

Filip Zieliński

2025

Spis Treści

- 1. Grupy Cykliczne
- 2. Warstwy
- 3. Podgrupy Normalne
- 4. Jądro Homomorfizmu

Rząd Grupy

Grupy Cykliczne

Definicja

Niech G będzie grupą. Jeśli G jest grupą skończoną, to rząd G to liczba elementów G. Jeżeli G jest grupą nieskończoną, to mówimy, że rząd grupy G jest nieskończony. Rząd grupy G oznaczamy jako

$$\operatorname{ord}(G)$$

Grupy Cykliczne

Definicja

Niech G będzie grupą. Jeśli G jest grupą skończoną, to rząd G to liczba elementów G. Jeżeli G jest grupą nieskończoną, to mówimy, że rząd grupy G jest nieskończony. Rząd grupy G oznaczamy jako

ord(G)

Uwaga

Przez całą prezentacje w przeważającej większości stosujemy konwencje grupy multiplikatywnej, z tym wyjątkiem, że element neutralny oznaczamy jako *e* zamiast **1**.

Grupy Cykliczne

Grupy Cykliczne

Definicja

Grupa (G, \cdot) jest **grupą cykliczną** wtw. gdy, istnieje taki element $a \in G$, że każdy element grupy G jest jego potęgą, to znaczy

$$\forall g \in G \ \exists k \in \mathbb{Z} : \quad g = a^k.$$

Element a nazywamy wtedy generatorem grupy cyklicznej

Uwaga

W konwencji multiplikatywnej mówimy o k-tej potędze elementu a i zapisujemy ją jako $a^k = \underbrace{a \cdot a \cdot \ldots \cdot a}_{k}$, natomiast w konwencji addytywnej, mówimy o k-tej wielokrotności elementu a i zapisujemy $k \cdot a = \underbrace{a + a + \ldots + a}_{k}$.

Grupy Cykliczne

Konwencja

Jeśli a jest generatorem grupy G to piszemy $G = \langle a \rangle$.

Przykład

Grupami cyklicznymi są np.

- **1.** $(\sqrt[n]{1}, \cdot)$
- **2.** $(\mathbb{Z}_n, +)$
- **3.** ℤ

Abelowość grup cyklicznych Grupy Cykliczne

Obserwacja

Każda grupa cykliczna jest abelowa.

Dowód.

Rozważmy grupę $\langle a \rangle$. Wystarczy zauważyć, że z łączności wprost wynika $a^p a^q = a^q a^p$.

Skończone grupy cykliczne

Twierdzenie

Grupa cykliczna $\langle a \rangle$ jest skończona wtedy i tylko wtedy, gdy istnieją liczby całkowite p,q, gdzie $p \neq q$, takie, że $a^p = a^q$.

Skończone grupy cykliczne Grupy Cykliczne

Twierdzenie

Grupa cykliczna $\langle a \rangle$ jest skończona wtedy i tylko wtedy, gdy istnieją liczby całkowite p, q, gdzie $p \neq q$, takie, że $a^p = a^q$.

Obserwacja

Grupę cykliczną rzędu n można zapisać w postaci $\{a^0, a^1, \ldots, a^{n-1}\}$, natomiast nieskończoną grupę cykliczną w postaci $\{\ldots, a^{-1}, a^0, a^1, \ldots\}$.

Wniosek

Grupa cykliczna $\langle a \rangle$ jest nieskończona wtedy i tylko wtedy, gdy dla każdego $p \neq q, p, q \in \mathbb{Z}$ zachodzi $a^p \neq a^q$.

Izomorfizm grup cyklicznych

Twierdzenie

Wszystkie grupy cykliczne nieskończonego rzędu są izomorficzne. Wszystkie grupy cykliczne skończone równych rzędów są izomorficzne.

