Зміст

- 1 Ряди. Властивості збіжних рядів. Необхідна умова збіжності ряду. Гармонічний ряд
- 2 2.3. Ознаки збіжності числових рядів з додатними членами
- 4. Знакозмінні ряди. Ознака Лейбніца.
- 5. Абсолютно і умовно збіжні ряди, їх властивості.
- 6. Функціональні ряди. Ознака Вейєрштраса
- 7. Властивості рівномірно збіжних рядів
- 8. Степеневі ряди. Властивості степеневих рядів. *теорема Абеляю* Властивості степеневих рядів.
- 9. Ряд Тейлора, Маклорена. Теорема про розвинення аналітичної ф-ї в степеневий ряд.
- 10. Ортогональна система функцій. Ряд Фур'є, коефіцієнти Фур'є, теорема Діріхле. Ряд Фур'є 2П- періодичної функції
- 11. Ряд Фур'є для ф-ї періоду T=2l
- 12. Інтеграл Фур'є. Теорема Фур'є.
- 13. 14. Функція комплексної змінної. Границя. Неперервність Основні елементарні ф-ї КЗ Елементарні функції z^n, e^z та їх властивості
- 15. ln z
- 16. Зв'язок між тригонометричними і гіперболічними функціями
- 17. Диференціювання ф-ї комплексної змінної (ФКЗ). Умови Коші-Рімана
- 18. Інтегра від функції комплексної змінної. Його властивості, формула обчислення (довести 4 власт)
- 19. Ряд Тейлора(ФКЗ). Формула Коші для похідної.
- 20. Класифікація ізольованих особливих точок ф-ї.
- 21. Ряд Лорана. аналітична в кільці
- 22. Лишки, їх обчислення. Обчислення лишків в полюсі.
- 23. Означення функції-оригіналу. Означення перетворення Лапласа. Теорема існування. Необхідна умова існування зображення.
- 24-27 Властивості перетворення Лапласа
- 28. Теорема Бореля. Згортка функцій. Зображення згортки.
- 29. Інтеграл Дюамеля. Зображення періодичного сигналу.
- 30. Формула Рімана-Мелліна

1 Ряди. Властивості збіжних рядів. Необхідна умова збіжності ряду. Гармонічний ряд

Нехай задано числову послідовність $a_1, a_2, a_3, ..., a_n$. Тоді вираз $a_1+a_2+a_3+...+a_n=\sum_{n=1}^\infty a_n$ називається числовим рядом; елементи послідовності — членами ряду; елемент $a_n=f\left(n\right)-n$ -м членом ряду; суму $S_n=\sum_{k=1}^n a_k$ — частинною сумою ряду.

Числовий ряд називається збіжним, якщо послідовність частинних сум збігається до деякого числа S, що називається сумою ряду: $S = \lim S_n$

Якщо не існує скінченої границі послідовності, то ряд називається розбіжним.

Нехай $a_0=b,\ a_1=bq,\ a_2=bq^2,\ ...,\ a_n=bq^n,\$ тоді такий числовий ряд називається геометричним рядом. В цьому випадку отримаємо такі частинні суми: $S_0=b,\ S_1=b\big(1+q\big),\ S_2=b\big(1+q+q^2\big),\ ...,\ S_n=\frac{b\big(1-q^{n+1}\big)}{1-q}$. Спрямуємо $n\to\infty$ та розглянемо два випадки: |q|<1 та $|q|\ge 1$. В результаті чого

 $n \to \infty$ та розглянемо два випадки. |q| < 1 та $|q| \ge 1$. В результаті чого отримаємо в першому випадку $S_n \to \frac{b}{1-q}$, а в другому випадку скінченої границі не існує, ряд є розбіжним.

Означення: Ряд — вираз вигляду $a_1 + a_2 + \ldots + a_n + \ldots$ $n \in N$. Домовилися ряд позначати скорочено $\sum_{n=1}^{\infty} a_n$

 a_n — загальний член ряду. $S_n = a_1 + a_2 + \ldots + a_n$ — часткова сума ряду. Означення: Сума ряду — число $S = \lim_{n \to \infty} S_n$ якщо вона існує, то кажуть що ряд збігається і навпаки. Якщо всі a_n — const, то ряд називають числовим. Якщо a_n — ф-ції, то ряд функціональний. $\lim_{n \to \infty} a_n = 0$

Властивості збіжних рядів

 Теорема (необхідна ознака збіжності):
 Якщо ряд збігається то
 існує.

 Обернене твердження не вірне, так як умова не є достатньою.

Доведення:
$$\exists \lim_{n\to\infty} S_n = S$$
; $\exists \lim_{n\to\infty} S_{n-1} = S$

$$S_{n}-S_{n-1}=a_{n}$$
; $\lim_{n\to\infty}a_{n}=\lim_{n\to\infty}S_{n}-\lim_{n\to\infty}S_{n-1}=S-S=0$

<u>Наслідок:</u> Якщо $\lim_{n\to\infty}a_n\neq 0$, то можна стверджувати, що ряд розбігається.

<u>Теорема:</u> Якщо ряд $\sum_{n=1}^{\infty} a_n$ збігається, а сума дорівнює S, то ряд $\sum_{n=1}^{\infty} k a_n$ має суму kS.

Доведення:
$$S_n = a_1 + a_2 + ... + a_n$$
; $\sigma m = ka_1 + ka_2 + ... + ka_n = kS_n$ $\exists \lim_{n \to \infty} S_n = S \Rightarrow \exists \lim_{n \to \infty} \sigma_n = kS$

<u>Теорема:</u> $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ - збігаються і їх суми дорівнюють S та $\sigma \to \sum_{n=1}^{\infty} (a_n \pm b_n)$ - збігаються, то їх суми дорівнюють S $\pm \sigma$.

<u>Теорема:</u> Якщо ряд збігається (розбігається) і в ньому відкинути скінченну кількість членів, то одержимо збіжний (розбіжний ряд).

<u>Доведення:</u> Ряд $\sum_{n=1}^{\infty} a_n$, відкинемо k будь-яких членів ряду. Позначимо їх суму через C_k . Розглянемо таке n, щоб всы відк. члени мали номер менше за n. Тоді $S_n = C_k + \sigma_n$; $\exists \lim_{n \to \infty} S_n \Leftrightarrow \exists \lim_{n \to \infty} \sigma_n$.

Висновок: Збіжність не залежить від того з якого п починається відлік.

Ряд вигляду $\sum_{n=1}^{\infty} \frac{1}{n}$ називається гармонічним. Таким чином маємо

$$\underbrace{ \begin{bmatrix} 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} \\ E 5 5 5 5 5 5 5 \end{bmatrix}}_{S_n} + \underbrace{ \begin{bmatrix} \frac{1}{n+1} + \dots + \frac{1}{2n} \\ E 5 5 5 5 5 5 5 \end{bmatrix}}_{n \cdot \frac{1}{2n} = \frac{1}{2}}^{+ \dots + \frac{1}{2n}} + \dots$$
 в результаті чого залишок суми ряду

завжди більший за $\frac{1}{2}$, а отже у відповідності до критерію Коші ряд є розбіжним. Ряд вигляду $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ називається узагальненим гармонічним.

Будь-який ряд $\sum_{n=1}^{\infty}a_n$ можна записати у вигляді $\sum_{n=1}^{\infty}a_n=S_n+\sigma_n$, де $n=1,\ 2,\ ...,\ \sigma_n=a_{n+1}+a_{n+2}+...$ при цьому величина σ_n називається залишком (хвостом) ряду.

2.3. Ознаки збіжності числових рядів з додатними членами

1) . Перша ознака порівняння.

Нехай маємо ряди $\sum_{k=1}^\infty a_k$ та $\sum_{k=1}^\infty b_k$, при цьому для всіх значень k виконується нерівність $a_k \geq b_k$, тоді:

- із збіжності першого ряду випливає збіжність другого ряду.
- із розбіжності другого ряду випливає розбіжність першого ряду.
- 2) Гранична ознака порівняння.

Нехай для членів рядів $\sum_{k=1}^{\infty} a_k$ та $\sum_{k=1}^{\infty} b_k$ існує скінченна границя $c = \lim_{k \to \infty} \frac{a_k}{b_k}$, причому $c \neq 0$. Тоді ці ряди збігаються або розбігаються одночасно.

Доведення: (доведемо, що, якщо другий ряд розбігається, то перший також розбігається):

Для будь-якого $\varepsilon > 0$ знайдеться такий номер N починаючи з якого $\frac{a_n}{b_n} > c - \varepsilon$, де $c - \varepsilon > 0$. Таким чином $a_n > (c - \varepsilon)b_n$. Отже відповідний "хвіст" першого ряду більший за хвіст другого ряду помноженого на $(c - \varepsilon)$. Оскільки відповідно до критерію Коші "хвіст" другого ряду не прямує до

нуля, то не пряму ϵ до нуля і "хвіст" першого ряду, що свідчить про його розбіжність.

