

## Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

# Trabalho 2 (Final)

Sistemas Embarcados para classificação de imagens e reconhecimento de objetos com TensorFlow Lite

SCC0740 - Sistemas Embarcados Prof<sup>o</sup> Vanderlei Bonato

Lucas Fernandes da Nobrega - 9805320 João Pedro Doimo Torrezan - 9806933 Leonardo Alves Paiva - 10276911

# Sumário

| Introdução               | 2  |
|--------------------------|----|
| Tensor Flow              | 2  |
| Materiais e Métodos      | 4  |
| Modelos                  | 5  |
| MobileNets               | 5  |
| EfficientNets            | 5  |
| Análise                  | 6  |
| Reconhecimento           | 11 |
| Performance              | 13 |
| Dificuldades Encontradas | 15 |
| Conclusão                | 16 |
| Referências              | 17 |

## Introdução

#### **Tensor Flow**

O TensorFlow é uma plataforma completa de código aberto para machine learning. Foi criado pela equipe Brain do Google para uso interno da empresa, porém com o tempo foi liberado para uso geral. Essa biblioteca reúne vários modelos e algoritmos de machine learning e *deep learning*.

A plataforma pode ser usada para treinamento de redes neurais profundas como por exemplo, reconhecimento de dígitos manuscritos, classificação de objetos em imagens, processamento de linguagem natural, dentre outras funções. O TensorFlow fornece tudo isso para o programador por meio da linguagem Python, que é fácil de aprender e trabalhar. Entretanto, o Python é usado para a transferência e manutenção dos arquivos e modelos, já as operações matemáticas reais são feitas com módulos em C++, para conferir maior desempenho, visto que C++ é uma linguagem de baixo nível, fazendo menos abstrações, otimizando assim o código.

O TensorFlow é executado majoritariamente em ambientes como nuvens, máquinas locais, CPUs e GPUs. Entretanto seria interessante também que pudesse ser executado em dispositivos da borda da rede, como dispositivos móveis, sistemas embarcados, microcontroladores. Isso seria muito melhor do que o dispositivo na borda coletar os dados e enviar a um servidor para fazer o processamento, as vantagens primordiais seriam as seguintes:

- Latência: não há ida e volta para um servidor.
- Privacidade: nenhum dado precisa sair do dispositivo.
- Conectividade: não exige conexão de Internet.
- Consumo de energia: as conexões de rede consomem muita energia.

Com isso em mente foi desenvolvido o TensorFlow Lite, o qual confere aos dispositivos embarcados e dispositivos de IoT a possibilidade da integração com o Machine Learning, mesmo muitas vezes possuindo pouca memória e baixo processamento.

O TensorFlow Lite tem dois componentes principais, o interpretador e o conversor. O primeiro executa os modelos do TensorFlow otimizados em diversos tipos de hardware, como smartphones, linux embarcados e até microcontroladores, como o ESP32. Já o segundo é responsável por fazer a conversão dos modelos TensorFlow para TensorFlow Lite, e o interpretador pode executar esses modelos. Diminuindo o tamanho e a performance dos binários.

Para uso da ferramenta TensorFlow Lite utilizamos um aplicativo Mobile, que roda na plataforma Android, e aplica a classificação de imagens para identificar, continuamente, toda imagem vista a partir da câmera traseira do smartphone. O aplicativo mostra em tempo real todas as opções de classificação do objeto capturado pela câmera. É possível ainda classificar objetos utilizando de 2 diferentes modelos,

cada um deles de 2 formas, selecionar o número de threads usadas na computação e também decidir se o aplicativo rodará em CPU, GPU ou via NNAPI (Neural Network API). Este último é uma API de processamento do Android projetada e desenvolvida para aplicações que envolvam o uso intensivo de computação para aprendizado de máquina, funcionando muito bem com o TensorFlow Lite.

Os modelos viabilizados pelo aplicativo são MobileNetV1 e EfficientNetLite, ambos são desenvolvidos para utilização em dispositivos de borda de rede. Ambos com a opção de utilizar os dados como ponto flutuante ou então com o modelo quantizado. A quantização pós-treinamento é uma técnica de conversão que pode reduzir o tamanho do modelo e, ao mesmo tempo, melhorar a latência da CPU e do acelerador de hardware, com pouca degradação na precisão do modelo.

