

Examen partiel du 03/12/2020 Durée 1h30

Téléphones, calculettes et ordinateurs interdits.

Les seuls documents autorisés sont les formulaires des équivalences sur les expressions booléennes et des règles de la Déduction Naturelle.

Inscrire votre nom et votre numéro de groupe (ou jour) de TD sur votre copie.

Exercise 1 ((1,5+0,5+1,5+0,5)+(1,5+3,5)=9 points)

- 1. A partir de l'ensemble de symboles de variable $X = \{x, y, z\}$ et $\mathcal{F}_0 = \{a, b\}$ on définit la formule $F_1 \in \mathbb{F}(X, \mathcal{F}, \mathcal{P})$ suivante : $(\forall x ((p(a, x) \land q(y, x)) \Rightarrow \exists x \, p(x, b))) \lor ((\exists y \, p(x, y)) \land q(x, z))$
 - (a) Dessiner l'arbre de syntaxe abstraite de la formule F_1 .
 - (b) Donner l'ensemble $Free(F_1)$.
 - (c) Dire, pour chacune des occurrences de x, si elle est quantifiée universellement, existentiellement, ou pas quantifiée.
 - (d) Déterminer une clôture universelle de la formule F_1 .
- 2. On considère les symboles s_1 , s_2 , s_3 , s_4 , s_5 et s_6 appartenant à $X \cup \mathcal{F} \cup \mathcal{P}$ à partir desquels on définit la formule $F_2 \in \mathbb{F}(X, \mathcal{F}, \mathcal{P})$ suivante : $\exists s_3 ((s_1(s_2, s_3) \land s_4(s_5(s_2))) \Rightarrow \forall s_6 s_1(s_5(s_6), s_3))$.
 - (a) Quelles sont les formules atomiques apparaissant dans F_2 ?
 - (b) Déterminer à quels ensembles chacun des symboles s_1 , s_2 , s_3 , s_4 , s_5 et s_6 peut appartenir (c-à-d déterminer s'il peut s'agir d'un symbole de variable de X, d'un symbole de constante de \mathcal{F}_0 , d'un symbole de fonction de \mathcal{F} ou d'un symbole de prédicat de \mathcal{P}).

Exercice 2 (8+8=16 points)

Avec les règles de la déduction naturelle prouver les deux formules ci-dessous (on pourra utiliser les règles dérivées du formulaire).

$$(\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow (A \land B)) \qquad (A \lor (B \land C)) \Rightarrow ((B \Rightarrow A) \lor (A \Rightarrow C))$$

Exercise 3 (1+(2+2+2+1,5+1,5)=10 points)

- 1. Soient F_1 et F_2 deux formules de $\mathbb{F}_0(\mathcal{F}, \mathcal{P})$. Donner la définition mathématique de $F_1 \models F_2$.
- 2. Soient les formules F_1 et F_2 suivantes :

$$F_1 = (\neg A \lor A) \Rightarrow (B \Rightarrow A)$$

$$F_2 = (B \Rightarrow A) \Rightarrow (\neg A \lor A)$$

- (a) Etant donnée une structure \mathbf{M} , calculer les expressions booléennes $[F_1]^{\mathbf{M}}$ et $[F_2]^{\mathbf{M}}$ en fonction de $\mathbf{I}_{\mathbf{M}}(A)$ et $\mathbf{I}_{\mathbf{M}}(B)$ (sans effectuer de simplification).
- (b) En utilisant un raisonnement équationnel, simplifier les expressions booléennes $[F_1]^{\mathbf{M}}$ et $[F_2]^{\mathbf{M}}$ (indiquer à chaque étape le nom de l'équivalence utilisée).
- (c) Les formule F_1 et F_2 sont-elles satisfiables? valides? (justifier)
- (d) Soit la formule $F_3 = (B \Rightarrow A) \Leftrightarrow (\neg A \lor A)$, que pouvez-vous dire de $[F_3]^{\mathbf{M}}$? (justifier)
- (e) A-t-on $\neg F_2 \models F_1$? (justifier)

Exercice 4 (1+(1+3)+(3+3)=11 points)

