CONTENTS Advanced Algebra I

Advanced Algebra I Lecture Notes

ALECK ZHAO

October 12, 2016

This is AS.110.401 Advanced Algebra I, taught by Caterina Consani.

Contents

	26 September, 2016		
	1.1	Subgroups	2
2	5 October, 2016		
	2.1	Cosets	5
	2.2	Normal Subgroups	7
3	12 October, 2016		8
	3.1	Normal Subgroups	8
	3.2	The Isomorphism Theorem	9

1 26 September, 2016

1.1 Subgroups

Goal: Find subsets of a given group which inherit the same law as the group itself.

Example

Some examples of a chain of subsets.

- $\{\pm 1\} \subset \{\pm 1, \pm i\} \subset \mathbb{C}^0 = \{z \in \mathbb{C}^* | |z| = 1\} \subset \mathbb{C}^*$
- $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset (\mathbb{C}, +)$
- $A_n \subset (S_n, \circ)$

Definition. $H \subset G$ where G is a group, is a subgroup of G if H is a group with respect to the same operation for G.

Theorem (Subgroup Test)

A subset $H \subset G$ is a subgroup if:

- 1. $1_G \in H$
- 2. $h, h' \in H \implies hh' \in H$
- 3. $h \in H \implies h^{-1} \in H$ (where $h \in G$ is the inverse of h)

Proof. 1. Let $e \in H$ be the identify of H. Then $e^2 = e = e \cdot 1_G$, then by the cancellation law in G it follows that $e = 1_G$.

- 2. This follows from the fact that H is a subgroup, so it is closed under the operation.
- 3. Let $h \in H$ and $h' \in H$ be its inverse. If $h^{-1} \in G$ is the inverse of h in G, then $hh' = 1 = hh^{-1} \implies h' = h^{-1}$ by the cancellation law in G.

Example

 $n\mathbb{Z} \subset \mathbb{Z}$ is a subgroup for fixed n.

Theorem (Finite group test)

If $|H| < \infty$, $H \neq \{\}$, and $H \subset G$ group. Then H is a subgroup if and only if H is closed.

Proof. H is closed and finite. Let $h \in H$ such that $h^n = h^{m+n}$ for some $m, n \ge 1$. Then by the cancellation in G, this means $1_G = h^m$, so $1_G \in H$. Then since $1_G = h^{m-1}h$, so $h^{-1} = h^{m-1} \in H$.

Example

Consider $G = \mathbb{Z}_3$, study its subgroups. Trivially the sets $H_1 = \{\bar{0}\}$ and $H_2 = \mathbb{Z}_3$ are subgroups. Does there exist a subgroup of \mathbb{Z}_3 with cardinality 2?

Consider the possible sets H_3 . If $H_3 = \{\bar{0}, \bar{1}\}$ then H_3 is not closed wince $\bar{1} + \bar{1} = \bar{2} \notin H_3$. Similarly for other combinations.

An element g is a **generator** if all elements of G can be generated by g.

Example

 $\mathbb{Z}_3 = \{n \cdot \overline{1} | n \in \mathbb{Z}\}\$ so $\overline{1}$ is a generator for \mathbb{Z}_3 .

Example (Groups of order 4)

Let |G| = 4. From the Cayley table, we know that

$$G = \begin{cases} \mathbb{Z}_4 \\ K_4 \end{cases}$$

where K_4 is the Klein group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

In the first case, $G = \{1, a, a^2, a^3\}$ such that $a^4 = 1$. A trivial subgroup is $H_1 = \{1\}$. If |H| = 2, then $H_2 = \{1, x\}$ where $x^2 \in H_2$, thus it must be that $H_2 = \{1, a^2\}$. We can't have x = a or $x = a^3$ because a^2 would not be in H_2 , and because $(a^3)^2 = a^6 = a^2$ would not be in H_2 . Similarly we can't have $|H_3| = 3$, so the only subgroups are $\{1\}, \{1, a^2\}, G$.

In the second case, $G = \{1, a, b, c\}$ such that $a^2 = b^2 = c^2 = 1$. Then $H_2 = \{1, a\}$ and similarly $\{1, b\}$ and $\{1, c\}$ are all subgroups. There are no subgroups of size 3 because elements such as ab and bc would not be contained, so they would not be closed. Thus, the subgroups are $\{1\}, \{1, a\}, \{1, b\}, \{1, c\}, G$.