Na seção seguinte, tabelas relacionando os dois modelos foram feitas para fins de comparação. A comparação foi feita entre o valor de ativação dos neurônios de cada um dos modelos e o tempo de processamento de cada um deles.

## Materiais e Métodos

Para fazer as comparações dos métodos e parâmetros utilizados no aplicativo, faremos o reconhecimento de diversos objetos. Eles são:

- 1. Caneta esferográfica;
- 2. Raquete de Tênis;
- 3. Tênis;
- 4. Bola de tênis;
- 5. Controle remoto;
- 6. Garrafa PET;
- 7. Mouse;
- 8. Fósforo;
- 9. Régua; e
- 10. Banana.

Além destes objetos para classificação, foi utilizado um smartphone Xiaomi Redmi Note 8 (Android 10) para executar o aplicativo e o ambiente de desenvolvimento Android Studio para compilação. Segue um vídeo com a execução da aplicação: <a href="https://drive.google.com/file/d/11rH96ktsMRSsbglGY25r-Bs1k9mXvY8r/view?usp=sharing">https://drive.google.com/file/d/11rH96ktsMRSsbglGY25r-Bs1k9mXvY8r/view?usp=sharing</a>.

### **Modelos**

Como dito anteriormente, os modelos pré-treinados aplicados para a classificação de imagens são *MobileNetV1* e *EfficientNetLite*, ambos para ponto flutuante ou quantizados.

#### **MobileNets**

As *MobileNets* são uma classe de convolução de redes neurais artificiais criada pelo Google. Elas são projetadas para maximizar a precisão eficientemente, enquanto consideram as restrições de recursos para um aplicação embarcada.

Seus modelos são pequenos, possuem baixa latência e baixo consumo de energia, parametrizados para atender com recursos restritos a uma variedade de situações de uso. Eles podem ser usados de forma semelhante a outros modelos populares de grande escala, como o Inception.

### **EfficientNets**

As *EfficientNets*, propostas inicialmente em 2019, são um novo tipo de modelo que usa um coeficiente composto simples, mas altamente eficiente, para aumentar a escala de CNNs de maneira estruturada. Ao contrário das abordagens convencionais que dimensionam arbitrariamente as dimensões da rede, como largura, profundidade e resolução, este método dimensiona uniformemente cada dimensão com um conjunto fixo de coeficientes de escala, levando em consideração os recursos disponíveis.

Com este novo método de escalonamento e o avanço do AutoML (aprendizado de máquina automatizado), foi possível superar com eficiência de até 10 vezes (menor e mais rápido) a precisão dos modelos do estado da arte na época em que foi lançado.

## Análise

De início, fizemos o reconhecimento dos objetos utilizando as seguintes especificações, que chamaremos de Modo 01:

• Threads: 1

• Modelo: Quantized\_EfficientNet

Seguem as análises feitas pelo aplicativo:



**Figura 01**: Reconhecimento do Objeto 01 no modo 01



**Figura 02**: Reconhecimento do Objeto 02 no modo 01



**Figura 03**: Reconhecimento do Objeto 03 no modo 01



**Figura 04**: Reconhecimento do Objeto 04 no modo 01



**Figura 05**: Reconhecimento do Objeto 05 no modo 01



**Figura 06**: Reconhecimento do Objeto 06 no modo 01



**Figura 07**: Reconhecimento do Objeto 07 no modo 01



**Figura 08**: Reconhecimento do Objeto 08 no modo 01



**TensorFlowLite** banana 49.02% eel 5.49% 4.31% stinkhorn

**Figura 09**: Reconhecimento do Objeto 09 no modo 01

**Figura 10**: Reconhecimento do Objeto 10 no modo 01

Foi realizada a análise do sistema com outros modos, variando o número de threads, o modelo e o dispositivo utilizado. Por exemplo, o modo 02 tem como parâmetros:

• Threads: 8

• Modelo: Quantized EfficientNet

• Dispositivo: CPU

Para que o relatório não fique muito extenso, todas as fotos e análises feitas pelo sistema podem ser constatadas na seguinte pasta do <u>Google Drive</u>. Com isso, aqui mostraremos apenas os resultados obtidos em forma de tabelas.

