Healthcare Capstone Project

Prateek Gharat S S K M Chaitanya PUSULURI

Project Objective

Hospital Compare includes information on over 100 quality measures and more than 4,000 hospitals. The primary objective of the Overall Hospital Quality Star Ratings project is to develop a statistically sound methodology for summarizing information from the existing measures on Hospital Compare in a way that is useful and easy to interpret for patients and consumers. Consistent with other CMS Star Rating programs, this methodology assigns each hospital between one and five stars, reflecting the hospital's overall performance on selected quality measures.

CMS intends for the Overall Hospital Quality Star Ratings to complement existing efforts, such as the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) star rating (implemented in April 2015), and will continue to report individual quality measures for stakeholders seeking more detailed information.

Approach to Grouping Measures

To calculate the Overall Hospital Quality Star Rating, the measures are categorized into **seven mutually exclusive** groups and 4 main **domains**.

- ❖ 1. Outcomes Mortality (7 measures)
- ❖ 2. Outcomes Safety of Care (8 measures)
- ❖ 3. Outcomes Readmissions (8 measures)
- ❖ 4. Patient Experience (11 measures)
- ❖ 5. Process Effectiveness of Care (18 measures)
- ❖ 6. Process Timeliness of Care (7 measures)
- ❖ 7. Efficiency Outpatient Imaging Use (5 measures)

These seven groups generally align with the categories on the Hospital Compare website, the CMS Hospital Value-Based Purchasing (VBP) Program, and other national quality initiatives.

Measures Grouping details

Readmission Measures	Imaging Measures	Timelycare Measures	Effectivecare Measures	Mortality Measures	Safetycare Measures	Patient Experience Measures
READM_30_AMI	OP_8	ED_1b	CAC_3	MORT_30_AMI	COMP_HIP_KNEE	H_CLEAN_LINEAR_SCORE
READM_30_CABG	OP_10	ED_2b	IMM_2	MORT_30_CABG	HAI_1_SIR	H_COMP_1_LINEAR_SCORE
READM_30_COPD	OP_11	OP_3b	IMM_3_OP_27_FAC_ADHPCT	MORT_30_COPD	HAI_2_SIR	H_COMP_2_LINEAR_SCORE
READM_30_HF	OP_13	OP_5	OP_4	MORT_30_HF	HAI_3_SIR	H_COMP_3_LINEAR_SCORE
READM_30_HIP_KNEE	OP_14	OP_18b	OP_22	MORT_30_PN	HAI_4_SIR	H_COMP_4_LINEAR_SCORE
READM_30_PN		OP_20	OP_23	MORT_30_STK	HAI_5_SIR	H_COMP_5_LINEAR_SCORE
READM_30_STK		OP_21	OP_29	PSI_4_SURG_COMP	HAI_6_SIR	H_COMP_6_LINEAR_SCORE
READM_30_HOSP_WIDE			OP_30		PSI_90_SAFETY	H_COMP_7_LINEAR_SCORE
			PC_01			H_HSP_RATING_LINEAR_SCORE
			STK_1			H_QUIET_LINEAR_SCORE
			STK_4			H_RECMND_LINEAR_SCORE
			STK_6			
			STK_8			
			VTE_1			
			VTE_2			
			VTE_3			
			VTE_5			
			VTE_6			

Process and Methodology

☐ Business Understanding:

• It deals with understanding the overall goal and input parameter functionality to achieve the desired output.

□ Data Understanding:

- Understanding the all the required files and extracting relevant columns to perform the model building and gain high accuracy.
- Reading of multiple files including Hospital General Information file and performing basic operation like checking the data type, shape, summary, outliers, missing values, etc. from data frame.
- Identifying the measure id and categorise as per the 7 mutually exclusive groups and creating a pivot table.

□ Data Cleaning:

- Replacement of Not Available values with nan and identifying the actual count of missing values from data.
- Deriving a new column to with the count of missing values in a row.
- Imputing the missing values with mean and checking for distribution of data.

☐ Data pre-processing:

 Using quantile transformation to transforms the features to follow a uniform or a normal distribution. Also this method reduces the impact of (marginal) outliers.

