Posebnosti binarne (dvojiške) klasifikacije

Ljupčo Todorovski Univerza v Ljubljani, Fakulteta za upravo

Marec 2018

Pregled predavanja

Dvojiško razvrščanje (binarna klasifikacija)

- Dve vrsti napak pri binarni klasifikaciji
- Tabela napačnih klasifikacij
- Slabovidnost napovedne napake in alternative

Prostor ROC

- Cenovno občutljiva klasifikacija in izohipse
- Krivulja ROC in ploščina pod krivuljo

Prostor PR (preciznost in priklic)

- Krivulja PR in ploščina pod krivuljo
- Mera F in alternative

Naloga klasifikacije z $D_Y = \{0, 1\}$

Klasifikacija (razvrščanje) v dva razreda

- Y = 1: pozitivni primeri
- Y = 0 (včasih tudi Y = -1): negativni primeri

Dve vrsti klasifikacijskih modelov

- Napoved razreda: $m: \times_{i=1}^p D_i \to D_Y$
- Napoved verjetnosti pozitivnega razreda: $m: \times_{i=1}^p D_i \to [0,1]$

Dve vrsti napak

Običajna napaka za funkcijo izgube $L_{01}(y,\hat{y})=1-I(y,\hat{y})$

$$Err(m,S) = \frac{1}{S} \sum_{(\boldsymbol{x},y) \in S} L_{01}(y,m(\boldsymbol{x}))$$

izmerjena torej na modelu, ki napoveduje razred in ne verjetnosti.

L₀₁ ne razlikuje med napakama

- napačno razvrščeni negativni primer (false positive, FP): zavračanje veljavne hipoteze; zaznavanje pojava, ki ga ni; lažni alarm
- napačno razvrščeni pozitivni primer (false negative, FN): sprejetje neveljavne hipoteze

Tabela napačnih klasifikacij (confusion matrix)

	Y=1	Y = 0
	pravilno razvrščeni	nepravilno razvrščeni
	pozitivni primeri	negativni primeri
$\hat{Y}=1$	true positives, TP	false positives, FP
	nepravilno razvrščeni	pravilno razvrščeni
	pozitivni primeri	negativni primeri
$\hat{Y}=0$	false negatives, FN	true negatives, TN
Σ	pozitivni primeri, P	negativni primeri, N

$$P = TP + FN$$
, $N = FP + TN$, $n = P + N = TP + FN + FP + TN$

5 / 32

Todorovski, UL-FU Binarna klasifikacija Marec 2018

Tabela napačnih klasifikacij in napovedna napaka

Napovedna napaka
$$Err = (FP + FN)/n$$

Idealni model $Err = 0$

Napovedna točnost (accuracy)
$$Acc = (TP + TN)/n$$

 $Acc = 1 - Err$, idealni model $Acc = 1$

Slabovidnost mer Acc in Err

Ne upoštevata napaki 1 in 2 ter njihovo razmerje, zato veliko zelo različnih modelov imajo isto napako (točnost).

Trije enako točni modeli: Err = 0.3, Acc = 0.7

$$|S| = n = 100, P = 50, N = 50$$

	M_1						
$\hat{Y}=1$	50	30	20	0	35	15	
$\hat{Y} = 1$ $\hat{Y} = 0$	0	20	30	50	15	35	

Dva pristranska in nepristranski model

- M_1 je "optimističen", napove 80% pozitivnih primerov
- M₂ je "pesimističen", napove le 20% pozitivnih primerov
- M_3 je nepristranski, napove 50% pozitivnih primerov; prav tak je delež pozitivnih primerov v množici S

Todorovski, UL-FU

Bolj občutljivi meri

Delež pravilno razvrščenih pozitivnih primerov TPR = TP/P

- True Positive Rate
- Občutljivost, senzitivnost (sensitivity) ali priklic (recall)
- Točnost v množici pozitivnih primerov

Delež napačno razvrščenih negativnih primerov FPR = FP/N

- False Positive Rate
- 1—specifičnost (specificity) ali izpad (fall out)
- Napaka v množici negativnih primerov

Trije enako točni modeli: Err = 0.3, Acc = 0.7

$$|S| = n = 100, P = 50, N = 50$$

					M_3	
$\hat{Y} = 1$ $\hat{Y} = 0$	50	30	20	0	35	15
$\hat{Y}=0$	0	20	30	50	15	35

Bolj občutljivi meri

1
$$TPR(M_1) = 50/50 = 1$$
, $FPR(M_1) = 30/50 = 0.6$

2
$$TPR(M_2) = 20/50 = 0.4$$
, $FPR(M_2) = 0/50 = 0$

3
$$TPR(M_3) = 35/50 = 0.7$$
, $FPR(M_3) = 15/50 = 0.3$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めのぐ

FPR(x os) in TPR(y os) razpenjata prostor ROC

ROC = Receiver Operating Characteristic

Todorovski, UL-FU

Izbira modela in cenovno-občutljiva klasifikacija

Kako izbrati med M_1 , M_2 in M_3 ?

- Če sta napaki tipa 1 in 2 enakovredni, so tudi modeli enakovredni.
- Kaj pa če nista?

Cenovno-občutljiva klasifikacija: cenovna matrika

$$\begin{array}{c|cccc} & Y = 1 & Y = 0 \\ \hline \hat{Y} = 1 & 0 & 2 \\ \hat{Y} = 0 & 1 & 0 \\ \end{array}$$

- Napaka tipa 1 (FP) je 2 krat hujša kot napaka tipa 2 (FN).
- Kateri model izberemo v tem primeru?

Izbira modela M_2 pri FP: TP = 2:1

Izbira modela M_1 pri FP: TP = 1:2

13 / 32

Todorovski, UL-FU Binarna klasifikacija Marec 2018

Napovedovanje verjetnosti in prag odločitve

Napovedni model za verjetnost pozitivnega razreda

$$m(\mathbf{x}) = p(Y = 1|X = \mathbf{x})$$

Za napoved razreda rabimo še prag θ

$$\hat{Y}_{\theta} = I(m(\mathbf{x}) \ge \theta)$$

Običajni izbor $\theta = 0.5$.

Kako izberemo optimalno vrednost θ ?

Narišemo modele za vse možne vrednosti θ v prostoru ROC.

Todorovski, UL-FU

Izračun krivulje ROC za model M

X	\boldsymbol{x}_1	x ₂	x 3	X 4	x 5	x 6	x 7	x 8	TPR	FPR
Y	0	0	1	1	0	0	1	1		
m(X)	0.0	0.1	0.3	0.3	0.3	0.4	0.7	0.9		
$\hat{Y}_{1.0}$	0	0	0	0	0	0	0	0	0.00	0.00
$\hat{Y}_{0.9}$	0	0	0	0	0	0	0	1	0.25	0.00
$\hat{Y}_{0.7}$	0	0	0	0	0	0	1	1	0.50	0.00
$\hat{Y}_{0.4}$	0	0	0	0	0	1	1	1	0.50	0.25
$\hat{Y}_{0.3}$	0	0	1	1	1	1	1	1	1.00	0.50
$\hat{Y}_{0.1}$	0	1	1	1	1	1	1	1	1.00	0.75
$\hat{Y}_{0.0}$	1	1	1	1	1	1	1	1	1.00	1.00

Izračun posameznih točk krivulje ROC

X	\boldsymbol{x}_1	\boldsymbol{x}_2	x ₃	\boldsymbol{x}_4	x ₅	x ₆	\boldsymbol{x}_7	x 8
Y	0	0	1	1	0	0	1	1
Y m(X)	0.0	0.1	0.3	0.3	0.3	0.4	0.7	0.9

	$\theta =$	1.0	$\theta =$	0.9	$\theta =$	0.4	$\theta = 0.3$	
$\hat{Y} = 1$	0	0	1	0	2	1	4	2
$\hat{Y}=0$	4	4	3	4	2	3	0	2
	0.00	0.00	0.25	0.00	0.50	0.25	1.00	0.50

Krivulja ROC za model M

Krivulja ROC za idealni model

X	x ₁	x ₂	x 3	X 4	x 5	x 6	x 7	x 8
Y	0	0	0	0	1	1	1	1
<i>Y m</i> (<i>X</i>)	0.1	0.2	0.3	0.3	0.7	0.7	8.0	0.9

Krivulja ROC je monotono (in ne strogo) naraščajoča

Če zmanjšujemo vrednost θ

Narašča število napovedi $\hat{Y} = 1$.

Narašča torej TP + FP

In posledično (N in P sta konstantni) tudi TPR + FPR = TP/P + FP/N.

Ker sta TPR in FRP nenegativni se lahko zgodi troje

- Vertikalni segment: poveča se le TPR
- 4 Horizontalni segment: poveča se le FPR
- Poševni segment: povečata se hkrati TPR in FPR

AUC: Ploščina pod krivuljo ROC

$$AUC(m) = \int_{\theta} FPR(m_{\theta}) TPR(m_{\theta}) d\theta$$

Mera točnosti modela, ki napoveduje verjetnost

- ullet Izračun ne zahteva odločitve o vrednosti heta
- Omogoča primerjavo točnosti modelov, ki napovedujejo verjetnost

Zaloga vrednosti [0, 1]; pomembne vrednosti

- 1: model, ki idealno loči pozitivne od negativnih primerov
- 0.5: naključni model
- O: model, ki tudi idealno loči pozitivne od negativnih primerov, a vse pozitivne primere razglasi za negativne in obratno

4□ > <□ > <□ > < □ > < □ >

Marec 2018

Interpretacija AUC in krivulj ROC

Kaj pove *AUC*?

$$AUC(m) = p(m(\mathbf{x}^+) > m(\mathbf{x}^-))$$

 x^+ (oz. x^-) je naključno izbran pozitiven (oz. negativen) primer: je ocena razdalje med napovedmi za pozitivne in napovedmi za negativne primere.

Česa AUC ne pove?

- Ne ponuja jasne interpretacije ekspertu s področja uporabe
- Veliki del ploščine "nezanimiv" zaradi previsokega FPR
- Zato raje krivulje ROC primerjamo vizualno

Todorovski, UL-FU

Nekaj praktičnih napotkov

Kdaj boste uporabljali krivulje ROC in AUC?

- AUC lahko zamenja napovedno točnost pri izbiri modela
- Caret podpira uporabo AUC za primerjavo modelov
- Pri podatkovnih množicah z neenakomerno porazdelitvijo Y: poiščemo optimalni model oz. optimalni prag odločanja

Preciznost (precission, positive predictive value, PPV)

$$PPV = TP/(TP + FP)$$

- Delež pozitivno razvrščenih primerov ($\hat{Y}=1$), ki so dejansko pozitivni (Y=1)
- Tudi: verjetnost, da je pozitivna napoved pravilna

Pogosto jo opazujemo skupaj s priklicem TPR = TP/P

- True Positive Rate
- Občutljivost, senzitivnost (sensitivity) ali priklic (recall)
- Točnost v množici pozitivnih primerov

Trije enako točni modeli: Err = 0.3, Acc = 0.7

$$|S| = n = 100, P = 50, N = 50$$

	M_1			-		
$\hat{Y} = 1$	50	30	20	0	35	15
$\hat{Y} = 0$	0	20	30	50	15	35

Preciznost in priklic

1
$$PPV(M_1) = 50/80 = 0.625$$
, $TPR(M_1) = 50/50 = 1$

②
$$PPV(M_2) = 20/20 = 1$$
, $TPR(M_2) = 20/50 = 0.4$

3
$$PPV(M_3) = 35/50 = 0.7$$
, $TPR(M_3) = 35/50 = 0.7$

TPR (x os) in PPV (y os) razpenjata prostor PR

PR = Precission-Recall

Izračun krivulje PR za model *m*

X	x ₁	x ₂	x 3	x 4	x 5	x 6	x 7	x 8	TPR	PPV
Y	0	0	1	1	0	0	1	1		
m(X)	0.0	0.1	0.3	0.3	0.3	0.4	0.7	0.9		
$\hat{Y}_{1.0}$	0	0	0	0	0	0	0	0	0.00	NaN
$\hat{Y}_{0.9}$	0	0	0	0	0	0	0	1	0.25	1.00
$\hat{Y}_{0.7}$	0	0	0	0	0	0	1	1	0.50	1.00
$\hat{Y}_{0.4}$	0	0	0	0	0	1	1	1	0.50	0.67
$\hat{Y}_{0.3}$	0	0	1	1	1	1	1	1	1.00	0.67
$\hat{Y}_{0.1}$	0	1	1	1	1	1	1	1	1.00	0.57
$\hat{Y}_{0.0}$	1	1	1	1	1	1	1	1	1.00	0.50

Krivulja PR za model M

Krivulja PR za idealni model

X	x ₁	x ₂	x 3	X 4	x 5	x 6	x 7	x 8
Y	0	0	0	0	1	1	1	1
Y m(X)	0.1	0.2	0.3	0.3	0.7	0.7	8.0	0.9

Todorovski, UL-FU

Krivulja PR ni nujno monotona: proti-primer

X	\boldsymbol{x}_1	x ₂	x 3	X 4	x 5	x 6	x 7	x 8
Y	0	0	1	1	0	0	0	1
\overline{Y} $m(X)$	0.1	0.1	0.2	0.3	0.4	0.6	0.9	1.0

Todorovski, UL-FU

AUC_{PR}: Ploščina pod krivuljo PR

$$AUC_{PR}(m) = \int_{\theta} PPV(m_{\theta}) TPR(m_{\theta}) d\theta$$

Alternativna mera točnosti modela

- Izračun ne zahteva odločitve o vrednosti θ
- Omogoča primerjavo točnosti modelov, ki napovedujejo verjetnost

Zaloga vrednosti [0, 1]; pomembne vrednosti

- 1: model, ki idealno loči pozitivne od negativnih primerov
- 0.5: naključni model

Mere F

$$F_1 = \frac{2}{\frac{1}{PPV} + \frac{1}{TPR}}$$

Alternativna formula za F_1

$$F_1 = 2 \frac{PPV \cdot TPR}{PPV + TPR}$$

Zelo pogost način kombinacije preciznosti in priklica v enotno mero točnosti modela: maksimalno vrednost 1 doseže idealni model

Posplošitev F_{β}

$$F_{\beta} = (1 + \beta^2) \frac{PPV \cdot TPR}{\beta^2 \cdot PPV + TPR}$$

Slabosti prostora PR in mere F ter alternative

Kaj povesta *AUC_{PR}* in *F*?

Bore malo, pa še ne upošteva pravilno razvrščene negativne primere (TN).

Alternativa: Matthewsov korelacijski koeficient za klasifikacijo

$$MCC = \frac{TP \cdot TN + FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$