

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Quintana Roo. Julio/2011.	M.C. Marcelo Hugo Sánchez Núñez M.C. Juan Felipe Pérez Vázquez	Esta revisión se efectuó en 2011 debido a la actualización del plan de estudios.

Relación con otras asignaturas

Anteriores	Posteriores
Asignatura(s) a) Probabilidad y estadística. b) Algebra lineal c) Algebra y geometría analítica.	Asignatura(s) a) Investigación de operaciones estocasticas
Tema(s) a) Distribuciones muestrales. b) Matrices. c) Geometría de funciones.	Tema(s) a) Programación lineal

Nombre de la as	signatura		Departamento o Licenciatura
Investigación o	de operaciones		Ingeniería en Telemática
Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	II0318	8	Licenciatura Elección Libre

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	HI
Taller	16	48	64	64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Explicar el comportamiento de procesos industriales para la representación de Modelos de Programación Lineal.

Objetivo procedimental

Aplicar métodos cuantitativos en la toma de decisiones para la solución de problemas que se presentan en la industria.

Objetivo actitudinal

Propiciar el trabajo colaborativo en equipos para el desarrollo de actividades multidisciplinarias aplicadas a la investigación de operaciones.

Unidades y temas

Unidad I. PROGRAMACIÓN LINEAL.

Explicar los modelos matemáticos de programación lineal para su representación gráfica en la solución matemática.

- 1) Programación lineal.
 - a) Formulación de diferentes modelos de programación lineal
 - b) Método gráfico.
 - c) Método simplex.
 - d) Casos especiales.
- 2) Solución de problemas con paquetería especializada.
- 3) Los modelos matemáticos y su aplicación.
 - a) Mapa conceptual.
- 4) Solución de problemas con la Investigación de Operaciones.
- 5) Limitaciones de la Investigación de Operaciones.

Unidad II. MODELOS DE PROGRAMACIÓN LINEAL.

Aplicar diferentes tipos de modelos de programación lineal para la solución de distintos tipos de problemas que se presentan en procesos industriales.

•	
1) Análisis	de sensibilidad y dualidad.
2) Modelos	s de transporte y de transbordo.
3) Modelos	s de redes.
а) Ruta crítica.
b) Compresión de redes.
Unidad III. TEOR	ÍA DE DECISIONES.
	s que le permitan la toma de decisiones acertadas dentro de un proceso analítico de diferentes ibilidad técnico económica para la evaluación de las premisas de Investigación de operaciones.
1) Toma de	e decisiones
а) Bajo certeza.
b) Bajo riesgo.
c) Incertidumbre.
d) Árbol de decisiones.
2) Costo de	e oportunidad
а) Probabilidad de ejecución.
3) Costo de	e Utilidad
4) Valor es	perado de la información, perfecta e imperfecta
5) Modelos	s en la toma de decisiones.

- a) Modelos de programación lineal.
- b) Modelización analítica.
- c) Procesos de validación de la modelización y consideraciones de costos.
- 6) Análisis de Bayes (probabilidades condicionadas).

Actividades que promueven el aprendizaje

Docente	Estudiante
Solución de Ejercicios y Problemas Preguntas guía Corrillo Elaboración de gráficos	Investigación bibliográfica Lecturas de periódicos Resolución de casos prácticos Resolución de ejercicios en equipos

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos y resolución de ejercicios:

http://citeseer.ist.psu.edu/

http://www2.informs.org/Prizes/EdelmanPrizeDetails.html

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Exposición de ejercicios	20
Resolución de problemas	30
Trabajos escritos	20
Total	100

Fuentes de referencia básica

Bibliográficas

Bonini, Charles, Hausman, Warren y Bierman, Harold. (2000). Análisis cuantitativo para los negocios. Editorial McGraw-Hill. México.

Harvey M. Wagner. Principles of Operations Research with applications to managerial decision. Prentice-Hall, Inc. ISBN 0137095929.

Hillier, Frederick y Lieberman, Gerald. (1991). Investigación de Operaciones. Editorial McGraw-Hill.

Mathur, Kamlesh y Solow, Daniel. (1996). Investigación de Operaciones. Editorial Prentice-Hall.

Taha, Hamdy. (2004). Investigación de Operaciones. Addison-Wesley Editorial Iberoamericana España. ISBN 9702604982.

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Winston, Wayne. (1994). Investigación de Operaciones. Grupo editorial iberoamérica.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con licenciatura o maestría en ingeniería industrial o mecánica, en matemáticas o afines.

Docentes

Tener experiencia docente mínimo de tres años a nivel superior en asignaturas relacionadas

Profesionales

Tener experiencia en trabajos de aplicación de la investigación de operaciones.