Лекция 12

Некоторые решения задач из лекции 9.

 ${f 3aga4a}\ {f 3.}\ {f a})$ Напишите матрицу обратную для матрицы g заданной формулой

$$g = \cos \alpha + i \sin \alpha (\vec{n}, \vec{\sigma}). \tag{1}$$

Как изменились параметры \vec{n} и α ?

- б) Напишите формулу (матрицу для 3×3) присоединенного действия матрицы $g = \exp(i\alpha\sigma_3)$, проверьте, что получилось ортогональное преобразование (в алгебре Ли $\mathfrak{su}(2)$ удобно взять базис $i\sigma_1$, $i\sigma_2$, $i\sigma_3$).
- в) Покажите, что общему g заданному формулой (1) в присоединенном представлении будет соответствовать ортогональное преобразование.
- г) Является ли полученный гомоморфизм из группы SU(2) в группу SO(3) сюръективным, какое у него ядро?

Решение. б) Напомним вид σ матриц

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Имеем

$$g = \begin{pmatrix} e^{\mathrm{i}\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}, \qquad g(\mathrm{i}\sigma_3)g^{-1} = \mathrm{i}\sigma_3$$

$$g(\mathrm{i}\sigma_1)g^{-1} = g\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}g^{-1} = \begin{pmatrix} 0 & ie^{2\mathrm{i}\alpha} \\ ie^{-2\mathrm{i}\alpha} & 0 \end{pmatrix} = \cos(2\alpha)\mathrm{i}\sigma_1 - \sin(2\alpha)\mathrm{i}\sigma_2$$

$$g(\mathrm{i}\sigma_2)g^{-1} = g\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}g^{-1} = \begin{pmatrix} 0 & e^{2\mathrm{i}\alpha} \\ -e^{-2\mathrm{i}\alpha} & 0 \end{pmatrix} = \sin(2\alpha)\mathrm{i}\sigma_1 + \cos(2\alpha)\mathrm{i}\sigma_2.$$

Т.е. действие $\exp(i\alpha\sigma_3)$ является поворотом на угол 2α относительно оси натянутой на $i\sigma_3$.

в) Прямым вычислением можно показать, что сопряжение элементом g вида (1) дает поворот вокруг оси \vec{n} на угол 2α . Из этого следует, что получилось ортогональное преобразование.

Приведем другой способ доказать ортогональность, который не требует вычислений. А именно, нам надо доказать что присоединенное представление группы SU(2) сохраняет некоторое положительно определенное скалярное произведение. Определим скалярное произведение на пространстве алгебры Ли $\mathfrak{su}(2)$ по формуле $(A,B)=-\frac{1}{2}\operatorname{Tr}(AB)$. Тогда, легко видеть что в базисе из матриц $\mathrm{i}\sigma_1,\mathrm{i}\sigma_2,\mathrm{i}\sigma_3$ эти скалярные произведения имеют вид $(\mathrm{i}\sigma_a,\mathrm{i}\sigma_b)=\delta_{ab}$, то есть получилось положительно определенное скалярное произведение. Теперь проверим, что оно является инвариантным

$$(gAg^{-1}, gBg^{-1}) = -\frac{1}{2}\operatorname{Tr}(gAg^{-1}gBg^{-1}) = -\frac{1}{2}\operatorname{Tr}(gABg^{-1}) = -\frac{1}{2}\operatorname{Tr}(AB) = (A, B)$$

Значит присоединенное действие SU(2) сохраняет положительно определенное скалярное произведение, т.е. образ лежит в SO(3).

Еще один (близкий) способ, это построить на алгебре $\operatorname{Ли}\mathfrak{su}(2)$ не скалярное произведение, а квадратичную форму $A \mapsto \det A$. Далее можно показать, что присоединенное представление сохраняет эту форму, и условие, того что группа сохраняет квадратичную форму эквивалентно тому, что группа сохраняет скалярное произведение.

