Нижегородский государственный технический университет им. Р. Е. Алексеева

МОДЕЛЬ И АЛГОРИТМЫ ОБНАРУЖЕНИЯ ОБЪЕКТОВ НА ИЗОБРАЖЕНИИ С ИСПОЛЬЗОВАНИЕМ ЛОКАЛЬНОГО ПРИЗНАКОВОГО ОПИСАНИЯ

Выполнила: Домнина Н.А., М17-ИВТ-3

Научный руководитель: к.т.н., доцент, Гай В.Е.

Цель и задачи работы

Цель:

 Разработка нового подхода к решению задачи обнаружения объектов на изображении с использованием локального признакового описания

Задачи:

- Обзор существующих методов, определение их достоинств и недостатков
- > Создание модели системы обнаружения объекта на изображении
- Создание алгоритма формирования признакового описания изображения
- Проведение вычислительного эксперимента для созданного алгоритма, сравнение результатов с существующими методами

Этапы решения задачи

Этапы системы обнаружения объектов

- Формирование исходного описания
- > Формирование системы признаков
- > Принятие решения

Представление изображения в градациях серого

Формула для перевода изображения в градации серого:

Y = 0.299 * R + 0.587 * G + 0.144 * B

где R, G, B - красный, зеленый и синий каналы исходного изображения соответственно

Трансформирование изображения

Коэффициенты масштаба: 0.8, 0.6, 0.4

Углы поворота: -30, -20, -10, 10, 20, 30

Этапы системы обнаружения объектов

- > Формирование исходного описания
- > Формирование системы признаков
- > Принятие решения

Скользящее окно

Результат поиска ключевых точек

Найденные ключевые точки при смещении 0px

Найденные ключевые точки при смещении 6px

Вычисление суммы пикселей контрастной области

Представление области в качестве суммы яркостей пикселей

Вычисление суммы пикселей неконтрастной области

Представление области в качестве суммы яркостей пикселей

Фильтры Уолша системы Хармута

Пример вычисления отклика одного фильтра

172	158	159	159
655	372	158	157
1234	633	167	153
1032	811	530	373

-1	-1	1	1
-1	-1	1	1
-1	-1	1	1
1	1	-1	-1

-172	-158	159	159
-655	-372	158	157
-1234	-633	167	153
1032	811	-530	-373

Среднеквадратическое отклонение

Формула для вычисления СКО спектральных коэффициентов области P_{ij} :

$$s_{ij} = \sqrt{\frac{1}{n-1} \sum_{1}^{n} (d_i - d_{cp})^2}$$

где n=15 - количество учитываемых коэффициентов спектрального представления;

 d_i - i-й спектральный коэффициент;

 $d_{\it cp}$ - среднее арифметическое спектральных коэффициентов.

Вектор спектральных коэффициентов

Значения фильтров области с перепадом яркости:

Фильтр	Значение фильтра на исходном изображении	
0		6923
1		-3211
2		2943
3		1763
4		-947
5		1291
6		355
7		-1331
8		-791
9		135
10		1253
11		-695
12		-93
13		507
14		255
15		33

Значения фильтров области без перепада яркости:

Фильтр	Значение фильтра на исходном изображении
0	2380
1	-12
2	14
3	-19
4	19
5	0
6	2
7	-4
8	-4
9	20
10	26
11	10
12	-6
13	12
14	-6
15	18

Коэффициент отбора ключевых точек

Порог для расчета порога ключевых точек:

$$s_{ij} > k_{kp} * s_{max}$$

где k_{kp} - задаваемый коэффициент отбора точек, s_{max} - максимальное значение СКО по всем областям изображения.

$$k = 0.5$$

$$k = 0.7$$

Этапы системы обнаружения объектов

- > Формирование исходного описания
- > Формирование системы признаков
- > Принятие решения

Евклидово расстояние

Для последовательностей $p=(p_1,...,p_n)$ и $q=(q_1,...,q_n)$ евклидово расстояние определяется следующим образом:

$$(p,q) = \sqrt{(p_1 - q_n)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Порог для расчета порога ключевых точек:

$$r_{ij} < k_m * r_{min}$$

где k_{m^-} задаваемый коэффициент отбора расстояний, r_{min} - минимальное значение расстояния

Сопоставление ключевых точек

Результат сопоставления ключевых точек

Сегментация. K-means

Сегментация. Метод выборочного поиска

Чрезмерная сегментация

Иерархическая сегментация

Сегментация. Результат метода выборочного поиска

Выделение всех сегментов

Локализация объекта

Сегменты после сопоставления дескрипторов

Вычислительный эксперимент

- Изображения из базы ALOI. Для тестовых объектов есть несколько типов изменений:
 - Угол обзора
 - Направление освещения
 - Цвет освещения
- Изображения, полученные на основе базы ALOI:
 - Несколько искомых объектов на тестовом изображении
 - Несколько объектов с наложенным шумом
- > Изображения объектов в естественной среде

Изменение угла обзора

	Точность	Время работы
Разрабатываемый метод	96.67%	0.23 сек
Метод SIFT	98.30%	0.12 сек

Зависимость точности от изменения угла обзора

Изменение направления освещения

	Точность	Время работы
Разрабатываемый метод	100.00%	0.17 сек
Метод SIFT	100.00%	0.11 сек

Изменение цвета освещения

	Точность	Время работы
Разрабатываемый метод	100.00%	0.19 сек
Метод SIFT	100.00%	0.10 сек

Два и более объекта с поворотом, наклоном, разным масштабом и углом обзора

	Точность (один объект)	Точность (все объекты)	Время работы
Разрабатываемый метод	100.00%	93.33%	0.20 сек
Метод SIFT	100.00%	-	0.11 сек

Два и более объекта с поворотом, наклоном, разным масштабом и углом обзора. Накладываемый шум

	Точность (один объект)	Точность (все объекты)	Время работы
Разрабатываемый метод	96.67%	90.00%	0.22 сек
Метод SIFT	38.33%	-	0.11 сек

Зависимость точности от шума

Изображения объектов в естественной среде

	Точность (все изображения)	Точность (без изображений с шумом)	Время работы
Разрабатываемый метод	95.00%	96.67%	0.20 сек
Метод SIFT	85.00%	96.67%	0.11 сек

Итоги тестирования

Комбинация параметров, которая дает наибольшую точность:

- \triangleright Коэффициент отбора ключевых точек (k_{kp}) 0.5
- \triangleright Коэффициент отбора расстояний (k_m)- 1.8
- Размер скользящего окна (n) 16

Среднее время обработки изображения- 0.24 секунды.

Ограничения системы, выработанные в результате тестирования:

Угол обзора: -30..+30 градусов

Масштаб: 0.3..1

Процент зашумленности: 0%...40%

Итоги

- > Произведен обзор существующих методов решения задачи
- Предложен новый алгоритм решения задачи обнаружения объекта на изображении
- > Разработан программный продукт для проведения исследования
- Проведен вычислительный эксперимент, подтверждающий работоспособность предложенного метода

Публикации

Н.А.Домнина, В.Е.Гай «Модель и алгоритмы обнаружения объектов на изображении с использованием локального признакового описания». Материалы XXV Международной научно-технической конференции «Информационные системы и технологии», 2019.

Спасибо за внимание