Теория и реализация языков программирования. Задание 10: LL-анализ

Сергей Володин, 272 гр. задано 2013.11.13

Упражнение 1

Пусть G = (N, T, P, S). Занумеруем правила из $P: P = \{P_1, ..., P_n\}$. Определим синтаксический перевод $T_l = (N, T, T', R, S)$:

- 1. $T' = \{1, ..., n\}$
- 2. R определяется через P: каждому правилу $P\ni P_i=(X,Y_1...Y_n)$ сопоставим правила в R: пусть $Y_{j_1}...Y_{j_l}$ максимальная подпоследовательность из нетерминалов из слова $Y_1...Y_n$. Тогда $X\longrightarrow Y_1...Y_n, iY_{j_1}...Y_{j_l})\in P'$. По построению нетерминалы, входящие в $\alpha\equiv Y_1...Y_n$ входят также в $\beta\equiv Y_{j_1}...Y_{j_l}$, причем с той же кратностью.

Докажем, что слово $w \in L(G)$ переводится в левый вывод w. **TODO**

Упражнение 2

w = a*(a+a). Построим правый вывод по дереву вывода (из задания):

Чтобы получить правый вывод, обойдем дерево разбора в G' следующим образом:

- 1. Выпишем самого левого потомка (по структуре правил, это всегда будет номер правила из G)
- 2. Выполним разбор оставшихся потомков справа налево.

Получаем последовательность правил правого вывода w в G: $P_r=23514624646$.

Правый вывод (выделен раскрываемый нетерминал): $\underline{E} \stackrel{?}{\Rightarrow} \underline{T} \stackrel{\$}{\Rightarrow} T * (\underline{E}) \stackrel{1}{\Rightarrow} T * (E + \underline{T}) \stackrel{4}{\Rightarrow} T * (E + \underline{F}) \stackrel{6}{\Rightarrow} T * (\underline{E} + a) \stackrel{2}{\Rightarrow} T * (\underline{T} + a) \stackrel{4}{\Rightarrow} T * (\underline{F} + a) \stackrel{6}{\Rightarrow} \underline{T} * (a + a) \stackrel{4}{\Rightarrow} \underline{F} * (a + a) \stackrel{6}{\Rightarrow} a * (a + a) = w.$

По определению, правый разбор — примененные при правом выводе правила в обратном порядке: $(P_r)^R = 64642641532$.

Упражнение 3

Упражнение 4

Упражнение 5

Упражнение 6

Задача 1

 $w=((a))\in L(G)\colon \underline{E}\overset{2}{\Rightarrow}\underline{T}\overset{4}{\Rightarrow}\underline{F}\overset{5}{\Rightarrow}(\underline{E})\overset{2}{\Rightarrow}(\underline{T})\overset{4}{\Rightarrow}(\underline{F})\overset{5}{\Rightarrow}((E))\overset{2}{\Rightarrow}((\underline{T}))\overset{4}{\Rightarrow}((\underline{F}))\overset{6}{\Rightarrow}((a)).$

1. Построим дерево вывода w в G и соответствующее дерево в G':

- 2. Левый разбор: обойдем второе дерево в глубину, всегда выбирая самого левого непосещенного потомка: $P_l=245245246$.
- 3. Правый разбор: обойдем второе дерево в глубину, как указано в решении упражнения 2: $(P_r)^R=245245246\Rightarrow P_r=642542542$.

Задача 2

1.
$$\Sigma = \{0, 1\}, N = \{S\}, G = (N, \Sigma, P, S), P = \{\underbrace{S \to 0S}_{(1)}, \underbrace{S \to 1S}_{(2)}, \underbrace{S \to 1S}_{(3)}, \underbrace{S \to \varepsilon}_{(3)}\}$$

2. Вычислим FIRST:

		$F_i(0)$	$F_i(1)$	$F_i(S)$
0.	Определим F_0 :	Ø	Ø	Ø
0.1.	Терминалы: $F_0(0) \stackrel{\text{def}}{=} \{0\}, F_0(1) \stackrel{\text{def}}{=} \{1\}.$	{0}	{1}	Ø
0.2.	Нетерминалы: есть правило $S \stackrel{(3)}{\to} \varepsilon \Rightarrow F_0(S) \stackrel{\text{\tiny def}}{=} \{ \varepsilon \}$	{0}	{1}	$\{arepsilon\}$
1.	Определим $F_1 = F_0$	{0}	{1}	$\{\varepsilon\}$
1.1.	Рассмотрим правило $S \stackrel{(1)}{\to} \underline{0}S$. $F_0(\underline{0}) = \{0\} \not\ni \varepsilon \Rightarrow F_1(S) \leftarrow \{0\}$	{0}	{1}	$\{\varepsilon,0\}$
1.2.	Рассмотрим правило $S \stackrel{(2)}{\to} \underline{1}S$. $F_0(\underline{1}) = \{1\} \not\ni \varepsilon \Rightarrow F_1(S) \leftarrow \{1\}$	{0}	{1}	$\{\varepsilon,0,1\}$
1.3.	Рассмотрим правило $S\stackrel{(3)}{ o}\underline{arepsilon}.\; \underline{arepsilon} =0\Rightarrow$ не изменяем F_1	{0}	{1}	$\{\varepsilon,0,1\}$
2.	Определим $F_2 = F_1$:	{0}	{1}	$\{\varepsilon,0,1\}$
2.1.	Рассмотрим правило $S \stackrel{(1)}{\to} \underline{0}S$. $F_1(\underline{0}) = \{0\} \not\ni \varepsilon \Rightarrow F_2(S) \leftarrow \{0\}$	{0}	{1}	$\{\varepsilon,0,1\}$
2.2.	Рассмотрим правило $S \stackrel{(2)}{\to} \underline{1}S$. $F_1(\underline{1}) = \{1\} \not\ni \varepsilon \Rightarrow F_2(S) \leftarrow \{1\}$	{0}	{1}	$\{\varepsilon,0,1\}$
2.3.	Рассмотрим правило $S\stackrel{(3)}{ o}\underline{arepsilon}.\; \underline{arepsilon} =0\Rightarrow$ не изменяем F_2	{0}	{1}	$\{\varepsilon,0,1\}$
2.4.	Имеем $F_2 = F_1 \Rightarrow$ выход	{0}	{1}	$\{\varepsilon, 0, 1\}$

3. Вычислим FOLLOW:

		$F_i(S)$
0.	Определим F_0 :	Ø
1.	Определим $F_1 = F_0$:	Ø
1.1.	Рассмотрим правило $S \xrightarrow{(1)} 0$ $S \xrightarrow{\varepsilon}$ (a) FIRST $(\beta) = \{\varepsilon\} \Rightarrow \text{FIRST}(\beta) \setminus \{\varepsilon\} = \emptyset \to F_1(S)$.	Ø
	A α X β (b) $\varepsilon \in \mathrm{FIRST}(\beta)$, поэтому $F_1(S) \leftarrow F_0(S) = \emptyset$	
1.2.	Рассмотрим правило $S \xrightarrow{(2)} 1 S \varepsilon$ (a) FIRST $(\beta) = \{\varepsilon\} \Rightarrow \text{FIRST}(\beta) \setminus \{\varepsilon\} = \emptyset \to F_1(S)$.	Ø
	A α X β (b) $\varepsilon \in \mathrm{FIRST}(\beta)$, поэтому $F_1(S) \leftarrow F_0(S) = \emptyset$	
1.3.	Рассмотрим правило $S \xrightarrow{(3)} \varepsilon$. Оно не имеет вид $A \to \alpha X \beta$, не изменяем F_1	Ø
	$\overset{\mathbf{\cdot}}{A}$	
1.4.	Имеем $F_1 = F_0 \Rightarrow$ выход	Ø

4. Таблица переходов для LL(1)-анализатора:

	0	1
S	$S \stackrel{(1)}{\rightarrow} 0S$	$S \stackrel{(1)}{\rightarrow} 1S$
0	ε	Err.
1	Err.	ε

Задача 3

Задача 4

Задача 5

Задача 6