г) Сюрьективность следует из того, что сопряжение элементом g вида (1) дает поворот вокруг оси \vec{n} на угол 2α и все элементы группы SO(3) имеют такой вид.

Можно показать сюръективность не проводят вычисления для общего g, а воспользоваться тем, что действие элементов $\exp(i\alpha\sigma_a)$ будут поворотами относительно соответствующих осей и такие повороты порождают группу SO(3).

Ядро — это элементы $g \in SU(2)$ такие, что $g\sigma_a g^{-1} = \sigma_a$ для любого a = 1, 2, 3. Легко видеть, что этим условиям удовлетворяю только скалярные матрицы, таких в SU(2) две: E и -E. Они образуют подгруппу из двух элементов изоморфную C_2 .

Замечание. Из этой задачи и теоремы о гомоморфизме следует, что $SO(3) \simeq SU(2)/C_2$. У групп SO(3) и SU(2) изоморфные алгебры Ли, но как группы они различны, отличаются на фактор по дискретной подгруппе. Мы уже знаем, что SU(2) можно отождествить с трехмерной сферой, тогда SO(3) отождествится с трехмерным проективным пространством.

Решение одного пункта одной задачи из 8

Задача 4. в)* Докажите, что алгебра Ли $\mathfrak{sl}(2,\mathbb{R})$ не изоморфна $\mathfrak{so}(3,\mathbb{R})$.

Доказательство. Алгебр Ли $\mathfrak{sl}(2,\mathbb{R})$ состоит из матриц 2×2 с нулевым следом. Естественным базисом в ней являются матрицы

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \tag{2}$$

Коммутаторы в этом базисе равны

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.$$
 (3)

Но в алгебре Ли \mathbb{R}^3 (изоморфной $\mathfrak{so}(3,\mathbb{R})$) не может быть чтобы вектороное произведение двух ненулевых векторов было пропорционально третьему. А для $\mathfrak{sl}(2,\mathbb{R})$ так получается. Значит, они не изоморфны.

Некоторые решения задач из лекции 9.

Задача 4. а) Рассмотрим алгебру $\mathfrak{so}(n)$. Она имеет естественный базис $J_{ik}=E_{ik}-E_{ki}$, где E_{ik} это матрица у которых 1 стоит на месте (i,k), а в остальных местах стоит 0. Разложите коммутатор $[J_{ab},J_{cd}]$ по этому базису.

б)* Докажите, что алгебра Ли $\mathfrak{so}(4)$ изоморфна прямой сумме $\mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

Указание: выразите через J_{ab} другие образующие J_1, J_2, J_3 и J'_1, J'_2, J'_3 так, что каждая тройка удовлетворяет соотношениям $\mathfrak{so}(3)$, а [J, J'] = 0.

Решение. а) Сначала напишем коммутатор матричных единиц

$$[E_{ab}, E_{cd}] = \delta_{bc} E_{ad} - \delta_{ad} E_{cb}.$$

Отсюда следует, что

$$[J_{ab}, J_{cd}] = \delta_{bc}J_{ad} + \delta_{ad}J_{bc} + \delta_{ac}J_{db} + \delta_{bd}J_{ca}. \tag{4}$$

Заметим, что при перестановке a и b левая часть меняет знак (так как $J_{ab}=-J_{ba}$). Можно проверить, что этим свойством обладает и правая часть. Эта симметрия, вместе с аналогичным свойством при перестановке c,d, фиксирует знаки слагаемых в правой части.

б) Введем элементы

$$J_1 = \frac{1}{2}(J_{12} + J_{34}), \quad J_2 = \frac{1}{2}(J_{14} + J_{23}) \quad J_3 = \frac{1}{2}(J_{13} + J_{42}),$$

$$J'_1 = \frac{1}{2}(J_{12} - J_{34}), \quad J'_2 = \frac{1}{2}(-J_{14} + J_{23}) \quad J'_3 = \frac{1}{2}(J_{13} - J_{42}).$$

Тогда легко видеть, что $[J_a,J_b]=\epsilon_{abc}J_c,\,[J_a',J_b']=\epsilon_{abc}J_c'$ и $[J_a,J_b']=0.$

Представления более общих групп Ли

До сих пор мы говорили только о представлениях трех групп Ли SO(2), SU(2) и SO(3). Сегодня мы будем говорить про другие группы Ли и соответствующие им алгебры Ли.

