Chapitre 2

Systèmes orthogonaux et orthonormaux

Définition 0.1. Soit E un espace pré-Hilbertien. Une famille de vecteurs non nuls $(e_i)_{i>1}$ est dite orthogonale si

$$\langle e_i, e_j \rangle = 0, i, j > 1, i \neq j$$

Si de plus $\langle e_i, e_i \rangle = 1$, $i \geq 1$, la famille $(e_i)_{i \geq 1}$ est dite système orthonormal dans E.

- . Tout système orthogonal est orthonormalisable. En effet, si $(e_i)_{i\geq 1}$ est un système orthogonal dans E, le système $\left\{\frac{e_i}{\|e_i\|}\right\}_{i\geq 1}$ est orthonormal dans E.
- . La condition d'orthonormalisation est exprimée par le symbole de Kronecker

$$\langle e_i, e_j \rangle = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, i, j \ge 1$$

Exemples 1. La famille $(e_i)_{i>1}$ où

$$e_1 = (1, 0, 0, \dots, 0, \dots), e_2 = (0, 1, 0, \dots, 0, \dots), \dots$$

est orthonormale dans l'espace ℓ_2 .

2. La famille $(\varphi_n)_{n\geq 1}$ où $\varphi_n(x)=\frac{e^{inx}}{\sqrt{2\pi}}$, forme un système orthonormal dans l'espace de Hilbert $H=L_2\left([-\pi,\pi]\right)$ muni du produit scalaire défini par

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt, \quad f, g \in H$$

En effet, on a pour tous $n, m \ge 1$

$$\langle \varphi_n, \varphi_m \rangle = \int_{-\pi}^{\pi} \varphi_n(t) \overline{\varphi_m(t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)t} dt$$

$$= \begin{cases} \frac{e^{i\pi(m-n)} - e^{-i\pi(m-n)}}{2\pi i(m-n)}, & n \neq m \\ \frac{1}{2\pi} \int_{-\pi}^{\pi} dt, & n = m \end{cases}$$

$$= \delta_{n,m}$$

Proposition 0.1. Tout système orthogonal dans un espace pré-Hilbertien E est libre dans E.

Preuve. Soit $(e_i)_{i\geq 1}$ un système orthogonal dans E, et soit $(\lambda_i)_{i\geq 1}$ une suite dans $\mathbb C$ telle que $\sum\limits_{i=1}^{+\infty}\lambda_ie_i=0$. D'où

$$\forall k; k \ge 1 : \left\langle \sum_{i=1}^{+\infty} \lambda_i e_i, e_k \right\rangle = 0$$

i.e.,

$$\forall k; k \geq 1 : \lambda_k = 0$$

Tout espace de Hilbert de dimension finie admet une base orthonormale.

Théorème de Pythagore généralisé

Théorème 0.1. Si $\{e_i\}_{i\geq 1}^n$, $n\geq 1$ est un système orthogonal dans un espace pré-Hilbertien, alors

$$\left\| \sum_{i=1}^{n} e_i \right\|^2 = \sum_{i=1}^{n} \|e_i\|^2 \qquad (*)$$

Preuve. Par récurrence sur n.

i. Pour n=2: $e_1 \perp e_2$ alors

$$||e_1 + e_2||^2 = \langle e_1 + e_2, e_1 + e_2 \rangle$$

$$= ||e_1||^2 + ||e_2||^2 + \langle e_1, e_2 \rangle + \langle e_2, e_1 \rangle$$

$$= ||e_1||^2 + ||e_2||^2$$

ii. On suppose que (*) est vraie pour le rang p-1, $p \ge 2$, i.e.,

$$\left\| \sum_{i=1}^{p-1} e_i \right\|^2 = \sum_{i=1}^{p-1} \|e_i\|^2$$

Soient $x = \sum\limits_{i=1}^{p-1} e_i$ et $y = e_p$. On a $\langle x, y \rangle = 0$. D'où

$$\left\| \sum_{i=1}^{p} e_i \right\|^2 = \|x + y\|^2 = \|x\|^2 + \|y\|^2$$

$$= \left\| \sum_{i=1}^{p-1} e_i \right\|^2 + \|e_p\|^2$$

$$= \sum_{i=1}^{p-1} \|e_i\|^2 + \|e_p\|^2$$

$$= \sum_{i=1}^{p} \|e_i\|^2$$

Donc, l'égalité (*) est vraie pour $p, p \ge 2$. De (i) et (ii), (*) est vraie pour tout n, $n \ge 2$.

0.0.1 Procédé d'orthogonalisation de Gram-Schmidt

1 2

Théorème 0.2. Etant donnée une suite $(y_n)_n$ de vecteurs linéairement indépendants dans un espace pré-Hilbertien E. Alors $(y_n)_n$ engendre un système orthonormal $(x_n)_n$ dans E.

- 1. Jørgen Pedersen Gram, 1850-1916, est un mathématicien danois.
- 2. Erhard Schmidt, 1876-1959, est un mathématicien allemand.

