Equações de Navier-Stokes e turbulência

Ricardo M. S. Rosa Instituto de Matemática Universidade Federal do Rio de Janeiro (IM-UFRJ)

> 24 a 27 de fevereiro de 2003 Programa de Verão do LNCC

> > 1

Título alternativo:

Métodos matemáticos em dinâmica dos fluidos

Tópicos:

- Teoria estatística convencional de turbulência
- Sistemas dinâmicos
- Teoria matemática das equações de Navier-Stokes
- Formulação matemática da teoria convencional de turbulência

1. Conceitos básicos da teoria convencional de turbulência

- Ordem e médias estatísticas
- Turbulência homogênea e isotrópica
- Espectro de energia
- Cascata de energia
- A teoria homogêna isotrópica local de Kolmogorov
- estruturas coerentes e intermitência
- Graus de liberdade
- Lei de dissipação de energia
- Número de Reynolds, lei de Moore e DNS
- Cascata de enstrofia e espectro de Kraichnan em 2D

3

2. Algumas aplicações de sistemas dinâmicos

- imprevisibilidade determinística
- ligações homoclínicas e intermitência
- turbulência fraca × plenamente desenvolvida
- bifurcações e transição para turbulência
- dinâmica de lóbulos e transporte lagrangiano
- ENS como sistema dinâmico em dimensão infinita
- atratores, dimensão e graus de liberdade
- variedades inerciais/lentas e o problema da inicialização em previsões

3. Teoria matemática das equações de Navier-Stokes

- O prêmio de US\$ $1,00 \times 10^6$ da Fundação Clay
- Formulação matemática das ENS segundo Leray
- Existência global de solução fraca
- Unicidade local de solução forte
- Singularidades no tempo
- Dimensão de Hausdorff das singularidades temporais
- Singularidades no tempo e no espaço
- Dimensão de Hausdorff das singularidades espaço-temporais
- Regularidade eventual e regularidade assintótica

5

4. Formulação matemática da teoria convencional de turbulência

- Soluções estatísticas e equação de Liouville-Foias
- As equações de Reynolds para soluções estatísticas
- Equações de fluxo de energia
- Cascata de energia
- Estimativas de quantidades físicas
- Cascata de enstrofia em duas dimensões
- Condições para turbulência forçada
- Turbulência homogênea em decaimento
- Leis de potência

Escoamentos turbulentos: várias escalas presentes, se movendo de maneira imprevisível, mas bem comportadas em um sentido estatístico.

Figure 1.3 Instantaneous and time averaged views of a jet in cross flow. The jet exits from the wall at left into a stream flowing from bottom to top (Su & Mungal, 1999).

7

Reynolds (1895):

Decomposição do escoamento em

escoamento médio + flutuações

Escoamento médio previsível?

Tipos de média:

Média temporal: $\mathbf{U}(\mathbf{x}) pprox \frac{1}{T} \int_0^T \mathbf{u}(t,\mathbf{x}) \; \mathrm{d}t$

Média experimental: $\mathbf{U}(\mathbf{x}) \approx \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}^{(n)}(t, \mathbf{x})$

Hipótese ergódica:

Os valores médios independem do tipo de média considerada

Reynolds:

Operação formal de média, satisfazendo propriedades de linearidade.

9

Quantidades médias - notação

$$\overline{\varphi(\mathbf{u})}$$
 ou $\langle \varphi(\mathbf{u}) \rangle = \frac{1}{N} \sum_{n=1}^{N} \varphi(\mathbf{u}^{(n)})$

onde $\mathbf{u} = \mathbf{u}(t, \mathbf{x})$ e $\varphi = \varphi(\mathbf{u})$.

Exemplos:

$$\overline{u_1}(t, \mathbf{x}), \qquad \langle u_1(t, \mathbf{x}) \rangle, \qquad \frac{\rho_0}{2} \langle |\mathbf{u}(t, \mathbf{x})|^2 \rangle$$

Linearidade:

$$\frac{\overline{\partial u_3}}{\partial x_2} = \frac{\partial \overline{u_3}}{\partial x_2}, \qquad \langle \int_{\Omega} \mathbf{u}(t, \mathbf{y}) \, d\mathbf{y} \rangle = \int_{\Omega} \langle \mathbf{u}(t, \mathbf{y}) \rangle \, d\mathbf{y},$$

$$\langle u_1(\mathbf{x}) u_2(\mathbf{y}) \rangle \neq \langle u_1(\mathbf{x}) \rangle \, \langle u_2(\mathbf{y}) \rangle$$

Pausa para a notação

- Região $\Omega \subset \mathbb{R}^3$ ocupada pelo fluido
- Variáveis espacial $\mathbf{x}=(x_1,x_2,x_3)\in\Omega$ e temporal $t\geq 0$
- Campo de velocidades $\mathbf{u} = \mathbf{u}(t,\mathbf{x}) = (u_1,u_2,u_3) \in \mathbb{R}^3$
- Pressão $p = p(t, \mathbf{x}) \in \mathbb{R}$ e força de volume $\mathbf{f} = (f_1, f_2, f_3)$
- Equações de Navier-Stokes (ENS) para um escoamento incompressível e homogêneo, viscosidade cinemática ν :

$$\begin{array}{l} \text{forma} \\ \text{escalar} \end{array} \left\{ \frac{\partial u_i}{\partial t} + \sum_{j=1}^3 u_j \frac{\partial u_i}{\partial x_j} + \frac{\partial p}{\partial x_i} = \nu \Delta u_i + f_i, \quad \sum_{i=1}^3 \frac{\partial u_i}{\partial x_i} = 0 \right. \end{array} \right.$$

$$\begin{array}{ll} \text{forma} & \left\{ \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u} + \boldsymbol{\nabla} p = \nu \Delta \mathbf{u} + \mathbf{f}, \quad \boldsymbol{\nabla} \cdot \mathbf{u} = 0 \right. \end{array}$$

11

• Escoamento médio

$$U(\mathbf{x},t) = \langle \mathbf{u}(t,\mathbf{x}) \rangle = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}^{(n)}(t,\mathbf{x})$$

• Energia cinética média por unidade de massa:

$$e(t, \mathbf{x}) = \frac{1}{2} \langle |\mathbf{u}(t, \mathbf{x})|^2 \rangle = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} |\mathbf{u}^{(n)}(t, \mathbf{x})|^2$$

 Razão de dissipação viscosa de energia por unidade de tempo e unidade de massa:

$$\epsilon(t, \mathbf{x}) = \nu \langle |\nabla \otimes \mathbf{u}(t, \mathbf{x})|^2 \rangle = \frac{\nu}{N} \sum_{n=1}^{N} \sum_{i,j=1}^{3} \left(\frac{\partial u_i^{(n)}}{\partial x_j} \right)^2$$

Equação de energia

• Equações de Navier-Stokes:

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f}, \qquad \nabla \cdot \mathbf{u} = 0,$$

ullet Multiplicando as ENS por ${f u}$ e integrando no domínio:

$$\int_{\Omega} (\mathbf{ENS}) \cdot \mathbf{u} \, d\mathbf{x} = 0$$

• Usando as condição de incompressibilidade:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega}|\mathbf{u}|^{2}+\nu\int_{\Omega}|\boldsymbol{\nabla}\otimes\mathbf{u}|^{2}+(\text{termos no bordo})=0$$

Fora os termos de produção de energia.

13

Equações de Reynolds para o escoamento médio

• Equações de Navier-Stokes:

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = 0, \qquad \nabla \cdot \mathbf{u} = 0.$$

 $\bullet\,$ Substituindo $\mathbf{u} = \mathbf{U} + \mathbf{u}'$ e tomando a média:

$$\frac{\partial \mathbf{U}}{\partial t} - \nu \Delta \mathbf{U} + (\mathbf{U} \cdot \nabla) \mathbf{U} + \nabla P = -\nabla \cdot \overline{(\mathbf{u}' \otimes \mathbf{u}')}, \quad \nabla \cdot \mathbf{U} = 0.$$

 $\bullet \ \rho_0 \overline{(\mathbf{u}' \otimes \mathbf{u}')} = \rho_0 (\overline{\mathbf{u}_i' \mathbf{u}_j'})_{i,j=1}^3 = \text{tensor de Reynolds}.$

Escoamentos turbulentos médios

Em canais:

Várias camadas com diferentes perfis de velocidade média (simplificação do tensor de Reynolds via simetrias, análise dimensional, argumentos fenomenológicos, ...)

Analogamente para outras geometrias (canos, etc.)

15

Correlações e métodos estatísticos - Taylor (1921,35)

Correlações (2-pontos): $\langle u_i(\mathbf{x})u_j(\mathbf{x}+\boldsymbol{\ell})\rangle$

- $\mathbf{u}^{(n)}(\mathbf{x}+\boldsymbol{\ell})$ e $\mathbf{u}^{(n)}(\mathbf{x})$ apontam freqüentemente na mesma direção e mesmo sentido $\Rightarrow \langle u_i(\mathbf{x})u_i(\mathbf{x}+\boldsymbol{\ell})\rangle > 0$ e as velocidades estão correlacionadas.
- $\mathbf{u}^{(n)}(\mathbf{x} + \boldsymbol{\ell})$ e $\mathbf{u}^{(n)}(\mathbf{x})$ apontam em direções arbitrariamente diferentes $\Rightarrow \langle u_i(\mathbf{x})u_i(\mathbf{x} + \boldsymbol{\ell})\rangle = 0$ e as velocidades não estão correlacionadas.

Turbulência homogênea - Taylor (1935)

Em certos escoamentos, correlações são homogêneas:

 $\langle u_i(\mathbf{x})u_j(\mathbf{x}+\boldsymbol{\ell})\rangle =$ função apenas de $\boldsymbol{\ell}$, independe de \mathbf{x}

Figure I-3: turbulence created in a wind tunnel behind a grid. Here turbulence fills the whole apparatus, and a localized source of smoke has been placed on the grid to visualize the development of turbulence (picture by J.L. Balint, M. Ayrault and J.P. Schon, Ecole Centrale de Lyon; from Lesieur (1982), courtesy "La Recherche")

17

Comprimento de Taylor (1921,1935)

Correlação lateral de segunda ordem normalizada:

$$g(\ell) = \frac{\langle u_1(\mathbf{x})u_1(\mathbf{x} + \ell \mathbf{e}_2)\rangle}{\langle u_1(\mathbf{x})^2\rangle}, \qquad \ell \in \mathbb{R}$$

- g(0) = 1
- Homogeneidade implica em $g(-\ell)=g(\ell)$, logo $g'(0)=g'''(0)=\ldots=0.$
- $g(\ell) = 1 \left(\frac{\ell}{\ell_T}\right)^2 + \mathcal{O}\left(\left(\frac{\ell}{\ell_T'}\right)^4\right)$
- $\ell_T = \text{comprimento de Taylor}$

•
$$\frac{1}{\ell_T^2} = \lim_{\ell \to 0} \frac{1 - g(\ell)}{\ell^2} = \frac{1}{2} g''(0) = \frac{1}{2} \frac{\langle \left(\frac{\partial u_1(\mathbf{x})}{\partial x_2}\right)^2 \rangle}{\langle u_1(\mathbf{x})^2 \rangle}$$

Comprimento de Taylor - verificação experimental

$$g(\ell) = \frac{\langle u_1(\mathbf{x})u_1(\mathbf{x} + \ell \mathbf{e}_2)\rangle}{\langle u_1(\mathbf{x})^2\rangle} = 1 - \left(\frac{\ell}{\ell_T}\right)^2 + \mathcal{O}\left(\left(\frac{\ell}{\ell_T'}\right)^4\right)$$

 ℓ_T = "comprimento médio dos menores turbilhões responsáveis pela dissipação de energia pela viscosidade"

19

Turbulência homogênea isotrópica - Taylor (1935)

Em certos escoamentos turbulentos, em particular quando o escoamento médio é desprezível, as correlações são homogêneas e *isotrópicas* no espaço, isto é independentes de translações e rotações do conjunto de pontos.

$$\langle u_i(\mathbf{x})u_j(\mathbf{x}+\boldsymbol{\ell}) \rangle = \left\{ egin{array}{l} \mbox{função apenas do módulo } \ell = |\boldsymbol{\ell}|, \mbox{independe de } \mathbf{x} \mbox{ e da direção } rac{\boldsymbol{\ell}}{|\boldsymbol{\ell}|}. \end{array}
ight.$$

$$u_1(\mathbf{x} - \ell \mathbf{e}_1)$$
 $u_2(\mathbf{x} + \ell \mathbf{e}_2)$
 $u_1(\mathbf{x})$
 $u_1(\mathbf{x})$

Consequências da isotropia

Kármán e Howarth (1937) mostraram que em escoamentos homogêneos isotrópicos, correlações de segunda ordem podem ser escritas em termos de apenas uma correlação

$$\left(\frac{\langle u_i(\mathbf{x})u_j(\mathbf{x}+\boldsymbol{\ell})\rangle}{\langle u(\mathbf{x})^2\rangle}\right)_{i,j=1}^3 = \frac{f(\ell)-g(\ell)}{\ell^2}\ell\otimes\ell+g(\ell)\delta_{i,j},$$

onde

$$f(\ell) = \frac{\langle u_1(\mathbf{x})u_1(\mathbf{x} + \ell \mathbf{e}_1)\rangle}{\langle u(\mathbf{x})^2\rangle}, \quad g(\ell) = \frac{\langle u_1(\mathbf{x})u_1(\mathbf{x} + \ell \mathbf{e}_2)\rangle}{\langle u(\mathbf{x})^2\rangle}$$

e, da condição de incompressibilidade,

$$f(\ell) + \frac{\ell}{2}f'(\ell) = g(\ell).$$

Verificado experimentalmente por Taylor (1937).