Во первых, вспомним, что мы знаем еще одну трехмерную группу Ли: $SL(2,\mathbb{R})$. Но если ограничиться комплексными представлениями и не обсуждать вопросы унитарности, то ее теория представлений не даст нам ничего нового, так как рассматривая комбинации с комплексными коэффициентами можно получить из элементов $\mathfrak{su}(2)$ элементы $\mathfrak{sl}(2,\mathbb{R})$ и наоборот. На самом деле, мы уже брали такие комбинации когда строили конечномерные представления $\mathfrak{su}(2)$. Мы там брали элементы J_+, J_-, iJ_3 , их коммутационные соотношения имеют вид

$$[iJ_3, J_+] = J_+, \quad [iJ_3, J_-] = -J_-, \quad [J_+, J_-] = -2iJ_3.$$

Тогда после замены $2iJ_3 \leftrightarrow h$, $iJ_+ \leftrightarrow f$, $iJ_- \leftrightarrow e$, мы получим коммутационные соотношения (3).

Комплексификацией вещественной алгебры Ли \mathfrak{g} называется алгебра Ли с такими же структурными константами, но уже рассматриваемая как векторное пространство над комплексными числами. Предыдущие рассуждения показывали, что комплексификации алгебр Ли $\mathfrak{sl}(2,\mathbb{R})$ и $\mathfrak{su}(2)$ изоморфны.

Формулой комплексификацию алгебры Ли можно написать как $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$. Основные примеры это

$$\mathfrak{sl}(n,\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{sl}(n,\mathbb{C}),$$
 (5)

$$\mathfrak{so}(n,\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{so}(n,\mathbb{C}),$$
 (6)

$$\mathfrak{su}(n,\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{sl}(n,\mathbb{C}).$$
 (7)

Нетривиальным тут является последний пример, он следует из того, что любая матрица X представима в виде $\frac{1}{2}(X-X^*)+\frac{1}{2}(X+X^*)$, где первое слагаемое является антиэрмитовым $\frac{1}{2}(X-X^*)\in\mathfrak{su}(n)$, а второй эрмитовы $\frac{1}{2}(X+X^*)\in\mathfrak{isu}(n)$.

Другой пример, где важны подобные рассуждения — это ортогональные группы и алгебры Ли. Напомним, что они определяются по скалярному произведению, если оно имеет сигнатуру (n,m), то соответствующие группа и алгебра Ли обозначаются O(n,m) и $\mathfrak{so}(n,m)$ соответственно. Так как с комплексными коэффициентами все сигнатуры эквивалентны, то и комплексификации этих алгебр изоморфны:

$$\mathfrak{so}(n,m)\otimes_{\mathbb{R}}\mathbb{C}=\mathfrak{so}(n+m,\mathbb{C})$$

Рассмотрим случай четырехмерного пространства. Ясно, что изменение знака у скалярного произведения меняет сигнатуру, но не меняет ни группу Ли ни алгебру Ли, поэтому $\mathfrak{so}(4) = \mathfrak{so}(4,0) \simeq \mathfrak{so}(0,4)$ и $\mathfrak{so}(3,1) \simeq \mathfrak{so}(1,3)$. Таким образом, есть три ортогональных алгебры Ли $\mathfrak{so}(4),\mathfrak{so}(3,1),\mathfrak{so}(2,2)$. У каждой из них есть другое описание

$$\mathfrak{so}(4) \simeq \mathfrak{su}(2) \oplus \mathfrak{su}(2)$$
 (8)

$$\mathfrak{so}(3,1) \simeq \mathfrak{sl}(2,\mathbb{C})$$
 (9)

$$\mathfrak{so}(2,2) \simeq \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R})$$
 (10)

Формулу (8) мы показали выше, в решении задачи из лекции 9. Формула (10) тоже ожидаема, так как мы знаем, что комплексификации $\mathfrak{sl}(2,\mathbb{R})$ и $\mathfrak{su}(2)$ совпадают.

