WiSe 2018/2019 16.01.2019

Analysis 1

Aufgabenzettel 12

Abgabe bis 23. Januar 2018, 19:00 Uhr

Aufgabe 53: (K)

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen und die Menge der $z \in \mathbb{C}$ in denen die jeweilige Potenzreihe konvergiert.

(i)
$$\sum_{n=1}^{\infty} n^{-4} z^{n^2}$$
, (ii) $\sum_{n=1}^{\infty} \frac{1}{n!} z^n$, (iii) $\sum_{n=1}^{\infty} n^{n/2} z^n$.

Lösungsvorschlag:

(i) Voraussetzung: Sei die Potenzreihe $\sum\limits_{n=1}^{\infty}n^{-4}z^{n^2}$ gegeben. Behauptung: Der Konvergenzradius ist 1 und die Potenzreihe konvergiert für alle $z\in\mathbb{C}$

 $mit |z| \le 1.$

Beweis: Setze

$$b_k := \begin{cases} \frac{1}{l^4}, & k = l^2 \text{ für ein } l \in \mathbb{N}, \\ 0, & \text{sonst} \end{cases}$$

für alle $k \in \mathbb{N}$. Es gilt

$$\sqrt[k]{|b_k|} = \begin{cases} \frac{1}{\left(\sqrt[l^2]{l^4}\right)^2} = \frac{1}{\sqrt[l^2]{l^2}}, & k = l^2 \text{ für ein } l \in \mathbb{N}, \\ 0, & \text{sonst},, \end{cases}$$

für alle $k \in \mathbb{N}$. Die Grenzwertsätze liefern

$$\limsup_{k \to \infty} \sqrt[k]{|b_k|} = \lim_{l \to \infty} \frac{1}{\sqrt[l^2]{l^2} \cdot \sqrt[l^2]{l^2}} = 1,$$

da $(\sqrt[l^2]{l^2})_{l\in\mathbb{N}}$ eine Teilfolge von $(\sqrt[n]{n})_{n\in\mathbb{N}}$ ist. Folglich ist 1 der Konvergenzradius der Potenzreihe $\sum_{k=1}^{\infty}b_ky^k$. Da die Potenzreihen $\sum_{n=1}^{\infty}n^{-4}z^{n^2}$ und $\sum_{k=1}^{\infty}b_ky^k$ übereinstimmen und weil eine Zahl $w\in\mathbb{C}$ genau dann Betrag 1 hat, wenn $|w|^n=1$ für alle $n\in\mathbb{N}$ gilt, ist 1 auch der Konvergenzradius der Potenzreihe $\sum\limits_{n=1}^{\infty}n^{-4}z^{n^2}.$

Für $z \in \mathbb{C}$ mit |z|=1 schreiben wir $z=e^{ix}$ für ein $x \in \mathbb{R}$ und erhalten die Reihe $\sum_{n=1}^{\infty} \frac{(e^{ix})^{n^2}}{n^4}.$ Wegen $\left|(e^{ix})^{n^2}\right|=1$ konvergiert diese nach dem Majornatenkriterium. Somit konvergiert die Potenzreihe $\sum\limits_{n=1}^{\infty}n^{-4}z^{n^2}$ für diejenigen $z\in\mathbb{C}$ mit $|z|\leq 1.$

(ii) Voraussetzung: Sei die Potenzreihe $\sum\limits_{n=1}^{\infty}\frac{1}{n!}z^n$ gegeben.

Behauptung: Der Konvergenzradius ist ∞ und die Potenzreihe konvergiert für alle $z \in \mathbb{C}$.

Beweis: Setze

$$a_n := \frac{1}{n!}$$

für alle $n \in \mathbb{N}$. Es gilt

$$\sqrt[n]{|a_n|} = \frac{1}{\sqrt[n]{n!}} \to 0$$

für $n \to \infty$. Also ist

$$r = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} = \infty$$

der Konvergenzradius der Potenzreihe $\sum_{n=1}^{\infty} \frac{1}{n!} z^n$. Sie konvergiert daher für alle $z \in \mathbb{C}$.

