Prove that q(x) is irreducible over K. If q(x) is reducible over K, then q(x) = u(x)w(x) for some nonconstant $u(x), w(x) \in K[x]$.

13. In the proof of Theorem 9.9 the polynomial $q(x) \in K[x]$ was defined so that $ker(f_c) = \langle q(x) \rangle$.

By Theorem 7.20 we know that deg(u(x)) < deg(g(x)) and deg(w(x)) < deg(g(x)). Since in E we have $0_E = q(c) = u(c)w(c)$, then either $u(c) = 0_E$ or $w(c) = 0_E$. If $u(c) = 0_E$ then $u(x) \in ker(f_c) = \langle q(x) \rangle$ and so u(x) = q(x)s(x). But this means $deg(u(x)) \geq deg(q(x))$

which is a contradiction. Similarly if $w(c) = 0_E$ then $w(x) \in ker(f_c) = \langle q(x) \rangle$ and so

w(x) = q(x)s(x). Again we have $deg(w(x)) \ge deg(q(x))$, a contradiction. Thus q(x) is irreducible over K.

Hence $p(x) = -10 + x^3$ is the minimum polynomial for $u = \sqrt[3]{10}$ over \mathbb{Q} .

- 14. Find the minimum polynomial for $u = \sqrt[3]{10}$ over \mathbb{Q} . Be sure to prove your polynomial is irreducible.

Let $p(x) = -10 + x^3$. Then $p(x) \in \mathbb{Q}[x]$ and $p(\sqrt[3]{10}) = -10 + (\sqrt[3]{10})^3 = -10 + 10 = 0$. Hence u is a root of p(x). Also by Eisenstein's criterion (p=2) we know p(x) is irreducible over \mathbb{Q} .

#18 find min poly of sqrt2 + sqrt7

Let $p(x) = 25 - 18x^2 + x^4$ which is in $\mathbb{Q}[x]$.

$$p(\sqrt{2} + \sqrt{7}) = 25 - 18(\sqrt{2} + \sqrt{7})^2 + (\sqrt{2} + \sqrt{7})^4$$

$$= 25 - 18(9 + 2\sqrt{14}) + (2 + 2\sqrt{14} + 7)^2$$

$$= 25 - 162 - 36\sqrt{14} + 137 + 36$$

$$sqrt14$$

$$= (25 - 162 + 137) + (-36 + 36)\sqrt{14} = 0$$

Hence $\sqrt{2} + \sqrt{7}$ is a root of p(x). There are no possible rational roots for p(x) since the only possibilities are 1, -1, 5, -5, 25, -25 but p(1) = 8, p(-1) = 8, p(5) = 200, p(-5) = 200, p(25) = 379400, p(-25) = 379400. Thus unless p(x) factors into two quadratics we know it is irreducible over \mathbb{Q} . From Theorem 8.33 we can assume the factors are in $\mathbb{Z}[x]$.

Suppose we have $25 - 18x^2 + x^4 = (a + bx + x^2)(c + dx + x^2)$ then $25 - 18x^2 + x^4 = (ac) + (ad + bc)x + (a + c + bd)x^2 + (b + d)x^3 + x^4$. So 25 = ac, ad + bc = 0, a + c + bd = -18,

and b+d=0. Now as ac=25 we have choices of a=1, c=25 or a=5, c=5 or a=25, c=1, or the same options with both a and c negative. • If a=1, c=25 then d+25b=0 and b+d=0. Now b=-d so we have -24d=0 which

- only happens if d=0=b. But now $-18 \neq a+c+bd$. • If a=-1, c=-25 then similarly we have -d-25b=0 and b+d=0. Now b=-d so we
- have -26d = 0 which only happens if d = 0 = b. But now $-18 \neq a + c + bd$. • If a = 5, c = 5 then 10 + bd = -18 and b + d = 0. Thus b = -d and (-d)d = -28. But
- there is no integer that satisfies $d^2 = 28$. • If a = -5, c = -5 then -10 + bd = -18 and b + d = 0. Thus b = -d and (-d)d = -8. But there is no integer that satisfies $d^2 = 8$.
- If a = 25, c = 1 the argument is virtually identical to the one with a = 1, c = 25.
- If a = -25, c = -1 the argument is virtually identical to the one with a = 25, c = 1.