3) Ознака Д'Аламбера.

Якщо для ряду $\sum_{n=n_0}^{\infty} a_n$, існує границя $D = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$, то при D > 1 - ряд розбіжний; при D < 1 - ряд збіжний; при D = 1 - ряд вимагає дослідження за допомогою інших ознак.

4) Радикальна ознака Коші.

Якщо для ряду $\sum_{k=1}^{\infty} a_k$ існує границя $C = \lim_{k \to \infty} \sqrt[k]{a_k}$, то при C > 1 - ряд розбіжний, при C < 1 - ряд збіжний і при C = 1 - ряд потребує подальшого дослідження іншим методом.

Доведемо, що ряд збіжний при C < 1.

Для будь-якого $\varepsilon > 0$, існує таке N, що при n > N $\sqrt[n]{a_n} < C + \varepsilon < 1$, звідси виходить, що $a_n < (C + \varepsilon)^n$

$$\sum_{k=n+1}^{\infty} a_k < \sum_{k=n+1}^{\infty} (C+\varepsilon)^n = \frac{(C+\varepsilon)^{n+1}}{1-(C+\varepsilon)} \xrightarrow{n\to\infty} 0, \text{ що й треба було }$$
 довести

5) Інтегральна ознака Коші.

Таким чином, якщо ряд збіжний, то збіжним ϵ і невласний інтеграл

$$I = \int_{1}^{+\infty} f(k)dk$$

Отже, розглянутий вище ряд та невласний інтеграл першого роду збіжні чи розбіжні одночасно.

4. Знакозмінні ряди. Ознака Лейбніца.

Означення: Ряд називається знакозмінним, якщо серед його членів ϵ як невід'ємні, так і від'ємні числа.

Ознака Лейбніца: Нехай члени знакопочережного ряду прямують до нуля, складаючи при цьому спадну за абсолютною величиною послідовність, тоді такий ряд ϵ збіжний.

Доведення: Розглянемо ряд
$$\sum_{k=1}^{\infty} a_k$$
; $a_k \xrightarrow{k \to \infty} 0$; $|a_{k+1}| < |a_k|$,

припустимо, що додатними ϵ члени ряду з непарними номерами $a_1, a_3,$ $a_5,...$; а від'ємними — члени ряду з парними номерами: $a_2, a_4, a_6,...$

Розглянемо частинні суми окремо з парними і окремо з непарними номерами:

$$S_{2n} = (q_{1} + q_{2} + q_{3} + q_{4} + q$$

парними номерами ми маємо зростаючу послідовність, в той же час

$$S_{2n} = a_1 - (\left|a_2\right| - a_3) - (\left|a_4\right| - a_5)... - \left|a_{2n}\right|) < a_1$$
, тобто ця послідовність обмежена зверху, і, відповідно, прямує до певної границі:

$$S_{2n} \xrightarrow{n \to \infty} S^*$$
. Оскільки $S_{2n+1} = S_{2n} + a_{n+1}$ то $\lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} S_{2n+1} = S^*$,

що й треба було довести.

5. Абсолютно і умовно збіжні ряди, їх властивості.

Знакозмінний ряд є збіжним абсолютно, якщо збігається ряд складений з абсолютних величин його членів.

Якщо знакозмінний ряд збіжний, але ряд складений з абсолютних величин його членів розбіжний, то такий ряд називається *збіжним умовно*.

- 1. Властивості АЗР, можна сказати, що вони такі ж як у рядів з додатними членами:
 - Якщо $\sum_{k=1}^{n} a_k = S$, то $\sum_{k=1}^{n} \alpha a_k = \alpha S$

$$S_n = a_1 + \ldots + a_n \underset{n \to \infty}{\longrightarrow} S$$

$$\alpha S_n = \alpha a_1 + ... + \alpha a_n \xrightarrow[n \to \infty]{} \alpha S$$

- Якщо $\sum_{k=1}^{n} a_k = S$ і $\sum_{k=1}^{n} b_k = S^*$, то $\sum_{k=1}^{n} (a_k + b_k) = S + S^*$ $(a_1 + b_1) + ... + (a_n + b_n) = S_n + S_n^* \xrightarrow[n \to \infty]{} S + S^*$
- $a_1 + ... + a_n = S_n = a_1 + ... + a_{n-1} + a_n = S_{n-1} + a_n$, де $S_{n-1} \underset{n \to \infty}{\longrightarrow} S$ та $a_n \underset{n \to \infty}{\longrightarrow} 0$. Це ϵ необхідною умовою збіжності.
- $\sum_{k=1}^{n} a_k = S = S_n + \sigma_n$, де $S_n \xrightarrow[n \to \infty]{} S$ та $\sigma_n \xrightarrow[n \to \infty]{} 0$.
- Якщо ряд є абсолютно збіжний, то довільний ряд, утворений з нього перестановкою його членів також є абсолютно збіжний.
- 2. Властивості УЗР:
 - В УЗР кількість додатних та від'ємних членів нескінченна;
 - Ряди складені з сум додатних та від'ємних членів УЗР розбіжні;
 - Теорема Рімана: якщо знакозмінний ряд є збіжним, то шляхом перестановки його членів, його суму можна зробити рівною будьякому наперед заданому числу.

6. Функціональні ряди. Ознака Вейєрштраса

Нехай $\{U_n(x)\}_{n=1}^\infty$ послідовність функцій. Якщо при фіксованому значенні числова послідовність $\{U_n(x_0)\}_{n=1}^\infty$ є збіжною до числа $U(x_0)$, то кажуть, що число x_0 належить області збіжності вказаної послідовності. Сукупність значень x при яких послідовність є збіжною, називається областю збіжності

даної послідовності, а функція U(x) визначена для значень х із цієї області називається границею даної послідовності.

Означення: Функціональна послідовність (функціональний ряд) називається рівномірно збіжною (рівномірно збіжним) на деякому інтервалі (a;b) до функції U(x). Якщо для будь-якого $\varepsilon>0$ знайдеться $N=N(\varepsilon)$ таке, що для будь-якого $x\in (a;b)$ при $n>N(\varepsilon)$ виконується нерівність $|U_n(x)-U(x)|<\varepsilon$ або $|S_n(x)-S(x)|<\varepsilon$.

Ознака Вейєрштраса: Нехай для ряду $\sum_{k=1}^{\infty} U_k(x)$ існує збіжний числовий

ряд $\sum_{k=1}^{\infty} a_k$, такий що при всіх значеннях k і довільних x з інтервалу (a;b) виконується нерівність: $|U_k(x)| \le a_k$, тоді функціональний ряд збігається

рівномірно для $x \in (a;b)$. Доведення:

- 1. Функціональний ряд ϵ абсолютно збіжним на вказаному інтервалі, оскільки ряд складений з абсолютних величин його членів збігається на цьому інтервалі за мажорантно-мінорантною ознакою порівняння.
- 2. Для будь-якого $\varepsilon > 0$, знайдеться $N(\varepsilon)$ таке, що при $n > N(\varepsilon)$

$$|S(x) - S_n(x)| = \left| \sum_{k=n+1}^{\infty} U_k(x) \right| \le \sum_{k=n+1}^{\infty} |U_k(x)| \le \sum_{k=n+1}^{\infty} a_k < \varepsilon$$
, що і означає

його рівномірну збіжність.

Властивості рівномірно збіжних рядів

- Якщо члени функціонального ряду є неперервними функціями на деякому інтервалі і ряд рівномірно збігається на цьому інтервалі, то його сума неперервна на цьому ж інтервалі.
- Функціональний ряд, який ϵ рівномірно збіжним на деякому інтервалі, можна почленно інтегрувати на цьому інтервалі.

Тобто, якщо $S(x) = \sum_{k=1}^{\infty} U_k(x)$ - рівномірно-збіжний на (a;b), інтервал

$$[x_0;x] \in (a;b)$$
, to $\int_{x_0}^x S(t)dt = \sum_{k=1}^\infty \int_{x_0}^x U_k(t)dt$

• Нехай члени ряду $\sum_{k=1}^\infty U_k(x)$ - неперервно диференційовані функції на інтервалі (a;b), ряд складений з похідних $\sum_{k=1}^\infty U_k'(x)$ - ϵ рівномірно збіжний на проміжку (a;b). Якщо при цьому вихідний ряд ϵ збіжний хоча б в одній точці $x_0 \in (a;b)$ то він ϵ :

- а) рівномірно збіжний на інтервалі (a;b);
- б) його сума являє собою неперервно диференційовну функцію на інтервалі (a;b);
- в) ряд допускає почленне диференціювання, тобто похідна суми ряду дорівнює сумі похідних його членів.

7. Властивості рівномірно збіжних рядів

- Якщо члени функціонального ряду є неперервними функціями на деякому інтервалі і ряд рівномірно збігається на цьому інтервалі, то його сума неперервна на цьому ж інтервалі.
- Функціональний ряд, який ϵ рівномірно збіжним на деякому інтервалі, можна почленно інтегрувати на цьому інтервалі.