21

Espectro de energia e correlações - Taylor (1938)

• Traço do tensor de correlações

$$\operatorname{Tr} R(\boldsymbol{\ell}) = R_{11}(\boldsymbol{\ell}) + R_{22}(\boldsymbol{\ell}) + R_{33}(\boldsymbol{\ell}), \quad R_{ij} = \langle u_i(\mathbf{x})u_j(\mathbf{x} + \boldsymbol{\ell}) \rangle$$

ullet Transformada de Fourier $Q(oldsymbol{\kappa})$ de $\operatorname{Tr} R(oldsymbol{\ell})$

$$\operatorname{Tr} R(\boldsymbol{\ell}) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} Q(\boldsymbol{\kappa}) e^{i\boldsymbol{\ell}\cdot\boldsymbol{\kappa}} \; \mathrm{d}\boldsymbol{\kappa}$$

• Espectro de energia (segundo Batchelor (1953))

$$\begin{split} S(\kappa) &= \frac{1}{2} \frac{1}{(2\pi)^{3/2}} \int_{|\boldsymbol{\kappa}| = \kappa} Q(\boldsymbol{\kappa}) \; \mathrm{d} \Sigma(\boldsymbol{\kappa}) \\ \Longrightarrow &\quad e = \frac{1}{2} \langle |\mathbf{u}(\mathbf{x})|^2 \rangle = \frac{1}{2} \mathrm{Tr} \, R(0) = \int_0^\infty S(\kappa) \; \mathrm{d} \kappa \end{split}$$

Cascata de energia - Richardson (1922)

23

Teoria de Kolmogorov

- $\bullet\,$ Produção de energia nas grandes escalas $\ell \sim \ell_0$
- No intervalo de equilíbrio, $\ell \ll \ell_0$, o escoamento tem um comportamento universal, independente das características de produção de energia e dependentes apenas de ν e ϵ .
- A viscosidade se torna importante apenas a partir de escalas muito menores, da ordem do comprimento de Kolmogorov, $\ell_\epsilon=(\nu^3/\epsilon)^{1/4}.$
- No intervalo inercial, $\ell_0\gg\ell\gg\ell_\epsilon$, a viscosidade é desprezível em relação às forças de inercia (cinéticas), com o espectro de energia $S(\kappa)\sim\epsilon^{2/3}\kappa^{-5/3}$.

Teoria de turbulência homogênea isotrópica local -Kolmogorov (1941)

- Correlações de diferenças de velocidades são homogêneas e isotrópicas no espaço e em equilíbrio estatístico (homogêneas) no tempo.
- (Homogeneidade) $\epsilon = \frac{\nu}{2} \langle | \nabla \otimes \mathbf{u}(t, \mathbf{x}) |^2 \rangle$ independe de t, x.
- 1ª hipótese de similaridade: correlações dependem apenas de ϵ e ν (nas escalas suficientemente menores que as de produção de energia, ℓ_0)
- 2ª hipótese de similaridade: Há um subintervalo de escalas no qual as correlações dependem apenas de ϵ

25

Comprimento de Kolmogorov (1941)

É o comprimento ℓ_ϵ para o qual os efeitos de viscosidade e inércia são comparáveis e significativos.

Pela transformação $\ell' = \ell/\lambda$, $t' = t/\tau$, temos

$$\nu' = \frac{\tau}{\lambda^2} \nu, \qquad \epsilon' = \frac{\tau^3}{\lambda^2} \epsilon.$$

Logo,

$$\nu' = 1 = \epsilon' \quad \iff \quad \ell_{\epsilon} = \lambda = \left(\frac{\epsilon}{\nu^3}\right)^{1/4}.$$

A lei de potência 2/3 de Kolmogorov (1941)

Pela segunda hipótese de similaridade, as correlações para $\ell_\epsilon \ll \ell \ll \ell_0$ só dependem de ϵ .

$$S_2(\ell) = \langle \left((\mathbf{u}(\mathbf{x} + \boldsymbol{\ell}) - \mathbf{u}(\mathbf{x})) \cdot \frac{\boldsymbol{\ell}}{|\boldsymbol{\ell}|} \right)^2 \rangle = g(\ell, \epsilon).$$

Pela similaridade, $S_2'(\ell') = g(\ell', \epsilon')$, logo

$$\frac{\tau^2}{\lambda^2} S_2(\ell) = g(\frac{\ell}{\lambda}, \frac{\tau^3}{\lambda^2} \epsilon).$$

Tomando

$$\begin{split} \frac{\ell}{\lambda} &= 1, \qquad \frac{\tau^3}{\lambda^2} \epsilon = 1, \\ \Longrightarrow \quad S_2(\ell) &= g(1,1) \frac{\lambda^2}{\tau^2} = g(1,1) \frac{\ell^2}{(\ell^{2/3}/\epsilon^{1/3})^2} = \text{const.} \, (\epsilon \ell)^{2/3}. \end{split}$$

27

O espectro -5/3 de Kolmogorov

- $S(\kappa) = \text{espectro de energia} \Rightarrow \text{dimensão} = \frac{L^3}{T}$
- ullet ϵ = razão de dissipação de energia no tempo = $\frac{L^2}{T^3}$
- Hipótese de similaridade $\Rightarrow S(\kappa)$ depende de ϵ e κ (no intervalo inercial)
- Intervalo inercial: $\kappa_0 \ll \kappa \ll \kappa_\epsilon$, $\kappa_0 = \ell_0^{-1}$, $\kappa_\epsilon = \ell_\epsilon^{-1}$
- Análise dimensional ⇒

$$S(\kappa) = {\rm const.} \, \epsilon^{2/3} \kappa^{-5/3}, \qquad \kappa_0 \ll \kappa \ll \kappa_\epsilon$$

Espectro de energia - mecanismo de Oboukhof (1941)

• Energia cinética média para os turbilhões de comprimento $\ell=1/\kappa$:

$$e_{\kappa} = S(\kappa)\kappa$$

• Tempo característico para esses turbilhões:

$$\tau_{\kappa} = (S(\kappa)\kappa^3)^{1/2}$$

- No intervalo inercial, energia cinética é transferida para as escalas menores, à razão temporal da ordem da razão de dissipação de energia: $\frac{e_\kappa}{\tau_\kappa}\sim\epsilon$
- $\bullet \ \ \, \mathsf{Logo}, \ \frac{S(\kappa)\kappa}{(S(\kappa)\kappa^3)^{1/2}} \sim \epsilon \quad \implies \quad \, S(\kappa) \sim \epsilon^{2/3}\kappa^{-5/3}$

29

Teoria de Kolmogorov

- $\bullet\,$ Produção de energia nas grandes escalas $\ell \sim \ell_0$
- No intervalo de equilíbrio, $\ell \ll \ell_0$, o escoamento tem um comportamento universal, independente das características de produção de energia e dependentes apenas de ν e ϵ .
- A viscosidade se torna importante apenas a partir de escalas muito menores, da ordem do comprimento de Kolmogorov, $\ell_{\epsilon} = (\nu^3/\epsilon)^{1/4}$.
- No intervalo inercial, $\ell_0\gg\ell\gg\ell_\epsilon$, a viscosidade é desprezível em relação às forças de inercia (cinéticas), com o espectro de energia $S(\kappa)\sim\epsilon^{2/3}\kappa^{-5/3}$.

Estruturas coerentes e intermitência

- Universalidade questionada devido a variações intermitentes na dissipação de energia ϵ
- Estruturas coerentes: filamentos de vórtices com baixa dissipação de energia, diâmetro da ordem do comprimento de Kolmogorov e comprimento variando entre comprimento de Taylor e escala integral.

33

Plate 10: vorticity modulus in the LES of a temporal mixing layer; a) quasi two-dimensional random initial forcing; b) 3D isotropic forcing (courtesy J. Silvestrini, Grenoble).

Graus de liberdade - Landau e Lifchitz (1971)

- Teoria de Kolmogorov: escalas $\ell \ll \ell_\epsilon$ são dominadas pela dissipação e irrelevantes para o movimento
- Basta representarmos as escalas de ordem até ℓ_ϵ
- ullet Basta uma malha de espaçamento $\sim \ell_0/\ell_\epsilon$
- Graus de liberdade: $(\ell_0/\ell_\epsilon)^3$

35

Número de Reynolds

- ullet Escala de comprimento: L
- ullet Escala de velocidade: U
- Dimensão física do termo inercial: $(\mathbf{u}\cdot\mathbf{\nabla})\mathbf{u}\sim\frac{U^2}{L}$
- Dimensão física do termo viscoso: $\nu \Delta \mathbf{u} \sim \frac{\nu U}{L^2}$
- Razão entre os dois termos:

$$Re = \frac{inercial}{viscoso} = \frac{LU}{\nu}$$

- Re $>> 1 \Rightarrow$ termo inercial domina
- Re << 1 ⇒ viscosidade domina

Lei de dissipação de energia

- ullet Comprimento das grandes escalas: ℓ_0
- ullet Velocidade das grandes escalas: U_0
- ullet Energia cinética das grandes escalas: $e_0=U_0^2/2$
- Tempo de circulação das grandes escalas: $au_0 = \ell_0/U_0$
- Razão de dissipação de energia por unidade de tempo (escoamentos em equilíbrio estatístico):

$$\epsilon \sim \frac{e_0}{ au_0} \quad \Rightarrow \quad \epsilon \sim \frac{U_0^3}{\ell_0}$$
 (lei de dissipação de energia)

• Mais precisamente, lei considerada para escala integral

$$\ell_0' = \frac{1}{\langle u_1^2 \rangle} \int_0^\infty \langle u_1(\mathbf{x}) u_1(\mathbf{x} + \ell \mathbf{e}1) \rangle \, \mathrm{d}\ell$$

e velocidade turbulenta $U_0' = \langle u_1(\mathbf{x})^2 \rangle^{1/2}$

37

Graus de liberdade em termos do número de Reynolds

- ullet Número de Reynolds das grandes escalas: Re $=\ell_0 U_0/
 u$
- Comprimento de Kolmogorov: $\ell_{\epsilon} = (\nu^3/\epsilon)^{1/4}$
- Lei de dissipação de energia: $\epsilon \sim U_0^3/\ell_0$
- Logo, $\ell_0/\ell_\epsilon \sim \mathrm{Re}^{3/4}$
- Graus de liberdade:

$$N \sim \left(rac{\ell_0}{\ell_\epsilon}
ight)^3 \sim \mathsf{Re}^{9/4}$$

38

Exemplos de números de Reynolds de escoamentos

- Túnel de vento $\ell_0\sim 2m,\ U_0\sim 5m/s,\ \nu\sim 10^{-5}m^2/s$ $\Rightarrow {\rm Re}\sim 10^6,\quad N\sim 10^{13},\quad \ell_\epsilon\sim 0.1mm$
- Escoamentos geofísicos $\ell_0 \sim 10000 km, \ U_0 \sim 100 km/h$,

$$\Rightarrow$$
 Re $\sim 10^{12}$, $N \sim 10^{27}$, $\ell_{\epsilon} \sim 1 cm$

Obs: estimativas aproximadas, pois não estamos considerando a escala integral e a intensidade turbulenta.