Hence p(x) is irreducible over \mathbb{Q} and is the minimum polynomial for $\sqrt{2} + \sqrt{7}$ over \mathbb{Q} .

19. Find the minimum polynomial for $\sqrt[4]{2}i$ over \mathbb{Q} . Be sure to prove your polynomial is irreducible.

Let $p(x) = -2 + x^4$ which is in $\mathbb{Q}[x]$. Also $p(\sqrt[4]{2}i) = -2 + (\sqrt[4]{2}i)^4 = -2 + (\sqrt[4]{2})^4(i)^4 = -2 + (2)(1) = 0$. So $\sqrt[4]{2}i$ is a root of p(x). By Eisenstein's Criterion we know p(x) is irreducible over \mathbb{Q} , so p(x) is the minimum polynomial for $\sqrt[4]{2}i$ over \mathbb{Q} .

21. Prove (i) of Theorem 9.12.

 $\langle p(x) \rangle = \langle t(x) \rangle$ (Exercise 20). 22. Explain how (ii) follows from (i) in Theorem 9.12.

Suppose K is a field, E is an extension of K, and $c \in E$ is algebraic over K with min-

Suppose K is a field, E is an extension of K, and $c \in E$ is algebraic over K with minimum polynomial p(x). We need to show that $ker(f_c) = \langle p(x) \rangle$. Let $T = ker(f_c)$ and $S = \langle p(x) \rangle$. We know T is a principal ideal by Theorem 7.26, so $T = \langle t(x) \rangle$ for some $t(x) \in K[x]$. Exercise 13 tells us that t(x) is irreducible over K and c is a root of t(x). Since $p(x) \in T$ then p(x) = t(x)w(x) for some $w(x) \in K[x]$. However p(x) is irreducible so one of t(x) or w(x) is constant. Since a nonzero constant polynomial cannot have c as a root, then t(x) is not constant and w(x) is a constant polynomial. Thus t(x) and p(x) are associates and so

imum polynomial p(x). Let $b(x) \in K[x]$ be a nonzero polynomial with $b(c) = 0_E$. Thus $b(x) \in ker(f_c)$ so $b(x) \in \langle p(x) \rangle$ from part (i). Hence we know b(x) = p(x)q(x) for some $q(x) \in K[x]$.

 \mathbb{Q} (try Theorem 8.37 to help), then if u is a root of a(x) in an extension field of \mathbb{Q} , describe carefully the elements of $\mathbb{Q}(u)$.

31. Consider the polynomial $a(x) = 5 + 3x + 4x^2 + 6x^3 + x^4$ in $\mathbb{Q}[x]$. Prove a(x) is irreducible over

- Let $a(x) = 5 + 3x + 4x^2 + 6x^3 + x^4$ in $\mathbb{Q}[x]$. Using n = 3 and Theorem 8.37 we have $b(x) = h(a(x)) = 2 + x^2 + x^4$ in $\mathbb{Z}_3[x]$. Note that b(0) = 2, b(1) = 1, b(2) = 1
 - so b(x) has no roots in \mathbb{Z}_3 . If it factors it must be $(a+bx+x^2)(c+dx+x^2)$ where ac = 2, ad + bc = 0, a + c + bd = 1, b + d = 0. The only way to have ac = 2 in \mathbb{Z}_3 is for one of a = 1, c = 2 or a = 2, c = 1.

