Машинное обучение, ФКН ВШЭ Теоретическое домашнее задание №6

Задача 1. Для двух одномерных нормальных распределений $\mathcal{N}(x \mid \mu_1, \sigma_1), \ \mathcal{N}(x \mid \mu_2, \sigma_2)$ найдите дивергенцию Кульбака-Лейблера.

$$\mathrm{KL}(\mathcal{N}(x \mid \mu_1, \sigma_1) || \mathcal{N}(x \mid \mu_2, \sigma_2)) -?$$

Задача 2. Рассмотрим метод восстановления плотности распределения с помощью гистограмм. Разобьем все пространство на непересекающиеся области δ_i . Каждому δ_i ставится в соответствие вероятность h_i . По заданной выборке $\{x_i\}_{i=1}^{\ell}$, найдите оптимальные значения h_i с помощью метода максимального правдоподобия.

Задача 3. Рассмотрим общую схему ЕМ-алгоритма, выводимую через разложение

$$\log p(X \mid \Theta) = \mathcal{L}(q, \Theta) + \mathrm{KL}(q \parallel p).$$

На Е-шаге ищется распределение q, доставляющее максимум нижней оценке $\mathcal{L}(q,\Theta^{\mathrm{old}})$ при фиксированном Θ^{old} .

Модифицируем Е-шаг: будем теперь искать максимум не среди всех возможных распределений, а лишь среди вырожденных, то есть присваивающих единичную вероятность одной точке и нулевую вероятность всем остальным. Как будут выглядеть Е- и М-шаги в этом случае?

Задача 4. Наблюдается выборка бинарных значений $y=(y_1,\ldots,y_n),\ y_i\in\{0,1\}.$ Все элементы выборки генерируются независимо, но известно, что в некоторый момент z меняется частота генерации единиц. Т.е., для всех $i< z\ P(y_i=1)=\theta_1,$ а для всех $i\geqslant z\ P(y_i=1)=\theta_2.$ Необходимо вывести формулы для ЕМ-алгоритма, где z—скрытая переменная, а θ_1,θ_2 — параметры распределений.

Задача 5. Аналогично рассмотренному на семинаре релаксированному методу минимизации функционала RatioCut (A_1, \ldots, A_k) , сформулируйте и решите релаксированную задачу для минимизации функционала при k=2:

$$\operatorname{Ncut}(A_1, \dots, A_k) = \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A}_i)}{\operatorname{vol}(A_i)}, \quad \operatorname{vol}(A) = \sum_{i \in A} d_i.$$