Лабораторная работа №1 Метод наименьших квадратов

Цель работы: получить навыки расчета значений коэффициентов линейной зависимости по заданным эмпирическим данным.

№1

Постановка задачи:

Задача 1. Для изучения зависимости октанового числа бензина от чистоты катализатора (%) провели 11 измерений, приведенных ниже в таблице:

Чистота	98.8	98.9	99.0	99.1	99.2	99.3	99.4	99.5	99.6	99.7	99.8
катализатора											
Октановое	87.1	86.1	86.4	87.3	86.1	86.8	87.2	88.4	87.2	86.4	88.6
число											

- 1). Найдите коэффициенты а, b линейной зависимости у(х)
- = ax + b октанового числа от чистоты катализатора
- 2). Постройте график зависимости.
- 3). Вычислите значение октанового числа для чистоты катализатора 87%.
 - 1. Нахождение коэффициентов a, b линейной зависимости y(x) = ax + b октанового числа от чистоты катализатора:

$$a = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{8644,647 - 99,3 * 87,0545}{9860,59 - 99,3^2} = 1,309091$$

$$b = \overline{y} - a\overline{x} = 87,05455 - 1,309091 * 99,3 = -42,93818$$

$$y' = 1,309091x - 42,93818$$

2. График зависимости:

3. Вычисление значения октанового числа для чистоты катализатора 87%:

$$y' = 1,309091 * 87 - 42,93818 = 70,9527$$

- 4. Критерии для оценки полученной регрессионной модели:
 - 1) средняя ошибка аппроксимации:

$$\overline{A} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i - \widetilde{y}_i}{y_i} * 100\%,$$

где n — количество измерений;

 y_i — заданные значения;

 \widetilde{y}_{l} — рассчитанные значения;

$$\overline{A} = 0,6667\%$$

2) коэффициент эластичности:

$$\Im = a \frac{\overline{x}}{\overline{y}} = 1,49$$

3) коэффициент корреляции:

$$\sigma_{x} = \sqrt{\overline{x^2} - \overline{x}^2},$$

где σ_{χ} — среднеквадратическое отклонение по χ ;

$$\sigma_y = \sqrt{\overline{y^2} - \overline{y}^2},$$

где σ_y — среднеквадратическое отклонение по y;

$$r = \frac{\overline{xy} - \overline{x}\overline{y}}{\sigma_x \sigma_y} = \frac{8644,647 - 99,3 * 87,0545}{0,316228 * 0,800413} = 0,517197$$

4) коэффициент детерминации:

$$r^2 = r^2 * 100\% = 26,75\%$$

5) t — критерий Стьюдента:

Т.к. исходные данные выборочные, то необходимо оценить значимость величины коэффициента корреляции.

Выдвигаем гипотезу H_0 :

коэффициент корреляции генеральной совокупности равен 0, и чистота катализатора не оказывает существенного влияния на октановое число бензина.

Тогда

$$H_0: r = 0$$
$$H_1: r \neq 0$$

t — критерий Стьюдента применяется для проверки гипотезы H_0 . Расчетное значение t — критерия Стьюдента:

$$t_{\rm p} = \frac{|r|}{\sqrt{\frac{1-r^2}{n-2}}},$$

где (n-2) — количество степеней свободы;

$$t_{\rm p} = 1.812887$$

Критическое значение t находится из таблицы "t — распределение Стьюдента" (уровень значимости $\alpha = 0.05$):

$$t_{\rm \kappa p} = 2,26$$

Т.к. $t_{\rm p}=1,\!812887< t_{\rm kp}=2,\!26,$ то H_0 подтверждается.

5. Выводы:

Коэффициент регрессии показывает, что в среднем при увеличении чистоты катализатора на 1% октановое число бензина в среднем увеличивается на 1,309091.

Т.к. $\overline{A} = 0,6667\% < 10\%$, то уравнение регрессии считается качественным.

Коэффициент эластичности показывает, что при увеличении чистоты катализатора на 1% октановое число бензина в среднем возрастает на 149%.

Т.к. 0.5 < r = 0.517197 < 0.7, то взаимосвязь между признаками заметная.

Из значения $r^2 = 26,75\%$ можно сделать вывод, что октановое число бензина на 26,75% напрямую зависит от чистоты катализатора и при этом октановое число на 73,25% зависит от других факторов.

Т.к. подтвердилась гипотеза H_0 , значит чистота катализатора не оказывает существенного влияния на октановое число бензина.

