利用几何变换证明 Van Aubel 定理

叶卢庆* 杭州师范大学理学院, 浙江 杭州 310036

2014年3月11日

所谓 Van Aubel 定理, 叙述如下:

定理. 如图, 任意一个四边形 ABCD 的四条边上向外各作一个正方形, 正方形的中心分别为 M,N,O,P. 则 NP 垂直 MO 且 |NP|=|MO|.

证明. 如下图所示, 我们发现 A 绕着 N 沿着逆时针方向旋转了 $\frac{\pi}{2}$, 到达 B,B 再沿着 O 逆时针旋转 $\frac{\pi}{2}$, 到达 C, 这等效于 A 绕着点 F_1 逆时针旋转 π , 其中 F_1 是圆 AD_1C 的圆心, 也就是线段 AC 的中点.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:h5411167@gmail.com

因此点 N 绕着本身逆时针旋转 $\frac{\pi}{2}$, 再绕着点 O 逆时针旋转 $\frac{\pi}{2}$, 也等效于点 N 绕着 F_1 逆时针旋转 π . 如下图所示.|ON|=|ON'| 且 ON 垂直于 ON'. 且 F_1 是线段 NN' 的中点. 因此易得 $|F_1N|=|F_1O|$ 且 F_1N 垂直于 F_1O . 同理, F_1P 垂直于 F_1M 且两者长度相等. 因此三角形 F_1NP 是由三角形 F_1OM 绕着点 F_1 顺时针旋转 $\frac{\pi}{2}$ 得到的, 因此 |NP|=|MO| 且 NP 垂直于 MO.