□ Exploratory data analysis (EDA):

- Plotting the various graphs to understand the distribution of data like overall star rating, count of hospitals as per state, type
 and ownership, national comparison, count of measure id with measure type.
- Normalization plots of measure groups to understand the overall behavior.
- Checking for the correlation between measure id for measure group.

☐ Model building and Evaluation:

- Splitting the dataset in train test and validation to perform model building.
- Clustering the dataset as per the CMS standards.
- Recommendations to improve the hospital star rating based modelling features.

Star Rating

Rating	Count	Percentage
3	1772	36.78%
Not Available	1170	24.28%
4	964	20.01%
2	684	14.20%
1	117	2.43%
5	111	2.30%

- It was found that 24% of hospital data has no star rating due to various reasons mentioned in footnotes.
- Out of all 4818 hospital listed 36.78% of the hospital has star rating of 3.
- 117 hospitals which have star rating of 1 should emphasize on improving there star rating.
- At the same time 2.30% of hospitals i.e. 111 hospital received 5 star rating and other hospitals should understand the quality of services provided by these 5 star hospitals.

Hospitals as per State

Hospitals As per Hospital Type

Hospital type with 3 rating

*Note: Hospital type Childrens has no ratings

Hospitals As per ownership

Hospitals As per availability of emergency services and overall rating

Hospitals As per National Comparison - Mortality

Hospitals Measure Id and Measure Groups

Distribution of Mortality Normalization

Distribution of Readmission Normalization

Distribution of Patient Experience Normalization

Distribution of Timeliness Normalization

Distribution of Effective care Normalization

Distribution of Safety Care Normalization

Distribution of Imaging Normalization

Correlations of Mortality Measure Id's

Correlations of Readmission Measure Id's

Correlations of Effective care Measure Id's

Correlations of Timely care Measure Id's

Correlations of Imaging Measure Id's

Correlations of Patient Experience Measure Id's

Modelling Process and Methodology

□ Data Preprocessing:

- Merging all the pivot table file to Master Data frame after dropping highly correlated variables to perform modelling.
- Defining of X features (Variables) and Y label (Output) from Master Data frame with shape of (3648, 57).
- Splitting the Master Data Frame in Train and Test in 70:30 to perform training and evaluation of model.

☐ Model Building 1 (Linear Regression):

- Using Recursive feature elimination (RFE) method that fits a model and removes the weakest feature (or features) until the specified number of features is reached.
- Using the statsmodels performing various iterative model of linear regression till optimum accuracy is reached.
- Checking for p-value and Variance Inflation Factor (VIF) for model evaluation.
- Dropping the variables with high VIF and p-value and performing multiple iterations.
- Evaluating the model on validation dataset and making the prediction and calculating R- Square score and Root Mean Square Error (RMSE) for the same.

☐ Model Building 2 (Random Forest):

- Random Forest model building with balanced class weight and fitting.
- Model Evaluation based on Accuracy Score, Sensitivity, Specificity, False Positive Rate, Positive Predictive Value,
 Negative Predictive Value and Misclassification Rate.
- Hyper-tuning the model based on max_depth, n_estimators, max_features, min_samples_leaf and min_samples_split and getting optimal accuracy score.
- Identifying the feature importance from Random Forest model.

☐ Model Building 3 (KMeans clustering):

- Calculating the Hopkins statistic and scaling the data frame with standard_scaler.fit_transform.
- Checking the **silhouette score** to identify the ideal number of clusters.
- Use of Factor Analysis to assign the weights for variables using Bartlett Test and KMO Test.
- Created different models with and without weighted variables.