Preuve. Posons

$$\begin{array}{rclcrcl} w_1 & = & y_1 & \text{et } x_1 = \frac{w_1}{\|w_1\|} \\ w_2 & = & y_2 - \langle y_2, x_1 \rangle \, x_1 & \text{et } x_2 = \frac{w_2}{\|w_2\|} \\ w_3 & = & y_3 - \langle y_3, x_1 \rangle \, x_1 - \langle y_3, x_2 \rangle \, x_2 & \text{et } x_2 = \frac{w_2}{\|w_2\|} \\ & & \cdot \\ & & \cdot \\ w_n & = & y_n - \sum_{i=1}^{n-1} \langle y_n, x_i \rangle \, x_i & \text{et } x_n = \frac{w_n}{\|w_n\|}, & n \geq 2 \end{array}$$

La suite $(w_n)_n$ est orthogonale dans E. En effet, par récurrence sur n:

i. Pour n = 2:

$$\langle w_2, w_1 \rangle = \langle y_2 - \langle y_2, x_1 \rangle x_1, y_1 \rangle = \langle y_2, y_1 \rangle - \langle y_2, x_1 \rangle \langle x_1, y_1 \rangle$$

$$= \langle y_2, y_1 \rangle - \frac{\langle y_2, y_1 \rangle \langle y_1, y_1 \rangle}{\|y_1\|^2}$$

$$= 0$$

ii. On suppose maintenant que les vecteurs w_k , $1 \le k \le p-1$ sont deux à deux orthogonaux pour certain rang $p, p \ge 2$. Pour tout m, m < k:

$$\langle w_k, w_m \rangle = \langle y_k, w_m \rangle - \frac{\sum\limits_{p=1}^{k-1} \langle y_k, w_p \rangle \langle w_p, w_m \rangle}{\|w_m\|^2}$$

$$= \langle y_k, w_m \rangle - \frac{\langle y_k, w_m \rangle \langle w_m, w_m \rangle}{\|w_m\|^2}$$

$$= 0$$

D'où, les vecteurs w_k , $1 \le k \le p$ sont deux à deux orthogonaux. De (i) et (ii), la suite $(w_n)_n$ est orthogonale dans E, et $\{x_k\}_{k\ge 1}$ est donc un système orthonormal dans E.

Remarque Il est clair que $\overline{\{x_k\}_{k=1}^n} = \overline{\{y_k\}_{k=1}^n}$.

Exemple Polynômes de Legendre $U_n(x) = x^n$, $(n \in \mathbb{N})$, dans l'espace de Hilbert $L_2([-1,1])$???

Définition 0.2. Une série de la forme $\sum_{k=1}^{+\infty} x_k$ dans un espace de Hilbert \mathcal{H} est dite convergente vers un vecteur $x \in \mathcal{H}$, et l'on écrit $x = \sum_{k=1}^{+\infty} x_k$, si la suite $(S_n)_n$ où $S_n = \sum_{k=1}^n x_k$, $n \ge 1$ est convergente vers x.

Exemple $x = (\lambda_i)_{i \geq 1} \in \ell_2$. Soit $(e_k)_{k \geq 1}$ la base standard de ℓ_2 . Alors

$$\left\|x - \sum_{k=1}^{n} \lambda_k e_k\right\|^2 = \sum_{k=n+1}^{+\infty} \left|\lambda_k\right|^2 \underset{n \to +\infty}{\longrightarrow} 0$$

car $x \in \ell_2$.(le reste de la série $\sum\limits_{k=1}^{+\infty} |\lambda_k|^2$). D'où, $x = \sum\limits_{k=1}^{+\infty} \lambda_k e_k$.

0.0.2 Inégalité de Bessel

Théorème 0.3. Soit \mathcal{H} un espace de Hilbert, et soit $(\varphi_i)_{i\geq 1}$ un système orthonormal dans \mathcal{H} . Alors, pour tout $x, x \in \mathcal{H}$:

- 1. $\sum_{k=1}^{+\infty} |\langle x, \varphi_k \rangle| \le ||x||^2$ (Inégalité de Bessel 3)
- 2. La série $\sum_{k=1}^{+\infty} \langle x, \varphi_k \rangle \varphi_k$ converge.
- 3. $\sum\limits_{k=1}^{+\infty}\lambda_k\varphi_k$ converge dans $\mathcal H$ si et seulement si $(\lambda_k)_{k\geq 1}\in\ell_2$.
- 4. Si $y = \sum_{k=1}^{+\infty} \lambda_k \varphi_k$, alors $\lambda_k = \langle y, \varphi_k \rangle$, $k \ge 1$.

^{3.} Friedrich Wilhelm Bessel, 1784-1846, est un astronome, mathématicien, géodésiste et physicien allemand.

Preuve 1. Comme le système $(\varphi_i)_{i\geq 1}$ est orthonormal dans $\mathcal H$

$$0 \leq \left\langle x - \sum_{k=1}^{n} \left\langle x, \varphi_k \right\rangle \varphi_k, x - \sum_{k=1}^{n} \left\langle x, \varphi_k \right\rangle \varphi_k \right\rangle$$
$$= \|x\|^2 - 2\sum_{k=1}^{n} \left| \left\langle x, \varphi_k \right\rangle \right|^2 + \sum_{k=1}^{n} \left| \left\langle x, \varphi_k \right\rangle \right|^2$$
$$= \|x\|^2 - \sum_{k=1}^{n} \left| \left\langle x, \varphi_k \right\rangle \right|^2$$

D'où,

$$\sum_{k=1}^{n} |\langle x, \varphi_k \rangle|^2 \le ||x||^2, \quad n \ge 1 \qquad (*)$$

La série à termes positifs $\sum_{k=1}^{+\infty} |\langle x, \varphi_k \rangle|$ est donc convergente, car sa suite des sommes partielles définie par $U_n = \sum_{k=1}^n |\langle x, \varphi_k \rangle|^2$ est majorée d'après (*). D'où

$$\sum_{k=1}^{+\infty} |\langle x, \varphi_k \rangle| \le \|x\|^2$$

.

