*)$ — две группы, а f — отображение множества G_1 в множество G_2 . Отображение f называется гомоморфизмом группы G_1 в группу G_2 , если для любых $\forall \alpha, b \in G_1$ имеет место равенство $f(a \cdot b) = f(a) * f(b)$.

Гомоморфизм $f: G_1 \to G_2$ называется эпиморфизмом G_1 на G_2 , если каждый элемент из G_2 является образом хотя бы одного элемента из G_1 , т.е. $f(G_1) = G_2$.

Гомоморфизм $f: G_1 \to G_2$ называется мономорфизмом G_1 на G_2 , если он разные

элементы G_1 отображает в G_2 .

Если $f: G_1 \to G_2$ — гомоморфизм групп, то образ всей группы $f(G_1)$ называют также образом гомоморфизма f и обозначают im f.

Ядром гомоморфизма f (запись: ker f) называется полный прообраз подгруппы $\{e_2\}$, состоящей из одного нейтрального элемента e_2 группы G_2 . Теорема Кэли.

Всякая конечная группа порядка n изоморфна некоторой подгруппе симметрической группы S_n .

Следствие. Существует лишь конечное число неизоморфных конечных групп фиксированного порядка п.

28.Смежные классы. Индекс подгруппы в группе. Теорема Лагранжа.

 $H < G = (G, \cdot);$ на G определим отношение эквивалентности \sim :

$$a \sim b \Leftrightarrow a^{-1}b \in H$$

 $(\partial py$ гими словами, b = ah, г $\partial e \ h \in H$, или короче: $b \in aH$).

Соответствующие классы эквивалентности $K_a = aH$ называются левыми смежными классами группы G по подгруппе H.

Аналогично определяют правые смежные классы Ha с помощью условия $ba^{-1} \in H$ при введении отношения эквивалентности. B коммутативных группах понятия левых и правых смежных классов совпадают, поскольку aH = Ha.

<u>Замечание.</u> Если подгруппа H конечна, то все смежные классы по этой подгруппе имеют одинаковое число элементов, равное $\mid H \mid$.

Индексом (G: H) подгруппы H в группе G называется число различных левых (равно как и правых) смежных классов по подгруппе H, если это число конечно.

Теорема Лагранжа.

Порядок конечной группы G равен произведению порядка подгруппы H на индекс этой подгруппы, т.е. $|G| = |H| \cdot (G:H)$.

Следствие.

Порядок подгруппы конечной группы является делителем порядка группы.

29. Нормальные подгруппы. Лемма о ядре гомоморфизма. Факторгруппы. Теорема о гомоморфизмах групп (без док-ва).

Подгруппа H группы G называется нормальной подгруппой (запись: $H \triangleleft G$), если $\forall \alpha \in G$ левый aH и правый H а смежные классы совпадают (т.е. каждое произведение ah_1 , где $h_1 \in H$, равно произведению ah_2 при каком-то $h_2 \in H$).

В коммутативных группах все подгруппы нормальны.

Лемма. Пусть $f_iG_1 \to G_2$ – гомоморфизм. Ядро ker f является нормальной подгруппой; смежные классы по ядру – это полные прообразы элементов из $imf \subset G_2$.

Док-во:

H = ker f - noдгруппа; докажем, что она нормальна в G_1 . $\forall h \in H \ u \ \forall x \in G_1$: $f(x^{-1}hx) = f(x^{-1})f(h)f(x) = f(x^{-1})e_2f(x) = f(x^{-1})f(x) = f(x^{-1}x) = f(e_1) = e_2$, откуда $x^{-1}Hx \subset H \Leftrightarrow Hx \subset xH$. Аналогично проверяется, что $xH \subset Hx$. Следовательно, xH = Hx. $ker f \lhd G_1$. Ясно, что $\forall x \in G_1$ все элементы из xH и только они отображаются гомоморфизмом f в элемент f(x). $Y.T. \mathcal{J}$.

Пусть $H \triangleleft G$. $G \backslash H$ – множество смежных классов по H.

$$aH \cdot bH \stackrel{\text{def}}{=} (ab)H \quad (*)$$

 $H \triangleleft G \Rightarrow$ определение (*) корректно и $G \backslash H$ становится группой (нейтральный элемент eH=H, $(aH)^{-1}=a^{-1}H$).