Soit $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \mathcal{F}_2$ un ensemble de symboles de fonction où $\mathcal{F}_2 = \{ \otimes \}, \ \mathcal{F}_1 = \{ \odot \}$ et $\mathcal{F}_0 = \{ a, b \}$

- 1. Particulariser la définition de l'ensemble de termes $\mathcal{T}_0(\mathcal{F})$ pour l'ensemble $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \mathcal{F}_2$.
- 2. Soit la structure \mathbf{M}_1 suivante dfinie sur $\mathbb{N}, |\mathbf{M}_1| = \mathbb{N}$:

$$\begin{array}{lll} a^{\mathbf{M}_1} = 2 & \odot^{\mathbf{M}_1} : \mathbb{N} \to \mathbb{N} & \otimes^{\mathbf{M}_1} : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \\ b^{\mathbf{M}_1} = 4 & \odot^{\mathbf{M}_1}(n) = 2 * n & \otimes^{\mathbf{M}_1}(n_1, n_2) = n_1 * n_2 \end{array}$$

- (a) Calculer $[\otimes(\odot(b),a)]^{\mathbf{M}_1}$
- (b) Montrer que pour tout $t \in \mathcal{T}_0(\mathcal{F})$, il existe $n \in \mathbb{N}$ tel que $[t]^{\mathbf{M}_1} = 2^n$.
- 3. On considère maintenant l'ensemble des symboles de prédicat $\mathcal{P} = \{p\}$ contenant l'unique prédicat p d'arité 2 et la formule $F = p(\odot(a), \odot(b)) \Rightarrow (p(\otimes(a,b),a) \vee p(\otimes(a,b),b))$
 - (a) Définir une structure \mathbf{M}_2 telle que $[F]^{\mathbf{M}_2} = 1$. (justifier)
 - (b) Définir une structure \mathbf{M}_3 telle que $[F]^{\mathbf{M}_3} = 0$. (justifier)

Corrigé de l'examen partiel du 03/12/2020

► Corrigé de l'exercice 1.

(1.a). L'arbre de syntaxe abstraite de la formule F_1 est (les occurrences libres de variable sont encadrées, les autres occurrences sont liées):

- (1.b). Les occurrences libres de symboles de variables sont encadrées dans l'arbre précédent. On a donc $Free(F_1) = \{x, y, z\}.$
- (1.c). Dans p(a, x) et q(y, x), la variable x est quantifiée universellement ; dans p(x, b), elle est quantifiée existentiellement. Les deux autres occurrences de x ne sont pas quantifiées.
- (1.d). Clôture universelle de $F_1: \forall x \forall y \forall z F_1$
- (2.a). Les formules atomiques apparaissant dans F_2 sont $s_1(s_2, s_3)$, $s_4(s_5(s_2))$ et $s_1(s_5(s_6), s_3)$.
- (2.b). Le symbole s_3 est le premier symbole qui apparaît à droite du quantificateur \exists , c'est donc un symbole de variable de X. Le symbole s_6 est le premier symbole qui apparaît à droite du quantificateur \forall , c'est donc un symbole de variable de X.

Les symboles s_1 et s_4 sont les symboles de prédicat de \mathcal{P} des trois formules atomiques de F_2 ($s_1 \in \mathcal{P}_2$ et $s_4 \in \mathcal{P}_1$).

Le symbole s_5 admet pour argument s_2 pour former le terme $s_5(s_2)$ et s_6 pour former le terme $s_5(s_6)$: c'est donc un symbole de fonction de \mathcal{F} $(s_5 \in \mathcal{F}_1)$.

Il reste traiter le symbole s_2 . Il ne peut pas être un symbole de prédicat puisqu'il apparaît en argument du symbole de fonction s_5 . C'est un symbole sans argument qui peut donc être soit un symbole de variable de X (il s'agit alors d'une occurrence libre de ce symbole de variable), soit un symbole de constante de \mathcal{F}_0 .