### Reconhecimento

A seguir são mostradas tabelas que mostram o desempenho na tarefa de classificar os objetos.

|         |                               | Modo                          |                           |                           |                            |                            |                        |                        |  |  |  |  |  |
|---------|-------------------------------|-------------------------------|---------------------------|---------------------------|----------------------------|----------------------------|------------------------|------------------------|--|--|--|--|--|
|         | 1 2 3 4 5 6 7                 |                               |                           |                           |                            |                            |                        |                        |  |  |  |  |  |
| Threads | 1                             | 8                             | 1                         | 8                         | 1                          | 8                          | 1                      | 8                      |  |  |  |  |  |
| Modelo  | Quantized<br>Efficient<br>Net | Quantized<br>Efficient<br>Net | Float<br>Efficient<br>Net | Float<br>Efficient<br>Net | Quantized<br>Mobile<br>Net | Quantized<br>Mobile<br>Net | Float<br>Mobile<br>Net | Float<br>Mobile<br>Net |  |  |  |  |  |

Tabela 01: Definição dos modos de análise.

|        | Modo _ (%) |    |    |    |     |     |    |    |  |  |  |  |
|--------|------------|----|----|----|-----|-----|----|----|--|--|--|--|
| Objeto | 1          | 2  | 3  | 4  | 5   | 6   | 7  | 8  |  |  |  |  |
| 01     | 47         | 65 | 60 | 64 | 28  | 29  | 57 | 40 |  |  |  |  |
| 02     | 88         | 94 | 96 | 93 | 100 | 94  | 96 | 95 |  |  |  |  |
| 03     | 58         | 71 | 86 | 82 | 65  | 57  | 25 | 36 |  |  |  |  |
| 04     | 64         | 95 | 94 | 95 | 99  | 91  | 92 | 99 |  |  |  |  |
| 05     | 99         | 99 | 97 | 94 | 97  | 99  | 97 | 92 |  |  |  |  |
| 06     | 22         | 85 | 95 | 97 | 97  | 98  | 96 | 98 |  |  |  |  |
| 07     | 89         | 94 | 92 | 86 | 87  | 87  | 81 | 87 |  |  |  |  |
| 08     | 22         | 64 | 63 | 72 | 75  | 90  | 95 | 89 |  |  |  |  |
| 09     | 76         | 89 | 90 | 97 | 98  | 100 | 88 | 99 |  |  |  |  |
| 10     | 49         | 64 | 68 | 73 | 85  | 76  | 91 | 99 |  |  |  |  |

Tabela 02: Maior valor de ativação dos neurônios de cada um dos modos testados

### Valor de Ativação dos Modos Testados



Gráfico 01: Maior valor de ativação dos neurônios de cada um dos modos testados.

### Performance

Podemos também comparar os modos e modelos a partir de suas performances. Para isso, fizemos as análises dos Objeto 7 (Mouse) e 4 (Bola de tênis), e comparamos os diferentes tempos de inferência para cada modo e cada dispositivo utilizado. Com isso, chegamos nos seguintes dados (verifique as fotos <u>aqui</u>):

|            | Modo                   |                        |                        |                        |                       |                       |                       |                       |                        |                       |                        |                        |                        |                        |
|------------|------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|
|            | 1                      | 2                      | 3                      | 4                      | 5                     | 6                     | 7                     | 8                     | 9                      | 10                    | 11                     | 12                     | 13                     | 14                     |
| Threa<br>d | 1                      | 8                      | 1                      | 8                      | 1                     | 8                     | 1                     | 8                     | N/A                    | N/A                   | N/A                    | N/A                    | N/A                    | N/A                    |
| Model      | Quant<br>Effic.<br>Net | Quant<br>Effic.<br>Net | Float<br>Effic.<br>Net | Float<br>Effic.<br>Net | Quant<br>Mobil<br>Net | Quant<br>Mobil<br>Net | Float<br>Mobil<br>Net | Float<br>Mobil<br>Net | Float<br>Effic.<br>Net | Float<br>Mobil<br>Net | Quant<br>Effic.<br>Net | Quant<br>Effic.<br>Net | Float<br>Effic.<br>Net | Float<br>Effic.<br>Net |
| Disp.      | CPU                    | CPU                    | CPU                    | CPU                    | CPU                   | CPU                   | CPU                   | CPU                   | GPU                    | GPU                   | NN<br>API              | NN<br>API              | NN<br>API              | NN<br>API              |