Прокомментируем формулу (9). Стоящая в правой части алгебра Ли $\mathfrak{sl}(2,\mathbb{C})$ рассматривается как вещественная алгебра Ли. Как у вещественной алгебры Ли у нее есть базис $\sigma_1, \sigma_2, \sigma_3, i\sigma_1, i\sigma_2, i\sigma_3$. Можно брать и другой базис, например e, f, h, ie, if, ih. Изоморфизм (9) говорит, что можно так выбрать базис в алгебре $\mathfrak{sl}(2,\mathbb{C})$, что получатся структурные константы такие же как у алгебры $\mathfrak{so}(3,1)$, доказательство этого вынесено в задачи ниже.

Группа O(3,1) называется группой Лоренца и имеет исключительное значение в физике.

Изоморфизмы (8),(9),(10) полезны для изучения представлений. Напомним, что представления прямого произведения групп строятся при помощи внешнего тензорного произведения \boxtimes . Аналогично строятся представления прямой суммы двух алгебр Π и. Например представления алгебры $\mathfrak{so}(4)$ строятся как тензорные произведения представлений алгебр $\mathfrak{su}(2)$, неприводимые представления имеют вид $\pi_j \boxtimes \pi_{j'}$.

В частности, есть два двумерных представления $\pi_{1/2} \boxtimes \pi_0$ и $\pi_0 \boxtimes \pi_{1/2}$. Так как комплексификации у алгебр $\mathfrak{so}(3,1)$ и $\mathfrak{so}(2,2)$ такие же, то у этих алгебр также есть по два двумерных представления. Конечно, вопрос интегрируются ли эти представления до представлений группы, например группы Лоренца O(3,1) требует дополнительного изучения.

Упомянем общий результат о классификации групп Ли. Мы ограничиваемся $\kappa o M$ - $na\kappa m hu Mu$ группа Ли, т.е. такими, что множество их элементов является замкнутым и ограниченным подмножеством в \mathbb{R}^{N^2} (множестве матриц $N \times N$). Группы SU(N) и SO(N) являются компактными, тогда как группы $SL(N,\mathbb{R})$ и SO(N,M) при N,M>0 не являются компактными.

Группа Ли называется npocmoй если она не имеет связных нормальных подгрупп. Условие простоты полезно для классификации, чтобы сразу избавится от случаев вроде прямого и полупрямого произведения.

Теорема 1 (Классификация Картана-Киллинга). Пусть G связная компактная простая группа Ли. Тогда с точностью до факторизации по конечной подгруппе G изоморфна одной из следующих групп U(1), SU(n), SO(n), Sp(n), E_6 , E_7 , E_8 , F_4 , G_2 .

Здесь Sp(n) — это компактная симплектическая группа, E_6 , E_7 , E_8 , F_4 , G_2 — это, так называемые, исключительные группы.

Неприводимые представления компактных групп все описаны. Чтобы не обращать внимания на факторизацию по конечной подгруппе мы будем далее говорить про представления соответствующих алгебр Ли и ограничимся случаем уже известных нам алгебр $\mathfrak{su}(N)$ и $\mathfrak{so}(n)$.

Обозначим через V стандартное N-мерное представление алгебры $\mathfrak{su}(N)$.

Теорема 2. Для любого конечномерного неприводимого представления W алгебры $\mathfrak{su}(N)$ найдется k такое, что $W \subset V^{\otimes k}$.

Для алгебры $\mathfrak{su}(2)$ это означает, что любое представление получается перемножением представлений вида $\pi_{1/2}$, это следует из формулы Клебша-Гордона. Также, на прошлой лекции мы показывали что все неприводимые представления $\mathfrak{su}(2)$ получаются как симметрические тензорные степени V.