Podgrupy grup cyklicznych

Twierdzenie

Niech $G = \langle a \rangle$ będzie grupą cykliczną, a H jej podgrupą, H < G. Wtedy $H = \{e\}$, albo H jest grupą cykliczną postaci $\langle a^m \rangle$ dla pewnego $m \in \mathbb{N}$. Dodatkowo:

- Jeżeli G jest grupą nieskończoną, to dla każdego $p,q\in\mathbb{N}$, $p\neq q$ zachodzi $\langle a^p\rangle\neq\langle a^q\rangle$.
- Jeżeli G jest grupą skończoną rzędu n, to każda podgrupa jest postaci $\langle a^m \rangle$ dla pewnego m będącego dzielnikiem n. Wtedy G ma tyle różnych podgrup, ile dzielników naturalnych liczba n. Podgrupa $\langle a^m \rangle$ ma dokłanie $q = \frac{n}{m}$ elementów.

Rząd elementu

Grupy Cykliczne

Definicja

Jeśli podgrupa $\langle a \rangle$ grupy G jest skończona i ma rząd n, to mówimy, że a jest elementem rzędu n. Jeśli $\langle a \rangle$ jest nieskończona to mówimy, że a jest elementem rzędu nieskończonego. Rząd elementu a w grupie G oznaczamy jako

$$\operatorname{ord}_G(a)$$

Warstwy

Niech będzie dana grupa G i jej podgrupa H.

Definicja

Warstwą lewostronną elementu $a \in G$ względem podgrupy H nazywamy zbiór $\{ah \mid h \in H\}$ i oznaczamy przez aH.

Definicja

Warstwą prawostronną elementu $a \in G$ względem podgrupy H nazywamy zbiór $\{ha \mid h \in H\}$ i oznaczamy przez Ha.

Warstwy,

Warstwy

Obserwacja

Niech $b \in G$. Wtedy

$$b \in aH \Leftrightarrow (\exists h \in H : b = ah) \Leftrightarrow (\exists h \in H : a^{-1}b = h) \Leftrightarrow a^{-1}b \in H.$$

Analogicznie

$$b \in Ha \Leftrightarrow ba^{-1} \in H$$
.

Warstwy

Warstwy

Obserwacja

Niech $b \in G$. Wtedy

$$b \in aH \Leftrightarrow (\exists h \in H : b = ah) \Leftrightarrow (\exists h \in H : a^{-1}b = h) \Leftrightarrow a^{-1}b \in H.$$

Analogicznie

$$b \in Ha \Leftrightarrow ba^{-1} \in H$$
.

Konwencja

W zapisie addytywnym warstwy oznaczamy przez a + H.

Obserwacja

W grupie abelowej G zachodzi

$$\forall a \in G \ \forall H < G \quad aH = Ha.$$

Równość Warstw

Warstwy

Twierdzenie

Jeśli H jest podgrupą grupy G, to każde dwie warstwy lewostronne (prawostronne) względem H są albo równe albo rozłączne.

Równość Warstw

Warstwy

Twierdzenie

Jeśli H jest podgrupą grupy G, to każde dwie warstwy lewostronne (prawostronne) względem H są albo równe albo rozłączne.

Wniosek

Każdy element grupy *G* należy do dokładnie jednej warstwy lewostronnej (prawostronnej) względem podgrupy *H*.

Wniosek

Jeśli H jest podgrupą grupy G to

- 1. $aH = bH \Leftrightarrow a^{-1}b \in H$
- 2. $Ha = Hb \Leftrightarrow ba^{-1} \in H$

Równoliczność Warstw Warstwy

Twierdzenie

Dowolne dwie lewostronne (prawostronne) warstwy względem tej samej podgrupy są równoliczne.

Dowolna warstwa lewostronna jest równa z dowolną warstwą prawostronną względem tej samej podgrupy.

Równoliczność Warstw Warstwy

Twierdzenie

Dowolne dwie lewostronne (prawostronne) warstwy względem tej samej podgrupy są równoliczne.

Dowolna warstwa lewostronna jest równa z dowolną warstwą prawostronną względem tej samej podgrupy.

Dowód.

Dowód dla warstw lewostronnych. Wystarczy pokazać, że $\phi: aH \to bH$ zadane przez $\phi(ah) = bh$ jest bijekcją. Dla drugiego stwierdzenia, wystarczy obserwacja, że eH = He = H.

