Prüfung aus

Diskrete und geometrische Algorithmen (Hetzl)

TU Wien, Zoom, 29.1.2021 Arbeitszeit: 100 Minuten

1) (6 P.) Lösen Sie die Rekursionsgleichung $x_n = 4x_{n-1} - 2x_{n-2} + 1$ (für $n \ge 2$) mit den Anfangswerten $x_0 = 0$ und $x_1 = 1$.

2) (7 P.) Geben Sie einen Algorithmus an der als Eingabe ein Datenfeld A der Länge n von ganzen Zahlen erhält und als Ausgabe ein Paar (j,k) mit $1 \le j < k \le n$ liefert so dass $\sum_{i=j}^k A[i]$ maximal (unter allen solchen Paaren) ist. Die Laufzeit des Algorithmus muss $O(n \log n)$ sein.

3) (7 P.) Geben Sie einen Algorithmus in Pseudocode an der einen Suchbaum B mit Schlüsseln in \mathbb{N} sowie ein $k \in \mathbb{N}$ als Eingabe erhält und ein Paar (B_1, B_2) von Suchbäumen ausgibt so dass B_1 genau jene Einträge von B enthält deren Schlüssel < k ist und B_2 genau jene Einträge von B deren Schlüssel > k ist. Dabei können Sie annehmen dass k nicht als Schlüssel in B vorkommt. Die Laufzeit des Algorithmus muss $O(\log n)$ sein wobei n die Anzahl der Einträge von B ist.

4) (4 P.) Für $n \ge 2$ sei

 $c_n = \max\{|U| \mid U \text{ ist optimale Knotenüberdeckung eines Graphen mit } n \text{ Knoten}\}.$

Bestimmen Sie c_n .