

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: (11) International Publication Number: WO 93/01837 A1 A61K 49/00, 47/48 (43) International Publication Date: 4 February 1993 (04.02.93)

(21) International Application Number:

(22) International Filing Date:

PCT/EP92/01560 10 July 1992 (10.07.92)

Ţ.

(30) Priority data: 91810589.1

22 July 1991 (22.07.91)

(34) Countries for which the regional or international application

was filed:

CH et al.

EP

(71) Applicant (for all designated States except US): SINTETICA S.A. [CH/CH]; 7, route de Drize, CH-1227 Carouge

(72) Inventor; and (75) Inventor/Applicant (for US only): PALACIOS, Paul [ES/ ES]; Alfonso X, 5, E-28010 Madrid (ES).

(74) Common Representative: SINTETICA S.A.; 7, route de Drize, CH-1227 Carouge (CH).

(81) Designated States: AU, BR, CA, ES, FI, HU, JP, KR, NO, RU, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE).

Published

With international search report.

(415) 927-0340 • FAX (415) 927-7250

(54) Title: CONJUGATED MOIETIES FOR CHELATING PARAMAGNETIC METALS

(57) Abstract

In this method, one attaches one or more chelatant molecules to a mono- or polyamino intermediate compound (I) which is temporarily immobilized on a solide phase by a splittable bond. Thereafter, said bond is split to release the desired conjugate moiety, whereby a reactive site is generated at the splitting site. The conjugate can be coupled to a protein homing factor using said reactive site; the latter being single per chelatant molecule, undesirable cross-linking during conjugation is substantially avoided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Austria	FI	Hinland	MI	Mali
Australia	FR	France	MN	Mongolia
Barbados	GA	Gabon	MR	Mauritania
Belgium	GB	United Kingdom	MW	Malawi
Burkina Faso	GN	Guinea	NI.	Netherlands
Bulgaria	GR	Greece	NO	Norway
Benin	HU	Hungary	PL	Poland
Brazil	IE	Ireland	RO	Romania
Canada	IT	Italy	RU	Russian Federation
Central African Republic	JP	Japan	SD	Sudan
Congo	KP	Democratic People's Republic	SE	Sweden
Switzerland		of Korca	SN	Senegal
Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
Cameroun	LI	I icchtenstein	TD	Chad
Czechoslovakia	LK	Sri Lanka	TG	Togo
Germany	LU	Luxembourg	นร	United States of America
Denmark	MC	Munaco		
Spain	MC	Madagascar		
	Australia Barbados Belgtum Burkina Faso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroan Czechoslovakia Germany Denmark	Australia FR Barbados GA Belgrum GB Burkina Faso GN Bulgaria GR Benin HU Brazil IE Canada IT Central African Republic JP Congo KP Switzerland Côte d'Ivoire KR Cameroun LI Czechoslovakia LK Germany LU Denmark MC	Australia FR France Barbados GA Gabon Belgrum GB United Kingdom Burkina Faso GN Guinea Bulgaria GR Greece Benin HU Hungary Brazil IE Ireland Canada IT Italy Central African Republic JP Japan Congo KP Democratic People's Republic of Korea Côte d'Ivoire KR Republic of Korea Cameroon LI Liechtenstein Czerthoslovakia LK Sri Lanka Germany LU Lazentbourg Denmark MC Monaco	Australia FR France MN Barbados GA Gabon MR Belgrum GB United Kingdom MW Burkina Faso GN Guinea NL Bulgaria GR Greece NO Benin HU Hungary PL Brazil IE Ireland RO Canada IT Italy RU Central African Republic JP Japan SD Congo KP Democratic People's Republic SE Switzerland of Korca SN Côte d'Ivoire KR Republic of Korea SU Cameroon LI Liachtenstein TD Czechoslovakia LK Sri Lanka TG Germany LU Luxembourg US Denmark MC Monaco

CONJUGATED MOIETIES FOR CHELATING PARAMAGNETIC METALS

The present invention concerns a novel method for making compounds to be used in the field of administrable molecular carriers targeted for delivering paramagnetic MRI contrast enhancers to selected organs or tissues.

Molecular conjugates in which a monoclonal or polyclonal antibody

10 (cytoselective homing factor) is covalently linked to a moiety carrying
aminopolycarboxylic chelatants holding paramagnetic metal ions are
known.

For instance, in W.T. ANDERSON et al., Cancer Res. 45 (1985), 2154 - 2158, there is disclosed the binding of up to 8 mol of DTPA per mol of antibody while retaining antibody activity and specificity. The DTPA (diethylenetriamine-pentaacetic acid) is a powerful chelatant for paramagnetic metal species including for instance Gd, Fe, Cr and Ni, which can therefore be directly targeted to specific cellular sites and aid MRI visualization by modifying proton spin relaxation (T₁ and/or T₂) and enhancing image contrast.

Also in WO-A-90/14881, there is disclosed the attachment of polyaminocarboxylic chelators to homing proteins by using bridging functional groups such as isocyanato-, isothiocyanato-, bromoacetamido-, diazo-, N-hydroxysuccinimide esters and inter-molecular or intra25 molecular anhydrides.