39

Número de Reynolds e CFD

- Para a representação espacial apropriada do escoamento: $N \sim \mathrm{Re}^{9/4}$ graus de liberdade.
- Para escoamentos periódicos 3D (via fft): $N \ln N$ operações de ponto flutuante (flop) por iteração.
- Como a escala de tempo dos menores turbilhões é $\tau_\epsilon = (\ell_\epsilon^2/\epsilon)^{1/3} = (\nu/\epsilon)^2 \text{, precisamos (usando } \epsilon \sim U_0/\ell_0) \text{, de} \\ \tau_0/\tau_\epsilon = (\ell_0 U_0/\nu)^{1/2} = \text{Re}^{1/2} \text{ iterações para integração em} \\ \text{um ciclo de circulação das grandes escalas, logo} \\ N^{11/9} \ln N \sim \text{Re}^{11/4} \ln \text{Re flop para cada ciclo}.$
- Com os supercomputadores teraflop (10^{12} flop/s), podemos chegar a aproximadamente Re $\sim 10^4$.
- Para escoamentos com simetria: Re $\sim 10^5, 10^6$.

- Lei de Moore: performance $\times 1.58$ por ano.
- Mudanças na arquitetura: performance $\times 1.82$ por ano.

Figure 3. Extrapolation from recent performance growth rates seen in the Top500.

41

Previsão para DNS: $Re=10^{13}$ em 2100?

- Para simulação DNS homogênea: $P \sim \text{Re}^3$ flop/s.
- Como a "performance" $P \sim \text{Re}^{4/11}$ se multiplica por 1.82 por ano, temos Re se multiplica por $(1.82)^{4/11} \approx 1.243$.

Turbulência em duas dimensões

- Conservação de enstrofia: $\frac{1}{2} \int_{\Omega} |\boldsymbol{\omega}(\mathbf{x})|^2 d\mathbf{x}$
- Cascata de enstrofia para as escalas menores
- Cascata inversa de energia para as escalas maiores

43

O espectro de Kraichnan (1967)

- ullet Injeção de enstrofia nas escalas $\kappa \sim \kappa_f$
- ullet Razão de dissipação de enstrofia η
- Comprimento de Kraichnan $\kappa_{\eta} = (\eta/\nu^3)^{1/6}$
- Dissipação de enstrofia nas escalas $\kappa \gtrsim \kappa_\eta$
- Cascata de enstrofia em $\kappa_f \ll \kappa \ll \kappa_\eta$
- Espectro de Kraichnan $S(\kappa) \sim \eta^{2/3} \kappa^{-3}$ em $\kappa_f \ll \kappa \ll \kappa_\eta$
- Cascata inversa de energia em $\kappa_0 \ll \kappa \ll \kappa_f$
- Espectro de Kolmogorov $S(\kappa) \sim \epsilon^{2/3} \kappa^{-5/3}$ em $\kappa_0 \ll \kappa \ll \kappa_f$

Equações de Navier-Stokes e turbulência

Ricardo M. S. Rosa Instituto de Matemática Universidade Federal do Rio de Janeiro (IM-UFRJ)

> 24 a 27 de fevereiro de 2003 Programa de Verão do LNCC

> > 1

Título alternativo:

Métodos matemáticos em dinâmica dos fluidos

Tópicos:

- Teoria estatística convencional de turbulência
- Sistemas dinâmicos
- Teoria matemática das equações de Navier-Stokes
- Formulação matemática da teoria convencional de turbulência

Algumas aplicações de sistemas dinâmicos:

- imprevisibilidade determinística
- ligações homoclínicas e intermitência
- turbulência fraca × plenamente desenvolvida
- bifurcações e transição para turbulência
- dinâmica de lóbulos e transporte lagrangiano
- NSE como sistema dinâmico em dimensão infinita
- atratores, dimensão e graus de liberdade
- variedades inerciais/lentas e o problema da inicialização em previsões

3

Sistema de Lorenz (1963)

Sistema obtido a partir de equações de convecção térmica, de um fluido aquecido por baixo, truncando bruscamente as equações em apenas três modos de Fourier (um para a velocidade e dois para a temperatura), representando perturbações das células de convecção de Bénard (dois modos de Fourier)

$$\begin{cases} x' = -\sigma x - \sigma y \\ y' = rx - y - xz \\ z' = xy - bz \end{cases}$$

Parâmetros clássicos: $\sigma = 10, r = 28, b = 8/3$

Atrator de Lorenz (1963)

 E a série temporal de $\mathsf{x}(\mathsf{t})$

5

Imprevisibilidade I $x(0) = -3, \quad y(0) = -6, \quad z(0) = 12$ $x(0) = -3, \quad y(0) = -6, \quad z(0) = 12$ $x(0) = -3, \quad y(0) = -6, \quad z(0) = 12$ $x(0) = -3.01, \quad y(0) = -6, \quad z(0) = 12$

20

Imprevisibilidade II

7

Sistemas dinâmicos

- Poincaré já havia observado, no início do século XX, a imprevisibilidade e a riqueza da dinâmica de sistemas determinísticos, estudando o problema da estabilidade do sistema solar (e extrapolando para a meteorologia);
- Sistemas autônomos de duas equações diferenciais ordinárias são bem comportados;
- Sistemas autônomos de mais de duas equações podem exibir comportamento caótico;
- Sistemas não-autônomos de duas equações e mapeamentos (sistemas dinâmicos discretos) de uma ou mais dimensões também podem exibir comportamento caótico.

Crescimento exponencial

Um dos mecanismos responsáveis pela imprevisibilidade (quando associado a não-linearidade, etc.)

Se $x_2(t)-x_1(t)=e^{\lambda t}(x_2(0)-x_1(0))$ e $\lambda=3$, então em t=10, erro é amplificado por $e^{30}\approx 10^{13}$.

9

Figure 1. The Gulf Stream, shown here in a false colour image of sea surface temperature, carries warm water up the east coast of North America and across the Atlantic. (Courtesy of Otis Brown, University of Miami.)

13

Transporte Lagrangiano - escoamento de Rossby

- ullet Campo de velocidades do escoamento ${f u}(t,{f x})$
- \bullet Transporte Lagrangiano: $\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{u}(t,\mathbf{x}(t))$
- Escoamento de Rossby:

Transporte Lagrangiano - perturbação do Rossby

- Quebra da ligações heterocínicas
- Aproximação de variedades invariantes

15

Turbulência fraca x plenamente desenvolvida

- Teoria estatística convencial trata de turbulência plenamente desenvolvida
- Teoria geométrica de sistemas dinâmicos tem sido útil em turbulência fraca
- Aplicação da teoria de bifurcações em transição para turbulência
- DNS (Simulação numérica direta): auxílio fundamental nos métodos de sistemas dinâmicos

17

Transição para turbulência

Figure 2.2. Flow past a sphere. (a) Laminar flow (small Reynolds number). (b) Appearance of the von Kårmån vortices in the wake behind the sphere (stationary flow). (c) Time-periodic flow: the vortices behind the sphere are moving to the right in an (apparently) time-periodic manner. (d) Fully turbulent flow in the wake behind the sphere at large Reynolds numbers.

O problema de Couette-Taylor

Couette: $\omega_i=0$, $\omega_e\neq 0$

Mallock, Taylor: $\omega_i \neq 0$, $\omega_e = 0$

19

Couette-Taylor - bifurcações, $\omega_{\rm e}=0, \omega_{\rm i}>0$ escoamento de Couette ponto fixo ponto fixo FIGURE 1.4. Wavy vortex flow. escoamento "wavy vortex" orbita quasi-periódica (toro T^2)

Bifurcações Couette-Taylor - 2 parâmetros Reynolds

$$\mathrm{Re}_i = rac{r_i(r_e-r_i)\omega_i}{
u}, \qquad \mathrm{Re}_e = rac{r_e(r_e-r_i)\omega_e}{
u}.$$

FIGURE I.2. Experimental stability diagram by [An-L-Sw].

21

Bifurcações e transição para turbulência

- Bifurcações para outros pontos fixos, órbitas periódicas, toros T^2 , T^3 , T^4 ,..., do tipo Ruelle-Takens-Sell de T^2 para um atrator estranho, etc.;
- Bifurcações: em um certo sentido, extensão não-linear do método de linearização procuramos reduzir a equação para $x'=\lambda x$, com $\lambda \neq 0$, mas se $\lambda=0$, precisamos dos termos de ordem mais alta;
- Bifurcações locais e globais

Bifurcações unidimensionais - "pitchfork"

- $x' = \lambda x x^3$, $\lambda \in \mathbb{R}$
- pontos fixos: $\bar{x}=0$ (se $\lambda \leq 0$), $\bar{x}=0,\pm\sqrt{\lambda}$ (se $\lambda>0$)
- $\bullet \ \lambda \leq 0 \Rightarrow \text{todas soluções } x(t) \underset{t \longrightarrow \infty}{\to} 0$
- $\bullet \ \lambda > 0 \Rightarrow x(t) \underset{t \longrightarrow \infty}{\longrightarrow} \pm \sqrt{\lambda}$
- $\lambda = 0 \Rightarrow$ derivada de $F(x) = \lambda x x^3$ se anula em x = 0

23

Bifurcações unidimensionais - sela-nó e transcrítica

• $x' = \lambda - x^2$

• $x' = \lambda x - x^2$

Bifurcação de Hopf

- Em coordenadas cartesianas $\begin{cases} x' = \lambda x y x^3 xy^2 \\ y' = x + \lambda y x^2 y y^3 \end{cases}$
- \bullet Em coordenadas polares $\left\{ \begin{aligned} r' &= \lambda r r^3 \\ \theta' &= 1 \end{aligned} \right.$

25

Mapas de Poincaré e bifurcações dinâmicas

Bifurcações a partir de órbitas periódicas, homoclínicas, etc., podem ser estudadas construindo-se mapeamentos dentro do espaço de fase de sistemas contínuos

Redução de dimensão

- Variedade central
- Em x' = F(x), multiplicidade algébrica n do autovalor zero de $DF(\bar{x}) \Rightarrow$ redução para sistema de dimensão n
- Redução de Liapunov-Schmidt para $x' = F(x, \lambda)$
- Formas normais, teoria de singularidades, etc.

