2023 年考研数学二

一、选择题, $1 \sim 10$ 题,每题 5 分,共 50 分.

1. 曲线
$$y=x\ln\left(e+\frac{1}{x-1}\right)$$
 的斜渐近线方程为
A. $y=x+e$ B. $y=x+\frac{1}{e}$ C. $y=x$ D. $y=x-\frac{1}{e}$

$$A. y = x + e$$

$$B. y = x + \frac{1}{e}$$

$$C. y = x$$

D.
$$y = x - \frac{1}{e}$$

2. 函数
$$f(x) = \begin{cases} \frac{1}{\sqrt{1+x^2}}, & x \le 0 \\ (x+1)\cos x, & x > 0 \end{cases}$$
 的一个原函数为

A.
$$F(x) = \begin{cases} \ln(\sqrt{1+x^2} - x), & x \le 0\\ (x+1)\cos x - \sin x, & x > 0 \end{cases}$$

B.
$$F(x) =\begin{cases} m(\sqrt{1+x} - x) + 1, & x < 0 \\ (x+1)\cos x - \sin x, & x > 0 \end{cases}$$

C.
$$F(x) = \begin{cases} \ln(\sqrt{1+x^2} + x), & x \le 0\\ (x+1)\sin x + \cos x, & x > 0 \end{cases}$$

A.
$$F(x) = \begin{cases} \ln(\sqrt{1+x^2} - x), & x \le 0 \\ (x+1)\cos x - \sin x, & x > 0 \end{cases}$$
B. $F(x) = \begin{cases} \ln(\sqrt{1+x^2} - x) + 1, & x \le 0 \\ (x+1)\cos x - \sin x, & x > 0 \end{cases}$
C. $F(x) = \begin{cases} \ln(\sqrt{1+x^2} + x), & x \le 0 \\ (x+1)\sin x + \cos x, & x > 0 \end{cases}$
D. $F(x) = \begin{cases} \ln(\sqrt{1+x^2} - x) + 1, & x \le 0 \\ (x+1)\cos x - \sin x, & x > 0 \end{cases}$

3. 已知
$$\{x_n\}$$
, $\{y_n\}$ 满足: $x_1 = y_1 = \frac{1}{2}$, $x_{n+1} = \sin x_n$, $y_{n+1} = y_n^2 (n = 1, 2, \cdots)$, 则当 $n \to \infty$ 时,

 $A. x_n$ 是 y_n 的高阶无穷小

B. y_n 是 x_n 的高阶无穷小

 $C. x_n 与 y_n$ 是等价无穷小

 $D. x_n$ 与 y_n 是同阶但不等价的无穷小

4. 若微分方程
$$y'' + ay' + by = 0$$
 的解在 $(-\infty, +\infty)$ 上有界,则 A. $a < 0, b > 0$ B. $a > 0, b > 0$ C. $a = 0, b > 0$ D. $a = 0, b < 0$

A.
$$a < 0, b > 0$$

B.
$$a > 0, b > 0$$

$$C. a = 0. b > 0$$

$$D a = 0 b < 0$$

5. 设函数
$$y = f(x)$$
 由
$$\begin{cases} x = 2t + |t| \\ t = |t| \sin t \end{cases}$$
 (

A. f(x) 连续, f'(0) 不存在

B. f'(0) 存在, f'(x) 在 x = 0 处不连续

C. f'(x) 连续, f"(0) 不存在

D. f''(0) 存在, f''(x) 在 x = 0 处不连续

6. 若函数
$$f(\alpha) = \int_{2}^{+\infty} \frac{1}{x(\ln x)^{\alpha+1}}$$
 在 $\alpha = \alpha_0$ 处取得最小值,则 $\alpha_0 = A$. $-\frac{1}{\ln(\ln 2)}$ B. $-\ln(\ln 2)$ C. $\frac{1}{\ln 2}$ D. $\ln 2$

$$A. -\frac{1}{\ln(\ln 2)}$$

$$B. - \ln(\ln 2)$$

C.
$$\frac{1}{\ln 2}$$

7. 设函数
$$f(x) = (x^2 + a)e^x$$
, 若 $f(x)$ 没有极值点, 但曲线 $y = f(x)$ 有拐点, 则 α 的取值范围是 ()

B.
$$[1, +\infty)$$

D.
$$[2, +\infty)$$

8. 设 A, B 为 n 阶可逆矩阵, E 为 n 阶单位矩阵, M^* 为矩阵 M 的伴随矩阵, 则 $\begin{pmatrix} A & E \\ O & B \end{pmatrix}^* = ($)

