CHM202: Energetics and dynamics of chemical reactions

Fugacity and activity

Slides for online lectures

Must be followed along with recommended textbook by Atkins (8th or later edition) or any other reference book

(figures/texts taken from Atkins' Physical Chemistry, 8th Ed)

$$dU = TdS - PdV + \sum_{i} \mu_{i} dn_{i}$$

$$dG = -SdT + VdP + \sum_{i} \mu_{i} dn_{i}$$

$$G = G^0 + nRT ln \left(\frac{P}{P^0} \right)$$

$$G = G^0 + nRT ln \left(f/_{P^0} \right)$$

$$f = \varphi \times P$$

$$ln\varphi = \int_{0}^{P} \frac{Z-1}{P} dP$$

Reversible change

Reversible change

Reversible change, constant temp, ideal gas

f: fugacity

Reversible change, constant temp, ALL gases

$$\mu_A = \mu_A^0 + RT ln \left(\frac{P_A}{P^0}\right)$$

$$\mu_A = \mu_A^* + RT \ln \left(\frac{P_A}{P_A^*} \right)$$

$$P_A \approx x_A \times P_A^*$$

$$\mu_A \approx \mu_A^* + RT ln x_A$$

$$y_A \approx \frac{x_A \times P_A^*}{P_B^* + (P_A^* - P_B^*) \times x_A}$$

Henry's Law
$$P_B \approx x_B \times K_B \qquad \text{("Ideal" dilute solution)}$$
Solute in low concentration

Reversible change, constant Temp, ideal vapour

Exact! (no approximation yet other than vapour behaves ideally)

Raoult's Law (Ideal solution)
Solvent in almost pure form

Ideal solution

$$P_A \approx x_A \times P_A^*$$

$$\mu_A \approx \mu_A^* + RT ln x_A$$

$$\mu_B \approx \mu_B^* + RT ln x_B$$

Raoult's Law is followed by A <u>at ALL concentrations</u>

Raoult's Law is followed by B at ALL concentrations

MA = MA* + RT En ZA	tex > le B	
$\frac{d\mu_A = 0 + RT \frac{dx_A}{x_A}}{x_A}$	En: du; = 0 Gribbs - Duhan	
2 dee = RT dra	nadreat no dres = 0	
- zedres = RT dx	x d fex + z g djug = 0	
$d\mu_{R} = -RT \frac{dn_{A}}{n}$	$x_A + x_B = \frac{n_A}{n_A + n_B} + \frac{n_B}{n_A + n_B}$	
$= -RT \left(-dr_{B}\right)$	$= 1$ $dz_A + dz_B = 0$	
$= R7 \frac{dx_g}{x_g}$	$dx_A = -dx_A$	
= RT den xB		
	MB = MD* + RTENZO	

Ideal solution

$$P_A \approx x_A \times P_A^*$$

$$\mu_A \approx \mu_A^* + RT ln x_A$$

$$\mu_B \approx \mu_B^* + RT ln x_B$$

Raoult's Law is followed by A at ALL concentrations

Raoult's Law is followed by B at ALL concentrations

Raoult's Law is

 $(x_A \text{ or } x_B \rightarrow 1)$

Real solution

$$\mu_A = \mu_A^* + RT \ln \left(\frac{P_A}{P_A^*} \right)$$

$$\mu_B = \mu_B^* + RT ln \left(\frac{P_B}{P_B^*} \right)$$

 $P_R \approx \chi_R \times K_R$

Henry's Law is followed by A or B in low concentration $(x_R \rightarrow 0)$

Phase	Approximation	Exact equation
	$\mu = \mu^0 + RT ln \left({^P/_{P^0}} \right)$	$\mu = \mu^0 + RT ln \left(f/_{P^0} \right)$ f: fugacity
Gas/Vapour	when P → 0	$f = \varphi \times P$ $f \rightarrow P \text{ or } \varphi \rightarrow 1 \text{ when } P \rightarrow 0$
		$ln\varphi = \int_{0}^{P} \frac{Z - 1}{P} dP$
Liquid (solution): Solvent	$P_A \approx x_A \times P_A^*$ $\mu_A \approx \mu_A^* + RT \ln x_A$ when $x_A \rightarrow 1$	$\mu_{A} = \mu_{A}^{*} + RT \ln \binom{P_{A}}{P_{A}^{*}}$ $\mu_{A} = \mu_{A}^{*} + RT \ln a_{A}$ $a: activiity$ $a_{A} = \gamma_{A} \times x_{A} a_{A} \rightarrow x_{A} \text{ or } \gamma_{A} \rightarrow 1 \text{ when } x_{A} \rightarrow 1$ $a_{A} = \binom{P_{A}}{P_{A}^{*}}$

Activity of regular solution:

Margules equation

$$\ln \gamma_{A} = \beta x_{B}^{2} \qquad \ln \gamma_{B} = \beta x_{A}^{2}$$

Justification 5.4 The Margules equations

The Gibbs energy of mixing to form a nonideal solution is

$$\Delta_{\text{mix}}G = nRT\{x_{\text{A}} \ln a_{\text{A}} + x_{\text{B}} \ln a_{\text{B}}\}$$

This relation follows from the derivation of eqn 5.31 with activities in place of mole fractions. If each activity is replaced by γx , this expression becomes

$$\Delta_{\text{mix}}G = nRT\{x_A \ln x_A + x_B \ln x_B + x_A \ln \gamma_A + x_B \ln \gamma_B\}$$

Now we introduce the two expressions in eqn 5.57, and use $x_A + x_B = 1$, which gives

$$\Delta_{\text{mix}}G = nRT\{x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}} + \beta x_{\text{A}} x_{\text{B}}^2 + \beta x_{\text{B}} x_{\text{A}}^2\}$$

$$= nRT\{x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}} + \beta x_{\text{A}} x_{\text{B}} (x_{\text{A}} + x_{\text{B}})\}$$

$$= nRT\{x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}} + \beta x_{\text{A}} x_{\text{B}}\}$$

as required by eqn 5.31. Note, moreover, that the activity coefficients behave correctly for dilute solutions: $\gamma_A \to 1$ as $x_B \to 0$ and $\gamma_B \to 1$ as $x_A \to 0$.

$$a_{A} = \gamma_{A} x_{A} = x_{A} e^{\beta x_{B}^{2}} = x_{A} e^{\beta (1 - x_{A})^{2}}$$

$$p_{A} = \{x_{A} e^{\beta (1 - x_{A})^{2}}\} p_{A}^{*}$$