29

Equação funcional para ENS

Equações de Navier-Stokes:

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f}, \qquad \nabla \cdot \mathbf{u} = 0.$$

• Tomando divergente da ENS obtemos equação para pressão (assumindo $\nabla \cdot \mathbf{f} = 0$), como função de \mathbf{u}

$$-\Delta p = \partial_{x_i} u_j \partial_{x_i} u_i$$
 (condições de Neumann no bordo)

 No espaço das funções de divergente nulo, equação apenas para o campo de velocidades u:

$$\frac{d\mathbf{u}}{dt} = \mathbf{F}(\mathbf{u}), \qquad \mathbf{F}(\mathbf{u}) = \mathbf{f} - \nu A\mathbf{u} - B(\mathbf{u}, \mathbf{u})$$

30

ENS como sistema dinâmico de dimensão infinita

• ENS funcional em espaços de divergente nulo

$$\frac{d\mathbf{u}}{dt} = \mathbf{F}(\mathbf{u}), \qquad \mathbf{F}(\mathbf{u}) = \mathbf{f} - \nu A\mathbf{u} - B(\mathbf{u}, \mathbf{u})$$

• Existência e unicidade de solução global (ENS 2D):

$$\forall \mathbf{u}_0, \quad \exists \mathbf{u}(t), \ \forall t \ge 0, \quad \mathbf{u}(0) = \mathbf{u}_0$$

• Sistema dinâmico: $S(t)\mathbf{u}_0 = \mathbf{u}(t), \ t \geq 0$

 Vários conceitos se aplicam em 3D, apesar de faltar existência/unicidade global (no tempo)

31

- ullet Conjunto compacto ${\cal A}$
- Invariante: $S(t)A = A, \forall t \in \mathbb{R}$
- Atrai todas as órbitas, uniformemente para condições iniciais limitadas

Existência de atrator global

ullet Existência de um conjunto absorvente limitado ${\cal B}$

$$\{\mathbf{u}_0^{(n)}\}_n$$
 limitado $\Rightarrow \exists T, \ S(t)\mathbf{u}_0 \in \mathcal{B}, \ \forall t \geq T$

 Compacidade assintótica para conjuntos limitados de condições iniciais

 \exists subseqüência convergente $S(t_{n_j})\mathbf{u}_0^{(n_j)}, \forall t_n \to \infty$

33

Dimensão do atrator global

- ullet Sendo compacto, ${\cal A}$ pode ser aproximado por subespaços afins de dimensão finita
- ullet Na maioria dos casos, ${\cal A}$ tem dimensão fractal finita
- ullet Nesses casos, ${\mathcal A}$ pode ser imerso em variedades euclidianas de dimensão finita
- Possibilidade de se obter sistemas finitos de EDOs com o mesmo comportamento assintótico

Dimensão do atrator das ENS

- ullet dim $_f \mathcal{A} \lesssim$ graus de liberdade Landau-Lifchitz
- ullet ENS 2D periódico: $\dim_f \mathcal{A} \lesssim \left(rac{\ell_0}{\ell_{ar{\eta}}}
 ight)^2 \left(1 + \ln\left(rac{\ell_0}{\ell_{ar{\eta}}}
 ight)
 ight)^{1/3}$
- ullet ENS 2D com aderência na fronteira: $\dim_f \mathcal{A} \lesssim \left(rac{\ell_0}{\ell_{ar{\epsilon}'}}
 ight)^2$
- ENS 3D, para conjuntos invariantes regulares $\mathcal V$: $\dim_f \mathcal A \lesssim \left(\frac{\ell_0}{\ell_{\bar\epsilon}}\right)^3$
- onde $\bar{\eta}$ e $\bar{\epsilon}'$ similares a

$$\bar{\boldsymbol{\epsilon}} = \nu \limsup_{T \to \infty} \sup_{\mathbf{u}_0 \in \mathcal{V}} \frac{1}{T} \int_0^T \int_{\Omega} |\boldsymbol{\nabla} \otimes \mathbf{u}(t, \mathbf{x})|^2 \, \mathrm{d}\mathbf{x} \mathrm{d}t$$

35

Variedade inercial

- Variedade Lipschitz de dimensão finita
- Positivamente invariante, i.e. $S(t)\mathcal{M} \subset \mathcal{M}, \ \forall t \geq 0$
- Atrai todas as órbitas exponencialmente e uniformemente para condições iniciais limitadas

Completude assintótica de variedades inerciais

• Em geral, para toda solução $\mathbf{u} = \mathbf{u}(t)$, existe solução $\mathbf{v} = \mathbf{v}(t) \in \mathcal{M}$ com o mesmo comportamento assintótico

$$\lim_{t \to \infty} |\mathbf{u}(t) - \mathbf{v}(t)| = 0 \quad \text{e} \quad \omega(\mathbf{u}) = \omega(\mathbf{v})$$

• Atração exponencial $\Rightarrow \mathcal{M}$ captura boa parte do comportamento transiente

37

Existência de variedades inerciais

- Requer forte dissipação (contração uniforme de volumes)
- Existência demonstrada para várias equações em uma dimensão espacial e em casos especiais em 2D
- Em aberto para NSE 2D e 3D
- Transformada de Kwak ainda incompleta
- Relação com variedades lentas em meteorologia

Aproximação de variedades inerciais

- Métodos numéricos mais precisos baseados em aproximações de variedades inerciais
- Eficiência depende da regularidade das soluções e do objetivo do estudo
- Apropriado para estudos da dinâmica (e.g. captura de ligações heteroclínicas)

39

Controle de dimensão finita

- Variedade inercial ⇒ dinâmica de dimensão finita
- Possibilidade de controle de dimensão finita, para aumentar ou diminuir comportamento caótico
- Resultados teóricos positivos
- Controle distribuido × controle no bordo
- Viabilidade dos métodos?
- Utilização de aproximações de variedades invariantes

Atrator exponencial

- Intermediário entre atrator global e variedade inercial
- Aproxima exponencialmente as órbitas mas não é variedade euclidiana
- Existência para várias equações, inclusive ENS 2D
- Parametrização por mapeamentos Hölder-contínuos
- Resultados parciais sobre existência de sistemas de dimensão finita com dinâmica equivalente

41

Atratores locais e teoria ergódica

Equações de Navier-Stokes e turbulência

Ricardo M. S. Rosa Instituto de Matemática Universidade Federal do Rio de Janeiro (IM-UFRJ)

> 24 a 27 de fevereiro de 2003 Programa de Verão do LNCC

> > 1

Título alternativo:

Métodos matemáticos em dinâmica dos fluidos

Tópicos:

- Teoria estatística convencional de turbulência
- Sistemas dinâmicos
- Teoria matemática das equações de Navier-Stokes
- Formulação matemática da teoria convencional de turbulência

Teoria matemática das equações de Navier-Stokes

- O prêmio de US\$ $1,00 \times 10^6$ da Fundação Clay
- Formulação matemática das ENS segundo Leray
- Existência global de solução fraca
- Unicidade local de solução forte
- Singularidades no tempo
- Dimensão de Hausdorff das singularidades temporais
- Singularidades no tempo e no espaço
- Dimensão de Hausdorff das singularidades espaço-temporais
- Regularidade eventual e regularidade assintótica

3

Equações de Navier-Stokes

- Região $\Omega \subset \mathbb{R}^3$ ocupada pelo fluido
- Variáveis espacial $\mathbf{x} = (x_1, x_2, x_3) \in \Omega$ e temporal $t \geq 0$
- Campo de velocidades $\mathbf{u} = \mathbf{u}(t, \mathbf{x}) = (u_1, u_2, u_3) \in \mathbb{R}^3$
- Pressão $p=p(t,\mathbf{x})\in\mathbb{R}$ e força de volume $\mathbf{f}=(f_1,f_2,f_3)$
- Equações de Navier-Stokes (ENS) para um escoamento incompressível e homogêneo, viscosidade cinemática ν :

Prêmio: US\$ $1,00 \times 10^6$ da Clay Foundation

Problema A: (Solução global) Dado \mathbf{u}_0 suave, com $\nabla \cdot \mathbf{u}_0 = 0$ e $|\partial_{x_i}^k \mathbf{u}_0(\mathbf{x})| \leq c_{km} (1+|\mathbf{x}|)^{-m}, \ k,m \in \mathbb{N}, \ \mathbf{x} \in \mathbb{R}^3$, achar soluções suaves $\mathbf{u} = \mathbf{u}(t,\mathbf{x}), \ p = p(t,\mathbf{x})$ das ENS em $\Omega = \mathbb{R}^3$, com $\mathbf{u}, p \in \mathcal{C}^{\infty}([0,\infty) \times \mathbb{R}^3)$, $\int_{\Omega} |\mathbf{u}(t,\mathbf{x})|^2 \, \mathrm{d}\mathbf{x} \leq C, \ \forall t \geq 0$, e $\mathbf{u}(0,\mathbf{x}) = \mathbf{u}_0(\mathbf{x})$.

Problema B: (explosão em tempo finito) Mostrar existência de \mathbf{u}_0 e \mathbf{f} suaves, com $\nabla \cdot \mathbf{u}_0 = 0$ e

$$|\partial_{x_i}^k \mathbf{u}_0(\mathbf{x})| \le c_{km} (1 + |\mathbf{x}|)^{-m}, \ |\partial_t^r \partial_{x_i}^k \mathbf{u}_0(\mathbf{x})| \le c_{rkm} (1 + t + |\mathbf{x}|)^{-m},$$

 $r,k,m\in\mathbb{N},t\geq0,\ \mathbf{x}\in\mathbb{R}^3$, tais que que não existam soluções das ENS em \mathbb{R}^3 como acima.

Problemas A', B': versões com condições periódicas de contorno.

5

Resultados conhecidos

- Existência global (no tempo) de soluções fracas (não necessariamente regulares)
- Existência por tempo finito de soluções suaves
- Um pouco de regularidade (e.g. $H^1(\Omega)$) implica em soluções suaves
- Existência global de soluções regulares em duas dimensões
- Soluções fracas não são necessariamente únicas (para cada condição inicial dada)
- Um pouco de regularidade implica em unicidade

Uma formulação matemática das ENS

- **Primeiro passo:** eliminar a pressão considerando espaços de divergente nulo
- Condição natural para o campo de velocidades:

$$\int_{\Omega} |\mathbf{u}(\mathbf{x})|^2 \; \mathrm{d}\mathbf{x} < \infty \quad \Leftrightarrow \quad \text{energia cinética finita}$$

Espaço de partida:

$$\mathbb{L}^2(\Omega) = \left\{ \mathbf{u} : \Omega \to \mathbb{R}^3, \ |\mathbf{u}|^2 \stackrel{\mathsf{def}}{=} \int_{\Omega} |\mathbf{u}(\mathbf{x})|^2 \ \mathsf{d}\mathbf{x} < \infty \right\}$$

• Subespaço de divergente nulo:

$$H = \left\{ \mathbf{u} \in \mathbb{L}^2(\Omega); \ \mathbf{\nabla} \cdot \mathbf{u} = 0 + \text{ (condições de contorno)} \right\}$$

7

- ullet H é um subespaço vetorial fechado de \mathbb{L}^2
- ullet Decomposição ortogonal $\mathbb{L}^2=H\oplus H^\perp$
- ullet Projeção ortogonal $P_{\mathsf{LH}}: \mathbb{L}^2 o H$ e $Q_{\mathsf{LH}} = I P_{\mathsf{LH}}$
- Decomposição das ENS (assumindo $P_{\mathsf{LH}}\mathbf{f} = \mathbf{f}$):

$$\begin{cases} P_{\mathsf{LH}} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u} - \nu \Delta \mathbf{u} + \boldsymbol{\nabla} p - \mathbf{f} \right) = 0 \\ Q_{\mathsf{LH}} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u} - \nu \Delta \mathbf{u} + \boldsymbol{\nabla} p - \mathbf{f} \right) = 0 \\ \Longrightarrow \begin{cases} \frac{\partial \mathbf{u}}{\partial t} + P_{\mathsf{LH}} (\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u} - \nu P_{\mathsf{LH}} \Delta \mathbf{u} = \mathbf{f} & \text{(eq. evolução para } \mathbf{u}) \\ Q_{\mathsf{LH}} (\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u} - \nu Q_{\mathsf{LH}} \Delta \mathbf{u} + \boldsymbol{\nabla} p = 0 & \text{(eq. } p = p(\mathbf{u})) \end{cases}$$

Espaço de enstrofia finita

• Para o tratamento do termo inercial:

$$\begin{split} V &= \left\{ \mathbf{u} \in \mathbb{H}^1(\Omega); \; \boldsymbol{\nabla} \cdot \mathbf{u} = 0 \; + \; \text{(condições de contorno)} \right\}, \\ \mathbb{H}^1(\Omega) &= \left\{ \mathbf{u} \in \mathbb{L}^2(\Omega), \; \|\mathbf{u}\|^2 \stackrel{\text{def}}{=} \int_{\Omega} |\boldsymbol{\nabla} \otimes \mathbf{u}|^2 \; \mathrm{d}\mathbf{x} < \infty \right\}, \end{split}$$

onde
$$\nabla \otimes \mathbf{u} = (\partial_{x_i} u_j)_{i,j=1}^3$$
.

• Com condições de contorno de aderência ($\mathbf{u}|_{\partial\Omega}=0$) ou periódicas:

enstrofia
$$\stackrel{\mathrm{def}}{=} \frac{1}{2} \int_{\Omega} |\boldsymbol{\omega}|^2 \; \mathrm{d}\mathbf{x} = \frac{1}{2} \int_{\Omega} |\boldsymbol{\nabla} \otimes \mathbf{u}|^2 \; \mathrm{d}\mathbf{x},$$

onde
$$\boldsymbol{\omega} = \boldsymbol{\nabla} \times \mathbf{u} = \operatorname{curl} \mathbf{u}$$
.

