Mínimos Quadrados - 2025 © Gustavo C. Buscaglia

gustavo.buscaglia@gmail.com

- Para esse tema recomendamos a leitura dos temas de mínimos quadrados (pp. 92-97) e sistemas sobredeterminados (pp. 141-143) do livro de texto (Quarteroni-Saleri).
- Seguimos tanto quanto possível a presentação de Mathematics for Machine Learning, capítulos 8 e 9,

```
https://mml-book.github.io/
```

O exemplo sobre preços de imóveis está tomado de

```
https://www.kaggle.com/datasets/prokshitha/home-value-insights
```

1 Dados e modelos

- Assumimos que os dados originais estão sob a forma de uma tabela numérica.
- Cada linha da tabela representa uma instância, um exemplo, um elemento amostral.
- Cada coluna representa uma variável, das quais uma é a variável resposta y, ou label, ou anotação (suposta escalar) e as outras são as covariáveis originais.

	Terr	Constr	Ano	suites	quartos	banh	Plantas	Piscina	Vagas	Seg24h	Preço
	m^2	m ²						m		1=sim	kR\$
1	202	140	1998	0	3	3	2	0	2	0	423
2	250	137	2011	1	2	4	1	0	3	1	611
3	156	102	2001	1	1	3	1	0	1	1	354
4	353	182	2004	3	0	4	1	12	3	0	712
5	198	145	1983	2	1	5	1	0	2	0	387
6	376	251	2007	3	1	5	2	14	3	1	971
7	242	165	2015	1	3	4	2	12	3	1	765
8	177	133	1976	0	3	3	1	0	1	1	313
9	298	223	1997	3	0	5	1	0	2	1	789
10	422	351	2004	3	2	7	2	18	3	1	1310
11	202	140	1998	0	3	3	2	0	2	0	423
12	250	137	2011	1	2	4	1	0	3	1	611
13	156	102	2001	1	1	3	1	0	1	1	354
14		182	2004	3	0	4	1	12	3	0	712
15	198	145	1983	2	1	5	1	0	2	0	387
16	376	251	2007	3	1	5	2	14	3	1	971
17	242	165	2015	1	3	4	2	12	3	1	765
18	177	133	1976	0	3	3	1	0	1	1	313
19	298	223	1997	3	0	5	1	0	2	1	789
20	422	351	2004	3	2	7	2	18	3	1	1310
21	202	140	1998	0	3	3	2	0	2	0	423
22	250	137	2011	1	2	4	1	0	3	1	611
23	156	102	2001	1	1	3	1	0	1	1	354
24	353	182	2004	3	0	4	1	12	3	0	712
25	198	145	1983	2	1	5	1	0	2	0	387
26		251	2007	3	1	5	2	14	3	1	971
27		165	2015	1	3	4	2	12	3	1	765
28		133	1976	0	3	3	1	0	1	1	313
29		223	1997	3	0	5	1	0	2	1	789
30		351	2004	3	2	7	2	18	3	1	1310
31		140	1998	0	3	3	2	0	2	0	423
32		137	2011	1	2	4	1	0	3	1	611
33		102	2001	1	1	3	1	0	1	1	354
34		182	2004	3	0	4	1	12	3	0	712
35		145	1983	2	1	5	1	0	2	0	387
36		251	2007	3	1	5	2	14	3	1	971

- O problema de mínimos quadrados lineares surge da necessidade de ajustar um modelo matemático linear a um conjunto de observações.
- · Das variáveis disponíveis, seja

$$\mathbf{x} = (x_1, \dots, x_D)$$

o vetor contendo aquelas selecionadas como **covariáveis** (ou **variáveis explicativas**, ou **atributos de interesse**, ou **features**).

• Cada observação (ou exemplo) n=0,...,N-1 contém um vetor de covariáveis

$$\mathbf{x}_{n} = (X_{n1}, X_{n2}, ..., X_{n,D})$$

e um valor da variável resposta y_n .

• Um conjunto de dados é dado por N observações $\{(x_0, y_0), (x_1, y_1), \dots, (x_{N-1}, y_{N-1})\}$. Organizamos ele na forma de uma **matriz de exemplos X** (ou matriz de covariáveis, ou de features) e um **vetor resposta y**.

