Image Processing and Visual Communications

Intensity Transformation for Image Enhancement

Zhou Wang

Dept. of Electrical and Computer Engineering University of Waterloo

General Idea

- Intensity transformation
 - Also called point operation
 - Zero-memory operation
- Map a given gray level to another level

$$s = T(r)$$

typically monotonically increasing (but not always)

Intensity Histogram

• Example a 4x4, 4bits/pixel image →

1	8	6	6
6	3	11	8
8	8	9	10
9	10	10	7

Intensity Histogram

Intensity Histogram

Basic Transformations

basic gray-level transformation functions used for image enhancement.

Negative:

$$s = L - 1 - r$$

Log:

$$s = c \log(1+r)$$

Inverse Log:

$$s = e^{cr} - 1$$

Power-law:

$$s = cr^{\gamma}$$

.

Negative Transformation

$$s = L - 1 - r$$

a b

FIGURE 3.4

(a) Original digital mammogram.
(b) Negative image obtained using the negative transformation in Eq. (3.2-1).
(Courtesy of G.E. Medical Systems.)

Log Transformation

$$s = c \log(1+r)$$

a b

FIGURE 3.5

- (a) Fourier spectrum.
- (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

Power-law (Gamma) Transformation

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases).

Power-law (Gamma) Transformation

$$s = cr^{\gamma}$$

a b c d

FIGURE 3.8 (a) Magnetic resonance (MR) image of a fractured human spine. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 0.6, 0.4, \text{ and}$ 0.3, respectively. (Original image for this example courtesy of Dr. David Ř. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Čenter.)

Power-law (Gamma) Transformation

 $s = cr^{\gamma}$

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 3.0, 4.0$, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Thresholding

$$s = \begin{cases} 0 & if \ r \le m \\ c & if \ r > m \end{cases}$$

m: threshold

Example: Fixed Intensity Transformation

• A 4x4, 4bits/pixel image

1	8	6	6
6	3	11	8
8	8	9	10
9	10	10	7

passes through

an intensity transformation

$$s = T(r) = round\left(\frac{1}{15}r^2\right)$$

$$1 \rightarrow \text{round}(0.0667) = 0;$$

$$3 \rightarrow \text{round}(0.6) = 1;$$

$$6 \rightarrow \text{round}(2.4) = 2;$$

$$7 \rightarrow \text{round}(3.2667) = 3;$$

$$8 \rightarrow \text{round}(4.2667) = 4;$$

$$9 \rightarrow \text{round}(5.4) = 5$$
;

$$10 \rightarrow \text{round}(6.6667) = 7;$$

$$11 \rightarrow \text{round}(8.0667) = 8;$$

The resulting image is:

0	4	2	2
2	1	8	4
4	4	5	7
5	7	7	3

Example: Histogram Change

Contrast Stretch: Make Best Use of the Dynamic Range

15

Contrast Stretch

General form:

$$s = \begin{cases} \frac{s_1}{r_1} \cdot r & 0 \le r < r_1 \\ \frac{s_2 - s_1}{r_2 - r_1} \cdot r + \frac{s_1 r_2 - s_2 r_1}{r_2 - r_1} & r_1 \le r \le r_2 \\ \frac{2^B - 1 - s_2}{2^B - 1 - r_2} \cdot r + (2^B - 1) \cdot \frac{s_2 - r_2}{2^B - 1 - r_2} & r_2 < r \le 2^B - 1 \end{cases}$$
Special case \Rightarrow Full-scale contrast stretch:
$$r_1 = r_{\min} \qquad s_1 = 0 \qquad \Rightarrow \qquad s_2 = 2^B - 1$$

$$s_2 = r_{\max} \qquad s_2 = 2^B - 1$$

$$r_1 = r_{\min}$$
 $s_1 = 0$ $s = (2^B - 1) \cdot \frac{r - r_{\min}}{r_{\max} - r_{\min}}$ $r_2 = r_{\max}$ $s_2 = 2^B - 1$