Example

If |G| = 6, then either G is commutative or $G = S_3 = \{\varepsilon, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2\}$ with the identities $\sigma^3 = \tau^2 = \varepsilon$ and $\sigma\tau\sigma = \tau$. Then the subgroups are

$$H_{1} = \{\varepsilon\}$$

$$H_{2} = \{\varepsilon, \tau\}$$

$$H_{3} = \{\varepsilon, \tau\sigma\}$$

$$H_{4} = \{\varepsilon, \tau\sigma^{2}\}$$

$$H_{5} = \{\varepsilon, \sigma, \sigma^{2}\}$$

$$H_{6} = S_{3}$$

On the other hand, if G is commutative, then $G = \mathbb{Z}_6$. Then the subgroups are

$$H_1 = \{1\}$$

 $H_2 = \{0, 3\}$
 $H_3 = \{0, 2, 4\}$
 $H_4 = \mathbb{Z}_6$

so these clearly have different group structures.

Remark. The cardinality of the subgroups divide the cardinality of the whole group. Coincidence?

Remark. We stated without proof that \mathbb{Z}_6 is the only commutative group of order 6 (up to isomorphism).

Definition. The subgroup of **centers** of G is defined as

$$Z(G) := \{ z \in G | gz = zg, \forall g \in G \}$$

If G is commutative, then $Z(G) \equiv G$. On the other hand if G is not commutative, then Z(G) can be very small.

Example

Proof in book. $Z(S_n) = \{\varepsilon\}$

Example

|G| = 8 where G is non-commutative. An example is the group of quaternions which is defined as

$$G = Q := \{\pm 1, \pm i, \pm j, \pm k\}$$

such that

$$i^{2} = j^{2} = k^{2} = -1$$
$$ij = -ji = k$$
$$jk = -kj = i$$

$$ki = -ik = j$$

Q can be realized as a subgroup of $\mathrm{GL}_n(\mathbb{C})$. Then the subgroup of centers is $Z(Q)=\{\pm 1\}$, so Q is very non-commutative.

Theorem

If G is a group and $H, K \subset H$ are subgroups, then

- 1. $H \cap K := \{g \in G | g \in H, g \in K\}$ is a subgroup of G
- 2. $\forall g \in G$, the set $gHg^{-1} := \{ghg^{-1} | h \in H\}$ is a subgroup of G. The group gHg^{-1} is called a **conjugate** of H in G.

Fact. $|H| = |gHg^{-1}|$ if H is finite.

Fact. If G is commutative, then $gHg^{-1} \equiv H$.

2 5 October, 2016

2.1 Cosets

Suppose G is a group and $H \subset G$ is a subgroup of G. Then for some $a \in G$, the set

$$Ha := \{ha | h \in H\}$$

is the **right coset** generated by a. Similarly, the set

$$aH := \{ah | h \in H\}$$

is the **left coset** generated by a.

Example

Let $4\mathbb{Z} \subset \mathbb{Z}$, then since \mathbb{Z} is commutative, the left and right cosets are the same, and they are

$$1+4\mathbb{Z}$$
, $2+4\mathbb{Z}$, $3+4\mathbb{Z}$, $4\mathbb{Z}$.

Remark 2.1. If G is abelian, then aH = Ha for all $a \in G$.

Theorem

Let G be a group, $H \subset G$ is a subgroup, and let $a, b \in G$.

- $(1) \ H = H \cdot 1 = 1 \cdot H$
- $(2) \ aH = H \iff a \in H$
- (3) $Ha = Hb \iff ab^{-1} \in H$
- $(4) \ a \in Hb \implies Ha = Hb$
- (5) Ha = Hb or $Ha \cap Hb = \{\}$
- (6) $G = \coprod_{a \in G} Ha$ is a partition of G.

Remark 2.2. (5) and (6) are very similar to properties of equivalence classes on a set.

Proof. Proof of (3): $Ha = Hb \implies a \in Ha = Hb$ so $a \in Hb$ so a can be written as a = hb for some $h \in H$, so right multiplying by b^{-1} , we have $ab^{-1} = h \in H$ as desired.

For the reverse direction if $ab^{-1} \in H$, then $ha = h(ab^{-1})b \in Hb$ since $h, ab^{-1} \in H \implies h(ab^{-1}) \in H$ thus since $ha \in Ha$ belongs to Hb, we have $Ha \subset Hb$. Then $b^{-1}a = (ab^{-1})^{-1} \in H$ so $hb = h(ba^{-1})a \in Ha$ so $Hb \subset Ha$ so in fact Ha = Hb.

(3) \implies (2) by choosing b = 1.

