Логика-1, 1 курс М

Виктор Львович Селиванов 1

¹ФМКН СП6ГУ

Весенний семестр, 2024

v.selivanov@spbu.ru

Важная дополнительная информация: https://github.com/vseliv/Logic1-2023/tree/main

Литература

- 1. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. 4-е изд., доп. М.: МЦНМО, 2012. 240 с.
- 2. И.А. Лавров, Л.Л. Максимова, Задачи по теории множеств, математической логике и теории алгоритмов. Издание четвертое, М.: Наука, 2001. 256 с.
- 3. Дж. Шенфилд. Математическая логика. М.: Наука, 1975. 528 с.

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

• Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа; будем считать, что σ содержит хотя бы один предикатный символ.

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

- Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число местность этого символа; будем считать, что σ содержит хотя бы один предикатный символ.
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

- Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число местность этого символа; будем считать, что σ содержит хотя бы один предикатный символ.
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- ightharpoons Логические символы $\land \lor \to \lnot \forall \exists$

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

- Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число местность этого символа; будем считать, что σ содержит хотя бы один предикатный символ.
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- ightharpoons Логические символы $\land \lor \to \lnot \forall \exists$
- Вспомогательные символы (),

Осмысленные выражения $\Pi \Pi^{\sigma}$

тоже терм.

 σ -ТЕРМЫ: любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$

Осмысленные выражения $\Pi\Pi^{\sigma}$

σ -ТЕРМЫ:

любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$ тоже терм.

σ -ФОРМУЛЫ:

суть формулы.

выражение $P(t_1,\ldots,t_n)$, где t_1,\ldots,t_n — термы, а P - n-местный предикатный символ из σ , является формулой; если φ и ψ — формулы, а x — переменная, то выражения $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $\neg \varphi$, $\forall x \varphi$, $\exists x \varphi$

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ; $FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ;

 $FV(\forall x \varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Переменные, которые входят в формулу, но не являются свободными, называются связанными. Формулы без свободных переменных называются предложениями.

Запись $\varphi=\varphi(x_1,\ldots,x_m)$ означает, что $FV(\varphi)\subseteq\{x_1,\ldots,x_m\}$. Аналогично для термов.

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to \{\text{И},\text{Л}\},$ а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to \{\mathsf{VI},\mathsf{II}\}$, а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

Изоморфизмом $\mathbb A$ на $\mathbb B$ называется биекция g множества A на множество B такая, что $P^{\mathbb A}(a_1,\dots,a_n)=P^{\mathbb B}(g(a_1),\dots,g(a_n))$ и $g(f^{\mathbb A}(a_1,\dots,a_n))=f^{\mathbb B}(g(a_1),\dots,g(a_n))$ для любых $a_1,\dots,a_n\in\mathbb A$.

Структуры \mathbb{A} и \mathbb{B} называются изоморфными ($\mathbb{A} \simeq \mathbb{B}$), если существует изоморфизм \mathbb{A} на \mathbb{B} .

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathrm N, \mathrm J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x), f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu});$$

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathsf N, \mathsf J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x)$$
, $f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $P(t_1,\ldots,t_n)^{\mathbb{A},\nu} = P^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $(\varphi \wedge \psi)^{\mathbb{A},\nu} = \varphi^{\mathbb{A},\nu} \wedge \psi^{\mathbb{A},\nu}$, аналогично для \vee,\to,\neg ;

$$(\forall x\varphi)^{\mathbb{A},\nu} = \bigwedge_{a \in A} \varphi^{\mathbb{A},\nu_a^x} \text{ in } (\exists x\varphi)^{\mathbb{A},\nu} = \bigvee_{a \in A} \varphi^{\mathbb{A},\nu_a^x}$$

где ν_a^x — означивание, полученное из ν изменением значения x на a.

Значения термов и формул

Пусть $t = t(x_1, \ldots, x_m)$ и $\varphi = \varphi(x_1, \ldots, x_m)$.

- Если означивания μ и ν согласованы на x_1,\dots,x_m , то $t^{\mathbb{A},\mu}=t^{\mathbb{A},\nu}$ и $\varphi^{\mathbb{A},\mu}=\varphi^{\mathbb{A},\nu}$. Поэтому вместо $t^{\mathbb{A},\nu}$ часто пишут $t^{\mathbb{A}}(x_1/a_1,\dots,x_m/a_m)$ или, короче, $t^{\mathbb{A}}(a_1,\dots,a_m)$, где $a_i=\nu(x_i)$; аналогично для формул. Вместо $\varphi^{\mathbb{A}}(a_1,\dots,a_m)=\mathbb{N}$ часто пишут $\mathbb{A}\models\varphi(a_1,\dots,a_m)$.
- Если g изоморфизм $\mathbb A$ на $\mathbb B$, то $g(t^{\mathbb A, \nu}) = t^{\mathbb B, g \circ \nu}$ и $\varphi^{\mathbb A, \nu} = \varphi^{\mathbb B, g \circ \nu}$. Иными словами, $g(t^{\mathbb A}(a_1, \dots, a_m)) = t^{\mathbb B}(g(a_1), \dots, g(a_m))$ и $\varphi^{\mathbb A}(a_1, \dots, a_m) = \varphi^{\mathbb B}(g(a_1), \dots, g(a_m))$.
- Если $\mathbb{A} \simeq \mathbb{B}$, то эти структуры элементарно эквивалентны ($\mathbb{A} \equiv \mathbb{B}$), т.е. в них истинны одни и те же σ -предложения.

Определимость и автоморфизмы

Предикат $P(x_1,\ldots,x_k)$ на σ -структуре $\mathbb A$ называется определимым, если он определяется подходящей σ -формулой $\varphi(x_1,\ldots,x_k)$, т.е. $P(a_1,\ldots,a_k)=\varphi^{\mathbb A}(a_1,\ldots,a_k)$ для любых $a_1,\ldots,a_k\in A$.

