Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Neural Network Optimization and Activation

Class Logistics and Agenda

- Agenda:
 - More optimization techniques
 - Momentum
 - Adaptive learning rates
 - Initialization
 - More activations: Tanh, ReLU, SiLU
 - Programming Examples

Class Overview, by topic

Last Time

07. MLP Neural Networks.ipynb

same as Flipped Assignment! with regularization and vectorization and mini-batching

Self test: Should we see examples where:

A. $\mathbf{z} = \mathbf{W} \cdot \mathbf{a}_{bias}$ where bias is concatenated, and \mathbf{W} incorporates bias term?

B. $\mathbf{z} = \mathbf{W} \cdot \mathbf{a} + \mathbf{b}$ where we separate out the bias explicitly ?

Mini-batching

- Numerous instances to find one gradient update
 - solution: mini-batch

shuffle ordering each epoch and update W's after each batch

- **new problem**: mini-batch gradient updates can be erratic and there might be many local optima...
 - solutions:
 - · momentum
 - adaptive learning rate (cooling)

Momentum and Cooling Intuition

Momentum

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \rho_k$$

Momentum

$$\rho_k = \alpha \nabla J(\mathbf{W}_k) + \beta \nabla J(\mathbf{W}_{k-1})$$

Nesterov's Accelerated Gradient

$$\rho_k = \beta \nabla J \left(\mathbf{W}_k + \alpha \nabla J(\mathbf{W}_{k-1}) \right) + \alpha \nabla J(\mathbf{W}_{k-1})$$
step twice

Cooling (Learning Rate Reduction)

· Fixed Reduction at Each Epoch, k

$$\eta_k = \eta_0 \cdot d^{\lfloor rac{k_{max}}{k}
floor}$$
drop by d every $\eta_k = \eta_0^{(1+k\cdot d)}$ drop a little every epoch

- · Adjust on Plateau
 - · make smaller when J rapidly changes
 - · make bigger when J not changing much

Demo

07. MLP Neural Networks.ipynb

comparison:

mini-batch momentum adaptive learning rate L-BFGS (if time)

Objective Function

Changing the Objective Function

Self Test:

True or False: If we change the cost function, $J(\mathbf{W})$, we only need to update the final layer sensitivity calculation, $\mathbf{V}^{(2)}$, of the back propagation steps. The remainder of the algorithm is unchanged.

- A. True
- B. False

MSE

MSE

Negative of MLE: Binary Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \text{speeds up}$$
initial training

Neural Networks and Deep Learning, Michael Nielson, 2015

Negative of MLE: Binary Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \text{speeds up}$$
initial training

Neural Networks and Deep Learning, Michael Nielson, 2015

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \text{likely to speed up initial training}$$

$$\left[\frac{\partial J(\mathbf{W})}{\partial \mathbf{z}^{(L)}}\right]^{(i)} = -\frac{\partial}{\partial \mathbf{z}^{(L)}} \left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)}) \right] \text{ only } \mathbf{a} \text{ has dependence on } \mathbf{z}$$

$$= -\left[\mathbf{y}^{(i)} \frac{\partial}{\partial \mathbf{z}^{(L)}} \left(\ln([\mathbf{a}^{(L+1)}]^{(i)})\right) + (1 - \mathbf{y}^{(i)}) \frac{\partial}{\partial \mathbf{z}^{(L)}} \left(\ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right)\right]$$

$$= -\left[\mathbf{y}^{(i)} \frac{1}{[\mathbf{a}^{(L+1)}]^{(i)}} \left(\frac{\partial}{\partial \mathbf{z}^{(L)}} [\mathbf{a}^{(L+1)}]^{(i)}\right) + \frac{(1-\mathbf{y}^{(i)})}{1-[\mathbf{a}^{(L+1)}]^{(i)}} \left(-\frac{\partial}{\partial \mathbf{z}^{(L)}} [\mathbf{a}^{(L+1)}]^{(i)}\right)\right]$$

$$= -\left[\mathbf{y}^{(i)} \frac{1}{[\mathbf{a}^{(L+1)}]^{(i)}} \left([\mathbf{a}^{(L+1)}]^{(i)} (1 - [\mathbf{a}^{(L+1)}]^{(i)}) \right) - \frac{(1 - \mathbf{y}^{(i)})}{1 - [\mathbf{a}^{(L+1)}]^{(i)}} \left([\mathbf{a}^{(L+1)}]^{(i)} (1 - [\mathbf{a}^{(L+1)}]^{(i)}) \right) \right]$$

