MINISTERIO DE CIENCIA Y TECNOLOGIA

INSTALACIONES A MUY BAJA TENSIÓN

ITC-BT-36

Página 1 de 5

0. ÍNDICE

0.	ÍNDICE	1
1.	GENERALIDADES	2
TE	REQUISITOS GENERALES PARA LAS INSTALACIONES A MUY BAJA NSIÓN DE SEGURIDAD (MBTS) Y MUY BAJA TENSIÓN DE PROTECCIÓN BTP)	2
	2.1 Fuentes de alimentación2.2 Condiciones de instalación de los circuitos	
	REQUISITOS PARTICULARES PARA LAS INSTALACIONES A MUY BAJA NSIÓN DE SEGURIDAD (MBTS)	4
	REQUISITOS PARTICULARES PARA LAS INSTALACIONES A MUY BAJA NSIÓN DE PROTECCIÓN (MBTP)	5

MINISTERIO
DE CIENCIA Y
TECNOLOGIA

ITC-BT-36

Página 2 de 5

1. GENERALIDADES

A los efectos de la presente instrucción se consideran tres tipos de instalaciones a muy baja tensión: Muy Baja Tensión de Seguridad (MBTS); Muy Baja Tensión de Protección (MBTP) y Muy Baja Tensión Funcional (MBTF).

Las instalaciones a Muy Baja Tensión de Seguridad comprenden aquellas cuya tensión nominal no excede de 50 V en c.a. ó 75 V en c.c, alimentadas mediante una fuente con aislamiento de protección, tales como un transformador de seguridad conforme a la norma UNE-EN 60742 o UNE-EN 61558-2-4 o fuentes equivalentes, cuyos circuitos disponen de aislamiento de protección y no están conectados a tierra. Las masas no deben estar conectadas intencionadamente a tierra o a un conductor de protección.

Las instalaciones a Muy Baja Tensión de Protección comprenden aquellas cuya tensión nominal no excede de 50 V en c.a. ó 75 V en c.c, alimentadas mediante una fuente con aislamiento de protección, tales como un transformador de seguridad conforme a la norma UNE-EN 60742 o UNE-EN 61558-2-4 o fuentes equivalentes, cuyos circuitos disponen de aislamiento de protección y, por razones funcionales, los circuitos y/o las masas están conectados a tierra o a un conductor de protección. La puesta a tierra de los circuitos puede ser realizada por una conexión adecuada al conductor de protección del circuito primario de la instalación.

Las instalaciones a Muy Baja Tensión Funcional comprenden aquellas cuya tensión nominal no excede de 50 V en c.a. ó 75 V en c.c, y que no cumplen los requisitos de MBTS ni de MBTP. Este tipo de instalaciones bien, están alimentadas por una fuente sin aislamiento de protección, tal como fuentes con aislamiento principal, o bien sus circuitos no tienen aislamiento de protección frente a otros circuitos. La protección contra los choques eléctricos de este tipo de instalaciones deberá realizarse conforme a lo establecido en la ITC-BT-24, para circuitos distintos de MBTS o MBTP.

2. REQUISITOS GENERALES PARA LAS INSTALACIONES A MUY BAJA TENSIÓN DE SEGURIDAD (MBTS) Y MUY BAJA TENSIÓN DE PROTECCIÓN (MBTP)

2.1 Fuentes de alimentación

Estas instalaciones deben estar alimentadas mediante una fuente que incorpore:

- un transformador de aislamiento de seguridad conforme a la UNE-EN 60.742. Para el caso de la MBTP, el transformador puede ser con aislamiento principal con pantalla de separación entre primario y secundario puesta a tierra, siempre que exista un sistema de protección en el circuito primario por corte automático de la alimentación o

MINISTERIO
DE CIENCIA Y
TECNOLOGIA

ITC-BT-36

Página 3 de 5

- una fuente corriente que asegure un grado de protección equivalente al del transformador de seguridad anterior (por ejemplo, un motor-generador con devanados con separación equivalente) o
- una fuente electroquímica (pilas o acumuladores), que no dependa o que esté separada con aislamiento de protección de circuitos a MBTF o de circuitos de tensión más elevada. o
- otras fuentes que no dependan de la MBTF o circuitos de tensión más elevada, por ejemplo grupo electrógeno.
- determinados dispositivos electrónicos en los cuales se han adoptado medidas para que, en caso de primer defecto, la tensión de salida no supere los valores correspondientes a Muy Baja Tensión.

Cuando la intensidad de cortocircuito en los bornes del circuito de utilización de la fuente de energía sea inferior a la intensidad admisible en los conductores que forman este circuito, no será necesario instalar en su origen dispositivos de protección contra sobreintensidades.