6. Результаты:

№	x	у	xy	x^2	y^2	y'	A'	cp(xy)	8644,647	A	0,6667%
1	98,8	87,1	8605,48	9761,44	7586,41	86,4	0,00804	cp(x)*cp(y	8644,516	Э	149%
2	98,9	86,1	8515,29	9781,21	7413,21	86,5309	0,005	cp(x^2)	9860,59		
3	99	86,4	8553,6	9801	7464,96	86,6618	0,00303	$(cp(x))^2$	9860,49	ср кв откл Х	0,316228
4	99,1	87,3	8651,43	9820,81	7621,29	86,7927	0,00581	b1	1,309091	ср кв откл Ү	0,800413
5	99,2	86,1	8541,12	9840,64	7413,21	86,9236	0,00957			r	0,517197
6	99,3	86,8	8619,24	9860,49	7534,24	87,0545	0,00293	cp(x)	99,3	r^2	26,75%
7	99,4	87,2	8667,68	9880,36	7603,84	87,1855	0,00017	cp(y)	87,05455	t p	1,812887
8	99,5	88,4	8795,8	9900,25	7814,56	87,3164	0,01226	ь0	-42,93818	t кр	2,26
9	99,6	87,2	8685,12	9920,16	7603,84	87,4473	0,00284				
10	99,7	86,4	8614,08	9940,09	7464,96	87,5782	0,01364	89			
11	99,8	88,6	8842,28	9960,04	7849,96	87,7091	0,01006	88,5			
Итого	1092,3	957,6	95091,1	108466	83370,5	957,6	0,07333	88			
Среднее	99,3	87,0545	8644,65	9860,59	7579,13	87,0545	0,00667	87,5			
								87	•		
	87	70,9527								•	
								86,5	•	•	
								86	•		
								85,5			
								98,6	98,8 99	99,2 99,4 99,6 99	,8 100

№2

Постановка задачи:

Задача 2. Имеются следующие выборочные данные о стоимости квартир и общей их площади в некотором городе.

y	13.8	13.8	14	22.5	24	28	32	20.9	22	21.5	32	35	24	37.9	27.5
X	33	40	36	60	55	80	95	70	48	53	95	75	63	112	70

х - общая площадь квартиры в кв. м;

у — рыночная стоимость квартиры в тыс. у.е.

Требуется:

- Построить график зависимости между переменными, по которому необходимо подобрать модель регрессии.
- Рассчитать параметры (коэффициенты) уравнения методом наименьших квадратов.
- С учетом вычисленных параметров построить модель, описывающую зависимость стоимости квартиры от ее площади.
- 4. Найдите рыночную стоимость квартиры, площадью 150 кв м.

1. Построить график зависимости между переменными, по которому необходимо подобрать модель регрессии:

По графику можно предположить наличие линейной зависимости.

2. Рассчитать параметры (коэффициентов) уравнения методом наименьших квадратов:

$$b_1 = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{1764,4467 - 65,6667 * 24,5933}{4807,4 - 65,6667^2} = 0,30181$$

$$b_0 = \overline{y} - a\overline{x} = 24,5933 - 0,30181 * 65,6667 = 4,7743$$

$$y' = 0.30181x + 4.7743$$

3. С учетом вычисленных параметров построить модель, описывающую зависимость стоимости квартиры от ее площади:

4. Найти рыночную стоимость квартиры, площадью 150 кв. м:

$$y' = 0.30181 * 150 + 4.7743 = 50.0462$$

5. Критерии для оценки полученной регрессионной модели:

1) средняя ошибка аппроксимации:

$$\overline{A} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i - \widetilde{y}_i}{y_i} * 100\%,$$

где n — количество измерений;

 y_i — заданные значения;

 \widetilde{y}_l — рассчитанные значения;

$$\overline{A} = 9,0310\%$$

2) коэффициент эластичности:

$$\Im = a \frac{\overline{x}}{\overline{y}} = 0.81$$

3) коэффициент корреляции:

$$\sigma_{x} = \sqrt{\overline{x^2} - \overline{x}^2},$$

где σ_x — среднеквадратическое отклонение по x;

$$\sigma_y = \sqrt{\overline{y^2} - \overline{y}^2},$$

где σ_{v} — среднеквадратическое отклонение по y;

$$r = \frac{\overline{xy} - \overline{x} \, \overline{y}}{\sigma_x \sigma_y} = \frac{1764,4467 - 65,6667 * 24,5933}{22,2550868 * 7,28180075} = 0,92241832$$

4) коэффициент детерминации:

$$r^2 = r^2 * 100\% = 85,09\%$$

5) t — критерий Стьюдента:

Т.к. исходные данные выборочные, то необходимо оценить значимость величины коэффициента корреляции.

Выдвигаем гипотезу H_0 :

коэффициент корреляции генеральной совокупности равен 0, и общая площадь квартиры не оказывает существенного влияния на рыночную стоимость квартиры.