2. Soit $S_n = \sum_{k=1}^n \langle x, \varphi_k \rangle \varphi_k$, $n \ge 1$. Pour tous n, m avec n > m on aura d'après (1)

$$||S_n - S_m||^2 = \left\langle \sum_{k=m+1}^n \langle x, \varphi_k \rangle \varphi_k, \sum_{k=m+1}^n \langle x, \varphi_k \rangle \varphi_k \right\rangle$$
$$= \sum_{k=m+1}^n |\langle x, \varphi_k \rangle|^2 \underset{n,m \to +\infty}{\longrightarrow} 0$$

D'où, la suite $(S_n)_n$ est de Cauchy dans \mathcal{H} . Comme \mathcal{H} est complet, $(S_n)_n$ est convergente. Donc, la série $\sum\limits_{k=1}^{+\infty} \langle x, \varphi_k \rangle \, \varphi_k$ converge également.

3. Soit $V_n = \sum_{k=1}^n \lambda_k \varphi_k$, $n \ge 1$, et soit $W_n = \sum_{k=1}^n |\lambda_k|^2$, $n \ge 1$. Alors pour tous n, m tels que n > m:

$$||V_n - V_m||^2 = \left\langle \sum_{k=m+1}^n \lambda_k \varphi_k, \sum_{k=m+1}^n \lambda_k \varphi_k \right\rangle = \sum_{k=m+1}^n |\lambda_k|^2$$
$$= W_n - W_m$$

D'où, $(V_n)_n$ est de Cauchy dans \mathcal{H} si et seulement si $(W_n)_n$ l'est. Donc $(V_n)_n$ converge si et seulement si $(W_n)_n$ converge également dans \mathcal{H} .

4. Soit $y = \sum_{k=1}^{+\infty} \lambda_k \varphi_k$. Comme le système $\{\varphi_k\}_{k\geq 1}$ est orthonormal dans \mathcal{H} , et par la continuité du produit scalaire, on aura pour tout $j, j \geq 1$:

$$\langle y, \varphi_j \rangle = \left\langle \sum_{k=1}^{+\infty} \lambda_k \varphi_k, \varphi_j \right\rangle = \lim_{n \to +\infty} \left\langle \sum_{k=1}^{n} \lambda_k \varphi_k, \varphi_j \right\rangle$$

= λ_j

Définition 0.3. Soit \mathcal{H} un espace de Hilbert. Un système orthonormal $\{\varphi_k\}_{k\geq 1}$ est dit base orthonormale de \mathcal{H} si :

$$\forall x \in \mathcal{H} : x = \sum_{k=1}^{+\infty} \lambda_k \varphi_k, \ \lambda_k \in \mathbb{C}, \ (k \ge 1)$$

Par le Théorème précédent, $\lambda_k = \langle x, \varphi_k \rangle$, $k \geq 1$.

Définition 0.4. Les scalaires $\langle x, \varphi_k \rangle$, $k \geq 1$ sont dits coefficients de Fourier du vecteur x.

Exemples. 1. La base standard $(e_i)_{i\geq 1}$ de ℓ_2 est orthonormale.

- 2. Le système $\{\varphi_k\}_{k\geq 1}$ où $\varphi_k=\frac{e^{ikx}}{\sqrt{2\pi}}, k\in\mathbb{Z}$ est une base orthonormale de $L_2\left([-\pi,\pi]\right)$.
- 3. Le système $\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{\pi}}\right\}, n \geq 1$ est une base orthonormale de $L_2\left([-\pi, \pi]\right)$ également.
- 4. On suppose que $\dim \mathcal{H} = n < +\infty$. Soit $\{\varphi_k\}_{1 \leq k \leq p}$ un système orthonormal dans \mathcal{H} . Comme $\{\varphi_k\}_{1 \leq k \leq p}$ est linéairement indépendant, $\{\varphi_k\}_{1 \leq k \leq p}$ est une base de \mathcal{H} si et seulement si n = p.

A. Nasli Bakir 7 2018/2019

0.0.3 Egalité de Parseval

Définition 0.5. Une suite d'éléments $(e_i)_{i\geq 1}$ d'un espace de Hilbert \mathcal{H} est dite totale (complète) si

$$\forall i, i \ge 1 : \langle x, e_i \rangle = 0 \Rightarrow x = 0$$

Autrement dit, le vecteur unique orthogonal au système $(e_i)_{i\geq 1}$ est le vecteur nul.

On donnera par la suite, un résultat présentant des conditions nécesssaires et suffisantes pour qu'un système orthonormal dans \mathcal{H} soit une base orthonormale de \mathcal{H} .

