

<u>Course</u> > <u>Topic 5</u>... > <u>5.7 Ine</u>... > Inequal...

Inequalities Video

5.7 Probability Inequalities

POLL

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations. Which is more probable?

RESULTS

- Linda is a bank teller
- Linda is a bank teller and is active in the feminist movement 31%

Submit

Results gathered from 282 respondents.

FEEDBACK

It is more probable that Linda is a bank teller than Linda is both a bank teller and an activist.

1

1.0/2.0 points (graded)

Which of the following holds for all events A and B

a. in any probability space:

X

Explanation

- 1. $\stackrel{\cdot}{A}\supseteq B \longrightarrow P(A) = P(B) + P(A\setminus B) \ge P(B)$
- 2. A and B can be nonempty and disjoint with $P(A) \geq P(B)$, then A does not contain B.
- 3. B can be a singleton with higher probability than a set A with two elements.
- 4. Similar counter-example to 3.
- b. in any **uniform** probability space:

$$\square P(A) \ge P(B) \longrightarrow A \supseteq B$$

$$lacksquare |A| \geq |B| \longrightarrow P(A) \geq P(B) \checkmark$$

$$lacksquare P(A) \geq P(B) \longrightarrow |A| \geq |B| \checkmark$$

Explanation

- 1. Follows from the result for general spaces.
- 2. Similar counter-example to part a.
- 3. I uniform sample spaces S, for any event E, P(E) = |E|/|S|, hence

$$|A| \ge |B| \longrightarrow P(A) \ge P(B)$$

4. Again, follows since for any event E, $P\left(E\right)=|E|/|S|$.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

2

0.0/2.0 points (graded)

Let Ω be any sample space, and A,B are subsets of Ω . Which of the following statements are always true?

$$lacksquare$$
 If $|A|+|B|\geq |\Omega|$, then $P\left(A\cup B
ight)=1$

$$lacksquare$$
 If $|A|+|B|\geq |\Omega|$, then $P\left(A
ight)+P\left(B
ight)\geq 1$

$$ightharpoons If $P(A) + P(B) > 1$, then $A \cap B
eq \emptyset$$$

$$lacksquare$$
 If $P\left(A
ight)+P\left(B
ight)>1$, then $P\left(A\cup B
ight)=1$

Explanation

Let
$$\Omega=\{1,2,3\}$$
, and $P(1)=P(2)=0.1, P(3)=0.8$

- False. Let $A=B=\{1,2\}$. $|A|+|B|=4>|\Omega|$ but $P(A\cup B)=0.2$ False. Let $A=B=\{1,2\}$. $|A|+|B|=4>|\Omega|$ but P(A)+P(B)=0.4
- True.
- False. Let $A=B=\{3\}$. $P\left(A
 ight)+P\left(B
 ight)=1.6>1$, but $P\left(A\cup B
 ight)=0.8$

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

Discussion

Topic: Topic 5 / Poker

Hide Discussion

Add a Post

Show all posts ▼	by recent activity ▼
Problem 2Questions and comments regarding problem 2.Staff	2 new_ 14
Doubt where do i found the solutions to the programming assignments?	2
Problem 1Questions and comments regarding problem 1.Staff	5
General CommentsQuestions and comments regarding this section.Staff	2

© All Rights Reserved