Тогда

$$H_0: r = 0$$

 $H_1: r \neq 0$

t — критерий Стьюдента применяется для проверки гипотезы H_0 . Расчетное значение t — критерия Стьюдента:

$$t_{\rm p} = \frac{|r|}{\sqrt{\frac{1-r^2}{n-2}}},$$

где (n-2) — количество степеней свободы;

$$t_{\rm p} = 8,611841789$$

Критическое значение t находится из таблицы "t — распределение Стьюдента" (уровень значимости $\alpha = 0.05$):

$$t_{\rm kp} = 2,16$$

Т.к. $t_{\rm p}=8,611841789>t_{\rm \kappa p}=2,16,$ то H_0 опровергается, а следовательно верна гипотеза H_1 .

6. Выводы:

Коэффициент регрессии показывает, что при увеличении общей площади квартиры на 1% ее рыночная стоимость в среднем увеличивается на 0,30181.

Т.к. $8\% < \overline{A} = 9,0310\% < 10\%$, то уравнение регрессии считается качественным.

Коэффициент эластичности показывает, что в среднем при увеличении общей площади квартиры на 1% ее рыночная стоимость в среднем возрастает на 0,81%.

Т.к. 0.9 < r = 0.92241832 < 1, то взаимосвязь между признаками высокая.

Из значения $r^2 = 85,09\%$ можно сделать вывод, что рыночная стоимость квартиры на 85,09% напрямую зависит от ее общей площади и при этом рыночная стоимость квартиры на 14,91% зависит от других факторов.

Т.к. подтвердилась гипотеза H_1 , значит общая площадь квартиры оказывает существенное влияние на ее рыночную стоимость.

7. Результаты:

No				^2	^2		A'	()	1764.45	Α.	0.02100/
J√ō	X	у	xy	x^2	y^2	y'		cp(xy)	1764,45	A	9,0310%
1	33	13,8	455,4	1089	190,44	14,7341	0,06769	cp(x)*0		Э	81%
2	40	13,8	552	1600	190,44	16,8468	0,22078	cp(x^2)	4807,4		
3	36	14	504	1296	196	15,6396	0,11711	(cp(x))	^2 4312,11	ср кв откл Х	22,2550868
4	60	22,5	1350	3600	506,25	22,8831	0,01702	b1	0,30181	ср кв откл Ү	7,28180075
5	55	24	1320	3025	576	21,374	0,10942			r	0,92241832
6	80	28	2240	6400	784	28,9193	0,03283	cp(x)	65,6667	r^2	85,09%
7	95	32	3040	9025	1024	33,4465	0,0452	cp(y)	24,5933	t p	8,61184179
8	70	20,9	1463	4900	436,81	25,9012	0,23929	ь0	4,7743	t кр	2,16
9	48	22	1056	2304	484	19,2613	0,12449				
10	53	21,5	1139,5	2809	462,25	20,7704	0,03394	40			
11	95	32	3040	9025	1024	33,4465	0,0452	35			•
12	75	35	2625	5625	1225	27,4103	0,21685				
13	63	24	1512	3969	576	23,7885	0,00881	30			
14	112	37,9	4244,8	12544	1436,41	38,5773	0,01787	25			
15	70	27,5	1925	4900	756,25	25,9012	0,05814	20	• •	•	
Итого	985	368,9	26466,7	72111	9867,85	368,9	1,35465				
Среднее	65,6667	24,5933	1764,45	4807,4	657,857	24,5933	0,01935	15	• •		
								10			
	150	50,0462						30	50	70 90	110

№3

Постановка задачи:

Задача 3. загрязнение региона в баллах было определено за последние 16 месяцев. Данные о загрязнении приведены в таблице. Разработать трендовую модель для определения будущей экологической обстановки в районе в регионе в последние пять месяцев.

месяцы	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
загрязне	6.9	7.2	7.3	7.1	6.9	7.6	8.6	9.2	11.	11.	11.	12.	12.	13.	13.	13.
ние	6	7	3	1	9	0	6	8	15	48	49	33	74	26	54	95

1. Построить график зависимости между переменными, по которому необходимо подобрать модель регрессии:

По графику можно предположить наличие линейной зависимости.