Посмотрим пример группы SU(3). В тензорном произведении $V\otimes V$ есть подпространства S^2V и Λ^2V . Первое из них 6-мерно, второе 3-мерно. Найдем его характер. Базисом в Λ^2V являются тензоры вида

$$e_1 \otimes e_2 - e_2 \otimes e_1$$
, $e_2 \otimes e_3 - e_3 \otimes e_2$, $e_3 \otimes e_1 - e_1 \otimes e_3$.

Любая матрица в SU(3) сопряжена диагональной, поэтому характер достаточно находить на таких матрицах. Запараметризуем диагональные матрицы в виде

$$g = \begin{pmatrix} e^{i\varphi_1} & 0 & 0\\ 0 & e^{-i\varphi_1 + i\varphi_2} & 0\\ 0 & 0 & e^{-i\varphi_2} \end{pmatrix}, \tag{11}$$

ясно, что это параметризация общей диагональной унитарной матрицы с определителем 1. Тогда

$$\chi_V(g) = e^{i\varphi_1} + e^{-i\varphi_1 + i\varphi_2} + e^{-i\varphi_2},$$

$$\chi_{\Lambda^2 V}(g) = e^{-i\varphi_1} + e^{i\varphi_1 - i\varphi_2} + e^{i\varphi_2}.$$

Видим, что характеры получились разными. Т.е. у группы SU(3) есть два разных трехмерных представления, их различие связано с различием между кварком и антикварком в физике. Легко видеть, что $\chi_{\Lambda^2 V}(g) = \overline{\chi_V(g)}$, т.е. представление $\Lambda^2 V$ является двойственным к представлению V.

Шестимерное представление S^2V является неприводимым.

Рассмотрим третью тензорную степень $V\otimes V\otimes V$. Пространство кососимметрических тензоров Λ^3V теперь одномерно и является тривиальным представлением. Пространство симметрических тензоров S^3V является 10-мерным. Можно доказать, что оно является неприводимым представлением. Так как $V\otimes V\otimes V$ 27-мерно, то еще остается 27-10-1=16-мерная часть.

На самом деле эта 16-мерная часть является суммой двух неприводимых 8-мерных. Это 8-мерное представлением мы знаем — это присоединенное представление. Его можно также найти как подредставление внутри $V\otimes \Lambda^2 V$.

Подводя итог: мы описали как строить 1-мерное, два 3-мерных, 6-мерное, 8-мерное, 10-мерное неприводимые представления группы SU(3). Конечно, это только начало большого списка. Тот факт, что элементарные частицы объединяются в группы такого размера послужил указанием наличия SU(3) симметрии в теории поля (в частности, в современной в Стандарной модели).

У алгебры Ли $\mathfrak{so}(n)$ тоже есть стандартное n-мерное представление V. Опять же можно брать тензорные произведения V с собой, но, в отличии от предыдущего случая, так получатся не все представления алгебры Ли $\mathfrak{so}(n)$.

Пример. Алгебра $\mathfrak{so}(3) \simeq \mathfrak{su}(2)$. Тогда $V \simeq \pi_1$, в его тензорных степених встречаются только представления вида π_k , при $k \in \mathbb{Z}$. То есть не встречаются представления с полуцелым спином.

Пример. Алгебра $\mathfrak{so}(4) \simeq \mathfrak{su}(2) \oplus \mathfrak{su}(2)$. Тогда можно показать (см. задачи), что $V \simeq \pi_{1/2} \boxtimes \pi_{1/2}$, в его тензорных степенях не встречаются например представления $\pi_{1/2} \boxtimes \pi_0, \pi_0 \boxtimes \pi_{1/2}$.

Чтобы построить недостающие представления $\mathfrak{so}(n)$ нужна новая конструкция.