Suppose a = 1, c = 2 then d + 2b = 0, bd = 1, b + d = 0. Now b = -d so that $-d^2 = 1$ or

 $d^2=2$. This is impossible in \mathbb{Z}_3 since $0^2=0$, $1^2=1$, and $2^2=1$. Now suppose a=2, c=1. Then again bd=1 and b+d=0 which is still impossible. Thus

b(x) is irreducible over \mathbb{Z}_3 so by Theorem 8.37 a(x) is irreducible over \mathbb{Q} . If u is a root of p(x) in an extension field of \mathbb{Q} we know $\mathbb{Q}(u) = \{r_0 + r_1 u + r_2 u^2 + r_3 u^3 : r_i \in \mathbb{Q}\}.$

46. Find the complete addition and multiplication tables for the field $\mathbb{Z}_2(c)$ where c is a root of the polynomial $p(x) = 1 + x + x^2$ which is irreducible over \mathbb{Z}_2 .

The elements of $\mathbb{Z}_2(c)$ are 0, 1, c, 1+c. Recall that $1+c+c^2$, so $c^2=1+c$. The Cayley tables are shown below.

+	0	1	c	1+c
0	0	1	c	1+c
1	1	0	1+c	c
c	c	1+c	0	1
1+c	1+c	c	1	0

52. Find the complete addition and multiplication tables for the field $\mathbb{Z}_3(c)$ where c is a root of the polynomial $p(x) = 2 + x + x^2$ which is irreducible over \mathbb{Z}_3 .

The elements of $\mathbb{Z}_3(c)$ are 0, 1, 2, c, 1 + c, 2 + c, 2c, 1 + 2c, 2 + 2c. Since $2 + c + c^2 = 0$ then

= 1 + 2c.	- ()					20,2 2	c. omec	2 0 0	O 01
+	0	1	2	c	1+c	2+c	2c	1 + 2c	2+2c
0	0	1	2	c	1+c	2+c	2c	1+2c	2 + 2c
1	1	2	0	1+c	2+c	c	1 + 2c	2+2c	2c
2	2	0	1	2+c	c	1+c	2 + 2c	2c	1 + 2c

U	0	1	2	c	1+c	2+c	2c	1+2c	2+2c	
1	1	2	0	1+c	2+c	c	1 + 2c	2+2c	2c	
2	2	0	1	2+c	c	1+c	2+2c	2c	1 + 2c	
c	c	1+c	2+c	2c	1+2c	2+2c	0	1	2	
1+c	1+c	2+c	c	1 + 2c	2+2c	2c	1	2	0	
2+c	2+c	c	1+c	2+2c	2c	1 + 2c	2	0	1	
2c	2c	1 + 2c	2+2c	0	1	2	c	1+c	2+c	
1 + 2c	1+2c	2+2c	2c	1	2	0	1+c	2+c	c	
2+2c	2+2c	2c	1+2c	2	0	1	2+c	c	1+c	

	0	1	2	c	1+c	2+c	2c	1 + 2c	2 + 2c
0	0	0	0	0	0	0	0	0	0
1	0	1	2	c	1+c	2+c	2c	1 + 2c	2+2c
2	0	2	1	2c	2+2c	1+2c	c	2+c	1+c
c	0	c	2c	1 + 2c	1	1+c	2+c	2+2c	2
1+c	0	1+c	2+2c	1	2+c	2c	2	c	1+2c
2+c	0	2+c	1+2c	1+c	2c	2	2+2c	1	c
2c	0	2c	c	2+c	2	2+2c	1 + 2c	1+c	1
1 + 2c	0	1 + 2c	2+c	2+2c	c	1	1+c	2	2c
2+2c	0	2+2c	1+c	2	1 + 2c	c	1	2c	2+c

55. Suppose K is a field and c is algebraic over K. Prove [K(c):K]=1 if and only if $c \in K$. Suppose K is a field and c is algebraic over K. First assume that [K(c):K]=1. By Theorem 9.20 this tells us that the minimum polynomial p(x) for c over K has deg(p(x))=1. Now

if and only if $c \in K$.

by Theorem 9.4 since $p(c) = 0_{K(c)}$ we know $c \in K$. Similarly if we assume that $c \in K$, then we have $b(x) = -c + x \in K[x]$. Since deg(b(x)) = 1 then b(x) is irreducible by Theorem 8.9. Thus b(x) is the minimum polynomial for c over K and [K(c) : K] = 1. Hence [K(c) : K] = 1