- Consideremos, por exemplo, que
 - a variável resposta y é o preço da casa,
 - a única variável explicativa selecionada x é a superfície.
- Grafiquemos y como função de x,

Preço vs. Superfície construída

- O interesse está na construção de um modelo preditivo do preço, que permita estimar o preço de venda de uma casa ainda não vendida.
- Seja x o vetor de atributos da casa cujo preçõ desejamos estimar. Procuramos uma função $f: \mathbb{R}^D \to \mathbb{R}$ tal que

$$\hat{y} = f(\mathbf{x})$$

seja um bom estimador de y.

• Os modelos que consideramos são afins, i.e., da forma

$$f(\mathbf{x}) = \theta_0 + \theta_1 x_1 + ... + \theta_D x_D = \theta_0 + \boldsymbol{\theta}^T \mathbf{x}$$

Muitas vezes se escolhe uma variável unitária $x_0 = 1$ para adicionar um termo constante (igual a θ_0). Isto corresponde a adicionar uma coluna de 1's à matriz **X**. Com essa convenção o modelo se escreve

$$f(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}$$

sendo, agora, $\mathbf{x} = (1, x_1, ..., x_D)$ e $\boldsymbol{\theta} = (\theta_0, \theta_1, ..., \theta_D)$.

No caso do modelo preço vs. superfície,

$$\hat{y} = \text{preço estimado} = \theta_0 + \theta_1 x_1$$

onde x_1 é a superfície construída.

• Cada valor dos parâmetros θ corresponde a um modelo diferente. Podemos fazer isto explícito escrevendo

$$\widehat{y} = f(\mathbf{x}, \boldsymbol{\theta})$$
.

- Aprender é descobrir os parâmetros. Ou estimar os parâmetros. Ou treinar o modelo. É o passo onde usamos os dados de treinamento.
- Seja (X, y) um conjunto de dados de treinamento. Procuramos valores θ^* tais que o modelo $f(\cdot, \theta^*)$
 - ajuste bem os dados de treinamento, i.e.,

$$y_n \simeq f(\mathbf{x}_n, \theta^*), \qquad n = 0, 2, ..., N-1,$$

- generalize bem a valores de x não presentes em X,

$$y \simeq f(\mathbf{x}, \theta^*), \qquad \mathbf{x} \notin \mathbf{X}.$$

• Notar que o primeiro item (ajuste) poderia ser satisfeito **de maneira exata** com a interpolada dos dados. Mas **a interpolada não generaliza bem**.

2 Ajuste dos dados: Minimização do risco empírico

• Queremos achar um modelo $f^*(\mathbf{x}) = f(\mathbf{x}, \theta^*)$ tal que

$$y \simeq f^*(\mathbf{x})$$
.

Especificamos uma função de perda \(\ell(y, \hat{g}) \) que represente o erro cometido por estimar \(y \) com \(\hat{g} \).
 No caso de mínimos quadrados a função de perda \(\ell \)

$$\ell(y,\widehat{y}) = (y - \widehat{y})^2$$

• O ideal seria minimizar o risco verdadeiro, ou risco esperado, isto é

$$R_{\mathsf{true}}(f) = \mathbb{E}\left[\ell\left(y, f(x)\right)\right]$$
.

 Como não temos acesso à distribuição verdadeira, substituímos o risco verdadeiro pelo risco empírico (simplesmente a média da perda nos dados de treino):

$$R_{\mathsf{emp}}(f, \mathbf{X}, \mathbf{y}) = rac{1}{N} \sum_{n=0}^{n < N} \ell\left(y_n, \widehat{y}_n
ight) ,$$

onde $\hat{y}_n = f(\mathbf{x}_n, \boldsymbol{\theta})$. Notar que R_{emp} pode ser visto também como função de $\boldsymbol{\theta}$, \mathbf{X} e \mathbf{y} .

• A minimização do risco empírico é a estratégia de aprendizado que determina os parâmetros θ^* através da minimização de R_{emp} .