Odwrotności Elementów Warstw Warstwy

Twierdzenie

Zbiór odwrotności elementów warstwy lewostronnej aH (prawostronnej Ha) jest warstwą prawostronną Ha^{-1} (lewostronną $a^{-1}H$).

Odwrotności Elementów Warstw Warstwy

Twierdzenie

Zbiór odwrotności elementów warstwy lewostronnej aH (prawostronnej Ha) jest warstwą prawostronną Ha^{-1} (lewostronną $a^{-1}H$).

Dowód.

Dowód dla warstw lewostronnych. $b \in aH \Rightarrow b = ah$ dla pewnego $h \in H$. Wtedy $b^{-1} = (ah)^{-1} = h^{-1}a^{-1} \in Ha^{-1}$. Weźmy $c \in Ha^{-1} \Rightarrow c = h_1a^{-1}$ dla pewnego $h_1 \in H$. Zauważmy, że $c = c_1^{-1}$ dla $c_1 = ah_1^{-1} \in aH$.

Warstwy

Wniosek

Zbiór wszystkich warstw lewostronnych względem podgrupy H jest równoliczny ze zbiorem wszystkich warstw prawostronnych względem podgrupy H.

Dowód.

Na podstawie poprzedniego twierdzenia, zauważmy, że odwzorowanie prowadzące ze zbioru warstw lewostronnych w zbiór warstw prawostronnych wzgledem tej samej podgrupy H zadane wzorem $\phi(aH)=Ha^{-1}$ jest bijekcją.

Indeks Podgrupy

Warstwy

Definicja

Niech G będzie grupą skończoną, a H jej podgrupą. **Indeksem podgrupy** H w grupie G nazywamy liczbę warstw lewostronnych grupy G względem H. Indeks podgrupy H w grupie G oznaczamy przez [G:H]

Twierdzenie (Lagrange'a)

Niech G będzie grupą skończoną, a H jej podgrupą. Wtedy

$$\operatorname{ord}(G) = \operatorname{ord}(H)[G : H].$$

Definicja

Niech G będzie grupą skończoną, a H jej podgrupą. **Indeksem podgrupy** H w grupie G nazywamy liczbę warstw lewostronnych grupy G względem H. Indeks podgrupy H w grupie G oznaczamy przez [G:H]

Twierdzenie (Lagrange'a)

Niech G będzie grupą skończoną, a H jej podgrupą. Wtedy

$$\operatorname{ord}(G) = \operatorname{ord}(H)[G : H].$$

Dowód.

Wystarczy obserwacja, że każdy element należy do dokładnie jednej warstwy oraz każda warstwa jest równoliczna.

Wniosek

Rząd elementu grupy skończonej jest dzielnikiem rzędu grupy, to znaczy dla grupy G zachodzi $\operatorname{ord}_G(a) \mid \operatorname{ord}(G) \quad \forall a \in G$.

Wniosek

W grupie skończonej G rzędu n zachodzi $a^n=e$ dla każdego $a\in G$

Dowód.

Niech
$$\operatorname{ord}_G(a) = m$$
. Wtedy $n = mq$. Zatem $a^n = (a^m)^q = e^q = e$

Grupy Pierwszego Rzędu Warstwy

Twierdzenie

Grupa skończona G, której rząd jest liczbą pierwszą jest grupą cykliczną.

Grupy Pierwszego Rzędu Warstwy

Twierdzenie

Grupa skończona *G*, której rząd jest liczbą pierwszą jest grupą cykliczną.

Dowód.

 $\operatorname{ord}(G) > 1$, zatem istnieje $a \in G$, różny od e. Ponieważ $\operatorname{ord}_G(a) \mid \operatorname{ord}(G)$ oraz jedynym elementem rzędu 1 jest element neutralny, to $\operatorname{ord}_G(a) = \operatorname{ord}(G)$ zatem $\langle a \rangle = G$.

Grupy Pierwszego Rzędu Warstwy

Twierdzenie

Grupa skończona G, której rząd jest liczbą pierwszą jest grupą cykliczną.

