Europäisch s Patentamt European Patent Offi e Offic europé n d s br vets

EP 0 786 519 A2

EUROPEAN PATENT APPLICATION

(43) Date of publication: 30.07.1997 Bulletin 1997/31 (51) Int Cl.6: C12N 15/00

(21) Application number: 97100117.7

(22) Date of filing: 07.01.1997

(84) Designated Contracting States: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE **Designated Extension States:** AL LT LV RO SI

(30) Priority: 05.01.1996 US 9861

(71) Applicant: HUMAN GENOME SCIENCES, INC. Rockville, MD 20850-3338 (US)

(72) Inventors:

Kunsch, Charles A. Gaithersburg, Maryland 20882 (US) · Choi, Gil H. Rockville, Maryland 20850 (US)

· Barash, Steven C. Rockville, Maryland 20850 (US)

Dillon, Patrick J. Galthersburg, Maryland 20879 (US)

Fannon, Michael R. Silver Spring, Maryland 20906 (US)

Rosen, Craig A. Laytonsville, Maryland 20882 (US)

(74) Representative: VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)

Staphylococcus aureus polynucleotides and sequences (54)

The present invention provides polynucleotide sequences of the genome of Staphylococcus aureus, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

D ription

Th present invention relates to the field if molecular biology. In particular, it relates to, among other things, nucleotid sequences of Staphylococcus aureus, contigs, ORFs, fragments, probes; primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

The genus Staphylococcus includes at least 20 distinct species. (For a review see Novick, R. P., The Staphylococcus as a Molecular Genetic System, Chapter 1, pgs. 1-37 in MOLECULAR BIOLOGY OF THE STAPHYLOCOCCI, R. Novick, Ed., VCH Publishers, New York (1990)). Species differ from one another by 80% or more, by hybridization kinetics, whereas strains within a species are at least 90% identical by the same measure.

The species Staphylococcus aureus, a gram-positive, facultatively aerobic, clump-forming cocci, is among the most important etiological agents of bacterial infection in humans, as discussed briefly below.

Human Health and S. Aureus

Staphylococcus aureus is a ubiquitous pathogen. (See, for instance, Mims et al., MEDICAL MICROBIOLOGY, Mosby-Year Book Europe Limited, London, UK (1993)). It is an etiological agent of a variety of conditions, ranging in severity from mild to fatal. A few of the more common conditions caused by S. aureus infection are burns, cellulitis, eyelid infections, food poisoning, joint infections, neonatal conjunctivitis, osteomyelitis, skin infections, surgical wound infection, scalded skin syndrome and toxic shock syndrome, some of which are described further below.

Burns

10

15

20

25

30

35

50

55

Burn wounds generally are sterile initially. However, they generally compromise physical and immune barriers to infection, cause loss of fluid and electrolytes and result in local or general physiological dysfunction. After cooling, contact with viable bacteria results in mixed colonization at the injury site. Infection may be restricted to the non-viable debris on the burn surface ("eschar"), it may progress into full skin infection and invade viable tissue below the eschar and it may reach below the skin, enter the lymphatic and blood circulation and develop into septicaemia. S. aureus is produce severe septicaemia.

Cellulitis

Cellulitis, an acute infection of the skin that expands from a typically superficial origin to spread below the cutaneous layer, most commonly is caused by *S. aureus* in conjunction with *S. pyrogenes*. Cellulitis can lead to systemic infection. In fact, cellulitis can be one aspect of synergistic bacterial gangrene. This condition typically is caused by a mixture of *S. aureus* and microaerophilic *streptococci*. It causes necrosis and treatment is limited to excision of the necrotic tissue.

40 Eyelid infections

S. aureus is the cause of styes and of sticky eye" in neonates, among other eye infections. Typically such infections are limited to the surface of the eye, and may occasionally penetrate the surface with more severe consequences.

45 Food poisoning

Some strains of *S. aureus* produce one or more of five serologically distinct, heat and acid stable enterotoxins that are not destroyed by digestive process of the stomach and small intestine (enterotoxins A-E). Ingestion of the toxin, in sufficient quantities, typically results in severe vomiting, but not diarrhoea. The effect does not require viable bacteria. Although the toxins are known, their mechanism of action is not understood.

Joint infections

S. aureus infects bone joints causing diseases such osteomyelitis.

Osteomyelitis

S. aureus is the most common causative agent of haematogenous osteomyelitis. The disease tends to occur in

children and adolescents more than adults and it is associated with non-penetrating injuries to bones. Infection typically occurs in the long end of growing bone, hence its occurrence in physically immature populations. Most often, infection is localized in the vicinity of sprouting capillary loops adjacent to epiphysial growth plates in the und of long, growing bones.

Skin infections

5

10

15

20

30

35

40

50

55

S. aureus is the most common pathogen of such minor skin infections as abscesses and boils. Such infections often are resolved by normal host response mechanisms, but they also can develop into severe internal infections. Recurrent infections of the nasal passages plague nasal carriers of S. aureus.

Surgical Wound Infections

Surgical wounds often penetrate far into the body. Infection of such wound thus poses a grave risk to the patient. S. aureus is the most important causative agent of infections in surgical wounds. S. aureus is unusually adept at invading surgical wounds; sutured wounds can be infected by far fewer S. aureus cells then are necessary to cause infection in normal skin. Invasion of surgical wound can lead to severe S. aureus septicaemia. Invasion of the blood stream by S. aureus can lead to seeding and infection of internal organs, particularly heart valves and bone, causing systemic diseases, such as endocarditis and osteomyelitis.

Scalded Skin Syndrome

S. aureus is responsible for "scalded skin syndrome" (also called toxic epidermal necrosis, Ritter's disease and Lyell's disease). This disease occurs in older children, typically in outbreaks caused by flowering of S. aureus strains produce exfoliation(also called scalded skin syndrome toxin). Although the bacteria initially may infect only a minor lesion, the toxin destroys intercellular connections, spreads epidermal layers and allows the infection to penetrate the outer layer of the skin, producing the desquamation that typifies the diseases. Shedding of the outer layer of skin generally reveals normal skin below, but fluid lost in the process can produce severe injury in young children if it is not treated properly.

Toxic Shock Syndrome

Toxic shock syndrome is caused by strains of *S. aureus* that produce the so-called toxic shock syndrome toxin. The disease can be caused by *S. aureus* infection at any site, but it is too often erroneously viewed exclusively as a disease solely of women who use tampons. The disease involves toxaemia and septicaemia, and can be fatal.

Nocosomial Infections

In the 1984 National Nocosomial Infection Surveillance Study ("NNIS") S. aureus was the most prevalent agent of surgical wound infections in many hospital services, including medicine, surgery, obstetrics, pediatrics and newborns.

Resistance to drugs of S. aureus strains

Prior to the introduction of penicillin the prognosis for patients seriously infected with *S. aureus* was unfavorable. Following the introduction of penicillin in the early 1940s even the worst *S. aureus* infections generally could be treated successfully. The emergence of penicillin-resistant strains of *S. aureus* did not take long, however. Most strains of *S. aureus* encountered in hospital infections today do not respond to penicillin; although, fortunately, this is not the case for *S. aureus* encountered in community infections.

It is well known now that penicillin-resistant strains of *S. aureus* produce a lactamase which converts penicillin to pencillinoic acid, and thereby destroys antibiotic activity. Furthermore, the lactamase gene often is propagated episomally, typically on a plasmid, and often is only one of several genes on an episomal element that, together, confermultidrug resistance.

Methicillins, introduced in the 1960s, largely overcame the problem of penicillin resistance in *S. aureus*. These compounds conserve the portions of penicillin responsible for antibiotic activity and modify or alter other portions that make penicillin a good substrate for inactivating lactamases. However, methicillin resistance has emerged in *S. aureus*, along with resistance to many other antibiotics effective against this organism, including aminoglycosides, tetracycline, chloramphenicol, macrolides and lincosamides. In fact, methicillin-resistant strains of *S. aureus* generally are multiply drug resistant.

The molecular genetics of most types of drug resistanc in S. aureus has been elucidated (See Lyon et al., Microbiology Reviews 51: 88-134 (1987)). G nerally, resistance is m diated by plasmids, as noted above regarding penicilling resistance; how v r, several stable forms of drug resistance have been observed that apparently involve integration of a r sistance element into the S. aureus genome itself.

Thus far each new antibiotic gives rise to resistance strains, stains emerge that are resistance to multiple drugs and increasingly persistent forms of resistance begin to emerge. Drug resistance of *S. aureus* infections already poses significant treatment difficulties, which are likely to get much worse unless new therapeutic agents are developed.

Molecular Genetics of Staphylococcus Aureus

10

20

25

30

50

55

Despite its importance in, among other things, human disease, relatively little is known about the genome of this organism.

Most genetic studies of *S. aureus* have been carried out using the the strain NCTC8325, which contains prophages psi11 psi12 and psi13, and the UV-cured derivative of this strain, 8325-4 (also referred to as RN450), which is free of the prophages.

These studies revealed that the S. aureus genome, like that of other staphylococci, consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory genetic elements, such as prophages, plasmids, transposons and the like.

Physical characterization of the genome has not been carried out in any detail. Pattee et al. published a low resolution and incomplete genetic and physical map of the chromosome of *S. aureus* strain NCTC 8325. (Pattee et al. Genetic and Physical Mapping of Chromosome of *Staphylococcus aureus* NCTC 8325, Chapter 11, pgs. 163-169 in. MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, R.P. Novick, Ed., VCH Publishers, New York, (1990) The genetic map largely was produced by mapping insertions of Tn551 and Tn4001, which, respectively, confer erythromycin and gentamicin resistance, and by analysis of Smal-digested DNA by Pulsed Field Gel Electrophoresis ("PFGE").

The map was of low resolution; even estimating the physical size of the genome was difficult, according to the investigators. The size of the largest Smal chromosome fragment, for instance, was too large for accurate sizing by PFGE. To estimate its size, additional restriction sites had to be introduced into the chromosome using a transposon containing a Smal recognition sequence.

In sum, most physical characteristics and almost all of the genes of *Staphylococcus aureus* are unknown. Among the few genes that have been identified, most have not been physically mapped or characterized in detail. Only a very few genes of this organism have been sequenced. (See, for instance Thornsberry, J., *Antimicrobial Chemotherapy* 21 Suppl C: 9-16 (1988), current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. aureus* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by *S. aureus* infection involves the programmed expression of *S. aureus* genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of *S. aureus* genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *S. aureus* would provide reagents for, among other things, detecting, characterizing and controlling *S. aureus* infections. There is a need therefore to characterize the genome of *S. aureus* and for polynucleotides and sequences of this organism.

The present invention is based on the sequencing of fragments of the Staphylococcus aureus genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS: 1-5,191.

The present invention provides the nucleotide sequence of several thousand contigs of the Staphylococcus aureus genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-5.191.

The present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9%, identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

The nucleotide sequence of SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence which is at least 95%, preferably 99% and most preferably 99.9%, identical to the nucleotide sequence of SEQ ID NOS:1-5,191 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence

information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the Staphylococcus aureus genome.

Another embodiment of the present invention is directed to fragments, pref rably isolated fragments, of the Sta-phylococcus aureus genome having particular structural or functional attributes. Such fragments of the Staphylococcus aureus genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs,* fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs,* and fragments which can be used to diagnose the presence of Staphylococcus aureus in a sample, hereinafter referred to as diagnostic fragments or "DFs."

5

10

15

20

25

30

35

40

45

55

Each of the ORFs in fragments of the Staphylococcus aureus genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the Staphylococcus aureus genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the Staphylococcus aureus has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Staphylococcus* aureus genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to polypeptides and proteins, preferably isolated polypeptides and proteins, encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention can from cells which have been altered to express them.

The invention further provides polypeptides, preferably isolated polypeptides, comprising *Staphylococcus aureus* epitopes and vaccine compositions comprising such polypeptides. Also provided are methods for vacciniating an individual against *Staphylococcus aureus* infection.

The invention further provides methods of obtaining homologs of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the Dfs or antigens of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, antigens, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following:wash reagents, reagents capable of detecting presence of bound antibodies, antigens or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.

The present genomic sequences of *Staphylococcus aureus* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Staphylococcus aureus* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Staphylococcus aureus* researchers and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes

has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genom—s will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

10

20

25

30

35

40

45

55

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Staphylococcus aureus genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Staphylococcus aureus relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR") for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against S. aureus sequences from Genbank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3...

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-5,191. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Staphylococcus aureus* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-5,191; or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-5,191" refers to any portion of the SEQ ID NOS:1-5,191 which is not presently represented within a publicly: available database. Preferred representative fragments of the present invention are Staphylococcus aureus open reading frames (ORFs"), expression modulating fragment (EMFs") and fragments which can be used to diagnose the presence of Staphylococcus aureus in sample ("DFs"). A non-limiting identification of preferred representative fragments is provided in Tables 1-3

As discussed in detail below, the information provided in SEQ ID NOS:1-5,191 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Staphylococcus aureus* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-5,191 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-5,191. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS:1-5,191 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-5,191 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-5,191 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

As discussed elsewhere hererin, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining

libraries and for sequencing are provided below, for instance. A wide variety of *Staphylococcus aureus* strains that can be used to prepare *S aureus* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC*).

The nucleotide sequences of the genomes from different strains of Staphylococcus aureus differ somewhat. However, the nucleotide sequences of the genomes of all Staphylococcus aureus strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-5,191. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQID NOS:1-5,191 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

5

10

15

20

25

30

35

40

45

50

55

The nucleotide sequences provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-5,191 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, Oprovided" refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-5,191. Such a manufacture provides a large portion of the *Staphylococcus aureus* genome and parts thereof (*e.g.*, a *Staphylococcus aureus* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *Staphylococcus aureus* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-5,191 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul *et al.*, J. Mol. Biol. 215:403410 (1990)) and BLAZE (Brutlag *et al.*, Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the *Staphylococcus aureus* genome which contain homology to ORFs or proteins from both *Staphylococcus aureus* and from other organisms. Among the ORFs discussed

herein ar protein encoding fragments of the *Staphylococcus aureus* genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The pr sent invention furth r provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, comm reially important fragments of the Staphylococcus aureus genome.

5

10

20

25

30

35

40

45

55

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the Staphylococcus aureus genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Staphylococcus aureus* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol.* 215: 403-410 (1990), was used to identify open reading frames within the *Staphylococcus aureus* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for

accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

5

10

20

25

30

35

40

45

Other embodiments of the present invention are directed to fragments of the *Staphylococcus aureus* genome, preferably to isolated fragments. The fragments of the *Staphylococcus aureus* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Staphylococcus aureus* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-5.191, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generated the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, Staphylococcus aureus DNA can be mechanically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate an Staphylococcus aureus library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-5,191. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library of Staphylococcus aureus genomic DNA. Thus, given the availability of SEQ ID NOS:1-5,191, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-5,191 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2 and 3 list ORFs in the Staphylococcus aureus genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive or more selective lists.

Table 1 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are at least 80 amino acids long and over a continuous region of at least 50 bases which are 95% or more identical (by BLAST analysis) to an *S. aureus* nucleotide sequence available through Genbank in November 1996.

Table 2 sets out ORFs in the Staphylococcus aureus contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through Genbank by September 1996.

Table 3 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through Genbank by September 1996.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the reading frame, taking the first 5' nucleotide of the contig as the start of the +1 frame; the fourth column indicates the first nucleotide of the ORF, counting from the 5' end of the contig strand; and the fifth column indicates the length of each ORF in nucleotides.

In Tables 1 and 2, column six, lists the Reference" for the closest matching sequence available through Genbank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the numenclature are available from the National Center for Biotechnology Information. Column seven in Tables 1 and 2 provides the gene name" of the matching sequence; column eight provides the BLAST identity" score from the comparison of the ORF and the homologous gene, and column nine indicates the length in nucleotides of the highest scoring segment pair" identified by the BLAST identity analysis.

In Table 3, the last column, column six, indicates the length of each ORF in amino acid residues.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions

1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list per cent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the per cent identity" of the highest scoring signent pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Staphylococcus aureus* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

10

15

20

25

30

35

40

45

50

55

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not timited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the Staphylococcus aureus genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the Staphylococcus aureus genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to Staphylococcus aureus sequences. DFs can be readily identified by identifying unique sequences within contigs of the Staphylococcus aureus genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably 99% and most preferably 99.9% identical to SEQID NOS:1-5,191, with a sequence from another isolate of the same species.

Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the nucleic acid sequences mentioned above. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated.

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (*i.e.*, sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Staphylococcus aureus* origin isolated by using part or all of the fragments in question as a probe or primer.

Each of the ORFs of the Staphylococcus aureus genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particular Staphylococcus aureus. Especially preferred in this regard are ORF such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Staphylococcus aureus. Also particularly preferred are ORFs that can be used to distinguish between strains of Sta-

phylococcus aureus, particularly those that distinguish medically important strain, such as drug-resistant strains.

5

10

20

25

30

35

40

45

55

In addition, the fragments of the present invention, as broadly described, can be used to control gine expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56: 560 (1991) and OLIGODEOXYNUCLE-OTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Staphylococcus* aureus genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus* aureus genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK and KS (+ and -), pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacl, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Staphylococcus* aureus genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immunochromatography, and immunochromatography, and immunochromatography.

no-affinity chromatography.

10

20

25

30

35

40

45

55

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the artican readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the Staphylococcus aureus genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

"Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancers and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., MOLECULAR CLONING:A LABORATORY MANUAL, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of Staphylococcus aureus, E. coli, B. subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus. Others

may, also be employed as a matter of choice.

5

10

15

20

25

30

35

40

45

50

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

An additional aspect of the invention includes Staphylococcus aureus polypeptides which are useful as immunodiagnostic antigens and/or immunoprotective vaccines, collectively "immunologically useful polypeptides". Such immunologically useful polypeptides may be selected from the ORFs disclosed herein based on techniques well known in the art and described elsewhere herein. The inventors have used the following criteria to select several immunologically useful polypeptides:

As is known in the art, an amino terminal type I signal sequence directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Such outermembrane polypeptides are expected to be immunologically useful. According to Izard, J. W. et al., Mol. Microbiol. 13, 765-773; (1994), polypeptides containing type I signal sequences contain the following physical attributes: The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus; the central region of the signal sequence must adopt an alpha-helical conformation in a hydrophobic environment; and the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.

Also known in the art is the type IV signal sequence which is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related, the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 174, 7345-7351; 1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, all type IV signal sequences contain a phenylalanine residue at the +1 site relative to the cleavage site.

Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)-(G,A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S. and Wu, H. C. Lipoproteins in bacteria. J Bioenerg. Biomembr. 22, 451-471; 1990).

It well known that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than fifty such proteins from organisms such as *S. pyogenes, S. mutans, E. faecalis, S. pneumoniae,* and others, have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A. Gram-positive commensal bacteria deliver antigens to elicit mucosal and systemic immunity. ASM News 62, 405410; 1996). The conserved region is comprised of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins ex-

amin d. The amino acid sequence of this region is L-P-X-T-G-X, wher X is any amino acid.

5

15

20

25

30

35

40

45

55

Amino acid sequince similarities to proteins of kn wn function by BLAST enables the assignment of putative functions to novel amino acid sequences and allows for the selection of proteins thought to function outside the cell wall. Such proteins are well known in the art and include "lipoprotein", "periplasmic", or "antigen".

An algorithm for selecting antigenic and immunogenic Staphylococcus aureus polypeptides including the foregoing criteria was developed by the present inventors. Use of the algorithm by the inventors to select immunologically useful Staphylococcus aureus polypeptides resulted in the selection of several ORFs which are predicted to be outermembrane-associated proteins. These proteins are identified in Table 4, below, and shown in the Sequence Listing as SEQ ID NOS:5,192 to 5,255. Thus the amino acid sequence of each of several antigenic Staphylococcus aureus polypeptides listed in Table 4 can be determined, for example, by locating the amino acid sequence of the ORF in the Sequence Listing. Likewise the polynucleotide sequence encoding each ORF can be found by locating the corresponding polynucleotide SEQ ID in Tables 1, 2, or 3, and finding the corresponding nucleotide sequence in the sequence listing.

As will be appreciated by those of ordinary skill in the art, although a polypeptide representing an entire ORF may be the closest approximation to a protein found *in vivo*, it is not always technically practical to express a complete ORF *in vitro*. It may be very challenging to express and purify a highly hydrophobic protein by common laboratory methods. As a result, the immunologically useful polypeptides described herein as SEQ ID NOS:5,192-5,255 may have been modified slightly to simplify the production of recombinant protein, and are the preferred embodiments. In general, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, are excluded for enhanced *in vitro* expression of the polypeptides. Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus are also excluded. Such truncated polypeptides include for xample the mature forms of the polypeptides expected to exist in nature.

Those of ordinary skill in the art can identify soluble portions the polypeptide identified in Table 4, and in the case of truncated polypeptides sequences shown as SEQ ID NOS:5,192-5,255, may obtain the complete predicted amino acid sequence of each polypeptide by translating the corresponding polynucleotides sequences of the corresponding ORF listed in Tables 1,2 and 3 and found in the sequence listing.

Accordingly, polypeptides comprising the complete amino acid of an immunologically useful polypeptide selected from the group of polypeptides encoded by the ORFs identified in Table 4, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto, and most preferably at least 99% identical thereto form an embodiment of the invention; in addition polypeptides comprising an amino acid sequence selected from the group of amino acid sequences shown in the sequence listing as SEQ ID NOS:5,191-5,255; or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto and most preferably at least 99% identical thereto, form an embodiment of the invention. Polynucleotides encoding the foregoing polypeptides also form part of the present invention.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, particularly those epitope-bearing portions (antigenic regions) identified in Table 4. The epitope-bearing portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R. A. (1983) "Antibodies that react with predetermined sites on proteins", Science, 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777.

Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate S. aureus specific antibodies include: a polypeptide comprising peptides shown in Table 4 below. These polypeptide fragments have been determined to bear antigenic epitopes of indicated S. aureus proteins by the analysis of the Jameson-Wolf antigenic index, a representative sample of which is shown in Figure 3.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means. See, e.g., Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides:

specificity of antigen-antibody interaction at the I vel of individual amino acids. Proc. Natl. Acad. Sci. USA 82: 5131-5135; this "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further describ d in U.S. Patent No. 4,631,211 to Houghten et al. (1986). Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson t al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).

5

10

20

25

30

35

40

45

50

55

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. See, for instance, Geysen et al., supra. Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C1-C7-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

Table 4 lists immunologically useful polypeptides identified by an algorithm which locates novel *Staphylococcus* aureus outermembrane proteins, as is described above. Also listed are epitopes or "antigenic regions" of each of the identified polypeptides. The antigenic regions, or epitopes, are delineated by two numbers x-y, where x is the number of the first amino acid in the open reading frame included within the epitope and y is the number of the last amino acid in the open reading frame included within the epitope. For example, the first epitope in ORF 168-6 is comprised of amino acids 36 to 45 of SEQ ID NO:5,192, as is described in Table 4. The inventors have identified several epitopes for each of the antigenic polypeptides identified in Table 4. Accordingly, forming part of the present invention are polypeptides comprising an amino acid sequence of one or more antigenic regions identified in Table 4. The invention further provides polynucleotides encoding such polypeptides.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Staphylococcus aureus, of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Staphylococcus aureus is defined as a homolog of a fragment of the Staphylococcus aureus fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Staphylococcus aureus genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which prossess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-5,191 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ ID NOS:1-5,191 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR PROTOCOLS, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-5,191 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-5,191, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency

conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-5,191, or from a nuclotid sequence having an aforementioned id ntity to a sequence of SEQ ID NOS:1-5,191, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacterias which are closely related to Staphylococcus aureus.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Staphylococcus aureus* ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., Macmillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

10

15

25

30

35

40

45

50

55

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in Staphylococcus aureus can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-5,191.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21: 79 (1986) and Voragen et al. in BIOCATALYSTS IN AGRICULTURAL BIOTECHNOLOGY, Whitaker et al., Eds., American Chemical Society Symposium Series 389: 93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of Staphylococcus aureus. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger et al., Biotechnology 6(A), Rhine et al., Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1: 21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for

quantitativ determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872: 83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger *et al.*, Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists:hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology* 136:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination. A variety of commercially important enzymes have previously been isolated from members of *Staphylococcus aureus*. These include Sau3A and Sau96I.

2. Generation of Antibodies

10

15

20

25

30

35

40

45

50

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., MONOCLONAL ANTIBODY TECHNOLOGY: LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256: 495-497 (1975)), the trioma technique, the human B- cell hybridoma technique (Kozbor et al., Immunology Today)

4: 72 (1983), pgs. 77-96 of Col. et al., in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc. (1985)).

Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogen polypeptid. Methods for immunization ar will known in the art. Such methods include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, westem blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175: 109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labelling are well-known in the art, for example see Stemberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W. J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Staphylococcus aureus* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

10

15

20

25

30

35

40

45

50

55

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs, antigens or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies, or one or more of the DFs, or one or more antigens of the present invention and assaying for binding of the DFs, antigens or antibodies to components within the test sample.

Conditions for incubating a DF, antigen or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the Dfs, antigens or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry; PCT publication WO95/32291, and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985), all of which are hereby incorporated herein by reference.

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based

on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be r adily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises:(a) a first container comprising one of the Dfs, antigens or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following:wash reagents, reagents capable of detecting presence of a bound DF, antigen or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody, antigen or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed Dfs, antigens and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

5

10

15

20

25

30

35

40

45

50

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the Staphylococcus aureus fragment and contigs herein described.

In general, such methods comprise steps of:

(a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the Staphylococcus aureus genome; and

(b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated

to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical C mpositions and Vaccin s

5

10

15

20

25

30

35

40

45

50

55

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of Staphylococcus aureus, or another related organism, in vivo or in vitro. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth or pathogenicity of Staphylococcus aureus or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth or pathogenicity by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of vaccines derived from membrane associated polypeptides are well known in the art. The inventors have identified particularly preferred immunogenic Staphylococcus aureus polypeptides for use as vaccines. Such immunogenic polypeptides are described above and summarized in Table 4, below.

As used herein, a "related organism" is a broad term which refers to any organism whose growth or pathogenicity can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can

be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e. g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

55

50

5

10

20

25

30

35

40

45

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequ n ing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2: 231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P_0 , that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random sequence has been determined can be calculated by the equation $P_0 = e^{-m}$, where m is L/n, the fold coverage.* For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P_0 = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivilent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a .2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

15

20

25

30

35

40

50

55

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end. Staphylococcus aureus DNA was prepared by phenol extraction. A mixture containing 600 ug DNA in 3.3 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 30% glycerol was sonicated for 1 min. at 0°C in a Branson Model 450 Sonicator at the lowest energy setting using a 3 mm probe. The sonicated DNA was ethanol precipitated and redissolved in 500 ul TE buffer.

To create blunt-ends, a 100 ul aliquot of the resuspended DNA was digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 ul BAL31 buffer. The digested DNA was phenol-extracted, ethanol-precipitated, redissolved in 100 ul TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size was excised from the gel, and the LGT agarose was melted and the resulting solution was extracted with phenol to separate the agarose from the DNA. DNA was ethanol precipitated and redissolved in 20 ul of TE buffer for ligation to vector.

A two-step ligation procedure was used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contained 2 ug of DNA fragments, 2 ug pUC18 DNA (Pharmacia) cut with Smal and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and was incubated at 14°C for 4 hr. The ligation mixture then was phenol extracted and ethanol precipitated, and the precipitated DNA was dissolved in 20 ul TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder were visualized by ethidium bromide-staining and UV illumination and identified by size as insert (i), vector (v), v+i, v+2i, v+3i, etc. The portion of the gel containing v+i DNA was excised and the v+i DNA was recovered and resuspended into 20 ul TE. The v+i DNA then was blunt-ended by T4 polymerase treatment for 5 min. at 37° C in a reaction mixture (50 ul) containing the v+i linears, 500 uM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+i linears were dissolved in 20 ul TE. The final ligation to produce circles was carried out in a 50 ul reaction containing 5 ul of v+i linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture was stored at -20°C.

This two-stage procedure resulted in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, Strategies 3 (1):5 (1990)) were used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells were plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating was carried out as follows. A 100 ul aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) was thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 ul aliquot of 1.42 M beta-

mercaptoethanol was added to the aliquot of cells to a final concentration of 25 mM. Cells were incubated on ice for 10 min. A 1 ul aliquot of the final ligation was added to the cells and incubated on ice for 30 min. The cells were heat pulsed for 30 sec. at 42° C and placed back on ice for 2 min. The outgrowth period in liquid culture was eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture was plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl₂ (1 M), and 1 ml MgSO₄/100 ml SOB agar. The 15 ml top layer was poured just prior to plating. Our titer was approximately 100 colonies/10 ul aliquot of transformation.

All colonies were picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products would be deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

5

10

15 .

20

25

30

35

40

45

55

High quality double stranded DNA plasmid templates were prepared using an alkaline lysis method developed in collaboration with 5Prime → 3Prime Inc. (Boulder, CO). Plasmid preparation was performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Average template concentration was determined by running 25% of the samples on an agarose gel. DNA concentrations were not adjusted.

Templates were also prepared from a *Staphylococcus aureus* lambda genomic library. An unamplified library was constructed in Lambda DASH II vector (Stratagene). *Staphylococcus aureus* DNA (> 100 kb) was partially digested in a reaction mixture (200 ul) containing 50 ug DNA, 1X Sau3Al buffer, 20 units Sau3Al for 6 min. at 23 C. The digested DNA was phenol-extracted and centrifuges over a 10- 40% sucroce gradient. Fractions containing genomic DNA of 15-25 kb were recovered by precipitation. One ul of fragments was used with 1 ul of DASHII vector (Stratagene) in the recommended ligation reaction. One ul of the ligation mixture was used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract Phage were plated directly without amplification from the packaging mixture (after dilution with 500 ul of recommended SM buffer and chloroform treatment). Yield was about 2.5x10⁹ pfu/ul.

An amplified library was prepared from the primary packaging mixture according to the manufactureer's protocol. The amplified library is stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x109 pfu/ml.

Mini-liquid lysates (0.1ul) are prepared from randomly selected plaques and template is prepared by long range PCR. Samples are PCR amplified using modified T3 and T7 primers, and Elongase Supermix (LTI).

Sequencing reactions are carried out on plasmid templates using a combination of two workstations (BIOMEK 1000 and Hamilton Microlab 2200) and the Perkin-Elmer 9600 thermocycler with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers. Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. Modified T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are on a combination of AB 373 DNA Sequencers and ABI 377 DNA sequencers. All of the dye terminator sequencing reactions are analyzed using the 2X 9 hour module on the AB 377. Dye primer reactions are analyzed on a combination of ABI 373 and ABI 377 DNA sequencers. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences, and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

4. Protocol for Automated Cycle Sequencing

The sequencing was carried out using Hamilton Microstation 2200, Perkin Elmer 9600 thermocyclers, ABI 373 and ABI 377 Automated DNA Sequencers. The Hamilton combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates were combined in the wells of a 96-well thermocycling plate and transferred to the Perkin Elmer 9600 thermocycler. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps were performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols were used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer was labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 or 377 DNA Sequencer for electrophoresis, detection, and base-

calling. ABI currently supplies premixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR-generated templates with both dyeprim rs and dye-terminators with approximately equal fidelity, although plasmid templates generally give longer usable significant.

Thirty-two reactions were loaded per ABI 373 Sequencer each day and 96 samples can be loaded on an ABI 377 per day. Electrophoresis was run overnight (ABI 373) or for 2 1/2 hours (ABI 377) following the manufacturer's protocols. Following electrophoresis and fluorescence detection, the ABI 373 or ABI 377 performs automatic lane tracking and base-calling. The lane-tracking was confirmed visually. Each sequence electropherogram (or fluorescence lane trace) was inspected visually and assessed for quality. Trailing sequences of low quality were removed and the sequence itself was loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence was removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 or ABI 377 were around 400 bp and depend mostly on the quality of the template used for the sequencing reaction.

INFORMATICS

10

15

20

25

30

35

40

45

50

55

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow whereever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was enployed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164: 765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain ranged of base pairs (definable for each clone based on the known clone size range for a given library).

3. Identifying Genes

The predicted coding regions of the Staphylococcus aureus genome were initially defined with the program zorf, which finds ORFs of a minimum length. The predicted coding region sequences were used in searches against a database of all Staphylococcus aureus nucleotide sequences from GenBank (release 92.0), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs of at least 80 amino acids that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases.

ORFs of at least 120 amino acids that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

5

10

15

20

25

30

35

40

45

50

55

1. Production of an Antibody to a Staphylococcus aureus Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can by chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigenadministered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in:Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0. 1 to 0. 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in:Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, they are useful in various animal models of Staphylococcal disease known to those of skill in the art as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunothereapeutic reagent.

3. Preparation of PCR Primers and Amplification of DNA

Various fragments of the Staphylococcus aureus genome, such as those of Tables 1-3 and SEQ ID NOS:1-5,191 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approxi-

mately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

4. G ne expression from DNA S quenc s Corresponding to ORFs

5

10

15

20

25

30

35

40

45

50

55

A fragment of the Staphylococcus aureus genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U. S. Patent No. 5,082,767, incorporated herein by this reference.

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Staphylococcus aureus genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of theLTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Staphylococcus aureus DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Staphylococcus aureus DNA and containing restriction endonuclease sequences for Pstl incorporated into the 5' primer and Bgill at the 5' end of the corresponding Staphylococcus aureus DNA 3' primer, taking care to ensure that the Staphylococcus aureus DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bglll, purified and ligated to pXT1, now containing a poly A addition sequence and digested Bglll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Staphylococcus aureus* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Staphylococcus aureus* DNA.

Alternativly and if antibody production is not possible, the *Staphylococcus aureus* DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the *Staphylococcus aureus* DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis *et al.*, cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using *in vitro* translation systems such as *in vitro* ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

S. aureus - Coding regions containing known sequences

5

Contig ORF	108.5	Start (nt)	Stop (at)	match	natch gene name (1)v. o. v. v. v.	percent	MSP nt length	ORF nt length
-	-	+ —	157	emb x17301 5AHD	enb X17301 SAIID S. aureus DNA for htd.geno and for port of agr gene	100	663	663
- 1	- 5	!	2452	emb X52543 SAAG	S. aureus agrà, agrB and hld genes	66	809	822
-	5	6418	1 5651	dbj D14711 STAH	Staphylococcus aureus HSP10 and HSP60 genes	1 98 1	22)	768
5	-	1 807	439	emb x72700 SAPV S.auraus	S. auraus games for S and P components of Panton-Valentine leucocidins	81	216	369
5	-	1 5031	1756	emb x72700{SAPV	S. aureus genes for S and F components of Panton-Valentine leucocidins	1 95	434	1461
07		98	3 06	9b 125288	Staphylococcus aureus gyrass-like protein alpha and beta subunit (grlA and grlB) genes, complete cds	86	21.5	819
16	~-	\$302	6246	96 (135773)	Staphylococcus aureus prolipoprotein diacylglyceryl transferase (lgt) gene, complete cds	86	251	945
19	<u>~</u>	6249	7091	9b U35773	Stanhylococcus aureus prolipoprotein diacylglyceryl transferase (1gt) gene, complete cds	66	843	843
91		7084	7584	ן נירל צנט פס	Staphylococcus aureus prolipoprotain diacylglyceryl transferses (1gt) gene, complete cds	66	342	201
30		995	549	195 (119300)	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-ll sequence homology, 5. [lank	100	3	447
2		101	A 1	1916 619300	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-ll sequence homology, 5' flank	91	137	171
02 		2010	1798	96 119300	Staphylococcus aureus DAA sequence encoding three ORFs, complete cds; prophage phi-ll sequence homology, 5' flank	100	110	213
70	-	5300	3825	gb H'6714	Staphylococcus aureus peptidoglycan hydrolasa gene, complete cds	100	948	1476
50	2	4788	4282	[9b[H74714]	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	100	309	507
26	-	7	145	gb U41072	Staphylococcus aureus isoleucyl-tRNA synthetase (lles) gene, partial cds	100	126	144
76	7	88	557	95 041072	Staphylococcus aureus isoleucyl-tRNA synthetase (iles) gene, partial cds	66	430	424
36	-	26	3531	emb(X74219 SAIL	S. aureus gene for isoleucyl-tHMA synthetase	66	2769	2769
1 29	-	1261	4392	39990 45	Staphylococcus aureus DNA fragment with class II promoter activity	100	117	3132
31	=	14977	13463	[emb x73889 5AP1	S. aureus genée Pl and P2	66	1351	1515
31	<u>51</u>	14241	13855	emb x73889 sAP1	S. sureus genes P1 and P2	98	258	387
38	117	14284	13312,	, [9b H12715	S.aureus geh gene encoding lipase (glycerol ester hydrolase)	100	372	5711
38	61	13434	115518	ab r.2715	S. aureus geh gene encoding lipase (glycerol ester hydrolase)	100	2085	2085

Aureus - Coding regions containing known sequences

	ORF nt length	1209	576	924	1326	1185	38	954	1542	594	1683	344	495	3087	1017	623	1305	300.	1 2871	3	1001
	HSP nt length	1209	376	924	1283	1185	278	954	8	540	1668	720	463	3087	69	423	1305	300	1755	*	673
*****	percent	e6	8	6	86	86	6	66	- 001	86 1	001	1 86 1	1001	1001	- 68	1 66	- 66	100	- 66	200	- 66
	natth gene name	staphylococcus nutrus type 8 capsulo genes, cap8A, cap8D, cap8E, cap8E, cap8E, cap8E, cap8E, cap8H, cap8I, cap8I, cap8E, cap8H, cap8N, cap8P, cap8P, cap8P, cap8H, cap8N, cap8P,	Stabhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8H,	Staphylococcus aureus type 8 capsule genes, cap8h, cap8b, cap8c, cap8b, cap8b, cap8c, cap8b, cap8c,	Stabhylococcus aureas type 8 capsule genes, cap8h, cap8b, cap8D, cap8D, cap8E, cap8F, cap8F, cap8H,	Staphylococcus aureus type 8 capsule genes, cap8h, cap8b, cap8c, cap8b, cap8c, cap8b,	Stabhylococcus aureas type 8 capsule genes, cap8h, cap85, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	Staphylococcus aureus reck gene, complete cds	emb X85029 SXAH S.aureus AhpC gene	S. Aureus AhpC gene	emb K62992 SAFN S.aureus inbB gene for fibronectin binding protein B	S.aureus inbB gane for fibronectin binding protein B	S.aureus fnbB game for fibronectin binding protain B	S.aureus fibronectin-binding protein (fnbA) mRNA, complete cds	S.aureus mdr. pbp4 and taqD genes (SG511-55 isolate)	emb X91786 SAPB S.aureus abcA. pbp4, and tagD genes	S. aureus abch. pbp4, and tagū genes	Staphylococcus aureus ABC transporter-like protein AbcA (abcA) gene, partial cds	S.aureus abch, pbp4, and tagD genes	S.aureus agr gene encoding an accessory gene regulator protein, complete	emb X52343 SAAG S.aureus agrA, agr8 and hld genes
	match acession	gb w73374	gb u73374{	ab U73374	ab u73374	gb U73374	gb U73374	gb L25893{	emb x85029 SAAH	emb x85029 SAAH	cmb X62992 SAPN	emb X62992 SAFN	emb K62992 SAPN	gb[J04151]	emt XA7104 SADN	emb x91786 sAPB	emb X91786 SAPB	gb U29478	emb x91786 3APB	95 121854	emb X52543 SAAG
	Stop (nt)		2295	3182	8677	5720	6120	988	2924	3315	3392	4122	4562	8300	2819	3280	4701	5378	6840,	445	1453
	Stert (nt)	<u>.</u>	1720	2259	6,116	4536	6455	~	4465	4108	5074	4865	5056	11386	1743	2858	5009	5677	5086	88	2457
	<u>8</u> 0	ç: 	2		۰ <u></u>	6	۴	-	_	-	_ 	-		•		- -	- 2	9	-	-	~
	Contig	96	9	99	9	97	\$	\$	80	S.	š	54	35	*	85	88	85	en 	85	2,2	7.2

S. aureus - Coding regions containing known sequences

. *5*

Contig ORP ID ID	Starr (nt)	Stop (nt)	match	match gene name	percent	KSP nt length	ORF III. length
	357	7160	emb x64172 SARP	S.aŭřeus rpli, orizož, rpobjeit) and rpoc genes for ribosomal protein L7/L12, hypothetical protein ORP202, DNA-directed RNA polymerase beta & beta' chains	2	2396	3561
: !	4027	1 267	emb X89233{SARP	S. sureus DWA for rpoC gene	6	1716	3651
	2745	8908	9b u20869 	Staphylococcus aureus ribosomal protein S12 krpši) gene, complete cds, ribosomal protein S7 krpsC) and ORF 1 genes, partial cds	100	320	324
₩.	8103	8579	gb U20869	Staphylococcus aureum ribosomal protein Sl2 irpsL] gene, complate cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	477	177
٠	8618	8821	95 020869	Stabhylococcus aureus ribosomal protein S12 (rpsi) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	154	204
-	81	193	4 / C C C C C 4 6	Stanhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8B, cap8F, cap8B, cap8H, cap8H, cap8A, cap8B, cap8P, cap8B, cap8C, cap8P,	86	196	174
~	189	.89	gb U73374	Staphylococcus aureus type 8 capsule genes, cap8a, cap8a, cap8c, cap8D, cap8a, cap8b,	86	705	705
_		10991	db U73374	Stabhylococcus aureus tynn 8 capsule genes, cap8A, cnp8A, cnp8A, cap8C, cap8D, cap8E, cap8F, cap8H, cap8H, cap8H, cap8H, cap8H, cap8H, cap8H, cap8H,	66	\$1.	174
	1584	3503	4 cc c c n 4 6	Stabbylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	886	1920	1920
un.	3394	652	45 U73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8E, cap8F, cap8H, cap8F,	9	1128	1128
va	4519	5643	(gb 073374	Stabbylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	6	1128	1125
~	1245	3896	emb 218852 SACF	emb 218852 SACF S.auraus gene for clumping factor	8	099	2652
7	625	882	gb U41072	Staphylococcus aureus isoleucyl-tRNA synthetase (ileS) gene, partial cds	97	89	258
		4 22	[gb L41499	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	100	450	450
7	526	1041	gt L41499	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	66	516	516
~	1278	1958	gb H83994	Stabhylococcus aureus pxolipoprotein signal peptidase (lap) gene, complete	100	159	681
į						*	

6. aurous - Coding regions containing known sequences

	- 1							
Contig	10 G	Start (nt)	Stop (nt)	match acession	match gene name	percent 1dent	HSP nt length	ORF nt length
118	- -	3787	4254	db] us0690 stw	Staphylococcus aureus genes for ONF37; HSP20; HSP10; HSP10; ONF35, complete	66	467	899
08.1		2597	3640	emb X13290 SATN	Staphylococcus aureus multi-resistance plasmid pSKI DNA containing transposon fn4003	87	986	1044
130	5	1 3813	4265	omb 216422 SADI	S. aureus ofrB gane for dihydrofolate reductase	8	416	453
130	9	4309	\$172	emb 216422 SADI	emb 216422 SAD1 S.aureus dirB gene for dihydrofolate reductase	86	, 209	864
136	-	5296	6207	emb X71437 SAGY	emb X71437 SAGY S.aureus genes gyrB, gyrA and recf (partial)	97	838	912
1 136	- 5	11680	8987	db5 010489 5TAG	dbj D10489 STAG Staphylococcus aureus genes for DNA gyrase A and B, complete cds	100	2694	2694
136	9	12886	10940	dbj 010489 stAG	dbj D10489 STAG Staphylococcus aureus genes for DNA gyrase A and B, complete cds	66	1947	1947
961	<u></u> ,	12592	11765	gb 577055	recf cluster: dnaAaraplisome assembly proteingyrB=DNA gyrase beta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 1373 nt)	66	822	828
143	-	4171	1 2867	gb[036379	denosylm	66	1305	1305
143		3100	4281	[gb[L42943]	Staphy ococcus aureus (clone KIN3O) phosphoenolpyruvate carboxykinase (pckA) gene, complete cds	300	1170	1182
3	<u>~</u> _	4254	4718	gb U51133	Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,	300	673	465
171	5	6977	7261	gb US1132 	Staphylococcus aureus o-succinylbeniolc acid CoA ligase (mane), and o- succinylbeniolc acid synthetase (menc) genes, complete cds	100	25	285
143	5-	9464	8361	gb U51132	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o- succinylbenzoic acid synthetase (menc) genes, complete cds	100	1104	1104
145	=_	111232	9748	95 051132	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o- succinylbenzoic acid synthetase (menc) genes, complete cds	100	1485	1485
143	113	10739	10320	 132	Staphylococcus aureus o-succinylbanzoic acid CoA ligase (mans), and o- succinylbanzoic acid synthetase (menc) genes, complete cds	100	332	420
152	<u>~</u>	2454	3437	emb X58434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransfersee and dihydroliposmide dehydrogemase	66	305	984
152	•	1513	4820	emb X58434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dinydrollposmide scotyltransferase and dihydrollposmide dehydrogenase	86	1308	1308
152		4818	6230	emb x58434 SAPD	S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxyleso. dihydroliposmide acctyltransferase and dihydroliposmide dehydrogenese	66	1413	1413
153	<u>-</u> _	387	1526	gb S77055	recF cluster: dnaA=replisome assembly proteingyr8=DNA gyrsse beta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 1573 nt)	99	1140	1140
153	~	1877	2152	95 577055	recF cluster: dnaA-replisome assembly proteingyrB-DNA gyrase beta subunit (Staphylococcus aureus, YBBB6, Genomic, 5 genes, 1573 nt)	001	276	276

	ORF nt length	7	1479	1 321	225	1413	1 984	327	102	510	434	1002	1578	1440	1671	420	330	1 987	948	534	471	768
	HSP nt length	611	35	229	8	1326	1.	203	702	127	3470	1002	1158	1440	1671	420	330	987	948	534	471	768
	percent Ident	66	16	66	76	66	100	92	001	96	66	100	66	100	66	100	100	100	8	100	100	8
Coding regions containing known sequences	.mptch gene name	recf cluster; diahareplisome assembly proteingyrB=DNA gyrase beta subunit (Staphylococcus aureus, YB866, Genoalc, 5 genes, 1573 nt)	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	Staphylococcus aureus proline permesse homolog (putP) gene, complete cds	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	dbj D28879 Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	Staphylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete cds	Staphylococcus aureus hyaluronate lyase (hysk) gene, complete cds	Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete	Staphylococcus aureus DMA for DMA polymerase III, complete cds	Staphylococcus aureus cmp-binding-factor 1 (cbf1) and ORF X genes, complete cds	Stabhylococcus aureus cmp-binding-factor 1 (cbf1) and ORF X genes, complete cds	S.aureus enzyme III-lac (lacP), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	S.aureus entyme III-lac (lacF), entyme III-lac (lacE), and phospho-beta-galactosidase (lacG) genes, complete cds	5. Aureus enzyme III-lac (lac?), enzyme II-lac (lacE), and phospho-beta- golactosidase (lacG) genes, complete cds	S.aureus entyme III-lac (lacF), ensyme II-lac (lacE), and phospho-beta- galactosidase (lacS) genes, complete cds	Staphylococcus aureus lacC and lacD genes	Staphylococcus aureus lacC and lacD genes	S.aureus tagatose 6-phosphate isomerase gene, complete cds	Staphylococcus aureus lac repressor (lacR) gene, complete cds and lacA repressor (lacA), partial cds	Staphylococcus aureus lac repressor (lack) gene, complete cds and lack repressor (lack), partial cds
S. aureus - Co	match	3501.25 96	ab 1006451	dp n06451	dp n06451	ap n06451	dis D28879 STAP	gb H83994 	ab u21221	95 019770	[db] 086727 0867	gb U21636	ab U21636	gb J03479	gb J03479 	gb J03479	gb J03479	emt X14827 SALA	emb X14827 SALA	gb H64724	[gb]1132103	gb H32103
	Stop (nt)	2289	9314	5196	110167	11501	1212	2270	70\$	2771	1 9117	6467	7961	7801	9522	870¢	9839	10829	111774	12305	12773,	13866
	Start (nt)	2145	10792	9935	9943	10089	2195	2596	1406	1263	4774	7448	9538	9240	11252	H2A5	10168	(11815	12721	12838	13243	14633
	<u>8</u> 6		01	=	711	Ξ	7			- -	_		œ .	-		« ——	<u></u>	07	=	112	2_	<u> </u>
	Contig ORF	153	154	154	154	154	159	161	162	163	164	168	168	5.51	£11	£ £ £	27.1	173	173	173	173	173

		•							• •	•		•	·	• •	• •				• —	•	+ —	• —		·
5		ORF DE length	654	720	453	203	165	270	\$25	928	1623	1611	823	1920	177	1203	670	324	306	1143	673	1557	708	362
Ū		HSP nt length	\$11	720	3	303	765	270	669	277	1332	119	132	1920	177	1 250	810	324	304	1143	444	1552	684	157
10		percent ident	100	100	100	100	6	66	66	98	6	66	8	66	66	66	6	66	6	66	Z	66	96	96
15			Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	LrgB (lrgB) genes,	aureus holin-like protein LegA (legA) and LegB (legB) genes.	Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds							Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydrosuinate synthase (aroB) and gerenylgoranyl pyrophosphate synthetese homolog (gerCC) genes, partial cds				complete cds, transfer RNA 165 tibosomal RNA (165					is and other ORFs	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	oeron ditA, ditB,
20			n LrgA (lrgA) and	n LrgA (lrgA) and	n LrgA (lrgA) and	n LrgA (lrgA) and	es, complete cds	es, complete cds	leta cds	ein A	complete cad	ein A	se (aroC) and nuc) drosuinate synthat e homolog (garCC)	coagulase	coagulase	coagulase	gene, gene,					lysin, complete cda and	, ORF2, ORF3, AUCO	unction and dit og
25	known sequences		olin-like protei	olin-like protei	olin-like protei	olin-like protei	aurous lyts and lyth gones.	ytS and lytR gen	plaC) gene, comp	spa gene for protein	g for protein A,	pa gene for prot	horismate syntha mplete cds, deby sphate synthetas	Ę	aureus gene for staphylocomgulase	ene for staphylo	ureus lysyl-tRNA sythetase gene, S ribosomal RNA (58 rRNA) gene, S ribosomal RNA (138 rRUA) gene	geneg	seues		2	atl gene for autolysin,	AFI, partial cds	and for unknym f
30	- Coding regions contaming known sequences	match gene name ()	taphylococcus aureus h complete cds	Stabhylococcus aurous holin-like protein LrgA (lrgA) and LrgB (lrgB) complete cds	Staphylococcus aureus h complete cds	taphylococcus aureus h complete cds	Staphylococcus aureus l	Staphylococcus aureus lytS and lytR genes, complete cds	3. sureus signs factor (plac) gene, complete cds	emb X61307 SASP Staphylococcu1 aureus s	S. sureus spa gene coding for protein A.	Staphylococcus aureus spa gene for protein A	kaphylococcus aureus chorismate synthase (aroc) and nucleoside dipho kinase (ndk) genes, complete cds, dehydrosulnate synthase (aros) and geranylgeranyl pyrophosphate synthetase homolog (genes, parti.	Staphylococcus aureus coa gene	Staphylococcus aureus g	emb X16457 SAST Staphylococcus aureus gene for staphylocoagulase	genes, genes, gene, 238	S.aureus ptsH and ptsI genes	S.aurous pts!! and pts! genes	emb x97985 SA12 S.aureus orfs 1,2,3 & 4	emb X73889 SAP1 S.aureus genes P1 and P2	Staphylococcus aureus a	taphylococcus aureus O complete cds	dbj p86240 p862 staphylococcus aureus gene for unkown function and dlt operon dltA, dltB, dltB,
35	oding re	- matro	Staph)	Staphy comp	Staphy compl	Staphy compl	Staphy	Staphy	S. aure	Staphy	3. aur		Staph) kina gerar			Staphy	Staphylo (cRNA) rRNA)		خصه	3.aur	S.aur		Staphy compl	Staphy
40	S. aureus - C	match	 196230 16 	gb U52961 	gb U52961	 gb U52961 	gb 1.42945	gb L42945	gb H63177	emb x61307 sASI	gb J01786	emb X61307 SASP	dp n31979	emb x17679 saco	emb X16457 SAST	emb X16457 SAS1	95 136472	emi X93205 SAPT	cmb x93205 SAPT	emb x97985 SA12	emb x73889 SAP	db3 017366 STAA	0b t41499	dbj p86240 p862
45		Stop (nt)	655	1482	1909	1853	דרר2	3025	590	ž	2312	4251	824	2760	3143	4566	872	2011	2310	1305	2175	1558	2233	0177
45		Start (nt)	7	2201	2361	1551	3541	3294	1114	3	069	5861	-	841	2967	83/58	1741	16AR	2005	163	1303	3314	2939	7429
		<u>8</u> 01		~		•		9	- -	_	~	-		- -	-	<u>~</u>	-	- -	4	-	7	-	7	=_
50		Cont ig ID	178	178	178	RC1	178	178	181	182	182	182	2 <u>8</u> 1	161	161	161	196	198	B¢.1	202	202	210	210	214
			•					_				_		_		_				_				, :

TABLE 1

55

S. auraus - Coding regions containing known sequences

Cont 1g	<u>R</u> 0	Start (nt)	Stop (nt)	match ,	, match gene name	percent	HSP nt Jength	ORF at
216		198	1318	emb x72700 SAPV	S. aureus genes for S and F components of Panton-Valentine leucocidins	8.8	265	921
219	~_	1910	1073	db; D30690 STAN	Stabhylococcus aureus genes for ORP37; HSP20; HSP40; USP40; ORP35, complete	100	09	738
219	1	2979	2035	dbj D30690 STAN	Stophylococcus aureus gones for ORF37; HSP20; HSP40; ORF35, complete	6	916	945
219		4359	3196	db) 030690 STAN	Staphylococcus aureus genes for ORF37; HSP20; HSP40; ORP35, complete cds	66	1164,	1164
915	<u>~</u>	7044	9/11/	db.j (030690 stan	Stanbylococcus aurins gonds for ORP37; HSP20; HSP40; HSP40; ORP35, Complete	e 6	1869	1869
219	<u>-</u> _	6557	5883		Stabhylococcus aureus genes for ORP37; HSP20; HSP40; HSP40; ORP35, complete	66	675	678
219		6801	6334	dbj 130690 STAN	Stanhylococcus aureus genes for ORPJ7; HSP20; HSP40; HSP40; ORPJ5, Complete cds	66	468	468
122		110816	10034	gb 1.19298	Staphylococcus auras phosphatidylinositol-specific phospholipase C (plc) gene, complete cds	6	6	78.
223		2855	1506	gb U7334	Stankylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	<u>.</u>	102	1350
7.7	-	7	1357	emb x97985 5A12	S.aureus orfs 1,2,3 & 4	100	176	1356
214	~	1694	1 2485	[emb x97985 SA12	S. aureus orfs 1,2,3 & 4	100	792	192
234	_	2648	3148	emis x97985 SA12	emij X97985 SA12 S.auraus orfs 1,2,3 & 4	66	201	105
234	-	1 3120	4604	emb(x97985 SA12	S.aureus orfs 1,2,3 & 4	66	1305	1485
236	9	3826	5322	[9b[048826]	Staphylococcus aureus elastin binding protein (ebpS) gene, complete cds	96	648	1497
248	-	7	403	emb x62288 SAPE	S. aureus DNA for penicillin-binding protein 2	100	103	402
248	~	38.	852	ab 1,25426	Staphylococcus aureus penicillin-binding protain 2 (pbp2) gone, complete cds	6	465	465
253	~	1539	1093	gb U46541	Staphylococcus aureus sath gene, complete cds	96	447	447
724	~	150	1835	[gb]U57060]	Staphylococcus aureus scdA gene, complete cds	94	142	1686
254	_	6761	2728	94 057060	Staphylococcus aureus scdA gene, complete cds	66	756	756
260	-	~	1900	1011 1190693	Staphylococcus aureus glycarol astar hydrolase (lip) gene, complete cds	66	1213	1899
265			942	db: p21131 STAS	Staphylococcus aureus gane for a participant in homogeneous expression of high-lovel methicillin resistance, complete cds	66	941	942

_		ORF nt Length	. cz	654	1017	\$25	987	168	657	666	213	456	867	9.75	795	1353	17161	632	966	1 762	300	741
5		HSP nt length	213	69	743	110	952	8	112	979	187	338	867	975	193	1343	1314	151	966	106	259	137
10		parcent	6	86	98	001	100	86	700	6	86	6	66	100	6	66	- 88	42	86	100	86	9.1
15			in homogeneous expression of	in homogeneous expression of	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SA1959, Genemic, 1087	959, Genomic, 1087	ion (pcrA) gene,	ion (pcrA) gene.	ion (pcrA) gene.	ion (pcrA) gene,	n-cnzyme gones,	C (high, high,	c (hlga, hlgb,	B and C (high, high,	and other ORFs		R) gene and	aureus D-specific D-2-hydroxyacid dahydrogonase (ddh) gene,			1
20			pant in homogeneo lete cda	•		Aureus,	hemB.porphobilinogen synthase (Staphylococcus aureus, SA1959, nt]	aureus helicase required for 1181 replication (pcrA)	aureus helicase roquired for T181 replication (pcrA)	aureus helicase required for Ti81 replication (pcra)	Staphylococcus sureus helicase required for TIB1 replication (pcrA) complete cds	S.aureus SaulAI-restriction-enzyme and SaulAI-modification-enzyme genes.	mponents A, B and	mponents A, B and	•	ysin, complete cds	s, complete cds	methicillin-resistance protein (mecR)	roxyacid dehydrog	gene	component of leucocidin R	of leucocidin R
25	nom sequences		aureus gene for a participant hicillin resistance, complete	gene for a participant n resistance, complete	P10 and HSP60 ge	synthase (Staphylococcus	thase (Staphyloc	licase required	licase required	licase required	licase required	ion-eniyme and &	gamma-hemolysin components A,	gamma-hemolysin components cds	gamma-hemolysin components A, cds	l gene for autolysin,	ts and lyth gene	thicillin-resist. ds	specific D-2-hyd	serine protease	4	
30	aureus - Coding regions containing known sequences	match gene name	Staphylococcus aureus gene for a participant in l high-level methicillin resistance, complete cds	Staphylococcus aureus gene for a participant high-level methicillin resistance, complete	db D14711 STAH Staphylococcus aureus HSP10 and HSP60 genes	hemB=porphobilinogen syn	rphobilinogen syn	.			taphylococcus aureus he complete cds	s SaulAI-restrict te cds	Staphylococcus sureus gamm hglC} genus, complete cds	Staphylococcus aureus ga hglC! genes, complets c	Staphylococcus aureus ga hglC/ genes, complete c	ococcus aureus atl	Staphylococcus aureus lytS and lytR genes, complete cds	us aureus , complete	9 .	Staphylococcus aureus V8 serine protesse gene	S.aureus leuf-PB3 gene for	S.oureus lauf-PB) gena fur F companent
35	ding reg	patch f	Staphyl high-1	Staphyl high-l	Scaphyl	hemB-po nt)	hemB-po nt]	Staphylococcu complete cds	Staphylococcu complete cds	Staphylococcu complete cds	Staphyl comple	S.aureus Saul complete cds	Staphyl hglC}	Staphyl hglCl	Scaphyl hglC)	Staphyl	Staphyl	Staphylococc unknown ORF	Staphylococcu complete cda	Staphyl	S. aureu	S. oureu
40	S. aureus - Cc	match	dbj D21131 STAS	dbj b21131 STAS	db5 D14711 STAH	gb 672488	gb S72488 	gb H63176 	gb M63176 	gb H63176 	gb[M63176	gb H32470 	ab 1.01055		65 101035	dbj bl7366 STAA Staphylococcus	gb L42945	95 1,14017	95 U31175 	emb Y00356 SASP	emb;x64389 SALE	cmb X64389 SALE
		Stop (nt.)	476	1765	1018	525	1502	071	1034	2026	2202	1991	898	2383	3161	1355	1315	7870	1003	237	388	1088
45	-	Starl (nt)	688	2418	~		516	~	282	1028	1990	1536	~	1409	2367	2707	2628	7019	1998	- -	687	182#
		ORF	~		-		7		~		- -		-	~		<u>-</u>	- -	<u> </u>		-	=	7
50		Contig ORF	1 265	265	766	282	282	784 —	284	284	244	289	303	101	200	305	- X	312	323	326	238	338

TABLE 1

55

HSP nt ORF nt length length	1176 1176	732 732	172 228	187 501	123 1 123	671 672	747 903	68 405	1146 1146	349 657	389 540	178 507	163 762	216 216	188 216	1248 1248	200 324	432 432	151 708	556 807	134 168	
percent ident	100	- 86	96	100	66	75	98	- 26	1 66	97	- 66	- 66	- 66	100	1001		1 96	1001	100	100	1001	
reatch gene name	Staphylococcus aureus SA4 fts2 (fts2) gane, complete cds	emb VO1281 SANU S.aureus mRNA for nuclease	S.aureus bacteriophage phi-11 attachment site (attB)	Staphylococcus aureus prolipoprotein signal peptidase (lap) gene, complete	Staphylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete cds	Staphylococcus aureus MHC class II analog gene, complete cds	Staphylococcus aures phosphatidylinositol-specific phospholipase C (plc) gene, complete cds	Staphylococcus aures phosphatidylinositol-specific phospholipase C (plc) gene, complete cds	emb X62288 SAPE S.aureus DNA for penicillin-binding protein 2	emb X62282 SATS S.aureus target site DNA for IS431 insartion	emb X61716 SANL S.aureus hlb gene encoding sphingomyelinase	emb[X13404 SAHL Staphylococcus aureus hib gene for beta-hemolysin	lasp2)=alkaline shock protein 13 (methicillin resistant) [Staphylococcus aureus, 912, Genomic, 1160 nt]	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	dbj D17166 STAA Staphylococcus aureus atl gene for autolysin, complete cds and other ORFs	Transposon In5404 and insertion sequences IS1181 and IS1182 (from Staphylococcus aureus) DNA	S.aureus (strain RN450) transposon Th554 insertion site	dbj 28879 Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	dbj 028879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	dbj D86240 D862 Staphylococcus aureus gane for unkown function and dit operon ditA, ditB,	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	***************************************
acession	gh;U06462	emb v01281 SANU	ab H20393	gb H3994	др н83994	ap u20503	95 119298	gb L19298	emb[x62288] SAPE	emb x62282 SATS	emb x61716 SAHL	emb(X13404 SAHL	gb s76213	gb :,41499	db; b17366 STA	95 143098	gb x02985	db 028879 STAP	dbj 028879 <i>S</i> TAP	dbj c86240 c862	db.j D86240 D862	
Stop (nt)	1754	1248	230	\$16	1046	674	6	1507	1148	1248	540	1187	1049	217	639	2509	325	434	1122	808	666	
Start (nt)	579	517	457	1016	1582	-	_	1103	_	1904	-	1693	1810	~-	854	1262	~	865	1829	~-	932	-
03F 10	~	~			~	-		~_	-	-	-	~			-	~	-	-	~		~-	:
Cont 19 1D	342	344	349	353	353	356	361	361	373	389	400	400	408	61.8	418	(21	422	427	427	435	435	

				3. aureus - Co	3. aureus - Coding regions containing known sequences		•	
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt langth	ORF nt Jength
436		2403	1657	cub N17688 SAFE	cmb X17688 SAFE Staureus factor essential for expression of mathicillin resistance (femA) gene, complete cds, and trpA gens, 1' and	100	294	797
442	-	347	1300	omb x72700 sAPV	omb X72700 SAPV S.aureus genes for S and F components of Panton-Valentine laucocidins	- 84	204	954
445		1906	2178	190 100 195	Staphylococcus aureus gamma-hemolysin components A. B and C (hlgA, hlgB. hglC) genes, complete cds	86	187	273
447		167	1078	1078 gb U19770	Stabhylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete	100	\$1.	912
4.		1176	1784	001910 96	Stabhylococcus aureus pyrrolidone carboxyl peptidase (pcp) gens, complete cds	96	597	609
454	-	1 7309	4319	emb 218852 5ACF	emb 218852 SACF S.aureus gene for clumping fector	15	653	2991
472	- -	7896	5479	gb L25288	Stabhylococcus aureus gyrase-like protein alpha and beta subunit (grlA and grlB) genes, complete cds	66	2418	2418
472	<u></u>	R120	6792	95 (125288)	Stabhylococcus aureus gyrase-like protein elpha and beta subunit (grlA and grlB) genes, complete cds	66	1328	1329
475	-	9995	- 889	emb X52543 SAAQ	S.aureus agrA, agrB and bld genes	100	96	324
		1922	1560	em') X64172 SARP	emp X64172 SARP S.aureus rplL, orf203, rpo8(rif) and rpoC genes for ribososal protein 17/b12, hypothetical protein ORF202, DNA-directed RNA polymersse beta & beta 'chains	100	250	363
		1244	1534	emb X64172 SARP	S. aureus rpli, orizo2, rpo8(rif) and rpoC genes for ribosomal procein L7/L12, hypothatical protein ORF202, DNA-directed RNA polymorass beta 6 heta: chains	100	22	291
+B2		1388	1188	gb M83994	Stabhylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete cds	86	22	201
489	-	12737	1370	[ab u21221]	Staphylococcus aureus hyaluronate lyasa (hysA) gene, complete cds	66	1368	1368
 §	~-	1135	653	gb M83994 	Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete	100	108	48 3
115		1613	2242	95 L14017	Stabhylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORP, complete cds	2	121	630
- 511		3122	2700	95 576213	ssp21=slksline shock protein 23 (methicillin resistant) (Staphylococcus sureus, 912, Ganomic, 1360 nt)	96	423	453
220	~	1 758	1297	emb x72014 SAFI	emb X72014 SAFI S.aureus (1b gene for (lbrinogen-binding protein	- 66	240	540
520	_	11036	1801	emb x72013 SAFI	emb X72013 SAFT S.aureus (ib gene for librinogen-binding protein	66	221	366
526	-	1 2150	1092	db1 D17366 STA	dbf D17166 STAA Staphylococcus aurous atl gene for autolysin, complete cds and other ORFs		179	1059

aureus - Coding regions containing known sequences

Contig	108F	Start (nt)	Stop (nt)	match 4cession	datch gene name	percent	HSP nt Length	OKP nt Jength	
528	~_	88	696	ab L19300	Staphylococcus avreus DNA sequence encoding three ORFs, complete cds, prophage phi-li sequence homology, 3' flank	66	260	906	A
528		1098	2870	95,519300	Staphylococcus auceus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5' flank	66	866	1773	- -
530			4	dp n31979	Stephylococcus aureus chorimate synthase (arcc) and nucleoside diphosphate kinase (ndk) genes, complete cds, duhydroauinate synthase (arcs) and geranylgeranyl pyrophosphate synthatase homolog (gerCC) genes, pertial cds	66	432	432	
530	~	1211	2395	6261EU}q6	Staphylococcus aureus chorismate synthase (arocl and nucleoside diphosphate kinase (ndk) genus, complete cds, dohydroauinate synthase (aroB) and geranyigeranyi pyrophosphate synthetase homolog (gerCC) genes, partial cds	16	1185	1185	A
\$30	<u></u>	2409	2801	6561EU 46	Stephylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) and prophosphate synthetese homolog (genCC) genes, partial cds	88	181	186	
\$10	-	2690	3484	gp L05004	Stephylococcus aureus dehydroquinate synthase (arob) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransfarase (arok) gene, complete cds; ORF3, complete cds	100	\$5	295	
530	<u></u>	3482	4792	95 105004	Stephylococcus aureus dehydroquinate synthase (arob) gene, 3' end cds; 3- phosphoshikimato-1-carboxyvinyltransforase (arok) gene, complete cds; ONF3, complete cds	66	906	1161	
230	• 	4790	5380	gb L05004	Staphylococcus aureus dehydroquinate synthase (arob) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransfarase (aroA) gene, complete cds; ORF), complete cds	100	196	591	
673	_	_	338	emb x76490 SAGL	S. aureus (bb270) gink and gink genes	1 66	336	336	
613	-	336	527	emb X76490 SAGL	S.aureus (bb270) glnA and glnR genes	100	189	192	
\$5		727	365	95, [073374]	Staphylococcus avreus type 6 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8C,	100	*	361	
554	~	2175	1252	95 073374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C,	66	918	924	-
\$5		1574	1374	gb U73374	Staphylococcus aureus type B capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H, cap8I, cap8L, cap8E, cap8F, cap8H, cap8H, cap8D, cap8P, cap8P, cap8H, cap8D,	96	122	201	
584	- 2	1.1019	1 705	ab;u21221	Staphylococcus aureus hyaluronata lyasa (hysA) gene, complete cds	- 66	306	315	
1 587	_	1475	4288	emp 218852 SACF	S.auraus gene for clumping factor	86	2588	2814	
598	-	3881	1953	db. D28879 STAP	db.j D2R879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	- 66	1873	1929	
	,				· · · · · · · · · · · · · · · · · · ·	*			

5	
10	
15	
20	
25	
30	•
35	
40	
45	
50	

Contig ORF	108. 10	Start (nt)	Stop (nc)	match	match gene name	percent 1dent	HSP nt Length	ORF nt length
609		~	745	dbj D86240 D862 	Staphylococcus auran gene for unkown function and dit operon ditA, ditB,	86	338	744
609	-	1628	919	em. x76490 SAGL	S. aureus (bb270) glnA and glnR genes	100	495	613
614		1280	642	911 132103	Staphylococcus auraus lac repressor (lacR) gene, complete cds and lach repressor (lacA), partial cds	6	639	639
626		2508	1255	gb 863176 	Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds	8	225,	1254
626	~	3315	2284	0b H63176	Scaphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds	6	838	1032
629		1999	1001	emb X17688 SAFE	S.aureus factor essential for expression of methicillin resistance (femA) gane, complete cds, and trpA gene, 3' end	66	986	666
629		1407	1195	emb X17688 SAFE	S.aureus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' and	88	194	213
631	~	5126	3228	cmb 218852 SACF	S.aureus gene for clumping factor	82	684	1899
632			281	emb 210588 SAST	S.aureus (RW4220) genes for potential ABC transporter and potential nembrane apanning protoin	6	549	\$49
63.7	~-	529	1323	emb 230588 SAST	S.aureus (RM4220) genes for potential ABC transporter and potential membranc spanning protein	66	195	795
651	-	1909	1070	96 119300	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; propings phi-11 sequence homology, 5: [lank	6	478	070
657	~_	1 800	1105	95 114017	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	8	456	969
662	-	806	456	emb X13404 SAHL	Staphylococcus aureus hlb gene for beta-hemolysin	100	369	453
662	7	230	475	emb X13404 SAHL	Staphylococcus aureus hib gene for beta-hemolysin	100	246	246
662	-	146	1399	+nb X13404 SAHL	ehb X13404 SAHL Staphylococcus aureus hlb gene for beta-hemolysin	86	653	654
682	-	956	480	gb (163177	S.aureus signa factor (plaC) gene, complete cds	100	136	477
6 P S		1182	265	191/10650001	Staphylococcus aureus type-I signal peptidase SpsA (spsA) gene, and type-I signal peptidase SpsB (spsB) gene, complete cds	86	534	165
685	~_	1716	1153	96,065,000	Stephylococcus aureus type-1 signal peptidase SpsA (spsA) gene, and type-1 signal peptidase SpsB (spsB) gene, complete cds	96	264	\$ 564
69	-	-	527	ab n63177	S. aureus signa factor (plaC) gene, complete cds	100	195	\$25
697	~	485	784	35 H63177	S.aureus sigma (actor (plac) gene, complete cds	6	280	300
					₩ 1995 # 215 # 20 # 25 # 25 # 25 # 25 # 25 # 25 # 2	**********		

1 15 50 1 15 50	•	:				-	: - :	-:	- ;	- 1	_ :	- 1		:				- :	; ;	: - :		: - :		-	;
1 15 550 Munich Assession Asse		ONF nt Length	689	180	\$	909	369	9	633	\$55	613	363	162	465	174	159	960	285	(72	195	165	797	159	1212	
15 503 404 1046 204		MSP nt length	712	140	522	618	340	567	429	\$50	568	363	961	156	174	131	395	101	\$97	195	163	247	147	1212	
1 15 501 dbj DR6140 DR62 1 15 501 dbj DR6240 DR62 1 1 15 501 dbj DR6240 DR62 1 1 1 1 1 1 1 1 1	•	percent Ident	66	97	18	- 66	- 66	96	66	986	- 66	9.6	98	66	66	100	56	1 66	8	901	66	1 66	1 56	- 66	********
1 15 50 1 15 50 1 15 50 1 15 50 1 15 50 1 15 50 1 10 1197 1 10 10 1 10 10 1 10 10	iiig reglans containing known sequences	Aatch gene name	Stabhylococcus aurains game for unknum function and dit operon ditA, ditB, ditC, and ditD genes, complete cds	Staphylococcus aurous norally9 gene (which mediates active efflux of fluoroquinolones), complete cds	Stabhylococcus aureus DNA for LukK component, LukF-PV like component, complete cds	Staphylococcus aureus VB serine protesse gene	Staphylococcus aureus VB sering protesse gene	Staphylococcus aureus (Wood 46) gene for alpha-toxin	S.aureus partial sod gene for superoxida dismutase	Staphylococcus aureus MHC class'll snelog gene, complete cds	Staphylococcus aureus novel antigen gene, complete cds	Staphylococcus aureus HSP10 and HSP60 genes	S.aureus pdhS. pdhC and pdhD genes for pyruwate decarboxylase. dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	reck cluster: dneAmreplisome assembly proteingyrB-DWA gyrase beta subunit' [Staphylococcus aureus, YB886, Genomic, 5 genes, 1573 htl	Staphylococcus aureus gyrase-like protoin alpha and bota subunit (grlA and grlD) gones, complete cds	Stephylococcus aureus gyrase-like protein alpha and bete subunit (grlA and grlB) genes, complete cds	orizoz, rpoB(rii) and rpoc genes for ribosomal protein netical protein ORF202, DNA-directed RNA polymerase beta	S. sureus nork gene	S.aurous agră, agrß and hìd genes	S.aurous agră, agrß and hìd genes	S.aureus (RN4220) genes for potential ABC transporter and potential membrane spanning protein	S. aureus tagatose 6-phosphate isomerase gene, complete cds	complete	emt X93205 SAPT S. aureus ptsH and ptsI genes	
1 15 17 17 17 17 17 17	L. aureus - Co	inatch	db} D86240 D862	9р и80252	dbj b83951 STAL	emb 700356 SASP	emb Y00356 SASP	emb x01645 SATO	emb 249245 5A42	86 020503	gb U63529	dbj D14711 STAH	emb x58434 sAPD	96 577055	gb L25268	gb L25288	emb X64172 SARP	MAT2 6110901 tdb	emb X52543 SAAG	emb X52543 SAAG	emb 230588 SAST	gb H64724	gb N64724	emt x93205 SAPT	
1 15 17 17 17 17 17 17		Stop (nL)	503		•	636	956	709	950	557	687	344	302	467	271	318	397	285	25	522	681	265		1215	
		Start (nt)	23	79	1736	-	588	1308	1582	1111	۲.	182	532		3.48 	476	792		909	716	517	~	238	2426	******
		ORF C				-	~	-	_	-	-	_			-	~	-	-	-	7	~	-	~	-	-
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Cont ig	017	25	17	152	752	756	444	780	784	767		823	£		966	883	884	R84	912	917	617	918	*

5

Cont ig ID	0 AF	Start (nt)	Stop (nt)	match	match gene name / 1	percent ident	IISP nt Length	ORF nt length	
696	- -	~	7	db 190119 STAN	dbý 190118 STAN S. aureus norA gene	1 97	395	411	
991.	-	672	755	emb X52541 SAAG	emb X52541 SAAG S.aureus agrA, agrB and hld genes	66	336	336	•
0001		1117	845	 95 114017	Staphylococcus aureus mathicillin-resistance protain (meck) gene and unknown ORF, complete cds	e.	190	5	•
1001		869	265	db3 D86240 D862	Staphylococcus avreus gene for unkown function and dit operon ditA, ditB, ditC, and ditD genes, complete cds	6	234	ā	
1010	-	-	285	122170 196	Staphylococcus aureus hyaluronate lyase (hysk) gens, complete cds	66	224	285	• —
1046	7	959	000	emb{X72700 SAPV	emb X72700 SAPV S.aureus genes for S and F components of Panton-Valentine leucocidins	- 88	205	327	•
0901		480	286	emb x38434 SAPD	S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransferese and dihydroliposmide dehydrogenase	6	180	195	
1073	-	1176	589	gb K02985	S. aureus (strain RN450) transposon Th554 insertion site	007	101	888	• -
1079		~	730	dus D86240 D862	Staphylococcus aureus gamo for unkown function and dit operon ditA, ditB, ditC, and ditD gemes, complete, cds	6	228	228	
1079	~-	218	\$	db3 D86240 D862	Scaphylococcus aureus gene for unkown function and dit operon dith, dith, dite, dite, and dith genes, complete cds	001	267	267	·
1077		460	643	th: DH6240 DH62	Staphylococcus aureus game for unkown function and dlt operon dltA, dltB,	001	186	186	
1092	-	289	9	emb X58434 SAPD	S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylass. dihydroliposmido acetylttensferese and dihydroliposmide dehydrogenese	8	124	¥.	•
114	-	-	243	(91)[863177]	S. ourous signo factor (plac) gene, complete cds	66	243	Ş	
1157	-	~	901	cmb 248003 SADN	cmb 248003 SADN S.aureus gene for DNA polymerase lif	- 6	127	ŝ	_
1189	-	720	361	gb 574031	nork=NorA (1SP794) Staphylococcus aureus, NCTC 8325, Insertion, 1820 nt	66	360	360	• —
1190		~	283	SD M21854	S.aureus agr gene encoding an accessory gene regulator protein, complete cds	100	182	282	•
1190	~	1127	888	omb X52543 SAAG	Omb X51541 SAMG S.aureus agrA, agrB and hld genes	100	240	240	• -
1225	-	~	163	[emb. X17679 SACO	emh X11679 SACO Staphylococcus aureus coa gene for coagulase	- 6	124	162	•
1243		~	\$29	dbj D86240 D862	Staphylococcus aureus gene for unkown function and dit operon dita, ditB, ditC and ditD genes, complote cds	66	495	528	•
1244	-	-	210	/ uh 574033	norkellorA (159794) Staphylococcus aurays, NCTC 8325, Insertion, 1820 nt	100	210	210	
1001	-	7	7.5	emb X76490 SAUL	emb x76490 shut s.aureus (bb270) ginA and ginR genes	- 66 -	299	432	

5, aurous - Coding regions containing known sequences

Contig	. 10 C	Start (nt)	Stop (nt)	match Acession	match gene name	percent	HSP nt length	ORF nt length
1115	<u>-</u>	e	326	emb x64172 SARP	S. wreus roll, orf202, rookfriff and roof genes for ribesemal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta L beta' chains	86	277	309
6181	-	~	271	db; D28879 STAP	db; D28879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	86	139	174
1663		1346	675	dbj pr6240 p862 	Staphylococcus auteus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	86	672	672
1797		644	324	pb u73374	Stephylococcus aurens type 8 capsule genes, cap8A, cap8B, cap8E, cap8D, cap8E, cap8E, cap8E, cap8H, cap8I, cap8K, cap8E, cap8H, cap8N, cap8O, cap8P, cap8H, cap8N, cap8D, cap8P, cap8D,	66	321	321
1857	-	-	192	90,4490536	Staphylococcus aureus alpha-hemolysin gene, 3' end	86	192	192
1923			181	emb X17688 SAFE	S.auraus factor essential for expression of methicillin resistance (fema) gene, complete cds, and trpA gene, 1' end	907	081	180
1957	- -	~	346	68509n q5	Staphylococcus aureus novel antigen gene, complete cds	- 66	365	345
1988	- <u>-</u>		407	db) D86240 D862 	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	700	405	402
2100	-	=	208	ob H63177	S.aureus aigna factor (plac) gene, complete cds	66	207	207
2199	-	-	402	[95]06664]	Staphylococcus aurous DNA (ragment with class II promoter activity	66	100	402
7625		80¢	136	Ont) X17688 SAFE	only XIIGRA SAFE S. Aureus (Actor ossential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, J' end	66	253	153
2891	~ 	7	400	gb 1,25426	Staphylococcus auraus penicillin-binding protein 2 (pbp2) gena, complete cds	\$	199	399
2950		81.	398	dbj D30690 STAN 	dbj D30690 STAM Staphylococcus aureus genes for ORF37; HSP20; HSP40; ORF33, complete	100	358	381
2971			398	gb u51132	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o- succinylbenzoic acid synthetase (menc) genes, complete cds	6	272	396
2978	-	618	328	96 131979	Staphylococcus eureus chorismate synthame (aroc) and nucleoside diphosphate kinase (ndk) genos, complete cds, dehydroauinate synthame (arom) and geranylgeranyl pyrophosphate synthetame homolog (gerCC) genes, partial cds	86	250	291
1 2985	-	832	191	emb X17679 SACO	Staphylococcus aureus coa gene for coagulase	86	347	369
3006		2170	1784	96/11179	Staphylococcus aureus methicillin-resistant ATCC 11952 clone RRNV10 165-215	8.7	83	387
3008		474	238	dhj D30690 STAN	Staphylococcus aureus genes for OAF37, HSF20; HSF40; HSF40; OAF35, complete cds	88	178	237
3008	~_	4 5	281	dbj 030690 STAN	dbj blo690 STAN Staphylococcus aureus genes for ORF37; HSP20; HSP40; HSP40; ORF33, complete	- 6	120	171

	art Stop match match gene name percent	(nt) acession	1 398 (emb X62992 SAFN	235 gb J03479 S.aureus enzyme Ill-lac (lacP), enzyme II-lac (lacE), and phospho-beta-	233 (gh[006451]	287 gb[U51133 Staphylococcus	8 164 gb[US113] Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,	0 127 9b US1133 Stabhylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,	215 emb x64172 SARP S.aureus rplL, orf202, rpoBiriii and rpoc genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta is beta:	261 db) 010690 STAN Staphylococcus aureus genes for ORF17; HSP20; HSP10; HSP40; ORP35, complete	7 284 gb U06451 Staphylococcus aureus proline permessa homolog (putP) gene, complete cds	197 emb X64172 SARP S.Auraus rplL, ort202, rpo8(rlf) and rpoC gones for ribosomal protein L7/L12, hypothetical protein ORF202, DiA-directed RMA polymersse beta 6 heta' chains	119 db.j D86727 D867 Staphylococcus aureus DMA for DMA polymerase III. complete cds	4 244 Cmb 748001 SAEE S.ourous gene for DRA polymerase III	7 155 qb 101479 S.aureus enzyme III-lac (lac?), enzyme II-lac (lacE), and phospho-beta-	8 198 emb XS8434 SAPD S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,	-	175 emb 218852 SACF S.auraus gene for clumping factor	0 211 dbj n10489 STAG Staphylococcus aureus genes for DNA gyress A and B, complete cds	378 emb 538434 SAPD S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase. dihydrollposmide scetyltransferase and dihydrollposmide dihydrollposmi	-
	Stop	int)			-					<u> </u>				_				_			2117
{ { - { } } } { - - - - - - 	÷-	-		~	-		=	6			i – i	~	-	-	207	999	-	-	-		420
	ORF 1 S	:	1 - 1		-			- -			 -		-	-			-	-	-		<u>:</u> -

		:	:	-	: -	:-	: -	: -	:	·	<u>-</u>	·		٠-	•					٠ –	٠		•
-		ORF nt length	825	193	243	318	180	219	87	165	420	192	348	378	191	486	234	192	336	240	462	360	402
5		HSP nt length	257	350	102	1907	=======================================	174	29	162	175	253	345	346	319	403	ž	112	229	8	367	111	387
10		parcent	7.	- 99	- 33	66	001	86	100	86	86	66	66	27	86	8	80.7	80	100	2.	172	882	80 60
15			(mecR) gene and		rans	• • • • • • • • • • • • • • • • • • • •	7		Staphylococcus aureus proli; protein diacylglyceryl transferase (igt) gene, complete cds	Staphylococcus aureus prolipoprotein diacyiglyceryl transferase (1gt) gene, complete cds	1	sequences IS1181 and IS1182 (from	S. nurous cuzyme [If-lac (lacf), cuzyme II-lac (lacf), and phospho-beta- galactosidase (lacG) genes, complete cds		0 0 0 1 1 1 1 1 1 2 2 3 4 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		orf202, rpo8(rif) and rpoc genes for riboromal protein hetical protein ORF202, DNA-directed RNA polymerase beta 6	orf202, rpoB(rif) and rpoC genes for ribosomal protein netical protein ORP202, DNA-directed RNA polymerase beta £	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	rrnas	0 f & 0 1 3 3 6 5 4 6 8 8 8 F 1 4 5 4 8 8 8 F 1	(meck) gane and	orf202, rpoBirif) and rpoC genes for ribosomal protein stical protein ORF202, DNA-directed RNA polymerase beta £
20			ance protein	i 1 1 1 1 1 1 1 1 1 1 1	ince with two		1888	1838	cylglyceryl	cylglyceryl	pagulase	s 151181 and	1-lac (lacE),	: : : : : : : :			C genes for a	C genes for a	ng protein B	nce with two	• • • • • • • • • • • • • • • • • • •	ance protein	C genes for r A-directed RN
25	mown sequences		sthicillin-resist	ane	ansfer RWA seque	for clumping factor	coa gene for coagulase	od yene for coagu	olly-protein die	olipoprotein dia	ne for staphyloc	sertion sequence	(lacf), enzyme l mes, complete ed	ng factor	ng factor	ng factor	poBirif) and rpo otein ORF202, DN	poB(rif) and rpo otain ORF202, DN	ibronectin bindi	anster RHA seque	ng factor	thicillin-resist	poB(rif) and rpol otein ORF202, DM
30	- Coulny regions containing known sequences	match gene namu	Stabhylococus aureus methicillin-resistance protein (merR) gene and unknown ORF, complete cds	reus DNA for rpoC gene	Staphylococcus aureus transfer RMA sequence with two FRNAs	S.aureus gene for clumping faci	emb X17679 SACO Staphylococcus aureus c	Staphylococcus aurens coa gene for coagulasa	taphylococcus aureus p complete cds	staphylococcus aureus procomplete cds	Staphylococcus aureus gene for staphylocosgulase	Transposon Th5404 and insertion Staphylococcus aureus) DNA	. aurous onzyme III-lac (lacF), onzyme II. galactosidase (lacG) genes, complete eds	emb 218852 SACF S. aureus gene for clumping factor	S.aureus gene for clumping factor	S.aureus gene for climping factor	9.aureus rplL, orf202, rpo8trif and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta beta' chains	S.aureus spil, orf202, spoBiril) and spoc genes for ribusomal protein L7/L12, hypothetical protein ORF202, DMA-directed RNA polymerase beta bata' chains	S. aureus fnbB gene for fibronectin binding protein	Staphylococcus aureus transfer RHA sequence with two rRNA	S.aureus gene for clumping factor	Staphylococcus aureus methicillin-resistance protain (meck) gane and unknown ORF, complete cds	1 th 10 th
35	ulng r	match .	Stapl	S. aur	Stap	S. aur	Staph	Stap	Staph	Staph	Staph	Trans	S. aur	S.aur		5. aur	S.aur L7/L beta	S.aur L7/L beta	S.aur	Staph	S.Aur	Staph	S.aur L7/L beta
40	S. aureus - Co	natch	ab L14017	emb x89233 SARP S.aureus DNA	gb Lt1530	emb 218852 SACF	emb X17679 SACO	ent X17679 SACO		166 135773	emb X16457 SAST	gb L43098 	de a3479 	ent) 218852 SACF	emb 218852 SACF	emb 218852 SACP	Grab X64172 SARP	emb x64172 SARP	amb x62992 SAFN	gh 1.11530	emb 218852 SACF	, gb[L14017]	emt x64172 SARP
		Stop (nt.)	1282	334	65.4	320	182	<u></u>	-	363	422	262	350	181	396	528	236	435	423	154	463	450	402
45		Start (nt)	2106	e:	1 392	637	_ _	- 35	278	527	- -	~_		1 758	788	1 6101	~	224	1 75A	593	-	809	
		3 a	_	-	-	-	-	~		~	-	-	-	-	-	-	-	~	-	-	_	-	_
50		Cont 1g 1D	3232	353R	3543	3555	1559	1559	3563	3563	3566	3588	1,641	3600	3602	3656	3682	3682	3693	3702	3725	1361	3767
		: :	: :	:	- :	: :	_ :	- :	:	:	: _ :	:	:	_:	_ :	_ :	:	'	_ •	•			•

TABLE 1

ORF nt length	285	228	177	249	396	219	465		399	1 477	324	252	285	237	1 171	1631	571	•	437	192	213
HSF nt length	722	707	123	249 ,	396	191	204	356	192	347	299	717	209	155	171	170	97	7 20	413	159	6
percent	001	100	- 56	- 66	9.6	- 66	87	2	36	85	001	100	6	96	98	100	86	66	- 66	100	
natch gene name 	S.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	Staphylococcus aureus genes for DNA gyrass A and B, complete cds	emb X17679 SACO Staphylococcus aureus coa gene for coagulase	S. aureus fibronectin-binding protein (InbA) mANA, complete cds	ent X68425 SA23 S.eureus gene (or 235 rRNA	Staphylococcus sureus elsstin binding protein (abpS) gene, complete cds	S.aureus publb, pothe and nothe genes for pyruwate decarboxylase, dipydrollyposmide acetyltransforase and dibydrollposmide debydrogenase	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	emb 21885z SACF S.aureus gene for clumping factor	Staphylococcus aureus peptidoglycan hydrolase gene, complete cus	dbj D104R9 STAG Staphylococcus sureus genes for DNA gyrase A and B, complete cds	S.aureus ensyme III-lac (lacF), ensyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	S. nurous pdhin, puhic and pdip genes for pyrovate docerboxylass, dihydrolipoamido acctyl rensferase and alhydrolipoamide dehydrogenese	Staphylococcus aureus gene for staphylocoagulase	emb X89133 SARP S.aureus DNA for rpoC gene	emb X89233 SARP S.aureus DRA for rpoC gene	S.aureus rpli, orf202, rpoBirif, and rpoc genes for riboromal protein L7/L12, hypothetical protein ORP202, DNA-directed RNA polymerase beta & beta' chains	is wureum (ibronectin-binding protein linbh) mRNA, complete cds	Stephylococcus aurous dehydroquinate synthase (arob) gene, J' end cds; J- phosphoshikimate-1-carboxyvinyltransferase (arok) gene, complete cds; ORF1, complete cds	Staphylococcus aureus dehydroquinate synthase (arob) gens, 3' and cds; 3- phosphoshikimate-i-carboxyvinyltransferase (arok) gene, complete cds; ORF3, complate cds
match	emb x64172 SARP	db D10489 STAG	dbj D10489 STAG	emb X 7679 SACO	ab J04151	emt X68425 SA23	gb U48826	emb(x58434 SAPD	ab 1.14017	emb 218852 SACF	gb N76714	dbj D10489 STAG	96 103479	Qinb X58434 SAPD	emb X16457 SAST	emb x89233 SARP	emb[x89233 SARP	emb x64172 SARP	9041514	96 105004	gh 1,05004
Stop (nt)	286	229	366	251	398	402	46B	381	00	573	127	253	288	752	173	183	157	£85	420	239	004
Start (nt)	~	456	5.42	_	נפר	184	51.6	-	198	1049	65.0	~	572	-	~	-	181	~	A36	£	86
10 HF	-	- -	~	1	-	-	-		<u>-</u> _	-	_	<u>-</u>	<u>-</u> _		<u>-</u>	<u>-</u>	~		-		~
Contig ORF ID ID	2775	3786	1786	179A	3813	3819	3844	3845	3856	3859	1871	3,476	7877	1878	3888	3893	3893	3.894	JR95	3905	3905
- 1		•	•		•	• -	: _ '			'			_				_				

TABLE 1

S. aureus - Coding regions containing known sequences

(iii) (iii) acression teression to a constant and the con	310 gb u.14017 Staphylococcus aureus mothicillin-resistance protein (mecR) gene and 75 175 330 unknown ORP, complete cds	347 emb 248003 SACN S.aureus gene for DNA polymerase 111	390 emb X16457 SAST Staphylococcus aureus gene for staphylocoagulase	371 dbj 010489 STAG Staphylococcus aureus genes for DNA gyrase A and B, complete cds 99 339 369	348 emb 218852 SACF S.aureus gana for clumping factor	375 emb :18852 SACF S.aureus gene for clumping factor	432 emb 248003 SADN S.aureus gene for DNA polymerase 111	104 gb L14017 Stephylococcus aureus methicillin-resistance protein (meck) geno and 75 198 103	402 gb U11786 Staphylococcus aureus methicillin-resistant ATCC 33952 clone RRIVA2 165-235 98 127 345	301 gb .43098 Transposon, Tn5404 and innertion sequences IS1181 and IS1182 (from 99 227 300	277 cml/X58414 SAPD S. Aureus pdhB. pdhC and p.\D genes for pyruvate decarboxylase. 99 276	402	402 9b L05004 Staphylococcus aureus dehydroquinate synthaso (aroñ) gene, 1' and cds; 1- 96 157 181 phosphoshikimate-1-carboxyvinyltransferase (aroñ) gone, complete cds; complete cds	401 gb U73374 Staphylococcus aurous type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, 100 86 162 cap8L cap8E, cap8E, cap8E, cap8B, c	247 9b J04151 S.aureus fibronectin-binding protein (fnbh) mRNA, complete cds 99 200 213	366 gb L14017 Staphylococcus aureus methicillin-resistance protein (mecR) gene and 87 150 264 unknown ORF, complete cds	_	
347	340	1 390		_	1 348	_	432	304	403			_	402	107	247	366	398	294 emb x64172 SARP
_		1 691	1 199	_ 1 	1 692	4060 1 1	-	1 606		4088 1 2		-	4116 1 22	1 340	1 1 35	1 629	1 754	

Cont ig	<u>8</u> 2	Start (nt)	Stop (nt.)	match	match yene name	percent ident	HSP nt length	ORF nt langth	
1203	-	-	255	emb (X89233 SARP	S. aureus DNA for spoC gene	1 66	239	255	
4206	-		303	emb 218852 SACF	emb 218852 SACF S.aureus gene for clumping factor	100	236	1 303	-
4206	-	195	144	onth 218852 SACF	omb 218852 SACF S.aureus gene for clumping factor	95	53	150	•
4208		108	314	emb 258434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dibydrolipoamide acetyltransfersse and dibydrolipoamide debydrogenase	68	94	207	
4216		959	000	emb X58434 SAPD		86	326	121	
1 4226	-	594	1 298	ap L11530	Staphylococcus aureus transfer RNA sequence with two rRNAs	97	132	762	• -
4260		216		195(110)46	Staphylococcus aureus methicillin-resistant ATCC 13952 clone RRNV40 165-235	2	7	168	
1 4272	-	355	6/1	emt: 248003 SAUN	emt: [24800] [SAUN S.aureus gene for DNA polymerase 111	100	797	74.	•
4276	-	-	7,1	emb X16457 SAST	Staphylococcus aureus gene for staphylocosquiase	1 66	150	174	•
4277			270	emL X64172 SARP	S.aureus rpit, orf202, rpoBirif! and rpoC genes for ribosomal protein L7/L12, hypothatical protein ORF202, DWA-directed RNA polymerase beta & beta' choins	66	265	270	•
4282		169	7.1.	emb X64172 SARP	S.auraus rpil, orilo2, rpoBirill and root genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed NNA polymerase bets in bets' chains	86	282	318	·
4291		940	191	emb x64172 SARP	S.aureus rpli, ori202, rpoBirif; and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed NNA polymerase beta & beta: chains	6	183	189	•
4295	-	_	329	cmb X16457 SAST	omis/X16457 SAST Staphylococcus aureus gene for stapliylocoagulase	- 76	144	327	• —
4313	-	435	280	195[11530]	Staphylococcus aureus transfer RMA sequence with two rRMAs	100	7.6	156	•
4315			185	96/303479	S.aureus enzyme III-lac (lacP), enzyme II-lac (lacE), and phospho-beta- nalactosidase (lacG) genns, complete cds	001	158	183	
4315	~_	101	916	gb J03479	S.aureus enzyme III-lac (lac?), enzyme II-lac (lacE), and phospho-beta- qalactosidasa (lacG) genes, complete cds	- 86	2	210	•
4327	<u>-</u> _	-	294	gb 1.43098	Transposon 715404 and insertion sequences [5118] and [51182 (from Scaphylococcus aureus) Did	B6	294	294	
09(+	-	603	916	016700 96	Staphylococcus aureus ATCC 25923 165 rRMA gene, partial sequence	100	116	205	
† 364		.	146	emb[x64172 SARP		\$	140	=	
4388	-	167	310	emb X62992 SAFN	emb X62992 SAFN S.aureus (nbB gene (or (ibronectin binding pratein 8	- 22	1 611	3	

5

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nc length	ORF nt length
1007	-	~	- F	emb x62992 SAFN	S. aureus Inbs gene for fibronectin binding protein B	6	243	312
4421	-	3,6	1 281	dbj 012572 STA2	Staphylococcus aureus rrnA gene for 23S ribosomel RNA	100	112	246
1 4426	-	<u> </u>	293	emb 218852 SACF	S. aureus gene for clumping factor	1 85	185	291
4428		493	248	emb X64172 SARP	S.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase bets & beta chains	100	139	246
4462		~	271	eml. X64172 SARP	S.auraus rpli, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta' chains	66	270	270
4466	-	-	240	emb 218852 SACF	S.aureus gene for clumping factor	66	231	240
4469	- -		312	gb J03479	S.aureus ensyme III-lac (lacF), ensyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	66	265	312
4485			261	gb L43098 	Transposon Tn5404 and insertion sequences IS1181 and IS1182 (from Staphylococcus aureus) DMA	86	259	261
4492	- -	7	400	gb M86227	Stabbylococcus aureus DNA gyrase B subunit (gyrB) Recf homologue (recf) and DNA gyrase A subunit (gyrA) gene, complete cda	88	104	727
1 4497	-	515	269	cmb ::16452 SACF	S. aurous guna for clumping factor	66	213	267
4529		~	172	emb x64172 SARP	S.aureus rpli, orizoz, rpoB(rit) and rpoC genes for ribosomal protein L7/Li2, hypothetical protein ORF202, DNA-directed RNA polymorase beta t beta' chains	001	151	171
4547	-	-	200	cmb x62992 SAFN	S. aureus inub gene for libronectin binding protein B	100	157	1000
1554	-	318	760	emb[218852 SACF	S.aureus gene for clumping factor	8	126	159
4565	-	6	1 227	enb[218852 SACF	S. auraus gene lor clumping factor	8	213	219
4569	-	62	223	[emb 218852 SACF	emb 218851 SACF S.aureus gene for clumping factor	86	127	144
4 608		≈	216	[emb X58434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dinydrollpoamide acetyltransfersse and dinydrollpoamide dehydrogenase	92	168	195
4614	-	79	234	emb 218852 SACF	S.aureus gene for clumping factor	98	169	162
4623	-	105	302	[gb{J04151]	S. aureus (ibronectin-binding protein (inba) mRNA, complete cds	66	152	198
4632		81 81	206	gb, 303479	S.aureus entyme III-lac (lacF), entyme II-lac (lacE), and phospho-beta- galactosidase (lacS) genes, complete cdg	88	183	189
4646	<u>-</u>	 	122	emb[218852 SACP	S. aureus gane for clumping factor	8	100	222
1 4687	-	~	166	[gb J04151	S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds	86	156	165

5		ontig ORF Start Stop match match gene name percent HSP nt ORF nt 100 10 10 10 10 100	4695 1 313 158 gr Liddi7 Staphylococcus aureus methicillin-resistance protein (mecR) gene and 75 155 156 unknown ORP, complete cde	4703 1 1 153 cmb X58414 SAPD 5.aureus pdhB, pdhC and pdhD genes for pyruvare decarboxylase, 98 103 153 dlhydrollpoamide ecetyltransferase and dlhydrollpoamide dehydrogenase
15) gene end	ase, chydrogenase
20			ce protein (mech	uvate decarboxyl
25	w sednances		cillin-resistan	nd genes for pyrinsferase and dil
30	5. aureus - Coding regions containing known sequances	ene name	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	.53 cmb X58414 SAPD S.aureus pdhB, pdhC and pdhD genes for pyruvate decemborylase, dihydrolipoamide ecetyltransferase and dihydrolipoamide dehydrogenase
35	ding regi	match gene name	Staphylo	S.aureus dihydro
40	S. auraus - Co	match	4695 1 313 158 92 L14017	cmb X58434 SAPD
45		Stop (nt)	158	£51
		in In (nt)	616	4703 1 1
50		ORF		
		ont ig	4695	4703

TABLE 2

ŧ \$\$ length (nt) £ 1 ident 7. 1, . 6 sin similar to trimethylamine DH [Mycoplasma capricolum] pIr[64950]849950 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum (SOC3) (fragment) protein synthesis initiation factor 2 (infB) (Bacillus subtilis) gi[49119 | IF2 gene product (Bacillus subtilis) Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi large subunit of NADH daysoudent glutamate synthase (Plectonoma boryanum) Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi H. influenzae predicted coding region H10660 (Massophilus influenzae) S. aurens - Putative coding regions of novel proteins similar to known proteins Cip-like ATP-dependent protease binding subunit (Bos taurus) excisionase (xis) (Staphylococcus bacterlophage phi 11) integrase (int) (Staphylococcus bacteriophage phi 11) Integrase (int) (Staphylococcus bacteriophage phi 11) lint gene activator RinA - Lacteriophage phi 11 protein kinase C inhibitor-I (Nomo sapiene) nusd gene product (Staphylococcus carnosus) nusG gene product (Staphylococcus carnosus) ORF1 [Staphylococcus bacterlophage phi 11] PET112-11ke protein (Bacillus subtilis) . PET112-like protein (Bacillus subtilis) PET112-like protein (Bacillus subtilis) polyprotain (Bean common mosaic virus) 1111 protein (Staphylocuccus carnosus) unknown (Staphylococcus haemolyticus) unknown (Staphylococcus haemolyticus) enolase (Bacillus subtilis) S10 [Bacillus subtilis] heatch gene name |pir|849703|8497 acession 0566111 16 91 1 1 0 2 2 7 2 6 01,1022726 |91|143359 191,1354211 191 1204912 191 1354211 191 971784 191 1373002 141 11354211 4679 |91|511839 191 | 455128 91 | 862933 |gi|426473 911:66161 91 426473 191 | 166161 91 166159 91 | 166159 91 | 460259 191 | 581638 match Stop (nt) Ĭ **‡**13 Start Int) \$089 1 428 Ę R30 1 | 321 = -1 2 | 571 ~ -_ 10 PP -~ --Li ~ 168 Contig Ξ €

S. aurous - Putative coding regions of novel proteins similar to known proteins

Contlg 10	8 0	Start (nt)	Stop (nt)	match	sekch gene name	E .	1 Ident	length (nt)
4227	7	152	331	191 871784	Cip-like ATP-dependent protesse binding subunit (Bos taurus)	96	91	180
4416	-	570	286	191 1022726	unknown (Staphylococcus haemolyticus)	96	3	285
22	-	858	430	191 511070	Ured (Staphylococcus xylosus)	25	90	429
1 22	-	1 4362	4036	1011581787	urease gamma subunit (Staphylococcus xylosus)	95	97	127
82	9	8794	9114		pir JG0008 JG00 ribosomal protein S? - Bacillus staarothermophilus	86	83,	ű
154	-	9280	7838	91 1354211	PET112-like protein (Bacillus subtilis)	\$	92	3
186	_	1 2798	2055	gi 1514656	serine O-ecetyltransfersse (Staphylococcus xylosus)	\$	8,	74.
205	~	4406	4014	91 (142462	ribosomal protein 511 (Bacillus subtilis)	\$	85	193
205	٠,	5017	4793	1911142459	initiation factor 1 (Bacillus subtilis)	\$6	8	225
505	-	11365	10991	9111044974	ribosomal protein Lid (Bacillus subtilis)	\$\$	2	375
259	~	7288	6644	8p P47995 YSEA_	HYPOTHETICAL PROTEIN IN SECA S'REGION (ORFI) (PRAGMENT).	\$	8	645
302		795	1097	91 40196	homologous to E.coli ribosomal protein L27 [Bacillus subtilis] i[14352 L27 ribosomal protein [Bacillus subtilis] ir C21895 C21895 ribosomal protein L27 - Bacillus subtilis p PU5657 RL27_BACSU 50S RIBOSOMAL PROTEIM L27 (BL30) (BL34), i[40175 L24 gene prod	95	66	303
310	-	678	1523	191/1177684	chorismate mutase Staphylococcus xylosus	95	92	945
-	<i>-</i>	~	163	pir C48396 C483	pirjot8396[C483 ribosomal protein L34 - Bacillus stearothermophilus	38	06	291
4185	-	125	7.4.	101 1276841	glutamate synthase (GOGAT) [Porphyra purpurea]	98	98	153
2	7	1 1028	723	191 511069	[Uref [Staphy]ococcus xylosus]	*		306
22	- \$	5046	3310	101 410516	urease alpha subunit (Staphylococcus xylosus)	*	98	1737
9	-	815	1372	191/666116	glucose kinase (Stephylococcus xylosus)	ž	87	558
205	-18	110012	9836	91 1044978	ribosomal protein 58 (Bacillus subtilis)	*	78	477
326	-	97.66	2542	91 557492	dihydroxynapthoic acid (DNNA) synthetase (Bacillus subtliis) gi[143186 dihydroxynapthoic acid (DNNA) synthetase (Bacillus ubtliis)	*	89	637
-	_	737	955	91,467386	thiophen and furan oxidation (Bacillus subtills)	2	- (1	£ 25
426	-	1 2260	1823,	, 94 1263908	putative (Staphylococcus epidermidis)	36	60	60
22	-	~	355	91 633650	ensyme II(mannitol) (Staphylococcus carnosus)	94	8	354
101	-	~	229	gi 149435	putative (Lactococcus lactis)	76	13	228
3098	-	330	184	92: 413952	ipa-28d gane product (Bacillus subtilis)	76	20	147

sureus - Putative coding regions of novel proteins similar to known proteins

Contig	<u>80</u> 01	Stert	Stop (nt)	acession ,	march gene name	e ia	* ident	length (nt.)	
3232	-	630	316	191 1022725	unknown (Staphylococcus haemolyticus)	16	84	315	
3	- 2	2089	1 2259	pir B48396 B483	pir B48396 8483 ribosomal protein L33 - Bacillus stearothermophilus	93	18	171	
101	7	1745	1383	91/155345	arenic efflux pump protein [Plasmid pSX267]	93	83	363	
205	124	12227	11865	sp P14577 RL16_	IBD P14577 RL16 1508 RIBOSONAL PROTEIN L16.	93	63	363	
259	-	8291	5673	911499335	sech protein (Staphylococcus carnosus)	23	95	2619	
275	1-	1 2226	1114	1911633650	ensyme II(mannitol) (Staphylococcus carnosus)	1 93	9	1113	
=	-	1 6207	5773	91 1022726	unknown (Staphylococcus haemolyticus)	93	18	435	
167	-	152	622	91 46912	ribosomal protein Lil (Staphylococcus carnosus)	93	88	471	_
1 607	-	1674	2033	91 11022726	unknowm (Staphylococcus haemolyticus)	26	63	360	
653	-	1973	897	94 580890	translation initiation (actor 173 (AA 1-172) [Bacillus temrothermophilus]	23	77	486	
1864	-	-	194	101 306553	ribosmal protein small subunit (Nomo sapiens)	66	23	192	
1 2997	-	78	300	191 (143390	carbamy1 phosphate synthetase (Bacillus subtills)	1 93	62	273	
3232	-	1 907	965	[91 1022725	unknown [Staphylococcus haemolyticus]	2	70	312	
3761	-	1 794	621	91/1023725	unknown (Staphylococcus haemolyticus)	2	98	174	
91		-	<u></u>	911142781	puterive cytopleraic protein; puterive [Bacillus subtilis] sp p17514 unra_macsu excinuclers are subunit a (dina protein) prachest).	92	6	272	
7	-	5385	6124	(91)1136430	KIAA0185 protoin [Homo sapiens]	92	9	210	
95	62	126483	127391	94 467401	unknown [Bacillus subtilis]	92	80	606	_ :
69	-	1 5882	6130	94 530200	[trophoblastin [Ovis sries]	92	23	249	:
145	-	1 2568	1 2038	91 1022725	unknown (Staphylococcus haemolyticus)	1 92	80	105	_ :
151	-	2760	1362	q1 517475	[D-amino acid transaminase (Staphylococcus haemolyticus)	92	99	199	_ ;
205	22	7495	6962	[91 49189	secY gene product (Staphylococcus carnosus)	92	85	534	
205	61-	110812	110255	gi 1044976	ribosonal protein LS (Bacillus subtilis)	- 35	82	558	
219	-	1 710	1357	[91 1303812	YqeV (Bacillus subtilis)	92	88	354	
1 344	-	2721	1805	19111405474	CspC protein (Bacillus cereus)	92	88	231	
669	-	02	361	gi 413999	ipa-73d gene product (Bacillus subtilis)	- 92	19	ž	
1343	-	- 3	091	pir A45434 A454	pir A45434 A454 ribosomal protein L19 - Bacillus steerothermophilus	92	88	159	
						•			

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	10 01	Start (nt)	Stop (nt)	match	match gene name	s in	1 ident	length (nt)
1958	-	524	264	91;407908	Efface (Staphylococcus xylosus)	92	90	261
1 3578	- 2	718	386	191 1339950		92	78	133
1385	=	5	334	191 1139950	large subunit of NADH-dependent glutemate synthase [Plectonema boryanum]	92	6)	321
3640	-	-	7 97	01 1022726	unknown [Staphylococcus haemolyticus]	92	18	199
4362		=	178	91 450608	hadw gene of Ecquri gene product [Escherithka coll] pir[5]8471[5]8437 hadM protein - Escherichia coll pir[509629[509629 hypothetical protein A - Escherichia coll (508 40-520)	88	91	165
446	-	1358	182	[ui 1022725	unknown [Staphylococcus haemolyticus]	26	82	177
1549	-	462	232	91 1022726.	unknown (Staphylococcus haemolycicus)	25	08	162
4626	-	-	1 224	01 1022725	unknown (Staphylococcus haemolyticus)	8	96	222
~	-	1 1980	4833	[91[535349	CodW-(Bacillus subtilis)	91	*	582
28	-	7	1126	19111001376	hypothetical protein (Synechocystis sp.)	16	2	1125
09	-	1354	1071	191 (1226043	orf? downstream of glucose kinase [Stephylococcus xylosus]	8	80	148
101	-	1989	1036	[91]150728	(ersenic efflux pump protein (Plasmid pl358)	16	8	954
187	-	- 412	11194	91 142559	ATP synthase alpha subunit (Bacillus megaterium)	16	67	163
205	2	11579	11298	91 40149	S17 protein (An 1-87) [Bacillus subtilis]	16	9	202
1 206	-	818	10262	91 1072418	glcA gene product (Stephylococcus carnosus)	91	1 83	2079
1 306	-	1 3885	1 2326	94 143012	GMP synthetase (Bacillus subtilis)	16	l 78	1560
306	_	5319	3826	94 467399	IMP dehydrogenase (Bacillus subtilis)	<u>ت</u>	66	1494
310	-	2194	3207	1911117685	ccpA gene product (Staphylococcus xylosus)	1.6	19	1014
135	-	2974	3150	91/949974	[sucrose repressor [Staphylococcus xylosus]	٦ -	1 62	177
1 480	1	1606	3042	191 (433991	ATP synthase subunit beta (Bacillus subtilis)	16	65	1437
\$		702	1280	91 143366		16	ę	247
252		1064	2 ,	91 297874	fructoss-bisphosphate aldolase [Staphylococcus carnosus] pir[A49943] A49943 fructoss-bisphosphate aldolase (EC 4.1.2.13) - taphylococcus carnosus (strain fW300)	16	و	430
637	-	-	1536	101 143597	CTP synthetase [Bacillus subtilis]	۔ ع	67	1536
829	-	77	1359	191 385178	[unknown [Becillus subtilis]	16	99	339