$$= -\left[\mathbf{y}^{(i)} \left(1 - [\mathbf{a}^{(L+1)}]^{(i)}\right) - (1 - \mathbf{y}^{(i)}) \left([\mathbf{a}^{(L+1)}]^{(i)}\right)\right]$$

$$= -\left[\mathbf{y}^{(i)} - \mathbf{y}^{(i)}[\mathbf{a}^{(L+1)}]^{(i)} - [\mathbf{a}^{(L+1)}]^{(i)} + [\mathbf{a}^{(L+1)}]^{(i)}\mathbf{y}^{(i)})\right] = [\mathbf{a}^{(L+1)}]^{(i)} - \mathbf{y}^{(i)}$$

$$V^{(2)} = -2(Y - A^{(3)}) \odot A^{(3)} \odot (1 - A^{(3)})$$
 old update

Back to our old friend: Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \begin{array}{l} \text{likely to speed up} \\ \text{initial training} \end{array}$$

$$\left[\frac{\partial J(\mathbf{W})}{\partial \mathbf{z}^{(L)}}\right]^{(i)} = [\mathbf{a}^{(L+1)}]^{(i)} - \mathbf{y}^{(i)}$$

$$\left[\frac{\partial J(\mathbf{W})}{\partial \mathbf{z}^{(2)}}\right]^{(i)} = [\mathbf{a}^{(3)}]^{(i)} - \mathbf{y}^{(i)}$$
two layer network
$$\mathbf{A}^{(3)} - \mathbf{Y}$$
new update

```
# vectorized backpropagation
V2 = (A3-Y_enc) # <- this is only line t
V1 = A2*(1-A2)*(W2.T @ V2)

grad2 = V2 @ A2.T
grad1 = V1[1:,:] @ A1.T</pre>
```

bp-5

$$V^{(2)} = -2(Y - A^{(3)}) \odot A^{(3)} \odot (1 - A^{(3)})$$
 old update

08. Practical_NeuralNets.ipynb

Demo

cross entropy

SQL programmers be like

Formative Self Test

- for adding Gaussian random variables, variances add together $\mathbf{a}^{(L+1)} = \varphi(\mathbf{W}^{(L)}\mathbf{a}^{(L)}) \text{ assume each element of } \mathbf{a} \text{ is Gaussian}$
- If you initialized the weights, \mathbf{W} , with too large variance, you would expect the output of the neuron, $\mathbf{a}^{(L+1)}$, to be:
 - A. saturated to "1"
 - B. saturated to "0"
 - C. could either be saturated to "0" or "1"
 - D. would not be saturated

Formative Self Test

- for adding Gaussian distributions, variances add together $\mathbf{a}^{(L+1)} = \varphi(\mathbf{W}^{(L)}\mathbf{a}^{(L)}) \text{ assume each element of } \mathbf{a} \text{ is Gaussian}$
- What is the derivative of a saturated sigmoid neuron?
 - A. zero
 - B. one
 - C. $a \times (1 a)$
 - D. it depends

Weight initialization

try not to **saturate** your neurons right away!

Weight initialization

try not to saturate your neurons right aways
$$\mathbf{a}^{(L+1)} = \boldsymbol{\varphi}(\mathbf{z}^{(L)})$$

$$\mathbf{z}^{(L)} = \mathbf{W}^{(L)} \mathbf{a}^{(L)}$$

$$\mathbf{z}^{(L)} = \mathbf{x}^{(L)} = \sum_{j} w_{ij} a_{j}^{(L)}$$

$$\mathbf{z}^{(L)} = \sum_{j} w_{ij} a_{j}^{(L)}$$

$$\mathbf{z}^{(L)} = \sum_{j} w_{ij} a_{j}^{(L)}$$

$$\mathbf{z}^{(L)} = \sum_{j} w_{ij} a_{j}^{(L)}$$
want each $z^{(L)}$ to be between $-\varepsilon < \Sigma < \varepsilon$ for

each row is summed before sigmoid

want each $z_i^{(L)}$ to be between - ε < Σ < ε for no saturation

solution: squash initial weights magnitude

 one choice: each element of W selected from a Gaussian with zero mean and specific standard deviation

$$w_{ij}^{(L)} \approx \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L)}}}\right)$$

For a sigmoid if, $-\epsilon < z_i^{(L)} < \epsilon$ where $\epsilon = 4$ then $a^{(L+1)}$ is well distributed [0,1]