투빅스 3주차 교육 ToBig's 8기 김은서

Support Vector Machine

onte nts

Unit 01 | SVM Intro

Unit 02 | Hyperplane

Unit 03 | SVM의 종류

Unit 04 | Kernel

Support Vector Machine

분류 오차를 줄이면서 동시에 여백(Margin)을 최대로 하는 결정 경계(Decision Boundary)를 찾는 분류기

Support Vector Machine

Support Vector Machine

분류 오차를 줄이면서 동시에 여백(Margin)을 최대로 하는 결정 경계(Decision Boundary)를 찾는 분류기

A hyperplane in R² is a line

$$w = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

decision surface

Let's say f(x) = w * x + b

A point x on the boundary has

$$f(x) = w * x + b = 0$$

A positive point x has

$$f(x) = w * x + b = a, \qquad a > 0$$

$$x = x_p + r * \frac{w}{||w||}, \qquad f(x_p) = 0$$

$$f(x) = w * x + b = w \left(x_p + r * \frac{w}{||w||} \right) + b$$

$$= w * x_p + b + r * \frac{w*w}{||w||}$$

$$= r * ||w|| = a$$

$$\forall \exists |r = \frac{f(x)}{||w||} = \frac{a}{||w||}$$

거리
$$r = \frac{f(x)}{||w||} = \frac{a}{||w||}$$

여기서
$$a$$
 는 임의의 상수, $a = 1$ 해도 문제 X

$$margin = 2r = \frac{2}{||w||}$$

SVM에서 목적은 바로 이 margin의 최대화

- → ||w||의 최소화
- $\rightarrow \frac{||\mathbf{w}||^2}{2}$ 의 최소화
- Quardratic programming으로 해결가능

분류 기준 #1 Error 허용 여부 **Hard Margin SVM** Error case가 하나도 없는 SVM Soft Margin SVM Error case를 허용하는 SVM

분류 기준 #2 결정 경계의 형태

선형 SVM

비선형 SVM

Hard Margin SVM

Error case가 하나도 없는 SVM

Soft Margin SVM

Error case를 허용하는 SVM

Hard Margin SVM Error case가 하나도 없는 SVM

Soft Margin SVM Error case를 허용하는 SVM

지금까지 설명한 SVM 방식

- ✓ 매우 엄격하게 두 개의 클래스를 분리하는 초평면을 구하는 방법.
- ✓ 모든 값들은 이 초평면을 사이에 두고 무조건 한 클래스에 속해야 하는데, 몇 개의 노이즈로 인해 두 그룹을 구별하는 초평면을 잘 못 구할 수도 있고, 찾지 못하는 경우도 발생!
- → 설계는 가능하나 현실에서는 적용 힘듦

Soft Margin SVM Error case를 허용하는 SVM

에러를 어느 정도 인정하고 최소화 시키도록!

→Loss function 사용해서 계산.

두 가지 방법!!

<Soft Margin SVM>

Option 1)

에러 발생 개수 만큼 패널티를 계산하자

 $min||\mathbf{w}|| + C*\#error$

 \rightarrow 0-1 Loss

<Soft Margin SVM>

Option 2)

에러 개수로만 판단하기엔 비합리적이므로 Decision boundary에서 얼마나 떨어져 있는지 거리 계산 + 에러의 개수로 판단하자

Slack variable 도입을 통해! ξ = 잘못 분류된 정도

$$min\|\mathbf{w}\| + C*\sum \xi j$$

→ Hinge Loss

<u>Unit</u> 03 | SVM의 종류

Soft Margin SVM Error case를 허용하는 SVM

- 0-1 Loss $\rightarrow min||\mathbf{w}|| + C*\#error$
- Hinge Loss $\rightarrow min||\mathbf{w}|| + C*\sum \xi j$

C는 constant term으로 패널티를 주는 강도를 의미함

→ C라는 새로운 parameter를 감당해야 하는 단점!!