(iii) Voraussetzung: Sei die Potenzreihe $\sum\limits_{n=1}^{\infty}n^{n/2}z^n$ gegeben.

Behauptung: Der Konvergenzradius ist 0 und die Potenzreihe konvergiert nur für z=0. Beweis: Setze

$$a_n := n^{n/2}$$

für alle $n \in \mathbb{N}$. Es gilt

$$\sqrt[n]{|a_n|} = n^{1/2} = \sqrt{n} \to \infty$$

für $n \to \infty$. Also ist der Konvergenzradius der Potenzreihe

$$r = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} = 0.$$

Sie konvergiert also nur in z = 0.

Aufgabe 54:

- (i) Entwickeln Sie die Funktion $g:\mathbb{C}\to\mathbb{C}$; $z\mapsto \frac{e^z}{1-z}$ in eine Potenzreihe um 0 und berechnen Sie den Konvergenzradius.
- (ii) Finden Sie eine Potenzreihe $\sum_{n\geq 0} a_n z^n$ mit Konvergenzradius $\rho>0$ so, dass

$$\sum_{n=0}^{\infty} a_n z^n = \frac{1}{z+2}$$

für alle $z \in B(0, \rho)$. Berechnen Sie auch ρ .

Lösungsvorschlag:

(i) Mit der Exponentialreihe und der geometrischen Reihe erhält man

$$\frac{e^z}{1-z} = e^z \cdot \frac{1}{1-z} = \left(\sum_{n=0}^{\infty} \frac{z^n}{n!}\right) \left(\sum_{n=0}^{\infty} z^n\right)$$

für alle $z \in \mathbb{C}$ mit |z| < 1. Das Cauchyprodukt liefert

$$\left(\sum_{n=0}^{\infty}\frac{z^n}{n!}\right)\left(\sum_{n=0}^{\infty}z^n\right)=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\frac{z^k}{k!}z^{n-k}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\frac{1}{k!}\right)z^n.$$

Da die Folge $\left(\sum_{k=0}^n \frac{1}{k!}\right)_{n\in\mathbb{N}}$ für $n\to\infty$ gegen $e=e^1=\sum_{k=0}^\infty \frac{1}{k!}$ konvergiert und monoton wachsend ist, gilt

$$\sqrt[n]{\sum_{k=0}^{n} \frac{1}{k!}} \leq \sqrt[n]{e} \to 1 \quad \text{und} \quad \sqrt[n]{\sum_{k=0}^{n} \frac{1}{k!}} \geq \sqrt[n]{1} = 1 \to 1$$

für $n \to \infty$. Somit ist $\lim_{n \to \infty} \sqrt[n]{\sum_{k=0}^n \frac{1}{k!}} = 1$. Daher gilt wegen der Positivität von $\sum_{k=0}^n \frac{1}{k!}$ für alle $n \in \mathbb{N}$ für den Konvergenzradius der erhaltenen Potenzreihe

$$r = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{\left| \sum_{k=0}^{n} \frac{1}{k!} \right|}} = 1.$$

(ii) Für $z \in \mathbb{C} \setminus \{-2\}$ haben wir

$$\frac{1}{2+z} = \frac{1}{2(1-(-\frac{1}{2}z))} = \frac{1}{2} \frac{1}{1-(-\frac{1}{2}z)}$$

Wenn |z|<2, dann ist $\left|-\frac{1}{2}z\right|=\frac{1}{2}\,|z|<1$, sodass die geometrische Reihe $\sum_{n\geq 0}(-\frac{1}{2}z)^n$ konvergiert mit Reihenwert

$$\sum_{n=0}^{\infty} \left(-\frac{1}{2}z\right)^n = \frac{1}{1 - \left(-\frac{1}{2}z\right)}.$$