Тобто, якщо $S(x) = \sum_{k=1}^{\infty} U_k(x)$ - рівномірно-збіжний на (a;b), інтервал

$$[x_0;x] \in (a;b)$$
, to $\int_{x_0}^x S(t)dt = \sum_{k=1}^\infty \int_{x_0}^x U_k(t)dt$

• Нехай члени ряду $\sum_{k=1}^{\infty} U_k(x)$ - неперервно диференційовані функції на інтервалі (a;b), ряд складений з похідних $\sum_{k=1}^{\infty} U_k'(x)$ - ϵ рівномірно збіжний

на проміжку (a;b) . Якщо при цьому вихідний ряд ϵ збіжний хоча б в одній точці $x_0 \in (a;b)$ то він ϵ :

- а) рівномірно збіжний на інтервалі (a;b);
- б) його сума являє собою неперервно диференційовну функцію на інтервалі (a;b);
- в) ряд допускає почленне диференціювання, тобто похідна суми ряду дорівнює сумі похідних його членів.

8. Степеневі ряди. Властивості степеневих рядів. *теорема Абеляю* Властивості степеневих рядів.

Означення: Функціональний ряд вигляду $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ називається степеневим рядом в околі точки $x=x_0$.

Теорема Абеля: Якщо степеневий ряд збігається при $x=x_1$, то він абсолютно збігається і при всіх значеннях $x=x_2$, таких що $|x_2-x_0|<|x_1-x_0|$.

Кругом збіжності степеневого ряду з комплексними членами $\sum_{n=0}^{\infty} c_n z^n$ звуть такий відкритий круг |z| < R, що в кожній його точці ряд збігається абсолютно, а в кожній точці, за межамцього кругу — розбігається.

На межах інтегралу збіжності, в точках $x = \pm R$, ряд може збігатися, а може й розбігатися.

Перша теорема Абеля: Якщо степеневий ряд збігається при $x=x_1$, то він абсолютно збігається і при всіх значеннях $x=x_2$, таких що $|x_2-x_0|<|x_1-x_0|$.

Доведення:

$$\frac{x \times x \times x}{x_i^* \times x_0 \times x_i} \times x$$

Якщо ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ - збігається, то $a_n (x_1-x_0)^n \xrightarrow{n\to\infty} 0$, отже члени цього ряду є обмеженими величинами. В той же час

$$\left| a_n \cdot (x_2 - x_0)^n \right| = \left| a_n \cdot (x_1 - x_0)^n \cdot \left(\frac{x_2 - x_0}{x_1 - x_0} \right)^n \right| \le c \cdot \left| \frac{x_2 - x_0}{x_1 - x_0} \right|^n = c \cdot q^n, \text{ де}$$

$$\left| x_2 - x_0 \right|^n$$

$$q = \left| \frac{x_2 - x_0}{x_1 - x_0} \right|^n < 1.$$

Скориставшись мажорантно-мінорантною ознакою порівняння, можемо стверджувати, що ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ - є збіжним, оскільки він мажорується за абсолютною величиною сумою членів нескінченно спадної геометричної прогресії.

Радіус збіжності: Для кожного степеневого ряду знайдеться число R $0 \le R < \infty$, таке що ряд є збіжним при $|x - x_0| < R$ і розбіжним при $|x - x_0| > R$, яке називається радіусом збіжності степеневого ряду.

Інтервал збіжності: Як випливає з попереднього, для знаходження області збіжності степеневого ряду досить визначити його радіус збіжності, і дослідити збіжність ряду у точках $x_1 = x_0 - R$, $x_2 = x_0 + R$.

Властивості степеневих рядів.

- Сума S(x) степеневого ряду $\sum_{n=0}^{\infty} a_n x^n$ є неперервною ф-єю на інтервалі (-R;R).
- Степеневий ряд усередині інтервалу збіжності можна почленно диференціювати.
- Степеневий ряд можна почленно інтегрувати на кожному відрізку, що міститься всередині інтервалу збіжності.

9. Ряд Тейлора, Маклорена. Теорема про розвинення аналітичної ф-ї в степеневий ряд.

Ряд вигляду $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ називається рядом Тейлора для ф-ї f(x) в околі точки x_0 , якщо $x_0=0$ то **рядом Маклорена**.

Ф-ю можна представити наступним розкладом:

1. Нехай:
$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$
 $x \in (-R; R)$ тоді
$$f(x-x_0) = \sum_{k=0}^{\infty} a_k (x-x_0)^k, x \in (x_0-R; x_0+R)$$

- 2. Нехай: $f(x) = \sum_{k=0}^{\infty} a_k (x x_0)^k$ $x \in (x_0 R; x_0 + R)$, тоді $f(\alpha x) = \sum_{k=0}^{\infty} a_k \alpha^k (x x_0)^k$ при $x \in \left(\frac{x_0 R}{|\alpha|}; \frac{x_0 + R}{|\alpha|}\right)$.
- 3. Нехай: $f(x) = \sum_{k=0}^{\infty} a_k x^k$ $x \in (-R; R)$, тоді $f(x^{\alpha}) = \sum_{k=1}^{\infty} a_k x^{\alpha k}$, де $x \in (-\sqrt[\alpha]{R}; \sqrt[\alpha]{R})$, за умови, що для ненульових a_n α_n ε натуральним числом
- 4. Нехай: $f(x) = \sum_{k=0}^{\infty} a_k (x x_0)^k$ при $x \in (x_0 R; x_0 + R)$.

 тоді $(x x_0)^m f(x) = \sum_{k=0}^{\infty} a_k (x x_0)^{k+m}$, $x \in (x_0 R; x_0 + R)$

10. Ортогональна система функцій. Ряд Фур'є, коефіцієнти Фур'є, теорема Діріхле. Ряд Фур'є 2П- періодичної функції

Oзначення: Тригонометричним рядом Фур'є на проміжку (-l;l)

називається ряд вигляду :
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{n \pi x}{l} \right) + b_n \sin \left(\frac{n \pi x}{l} \right) \right)$$
, причому

 a_{0}, a_{n}, b_{n} , що є дійсними числами, називаються коефіцієнтами цього ряду або

коефіцієнтами Фур'є, які визначаються за відповідними формулами:

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx, \qquad a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx, \qquad b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx$$

Теорема Діріхлє: Якщо функція f(x) є періодична з періодом T=2l, на проміжку (-l;l) задовольняє **умовам Діріхлє**:

- 1) Кусково-неперервна на (-l;l)
- **2**) Кусково-монотонна на (-l;l)
- **3**) Обмежена на (-l;l)

Тоді її ряд Фур'є збігається в кожній точці відрізку. Його сума:

1)
$$S(x) = f(x)$$
, якщо $x \in (-l; l)$ і є точкою неперервності ф-ї;

2)
$$S(x) = \frac{f(x-0) + f(x+0)}{2}$$
, якщо $x \in (-l;l)$ і є точкою розриву ф-ї;

2)

$$S(-l) = S(l) = \frac{f(-l+0) + f(l-0)}{2}$$

Ряд Фур'є 2П- періодичної функції:

Будемо розкладати ф-цію f(x) у ряд Фур'є по синусам: Для цього необхідно продовжити f(x) вліво непарним чином:

$$f(x) = \begin{cases} x; & 0 \le x \le \frac{\Pi}{2} \\ \Pi - x; & \frac{\Pi}{2} \le x \le \Pi \end{cases}$$

1)Намалюємо графік функції:

3)Продовжимо другу ф-цію періодично з періодом 2П

Одержимо ф-цію

4) Функція обмежена та кусково-монотонна на [- Π ; Π]. Отже за т. Діріхле, її ряд збігається до значення S(x), або S(x)- не має розривів. 5) Знаходимо коефіцієнти: $a_{0=}a_{n}=0$

$$b_n = \frac{\ddot{I}}{2} \left(\int_0^{T/2} \frac{x}{n} \frac{\sin x dx}{dv} + \int_{T/2}^{T} \frac{(\ddot{I} - x)}{n} \frac{\sin nx dx}{dv} \right) =$$

Проінтегруємо частинами:

$$=\frac{2}{\Pi n^2}(\sin\frac{\Pi n}{2}+\sin\frac{\Pi n}{2}).$$

$$b_n = \frac{4}{\Pi n^2} \sin \frac{\Pi n}{2}.$$

$$b_{2k} = 0;$$
 $b_{2k+1} = (-1)^k \frac{4}{\Pi(2k+1)^2}.$

6) Запишемо ряд Фур'є:

$$S(x) = \sum_{k=0}^{\infty} (-1)^k \frac{4}{\Pi(2k+1)^2} \sin(2k+1) \cdot x$$

$$S(x) = f(x) \text{ при } x \in [0; \Pi].$$

7) Малюэться графік функції f(x).

Ф-ція може бути задана на \forall проміжку довжиною 2П. Напр.: $x \in [a; a+2\Pi]$

Можна показати, що в цьому випадку формули для коефіцієнтів мають вид:

$$a_0 = \frac{1}{\ddot{I}} \int_a^{a+2\ddot{I}} f(x)dx$$

$$a_n = \frac{1}{\ddot{I}} \int_a^{a+2\ddot{I}} f(x) \cdot \cos nx dx, \quad n=1,2,3$$

$$b_n = \frac{1}{\ddot{I}} \int_{a}^{a+2\ddot{I}} f(x) \cdot \sin nx dx, \quad n=1,2,3$$

Ряд Фур'є для парних і непарних ф-й.

Ряд Фур'є має вигляд $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$. У випадку,

якщо ϕ -я ϵ парною або непарною ряд можна спростити наступним чином:

• якщо маємо парну ф-ю, то ряд розкладається за косинусами, тобто

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx)$$

$$a_0 = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx, \quad a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(nx) dx, \quad b_n = 0$$

• якщо маємо непарну ф-ю, то ряд розкладається за синусами, тобто

$$S(x) = \sum_{n=1}^{\infty} b_n \sin(nx)$$

$$a_0 = a_n = 0,$$
 $b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(nx) dx$

11. Ряд Фур'є для ф-ї періоду T = 2l

Ряд Фур'є має вигляд
$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)).$$

Якщо ф-я задана на проміжку від -1 до 1, то у випадку виконання умов Діріхлє вона може бути представлена сумою ряду:

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{\pi nx}{l}\right) + b_n \sin\left(\frac{\pi nx}{l}\right) \right)$$
, де

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx,$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{\pi nx}{l}\right) dx,$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{\pi nx}{l}\right) dx$$

12. Інтеграл Фур'є. Теорема Фур'є.

Нехай f(x) - функція, що задовольняє умовам Діріхлє на проміжку [-l,l], і при цьому l може бути вибраним довільно, і при цьому $\int_{-\infty}^{\infty} |f(x)| dx$ є збіжним

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos \frac{k\pi x}{l} + b_k \sin \frac{k\pi x}{l}) = \frac{1}{2l} \int_{-l}^{l} f(x) dx + \sum_{k=1}^{\infty} \left(\frac{1}{l} \int_{-l}^{l} f(t) \cos \frac{k\pi t}{l} dt \cos \frac{k\pi x}{l} + \frac{1}{l} \int_{-l}^{l} f(t) \sin \frac{k\pi t}{l} dt \sin \frac{k\pi x}{l} \right)$$

Запровадимо параметр $\lambda_k = \frac{k\pi}{l}$ та $\Delta \lambda_k = \frac{\pi}{l}$

 λ_k при зміні k і l може пробігати всю додатню піввісь.

В такому випадку сума присутня у ряді Фур'є може розглядатися як інтегральна для інтеграла наступного вигляду:

$$I(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} (a(\lambda)\cos \lambda x + b(\lambda)\sin \lambda x) d\lambda$$
$$a(\lambda) = \int_{-\infty}^{\infty} (f(t)\cos \lambda t) dt$$
$$b(\lambda) = \int_{-\infty}^{\infty} (f(t)\sin \lambda t) dt$$

Такий спосіб представлення функції називається представленням її інтегралом Фур'є.

Зауваження:

- 1. Аналогічно до рядів Фур'є в такому I(x) = f(x) в її точках неперервності. $I(x) = \frac{f(x-0) + f(x+0)}{2}$ в точках розриву.
- 2. $\sqrt{a(\lambda)^2 + b(\lambda)^2}$ визначає амплітудний спектр функції, в вираз $arctg \frac{a(\lambda)}{b(\lambda)}$ її фазовим спектром.
- 3. Для такого представлення функції спектр виявляється неперервним, а не лінійчастим
- 4. Амплітудний спектр може розглядатись як щільність розподілу енергії по частотах коливань.

$$\int_{a}^{e} f^{2}(x)dx = \sum_{k=1}^{n} \left(a_{k}^{2} + b_{k}^{2}\right)$$

5. Інтеграл Фур'є може бути записаний у вигляді $I(x) = \frac{1}{\pi} \int_0^\infty \left(\int_{-\infty}^\infty f(t) \cos \lambda t dt \cdot \cos \lambda x + \int_{-\infty}^\infty f(t) \sin \lambda t dt \cdot \sin \lambda x \right) d\lambda =$ $= \frac{1}{\pi} \int_0^\infty \left(\int_{-\infty}^\infty f(t) \cos \lambda (t-x) dt \right) d\lambda$

12. Інтеграл Фур'є для парних і непарних ф-й. Синус і косинус перетворення Фур'є.

Інтеграл Фур'є має вигляд:
$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} (a(\lambda)\cos(\lambda x) + b(\lambda)\sin(\lambda x))d\lambda$$
. У

випадку якщо ф-я є парною або непарною його можна спростити наступним чином:

- у випадку, якщо ф-я ϵ парною , то $a(\lambda) = 2\int_{0}^{+\infty} f(x)\cos(\lambda x)dx, \qquad b(\lambda) = 0 \text{ . B результаті чого отримуємо}$ косинус перетворення Фур' ϵ .
- у випадку, якщо ф-я ϵ непарною , то $b(\lambda) = 2\int\limits_0^{+\infty} f(x)\sin(\lambda x)dx, \qquad a(\lambda) = 0 \,. \, \text{В результаті чого отримуємо}$ синус перетворення Фур' ϵ .

13. 14. Функція комплексної змінної. Границя. Неперервність Основні елементарні ф-ї КЗ Елементарні функції z^n, e^z та їх властивості

Означення: функція яка встановлює відповідність між двома множинами комплексних чисел називається функцію комплексної змінної.

Означення: Границею послідовності комплексних чисел $z_1...z_n$,... називається таке комплексне число $z = \lim_{n \to 0} z_n$, що $\forall \varepsilon > 0 \ \exists N = N(\varepsilon)$:

$$n > N(\varepsilon) \Rightarrow |z - z_n| < \varepsilon$$
. Якщо $z_n = x_n + iy_n$, а $z = x + iy$, то $\sqrt{(x - x_n)^2 + (y - y_n)^2} < \varepsilon$, тобто, для того, щоб сума невід'ємних чисел прямувала до нуля потрібно, щоб $x - x_n \to 0$ та $y - y_n \to 0$.

Таким чином збіжність послідовності комплексних чисел еквівалентна одночасній збіжності їх дійсних та уявних частин до відповідно дійсної та уявної частин комплексного числа z. Якщо хоча б одна з цих послідовностей прямує до нескінченості, то кажуть, що границею послідовності є невласне (нескінчене) комплексне число, якому на комплексній площині відповідає так звана нескінченно віддалена точка.

Функція називається неперервною в точці $z = z_0$, якщо :

- 1) вона визначена в деякому околі цієї точки, включаючи саму цю точку.
- 2) існує скінченна границя $c = \lim_{z \to z_0} f(z)$
- 3) $c = f(z_0)$

Основні елементарні ф-ї КЗ:

Можливість розгляду степеневих рядів з комплексними членами визначає можливість розгляду елементарних ф-й КЗ.

$$e^{z} = 1 + z + \frac{z^{2}}{2} + \dots = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad |z| < \infty$$

$$\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!}, \quad |z| < \infty$$

$$\cos z = 1 - \frac{z^{2}}{2} + \frac{z^{4}}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}, \quad |z| < \infty$$

Використовуючи формулу Ейлера, отримаємо:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

$$e^{a+ib} = e^a e^{ib} = e^a \left(\cos b + i\sin b\right)$$

$$e^{iz} = \cos z + i \sin z$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} \qquad shz = \frac{e^{z} - e^{-z}}{2} \qquad \cos z = \frac{e^{iz} + e^{-iz}}{2} \qquad chz = \frac{e^{z} + e^{-z}}{2}$$

$$sh(iz) = i \sin z \qquad ch(iz) = \cos z \qquad \sin(iz) = -ishz \qquad \cos(iz) = chz$$

Важливою властивістю показникової ф-ї комплексного аргумента ϵ те, що вона ϵ періодичною з уявним періодом $T=2\pi i$

$$e^{a+ib+2\pi ki} = e^a(\cos(b+2\pi k)+i\sin(b+2\pi k)) = e^{a+ib}$$

Оскільки для ф-й КЗ експонента ϵ періодичною, то для оберненої до неї логарифмічної являється багатозначною (багатолистою).

$$w = e^z = e^{z + 2k\pi i}$$

$$z = Lnw = Ln|w|e^{i\varphi}e^{2k\pi i} = \ln|w| + i\varphi + 2k\pi i$$

Всилу того, що в обл. КЗ показникові та тригонометрична ф-ї пов'язані через формулу Ейлера, обернені тригонометричні ф-ї виявляються пов'язаними з логарифмами.

$$w = \sin z = \frac{e^{iz} - e^{-iz}}{2i} \qquad w = \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$z = Arcs^{3}nw \qquad z = Arcc\hat{i} sw$$

$$w = \frac{e^{iz} - e^{-iz}}{2i} \Big| e^{iz} = t \qquad w = \frac{e^{iz} + e^{-iz}}{2} \Big| e^{iz} = t$$

$$2iw = t - \frac{1}{t} \qquad 2w = t + \frac{1}{t}$$

$$t^{2} - 2iwt - 1 = 0 \qquad t^{2} - 2wt + 1 = 0$$

$$t_{12} = iw \pm \sqrt{1 - w^{2}} \qquad t_{12} = w \pm \sqrt{w^{2} - 1}$$

$$e^{iz} = iw + \sqrt{1 - w^{2}} \qquad e^{iz} = w + \sqrt{w^{2} - 1}$$

$$iz = Ln(iw + \sqrt{1 - w^{2}}) \qquad iz = Ln(w + \sqrt{w^{2} - 1})$$

$$z = \frac{1}{i}Ln(iw + \sqrt{1 - w^{2}}) \qquad z = \frac{1}{i}Ln(w + \sqrt{w^{2} - 1})$$

Елементарні функції z^n, e^z та їх властивості

 $w = e^z$

Можна вивести функції: e^z , sinz, $\cos z - \mathsf{як}$ суми степеневих рядів.

Oзначення: $e^z = e^x(cosy + isiny)$

Отже, $u = e^x \cos y$; $iv = e^x \sin y$.

Легко перевірити, що умови Коші-Рімена виконуються в будь-якій точці, отже ця функція ціла. Неважко показати, що $(e^z)'=e^z$.

Функція проходить полосу:

у кут:

 $2\pi n < Imz \le 2\pi + 2\pi k$, $n \in Z \to C \setminus \{0\}$ (без точки нуль) $w = \sqrt[n]{z}$, $n \in N$ — функція обернена до функції $w = z^n$ Ця функція має рівно n — значень.

Дійсно, функція z^n

-b (w)

переходить в

Отже, обернена функція в кожній точці ставить у відповідність п – значень.

15. ln z

Розглянемо функцію обернену до e^{+z} . Вона має безліч значень, тому що має відповідне значення у кожній полосі.

Нехай
$$-\pi \le Im \ w < \pi$$
 $w = U + iV; \ z = x + iy$
 $e = x + iy \rightarrow e^U \cdot e^{iV} = x + iy$
 $\begin{cases} e^U = |z| \rightarrow U = \ln|z| \\ V = \arg z \end{cases}$

Позначимо обернену функцію e^z слідуючим чином:

$$\ln z = \ln|z| + i \arg z \rightarrow Arg z = \arg z + 2\pi n$$

$$Ln z = ln |z| + i Arg z$$
 abo

$$Ln z = ln |z| + i (arg z + 2\pi n)$$

$$Ln z = ln z + 2\pi$$

16. Зв'язок між тригонометричними і гіперболічними функціями

Елементарні функції sinz;cosz;lnz

1). За означенням:
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
;

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i};$$

При
$$y = 0$$
: $e^z = e^x$ - необмежена.

$$\overline{\frac{\Pi p u}{x} = 0}$$
: $e^z = e^{iy}$, $\left| e^{iy} \right| = 1$ – обмежена, періодична. $tg \ z = \frac{\sin z}{\cos z}$; $ctg \ z = \frac{\cos z}{\sin z}$;

$$tg z = \frac{\sin z}{\cos z}$$
; $ctg z = \frac{\cos z}{\sin z}$;

При
$$y = 0$$
: $\cos z = \cos x$, $\sin z = \sin x$, – періодичні, обмежені.

При
$$x = 0$$
: $\cos z$, $\sin z$, – неперіодичні, необмежені.

2). sh
$$z = \frac{e^z - e^{-z}}{2}$$
; ch $z = \frac{e^z + e^{-z}}{2}$;

$$th z = \frac{\sinh z}{\cosh z}$$
; $cth z = \frac{\cosh z}{\sinh z}$;

Зв'язок між тригонометричними і гіперболічними функціями:

$$ch z = \cos(iz)$$

$$sh z = -i \sin(iz)$$

Отже, з гіперболічними функціями σ_k відбувається навпаки.

При
$$x = 0$$
: $sh z$; $ch z$ – періодичні.

<u>При у = 0</u> : sh z = sh x - необмежена, періодична.3). ln z(див. вище)

17. Диференціювання ф-ї комплексної змінної (ФКЗ). Умови Коші-Рімана

 Φ -я w = f(z) назив. аналітичною за Коші в деякій обл., якщо її похідна неперервна в цій обл.

ФКЗ w = f(z) називається диференційовною в точці $z = z_0$, якщо вона визначена в цій точці та деякому її околі і має місце рівність:

$$f(z_0 + \Delta z) - f(z_0) = A\Delta z + \alpha(z_0, \Delta z)\Delta z$$
, $\lim_{\Delta z \to 0} \alpha(z_0, \Delta z) = 0$. Похідною ф-ї $f(z)$

називається:
$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$
.

- існування скінченої похідної ф-ї в точці рівносильне її диференційовності;
- якщо ф-я диференційовна, то вона неперервна в точці, проте не напаки; Teop.: Для того, щоб ф-я f(z) = u(x,y) + iv(x,y) була диференційовною в точці $z_0 = x_0 + iy_0$ необхідно і достатньо виконання наступних умов:
 - ф-ї u(x,y) та v(x,y) повинні бути неперервно диференційовними в точці $M_0(x_0,y_0)$
 - Справедливі умови Коші-Рімана: $\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$

Доведення:

Покладемо $\Delta z = \Delta x$

$$f'(z_{0}) = \lim_{\Delta x \to 0} \frac{f(z_{0} + \Delta z) - f(z_{0})}{\Delta z} = \lim_{\Delta x \to 0} \frac{u(x_{0} + \Delta x, y_{0}) + iv(x_{0} + \Delta x, y_{0}) - u(x_{0}, y_{0}) - iv(x_{0}, y_{0})}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{u(x_{0} + \Delta x, y_{0}) - u(x_{0}, y_{0})}{\Delta x} + \lim_{\Delta x \to 0} \frac{v(x_{0} + \Delta x, y_{0}) - v(x_{0}, y_{0})}{\Delta x} = \frac{\partial u}{\partial x}\Big|_{M_{0}(x_{0}, y_{0})} + i\frac{\partial v}{\partial x}\Big|_{M_{0}(x_{0}, y_{0})}$$

Тепер покладемо $\Delta z = \Delta i y$

$$f'(z_{0}) = \lim_{\Delta y \to 0} \frac{f(z_{0} + \Delta z) - f(z_{0})}{\Delta z} = \lim_{\Delta y \to 0} \frac{u(x_{0}, y_{0} + \Delta y) + iv(x_{0}, y_{0} + \Delta y) - u(x_{0}, y_{0}) - iv(x_{0}, y_{0})}{i\Delta y}$$

$$= -\lim_{\Delta y \to 0} \frac{u(x_{0}, y_{0} + \Delta y) - u(x_{0}, y_{0})}{\Delta y} + \lim_{\Delta y \to 0} \frac{v(x_{0}, y_{0} + \Delta y) - v(x_{0}, y_{0})}{\Delta y} = \frac{\partial v}{\partial y} \Big|_{M_{2}(x_{0}, y_{0})} - i\frac{\partial u}{\partial y} \Big|_{M_{2}(x_{0}, y_{0})}$$

18. Інтегра від функції комплексної змінної. Його властивості, формула обчислення (довести 4 власт)

Нехай в кожній точці деякої гладкої кривої L з початком в точці z0 і кінцем в точці Z визначена неперервна функція f(z). Розібємо криву L на n частин в напрямку від z0 до z точками $z_1, z_2, ..., z_{n-1}$. В кожній елементарній дузі $z_{k-1}z_k$ k=1,2...n виберемо довільну точку C_k і зіставимо інтегральну сумму $\sum_{k=1}^n f(C_k) \Delta Z_k$ де $\Delta Z_k = z_k - z_{k-1}$. Границя такої інтегральної сумми при прямуванні до нуля найбільшої з елементарних дуг, якщо він існує, називаеться інтегралом від функції f(z) по кривій L і позначаеться символом $\int_L f(z)$. Таким чином

$$\int_{l} f(z)dz = \lim_{\max|\Delta Z_{k}| \xrightarrow{(n \to 0)}} \sum_{k=1}^{n} f(C_{k}) \Delta Z_{k}$$

Покажемо що якщо L – гладка крива, а f(z) –неперервна і однозначна ф-я, то інтерал існує. Дійсно нехай $f(z) = u(x;y) + iv(x;y), z = x + iy, C_k = \hat{x}_k + i\hat{y}_k$ тоді $f(C_k) = u(\hat{x}_k; \hat{y}_k) + iv(\hat{x}_k; \hat{y}_k),$ $\Delta z_k = (x_k + iy_k) - (x_{k-1} + iy_{k-1}) = \Delta x_k + i\Delta y_k$ тому $\sum_{k=1}^{n} f(C_k) \Delta Z_k = \sum_{k=1}^{n} u(\hat{x}_k; \hat{y}_k) + iv(\hat{x}_k; \hat{y}_k) \cdot (\Delta x_k + i\Delta y_k) =$ $\sum_{k=1}^{n} (u(\hat{x}_k; \hat{y}_k) \Delta x_k - v(\hat{x}_k; \hat{y}_k) \Delta y_k) + i \sum_{k=1}^{n} (v(\hat{x}_k; \hat{y}_k) \Delta x_k - v(\hat{x}_k; \hat{y}_k) \Delta x_k) + i \sum_{k=1}^{n} (v(\hat{x}_k; \hat{y}_k) \Delta x_k) + i \sum_{k=1}^{n} (v(\hat{x$ $u(\hat{x}_k; \hat{y}_k) \Delta y_k$

Обидвісумми, що знаходяться в правій частині останньої рівності, являються інтегральними суммами для відповідних криволінійних інтегралів. При зроблених припущеннях про криву L і функції f(z) границі цих сумм існують. Тому при переході до границі в останній рівності при $\max |\Delta z_k| \to 0$ отримаємо $\int_{L} f(z)dz = \int_{L} udx - vdy + i \int_{L} vdx + udy$ Остання формула показує що обчислення комплексних інтегралів зводиться до обчислення криволінійих інтегралів в дійсній площині. Можназаписати у вигляді $\int_L f(z)dz = \int_L (u+iv)(dx+idy)$ Якщо z=z(t)=x(t)+iy(t) то можна записати у вигляді $\int_{L} f(z)dz = \int_{L} (u + iv)(dx + idy) = \int_{t_{1}}^{t_{2}} (u + iv)(x'_{t} + y'_{t})dt =$ $\int_{t_1}^{t_2} f(z(t)) z'(t) dt$

Основні власт. Інттегр функ коплекс змінної 1. $\int_L dz = z - z0$

2. $\int_{L} (f1(z) \pm f2(z))dz = \int_{L} f1(z)dz \pm \int_{L} f2(z)dz$

3. $\int_{L} af(z)dz = a \int_{L} f(z)dz$ а-комплексне
4. $\int_{L} f(z)dz = -\int_{L-} f(z)dz$ 5. $\int_{L} f(z)dz = \int_{L_{1}} f(z)dz + \int_{L_{2}} f(z)dz$

18. Теорема Коші для однозв'язної області

Якщо ф-я f(z) аналітична в однозв'язній обл. D, то інтеграл від цієї ф-ї по будь-якому замкнутому контуру L, що лежить обл. D, рівний нулю $\int f(z)dz = 0$.

Доведення: Припустимо що похідна f'(z) неперервна. Маємо

$$\int_{L} f(z)dz = \int_{L} udx - vdy + i \int_{L} vdx + udy$$
. В силу аналітичності $f(z) = u + iv$ і

неперервності f'(z) в однозв'язній обл. D, то ф-ї u=u(x;y) і v=v(x;y) неперервні і диференційовні в цій обл. і задовольняють умовам Коші-

Рімана: $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. Ці умови означають рівність нулю інтегралів

$$\int_{L} u dx - v dy$$
 і $\int_{L} v dx + u dy$. Звідси слідує, що $\int_{L} f(z) dz = 0$.

19. Ряд Тейлора(ФКЗ). Формула Коші для похідної.

<u>Теорема:</u> $\sum_{1}^{\infty} Cn(z-z_0)^n$ – аналітична ф-ія. Область збіжності цього ряду – круг: $|z-z_0| < R$

<u>Теорема:</u> якщо f(z) - аналітична в області : $|z - z_0| < R$, то ії можна представити у вигляді:

$$f(z) = \sum_{1}^{\infty} Cn(z-z_0)^n$$
. Цей ряд – ряд Тейлора, бо $Cn = \frac{f^{(n)}(z_0)}{n!}$

Доведення: Запишемо інтегральну формулу Коші:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Розкладемо в степеневий ряд ф-цію, користуючись формулою неск. Складної геометричної прогресії:

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0 - (z - z_0)} = \frac{1}{\zeta - z_0} * \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \sum_{0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}$$

Підставимо цей ряд в інтеграл та про інтегруємо його почленно. Одержимо:

лочленно. Одержимо:
$$f(z) = \frac{1}{2\pi i} \left(\int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \right) * (z - z_0)^n$$

$$c_{n=}\frac{1}{2\pi i}\int_{V}\frac{f(\zeta)}{(\zeta-z)^{n+1}}d\,\zeta$$

<u>Наслідок:</u> Якщо порівняти коефіцієнти з різних формул, одержимо формулу Коші для похідної:

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} \, dz$$

20. Класифікація ізольованих особливих точок ф-ї.

Особливі точки аналітичної ф-ї:

 z_0 — називається ізольованою особливою точкою аналітичної ф-ї f(z), якщо в точці z_0 вона не є аналітичною, але існує окіл в кожній точці якого f(z) — аналітична.

Класифікація особливих точок:

1)Усувний

$$\exists \lim_{z \to z_0} f(z).$$

$$\lim_{z\to z_0} \frac{\sin z}{z} = 1.$$

$$\lim_{z \to 0} \frac{z - \frac{z^3}{3!} + \dots}{z} = 1.$$

2)Полюс

$$\exists \lim_{z \to z_0} f(z) = \infty$$

$$f(z)=1/z; z_0=0-$$
 полюс

3)Істотно-особлива:

$$\exists \lim_{z \to z_0} f(z).$$

$$f(z) = \sin \frac{1}{z}, z_0 = 0 -$$
істотно-особлива.

4)Полюс має порядок.

Кажуть, що z_0 – полюс порядка n, якщо

$$\lim_{z\to z_0} f(z) = \lim_{z\to z_0} f(z)\cdot (z-z_0) =$$

$$\lim_{z \to z_0} f(z) (z - z_0)^2 = \dots = \lim_{z \to z_0} f(z) (z - z_0)^{n-1} = \infty;$$

$$\lim_{z\to z_0} f(z) (z-z_0)^n \neq 0;$$

Характер особливої точки залежить від вигляду ряда Лорана ф-ї f(z) в околі точки z_0 .

<u>Теорема:</u> якщо z_0 – усувна, то ряд Лорана має вигляд

$$\frac{1}{f(z)=\sum_{n=0}^{\infty}c_n\cdot(z-z_0)^n}$$

Дов-ня: покажемо, що коефіцієнти : $c_{-1}=c_{-2}=...=0$

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{(z-z_0)^{n+1}}$$

Нехай ү – це коло радіуса г:

$$|z-z_0|=r$$

Оскільки існує $\lim f(z) \Rightarrow |f(z)| < M$

$$\left|\int_{\gamma} \frac{f(z)dz}{(z-z_0)^{n+1}}\right| \leq M \int_{\gamma} \frac{dl}{r^{n+1}} = \frac{M}{r^{n+1}} \int_{L} dl = \frac{M}{r^{n+1}} \cdot 2\pi r = \frac{2M\pi}{r^{n}} \xrightarrow{r \to \infty} 0 \Rightarrow c_n = 0,$$

$$0,$$

$$0,$$

21. Ряд Лорана. аналітична в кільці

Ряд Лорана

Нехай f(z) — аналітична в кільці: $r < |z - z_0| < R =$ $f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$ - цей ряд наз. Рядом Лорана

Ряд Лорана має дві частини:

$$\sum_{n=0}^{+\infty} c_n (z - z_0)^n + \sum_{n=-\infty}^{-1} c_n (z - z_0)^n$$

Правильна

Коефіціенти знаходяться за формулами:
$$c_n = \frac{1}{2\pi i} \oint \frac{f(z)dz}{(z-z_0)^{n+1}}, \qquad z < \rho < R, \qquad |z-z_0| = \rho$$

Доведення: розглянемо кільце, яке лежить всередині нашого кільця:

$$r < r_1 < |z - z_0| < R_1 < R$$

 $L: |z - z_0| = R_1$
 $l: |z - z_0| = r_1$

Розглянемо довільну точку Z всередині кільця:

За узагальненою теоремою Коші:

$$\int_{L} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{l} + \int_{\gamma}$$

$$\int_{\gamma} = \int_{L} + \int_{l}$$

$$\begin{split} l: \frac{1}{\zeta - z} &= \sum_{n=0}^{\infty} \frac{(\zeta - z_0)^{n-1}}{(z - z_0)^n}; \ z, z_0 - \ \phi$$
іксовані
$$L: \frac{1}{\zeta - z} &= -\sum_{n=0}^{\infty} \frac{(z - z_0)^{n-1}}{(\zeta - z_0)^{n+1}}; \end{split}$$

Підставимо ці ряди в інтеграли. Проінтегруємо почленно і за інтегрально формулою Коші:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n = -\infty}^{+\infty} c_n (z - z_0)^n$$

22. Лишки, їх обчислення. Обчислення лишків в полюсі.

Якщо z_0 – особлива точка ф-ції $f(z_0)$, толишок f(z) в точці z_0 – це число, яке позначається $\operatorname{Res}(f(z);z_0) \equiv \operatorname{res}_{z=z_0} f(z) = \frac{1}{2\pi i} * \oint_{\gamma}^{0} f(z) dz$, де γ -коло з центром в z_0 .

Очевидно, що коли f(z) – аналітична в точці z_0 , то її лишок в цій точці =0.

Теорема Коші

Якщо функція f(z) є аналітичною в замкненій області D, обмежена контуром L, за винятком скінченного числа особливих точок $z_k(k=1,2,3...)$, що лежать в середині області

$$\oint_L f(z)dz = 2\pi i \sum_{k=1}^n Res f(z_k)$$

Дов-ня

<u>Навколо кожної особливої точки \mathbf{z}_k опишемо</u> кого l_k так, щоб вона повністю містилась в області D, не містила всередині інших особливих точок і щоб ніякі з цих кіл не мали спільних точок.

Тоді за теоремою Коші для багато зв'язної області маємо:

$$\oint_L f(z)dz = \oint_{i_1} f(z)dz + \oint_{i_2} f(z)dz + \cdots$$

Де при інтегруванні всі контури обходяться проти годинникової стрілки

$$\oint_{\Omega} f(z)dz = 2\pi i \operatorname{Res} f(z1)$$

$$\oint_{12} f(z)dz = 2\pi i \operatorname{Res} f(z2) \dots \dots i m \partial$$

$$\oint\limits_{iz} f(z)dz = 2\pi i \ \mathop{Res} f(z2) \dots \dots i \ m \ \partial$$
 Відповідно
$$\oint\limits_{L} f(z)dz = 2\pi i \ \mathop{Res} f(z1) + 2\pi i \mathop{Res} f(z2) + \cdots$$

$$\oint_{\mathbb{R}} f(z)dz = 2\pi i \sum_{k=1}^{n} Res f(z_k) \qquad \blacktriangle$$

Обчилення лишків

- 1)Усувна res(f(z))=0
- 2) Полюс
 - А) порядок N=1

Представимо ∮ у вигляді ряду Лорана:

$$f(z) = \frac{c_{-1}}{z - z_0} + c_0 + \sum_{n=1}^{\infty} c_n (z - z_0)^n$$

$$\lim_{z \to z0} f(z) * (z - z0) = c_{-1}$$

$$res_{z=z0}(f(z)) = \lim_{z \to z0} f(z) * (z - z0)$$

Б) N>1 (порядок полюса)

$$f(z) = \frac{c_{-N}}{(z-z0)^N} + \frac{c_{-N+1}}{(z-z0)^{N+1}} + \dots + \frac{c_{-1}}{(z-z0)^1} \pm \sum_{n=0}^{\infty} c_n (z-z0)^n$$

Помножимо рівність на
$$(z-z0)^n$$
 $f(z)*(z-z0)^{N-1}=c_{-N}+c_{-N+1}(z-z0)+\cdots+c_{-1}(z-z0)^{N-1}+\cdots$ Продиференціюєм N-1 раз, отримаємо:

$$res_{z=z0}f(z) = \frac{1}{(N-1)!} * \lim_{z \to z0} \frac{d^{N-1}}{dz^{N-1}} (f(z) * (z-z0)^N)$$

23. Означення функції-оригіналу. Означення перетворення Лапласа. Теорема існування. Необхідна умова існування зображення.

- Ф-я f(t) називається оригіналом, якщо вона задовольняє наступним вимогам:
- o f(t) = 0, t < 0
- о f(t) неперервна при $t \ge 0$ за винятком можливо скінченої кількості точок розриву першого роду на кожному скінченому інтервалі
- \circ існують такі числа A > 0, $M \ge 0$, що $|f(t)| \le Ae^{Mt}$

Означення: інтегральний оператор, який переводить функцію-оригінал f(t) у функцію-зображення F(p), визначену за допомогою інтеграла Лапласа $(F(p) \leftarrow f(t)e^{-pt}dt)$ називається оператором або перетворенням Лапласа.

Теорема проіснування зображення. Для всякого оригіналу f(t) зображення F(p) існує в півплощині Re $p = s > s_0$, де s_0 -показник росту функції f(t), причому ф-я F(p) є аналітична в цій півплощині $(s > s_0)$

Доведення першої частини теореми. Нехай $p = s + i\sigma$ довільна точка півплощини Re $p = s > s_0$.

Враховуючи що $|f(t)| \le M \cdot e^{s_0 t}$ знаходимо:

$$\left| \int_{0}^{\infty} f(t) \cdot e^{-pt} dt \right| \leq \int_{0}^{\infty} |f(t) \cdot e^{-pt}| dt \leq M \int_{0}^{\infty} e^{s_0 t} \cdot |e^{-pt}| dt = M \int_{0}^{\infty} e^{s_0 t} \cdot e^{-st} dt = M \int_{0}^{\infty} e^{-(s-s_0)t} dt = \frac{M}{s-s_0},$$

Так як $s-s_0>0$ і $|e^{-pt}|=|e^{-st}\cdot e^{-i\sigma t}|=e^{-st}\cdot |\cos\sigma t-i\sin\sigma t|=e^{-st}$. Таким чином

$$|F(p)| = \left| \int_{0}^{\infty} f(t) \cdot e^{-pt} dt \right| \le \frac{M}{s - s_0}$$
. Звідси випливає абс. Збіжність інтегралу

 $F(p) = \int_0^\infty f(t) \cdot e^{-pt} dt$, тобто зображення F(p) існує і однозначне в півплощині $\operatorname{Re} p = s > s_0$.

 $Heoбxiдна\ умова\ існування\ зображення.$ Якщо ф-я F(p) являє собою зображення ф-ї f(t), то $\lim F(p) = 0$ при $p \to \infty$. Це твердження витікає безпосередньо з нерівності $|F(p)| = \left|\int_0^\infty f(t) \cdot e^{-pt} dt\right| \le \frac{M}{s-s_0}$, коли $\operatorname{Re} p = s \to +\infty$. Так як F(p)-аналітична ф-я в півплощині $\operatorname{Re} p > s_0$, то $f_2(t)$ при $p \to \infty$ по любому напрямку.

24-27 Властивості перетворення Лапласа

- лінійність: нехай $f_1(t)$ Ђ $F_1(p); f_2(t)$ Ђ $F_2(p)$, тоді $\alpha f_1(t) + \beta f_2(t)$ Ђ $\alpha F_1(p) + \beta F_2(p)$ випливає з лінійності інтеграла
- подібність: нехай f(t) То F(p), тоді $f(\alpha t)$ То $\frac{1}{\alpha}F\left(\frac{p}{\alpha}\right)$ Доведення: $\int_{0}^{+\infty} f(\alpha t)e^{-pt}dt = \begin{vmatrix} \tau = \alpha t \\ dt = \frac{1}{\alpha}d\tau \end{vmatrix} = \int_{0}^{+\infty} f(\tau)e^{-\frac{p}{\alpha}\tau} \frac{1}{\alpha}d\tau = \frac{1}{\alpha}F\left(\frac{p}{\alpha}\right)$
- зсуву: нехай f(t) Ђ F(p) о̀і ä³ $f(t)e^{-pt}$ Ђ $F(p-\alpha)$ Доведення: $\int_{0}^{+\infty} f(\alpha t)e^{\alpha t}e^{-pt}dt = \int_{0}^{+\infty} f(t)e^{-(p-\alpha)t}dt = F(p-\alpha)$
- запізнення: f(t) Ђ F(p) о̀і ä³ $f(t-\alpha)\eta(t-\alpha)$ Ђ $F(p)e^{-\alpha p}$ Доведення:

$$\int_{0}^{\infty} f(t-a)\eta(t-a)e^{-pt}dt = \int_{0}^{\infty} f(t-a)e^{-pt}dt = \begin{vmatrix} \tau = t - a \\ d\tau = dt \end{vmatrix} = \int_{0}^{\infty} f(\tau)e^{-p(\tau+a)}d\tau = e^{-ap}\int_{0}^{\infty} f(\tau)e^{-p\tau}d\tau$$

• диференціювання оригіналу:

$$f(t)$$
 To $F(p)$ of $\ddot{a}^3 f'(t)$ To $pF(p) - f(0)$
$$f^{(n)}(t)$$
 To $p^nF(p) - p^{n-1}f(0) - p^{n-2}f'(0) - \dots - f^{(n-1)}(0)$

Доведення:

$$\int_{0}^{+\infty} f'(t)e^{-pt}dt = \begin{vmatrix} u = e^{-pt} & du = -pe^{-pt}dt \\ dv = f'(t)dt & v = f(t) \end{vmatrix} = f(t)e^{-pt}\Big|_{0}^{+\infty} + p\int_{0}^{+\infty} f(t)e^{-pt}dt = pF(p) - f(0)$$

ullet диференціювання зображення: f(t) Ђ F(p) õi ä (-t)f(t) Ђ F'(p) $(-t)^n f(t)$ Ђ $F^{(n)}(p)$

Доведення:
$$F(p) = \int_{0}^{+\infty} f(t)e^{-pt}dt$$
 õi ä $F'(p) = \int_{0}^{+\infty} f(t)(-t)e^{-pt}dt$

інтегрування оригіналу: f(t) Ђ F(p) õî ä³

$$\int_{0}^{t} f(\tau)d\tau \operatorname{B} \int_{0}^{+\infty} \left(\int_{0}^{t} f(\tau)d\tau \right) e^{-pt}dt = \begin{vmatrix} u = \int_{0}^{t} f(\tau)d\tau & du = f(t)dt \\ dv = e^{-pt}dt & v = -\frac{1}{p}e^{-pt} \end{vmatrix} = -\frac{1}{p}e^{-pt} \int_{0}^{t} f(\tau)d\tau \Big|_{0}^{+\infty} + \frac{1}{p} \int_{0}^{+\infty} f(t)e^{-pt}dt = \frac{F(p)}{p}$$

інтегрування зображення: f(t) Ђ F(p) о̂ а̀ з $\frac{f(t)}{t}$ Ђ $\int_{0}^{\infty} F(\pi) d\pi$ випливає з властивості диференціювання зображення.

28. Теорема Бореля. Згортка функцій. Зображення згортки.

Теорема Бореля: Зображення згортки оригіналів дорівнює добутку їх зображень.

$$\int_{0}^{+\infty} \left(\int_{0}^{t} f_{1}(\tau) f_{2}(t-\tau) d\tau \right) e^{-pt} dt = \int_{0}^{+\infty} \int_{0}^{t} f_{1}(\tau) e^{-p\tau} d\tau f_{2}(t-\tau) e^{-p(t-\tau)} dt = |t-\tau| = u| = \int_{0}^{+\infty} f_{1}(\tau) e^{-p\tau} d\tau \int_{0}^{+\infty} f_{2}(u) e^{-pu} du$$

Інтеграл вигляду $\int\limits_0^{\cdot} f_1(\tau) f_2(t-\tau) d\tau$ називають згорткою функцій $f_1(t)$ та $f_2(t)$ і позначають $f_1(t)*f_2(t)$. Зображення згортки ф-й відповідно до теор. Бореля: $f_1(t) * f_2(t)$ Ђ $F_1(p)F_2(p)$

Згортка ф-й має властивість комутативності та асоціативності.

29. Інтеграл Дюамеля. Зображення періодичного сигналу.

Якщо $f_1(t)$ Ђ $F_1(p)$; $f_2(t)$ Ђ $F_2(p)$, то оригінал зображення $pF_1(p)F_2(p)$

має вигляд $f_1(0)f_2(t)+\int_1^t f_1'(\tau)f_2(t-\tau)d\tau$ - формула (інтеграл) Дюамеля.

Доведення: Спираючись на теорему про диференціювання зображення отримаємо:

$$+f_{1}(0)f_{2}(t) \, \varsigma \, \hat{\mathbf{1}} \, \hat{\mathbf{a}} \, \hat{\mathbf{1}} \, \hat{\mathbf{a}} \, \hat{\mathbf{0}} \,$$

 $pF_1(p)F_2(p) = (pF_1(p))F_2(p) = (pF_1(p) - f_1(0))F_2(p) + f_1(0)F_2(p) \text{ To } (f_1'(t) * f_2(t)) - f_1(0)F_2(p) = (f_1(p) - f_1(0))F_2(p) + f_1(0)F_2(p) = (f_1(p) - f_1(p) - f_1(p))F_2(p) = (f_1(p) - f_1(p) - f_1(p))F_2(p) + f_1(p) = (f_1(p) - f_1(p) - f_1(p))F_2(p) = (f_1(p) - f_1(p) - f_1(p))F_2(p) = (f_1(p) - f_1(p) - f_1(p))F_2(p) + f_1(p) = (f_1(p) - f_1(p) - f_1(p))F_2(p) = (f_1(p) - f_1(p) - f_1(p) - f_1(p) - f_1(p) = (f_1(p) - f_1(p) - f_1(p) - f_1(p) - f_1(p)$

В результаті маємо два інтеграли Дюамеля:

$$f_{1}(0)f_{2}(t) + \int_{0}^{t} f_{1}'(\tau)f_{2}(t-\tau)d\tau \qquad f_{1}(t)f_{2}(0) + \int_{0}^{t} f_{1}(\tau)f_{2}'(t-\tau)d\tau$$

Нехай оригінал f(t) ϵ ф-я періодична з періодом T . Тоді

$$F(p) = \int_{0}^{+\infty} f(t)e^{-pt}dt = = \int_{0}^{T} f(t)e^{-pt}dt + \int_{T}^{2T} f(t)e^{-pt}dt + \dots =$$

Позначимо інтеграл $\int_{0}^{T} f(t)e^{-pt}dt = F_{1}(p)$ і зауважимо, що

$$\int_{nT}^{(n+1)T} f(t)e^{-pt}dt = \begin{vmatrix} \tau = t - nT \\ d\tau = dt \\ t = \tau + nT \end{vmatrix} = \int_{0}^{T} f(\tau + nT)e^{-p(\tau + nT)}d\tau = \int_{0}^{T} f(\tau)e^{-p\tau}e^{-pnT}d\tau = e^{-npT}F_{1}(p)$$

$$=\frac{F_1(p)}{1-e^{-pT}}$$

30. Формула Рімана-Мелліна

Теорема Якщо ф-я F(p) - зображення ф-ї-оригіналу f(t), то f(t) може бути знайдена за формулою $f(t) = \frac{1}{2\pi i} \int_{y-i\infty}^{y+i\infty} F(p) e^{pt} dp$

Ця рівність має місце в кожній точці, в якій f(t) неперервна. В точках разриву ф-ї f(t) значення правої частини рівне : $\frac{f\left(t-0\right)+f\left(t+0\right)}{2}$

Інтеграл в правій частині формули називають інтегралом Мелліна; інтегрування може проводитись по любій вертикальній прямій $p = \sigma + i \omega$, $\sigma = \text{const} > \sigma 0$, $-\infty < \omega < \infty$, і інтеграл розуміється в смислі головного значення:

$$\int\limits_{\gamma-i\infty}^{\gamma+i\infty}F\left(p\right)e^{pt}dp=\lim_{\omega\to+\infty}\int\limits_{\gamma-i\omega}^{\gamma+i\omega}F\left(p\right)e^{pt}dp\;.$$

Доведення:

Запишемо інтеграл Фур ϵ для функції: $e^{-st} \cdot f(t)$

$$(p = S + iy), S = \text{Re } p$$

$$e^{-st} \cdot f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{yt} dy \int_{0}^{\infty} e^{-s\tau} \cdot F(\tau) \cdot e^{-y\tau i} d\tau$$

Помножимо ліву і праву частину на e^{st}

$$f(t) = \frac{1}{2\pi i} \int e^{(s+yt)t} dy \cdot \int_{0}^{+\infty} e^{-(S+yi)t} \cdot f(\tau) d\tau.$$

Зробимо заміну:

$$S + iy = p, (S - const)$$

$$dy = \frac{dp}{i} \rightarrow (формула*)$$

Інтегрування ведеться вхдовж вертикальної прямої.

Знаходження орифіналів за допомогою лишків.

Теорема: в умовах виконання теореми (формули Рімана-Меліна):

$$f(t) = \sum_{k=1}^{n} Res(F(p)e^{pt})$$
 p_k -особливі точки $\neq p$

Доведення

Оскільки відомо, що F(p)-аналітична в півплощині $\operatorname{Re} p > S_0$ Розглянемо коло з центром в точці 0, такого великого радіуса, щоб в нього попали точки \mathcal{P}_n

Розглянемо замкнутий контур:

$$\gamma = CUL$$

За теоремою лишки:

$$\int_{\gamma} F(p)e^{pt}dp = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{p=p_{k}} (F(p)e^{pt})$$

$$\int_{\gamma} \cdot \int_{c} + \int_{c}$$

Лема Жордана: якщо $F(p) \xrightarrow{p \to \infty} 0$ рівномірно відносно р, тоді:

$$\int F(p)e^{pt}dp \xrightarrow{|p|\to\infty} O \ (t>o)$$

Отже за лемою Жордана:

$$\int_{c} \longrightarrow 0; \int_{L} \longrightarrow \int_{S-i\infty}^{S+i\infty}$$

CreateByVova