# **Deep Learning and Recurrent Neural Networks**

LSTM in TensorFlow

Angelo Porrello, Davide Abati

December 5, 2018

University of Modena and Reggio Emilia

# **Agenda**



Introduction

LSTM in TensorFlow

**Synthetic Sequence Dataset** 

**Learning to Count** 

References

# Introduction

#### Recurrent Neural Networks



Recurrent neural networks (RNN) are specialized for processing sequences.

Similarly, we saw that convolutional neural networks feature specialized architecture for processing images.

RNNs boast a much wider API with respect to feedforward neural networks.

Indeed, these models can deal with sequences in the input, in the output or even both.



#### Vanilla RNN





The vanilla RNN is provided with three sets of parameters:

- **U** maps inputs to the hidden state
- W parametrizes hidden state transition
- **V** maps hidden state to output

System dynamics is as simple as:

$$\begin{cases} \boldsymbol{h}^{(t)} = \phi(\boldsymbol{W} \, \boldsymbol{h}^{(t-1)} + \boldsymbol{U} \, \boldsymbol{x}^{(t)}) \\ \boldsymbol{o}^{(t)} = \boldsymbol{V} \, \boldsymbol{h}^{(t)} \end{cases}$$
(1)

#### Intuition about Hidden State





The hidden state  $h^{(t)}$  can be intuitively viewed as a *lossy* summary of the sequence of past inputs fed to the network, in which are stored the main task-relevant aspects of the past sequence of inputs up to time t.

Since the an input sequence of arbitrary length  $(x^{(1)}, x^{(2)}, ..., x^{(t)})$  is mapped into a fixed size vector  $h^{(t)}$ , this summary is necessarily lossy.

# **Unfolding the Computational Graph**



A recurrent computational graph can be unfolded into a sequential computational graph with a repetitive structure.

$$\boldsymbol{h}^{(t)} = f(\boldsymbol{h}^{t-1}, \boldsymbol{x}^{(t)}; \boldsymbol{\theta})$$



#### **Advanced Recurrent Architectures**



Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are more complex recurrent architectures that have been proposed [2, 1] to overcome the issues in the gradient flow and to ease the learning of long-term dependencies thanks to the introduction of learnable gating mechanisms.



# Long Short-Term Memory networks



Let's see **how update equations look like for a LSTM model**. Please notice that LSTM framework, notation is usually slightly different than form vanilla RNN.

$$\begin{cases} \mathbf{i} = \sigma(\mathbf{x}^{(t)} \mathbf{U}_i + \mathbf{s}^{(t-1)} \mathbf{W}_i) \\ \mathbf{f} = \sigma(\mathbf{x}^{(t)} \mathbf{U}_f + \mathbf{s}^{(t-1)} \mathbf{W}_f) \\ \mathbf{o} = \sigma(\mathbf{x}^{(t)} \mathbf{U}_o + \mathbf{s}^{(t-1)} \mathbf{W}_o) \\ \mathbf{g} = \tanh(\mathbf{x}^{(t)} \mathbf{U}_g + \mathbf{s}^{(t-1)} \mathbf{W}_g) \\ \mathbf{c}^{(t)} = \mathbf{c}^{(t-1)} \odot \mathbf{f} + \mathbf{g} \odot \mathbf{i} \\ \mathbf{s}^{(t)} = \tanh(\mathbf{c}^{(t)}) \odot \mathbf{o} \end{cases}$$

$$(2)$$

Here  $\odot$  denotes element-wise multiplication.

### Gated Recurrent Unit (GRU) networks





See http://colah.github.io/posts/2015-08-Understanding-LSTMs/ for an exhaustive explanation concerning LSTM and GRU networks.

LSTM in TensorFlow

### **Cell Support**



An RNN cell (RNNCell), in the most abstract setting, is anything that has a state and performs some operation that takes a matrix of inputs.

- BasicRNNCell: The most basic RNN cell.
- RNNCell:Abstract object representing an RNN cell.
- BasicLSTMCell: Basic LSTM recurrent network cell.
- LSTMCell: LSTM recurrent network cell.
- GRUCell: Gated Recurrent Unit cell

#### **HOWTO Construct Cells**



- cell = tf.nn.rnn\_cell.GRUCell(hidden\_size, ...)
- outputs, state = tf.nn.dynamic\_rnn(cell, x, ...): uses a tf.While loop to dynamically construct the graph when it is executed. Graph creation is faster and you can feed batches of variable size.

**Synthetic Sequence Dataset** 

### **Synthetic Sequence Dataset**



For this practice I prepared a synthetic dataset consisting in  $2^{20}$  binary sequences.

For each input sequence, the target is the number of ones in the sequence.

From an implementation standpoint, the target is encoded as one-hot vector. Thus, examples (x, y) from the dataset looks like the following:

| input                | target                  |
|----------------------|-------------------------|
| 00110011111000111101 | 00000000000100000000    |
| 01000010100001010000 | 00000100000000000000000 |
| 11101110010111011110 | 00000000000001000000    |

### **Synthetic Sequence Dataset**



The dataset can be found in synthetic\_dataset.py.

Loading the data is as simple as:

from synthetic\_dataset import SyntheticSequenceDataset
synthetic\_dataset = SyntheticSequenceDataset()

Synthetic data are automatically either generated or loaded from cache (if existent) the first time that dataset property data is accessed.

# Learning to Count



Our task is to count the number of ones in the binary sequences.

The goal of this practice is to implement and train a  ${\bf LSTM}$  [2] network to do so.

#### **Useful Functions**



To this purpose, you may find useful the following functions:

- tf.contrib.rnn.LSTMCell
- tf.nn.dynamic\_rnn
- $\bullet$  tf.transpose
- tf.gather
- tf.layers.dense

Please refer to the docs to know the exact API.



# Good Luck!

# References

#### References i



[1] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.

Learning phrase representations using rnn encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078, 2014.

[2] S. Hochreiter and J. Schmidhuber.

Long short-term memory.

Neural computation, 9(8):1735-1780, 1997.