Somit konvergiert auch $\sum_{n\geq 0} \frac{1}{2} (-\frac{1}{2}z)^n = \sum_{n\geq 0} (-1)^n (\frac{1}{2})^{n+1} z^n$ mit Reihenwert

$$\sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{2}\right)^{n+1} z^n = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{1}{2}z\right)^n = \frac{1}{2} \frac{1}{1 - \left(-\frac{1}{2}z\right)} = \frac{1}{2+z}$$

Also ist die gesuchte Reihe durch die Koeffizienten $a_n = (-1)^n \left(\frac{1}{2}\right)^{n+1}$ gegeben. Nun müssen wir noch den Konvergenzradius ρ bestimmen. Wir wissen, dass die geometrische Reihe $\sum_{n\geq 0} (-\frac{1}{2}z)^n$ absolut konvergiert, wenn

$$\left| -\frac{1}{2}z \right| < 1 \Longleftrightarrow |z| < 2$$

und divergiert wenn

$$\left|-\frac{1}{2}z\right|>1\Longleftrightarrow |z|>2\,.$$

Das gleiche muss für $\sum_{n\geq 0} (-1)^n (\frac{1}{2})^{n+1} z^n$ gelten. Also ist $\rho=2$ der Konvergenzradius dieser Potenzreihe.

Aufgabe 55:

(i) Für welche $x \in \mathbb{R}$ konvergieren die folgenden Potenzreihen? Bestimmen Sie im Falle der Konvergenz den Reihenwert.

(a)
$$\sum_{n=1}^{\infty} nx^n$$
, (b) $\sum_{n=1}^{\infty} n^2x^n$.

Hinweis: In (a) ist die Darstellung von $\frac{1}{(1-x)^2}$ als Potenzreihen sehr hilfreich. In (b) hilft es zunächst zu beweisen, dass

$$n^2 = 2\left(\sum_{k=0}^{n} k\right) - n$$

und dann die Cauchy-Produkt-Formel zu verwenden.

(ii) Welche Funktion wird durch die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{n-1}{(n+1)!} x^n$$

dargestellt?

(iii) Es sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge mit $\liminf_{n\to\infty}|a_n|>0$. Bestimmen Sie den Konvergenzradius der Reihe $\sum_{n=1}^\infty a_n x^n$.

Lösungsvorschlag:

(i) <u>Behauptung:</u> Die Potenzreihen $\sum_{n=1}^{\infty} nx^n$ und $\sum_{n=1}^{\infty} n^2x^n$ konvergieren nur für $x \in (-1,1)$.

Beweis:. Der Konvergenzradius beider Potenzreihen ist 1, denn es gilt

$$\lim_{n \to \infty} \sqrt[n]{n} = \lim_{n \to \infty} \sqrt[n]{n^2} = 1.$$

Somit sind beide Reihen für |x| < 1 konvergent und für |x| > 1 divergent. Für |x| = 1 ist der Betrag der Folgenglieder, also n bzw. n^2 , keine Nullfolge, weshalb auch dort Divergenz folgt (siehe Vorlesung).

Annahme: Sei ab nun |x| < 1 vorausgesetzt.

a) <u>Behauptung:</u> Es gilt $\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}$.

<u>Beweis:</u>. Es gilt (siehe Vorlesung)

$$\frac{1}{(1-x)^2} = \left(\sum_{n=0}^{\infty} x^n\right) \cdot \left(\sum_{k=0}^{\infty} x^k\right) = \sum_{n=0}^{\infty} \sum_{k=0}^n x^{n-k} x^k = \sum_{n=0}^{\infty} \sum_{k=0}^n x^n = \sum_{n=0}^{\infty} (n+1)x^n.$$