S. aureus - Putative coding regions of novel proteins similar to known proteins

1	Contig ORF	ON OI	Start	Stop (nt)	match acession	match gene name		1 sdent	length int)
1 166 272 9 191000	1327	-	· -	530	1911496558	orix (Bacillus subtilis)	16	<u>د</u>	192
1 2.2 2.2	2515	-	1 466	275	91 511070	Ured (Staphylococcus xylosus)	91	88	192
1 177 625 G111023772 Uniform [Staphyleocecus hamelyticus] 91 75 75 75 75 75 75 75 7	2594	-	7	707	91 146824	bota-cystathionage (Escherichia coli)	91	75	201
1 177 455 Gillo27726 Underson StackPub Coccus Date Dat	3764	-	847	425	91 11022725	unknown [Staphylococcus hammolyticus]	91	96	423
1 1 177 0 155664 Arrane Laccococcus lection 191 66 2 815 1021 0 150401 certaine	4011	-	127	495	qi 1022726	unknown [Staphylococcus hasmolyticus]	91	96	369
1 11 11 11 11 11 11 11	4227	-		177	91 29 64 64	Afrase (Lactococcus lactis)	91	99	771
1 1517 4607 54 36899 Opprograme Dacillus subtilis) 90 74 78 71 7607 54 36899 Opprograme Dacillus subtilis) 90 76 78 78 78 78 78 78 78	2	-	#15	1033	gi 520401	catalase [Haemophilus influentse]	90	98	219
1 1662 16531 610 10 1104506 6 6 10 10 10 10 10	51	-	13717	4607	191 580899	OppP gene product [Bacillus subtilis]	- 06	7.	891
17 1662.8 1633.1 541 561 561 561 562	129	-	5317	4001	gi 1146206	glutamate delydrogenase (Bacillus subtilis)	90	76	7161
4 4497 3550 gl 1517475 D-amilno acid transminate (Staphylococcus hemolyticus) 90 78 78 7850 gl 152461 RNA polymerase alpha-core-ambunit (Bacillus subtilis) 90 73 73 748 7410 gl 19189 sect gene product (Staphylococcus carnous) 90 73 73 748 7410 gl 19189 sect gene product (Staphylococcus carnous) 90 78 78 78 78 78 78 78 7	164	13	116628	116933		JOS RIBOSOMAL PROTEIN S15 (BS18).	06	74	306
4 4497 3550 91 12363 RNA Polymerses alpha-core-subunit Bacillus subtilis 90 73 73 746 7416 74	171	- 5	2983	2819	91 517475	D-amino acid transaminase (Staphylococcus haemolyticus)	06	78	165
6 4746 4410 91 1044999	202	-	4497	13550	191 142463		06	36	948
11 1565 6404 91 49189 sect gene product [Staphylococcus cannosus] 90 81 18 11002 11145 91 140189 sect gene product [Staphylococcus cannosus] 90 79 79 79 71 71 71 71 71	205	9	1748	4410	191 1044989	ribosomal protein S13 (Bacillus subtilis)	06	73	600
11 6445 6472 91 49189 sect game product [Staphylococcus carnosus] 90 78 79 71 71 71 72 72 72 72 72	205	27	1 7165	1 6404	191 49189	secY gene product (Staphylococcus carmosus)	1 06	18	1 762
13 13656 13456 91 136303 L3 Bacillus subtilis 90 79 79 7856 78	Ι.,	=	6645	6472	91 49189	secy gane product (Staphylococcus carnosus)	06	7.8	174
13 13556 15456 91 1165303 L3 [Bacillus subtilis] 90 78 1 1 1 1 1 1 1 1 1	:	127	13692	113345	191 786157	Ribosomal Protein 319 (Bacillus subtilis)	06	79	744
5 7023 5773 91 161300 IcaA Staphylococcus epidermidia 90 78 18 1947 91 467440 Sphophorboxyloyrophosphate synthetase [Bacillus subtilis] gi 40218 PRPP 90 78 78 79 79 79 79 79 79	:	13	115858	115496	(91/1165303	[13 [Bacillus subtilis]	- 06	79	363
6 3378 3947 qri 467440 'phosphoribosylpyrophosphate synthetase [Bacillus subtilis] gi 46218 PRPP 90 78 2 1025 1217 joi 31243 carbamoyl-phosphate synthase (glutamina-hydrolysing) [Bacillus aldolyticus] 90 75 4 1581 1769 gi 985963 Data-tubulin (Sporidiobolus pararoseus) 90 80 77 1 954 523 pir 534762 5347 L-serina dehydratase beta chain - Cloatridium sp. 90 77 1 9 1200 qi 143786 tryptophanyl-tRNA synthetase [EC 6.11.12] [Bacillus subtilis] 90 73 2 667 1200 qi 143786 tryptophanyl-tRNA synthetase [EC 6.11.12] - Bacillus ubtilis 90 73 3 18 joi 143063 hubat [Bacillus stearothermophilus] 90 79 4 1059 865	260	-	1 7023	5773	611161380	Icak (Staphy) ococcus epidermidis!	06	7.8	1251
2 1025 1717 91 312443 carbamoyl-phosphate synthase (glutamins-hydrolysing) [Bacillus aldolyticus 90 75 75 75 75 75 75 75 7	239		33.78	13947	91 467440	'phosphoribosylpyrophosphate synthetase (Bacillus subtilis) gi 40218 PRPP synthetase (AA 1-317) [Bacillus subtilis]	8	78	570
4 1581 1769 gi 986963 Deta-tubulin (Sporidiobolus pararoseus)	320	- 2	T —	1717	191 312 643	carbamoyl-phosphate synthase (glutamins-hydrolysing) [Sacillus aldolyticus]	- 06	25	693
1 954 523 pir[524762] [5347] L-serine dehydratase beta chain - Cloatriddum sp. 90 77 18 188 91 1511589 N. jannaschil predicted coding region NJ624 [Methanococcus jannaschil] 90 54 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1200 91 1400 90 91 90 91 91 91 91	28	-	1 1581	1769	[91]986963		06	80	189
1 3 188 gili511559 N. Jannaschil predicted coding region NJ1624 [Ruthanococcus jannaschil] 90 54 2 667 1200' gili43786 tryptophanyl-tRMA synthetase (EC 6.1.1.2) [Bacillus subtilis] 90 73 1 1 261 gili43065 hubat [Bacillus stearothernophilus] 90 79 4 1059 865 Gili205433 N. influenzae predicted coding region Hill90 [Heemophilus influenzae] 90 81	369	-	1 954	523	pir 534762 5347	-	2	11	-
2 667 1200 qi 143786 tryptophanyi-tRNA synthetase (EC 6.1.1.2) - Bacillus ubtilis 90 73 1 1 1 1 1 1 1 1 1	557	=	-	188	91 1511589	[N. januaschil predicted coding region MJ1624 [Hethanococcus januaschil)	0,6	\$5	186
1 1 261 91 143065 hubst Bacillus stearothermophilus 90 79 4 1059 865 61 1205433 91 14 161 170 91 91 91 92 91 93 94 95 95 95 95 95 95 95	663	~_	667	1200	;		g	13	Š
4 1059 865 G1 1205433 H. Influenzae predicted coding region HII190 [Heemophilus influenzae] 90	נזנ	-	-	1 261	91 143065	hubst (Bacillus stearothermophilus)	06	79	261
	745	-	1059	1 865	c1 1205433	H. influenzae predicted coding region HII190 [Hesmophilus influenzae]	06	81	195

S. aureus - Putative coding regions of novel proteins smallar to known provolns

Contig	10 OI	Start (nt)	Stop (nt)	match acession	patch gene name	o sin	1 ident	langth	
1007		386	265	101 143366	ademylosuccinate lyase (FUR-B) (Bacillus subtilis) pir[C79376 MZBSDS ademylosuccinate lyase (EC 4.3.2.2) - Bacillus ubilis	06	"	180	
1054	=	672	331	91 1033122	ORP_(729 [Sacherichia coli]	ů,	9		
1156	-	1117	702	91 1477776	Cipp (Bacillus subtilis)	•	3 6		
1180	-	408	205	91 1377831	unknown (Bacillus subtilis)	8	2	200	
1253			462	91 40046	phosphogiucos isomerase A (AA 1-449) (Bacillus stearothermophilus) if S15916 NUBGSA glucoss-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	08	, 56	5	
2951		-	269	91 144816	formyltetrahydrofolate synthetese (FTHFS) (ttg start codon) (EC .3.4.3) [Noorella thermoacetica]	96	16	267	
3140	-	727	166	91 1070014	protein-dependent (Becillus subtilis)	06	Ş		
4594	-	_	233	91 871784	CIP-like ATP-dependent protesse binding subunit (Bos taurus)	96	**		
87	-	1028	1750	191 467327	unknown (Bacillus subtills]	89	2,5		
21	_	~	508	[gi [153741	ATP-binding protein (Streptococcus mutans)	69	,,	Ş	
.118	-	120	398	g1 1303804	[VqeQ [Bacillus subtilis]	88			
128	-	3545	13757	g1 460257	triose phosphate isomerase (Bacillus subtilis)	6	2		
164	2	111667	12755	191 19954	IP2 (aa 1-741) (Bacillus stearothermophilus)	8			
502	Ξ	7875	7405	141 216338	ORF for LIS ribosomal protein (Becilius subtilis)	e e		667	
205	~	16152	15823	[91]1163303	[1] (Bacillus subtilis)				
270		2407	2207	ptr C41902 C419	arsanate reductase (EC 1,-,-) - Staphylococcus xylosus plasmid psx267			2	
395	~	157	672	91 520574	(glutamate racemase (Staphylococcus haemolyticus)			107	
494	-	-	939	91 396259	protease Staphylococcus epidermidis			o I c	
910	-	-	÷	91 40046	Phosphoglucose isomerase A (AA 1-449) (Bacillus stearcthermophilus) Lifs15936(NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	68	7		
618	-	2124	1210	1303812	Yoev (Bacillus subtilis)				
841	-	18	141	91 (1165303	[L] (Bacillus subtilis)	8		G ;	
1111	-	152		91 47146	thermoruclesse (Staphylococcus intermedius)	3 8		*75	
1875	-	~	256	91 1205108	ATP-dependent protesse binding subunit (Maemophilus influenzae)	2	2 2		
2963	-	=	367	91 467458	cell division protein (Bacillus subtilis)	- 68			
							;	;	

S. aureus - Putative coding regions of nuvel proteins similar to known proteins

0,100	•	Stark	St op	match	march dene	als /	1 ident	Jength
100	9	(pt)	<u> </u>	acession				(nc)
1 3020	-	06	362	91 1239988	hypothetical protein [Bacillus subtilis]	89	99	273
1 3565	-	~ -	8	(91)1256635	dihydrexy-acid dehydratase [Bacillus subtilis]	89	75	399
3586	-	105	314	91 580832	ATP synthase subunit gamma (Bacillus subtilis)	69	82	210
3629	-	794	1 399	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	69	38	396
3688	-	~ -	400	91 1146206	glutamata dehydrogenasa (Bacillus subtilis)	68	35	399
1 3699	=	1 794	1 399	191 1339950	large subunit of NADH-dependent glutemate synthase [Plectonema boryanum]	69	25	396
4016	-	428	216	191 1009366	Respiratory nitrate reductase (Bacillus subtilis)	60	ιL	213
1111	-	- 52	301	91 149426	putative [Lactococcus lactis]	89	92	171
4436	-	1 601	707	91 1022725	unknown (Staphylococcus haemolyticus)	68	08	8
4635	-	730	162	91 1022725	8	68	נג	159
7	-	0000	2676	91 520754	putative (Bacillus subtilis)	88	9,6	1347
45	~	996	848	sp P42321 CATA_	CATALASE (EC 1 11 1.6).	88	96	381
- 53	~	6389	1 4722	191 474177	alpha-D-1,4-glucosidase (Staphylococcus xylosus)	88	80	1668
26	22	118018	118617	1911467411	recombination protein (Bacillus subtilis)	88	נד	909
09	_	1 376	843	191 666116	giucose kinasa (Staphylococcus xylosus)	e 8	۲,	468
02	-	1583	1245	91 44095	replication initiator protein (Listeria monocytogenes)	88	'n	339
82	-	111514	12719	Pir A60663 A606	pir x60663 x606 translation elongation factor Tu - Bacillus subtilis	88	79	1206
201	-	4179	4391	191 167181	serine/threonine kinase receptor (Brassica napus)	6.83	77	213
71	-	1 7732	8232	191 11022726	unknown (Staphylococcus haemolytícus)	88	72	501
118	~	900	7011	91 (1303804	YqeQ (Bacillus subtilis)	88	11	1704
141	-	657	9011	91/1405446	[transkotolase (Bacillus subtilis]	88	22	180
148	-	1587	6116	1911118002	dihydropteroate synthase (Staphylococcus haemolyticus)	88	78	246
165		1428	2231	181 40053	phenylalanyl-thkA synthetese alphe subunit (Becilius subtilis) ir S11710 YFBSA phenylalaninethkA ligase (EC 6.1.1.20) alpha ain - Bacilius subtilis	æ æ	œ	808
205	128	15027	14185	191 (1165306	[L2 (Bacillus subtilis)	80	82	843
225	-	1569	888	10111303840	YqfS (Bacillus subtilis)	88	78	672
235	-	~	1975	1911452309	velyt-tRNA synthetese (Bacillus subtilis	88	16	1974
-								

TABLE 2

1 101 102	186 6 115559 200 20	1 ident langth	=	73 495	73 1398	82 465	-	70 186	78 516	55 264	-	-	73 351	73 306	70 165	67 13A	77 408	-	82 339		336	71 (396	
156 01 1116002 156 01 1116002 156 01 1116002 152 02 141797 1419 02 141797 1419 02 141797 152 02 02 152 02 02 02 02 02 02 02	Start Stop match 126 drill 1118002 1260 1256 drill 1118002 drill 1250	<u> </u>	-	98	- - 88 88		_	- 88		- 89	-		- B#	- 98	-	- 46	es	-	- 88			- 88 -	
25 1966 1978	Start Stop Int. I	match gene name	dibydroptercate synthase (Staphylococcus haemolyticus)	Dystaldine nucleoside phosphorylase Barillus subsides	valyi-tRNA synthetase (Bacillus starothermophilus) sp[P1931]SYV_BACST VALYL-TNA SYNTHETASE (EC 6.1.1.9) VALYLE-TRNA LITASE: VALYLE-TNA LITASE: VAL	mannicol.specific entyme-III (Staphylococcus carness) pr. 190666170008 phosphotransferas system entyme 11 (EC 7.1.69), mannicol.specific (accor 11. Staphylococcus carness spip17876 print_Stach PTS SYSTEM, MANNITOL-specific 17. COMPONENT EXTRACT PTS SYSTEM,	Initrite reductase (nirB) (Bacillus subtilis)	unknown (Staphylococcus haenolyticus)	phosphomannomutase (Mycop) aana pirumi	ribosomal protein L20 (AA 1-119) leacillus stearotherophilus Ir[s03348 R58520 ilbosomal protein L20 - Barillus arroph	signal recognition particle 54% chain homolog Pth - Bacillies embelia	Signal recognition particle 5tk chain homolog Pth - Bacillus sub-114	Codx [Bacillus subtilis]		dihydroxyacatone kinase (Ctrobactor frametic)	ORP_E746 [Escherichia coli]	Pyruvate decarboxylase (E.1) bata subunit (Bacilius subtilis) 9: 1377836 Pyruvate decarboxylase E.1 bata subunit (Bacilius subtilis) 9: 1377836	sconitase [Bacillus subt[1[s]	glutamate synthase (ferredoxin) [Synechocystis sp.] pir 346957 346957 346957	gutamare synthae (ferredoxin) (Sr 1.4.7.1) - ynechocystis sp. gutamare synthae (ferredoxin) (Synechocystis sp.) pir[346937]346957	glutamate debydronenae (Refills	Codx (Bacillus amprile)	
25 2928 25 2928 25 2928 25 2928 26 2928 27 2928 28 2928 29 29 2928 20 20 20 20 20 20 20 20 20 20 20 20 20 2	256 186		101	101 5	91 143797		191/710018	191 1022726	19(401786	91 39963		- 7	1911535350	19: 218277	[01 493083	[91 606055	91 143378						
	100 100	:	1366	1 2926	£ 5	2968	399	1309	324	0 0	214	533	399	169	138	152	\$10	342	369	336	399		
		Start (nt)	2060	4325	_	2504	584	1424	587	170	=	183	704	.	-	-	817	680	734	_	794	! _	

Contig	P G	Start (nt)	Stop (nt)	match	mulch gane name	a is	1 ident	length (nt)
22	2	1584	2480	gi 142992	glycerol kinase (glpK) (EC 2.7.1.30) (Bacillus subtilis pir B4566) B45868 glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp[P18137] CLPW_BACSU GLYCEROL KINASE (EC 2.7.1.30) (ATP:GLYCEROL -PHOSPHOTHANSFERASE) (GLYCEROKINASE) (GK).	60	72	897
96	22	6883	9100	91 (467433	unknown [Bacillus subtilis]	87	62	288
124	<u>+</u>	4265	2988	91,1556886	serine hydroxymethyltransferase Bacillus subtills pir 549161 549163 serine hydroxymethyltransferase - Decillus ubtills	83	٤,	1278
124	-	1457	4032	91 556883	Unknown (Bacillus subtilis)	8)	99	426
148	- 2	13741	4559	101 467460	unknown (Bacillus subtilis)	69	100	819
164	=	112710	:	91 39954	IF2 (as 1-741) [Bacillus stearothermophilus]	83	72	1011
173	7	1104	2126	91 467385	unknown (Bacillus subtilis)	87	187	1023
199	-	1982	BS11	191 143527	iron-sulfur protein (Bacillus subtilis)	87	77	825
199	- 3	4717	2933	pir A27763 A277	succinate dehydrogenase (EC 1.1.99.1) flavoprotein - Bacillus subtilis	87	08	1785
205	=	111782	11543	91 1044972	ribosomal protein 129 (Bacillus subtilis)	81	18	340
708	2	111275	12607	91 1165309	S3 (Bacillus subtilis)	- 8-	25	699
222	-	1 2033	1107	94 1117249	recll) gene product (Becillus subtilis)	87	20	927
236	2	1635	133	94 1146198	[ferredoxin [Bacillus subtilis]	67	80	303
346	-	2585	1 2292	[91]467373	ribosomal protein S18 (Bacilius subtilis)	67	۲۲	294
260		4189	3422	91 1161382	IcaC (Staphylococcus epidermidis)	67	72	768
320	-	1696	2391	1911312443	carbamoyl-phosphate synthase (glutemine-hydrolysing) (Becillus aldolyticus)	87	80	969
380	-	1165	1383	91 112570	ATP synthase c subunit (Bacillus firmus)	87	80	219
3	-	006	1073	91/467386	thiophen and furan oxidation (Becillus subtilis)	87	۲۲	174
425	~	1000	762	19111046166	pilin repressor [Mycoplasma genitalium]	8.7	69	210
448	-	1255	122	91 405134	acetate kinase (Bacillus subtilis)	67	75	534
9	-	-	111	01 142559	ATP synthage alpha subunit (Bacillus megaterium)	67	79	111
167	-	~	732	sp Q06797 Rt1_B	SD Q06797 RL1_B 505 RIBOSOMAL PROTEIN L1 (BL1).	. B.7	72	351
1 677	-	359	955	91 460911	fructoss-bisphosphate aldolase (Bacilius subtilis)	8.	92	597
677	-	3.54	1284	191 460911	[fructose-bisphosphate aldolase (Bacillus subtilis)	83	96	351
876	-	-	452	91 1146247	asparaginyl-tRIA synthetase (Becillus subtilis)	-83	79	450
	-							

1 12 12 12 12 12 12 12	Cont ig	- Jug	Start (nt)	Stop (nt)	match	match gene name	- a 	1 ident	length (nt)
1 1 1 1 1 1 1 1 1 1		-	426	214	91 1065555	FidH6.4 gene product [Caenorhabditis elegans]	6	5	213
1 1 1 1 1 1 1 1 1 1	90		-	374	91/215098	excisionase (Bacteriophage 194a)	8.7	72	372
1 126	38	=	_	290		CTP-binding protein [Bacillus subcilis]	63	69	288
1 37 401	1	;-	126	308	41 467399	IMP dehydrogensse (Bacillus subcilis)	6	12	183
1 15.7 13.5 51 507799 Intro procesh, uncease Pacillue abbillis 67 73 61 507799 Intro procesh, uncease Pacillue abbillis 66 72 73 73 73 73 73 73 73	2	=	-	100	91 1405454	aconitase (Bacillus subcilis)	6.	8	199
6 100.277 873.6	2	=	547	275	191 603769	lintU protein, urocanase (Bacillus subtilis)	£9		173
1 1 13 13 13 13 13 13	-	<u> </u>	110427	1 8736	1911603769	HutU protein, urocanase (Bacillus aubtilis)	90	72	1692
2 2446 1372 9 187287 UUDP-Glucose pyrophosphorylase (Bacillus aubtilis) 1918 19	,	9	4190	3738	1911410515	urease bata subunit (Staphylococcue xylosus)	98		453
3 2336 1731		~	2480	1572	191 289287	upp-glucose pyrophosphorylase (Bacillus subtills)	98	70	606
1 1314 1344 91467454 call division protein (Bacillus subtilis) 86 73 73 73 73 73 73 73 7			2336	1213	u 556887	uracil phosphoribosyltransferse (Bacillus subtilis) pir S49364 S49364 uracil phosphoribosyltransferse - Becillus ubtilis	98	74	624
4 1318 1315 gil 4571460 innhnown facililua subtilia 86 73 73 73 73 73 73 73 7			1349	3448	191 467458	cell division protein Bacillus subtilis	20	۲۶	2100
1 1100 2086 9 1177835 Pyruvate decerboxylase E-1 alpha aubmit (Bacillus subtilis) 86 72 72 73 73 73 73 73 73	-	-	1638	1 3859	91 467460	unknown [Bacillus subtilis]	98	. 62	222
18	1~		1340	2086	gi 1377835	pyruvate decerboxylase E-1 alpha subunit (Bacillus subtilis)	98	25	747
2 554 1159 Gill4467 Fibosomal protein 54 (Bacillus subtilis) 86 77 86 1159 Gill4464 Fibosomal protein Li2 (Bacillus sacothermophilus in 810612 51061		•	17347	119467	91 1184680	[polymucleatide phosphorylase (Bacillus subtilis]	98	12	2121
3 2966 2352 91 42464		7	554	1159	91 143467	ribosomal protein S4 (Bacillus subtilis)	96	80	909
1364 12990 91 40107 Tibosomal protein L22 - Bacillus stearothermophilus Ir[810612 510612 86 70 70 70 70 70 70 70 7		1-	1 2966	2882	01 142464	riboscmal protein Li7 [Bacillus subtilis]	98	77	375
7 1163 1140 911463315 Ithoseamal protein 56 [Bacillus subtilis] 86 70 70 7156 71565 5200 7200 7223 91146218 7223 91146218 7223 91146218 7223 91146218 7223 91146218 7223 91146218 9223 9214622 9223 921462 921462	5		13364	112990	191140107	ribosomal protein L22 (Bacillus stearothermophlus) ir 810612 510612 ribosomal protein L22 - Bacillus earothermophilus	98	٤.	375
1 1196 1340 Gil 19656 apoVG gene product [Bacillus subtilis] gild0218 PRPP 86 70 7 384 4345 gil 467440 'phosphoribosylpyrophosphate synthetase (Bacillus subtilis] gild0218 PRPP 86 78 7 7 7 7 7 7 7 7		-	3465	3140	1911167375	ribosomal protein S6 (Bacillus subtilis]	98	0,	324
7 3864 4145 91 467440 'phosphoribosylpyrophosphate synthetase (Bacillus subtilis) 91 40218 PRPP 86 78 5 2170 2223 91 666963 purative ATP binding subunit (Bacillus subtilis) 86 65 7 1487 1678 91 117684 Chorismate mutase (Staphylococcus xylosus) 86 71 8 2086 3109 91 117684 Isocitrate dehydropense (Bacillus subtilis) 86 73 9 2124 3140 91 118003 41hydromeopterin aldolase (Staphylococcus haemolyticus) 86 77 9 2124 3140 91 116119 28.21 of (dentity to the Escherichia coli GTP-binding protein Ersi putative 86 73 9 2124 3140 91 116219 (Bacillus subtilis)		-	1196	1540		spovG gene product (Bacillus megaterium)	98	0,	345
5 2170 2523 91 666983 purative ATP binding subunit (Bacillus subtilis) 86 65 71 2 1467 1678 91 1177684 charismate mutase (Staphylococcus xylosus) 86 78 78 5 2086 3409 51 487434 isocitrate dehydrogenase (Bacillus subtilis) 86 77 7 1489 1109 91 1146219 28.2% of identity to the Escherichia coli GTP-binding protein Ers; putative 86 73 7 2 2124 3440 91 1146219 28.2% of identity to the Escherichia coli GTP-binding protein Ers; putative 86 73 8 7 7 7 7 7 7 7 8 8 7 7 7 7 7 7 7 7			3884	4345		phosphoribosylpyrophosphate synthetase (Bacillus subtilis) gi 40218 PRPP synthetase (AA 1-317) (Bacillus subtilis)	\$	86	59
2 1487 1678 91 1177684 Chorismate mutase (Staphylococcus xylosus) 86 71 86 78 8 78 78 78 78 78		- 2	2170	2523	91 666983	[putative ATP binding subunit (Sacillus subtills)	98	9	354
5 2086 3409	0	-	1487	1678	7 -	chorismate mutase (Staphylococcus xylosus)	86	1,	192
2 1489 1109 gi 1118003 dihydromeopterin aldolase (Staphylococcus hemolyticus) 86 77 2 2124 3440 gi 1146219 28.31 of identity to the Escherichia coli GTP-binding protein Ers; putative 86 73	-	-	2086	3409	51 487434	isocitrate dehydrogenase (Bacillus subtilis)	86	84	1320
2 2124 3440 [gi 1146219 28.21 of identity to the Escherichia coli GTP-binding protein Era; putative 86 73 [Bacilius subtilis]	5	~	1489	1109		dihydromeopterin aldolase (Staphylococcus haemolyticus)	98	1	180
		~-	2124	3440	!	28.28 of identity to the Escherichia coli GTP-binding protein Ets; putative [Bacillus subtilis]	86	2	1317

FABLE 2

		Jength (nt)	1044	210	138	276	88.88	171	162	399	147	147	162	228	762	186	153	121	198	828	1986	1050	1215	2199	168
5		• ident	18	11	- 21	69	Z.	69	72	76	70	£7	96	69	נג	73	79	69	74	22	14	£	ני	74	65
10		eia '	88	98	98	98	98	98	98	98	98	& &	86	98	98	98	98	£	85	8	85	8	92	92	88
15	teins		_		_	_			_			nilus; 2.4.1) pha chain					(8)	8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		r B45868 B45868 t7 GLPK_BACSU FBRASE)		urianum) a (EC .2.1.12) -			
20	f. aureus - Putative coding regions of novel protains similar to known proteins					ubt11s)	it [] is]	visiael				pyruvata dehydrogenase (lipomaide) [Bacillus stearothermophilus] ir [810798 DEBSPP pyruvate dehydrogenase (lipomaide) (EC 1.2.4.1) - Bacillus stearothermophilus					(Bacillus subtilis	pyrimidine nucleoside transport protein (Bacillus subtills)		1.30) [Bacillus subtills] pir B45868 B45868 - Bacillus subtilis sp[P18157 GLFK_BACSU (ATP:GLYCEROL -PHOSPHOTRANSFERASE)		lycerladehyde-3-phosphate dehydrogenase (Clostridium pasteurianum) pir 8314264 834254 glyceraldehyde-3-phosphate dehydrogenase (EC .2.1.12) Clostridium pasteurianum	1118		
25	ovel proteins si			us subtilis)	ermidis]	tive (Bacillus s	se (Bacillus sub	ccharomyces cere			illus subtilis)	ipoamide) (Bacil e dehydrogenase shilus	llus subtilis]	[8]	naemolyticus)	naemolyticus)	protein reductase	ansport protein	[8]	(EC 2.7.1.30) {Bac 7.1.30} - Bacillus 7.1.30) (AFP:GLYCS	illus subtilis]	ce dehydrogenase raldehyde-3-phos	E (Bacillus subt	lococcus carnos	[8]
30	oding regions of n	match gene name	[Bacillus subtilis]	pho? gene product (Bacillus subtilis)	Epir (Staphylococcus apidermidis)	protein (put.); putative [Bacillus subtilis]	asparaginyl-tRNA synthetase (Bacillus subtilia)	transmembrane protein Saccharomyces cerevisiae	[Bacillus subtilis]	YqkL (Bacillus subtilis)	ipa-90d gene product [Bacillus subtilis]	yruvate dehydrogenase (lipoam ir 810798 DEBSPP pyruvate deh - Bacillus stearothermophilus	PET112-11ke protein [Bacillus subtilis]	ATPaso (Lactococcus lactis)	unknown (Staphylococcus hasmolyticus	unknown (Staphylococcus haemolyticus)	3-ketoacyl-acyl carrier protein reductase	ine nucleoside tra	unknown (Bacillus subtills)	glycerol kinase (glpK) (EC 2.7 glycerol kinase (EC 2.7.1.10) GLYCEROL KINASE (EC 2.7.1.30) (GLYCEROKINASE) (GK).	(EC 6.1.1.3) [Bacillus subtilis]	glycerladehyde-3-phosphate pir S14254 S34254 glyceral Clostridium pasteurianum	ORTHININE AMINOTRANSFERASE (Bacillus subtilis)	gicB gene product (Staphylococcus carnosus)	unknorm (Bacillus subtills)
35	Putative co	match o	~	phoP ger	Epir (St		asparagi	t ransmen	32	YqkL (Ba	p06-ed1	pyruvat ir S10	PET112-	ATPaso	unknown	unknown	3-ketoe	pyrimidi	unknown	glycero glycero GLYCER (GLYCER	(thrsv)	glycerl pir 53	ORTHINE	gleB ger	unknom
40	2. aureus	match . acession	191 1303817	91 40056	911116399	91 143328	91 1146247	gi 1002911	91 1303912	91 130393	91 41 4014	17001 10	9111354211	191 296464	91 1022726	9(1022725	91 1502421	0: 11408507	91 467376	91 142992	91 143766	91/311924	91 1064807	91 1072419	01 467385
		Stop (nt)	2058	452	1075	347	890	1133	162	433	150	148	910	228	240	187	\$039	29395	1192	1707	3490	2302	5252	5673	169
45		Start (nt)	1015	661	338	622	1777	963	-	35	296	~	540	-	476	27.6	4287	_	332	088	1505	1153	9949	3475	7
		0.8F	~	~	~	-		- 2		-	-		~	_		-	~	-	~	~	-	~	-	9	-
50		Contig	•	581	642	07.6	868	898	304	686	1212	1323	3085	1847	4487	4583	22	95	89	٤	106	128	129	138	189

TABLE 2

		length (nt)	519	1 600	390	1 6171	11.4	2709	336	2478	2115	654	199	309	603	404	237	187	273	297	315	387	786	306	180	246
5		1 ident	25	22	99	10	12	5	22	69	89	89	12	\$\$	12	6		1,4	74	88	1 49	26	70	3.5	- 19	- 65
10		===	82	88	- 85	88	\$8	88	8	88	88	95	\$	88	88	98	85	88	88	98	88	35	85	65	85	82
15	otains	# 0 0 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		*	8	* • • • • • • • • • • • • • • • • • • •	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			8 C : 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8)		on supplied by		- Bacillus subtilis	11023 DCDA_BACHT			1789 501788			s influentee)	14997 824997	fufluenzae]	-	
20	 aureus - Putative coding regions of novel proteins similar to known proteins 		4 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	hermophilus		4 0 2 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			homolog of E.coll ribosomal protein L21 (Bacillus subtilis) ir [S18439 [S18439 Ribosomal protein L21 - Bacillus subtilis p] P26908 [RL11_BACSU 50S RIBOSOMAL PROTEIN L21 (BL20).	subtilis)	Clp-like ATP-dependent protease binding subunit (Bos taurus)	7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Method: conceptual translation supplied by		molog Ffh - Bacilly	diaminopimolate decarboxylase (Becillus methanolicus) sp[e4102] pcDA_BACHT DIAMINOPIHELATE DECARBOXYLASE (EC 4.1.1.20) DAP DECARBOXYLASE).			(Escharichia coli) ir sol1388 sol188		9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	type I restriction enayme ECOR124/3 I M protein (Haemophilus influenzae)	formate acetyltransferase [Chlamydomonas reinhardtili ir[52499][334997] formate C-acetyltransferase IEC 2,3,1,54) - lamydomonas reinhardtil	type I restriction enzyme ECOR124/3 I M protein (Meemophilus influenzae)	(9)	
25	el proteins s		lus subtilis]	- Bacillus stearothermophilus	subtilis]	0 0 0 1 1 1	lus subtilis)	-	protein L21 protein L21 BOSCHAL PROTE	se (Bacillus	ease binding	Ì	:	terocolitical	S4K chain hor	Se (Bacillus r	1548}	chani formis)	1-760) (Esches F (EC 2.3.1.54	us gallus]	nomas fragil	OR124/3 I M p	thlamydomonas	OR124/3 I M p	occus carnosu	ter capsulatu
30	ng regions of nov	• name	ribosomal protein S5 (Bacillus subtills)	protein 124 - Bac	secA gene product [Bacillus subtilia]	MutS (Bacillus subtilis)	ipa-87r gene product (Bacillus subtills	aconitase (Bacillus subtills)	omolog of E.coli ribosomal protein Lil (Bacillus sul Ir Si8439 Si8439 Ribosomal protein Lil - Bacillus su p Pi8908 Rill BACSU 505 RIBOSOKAL PROTEIN Lil (8L20)	ClpC adenosine triphosphatase (Bacillus subtilis)	TP-dependent protess	acetate kinase (Bacillus subtilis)	orf-X, hypothetical protein, author (Bacillus subtilis)	hemin permease [Yersinia enterocolitica]	signal recognition particle 54K chain homolog Ffh	Blate decarboxylas WELATE DECARBOXYLA	excisionase (Dacterlophage 154s)	Pyruvace Kinase (Bacillus lichaniformis)	yruvate formate-lysse (AA 1-760) (Escheric formate C-acetyltransferase (EC 2.3.1.54)	limb deformity protein [Gallus gallus]	beta-subunit of HDT (Pseudomonas fragi)	riction enzyme EC	ormate acetyltransferase (Chlamydomonas reformate C-acetyltransferase (EC 2.3.3.54)	riction enzyme EC	gicA gene product [Staphylococcus carnosus	fructuse enzyme [] [Rhodobacter capsulatus]
35	itative codi	match gene name	ribosomal	ribosomal	sech gene	HULS [Baci	1pa-87r ge	aconitase	homolog of E.coli Ir 518439 518439 p P26908 RL21_BAC	Clpc Adeno	Clp-like ATP-de	acetate ki	orf-X; hypothetical author (Bacillus su	hemin perm	signal reco	diaminopime DIAMINOPIN	excisionas	Pyruvate K	pyruvate for	limb deform	beta-subuni	type I rest	formate ace formate C-	type I restriction	glcA gene p	(ructase en
40	S. aureus - P.	match	91 [1044981	pir A02819 R5BS ribosomal protein 124	91 48980	91/1002520	91 414011	91 11405454	91 40173	91 442360	91 871784	91 405134	91 1373157	91 541768	pir 847154 8471	91 304155	91/215098	91 1041099	01/42370	91 63568	91 391840	91 1204472	91 18178	91 1204472	91 1072418	[91 151932
		Stop (nt)	8106	10596	6101	3159	8783	3186	475	2968	8196	1339	853	467	909	409	251	390	275	299	316	387	386	340	181	900
45		Start Int)	8624	10928	06490	4877	8013	5894	8	5445	6082	1992	1251	159	1208	A16	487	776		595	630	-		25	~	575
		10 CE	2	202	9	-	6	~		-	•	~	-	~			-	_	-	-	-	-	-	-		<u>-</u>
50		Cont 19	205	205	220	231	243	249	302	1 333	364	448	747	988	1049	1163	1924	2932	2030	11111	8776	3435	4042	1 4053	4108	4300

55

aurous - Putative coding regions of novel proteins similar to known proteins

Contig	10 10	Start (nt)	Stop (nt)	match	match gene name	. sim	1 ident	lengch (nc)
1 4392	-	627	385	191 1022725	unknown (Stanhylococcus haemolyticus)	95	٦٤	273
4408	-	~	235	91 (871784	Cip-like ATP-dependent protesse binding subunit (Bos taurus)	85	62	234
1430	_	578	1 291	91 1009366	Respiratory nitrate reductase [Bacillus subtilis]	88	89	289
4555		2	523	91 450688	hadw gene of Ecopril gene product [Escherichia coli] pir \$38471538437 hadw protein - Escherichia coli pir \$399629 \$39629 hypothetical protein A - Escherichia coli 508 40-520)	8	,	252
4611	-	1	242	91 1256635	dihydroxy-acid dehydratase (Bacillus subtilis)	98	59	240
-	=	19001 01	10891	tri 46982	fosB gons product (Staphylococcus spideraidis)	94	£.	168
2	-	1348	27.11	01 142450	ahrC protein (Bacillus subtilis)	8	95	177
91	-	1803	4652	{91 1277198	IONA repair protein (Deinococcus radiodurans)	8	67	2850
22	_	1535	1128	91 511069	Uref (Staphylococcus xylosus)	84	נד	907
1 23	-	\$505	5306	1911603320	Yer081p (Saccharomyces cerevisiae)	4	73	252
3	Ξ	111597	111145	191 1303948	Yqiw (Bacilius subtilis)	2	89	453
<u></u>	=_	14059	12770	141 142613	branched chain alpha-keno acid habydogenase E2 (hawillus subtilis) gill303944 BfmBB Bacillus subtilis)	2	ır	1290
70	-	1332	982	19116647	ORF (reps) (Staphylococcus aureus)	70	89	151
٤٢ .	-	2512	4331	101 142993	glycerol-J-phosphata dehydrogenase (glpD) (EC 1.1.99.5) (Bacillus ubtilis)	84	74	1800
86		4324	9609	191 467427	imethionyl-tRMA synthatase (Bacillus subtilis)	9	99	LTT.
100	•	9501	8680	91 1340128	ORF1 (Staphylococcus aureus)	79	92	822
111	-	1934	3208	91 (1237019	Srb (Bacillus subtilis)	8	69	1275
148	9	4720	0.95	gi 467462	cysteine synthetase A [Bacillus subtilis]	9	69	951
152	-	3064	2456	19: 143377	pyruvate decarboxylase (E-1) alpha subunit [Bacillus subtilis] pir 816118 HEBSPA Hyruvate dehydrogenase (lipoamido) (EC 1.2.4.1) lpha chain - Bacillus subtilis	6	6	193
169	-	1634	3861	91 1001342	hypothetical protein [Symechocystis sp.]	8	99	228
171	-	2992	2657	191 517475	D-amino acid transaminose (Staphylococcus haemolyticus)	B.	۲	336
186	9	1 6941	6216	191 467475	unknown (Bacillus subt(Lis)	8	0ر ا	726
205	6	6261	5695	91 216340	ORF for ademylate kinase (Bacillus subtilis)	ā	1,	570
722	7	915	1961	91 288269	beta-fructofuranosidase Staphylococcus xylosus	8	70	11.1
								1

aureus - Putative coding regions of novel proteins similar to known proteins

1 92 386 9 1303790 1 1 92 1 1 1 1 1 1 1 1 1	6		Stari (nt)	Stop (nt)	match acession	match gene name	t sin	1 ident	length (nt)
1 1326 2836 91 143040 1 1 1 1 1 1 1 1 1	:	-	28 -	388	191 1303790	Yqel (Bacillus subtilis)	2	65	297
5 3138 2959 94 1070014 1 1 2954 94 1070014 1 1 2 2201 1341 94 14239 94 143390 1 1 1 1 1 1 1 1 1	282		1526	2836	91 143040	glutamate-1-semialdebyde 2.1-aminotramaterase [Bacillus subtilis] pir D02728 D02728 glutamate-1-semialdebyde 2,1-aminomutase (EC .4.3.8) - Bacillus subtilis	8	25	1311
4 2343 4229 94 143390 1 3 296 94 1022725 1 1 3 392 94 1022725 1 1 3 392 94 1026725 1 1 1 1 299 94 104673 1 1 1 299 94 104673 1 1 1 299 94 1046731 1 1 1 299 94 1046731 1 1 1 299 94 1046731 1 1 1 299 94 1046731 1 1 1 299 94 1046731 1 1 1 1 299 94 1046731 1 1 1 1 1 1 1 1 1	100	_	3138	2959	91 1070014	protein-dependent (Bacillus subtilis)	76	62	180 081
1 3 296 94 1022725 1 1 1 1 1 1 1 1 1	320	-	2343	4229	91 143390	carbanyl phosphate synthetase (Bacillus subtilis)	76	70	1887
2 2201 1341 91 1356146 1 3 392 91 1046173 1 1362 2270 91 40211 1 1 1362 2270 91 40211 1 1 1 1 1 1 1 1 1	27.0	-		296	91 1022725		94	٥,	294
1 1 1 1 1 1 1 1 1 1	2	~	1 2201	1341	91 1256146	YbbQ (Becllius subtilis)	96	9	198
1 1362 2270 91 40211 1 1 3 299 94 1144531 1 1 1 299 95 1144531 1 1 203564 8385 1 1 1 203564 8385 1 1 1 203764 1 1 1 257 1 1 1 1 1 1 1 1 1	439	1=		392	91 1046173	osmotically inducible protoin (Mycoplasma genitalium)	8	53	960
1 3 299 91 1144531 1 1 1 1 1 1 1 1 1	197		1362	2270	91 40211	(M 1-35		ş	606
2 624 905 ptr 500564 R1BS 1 1 1111	487	=	-	1 299	91 1144531	integrin-like protein alpha Intip (Candida albicans)	8	97	297
1 A16 [033 Dir 508564 R.B.S. 2 2701 1746 Gi 9132445 1 3 257	491	2	624	905	pir 508564 R3BS	•	ž	69	282
1 3 341	167	12	H 16	1033	pir 508564 R3BS	٠	2	נג	198
1 1 1 1 1 1 1 1 1 1	548	<u>:</u> _	: -	14.	41 (4112)	uracil permeasa (Bacillus caldulyticus)	ž	P C	939
1 3 257	728	~	1 2701	1748	101/912445	polymerase	8	89	954
1 308 156 91 1405454 1 3 395 91 141402 1 1 3 452 91 845944 1 3 123 91 603769 1 650 348 91 18178 1 737 375 3, 91 181705 1 1 2 169 91 11146206 1 2 106 351 91 1213132 1 106 351 91 1072418 1 1 1 1 1 1 1 1 1	169	-	_	1 257	141 11510953	cobalamin biosynthesis protein N (Methanococcus jannaschil)	84	38	1 255
1 3 395	954		308	156	[9] [1405454	aconitaso (Macillus subtilis)	ž	7	151
1 3 452 9 885934 1 1 3 257 11 510140 1 1 1 1 1 1 1 1 1	957			395	g+ 143402 		8	69	193
1 3 257 11 510140 1 1 1 1 1 1 1 1 1	975	-	_	452	9: 885934	ClpB (Synechococcus sp.1	8	70	450
1 3 123 94 603769 1 650 348 94 18378 1 1 1 1 1 1 1 1 1	1585	-	_	1 257	11 510140	ligoendopeptidaso F (Lactococcus lactis)	84	95	255
1 650 348 91 18178 1 737 375 3, 517205 1 2 169 / 91 1146206 1 620 312 91 151932 2 106 351 91 1072418	2954	-	-	1 323	191 603769	HutU protein, urocanase (Bacillus subtilis)	98	5.	121
2 1 2 169 [51] 1146206 8 1 620 112 [91] 151932 8 2 106 351 [91] 1077418	2996		059	\$ 	91 18178	formate acetyltransferase (Chlamydomonas reinhardtil) ir 524997 formate C-acetyltiensferase (EC 2.3.1.54) - lamydomonas reinhardtil	96	9	101
1 2 169 /	3766		1137	375	13: [517205	67 kDa Nyosin-crossreactive streptococcal antigen (Streptococcus yogenes)	æ	22	363
1 620 312 91 151932 2 106 351 91 1072418	4022	_	~	169	91/1146206	glutamate dehydrogensse (Becillus subtilis)	8	3	891
2 106 351 91 1072418 91cA gene	4058	-	620	215	1.51 151932	[fructose enzyme II [Rhodobecter capsulatus]	78	1,1	900
	4108	~	106	1351	91 1072418		*		346

TARLE 2

auruus - Putative couling regions of novel proteins similar to known proteins

Courts	<u>\$</u> =	Start (nt)	Stop (nt.)	match , acassion ,	match Gene name	a sam	1 ident	leugth
4183	-	-	308	91 603769	liutU protein, urocanase (Bacillus subtilis)	84	72	306
4726		\$	72	91 146208	glutaasee synthase large subunit (EC 2.6.1.51) [Escherichia coli] pir[A29617 A29617 glutamate synthase (NADPH) (EC 1.4.1.13) large hain - Escherichia coli	8	٤	180
77	-	1 2043	1576	191 193297	urease accessory protein (Bacillus sp.)	6	79	168
2	=	13 14722	113745	191 142612	branched chain alpha-keto acid dehydrogenase El-beta [Bacillus ubtilis]	8	- 89	978
2	=	13357	12872	91 143132	scrate dabydrogenase (AC 1.1.1.27) [Barillus caldolyticus] pir B29704 B29704 -lactate dehydrogenase (EC 1.1.1.27) - Bacillus aldolyticus	<u>.</u>	9	98+
99	-	9116	12274	91 1303894	Yqhm Bacillus subtilis		62	978
99	-	1 6118	4643	91 1212730	YqhK (Bacillus subtilis)	2	89	1476
20	-	1864	1523	91 44095	replication initiator protein [Listeria monocytogenes]	8	در ا	342
8		1,77	1429	91 (155571	alcohol dehydrogensse I (adhA) (EC 1.1.1.1) [Zymomenss mobilis] pir[Al5260[Al5260 alcohol dehydrogeness (EC 1.1.1.1) I - Zymmanas obilis	8	6	1053
95	~	1 708	2162	91 506381	phospho-beta-glucosidase (Bacillus subtilis)	8	70	1455
1.137	-	89	169	95 467391	initiation protein of replicaton (Sacillus subtilis)	8	۲۲ ا	627
140	-	1 3209	2742	91 634107	kdp8 (Escherichia coli)	a	9	897
142	-	13468	2989	91 11212775	lumazine synthase (b-subunit) [Bacillus amyloliquefaciens]	æ	69	480
1 161	Ξ	1 5749	9699	191 903307	ORF75 (Bacillus subtilis)		3	948
164	_	9880	11070	91149316	ORF2 gene product (Bacillus subtilis)	9	99	1911
164	Ξ.	114148	114546	91 580902	ORF6 gene product (Bacillus subtilis)	83	09	199
170	~	¥16	2467	9.1520844	orf4 [Bacillus subtilis]	8	79	678
186	-	2029	07.61	91 289284	cysteinyi-tRNA synthetase Bacilius subtilis	8	22	099
205	=	7822	7607	191/216337	ORF for L30 ribosomal protein (Becillus subtilis)	2	24	216
1 237	9	3683	4540	01 1510486	imidazolegiycerol-phosphate synthase (cyclase) (Methanococcus jannaschii)	£8	9	858
301	-	985	638	151 467419	unknown (Bacillus subtilis)	- B3	59	368
302	-	1421	2743	191 508979	GTP-binding protein (Bacillus subtilis)	8	89	1323
321	-	1933	13571	191 39844	[fumarase [citG] (as 1-462) (Bacillus subtilis]	63	89	363
796	-	~	352	1911039479	ORFU Lactococcus lactis	2	3	351

sureus - Putative coding regions of novel proteins similar to known proteins

5

m % ident length	83 70 660	83 67 651		83 67 180	72	83 58 162	83 76 177	67 489	83 69 147	_	83 65 363	83 59 261	A3 61 243	83 78 270	83 74 222	-	_	82 70 606	62 58 921	20	82 69 900	82 60 1656	-	*
e e	-					-	_						-	-	-	9	_		· es	· ·	8	ed 	-	*****
Match gene nome	DNA polymerase I [Bacillus stearothermophilus]	protesse (Staphylococcus epidermidis)	alanine dehydrogenase (EC 1.4.1.1) (Bacillus stearocherrephilus) pir 834261 834261 alanine dehydrogenase (EC 1.4.1.1) - Bacillus tearothermophilus	ademylosuccinate lyase (PCR-B) [Bacilius subtilis], ir C79336 [WZBSDS ademylosuccinate lyase (PC 4.3.2.2) - Bacilius ubtilis	DNA topoisomerase [[Bacillus subtilis]	M. jannaschil pradicted coding region MJECL28 [Methanococcus jannaschil]	ORTHININE AKINOTRANSFERASE (Becilius subtilis)	lexA (Bacillus subtilis]	[tryptophanyl-tRNA synthetase (EC 6.1.1.2) (Bacillus subtilis) pir J70481 YM85 tryptophan-tRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	Prof (Becillus subtilis)	Onf_0294 (Eschotichia coti)	hypothetical yeast protein 1 (Mycoplasma capricolum) pri[648578]648518 hypothetical protein - Mycoplasma capricolum SGC31 (fragment)	thioradoxin reductase (Eubacterium acidaminophilum)	clumping factor (Staphylococcus aureus)	unknown (Staphylococcus hemolyticus)	gicB gene product (Staphylococcus carnosus)	uvs402 protein (Streptococcus pneumonise)	uvs402 protein (Streptococcus pneumonime)	N-scetyineuraminate lysse [Heemophilus influentae]	catalase (Bacteroides fragills)	sporulation protein (Bacillus subtilis)	oligu-1,6-glucosidase [Bacillus cereus]	unknown [Bacillus subtilis]	
metch	91 806281	91 396259	9: 142455	91 143366	191 520753	91 1522665	91 1064807	91 289288	91 143786	[91[1109687	41 402532	101 950062	[91[1353197	191 197526	91 1022726	191 1072419	191 153854	91, 153854	5i 1204400	gi 841192	101;143607	16166(16)	1911467410	************
Stop (nt)	662	1566	179	8CP1	889	361	1 296	167	120	326	366	308	309	172	22)	1 261	1191	1798	8724	2019	3489	13925	118014	
Start Int!	_	916	355	1617	7	200	120	_	296	649	nc.	\$	6)	540	Ţ	۲6	295	1193	9644	986	2590	12270	17673	
4 E		7			_	~	-	-		_	_	~_	-	_	-	-	~	2	=	-	٠	=	2	4
ORF St	-	~		i :	<u>.</u> –	• •		•															• — •	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Jength (nt)	2157	1172	1719	252	1557	P	1660	1092	468	1172	099	918	216	912	2010	576	288	35	972	1368	1233
1 Ident 1	79	99	1 59	\$	- 99	2	- 69	- 59	- 65	- t		63	69	- 19	67		- 12	- 65	- 89	1 69	
l sin !	83	82 -	82 -	82	82 -	#2	82	82	92	82 -		82	87	82	82	8	82	82	82	82	28
parch gene name	elongation factor G (AA 1-691) (Thermus aquaticus thermophilus)	phosphoribosylformyl glycinamidine synthetase II (PUR-Q) (Bacillus ubtilis)	dihydroxy-sold dehydratese (Bacillus subtilis)	pir[A47154 A471 orf1 5' of Fth - Bacillus subtilis	phosphoglycerate mutase (Bacillus subtilis)		[unknown [Bacillus subtilis]	thiophen and furan oxidation (Bacillus subtilis)	ORF (19% protein) (Enterococcus faecalis)	Capt protein [Listeria monocytogenes]	Hoppeptide antiblotics turin A (Becillus subtilis) sp[P3914 LP4_BACSU LIPOPETTIDE ANTIBIOTICS ITURIN A AND SURFACTIN IOSTATHESIS PROTEIN.	67 kDa Mydain-crossreactive streptococcal antigen [Streptococcus yogenes]	Salmonalla typhimurium 15200 insertion sequence from SARA17, artial.j, gone product [Salmonalla typhimurium]		quinol oxidase (Bacillus subtilis)	ORF5; This ORF includes a region (as21-103) containing a potential ronsulphur centra homologous to a region of Rhodospirillum ruhrum nd Chromotium vinosum; putative [Recilius stearothermophilus] primotory hypothetical protein 5 (gldA 3: region) -	ribosomal protein Li (Bacillus subtilis)	Yqeb (Bacillus subtilis)	YqfE (Bacillus subtilis]	Yqhx [Bacillus subtilis]	tryptophan synthase beta subunit (Lactococcus lactis) pir 535129 535129 tryptophan synthase (EC 4.2.1.20) beta chain - actococcus lactis subap. lactis
match .	91 48240	91 143369	91 1256635	pir A47154 A471	91 460258	91 403373	191 11171811	91 467386	911153566	91 1001878	91 473916	91 517205	91 439619	91/1161381	91 (143397	gi 142981	91 436574	[9: 1303793	91(1303821	61 1303913	91/149521
Stop (nt)	11318	3260	5380	3493	\$933	2182		1094	4039	4225	70102	1722	1651	4296	2855	7945	1342	618	4034	3073	2864
Start	9162	5470	3662	3242	4377	1229	~	-	1572	4455	21366	805	3866	5207	4864	8520	1055	262	1053	0	4096
9 12 13 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16		~	9	-	9	~	- -	-	-	-	=_	7		_	-	9	_	7	-	-	<u></u>
Contig	B 2	95	102	117	128	129	170	177	184	189	204	1221	223	260	315	151	331	370	¥0*	40\$	436

S. aurous - Putative coding regions of novel proteins similar to known proteins

						•	٠	
Contig	8 9	Start Int)	Stop (nt)	motch	natch gene name	e is	1 ident	length (nt)
7	-	3394	2573	gi 142952	glyceraldahyda-1-phosphata dehydrogenasa (Bacillus tearothermophilus)	82	67	822
7	==	10415	11227	91 1204354	spore germination and vegetative growth protein (Meemophilus influenzae)	83	67	813
977	_	_	161	91 143387	ğ	82	99	189
462		1007	1210	91 142521	decxyribodipyriaidine photolysse [Bacillus subtills] pir A37192 [A37192 uvr8] protein - Bacillus subtills sp[p14951][UVRC_BACSU EXCINUCLEASE ABC SUBUNIT C.	2	3 .	204
537	-	1560	184	191,1853767	UDP-N-acetyiglucosamine 1-carboxyvinyitransfersse [Bacillus ubtilis]	82	19	777
680	~	6	5 6	gi 426472	•	82	69	294
724	~_	265	386	64 (143373	phoribosyl aminoimidaz ophosphace cyclohydrol	87	8	180
763	-	- 43	213	911467458	cell division protein (Bacillus subtilis)	85	. 35	210
818	_	564	283	91 1064787	function unknown [Bacillus subtilis]	83	69	182
828		175	1176	191 143043	uroporphyrinogen decarboxylase (Beclius subtilis) pir 847045 84045 uroporphyrinogen decarboxylase (EC 4.1.1.37) - acilius subtilis	29	Į.	1002
A95	-	_	599	191 1027507	ATP binding protein (Borrelia burgdorferi)	82	72	597
929	<u>-</u>	91 —	199	191 143795	transfer RNA-Tyr synthetase (Bacilius subtilis)	92	09	190
1961	-	-	306	91 577647	gamma-hemolysin (Staphylococcus aureus)	62	69	306
1192	_	100	155	191/146974	HHJ-dependent NAD synthetase (Escharichia coll)	62	נג	153
1121	_	6	375	191 407908	Ellace (Staphylococcus xylosus)	82	22	327
1341		-	150	91 39962	ribosomal protein 135 (AA 1-66) [Bacillus stearothermophilus] ir[503147][R38535 ribosomal protein 135 - Bacillus earothermophilus	8	89	130
2990	~	567	349	91/534655	ATP SYNTHASE EPSILON CHAIN (EC 3.6.1.34).	8	Ç	219
3024	-	\$	1 224	91 467402	unknown (Bacillus subtilis)	82	9	180
3045	-	276	139	91 467335	ribosomal protein L9 (Bacillus subtilis)	82	09	138
3045	~	558	400	51 467335	ribosomel protein 1.9 (Bacillus subtilis)	F	82	159
3091	- -	474	238	[41] 499335	seck protein (Staphylococcus carnosus)	62	78	752
3107		416	210	91 546918	orff 3' of comk (Bacillus subtilis, E26, Peptida Partial, 140 as) pir/841612/843612 hypothetical protein Y - Bacillus subtilis sp[+60398/YHXD_BACSU HYPOTHETICAL PROFEIN IN COHK 3'RECION (ORFY) FRAGHENT).	2	3	202

Contig	Contig ORF	Start (nt)	Stop (nt.)	acession.	match gene name	1 sta	1 ident	Jength (nt)
4332		7	319	9 12086	nitrate reductase alpha subunit [Escherichia coli] p[909152[NARQ_ECOLI] RESPIRATORY NITRATE REDUCTASE 1 ALPHA CHAIN (EC 7.99.4). (508 2-1247)	83	27	318
2	_	1 3275	1 2574	41 11199573	spsB (Sphingomonas sp.)	91	•	702
3	-	638	122	191 1466778	lysine specific permesse (Sscherichia coli)	18	85	318
₽	5	1 4051	4350	gi 1045937		9.1	62	300
22	-	1578	2579	pir 516649 5166	pir Si6649 Si66 dciAC protein - Bacillus subtilis	18	55	1002
2	-	354	1494	19111303961	YqjJ (Bacillus subtilis)	18	69	1131
2	-	9419	1767	91 1146930	6-phosphogluconata dehydrogenase (Escherichis coli)	5	99	1449
3	-	75.01	611011	gi 143016	permesso [Bacillus subtilis]	91	59	639
<u>.</u>	=	13360	111786	191 143015	gluccmate kinese (Becillus subtills)	91	79	1575
52	-	13983	113366	pir n25805 A258	pir n25805 n258 L-lactate dehydrogenace (EC 1.1.1.27) - Bacillus subtilis	87	7	618
a	-	2708	1 2217	91 1222302	NifU-related protein [Hammophilus influenzae]	18	25	492
- 8	_	745	374	1911414017	lpa-93d gene product [Bacillus subtilis]	18	20	372
103	~	6438	4861	91/971342	nitrate reductase beta subunit (Bacillus subtilis) sp P42176 NARH_BACSU NITRATE REDUCTASE BETA CHAIN (EC 1.7.99.4).	6	49	1578
120	115	110845	12338	91 1524392	dbsA (Bacillus subtilis)	18	69	1494
12.8	-	3676	4413	[0:[141319	triose phosphate isomerase (Bacilius megaterium)	E	79	738
181	-	10308	9280	0: (299163	alanine debydrogenasa [Sacillus subtilis]	8	6.8	1029
143		6098	5471	9: 439619	Salmonella typhimurium 19300 Insertion sequence from SARA17, artial.], gene product (Salmonella typhimurium)	£	ថ	B19
169	-		825	91 897795	1305 ribosomal protein (Padiococcus acidilactici) sp P49668 R52_PEDAC 30S RIBOSOMAL PROTEIN S2.	B	9	783
230		450	326	91 1125826	short region of weak similarity to tyrosine-protein kinase receptors in a fibronectin type III-like domain (Cemochabditis elegans)	8	2	225
662	-	2000	7.92	101 467 404	unknown [Bacillus subtilis]	81	5	678
241	~	3081	2149	91 16510	succinateCoA ligase (GDP-forming) (Arabidopsis thaliana) ir[510579] succinateCoA ligase (GDP-forming) (EC 6.2.1.4) pha chain - Arabidopsis thaliana (fragment)	=	6	911
1 256	-	-	1 981	pir 509411 5094	pir S09411 S094 spoillE protein - Bacillus subtilis	91	59	961
259	-	3 3752	;	sp P28367 RF2_B	[sp[p28367]RF2_B PROBABLE PEPTIDE CHAIN RELEASE FACTOR 2 (RF-2) (FRACHENT).	18	59	1062

						· • -	• •	· • -		- + -	- • -									_ 4 .			_			
5		Length	1854	222	1308	300	240	309	1068	546	571	198	5	609	762		902		95	150	1.891	222	174	1 648	354	399
		* Ident	99	63	63	64	\$	99	69	6	\$9			99	57		3	89		72	5	2	62	95	89	69
10		L of m	8	18	18	18	18	81	18	81	81	81	6	81	5			5	5	81	81	16	18	8	E	. E
15	roteins	* * * * * * * * * * * * * * * * * * *	llus ubcilis)	influentael	• • • • • • • • • • • • • • • • • • • •	•	*	• • • • • • • • • • • • • • • • • • •	*	philus influenzee!				12053 \$22053					entael	\$44944 \$44944	nicalium	[8			17, artial.1,	
20	- Putative coding regions of novel proteins similar to known proteins	* * * * * * * * * * * * * * * * * * *	L-glutamine-D-fructosa-6-phosphate amidotransfarase (Bacillus ubtilis)	H. influenzae predicted coding region HI0594 (Haemophilus influenzae)	btilisi		1	1	[luenzae]	mathylated-DNAprotein-cysteine methyltransferase (Haemophilus	; ; ; ; ; ; ; ; ; ; ;			Manganese supercxide dismutase [Bacillus caldotenax] [1522053 522053 superoxide dismutase [EC 1.15.1.1) (Mm) - Bacillus lobranax	pir (537043) (5370 hypothetical protein 11 (ompli 3' region) - Selmonetla typhimurium	-	***************************************	• • • • • • • • • • • • • • • • • • • •	dipeptide transport ATP-binding protein (Haemophilus influenzae)	symergohymenotropic toxin [Staphylococcus intermedius] pir S44944 S44944 symergohymenotropic toxin - Staphylococcus ntermedius	M. genitalium predicted coding region MG423 (Mycoplasma genitalium)	helicase (Autographa californica nuclear polyhedrosis virus) sp p24307 V141_NPVAC HELICASE.	mevalonate pyrophosphate decarboxylase (Rattus norvegicus)		[Salmone]la typhimurium IS300 insertion sequence from SARA17, artial.]. gene product [Salmone]la typhimurium]	
25	il proteins s		sphate amido	ng region HI	(Bacillus su				emophilus in	eine methylt		ubt1116	***************************************	Re (Bacillus 15.1.1) (Mm)	l 3' region)	terium lepra		116.3	ing protein (aphylococcus Staphylococc	og region MG4	ica nuclear E.	rboxylase (R		insertion s himurium	
30	regions of nove	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	amine-O-fructose-6-pho	e predicted codi	adenylosuccinate synthetaxe (Bacillus subtilis)	ichia colii	resolvase [Transposon Tn917]	ichia colij	aspartyl-tRNA synthatase (Haemophilus influenzae	NAprotein-cyste	unknowm (Bacillus subtilis)	pir 509411 5094 spoilit protein - Bacillus subtilis	s subc 111s)	Anganese superoxide dismutase (Bacillus superoxide dismutase (EC 1.15.1.1) (Mn)	hypothetical protein 11 (omphilfragment)	protein kinase PknB (Mycobacterium lepras)	is subtilis)	transketolase (Bacillus subtilis)	insport ATP-binds	synergohymenotropic toxin [Staphylococcus intermedius] synergohymenotropic toxin - Staphylococcus ntermedius	predicted codin	elicase (Autographa californic sp P24307 V143_NPVAC HELICASE	late pyrophosphate deca	ORF_(188 (Escharichia coli)	Selmonella typhimurium IS200 insertio gene product (Selmonella typhimurium)	ATPase (Lactococcus lactis)
35	utative coding	match gene name	L-glutamine-	H. influenza	Adenylosucci	queh (Escherichia coli)	resolvase [T	yeeD (Escharichia coll)	asparty1-tRN	methylated-D	unknown (Bec	spolite prot	Bex (Bacillus subtills)	Manganese sur superoxide	hypothetical (fragment)	protein kines	YqhU (Bacillus subtilis)	transketolase	dipeptide tra	synergohymeno synergohymen	M. genitalium	helicase (Aut spip24307[V1	mevalonate py	ORF_(388 [Esc	Salmonella t gene product	ATPase (Lacto
40	S. aurous . P	match acession	151 726480	91 1204844	91 467328	gi 147485	91 154961	g1 405955	9111204570	91 1204652	91 467416	pir 509411 5094	911606745	91 39453	Pi+ C370H3 C370	191 1262360	91 1303902	91 1405446	91 [1205429	91 487686	91 1046138	91 559164	91 1322245	91 537137	91 439619	14, 1296464
		Stop (nt.)	3581	735	1406	5889	1376	1342	2471	5706	1135	603	6154	1119	5HR9	2070	1064	430		10	189	69	241	239	325	5
45		Start (nt)	1728	1466	66	5590	- 661	1034	1404	6251	1707	5	5252	1727	1,653	1105	504	98	198	252	-	670	89	475	~	-
		<u>8</u> 0	~	_	-	-	-	-		-	~		6	~		<u>-</u>	~	_	-	~_	-		-	- 1		_
50		Contig	275	785	296	302	ř.	2	360	364	372	392	104	426	4 RO	625	154	R42	953	961	1035	1280	3371	3715	390R	3940 1 3
	•				•		•		- +		-•	- •	- ÷		:	_ :	_ :	<u>-:</u>	-:	:	-:	:	-:	<u> - :</u>	:	-:

5

Contig ORF	108 C	Start (nt)	Stop	natch	, match gane name	E .	1 Idone	length (nt.)
3954	1-		318	91,1224069	amidase [Horaxella catarrhalis]	=	89	318
4049		7 (()	170	91 603768	Hurf procein, imidazolone-5-propionate hydrolase [Bacillus subtilis] gi 601768 Hurl protein, imidazolone-5-propionate hydrolase Bacillus subtilis)	=	e,	168 8
4209			324	91 403373	glycerophosphoryl disster phosphodissterss [Bacillus subtills] pir 537251 537251 glycerophosphoryl disster phosphodissterss - acillus subtilis	8	% ·	324
4371		627	322	91 21 6677	indolepyruwate decarboxylase [Enterobacter classes] plr[516013[516013] indolepyruwate decarboxylase [EC 4.1.1) - nterobacter classe	£	22	306
4387	-	61	228	91 460689	[TVG (Thermoactinomyces vulgaris]	18	65	210
4.191	-	- 5A1	306	91 1524193	unknown Mycohacterium tuberculosis	i i	69	276
4425	-		<u> </u>	191 143015	(gluconate kinase (Bacillus subtilis)	6	99	961
-	2	1593	1 847	91 1064786	[function unknown [Bacillus subtilis]	8	62	747
11		 25	116	91 559164	helicase [Autographa californica nuclear polyhedrosis virus] sp P24107 V141_NPVAC HELICASE.	9	9	22
\$	-	1159	2448	91 1109684	Prov [Bacillus subtilis]	8	69	1290
\$ _	- 2	4032	433	91 1109687	Proz [Bacillus subtilis]	9	55	702
~	-	110266	9502	91 563952	[gluconate parmesse (Bacillus licheniformis]	08	62	765
3	12	8852	7545	91 854655	Na/H antiporter system (Bacillus alcalophilus)	8	62	1308
62	Ξ	1 8087	8683	(17652 18	(ORF (!lomo saplens)	08	68	597
- 67	97	13781	14122	191/305002	ORP_1356 [Escherichia coli!	- 80	59	342
2	12	111495	10296	91 1303995	YqkN [Bacillus subtilis]	90	99	1200
5	-	6336	0817	91 467428	unknown (Bacillus subtilis)	80	68	198
86	01	7294	1833	91 467430	[unknown [Becillus subtilis]	08	64	240
8	3	7820	18737	91 467431	high level kasgamycin resistance (gacillus subtills)	2	19 -	816
601	97	14154	14813	94 \$60675	ipa-57d gene product (Bacillus subtilis)	9	69	099
112	==	114294	16636	91 1072361	pyruvate-formate-lyase (Clostridium pasteurianum)	98	59	2343
139	-	1448	726	191 506699	CapC (Staphylococcus aureus)	9	88 -	123
139	-	6712	1448	91 50 569 8	Cap8 (Staphylococcus aureus)	08	- 59	267
7.7	-	1 3271	1 2870	51 1146243	spartate 1-decarboxylase (Bacillus subtilis)	2	19	402
-								

, aureus - Putative coding regions of novel proteins similar to known proteins

Contig	<u>8</u> 0	Start (nt)	Stop (nt)	match ,	, martch gana name	e sia) ident	length (nt)
177	_	2102	2842	91 467385	unknown (Bacillus subtilis)	80	70	741
184	9	6124	5912	91 (161953	85-kDa surface antigen (Trypanosoma cruzi)	90	94	213
186	-	5368	2,86	91 289282	glutamyl-tRNA synthetase [Bacillus subtilis]	80	99	1494
1 205	2	115796	115140	01140103	ribosomal protein L4 (Bacillus stearothermophilus)	80	99	657
1 207	-	140	1315	91 460259	emolase (Bacillus subtilis)	980	64	1176
112	2	10.18	1590	191 410131	ORFX7 [Bacillus subtilis]	0	61	513
235	~_	1962	7255	01 143797	Valy1-FRNA synthetase (Becillus stessochermophilus) sp[911931 STV_BAC6T VALYL-TRNA SYNTHETASE (EC 6.1.1.9) VALINE—TRNA LIGASE) (VALAS)	2	\$\$	294
239	-		1263	9 (3 4 3 0 0 0	proton glutamate symport protein (Bacillus stearothermophilus) pir 536247 526247 glutamate/aspartate transport protein - Bacillus tearothermophilus	ç	8	1263
272	-	1 2724	2461	191 709993	hypothatical protein (Bacillus subtilis)	90	35	264
100	-	1446	=======================================	91 467418	unknown (Bacillus subtilis)	80	S	336
310	-	1 5697	4501	911117686	acut gene product (Staphylococcus xylosus)	90	63	1197
310	-	5258	7006	191 348053	acetyl-CoA synthetess (Sacillus subtilis)	8	63	1749
916	_	7410	1 9113	191 1103865	[formyl-tetrahydrofolate synthetase [Streptococcus mutens]	8	63	1704
1325	_	*	1389	191 310325	outer capsid protein (Rotavirus sp.)	80	40	276
700	-	1268	909	191 (537049	[ORF_0470 [Escherichia coli]	90	\$\$	633
374	~	929	1228	191 1405448	(Ynew [Bacillus subtills)	8	0,	300
378	-	3062	1000	191 467448	(unknown (Bacillus subtilis)	80	69	270
386	_	1 267	587	91 1064791	function unknown (Becillus subtilis)	8	65	321
36	<u>~</u>	۰	623	91 304976	natches PS00017: ATP_GTP_A and PS00301: EFACTOR_GTP: similar to lungation factor G, TetM/TetO tetracycline-resistance proteins Escherichia colil	8	\$9	651
456	-	625	1263	[51]1146183	putative (Bacillus subtilis)	980	65	619
475	_	-	654	101 288269	bata-fructofuranosidase (Staphylococcus xylosus)	ç	99	654
244	~	1449	2240	pi 529754	spec Straptococcus pyogenes	8	So	792
622	-	1623	1671	[01]1483545	unknown (Mycobacterium tuberculosis)	80	65	549
917	-	-	1257	(91 (1064791	[function umknown [Bacillus subtilis]	8	89	1257
739	; - ;	1 107	838	1911666983	putative ATP binding subunit [Bacillus subtilis]	80	19	232
	:							

Contly C	- Pag	Start	Stop	match	match gene name	Eig 1	* ident	length (nt)	
		581	414	1911111600	coentyme PQO synthesis protein III [Methanococcus Jannaschii]	8	61	168	• •
822	<u> </u>	17	619	91 410141	ORFXI7 [Becilius subtilis]	8	68	663	. — •
627	-	991	836	136 1205301	leukotoxin sacretion ATP-binding protein (Maemophilus influenzae)	8	54	156	
1044	-	-	149	91 60632	vp2 [Marburg virus]	80	- \$\$	147	- •
1220	~	17.5	=======================================	pir A61072 EPSG	pir A61072 EPSG gallidarmin precursor - Staphylococcus gallinarum	90	K	159	- •
2519	-	- 27	275	191(147556	dp [Escherichla coli]	GE OF	45	201	_ •
2947	-	\$03	279	191 1184680	polymucleotide phosphorylase (Bacillus subtilis)	08	62	225	
3120	-	2	226	1911517205	67 kDa Hyosin-crossreactive streptococcal antigen (Streptococcus yogenes)	8	65	225	
1610	-	294	148	(91(151259	HNG-COA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir[A44756]A44736 [Hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	80	83	147	
3560	7	285	\$	121,217130	photosystem I core protein B (Symachococcus vulcanus)	88	0,	150	-
3655	-	47	346	91 415855	deoxyribose aldolase (Mycoplesma hominis)	90	98	300	
3658	-	324	584	101 551531	2-nitropropane dioxygenase (Williopsis saturnus)	80	35	261	
1769	-	198	00+	191 1133950	large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	80	89	399	
3781	-	692	348	01 166412	NADH-glutamate synthase (Medicago sativa)	8	62	345	- :
3988	-	8	287	91 1204696	[fructose-permease IISC component (Heemophilus influentae)	8	69	240	
4030	-	11.5	383	191 1009366	Respiratory nitrate reductase (Bacillus subtilis)	8	09	285	-:
4092	-	3	275	91(1370207	orf6 [Lactobacillus sake]	80	69	273	- :
103	<u> </u>	680	2	91 39956	IIGIc [Bacillus subtilis	80	9	666	
4231	-	693	348	91 289287	[UDP-glucose pyrophosphorylase [Bacillus subtilis]	90	9	345	_ :
4265		\$95	299	91 603768	Hurt protein, imidazolone-5-propionate hydrolase (Bacillus subtilia) gi 603768 Huti protein, imidazolone-5-propionate hydrolase Bacillus subtilia)	0 8	G	297	
4504	Ĭ -	498	1 250	91(1339950	large subunit of NADH-dependent glutamete synthase [Plactonema boryanum]	ê.	609	249	
7	-	5998	6798	In [535351	Cody (Bacillus subtilis)	62	63	108	
		8295	705f	41 603768	Hutr protein, imidazolone-5-propionate hydrolase (Bacillus subtilla) gi[60]768 Hutr protein, imidazolone-5-propionate hydrolase Bacillus subtilis]	6.	3	1245	
52		5273	5515	pir A36728 A367	5515 pir A36728 A367 acyl carrier protein - Rhizobium meliloti	79	\$9	245	
5	į		2766	Ibre Practo (Aso)					

10	
15	
20	
25	
30	
15	
o	

Cont ig	<u>8</u> 0	Start (nt)	Stop (nt)	match	, match gene name	e la la	1 ident	length
85	~	1173	1424	91 147923	threonine dehydretase 2 (EC 4.2.1.16) [Escherichia coli!			- tac
9	-		507	91 666115	orfi upatream of glucose kinase (Stabhylococcus xylosus) pir [553351]552353 hypothetical protein 1 - Stabhylococcus xylosus	6 6	5 9	207
# #	-	7005	1590	91 466882			_	_
\$	^	7023	6505	91 143364	phosphoribosyl eminoimidatole carboxylage I (PUR-E) (Bacillan- hatter	26	3	100
£	•	2660	4354	94 144906	product homologous to E.coli thioradoxin reductase: J.Biol.Chem. 1988) 263:9015-9019, and C. P52a protein of alkyl hydroperoxide eductase from S.typhimurium: J.Biol.Chem. (1990) 265:10535-10540; pen reading frame A [Clostridium pasteurianum]	65	9 K	1107
102	=	7489	1221	91 143093	ketol-ecid reductoisomerase (Bacillus subtills sp[937253] ILWC_BACSU KETOL-ACID REDUCTOLSOMERAE RC 1.1.1.86) ACETOWIDROXY-ACID ISOHEROREDUCTASE) (ALPHA-KETO-BETA-HYDROXYLACIL EDUCTOISOBERAEE).	62	3	1083
102	7	11190	12563	91 149428	putative (Lactococus lactis)			_
127	6	292	9372	gi 458688	(PrfC/RP) (Dichelabacter nodosus)	62	\$	1374
139	2	2540	1983	91 506697	CapA Staphylococcus aureus	6.	9	1581
=	7	1644	1156	191 1498296	peptide methionine sulfoxido reductase (Strantonorus	79	2	558
B\$1	~	529	1098	191 467457	hypoxanthine-guanine phosphoribesyltransferese [Bacillus subtilis] gl/d67457 hypoxanthine-guanine phosphoribosyltransferase [Bacillus ubtilis]	67	59	8 62
150	-	965	591	91 755602	unknown (Bacillus subtills)			
9/1		1039	587	91 297874	fructose-bisphosphate aldolase (Staphylococcus carnosus) pir/A499431A49943 fructose-bisphosphate aldolase (EC 4.1.2.33) - taphylococcus carnosus (strain TM300)		65	\$ 8
98.	-	7584	6874	91 1314298	ONFS; putative Smg protein; similar to Sms proteins from Memophilus influentse and Escherichis coli [Listerla monocytogenes]	29	99	7111
502	91	8887	8498	91 1044980	ribosomal protein LIR (Bacillus subtilis)			
= = = = = = = = = = = = = = = = = = = =	-	-	519	lei (1303994	Yokk (Becillus subtilis)		9	060
1 (52	-	4183	2801	gi 488430	alcohol dehydrogenase 2 [Entamoeba histolytica]		65	519
55	-	8915	7896	91 580883	ipa-88d gene product (Bacillus subtilis)		09	1383
672	-	3721	٠.	191 413930	ipa-6d gane product (Bacillus subtilis)	6/	09	1020
- [-	-	1393	91 403372	glycerol 1-phosphate permesse (Bacillus subtilis)	£	65	1 609
307		2930	1935	01/950062	hypothetical yeart protein 1 [Mycoplasma capricolum] pir 848578 848578		8 5	1.06.1
					Transmission Aycoplasme capricolum SOC3 (fragment)	•	}	966

_		length (nt)	1221	576	204	151	1032	624	420	579	300	714	199	156	384	285	210	183	312	219	162	282	474	267	243	297	333	339
5) ident	65	51	99	87	61	67	61	62	62	62	61	95	21	19	65	19	09	98	\$\$	89	63	17	64	65	3	69
10		ais '	97	66	19	96	62	67	ور	67	67	62	67	6,	62	6,	66	67	62	96	1 79	96	66	67	67	96	79	66
15	roteins						s subtilis] o-ligase EC		ocytogenes]					nt)		rubtilis;					onema boryanum]	onema boryanum]	rus)	s (strain IL1403)			2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20	milar to known p						(PUR-M) (Sacillu ycinamidine cycl		it (Listeria mon	-		(87)	s subtilis]	subtilis (fragme		2.4.2) [Bacillus	[a]	itime}	ienzae)	18)	synthase (Plect	synthase (Pleci	rubunit (Bos tau	is subsp. lactle	ubtilis)			
25	l proteins si		[8]		lus subtilis!		e synthetase bosylformylgl s		binding subunit	a typhimurium	ubtilis	lococcus aure	OpuD (Bacillu	n - Bacillus	-	(odhA; EC 1.	cillus subtil	hermotoga mar	ophilus influ	un perfringer	ent glutamete	lent glutamat	protease binding (tococcus lact	e (Bacillus	culosis)	asma hominis	ubt111s)
30	 aureus - Putative coding regions of novel proteins similar to known proceins 	name	P47K Pseudomonas chlororaphis	Bacillus subtills]	Ribosomal Protein LiO (Bacillus subtilis)	Nisy [Lectococcus lactis]	phosphoribosyl spinoinidazole synthetase (PUR-N). (Bacillus subtilis) pir H19316 AlbSCL phosphoribosylformylglycinamidine cyclo-ligase EC 6.3.3.1) - Bacillus subtilis	orf6 [Lactobacillus sake]	arginine permease substrate-binding subunit [Listeria monocytogenes]	transport protein (Salmonella typhimurium)	function unknown [Bacillus subtilis]	orf-1, novel antigen (Staphylococcus aureus)	glycine betaine transporter OpuD [Bacillus subtilis]	pir 552915 5529 nitrate reductase alpha chain - Bacillus subtilis (fragment)	putative [Lactococcus lactis]	2-oxoglutarate dehydrogenase (odhA; EC 1.2.4.2) [Bacillus subtilis]	nitrite reductase (nirB) (Bacillus subtilia)	3-phosphoglycerate kinase (Thermotoga maritima)	pyruvate formate-lyase [Haemophilus influenzae]	hypD gene product (Clostridium perfringens)	large subunit of NADH-dependent glutamete synthase (Plectonema boryanum)	large subunit of NADH-dependent glutamate synthsse (Plectonema boryanum)	-dependent	leuB protein, inactive - Lactococcus lactis subsp. lactis (strain ILI403)	Respiratory nitrate reductase (Bacillus subtills)	unknown [Mycobacterium tuberculosis	decayribose aldolase (Mycoplasma hominis)	gluconate kinase (Bacillus subtilis)
35	tative coding	, match gene name	P47X Pseudr	putative Bu	Ribosomal Pi	NisF [Lacto	phosphoribo pir H29316 6.3.3.11 -	orf6 [Lacto	arginine pe	transport p	function un	orf-li nove	glycine bet	nitrate red	putative [Lactococ	2-oxoglutar	nitrite red	3-phosphog	pyruvate fo	hypD gene p	large subun	large subuni	Clp-like AT	leus protei	Respiratory	unknown (My	deoxyribose	gluconate k
40	S. aureus - Pul	match acession	91 216854	1911143177	91 786163	191 805090	91/14371	191 1370207	191 476160	QL 153898	91 1064795	191 1407784	gi 1524397	pir 552915 5529	141 (149429	91/143267	02(110020	1911450686	91 1204436	191 1149662	19:11339950	19111339950	191,1871784	pir C36889 C368	121 1009366	91 1524193	91 415855	191 143015
		Stop (nt)	9886	578	1124	352	1426	2825	421	3241	374	1987	401	202	385	286	212	ž.	716	220	Ę	326	476	270	107	312	77	341
45		Start (nt)	10106	1153	621	702	2457	348	~	2663	- 2	4100	-	1357	168	570	_	514		7	102	607		536	159	809 	7	_
		10 PE	-	1	12	-	~	=	-		-	-	-	-		-	-	-	-	_	-	-	-	-	~	-	-	-
50		Contig	352	1 412	1 481	916	228	828	0.5	645	683	H16	2929	2937	2940	2946	2999	3022	3064	1 3063	3126	3181	3345	3718	3724	3836	3941	\$

Contio	ORF	Start	Stop	match	match gene name	618 (1 Ident	length
01	9	:	at)	Acession		-		(nc)
1 4501	-	90+	508	91,1022726	unknown (Staphylococcus haemolyticus)	79	99	198
4612	-	~	238	91 460689	TVG Thermoactinomyces vulgaris	79	88	237
7	-	~	1213	91 520753	DNA topoisomerase I (Bacillus subtilis)	78	79	1212
	~	2266	1220	91/216151	DNA polymerase (gene L, ttg start codon) (Bacteriophage SP02) gi[579197] SP02 DNA polymerase (se 1-648) (Bacteriophage SP02) pir[A21498]DJBPS2 DNA- directed DNA polymerase (BC 2.7.7.7) - phage P02	6	ε,	1047
•	~	1340	1089	91 1064787	[Lunction unknown (Bacillus subtills)	78	57	252
132	=	6803	1702	91 146974	NH3-dependent NAD synthetase (Escherichia coll)	98	63	900
3.6	-	1 2941	3138	911290503	glutamate permease (Escherichia coll)	92	53	1961
25	15	117684	116221	91 1303941	Yqlv {Bacillus subtilis	18	88	1464
- 57	1	10520	12067	9111072418	gicA gene product (Staphylococcus carnosus)	78	65	1548
99	_	E79A	5812	91/1212729	YqhJ (Bacillus subtilis)	86	67	987
- 67	-	4029	4 4376	91 466612	nika (Escherichia coli)	7.8	1,	346
16	_	110058	10942	91 467380	stage 0 sporultion (Bacillus subtilis)	86	20	888
102	=	R574	06101	1911149426	putativo (Lactococcus lactis)	78	19	1557
1112	9	3540	4463	1911854234	cymc gane product (Klebsiella oxytoca)	9.6	36	924
124	~	1888	1901	91 405622	unknown [Becillius subtilis]	e.	9	A2B
007	_	1805	2260	91,1256636	putative (Bacillus subtilis)	78	11	456
100	-	122	1373	91 168060	lamB (Emericalla midulams)	78	\$3	375
166	-	7125	6163	[gi 451216	Hannosephosphate Isomerase [Streptococcus mutans]	78	63	1 696
186	-	1586	795	91 289284	cysteinyl-tRNA synthetase (Bacillus subtilis)	96	63	192
195	-	2749	2315	18111353874	unknown Rhodobacter capsulatus	78	58	435
661		4279	3623	91 (143525	succinate dehydrogenase cytochrome b-558 aubunit [Bacillus subtills] pir A29841 DEBSSC succinate dehydrogenase (EC 1.1.99.1) cytochrome 558 - Bacillus subtilis	84	۲	657
199	-	1209	5887	91 142521	deoxyribodipyrimidine photolysse (Becillus subtliis) pir[AJ7192]AJ7192 uvrB protoin - Bacillus subtliis sp[P14991 UVRC_BACSU EXCIMUCLEASE ABC SUBUNIT C.	94	62	1653
223		3831	1523	111139596	Eacherichia coli 19200 insertion sequence from ECOR61, pertial.1, ene product [Eacherichia coli!	78	47	309

LABIE 2

Contig ORF ID ID	98 0	Start (nt)	Stop (nt)	match	patch gene name	e .	1 ident	length (nt.)
299	-	1865	2149	191 467439	temperature sensitive cell division (Bacillus subtilis)	78	62	285
121	-	7734	2315	91 112979	ORF3 in homologous to an ORP downstream of the spor gene of E.coll; RP3 [Bacillus stearothermophilus]	18	\$	420
352	-	3714	1944	91 349050	ectin i (Pneumocystis cerinii)	38	42	231
352	<u>~</u>	7592	6093	95.09(1)	NACH dehydrogenase subunit 5 (Becilius subtilis) ap[939755]NOMF BACSU NACH DEHYDROGENASE SUBUNIT 5 (EC 1.6.5.3) NACH-UBIQUINONE OXIDOREDUCTASE CHAIN 5)	86	88,	1500
376	-	-	583	[61]551693	dethioblotin synthase Bacillus sphmericus	78	7.	582
424	~	1595	1768	px 1524117	alpha-acetolactate decarboxylase [Lactococcus lactis]	8	89	174
430	-	1914	988	91 1030068		78	63	927
558	=	1 762	562	94 1511588	bitunctional protein (Methanococcus jannaschii)	78	9	201
670		1152	1589	91/1122759	unknown (Bacillus subtilis)	96	79	438
714	-	- 54	732	101 11140	17 kd minor signa factor (rpof, sigs; ttg start codon) [Bacilius ubtilis]	18	57	699
7	-	-	36A	191 (1377833	unknown Dacillus subtilis	78	59	366
981	-	1381	692	91 143802	Gerc2 (Bacillus subtilis)	86	99	069
985	~	978	727	91 296947	uridina kinasa (Escherichia coli)	92	99	252
1045	-		<u>.</u>	91 1407784	orf-i; nowel antigen (Staphylococcus aureus)	78	5	399
1163	~	368	186	191 410117	diaminopimelate decarboxylese (Bacillus subtilis)	38	*	CM1
2191	-	1 794	399	51 215098	excisionase (Bacteriophage 154a)	78	65	396
2933	-	~	181	91 1204436	pyruvate formate-lyase [Raemophilus Influenzae]	96	13	180
3041	-	621	717	101 624632	Cit. (Escherichle coli)	F	23	199
3581	-	105	5	91 763186	[3-ketoacyl-coA thiolase [Saccharomyces cerevisiae]	78	- 55	762
3709	-	_	230	91 160689	TVG (Thermoactinomyces vulgatis)	18	88	328
3974	-	528	1 265	9: 558839	unknown (Bacillus subtilis	18	65	264
3980	-		6	191(139956	IIOIc (Becillus subtilis)	92	62	399
4056	-	- 643	354 '	91 1256635	dihydroxy-acid dehydratase (Bacillus subtille)	1 28	\$\$	294
*	-	630	116	pir 509372 5093	pre/S09372 S093 hypothetical protein - Trypanosome brucel	18	62	315
4185	-	_	179	91/1339950	large subunit of NADH-dependent glutamate synthame (Plectonemma borywnum)	78	88	111

5		int length (nt)	60 327	240	59 306	16 . 1 213	65 237	56 697	59 462	_	09 09	65 228	1164	54 561	57 336	56 642	53 1227	63 636	_	25 600	58 279	60 768	48 573	54 159	44 327	61 225
		1 ident	_		_	-	-	_	_	_	-			_	_	-	_	-	_		_	-	_	-	_	<u> </u>
10	1	e is	78	28	92	92	78	77	77	ا ت	۲.	<u>r</u>		ני	7	۲	"	7			ا ب	ا د	ا د	<u>۔</u>		- 3
15	roteins			s subtills; se Bacillus							illus btilis	02370 RS14_BCOLI	berosum) cursor,							ophilus			•		us janneschii]	
20	 Aureus - Putative coding regions of novel proteins similar to known proteins 			Nuti protein, imidazolome-5-propionata hydrolase (Bacillus subtilis) gi 601768 Nuti protein, imidazolome-5-propionata hydrolase Bacillus subtilis	heavy-metal transporting P-type ATPass (Proceus mirabilis)						phenyislanyi-tRNA synthetese beta subunit (AA 1-804) [Bacilius btilis]	protein 314 (Bacharichia colil spiPO2370 RS14_ECOLI	mitochondria! (ormate dehydrogenase precurant (Solanus tuberosum) pir 3022/2 402272 (ormate dehydrogenase (EC 1.2.1.2) procursor, tochondria - potate		(8)				subtilis)	spermidine/putrencine transport ATP-binding protein (Naemophilus influenzae)	co11}				M. jannaschii predicted coding region MJ0798 (Methanococcus jannaschii)	111.61
25	novel proteins		18)	u-5-propionata imidazolona-5-	P-type ATPass	t) (Porphyra purpurea)	-		ribosomal protein L9 (Bacillus subtilis)		stase beta subun	165 ribosomal subunit protein 314 (Bach 308 RIBOSOMAL PROTBIN 514. (SUB 2-101)	chydrogenase pre ate deliydrogenas	reus]	acetolactate synthase (Thermus aquaticus)	11.6]	_	lus subtilis]	hypothetical 15.9-kDa protein (Becillus subtilis)	ransport ATP-bin	elongation factor EP-Ts' (Escherichia coli)	esterase (Bacillus stearothermophilus)	ingens)	_	coding region M	ORF for adenylate kinese (Bacillus subtilis
30	ing regions of	חם הבשפ	unknown (Bacillus subtilis)	ein, imidazolor 8 Muti protein i	al transporting	glutamate symthase (GOGAT)	IfGic (Bacillus subtills)	[Bacillus subcilis]	protein L9 (8	Yqhi (Bacillus subtilis)	Inyl-tRNA synth	omel subunit p	itochondrial formate d pir J02272 J0ra itochondrial - potato	ORP1 (Staphylococcus aureus	ate synthase (Unknown (Bacillus subtilis)	[Bacillus subtilis	thymidine kinase (Bacillus subtilis)	ical 15.9-kDa p	ne/putrescins t tae]	lon factor EP-T	[Bacillus stea	ORP3 (Clostridium perfringens)	YgeH [Bacillus subtilis	chil predicted	denylate kinas
35	tative cod	match gene name	unknown	Rut prote gi 603768 subtilis	heavy-met	glutamate	IIGIc (Ba	Prov (Bac	ribosomal	Yqhi (Bac	phenylel	30S ribosomel 30S RIBOSOMA	mitochono pir J022 itochono	ORF1 1824	acetolace	Unknown		thymidin	hypothet	spermidine/s	alongat	esterase	ORP3 (C14	YgeH [Bac	H. Sannas	ORF for
40	S. Aureus - Pu	match acession	91 558839	91 603768	1911353678	91 1276841	95661 101	911109684	94 467335	91(1212728	91 40054	91 606241	gt 29779A	9111340128	911311482	191710637	191 1237015	91 405819	191 849027	91 1205583	gi 473825	1911216314	101 853809	191 1303788	ai 1499620	91 216340
		Stop (nt)	129	707	707	1 216	802	2073	1965	368	1252	2931	16622	4007	5713	5383	1228	7688	988	1983	1282	110	3868	290	9434	5204
45		Start (nt)	655	3	612	428	474	2969	2426	7	290	2704	15459	4562	1 5378	4742	~	6323	1146	7354	1004	380	3296	132	8740	5428
		8 c	-		1-	-	-	~	-	-	7	•	=	-	8	_	-	2	2	2_	~	~	-	-	e -	-
50	,	Cont 19 10	4235	53 0	4368	19491	4530	-	=	22	65	2	£	100	102	109	11	72	-	152	169	184	189	193	195	205
					• -										_											

TABLE 2

264 520 1029 903 22 1020 2 195 939 12 \$74 363 202 5 909 1293 101 108 1347 294 Ę 3 5 1. 19 8 Ş 1 ident 5 52 **x** = 2 3 2 S 8 3 \$9 5 3 9 12 15 11 7 ננ ۲ Ę Ξ ۲ 7 1 = F 11 ٦ ۲ ۲ ٦ ۲ ۲ 7 aia . 10 malic enzyme (EC 1.1.1.18) [Bacillus stearotharmophilus] pir[Allio7] DEBSXS malate dehydronomaea oxaloacetate-decarboxylating) (EC 1.1.1.18) - Bacillus tearothermophilus phosphoribosyl glycinamida synthetase (PUR-D; grg start codon) Bacillus UDP-N-acetyl muramate-alanine ligase (Bacillus subtilis) spipio778|MURC_BACSU UDP-N-ACETYLAURANATE--ALANINE LIGASE (EC .3.2.8) (UDP-N- ACETYLAURANOYL-1-ALANIME SYNTHETASE) (FRAGMENT). |AFP-bind. pyrimidine kinase (Mycoplasma capricolum) pir |S48605||S48605 | hypothetical protein - Mycoplasma capricolum SGC3) (fragment) 15 |pir|A01179|SYRS |tyrosina--tRNA ilgase (EC 6.1.1.1) - Bacillus stearothermophilus aureus - Pulative coding regions of novel proteins similar to known proteins |fibronectin/fibrinogen-binding protein (Streptococcus pyogenes) carboxyltransferase beta subunit (Symechococcus PCC7942) 20 ORP1 gene product (Acinetobacter calcoaceticus) fumarase (citG) (as 1-462) [Bacillus subtilis] orf-1; novel antigen (Staphylococcus sureus) Ribosomal Protein L23 [Bacillus subtilis] protein-dependent (Bacillus subtills) endonuclease III (Bacillus subtilis) 25 unconventional myosin (Sus scrofa) transketolase [Bacillus subtilis] |ruvB protein [Escherichia coli] (unknown (Bacillus subtilis) unknown (Bacillus subtilis) ONFX8 [Bacillus subtilis] YmaB (Dacillus gubtilis) pheB [Bacillus subtilis] Yqhw [Bacillus subtilis] 30 match gene name subtilis) 35 match acession 91 1405446 91 1407784 91 | 143165 101 1154634 191 (1303912 191 467436 191 | 1070015 101 | 1399855 91143374 191 432427 191 | 508980 191 147783 91 533099 191 | 556014 191 786155 195 410132 160056 16 4416 |91|496254 91 467 408 191 | 516155 01 39844 40 1472 4197 1211 1391 1021 1940 3570 1346 4863 1595 708 1 562 114795 (14502 2084 2299 1283 Stop (nt) 598 **\$68** 986 169 45 1541 1128 5 | 4079 1302 1908 1 3478 1819 2741 3835 5402 5666 1661 1468 **-**167 89 6 594 ~ 1 1 2 • ~ --• _ -~ ~ -53 ٠ Contig 202 333 3 365 385 405 299 301 302 312 22 7 392 487 \$22 233 243 302 205 217 232

10	
15	
20	
25	
30	•
35	
40	

44% identity over 302 residues with hypotherical protein (rom Synechocystls 77 48 237 48 4394 accession Déédoic_CD) expression induced by environmental strass; some similarity to alycosyl transferases; two potential membrane-apanning helices (Bacillus subtil adenylosuccinate lysee (PMR-B) (Bacillus subtilis) pir[C29336 MZBSDS 77 61 372 adenylosuccinate lysee (PMR-B) (Bacillus subtilis) bir[C29336 MZBSDS 77 61 372	29, 12	s aubt [14s] 77 64 435	epile gane product (Staphylococcus epidermidis) 77 61 276	77 62 1	58 2		- -	77 1 2	um felciparum pir A29232 A29232 77 um alciparum (strain Camp)	M. jammaschii predicted coding region NJ0255 (Methanococcus jammaschii) 77 ki i	72		Ydrogenase (NADP+) [Bacillus subtilis] p P21129 oD01_BACSU DEHTDROCENASE EL COMPONENT (EC 2.4.2) (ALPHA- KETOGLUTANATE	Spore germination and vegetative growth protein instance in the state of the state		Probable operon with orff. Possible alternative initiation codon, ass 77 55 225 225 225 225 225 225 225 225 2	55 77 63
Allica (Bacillus subti) helica (Bacillus subti) denylosuccinate lyase (P	tate transcarhamylase hetical protein [Bacil	ORFIA [Bacillus subtilis]	gene product (Staphy	unknown (Bacillus subtilis)	aminopeptidase (Bacillus subtilis)	YqgN (Becillus subtilis)	fluenzae predicted co	8969 [Saccharomyces cerevisiae]	cidic basic repeat a malaria antigen prec	maschii predicted co	ite formate-lyase (A)	e betaine transporte	xoglutarate dehydrogenase 2-oxoclutarate Dehydrocen Dehydrocenase),	coor bus not realist	ASA PHO HATTANANA	le operan with orff. 2153. Homology with	le operon with orfe. 2133. Homology with anhase epsilon subunners porting ATP synthase
sp.	B spar hypot	ORF1A	lep1P	unkno	amino	YqgN	<u>=</u>	8969	P101 101x	Н. ја	form	glycfr	2-0xC	spore		Probab 2151	Probab 2151- ATF sy crans
91(1187979	g1 143387 g1 904198	91 387577	gi 46971 gi 1072381	191 1122760	19111377823	191 1303861	94 1204844	91 460828	91 160047	91 1499034	91 42370	91 11524397	91 40003	91 1204354		91 438465	g1 438465 g1 142562
1351	481		1219	1820	391	573	225	188	602	Ē	100	292	309	_	*******		
1587	22		125	1587	7	2	- ;	-	£ .	-	25	56 -		678	******	109	
~ ~	~	~	- -	-	- -		_ ;	- 		-	~	-		~	-		
523	548	- -	659	-	789	R15		- (801	1942	-:	2933	2966	2976	2979		298R	i i i

S. aureus - Putative coding regions of novel proteins similar to known proteins

1	900	4140	8100	- Patch	match gane name	eis .	1 ident	length
1 to	9 8	(10)	(nt)	Acession				(uc)
900	-	726	00	91 603768	Hutt procesh, imidazolone-5-proptonate hydrolase (Bacillus subtliss) gs 603768 Hutz protein, imidazolona-5-propionate hydrolase Bacillus subtliss	٤	52	327
8707	-	703	386	91 216278	oramicidin S synthetase 1 (Bacillus brevis)	רר	\$5	318
4110	-	-	368	pir 552915 5529	pir (522915 5329 nitrate reductase alpha choin - Bacilius subtilis (fragment)	11	61	366
4115	-	-	348	91 517205	67 kDa Myosin-crossreactive straptococcal antigen [Streptococcus yogenes]	77	. 65	348
4225	-	590	1 297	91 1322245	nevalonate pyrophosphate decarboxylase (Rattus norvegicus)	ll.	9	294
4613	- 7	767	750	(91/508979	orp-binding protein (Bacilius subtilis)	7.7	57	168
466A	-	1361	1 182	pir 852915 8529	Instrate	۲,	63	180
57	-	~	1627	91 1150620		16	88	1626
5	2	1488	7685	pir A43577 A435	pir A4357 A435 regulatory protein pfoR - Clostridium parfitingens	96	57	1050
3	-	1 2962	1041	19111161061	dioxygenase (Hethylobacterium extorquens)	76	62	1080
95	- 50	27389	127955	191 467 402	unknown (Bacillus subtilis)	36	96	695
52	==	112046	112219	9111206040	weak similarity to koratin Caenorhabditis elegans	9/	40	174
-	-	1 1062	13261	101 (475715	acetyl coonzyme A acetyltransfersse (thiolsse) [Clostridium cetobutylicum]	92	57	1200
*6	-	818	1624	91 467422	unknown (Bacillus subtilis)	36	62	807
# *	-	2962	3228	101 (897793	y98 gene product (Pediococcus acidilacticil	76	52	264
86	-	5925	6326	191 467427	methionyl-tRNA synthstase [Bacillus subtilis]	76	2	\$09
70.	2	1132	1885	91(216151	DNN, polymersse (gene L: ttg start codon) [Bacteriophage SP02] gi[579197 SP02 DNA polymersse (as 1-648) [Bacteriophage SP02] pir A21498 DuBPS2 DNA-directed DNA polymersse (EC 2.7.7.7) - phage P02	36	2	28
<u> </u>		- B	7055	91 853776	peptide chain release factor 1 (Bacillus subtilis) pir 955427 555437 peptide chain release factor 1 - Bacillus ubtilis	9,	8	1080
164	-	2832	13311	3311 - 91 1204976	proly -tRNA synthetass [Haemophilus influenzae]	92]	2	480
168	-	1 2617	1841	[91(117253	putative ATP-binding protein of ABC-type [Bacillus subtilis]	96	88	רלר
189	~	1163	888	gi 467384	unknown (Bacillus aubtilis)	92	63	126
255		1 2253	3518	91 142936	foly-polygluceaate synthetese (Bacillus subtilis) pir B40646 B40646 folc - Bacillus subtilis	96	2	1266
236	-	1 335	928	[91]1146197	putative [Bacillus subtilis]	92	3	591
723	-	5323	5541	191 1279261	[F13G3.6 (Caenorhabditis elegans)	92	77	219

10	
15	oteins
20	aureus - Putalive coding regions of novel proteins similar to known proteins
25	el proteins simi
30	regions of nov
35	Putalive coding
40	S. aureus -
45	

263	n) 01 01	(a)	Stop (nc)	match acession	natch gene name	E	1 ident	(nt)
ī —	-	5490	4585	191 1510346	dihydrodipicolinate synthase (Methanocu.cus jannaschil)	36	6	906
_	-	1001	1794	91 665982	putative acebrane spanning subunit [Bacillus subtilis] pir 552382 552382 probable membrane spanning protein - Bacillus ubtilis	92	9	744
312	-	1198	1624	91/143312	6-bhompho-1-fructokinase (gtg start codon; EC 2.7.1.11) (Bacillus tearothermophilus)	36	98	1014
143	-	- ~	1036	g1 405956	yeeE [Escherichia coli]	96	, 65	1035
347	-	60	1071	191 396304	scetylornithine descetylese [Escherichia coli]	1 26	12	1293
358	-	229	1907	9111146215	19.0% identity to the Escherichia coli 31 ribosomal protein; putative (Bacillus subtilis)	92	88	1236
<u> </u>			222	1911537084	alternate gene name mgt; CG Site No. 497 (Escherichia coli) pir S56468 S56468 mgtA protein - Escherichia coli	9,	13	222
379	-	4331	4858	g1 143268	dihydroliposmide transsuccinylase (odhB; EC 2.3.1.61) [Bacillus ubtills]	1 76	61	528
1 404	-	4022	4492	91 1303823	tqfG {Bacillus subtilis	96	- 09	471
4	-	2	307	91 186025	ORF YKLO27w (Saccharomyces cerevisiae)	96	55	306
472	-	4356	2854	91 1405464	AlsT [Bacillus subtilis]	76	57	1503
546		273	995	01/153821	straptococcal pyrogenic exotoxin type C (spec) precursor Straptococcus pyogenes)	92	35	627
588	-	1054	557	191 1002520	MutS Bacillus subtilis]	92	61	467
165	-	16	335	91 885934	[C]pB [Symechococcus sp.]	9,	÷	720
602	7 - 7	27.	798	01 1486422	OppD homologue (Rhisobium sp.)	92	52	624
619	2 - 5	547	290	[91]330613	[asjor capaid protein (Mumen cytomogalovirus)	92	42	258
099	4	2568	3302	1011904199	hypothetical protain [Bacillus subtilis]	96	55	252
677	-	452	228	191140177	spoof gene product (Bacillus subtilis)	96	88	225
962		7.	206	91 142443	denylosuccinate synthetase [Bacillus subtliis] sp P29726 PURA_BACSU ADENYLOSUCCINATE SYNTHETASE (EC 6.1.4.4) IMP-ASPARTATE LIGASE).	92	67	183
978	-	1358	580	19411541333	H. Jannaschii predicted coding region MJ1322 (Nethanococcus jannaschii)	96	36	619
1 666	-	486	744	011467154	No definition line found (Mycobacterium leprae)	92	38	50
1 1563	1 - 5	529	366	91 1303984	YokG [Bacillus subtilis]	1 76	52	264
2184	-	196	182	901906106	CapJ [Staphylococcus aureus]	10	38	180
2572	-	-	387	21 153898	transport protein (Salmoneila typhimurium)	9/	65	387

S. aureus - Putative coding regions of novel proteins similar to known proteins

. 40

Contig	80 E	Start (nt)	Stop (nt)	acession	Patch gene name	E E	, ident	length (nt)
1 2942	-	53	90\$	91 710020	initrite reductase (nirB) (Becillus subtilis)	35	6.5	372
1 2957	-	1 377	316	191 1511251	hypothetical protein (SP:P42404) (Methanococcus janneschil)	76	43	162
1 2980	-	554	279	91 1403464	AlsT (Bacillus subtilis)	16	S	376
1 3015	-	649	326	91 408115	ornithine acatyltransferase [Bacillus subtilis]	76	19	324
3124	-		171	911882705	ORF_0401 (Escherichia coli)	76	, 59	162
6710			161	01 168477	ferredoxin-dependent glutamate synthase [Zea mays] pir{Al8596 Al8596 glutamate synthase (ferredoxin) (EC 1.4.7.1) - alze	3,6	S	159
3789	-	- 2	1379	91 39956		76	\$\$	378
3892	-	-	314	01 11510398	[farripyochelin binding protein [Methanococcus jannaschii]	92	ž	313
1 3928	-	1 798	8	91 143016	[parmease [Bacillus subtilis]	9,	\$9	399
4159	-	757	386	sp P80544 HRSP_	HETHICHLIN-RESISTANT SURFACE PROTEIN (FRACMENTS).	76	99	372
1 4204	-	11	ī.	91,296464	Affase (Lactococcus lactis)	1,6	95	315
4394	_	\$	249	gi 987255	Henkes disease gene [Homo sapiens]	3,6	¥	246
4506	-	~	£1¢	91 216746	D-lactate dehydrogenase (Lactobacillus plantarum)	92	47	312
4546	-	1477	247	191 1339950	larga subunit of NADM-dependent glutamate synthase [Plectonema boryanum]	٦6	ច	231
4596	-	671	181	191 560027	cellulose synthase [Acetobacter xylimum]	9/	70	189
-	~	r 525	1 4337	01]882532	ORF_0294 [Escherichia coli]	٤.	29	921
,	-	154	952	191140960	OTCASE [Escherichia coli]	\$۲	96	189
77	_	5835	3944	91 467336	unknown (Bacillus subtilis]	25	57	1992
2	==	18272	17310	91 1296433	O-acetylserine sulfhydrylase 8 (Alcaligenes eutrophus)	56	55	1963
- 25	_	1 2356	1393	91 1502419		75	95	1038
36	-	5905	6037	1256517	unknown. {Schizossccharomyces pombe]	75	45	273
9	2	11186	12058	91 48972	Initrate transporter (Synechococcus sp.)	25	46	873
- 51	-	3474	13677	91 113607	sporulation protein (Bacillus subtilis)	75	61	204
ç 	<u></u>	16850	16590	16590 " 91 143402	recombination protein (ttg start codon), (Bacillus subtilis) gi 1103923 Rech	25	51	261
7.	_	13572	1 2568	9111204847	ornithine carbamoyltransferase [Haemophilus influenzae]	55	61	1005

teins
ž u
IF to known pr
3
#1.1m
rotei
ā. 7
ě
5 5
stative coding regions of novel proteine similar to
g.
ŏ.
atfv
ž.
aureus - Putat∮v
«c

Contig ORF ID ID	10 C	Start int)	Stop	match	match gane name			
8		4628	1930	==	(Dipantering Section 1)		. ident	length (nt)
£	- ~	1 5588	4878	1	[Bacillus subcilis]	5.	63	669
	- -	_	_	•	codon) [Bacillus subtilis]	5	SS	127
2		6625	7530	91 1303916	Yqih (Bacillus subtilis)		-	_
83	-	2340	1590	[91]1064813	homologous to sp: PHOR_BACSU (Bac]11us subtite:	25	S	906
-8	-	6084	9689	-	[function unknown [Bacillus substition	25	\$6.	1251
108	~	1844	1503	91 1001824	hypothetical protein (Synechoweria	25	19	3
0.7	_	1748	7276		putative ppGpp synthetese fer and	۶۲ ا	53	342
01-	-	4153	5252	191 1177251	CIMD Gene Droduct Hartilles Aberta	7.5	35	1960
120	3	111266	10649	91 11524394	ORF-2 unstraam of these	7.5	75	900
121	\$	2050	4221	01 1154632	NrdE Bacillus subtilia	75	35	618
124	1	283	3	91 405622	Unknown (Bard 1)	75	24	2112
128		=	1139	91/143316	[ans] and trackers	75	56 (=
130	=	\$760	5901	10111256654	To the state of th	75	- =	1059
					19.4% Identity with Neisseria generahoeae regulatory protein Pilb; putative	25	62 -	3
9.	~	4480	31.85	91 467403	sery -tawk synthetase Bacillus subtilia	-	_	
191	01	5439	\$798	101 1001195	hypothetical protein isonambourage	18.	*	1296
172	•	3819	2995	1911755153	ATP-binding protein (Ref. 11 to a table)	- 25	5	360
179	-	;	1107	191 143037	porphobilinoen dentines	75	52	825
	<u> </u>	9529	\$174	sp P25745 YCFn_		75	- 88	918
200	-	2605	4596	91 142440	APP-dependent nuclases (Marillander)	- \$1	09	156
206	_	-	\$620	(9) (1256135	Wbb Bacillus anbellin	۶۲ -	\$6 -	1992
216	~	159	1	pi 1052800	unknown (Schirnencha	75	- 53	1261
229		29	847	di 1205958	[branched Chain As Francons	75	- 8s	166
230	- -		į.		Influences (Hemophilus	25	6	819
- [-	- ; -	- ; :	•	91 (971337	Interite extrusion protein [Bacillus subtilis]	- -		-
- i	- ;	-;	1122	g; 1002521	Nuct. (Bacillus subtilis)		5	1197
2	_	1314	1859	91 1467405	unknown (Bacillus subtilis)	- \$2	- 25	1119
		í				75	59	777

TABLE 2

		ength (nt)	162	618	684	951	1782	525	112	633	570	603	797	327	1365	246	192	189	264	189	198	\$25	999	204	345	931	
5		I Ident 1	- 05	46	- 88	62	57.	~	- 38	- 09	- 85	3	- 65	63	62	- 88	- 85	-	<u> </u>	 8	- 21	- 6	- 38	۱ دد	- 63	- 52	
10		. sin	1.51	- 25	- 22	- 27 -	- 22	- 87	15	- 27	1.5	25	- 27	- ST	۱۶۰ –	75 -	- 27	75	25	-	- 27	1.5	- 21	1.8	- 56	75	
15	teins		ccus jannaechii)	jannaschiil					_			r to longation richia colil					_	_	rom Synechocystis tal stress; some ne-spanning	subsp. mycoides	-	-	_	_			
20	3. aureus - Putativo coding regions of novel proteins similar to known proteins		M reductase system, component A2 Methanococcus jannaechii	M. jannaschii predicted coding region MJ1651 (Methanococcus jannaschii)		undefined open reading frame (Bacillus stearothermophilus)						PS0017. APP_CTP_A and PS00101: EFACTOR_CTP: similar to longati G. TetH/TetO tetracycline-resistance proteins Escherichia coli		niael		ns]		subt [115]	44% identity over 302 residues with hypothetical protein from Synechocystis sp. accession D64006_CD; expression induced by environmental stress; sone similarity to glycosyl transferases; two potential membrane-spanning halices (Bacillus subtil	triacylalycerol lipase (EC 3.1.1.3) 2 - Mycoplasma mycoides subsp. mycoides (SGC3)	23					midisj	
25	novel proteins si		se system, compo	coding region MJ	of luentae)	rame (Bacillus s	s psychrophilus		coccus lactis)	cillus subtilis;	illus subtilis)	A and PS00301: Pracycline-resist	uginosal	lebsiella pneumo	caldolyticus	ridium perfringe	us subcilis)	ative (Bacillus	residues with hypo (C); expression ind il transferases; tw	EC 3.1.1.3) 2 -	line herpesvirus	pyogenesi	dermidis	myces cerevisiael	111	ylococcus epider	
30	ding regions of r	march gene name		schil predicted s	surfactin (Haemophilus influenzae)	d open reading fi	Pyruvate Kinase (Bacillus psychrophilus)	Yqhi (Bacillus subcilis)	OMP decarboxylase [Lactococcus lactis]	OMP-PRPP transferame [Bacillus subtilis]	citrate synthase II (Bacillus subtilis)	PS00017: AFP_CTP_A and PS00301: EFACTOR_ G. TetH/TetO tetracycline-resistance pro	unknown (Pseudomonas seruginosa)	acatolactate synthase [Klebsiella pneumoniae]	dihydroorotase (Bacillus caldolyticus)	potf gene product (Clostridium perfringens)	spoilify protein (Bacillus subtilis)	pliop protein (put.); putative (Bacilius subtillis	1% identity over 302 respected to accession D64006_CD similarity to glycosyl (helices' [Bacillus subti	lycerol lipase (tegument protein (Saimiriinm herpesvirus 2)	speC (Streptococcus pyog	EpiG (Staphylococcus epidermidis	ribonuclease P (Saccharomyces	ORF_0236 (Escharichia colt)	epiP gene product (Staphylococcus epidermidis)	
35	tative coc	I makeh de	mechyl coenzyme	N. Janna	Surtacti	undefine	Pyruvate	Yqhı (Ba	OMP deca	OMP-PRPP	citrate	matches factor	unknown	acetolac	dihydroo	potf gen	SPOILLEA	phoe pro	sp, acc slmilar helices		Legument	spec (St	Epid (St	ribonuel	ORF_0236	epir gen	
40	3. aureus - Pr	match	91 1511246	9111511604	91;1205328	191 285621	191 1041097	91 1212728	191 1070361	91 143394	91 487433	gi 304976 	101 1183839	91 149211	91 312441	9111149682	91 143582	191 143328	91 (1387979	 ptr 3C4110 3C41	[gi 330993	191 529754	91 1176401	91 172442	91 882541	91 46971	
		Stop	164	27.7	13261	13387	6403	1 877	1 5031	5642	2088	1721	570	1929	1540	249	194	1504	1624	3	123	523	2474	657	747	832	
45		Start (nt)	325	1389	6771	2437	4622	1353	4321	5010	1519	699	127	1603	176	767	<u> </u>	824	1061	149	430	-	1809	1454	_	1662	
		10 01	=	-	-	-	-	-	-	9	-	~_	-	~	~	-	-	~	~		-	-	-	~	-	-	
50		Cont 19 1D	269	292	304	312	112	1 319	1320	320	755	394	1 (2)	60	97	486	964	1 498	66	268	63	621	642	979	657	750	
																										-	

TABLE 2

•
•
,
. coding .
at loa
Putal
aureus

Cuntig	ORF	Start (nt)	Stop (nt)	match	nayon gene neme	e ia	1 intent	length (nt)
1117	-	-	1339	191 149435	putative [Lectococcus lactis	75	.57	339
4136		209	303	91 450688	hsuw gene of Ecopril gene product [Escherichia coli] pir[538437]538437 hadw protein - Becharichia coli pir[509629 509629 hypothetical protein A - [Escherichia coli [508 40-520]	21	95	300
4144	-	899	336	91 48972	Initrate transporter (Symechococcus sp.)	25	6	333
4237	-	799	374	191/1339950	large subunit of NAOH-dependent glutamate synthase (Plectonema boryanum)	25	\$5,	162
4306	-	2.	318	91 294260	[major surface glycoprotein [Pneumocystis carinii]	5	69	246
1 6343	-	115	1359	91 1204652	methylated-DNAprotein-cystaine methyltransferase (Haemophilus influenzae)	25	52	1557
1552	-	620	1 312	911296464	ATPase [Lactococcus lactis]	75	22	309
- 38	- 6	1 5776	6126	91 443793	Nupc (Escherichia coli)	14	80	158
05 -	8-	6910	6221	gi 1239988	hypothetical protein (Bacillus subtilis)	74	55	069
95	-	07401	12221	91 1000451	Trep (Bacillus subtilis)	7.	52	1452
2		1266	1622	101/11015	aspartate-tRMA ligase [Eschorichia colii]	74	57	945
99	9-	1 5063	4848	91 1212729	[YqhJ Bacillus aubtilis]	74		216
1 67	==	114334	114897	01 1510631	endoglucanase (Methanococcus jannaschii)	7.	52	564
102	51	112561	13136	01;149429	putative (Lactococcus lactis)	74	63	576
102	==	13121	11419	91 149435	putative (Lactococcus lactis)	*	- 52	1299
6		4873	3902	91 39478	ATP binding procein of transport ATPases (Becilius firmus) ir S15486 S15486 ATP-binding procein - Bacilius firmus p P26946 YATR_BACF1 HYPOTHETICAL ATP-BINDING TRANSPORT PROFEIN.	7	\$	972
116	-	1 8574	1093	91 1205430	dipeptide transport system permease protein (Maemophilus influenzae)	7.	6	1482
120		4342	4803	qi 146970	ribonucleoside triphosphate reductase (Escherichia coli) pir A47331 A47331 anaerobic ribonucleotide reductase - Escherichia oli	7.	88	462
121	-	1965	1869	[91]1107528	ttg start [Campylobacter col1]	٠,	15	621
128	-	0202	1531	91 143318	phosphoglycerate kinase [Bacillus mogaterium]	١ ٦٠	52	1212
87	-	1 5237	1675	91 1256653	DRA-binding protein (Bacillus subtilis)	7.	09	555
136	-	6745	5150	5150 / 91 143076	histidase (Bacillus subtilis]	~ -	8	1596
145	-	799	1368	91 407773	devk gene product (Anabaena sp.)	74	\$	205
132	-	552	1277	(61(1377833	unknovm Becillus subtilis	7	3	276
1 1 1 1								