Théorème 0.4. (Egalité de Parseval) Soit $\{\varphi_k\}_{k\geq 1}$ un système orthonormal dans un espace de Hilbert \mathcal{H} . Les assertions suivantes sont équivalentes :

- *i.* $\{\varphi_k\}_{k\geq 1}$ est une base orthonormale de \mathcal{H} .
- ii. $\{\varphi_k\}_{k>1}$ est une suite totale dans \mathcal{H} .
- iii. $Vect\{\varphi_k\}_{k\geq 1}$ est dense dans \mathcal{H} , i.e.,

$$\forall x \in \mathcal{H}, \exists (x_n)_n \subset \overline{\{\varphi_k\}_{k \ge 1}} : x = \lim_{n \to +\infty} x_n$$

iv.
$$\forall x \in \mathcal{H} : \sum_{k=1}^{+\infty} |\langle x, \varphi_k \rangle|^2 = ||x||^2$$
 (Egalité de Parseval)

$$v. \ \forall x, y \in \mathcal{H} : \langle x, y \rangle = \sum_{k=1}^{+\infty} \langle x, \varphi_k \rangle \overline{\langle y, \varphi_k \rangle}$$

Preuve. $(i) \Rightarrow (v)$ Soient $u_n = \sum_{k=1}^n \langle x, \varphi_k \rangle \varphi_k$, $v_n = \sum_{k=1}^n \langle y, \varphi_k \rangle \varphi_k$, $n \ge 1$. Alors

$$\langle x, y \rangle = \lim_{n \to +\infty} \langle u_n, v_n \rangle = \lim_{n \to +\infty} \sum_{k=1}^n \langle x, \varphi_k \rangle \, \overline{\langle y, \varphi_k \rangle} \, \langle \varphi_k, \varphi_k \rangle$$
$$= \sum_{k=1}^{+\infty} \langle x, \varphi_k \rangle \, \overline{\langle y, \varphi_k \rangle}$$

 $(v) \Rightarrow (iv)$ On pose x = y dans (v).

A. Nasli Bakir 8 2018/2019

 $(iv) \Rightarrow (iii) \text{ Soit } x \in \mathcal{H}.$

$$\left\| x - \sum_{k=1}^{n} \langle x, \varphi_k \rangle \varphi_k \right\|^2 = \left\| x \right\|^2 - \sum_{k=1}^{n} \left| \langle x, \varphi_k \rangle \right|^2 \underset{n \to +\infty}{\longrightarrow} 0$$

 $(iii)\Rightarrow (ii) \;\; \mathrm{Si}\; \langle x, \varphi_k \rangle = 0, k \geq 1, \mathrm{alors}\; x \perp \{\varphi_k\}_{k \geq 1} \;.$ Par conséquent, $x \perp \overline{\{\varphi_k\}_{k \geq 1}} = \mathcal{H}$ (Exercice de TD). Donc $x \perp x$. D'où, x = 0.

 $(ii)\Rightarrow (i)$ Pour tout $z,z\in\mathcal{H},$ la série $w=\sum\limits_{k=1}^{+\infty}\langle z,\varphi_k\rangle\,\varphi_k$ converge par le Théorème précédent. D'où

$$\forall j, j \geq 1 : \langle z - w, \varphi_j \rangle = \langle z, \varphi_j \rangle - \lim_{n \to +\infty} \left\langle \sum_{k=1}^n \langle z, \varphi_k \rangle \varphi_k, \varphi_j \right\rangle$$

$$= \langle z, \varphi_j \rangle - \sum_{k=1}^{+\infty} \langle z, \varphi_k \rangle \langle \varphi_k, \varphi_j \rangle$$

$$= \langle z, \varphi_j \rangle - \langle z, \varphi_j \rangle$$

$$= 0$$

Par
$$(ii)$$
, on aura $z-w=0$. D'où, $z=w=\sum\limits_{k=1}^{+\infty}\left\langle z,\varphi_{k}\right\rangle \varphi_{k}$.

Autrement dit, une base orthonormale de \mathcal{H} est un système orthonormal total dans \mathcal{H} , ou bien, un système qui vérifie l'égalité de Parseval.

Exemple On verra plus tard que le système $\{\varphi_k\}_{k\geq 1}$ où $\varphi_k=\frac{e^{ikx}}{\sqrt{2\pi}}, k\in\mathbb{Z}$ est total dans l'espace de Hilbert $L_2\left([-\pi,\pi]\right)$. Il forme donc une base orthonormale de $L_2\left([-\pi,\pi]\right)$.

Par conséquent, tout élément $f \in L_2\left([-\pi,\pi]\right)$ s'écrit sous la forme

$$f = \sum_{k=-\infty}^{+\infty} \langle f, \varphi_k \rangle \varphi_k$$

soit donc

$$f(x) = \sum_{k=-\infty}^{+\infty} \int_{-\pi}^{\pi} f(t)e^{-ikt}e^{ikx}dt, \quad x \in [-\pi, \pi]$$

0.1 Espaces de Hilbert séparables

0.1.1 Définitions et propriétés

Définition 0.6. *Un espace de Hilbert est dit séparable s'il contient une suite orthonormale totale.*

On a donc le résultat suivant

Théorème 0.5. Un espace de Hilbert est séparable si et seulement s'il admet une base orthonormale.

Preuve. Conséquence directe du Théorème précédent.

Exemples. 1. Un espace de Hilbert de dimension finie est séparable.

2. Les espaces ℓ_2 et $L_2([a,b])$ sont séparables.

Théorème 0.6. Soit \mathcal{H} un espace de Hilbert séparable. Alors, \mathcal{H} admet un sous-ensemble dénombrable et dense.

