"Silence is a true friend who never betrays"*

Thomas Kober

@tttthomasssss

PyData Edinburgh 7th Feb 2019 (1549566000)

*) Unless you write code

This talk is based on a true story

- This talk is based on a true story
- A story about \$\$\array\$ \begin{array} \begin{

- This talk is based on a true story
- A story about \$\$\array\$ \begin{array} \begin{
- A story about co-occurrence matrices

 Count how often 2 items co-occur, or, more abstractly, a measure of association between two items

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

Bad Weed
Arab Strap
Voodoo Jürgens
Miles Davis
Bill Evans
Muddy Waters

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick
Bad Weed	0
Arab Strap	0
Voodoo Jürgens	0
Miles Davis	7
Bill Evans	12
Muddy Waters	4

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas
Bad Weed	0	8
Arab Strap	0	5
Voodoo Jürgens	0	6
Miles Davis	7	0
Bill Evans	12	0
Muddy Waters	4	0

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam
Bad Weed	0	8	0
Arab Strap	0	5	6
Voodoo Jürgens	0	6	0
Miles Davis	7	0	0
Bill Evans	12	0	4
Muddy Waters	4	0	2

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam
Bad Weed	0	8	0
Arab Strap	0	5	6
Voodoo Jürgens	0	6	0
Miles Davis	7	0	0
Bill Evans	12	0	4
Muddy Waters	4	0	2

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam
Bad Weed	0	8	0
Arab Strap	0	5	6
Voodoo Jürgens	0	6	0
Miles Davis	7	0	0
Bill Evans	12	0	4
Muddy Waters	4	0	2

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam
Bad Weed	0	8	0
Arab Strap	0	5	6
Voodoo Jürgens	0	6	0
Miles Davis	7	0	0
Bill Evans	12	0	4
Muddy Waters	4	0	2

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam
Bad Weed	0	8	0
Arab Strap	0	5	6
Voodoo Jürgens	0	6	0
Miles Davis	7	0	0
Bill Evans	12	0	4
Muddy Waters	4	0	2

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam	Martina
Bad Weed	0	8	0	4
Arab Strap	0	5	6	0
Voodoo Jürgens	0	6	0	0
Miles Davis	7	0	0	6
Bill Evans	12	0	4	1
Muddy Waters	4	0	2	0

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam	Martina
Bad Weed	0	8	0	4
Arab Strap	0	5	6	0
Voodoo Jürgens	0	6	0	0
Miles Davis	7	0	0	6
Bill Evans	12	0	4	1
Muddy Waters	4	0	2	0

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam	Martina
Bad Weed	0	8	0	4
Arab Strap	0	5	6	0
Voodoo Jürgens	0	6	0	0
Miles Davis	7	0	0	6
Bill Evans	12	0	4	1
Muddy Waters	4	0	2	0

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam	Martina
Bad Weed	0	8	0	4
Arab Strap	0	5	6	0
Voodoo Jürgens	0	6	0	0
Miles Davis	7	0	0	6
Bill Evans	12	0	4	1
Muddy Waters	4	0	2	0

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam	Martina
Bad Weed	0	8	0	4
Arab Strap	0	5	6	0
Voodoo Jürgens	0	6	0	0
Miles Davis	7	0	0	6
Bill Evans	12	0	4	1
Muddy Waters	4	0	2	0

- Count how often 2 items co-occur, or, more abstractly, a measure of association between two items
- For example, lets suppose a semi-imaginary Spotify history:

	Nick	Thomas	Sam	Martina
Bad Weed	0	8	0	4
Arab Strap	0	5	6	0
Voodoo Jürgens	0	6	0	0
Miles Davis	7	0	0	6
Bill Evans	12	0	4	1
Muddy Waters	4	0	2	0

• So co-occurrence matrices can be very useful for recommender systems

• Another use-case, distributional semantics, i.e. modelling the meaning of a word

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

eat restaurant play italian w	alk
-------------------------------	-----

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

	eat	restaurant	play	italian	walk
pizza	32	8	0	14	0

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

	eat	restaurant	play	italian	walk
pizza	32	8	0	14	0
lasagne	24	15	0	18	0

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

	eat	restaurant	play	italian	walk
pizza	32	8	0	14	0
lasagne	24	15	0	18	0
cat	0	0	17	0	4

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

	eat	restaurant	play	italian	walk
pizza	32	8	0	14	0
lasagne	24	15	0	18	0
cat	0	0	17	0	4
dog	0	2	25	0	23

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

	eat	restaurant	play	italian	walk
pizza	32	8	0	14	0
lasagne	24	15	0	18	0
cat	0	0	17	0	4
dog	0	2	25	0	23
broomstick	0	0	1	0	0

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

	eat	restaurant	play	italian	walk
pizza	32	8	0	14	0
lasagne	24	15	0	18	0
cat	0	0	17	0	4
dog	0	2	25	0	23
broomstick	0	0	1	0	0