TABLE 2

5		length		486	453	1008	561	1137	1188	507	1239	1001	9901			1065	747	43.7	768	942	1611	ž	1 666	255	1007	1293
		V Ident	52	*	97	55	. 73	63	22	64	- 55	- 3			5	9	. 95	s	- 98		- 18	36	- 69	52 –	- 85	51
10		E .	**	7	74	74	1 24	1 1/2	7 7	74	77	74	7.7	7.4	7.4	7.	7.	74	74	7.	7	24	- 42	74	~ ~	74
15	81					•				*) lyzing) (EC is						164 A25364		-	-	.4.3.8) -
20	- Putative coding regions of novel proteins similar to known proteins	• • • • • • • • • • • • • • • • • • •			philus	f influenzae)			(80	subc111s)	JPc111s)			hypothatical protein (GB:U14003_302) [Haemophilus influenzae]	18)	gludaminase of carbamyl phosphate synthetase (Bacillus subtilis) pir(E39845 E39845 carbamoyl-phosphate synthase gludamine-hydrolyzing) (EC 6.3.5.5), pyrimidine-repressible, small hain - Bacillus subtilis			isi		· · · · · · · · · · · · · · · · · · ·	threonine synthase (thrc) (AA 1-352) [Bacillus subtilis] ir A25364 A25364 threonine synthase (EC 4.2.99.2) - Bacillus biilis		h111	, , , , , , , , , , , , , , , , , , ,	glutamate-1-semialdehyde 2.1-aminotransfersse [Bacillus subtilis] pir[D42728 D43728 glutamate-1-semialdehyde 2,1-aminomutaae [EC 4.3.8]
25	proteins simil	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ubtiliaj		Na/H antiporter system ORF2 (Bacillus alcalophilus)	hypothetical protein (SP:P25745) (Haemophilus influenzae	s subcitis)		malate thiokinase (Methylobacterium extorquens)	single strand DNA binding protein (Bacillus subtilis)	glycine batains transporter OpuD (Bacillus subtilis)	them!)	lus influenzael	03_302) (Haemoph	1118)	ilteminase of carbamyl phosphate synthetase (pre[E39645[E39845 carbamoyl-phosphate synthas 6.3.5.5), pyrimidine-repressible, small hain	Affase subunit a (Baciilus stearcthermophilus)		alpha-acetolactate synthase (becoccous lactis)	i	llus subtilis]	1-352) (Bacillus subt		ococcus jannasci	us pyogenes	minotransfersse -semialdehyde 2
30	egions of novel	a) e	gene product (Bacilius subtilis)	blum melilotij	r system ORP2	rotein (SP:P257	oin L6 (Bacilly	lus subtilis;	ise (Methylobac	WA binding pro	transporter O	trwinia chrysanthemi)	tein [Haemophi	otein (GB:U140	(Bacillus subt	carbamyl phospl 845 carbamoyl-s midine-repress	A (Bacillus st	subtilis)	ate synthase (1	oduct (Bacillus	droyenase (Bacil)	ase (thrc) (AA hase (EC 4.2.99	cillus subtilis	thetase (Hethen	in (Streptococc	aldehyde 2,1-a 28 glutamate-1 is
35	utative coding r	match gene name	ORF3 gene prod	unknown (Rhizobium meliloti	Na/H antiporter	hypothetical pr	ribosomal protein L6 (Bacillus subcilis)		malate thicking	single atrand 0	glycine betains	ChrB protein [Erwinia chrysanthemi]	ATP-binding protein [Haemophilus influenzae]	hypothetical pr	quinol oxidate (bacillus subtilis)	glutaminase of pir(E39845 E39 6.3.5.5), pyri	ATPase subunit	Vqh2 (Bacillus subrilis)	alpha-acetolact	6	homoserine dehydrogenase Bacillus subtilis	threonine synthase (thrC) (AA 1-3 threonine synthase (EC 4.2.99.2)	thioredoxin [Bacillus subtilis]	glycyl-tRNA synthetase (Hethonococcus jannaschii)	acid glycoprotein [Streptococcus pyogenes]	glutamate-1-semial pir D42728 D42728 Bacillus subtilis
40	S, aureus - P	match	91 \$80900	g1 642656	91 854656	91 1204430	91,1044979	91,1146207	91 694121	91 467374	91 1524397	91 809542	91,1204872	91 1205579	91 143398	gi[]43389	91 534857	91 1303915	91 473902	91 413982	91 558494	91 40211	91 142520	91 1499005	1740 / 91 21 7040	91,143040
45		Stop (nt)	111175	2624	\$612	10339	9059	6710	3334	2799	5313	10001	4665	999	862	1065	1128	=======================================	13270	942	1193	1407	76	320	1740	2791
	1	Start	111064	1309	6064	11346	9619	5574	4521	3305	6351	4389	5714	1220	1473	-	382	1742	2503	-	-	11.74	402	574	- 86.	4083
50		- 10 G	2	~	-	Ξ	=		<u>-</u>		-		-	-	~			~	5	-	_	~_	~	_	~	~
		Contig	164	27.	175	195	205	216	241	246	249	1 261	278	109	215	320	3.40	1 405	3	452	197	194	462	478	501	\$\$1

TABLE 2

Contig	ORF	Start (nt)	Stop (nt)	match	hatch gene name	e is	1 ident	length
1 573	-	-	177	5099001)15	hypothatical protein (Symachocystis sp.)	7	45	477
965	-	1780	1298		YqgP (Bacillus subtilis)	1,4	55	483
619	~	2924	1758	91 1146237	21.4% of identity to trans-acting transcription factor of Sachardmyces carevisiae, 25% of identity to sucrose synthase of 2ea mays; putative [Bacillus; subtilis]	2	≈	1167
659		1269	1595	91 1072380	ORF3 (Lactococcus lactis)	2.	62	327
724		373	188	gi 143374	phosphoribosyl glycinamide synthetase (PUR-D) grg start codon) Bacillus subtilis	Z	**	186
1 243		109	1209	91 153833	ORF1; putative (Streptococcus parasanguis)	2	\$0	909
836	-	3	1 259	01 143458	ORF V (Bacillus subtilis)	7.	4.1	25g
986	- 7	\$	124	01 1303994	YQXM [Bacillus subtilis]	74	46	282
1106	-	-	1 492	191116970	epiD gene product (Staphylococcus epidermidis)	٠ ٠	- 75	492
1135	7	נינ	528	91 413948	ipa-24d gene product (Bacillus subtilis)	74	87	156
1234	-	817	452	191 1495245	rocJ gene product (Erwinia chrysanthomi)	74	36	366
1 2586	7	~	238	91 1149701	sbcC gene product [Clostridium perfringens]	74	62	137
1 2959		798	00+	91 1405454	aconitase (Bacillus subtilis)	74	60	399
1 2962	-	630	163	91 450586	1-phosphoglycerate kinase (Thermotoga maritima)	74	88	288
2983	1	7	161	19111103893	YqhL (Bacillus subtilis)	24	26	189
3018		~	223	191;143040	glutomato-1-semialdehyde 2,1-aminotransferase [Bacillus subtills] prr[D42728]D42728 glutamate-1-semialdehyde 2,1-aminomutase (EC .4.3.8) - Bacillus subtilis	74	95	222
3038	-	510	256	pir 552915 5529	nitrate reductase alpha chain - Bacillus subtilis (fragment)	2,		255
3062	1	374	189	91,1107528	ttg start (Campylobacter coli]	74	51	186
4035	-	184	360	91 1022725	unknown (Staphylococcus haemolyticus)	74	- 64	177
4045	1	607	305	191 1510977	 M. januaschii predicted coding region MJ0938 (Methanococcus januaschii) 	7.	-	303
42R3	-	471	304	91 520844	orfd (Bacillus subtilis)	7	- SB	168
4449	-	_	221	191 580910	peptide-synthetase ORF1 [Bacillus subtilis]	76	54	219
4587	-	458	231	91 1370207	orf6 lactobacillus sake	74	59	228

	:	+			+ -																			
	langth (nt)	186	183	792	1083	1005	792	1020	562	1554	1257	177	996	804	240	642	243	619	729	916	1056	894	975	498
5	1 Ident	9	23	- 23	55	25	88	37	54	88	59	52	5.8	53	- 05	- 5	119	8	1 95	- 82	\$	40	95	- 29
10	E S	74	7	Et	12	ε.		1 67	13.	67	1 25	13	1 27	1 2	2 -	25	2 1	2	13	1 62	5	1 57	3.	25
protes 51		chia coli] .i3) large hain -	* 6 2 6 2 8 2 2 2 2 2 3 2 3 4 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		6 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	forase/inosine	Kiebaiella	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	***************************************		alpha-isopropylmalate isomerase (put.); putative (Rhizomucor ircinelloides)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							subtilisi 1.1.1.85) - acilius	cus jannaschii)	ribonucleoside triphosphate reductase (Escherichia coli) pir a47331 A47331 snaerobic ribonucleotide reductase - Escherichia bli	ilus influenzaei
O		Glutamate synthase large subunit (EC 2.6.1.53) [Escherichia coli] pir a29617 a29617 glutamate synthase (NADPH) (EC 1.4.1.13) large Escherichia coli	4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		segarita)	phosphoribosyl aminoimidasole carboxy formyl ormyltransferss/inosine monophosphate cyclohydrolase (PUR-H(J)) Bacillus subtilis)	meso-2,3-butanadiol dehydrogenase (D-acetoin forming) [Kiebsie]la pneumoniae]	lot				putative (Rhizon	• • • • • • • • • • • • • • • • • • •	: : : : : : : :		* f	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.2.1.16) (Escherichia coli)	7 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	; ; ; ; ; ; ; ; ; ;		M. jammaschii predicted coding region MJ0775 (Methanococcus jammaschii)	[Escherichia coli] Escherichia oli	anserobic ribonucleoside-triphosphata reductaso (Haemophilus influenzae
5 G novel proteins		subunit (EC 2.)	1	11e]	dihydroorotate dehydrogenase (Agrocyba aegerita)	azole carboxy fo	Irogenese (D-ace	ornithine cyclodesminase (Rhizobium mellloti	stage V sporulation (Bacillus subtills)	ipa-76d gene product (Bacillus subtilis	lus subtilis]	Dmerase (put.);		[8]	fichia coli)		lius subtilis!	EC 4.2.1.16) (E		us subtilis)	-isopropylmalate dehydrogenase (AA 1 - 365) [Bacillus pir[A26522 A2652 3-isopropylmalate dehydrogenase [EC subtilis	oding region M	te reductase (E reductase - Es	triphosphete re
30 . See Jose of Jose	4 name	synthase large 7 A29617 gluta ia coli	YbbF (Bacillus subtilis)	putative (Bacillus subtilis)	tate dehydroge	phosphoribosyl aminoimidazole carb monophosphate cyclohydrolase (PUR	utanediol dehyv el	cyclodeaminase	orulation (Bac	ne product (Bac	papT gene product (Bacillus subtlifs)	ropylmalate is	yein (Escherichla coli)	unknown (Bacillus subtilis)	moab gane product Escherichia coli)	ProW [Bacillus subtilis]	ipa-7d gene product (Bacillus subtilis)	dehydratase 2 (EC	Appf (Bacillus subtilis)	murD gene product (Bacillus subtilis)	1-isopropylmalate dehydrogenase (AA 1 pir A16522 A16522 3-isopropylmalate d subtiiis	il predicted c	ibonucleoside triphosphate reductase anaerobic ribonucleotide reductase	bonucleoside-
95 55 Putative codi	match gene name	glutamate synthase pir A29617 A29617 Escherichia coli	[YbbF (Baci	putative	dihydrooro	phosphorib	meso-2,3-but pneumoniae	ornithing	stage V sp	1pa-76d ger	pepT gene	alpha-isopi	yein (Esche	unknown (B	mod gove	Prow [Bac1]	ipa-7d gene	threonine	Appr (Bacil)	murb gene product	3-isopropyl pir A26522 subtilis	M. jannasch	ribonucleos nnaerobic	4naerobic r
40 '!'	match	91 146208	91 .256135	191 143727	91 166338	94 143373	91 1468939	191 297060	95 467442	91 414000	gi :429259	191 168367	91 405885	gi 5H0895	91 42009	191 1109685	81 413931	[61]147923	101 677944	91 580932	91 580891	91 (1510849	91 146970	191/1204333
	Stop (nt)	214	184	7162	1372	1020	4635	16360	1273	4914	7402	7562	4896	4238	8306	3080	13794	2248	730	860	11179	2600	5756	
45	Start (nt)	29	366	7953	2454	2024	5426	67.571	692	6467	8658	98.77	3931	5041	1767	2439	14036	1430	1458	1375	10124	3493	4782	5726 6223
	9 01 7 01		-	01	~		<u>~</u>	12	- 2	\$	-	6	_	_	=		= = = = = = = = = = = = = = = = = = = =	-		~	2	~		-
50	Contig	4 603	4670	2	=	=	2	- 23	29	31	37	137	ñ	144	7	\$	75	59	68	80	102	109	120	120
																•	-		-	-		- +		

FABLE 2

TABLE 2

A28 \$55 166B 1 sim | 1 ident | ÷ ï \$3 S \$ \$ heparin binding protein-44, HBP-44 (mice, Peptide, 360 sa)
pir|JX0281|JX0281 heparin-binding protein-44 precursor - mouse gi|220434
ORP (Mus musculus) (SUB 2-360) |ketopantoate hydroxymethyltransferase |Bacillus subtilis| hypothetical protein (SP:042297) [Methanococcus jannaschii] |glutamine--fructose-6-phosphate transaminase (Methanococcus jannaschii) NAD+ dependent glycerol-l-phosphate dehydrogenase (Bacillus subtilis) |HPSR2 - heavy chain potential motor protein (Giardia intestinalia) aureus - Putative coding regions of novel proteins similar to known proteins temperature sensitive cell division (Sacillus subtilis) glycine betains transporter OpuD (Bacillus subtilis) Na/H antiporter system ORF3 (Bacillus alcalophilus) alpha-acetolactate synthese (Lactococcus lactis) [220 kDa polyprotein (African swine fever virus) hypothetical 23.3 kd protein (Escherichia coli) isochorismate synthase [Bacillus subtilis] |hadM protein (AM 1-520) [Escherichia coli) ORP YBR244w (Saccharomyces cerevisiae) ribs gene product (Macillus subtills) ures amidolysse [Bacillus subtilis] ORP_f560 [Escherichia coli] unknown (Bacillus subtilis) unknown (Bacillus subtilis) unknown (Bacillus subcilis) ORFX13 (Bacillus subtilis) CinA (Bacillus subtilis) YneJ [Bacillus subtilis] |kdpB (Escherichia colt) US (Bacillus subtilis) . match gene name match 91 1204965 91 1146240 191 1524397 91 1185288 91 1511440 91 1405451 91 1146220 , 191 | 1510605 91 1314847 4363 |91 |871048 193 467477 |gi|7R0461 91 467437 |91 | 467439 91 536655 01 457483 191 634107 101/410125 101 | 882504 9: 854657 191 790943 191 (13902 91 410137 01 39848 91 41748 10 RF ~ ď ~ Contig 2.7R

S. aureus - Putative coding regions of novel proteins similar to known proteins

5

Contig ORF	<u>8</u> 0	Start (nc)	Stop (nt)	aprch acession	, match gene name	Ę.	1 Ident	Jength (nt)
116	~	654	1112	61 1256623	exodeoxyribonuclesse (Bacillus subtilis)	2	98 -	459
27.5	-		677	91 142010	Shows 70.3% similarity and 48.6% identity to the EnvH protein of almonella typhimurium (Anabaena sp.)	٤	5	675
174	- -	~	209	91 409286	bard (Sacillus subtilis)	2	- 25	207
1 782	 	-	402	91 143320	[gap] gene products [Bacillus megaterium]	5	98 –	603
789		451	762	91 1063246	low homology to Pi4 protein of Hemmophilus influentar and 14.2 kba protein of Escherichia coli (Bacillus subtilis)	5	95	312
966	- -	6	911	191 653754	ABC transporter (Bacillus subtilis)	د ا	88 -	606
806	<u> </u>	1209	6+6	91 143786	tryptophany -tRNA synthetase EC 6.1.1.2 (Bacillus subtilis) pir J70481 YMBS tryptophan-tRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	5	15	191
616	~	4839	1 3097	91,41748	hsdw protein (AA 1-520) [Escherichie coli]	5	- 52	170
639	-	798	00+	906988	ergininosuccinate synthetase (Streptomyces clavuligerus) pir (55765) [557659] argininosuccinate synthase (EC 6.3.4.5) - treptomyces clavuligerus	27	65	399
857	-	_	290	91 348052	acetoin utilization protein (Bacillus subtilis)	2	- 82	288
1008		790	398	91 40100	rodc (teg3) polypoptide (AA 1-746) [Bactlius subtliss ir 506049 radc protein - Bacilius subtliss p P13485 TAGF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	2	3	. 66
1018		_	213	91 529357	No definition line found (Ceenorhabditie elegane) sp[P46975 STT3_CAREL DIJGOSACCHARY, TRANSFERASE STT3 SUBURIT ONOLOG.	<u>د</u>	3	12
1011	-	<u>^</u>	491	1911142706	comGt gana product [Bacillus subtilis]	2	7	489
1174	-	1395	204	91 1149513	alphala subunit of laminin 5 (Homo sepiens)	2	- 09 -	192
1175	-	655	329	1911173817	'ORF' (Escherichia coli)	2	- 23	128
1187	-		209	1911580870	ipa-37d qoxA gene product (Bacillus subtilis)	2	- 22	207
1206		2	245	01 144816	formyltetrahydrofolata synthatase (FTMFS) (ttg start codon) (EC .3.4.3) (Noorella thermoacetica)	2	?	174
1454	-	423	241	01/1213253	unknown (Schizosaccharomyces pombe)	2	1 83 1	Car
1469	-	517	260	19111303787	YqeG (Bacillus subtilis)	2	- 55	258
1761	-	374	189	191(9135	Hst26Am gene product (Drosophile simulans)	د	7	186
1849	-	1 467	343	91 162307	DNA topolsomerase II (Trypanosoma cruzi)	د	09	225
2055	-	~	604	qi 559381	P47K protein (Rhodococcus arythropolis)	73	ž	1 660
2556	-	~	751	91 145925	fecB [Escherichia coli]	52	62	243

Contig ORF	1086	Start	Stop	asech (nach gene name	e in	1 Ident	lengch
2947	- i -	549	909	-	polymucleotide phosphorylase [Becilius subtilis]	2	51	150
2956	- † -	746	375	[git]:43397	quinol oxidase (Bacillus subtilis)	ני	58	372
7.00.	-	1 655	329	1911111091	acetolactate synthase [Dacillus subtilis]	2	\$2	327
3115		383	194	911323866	overlapping out-of-phase protein [Eggplant mosaic virus] ap e20129 v70x_Erw 70 KD PROTEIN.	5	3	192
1 3603	-	700	527	gi 14.9521	glutaryl-CoA dehydrogenase precursor (Mus musculus)	2	49	174
27.5		798	9	91 450688	hadh gene of Ecopri gene product [Escherichia coli] pir 838437 538437 hadh protain - Escherichia coli pir 509529 509619 hypothetical protein A - Escherichia coli (SUB 40-520)	2	24	199
1752	-	0+9	159		unknown (Mycobacterium tuberculosis)	٤	59	282
3852	-	7	181	91/216746	D-lactate dehydrogenase [Lactobacillus plantarum]	5.	89	180
3914	-	475	239	[pir S13490 S134	pir 511490 5134 Hydroxymethylglutaryl-CoA synthase (EC 4.1.3.5) - Chicken (fregment)	5	23	1 (12
3914	-	570	35	91 528991	unknowm [Bacillus subtilis]	5	38	228
4069		~	916	91 40003	Oxoglutarate dahydrogenaso (NADP+) (Bacillus subtilisi pip21129 0DO1_BACEU 2-OXOGLUTABATE DEHTUROCENASP E1 COMPONENT (EC 2.4.2) (ALPHA- KETOGLUTARATE DEHTUROCENASP).	£	۶	315
4165	-	21.5	1 365	91 (143952)	glutary:-CoA dehydrogenase precursor [Mus musculus]	5	87	351
4136		-	111	91 809660	decayribose-phosphate aldolase (Becillus subtilis) pir(5:9455 549455 decayribose-phosphate aldolase (EC 4.1.2.4) - acillus subtilis	5	09	7.
4202	=	572	378	191 528991	unknowm (Bacillus subtilis)	5	38	561
7.		~	<u></u>	1911436797	N-acyl-L-amino acid amidohydrolage [Bacilius sterrothermophilus] sp[93]112[AMA_BACST N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC .5.1.14) (AMINOACYLASE).	23	¢	192
4191	-	-	263	91 216267	ORF2 Bacillus megatarium	5	5	192
_	~	1 903	1973	91 1116196	phosphoglycerate dehydrogenese (Secillus subtilis)	72	53	1001
	===	19094	17877	c 602031	similar to trimethylamine DH [Mycoplasma capricolum] pir[549950 549950 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum (SGC3) (fragment)	22	2	1218
38	2	118134	119162	, gk 413968		27	*	1029
=	119	111895	12953	191 516272	unknown [Bacillus subtilis]	12	49	1059
*	-	6248	1111	91 43499	pyruvate synthase (Halobacterium halobium)	2	6+	670
8	-	6563	1 5691	[91(1205399	proton glutamate symport protein (Haemophilus influenzae)	2,	23	673

aureus - Putative coding regions of novel proteins similar to known proteins

2	10521 29549 5298	-	- WCERBION				
2 2 2 2 2	29549 5298	7433	91 1303956	YqJE (Bacillus subtilis)	22	52	1263
* c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5298	29995	191 467 471	unknown (Bacillus subtilis)	22	5	447
9 1 2 1	4377	(21)	91 1354775	pfos/R [Treponems pallidum]	12	9#	1176
		1 4982	91 904198	hypothatical protein (Bacillus subtilis)	22	Ç	909
1	7	958	91 142997	glycerol uptake fatilitator (Bacillus subtilis)	22	59,	655
11	9371	10258	[91 467435	unknown [Bacillus subtilis]	1 72	30	888
	-	1593	91/217144	alanima carrier protein (thermophilic bacterium PS3) pir[A45111[A45111] alanima transport protein - thermophilic acterium PS-1	72	95	1593
<u> </u>	5197	7600	94 153952	polymerase III polymerase subunit (draE) [Salsonella typhisurium) pir A45915 A45915 DNA-directed DNA polymerase (EC 2.7.7.7) III ipha chain Salmonella typhisurium	21.	ລ	2598
141 4	1040	1976	91 1405446	transkatolsse (Bacillus subtilis)	22	24	929
149 18	2819	1 2535	191 606234	sect (Zacherichia coli)	22	3	185
149 17	5472	5245	91 1304472	DNA polymerase (Unidentified phycodnavirus clone OTU4)	22	\$\$	228
<u> </u>	-	210	91 1205620	ferritin like protein (Haemophilus influenzae)	27	0	210
125	2207	1320	91 391610	<pre>(armenyl diphosphate synthase [Becilius stearothermophilus] pir[JX0357]JX0257 goranyltranstransferase (EC 2.5.1.10) - Dacillus tasrothermophilus</pre>	<u>r</u>	۲	8 8 8
180 1	7	B2(191 133630	A160 (Saccharomycas ceravisiae)	1 72	62	127
-	1145	1553	191 1205110	virulence associated protein homolog (Maemophilus influensee)	22	67	2409
~	1923	6751	19111001730	hypothetical protein (Synachocystis sp.)	22	45	645
3	14646	15869	91 1064807	ORTHININE ANINOTAMISPERAGE (Bacillus subtilis)	57	8	1234
~	Ę	932	191 1204666	hypochetical protein (GB:X73114_53) [Haemophilus influenzae]	22	9	1431
215 2	764	\$22	91 681513	Insulin receptor homolog (Drosophila melanogaster) pir 557245 537245 insulin receptor homolog - fruit fly (Drosophila elanogaster) (5UB 46-2146)	5	9	543
224 1	~	190	191949974	sucrose répressor (Staphylococcus xylosus)	22	\$	189
-	1526	765	91 1408493	homologous to SwissProt:VIDA_ECOLI hypothetical protein (Bacillus subtilis)	22	\$2	162
240 1	220	1485	gi 537049	ORF_0470 [Escherichia coli]	22 ا	\$2	1266
245 1	-	1340	101,1204578	hypothetical protein (GB:U06949_1) (Haemophilus influenzae)	22	9	1336

LABLE 2

Contig to	ORF Star		Stop (nt)	match aceasion	maich gene name	. 81m	1 ident	length (nt.)	
259 {	2 2108	<u>; —</u>	1245	gi 1340128	ORFI (Staphylococcus aureus)	22	\$	864	
104	2 285	-	1094	91 1205330	glutamine-binding periplasmic protein (Maemophilus influenzae)	2	52	910	
107	10 5326	-	\$639	191 1070015	protein-dependent (Bacillus subtilis)	22	83	288	
315	1 517	-	260	91 143399	quinol oxidese [Bacillus subtilis]	72	- \$\$	258	
336	11 9622		9300	yi 1204465	hypothetical protwin (SP:P27857) [Haemophilus influenzae]	22	25,	315	
- 'נג	3 926	-	1609	91 487433	citrate synthese II (Becillus subtilis)	2	- \$\$	684	
-	7 12538		10493	91 1510643	ferrous iron transport protein B [Methanococcus jannaschil]	2	28	2046	•
600	2 340	-	1263	91 1402944	orfRMl gene product (Bacillus subtilis)	22	67	924	•
<u>=</u>	7 2177		1590	91 312379	highly conserved among subscieria (Clostridium acstobutylicum) pir 534312 534312 hypothetical protein V - Clostridium cetobutylicum	22	\$	588	
\$	6 2654	-	2505	pir \$00601 BK5A	pir S00601 BXSA antibacterial protein 3 - Staphylococcus haemolyticus	72	0,	150	• -
09	~	-	625	91 1016162	ABC transporter subunit [Cyanophore paradoxe]	22	128	624	•
. 463	1 3253		1628	91 666014	The polymorphysm (RFLP) of this gene is associated with usreptibility to essential hypertension. The SA gene product has light homology to acetyl-coA synthetese (Homo sapiens)	72	8	1626	
- 480	4 3047	-	3466	ai 433992	ATP synthase subunit epsilon (Bacillus subtilis)	22	8	410	•
-	1 10A6	- :		658010 15	ORP (Synechococcus sp.)	2	\$	105	
519	1 81		1184	91 1303704	YrkE (Bacillus subtilis)	22	3	5	•
559	- -	-	746	91 1107530	caub gene product (Campylobacter coli)	n n	95	744	• -
575	1 1142	-	573	97 1303866	YqgS (Becilius subtilis)	2	35	570	•
1 109	- 2		592	9: 1204497	ă	2	*	165	•
679	2 295	_	1251	91,563258	virulence-essociated protein 2 (Dichelobacter nodosus)	2	22	957	
687	2 295		957	91 1146214	44% identical amino scids with the Escherichia coll smba supress; putative [Becillus subtilis]	2	\$	663	*
837	 	-	435	91 1146183	putative [Bacillus subtilis]	73	*	635	•
898	1 150	-	788	91 1377842	unknown (Bacillus subtilis)	72	\$	639	
922	1 130	-	÷	91 1088269	unknown protein (Atotobacter vinelandii)	72	88	S	•
176	1 2		238	gi 153929	NADPH-suifite reducatase (lavoprotein component (Salmonella yphimurium)	21	6	ξ	
980	1 840	-	421	91 853767	UDP-N-acetylglucosamine 1-carboxyvinyltransferese (Becillus ubtills)	22	65	27	
						****	*********		,

_	length (nt)	121	B61	363	199	171	153	EB.	90	285	25	222	760	365	270	492	1188	\$91	267	780	213	3186	101	637
5	' ident	3	63	:	50,	35	9	\$\$	45	25	g	38	5.	\$\$	\$	42	52	ê.	- 65	os S	20	6.	88	97
10	e ta	72	73	£1.	72	2,2	22	۲۲	52	נג	21	22	72	27	=	נג	17	1,7	ĸ	11	ır	ני	11	1,
15	1			itory rotein uhpB		2712 A42712 Leicum				6957 S46957 Ls ap.	87	jannaschii)						xa) pir[C32840 C32840 Leptospira biflexa					litus ubtilis!	
25. Aureus - Putative coding regions of noval proteins similar to known proteins		**************************************	hypothetical protein (GB:D26562_47) (Haemophilus influenzae	akoasphosphate tranaport protein (Salmonella typhimurium) pirjati85j B41653 hexose phosphate transport system regulatory rotein uhpB - Salmonella typhimurium		formate dehydrogenase (Methanobacterium formicicum) pir A42712 A42712 formate dehydrogenase (EC 1.2.1.2) - ethanobacterium formicicum				glutamate synthase (ferredoxin) [Synethocystis sp.] pkr 545957 546957 glutamate synthase (ferredoxin) [EC 1.4.7.1) - ymechocystis sp.	homologous to N-acyl-L-amino acid amidohydrolass of Bacillus stearothermophilus (Bacillus subtills)	M. jannaschil prædicted coding region MJ1519 (Methanococcus jannaschil)		ubtilis	sla colli		hiraej				ivalis		branched chain alpha-keto acid dehydrogenase Kl-alpha (Bacillus ubtilis)	
19 proteins si		lum botulinum]	6562_47) [Haen	rotein (Salmor hosphate trans		anobacterium (1.2.1.2) - eth		lus subtilis)	lus subtilis!	xin) (Symechocysti oxim) (EC 1.4.7.1)	o acid amidohy us subtilis!	ing region MJ		se [Bacillus	and (Ruchorle)	coli)	(Enterococcus	1.1.3.27) com		illus firmus]	hyromonas ging	subtilis	cid dehydroger	tiisj
regions of nove	name	neurotoxin type 8 [Clostridium botulinum]	protein (GB:D20	exosephosphate transport pr pir 841653 841653 hexose pl - Salmonella typhieurium	YqiY (Bacillus subtilis)	drogenase (Rethi	YqhJ (Bacillus subtilis)	hypothetical protein (Bacillus subtills)	ipa-44d gene product [Bacillus subtills]	jutamate synthase (ferredoxin) glutamate synthase (ferredoxin)	nomologous to N-acyl-L-amino acid amide stearothermophilus (Bacillus subtilis)	1 predicted cod	HIGIC [Backlius subtilis]	Respiratory nitrate reductase [Bacillus subtilis	ornithino carbamoyliranoforno (Ruchorichin coll)	25 kDe protein (Escherichia coli)	D-alanine:D-alanine ligase (Enterococcus hirae	nthranilate synthase component 2 (Leptospira biff anthranilate synthase (SC 4.1.3.27) component II	Yqhf (Bacillus subtills)	glutamate-rich protein [Bacillus firmus]	arginyl endopeptidase (Porphyromonas gingivalis)	ein - Bacillus	in alpha-keto ac	gnt repressor [Bacillus subtilis]
stative coding	mátch gene name .	neurotoxin t	hypothetical	hexosephosphato pir 841853 8418 - Salmonelle Cy	YqiY [Bacill	formate deby formate deb	YqhJ (Bacill	hypothetical	ipa-44d gene	glutamate sy glutamate s	homologous t	M. Jannaschi	IIGIC [Back]	Respiratory	ornichina ca	25 kDs prote	D-elanine:D	anthranilate anthranilat	Yqhr (Bacill	glutamate-ri	arginyl endo	spolilE prot	branched cha	gnt represso
nd surrens	match acession	91 144735	91 1205458	g1 154409	91(1303950	91 149713	91 1212729	91 665999	91 413968	91(515938	91 1408501	91 1500409	91 39956	91 1009366	11 537095	91 532309	91 1244574	91 149629	9112303983	91 1209681	91 927645	pir S09411 S094 spoiliB protein - Bacillus subtilis	101 142611	91 143014
45	Stop (nt)	213	474	365	401	399	155	185	141	287	367	222	362	347	1200	10859	2435	1488	567	2806	12462	4431	14760	12625
	Start (nt)	383	119	רבר	<u>-</u>	569	_	790	1 278	٦	%	~	1221	7	11	11350	1248	898		3192	12250	1246	01721	13461
7.	- C - C - C - C - C - C - C - C - C - C	-	7		-		-	-	-		-	-	-	-	e:	<u></u>	~	~	-	_	81	_	=	Ξ
50	Contig 10	1209	1469	1956	2101	2503	2967	3004	3109	1716	1772	1951	4190	*	ت	7	62	12	ň	33	e .	29	3	3

5		length (nc)	1293	£3	1125	462	306	699	1110	531	384	315	966	1365	3	549	136	810	963	849	174	699	576	879	630	\$25	\$52
Ū		* ident	\$	98	3	38,	51	67	Ş		57	57	07	. 83	12	c)	ç	96	6	46	05	54	89	S	05	ß	4
10		sin.	ג	11	וג	1,	1,	17	1,	גי	1,1	2	נו	r	יי	2	17	7	17	11	12	1	7	11	11	7	12
15	proteins		EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia	ein) of Alcaligenes	_				_				_			_			_	_	_	_		18] 37) - acillus		_	
20	to known		phosphory	oglobin-like proteir (Becilius subtilis								[94]												lus subtilis] (EC 2.3.1.37)			
٠	sinilar		port and	noglobin (Becil			_	•			-	cerevis	1 i.e.)			nus)							-	• [Bacil ynthase		_	
25	proteins		Sat trans	hemoprotein (Haem omyces cerevisiae		-	subtili	s subtili	cter sp.	-	[Bacillus subtilis	haromyces	lus subti			cus sobri	ub(1118)	ulosisi					s subtili	reductas ulinate s		gordonil	
30	- Putative coding regions of novel proteins similar to known proteins	e e	PTS-dependent	o flavo Sacchar	subtilis)	phnE protein (Escherichia coli	hypothetical protein (Bacillus subtilis)	hypothetical protein (Bacillus subtilis)	Opine dehydrogenase (Arthrobacter sp.	iep protein [Bacillus subtilis]	product (Bacillu	probable protein kinase [Saccharomyces cerevisiae]	membrane bound protein (Bacillus subtilis)	s subtilis)	phage SPP1	repressor protein (Streptococcus sobrinus)	ONF4 gans product (Nacillus subtilis)	unknown [Mycobacterium tuberculosis]	s subtilis!	Ging (Mycoplasma pneumoniae)	pacter jejunij	occus lactis	hypothatical protein (Bacillus subtilis	ND(P)H:glutamyl-transfer RNA reductase (Bacillus subtlis) pir a3522 a3525 5-aminolevulinate synthase (EC 2.3.1.37) subtliss	ichia coli)	20 kDa protein (Streptococcus	putative [Bacillus subtilis]
35	stative coding r	match gene name	EIIC domain of	high homology t	Yqid (Bacillus subtilis)	phnE protein (hypothetical p	hypothetical p	opine dehydrog	lep protein [6	ipa-61d gene product	probable prote	membrane bound	Yqhx Bacillus subtilis	G40P [Bacteriophage SPP]	repressor prot	ORF4 gana prov	unknown (Mycol	YqeH (Bacillus subtilis	GlnQ (Mycoplas	(ORF1 (Campylobacter jejuni)	HisIE [Lactococcus lactis]	hypothetical p	NAD(P)H:glutas pir A35252 A3 subtilis	ONF210 (Escherichia coli)	20 kDa proteir	putative (Baci
40	5. aureus - P	metch Acession	91 508175	91 1063247	91 1303926	91 147198	91 904205	91 709991	91 1060848	91 143089	91 (413985	91 663254	91(143156	91 1303913	91 529650	191 425488	191 49318	91(1403403	91 1303788	91 1215694	91 633732	911149384	191 709993	91 143035	91 303562	1011110634	94 1256625
45		Stop Int}	9860	16374	10955	9968	2089	8269	1685	532	56951	316	5603	1723	5895	1087	11689	2745	1234	895	2022	\$169	2273	1496	2720	099	1772
		Start (nt)	7152	13897	9831	8505	2394	7601	6H22	1062	115312	630	8659	3087	6135	3635	11354	1936	272	1743	1849	4501	2848	618	3349	136	6 3322
50		10 E		91	92	2	- 2	-	9	-	18	<u>-</u>	\$	~	- 119	5	Ξ	-	~	-	-	,	-	~	2	-	• •
		Contig ORF		52	69	70	9 8	96	00-	9	109	511	7.7	3	149	154	164	169	193	205	233	723	272	274	276	287	288

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	108	Start (nt)	Stop (nt)	match	madch gene neme	- eim	1 ident	length (nt)	
1 301	9	1 3492	2461	91 467417	similar to lysine decarboxylase (Secillus subtilis)	1,1	53	1032	
306	-	6607	5222	91 1256618	transport protein (Becillus subtilis)	נג	36	1386	
1 307	-	1536	928	91 622683	orfC (Mycoplasma capricolum)	יי	\$	612	
310	-	5793	5146	91 348052	acetein utilization protein (Bacillus subtilis)	2	15	648	
1 322	-	- 2	1303	91 1001819	hypothetical protein iSymechocystis sp.]	נג	, 99	1302	
33	-	1 4171	3995	91 167473	unknown (Bacillus subtilis)	11	57	177	
350	-	548	922	191 551879	ORF 1 [Lactococcus lactis]	12	\$\$	375	
275	-	1 1860	100	91 467447	unknown [Bacillus subtills]	יי	57	1212	
380	-	1560	2102	91 142557	Aff synthase b subunit (Bacillus megaterium)	12	\$	3	
=	~	152	637	911580904	homologous to E.coli rmpA (Bacillus subtilis)	11	69	387	
424	-	335	138	91 581305	L-lactate dehydrogensse [Lectobacillus plantarum]	ī	57	1020	
436		1076	1270	pir PN0501 PN05	phosphorthosylanthranilate isomerase (EC 5.3.1.24) - Bacillus subtilis (fragment)	17	99	632	
1 482	-		1280	91 410142	ORFX18 (Recillus subtilis)	r r	•	1278	
528	<u>-</u> -	2272	1844	191 143370	phosphoribosylpyrophosphate amidotransferame (FUR-P; EC 2.4.2.14) Becillus subtilis	14	% %	429	
529	-	12739	2047	101 606150	ORF_(109 (Escharichta coli)	=	43	169	
1 563	-	- 22	696	191 1237015	ORF4 [Bacilius subtilis]	2	53	948	
1881	-	905	255	19111301730	[1250].2 [Ceenorhabditis elegans]	112	.	252	
612	-	1 1068	618	1911153968	[fimbrise 2 [Salmonella typhimurium]	12	58	156	
613	-	7	654	191 466778	lysine specific permease [Escherichia coli]	11	\$	654	
1 618	-	1243	623	91 1146238	poly(A) polymerase (Bacillus subtilis	r r	52	621	
630	<u>-</u>	0711	286	191 1486243	unknown [Bacillus subtilis]	<u>ت</u>	83	585	
169	-	1126	1641	1911.389260	comE ORP1 (Bacillus subtilis)	11	15	466	
469	~	149	437	12921	IAKOH dehydrogenase aubunic V (AA 1-605) (Gallus gallus) ic S10197 S10197 NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain - chicken mitochondrion (SQC1)	۲.	4	279	
715	~	169	ררר	61 1303830	Yqft (Bacillus subtilis)	1,1	53	609	
146	-	1473	970	9111377843	unknown (Bacillus subtilis)	11	52	304	

S. aureus - Putative coding regions of novel proteins similar to known proteins

5	ORF	Start	Stop	match	match gane name	e ste	• ident	length (nt)
•			ć	-	Ynes (Bacillus subtilis)	נג	6.7	636
				-	H. tannaschii predicted coding region MJ0396 [Methanococcus Jannaschii]	11	Ω	1 564
753		8101 1	976		Dentatunctional anzyme (Pneumocystis carinit)	1,	47	213
192	-				IORE YBR244W [Saccharomyces cerevisiae]	11	22	105
783	- -	1707		10111004126	LRNA dalta(2)-isopentenylpyrophosphate transferase (Hacmophilus influentee)	יי	*8	306
900	- -	2		181	ichin came product [Mathanobacterium thermosutotrophicum]	11	8	171
906	- -	91	007	191114190	PosA Becilius subcilis	2	98	186
156	- -	5/6			invrimidine nucleoside transport protein (Bacillus subtilis)	נ	45	1 261
1041	-				invocthetical protein (Bacillus subtilis)	12	9	171
1176			365	94 151259	HMG-COA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethylgluteryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	<u>د</u>	6	309
1811	- -	366	184	91 46971	epiP gane product Staphylococcus apidermidis	=	20	183
1967		-	290	1911153016	ORP 419 protein (Staphylococcus aureus)	7	95	288
	· -	456	229	101 602693	orfc [Hycoplasma capricolum]	4	8	228
3000		756	976	91 1008177	ORF YJLD46w (Saccharomyces Cerevisiae)	7	-	976
2119		~	1217	101 1046088	arginyl-tRNA aynthetase (Mycoplasma genitalium)	-	20	216
	-		120	[qi 149971	H. jannaschil predicted coding region MJ0916 (Methanococcus jannaschil)	12	52	910
0757	- -		187	 q1 312443	carbamoyl-phosphate synthase (glutemine-hydrolysing) [Bacillus aldolyticus]	<u>د</u>	- 57	186
1000			306	91 710020	nitrite reductase (nirB) (Bacillus subtilis]	77	\$	240
			184	(91)1262335	YmaA (Bacillus subtilis)	۳ -	- 57	163
3584	-		338	91 401716	beta-leopropylnelate dehydrogenase (Neurospore crasse)		- 55	326
\$12.5	-	25	399	191 563952	gluconate permease [Bacillus licheniformis]	٤ -	- 89	S\$7
847.	-	770	1 387	q1 47382	acy -CoA-dehydrogenase (Streptonyces purpurascens)	-	- 57	384
		3	222		hypothetical protein (Symechocystis sp.	ננ	38	1 270
4135	-	637	750	95 142695	S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase Bacillus megaterium	17		318
	- -		239		deoxyribose aldolase [Haemophilus influentae]	-	- 63	7,1
	- : -		5	12/11/20/67	vitellogenin (Anolis pulchellus)	11	*	764
4508	-	220	-					

Cantig ORF	ORF ID	Start (nt)	Stop (nt)	march	match gene name	e in	• Ident	length (nt)
•	1	1237	2721	61 1321788	arginine ornithine antiporter [Clostridium perfringens]	0,	- 35	1485
=	=	6572	7486	91 216854	P47K [Pseudomonas chlororaphis]	ک _	=	918
12	-	2890	1491	[u1]467330	replicative DNA helicase (Bacillus subtilis)	0,	6	1410
15	-	1756	893	91 451216	Mannosaphosphate [somerame [Streptococcus mutans]	0,	99	864
15		1277	1050	91 476092	unknown (Bacillus subtilis)	0,	.05	228
127	- 2	2132	1350	91 (165402	choline dehydrogenase (Escherichia coli)	6	52	783
====			925	91 149516	anthranilate synthase alpha subunit (Lectococcus lactis) pir 835124 535134 anthranilate synthaue (EC 4.1.3.27) alpha chain - actococcus lactis subsp. lactis	0,	8	924
25		5580	6251	91 1389549	ORF3 (Bacillus subtills)	6	52	672
1 33	9	1,09	7423	91 1303875	YqhB (Bacillus subtilis)	٥,	51	1353
36	2	656	1594	101 500755	methy) purine glycosylase (Mus musculus)	0ر	47	636
38	-	1067	2860	9111408507	pyrimidine nucleoside transport protein (Bacillus subtilis)	٥	7	960
*	- -	5312	5989	91 1006620	hypothetical protein (Symechocystis sp.)	6	49	678
94	2 2	0960	10020	91 1403126	czcD gens product (Alcaligenes eutrophus)	2	\$	1001
52	~	1 2727	1900	91 1486247	unknown [Bacillus subtilis]	92	S	828
22	9	4048	4656	91 244501	estatese Ilecarboxylesterase (EC 3.1.1.1) (Pasudomonas fluorescens, eptido, 218 as)	0,	20	609
95		8460	1 9962	911339951	small subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	6	16	1503
62	=	8	1 290	91 142702	A competence protein 2 (Bacillus subtilis)	96	4	243
79		1080	241	91 1204377	molybdopterin biosynthesis protein (Heemophilus influenzae)	0,0	47	240
90	- 2	5139	3595	91 1204834	12', 3'-cyclic-nucleotide 2'-phosphodiestersse (Maemophilus influenzae)	0,0	- -	1545
16		7793	5466	91 886471	methionine synthese [Catherenthus roseus]	20	98	2328
96 –	5	8754	1255	pir B39096 B390	alkaline phosphatase (EC 3.1.3.1) III precursor - Bacillus subtilis	0,	3	1500
110	7	191	1300	91 145294	adenine phosphoribosyi-transferase [Escherichie coli]	20	\$1	534
116	9	7026	9266	91 143607	sporulation protein (Bacillus subtilis)	92	20	951
121	8	1079	6988	91 1107528	etg start (Campylobacter coli)	0,	45	588
ī: 1		6842	7936	gi 1150454	prolidase Pepg (Lactobacillus delbruschil)	20	67	1095

. 25

1 sin 1 ident length (nt)	putative membrane-bound protein with four times replittion of ro-Ser-Ale at 70 49 1488 the N-terminus; function unknown [Alcaligenes utrophus]	hypothatical protain (Bacillus subtilis) 70 46 297		hypothetical protein (GB:D1048) [Haemophilus influentes] 70 50, 993	sport system protein Sapf homolog; Sapf homolog (Mycoplasma	hypothetical protein (GB:X73124_26) (Heemophilus influenzae) 70 48 477	excisionase (Bacteriophage 154a)	aspartokinase II (Bacillus sp.)	ORF1 (Staphy)ococcus aureus)	ruwA protein igtg start] [Escherichia coli)	pir C18530 C185 queuina tMA-ribosyltransferase (EC 2.4.3.29) - Escherichia coll	aminopeptidase a/i [Hacmophilus influentses]	endent (Bacillus subtilis)	omonas campestris! 70 33	high affinity ribosa transport protein (Hacmophlius influensae) 70 52 504	1 02 44	open reading frame; putative (Bacillus amyloliquefacions) pir[B23031 B23031 70 41 318 hypothetical protein (bglA region) - Bacillus myloliquefacions (fragment)	ATP synthase gamma subunit (Bacillus magaterium)	ACH2 protein (Brassica napus)	phosphoribosyl glycinamide formyltransferase (PUR-W) [Bacilius ubtilis] 70 52 411	ORFP (Bacillus subtilis)	hypothetical protein (SP:PJ7002) [Wathanococcus jannaschiii	uracil permesse (Bacillus caldolyticus) 70 53 681	- 67 - 04
match gene name	purative membrahe N-terminu	hypothetical p	ORF1 gene prod	hypothetical p	paptide transp pneumoniae}	hypothetical p	excisionase (B	aspartokinase	ORF1 (Staphylo	ruvA protein (queuine tRNA-r	aminopeptidase	protein-depend	Gume (Kanthomo	high offinity	MgtE (Bacillus firmus)	open reading f	ATP synthase g	RCH2 protein	phosphoribosyl	ORFP (Bacillus	hypothetical p	uracil permeas	unknown (Bacillus subtilis
merch Acession	191 311309	91 904181	191 (49315	91 1205212	91 1215695	91 1204665	91 215098	91 142540	21 1340128	91(147782	pir c38530 c385	91 1205934	91 1000013	101 733147	u 1204752	Qi 619724	91/727145	91 112560	94 602292	91 143372	gi 881434	gi 1511524	91,431231	91 1467340
Stop (nt)	1489	114	9874	16618	1803	1386	756	6749	4117	3827	1607	7	699	629	9273	1243	320	1608	307	‡	2552	1284	703	1309
Start	~	418	9344	15626	2735	910	340	7876	3212	3201 {	5879	2520	978	1255	87.70	~	637	127	~	823	3625	829	1383	1683
:	•	;-	<u>:</u> –	! -	<u> </u>	-	3	-		-	2	-	~	-	2	-		~	-	-	-	-	-	_
<u>8</u> 0		12	=	191	<u> </u>	<u>:</u> —	+ —	<u>-</u>	: —	÷	•	÷ —	÷ —		•			•	-	• —		+		· —

	•		- +				-+	- •	- •	- :	-:	-:	-:	-:	-:	-:	-:	-:	-:	-:	:	- 1	:	_:		;	-;
5		length (nt)	108	447	672	388	524	207	267	315	570	169	133	903	309	234	276	¥ .	171	180	35	285	797	198	486	1 396	102
		• ident	ŝ	51	9	5	43,	\$\$	=	0	=	80	37	69	C	0	47	05	90	ţ	\$	53	-	2	8	52	30
10		mis 1	- 05	- 02	70	70	70	- 00	0,	70	2	0,	- 00	0,0	70	70	70	6	70	90	0 0	0t	92	6	0,	92	92
15			-			_	_						_	_		_	_	N A).		1			cherichia		6957		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20	o known proteins			MIC REGION.		***************************************	4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		-									(PENICILLIN-DINDING PROTEIN A)			inducible protein		transport and phosphorylation Escherichia		[Symechocystis sp.] pir[S46957[S46957 (EC 1.4.7.1) - ymechocystis sp.		ı eleganal
25	- Putative coding regions of novel proteins similar to known proteins		cystis sp.)	HYPOTHETICAL 54.3 ND PROTEIN IN ECO-ALKB INTERGENIC REGION	Symechocyatis sp.		cia fabal	ATP-dependent helicase [Haemophilus influentae]	(Bacillus subcilis		s subtilis]	otilis)		561118]	ocystis sp.]	epidermidia	Aureus]			sapiene)	22.4% identity with Escherichia coli DNA-damage inducible protein putative [Becillus subtilis]	coccus lactis)	3	culosis)	in) [Symechocystis xin) (EC 1.4.7.1)	ium laminosum)	chromosome condensation protein (Caenorhabditis elegens
30	ions of novel		tein (Symecho	3 KD PROTEIN	tein Synecho	ichia coli	se (ndhF) (Vi	licase [Haemo	ein (probale)	ubt [1]e]	tein (Bacilly	(Becillus sub	cus pyogenes	(Bacillus sul	protein (Symechocystis sp.	Staphylococcus	taphylococcus	ING PROTEIN 1	lus subtilis)	ceptor (Nomo	with Escheric lius subtilis	rotein (Lacto	domain of PTS-dependent	cterium tuber	ase (ferredoxin) hase (ferredoxin)	tein (Phormid	ensation prot
35	active coding reg	match gene name	hypothetical protein (Synechocystis sp.)	HYPOTHETICAL 54.	hypothetical protein	putative (Bacherichia coli)	NADH dehydrogenase (ndhf) (Vicia faba)	ATP-dependent he	Duk binding protein (probale)	CinA (Bacillus subtilis)	1 8	ORF 3; putative (Becillus subtilis)	spec (Streptococcus pyogenes)	ABC cransporter (Bacillus subtilis)	hypothetical pro	opiB protein -	Fem.A protein [Staphylococcus aureus]	PENICILLIN-BINDING PROTEIN 1A (PBP-1A)	putative (Bacillus subtilis)	endothelin-A receptor (Nomo sapiens)	22.4% identity with Escherich putative [Bacillus subtilis]	transmembrane protein (Lectococcus lactis)	EIIC domain of coli!	unknown (Mycobacterium tuberculosis)	glutamate synthase (ferredoxin) glutamate synthase (ferredoxin)	ATP binding protein (Phoraidium leminosum)	chromosome cond
40	. aureus - Pul	match	91 (1001678	Ep P33940 YOJH_	91 1001644	01 145165	194 552971	191 1204636	91 467364	01 1314847	191 709991	191;142441	gi 529755	191 853754	[g1]1001B27	pir[523416]5234	91 153015	sp p31776 PBPA_	91 1146181	91 219630	91 1146243	01 495179	91 508175	91 1340096	q1 515938	91 1154891	141 529385
45		Stop (1 781	877	227	187	183	1379	1 269	1317	572	509	1 335	904	310	235	348	245	405	1 272	346	1 286	<u>و</u>	199	 86 86	199	1399
		Start (nt)	1488	2	35	11,61	250	1585	535	-	<u> </u>	27.	-	~	~ _	468	2	195	232	150	069	7 -	564	~		1 794	599
50	`	108F	-	-	-	-	-	7	-	-	=	-	-	-	-	-	-	-	- 2	-		-		-		-	-
		Cont ig	189	708	725	176	834	865	894	616	944	988	1055	1093	1109	1220	1279	1336	1817	1574	1640	2504	3061	3128	3218	1 3323	9196
		·		· • —			· • —	• -				• -															

TABLE 2

5

Contig	ORF	Start (nt)	Stop (nt)	metch	match gene name	sim .	1 ident	length int)
1841	-	706	-	-	hypothetical 23.3 kd protein [Escherichla colii]	90	- 44	309
1 3929	-	-	107	-	putative [Lactococcus lactis]	ę ę	\$	399
*		565	374		similar to trimethylamine DH (Hycoplasma capricolum) parjs49950 (49950 probable trimethylamine dehydrogenase (EC .5.99.7) - Hycoplasma capricolum (SCC1) (fragment)	۶	9	222
4329	-	558	280	1366221 329	small subunit of NADH-dependent glutamate synthage (Plectonema boryanum)	5	1,63	279
4432	-	576	1 289	91 296464	Affase [Lactococcus lactis]	6	57	288 }
4647	-	1361	200	91 166412	NADH-glutsmate synthese [Medicago sativa]	5	59	162
16	8	1727	1 9031	91 1499620	M. Jannaachii predicted coding region MJ0798 (Methanococcus Jannaschil)	69	3	1461
16	-	9080	110033	616261/12	thioredoxin reductase (Eubacterium acideminophilum)	69	75	354
90	-	1452	727	91 1204910	hypothetical protein (GB:Ul4001_102) [Heemophilus influenzee]	69	52	126
38	-	1023	1298	-	davk gene product (Mabbene sp.)	69	7	276
3	<u> </u>	5987	\$689	91/1205920	molybdate uptake system hydrophilic membrane-bound protein (Heemophilus	69	\$	609
62	2	9104	1 9475	191 385178	unknown (Bacillus subcilis)	69	=	27.6
99	-	2402	2803	91 1303893	Yqht [Bacillus subtilis]	69	15	402
67	=	14124	113627	91 149647	ORFZ [Listeria monocytogenes]	69	1,4	49h
69	Ξ	14053	14382	91 305002	ORF_£356 [Escharichia coli]	69	64	330
63	5	15130	115807	91 1109684	Prov [Bacillus subtilis]	69	45	678
184	-	1447	2124	gi 1256633	putative (Bacillus subcilis)	69	5	678
78	-	- \$	13725	01/1103958	rqjo (bacillus subtilis)	69	7 7 7	987
- 85	-	1521	4213	pir E29326 E293	pir (229326 E293 hypothetical protein (pur operan) - Bacillus subtills	69	7 7 7	600
98	-	13253	1 2654	191 973332	Orfc Bacillus subtilis	69	98	009
		96	710	91 78646A	(All antigen, sperm tall membrane antigen-putative sucrose-specific hosphotransferase enzyme-II homolog (nice, testis, Peptide Partial, 72 as)	59	\$	919
8	1-	6023	1426	91 1205355	Na+/H+ antiporter [Haemophilus influentae]	69	86	1404
102	-	2678	1650	91 561690	sialoglycoproteams [Pasteurella haemolytica]	69	-	1029
1001	-	112241	1 8537	19111009366	[Respiratory nitrate reductase (Bacillus subtilis]	69	*	3705
103	=	14987	112552	1911710020	nitrite reductase (nirB) (Bacillus subtilis)	69	1 51	2436

	;	:		-	_	-	~ ;	-	_	-	- 1	~ !	_		5		Ţ	_	~	_	_	-	7	-	-	-	-1
5		length (nt)	1461	11,	921	087	1002	588	267	786	2412	552	348	1188	2775	243	=	957	3492	291	162	426	(69)	1 957	1029	414	1041
J		1 ident	z	05	\$	39.	53	7	39	5	25	\$	69	#	67	8	9	89	2	8	19	\$	98	*	9	57	*
10		nis 1	69	69	69	69	S	69	69	69	S	69	\$	69	69	69	69	69	5	69	69	69	69	69	69	69	69
15	oteins		in uhpt -	uenzae)		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0) plasmid psul	20]	llus btilis]			OLE ACETOL-				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8								
20	 aureus - Putative coding regions of novel proteins similar to known proteins 		exceephosphase transport protein (Salmonella typhimurium) pirjoilisijoilisi hexose phosphate transport aystem protein uhpT almonella typhimurium	pyruvate formate-lyase activating enzyme (Haemophilus influenzae)		lun vivex	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		pir 528089 5280 hypothetical protein A - yeast (Lygosaccharomyces bisporus) plasmid pSB)	hypothetical protein (GB:U14003_302) (Maemophilus influenzae)	phenylalanyi-tRNA synthetase beta subunit (AA 1-804) (Sacillus btilis)	[8]		HISTIGINOL-PHOSPHATE AMINOTRANSFEASE (EC 2.6.1.9) (IHIDAZOLE ACETOL- PHOSPHATE TRANSAMINASE).	111			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						influenzae)		
25	al proteins s		rotein (Salmo hosphate tran	vating enzyme		protein 1 - Plasmodium vivax		us subtilis!	ast (Zygosacc	4003_302) (Ma	e beta subuni	lina platensi	011)	RANSFERASE (1	scherichia co			hocyatia sp.	blum etli)	(aue)	rate)		ones mobilis	ox]	(Haemophilus		
30	Ing regions of nove		exceephosphate transport pr pir paissipaiss hexose pl almonella typhimurium	formate-lyase acti	ol07 (Racherichia coli)	reticulocyte-binding protein 1	Wrdf [Bacillus subtilis]	ipa-7d gene product (Bacillus subtilis)	cal protein A - ye	cal protein (GB:U14003_302)	nyl-tRNA synthetas	elongation factor Ts (Spirulina platensis)	Fing procesn (Escherichta cols)	HISTIDINOL-PHOSPHATE AMINOT PHOSPHATE TRANSAMINASE).	hadR protein (AA 1-1033) [Escherichia coli)	YbbF [Bacillus subtilis]	Ynce (Bacillus subtilis)	hypothetical protein (Symechocystis sp.	pyruvate carboxylase (Rhizobium ethi)	TO4H1.4 (Csenorhabditis elegans)	ORP (Balaenoptera acutorostrata)	ORFI (Becilius subtilis)	phosphoglyceromutase [Zymomonas mobilis]	arginase (Bacillus caldovelox)	purine synthesis repressor (Haemophilus influentae)	unknown (Bacillus subtilis)	muty homolog [Homo sapiens]
35	tative cod	metch gene name	hexosephosphate pir D41853 D418 almonella typhi	pyruvate	0307 (Esc	reticuloc	Nrdf Bac	1pa-7d ge	hypotheti	hypotheti	phenylala	alongation f	Fins prot		hadR prot	Ybbr (Bac	Ynch (Bac	hypotheti	pyravate	T04H1.4	ORF (Bale	ORF! IBAC	[phosphog]	arginase	purine sy	unknown	muty homo
40	S. aureus - Pu	match	94 154111	91 1204435	91 290509	pic A42771 A427	911:154633	181 (1393)	pir 528089 5280	91 1205538	191 40054	121 296031	91 732682	ap P17731 HIS8_	91 41750	191 (1256135	9111405456	91 1001 16	91,1256798	91 1491664	91 336458	91 556015	101 155611	91 1276985	91 1221782	91/1122758	jg1 1458228
45		Stop (nt)	10168	17414	953	1058	5310	854	10600	813	4633	1761	6139	1671	74.6	5796	67	5776	1 3893	1808	2305	2424	644	1129	17741	415	2246
40		Start	8708	16644	2	1537	4309	267	10666	1598	2222	1210	9898	787	1888	6038	9F9	4820	7384	2098	2075	1 1999	1 87	2085	6713	828	3286
		100	===	91	~	~	9		= =	=	-	12	= =	~_	=	-	=	-	~	-	-	2	-	-	-	-	~
50		Cont leg ORF	112	112	113	114	121	125	149	161	165	169	175	190	306	206	243	302	324	351	369	392	410	421	¥	453	469
		:	:	:	<u>:</u> —	١	: -	:	<u>-</u>		. —	<u></u>	• -		• -	• -		• -		- -	• -			• —	•	• —	• - •

TABLE 2

		length (nt)	360	201	135	147	195	163	312	279	432	136	195	942	1206	255	192	1 267	477	804	657 {	21.3	199	222	1 999	- 66
5		* ident	19	96	50	52	83.	\$	-	39	¥	20	9	\$\$	53	\$2	67	£\$	53	12	95	87	=	36	\$	1 46
10	1	e is	69	69	69 1	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69
15	proteins			similar to D. melanogaster HST101-2 protein (PIR:S34154) Caenorhabditis elegansi							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(Saccharomyces cerevisiae) 1370340 e)		us jannaschiij	elegans CDMA s elemans			[0]		(Haemophilus influentae)	H. Jannaschil predicted coding region MJ0568 [Methanococcus jannaschil]			8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
20	ilar to known			n (PIR:S3415		num setivum]						ubtilis)	charomyces ce		(Nethanococc	coded for by C. (Caenorhalklitie			lus influenta	irilisj	191 (Haemophi	egion MJ0568 (Methanoc		lus influenza	raneil	
25	 aureus - Putative coding regions of novel proteins similar to known proteins 			r HST101-2 protei	repressor protein (Bacterlophage Tuc2009)	17.9 kDa heat shock protein (hap17.9) [Pisum setivum]	(irmus)	ipa-6d gene product [Bacillus subtilis]	legana)	s cerevisiae)		Respiratory nitrate reductase (Bacillus subtilis)	eucyl-tRMA synthetase (cytoplasmic) (Sactor YPL160w (Sactoronycas cerevisiae)	subtilis]	restriction modification system S subunit (Nethanococcus Sameschill	coded for by C. elegans CDNA ykl4s9.5; coded for by C. elegans o ykl4s9.1; Similar to quanylate kinase [Caunorhalklitis elumans]	amulon sp.1	us gubciliaj	transcription elongation factor (Meemophilus influentae)	predicted trithorax protein (Drosophila virilis)	H. influentae predicted coding region Hill91	oding region NJO	richia coli]	DNA polymerase III, alpha chain (Hasmophilus influenzae)	peptide-synthetase (Amycolatopsis mediterranei)	berculosis)
30	regions of no	ame.	10C0CCU\$ 8P.]	, melanogaster	cein (Bacter)	t shock prote	DNA photolyase (Bacillus (irmus)	product (Baci	WOBD2.3 (Caenorhabditis elegans)	ORF YBR275c (Saccharomyces	unknown (Bacillus subtilis)	nitrate reduc	Leucyl-tRNA synthetasa (cytoplasmic) ORF YPL160w (Saccharomyces cerevisia	ferrochelatase (Bacillus subtilis)	modification	C. elegans C Similar to gu	sech gene product (Antithamnium sp.)	protein-dependent (Bacillus gubtilis)	n elongation	ithorax prote	e predicted c	i predicted c	glutamate parmease [Escherichia coli]	se III, alpha	hetase (Amyco	unknown (Mycobacterium tuberculosis)
35	Putative coding	ratch gene name	URF & [Synachococcus sp.]	similar to D. elegans	repressor pro	17.9 kDa heat	DNA photolya	ipa-6d gene	W08D2.3 [Cae	ORF YBR275c	unknown (Bac	Respiratory	Leucyl-tRNA	ferrochelata	restriction mod	coded for by yk34a9.3;	secA gene pr	protein-depe	transcriptio	predicted trit	H. influenza	H. Jannaschi	glutamate pe	DNA polymera	peptide-synt	unknown (Myc
40	S. aureus	match	91 49224	91 726427	191 509 672	191 169101	91 142783	191 (413930	B1 1236103	1911536715	91 467327	191 1009367	91 3508 	91 143044	191 1510268	91 1255371	191 268998	19111070014	9111205569	101 (899254	91 1205434	91 1310646	d1 290503	91 1204987	d1;1483199	94 1524193
		Stop (nt)	17.01	2823	760	253	1391	2114	33	217	153	338	286	101	1368	181	1005	1 269	629	1 506	629	9	10	52	ê	28
45		Start	1730	3023	36	107	597	2476	~	590	864	7	392	22	2573	=	745	525	954	1009	1315	248		444	7	667
		OKF		5	1-	-	7	-	<u></u>	- 7		1-	-	-	-		~	-	1	-	1-	1-	-	-	-	-
50		Contig	\$09	\$20	531	189	594	604	607	607	734	759	761	802	816	838	R51	867	995	666	1127	1138	2928	3090	3817	283
		1	· : _	:	<u>:</u> _	: _	:	:	: —	÷ —	·	: -		÷ —	-					• —	•	•		•	•	• •

		+		- + -	- + -	· • —-	~ • -							_ 4 -										
5		length	800	186		22.0	285	291	0111	65	2445	366	0631	240		689	0.6	9901	1038			7.4	1215	
J		1 ident	79	- 88	36	•	3	ę	9	5	48	55	3		2	9	9	5	52			8	\$ 5	5
10		N sim	69	69	69	69	69	60	89	89	89	B9	89	89	89	89	89	89	89	89		8	89	9
15	roteins		140 aa) 111s ON (ORFY)	antigen (Straptococcue yogenes)		lmonis) GC3)	•	ia coli) Ponent	6	4	****	ble rameshift,	****	***************************************	genitalium)		•		A29277 A29277				1.8.1.2) (SIR-	
20	imilar to known p		Poptide Partial, Y - Bacillus subt IN IN COMK 3'REGI	1 antigen (Strept		II (Mycoplesma pulmonis) Lasma pulmonis (SGC3)		tem ensyme II (Racherichia coll) FRUCTOSE-LIKE-2 IIC COMPONENT COMPONENT).	: : : : : : : : : : : : : : : : : : :		1	of start; possible		(sn.					obacter calcoaceticus ir a29277 a29277 - Acinetobacter icoaceticus				PHA-COMPONENT (EC	
25	il proteins s		btilis, 826, cal protein Erical Profe	struptococca	ocystis sp. }	yme subunit tein - Mycop	us subtilis]	e system enzy STEM, FRUCTOS I, C COMPONER	; ; ; ; ; ;	isinel	rae)	far upstream	to choleree)	grooving vir	ng region MG2		14.)	1110		(e)	subtilis)		VOPROTEIN AL	erichia coli
30	- Putative coding regions of novel proteins similar to known proteins	10 E 10 C	rff 3' of comk (Bacillus subtilis, 826, Peptide Partial, 140 as) pir 843612 843612 hypothetical protein Y - Bacillus subtilis sp P40398 YHXD_BACSU HYPOTHETICAL PROTEIN IN COHK 3'REGION (ORFY) FRACHENT),	67 kDa Myosin-crossreactive atroptococcal	hypothetical protein (Symechocystis sp.)	restriction-modification ensyme subunit HI (Mycopiasma pulmo pir 549395 549195 HadMI protein - Mycopiasma pulmonis (SQL)	ipa-43d gens product (Bacillus subtilis)	similar to phosphotransferase system enzyme II ap P12672 FTWC_ECOLI PTS SYSTEM, FRUCTOSE-LIKE PHOSPHOTRANSFERASE ENZYME II, C COMPONENT),	ProW (Bacillus subtilis)	unknown (Saccharomyces cerevisiae)	Affese (Enterococcus hirae)	RR o622, reading frame open far upstream of start; possible rameshift.	aldehyde dehydrogenase (Vibrio	241k polyprotein (Apple stem groowing virus)	M. genitalium predicted coding region M246 (Mycopiasma	YqjA (Bacillus subtilis)	phng protein (Escharichia coli)	35 kDa protein (Escherichia coli	precursor (as -20 to 381) (Acinatobacter aldose 1-epimerase (EC 5.1.3.3) - Acinet	MalC (Streptococcus pneumoniae)	sporulation protein [Bacillus subtilis]	us subtilis!	SULPITE REDUCTASE (NADPH) FLAVOPROTEIN ALPHA-COMPONENT (GC 1.8.1.2) (SIR-	argininosuccinate lyase (Escherichia coli)
35	utative codin	march gene name	orfr 3' of pir S43612 sp P40398 FRACHENT).	67 kDa Myoa	hypothetica	restriction pir S49395	ipa-43d gen	similar to apple 1919 PHOSPHOTRA	Prow (Bacil	unknown (Sac	ATPase (Ent	ORF_o622, relinking to	aldehyde del	241k polypre	H. genitali	YqjA (Bacili	phnE protein	35 kDa prote	precursor (a	MalC (Strept	sporulation	YqeR [Bacillus subtilis]	SULPITE REDU	Argininosuce
40	S. aureus - P	natch .	91 546918	91 517205	91 1208451	911496158	[gi 413967	91 396296	101 1109685	[91 807973	1911290642	91 606342	91 155276	91 285608	91 1045937	94 1303952	91 147198	[91 145173	91 38722	91 153724	91 143608	91 1303805	sp P38038 CYSJ_	91 396307
45		Stap (nt)	400	004	333	230	374	293	1193	2076	8772	750	8415	3404	4132	10685	8155	2966	1150	3622	8638	3698	1594	1011
70		Start (nt)	747	215	-	457	96	n	2302	2892	6328	5111	9889	3643	3536	1167)	7346	1899	2187	2666	7865	2484	1424	1
		OR I		~	-		-		_	-	8	~	-	-	-	9	-	-	_	-	~	_	~	-
50		Contig	4079	4115	677	4258	4317	4465		22	=	Q	46	•	- 48	53	2	6	108	112	316	118	120	129
	•			•	+			+	- •	- •			- +		- +	- •	- +	- •		- +	_	-		$\dot{\mathbf{x}} = 1$

30 .

Cont.ig	0 da F	Start (nt)	Stop (nt)	match	match gone name	m is	* ident	length (nt)
132	13	1867	2739	91 (216267	ORF2 (Bacillus megaterium)	89	84	673
134	~	848	1 1012	gi 147545	DNA recombinase (Escherichia coli)	89	20	165
141	~	1 372	1 614	91 872116	sti (stress inducible protein) (Glycine max)	3	36	243
149	-	1 2454	1 2260	91,145774	hsp70 protein (dnaK gene) (Escherichia coll)	89	87	195
155	7	1776	1534	91 216583	ORF1 [Escharichie coli]	89	3¢	243
158	-	1826	3289	spiral940 Youn_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	89	21	1464
169	9	2749	3318	91 1403402	unknown (Mycobacterium tuberculosis)	89	97	570
27.1	100	1 9158	1 7365	1072395	phak gene product (Rhizobium maliloti)	8 9	5.1	1794
188	- 1	4184	5434	91 1173843	3-hetoacy1-ACP synthase II (Vibrio harveyi)	89	8,	1251
189	-	1 907	1665	91 467383	DNA binding protein (probable) [Bacillus subtills]	89	\$\$	759
1 206	- 5	7683	6209	91 1256138	Ybbī [Bacillus subtilis]	69	84	975
206	-	110425	12176	101 (452687	pyruvate decarboxylase [Saccharomyces cerevisiae]	89	80	1752
212	=	3421	19648	191 1369941	cl gene product (Bacterlophage Bl]	5	39	228
214	-	5457	6482	191 1420467	ORF YOR196c (Saccharomyces cerevisiae)	89	53	1026
1 237	-	2507	3088	lgi 149381	HisH [Lactococcus lactis]	89	99	582
243	- 2	5540	4542	91 1235684	mevalonate pyrophosphate decarboxylase (Saccharomyces cerevition)	89	4	666
262	-	<u>:</u>	1 164	911150974	4-pxalocrotonate tautomerase (Pseudomonas putida)	99	7	162
262	-	÷	1118	91/1147744	PSR [Enterococcus hirse]	89	6	867
1 276	9	1 3702	3139	sp P30750 ABC_E	sp P1075G ABC_E ATP-BINDING PROTEIN ABC (FRAGNENT).	89	05	564
1 306	9	: —	5725	91 1256617	adenine phosphoribosyltransferase [Bacillus subtilis]	ŝ	53	621
1 333	-	4599	3850	91 467473	unknown [Bacillus subtilis]	9	45	750
1 365	9-	1 5017	4838	91 1130643	[1228].3 [Caenorhabditis elegans]	89	\$	160
1 376	; -		1646	91 1277026	DAPA aminotransferase (Bacillus subtilis)	69	53	1098
405	-	1741	872	191 1303917		89	47	97.8
406	-	:	539	91 1511513	ABC transporter, probable AFP-binding subunit [Methanococcus jannaschii]	89	7	315
1 426	9	!	1865	91 624632	[Glt. Escherichia coll]	89	87	168
438	-	108	123	191 146923	Introgenses reductaso (Escherichia coli)	89	43	222

Contig ORF	ORF	Start	Stop	metch	match gene name	E S	• ident	Jength (nt)
3 3	1	476	240		hippuricase (Campylobacter jejuni)	89	=	752
	~	518	1015	91 1204742	H. influenzae predicted coding region H10491 (Haemophilus influenzae)	89	•	498
\$	5	447	8776	191 104660	deoxyriboss-phosphate alddiase (Becillus subtilis) pir[549455 542435 deoxyriboss-phosphate alddiase (EC 4.1.2.4) - acillus subtilis	6	\$	699
476	~	3 0 0	#	91 571345	unknown, similar to E.coli cardiolipin synthme [Becillus subtilia] pp[p45860]YME_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA NTERGENIC REGION,	89	\$	945
486	~	1876	1046	91 147328	transport protein [Recherichia coll]	89	17	931
517	1-	1764	2084	911:523809	orf2 [Bacterlophage A2]	89	99	321
572	1-	~	1.72	sp P19237 Y05L_	HYPOTHETICAL 6.8 KD PROTEIN IN NRDC-TK INTERGENIC RECION.	_ 89	Ş	570
646	1-	914	459	1911413982	Ipe-58r gene product (Bacillus subtilis)	89	22	456
659	1-	1668	1961	191 1107541	[c]]D9.8 [Caenorhabditis elegans]	99	36	234
R64	5	1510	1716	191 145774	ilsp10 protein (dnak gane) [Escherichia cuili	99	5	207
920		1 860	- 432	01 1710416	hypothetical protein (SP:P31466) (Methanococcus jannaschiil	89	3	429
952	1-	1096	119	g1 C03456	reductase (Leishmania major)	89	99	486
076	-	16	402	91 1354775	pfos/R (Treponema pallidum)	89	99	312
1028	-	1 1064	534	191 4 10117	diaminopimelate thearboxylase (Bacillus subtilis)	l 68	47	100
1029	-	42.	216	10111135714	Plasmodium (alciparum mNNA for asparagine-rich antiqun (clone 17c1) [Plasmodium falciparum]	ę,	<u>-</u>	÷
1058	1-	692	348	91 581649	epic gene product (Staphylococcus epidermidis)	68	91	345
9601	-	599	- 465	91 143434	Rho Factor [Bacillus subtilis]	89	2	201
1308	-	~	169	1911.69939	group B oligopeptidase. PepB (Streptococcus agalactias)	89	50	693
1679	-	~	238	911:17205	67 kDa Nyosin-crossreactive streptococcal antigen (Streptococcus yogenes)	99	S	237
2039	-	_	1 383	gi 153898	transport protein (Salmonella typhimurium)	69	51	181
1 2077	-		126	pir C33496 C334 hisc homolog	hisC homolog - Bacillus subtilis	69	4)	324
2112	-	1 613	1374	91 64884	Jamin LII (Konopus laevis)	F 68	05	240
2273	-	193	338	91 581648	epiß gene product (Staphylococcus epidermidis)	89	\$3	396
2948		~	385	91 216869	branchad-chain amino acid transjort carrier [Peaudomonas asruginoss] pir a38534 a38534 branched-chain amino acid transport protein braz Pseudomonas aeruginosa	5	5	787

55

	;	;	-:	-:	-;	-;	-:	-:	_;		-:		_;	-:		-1	-:		-:	- i	<u>.</u>	_;	!	<u></u>
5		length (nt)	996	285	162	168	156	459	930	390	276	342	198	141	180	381	249	171	1194	486	1596	108	1083	813
ŭ		1 Ident	- 67	- 69	15	53	.83	- +	48	3	43	8	- 63	55	ĸ	87	95	‡	97	7	97	15	85	3
10		sin .	- 89	8.9	99	89	89	89	89	89	89	89	89	69	89	89	89	89	67	63	63	63	63	63
15	ins		1	_	-	-				subtilis]	-	437 \$38437 hsdN rotein A -			437 538437 hadH rotoln A -			pir S38437 S38437 hsdm					nia herbicola	
20	- Putative coding regions of novel proteins similar to known proteins				subtilis]	us influenzae)		nitrate transport permease protein (Methanococcus Sannaschil)	ris)	Bacillus hydrolase	,	hadw gene of Ecopril gene product (Eacharichia coli) pir 538437 538437 hadw protain - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (5UB 40-520)	otens mirabilia)		of Ecopril gana product (Escherichia coll) pir (518417 518417 hadm - Encherichia coll pir (509629 509629 hymothetical protoin A - hita coll (5UB (0-520)					ntarum)	Romo sapiens!	aschii)	is identity with the product of the ORF6 gene from the Erwinia herbicola carotenoid biosynthesis cluster; putative [Bacillus subbills]	
25	vel proteins simil		llus subtilie]	lus subtilis]	operon (Bacillus sul	(ructose-parmease 118C component (Heemophilus influentae)	opsis theliane]	protein (Methano	PTS enzyme-II fructose (Xanthomones campestris)	imidazolone-5-propionate hydrolase protein, imidazolone-5-propionate	[#]	ne product [Escheric coli pir 509629 5096 40-520)	transporting P-type ATPase (Proteus mirabilis)	HutU protein, urocanase (Bacillus subtilis)	product (Escheric pir S09629 S096 -520	psychrophilus)	llus subtilis]	hadw game of Ecopril game product [Escherichia coli] protein - Escherichia coli pir S09629 S09629 hypoth Escherichia coli (SUB 40-520)	[8]	dehydrogenase (Lactobacillus plantarum)	renal modium/dicarboxylate cotransporter (Homo sapiens)	prephenate dehydratase Methanococcus jannaschil	the ORF6 putative	echocystis sp.]
30	regions of nov	e me ci	hypothetical protein (Bacillus subtilis	GTP-binding protein [Bacillus subtills]	gbsAB	rmeasa 118C com	heat-shock protein (Arabidopsis thelians	nsport permease	nzyma-II fructose (Xa	n, imidazolone- Huti protein, í	putative [Lactococcus lactis]	sdw gene of Ecopril gene protein - Escherichia col Escherichia coli (SUB 40-	transporting P	in, urocanase (B	Ecoper 1 Icher ich coli (St	Pyruvate Kinase (Bacillus psychrophilus)	ipa-44d gene product (Bacillus subtilis]	adw gene of Ecopril gene protein - Escherichia col Escherichia coli (SUB 40-	putative (Bacillus subtilis	Jehydrogenase (I	um/dicarboxylate	dehydratase M	45% identity with the product of carotenoid biosynthesis cluster;	hypothetical protein (Synechocystis sp.
35	Putative coding	match gene name	hypothetica	GTP-binding	ORF-2 upstream of	fructoss-pa	heat-shock	nitrate tra	PTS enzymo-	intl protein, 91 603768 Hut subtilis	putative (L	hsdw gene o	heavy-metal	HutU protei	hadw gene of protein - Er Escherichta	Pyruvate Ki	ipa-44d ger	hadM gene protein - Escherich	· putative (D-lactate	renal podit	prephenate	45% identil	hypothetic
40	S. aureus -	match	101 204179	91 508979	191 1524394	91 1204696	(91 217855	191 1510490	10: (155369	91 603768	191 149435	1911450688	91 1353678	191 603769	91 450688	91 1041097	91 413968	911450688	101 (103727	91/116746	191 1098557	191 1510720	917::46216	101 1006621
45		Stop (nt)	007	288	294	169	258	461	330	391	712	3	209	187	352	1 382	250	318	8300	9833	1155	4145	4268	5304
		Start (nt)	768	572	584	336	101	919	-	780	~	-	127	Ş	2	~	867	168	9493	110318	1560	4945	5350	4492
50		1 0 kg.	-	-	- - -	-	-	-	-		-		-	-		-	-	~	Ξ	Ξ		-		-
		Cont lg	2955	2981	3014	3082	3108	3639	3657	3.823	3982	4051	4089	443	4148	100	4182	4362	5	17.	32	22	95	7
												·												

		length (nt)	4539	156	336	1233	1203	1482	201	840	384	- 57	1149	- 68	966	609	17171	340	1 666	1044	1440	276	1263	155	1386	513	1014
5		1 ident			\$	\$	0,5	15	- 87	67	53	54	55		00	45	s	3	- 87	6	- 63	- 65	84	- 4	46	36	42
10		g .	6	69	63	- 67	63	67	69	69	69	69	69	69	69	67	69	49	62	69	69	67	67	69	19	69	67
15	roceins		orasilensej 3) alpha hain -		iide Kutant, 112		124e]								(e	3	+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0					8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			(11)		4 6 6 6 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8
20	5. aureus - Putative coding regions of novel proteins similar to known proteins		giutamete synthase large subunit precursor (Azospirillum brasilense) pir[846602 846602 glutamate synthase (NADPH) (EC 1.4.1.13) alpha hain Arospirillum brasilense		orf3 (Bacilius. C-125, alkali-sansitive mutant 18224, Peptide Mutant, 112	11us)	hypothatical protein (GB:GB:D90212_3) (Haemophilus influenzae)								hypothetical protein (GBiD26185_10) [Mycoplasma genitalium]		efactons)				cia oleracea)	Jannaschii)	_	310N.	branched-chain amino acid carrier [Lactobacillus delbrueckii]	beante major]	
25	vel proteins siz		ubunit precursos ite synthase (NA		ali-sansitive m	Na/H antiporter system [Bacillus alcalophilus]	B.D90212_3) (Ha	181	s subtilis]	llus subtilis;	llus subcilis!			-	26185_10} [Myco		GTP cyclohydrolase II (Bacilius amytoliquefaciens)				2-oxoglutarate/malate translocator (Spinacia oleracea)	shikimate 5-dabydrogenase [Methanococcus jannaschil]	ATP-dependent nuclease [Bacillus subtitis]	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5 REGION	carrier [Lactob	100 kDa heat shock protein (Hsp100) (Leishmania major)	santhem!]
30	ng regions of no	กลหล	lutamate synthase large s pir/s46602/s46602 glutama Atospirillum brasilense	Trek (Bacillus subtilis)	llus, C-125, alk	orter system [Ba	1 protein (GB:G	putative (Lactococcus lactis)	gene product (Bacillus subtilis)	ipa-52r gene product (Bacillus subtills	ipa-59d gene product [Bacillus subtilis]	YmaA (Bacillus subtilis)	ORFB (Bacillus subtilis)	Unknown (Bacillus subtilis	al protein (GBID	kdpC [Escherichia coli]	drolase 11 (Bac	YrkJ [Bacillus subtilis]	unknowm (Bacillus subtills	SphX (Synechococcus sp.)	rate/malate tran	-dahydrogenase	ent nuclease (Ba	L 21.8 KD PROTE	branched-chain amino acid car	it shock protein	CbrB protein [Erwinia chrysanthami]
35	tative codir	match gene name	glutamate synthese pir B46602 B46602 Atospirillum bresi	Trek [Baci]	orf3 [Baci]	Na/H antipo	hypothetica	putative	LP9D gene ;	ipa-52r ger	ipa-59d ger	YmaA [Baci]	ORFB (Bacil	Unknown (B	hypothetica	kdpC [8sche	GTP cyclohy	YrkJ [Baci]	unknown (Be	Sphx (Synec	2-oxoglutar	shikimate	ATP-depende	HYPOTHETICA	branched-ch	100 kDa hea	CbrB protei
40	S. aureus - Pu	match acession	91/304131	91 1000453	91/1113949	91 654655	91 1204349	91 149432	91 1408497	91 413976	g1 413983	91 1262335	91 143047	gi 556885	91 1046081	91 146549	21/1212775	9111303709	11377843	91 496319	1895681	1011151)16	91 142439	sp P37347 YECD_	81 732813	91 1033037	91 809542
		Stop (nt)	1978	14678	4757	6338	1321	7176	14049 -	13982	15194	2153	1149	3518	3589		#61¢	2374	6673	3763	3428		2179	12801	14632		2052
45		Start (nc)	3943	13923	5092	7570	2119	\$695	14549	14821	14811	6171	-	990	4584	2899	5409	2913	6341	2720	1989	1351	917	12445	13047	1321	1039
		10 G		7	6.	2	2	6	2	21	[1]	- -	-	S	~	_	-	\$		-	9	_	~	2	Ξ	- 2	_
50		Cont lg	95	95	62	62	66	102	103	109	109	121	122	1 124	181	140	<u> </u>	147	152	161	163	193	200	1 206	506	508	238

136 2 116 137 411 41 10036 104721 104721 104721 104721 104721 104722	Contig	10 GE	Start (nt)	Stop (nt)	match	match gene name	E S	1 ident	length
2 2260 1412 91 103560 1	246	-	176	367		excisionase (Bacteriophage 154a)	- 69	7.	192
6 2223 3056 941 147864 1 1 1 1 1 1 1 1 1	276	7	2260	1412	191 303560	ORP271 [Escherichia coli]	63	- 05	849
7 5220 4186 91 1070013 1 36 1028 91 1161061 1 3650 5030 91 1161061 1 524 364 91 1161053 571 22 1 1 1 1 1 1 1 1 1	1 297	-	2223	3056	191 1142784	CteA protein (Bacillus firmus)	69	- 9 7	834
1 36 1028 91 1161061 1 554 264 91 1161073 57 1.2 1 1 1 1 1 1 1 1 1	1 307	1-	5220	4186	191 1070013	protein-dependent (Bacillus subtilis)	67	\$	1035
1 \$24 244 91 1469784 1 \$24 244 91 173122 1 1 1 1 1 1 1 1 1	316	-	3.6	1028	19111191061	dioxygensse (Methylobecterium extorquens)	- 19	25	993
1 \$24 264 91 171122 1 1046 1194 1191 3 4890 3592 91 151259 4 890 3592 91 151259 5 250 2113 91 1204516 6 1271 91 1204516 1 1199 901 91 482579 1 11728 865 91 43046 1 11728 865 91 1301853 1 1433 218 91 1301853 1 1407 916 91 142996 1 1155 779 91 142996 1 1150 597 91 1301850 1 1150 597 91 1301850 1 1150 119 91 1301850 1 1190 597 91 1301850 1 1190 597 91 1301850 1 1190 597 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 1190 100 91 1301850 1 11180 100 91 1301850 1 11180 100 91 1301850 1 11180 100 91 1301850 1 11180 91 1401850 1 1 1 1 1 1 1 1 1	324		0595	5030	Q1 1469784	putative cell division protein ftm (Enterococcus hirae)	67	- 67	621
1 10H 1194	336		524	264	91,173122	urea amidolyase (Saccharomyces cerevisiae)	69	\$	261
1 4890 3592 91 151259 1 2940 2113 91 1236823 1 2 325 918 91 1033479 1 1 1800 901 91 103879 1 1 1800 901 91 1204516 1 1 1728 865 91 143434 1 1728 865 91 143447 1 1728 865 91 143447 1 1437 916 91 142996 1 1407 916 91 142996 1 1407 916 91 142996 1 1614 850 91 142996 1 1614 850 91 1303850 1 1555 139 91 1303850 1 1556 139 91 1303850 1 1 1556 139 91 1303850 1 1 1390 597 91 1303850 1 1 1390 916 91 1303850 1 1 1936 916 916 915 935	1 56.0	-	104	11194		HISTHIYL-THAN SYNTHETASK (EC 6.1.1.21) (HISTIDINKTHAN LIGASK) (HISRS).	1.9	-	1287
3 2940 2113 94 1256623 5 55 918 94 1033479 1 1800 901 94 48279 1 1799 903 94 520752 1 1738 865 94 14434 1 1728 865 94 14434 2 249 647 94 1204628 1 1407 916 94 177761 1 1407 916 94 177761 1 1614 850 94 1303850 1 155 779 94 1303850 1 155 789 94 1303850 1 155 139 94 1303850	364	-	4890	1 3592	91 151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii pir A44756 A44756 hydroxymethyiglutary]-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	69	9	1299
2 325 918 91 1033479 1 1 1800 901 91 1204516 1 1 1800 901 91 182579 1 1 1799 903 91 182579 1 1 1799 903 91 18256 91 14334 1 1 1728 865 91 14334 1 1 1 1 1 1 1 1 1	1 365	12	2940	[2113	01 1296823	orf2 gane product [Lactobacillus helveticus]	67	4.7	828
3 666 1271 gil 1204516 1 1800 901 gil 882579 1 1799 902 gil 825752 1 1 1799 903 gil 820752 1 1 1 1 1 1 1 1 1	1 367	7	325	918	01 1039479	ORFU (Lactococcus lactis)	67	47	594
1 1800 901 91/882379 1 1799 903 91/520752 2 1921 2226 91/14/414 1 1728 865 91/14/414 2 249 647 91/17/64 2 340 900 91/77/64 1 1407 916 91/14/296 1 1614 850 91/14/296 1 1190 597 91/14/296 1 1356 139 91/14/296 1 1407 916 91/14/296	395	~	999	1221	01 1204516	hypothetical protein (GB:U00014_4) [Maemophilus influenzae]	63	55	909
1 1799 903 q1 520752	415	-	1800	1 901	91 482579	CG Site No. 29739 [Escharichia coli]	63	99	006
1 2 796 gi AA6906 1 1728 gi 1103853 1 1 1728 gi 1103853 1 1 1728 gi 1204628 2 249 647 gi 1204628 2 249 647 gi 177761 1 1407 916 gi 142996 1 1555 779 gi 142996 1 1555 779 gi 142915 1 1100 597 gi 1303113 1 1100 597 gi 1303113 1 1 636 139 gi 1303850 1 1 918 460 pir A33950 A329 1 1 918 460 pir A33950 A329 1 1 1 1 1 1 1 1 1	419	-	1799	1 903	91 520752	putative (Bacillus subtilis]	69	8.8	168
2 1921 2226 gf 14434	474	<u> </u>	~	36t	91 886906	argininosuccinate synthatase (Streptomycas clavuligarus) pir (S57659 S57659 argininosuccinate synthase (EC 6.3.4.3) - treptomycas clavuligarus	61	64	795
1 1728 865 9111303853	1 485	~	1921	2226	91 143434		67	Ç	306
1 433 218 gi 1204628 2 249 647 gi 677947 2 340 900 gi 777761 1 1407 916 gi 142996 1 1555 779 gi 142996 1 1614 850 gi 437315 1 1130 597 gi 1205113 1 636 319 gi 1303850 1 918 460 pic A32950 A329	965	1-	1728	1 865	 41:1303853	[YqgF [Bacillus subtilis]	69	47	864
2 249 647 g1 677947	700	-	5	1 218	91 1204628	hypothetical protein (SP:P21498) [Haemophilus influenzae]	67	5	216
2 340 900 91 777761 1 1407 916 91 142996 1 1555 779 91 780224 1 1614 850 91 1437315 1 1190 597 91 11265113 1 636 319 91 130850	908	~	249	1 647	1911677917	AppC [Bacillus subtlis]	- 69	51	399
1 1407 916 gi 142996 1 1555 779 gi 780224 1 1614 850 gi 437315 1 1319 597 gi 1305113 1 636 319 gi 1303850 1 918 460 pir[A32950 A329	828	- 2	340	900	191 777761	lrrA [Symachococcus sp.]	69	37	195
1 1555 779 91 780224 1 1614 850 91 [437315 1 1190 597 91 [1205113 1 636 119 91 [1303850 1 918 460 Pir [A32950]A329	1 833	-	1407	916	gi 142996	regulatory protein [Bacillus subtills]	62	7	492
1 1614 850	1 856	-	1555	677	91 780224	ZK970.2 [Caenorhabditís elegans]	69	38	רדר
1 1190 597	888	-	1614	850	1911437315	TTG start codon (Bacillus licheniformis)	69	9	765
1 636 319	1034	-	1190	1 597	191 1205113	hypothetical protein (GB:L19201_15) (Meesophilus influenzae)	- 69	Ş	\$94
1 1 918 460	1062	-	909	919	191 1303850	YqgC (Bacillus subtilis)	62	7	318
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	1067	-	918	097	pir \J2950 \J29	probable reductase protein - Leishmania major	67	3	6 \$

ant Jength	(uc)	- -	- .	-	- [44 204	55 255	_	45 219	45 261	1 264	139	115	1 915 1	-	-	23, [-	-	-	1251	774	-	1305
\ ident	- ! -			" - -		1			_	-	-	-	9	~	5	3	5	\$	9	2	\$	\$ K		÷
my e	. 69					5	63		63	69	63	5	5	99	9	90	99	9	2	9	99	1 99	- ;	99
match gane name	[hypothetical protein (Symachocystis sp.	hypothetical protein (SP:P31466) (Mathanococcus Jannaschii)	67 kDs Nyosin-crossresctive streptococcal antigen (Streptococcus vocense)	GTG start codon (Lactococcus lactis)	oligopeptide transport ATP-binding protein (Nessambiline institution)	uroporphyrinogen III methyltransferams (725 moust	12.	menb (Sactilus subtilis)	Dir 5529.5 Say Interate reductors a lake shift.	Cystathionine beta-lyses (Arehidones at 11.	peptide-synthetere Amyrolarmete ===================================	ribonucleotide transport APP-binding protein (sec.	Codv (Bacillus subtilis)	SmtB Synechococcus PCC7942	muclu (Homo saplens)	Mercury scavenger protein (Naemophilus influenses)	inducible nitric oxide synthese (Gallus nallum)	molybdenum cofactor blosynthesis most protein (Mathemacornia inches)	ORF 1 (Mycoplesma mycoides)	hypothetical protein (Bacillus subtilis]	phab gene product (Rhitobium maliloti)	decoyribose-phosphate aidolase [Becillus subtilis] pir[6899555 949455 decoyribose-phosphate aidolase (Fr. 4.) 2 2 2 2 2 2 2 2 2 2	ATP-dependent nuclease (Bacillus subtilis)	Cystathionine beta-lyaze (Arabidoms: staticans
match acession	91 1001369	10111510416	91 517205	121 308861	91(1205366	101/1531541	94 151259	101 557489	pir s52915 s529	[01/704397	[01(1483199	191 1205337	191 535348	01 46491	vi 292046	91 1204545	gi 998342	[91 1510751	[91 150209	94 665399	91 1072398	91 809660	91-1142440	191(704397
Stop (nt)	233	302	507	77	1251	1 256	25.	366	398	265	360	396	3989	2542	7826	9258	\$253	10124	2868	8428	4370	10998	1305	8205
Start Int)	^	_	-	191	\$\$	2	728	S#4	688	~	~	82	3075	2273	8059 (9034	6347	9886	1276	7178	5143	11693	-	9236
	:	-	-	~	-	-			1-	-		-	_	9	ç	2	9	51	~		~	=	-	•
Contig (ORP ID ID	=;	- }	-÷	_ :	_	-																		

. S. aureus - Putative codiny regions of novel proteins similar to known proteins

Conting ORP	<u>ş</u> <u>c</u>	Start (nt)	St.on Int.)	match aceusion	Magch geno namo	a s a	1 libent	length (m)
61		3418	25.72	91 971344	nitrate reductase gamma subunit (Bacillus subrilis) mp[R4177]NANL_BACSU NIRATE REDUCTASE GAMMA CHAIN (EC 1.7.99.4). gi[1009169 Respiratory nitrate reductase (Bacillus subrilis) (SUB -160)	99	80	687
601	9	4243	1 6 9 7	91 170886	glucosamine-6-phosphate deaminase [Candida albicans] pir[A46652]A46652 glucosamine-6-phosphate isomerase (EC 5.3.1.10) - east (Candida albicans)	99	Ş	432
112	13	117491	117712	91 1323179	ORF YGRIIIW (Saccharomyces cerewistae)	99	ر د	222
1116	~	1 4667	2637	91 1491813	gamma-glutamyltranspeptidase (Bacillus subtilis)	99	\$	2031
150	-	1 3189	2989	91 1146224	[purativa (Bacillus subtilis]	99	30	201
172		3264	3662	911755152	highly hydrophobic integral membrane protein (Bacillus subtilis) sp[P4295] hadc_Bacsu reschoic Acid Franslocation Permease Protein Acid.	99	\$	399
174	5 -	4592	13723	91 1146241	[pantothenate synthetase [Bacillus subtilis]	99	6.9	870
271	-	3209	2880	01 642655	unknown (Rhigobium maliloti)	99	29	330
27.1	=	8743	1994	91 854655	Na/H antiporter system (Bacillus alcalophilus)	99	3	750
190	- 5	6707	1 5727	91 451072	di-tripeptide transporter (Lactococcus lactis)	99	0‡	1383
261	115	61611	313	91 1322411	unknown Mycobacterium tuberculosis	99	42	201
1 217	-	2822	1 2595	gi 1143542	alternative stop codon (Rettus norvegicus)	9.9	36	228
1 23	-	((t	6135	91 1458327	[FOSF]. 4 gene product [Ceenorhabditls elegans]	99	-	666
=======================================	-	Ę	1041	191 809541	(CheA prototin (Krajnia chrysanthemi)	99	7	7
741	-	2102	1053	91/153067	peptidoglycan hydrolase (Staphylococcus aureus)	99	3.	1050
192	-	1178	648	91/1510859	H. jannaschii predicted coding region NJ0790 (Mathanococcus jannaachii)	99	•	531
763	-	1676	2973	91 1205865	tetrahydrodipicolinate N-succinyltransferase (Haemophilus influensas)	9	-	759
272	- -	6548	2484	91 882101	high affinity nickel transporter [Alcaligenes eutrophus] sp p23516 HOXN_ALCEU HIGH-APFINITY NICKEL TRANSPORT PROTEIN.	9	=	1065
276	-	1 2805	2104	91/1208965	hypothatical 23.3 kd protein (Escherichia coli)	99	41	702
1 278	- 2	1 2830	1784	91 1488662	[phosphatase-associated protein (Bacillus subtilis]	99	87	1047
278	-	3830	2952	91 303560	[ORF271 [Escherichia coli]	99	45	879
279	~_	3894	2218	gi 1185289 	2-succinyl-6-hydroxy-2.4-cyclohexadiane-1- carboxylate synthase Bacillus subtilis	99	85	1677
1 288	-	2535	2275	gi 1256625	[putative (Becillus subtilis]	99	2	791
1 292	~	1133	942	91 1511604	M. jannaschil predicted coding region MJ1651 (Methanococcue jannaechii)	99	30	192

length (nt.)	828	936	610	150	480	961	56				29			- 075			66							3.5	•
1 ident	\$	\$	•	28	52	47	1 55	9	85	5	97		;		9	***			; ;	; ;	5			8	
1 sim	99	99	99	99	99	99	99	99	99	99	99	7 99	99	99	95	99	9	99	- 99	99	99	 y	3	*	
efatch geno name	esterase Bacillus stearothermophilus	Cytochross a assambly facto (Bacillus subtilis) sp/P24009 coxx Bacgu PROBABLE CYTOCHROHE C OXIDASE ASSEMBLY PACTOR.	alginata lyase (Psaudomonas aeruginosa)	[biotin synthetese (Bacillus sphaaricus)	7, 8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (Becillus ubtills)	epic gane product (Staphylococcus epidermidis)	unknown (Schizosaccharomyces pombe)	PREPIENATE DEHYDROGENASE (EC 1.3.1.12) (PDH).	unknown [Bacillus subtilis]	purine nucleoside phosphorylese (Escherichie coil)	P-mainobenzoic acid synthase (Streptomyces griseus) pir JN0531 JN0531 p- aminobenzoic acid synthase - Streptomyces riseus	cytidine deaminese (Bacillus subtilis)	unknown (Mycobactarium tuberculosis)	Na+ ATPase subunit J Hycoplasma genitalium]	M. Jannaschii prodicted coding region Wills4 (Methanococcus Jannaschii)	HrgA (Bacillus subtilis)	lysostaphin (ttg start codon) (Staphylococcus simulans) pir A23881 A23881 A29881 A2908taphin precursor - Staphylococcus simulans ap P10947 LSTP_STASI LYSOSTAPHIN PRECURSOR (EC 3.5.1).	DNA-1-methyladenine glycosidase [[Hacmophilus influenzae]	M. genitalium predicted coding region MO372 [Mycoplasma genitalium]	ORF_0234 (Escherichia coli)	hypothetical protein (Synechocyatis ap.)	HYPOTHETICAL 46.7 KD PROTEIN IN MSBB-RIVB INTERCENIC REGION (ORFU).	ORF266; putative (Lactococcus lactis phage 8K5-T)	novel antigen; orf-2 (Staphylococcus auraus)	医吸收性 医多种性神经 医电影 医电影 医电影 医电影 医医神经神经 医电影 医克里耳 医二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲
Acession	191,216314	gi 994794 	91/1107839	911520750	21 167468	91 581649	91 1103505	SP P20692 TYRA_	91 467416	91 147309	91 (388263	91 606744	91 1460081	91 1046024	91 1500008	91 852076	91 153047	91 1204905	91 1046082	91 305014	81/1001353	sp P24204 YEBA_	928839	91 148695	
Stop (nt)	6	1978	2682	2302	715	963	483	1845	1599		79	5254	1103	15.	888	5299	5413	480	1383	724	200	ii.	706	_	
Start (nt)	911	282	2053	2460	1214	-	232	2468	2150	212		4826	1738	~	_	5679	3405	956	9901	=	1190	-	1410	23	
<u>\$</u> 2	- ; .	;	-	- i	- i	_		-	_	-			~		-	-		_	-	-	_	-	-	-	
	i		Ĭ	•		Ĭ		_	_			-;	-;		-;	-:	:	-	- :	-:	-	- ;	+	- ;	

S. aureus - Putative coding regions of novel proteins similar to known proteins

5

Contig	10 T	Start (nt)	Stop (nt)	acession	maith gene name	e is 1	1 ident	length (nt)
619	<u></u> -	468	845	91 746573	similar to M. musculus transport system membrane protein, Wramp PIR:A407199 and S. ceravisise SWFI protein [PIR:A45154] Caenorhabditis elegans)	99	\$	378
1 706	- 2	561	355	91 804808	unknown protein (Rattus norvegicus)	99	9	207
734	~_	673	\$12	91 1519085	phosphatidy/choline binding immunoglobulin heavy chain IgH variable region [Mus musculus]	99	09	162
760	-	_	716	191 1209272	argininosuccinate: lyase [Campylobacter jejuni]	32	7.	315
794		910	747	91 435296	alkaline phosphatass like protein (Lectococcus lactis) pir(539339 539339 alkaline phosphatase-like protein - Lactococcus actis	99	3	
R52	-	338	171	gi 536955	CG Site No. 161 [Escherichia coli]	99	\$	168
886	-	_	158	191 289272	[ferrichroms-binding protein [Bacillus subtilis]	99	3	156
989	<u>-</u>	462	232	91 833061	HCM/UL77 (AA 1-642) (Human cytomegalovirus)	99	99	102
893	-	~	247	191 149008	putative [Helicobacter pylori]	99	\$	346
906	-	1425	55.	191 580842	[P] [Bacillus subtilis]	99	15	(6)
906	-	2300	1473	191 790945	aryl-alcohol dehydrogenase (Bacillus subtilis)	99	S	828
1 947	-	67	549	191 410117	dlaminopimelate decarboxylase (Bacillus subtilis)	99	5	14.
950		1100	552	[gi 48713	orf145 (Staphylococcus aureus)	99	35	549
955	~	£	475	101 1204390	uridine kinase (uridine monophosphokinase) (Haemophilus influenzae)	99	95	387
186	~	1308	997	1911457146	rhoptry protein [Plasmodium yoelii]	ąş	er.	313
986	-	52	315	1911305002	ORF_f136 (Escherichia coll)	99	ī	162
1057	-	-	203	191 1303853	YqgF [Becillus subcilis]	99	•	201
1087	-	-	294	191 575913	unknown (Saccharomyces cerevisiae)	99	23	767
1105	-	-	1 231	gi 1045799	methylgalactoside permeass ATP-binding protein [Mycoplasma genitalium]	99	*	162
1 1128	-	~	574	[91 1001 19]	hypothetical protein (Symechocystis sp.)	99	9	573
1150	-	498	1 250	19111499034	M. jannaschii predicted coding region MJ0255 (Nethanococcus jannaachii)	99	9	249
1140	- 2	00	453	191 215908	DNA polymerase (g43) (Becteriophage T4)	99	99	255
1208	-	1123	587	[g1]1256653	DNA-binding protein (Bacillus subtilis)	99	. 58	537
1342	-	-	402	[01]1208474	hypothetical protein (Symethocystis sp.)	99	S	402
1361	~	589	398	191 215811	tail fiber protein [Bacteriophage T3]	99	20	192

unt length	40 249	_	38 186	1 291 162	39, 234	44 279	1 (12 14	192	45 19B	681 19	180	1 195	1 69 187	1 668 1 49	60 201	46 249	348	46 228	1 906 50	47 858	1 936	38 1032	50 537	52 1026
a ichant	_	_	-	-	-	-	_	-		-	_	-	_	-	-	-	: :	-	_	_		_	_	
e in	99	99	99	99	99	99	99	99	99	99	99	99	99	98	99	3	3	99	\$	65	65	65	65	\$
match gene name	DMA helicase II (Mycoplasma genitalium)	precursor for the major merotoite surface antigens (Plasmodium alciparum)	exodeoxyribonuclesse (Bacillus subtilis)	unknown (Schirosaccharomyces pombe	[putative transcriptional regulator [Mathanococcus jannaschii]	cytotoxin L (Clostridium sordellii)	autolysin Staphylococcus aureus	[heterocyst maturation protein [Masmophllus influenzas]	Yqew (Bacillus subtilis)	protein-dependent (Bacillus subtilis)	[unknown (Schizosaccharomyces pombe)	DNA polymerase III, alphe chain (Haemophilus influentae)	(Respiratory nitrate reductaso (Bacillus subtilis)	Prov Bacillus subtilis	acyl-CoA dehydrogenese (Becillus subtilia	gluconate permeaua (Bacillus licheniformis)	IMO-CoA reductase (EC 1.1.1.88) [Pseudomonas meralonii] pir A4176 A4175 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	hemocyanin subun	cynR [Escherichia coll]	ORF_0310 (Escharichia coli)	recombination protein (ttg start codon) (Bacillus subtilis) gi 1303923 RecN (Bacillus subtilis)	[crcD gane product [Alcaligenes autrophus]	acyltransferase (Saccharomyces cerevisiae)	phosphoribosyl anthranilate transferase (Lactococcus lactis) pir 533126 535126 anthranilate phosphoribosyltransferase (SC ,4.2.18) - Lactococcus lactis subsp. lactis
Ratch	g1 1045935	191 929798	[91[1256623	91 1019410	91 1510394	191 1000695	[91]765073	91 1205784	91 1303813	91 1070014	91 984212	91 1204987	9111009366	91 1109684	01 853760	11 563952	91 151259	pic A26713 BHHC	91 145646	91 887824	91,143402	93 1403126	91()169187	91/149518
Stop (nt)	251	400	188	164	235	280	275	305	172	189	225	386	387	00+	202	347	350	234	9750	3565	966	3524	1372	2492
Start (nt)	66+	176	173	225	468	558	-	**	80	-	404	\$80	-	798	402	164		-	8845	2708	1993	2493	-	1467
	- [~	_			-		-	-	-	-	-	-	-		_		-		5		-	_	
Cont 10 ORF 10 10	-:						- 7	- 7	ĭ	ī	3081	ĭ	ī	- 7	- 7	1924		;		;		:	- •	

TABLE 2

879 609 192 185 182 852 930 13 756 490 786 331 360 954 924 239 282 101 357 957 \$25 717 3 2 = 2 **\$** 7 = 33 3 9 ê ç 33 4 \$ 46 \$ Ş 42 33 12 8 8 ş \$ Ş Ş 5 65 65 2 9 \$ 5 9 : \$ Ş 9 65 Ş 65 Ş Ş ş 9 S-adenosyl-L-mathionine:uroporphyrinogen III methyltransferase Bacillus H. influenzae predicted coding region M10594 [Naemophilus influenzae] H. influenzae predicted coding region HI0388 (Haemophilus influenzae) M. genitalium predicted coding region MG372 [Mycoplesme genitalium] glucosamine-6-phosphate deaminase protein (Haemophilus influentae) N-terminal acetyltransferase complex, subunit ARD1 (Nathanococcus molybdenum cofactor biosynthesis protein (Heemophilus influentee) aureus - Putative coding regions of novel proteins similar to known proteins D-hydroxyisocaproate dehydrogenase (Lactobacillus delbrueckii) |NAD(P)!-flavin oxidoreductase (Haemophilus influenzas) cystathionine beta-lyase (Emericella niculans) [lysophospholipase L2 (Naemophilus influenzas) initrite reductase (nirD) (Bacillus subtilis) hypothetical protein (Synachocyatis sp.) sporulation protein (Bacillus subtilis) ORP 311 (AA 1-311) (Bacillus subtilis) AppA protein (Salmonella typhimurium) OppB gane product (Bacillus subtilis) CG Site No. 361 [Escherichia coli] [permease [Haemophilus influenzae] H-protein (Flaveria cronquistii) |pir|A44459|A444 |troponin T beta Tnf-5 - rabbit unknown (Bacillus subtilis) |unknowm (Bacillus subtilis) YqhJ (Bacillus subtilis) yeik [Escherichia coli] match gene name jannaschi!] negaterium) 191 1204896 91 1204844 91 104 5082 91 | 1322116 101 1001 708 191 1339263 |gi|1204637 191 | 1204399 |gi|1212729 191 1205518 191 | 1511532 191 11205905 gi | 467423 91 142695 1 8595 |01|536955 191 143607 191 | 467424 110119 |011/10021 91 547: 91 493074 91 | 509245 191 405882 91 | 580897 191 39881 2119 9841 1433 1988 1140 1058 8272 \$375 3454 8357 19528 8832 7588 1503 10387 923 757 Start (nt) 10439 110 | 7165 19172 1 60g 2250 3647 1339 4446 4728 8548 2598 10851 9386 6635 7421 11040 954 795 262 96 580 225 390 • • <u>0</u> 10 RF ~ = 7. ~ 2 Contig 106 11 ፰ 38 Į = ç 2 22 55 63 5 7, 11 ۲ æ 5 86 88 102 102 103 103 109 2

5

10

15

20

25

30

35

40

45

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

Contig 10kF 1D 11D	10 OK	Start (nt.)	Stop (nt.)	match	match gene name	E S	1 ident	length (nt)
110	-	3688	3915	91 407881	stringent response-like protein (Streptococcus equisimilis) pir[5]9975 5.39975 stringent response-like protein - Streptococcus quisimilis	20	Ş	228
110		3882	4295	911407880	ORPI (Streptococcus equisimilis)	. S	20	41
110	-	(231	4180	191 1139574	Orf2 (Streptomyces griseus)	65	\$6	150
112	01	9218	8640	191 1204571	ii. influenzae predicted coding region H10318 (Haemophilus influenzae)	65	25,	579
112	122	112049	11288	ui 710496	[transcriptions] activator protein (Bacillus bravis)	1 89	32	162
125	=	2	1 202	91 1151158	repeat organellar protein (Plasmodium chabaudi)	65	39	101
126	=	-	422	01 37589	precursor (Homo saplens	65	9	430
127	Ξ	1107.	12658	91 1064809	[homologous to spiifTRA_ECOLI [Dacillus subtilis]	S	7	1926
143	-	1 3543	1004	191 216513	mutator mutT (AT-GC, transversion) Eschetichia coli]	. 59	36	Š
145	-	1 3587	1 3838	qi 1209768	D02_orf569 [Nycoplesma pneumonime]	\$9	27	32
150	7	1 3482	2841	gi 1146225	[putative (Bacillus subtilis]	65	37	64 2
166	<u> </u>	3858	1948	9; 1148304	beca-1, 4-N-acetylauramoyllydrolase [Enterococcus hizaw pir [442296 A42296 lysosyma 2 (EC 3.2.1) precursor - Enterococcus irae (ATC 9790)	\$	8	1161
188	9	1 3195	1178	191 151943	ORF3, putative (Rhodobacter capsulatus)	65	9	984
- F	-	4982	47.85	191158812	ONF IV (AA 1-489) (Pigmort mosaic virus)	. s	Q	198
195	·•	1 7408	5272	lg1 145220	alanyi-tana synthetaso (Eschepichia cuili)	50	\$	2637
195	- 2	10599	B104	191 882711	exonuclease V alpha-subunit (Escherichia coli)	65	38	2496
206	91	116896	18191	191 408115	ornithine acetyltransferase (Bacillus subtilis)	65	\$	1296
117	-	3844	3215	gi 1205974	S'quanylate kinase (Haemophilus influentae)	9	=	630
220		5265	13751	91 580920	rodb (gtaa) polypeptide (AA 1-673) [Bacillus subtilis pir 506048 506048 probably rodb) protein - bacillus subtilis ap P13464 TAGR_BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFERASE (EC 2.4.1.52) [TECHOIC ACID BIOSYNTHESIS ROTHN E).	\$	9	1515
236	2	12327	1 3709	191 1146200	DNA or KNA holicase, DNA-dependent ATPase (Bacillus aubtills)	65	9,	1383
237	-	1902	1 2513	fgi 149379	HisBd [Lactococcus lactis]	S9	9	612
371	-	4968	4195	191 (1205308	ribonucleasu HII (EC 31264) (RNASE HIII (Haemophilus influensee)	99	05	174
252	-	1278	\$	19111204989	hypothetical protein (OB:U00022_9) [Haemophllus influenzae]	59	Ç	319
	-	4180	7966		() Constitution () () () () () () () () () (**	7	987

Noise Nident Dength (nt)	65 42 276	65 45 168	1 65 40 723	N-acetylglucosamine transport protein [Sacherichia coli] pir[82995]MQEC2N 65 50 888 phosphotransferase system enzyme II (EC. 7.1.69), M-acetylglucosamina- specific - Escherichia coli sp P09323 PTAA_ECOLI PTS SYSTEM, N- ACETYLGLUCOSAMINE-SPECIFIC IIABC OMPONENT (EIIA	59	llus subtilis] 65 (48 1311	Uteus 65 34 231	65 47	65 51 462	lkaline phosphatase regulatory protein (Bacilius subtilis) pir[A27650 A27650 regulatory protein phoR - Bacilius subtilis sp P23545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SEMSOR PROTEIN HOR (EC	dihydrolipoamida transsuccinylase (odh8; EC 2.3.1.61) [Bacillus ubtilis] 65 50 681	itae) 65 45 297	195 N1 59	65 47	65 41	65 39 568	- 59	vinyl transferase (Acinatobacter 65 48 1326		474 E2 63	65 39 456	Escherichia coli) ir 537754 55 44 62
match gene name	orfx [Bacillus subtilis]	unknown (Bacillus subtilis)	protein-dependent [Bacillus subtilis	4-acetylglucosamine transport protein (Escherichia coli) pir 829, phosphotransferase system enzyme II (EC 7.1.69), N-acetylglucos specific - Escherichia coli sp P0923 PTAA_ECOLI PTS SYSTEH, N-ACETYLGLUCOSAHINE-SPECIFIC 1188C OHPONENT (EIIA	biotin synthase (Bacillus subtilis)	membrane-associated protein [Bacillus subtilis]	tRNA-glucamine synthetase (Lupinus luteus)	NAD* dependent glycerol-1-phosphate dehydrogenase (Bacillus subtilis)	ORF1 (Staphylococcus aureus)	alkaline phosphatase regulatory protein (Bacillus subtilis) pir A27650 A27650 regulatory protein phoR - Bacillus subti sp P23545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSON 2.7.31.	dihydrolipoamide transsuccinylase (o	ORF YOR195w (Saccharomyces cerevisiae)	degs procein (Dacillus subvilis)	ribokinase (Haemophilus influenzae)	Na/H antiporter homolog [Lactococcus lactis]	glycyl-tRWA synthetase (Mycoplasma genitalium	putetive (Pseudomonas seruginosa)	UDP-N-ecetylgucosamine i-carboxyvinyl transferase (Acinatobacter	transmembrane protein (kdpb) (Escherichia colif	reductase [Loishmania major]	OafA (Salmonella typhimurium)	open reading frame upstream glnE [Escherichia coli] lr 537754 537754
match izession	91 496558	gi .67418 v	9111070014	91 146913	1 1277029		91 1050540		(91 (1340128 (0	91{143331	91 143268 10	19111420465	01 43698 c	91 1204756	Q1 599848 b	91 1045942	91 1498192	gi 415662 u	91(146551)t	91 603456	9111518853 0	91 49399
Stop (nt.)	27.R	818		1399	0716		1831	1621	669	576	4346	Ê		10215	1531	865		5637	430		459	683
Start	-	982	3586	2286	07.07	1490	_	3421	236		3666	187	21.2	9280	1241	1452	1032	4312	~	54	-	1509
10 PF	-	- 2	-	~	\$		-	_ 	- -		2	_	-	Ξ	7	7	-		_	~	-	7
Cont. 19 1D				1	•			: :	: :			: :	: :	: :		: :	: :	:	•			