비선형 SVM

$$\varphi(x) = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$

비선형 SVM

차원을 높여 선형인 것처럼!

→ 차원이 늘어날수록 계산량이 기하급수적으로 증가하기 때문에 좋은 방법 X

비선형 SVM

$$\varphi(x) = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$

차원을 높여 선형인 것처럼!

→ 차원이 늘어날수록 계산량이 기하급수적으로 증가하기 때문에 좋은 방법 X

Kernel 이용해서 해결!

Kernel? 커널??

SVM은 두 범주를 잘 분류하면서 Margin이 최대화된 초평면(hyperplane)을 찾는 기법!

기본적으로 선형 분류. 하지만 어떤 직선을 그어도 두 범주를 <mark>완벽하게 분류하기 어려운 경우가 多</mark>

원공간(input space)의 데이터를 선형분류가 가능하 고차원 공간 (Feature space)으로 매핑한 뒤, 두 범주를 분류하는 초평면을 찾는다.

Kernel? 커널??

두 벡터를 각각 다른차원으로 보내서 내적(연산) $K(x_i, x_i) = \varphi(x_i) \cdot (x_i)$

Kernel trick?

고차원으로 보낸 뒤 벡터의 내적을 계산하는 것과 내적을 한 뒤 고차원으로 보내는 것은 결과적으로 같은 값

→ 고차원 변환 없이 계산할 수 있는 커널 함수 사용

Kernel함수의 종류

$$K(\mathbf{X}_{i}, \mathbf{X}_{j}) = \begin{cases} \mathbf{X}_{i} \cdot \mathbf{X}_{j} & \text{Linear} \\ (\gamma \mathbf{X}_{i} \cdot \mathbf{X}_{j} + \mathbf{C})^{d} & \text{Polynomial} \\ \exp(-\gamma ||\mathbf{X}_{i} - \mathbf{X}_{j}||^{2}) & \text{RBF} \\ \tanh(\gamma \mathbf{X}_{i} \cdot \mathbf{X}_{j} + \mathbf{C}) & \text{Sigmoid} \end{cases}$$

Kernel함수의 종류

$$K(\mathbf{X_i}, \mathbf{X_j}) = \begin{cases} \mathbf{X_i} \cdot \mathbf{X_j} & \text{Linear} \\ (\gamma \mathbf{X_i} \cdot \mathbf{X_j} + \mathbf{C})^{\text{d}} & \text{Polynomial} \\ \exp\left(-\gamma \mid \mathbf{X_i} - \mathbf{X_j} \mid^2\right) & \text{RBF} \\ \tanh\left(\gamma \mathbf{X_i} \cdot \mathbf{X_j} + \mathbf{C}\right) & \text{Sigmoid} \end{cases} \rightarrow \text{성능이 좋아 자주 사용되는}$$

각 커널마다 최적화 도와주는 매개변수들 존재

RBF 커널의 경우 , gamma 변수 조정 필요!

Gamma? → 하나의 데이터 샘플이 영향력을 행사하는 거리를 결정!

Gaussian 함수의 표준편차와 관련이 있는데, 를 수록 작은 표준편차를 갖는다.

Gamma 매개변수는 결정 경계의 곡률을 조정한다!

C 매개변수는 데이터 샘플들이 다른 클래스에 놓이는 걸 허용하는 정도를 결정!

Gamma와 C 두 parameter 모두 적정값을 찾아야 함!

참고 자료

- ① http://yamalab.tistory.com/40 [티스토리 svm 포스팅]
- 2 http://blog.naver.com/PostView.nhn?blogId=tjdudwo93&logNo=221051481147
- 3 http://kkn1220.tistory.com/140
- 4 https://www.dtreg.com/solution/view/20
- ⑤ https://www.youtube.com/watch?v=m2a2K4lprQw [gamma parameter 설정 Youtube]
- ⑥ 좋은 자료!!

Q & A

들어주셔서 감사합니다.