However, the molecular ratio of chelatant to antibody was still too low for effective MRI contrast enhancement and means were developed which improved contrast enhancement efficiency. For instance, George W. and Catherine H. WU (WO-A-90/01900) have disclosed a conjugate in which a ligand such as a glycoprotein possessing exposed terminal galactose residues to be recognized by unique receptors at the surface of given types of cells is coupled to a chelating agent, e.g. DTPA or DOTA (1,4,7,10-tetrazacyclododecane-N4-tetraacetic acid), capable of binding a paramagnetic species and form a stable and non-toxic complex. A selective protein was asialoorosomucoid (AsOR), and DTPA was coupled thereto by undisclosed means in order to eventually achieve a molar ratio of chelated Gd to AsOR in the range of 5:1 to 15:1 In another embodiment, polylysine (PL) was modified by reacting with the lactose terminals of

2

the desialylated glycoprotein and thereafter with DTPA to yield an asia-PL-chelator conjugate. This conjugate was shown to achieve a binding of up to 90 mol of Gd per mol of lysine. Experimental details are however lacking in this reference.

Y. MANABE et al., Biochim. & Biophys. Acta 883 (1986), 460-467, have disclosed making DTPA-linked poly(L-lysine) by reacting poly(L-lysine) of DP about 100 or so with DTPA cyclic anhydride (caDTPA), introduction therein of 2-pyridyldisulfide groups by reaction with N-succinimidy1-3-(2-pyridyldithio)-propionate (SPDP) and coupling with thiolated IgG to form a covalent thia-bonded conjugate. The reactions involved in this synthesis are summarized below.

40<x<100

30

A similar technique is disclosed by P.Shreve et al. in Magnetic Resonance in Medicine 3 (1986), 336-340.

(cH₂)₄-NH-COCH₂-S-CH₂CO-IgG

P.F.Sieving et al., Bioconjugate Chem. 1 (1990),65-71, have 35 disclosed the binding of polyaminocarboxylic chelatants to the side-chain terminal -NH2's of polylysine by means of a technique involving mixed anhydrides. The latter resulted from treating the chelates (e.g. DTPA and DOTA) in the form of their salts with organic amines such as triethylamine or tetramethylguanidine with isobutyl chloroformate (IBCF). The chelatant bearing polylysine was thereafter coupled to human serum albumin (HSA) as follows: Residual unreacted amine side groups of the polylysine were derivatized with succinimidyl-4-(N-maleinimidomethyl)-cyclohexane-1-carboxylate (SMCC) to provide maleinimido activated residues, while some free amino groups of the HSA were activated with 2-iminothiolane to provide at least one reactive alkylthiol group. Final coupling resulted from the addition of said thiol of the HSA to the double bond of the maleinimido terminals of the chelatant carrying polylysine. It was estimated that the conjugate obtained contained an average of about 70 chelating sites per targeting protein.

The foregoing techniques have however the drawback that each step involves careful chromatographic purification of the intermediate products, which operations require tedious manipulations and give low yields. In the present invention, there is provided an improved method to prepare a conjugate moiety of formula III capable of complexing paramagnetic metal ions which can be coupled to protein homing factors specifically responsive to selected cellular marker sites, thus furnishing administrable compounds capable of selectively carrying and delivering high ratios of paramagnetic MRI contrast enhancing species to predetermined areas, both in vivo and in tisue cultures.

This method, as summarized in claim 1, is based on using an 25 immobilizing phase for binding the starting materials and, subsequently, the successive intermediates as the synthesis progresses. In the last step, the desired product is released from the immobilizing phase by a splitting reaction which simultaneously generates a reactive end function for coupling with the targeting factor. The advantage of using an 30 immobilizing phase particularly proves itself in the separation of the intermediates since this can be effected by simple filtration or centrifugation. Another advantage of the present method is that the splitting step will release only one terminal activated group per molecule, whereas in the past methods the corresponding intermediates 35 often carried several reactive ends which lead to crosslinking upon coupling with the homing factor. One further advantage particularly reflects in the carrying out of step (la) when the selected acylating compound is an internal anhydride with more than one iminodiacetic ring,

4

whereby such double functionality may lead to cross-linking. When using compounds of formula I immobilized on a solid phase, cross-linking during acylation with polyfunctioal anhydrides is impeded due to steric reasons.

In the present method, the immobilizing solid phase schematized by 5 the symbol R, can be a polymeric resin with residual reactive groups on . the surface or mineral particles (glasses or ceramics) provided with grafted substituents capable of forming the starting component I in a procedure requiring one or more steps. For instance, resins like polyacrylics, polystyrene, polyamides, polyesters, polyimides, 10 polyolefins, etc. are convenient. In the field of mineral particles, powders or beads of ceramics like alumina, silica, rutile or porous glass are convenient. The mineral particles, preferably porous glass beads, can be made reactive by silanation with trialkoxysilanes provided with reactive end groups such as isocyanato, amino, amido, substituted 15 oxycarbonyl, hydroxy, thiol and the like. In a preferred embodiment, the beads are silanated with a thioalkyl-silane (see H. WEETALL, Covalent Coupling Methods for Inorganic Support Materials, in Meth. Enzym. 44 (1976), 134) and the product is reacted with cysteamine to provide an immobilized intermediate amine containing a splittable disulfide bond (-20 XX- = S_2), (see L.FIELD et al., J.A.C.S. 83 (1961), 4414). Otherwise, thiolated resins, e.g. Thiosepharose, are also convenient starting materials.

In some embodiments, the immobilized amine can thereafter be used as initiator in the telechelic polymerisation of aminoacid N-25 carbonyl anhydrides (NCA's) to provide the starting compound I in which n \$\neq 0\$; details on such reactions are given hereafter. It should be noted that polyolefins derivatized with haloalkyls can be sulfidated with thiourea in the presence of bis(aminopropyl)amine (see WARDELL, The Chemistry of Thiol Groups, Part I, Ed. Patai, Wiley (1974) New-York) to also provide suitable starting materials. Also resins available with thiomethyl group (Merrifield Resins) can be provided with aminoalkyldithia- substituents by the same reaction with cysteamine (HS(CH2)2-SH), with or without the intermediate action of dithiopyridine (H.YAHIMA et al., J.Am.Chem.Soc.63 (1941), 2263.