Typically used:
$$s = round \left((2^B - 1) \cdot \frac{r - r_{\min}}{r_{\max} - r_{\min}} \right)$$

Example: Full-Scale Contrast Stretch

• Full-scale contrast stretch of a 4x4, 4bits/pixel image

Find

$$r_{\min} = 4$$

$$r_{\rm max} = 11$$

$$2^{B} - 1 = 15$$

$$s = round \left((2^B - 1) \cdot \frac{r - r_{\min}}{r_{\max} - r_{\min}} \right) = round \left(15 \cdot \frac{r - 4}{11 - 4} \right) = round \left(\frac{15}{7} (r - 4) \right)$$

$$4 \rightarrow \text{round}(0) = 0;$$

$$6 \rightarrow \text{round}(4.29) = 4;$$

$$7 \rightarrow \text{round}(6.43) = 6;$$

$$8 \rightarrow \text{round}(8.57) = 9;$$

$$9 \rightarrow \text{round}(10.71) = 11;$$

$$10 \rightarrow \text{round}(12.86) = 13;$$

$$11 \rightarrow \text{round}(15) = 15;$$

The resulting image is:

0	9	4	4
4	0	15	9
9	9	11	13
9	15	13	6

Example: Histogram Change

Histogram Equalization

19

Histogram Equalization

20

Example

• A 4x4, 4bits/pixel image

2	8	တ	9
2	3	10	9
8	3	3	11
8	3	10	11

• First try: full-scale contrast stretch

$$r_{\min} = 2$$

$$r_{\text{max}} = 11$$

$$s = round\left((2^B - 1) \cdot \frac{r - r_{\min}}{r_{\max} - r_{\min}}\right) = round\left(15 \cdot \frac{r - 2}{11 - 2}\right) = round\left(\frac{5}{3}(r - 2)\right)$$

$$2 \rightarrow \text{round}(0) = 0;$$

$$3 \rightarrow \text{round}(1.67) = 2;$$

$$8 \rightarrow \text{round}(10.00) = 10;$$

$$9 \rightarrow \text{round}(11.67) = 12;$$

$$10 \rightarrow \text{round}(13.33) = 13;$$

11
$$\rightarrow$$
 round(15) = 15;

The resulting

image is:

0	10	12	12
0	2	13	12
10	2	2	15
10	2	13	15

Example: Histogram Change

Cumulative Histogram

Intermediate Image

original

2	8	9	9
2	3	10	9
8	3	3	11
8	3	10	11

 \rightarrow

2	9	12	12
2	6	14	12
9	6	6	16
9	6	14	16

intermediate image

Full-Scale Contrast Stretch of Intermediate Image

intermediate image

$$r_{\min} = 2$$

$$r_{\min} = 2 \qquad r_{\max} = 16$$

$$s = round\left((2^B - 1) \cdot \frac{r - r_{\min}}{r_{\max} - r_{\min}}\right) = round\left(15 \cdot \frac{r - 2}{16 - 2}\right) = round\left(\frac{15}{14}(r - 2)\right)$$

$$2 \rightarrow \text{round}(0) = 0;$$

$$6 \rightarrow \text{round}(4.29) = 4;$$

9
$$\rightarrow$$
 round(7.50) = 8;

$$12 \rightarrow \text{round}(10.71) = 11;$$

$$14 \rightarrow \text{round}(12.86) = 13;$$

$$16 \rightarrow \text{round}(15) = 15;$$

final result:

histogram equalized image

0	8	11	11
0	4	13	11
8	4	4	15
8	4	13	15

Histogram Comparison

2	8	9	9
2	3	10	9
8	3	3	11
8	3	10	11

0	10	12	12
0	2	13	12
10	2	2	15
10	2	13	15

0	8	11	11
0	4	13	11
8	4	4	15
8	4	13	15

original

direct full-scale contrast stretch

histogr<mark>a</mark>m-equalized

more equalized

Summary of the Histogram Equalization Algorithm