Dowód.

 $\operatorname{ord}(G) > 1$, zatem istnieje $a \in G$, różny od e. Ponieważ $\operatorname{ord}_G(a) \mid \operatorname{ord}(G)$ oraz jedynym elementem rzędu 1 jest element neutralny, to $\operatorname{ord}_G(a) = \operatorname{ord}(G)$ zatem $\langle a \rangle = G$.

Wniosek

Grupa różna od jednoelementowej nie zawiera podgrup właściwych wtedy i tylko wtedy gdy jest skończona i jej rząd jest liczbą pierwszą.

Definicja

Niech G będzie grupą, a H jej podgrupą. Mówimy, że H jest **Podgrupą normalną** G, jeżeli zachodzi $\forall a \in G$ aH = Ha (równośc warstw prawostronnych i lewostronnych).

Konwencja

Jeżeli H jest podgrupą normalną grupy G to zapisujemy $H \subseteq G$.

Konwencja

Funkcjonuje też równoważne określenie jako Dzielnik Normalny.

Obserwacja

Każda podgrupa grupy abelowej jest podgrupą normalną.

Obserwacja

Każda podgrupa grupy abelowej jest podgrupą normalną.

Obserwacja

Każda grupa zawiera trywialne podgrupy normalne - samą siebie i podgrupę jednoelementową (element neutralny).

Obserwacja

Każda podgrupa grupy abelowej jest podgrupą normalną.

Obserwacja

Każda grupa zawiera trywialne podgrupy normalne - samą siebie i podgrupę jednoelementową (element neutralny).

Twierdzenie

Rozważmy grupę G i jej podgrupę H. Zdefiniujmy zbiór Gdzie $aHa^{-1}=\{aha^{-1}\mid h\in H\}$. Następujące warunki są równoważne:

- **1.** $\forall a \in G$ aH = Ha
- **2.** \forall *a* ∈ *G* aHa⁻¹ = H
- **3.** $\forall a \in G$ $aHa^{-1} \subseteq H$

Przykład

- Rozważmy grupę $GL_n(R)$ wszystkich nieosobliwych macierzy $n \times n$ oraz jej podgrupę $SL_n(R)$ wszystkich macierzy $n \times n$ o wyznaczniku równym 1. Zachodzi $SL_n(R) \subseteq GL_n(R)$
- Rozważmy grupę n-elementowych permutacji S_n oraz jej podgrupę permutacji parzystych A_n . Zachodzi $A_n \triangleleft S_n$.

Przykład

- Rozważmy grupę $GL_n(R)$ wszystkich nieosobliwych macierzy $n \times n$ oraz jej podgrupę $SL_n(R)$ wszystkich macierzy $n \times n$ o wyznaczniku równym 1. Zachodzi $SL_n(R) \subseteq GL_n(R)$
- Rozważmy grupę n-elementowych permutacji S_n oraz jej podgrupę permutacji parzystych A_n . Zachodzi $A_n \subseteq S_n$.

Lemat

Jeżeli liczba warstw lewostronnych (zatem też prawostronnych) względem podgrupy H < G to zachodzi $H \le G$.

Grupa Ilorazowa Podgrupy Normalne

Twierdzenie

Niech będzie dany zbiór warstw grupy G względem jej podgrupy normalnej H. Wówczas odwzorowanie określone wzorem

$$aH \circ bH = (ab)H$$

określa poprawne działanie w tym zbiorze. Zbiór warstw z tak okreslonym działaniem jest grupą.

Grupa Ilorazowa Podgrupy Normalne

Twierdzenie

Niech będzie dany zbiór warstw grupy G względem jej podgrupy normalnej H. Wówczas odwzorowanie określone wzorem

$$aH \circ bH = (ab)H$$

określa poprawne działanie w tym zbiorze. Zbiór warstw z tak okreslonym działaniem jest grupą.