35 The reactions in which one starts with a haloalkylated resin are summarized hereafter:

5

In other embodiments of the present invention, the solid phases were silanated with epoxypropyl-silane to provide oxirane grafted 10 materials, this function being actually already present on some grades of commercial polyacrylamide resins, viz. the Eupergit resins from SIGMA Chemicals. Oxirane derivatized immobilizing phases were used to make vicdiol carrying intermediates, i.e. compounds I where the -XX- is -CHOH-CHOH- by the following reactions:

The terminal amino group of compounds B and A can then used for direct binding with a chelatant molecule, either in the free state or already in under complex form with paramagnetic metal ions, according to the means known in the art, e.g. mentioned in the introduction, especially in Liu YUANFANG et al., Pure & Applied Chem. 63 (1991),427-463. One embodiment means is to acylate the amine by using an anhydride of the chelatant anhydride (an intramolecular anhydride, i.e. provided with at least one iminodiacetic anhydride ring, or an intermolecular anhydride involving two molecules of the same or different kinds) of the selected polyalkyleneamino-polycarboxylic chelatant. A preferred reagent for forming heterogeneous intermolecular anhydrides is i.butyl-chloroformate (see Bioconjugate Chem. 1, (1990), 65-71.

Then, step (2) of the method of the invention is undertaken to split the chelatant from the immobilizing phase while simultaneously generating thereon a reactive group for attaching to a protein targeting factor, the latter requiring or not requiring to be activated before coupling.

6

In the case of compounds of type A above, the splitting can be effected by selective oxidation or peroxidation by usual means of the vic-diol bond whereby a reactive aldehyde of formula OHC-CH₂SCH₂-CH₂NH-MY will be released in which M and Y have the meaning defined in claim 1.

In the case of compounds of type B the splitting is effected at the disulfide bond by usual means, i.e. in the presence of mercaptans like thioethanol or dithiothreitol. In this case, the released chelatant molecule, of typical formula HS-(CH₂)₂-NH-MY, can be used for coupling with sulfide activated protein homing factors according to usual means 10 (cf. the techniques disclosed in the references cited in the introduction). After splitting, the immobilizing phase can be recovered, for instance by filtration or centrifugation and reused in another cycle which is economically attractive. In the case of the immobilizing phase being released with an aldehyde-sulfide substituent, this can be used in other syntheses or regenerated by conventional means for reuse in another cycle of the present method.

According to one further particularly interesting aspect of the present invention, the immobilized amines of formulae A or B can be used as initiators for the telechelic polymerisation of aminoacid anhydrides 20 (NCA's) (see E.J. GOETHALS, Telechelic Polymers, Synthesis and Applications, CRC Press (1989), New-York) to provide polyaminoacids, i.e. compounds with a polymeric backbone having a plurality of sites for attaching chelatant molecules. By this technique, one will advantageously increase the number of chelated paramagnetic ions per targeting molecule 25 after coupling. In some embodiments of the invention, the compound B was used for polymerizing the NCA's of some γ-protected derivatives of L-glutamic acid or the corresponding β-derivatives of aspartic acid, the protective groups being selected from benzyl, phenacyl, piperonyl and p-methoxyphenacyl.

The esters themselves were prepared according to Van HEESWIJK, Synthesis (1982),744 and the NCA's were obtained by the reaction with phosgene (gaseous or solid triphosgene). After polymerisation, the polyaminoacids with amine initiator head attached thereto were deprotected by usual means, e.g. wit HBr or trifluoroacetic acid (TFA), and the free carboxylic function amidated with ethylenediamine (or any alkylene diamine) to provide primary amine terminated side groups. The chelatant molecules were attached to said amine terminal side groups as explained above in the case of compounds A or B, i.e. either by acylation

or directly using a reactive connecting bridge from one of the alkylene carbons of the polyalkyleneamine-polycarboxylic chelatant molecule. Then, the XX bond was split under conditions similar to that already mentioned before so as to release the free activated chelatant polymer to be thereafter coupled (with the carboxylic groups free or complexed with a paramagnetic metal) to a targeting homing factor.

Similar reactions were carried out using the NCA of L-lysine, the E-NH2 groups being protected with either a fluorenyloxycarbonyl (PFL) group or by benzyloxycarbonyl (PBL). Deprotection after polymerisation was afforded by using piperidine in DMF or mixtures of TFA and mesylic acid in dioxane (see experimental Part).

The telechelic polyaminoacids obtained as described above are therefore provided with a plurality of amine terminated side groups to which chelatant molecules can thereafter be bound by the same methods 15 already described hereinbefore. For instance, immobilized polylysine obtained after polymerisation of L-lysine-NCA initiated by immobilized compound A was reacted with caDTPA to provide a polyaminoacid of DP approximately 50 to 110 in which a significant proportion (up to 60 -80%) of the side arms were equipped with the chelatant molecules. Then. 20 after release by oxidation, as already explained heretofore, the resulting polychelatant comprising a -CHO head group could be used for coupling with a protein homing factor, no need to activate the protein before coupling being necessary; this is obviously a strong advantage of the invention compared to the techniques of the prior art. The proteins 25 which can be used as homing factors are very numerous and include for instance monoclonal and polyclonal antibodies, human serum albumin (HSA), specific an non-specific Ig's, α -2-macroglobulin, interleukin, epidermal growth factor (EGF), platelet derived growths factors and, in general proteins or glycoproteins recognizing specific cellular marker sites.

The experimental part which follows illustrate the invention in more detail. In this section, the symbol AcOH defines acetic acid groups.