Определение 1. Пусть задано векторное пространство V с базисом e_1, \ldots, e_n и неворожденным скалярным произведением (\cdot, \cdot) . Алгеброй Клиффорда Cl построенной по V называется ассоциативная алгебра с 1, образующими $\gamma_1, \ldots, \gamma_n$ и соотношениями

$$\gamma_i \gamma_j + \gamma_j \gamma_i = (e_1, e_j). \tag{12}$$

В частности, если соответствующие векторы e_i , e_j ортогональны, то γ -образующие антикоммутируют $\gamma_i \gamma_j = -\gamma_j \gamma_i$.

Замечание. Алгебра Клиффорда не зависит от выбора базиса e_1, \ldots, e_n . Вообще, есть линейное отображение $\gamma \colon V \to \operatorname{Cl}$ которое переводит любой вектор $v = \sum a_i e_i$ в $\gamma(v) = \sum a_i \gamma_i$. Тогда

$$\gamma(v)\gamma(u) + \gamma(u)\gamma(v) = (v, u), \quad \forall u, v \in V.$$
(13)

Алгебра Ли $\mathfrak{so}(V)$ получается квадратичным комбинациями γ -образующих. Чтобы строить представления алгебры Клиффорда (алгебры γ -образующих) удобно взять четномерное пространство n=2N с сигнатурой (N,N). Матрицу Грамма удобно взять в блочном виде $\begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}$, где E единичная матрица размера $n \times n$.

Теперь построим соответствующее представление алгебры Клиффорда. Рассмотрим переменные $\xi_1, \xi_2, \ldots, \xi_N$ и потребуем, чтобы они актикоммутировали: $\xi_a \xi_b + \xi_b \xi_a = 0$. В частности, из соотношения следует, что $\xi_a^2 = 0$. Рассмотрим пространство S — пространство многочленов от переменных ξ_a , поскольку эти переменные антикоммутируют, можно назвать пространство S пространством супермногочленов. Естественным базисом в пространстве S являются вектора $\xi_{a_1} \xi_{a_2} \cdots \xi_{a_k}$, где $a_1 < a_2 < \ldots < a_k$. Размерность пространства S равна числу подмножеств N-элементного множества, то есть 2^N . Для случая N = 2 базис имеет вид

$$1, \xi_1, \xi_2, \xi_1 \xi_2.$$

Введем еще действие на S операторов дифференцирования $\xi_a^* = \frac{\partial}{\partial \xi_a}$. Более точно, если мы дифференцируем $\frac{\partial}{\partial \xi_a}$ моном в котором нет ξ_a , то мы получаем ноль, а если моном в котором есть ξ_a , то мы должны сначала поставить ξ_a на первое место, а потом его убрать. Это значит дифференцирования ξ_a^* между собой антикоммутируют, а с операторами умножения на ξ_b они антикоммутируют при $a \neq b$. Также легко видеть, что $\xi_a \xi_a^* + \xi_a^* \xi_a = 1$. Итого коммутационные соотношения тогда имеют вид:

$$\xi_a^* \xi_b^* + \xi_b^* \xi_a^* = 0, \quad \xi_a \xi_b^* + \xi_b^* \xi_a = \delta_{a,b}.$$

Таким образом операторы ξ_a, ξ_b^* удовлетворяют соотношениям алгебры Клиффорда построенной по матрице Грамма $\begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}$. Теперь мы из них построим представления ортогональной алгебры Ли.

Предложение 3. Операторы $\xi_a \xi_b$ при a < b, $\xi_a^* \xi_b^*$, при a < b и $\frac{1}{2} (\xi_a^* \xi_b - \xi_b \xi_a^*)$ образуют алгебру Ли $\mathfrak{so}(N,N)$.