5		l Jength Inti	1 282	741	651	009	187	949	1 231	1 408	=======================================	124	207	153	72.1	949	187	201	324	135	168	294	153	276	141	339
		1 ident	52	1 37	- 1	\$	29,	\$	35	1 37	94	~	;	46	34	9	Ş	A	34	21	17	45	ş	99	4.1	7
10		e is	59	1 65	59	9	59	9	59	59	59	SS	\$	59	\$9	. 65	65	59	9	65	9	65	ş	59	69	69
15					• • • • • • • • • • • • • • • • • • •								(12,					occus					118	1988) Se from frome A		
20	Putativa coding rugions of novel proteins similar to known proteins			- ea	(a)		ubtilis	sparum)	0 PP P				AppCacytochrome d oxidase, subunit i homolog (Escherichia coll, Kl2, aptide, 514 as)	18)	6 6 6 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eraces]	enzael	2.1.1) - Streptococcus			na genitalium)	us sp.	pir J01024 J010 hypothetical JOK protein (DmRP140 5' region) - fruit fly (Drosophile	to E.coli thioredoxin reductase: J.Biol.Chem. 1988) to F32a protein of alkyl hydroperoxide eductase from iol.Chem. (1990) 265:10535-10540; pen reading frame A urianum)		8
25	proteins simila		llus subtilis)	acillus subtili	acillus subtili	ccus gordoniil	ein (Bacillus s	Plasmodium falc		ystis sp.]	_	subtilisj	unit i homolog	Bacillus subtil		se (Spinacial	emophilus influ	orase Sts1 (EC		• • • • • • • • • • • • • • • • • • •	1_76 [Mycoplas:	(Rhodococcus	140 S' region)	ioredoxin reduction of alkyl 6990) 265:10535-	tilis	rwinia harbicol
<i>30</i>	ions of novel		e (nicB) Baci	ing protein (8	ing protein (B	ein (Streptoco	A. binding prot	ance protein (Bacillus sp.]	tein (Synechoc	res cerevisiae	ein (Bacillus	doxidase, sub	inspeptidase (ım meliloti)	ate 3-epimera	on protein (Ha	-methyltransf	A coli)	terocolitica)	ein (CB:U1400	ective amidase	protein (DmRP)	to E.col. to F52a iol.Chem urianum]	(Bacillus sub	carboxylase (E
35	tativa coding rag	match gene name	nitrite reductase (nirB) Bacillus subtilis)	ferrichrome-binding protein (Bacillus subtilis	(errichrome-binding protein (Bacillus subtilis)	ATP binding protein (Streptococcus	single strand DNA, binding protein (Bacillus subtilie)	multidrug resistance protein (Plesmodium falciperum)	unknown protein (Bacillus sp.)	hypothetical protein (Synechocystis sp.)	2362 (Saccharomyces cerevisiae)	DMA-binding protein [Bacillus subtilis]	AppCacytochrome c aptide, 514 aa)	gomma-glutamyltranspeptidase (Bacillus subtills)	unknown [Rhizoblum	ribulose-5-phosphate J-epimerase (Spinacia .leracea)	lactam utilization protein (Haomophilus influenzae)	site-specific DNA-methyltransforase Stal (EC 2.1.1)	'ORF' (Escherichia coli)	TrsH (Yersinia enterocolitica)	hypothetical protein (GB:U14001_76) [Mycoplasma genitalium]	enantiomerase-selective amidase (Rhodococcus sp.)	hypothetical 30K melanoguster)	product homologicus to E.col 261:9015-9019, and to F52a 5.typhimurium: J.Biol.Chem [Clostridium pasteurianum]	ORF! gene product (Bacillus subtilis)	indolepyruvete decerboxylase (Erwinia herbicola)
40	S. aureus - Pu	match	91 710020	184 289272	91,1289272	94(310631	91 467374	91 160399	91 1129096	91 1006604	91/1199546	91 1256653	gi 238657	91 1491813	91,642655	91/1162980	91 1205959	pir 535493 5354	91 473794	91 633699	91 1045789	91 152052	pir[JQ1024]JQ10	9061-114906	91 49315	117,051
45		Stop (nt.)	283	177	354	631	977	850	313	408	4.14	174	232	262	27.		495	276	577	138		297	154	278	7.7	
		Start (nt)	564	-	196	~	193	1698	2	-	-	-	5.6	7		1399	1881	476	900	272	336	590	306		282	629
50		0 0 0 E	-	-	7	-	~	-	-	-	-	_		_	_	-	_		7	-	7	-			-	-
		Cont ig	705	712	212	743	749	762	788	850	908	925	1031	1037	1053	1149	1214	1276	1276	2057	2521	2974	1691	9069	3146	3170

5		length (nt)	303	721	186	306	363	1260	114	009	1170	1977	1143	345	606	360	919	246	339	1152	780	009	987	285	297	***
3		* ident	42	42	_	- 05	42	45	36	1.7	45	42	0	46	53	05	\$\$	3	28	46	42	44	46	47	28	97
10		e in	29	65	65	65	65	99	39	99	79	9	99	79	99	79	3	•	3	9	3	3	2	3	99	39
15 5	ocentus		18437 538437 hsdM				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	_			_				_			olica) e (EC .1.1.21) -	us jannaschiil				ir \$27891 \$27891	s jannaschil)
20	imilar to known pr		richia coll] pir S 09629 hypothetical		subtilis		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					hilus influenzael			rae 0139)			elegansi		ase (Pichia methanolica idazole carboxylase (EC	bunit (Methanococc		11.		sickness virus] p	coding region MJ1163 (Methanococcus jannaschii)
25	roteins *		S09629 S	go sativa	Bacillus	visiae)			paradoxa)	s)	subcilis]	t [Haemop	coli)	btilis)	rio chole			habditis		-carboxil ylaminoim	inding su	s)	richie co		can horse orse sick	region M
20 25 25 25 25 25 25 25 25 25 25 25 25 25	regions or nover p	q E e	nsdM gene of Ecopri gene product [Escherichia coli] ptr 538437 538437 hadM protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (5UB 40-520)	NADH-glutamate synthase [Hedicago sativa]	Respiratory nitrate reductase (Bacillus subtilis)	ORP YGROB7c Saccharomyces cerevisiae)	vitellogenin (Anolis pulchellus)	chia coli]	ycf27 gene product (Cyanophora paradoxa)	aphylococcus aureus	ipa-85d gene product (Bacillus subtilis)	fructose-parmesse IIBC component [Haemophilus influenzae]	permease (Escherichia coli)	orf 2 gene product [Bacillus subtilis	igar epimerase (Vibrio cholerae	is subtilis!	is subtilis]	similar to zinc fingers [Caenorhabditis elegans]	unknown (Rhizobium meliloti)	-aminoimidazole ribonucleotide-carboxilase (Pichia methanolica) pir[5]9112[5]9112 phosphoribosylaminoimidazole carboxylase (EC yeast [Pichia methanolica)	ABC transporter, probable ATP-binding subunit (Hethanococcus jannaschiil	(Staphylococcus aureus)	lysine specific permease [Eschucichia colif	unknowm (Bacillus subtilis)	serotype-specific antigen (African horse sickness virus) pir(S27891 S27891 capsid protein VP2 - African horse sickness virus	predicted coding
35	ucacive coding	match gene name	hsdw gene of protein - Es	NADH-glutamat	Respiratory	ORP YGROBIC	vitellogenin	deaD [Escherichia coli]	ycf27 gene pr	autolysin (Staphylococcus	ipa-85d gene	fructose-perm	glutemate per	orf 2 gene pr	nucleotide sugar	YqjJ (Bacillus subtilis)	gltC (Bacillus	similar to zi	unknown (Rhiz	5-aminoimidazole pir 539112 53911 yeast (Pichia me	ABC transport	olysin	lysine specif	unknowm (Baci	serotype-specific ar capsid procein VP2	M. janneschii predicted
40	S. aureus	metch	gr 450688	91 166412	gi 1009366	7216261 16	91/1197667	91 145727	91 1016232	10591	9414009	91 1204696	191 290503	191 39815	91 1230585	191 1303961	gi 457514	91 (470331	91 642655	91 157702	91 1511513	193 [765073	91 166778	91 467484	91 210061	91/1511160
45		Stop (nt)	303	328	189	308	364	5518		6454	111537	4364	3013	4409	8760	1899	3855	30247	1 2421	6027	10030	009	4854	554	7810	6721
		Start (nt)	-	7	57.	613	726	4259	1639	1053	12706	2388	1871	4065	7852	1540	4793	30002	2759	7178	9251		3868	838	7514	7134
50		ORF TD		-	-	_	~	~	9	æ	=	-	_	9	<u>-</u>	_	9	124	₹.	<u> </u>	6	_	2	~	<u></u>	-
		Contig ORF	3546	1 3782	3990	4032	4278	61	19	2	3.	2	36	1 37	45	53	95	26	- 62	88	96	100	901	123	127	131

TABLE 2

			- • -	- + -		- + -	- • -	- • -	- + -						_	_													
5		length	639	3		40.4	366					222	200	279	891	486	102	666				747			1116	630	282	\$49	\$55
		1 ident	\$	25	3	95	1	=	42				6	8	6)	38	52	8		; ;	;	6			ç	5	7	- BX	2
10		1 sim	3	64	***	99	79	19	39	79		5 3		79	79	- 64	- 59	2	7	3	3	2	3	;			2	3	-
15	eins	; ; ; ; ; ; ; ; ; ; ; ; ;	noniae)				•	•		***************************************						1	anneachii	C .2.1.11)				Plococcus			- • -				_
20	ir to known prot		llus pleuropneu		nii)												Methanococcus	subeilis) Denydrogenase (EC				occus hominis; protein - taph			avía)		Jesusa		
25	proteins simils		nit (Actinobaci	- Leishmanla major	eumocystis cari		1 1 1 1 1 1 1 1 1 1 1 1 1	•	melilotij	occus aureus}	erichia coli)	lusi		subt () i e)			region MJ0837	Jenase (Bacillus E-SEMIALDEHYDE D	lum leprae]		[Escherichia coli]	spanning protein (Staphylococcus hominis) potential membrane spanning protein - tap	subtilis)	18]	in (Secillus br	(Line or in monocut possess			
30	 Putative coding regions of novel proteins similar to known proteins 	9	riboflavin synthase alpha subunit (Actinobacillus pleuropneumoniae)	tase protein - L	major surface antigen MSG2 (Pneumocystis carinii)	hia coli)	(Bacillus subtilis)	lus subtilis;	act (Rhizobium m	analog (Staphylococcus aureus)	No definition line found (Escherichia coli)	argC (Bacillus stearothermophilus)	ORF 6 (Asotobacter vinelandii)	1pa-90d gane product [Bacillus subt();*		control control	M. Jannaschii predicted coding region MJ0837 (Methanococcus jannaschii)	aspartate semialdehydə dehydrogenase (Bacillus subtlis) ap qo4797 nias_bacsu aspartate-semialmenyde deiydrocenase (ASA deiydrocenase),	hflx; 82235_C2_202 (Mycobacterium leprae)	*ubc111\$1			lysine decarboxylase [Bacillus subtilis]	quinol oxidase [Bacillus subtilis]	transcriptional activator protein (Sacillus brauls)	9 kDa protein	ubeiliel		ichia colij
35	stative coding r	match gene name	riboflavin syn	probable reductase protein	major surface	DinP (Escherichia coli)	ORF72 (Bacillus	unknown (Bacillus subtilis	phaD gene product (Rhizobium	11 8841	No definition 1	arge (Bacillus	ORF 6 (Aggtobac	tpa-90d gane pr	P17 (Listoria monocatoria)		M. Jannaschil p	aspartate semialdeby sp[Q04797]DHAS_BACS (ASA DEHYDHOGENASE)	hflx, 82235_C2_	YqfR (Bacillus subtilis)	primosomal protein n'	Potential membrane pir S42932 S42932 hominis	lysine decarbox	quinol oxidase	transcriptional	ORF2; putative 19 kDa protein	fcsA (Bacillus subeilie)	0.00	orr_offo [Escherichia coll)
40	S. aureus - P.	maten acession	91 1173517	pir A32950 A329	15186111	91 984587	91 903304	91,467483	gi 1072398	961001919	91 396380	91 304134	91 142359	01 414014	ui 1664754		01/1499663	91 142828	gi 467091	91 (1303839	91 117345	91 459266	91 580835	91 143396	1 210496	91 1131 4295	91 142940		
45		Stop (nt)	4817	356	3295	2307	4880	191	47.44	2500	13446	16938	282	6928	848	ï	- i	5567	1163	1450 /g	1267	1488	1446 9		635 9	4239 9	549 9	2324 10	- 1
		Start (nt)	5455	709	3555	Ä	3855	2	6355	2042	_	6	960	7818	1330		70	\$959	-	13	2532	742	1625		1264	 	-	2878	- ‡
50		0 C C	5	-	9	-	~	-	9	_	=	51			7	-		•	-	-		~	 5	4	-	- 8	-	-	Ť
		Contig ORF	142	163	149	154	161	165	175	188	195	206	1 215	243	1 258	250	667	563	171	280	293	295	301	315	321	333	342	353	
																		•	- •	+	- +	+				_	÷ —	· -	. :

55

65

_		length (nt)	2832	4	888	519	ן נונ	570	1428	4	1059	80\$	288	162	198	195	1545	492	750	139	915	270	675	210	195	252
5		1 ident	4)	35	7	\$, 15	38	\$\$	st	38	38	*	3	35	Ŧ	39	41	46	20	Ŧ	Ç	46	4	42	88
10		t sia	79	79	3	99	9	3	3	64	3	3	3	3	3	3	3	79	3	3	3	3	8	20	3	39
15	un proteins		Bacillus subtilis			phosphotransfarase system glucose-specific enzyme II (Bacillus subtilis)				spermidine/putrescine transport system permease protein (Haemophilus influentee)			H. influentae predicted coding region H10318 [Haemophilus influentae]	luenzae)		s cerevisiae)						cyclomaltodextrin glucanotransferase (Becillus stearothermophilus: 1/39835 cyclomaltodextrin glucanotransferase (Bacillus earothermophilus)	anterotoxin type E precursor (Staphylococcus aureus) pir[AZ8179 AZ8179 enterotoxin E precursor - Staphylococcus aureus sp[P12993 ETKE_STAAU ENTEROTOXIN TYPE E PRECURSOR (SEE).	(Ibrinogen-binding protein (Staphylococcus aureus) pir 534270 534270 fibrinogen-binding protein - Staphylococcus ureus		
20	- Putative coding regions of novel proteins similar to known proteins		(EC 1.2.4.2) -	- Streptococcus mutans		ific enzyme II	richia coli)		a 1911]	permeasa prote			H10238 (Haemoph	bacterioferritin comigratory protein [Haemophilus influenzae]	icana]	dicarboxylic smino acids Dip5p parmease (Saccheromyces cerevisiae)	FRAGMENT).	-		ilisj		yciomaltodextrin glucanotransferase (Bacillus stearothermophilus cyciomaltodextrin glucanotransferase (Bacillus earothermophilus	coccus aureus)	Staphylococcus aureus) pi - Staphylococcus ureus		
25	roteins		oamide)	Strepto		se-spec	(Sache		rtophage	system		7	region	otein [ma ener	permeas	NOLDGI	stis sp	_	us subt		erase (itaphylococi SEE).	phyloco taphylo		rey1]
	novel p		se (lip	omolog -	_	em gluco	horylase	0111	n (Bacte	ransport		subtilis	coding	atory pr	treptogy	s DipSp	0GT 5'B	ynechocy	ubtilis)	[Bacil]	dum)	notrans	ursor (S r - Stap CURSOR (ein (Ste tein - S	-	ilus duc
30	ng regions of	a name	exoglutarate dehydrogenase (lipeamide)	diacylglycerol kinase homolog	orfx [Bacillus subtilis]	nsferase syst	purine nucleoside phosphorylase (Escherichia coli)	ORF_ol62 [Escherichia coli]	host interacting protein (Bacteriophage Bl)	/putrescine t	25	ahrc procein (Bacillus subtilis)	tae predicted	rritin comigr	HADH dehydrogenasa F (Streptogyna americana)	ic smino acid	HYPOTHETICAL PROTEIN IN OGT 5'REGION (FRAGRENT)	hypothetical protein [Synechocystis sp.]	DNA primase (Bacillus subtilis)	arginyl tRNA synthetase (Bacillus subtilis)	pfoS/R (Treponema pallidum)	dextrin gluca odextrin gluc	nterotoxin type E precursor (Staph enterotoxin E precursor - Staphylo ENTEROTOXIN TYPE E PRECURSOR (SEB)	Ibrinogen-binding protein (Rap60 (Bacillus subtilis)	HhdA precursor [Haemophilus ducreyi]
35	tative codir	match gene name			ortx (Baci)	phosphotrar	purine nucl	ORF_0162 [E	host intere	spermidine/p influenzae	FHU PROTEIN	ahrC prote	H. influent	bacteriofe	NADH dehyd	dicarboxyl	IIYPOTHETIC	hypothetica	DNA primas	arginy) tR	ptos/R (Tr	cyclomaltoc	enterotoxir enterotoxi ENTEROTOX	fibrinogen-	Rap60 (Bac	HhdA precus
40	S. aureus - Pu	metch	pit 525295 A328	pir A36933 A369	91 969026	9111146177	91 147309	91 606176	91/136948	9111205582	sp 936929 FMU_E FMU PROTEIN.	91 142450	91 1204496	[91]1204511	[91]755823	1911.213234	sp P46133 YDAIL_	191 1001383	91,142865	1911971336	gi 1354775	91 39833	gi 153002	91(311976	91 1049115	gi 1151072
45		Stop (nt)	3658	4839	1133	591	4798	1604	6107	1471	1159	410	290	1323	986	746	12257	502	152	339	917	344	677	963	909	748
	·	Start (nt)	827	4429	2020	1109	4082	1035	1680	1911	1217	~	•	3162	759	940	3801	11	~	-	1831	675		1172	800	666
50		Contig ORF	~	9	-	-	1	~	- 2	-	-	-	-	-	-	~		- -	<u>-</u>	- -	- -		-	~_	7	~
-		Contig	379	ě	407	425	3	057	470	486	497	1 501	\$14	\$\$1	603	633	099	569	102	826	838	999	487	928	1049	1067

length (nt)	153	375	169	357	165	279	273	306	273	207	212	130	267	288	348	306	399	006	189	390	618	351	1848	870	*****
:	2	_	-	36	50 - 00	51 - 12	20 –	46 -		- 7	-	- 9		-	46	- =	-	77 - 78	- 3		47	36		-	
1 Ident		•	_			5	_			_	_	_	_		_	_	_			4	*		T	3	
# B #	79	9	2	30	3	2	3	39	64	3	3	49	3	3	29	39	3	3	9	3	3	69	3	2	, , , , , , ,
match gene name	[ATP-dependent nuclease [Bacillus subtilis]	lepiB gene product (Staphylococcus epidermidis)	pir A01165 TVMS transforming protein K-ras - mouse	[Na+ -ATPase subunit J (Enterococcus hiree)	argC (Bacillus stearothermophilus)	cytochrome oxidese subunit I (Secillus firmus)	hypothetical protein (GB:GB:D90212_3) (Haemophilus influenzae)	Respiratory nitrate reductase (Bacillus subtilis)	[alginate lyase [Pseudomonas aeruginosa]	D-lactata dehydrogensse (Lactobacillus plantarum)	-	acetyl-CoA acyltransfersse (Yarrowia lipolytica	unknown (Saccharomyces cerevisiae)	grsB gene product (Bacillus brevis]	[putative [Lactococcus lactis]	ORF2 [Bacillus mogaterium]	vitellogenin (Anolis pulchellus)	OX7 C (Staphylococcus aureus)	al gene product [Bacterlophage Bl]	expressed at the end of exponential growth under conditions in which he entymes of the TCA cycle are repressed [Bacillus aubtilis] gild6748] expressed at the end of exponential growth under ondtions in which the entymes of the TCA cycle are repressed Bacil	ORF (Saccharomyces cerevisiae)	hypothetical protein F-92 - Escherichia coli	pyruvate synthase [Halobacterium halobium]		
acesion	691 142439	91 581648	pir A01365 TVMS	191 487282	91 304134	01 531699	[91 1204349	191 1009366	lgi 1107839	91 216746	[01 149435	[91 5532	94688	24 39372	191 149435	191 (216267	qi 1197667	01 438228	Qt 1369943	91 467441	gi 496943	pir A04446 QQEC	91 43498	91 113967	*************
Stop (nt.)	202	377	214	358	356	352	274	306	362	288	312	333	378	368	349	307	4 00	2438	5423	061	5712	15019	6250	4738	
Start (nt)	50	751	_	~	520	-	346	- :	- 06	82	-		_	- 18	-	_	~	1539	1195	-	6329	69911	4403	3869	*****
<u> </u>		_	-	-	-	- -	- :	- - :	-	- 7	- -	-	_		-	-	-	_	-		•	123	_ •	~	
Concig	1120	1125	1688	-	2989	3013	3034	3197	1303	_	3868	3918	4000		4166		4457	1	24	23	4	4	48	20	•

FABLE 2

nt length (nt)	1728	570	_	192	_	810	_	6111 5	6 148R	1404	1 1503	0 216	276	-	1 1.746	-	1 1 1 1 1 2	-	1677	-	2 2004	1 834	9 1 165	5 1 267 1
1 Ident	4	39	~	96	\$	7	=	\$	46	7	=	Q	\$	=	=	=	45	Q	4	48	42	\$	94	45
e ie	63	63	63	63	G	63	63	3	69	63	69	63	3	69	13	69	63	63	69	62	3	3	63	63
match gane name	DHA polymerase III subunit (Bacillus subtilis)	ORF_0158 Escherichia coli	unknown (Rhizobium meliloti)	Phoc (Rhisobium mellioti)	NisG (Lactococcus lactis)	ipa-26d gene product (Bacillus subtilis	metH2, B2126_C1_157 (Mycobacterium leprae)	cystathionine gamma-synthase (Haemophilus influenzae)	sulfite reductase (NADFH) flavoprotein beta subunit [Escherichia oli]	hypothetical protein [Bacillus subtilis]	murE gene product Racillus subtilis]	dnaK Erysipelothrix rhusiopathiae	ORF 2, has similarity to DNA polymerase (Saccharomyces kluyweri) r S15961 S15961 hypothetical protein 2 - yeast (Saccharomyces ywerl) plasmid pSKL	CDP-diglyceride synthetase (Escherichia colii	[fructose enzyma 11 (Khadobactur capualatus)	elongation factor 7s (tsf) (Spiroplasma citri)	[CIY COI 114 grp 18 protein [Podospora anserina]	ORP_0335 Escharichia coli	arginyl-ERMA synthetese (Corynebacterium glutamicum) pir A49916 A49936 argininetRMA ligase (EC 6.1.1.19) - orynebacterium glutamicum	N-acetyl-glutamate-gamma-semialdehyde dehydrogenase Bacillus ubtills	secA protein [Bacillus subtilis]	AppA (Bacillus subtilis)	cobyric acid synthase (Methanococcus jannaschii)	ORF YRROS4c (Saccharomyces cerevisiae)
ratch	gi 467409	911:37036	91 142656	91 1399821	91 149376	191 413950	191 466997	191 1204344	191 882657	91 665994	91 40162	dr 148503	91 4870	91 1145476	[91 [151912	gi 152886	(91 1334547	91,606100	gi 433534 	91 580828	91 216334	gi 677945	91/1510558	191 486511
Stop (nt)	17607	1376	2112	1353	1 927	4403	7220	9448	1508	4125	7566	2106	10170	1298	H164	1886	1 2951	12804	2283	16489	1 5766	907	1 1708	1070
Start (nt)	115880	7945	2479	6562	1 223	4912	9006	10566	23	2722	6064	1262	10445	507	cour	1704	3145	11767	607	15893	9977	74	944	804
OR ID	:	!			~	5	5	80	-	-	۲	9	56	~	9	*	·-	2	~_	5-	2	-		~
Cont ig ID	:	į	i	5	2	Ŧ	16	2	120	120	127	149	149	164	991	169	186	195	201	506	220	221	727	261

		;	-:	•				-	÷ —	٠.																		
5		length	1242		986	747	987	=	726	387	225		1671		849	\$73	664	1 (12	228	190	199	285	300	396	537	540	480	1 419
J		1 Ident	=		38	=	9	3.8	25	=	7	-	- 65		- 07	35	45	767	52 –	- -	35	- 5	27	27 [38	- 65	- **	45 -
10		e je	59		69	9	3	3	69	5	3		3 3		1 69	63	63	63	- -	63	- 53	- 59	63	- 53	2	63	- 69	- 59
15	roteins		5807 METS_MYCLE SERINE (THIOL) -			11497 (511497	eudomonas aeruginosa				us sp. PCC 7942)	İ	P29K_STRPN 29 KD				_	_			_		_	Jannaschiil	_	_	-	-
20	milar to known p		(Hycobacterium leptae) spir46807 METB_MYCLE (EC 4.2.99.9) O-SUCCINYLHOMOSBRINE (THIOL).			417) [Pseudomonas aeruginosa] ir [511497 511497	in braß - eudomo	. 1.331 (FGDR).			codon) (Symechococcus PCC630) .ransport protein - Symechococc	influenzael	oniae) sp P42362					seschii)						2 (Methanococcus	nilus influonzas			faccalis)
25	proteins ai		(Mycobacterial (EC 4.2.99.		8 Subt () (s)	Pseudomonas	Sport prote				don) (Symech Insport prote	[Haemophilus	COCCUS pneum		400	761 101	ocini deckii	nococcus jan	3 Japonicus)	rificans)	sa lividans)	Osis		region KJ123	14) [Haemop	lis)	ubtilis	Enterococcus
30	- Putative coding regions of novel proteins similar to known proteins	name	CYSTATHIONINE GAMMA-SYNTHASE [HYCODECLERIUM leptae] sp P46807 METB_HYCLE CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9) O-SUCCINTHOHOSERINE (THIOL)- LYASE),	putative (Bacillus subtilis)	hypothetical protein (Bacillus subtile	in (AA 1 - 437)	D-3-PHOSPHOGIYCERATE DEWYDBATENASE SON	s subt () et	e entre de la constante de la	i		transport ATP-binding protein (Haemophilus influenzas)	19-kilobalton protein (Streptococcus pneumonise) sp/P43162/P29K_STRPN 29 HEMBRANE PROFEIN IN PSAA 5.REGION OBE1	cillus sekel	comk (Bacillus subrilis, F)6 parties to	OifS-like dene (Lartchart)	Sofine aminotranefares	מיייי לייייי מייייי מיייייי מיייייייייי	Moro state ()	rate coccus denici	oranie itame istreptomyces itvidans)	unknown (mycobacterium tuberculosis)	cus lactis)	oniasconi predicted coding region MJ1212 (Nethanococcus januaschii)	ures and discussion (GB: U00019_14) [Hasmophilus influenzas]	leaching subtr	endocardivis supplies abblille	minoratura specific antigen (Enterococcus facelis)
35	Putative coding	i macch gene name	cystathionine CYSTATHIONIN LYASE).	putative (Bac	hypothetical	carrier protein		Yqe2 [Bacillus subrilies	York Sacilias		pir A30301 G	transport ATP	19-kiloDalton HEMBRANE PROT	orfd [Lactobacillus sake]	comk [Bacillus	nif5-like nene	Serine Aminotr	Initrate reduct	: -: -: -: -: -: -: -: -: -: -: -: -:	The state of the s	Sittement in the	Initional (Hycob	Town (Lactococcus lactis)	in. Januascust	urpormerical pr	The state of the s	endocardit (a. a.	de ersternen
40	S. aureus -	Acession	91 699273	81 405133	[91 [1239983	91 (45302	sp 935136 SERA_	191/1303836	191 1303914	loi i 142157	201111111111111111111111111111111111111	91 1205402	91 393268	91 1418999	91 546917	91 41985	91 1510994	91 517356	91 881940	91 47168	0111261913	0(1)49445	0111511215	0111204222	gi 790943	pir S49892 S498	ui 493017	
45	Stop	ig (6176	1733	748	3134	1216	1051	1715	327		2718	2679	2195	\$74	1084	215	230	392	400	287	1	<u> </u>	- -	-	482	617	,
	Start	- : .	7417	73R	2	2148	1,226	925	2101	451		1048	. 3575	1347	2	1.56	437	-	-	7	1172	22	794	1154		3	1231	
	ORF	<u>.</u>	=	~			7	_	-	-	-:	~	<u>-</u> -	-	_	-	-	_	-	-	-	; -	-	-	-	-	-	-
50	Contig			287	295	328	362	707	405	406	-	= 	426	505	503	_	_	686	-	720	1 677	907	972 1	1085 1	1094	1108 1	111 111	
	: -	-:-	!	_ i	_ :		: _ :	_	<u> </u>	<u>:</u> _	_ ! .	_:	:	_ :	_			_	[[-		: _		1	1=	=	İ

S, aureus - Putative coding regions of novel proteins similar to known proteins

Conclg ORF	ON CI	Start (nt)	Stop (nt)	match	nadch gene name	. sia	1 ident	length
1300	-	2	569	sp P33940 YOJH_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	69	46	699
1325	-	-	204	91 928989	pl00 protain (Borrelia burgdorfari)	63	30	704
1814	-	-	245	91 1303914	YqhY (Bacillus subtilis	63	ž	565
2021	-	867	250	pir c33496 c334	hisc homolog - Bacillus subtilis	63	46	249
2325			193	91 436132	product is similar to ThpA of transposon Th554 from Staphylococcus ureus	3	Ç	192
2335	-		195	91 1184298	[llagellar MS-ring protein [Borrelia burgdorferi]	3	4	195
2406	-	1651	722	91 1041785	rhoptry protein (Plasmodium yoelli)	3	33	225
1 2961	~	136	990	01 332443	carbamoyi-phosphate synthase (glutamine-hydrolysing) Dacillus aldolyticus	G	S	225
2965	-	-	- 603	191 1407784	orf-1, novel antigen (Staphylococcus aureus)	63	20	402
1 2987	-	583	583	191 11224069	amidase (Moraxella caterrhalis	3	ĸ	167
1 2994	-	366	\$0.	91 836646	phosphoribosylformimino-praic katoisomerasa [Rhodobarter phaeroides]	G	3	132
1 3043	-	4:10	1 252	91 1480237	[phenylacetaldehydo dehydrogenasa [Escherichia coli]	9	0	189
3078	-	609	8	91 1487982	intrinsic membrane protein (Mycoplasma hominis)	G	36	210
3139		~	ί α	91/439126	glucamate synthase (NADPH) (Atospirillum brasilense) pir A49916 A49916 glutamate synthase (NADPH) (EC 1.4.1.13) - tospirillum brasilense	S	£	216
1625	: —	.67	1967	[44] 623073	ONPIGO, partariva (hacturiophogo (A-II)	3	87	768
3658	-	-	1399	19111303697	YYKA (Bacillus subtilis)	3		199
3639	-	<u> </u>	195	91/1256135	YbbF (Bacillus subtilis)	G	48	193
3783	- -	720	361	911125,6902	Pyruvate decarboxylase isozyme 2 (Swiss Prot. accession mumber P16467) [Sacchaçomyces cerevisiae]	3	×	360
3900	-	338	171	sp[P10537 ANYB_	BETA-ANYLASE (EC 3.2.1.2) (1,4-ALPHA-D-GLUCAN MALTOHYDROLASE).	G	8	168
4309	-	<u>-</u>	9.1	pir A37967 A379	neural cell adhesion molecule Ng-CAN precursor - chicken	3	7د ا	174
4367	-	-	195	91/1121932	Persp gane product (Pichia pastoris)	3	30	261
4432			72. ——	91/151259	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir[A44756 A44756 hydroxymethylgluteryl-CoA reductase (EC.1.1.1.88) Pseudomonas s.	3	۲۶	312
4468	-	۰	308	01 296464	ATPase [Lactococcus lactis]	63	90	303
	_	1431	2400	1911153675	tagatose 6-P kinase (Streptococcus mutans)	62	ş	065
36	6	5985	6218	191 1490521	HMSH3 (Homo saplens)	62	15	234
					+==+=+================================	*********		,

Contig ORF	10 10	Start (nc)	500) (00)	match acession	match gene name	ale 1	1 Ident	Jenyth (nt)
1 33		7	127	191 1107531	E gene	59	5	720
1 38	12	110912	11589	91 1222058	H. influentae predicted coding region HIN1279 [Haemophilus influentae]	62	a.	678
	23	119526	120329	91 695280	ORF2 (Alcaliganes eutrophus)	63	7	804
- 57	7	1 2523	1780	91 171234	orfi (Haemophilus influentse)	62	. 55	744
- 52	6	9646	6350	91 508174	EIIB domain of PTS-dependent Cat transport and phosphorylation Escharichia coli)	62	25	297
88		~	529	91 755 152	Al membrane protei	5	ž	558
62	<u>-</u>	A250	9014	gi 4706A3	Shows similarity with ATP-binding proteins from other ABC-transport perons. Swiss Prot Accession Numbers P24137, 198007, P04285, P24136 Escherichia coli!	6	7	765
69	•	6315	7494	91 46816	actVA 4 gene product (Streptomyces coelicolor)	62	7	622
80	_	1793	1320	191 39993	UDP-N-acetylmuramoylalaninaD-glutamata ligase Bacillus subtilis	62	•	474
R .	۲	7034	9205	191/217191	S - nucleotidase precursor (Vibrio parahaemolyticus)	3	e-	21.72
100	_	1021	1 3089	91 1511047	phosphoglycerate dehydrogenase (Mathanococcus jamnaschil)	62	42	963
102		~	\$20	91 153655	mismatch repair protein (Streptococcus pneumoniae) pir C28667 C28667 DNA mismatch repair protein hexA - Streptococcus neumoniae	62	3	\$19
112	~	991	1068	91 [153741	ATP-binding protein (Streptococcus mutans)	G	3.1	(09
114		1 6855	1 7562	91 1204866	L-fucose operon activator (Haemophilus influensae	23	*	704
116	-	6823	5633	1911677947		62	17	11911
124	<u> </u>	6855	6004	721853777	product similar to E.coli PRFA2 protein (Bacillus subtilis) pir 535438 355438 ywkE protein - Bacillus subtilis sp P45873 HEMK_BACSU P05818LE PROTOPORPHYRINGEN OXIDASE (EC. 3.3).	62	3	852
148	-	24	354	191 467456	unknown (Beaillus subtilis)	62	ŏ	531
149	50	1987	6725	191 1205807	replicative DNA halicase (Haemophilus influenzae)	62	\$	1 690
(9)	-	1503		191140067	(x geno product (bacillus sphaericus)	23	~	150
164	115	14673	15632	91 (42219	(P35 gene product (AA 1 - 314) (Escharichia coli)	3	38	960
591	~_	1166	1447	91 403936	phenylalany -tRUX synthetase alpha subunit (Cly294 variant) unidentified cloning vector)	62	85	282
166	~	2084	6805	191 308861	CTG start codon (Lactococcus lactis)	62	7	3006
171	_	1225	614	gi 1046d53	hypothetical protein (SP:P12049) (Hycoplasma genitalium)	23	-	612

length (nt)	1212	954	1032	1404	240	1200	261	939	264	369	177	1 6111	1 162	1 89F	789	999	1119	1467	1.171	180	690. [2154	450
* ident	45	22	*	42	ç	\$	ŝ	19	36	26	54	‡		35	07		*	43		37	39	35	17.
eis '	62	62	62	62	23	62	29	62	62	- 29	62	62	62	62	62	29	62 –	62	62	62	62	- 29	62
matth gane name	hemY Bacilius subtilis	ATP-dependent nuclease {Bacillus subtilis}	hisC protein [Escherichia coli	ORF A; putative (Bacillus (irmus)	expressed at the end of exponential growyh undur conditions in which he animas of the TCA cycle are repressed [Bacillus subtilis] glidfall expressed at the end of exponential growyh under ondtions in which the animas of the TCA cycle are repressed Bacil	[FemA protein [Staphylococcus aureus]	Cycochrome aas controlling protein (Bacillus subtilis) pir A33960 [A33960 cta protein - Bacillus subtilis sp P12946 CTAL_BACSU CYTOCHROME AA3 CONTROLLING PROTEIN,	methionyl-tRNA formyltransferase [Escherichia coli]	uridine 5'-monophosphate synthase [Nethanococcus jannaschii]	[fecB (Escherichia coli)	lipa-19d gene product (Bacillus subtilis]	pir A4]577 A4]5 regulatory protein pfoR - Clostridium perfringens	[huta-yjucosidase (Clostridium thermocellum)	transport ATP-binding protein (Haemophilus influenzae)	Na+ ATPase subunit J [Mycoplasma genitalium]	Inodulation gene; integral membrane protein; homology to Rhirobium eguminosarum nodi (Rhitobium loti)	ring-infected erythrocyte surface antigen 2, RESA-2 - Plasmodium falciperum	betaine aldehyd dehydrogenase [Beta vulgaris]	ORF) (Lectococcus lactis)	[ribulose bisphosphate carboxylase/oxygenase activase (Arabidopsis hallana]	O-methyltransferase (Streptomyces glaucescens)	putative transcriptional regulator (Bacillus stearotherapphilus)	ferric uptake regulation protein (Campylobacter jejuni)
match	91 143045	91 142439	91/41695	91/143121	91 467441	91 153015	7172717	91 581088	91 1499960	91/145925	91 413943	pir A43577 A435	91 40665	91 1205401	91 1046024	91 581510	pir A48440 A484	91 17934	91 149445	91 166835	153491	91 1480429	[61 511113
Stop (nt.)	1310	956	1966	2605	4719	3819	262	1207	4631	370	6804	1626	264	31.16	790	1369	1869	1707	1311	1313	882	2522	4820
Start (nt)	2521	_	935	4008	4477	\$018	~	269	4894	~	6628	2744	7	2709	1578	704	151	241	1141	1134	193	369	1713
Contig ORF ID ID	<u>-</u>	_ _	~	2	œ	9	-	- 2	9	-	8	7	_	_		~	2	-	_			~	9
Cont ig	183	200	762	261	299	304	324	325	332	355	365	369	370	415	429	;	417	485	487	494	518	2	551

		;	- • -	- :	- •	- •	- • .	 , .	- •		_ •		_	٠.					_										•	
		length	(10)	E .	6	477	545	346	678	675	294	366	171	591	201		231	231	255	15.9	243	165	199		167	23.	117	246	183	372
5		1 ident	,	3	5	2	96		2	4		45	0	39			5	4	- 62	45	11	2	42 -		;	-		=	07	
10		als 1			3	2	70	;	,	3	70	- 62	62	73	62		3	62	3	- 59	62	62	- 29			70	- 62 -		62	 G
15	teins					Con deposit to			000 (ta) (um)					S a.a.)	r (\$14030 \$14030						-	_	_				etobutylicum		44756 A44756	
20	aureus - Putative coding Legions of novel proteins similar to known proteins	; ; ; ; ; ; ; ; ; ; ;	•		entae)	methyl coensyme H reductase system, component Al (Methanococcus		hypothetical protein (GB:X75627_4) [Haemophilus influenzae]	1 (Mycoplasma con					Agx-1 Antigen inumen, infertile patient, testis, Peptide, 505 as)	OMF homologous to E.coli mots literpatesiphon surantiscuel pir S14030 S14030 lypothitical protoin - Horpotosiphon susantiscus (resmont)			arbi (1				118}	(e)			acetyl coensyme A acetyltransferase (thiches) (classical)	homologous to Nascolations and a second seco	olass of Bacillus	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir[A44756 A44756] hydroxymethy[g]utaryl-CoA reductase (EC 1.1.1.88) Faeudomonas ap.	philum)
25	val proteins sig		/licum	:011)	cell division inhibitor (Heemophilus influentae)	system, compon	eniformis)	5627_4) (Haemop	coding region MG181 [Mycoplasms	deoxyuridine nucleotidohydrolase (Nomo sapiens)	us substite:		cus Jamescant	tile patient, to	tB [Herpetosipho Potosiphon auter	us pneumoniae)	lus subtilis)	alanyl-tRNA synthetase [Methanococcus lannaschi()			II'um Doculinum)	THE TRANSPORT (COCK) WINDSON ANTED [] ST	epib gene product (Staphylococcus epidermidis)	us subcilis;	erium leprae)	Sferage (Phical		scid smidohydros schtilis]	88) (Pseudomonas eductase (EC 1.1	thioredoxin reductase (Eubacterium acideminophilum)
30	9 regions of no	กลิกล	ORFC (Clostridium acetobutylicum)	phnB protein (Escherichia coli)	on inhibitor (11s	tyme H reductase	Asparaginase (Bacillus licheniformis)	protein (GB:X7	M. genitalium predicted cod	nucleotidohydrolase (Homo	1pa-7d gene product (Decillus subside)	aspartokinasa 1 (Nethanococous Assasshit)		n Inuman, infer	us to E.coli mo i protein - Hori	ONF2, putative (Streptococcus pneumonias)	ina-44d gene product (Bacillus subtilis)	synthetase [Met]	M.D.C. dene prochet (Protone mirahilia)	TOTAL STREET STR		Commercial Commercial Date of the Commercial	oduct (Staphyloc	uroparphyrinagen III (Bacillus puhtilis)	nifS: B1496_C2_193 (Mycobacterium leprae)	me A acetyltran	N-Box 1-1-min	stearothermophilus (Bacillus subtilis)	eductase (EC 1.1.1.) ethylglutaryl-CoA re	eductase (Eubacı
35	Pucative codin	match gene name	ORFC (Clost	JphnB protei	cell division	methyl coen	Asparaginas	hypothetical	M. genitaliu	deoxyuridine	1pa-7d gene	aspartokinas		AGX-1 ANC 1G0	OMF homologo	ONF2, putati	ipa-44d gene	alanyl-tRNA	lating gene pro	Inontoxic com		4 11000	epib gene product St	uroporphyrine	nifS; 81496_C	acetyl coenzy	I homo logous to	Stearothermo	HHG-CoA reduc hydroxymethy	[thioredoxin r
40	S aureus -	match	191 40367	91 147195	191 1205451	91 151 1613	91 19272	91 1205822	91 1045865	91 1144332	91 (413931	91 1510649	104 1500011	770000 1461	94 581263	91 460025	91 413968	91 1510641	91 485956	01 285708	ai [142092		91(581648	91 710022	91 466883	91 475715	91 1408501		gi{151259	374 94 1353197
		Stop (nt)	1711	830	478	248	248	944	1041	1671	00.	11.7	609		203	233	=	257	191	245	7-		- ī	- i	213		276	_	5	374
45		Start (nt)	744	396	~	692	493	267	1715	868	25	-	1.0			463	179	-	-	-	150		- :	396	_	823	-	-		-
		2 C	~	-	_	-	-	~	~	~	-	-	-			_	_	-	<u> </u>	-	-	-	- ÷	_	_	<u> </u>	-	- 		-
50		Cont ig	290	655	656	676	687	700	940	464	916	1071	1084			1217	1533	1537	22H7	2386	2484	2490	- 👬	- :	3116	3297	1609	- i ·	;	1733
	÷.	:	-:	_:	_:	_:	-:	:	_:	-:	_	: -	: –	: -	i	_ :	_ }		<u>:</u> _	<u>:</u> _	!_	Ξ.	-₫.	_ :	_:		<u> </u>	_ []	!	

S. auraus - Putative coding regions of novel proteins similar to known proteins

Contig	98.	Stare	Stop	Batch	datch gene name	eia 1	. ident	length (nc)
1 3898	-	-	237	91 153675	tagatose 6-P kinase (Streptococcus mutans)	62	\$	237
1 4027		283	57	(91)330705	homologue to gene 30 (ea 1-59), putative (Bovine herpervirus 4)	62	Ģ	141
4109	-	121	365	(91/41748	hadw protein (AA 1-520) [Escherichia coli]	62	\$	363
1 4303	-		303	[91]1303813	Yqew (Bacillus subtilis)	62	Ç	303
4380	-	530	1 267	91 1235684	mevalonate pyrophosphate decarboxylase (Seccharomyces cerevisiae)	62	\$5	264
1494	-	~	1 256	191(510692	enterotoxin H (Staphylococcus aureus)	62	34	255
4598	-	=	223	91 763513	ORF4: putative [Streptomyces violaceoruber]	62	45	189
4624	-	-	222	91 41748	hsdM protein (AA 1-520) [Escherichis coli)	62	45	222
\$	-	4288	3912	1911928831	ORF95; putative [Lactococcus lactis phage BKS-T]	61	36	357
=	_	320	162	pir C13356 C333	prothymosin alpha homolog (clone 32) - human (fragment)	19	33	159
16	Ξ	1	111938	19111205391	hypothetical protein (SP.P33995) (Meenophilus influenzae)	19	9	948
20	-	281	104	91(1066504	exo-bata 1,3 glucanase (Cochilobalus carbonum)	19	50	\$19
3.8	===	616	1107	191 1510864	glutamine transport ATP-binding protein Q [Methanococcus jannaschil]	19	41	492
\$	-	1 3082	1 4038	91 1109686	Prox [Bacillus subtilis]	19	45	650
e 7		17118	1 7504	91 498839	ORF2 [Clostridium perfringens]	19	33	187
5	6	4605	1 5570	191 388269		1 61	43	996
09	9	1689	2243	91 1205893	hypothatical protein (GB:U00011_3) [Haemophilus influenzae]	19	32	\$55
62	6	5559	5122	91 954656	Ma/H antiporter system ORF2 (Bacilius alcalophilus)	61	3.8	438
19	- 2	4330	5646	911466612	nika (Escherichia coli)	19	36	1317
3,4	~	2400	1504	9111204846	carbamate kinase [Huemophilus influenzae]	19	07	897
88	-	2198	1101	91 1498756	amidophosphoribosyltransferase Purf [Rhikobium etli]	19	7	1098
86	-	1995	1582	91 1499931	 M. jannaschil predicted coding region MJ1083 (Methanococcus jannaschil) 	19	7	414
6	-	7	649	94 15 18 67 9	orf (Bacillus subtilis)	19	44	\$76
66	~	2454	7 0661	191 413958	[lpa-]4d gene product (Bacillus subtilis]	61	18	465
124	<u>~.</u>	6223	5123	91 556881	Similar to Saccharomyces cerevisiae SUAS protein [Bacillus subtilis] pir s49358 s49358 ipc-29d protein - Bacillus subtilis sp P19153 YMIC_BACSU HYPOTHETICAL 37.0 KD PROTEIN IN SPOIIR-GLYC MTERCEMIC REGION.	3	.	1011
125	-	1668	2531	91 1491643	ORFA gane product (Chloroflaxus aurantiacus)	5	Ç	964

9	2 - 4 - 5 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Start (nt) 1250 1250 1250 1250 1250 1250 1250 126	Stop (nt) (627 3075 3075 7869 7948 2340 2340 190 190	match acession pir[P00259 P002 01 1144332 91 1469594 91 1499694 91 216374 91 216374 91 216374	Match gene name hypothetical protein I - Enterococcus faecalis plasmid pAM-beta-1 [fragment] [fragment] [deoxywridine nucleotidohydrolase [Homo sapiens] [p101/acidic basic repeat antigen [Plasmodium falciparum [strain camp] 101K malaria antigen precursor - Plasmodium alciparum (strain camp) [HIT protein, member of the HIT-family [Methanococcus jannaschii] [similar to SpoVB [Bacillus aubtilis] [dlutary] 7-ACA acylase precursor [Bacillus laterosporus] [bmt/ [Bacillus aubtilis] [eukaryotic initiation factor 2 beta (sIF-2 beta) [Oryctolagus uniculus] [ORF for mathionins	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 ident 43 42 35 35 43 41 42 43 45 45 45 25 25	16mgth (nc) 624 822 822 822 822 822 822 822 822 824 826 826 826 826 826 826 826 826 826 826	
		1959 2 678 3523 3419	1047 1034 2627 3051		CbrC protein (Erwinia chrysanthemi) OR_1579 [Racharichia coli] ChVD protein (Agrobacterium tumefaciens) glvr-1 protein (Mycobacterium tappres) ORPA! (Clostridium scetobutylicum)	19 19 19 19 19	19 29 79 70 70 70 70 70 70 70 70 70 70 70 70 70	693 693 357 697	
	0	4621 1 8003 878	1845 1845 7032 8535	91 1204848 91 784897 191 467462 191 1205919	Importection protein (GP:M87049_S7)	61 61 61	4 % \$ T %	207 1845 1845 972	
288 2 291 1 291 1 318 1 3 318 1 3 318 1 3 3 3 3 3 3 3		1918 1918 1104 1104	334	91 38108 6 91 45265 F 91 290531 8	polyA polymerase Bacillus subtilis cell wall enzyme Interococcus (aecalis FBP3 Petunia hybrida similar to beta-glucoside transport protein (Escherichia coli) sp 21145 PTB_ECOLF PTS_SYSTEM, ARBUTIN-LIKE IIB COHONENT PHOSPHOTRANSFERASE_ENZYME II, B COHONENT EC 2.7.1.69	19 19 19 19	43 43 47	366 423 449 411	

roteins
aureus - Putative coding regions of noval proteins similar to known protein
ns similar
ovel protei
gions of n
e coding re
- Putativ
5. oureus

	mptch gene name taim tident length (nt)	OneD protein (Becillus subtilis) 61 42 489	YqoF (Bacillus subtilis) .	AbsA2 (Streptomyces coelicolor) 61 36 612	phosphatidylinositol-4,5-diphosphate 1-kirase [Dictyostellum iscoldeum] 61 10 789	C5187.5 gene product (Caenorhabditis elegans) 61 38' 225	ORF360; putative [Bacteriophage LL-H] 47 1283	-	anthranilate synthase glutamine amidotransferase (Acinetobacter 61 42 621	82235_C2_195 [Mycobacterium leprae] 61 47 855	SURVIVAL PROTEIN SURE HONOLOG (FRAGHENT).	immunity repressor protein (Haemophilus influenzae) 61 32 273	Ump [Vibrio parahaemolyticus] 115	22.44 identity with Excherichia coli DNA-damage inducible protein; 61 37 1233 putative (Bacillus subtilis)	91yverophosphoryl disster phosphodiestersse (Bacillus subtilis) pir 537251 537251 glycerophosphoryl disster phosphodistersse - acillus subtilis	ORF_f470 (Escherichia coli) 12 A2A	DMA polymerase I (Bacillus stearothermophilus) 61 39 613	hypothetical protein [Bacillus subtills] 61 38 258	portal protein gp3 (Bacterlophage HX9?) 61 40 747	putative (Bacillus subtliis) 61 38 540	8 (Ceenorhabditis elegans) 61 26 312	en [Mycoplasma genitalium] 61 32 273	phosphatidylinositol-4.5-diphosphate 1-kinase (Dictyostellum iscoideum) 61 34 273	hypothetical protein (GB:U14003_297) [Mycoplasma genitalium] 61 31 288	·
•	march -	One D	YqgF (E	AbsA2	phosphe	C5387.5	ORF360,	unknow	alcoac	82235_0		Immuni	V) chall	22.41 putat	glyceroph plr S372 subtilia	ORF_f47	DRA pol	hypothe	portal	putati	C3309.8	unknown	phosph	hypoth	
	match	91 533098	91 (1303853	gi 1293660	191 733522	91 1123120	[41 623073	[91 467484	91 141800	91 467090	sp P36686 SURE_	91 1221602	91 507738	91/1146243	91/403373	191 [537181	91 806281	1709992	91,609310	91 [143213	91 1107541	91 (406397	91 733522	91 1045964	שנשרטרן זיין
	Stop (nt)	1025	399	1421	792	260	7357	279	1296	957	803	1422	357	1235	1101	829	816	318	1567	542	370	276	318	290	808
	Start (nt)	1513	194	810	1580	784	6077	554	1916	11171	196	1694	÷	2467	80\$	1656	1628	19	2313	1081	29	548	-	577	-
	108 10	7	-	_	_	:		;		-	-	-	_ _	-		-	-	_ _	-	-	-	-	_	-	-
	Contig	385	426	428	45.	-	470	-	\$55	989	_	265	603	699	675	703	_	621	856	923	-	1492	1602	2500	1 9300

45 -

Contig 1D	0 10 E	Start (nt)	Stop (nt)	match	natch gene name i	e ta	1 Ident	length (nt)	
1 3609		20.7	401	01 1408501	Insmologous to N-ecyl-L-amino acid amidohydrolase of Bacillus stearcthermophilus (Bacillus subtilis)	٠,	6	561	
3662	-	1477	740	61 1303813	Yqok (Bacillus subtilis)	1 6	42	738	
3672		2	\$	g1 /84897	beta-W-ecetylhexosaminidase (Streptococcus pneumonias) pir [A56390]A56390 mannosyl-glycoprotein ndo-beta-W-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	.2	80	4	
3724	-	7	220	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	19	1.	219	
1372A	-	-	398	91 677943	AppD (Becilius subtilis)	19	9	396	
3884			401	gt 784897	Deta-N-acetylhexosaminidase (Streptococcus pneumoniae) pir [A56390]A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	\$	199	
1766		r	383	gi 784897	beta-N-acetylhaxosaminidase (Streptococcus pneumoniae) pir A56390 A56390 mannosyl-giycoprotein ndo-beta-N-acetyiglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	2	\$	£	
4038	-	199	1 359	19111339950	large subunit of NADH-dependent glutamata synthase (Plectonema boryanum)	5	72	100	
404	-	346	274	1911413953	ipa-29d gene product (Becillus subtilis)	19	80	273	
4047	-	-	402	1911528991	unknown (Beclilus subtills)	19	42	402	
4102	-	-	345	[91]976025	Hrsh (Escherichia coli)	5	94	345	
41.55	<u>-</u>	-	336	101 784897	Deta-N-acatylhaxosaminidase (Streptococcus pravaoniae) pir [A56390 [A56390] mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) pracursor - treptococcus preumoniae	5	ş	336	
4268		6	62	91 450688	hadk yene of Ecopril gene product [Escherichia coll] pir 538471 538437 hadk prutein - Escherichia coll pir 509629 509629 hypothetical protein A - Escherichia coll (500 40-520)	61	90	2	
40		245	273	91 784897	bota-M-acetylhexosaminidase (Streptococcus pneumonias) pir [A55390] A55390 asunosyl-glycoprotein ndo-beta-M-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	5	S S	270	
4389	-	2	172	91 147516	ribokinasa [Escherichia coli]	19	S.	171	
4621		~	26A	91 784897	beta-N-acetylhaxosaminidase (Streptococcus praumoniae) pir [A55390 [A56390] mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	4	267	
4663	-	23	, , , , ,	1911976025	HrsA [Escherichia coli]	5	90	201	
	-	6663	5536	01 1408501	homologous to N-ecyl-L-amino acid amidohydrolase of Bacillus stearothermophilus [Bacillus subtilis]	9	\$	1128	

5	,	length	000	123	1014	444	981	159	1023	1134	1014	201	1413	216	1263	193	1188	885	1074	474	213	858	273	1389	1156	1497
J		1 ident	24	28	٠٤	Ę	O _p	47	96	ç	25	7	35	ĸ	43	36	30	17.	38	22	ő	42		28	Ŧ	\$
10		n sám	09	09	0,	09	3	09	09	9	09	09	09	09	09	9	09	9	9	9	9	09	8	9	09	ę
15	rokeins		ing-infeated erythiocyte aurface antigen (Plaamodium falcipatum) pir[A25526 A2536 ting-infected erythrocyte aurface antigen recuraor - Plasmodium falcipatum (strain FC27/Papua New Guinea) sp P13830 RESA_PLAFF RING-INFECTED ENYTHROCYTE SURFACE ANTIGEM RE														philus]			coenzyme F420-reducing hydrogenase, beta subunit (Methanocorcus jannaschil)			(EC .1.3.18)	urous)		
20	S. aureus - Putative coding regions of novel proteins similar to known proteins		ing-infeated erythiocyte surface antigen (Plasmodium falciparum) pir[A25526 A25526 ring-infected erythrocyte surface antigen recursor Plasmodium falciparum (strain FC27/Papua New Guinea) sp[P13830 RESA_I Ring-INFECTED ERYTHROCYTE SURFACE ANTIGEN RE	icus)					_	11s)							putative transcriptional regulator [Bacillus stearothermophilus]			subunit (Methano	1a)		cecolactete synthsse small subunit (Bacilius subtilis) sp[p]1251]ILUM_BACSU ACETOLACTATE SYNTHASE SHALL SUBUNIT [AHAS] (ACETOHYDROXY-ACID SYNTHASE SHALL SUBUNIT) (ALS).	o-succinylbenzoic acid (OSB) CoA ligase (Staphylococcus aurous)		
25	vel proteins sir		ing-infested erythiocyte surface antigen (Pl. pir[A25526 A2536 ting-infected erythrocyte : Plasmodium falciparum (strain FC27/Papua New Ring-INFECTED ENYTHROCYTE SURFACE ANTIGEN RE	carbonyl reductase (NADPH) (Rattus norvegicus	chocystis sp.}	regulatory protein (Enterococcus faecalis)		eri)	D-alanine racemase cds [Bacillus subtills]	para-nitrobenzyl esterase (Bacillus subtilis)		cerevisiae}	um melilotij		terium leprael	la typhimurium]	egulator [Bacil	herichia colli		rogenase, beta	accossory protein (Carnobacterium pincicola)	_	scetolectate synthase small subunit (Bacillus subtilis) sp[P1725][LUM_BACSU ACETOLACTATE SYNTHASE SHALL SUBUNIT) (ALS) (ACETOHYDROXY-ACID SYNTHASE SHALL SUBUNIT) (ALS	B) CoA ligase (enes eutrophus)	erculosis]
30	g regions of nov	name	ing-infested erythiotyte i pir[A25526[A25526 ring-in] Plesmodium faltiparum (st Riid-INFECTED ERYTHROTYTE	Suctase (NADPH)	hypothetical protein (Synechocystis sp.	protein (Entero	Orfl [Bacillus subtilis]	ORF 4 [Saccharomyces kluyveri]	racemase cds (Ba	enzyl esterase	richia coli)	Saccharomyces cerevisiae	gene product (Rhizobium meliloti)	YqgQ (Bacillus subtilis)	ureD: B229_C3_234 [Mycchacterium lepres	OafA (Salmonella typhimurium)	anscriptional r	transmembrane protein (Escherichia coll)	nika [Escherichia coli]	20-reducing hyd	intein (Carnota	unknown (Bacillus subcilis)	e synthase smal ILVN_BACSU ACET ETOHYDROXY-ACID	enzoic acid (OS	beta-ketothiolase [Alcaligenes eutrophus]	unknown (Mycobacterium tuberculosis)
35	Putative coding	match gene name	ring-infested pir A25526 A2 Plesmodium fa RING-INFECTEI	carbonyl rec	[hypothetica]	regulatory p	orfi [Bacil]	JORF 4 [Sacch	D-alanine ra	para-nitrob	thif (Escherichia coli)	(40.0)		Yqg0 (Bacil	ureD; B229_0	OafA (Salmon	putative tr	transmembra	nika [Esche	coenzyme F4	d Atossociae	unknown (Be	acetolactate sp[P37252 (AHAS) (AC	o-succinylb	beta-ketoth	unknown (Nyo
40	S. aureus	match	91 410748	91 1217651	91 1001453	91 388109	911336656	191 4872	91 142822	91 468046	91 414234	91 343949	91 468764	91 1303864	91 467124	19111518853	91 1480429	191 (349227	191 (466613	91 1510925	811,27,118	191 467 425	91 143092	91 1255259	91 141954	3134 91(1524280
45		Stop (nt.)	3725	10313	12930	469	9834	4522	1025	3607	1769	9074	26430	388	1619	395	1188	3881	6923	9.0	£ 4.	4069	7430	10515	11656	3234
		Start (nt)	3426	11035	11917	9;	10411	4364	2047	2474	6756	8874	27842	571	1357	787	-	4735	9665	949	7366	3212	7158	9127	10499	4630
50		OKF	•	=	=		=	-		-	9	91	=======================================	~	~	_	-	9 –	-	-	<u>.</u>	9	2	=	112	~
50		Contig	=	=	91	2		6	7	-	=	÷.	95	3	G	69	£	25	93	2	96	86	700	601	109	119

TABLE 2

_		length	1 069	1692	1 702	1 594	429	1 555	255	1029	7400	780	1623	1011	993	933	1 55#	282	1961	1089	936	669	567	1215	1607	792	666
5		1 i dent	1 35	45	23	9	30,	36	3	7	34	1 33	=	=	23	1,1	5	-	34	36	9	,	35	53	27	2	2
10		mia 1	09	9	9	9	9	3	9	09	9	99	09	09	9	9	09	09	9	09	9	8	9	99	99	09	3
15	roteins	9 8 8 6 6 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8				4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		[9]	with Lactococcus			s scro(a)		PRECURSOR.		* * * * * * * * * * * * * * * * * * *	uenza irus 3)	401	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m asteurianum]	4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ubsp. lactis	e zinc fingers
20	similar to known po					. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		**		emophilus influenza	based on homology 232522) [Caldicellu	188)	lue subtilis;	ydehydrogenase (Sus	· · · · · · · · · · · · · · · · · · ·	S INTERGENIC REGION	0<18180)	REGION.	sin (Human parainf)	emophilus influent	96 95 1 8 8 8 8 7 7 9 7 8 8 9 8 9 9	plasma genitalium)	TENY_5) Clostridiu			ctococcus lactis s	contains C2H2-typ
25	novel proteins		lobacter coli!		uberculosis)	118)		uberculosis)	lus subtilis]	:L19201_29) (Ha	goendopeptidass cession Number	ococcus poeumon	ter OpuD (Bacil)	no be 12-hydrox	cillus subtilis	TEIN IN KEME-PP	charomyces cerev	TEIN IN ASPS 5'	ise fusion prot	U14003_130) [H	is)	GB: U00021_5) (Myco	ene (GB: DACHEY	COCCUS aureus)	interococcus him	ical protein - Lacto	DNA yk130e12,5;
<i>30</i>	 aureus - Putative coding regions of novel proteins similar to known proteins 	match gene name	ceuC gene product [Campylobacter coli]	kdpA (Escherichia coli)	unknown (Mycobacterium tuberculosis)	putative (Bacillus subtilis	YqjX (Bacillus subtilis)	unknowm [Mycobacterium tuberculosis]	murb gene product (Bacillus subtilis)	hypothetical protein (GB:L19201_29) (Haemophilus influenzael	ORF): PepV; putative oligoendopeptidase based on homology with Lactoeoccus lactis PepF (GenBank Accession Number 232322) [Caldicellulosiruptor maccharolyticus]	28.2 kDe protein (Streptococcus pneumoniae)	glycine betaine transporter OpuD (Bacillus subtilis)	NAUP dependent leuketreins bf 12-hydroxydehydrogenese (Sus scroin)	ipa-19d gene product (Bacillus subtilis	SP P37028 YADT HTPOTHETICAL 29.4 KD PROTEIN IN HEML-PPS INTERGENIC REGION PRECURSOR	D9719.34p, CAI: 0.14 (Saccharomyces cerevisies	INTPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION	hemagglutinin-neuraminidase fusion protein (Numan parainfluenza irus	tical protein	HisD [Lactococcus lactis]	hetical protein	ar to a B.subtili	clumping factor (Staphylococcus aureus)	NaH-antiporter protein (Enterococcus hiree)	pir F16889 F168 laub 1-region hypothetical protein - Lactococcus lactis subsp. lactis	coded for by C. elegans CDMA ykijoel2.5; contains C202-type zinc fingers [Caenorhabditis elegans]
40	5. aureus - Putat	match scession	gi 1107529 ce	91 146547 kd	01 1460077 un	_	gi 1303975 Yq	[g1 1449288 un	91 580932 mu	gi 1204532 hy	91 1496003 OR	91 485280 28	91 1524397 [9]	91 1100737 NA	_	Sp[P37028[YADT_ HY	60 866726 10	ap P37347 YECD_ 11Y	qi 332711 he	g1 1204366 hy	gi 149377 HL	91 1046160 hy	91 431950 81	91 397526 c1	01 148316 Na	pir F36489]F368 le	911208889 606
		Stop (at)	7646	6013	70,	2216	1 961	1 4769	257	1187	7866	2110	2460	4953	995	4573	2415	12515	1410	1153	937	4998	6485	1218	1409	4595	1198
45		Start (mt)	6957	1704	~	2809	1389	5125	\$11	159	8249	1331	4082	1963		1641	3269	12234	1213	59	~	9698	5919	2432	-	3804	099
		100	-	_	-	_	~	5	-	-	<u> </u>		~	-	-	-	-	5	-	-	-	-	-	-;	-		
50		Contig 10	121	140	- - -	150	157	158	- 25	160	191	172	E .	=======================================	198	701	263	206	212	214	1237	2	1 260	264	267	275	292

	-			*************				
Contig	01 02	Start (nt)	Stop (nt)	match acession	natch gene name	ale v	1 ident	length (nt)
1 307	9	1421	3176	61 1070014	protein-dependent (Bacillus subtilis)	09	36	246
1 316		4957	5823	191 (413952	ips-28d gene product (Sacillus subtilis)	09	7	867
328		2996	78	91 1204484	membrans-associated component, branched amino acid transport system [Haemophilus influenzae]	09	38	489
332	<u>.</u> .	4887	4363	91 1205449	colicin V production protein (pur regulon) (Maemophilus influenzae)	9		23
1 357	-	1062	532	95 987842	single-stranded DWA-specific exonuclesse [Escherichia coll]	09	7	531
276		9.	362	91 1057	adenylyl cyclase gene product [Saccharomyces kluyverl] r[J01145 orByK adenylate cyclase [EC 4.6.1.1] - yeast ccharomyces kluyverl)	9	Ç	267
197	-	99	416	gi 709999	Glucarate dehydratass [Bacillus subtilis]	9	7.6	351
109	-	7	163	91,499700	glycogen phosphorylase (Saccharomyces cerevisiae)	9	22	162
453	-	914	1237	91 1196899	unknown protein (Stephylococcus aureus)	9	36	324
453	-	3838	3620	sp P12222 YCF1_	SP P12222 YCFL HYPOTHETICAL 226 KD PROTEIN (ORF 1901).	9	2	219
470	~	622	945	pir s30782 s307	pir S30782 S307 integrin homolog - yeast (Sacchardmyces cerevisiam)	9	11.	324
200	-	118	909	191 467407	unknown (Becillus subtilis]	09	36	449
203	-	752	982	91 167835	myosin heavy chain [Dictyostellum discoidaum]	9	7	231
\$0\$	-	1 2238	13563	91 1510732	NADH oxidase (Methanococcus jamaschii)	09	56	1326
25		-	1043	91 143333	alkaline phosphatase regulatory protein (Becilius subtilis) pir A27650 A27650 regulatory protein phoR - Bacilius subtilis sp P23345 PHOR_BACSU ALKALINE PHOSPHATASE SYMTHESIS SENSOR PROTEIN HOR (EC 2.7.3).	9	7	1041
243	-	-	465	191 1511103	cobalt transport Aff-binding protein 0 (Methenococcus januaschil)	09	0.	599
545	7	7	126	61 1498192	putative (Pseudomonas aeruginosa)	9	0,	726
356	-	~	1054	91 1477402	tex gene product (Bordetella pertussis)	9	42	1053
578	-	974	489	191 1205129	H. influensee predicted coding region H10882 (Haemophilus influenzae)	9	42	987
594	=	-	624	01 1212755	adenylyl cyclase (Aeromonas hydrophila)	9	\$	624
\$ 09	-	-	530	[g1]145925	[fec8 [Escherichia coll]	9	7	528
620	-	926	465	191/1205483	bicyclomycin resistance protein [Haemophilus influensae]	9	33	462
630	- 5	1 871	1122	91 1486242	unknown [Bacillus subtilis]	09	- 17	252
645	7	1.574	425	gi 1205136	serine hydroxymethyltransfersse (serine methylase) (Haemophilus influenzas)	9	28	150

		:-	- +	-+						- •									_								
5		length	(ac)	240	183	2	726	673		306	594 168		25	210	546	357	168	285		186	210	267	189	235	3	263	144
		1 Ident		6	9	ę	7	39,		7	00		*	36	36	30 -	7	2 92	-	- 02	4	- 5	- 12	<u> </u>	7	- -	36
10		E ju		2	09	9	9	09			00	- ;	0	9	9	9	9	9 9	-	9	9	9	- 09	9	9	8	- 09
15	oceins					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	commune] sp PS0368 NUSM_SCHCO 6.5.3).			94 871029							v. Gula, eptide,					-		A enydrogenese	A44756 A44756	
20	S. aureus - Putative coding regions of novel proteins similar to known proteins		hypothetical protein (GB:U14003_302) [Haempphilus influenses]					lum commune) sp P9			inner membrane copper tolerance protein [Excherichia colij gi[671029] disulphide isomesase like protein [Escherichia colij pir[671295] inner membrane copper tolerance protein - scherichia coli							dihydroflavonol-t-reductase, DFR [Hordeum vulgara-barley, cv. Gula, eptide, 354 aa)						mitochondrial long-chain enovi-CoA hydrarass/i-hydroness		hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	
25	l proteins s		303_302) (Ha	subt111s1	rilia)	[coldes]	cystis sp. 1	(Schizophy)	lus cereus)	1118]	ce protein otein [Esche			a Auth (14a)		(action()a)	biline follows	JFR (Hordaum		us subrilia				-CoA hydrata	cus)	/ (Pseudomon uctase (EC 1	co11)
30	regions of nove	name	protein (GB:U140	orfami gene product (Bacillus subtilis)	ures amidolyase (Bacillus subrilia)	GMP reductase (Ascaris lumbricoides)	hypothetical protein (Symechocystis ap.)	NADH dehydrogenase, subunit \$ [Schisophyllum commun NADH-UBIQUINGNE OXIDOREDUCTASE CHAIN \$ {EC. 6.5.3}	novel hemolytic factor (Bacillus cereus)	putative, orfl (Bacillus subtilis)	ne copper toleran isomerase like pr and copper tolera	ORF3 (Streptomyces griseus)	VpsRp (Saccharomyces cerevistae)	hypothetical protein (Bacillus muhille)	Carboxyl esterate - Acinatobacter relocestons	aminotransferade [Haemoobilus influences]	faritin like protein (Haemonhius influence)	flavonol-4-reductase, [d pAQ1)	prephenate dehydratase (Sacillus subtilie)	putative (Bacillus subtilis)	orf-1; novel antiden (Stanbulorners	Cytadherence-accessors provide Accessors	long-chain enoyl	Alpha-subunit (Rattus norvegicus)	Iglutaryl-CoA red	iucC gene product (Escherichia coli)
35	outative coding	match gene name	hypothetical	oxfami gene	ures amidoly	GMP reductas	hypothetical	NADH dehydro NADH-UBIQUI	novel hemoly	putative; or	inner membrane disulphide is inner membran	ORF3 (Strept	VpsRp (Sacch	hypothetical		aminotransfer	Cerritin 11ke	dihydroflavon	ORF 1 (Plasmid pAQ1)	prephenate de	putative (Bac	orf-1, novel	Cytadherence	mitochondrial	Alpha-subunit	hydroxymethy	iucC gene proc
40	S. aureus - F	match	[91]1205538	191 1402944	Bi 790943	91 159651	121 11001 493	91 604926	91 662880	91 1429255	91 581055	01 407885	91 1171407	91 (1239981	pir 657530 8575	91 1222056	91 1205619	91 240052	91 (97626	186805 16	91,1146199	91 1407784	91 1045097	91 510108	91 151259		191 474192
		Stop (nt)	8.5	485	346	726	874	839	153	595	203	620	275	562	360	169	146	286	200	-	Ī-	208	226	186	244		9
45		Start (nt)	1082	967	588	-	1746	1558	448	~	699	1150	484	-	716	336		230	- S#C	-	568	 50	~	368	486	- -	- !
		20 C	-	-	-	-	-	_	~	-		_	-	-	-	_	_		_	_	-	-	-	<u> </u>		- -	-
50		Contig	684	786	74	851	67.1	96	906	979	1078	1112	1135	1146	1291	25561	1429	1722	2350	2936	7200	3084	135	3603	3665	3747	
	:	:			-	- :		:	- :	-:	:	_ :	_ :	_	_	- :			_	_ :	_ :	_	_	! 	- :	_!_	. !

TABLE 2

5		length (nt)	333	270	159	276	861	312		219	171	966	111	1203	9.00	192	300	780	1059	1 267	1 606	1 186	1449	1206	
•		\ ident	7	ĸ	78	‡	3	28	2	48	7	19	33		r.	9	77	7.0	07	34	7.	46	60	3	
10		e i	9	09	09	09	9	09	9	9	9	65	65	65	\$	89	65	65	65	65	65	65	53	88	
15	proteins				1e) gi 780656 he]	pir S49950 S49950 - Mycoplasma capricolum	aeruginosa) pir S49111 S49111 - icrocystis seruginosa (fragment)				mitochondrial long-chain encyl-Coa hydratase/3-hydroxycyl-Coa ehydrogenase alpha-subunit (Rattus norvegicus)		egment)										us subtilis] -ACDA NTERGENIC	# # # # # # # # # # # # # # # # # # #	
20	milar to known				inosarum bv. vicise minosarum bv. icise		ruginosa) pir crocystis ser		ase/3-hydroxyc	ur bacens]	ase/3-hydroxyc		lum (SOC3) (fr		***************************************			[#	111				nthase [Bacill ROTEIN IN NARI		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
25	el proteins sir		ylococcus sure		protein [Rhizobium leguminosarum bv. viciae] gi 780656 protein (Rhizobium leguminosarum bv. iciae]	Ж (Mycoplasma capricolum) shydrogenase (EC .5.99.7)	module [Microcystis Beruginosa) pir 549111 549111 d activating domain - icrocystis seruginosa (frag		noyl-CoA hydrat vegicus]	reptomyces purp	noyl-CoA hydrat vegicus)	yph!]	oplasme caprico	egans)	1	utum)	-	acillus subtili	[Escherichia co			meliloti)	cardiolipin sy THETICAL 58.2 P		
30	- Putative coding regions of novel proteins similar to known proteins	Gane name	novel antigen; orf-2 [Staphylococcus aureus]	yelH (Escherichia coli)	hemoreceptor protein (Rhizobium leguminosarum bv. v.	similar to trimethylamine DH (Mycoplasma capricolum) probable trimethylamine dehydrogenese (EC .5.99.7) (SGC3) (fragment)	0 000	phed (Bacillus subtilis)	itochondrial long-chain encyl-Coa alpha-subunit [Rattus norvegicus]	acyl-CoA-dehydrogenase [Streptomyces purpurascens]	itochondrial long-chain encyl-Cos alpha-subunit (Rattus norvegicus)	VipB protein [Salmonella typhi]	hypothetical protein - Mycoplasme capricolum (SOC3) (fragment)	F5982.3 (Caenorhabditis elegans	ORF2 (Bacillus subtilis)	BiP (Phaeodactylum tricornutum)	ORF_090a [Escherichia coli]	transcription regulator (Bacillus subtilis)	Gat-1-P-DH, NAD dependent [Escherichia coli]	rqhT (Bacillus subtilis)	nikC (Escherichia coli)	PhoD precursor (Rhizobium meliloti)	unknown, similar to E.coli cardiolipin synthase (Bacillus subtliss) sp P45860 YWIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA NTERGENIC REGION.	LORF F (unidentified)	
35	tative cod	metch ge	novel sat	yelH Esc	chemoraceptor chemoraceptor	similar c probable (SGC3) (peptide synthe probable emin (SUB 144-528)	pheB (Bac	mitochond alpha-su	acyl-CoA	mitochondrial alpha-subuni	VIPB prot	hypothet	F5982.3	ORF2 (Bac	Bir (Phae	ORF_090a	transcrip	Cat-1-P-	rghT (Ba	nike (Esc	PhoD pred	unknown, sp P458 REGION.	LORF P. I.	
40	S aureus - Pu	Batch	gi : 488695	191 405879	95908. 101	91 602031	gi 899317	91 308980	901018 16	qi 47382	91 510108	91 426446	ptr S48604 5486	191 6721	191(142833	191 912576	191 536972	91 483940	94 (508176	194 1303901	191 912461	91 1399822	91 971345	10 14329 15534 91 490328	
		Stop (nt)	335	272	352	4 05	324	213	22.	280	223	13523	1483	5853	2299	[16593	2349	13402	3339	495	1 7460	9969	1449	115534	
45		Start (nt)	_	^	230	677	127	624	343	498	я —	4518	707	4651	3228	16784	2648	14181	4397	986	6552	5383		14329	
		<u>8</u> 0	-	_		~		_				-	~	~	~	2	_	77	~	-	-	-	-	2	-
50		Contig	3912	4072	4	4207	4243	4110	4045	4382	4474	2	2	2	5	5	23	2	53	99	67	ос	86	82	

	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		Stop (nt)	match	natch gene name	1 sim	1 ident	length (nt)	
89	~	• •	956	101/642801	unknown (Saccharomyces cerevisiae)	- 89	32	1 509	
96	-	4940	1 5473	911133802	protein of unknown function (Rhodobacter capsulatus)	- s		534	
98	-	~	920	91 467421	similar to B. subtills OnaH (Bacillus subtilis)	65	7.	619	
119	-	166	1557	1911143122	ORP B; putative [Bacillus firmus]	65	36	1392	
120	07	6214	9849	[91]15354	ORF 55.9 (Bacteriophage T4)	65	, 60	543	
52	9=	112476	113510	d1 1086575	BatA (Rhizoblum meliloti)	- 59	3	1035	
22	-	386	195	[gi 984737	catalase (Campylobacter jejuni)	- 29	88	192	
6		370	\$45	91 1256534	23.8% identity over 120 as with the Synanococcus sp. MpeV protein; putative [Becillus subtills]	\$	7	276	
Ē	-	5278	5712	91 1510655	hypothetical protein (SP:P42297) [Methanococcus jenneschii]	65	- 60	136	
164	-	-	509	g 1001342	hypothetical protein (Symechocystis ap.)	65	=	507	
164	-	1529	2821	91 1205165	hypothetical protein (SP: P37764) (Haemophilus influensae)	88	- s	1293	
184	2	119643	21376	191 1001381	Inquothetical protein (Symechocystis sp.)	88	7	1734	
12	_	4727	7176	01 1184121	auxin-induced protein (Vigna radiata)	29	- 80	1011	
179	7	1 2218	1 1688	91 143036	[unidentified gene product [Bacilius subtilis]	65	8	531	
195	77	12669	11503	1911762778	NifS gene product (Anabaena azollae)	65	=	1167	
201	-	4702	1 5670	91 1510240	hemin permease Wothanococcus annaschii	65	- 26	696	
201	-	\$719	6315	91 1511456	M. Jannaschil predicted coding region MJ1437 (Methanococcus Jannaschil)	83	_ ×	1 762	
209	-	102	461	g1 1204666	hypothetical protein (GB:X73124_53) (Haemophilus influenzae)	39	7	360	
214	2	1050	2234	91(551531	2-nitropropane dioxygenase (Williopsis saturnus	88	36	1185	
214	5	1233	4138	191 1303709	YrkJ [Bacillus subtilis]	65	22	843	
217	~	1 3381	2167	[g1]2904R9	dfp (CG Site No. 18430) (Escherichia colli	- 65	3	1215	
752	-	3078	37.85	91 149382	[HisA [Lectococcus lactis]	65	38	70R	
251	7	376	960	191()303791	Yqu (Becillus subtilis	65	*	585	
2R6	-	1621	813	fgt 146551	transmembrane protein (kdpb) [Escherichia coli]	8	31	810	
316	2	4978	1860	91 405879	yeiH [Escherichia coll]	- 88	32	1119	
370	_	009	761	91 1303794	YqeM (Bacillus subtilis)	- 65	35	162	
							*********	*********	

s. aurous - Putative coding regions of novel proteins similar to known proteins

Contig ORF	O G	Start (nt)	Stop (nt.)	match	match gene name	e in	1 idunt length (nt)	length (nt.)
382	-	6001	\$06	01 547513	oril (Haemophilus influentae)	\$	34	\$05
186	-	1620	1273	91 152901	ORF 3 (Spirochaeta aurantia)	89	37	348
907	-	2808	1705	91 109992	hypothetical protein (Bacillus subtilis)	89	70	1101
426		3802	3245	91 1204610	iron[III] dictitate transport ATP-binding protein PECE [Heemophilus	65	36	828
1 429	- 5	1513	11.68	91 1064809	homologous to sp:MTRA_ECOLI [Bacillus subtilis]	23	45	366
094	- 7	708	1301	91 466882	ppsl; Bl496_C2_189 [Mycobacterium leprae]	89	37	894
3	-	1 2212	2335	91 1498295	homoserine kinase homolog (Streptococcus preumonise)	88	37	924
673	_	13929	1607	91 147989	trigger factor [Escherichia coli]	\$3	07	1323
0# 	æ 	5862	6110	91 1205311	(38)-hydroxymyriatol ecyl carrier protein dehydrase (Haemophilus	65	Q	249
1 \$21	-	<u>-</u>	1354		pir A25620 A256 staphylocoagulase - Staphylococcus aureus (fragment)	88	33	1341
53	- -	2994	4073	91 153746	asnnitol-phosphate dehydrogenase Streptococcus mutans pir C44798 c44798 asnnitol-phosphate dehydrogenase MtD = treptococcus mutans	\$	36	1080
555	-	-	954	91(14693)9	group B oligopeptidase PapB (Straptococcus agalactiae)	59	z	954
551	<u>.</u>	2836	3186	91 1204511	bacterioferritin comigratory protein (Masmophilus influenzae)	65	\$	351
573	~	449	940	101 386681	ORF YALO22 [Saccharomyces cerevisiae]	89	36	492
650		۰	748	91 396400	similar to qukaryotic Na·/H· exchangers [Excherichia coli] sp p1270]/vice_ecoli Hypothetical 60.5 KD protein in Soka-acs ntergenic region (0549).	65	e .	744
799	-	266	285	91 1262748	Lukf-PV like component (Staphylococcus aureus)	89	c	282
670	-	_	4 55	91/1122758	unknown (Becillus subtilis)	59	7	(53
674	_	55	929	91/293033	Integrase (Bacteriophage phi-CG)	83	97	387
758	-	349	176	91 [1500472	M. jannaschii predicted coding region NJ1577 (Methanococcue jannaschii)	53	37	174
11.6		2270	1461	91 522150	Dromoperoxidase BPO-Al (Streptomyces aureofaciens) sp[P13912 BPAL_STRAU NON-NAEM BROMOPEROXIDASE BPO-Al (EC 1.11.1) BROMIDE PEROXIDASE) (BPO1). (SUB 2-275)	\$3	\$	B10
828	-	1 2191	1097	fg1 397526	clumping factor (Staphylococcus auraus) ,	83	41	1095
1052	~	1094	723	191 289262	comE ORP3 Bacillus subtilis	83	36	372
1152	<u>-</u>	1373	188	91/1276668	ORF138 gene product (Porphyra purpurea)	89	37	106

10	
15	
20	
25	
30	
5	
o	

length (246		***	0 P.7	201	_	204	246	199	399	346	360	294	100	621		1176	666	211	1212	130	60\$	582	222	
1 ident	26	1		: ;	\$ \$		7	7	77	62	43	*	7	33	Ç		2	7	29	37	37	2	 a	32	
e la	65				8		65	65	- 65	65	- 65	- 65	65	- 85	88				# ·	•s	- 88	- 82		58	
match gene name	ATP-dependent nuclease (Bacillus subtilis)	glycyl-tRNA synthetase (Mycoplasma genitalium)	triacylolycerol lipase (Galactomyces geotrichum)	YqeM Bacillus subtilis	issulin-like growth factor binding protein complex acid-labile ubunit (rats, liver, Peptide, 603 as)	Yqhk (Bacillus subtilis)	neurofilament protein NP70 [Helix assersa]	crotonase Clostridium acetobuty cum	crotonase Clostridium acecobuty	crotonese (Clostridium ecetobuty) cum	homologous to penicilin acvisse Baciline selection	crotonase (Clostridium acatobuty] [cum]	unknown (Mycobacterium tuberculosis)	A PARACOL INCOME TO THE PARACOL INCOME TO TH	" " " " " " " " " " " " " " " " " " "	collagen alpha chain precursor (AA -27 to 1127) (Mus musculus)	phosphoribosyl anthremilate isomerase (Thermotoga maritima)	EpsC (Streptococcus thermophilus)	diaminopimelate Gecarboxylase (EC 4.1.3.0) - Pessidomona		[Gerrichrome-bluding growth (December 2011)	embryonic myosin heavy chain (1085 AM) (Homo sections)	myosin beta heavy chain - human	glucose regulated protein (Schinococcus multilocularis)	kinase-associated protein B (Bacillus subrills)
match	94 142439	gi 1045942	94 459250	94 1303794	gi 258003	91 1212730	141 (773571	191 1055218	91 1055218	91/1055218	91 1408494	91 1055218	191 1524193	lat (146913		191 50502	191 1054860	19111276860	וונא ננוונא אומ	191 973249	gi 289272	91 29464		91 158852	01 (975353
Stop (nt)	247	332	1 186	398	284	348	248	40.	1	351	163	296	310	622		5845	3626	1669	8090	22884	406	552		- ; -	Rena
	437	468	-	193	A 8	S F 1	~		-	869	727	-	618	1242		7020	3234	2841	9301	<u> </u>	~	-			72.00
i -	-	- [_ [-		~	-	-]=	-	;	-		- -		_	-	- 2	2	-	- -	-	-	- † -	- ;
<u> </u>	- ; .	- +									<u>. </u>	. – :	; —	; –	:	-:	-:	-:	:		- -	+	_ i _	_:=	- :

aureus - Putative coding regions of novel proteins similar to known proteins

Contig	08 01	Start (nt)	Stop (nt)	metch	man (ch gono name	sim .	1 ident	length (nt)
69	Ξ.	12017	11229	91 1228083	NADH dehydrogenese subunit 2 (Chorthippus parallelus)	98	41	789
96	-	8208	9167	pi 709992	hypothetical protein (Bacillus subtilis)	\$	42	096
100	~_	2065	3	91 806327	Escherichia coli hrpa gene for A protein similar to yeast PRP16 and RP22 (Escherichia coli)	88	رر	702
77		4519	\$613	91 135588	glucose-fructose oxidoreductase (2/mosonas mobilis) pir 144229) A4229 glucose-fructose oxidoreductase (EC 1.1) recursor - 3/momonas mobilis	8	38	1095
=	9	1338	6503	19111377843	unknown (Dacillus subtilis)	55	85	816
3	~_	2261	1395	pir A45605 A456	mature-parante-infacted erythrocyte surface antigen MESA - Plasmodium falciparum	85	ű	867
32	~	717	950	19111370261	unknown (Mycobacterium tuborculosis)	88	ĸ	234
154	<i>چ</i>	6015	1 4627	191 (1209277	pCTHom1 gene product (Chlamydia trachomatis)	88	ij	1389
154	<u>3</u>	14281	13541	91 146613	DNA ligase (EC 6.5.1.2) [Escherichia coli]	8	39	741
521	-	1 2269	1892	191 1303917	YqiB Bacillus subtilis	\$\$	3.6	378
174	-	11156	529	q1 90419A	[hypothetical protein (Bacillus subtilis]	88	26	52R
189	-	1533	1769	91 467383	DMA binding protein (probable) (Bacilius subtilis)	88	25	רנג
201	_	1 2669	13307	91 1511453	endonuclease III (Methanococcus jannaschil)	88	34	639
204	-	~	238	91/1276729	phycobilisome linker polymeptide (Porphyra purpurea)	88	29	717
220	Ξ	114575	13058	91/397526	clumping factor Staphylococcus aureus	88	15	1518
231	_	1 1629	1474	91 1002520	HutS (Becillus subtilis)	88	\$	156
233	•	14201	1 3497	91 1463023	No definition line found (Caenorhabditis elegans)	88	39	705
35	<u>=</u>	1 9303	110082	91 537207	ORF_(277 (Escharichia coli)	×	32	780
233	 	133	1143	91 1340128	ORF1 (Staphylococcus aureus)	88	3	813
1 302	~	9	108	191 (40174	ORF X [Bacillus subtilis]	88	*	362
100	=	6984	6127	(91 (1303842	Yqfu (Bacilius subtilis)	8	8	858
321	2	1914	1 2747	411239996	hypothetical protein (Bacillus subtilis)	*	7	834
342	-	2724	3497	(91)454838	ORF 6; putative (Pseudomonas aeruginosa)	88	7	774
348	-	- -	663	91 467478	unknown [Bacillus subtilis]	S	36	(99
5	~	- 384 -	603	[91]143407	para-aminobentoic acid synthase, component I (pab) (Bacillus ubtilis)	28	53	222
					vs = 5 = 5 = 5 = 7 = 7 = 7 = 7 = 5 = 5 = 5			

5		ent length (nt)	1230 50	1 1138 24	-	40 702	36 714	36	30 1164	29 363	37 1218	34 177	48 192	1 102 14	-	1 363 0	41 738	33 846	41 651 1	39 240	19 309	28 S07	32 309	16 933	37 (83
		i ident	-	-	-	-			_	_		_	-	-	-	-	-		_	_	-	-	-	_	
10		- sin	85	- 2	2	5			55	- 58	85	- 28	-	\$	5	=	- 25	5	5	5	5	- S	85 —	85	 85
15	eins	0 6 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0			† 		thetical	06048 SO6048 CSU PROBABLE .32) (TECHOIC		· · · · · · · · · · · · · · · · · · ·	1 gt 886052 1	i : : : : : : : :						cus g1 677882			lus ubtilis)		luanzae)		B) ISOPENTENTC- (IPPT).
20	- Putative coding regions of novel proteins similar to known proteins	5 * * * * * * * * * * * * * * * * * * *				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Thermophilic bacterium hypothetical	rodb (grah) polypeptide (AA 1-673) (Bacilius subtilis) pir S06048 S06048 probable rodb protein - Bacilius subtilis sp P13484 TAGE_BACSU PROBABLE POLY(GUYCEROL-PHOSPHATE) LPHA-GUNCOSYLI:ANSFERASE (EC 2.4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN E).			ubunit (Spiroplasma citri) subunit (Spiroplasma itri)	100						sodium-dependent bile acid transporter (Rattus novvegicus) sodium-dependent bile acid transporter (Rattus orvegicus)		(Reemophilus influentae)	phage terminases (Bacillus ubtilis)		coensyme PQO synthesis protein III (pqqIII) (Hacmophilus influensae)		RNA (sopenteny) transferase (Seccharomyces cerevisiae) sp/P07884(HODS_YEAST TRNA ISOPENTENYLTRANSFERASE (EC 2.3.1.8) ISOPENTENYL- DIPHOSPHATE: TRNA ISOPENTENYLTRANSFERASE) (IPP RANSFERASE) (IPPT).
25	l proceins simil			reus)	pombe)	ia colij		1-673) (Bacillus illus subtilis s HA-GLUCOSYLT:UNIS		sma hominis)	ູ້ຕ	1-400) [Klebsiella pneumonlas]		ocystis sp.]	omo septens)	ocystis sp.1	jannaschii]	leal sodium-dependent bile acid transporter il sodium-dependent bile acid transporter	us subtilis)	(GB:L10128_61) (Haemoph	subunit of phage t	ia coli]	in III (paqIII)	luenzae)	thua isopentenyl transferase (Saccharomyces cerevisiae) sp P07884 HOD5_YEAST TRUA ISOPENTENYLTMANSFERASE (EC 2 DIPHOSPHATE: TRUA ISOPENTENYLTRANSFERASE) (IPP RANSFER
30	regions of nove	name	us subtilis;	protein A (Staphylococcus aureus)	unknowm (Schliosaccharomyces pombe	y))G gene product (Escherichia coli)	identity in 165 as to 6; putative [Bacillus	gtan polypeptide (an ble rodd protein - Bac Glycerol-Phosphate) LP Blosynthesis rotein el	HYPOTHETICAL HELICASE MG018.	orf268 gene product (Mycoplasma hominis)	restriction modification system S restriction modification system		unknown (Pseudomonas aeruginosa)	hypothetical protein (Symechocystis sp.)	integral membrane protein (Nomo sepiens)	hypothetical protein (Synechocystis sp.)	transaldolasa [Methenococcus jannaschii	-dependent bile m-dependent bile	hypothetical protein (Bacillus subtilis)	protein (GB:L10	8ms 11	osmC gane product (Escherichia coli)	me PQQ synthesis prote	collagenase [Haemophilus influenzae]	enyl transferase DDS_YEAST TRNA I: 1 TRNA ISOPENTEN
3 5	utative coding	match gene name	YqgS Bacillus	protein A (S	unknown (Schiz	lyjja gene pr	26.7% of ide protein 6;	rodb (gtal) probable ro Poly(GLYCER		orf268 gane	restriction	Inits protein IAA	unknown (Pse	hypothetical	[integral mem	hypothetical	transaldolas	ileal sodium	[hypothetica]	hypothetical protein	ORFB; homolo	osmC gane produ	coenzyme PQQ	collagenase	LENA (sopent sp P07884 HG
40	3. AUFAUS - P	metch acession	91,1303866	91 581583	91 (1009455	91 537214	91 1256621	91 580920	sr. P47264 Y018_	91 453 422	91 886052	91 43831	91 1183839	91 1001353	91 903748	91 1208474	101 1510995	91 677882	91(1239999	91 1204262	91 498817	91 (42181	91 1205432	91 1204669	91 171963
45		Stop (at)	1554	1442	965	2047	3	343	1164	4544	4019	179	1156	1001	504	1 364	755	9.6	1556	225	327	806	0.00	2611	719
		Start (nt.)	325	105	789	2748	1,50	606	-	4182	2802	^	1347	1231	-	~	1492		906	11.	635	1112	618	772	1096
50		OR OI	-	-	_	<u>-</u>	~		- -	9	<u> </u>	-	~	~	-	-	-		-	-	-	-		~	~
		Cont ig	433	ŧ	_ 3	- 4 23	479	4 90	517	517	546	562	909	709	619	635	635	645	645	665	674	675	745	199	008

FABLE 2

5

Contig	- 8 G	Start	Srop (nt)	match	march gene name	- E	• Ident	length (nt)
854	-	1108	809	91 466778	lysine specific permease [Escherichia coli]	88	•	204
RAS	-	481	52.	91 861199	protoporphyrin IX Mg-chelatase subunit precursor (Hordeum vulgare)	88	33	240
1 691	-	-	527	94 1293660	AbaA2 (Streptomyces coelicolor)	88	11	\$25
943	1-	186	1 467	91 405567	trak (Pladmid psk41)	88	30	465
1002	-	952	521	94 577649	proLUKN (Staphylococcus aureus)	88	36,	432
1438			261	91/581558	iroleucyi erna synthetase (Staphylococcus aufaus) sp[P41368 SYIP_STAAU ISOLEUCYL-TRNA SYNTHETASE, HUPIROCIN RESISTANT EC 6.1.1.5) (ISOLEUCINE TRNA LIGASE) (ILERS) (HUPIROCIN RESISTANCE ROTEIN).	SB	ος	261
1442	-	7	463	91 971394	similar to Acc. No. D26185 (Escherichia coli)	88	34	162
1873	-	460	241	91 133951	small subunit of NADN-dependent glutamate synthase (Plectonesa boryanum)	5	38	240
1876			158	91 529216	No definition line found (Caenorhabditis elegans) sp[P46503]YLX7_CAEEL HYPOTHETICAL 7.3 KD PROTEIN F33F12.7 IN HROMOSOME III.	8	£	156
1989	-	108	104	91 1105458	YneR (Bacillus subtilis)	88	29	294
2109	-	-	107	19111001801	hypothetical protein (Symechocystis sp.)	88	31	199
2473	-	288	145	[91 510140	joendopeptidase F Lactococcus ligoendopeptidase F Lactococcus	8	38	144
2523	_	4 52	228	91 644873	catabolic dehydroquinate dehydratase (Acinetobacter calcoaceticus)	88	17	225
1 3041	-	~	211	19111205367	oligopeptide transport ATP-binding protein (Macmophilus influenzae)	8	39	210
3094	-	-	263	9111185288	sochorismate synthase (Bacillus subtilis	\$	80	261
3706	-	- -	383	91145614	mevalonate kinase (Arabidopsis thallane)	3	4	381
1 3854	-	- -	707	911808869	human gcp372 (Homo sapiens)	88	32	402
4082			224	91 508551	ribulose-1,5 bisphosphate carboxylasa large subunit -methyltransferase Pisus setivus	\$	ςς	174
4278			206	91 180189	cerebellar-degeneration-related antigen (CDR34) [Homo saplens] gl 182737 cerebellar degeneration-associated protein (Homo saplens) pir A29770 [A29770 cerebellar degeneration-related protein - human	8 9	rt.	504
19	_	7818	1363	19111001516	hypothetical protein (Symechocyetis sp.)	53	ī	456
2	Ξ	6996	8872	937 606066	ORF_f156 [Escherichia coli]	53	59	792
7.	-	1 4601	2402	p1 153146	ORF3 (Streptomyces coelicolor)	53	33	2400
	Ξ.	111611	10796	91 144859	ORF B (Clostridium perfringens)	52	11	916
9	Ē.	112063	13046	91 1001 19	hypothetical protein (Symethocystis sp.)	53	25	984

		• -	- •		- •	- +																							
5		length	1967	225	\$	237	795		597	594	102)		624	261	468	009	163	234	924	1 066	159	1218 1	3		726	240	1 066	234	813
		* ident		97	1		3,		2	7	2 5		7.	- BC	9	33	S.	28	38	77		32 1	2	- •	2	9	~	46	35 -
10		min .			7	3 3	5		À .	À	5 5		- 25	25	- 23	- 65	52	- 25	- 22	57	- 22	57	52		,	- 52	- 42	- 72	57
15	teins						7202 837202				terium	******		Jannaschili							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		533850 833850						_
20	aureus - Putative coding regions of novel proteins similar to known proteins	* * * * * * * * * * * * * * * * * * *	Cus	staphylococcal accassory regulator A (Staphylococcus Aurana)			acetyl estesse (XymC) [Caldocellum saccharolyticum] pir[B37202]B37202 acetylestesse (EC 3.1.1.6) (XymC) - Caldocellum accharolyticum				putative alpha subunit of formate dehydrogenease (Nethanobacterium hermoautotrophicum)		M. Januaschil Dredicted coding resolve Milita insch	the contract of the contract o									fibronacin binding protein [Streptococcus dyspalactias] pir 833850 833850 tibronacin-binding protein - Streptococcus yspalactiae	dihydrodipicolinate reductase [Pseudomonas syrinaae nv. Pahani					i influenzae)
25	el proteins simi		hypothetical 80x protein - Bacillus sphaericus	Julator A (Staph	yans)	us subtilis;	docellum sacchar				rmate dehydroger	megater (um)	Da reolon Mills)ne (n/mense)			o Crossa)	14 CO11]	rubtilis;	(siae)	solfataricus)	ibronecin binding protein (Streptococcus dysgalacties) (ibronecin-binding protein - Streptococcus ysgalacties)	Pseudomonas a)	horichia colti		16]	mosaic virus)	hypothetical protein (SP:P33644) [Heamophilus influentee]
30	regions of nov	name	80K protein -	al accassory rec	C2787.7 (Chenorhabditis elegans)	sporulation protein (Bacillus subtilis)	ase (EC 3.1.1.6) (XynC)	i	Unknown [Bacillus subtilis]	unknown (Bacillus subtilis)	he subunit of to	ORF2 gene product (Bacillus megaterium)	predicted codi	us subtilial	(urear) amidolyase (Haemonhi)ne (m/lienne)	unknown (Bacillus subtilis)	Chitin synthese 2 (Neurospee Chite	TALL CASE STORY OF TOTAL CASE CLERKS	CACC (ESCHELICA	Jukoa ilpoprotein (Bacillus subtilis)	Yer164p (Saccharomyces carbvisiae)	carboxypeptidase (Sulfolobus solfataricus)	nding protein (inding protein -	linate reductase	No definition line found (Recharich)	resident of the second	I DOCT THE BROKE	reading frame V [Cauliflower mosaic virus]	hypothetical protein (SPrP3)60
35	Putative coding	match gene name	hypothetical	staphylococc	(C2787.7 (C&e	sporulation	acetylesterase	[TagE [Vibrio choleras]	Unknown (Bac	unknown (Bac	putative alpha subun hermoautotrophicum	ORF2 gene pro	M. Jannaschil	Yqhw (Bacillus subtilis)	(ureal) amido	Junknown (Baci	Chitin synths	ord age Oracl		laurus impopro	Yer164p (Sacc	carboxypeptld	fibronecin bi	dihydrodipico	No definition	Birt protect		reading frame	liypothetical i
40	3 aureus -	match acession	pir B33856 B338	191 684950	9111000110	91 143607	91 144297	[g] 460955	91,1438846	91 1486250	91/871456	91 288301	91 1511160	91 1303912	91 1221884	91 467469	91 558604	01 [145580		70/00/18	91 603404	91 1136221	91 288969	91 1185002	91 396380	oi 1773349	יייייייייייייייייייייייייייייייייייייי	71 1.204640	01 (1204431
		Stop (nt)	1187	453	239	3061	£773	2076	5933	7701	4108	1053	6277	2201	2784	1694	1060	7	Ţ-	- ; .	•	6809	1971	3666	255	1326	· i -	- ĭ -	
45		Størt (nt)	1411	-	-	3855	4006	1480	5340	6699	£86	430	6537	2668	1381	2164	1291	5687	31.6		/67	8026	13 6	4411	494	335	1-		- i
		15 15 15	-	-	-	S.	_	_	•	~	-	~	2	_	-	-	-	-	-	-	- i :	-		-	_	-	· 	Ţ.	-;
50		Contig	51	25	7.5	92	96	107	109	112	=	126	Ē	6	131	14.	091	163	168		2	177	228	263	276	283	297	342	

FABLE 2

10	
15	
20	
25	
30	
35	
40	
45	

Cont.ig ID	OR I	Start Int)	Stop (nt)	metch acession	match gene name		1 ident	tength (nt)
375	9	3340	1 3741	91 385177	cell division protein (Bacillus subtilis)	- 53	7 %	Ç
÷	۰	3286	110+	91 1524117	alpha-acetolactate decarboxylase [Lactococcus lactis]	25	\$	726
470	2	903	1145	91 804819	protein serine/threonine kinase (Toxoplasma gondii)	- 53	ę,	243
487	-	1381	1723	91 507323	ORFI (Bacillus stearothermophilus)	- 65	28	333
861	-	274	852	91 1334549	NADH-ubiquinone oxidoreductase subunit 4L (Podospora anserina)	53	, ×	533
503	-	3	1.2	91 1502283	organic cation transporter OCT2 [Rattus norvegicus]	- 53	ģ	151
505	~	1 1619	1284	91 466884	B1496_C2_194 (Nycobacterium laprae)	- 23	9	336
519	~	11182	2549	191 1303707	YrkH [Bacillus subtilis]	53	ž	1368
522	~	3234	1945	19111064809	homologous to spiMTRA_ECOLI [Bacillus subtilis]	52	36	1290
538	~	606	5	91 153179	phosphorinothyrcin n-scatyltransferse (Streptomycse coelicolor) pir/JH0246/JH0246 phosphinothricin N-acetyltransfersse (EC 2.3.1) Streptomyces coelicolor	\$	ę	\$00
547	-	896	486	91 467340	(unknown [Bacillus subtilis]	- 52	\$	463
599	-	1062	532	sp 020692 TYRA_	SP P20692 TYRA_ PREPIENATE DEITYDROJEMASE (EC 1.3.1.12) (PDH).	1 57	7	īs
620	~	757	572	91 1107894	unknown (Schizosaccharomyces pombe)	52	38	186
622	~	1600	1130	91173028	[thiorodoxin 11 [Saccharomyces cerevisiae]	1 57	92	1,69
625	7	1 362	Ē	91 1262366	hypothetical protein (Mycobacterium leprae)	. 72	70	151
680		-	204	91 143544	RNA polymerase sigma-10 factor [Bacillus subtliis] pir A28625 A28625 transcription initiation factor sigma H - acillus subtliis	۶	8	204
969	-	-	629	191 466520	pocR (Salmonella typhleurium)	52	59	627
969	-	~	\$	91 413972	ipa-48r gene product (Bacillus subtilis)	52	2	43
20.	-	36	638	166691 15	M. jannaschil predicted coding region MJ1083 (Methanococcus jannaschii)	- 57	36	603
132	-	2316	1621	1418999	orf4 (Lectobacilius sake)	75	37	969
746	-	451	22.1	1911392973	Rab) (Aplysia californica)	52	42	225
151	<u>-</u> -	2	466	91 (43979	i. curvatus small cryptic plasmid gene for rep protein [Lactobacillus rvatus]	31	\$	£ 43
862	-	7	295	91 1303827	Yqf1 (Bacillus subtilis)	- 53	77	294
1049	- -	1907	455	191 1510108	ORF-1 [Agrobacterium tumefaciens]	52	35	453

5	
10	
15	
20	
25	
30	
35	
40	
45	

55

S, aureus - Putatíve coding regions of novel proteins similar to known proteins

11 1 1 1 1 1 1 1 1	Contig ORF	10 0 T	Start	Stop	match acession	, mptch gene name	e ia	1 ident	length (nt)
1 1912 201 611 611 1010 1011-069 1011-0	1136	-	~	322	94 1303653	[YqgF [Bacillus subtilis]	52	36	321
1 155 155 [4] [5]	1144	-	1691	611	[81]310083	voltage-activated calcium channel alpha-1 subunit (Rattus orvegicus)	ŗs	J	423
1 559 391 [4113770 Uncertive membrane protein putative (metillum mubility) 57 31 31 31 31 31 31 31 3	1172	-	1472	738	19111511146	H. jannaschil predicted coding region Will41 (Methanococcus jannaschil)	53	30	735
1 2 200	1500	~	746	558	91(142780	putative membrane protein; putative (Bacillus subtilis)	٤	25	189
1 2 600 61 137015 Gover-Indectinate synthase [Hemosphilus influenced] 57 19 19 19 19 19 19 19 1	1676	-	659	399	721 313/77	uracil permease (Escherichia coli)	53	,16	261
1 1 1 1 1 1 1 1 1 1	2481	-	~	400	[91]1237015	ORP4 (Bacillus subtills)	دد	62	399
1 10 181 18188772 OPT_Offst (Exchericula Coll)	1099	-	_	230	191 1204540	isochorismate synthase (Heemophilus influenzae)	52	39	224
1 2 155 161 1515196 Interconnection C resistance and export protein [Etrophospesa lauceacensa] 57 79 1 156 141 gill15538 gilucose-fractors endedreductase [EV 1.1] recursor - Symbonias mobilite 57 58 1 156 154 gill15159 hydroxymethylgiutaryl-CoA reductase [EV 1.1] recursor - Symbonias mobilite 57 58 1 156 156 156 gill15159 hydroxymethylgiutaryl-CoA reductase [EV 1.1.1.88] Pacedamonas ap. 57 57 57 1 157 158 gill15159 hydroxymethylgiutaryl-CoA reductase [EV 1.1.1.88] Pacedamonas ap. 57 57 57 1 157 158 159 gill1513 hydroxymethylgiutaryl-CoA reductase [EV 1.1.1.88] Pacedamonas ap. 57 57 1 157 158 159 gill1513 hydratic product [Caenorhabditis alegana] 57 57 57 1 1 1 1 1 1 1 1 1	3122	-	360	181	91 882472	ORF_0464 [Escherichia coli]	۶	•	180
1 856 424 91113358 Qlucose-fructose oxidoreductase (EV.11) recursor - Symmonas mobilis 57 16 16 17 17 17 17 17 1	3560	_	~	361	191;153490	tetracenomycin C resistance and export protein (Stroptomyces laucescens)	s		360
1 194 134	3450		856	5	911155588	glucose-fructose oxidoreductase (Zymomonas mobilis) ptr/A42289[A42289] glucose-fructose oxidoreductase (EC 1.1) recursor - Zymomonas mobilis	۲۶	9	423
1 193 194 91 151259 HNG-CoA reductase (EC 1.1.1.89) Pseudomonas ap. 19 19 19 19 19 19 19 1	1931	-	704	1354	101/413953	ipa-29d gene product (Bacilius subtilis)	5	16	351
1 793 398 plr JV00037 RDGC Intrake reductase EC 1.7.99.4 slpha chain - Eacherichia coli 571 311 1 1 1 1 1 1 1 1	1993		-	384	91 151259	ING-CoA reductase (EC 1.1.1.88) [Pseudomonas mevaloniii pir[A44756 A44756 hydroxymethyjglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	8	6	384
1 556 100 91 1086633 706CIO.5 gene product (Caenorhabditis elegans) 57 77 77 77 77 77 77 7	4065	-	793	198	pir JV0037 RDEC	initrate reductase (EC 1.7.99.4) alpha chain - Escherichia colf	25	15	396
1 571 247	4100	-	296	300	191 (1086633	TO6C10.5 gene product (Caenorhebditis elegans)	52	43	297
2 611 315 91 1000165 Spoiling Bacillus aubtilis 57 318 1 1 1 1 1 1 1 1 1	4163	-	1,52	287	191/21512	potatin (Solanum tuborosum)	ន	20	285
1 3 302 91 398032 EF Streptococcus suis 2 108 290 gi[405894 1-phosphofructokinase (Escherichia coli 37 37 37 37 37 37 38 31 4056994 1-phosphofructokinase (Escherichia coli 572 228 91 405679 914 Escherichia coli 572 238 91 505399 914 18 19 19 19 19 19 19 19	4267	~	631	33	91 1000363	Spotfind (Bacillus subtilis)	52	38	297
1 2 232 gi 1483603 Pristinanycin synthase [Estretomyces pristinaespiralis] 57 35 35 35 35 35 35 35	4358	-	-	302	91 298032	EF (Streptococcus suis)	53	22	300
1 2 222 91 105879 Pristinanycin Synthase [Stroptomycee pristinacepiralie] S7 35 44 1 572 288 91 105879 Puth Escherichia coli] Synthase	4389	~	108	290	91 405894	1-phosphofructokinase (Escherichis coli)	55	۲,	61
1 512 288 91 805879 1981M Escherichia colii	4399	-	~	77	91 1483603	Pristinamycin I synthase I (Streptomyces pristinaespiralis)	52	35	เร
1 512 258 91 515938 91 utamate synthase [ferredoxin] (Synochocyetis sp.) pir 546957 546957 57 42 1 461 242 91 205303 1oukotoxin secretion APP-binding protein [Haemophilus influence] 57 38 1 468 256 91 511222 restriction modification ensyme, subunit MI [Methanococcus januarchii] 57 35 1 12201 11524 91 149204 histidine utilization repressor G [Klebsiella aerogenea] pir A36730 A36730 56 31 1 12201 11524 91 149204 histidine utilization repressor G [Klebsiella aerogenea] pir A36730 A36730 56 31 UTLIZANION PROPERS (EC.) 3.3 PORMININOGLARAKE HYDROLASE HISTIDINE UTLIZANION PROPERS (EC.) 3.3 PORMININOGLARAKE HYDROLASE HISTIDINE	187	-	572	288	91 405879	yeiH Escherichia coli	. 33	7	285
1 468 226 91 1203301 loukotoxiii secretion ATP-binding protein [Haemophilus influenses] 57 38 1 468 226 91 1311222 restriction modification enzyme, subunit MI [Methanococcus jannaschiii] 57 35 11 12201 11524 91 149204 histidine utilitation repressor G [Klebsiella aerogemea] pir[A36730 A36730 56 31 NUCL protein - Riebsiella proteinmit ap[P19452 HUTO_KLEAB FORMININOGLUTAMAKE HYDROLASE HISTIDINE UTILIZATION RADYENG (F 2.3.2.3) FORMININOGLUTAMAKE HYDROLASE) HISTIDINE	4486		512	25.8	91 515938	glutamate synthase [forredoxin] [Synochocyatis sp.] pir s46957 S46957 glutamate synthase [ferredoxin] [EC 1.4.7.1] - ynechocyatis sp.	52	5	255
1 468 256 [91 1511222 Frestriction modification ensyme, subunit Mi (Methanococcus jannaschii) 57 35 11 112201 11324 91 149204 histidine utilization repressor G (Klebsiella errogenes) pir A36730 A36730 56 31 hitch protein - Klebsiella pneumoniae (fragmant) sp P19452 HUTO_KLEAE FORMIHINOGLUTAMANE (EC 3.5.3.8) FORMIHINOGLUTAMANE HYDROLASE HISTIDINE UTILIZATION PROTEIN G) PRACHENT)	4510	-	## I	242	(91,1205301	loukotokin secration ATP-binding protein (Hasmophilus influenzae)	53	38	240
11 12201 11524 gi 149204 histidine utilization repressor G Klebsiella aerogenes pir A36730 A36 A1 A1 A1 A1 A1 A1 A1 A	4617	-	468	1 256	(91(1511222	restriction modification ensyme, subunit MI [Methenococcus jannaschil]	ĸ	35	213
	•	=	112201	11524	91 149204	histidine utilitation repressor G (Klebsiella aeroganes) pir [AJ6730]A36730 huso forcein - Klebsiella preumoniae (frammit) sp [P19422]HUTD KLEAS FORHININGOLIZAMASE (EC 1.5.3.8) FORHININGOLIZAMASE (EC 1.5.3.8) FORHININGOLIZAMATE HTOROLASE) (HISTIDINE UTILIZATION PROTEIN G) FRAGHENT).	96	ĸ	678

nt length (nt)	33 930	34 1086	-	39 504	48, 342	100	32 939	39 555	-	27 405	40 106B	30 1305	31 168	31 699	37 294	ετε ετ	30 222.	26 297	363	-	15 1596	34 645	39 252	1 393
1 ident		_	_	_	_					7								~	_					ī
* sim	3 5	95	\$	\$6	\$	2,6	95	26	28	95	95	35	35	95	35	\$6	35	%	\$	%	28	35	%	>\$
match gene name	RACHI (Homo sapiens)	lipoate-protein ligase (Mycoplasma capricolum)	Y gene product (unidentified)	hypothetical protein (GB:L1920)_1) [Haemophilus influenzae]	(liber protein [Kuman adenovirus type 5]	[transcriptional activator [Providencia stuartii] sp[P4345] AARP_PROST TRANSCRIPTIONAL ACTIVATOR AARP.	nik8 [Escharichia coli]	procesh with homology to pail repressor of B.subtilis (Lactobacillus ebrucckii)	CAMP receptor protein (crp) [Escherichia coli]	hypothetical protein (GB:U1400]_278) [Haemophilus influenzae]	glucose-fructose oxidoreductase Symomonas mobilis pir A4228 A42289 glucose-fructose oxidoreductase (EC 1.1) recursor - Symomonas mobilis	MgtE (Bacillus (frmus)	ipa-24d gene product (Dacillus subtilis)	ipa-22r gene product [Bacillus subtilis]	M. genitalium predicted coding region MG309 (Mycoplasma genitalium)	terminase small subunit (Bacteriophage LL-H	glucamina synthetase (Bacteroides fragilis)	ORF154 Pseudomonas cutida	H(+)-transporting ATP synthase [Lee mays]	Prax (Bacillus subtilis)	acyl coentyme A synthetase (Escherichia coli]	collagenase (Methanococcus Jannaschiij	heat shock protein (Clostridium acetobutylicum)	sark (Staphylococcus aureus)
match	94 1322222	91 1480705	91 490320	9111203099	181 209931	91 623476	91 466613	91 482922	91 145594	191 1204367	91 155588 	01 619724	91 413948	91 580868	91 1046009	945380	91 143947	91,405792	762116 10	191 1109686	191 581070	91 1510242	491 (40363	191,1477533
Stop (nc)	15177	22264	2421	10606	5161	2972	6594	1810	619	17846	6678	5100	232	1521	447	1067	223	6448	393	373	9943	647	2072	2775
Start (nt)	4248	121179	1861	10103	4820	2076	5656	2364	203	118250	1195	6404	65	#23	740	1639	~	6745	=	~	11538	1291	2323	13383
10 GR		28	2	51	9	-	•		-	[2]	œ.	-	7	-	~	~	-	<u> </u>		_	-	_	_	- 2
Contig Q	-:											•		•		•			:					