► CORRIGÉ DE L'EXERCICE 2.

$$\begin{array}{|c|c|c|}\hline \langle 1 \rangle & \operatorname{montrons} \; (A \vee (B \wedge C)) \Rightarrow ((B \Rightarrow A) \vee (A \Rightarrow C)) \\ \hline \langle 2 \rangle & \operatorname{supposons} \; h_1 : A \vee (B \wedge C), \operatorname{montrons} \; (B \Rightarrow A) \vee (A \Rightarrow C) \\ \hline \langle 3 \rangle & \operatorname{montrons} \; A \vee (B \wedge C) \\ \hline \langle 3 \rangle & \operatorname{CQFD} \; (\operatorname{Ax} \; \operatorname{avec} \; h_1) \\ \hline \langle 4 \rangle & \operatorname{supposons} \; h_2 : A, \operatorname{montrons} \; (B \Rightarrow A) \vee (A \Rightarrow C) \\ \hline \langle 5 \rangle & \operatorname{montrons} \; B \Rightarrow A \\ \hline \langle 6 \rangle & \operatorname{cQFD} \; (I_{\Rightarrow}) \\ \hline \langle 4 \rangle & \operatorname{CQFD} \; (I_{g}^{g}) \\ \hline \langle 5 \rangle & \operatorname{supposons} \; h_3 : B \wedge C, \operatorname{montrons} \; (B \Rightarrow A) \vee (A \Rightarrow C) \\ \hline \langle 6 \rangle & \operatorname{montrons} \; A \Rightarrow C \\ \hline \langle 7 \rangle & \operatorname{supposons} \; h_4 : A, \operatorname{montrons} \; C \\ \hline \langle 8 \rangle & \operatorname{montrons} \; B \wedge C \\ \hline \langle 8 \rangle & \operatorname{cQFD} \; (\operatorname{Ax} \; \operatorname{avec} \; h_3) \\ \hline \langle 7 \rangle & \operatorname{CQFD} \; (E_{\wedge}) \\ \hline \langle 6 \rangle & \operatorname{CQFD} \; (I_{\Rightarrow}) \\ \hline \langle 2 \rangle & \operatorname{CQFD} \; (I_{\Rightarrow}) \\ \hline \langle 1 \rangle & \operatorname{CQFD} \; (I_{\Rightarrow}) \\ \hline \langle 1 \rangle & \operatorname{CQFD} \; (I_{\Rightarrow}) \\ \hline \langle 1 \rangle & \operatorname{CQFD} \; (I_{\Rightarrow}) \\ \hline \end{array}$$

► Corrigé de l'exercice 3.

(1). $F_1 \models F_2$ si et seulement si pour toute structure \mathbf{M} , si $[F_1]^{\mathbf{M}} = 1$ alors $[F_2]^{\mathbf{M}} = 1$. (2.a).

$$[F_{1}]^{\mathbf{M}} = \overline{[\neg A \lor A]^{\mathbf{M}} + [B \Rightarrow A]^{\mathbf{M}}} = \overline{[\neg A]^{\mathbf{M}} + [A]^{\mathbf{M}}} + (\overline{[B]^{\mathbf{M}}} + [A]^{\mathbf{M}}) = \overline{[A]^{\mathbf{M}} + [A]^{\mathbf{M}}} + (\overline{[B]^{\mathbf{M}}} + [A]^{\mathbf{M}})$$

$$= \overline{\mathbf{I}_{\mathbf{M}}(A)} + \mathbf{I}_{\mathbf{M}}(A) + (\overline{\mathbf{I}_{\mathbf{M}}}(B) + \mathbf{I}_{\mathbf{M}}(A))$$

$$[F_{2}]^{\mathbf{M}} = \overline{[B \Rightarrow A]^{\mathbf{M}} + [\neg A \lor A]^{\mathbf{M}}} = \overline{[B]^{\mathbf{M}} + [A]^{\mathbf{M}}} + ([\neg A]^{\mathbf{M}} + [A]^{\mathbf{M}}) = \overline{[B]^{\mathbf{M}} + [A]^{\mathbf{M}}} + (\overline{[A]^{\mathbf{M}}} + [A]^{\mathbf{M}})$$

$$= \overline{\mathbf{I}_{\mathbf{M}}(B)} + \mathbf{I}_{\mathbf{M}}(A) + (\overline{\mathbf{I}_{\mathbf{M}}}(A) + \overline{\mathbf{I}_{\mathbf{M}}}(A))$$

(2.b). Posons $x = \mathbf{I}_{\mathbf{M}}(A)$ et $y = \mathbf{I}_{\mathbf{M}}(B)$.

