2.1.10 Definition (Lebesgue Space of Square-Integrable Functions) For a function $u:\Omega\to\mathbb{R}$ over a domain $\Omega \subset \mathbb{R}^d$, we define the L^2 -norm

$$\|u\|_{L^{2}(\Omega)} = \left(\int_{\Omega} |u(x)|^{2} dx\right)^{1/2}.$$
vector norm for
$$L^{2}(\Omega) = \left\{u: \Omega \to \mathbb{R} \mid \|u\|_{L^{2}(\Omega)} < \infty\right\}$$

$$L^{2}(\Omega) = \left\{u: \Omega \to \mathbb{R} \mid \|u\|_{L^{2}(\Omega)} < \infty\right\}$$

is called the Lebesgue space of order 2.

The set

2.1.11 Theorem (L² is a Hilbert Space) With the scalar product
$$(u,v)_{L^2(\Omega)} = \int uv \, \mathrm{d}x$$

$$(u,v)_{L^2(\Omega)} = \int uv \, \mathrm{d}x$$

$$(u,v)_{L^2(\Omega)} = \int uv \, \mathrm{d}x$$

the Lebesgue space $L^2(\Omega)$ is a Hilbert space. (Note that $||u||_{L^2} = \sqrt{(u,u)_{L^2}}$.)

2.1.11 Theorem (L² is a Hilbert Space) With the scalar product