Preuve. Soit $(x_n)_n$ une suite orthonormale totale dans \mathcal{H} , et soit

$$S = \left\{ \sum_{k=1}^{n} (\alpha_k + i\beta_k) x_k, \ \alpha_k, \beta_k \in \mathbb{Q}, 1 \le k \le n, \ n \ge 1 \right\}$$

S est dénombrable. De plus

$$\forall x \in \mathcal{H} : \left\| \sum_{k=1}^{n} \langle x, x_k \rangle x_k - x \right\| \underset{n \to +\infty}{\longrightarrow} 0$$

car $(x_n)_n$ est totale dans \mathcal{H} . Ce qui montre que S est dense dans \mathcal{H} .

A. Nasli Bakir 10 2018/2019

0.1.2 Exemple d'un espace de Hilbert non séparable

L'espace des fonctions presque périodiques :

Définition 0.7. Une fonction à valeurs complexes et continue sur \mathbb{R} , est dite presque périodique si elle est limite uniforme sur \mathbb{R} d'une suite de polynômes trigonométriques de la forme $\sum_{k=1}^{n} a_k e^{i\lambda_k t}$, $\lambda_k \in \mathbb{R}$, $k \geq 1$.

Soit *E* un tel espace. On définit

$$\langle f, g \rangle = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} f(t) \overline{g(t)} dt$$

où

$$f(t) = \sum_{k=1}^{n} a_k e^{i\lambda_k t}, \ g(t) = \sum_{k=1}^{n} b_k e^{i\mu_k t} \in E$$

On a donc

$$\langle f, g \rangle = \lim_{T \to +\infty} \sum_{k,s=1}^{n} a_k \overline{b_k} \frac{1}{2T} \int_{-T}^{T} e^{i(\lambda_k - \mu_s)t} dt$$
$$= \sum_{k,s=1}^{n} \delta(\lambda_k, \mu_s) a_k \overline{b_k}$$

où

$$\delta(\lambda_k, \mu_s) = \begin{cases} 1, & \lambda = \mu \\ 0, & \lambda \neq \mu \end{cases} \dots$$

Donc $\langle .,. \rangle$ existe et définit un produit scalaire sur E. Comme l'ensemble $\left\{e^{i\lambda t}, \lambda \in \mathbb{R}\right\}$ est orthonormal et non dénombrable dans E, l'espace E n'est donc pas séparable.

Remarque L'espace E est la source d'une recherche active pour plus d'une cinquantaine d'années.

0.1.3 Espaces isomorphes

Définition Deux espaces de Hilbert \mathcal{H}_1 et \mathcal{H}_2 sont dits isomorphes s'il existe une bijection $T \colon \mathcal{H}_1 \to \mathcal{H}_2$ vérifiant

$$\langle Tx, Ty \rangle = \langle x, y \rangle, \ x, y \in \mathcal{H}_1$$

L'application T est linéaire et est dite isomorphisme de \mathcal{H}_1 dans \mathcal{H}_2 .

Remarque ||T|| = 1.

Théorème 0.7. *Soit* \mathcal{H} *un espace de Hilbert séparable.*

i. Si dim $\mathcal{H} < +\infty$, alors \mathcal{H} est isomorphe à \mathbb{C}^n ou \mathbb{R}^n , (selon le corps de \mathcal{H})

ii. Si dim $\mathcal{H} = +\infty$, alors \mathcal{H} est isomorphe à ℓ_2 .

Preuve. i. On suppose que dim $\mathcal{H}=n, n\geq 1$. Soit $(e_k)_{1\leq k\leq n}$ une base de \mathcal{H} . L'application $T\colon \mathcal{H}\to\mathbb{C}^n$ où

$$Tx = T(\sum_{k=1}^{n} \lambda_k e_k) = (\lambda_1, \lambda_1, ..., \lambda_n), \ x \in \mathcal{H}$$

est un isomorphisme.

ii. Soit $(e_k)_{k\geq 1}$ une base orthonormale de $\mathcal H.$ On définit l'application $T\colon \mathcal H\to \ell_2$ par

$$Tx = (\langle x, e_k \rangle e_k)_{k \ge 1}$$

On montre facilement que T est un isomorphisme de \mathcal{H} dans ℓ_2 , et que

$$||Tx||^2 = \sum_{k=1}^{+\infty} |\langle x, e_k \rangle|^2 = ||x||^2, \ x \in \mathcal{H}$$

par l'égalité de Parseval car $(e_k)_{k\geq 1}$ est une base orthonormale de \mathcal{H} .

Remarque Du Théorème précédent, découle que les espaces de Hilbert séparables de dimension finie (resp. dimension infinie) sont isomorphes. Cela veut dire qu'en réalité, il n'existe qu'un seul espace de Hilbert séparable de dimension finie (resp. dimension infinie) qui est \mathbb{C}^n . (resp. ℓ_2)

0.1.4 L'espace $L_2([a,b])$

L'espace des fonctions Lebesgue mesurables à carré intégrable sur [a, b], i.e.,

$$\mathcal{L}_2([a,b]) = \left\{ f : [a,b] \to \mathbb{C}, \ f \ \text{mesurable et} \ \int\limits_a^b |f|^2 < +\infty \right\}$$

et l'espace

$$L_2([a,b]) = \{ \{f\}, f \in \mathcal{L}_{\in}([a,b]) \}$$

formé des classes d'équivalences pour la relation d'égalité p.p sur [a, b].

