The Action Potential

"Spikes"

Computational Neuroscience University of Bristol

M Rule

Learning outcomes:

- Describe what an action potential is, what challenges it solves, etc.
- Describe the phases of an action potential, and the roles of various ionic currents and channels in each phase
- ► Distinguish mechanisms of relative vs. absolute refractory period

Neurons use spikes for reliable long-range communication

Oscilloscope trace from Action Potentials Recorded from Inside a Nerve Fibre, Hodgkin and Huxley (1939): "Action potential recorded between inside and outside of axon. Time marker 500 cycles/sec. The vertical scale indicates the potential of the internal electrode in millivolts, the sea water outside being taken at zero potential."

Neurons use spikes for reliable long-range communication

The action potential ("spike") is a sharp rise and fall in cell's membrane voltage that's produced when the cell exceeds a threshold voltage.

All-or-nothing, binary $\{0, 1\}$

▶ Robust: regenerative wave that can travel long distances along axons/dendrites without decay

intracellular

HCO₃⁻ HPO₄^{1-,2-} organic anions

Leak Channels

The Action Potential

Initiation Voltage-gated Na⁺ channels have a threshold of \sim -55 mV; If the v_m exceeds this, Na⁺ channels open. Na⁺ flows into cell, pulling v_m toward $E_{\text{Na}^+} \sim$ +60 mV

Depolarisation The cell spikes if positive feedback from voltage-gated Na⁺ channels overwhelms other currents: v_m , crossing 0 mV and reaching a peak at $\sim +30-40 \text{ mV}$

Peak v_m stops rising because the depolarisation...

- ► Inactivates voltage-gated Na⁺ channels (Na⁺ current stops)
- ▶ Opens voltage-gated K⁺ channels (threshold \sim -40 -30 mV), leading to ...

Repolarisation K⁺ efflux pulls v_m toward $E_{K^+} \sim -95$ mV;

Hyperpolarization Voltage-gated K⁺ channels close slowly, continue to pull cell below $v_{\rm rest}$ to $\sim -80 - -75$ mV.

Refractory period

Absolute

- ▶ ~ 1–2 ms
- Enough voltage-gated Na⁺ channels are inactive that no physiological input can trigger a new spike

Relative

- ► ~ 2–5 ms
- ► Voltage-gated Na⁺ channels have started to de-inactivate
- ► Some voltage-gated K⁺ channels remain open
- ► Cell remains hyperpolarized, and requires a strong input to spike.

Exam confusions

The Na^+/K^+ ATPase is *not* immediately required to repolarise the neuron after an action potential. Each spike uses a small amount of the electrical potential stored in Na^+ and K^+ gradients.

Exam confusions

Try not to confuse

- voltage-gated Na⁺ and K⁺ channels involved in the action potential
- ligand-gated ionotropic neurotransmitter receptors (synapse: chemical → electrical)
- voltage-gated CA²⁺ channels in axonal terminals
 - (synapse: electrical \rightarrow chemical)

what voltage gates and ion fluxes are involved in each phase?

More realism

Action potentials travel out along axons

- ► Regenerative soliton wave
- ► Refractory period ensures directed propagation

Cable equation

Saltatory conduction

- ► Myelin
- Nodes of Ranvier

Neural computation and communication is implemented via electrochemical reactions

Signal transmission via spikes

- Spike initiation and propagation: via voltage-gated ion channels
- $extbf{ extit{Pre-synaptic:}}$ axonal terminal depolarises $extit{ o}$ neurotransmitter release
- $lackbox{\it Post-synaptic:}$ chemical signals ightarrow electrical currents in the dendrite
- 4 (repeat)

