

Precision studies for 2024 SciFi Alignment

Nils Breer for the SciFi alignment team **17.04.2025**

RTA: WP4/5 Alignment and Calibration

• Goal: obtain precision of the SciFi alignment on 2024 data

Procedure:

- 1. Run alignment with a set configuration for several runs across multiple months
- 2. 200k events using the first run of each fill (if possible) on data starting at run 303874 (2024 alignment update in august)
- 3. Calculate the variation of each subsequent run w.r.t. the reference run
- 4. Histogrammed distributions per object, width as a metric for the precision

List of runs:

303963,304094,304191,304449,304528,304649,304802,304936,305071,305197,305291,305446,305498, 305559,305641,305684,305850,306109,306356,306532,306608,306711,307071,30518,307587,307654,307758, 307868,307897,307947,308073,308256

N.Breer | 17.04.2025 2/8

Configurations

- Config 1: CFrames Tx, Modules TxRz
- Config 2: CFrames Tx, Halfmodules Rx
- Config 3: CFrames Tx, Halfmodules TxRz

Constraints:

- Constraint to remove x-dependent translations and rotations (SxTx and SxRx) of modules in T3X2
- Halfmodule joint constraint
- z coordinate of module halves fixed to 0 on read-out edge

N.Breer | 17.04.2025

Detectorposition in 2024, halfmodules TxRz alignment

- Halfmodules aligned in TxRz and CFrames in Tx
- Per layer, movement looks consistent over all runs →expected

N.Breer | 17.04.2025 4/8

Config 3: CFrames Tx

Station 1

Station 2

Station 3

N.Breer | 17.04.2025 5 / 8

T2 half modules, Rz

1400

1200

1000

600

200 -

0.10

T3 half modules, Rz

Config 3: CFrames Rz

Station	Rz width [µ rad]
T1	13.5 ± 0.2
T2	12.4 ± 0.2
T3	18.4 ± 0.3

Station 1

-0.10Station 2

500

400

300

200

100 -

0.05 Station 3

N.Breer | 17.04.2025 6/8

0.00

-0.05

CFrames Tx (values in μ m)

	T1	T2	Т3	
		16.9 ± 0.3		
MC	16.5 ± 0.1	19.8 ± 0.2	37.0 ± 0.5	

Values grouped by Modules

		MO	M1	M2	M3	M4	M5
Tx	2024 data	17.8 ± 0.4	15.3 ± 0.4	14.2 ± 0.3	21.1 ± 0.5	32 ± 0.8	39.9 ± 1.7
,	MC	22.0 ± 0.4	22.4 ± 0.4	21.2 ± 0.4	17.4 ± 0.1	27.2 ± 0.3	135 ± 3
Rz	2024 data	9.8 ± 0.2	10.8 ± 0.2	12.8 ± 0.3	15.1 ± 0.4	27.1 ± 0.7	39.1 ± 1.7
[µ rad]	MC	15.3 ± 0.5	16.6 ± 0.3	16.0 ± 0.2	12.8 ± 0.2	8.5 ± 0.3	44 ± 1

N.Breer | 17.04.2025 7/8

Conclusion

- ullet Good sensitivity to align modules and CFrames and we are below the single hit resolution pprox100 μ m
- Results are comparable with MC-simulated data
- CFrame precision is station dependent →set a high enough threshold for all stations or set separate thresholds per station
- For values on MC-simulated data see Miguel's slides here
- the full documentation of the SciFi alignment in run 3 including these stability studies will be in the internal note

N.Breer | 17.04.2025