2802ICT Intelligent Systems

Informed search

Outline

Heuristics

- Best-first search
 - Greedy search
 - A* search
- Admissible heuristics

Reading: textbook AIMA Chapter 3, pages 92-109

Heuristics

- A heuristic is a rule or principle used to guide a search
 - It provides a way of giving additional knowledge of the problem to the search algorithm
 - Must provide a reasonably reliable estimate of how far a state is from a goal, or the cost of reaching the goal via that state

 A heuristic evaluation function is a way of calculating or estimating such distances/cost

Heuristics and algorithms

- A correct algorithm will find you the best solution given good data and enough time
 - It is precisely specified

- A heuristic gives you a workable solution in a reasonable time
 - It gives a guided or directed solution

Evaluation function

- There are an infinite number of possible heuristics
 - Criteria is that it returns an assessment of the point in the search
- If an evaluation function is accurate, it will lead directly to the goal
- More realistically, this usually ends up as "seemingly-best-search"
- Traditionally, the lowest value after evaluation is chosen as we usually want the lowest cost or nearest

Heuristics?

Problem: Pack blocks as compactly as possible into the space provided

Recall that ...

```
function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier
```

A strategy is defined by picking the order of node expansion, i.e. Depth-first, breadth-first, etc.

Best-first search

- Idea: use an evaluation function for each node
 - estimate of "desirability"
 - ⇒ Expand most desirable unexpanded node
- Implementation:
 - Frontier is a queue sorted in decreasing order of desirability
- Special cases:
 - Greedy best-first search
 - A* search

Romania with step costs in km

Straight—fine distance		
366		
0		
160		
242		
161		
178		
77		
151		
226		
244		
241		
234		
380		
98		
193		
253		
329		
80		
199		
374		

Greedy best-first search

• Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal E.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

The initial state:

Stages in a greedy best-first tree search for Bucharest with the straight-line distance heuristic $h_{\rm SLD}$. Nodes are labeled with their h-values

After expanding Arad:

After expanding Sibiu:

After expanding Fagaras:

Properties of greedy best-first search

• Complete?? No - can get stuck in loops, e.g.,

 $lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow$

Complete in finite space with repeated-state checking

- Time?? $O(b^m)$, but a good heuristic can give dramatic improvement
- Space?? $O(b^m)$ keeps all nodes in memory
- Optimal?? No. (A-S-F-B=450, shorter journey is possible, ie A-S-R-P-B=418)

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 g(n) = cost so far to reach n
 h(n) = estimated cost to goal from n
 f(n) = estimated total cost of path through n to goal
- A* search uses an admissible heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the true cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.) E.g., $h_{SLD}(n)$ never overestimates the actual road distance

The initial state:

Stages in an A* search for Bucharest. Nodes are labeled with f = g + h. The h values are the straight-line distances to Bucharest

After expanding Arad:

After expanding Sibiu:

After expanding Rimnicu Vilcea:

After expanding Fagaras:

After expanding Pitesti:

Properties of A* search

- Complete and optimal if h(n) does not overestimate the true cost of a solution through n
- Time complexity
 - Exponential in [relative error of h x length of solution]
 - The better the heuristic, the better the time
 - Best case h is perfect, O(d)
 - Worst case h = 0, $O(b^d)$ same as BFS, UCS
- Space complexity
 - Keeps all nodes in memory and save in case of repetition
 - This is $O(b^d)$ or worse
 - A* usually runs out of space before it runs out of time

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n
 - An admissible heuristic never overestimates the cost to reach the goal
 - Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A^* using TREE-SEARCH is optimal

Consistent heuristics (consistent => admissible)

• Theorem:

If h(n) is consistent, A^* using GRAPH-SEARCH is optimal

A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n, a, n') + h(n')$$

• If *h* is consistent, we have

$$f(n') = g(n') + h(n')$$
 (by def.)
= $g(n) + c(n,a,n') + h(n')$ ($g(n')=g(n)+c(n,a,n')$)
 $\geq g(n) + h(n) = f(n)$ (consistency)
 $f(n') \geq f(n)$

• i.e., f(n) is non-decreasing along any path.

Optimality of A* (proof)

• Suppose some suboptimal goal G_2 has been generated and is in the frontier. Let n be an unexpanded node in the frontier such that n is on a shortest path to an optimal goal G

•
$$f(G_2) = g(G_2)$$

since $h(G_2) = 0$ (true for any goal state)

•
$$g(G_2) > g(G)$$

since G₂ is suboptimal

•
$$f(G) = g(G)$$

since
$$h(G) = 0$$

•
$$f(G_2) > f(G)$$

from above

Optimality of A* (proof)

- $f(G_2) > f(G)$
- $h(n) \le h^*(n)$

since h is admissible

- $g(n) + h(n) \le g(n) + h^*(n)$
- f(n) ≤ f(G)

(f(G) = g(G) = g(n) + h*(n)since n is on the shortest path to G)

- $f(n) < f(G_2)$
- Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion

Memory-bounded heuristic search

- To reduce memory requirements of A*
 - Iterative deepening A* (IDA*): cut-off used is the f-cost (rather than depth as in IDS)
- Other memory-bounded algorithms
 - Recursive best-first search (RBFS)
 - Simplified memory-bounded A* (SMA*)
- RBFS and SMA* are robust, optimal search algorithms that use limited amount of memory, and can often solve problems that A* can't as it runs out of memory

(Read textbook section 3.5.3 for details)

RBFS search example

Figure 3.27 Stages in an RBFS search for the shortest route to Bucharest. The f-limit value for each recursive call is shown on top of each current node, and every node is labeled with its f-cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti) has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is expanded. This time, because the best alternative path (through Timisoara) costs at least 447, the expansion continues to Bucharest.

Admissible heuristics for the 8-puzzle

- Number of tiles out of place (h_1)
- Manhattan distance (h₂)
 - Sum of the distance of each tile from its goal position
 - Tiles can only move up or down → city blocks

1	2	3
4	5	6
7	8	

The 8-puzzle

- Using a heuristic evaluation function:
 - $h_2(n)$ = sum of the distance each tile is from its goal position

1+0=6 0+0+0=4 0+1=5

Goal State

3

Goal state

1	2	3
4	5	6
7	8	

Current state

1	2	3
4	5	6
7		8

$$h_1 = 1$$

 $h_2 = 1$

Current state

1	3	6
4	2	8
7		5

$$h_1$$
=5
 h_2 =1+1+1+2+2=7

Heuristic functions

- Dominance/Informedness
 - if $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search
- Typical search costs: (8 puzzle, d = solution length)
 - d = 12 IDS = 3,644,035 nodes $A*(h_1) = 227 nodes$ $A*(h_2) = 73 nodes$
 - d = 24 IDS $\approx 54,000,000,000$ nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Relaxed problems

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem
 - E.g. If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
 - If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution
- Key point: the optimal solution cost of a relaxed problem is not greater than the optimal solution cost of the real problem

Next...

- Local search
 - Hill climbing
 - Simulated annealing
 - Genetic algorithms