9

Formulação funcional das ENS

- $\frac{\partial \mathbf{u}}{\partial t} + P_{\mathsf{LH}}(\mathbf{u} \cdot \nabla)\mathbf{u} \nu P_{\mathsf{LH}}\Delta\mathbf{u} = \mathbf{f}$
- Operador de Stokes $A\mathbf{u} = -\nu P_{\mathsf{LH}}\Delta\mathbf{u}$
- Termo inercial $B(\mathbf{u}, \mathbf{u}) = P_{\mathsf{LH}}(\mathbf{u} \cdot \nabla)\mathbf{u}$
- Espaço dual $V \subset H \subset V'$:

$$(\mathbf{u}, \mathbf{v}) \stackrel{\mathsf{def}}{=} \int_{\Omega} \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \ \mathsf{d}\mathbf{x} \quad \longrightarrow \quad \langle \mathbf{u}, \mathbf{v} \rangle_{V', V}.$$

$$\begin{split} \bullet & A: V \to V', \qquad B: V \times V \to V' \\ & \Longrightarrow \frac{\mathsf{d}\mathbf{u}}{\mathsf{d}t} + \nu A\mathbf{u} + B(\mathbf{u}, \mathbf{u}) = \mathbf{f} \end{split}$$

Formulação variacional (fraca) das ENS

• Multiplicar ENS por função teste ${\bf v}$ de divergente nulo e suporte compacto em Ω e integrar em Ω :

$$\int_{\Omega} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} - \nu \Delta \mathbf{u} + \nabla p \right) \cdot \mathbf{v} \, d\mathbf{x} = 0;$$

• Integrando por partes e usando que $\nabla \cdot \mathbf{v} = 0$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \mathbf{u} \cdot \mathbf{v} \ \mathrm{d}\mathbf{x} + \int_{\Omega} [((\mathbf{u} \cdot \nabla)\mathbf{u}) \cdot \mathbf{v})] \ \mathrm{d}\mathbf{x} + \nu \int_{\Omega} \nabla \oplus \mathbf{u} : \nabla \oplus \mathbf{v} \ \mathrm{d}\mathbf{x} = 0;$$

• Ou, para funcionais apropriados, e incluindo f,

$$\frac{\mathsf{d}}{\mathsf{d}t}(\mathbf{u}, \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) + a(\mathbf{u}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \qquad \forall \mathbf{v} \in V.$$

11

Existência de solução fraca

ullet Via aproximação de Galerkin, obter aproximações ${f u}^{(n)}$ em espações de Galerkin V_n de dimensão finita,

$$\frac{\mathsf{d}}{\mathsf{d}t}(\mathbf{u}^{(n)}, \mathbf{v}) + b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, \mathbf{v}) + a(\mathbf{u}^{(n)}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \quad \forall \mathbf{v} \in V_n.$$

ullet Obter estimativas de energia, tomando ${f v}={f u}^{(n)}$:

$$\frac{1}{2}\frac{\mathsf{d}}{\mathsf{d}t}|\mathbf{u}^{(n)}|^2 + \nu \|\mathbf{u}^{(n)}\|^2 = (\mathbf{f}, \mathbf{v})$$

• Usando Cauchy-Schwarz e Young no último termo,

$$\frac{\mathrm{d}}{\mathrm{d}t}|\mathbf{u}^{(n)}|^2 + \nu \|\mathbf{u}^{(n)}\|^2 \le \frac{1}{\nu\lambda_1}|\mathbf{f}|^2,$$

onde $\lambda_1>0$ primeiro autovalor do operador de Stokes

Estimativas globais

- $\begin{array}{l} \bullet \ \ \mbox{Assumindo f independente de } t, \\ |\mathbf{u}^{(n)}(t)|^2 \leq |\mathbf{u}_0|^2 e^{-\nu\lambda_1 t} + \frac{1}{\nu^2 \lambda_1^2} |\mathbf{f}|^2 (1 e^{-\nu\lambda_1 t}) \end{array}$
- Para a enstrofia,

$$\frac{\nu}{T} \int_0^T \|\mathbf{u}^{(n)}(t)\|^2 \, \mathrm{d}t \le \frac{1}{T} |\mathbf{u}_0|^2 + \frac{1}{\nu \lambda_1} |\mathbf{f}|^2$$

ullet Para a derivada temporal de ${f u}^{(n)}$,

$$\frac{1}{T} \int_0^T \|\partial_t \mathbf{u}^{(n)}(t)\|_{V'}^{4/3} \, \mathrm{d}t \le C$$

ullet Por um teorema de compacidade (Aubin), temos convergência (forte) em H, suficiente para a passagem ao limite

13

Solução fraca de Leray-Hopf

Após a passagem ao limite, obtemos solução fraca satisfazendo

- $\mathbf{u} \in L^{\infty}(0,\infty;H) \cap L^2_{\mathrm{loc}}(0,\infty;V);$
- $\partial_t \mathbf{u} \in L^{4/3}_{\mathsf{loc}}(0,\infty;V');$
- $\mathbf{u} \in \mathcal{C}([0,\infty); H_{\mathsf{W}})$, onde H_{W} : topologia fraca;
- $\mathbf{u}(t) \to \mathbf{u}_0$, quando $t \to 0$;
- ullet ${f u}$ é solução das ENS no sentido das distribuições
- ${\bf u}$ satisfaz a desigualdade de energia no sentido das distribuições em t>0:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|\mathbf{u}(t)|^2 + \nu \|\mathbf{u}(t)\|^2 \le (\mathbf{f}, \mathbf{u}(t))$$

Regularidade

- Para a regularidade, estimar enstrofia
- Solução fraca satisfaz

$$\frac{\mathsf{d}}{\mathsf{d}t}(\mathbf{u}, \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) + a(\mathbf{u}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \qquad \forall \mathbf{v} \in V.$$

ullet Tomando $\mathbf{v} = A\mathbf{u}^{(n)}$,

$$\frac{\mathsf{d}}{\mathsf{d}t}(\mathbf{u}^{(n)}, A\mathbf{u}^{(n)}) + b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, A\mathbf{u}^{(n)}) + a(\mathbf{u}^{(n)}, A\mathbf{u}^{(n)})$$

$$= (\mathbf{f}, A\mathbf{u}^{(n)}),$$

$$\implies \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{u}^{(n)}\|^2 + \frac{\nu}{2} |A\mathbf{u}^{(n)}|^2 + b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, A\mathbf{u}^{(n)}) = \frac{1}{2} |\mathbf{f}|^2$$

15

• Para estimar o termo $b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, A\mathbf{u}^{(n)})$, fazemos

$$|b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, A\mathbf{u}^{(n)})| \le |\mathbf{u}^{(n)}|_{L^{6}} \|\mathbf{u}^{(n)}\|_{L^{3}} |A\mathbf{u}^{(n)}|$$

$$\le \|\mathbf{u}^{(n)}\| \left(\|\mathbf{u}^{(n)}\|^{1/2} |A\mathbf{u}^{(n)}|^{1/2} \right) |A\mathbf{u}^{(n)}|^{1/2}$$

$$\le \|\mathbf{u}^{(n)}\|^{3/2} |A\mathbf{u}^{(n)}|^{3/2} \le C \|\mathbf{u}^{(n)}\|^{6} + \frac{\nu}{4} |A\mathbf{u}^{(n)}|^{2}.$$

- Assim, $\frac{\mathrm{d}}{\mathrm{d}t}\|\mathbf{u}^{(n)}\|^2 + \frac{\nu}{2}|A\mathbf{u}^{(n)}|^2 \le C\|\mathbf{u}^{(n)}\|^6 + |\mathbf{f}|^2.$
- Utilizando $\lambda_1 \|\mathbf{u}\|^2 \leq |A\mathbf{u}|^2$, chegamos a

$$\frac{\mathsf{d}}{\mathsf{d}t} \|\mathbf{u}^{(n)}\|^2 + \frac{\lambda_1 \nu}{2} \|\mathbf{u}^{(n)}\|^2 \le C \|\mathbf{u}^{(n)}\|^6 + |\mathbf{f}|^2,$$

que é da forma $r' + r \le r^3 + k$, para $r = \|\mathbf{u}^{(n)}\|^2$.

• A solução de $r'+r=r^3+k$ explode em tempo finito, se $r>r^*$, e é limitada, se $0\leq r\leq r^*$, onde r^* é a maior raiz de r^3-r+k .

Conclusão:

- existência de soluções regulares locais;
- existência de soluções regulares globais para forças externas e dados iniciais pequenos.

17

Singularidades no tempo

- As estimativas anteriores indicam a possibilidade de explosão em tempo finito de soluções regulares;
- Possibilidade de perda de regularidade das soluções fracas em certos instantes de tempo (singularidades temporais - a enstrofia/vorticidade deixa de ser limitada):

• Segundo Leray, essas singularidades estariam associadas a escoamentos turbulentos.

Estimativa da "quantidade" de singularidades temporais

- Considere solução fraca $\mathbf{u} = \mathbf{u}(t), \ t \ge 0$, e o conjunto de singularidades temporais $S = \{t \ge 0; \ \|\mathbf{u}(t)\| = \infty\}$;
- Como $\int_0^T \|\mathbf{u}(t)\|^2 \, \mathrm{d}t < \infty$, temos S de medida nula;
- Mas quão grande ou pequeno é S? S é denso na reta, como os números racionais? S é discreto?
- S não é denso: pela existência local de soluções regulares, o conjunto de instantes regulares $(\|\mathbf{u}(t)\|<\infty)$ é união de intervalos semi-abertos e de medida cheia
- ullet Como podemos medir o "tamanho" de S?

19

Dimensão de Hausdorff

- ullet Quantificar o tamanho de S pela dimensão de Hausdorff
- ullet Medida de dimensão D de Hausdorff de S

$$\mu_D(S) = \lim_{\epsilon \searrow 0} \mu_{D,\epsilon}(S) = \sup_{\epsilon > 0} \mu_{D,\epsilon}(S),$$

onde
$$\mu_{D,\epsilon} = \inf_{\bigcup_{j}(t_{j}^{-},t_{j}^{+})\supset S, \ |t_{j}^{+}-t_{j}^{-}|\leq \epsilon} \sum_{j} (t_{j}^{+}-t_{j}^{-})^{D};$$

- Dimensão de Hausdorff $\dim_H(S) = \inf\{D; \ \mu_D(S) = 0\};$
- ullet dim $_H$ pode ser definida em várias dimensões e coincide com a dimensão euclidiana de subvariedades euclidianas

cobertura: $\epsilon \mapsto \epsilon/2$ nº de "bolas": $n_\epsilon \mapsto 2^d n_\epsilon$ d = dimensão euclidiana $\mu_{D,\epsilon/2^j} = 2^{j(d-D)} \mu_{D,\epsilon}$

Dimensão de Hausdorff das singularidades temporais Leray (1934), Scheffer (1976)

- Da inequação $r'+r\leq r^3+k$ para enstrofia $r=\frac{1}{2}\|\mathbf{u}\|^2$ considere $r'=r^3$, cuja solução positiva é $r(t)=(r_0^{-2}-2(t-t_0))^{-1/2}, \quad 0\leq t-t_0<1/2r_0^2, \quad r_0=r(t_0);$
- $\begin{array}{l} \bullet \ \ \text{Em cada intervalo} \ (t^-,t^+) \ \text{de regularidade,} \\ t^+-t \geq \frac{1}{2\|\mathbf{u}(t)\|^4} \quad \Rightarrow \quad \frac{1}{(t^+-t)^{1/2}} \leq 2\|\mathbf{u}(t)\|^2; \end{array}$
- Integrando no tempo: $(t^+ t^-)^{1/2} \le \int_{t_-}^{t^+} \|\mathbf{u}(t)\|^2 dt;$
- $\sum_{\substack{\text{intervalos} \\ \text{regulares}}} (t_j^+ t_j^-)^{1/2} \le \int_0^T \|\mathbf{u}(t)\|^2 \, \mathrm{d}t < \infty;$
- No conjunto complementar (singular) ... $\dim_H(S) \leq 1/2$.

21

Singularidades espaço-temporais - Scheffer (1976), Caffareli, Khon, Nirenberg (1982), ...