3 O teorema de Gauss-Markov

• O risco empírico, no caso de mínimos quadrados, pode ser escrito da forma matricial:

$$R_{\text{emp}}(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \frac{1}{N} \sum_{n=0}^{n < N} (y_n - \theta_0 - \theta_1 X_{n1} - \dots - \theta_D X_{nD})^2 = \frac{1}{N} \|\mathbf{y} - \mathbf{X} \boldsymbol{\theta}\|^2$$

onde $\|\cdot\|$ é a norma euclidiana em \mathbb{R}^N . Para convencerse disto, notar que $\theta_0 + \theta_1 X_{n1} + ... + \theta_D X_{nD}$ é igual a $\mathbf{x}_n \cdot \boldsymbol{\theta}$, que a sua vez corresponde ao produto escalar da linha n de \mathbf{X} com o vetor $\boldsymbol{\theta}$.

• Exemplo: No caso dos imóveis, com a superfície como única variável explicativa, resulta

$$R_{\text{emp}} = rac{1}{N} \sum_{n=0}^{n < N} \left(P_n - \widehat{P}_n
ight)^2 = rac{1}{N} \sum_{n=0}^{n < N} \left(P_n - heta_0 - heta_1 \, S_n
ight)^2$$

onde P_n é o preço (variável resposta y=P), \widehat{P}_n é o preço estimado (estimador \widehat{y}) e S_n é a superfície, todos correspondendo ao datapoint n. O vetor \mathbf{x} é, então, dado por

$$x = (1, S)$$

e o estimador correspondente a parâmetro θ é

$$\widehat{y} = \widehat{P} = f(\mathbf{x}, \boldsymbol{\theta}) = \mathbf{x} \cdot \boldsymbol{\theta} = \theta_0 + \theta_1 S$$
.

Assim, com as definições anteriores,

$$\mathbf{X} = \left(egin{array}{ccc} 1 & S_0 \\ 1 & S_1 \\ \cdots & \cdots \\ 1 & S_n \\ \cdots & \cdots \\ 1 & S_{N-1} \end{array}
ight) \;, \qquad \qquad \mathbf{y} = \left(egin{array}{c} P_0 \\ P_1 \\ \cdots \\ P_n \\ \cdots \\ P_{N-1} \end{array}
ight) \;, \qquad \qquad \boldsymbol{ heta} = \left(egin{array}{c} heta_0 \\ heta_1 \end{array}
ight) \;,$$

Contornos de nível do risco empírico.

Teorema¹:

Consideremos uma relação linear entre as variáveis y e x, da forma

$$\mathbf{y} = \mathbf{x} \cdot \boldsymbol{\theta}_{\mathsf{true}} + \epsilon$$

onde ϵ é um ruído aleatório de média zero e desvio padrão σ .

Seja **X** uma matriz de exemplos e **y** o vetor correspondente de respostas, a partir dos quais deseja-se estimar θ_{true} .

Então o melhor estimador linear não-viesado (BLUE) 2 de θ_{true} é o estimador de mínimos quadrados θ_{MQ} , obtido minimizando a soma de quadrados $\|\mathbf{y} - \mathbf{X} \theta\|^2$:

$$heta_{MQ} = \operatorname{arg\ min}_{oldsymbol{ heta} \in \mathbb{R}^{D+1}} \| \mathbf{y} - \mathbf{X} \, oldsymbol{ heta} \|^2$$

Ademais, o valor esperado da forma quadrática

$$s^2 = rac{1}{\mathcal{N} - (D+1)} \left\| \mathbf{y} - \mathbf{X} \, oldsymbol{ heta}_{\mathsf{MQ}}
ight\|^2$$

é a variança do ruído: σ^2 .

¹Ver, por exemplo, A. Björk, Numerical Methods for Least Squares Problems, SIAM, 1996.

²Linear, no sentido de que θ_{MO} depende linearmente de y, não-viesado, no sentido que $\mathbb{E}\left[\theta_{MO}\right] = \theta_{true}$, e melhor, no sentido de ter variança mínima.

Preço vs. Superfície construída. A linha de regressão e o estimador s correspondem ao estimador de mínimos quadrados θ_{MQ} .

No exemplo, obtemos

$$heta_{MQ} = (heta_0 = 55217.67 , heta_1 = 200.20)$$

$$R_{\text{emp}}\left(\boldsymbol{\theta}_{\text{MQ}}\right) = 1.11769 \times 10^9$$

$$s = 33465.38$$

Erro quadrático médio

$$e = \sqrt{R_{\text{emp}}} = \sqrt{\frac{1}{N} \sum_{n=0}^{n < N} (y_n - \widehat{y}_n)^2} = 33431.90$$

Contornos de nível do risco empírico na vizinhança de θ_{MQ} .