Функция на A определима, если определим ее график. Элемент $a \in A$ определим, если множество $\{a\}$ (равносильно, предикат x=a) определимо. au-Структура $\mathbb B$ определима в $\mathbb A$, если определимы ее универсум и интерпретации всех au-символов.

Определимость и автоморфизмы

Предикат $P(x_1,\ldots,x_k)$ на σ -структуре $\mathbb A$ называется определимым, если он определяется подходящей σ -формулой $\varphi(x_1,\ldots,x_k)$, т.е. $P(a_1,\ldots,a_k)=\varphi^{\mathbb A}(a_1,\ldots,a_k)$ для любых $a_1,\ldots,a_k\in A$.

Функция на A определима, если определим ее график. Элемент $a \in A$ определим, если множество $\{a\}$ (равносильно, предикат x=a) определимо. au-Структура $\mathbb B$ определима в $\mathbb A$, если определимы ее универсум и интерпретации всех au-символов.

Определимость в структуре $\mathbb A$ связана с автоморфизмами этой структуры, которые составляют группу $Aut(\mathbb A)$: любой определимый предикат инвариантен относительно всех автоморфизмов. Это свойство часто используют для доказательства неоределимости: если предикат не инвариантен, то он не определим.

Общезначимость и ее варианты

- ho общезначима (тождественно истинна), если $\varphi^{\mathbb{A}, \nu} = \mathbb{N}$ для любых \mathbb{A} и ν .
- $ightharpoonup \varphi$ и ψ равносильны $(\varphi \equiv \psi)$, если $\varphi^{\mathbb{A},\nu} = \psi^{\mathbb{A},\nu}$ для любых \mathbb{A} и ν .
- ▶ Моделью множества предложений T называется структура, в которой все предложения из T истинны.
- ▶ Предложение φ логически следует из множества педложений T ($T \models \varphi$), если φ истинно в любой модели множества T.

Общезначимость и ее варианты

- ightharpoonup arphi общезначима $\iff \models arphi$.
- $ho = \psi \iff (\varphi \to \psi) \land (\psi \to \varphi)$ общезначима.
- ightharpoonup arphi(ar x) общезначима $\iff orall ar x arphi$ общезначима.
- $T \models (\varphi \to \psi) \iff T \cup \{\varphi\} \models \psi.$
- $ightharpoonup T \models arphi \iff T \cup \{ \neg arphi \}$ не имеет модели.
- $lacktriangledown T \models arphi \iff \bigwedge T
 ightarrow arphi$ общезначима, где T конечное множество предложений.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $J \in F \vee \bar{J} \in F$ для любого $J \subseteq I$, где $\bar{J} = I \setminus J$.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $J \in F \vee \bar{J} \in F$ для любого $J \subseteq I$, где $\bar{J} = I \setminus J$.

ПРЕДЛОЖЕНИЕ.

- 1. Ультрафильтры на I это в точности максимальные фильтры по включению.
- 2. Если F ультрафильтр, то $J \not\in F \iff \bar{J} \in F$ и $J \cup K \in F \iff (J \in F \lor K \in F) \in F$, для любых $J, K \subseteq I$.
- 3. Любой фильтр на I содержится в некотором ультрафильтре.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

ТЕОРЕМА. Для любых ультрафильтра F, σ -формулы $\varphi(x_1,\ldots,x_m)$ и $a_1,\ldots,a_m\in A$ имеем: $\mathbb{A}_F\models\varphi([a_1],\ldots,[a_m])\iff \{i\mid \mathbb{A}_i\models\varphi(a_1(i),\ldots,a_m(i))\}\in F.$

В частности, при m=0: $\mathbb{A}_F\models \varphi\iff \{i\mid \mathbb{A}_i\models \varphi\}\in F.$

Теорема компактности

TEOPEMA. Если любое конечное подмножество данного множества предложений T имеет модель, то и все множество T имеет модель.

Теорема компактности

TEOPEMA. Если любое конечное подмножество данного множества предложений T имеет модель, то и все множество T имеет модель.

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

Теорема компактности

TEOPEMA. Если любое конечное подмножество данного множества предложений T имеет модель, то и все множество T имеет модель.

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

Аксиомы равенства
$$\forall x(x=x)$$
, $\forall x \forall y(x=y \rightarrow y=x)$, $\forall x \forall y \forall z(x=y \land y=z \rightarrow x=z)$, $\forall x_1 \forall y_1 \ldots \forall x_n \forall y_n (x_1=y_1 \land \ldots \land x_n=y_n \rightarrow f(x_1,\ldots,x_n)=f(y_1,\ldots,y_n))$, $\forall x_1 \forall y_1 \ldots \forall x_n \forall y_n (x_1=y_1 \land \ldots \land x_n=y_n \land P(x_1,\ldots,x_n) \rightarrow P(y_1,\ldots,y_n))$ истинны в любой нормальной структуре.

Нормальные модели, компактность для них

TEOPEMA. Если теория содержит аксиомы равенства и имеет модель, то она имеет и нормальную модель.

Нормальные модели, компактность для них

TEOPEMA. Если теория содержит аксиомы равенства и имеет модель, то она имеет и нормальную модель.

Следующий результат есть теорема компактности для нормальных моделей.

TEOPEMA. Если любое конечное подмножество данного множества предложений T сигнатуры с равенством имеет нормальную модель, то и все множество T имеет нормальную модель.

Для доказательства надо применить теорему компактности к множеству $T \cup E_{\sigma}$, где E_{σ} — аксиомы равенства, и профакторизовать полученную модель $\mathbb A$ по $=^{\mathbb A}$.