Fokusgruppenskript

Anforderungen an eine Web-App zur Datenvisualisierung

Teilnehmerübersicht

Alter	Beruf/Fachrichtung	Berufserfahrung	Visualisierungs-Erfahrung
24	Architekt	2 Jahre	Excel (Beruf/Studium)
30	Finanzwesen	7 Jahre	Looker, Excel, Google Sheets (Beruf)
24	Informatik-Student (M.Sc.)	2 Jahre	Python (Matplotlib/Seaborn), JS (AMCharts)
25	Projektmanagement	3 Jahre	Alasco, Power BI, Excel
23	Psychologie-Student (B.Sc.)	1 Jahr	PsychoPy, LimeSurvey, Pavlovia, GGPlot
24	Maschinenbau-Student (B.Sc.)	1 Jahr	MATLAB
22	Informatik-Student (B.Sc.)	0 Jahre	R, PySpark, Visual Basic

1. Begrüßung & Einführung (ca. 5 Min)

Moderator: "Willkommen zur Fokusgruppe zur Benutzeroberfläche einer geplanten Web-App zur interaktiven Datenvisualisierung. Die Idee: Ihr könnt CSV-Dateien per Drag & Drop laden und anschließend verschiedene Diagrammformen (z. B. Zeitverläufe, Liniendiagramme) explorativ erstellen."

Ziel:

- Sammeln von Erfahrungen, Anforderungen und Verbesserungsideen
- Fokus: Usability & Funktionalität bei Visualisierungssoftware
- Dauer: ca. 90 Minuten
- Daten anonymisiert, Ergebnisse auf Wunsch einsehbar

2. Vorstellungsrunde – Erfahrung mit Visualisierungen (ca. 10 Min)

Frage an jede Person: "Bitte nennt kurz euren Vornamen, Beruf oder Studienrichtung und wie oft ihr in eurem Arbeits- oder Studienalltag mit der Erstellung von Visualisierungen zu tun habt. Nutzt ihr z. B. Excel, Python, Power BI oder andere Tools?"

Ziel: Erfahrungsniveau sichtbar machen – später relevant für Interpretation und Clustering.

3. Problemfokussierung – Negative Aspekte sammeln (15–20 Min)

Moderator: "Stellt euch bitte eine typische Situation vor, in der ihr mit Daten arbeitet und etwas visualisieren wollt."

- "Was dauert zu lange, ist zu kompliziert oder frustrierend?"
- "Was hat euch bei der Erstellung von Diagrammen oder interaktiven Grafiken zuletzt besonders gestört?"
- "Welche Funktion oder Hilfestellung hättet ihr euch gewünscht, um schneller zu einem brauchbaren Ergebnis zu kommen?"
- "Welche typischen Fehler oder Stolpersteine treten immer wieder auf?"

Aufgabe: Jede*r schreibt 2–3 negative Aspekte oder "Pain Points" auf einzelne Karten. Beispiele: "Achsenauswahl unübersichtlich", "Zeitwerte werden falsch erkannt", "fehlende Vorschau", "komplizierte Spaltenauswahl"

Hinweis: Keine Lösungsvorschläge einfordern – nur Probleme / Defizite.

4. Stimulus – Lösungsidee oder Prototyp zeigen (10 Min)

Moderator: "Ich möchte euch jetzt ein kurzes Gedankenexperiment vorstellen und eine mögliche Lösung, wie man die genannten Probleme adressieren könnte."

Stimulus: Szenario: "Stellt euch vor, ihr habt eine Webseite, auf der ihr leicht eine CSV hochladen könnt und innerhalb weniger Interaktionen eine vollständige und anpassbare Visualisierung erstellen könnt."

Ziel: Kognitive Aktivierung, die das spätere Formulieren konkreter Anforderungen erleichtert.

5. Anforderungen formulieren (15 Min)

Moderator: "Basierend auf dem Gesehenen und euren bisherigen Gedanken: Welche konkreten Funktionen oder Eigenschaften würdet ihr euch von einem Tool wünschen, das CSV-Dateien interaktiv visualisieren kann?"

Aufgabe: Jeder schreibt 3–5 Anforderungen / Features auf einzelne Karten. Beispiele: "automatische Zeiterkennung bei Datumsspalte", "Vorschau bei Spaltenauswahl", "Farbschema anpassbar"

Ziel: Anforderungen in eigenen Worten – Grundlage für Requirements Engineering.

6. Clustering: Karten sortieren & gemeinsam zuordnen (20 Min)

Moderator: Karten werden auf einem Miro-Board gemeinsam eingeordnet in z. B.:

- Benutzeroberfläche & Interaktion
- Diagramm-Funktionalität
- Feedback & Fehlerbehandlung
- Datenimport / Dateiexport / Validierung

Ablauf:

- Karten werden vorgelesen und in Kategorien vorgeschlagen
- Gruppe diskutiert und entscheidet über Zuordnung
- Karten ggf. umhängen, wenn Konsens sich ändert

Ziel: Gruppiertes Verständnis für Funktionsbereiche, Priorisierung und Lückenanalyse.

7. Abschlussrunde (5 Min)

Moderator: "Vielen Dank für eure Beteiligung! Gibt es abschließend noch etwas, das ihr loswerden möchtet, eine Idee, ein Vergleich oder eine Frage?"

Optional: Wunsch-Features auf Klebezetteln an "Feature-Wall" sammeln lassen.

Nachbereitung

- Auswertung der Karteninhalte nach Kategorien
- Gewichtung nach Häufigkeit oder Dringlichkeit
- Verwendung für MVP/Prototyp