. $L_2([-\pi,\pi])$ muni du produit scalaire

$$\langle f, g \rangle = \int_{a}^{b} f(t) \overline{g(t)} dt, \quad f, g \in L_2([-\pi, \pi])$$

est un espace de Hilbert séparable, admettant le système $\{\varphi_k\}_{k\in\mathbb{Z}}$ où

$$\varphi_k(t) = \frac{e^{ikt}}{\sqrt{2\pi}}, t \in [-\pi, \pi]$$

comme une base orthonormale [?] (TD)

Théorème 0.8. [?] L'espace de Hilbert $L_2([a,b])$ est séparable.

0.2 Orthogonalité et projection orthogonale

0.2.1 Orthogonalié et complément orthogonal

Définition 0.8. Soit \mathcal{H} un espace de Hilbert. Deux vecteurs $x, y \in \mathcal{H}$ sont dits orthogonaux, et l'on écrit $x \perp y$, si $\langle x, y \rangle = 0$.

Définition 0.9. *Soit* $\mathcal{M} \subset \mathcal{H}$, $\mathcal{M} \neq \emptyset$, *et soit* $x \in \mathcal{H}$. *Alors*

$$x \perp M \Leftrightarrow \langle x, y \rangle = 0, \forall y \in \mathcal{M}$$

Définition 0.10. *Soient* $\mathcal{M}, \mathcal{N} \subset \mathcal{H}$. *Alors*

$$\mathcal{M} \perp \mathcal{N} \Leftrightarrow \langle x, y \rangle = 0, \forall x \in \mathcal{M}, \forall y \in \mathcal{N}$$

Définition 0.11. Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{M} \subset \mathcal{H}$. Le complément orthogonal de \mathcal{M} dans \mathcal{H} est l'ensemble noté \mathcal{M}^{\perp} et défini par

$$\mathcal{M}^{\perp} = \{x \in \mathcal{H} : x \perp \mathcal{M}\}$$

= $\{x \in \mathcal{H} : \langle x, y \rangle = 0, \forall y \in \mathcal{M}\}$

Proposition 0.2. \mathcal{M}^{\perp} est un sous-espace vectoriel fermé de \mathcal{H} .

Preuve. i. Soient $x_1, x_2 \in \mathcal{M}^{\perp}$, et soit $\lambda \in \mathbb{C}$. On a pour tout $y \in \mathcal{M}$:

$$\langle \lambda x_1 + x_2, y \rangle = \lambda \langle x_1, y \rangle + \langle x_2, y \rangle = \lambda.0 + 0 = 0$$

car $x_1 \perp y$ et $x_2 \perp y$. D'où $(\lambda x_1 + x_2) \perp y$. Par suite, $(\lambda x_1 + x_2) \in \mathcal{M}^{\perp}$. L'espace \mathcal{M}^{\perp} est donc un sous-espace vectoriel de \mathcal{H} .

A. Nasli Bakir 14 2018/2019

ii. Montrons que \mathcal{M}^{\perp} est fermé de \mathcal{H} . Soit $(x_n)_n$ une suite dans \mathcal{M}^{\perp} qui converge vers $x, x \in \mathcal{H}$. Pour tout $y \in \mathcal{M}$, on a par la continuité du produit scalaire (Proposition 1.2.) :

$$\langle x, y \rangle = \left\langle \lim_{n \to +\infty} x_n, y \right\rangle = \lim_{n \to +\infty} \left\langle x_n, y \right\rangle = \lim_{n \to +\infty} 0 = 0$$

 $\operatorname{car} x_n \in \mathcal{M}^{\perp}, n \in \mathbb{N}. \text{ D'où } x \in \mathcal{M}^{\perp}.$

Propriétés. *Soit* \mathcal{H} *un espace de Hilbert, et soit* $\mathcal{M} \subset \mathcal{H}$ *. Alors*

1. $\mathcal{M} \subset (\mathcal{M}^{\perp})^{\perp} = \mathcal{M}^{\perp \perp}$. (On montrera plus tard que si \mathcal{M} est un sous-espace vectoriel fermé de \mathcal{H} , alors $\mathcal{M} = \mathcal{M}^{\perp \perp}$)

2.
$$\mathcal{M}^{\perp} = \overline{\mathcal{M}}^{\perp}$$
 (TD)

3.
$$\mathcal{H}^{\perp} = \{0\} \ et \ \{0\}^{\perp} = \mathcal{H}.$$

Preuve. 1. Soit $x \in \mathcal{M}$. Alors $x \perp \mathcal{M}^{\perp}$. Donc

$$\langle x, y \rangle = 0, \forall y \in \mathcal{M}^{\perp}$$

D'où $x \in \mathcal{M}^{\perp \perp}$ par définition du complément orthogonal.