2. Рассчитать параметры (коэффициентов) уравнения методом наименьших квадратов:

$$b_1 = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{97,15 - 8,5 * 10,0713}{93,5 - 8,5^2} = 0,54326$$

$$b_0 = \overline{y} - a\overline{x} = 10,0713 - 0,54326 * 8,5 = 5,4535$$

$$y' = 0.54326x + 5.4535$$

3. С учетом вычисленных параметров построить модель, описывающую зависимость загрязнения в зависимости от месяца:

- 4. Критерии для оценки полученной регрессионной модели:
 - 1) средняя ошибка аппроксимации:

$$\overline{A} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i - \widetilde{y}_i}{y_i} * 100\%,$$

где n — количество измерений;

 y_i — заданные значения;

 \widetilde{y}_l — рассчитанные значения;

$$\overline{A} = 6,2185\%$$

2) коэффициент эластичности:

$$\Im = a \frac{\overline{x}}{\overline{y}} = 0.46$$

3) коэффициент корреляции:

$$\sigma_{\chi} = \sqrt{\overline{x^2} - \overline{x}^2},$$

где σ_{χ} — среднеквадратическое отклонение по χ ;

$$\sigma_y = \sqrt{\overline{y^2} - \overline{y}^2},$$

где σ_v — среднеквадратическое отклонение по y;

$$r = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\sigma_x \sigma_y} = \frac{97,15 - 8,5 * 10,0713}{4,60977 * 2,5819} = 0,969953748$$

4) коэффициент детерминации:

$$r^2 = r^2 * 100\% = 94,08\%$$

5) t — критерий Стьюдента:

Т.к. исходные данные выборочные, то необходимо оценить значимость величины коэффициента корреляции.

Выдвигаем гипотезу H_0 :

коэффициент корреляции генеральной совокупности равен 0, и течение времени не оказывает существенного влияния на загрязнение.

Тогда

$$H_0$$
: $r = 0$
 H_1 : $r \neq 0$

t — критерий Стьюдента применяется для проверки гипотезы H_0 . Расчетное значение t — критерия Стьюдента:

$$t_{\rm p} = \frac{|r|}{\sqrt{\frac{1-r^2}{n-2}}},$$

где (n-2) — количество степеней свободы;

$$t_{\rm p} = 14,9174$$

Критическое значение t находится из таблицы "t — распределение Стьюдента" (уровень значимости $\alpha = 0.05$):

$$t_{\rm \kappa p} = 2,14$$

Т.к. $t_{\rm p}=14,9174>t_{\rm \kappa p}=2,14,$ то H_0 опровергается, а следовательно верна гипотеза H_1 .

6) Выводы:

Коэффициент регрессии показывает, что изменение времени на 1% загрязнение в среднем увеличивается на 0,54326.

Т.к. $\overline{A} = 6,2185\% < 10\%$, то уравнение регрессии считается качественным.

Коэффициент эластичности показывает, что в среднем при изменении времени на 1% загрязнение увеличивается в среднем на 46%.

Т.к. 0.9 < r = 0.969953748 < 1, то взаимосвязь между признаками высокая.

Из значения $r^2 = 94,08\%$ можно сделать вывод, что загрязнение на 94,08% напрямую зависит от течения времени и загрязнение только на 5,92% зависит от других факторов.

T.к. подтвердилась гипотеза H_1 , значит течение времени оказывает существенное влияние на загрязнение.

5. Результаты:

№	х	v	xy	x^2	v^2	v'	A'	cp(xy	()	97,15		A	6,2185%
1	1	6,96	6,96	1	48,4416	5,99676	0,1384	cp(x)		85,6056		Э	46%
2	2	7,27	14,54	4	52,8529	6,54003	0,10041	cp(x'		93,5			
3	3	7,33	21,99	9	53,7289	7,08329	0,03366			72,25		ср кв откл Х	4,60977
4	4	7,11	28,44	16	50,5521	7,62656	0,07265	b1		0,54326		ср кв откл Ү	2,5819
5	5	6,99	34,95	25	48,8601	8,16982	0,16879					r	0,96995
6	6	7,6	45,6	36	57,76	8,71309	0,14646	cp(x)	1	8,5		r^2	94,08%
7	7	8,66	60,62	49	74,9956	9,25635	0,06886	cp(y)	1	10,0713		t p	14,9174
8	8	9,28	74,24	64	86,1184	9,79962	0,05599	ь0		5,4535		t кр	2,14
9	9	11,15	100,35	81	124,323	10,3429	0,07239						
10	10	11,48	114,8	100	131,79	10,8861	0,05173	16					
11	11	11,49	126,39	121	132,02	11,4294	0,00527	14					
12	12	12,33	147,96	144	152,029	11,9727	0,02898						
13	13	12,74	165,62	169	162,308	12,5159	0,01759	12				•••••	+
14	14	13,26	185,64	196	175,828	13,0592	0,01514	10					
15	15	13,54	203,1	225	183,332	13,6025	0,00461	8			•		
16	16	13,95	223,2	256	194,603	14,1457	0,01403		• •	•••	•		
Итого	136	161,14	1554,4	1496	1729,54	161,14	0,99496	6					+
Среднее	8,5	10,0713	97,15	93,5	108,096	10,7427	0,06219	4					
								C)	5		10	15