Validating Causal Inference Methods

Harsh Parikh*, Carlos Varjao^, Louise Xu^, Eric Tchetgen Tchetgen*

*Duke University, ^Amazon.com, *University of Pennsylvania

No 'One-Size-Fits-All'

Evaluating performance of methods using True DGP

Missing Ground Truth

Credence Framework

Schema Space of Generative Models

Credence's Objective Function

$$\min_{\theta} \left(\frac{\mathbf{E} \left[d((X,Y,Z),(X',Y',Z')) \right]}{+\alpha \left\| \mathbf{E} [Y'(1) - Y'(0) | X' = x'] - f(x') \right\|} + \beta \left\| \mathbf{E} [Y'(z') | X' = x', Z' = z'] - \mathbf{E} [Y'(z') | X' = x', Z' = 1 - z'] - g(x',z') \right\| \right)$$

Validating using Credence

Evaluating performance of methods using learned DGP

Credence trained assuming *null* treatment effect and selection bias

Existing Methods of Validation

Conclusion and Discussion

Limitation

- Generative models are sensitive to hyper-parameters
- Evaluations as good as the *assumptions* user makes

Future Directions

- Use Credence as a deep-bootstrap for *inference*
- Extension to scenarios with interference/homophily
- Theoretical guarantees on Credence based ranking