Für |x| < 1 sind die beiden Reihen links absolut konvergent, somit auch die rechte Reihe und es folgt $\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}$. Die gegebene Reihe $\sum_{n=1}^{\infty} nx^n$ müssen wir nun noch leicht umformen, um auf diesen nun bekannten Reihenwert zurückgreifen zu können. Wir berechnen

$$\sum_{n=1}^{\infty} nx^n = x \cdot \sum_{n=1}^{\infty} nx^{n-1} \stackrel{\text{Index-Shift}}{=} x \cdot \sum_{n=0}^{\infty} (n+1)x^n.$$

Somit folgt

$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}.$$

b) <u>Behauptung:</u> Es gilt $\sum_{n=1}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3}$

Beweis:. Aus der Vorlesung ist bekannt, dass

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2} \quad \Leftrightarrow \quad 2\sum_{k=0}^{n} k = n^2 + n \quad \Leftrightarrow \quad n^2 = 2\left(\sum_{k=0}^{n} k\right) - n$$

Damit folgt

$$\sum_{n=1}^{\infty} n^2 x^n = \sum_{n=0}^{\infty} \left(2 \left(\sum_{k=0}^n k \right) - n \right) x^n = 2 \sum_{n=0}^{\infty} \sum_{k=0}^n (x^{n-k}) (k x^k) - \sum_{n=0}^{\infty} n x^n$$
$$= 2 \left(\sum_{n=0}^{\infty} x^n \right) \cdot \left(\sum_{k=0}^{\infty} k x^k \right) - \sum_{n=0}^{\infty} n x^n,$$

wobei die Reihen auf der rechten Seite alle absolut konvergieren für |x| < 1. Mit Teil a) erhalten wir schließlich

$$\sum_{n=1}^{\infty} n^2 x^n = 2 \cdot \frac{1}{1-x} \cdot \frac{x}{(1-x)^2} - \frac{x}{(1-x)^2} = \frac{x}{(1-x)^2} \cdot \left(\frac{2}{1-x} - 1\right)$$
$$= \frac{x}{(1-x)^2} \cdot \frac{1+x}{1-x} = \frac{x(1+x)}{(1-x)^3}.$$

(ii) Annahme: Es sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(0) = -1,$$
 $f(x) = \frac{(x-2)e^x + 2}{x}$ $(x \neq 0).$

<u>Behauptung:</u> Die Funktion f wird durch die Potenzreihe $\sum_{n=0}^{\infty} \frac{n-1}{(n+1)!} x^n$ dargestellt.

 $\underline{Beweis:}$. Die Potenzreihe lässt sich als Differenz zweier absolut konvergenter Potenzreihen darstellen:

$$\sum_{n=0}^{\infty} \frac{n-1}{(n+1)!} x^n = \sum_{n=0}^{\infty} \frac{n+1-2}{(n+1)!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n - \sum_{n=0}^{\infty} \frac{2}{(n+1)!} x^n.$$

Die erste Reihe ergibt e^x , die zweite liefert für x=0 den Wert 2 und für $x\neq 0$ gilt

$$\sum_{n=0}^{\infty} \frac{2}{(n+1)!} x^n = \frac{2}{x} \sum_{n=0}^{\infty} \frac{1}{(n+1)!} x^{n+1} = \frac{2}{x} \sum_{k=1}^{\infty} \frac{x^k}{k!} = \frac{2}{x} (e^x - 1).$$

Insgesamt folgt: Die von $\sum_{n=0}^{\infty} \frac{n-1}{(n+1)!} x^n$ dargestellte Funktion $f: \mathbb{R} \to \mathbb{R}$ ist gegeben durch

$$f(0) = e^0 - 2 = -1,$$
 $f(x) = e^x - \frac{2e^x - 2}{x} = \frac{(x-2)e^x + 2}{x}$ $(x \neq 0).$

(iii) **Annahme**: Es sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge mit $\liminf_{n\to\infty} |a_n| > 0$.

Behauptung: Der Konvergenzradius der Reihe $\sum_{n=1}^{\infty} a_n x^n$ beträgt 1.

