Understanding the Overall Data Trends

Mohammed Osman
SENIOR SOFTWARE DEVELOPER

@cognitiveosman www.cognitiveosman.com

Overview

Revisiting ML pipeline

Why data analysis?

Data Analysis techniques

- Numerical
- Graphical

Demos

Data Preparation

Problem definition

Data Sourcing Data Preparation Data Segregation

Model Training

Model Evaluation

Model Deployment

Model Monitoring

Interdisciplinary Field

Data Analysis

Data analysis is a process of inspecting, cleansing, transforming and modeling data with the goal of discovering useful information, informing conclusion and supporting decision-making.

Wikipedia

Why Data Preparation and Analysis?

Why Data Analysis: Understanding Our Data

Why Data Analysis: Evaluating Our ML Models

Why Data Analysis: Presenting Our Results

Exploratory Data Analysis

Graphical Summaries

Numerical Summaries

Univariant Numerical Measures

Story: Fair Pay Assessment

Disclaimer: Company name is fictitious

How Much Weber PLC Pays?

Employee	Salary
Adam	500\$
Sara	300 \$
Dina	10000\$
Ali	2000\$
Hans	80000\$
Carl	300 \$
John	6000\$
Lisa	1000\$
Maya	12000\$
Khalid	3000\$

Mean

$$Mean = \frac{Sum \text{ of Values}}{Number \text{ of Values}}$$

Weber PLC Pay Mean:
$$500 + 300 + \cdots + 3000$$

10

10

= 11510 \$

Adam, Sara and Carl: 500, 300\$

Hans: 80000\$

- + Mean considers all the values
- Mean is sensitive for extreme values (Carl and Hans salaries)

Median

Median is the value separating lower half from the upper half of the data

Weber PLC Pay Median:

300,300,500,1000,<mark>2000,3000</mark>,6000,10 000,12000,80000

= 2500 \$

Hans, Maya, Dina: 80000, 12000, 10000\$

- + Insensitive to extreme values
- Does not consider dataset distribution

Percentiles

Percentile is a measure used indicating certain percentage of the dataset is below that value.

```
25%, 50% (Median) and 75%
```

300

300

1000

6000

12000

80000

- + More expressive
- Multiple measures

Standard Deviation

Standard deviation is measure that tells the typical difference between the a data value and the mean

$$\sigma = \sqrt{\frac{\sum (\bar{x} - u)^2}{N}}$$

Weber PLC Standard deviation = 23172 \$

- + Considers all items
- + Considers data distribution

Harder to calculate

Other Measures

Maximum and Minimum = 80,000 & 300

Count = 10

Mode = 300

Range = 80000-300 = 79700

Outliers = 80000 (larger than mean + 2*standard deviation)

Bivariate Measures

Looking from more than one angle!

Correlation

Is a measure defining to what extent two or more variables are linearly related

Correlation Cases

Positive Correlation

Negative Correlation

No Correlation

Source: http://bit.ly/2MxmFmT

Correlation

Is a measure defining to what extent two or more variables fluctuate together

It can be (strong) positive or (strong) negative correlation or no correlation

$$Cor(x,y) = \frac{\sum (\bar{x} - u_x)(\bar{y} - u_y)}{\sqrt{\sum (\bar{x} - u_x)^2 (\bar{y} - u_y)^2}}$$

Weber PLC correlation between Salary and Years of Experience= 0.94

Salary	Years of Experience
300	1
300	2
500	2
1000	3
2000	4
3000	4
6000	4
10000	7
12000	10
80000	22

The Correlation Fallacy

Correlation does not imply casuation! ("with this, therefore because of this" fallacy)

Think of Weber PLC case

Demo

To be updated

Graphical Summaries

Mountains

Trees

Lakes

Lighthouse

Greenness

Clear Sky

Cottages

Picture superiority effect

Mike Utilizies Research

Histograms

Density (Distribution) Graphs

Comparison

Common Distribution Types

Normal Distribution

Skewed Distribution

Exponential Distribution

Why Histograms and Density Graphs?

Detecting impossible values

Identifying the shape of the data

Detecting errors and mistakes in the data

Box and Whisker Plot

Scatter Plot

Demo

To be updated

Summary

Refreshed our minds

Morale of data preparation

Exploratory data analysis

- Numerical (Univariate, Bivariate)
- Graphical

Demos