4 Duas variáveis explicativas

- Para melhorar a predição, podemos tentar explicar a variabilidade de *y* adicionando mais variáveis explicativas.
- A partir da visualização resulta claro que a variável $x_2 = T = \text{Lot_size}$ é uma boa candidata.

Observa-se que a parte superior da faixa de variabilidade contem pontos cujo tamanho de terreno é maior que a média (para a mesma superfície construída).

- Trocamos então para $\mathbf{x} = (x_0 = 1, x_1 = S, x_2 = T)$, utilizando então, na matriz \mathbf{X} , as colunas \mathbf{Sq} _Footage e \mathbf{Lot} _size dos dados de treinamento, além da primeira coluna ser de 1's.
- O vetor y permanece o mesmo.
- Calculamos o novo estimador θ_{MQ} minimizando $R_{emp} = \frac{1}{N} ||\mathbf{y} \mathbf{X} \, \boldsymbol{\theta}||^2$, com o resultado

$$\boldsymbol{\theta}_{MQ} = (\theta_0 = 19658.57, \theta_1 = 198.89, \theta_2 = 14123.86)$$

Erro quadrático médio

$$e = \sqrt{R_{\text{emp}}} = \sqrt{\frac{1}{N} \sum_{n=0}^{n < N} (y_n - \widehat{y}_n)^2} = 28012.06$$

(o valor com apenas Sq_Footage como variável explicativa era de 33431.90).

Visualização 3D do ajuste fornecido por θ_{MQ} no caso de duas variáveis explicativas.

5 Atributos não lineares: Um exemplo da ciência de materiais

• Uma empresa que vende peças metálicas que operam a altas temperaturas e tensões precisa fazer testes de resistência do seu material antes de vendê-lo. Dessa forma considere que os dados sobre os experimentos realizados pela empresa foram fornecidos por um arquivo de texto, que contém a tensão σ (MPa) aplicada ao material, a temperatura $T(^{\circ}C)$ do experimento e t_R , o tempo de ruptura (em horas).

• Procurando conseguir ajustar esses dados a alguma função, podemos verificar visualizando as variáveis duas a duas que temos sempre uma nuvem de dados.

 Para relacionar melhor os parâmetros, fazendo uma redução de dimensão do problema, introduzse o parâmetro de Larson-Miller (LMP) que é calculado segundo dados do experimento pela equação:

$$LMP = \frac{(273 + T) \cdot (20 + log(t_R))}{1000},$$

em que T(C) é a temperatura aplicada e t_R é o tempo de ruptura (em horas).

• Dado um conjunto de valores referentes a testes realizados por essa empresa (DadosFicticios.txt), sabemos que estes devem ser ajustados com a equação de *Spera*:

$$LMP = \theta_0 + \theta_1 \log_{10}(\sigma) + \theta_2 \sigma + \theta_3 \sigma^2, \tag{1}$$

em que os coeficientes θ são desconhecidos. Como melhor determinar estes coeficientes a partir dos dados fornecidos?

- · Seguimos a mesma metodologia:
 - Tomamos y = LMP como variável resposta. Calculamos o vetor y a partir de

$$y_n = LMP_n = \frac{(273 + T_n) \cdot (20 + log(t_{Rn}))}{1000}.$$

- Tomamos $\mathbf{x} = (x_0 = 1, x_1 = \log_{10} \sigma, x_2 = \sigma, x_3 = \sigma^2)$ e construimos a matriz de exemplos \mathbf{X} cuja linha $n \in \mathbf{x}_n$. Cada coluna proporciona um feature (covariável) linearmente independente.
- Calculamos θ_{MQ} minimizando o risco empírico de mínimos quadrados $R_{exp} = \frac{1}{N} ||\mathbf{y} \mathbf{X} \boldsymbol{\theta}||^2$.
- O estimador finalmente é $\hat{y}(\mathbf{x}) = \mathbf{x} \cdot \boldsymbol{\theta}_{MQ}$.