<u>Beweis:</u>. Nach Voraussetzung gibt es ein M > 0 mit $|a_n| \le M$ für alle $n \in \mathbb{N}$. Weiter sei $m := \frac{1}{2} \liminf_{n \to \infty} |a_n|$. Dann folgt m > 0, da $\liminf_{n \to \infty} |a_n| > 0$ und $|a_n| > m$ für fast alle $n \in \mathbb{N}$, da $\liminf_{n \to \infty} |a_n| = \inf H((|a_n|)_n)$. Somit gilt

$$\sqrt[n]{m} \leq \sqrt[n]{|a_n|} \leq \sqrt[n]{M}.$$

für fast alle $n \in \mathbb{N}$. Weil die Folgen $(\sqrt[n]{m})_{n \in \mathbb{N}}$ und $(\sqrt[n]{M})_{n \in \mathbb{N}}$ beschränkt sind, erhalten wir nach Vorlesung

$$1 = \lim_{n \to \infty} \sqrt[n]{m} = \limsup_{n \to \infty} \sqrt[n]{m} \le \limsup_{n \to \infty} \sqrt[n]{|a_n|} \le \limsup_{n \to \infty} \sqrt[n]{M} \le \lim_{n \to \infty} \sqrt[n]{M} = 1.$$

Das bedeutet, der Konvergenzradius der Potenzreihe $\sum_n a_n x^n$ ist 1.

Aufgabe 56: Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei definiert durch

$$f(x) := \begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}.$$

- (i) Zeigen Sie, dass f in jedem $x \in \mathbb{R} \setminus \{0\}$ unstetig ist.
- (ii) Begründen Sie mit Hilfe des ε - δ -Kriteriums, dass f in 0 stetig ist.

Lösungsvorschlag: Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) := \begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}.$$

(i) Behauptung: f ist in jedem $x \in \mathbb{R} \setminus \{0\}$ unstetig.

<u>Beweis:</u>. Wir zeigen, dass f weder auf $\mathbb{Q} \setminus \{0\}$, noch auf $\mathbb{R} \setminus \mathbb{Q}$ stetig ist.

Sei $x_0 \in \mathbb{Q} \setminus \{0\}$. Für jedes $n \in \mathbb{N}$ definieren wir $x_n := x_0 + \frac{\sqrt{2}}{n}$. Wegen $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ ist $x_n \in \mathbb{R} \setminus \mathbb{Q}$ für alle $n \in \mathbb{N}$. Weiter gilt $x_n \xrightarrow{n \to \infty} x_0$ und $f(x_n) = 0 \to 0 \neq x_0 = f(x_0)$ für $n \to \infty$. Infolgedessen ist f nicht stetig in x_0 . Da $x \in \mathbb{Q} \setminus \{0\}$ beliebig war, ist f nicht stetig auf $\mathbb{Q} \setminus \{0\}$.

Sei nun $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Wie wir aus der Vorlesung wissen, gibt es eine Folge $(q_n)_{n \in \mathbb{N}}$ rationaler Zahlen mit $q_n \to x_0$ für $n \to \infty$. Dann gilt $f(q_n) = q_n \to x_0 \neq 0 = f(x_0)$. Infolgedessen ist f nicht stetig in x_0 . Da $x \in \mathbb{R} \setminus \mathbb{Q}$ beliebig war, ist f nicht stetig auf $\mathbb{R} \setminus \mathbb{Q}$.

(ii) Behauptung: f ist in 0 stetig.