		•										_	_																	
5		length		n461	674	6911		90		681	272	\$79	168	612	870	1284	709			45		cc	165	1846	405	912	es.	7 477		219
		1 ident			3		,					g	36	7.	- BC		- -	e e		5 5		;	5	-	× -	28	5			
10		1 sin	· •	,		96	3.5					98	96	95	95	95	95	- 95	,	3	· · ·			*	96	95	25	- 98	- 95	×
15	Leins			Sannaachiil													0,1,1,0		voluteurium				Japanesch (1)				thetical			
20	 aureus - Putalivo coding ragions of novel proteins similar to known proteins 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61 (Methenococcus Sennaschiil				• • • • • • • • • • • • • • • • • • • •			liet	formamidopyrimidine-DNA glycosylage [Hasmonhilm influence]				rim; 105 Ribosoma protein Sis alamina	Cyltransterase; 22	1	NADPII-sulfite reducatase flavoprotein component (Salmonella yohlmurium)	hydrogenese accessory protein (Methanococcus Jannaschii)	***************************************	BKS-T)	ABC transporter, probable ATP-binding subunit (Methanococcum Januarhi)	100			aa to a Thermophilic bacterium hypothetical	· · · · · · · · · · · · · · · · · · ·		
25	proteins sin			region MJ19	vatis sp.1	Biiloti	111	rstis sp.)			illus subei	lase (Haemo			ur imi	and and a		-	rotein comp	Hethanococcu	subtilis]	lactis phage	India gubur	lus influens		la	• Thermophil subtilis;			
٠	novel		ızae]	oding	echoc	ich m	da co	(achoc)	iens)	lus su	Bac (Bac	lycosy	SPP1	2	yah	818		legans	flavop	teln (11148	Secus	ATP-b	Hooms		neuza 	1100	7	48	
30	regions of 1	ame.	ilus influer	predicted c	protein (3yr	duct (Shisob	• (Escherich	protein (Syn	of (Homo sap	oduct [Baci]	decarboxy14s	midine-DNA g	cteriophage	rella heemel	[Salmone]]a	Somal protes	um lepraej	orhabditis e	reducatase	nase accessory protein	product (Bac)	ein (Lactoc	ir, probable	protein Had	in the second	an ricilo	ity in 165 a rative (Baci	lus influenz	nas aerugino	piens)
3 5	Putative coding	match gene name	orf3 [Nemophilus influenzae]	N. Janneschil predicted coding region MJ1961	hypothetical protein (3ynechocystis sp.)	nolf gene product [Rhizobium mailloti]	[L-cibulokinase [Escherichia coll]	hypothetical protein [Synachocystis ap.	5-HT4L receptor (Nomo sapiens)	HS74A gene product [Bacillus subtilis]	ocetolactate decarboxylase (Bacillus subtilis)	formamidopyri	terminase Bacteriophage Spp;	Lpp38 (Pascaurella hacmolytica)	brng protein (Salmone)) a typhimurium	rim; 30s Ribo	(Mycobacterium laprae	[2K930.1 (Caenorhabditis elegans)	NADPII-BUI ELE	hydrogenese a	ips-24d gene product (Bacillus subtilis)	repressor protein (Lactococcus lactis phage BKS-T)	ABC transporte	cell division protein Heemooh log log log	Optmose Habbart		26.7% of identity in 165 as to a Thermop protein 6; putative (Bacillus subtilis)	orf3 (Maemophilus influenzae)	MexR (Pseudomonas aeruginosa)	[HMG-1 (Momo sapiens]
40	S. aureus -	match	191 547513	96 181 19	191 1001801	91/46336	91 145304	94 1001634	191 1438904	191 1408486	01 142471	91 1205194	91115466	91 1142681	191 217049	91 467109		91 1229106	95 (15) 929	gi 1510801	91 413948	91 (928836	91 1511513	91 (1205382	411222161		91 1256621	91/547513	91 886022	91 184251
		Stop (nt.)	1632	1373	1799	141	1823	2409	192	2109	2334	1017	1812	1283	1284	1701		1774	400		495	677	199	i –	930	- [-	6	999	22,	223
45	•	Start (nt)	1221	1140	2947	1279	360	1762	380	-	-	-	-	23152	-	1 6601	-	3547	35	1345	-	87	776	-	19 9	-		-	- :	-
	•	 	_	-	_	-		_		-	_	_	7	7	-		-		_	2 1	-	_	_	_	_	· -		7	6901	-
50	7.	Contig O	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-	-	-
		5	230	297	321	359	15.	191	5	416	7.	5	459	504	7	: <u>;</u>	_	99	.0.	709	718	744	230	795	E .	855		896	2	2

TABLE 2

5

1 17 17 17 17 17 17 17	Cont 19 01	ORF Start	rt Stop	8 :	match	match gene name	l sin	1 ident	length (nt)	
1 2 100 1911 12100 1911 12100 1911 12100 1911 1210 1911 1210 1911 1210 1911 1210 1911 1210 1910 191	!	- 423	<u> </u>		11 9806	5	×	2	216	
1 122 131 pi [66665] bio-definition line found [Becherichla coli] 142 132 pi [1001554] sports consideration and vapotative growth protein infiltumenal 56 60 60 60 60 60 60 60	-	1	‡	-	11 1237015	* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36	27	399	• •
1 121 122	 -	1 362	-]	71 466685	No definition line found (Escherichia coli)	96	36	180	
1 177 224 G	-	: -	-		1 1204354	spore germination and vegetative growth protein (Haemophilus influenzae)	98	0	210	_
1 177 228 G 143396 penicillity vaidase Bacillus sphericus 55 30 30 30 30 30 30 3	-	! -	<u> </u>		1 836646	phosphoribosylforminino-praic katolsomerase [Rhodobacter phaeroides]	\$6	29	707	• —
1 1255 146 101 1350604 Similar to aldehyde dabydrogeness (Genochabditis alagement 55 77 1 12 141 121 101 1321035 Na./H- antiporter (Inemophilum Influence) 55 13 1 1 124 121 120335 Na./H- antiporter (Inemophilum Influence) 55 13 1 1 124 121 120335 Na./H- antiporter (Inemophilum Influence) 55 13 1 1 124 121 120335 Order-Chain acyl-CoA debydrogeness (Na maccius) 55 13 1 125 125 121 120335 Order-Chain acyl-CoA debydrogeness (Na maccius) 55 13 1 125 125 121 120335 Order-Chain acyl-CoA debydrogeness (Na maccius) 55 13 1 125 125 121 120335 Order-Chain acyl-CoA debydrogeness (Na maccius) 55 13 1 125 125 121 120335 Order-Chain acyl-CoA debydrogeness (Na maccius) 55 13 1 125 125 121 121 121 121 12	<u> </u>	•	!-	Ī	1 143306	penicillin V amidase (Bacillus sphaericus)	95	90	150	
1 12 131 141 151 1	<u>;</u> –	<u>i</u> –	<u>-</u>	<u> </u>	1 1166604	Similar to aldehyde dehydrogenase [Caenorhabditis elegans]	96	37	164	
1 1 134 9 1205355 Na-7H+ antiporter [Hammophilus Intlumnzae] 56 31 15 15 15 15 15 15 15	-	-	-]		acetyl-CoA C-acyltransferase (Mangifera indica)	9.6	Ç	913	
1 1 1 134 91 736995 10ng-Chalin scyl-CoA dehydrogemase [Rise musculus] 565 36 40 40 40 40 40 40 40 4	-	<u>:</u> –	-	-		Na+/H+ antiporter [Haemophilus Influenzae]	98	17	360	
1 505 334 GI 155588 Glucoss-fructose oxidoreductase (EV 1.1) recursor - Zymomnas mobilis 56 13 19 1 675 155 56 108861 GTG start codon (Lattococcus Lactis) 15 19 19 1 675 155 56 108861 GTG start codon (Lattococcus Lactis) 15 19 19 1 675 155 56 108861 GTG start codon (Lattococcus Lactis) 15 19 19 1 675 155 1108861 GTG start codon (Lattococcus Lactis) 15 19 19 1 7 7 7 7 7 7 7 7 7	-		7	-	91 726095	long-chain acyl-CoA dehydrogenase (Mus musculus)	98	36	324	
1 675 135 91 308661 GTG start codon (Lucrococcus lectis) 14095 1315 91 308661 GTG start codon (Lucrococcus lectis) 14095 1310		1 50\$:	91 155588	glucosa-fructosa oxidoreductasa [Zymomonas mobilis] pir[A42289 A42289 glucosa-fructosa oxidoreductasa [EC 1.1) recursor - Zymomonas mobilis	98	Ç	252	
1 4095 3416 91 5341 Putative off YCLA8C. leni132 (Saccharconyces evisios) 55 25 26 27 28 28 28 28 28 28 28	<u>;</u> –	<u>:</u> –	-		91 308861	GTG start codon (Lactococcus lactis)	98	C.	121	
12 9177 8505 gil 216773 hillococcace dehalogenase H-1 (Horaxella sp.) 550 55 26 4 5133 4534 gil 467377 unknown (Bacillus subtilis) 55 26 5 5404 5844 gil 1001719 hypothetical protain (Symachocyetis sp.) 55 26 7 5356 6888 gil 1001719 hypothetical protain (Exchartchia coli) 55 39 17 8 5569 1808 gil 1100366 unknown hycobacterium tuberculosis 55 39 37 9 1559 1808 gil 1100366 VqjV (Bacillus subtilis) 55 39 30 1 1291 647 gil 606045 Opp_oilB (Escherichia coli) 55 31 1 1294 647 gil 606045 Opp_oilB (Escherichia coli) 55 31 1 1054 1821 gil 1001341 hypothetical protein (Symachocyetia sp.) 55 31 1 1055 1127 gil 401373 gilverrophosphocytia sp.) 55 31 1 1055 1127 gil 401373 gilverrophosphocyl diester phosphodiesterase (Bacillus subtilis) 91 91 91 91 91 91 91 9		<u></u>		•	94 5341	Purative orf YLLX8c, len:192 (Saccharomycas cerevisiae) r 553591 653591 hypothetical protein - yeast (Saccharomycas evisiae)	\$	25	099	
4 5131 4534 gil 467337 Unknown [Bacillus subtilis] 55 26 25 26 26 26 26 26	<u> </u>	:-	-		91 216773	haloacetate dehalogenase H-1 [Moraxella sp.]	55	77	873	
5 5404 5844 gril 1001719 hypothetical protein [Symachocystis sp.] 55 25 25 10 1 11 11 11 11 11 11	-	; -	-	1 -	91 467337	Unknown (Bacillus subtilis)	\$	56	009	
13 14687 12339 gil 474190 lucka gene product (Escherichia coli] 1 1568 6888 gil 1340096 unknown Hycobacterium tuberculosis 1 1569 1808 gil 1303962 YqjQ (Bacillus subtilis 55 39 19 19 19 19 19 19 19	-	-	-	,	91 1001 19	hypothetical protain (Symechocystis sp.)	55	52	4	
7 5164 6888 91 130096 unknown Hycobacterium tuberculosis 3 31 1 1 1 1 1 1 1	:	ī —	;-	!	91 474190	luck gene product (Escherichia coli)	\$\$	or _	1749	
3 2569 1808 91 1303966 YqjQ (Bacillus subtilis) 55 39 39 396 312 91 1303962 YqjK (Bacillus subtilis) 55 33 37 396 312 91 1303962 YqjK (Bacillus subtilis) 55 31 31 3243 91 1303131 hypothatical protein (Symechocystis sp.) 55 31 31 31 31 31 31 31	-	-	-	<u> </u>	91 1340096	unknown [Mycobacterium tuberculosis]	\$5	رد ا	1521	
5 1960 1412 gil1003562 YqjK (Bacillus subtills 1 1291 647 gil606045 ORP_oll8 (Escherichia coll) 55 27 6 6220 5243 gil1001341 hypothatical protein (Symechocystis sp.) 55 31 1 1054 1321 gil1001819 hypothatical protein (Symechocystis sp.) 55 21 1 2065 1127 gil403373 gilycerophosphoryl diester phosphodiasterase (Bacillus subtilis) 55 36 1 2065 1127 gil403373 gilycerophosphoryl diester phosphodiasterase - acillus subtilis 51 52 53 54 2 2 2 2 2 2 2 2 2	<u> </u>	; –	-	-	91 1303968	YqjQ (Bacillus subtilis)	\$\$	96	762	
1	-	<u> </u>	<u>:</u> —		91 1303962	YqjK (Bacillus gubtilis)	55	13	549	
6 6220 5243 91 1001341 hypochetical protein (Symechocystis sp.) 3 3054 3821 91 1001819 hypothetical protein (Symechocystis sp.), 1 2065 1127 91 403373 93/ycerophosphoryl diester phosphodisaterase (Bacillus subtilis) pir 537251 537251 91ycerophosphoryl diester phosphodiesterase - acillus publishs subtilis	-	-	-	_	911606045	ORF_oil8 [Escherichia coli)	\$\$	72	645	
1 1054 1381 [gilloli8]9 hypothetical protein [Synechocyetis sp.], 1 2065 1127 gil403373 give=rophosphoryl diester phosphodissterase (Bacillus subtilis) pir[537251 [537251 giycerophosphoryl diester phosphodiesterase - acillus pir[1537251 giycerophosphoryl diester phosphodiesterase - acillus pir[1537251 giycerophosphoryl diester phosphodiesterase - acillus	-	-	-		41 1001341	hypothetical protein (Symechocyatia sp.)	\$\$	3,5	976	
1127 gi[403373 giycerophosphoryl diester phosphodiasterase [Bacillus subtilis] pir[537251[53725] glycerophosphoryl diester phosphodiesterase - acillus subtilis	-	-	-	-	91 1001 19	hypothetical protain [Synechocystie sp.],	- 85	21	994	
		1 206		!	91 403373	glycerophosphoryl dester phosphodisserasa (Bacillus subtilis) pir 537251 537251 glycerophosphoryl diester phosphodiesterase - acillus subtilis	\$	98	666	

Cont lg ID	10 T	Start	Stop (nt)	match	metyhygone name	E E	• ident	length (nt)
63	=	9968	1 9565	(21 (153053	norali99 protein (Staphylococcus aureus)	55	23	900
25	1	881	1273	q1 41698	1-histidinol: NAD+ oxidoreductase (EC 1.1.1.23) (sa 1-434) scherichia colli	55	33	193
H2	-	115387	114194	91 (136221	carbonypeptidase Sulfolobus soliataricus	5.5	35	1194
87	~	13517	1917	91 1064812	[function unknown [Bacillus subtilis]	55	56	1401
8	-	2711	1636	91 882463	protein-Nipi)-phosphohistidine-sugar phosphotransferase (Escherichia oli)	×	35,	46 5
92.	-	127	516	19111377832	unknown Bacillus subtilis	55	36	390
100	7	936	2035	01 1370274	seamanthin epoxidase (Micotiana plumbaginifolia)	35	36	1200
100	- 2	5137	4658	1911396660	unknown open roading (rame (Buchnera aphidicola)	SS	29	480
103		4266	29R6	91 1499866	H. Jannaschii predicted coding region MJ1024 (Methanococcus jannaschii)	35	=	1381
7.7	-	2616	787	19111511367	formate dehydrogenase, alpha subunit (Methandcoccus jammaschii)	55	29	783
Ξ	-	1805	1 1476	19111100787	unkown (Saccharomyces cerevisiae)	88	35	330
165	- 2	6212	8055	91 1045884	H. genitalium predicted coding region MO199 [Mycoplasma genitalium]	22	72	705
1.89	- 2	2205	2576	(gi)142569	ATP synthose a subunit (Bacillus firmus)	\$	35	57.5
191	9	9136	6857	[91[559411	B0272.3 (Caenorhabditis elegans)	\$\$	39	2280
194	-	364	963	91,1145768	K7 kinesin-lika protein (Dictyostelium discoldaum)	\$\$	7.	273
509	-	1335	1676	101 473357	this gene product (Schizosaccharomyces pombm)	\$\$	35	342
77	~	1 1693	1245	91 410130	ORPX6 (Bacillus subtilis)	\$	17	\$
213	- 2	644	2761	191 633692	TrsA [Yersinia entarocolitica]	\$\$	20	729
214	-	3	2481	194 1001793	hypothetical protein [Synechocystis sp.]	\$	30	1338
221	-	111073	1 9197	gi;466520	pock (Salmonella typhimurlum)	\$	32	7,52
233	8	5908	4817	9111237063	unknown [Mycobacterium tuberculosis]	S	38	1092
236	-	1375	2340	gi 1146199	putative [Decillus subtilis]	\$\$	32	996
243	~	1 380	1685	gi 459907	mercuric reductase (Plasmid pi258)	\$5	29	1506
258	-	786	394	1911455006	orf6 (Rhodococcus fascians)	55	36	193
281	-	126	938	gi 1408493	homologous to SwissProt:YIDA_ECOLI hypothetical protein (Bacillus subtilis)	\$	35	
316	_	6201	2102	gi 1486447	LuxA homologue (Rhizobium sp.)	55	00	780
326	- 5	1 2968	2744	gi 1296824	[proline iminopeptidase [Lactobacillus helveticus]	\$\$	36	225
	11111					1000		

TABLE 2

228 1260 201 355 309 429 387 507 Ipa-44d gene product (Bacillus subtlils) 30 00 33 | 28 38 = 52 = 32 38 36 2 5 5 53 2 2 \$ \$ \$\$ S 2 25 2 S 23 23 S Ş \$ Ş \$ S 23 22 20.31 identity with NADM dehydrogenase of the Leishmania major mitochondrion; putative (Bacillus subtilis) fusion protein F (Bovine respiratory syncytlal virus) pir/J01481/VGMZBA fusion glycoprotein precursor - bovine espiratory syncytlal virus (strain AS1908) H. jannaschii predicted coding region MJ322 (Methanococcus jannaschii) beta-lactomase (Yerainia enterocolitica) para-aminobenzoic acid synthase, component I (pab) (Racillus ubtills) |N. genitalium predicted coding region MG169 (Mycoplasma genitalium) hydrogen peroxide-inducible activator (Maemophilus influenzae) multidrug resistance protein (Haemophilus influentse) CDP-tyvelose epimerase (Yersinia pseudotuberculosis) pseudouridylate synthase I [Haemophilus influentse] DNA helicase, putative [Nethanococcus januaschii] [errichrome-binding protein [Bacillus subtilis] histidine kinase A (Dictyostelium discoldeum) ATP synthese i subunit [Bacillus megaterium] polymorphic antigen (Plasmodium falciparum) ipa-10r gene product (Bacillus subtilis) |Opp C (AA1-301) (Salmonalla typhimurium) chitin synthase [Emericella nidulans] CG Site No. 18166 [Escherichia coli] product unknown (Bacillus subtilis) ORFC (Clostridium acetobutylicum) sark (Staphylococcus aureus) ORF_(109 (Escherichia coli) ORF_(179 [Escharichia coli) match, gene name |gi|1204820 91 1256643 gi | 1511333 911136289 191 | 558073 91 | 1205875 [61 [1477533 91 1046078 91 1272475 191 | 1510251 101 | 1205144 198(221|1961 91 142554 191 (+13934 191 | 606150 191 1143407 91 210824 91 | 537007 91 | 536963 191 304160 91 413968 |gi|389272 91 40367 91 48563 gi | 47804 1429 2057 1881 2412 193 379 232 938 833 8 452 479 945 572 1211 | 903 355 724 386 529 335 2197 Start (nt) 957 1152 1208 1088 1859 17.71 2260 2322 ₹ 582 228 7 = 462 403 751 1 1 955 769 3 ~ 1021 | 1 | 1026 1 ____ 7 -832 383 133 353 410 380 **68 \$**29 \$55 565 730 742 817 #13 840 S.R.2

S. aureus - Putative coding regions of novel proteins similar to known proteins

The state of

5

10

15

20

25

30

35

40

45

50

15	
20	
25	
30	
15	
o	

Contig	9 ORF	Start (nt)	Stop (nt)	match	'natith gene name	* elm	1 ident	length	
1 3695	-	989	35	gi 21673	haloscatate dehalosenase H-1 Mararall 1	- !		(ut)	
1272	-	-	312	di 42029	()DE) now product (because of the contract of	- 55	32	342	
1799	-	-	3		Corr. gene product (ascnetton)	55	7.	312	
	- -	, ;	3	191142029	JURYI gene product (Escherichia coli)	\$\$	2.9	270	
600	- -	77	2	01 1129145	scetyl-CoA C-acyltransferase (Mangifera indice)	- 35	45	402	
3916	-	~	788	91 529754	spec (Streptococcue pyogenes)	- 85	38	384	
3945	-	-	198	91 476252	phase 1 (lagellin (Salmonella enterica)	- 55	36	195	
50	-	488	26	91 42029	ORF1 gane product (Escharichia coli)		92		
4184	-	~ -	5	91 1524267	Unknown (Mycobacterium tuberculosis)	88			
4284	-	*	208	81 1100774	[terredoxin-dependent glutamate synthase [Synechocyatis sp.]				
4457	~	644	378	91 180189	Cerebellar-degeneration-related antigen (CDB14) Homo saplems gi 182737 cerebellar degeneration-associated protein (Homo saplems) pir A29770 A29770 cerebellar degeneration-related protein human	\$	2	267	
4214	-	~	744	191 (216773	haloacetate dehalogenase -1 (Moraxella sp.			-	
4599	-	432	217	fg1 1129145	acetyl-CoA C-acyltransferase [Hangifere indical	6	2	363	
4606	-	416	210	911386120	myosin alpia havy chain (S2 subfragment) (rabbits, masseter, eptide Parilal, 234 as)	\$ 25	2 12	207	
57	-	1 5348	(932	1911536069	ORF YBL047c (Saccharomyces carevisiae)			_	
<u></u>	_	1 7166	6165	911205504	homoserine acetyltransferese liaemonil lus influences	5	33	417	
22	91	117086	15326	1911474192	Lucc gene product (Escherichia colli	35	2	1002	
32		7	979	91 48054	small subunit of soluble hydrogenase (AA 1-184) (Symechococcus sp.) ir[506919]HQYCSS soluble hydrogenase (EC 1.12) small chain noclococcus sp. (PCC 716)	\$ 5	- i i	978	
	Ξ	9437	8667	191 337207	ORF_(277 [Bacherichia coli)		- -		
2,	=	8165	6332	94 1160967	palmitcy1-protein thioesterssa [Homo sapiens]		2	114	
¥	= -	13025	13804	91 438473	protein is hydrophobic, with homology to E. coli Prow; putative Bacillus	* * *	28	780	
\$6	- 2	203	3.6	ai 1256139	Ybb. Bacillus subtilis		- :		
2	Ξ			95 1151248	Innesine unidine preferring nucleoside hydrolese (Crithidia fazefeniasa)	- -	-	524	
9	7	-:	1133	191 1335781	Cap Drosophila malanogaster		7	939	
20	91	8116	9646	91 (1399823	PhoE (Rhizobium meliloti)	- -	67	618	
						-	7	231	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	108F	Start	Stop (nt)	natch acession	nest gene name	# 1 # 1	1 Ident	length
70 115	•	·	11801	sp{P02983 TCR_S	TETRACYCLINE RESISTANCE PROTEIN.	35	0,0	756
1 87	-	4915	5706	191 1064811	[function unknown [Bacillus subtilis]	75	23	792
92	-	3005	2289	91 1205366	oligopeptide transport ATP-binding protein (Haemophilus influenzae)	54		111
103	- 5	2596	1556	gi 710495	protein kinasa (Bacillus brevis)	75	5	1041
105	7	- :	2095	gi 143727	putative (Bacillus subtilis)	35	30,	1491
112	-	1 2337	1 2732	[91[153724	HalC (Stroptococcus pneumoniae)	- 55	\$	396
127	~_	1720	2493	91 144297	acetyl esterase (XymC) (Caldocalium saccharolyticum) pirjan1202/837202 acetylesterase (EC 1.1.1.6) (XynC) - Caldocelium accharolyticum	8	76	174
e	_	1600	3306	91 42473	pyruvate oxidase [Escherichia coli]	24	36	1707
152	~	525	11172	91 1377834	[unknown [Bacillus subtilis]	75	52	648
191	<u> </u>	4831	5469	1011903305	ORF73 [Bacillus subcilis]	75	78	609
1 161	=	113 6694	1251	191115111039	phosphate transport system regulatory protein (Mathanococcus jannaschii)	54	32	558
164	<u>°</u>		4543	191 1204976	[proly]-tRNA synthetaso [Naemophilus influenzae]	35	34	1281
164	20	20 21602	122243	91 143582	apoliiga protein (Bacillus subtilis)	75	7	642
171 6	بو ——	5683	4250	91 436965	naih gene products [Bacillus staarothermophilus] pir/543914[543914 hypothetical protein 1 - Bacillus tearothermophilus	3	5	100
206 118	<u>-</u>	1R 1920R	119720	91 1240016	R09E10.3 [Caenorhabditis elegans]	35	96	513
1 218		1090	1905	gi 467378	unknown (Bacillus subtilis)	24	92	816
220	- -	1322	663	[91]1353761	myosin II heavy chain (Maegleria fowleri)	35	72	099
220	3	113 12655	13059	pir S00485 S004	gene 11-1 protein precursor - Plasmodium (alciparum (fragments)	22	55	405
1 221		2030	3709	[91{1303813	rqem [Bacillus subtilis]	*	*	1680
272	۲	\$005	4219	91 62964	arylamine N-acetyltransferase (AZ 1-390) (Gallus gallus) irj506652 kyCHY3 arylamine N-acetyltransferase (EC 2.3.3.5) (clone NAT-3) - chicken	25	2	837
316 7 4141	_	4141	4701	91 682769	mccE gene product (Escherichia coll)	24	=	561
316	2	6994	8742	91 413951	ipa-27d gene product (Bacilius subtilis)	35	28	1749
338	-	711	1221	gi 490328	LORF F (unidentified)	24	28	1164
ž	-	4 3201	3614	101)171959	myosin-like protein (Saccharomyces cerevisiae)	>4	25	414
					••••••••••••••••••••••••••••••••••••••			

==	34 909	-	-	936	29 / 951	-	489	-	1215	-	- ‡	-	B46	204	_	705	537	-:	756	249	279	279 [7 228
1 ident			7	~ 	~	7	2	*	4 5		7	2	\$	2	9	2 2	ę		2	72	۾ ا	7	32
mie /	×			3	z	×	*	25	* *		*	7	75	*	ž	7 2			3	3	54	3	<u>.</u>
match gene name	similar to eukaryotic Na+/ + exchangers Escherichia coll sp P33703 V3CE_ECOL HYPOTHETICAL 60.5 KD PROTEIN IN SOKR-ACS NTERGENIC REGION (0549).	ORF_1343a (Bocherichia coli)	SP P02983 TCR_S TETRACYCLINE RESISTANCE PROTEIN.	luck gene product (Sacherichia colii)	ORF2 [Bacillus megaterium]	product unknown (Bacillus subtilis)	hypothetical protein (\$P.Pi0130) (Mammarkii	2-hydroxyhebta-2, 4-diene-1, 7-dione-a (rodc (tag1) polypeptide (AA 1-746) Racillus subtilás ir 806049 506049 rodc protein - Bacillus subtilis p P13485 TAGP_BACSU TECHOIC ACID	unknown (Corynebecterium glutamicum)	No definition line found (Casnorhabditis alegans)	fused envelope glycoprotein precursor Friend soleen formation	ORP VGR234# [Saccharomyces cerevisiae]	ornithine transcarbanylase Nomo maniena	YqgZ (Bacillus subtilis)	low homology to P20 protein of Bacillus lichiniformis and bleomycin acetyltransferase of Streptomyces verticillus (Bacillus subtilis)	MADH dehydrogenasa subunit 4 (Apis mallifera liquatica) pir 552968 NADH dehydrogenasa chain 4 - honeybee !tochondrion (SCE4)	sensory protein kinase (Streptomyces hydrosconicus)	pir s10782 s107 integrin homolog - yeast (Saccharomyces exections)	ORF VNL091v (Saccharomycas carevisiae)	hypothetical protein (Synechocyatia an i	ch-Tod [Homa sapiens]	
astch acession	91 396400	191 537109	sp P02983 TCR_S	[gi 474190	91 (216267	191 104160	191/1205015	191 1500558	91 40100	94 950197	91 485090	911331906	91 1323423	91 219959	91 1303873	91,1063250	91 552446	91 987096	pir 530782 5307	91 1301994	91 1001108	91 1045057	
Stop (nt.)	912	1351	1942	5301	8854	2229	1133	5357	1522	4279	958	936.	757	249	1480	404	1011	17	249	#59	281	228	•
Start (nt)	1820	623	1001	4351	7934	7172	1696	6262	2736	1305	1356	91	534	2	_		1547	686		- 123	-	-	-
100		-	- 7	9	6	~	-	-		5		-	-	-	-			~	-	-	_ _	-	-
Contig	346	348	378	809	3	463	205	205	550	188	55a	580	603	617	612	623	689	725	956	978	1314	2450	2934

S aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF ID ID	ID	Start (nt)	Stop (nt)	natch	med ch deme make	als (• ident	length (nt)
3002	-	-	309	9114027	Tma protein (Lactococcus lactis)	PS	33	309
3561	-	6	797	91/151259	HHOT-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pirjA44756[A44756] hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	3	35	456
3572	-	22	10+	g 450688	hadM gene of Ecopriz gene product [Escherichia coli] pir [93847] [938437 hadM protein - Escherichia coli pir [509629 [809629 hypothetical protein A - Escherichia coli (SUB 40-520)	x	36	330
3829	-	198	000	91/1322245	mevalonate pyrophosphate decarboxylase (Rattus norvegicus)	54	29	399
1909	-	-	273	91/29865	CENP-E (Homo sapiens)	- 54	30	trs
3921			509	pir s24325 s243	glucan 1.4-beta-glucosidase (EC 3.2.1.74) - Pseudomonas fluorescens subap.	\$5	36	207
4438	-	996	285	91 1196657	unknown protein (Mycoplasma pneumoniae)	75	30	282
4459	-		272	91 1046081	hypothatical protein (GB:D26185_10) (Mycoplasma genitalium)	35	36	270
4564	-	-	221	91 216267	ORF2 [Bacillus magaterium]	- S	1 38	219
2	==	12538	10685	91 474192	lucC gene product (Escharichia coli)	s	ž	1854
2	=	14841	113579	gi 62029	ORF1 gene product (Escherichia coli)	53	32	1263
7.	-	4440	1940	91 1369947	c2 gene product (Bacteriophage 81)	53	36	105
56	-	13818	1 4618	91 1486247	unknown [Bacillus subtilis	53	37	108
38	9	2856	1 3998	91 405880	yaii (Escherichia coli)	53	0 +	1163
18	101	1 9380	1 7806	gi 1399954	thyroid sodium/iodide symporter NIS [Rattus norvegicus]	53	1 29	2721
\$	2	12324	112100	pir A54592 A545	110k actin film essociated protein - chicken	1 53	32	125
57	9	5047	4583	pir A00341 DEZP	alcohol dehydrogenase (EC 1.1.1.) - fission yeast (Schizosaccheromyces penbe)	3	66	465
5.2	27	10515	8932	191 1480429	putative transcriptional regulator (Bacillus steerothermophilus)	23	00	1584
63	27	9676	110218	19111511555	quinolona resistance norA protein protein [Methanococcus jannaschil]	- 53	31	123
69		3125	2382	91 1 1 6 8 7 0 1 7	nogalactan-protein, AGP (Nicot rate, Peptide, 461 aa)	2	30	764
66	-	_	1031	91 1523802	glucanise (Anabaena variabilis)	- 53	1 32	1029
80	-	673	338	91 452428	Affess 3 (Plasmodium falciparum)	- 83	36	336
88		1910	2524	1911 137034	ORF_0488 [Escherichia coli]	53	1 25	615
:								

	:-		+																					
5	length	(nt)	366	1179	1227	624	1641	1209	450		1605	_	768		102	1162	531	240	-	684	2289	181	357	261
-	1 ident	_	8	35	30	35	33,	32	25		* =	-:	~ ×		- #X			a a	-	=	-	72	90	22
10	1 ofm		2	8	2	5	- 83	5	8 8		2 5	- i	a s	_	2	- :		2 2	- :	2	- 5	- 8	- 68	- -
proof e sing					ROTEIN).				mucoidy requiatory protein Aigh (Feeudomonae aeruginose) pir (A12802) A12802 requiatory protein algn - Peeudomonae aeruginose ap (P26275) ALGN_PSEAE POSITIVE ALGIANTE BIOSYNYHESIS REDULATORY ROTEEN		acetoscetate decarboxylase [Clostridius acetobutylicum] pir 849346 849346 butytate-acetoscatate CoA-transferase [SC .8.3.9] small chain - Clostridium acetobutylicum sp 933752 crrs.CLOMB BUTYRATE-ACETOACETATE COA- TRANSFERASE SUBUNIT (SC 2.8.3.9) (COAT A)		07905 ARGB_BACST -ACETYL-L-					EST UBUNIT (EC		****	-	N (ORF104).	1	Cus mutans
00 Imilar to known p		lattus norveotau		1000	ILUS KESISTANCE		* auctits;	(4/6)	nas aeruginosa) ruginosa sp[P262	anococcus fannass	cetobutylicumi pir BC .8.3.9 small ch A_CLOAB BUTYRATB-AC	ubb 6 1 6 4 1	TROPHIUS SP (0 INASE) (AGK) [N-			Perfector may		dium falciparum) YMERASE III LARG				INTERCENIC REGION		on, streptococ
97 97 97 97 97 97 97 97 97 97 97 97 97 9		rus receptor IA	TOWNCOM CORDA	OTETN (SIR PONEN	THE PERSON NAMED IN	The fact of the contract of th	1000 CO.	Ococcus soldern	AlgR (Pseudomo Pseudomonas as	54044_18) (Heth	lase [Clostridium ace e CoA-transferase (SC licum sp[P33752 CTPA (RC 2.8.3.9) (COAT A)	lon) (Bacillus	illus stearothe 2.7.2.8) (NAG	falciparum	itiel) region) - St		Bubunit (Plasmo IRECTED RNA POL	pombe]		The Above		, y	
S S S S S S S S S S S S S S S S S S S	ne name	amphotropic murine retrovirus receptor (Rattus norvenies)	tropomyosin (TPM1) [Saccharomycem ceravielsa)	8P P28246 BCR. E BICYCLOHYCIN RESISTANCE PROTEIN (SILPMANTER BEOCKEL)	ORF1 [Vibrio anduillarum]	glycine betaine transporter Onth (Bacilla	putative (Becillus subtilis	epiB gene product (Stabhylococcus enidersides)	uccidy regulatory protein Alga (Pseudomonas aeruginosa) pir A32802 A33 regulatory protein alga - Pseudomonas aeruginosa pi P26275 ALGA_PSEAS POSITIVE ALGINATE BIOSYNTHESIS REGULATORY ROTEIN	hypothetical protein (GP:D64044_18) (Methanococcue Jannaschil)	catoacetate decarboxylase [Clostridium acetobuty]icum] pir B493.butyrate-acetoacetate Col-transferas [BC .8.3.9] small chain- Clostridium acetobutylicum pp B13752[CFFA_CLOAB BUTHRATB-ACETOAL TRANSFERASE SUBUNIT (BC 2.8.3.9) (COM A)	rpog protein (ttg start codon) (Bacillus subtities	acetyigiutamata kinasa (Bacillus atearothermophilus) sp 007905 ARGB_BACGF ACETYIGIUTAMATE KINASE (EC 2.7.2.8) (BAG INASE) (AGK) [N-ACETYL-L- GLUTAWATE 5-PHOSHOTRAMSFERASE).	protein kinase (Plasmodium falciparum)	paramyosin (Dirofilaria immitis	il protein (gefD	ORP_o696 [Escherichia coll]	RNA polymerase III largest subunit [Plasmodium falciparum] sp[277625[RPC1_PLAFA DNA-DIRECTED RNA POLYMERASE III LANGEST UBUNIT 2.7.7.6).	unknown (Schizosaccharomyces pombe)	ORP1 (Campylobacter jejuni)	L 42.7 KD DROTTEN	MHC class II analog (Stabhylocorns ansers	40K cell wall protein practices (e. c.	(strain OMZ175, serotype f)
outative cod	' match gene name	amphotrop	tropomyos	BICYCLOHYC	ORF1 (Vibr	glycine be	putative	lepin gene	mucoidy re regulator POSITIVE	hypothetic	AGBEGGGGB Butyrate Clostridi TRANSFERA	rpoE prote	Acetylglue ACETYLGLU	protein kir	paramyosin	hypothetica	ORP_0696 (E	RNA polymer sp[927625] 2.7.7.6).	unknown (Sc	ORF1 (Campy	IYPOTHETICA	MHC class I	40K cell wal	(strain OH2
S. aureus - P	natch	91 399598	91 173038	8p P28246 BCR_E	91 576655	191/1524397	191 11256630	91 581648	91 151004	91 1510669	91 298085	91 143456	[91]304136	191 9878	191 537506	pir A33141 A331 hypothetical protein (gtfD 3 region) - Streptococcus mutane	94 606292	91 160596	91 854601	633732	ap P31675 YABM HYPOTHETICAL 42.7 KD DBOTTEN IN MODE.	91/1001961	pir A60328 A503	
5	Stop	1 5505	3239	5433	1262	8897	5888	\$57	4256	5423	11483	4326	14971	4221	1350	3249	2576	5884	106	_	38	4731	980	-
-	Start (nt)	5870	4417	4207	1 1639	1257	6893	255	4705	1 5717	13087	3763	18204	4021	1580	2719	927	5645	218	212	763	5087	1240	-
	0 0 0 0	-	~	~	-	=	•	~	-	-		-		2	~	•	-		-	7	_ 	-	7	-
0	Contig	92	86	66	120	120	127	143	e2.	171	161	203	506	212	231	272	308	320	327	341	151	433	454	
										•						-+	- •	÷	<u> </u>	:	-	·		- :

Cont ig	10 T	Start (nt)	Stop (nt)	match	habidh gena name	=======================================	• Ident	length (nt)
470	-	1123	1761	91 516826	rat CCP360 (Rattus rattus)	23	20	619
483	-	432	217	gi 1480429	putative transcriptional regulator (Bacillus stearothermophilus)	53	5	216
254		\$16	1259	91 46587	ONF 1 (AA 1 - 12) (1 is 2nd base in codon) [Staphylococcus aureus] ir [S15765 S15765 hypothetical protein 1 (hlb 5' region) - aphylococcus aureus (fragment)	\$	8	744
558	92	3957	3754	91 15140	res gene (Bacteriophage Pl)	S	32,	204
603	~	339	620	911507738	Hmp Vibrio parahaemolyticus	53	56	282
693		1669	941	91 153123	toxic shock syndrome toxin-1 precureor (Staphylococcus aureus) pir A24606 XCSAS1 toxic shock syndrome toxin-1 precursor - taphylococcus aureus	æ	S	729
766	-	~	673	91 687 600	orfA2; orfA2 forms an operon with orfA1 [Listeria monocytogenes]	63	\$	672
781	-	667	335	91 1204551	[pillin biogenesis protein [Maemophilus influentae]	53	76	333
801	-	_	545	19111279400	SapA protein (Escherichia coli)	1 53	125	543
803	-	2	910	191 695278	lipase-like enzyme [Alcaligenes eutrophus]	3	90	606
872	-	7711	290	191 298032	[EP Streptococcus suis]	53	30	588
910	~	~	184	91 1044936	unknown (Schizosaccharomyces pomba)	53	59	183
943		794	399	911130508	similar to unidentified ORP near 47 minutes [Escherichia coli] sp plidis Yick_ecoli Hypothefical 41.5 KD PROTEIN IN SELC-NLFA HTENGENIC REGION,	ç	e E	396
988	_	1004	\$04	91/142441	ORF 3; putative [Bacillus subtilis]	53	28	\$01
1064	7	2	434	191 305080	myosin heavy chain (Entamosba histolytica)	53	26	432
1366	-	~	452	911308852	transmembrane protein [Lactococcus lactis]	53	1 33	450
1758	-	792	197	91 1001774	hypothetical protein (Synachocystis sp.)	cs –	30	396
1897	-		147	94 1303949	Yqix (Bacillus subtilis)	53	12	467
2381	-	798	00+	91 1146243	122.4% identity with Escherichia coli DNA-damage inducible protein; putative [Bacillus subtilis]	2	33	199
1517	-	-	727	93 450688	hadw gene of Ecopril gene product (Eacherichia coll) pir[538437 538437 hadw protein - Eacherichia coll pir[509629 509629 hypothetical protein A - Eacherichia coll (508 40-520)	<u>د</u>	35	727
3747	7	1117	1 397	91 1477486	cranspossse (Burkholderia capacia)	l 53	53	261
7	·	1049						

5		length	(uc)	982	3459		921	606	450	519	280		0	482	c c		189		919	75.7	1569			1149		
		1 Ident	7	=	Z.		ç	53	96	23	g			9		× ×	97		2	39	2			96		1 2
10		mis /	25	22	2	3		70	76	70	2 2	3			- 65	23	22	52	52	52	22 -	52	52	25	- 25	5
15	e i s		•		[]							•		•	asch11)		44357 A44357	****						ein; putative		nnaschi 1)
20	S. aureus - Putative coding regions of novel proteins similar to known proteins	* * * * * * * * * * * * * * * * * * *	99a T4)	UDP-murnac-pentapeptids synthatase [Haemophilus influentae]	predicted 86.4kd protein, 52kd observed (Mycobacteriophage 15) pir 530971 [530971 game 26 protein - Mycobacterium phage L5 sp[00523] [vozé_BPWL5 HINOR TAIL PROTEIN 0P26. (5UB 2-837)			***************************************	Inkaei		ndothelial differentiation protein (edg-1) [Homo sapiens) pir[A35100[A35100 protein-coupled receptor edg-1 - humen ap[P21453]EDGI_HUMAN PROBABLE G PROTEIN-COUPLED RECEPTOR EDG-1.				glutamate synthase (NADPH), subunit alpha (Methanococcus jannaschil)	lus influenzae]	cytoplasmic dynain heavy chain [Dictycate]ium discoldeum] r A4435 A44357 dynain heavy chain, cytosolic - slime mold ctycstellum discoldeum	• • • • • • • • • • • • • • • • • • •	beilis		amino acid permease Yeef like protein (Salmonella typhimurium)			[25.8] identity over 120 as with the Synenococcus sp. MpeV protein; putative	• • • • • • • • • • • • • • • • • • • •	H. jannaschii predicted coding region MJ0272 (Methanococcus jannaschii)
25	proteins al		(Bacterioph	etase (Haemoj	2Kd observed (Protein - Mycol	annaschii!	tomyces coelicolor)	1 col1]	Anopheles L		cotein (edg-1	ius subtilis)	aliloti]	cus PCC7942]	bunit alpha	2) (Meamoph)	[Dictyoste] - slime mol	bt (1 ie)	(Bacillus sul	un lepraej	protein (Salr	(ae)	gingivalis	the Synenoc	144)	region MJ027
30	regions of novel		G41 protein (gtg start codon) (Bacteriophage T4	entapeptide synth	redicted 86.4kd protein, 52kd observed improbacteriophage pir[5]0971[5]0971 game 26 protein - Mycobacterium phage L sp[q05233]VG26_BPML5 MINOR TAIL PROTEIN GP26. (5UB 2-837)	P115 protein (Mathanococcus Jannaschii)	glucose kinase (Streptomyces coelicolor)	moak gene product (Recherichia coli)	NADH dehydrogensse subunit 6 (Anopheles trinkae)	pAD1	endothelial differentiation protain (edg-1) [Homo aspisma] ppf[A53300]A33100 G protain-coupled receptor edg-1 - huma sp[P2143]EDGL_HUMAN PROBABLE G PROTEIN-COUPLED RECEPTOR	sorbitol dehydrogenese (Bacillus subtilis)	phas gene product (Rhizobium meliloti)	NADH dehydrogenase (Synechococcus PCC7942)	thase (NADPH), su	hypothetical protein (SP:P31122) (Masmophilus influentae)	ynein heavy chain chain, cytusolic -	B65G gene product (Bacillus subtilis)	Respiratory nitrate reductase [Bacillus subtilis]	lmbE gene product (Mycobacterium leprae)	permease Year like	unknown (Saccharomyces cerevisiae)	puT gene product [Porphyzomonas gingivalis]	over 120 as with	PBSX terminate [Bacillus subtilis]	predicted coding regio
35	Putative coding	match gene name	G41 protein	UDP-murnec-p	predicted 86. pir 530971 5 sp[005233 vo	P115 protein	glucose kinas	moaß gene pro	NADH dehydrog	trac (Plasmid pAD1)	endochelial d pir (A35300 A	sorbitol dehy	phas gene pro	NADK dehydrog	glutamate synthase	hypothetical	cytoplasmic d dynein heavy	B650 gene pro	Respiratory n	ImbE gene proc	amino acid per	unknown (Sacc)	pur gene produ	25.8% identity over (Bacillus subtilis)	PBSX termina.e	M. jannaschii
40	S. aureus - I	match	91 215966	191 [1205379	91 579124	[g1]1500543	91/46851	91 42012	91 1040957	[91()88269	91 181949	qi 304153	91 (1072399	91 46485	91 1511365	91 1204393	91 7227	91 1408465	91 1009368	91 699274	91 1526981	q1 732931	91 1296975	91 1256634	91 1225943	191 1510368
45		Stop (nt)	2369	3808	3462	3935	19703	11066	125	6280	2826	4173	2870	3651	12962	18158	1997	10664	3351	- 1	17300	981	1680	1807	583	1 4415
		Start (nc)	2205	2429	6920	3015	8648	10617	_	15531	3968	4850	3364	4445	11355	16935	2185	10005	3986	-:	1572	1412	865	629	7911	:
		2 G	- !	-		5	2	116	-	91	<u></u>	-	5	•	=	- 12	-	91	-	-:	<u> </u>	<u>-</u>	_ _ _	~_	<u>-</u>	114 4687
50		Contig	21	- F	~		38	7	9	1 21	98	- 53	62	62	19	69	6	96	ē	62	109	121	125	961	149	149

### ArtP-dependent nuclease (Bacillus subtilis) #### [Bacillus subtilis] ###################################	tation training train	natch gene name call division protein [Escherichia coli] orf 337; translated orf similarity to SW: BCR_ECOLF bicyclomycin esistance protein of Escherichia coli [Coxialla burnetil] pir[S44207]544207 hypotheticu protein 37 - Coxialla burnetil [Sus -338] mitochondrial outer membrane 72K protein [Neurospora crassa] r[A36682]A36682 73K mitochondrial outer membrane protein - rospora crassa
chain (Entamodea histolytica) (50 1A1, hepatic - dog (fragment) Inding protein (Bacillus subtilis) protein (Symachocystis sp.) plasma capricolum) deformylase (Proteus vulgaris) deformylase (Proteus vulgaris) sport system protein Sapf homolog; Sapf homolog (Mycoplasma sport system protein Sapf homolog; S	nden ct11	rP-dependent trp (Bacill
ormylase) [Maenophilus]	1 2	osin he
rmylase) [Maenophilus SapF homolog [Mycoplasma		Ary (Es
-binding protein (Bacillus subtilis) al protein (Symachocystis sp.) coplasma capricolum coblasma capricolum si deformylase (Froteus vulgaris si deformylase (formylmathionine deformylase) (Haemophilus 52 si deformylase (formylmathionine deformylase) (Haemophilus 52 short (formylmathionine deformylase) (Haemophilus 52 short (formylmathionine deformylase) (Haemophilus 52 short (formylase (formylmathionine deformylase) (Haemophilus subtilis) 52 spoy's (Bacillus subtilis) 52 spoy's (Bacillus aubtilis) 52 to penicillin acylase (Bacillus subtilis) 52 spoy orgulatory protein (Bacillus subtilis) 52 spoy orgulatory protein phon - Bacillus subtilis 54 spoy orgulatory protein (Bacillus subtilis) 52 spoy orgulatory 52 spoy orgulatory 52 spoy orgulatory 52 spoy orgulatory 52 spo		tachr
52		anic111
capticolumi se [Proteus vulgaris] system protein SapF homolog Hwamophilus 52 system protein SapF homolog SapF homolog Hycoplasma 52 system protein SapF homolog SapF homolog Hycoplasma 52 rium tuberculosis saccharopolyspora erythreae (fragment) 52 cillin acylase (Bacillus subtilis) 52 se requiatory protein Bacillus subtilis 52 regulatory protein Bacillus subtilis 52 se requiatory protein Bacillus subtilis 52 regulatory protein Bacillus subtilis 52 cu arkding Protein Bacillus subtilis 52 cu TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN AGG. 52 sase Bacillus subtilis 52 sase Bacillus subtilis 52 sase Bacillus subtilis 52		ypothe
system protein SapF homolog; SapF homolog (Mycoplasma 52 system protein SapF homolog; SapF homolog (Mycoplasma 52 system protein SapF homolog; SapF homolog (Mycoplasma 52 rium tuberculosis) 52 rium tuberculosis 63 cullin acylase (Bacilius subtilis) 64 cullin acylase (Bacilius subtilis) 65 cullin acylase (Bacilius subtilis) 65 cullin acylase (Bacilius subtilis) 65 cullin acylase (Bacilius subtilis) 65 cullin acylase (Bacilius subtilis) 65 cullin acylase (Bacilius subtilis) 65 cullin acylase (Bacilius subtilis) 65 cullin acylase (Bacilius subtilis) 65 cullin acylase (Bacilius subtilis) 65 cullin acylase (Bacilius subtilis) 65 cullingral membrane protein (Bacilius		orf LJ INy
system protein SapF homolog (Mycoplasma 52 system protein SapF homolog (Mycoplasma 52 sectillus subtilis) 52 rium tuberculosis) 52 cultim tuberculosis) 52 - Saccharopolyspora erythraea (fragment) 52 cultin acylaee (Bacillus subtilis) 52 cultin acylaee (Bacillus subtilis) 52 regulatory protein (Bacillus subtilis) 52 regulatory protein (Bacillus subtilis) 52 cultadaring Phospharas Symthesis Spason Protein Mod. 52 cultadaring protein (Bacillus subtilis) 52 cultadaring protein (Bacillus subtilis) 52 cultadaring hombrane protein (Bacillus subtilis) 52 cultadaring hombrane protein (Bacillus subtilis) 52 cultadaring hombrane protein (Bacillus subtilis) 52 sectillus subtilis) 52		TP phos
Abecillus subtilis] Bacillus subtilis] Saccharopolyspora erythraea (fragment) Saccharopolyspora erythraea subtilis) Fegulatory protein [Bacillus subtilis] Fegulatory protein [Bacillus subtilis] Saccharopolyspora erythraes SYNTHESIS SPASOR PROTEIN HOR (EC Integral membrane protein [Bacillus subtilis] Saccharopolius influenzae) Saccharopolius influenzae] Saccharopolius subtilis)		olypeptide influenzae
Saccharopolyspora erythrees (fragment) 52 - Saccharopolyspora erythrees (fragment) 52 - Saccharopolyspora erythrees (fragment) 52 clilin acylaes (Bacillus subtilis) 52 cepilatory protein (Bacillus subtilis) 52 regulatory protein pNoR - Bacillus subtilis CSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC integral membrane protein (Bacillus subtilis) 52 csu Telchoic Acid TRANSLOCATION PERMEASE PROTEIN AGG. 53 sase (Bacillus subtilis) 52		eptide tran pneumoniae
cllin acylase (Bacilius subtilis) se requiatory protein (Bacilius subtilis) regulatory protein phoR - Bacilius subtilis) csu alkaline protein (Bacilius subtilis) csu alkaline protein (Bacilius subtilis) csu terchius protein (Bacilius subtilis) csu telchoic ACID TRANSLOCATION PERMEASE PROTEIN AGG. sese (Bacilius subtilis) 52 sesee (Bacilius subtilis) 53		imi lar
- Saccharopolyspora erythree (fragment) 52 cillin acylase (Bacillus subtilis) 52 cequiatory protein [Bacillus subtilis] 52 sequiatory protein phoR - Bacillus subtilis cequiatory protein phoR - Bacillus subtilis integral membrane protein (Bacillus subtilis) 52 csu frichoic Acid Translocation PERMEASE PROTEIN AGO. 52 vator (Haemophilus influenzae) 52		nknom
subtilia) becilius subtilia) SYNTHESIS SENSOR PROTEIN HOR (EC In [Bacilius subtilia] ACATION PERMEASE PROTEIN AGO. STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE ST		rth S.
l - Bacillus subtilis SANTHESIS SENSOR PROTEIN HOR (BC SANTHESIS SENSOR PROTEIN HOR (BC 52 100 10		poloso
in [Bacillus subtilis] 52 Acation Penkesse PROTEIN AGO. 52 Acation Penkesse PROTEIN AGO. 52 Acation Bacinises		1kaline pir (A276 sp P2354 2.7.31
52 52		1ghly 1 1p P429
55		ranscri
		TP-depe

CABLE 2

		•											_															
5		length	(at)		852	336	2	122	345		282	258	767	306	219	267	312	387		443	219	210 1	573	1 862	999	234	264	279
		1 ident	35		C .	36	8	32	34	,	2	35	7	3,	~	05	2	42			77	0	# .	32 –	25	- 10	35	37
10		eis /	52	S	7	7	2	25	52	5		25	52	52	\$2	2	3	25	3		7	7	12	- 12	22	- 15	- 15	- 12
15	proteins	+ + + + + + + + + + + + + + + + + + +	Bacteriophage phi-li int gene activator (Staphylococcus actariophage phi			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			codon) (Maccertophage SPO2) gi 579197 Bacteriophage SPO2 pir A21498 DJBPS2 DNA- 7.71 - Phage PO2								r Insenophilus	OXOGIULBRATE dehydrogensse (NADP+) [Bacillus subtills] p[P23129 ODO1_BACSU 2-OXOGLUTARATE DEHYDROGENASE BI COHPONENT (EC 2.4.2) (ALEHA- KETOGLUTARATE DEHYDROGENASE).					_	BCn11)		-		
20	imilar to known		Staphylococcus	usonias)	nidis]				(Bacteriophage phage SP02) pir				ubr () (a)			acid transports.	io lode e i a a a a	lus subtilis pi F (EC 2.4.2) (AL	Ini j		•	beilial		and a particular parti				
25	lovel proteins s		gene activator	[Hycoplasma pne	lococcus epidem	ermoformicicum]	acilius subtili	11s)	tg start codon) 1-648) [Bacterio (EC 2.7.7.7) - p		richia colij		ein (Bacillus a	[8]		4-aminobutryic		(NADP+) (Bacil. ASE BI COMPONEN	eishmenia donov	Escharichia col	isiae)	tor (Becillus gr	a available			T POMPO	min colii	icter pylori)
30	S. aureus - Putative coding regions of novel proteins similar to known proteins	gene name	phage phi-li int	putative orf; GT9_orf434 (Mycoplasma pneumoniae)	epiB gene product [Staphylococcus epidermidis]	Fdhc (Methanobacterium thermoformicicum)	ATP-dependent nuclease (Bacillus subtitis)	comE ORF1 (Bacillus subtilis)	DNA polymerase (gene L. ttg start codon) (Bacteriophage SP02) SP02 DNA polymerase (as 1-648) (Bacteriophage SP02) pir[A2164 directed DNA polymerase (EC 2.7.7.7.) - phage P02	YbbG (Bacillus subtilis)	hisa ore (AA 1-245) (Escherichia cols)	EF (Streptococcus suis)	hypothetical 64.7-kDa protein [Bacillus subrite:	BAA (Bacillus licheniformis)	U87 (Human herpesvirus 61	Na* and Cl - dependent gamma-aminobutryic acid transcores !!.	ae]	ate dehydrogenese Tarate Dehydrogen Enase).	ornithine decarboxylase [Leishmania donovani]	No definition line found (Escharichia coll)	Adrép (Saccharomyces cerevisiae)	putative cel operon regulator (Bacillus subtilia)	indole-1-glycerol phosphate everthank	Yqin (Bacillus subtilis)	Srol (Schizonarcharomyon parks)	BOBO CONTRACTOR OF THE PROPERTY OF THE PROPERT	Product (Baciller)	Vacuolating toxin [Helicobacter pylori
35	Putative co	match g	Bacterion 11)	putative	epiB gene	Fdhc (Met	ATP-depen	come orP3	DNA polym SP02 DNA directed	YbbG (Bac	his or	Sr (Strep	hypotheti	BAA (Baci	[U87 [Human	Na and C	influenzae	OXOGIUTARATE 2-OXOGLUTARATE DEHYDROGENASE)	ornithine	No definit	Adrép (Sac	putative	Indole-3-g	Yqin (Baci	Srol (Schi	aced Georgia		Vacuosating
40	S. aureus -	match acession	91 166162	91 1215693	91 581648	91,1279769	91 142439	91 289262	91/216151	91 1256136	1911/11713	101 298032	91 849025	91 1218040	91 854064	191 1205919		91 40003	911159388	191 409795	gt 965077	91 895747	91 1510962	91 1303933	91 1519460	91 42011	101 1495471	#
45		Stop (at)	1614	1295	336	426	oc.	2	324	285	320	295	207	760	367	401		389	249	220	212	\$78	3276	3968	1283	11305	1673	:
•		Start (nt.)	1162	- 64	-	848	100	169	-	566	577	588	612	478	613	06	-		-	80	_	-	2479	5301	1516	11042	6453	,
		를 <u>다</u>	~-	~	-	-	~	-		-	-	-	_	-	~	_	- -	-	-	- i	_	-	-	-	_	12	=	•
50		Cont.19	517	55	586	677	1120	1614	2495	1 2931	2943	2993	3667	1944	1954	1986		200	4020	8607	4248	7	77	22	- 5	*	51	
										-	•			1			- + -			- +	<u> </u>		_ :			<u>.</u>	<u>: -</u>	•

TABLE 2

* ident length (nt)	32 659	32 489	1083	24 796	34 342	32 (1194	_	25 (684	27 1425	23 687	42 1287	29 1578	30 759	28 912	108 76	38 543	_	27 954	32 70R	33 291	23 639	27 672	31 657
a in	<u></u>		13	- 15	- 15	51	- 15	- 15	12	51	51	- 15	- 15	2	- 18	51	91	- 1s	- 15	51	۳ ا	- 15	51
match gene name	25% identity to the E.coli regulatory protein MprA; putative [Bacillus subtilis]	EIIA demain of PTS-dependent Gat transport and phosphorylation Escherichia	alanine dehydrogenase (Bacillus subtilis)	N. jannaschii predicted coding region NJ0918 (Mathanococcus jannaschii)	unknown [Bacillus subtilis]	EF (Streptococcus suis)	proliferating cell nuclear antigen (Styela clava)	TFIID subunit TAFIIS5 (Homo sapiens)	rodb (qtax) polypeptide (AA 1-673) [Becillus subtilis pir 506048 506048 probable rodb protein - Bacillus subtilis sp p13484 racg_bacco programs poly(clycerol-phosphare) LPHA-GLUCGSVLFRANSFERASE (EC 2.4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN B).	hypothetical protein (SP:P32662) [Maemophilus influenzae]	naltose-binding protein precursor - Enterobacter aerogenes	yehU (Escherichia coli)	orfl (Mycoplasma capricolum)	(ORF YDLOBS# (Sacchatomycum curuvistau)		Nunf regulatory protein (Mycoplasma sp.)	unknown (Mycobecterium tuberculosis)	barU (Bacillus subtilis)	hypothetical protein (SP:P3)918) [Haesophilus influenzae]	B1496_C1_106 [Mycobacterium leprae]	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium felciparum	nuclear protein Drosophila melanogaster]	[Asperaginase (Bacillus licheniformis]
match	91 1256652	91 508173	91 299163	91 1510977	91 467359	91 298032	91 1161242	91 642795	91 580920	91 1204815	pir 505330 5053	gi 405857	91 435098	9111431110	9111204314	gi 431929	95 1237044	91 409286	[91 1205484	91 466886	pir A45605 A456	91 8204	91 49272
Stop (nt)	2995	6843	1111	16576	1218	1196	176	4040	1428	6693	2352	112855	1 8967	912	10477	7356	1153	5634	6236	1 291	2139	1378	7481
Start (nt)	2537	1331	29		1559		3.49	7566	2852	6009	1066	114432	9725	<u>.</u> –	9647	6814	575	1859	6943	-	1501	100	1 8137
		2		02	~	1	~	-		6	-	=	6	· - -	2	-	~	_	=	-	<u></u>	~	
OR F										•			•			•	:	:	:	:	:	, ,	•

		+																										
		length	/ ****	789						- 62		1.1	570	420		456	474	198	122	390		77	243	351	228	181	399	315
5		Lident	22	7		: :				2		•	9	2 2	-	9	2	\$	- *	2			67	7 7 7	26	27	- 46	- 5
10		, sim	15	15	7	- 15	18	5	15	51				2 2	-	3	7	25	- 15		- 15				2	- 15	- 15	51
15	roteins		influenzae)	4514 A54514 rum		•	•			SO1407 XUVKG				8818 548818						IT 806049 S06049	81ae)			- Journal Crists			-	
20	imilar to known p		0326 Heemophilus	felciperum pir A5451 - Plesmodium alciparum						yveromyces lactis] r{501407 XUVKG - yeast uyveromyces marxianus var		(4)		erevisiae) pir S4	ouyces erevisiae)	coccus jannascors	us feecalis;		1118)	lus subtilis) ir . 5 TAGF_BACSU TECH	charomyces cerevi		177 (Nethanococou				35) - mouse	
25	i proteins s	# # # # # # # #	ng region H1	Plasmodium (precursor -		ae)	us subtilis!	nophilus)		687) [Kluyves	lemi)	a histolytic	=	charomyces	021 [Methano) caretrococc	nusi	acillus subt	-746) (Bacil ilis p Pl348	mutase (Sac	hia coli)	region MJ	8-1 DAM OPP	- C	Luemi I	10 (EC 1.1.1.	is coll)
30	S. aureus - Putative coding regions of novel proteins similar to known proteins	gene name	H. influenzae predicted coding region H10326 [Haemophilus influenzae]	Glutamic acid-rich protein [Plasmodium falciparum] pir A54514 A54514 Slutamic acid-rich protein precursor - Plasmodium diciparum	F1 (Bacillus subcitis)	SCPB (Streptococcus agalactiae	1pa-29d gene product (Bacillus subtilis)	muts (Thermus aquaticus thermophilus)	unknown [Bacillus subtilis]	transferase (GALJO) (AA 1 - 687) [Kluyveromyces lactis] r[501407]XUNKG UDEglucose 4-epimerase (EC 5.1.3.2) - yeast uyveromyces marxienus var.lactis)	protease G [Erwinia chrysanthemi]	serine rich protein (Entamoeba histolytica)	cII protein (Bacteriophage P4)	orf, len: 201. CAI: 0.16 [Saccharomyces cerevistae] pir 546818 548818	hypothetical protein (SP: 937002) Machanococci	endocarditie enacifica anatical contractions		CINCIDENT (FIGURE)	ate dehydratase (Bacillus subtilis)	rodC (tag)) polypeptide (AA 1-746) (Bacillus subtilis) ir 806049 sorrodC protein - Bacillus subtilis p P11485 7AGF_BACSU *ECHOIC ACID BIOSYNTHESIS PROTEIN F.	hypothetical phosphoglycerate mutase (Saccharomyces cerevisiae)	glycosyltransferase [Escherichia coli)	H. Jannaschil predicted coding region MJ1177 [Nethanococcus January 1.	DNA POLYHERASE (EC 2.7.7.7) (S-1 DNA OPP 3.		Dis Joes of Tree of the Control of t	r-con denydrogenes	ACYI-COA synthetase [Escherichia coll]
35	utativa codi	match gen	H. influen	glutamic a	F1 (Bacille	SCPB [Stre	1pa-29d ger	muts (Therr	unknown 18	transferase UDPglucose lactis)	protease G	serine rich	cII protein	lorf, len; 2	hypothetica	andocardit		initial les	Idehydroquinate	rodc (tag)) rodc prote	hypothetica	glycosyltra	M. Jannaschil pre	DNA POLYHER	Chr.		Can Constant	#CY1-COA BY
40	S. aureus - P	match	91 :204579	91 160299	91 580841	191 1336162	01 413953	94 (209012	91 528991	91 2819	191 297861	91,1513317	91 455320	91 587532	91 1511524	gi 493017	[o] [135385]		511410145	81140300	101 1279707	91 510257	91 1511175	8p P10582 DPOH_		Div JC4210 JC42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		Stop int)	1373	1609	1591	748	1049	2057	1667	6R4	1177	1718	421	983	934	600	230		7	667	322	624	352	230	399	!	•	Ī
45		Start (nt)	3540	2397	2419	518	5817	3775	3816	448	1353	2287	840	1474	479	127	-	- † -	- † -		642	866	-	1 57	677	-	-	- [
	7	200	-		- 2	~	<u>- </u>		-	~	- 7	2	_ 		12	2	-	-	-		-	- ~	-	-	-	-	-	
50		Contig	257	258	265	298	316	332	364	440	495	495	909	009	607	686	726	861			1001	1046	1467	2558	1000	3604	3732	
	•	•	•		- +		•	- •			-:		_			<u>-</u>	: _	· : -	- : -	:	- :	_ :	- 1	: _	<u>: </u>	<u>:</u> _	1_	

gi 1072179 Similar to dibydroflavonol-4-reductase (maize, petunia, tomato	67/641/181	191 1143725	[91]640922 [xylltol dehydrogenase [unidentified hemiascomycete]	91 606096	91 153015 FenA protein (Staphylococcus aureus)		gi 1303966 Yqjo Bacillus subtilis	gi 496280 structural protein [Bacteriophage Tuc2009]	gi 1323159 ORF YGR103w Saccharomyces cerevisiae	91/413966	91,1208451	gi 1146207 putative Bacillus sub	gi 559160 GRAIL score: null; cap site and late promoter motifs present patream putative (Autographa californica nuclear polyhedrosis irus)	gi 1458280 coded for by C. elegans CDNA cmôle7; Similar to hydroxymethylglutaryl-CoA synthase (Cenorhabditis elegans)	gi 1408494 homologous to penicillin acylase (Bacillus subrills)		gi[216346 surfactin symthetase [Bacillus subtilis]	gi 1061351 semaphorin III family homolog [Homo saplens]	natch maich gene name acession
	91 1072179	91 1072179	91 1072179	g1 640922 g1 143725 g1 1072179	g1 606096 g1 640922 g1 147725 g1 1072179	91 153015 91 666096 91 640922 91 1072179	91 1672179 91 153015 91 666096 91 640922 91 143725	91 1303866 91 1072179 91 153015 91 640922 91 1072179 91 1072179	91 456280 91 1303966 91 150315 91 150015 91 606036 91 147725 91 1072179	91 1223159 91 1923159 91 1072179 91 153015 91 606096 91 606032 91 1072179	91 413966 94 1323159 92 1323159 93 1323159 94 152015 94 152015 94 143725 94 1072179 94 1072179 95 1072179 95 1072179 95 1072179 95 1072179 95 95 95 95 95 95 95	91 1208451 191 413966 94 1323159 94 456280 94 1323159 94 1323159 94 1432159 94 143725 94 143725 94 1072179 94 1072179 95 10	91 1146.07 92 11231.59 92 11231.59 92 11231.59 92 11231.59 93 11231.59 93 11230.55 93 1606.096 93 1606.096 93 1437.25 93 1437.25 94 1072.179 94 1072.179 95 1072.179	91 559160 91 1146207 91 1208451 91 1323159 91 1495280 91 1072179 91 153015 91 606096 91 1072179	91 1458280 91 559160 91 1208451 91 1208451 91 1313159 91 146280 91 1012179 91 1606036 91 1012179 91 1012175	91 1408494 92 1458280 92 1458280 92 146207 92 141366 93 141359 93 1402179 93 1606096 93 1606096 93 1606096 93 1606096 93 1606096 93 1606096 93 1606096 93 1606096 93 1606096 93 1606096 94 1606096 94 1606096 95 16	91 42749 91 1408494 92 1458280 93 1308451 93 1323159 94 1323159 95 1323159 96 1606096 96 1606096 97 1606096 97 1606096 97 1606096 97 1606096 97 1606096 97 1606096	91 21646 92 216246 92 1408494 92 1408494 92 1408494 93 1408207 93 1408207 93 1408208 93 15032179 93 1606096 94 1606096 94 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 1606096 95 16072179 95 1606096 95 16072179 95 160	91 1061351 1061351 1061351 1061351 1061351 1061351 1061351 1061351 1061351 107135 10713
3356 gi 1226658 ORF774 gene product (Porphyra purpured)	91 1072179 91 1276658 91 476024	g1 1072179 g1 127658 g1 127658		91 640922 91 1072175 91 1072179 91 1276658	91 606096 91 640922 91 107273 91 1072179 91 1276558	91 153015 91 606096 91 640922 91 1072179 91 1276658	91 1072179 91 153015 91 606096 91 606022 91 1072179 91 1072179 91 1072179	91 1003066 91 1072179 91 1606096 91 640922 91 1072179 91 1072179 91 1072179	91 456280 91 1013179 91 1072179 91 155015 91 1640922 91 1072179 91 1072179 91 1072179 91 1072179	91 1223159 91 1323158 91 1303156 91 153015 91 1606036 91 1072179 91 1072179 91 1072179	91 413966 91 1323159 92 93 1323159 93 1323159 94 1072179 94 1072179 95 1072179	91 1208451 1 1 1308451 1 1 1308451 1 1 1 1 1 1 1 1 1	91 1146.07 92 1120.0851 92 413.06 92 43.05 92 43.05 93 1123.159 93 1123.159 94 1072.179 94 1072.179 94 1072.179 94 1072.179 95	91 559160 91 1146207 91 1208451 91 1208451 91 130159 91 1072179 91 1606096 91 1606096 91 1606096 91 1606096 91 1606096 91 1606096 91 1606096	gi 1458280 coded for by C. elegans CDNA cm0le7, aynchase [Cenorhabditis elegans] gi 559160 GRAIL score: null; cap site and late putative (Autographa californica muc. gi 1108451 putative (Autographa californica muc. gi 1108451 putative (Bacillus subtilis) gi 1108451 hypotherical protein [Symechocystls spi 145280 putative (Bacillus subtilis) gi 1072179 Grant are diphydroflavonol-4-reductas gi 1072179 Similar to diphydroflavonol-4-reductas gi 165005 Prent protein (Staphylococcus aureus) gi 1640922 Rylitol dehydrogenase [unidentified h gi 1072179 Similar to dihydroflavonol-4-reductas gi 1072179 Similar to dihydroflavonol-4-reductas gi 1072179 Similar to dihydroflavonol-4-reductas gi 1072179 Similar to dihydroflavonol-4-reductas gi 1072179 Similar to dihydroflavonol-4-reductas gi 1276558 ORF174 gene product (Porphyra purpure gi 1276558 ORF174 gene product (Porphyra purpure gi 1276558 Carbanoyl phosphate synthatase 11 [Pl	91 1458280 coded for by C. elegans CDNA cm0ls), 91 1458280 coded for by C. elegans CDNA cm0ls), 91 145207 coded for by C. elegans CDNA cm0ls), 91 1146207 putative (Bacillus subtilis) 91 1146207 putative (Bacillus subtilis) 91 113159 ipa-42d gene product [Bacillus subtilis] 91 113159 ipa-42d gene product [Bacteriophage Tuc general genera	91 42749	91 116166 autfactin synthetase [Bacillus subtiliant 01 42749 ribosomal protein LIZ (LAI-179) [Each 11458280 coded for by C. elegans CDNA chole7, aynthase (Caenorhabditis elegans) gi 359160 ganta score: null; cap site and late gi 1146207 putative (Bacillus subtilis) gi 1146207 putative (Bacillus subtilis) gi 1121159 gard gene product [Bacillus subtilis] gi 1072179 Similar to dibydroflavonol-4-reductas gi 1072179 Similar to dibydroflavonol-4-reductas gi 606096 oNF_165; end overlaps end of old0 by strat possible (Escherichla coll) gi 1072179 Similar to dibydroflavonol-4-reductas gi 1072179 Similar to dibydrogenase (unidentified h gi 1072179 Similar to dibydrogenase (unidentified h gi 1072179 Similar to dibydrogenase (unidentified h gi 1072179 Similar to dibydrogenase (unidentified h gi 1072179 Similar to dibydrogenase (unidentified h gi 1072179 Similar to dibydroflavonol-4-reductas Ganta subtilis Gaenorhabditis elagans gi 1072179 Similar to dibydroflavonol-4-reductas Gaillar to dibydroflavonol-4-reductas Gaillar to dibydroflavonol-4-reductas Gaillar to dibydroflavonol-4-reductas Gaillar to dibydroflavonol-4-reductas Gaenorhabditis elagans gi 1276658 ONF174 gene product (Porphyra purpure gi 1276658 ONF174 gene product (Porphyra purpure gi 1276624 carbanoyl phosphate synthetase 11 [P]	91 1061151
gi 1276658 gi 476024	g1 1072179 g1 1276658 g1 176024	91 1072179 91 127658 91 176024	91 143725 91 1072179 91 127658 91 476024	91 640922 91 104725 91 1072179 91 1276658	91 606096 91 640922 91 10723 91 1072179 91 1276558	91 153015 91 606096 91 640922 91 1072179 91 1276558	91 1072179 91 153015 91 606096 91 606022 91 1072179 91 1072179 91 1072179	91 1003066 91 1072179 91 1606096 91 640922 91 1072179 91 1072179 91 1276558 91 175624	91 456280 91 1013179 91 153015 91 155015 91 1640922 91 1072179 91 1072179 91 1072179 91 1072179	91 1223159 91 1923158 91 1072179 91 153015 91 606096 91 606096 91 1072175 91 1072179 91 1072179	91 413966 91 1323159 92 92 93 93 93 93 93 9	91 1208451 1 11 11 11 11 11 11	91 1146.07 92 1120.0851 92 11221.59 92 11221.59 92 11221.59 93 11221.59 94 11221.59 94 10721.79 94 10721.79 94 10721.79 94 10721.79 95 10721.7	91 559160 91 1146207 92 11208451 92 11208451 92 92 92 92 92 92 92 9	91 1458280 coded for by C. elegans CDNA cm0le7, aynchase [Cenorhabditis elegans] g1 559160 GRAIL score: null; cap site and late putative (Autographa californica muc. g1 1146207 putative (Autographa californica muc. g1 1146207 putative (Bacillus subtilis) g1 1131159 GRAID score: null; cap site and late g1 1131159 GRAID score: null; cap site and late g1 1131159 GRAID score: null; cap site and late g1 1131159 GRAID score: null; cap secretalse g1 1131159 GRAID score: null; cap score: null; cap g1 1153015 Frenh protein (Staphylococcus aureus) g1 1640922 Kylitol dehydrogenase [unidentified h g1 107175 putative [aacillus subtilis] g1 147725 putative [aacillus subtilis] [Genorhadditis elegans] [Genorhadditis elegan	91 1458280 coded for by C. elegans CDNA cn01s1, 91 1458280 coded for by C. elegans CDNA cn01s1, 91 1559160 content of beautiful content of beautiful content of	91 42749	91 116166 surfactin synthetase [Bacillus subtill 01 42749 ribosomal protein LIZ (LAI-179) [Each 91 1458280 coded for by C. elegans CDNA chole?, 91 1468280 coded for by C. elegans CDNA chole?, 92 1146207 putative (Autographa californica nuc. 91 1146207 putative (Bacillus subtilis) 91 123159 putative (Bacillus subtilis) 91 123159 QRP YQRIOJW [Saccharoxycas cerewisiae 91 130155 far vectural protein [Bacteriophage Tuc. 91 130156 xq10 [Bacillus subtilis] 91 143015 Similar to dibydroflavonol-4-reductas 91 164032 xylitol dehydrogenase (unidentified h 91 14725 putative [Bacillus subtilis] 91 14725 putative subtilis 91 14725 91 14725 91 14144 subtilis subtilis 91 14725 91 141444 subtilis subtilis 91 14725 91 141444 subtilis subtilis 91 14725 91 141444 subtilis 91 14745044 subtilis 91 14745044 subtilis 91 1	91 1061151
q1 127658 q1 476024	91 1072179 91 1276658 91 176024	91 1072179 91 1276658 91 1276624	01 143725 91 1072179 91 127658	91 640922 91 143725 91 1072179 91 127658	91 606096 91 640922 91 143725 91 1072179 91 1072179	91 153015 91 606096 91 640922 91 143725 91 1072179 91 127658	91 1072179 91 153015 91 606096 91 640922 91 143725 91 1072179 91 1078179	91 100366 91 1072179 91 1072179 91 106096 91 606096 91 1072179 91 1072179 91 107628 91 107624	91 456280 91 1303966 91 1072179 91 153015 91 606036 91 606032 91 1072179 91 1072179	91 1223159 91 190280 91 1002179 91 153015 91 606096 91 640922 91 1072179 91 1072179	91 413966 91 496280 91 1323159 92 93 1323159 93 1323159 94 606096 94 606096 94 606096 94 606096 95 95 606096 95 95 95 95 95 95 95	91 1208451 191 131 135 1	91 1146.07 92 110.00 93 110.00 94 95 95 95 95 95 95 95	91 559160 91 1146207 91 1208451 91 1223159 91 1303166 91 1072179 91 606096 91 640922 91 1072179 91 1072179	91 1458280	91 1408494	91 42749	91 116166 surfactin synthetase [Bacillus subtiling 11406494 ribbosomal protein L12 (AA 1-179) [Each 11406494 peptides N-receyltransferase riming 191 11406494 homologous to penicillin acylase [Bacilgorian and peptides N-receyltransferase riming 191 11406494 homologous to penicillin acylase [Bacilgorian and penicilling acylase 194	91 1061151
	91 1072179	91 1072179		91 640922 91 1072179 91 127658	91 606096 91 640922 91 143725 91 1072179 91 1276558	91 153015 91 606096 91 640922 91 147725 91 1072179	91 1072179 91 153015 91 606096 91 600922 91 1072179 91 1072179	91 100366 91 1072179 91 153015 91 606096 91 440922 91 1072179 91 1072179	91 436280 91 1303966 91 137315 91 606036 91 606032 91 143725 91 1072179	91 1223159 91 196280 91 1072179 91 153015 91 606096 91 640922 91 147725 91 1072179	91 413966 91 146280 91 146280 91 146280 91 146280 91 1666986 91 1640922 91 1672179 91 14725 91 14725 91 14725 91 14725 91 14725 91 14725 91 14725 91 1472658 91 14726558	91 1208451 191 1208451 191 1323159 191 1323159 191 1323156 191 1606096 191 1606096 191 143725 191 143725 191 127558	91 1146.207 92 1146.207 92 11231.59 92 1496.280 92 17231.59 92 1606.96 93 1606.96 94 1606.92 94 1607.21.79 94 1607.21.79 95 1607.21.79 95 1607.21.79 95 1607.21.79 95 1607.21.79 95 1607.21.79 95 1607.21.79 95 1607.21.79 95 1607.21.79 95 1607.21.79 95 1607.21.79	91 559160 91 1146207 91 1208451 91 123159 91 130156 91 1002179 91 640922 91 640922 91 1072179 91 640922 91 1072179	91 1458280 coded for by C. elegens CDNA cm0le), 91 1559160 dynchase (Cenorhabditis elegans) 92 1559160 dhall acore: null; cap site and late 192 1559160 dhall acore: null; cap site and late 192 1146207 putative (Bacillus subtilis) 192 193 195 19	91 1408494	01 42749	91 116166 surfactin synthetase [Bacillus subtill 01 42749 ribosomal protein L12 (AA 1-179) [Each 92 1408494 paptide N-scecy) transferase rimin [Each 92 1408494 homologous to penicillin acylase [Bacil 93 1408494 hypothetical protein [Synechocystis algorithms achilis] 93 1408290 hypothetical protein [Synechocystis algorithms achilis 93 1408290 structural protein [Bacteriophage The 93 1408290 structural protein [Bacteriophage The 93 1408290 structural protein [Bacteriophage The 93 140920 structural protein [Bacteriophage The 93 140920 structural protein [Saphylococcus aureus] 93 160920 kyjitol dehydrogenase [unidentifled h 94 1002179 similar to dihydrogenase [unidentifled h 94 1002179	91 1061151
	91 1072179	91 1072179	q1 143725 q1 1072179	g1 640922 g1 143725 g1 1072179	91 606096 	91 153015 91 606096 91 640922 91 1072179	91 1072179 91 153015 91 606096 91 640922 91 1072179	91 100366 91 1072179 91 153015 91 606096 91 640922 91 143725 91 1072179	91 456280 91 1301966 91 1072179 91 666096 91 640922 91 141725 91 1072179	91 1223159 91 195280 91 1072179 91 155015 91 666096 91 640922 91 147725 91 1072179	91 413966 91 1323159 92 1323159 93 1323159 94 132315 94 1606036 94 143725 94 1072179 94 1072179 94 1072179 95 10	91 1208451	91 1146207 92 1146207 92 1123159 92 145280 92 1072179 93 1606096 94 1606096 94 1606096 94 1606096 94 1606096 95	91 559160 91 1146207 91 123159 91 123159 91 1072179 91 1072179 91 1606096 91 140922 91 140922	gi 1458280 coded for by C. elegans CDNA cm0le); gi 1559160 GRAIL score: null; cap site and late putetive (Autographa californica nuc. gi 1146207 putetive (Autographa californica nuc. gi 1146207 putetive (Bacillus subtilis) gi 11208451 hypothetical protein [Symechocystis si gi 1203159 gravitation gacharonycas cerevisiae gi 1495280 structural protein [Bacteriophage Tuc gi 1072179 Similar to dibydroflavonol-4-reductas gi 606096 Greenorhabditis elegans Greenorhabditis elegans gratts possible [Escherichla coll) gi 640922 xylicol dehydroflavonol-4-reductas gi 143725 putetive [Bacillus subtilis] gi 143725 putetive [Bacillus subtilis] gi 1072179 Similar to dibydroflavonol-4-reductas gi 1072179 Similar to dibydroflavonol-4-reductas Greenorhabditis elegans	91 108494	01 42749	91 116166 surfactin synthetase [Bacillus subtill or	91 1061151

10
15
20
25
30
35
40
45

			1	S. aureus - P	S. aureus - Putative coding regions of novel proteins similar to known proteins			
Contig ORF ID IID	<u>8</u> 0	Start int)	Stop (nt)	match	match gene name	N sim	1 ident	length
211	-	1523	1927	191 410131	OREX7 (Bacillus oubtilis)	_	_	(ut)
214	-	2411	3295	8p P37348 YECE_	HYPOTHETICAL PROTEIN IN ASPS 5, PROTEIN PERSONAL PROTEINS	8	29	405
228		5068	4406	gi 313580	:	s s	50	663
272	~	3048	1723	191 1408485	965G gene product (Bacillus subriles	_		
273	2	9191	984	101 284186	(phosphoglycerate mutage (Saccharomyces caresis and	05	22.	1326
328	~	2507	1605	191 148896		05	88	613
332	Ţ	5469	3802	01 1526547	DNA polymerase family X (Thermus aquaticus)	05	92	203
342	\$	3473	1661	91 456562	G-box binding factor (Dictyostellum dismaidama)	05	7	1668
352	-	1478	141	191 288301	ONF2 gene product (Becillus menararium)	20	- sc	459
40A	_	5299	5523	191/11665	Porrile (Marchantle polymorphe)	05	- 62	738
420	<u>-</u>	650	1825	911757842	UDP-sugar hydrolase [Escherichia coli]	95	27	\$2
464	-	-	165	91 487282	Nat - ATPase subunit J (Enterococcus hirae)	98	- or	1176
472	7	1418	964	91 551875	BglR Lactococcus actis	20	- 62	165
520	-	23	541	91 567036	CapE (Staphylococcus auraus)	05	- 62	555
529	_	•	9	91 1256652	236 identity to the E.coli regulatory protein MprA; putative [Bacillus subtilis]	8 8		919
534	~	7726	6509	911295671	selected as a weak suppressor of a mutant of the subunit Acto of DNA ependant NNA polymerase I and III (Saccharomyces cerevisiae)	05	= = =	1668
647		2990	1497	91 405568	Trai protein shares sequence similarity with a family of oppisomerases	05	- i-	1494
999	-	8	111	191 410007	laukocidin P component (Staphylococcus aureus, MRSA No. 4, Paptide, 23 asi			
678	_	7	627	911238032		2 3	7	\$
			1711	91 150572	Cytochrome c1 precursor (EC 1.10.2.2) (Paracoccus denitrificans) g1 45465 cytochrome c1 (AA 1-450) (Paracoccus denitrificans) pir C29413 C29413 ubiquinolcytochrome-c reductase (EC 1.10.2.2) ytochrome c1 precursor - Paracoccus denitrificans sp p13627 Cy1	8	 6 E	225
-	_	1363	683	91 142020	heterocyst differentiation protein (Anabeena sp.)	- : :	- -	
892	-	-	75.2	91 :408485	B65G gene product [Bacillus subtilis]	2 3	7	189
910	~	438	_	11.04727	kyrosine-specific transport protein [Heemonhilus influence.	P		750
				****************	1309:105:	20	23	150

TABLE 2

aureus - Putative coding regions of novel proteins similar to known proteins

Cont.ig ORF 10 10		Start (nt)	Stop (nt)	match	match gene name	ale '	1 Ident	length (nt.)
933	-	524	260	19111205451	cell division inhibitor [Haemophilus influenzae]	50	32	7.02
973	-	424	236	91 886947	orfl gene product (Saccharomyces cerevisiae)	50	9	189
1009	- -	653	429	94 153727	H protein (group G streptococcus)	\$0	28	225
1027	_	2118	257	191 413934	ipa-lûr gene product (Bacillus subtilis	\$0	25	255
1153	~	556	326	191 73676	incca (alcaligenes xylosoxydans)	\$0	36	23
1222	-	198	400	gi 1408485	B65G gene product Bacillus subtilis	20	1	399
1350	-	692	339	91 289272	[ferrichrome-binding protein [Bacillus subtilis]	0.5	33	362
2945	=	366	184	[gi 171704	hexapranyl pyrophosphate synthetase (COO1) [Saccharomyces erevisies]	8	7	183
2968	~	1604	804	91 397526	clumping factor (Staphylococcus aureus)	8	ç	108
2998		657	194	91,495696	[P34E7.3 gene product (Caenorhabditis elegans)	20	0	264
3046	-	905	306	pi S13819 S138	acyl carriur protein - Anabaena variabilis (fragment)	8	32	201
3063	-	547	275	91 174190	lucA gene product [Escherichia coli]	Š	29	173
3174	-	-	146	91 151900	alcobol dehydrogenase (Rhodobacter sphaeroides)	80	ī	12
3792	-	625	314	19111001423	hypothetical protein (Synachocyatis sp.)	80	35	312
3,800		7	262	91 114733	NAD-dependent beta-hydroxybutyryl coensyme A dehydrogenase Clostridium acetobutylicum	80	2.8	192
3946	_	2.3	188	911576765	cytochrome b (Myrmecia pilosula)	20	38	186
3984	_	578	291	sp P37348 YECE_	HYPOTHETICAL PROTEIN IN ASPS 5 REGION (FRACHENT).	\$0	37	288
	9	8250	7885	gi 1204367	hypothetical protein [GB:U14003_278] [Haemophilus influenzae]	69	30	366
94	91	13802	14848	[ri 466860	acd; Bl308_Fl_34 (Mycobacterlum lepree)	6.	7	1047
53	2	2267	19601	ci 606304	ORF_0462 [Escherichia coli]	Ş	27	1335
112	118	17884	18615	91 559502	ND4 procein (AA 1 - 409) [Caenorhabditis elegans]	49	25	732
138	- 6	6973	7902	1911303953	esterase (Acingtobacter calcoacaticus)	64	29	930
217	9	101	5138	91 496254	fibronectin/fibrinogen-binding protein (Streptococcus pyogenes)	49	31	138
	112	11803	12657	1911397526	clumping factor (Staphylococcus aureus)	49	31	855
228	4	1842	2492	p1r S23692 S236	pir S23692 S236 hypothetical protein 9 - Plasmodium falciparum	49	24	651
268		5016	1 2614	91,143047	ORFB [Bacillus subtilis]	67	7 76	2603
	-							

			- +																									
5		Jength	(at)	210	1161		345	189	612	629	11.4	171		375	270	672	609	1407	14751	909	316	816	-	522	135	1338	1812	
J		1 ident		38	59		9	62	35	29	62	72 82		- 9e	*	36	28	20	28	30	29	25	-	29	- 12	34	59	
10		e ia	- -	6	6					\$	6	\$ 6		6	64	8.7	87	5	87	1 87	97			89	- E	9	8	- 87
15	oceins			14.1	/ ignature							5 HURG_BACSU	NE RANSFERASE).				nf luenzae)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	neschii)		cof able			fluenzaej	_	CS NTERGENIC	Jannaschiil
20	S. aureus - Putative coding regions of novel proteins similar to known proteins			hypothetical protein (GP:X91006_2) (Methanococcus Sannaschil)	natches F300041; Bacterial regulatory proteins, araC family ignature [Escherichia coll]					1		[Bacilius subtilis] sp p37585 MURG_BACSU SAMINEN-ACETYLMURANYL-	PENTAPERTIDE, PTROPHOSPHORYL-UNDECAPRENOL N-ACETYLGLUCOSAMINE RANSFERASE)	ALTOCHETICAL JO.Z KD PROTEIN IN NOK-OCPE INTERGENIC REGION.		nepatocyte nuclear factor 4 gamma (HNR4gamma) (Homo sepiens)	H. Influentee predicted coding region HIISSS (Haemophilus influentae)			quinolone resistance nora protein protein (Methanococcus Janneschil)		Ru(s) homolog; similar to Drosophila melanogaster suppressor of able (su(s)) protein, Swiss-Prot Accession Number P22293 Drosophila syrilisi		H. influenzae predicted coding rankon unities	a (maemopatrata		TO THE TOTAL NATIONAL	H. Jannaschii predicted coding region MJ0419 [Methanococcus Jannaschii]
25	vel proteins sin		chocystis sp.}	91006_2) (Methen	regulatory prot		la)			ssma pirum)		synthesis enzyme (Bacillus subtilis) spl UPD-N-ACETYLGLUCOSAMINE-N-ACETYLANRAMYL	'L-UNDECAPRENOL I	N IN NOK-OCPE II	lus subtilis;	gamma (HNF4gam	ing region HI15	rculosis	minis	rotein protein (rosophila melano	1	certa adjace	7. 17	locystis ap.	exchangers [He ETICAL 60.5 KD	ng region MJ0419
30	ng regions of no	e name	hypothetical protein (Synechocystis sp.)	al protein (GP:X	00041: Bacterial his coli)	YqgP (Bacillus subtilis)	ORF1 (Streptococcus sobrinus	unknown (Bacillus subtilis)	xpac [Bacillus subtilis]	phosphomannomutase (Mycoplasma	YqeN (Bacillus subtilis)	Pettidoglycan synthesis enzyme Hung Profein Upp-n-Acetylgiuco	DE) PTROPHOSPHORY	AL JO.Z KD PROTEI	surinctin synthetese (Becillus subtilis)	nuclear factor 4	se predicted cod	unknown (Mycobacterium tubarculosis)	Lmp) protein (Mycoplasma hominis)	esistance norA p	YqhL (Bacillus subcilis)	og; similar to Di otein, Swiss-Prot	unknown (Sphingomonas S88)	Ae predicted codi	hypothetical protein (Synachoruseis and	The state of the s	SP P12701 YACE_ECOLI, HYPOTHETICAL 60.5 KD PROTEIN IN SOXR	i predicted codi
35	Putative codi	match gene name	hypothetic	hypothetica	matches P300041: Ba	YqgP (Baci	ORF1 (Stree	unknown (Ba	xpac [Bac1]	phosphomann	YqeN (Bacil	peptidoglycan NURG PROTEIN	- ‡ 3	-:-	surfacting	hepatocyte	H. Influenz	lunknown INY	Lmp) protei	quinolone r	YqhL (Bacil	su(s) homolo (su(s)) pro	unknown (Sp)	H. influenze	hypothetical	aimilar to	## 100 100	H. Jannaschi
40	S. aureus -	match	91 (1001257	Qt 1510796	94 396301	19111303863	91 633112	911122758	911143830	94 401786	94 (1303799	gf 216300		Tar Tar	191 310300 	191 121 1903	06/5077	101 (151426)	91 1197336	91 1511555	91 1303893	91 671708	9111114584	9111205968	91 1208454	911396400		91 1510493
45		Stop (nt.)	1173	3160	1143	947	191	1014	795	473	22	172	376	12.				7	31036	809	. [2	610	1280	9557	1814	:	385
	i !	Start (nt)	1164	4340	2281	~	379	403	1433	943	737	342	~	695	323	-		- 7 -	- ; :	- ‡	_ ;	85	1131	2014	8220	3625		
		98. 01.	~	_		-	_	~		-	-	-	-	-	-	-		- ; -	- ; :	-	- -		-	-	2	-		_
50	•	Cont ig	172	300	381	466	999	670	709	431	1052	1800	2430	3096	7	86		- [-	- [7	1		121	_	12.	175		194
	•			•		- •	- +												- i -	_:.	_ : _	:	_ !		1	•	i	i

5

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	9 C	5tart (nt)	Stop (nt)	metch	ישפל לי מפטפ נוחשפ	e e	s ident	Jength (nt.)
197	-	106	452	194 1045714	spermidine/putrescine transport ATP-binding protein iMycoplasma genitalium]	87	25	450
203			396	91 940288	protein localized in the nucleoli of pea nuclei; ORF; putative Pisum sativum	89	29	396
204	_	1363	869	91 529202	No definition line found [Caenorhabditis elegans]	8.	25	999
700	2	134815	27760	191 511490	gramicidin S synthetase 2 [Bacillus brewis]	83	27	7056
1 212	-	~	166	191 295899	nucleolin (Xenopus taevis)	89	74	165
220	2	112652	111426	191 44073	SecY protein (Lactococcus lactis)	8	2	1227
25.	9	9450	1 5491	91 1184118	mevalonate kinase (Methanobacterium thermoautotrophicum)	5	30	096
797	-	- 5634	1 3308	91 1015903	ORF YJR151c (Saccharomyces cerevisiae)	9	36	2127
?		1532	768	91 142863	replication intration protein (Bacillus subtilis) pir 826580 826580 replication intration protein - Bacillus ubtilis	9	23	765
4.4	_	1 3898	1 5298	01 145836	putative (Escherichia coli)	8	*	1401
***	~	388	9111	191 146551	transmembrane protein (kdpD) (Escherichia coli)	97	18	(27
242	_	1425	2000		pir 528969 5289 N-carbamoylsarcosine amidobydrolase (EC 3.5.1.59) - Arthrobacter sp.	4.8	۲2	925
995	-	-	1019	91153490	Letracenomycin C resistance and export protein [Streptomyces laucescens]	8	74	101
119	-	7	1 730	191 1103507	unknown (Schizosaccharomyces pombe)	48	38	729
624	-	1255	599	gi 144859	ORF B (Clostridium parfringens)	48	26	591
B16	-	7101	1 508	91 537506	paramyosin (Dirofilaria immitis)	4.8	27	507
1020	-	2	9.50	91 1499876	magnesium and cobalt transport protein [Methanococcus janusschii]	48	ĕ	8#5
1227	_	-	174	gi 493730	lipoxygenase (Pisum sativum)	48	35	174
1266			405	91 882452	ORF_(211), elternate name yggA, orfS of X14416 (Eacherichia coll) gi 41425 ORFS (AA 1-197) (Escherichia coll) (SUB 15-211)	9	*	4 05
1.02	_	707	1381	gi 1408486	HS74A gene product (Bacillus subtilis)	8.	25	327
2398	-	- 463	233	gi 1500401	reverse gyrase (Methanococcus jannaschii)	48	40	231
2425	-	476	346	pir H48563 H485	pir(H48563 H485 G1 protein - fowlpox virus (strain HP444) (tragment)	48	60	182
2432	-	446	225	[91] 1353703	Trio (Homo sapiens)	48	2	222
2453	-	194	399	91 142850	division initiation protein (Bacillus subtilis)	9	29	396
2998	-	469	236	91 577569	PepV [Lactobacillus delbrueckii]	\$	15	234

known proteins ន proteins similar novel Ħ regions - Putative coding

5

10

15

20

25

30

35

40

45

50

55

101 986 1689 83 486 600 25 2 5 \$ | \$ 202 432 744 963 1065 1 267 | Ident | length 29 38 53 18 11 28 32 34 75 **8** 8 2 52 5 5 \$ = 5 4 Ç 2 2 2 2 Ç 5 5 Ç si Ç Ç Ç mie . ţ 12 predicted membrane helices, homology with B. subtilis mem orf3 Rowland et. al. unpublished Accession number H78183), approximately 1 minutes on updated Rudd map; putative [Escherichia coli] ap[P3735] YFBB_ECOLI | HYPOTHETICAL 26.7 KD PROTEIN IN MEMD-MEMB ORF 5' of ECRF3 (herpesvirus saimiri NVS, host-squirrel monkey, eptide, quinolone resistance norA protein protein (Methanococcus jannaschii) Possible operon with orfG. Hydrophilic, no homologue in the atabase; putative [Bacillus subtilis] 126.7% of identity in 165 as to a Thermophilic bacterium hypothetical protein 6; putative [Bacillus subtilis] |pir.S51177|S511 |trans-activator protein - Equine infectious anemia virus myo-inositol transporter (Schizosaccharomyces pombe) D9509.27p; CAI: 0.12 [Saccharomyces cerevisias] G-box binding factor [Dictyostellum discoldaum] C33G8.2 gene product [Caenorhabditis elegans] hypothetical EcsB protein (Bacillus subtilis) D-slaning racemass cds (Bacillus subtilis) pps1; 81496_C2_189 [Mycobacterium leprae] processing protease (Bacillus subtilis) ORF YKL094w [Saccharomyces cerevisiae] PC4-1 gens product (Bradysia hygida) |hippuricase (Maemophilus influentae) unknown [Mycobacterium tuberculosis] esterase (Acinetobacter Iwoffii) 40 kDa protein [Plasmid pJM1] putative [Escherichie coli] Yqjv (Bacillus subtilis) Yqki (Bacillus subtilis) mucin (Homo sapiens) match gene name 4 metch acession 191 | 1303989 191 11209223 93/1403455 194 | 1511555 |gi|1204835 91 | 1420856 91 1255425 [41]1303973 191 1117254 91 1256621 91;945219 91 | 142824 101 145836 1911540083 911438466 91 456562 91 | 243353 91 | 150756 91 466882 gi | 927340 91 (486143 101 | 142822 91 516608 1174 1093 115108 6925 1884 8863 2773 1257 3107 1084 4279 280 403 943 303 8 833 683 3 818 7524 7141 1884 1109 2072 2145 2321 1634 1 1 2022 16118 5022 9135 1 2178 492 = 665 196 152 962 ~ _ = -_ 2 Ξ ~ ~ 2 Contig 3042 3686 4027 69 9, 3.89 145 168 7 7 7 120 263 391 \$29 £ 404 \$65 654 692

Contig	01 01	Start (nt)	Stop (nt.)	match	matth gene name	m7# /	• ident	length (nt.)	
825	~	17.	1023	91,397526	clumping factor (Staphylococcus aureus)	\$	32	833	
914	-	-	615	911558073	polymorphic antigen (Plasmodium falciparum)	5	29	615	
1076	-	-	753	191 1147557	Aspartate aminotransferase (Bacillus circulans)	\$	- 4	753	
1351		793	398	gi 755153	ATP-binding protein (Bacillus subtilis)	-	50	396	
4192	-		293	91 145836			. 72	167	
~	9	4708	4361	91 (305080	Imyosin heavy chain (Entamoeba histolytica)	9	og C	348	
=	-	1 2777	3058	91 603639	YelO40p (Saccharomyces cerevisiae]	9	28	282	
94	Ξ		10300	91;1246901	ATP-dependent DNA ligase (Candida albicane)	46	28	219	
19	-	3941	7930	1911298032	[EF (Streptococcus suis)	\$	35	3990	
132	<u>-</u>	5028	4093	19111511057	hypothetical protein SP:P45869 (Wethanococcus jannaachii)	•	25	936	
170	-	4719	3652	pir S\$1910 S\$19	C4 protein - Sauroleishmania tarentolae	9	26	1068	
161	_	9543	8284	191 1041334	F5405.7 Caenorhabditis elegans	9	- ×	1260	
253	-	-	396	191 1204449	dihydroliposmide acetyltransferase (Haemophilus influenzae)	9	- 50	396	
264		437	973	91 180189	cerebellar degeneration-related antigen (CDR)4) (Homo sapiens) gi [182737 cerebellar degeneration-associated protein (Homo sapiens) pir A29770 A39770 cerebellar degeneration-related protein - human	ş	53	512	
273	-	485	285	1911607573	envelope glycoprotein C2V3 region (Ruman immunodeficiency virus type)	\$	35	201	
350	-		563	[91 537052	ORF_f286 [Escherichia coli)	9+	35	195	
384	-	-	H62	191/1221884	(urea?) amidolyase (Magmophilus influenzae)	97	- 7	861	
¢10	-	1876	2490	91/1110518	proton antiporter efflux pump (Mycobacterium smeqmatis)	9	72	615	
432		2663	1455	91 1197634	orf4: putative transporter: Method: conceptual translation supplied by author (Mycobacterium snapmatis)	97	27	1209	
45B	-	2419	1121	91 15470	portal protein (Bacteriophage SPP1)	9	30	1209	
517	-	2477	4192	191/1523412	orf5 (Bacteriophage A2)	9	1 12	1716	
540	2	1512	1285	1911215635	pacA (Bacteriophage Pi)	46	96	228	
587	~	649	1242	91,537148	ORF_[18] (Escherichia coli]	\$	29	594	
1218	-	747	391	qi 1205456	single-atranded-DNA-apecific exonuclesse (Heemophilus influenzee)	9	ox	157	

10		
15		oteins
20		r to known pr
25		S. aureus - Putative coding regions of novel proteins similar to known proteins
30		regions of nove
35		Putative coding
40	-	S. aureus -
		,

Contig	OR.	Start	Stop	match	match gane name		•	
			- ‡ .	1 restation		ain -	1 ident	length
\$ 1 		-	 63	91 450688	hadW gene of Ecopril gene product (Escherichia colil pir S18437 S18437 hadw protein - Eacherichia coli pir S09629 S09629 hypothetical protein A - Escherichia coli (SUB 40-520)	9	a 	402
4176	-	673	338	91 31460	FIN-C.1 gene product (xenopus laevis)		_	_
133	-	4813	5922	Bi 606064	ORP_6408 Recharichia colii	9	π	336
38	120	11699	12004	oi 452192	Drotain Pyradia abankara	45	*	0111
8	-	1748	2407	10.11064013	the state of the s	\$	77	306
	=				nome to sp: PHOR BACSU (Bacillus subtilis)	42	2	
	•	70111	111185	19111001307	hypothatical protein (Synechocystis sp.)			
112	=	14791	13811	191 1204389	R. influenzae predicted coding region H10131 [Hemmohil]	\$	22	1967
145	-	(483	3461	191 220578	open reading frame (Nus musculus)	\$ -!	2	186
170	•	6329	14965	1911238657	AppC=cytochrome d oxidase, subunit I homolog [Escherichia coli, Kl2, eptide, 514 as]	2 2	20	1023
206	7	5230	4346	19111222056	aminotransferase [Heemophilus influence]	-		Section
228	-	8	716	191(160299	Olutable actuals	45	27	885
			_		glutamic acid-rich protein precursor - Plasmodium alciparum	\$	23	657
288	_ [7	1015	gi 1255425	C33G8.2 gene product (Ceenorhabditis elegans)			-
713		4339	3128	911581140	NADH dehydrogenase (Escherichia colli	\$	2	1014
1 332	-	914	459	101 1870966	F47A4.2 (Caenorhabditis elegans)	\$	30	1212)
344	-	_		(ai (171225	kinesin-related protein (Sarcharowoos	\$	20	456
127	~_	1501	1073	91 (142863	replication initiation protein (Sacillus subtilis) pir 18265801 pakean	\$	26	219
672	1	~	942	91 1511334	A tunnachi ordina	ç		429
763		1345	851	91 606180	loss (110 (Recharich), 211)	\$	22	1 tw6
886		379	R46	91 726426	Similar to procesh kineses and C. elegans proteins F37012.8 and 17013.6	\$	7	495
948			473	91 156400	Ayosin heavy chain (isozyme unc-54) (Ceenorhabditis elegans) put (A3058) WilkW myosin heavy chain B - Ceenorhabditis elegans	\$	s	890
1158	-	~	376	91 441155	Tahan (a (on b.) other			
2551	-	-	285 19		(0x727) gene product (porchus	45	35	1 276
1 3967	-	42	374 10	lat 1976025	(Table of the state \$	28	282	
	-	i	1		inter tescherichia coli		***************************************	•

Contig	98.5	Start	Stop	match	natch gene name	l sin	• Ident	length (nt)
2 2	2	_ : _		-	unknown (Bacillus subtilis)	*	22	1086
138	8	6475	6849	-	thioredoxin II (Saccharomyces cerevisiae)	3	28	375
221	\$	1032	5617	91/153490	tetracenomycin C resistance and export protein (Streptomyces laucescens)	7	717	1416
1 252	-	1331	1122	91 1204989	hypothetical protein (GB:U00022_9) (Haemophilus influenzae)	3	30	210
1 263	-	3265	2093	91 1136221	carboxypeptidase (Sulfolobus solfataricus)	=	26	1173
365	-	4963	3524	911296822	orf! gene product [Lactobacillus helveticus]	4	31	1440
543		5161	183	gi :063250	low homology to P20 protein of Bacillus lichiniformis and bleomycin acetyltransferase of Streptomyces verticillus (Bacillus subrills)	ž	24	\$19
544	-	3942	4892	91 951460	FIM-C.1 gene product (Xenapus laevis)	3	32	951
792	-	1224	613	91,205680	high molecular weight neurofilament (Rattus norvegicus)	3	82	612
	==-	11303	11911	91 1511614	molybdopterin-guanine dinucleotide biosynthesis protein A (Methanococcus	Ş	2	609
55	8 -	3998	5128	91 153490	tetracenomycin C resistance and export protein (Streptomyces laucescens)	£	717	1464
65	2	5536	1527	[91 153022	lipase (Staphylococcus epidermidis)	7	22	1992
66		1346	681	9111419051	unknown (Mycobacterium tuberculosis)	.	21	999
1 310	60	1 9402	112134	91 397526	clumping factor (Staphylococcus aureus)	4	21	2733
1 432	1	1 2782	2303	pir A60540 A605	sporozoite surface protein 2 - Plasmodium yoelli (fragment)	43	29	480
519		2547	3122	sp 006530 msu_	SULFIDE DENTOROGENASE (FLAVOCYTOCHROME C) FLAVOPROTEIN CHAIN PRECURSOR (EC 1.8.2) (FC) (FCSD).	÷	52	576
▼	=_	12053	13321	91 295671	selected as a weak suppressor of a mutant of the subunit AC40 of DNA spendant RNA polymerase I and 111 (Saccharomyces cerevisiae)	Ç	18	1269
6	7	1768	1001	91 501027	ORF2 [Trypanosoma brucel]	42	31	678
121	-	18781	4550	191 42029	ORF! gana product (Escharichia coli)	42	21	1242
1 297	-	1515	1036	91 142790	ORF1; putative [Bacillus (irmus]	42	25	480
*	•	1 4097	3525	61 40320	ORF 2 (AA 1-203) [Bacillus thuringiensis]	2 +	30	573
512	_	1 2167	1115	gi 405957	yeef [Escharichia coli]	77	23	1053
631		2434	1223	91 580920	rodb (gran) polymeptide (AA 1-673) [Bacillus subtilis] pir [506048] 506048 probable rodb protein - Bacillus subtilis sp[P13484] rAGE_BACSU PROBABLE POLY (GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFERASE (EC 2.4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN E).	43	34	1212

c. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	ORF 10	Start Int)	Stop (nt)	metch	match gene name	* sim	1 ident	length (nt.)
689	-	2359	1739	ui 1303784	Yqeb (Bacillus subcilis)	42	19	621
4132	i -	787	395	19111022910	protein tyrosine phosphatase (Dictyostalium discoideum)	42	25	193
98	~_	5781	88	905600 181	spermidine/spermine NI-scetyltransferass (Mus saxicola) pit[343430 843430 spermidine/spermine NI-scetyltransferass - spiny ouse (Mus saxicola)	Ŧ	8	492
161		12 14797	114075	10111124957	orf4 gene product (Nethanosarcina barkeri)	4	22	127
212	9	2150	3127	[91]3873	observed 35.2Kd protein (Mycobacterlophage 15]	=	26	978
213	-	1 3 1263	2000	191 633692	Trea (Yersinia enterocolitica)	=	18	138
408		1 2625	3386	91/1197634	orti, putativo transporter: Method: conceptual translation supplied by author (Mycobacterium amegmatis)	ŧ	74	162
542	-		1103	91 457146	rhoptry protein (Plesmodium yoelii)	=	21	1011
924	-	2	475	pir JH0148 JH01	inucleolin - rat	=	30	474
1562			‡ 05	91 552184	asparagine-rich antigen Pfals-2 (Plasmodium faltiparum) pir (827826 827836 asparagine-rich antigen Pfals-2 - Plasmodium alciparum (fragment)	0	20	402
1 2395	-	518	261	pir S42251 S422	pir S42251 S422 hypothatical protein 5 - towlpox virus	\$	18	258
4077			305	91 1055055	coded for by C. elegans CDMA ykl7gl.5; coded for by C. elegans CDMA ykl2g.5; coded for by C. elegans cDMA ykl2g.5; alternatively spliced form of F32C9.8b [Caenorhabulitis elegans]	د	21	303
958	-	(001	503	101 1255425	C33G8.2 gene product (Caenorhabditis elegans)	۲,	25	501
- 59	27	1 8294	110636	1911535260	STARP antigen (Plasmodium reichenowi)	1 36	24	2343
[9]	5	1350	8079	g1 298032	BP Straptococcus auts	36	61	4530
544	-	1 2507	1095	19111015903	ONF YURISIC (Saccharomyces cerevisiae)	35	22	1095
3		1949	3574	91 552195	circumsporosoite protein (Plasmodium falciparum) sp P05691 CSP_PLAFL CIRCUMSPOROZOITE PROTEIN (CS) (PRACHENT).	2	23	1626

S. aurius - Putative coding regions of novel proteins not similar to known proteins

						٠ ،			. —												· ·			•			
Stop (nt)	5	2.	303	8	1091	1771	4550	6422	8547	1982	176	5983	9619		11271	•	4862		10835	917	7364	8230	880	10470	6	2485	3
Start (nt)	1 2	1 7	507.0	13073	2539	1532	4741	7939	8711	2359	349	\$144	\$969	6472	10954	5352	4596	1895	11263	. ~ .	9125	3	9201	12158	674	6138	6376
¥ 2	-	_	-	=		_		~	=	-	-		<u>_</u>	2	91	~	9	-	2	2	_	2	2	Ξ.	-	9	=
Contig	-	-	-	7	\$	2	2	~	-	۰		=	=	7	=	12	12	57	16	18	50	92	1 20	50	2	23	33

S. aureus - Putative coding regions of novel proteins not similar to known proteins

																												•
	Stop (nc)	1 6881	12830	4.00	1525	2402	849	1524	3005	1388	8575	8728	9379	10097	1049	5801	7261	7621	2964	980	8989	6371	20804	21264	627	100	428	2324
	Start (nt)	7651	12618	4556	5642	1824	505	11.7	2454	265	1952	8591	9738	10797	1315	\$226	1575	7424	1 851E	1585	6623	16982 1	20253 2	20722 2	-	908	96	2674
	<u>8</u> 5	-	=	-	9	-	7	-	-	~	•	01	Ξ.	2	~	-	=	=	-	7	=	70	76	2	-	-	-	-
•	Contrib ID	2	a	77	~	25	11	=	=	77	77	;; 	33	ĸ	35	ž	36	36	37	96	38	98	38	2	39	07	3	=
	•																								. — •	. – •	· — •	_

5	

simile																													
ğ																													
2	:	: -		: –	.	. –			. – ·		·	-	-	-	-	-	<u> </u>	- -	-			-		. :	-		; - ;	-:	
proteins	Stop (nt)	3263	10129	13536	13994	6297	6520	10976	15424	1079	8777	962	1316	370	2245	287	6169	8709	326	786	261	1228	1560	18712	3521	5822	8553	1509	
of novel	Start	2484	10587	13724	13596	6575	6365	10449	15032	288	7620	1612	1621	738	2520	442	6705	9014	592	1052	-	1551	1970	19092	3694	5436	8885	1366	
regions	03.0	- 5 -	=	202	<u> </u>	_	-	= =	=	<u>-</u>	- 6	-	- 5	-		<u>-</u>	-	-		<u> </u>	<u> </u>	<u> </u>	-	-	-	•	6	2	
coding re	Control to	7	3	=	4	\$	99	46	9	C	9	S	S.	15	22	22	53	*	25	23	95	95	*	95	57	57	28	59	
ative	•																												

10	
15	
20	:
25	
30	Putetive coding regions of south
35	- Putative coding
	•

n protein	
knom	
2	
similar	
ğ	
13 - Putative coding regions of novel proteins not similar to known prote	
novel	
ō	
regions	
coding	
Putative	
•	
2	

-			
JQ.			
tive coding regions of novel proteins not si	Stop	2802	3570
of novel		3026	3770 3
egions	200	9	_
coding r	Contig ORF	53	65
CIVE	-		

_	: —	:-	<u>.</u> –	<u> </u>	•	• —	٠_	٠	• -	• —	٠.	٠.		.											
1 3570	1363	87.08	16403		5757	336	1361	2610	3904	6955	326	5199	8645	1192	1228	1791	€ _	8653	8781	1232	9366	1922	191	4878	
0776	4946	7518	10401	2696	2440		906	1774	2591	7110	7.8	6761	8935	1590	1509	=	~	8300	8968	1426	2	1620	_	5042	; ;
-	•	Ξ	2	~	Ξ	-	- -	~	<u>-</u>	- -	_	9	=	-	7	-	- -	6	- 91	_ _	-	-	-	-	! -
\$	53	ŝ	53	62	62	2	67	67	69	59	69	92	90	۲,	6,	79	2	82	85	98	18	88	89	£	15
_,		- •		-•			· — •		- •	i			1	- :	_:	_;	!	- :	-:	- 1	_ i	_ :	_ !	i	_

5	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

			. —		•					• — ·		. — .	.			•	• •	· ·		:	.	· ·	•		• - -	• —	. — :
Stop (nt.)	: 3 :	2	i ÷	6024	. ~	1813	2197	11050	4523	4784	7287		2015		1277	693	2655	122	1355	542	1651	11996		17689	760	9384	309
Start (nt)		6	8		13	•	. 8		: 5	1 8	7658		4		669	2	1 2	1 - 1	. •		. ~	11625	11981	17401		8764	-
10 00 E	2	7	_	_	-	1	-	1	9	_	- 60	<u>-</u>	2	-	~	-		-	2	1	•	2	=	<u>20</u>		2	-
Contin		92		92	76	36	*	96	66		100	102	103	2	104	105	105	10.5	106	107	109	109	601	109	110	7	116

proteins
Knock
ន
eimi lar
ě
proteins
novel
7
regions
ding
Putative co
ī
\$nu

														•															
15	ce ins																												
20	proteins not similar to known proteins											•		·															
25		Stop (nt)	1 4462	9376	10158	1320	1869	984	898	818	3196	4395	6438	1695	667	258	729	152	6463	1032	1313	1743	2388	7586	6502	040	111	1350	2540
	of nove	Start (nt)	6273	11049	10313	1703	4270	9290	.:	1090	2648	4084	6773	21.5	~	\$12	1124	-	8009	2060	2019	2387	1360	8630	7290	1327	7	502	3673
30	glons	IO OR			6	-	-	2	~	2		2	9	~	-	~	2	-	-	1	7	- 5	~	-	-	-	-	-	-
	coding re	. Contia	911	116	917	120	120	120	=	126	123	127	133	132	ă	135	135	138	138	140	9	OP.1	142	21	3	Ξ	146	146	146
35	Putative coding regions of novel	,			•			•																					
40	. auraus -																									٠.			