• Resultado:

LMP (em horizontal) vs. σ (em vertical), mostrando os datapoints e a curva $\hat{y}(\sigma)$.

6 Algebra linear do estimador de mínimos quadrados

Seja **X** uma matriz de exemplos de *N* linhas e M = D + 1 colunas, e seja **y** um vetor coluna em \mathbb{R}^N . Vamos supor que N > M e que o **posto** de X é M (suas colunas são l.i.).

Lembremos que um caso típico é quando são realizadas N medições/amostras de um fenômeno aleatório multivariado. Na medição número n, são coletadas as variáveis $x_1, x_2, ..., x_D$, e também a variável resposta y. Adicionando a variável $x_0 = 1$ e colocando na forma matricial resulta

 $X_{ni} = \text{valor da variável } x_i \text{ na medição número } n$,

 $y_n = \text{valor da variável resposta } y \text{ na medição número } n$.

Procuramos valores de $\theta_0, \theta_1, ..., \theta_D$ (parâmetros) para ajustar a variável resposta como

$$y \simeq \widehat{y} = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_D x_D,$$

com o mínimo risco empírico possível, definido como o mínimo erro quadrático médio,

$$R_{\mathsf{emp}} = rac{1}{N} \sum_{n=0}^{n < N} \left(\widehat{y}_n - y_n
ight)^2 \ .$$

Teorema: Se X é matriz $N \times M$, de posto M = D + 1, com $N \ge M$, então

a) Existe um valor de θ (que denotaremos θ^* ou θ_{MQ}), a solução de mínimos quadrados do problema de ajuste) que minimiza, sobre o espaço de parâmetros \mathbb{R}^M , o resíduo quadrático médio

$$R(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=0}^{n < N} \left(\underbrace{\theta_0 X_{n0} + \theta_1 X_{n1} + \ldots + \theta_D X_{nD} - y_n}_{\boldsymbol{r}_n} \right)^2.$$

Isto é, $R(\theta^*) \leq R(\theta)$ para todo $\theta \in \mathbb{R}^M$. Notar que r_n é o **resíduo** do ajuste do datapoint número n.

b) O gradiente da função R, i.e., o vetor coluna $G(\theta) = (\partial R/\partial \theta_0, ..., \partial R/\partial \theta_D)^T$, é dado por

$$G_k(\boldsymbol{\theta}) = \frac{\partial R}{\partial \theta_k} = \frac{2}{N} \sum_{n=0}^{n < N} \left(\underbrace{\theta_0 X_{n0} + \theta_1 X_{n1} + ... + \theta_D X_{nD} - y_n}_{\boldsymbol{r}_n} \right) X_{nk}$$

e a **matriz Hessiana** de R, i.e., a matriz $H_{kj} = \partial G_k / \partial \theta_j = \partial^2 R / \partial \theta_k \partial \theta_j$ é dada por

$$H_{kj} = \frac{2}{N} \sum_{n=0}^{n < N} X_{nj} X_{nk} .$$

c) Em termos matriciais, se cumpre que

$$\mathbf{r}(\boldsymbol{\theta}) = \mathbf{X} \, \boldsymbol{\theta} - \mathbf{y}, \qquad R(\boldsymbol{\theta}) = \frac{1}{N} \|\mathbf{r}(\boldsymbol{\theta})\|^2 = \frac{1}{N} \|\mathbf{X} \, \boldsymbol{\theta} - \mathbf{y}\|^2 = \frac{1}{N} (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y}),$$

onde $\|\cdot\|$ é a norma euclideana usual ($\|\mathbf{r}\|^2 = \mathbf{r}^T\mathbf{r}$).

d) Por tanto, o ajuste de mínimos quadrados é também a solução de mínimos resíduos (em média quadrática) do sistema linear retangular

$$\mathbf{X}\,\mathbf{ heta}=\mathbf{y}$$
 .

e) Notar também que

$$G(\theta) = \frac{2}{N} \mathbf{X}^{T} (\mathbf{X} \theta - \mathbf{y}), \qquad H(\theta) = \frac{2}{N} \mathbf{X}^{T} \mathbf{X}.$$

f) A solução de mínimos quadrados θ^* é solução do sistema linear (equações normais)

$$\mathbf{X}^T \mathbf{X} \; \boldsymbol{\theta}^* = \mathbf{X}^T \mathbf{y} \; .$$

Notar que $\theta^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$. O estimador é **linear** em \mathbf{y} .