EXPERIMENTAL (Examples)

Benzyl glutamate-NCA was prepared according to H.BLOCK, "Ring 35 Opening Polymerization" 2 (1969), 23, K.C.FRISH & S.L.REEGEN Eds., MARCEL DEKKER, New-York.

Gamma-phenacyl glutamate-NCA was obtained by bubbling phosgene in a suspension of 8.6~g of glutamic ester in 250~ml of THF. When

dissolution was complete, the solution was flushed with nitrogen; then it was evaporated and the residual solid was crystallized from ethyl acetate and hexane; colorless crystals were obtained.

The NCA of γ-piperonyl glutamate was obtained by treating a 5 suspension of 1 g of the ester in 20 ml of dioxane with 350 mg of solid triphosgene (Janssen) and, thereafter, further agitating 90 min at 60°C. If necessary, full dissolution is brought about by adding very small further portions of triphosgene. The solution was poured into 400 ml of hexane and the whole was left standing overnight at -20°C, whereby 10 crystals formed. These were dissolved in a small amound of ethyl acetate, the solution was bleached with carbon at 40°C and precipitated with hexane. White crystals were obtained after repeated purifications.

Example 1

with H2O and dried in vacuo.

15 A) Preparation of carrier with grafted primary amines via a vic diol spacer (amino-diol-derivatized carrier.

Five g of Eupergit-C beads (a polyacrylamide resin with glycidyl groups grafted thereon- a product of SIGMA) were suspended in 100 ml of 0.1M 20 phosphate (1mM EDTA) buffer pH 6.0 and 1g (6.5 mmol) of dithioerythritol (DTE), a large excess thereof, was added under stirring. The heterogeneous mixture was stirred for 2 days at room temperature, after which the beads were drained and washed with the same phosphate buffer. Analysis was performed by taking an aliquot of ~50 mg and stirring for 1 25 h at room temperature with 10 ml of a 10 mM solution of 2, 2'dithiodipyridine in DMF. The beads were drained, washed with DMF, then with CH2Cl2, resuspended in 5 ml of DMF, and the -SS- bond split with one drop of mercaptoethanol (EtSH); after stirring for 30 min, the beads were separated by filtration and the amount of 2-thiopyridone determined in 30 the filtrate by absorbance at 343 nm (ϵ = 8080) according to M.C. Millot et al., J. Chromatography 354 (1986) 155. The beads (main portion) were suspended in 100 ml of 0.5 M Tris-HCl (0.5 mM EDTA) buffer, pH 8.5 and a quantity of 2-bromoethylamine hydrobromide (calculated from the results of the foregoing analysis) to make a mole 35 ratio bromoamine/thiol of 50, this being according to K. Okazaki et al., Anal. Biochem. 149 (1985) 516. After stirring for 2 days at room temperature, the beads were drained , washed with the same buffer, then

Analysis of the free amino groups was effected according to C.C. Y. Lee and G.M. Loudon, Anal. Biochem. 94 (1979) 60 and an average value (after several runs) was about 50μ mol -NH2/g of dry beads.

The reactions are (R = carrier):

Bretnh2 R-CH2CHOHCH2-S-CH2(CHOH)2-CH2-S-(CH2)2-NH2

10 amino-diol- carrier (A)

B) Preparation of aldehyde-derivatized DTPA

One g (2.8 mmol) of DTPA bis anhydride (caDTPA) (from Pierce Chemicals)

15 was dissolved in 100 ml of dry DMF, 10 mmol of triethylamine (TEA) were added and thereafter 2g, (0.1mmol) of the beads derivatized as under Example 1 above. The suspension was stirred for 24 h at room temperature after which they were drained, washed with DMF and resuspended in 100 ml of DMF containing 1g (2.8 mmol) of caDTPA and 10 mmol of TEA. After 24 h 20 of agitation the beads were again drained and washed with successively DMF, dimethylsulfoxide (DMSO), and slightly acidified water (HC1). The beads were suspended in 10 ml of 0.1 M phosphate (0.01 M NaIO4) buffer pH 7 and stirred for 30 min in the dark, then the beads were drained and washed with the same buffer. The filtrate and washing fractions were pooled.

The pooled filtrate and washing fractions were acidified to pH 2 (with HC1) and concentrated to about 2 ml in a Rotavapor. Then the residue was

The pooled filtrate and washing fractions were acidified to pH 2 (with HCl) and concentrated to about 2 ml in a Rotavapor. Then the residue was passed over an ion-exchange resin (Dowex 1X8, acetate form, 20-50 dry mesh) in a 20x1 cm column. The elution rate was 2 ml/min using a constant acetic acid gradient (pH=3). Aliquots from the successive fractions (2 ml) were analysed for aldehyde by the method of J. Bartos et al. Pure Appl. Chem. 51 (1979) 1803 measuring the fluorescence generated after treatment with cyclohexanone and ammonium carbonate. On a total of 10 fractions, the 6th and 7th contained the majority of the aldehyde-

derivatized DTPA. The fractions giving a positive aldehyde signal were pooled and lyophilized. The product was analysed by NMR and for aldehyde according to Bartos (ibid).

The weight of dried product seemed to indicated a yield of release from the carried of about 100% and it is likely that the obtained DTPA is aldehyde-monosubstituted since steric hindrance by the matrix network would probably inhibit dual DTPA linking to the solid phase. However 5 measurement of aldehyde seems to indicate that only half of theoretical substitution has occurred. The discrepancy may tentatively by explained by some degree of overoxidation during release with possible partial conversion to carboxylic groups.

The reactions are schematized below (A is the amino-diol-carrier, see 10 Part A above):

15

20

35

Example 2: Preparation of DTPA-grafted poly (L-lysine) provided with an aldehyde heading group.