<u>Beweis:</u>. Wir setzen $x_0 := 0$. Wegen $x_0 \in \mathbb{Q}$ gilt $f(x_0) = x_0 = 0$. Sei $\varepsilon > 0$. Wir müssen zeigen, dass es ein $\delta > 0$ gibt, sodass $|f(x) - f(x_0)| < \varepsilon$ für alle $x \in \mathbb{R}$ mit $|x - x_0| = |x| < \delta$ gilt. Für $\delta = \varepsilon > 0$ folgt für alle $x \in \mathbb{R}$ mit $|x| < \delta$

$$|f(x) - f(x_0)| = |f(x)| = \begin{cases} |x| & \text{für } x \in \mathbb{Q} \\ 0 & \text{für } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \le |x| < \delta = \varepsilon.$$

Aufgabe 57: (K)

(i) Sei $g: \mathbb{R} \to \mathbb{R}$ eine Funktion mit g(x+y) = g(x) + g(y) für alle $x,y \in \mathbb{R}$. Beweisen Sie die folgende Äquivalenz

g ist stetig auf \mathbb{R} \iff g ist stetig in 0.

(ii) Seien $f, g : \mathbb{R} \to \mathbb{R}$ stetige Funktionen mit f(x) = g(x) für alle $x \in \mathbb{Q}$. Beweisen Sie, dass f(x) = g(x) für alle $x \in \mathbb{R}$ gilt.

Lösungsvorschlag:

(i) Behauptung: g ist genau dann stetig auf \mathbb{R} , wenn g stetig in 0 ist.

<u>Beweis:</u>. \Rightarrow : Wenn g stetig ist, so ist g insbesondere stetig in 0.

 $\underline{\Leftarrow}$: Sei nun g stetig in 0. Aus der Voraussetzung g(x+y)=g(x)+g(y) für alle $x,y\in\mathbb{R}$ erhalten wir

$$g(0) = g(0+0) = g(0) + g(0) = 2g(0),$$

also ist g(0) = 0.

Sei $x_0 \in \mathbb{R}$ und $(x_n)_{n \in \mathbb{N}}$ eine reelle Folge mit $x_n \to x_0$ für $n \to \infty$. Wir setzen $y_n := x_n - x_0$ für alle $n \in \mathbb{N}$. Dann gilt $y_n \to 0$ für $n \to \infty$. Zusammen mit der Stetigkeit von g in 0 erhalten wir

$$g(x_n) = g(y_n + x_0) = g(y_n) + g(x_0) \to g(0) + g(x_0) = g(x_0) \quad (n \to \infty).$$

Dies zeigt die Stetigkeit von g in $x_0 \in \mathbb{R}$ (siehe Satz 15.2). Da x_0 beliebig aus \mathbb{R} gewählt war, ist g insgesamt stetig.

(ii) <u>Behauptung:</u> Wenn $f, g : \mathbb{R} \to \mathbb{R}$ stetige Funktionen sind mit f(x) = g(x) für alle $x \in \mathbb{Q}$ dann gilt schon f(x) = g(x) für alle $x \in \mathbb{R}$.

<u>Beweis:</u>. Sei $h : \mathbb{R} \to \mathbb{R}$ eine stetige Funktionen. Wir werden im Folgenden zeigen, dass aus h(x) = 0 für alle $x \in \mathbb{Q}$ folgt, dass $h \equiv 0$ in \mathbb{R} . Daraus folgt dann, da Kompositionen stetiger Funktionen stetig sind (Satz 15.5), mit h := f - g die obige Behauptung.

Sei $r \in \mathbb{R} \setminus \mathbb{Q}$ beliebig aber fest gewählt. Wegen der Dichtheit von \mathbb{Q} in \mathbb{R} existiert eine Folge $(x_n)_n \subset \mathbb{Q}$ such that $x_n \to r$ für $n \to \infty$. Da die Funktion $h : \mathbb{R} \to \mathbb{R}$ stetig ist, also insbesondere stetig in $r \in \mathbb{R} \setminus \mathbb{Q}$, folgt aus Satz 15.2 der Vorlesung, dass

$$h(r) = \lim_{n \to \infty} h(x_n) = \lim_{n \to \infty} 0 = 0.$$

Da r beliebig gewählt war gilt somit $h \equiv 0$ in \mathbb{R} .

Die eigentliche Behauptung folgt nun wie oben erläutert.