10	
15	
20	:

S. aureus - Putativa coding regions of novel proteins not similar to known proteins			
ķ			
\$			
similar			
5			
proteins	Compig ORF Start Stop ID (nt)	146 5 2874 3071	139
Vel	1	-	
2	132	874	_
Ö.		~	_
eg ions	8 0	~	1 1 1 1 1 1339
ing re	ant ig	146 5 2874 3071	147
Pos	10-	_ :	_ :
Putative	·		
*			
Aureu			
o,			

								•																_			
Stop (nt.)	1001	855	3615	3765	4145	4610	5049	5491	7054	8521	9106	9897	1587	1508	6398	12147	12803	593	2233	1064	808	1808	4279	4540	4717	\$638	940
Start (nt)	2874	-	3956	4036	4507	4907	5495	5739	7416	9216	1896	6.901	2303	1795	9859	12704	13531	315	1183	1471	452	976	1653	(00)	4896	5817	1604
<u>8</u> 0	2	<u>-</u>	=	=	2	51	91	81	12	2	72	- 12	~		- -	<u> </u>	51	7	_	7	_ 	~	9	-	e.	=	~
Cantig ID	146	147	5\$7	149	149	149	671	673	671	149	149	149	150	154	154	154	154	156	157	158	159	161	161	191	161	161	163
			•		-	• —		• —	. – .	• •		. —			• —		• —	• —	. —		• •				. — ;	· — i	· — :

.

5	

1	0

ä	2	5	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

3	0

												_							_	_					
26436	523	611	4884	2868	4158	7772	1450	11125	278	1149	708	7113	1105	2890	Stee	4506	9860	\$702	1755	2994	9000	2564	153	699	60001
2865	1 1 8	1338	cizs	2500	3595	2517	7227	12576	-	1940	1289	7001	593	2552	3820	252	5477	6043	1210	2647	3614	1998	_	950	11786
-		1		-	<u></u>	_	~	=	-	-	_	5	~	_	~	_	-	5	~	-	•	_	~	~	2
5	9	164	166	168	168	170	171	זיו	272	272	2.1	5.1	174	27.	178		182	184	188	188	189	190	191	191	181
•	•	•-	_	-							-	_	_	-		•	-	• —	• –	-	_		, – ,	,	• —

		Ę
		ž
		ž
		Ę
		ê
		×
		2
		ĕ
		7
		.2
		ĕ
		Ξ
) te
		ž
		7
		Š
•		0
		Ë
		ě
		ž
		<u>5</u>
		we coding regions of novel proteins not similar to known protein
		9
		ž

to know	
ន	
t similor	
20	
of novel proteins	
novel	
ď	
regions	
coding	
Putative	
٠	
41	

		•••••	

•	• —	• —		• —	•			•		· — ·			• — •		.			. —	• •	<u>. </u>	• - -	<u>. </u>	· ·	•	· —	• •	•
Stop (nt)	12363	426	1932	3606	1891	625 ·	1466	7815	13636	27960	817	1167	3436	4075	205	\$70	8676	6995	7469	596	657	2156	1369	2262	7208	1998	10216
Start	12902	16	2306	2899	1016	170	783	8930	13947	28208	170	962	3128	3749	-	1076	1907	0099	7864	1927	871	1776	1851	1251	8275	10244	11796
9 0 1	=	-	_ 	-	~	-	~	9		- - -	~			•	1	~	9	•	2	-		_			-	-	6
00	191	192	195	195	198		203	206	206	206	212	212	212		213	214	214	7.7	214	712	218	218		220		220	220
·	· —	÷	· —	• —	•	·	•	÷ —	-	· —	· —	-	•		• —	• - - ·		•	•	• —	• —	•	•	• —	•	• —	. – .
E G	1 6		195	195	198	1 1	. ~	iō	iõ	i õ			• -		77		1 214	214	214	1217	·	218	1 0		1 0	. ~	

1	0	

15	δ , aureus - Putative coding regions of novel proteins not similar to known proteins
	known
	ន
20	similar
	ě
25	proteins
	novel
	5
30	regions
	coding
5	Putative
0	aureus .
	44

_	_
2	u

25	

3	ć	,	

3	5	

^	
v	

;	-;-	· ; -	; –	;-	; –	: -	:-	:	<u>:</u> –	<u>: -</u>	<u>:</u> –	· —	<u>. –</u>	·	•	٠.		٠-		•-	•						
Stop (nt.)	2613	10757	689	1459	1961	487	975	2121	2345	3768	6367	2877	3526	3762	579	1391	905	3.4	1363	576	647	1962	1258	215	1333	3712	
Start (nt)	3095	11428	-	3612	9471	7	09+	1855	2052	4760	5591	2503	2846	3944	809	1975	1417	4495	1677	127	1291	3035	1614	- 69	978	3906	-
9 CT	-	6	1	~	_	-	7	- -	5	9	6	<u>~</u>	- •	-	~	~	~		~	-	- -	-	~	-	-	-	-
Contig	ī ī	122	226	226	326	227	727	227	722	727	722			233	236	238	239	261	262	243	244	244	245	246	346	249	250
																	. – .	. – •	•	•				· ·		i — i	-

Stop (nt)	156	3227	1580	2606	3681	439	4533	5107	116	4700	7 97	1439	1 6067	6035	1901	553	3448	5127	1 96.4	1950	2276	1055	1932	622
Start (nt)	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3700	4906	2196	- 122	- 551	5252	4739	1	5140	862	1200	1697	6469	1746	224	1299	1849	- 188	1756	2055	2107	-	-
으드 ; -		_	-	-	-		~	9	~	-	-	=	6	97	•	-	-	-	- 2	_	\$	-	~	~
Sont sq	254	257	260	261	261	264	264	264	267	268	272	272	272	272	376	87.8	278	278	285	288	288	289	290	291

į	,		

1	0

15

•		
2	u	,

25	

3	0	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

2	١,	_
,		,

4	n	
-		

50

55

										•												•				.	
Stop (nt)		2762	465	205	1928	2624	194		4257		3995	1 %	599	. ~		702	1341	3165	1114	3458	\$217	6140	6794	5	1112	1467	694
Start (nt)	•	. ~ 1	788		2380	É	-	109		634	3645	۱ ــ	0211		2314	07	982	2758	1 ~ 1	4570	\$995	: = :	7450	627	165		936
8 8	•	~	~	_	~	-	-	-		-	-	_	~	-	~	-	~	9	-	_	9	_		~	~	_	=
Contig	235	295	297	298	900	100	700	306	306	307		308		308	2.0	314	316	-		716	. ~	1 ~ .	321	-	326		328
•	• -	•	-	-	• -	•	• –		-	-		_	_		-	•											-

•
-
٠
1
-

Stop	3276	719	1212	1833	289	1623	2204	: =	3128	433	. ~	1356	281	1192	3944	4558	2889	768	592	1598	1765	4596	9404	9247
Start (nt)	3452	-	781	141	9.25	1447	2353	1267	3295	864	98	1658		2476	3618	3929	1197	1532	7 7	1410	2178	7316	7967	9068
OR OT	5	-	7	_	-	_		-	~	-	~	~	-	~	~	9	\$	-	~	-	~	_	-	~
Contig	328	129	129	329	330	330	200	22.	2	3.15	7.00	070	: Z	7	17	146	344	345	346	350	352	352	352	352
- -	-	. i	-	_	. – :	-	<u> </u>	-	· —	-	i	• 1	-	.	-	<u>. </u>	· — ·				: —	: —	-	-

1	n	

_	_	
2	υ	

_		

٠	3		1	

	_			
:	₹	ŕ	ï	
-	1	_	•	

4	^	
٠		

Stop	1808	10214	1313	1 060+	6239	6171	1085	164		1097			1549	; <u> </u>	<u> </u>			! -	<u>-</u>	; –	-	<u> </u>	; -	<u>; </u>	<u> </u> _	<u> </u>
Start S	- † -	; –	-	-	-	-	-	-	2 136	-	-	. ~	-	751 560	-	=	=	_	566 847	100 465	5561 5370	507	-	3524 4423	-	
19 ORF		8	7	-	-	-	_	-	-	<u>-</u>	<u>-</u>	-	~	-	- -	- -	- -	<u>-</u>	_ 	~	•	~	_ 	-	-	
cont la	364	790	365	365	365	990	1 367	368	375	380	369	190	190	160	395	396	398	199	10+	402	† 04	804	8 0 7	408	410	1

- 5
-

Stop Int)	847	1590	6.1	616	S13	677	1407	1084	417	2033	528	1235	450	3320	1520	969	6366	614	636	4786	4512	16.0	219	8	687	247	907
Start (nt)	578	2195	-	161	788	357	958	446	-	2311	942	2089	-	1269	1873	-	6761	076	968	3833	6718	4937	434	472	265	~	1651
380	7	-	-	~				~	-	-	-	-	-	- 2	_	-	-	_	~		•	2		~	_ 	-	~
Contig	416	919	413	411	027	422	‡	432	£	£33	*;	434	440	442	4	=======================================	777	451	453	453	45	453	455	455	459	462	997
•		• —	. –		• –		•	• —	•	•	• –	•	• –			• —		•	• —	• —	•	•	• –	•	•	•	• –

á	c	:	
٠	•	•	

_	

15	

2	0	

25	

30	

A	^	
4	v	

Contig ORF		(ur)	(ar.)
1		654	349
-		~	250
=	1	1488	925
-!	_ i	2386	2372
_ }		3464	3706
-	_	٠, ۲,	828
-	•	i	3696
: —	-	6330	5686
:	•	1351	8181
:	2	8175	\$17.5
; —	<u>-</u>	076	\$00
i	~	1562	1017
	-	٥,	267
	-		990
		1764	2081
	•	3066	2332
	\$	9107	1929
	~	956	480
	2	613	7.
-	9	1795	2112
-	-	215	359
	-	127	675
- :		~	520
-	~	496	1342
-	-	1149	1571
- :	-	069	346
	n	4566	4150

10	
15	

15	

20

25
25

30

S, aureus - Putative coding regions of novel proteins not similar to known proteins

35	

4	0	

																							_				_
		_	<u> </u>	! -			<u> </u>	- '		-	-		_	-				_					_	<u> </u>	[-	[-]	[-
Stop (nt)	1232	747	612	231	2360	3669	498	33	1104	\$534	156	736	2880	3121	17.1	999	<u>5</u>	53	432	1272	3.4	1129	Š	1154	1458	1821	2020
Start (nt)	1741	583	609	21.79	2097	3908	-	637	1679	5298	308	1362	2203	3531	4348	966	1495	68	719	1048	1012	2145	892	1357	1760	2105	2166
101 01	~	-	-	-	-	9	-	-	~	- 2	-	_	7	\$	•	_	2	1	~	7	7	-	7	2	-	5	9
Contig	511	\$12	515	517	\$20	\$20	527	528	523	530	536	538	53A	828	538	240	240	\$	<u>\$</u>	542	\$45	551	\$55	558	\$58	556	558
·	-	• –	• –	•	•	• —	• –	• –	-	•	• –	• —	-			-	• —	• —	• ~	• —	• -	-	-	-		•	

10	
15	
20	
25	
30	
35	-

Captig Ost Start Stop 170 180 181																										
1 1 1 1 1 1 1 1 1 1	:	1-		· ! —	<u></u>	-	<u>.</u> – .	·	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	:	-		<u>-</u>	-	-	-	-		· -	.	· :-	-	·
	<u> </u>	-	<u> </u>	: — :	2	-	-	-	661 199	-	-		-	-	-	-	-	_	-	-		-	-	-	-	-
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>8</u> 9	-	- -	-	1	1 - 1 - 1	7	- 0	-	7 - 7	-		1	6 - 1 -		-	7	- -	-	-	2	-	-		5 10	-
	-cqnr f	558	- 558	258	260			521	_ s	1 577	579	678	Š	\$85	587	288	269	290	292	58			965	602	(09	909

10	
15	proteins
20	inilar to known
25	by other not s
30	lovou ja suotoer
35	S antrous - Putative coding rections of movel proteins not statist to known proteins
40	- Surrans

	• - -	•		• — ·	•	• — •		•	· — ·		• —	· — :	· — ·	· —	. — :	. — :	· — ·	· ·		· ·		•	• — ·	. —	
Stop (nt.)	905	650	1 \$	•		210	\$	2	759		1063	1994	1081	28			1331	1847	808	1758		1 .	1045	109	872
3 5	-	991	: 2 :	36	: 2	67	8	:5	1 2	18	1929	2323	722	518	1377	1	1615	2260	-	1534	. ~	2940		τ	576
<u> </u>	_	=	~	-	-	-	-	-	-	-	~	~	_	=	-	-	_	-	<u>-</u>	-	•	-	<u>-</u>	-	~
colt in	612	616	: 3	622	. 40	627	628	631	634	616	616	(1)	6.18	619	619	119	613	642	643	645	645	645	648	999	099

5	
-	

S. AUFTHR - Putalive ending regions of nevel proteins not similar to known proteins

																	,								•		
Stop (nt)	=	330	\$16	800	- 384	237	1906	835	1077	3	132	224	1449	908	167	723	029	=	829	1112	1 24	=	828	14	82	- 8	
Start (nt)	-	-	=	-	965	-	1589	1236	1352	_	618	7 · 9K	- 6811	-	_	~	=	69	9591	498 1	-	. 9	90	2	-	7	3 - 2
9 ONF	-	_ _	~	-	- -	_ 	- -	_ 	- ~	- -		_ _	_ 	_ 	- -	- -	_ 	-	_	~	- -	- 1	1	-	-		_
Cpnt i	1 667	899	179	673	1674	619	629	689	688	694	969	901	709	111	215	716	721	227	723	723	וצו	729	731	235		738	742
-															. — .		•		. – •		- •		_ ;	:	-:	-:	-

	0

	0	

2	•	١	

25	

S. sureus - Putative coding regions of novel proteins not similar to known proteins

30

-3	

45

50

•	• —	•	•	•	•	•	•	• —	• —	•	•	•		· —	· —			• —	· —	• — •	. – .	•	• – •		• -	• —·	
Stap (nt)	780	494	ž	452	\$22	918	0 0	746	405	173	534	905	1023	631	224	260	117	089	842	1112	1442	979	358	1104	1032	1419	1064
Start (nt)	1148	282	685	106	- 6	520	663	1033	-	~	1058	1735	1790	1360	_	5	304	-	219	2221	1774	38	114	487	1529	1748	195
ORF			<u>-</u>	-	-	- 7	7	~	-		<u>-</u>	-		-	_	_	-	<u>-</u>	-	-	~	_ 	-	~		_	-
Contig	745	748	749	751	755	7.55	758	764	767	768	171	976	7.85	787	191	199	804	802	808	810	910	812	617	818	619	619	820
÷	÷ —	÷ –	: —	<u>:</u> –	÷ –	: –	<u>-</u>	: _	! —	! —		<u>:</u> _ :	: _	1	! !	-	! _ !	-		- :	_ :	٠-			<u>.</u>	! _ !	

proceins	
Known	
2	
not similar	
not	
proteins	
novel	
~	

	· –	·	• – •	٠ _	•	•		٠_	•		•			•												
Stop (nt)	255	800	291	298	796	709	457		. ~	256	014	215		588		294					\$09		388		188	290
Start (nt)	•			594	320	491	912	303	115		-	383	1676	-				186	1567	-			- :6	852	- 676	-
<u> </u>	_	-	-	-	_	_	_	~	-	-	-	~	9	-	-	_	-	-		-	-	1	-	_	-	-
Cont to		628	930		835		848	850	853	860	864	864	R64	870	-	875		878	879	198	882		305	906		- 616

15	

_		_	
ż	ď	U	,

25	

S. aurous - Putative coding regions of novel proteins not similar to known proteins

3	0

25	
JJ	

	Stop	161	402	386	808	185	1 007	00+	384	528	616	645	1242	950	270	362	3	000	162	346	909	302	170	191	348	1112	982	296
	Start (int)		169	126	1578	~	~	~	-	1052	7	220	679	1702	-	_	_	227	-	069	1079	_	-	319	692	~	1926	589
٠	8 a	=	~	_	=	-	-	-	-	-	-	-	~	-	_	-	-	_	-	-	=	-	-	-	<u>-</u>	-	-	-
	Contig	915	918	921	927	928	929	932	934	936	537	945	945	946	949	951	955	960	963	596	996	969	11.6	974	976	71.6	982	984
	•,	• –	• —	• —	• —		. –	• —	• —	•	• —	. –	•	. — .	•				• – •	• •	•		• -		• —	•	• •	

5	

10

_	·	

25	

S. Aureus - Putative coding regions of novel proteins not similar to known proteins

)	
٦	-		
	į	C	0

Stop (167	525	569	118	=	3	5.	660	- 5	299	5	338	- 671	199	369	199	52	354	35	400	97.	533	399	405	438	787	431
Start	-	-	920	\$57	624	~	288	1205	6.9	585	276	673	355	794	_	113	-	5 2	- (621	~	~	769	٠٥٢	-6	88		246
98.01			_	_	_	-		_	_	-	~	_	=	_	_	~	_	-	~		_	~	_	-	-	-	~
Contig		666	766	1004	101	1015	1016	1019	1011	1024	1024	1030	1 1032	1040	1043	1044	1047	1001	1051	1063	1069	1069	1075	1077	1081	1086	1087

_
5

1	5	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

																			. —						•		
Stop (nt)	174	236		=	1158	353	194	580	422	268	267	342		376	225	280	153	816	330	186	254	240	539	976	179		197
Start (nt.)	1 - 1	5	1 3	5	1520	٤٥٢	385	i ~	_	~	2	Ç	360	609	446	558	-	_	•	2	. ~	61	8	i ~	355		23
8 C	-	-	_	=	~	<u>-</u>	_	_	-	-	-	-	_	-	-	-	_	-	-	-	-	_	~	_	-	-	-
= 5	1088		1098	1100	1100	1011	1102	1107	7111	2111	1119	1129	===	611	1144	1147	1153	1154	1159	1161	1164	1171	1171	1163	1195	. ~ .	1200

~	
·	

n

2	2	5	

30	١

S. aurzus - Putative coding regions of novel proteins not similar to known proteins

4	2	4	_
	,		,

4	n

50

	-		
	5	e	3
	_	-	•

	Stop	464	5	187	175	- 11	221	595	165	185	153	530	193	7 03	345	157	00	3	73	167	256	149	398	639	399	67	5	104
	Start	129	105		~	220	=	~	-	367	158	\$	184	-	-	710	~	_	202	171	7	295	121	869	794	126	283	~
	28.0	~	~	-	-	-	-	-	-	-	~	-	-	_	-	-	~	-	-	-	-	-	-	-	-	-		_
•	Contig	1203	1222	1232	1240	1247	1721	1286	1295	1306	1314	1316	1359	1370	1761	1374	1378	1392	1411	[[]	1450	1453	1471	1 107	1502	1518	1534	1546

5
_

to known proteins																		-							٠.			
Putative coding regions of novel proteins not similar			-	-	_	-	-	_	-		• •		_				_	-			-			-		-	-	! -
of novel pro	Start Scop	506 255	1 350	1 563	679 071	1 402	468 235	-	1 200	119 266	2 179	798 400	115 183	252 401	111 167	523 263	794 399	564 283	218 400	492 331	732 367	3 167	330 166	622 398	47 352	679 341	301 152	296 150
odiny regions	Caire 19 ORF ID ID	1547 1	1583 1	1587 1	1602 2	1629 1	1665 1	1 0941	1762 1	1876 2	1895 1	1931 1	1976 2	2055 2	2056 1	2150 1	2157 1	2164 1	2175 1	2212 1	2338 1	2342 1	2352 1	2152 2	2355 1	2356 1	2359 1	2421 1
S. auraus - Putative c	•	• —			ď	•	•	•	•	•	•	• —					• -	•							•	•		

	١.	£	
	4	E	,

TO SUCTED AND AND AND AND AND AND AND AND AND AN			antendard v
Contig		Start (nt)	Stop (nt)
3046	-	367	185
3049	-	553	278
5	-	_ :	7.
1 1052	-	204	253
3065	-	~	
3070	-	1357	
3075	-	9	22
3060	-		
3092	-	020	162
3093	-	3	720
3100	-	52	702
1016	-	Ş	298
3118	=	34	2
13123	-	~	Ş
1 3127	-	-	Ę
1	-	336	169
3142	- -	388	202
3144	1	999	386
3151	-	337	170
1	~		
	<u>-</u>	=	176
3205	-	288	165
3282	_ 	-	150
3303	~	239	
13371	-	112	399
1358	_	~	148
13558	- 2	7	

_	
_	

S, aurous - Putative coding regions of novel proteins not similar to known proteins

																								.			
Stop	18s	87.8	1	283	157	190	222	285	162	250	75.2	298	174	145	147	169	ő	386	170	786	176	145	150	00	399	148	100
Start (nc)	367	553	-	\$04	7	357	9	-	320	114	52	ç	ž	~		336	388	999	133	202	13	288	-	239	211		36
<u>8</u> 5	_	-	-	-	-	-	-	-	-		-	-	-	-	-	-	_	_	_	~	7	-	_	~	~		~
<u></u>	3046	3049	3050	1 3052	3065	3070	1 3075	3080	3092	1 3093	3100	3103	8116	3123	1 3127	3138	3143	314	13151	3155	3168	3205	1 3282	1303	1756	3558	3558

5	
-	

1	n
,	

20	

25	

30	

35	

ding r	edions	Putative coding regions of novel	l proteins not similar
Contig	<u>8</u> 0	Start (nt)	Stop (nt)
3568	-	751	710
3595	-	187	380
3618	-	~	238
3618	~	007	4 05
3622		98	358
3622	~	199	338
3642	_	926	ŝ
3649	=	781	338
3651	=	625	71.
19664	-	167	637
3674	-	8	¢05
1,3677	-	619	116
3704	_	-	6
3726	-	\$35	269
3765	-	\$10	256
87.6	-	554	357
3794	-	266	135
3794	~	667	7.1
3796	~	639	375
3801	-	7.	262
3806	-	£3	296
3807	-	\$	389
3815	<u>-</u>	798	0
3827	-	_	320
	-	181	392
3853	-	1.0	399
3855	_	_	754

4	5	;	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

																								•	•	• — .	
Stop (nt)		297	99	671	00+	10	342	27.	ž	382	11.	344	00	=	356	296	335	259	100	345	*	344	150	324	330		22
Start (nt)	2	290	569	-	3	225	61	6	76	651	501	949	- 267	~	_	ē	8	~	186	-	-	_	-	_	187	-	127
<u>8</u> 0	-	-	- -	-	~	~	~	_ 	-		- 7	-	<u>-</u>	-		-	-	- -	- 2	<u>-</u>	-	<u>-</u>	_		-	-	-
iū	3857	1961	3865	3897	3897	3896	3921	1927	3930	3946	3951	3968	ניפנ	39A1	3998	4001	4003	4018	4018	4021	4043	4054	9907	4070	4072	(10)	4077
<u>:</u> -		: —		:	-	: -	: —	: -	: —	! —	<u>:</u> —	! —	<u>-</u>	<u>:</u>	: _	-	: –	:	: —	-	: —	-	-	<u>;-</u>	-	: _ :	-

	;-	-	-	-	<u>. </u>	; -	:	; —	; — ·	-	<u>-</u>	-	; — ·	_	_	-	-	-	-	; —	-	-	: - :	-	;-	; -
Stop (nt)	139	968	297	306	786	5	22	200	Ę	Ē	ŧ	ž	206	254	236	2	38	38	Ē	2	ā	3	ğ	3	13	
Start (nt)		72	60	-	570	629	740	-	_	~	994	-6	_	505	510	-	709	589	-	568	96	284	7	90	4 21	
08. 10	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	н	-	-	~		-	-	-	
1 10 10	1083	0607	1017	4105	4107	6119	121	412)	4137	4128	0614	2146	4157	4186	4334	4239	4343	4252		4256	4258	4267	1753	4287	4289	

10	
15	nown proteins
20	ot similar to k
25	. sursetive ending realing of novel proteins not similar to known procesins
30	o anotos of
35	o Burar (ve cod

																									•
<u>:</u>	; -	<u>. </u>	<u> </u>	<u>-</u>	<u>-</u>	<u>;</u> –	<u>. </u>	<u>:</u> –	. –	-	<u>-</u>	<u>-</u>	_	-	-	<u>-</u>	<u>-</u>	.	. –		-	-	-	<u>-</u>	: –
Stop (nt)	Ĭ,	151	289	3	22	797	56	111	=	568	326	ě	Ę	£	28	Ξ	780	388	ž	2	398	215	2	37	389
Start (nt)	96	~	576	5	439	528	728	17.	- 211	7	574	- 614	-	-	909	_	~	697	~	_	601	437	65	5.0	2
8 8	-	_	_	_	-	_	_		~	-	-	-	_	_	-	_	-	~	-	-	-	=	-	-	=
Fontig , In	4304	4306	1318	4322	1 4331	16.0	6138	97()	1 0.67	1 4373	181	4384	4397	4402	4603	1406	4411	4411	4412	4118	4424	4443	4471	4478	4482
-																									

5	
_	

S. aurous - Putative coding regions of novel proteins not similar to known proteins	•	• •	• 1	. — .	• —	•	• — ·	•	•	<u>.</u>	- -	•	•	• •	. —	• (· — ·	
protei	Stop (nt)	671	252	306	248	346	77	163	239	272	200	102	122	100	176	346	157	183	13
of novel	Start (nt)	-	800	0.1	6	-	4 80	~	_	=	36	-	642		349	-	7	28	344
lons	9. C.	-	-	_	-	-	-	_	-	_	-	-	_	=	-	-	_	-	-
oding res	9	4495	4496	4500	1157	4518	4526	4527	4532	4542	1981	6573	4578	4619	4620	1662	4669	4680	4690
S. aurous - Putacive co	•	. —	•	; —	÷ —	i —	. —	•	• —		•		•	•	• —	• ·	•		• —

Table 4

10	168_6 238_1 51_2 278_3 276_2	5192 5193 5194	HOMOLOG lipoprotein chrA	Region 1 36-45	Region 2 84-103	Region 3	Region 4
10	238_1 51_2 278_3 276_2	5193		36-45	84-103	152 101	
10	238_1 51_2 278_3 276_2	5193			07-103	152-161	176-185
10	51_2 278_3 276_2		VIII :	21-39	48-58	84-95	232-249
10	278_3 276_2		OppB gene product (B. sub	20-36	70-79	100-112	121-131
10	276_2	5195	lipoprotein 1	20-29	59-73	85-97	162-171
		5196	lipoprotein	21-33	65-74	177-186	211-220
	45_4	5197	ProX	28-37	59-69	85-100	120-129
	315_8	5198	hypothetical protein	45-54	88-97	182-192	243-253
1	154_15		unknown	31-40	48-58	79-88	95-104
1	228_3	5200	unknown	25-38	40-52	64-74	80-89
15	228_6	5201	unknown	29-41	89-101	128-143	173-184
· -	50_1	5202	unknown	21-33	52-61	168-182	197-206
}	112_7	5203	iron-binding periplasmic	21-31	58-67	92-101	111-120
	442_1	5204	unknown	30-39	91-100	122-137	182-192
	66_2	5205	unknown	50-59	104-116	127-136	167-182
-	304_2	5206	Q-binding periplasmic	19-28	48-57	75-84	103-116
20	44_1	5207	hypothetical protein	27-36	86-95	129-138	192-201
j	161_4	5208	SphX	27-44	149-161	166-175	201-210
	46_5	5209	cmpC (permease)	21-33	61-70	83-92	100-109
1	942_1	5210	traH [Plasmid pSK41]	83-92	109-118	127-142	
	5_4	5211	ORF (S. aureus)	12-22	87-96	111-120	151-160
25	20_4	5212	peptidoglycan hydrolase (S.	24-34	129-138	141-150	161-171
	328_2	5213	lipoprotein (H. flu)	81-90	123-133	290-299	
	520_2	5214	fibronectin binding protein :	44-54	63-79	81-90	95-110
	771_1	5215_	emm1 gene product (S. pyc	30-39	65-82	96-106	112-121
	999_1	5216	predicted trithorax prot. (D	7-16	120-129	157-166	
30	853_1	5217	ORF2136 (Marchantia polyr	43-52	88-97	102-111	
	287_1	5218	psaA homolog	13-22	28-44	72-82	114-124
1	288_2	5219	cell wall enzyme	14-23	89-98		
	596_2	5220	penicillin binding protein 2b	40-49	59-68	76-87	106-115
	217_5	5221	fibronectin/fibrinogen bindii	28-37	40-49	62-71	93-111
35	217_6	5222	fibronectin/fibrinogen bp	10-19	31-40	54-62	73-92
	528_3	5223	myosin cross reactive prote	4-13	29-47	60-73	90-99
	171_11	5224	EF	20-31	91-110		
	63_4	5225	penicillin binding protein 2b	12-21	59-68	95-104	
	353_2	5226		46-55	62-71		
40	743_1	5227	29 kDa protein in fimA regi-	23-32	68-79	94-103	175-184
	342_4	5228	Twitching motifity	10-19	48-60	83-92	111-121
L.	69_3	j 5229	arabinogalactan protein	97-106		158-167 137-160	
<u> </u>	70_6	5230	nodulin	36-45		131 100	113 100
_	129_2	5231	glycerol diester phosphodie	8-17	41-50	55-74	97-106
45	_58_5	5232	PBP (S. aureus)	26-35		117-126	152-161
** L	188_3	5233	MHC class II analog (S. aure	72-81		115-124	136-145
<u> </u>		5234	histidine kinase domain (Dic	24-33		81-94	106-121
<u> </u>	310_8	5235	clumping factor (S. aureus)	59-71		93-102	118-127
_	601_1	5236	novel antigen/ORF2 (S. aui	45-54	91-104	108-117	186-195
	544_3	5237	ORF YJR151c (S. cerevisae)	76-90		131-140	154-164
50	662_1	5238	MHC class II analog (S. aure	22-32	71-80	89-98	114-122
	87_7	5239	5' nucleotidase precursor ('	29-45	62-71	105-114	125-137
	120_1	5240	B65G gene product (B. sub	102-111			

Table 4

5	168_6	Region 5					
	168 6		Region 6	Region 7	Region 8	Region 9	Region 10
	100-0	244-272	303-315				:
[.	238_1	260-269	291-301	308-317			
1.	51_2	140-152	188-208	211-220	256-266	273-283	!
10	278_3	198-209	,				, -
′′′ [276_2	255-268					i
ľ	45_4	177-199	221-230	234-243	268-279	284-293	304-313
	316_8						i
<u> </u>	154_15	148-157	177-187	202-211			
15	228_3	101-119	139-154	166-181			:
. [228_6						
]-	50_1						
l'	112_7	136-149	197-211	218-229	253-273		
ľ	442_1	199-210		264-277	287-309		
20	66_2						
	304_2	178-187	250-259				
ľ	44_1						
.].	161_4						i
l l	46_5	131-141	162-176	206-215	243-252	264-273	- 285-294
25	942_1						
1	5_4	189-205	230-239	246-264	301-318	340-354	378-387
i i	20_4	202-212	217-234	260-275	314-336	366-373	380-391
]	328_2						i
J ⁻	520_2						
30	771_1 i	145-154					
}	999_1						!
]	853_1						
	287_1	154-164					
- 1	288_2						i
35	596_2	121-130			<u> </u> :		i
	217_5	244-253	259-268	288-297	302-311		
L	217_6	144-158	174-183	188-197	207-216	226-242	<u> </u>
1.	528_3				<u> </u>		1
l.	171_11						<u> </u>
40	63_4		•			····	ļ
1.	353_2						!
i.	743_1	197-207					!
].	342_4				<u> </u>	. – – – – – – – – – – – – – – – – – – –	
<u>,</u>	69_3	195-211			<u> </u>		i
45	70_6	206-215	263-272	291-301	331-340	330-311	390-414
1.		117-127	141-157		202-211		261-270
1	58_5	184-203	260-269	275-299	330-344	372-381	424-433
],	188_3	<u> </u>	i		<u> </u>		
50	236_6	138-147	163-172	187-198	244-261	268-278	308-317
30	310_8	131-140	144-153	177-186	190-199	204-213	216-227
1	601_1	208-218			<u>i</u>		·
ľ	544_3	170-179	184-193	224-235	: 274-287	327-336	352-361
ľ	662_1						
55	87_7	i					
	120_1						

Table 4

	ORF	1	Antigenic	Regions	(cont)		1
5		Region 11	Region 12	Region 13		Region 15	Region 16
	168_6	i		0.5.	7	:	
	238_1	:		-	<u> </u>		!
	51_2						
	278_3	l			 		!
10	276_2				 	·	T
	45_4				1	:	
	316_8						i
	154_15				 	i	
15	228_3				·		·
15	228_6					İ	
	50_1					!	
	112_7						
	442_1					1	
20	66_2					1	
	304_2					:	
	44_1						i
	161_4						
	46_5	306-315				:	
25	942_1						
	5_4	393-407	416-426	456-465		1	
	20_4	396-405	410-419	461-481		1	
	328_2					1	
	520_2				<u> </u>	<u> </u>	
30	771_1				<u></u>	:	<u> </u>
	999_1	:			<u> </u>		
	853_1				<u> </u>	·	<u> </u>
	287_1	;			<u> </u>	<u>!</u>	ļ
	288_2					<u>:</u>	
35	596_2	·			<u> </u>	<u>:</u>	
	217_5				<u> </u>		
						<u>.</u>	
	528_3				<u> </u>	:	
40	171_11						
40	63_4				-		
	353_2				ļ	<u> </u>	!
	743_1					:	·
	342_4				 	·	<u></u>
45	69_3	453-471	506-515		-		
	70_6	296-315	300-313				· - ·
	129_2 58_5	230-313			<u> </u>		
		·	<u></u> i		 		
	188_3	358,277	410.422	428-439	442-457	467-476	480-493
50	236_6	358-377 238-251	410-423	281-290	1296-310	314-333	338-347
	310_8	230-231	256-275	201-230	230-310	J 17-333	330-34/
	601_1				 		<u> </u>
	544_3				!		<u>:</u>
	662_1	; , 1				 	<u> </u>
55	87_7				<u>i</u>		<u>:</u>
	120_1	<u> </u>			:	· · · · · · · · · · · · · · · · · · ·	

Table 4

OR			Antigenic	Regions	(cont)	! 	
		Region 17	Region 18	Region 19	Region 20	Region 21	Region 2
	8_6	<u> </u>		<u> </u>	<u>:</u>	<u> </u>	<u> </u>
23	8_1			i 	1	<u> </u>	·
51.	_2	;			:	:	
27	8_3	l					
	6_2	i			!	1	:
45.		i .					1
	<u>-</u> 6_8	! 		<u> </u>	 -		· [
	4_15	 			 -	 	
22	B_3	!			1		
220	8_6	· · · · · · · · · · · · · · · · · · ·					
		<u> </u>			-:	·}	<u> </u>
50.		<u>i </u>				 	
	2_7	 			 	 	-i
	2_1					 	-
66.							
	4_2				<u> </u>	 	
44.					<u> </u>	 	_
	1_4	<u> </u>					 _
46.	_5				<u> </u>		<u> </u>
94	2_1						·
5	4				1		
20.		i					·
	B_2				1	1	
	0_2				· · · · · · · · · · · · · · · · · · ·	1	1
	1_1	<u> </u>					-; <u>-</u> -
	<u>'</u> ' 9_1	<u>i</u> -			<u> </u>	1	-: · ·
	3_1	<u>.</u>		<u> </u>	:	 	T
30	7 1			<u> </u>	:		- -
	7_1	}			:	 	!
	8_2	<u>:</u>	·		:	 	.,
	6_2	ļ		 	<u> </u>	 	·
21	7_5	1				 	
	7_6	<u> </u>			:		
	8_3	<u> </u>		ļ	<u>!</u>	<u> </u>	:
17	1_11	<u></u>		!	!	!	<u>:</u>
63	_4	<u> </u>				<u> </u>	
35	3_2			!		<u> </u>	!
74	3_1			<u> </u>	:	<u>i</u>	!
34	2_4	1			:		1
69				! .		1	!
		1				!	!
		<u>:</u>		i			
50	_5	:				!	
10	8_3 8_3			-		1	
		·				:	-
	6_6	257 200	270 270	420 429	443 453	478-487	551-560
		·357-366	370-379	429-438	443-452	.710-401 !	331-360
	1-1	!		·		· 	
	4_3	<u> </u>		<u> </u>		<u>:</u>	
66	2_1				· · · · · · · · · · · · · · · · · · ·	<u></u>	
87		:					
				:			

Table 4

5	ORF	i	Antigenic	Regions	(cont)	:	
6		Region 23		! Region 25	Region 26	Region 27	Region 28
	168_6	1			1	i -	
	238_1	!			!	: .	
	51_2	1			<u> </u>	:	i
	278_3				i	,	1
10	276_2			· · · · · · · · · · · · · · · · · · ·		:	
	45_4	 		 	 	:	
	316_8			:	-		1
	154_15			!	·	:	1
		:	 	1			
15	228_6	1				1	
	. 50_1	1	:	i		1	
	112_7	1			T	i	
	442_1		·				
00	66_2			1		1	
20	304_2	i	<u> </u>	1			
	44_1	 		 			
	161_4		· · · · · · · · · · · · · · · · · · ·	†		1	1
	46_5		····	i		1	
	942_1			 		!	
25	5 1	 	· · · · · · · · · · · · · · · · · · ·				
	5_1 20_4			··			
	328_2	†	!				
	520_2	 				i	
30	771_1	<u>i</u>	·	1		:	
	999_1	!				:	
. "	853_1	†					
	287_1	1				:	
the other	288_2	!				:	
35	596_2	•					1
•	217_5	1		!			
	217_6	- 					
	528_3					: 	
	171_11					: 	
40	63_4		!	}		<u> </u>	
	353_2			!		<u> </u>	
	743_1					i	ļ
	342_4			<u>.</u>		:	
	69_3	:					<u> </u>
45	70_6						<u> </u>
	129_2						<u>!</u>
	58_5				:		<u>: </u>
	188_3			:	:	<u>·</u>	
	-236_6	:			1		<u> </u>
50	310_8	622-632	670-685	708-718	823-836	858-867	877-886
	601_1			!	i		!
	544_3	ı			:	1	[
	662_1						
	87_7			 	1		!
55	120_1			· 			•
	120_1						

Table 4

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		

ORF	Antigenic	Regions	(cont)
	Region 29	Region 30	, <u>so.i.e</u> ,
168_6		Nogion 50	
238_1			
51_2			
278_3			 -
276_2			
45_4			
316_8			J
154_15	· · · · · · · · · · · · · · · · · · ·		: .
228_3			
228_6			
50_1			
112_7			·
442_1			 -
66_2			
304_2			
			ļ -
44_1 161_4			
			·
40_5			·
5_4			ļ
20_4	j		
320_2			·i -
520_2			i
771_1			
999_1			
853_1			
287_1 288_2			
<u>288_2</u> 596_2			
217_5			<u>i</u>
528_3			
171_11			
63_4			i
353_2			
743_1			<u> </u>
342_4	· · · · · · · · · · · · · · · · · · ·		
69_3	 !		
70_6			:
129_2			!
	·		<u>:</u>
58_5 188_3			r
236_6		· 	:
310_8			!
			
601_1	·		
544_3		· · 	·
662_1 87_7	 -		
87_7			i
120_1			

Table 4

ORF	:	BLAST	Antigenic	Regions		
	i	HOMOLOG	Region 1	Region 2	Region 3	Region 4
46_1	5241	aldehyde dehydrogenase	8-17	36-52	83-96	112-121
63_4	5242	glycerol ester hydrolase (P.	9-26	57-73	93-107	123-133
174_6		5243 ketopantoate hydroxymeth	71-80	203-212	242-254	265-274
206_10	6:5244	ornithine acetyltransferase	1-10	34-43	54-63	194-210
267_1	5245	NaH-antiporter protein (E. I	120-129	332-347	398-408	
322_1	5246	acriflavin resistance protein	58-75	153-164	203-231	264-284
415_2	5247	transport ATP-binding prote	108-126	218-227	298-308	315-334
214_3	5248	2-nitropropane dioxygenase	123-136	216-233	283-292	297-306
587_3	5249	clumping factor	5-14	43-54	59-68	76-95
685_1	5250	signal peptidase	59-68	72-81	86-95	99-108
54_3	5251	fibronectin binding protein I	23-32	37-46	50-59	89-98
54_4	5252	fibronectin binding protein I	43-52	66-75	95-104	147-156
54_5	5253	fibronectin binding protein !	49-60	81-90		
54_6	5254	fibronectin binding protein I	55-71	82-97	139-158	175-186
328_1	5255	lipoprotein (H. flu)	11-20	61-70	96-105	

Table 4

•	7	С	:	
-		•	۰	

	ORF		Antigenic	Regions	(cont)	1	<u> </u>
		Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
•	46_1	215-242	333-352	376-385	416-432	471-487	1
30	63_4	145-154	191-202	212-223	245-265	274-283	291-300
	174_6						<u> </u>
	206_16	239-259	275-284			<u> </u>	1
	267_1				<u> </u>	<u> </u>	<u> </u>
	322_1	. 298-319	350-359		<u> </u>	<u> </u>	.t
35	415_2	344-353	371-380	395-404	456-465	486-495	518-527
	214_3	318-337	365-375	<u> </u>			<u> </u>
	587_3	106-115	142-151	156-166	173-182	186-198	204-213
	685_1	113-122	130-145				
	54_3	128-138	185-194	217-226	251-260	1268-277	295-305
40	54_4	175-188	191-200	203-212	220-229		
	54_5	i	i				İ
	54_6	220-230	287-304	317-326	344-353	364-373	378-387
	328 1	1	1	•	1		1

Table 4

ORF	•	Antigenic	Regions	(cont)	1	
	: Region 11	Region 12	Region 13	Region 14	Region 15	Region 17
46_1			i			
63_4	306-315	319-328	366-376	395-420	:453-462	467-476
174_6	i				;	
206_16		:			:	i
267_1					.i	1
322_1	i	i	i		!	I
415_2_	539-555		!			
214_3						
587_3	217-226	278-287	318-327	332-342	351-360	377-386
685_1_	:		i			
54_3	316-325	329-345	355-372	387-396	416-425	438-448
54_4	:	!		I		!
54_5						-1
54_6	396-407	427-436	514-531	541-550	569-578	612-622
328_1	1		<u> </u>	<u> </u>	1	1

Table 4

ORF	1	Antigenio	: Regions	(cont)	i	!
	Region 18	Region 19	Region 20	Region 21	Region 22	Region 23
46_1		1	.!		:	
63_4	485-500	513-525	1			
174_6			1			
206_16	:	:			·	
267_1	i				<u></u>	:
322_1	i	<u>:</u>	i		<u>!</u>	
415_2	_ i	:				
214_3	i				<u> </u>	:
587_3	396-405	426-442	i459-470	485-494	505-514	:531-562
685_1						
54_3	455-462	472-491	517-536			_i
54_4					<u> </u>	
54_5						
54_6	639-648	673-681	703-715	723-732	749-760	772-788
328_1		i			•	i

Table 4

ORF		Antigenic	Regions	(cont)		
	Region 24	Region 25	Region 26	Region 27	Region 28	Region 29
46_1						.1
63_4		i		<u> </u>	<u> </u>	<u>.i.</u>
174_6			<u> </u>		<u> </u>	<u></u>
206_16			<u>i </u>	<u> </u>		i
267_1			<u>i</u>		<u> </u>	<u> </u>
322_1			: 		<u> </u>	
415_2						i
214_3		j	•			
587_3	567-578	584-601	607-840	844-854	858-870	877-886
685_1		<u> </u>	<u></u>		<u> </u>	
54_3		<u></u>				
54_4		·	<u> </u>		J	
54_5	<u>.i</u>		<u> </u>	ļ	-l	
<u> 54_6 </u>	793-802	811-826	834-848	866-876	893-903	907-918
328_1_	'	<u> </u>	!	<u> </u>	<u> </u>	<u> </u>

Table 4

-		-	
4	c	,	

45

50

55

THE PARTY

	ORF	Antigeni	c Regions	(cont)
			Region 31	
	46_1	!	:	
30	63_4	:		
	174_6	1		
	206_16		;	
	267_1			
	322_1		!	
35	415_2			
	214_3	T	1	
	587_3	889-911	927-936	
	685_1	7		
	54_3			
40	54_4	- 	T	
	54_5	i	i	
	54_6	925-944	951-997	
	328 1		-i	T

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	 (i) APPLICANT: (A) NAME: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue (C) CITY: Rockville (D) STATE: Maryland
15	(E) COUNTRY: US (F) POSTAL CODE: 20850
20	(ii) TITLE OF INVENTION: Staphylococcus aureus Poly- nucleotides and Sequences
	(iii) NUMBER OF SEQUENCES: 5255
25	(v) COMPUTER READABLE FORM:
	 (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4 Mb storage (B) COMPUTER: HP Vectra 486/33 (C) OPERATING SYSTEM: MSDOS version 6.2 (D) SOFTWARE: ASCII Text
30	(b) SOFIWARE: ASCII TEXT
·	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
35	
	(vii) PRIOR APPLICATION DATA:(A) APPLICATION NUMBER: US 60/009,861(B) FILING DATE: 05-JAN-1996
40	
	(2) INFORMATION FOR SEQ ID NO:1:
45	
50	

(i) SEQUENCE CHARACTERISTICS:

10

15

20

25

30

35

40

45

50

55

(A) LENGTH: 5895 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

TCCATTATGA AGTCACAAGT ACTATAAGCT GCGATGTTAC CAATGTTTTT TAAAATCCCA 60 GTAATAAAAT CAAAAAATAA GTTAAATAAT GTATTCATTT TAAGTCCTCC TTAATAAAGa 120 aaataGGTAA TAATGTAATA GCTTCTATTA TGATGCCTAA TTGAATGAAT TGGGCAAATG 180 GCTCTTTGAT GATAAGTGTG ATAATGAAAA GGGTTAAACT AACAATAATC GCATAATATT 240 TTTTCGTTT AATAAGTCGC ACAGGAATGG GCTTCTTTTT AGTTGCTGCA GGAGCATATA 300 CTGAGATTAC ACCTAAAGAA ATAACTGTTA AAATAATCAT AATTAAAAAG TTAATATGAA 360 AATTTACTAT TACTAAAGGT AAAAGTATAA ATAGTATAAT ACTTTCTACA TAACACCAAA 420 AAGAAGAAGG TGCATGTGCA CCATGTGCAT GCCTTCTTAT TAAATAAAAT GTTAAATTCG 480 TAATTAACGT AAACAGAAAA ATGTTTAAAA TATAGGCAAT AGTATACATA ACAATTAATT 540 TACCTATATT TTTAGCTAAG ACCTGCATCC CTAATCGTAC TTGCAAAAAT TGAATATGAT 600 CTAAGTTATT TCTCTTTTGA AGATACGTGG CAAACTGGTC AATTTTATTA TCAAAATAAT 660 TCAATTTAC ACCACTCTCC TCACTGTCAT TATACGATTT AGTACAATCT TTTATCATTA 720 TATTGCCTAA CTGTAGGAAA TAAATACTTA ACTGTTAAAT GTAATTTGTA TTTAATATTT 780 TAACATAAAA AAATTTACAG TTAAGAATAA AAAACGACTA GTTAAGAAAA ATTGGAAAAT 840 AAATGCTTTT AGCATGTTTT AATATAACTA GATCACAGAG ATGTGATGGA AAATAGTTGA 900 TGAGFTGTTT AATTTTAAGA ATTTTTATCT TAATTAAGGA AGGAGTGATT TCAATGGCAC 960 AAGATATCAT TTCAACAATC GGTGACTTAG TAAAATGGAT TATCGACACA GTGAACAAAT 1020 TCACTAAAAA ATAAGATGAA TAATTAATTA CTTTCATTGT AAATTTGTTA TCTTCGTATA 1080 GTACTAAAAG TATGAGTTAT TAAGCCATCC CAACTTAATA ACCATGTAAA ATTAGCAAGT 1140 GAGTAACATT TGCTAGTAGA GTTAGTTTCC TTGGACTCAG TGCTATGTAT TTTTCTTAAT 1200 TATCATTACA GATAATTATT TCTAGCATGT AAGCTATCGT AAACAACATC GATTTATCAT 1260 TATTTGATAA ATAAAATTTT TTTCATAATT AATAACATCC CCAAAAATAG ATTGAAAAAA 1320 TAACTGTAAA ACATTCCCTT AATAATAAGT ATGGTCGTGA GCCCCTCCCA AGCTCGCGGC 1380 CTTTTTTGTA ATGAAGAGG GATGAGTTAA TCATCATTAT GAGACCCGCC GTTAAAATAT 1440

	TCATTTGCAA	AGGGCGAAAT	GGGTTCTTAC	TGAGTTATCT	AAAAATATTA '	AATAAACATA	1560
	GACTTATGAA	AAATCTCTCA	TAAATCTATG	TTTAGTCATG	aCATGTGTTA	AATATTATTT	1620
5	CGGGCGCTTC	TTATTTATAC	AAATCTAATT	TAATACTTTT	AAATACAGGT	ATATTTTCgC	1680
	GTTGCTGTTC	TACTTCATTT	AAGTTTAAAT	CTACAGTCAA	AATATCTGCG	GATTCATTTA	1740
10	ATTCTCCAAC	TAAATCTCCA	TTTGGGTTTA	TAACTATCGA	ATGACCAGCA	TATTCTGTGT	1800
	TACCATCGAA	TCCAGTGCTA	TTAGTTCCAA	TGACAAACAT	ATTATTTTCA	ATTGCACGTG	1860
	CCTTTAGTAA	TGAATGCCAA	TGTTGAAGAC	GTGACATAGG	CCATTGCGCC	ACATAAAATG	1920
15	CAATTTTAGC	ACCACTACGA	GCAGGATATC	TTAATAATTC	TGGAAAACGT	AAATCATAAC	1980
	AGATAAGTTG	GGTCACATAA	GTACCGTCAG	ACAATTGAAA	GGGTTCAGCT	ACGTATTCGC	2040
	CAGCGGTTAA	AAATTCATGC	TCTCTTAACA	TAGGAACTAA	ATGAACTTTG	TCGTATTCaT	2100
20	TAATCAGCTG	GCCACTTTTA	TTCACACTAA	AAGCTGTATT	AAATATTTGA	TTGTTTCTAA	2160
	TGTTAGAAAC	TGACCCAGCT	ACGATATCGA	CTTTATATTT	TTCAGCTAAA	TGTTTAATAA	2220
25	ATGAAAAACT	TTGTCCTAGA	TTATTATCTG	CTTTTTCATT	TAAATGCTCT	AAATCATAGC	2280
	CATTATTCCA	CATTTCAGGT	AAAACGACTA	CATCTACTTC	AGCATTCATA	TTTTTTCGA	2340
	ACCATTGCGT	TATTTGAGTT	TCATTTTTAG	AACTATCTCC	AAAAACAATC	GGTAATTGAT	2400
30	AAATTTGGAC	TTTCATAACA	TCACATCCTT	GATAGATCTT	ATATATAACT	TACTAAAAGT	2460
	TATGTTGAAA	CGCAAAAAAC	GAGCACAAGA	CATAAAATCA	AAGTCCTAGG	CTCTACAAAG	2520
	TTATATTGAC	AGTAGTTGAT	GGGGCCCCAA	CATAGAGAAA	TTGGAACACC	AATTTCTACA	2580
35	GACAATGCAA	GTTGGGGTGG	GCTCTAACAT	AAAGAAATAC	TTTTTTTTTA	GAAATTAGTA	2640
		ATGAGTTTTA					2700
40	•	AACTACTACA					2760
	CCTAACAATA	TATTGATTAT	TTTTTTATTA	CGAAACGATC	TTCCACTGGA	TTAAATGTTT	2820
	TTTCGCCAGC	AGCTTCACGA	ATATCACCAA	ATGGCATTTG	AGCAATAAGT	TTCCAACTTT	2880
45	TAGGAATATT	AAATTCATTT	GAAGTCATCT	CATCAACAAG	TGGATTATAG	TGTTGTAATG	2940
	AAGCACCTAT	GCCTTTAGTA	GCTAATGCAG	TCCAAATTGC	AAATTGATGC	ATGGCATTTG	3000
		CCATATTGCA					3060
50		TTGATCTTCA					3120
	TTTTTTGTTC	AGTTGGCTCG	AAATCACGAT	TCTCTCCCAT	GACTTCTTTT	AAAATTGCTT	3180
	TTGTGTTATC	CCAAAATTTA	TTATTGTTGT	CATTTAACAA	GAGAACAATT	CTAGTTGATT	3240

	CATCGCTAAT	TGATATCGAA	TCTTTCAAAT	TATATATTGA	ACGTCTTTCT	TCCATTGCAT	3360
	TGTCAAAAGT	CATTGCTTTT	TTATCTTTTT	TAAATAAGCC	CATAATTATT	GCTCCTTCTT	3420
5	TAGTAAAGAA	TACTTAATAG	ACTAAGTATA	AAATTTATAC	TCGTACTTGT	AAAGCAATAT	3480
	TTACGAAAAT	TTCAAGAATA	TTAATATTCA	TTTTCAAATT	CCAAATATAA	ATGCATTTTC	3540
10	AACGCATATT	TATTATACTT	AGATTAATAC	TTACATGAAA	AAGGGAGGTG	TCTCGTGAAA	3600
	TGTCATATCA	TTGGTTTAAG	AAAATGTTAC	TTTCAACAAG	TATTTTAATT	TTAAGTAGTA	3660
	GTAGTTTAGG	GCTTGCAACG	CACACAGTTG	AAGCAAAGGA	TAACTTAAAT	GGAGAAAAAC	3720
15	CAACTACTAA	TTTGAATCAT	AATATAACTT	CACCATCAGT	AAATAGTGAA	ATGAATAATA	3780
	ATGAGACTGG	GACACCTCAC	GAATCAAATC	AAACGGGTAA	TGAAGGAACA	GGTTCGAATA	3840
	GTCGTGATGC	TAATCCTGAT	TCGAATAATG	TGAAGCCAGA	CTCAAACAAC	CAAAACCCAA	3900
20	GTACAGATTC	AAAACCAGAC	CCAAATAACC	AAAACTCAAG	TCCGAATCCT	AAACCAGATC	3960
	CAGATAACCC	GAAACCAAAA	CCGGATCCAA	AACCAGACCC	AGATAAACCA	AAGCCAAATC	4020
25	CGGATCCAAA	ACCAGATCCA	GATAACCCGA	AACCAAATCC	AGATCCAAAA	CCAGACCCAG	4080
20	ATAAACCAAA	GCCAAATCCG	GATCCAAAAC	CAGATCCAGA	TAAACCAAAG	CCAAATCCGA	4140
	ATCCAAAACC	AGACCCTAAT	AAGCCAAATC	CTAACCCGTC	ACCAGATCCC	GATCAACCTG	4200
30	GGGATTCCAA	TCATTCTGGT	GGCTCGAAAA	ATGGGGGGAC	ATGGAACCCA	AATGCTTCAG	4260
	ATGGATCTAA	TCAAGGTCAA	TGGCAACCAA	ATGGGAATCA	AGGAAACTCA	CAAAATCCTA	4320
	CTGGTAATGA	TTTTGTATCC	CAACGATTTT	TAGCCTTGGC	AAATGGGGCT	TACAAGTATA	4380
35	ATCCGTATAT	TTTAAATCAA	ATTAATAAGT	TGGGCAAAGA	TTATGGAGAA	GTTACTGATG	4440
	AAGACATTTA	TAATATTATT	CGAAAACAAa	ATTTCAGCGG	AAATGCATAT	TTAAATGGAT	4500
40	TACAÁCAGCA	ATCGAATTAC	TTTAGATTCC	aatatttcaa	TCCATTGAAA	TCAGAAAGGT	4560
	ACTATCGTAA	TTTAGATGAA	CAAGTACTCG	CATTAATTAC	TGGTGAAATT	GGATCAATGC	4620
	CAGATTTGAA	AAAGCCCGAA	GATAAGCCGG	ATTCAAAACA	ACGCTCATTT	GAACCGCATG	4680
45	AAAAAGACGA	TTTTACAGTA	GTTAAAAAAC	AAGAAGATAA	TAAGAAAAGT	GCGTCAACTG	4740
	CATATAGTAA	AAGTTGGCTA	GCAATTGTAT	GTTCTATGAT	GGTGGTATTT	TCAATCATGC	4800
	TATTCTTATT	TGTAAAGCGA	AATAAAAAGA	ААААТАААА	CGAATCACAG	CGACGATAAT	4860
50	CCGTGTGTGA	TTCGTTTTTT	TTATTATGGA	ATAAAAATGT	GATATATAAA	ATTCGCTTGT	4920
	TCCGTGGCTT	TTTTCAAAGC	CTCAGGATTA	AGTAATTGGA	ATATAACGAC	AAATCCGTTT	4980
	TGTAACATAT	GGATAATAAT	TGGAACAGCA	AGCCGTTTTG	TCCAAACATA	TGCTAATGAA	5040

AATATTAATG	AACTTACTGT	TGTAGCAATA	ATAAATGCCA	CGATACGATT	ACCTTTAATC	5160
GCATTAAATA	ATTCTCCAAA	GATTACTTTT	CTGAATACAT	ATTCTTCTAA	TAAAGGACCA	5220
ATAATAGATA	CAAAGAAGAT	AAATATAGGT	ATTTTTCGAG	CAATAATAAT	TAGCTTTTCT	5280
GTATTAGGAC	TTACTTGTTG	TCCACCATAA	ATTTGCGTTA	ATACAATGCT	CACTACCATT	5340
TGATAAATCA	TTACCAATGC	AAATCCAAGC	AATGCCCATG	GAATGATATA	TTTTTTAGGT	5400
TCTTTAACTT	CTAATTCTAA	TTTTGTTGGA	TTTTAATTT	TTAAATTAAT	TAAAATAATC	5460
GTCGTGGCGG	CGATTAAAAA	TAGAACAAGT	TGTATGTAAA	TGACTGCTTT	AGTCAGTTCT	5520
ATGCCACTAT	ATTGTACAAA	TGGTAATTTT	TTTACAATGA	GAAGCGGTAA	AAATTGAGAC	5580
aatatataaa	TAATAACAGT	TAGCAATGAT	GCCCATAATC	tTGTCATAAT	TTTCCTCCAA	5640
ATATTTGTTT	ATAATTTATT	TTATCGTAAA	TAACTTGAAG	TTACAAAACT	TAATTAAAAG	5700
GTTATGACTT	GAAATTTTGA	CCAAATTTGA	TTATTATAAA	TGTATGTTAG	CACTCTTTAA	5760
TGTTAAGTGC	TAAACTTTAG	GTTTTTTAAG	GAGGAACAAT	CATGCTAAAA	CCAATTGGAA	5820
ATCGTGTGAT	TATTGAGAAA	AAAGAACAAG	AACAAACAAC	TAAAAGTGGn	ATTGTTTAAC	5880
TGATAGTGCT	AAAGA	•				5895

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6796 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

5

10

15

20

25

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

TTTGAAAAA CAAGGTACGA TTGGTTTAAT AACATATATG AGAACCGATT CTACACGTAT 60 TTCAGATACT GCCAAAGTTG AAGCAAAACA GTATATAACT GATAAATACG GTGAATCTTA 120 CACTTCTAAA CGTAAAGCAT CAGGGAAACA AGGTGACCAA GATGCCCATG AGGCTATTAG 180 ACCTTCAAGT ACTATGCGTA CGCCAGATGA TATGAAGTCA TTTTTGACGA AAGACCAATA 240 CCGATTATAC AAATTAATTT GGGAACGATT TGTTGCTAGT CAAATGGCTC CAGCAATACT 300 TGATACAGTC TCATTAGACA TAACACAAGG TGACATTAAA TTTAGAGCGA ATGGTCAAAC 360 AATCAAGTTT AAAGGATTTA TGACACTTTA TGTAGAAACT AAAGATGATA GTGATAGCGA 420 AAAGGAAAAT AAACTGCCTA AATTAGAGCA AGGTGATAAA GTCACAGCAA CTCAAATTGA 480 ACCAGCTCAA CACTATACAC AACCACCTCC AAGATATACT GAGGCGAGAT TAGTAAAAAC 540

55

	AAAGCGTAAC	TATGTCAAAT	TAGAAAGTAA	GCGTTTTGTT	CCTACTGAGT	TGGGAGAAAT	660
δ	AGTTCATGAA	CAAGTGAAAG	AATACTTCCC	AGAGATTATT	GATGTGGAAT	TCACAGTGAA	720
	TATGGAAACG	TTACTTGATA	AGATTGCAGA	AGGCGACATT	ACATGGAGGA	AAGTAATCGA	780
	CGGTTTCTTT	AGTAGCTTTA	AACAAGATGT	TGAACGTGCT	GAAGAAGAGA	TGGAAAAGAT	840
10	TGAAATCAAA	GATGAGCCAG	CCGGTGAAGA	CTGTGAAATT	TGTGGTTCTC	CTATGGTTAT	900
	AAAAATGGGA	CGCTATGGTA	AGTTCATGGC	TTGCTCAAAC	TTCCCGGATT	GTCGTAATAC	960
	AAAAGCGATA	GTTAAGTCTA	TTGGTGTTAA	ATGTCCAAAA	TGTAATGATG	GTGACGTCGT	1020
15	AGAAAGAAAA	TCTAAAAAGA	ATCGTGTCTT	TTATGGATGT	TCGAAATATC	CTGAATGCGA	1080
	CTTTATCTCT	TGGGATAAGC	CGATTGGAAG	AGATTGTCCA	AAATGTAACC	AATATCTTGT	1140
	TGAAAATAAA	AAAGGCAAGA	CAACACAAGT	AATATGTTCA	AATTGCGATT	ATAAAGAGGC	1200
20	AGCGCAGAAA	TAATATTTT	ATTTCCTAGA	TACATTTTAA	GATTGTTAAA	TAGAATCATT	1260
	AGTGAATCTT	ATTTTAAAGA	TAGTAAAGGA	TTAATCTAAA	TAAGTGCGGA	TAATATAAAC	1320
25	ATAACAACAT	AATTAAmAGA	CATAAATGAC	aATAAAAGGA	GTATAGAAAT	GACTCAAACT	1380
	GTAAATGTAA	TAGGTGCTGG	TCTTGCCGGT	TCAGAAGCGG	CATATCAATT	AGCTGAAAGA	1440
	GGAATTAAAG	TTAATCTAAT	AGAGATGAGA	CCTGTTAAAC	AAACACCAGC	GCACCATACT	1500
30	GATAAATTTG	CGGAACTTGT	ATGTTCCAAT	TCATTACGCG	GAAATGCTTT	AACTAATGGT	1560
	GTGGGTGTTT	TAAAAGAAGA	aatgagaaga	TTGAATTCTA	TAATTATTGA	AGCGGCTGAT	1620
	AAGGCACGAG	TTCCAGCTGG	TGGTGCATTA	GCAGTTGATA	GACACGATTT	TTCAGGTTAT	1680
35	ATTACTGAAA	CACTTAAAAA	TCATGAAAAT	ATCACAGTTA	TTAATGAAGA	AATTAATGCC	1740
	ATTCCAGATG	GATACACAAT	TATCGCAACA	GGACCACTTA	CTACAGAAAC	CCTTGCGCAA	1800
40	GAAATAGTGG	ACATTACTGG	TAAAGATCAA	CTTTATTTCT	ATGATGCGGC	TGCTCCAATT	1860
	ATTGAAAAAG	AATCTATTGA	TATGGATAAA	GTTTACTTAA	AGTCCCGTTA	TGATAAAGGT	1920
	GAAGCTGCAT	ATTTAAACTG	TCCTATGACT	GAGGATGAAT	TTAATCGCTT	TTATGATGCA	1980
45	GTATTAGAAG	CTGAAGTTGC	GCCTGTAAAT	TCATTTGAAA	AAGAAAATA	TTTCGAGGGT	2040
	TGTATGCCTT	TTGAAGTAAT	GGCAGAACGC	GGACGCAAGA	CATTACTATT	TGGACCAATG	2100
	AAACCAGTAG	GATTAGAAGA	TCCAAAGACT	GGGAAACGTC	CTTATGCGGT	GGTTCAATTA	2160
50	AGACAAGATG	ACGCTGCTGG	TACACTCTAC	AATATTGTTG	GCTTCCAAAC	GCATTTAAAA	2220
	TGGGGAGCTC	AAAAAGAAGT	CATTAAATTA	ATTCCAGGCT	TAGAAAATGT	TGATATTGTT	2280
55	AGATATGGTG	TGATGCATAG	AAATACCTTC	ATTAATTCAC	CGGACGTATT	AAACGAGAAA	2340

	TATGTAGAAA	GCGCAGCTAG	CGGCTTAGTT	GCAGGTATCA	ATCTTGCGCA	TAAAATATTA	2460
5	GGCAAGGGTG	AGGTAGTATT	TCCGAGAGAA	ACAATGATTG	GAAGTATGGC	TTACTATATT	2520
	TCTCATGCTA	AAAACAATAA	GAATTTCCAA	CCTATGAATG	CTAACTTCGG	GTTATTACCA	2580
	TCTTTAGAAA	CTAGAATTAA	AGATAAAAA	GAACGCTATG	AAGCACAAGC	TAATAGAGCT	2640
10	TTGGATTACT	TAGAAAATTT	CAAAAAAACT	TTATAAAATA	GTTAGAAAGA	CTAGATATGC	2700
	TATTCATTCT	TAAGTCATCA	ACGAGTAAGT	AATGACTTTC	TAAATGGAAA	ATACTTATCC	2760
	TAGTCTTTTT	AATTTTGGAA	TTGTTACGTA	TTTCTGACAA	TTTAGAATTC	GCATTCAAAA	2820
15	AATATCTAAA	TAAATAACAC	GCAATAAGTT	GATTGATGTA	ACATGTAAGA	GAATGTTTTA	2880
	AATAAACTTT	ATTTAAAAGG	CAATGAAATA	ATAAATGGCA	AGGCTATTAA	TAAAGACTTT	2940
20	TAGTAATTAA	TTTAAAAAAG	AGGTATTCTA	ATTAACAGGT	TTTCCGATTA	GTTACAATTA	3000
	TTTAATTCTC	AAAAGATTTA	GAATTGATTA	TCAAATTACT	GTAAGCCCTT	TGCTGTATAT	3060
	GCTACAATTC	TTATTGATGG	AGGGTAAATG	TATTGAATCA	TATTCAAGAT	GCGTTTTTAA	3120
25	ATACATTGAA	AGTTGAACGG	AATTTTTCGG	AACACACATT	GAAATCATAT	CAAGATGACT	3180
	TAATTCAGTT	TAATCAATTT	TTAGAACAAG	AACATTTAGA	GTTGAATACT	TTTGAATACA	3240
	GAGATGCTAG	AAATTATTTG	AGCTATTTAT	ATTCAAATCA	TTTGAAAAGA	ACATCTGTTT	3300
30	CTCGTAAAAT	CTCAACGTTA	AGAACTTTCT	ATGAATATTG	GATGACGCTT	GATGAGAACA	3360
	TTATTAATCC	ATTTGTTCAA	TTAGTACATC	CGAAAAAAGA	AAAATATCTT	CCGCAATTCT	3420
35	TTTACGAAGA	AGAAATGGAA	GCGTTATTCA	AAACTGTAGA	AGAGGACACT	TCAAAAATT	3480
33	TACGGGATCG	AGTTATTCTT	GAATTGTTGT	ATGCTACAGG	CATCCGTGTT	TCGGAATTAG	3540
	TAAATATTAA	AAAACAAGAT	ATAGATTTTT	ACGCGAATGG	TGTTACCGTA	TTAGGAAAAG	3600
40	GGAGCAAAGA	GCGCTTTGTA	CCGTTTGGTG	CTTATTGTAG	ACAAAGCATC	GAAAATTATT	3660
	TAGAACATTT	CAAACCAATT	CAGTCATGCA	ATCATGATTT	TCTTATTGTA	AATATGAAGG	3720
	GTGAAGCAAT	CACTGAACGC	GGTGTACGAT	ATGTTTTAAA	TGATATTGTT	AAACGAACAG	3780
45	CAGGCGTAAG	TGaGATTCAT	CCCCACAAGC	TCAGACATAC	ATTTGCAACG	CATTTATTGA	3840
	ATCAAGGTGC	AGACCTAAGA	ACAGTACAAT	CGTTATTAGG	TCATGTTAAT	TTGTCAACAA	3900
	CTGGTAAATA	TACACACGTA	TCTAACCAAC	AATTAAGAAA	AGTGTATCTA	AATGCACATC	3960
50	CTCGAGCGAA	AAAGGAGAAT	GAAACATGAG	TAATACAACA	TTACATGCAA	CAACAATTTA	4020
	TGCTGTAAGA	CATAATGGGA	AAGCAGCTAT	GGCTGGAGAT	GGGCAAGTAA	CGCTTGGTCA	4080
55	ACAAGTCATC	ATGAAACAAA	CGGCAAGAAA	AGTGCGACGT	TTATATGAAG	GTAAAGTGTT	4140

	ATTACAACAG	TTTAGTGGTA	ACTTAGAAAG	AGCTGCTGTT	GAATTGGCAC	AAGAATGGCG	4260
5	AGGCGATAAA	CAATTACGTC	AATTAGAAGC	TATGCTAATT	GTAATGGATA	AAGATGCTAT	4320
3	TTTAGTTGTC	AGTGGAACTG	GCGAAGTTAT	TGCTCCAGAT	GATGACCTTA	TCGCTATTGG	4380
	ATCAGGAGGC	AACTACGCAT	TAAGCGCAGG	ACGTGCATTG	AAACGCCATG	CATCGCATTT	4440
10	GTCTGCTGAA	GAAATGGCAT	ATGAGAGCTT	GAAAGTAGCG	GCTGATATTT	GTGTCTTTAC	4500
	CAACGATAAT	ATTGTTGTCG	AAACACTATA	ATAATCAGAG	CACGATAAAT	AATTACGAGC	4560
	AATTAATTTT	AGTTAAAAGA	CGGAGGAATG	AAATTAATGG	ATACAGCTGG	AATAAGATTA	4620
15	ACTCCAAAAG	AAATCGTATC	TAAATTAAAT	GAATACATCG	TTGGACAAAA	TGATGCTAAA	4680
	CGTAAAGTGG	CAATTGCCCT	ACGTAATCGA	TACAGAAGAA	GTTTATTAGA	TGAGGAATCA	4740
	AAGCAAGAAA	TTTCACCTAA	AAATATTTTG	ATGATTGGAC	CAACCGGCGT	TGGTAAAACT	4800
20	GAAATTGCAA	GAAGAATGGC	CAAAGTTGTC	GGCGCGCCAT	TTATAAAAGT	AGAAGCTACT	4860
	AAATTTACTG	AGGTAGGTTA	TGTAGGACGA	GATGTTGAAA	GTATGGTTAG	AGATCTTGTT	4920
25	GATGTTTCAG	TAAGATTAGT	CAAGGCGCAG	AAAAAATCAT	TGGTACAAGA	TGAAGCAACA	4980
	GCTAAGGCCA	ATGAAAAACT	TGTTAAGTTA	TTAGTTCCAA	GTATGAAAAA	GAAAGCGTCT	5040
	CAAACGAATA	ATCCTTTAGA	GTCACTTTTC	GGAGGTGCAA	TTCCAAATTT	CGGACAAAAT	5100
30	AACGAAGATG	AAGAAGAACC	ACCTACTGAG	GAAATTAAAA	CAAAACGTTC	TGAAATTAAG	5160
	AGACAGCTAG	AAGAAGGCAA	ACTTGAAAAA	GAAAAGGTAA	GAATTAAAGT	CGAACAAGAT	5220
	CCTGGTGCTT	TAGGTATGCT	AGGTACAAAT	CAAAATCAGC	AAATGCAAGA	GATGATGAAT	5280
35	CAATTAATGC	CTAAAAAGAA	AGTTGAGCGA	GAAGTTGCTG	TTGAGACGGC	AAGGAAAATC	5340
	TTAGCTGATA	GTTATGCGGA	TGAACTAATT	GATCAAGAAA	GCGCTAACCA	AGAAGCGCTT	5400
40	GAATTAGCAG	AACAAATGGG	TATCATCTTT	ATAGATGAAA	TCGACAAAGT	TGCGACGAAT	5460
	AATCATAATA	GTGGTCAAGA	TGTCTCAAGA	CAAGGTGTTC	AAAGAGATAT	TTTACCTATA	5520
	CTTGAAGGTA	GCGTTATTCA	AACCAAATAT	GGTACTGTGA	ATACTGAACA	TATGCTGTTT	5580
45	ATAGGTGCTG	GAGCTTTCCA	TGTATCTAAG	CCGAGTGACT	TGATACCAGA	ATTGCAAGGT	5640
	CGTTTTCCGA	TTAGAGTTGA	ACTTGATAGT	TTATCGGTAG	AAGATTTTGT	AAGAATTTTG	5700
	ACAGAACCAA	AATTGTCATT	AATTAAACAA	TATGAAGCAT	TGCTTCAAAC	AGAAGAAGTT	5760
50	ACTGTAAACT	TTACCGATGA	AGCAATTACT	CGCTTAGCTG	AGATTGCTTA	TCAAGTAAAT	5820
	CAAGATACAG	ACAACATTGG	TGCACGTCGA	CTTCATACAA	TTTTAGAAAA	GATGCTAGAA	5880
55	GATTTATCAT	TCGAAGCACC	AAGTATGCCG	AATGCAGTTG	TAGATATTAC	CCCACAATAT	5940
-							

	AAATATACAA AAGGAGAAAA ATTCATGAGC TTATTATCTA AAACGAGAGA GTTAAACACG	6060
	TTACTTCAAA AACACAAAGG TATTGCGGTT GATTTTAAAG ATGTAGCACA AACGATTAGT	6120
5	AGCGTAACTG TAACAAATGT ATTTATTGTA TCGCGTCGAG GTAAAATTTT AGGATCGAGT	6180
	CTAAATGAAT TATTAAAAAG TCAAAGAATT ATTCAAATGT TGGAAGAAAG ACATATTCCA	6240
10	AGTGAATATA CAGAACGATT AATGGAAGTT AAACAAACAG AATCAAATAT TGATATCGAC	6300
	AATGTATTAA CAGTATTCCC ACCTGAAAAC AGAGAATTAT TCATAGATAG TCGTACAACT	6360
	ATCTTCCCAA TTTTAGGTGG AGGGGAAAGA TTAGGTACAT TAGTACTTGG TCNAGTACAT	6420
15	GATGATTTTA ATGAAAATGA TTTGGTACTA GGTGAATATG CTGCTACAGT TATTGGTATG	6480
	GAAATCTTAC GTGAGAAGCA TAGTGAAGTA GAAANAGAAG CGCGCGATAA AGCTGCTATT	6540
	ACAATGGCAA TTAATTCATT ATCTTATTCT GAAAAAGAAG CGATTGAACA TATCTTTGAA	6600
	GAACTTGGCG GTACGGAAGG CCTATTAATC GCATCAAAAG TTGCAGATAG AGTTGGTATT	6660
	ACTAGATCTG TAATTGTAAA TGCACTACGT AAATTAGAAA GTGCTGGTGT AATTGAATCA	6720
25	CGTTCTTTAG GAATGAAAGG TACTTTCATT AAAGTTAAAA AAGAAAAATT CTTAGATGAA	6780
	TTAGAAAAA GTAAAT	6796
	(2) INFORMATION FOR SEQ ID NO: 3:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2073 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35	··	
	(4.1) 000000000000000000000000000000000000	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

40

45

50

55

ATCCTAAAAT THAAAATTAT CACGCCTTTT GAACAGCTTT GTAACCATCL GGACGATCAT 60 KAAATTCCAA TGTAAATCCT GGTTTAAAGT TGATCTTTAA CCTTATTTAA AYCACCAATT 120 GTACGTATAT TATGTTGTTT AGCAAAATCA CGTTTTACAG CTAAAGCATA CGTATTGTTA 180 TACTTCATTG GTTTTAACAT AGTCATTTGA TATTTCTTTT CAAGACTTTG CTTAGCTTGT 240 TCATAAACTT TTTTCTCTTC TTTTGACTTC AATGGTTCTT TTGTTAATTC ACCTAAAACT 300 GTTCCAGTAA ATTCTAAATA CCCATCTATA TCGTCAGATT TTAAAGCATT AAATAAAAAT 360 GCTGTTTTGC CCATACCATC TTTCACTTCT ACAGTATTTT TGGTCTCTTC TTCTATTAAA 420 ATTITATACA TATTTGTAAT AATCGATGGC TCGGAGCCAA GCTTTCCAGC TAACGTAATT 480 TTATCACCTT TTTGTGCAAA CATAGGAATA GCGATAGCCA GTATAATAAT CATCACTATA 540

	TCAAATATAA	TTGCCAATAA	GGCTGCTGGA	ATTGCACCTA	ATAATATCAA	CGATGCATTG	660
	TTACGGTCTA	TACCTAATAA	AATTAAATCT	CCTAGTCCGC	CTGCACCAAT	TAATGCTGCT	720
5	AGTGTTGCTG	TACCTATAAT	TAATACCATA	GCCGTTCTTA	CACCAGCCAT	TATAACAGGC	780
	ATTGCTATCG	GAAGTTCGAC	TTTAGTTAAA	CGTCTAAATG	GTTTCATACC	TATACCTTTA	840
	GCCGCTTCAA	TGAGTGATGG	ATCAACTTCT	TTAATTCCAG	TATACGTATT	CCTTAAAATT	900
10	GGTAACAACG	CATACACTAC	AAGTGCAATA	ATTGCTGGCA	CACGACCGAT	ACCAAATAAA	960
	GGAATCATTA	AACCTAATAA	TGCCAACGAT	GGTATGGTTT	GAAGAATTGC	CGCAATATTC	1020
15	ATTACGATTT	CAGATATCGT	TTTAGTCTTC	GTTAATAAAA	TACCTAATGG	TACCGCAATA	1080
	GCAGTTGCAA	TCAATAATGC	GATAAATGAT	ATTTGAATAT	GTTCTATCAT	TGTCGAAAAG	1140
	AGTTGCCCCT	TACGTTCACT	CAATATGTCg	AAAAAGTTAG	TCATGTTGAG	CTACCTCCTT	1200
20	TTTCTGGGAC	AAATATTTGA	AGATATCTTT	CCTATCAATA	ACATATTGAC	CTACGCTATC	1260
	TTCTTGCATG	ACAATGACAC	GCTCGCTCTC	TGATAAAAGT	TGATACAATA	CTTCAATTGG	1320
	TTGATTGTCA	TAAACAATTG	GATAAGCGCT	CATAGATGTA	ACCTCATCGA	TTGGTTTCAT	1380
25	AATAŢCCAAG	TCACGGATAA	TTGCGTTCTC	TTCAACACAT	GGCGCATCAT	CTTCTAAATG	1440
	ACTACCCATA	AATTGTTTAA	CAAATTCACT	TTGAGGATTA	TTTTTAAATC	CTTCTGGTGT	1500
30	GTCAATTTGT	TCAATATGCC	CTTCATTCAA	AAGACAAATC	TTATCACCAA	GTTTCATCGC	1560
	CTCTTGAATA	TCATGTGTAA	CAAATATGAT	TGTCTTCTTA	ATTTTAGTTT	GTAATTCAAT	1620
	TAAATCATCT	TGAAGTTTTT	CTCGGCTGAT	TGGGTCTAAT	GCACTAAACG	GTTCATCCAT	1680
35	TAAAATAACT	GGTGGATCAG	CTGCTAACGC	ACGTATAACT	CCTACACGTT	GTCGTTGCCC	1740
	CCCTGACAAT	TCATCAGGTT	TTCTGTTTTT	ATATTTTTCA	GGTTCTAATC	CAACCATTTC	1800
	AAGTAATTCA	TCTACTCTTT	TATCTATATC	TTTTTCTTTC	CACTTTTTCA	TTTGTGGCAC	1860
40	TTGTGCAAtA	TTTTCTTTGa	wTGTCaTATG	TGGGAATAAT	GCAATCTGCT	GCAATACGTA	1920
	TCCAATATCC	CAACkCATTT	CGTATACTGG	ATAATCACTT	ATTGGTTTAT	CTTTAAAATA	1980
45	AATATAACCT	TCACTTAAGT	GAATGAGTCG	ATTAATCATT	TTTAATGTCG	TAGTTTTTCC	2040
	ACAACCTGAA	GGTCCAATTA	GCACAAAAA	TTC			2073

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13321 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

	ACTATTCTAG	CTTCATCAGT	TATCATATAT	TCTTTGAAAC	ACTTGTAAGA	AAATATAATG	60
5	AGTATTTACT	ACATAATGAT	ATTTCAAATT	AGAAAAAAGG	AAGTTATGAT	TTAATGGCCT	120
	TGAGCCTATC	ATAACTTCCT	TTTATCATTT	TATTGTTGTG	TTGATGTTTC	GATAACGTGG	180
10	TACATCTTAT	CAAACATCAA	TTCGAAACCA	TGCACCATGG	CATCATGATA	TTCTTTTTTC	240
	TTTTGCTTGT	ATTCTAAATT	AGTAAATCGT	CTTTCTTTTT	CAACTAATGA	ACGATAATAA	300
	AATAGCATTT	GGGTGCCACC	TGTTTCACGT	TCAAAAAATT	CTACCTCAAT	GACATCTTGC	360
5	GTTTCACTTA	GTCCAGGCAT	ACCGATAGTC	ATCTTAACGT	ATTCATCCAT	AACTAAAGAT	420
	TCATAAATGC	CTTCAATCAC	ATTTACTTTG	CCATTACGTT	GTTGATCTAC	AATACGATAT	480
	TTACCGCCTT	CTTTAACGTC	CGCTTCAATC	TCTTTATTCG	TTCTGGCTGA	TGTCATAAAC	540
20	CATTGTTTCA	ACAAATCTTT	CTTTGTCCAA	GCTTCGTATA	CTAACTCTGG	AGAAAATTTA	600
	TAAAGCTTTT	CAATTTCAAC	TTCGACATGT	TCATTCTCTA	CATTAAATTT	TGCCACTGTT	. 660
·-	GTCCACCCAC	TTTCGCTCTT	ACTTTTATTT	TAACGTATTT	TTGCTCAGTT	CCAAACATAG	720
25	ATGATCATCA	TTTTTAAAAG	ATTAGCGTTA	TACGGTGAGT	ACAACATGAT	CTGTTAATAT	780
	AACAAGCCAC	CTTACTTGGC	TACATCGATA	TATTGTTAAG	CATTAATGTT	TCATTTCTTG	840
0	ACTAGTGTTC	TTTTTTAGCT	TTGGAAAATT	AAATAAAATC	GCAATAAGTC	CGCATACACC	900
	TAATAATATA	GGATAAATGC	TGTATGGGAA	TAACATTAAC	GGTGAAATAC	CAGCTACACC	960
	AGCCGCTGaA	ATGACTTGCG	GGCTATATGG	TAATAAACCT	TGGAAGCAGC	CTCCAAATAT	1020
5	ATCAAGAATA	CTTGCTGATT	TCCTTGAATC	TACATCATAT	TCATCTGCAA	TATTTTTAGC	1080
	TAAAGGACCT	GACATAATAA	TAGAGATGGT	GTTGTTTGCC	GTGGCAATAT	CTGCGACACT	1140
	TACCAAACTA	GCAATTCCTA	ATTCTGCGCC	ACGCTTTGAT	TTCACTTTAG	AGCGAACAAA	1200
0	TTGCAACAAC	CATTCAATAC	CACCATTGTG	TTGAATAATA	CCGACTAAAC	CACCAATTAG	1260
	CAACGCAATC	ATAGCAATAT	CTTCCATGCT	TATAATACCT	TTGGACACTG	CATCTAGTAG	1320
5	CCCCATCCAA	CCGAATGAAC	CATCTATGAG	ACCAATGATT	CCGGCTAATA	ATGTTCCGCC	1380
	AATCAATACG	ATAATGACAT	TTACACCTAA	TAATGCTAAT	ACCAATACTA	AGATATACGG	1440
	TACAACTTTA	ATTAGATTAT	AATCATAGTt	TTTAGCATGA	TTTAAAGAAA	TGCCATTCGT	1500
0	TAAGAAATAC	AGAATAATAA	TCGTTAAAAT	AGCACCTGGC	AATACAATTT	TAAAGTTTAC	1560
	TCTGAATTTA	TCTTTCATTT	TCGTATGTTG	TGTTCTAACC	GCAGCAATTG	TTGTATCTGA	1620
	AATCATTGAT	AGATTATCGC	CGAACATTGC	ACCTCCAACA	ACTGTAGCCa	tTGctAGCGC	1680

	ICCIACAGAC	GICCCCATAG	ATATAGAAAC	AAACATACAA	ATCACAAACA	ATCCTACAAT	1800
	AATTAAATTT	TCTGGGATTA	ATGATAGTCC	TAAATTAACT	GTCGACTTTA	CGCCACCCAT	1860
5	TTTTTCAGCT	GTATTTGAAA	ATGCACCTGC	TAAAATAAAA	ATCAACATCA	TTAAAACAAT	1920
	GTTTGAATGG	CCTGCACCTT	TCGTGAAGAC	CTCAACTTTT	TTAGCAAATG	ATTCTTTTCG	1980
10	ATTCATTAAT	AACGCCACAA	TTACCGTTAT	CGTAATTGCA	ACATTTAATG	GCATTGAAGT	2040
	AAAATCACCT	GTGATAATAC	CTACGCCTAA	AAACAACGCC	ACAAATAATA	ACAAGGGGAA	2100
	TAATGCCCAA	GCATTGCTCT	TTTTATGTAC	TTCCATCCTT	TTTACCTGCT	TTCCAATTAA	2160
15	AAATACCTCT	TTCTCACAAA	CGATGAAGAA	AGAGGTTTTC	ATGTGCTTTA	CCTGCTTATC	2220
	TTCAAACCAT	TACGGTTACT	GGAATTGGCA	CATTCGAGAT	GTTGCCGAGG	CTTCATAGGG	2280
	CCAGTCCCTC	CACCTCTCTA	GATAAGTGAT	GCTTATTTAC	GTTTACGTTA	CAAGATAATC	2340
20	CTTAGTACGT	CAATCATAAA	TTAATCAGGA	GTCGTATAAT	ATTTTTCATA	AACAATCATT	2400
	GCTACTGTAA	TAATAATCAA	AACAATAATG	CTAATAACAA	GTAAAAGCCA	CCATTTAAGC	2460
25	ATTAATGCAA	TAAAAATGAA	CACGATAGAC	ACACTTACTA	ATATTAATGA	TATGACTTTA	2520
	AATTGCTGAA	CACGTTGCTT	GGAGATGACT	TTCAACTGTT	TGTTTGATAG	ACGCGTATTT	2580
	TTTATACTGA	TTCCCAGTAT	ATTTTCTAAT	ATTTGAACCA	ATACGATACT	TATTGCAAAT	2640
30	ATAATAATTG	GTAAAACATC	ATAGCTCCCT	ATAGTTAATG	TATAAATTAC	AAATCCAATG	2700
	TAAAGTAACC	CTGAGACAAA	GGATAAAAAG	TATGCGACGT	ATTTGTTAAA	CTTAATGATA	2760
	TGCTTTTTAA	CGTTTTGATG	TGTAAACCÀT	ACATTCGAAA	CGATCGCAAC	TGCTACAAAT	2820
35	AATGTGAATA	CTATATATAA	TGGTAATTTT	TGTTCAGGAA	AAACAGTCGC	TATTCCAAAA	2880
	GCTAATGCTA	AAATCAAAAA	TAATATAGCT	CTAGATACTA	TTAATGCCAT	AATAACAACC	2940
40	CCTTTGTTTA	ATATCGAGTT	TGCAAATTTA	CGTTTATCAG	CGTTTCTATG	ATCAGTACTT	3000
	CTACGGGTAG	CGTTTCTATG	TAATTTACAT	CATCTTAACA	TATAAATACT	TCGCTATTTA	3060
	ATTGAAAACA	TATCCTATTA	TTCTTTGTCC	GTTCTGACGT	TTAATATCTA	GCCTTAGGCA	3120
45	TTTCACTTGT	TAATGAATTT	AACTTTCTTC	CACTAACCGT	CCCTAAACCC	AATCCCGCAA	3180
	CAGTTTTTAA	CTTTTTCGTT	GTTGTCCTGA	CATCCTCATT	AAGAAAGTTT	ATTCTGCTTA	3240
	AAACTTATAA	TCCACACCCT	GAGCAAACGC	TCCTTATGAC	AGAGTATTAA	AATAAGCCGA	3300
50	TAAAGATACA	CACCTTTACC	GACTATTTAA	AATACACTTC	ACCAATTCAT	TTTAATTTAA	3360
	TGGATTGAAG	TAACTAAATT	AATATTATGT	TGTTCAATTA	AAAGCTTCAT	ACAAACCTAA	3420
55	TCTATTTGCA	CTCCACCGCT	AACACCGAAC	ACTTGTCCGG	TTGTATAACT	TGATTCTTCT	3480

	GTTTTTTGAC	: CAAATGTTGG	GATTTTACTT	TGAGGTTGTC	CACCAGAAAT	TTGTAATGGT	3600
	GACCAGAATG	GACCAGGCGC	TACACAGTTC	ACTCTAATTC	CTTTTGGTCC	TAATTCTTCT	3660
5	GAAAAACTTT	TAGTTAATGA	AATAATTGCT	GCTTTTGAAG	CGGCATAATC	ATGAAGAATA	3720
	GGACTAGGAT	TATAACCTTG	TACAGATGAT	GTCGTTGTAA	TTGACGCACC	CGGTTTTAAA	3780
10	TATTCCAATG	CTTTTTGAAC	TGTCCAAAAT	AGCGGATAGA	CATTCGTTTC	AAATGTTTCT	3840
10	GTAAATGCCT	CAGTTGTAAA	TCCATGAATA	TCATCATGAT	ACTGTTGATG	TCCAGCAACT	3900
	AAAGTAACAT	TATCTAAGCC	ACCTAATTGT	TGATATGCTT	GTTCAACAAG	GTCATAGTTG	3960
15	AACTGTTCAT	CTCTTATATC	ACCAGGAATT	AACACTGCCT	TTTGACCACT	TTCTTCAATC	4020
	ACTTGGCGTA	CTTCTTGTGC	ATCTTGTTCT	TCACTCGGAA	GATAGTTAAT	CGCTACATCT	4080
	GCACCTTCTT	TAGCATACGC	AATTGCTGCT	GCACGCCCTA	TTGCTGAGTC	ACCACCTGTG	4140
20	ACTAATATTT	TATAGCCTTG	TAAGCGTTGA	TGACCTTGGT	AAGACGTTTC	GCCACAATCG	4200
	GGTGCTGGCG	TCATTTCAGA	TTGTAAACCC	GGTACCTCTT	GTTCTTGTTT	TTCATAATCC	4260
05	GTTGTTTTAA	ATTTTGTTCT	AGGATCTTGA	GCTGCCATTT	TTTTACATCT	CCTTATTCGC	4320
25	TTAATGGTTA	TTATTTACCC	AATCTTCCTA	GGAACTTAAT	CATGATTACA	CTAAAAATTA	4380
	CTTTCTTCTT	TATAAAAACA	AGCTCGAATT	ATTCATGCAA	TAGTCTCTTT	ACAAATTCAA	4440
30	CAAAATACTC	AGGTACTTTT	TCCAGAATCC	TTTCATCCGG	TTTATATTGA	GGATGATGTA	4500
	AATCATATTC	ACTATGAGAA	CCAATTAACG	CAAATACACT	TGGAAAATGT	TGACTATAAC	4560
	CTGAAAAATC	TTCTCCAATC	GTAAGCGGCT	GTTCCATCAT	TCCCACCTTA	TATCCAACAT	4620
35	GTTGGGCTAC	TGCAATTGCT	TTATGCGTCA	ATGCCTCATC	ATTCATCACA	GCGCCAGGTA	4680
	AATGCGTATA	ATTTAAATTTA	ATTTTCATAT	TATATGCTTG	AGCCAATCCG	TCCGCAATAT	4740
40	CTTGTAATCG	TGTTTCTACA	AGCTTTCGTA	CCACAGGATC	AAAACTACGC	ACTGTGCCTT	4800
40	GTACATACGC	ATGATCAGCA	ATGACATTCC	AAGTATTACC	ACATGATATT	TGTCCAATTG	4860
	TTACTACCGC	TTCATCAAAC	GCAGATAGAT	TTCTACTAAC	TATGGATTGA	ATACTATTAA	4920
45	TCAATTGCGC	CAACACAATA	ACTGGATCGT	TGCATTGTTC	TGGcTTTGCA	GCATGACCAC	4980
	CCACGCCTTT	AATATGAAAC	TCAAAACGAT	CTACTGCTGA	TGTAATTGCC	CCTGTTTTGA	5040
	TTGCAAATGT	ACCTACCGAA	CGCGATGGGT	CATTATGAAA	ACCCAATACT	GCTTGTACAT	5100
50	CTTTTAATGC	ATGTGTTTCA	AATTTTAA	AAGCGCCATG	TCCTAGTTCT	TCTGCTGATT	5160
	GAAAAATGAA	TTTAACACGC	CCAGTAAGAG	TGCCCTCAAT	TTCTTTTAAT	TTTACAGCTG	5220
	TAGCCAAAAT	ACTAGCCATG	TGAATATCAT	GACCACACGC	ATGCATAACA	CCTTCATTTT	5280

	CAGCTATACA	ACTCAGACCT	TGTCCCACTT	CAGCAACAAG	CCCAGTCGCA	AGTGGTAAGT	5400
_	CTAATATTCT	AATATGATGT	TCTGTTAAAA	TATCTTTAAT	TTTTTGTGTA	GTCTTAAATT	5460
5	CTTTATCGGA	TAGTTCTGGA	AATTGATGAA	AATACCTTCT	CCAGGTAACA	GCTTGATCTT	5520
	TTAATCCCAT	CGGTCATTCC	CCTTCCTTAA	GTCAATGATA	TGTTGTCTAC	CCTACGATGA	5580
10	TCATCTTTGA	CTATTAAACG	ATGATTTCAC	AACAATGTAC	TCTTGTTÄAT	TGCTTTCGTT	5640
	AATGATAGAC	AGTTGTTTAA	TAATATCGTA	ACACTGTTGT	CAAACTATTC	TAACTTTTAT	5700
	AATTGAGACT	CTATACAAAA	ACGTGTTCTC	GAATATACTT	GTTTTTACAA	ACCACAAAAA	5760
15	GCTCTAAACA	TTAGTTTAAA	CCAATGCTTA	GAGCTTTCTA	ATTATTTTAT	GCTTTAAAAG	5820
	ATACTGTGTT	ATCTACGATG	ACCTTACCGT	CTTTAATAAC	TTTTTCTGCG	TGATTGATAC	5880
	CAAAATGATA	TGGAATATAT	TCATGATTTG	GTGCATCCCA	AATTACTAAA	TTAGCCTTAT	5940
20	CACCTGTGTT	AATTGTACCC	GCGTTAATGT	CTATTGCTTT	AGCAGCATTG	ACCGTAACAG	6000
	CATTCCAAAC	TTCATTAGGT	GATAGCTTTA	ATTTCAAGGC	TGCAATCGCC	ATAACAAGTT	6060
25	GTAAGTTGTT	TGTGACACTA	CTACCAGGGT	TATAATCAGT	TGCTAATGCA	ATCGCACCGT	6120
	TATTGTCAAG	CATGCCTCTT	GCATCTGCAT	AATCTTCTTT	ACCTAAATAG	AACGTCGTTG	6180
	CAGGTAAGAG	GACAGCTACA	GTATCACTAT	TTCGCAACTT	TTCTTTTCCT	TTATCACTAG	6240
30	AAGCTACTAA	GTGGTCTGCT	GATATTGCTT	GTTCATCAAT	TGCTAATTCC	AGTCCGCCTA	6300
	ACGGATCAAT	TTCATCCGCA	TGTATTTTCA	CTTTAAAACC	TGCTTCTTTG	GCTTTTTGCA	6360
	TATAATGTTG	CGATTGTTCT	ATTGTAAATA	CACCTGTTTC	ACAGAAAATA	TCCGCAAAGT	6420
35	CTGCATATTG	TTTTACTTCC	GGAAGTAACG	CAATCATTTC	TTCTAAAAAT	GCCTCATTTG	6480
	AACTTGCCTC	TTTAGGTACA	GCATGAGGCC	CTAGGAAAGT	ATGTTTCATG	TCTAAATCAT	6540
40	ATTTCTCAGC	TAAACGATTA	GACACTTTCA	ATTGCTTCAG	TTCATTTTCT	CTATCTAATC	6600
	CATAACCACT	CTTACTTTCA	ACTGCAAGCA	CGCCGTGTTT	AATCATAGTA	AGCAAATCAT	6660
	GCTCTGCTTT	TTTAAACAAG	TCATCTTCGG	ATGTTTCTCT	AGTAGCATTA	ACGGTAGATA	6720
45	ATATGCCACC	ACCCATTTCT	AATATTTCAA	GGTAAGACTT	ACCTTGACGT	TTTAATGACA	6780
	TCTCATGTTC	TCGAGATCCA	CCAAATGTTA	AATGGGTATG	TGCATCTACT	AATGCTGGGG	6840
	ACACTACCTT	CCCACTAGCA	TCAATCGTCT	CAGTCGCATC	GTAGTCATCT	GTATGTGTTC	6900
50	CAGCATATAC	AATTTTGCCA	TCTTTAATGA	CAACTGTACC	ATTTTTCACA	ACATTTAATT	6960
	CATCTAATTC	CTTACCCTTC	AAAGGTTTAT	CTGTTGATCT	CGGTAAAATT	AATTCTGCTA	7020
55	TATGATTAAT	TATTAAATCA	TTCATTACTT	ATCACCTGCT	TTATCAATCA	TTGGAATATG	7080

	AACACCCATA	CCTGGGTCAG	TCGTCAATAC	ACGTTCCAAT	CTTCTTTCAG	CACGCTCTGA	7200
	TCCATCTGCT	ACAACAACCA	TACCCGCATG	AAGTGAATAT	CCCATGCCAA	CACCGCCACC	7260
5	GTGATGGAAT	GAAATCCATG	AACCACCTGC	AGCTGTGTTA	ATGAGTGCAT	TCAATACAGC	7320
	CCAATCACCA	ACCGCGTCAC	TACCATCTTT	CATACTTTCT	GTTTCACGGT	TAGGACTAGC	7380
10	AACTGAACCA	GCATCTAAAT	GGTCTCGTCC	AATAACAATT	GGTGCTGAAA	TTTCACCGTC	7440
	ACGTACAAGA	CGATTTAAAG	CTAAGCCCAT	TTTCGCTCTT	TCTCCATAGC	CTAACCAAGC	7500
	AATACGTGAT	GGTAGTCCTT	GATATGAAAT	TTTTTCTTCA	GCTAAATCAA	GCCATCTTAA	7560
5	TAACTTTTCA	TTTTCTGGGA	AAAGTTTGCG	CATTTCTTCA	TCCGCACGCT	CGATATCTTT	7620
	TGGATCACCA	CTCAACGCAG	CAAAGCGGAA	TGGCCCTTTA	CCTTCACAGA	ATAATGGTCT	7680
	AATGTAAGCT	GGTACAAAGC	CTGGGAAGTC	AAAAGCATTT	TTCACTCCGT	TATTGAAGGC	7740
20	TACTTGACGA	ATATTGTTAC	CATAATCAAA	TGCTACAGCG	CCACGTTTTT	GGAATTCAAG	7800
•	CATTAATTCA	ACATGCTTTG	CCATTGAAGC	TTGTGACAGT	TCAACATATT	TTTTCGGATC	7860
	TTTTTCACGC	AATACTTTCG	CTTCTTCTAC	AGAGTATCCT	TGTGGCACAT	ATCCATTTAG	7920
	CGGATCATGT	GCACTTGTTT	GGTCAGTAAT	AATGTCAATT	TTAAATCCTT	TTTCTAGAAT	7980
	CGCTTGATGG	ATGTCTACAG	CATTTCCAAC	TAACCCGATT	GATAATCCTT	CTCCACGTTC	8040
10	TTTCGCCTCT	TCTGCTAATT	TTAATGCTTC	ATCTAAATCA	GCTGTTTTAA	CATCACAGTA	8100
	TTTCGTATCA	ATTCGCTTAT	CAACACGTGT	TTCATCAACA	TCCACGCAAA	TTGCTACCCC	8160
	ATGATTCATA	GTAATTGCTA	ACGGTTGCGC	ACCACCCATA	CCACCTAAAC	CTGCTGTCAG	8220
 	TGTAACAGTG	CCTGCTAAAT	CTCCATTAAA	GTGTTGATTA	CCTAGCTCGG	CAAATGTCTC	8280
	ATAAGTACCT	TGCACAATAC	CTTGAGAACC	AATATATATC	CAACTACCGG	CTGTCATCTG	8340
10	TCCATACATG	ATTAAACCTT	TTTTATCTAA	TTCATTAAAA	TGATCCCAGT	TTGCCCATTC	8400
	AGGCACTAAT	ACTGAATTTG	AAATTAATAC	ACGTGGCGCT	TCTTCATGTG	TTTTAAATAC	8460
	AGCAACTGGC	TTTCCTGATT	GTACTAACAT	TGTCTCATCT	GATTCTAATT	CTCGTAACGT	8520
15	TTTCTCTATT	GCTTCAAAAG	CTTCCCAATT	ACGTGCTGCT	TTTCCAATAC	CACCATAAAC	8580
	AACTAAATCT	TCTGGTCTTT	CAGCAACTTC	TGGGTCTAAA	TTGTTGTATA	ACATTCTAAG	8640
	TACTGCTTCT	TGTTCCCAAC	CTTTACACTC	AATACTCAAA	CCTTTTTTTG	CTTGAATTTT	8700
5 0 .	TCTCATAAAA	TTCGCTCCTG	TTCTTTTAAG	AAGTTAATTC	CACTAAATTT	AAAACGCTTA	8760
	CATTATTATC	TTCAATATTC	ATTATAGTAT	GTTAAAATAT	AGCCAACAAA	AAATAAA	8820
	CTAATTATCC	ATAGCTTGAA	TCTATAAATA	AAAGGAGCAA	AACACATGAA	AATTATTCAG	8880

	CATATTAGCC	AGCCATCTTT	AACTGCTACG	ATTAAAAAAA	TGGAAGCAGA	TTTAGGTTAT	9000
5	GACTTATTTA	CACGTTCAAC	AAAAGACATC	AAGATTACCG	AAAAAGGAAT	ACAGTTTTAT	9060
J	CGTTATGCGA	GCGAATTAGT	TCAACAATAT	CGATCCACGA	TGGAAAAAAT	GTATGATTTA	9120
	AGCGTTACAT	CAGAACCAAG	GATAAAAATT	GGGACTCTTG	AATCTACGAA	TCAATGGATT	9180
10	GCGAATTTAA	TTCGAAAGCA	CCATTCCGAC	TACCCTGAAC	AGCAATATCG	TTTATATGAA	9240
	ATACATGATA	AACATCAATC	TATAGAGCAA	TTACTGAATT	TTAATATTCA	TTTAGCTATA	9300
	ACAAATGAAA	AAATAACCCA	CGAAGATATA	AGATCCATTC	CTTTATATGA	GGAATCTTAC	9360
15	ATTTTATTAG	CACCCAAGGA	AACATTTAAA	AATCAAAATT	GGGTAGATGT	TGAAAATTTG	9420
	CCACTCATAT	TACCAAACAA	AAATTCTCAA	GTGCGCAAAC	ACTTAGATGA	CTATTTTAAT	9480
	AGAAGAAATA	TTCGTCCAAA	TGTCGTTGTA	GAAACAGATC	GATTCGAATC	AGCAGTTGGA	9540
20	TTTGTTCATC	TCGGCTTAGG	TTACGCTATC	ATTCCGAGAT	TTTATTACCA	ATCATTTCAC	9600
	ACGTCTAATT	TAGAATATAA	AAAAATTCGT	CCAAACTTAG	GCCGAAAAAT	TTATATCAAT	9660
25	TACCATAAAA	AACGCAAACA	CTCCGAACAA	GTACATACAT	TCGTACAACA	ATGCCAAGAT	9720
	TATTTATATG	GACTTTTAGA	GGCTCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9780
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9840
30	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9900
	CTCAGTCAAC	TGTATACCTT	TTTCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	. 9960
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGTGCCTCT	TATGTAGTTG	10020
35	CGTAGTCAaC	TGTaTACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	10080
	CGCAGATCAT	CGTATAAAAA	TTAATGACGT	CATTTCAAAA	ATCGATACAA	ATTTAATAAA	10140
40	TAAAAÄTATT	TCTAAGAAAG	AAGTGAAGCA	GATGTTAAAA	TCTATTAATC	ATATATGCTT	10200
	TTCAGTCAGA	AATTTAAACG	ATTCAATACA	TTTTTATAGA	GATATTTTAC	TTGGGAAATT	10260
	GCTATTGACT	GGTAAAAAAA	CTGCTTATTT	TGAGCTTGCA	GGCCTATGGA	TTGCTTTAAA	10320
45	TGAAGAAAA	GATATACCAC	GTAATGAAAT	TCACTTTTCA	TATACACATA	TAGCTTTCAC	10380
	TATAGATGAC	AGCGAATTTA	AATATTGGCA	TCAGAGGTTA	AAAGATAATA	ACGTGAATAT	10440
	TTTAGAAGGA	AGAGTTAGAG	ATATTAGAGA	TAGACAATCA	ATTTACTTTA	CCGACCCTGA	10500
50	TGGTCATAAG	CTAGAATTAC	ATACTGGCAC	ACTTGAGAAC	AGATTAAATT	ATTATAAAGA	10560
	GGCTAAACCA	CATATGACAT	TTTACAAATA	AGGTGTCATT	ATAAAAAGGC	CTCTTGAACT	10620
<i>65</i>	CCGTTAAAAT	TTTAATTAAT	TATTATATAA	TAAGAGAACT	TTTCAAACAA	TACAGTTGTT	10680

	TTACTGCAAT	TATTTTTCAA	ATATATCAAC	GTTAATATAA	CTTCTATTAA	GAAATACTCA	10800
	CATTCTGCCC	TGCAATGCAA	ATCTCGTCAC	TATAAATAT	TTTTAATTAT	TTAAAAAAT	10860
5	GATGCACTAA	ATTAGCAACG	AGCTTAGCAG	TTCTATTGTC	AGCGTCATAT	GTTGGATTCA	10920
	TCTCAGCAAT	ACTAACTGAA	GACACCTTAT	CACTTGGAAT	AATACGTTTT	GCTAATTCAA	10980
10	GAACAGTATG	TGGATACAAA	CCTAACACTG	CCGGCGCACT	TACCCCAGGC	GCAAACGCAC	11040
	TATCAATGAC	ATCCATACAA	ATCGTAAACA	TAATGACATC	ATGTTCATGT	ACAAAACGTT	11100
	CAATCATATC	TTTAATTGTT	GGTGATACGT	GACTCAATAA	TTCATCTGCA	AAGACATAAT	11160
15	CAATCTTTTT	CTCTTTAGCA	TAATCAAATA	AACTTTGCGT	ATTACCACCT	TGAGCAATAC	11220
	CAAGCACTAA	ATAATCTGTG	TTTTCATCTT	CTTCTAAAAT	TTGTCTAAAG	CTCGTTCCAG	11280
	ATGTAGATTG	TTGTTCAGCA	CGTGTATCAA	AATGCGCATC	AATATTTATC	ACACCAATAG	11340
20	ATTGTGTTGG	ATAGACTTTA	CGTGTTGCTA	AATATTGAGC	ATACGCAATA	TCATGTCCAC	11400
•	CACCTAATAA	AAATGTTTGT	CTATGATTAG	CAATTGACTT	CGCTGCAAGC	ATAGCAAATT	11460
25	CTTTTTGAGT	ATCAATTAAT	TCCTCATGAT	CATGATAAAC	ATTTCCGTAA	TCGACTAAAG	11520
20	TTCACATTGA	TTCAAATCCG	GCAAACCTGC	AAATGCTTGT	TTAATCGCAT	CTGGTCCTTC	11580
	TTTTGCACCA	ATGCGCCCCT	TGTTTAAAGC	AACACCTTTG	TCAACAGCAT	AGCCTAATAT	11640
30	ACCGACCCCT	GATGGCATAC	TACTCTTTTC	CAGCTTAGAC	AAATCTTCAA	ATGTTACTGT	11700
	TTGAAAATGT	CTAAATTTTT	TCGGGTCTGT	TTCACTATCT	AACCTTCCAG	TCCATAAATT	11760
	TGGTTCACCT	TGCTTGTACA	CAGCATTTCC	CCCTCTTATT	TATGTGGCTT	ATTAACAATT	11820
35	AAAGTATAAC	GTATAGGAAA	TTTTGAATTC	AATTCATAGT	TAAATCCGTA	TCTTAAAAAT	11880
	ACTTATCTAC	ATTACTTTTA	CCCCTATTTT	CTATGTAATA	ACGAATACTT	AGCTGATTTA	11940
40	TGTŢĀATAAA	ATACGTCAAG	ACTATTACAT	TTTCATTAAT	ATTGACATAG	ACAATTTATC	12000
40	TCTCGGCTTG	TAATATGTAT	AATTGTTACT	AAAAGATATT	TTGCTTGTTA	CCTAATGGAG	12060
	GTTACATATA	ATGAAGAACA	ATAAAATTTC	TGGTTTTCAA	TGGGCAATGA	CGATTTTCGT	12120
45	CTTCTTTGTC	ATTACAATGG	CGTTATCCAT	TATGCTCAGA	GATTTCCAGT	CTATAATTGG	12180
	TGTCAAACAC	TTTATATTTG	AAGTTACAGA	TCTAGCACCA	TTAATTGCTG	CAATCATTTG	12240.
	TATACTCGTT	TTCAAATATA	AAAAGGTCCA	ACTTGCAGGT	TTAAAATTCT	CAATCAGCCT	12300
50	GAAAGTAATT	GAACGTCTAT	TGCTAGCTTT	AATTTTACCT	TTAATTATTC	TAATTATTGG	12360
	TATGTACAGC	TTTAATACAT	TTGCAGATAG	CTTTATTTTA	TTACAATCAA	CAGGCTTATC	12420
	AGTACCTATT	ACACACATTC	TGATTGGACA	TATTCTGATG	GCGTTCGTAG	TAGAATTCGG	12480
55							

	TGTTGTTGGT	TTGATGTATT	CAGTTTTCTC	AGCAAATACA	ACTTATGGTA	CAGAATTTGC	12600
_	TGCTTATAAC	TTCCTTTATA	CATTCTCATT	CTCTATGATT	CTTGGTGAAT	TAATTAGAGC	12660
5	GACTAAAGGA	CGTACAATTT	ATATTGCAAC	GACATTCCAT.	GCTTCAATGA	CATTCGGACT	12720
	TATTTTCTTG	TTTAGCGAAG	AAATCGGCGA	TCTATTTTCA	ATCAAAGTCA	TCGCCATTTC	12780
10	AACAGCAATC	GTTGCAGTAG	GATACATTGG	TTTAAGCTTA	ATTATCCGAG	GTATTGCATA	12840
	TTTAACAACA	AGACGAAACC	TTGAAGAACT	TGAGCCTAAT	AATTATTTAG	ACCATGTCAA	12900
	TGACGATGAA	GAAACTAATC	ATACTGAGGC	TGAAAAATCT	TCTTCAAATA	TTAAAGATGC	12960
15	TGAAAAAACA	GGTGTAGCTA	CTGCATCAAC	GGTTGGTGTT	GCTAAAAATG	ATACTGAAAA	13020
	TACAGTGGCT	GACGAACCAA	GCATTCATGA	AGGTACTGAA	AAAACAGAAC	CTCAACATCA	13080
•	CATAGGTAAT	CAAACTGAAT	CTAATCATGA	TGAAGATCAt	GACATCACTT	CGGAGTCAGT	13140
20	AGAATCAGCm	Gaatcagtta	AACAAGCACC	ACMAAGTGAC	gATTTaACAA	ACGATTCAAA	13200
	TGAAGATGAA	ATAGAGCAAT	CATTANAAGA	ACCTGCGACT	TATAAAGAAG	ACAGACGTnC	13260
 25	ATCAGTTGTA	ATTGATGCAG	AAAAACATAT	CGAAAAAGCT	GAAGAnCAAT	CTTCAGATAA	13320
	A						13321

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8549 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATGTGTTGTA	AACTITTATG	TTGAAAAAGC	TACTTATCTC	AATGAAAACA	AGTAGCATTT	60
AATAAATTAA	TTAGTATACA	GCTAGTTTTT	CTAATTGTTC	TTTAACTTGA	ATTAAGTTTG	120
ACCGTATTAG	AGAGGCAGAT	TGATCCATCG	TTTGAATTGC	TTGTCCTTCA	TTTTCGTTCA	180
AGCCATTACA	AACAACTTCA	AACTGTTGTG	CCATTTGATC	AAGACGCGCA	TGAGCTTGTG	240
TGTTTAAAAT	AAACATATCG	TCATAATGTG	ATGGCGAATA	GATAATTCGT	CGTTGTATAC	300
AAACGTATAA	AAACCTTGTC	ATATCAACGG	TTTTGGCATT	TTTAAACCTC	TGTGTTTTCC	360
ACGCATGTTT	GCCCTTATTT	AAATAATTTG	CCCTTTTTTC	GCCCCGAAAA	AAAAACACAA	420
AAAAATAACC	ACACTCCTAA	ATTAATAGGT	GGTGTGGTTT	TGTTGATTGT	AGGGGTATAA	480
AAATAACCGC	ATTATTAAAG	ATACGGTTAC	TCTGTTATCT	GTAAATATAA	TAGTAGTTTA	540