- Análise mais precisa no conjunto E de singularidades espaço-temporais (de "suitable weak solutions"): $\{(t^*, \mathbf{x}^*), \ \mathbf{u}(t, \mathbf{x}) \ \text{ilimitado em vizinhanças de } (t^*, \mathbf{x}^*)\};$
- $\exists \epsilon > 0, \limsup_{R \to 0} R^{-1} \int_{Q_R(t,\mathbf{x})} |\mathbf{\nabla} \otimes \mathbf{u}|^2 < \epsilon \Rightarrow (t,\mathbf{x})$ regular;
- $\mathcal{P}_1(E)=0$, onde \mathcal{P}_D é uma versão parabólica da medida de Hausdorff (com cilindros parabólicos $Q_\epsilon=I_{\epsilon^2}\times B_\epsilon$ ao invés de bolas);
- \sharp singularidade tipo vórtice pontual existindo em um intervalo de tempo (tb. dimensão dois devido a I_{ϵ^2}).

- Vários condições para a regularidade ou explosão foram obtidas e têm sido refinadas;
- Condições geométricas sobre o alinhamento de vórtices são particularmente interessantes:

$$(\partial_t + \mathbf{u} \cdot \nabla - \nu \Delta) |\boldsymbol{\omega}| + \nu |\boldsymbol{\omega}| |\boldsymbol{\nabla} \otimes \boldsymbol{\xi}|^2 = \alpha |\boldsymbol{\omega}|,$$

$$\alpha(\mathbf{x}) = \frac{3}{4\pi} P.V. \int D(\mathbf{y}/|\mathbf{y}|, \boldsymbol{\xi}(\mathbf{x} + \mathbf{y}), \boldsymbol{\xi}(\mathbf{x})) |\boldsymbol{\omega}(\mathbf{x} + \mathbf{y})| \, d\mathbf{y}/|\mathbf{y}|^3$$

$$\boldsymbol{\xi} = \boldsymbol{\omega}/|\boldsymbol{\omega}|, \ D(\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3) = (\mathbf{s}_1 \cdot \mathbf{s}_3) \det(\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3), \ \forall |\mathbf{s}_i| = 1;$$

• $\varphi = \text{ angulo entre } \boldsymbol{\xi}(\mathbf{x} + \mathbf{y}) \text{ e } \boldsymbol{\xi}(\mathbf{x}), \text{ então } |D| \leq |\sin \varphi| \text{ e angulo local pequeno reduz } \alpha, \text{ associado ao crescimento de singularidades;}$

23

Um resultado condicional de regularidade

 $|\sin \varphi(\mathbf{y})| \le c|\mathbf{y}|^{1/2}$ em $\{(t, \mathbf{x}); |\omega(t, \mathbf{x})| \ge M, 0 < t < T\} \Rightarrow$ \nexists explosão em t = T (Beirão da Veiga-Berselli (2002)).

Regularidade eventual de Leray

- Considere o caso sem força externa, f = 0;
- $\bullet \ \ \text{Nesse caso} \ \ 2\nu \int_0^T \|\mathbf{u}(t)\|^2 \ \mathrm{d}t \leq |\mathbf{u}_0|^2, \quad \ \forall T>0;$
- Então, $\liminf_{t\to\infty} \|\mathbf{u}(t)\| = 0$, i.e. a solução assume valores arbitrariamente pequenos de enstrofia;
- ullet Pelo resultado de regularidade global para dados iniciais com enstrofia suficientemente pequena, segue que a solução ${f u}$ é regular a partir de algum tempo $t \geq T_L$ suficientemente grande.

25

Regularidade assintótica?

- Para $\mathbf{f} \neq 0$, não há, necessariamente, regularidade eventual;
- Um possível resultado intermediário de regularidade é o conjunto ω -limite fraco ter enstrofia limitada;
- Outro, mais fraco, seria o suporte de medidas invariantes ("soluções estatísticas" em 3D) ter enstrofia limitada;
- Este último resultado tem relação com o esperado decaimento exponencial do espectro, na teoria estatística de turbulência, associado ao espectro de funções analíticas.

Atrator global fraco

 As estimativas a priori obtidas na teoria de existência das ENS são suficientes para mostrar a existência de um atrator global na topologia fraca:

$$\mathcal{A}_{\mathsf{W}}\!=\!\{\mathbf{u}_0\in H;\;\exists\;\mathsf{solu}\boldsymbol{\varsigma}\tilde{\mathsf{ao}}\;\mathsf{global},\;\sup_{t\in\mathbb{R}}|\mathbf{u}(t)|\!<\!\infty,\mathbf{u}(0)=\mathbf{u}_0\};$$

- Pelas estimativas \mathcal{A}_w é limitado em H e atrai todas as soluções na topologia fraca, uniformemte para condições iniciais limitadas.
- Se $\mathcal{A}_{\mathsf{W}} \subset V$ (regularidade assintótica), então todas as soluções são atraídas na topologia forte.

Equações de Navier-Stokes e turbulência

Ricardo M. S. Rosa Instituto de Matemática Universidade Federal do Rio de Janeiro (IM-UFRJ)

> 24 a 27 de fevereiro de 2003 Programa de Verão do LNCC

> > 1

Título alternativo:

Métodos matemáticos em dinâmica dos fluidos

Tópicos:

- Teoria estatística convencional de turbulência
- Sistemas dinâmicos
- Teoria matemática das equações de Navier-Stokes
- Formulação matemática da teoria convencional de turbulência

Formulação matemática da teoria convencional de turbulência

- Soluções estatísticas e equação de Liouville-Foias
- Equações de Reynolds para soluções estatísticas
- Equações de fluxo de energia
- Cascata de energia e condições para sua ∃ forçada
- Estimativas de quantidades físicas
- Cascata de enstrofia em duas dimensões
- Condições para "turbulência" 2D forçada
- Turbulência homogênea em decaimento
- Leis de potência

3

Formalização do conceito de médias amostrais

• As médias amostrais são definidas a partir de N escoamentos $\mathbf{u}^{(n)}(t,\mathbf{x}),\ n=1,\ldots,N$:

$$\langle \varphi(\mathbf{u}) \rangle = \frac{1}{N} \sum_{n=1}^{N} \varphi(\mathbf{u}^{(n)})$$

 \bullet Em termos probabilísticos: N escoamentos considerados, cada um com peso 1/N.

• Mais geralmente: podemos ter escoamentos com pesos diferentes θ_n , com $\sum_n \theta_n = 1$,

$$\langle \varphi(\mathbf{u}) \rangle = \sum_{n=1}^{N} \varphi(\mathbf{u}^{(n)}) \theta^n$$

• Ou uma infinidade de escoamentos $\mathbf{u}^{(\omega)}$, com densidade de probabilidade d $\rho(\omega)$,

$$\langle \varphi(\mathbf{u}) \rangle = \int \varphi(\mathbf{u}^{(\omega)}) \, \mathrm{d}\rho(\omega)$$

5

- Podemos usar probabilidades $\rho=\rho(\omega)$ em um espaço de probabilidades $(\mathcal{P},\Sigma,\rho)$ e considerar variáveis aleatórias $\mathbf{u}=\mathbf{u}(\omega)$ para representar os possíveis escoamentos.
- Ou podemos usar medidas de probabilidade μ em algum espaço "natural" para escoamentos, e.g. H da teoria de Leray (campos de velocidades de energia finita, divergente zero e com as condições de contorno):

$$\langle \varphi(\mathbf{u}) \rangle = \int_H \varphi(\mathbf{v}) \, \mathrm{d}\mu(\mathbf{v}).$$

Nesse caso, ${\bf v}$ é uma variável de integração, como s em

$$\langle u^2 \rangle = \int_0^{\pi/2} s^2 \sin(s) \, \mathrm{d}s = \pi + 2.$$

• $\mathcal{P}=H, \Sigma=$ borelianos de H, $\mu=$ medida de Borel em H

Medidas relevantes

- As medidas μ podem depender do tempo ($\mu = \mu_t$, e.g. turbulência em decaimento), ou não (turbulência estatisticamente estacionária)
- As informações estatísticas do escoamento estão contidas em μ . Os momentos generalizados, são as expressões

$$\langle \varphi(\mathbf{u}) \rangle = \int_{H} \varphi(\mathbf{v}) \, \mathrm{d}\mu(\mathbf{v})$$

de onde podemos tirar os momentos clássicos, para funções polinomiais apropriadas, e.g. $\varphi(\mathbf{u}) = (\mathbf{u} - \langle \mathbf{u} \rangle)^k$.

- Quais são as medidas relevantes para um escoamento?
- Equação para μ ou μ_t ?

7

• Se pensarmos na média amostral de N escoamentos com peso, os momentos generalizados $\varphi:H\to\mathbb{R}$ satisfazem

$$\frac{d}{dt} \langle \varphi(\mathbf{u}(t)) \rangle = \frac{d}{dt} \sum_{n=1}^{N} \theta_n \varphi(\mathbf{u}^{(n)}(t)) = \sum_{n=1}^{N} \theta_n \frac{d}{dt} \varphi(\mathbf{u}^{(n)}(t))$$

$$= \sum_{n=1}^{N} \theta_n \varphi'(\mathbf{u}^{(n)}(t)) \circ \frac{d}{dt} \mathbf{u}^{(n)}(t)$$

$$= \sum_{n=1}^{N} \theta_n \varphi'(\mathbf{u}^{(n)}(t))) \circ \mathbf{F}(\mathbf{u}^{(n)}(t))$$

$$= \sum_{n=1}^{N} \theta_n \left(\mathbf{F}(\mathbf{u}^{(n)}(t)), \varphi'(\mathbf{u}^{(n)}(t)) \right)_{V', V}$$

ullet Em termos de medida de probabilidade em H, podemos escrever

$$\mu_t = \sum_{n=1}^N \theta_n \delta_{\mathbf{u}^{(n)}(t)},$$

onde $\delta_{\mathbf{u}} = \text{medida de Dirac em } \mathbf{u}$. Dessa forma,

$$\langle \varphi(\mathbf{u}(t)) \rangle = \sum_{n=1}^{N} \theta_n \varphi(\mathbf{u}^{(n)}(t)) = \int_{H} \varphi(\mathbf{v}) \, \mathrm{d}\mu_t(\mathbf{v})$$

• Assim, podemos reescrever a equação anterior:

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \varphi(\mathbf{u}(t)) \rangle = \sum_{n=1}^{N} \theta_n \left(\mathbf{F}(\mathbf{u}^{(n)}(t)), \varphi'(\mathbf{u}^{(n)}(t)) \right)$$

$$\iff \frac{\mathrm{d}}{\mathrm{d}t} \int_{H} \varphi(\mathbf{v}) \, \mathrm{d}\mu_t(\mathbf{v}) = \int_{H} \left(\mathbf{F}(\mathbf{v}), \varphi'(\mathbf{v}) \right) \, \mathrm{d}\mu_t(\mathbf{v})$$

9

• A formulação obtida elimina a dependência explícita na solução das ENS, introduzindo uma variável de integração ${\bf v}$ e a incógnita μ_t :

$$\frac{d}{dt} \int_{H} \varphi(\mathbf{v}) d\mu_{t}(\mathbf{v}) = \int_{H} (\mathbf{F}(\mathbf{v}), \varphi'(\mathbf{v})) d\mu_{t}(\mathbf{v})$$

- Essa equação para μ_t é em termos dos momentos generalizados (a regra para medidas) e é linear(!) em μ_t
- É uma equação do tipo Liouville da mecânica estatística e pode ser chamada de *equação de Liouville-Foias* ou *equação de Navier-Stokes estatística*
- O termo $\mathbf{F}(\mathbf{u}) = \mathbf{f} \nu A \mathbf{u} B(\mathbf{u}, \mathbf{u})$ "mora" no espaço dual V', logo só os momentos com $\varphi'(\mathbf{v})$ em V podem ser considerados

Soluções estatísticas das ENS

Família $\{\mu_t\}_{t>0}$ de medidas de probabilidade de Borel:

- $[0,\infty)\ni t\mapsto \int_H \varphi(\mathbf{v})\;\mathrm{d}\mu_t(\mathbf{v})$ contínuo, $\forall \varphi\in\mathcal{C}(H_\mathsf{W})$ limitado
- $t \mapsto \int_H |\mathbf{v}|^2 d\mu_t(\mathbf{v})$ em $L^{\infty}(0,\infty)$ e contínuo em t=0
- $t \mapsto \int_H \|\mathbf{v}\|^2 d\mu_t(\mathbf{v}) \text{ em } L^1_{\text{loc}}(0,\infty)$
- Inequação de energia no sentido das distribuições em $(0,\infty)$:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{H}|\mathbf{v}|^{2}\;\mathrm{d}\mu_{t}(\mathbf{v})+\nu\int_{H}\|\mathbf{v}\|^{2}\;\mathrm{d}\mu_{t}(\mathbf{v})\leq\int_{H}(\mathbf{f},\mathbf{v})\;\mathrm{d}\mu_{t}(\mathbf{v});$$

• Satisfaz as ENS estatísticas no sentido das distribuições em $(0,\infty)$, para todo momento generalizado apropriado φ (suficientemente regulares em um certo sentido).