Proof of (5): If $Ha \cap Hb \neq \{\}$, then there must be an element in common. Let $x \in Ha \cap Hb$ be this element, then $x \in Ha$ so Hx = Ha and Hx = Hb so Ha = Hb.

Example 2.3

Let $G = \langle a \rangle$ be a group, where o(a) = 4 so $G = \{1, a, a^2, a^3\}$. Find the cosets of $H = \langle a^2 \rangle = \{1, a^2\}$. Since $a^2 \in H$, then $Ha^2 = H$. Next, $Ha = \{a, a^3\}$ and notice $Ha \cap H = \{\}$. Then G is partitioned by $H \cdot 1$ and Ha and |H| = |Ha|.

Lemma 2.4

Let G be a group and $H \subset G$ be a subgroup.

- (1) |H| = |Ha| = |aH| for all $a \in G$.
- (2) $\varphi: \{Ha|a \in G\} \to \{bH|b \in G\}$ where $\varphi(Ha) = a^{-1}H$ is a bijection of sets.

Proof. For (1): |H| = |Ha| since $h \mapsto ha$ defines a bijection. This map is injective since if $h_1a = ha$ then $h_1 = h$ by the cancellation law, and surjective because for all $ha \in Ha$ we can recover the $h \in H$ such that $h \mapsto ha$. Thus |H| = |Ha|.

Remark 2.5. The sets of right and left cosets for the same $H \subset G$ have the same cardinality.

Definition 2.6. |G:H| is the **index** of H in G and is defined as the cardinality of the set $\{Ha|a\in G\}$.

Remark 2.7. This applies even for infinite sets, for example $|\mathbb{Z}: 4\mathbb{Z}| = 4$.

Theorem 2.8 (Langrange's Theorem)

Let G be a group and $H \subset G$ is a subgroup, and |G| is finite.

- (1) |H| |G|
- (2) $|G:H| = \frac{|G|}{|H|}$

Proof. For (1): Let k = |G:H| where the set of right cosets is $\{Ha_1, Ha_2, \cdots, Ha_k\}$ where $a_i \in G$. Then

$$G = Ha_1 \sqcup Ha_2 \sqcup \cdots \sqcup Ha_k$$

and since these are disjoint sets, the cardinality of G is the sum of the cardinalities of the cosets, which are all |H| since |H| = |Ha|, so |G| = k|H|.

Corollary 2.9

If |G| is finite, and $g \in G$, then $o(g) = |\langle g \rangle| |G|$.

Remark 2.10. The converse of Lagrange's Theorem fails in general.

Example 2.11

Take $A_4 \subset S_4$ the subgroup of even permutations. Then $|A_4| = |S_4|/2 = 12$, but there does not exist a subgroup $H \subset A_4$ such that |H| = 6.

Indeed $K_4 = \{\varepsilon, (12)(34), (13)(24), (14)(23)\}$ is a subgroup of A_4 and let $H = \langle \sigma \rangle = \langle (123) \rangle$ be the group generated by the 3-cycles. Then $|H| = 3, |K_4| = 4$ and the Cartesian product

$$H \times K_4 = \{hk | h \in H, k \in K_4\}$$

is a group of order 12. However, note that $\forall \gamma \in K_4$ and $\forall \sigma' \in H$, the order

$$o(\gamma \sigma') = \begin{cases} 1\\2\\3 \end{cases}$$

so there is no element $g \in A_4$ such that o(g) = 6 so there does not exist a subgroup $G \subset A_4$ such that |G| = 6.

2.2 Normal Subgroups

Definition 2.12. Given a group G, a subgroup $H \subset G$ is said to be **normal** if $aH = Ha, \forall a \in G$.

Example 2.13 (non-example)

 $G = S_3$ and take $H = \{\varepsilon, \tau\}$ where $\tau^2 = \varepsilon$ and let $\sigma \in S_3$ such that $\sigma^3 = \varepsilon$. Then $\sigma H \neq H \sigma$.

3 12 October, 2016

3.1 Normal Subgroups

Definition 3.1. If G is a group, and $H \subset G$ is a subgroup, H is a **normal subgroup** if Hg = gH for all $g \in G$. That is, the left and right cosets coincide. This is $H \subseteq G$.

Then we can define the **quotient groups** as $G/H := \{gH \mid g \in G\}$. We may also define the product of cosets as $gH \cdot g_1H := (gg_1)H$.

We can write a chain of normal subgroups

$$\{0\} \subset H_1 \unlhd H_2 \unlhd \cdots \unlhd H_n \unlhd G$$

where all H_i are normal in G. We can write

$$G = \bigoplus_{i=1}^{n} H_i / H_{i-1}$$

which is a direct sum.