$$[F_1]^{\mathbf{M}} = \overline{\overline{x} + x} + (\overline{y} + x) \stackrel{E4.4}{\equiv} \overline{\overline{x}}.\overline{x} + (\overline{y} + x) \stackrel{E1.2}{\equiv} x.\overline{x} + (\overline{y} + x) \stackrel{E1.3}{\equiv} 0 + (\overline{y} + x) \stackrel{E3.2}{\equiv} \overline{y} + x = \overline{\mathbf{I_M}(B)} + \mathbf{I_M}(A)$$

$$[F_2]^{\mathbf{M}} = \overline{\overline{y} + x} + (\overline{x} + x) \stackrel{E3.1}{\equiv} \overline{\overline{y} + x} + (x + \overline{x}) \stackrel{E1.4}{\equiv} \overline{\overline{y} + x} + 1 \stackrel{E3.7}{\equiv} 1$$

(2.c). La formule F_1 est satisfiable. Si \mathbf{M}_1 est une structure telle que $\mathbf{I}_{\mathbf{M}_1}(A) = 1$, on a $[F_1]^{\mathbf{M}_1} = 1$. Elle n'est pas valide. Si on considère la structure \mathbf{M}_2 telle que $\mathbf{I}_{\mathbf{M}_2}(A) = 0$ et $\mathbf{I}_{\mathbf{M}_2}(B) = 1$ on a $[F]^{\mathbf{M}_2} = 0$.

La formule F_2 est valide donc satisfiable car pour toute structure \mathbf{M} on a $[F_2]^{\mathbf{M}} = 1$ (2.d).

$$[F_3]^{\mathbf{M}} \equiv [F_1]^{\mathbf{M}}.[F_2]^{\mathbf{M}} \equiv [F_1]^{\mathbf{M}}.1 \stackrel{E2.6}{\equiv} [F_1]^{\mathbf{M}}$$

Donc F_3 est comme F_1 , satisfiable mais non valide.

- (2.e). On a $\neg F_2 \models F_1$ ssi pour toute structure **M** telle que $[\neg F_2]^{\mathbf{M}} = 1$ on a $[F_1]^{\mathbf{M}} = 1$. Comme F_2 est valide, il n'existe pas une telle structure **M**. On a donc bien $\neg F_2 \models F_1$.
- ► Corrigé de l'exercice 4.
- (1). Définition inductive de $\mathcal{T}_0(\mathcal{F})$:
 - $\{a,b\} \subseteq \mathcal{T}_0(\mathcal{F})$.
 - Si $t \in \mathcal{T}_0(\mathcal{F})$, alors $\odot(t) \in \mathcal{T}_0(\mathcal{F})$.
 - Si $t_1, t_2 \in \mathcal{T}_0(\mathcal{F})$, alors $\otimes (t_1, t_2) \in \mathcal{T}_0(\mathcal{F})$.
- $(2.a). \ [\otimes(\odot(b),a)]^{\mathbf{M}_1} = \otimes^{\mathbf{M}_1}([\odot(b)]^{\mathbf{M}_1},[a]^{\mathbf{M}_1}) = \otimes^{\mathbf{M}_1}(\odot^{\mathbf{M}_1}([b]^{\mathbf{M}_1}),2) = \otimes^{\mathbf{M}_1}(\odot^{\mathbf{M}_1}(4),2) = \otimes^{\mathbf{M}_1}(8,2) = 16$
- (2.b). Raisonnement par induction sur t.
 - (B) Si t = a alors $[a]^{\mathbf{M}_1} = 2 = 2^1$ et si t = b, alors $[b]^{\mathbf{M}_1} = 4 = 2^2$.
 - (I) Supposons $[t']^{\mathbf{M}_1} = 2^k$, $k \in \mathbb{N}$, et $t = \odot(t')$.

$$\begin{aligned} [t]^{\mathbf{M}_1} &&= [\odot(t')]^{\mathbf{M}_1} \\ &&= \odot^{\mathbf{M}_1}([t']^{\mathbf{M}_1}) \\ &&= \odot^{\mathbf{M}_1}(2^k) \text{ par hyp. d'induction} \\ &&= 2*2^k = 2^{k+1} \text{ avec } k+1 \in \mathbb{N} \end{aligned}$$