11

Existência de soluções estatísticas

Dada uma medida de Borel de probabilidade μ_0 em H, com energia cinética média finita $\int_H |\mathbf{v}|^2 \, \mathrm{d}\mu_0(\mathbf{v}) < \infty$

 $(\mu_0$ representando a distribuição de probabilidades do campo inicial de velocidades)

- Existência via método de Galerkin, passando ao limite as medidas definidas por $\mu_t^{(n)}(t)(E) = \mu_0(S^{(n)}(-t)E)$, para qualquer boreliano $E \subset H$, onde $\{S^{(n)}(t)\}_{t \geq 0}$ é o operador solução associado à aproximação de Galerkin
- Ou ...

• Existência pelo Teorema de Krein-Milman: aproximar μ_0 por combinação convexa de pontos extremos, que são deltas de Dirac $\delta_{\mathbf{u}_0^{(n)}}$, $n=1,\ldots,N$, considerar aproximações $\mu_t^{(N)}$ definidas como as combinações convexas das deltas de Dirac $\delta_{\mathbf{u}^{(n)}(t)}$, nas soluções fracas correspondes das ENS, e passar ao limite quando $N \to \infty$

13

- As soluções estatísticas acima são importantes para o tratamento de turbulência em decaimento ou sem ser em equilíbrio estatístico no tempo (estatisticamente estacionária)
- Soluções auto-semelhantes podem ser definidas e que satisfazem as leis de estrutura de Kolmogorov

Solução estatística estacionária

Medida de probabilidade de Borel μ em H, satisfazendo

- \bullet Energia cinética média finita: $\int_{H} |\mathbf{v}|^2 \ \mathrm{d}\mu(\mathbf{v}) < \infty$
- ullet Enstrofia média finita: $\int_H \|\mathbf{v}\|^2 \ \mathrm{d}\mu(\mathbf{v}) < \infty$
- Inequação de energia

$$\int_{\{e_1 \le \frac{1}{2} |\mathbf{v}|^2 < e_2\}} \left\{ \nu ||\mathbf{v}||^2 - (\mathbf{f}, \mathbf{v}) \right\} d\mu(\mathbf{v}) \le 0,$$

para todos os níveis de energia $0 \le e_1 \le e_2 \le \infty$

• Equação de NS estatística estacionária:

$$\int_{H} (\mathbf{F}(\mathbf{v}), \varphi'(\mathbf{v})) \ d\mu(\mathbf{v}) = 0,$$

para momentos generalizados apropriados (regulares)

15

Limite generalizado

- Para o tratamento das médias temporais e para evitar a hipótese ergódica, utilizamos o limite generalizado, que estende, via Teorema de Hahn-Banach, o conceito de limite para qualquer função limitada (é um funcional linear no espaço linear das funções limitadas)
- Limite generalizado não satisfaz propriedade do limite de produto ser o produto dos limites e não é único
- Para funções periódicas, é a média dos valores assumidos, ponderada pelo número de vezes assumido

Existência de soluções estatísticas estacionárias e médias temporais

- Dada uma solução fraca $\mathbf{u} = \mathbf{u}(t), t \geq 0$, e um momento generalizado φ (contínuo de H_w em \mathbb{R}) as médias temporais são limitadas uniformemente em T>0
- O limite generalizado das médias temporais define uma medida de probabilidade que é uma solução estatística estacionária das ENS:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \varphi(\mathbf{u}(t)) \; \mathrm{d}t = \int_H \varphi(\mathbf{v}) \; \mathrm{d}\mu_\mathbf{u}(\mathbf{v})$$

ullet Essa solução estatística estacionária depende, em princípio, da solução fraca ${f u}={f u}(t)$, pois não estamos assumindo nenhuma hipótese ergódica

17

Turbulência em equilíbrio estatístico

- As médias amostrais associadas a escoamentos turbulentos em equilíbrio estatístico (equilíbrio no tempo, i.e. estatisticamente estacionária) são, agora, interpretadas como médias em relação a soluções estatísticas estacionárias
- As soluções estatísticas estacionárias das ENS colocam as médias amostrais em um contexto rigoroso
- A partir desse conceito, são consideradas rigorosamente as equações médias de Reynolds, as equações de energia média, as cascatas de energia, o espectro de energia, etc.

O escomento médio e outras quantidades médias

- Até agora, as médias que fazem sentido são as de momentos escalares $\varphi: H_{\mathsf{W}} \to \mathbb{R}$, contínuos e limitados
- Pela regularidade de μ (suporte limitado em H e de enstrofia finita), as médias podem ser estendidas para

$$|\varphi(\mathbf{u})| \le C(|\mathbf{u}|)(1+\nu^{-2}\kappa_0^{-1}||\mathbf{u}||^2), \quad \forall \mathbf{u} \in V,$$

• Por dualidade, podemos definir as médias do campo de velocidades, $\langle \mathbf{u} \rangle$, do termo bilinear, $\langle B(\mathbf{u}, \mathbf{u}) \rangle$, etc. etc.

$$\begin{split} (\langle \mathbf{u} \rangle, \mathbf{w}) &= \int_{H} (\mathbf{v}, \mathbf{w}) \; \mathrm{d} \mu(\mathbf{v}), \\ (\langle B(\mathbf{u}, \mathbf{u}) \rangle, \mathbf{w}) &= \int_{H} (B(\mathbf{v}, \mathbf{v}), \mathbf{w}) \; \mathrm{d} \mu(\mathbf{v}) \end{split}$$

19

As equações médias de Reynolds

As soluções estatísticas estacionárias satisfazem

$$\int_{H} (\mathbf{F}(\mathbf{v}), \varphi'(\mathbf{v})) \ \mathrm{d}\mu(\mathbf{v}) \qquad (\forall \varphi \ \mathrm{apropriado})$$

• Tomando $\varphi(\mathbf{u}) = \psi((\mathbf{u}, P_m, \mathbf{w}))$, onde $\mathbf{w} \in V$ e ψ é \mathcal{C}^1 e de suporte compacto, fazendo, primeiro, $\psi' \to 1$ e, depois, $m \to \infty$, onde $P_m =$ projeção de Galerkin,

$$\int_{H} (\mathbf{F}(\mathbf{v}), \mathbf{w}) \ \mathrm{d}\mu(\mathbf{v}) = 0$$

que é a versão fraca das equações médias de Reynolds:

$$\nu A \langle \mathbf{u} \rangle + \langle B(\mathbf{u}, \mathbf{u}) \rangle = \mathbf{f}$$
 (em V')

com $\langle \mathbf{u} \rangle \in V$, $\langle B(\mathbf{u}, \mathbf{u}) \rangle \in D(A^{-3/8})$

• A versão clássica pode, então, ser recuperada:

$$-\nu\Delta\langle\mathbf{u}\rangle + (\langle\mathbf{u}\rangle\cdot\nabla)\langle\mathbf{u}\rangle + \nabla P = \mathbf{f} - \nabla\cdot\langle\mathbf{u}'\otimes\mathbf{u}'\rangle, \quad \nabla\cdot\langle\mathbf{u}\rangle = 0.$$

onde $\mathbf{u}' = \mathbf{u} - \langle \mathbf{u} \rangle$ (passa para a variável de integração)

• A equação de Hopf (para a função característica de μ – sua transformada de Fourier) também pode ser feita rigorosa

21

Decomposição espectral do escoamento

- Consideramos um escoamento em um domínio limitado suave $\Omega \subset \mathbb{R}^d$, d=2,3, para simplificar
- Consideramos condições de aderência com fronteira fixa e/ou condições periódicas, e.g. um canal periódico

• Decomposição espectral em autofunções do operador de Stokes, $A\mathbf{w}_i = \lambda_i \mathbf{w}_i$, $0 < \lambda_1 \leq \dots$

$$\mathbf{u} = \sum_{j=0}^{\infty} \hat{u}_j \mathbf{w}_j$$

Decomposição em número de onda

- Para cada autovalor λ , que tem dimensão $1/L^2$, onde L= comprimento, associamos número de onda $\kappa=\lambda^{1/2}$
- ullet Para um número de onda κ , a componente ${f u}_{\kappa}$ com esse número de onda é

$$\mathbf{u}_{\kappa} = \sum_{\lambda_j = \kappa^2} \hat{u}_j \mathbf{w}_j$$

• E o componente $\mathbf{u}_{\kappa',\kappa''}$ com os números de onda $(\kappa',\kappa'']$:

$$\mathbf{u}_{\kappa',\kappa''} = \sum_{\kappa' < \kappa \le \kappa''} \mathbf{u}_{\kappa}$$

23

Números característicos

- Comprimento macroscópico $\ell_0>0$ dado (tipicamente da ordem de $\lambda_1^{-1/2}$, com número de onda $\kappa_0=1/\ell_0$
- ullet $ho_0=$ densidade de massa (uniforme) do fluido
- unidade de massa $\rho_0 \ell_0^3 = \rho_0 / \kappa_0^3$
- Energia cinética média por unidade de massa

$$e = \frac{\kappa_0^3}{2} \langle |\mathbf{u}|^2 \rangle$$

 Razão média de dissipação de energia por unidade de tempo, por unidade de massa

$$\epsilon = \nu \kappa_0^3 \langle \|\mathbf{u}\|^2 \rangle$$

- Velocidade média característica $U=2e^{1/2}$
- Número de Reynolds

$$Re = \frac{\ell_0 U}{\nu} = \frac{\kappa_0^{1/2} \langle |\mathbf{u}|^2 \rangle^{1/2}}{\nu}$$

- ullet Número de onda de Kolmogorov $\kappa_\epsilon = (\epsilon/
 u^3)^{1/4}$
- Número de onda de Taylor

$$\kappa_{\tau} = \left(\frac{\langle \|\mathbf{u}\|^2 \rangle}{\langle |\mathbf{u}|^2 \rangle}\right)^{1/2} = \left(\frac{\epsilon}{2\nu e}\right)^{1/2}$$

Não é exatamento o número de Taylor original, $\kappa_T=1/\ell_T \text{, mas assumindo homogeneidade e isotropia,} \\ \kappa_\tau=\sqrt{15}\kappa_T$

25

Equações de fluxo de energia

• Analogamente ao feito para a equação de Reynolds,

$$\int_{H} \left\{ (\mathbf{f}, \mathbf{u}_{\kappa', \kappa''}) - \nu \|\mathbf{u}_{\kappa', \kappa''}\|^{2} - b(\mathbf{u}, \mathbf{u}, \mathbf{u}_{\kappa', \kappa''}) \right\} d\mu(\mathbf{u}) = 0$$

onde
$$b(\mathbf{u}, \mathbf{u}, \mathbf{v}) = (B(\mathbf{u}, \mathbf{u}), \mathbf{v}) = \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \, d\mathbf{x}$$

• Logo (para todo $0 \le \kappa' < \kappa'' < \infty$)

$$\nu \langle \|\mathbf{u}_{\kappa',\kappa''}\|^2 \rangle + \langle b(\mathbf{u},\mathbf{u},\mathbf{u}_{\kappa',\kappa''}) \rangle = \langle (\mathbf{f},\mathbf{u}_{\kappa',\kappa''}) \rangle$$