A.
$$\begin{pmatrix} |A|B^* & -B^*A^* \\ O & |B|A^* \end{pmatrix}$$
B. $\begin{pmatrix} |A|B^* & -A^*B^* \\ O & |B|A^* \end{pmatrix}$
C. $\begin{pmatrix} |B|A^* & -B^*A^* \\ O & |A|B^* \end{pmatrix}$
D. $\begin{pmatrix} |B|A^* & -A^*B^* \\ O & |A|B^* \end{pmatrix}$

9. 二次型
$$f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_1 + x_3)^2 - 4(x_2 - x_3)^2$$
 的规范形为 () A. $y_1^2 + y_2^2$ B. $y_1^2 - y_2^2$ C. $y_1^2 + y_2^2 - 4y_3^2$ D. $y_1^2 + y_2^2 - y_3^2$ ()

10. 已知向量
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $\beta_1 = \begin{pmatrix} 2 \\ 5 \\ 9 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. 若 γ 既可由 α_1 , α_2 线性表示, 也可由 β_1 , β_2 线性表示,则 $\gamma = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}$, $k \in \mathbb{R}$ B. $k \begin{pmatrix} 3 \\ 5 \\ 10 \end{pmatrix}$, $k \in \mathbb{R}$ C. $k \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$, $k \in \mathbb{R}$ D. $k \begin{pmatrix} 1 \\ 5 \\ 8 \end{pmatrix}$, $k \in \mathbb{R}$

二、填空题,11~16题,每题5分,共30分.

- 11. 当 $x \to 0$ 时,函数 $f(x) = ax + bx^2 + \ln(1+x)$ 与 $g(x) = e^{x^2} \cos x$ 是等价无穷小,则 $ab = _____$.
- 12. 曲线 $y = \int_{-\sqrt{3}}^{x} \sqrt{3 t^3} \, dt$ 的弧长为______.
- 13. 设函数 z = z(x, y) 由 $e^z + xz = 2x y$ 确定,则 $\frac{\partial^2 z}{\partial x^2}\Big|_{(1,1)} = _____.$
- 14. 曲线 $3x^3 = y^5 + 2y^3$ 在 x = 1 对应点处的法线斜率为_____
- 15. 设连续函数 f(x) 满足: f(x+2) f(x) = x, $\int_0^2 f(x) dx = 0$, 则 $\int_1^3 f(x) dx =$ ______.

16. 已知线性方程组
$$\begin{cases} ax_1 + x_3 = 1 \\ x_1 + ax_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \end{cases}$$
有解,其中 a,b 为常数. 若
$$\begin{vmatrix} a & 0 & 1 \\ 1 & a & 1 \\ 1 & 2 & a \end{vmatrix} = 4,$$

$$\begin{vmatrix} 1 & a & 1 \\ 1 & 2 & a \\ a & b & 0 \end{vmatrix} = \underline{\qquad}.$$

三、解答题,17~22题,共70分.

17.(本题满分 10 分)

设曲线 L: y = y(x)(x > e) 经过点 $(e^2, 0), L$ 上任一点 P(x, y) 到 y 轴的距离等于该点处的切线 在 y 轴上的截距.

- (1)求 y(x);
- (2)在 L 上求一点,是该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积.

18.(本题满分12分)

求函数 $f(x, y) = x e^{\cos y} + \frac{x^2}{2}$ 的极值.

19.(本题满分 12 分)

已知平面区域 $D = \left\{ (x, y) \middle| 0 \le y \le \frac{1}{x\sqrt{1+x^2}}, x \ge 1 \right\}.$

- (1)求 D 的面积;
- (2) 求 D 绕 x 轴旋转所成旋转体的体积.

20.(本題满分 12 分)

设平面有界区域 D 位于第一象限, 由曲线 $x^2+y^2-xy=1, x^2+y^2-xy=2$ 与直线 $y=\sqrt{3}x, y=0$ 围成,计算 $\iint_{D} \frac{1}{3x^2+y^2} \, \mathrm{d}x \, \mathrm{d}y.$

21.(本題满分12分)

设函数 f(x) 在 [-a,a] 上具有 2 阶连续导数. 证明:

- (1) 若 f(0) = 0,则存在 $\xi \in (-a, a)$,使得 $f''(\xi) = \frac{1}{a^2} [f(a) + f(-a)]$.
- (2)若 f(x) 在 (-a,a) 内取得极值,则存在 $\eta \in (-a,a)$,使得

$$|f''(\eta)| \ge \frac{1}{2a^2} |f(a) - f(-a)|.$$

3

22.(木题满分 12 分)

设矩阵 A 满足:对任意 x_1, x_2, x_3 均有 $A\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + x_3 \\ 2x_1 - x_2 + x_3 \\ x_2 - x_3 \end{pmatrix}$.

- (1)求A;
- (2) 求可逆矩阵 P 与对角矩阵 Λ , 使得 $P^{-1}\Lambda P = \Lambda$.