Linear Regression Model

	OLS	Regressio				
Dep. Variable:	Hospital overal	======= l rating	R-squared:		0.	647
Model:	•	OLS	Adj. R-squar	red:	0.	645
Method:	Least	Squares	F-statistic:			9.9
Date:			Prob (F-stat		0	.00
Time:			Log-Likeliho		-180	4.9
No. Observations:		2553	_			42.
Df Residuals:		2537	BIC:		37	35.
Df Model:		15				
Covariance Type:	no	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	-1.6064	0.143	-11.234	0.000	-1.887	-1.326
READM 30 AMI			6.375		0.442	
READM 30 COPD	1.1120				0.920	1.304
READM 30 HF			14.698			
READM 30 STK	0.7046	0.100	7.062	0.000	0.509	0.900
OP 10	0.3924	0.090	4.346	0.000	0.215	0.569
VTE_1	-0.1818	0.050	-3.608	0.000	-0.281	-0.083
ED_1b	0.8168	0.088	9.277	0.000	0.644	0.989
MORT_30_AMI	0.6359	0.097	6.575	0.000	0.446	0.826
MORT_30_COPD	0.8276	0.100	8.304	0.000	0.632	1.023
MORT_30_HF	1.1045	0.104	10.591	0.000	0.900	1.309
MORT_30_STK	0.5180	0.099	5.256	0.000	0.325	0.711
PSI_4_SURG_COMP	0.3306	0.098	3.361	0.001	0.138	0.523
COMP_HIP_KNEE	0.5209	0.094	5.557	0.000	0.337	0.709
PSI_90_SAFETY	2.7168	0.092	29.425	0.000	2.536	2.898
H_COMP_5_LINEAR_SCOR	RE -2.6951	0.084	-32.167	0.000	-2.859	-2.531
Omnibus:			in-Watson:		2.014	
Prob(Omnibus):			ue-Bera (JB):	:	3.364	
Skew:		062 Prob			0.186	
Kurtosis:	3.1		. No.		36.1	

Linear Regression final model output with **R-square** as **64.7%** and **Adjusted R-square** as **64.5%**

Linear Regression Model

	Features	VIF
9	MORT_30_HF	29.15
2	READM_30_HF	28.35
3	READM_30_STK	27.00
0	READM_30_AMI	26.99
8	MORT_30_COPD	26.78
10	MORT_30_STK	26.03
1	READM_30_COPD	26.01
11	PSI_4_SURG_COMP	25.69
7	MORT_30_AMI	25.23
12	COMP_HIP_KNEE	22.73
13	PSI_90_SAFETY	21.70
4	OP_10	21.48
6	ED_1b	11.87
14	H_COMP_5_LINEAR_SCORE	11.14
5	VTE_1	5.91

Variance Inflation Factor (VIF) of Features

Linear Regression Model

```
c = [i for i in range(1,1096,1)]
fig = plt.figure()
plt.plot(c,y test, color="blue", linewidth=3.5, linestyle="-")
                                                                    #Plotting Actual
plt.plot(c,y pred, color="red", linewidth=3.5, linestyle="-")
[<matplotlib.lines.Line2D at 0x10689ba8>]
   3
             200
                    400
                           600
                                   800
                                         1000
from sklearn.metrics import r2 score
r2 score(y test, y pred)
0.6794482776221095
from sklearn import metrics
print('RMSE :', np.sqrt(metrics.mean squared_error(y_test, y_pred)))
  RMSE: 0.4829710956249968
```

Prediction results with R-square and RMSE value

Random Forest hyper-tuning parameters max_depth, n_estimators, max_features, min_samples_leaf and min_samples_split

```
4, 73, 334, 100,
         0, 2, 44, 199, 30],
            0, 1, 7, 27]], dtype=int64)
TP = confusion mat RF HP[1,1] # true positive
TN = confusion mat RF HP[0,0] # true negatives
FP = confusion mat RF HP[0,1] # false positives
FN = confusion mat RF HP[1,0] # false negatives
print('Accuracy Score on test data: ', accuracy score(y test,y pred RandomForestHP)*100)
print('Sensitivity: ', TP / float(TP+FN)*100) #Sensitivity
print('Specificity: ',TN / float(TN+FP)*100) #Specificity
print('False Postive Rate: ',FP/ float(TN+FP)*100) #FPR
print('Positive Predictive Value: ', TP / float(TP+FP)*100) #PPV
print('Negative Predictive Value: ',TN / float(TN+ FN)*100) #NPV
print('Misclassification Rate: ',(FN+FP)/(TP+TN+FP+FN)*100) #Misclassification rate
 Accuracy Score on test data: 69.68036529680364
 Sensitivity: 88.38383838383838
 Specificity: 75.67567567568
 False Postive Rate: 24.324324324324326
 Positive Predictive Value: 95.1086956521739
 Negative Predictive Value: 54.90196078431373
 Misclassification Rate: 13.617021276595745
```

