"And I knew exactly what to do... but in a much more real sense, I had no idea what to **MATH 361** do." Spring 2024 HW 1: Due 02/01

— Michael Scott, The Office

Problem 1. (10pts) Showing all your work and fully justifying your reasoning, compute the following:

(a)
$$\lim_{x \to -6} \frac{x^2 + 3x - 18}{x^2 + 5x - 6}$$

(c)
$$\frac{d}{dx} \ln(x \cos x)$$

(b)
$$\lim_{n\to\infty} \frac{2n^2 - 35n + 17}{6n^2 + 19n - 49}$$

(d)
$$\int_0^1 \frac{x}{x+1} \ dx$$

Problem 2. (10pts) Recall that a sequence $\{a_n\}$ is increasing if $a_{n+1} \geq a_n$ for all n and the sequence is decreasing if $a_{n+1} \leq a_n$ for all n. A sequence $\{a_n\}$ is called bounded above (below) if there exists $M \in \mathbb{R}$ such that $a_n \leq M$ ($a_n \geq M$) for all n. The *Monotone Convergence Theorem* states the following: if $\{a_n\}$ is either increasing or decreasing, i.e. is 'monotone', and bounded above or below, respectively, then $\{a_n\}$ converges. Now consider the sequence with $a_0 = 2$ and given recursively via. . .

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{5}{a_n} \right)$$

- (a) Compute a_1, a_2, a_3 .
- (b) Compare your values in (a) to $\sqrt{5}$. What might you conjecture?
- (c) Explain why the Monotone Convergence Theorem implies that $\{a_n\}$ has a limit.
- (d) By (c), we know $L:=\lim_{n\to\infty}a_n$ exists. Taking the limit in both sides of the recursive definition for $\{a_n\}$, show that $L=\sqrt{5}$.

Problem 3. (10pts) The Intermediate Value Theorem states the following: if f(x) is continuous on [a,b] and f(a) < c < f(b), then there exists an $x_0 \in (a,b)$ such that $f(x_0) = c$. Consider the function $f(x) = x^2 - 3x + 4$ on the interval [-1,5].

- (a) Give a sketch of f(x) on the interval [-1, 6].
- (b) Explain why f(x) is continuous.
- (c) Explain why there is a $x_0 \in [-1, 6]$ such that $f(x_0) = 14$.
- (d) Find the $x_0 \in [-1, 6]$ such that $f(x_0) = 14$.

Problem 4. (10pts) The Mean Value Theorem states the following: if f(x) is continuous on [a,b] and differentiable on (a,b), then there exists $c \in (a,b)$ such that $f(b)-f(a)=f'(c)\big(b-a\big)$. Consider the function $f(x)=x^3+x^2-4x-5$. Find the values $c \in [-1,4]$ that satisfy the Mean Value Theorem.