Доказательство этого предложения вынесено в задачу ниже. Посчитаем только размерность полученной алгебры: $\frac{N(N-1)}{2} + \frac{N(N-1)}{2} + N^2 = \frac{2N(2N-1)}{2} = \dim \mathfrak{so}(N,N)$. Так комплексификации алгебр $\mathfrak{so}(N,N)$ и $\mathfrak{so}(2N)$ совпадают, пространство S

Так комплексификации алгебр $\mathfrak{so}(N,N)$ и $\mathfrak{so}(2N)$ совпадают, пространство S получает структуру представления алгебры $\mathfrak{so}(2N)$. Более того, как представление алгебры $\mathfrak{so}(2N)$ пространство S разлагается в прямую сумму двух подпространств S_{even} и S_{odd} состоящих из четного и нечетного числа операторов ξ соответственно.

Оба эти подпространства S_{even} и S_{odd} имеют размерность 2^{N-1} и называются спинорными представлениями алгебры $\mathfrak{so}(2N)$.

Пример. Рассмотрим алгебру $\mathfrak{so}(4)$. Упомянутые выше спинорные представления S_{even} и S_{odd} являются двумерными. С другой стороны мы знаем, что $\mathfrak{so}(4) \simeq \mathfrak{su}(2) \oplus \mathfrak{su}(2)$ и все ее неприводимые представления строятся как тензорные произведения представлений левой и правой $\mathfrak{su}(2)$. В действительности S_{even} и S_{odd} изоморфны представлениям $\pi_{1/2} \boxtimes \pi_0$ и $\pi_0 \boxtimes \pi_{1/2}$.

Домашнее задание

Решения надо прислать к 16 мая. Помимо письменной сдачи надо быть готовым ответить на вопросы по решениям.

Задача 1. а) Найдите характер (на матрицах вида (11)) тензорного произведения представлений $V\otimes \Lambda^2 V$.

б) Найдите характер (на матрицах вида (11)) присоединенного представления SU(3) в)* Покажите, что характер $V\otimes \Lambda^2 V$ есть сумма характеров присоединенного и тривиального одномерного, укажите явно это тривиальное подпредставлением внутри $V\otimes \Lambda^2 V$.

Задача 2. а) Найдите базис в алгебре Ли $\mathfrak{so}(3,1)$, найдите структурные константы в этом базисе.

- б) Докажите, что алгебры $\mathfrak{so}(3,1)$ и $\mathfrak{sl}(2,\mathbb{C})$ изоморфны (здесь $\mathfrak{sl}(2,\mathbb{C})$ рассматриваемая как вещественная 6-мерная алгебра Ли).
- в)* Задайте два двумерных представления алгебры Ли $\mathfrak{so}(3,1)$ явно (т.е. укажите в какие матрицы переходят базисные элементы).

Задача 3. Пусть V векторное пространство с положительно определенным скалярным произведением, e_1, \ldots, e_N ортонормированный базис. Через $\gamma_1, \gamma_2, \ldots, \gamma_N$ обозначим соответствующие образующие, которые удовлетворяют соотношениям (12) которые в данном случае имеют вид $\gamma_a \gamma_b + \gamma_b \gamma_a = \delta_{a,b}$. Проверьте, что элементы $J_{ab} = \gamma_a \gamma_b, \ a \neq b$ удовлетворяют соотношениям (4) алгебры Ли $\mathfrak{so}(N)$.

Задача 4. а) Пусть V — четырехмерное представление алгебры $\mathfrak{so}(4)$. Используя изоморфизм $\mathfrak{so}(4) \simeq \mathfrak{su}(2) \oplus \mathfrak{su}(2)$ посчитайте характер V. Достаточно его считать на матрицах вида $\begin{pmatrix} e^{\mathrm{i}\varphi_1} & 0 \\ 0 & e^{-\mathrm{i}\varphi_1} \end{pmatrix} \times \begin{pmatrix} e^{\mathrm{i}\varphi_2} & 0 \\ 0 & e^{-\mathrm{i}\varphi_2} \end{pmatrix}$. Свяжите это представление с $\pi_{j_1} \boxtimes \pi_{j_2}$.

б)* Найдите характеры спинорных представлений. Свяжите эти представления с $\pi_{j_1} \boxtimes \pi_{j_2}$.