25 a) The polymerization of the N-carboxyanhydride (NCA) of alkyloxy carbonyl-protected lysine was initiated by the amine group of the amino-diol derivatized Eupergit carrier disclosed under Example 1(A). The protected lysine monomers i.e. ε-benzyloxycarbonyl-L-lysine (BL) and ε-fluorenylmethyl-oxycarbonyl-L-lysine (FL) were purchased from Bachem 30 (Switzerland).

BL=
$$HOOC-CH_2-NH_2$$
 FL = $HOOC-CH_2-NH_2$ (CH₂)₄-NH-COO(CH₂)-C

The corresponding NCA's were prepared according to W.H. Daly et al. Tetrahedron Letters 46 (1988) 5859 by reaction with solid triphosgene in THF.

- b) Ten mmol of the BL- or FL-NCA were agitated for three days at room temperature with 2g (0.1 mmol) of the amino-diol derivatized carrier prepared under Example 1 hereabove in 40 ml of dioxane (BL-NCA) or DMF (FL-NCA) using a Rotavapor apparatus. The beads were drained and washed with successively dioxane or DMF, then CH2C12; finally they were dried in vacuo and weighed. The amount of polymer obtained was determined by the carrier weight increase. Yield 90% (BL), 40% (FL).
- The methyl fluorenyl group of the poly-(E-fluorenylmethyloxycarbonyl-L-lysine) (PFL)-derivatized substrate (5g) was removed by stirring for 30 min in 50 ml of a 20% solution of piperidine in DMF. Then the beads were washed repeatedly with DMF, with CH2C12 and dried in vacuo. The yield of deprotection was near 100%.
 - Corresponding poly (E-benzyloxycarbonyl-L-lysine) (PBL)-derivatized beads (1g) was deprotected by stirring for 60 min in 50 ml of a 33:67 mixture of HBr/AcOH, then repeatedly washing with H2O, EtOH and CH2 Cl2 and dried in vacuo. In this case, a ninhydrine test showed the deprotection to be
- 20 incomplete and further operations were carried out using preferably the derivatized carried resulting from the near 100% deprotection by removal of FL.
 - c) One g of the deprotected polylysine (PL)-derivatized Eupergit was supended in 20 ml of DMSO containing 1g of caDTPA for 24 h at room
- temperature. Then one more g of caDTPA was added and the mixture was further stirred for 24h. This was repeated until no left free amino groups were present as ascertained with ninhydrine (no color). Then then beads were again separated and washed free of DMSO.
- d) The DTPA-grafted PL- carrier was suspended in 20 ml of 0.1 M phosphate 30 (0.01 M sodium periodate) buffer pH 7.0 and stirred for 30 min in the dark. The carrier was drained and washed with the same buffer. The filtrate and washing were reunited and purified by dialysis against water (membrane MW cut-off 5000). The residue was freeze-dried to give about 50% yield of polymer. Analysis of the aldehyde groups showed that about
- 35 15% of the polymer chains were provided with a reactive -CHO group. It is postulated that this yield may be increased by by using milder oxidation conditions for release of the carrier. The reactions are illustrated by the scheme on the next page (only the FL embodiment is represented).

$$\begin{array}{l} {\rm R-CH_2CHOHCH_2-s-CH_2\,(CHOH)\,_2-CH_2-s\,(CH_2)\,_2-NH-\{CO-CH-NH-\}_{n}-H}\\ {\rm (CH_2)\,_4-NHFL} \end{array}$$

$$\label{eq:hco-ch2} $$ \c (CH_2)_2-NH-[-CO-CH-NH-]_n-H$$ $$ \c (CH_2)_4-NH-COCH_2-[N(AcOH)_(CH_2)_2]_2-N(AcOH)_2$$$$

20

15

Example 3. Preparation of DTPA-grafted poly-(L-lysine) provided with a thiol leading group

25

a) Grafting of propane-thiol

To a suspension of 4.24 g glass chips (controlled pore glass CPG-10-1000 from Fluka AG) washed with water and hot nitric acid in 50 ml of phosphate buffer (0.1M, pH 7, 1mM EDTA) were added 4.24 ml of a stirred (2h) solution of 3.7 ml of 3-mercaptopropyl trimethoxysilane (3.7 ml) in 20 ml of 1:1 acetate buffer/ethanol (pH 4). The glass chips were stirred overnight, washed with 1:1 water/ethanol and resuspended in ethanol (20 ml) containing 1.2g (10 mmol) of dithiodipyridine. After two hours, the glass chips were removed and washed with ethanol then dried. Yield 7µmol of thiol groups/g of glass. A similar technique was applied for thiolating silica particles (Aerosil-A300), alumina and titanium dioxide (P25).

b) grafting of initiator

13

Thiolated glass chips (1.75g) were suspended in 20 ml of DMF and a large excess of cysteamine (250mg, 3 mmol) was added. The suspension was stirred overnight and the glass chips were separated and washed with successively DMF, chloroform, ethanol, very dilute aqueous acid, NaHCO3 and finally DMF.