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

	eat	restaurant	play	italian	walk
pizza	32	8	0	14	0
lasagne	24	15	0	18	0
cat	0	0	17	0	4
dog	0	2	25	0	23
broomstick	0	0	1	0	0

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

	eat	restaurant	play	italian	walk
pizza	32	8	0	14	0
lasagne	24	15	0	18	0
cat	0	0	17	0	4
dog	0	2	25	0	23
broomstick	0	0	1	0	0

- Another use-case, distributional semantics, i.e. modelling the meaning of a word
- For example, lets suppose we have counted how often every word in some text collection has co-occurred with every other word

	eat	restaurant	play	italian	walk
pizza	32	8	0	14	0
lasagne	24	15	0	18	0
cat	0	0	17	0	4
dog	0	2	25	0	23
broomstick	0	0	1	0	0

• Typically very high-dimensional

- Typically very high-dimensional
 - Number of users x Number of songs

- Typically very high-dimensional
 - Number of users x Number of songs
 - Number of unique words **x** Number of unique words

- Typically very high-dimensional
 - Number of users x Number of songs
 - Number of unique words **x** Number of unique words
- And very sparse

- Typically very high-dimensional
 - Number of users x Number of songs
 - Number of unique words **x** Number of unique words
- And very sparse
 - Any user doesn't listen to most songs

- Typically very high-dimensional
 - Number of users x Number of songs
 - Number of unique words x Number of unique words
- And very sparse
 - Any user doesn't listen to most songs
 - Any word doesn't co-occur with most other words

- Typically very high-dimensional
 - Number of users x Number of songs
 - Number of unique words x Number of unique words
- And very sparse
 - Any user doesn't listen to most songs
 - Any word doesn't co-occur with most other words
- So when we're creating them ourselves from data, we make use of numpy & scipy (because we like python and data)

In [197]: x.sum(axis=1)

Out[197]: array([3060, 3060, 3060], dtype=uint64)

In [197]: x.sum(axis=1)

Out[197]: array([3060, 3060, 3060] dtype=uint64)

In [197]: x.sum(axis=1)

Out[197]: array([3060, 3060, 3060] dtype=uint64)

In [198]: from scipy import sparse
In [199]: xs = sparse.coo_matrix(x)

```
In [198]: from scipy import sparse
In [199]: xs = sparse.coo_matrix(x)
```

```
numpy automatically
In [195]: x = np.full((3,12), 255 | dtype=np.uint8)
                                           upcasted the dtype
In [196]: x
Out[196]:
In [197]: x.sum(axis=1)
                     dtype=uint64)
Out[197]: array([3060, 3060, 3060]
In [198]: from scipy import sparse
In [199]: xs = sparse.coo_matrix(x)
In [201]: xs.sum(axis=1)
                     scipy didn't
Out[201]:
matrix([[244],
    Γ2447.
        dtype=uint8)
    Γ24477
```

```
In [195]: x = np.full((3,12), 255] dtype=np.uint8)
             In [196]: x
             Out[196]:
             This does
             In [197]: x.sum(axis=1)
                                  dtype=uint64)
             Out[197]: array([3060, 3060, 3060]
not look
 right!!!
            In [198]: from scipy import sparse
            In [199]: xs = sparse.coo_matrix(x)
            In [201]: xs.sum(axis=1)
                                  scipy didn't
             out[201]:
            mat i ([[244]
                 [244]
                     dtype=uint8)
                 [244]]
```

numpy automatically upcasted the dtype

```
numpy automatically
             In [195]: x = np.full((3,12), 255] dtype=np.uint8)
                                                        upcasted the dtype
             In [196]: x
             Out[196]:
             This does
             In [197]: x.sum(axis=1)
                                  dtype=uint64)
             Out[197]: array([3060, 3060, 3060]
not look
 right!!!
            In [198]: from scipy import sparse
            In [199]: xs = sparse.coo_matrix(x)
            In [201]: xs.sum(axis=1)
                                  scipy didn't
             out[201]:
            mat i ([[244]
                 [244]
                     dtype=uint8)
                 [244]
```

Did you hear that loud bang and crash from the error?

```
numpy automatically
             In [195]: x = np.full((3,12), 255] dtype=np.uint8)
                                                        upcasted the dtype
             In [196]: x
             Out[196]:
             This does
             In [197]: x.sum(axis=1)
                                  dtype=uint64)
             Out[197]: array([3060, 3060, 3060]
not look
 right!!!
            In [198]: from scipy import sparse
            In [199]: xs = sparse.coo_matrix(x)
            In [201]: xs.sum(axis=1)
                                  scipy didn't
             out[201]:
            mat i ([[244]
                 [244]
                     dtype=uint8)
                 [244]
```