	Variable	Importance
0	READM_30_HOSP_WIDE	0.276851
1	H_RECMND_LINEAR_SCORE	0.137570
2	PSI_90_SAFETY	0.132495
3	H_COMP_1_LINEAR_SCORE	0.109687
4	H_COMP_5_LINEAR_SCORE	0.041054
5	ED_1b	0.034307
6	MORT_30_PN	0.031073
7	READM_30_PN	0.025867
8	H_CLEAN_LINEAR_SCORE	0.021725
9	MORT_30_HF	0.016775
10	H_COMP_2_LINEAR_SCORE	0.015666
11	READM_30_HF	0.013603
12	H_QUIET_LINEAR_SCORE	0.010463
13	READM_30_COPD	0.009389
14	H_COMP_6_LINEAR_SCORE	0.009112

Optimal hyper parameter, confusion matrix and feature selection by random forest.

Distribution of important measures from Random forest.

Important feature selection by random forest.

K Means Clustering Model

```
fa_safe = FactorAnalyzer()
fa_safe.analyze(Safety_care_final,1,rotation=None)
# Check Eigenvalues
ev_safe, v_safe = fa_safe.get_eigenvalues()

fa_safe.loadings

Factor1

COMP_HIP_KNEE 0.007749

HAI_1_SIR 0.442793

HAI_2_SIR 0.543982

HAI_3_SIR 0.239016

HAI_5_SIR 0.127332

HAI_6_SIR 0.133557

PSI_90_SAFETY 0.212726
```

```
fa eff = FactorAnalyzer()
fa eff.analyze(Effective care final, 1, rotation=None)
# Check Eigenvalues
ev_eff, v_eff = fa_eff.get_eigenvalues()
fa eff.loadings
                           Factor1
                   IMM 2 -0.555497
IMM_3_OP_27_FAC_ADHPCT -0.059156
                  OP_22 0.167919
                   OP 23 -0.177656
                   OP 29 -0.247803
                   OP 30 -0.281945
                    OP 4 -0.223637
                   PC 01 0.289350
                   STK 1 -0.625569
                   STK 6 -0.549787
                   STK_8 -0.561562
                   VTE 1 -0.653347
                   VTE_2 -0.638255
                   VTE 3 -0.467893
                   VTE 5 -0.538655
                   VTE_6 0.340633
```

```
fa_time = FactorAnalyzer()
fa_time.analyze(Timely_care_final, 1, rotation=None)
# Check Eigenvalues
ev_time, v_time = fa_time.get_eigenvalues()

fa_time.loadings

Factor1
ED_1b   -0.672006
OP_18b   -0.788145
OP_20   -0.689165
OP_21   -0.604466
OP_5   -0.183985
```

```
fa_patient = FactorAnalyzer()
fa_patient.analyze(patient_experience_final,1, rotation=None)
# Check Eigenvalues
ev_patient, v_patient = fa_patient.get_eigenvalues()

fa_patient.loadings

Factor1

H_CLEAN_LINEAR_SCORE    -0.711852

H_COMP_1_LINEAR_SCORE    -0.920658

H_COMP_2_LINEAR_SCORE    -0.804131

H_COMP_5_LINEAR_SCORE    -0.860563

H_COMP_6_LINEAR_SCORE    -0.660535

H_QUIET_LINEAR_SCORE    -0.653838

H_RECMND_LINEAR_SCORE    -0.656614
```

```
Factor Analysis for clustering.
```

K Means Clustering Model

Error Sum of square, scatterplot of predicted rating, Dendrogram, cluster formation.

Recommendations

- ☐ Recommendations for Hospital EVANSTON HOSPITAL(140010):-
 - Readmission is lesser than overall average of the group, which means it is performing good in Readmissions.
 - Mortality should be lesser than overall group average and it's the same in our case.
 - Patient experience value should be above the Overall average but in our case it's lesser than the overall average of the group. So need an attention in improving patient experience.
 - Safety of care should be above overall group average for good hospital. In our case it's very less. So it needs an improvement.