Tabela 03: Definição dos modos de análise de performance.

| Objeto | M1  | M2 | M3  | M4 | M5  | M6 | M7  | M8 | M9 | M10 | M11 | M12 | M13 | M14 |
|--------|-----|----|-----|----|-----|----|-----|----|----|-----|-----|-----|-----|-----|
| 04     | 84  | 71 | 118 | 81 | 95  | 60 | 157 | 95 | 55 | 66  | 729 | 95  | 23  | 98  |
| 07     | 100 | 85 | 135 | 92 | 102 | 70 | 157 | 85 | 62 | 56  | 727 | 111 | 21  | 92  |

Tabela 04: Performance dos modos testados (ms).

### Performance ao analisar o Objeto 4



**Gráfico 02**: Tempo de inferência dos modos testados ao analisar o Objeto 04 (Bola de tênis). O Modo 11 foi suprimido para uma melhor comparação dos demais modos.



**Gráfico 03**: Tempo de inferência dos modos testados ao analisar o Objeto 07 (Mouse). O Modo 11 foi suprimido para uma melhor comparação dos demais modos.

### **Dificuldades Encontradas**

Durante o desenvolvimento do trabalho não foram encontradas grandes dificuldades. Como foi decidido utilizar o TensorFlow Lite, foi preciso realizar a instalação do aplicativo TFL Classify em um dispositivo Android. Para isso, foi necessário a instalação e correta configuração do Android Studio e do SDK correto, o que demorou algumas horas.

Outra dificuldade foi a extensa fotografia de diversos objetos para a análise do valor de ativação dos neurônios de cada um dos do software, o que demorou mais algumas horas. Durante essa etapa, foi constatado que o software é muito sensível a qualquer alteração na imagem, principalmente no que se refere a iluminação sobre os objetos. Podemos constatar isso na análise do valor de ativação dos neurônios de cada um dos modelos sobre os Objetos 1 e 3, que acabou variando muito, fazendo com que tais dados não pudessem ser muito confiáveis, já que o *setup* feito para análise foi alterado.

## Conclusão

A partir das análises feitas, podemos ver que o melhor modelo para o reconhecimento de objetos é o Modelo 13 (NNAPI com o modelo Float EfficientNet), já que apresenta um menor tempo de inferência (cerca de 20 ms). Vemos também que o Software e modelos utilizados foram capazes de distinguir e identificar os objetos selecionados, como esperado.

Pudemos verificar também que, quando foi utilizada a CPU, o aumento no número de Threads fez com que o tempo de latência diminuísse e o valor de ativação dos neurônios de cada um das redes aumentasse. Além disso, a utilização da GPU se mostrou mais eficiente do que a CPU, mesmo utilizando múltiplas Threads.

### Referências

EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling. **Google AI Blog**, 2020. Disponível em:

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html. Acesso em: 18/12/2020.

Guia do TensorFlow. **TensorFlow**, 2020. Disponível em: <a href="https://www.tensorflow.org/overview">https://www.tensorflow.org/overview</a>. Acesso em: 15/12/2020.

Guia do TensorFlow Lite. **TensorFlow**, 2020. Disponível em: <a href="https://www.tensorflow.org/lite/guide">https://www.tensorflow.org/lite/guide</a>. Acesso em: 15/12/2020.

MobileNets: Open-Source Models for Efficient On-Device Vision. **Google AI Blog**, 2020. Disponível em: <a href="https://ai.googleblog.com/2017/06/mobilenets-open-source-models-for.html">https://ai.googleblog.com/2017/06/mobilenets-open-source-models-for.html</a>. Acesso em: 18/12/2020.

#### Imagens e vídeos:

https://drive.google.com/drive/folders/1EzD4QeywGQLW8QCRUMufG-QvGL8DoniX?usp = sharing