- Did you hear that loud bang and crash from the error?
 - No, me neither.

```
numpy automatically
             In [195]: x = np.full((3,12), 255] dtype=np.uint8)
                                                        upcasted the dtype
             In [196]: x
             Out[196]:
             This does
             In [197]: x.sum(axis=1)
                                  dtype=uint64)
             Out[197]: array([3060, 3060, 3060]
not look
 right!!!
            In [198]: from scipy import sparse
            In [199]: xs = sparse.coo_matrix(x)
            In [201]: xs.sum(axis=1)
                                  scipy didn't
             out[201]:
             mat i ([[244]
                 [244]
                     dtype=uint8)
                 [244]
```

- Did you hear that loud bang and crash from the error?
 - No, me neither.
 - Thats because this was a FIFFT OYFRFFOW

This does not look right!!!

```
In [197]: x.sum(axis=1)
Out[197]: array([3060, 3060, 3060] dtype=uint64)
```

In [198]: from scipy import sparse
In [199]: xs = sparse.coo_matrix(x)

scipy didn't

- Did you hear that loud bang and crash from the error?
 - No, me neither.
 - Thats because this was a SILENT OYERFLOW

numpy automatically upcasted the dtype

• The good news

- The good news
 - That bug has been **fixed** with **scipy v.0.18.0** (ca. 2016)

- The good news
 - That bug has been **fixed** with **scipy v.0.18.0** (ca. 2016)
- THE BAP NEWS

- The good news
 - That bug has been **fixed** with **scipy v.0.18.0** (ca. 2016)
- THE BAP NEWS
 - There is another one of these...

- The good news
 - That bug has been **fixed** with **scipy v.0.18.0** (ca. 2016)
- THE BAP NEWS
 - There is another one of these...

- The good news
 - That bug has been **fixed** with **scipy v.0.18.0** (ca. 2016)
- THE BAP NEWS
 - There is another one of these...

Lets Live Demo the buggy code

• The major problem is

- The major problem is
 - SIL€NC€ there is no warning or error anywhere that tells you that bad stuff happened

- The major problem is
 - SIL€NC€ there is no warning or error anywhere that tells you that bad stuff happened
 - The bug leads to inconsistent data, even though the code arguably is correct

- The major problem is
 - SIL€NC€ there is no warning or error anywhere that tells you that bad stuff happened
 - The bug leads to inconsistent data, even though the code arguably is correct
 - This is very bad if you care about the correctness of your data

- The major problem is
 - SIL€NC€ there is no warning or error anywhere that tells you that bad stuff happened
 - The bug leads to inconsistent data, even though the code arguably is correct
 - This is very bad if you care about the correctness of your data
 - Also, this is a known problem (at least in numpy, going back to 2012 see e.g. https://github.com/numpy/numpy/issues/593)

- The major problem is
 - SIL€NC€ there is no warning or error anywhere that tells you that bad stuff happened
 - The bug leads to inconsistent data, even though the code arguably is correct
 - This is very bad if you care about the correctness of your data
 - Also, this is a known problem (at least in numpy, going back to 2012 see e.g. https://github.com/numpy/numpy/issues/593)
 - The reason why this hasn't been addressed yet is performance (see https://github.com/numpy/numpy/issues/8987#issuecomment-327378779)

- The major problem is
 - SIL€NC€ there is no warning or error anywhere that tells you that bad stuff happened
 - The bug leads to inconsistent data, even though the code arguably is correct
 - This is very bad if you care about the correctness of your data
 - Also, this is a known problem (at least in numpy, going back to 2012 see e.g. https://github.com/numpy/numpy/issues/593)
 - The reason why this hasn't been addressed yet is performance (see https://github.com/numpy/numpy/issues/8987#issuecomment-327378779)
 - Floating point overflows are detected at the hardware level

- The major problem is
 - SIL€NC€ there is no warning or error anywhere that tells you that bad stuff happened
 - The bug leads to inconsistent data, even though the code arguably is correct
 - This is very bad if you care about the correctness of your data
 - Also, this is a known problem (at least in numpy, going back to 2012 see e.g. https://github.com/numpy/numpy/issues/593)
 - The reason why this hasn't been addressed yet is performance (see https://github.com/numpy/numpy/issues/8987#issuecomment-327378779)
 - Floating point overflows are detected at the hardware level
 - Integer overflows aren't they would need to be checked by numpy/scipy,
 which is too costly for arrays

- The major problem is
 - SIL€NC€ there is no warning or error anywhere that tells you that bad stuff happened
 - The bug leads to inconsistent data, even though the code arguably is correct
 - This is very bad if you care about the correctness of your data
 - Also, this is a known problem (at least in numpy, going back to 2012 see e.g. https://github.com/numpy/numpy/issues/593)
 - The reason why this hasn't been addressed yet is performance (see https://github.com/numpy/numpy/issues/8987#issuecomment-327378779)
 - Floating point overflows are detected at the hardware level
 - Integer overflows aren't they would need to be checked by numpy/scipy, which is too costly for arrays
 - Trouble is, even a uint64 with a max value of 18446744073709551615 can theoretically overflow