Supposons $[t_1]^{\mathbf{M}_1} = 2^{k_1}, k_1 \in \mathbb{N}, [t_2]^{\mathbf{M}_1} = 2^{k_2}, k_2 \in \mathbb{N}$ et $t = \otimes (t_1, t_2)$

$$\begin{aligned} [t]^{\mathbf{M}_1} &&= [\otimes(t_1,t_2)]^{\mathbf{M}_1} \\ &&= \otimes^{\mathbf{M}_1}([t_1]^{\mathbf{M}_1},[t_2]^{\mathbf{M}_1}) \\ &&= \otimes^{\mathbf{M}_1}(2^{k_1},2^{k_2}) \text{ par hyp. d'induction} \\ &&= 2^{k_1} * 2^{k_2} = 2^{k_1+k_2} \operatorname{avec} k_1 + k_2 \in \mathbb{N} \end{aligned}$$

(3.a) Définissons la structure \mathbf{M}_2 comme étant égale à \mathbf{M}_1 enrichie par l'interprétation suivante du prédicat p : $\mathbf{p}^{\mathbf{M}_2} = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid x+y \text{ est pair}\}$

$$\begin{split} [F]^{\mathbf{M}_2} &= \underline{[\mathbf{p}(\odot(a), \odot(b)) \Rightarrow (\mathbf{p}(\otimes(a,b), a) \vee \mathbf{p}(\otimes(a,b), b))]^{\mathbf{M}_2}} \\ &= \underline{[\mathbf{p}(\odot(a), \odot(b))]^{\mathbf{M}_2}} + [\mathbf{p}(\otimes(a,b), a) \vee \mathbf{p}(\otimes(a,b), b)]^{\mathbf{M}_2} \\ &= \underline{[\mathbf{p}(\odot(a), \odot(b))]^{\mathbf{M}_2}} + ([\mathbf{p}(\otimes(a,b), a)]^{\mathbf{M}_2} + [\mathbf{p}(\otimes(a,b), b)]^{\mathbf{M}_2}) \\ &= \underline{\mathbf{p}^{\mathbf{M}_2}(\odot^{\mathbf{M}_2}(a^{\mathbf{M}_2}), \odot^{\mathbf{M}_2}(b^{\mathbf{M}_2}))} + (\mathbf{p}^{\mathbf{M}_2}(\otimes^{\mathbf{M}_2}(a^{\mathbf{M}_2}, b^{\mathbf{M}_2}), a^{\mathbf{M}_2}) + \mathbf{p}^{\mathbf{M}_2}(\otimes^{\mathbf{M}_2}(a^{\mathbf{M}_2}, b^{\mathbf{M}_2}), b^{\mathbf{M}_2})) \\ &= \underline{\mathbf{p}^{\mathbf{M}_2}(\odot^{\mathbf{M}_2}(2), \odot^{\mathbf{M}_2}(4))} + (\mathbf{p}^{\mathbf{M}_2}(\otimes^{\mathbf{M}_2}(2, 4), 2) + \mathbf{p}^{\mathbf{M}_2}(\otimes^{\mathbf{M}_2}(2, 4), 4)) \\ &= \underline{\mathbf{p}^{\mathbf{M}_2}(4, 8)} + (\mathbf{p}^{\mathbf{M}_2}(8, 2) + \mathbf{p}^{\mathbf{M}_2}(8, 4)) \\ &= \overline{1} + (1 + 1) = 1 \end{split}$$

(3.b) Définissons la structure \mathbf{M}_3 comme étant égale à \mathbf{M}_1 enrichie par l'interprétation suivante du prédicat p : $\mathbf{p}^{\mathbf{M}_3} = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid x < y\}$. En reprenant le calcul de la question précédente, on obtient :

$$[F]^{\mathbf{M}_3} = \overline{\mathbf{p}^{\mathbf{M}_3}(4,8)} + (\mathbf{p}^{\mathbf{M}_3}(8,2) + \mathbf{p}^{\mathbf{M}_3}(8,4))$$

= $\overline{1} + (0+0) = 0$