- c) Polymerization of ϵ -protected lysine
- The procedure was similar to that disclosed in Example 2. Ten mmol of FL-NCA were agitated for 48 h at room temperature with 1mmol of the amine-
- 10 substituted carrier prepared as indicated above under a in 50 ml of DMF freshly distilled to eliminate traces of amine impurities, after which they were separated and washed with DMF and then CH2Cl2.
 - Deprotection was effected also as described in Example 2 using piperidine in DMF.
- 15 d) Grafting of ca DTPA on the deprotected ε-NH2 groups

 The procedure was exactly that disclosed in Example 2 using an excess of caDTPA and allowing the reaction to proceed until substantial exhaustion of the free NH2 groups is accomplished. Then the glass chips were separated and washed free of DMSO with dioxane and CH2C12.
- 20 e) Release of the DTPA-grafted polymer

 The glass chips with immobilized DTPA-derivatized polylysine were
 suspended in 20 ml of phosphate buffer (0.1M, pH 7, lmM EDTA) and 100 mg
 of dithiothreitol were added. After stirring overnight, the glass chips
 were removed by filtration and washed with the same buffer; the filtrate
- 25 provided after evaporation in vacuo the product in the form of the thiolterminated polymer (yield 76%).
- The reactions are schematized in the next page, where R represents the immobilizing glass carrier. The surface of the carrier is provided with a density of hydroxy groups (of adsorbed moisture or silica) which enable condensation with the silane derivative.

Example 4: The use of DTPA - grafted polymers with aldehyde functionality as the homing moiety in a conjugate vector for carrying MRI contrast

30 enhancers to selected areas.

A quantity of non-specific human immunoglobulin nIg (Sigma) 0.9 mg (about 6 nmol) was dissolved in 0.9 ml of a 1% acetate buffer pH 5.5; then there were added an amount of the aldehyde terminated polymer (see Example 2)

35 and an amount of sodium cyanoborohydride dissolved in 20µl of water, said amounts being such as to provide a mole ratio of antibody/aldehyde/reducing agent of 1/10/5. After stirring for 8 h at

room temperature, there was added a new portion of cyanoborohydride and stirring was continued for 16 h. The mixture was thereafter diafiltered through a 100'000 MW cut-off membrane with 10mM (0.15 M NaCl) phosphate buffer pH 7.2 (PBS) in order to remove the excess of reducing agent and 5 unreacted polymer.

Then the solution (0.5 ml) was chromatographed on a gel-permeation column available from Beckman and equilibrated with PBS. Two peaks were obtained: a first fraction containing nIg and a second fraction containing the desired nIg coupled with the polymer. This latter fraction was concentrated by ultrafiltration using a 10'000 MW cut-off membrane to obtain a product to be directly used to complex paramagnetic ions and thereafter be injected for in vivo MRI experiments. This material was capable of complexing from about 50 to about 100 Gd⁺³ per mole of Ig. In other experiments, the nIg was replaced by other targeting factors and similar results were observed.

Example 5: The use of DTPA-grafted polymers with thiol functionality as a homing moiety in an injectable conjugate for selectively carrying MRI contrast enhancers to selected areas in vivo.

20 To 0.9 mg of nIg (or anti-mouse CEA 35 from the Institute of Biochemistry, Lausanne) in 0.9 ml of PBS buffer were added 60 nmol of Nsuccinimidy1-4-(N-maleinimido) butyrate (SMBU) from Sigma dissolved in 50μl of DMF. After 1 h rest at room temperature, the solution was diafiltered through a 10'000 MW cut-off membrane with PBS in order to 25 remove the excess of SMBU.

Then there was added 16 nmol of DTPA-polylysine with SH-functionality (see Example 3) in 40 μ l of PBS. After 2 h rest at room temperature, the conjugate was subjected to purification (as under Example 4 above) to provide an injectable solution to be used for in vivo MRI contrast enhancement tests.

Example 6

Beads of a macro-crosslinked polystyrene resin (from Polysciences) were etched for 48 hrs. in TFA, then they were washed with, successively, DMF, dioxane and MeOH. The beads, 15.5 g, were suspended in 80 ml of CHCl3 and a mixture of stannic bromide (1,8 ml, 13.7 mmol) and bromomethyl-methyl-ether (18.6 ml, 228 mmol) were added dropwise to the suspension agitated at 0°C under nitrogen. After standing a while, the

16

resin was washed with, successively, dioxane-HCl 3N (3:1), dioxane, methanol and chloroform. The dried beads were suspended in 90 ml of DMF and the suspension was heated to 100°C (reflux condenser) under N2, after which a solution of 2.1 g (27.9 mmol) of thiourea in very little DMF was added and the mixture was left at 100°C overnight. After washing with DMF the substrate was again suspended in 90 ml of DMF containing 3.6 g of bis(3-aminopropylamine) and heated overnight at 100°C under nitrogen. Then the beads were washed with, successively, DMF, dioxane and chloroform, then they were dried under vacuum.

The resin (15.5 g, 512 μeq of -SH) was suspended in 140 ml of 50% aqueous ethanol containing 0.8 g of cysteamine (10.4 mmol), and there was added thereto 3% H2O2 until no further reduction of I2/KI solution by an aliquot of the mixture is observed. After agitating overnight, the beads were washed with aqueous ethanol, then with water. They were further extracted overnight in a Soxhlet apparatus with 1:1 MeOH/chloroform, then they were dried under vacuum.

A portion of 8 g of the aminated disulfide grafted solid phase was suspended in 30 ml of dioxane and a solution of 5.2 g of the N-carboxy anhydride of γ -benzyl glutamate (BG-NCA) in 20 ml of dioxane was added. 20 After stirring for 3 days, the resin was drained and washed with, successively, dioxane, MeOH and CHCl3. A portion of 4 g of the above beads with immobilized polyglutamate suspended in 35 ml of benzene was put in 40 ml of benzene saturated with HBr and agitated for 1 hr, HBr bubbling being pursued. Then the introduction of gas was stopped and 25 agitation was continued overnight, after which the beads were collected and rinsed as usual, the last solvent being dichloromethane. The free carboxyl functions of the immobilized polyglutamic were thereafter amidated with ethylene diamine under usual conditions and the reaction of the free amine terminated side chains with caDTPA was brought about as 30 disclosed in the previous examples. Finally, the beads were suspended in DMF and the thiol activated polychelator molecule was released by adding 3% (based on the volume of solvent) of thioethanol. The yield of release exceeded 50% after 72 hrs. at 120°C. The final product was obtained after separating the solid phase by filtration and evaporationg the filtrate 35 under reduced pressure. The separated solid phase was reusable in another run.