	AAACAGGACT	CCACATAAAA	ATCAACTCCT	TTATATACCA	TAATGATACT	ATATTTTCTA	660
_	GTTTATTTCA	ATTTTTCAGT	TTTTAAAAAT	GAGTTTCTGT	TTTTATTTAT	ACGCTTTTCT	720
5	GTTTTCTTTT	TAAATTTTAT	CTTTTTGTTA	TTCCATTCAT	TGTAAAATTC	ATTAAATTA	780
	ACATAAAATT	TTTCATGCCC	TATTTTATTT	GTTGATGAGA	TATCAATGTA	AAGACTCAAT	840
10	ATTGTTTTTA	AATAGATTTG	ATGCAACGAC	TGATAAACCG	TATTACTATC	TGCTATGTTA	900
	TTGGTAAAAT	GCATAGAAAA	ATATTCTAAT	TTATTCATGC	AATATATATG	GGTTTCATTA	960
	TACTTCTTAA	TGAGTGTATT	TATACCTTGC	AATACGTCAT	TACTTTTAAT	AACAATTTCT	1020
15	TTTTCACCTG	TCGAAAAAGT	CCACTGTTTA	TCTCCTATAT	TTTCTTTAAT	TGTTTTCTTG	1080
	TTGTCAAATT	CTAAAATTAT	AGCCCGTAAA	CACTCTTCTT	TATAATTCTC	GTTCTTGAAA	1140
	GTACGAAGCA	AÄATTTTTAT	AAATTCGGTA	TTGGTGACTT	TTTTATAAGT	GTGATATTTT	1200
20	GCAATCTCTT	TATCAGTAAA	GACTGTTCTT	AGTTCGTGAT	TATCAAAACT	TAAATTCATC	1260
	TTATTCTCTA	ATTCATTAAT	TTTATCTTGC	AAACCAACAT	TTTCTAAAAT	TTTCTTGTTT	1320
25	ATCTCCCCTA	TATCAAAACT	CCTTTTCGAA	ATTAATTTTG	AAAACTCGTC	TGCCATTTCA	1380
	ACAGCCTTTT	CTTTCCTTTT	ATACCTTTTG	TTAAATTTAT	GAACCACCGT	TGCAGCATAA	1440
	TACGATATCC	CACCAGATAA	AATAGATGaT	ATTATCGGTA	TGTATATATC	ACCTTTCATA	1500
30	TTTCCACCTC	TTTTAACACA	ATTAAGTATT	ATGATACACA	ACTTGCGCAA	AAAGATGTAG	1560
	ACAGAACATA	ATGGCGAACA	AAAACAACCA	CCCAGTAACT	AGTATGGGTG	GCGTAGACTA	1620
	TAACAACTCT	ATGTTATCAA	GATATATGTA	TCGAGTGATG	GCAAGGAAGA	AGTCTCCTGC	1680
35	GGGACCAACA	GTCAGATATA	TGGCCTCTGC	CGGGCTATAT	AGTTCACTCC	TACTATATAA	1740
	AAGTAAGTAT	AACATAAAAA	GCACCCCGTA	AACTGTTATA	CGGGAATGCT	AAAGTCATAT	1800
40	ATACTACGGG	GAGTAGTATG	AAAACTATGC	TCTCTATCGT	AAGAAAAAC	ACCCAGTGAC	1860
	ATGCTTGGGT	GAACAAGGAT	AGATGTAAAT	AGTTGATGCA	TGTGTAcACA	TCATAACAAA	1920
	AAACTAGCCC	GAAGCTAGCT	ATAACATAAA	AAAATAGGCA	AGTACCGAAG	TACCTGCCAG	1980
45	TTACGCACAT	TTAAATCTTG	AGAGTAATGT	TAAAAAGTGT	ATAGGAATAT	TAACATCCAT	2040
	CCAAATAGTT	ATTTAATAAC	TGTAAGATTC	CCTATAATTA	ATGTAGCaAA	ATTTTTATTC	2100
	TAAGTAAATA	CTAAATCGTG	CTAAACTTAC	CAAAACTACT	TATTCTATTA	CCTGCCTTGT	2160
50	CTACCTCTCC	TGTCGCTATA	TAACGACGTT	GTCCACTATT	AGCAATATAA	GTAATCCATC	2220
	TATAGCCATT	GATGCAATAT	GCGCCGTCAT	ATTTAATTGT	TGCGTTATTA	GGTAATACAC	2280
55	CTGTAATTCT	TGAATTAGTT	GAATAGCCGT	CCCTTACGTT	ATTACCTTTA	ACATTGGCAA	2340

	CTGGCACTGG	TGGATTTTT	TGGTTTTTAG	CTGATGTTTT	AACATTACCA	GCTACCAAAC	2460
	CACCTATAGG	CTTACCATGA	ATCGCACCGG	CTATTAATTT	AGAATACAAG	TCATAGTTTT	2520
5	TCTTAATCCA	ATCCATATCA	TTTTTATTAG	TAATAAAACC	TAATTCAGAT	AAACGATAGT	2580
	TTATATTTAT	TTCTGCTGAT	ACATTAACGT	TTAGTAAATC	ATTACGAGGT	GTTACACCTC	2640
10	TTATTTGTCC	TAAGTTATTT	TTAATAACAT	CTTGTATACT	TTTATCAATA	GTATCTGCAT	2700
	TGAATTGACT	TGAAATAATA	ACATGCCCAC	CACTTGCACT	TTCTCCTGCT	GCGTCTAAAT	2760
	GAATCTCTAG	AACAATGTCA	TACCCATGTG	ATTTAACCCA	ATATAAGCCA	TAATCTTTAT	2820
15	TATTTCCTAC	ATTAACACCG	TAAGCAGTAT	CTTGATACAT	ATCTTGTGAT	TGACTTGAGC	2880
	CACCATATAA	TGCAACTTCG	TGACCTGCAT	GTCTTAAATA	CTTAGCGATA	TTTGGTGTTA	2940
		GATAAAATCA	CGTTCATTTG	TTCCGTTTCC	GACTGCTCCA	GGATCGTTAT	3000
20	AACCATGACC	GGCTACAAGC	ATAATTTTTT	TAGGTTTAAT	TACTGCTTGC	TTTTTGGCAG	3060
	TTGCTTGCTT	AATAACGCTT	TTAGCTTTAT	CTCCAACACT	TACTTTATCT	GGGAAATTTA	3120
25	ATCTAATAAA	ATACATTGGG	TCATCGTAAT	AATGAACATG	TCTTGTAACG	GTTTCGGGAC	3180
	CCCAACCAGG	TTGCGCAACG	CCATTTGTCC	AACCTTTACC	ATTCCAATTT	TGGCCAAACG	3240
	ATGTGAAAGT	GTTTAGATTA	GCGCTCTCAA	CAATTTCAAC	ATGTCCaGct	CCGCCACCAT	3300
30	ACTTTGACGG	GAAAACGACA	ATGTCCAACT	TTTGCGGTAA	AAAGCTATCA	TAGTTTTTAA	3360
	TTATTTGCCC	GTATTTTTCA	ATCCTTGCTT	TATTATCAAA	TGGAATATTA	TAAGCGTATA	3420
	AACCTTGTAA	CCTTTCGCCT	GTTGCTATCA	TAAAAAACAT	ATTTGCGTAA	TCGTAACACT	3480
35	GAAATCCATA	AAACAAATCA	GGATTGAACT	GCTTCCCTAA	TGAATTATCA	AACCATTTTT	3540
	CTGCTTGGTT	TTTTGTTATC	AACATTGGTC	AACACCTACC	CTAAATCATT	TGTGTCGTTC	3600
40	ATATTCGTAG	GTGTCATTAC	TTCTTTAATT	GGCGCTTGCC	CTGTTGCTTT	TCTATACTTG	3660
	TTTTCAGCTT	TATATTTCTT	TAGCTTTTGA	TTTGCCCATT	TACCTTCTTG	AGATGTTGGA	3720
	TTATCTTTAT	ATGTAGTATA	TAAAGCAACA	ACTGTTAAGA	TAATCGATGA	AACACTTTCT	3780
45	TCATCTACTG	GTATCGGACT	TATACCTTTA	TTCGCTAAAA	ACTGATTGAC	TAATGCTAAG	3840
	ATCAATACGA	TGTATCTTGT	TATTACTTTT	GCATCCATTT	GTTTGCTCCT	TTTATCCAAA	3900
-	ATAAAAAGCC	AGTGCCGAAG	CACTGACTCT	TAACTATTAC	TTACACTTAC	TAAACCAGAA	3960
50	ACACGACCAA	AAGCTATATC	CTAAAATTCC	CTTAAGCATG	GTAATCACCT	CCTTTAAATG	4020
	CCAAAAATAG	TTTTTAACAA	GGCTATAACA	AATGTACTTA	GAATCGTCCC	TATTAATCCT	4080
	AGAATCCACA	TCTTGATGTC	TCTAATATTT	TTAGCATTTT	TCTCTTTATT	TTTTTCATCT	4140

	TGCGTTCTCA	GACTGTCTTC	TATTCTGTCG	AATTTTTCAA	ACATAGTCTT	ATCATTTTCT	4260
	TCTAATCGCG	TTAAACGCCA	ATCTTGTTCG	TGTCGTTTGG	TAAATCCAAA	CATTACACCA	4320
5	CCCACTTTAT	TCAAATTAAA	AAGCCATAAG	ATTATAACCT	ATGACTCTAG	ATTTTCTGGA	4380
	TACTTTTCTC	CTGTAATAAT	TGCATATTCC	TCTTTATCTA	TAACTTCCAT	ATCTACATAC	4440
10	CACGCTATAT	CTTCTTTACT	ATATTCTTTC	AATTGATACC	ATGTTTTAAT	ATCTTCGAAT	4500
	GTTGGTGAAA	TTAATTTAAG	CATTTTCAGT	CTCTCCTTTA	ACCTCTTCTA	ATTTTTTTATT	4560
	AAGTGTCACA	AGTTGTTTTG	CCATTAGTGC	ATTTTGCTTA	TTAACTTGCA	TCGATAACTT	4620
15	TGTACTTTGA	ACAACTTGTT	TCTGCATACT	AGCAACCATT	TTTCGTAAGA	TGTCATCAGA	4680
	AGCGACTGTG	TTTTGTTCTT	CACTGTCAAT	CTGTTGATGC	AAGTCATCTT	TTTCTTCTGA	4740
	ATAATCTTCG	ттаааааста	TTTCCCCATT	TGAATATTTA	AAGGCTTTAG	GTCTAAAAAC	4800
20	TTGAGAGAAA	TTTTCTGGTA	AATTTTCAAT	ATCAATACCT	TCTTCAAAGC	CACCAATGAT	4860
	AGCGTATGAA	ATTATCTCAT	TACGCTTGTT	AACTAATATT	TGCATTATTT	TCTCACTCCT	4920
25	ATAATTITGT	TAATTGTCCC	TCTATTTGCG	TTCGCACCAG	AGCCTCTTTG	ACTTCCTAAG	4980
	TCGAAATAGA	CATCGTTTGA	TATAGTTAAA	GATGTACGAC	TAGATTTAGT	TAATCCAAAC	5040
	TCATAAACAC	CTCCACCATT	TCCATCACCA	TCTGGAAGAT	TTGAGGGATT	CAATGAAATC	5100
30	TTTCCTCCTC	CAAAAGGACT	GCCAAACTCT	GTAAAGTCAC	CACCTGGAAA	AGTCCCATAA	5160
	ATAATTAAAA	AAATAAATTG	GTCTAAACTC	TCATTTAAGT	ACAATGTAGA	GCCCACACCA	5220
	TTTGCTGTTC	CATCAAAAAT	AACCGAATAC	CTTTTATTAA	ACTTGTCATC	TGCGTATAAT	5280
35	TTAGCGTTAC	TTTCGGCCAT	ATTAGCTTTT	GATTGGGCAC	TTTGAACAGT	TTCAAAAGGT	5340
	GTATTGTAAT	CATTAATAGC	TAATTCTGAC	CACTCAGACC	ATGAACCCGC	TTCTTTTCTT	5400
40	TTAĂCAAATA	CTTTATTTGT	ACCGTTCGGT	CGATAAGTCA	TACGCTTGTA	ATCTGAAGTT	5460
40	ACTACTAAAT	ATTCGACAGT	ACCGTTAGTA	CTAACACCTC	TTGGATAATT	TATAGCTTGC	5520
	GAAACATAAA	TAAATTGGGT	TGAATCACCT	ATTCTTTGTT	CTGGATTATT	AAAATCAAAT	5580
45	CCAGTAATCT	GCATTATCTT	ACCATCATCT	TTAGTAATCT	TAGCTTTTTG	CCAATTTGAA	5640
	GTAGAACCAC	TTGTGACTAA	ACCACCACTA	TTCACTGACT	GCTTGAAGGC	TTCATGTTTC	5700
	TCATCCATAT	ATCGCTTTTG	CTCATCGAAT	GTTCTTGAAT	ATGCTTGCGC	TTTATTTTCC	5760
50	AAATCAGATA	TATGGCTATT	AGCAAGTTGC	TTTAATTCAT	CTATACTTGA	AGATTTTGCT	5820
	ATTTGAATAT	CTGATAGACC	TTTTTCTTTA	GCTTTTTCAA	TCAGACTCGC	ATAATCTTCA	5880
	CCATTTTTTA	TAGCCTCGTC	CATTGCTTTC	GCACGATCCA	TAATAGTTTT	TTCTAATTCC	5940

į,

: 5

	TCAACGTTAA	ATGTGATAGT	TCTCTCGACA	ACTACCACGT	CTGAATTACC	TAATTCTGCA	6060
	ACCGAAACTT	GAGCTTGATA	ACTTCCATCT	CGTTTAATTA	CATCATTAGG	TAATTGAAAT	6120
5	TTTAAAATAC	CTTTAAATGG	ATCTAATATT	TCTAGTGGAG	CAACTACCAT	GACTCCTTTA	6180
	CCTCGAATCG	CTATTCGTGC	kTTGATATTT	tCTTCACTCA	ATAATAACGG	TTGATTATTT	6240
10	TTAGTGATAT	TAAAAAGAAG	AACAGAAGAA	TCACTCTCTC	CTGTTCTAAA	AGTTATATCT	6300
	AGATTTGAAA	TATTTCCATA	ATGCGCTGTG	TTTTCTAAAT	TTATAGCTAC	AGATTTCTCT	6360
	AAATTACTCA	TTAACTTATA	ATTCTCCCTT	CGTGTAAAGT	CCATGGCCCT	GAACTTGTTT	6420
15	TACTATCATA	ATTTTTCAAT	AGTATCTCAG	CAGATGCTGT	AACACTATTA	CGAACTAGCC	6480
	TATGAACAAA	GCCACCTGTG	TTTGAAGCTT	СТАСАТАТАА	GTTCCAACCA	GCTACCCCTT	6540
	TACGTTCAGT	TGGAAAATCT	GTAAAACGTT	TTGTATCATC	CGTAGTTAAA	TAAAACGACA	6600
20	TGCCTACTAT	GTTAATATCT	GACATTTTTG	TGATGAATGA	AGGTACTCTC	TCCCATTTAC	6660
	CACTATTTTT	AGGCACATAA	TTCCAGTCCG	AAATGTCTCC	AGTTCTTCCA	GAAAGCACCC	6720
25	TTTCAAAAGT	CATCATATTC	CTTGCATAAC	TATTACGCGT	CAATATCTGA	ATTACATCAC	6780
25	CGCCAGTTTG	TGGTGGCTTA	ACTTCCAAGA	ACCAACCTGC	ATCACGCCAT	TCTCTTGGTA	6840
•	ATGGGAAATC	ATCGATTTGA	ACTGTATGAT	CAGTGTATAA	ATAGTAAAGA	CCTGGCTCTG	6900
30	TTAACATCCC	AAGATTCTTA	AGTTTATCAG	GCCTCATTGG	TAAAGGTTTA	ACTCTACCAC	6960
	CTGTGTCACT	Catgataaaa	GGAACGCCTC	TTGAGTGAAG	TATTTCTAAA	ATACCTCTTT	7020
	GCCCAATCAT	GAAAATACGA	TGTGTTCTAT	TTCCaTCACC	ACCGACAGTA	ACACCTAGCA	7080
35	TCAAAGCTTT	TTTACCACTA	TCTTTGTCAT	AGTATATTTG	CAAACCTTtC	TgCTTCCGCA	7140
•	AATTCGCCAG	GAAATGAATC	tAgTGTTCCA	CCATAGTCAG	CATTAACCTG	ATACGCTTCT	7200
40	TCTCCTGTTT	CTAAATCGAA	AGCCGTTAAA	TAGTTTCTAT	TATTTGGATT	ACTGTCTCCT	7260
40	GTATACCAAT	ACAAGTATTT	TTCATCAAAA	GTCACACCCT	GCATTGGTTG	GGTTTCGTTT	7320
	GTTAGTCTCA	TAGGGATACT	GATTTTATGC	AAAACTTTAT	CAATATTTTT	ATCAACATCG	7380
45	TCTAAACTTC	TTATCTCTAT	ATAAnTCATT	GAGTTTTCAA	GTTCCCACTG	ACTTCTAGGT	7440
	CTCTCaATTC	TGTATAGAAT	TTTATTTTCT	TTTTCATTTA	TGACAGGGGT	GATGTAGGGT	7500
	TTTTCTGGGT	GTCCTGTAAA	TACATCTTGC	ATACCATACT	TGCCATAGCT	AATTTCCACA	7560
50	TTAGGCGTAT	ACTTGAAACG	AACTAATGTA	TTCTCATTAT	TACCATTTAA	GATAAAACTA	7620
	TAAATCCATA	ACTCATCATC	AATATATCTA	TAACCGTTAT	GTGTACCATG	ACCCCACCT	7680
	ACAATCAATG	AGCTGTCTAT	AAATTGACCA	TTAGGTCTTA	GACGACTTAG	CATATAGCCA	7740

...

237

	ATTACTGCAT	TTGTAAgAGG	TGCAAGTTCT	GTCACAAATA	AAAATTCTTG	CTTATCAGGT	7860
_	TCAAAACGAT	ACTCGATATC	AAGAATTTCT	TGTTTGGTCT	TATTTAATTC	TCTTATAGTT	7920
5	TCCTCTTTAT	TAATTTGAGT	TTTGGTTTCC	CAATCGTCTA	AATGTTCTTT	TAATGTGTCA	7980
	AAGGTTTCGC	CGTTTACATT	AACTCGAGCT	TGAACAATCT	CATTAGCACT	GTTATTACGT	8040
10	GGTGCCACAA	CAAGTGCGTT	AATTTGACTT	TGTAAAGATT	TGTTTACTGC	TGCTTGCGAT	8100
	CTACCATTAT	AATAAATTTG	CTCAGCGAAG	TGTTGAATTG	TTTTAGCTYT	CTGATGCAAC	8160
	TTAAACTCTG	TTGTCAAGCC	AAGCGCAAAT	TGCTCTATTC	TTTGTAAGTT	TTGTATTTCC	8220
15	TTAGCTCTAT	AATCTCGACC	TGCTAAAGCT	CCCAAATCCT	TTATTAAATA	CAAATTTTCC	8280
	ATAATGCACC	TTCCTTTCTA	ATAAAATAGC	ACTGTACCAA	GTTTCCCACT	ATCGTCAACT	8340
	GTTATTTTCC	ACAATTTACC	GTTTGGGGAT	TTCTGTACAA	TGCTATTTTG	AATAATTgcC	8400
20	TGctTCGCCT	TAAATTTTTA	TATCTAATTT	ATTTKTATCA	TTTACCGAAA	TGATACCGTC	8460
	TTGAGGCAAT	CCATCAATAn	CACTACTGCC	TGCATAAGGT	ATCCCATTTA	TAGCTTTCCA	8520
25	ATGTGTAGCT	GGAAAGTACT	GTTTATCGT				8549

(2) INFORMATION FOR SEQ ID NO: 6:

30

40

45

50

55

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

AGGCGTGTAG TGACTTACGG nTAGGAAACT ATGTATCCGA ATGATTTATT GAGACCAAAA 60 AGGCATTAAA GTCCATTGAA ATATCNGGTA GCGMGTTGGT ACGTGGACGT GGGGGCCCTA 120 GATGTATGAG TCAACCATTA TTCAGAGAGG ACATTTAACG TAATAAATTA TAGAMACGAG 180 GGTGAAAATA ATGACAGAAA TTCAAAAACC GTATGATTTA AAAGGCAGAT CATTATTAAA 240 AGAAAGTGAT TTTACCAAAG CAGAATTCGA AGGACTTATT GATTTTGCAA TTACATTAAA 300 AGAGTATAAG AAAAACGGTA TTAAGCATCA CTACTTATCT GGAAAAAATA TTGCACTACT 360 ATTCGAAAAG AATTCGACGA GAACGCGTGC TGCGTTTACA GTTGCGTCTA TTGATTTAGG 420 TGCGCATCCA GAATTTTTAG GAAAAAATGA TATTCAATTA GGCAAAAAAG AATCTGTAGA 480 GGATACTGCG AAAGTATTAG GTAGAATGTT CGATGGTATT GAATTCCGTG GTTTTTCACA 540 ACAAGCTGTT GAAGATTTAG CGAAGTTCTC TGGTGTACCG GTGTGGAATG GATTAACAGA 600

	TCTAGAAGGA	ATAAACTTAA	CTTACGTTGG	AGATGGACGT	AATAATATTG	CGCATTCATT	720
	AATGGTAGCA	GGTGCTATGT	TAGGTGTTAA	TGTAAGAATT	TGTACACCTA	AATCATTAAA	780
5	TCCAAAAGAG	GCATATGTTG	ATATTGCAAA	rGAAAAaGCG	AGTCAATATG	GTGGTYCAGT	840
	CATGATTACG	GATAATATTG	CAGATCCAGT	TGAAAaTwCm	GATGCTATAT	ATmCAGATGT	900
10	TTGGGTATCG	ATGGGTGAAG	AAAGTGAATT	TGAACACGTA	TTAATTTATT	AAAAGACTAT	960
,,	CAAGTGAATC	AACAGATGTT	TGATTTAACA	GGTAAAGATT	CAACGATATT	CTTACATTGT	1020
•	TTACCAGCAT	TCCATGATAC	AAATACACTT	TATGGACAAG	AAATTTATGA	AAAATATGGA	1080
15	TTAGCTGAAA	TGGAAGTTAC	AGACCAAATC	TTTAGAAGTG	AACATTCAAA	AGTGTTTGAT	1140
	CAAGCTGAAA	ATAGAATGCA	TACAATTAAG	GCAGTAATGG	CAGCAACATT	GGGGAGTTAA	1200
	TCACTAAATG	GAACGATATG	AATATGATGT	GTCTGATGAT	ATAAGTGTCA	TGTACAGACA	1260
20	CCTCATATTG	GTATTAAAGG	AGAAATGAAT	ATGAACGAAT	CAGGAGATAA	CAAACTCAGT	1320
	AAATCTTCTT	TAATTGGACT	AGTTATAGGA	TCCATGATTG	GTGGCGGTGC	GTTCAATATA	1380
25	ATGTCTGATA	TGGGCGGTAA	AGCCGGTGGA	TTAGCCATTA	TTATTGGTTG	GATTATTACA	1440
25	GCTATAGGAA	TGATTTCATT	AGCGTTCGTA	TTTCAAAATT	TAACCAATGA	ACGGCCGGAG	1500
	CTAGACGGTG	GTATTTATAG	TTATGmTCAA	GCAGGATTTG	GCGATTTTGT	AGGATTTATC	1560
30	AGTGmTTGGG	GATATTGGTT	CTCAGCGTTT	TTAGGCAATG	TTGCCTATGC	AACACTATTG	1620
	ATGTCAGCAG	TAGGTAACTT	TTTCCCGATT	TTTAAAGGAG	GCAACACATT	ACCAAGTGTT	1680
	ATTGTCGCCT	CGTTACTACT	CTGGGGTGTC	CATTTCTTGA	TTTTAAAAGG	CGTTGAAACA	1740
35	GCAGCATTTA	TCAATAGTAT	TGTTACTGTT	GCAAAGTTAA	TACCGATTTT	ACTTGTAATC	1800
	ATATGCATGA	TAATTGCATT	CAATTTTGAC	ACTTTTAAAA	CAGGCTTTTT	CAGTATGACG	1860
40	TCAGAGGGTG	TATTGCCATT	TAGTTGGGCG	AGCACAATGA	GCCaaGTtAA	AAGTACGrTG	1920
40	CTAGTGACAG	TTTGGGTGTT	TATCGGTATC	GAAGGTGCAG	TAATTITTTC	TAGTAGAGCT	1980
	naaaatgaga	AAGATGTAGG	TAGTGCCACG	GTTATAGGAC	TTATATCAGT	TTTAATTATC	2040
45	TATYTCTTAT	TAACTGTATT	AGCTCAAGGC	GTGATTTTGC	AAAATCATAT	TTCGCAATTA	2100
	GATTCGCCAA	GTATGGCACA	GGTGCTTGCA	ACTATTGTAG	GTGGTTGGGG	ATCTACACTT	2160
	GTAAATATTG	GTTTAATTAT	TTCGGTACTA	GGTGCATGGT	TAGGATGGAC	ACTGCTTGCT	2220
50	GGTGAATTAC	CTTTCATTGT	TGCAAAAGAT	GGATTATTTC	CAAAATGGTT	TGCTAAAGAA	2280
	AATAAAAATG	GAGCACCTGT	AAATGCACTG	CTTATTACCA	ATATATTAGT	ACAATTATTT	2340
	TTAATAAGTA	TGCTATTTAC	ACAGAGTGCG	TATCAATTTG	CATTTTCACT	AGCATCAAGT	2400

	CGACAGCAAG	CAACTACTAA	ACAATGGACG	ATTGGTATCA	TAGCCTCAAT	TTATGCTATA	2520
5	TGGCTTATAT	ATGCAGCAGG	TATCAATTAC	TTATTATTGA	CGATGTTACT	TTATATTCCA	2580
J	GCTCTTCTTG	TTTATACAAT	CGkTCmAAAG	rATwAT CAGa	CACGTTTGAT	TAAATCAGrC	2640
	TATATTCtTT	TTATGATTAT	LATCGTACTT	GCAGTTATCG	GGTTAATTAA	GTTATTGATG	2700
10	GGAACGATAA	ATGTTTTTTA	AAAGGAGCGA	CAAAAATATG	AAAGAGAAAA	TTGTCATTGC	2760
	ATTAGGCGGT	AATGCGATAC	AGACAACAGA	AGCAACAGCT	GAAGCACAAC	AAACAGCTAT	2820
	TAGATGTGCG	ATGCAAAACC	TTAAACCTTT	ATTTGATTCA	CCAGCGCGTA	TTGTCATTTC	2880
15	ACATGGTAAT	GGTCCACAAA	TTGGAAGTTT	ATTAATCCAA	CAAGCTAAAT	CGAACAGTGA	2940
	CACAACGCCG	GCAATGCCAT	TGGATACTTG	TGGTGCAATG	TCACAGGGTA	TGATAGGCTA	3000
	TTGGTTGGAA	ACTGAAATCA	ATCGCATTTT	AACTGAAATG	aatagtgata	GAACTGTAGG	3060
20	CACAATCGTT	ACACGTGTGG	aagtagataa	AGATGATCCA	CGATTTGATa	ACCCAACTAA	3120
	Accaattggt	CCTTTTTATA	CGAAAGAAGA	AGTTGAAGAA	TTACAAAAAG	AACAGCCAGA	3180
25	CTCAGTCTTT	aAAGAAGATG	CAGGACGTGG	TTATAGAAAA	GTAGTTGcGT	CACCACTACC	3240
	TCAATCTATA	CTAGAACACC	AGTTAATTCG	AACTTTAGCA	GACGGTAAAA	ATATTGTCAT	3300
	TGCATGCGGT	GGTGGCGGTA	TTCCAGTTAT	AAAAAAAGAA	AATACCTATG	AAGGTGTTGA	3360
ю	AGCGGTTATA	GATAAAGATT	TTGCTAGTGA	GAAATTAGCA	ACGCTGATTG	AAGCAGATAC	3420
	CTTAATGATT	CTTACGAATG	TAGAAAATGT	ATTTATTAAC	TTTAATGAAC	CTAATCAACA	3480
	ACAAATCGAT	GATATTGATG	TAGCAACACT	GAAAAAAtAC	GCGGCACAAG	GTAAGTTTGT	3540
5	GGAAGGATCG	tGTTGCCAAA	AATAGAAGCT	GCGtACgtTT	GTTGAaAGtG	GGG&AACCAA	3600
	A						3601
o	(2) INFORMA	TION FOR SE	Q ID NO: 7:				
		QUENCE CHAR A) LENGTH:					
	,	B) TYPE: nu C) STRANDED					
5	· ·	D) TOPOLOGY		C			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

50

55

CGACACTATT AAATGAATTA GAGCACAATC TAACAAATCA AATTCATTTT TCAAAAAGATG 60

AACGACTCAC ACATATCGCT TTAAAGTTAT TCGAAACAAC CGATCCTGTT TCAACAAAGC 120

AACTTGCGCA AGATGTTAAT GTTTCGCGTC GGACAATTGC AGATGATATT AAAATGATTC 180

	TTATTGGTGA GGAAGATCAT TATCGTAAAG CGTATGCACA CTTTATACAT CAATATATGA	300
	AACAAGCTGC ACCTTTTATA GAGGCGGATA TCTTTAATTC AGAATCAATC GCATTGGTTC	360
5	GCCGTGCCAT TATTAAGACA TTAAATAGTG AAAATTATCA TTTAGTTCAG TCGGCTATCG	420
	ATGGCTTAAT CTATCATATA CTCATTGCCA TTCAGCGTTT AAATGAAAAT TTTTCGTTCG	480
40	ATATACCTAT CAATGAAATT GATAAATGGC GACATACTAA TCAGTATGCn ATTGCTTCAA	540
10	AAATGATAGA AAACTTAGAA CGCAGTGTAA TGT	573
	(2) INFORMATION FOR SEQ ID NO: 8:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1221 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	TTGATATTTA TAACGTTATA TTTTAATAGT TCACCTGGAT TATTAAATAA ATAGTCCGCC	60
25	AAATTTTCTT TTTCTTTATC AATCTGaTkG TAATTAACaC TTTCGaCTTC TGTAGGAATT	120
	CTAATGTCAA CAGAAGCATT GATATAAGCT TGATGTTGCA TGCAATCACA CTCCTAATCC	180
30	TTCATmTmAA ACGGAGAAGT AAACCCGTCA CTATTCAAAT TCAATCCTTT TGCCCAATCA	240
	ACAGGCTTAT TCATGATAGT TTCGATTTCC TTAAGTCCAT TTGAACCTCT AGGTATTTCT	300
	ACAATTACTT CATCATGGAC ATGGCCAACT ATTTTAAAAC CTAATGCTTC AAGCCTTGCT	360 -
35	ATAGAAATCG CAAGTAAATC CCTTGCAGTT GCTTGAACAA TATTCTCGAC TAACTTCCCA	420
	CCATACGTTT TTAACTTTGA CCATTTACGG TTAAGATCTA ACCCCATAAA TTCAACAACT	480
40	TGACTACCCC AACTATTTC ACCAACTAAA GCTTTTGGAT AAGCTAAAGC TCTTCCACTA	540
40	GGCÁGTTCAA TCATTAGAAA ACCTTTTTTC ATATAAAATC TAAGTCCATG TGTATGATGC	6Ó0
	GTCTTTCGGG ATTTTACAGT ATTAATTGCA GCCTCTTGGC AAGCCTTCCA AAAATTAACT	660
45	ATGTTAGGAT TTGCGTTACG CCAACTATCA ACTAAACCTT GTAACTCGTT TTCTTCAATG	720
	CCCATTTCCA ATGCACCCAT TGCTTTTAAA GCTCCAGCGC CACCTTGATA GCCTAAAGCT	780
	AATTCGGACA CTTTTCCTTT TTGTCTGAGA GGGTCGCCTT TAGTTATGCT TTCTACCGGT	840
50	ACATTAAACA TTTGAGAAGC CGATGCTTCA TATATCTTTC CGTGTGTGTT GAATACATCT	900
	AAACGCCATT GTTCTTTTGC ATACCATGCT ATGACTCTTG CCTCTATTGC AGAAAAATCA	960

55

CTTACTGCTA GTTCATTACC TTCTTCAGCA GTAAATGTCG TCCTAACTAA TTGACTTAAT 1020

AGATCTCTTG CTATTTCTAA TTCAGTATCT GAAATATAAT GCTTTGTTAA ATTCTGAAGT	1140
TGTACACCTC TACCTGCCCA TCTTCCAGTA CCGGCACCGT AAAATTGAAA CAGACCTCTT	1200
ACCCGTTCAT CACTGCACAT C	1221
(2) INFORMATION FOR SEQ ID NO: 9:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1090 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

15

20

25

40

5

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

TTTTGTTTGG TATGAGGTAG CAATGACGAC GTGTCATTGG TGGAGATTGT AAAAATACAT 60 AATAAAAAGA AGCGGCAATG TATACCGCTC CTTTTTTATA CTACATACCG ATTTTCAACC 120 ATCTCTTTCT ACTTAGTAAT AAGACAATAG TATTAACTAT AAATAGAAGA ACGAAGAATG 180 ATACTATATT TATAATTTCA GTAGGACACA TAAATGTTGA CTCGTTATTC AATATTTTTT 240 CTACGGCACG ATACATCGTA TTGCTCGCCT CAAATGGAGC AACGATACCA AATATATTTT 300 TATTAATGGC AACTAAGATG ACTGAACCAA TCCAATATAC AATGCTGATA CCTAAGCTGA 360 TTAAAATGTT AGGTGAAACC ATACTAATCG TTCCAACAAC TAAGATATAT TGTAAGATAA 420 CGAGTGAAAA TAAGATTATT AATAGTAAGT AATGTGAGAA ATCCGAATAT ATAATTGAAA 480 TAATAGTGAT ACTTAGAATT ATGAACACTA AACATTCAAA AAATAACACT GCTACCTTTT 540 TATAGAAGAA GGTAAAGATA TTATCGCCAA TCAATTTATA AAACAGGATA TTTTTATTCG 600 AATACTCTTT ATTAATAAAA TATGCAATAA CAAATGAAAA TAGTAAGAAC CCTAATTGCG 660 TTGCAACAGT ATATGAACTG AAGAAAAACT GGCTATAGCT TAAACTTTTA ACTTTGTCTA 720 TACCTATTGG TAAAAAATAC CCAAGTAAGA AAAGGAATGT GAATAGCACA ACAAGCGTGT 780 AAATAATTTT ATTGGAAATA CTTTTTTTAA ATTCTAATTT CAAAGTGGAC ACCTCAATTA 840 TARATTAATG TARTCATTTA TGACTTCTTC TTTTGATTGG TACTCTTCTA TTTGAAGGTC 900 TTTAAAAATA AAGTATTTAC CCGGCAAAGC ACTTAAATCG GATAAATTAT GTGTAATATT 960 GATAATAGTT TTAGTTTGAT GGCTTTGAAT AAAATCATTT AAAAATTCAT AAATTTCATT 1020 AACTGTTTTC TTGTCTAAAG CGTTTGTAAC TTCATCTAAT ATGATTAAAT CATGATCTTC 1080 1090 CAATAAGAAA

(2) INFORMATION FOR SEQ ID NO: 10:

55

(A) LENGTH: 904 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

10	TTAGGACTAT TTTATCATAT TCATTTAAAT TACGGCTAAA AATTTTAAAA ACGGGGATTA	60
	ATATATGGAA TTAAGCTATG AAAGTTAATT GATACTTGCA TTTTACGCTG ATTTATATAA	120
	GAATAACTAT TGTATAGTTT TAAAAACGAA CGTACGTTTG CAGGAGGCGA AATCATTGGC	180
15	AATGAATAAA CAAAATAATT ATTCAGATGA TTCAATACAG GTTTTAGAGG GGTTAGAAGC	240
	AGTTCGTAAA AGACCTGGTA TGTATATTGG ATCAACTGAT AAACGGGGAT TACATCATCT	300
20	AGTATATGAA ATTGTCGATA ACTCCGTCGA TGAAGTATTG AATGGTTACG GTAACGAAAT	360
	AGATGTAACA ATTAATAAAG ATGGTAGTAT TTCTATAGAA GATAATGGAC GTGGTATGCC	420
	AACAGGTATA CATAAATCAG GTAAACCGAC AGTCGAAGTT ATCTTTACTG TTTTACATGC	480
25	AGGAGGTAAA TTTGGACAAG GCGGCTATAA AACTTCAGGT GGTCTTCACG GTGTTGGTGC	540
	TTCAGTTGTA AATGCATTGA GTGAATGGCT TGAAGTTGAA ATCCATCGAG ATGGTAATAT	600
	ATATCATCAA AGTTTTAAAA ACGGTGGTTC GCCATCTTCT GGTTTAGTGA AAAAAGGTAA	660
30	AACTAAGAAA ACAGGTACCA AAGTAACATT TAAACCTGAT GACACAATTT TTAAAGCATC	720
	TACATCATTT AATTTTGATG TTTTAAGTGA ACGACTACAA GAGTCTGCGT TCTTATTGAA	780
05	AAATTTAAAA ATAACGCTTA ATGATTTACG CNWGGGTAAA GAGCGTCAAG AGCATTACCA	840
35	TTATGAAGAA GGGALCAAAG rGTTgTTAGT aLGTCCAATG ArGGAAAAGA AGTTTTGCCT	900
	GACG	904
40	(2) Information for SEQ ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
•	(A) LENGTH: 11271 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
50	GATTTCTAAA TCAAGATCTG TTTTACGATA ACCATTCAAA CCTTGACGTT CATCTTCTTC	60
	AGGTTGATTT TGTTGCTGTG TGTCTTTGTT GTCAGAAGTC GCTACTGTTT TTTTATTATC	120
5 <i>5</i>	TGTTTCTTTA GTCATAACAA ACGCCTCCGT TATAAAACGC TATATTTAAT GATATGTGAT	180
<i></i>		

	TTAATAAGAC	GATTCAGCAA	GTTTTAAAGT	ATTATTTGAC	TATGTTGGAT	TAGGCATCTA	300
	GTCCTATAAT	ATCACTGACA	TTGTCAAAAT	GATGATCTTT	TAAGTAACGT	GCGATGCCTT	360
5	TGTTCATTTT	CTTAGTTAAA	CCTGGGCCTT	CAATAACAAG	TGATGAATAA	ATTTGAATAA	420
	GTGACGCACC	GTGACGCATC	ATTTTGATTG	CATCTTCAGT	ACTGAATACG	CCGCCTGTAC	480
10	СТАТААТТАА	AAATTCACCA	TTTGTTTGCT	GATAAgCATa	CTTAATCAAT	TTTAAATTAC	540
	GTTCAAATAA	TGGACGACCA	CTCAAACCGC	CTTCTTCGAC	TTTATTAGCA	GAAGTTAAAC	600
	CATCTCGTTG	TCGCGTTGTG	TTTGCTAAGA	TGATACCGTC	AAATGTCTCA	GTAATCGCTG	660
15	GTAATAGTGC	TTTTAAGCCA	TCGAAATCCA	TATCAGACGT	TAGTTTTAAA	TAAATTGGCA	720
	CTGTTACATC	ATGTTGTTTT	TTAAATGCTG	TTAAAGCTTG	GCATAACATT	GAAAATTCAT	780
	CTTTATCATG	GAAGTTTTGA	AGATTTTCAG	TATTTGGAGA	ACTGATGTTG	ACTGTGAAAA	840
20	ATGAAACGTC	GTGTTTAAAC	GTATCAATAA	CCTTTATATA	ATCTTGATAA	CGCGCTTCAT	900
	AAGGTGTCAT	TTTATTCACA	CCAACATTGA	TACCAACAGG	TACTTGATAA	GCATTTTTAC	960
	GCAAATGACT	TAGTGCTTTG	TTCATACCAA	TATTATTGAA	GCCCATTCGA	TTTATCAAGG	1020
25	CGTCATCTTC	TAATAATCTA	AACATGCGTG	GTTGAGGGTT	ACCCGGTTGA	GGTTTAGGTG	1080
	TGATACCACC	тааттстааа	GCACCGAATC	CAAGGTGTTC	CAATGCTTTT	GGTACTTCGC	1140
30	AAGATTTGTC	GAAACCAGCT	GCTAAgCCAA	TTGGATTGTC	GTACGTATTA	CCTTGTATCG	1200
	TTTGTGATAA	CGTTGGATTC	TTATAAGTAA	ATAGTTTATC	GACGACTGGG	AATAAAACCG	1260
	Gaaacttttg	TaACGTTTTT	AATGCATCGA	TAGTTAGTCC	GTGTGCTTTT	TCGGGTTCGA	1320
35	TTTTGAATAA	GAAAGGTTTA	ATTAATTTGT	ACATGAGTAT	GCTCCTATTT	CATTATATTT	1380
	GAGGCTTACT	ATCCTCAACT	TAATATATGT	GAAATATATT	CTTTTAATAG	ACTAGCATTT	1440
	CCATĂCATAA	TTTCCTAGTT	ААААСТАААА	AGTTTTGAAA	ATTGACGCAA	gtttgaataa	1500
40	CGTTTTTAAG	ATTAAATCAT	CCTAATTAGG	CAATATTATA	GTATAAAGTA	AGTAGATTGG	1560
	AAGGTGTTTG	TATGAATGAA	CAATGGTTAG	AGCATTTACC	TTTAAAAGAT	ATTAAAGAGA	1620
45	TTTCACCAGT	GAGTGGTGGT	GATGTAAACG	AAGCATATCG	AGTCGAAACA	GATACGGATA	1680
	CATTTTTCTT	ACTIGTCCAA	CGTGGACGTA	AAGAATCATT	TTATGCTGCA	GAAATTGCAG	1740
	GTTTAAATGA	ATTTGAACGT	GCAGGTATCA	CGGCACCTAG	AGTAATTGCA	AGTGGCGAGG	1800
50	TTAACGGTGA	TGCGTATTTA	GTGATGACGT	ATTTAGAAGA	AGGGGCTTCA	GGGAGTCAAC	1860
	GCCAATTAGG	GCAACTCGTA	GCTCAATTAC	ACAGTCAGCA	ACAAGAAGAA	GGCAAATTTG	1920
•	GCTTCTCATT	ACCTTATGAA	GGTGGCGATA	TTTCTTTTGA	TAATCATTGG	CAAGACGATT	1980

	GGCTATGGGA	TGCCAACGAT	ATCAAAGTAT	ATGACAAAGT	GCGACGTCAA	ATTGTGGCGG	210
	AATTAGAAAA	GCATCAAAGT	AAACCGTCTT	TATTACATGG	TGACCTATGG	GGTGGTAATT	2160
5	ATATGTTCTT	ACAAGATGGT	CGTCCGGCGT	TATTTGATCC	AGCGCCATTA	TATGGTGACA	2220
	GAGAATTCGA	TATCGGTATT	ACAACGGTAT	TTGGTGGTTT	TACGAGCGAA	TTTTATGATG	228
10	CGTATAATAA	ACATTATCCA	CTCGCAAAAG	GTGCATCCTA	TAGACTTGAA	TTTTATCGTT	2340
	TATATTTATT	GATGGTCCAT	TTATTGAAAT	TTGGTGAGAT	GTACCGTGAT	AGTGTTGCGC	2400
	ATTCTATGGA	TAAGATTTTA	CAAGATACAA	CAAGTTAGTT	AAGACGTTAG	ATTGAGATAA	2460
15	ATAGATAATA	TGCACAGATA	TTTTTACAAT	GAGAAGCGAT	ACAGCTGCCT	CAATAAAAAT	2520
	ATTTGTGCGT	TTTTATTGTT	GGAAAATAAA	ATTTTAATCG	CTATTGTTAA	TITCTGTAAT	2580
	GTAAAACAAG	GTTGAGTTAC	aataaaag t g	ATTTTATAAC	TTTTTGTTCA	ATAAAATTCT	2640
20	AGGAATGATA	CATATTTATT	GATACAATAA	TTTTGAATAT	AATCATAAAA	CAATATTTAA	2700
	GTATAATTGA	ATGTTTGAAT	ATCATATATT	GATACAGTTT	CTAATAATTT	TAAAATAATT	2760
25	TAAATGGAGA	GAGGTGTAAA	TGATGAGTAC	AGTTCAAAGT	GATATTTTTA	AGACCAATAG	2820
:5	TGCATCATCA	TCTATTAAAA	GCGCTGTTGA	AACATGTAAT	AATGTGTCGA	AACCGGATAA	2880
	AGATGAAAGT	ACAACAGTAA	GTGGAAATAA	TAATGCTCAT	AGTGTGATAG	ATGATTTGAT	2940
30	GAGTAAGAAT	CAATCTGTTG	CTGAAGCAAT	ACGAACTGCG	AGCGATAATA	TACAAAAAGT	3000
	TGGTGAGGCT	TTTGACCAAA	CTGACGTAAT	GATTGGTAAT	GAAATTGGTA	AAAATTAAAA	3060
	CGTGGTGAAA	TGATGTCGAA	TAAACTGGAT	GAAATCAATA	AAATAATCAC	AGCGAAACAT	3120
95	GAGCAAATGG	ATGACTTATA	TGATGAAAAG	CGAGAGGTTA	AAGCATTGAT	AGATGAAAGT	3180
	GATGCGCTTA	ATCATTCGAT	AGATCAATTA	TATCAACATT	TAGGTGAGCG	TTATTATAGT	3240
	AGCAATATGG	CTAGTCGTAT	GGAACAGTTC	CGCGATGAAT	TTCATTTTGC	GAAACGACGT	3300
10	TCAACGGAAG	CGTTATACGA	GCAGCAACAG	CAAATTCAAC	ATGGCATTCG	TAAAGTGGAA	3360
	GAAGAGATGA	TTGACTTGGA	AATGCGAAGG	AATGTTGAAA	TTGAGACGGT	GACAAAGGAG	3420
15	GAAAATAAAT	GGAAACAATA	GGAAGCATTA	TTTATTTAAA	AGAAGGTTCG	CAAAAGTTAA	3480
	TGATTATTAA	TAGAGGmCCA	aTTGTAGAAA	TTGAAAATCA	AAAGTATATG	TTTGACTATT	3540
	CTGCATGTAA	ATATCCGATT	GGTGTTGTAG	AAGATGAAAT	TTATTATTTT	AACGAGGAAA	3600
50	ATATAGATTC	AGTTATTTTT	AAAGGTTATT	CTGATCAAGA	TGAGGTTAGA	TTTCAAGAGT	3660
	TGTTTGAAAA	TATGAAACAA	AATTTGGATA	GTGAAATACA	ACGTGGAGAA	GTTACACAAC	3720
	AATAAAGAAA	TACTTTTTCT	TTATTGGGGT	GGGACGACGA	TTTTAAATTAA	GTAAAAATAT	3780

	ATGTCATTCA	TAATCATTTG	AACTAAACGT	AGCAGCCTTA	AAATTTTAAA	AAAGACACAT	3900
	ACCAACTTCC	GAAATGTAGA	TGAATTCTCT	ACAATAACGG	AAGTTTTTCT	TTTAATATTG	3960
5	AAATTTCTCA	AGGATAGGTC	TATACTTTAT	AAATCGTAAT	TATTACGATT	TATAATCAAA	4020
	AACAATAACT	TGAAATAGAT	CATTGAGGGA	GTGTTAATAT	GCAACATCAT	AAAGTGGCTA	4080
0	TTATCGGTGC	CGGTGCTGCA	GGTATAGGTA	TGGCCATTAC	CTTAAAAGAT	TTCGGTATAA	4140
•	CAGATGTCAT	TATTTTAGAA	AAAGGAACAG	TAGGACATTC	ATTTAAACAT	TGGCCGAAAT	4200
	CGACCCGTAC	GATCACGCCA	TCATTTACGT	CTAATGGATT	TGGCATGCCT	GATATGAATG	4260
5	CAATTTCCAT	GGATACTTCA	CCAGCATTTA	CATTTAATGA	AGAACATATT	TCCGGAGAAA	4320
	CATATGCTGA	ATATTTACAA	GTGGTTGCCA	ACCATTACGA	GCTGAATATC	TTTGAAAATA	4380
	CAGTTGTCAC	AAATATATCT	GTAGATGATG	CATATTATAC	GATTGCAACG	ACAACAGAGA	4440
0	TATATCACGC	GGATTATATC	TTTGTCGCAA	CAGGTGATTA	TAATTTCCCT	AAAAAgCCAT	4500
	TTAAATATGG	TATTCATTAT	AGTGAAATTG	AAGACTTTGA	TAACTTTAAT	AAGGGGCaAT	4560
	ATGTGGTTAT	CGGAGGTAAT	GAAAGTGGCT	TTGATGCTGC	ATATCAACTT	GCAAAAATG	4620
°5	GCTCTGACAT	CGCACTTTAT	ACTAGCACAA	CCGGTTTAAA	TGATCCGGAT	GCTGATCCTA	4680
	GTGTTAGATT	GTCACCTTAT	ACACGTCAGC	GACTAGGTAA	TGTCATTAAG	CAAGGTGCTC	4740
10	GCATCGAAAT	GAATGTACAT	TATACAGTTA	AAGATATTGA	TTTTAACAAT	GGACAGTATC	4800
	ATATCAGTTT	TGATAGCGGA	CAAAGTGTGC	TTACACCTCA	TGAACCAATA	CTAGCAACTG	4860
	GCTTTGATGC	AACAAAAAAT	CCAATCGTTC	AACAATTATT	TGTGACAACA	AATCAAGATA	4920
9 5						ATTGGTGCAA	4980
					ATTTAGAGCG		5040
	•					GTCATTGAAA	5100
ю						TCATGCACAT	5160
						ATGAACCTCA	5220
15						AATTAAGATT	5280
					AGTGTAGTTT		5340
						GACATTTAAG	5400
50						TTGCATTGCC	5460
						CAGCATGGAT	5520
	AGAATATTTA	ACTCAAACAA	CATTGCTCAA	TCACGATATA	TTACAGCATA	TATTATTTGG	5580

	ATTGATTAGT	TTATCAACTG	CTATAATTGA	TCAAACAGGA	CTCAAATCAT	GGATGATATG	5700
	GGCAATTGAA	CCGTCAATGT	TATGGATAGG	ATTACAAGGT	AATGATATCG	TGCCACTATT	5760
5	AGAAGGGTTT	GGATGTAATG	CAGCAGCTAT	TTCACAAGCA	GCACACCAAT	GCCATACCTG	5820
	CACGAAGACA	CAGTGTATGA	GTTTAATAAG	CTTTGGTAGT	TCTTGTAGTT	ATCAAATAGG	5880
10	TGCGACATTA	TCTATTTTTA	GTGTAGCTGG	AAAGTCATGG	CTATTTATGC	CGTACTTAAT	5940
	ATTAGTACTT	TTAGGTGGCA	TCTTACATAA	AGGATATGGT	TGAAAAAGAA	TGATCAACAA	6000
	CTTAGCGTTC	CGCTACCTTA	TGATAGGCAA	TTACATATGC	CAAATATACG	TCAAATGTTG	6060
15	CTACAAATGT	GGCAAAATAT	ACAAATGTTT	ATCGTTCAAG	CGCTACCTAT	TTTTATCACA	6120
	ATCTGTCTTA	TTGTTAGTAT	TTTATCACTA	ACGCCAATTT	TGAATGTTTT	ATCACAAATA	6180
	TTTACACCTA	TATTATCGTT	ATTAGGCATC	TCGTCAGAAT	TGTCACCAGG	GATTTTATTT	6240
20	TCAATGATTC	GAAAAGACGG	CATGCTCTTG	TTTAATTTGC	ATCAGGGCGC	CTTATTACAA	6300
	GGAATGACAG	CAACACAGTT	ACTACTACTT	GTGTTTTTTA	GTTCAACATT	TACAGCGTGC	6360
25	TCGGTCACAA	TGACGATGCT	TTTGAAACAT	TTAGGTGGTC	AGTCAGCACT	TTAATTAAAA	6420
23	GGAAAGCAAA	TGGTGACATC	ATTGTCTTTA	GTTATTGGTG	TAGGCATCAT	TGTTAAAATA	6480
	GTAATGCTGA	TTATTTAAAA	AAAATGAACT	ATAACTGAAT	ATAGAGTCAT	GTCAGTCAAT	6540
30	AGGAGATCTA	TCTTGGAATA	TGCTATTCAT	ATGAAGTATA	AGAGGAGAGT	CGCAGATGAA	6600
	AATAGTTATT	ATAGGTGGGT	TTTTAGGTGG	CGGTAAAACG	ACTGTCTTAA	ATCATTTGCT	6660
. ,	CGCTGAATCA	TTAAAGGAAT	CGCTGAAACC	AGCAGTCATC	ATGAATGAAT	TTGGGAAAAT	6720
35	GAGTGTTGAT	GGTGCCTTAG	TATCTGAAGA	CATACCTTTA	AGTGAACTGA	CAGAGGGGTG	6780
	TATCTGTTGT	GCAATGAAAG	CAGATGTATC	AGAACAGTTA	CATCAATTAT	ATTTAAAAGA	6840
	GCAACCAGAC	ATTGTATTTA	TTGAATGTAG	TGGGATTGCA	GAACCGGTCT	CTGTCTTAGA	6900
40	TGCTTGTTTA	ACGCCTATTT	TAGCTCCGTT	TACAACAATT	ACACATATGA	TTGGTGTAAT	6960
	AGACGCAAGC	ATGTATAAAC	ACATTAAATC	ATTCCCTAAA	GACATCCAAG	GCTTATTTTA	7020
45	TGAGCAATTA	GCATATTGTT	CTGTCTTATT	TGTTAATAAA	ATAGATTCAG	CAGATGTTGA	7080
	AACAACGAGC	AAACTATTGA	AAGATTTAGA	AGTTATTAAC	CCAGAGGCCG	ATATACAAGT	7140
	CGGTATGCAT	GGCAGCGTCA	CTTTGCCAAT	ATCAGTTAGA	CAAATGACAG	CAACTTCTGA	7200
50	CAATAAACAT	AAGTCTTTAC	ATCAAATGAT	TAATCATCAA	TTTGTGCAAT	CACCAGTCAA	7260
	ATGTACTAAA	GCAGAGTTTA	TAAAACGTTT	AGCATGCCTT	CCGTCTCATA	TTTATAGGTT	7320
	GAAAGGGTTT	ATGACATTTG	AAGACACCGC	ACATACGTAT	CTCATTCAAT	TTACACAAGG	7380

	CGGAAAGGGT	ATTTCAAAAG	AAGACTATCA	ATGTTTGGAA	CAGTAGTGTT	TTCAGTGGAA	7500
	GAGAATGGTT	AACATGCCTT	CATGTATAAT	AACGAGTTGA	TTTGAACGTT	TAAGCGTAAA	7560
5	TAAAAATAAG	CTTGGTCAGC	CATCAAATAT	AATTTGAAAA	CTGTCCAAGC	TGTTTTATTA	7620
	GAGAACAATC	AATTAACCCC	ACATATTTAA	TAATACATCA	GCAAAGCCTT	CAGGTTTTTG	7680
10	AATATAACCT	AAGTGACCGC	CTGGAATATC	TACAATAGGT	ATGCCAGTTT	CTTTATTTAT	7740
	ATAAAAGTTA	ACATCTTGTG	GGAAGGAGCC	TCTAGAATCT	GTCCCATTTA	GTAGGGTGAT	7800
	TTTATCGCTG	TATTTTGTGA	AATCATCCAA	AGTAATATCT	GAATGCGTAT	ATTGTCTAAT	7860
15	TTCAAATTCT	GACCAGAACA	TCGTACGTTT	GTACTGTTCT	ATACGTCCTT	CTTCAGTATC	7920
	AGCAGGTTGA	GACATCATTT	TIGCATCAAT	TGGTGCGATA	TTTAATGTTT	CGCCAAATGT	7980
	TTTCATGCCT	TTTTCTAAGC	CTTCTGTTAA	AATTTGATGC	ACAATGTCAT	CATTTTTATC	8040
20	TTTCCAATAA	GTACTGTCTG	GTAAAAATGT	ATTAATTGGT	GGTTCGTGAA	ATGCAATCTT	8100
	TTTAACGACT	TCAGGGTAAT	CTTTTAACAC	ATGCATCGCA	ACGATTGAAC	CTGAACTTGA	8160
05	ACCTAATATA	TAGACAGGTT	CATCACTTAA	TGACTTTGCA	agttcggcaa	TGTCCTGTGC	8220
25	GTCGCGTTTG	ACACGATAAT	CACTGTCAGG	GTTTGAAGCG	GAATCAGGGA	GTGGTTCAGT	8280
-	TAACTCGCTT	TCTCCATAAT	CACGACGATC	AACGGCTACA	ACAGTAAAAT	GGTCTTTTAA	8340
30	CTGTTCTGCA	AGAGGCAGAA	AAATGTCTCC	GGTACCGTTT	GCACCAGGAA	TAAAGATGAG	8400
	CACGGGTCCT	TGTCCGACTT	GGTGGTATCG	TAATTTAGCG	CCTTGTAATT	CTAAAGTTTC	8460
	CATATTCAAT	GACCTCCATT	TGTTAATTGT	TAGGTGATAA	ACCTAATAAT	TTAGCACCAT	8520
35	TTGTATAACT	TATTTTCTCT	TTTTCTTCAT	CTGTTAAACC	CAGTTCATCT	AAAAATACAC	8580
	CTAATTTTTC	AGGCTCAATA	TATGGATAAT	CAGCAGCATA	AAGAATTCTA	TCAATACCTA	8640
	CTTCTTTCTT	GACTAAATCA	AACTGTGGCT	TCGTTAACAT	GCCACTCGGT	GTGATATAAA	8700
40	AATTATTTT	AAAGTAATAG	CTTACAGGGT	GGTTCAAATG	TTCAGCGAAT	AAAGCTTCAT	8760
	CCATACGTTC	TAAGAAGAAT	GGGATAAACT	CACCCCAATG	TCCAATAATC	ATATTTAACT	8820
45	TTGGATAACG	ATCAAAAATA	CCAGATAATA	CTAGATGTAT	TGTATGAATG	CCGACATCAA	8880
	TGTGCCAACC	ATAACCAAAA	CAAGCAAATG	TTGCCGCAGT	TACTTCAGGA	TAATTTCCTT	8940
	TATAGTATGA	TTGATAAATG	TCACTGTTAA	CTGGCGCGGG	ATGTAGATAA	ATCGGTACGT	9000
50	CTAAATTTTC	AGCTGTTTTG	AAAATAATGT	CATATTTGTC	TTGATCAAGA	AAACCATCTT	9060
	GTGCACGTCC	CATAATGAGC	GCACCTTTGA	ATCCTAAATC	ATTGATGCAA	CGTTCGAATT	9120
	CTCCCCCCTGC	GGCTTCAGGC	TCATTGATAG	GTAAAGTTGC	AAAGCCTACA	AAGCGATTGG	9180

	TCTGACCAAC	CAAATTTGAA	GGAGAACCAT	TTCCATAAGA	TAAGACTTGA	ATTTGAACGT	9300
	CTTGATTATT	CATAAATTGG	ATACGTTCAT	CATGATGTGA	TAATTCGTCG	GCATTTGTAA	9360
5	AACCTGTCTT	TTTTTCAAGG	CCTTCTAACA	TTACTTTCAT	CGGTACACCT	TTAGGATCTG	9420
	CTGATATCGC	ATTCATCGTT	TCTTTTTGAA	TATCTTCAAT	GACATAATGT	TCTTCAAACG	9480
10	TAATACTTTT	CATTTACTTC	GCCTCCATAT	TGTATTGCAT	GTTTATTGCA	TCTATTGCAG	9540
	AAGCATTTTT	TATATACCTC	TAATTTCAAT	GTTTGTAACA	TAAAATTGAT	CTACCAAGGC	9600
	ATCTCTCCAT	CGCCATTAAT	AAATGTACCT	GTTGGGCCAT	CTGCACCAAT	CGTTGCTAAT	9660
15	TGAATGATTG	GCTTGATTCC	TTCAGAAACG	TGTTTGGAAT	TATTACTAAA	ATCACCAACT	9720
	AAATCAGTAT	TTGTAGCGCC	TGGATCAGCA	GCATTGATTT	GCATGTTAGG	TAATCCTTTA	9780
	GCGTATTGTA	GCGTTAGCAT	TGTTACTGCC	GATTTAGACG	AACAATAAGC	TAATGAATTC	9840
20	ACTTTAGATT	CAGCTGTTTC	GGGGTTTGTA	ACCATTCCAA	ATGAACCTAA	ACCACTTGAT	9900
	ACGTTGACGA	CAACAGGTTG	TTCAGATTTT	TCTAAGAGAG	GGACGAATGT	ATTCATCATT	9960
05	CGTACGATAC	ĆGAATACATT	CGTTTGATAT	ACTTCTTCAA	CGTCACGAGG	TGTCAATTTG	10020
25	GAAGGTGCTG	AAAATTGACC	AGATATACCT	GCATTGTTAA	TGAGGATATC	AAGACGGCCT	10080
	TCTTTTTCAG	CAATCATGTT	ATAAGCATTT	TTGACTGAGT	AGTCACTTGT	AACATCTAAT	10140
30	TGTACATAAT	GAACACCTAA	TTTTTGTGAT	GCTTGTTGTC	CTCTTACATC	ATTCCGAGAA	10200
	CCTATATAAA	CTTTGTAACC	CAATGCTTTA	AGTGCCTCTG	CACTTGCATA	GCCTAACCCT	10260
	TTATTGCCTC	CTGTGATTAA	CACAATTTTA	GTCATTACGT	CCCACCTCAT	CTAAATAAAT	10320
35	GTTTAATAAA	TAATTTCTGT	ACGCTTCAAT	TGAAATATGG	CGATGCTCTA	TTTGGAAGGC	10380
	AAATACACTA	GTTGATAATG	ATTGCAACAG	CATATCTGTT	TIGAALTCGT	GTAAGTGTCG	10440
	TCATÉGCTTT	TAAATAAGTC	AAAAATAATA	TCAAATAATT	CTTGATAAAA	TGCGCTTTGG	10500
40	TAAAAACGTA	ATTTATTGTT	GCCTGCTTCA	ATACATTGCA	GTAGTGCCTT	ATTATCGATT	10560
	TTAAATTGTA	AAAGATAATC	TAACGACACT	TGCATAACCT	CATAATTAGA	ATGATAGTCA	10620
45	TCTTTAATTT	GCTTAAAATG	AGTGATAAAA	ATATCAAGGT	CTCTTTGTAT	GACGTAGTAG	10680
	CATAAATCGC	TTTTATCTTT	GAAATGTCGA	TACAATGTCC	CCATACCGAT	ACCTAGTTCT	10740
	TTAGCAATAC	GATTCATACT	AATGTTTTCA	ACGCCTTCTT	CATCAAAAAG	TTTGTGCGCT	10800
60	ATTTCTTCAA	TTCGTTGCCT	ATTCTCTTTT	GCATCTTTTC	GCATGATTAC	ACCTACTTAA	10860
	AATTCTCTAA	AATTGACAAA	CGGATAACTC	TCCGTTTATT	ATAAAACGTG	TTAAGAAAGT	10920
	TAGCAATGAA	TTTGCAATAA	СТАТТАААТА	TCATAAAAGA	AAAGAGTGTT	GATAATGTCT	10980

ACCTTATCGG TTCAAATGAT TGCTGAAAAA CTGAATGTCA CTACAGAAGA TGTGGAAAAA 11100
GTATTAGCTA TGACAGCGCC ACTAGGCATT TTTAGTCATC AATTACAACG ATTTATTCAT 11160
TTAGTATGGG ATGTCAGAGA TGTAATAAAC GACAATATTA AAGGAAATGG ACAAACACCA 11220
GAACCATATA CGTATTTAAA AGGTGAAAAA GAGGACTATT GGTTTTTAAG A 11271

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6261 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

CAACCCGTTC AGAACAAAAT AAAAACCGTA CAATTTTATC ATCTTAATGA TTATTGTACG 60 GAAAAACTTT TTTACATCAT ATCTGCATGT GCATAATCGA TATCGGTAAA TTTATTATAT 120 TGTTTCATAA AATGTAACTT AACTGTGCCT GTTGGACCGT TACGTTGCTT AGCAATGATA 180 ATTTCAATTT CACCGTTTTC ATCATTCGTT TGTGGCTCGA AACCACCATC ATCGTCATCA 240 TCTTCATCGC CGCCACGGTT ATAGTAATCA TCACGGTATA AGAATGCAAC GATATCGGCA 300 TCTTGCTCAA TCGAACCAGA TTCACGAATA TCACTCATCA TTGGACGTTT ATCTTGTCGT 360 TGTTCAACAC CACGAGATAA CTGACTTAAT GCGATAACTG GACATTTTAA TTCACGGGCT 420 AATGCTTTTA ATGTACGAGA GATTTCAGAA ACTTCCTGTT GTCTGTTATC GGACGCACGT 480 GAACCACTAC CTTGAATCAA CTGTAAGTAG TCAATCACAA TCATGTCTAA GCCATGTTCT 540 TGCTTTAATC GACGACATTT AGAACGTAAA TCATTAATTC GAATACCCGG TGTATCATCA 600 ATAAAAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC 660 TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA 720---CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT 780 TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA 840 CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT 900 CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT 960 TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT 1020 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080 TTATATCCAT CATTGGCAAT ACTATCTGCA GTTTGAATCA ATCTACGTTT TAATGCATGC 1140

55

5

15

20

25

30

35

40

45

	TCTGCAAGAT	ATTGCGGGCC	ACCCGCTTCA	TTCAACGTAC	CTTCCGTCGA	TAATTGATCC	1260
	ATCAATGTTA	CAACATCAAT	TTCTTTATTA	TCTTCATTTA	AGTGCATCAT	TGCACGGAAA	132
5	ATATGTTGAT	GGGCACCCCT	ATAAAACGAC	TCAGGAAGCA	AAACTTCCTG	AGTAGTATTA	1380
	ATCAATTCTG	GATCTATAAT	AATTGAACCT	AAGACAGACT	GTTCAGCTTC	ATTGTTATGC	1440
10	GGCATTTGAT	TTTGCTCATA	CATTCTATCC	ATGAATGGTT	ACACCTCTTA	TTTCAATCCA	1500
	ACTTTATTGT	TCAACTGTGT	GTACGCGAAT	TGTACCTTCA	ACTTCTTTAT	CTAATTTAAC	1560
	AGGTACATTC	GTATATCCTA	GGGAATGAAT	TCCATTTGGT	AAATCCATTT	TACGTTTATC	1620
15	AATTTTAATA	TCATGTTGTG	CTTTTAGTGC	TTCGGCAATT	TGTTTTGTAC	TTACTGACCC	1680
	AAACAATTTA	CCACCTTCAC	CAGTTTTTGC	TGaTACTTCA	ACTTCAATGT	TTGATAACGT	1740
	TTCTTTTAAT	GCTTTAGCAT	CTTCAATTTC	TTGTTGGCGT	TCTTGTTTTG	CACGTTTTTT	1800
20	CTGTAACTCT	AATTGTTTAA	GGTTACCTGG	TGTTGCTTCT	ACAGCATAAT	TCTTTTTCAA	1860
	TAAGAAGTTA	TTTGCATAAC	CTACTGGTAC	TTCTTTAACT	TCACCTTTTT	TACCTTTACC	1920
\ C	TTTACCTTTA	ACATCTTGTG	TAAAAATTAC	TTTCATGCAT	CTTCACTCCT	ACTTAATTGT	1980
25	TCTGTAATTG	CTTGTTGTAA	TTGTGCTATC	GCCTCTTCGA	CTGTCACACC	TTTAAGTTGT	2040
	GTTGCCGCAT	TGGTTAAATG	TCCACCGCCA	CCAAGTGCTT	CCATTGTTAA	CTGGACATTT	2100
10	ACTGAACCGA	GTGAACGCGC	AGATATACCA	ATCAGATTAT	CTTCACGTCT	CGCAACAACA	2160
	TATGATGCTT	CAATACCTTC	TAAACTTAAC	AGTTCATCTG	CTGCTTGTGC	AACTGTTACT	2220
	GGATGATAAA	TTTTATCGTC	TGAACCATGC	GCAATGGCTA	TGCCATTATC	TTCAACTTTT	2280
15	ACAGTTCGAA	TTAATTCAGA	TCGATTAATG	TAAGTATCCA	CATCATCTTT	TAAGAAATGT	2340
	TGCGTTAAAA	TCGTATCTGC	ACCATGTGCA	CGTAAATAAC	TCGCTGCATC	GAATGTTCTT	2400
	GATCCTGTTC	GTAATGTAAA	GTTTCTTGTA	TCTACAATAA	TACCTGCATA	CATCACTGTT	2460
10	GATTCAAGAC	GTGTTAAACG	TTGTTCTGTT	GGTTGATATT	CCAGTAACTC	TGTTACCAAT	2520
	TCAGCTGTCG	AACTTGCGTA	TGGTTCCATA	TATATCAACA	ATGGATTAGA	GATGAAGCTT	2580
15	TCACCACGTC	TATGATGATC	GATAACAACT	TTACGGTTTG	CTTTATTTAA	GACATTTTCA	2640
	TCTAAAACCA	GTTCCGGTTT	ATGCGTATCA	ACAATCACTA	CGGTTGTCTT	AGATGTCATC	2700
	ATATCCCAAG	CATCATCTGA	TGTAATAAAT	CGCTCTCTTA	ACTCTGGCTT	TTTATCTATT	2760
io	TCGTTCATCA	CGCGTCGTAA	TGTTGGATCA	ATGTCAGTCT	CATTTAATAC	GATGTATGCT	2820
	TCTAAATTAT	TCATCATTGC	AAATCTAGAC	ACACCGATTG	CTGCACCAAT	TGCATCTAAG	2880
	TCAGGACGTT	TATGTCCCAT	GATAATGACT	TTGTCACCCT	CTGCAAGGAT	ATCTTTTAAC	2940

	CCATAGAAAC	GCACATTACC	ATTAATACTT	TTAATTGCAA	CTTGGTCGCC	ACCGCGTCCT	3060
	AATGCTAAGT	CTAGGCCTGA	TTGTGATAAT	TCACCTAAGT	CGATTAAATT	TTCAGTACCT	3120
5	TCACCAACAC	CGATACTTAA	TGTTAATTGG	GCACGATAAC	CAACACTTTT	TTCACGTAAT	3180
	TGACTCAAGA	TATCAAATTT	AGATTCTTCT	AAGTCAGCTA	ATATTTTTTG	ATTTAAATAG	3240
10	GCTACGAATT	GATCGGAACT	GTATCTTTTG	AAAAATATAT	TATACTCAGT	TGCCCATCGA	3300
10	CTAATGACAC	GCGTTACCAT	TGAGTTGATT	TCCGAACGCT	GCGTATCATT	CATATTTTGC	3360
	GTAATCTCAT	CGTAGTTATC	TAAAAATAAT	GTCGCAATGA	TTGGTTTAGA	ATTTTCATAT	3420
15	AGTTCATTTG	TTTGTACTTG	TTCAGTTATA	TCAAAGAAAT	AGAGGCAGTG	ATCATTCTCA	3480
	GAATAACGTA	CTTGGAAATG	ATACTGATTA	TATTCTATTT	CAACGGATTT	CACTCTATCT	3540
	AATTGCTTTA	AAATGTTTGG	AAATACTTCA	TTTACAGATT	CAGAAATGAC	ATTCGCTTCC	3600
20	ATATGATCTG	TCATAAATTG	GTTAACCCAT	TCGATGTGAT	CATTTTCATC	TAAAACAATG	3660
	ATACCAATTG	GTAAATGTTT	GATTGCTTTA	TTATTTGTTG	TTGAAATTTG	AGCACTCAAA	3720
	CCATCTACAT	AACTATCCAT	TTTCATTAAA	GCTTGTCTGA	ATAAAATGAT	GCTAACAATA	3780
25	ATCATCACGA	CAAGAACGAT	AGATGCAATT	AGTGCTATAA	GACTATTAAA	GATAAACCAT	3840
	ACACCCATTA	AAACAATTGC	TGTGATGATC	ATGATGACAA	ATGGTATTAG	TAAAGCTTTC	3900
30	TTAGTGGACT	GCCGATTCAT	TATTCCACCT	CTATTCACTT	TTTAGAATTA	TTTTTCATGA	3960
	TTCGCTTCAA	ATTCAAACTT	AAATCGATAA	CACCAAGTAG	TCCTACAATA	TGTGTCGTAG	4020
	GTGTCAGTAT	TGTACCGATA	ACCAATAGTA	AAATCGTTAC.	TGCATTCGGC	AAACCTTTCG	4080
35	CTTTACCAAA	GAAATGAATA	ACACTTAAAC	CTTGAATATA	CATTACTAAT	GATAACACAA	4140
	GTTGGAAGTT	TAAAAGAATG	CTCTGGAACA	CACTCGGTTG	ACCTGTAAAT	AATAAACATA	4200
	TGAŢACAAT	AATGTATATC	CATAATAAAA	TACCGCTCAT	TTGCCACGCG	AAAAGTGGCT	4260
40	TAAATACAGG	TGTAGCGATT	TTAAATTTTC	GTAAAATCGG	AAATGTAACG	ATTAAGTTAA	4320
	TTAAGACGAT	TAAAAATGTA	ATGATAATGA	TGAAACCTGG	TAATTGAACG	GTCGCTTGTC	4380
45	TAAACCCTTC	TTCTAATATT	TGGGTCATAT	TCGCATCGGC	ACCGCTCATC	GTAATCGCTT	4440
45	CATGTAATGT	TTGCTTGAAA	GGTTTTACTA	TGCTCGCTGA	TGGTGGAATC	CTTCCGAATG	4500
	TTTGTAGTAA	CATAAAAGCG	ATTAATGAAA	TTNATCTCAT	CGCTACTGTT	GTTACGTATA	4560
50	ATATTCTTTC	TTTAGACGTT	CTTTCTTTGA	GCAATTGACC	AATAATTAAA	CTTGCAATTA	4620
	AGACTAATAT	GATGGCACTT	AAAACGAAAG	TATTACCTAA	AACAGTTGTT	ATAATTACTG	4680
	TAATAAGTGC	ACTAATCCCG	AAAGATTGTA	יויים עייים עייים מיזיים	ССТАТАТАТОСС	АТАССТССТА	4740

	CAAATACCAA	CGCAATCGTT	GCAATTATTG	TTGCTTTAGG	TTGTATTTTT	GAAAACACAT	4860
	AAGCCACTCC	CATATTTTTA	ACTATAGCTA	TTATTTTAAC	CTCTTTAATG	AAAATTAACA	4920
5	ATTTATAGAT	TGTATGCTTC	TATTTCATTT	AATTGAATAA	TAACTTTCAT	GTTTTATAAG	4980
	TAATTAACAT	ACTCATTTGA	ATCGCTTTTG	TGTGCTTTCA	TTTTCAACAT	GATTATTTAA	-5040
10	TCCCACTACA	TAGCAATCAA	GCTTGATTTA	GATTTACAAT	ACATTTCCAC	TCTCATGTAC	5100
,0	TCTAGATGTT	TTTGAATATG	ATAACTGTGA	TTTAGTGGCT	TCATTCTTTG	AAAATATATA	5160
	TTATTACTTA	CGCTTAAAAT	GCTTTAAATT	TAAGAAATGA	TATAAGTTAG	GTGCCCAGGT	5220
15	ACTAAAGTTT	AGTAGGAATC	CATCATGCCC	AACATTATCA	GGCACGAAGA	AATGACGATG	5280
	ATATTTAAAA	CGTTCACCTA	ATGCACGAAC	TTGATCATCC	GGATATAGCA	AATCATCTAT	5340
	GAACCCCATC	GTTAACACTT	TTGTTTCTAA	AAAATTTTTA	ACATGCGTTA	CGTCTGTGCG	5400
20	ACCTCGGTCA	ATGTTGTGAC	TATCCAATAC	ATCTAGCAGT	GTCAGATAAC	AATTCAAATC	5460
	AAAATGTTCT	TTAAATTTAT	TACCTTGATG	TTGTTGGTAT	GCGACTACTT	CATCCGGCGT	5520
	AAAACGTTCA	TCATAACTTT	TTGATGATCG	ATATGTCAAA	AAACCTAATT	GGCGTGCAAT	5580
25	ACTTAGACCT	TCCTTACCAC	CAAGATGAAT	GGCTTGCCTT	GCAATTTCAT	TGAAAGCTCT	5640
•	ACTATAAGAT	GATGTTCGAC	TTGTTGCAGC	AAGGATAATG	GCTTTATCTA	CTTCAAACTG	5700
30	TTGATTGTAG	AGTAGTTCCA	TTGCTTGCAT	ACCTCCAAGA	CTTCCCCCTA	TTAAAATATT	5760
	AATCTTATCA	TAACCAAGGG	CTTGTATACC	TCGTTCATTC	GCTCTGACTA	TATCTCTTAA	5820
	TGTTAATTTT	TTAGGAAAAT	GAGGGTCGTT	TAAAGGTGAA	CTTGAACCGA	AAGGACTACC	5880
35	AATAACATCA	AATGTTAAAA	ATTGATAATC	GTGAATGGGT	ATATATCCCC	CATCAATAAT	5940
	TTCTCGCCAC	CAACCCGGAT	AATCATCTGT	TCCATATGTT	AAATGATTGC	CAGTTAATGC	6000
	ATGAÇAAACT	ACAACTAATG	GTTGTCCATG	ATAACCGACA	TGCTCATATC	TCAAACGCAA	6060
40	GTnATCTATG	ACTTCCCCAG	ATTCTGTAAT	AAATTCCCCT	AAATTTAAAG	TATCTACTGT	6120
	GTAATTTGTC	ATTGTTCTTT	CCTCCTTAAA	CAAAAAAACT	TCTCACCCTA	TTGAAAAGTA	6180
	AGAAGTCTTT	ATACTTATCA	TTCGAGTAAC	TCGTTGGTTT	TAGCACCGTG	CTATAAAGTC	6240
45	GGTTGCTGAA	GTATCACAGG	G				6261

7'

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1222 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

55

ATGCGATTAA CTCTGGAAAT ATCTTTTCCA TATTTACGTn TTAAATTATT CAGCAAATTC 60 5 ATACGAGATT CATACTCGTT YAACACTTGT TCGTCGAATT CTGTATTAGC CATTTCATCA 120 TATAACTCAT GTTTTGCATC TTCTAAAATG TAGTAAAATT GATCAATATC TTCTTTTAAT 180 TTGTCATATT TGTTTGGAAC TATATCGTTT ATTGTTAACA AATGGTTGCT TAGTTCATAT 240 10 AAACGATCAG TGATAGCATT TTCATCCGTT AATGTCATAT ATGCGTTATT AAGCGCTAAG 300 CTTAATTTT CAGAGTTTTG AATGCGTTTA ATATCTATTT CAAGTTGCTC TATTTCGCCT 360 TCTTTTAGAT GTGCTTCAGA CAATTCTTCT AATTGGAATT TCATTAAATC TAAACGCTGT 420 15 AGCAATGCTT GGTCTGCTGA TTCTAAATCT TCTAACTCTT GCTTTTTTGGC TTTATAATTT 480 TGAAAAGTTT GGTGATATTT ATCCAACAAA TCTTGATAAC GTGATTCTGC GTAATTATCC 540 AATAATGTTA AATGGTATTT TTGTTTCAAC AAAGACTGCG TTTCATGTTG GCCATGAATA 600 20 TCTAATAATT CTTGCATAAC TTTTCGTAAA TCTTGTAAAG TAACTGTTTG ATTATTAATT 660 TTACAAAGAC TTTTACCAGA GCTGAAAATT TCCCGTTTAA CTAATAAAAA ATCTTCATCT 720 25 ACATCAATAT CCATATTTTT CAATATATGT ATAGCATCTT TACTCTCGTC AATATCAAAT 780 ATACCTTCGA TGACAGCCTT TTTTTCACCA TGTCTTACAA AATCAGATGA AGCTCTCATT 840

CCAATTAATT GTCCAATTGC ATCTATAATA ATTGACTTAC CTGAACCCGT TTCACCACTT

AAAACAGTTA AACCATCAGA AAATTGAATT TCTAATTCTT CAATAATAGC AAATTGCTTG

ATTGATAAGG TTTGTAACAT AAACTCATCG CATCCTTATA ACAAATTGAA AATTCTTGAC

TTGATTTCAT CACTTGCCTC TTTGCTTCGA CAAATAATTA AACAAGTATC ATCACCACAA

ATTGTGCCTA GTACTTCTTC CCAATTGATT TGGTCTAATA TAGCTCCAAT AGATTGTGCA

TTACCAGGTA TGTTTTTAGA ACAAGTAAAT TATCAGTACC ATCTATATTA ACAAAGGAAT

900

960

1020

1080

1140

1200 1222

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

(2) INFORMATION FOR SEQ ID NO: 14:

CCATTAAATA ACGTCCCAAT TT

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1021 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

30

35

40

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TTTGTTATTA TTACHTHAAA TAATTGCATT ACTTTTTACT GATGGTACAA CTTTCCATCC 60

	TTCTTTTGGC	ACGACATAAT	TGTCTTTATC	TTGAACTAAA	TATCCGCCAG	ATACTGAAAC	180
	AAACTCTTCT	TCGTTACTGT	CTATAGTCAT	ATCAATTTCT	AATAATCTTA	CATTCTTCTT	240
5	TTGTTTTAAA	ATATCTAATG	CTTCATCTGT	AAATTTTGGT	GCAATAATGA	CTTCCAAAAA	300
	GATACTATGC	AATTGCTCTG	CTAACTCAGG	TGTTACAGCT	CGGTTTAATG	CAACAATTCC	360
10	ACCAAATATT	GATTGACTAT	CCGCTTCATA	CGCATGTTGA	AATGCTTGTT	CTATCGTGTC	420
	ACCGATACCA	ACACCACATG	GATTCATGTG	TTTAACCGCA	ACTGTAGCAG	GTGTATCAAA	480
	CTTTTTAACT	AAAGCTAGTG	TAGCATCTGC	ATCTTTAATA	TTGTTATAGC	TTAATTGTTT	540
15	CCCATGTAAT	TGTTTAGCGC	CTGCAATCGT	GTGCTTAGCA	TTCGAAGTTC	TCACAAAATA	600
	CGCTGATTGT	TGTGGATTTT	CTCCATATCT	TAAAGTTTCT	TTATCCCCTT	TAAAGAAACG	660
	TACAATCGCT	TCATCATATT	CTGCAGTATG	CTCAAAAACT	TTAATCATTA	ATGATTGTCT	720
20	ATATGACTCA	TCTAACGAAT	CGTTTCTTAA	TCGCGTCAAT	ACTTCTTGAT	AATCTGCCGG	780
	ATGTACAATT	GTTGTTACAT	GTTTATAGTT	TTTAGCTGCA	GCACGTAACA	TTGTTGGACC	840
	ACCAATATCA	ATATTTTCAA	TTGCTTCGTC	CATCGTCACA	TCAGGGTTTG	CAACAGTTTG	900
25	TTGGAATGGA	AATTAAATTAA	CTACTACCAT	ATCAATTAAA	TCTATATGTT	GTTCTGATAA	960
	TTCATTTAAA	TGCTGCGGTT	TATTTCGATC	AGCTAAAATG	CCACCATGAA	CAGCCGGATG	1020
30	T						1021

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3759 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

40

35

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TCATTCACTC CTAAATTGTT ATTACACTAT TACACATAGC TAATCATCAA TGTGAAATCA 60

CCTTCAAAGA CACTATCCAA ATCTTCAGAA GTCAAAATAA AGTTTGTACC AGTAGTCAGT 120

TTGAAAATTT CACCATCGAC AATCATTTGC CCTTCGCCTT CCAACACTGT AACTAAACAG 180

AACTCTCTAG GCTTCATATA ATTTAACGTG CCAGAAATTT CCCATTTAAC CAATGTAAAG 240

AAATCATTCG ATACAATGTG TGTACACTTA TGGTTTTCAA TAATTTCGCT TTCAGGCAAA 300

ATATTAGGTA ATGGTGCATT GTACTGAATA ACGTCTAAAG CTTTTTCAAT ATTTAACGGT 360

CTATCATTAT ATTGATTATC TTGACGATTG AAATCATAAA GTCTATATGT AATGTCTGAC 420

	ATAAAA taga	ATTCYCCAGG	KTTTAC tTTA	AtatATCYAA	gTAtCGaCtC	tATCGTTCCG	540
	TGTTGAACAT	GATTCGCAAC	TTCTTCTCTA	GACTCTGCTA	ATGTCCCLAT	AACTATTTCT	600
5	GCATCTTCTT	CTGCATCTAT	AATATACCAA	CATTCAGATT	TGCCATATTG	CCCGTTTTCA	660
	TGCTCATAAG	CATAAGAATT	ATCAGGGTGC	ACATGAATAG	AAAGTGATTC	TCTTGCATCC	720
40	ACTATTTTAG	TTAGAAGCGG	AAAATCTTTG	CTTGGGAAAT	CACCAAACAA	TTCACGATGT	780
10	TCTGACCAAA	TACGGTCTAA	TGTTTGACCT	TGATATGGTC	CATTAATAAT	CTCGCTCGTA	840
	CCATTTGGAT	GTGCTGACAC	ACACCAACAT	TCCCCCAGTT	GTATCATTGT	CTAATTGATA	900
15	TCCAAACTCA	CTTAGACGTT	GACCGCCCCA	TAATTTTGTT	TTTAAAATTG	GTTGTAAAAA	960
	TAATGGCATT	GTTGCACCTC	CATTGTGATT	AAGTAAGCAA	TAGAACTCTG	ATGTTGTTGT	1020
	TCCATTATAT	TTTGATTTTG	TTCTCATTTA	CATCGTATTA	TTAACTTCCA	CATTTCAAAT	1080
20	TAACTATTAG	TGATTGTACC	ATATTTACTA	ACATTGCAGT	ACTGCCAATT	AAAAGnGCTT	1140
	CACTTAAATT	TACAGTACTT	TAACATTTTC	AAAAATTTAT	AGCATAGAGA	TTATATCTCT	1200
	CTTACATITG	TACATATTTC	CCTTTAAATT	TACTCGCCCA	TTATACCAAT	TAATAAACAA	1260
25	CTTTAATAGT	TGTGCCATAC	ATTGTTCAAA	TTCTTTGTAA	AACGCATAGA	CAATACGTAC	1320
	TTATTCATAC	TTATAATTCA	TCATTTTCAA	AAAATAACGA	GTTACGAAAA	AGTAACCCGC	1380
<i>30</i>	TTCAAATCAT	ATTTACTATC	CTTATTAATC	CGTTTCATTT	TCAAATTGAG	TTAAAGCATC	1440
30	TTTAATGTCC	TGATCACCAC	TAATAATTTG	AAACTCTTGG	TGATTAAAAT	GATTGGATGT	1500
	GACAATTTCT	TTTAATACTG	TCGCAACATC	TTCTCTAGGA	ATTTCACCTT	TACCATCAAA	1560
35	ATATTGTGCA	GCTTCTATCT	TTCCAGATCC	TGCTGCATTT	GTAAGTGCCC	CTGGATGTAA	1620
	AATTGTATAA	TTCAAACCTG	nAACGTCTTA	AATAGTCATC	AGCGTAATGT	TTAGCTATTG	1680
	TATATGGCTT	TAAATCACCG	CTATCATCAA	AAGCCTGACG	TCTCGAATCA	TATGTTGAAA	1740
40	CCATGACATA	GTGTTTAATA	TTGGCCTCTT	TACTCGCAAT	CATTGATTTA	ACAGCACCAT	1800
	CTAAATCGAC	AATAATTGTT	TTATCTGCAC	CCGTGTTCCC	TCCAGAACCT	ACTGAAAAGA	1860
	TAACTTTATC	GAATGGTTTA	AACGTCTCAG	TTAAAGTCTC	TATTGAATCA	TTTTCAACAT	1920
45	CAACAAGAAT	TGCTTTCATA	CCTTGTGATT	TTAACGCATT	AAGTTGATCT	GATTGCCTAA	1980
	CACCAGCAGT	AAATGGTACA	TTTTCTTTTG	CTAATTGTTG	CACTAGTAAC	GAACCTACAC	2040
50	CGCCATTAGC	ACCTATAACC	AAAATATTCA	TTTACAACAC	TCTCCTATKT	ATTATTCTCT	2100
	ATGCCATACC	ACTTTATGAG	ATATGTAAAA	CTTGTTACAA	СТАТАААААТ	CAATTGACAT	2160
	ACTACTGGGA	ACGTATTAAA	TTAATATATG	AACAAATATT	CATATGAAAG	GATTGTCATA	2220

	tCaAGGCATT	AGCGATTACA	ATCGAATACG	TATCATGGAA	TTGTTATCAG	TCAGCGAAgC	2340
_	AAGTGTTGGT	CACATTECAC	ATCAATTGAA	TTTATCTCAA	TCAAATGTCT	CGCACCAATT	2400
5	AAAATTACTT	AAAAGTGTGC	ATCTTGTGAA	AGCAAAACGA	CAAGGCCAAT	CAATGATTTA	2460
	TTCATTAGAT	GACATCCACG	TAGCAACTAT	GTTAAAGCAA	GCCATACATC	ACGCGAATCA	2520
o	TCCTAAAGAA	AGTGGGTTAT	AATATGTCTC	ATTCACATCA	TCATCATGAC	CATATGCATA	2580
	GTCATGTAAC	TACAAATAAT	AAGAAAGTAT	TGTTTATATC	GTTTTTAATA	ATCGGTCTAT	2640
	ATATGTTTAT	CGAAATCATC	GCCGCTCTCC	TTGCTAACAG	CTTGGCATTA	CTATCTGACG	2700
5	GTATCCATAT	GTTTAGCGAC	ACATTCTCAT	TAGGTGTTGC	ACTTGTCGCA	TTTATTTATG	2760
	CTGAAAAGAA	TGCCACAACT	ACAAAAACAT	TTGGTTATAA	ACGTTTCGAA	GTACTCGCAG	2820
	CGTTATTTAA	CGGTGTAACG	CITTITGTAA	TAAGTATTTT	GATTGTTTTT	GAAGCGATTA	2880
0	AACGTTTCTT	TGTTCCTTCT	GAAGTTCAAT	CAAAAGAAAT	GTTAATCATT	AGTATTATCG	2940
	GTTTAATTGT	CAATATCGTT	GTTGCATTCT	TTATGTTTAA	AGGCGGCGAC	ACTTCACACA	3000
	ATTTAAATAT	GCGTGGTGCT	TTTCTACATG	TTATCGGAGA	CTTATTAGGT	TCAGTTGGCG	3060
5	CCATTACTGC	AGCTAKTTTA	ATTTGGGCAT	TTGGATGGAC	AATCGCCGAT	CCTATCGCAA	3120
	GTATTTTAGT	TTCCGTTATT	AAAAATTTTA	GTGCTTGGGG	TATCACAAAA	TCTTCAATTA	3180
o	ACATTTTAAT	GGaAGGCACA	CCAAGTGATG	TTGATATAGA	TGAAGTTATA	ACTACTATTA	3240
	AAAAGGATTC	ACGAATACAA	AGTGTGCATG	ATTGCCATGT	TTGGACAATT	TCAAATGATA	3300
	TGAATGCATT	GAGTTGTCAT	GTTGTTGTAG	ACCATACATT	GACAATGAAA	GAATGTGAAT	3360
5	TATTATTAGA	AAaCATTGAG	CATGATTTAT	TACATTTAAA	TATTCACCAT	ATGACTATTC	3420
	AATTAGAAAC	GCCTAATCAC	AAACATGATG	AATCGATTAT	ATGTTCAGGA	ACACATAGTC	3480
	ATTCACATAA	CCATCATGCT	CATCATCACG	CGCATGTACA	TTAATAATTT	TAACCTACTG	3540
0	CCATTGCATC	GATTAAACTT	TTCAATGGCA	GTAGGTTTTT	TATGTCTTTA	TGGCGACTTG	3600
	TTTGGTCTTT	GATGATGCAA	TGTTTATTAA	CAAATTTTCA	ACTATTATTT	CTTACATTAG	3660
	TCATATTTTT	GACAATTTAC	TATTATAATT	CTCTAACTTT	AGTCACTTTA	ATTAATTTT	3720
5	ATTAGATATT	AATATGAAAA	TAACGTGTTT	TTTGTTATT			3759

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13086 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

	TAATTATCGC	GCATAACAAA	ACATTAGCAG	GACAATTATA	TAGTGAGTTT	AAAGAATTTT	60
5	TTCCTGAAAA	CAGGGTGGAA	TACTTTGTAA	GTŁACTATGA	TTATTATCAn	CCAGAGGCAT	120
	ACGTACCGTC	TACTGACACT	TTTATTGAAA	nAGATGCCTC	AATCAnTGAT	GAAATTGATC	180
	AACTACGACA	TTCTGCTACA	AGTGCATTAT	TTGAACGCGA	TGATGTAATT	ATTATTGCTA	240
10	GTGTAAGTTG	TATATATGGT	TTAGGTAATC	CTGAAGAATA	TAAAGATTTA	GTAGTAAGTG	300
	TTCGAGTTGG	TATGGAAATG	GATAGAAGTG	AATTACTTAG	AAAACTTGTC	AGATGTGCAA	360
15	TATACACGAA	ATGACATCGA	TTTCCAACGA	GGAACGTTTC	GAGTGCGTGG	TGATGTAGTG	420
	GAAATATTCC	CAGCCTCTAA	AGAAGAACTT	TGTATAAGGG	TTGAGTTTTT	CGGCGATGAG	480
	ATTGACCGTA	TCCGAGAAGT	TAACTACCTA	ACAGGTGAAG	TGTTGAAAGA	AAGAGAACAT	540
20	TTTGCGATAT	TCCCAGCTTC	TCACTTCGTA	ACACGTGAAG	AAAAGTTGAA	AGTTGCGATT	600
	GAACGTATTG	AAAAAGAATT	GGAAGAACGA	TTGAAAGAAT	TACGAGATGA	GAATAAATTA	660
	CTAGAAGCGC	aaaggttaga	ACAGCGTACC	AACTATGATT	TAGAAATGAT	GCGAGAGATG	720
25	GGATTCTGTT	CAGGAATTGA	AAACTATTCC	GTACATTTAA	CTTTGCGACC	ACTGGGTTCG	780
	ACACCATATA	CTTTATTGGA	TTACTTTGGC	GATGATTGGT	TAGTAATGAT	TGATGAATCA	840
•	CATGTGACAT	TACCGCAAGT	TCGAGGCATG	TATAACGGAG	ACAGAGCGCG	TAAACAAGTT	900
30	TTGGTGGATC	ATGGGTTTAG	ATTACCGAGT	GCATTAGATA	ACCGTCCACT	TAAATTTGAA	960
	GAATTTGAAG	mAAAGACAAA	ACAACTTGTG	TATGTATCTG	CAACGCCTGG	ACCATACGAA	1020
35	ATTGAACATA	CGGATAAGAT	GGTTGAACAA	ATTATTCGTC	CTACTGGTTT	ACTGGATCCT	1080
33	AAGATTGAGG	TTAGACCTAC	TGAAAATCAA	ATTGACGATT	TATTAAGTGA	AATTCAAACA	1140
	AGAGTgAGCG	TAATGAACGC	GTACTTGTTA	CAACGCTCAC	TAAAAAGATG	AGTGAAGATT	1200
40	aACCACATA C	ATGAAAGAaG	CGGGTATTAA	aGTtAATTAT	CTGCATTCAG	AAATCAAGAC	1260
	ATTAGAACGA	ATTGAAATAA	TTAGAGACTT	ACGAATGGGT	ACATATGATG	TTATCGTAGG	1320
	TATTAATTTA	TTAAGAGAGG	GTATTGATAT	ACCAGAAGTT	TCTCTAGTTG	TCATATTAGA	1380
45	TGCAGATAAA	GAAGGGTTTT	TACGTTCTAA	CCGCTCATTA	ATTCAAaCAA	TAGGTAGAgC	1440
	TGCGCGTAAC	GATAAAGGTG	AAGTCATTAT	GTATGCCGAT	AAAATGACTG	ATTCGATGAA	1500
	GTATGCAATT	GATGAGACAC	AACGTCGTCG	AGAAATACAG	ATGAAACATA	ATGAAAAACA	1560
50	TGGTATTACA	CCTAAAACAA	ттаатааааа	AATACATGAT	TTAATTAGTG	CTACTGTTGA	1620
	AAATGACGAA	AATAATGACA	AAGCACAAAC	TGTGATACCT	AAGAAGATGA	CGAAAAAAGA	1680

	TTTCGAGAAA	GCTACAGAAT	TAAGAGATAT	GTTATTTGAA	TTAAAAGCAG	AAGGGTGACA	1800
	agtaaatgaa	AGAACCATCC	ATAGTAGTAA	AAGGTGCTCG	TGCGCATAAC	TTGAAAGATA	1860
5	TTGATATCGA	ACTACCTAAA	AATAAATTAA	TTGTTATGAC	AGGTTTATCT	GGGTCAGGTA	1920
	AATCGTCATT	AGCATTCGAT	ACTATATATG	CTGAAGGACA	ACGACGTTAT	GTTGAATCAT	1980
	TAAGTGCCTA	TGCGCGTCAA	TTTTTAGGCC	AAATGGACAA	ACCAGATGTT	GATACAATTG	2040
10	AAGGATTATC	GCCAGCAATT	TCAATAGATC	AAAAAACAAC	AAGTAAAAAT	CCAAGATCAA	2100
	CTGTAGCAAC	AGTAACAGAA	ATATATGATT	ATATACGTTT	GTTATATGCA	CGTGTTGGTA	2160
15	AACCTTACTG	TCCAAATCAC	AATATAGAAA	TTGAATCGCA	AACAGTACAA	CAAATGGTTG	2220
	ACCGCATTAT	GGAATTAGAG	GCACGTACAA	AGATTCAATT	ATTAGCACCT	GTCATCGCTC	2280
	ATCGTAAAGG	TAGTCATGAA	AAGCTAATCG	AAGATATTGG	TAAAAAAGGT	TATGTACGTT	2340
20	TAAGAATCGA	TGGCGAAATT	GTTGATGTAA	ATGATGTACC	TACTTTAGAT	AAGAACAAGA	2400
	ATCATACAAT	AGAAGTTGTT	GTAGACCGAT	TAGTTGTTAA	AGATGGAATT	GAAACACGAC	2460
	TAGCTGACTC	TATAGAAACT	GCCTTAGAGC	TTTCAGAAGG	ACAATTAACA	GTCGATGTCA	2520
25	TTGACGGGGA	AGACCTTAAG	TTTTCAGAAA	GCCATGCTTG	TCCTATATGT	GGATTTTCAA	2580
•	TCGGAGAGTT	AGAACCAAGA	ATGTTTAGCT	TTAACAGTCC	TTTTGGTGCT	TGTCCGACAT	2640
	GTGATGGCTT	AGGCCAAAAG	TTAACAGTCG	ATGTAGACTT	GGTTGTTCCC	GACAAAGATA	2700
30	AGACGCTAAA	CGAAGGTGCA	ATAGAACCTT	GGATACCGAC	GAGTTCTGAT	TTTTATCCAA	2760
	CATTGTTAAA	ACGTGTTTGT	GAAGTTTATA	AAATCAATAT	GGATAAACCT	TTTAAAAAGT	2820
35	TÄÄCAGÄACG	TCAACGTGAT	ATTTTATTGT	ATGGTTCTGG	TGACAAAGAA	ATTGAATTTA	2880
					GGTTTTCGAG		2940
ų	CTAATATAAG	TAGACGATTC	CATGAATCTC	CTTCAGAATA	TACACGTGAA	ATGATGAGTA	3000
40					GCGATTGAGT		3060
					CGAATATTCA		3120
					TCAAGCGATT		3180
45	TATTGAAAGA	AATTATTTCC	CGACTCACTT	TTTTAAATAA	TGTGGGACTT	GAATATTTAA	3240
					ACAACGTATT		3300
					AGATGAGCCA		3360
50					AGAAATGAGA		3420
	ATACTTTAAT	TGTAGTTGAA	CACGATGATG	ATACAATGCG	TGCGGCTGAT	TACTTAGTGG	3480

	AGGTAATGAA	AGATAAAAA	TCATTAACAG	GACAATACTT	GAGTGGTAAG	AAACGTATTG	3600
	AAGTACCTGA	ATATCGCAGA	CCGGCTTCAG	ATCGTAAAAT	TTCTATACGT	GGAGCTAGAA	3660
5	GCAACAATCT	TAAAGGGGTT	GATGTGGACA	TACCACTATC	AATCATGACG	GTTGTTACAG	3720
	GTGTATCAGG	TTCTGGTAAA	AGCTCATTAG	TAAATGAAGT	ATTATACAAA	TCATTAGCTC	3780
	AATTAAAAAA	тааатстааа	GTAAAGCCAG	GATTGTACGA	TAAGATTGAA	GGTATTGATC	3840
10	AACTTGATAA	AATTATTGAT	ATTGATCAAT	CACCAATAGG	TAGAACGCCA	CGCTCTAATC	3900
	CAGCAACATA	TACTGGTGTG	TTTGATGATA	TACGTGATGT	GTTTGCGCAA	ACAAATGAAG	3960
15	CTAAAATTCG	AGGATATCAA	AAAGGGCGTT	TTAGTTTTAA	TGTAAAAGGT	GGACGCTGTG	4020
	AAgcTTGTAA	AGGTGACGGT	ATTATTAAAA	TTGAAATGCA	TTTTTTACCT	GATGTTTATG	4080
	TTCCTTGTGA	AGTGTGTGAT	GGTAAACGAT	ATAATCGTGA	GACACTAGAG	GTTACTTACA	4140
20	AAGGTAAAAA	TATTGCTGAC	ATTTTAGAAA	TGACTGTTGA	AGAAGCAACA	CAATTTTTTG	4200
	AAAATATTCC	TAAGATTAAG	CGCAAGTTAC	AAACACTAGT	TGATGTTGGT	CTTGGATACG	4260
	TCACATTAGG	TCAACAAGCT	ACAACGTTAT	CAGGTGGTGA	GGCTCAACGT	GTGAaacttg	4320
25	CATCTGAACT	TCATAAACGT	TCAACTGGTA	AATCTATTTA	TATCCTAGAT	GAACCGACAA	4380
	CAGGGTTACA	TGTTGACGAT	ATTAGTAGAT	TATTAAAAGT	ATTAAACCGA	TTAGTTGAAA	4440
	ATGGTGATAC	TGTTGTAATT	ATTGAACATA	ACCTAGATGT	TATCAAAACA	GCAGACTATA	4500
30	TTATAGACTT	AGGTCCTGAA	GGTGGTAGTG	GCGGTGGTAC	TATTGTTGCG	ACTGGCACAC	4560
	CCGAAGATAT	TGCTCAGACA	.AAGTCATCAT	ATACAGGAAA	GTATTTAAAA	GAAGTACTTG	4620
	AACGAGATAA	ACAAAATACT	GAAGATAAAT	AAGATTAAAA	GAAGTGAAGG	ATGTTATAAA	4680
35	TTTATCCTTC	GCTTCTTTTT	ATTAATTTAG	TAATGAATAG	TAGAAAGAAA	AGATGCGTAA	4740
	AAAGÄATTAT	GTTAAGATAG	GGTCAATCTA	GAGTAGTTAA	ACATAAATCG	AACTGGGAGT	4800
40	GGGACAGAAA	TGATAAAGAA	TÇACTAATGA	TTTATTATGT	AGTGGTTCTT	TGTCATTAGC	4860
	CACAGCTATT	GTGTACTTAA	AAATAGGaat	GCaTgAGTGC	AACTCATGCA	TAAGaAATAC	4920
	TAATTTCTAA	AGAAAAAGTA	TTTCTTTATG	TTGGGGCCCC	GCCAACTTGC	ATTGTTTGTA	4980
45	GAATTTCTTT	TCGAAATTCT	TTATGTTGGG	GCCCCGCCAA	CTTGCATTGT	TTGTAGAATT	5040
	TCTTTTCGAA	ATTCTTTATG	TTGGGGCCCC	GCCAACTAAT	TCCAATATAT	CATTGTAGAG	5100
	CTTAGGTCAT	TGATTTTTGG	CTCGGACTTT	TATGGCGATA	TGAACCATGT	AAATTAAGCA	5160
50	AGCAATAAAT	TAATGATTGA	TATTGACTTG	TAAAATAATA	ACAATAATGA	ACAATTAATA	5220
	TTTATTTTAG	CTTTTCAATG	TAGATTGGTG	TTATATTTT	GATATGATAA	GAAGAGATGT	5280

	ACATTAAAGT	TAGATTTAAT	CGCTGGTGAA	GAAGGACTAT	CGAAGCCAAT	TAAAAATGCT	5400
	GATATATCAA	GACCGGGCTT	AGAGATGGCA	GGTTATTTTT	CACATTATGC	GTCAGATAGA	5460
5	ATACAACTAT	TAGGAACAAC	GGAACTATCG	TTTTACAATT	TATTACCAGA	TAAGGATCGC	5520
	GCAGGTCGTA	TGCGTAAACT	ATGCAGACCA	GAAACGCCTG	CAATTATTGT	GACACGTGGA	5580
	TTGCAGCCAC	CAGAAGAATT	AGTTGAAGCT	GCAAAAGAAT	TAAATACCCC	ACTTATAGTT	5640
10 -	GCTAAAGATG	CGACTACAAG	TTTAATGAGT	CGCTTAACAA	CGTTTTTAGA	GCATGCACTT	5700
	GCAAAGACGA	CATCTTTACA	TGGTGTTTTA	GTAGATGTTT	ACGGTGTTGG	TGTACTAATT	5760
15	ACCGGTGATT	CAGGAATAGG	TAAAAGTGAG	ACTGCGTTGG	AATTAGTTAA	ACGTGGGCAT	5820
10	AGATTAGTAG	CAGATGATAA	TGTAGAAATA	CGTCAAATTA	ATAAAGATGA	ACTAATAGGG	5880
	AAACCACCAA	AGTTAATAGA	ACATCTATTA	GAAATACGTG	GACTAGGTAT	TATCAATGTT	5940
20	ATGACTTTAT	TTGGCGCGGG	TTCAATATTA	ACTGAAAAAC	GAATTAGATT	TAATTATAAT	6000
	TTGGAAAACT	GGAACAAGCA	AAAGTTATAT	GACCGCGTAG	GTCTTAATGA	AGAGACGCTA	6060
	AGTATTTTAG	ATACTGAAAT	CACTAAAAAA	ACAATACCTG	TAAGACCTGG	TAGAAATGTT	6120
25	GCGGTAATTA	TTGAGGTCGC	TGCAATGAAC	TATCGATTAA	ATATCATGGG	CATTAACACG	6180
	GCCGAAGAAT	TTAGTGAAAG	ATTAAATGAA	GAAATTATCA	AGAACAGTCA	TAAGAGTGAG	6240
	GAGTAGGTTG	AATGGGTATT	GTATTTAACT	ATATAGATCC	TGTGGCATTT	AACTTAGGAC	6300
30	CACTGAGTGT	ACGATGGTAT	GGAATTATCA	TTGCTGTCGG	AATATTACTT	GGTTACTTTG	6360
	TTgCACAACG	TGCACTAGTT	AAAGCAGGAT	TACATAAAGA	TACTTTAGTA	GATATTATTT	6420
25	TTTATAGTGC	ACTATTTGGA	TTTATCGCGG	CACGAATCTA	TTTTGTGATT	TTCCAATGGC	6480
35	CATATTACGC	GGAAAATCCA	AGTGAAATTA	TTAAAATATG	GCATGGTGGA	ATAGCAATAC	6540
	ATGGTGGTTT	AATAGGTGGC	TTTATTGCTG	GTGTTATTGT	ATGTAAAGTG	AATTTAA	6600
40	ACCCATTTCA	AATTGGTGAT	ATCGTTGCGC	CAAGTATAAT	TTTAGCGCAA	GGAATTGGAC	6660
	GCTGGGGTAA	CTTTATGAAT	CACGAGGCAC	ATGGTGGATC	GGTGTCACGC	GCTTTTTAG	6720
	AACAATTACA	TTTGCCTAAT	TTTATAATAG	AAAATATGTA	TATTAACGGC	CAATATTATC	6780
45	ATCCAACATT	CTTATATGAA	TCCATTTGGG	ATGTCGCTGG	ATTTATTATC	TTAGTTAATA	6840
	TTCGTAAACA	TTTAAAATTA	GGAGAAACAT	TCTTTTTATA	TTTAACTTGG	TATTCAATTG	6900
	GTCGATTCTT	TATAGAAGGA	TTACGTACAG	ATAGCTTAAT	GCTCACAAGT	AATATTAGAG	6960
50					AAGTTTAATT		7020
	CCATTAACTA	TAATCCACCC	TTCTATACCA	N N CTTCCCCCC	COTTOCATOO	CCDACAAAAA	7090

•	TTATGGCGTG	TATACCGTCT	TGTTAAATTT	TCGAAAGTTT	TTAAGAATGT	AATTATCATT	7200
	GAATTTTCGA	AATTTATTCC	AAGTATGGTA	CTGAAAAGAC	ATATATAA	ACAACTTTTA	7260
5	AATATTAATA	TCGGTAATCA	ATCGTCGATA	GCTTATAAAG	TAATGTTAGA	TATTTTTAC	7320
	CCAGAACTGA	TTACGATTGG	TAGTAACAGT	GTTATTGGTT	ACAATGTAAC	AATTTTGACG	7380
	CATGAAGCAT	TAGTTGATGA	ATTTCGTTAT	GGACCAGTGA	CGATAGGATC	TAACACTTTG	7440
10	ATTGGTGCAA	ATGCTACCAT	TTTACCCGGT	ATAACGATTG	GTGACAATGT	AAAAGTTGCA	7500
	GCTGGTACGG	TTGTTTCAAA	AGATATACCG	GATAATGGAT	TTGCATATGG	CAACCCTATG	7560
15	TATATAAAAA	TGATTAGGAG	GTGACAATTT	TATGGCGCAA	AAGAATAATA	ATGTAATTCC	7620
	AATGACTTTT	GATGATGCAT	TTTATCGTAA	AATGGCTAAA	CAGAAGTTTA	AACAAAGAGA	7680
	ATATAAACGA	GCTGCTGAAT	actitgaaaa	AGTGTTAGAA	TTGTCACCTG	ATGATCTGGA	7740
20	AATTCAAATT	GATTATGCAC	AATGTCTAGT	GCAACTTGGT	ATTGCTAAAA	AAGCAGAACA	7800
	TTTATTTTAT	GACAATATTA	TTTATAATAG	GCATCTAGAA	GATAGCTTTT	ATGAATTGAG	7860
	TCAGCTCAAC	attgaagtta	ACGAACCAAA	CAAGGCATTC	TTGTTTGGTA	TTAATTATGT	7920
25	TATTGTTAGC	GACGACCAAG	ATTATAGAGA	TGAATTAGAT	CAAATGTTTG	ATGTGAAATA	7980
	TCAAAGTGAA	GAACAAATTG	AACTTGAAGC	TCAATTGTTT	GTAGTTCAAA	TACTATTCCA	8040
	ATATCTTTTT	TCTCAAGGTC	gattaaaaga	TGCAAAGAAT	TATGTCTTAC	ATCAACCACA	8100
30	AGAAGTTCAA	GATCATCGTG	TAGTACGTAA	TTTATTGGCA	ATGTGTTATT	TATATCTCGG	8160
	TGAATATGAT	acggctaaag	CATTGTACGA	aGCACtATTA	CAAGAGGATA	GTACaGATAT	8220
25	ATATGCATTA	TGCCATTATA	CTTTGCTACT	TTATAACACT	AAGGAAAATG	AACAATATCA	8280
35	ATTTATAAAA	AATTATAAA	ACAAAGTTGT	ACCTATGAAT	GACGATGAAA	GTTTTAAATT	8340
	AGGTATTGTA	TTAAGTTATT	TAAAGCAGTA	TCGTGCATCA	CAACAATTGT	TGTACCCTTT	8400
10	AAAAAATATA	GGGAAATTTT	TATCAATTCA	AATGTACAAT	GCTTTAGCAT	ATTATTA	8460
	TTATTTAGGT	GAAGAAGACG	AAAGTCATTA	CTACTGGGAT	AAATTGAAGC	AAATTTCTAA	8520
	AGTGGAAATT	GGACATGCGC	CTTGGGTAAT	TGAAAATAGC	AAAGAAGTTT	TTGACCAACA	8580
1 5	TATTTTGCCA	TTACTTCAAA	GTGATGACAG	TCATTATCGT	TTATATGGTA	TTTTTTTATT	8640
	GGATCAATTA	AATGGTAAAG	AAATTGTGAT	GACGGAAAGT	ATTTGGCAGG	TTTTGGAAAA	8700
	TCTAAATAAT	TATGAGAAAT	TGTATTTAAC	GTATTTAGTT	CAAGGTTTAA	CGCTCAATAA	8760
50	ATTAGACTTC	ATTCATCGCG	GCTTATTAAC	GCTTTACCAT	AATGAATTAT	TTGTAAGTGA	8820
	3 3 3 T/C 3 T/C T/C T/C	አጥርርጥጥርርንጥ	CCATTAATCA	N C C C C N N C C C	A COR A COCCOCCOCC	33333CM3C3	2000

	TCGAAACGTT	ACAAAGAAGC	AAATTACAAC	ATGGTTAGGC	ATAACACAAT	ATAAACTGAA	9000
	CAAAATGATT	GAATTTCTCT	TGAGCATATA	GATTTATGAA	AAGTTAGATT	TATTATATA	9060
5	TGCGCATAAT	GATTAATAAT	GAGGAGGCGT	TAATAAAATG	ACTGAAATAG	ATTTTGATAT	9120
	AGCAATTATC	GGTGCAGGTC	CAGCTGGTAT	GACTGCTGCA	GTATACGCAT	CACGTGCTAA	9180
	TTTAAAAACA	GTTATGATTG	AAAGAGGTAT	TCCAGGCGGT	CAAATGGCTA	ATACAGAAGA	9240
10	AGTAGAGAAC	TTCCCTGGTT	TCGAAATGAT	TACAGGTCCA	GATTTATCTA	CAAAAATGTT	9300
	TGAACACGCT	AAAAAGTTTG	GTGCAGTTTA	TCAATATGGA	GATATTAAAT	CTGTAGAAGA	9360
15	TAAAGGCGAA	TATAAAGTGA	TTAACTTTGG	TAATAAAGAA	TTAACAGCGA	AAGCGGTTAT	9420
15	TATTGCTACA	GGTGCAGAAT	ACAAGAAAAT	TGGTGTTCCG	GGTGAACAAG	AACTTGGTGG	9480
	ACGCGGTGTA	AGTTATTGTG	CAGTATGTGA	TGGTGCATTC	TTTAAAAATA	AACGCCTATT	9540
20	CGTTATCGGT	GGTGGTGATT	CAGCAGTAGA	AGAGGGAACA	TTCTTAACTA	AATTTGCTGA	9600
	CAAAGTAACA	ATCGTTCACC	GTCGTGATGA	GTTACGTGCA	CAGCGTATTT	TACAAGATAG	9660
	AGCATTCAAA	aatgataaaa	TCGACTTTAT	TTGGAGTCAT	ACTTTGAAAT	CAATTAATGA	9720
25	AAAAGACGGC	AAAGTGGGTT	CTGTGACATT	AACGTCTACA	AAAGATGGTT	CAGAAGAAAC	9780
	ACACGAGGCT	GATGGTGTAT	TCATCTATAT	TGGTATGAAA	CCATTAACAG	CGCCATTTAA	9840
	AGACTTAGGT	ATTACAAATG	ATGTTGGTTA	TATTGTAACA	AAAGATGATA	TGACAACATC	9900
30	AGTACCAGGT	ATTTTTGCAG	CAGGAGATGT	TCGCGACAAA	GGTTTACGCC	AAATTGTCAC	9960
	TGCTACTGGC	GATGGTAGTA	TTGCAGCGCA	AAGTGCAGCG	GAATATATTG	AACATTTAAA	10020
	CGATCAAGCT	TAATTCGAAG	TCGAATTAAG	ATGTTGAGCT	GTAAATTATT	TGGATATTTA	10080
35	TTTTAATAGT	GTCATCACAG	CGTTAAAATA	ATGTCTTACT	TTTAAATTAA	AGCAAATTAT	10140
	ATAGAAAACT	AGAACTTAGT	ACGTATCATT	TGTGCGTTTC	AATGAGTTCT	AGTTTTTTTA	10200
10	TATGTTATAT	TAAACTTATA	ACTTTATGGG	AGTGGGACAG	AAATGATAAA	GAGCCACTAA	10260
	TGATTTATTA	TGTAGTGGTT	CTTAAACATT	AGCCACAGCT	AATGTGTACT	TAAAAATAGG	10320
	AATACATGAG	TAAAACTCAT	GCATAAGAAA	TACTAATTTC	TATAGAAAAA	GTATTACTTT	10380
1 5	ATCGTTGTCC	CACCCCAACT	TGCACATTAT	TGTAAGCTGA	CTTTCCGCCA	GCTTCTGTGT	10440
	TGGGGCCCCG	CCAACTTGCA	CATTATTGTA	AGCTGACTTT	TCGTCAgCTT	CTGTGTTGGG	10500
	GCCCCGCCAA	CTTGCACATT	ATTGTAAGCT	GACTTTTCGT	CAGCTTCTGT	GTTGGGGCCC	10560
50	CGCCAACTTG	CATTGTCTGT	AGAAATTGGG	AATCCAATTT	CTCTATGTTG	GGGCCCACAC	10620
	CCCAACTCGC	ATTGCCTGTA	GAATTTCTTT	TCGAAATTCT	CTGTGTTGGG	GCCCACACCC	10680