A matriz $\mathbf{X}^T\mathbf{X}$ é simétrica, definida positiva (porque o posto de \mathbf{X} é M), e consequentemente não singular (det($\mathbf{X}^T\mathbf{X}$) > 0). Por tanto, θ^* é único.

- g) O vetor $\hat{\mathbf{y}} = \mathbf{X} \, \theta^*$ é o vetor de valores previstos nas posições X. Cumpre-se que $\hat{\mathbf{y}}$ a projeção ortogonal de y sobre o espaço de colunas de X (também chamado de espaço imagem de X).
- h) A previsão para um x arbitrário é

$$\widehat{y}(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\theta}^*$$
.

Em termos dos dados (X, y) (notar linearidade em y)

$$\widehat{y}(\mathbf{x}) = \mathbf{x}^T \ \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

7 Comentários e conclusões

• A minimização do erro quadrático médio (risco empírico) sobre os dados de treinamento é uma estratégia frequente em aprendizado supervisionado, i.e.,

$$\theta^* = \theta_{MQ} = \operatorname{arg\,min}_{\theta} \frac{1}{N} \sum_{n} (f(\mathbf{x}_n, \theta) - y_n)^2$$

O estimador para y é

$$\widehat{y}(\mathbf{x}) = f(\mathbf{x}, \boldsymbol{\theta}^*)$$
.

• Quando o modelo $f(\mathbf{x}, \theta)$ é linear, da forma

$$f(\mathbf{x}, \boldsymbol{\theta}) = \mathbf{x}^T \boldsymbol{\theta} = \theta_0 x_0 + \theta_1 x_1 + \dots$$

o risco empírico é $R_{\text{emp}} = \frac{1}{N} \|\mathbf{X}\boldsymbol{\theta} - \mathbf{y}\|^2$. Portanto, $\boldsymbol{\theta}^*$ é a **solução de mínimos quadrados** do sistema retangular $\mathbf{X}\boldsymbol{\theta} = \mathbf{y}$.

- No caso linear, a estratégia é justificada pelo teorema de Gauss-Markov, que prova que θ^* é um BLUE (best linear unbiased estimator).
- Se as colunas de X são linearmente independentes

$$oldsymbol{ heta}^* = \left(oldsymbol{\mathsf{X}}^{\mathsf{T}} oldsymbol{\mathsf{X}}
ight)^{-1} \, oldsymbol{\mathsf{X}}^{\mathsf{T}} \, oldsymbol{\mathsf{y}}$$

• Em termos probabilísticos, pode ser provado também que o estimador θ_{MQ} é o estimador máxima verosimilhança quando o ruído é Gaussiano (não correlacionado).

 A estimação de máxima verosimilhança, assim como a estimação por minimização do risco empírico, podem sofrer de **overfitting**. A solução dessa dificuldade é usar regularização, estimação MAP (maximum a posteriori) ou outros métodos fazem um compromisso entre erro empírico e complexidade. • A restrição de linearidade de $f(\mathbf{x}, \theta) = \mathbf{x}^T \theta$ pode ser aliviada usando **features** $\phi(\mathbf{x})$ não lineares. Essa metodologia é totalmente equivalente à usada na interpolação,

$$\widehat{y}(\mathbf{x}) = \theta_0 \phi_0(\mathbf{x}) + \theta_1 \phi_1(\mathbf{x}) + \dots$$

vendo-se que os features cumprem o papel que, no cálculo da interpolada, era cumprido pelas funções de base. A matriz de exemplos \mathbf{X} (às vezes chamada de $\mathbf{\Phi}$ nesse caso), coincide com a matriz \mathbf{M} .

- Quando o número M de features é igual ao número de datapoints N o estimador $\hat{y}(\mathbf{x})$ coincide com a função interpolante e o risco empírico é zero.
- Porém, continúa sendo uma restrição forte. Por exemplo, o modelo aparentemente simples

$$f(x, \theta) = \begin{cases} 1 & \text{se } x \leq \theta \\ 0 & \text{se não} \end{cases}$$

não é linear em θ .