In the embodiments of this invention, there were used mainly polyalkyleneaminopolycarboxylic chelatants of general linear backbone

exemplified by the structures of EDTA or DTPA. Naturally, chelatants with other structures can also be employed, viz. starlike compounds such as nitrilotriacetic acid and the triethyleneaminohexaacetic homolog as well as the macrocyclic chelatants like cyclotetrazadodecanes tetraacetic acid (DOTA) and other similar structures (see for instance DE-A-3401052). Derivatives of the polyalkyleneaminopolycarboxylic acids with one or more of the carboxylic groups being replaced by hydroxy, alkoxy or amide groups are also usable in the present method; a typical example of chelatant with an alkoxy- side group is the DTPA analog of which on of the terminal carboxy has been replaced by a benzyloxy group (BOPTA).

18

CLAIMS

5

A method for preparing conjugate moieties III to be used for coupling with targeting factors specifically responsive and/or binding to bioactive cellular marker sites of living tissues in order to provide
 administrable targeted conjugates capable of carrying paramagnetic MRI contrast enhancer species to be selectively delivered to organs or tissues of interest, the said conjugate moieties III carrying at least one polyalkylaminopolycarboxylic chelatant and having formula

15

20

X¹ is a -CHO or -SH group;

Alk is a C₁ to C₄ alkylene, optionally interrupted by a -S- bond; Z is a C₁ to C₄ alkylene, optionally interrupted by a -COO- bond;

at least one Y represents a polyalkyleneaminopolycarboxylic acid chelatant molecule (the other Y, if any, being H) either in its free acid form or as complex with paramagnetic ions, n is an integer from 0 to about 100 and M represents a link between -NH and Y, said link being either an amido bond involving a -CO of Y and said -NH of III, or an organic bridging substituent connecting to an alkylene carbon of Y;

said method including the steps of either

la) acylating a compound of formula I

30

$$R-XX-A1k-(CO-CH-NH)n-H$$
 (I), $Z-NH_2$

52

where X is -S- or -CHOH-, and Alk, Z and n are as defined above, 35 with an acylating derivative IIa of chelatant Y where at least one of the carboxylic functions thereof is in acylating derivatized form, i.e. intra- or intermolecular anhydride, halide, reactive amide or reactive ester; or:

1b) reacting said compound I with a derivative IIb of said polyalkyleneaminepolycarboxylic chelatant substituted on an alkylene carbon with a reactive bridging function selected from benzene diazonium, haloacetamido-phenyl, haloacetamido-benzyl, isocyanatophenyl, isothiocyanatophenyl, and azoimidate, said steps (1a) or (1b) being to provide an intermediate IV of formula

10

(2) splitting the -XX- bond of IV to provide moiety III,

characterized in that R in formulae I and IV defines an immobilizing solid phase to which the remainder of the molecule in compounds I and IV is linked covalently, either directly or by the intermediate means of a linker grafted beforehand on the surface of said solid phase, the latter being recoverable after splitting in step (2) and being reusable afterwards in another preparative cycle.

2. The method of claim 1 in which said derivative IIa of a 20 polyalkylene aminopolycarboxylic acid chelatant has the structure of an intermolecular anhydride where at least two gem-acetoxy groups are in the form of an iminodiacetic anhydride ring, with the formula

25

- 3 . The method of claim 1, in which the solid phase designated R is costituted of porous or non-porous organic or mineral particles or beads.
- 4. The method of claim 3, in which said organic phase is a polymeric resin selected from polystyrene, sepharose, agarose, thiosepharose, polyacrylates, polyacrylamides, polyesters, polyamides, polyimides, and the like, and said mineral phase is a glass, metal oxide or ceramic selected from porous and non-porous filtrating beads or powders of glass, silica, alumina, ZrO2, TiO2, and the like.

20

5. The method of claim 2, in which in formulae I and IV X^1 is -SH, X is -S-, Alk is ethylene, Z is tetramethylene, n is between about 50 and 110 and m is 2.

5

- 6. The method of claim 2, in which formulae I and IV X1 = -SH, X is -S-. Alk is ethylene, $Z = -(CH_2)-COO(CH_2)_2$, n is between 50 and 110 and m = 2.
- 7. The method of claims 5 and 6, in which said splitting step (2) is effected by hydrolysis.
- 8. The method of claim 2, in which formulae I and IV X¹ is -CHO, X is CHOH, Alk is -CH₂S(CH₂)₂, Z is (CH₂)₄, n is between 50 and 15 110 and m is 2.
 - 9. The method of claim 2, in which formulae I and IV X1 is CHO, X = CHOH, $Alk = -CH_2S(CH_2)_2$, $Z = (CH_2)_4$, n is zero and m = 2
- 10. The method of claims 8 and 9, in which the splitting step (2) is effected by oxidation.
 - 11. Polyalkylaminopolycarboxylic chelatants having a reactive end group \mathbf{X}^1 for coupling to proteins and having formula III

25

$$X^{1}$$
-Alk-NH-(CO-CH-NH)_n-MY (III) where Z -NH-MY

30 X¹ is a -CHO or -SH group;

Alk is a C₁ to C₄ alkylene, optionally interrupted by a -S- bond;

Z is a C₁ to C₄ alkylene, optionally interrupted by a -COO- bond;

at least one Y represents a polyalkyleneaminopolycarboxylic acid
chelatant molecule (the other Y, if any, being H) either in its free acid

35 form or as complex with paramagnetic ions, n is an integer from 0 to
about 100 and M represents a link between -NH and Y, said link being
either an amido bond involving a -CO of Y and said -NH of III,
or an organic bridging substituent connecting to an alkylene carbon of Y.

