Knowledge Transfer for Code Intelligence: PEFT and LLM-based Agents

Fatemeh H. Fard

Assistant professor, University of British Columbia

Low Resource Languages and Scientific Programming Languages

Computational Efficiency

- Low resource languages
- Noise label detection
- Knowledge transfer
- RAG-based LLMs
- AlWare and agent-based LLMs

- Computational efficiency
- Performance increase
- Adding new knowledge to LLMs
- Automating the pipeline

Knowledge Transfer for Software Engineering

- Using PL-LMs and Parameter Efficient Fine Tuning (PEFT)
- Using (NL)-LLM-based Agents and Stack Overflow

Fine-Tuning

Code summarization Dataset

Code Summarizer

Language Model

CodeSummarizer

PEFT Categories

PEFT Benefits

Less storage requirements

Comparable results

Computational efficiency

Store only updated parameters

Specially for low resource languages

(sometimes) memory and processing

Bimodal knowledge transfer

SE Specific Aspects

 SE specific adapters for knowledge transfer from multiple programming languages

Divyam Goel Ramansh Grover Iman Saberi

On The Cross-Modal Transfer from Natural Language to Code through Adapter Modules

Divyam Goel*
Indian Institute of Technology
Roorkee, India
dgoel@bt.iitr.ac.in

Ramansh Grover*
Delhi Technological University
Delhi, India
ramanshgrover 2k18co281@dtu.ac.in

Fatemeh H. Fard University of British Columbia Canada fatemeh.fard@ubc.ca

Focus on bimodal knowledge transfer from NL to PL

Cloze test and Code clone detection

RoBERTa, MODE-X, CODEBERT

On The Cross-Modal Transfer from Natural Language to Code through Adapter Modules

Divyam Goel* Indian Institute of Technology Roorkee, India dgoel@bt.iitr.ac.in Ramansh Grover*
Delhi Technological University
Delhi, India
ramanshgrover_2k18co281@dtu.ac.in

Fatemeh H. Fard University of British Columbia Canada fatemeh.fard@ubc.ca

MODE-X

RoBERTa

Parameter budget of adapters and CodeBERT for code clone detection

Parameter budget of Java-adapters and CodeBERT in millions

Empirical Software Engineering (EMSE) 2024

Utilization of Pre-trained Language Models for Adapter-based Knowledge Transfer in Software Engineering

Iman Saberi · Fatemeh Fard · Fuxiang Chen

Code Summarization Results

Smoot BLEU-4

Models/Languages	Ruby	JS	Go	Python	Java	PHP
GraphCodeBERT + TA	14.53	16.54	23.74	18.73	19.08	25.05
CodeBERT+TA	<u>14.12</u>	<u> 15.67</u>	<u>23.21</u>	18.47	18.99	25.55
MODE-X	12.79	14.20	23.05	17.72	18.43	24.27
GraphCodeBERT	12.62	14.79	18.40	18.02	19.22	<u>25.45</u>
CodeBERT	12.16	14.90	18.07	19.06	17.65	25.16
RoBERTa	11.17	11.90	17.72	18.14	16.47	24.02

MODE-X has better or on par results with Code-LMs

Adapters outperform FFT for low resource languages

Ruby Attention

Beyond Empirical Studies

Software Engineering-Specific PEFT Methods

Avoid pre-training while adding new information

NER Adapter

Token Type Classification Loss (TTC)

Overall Architecture

The input data flow for the sample when fed into a transformer block equipped with NER, language and Fusion adapters.

Code Summarization

Automatically generating descriptions of the functionality of a given code

Models	Ruby	JavaScript	Go	Python	Java	Average
CodeBERTER	15.90	16.12	23.34	18.38	19.95	18.738

Models	Ruby	JavaScript	Go	Python	Java	Average
CodeBERTER	15.90	16.12	23.34	18.38	19.95	18.738
polyglotGraphCodeBERT [32]	14.95	15.79	18.92	18.90	19.91	17.694
polyglotCodeBERT [32]	14.75	15.80	18.77	18.71	20.11	17.48
DistillCodeT5	15.75	16.42	20.21	20.59	20.51	18.696
CodeT5 [3]	15.69	16.24	19.76	20.36	20.46	18.502
ProphetNet-Code [36]	14.37	16.60	18.43	17.87	19.39	17.332
CoTexT [36]	14.02	14.96	18.86	19.73	19.06	17.326
PLBART [12]	14.11	15.56	18.91	19.30	18.45	17.22
GraphCodeBERT	12.62	14.79	18.40	18.02	19.22	16.61
CodeBERT	<u>12.16</u>	<u>14.90</u>	<u>18.07</u>	<u>19.06</u>	<u>17.65</u>	16.36
RoBERTa [37]	11.17	11.90	17.72	18.14	16.47	15.08
Transformer [13]	11.18	11.59	16.38	15.81	16.26	14.24
seq2seq [38]	9.64	10.21	13.98	15.93	15.09	12.97

Attention Change with NER Adapter

- CodeBERTER (right)
- CodeBERT (left)

AdvFusion

Models	Ruby	JavaScript	Go	Python	Java	PHP
GraphCodeBERT+AdvFusion	16.47	15.89	19.96	18.49	18.97	24.83
GraphCodeBERT+Fusion	15.57	14.49	18.21	17.86	18.31	23.54
GraphCodeBERT+TaskAdapter	14.39	14.53	18.47	17.88	17.29	23.36
CodeBERT+AdvFusion	16.53	16.80	24.09	18.28	19.94	25.20
CodeBERT+Fusion	15.77	16.22	24.01	18.40	19.85	25.17
CodeBERT+TaskAdapter	14.12	15.67	23.21	18.47	18.99	25.55
polyglotGraphCodeBERT [5]	14.95	15.79	18.92	18.90	19.91	26.15
polyglotCodeBERT [5]	14.75	15.80	18.77	18.71	20.11	26.23
CodeT5 [55]	15.69	16.24	19.76	20.36	20.46	26.09
GraphCodeBERT	12.62	14.79	18.40	18.02	19.22	25.45
CodeBERT	12.16	14.90	18.07	19.06	17.65	25.16
RoBERTa [61]	11.17	11.90	17.72	18.14	16.47	24.02

Languaga	<i>polyglot</i> CodeBERT	<i>AdvFusion</i> CodeBERT	Improvement	
Language	(# trainable params:110M)	# trainable params:110M) (# trainable params:21M)		
Ruby	14.75	16.53	12%	
Javascript	15.80	16.80	6%	
Go	18.77	24.09	28%	
Python	18.71	18.28	0%	
Java	20.11	19.94	0%	
PHP	26.23	25.20	0%	

	<i>polyglot</i> CodeBERT	AdvFusionCodeBERT	
Language	Training Time	Training Time	Time reduction
	(20000 steps)	(20000 steps)	
Ruby	8:06	4:09	-48% ↓
Javascript	8:05	4:22	-45%↓
Go	8:07	4:50	-40% ↓
Python	8.03	5:09	36%↓
Java	8:04	4:27	-44% ↓
PHP	8:06	4:47	-41% ↓

Without AdvFusion

With AdvFusion

Adapters are useful for Multi-modal knowledge transfer (NL to PL)

Changing adapter architecture SE-specific adapters

1) Impose new info to LM2) Knowledge transfer among PLs

LLM-Based Agents

Al-Agent

As of my last update in January 2022, there isn't a widely recognized concept or entity called "Llama2." It's possible that "Llama2" refers to something specific that has emerged after my last update, such as a product, technology, project, or term within a particular context. Without further context, it's challenging to provide a precise answer. If "Llama2" is a new term or concept, I would need more information to provide an accurate explanation.

AccurAnswer

Evaluation metrics and Results

Ragas Score

- Faithfulness (F)
- Answer Relevance (AR)
- Context Relevance (CRel)
- Context Recall (Crec)

	F	AR	CRel	CRec	RAGAS
512 wo/ rerank	0.7182	0.9337	0.2589	0.7190	0.5184
512 w/ rerank	0.7485	0.9619	0.3528	0.7690	0.6144
1024 wo/ rerank	0.7603	0.9270	0.2589	0.6857	0.5185
1024 w/ rerank	0.8688	0.9648	0.3511	0.8006	0.6364

Table 1: RAGAS scores. The numbers 512 and 1024 refer to the chunk sizes. For each chunk size, two numbers are reported, one without (wo/) reranking and the other one using a reranking technique (w/). In all cases, K = 1.

Tonic Metrics

- Answer Similarity (AS)
- Retrieval Precision (RP)
- Augmentation Precision(AP)
- Augmentation Accuracy (AA)
- Answer Consistency (AC)

	AS	RP	AP	AA	AC	Overall
512 wo/ rerank	3.48	0.70	0.60	0.63	0.61	0.65
512 w/ rerank	4.2	1.0	0.77	0.79	0.77	0.83
1024 wo/ rerank	3.48	0.700	0.60	0.63	0.61	0.65
1024 w/ rerank	4.1	0.97	0.93	0.93	0.92	0.92

Table 2: Tonic Metric Scores. The numbers 512 and 1024 refer to the chunk sizes. For each chunk size, two numbers are reported, one without (wo/) reranking and the other one using a reranking technique (w/). In all cases, K = 1.

Knowledge Transfer for Software Engineering

From PL-LLMs with SE-specific adapters

From QA platforms using RAG LLM-based agents

- Change
 - our point of view,
 - architecture, or
 - use the current knowledge sources