Факторгруппой группы G по нормальной подгруппе H называется фактормножество $G \backslash H$ с бинарной операцией (*). Факторгруппа обозначается $G \backslash H$.

$$\varphi$$
: $G \to G / H$ по правилу $\varphi(x) = xH = Hx \Rightarrow \varphi$ – эпиморфизм.

Теорема. Гомоморфный образ группы изоморфен факторгруппе этой группы по ядру гомоморфизма.

30. Циклические группы. Теорема о порядке элементов конечной группы.

$$a \in (G,\cdot)$$
 $f: \mathbb{Z} \to G: f(n) = a^n - гомоморфизм$
 $D = imf = \{a^n: n \in \mathbb{Z}\} < G$ и $D \cong \mathbb{Z}/kerf$

Группа $\langle a \rangle$, состоящая из степенной одного элемента a, называется циклической группой, порожденной этим элементом.

Теорема. Подгруппа D, порожденная элементом а группы G, изоморфна либо бесконечной циклической группе \mathbb{Z} , либо циклической группе \mathcal{C}_m порядка $m \geq 1$.

$$D = \{a^n : n \in \mathbb{Z}\} \cong \mathbb{Z}/kerf$$
, $color f(n) = a^n$, $n \in \mathbb{Z}$.

$$kerf = \{0\} \Rightarrow D \cong \mathbb{Z}$$

 $kerf \neq \{0\} \Rightarrow \exists m \in \mathbb{N} : kerf = m\mathbb{Z} \Rightarrow D \cong \mathbb{Z}/m\mathbb{Z} \cong C_m$

Порядком элемента а из группы G называется порядок конечной циклической подгруппы, порожденной этим элементом. Если же эта подгруппа изоморфна \mathbb{Z} , то будем говорить, что элемент а имеет бесконечный порядок.

Теорема. В конечной группе порядок любого элемента есть делитель порядка группы.

Следствие. Любая группа простого порядка циклична.

31. Кольца. Делители нуля. Обратимые элементы кольца.

(Henycmoe) множество A называется кольцом, если на нем определены две бинарные операции + (сложение) $u \cdot$ (умножение), обладающие следующими свойствами:

(A, +) является абелевой группой;

Умножение · ассоциативно;

Операции сложения и умножения связаны дистрибутивными законами $(a + b) c = ac + bc, c (a + b) = ca + cb \ \forall a, b, c \in A.$

Теорема. Если в кольце один из сомножителей равен нулю, то и всё произведение равно нулю.

Док-во:
$$a \cdot 0 + a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 \Rightarrow a \cdot 0$$
.
Аналогично для $0 \cdot a$.

Замечание. Обратное утверждение верно, но не во всех кольцах.

Элементы a u b кольцa, ∂ ля которых ab = 0 или ba = 0 и при этом $a \neq 0$, $b \neq 0$, называются <u>делителями</u> нуля.

Теорема. Если ab = ac или ba = ca, то b = c, если только $a \neq 0$ и не является делителем нуля.

Обратимый элемент — элемент кольца с единицей, для которого существует обратный элемент относительно умножения.

32.Поля. Теорема о конечных кольцах без делителей нуля.

Полем называется коммутативное кольцо K, содержащее не менее двух элементов, в котором все ненулевые элементы образуют группу по умножению (мультипликативную группу K^*).

Замечание. Из определения следует, что поле всегда содержит единицу.

Теорема. Поле не имеет делителей нуля.

Док-во:

$$ab = 0 \ u \ a \neq 0 \Rightarrow 0 = a^{-1}ab = 1 \cdot b = b$$

Теорема. Всякое конечное коммутативное кольцо без делителей нуля, содержащее более одного элемента, является полем.

Док-во:

$$a \in K \setminus \{0\}$$
 $\varphi: K \to K: \varphi(x) = ax \Rightarrow \varphi: K \leftrightarrow K$
 $\exists 1 (\varphi(1) = a); \exists a^{-1}(\varphi(a^{-1}) = 1)$

33.Идеалы коммутативных колец. Главные идеалы. Идеалы в полях.