Definicja

Grupę warstw grupy G względem podgrupy normalnej H zdefiniowanej jak powyżej nazywamy **Grupą ilorazową** grupy G względem podgrupy H lub grupą ilorazową G modulo H i oznaczamy symbolem G/H

Grupy Ilorazowe Podgrupy Normalne

Przykład

- **1.** $G/\{1\} \cong G$.
- **2.** $G/G \cong \{1\}$.
- 3. $\mathbb{Z}/7\mathbb{Z} \cong \mathbb{Z}_7$

Konwencja

Działanie w grupie warstw zazwyczaj oznaczamy tak samo jak działanie w grupie, co nie prowadzi do nieporozumień. Tak więc zwykle piszemy $aH \cdot bH$ w konwencji multiplikatywnej, bądź (a+H)+(b+H) w zapisie addytywnym.

Jądro Homomorfizmu Jądro Homomorfizmu

Definicja

Rozważmy grupy G,G' oraz homomorfizm $\phi:G\to G'.$ Jądro homomorfizmu ϕ to zbiór

$$\ker \phi = \phi^{-1}(\{e'\}) = \{a \in G \mid \phi(a) = e'\}$$

gdzie e' to element neutralny grupy G'.

Twierdzenie

Jeśli $\phi: G \to G'$ jest homomorfizmem grup G, G' to $\ker \phi$ jest podgrupą normalną grupy G.

Twierdzenie

Jeśli $\phi: G \to G'$ jest homomorfizmem grup G, G' to ker ϕ jest podgrupą normalną grupy G.

Dowód.

Dowód faktu, że jądro jest podgrupą był w zestawie zadań. Skorzystajmy z warunku równoważnego definicji podgrupy normalnej. $\ker \phi \trianglelefteq G \Leftrightarrow \forall a \in G \quad a \ker \phi a^{-1} \subseteq \ker \phi.$ Weźmy dowolny $k \in \ker \phi$ oraz dowolny $a \in G$. Zachodzi $\phi(aka^{-1}) = \phi(a)\phi(k)\phi(a^{-1}) = \phi(a)e'\phi(a^{-1}) = \phi(aa^{-1}) = \phi(e) = e',$ zatem $\forall a \in g \ \forall k \in \ker \phi \quad aka^{-1} \in \ker \phi \Leftrightarrow \forall a \in G \quad a \ker \phi a^{-1} \subseteq \ker \phi.$

Twierdzenie

Rozważmy grupę G i jej podgrupę normalną H. Odwzorowanie $\psi: G \to G/H$ zadane wzorem $\psi(a) = aH$ jest homomorfizmem oraz $\ker \psi = H$.

Twierdzenie

Rozważmy grupę G i jej podgrupę normalną H. Odwzorowanie $\psi: G \to G/H$ zadane wzorem $\psi(a) = aH$ jest homomorfizmem oraz $\ker \psi = H$.

Dowód.

Jest to homomorfizm ponieważ

 $\psi(ab)=(ab)H=aH\cdot bH=\psi(a)\psi(b)$. Elementem neutralnym grupy G/H jest warstwa $eH=H=hH\forall h\in H$. Zatem faktycznie $\ker\psi=\{a\mid \psi(a)=H\}=H$.

Twierdzenie

Rozważmy grupę G i jej podgrupę normalną H. Odwzorowanie $\psi:G\to G/H$ zadane wzorem $\psi(a)=aH$ jest homomorfizmem oraz $\ker\psi=H$.

Dowód.

Jest to homomorfizm ponieważ

$$\psi(ab)=(ab)H=aH\cdot bH=\psi(a)\psi(b)$$
. Elementem neutralnym grupy G/H jest warstwa $eH=H=hH\forall h\in H$. Zatem faktycznie $\ker\psi=\{a\mid \psi(a)=H\}=H$.

Konwencja

Tak zadany homomorfizm z G do G/H nazywamy homomorfizmem kanonicznym.

Pełna charakterystyka jądra Jądro Homomorfizmu

Wniosek

Każda podgrupa normalna jest jądrem homomorfizmu oraz jądrami homomorfizmów są tylko podgrupy normalne.

Pytania, wątpliwości, uwagi?