12. Chelatants according to claim 11, having the formulae

 $HOC-CH_2-s-(CH_2)_2-NHCOCH_2-[N(ACOH)(CH2)_2]_2-N(ACOH)_2$

5

and

 $\begin{array}{c} \text{HOC-CH}_2\text{-S-(CH}_2)_2\text{-NH-[CO-CH-NH-]}_n\text{-H} \\ \text{(CH}_2)_4\text{-NH-COCH}_2\text{-[N(AcOH)(CH}_2)_2]_2\text{-N(AcOH)}_2 \end{array}$

10

INTERNATIONAL SEARCH REPORT

			International Application No	PCT/EP 92/01560
I. CLASSIF	CATION OF SUBJE	CT MATTER (if several classification		
According to		Classification (IPC) or to both Nation A 61 K 49/00 A	al Classification and IPC 61 K 47/48	
II. FIELDS	SEARCHED		· · · · · · · · · · · · · · · · · · ·	
		Minimum Do	cumentation Searched?	
Classificati	ion System		Classification Symbols	
Int.Cl	.5	A 61 K		
	······		ther than Minimum Documentation ents are Included in the Fields Searched ⁸	
III. DOCU	MENTS CONSIDERE	D TO BE RELEVANT 9		
Category °	Citation of D	ocument, 11 with indication, where app	ropriate, of the relevant passages 12	Relevant to Claim No.13
Y	LIBERA and cr equili reagen	oss-linking of a mon brium transfer alkyl	chemical modification oclonal antibody using ating cross-link EM., (JANUARY-FEBRUARY	1-12
Y	no. 21 "Synth N-term lympho 172633	, (Columbus, Ohio, U esis and carbon~13 N	MR spectra of the the sequence of human ee abstract no. Z. PHYSIOL. CHEM.,	1-12
"A" do co "E" ear fill "L" do wh cit "O" do on	nsidered to be of participation of the publing date coment which may threshold is cited to establish atton or other special to coment referring to an her means	meral state of the art which is not cular relevance lished on or after the international ow doubts on priority claim(s) or the publication date of another reason (as specified) oral disclosure, use, exhibition or to the international filing date but	To later document published after the or priority date and not in conflicted to understand the principle invention "A" document of particular relevance cannot be considered novel or call involve as inventive step "Y" document of particular relevance cannot be considered to involve document is combined with one of ments, such combination being of in the art. "A" document member of the same p	ct with the application but c or theory underlying the c the claimed invention munot be considered to the claimed invention an inventive step when the or more other such docu- physics to a person skilled
IV. CERT	IFICATION			
Date of the	·	the International Search	Date of Mailing of this Internal	onal Search Report
	19-10-		20. 11. 92	<u> </u>
Internation	ial Searching Authority EUROPE	AN PATENT OFFICE	Signature of Authorized Officer	Circ

Form PCT/ISA/210 (sexoni sheet) (January 1985)

Mme Dagmar FRANK

International Application No Page 2 PCT/EP 92/01560

m nogner	International Application No parts Considered to be relevant (Continued from the second sheet)	PCT/EP 92/01560
	Citation of Document, with Indication, where appropriate, of the relevant passages	Relevant to Claim No.
Category °	CINIOS & Document and imperiod and abbotical	
x	WO,A,8800837 (BATTELLE MEMORIAL	1-4
^	INSTITUTE) 11 February 1988	
		1_10
Y	EP, A, 0214053 (INSERM) 11 March 1987,	1-12
	see column 2, lines 36-43,53-63; column 3, lines 18-29	
	10 ⁻ 4J	
Y	EP,A,0040506 (TEIJIN LTD) 25	1-12
	November 1981, see page 3, column 2 - page 6,	
	column 1; page 21, column 1; claim 6; page 51,	
	point 4 - page 52, line 35; claim	
A	STN File Server File Chemical Abstracts, vol.	1-12
	112 no. 7 (Columbus, Ohio, US), see abstract	
	no. 518161. & JP.A.01126555 (MELDENSHA ELECTRIC	
	MFG. CO., LTD) 18 May 1989, see whole abstract	
		İ
1		
ļ		
1		
1		
1		
.		
	•	
1		
	•	
	·	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

EP 9201560 SA 62289

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 03/11/92

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A- 8800837	11-02-88	AU-B- AU-A- EP-A,B JP-T- US-A-	608531 7788787 0259904 1500435 5087616	11-04-91 24-02-88 16-03-88 16-02-89 11-02-92
EP-A- 0214053	11-03-87	FR-A- JP-A-	2586813 62071863	06-03-87 02-04-87
EP-A- 0040506	25-11-81	JP-B- JP-A- JP-A- JP-B- JP-C- JP-A- JP-C- JP-A- JP-B- US-A-	3038294 57009724 1430648 57005721 62038369 1430650 57018727 62038368 1414093 57031930 62019770 4385169	10-06-91 19-01-82 24-03-88 12-01-82 18-08-87 24-03-88 30-01-82 18-08-87 10-12-87 20-02-82 01-05-87 24-05-83

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
 □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ FADED TEXT OR DRAWING
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING
 □ SKEWED/SLANTED IMAGES
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS
 □ GRAY SCALE DOCUMENTS
 □ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: