Dongyun Lee

ID: 112794190

Lab6: Testbenches for Combinational Designs

ESE382-L01

Bench #4

```
1
2
   -- Title : control_route_mux
-- Design :
-- Author : Dongyun Lee
-- Company : Stony Brook University
3
4
5
7
   ______
8
9
10 -- File : \\Mac\Home\Documents\Aldec_Codes\test\test\src\test.vhd
11 -- Generated : 2024-03-04 15:00:00
12 -- From : interface description file
13 -- By : Itf2Vhdl ver. 1.22
14 --
15
   ______
16
17 -- Description : using structual style
18
   ______
19 library ieee;
20 use ieee.std logic 1164.all;
21
22 entity route is
23 port(
24
      a : in std logic;
25
         ae : in std_logic;
26
         b : in std_logic;
         be : in std_logic;
27
          y : out std_logic
28
29
      );
30
31 end route;
32
33 architecture bool of route is
34 begin
35
       y <= not ((a and ae) or (b and be));
36 end bool;
37
38
39 library ieee;
40 use ieee std logic 1164.all;
41
42 entity control is
43
   port(
44
          gn, an : in std_logic;
45
          c0, c1 : out std_logic
46
      );
47 end control;
48
49 architecture csop of control is
50 begin
51
      c0 <= not gn and not an;
52
      c1 <= not gn and an;</pre>
53 end csop;
```

```
54
55
56 library ieee;
57 use ieee.std logic 1164.all;
58 use work.all;
59
60 entity data selector is
61
      port(
62
        a1, b1, a2, b2, gn, an : in std logic;
63
        y1, y2 : out std_logic
64
      );
65
        attribute loc : string;
66
        attribute loc of gn : signal is "P3";
        attribute loc of an : signal is "P4";
67
68
        attribute loc of a2 : signal is "P14";
69
        attribute loc of al : signal is "P15";
        attribute loc of b2 : signal is "P16";
70
        attribute loc of b1 : signal is "P17";
71
72
        attribute loc of y2 : signal is "P43";
        attribute loc of y1 : signal is "P42";
73
74 end data selector;
75
76 architecture structural of data selector is
77
      signal s1, s2 : std_logic;
78 begin
79
      u1: entity control port map (gn => gn, an => an, c0 => s1, c1 => s2);
80
      u2: entity route port map (a \Rightarrow a1, ae \Rightarrow s1, b \Rightarrow b1, be \Rightarrow s2, y \Rightarrow y1
    );
      u3: entity route port map (a \Rightarrow a2, ae \Rightarrow s1, b \Rightarrow b2, be \Rightarrow s2, y \Rightarrow y2
81
82
   end structural;
83
```

```
1
2
   -- Title : control_route_mux_tb
-- Design : testbench
-- Author : Dongyun Lee
-- Company : Stony Brook University
3
7
   ______
8
9
10 -- File : \\Mac\Home\Documents\Aldec_Codes\test\test\src\test.vhd
11 -- Generated : 2024-03-04 15:00:00
12 -- From : interface description file
13 -- By : Itf2Vhdl ver. 1.22
14 --
15
   ______
16
17 -- Description : for loop 0 to all 1
18 ------
19
20 library IEEE;
21 use IEEE.STD LOGIC 1164.ALL;
22 use ieee.numeric std.all;
23 use work.all;
24
25 entity control route mux tb is
26 end control route mux tb;
27
28 architecture tb architecture of control route mux tb is
29
30
       -- Stimulus signals - signals mapped to the inputs of tested entity
31
       signal a2, a1, b2, b1, gn, an: std_logic;
32
       -- Observed signals - signals mapped to the outputs of tested entity
33
       signal y2, y1 : std_logic;
34
35 begin
36
   UUT : entity data selector
37
       port map (
38
              gn => gn, an => an, a2 => a2, a1 => a1, b2 => b2, b1 => b1, y2
   => y2, y1 => y1
39
          );
40
       verify: process
41
       begin
42
          for i in 0 to 2**6 - 1 loop
              (gn, an, a2, a1, b2, b1) <= std_logic_vector(to unsigned(i, 6
43
   ));
44
              wait for 10 ns;
45
46
          end loop;
47
          std.env.finish;
48
      end process verify;
49
50 end tb_architecture;
51
```


|------| |- ispLEVER Fitter Report File -| |- Version 2.1.00.02.49.20 -| |- (c)Copyright, Lattice Semiconductor 2002 -|

Project_Summary

Project Name: untitled

Project Path: F:\ESE382-Lab\Lab6\P_R
Project Fitted on: Wed Mar 06 10:31:05 2024

Device: M4A5-64/32 Package: 44PLCC

Speed: -10

Partnumber: M4A5-64/32-10JC

Source Format : EDIF

// Project 'untitled' was Fitted Successfully! //

Compilation_Times

~~~~~~~~~

Reading/DRC 0 sec
Partition 0 sec
Place 0 sec
Route 0 sec
Jedec/Report generation 0 sec

. ------

Fitter 00:00:00

#### Design\_Summary

~~~~~~~

Total Input Pins: 6
Total Output Pins: 2
Total Bidir I/O Pins: 0
Total Flip-Flops: 0
Total Product Terms: 4
Total Reserved Pins: 0
Total Reserved Blocks: 0

Device_Resource_Summary

Tot

Total

Available Used Available Utilization

Dedicated Pins

Input-Only Pins Clock/Input Pins 0% I/O Pins 24 --> 25% Logic Macrocells 64 2 62 --> 3% Input Registers 32 0 32 --> Unusable Macrocells 0

CSM Outputs/Total Block Inputs 132 6 126 --> 49

Logical Product Terms 320 4 316 --> 1%

Product Term Clusters 64 2 62 --> 3%

[]♠

Blocks_Resource_Summary

~~~~~~~~~~~~

# of PT

I/O Inp Macrocells Macrocells logic clusters
Fanin Pins Reg Used Unusable available PTs available Pwr

Maximum	33	 }	8	8		16	6 8	30 1	  6 -
Block A Block B Block C Block D	0 0 0 0 6	2 4 0 2	0	0 0	0 0 0 0	16 16 16 14	0 0 0 4	16 16 16 14	Hi Hi Hi Hi

<Note> Four rightmost columns above reflect last status of the placement process.

<Note> Pwr (Power) : Hi = High

Lo = Low.

#### Optimizer\_and\_Fitter\_Options

Pin Assignment: Yes
Group Assignment: No
Pin Reservation: No (1)
Block Reservation: No

@Ignore\_Project\_Constraints:
Pin Assignments: No
Keep Block Assignment
Keep Segment Assignment
Group Assignments: No

Macrocell Assignment : No Keep Block Assignment --Keep Segment Assignment

@Backannotate\_Project\_Constraints
Pin Assignments: No
Pin And Block Assignments: No

No

@Timing Constraints: No

Pin, Macrocell and Block:

@Global\_Project\_Optimization :
Balanced Partitioning : Yes
Spread Placement : Yes

Note:

Pack Design:

Balanced Partitioning = No Spread Placement = No

Spread Design:

Balanced Partitioning = Yes Spread Placement = Yes

@Logic\_Synthesis:

Logic Reduction: Yes
Node Collapsing: Yes
D/T Synthesis: Yes
Clock Optimization: No

Input Register Optimization: Yes XOR Synthesis: Yes Max. P-Term for Collapsing: 16 Max. P-Term for Splitting: 16 Max. Equation Fanin: 32 Keep Xor: Yes

@Utilization\_options

Max. % of macrocells used : 100 Max. % of block inputs used : 100 Max. % of segment lines used : Max. % of macrocells used:

@Import\_Source\_Constraint\_Option No

@Zero\_Hold\_Time No

@Pull\_up No

#H0 @User Signature

@Output\_Slew\_Rate Default = Fast(2)

@Power Default = High(2)

#### **Device Options:**

<Note> 1 : Reserved unused I/Os can be independently driven to Low or High, and does not follow the drive level set for the Global Configure Unused I/O Option.

<Note> 2: For user-specified constraints on individual signals, refer to the Output, Bidir and Burried Signal Lists.

[]♠

#### Pinout\_Listing

| Pin |Blk |Assigned|

Pin No  Type  Pad  Pin   Signal name						
1   GND   2   I_O   A	6   *  gr 5   *  ar 4     3     2     1     0                               	2 1 2				

```
22
      Vcc | |
23
      GND |
24
      I O | C7 |
25
      I_O | C6
26
      I_O | C5
27
      I_O | C4
28
      1 O | C3
29
      I O | C2
30
      I_O | C1 |
31
      I_O | C0 |
32
      JTAG | |
33
      CkIn | |
34
      GND |
35
      JTAG |
36
      I_O | D0 |
37
      I_O | D1 |
38
      I_O | D2 |
39
      I O | D3
      I_O | D4
40
41
      I O | D5
42
    | I O | D6 |
                    |y1
                    |y2
43
      1 O | D7 |
44
      Vcc | |
<Note> Blk Pad : This notation refers to the Block I/O pad number in the device.
<Note> Assigned Pin: user or dedicated input assignment (E.g. Clock pins).
<Note> Pin Type:
      CkIn: Dedicated input or clock pin
      CLK: Dedicated clock pin
      INP: Dedicated input pin
      JTAG: JTAG Control and test pin
      NC: No connected
Input_Signal_List
          PR
       Pin re O Input
Pin Blk PTs Type e s E Fanout Pwr Slew
                                           Signal
15 B . I/O
                  ---D
                        Hi Fast
                                  а1
14 B . I/O
                  ---D
                       Hi Fast
                                  a2
 4 A . I/O
                 ---D
                       Hi Fast
                                  an
17 B . I/O
                  ---D
                       Hi Fast
                                  b1
16 B . I/O
                  ---D
                       Hi Fast
                                  b2
 3 A . I/O
                 ---D
                       Hi Fast
                                  gn
<Note> Power : Hi = High
         MH = Medium High
         ML = Medium Low
         Lo = Low
[♠
Output_Signal_List
```

PR

Pin re O Output

```
Pin Blk PTs Type e s E Fanout Pwr Slew
                                       Signal
42 D 2 COM
                   ---- Hi Fast
                                 у1
43 D 2 COM
                  ---- Hi Fast y2
<Note> Power : Hi = High
        MH = Medium High
        ML = Medium Low
        Lo = Low
Bidir_Signal_List
         PR
      Pin re O Bidir
Pin Blk PTs Type e s E Fanout Pwr Slew Signal
<Note> Power : Hi = High
        MH = Medium High
        ML = Medium Low
        Lo = Low
Buried_Signal_List
         PR
      Pin re O Node
#Mc Blk PTs Type e s E Fanout Pwr Slew Signal
<Note> Power : Hi = High
        MH = Medium High
        ML = Medium Low
        Lo = Low
Signals_Fanout_List
Signal Source: Fanout List
     a1{ C}:
               y1{ D}
     b1{ C}:
               y1{ D}
     a2{ C}:
                y2{ D}
     b2{ C}:
                 y2{ D}
     gn{ B}:
                 y1{ D}
                              y2{ D}
    an{ B}:
                 y1{ D}
                              y2{ D}
<Note> {.} : Indicates block location of signal
Set_Reset_Summary
```

Block A block level set pt : block level reset pt : Equations :						
Block Block  Signal   Reg  Mode  Set  Reset  Name +++						
Block B block level set pt : block level reset pt : Equations :      Block Block Signal   Reg  Mode  Set  Reset  Name +++						
Block C block level set pt : block level reset pt : Equations :      Block Block  Signal   Reg  Mode  Set  Reset  Name ++++						
Block D block level set pt : block level reset pt : Equations :      Block Block Signal   Reg  Mode  Set  Reset  Name						

<Note> (S) means the macrocell is configured in synchronous mode

- i.e. it uses the block-level set and reset pt.
- (A) means the macrocell is configured in asynchronous mode
- i.e. it can have its independant set or reset pt.
- (BS) means the block-level set pt is selected.
- (BR) means the block-level reset pt is selected.

[]♠

## BLOCK\_D\_LOGIC\_ARRAY\_FANIN

~~~~~~	~~~~~	~~~~~	~~		
CSM	Signal	Source	CSM	Signal	Source
mx D0		m	x D17		
mx D1	gn	pin 3	mx D18		
mx D2		m	x D19		
mx D3	a2	pin 14	mx D20	b1	pin 17

mx D4		mx D21		
mx D5		mx D22		
mx D6	b2	pin 16 mx D23		
mx D7		mx D24	a1	pin 15
mx D8		mx D25		
mx D9		mx D26		
mx D10		mx D27		
mx D11		mx D28		
mx D12	an	pin 4 mx D29		
mx D13		mx D30		
mx D14		mx D31		
mx D15		mx D32		
mx D16				

<sup>&</sup>lt;Note> CSM indicates the mux inputs from the Central Switch Matrix.

PostFit\_Equations

~~~~~~~~~~~~~

## P-Terms Fan-in Fan-out Type Name (attributes)

| 2                        | 4               | 1 | Pin | y1- |  |  |  |
|--------------------------|-----------------|---|-----|-----|--|--|--|
| 2                        | 4               | 1 | Pin | y2- |  |  |  |
| ========                 |                 |   |     |     |  |  |  |
| 4                        | P-Term Total: 4 |   |     |     |  |  |  |
| Total Pins: 8            |                 |   |     |     |  |  |  |
| Total Nodes: 0           |                 |   |     |     |  |  |  |
| Average P-Term/Output: 2 |                 |   |     |     |  |  |  |

## Equations:

Reverse-Polarity Equations:

<Note> Source indicates where the signal comes from (pin or macrocell).  $\mathbb{I}_{\blacktriangle}$