• Para interpretação física correta, multiplicamos por κ_0^3

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa',\kappa''}\|^2 \rangle + \kappa_0^3 \langle b(\mathbf{u},\mathbf{u},\mathbf{u}_{\kappa',\kappa''}) \rangle = \kappa_0^3 \langle (\mathbf{f},\mathbf{u}_{\kappa',\kappa''}) \rangle$$

equação de fluxo de energia nos modos $(\kappa',\kappa'']$, $\kappa''<\infty$

• Pela condição de ortogonalidade (ou conservação de energia pelo termo inercial) $b(\mathbf{u}, \mathbf{v}, \mathbf{v}) = 0$, obtemos

$$-\kappa_0^3 \langle b(\mathbf{u}, \mathbf{u}, \mathbf{u}_{\kappa', \kappa''}) \rangle = \langle \mathfrak{e}_{\kappa'}(\mathbf{u}) \rangle - \langle \mathfrak{e}_{\kappa''}(\mathbf{u}) \rangle,$$

onde

$$\langle \mathbf{e}_{\kappa}(\mathbf{u}) \rangle = -\kappa_0^3 b(\mathbf{u}_{0,\kappa}, \mathbf{u}_{0,\kappa}, \mathbf{u}_{\kappa,\infty}) + \kappa_0^3 b(\mathbf{u}_{\kappa,\infty}, \mathbf{u}_{\kappa,\infty}, \mathbf{u}_{0,\kappa})$$

é o fluxo médio por unidade de tempo de energia cinética por unidade de massa transferida para os modos altos $\mathbf{u}_{\kappa,\infty}$ pelos efeitos de inércia

• E a equação de fluxo de energia se escreve

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa',\kappa''}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}_{\kappa',\kappa''},\mathbf{u}_{\kappa',\kappa''}) \rangle + \langle \mathfrak{e}_{\kappa'}(\mathbf{u}) \rangle - \langle \mathfrak{e}_{\kappa''}(\mathbf{u}) \rangle.$$

27

• No caso $\kappa' = 0$ and $\kappa'' = \kappa$,

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}_{0,\kappa}, \mathbf{u}_{0,\kappa}) \rangle - \langle \mathfrak{e}_{\kappa}(\mathbf{u}) \rangle$$

A inequação de energia total é

$$\nu \kappa_0^3 \langle \|\mathbf{u}\|^2 \rangle \leq \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}) \rangle$$

Subtraindo,

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa,\infty}\|^2 \rangle \leq \kappa_0^3 \langle (\mathbf{f}_{\kappa,\infty}, \mathbf{u}_{\kappa,\infty}) \rangle + \langle \mathfrak{e}_{\kappa}(\mathbf{u}) \rangle.$$

que estende para o caso $\kappa''=\infty$, mas com desigualdade (possível "vazamento" de energia cinética para $\kappa''=\infty$ devido a potencial falta de regularidade da solução estatística, similar a potencial perda de regularidade das soluções fracas)

Fluxo de energia restrito

 Observe que os seguintes limites existem (MCT e LDCT)

$$\lim_{\kappa \to \infty} \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle = \langle \|\mathbf{u}\|^2 \rangle, \qquad \lim_{\kappa \to \infty} \langle (\mathbf{f}_{0,\kappa}, \mathbf{u}_{0,\kappa}) \rangle = \langle (\mathbf{f}, \mathbf{u}) \rangle.$$

• Defina

$$\begin{split} \langle \mathfrak{e}(\mathbf{u}) \rangle_{\infty} &\stackrel{\text{def}}{=} \lim_{\kappa \to \infty} \langle \mathfrak{e}_{\kappa}(\mathbf{u}) \rangle \\ &= \lim_{\kappa \to \infty} \left\{ \kappa_0^3 \langle (\mathbf{f}_{0,\kappa}, \mathbf{u}_{0,\kappa}) \rangle - \nu \kappa_0^3 \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle \right\} \\ &= \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}) \rangle - \nu \kappa_0^3 \langle \|\mathbf{u}\|^2 \rangle \geq 0. \end{split}$$

• Fluxo de energia restrito:

$$\mathfrak{e}_{\kappa}^*(\mathbf{u}) = \mathfrak{e}_{\kappa}(\mathbf{u}) - \langle \mathfrak{e}(\mathbf{u}) \rangle_{\infty},$$

29

Equação de fluxo de energia "com modos altos"

• Da equação do fluxo de energia para $\kappa'' < \infty$,

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa',\kappa''}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}_{\kappa',\kappa''},\mathbf{u}_{\kappa',\kappa''}) \rangle + \langle \mathfrak{e}_{\kappa'}(\mathbf{u}) \rangle - \langle \mathfrak{e}_{\kappa''}(\mathbf{u}) \rangle$$

• Tomamos $\kappa' = \kappa$ e fazemos $\kappa'' \to \infty$:

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa,\infty}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}_{\kappa,\infty}) \rangle + \langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle.$$

Cascata de energia

Como

$$\lim_{\kappa \to \infty} \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}_{\kappa, \infty}) \rangle = 0, \quad \nu \kappa_0^3 \langle \| \mathbf{u}_{\kappa, \infty} \|^2 \rangle \underset{(\kappa \searrow 0)}{\nearrow} \nu \kappa_0^3 \langle \| \mathbf{u} \|^2 \rangle = \epsilon,$$

podemos definir números de onda $\underline{\kappa}_{\epsilon}$ e $\overline{\kappa}_{\epsilon}$ como o menor e, respectivamente, o maior, tais que

31

ullet Mas em geral nada garante que $\underline{\kappa}_{\epsilon} < \overline{\kappa}_{\epsilon}$

- ullet Podemos quantificar as relações anteriores com a ajuda de um parâmetro adimensional δ pequeno, representando a ordem de precisão nas relações
- ullet Assim, $\overline{\kappa}_{\epsilon}$ é o maior número de onda tal que

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\overline{\kappa}_{\epsilon},\infty}\|^2 \rangle \geq (1-\delta)\epsilon,$$

ullet E $\underline{\kappa}_{\epsilon}$ é o menor número de onda tal que

$$\left|\kappa_0^3\langle(\mathbf{f},\mathbf{u}_{\kappa,\infty})\rangle\right| \leq \delta\epsilon, \qquad \forall \kappa \geq \underline{\kappa}_{\epsilon}$$

32

- Uma base para a teoria de Kolmogorov é a separação entre as escalas de injeção e de dissipação de energia
- Se $\underline{\kappa}_{\epsilon} < \overline{\kappa}_{\epsilon}$, então para $\underline{\kappa}_{\epsilon} \le \kappa \le \overline{\kappa}_{\epsilon}$, segue de

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa,\infty}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}_{\kappa,\infty}) \rangle + \langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle,$$

$$\operatorname{que} \ \langle \boldsymbol{\mathfrak{e}}_{\kappa}^*(\mathbf{u}) \rangle = \nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa,\infty}\|^2 \rangle - \kappa_0^3 \langle (\mathbf{f},\mathbf{u}_{\kappa,\infty}) \rangle \left\{ \begin{array}{l} \geq (1-2\delta)\epsilon, \\ \leq (1+\delta)\epsilon. \end{array} \right.$$

• Logo, $-\delta \leq 1 - \frac{\langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle}{\epsilon} \leq 2\delta$. ou seja, no intervalo $[\underline{\kappa}_{\epsilon}, \overline{\kappa}_{\epsilon}]$, vale a cascata de energia:

$$\langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle \approx \epsilon.$$

• Quanto maior $[\underline{\kappa}_{\epsilon}, \overline{\kappa}_{\epsilon}]$, mais significativa a cascata

33

Condições suficientes para existência da cascata

• Para qualquer número de onda $\kappa > 0$,

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle \leq \nu \kappa_0^3 \kappa^2 \langle |\mathbf{u}_{0,\kappa}|^2 \rangle \leq \nu \kappa_0^3 \kappa^2 \langle |\mathbf{u}|^2 \rangle \leq \left(\frac{\kappa}{\kappa_\tau}\right)^2 \epsilon.$$

Se
$$\kappa^2 \ll \kappa_{\tau}^2$$
, então $\nu \kappa_0^3 \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle \ll \epsilon$, logo, $\overline{\kappa}_{\epsilon} \geq \delta^{1/2} \kappa_{\tau}$.

- Se $\kappa_{\tau}^2\gg\underline{\kappa}_{\epsilon}^2$, então $\overline{\kappa}_{\epsilon}\geq\underline{\kappa}_{\epsilon}$, com um pequeno intervalo de cascata
- Se $\kappa_{\tau} \gg \underline{\kappa}_{\epsilon}$, então $\delta \geq \underline{\kappa}_{\epsilon}/\kappa_{\tau}$, e $\overline{\kappa}_{\epsilon} \geq \underline{\kappa}_{\epsilon}^{1/2}\kappa_{\tau}^{1/2}$, e uma cascata existe com $\overline{\kappa}_{\epsilon}^{2} \gg \underline{\kappa}_{\epsilon}^{2}$.
- Se $\kappa_{\tau}^{2/3}\gg\underline{\kappa}_{\epsilon}^{2/3}$, então $\delta\geq\underline{\kappa}_{\epsilon}^{2/3}/\kappa_{\tau}^{2/3}$, logo $\overline{\kappa}_{\epsilon}\geq\underline{\kappa}_{\epsilon}^{1/3}\kappa_{\tau}^{2/3}$, e uma ampla cascata de energia existe, com $\overline{\kappa}_{\epsilon}\gg\underline{\kappa}_{\epsilon}$.

Confirmação parcial de estimativas heurísticas

ullet Para ${f f}$ em V, considere o número de onda característico

$$\kappa_f = (|A^{1/2}\mathbf{f}|/|A^{-1/2}\mathbf{f}|)^{1/2}$$

• Para $\kappa_f \leq C\kappa_0$, e para Reynolds suficientemente grande,

$$\epsilon \le c\kappa_0 U^3$$
, $\kappa_{\epsilon} \le c\kappa_0 \operatorname{Re}^{3/4}$, $\kappa_{\tau} \le c\kappa_0^{1/3} \kappa_{\epsilon}^{2/3}$, $\kappa_{\tau} \le c\kappa_0 \operatorname{Re}^{1/2}$,

confirmando parcialmente (e com quantidades definidas de maneira precisa) as estimativas heurísticas da teoria de Kolmogorov:

$$\epsilon \sim \kappa_0 U^3, \ \kappa_\epsilon/\kappa_0 \sim \mathrm{Re}^{3/4}, \ \kappa_\tau \sim \kappa_0^{1/3} \kappa_\epsilon^{2/3}, \ \kappa_\tau/\kappa_0 \sim \mathrm{Re}^{1/2}.$$

35

- Em 3D, transferência inversa de energia das escalas de injeção para as escalas maiores também pode ser provada
- Em 2D, condições similares para a existência de cascata direta de enstrofia e de cascata inversa de energia
- Em 2D, o número de onda que faz o papel do de Taylor é

$$\kappa_{\sigma} = \left(\frac{\langle |A\mathbf{u}|^2 \rangle}{\langle ||\mathbf{u}||^2 \rangle}\right)^{1/2} = \left(\frac{\nu}{\epsilon}\right)^{1/2}$$

 Em 2D, há estimativas mais precisas para a existência da cascata de enstrofia e do espectro de Kraichnan

- Em 2D, pode-se mostrar que a transferência de energia para os modos mais altos é muito mais "fraca" que a de enstrofia, justificando a existência da cascata de enstrofia ao invés da de energia
- Em 2D, vale

$$\kappa_{\sigma}^{2} = \frac{r_{+}\kappa_{+}^{2} - r_{-}\kappa_{-}^{2}}{r_{+} - r_{-}},$$

$$r_{+} = \kappa_{0}^{2} \sum_{\kappa>0} \langle (\mathbf{f}_{\kappa}, \mathbf{u}_{\kappa}) \rangle^{+}, \qquad r_{-} = \kappa_{0}^{2} \sum_{\kappa>0} \langle (\mathbf{f}_{\kappa}, \mathbf{u}_{\kappa}) \rangle^{-},$$

$$\kappa_{+}^{2} = \frac{\kappa_{0}^{2} \sum_{\kappa>0} \kappa^{2} \langle (\mathbf{f}_{\kappa}, \mathbf{u}_{\kappa}) \rangle^{+}}{r_{+}}, \qquad \kappa_{-}^{2} = \frac{\kappa_{0}^{2} \sum_{\kappa>0} \kappa^{2} \langle (\mathbf{f}_{\kappa}, \mathbf{u}_{\kappa}) \rangle^{-}}{r_{-}},$$

• Se $r_-=0$, é possível mostrar que $\kappa_\sigma^2\lesssim\underline{\kappa}_\eta^2$, comprometendo a cascata de enstrofia