2.2 Condiciones de instalación de los circuitos

La separación de protección entre los conductores de cada circuito MBTS o MBTP y los de cualquier otro circuito, incluidos los de MBTF, debe ser realizada por una de las disposiciones siguientes:

- La separación física de los conductores
- Los conductores de los circuitos de muy baja tensión MBTS o MBTP, deben estar provistos, además de su aislamiento principal, de una cubierta no metálica.
- Los conductores de los circuitos a tensiones diferentes, deben estar separados entre sí por una pantalla metálica conectada a tierra o por una vaina metálica conectada a tierra.
- Un cable multiconductor o un agrupamiento de conductores, pueden contener circuitos a tensiones diferentes, siempre que los conductores de los circuitos MBTS o MBTP estén aislados, individual o colectivamente, para la tensión más alta que tienen que soportar.

Las tomas de corriente de los circuitos de MBTS y MBTP deben satisfacer las prescripciones siguientes:

- Los conectores no deben poder entrar en las bases de toma de corriente alimentadas por otras tensiones.
- Las bases deben impedir la introducción de conectores concebidos para otras tensiones; v
- Las bases de enchufe de los circuitos MBTS no deben llevar contacto de protección, las de los circuitos MBTP si pueden llevarlo.
- Los conectores de los circuitos MBTS, no deben poder entrar en las bases de enchufe MBTP .
- Los conectores de los circuitos MBTP, no deben poder entrar en las bases de enchufe MBTS .

MINISTERIO
DE CIENCIA Y
TECNOLOGIA

ITC-BT-36

Página 4 de 5

A todos los efectos, un circuito MBTF se considera siempre como circuito de tensión diferente.

No es necesario en este tipo de instalaciones seguir las prescripciones fijadas en la instrucción ITC-BT-19 para identificación de los conductores ni seguir las prescripciones de la instrucción ITC-BT-06 para los requisitos de distancia de conductores al suelo y la separación mínima entre ellos.

Los cables enterrados se situarán entre dos capas de arena o de tierra fina cribada, de 10 a 15 centímetros de espesor.

Cuando los cables no presenten una resistencia mecánica suficiente, se colocarán en el interior de conductos que los protejan convenientemente.

Para las instalaciones de alumbrado, la caída de tensión entre la fuente de energía y los puntos de utilización, no será superior al 5 %.

3. REQUISITOS PARTICULARES PARA LAS INSTALACIONES A MUY BAJA TENSIÓN DE SEGURIDAD (MBTS)

Las partes activas de los circuitos de MBTS no deben ser conectadas eléctricamente a tierra, ni a partes activas, ni a conductores de protección que pertenezcan a circuitos diferentes.

Las masas no deben conectarse intencionadamente ni a tierra, ni a conductores de protección o masas de circuitos diferentes, ni a elementos conductores. No obstante, para los equipos que, por su disposición, tengan conexiones francas a elementos conductores, la presente medida sigue siendo válida si puede asegurarse que estas partes no pueden conectarse a un potencial superior a 50V en corriente alterna o 75V en corriente continua.

Por otro lado, si hay masas de circuitos MBTS que son susceptibles de ponerse en contacto con masas de otros circuitos, la protección contra los choques eléctricos ya no se basa en la medida exclusiva de protección para MBTS, sino en las medidas de protección correspondientes a estas últimas masas.

Cuando la tensión nominal del circuito es superior a 25V en corriente alterna o 60V en corriente continua sin ondulación, debe asegurarse la protección contra los contactos directos mediante uno de los métodos siguientes:

- Por barreras o envolventes que presenten como mínimo un grado de protección IP2X; o IP XXB según UNE 20.324.
- Por un aislamiento que pueda soportar una tensión de 500 voltios durante un minuto.

Para tensiones inferiores a las anteriores no se requiere protección alguna contra contactos directos, salvo para determinadas condiciones de influencias externas.

MINISTERIO
DE CIENCIA Y
TECNOLOGIA

Página 5 de 5

La corriente continua sin ondulación es aquella en la que el porcentaje de ondulación no supera el 10% del valor eficaz.

4. REQUISITOS PARTICULARES PARA LAS INSTALACIONES A MUY BAJA TENSIÓN DE PROTECCIÓN (MBTP)

La protección contra los contactos directos debe quedar garantizada:

- Por barreras o envolventes que presenten como mínimo un grado de protección IP2X; o IP XXB según UNE 20.324.
- Por un aislamiento que pueda soportar una tensión de 500 voltios durante un minuto.

No obstante, no se requiere protección contra los contactos directos para equipos situados en el interior de un edificio en el cual las masas y los elementos conductores, simultáneamente accesibles, estén conectados a la misma toma de tierra y si la tensión nominal no es superior a:

- 25V eficaces en corriente alterna ó 60V en corriente continua sin ondulación, siempre y cuando el equipo se utilice únicamente en emplazamientos secos, y no se prevean contactos francos entre partes activas y el cuerpo humano o de un animal.
- 6V eficaces en corriente alterna ó 15V en corriente continua sin ondulación, en los demás casos.