4. On a

$$\mathcal{H}^{\perp} = \{x \in \mathcal{H} : \langle x, y \rangle = 0, \forall y \in \mathcal{H}\}$$

= $\{0\}$

et comme \mathcal{H} est un espace vectoriel, on aura par (2) que

$$\{0\}^{\perp} = \mathcal{H}^{\perp \perp} = \mathcal{H}$$

Définition 0.12. Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{M} \subset \mathcal{H}$. La distance d'un point $a \in \mathcal{H}$ à \mathcal{M} est le nombre réel positif

$$d(a, \mathcal{M}) = \inf_{y \in M} \|a - y\|$$

Exercice Montrer que

$$d(a, \mathcal{M}) = 0 \Leftrightarrow a \in \overline{\mathcal{M}}$$

On a donc le résultat important suivant

0.2.2 Théorème de la projection orthogonale

Théorème 0.9. Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{M} \subset \mathcal{H}$ un sous-ensemble convexe et fermé. Pour tout $x \in \mathcal{H}$, il existe $w \in \mathcal{M}$ unique tel que

$$d(x, \mathcal{M}) = ||x - w||$$

Définition 0.13. Le vecteur w est dit projection orthogonale de x sur \mathcal{M} .

Preuve du Théorème. Soit

$$d = d(x, \mathcal{M}) = \inf_{z \in \mathcal{M}} ||x - z||$$

Il existe donc une suite $(z_n)_n \subset \mathcal{M}$ telle que

$$||x - z_n|| \to d, (n \to +\infty)$$

On doit montrer que $\lim_{n\to +\infty}z_n=w$. Appliquons l'identité du parallélogramme sur les vecteurs $x-z_n, z-z_m, n,m\in\mathbb{N}$:

$$2(\|x - z_n\|^2 + \|x - z_m\|^2) = \|2x - (z_n + z_m)\|^2 + \|z_n - z_m\|^2$$
 (1)

 \mathcal{M} étant convexe, $\frac{1}{2}(z_n+z_m)\in\mathcal{M}$ et

$$||2x - (z_n + z_m)|| = 2||x - \frac{1}{2}(z_n + z_m)|| \ge 2d$$
 (2)

Combinant les relations (1) et (2), on obtient

$$||z_n - z_m||^2 \le 2(||x - z_n||^2 + ||x - z_m||^2) - 4d^2 \underset{n,m \to +\infty}{\longrightarrow} 4d^2 - 4d^2 = 0$$

La suite $(z_n)_n$ est donc de Cauchy dans \mathcal{M} . Comme \mathcal{H} est complet, et \mathcal{M} est fermé, \mathcal{M} est aussi complet. Il existe donc $w \in \mathcal{M}$ tel que $\lim_{n \to +\infty} z_n = w$. D'où, et par la continuité du produit scalaire

$$d = \lim_{n \to +\infty} ||x - z_n|| = ||x - w||$$

Montrons maintenant l'unicité de w. Supposons qu'il existe $y \in \mathcal{M}$ tel que

$$d = ||x - y||$$

On aura donc

$$d^{2} \le \left\| x - \frac{1}{2}(y + w) \right\|^{2} = \left\| \frac{1}{2}(x - y) + \frac{1}{2}(x - w) \right\|^{2}$$

D'où, et par l'identité du parallélogramme sur les vecteurs $\frac{1}{2}(x-y)$ et $\frac{1}{2}(x-w)$, on obtiendra

$$d^{2} \leq \left\| \frac{1}{2}(x-y) + \frac{1}{2}(x-w) \right\|^{2} =$$

$$= 2\left(\left\| \frac{1}{2}(x-y) \right\|^{2} + \left\| \frac{1}{2}(x-w) \right\|^{2} \right) - \left\| \frac{1}{2}(y-w) \right\|^{2}$$

$$= d^{2} - \frac{1}{4} \left\| (y-w) \right\|^{2}$$

D'où y = w.

De ce théorème, découle le résultat important suivant

0.2.3 Théorème de la décomposition orthogonale

Théorème 0.10. Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{M} \subset \mathcal{H}$ un sous-espace vectoriel fermé. Alors, tout vecteur $x \in \mathcal{H}$ admet une décomposition unique $x = x_1 + x_2$ où $x_1 \in \mathcal{M}$ et $x_2 \in \mathcal{M}^{\perp}$.

Autrement dit, $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$ (somme directe orthogonale)

 x_1 est la projection orthogonale de x sur \mathcal{M} et x_2 est la projection orthogonale de x sur \mathcal{M}^{\perp} .

Preuve. i. Si $x \in \mathcal{M}$ alors x = x + 0.

ii. Si $x \notin \mathcal{M}$. Soit y le point unique de \mathcal{M} vérifiant

$$||x - y|| = d(x, \mathcal{M}) = \inf_{w \in M} ||x - w||$$

y existe d'après le théorème de la projection orthogonale. Montrons que

$$x = y + (x - y)$$

est la décomposition demandée. On a

$$\forall w \in \mathcal{M}, \forall \lambda \in \mathbb{C} : y + \lambda w \in \mathcal{M}$$

car \mathcal{M} est un sous-espace vectoriel de \mathcal{H} . De plus

$$||x - y||^2 \le ||x - y - \lambda w||^2$$

= $||x - y||^2 - 2Re(\lambda \langle w, x - y \rangle) + |\lambda|^2 ||w||^2$

D'où

$$-2Re(\lambda \langle w, x - y \rangle) + |\lambda|^2 ||w||^2 \ge 0$$

Si $\lambda > 0$, on divise par λ et on fait tendre λ vers 0, on aura

$$Re(\lambda \langle w, x - y \rangle) \le 0$$
 (1)

De même, en remplaçant λ par $-i\lambda$, $(\lambda > 0)$, et on divise par λ , puis on fait tendre λ vers 0, on obtiendra

$$Im(\lambda \langle w, x - y \rangle) \le 0$$
 (2)

comme $y \in \mathcal{M}, -y \in \mathcal{M}$. Alors, (1) et (2) demeurent vraies pour -w, i.e. :

$$\langle w, x - y \rangle = 0, \forall w \in \mathcal{M}$$

Donc $(x-y) \in \mathcal{M}^{\perp}$.