Definition 3.2. When G has no non-trivial normal subgroup then G is called **simple.**

Example

 $A_n \subset S_n$ for all $n \geq 5$.

Remark. $H = \langle (123) \rangle \subseteq A_4$ is normal.

Example

Let $G = \langle a, b \mid o(a) = 4, o(b) = 2, aba = b \rangle$. Then explicitly

$$G = \{1, a, a^2, a^3, b, ba, ba^2, ba^3\}.$$

Let $K = \langle a \rangle$, so |K| = 4, and |G:K| = 2, hence K is normal in G. Then $G/K = \{K, Kb\}$.

Next, let $H = \langle b \rangle$, so |G:H| = 4. Let $S = \{H, Ha, Ha^2, Ha^3\}$ with $Ha = \{a, ba\} \neq aH = \{a, ab\}$ since $ab \neq ba$. Thus H is not normal in G and S is not actually a group.

Theorem

Let $K \subseteq Z(G) \subseteq G$ st G/K is cyclic. Then G is abelian.

Proof. We have $G/K = \langle Kg \rangle$ for some $g \in G$. Let $a, b \in G$, we need to show ab = ba. Consider Ka, Kb in the quotient G/K. Then $Ka = (Kg)^m = Kg^m$ and $Kb = Kg^n$ for some $m, n \in \mathbb{Z}$. Since these are cosets that are either disjoint or equal, we have $b \in Kg^n \implies b = k_1g^n$ and $a = kg^m$ for some $k, k_1 \in K$. Now

$$ab = (kg^m)(k_1g^n) = (kk_1)g^{m+n} = (k_1g^n)(kg^m) = ba$$

since as cosets, KaKb = Kab = abK = KbKa.

3.2 The Isomorphism Theorem

Let $\varphi: G \to H$ where φ is a group homomorphism. Then $\ker(\varphi) := \{g \in G \mid \varphi(g) = 1_H\} \subseteq G$ is a normal subgroup. Clearly $\ker(\varphi)$ is a subgroup. Now we want to see if $\ker(\varphi)$ is normal, that is if

$$g \ker(\varphi) g^{-1} = \ker(\varphi)$$

for all $g \in G$.

Let $h \in \ker(\varphi)$, so $\varphi(h) = 1$. Then $\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1}) = \varphi(g)\varphi(g^{-1}) = 1$ for all $h \in \ker(\varphi)$ so in fact $g \ker(\varphi)g^{-1} = \ker(\varphi)$.

For the converse, given $K \subseteq G$ a normal subgroup, where $\varphi : G \to G/K$, we define $\ker(\varphi) = K$ by construction of G/K.

Conclusion: There is a 1-1 correspondence between normal subgroups of G and group homomorphisms $\varphi: G \to H$.

Example

Let $\varphi: G \to H$ be a group homomorphism. Then

$$H\supset \varphi``(G)=\{\varphi(g)\,|\,g\in G\}$$

is a subgroup, but in general not normal

Example

Take $H \subset G$ be not normal, and consider the natural embedding $\varphi = i : H \to G$, then φ "(G) = i"(G) = H, which we said was not normal in G.

Remark. Sometimes one shows that $H \subset G$ is normal by showing that $H = \ker(\varphi)$ for a suitable φ .

Theorem 3.3

Let $\varphi: G \to H$ be a group homomorphism. Then the following are equivalent:

- φ is injective
- $\ker(\varphi) = \{1_G\}$

Proof. Let $g \in \ker(\varphi)$, so $\varphi(g) = 1 = \varphi(1_G)$. Then since φ is injective, we must have $g = 1_G$.

Next, assume $\ker(\varphi) = 1_G$. Then let $a, b \in G$ such that $\varphi(a) = \varphi(b) \iff \varphi(ab^{-1}) = 1_H$. Thus $ab^{-1} = 1_G$, so a = b, thus φ is injective.

Remark. The statement for monoids would fail since the proof assumes the existence of inverses.

Example

Let $\varphi: M \to \{0,1\}$ be a monoid homomorphism, where 1+1=1, and 0+1=1+0=1. Define $\varphi(m)=1$ for all $m \neq 1_M$ and $\varphi(1_M)=0$. Then $\ker(\varphi)=\{1_M\}$ but φ is clearly not injective.

Theorem 3.4 (Isomorphism Theorem)

Let $\varphi:G\to H$ be a group homomorphism, and $K:=\ker(\varphi)\unlhd G.$ Then

$$\varphi``(G)\cong G/K$$