Подкольцо H коммутативного кольца A называется идеалом, если произведение ha = ah лежит в H при любых $a \in A$ и $h \in H$.

Теорема 1.

В кольце A множество $\{xa: x \in A\}$ всех кратных любого фиксированного элемента $a \in A$ является идеалом в A.

Идеал кольца А, состоящий из кратных элемента а, называется главным идеалом, порожденным элементом а, и обозначается (а).

Теорема 2.

Любое поле не содержит идеалов, отличных от нулевого или единичного.

Док-во: пусть H – идеал поля K, $H \neq 0$; $h \in H$, $h \neq 0$.

$$\exists h^{-1} \in K \Rightarrow hh^{-1} = 1 \in H \Rightarrow H = K$$

34. Кольца классов вычетов. Идеалы кольца целых чисел. Кольца
 $\mathbb{Z}_n = \mathbb{Z}/(n)$.

 Π усть H = (h) - uдеал коммутативного кольца A.

Два элемента a и b кольца A называются сравнимыми по модулю h (или по идеалу H), если их разность a-b принадлежит идеалу H.

 $3anucь: a \equiv b \pmod{h}.$

'≡ ' – отношение эквивалентности, $K_a = a + H$, т.к. $(H, +) \triangleleft (A, +)$.

Смежный класс a + H называется классом вычетов по модулю h (или по идеалу H).

Кольцо A / H называется кольцом классов вычетов по модулю h (или по идеалу H).

Пример:
$$\underline{\mathbb{Z}}_n = \mathbb{Z}/(n)$$
, $n = 2, 3, 4, ...$

Следствие из теоремы о простом идеале. Кольцо классов вычетов кольца целых чисел по модулю п является полем тогда и только тогда, когда n — простое число.

35. Характеристика кольца. Теорема о характеристике кольца без делителей нуля.

Пусть $A \neq 0$ — кольцо с единицей. Число $m \in \mathbb{N}$ называется характеристикой кольца A, если $m \cdot 1 = 1 + 1 + \dots + 1 = 0$ (кол-во единиц равно m) и никакое положительное число, меньшее m, эти свойством не обладает.

Если указанное свойство не имеет места ни для какого положительного числа, то говорят, что кольцо имеет характеристику 0.

Теорема. Характеристика т любого кольца без делителей нуля (в частности, поля) или равна 0, или является простым числом.

Док-во:

Пусть
$$m=kl, k>1, l>1 \Rightarrow 0=m\cdot 1=(kl)\cdot 1=(k\cdot 1)\cdot (l\cdot 1)\Rightarrow k\cdot 1=0$$
 или $l\cdot 1=0$. Противоречие.
Ч.Т.Д.

36.Простые идеалы. Поля GF(p).

Идеал H кольца A называется простым, если из того, что $ab \in H$, следует, что $a \in H$ или $b \in H$.

Теорема. Идеал H кольца A называется простым, тогда и только тогда, когда кольцо классов вычетов A/H не содержит делителей нуля.

Док-во:

$$A/H$$
 не имеет делителей нуля \Leftrightarrow $((a+H)(b+H)=H\Rightarrow a+H=H)$ или $b+H=H$ \Leftrightarrow $(ab\in H\Rightarrow a\in H)$ или $b\in H$).

Следствие. Кольцо классов вычетов кольца целых чисел по модулю п является полем тогда и только тогда, когда п – простое число.

Поле классов вычетов по простому модулю — поля из p элементов обозначаются как GF(p).

37. Евклидовы кольца. Идеалы евклидова кольца.

Евклидовым кольцом называется кольцо D без делителей нуля, в котором каждому ненулевому элементу а сопоставляется целое неотрицательное число $v(\mathfrak{a})$, называемое нормой, со следующими свойствами:

- а) $v(ab) \ge v(a)$ для всех $a \ne 0$, $b \ne 0$ из D;
- б) для любых $a, b \in D$, $b \neq 0$, существует элемент $q \in D$ такой, что a = bq + r, где r = 0 или v(r) < v(b).

Теорема. В евклидовом кольце все идеалы главные.

Док-во:

Пусть $H \neq 0$ — идеал евклидова кольца D. Выберем в H элемент $a \neq 0$ c наименьшей нормой v(a). Тогда любой $b \in H$ можно представить в виде b = aq + r, откуда r = b - aq. Не может быть, чтобы v(r) < v(a), следовательно, r = 0 и H = (a).

Ч.Т.Д.

Следствие. Любое евклидово кольцо содержит единицу.

Док-во: применим теорему к единичному идеалу, которым является все кольцо D. Тогда $D=(a)\Rightarrow b=qa=qae=be$. $\begin{cases} \begin{cases} U. $T.$\begin{cases} \begin{cases} \begin{$

38. Теорема о наибольшем общем делителе.

Теорема:

В евклидовом кольце D любые два элемента a u b имеют наибольший общий делитель d, который представляется b виде d = sa + tb, c d e d.

Док-во:

 $\{sa+tb:s,t\in D\}$ — идеал! По теореме l этот идеал главный, т.е. $\{sa+tb\}=(d)$. Следовательно, $\exists s,t,g,h\in D$ такие, что d=sa+tb,a=gd,b=hd.

39. Кольца многочленов. Приводимость многочленов над полем.

Mногочленом (полиномом) от неизвестной x над кольцом A называется выражение вида

$$a_0x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n=\sum_{k=0}^n a_kx^{n-k},\,a_k\in A$$
 $(a_nx^0$ полагаем равным $a_n\in A$).

Многочлен g(x) из кольца K[x] называется приводимым (над полем K), если $g(x) = g_1(x)g_2(x)$ для подходящих непостоянных многочленов $g_1, g_2 \in K[x]$; в противном случае многочлен g(x) называется неприводимым.

40. Теорема о кольцах класса вычетов K[x] / (g(x)).

Кольцо классов вычетов L = K[x]/(g(x)) по модулю неприводимого многочлена есть поле.

Док-во:

Пусть
$$f(x) \notin (g(x)) \Rightarrow \text{HOД}(f(x), g(x)) = 1$$
, т.к $g(x)$ неприводим. Следовательно, $\exists s(x), \ t(x) \in K[x]$: $s(x)f(x) + t(x)g(x) = 1$.

$$s(x)f(x) \equiv 1 \pmod{g(x)} \Rightarrow s(x) \in (f(x) + (g(x)))^{-1}$$

T.k. $a \leftrightarrow a + (g(x)), a \in K, mo K \subset L$.

41. Расширения полей. Поля Галуа $GF(p^n)$.

<u>Теорема о кольцах класса вычетов K[x]/(g(x)).</u>

Кольцо классов вычетов L = K[x]/(g(x)) по модулю неприводимого многочлена есть поле.

По теореме о кольцах класса вычетов K[x]/(g(x)), поле L называется расширением поля K.

Конечные поля, содержащие p^n элементов (они существуют для любого n), называются полями Галуа и обозначаются $GF(p^n)$. В частности $\mathbb{Z}_p = GF(p)$.

42. Малая теорема Ферма для конечных полей.

Теорема 1. Пусть $q = p^n$ – степень простого числа. Любой ненулевой элемент поля GF(q) удовлетворяет уравнению $x^{q-1} - 1 = 0$.

Для q = p: $a^p \equiv a \pmod{p} \ \forall a \in \mathbb{Z}$. (малая теорема ферма)

43. Мультипликативная группа конечного поля.

Мультипликативная группа K^* поля K – это группа, содержащая все ненулевые элементы из K, и операция в ней совпадает с операцией умножения в K.

44. Логарифмы Якоби.

Teopema. Число примитивных элементов поля GF(q) равно $\varphi(q-1)$.

Eсли α — примитивный элемент поля GF(q), то все ненулевые элементы имеют вид α^n .

Логарифм Якоби L(n) определяется равенством $1 + \alpha^n = \alpha^{L(n)}$. Тогда $\alpha^n + \alpha^m = \alpha^m (1 + \alpha^{n-m}) = \alpha^{m+(n-m)}$. Добавим символ: $\alpha^{-\infty} = 0$.