L'unicité. posons

$$x = y_1 + z_1, y_1 \in \mathcal{M}, z_1 \in \mathcal{M}^\perp$$

Alors $(y-y_1) \in \mathcal{M}$ et $(z-z_1) \in \mathcal{M}^{\perp}$. Comme $y-y_1=z_1-z$, on aura forcément $y-y_1=z_1-z=0$ car $\mathcal{M}\cap\mathcal{M}^{\perp}=\{0\}$.

0.3 Exercices

Exercice 0.1.

- . Soit $\mathcal H$ un espace de Hilbert et soit $\mathcal V$ un sous-espace vectoriel de $\mathcal H$.
- 1. Montrer que $V^{\perp} = \overline{V}^{\perp}$.
- 2. On suppose que $\mathcal V$ est fermé (Uniquement dans cette question). Montrer que $\left(\mathcal V^\perp\right)^\perp=\mathcal V$.
 - 3. En déduire que $(\mathcal{V}^{\perp})^{\perp} = \overline{\mathcal{V}}$.
 - 4. En déduire que $\mathcal V$ est dense dans $\mathcal H$ si et seulement si $\mathcal V^\perp=\{0\}$.

Exercice 0.2.

a. 1. Montrer que

$$\langle P, Q \rangle = \sum_{k=0}^{4} P(k)Q(k), \ P, Q \in \mathbb{R}_2[X]$$

définit bien un produit scalaire sur $\mathbb{R}_2[X]$.

- 2. Trouver une base orthonormale de $\mathbb{R}_2[X]$ pour ce produit scalaire.
- b. On cherche à calculer

$$I = \inf_{a,b,c \in \mathbb{R}} \int_{0}^{+\infty} (x^3 + ax^2 + bx + c)^2 e^{-x} dx$$

1. Montrer que

$$\langle P, Q \rangle = \int_{0}^{+\infty} P(x)Q(x)e^{-x} dx, \ P, Q \in \mathbb{R}_3[X]$$

définit un produit scalaire sur $\mathbb{R}_3\left[X\right]$.

- 2. Montrer que le problème du calcul de I revient à trouver la distance de X^3 à $\mathbb{R}_2[X]$ pour la norme induite par ce produit scalaire.
 - 3. Trouver *I*.

Exercice 0.3.

Soit $(e_i)_{i\in\mathbb{N}}$ une suite orthonormale dans un espace de Hilbert $\mathcal{H}.$ Soient

$$F_n = Vect \{e_i\}_{i=\overline{0.n}}, \ (n \in \mathbb{N}) \ \text{ et } F = Vect \{e_i\}_{i\in\mathbb{N}}$$

On considère la projection orthogonale P_n de \mathcal{H} sur F_n , $(n \in \mathbb{N})$. Montrer que

$$P_n(x) = \sum_{i=0}^n \langle x, e_i \rangle e_i, \ x \in \mathcal{H}, \ (n \in \mathbb{N})$$

2. Montrer que pour tout $x \in \mathcal{H}$:

$$\sum_{i=0}^{n} |\langle x, e_i \rangle|^2 + ||x - \pi_n(x)||^2 = ||x||^2$$

3. En déduire l'inégalité de Bessel

$$\sum_{i=0}^{+\infty} |\langle x, e_i \rangle|^2 \le ||x||^2, \ x \in \mathcal{H}$$

4. On définit $d(x,F) = \inf_{y \in F} \|x - y\|$. Montrer l'identité de Parseval

$$\sum_{i=0}^{+\infty} |\langle x, e_i \rangle|^2 + (d(x, F))^2 = ||x||^2, \ x \in \mathcal{H}$$

Exercice 0.4.

Pour tout entier naturel $N, N \ge 1$, on note M_N le sous-espace vectoriel de ℓ_2 formé des suites $(x_n)_n$ telles que $\sum_{i=0}^N x_i = 0$.

- 1.i. Montrer que l'application $(x_n)_n \mapsto \sum_{i=0}^N x_i$ est linéaire et continue de ℓ_2 dans \mathbb{C} .
- 1.ii. Que peut-on déduire de l'espace M_N ?
- 1.iii. Conclure une décomposition orthogonale de ℓ_2 .
- 2. Soit

$$E_n = \{(y_n)_n : y_i = y_j \text{ pour } 0 \le i < j \le N \text{ et } y_n = 0 \text{ pour } n > N\}$$

a. Montrer que $E\subseteq M_N^{\perp}$.

b. Montrer que $E=M_N^{\perp}$. (Remarquer que pour $0 \leq i < j \leq N$, la suite (x_n) où $x_i=1, x_j=-1$ et $x_n=0$ si $n \neq i$ et $n \neq j$ appartient à M_N .)

Exercice 0.5.

Soit a un vecteur non nul dans $\mathcal{H}.$ Posons $F=\overline{\{a\}}^{\perp}.$ Montrer que pour tout $x\in\mathcal{H}:$

$$d(x, F) = \frac{|\langle x, a \rangle|}{\|a\|}$$