	ACTCGCATTG	CCTGTAGAAT	TTCTTTTCGA	AATTCTCTGT	GTTGGGGCCC	CTGACTAGAG	10800
	TTGAAAAAAG	CTTGTTGCAA	GCGCATTTTC	ATTCAGTCAA	CTACTAGCAA	TATAATATTA	10860
5	TAGACCCTAG	GACATTGATT	TATGTCCCAA	GCTCCTTTTA	AATGATGTAT	ATTTTTAGAA	10920
	ATTTAATCTA	GACATAGTTG	GAAATAAATA	TAAAACATCG	TTGCTTAATT	TTGTCATAGA	10980
	ACATTTAAAT	TAACATCATG	AAATTCGTTT	TGGCGGTGAA	AAAATAATGG	ATAATAATGA	11040
10	AAAAGAAAAA	AGTAAAAGTG	AACTATTAGT	TGTAACAGGT	TTATCTGGCG	CAGGTAAATC	11100
	TTTGGTTATT	CAATGTTTAG	AAGACATGGG	ATATTTTGT	GTAGATAATC	TACCACCAGT	11160
15	GTTATTGCCT	AAATTTGTAG	AGTTGATGGA	ACAAGGAAAT	CCATCCTTAA	GAAAAGTGGC	11220
	AATTGCAATT	GATTTAAGAG	GTAAGGAACT	ATTTAATTCA	TTAGTTGCAG	TAGTGGATAA	11280
	AGTCAAAAGT	GAAAGTGACG	TCATCATTGA	TGTTATGTTT	TTAGAAGCAA	GTACTGAAAA	11340
20	ATTAATTTCA	AGATATAAGG	AAACGCGTCG	TGCACATCCT	TTGATGGAAC	AAGGTAAAAG	11400
	ATCGTTAATC	AATGCAATTA	ATGATGAGCG	AGAGCATTTG	TCTCAAATTA	GAAGTATAGC	11460
	TAATTTTGTT	ATAGATACTA	CAAAGTTATC	ACCTAAAGAA	TTAAAAGAAC	GCATTCGTCG	11520
25	ATACTATGAA	GATGAAGAGT	TTGAAACTTT	TACAATTAAT	GTCACAAGTT	TCGGTTTTAA	11580
	ACATGGGATT	CAGATGGATG	CAGATTTAGT	ATTTGATGTA	CGATTTTTAC	CAAATCCATA	11640
	TTATGTAGTA	GATTTAAGAC	CTTTAACAGG	ATTAGATAAA	GACGTTTATA	ATTATGTTAT	11700
30	GAAATGGAAA	GAGACGGAGA	TTTTCTTTGA	AAAATTAACT	GATTTGTTAG	ATTTTATGAT	11760
	ACCCGGGTAT	AAAAAAGAAG	GGAAATCTCA	ATTAGTAATT	GCCATCGGTT	GTACGGGTGG	11820
35	ACAACATCGA	TCTGTAGCAT	TAGCAGAACG	ACTAGGTAAT	TATCTAAATG	AAGTATTTGA	11880
33	ATATAATGTT	TATGTGCATC	ATAGGGACGC	ACATATTGAA	AGTGGCGAGA	AAAAATGAGA	11940
	CAAATAAAAG	TTGTACTTAT	CGGTGGTGGC	ACTGGCTTAT	CAGITATGGC	TAGGGGATTA	12000
40	AGAGAATTCC	CAATTGATAT	TACGGCGATT	GTAACAGTTG	CTGATAATGG	TGGGAGTACA	12060
	GGGAAAATCa	GAGATGAAAT	GGATATACCA	GCACCAGGAG	ACATCAGAAA	TGTGATTGCA	12120
	GCTTTAAGTG	ATTCTGAGTC	AGTTTTAAGC	CAACTTTTTC	AGTATCGCTT	TGAAGAAAAT	12180
45	CAAATTAGCG	GTCACTCATT	AGGTAATTTA	TTAATCGCAG	GTATGACTAA	TATTACGAAT	12240
	GATTTCGGAC	ATGCCATTAA	AGCATTAAGT	AATTTTAAA	ATATTAAAGG	TAGAGTCATT	12300
	CCATCTACAA	ATACAAGTGT	GCAATTAAAT	GCTGTTATGG	AAGATGGAGA	AATTGTTTTT	12360
50	GGAGAAACAA	ATATTCCTAA	AAAACATAAA	AAAATTGATC	GTGTGTTTTT	AGAACCTAAC	12420
	GATGTGCAAC	CAATGGAAGA	AGCAATCGAT	GCTTTAAGGG	AAGCAGATTT	AATCGTTCTT	12480

GCGTTAATTC ATTCTGATGC GCCTAAGCTA TATGTTTCTA ATGTGATGAC GCAACCTGGG 12600 GAAACAGATG GTTATAGCGT GAAAGATYAT ATCGATGCGA TTCATAGACA AGCTGGACAA 12660 CCGTTTATTG ATTATGTCAT TTGTAGTACA CAAACTTTCA ATGCTCAAGT TTTGAAAAAA 12720 TATGAAGAAA AACATTCTAA ACCAGTTGAA GTTAATAAGG CTGAACTTGA AAAAGAAAGC 12780 ATANATGTAN ANACATCTTC ANATTTAGTT GANATTTCTG ANAATCATTT AGTANGACAT 12840 AATACTAAAG TGTTATCGAC AATGATTTAT GACATAGCTT TAGAATTAAT TAGTACTATT 12900 CCTTTCGTAC CAAGTGATAA ACGTMAATAA TATAGAACGT AATCATATTA TGATATGATA 12960 ATAGAGCTGT GAAAAAAATG AANATAGACA GTGGTTCTAA GGTGAATCAT GTTTTAAATA 13020 AGAAAGGAAT GACTGTACGA TGAGCTTTGC ATCAGAAATG AAAAATGAAT TAACTAGAAT 13080 AGACGT 13086

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1350 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

CATTAGTCAT GAAAATAGCC GACAACTTCA TCTGTGAAAT CACCGGCCTT TTATTTTAGC 60 TAACTTTATT TCTGATTTTA CGATTTTAAT TGATCATACA GAGAAAGTGA TCTTTTTACA 120 ATTTCTAAAA ACTCATGATC TATATTGGAC ATTTGATGAA AATAAGACAA AATGTTTTCT 180 GTTAGCTTCT CTTGTTTTGG GAATGAATCA TCTTCTTTAA TCCAAATCGC TAATTCGCCT 240 AATGTGTTT TATCATCTTT AAATGTTTGT ATATATTCGT AAAAGCTCAT AGTATTCCTT 300 CTCTCAATTT ACTTATATAA ATCCTACCAC GAAAGCTTTC AAGAAAACAC AATTAAATGT 360 CTATTTAGTG AACTTTTTAA GGTTGTGCAC TCTTTTAATG TCTGCCAATT AGGTCAATTA 420 ATCATCACAA TGTACAATTA ACTCTATTTT CAGTTCATAT ACTCACACAC CGTTTTTGAA 480 CAACACATTA ACTICICATI TAGATAAAAC GCAAAAAAGC CTGGCACCAA TACAATAGAT 540 GCCAGACTAA GAGTCTACTA TATAAATTTA TITAGCGTAT GGTTITACTT CGATTGCACC 600 TTCATTTTCA TCATGAACAC CATGCTTATA ATAATCAATA TATTGTGGCT CTAAAGGCTT 660 TCTGCCACGT ATAATGTCTG CTGCTTTTTC AGCTAACATT AAAACAGGTG CGTGTATATT 720 GCCATTTGTC GTACGTGGCA TAGCTGATGC ATCAACTACA CGTAAATTTT CCATACCGTG 780

55

5

10

15

20

25

30

35

40

45

ACTACAAGAT	GGGTGTAATG	CTGTTTCACC	ATCTCTACGA	ACCCAATCAA	GAATTTCTTC	900
GTCTGTTTGC	ACTTCTGGTC	CTGGTGAAAT	TTCTCCACCA	TTGAATGGAT	CCATTGCTTT	960
TTGAGATAAG	ATATTTCTTG	CTACACGAAT	TGCTTCTACC	CATTCTTTTT	TATCTTCTTC	1020
TGTTGATAAA	TAATTAAAGC	GGATACTTGG	TTTTTCGAAT	GGATCTTTAG	ATTTGATTTT	1080
CAAGCTACCA	CGAGAGTTTG	AATACATTGG	TCCTACGTGA	ACTTGATAAC	CATGTGCGAC	1140
CGCTGCCTTT	TGACCATCAT	ATCTTACAGC	TATTGGTAAG	AAATGGAACA	TTAAGTTAGG	1200
ATAAtCAACT	TCGTTATTTG	AACGTACAAA	TCCGCCACCT	TCAAAATGGT	TAGATGCTGC	1260
TGCACCTGTA	CGTGTGAAAA	TCCATTGTAA	ACCAATAAAT	GGcATGCGCT	TGALATCTAA	1320
GCTTGGCtGt	AATGATACAG	GTTCCTTACA				1350

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1376 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

25

30

35

40

45

50

5

10

15

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

TRATGCTATT GGCAACACCA TATATGAAAn CTCCAAACGA TCCTAAACCG ACTATAGATT 60 CACCAAATTT NACAATCCAT GAATAAAGTA GTGGCCATAA GAATAACAAT ATGACAACTA 120 AAAATGTACA GTAAAATGCA GTCATAATTG GAACTAGACG TTTACCACTA AAAAATGATA 180 ATGCTAATGG TAATTCTGTT TCACTAAACT TATTGTATGC ATAAGCTGCT ATTAAACCTA 240 TTACAATACC AACAAGACA TTGCCATTAT TCATCTTTTC AAAAGCTGAA TTTATTTCCG 300 AYGCTTTCAT TCCTAATAAA GGCGCTAATT TCATTGGTGA TAATACAACT GTAACTAAAA 360 AATATCCTAA CGTrGCTGCA rGCGsGACTG CACCATCATT TTTCTTTGCC ATTCCTATAG 420 CTACACCAAT TGCAAATAAA ATACCTAATT GCTCTAAAAT CGTAGTACCT ACCGTAGTAA 480 AGAACATTGC GATTTTCGGC GTCGCATGAA GTGCATTTAA CGTATTACCA ATTCCGGCAA 540 TAATTGCTGC AGCCGGTAAA ATGGCAACTG GTAACATTAA CGAACGCCCT AAATTTTGGA 600 AAAATTTATA CATTGAATGT CATCCTTCTT AAAATAATGT AGAAATATAA AGATTACTAA 660 TGTAACTAGA ATAACTACTT CGATACTCCG TTATAGTCAC CTAGGCTTAC TAACCAGCTA 720 TATTTCTACC TCAAGTTATT TTATAAACTT TTTACAATTT CATGCAATTC TTGTTGTAAC 780 TTTGCTGTTC GTGTTTCAAT CTCTTTTGTA ATATAATCGA TACGCTCGTT TCGTTTTAAA 840

AAAGACCGTG	AATCTTAGTA	GGACCAACAT	AAGCAACAGG	TAATATTGGT	GACTTACTTA	960
ACATTGCAAT	TGTTGAAGCA	CCaCGTTTCA	AAGGTGCACC	TTCTTGCGAT	GTGCGAGAAC	1020
CTGTTGGGAA	GATACCAACT	GTCTTATTAT	CTTTCAACAA	ATTGATTGGG	CGTTTTAAAG	1080
TACTAGGTCC	TGGATTTTCA	CGATCTACAG	GAAATGCATT	TAAAGACGTT	AAAAATTTAC	1140
CAATCCATTT	ATTTTTGAAT	AATTCTTTTT	TAGCCATATA	ATGAATTTGA	TTAGGATATA	1200
ATGCCATACC	TAGCATAATG	ACTTCGTTAT	AACTTTCATG	CGTACAAGTT	ACGACATATT	1260
TACTATCCTT	AGGAATATTA	TCTTTACCGA	TTACGTATAA	TGATTTTGAC	ATTTTAACTA	1320
AAATGAAATT	CAAAATCTTA	CTAATCACTG	AATACATTGT	GCCACCTACT	TAACTT	1376
(2) THEODINA	TON BOD OF	O TO NO. 10	• .		•	

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7363 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

4 60	CCAACGATAA	AGTGACGAAA	ACACAAGTAA	AAAATATGGA	AATATTTTGT	TTGTCATACC
120	AAGATTAAAA	TATTAGATGG	CAGCTAATCT	TCAATTTTCG	AAATTGATCT	AGATTTTGTT
180	CCAATCACTG	AAGTTCCTCT	CGATAAAGCC	ATGACAGAAC	TAAGATCAAT	ATAAAAATAT
240	TATCCTTTAC	ACCGTGATTG	TATAAACTTC	TTTTCAGGTA	GTCAGTATGA	AAAAGATAAA
300	CCATCACCAC	TAAATGaTAG	GTGATTCAGT	ATAGCTTTAA	TCCAGAACCG	CTAGTAACTG
360	AGTTGGaCAC	CATTTGATAC	TGATTCGTCC	AGCCATGAAT	ATAGGGGTCA	TACTATATGT
420	GTCATTGCAC	TAAAATGACT	ATAGAATACC	GCGGGTGCAT	TTCAATTAAT	CTAATAAATT
480	CTTACTAACA	TGTTATACCA	AGATACGCCA	ATAGGTGCTA	TGTAATAAAG	CAACAATACC
540	TGCAGTAATA	TAGGTCATTT	ATGTAGTTCC	GCTAATACTA	AATAATAGCA	TCACACCTGC
600	AAATCACTTT	AAATAATAAC	TAATTTTGAA	GAGACACCAA	TGGTACTAAC	TTAAAATACT
660	AATGCTAAAA	GACACGCGCT	GTCTAGAAAC	AATTGATTAT	ATTGAATGTG	GGAATGATTT
720	GTGTACCAAC	AGGGCCAAAC	GAATACTGAT	TCAGATGGCT	TTTCATGAAT	TTAAAATAAT
780	AAGCCTATTA	AATAACGAGC	GTGACTCAGG	GGTGTAATAG	ATTGATAATA	TTTTGGCACC
840	TTAGGTGAAA	TTTAATCTTT	ATGTATAATG	TACAATAAAT	GATTAAGAAA	ATAATAGACA
900	TGTCTGATAC	TTAAAAAATT	CTAAAATGTA	AAAATTGCAC	GATACCTGCA	TAAACATGAT

	TTGCTAAAAC	AGCTATAGTG	GCTACTAATA	CCCAGTCTAC	TTTGCGAAnC	aATGCTTATC	1020
	CGGCTGTTGA	CGAGATGAAT	AATTCATTGC	AAACTCCTTT	TATACTCACT	AATGTTTATA	1080
5	TCAATTTTAC	ATGACTTTTT	AAAAATTAGC	TAGAATATCA	CAGTGATATC	AGCTATAGAT	1140
	TTCAATTTGA	ATTAGGAATA	AAATAGAAGG	GAATATTGTT	CTGATTATAA	ATGAATCAAC	1200
•	ATAGATACAG	ACACATAAGT	CCTCGTTTTT	AAAATGCAAA	ATAGCATTAA	AATGTGATAC	1260
· O .	TATTAAGATT	CAAAGATGCG	AATAAATCAA	TTAACAATAG	GACYAAATCA	ATATTAATTT	1320
	ATATTAAGGT	AGCAAACCCT	GATATATCAT	TGGAGGAAAA	CGAAATGACA	AAAGAAAATA	1380
5	TTTGTATCGT	TTTTGGAGGG	AAAAGTGCAG	AACACGAAGT	ATCGATTCTG	ACAGCACAAA	1440
	ATGTATTAAA	TGCAATAGAT	AAAGACAAAT	ATCATGTTGA	TATCATTTAT	ATTACCAATG	1500
	ATGGTGATTG	GAGAAAGCAA	AATAATATTA	CAGCTGAAAT	TAAATCTACT	GATGAGCTTC	1560
0	ATTTAGAAAA	TGGAGAGGCG	CTTGAGATTT	CACAGCTATT	GAAAGAAAGT	AGTTCAGGAC	1620
	AACCATACGA	TGCAGTATTC	CCATTATTAC	ATGGTCCTAA	TGGTGAAGAT	GGCACGATTC	1680
	AAGGGCTTTT	TGAAGTTTTG	GATGTACCAT	atgtaggaaa	TGGTGTATTG	TCAGCTGCAA	1740
5	GTTCTATGGA	CAAACTTGTA	ATGAAACAAT	TATTTGAACA	TCGAGGGTTA	CCACAGTTAC	1800
	CTTATATTAG	TTTCTTACGT	TCTGAATATG	AAAAATATGA	ACATAACATT	TTAAAATTAG	1860
	TAAATGATAA	ATTAAATTAC	CCAGTCTTTG	TTAAACCTGC	TAACTTAGGG	TCAAGTGTAG	1920
o	GTATCAGTAA	ATGTAATAAT	GAAGCGGAAC	TTAAAGAAGG	TATTAAAGAA	GCATTCCAAT	1980
	TTGACCGTAA	GCTTGTTATA	GAACAAGGCG	TTAACGCACG	TGAAATTGAA	GTAGCAGTTT	2040
5	TAGGAAATGA	CTATCCTGAA	GCGACATGGC	CAGGTGAAGT	CGTAAAAGAT	GTCGCGTTTT	2100
	ACGATTACAA	ATCAAAATAT	AAAGATGGTA	AGGTTCAATT	ACAAATTCCA	GCTGACTTAG	2160
	ACGAÃGATGT	TCAATTAACG	CTTAGAAATA	TGGCATTAGA	GGCATTCAAA	GCGACAGATT	2220
o	GTTCTGGTTT	AGTCCGTGCT	GATTTCTTTG	TAACAGAAGA	CAACCAAATA	TATATTAATG	2280
	AAACAAATGC	AATGCCTGGA	TTTACGGCTT	TCAGTATGTA	TCCAAAGTTA	TGGGAAAATA	2340
	TGGGCTTATC	TTATCCAGAA	TTGATTACAA	AACTTATCGA	GCTTGCTAAA	GAACGTCACC	2400
5	AGGATAAACA	GAAAAATAAA	TACAAAATTG	ACTAACTGAG	GTTGTTATTA	TGATTAATGT	2460
	TACATTAAAG	CAAATTCAAT	CATGGATTCC	TTGTGAAATT	GAAGATCAAT	TTTTAAATCA	2520
	AGAGATAAAT	GGAGTCACAA	TTGATTCACG	AGCAATTTCT	AAAAATATGT	TATTTATACC	2580
0	ATTTAAAGGT	GAAAATGTTG	ACGGTCATCG	CTTTGTCTCT	AAAGCATTAC	AAGATGGTGC	2640
	TOCOCOTOOT	ው ል ል ጋጥ ልጥጥነጥ	CACCCACACACC	ТАТАСАТСАА	A ATCTA ACCC	CCCCTATTAT .	2700

	AAACCCTAAA	GTAATTGCCG	TCACAGGGTC	TAATGGTAAA	ACAACGACTA	AAGATATGAT	2820
	TGAAAGTGTA	TTGCATACCG	AATTTAAAGT	TAAGAAAACG	CAAGGTAATT	ACAATAATGA	2880
5	AATTGGTTTA	CCTTTAACTA	TTTTGGAATT	AGATAATGAT	ACTGAAATAT	CAATATTGGA	2940
	GATGGGGATG	TCAGGTTTCC	ATGAAATTGA	ATTTCTGTCA	AACCTCGCTC	AACCAGATAT	3000
	TGCAGTTATA	ACTAATATTG	GTGAGTCACA	TATGCAAGAT	TTAGGTTCGC	GCGAGGGGAT	3060
10	TGCTAAAGCT	AAATCTGAAA	TTACAATAGG	TCTAAAAGAT	AATGGTACGT	TTATATATGA	3120
	TGGCGATGAA	CCATTATTGA	AACCACATGT	TAAAGAAGTT	GAAAATGCAA	AATGTATTAG	3180
15	TATTGGTGTT	GCTACTGATA	ATGCATTAGT	TTGTTCTGTT	GATGATAGAG	ATACTACAGG	3240
	TATTTCATTT	ACGATTAATA	ATAAAGAACA	TTACGATCTG	CCAATATTAG	GAAAGCATAA	3300
	TATGAAAAAT	GCGACGATTG	CCATTGCGGT	TGGTCATGAA	TTAGGTTTGA	CATATAACAC	3360
20	AATCTATCAA	AATTTAAAAA	ATGTCAGCTT	AACTGGTATG	CGTATGGAAC	AACATACATT	3420
	AGAAAATGAT	ATTACTGTGA	TAAATGATGC	CTATAATGCA	AGTCCTACAA	GTATGAGAGC	3480
	AGCTATTGAT	ACACTGAGTA	CTTTGACAGG	GCGTCGCATT	CTAATTTTAG	GAGATGTTTT	3540
25	AGAATTAGGT	GAAAATAGCA	AAGAAATGCA	TATCGGTGTA	GGTAATTATT	TAGAAGAAAA	3600
	GCATATAGAT	GTGTTGTATA	CGTTTGGTAA	TGAAGCGAAG	TATATTTATG	ATTCGGGCCA	3660
	GCAACATGTC	GAAAAAGCAC	AACACTTCAA	TTCTAAAGAC	GATATGATAG	AAGTTTTAAT	3720
30	AAACGATTTA	AAAGCGCATG	ACCGTGTATT	agttaaagga	TCACGTGGTA	TGAAATTAGA	3780
	AGAAGTGGTA	AATGCTTTAA	TTTCATAGAG	ATTAGTCGAG	GGACCTTTTA	СТТАТАААА	3840
35	TGATTTGAAT	TAATACTAAA	AGATTACAAA	GAAGAGGTGG	TTTTGTGTGT	AAATACAAAA	3900
55	TTGCCTTTTT	CTTTTTATGT	TAAATCTATA	AATTTGAAAC	TAAATCAAGG	TTAATTCTAT	3960
	GTACĀCACTT	TATATAGGAA	GTAGTTTGAA	TGTTTATATA	ATGTTTTACA	AAAAGATGTA	4020
40	GTATTATAAT	GTCTAATTTC	ACATGTGTTT	CAGTAAAATT	TGTTGTGGAA	TGTTAACGAT	4080
	ATACGTATTT	TASAAAAAT	TAATATTTT	GATTATTCGA	ATGATGCGTA	ACGCTTACAT	4140
	CTTATCTAAT	GCTAGCTTTT	TGACAAAAAT	ATGACAATCA	ATTAATGTGA	TTCTAATAAA	4200
45	TATTCGCAAA	TTGCTTTATT	GCGATTAAAT	TTTTTTGGTG	GTACTATATA	GAAGTTGATG	4260
	TAATTATAA	GAACTTATAT	GCAAAAGTAT	ATTGAGAAAT	AAACAGGTAA	AAAGGAGAAT	4320
	TATTTTGCAA	AATTTTAAAG	AACTAGGGAT	TTCGGATAAT	ACGGTTCAGT	CACTTGAATC	4380
50	AATGGGATTT	AAAGAGCCGA	CACCTATCCA	AAAAGACAGT	ATCCCTTATG	CGTTACAAGG	4440
	AATTGATATC	CTTGGGCAAG	CTCAAACCGG	TACAGGTAAA	ACAGGAGCAT	TCGGTATTCC	4500

	AGAATTGGCA	ATGCAGGTAG	CTGAACAATT	AAGAGAATTT	AGCCGTGGAC	AAGGTGTCCA	4620
	AGTTGTTACT	GTATTCGGTG	GTATGCCTAT	CGAACGCCAA	ATTAAAGCCT	TGAAAAAGG	4680
δ	CCCACAAATC	GTAGTCGGAA	CACCTGGGCG	TGTTATCGAC	CATTTAAATC	GTCGCACATT	4740
	AAAAACGGAC	GGAATTCATA	CTTTGATTTT	AGATGAAGCT	GATGAAATGA	TGAATATGGG	4800
10	ATTCATCGAT	GATATGAGAT	TTATTATGGA	TAAAATTCCA	GCAGTACAAC	GTCAAACAAT	4860
10	GTTGTTCTCA	GCTACAATGC	CTAAAGCAAT	CCAAGCTTTA	GTACAACAAT	TTATGAAATC	4920
	ACCAAAAATC	ATTAAGACAA	TGAATAATGA	AATGTCTGAT	CCACAAATCG	AAGAATTCTA	4980
15	TACAATTGTT	AAAGAATTAG	AGAAATTTGA	TACATTTACA	AATTTCCTAG	ATGTTCATCA	5040
	ACCTGAATTA	GCAATCGTAT	TCGGACGTAC	AAAACGTCGT	GTTGATGAAT	TAACAAGTGC	5100
	TTTGATTTCT	AAAGGATATA	AAGCTGAAGG	TTTACATGGT	GATATTACAC	AAGCGAAACg	5160
20	TTLAGAAGTA	TTanAGAAAT	TTAAAAATGA	CCAAATTAAT	ATTTTAGTCG	CTACTGATGT	5220
	AGCAGCAAGA	GGACTAGATA	TTTCTGGTGT	GAGTCATGTT	TATAACTTTG	ATATACCTCA	5280
	AGATACTGAA	AGCTATACAC	ACCGTATTGG	TCGTACGGGT	CGTGCTGGTA	AAGAAGGTAT	5340
25	CGCTGTAACG	TTTGTTAATC	CAATCGAAAT	GGATTATATC	AGACAAATTG	AAGATGCAAA	5400
	CGGTAGAAAA	ATGAGTGCAy.	TCGTCCACCA	CATCGTAAAG	AAGTACTTCA	AGCACGTGAA	5460
	GATGACATCA	AAGAAAAGT	TGAAAACTGG	ATGTCTAAAG	AGTCAGAATC	ACGCTTGAAA	5520
3 0	CGCATTTCTA	CAGAGTTGTT	AAATGAATAT	AACGATGTTG	ATTTAGTTGC	TGCACTTTTA	5580
	CAAGAGTTAG	TAGAAGCAAA	CGATGAAGTT	GAAGTTCAAT	TAACTTTTGA	AAAACCATTA	5640
35	TCTCGCAAAG	GCCGTAACGG	TAAACCAAGT	GGTTCTCGTA	ACAGAAATAG	TAAGCGTGGT	5700
	AATCCTAAAT	TTGACAGTAA	GAGTAAACGT	TCAAAAGGAT	ACTCAAGTAA	GAAGAAAAGT	5760
	ACAÃAAAAAT	TCGACCGTAA	AGAGAAGAGC	AGCGGTGGAA	GCAGACCTAT	GAAAGGTCGC	5820
10	ACATTTGCTG	ACCATCAAAA	ATAATTTATA	GATTAAGAGC	TTAAAGATGT	AATGTCTTGA	5880
	GCTCTTTTTT	GTTTTCAATA	ATTGATTCTC	TGTAGATATC	aAAGTaCTAA	CGTTTTAAAG	5940
	GTTAAATATT	TAATTGGATT	GAGATCTGTA	TGCGGTTATA	TCaTTCTGTG	TAAATATGGT	6000
15	TCTCCACCAA	ATGTGGTGAG	TATATAATTT	AAAGAACTAT	ATTAAATTTA	AGAATAATCG	6060
	AACATAAATA	AACTTTATGA	AATTTCAGTA	TCATGTTCTT	АТААААААСА	ATAGGGCTTT	6120
	TTGctGACGC	TAGTGCGCGA	ТАААТААТАА	GTTGAATATA	AAAAAGATCA	CTGCCAATCA	6180
50	TTCGTTTAAT	GGCAGCGATC	TTTTTTTATTT	AATTATTTCT	CTTTCCACTG	CAACATTTGA	6240
	TAACCAATCC	СПССВПСТСТ	מידה מידה מידידידידידידידידידידידידידידידידידידיד	ىلىكى ئىلىلىلىلىكىكىلىكىلىكىلىكىلىكىلىكىلىكىلى	CCTCATCACA	ጥጥረነጥር፣ እ.አ.አርነጥ	6200

CCATATATTC	GTTTTAATAT	CATCTCATAA	GTGAGTACTT	TTCCTTTATG	ATTTGACAAT	6420
AGTTCTAACA	AGCTAAATTC	ATTTGGCGTC	AAATGTACCT	CCTGATTATT	AATAACAACA	6480
GATTTGGAGC	CAAAGTCGAT	GCTTAGCAAA	CCGTTAGTAA	ATACAATGTT	AGTTTCTTGA	6540
TGTGACTTAG	CGATTCTCTC	GATGACTCGT	ATTCGTGCCC	GAAGCTCATC	AACATTAAAA	6600
GGTTTAGTCA	TATAGTCATT	CGCACCGTTA	TCTAAAGCTT	GAATAATTGT	TTGTTCTTCT	6660
TGTCTTGCAC	TTATTACAAT	GATAGGAATG	TCAGTATGTT	GCCTGATTTC	TGAAATCAAA	6720
CATAATCCAT	CTTTATCTGG	TAAACCTAAA	TCTAATAAAA	TGACATCTGG	TTTATCAATT	6780
TGAATTTTAA	AGTGTGCTTG	TGTGGCATTG	TCGGCTGTAG	TTACATTGTA	ATAATCTAAA	6840
GTTAATGCAA	CATCAAGTAA	ATGTGTGATT	GCGTGATCAT	CTTCAATTAT	CAATATTTTA	6900
GATTGCATTA	TACGTCTCCT	TCGTTAAAGT	CTGTATATAT	ATTGAAATAG	AATATACTGC	6960
CGTGTGGTTG	GTTCGGTTTA	TATTGTAAGT	TTGATTGATG	TTTGTGTAGG	ATAGTCTGTA	7020
CTAAATATAA	GCCTAGTCCC	ATGCTTTCTT	TTTGGTTATC	TTTAAAATAT	TTATTTGATC	7080
CTGTGTAAAA	AGGCTCGAAT	ATCTTTTGTt	GTTCTTCTAA	ACTAATTCCA	GGTCCTTCGT	7140
CTATAACGGC	AAATTCGATT	TGTTCATAGC	TAGCATAACG	AATAGATAAA	TTGATTTTGG	7200
TGTCAGTAGA	AGTGTGTTTA	ACTGCATTTT	CAATCAAATT	GAAtAAAgCT	TGTAAAATCA	7260
ACTTACTGTC	AATGTGTATA	AACtGTAAAT	TTACTGAGGA	TGATACAGTT	ATACGCTTTT	7320
TTAAATGGCG	ACGTTCTAAA	ATACATATCG	ATTTCTTATA	CTA		7363

(2) INFORMATION FOR SEQ ID NO: 20:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10470 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

TTAACAATCG	ATAACCACAA	TACTTCTATT	GTAATTGTTT	AACGATTTCn	CGATTAAAAT	60
CATCTAAATC	GTCTGGTACT	CGACTTGTTA	CAATATTGTT	GTCTACAcTa	CTGACTCATC	120
AACTACATGT	GCGCCTGCAT	TTGATAAATC	TTTGCGTACA	TTTAATACTG	CTGTTAACGT	180
ACGACCTTTT	AAATCGTCTG	TATCTATTAG	TATTTGTGGC	CCATGACAAA	TGGCAAATGT	240
TGGTACATCA	TTTTTAGTAA	AGTATTTAGC	AAATGTGCCA	TATCGACCTT	CTGTATCTCC	300
ACCTABATCA	TCTGGTGAAA	ATCCTCCAGG	AATTAATAAT	GCATCATAAT	CTTCTGGTTT .	360

	ATTTGCAGTA	TCTCCAATCA	CTACAGTATT	AAAGCCTGCA	TTCTCTAATG	CCTCTTTAGG	480
	GCTTGAATAT	TCTATATCTT	CAAATTCGTT	TGCTAGAATA	ATTGCTACTT	TTTTAGTCAT	540
5	TGAAAATCAC	CTTTCTATAT	ATCATTGATA	TAATTACTAT	AGACAAGTAA	ATCAGTGATT	600
	AAACATACAA	GATATAAAAA	ATATTAAGCG	ACTGTCGCGA	TATCTAACCC	TAACACATCT	660
10	TATGTGGCAT	TTACTTAGAT	ACTAATTTAA	CCTTTTCTTC	AAGCTGATCT	AACAATCCAA	720
	TCCATTCATC	TATATCTTCA	ACACGTACTT	CATCAGGATT	TACATGATCG	ATATCCTCAA	780
	TAAACTTATT	TAAACGCGCT	TTTATCTGTT	CGATTGTTTG	CTGTTCATTC	ATAAAAAGTT	840
5	AACTCCTTTT	ATTTTGTTTT	CTTTTTCATT	ATTATCCTAA	CAGAAATTGC	GTTAAAGCGA	900
	TATAATCTTA	GCTATATTTA	TGACATTCAA	ATTATTTTGA	СТТТТААААА	TCCCCTTTTC	960
	AATTAACTAA	AATTAAGAGA	TAATTTGTTA	CGAGTGATAA	TACGAaGkGG	Tatcataccg	1020
20	ATATGAACCA	aatagaaaga	AGGAAGTTTA	AGACGATGAA	TAGCGTCAAA	TTGAAGCAAC	1080
	CTGTTAGCAT	TTACAATGAT	CCATGGGAAG	TGAAATTTAT	ATACATTTAA	ATTTCATGAG	1140
	ACAATAAACG	TTGATTTAAT	GCGTTTTTTT	GCCTTTTTTA	TTTTCCTTAT	TTTTTCTGTT	1200
25	TTACAACAAA	ATGGTATCAA	AAATGGTATC	ATTTGTAGTT	ATTTTAGCTT	CACATATTAA	1260
	AACAACCACA	CTCCTAAATT	AATAGGTGGT	GTGGTTTTGT	TGGTTGTGTG	GGGATAAAAA	1320
	TAACCGCATC	AGTTAAGATG	CGGTTATCTA	GCAAGGGCCA	CGTATTTATA	AATACGTTTA	1380
10	GAATCTCTTC	GGCAACTTTG	CTATAGACAG	TCTATGCTGT	TACTAAATTA	TACCACCACA	1440
	CAAACCTACT	CCCATTCAGG	AACACAGAGC	TTTGTCGCTC	GTCAGCAACG	TCATATGAAT	1500
15	TCTCAGTTCA	TGTTGTGGTG	ACACTTTAAA	CGGTCTGTGC	CAGTAGCGAC	CGAGTCATTT	1560
~ .	CAAGAATGAC	CATTTCACAT	TTATATTATA	ACACTTGTCG	TGCGTAACTG	TATAGTTTTT	1620
	CAGTTGTATT	TAAAGTTAAG	TTATCTACTT	CGCGCTTTCC	TTGCCTTAAT	TGTGAAATTA	1680
10	CATATTGCGC	TACGCCAGTT	TGTTTGTGAA	TTTGGTAACC	TGTTATATCA	CTTTTGATCA	1740
	ATTCAATTAT	TTTTAATTTA	TAATCACTCA	TATTATCTAC	GTCCATTCTT	TTTATCTAAA	1800
	CAATAAAAAT	GTGTCTTTCT	CCCGATAAAT	AATAACAATG	GTAGGCTTAA	TAAAAACAAT	1860
15	ATTAAATACA	TTTGTTCTGT	CATAATTGAA	AACCTCCAAA	ТААТАТТАТА	TTATATAAGT	1920
	GTAAGGAGGA	GCCATCAGGC	TCCAAGCATA	ATGTTAATCT	TTGTTGTTTG	GCTTTCGGTC	1980
	TAGGTAGCCG	AGATGCCaTT	CTCTAAGTTG	TTTTAACACT	TCTGGAATTA	TCAGTACTGC	2040
50	CAATACTTGA	TGTTCTAGAA	GTGTTTTTAT	TATGTCTAGC	ATGAGGCTTT	TCACCTCCTT	2100
	ACACATAATT	TGTAAGTCAT	CAACTAACCT	ACAAATATAA	TTATACTAAA	CAAATGTTTA	2160

	GTTATCTACA	TITAAATCTT	GAGAGAAATG	TTAAAAAGTT	CTAGTAAAAT	AATAGCACAT	2280
	TTTATCTTTA	AATGTAAATA	GAAAGCAGGT	ATGTAACGCA	CCTGCTTAAA	TAGaCATGAC	2340
5	TATGTCATTC	TAACTGATTT	CTCCCCATAA	GTCACCTAAT	ATCTGATTAG	GTGGGGCAGA	2400
	ACCATTCCAT	GTTCTAATAG	GCAAGTAATA	ACGTTGCCCC	TCCCATGTAT	ATCCTACCCA	2460
10	AACATGACCA	TCTTGTAACA	TCACTTCTGT	ATAATCACAA	TACCCACCAG	GTTGGAACTG	2520
,,,	ATAACCCACT	GGACAAGATA	AGAATGGCCC	CACTTTTCTT	ACTGTGATTG	GTTGATTGCC	2580
	GTTTGTGAAT	CTAGCACTTT	CTTCCATGTA	GTAAGTACCA	TATTTATTAC	GTTTCCATGC	2640
15	ACTTGCAACT	GGTTTAACTG	TATTACTTGA	AGCGCTTGAC	TCATTAGAGA	CAGTGGCAAC	2700
	CGGTATTTTA	CCATCCATGT	ACGCCCTAAT	CTGCTTGATA	AAGTAGTCTT	TAAGTTGCAA	2760
	CCCCTTGTCT	TCTGGCAATA	GACCGCGAGT	TACTGGGTCA	AAACCAGTGT	GTAAAACCGA	2820
20	ACTTCTATGA	GGGCATGATG	TTGAAGTAAA	TTCATTGTGC	AATCTGATTG	TATTTCTGTT	2880
	TGCTGGTAAT	CCCCATTTTT	TCAACAATCT	AGCGCATTCT	TGGAAAGTTG	CCTGTTCATT	2940
	TTTTAAGAAT	GTCGCGTTAT	CTGCGCCCAT	TGATTGACAT	ACTTCAATAC	CGTAATAATA	3000
25	TTTATTACCT	ATTTGATTAG	CGGTATGCCA	ACCTACTTGT	GATTCATCTA	AGGCTTGCCA	3060
	AACTGTGTTG	CCTGATACGT	AACTATGCGC	AATGCCCGCT	TCTAATCTTG	ATAAAGGTGC	3120
	ATTTACTAAT	CCGTTACGAT	ATGCTTCAGC	AGTCGCCCCT	TTGCTCCCTG	CGTCGTTGTG	3180
30	TATAACTATA	CCTTTAGGGT	TACTACCACG	CTTAGGTAGG	TCATAACCTT	TAACCACATC	3240
	TTTGATGATT	TTAAGTTCTA	CTGCTTTAGG	TTGTGGCTTA	GCTGTTTCTT	TTTTAGGTGC	3300
35	TTGTGTAGGA	GATTGAACTG	ATCGTGGCGC	TGTCTCACTT	TTAAAATTCG	GACGGATAAA	3360
	CCACATAGGG	AAATCATAAG	CATGTTGTCG	TCTTGTAACT	TTTTCCCAAC	CCCAGCCGGG	3420
	TIGTTCGATT	CCGTCAGTCC	AGCCACCGCC	TAGCCAATTC	TGCTCATATA	CAATGATGTA	3480
10	ATCTAAAGTT.	GCTTCAATTA	CCCATGCAAC	GTGACCATAT	CCAGCACCGT	AGTTGCTACC	3540
	GAATACCACC	ATGTCGCCAG	GTTGTGCTAA	GAAGTCCGGT	GTATTTTGGT	ATACAGTAGC	3600
	TAATCCGTCG	AAGTTGTTAG	CGAACGGAAT	ATCTTTTGCA	CCTAAACCTT	TTAGAAGTAA	3660
15	TCCAAACAAA	ACTITCCAAC	CAGCATTGGC	ATAATCAAAG	CATTGAAATC	CATACCATAA	3720
	GTCCACATTG	AATTGTTTTC	CCTCAGAAGT	TTTCAACCAC	TCTATAAACT	CATTTTTAGT	3780
	TAATTTTGCT	TGCATTGTCG	CCACCTCCAT	GATGATACTC	ATTCACATCA	AAGCCAACAT	3840
50	CGTTAGAGGC	GTCTGTGAAA	GGTTGTGATG	TATCATATTC	TTTTGGTGcT	TTCGCGCTTA	3900

	TTGGGTCAGT	AATAACGCCA	ATACCTGTAA	GTAACGTGAG	GATAGCGCCT	ATAATTGCGC	408
	TAGCTTGATT	TAATTGAGTA	GATAAATCTA	ATCCGAATAA	ATCCGTGACT	TGCTTGATAA	414
5 .	ATAGCAACAA	TGCTCCAACT	AAACCAGTTA	GTACTGCTTT	GTTTTTGAAT	CTCAATTTCC	420
	AGTTAATATC	CATTTGTTTG	CTCCTTTTAT	CCAAAATAAA	AAAACGACTA	AAAATTAGTC	426
	GTTTAAAATT	ATTCAATGGT	CAATGTCGGA	GATCCTGAAT	AAACATCACT	TATAGTGACG	432
10	TACAACATCC	CTGAAGGATT	ACTAAAGTTG	ATATTTTTAC	TTGCAACTCC	GCTATTGACT	438
	CCTGATATTC	CTAAATCACT	TGACCCTAAA	TTAGTTTGCG	AAATCCTCAT	TATACCGCTA	444
15	CGTACATTTT	CTATTGTCAC	CTGATAACTT	TTATTGGGTT	CAACTCCATT	TATTGTCCAT	450
	TTTGCTGTTG	ATTCTTCTAT	GCTATCCGGA	TATTTATTTT	TAGGTAAGGG	TTTTATTACA	456
	AAAGATGAAG	GCTTTTTCCA	TACTTGGATA	TTTCCAGCAT	ATACTTTTGT	ATATTCTTCA	462
20	CCTTCGTAAA	TAAACTTCTT	TACATTTTTA	AAATTACCTT	CCATAAAAAT	CACCCTTTAA	468
	TTAAATATAA	CGTATTCGGG	TCTTTTTGAT	ATATATAGTT	ATATTCATTT	TCTGTTCCTG	474
	TCCAAATTTT	AACCGTCGGT	TGAGATGCGC	TTTTTAGTTG	ATTAAATTA	TCCGCTTGTT	480
25	GTTTAGTAAA	AGCTTGAGAT	GACAAAACAT	ACCGCTCGTC	ATGATTATGA	TTTTTTGGAG	4860
	CATATAAATC	ATTTAGTGTT	TGTTTGAATT	CCTCAAAATC	TTCTGTATTA	ACTITIGAGE	4920
	CAATCTGTTG	CAATACACTT	TCTGAAATAG	AGTTGTTTTG	TATTGCTTCT	GCTAATTCTC	4980
30	TTAATGTGTT	CATAGATTCA	GGCGCGCTAT	CAACTAGTTC	AGCAATTTTT	GTATCCGTAT	5040
	ACGTTTTAGA	GTCGTTGAGA	GTTGTATCTT	TGATTTTTTC	AACTTCTTGC	AATTTATTTT	5100
_	CTAACCCTTC	AACATTTGCG	ATATTGATTT	TGTCCAATAA	CTCAGGTTCT	GCTTTGATAT	5160
35	CTGTATCTTT	ACCATCAATT	TGCCACATTT	TAGTGTCAGG	ATTGATTGAT	ACTACAGTAC	5220
	CGTTTTTACC	GGGTGCGCCT	TGTTCTCCTT	TTTTACCTGC	TTCACCTTTT	GCTCCAGGTT	5280
10	GTCCCGGTTC	ACCTITATCA	CCTTTCGCAC	CTTTAAATCT	ACTITCATTC	TTTTCGATGT	5340
	AAGAAATGAC	ATCTTTATCT	ATTTTCTCTT	TAAAGTCTTT	GCTCAATAAA	TCTGTCGCGT	5400
	TATCTTTTAA	AATTCTCGTA	ATAGCATCAT	CTACCAATTT	AACATCGATT	TCTTTTGCTA	5460
15	CAGCAGATTC	AATACCACTA	TCAACGATAT	TGAAAGAAAA	GTTTGCGACA	TGTATTTTTT	5520
	CTTCTTCTTT	CTCTAAAAAC	AGCTTACAGC	GAACATAACC	AGCGTGTTTG	ATAACCTTTT	5580
	TAGGTATCTT	GTAGGTAAGG	AAACCTTTTA	CAACATCGTC	GATAATAAGG	GGCTCATTTT	5640
50	TGAATATAGA	GCCATCTTCC	ATAAACAAAT	GTAATCTAGG	TGTTAAGCCA	TGTGCTTTTA	5700

	CAACATCTTT	TATTTTGTAC	ATTTACACAC	CTCTTTATTT	ATATTTATCC	CTTGTGAAGT	5880
	AGATACCTTT	TAAGCCGATT	TGTTTATATA	ACTTAGCGAT	TGTACTTGCT	TGATGTTGGC	5940
5	ACCACTCTAT	AGCAGTAGCG	TATTGGTGGG	TAGCTGGATT	CTTAGGATTC	CATCTAATTC	6000
	GGTACAATGT	GTTTTGACCT	TTATTGATGT	AATCCTTTCT	TACGAAGCTA	GCACCGCCCA	6060
10	TGATTGCTTT	TGCTGGAGAT	GTCCAACCTT	TATTCCTTGC	AAACGTCATT	GCGTAGTTAG	6120
,,,	GATTGTTGTC	GTAAGCGCCA	ATGCCGAAGT	AGTTGTATAC	TCCATCTTTT	CCGTTAGCGA	6180
	AGTTACTTGT	TCCATATCCA	CTTTCTAAGA	AAGCATGCGC	GATTAAATAA	ATTTCATTAA	6240
15	TGTTGTGCTT	TTTACAAGCT	TCTGCGAACG	CTTTACCTTG	ATTATTCAAT	GTTCCCTTAC	6300
	CTTTAAGTAT	CTTATTAAGT	GCGCTAACTG	AAACACCTTG	ATACTTGCCT	AAATTAAGCA	6360
	TTTGGTAGCA	TTGTGTGTTA	CTTTCCCATA	TACGCTTTAC	ATTCATTGCT	GAACTCGTTT	6420
20	GTGCTCGTGT	AGCGTTAscC	AACCCCAAGC	ATTAGATTTT	TTCGGGTTAC	CTCTTGCCAT	6480
	TTGTTTATCC	AGTGCTTGTT	TGAATGTATA	AGGACTCGTT	TCTGTTATGA	TCTGCGGTTG	6540
	TTTAGATGCC	GAACCATTGT	TGGCTGTTGG	TGACGAGTCT	CTTACATTAG	CTATATCAGC	6600
?5	GTTTTTATTA	TCTACCATAA	CTTTTATTCT	AGATTTTGTT	ACTGTTGGCT	TAGTTATAGA	6660
	ATTTAATAAT	TTTTCTCTGT	TTTTAAATAT	ATTAAGTAAT	GCCTTTTCTA	ATGCTTCGTA	6720
	TTTATCTTTA	GGAGGAACAC	CGTTGTCAAT	CATATTCCAA	TTAACATGTT	CCAACATTGA	6780
30	ACGCCAAATG	CTGTCGTCTA	CTTTTAAATT	TTCAATACTT	AGAGGTATCT	CATATTTGGC	6840
	CATCATATCT	ACAGCTACAA	CCATTGCGTG	AATCTCATTA	AAAATAAATT	CATTTTTACT	6900
35	CGCACTATAA	TCTTCACATA	CGTCTATAAC	TATATAATCA	GGTTCATTAG	GAACTTCAAA	6960
	TACAGCTCTT	CTAGGTGCCC	AAATATTATG	TCTATCAACA	TAAAAGTGGG	GATATTCTAC	7020
	ATCCTGTTTG	TATTTCTTCC	TACTGTTATA	TAAACTTTCT	ACCGAGCTCA	TCGTTTGTGC	7080
10	GTTTCTAATC	ATTATTCCTT	TAGGTTTTTC	GAGTCGTCGA	TTACCTTCTA	CTATAAAGTG	7140
	TATATAAATA	TCTGGATAAT	TAACCTCTTG	GCTAGAAATA	GTGTACTTTA	TAGTTGTTAC	7200
	ATCTTTCCAA	ATTGGAACTT	TTTTATTATT	TTTTTCGTTA	TCATCACTAT	CATCTTCTGG	7260
15	TTTAGGTGCC	GGTGTAGTTT	TGTCTGGATG	ATATGGTGGT	CTAACAAAAT	ATTTAACCCC	7320
	TCCACCTGGT	CCATCATGAT	AAGAGTGTTT	AATTTTATAA	GGTGGACTTC	CTGTTGCGTT	7380
	ATTTGTATAC	CAGTTTTGAT	CTACGCCATA	CCAATAGTCT	TTTGTGCATG	GTCCCACTAC	7440
50	AATGTTTACA	TGTCCTGCCC	AACCACCAGT	CCAAACACCC	CAGTCGCCTG	GTTGTGGTAC	7500
	B	CONTROL S	mma mamma a a	A TOTOTA COM	CONTRA NOTICE	N COMPONENCE N CO	3560

	TAAATCCCAG	CATTGTGCTC	CCATTCCAGA	ACCAGGTACA	TCAATAGCTA	TTTTGTTTTT	7680
	AGCGATATAT	AACGCCCATT	CAACCACTTC	ACTAGCTGTG	GGCTTTCTAT	TTTTCGGATT	7740
5	AGGTAATCCC	ATGTATGCAC	CTCATTTCAA	TCAAAATAAA	AAGCCAGTGC	CGAAGCACTG	7800
	ACTCTTAACT	GTTATTTACA	TTTACCAAAC	CAGAAGCACG	CCCAGAAGCT	ATATCCTAAA	7860
	ATCCCTTTAA	GCATGGTAAT	CACCTCCTTT	AAATACCAAA	AACAGTTCTT	AGTAAAGCTA	7920
0	TGACAATCGT	ACTGAAGATA	GTCCCTATCA	AACCTAGAAT	CCACATTTTT	ATGTCTCTAA	7980
	TATTCTTGGC	ATTCTTTTCT	TTATTCTTTT	CATCTTCTAC	CTTGTCGCGC	TTTAATTCTT	8040
5	CAAAATTTCT	ATCTAATTTG	TCATAAATCT	TTTCTTGCGC	TCTAAGACTA	TCTTCTATTC	8100
•	TGTCGAATTT	TTCAAACATA	GTCTTATCAT	TTTCTTCTAA	TCGCGTTAAA	CGCCAATCTT	8160
	GTTCATGTCG	TTTGGTAAAT	CCAAACATTA	TGCCACCCAC	TTTATTCAAA	TTAAAAAGCC	8220
o	ACAAGCATTA	CACCTGTGAC	TTTTCATCTT	TTGTTTCTGG	ATATTTTTCT	CCAGTGATTA .	8280
	AAGCGTATTC	TTCTTTATCG	ATTAAACCCT	TGTCTACGTA	CCACTTAATT	TGCTCGTTTT	8340
	TATAGTAACC	CCAAACATAA	AAAGTTTTAA	TGTCTTTAAA	AGTTGGATAA	ATCATCTTCA	8400
5	TTATTTAAAC	GTCCCCCTCA	GTACTTGTTT	TGTTAGTTTT	CAGTTCAGTC	AACTGTTGTG	8460
	TTAACATAGC	GTTTTGTTGA	GCTAATTCCA	TTGTTAATAC	GTTTACTTGT	GCCACCTGCA	8520
	TTTGCATACT	CGCAACCATT	CCGCGAAGTT	CCTCATCACT	TAAATCTGAC	GCACTTTGTT	8580
0	GGTTTGATGC	ATTCGGTACG	TCTTCTTTTT	CGAAATTGCT	ATTGTATTTA	ATTTCGCCGT	8640
	TAGTGAAAAC	AAACTTTCTA	GGTTCGAACT	CTTCTTTAAA	TTTAATAGGC	ACATTGTTAT	8700
	CATCTACATC	TAAACTATTG	CGTAAACCGC	CAGTATTAAC	GAATCCGATA	ACTTCGTTTT	8760
5	TATCGTTTAC	TGTGATTTTC	ATTATTTCCA	CCCCATAATT	TTAGTTATAG	TAACTTTGTT	8820
	GGCATTCGCT	CCAGAACCTG	ATGTTTTACC	TAAATCAAAG	TACACATCGT	TATCTATTCT	8880
0	TAAAGTAGTG	CTACTTGTTT	TGGATAGTAA	GCACTCATAA	ATACCGCCAC	CGTTGCCGTC	8940
-	TGAGTCAACT	ACATTCGCTT	TACTCAATTG	AATCGCGTTA	GGTAATGCGG	TTAGTCCGAA	9000
	TCCCTCAATA	ACGCCACCTG	GATAAGTTCC	ACTTACCAAC	AAAATAGAAT	AGTTTGTGTA	9060
5	CGGTTCAGTT	AGATTGATTG	TTGTACCTAC	ACCATTTGCG	CCACCGTCGA	ACAATACCGT	9120
	TGATTTATGT	TCATTAGGAA	CTGTCCACTG	TTGCTCAAGT	CTGCCGTTTG	TGATTGATCG	9180
	TGTGTAAATC	TTTTTAGAGT	TATAAGGTGT	GAAGTTAAAT	AGCTTGTTTG	TATCATCTTT	9240
0 -		GATAAATAAC					9300
	TOTTOCATAC	TAATTACCAG	CACTTAAATA	TOCOLDATOO	CCTTGCGCNT	יושרוים א ליוויים איני	9360

	GAATTTATCA	TCTACATACT	GCTTAGCTTG	ATTTAAAGCG	TTGTTAGACG	TTTCTTCAAC	9480
_	AAATTGCTTA	GTTAAGTTTC	CATCATTCTT	TTTATAAAAC	GGGTACCATG	TGCCGTAGAT	9540
5	TTTGTATTTT	GTGTACTCAT	CGTTTGAATC	GTCTGGGTAC	CATGTTGCAC	GAGCAGTATT	9600
	ATTATCAACA	ACATAAACAA	CTAACACACC	AGATTTGCTT	GATGTATAAG	TTGATTCATC	9660
10	GAACGAAGAA	CCGTCATCAA	CACCATCTTG	TCCAGGCTTC	TCTAACGTGC	CTATATCCGT	9720
	CTTTTCTGGC	GCATCTGTTG	CATTAGTAAT	ATGAATAATC	CTAGATGTGT	TAACTGCGCT	9780
	TAAAACGCTA	TCTATGGACT	GCTCATACGA	TTCAATTGCT	TTACCGTAAT	CATCTGTAAG	9840
15	TTTAGACTTT	TGCCAATTCG	TTGTTGAATT	ACCTTTAACA	AGGTCAGCGC	CATTGATTTG	9900
	TTGTTCAACT	TCGTTAACAC	GTTCAAAAAT	CGCTTGCTCT	TTTTCAACTA	TTTTATCGAA	9960
	TTCAGCTGTA	ACAGCTTGTG	TTGCACTAGT	TTGCGTCGCA	GTAATAGCTT	GTATAGCTTC	10020
20	GTTTTGCTTG	ATTTCGATTT	GTTGAATGCC	TTTTGTCGCA	CTATCATTCA	CTTTTGCTAT	10080
	TAACGTTTGT	GTATCAGCCA	TATTTTGCTT	TAATTGGTTA	AAATCTTTAC	CGACAGCTTC	10140
	GATAGTATCT	TGAATAGATT	TGATATAAAC	AAGCTTTGTT	ATACCATCAA	ACCCACTAAC	10200
25	TAAATCATTT	TCAATATTGA	AGCTAAATTG	ACGTTCAACA	ACAACATTAT	TACTCCCGTT	10260
	TTGTGTAAAG	AATGCCTGAG	CATGCACCTT	GCCTGAATGT	TTTAAAAATT	CATTCGGTAT	10320
	CACATACTGC	AAACGCCCAT	TAATTGCGTC	TACTATCGTT	AATTCGTCTG	AAATATAAGC	10380
30	GCCTCTATCT	ACGTTATAAT	CATCGGTTTT	TAAnacgata	GATGTTTTAA	CATGTTCAGA	10440
	ACTTATAGAT	AAGGGTCTGT	TATnCTTAGT				10470

(2) INFORMATION FOR SEQ ID NO: 21:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3647 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

40

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

ATCAGATCTT GAGAATCGAG TTATTAAGTC TATCGAAGAC TTAACTAAAA TCCAACCATT 60 CATGCCTACA CAAGATTTTG ATTTTAAAAC TAAAGAAATT CAATCAAACA TTTCTGAAGA 120 AAGATTTATC GAAATGATTC AGTATTTCAA AGAGAAAATA ACAGAAGGGG ATATGTTCCA 180 AGTTGTGCCA TCAAGAATTT ACAAATATGC GCATCATGCT AGTCAGCATT TAAATCAACT 240 TTCGTTTCAA CTGTATCAAA ATTTAAAACG ACAAAACCCA AGTCCATATA TGTATTATCT 300

55

	TCAAATTGTA	ACAACTAATC	CTATTGCAGG	TACGATTCAA	CGTGGTGAGA	CGACACAAAT	420
	AGATAATGAG	AATATGAAAC	AACTACTTAA	TGATCCAAAA	GAATGCAGCG	AACATCGTAT	480
5	GCTAGTTGAT	TTAGGACGTA	ATGATATTCA	TAGAGTAAGT	AAAATCGGTA	CCTCAAAAAT	540
	TACTAAATTA	ATGGTTATTG	AAAAATATGA	ACATGTTATG	CATATCGTAA	GTGAAGTCAC	600
	AGGTAAAATA	AATCAAAATT	TATCGCCAAT	GACAGTTATT	GCGAATTTAT	TACCAACAGG	660
- 10	TACCGTTTCA	GGTGCACCAA	AATTACGTGC	AATTGAAAGA	ATATATGAAC	AATATCCACA	720
	TAAACGGGGC	GTTTATAGTG	GTGGTGTTGG	ATACATAAAT	TGTAATCATA	ACTTAGATTT	780
15	TGCATTAGCA	ATTCGAACGA	TGATGATAGA	TGAGCAGTAT	ATCAACGTAG	AAGCTGGTTG	840
	TGGCGTTGTA	TATGATTCTA	TTCCTGAAAA	AGAACTGAAT	GAAACGAAAT	TGAAAGCTAA	900
	AAGCTTATTG	GAGGTGAGCC	CATGATCTTA	GTTGTAGATA	ATTATGATTC	CTTTACATAT	960
20	AACCTAGTGG	ATATTGTTGC	TCAACATACT	GACGTCATTG	TTCAATACCC	TGATGATGAT	1020
	AATGTGCTGA	ATCAATCGGT	GGACGCTGTT	ATTATATCTC	CTGGTCCAGG	GCATCCATTA	1080
	GACGATCAAC	AGTTAATGAA	AATCATATCA	ACCTATCAAC	ACAAACCCAT	TTTAGGTATT	1140
25	TGTTTAGGGG	CTCAGGCACT	GACTTGTTAC	TACGGTGGAG	AAGTCATTAA	AGGCGACAAG	1200
	GTTATGCACG	GCAAAGTTGA	TACACTAAAG	GTTATATCGC	ATCATCAACA	TCTGTTATAT	1260
	CAAGATATAC	CAGAACAGTT	TTCAATTATG	AGATATCATT	CATTAATAAG	TAACCCTGAC	1320
30	AATTTTCCAG	AAGAATTGAA	AATTACTGGA	CGTACCAAAG	ATTGTATACA	GTCATTCGAG	1380
	CATAAAGAAA	GACCGCATTA	TGGTATTCAG	TACCATCCTG	AATCATTTGC	TACAGACTAT	1440
	GGTGTCAAAA	TAATTACAAA	TTTCATTAAT	CTAGTGAAGG	aaggatgaaa	ACCATGACAT	1500
35	TACTAACAAG	AATAAAAACT	GAAACTATAT	TACTTGAAAG	CGACATTAAA:	GAGCTAATCG	1560
	ATATÁCTTAT	TTCTCCTAGT	ATTGGAACTG	ATATTAAATA	TGAATTACTT	AGTTCCTATT	1620
40	CGGAGCGAGA	AATCCAACAA	CAAGAATTAA	CATATATTGT	ACGTAGCTTA	ATTAATACAA	1680
10	TGTATCCACA	TCAACCATGT	TATGAAGGGG	CTATGTGTGT	GTGCGGCACA	GGTGGTGACA	1740
	AGTCAAATAG	TTTCAACATT	TCAACGACTG	TTGCTTTTGT	TGTAGCAAGT	GCTGGcGTAA	1800
45	AAGTTATAAA	ACATGGTAAT	AAAAGTATTA	CCTCaAATTC	aGGTAGTACG	GATTTGETAA	1860
	ATCAAATGAA	CATACAAaCA	ACAACTGTTG	ATGATACACC	TAACCAATTA	AATGAnAAAG	1920
	ACCTTGTATT	CATTGGTGCA	aCTGAATCAT	ATCCAATCAT	GAAGTATATG	CAACCAGTTA	1980
50	GAAAAATGAT	TGGAAAGCCT	ACAATATTAA	ACCTTGTGGG	TCCATTAATT	AATCCATATC	2040
	ACTTAACGTA	TCAAATGGTA	GGCGTCTTTG	ATCCTACAAA	GTTAAAGTTA	GTTGCTAAAA	2100

	AAGCAACACT	ATCTGGTGAT	AATTTGATAT	ATGAATTGAC	TGAAGATGGA	GAAATCAAAA	2220
	ATTACACATT	AAATGCGACT	GATTATGGTT	TGAAACATGC	GCCGAATAGT	GATTTTAAAG	2280
5	GCGGTTCACC	TGAAGAAAAT	TTAGCAATCT	CCCTTAATAT	CTTGAATGGT	AAAGATCAGT	2340
	CAAGTCGACG	TGATGTTGTC	TTACTAAATG	CGGGTTTAAG	CCTTTATGTT	GCAGAGAAAr	2400
	TGGATACCAT	CGCAGAAGGC	ATAGAACTTG	CAACTACATT	GATTGATAAT	GGTGAAGCAT	2460
10	TGGAAAAATA	CCATCAAATG	AGAGGTGAAT	AATATGACGA	TTTTATCAGA	aattgttaaa	2520
	TATAAACAGT	CACTTTTACA	AAATGGCTAT	TATCAAGACA	AACTTAATAC	CTTGAAAAGT	2580
15	GTGAAGATTC	AGAATAAAAA	ATCTTTTATA	AACGCAATTG	AGAAAGAACC	AAAGCTAGCA	2640
70	ATTATTGCAG	AAATTAAATC	GAAGAGTCCT	ACAGTTAATG	ACTTACCTGA	ACGAGATTTA	2700
	TCGCAACAAA	TCTCAGATTA	TGACCAATAT	GGTGCAAATG	CCGTGTCCAT	TTTAACTGAT	2760
20	GAAAAGTACT	TTGGTGGTAG	TTTTGAAAGA	TTACAAGCAT	TGACGACAAA	AACAACATTA	2820
	CCCGTATTAT	GCAAAGACTT	TATTATAGAC	CCGCTTCAAA	TTGATGTTGC	TAAACAAGCT	2880
	GGTGCATCTA	TGATTTTATT	GATCGTTAAC	ATCTTATCTG	ATAAACAATT	GAAAGATTTA	2940
25	TATAACTACG	CTATATCGCA	AAATCTAGAA	GTGTTAGTTG	AAGTACATGA	TCGCCATGAA	3000
	TTAGAACGTG	CCTATAAGGT	TAATGCTAAA	TTGATTGGTG	TAAATAACAG	GGACTTAAAA	3060
	CGATTTGTTA	CAAATGTGGA	ACATACAAAT	ACTATTTTAG	AAAATAAAA	AACAAATCAT	3120
30	TATTATATTT	CTGAAAGTGG	TATTCACGAT	GCATCTGATG	TAAGAAAAAT	CTTGCATAGT	3180
	GGTATCGATG	GCTTACTAAT	AGGTGAGGCG	CTTATGCGTT	GTGACAATCT	ATCTGAATTT	3240
	TTACCACAAC	TGAAAATGCA	AAAGGTGAAG	TCATGATGAA	ATTGAAATTT	TGTGGCTTTA	3300
35	CATCAATAAA	GGATGTTACA	GCGGCCAGTC	AATTACCTAT	TGATGCGATA	GGTTTCATCC	3360
	ATTATGAAAA	AAGTAAAAGG	CATCAAACAA	TTACCCAAAT	AAAAAAGTTA	GCGTCTGCTG	3420
40	TTCCAAATCA	TATCGATAAA	GTATGTGTCA	TGGTAAATCC	TGATTTAACA	ACAATTGAAC	3480
70	ACGTATTAAG	CAATÁCGTCA	ATTAACACAA	TACAGTTACA	CgGCACAGAA	TCTATTGATT	3540
	TTATACAGGA	AATTAAAAAG	AAATATTCAA	GCATTAAAAT	CACTAAAGCT	TTAGCTGCaG	3600
45	ATGGAAAACm	TWATCCCAAA	caTtAAtnAA	tnTTAgGGGG	TCCGTGG		3647

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5966 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	CcAcCTTGAC	CACCTTTACG	TGGAATCTTT	TCmCCTkGAG	CAACaTCGaT	AATATATATT	60
5	GAAAGTCAAC	AAGTTCTGGA	CTAAATGTTG	CTGCTAAGTT	ATCGCCACCA	GATTCTATGA	120
	AAATTAGTTC	TATATCGTCA	TGACGTTCTA	ATAATTCGTC	TATTGCTGCA	AAGTTCATAG	180
10	ATGCATCTTC	ACGAATCGCA	GTATGAGGAC	ATCCACCAGT	TTCAACACCA	ATGATACGAC	240
10	TTTCAGGTAG	AACTCCTGAA	TTTACTAATA	TCTTTTCGTC	TTCTTTTGTA	TATATATCAT	300
	TTGTAATAAC	GCCGATACTC	ATTTCTTTTG	AAAGACGTTT	TACAACTTTT	TCAATTAATT	360
15	GTGTTTTACC	TGCACCTACA	GGACCACCAA	TACCAATTTT	AATCGGATTT	GCCACAATTA	420
	TAACCTCCTA	TGATATGAAA	tTCTAACATT	Gacgttctca	TGCGCCATTT	GATTTAGTTC	480
-	TAAACCAGGC	GCTGTCATGC	CAAAATCTGC	TTCTTTTAAT	TCGAAAATCT	GCTTTCTTGT	540
20	TCCTTCTATA	TAAGGAATCA	TGTGAGTAAC	TATCTTTTGA	CCAGCAGTTT	GTCCAAGTGG	600
	AATAGCACGA	ACAGCATTTT	GAGTTAAACT	TGAAACATTT	TGATATAAAT	AGTAATCAAT	660
	AATCGTTTCA	ATATCTACAC	CTAAATGATG	GCCTAGCATA	GTAAAACAAA	TAGCTGGATT	720
25	TnACTTTGCT	TTCTTATCTT	GCATTTGTTG	ATGATACCAA	GCAATCCATG	GGCTATTATA	780
	AAGTTCTAAA	GCCAATTTAA	CCATGCGAGT	CCCCATTTGT	kTTGCACCAA	CACGTGTTTC	840
30	TTTAGGTAAG	TTTTGTACAT	ACATCAGTTT	ATCTATGTGT	AATACTTTTT	GTGTATCATC	900
	ATTTTCCAAT	GCATCATAAA	CTAAACGCAT	GGCTAAACCA	TCAGAATAGG	TAAGTTGCTC	960
`;.	TTGTAAAAAC	ATTTTTAACC	AAGCAATAAA	AGTATGATCG	TCATGAATTA	TATTTCGTTG	1020
35	AATATATGTT	TCAAGACCAA	ATGAATGACT	GAAAGCACCT	GTTGGAAACT	GTGAATCACA	1080
	GAACTGAAAT	AATCTTAAGT	GTGTATGATC	AATCATGAGA	ATGCCCTATA	TGTCTGAAAG	1140
	CCTTATTAAC	TTTACGGTCT	TCTCGAACAT	ATGGGATGCC	TAAACTTTTT	AATAAATCTT	1200
40	CAACTAAATA	ATCATATTGT	ACTAGCATTT	CAGTCTCTGT	AAATTGTGCT	GGCAAATGAC	1260
	GATTTCCTAA	TTGATGGGCT	ATATCTCCCA	TTTCTTGCAA	TGTTCTTGGT	TGAATCACTA	1320
45	AAAGATCTTC	TGAATTAACA	TCCACAATAA	TCATATTATG	GTCATCTGCG	TATAAAATAT	1380
	CTCCATATTG	TAAGTCAATA	GGTTGTTTTA	AACGAATGCC	TATTTCAGTG	CCATGGTCTG	1440
	TAACGACTCT	TTGAATACGT	TTAACAAGAT	CTGAATTTTC	AAGGTATACT	TTTTCGACGT	1500
50	GCTTTTGTTT	TTCTGAATTT	GACAAATTGG	CAATATTGCC	TTGGATTTCT	TCAACAATCA	1560
	TTCTATGTTC	CTCCTAGAAT	AAGAAGTÄTC	TTTGAGTTAA	TGGTAACTCA	GTTGCTGCAT	1620
	TACTTGTAAT	TTTTTCTCCA	TCTACATATA	CTTCATATGT	TTGTGGATCA	ACGTCTAATT	1680

	GACGCACCAT	GCGTTTTAAA	TTTAATGCAC	GATTGATACC	ATTTTCATAA	GCAGTTTTAG	1800
_	ACACGAATGT	CATTGACGTA	CTTGTAAGGT	TTCCGCCGTA	TTGACCATAC	ATTTTACGGT	1860
5	ACTTCATCGG	TTCAGATGTA	GGTATAGAAC	CATTTGCATC	GCCATTTACG	GCAGAGTTAA	1920
	TTAATCCGCC	CTTTACAACT	AATTCAGGTT	TAACCCCAAA	GAAAATTGGG	TCCCATAAGA	1980
10	CAATGTCAGC	TAGTTTGCCC	GGCTCGATAG	ATCCTACATA	TTCAGAAATA	CCATGTGTAA	2040
	TTGCTGGGTT	AATTGTATAT	TTAGCGATAT	AACGTTTGAT	GCGATTATTA	TCATTATGTT	2100
	CAAAATCACC	ATCTAAAGGA	CCACGTTGTT	CTTTCATGCG	ATGTGCTACT	TGCCATGTTC	2160
15	GTGTAATTAC	TTCACCTACA	CGGCCCATTG	CTTGTGAATC	GGAACTAATC	ATACTGAATA	2220
	CACCCATATC	TTGCAGAACA	TCTTCTGCTG	CAATCGTTTC	TTTACGAATA	CGTGAATCTG	2280
	CGAATGCGAT	ATCTTCAGGA	ATAGCCGCAT	TTAAATGGTG	AGTAATCATT	ACCATATCTA	2340
20	AATGTTCATC	TACAGTATTA	TGTGTATAAG	GCAAAGTTGG	ATTTGTAGAT	GAAGGTAAAA	2400
	TATTTGAAAA	TGCAGCGGAT	TTAATTAAAT	CAGGCGCATG	ACCGCCACCA	GCACCTTCAG	2460
25	TATGGTACAT	ATGAAGTACA	CGGTCTTTAA	CAGCAGCCAT	TGTGTCTTCC	ATAAATCCTG	2520
	CTTCATTTAA	AGTATCTGCA	TGTAATGCAA	TTTGAACATC	AAATTCATCA	GCAACATCTA	2580
	ATGCATGACT	CAAAGCAGAT	GGTGTTGCAC	CCCAGTCTTC	ATGTACTTTT	AATCCAATTG	2640
10	CTCCGGCATT	GATTTGTTCA	ATGAGTGCAG	TTGGATTTGT	TGCTTGTCCT	TTACCTGTAA	2700
	AACCGACATT	AATCGGTAAA	CcTTCGGCAG	CTTCTAACAT	TCTATGAATA	TGCCATGGAC	2760
	CTGGAGTTAC	AGTTGTTGCT	TTAGAACCTT	CTGAAGCACC	AGTACCACCA	CCAATATGAG	2820
5	TCGTAATACC	ACTTTCTAAT	GCGACCTCTG	CTTGTTCAGG	AAAATAATTA	TGAACATGAG	2880
	TATCAATACC	ACCAGCAGTG	ACGATTTTAC	CTTCAGCGGC	AATGATATCT	GTTGTTGAAC	2940
•	CTATÃATAAT	GTCGACATTA	TCCATTATAT	CTGGGTTGCC	GGCATTACCT	ATGGCGAAAA	3000
0	TATAACCATT	TTTAATGCCT	ATATCAGCTT	TAACCACTTT	ATCGTAATCG	ATAATAACGG	3060
	CATTAGAAAT	GACAAGGTCT	GCAACGTTCA	CGTCATCACG	TGTTACACGA	GGATTTTGCG	3120
5	CCATACCGTC	TCTAATAGAT	TTACCACCAC	CAAAAGTAGC	TTCTTCACCA	TAAACCGCAT	3180
	AGTCTTTTTC	TATTTGAGCA	AATAGATTCG	TATCACCTAA	ACGAATGGAA	TCTCCAACAG	3240
	TTGGACCGTA	TAAGCTCGTA	TATTGATTTT	GCGTCATTTT	AAAGCTCATG	ATCTTTTCC	3300
0	TCCTTTTTTA	TTCACGTTTT	CAGCACCGTT	ATCTCCGAAT	ACACCTGCAT	ATTCATCATT	3360
	TTCATCAGTT	GGGCGATAGA	CACGTGACTC	ATCGATAGGA	CCATTGACCA	TACCACGAAA	3420
	АССААААТТ	ፐ ጥልርሬፕ•ኮፕሮር	СВССВТВТТС	ልልሮሞልልተጥ ርል	V Calabeledadadada	ጥልጥርርርር አርር ር	3480

	TTCGAAATCT	AATGCTGCAT	TTGCTTCATA	AAAATGAAAA	TGTGAGCCCA	CTTGAATTGG	3600
	TCGATCTCCT	GTATTTTCAA	CTTCGATAAC	TGTTTCAGGA	TGATGGTTAT	TAATTTCAAC	3660
5	CTCTGTACTT	TTTGTAATAA	TTTCTCCTGG	TATCATTIGA	CTGCCTCCTT	TAAACAATAG	3720
	GGTGATGTAC	TGTGATTAAC	TTAGTACCAT	CGGGGAACGT	AGCCTCGATT	TCGATATCTG	3780
10	TAATCATGTG	TTCGACACCA	TCCATGACAT	CTTCTTTGTT	TAGAATTTGT	CTACCATAAC	3840
	TCATTAACTC	TGCAACGGTC	TTACCATCGC	GTGCACCTTC	TAATAATTCA	TCGCTGATTA	3900
	AAGCTAATGC	CTCAGGATGA	TTTAGTTTCA	AACCACGTGC	TTTACGACGA	CGTGCAACTT	3960
15	CCGCCGCCAC	TACAATCATT	AATTTGTCTT	GCTCTCGTTG	TGTAAAATGC	AAATTAAAAC	4020
	CCCCAATTTC	ATATTAGATA	Caatttacaa	AATTTATATT	AATCCTAATT	GTTGTGATAA	4080
	ACAAGTAATA	TACAAAGTTC	AATGTGTAAT	TAGAAAATTA	TATTTTTAGC	ATATCCGATA	4140
20	TTGAAGCAAA	CAATCTAATC	GAAAACAAAT	AGTGGAATAT	ATTTATGTAA	AAACCAAAAT	4200
	AGTTTTTAAT	ATAACTTTTC	ATAGAATAGT	AGTATATTAA	TGAGTAATGA	TTCAAAGGAA	4260
25	AGGTGAAAGA	TTTGAAGATA	ATAGATGTGC	TTTTGAAAAA	TATATCTCAG	GTTGTGTTAA	4320
25	TTAGTAATAA	ATGGACAGGA	TTATTTATCT	TAATAGGATT	ATTTGTAGCC.	GATTGGACAA	4380
	TTGGATTAGC	GGCTATTGTA	GGTAGCATCA	TCGCCTATAC	TTTTGCGCGT	TTTATAATT	4440
<i>30</i>	ATAGTGAGGC	AGAGATTAAT	GATGGGTTAG	CTGGATTTAA	TCCAGTGCTA	ACTGCCATTG	4500
	CGTTAACAAT	CTTTTTAGAT	AAGTCAGGAT	TAGATATTGT	TATAACAATG	ATAGCAACTT	4560
	TATTAACGTT	ACCAGTTGCT	GCTGCAGTGA	GAGAAGTTTT	AAGACCATAT	AAAGTTCCGA	4620
35	TGCTGACGAT	GCCTTTTGTC	ATTGTGACTT	GGTTTACAAT	TTTACTTTCA	GGACAGGTTA	4680
	AATTTGTAGA	TACATCGTTA	AAGTTAATGC	CTCAAAACAT	TGAAACGGTT	AATTTTAGCA	4740
10	ACAATGATAG	AATaCATTTC	ATTCAGTCAT	TATTTGAAGG	ATTCAGTCAA	GTATTTATCG	4800
40	AAGCGAGTGT	AATTGGTGGC	GTATGTATTT	TAATCGGCAT	ATTGATAGCA	TCAAGAAAAG	4860
	CAACACTCTT	AGCTGTTATA	GCTAGTTTGT	TAAGCTTTAT	CATTGTAGCT	CTATTAGGTG	4920
45	GTAATTATGA	TGATATTAAT	CAGGGATTAT	TCGGTTATAA	CTTTGTATTA	ATGGCAATCG	4980
	CACTAGGATA	TACATTTAAA	ACAGCGATTA	ACCCTTATAT	TTCGACTTTT	TTAGGTGTGT	5040
	TATTAACAGT	AGTGGTGCAA	CTAGGTACAA	CAACATTGCT	TGAACCGTTT	GGCTTACCTG	5100
50	CATTAACATT	GCCATTTATT	ATCGTGACAT	GGATTTTATT	ATTTGCTGGT	ATTAAACATG	5160
	ACAAAGTAGA	TGCTTGATAG	TTAAATCAAA	CCTAATATTG	TTTGAATATC	ACCTTAAACT	5220
	ATACAGCGAA	TTGTATAGTT	TAAGGTGTAT	TTTTATGGAT	AAAATTAAGT	GCATACTTAA	5280

GTGTTAAACT	AGGAATAAAT	TTATATTAA	GTGTGTTGTG	TGGGGTGACT	AATATGAATG	5400
ATATGGATAA	TTCCTTTTTA	ATAACAACGG	AAATTCAAAG	AAAATGGATT	GAAAAATTCA	5460
AAGTAATTAG	AGATACATTT	AAGGCTAAAG	CTGAATATAA	TGATCAACAT	AGCCAATTTC	5520
. CATATAAAAA	TATTGAATGG	TTAATTAAAG	AAGGTTATGG	AAAATTAACG	TTACCAAAAG	5580
CATATGGTGG	TGAAGGTGCG	ACCATAGAAG	ACATGGTTAT	TTTGCAATCA	TTTTTAGGCG	5640
AACTTGATGG	TGCCACAGCA	TTATCTATTG	GTTGGCATGT	GAGTGTCGTA	GGACAAATTT	5700
ATGAACAGAA	ATTATGGTCT	CAAGATATGT	TGGAGCAATT	TGCTGTTGAA	ATTAATAATG	5760
GTGCATTAGT	TAATAGAGCA	GTTAGTGAAG	CTGAAATGGG	TAGTCCAACA	AGAGGGGGAA	5820
GACCAAGTAC	ACATGCTGTT	AAAGCTGATG	ATGGGTATAT	TTTAAATGGT	GTGAAGACAT	5880
ATACATCAAT	GAGTAAAGCA	CTAACACATA	TTATTGTTGC	TGCTTATATA	GAAGAATTAG	5940
AAAGTGTTGG	TTTTTTTTTA	GTAGAC				5966

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17310 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CTGTGTCATC	GCGAAATAGT	TAGGGTCATT	CATTAATCCT	TTTGAACGTA	TTTCATCAAA	60
ATATAACAAT	TTCATTAGTA	AAGGGGACTT	GTTCAAACCA	GCTATAATAC	AAAATAGACC	120
TATAGTCACA	CTGCTTATAA	TATAAGAGGT	AACGATCACT	TTTTTGCTAT	TACCTAACTT	180
AAAGATGATC	ATCCCTAAAT	AGAAATAAAT	GACTACAAAT	GCATATTTAA	CTGTAGATGC	240
AAGAACTTCC	TTAACCGTAA	TAAATATCAA	ATCATCAAAA	AATaGCaAAC	AArGCGTAAT	300
AATCATACGA	TATGTATACA	AAATAATGA m	AAACTGTmAA	AAATGATTTG	CCTTTAATAA	360
ATGGTTAGCG	AAAAACAGTA	AATAAACTAA	TATTAGTAAT	GTGATAAAGT	CAGCTATAGA	420
AACATTCACA	CCGGCAATAA	CCGAAGATTG	CTGAATAAAA	ACCGCTAAAC	CGATAAGTAA	480
CAATGTTAGT	AATTTACTAT	TGTGTTGATT	TTCCATTATA	AACGTCTTCC	ACTTCTTTAA	540
TCATTTTCTC	CTCAGTAAAA	CATTCTAAAT	AACGTTTTCT	AGATTGATTA	CTCATTTTGA	600
TGTAATCACT	GTCTATTAAA	TATTTTTCCA	GGACTTTAGC	AATAGTTTCG	GGTTGGTTGT	660
TCATCATACA	TATACCATTA	TCAGCTACTA	ATTCTGAAAT	ACCGCCAACA	TGACTGGCTA	720

بار د بغر

	TAAAATTATT	AAACGTATCG	TATTGTGATA	ATAAATGACT	CGCATTAATG	ACATTGCCCA	840
	AAAATGTGAC	ATCATTTTCT	AACCCAGCTT	GTACAACTTG	TTGCTGACAA	TCATTTAATG	900
5	TAGGTCCATC	GCCTATAAAT	GTAAAATGCG	CATGATTACT	GTTATGTAAT	TTCAATATCT	960
	CTATTGCCGC	GATTAGATTT	TGTGGCAATT	TTGGATAAGC	AAATCTTGCA	ATCATAACAA	1020
10	ATTGATGCTT	TGTCGGGGCA	TTAATCTGTA	AATCTTGTTT	ATTAGGCAAC	ATTCCAACTA	1080
	CTTCGCCAAT	ATTGTTATGT	GATTGGCTTT	TTAGCGTTTG	CTTAACAGCG	GGAACATCTG	1140
	CAATACCATT	ATGTATTGTG	GTTAATTTCA	ATCGATTAAA	TCGATATTTT	AACGCTAACT	1200
15	GTTTATCGAA	ATCTGAAACA	CAAATAATGC	TATCTGTAAT	AAGTGACATT	AATTTTTCGA	1260
	ТААСТАААТА	TAGAAATTTT	TTAGCTGGTT	TAACACCCTC	TGTAAAAGCC	CATCCATGTG	1320
	CAGTAAAAAC	TATACGTGTG	TCTTTCGATT	TCGAAATGAa	CTtCGCAATT	CGTCcGACCG	1380
20	TLCCAGCTTT	GGAAGAATGT	AAATGGATAA	CATCAGGTTT	AATTTTCGAG	AATAACTGTG	1440
	CTAACACTTT	GACAGCTAAA	ATATCTTGTT	TAAAGTCAAT	TGGACCTACT	AAATGTTCGA	1500
25	TAATAATTAC	ATTAACTCTT	GCATCTAGTT	GTTCAATCAT	TGGTCCATGA	TTGCCTACAA	1560
25	TGACATAAAC	ATCATIGTGT	ACGCAAAAAT	GGTTGGCGAG	TTGAATGAGA	TGTGTTTGTG	1620
	CACCACCATT	GTCTGCTTTA	GTAATACAAT	ATATAATTTT	CAACTGTTAC	AAACCCCTTT	1680
30	AATGCTATAC	TTTCAATTTC	TTAACATGGC	TATCTCATCA	GATGAATAGT	ATTTATAGCC	1740
	ATGCAAATCA	ATGATGGCAC	ATATTTCTTA	ATGCCATTTG	ATACTGTCTC	AAGGGATTCC	1800
	TCGTTATACT	GTAACAATTG	GTCACAATCT	TTAAAATATA	ACTTTTATTT	GAACTTATTA	1860
35	AGTAAATTAA	GACTACCTTG	AGCCTTCCCC	TGTAATAACA	ACCATCAATG	TTCTAATTGA	1920
	TATATATAGT	TCCATCATTA	AACTACCTTT	ATGTATATAT	TTCATGTCAT	ATTTCAGTTT	1980
	TIGTIGCGGT	GTTAAGTCAT	ATCCACCTTG	AATTTGCGCA	AGTCCTGTTA	ACCCTGGTGT	2040
40	AACAAGACAT	CTTTGCTCGA	AACCTATCAC	TTCTGAACTA	AATAATTCTA	CAAATTCCGG	2100
	ACGTTCCGGG	CGTGGTCCAA	TAAAACTCAT	TTCCCCTTTA	ACAACATTAA	TTAGTTGTGG	2160
45	TAATTCATCA	ATGCGTGTTT	TACGAATAAA	CTTCCCGACA	TTTGTTATAC	GATCATCATC	2220
÷	TTTATCAGCC	CATTGCGCAC	CGTTTTTCTC	TGCGTTTTTG	CACATCGAAC	GTAATTTGTA	2280
	TATTTTAATT	AATTTACCCA	TCTTCCCAAC	TCTAACCTGA	CTATAAATAG	GGTTTCCTGG	2340
50	CGAATCTATG	ACGATAGCAA	TGGCGAATAT	AACCATAATC	GGTAAAGTTA	AATAATAA	2400
	AACAATGCTT	AAAATTAAGT	CAATCGCACG	TTTAATTGGG	TAATAGCTTT	TTCTCACTTC	2460
	TTCTAGTTTG	TCTAATTTTC	TTTGATAGGC	ATAACCCTTA	TTATTATGGA	CAGCTTCAAT	2520

	AATTAAAGTA	ATCCTTTAAA	CCTGTTTCTA	CTGTATATTT	AGGAACAAAT	CCTAATGCCT	2640
_	TTAAGTTAGA	AATATCTGCA	TAAGAATGCT	TAATATCTCC	TTTTCGTGCT	TCTTTAAATT	2700
5	CATGCTCGAC	TGATTTTCCA	TATAATTCAC	CAATAATACG	ATAAACCTCT	AATAAATTAG	2760
	TAAAAGTGCC	TGTACCAATG	TTATAACCGT	GTCCAATTGC	ATCTTTGTGT	TCCATAATTA	2820
10	AGCGTACAGA	TTGAACAACA	TCATATACAT	ATACAAAATC	TCTAGTTTGC	AGTCCGTCAC	2880
	CAAAAAATGT	AAATGGCTTG	TTATGCTCAA	ATGAATCGAA	CATCTTTGAA	ATCACACCTG	2940
	AATATTGTGA	CTTAGGATCC	TGTCTTGGCC	CAAATACATT	AAAAAATTTA	ACAACCGCTG	3000
15	TTGGTATGTT	ATATAACGAA	CAATAATTTA	ATGTCGTCCG	TTCGCCGTAA	TATTTATCTA	3060
	TTGCATATGG	TGATAATGGT	AAGATTAATG	ATTGATCACT	TTTAGGCAAA	TCAGGAAGAT	3120
	CACCATAAAC	AGCTGCTGAC	GAAGCAAAGA	TAAAACGTTT	TATATGATTA	TTATATTTT	3180
20	TAATGATTTC	TAACAATCTT	AATGTTGCTA	CGACGTTTAT	TTCTTGAGAT	AAGATAGGTT	3240
	TCTCAACCGA	CTCAGCAACA	CTAACTAATG	CTGCTAAATG	AATAACATAA	TCAAATTGAT	3300
25	ATGTCTTCAT	GATTTGTTCA	ACTGCATCAT	ATTCACGAAT	ATCTAATTCA	AACACATGAT	3360
.0	CGTCAGCCAA	ACTTTTAATA	TTTTCTCGTT	TACCTGTTCT	ATAGTTATCT	AGAACATAAA	3420
	CATCATAATC	TTGTTGTAAA	TCATCTACTA	AATGCGACCC	AATAAAACCA	GCCCCACCAG	3480
10	TTATCAAAAC	TCTTTCCAAA	TCTTCCACCT	CATTTATACA	TTAAAAATAT	ATCATAAAAA	3540
	CATAAAGTAT	TGTAAGCTTT	TTATCGATAT	TTTTTATTTA	AAATAAA	ATGAGATAAC	3600
	TTTGTGAATT	TTTATTGAGA	TAAATTAGAT	AGTGGTGTTT	TTGTGATGTT	TTATAATATC	3660
15	TTGGGTGTGT	TAATACTAAT	AATGCTTTCA	ACTGATGCAT	TAGACTGTGA	CATCATAACT	3720
	CACTTAAGAA	CTTCGCTTAT	TAATTTTCTA	CCAATACACT	CCCTTCTAAG	TGCACTAAAA	3780
	AATCCTTACT	GCTAAGTGAT	TAAACTTAAC	AATAAGGATT	TATTTATCAT	TAGTGGATGA	3840
10	TTATTAACGG	AATCTCATAC	CACCATCTAC	AATAATTGTT	TGTCCAGTAA	TGTAATCAGA	3900
	GTCTTTACCA	GCTAAGAAGC	TCACTACATT	TGAAACATCT	TCTGGTTGAG	AAACTCTGCC	3960
5	CAAAGCAATC	TGACTTGTAA	ATTGTTCCCA	ACCCCATGCT	TCAGGTTTAC	CTGCTTCTTC	4020
	GGCTGTTGCC	ACTGCGATAC	TTTCCATCAT	TGGTGTTTGA	ACGATACCAG	GTGCGAATGC	4080
	ATTCACAGTA	ATACCTTCAG	ACGCTAAATC	TTGTGCGGCT	ACTTGTGTTA	AACCTCGCAC	4140
io	TGCGAATTTT	GTACTGCAAT	ATAAAGACAA	GCCTGGGTTA	CCCTCAACGC	CTGCTTGAGA	4200
	TGTTGCATTG	ATAATTTTAC	CGCCATGATT	GAATTTTTTA	AATTGTTCAT	GTGCGGCTTG	4260
	AATACCCCAT	AGCACACCTG	CAACGTTCAC	GCCATATACT	GTTTTAAACT	GTTCTTCAGT	4320

	GCCAAATTGC	GCGGCAGTTT	GTCTTAcTGC	GTTAAATACA	TCATCACGGT	TTGATACATC	4440
	TGCTTTGATA	GCAATAGCTT	TTGTACCATC	ACTTGATAAT	TTAAGTGCAG	CTGCTTTTGC	4500
5	CCCTTCTTCA	TTGAAATCAA	CAACTGCTAC	TTTGAAACCA	TCTTCCACTA	AACGTTCTGC	4560
	AATTTTAAAA	CCAATCCCTT	GTGcTCCGCC	AGTTACTAAT	GCTACTTTGT	TGTTTGTCAT	4620
10	AAAGATCACT	CCTCAAATTT	CTTTCCTTTA	ATTACATTTT	ACTCCTCTTC	ATTTGAATAG	4680
	TACAACAAAG	GTAGCTCCAT	TTAACAAAAT	ATTCAGATAT	TTAAGGTATA	GTTAAACGCA	4740
	CTACCATTAG	TGATTGGCAA	TGCGTTTAAA	TGTCGTTTTA	AAAGTTCTTA	TGTTGAATAT	4800
15	TATTTTTTTA	AGTCTCTCGA	TTAGTTTGTC	ATCAATCTTT	TTTCGAGACA	TGGTCTTTTG	4860
	ATTCAATAGG	CGGTTCCGTG	TTATCACTGA	CAACTTTAGT	TGTAGCTTCA	TCTTTATGTA	4920
	TTTCTTCGTT	AAATCCTTCA	AGGTTTTTAG	TCGTGGGATT	TTTAACCTCA	GGATGTTCCA	4980
20	TCATGTCTTG	ACTATCAAGT	TCCTTTTTAC	ACGTGTCTTT	ATGTGATGCT	TGATTTGCGT	5040
	TCCCTTTACT	TTTTTGAATA	GTGGTAGTAT	CTGCTGCAGC	TACTAATTTT	TTTCTACCTA	5100
	AAATAGATAT	GGCTGAAACA	AACCAGAGTA	TTGCAGATAC	AAAGTTGCAT	AATACTAAAG	5160
25	CGATAATAGC	CAATACAATT	AATATGACAC	CTTTTGAAAT	CCTTTCTTTA	AATAAGTCAG	5220
	ATGCCAATAC	GATGACAGGT	ACGATTGAAA	GTATAATTAC	AAATATAGAA	ATTATTGCCG	5280
30	ATATAACTAT	TGTTACTATT	AAATAATCAG	CTCTGCTACC	TGATAATAAA	TAGAAAAGGC	5340
	CGAAAATTAG	TCCATAGCAA	ATTACAAACC	CACATAAAGT	TATAGCCATG	AGTACTATAT	5400
	AAGCTATTTG	AAATATAAA	CCTATCTTTA	TGAATGATTT	TTCTACATTT	TTTTCCATGT	5460
3 5	CTATTCCCCA	TTTATTTAAA	ATTTATACTT	TACCTTAAAT	ATTCTCTTTA	TTCTTTAGTG	5520
	ATTTTATCTT	TAGATTCAAA	TTGATTCTCT	GTACTTTCAA	TATCAACTTT	TTCATTTTCG	5580
	TCTGTCGATT	CATCTTTTGA	GTATTTATTC	CAAATCAGCA	AAATACCACC	AATCAGCCAT	5640
40	AAAATTGACG	AAAGGAAATT	ATATAAACAC	AGTGCAATAA	TAGCATAAAC	AATAAAAAGT	5700
	GCACCTCCGA	TTACAGAGTA	ACTTTCCATA	TAAATCGCAG	TAAAGATGGT	TGGTAAAACA	5760
45	GTGAAAAGAG	CCAATATTAA	TCCTAATAAA	AAAATTGTTT	CGTAATCAGA	TCCTCCAGCA	5820
	ATATTAATAG	ATATCATCCT	AACAAAAACG	ACACTAAAAT	ATATTTGAGC	TACGATGCCT	5880
	ATCCAAATTG	CTATTTTTCC	TATAATTGAG	CTCATACTCA	TTCCCCATTT	TTAAAATTTA	5940
50	TATACTTTAC	CTTAATATAC	CTTATTTTAT	TTAATTTTTA	TATGCAAAAT	ACAAAAATGG	6000
	AGAACTTCAA	TATTTATAAA	ATATCAAAAG	TTCTCCACAC	TATATTGTTT	TATTATATTT	6060
	TCGCTATCAA	TACGCTAAAT	CATCATATTT	CCCTCAACAT	CACAGTAAAA	CTATTGCTCC	6120

	TTCCAATTGC	GCAGTTGTTC	AACATCATCA	TCTTGTTTAA	GTAATGCCAG	TGGTACTTGA	624
	AGATTAAGAC	ATCGTCCTGA	AATATTAAAG	CGTGTCACAC	CTGCTGGCAC	AGTTTCCCCT	6300
5	TTATGAACAA	CCGCTTCAAT	TTCCTTATAA	CTCAATGGCT	GATACTTCAT	GAGTACATCT	6360
	TGTTGAGAAA	GACAAGGATA	TGTACCTTGT	GCAATTCTCT	CTACAGAACA	ACAACCACTA	6420
10	TAACTTGCGA	CAACCTTTTC	CCATACTTGA	AAATGTGCTT	CGCCTAAATC	TTTTGTATAC	6480
	AAATATTGTT	CTGTATCACC	ATGACACATT	GTAATAAATG	GCGCTTCTTG	TCTTGTCTCA	6540
	GTAGTCCATG	GCAAGCGATG	TTCTTGTTGT	AACGTTTCCC	ACCACACACC	AAATGGAACT	6600
5	TTATGTTGCC	ATGTACTAAT	TGAATATTGT	GTTTCATGGA	TTTCTTGCAC	TGGAACTTTC	6660
	TTACATCCTA	ACGCTTTCAA	ACTTGTATAC	CGATGCACAC	CATCTATAAC	CATATATCTA	6720
	CCATGTTGCA	TCGCTGTCAC	TAAAATAGGA	TGACGTATAA	AATCATCTGC	TTCAATACTA	6780
20	CTTTTCGTTT	TTTCCAATCT	TAAAGGTTCG	AATGTTTCGT	GAAGATCAAT	CTTATCTACT	6840
	GGTACCAATT	TTAAATGTTC	ATGAATATGA	TTCAATAGTT	ATTCATCCTC	CTTTGTTTGT	6900
	GTTAAATAAA	TAAATTCAGG	ATGTGGATGG	CTTAAGAAAT	CGTGATGTGA	AATAGACCAT	6960
25	CCGTATGCAC	CTGCATATTT	GAAAACAATA	ACGTCGCCTG	TACTGATTGC	GTCTATCTGT	7020
	ACTTCTCTAG	CAAAGACATC	TTTCGGTGTA	CATAATTGAC	CGACTAACGT	TGTGTCCTGT	7080
10	CTCGAAATTG	AAACTTTTTC	AAATGAATAT	GGATTGTCCT	TATAGCGATA	AATGTCAAAA	7140
	GGATGGTTAT	GTTGCCAAGA	TACCGGCAGT	CTAAATTGTT	GCGTACCTCC	TCTTAATATG	7200
	GCATACCAAG	CACCATGTAC	TTTCTTAATG	TCTAGCACTT	CTGTCACATA	GTAACCAATA	7260
5	TGTGCCACAA	TAAAGCGCCC	ACATTCAAAG	TTCAATGTCA	CATCTTCCAT	TTCTTGCTCA	7320
	ACGATAAGTG	TTTTAAAACG	TTCTACAAAA	TTATCCCATT	CAAATTGGTT	AGTTAAATCT	7380
_	GCAŢĀGTTAA	CGCCTATGCC	ACCACCAAGA	TTGATATGTT	TGAGTGGAAA	TCGATGTTTT	7440
0	TCAGACCATG	CCTTTGCTTT	AATAAAATTT	AGTTTCACTA	CATCGACATG	TAAATTCGAG	7500
	TCTAAATTGT	TAGAAATAGA	ATGAAAATGA	AATCCATCTA	GATGAATCTT	TGGCATTGCG	7560
5	AGCGCAgcTT	CAATGACATC	ATCAACTTCG	TCTTCAGAAA	TACCAAATTG	TGTTGGGCGT	7620
	CCTGCCATAT	GCAACGTTGC	ATTGGGAAAT	GGTCCTGCTA	AATTAACACG	CAATAAAATG	7680
	TGTTGTGTCT	TATCTTCATC	TTCTAAGATG	GCATTTAGCC	GTTGTAATTC	ATGCATACTT	7740
0	TCAACATGAA	TACGCTGAAC	ACCTTCACTT	ACTGCATATC	TTAGTTCCTC	GTCTGTCTTA	7800
	CCAGGGCCAC	CAAAAATAAT	ATGATTTGCT	GGTTTAAAAG	CAAGACCTTT	TGCTATTTCA	7860
	CCTTGAGATG	CAACTTCGAA	TCCTTCAACA	TACTGACTAA	TTGTATCTAG	GATTTTTCGT	7920

	TGTTGCAAAT	GATGTTCCAG	TCCGACTAAA	TCATAGATAT	AATGACAAAC	TGGATGAGAT	8040
5	TGTGCTTTTA	ATTGTTCAAT	AACAGGTTGA	ACTATACGCA	TTAGCCTTCA	TCCCCTTTCT	8100
	GTTTAGACGT	CGCTAGAGAT	GCACTTAAAT	GGCGATATAT	TTTTCCGCGA	TCATCACCTA	8160
	AAATAAATGT	TTGTACACCT	TGTGCCTGCC	ATTTTGCAAT	ATCTTCATCT	TCACGTGGTA	8220
0	ATGCACAAAA	ATGTTTACCA	TGTGCATTCA	CAACTTCAAA	AATATGTTGA	ACATGTGATG	8280
	TTACTTGATC	ATCACGCGTT	TGCCATGGTA	TGCCAAGTGA	CTGCGATAAA	TCTGCGGCAC	8340
5	CTTCGACTAT	CATGTCTAAA	CCTTCGACTT	GTGCTATATC	GTCAATGGCC	ATAACCCCTT	8400
	CAACATCTTC	TATCATGGCA	ATCACCATAA	TATGCTCATT	AGCCATCTCC	ATTGCATCAA	8460
	GTAATGGTGT	ACGTCCAAAT	CTTGCCATGC	GACCACCATT	CAAACTTCTT	AATCCTTGCG	8520
	GGTAATAACG	ACTTAATTTC	ACAATATGCT	CAACTGTCTC	ACGATCTTTA	ACGTGTGGCA	8580
0	CAATAATACC	TCTCGCACCC	ATATCCAACA	CTTTAATGAT	ATCTCTATCT	ATCACTGCAG	8640
	TGACACGTAC.	AATTGGTATA	ATATGCGCTG	CTTCAGCTGC	ACGAATTAAA	TGCGCTAGTG	8700
25	TCTCATCATT	AATCGCCACG.	TGTTCTGTAT	CAATCACAAC	AAAGTCATAC	CCGCTTGCTG	8760
	CGATAACCTC	GATCATCAAT	GGGTCCGGTA	TAGAATTAAA	AATGCCATAA	ACTGAATCAC	8820
o o	CATTGTTTAA	TCTATGTTTC	AGAGATAGTT	GTTGCATCAT	TGATACCTCC	TACACCTAAT	8880
	GGATTTGTAA	CATGATGAAT	TCTTAACTCG	GAGTCACTTA	ATAATCGACG	TGTCGTTAAC	8940
	TTTTCAACTT	GAATCGTAGG	TTCAAACAAA	TCGAAATGTT	GATAGTTATT	CAACTCTGGA	9000
:5	AATGCTTCTT	GATACGCCTC	GATGATGCCT	TTAACCCATT	GCCATTGCAG	CTCCTCATCG	9060
	ATACCATATT	GCTTTTCAAT	AAATAAGATG	ATTTCGGCGA	TATTAATAAA	GAAAAATGCA	9120
	TCATGTAAAA	AGTCGCGTAC	TAAACGTTCG	TCATCTGTTT	CAATAAATGA	ATTACTATTC	9180
o	ACTTTTTTAT	GTGCTTCTGG	CATTGGCTTT	AATGTCAGGT	GTGAAGCAGC	TTCACTTAAA	9240
	TGCLCACGCT	TAAAACGAAC	ACCATCATGG	AAATCTTTTA	AGGCAATACG	TGTAGGCCAA	9300
	CCATITTCAT	GAATGAGCAT	CATATTTTGT	GCATGCGATT	CAAAGGCAAT	ACCGTGATAA	9360
5	TAAAGCATAT	GAATCATTGG	ACGAATCGCT	ACAGCTAAAA	ATTGCTTTGT	CCAAGCTTCA	9420
	GAACCATATT	GTTTAATCCA	ATTTTCAATG	AATGGTACAC	CATCCTTATC	ACTTGCATAA	9480
6 0	AGTGCATTAA	ATGGTATCGC	ATCCTCTTCA	TCGATTAACA	TATGATATAT	ATTTTCACGC	9540
	CATATAACAC	CTAACGCACC	ATAAACTTGA	GTTTGTTTAT	AAGGCGAAAG	TTGTGTATTT	9600
	AAATAAGACT	GTCCTAAGAC	TTCCCCTAGA	AAAACTGTCT	TTAATTCATC	TTTTAAATAC	9660
	ል ተከልተርተተርተተ	ССТСТАТСТС	ממשמממשרש	TCCGTAATTT	CCCCTCCATT	TTCAATTCTA	9720

	TATTTTGTCG	TGTCTATTGG	CGACATCGTA	CGAATCGATT	GTTGAGGGTG	ATATAGCTCA	9840
	TCACTTTCCC	CTAACCATAG	TACTGTGCCA	TTAAGCCTTT	CTTCAGCCAA	ATCAACTTGG	9900
5	ATGACATGTT	CAAACTGCCA	TGGGTGTACA	GGTATCATCT	CAACATCATT	TACATGTTTG	9960
	CCAGATGCTT	CAATTTGCTG	TACAAAATGT	TCATAAGTCT	TATCGCCAAC	TTGTTGACGT	10020
•	AACATTTCGT	TAACTACAAC	ATTTCTTGAT	ACCGTCGTTT	CTACTITATC	TTTGTCGATA	10080
0	GCTAACCACT	GCAGTTTAAC	GTTTGGTACA	AAATCAGGAC	CAAATTTCAA	ATTATCACTC	10140
	AACGTAAATC	CTAAACGTGA	TTTGTAACTT	GGATGATACT	GATGCCCTTC	CATCGCATAA	10200
5	AATTCATAGT	CGTTAAATGT	CTCAGGTGTT	GCTGGTGGGT	TTGATTCTCG	ATACTGCATA	10260
	CTTTGCGTAT	CTTTTAATTC	TGTCTGTAAT	AACTCGACAA	TAAATTGTTC	TAGCTTTTCA	10320
	TCATTTTTAG	GAAATGTAAA	TACAACCTCT	CTCAATAATT	GTGTATAGTC	TGTTGTTGTA	10380
0	TCTGCCTCAT	CTCCTACGAC	ACGCTCAATT	GGTGATGTGA	TACGTATACG	ATCAAAGCTA	10440
	TGTGTCTTTT	CAGCAGTAAA	ACGATACTCT	GAATCATGTC	CTTCTATTGT	AAAATGACCG	10500
	ACACCGTCTT	GATATGACGC	TTTATACACA	ACAATATTCT	CATAAATAAG	TGATGATACC	10560
5	AGTTGGTGCA	TCACTCTAGT	CTTTACACGA	TTAAGAATTG	TTTGATTCAC	AATACGATAC	10620
	CTCCTTGTTA	TGACAAATTG	GATTTGGTAT	ATGTGTATAA	ATAGGGTTTG	CACCACAATC	10680
0	ATTCAATTTA	CTCATCAAAT	TCGCTTTAGC	CGCAATGGTC	GGCGTTTGAT	ATAAATCTTC	10740
	TACACAGTCA	ACAAATACTG	CGTTATTCGC	GTATTCTTTT	TTCCAAGTCA	TAAGACGATG	10800
	CGCTACAAGT	TGCCATAACA	CAACTTCATT	TCTAGTCGCT	TTACCAATAG	TTGATACTAA	10860
5	ATGTCCTAAG	TGATTTACTA	CAACGTAATA	TTTAAGACGA	TGCCATGCTT	CATCATGTGC	10920
	ATATACAACA	GGGCTTGATG	CTGCCACAAC	ATTTGGCACA	AGCTGTTTTT	CAGTAGCAAT	10980
	CGTTCTAGAT	AGACAAATGC	CTTCAAGATC	TCTGACAAAG	CATACGTCGG	GTATGCCATC	11040
0	TTTTAATTCA	ATTAATGTAT	TTTGTACATG	TGCTTCTAGA	CTAATGCCTG	TGTTACTAAA	11100
	CAGCTTTAAT	ATCGGCAATA	ATGTACGATT	CAAATAACAT	TCAAGCCATG	CTTCTGGTGC	11160
5	TAAACCACTT	TGCTCAATCA	CTTGTGATAA	CTTAGACATC	GGTGAATCAG	GCATCGTTTC	11220
-	AAATAATGAC	GCCAATACAT	GAATATCTTT	ATCAGCATGG	TAATTCGGTA	TCCCTTCACG	11280
	AACAATCATG	GCACTATTTG	TTAATAAATC	CATTTCAGGT	TCAACTGTTT	GCCCTAATGG	11340
o	ATTCGGTAAC	AATGCACGAT	ATCCTTCTTC	AAACATCAAT	TTAAAATGGG	GTGTTTCAAC	11400
	CTCATCTTTG	ACTGATGCGA	TAACTTGCGC	GGCATCAATT	GTCCGTTCAA	TCTGTTCAAG	11460
	GTCATTCGTA	CGTATAAAAT	TAGTGATTTT	AACGTGTATC	GGTAATTTTA	AATAAATGTT	11520

	GCCAAGGTCT	TTTATTAAAC	CTTGTTCACT	ATATTGCATA	TACTGTGGAT	GCTGTCGCAA	11640
	CACATTGATT	TGATAAGGAT	GTGTTGGTAA	ТААААТАААА	TCTTTGGGTA	TCTCTGATAT	11700
5	ATCTATGTCT	GCTAATTGAT	ACAACACTTT	CTCAACCTGA	TCTTCTTTAC	CTTCTACATA	11760
	GCGCGTGAGC	AGAACATCTT	GATGCACAGC	TAAATAATGC	AATTGGAATG	ATGTATGACA	11820
10	TTCGGGTGCA	TATTTCTCTA	AATCTGCTTC	TGAAAACCCA	CTTGCACTCT	TAGGAGTCGG	11880
	ATGAÄATGGA	TGACCTAAGT	ATAAAGATTG	TTCTGAAACG	ATATAACGAT	CCTCTACGTA	11940
	GTCTATTGTG	TTACTTTGCA	AATAACGTGC	CGTGCGATGA	ATGCTATTAT	CGATGTCAGA	12000
15	CATAATTTGC	GCCATATGTT	GTTGCACTGC	CGTTTGATTA	TCTGCACTTT	GAGCCATATG	12060
	TTGCAAAATA	CGCGCAATTG	CTTCTTTATA	AGTTGTTATT	TTTTTACTTT	TTCCATCGAT	12120
	AAGCCATACC	TCTGGATGAT	ACATATGATG	CCCCATCGCA	GACCAATAGC	GAAATTCACC	12180
20	CGTTAAAGTT	TCGAGCTCTG	ATAATTGTAT	AGACCATTGA	TGATTTTGAG	GTGGTACTTG	12240
	ATATAAATTT	TCTTCTCTAA	AATATTCATT	TAAAATGCGT	TCGATAGCCG	CATACGCTGC	12300
	ATGTTGTATT	AATTCTTTAT	TTTGCACTTT	TTTGTTTCAA	CTCCCATAAT	TTCATTAATG	12360
25	TGTGATCGTT	GATTTGATTA	GTGATGGTTG	AACAAATTAA	АААТАААСТА	CTTACTGCAA	12420
	ATACTACGCC	CATAACGATA	AACGTAGTAG	CTGGTGTAGT	ATAACTTGTA	.ATGGCAGCGC	12480
30	CACTAAGACT	GCCAATAATT	TGACCAACAA	CTAACATACT.	GTTCGTCGTT	CCAACAAATG	12540
	TGCCTTTAAG	TTGTTGATGA	CACGCATTCA	CGACAACAAA	CATGACACTT	TGAATCAATG	12600
	CACTATATGT	TAATCCTTGA	AGTATTCTTG	CAGCCATTAA	AAACTCTATA	TTCGTCGCTA	12660
<i>35</i> .	AACCTTGCAG	TATCGCACTA	CAACCACATG	CAATCGTGGC	AAATATATAT.	ACTGATTTAA	12720
	CATATGATTT	ATCATTAAAG	CGTCCCCATA	AAGGCGCGCT	TAATATCGAA	GCCGTCCAAA	12780
	ATGCGGACTG	TAAAAATCCA	ATCACACTAC	GGTCATCTAT	CGCTGTATGA	TTCACTGATG	12840
40	AAGCAAGTGG	TGATAATGCA	GTTAGCATGC	CATACATAGC	AAAGTTTGCT	AAAACGCCAA	12900
	CGATAATAAA	TCGACATGTT	TGTTGTGTGC	ATAATAGACA	TTGAAATGAA	CGGCGAATAC	12960
45	CTTTATTAAT	ATTTGGTGTT	TGTGATTTTG	GCATATGTGT	CGTTTCAATC	AATTTTAATG	13020
	CACCGAAAAT	ACAGACAATA	AAAGTAATAA	CGGCAATACT	CATCAGTAAC	GCACTAAAAC	13080
	CTAATATCGA	AGCTGTAACA	CCGCCAATTA	ATGGCCCCAC	AAGAGACCCT	GCGCTGACTG	13140
50	AACTTTGCAG	TCTTCCTAAT	ACCTTTCCAC	GATCTTCAGC	TGGCGCCTCT	GCACTCGCAA	13200
	ACGCACTTGA	TGCATCAACA	ACACCACCAA	ATAGTCCCTG	CAATAACCTC	ACAAGTACAA	13260
	ACTGTAATGG	TGTCGTACAC	AATGCCATTA	AAAATAAGCA	TACCGCCAAA	CCAAGTAACG	13320

	CTATCATCGT	CGTTACAGCT	GGAGCAGCAA	TCGCTATACC	ACTCCACAAC	TGTATTTCTA	13440
5	CGACTGATAG	ATTTTGTAGT	GATGCCATAT	AAATTGGCAA	TAATGGCACA	AGTACTGTCA	13500
	GTCCAGCAAT	CGCTATAAAC	TGACTGAGCC	ATAAAATGCG	AAAGTTACTG	CGCCATATAG	13560
	ACTGATTAAT	CATATGTCAC	CATTGGATTT	GGTACGGTAG	TTAAACCTGA	AGGCATACTA	13620
10	CCTCCACCAC	TATCACGTTG	ATATAGCAAT	GGTAATAAAA	TTTGTTTGAA	TGGCCACGTC	13680
	TGTTTATCAA	ATAAAATGTG	TCTGACAGCT	AGCTGATCAG	TTGTAACCCA	GGAAATAGTT	13740
	GCCACTTCAT	TTTTTAAAAT	TTGTTTTAAC	AACGACATAA	GTTCATGCTC	ACTTACACCA	13800
15	AATAAATCTT	GAATTGCATC	AATAATGGCA	TATAGATTTA	CCGATACAGC	TAATGTTTGA	13860
	AAATAAGCAA	AGAATGTTTC	CAAATCCTCA	TTAATTAGCG	TATTAGGTGT	ATCTTCTCTG	13920
20	ACGACATACT	TCGGCAATGA	AAGCTGATGT	GCTGTTAGCC	ATGGTTTATA	AATTCTGACA	13980
20	GTATCATGAT	CACGTAACAC	GCATTTTTGT	ACACGTCCAT	CTTCAAATGA	CAACAATATA	14040
	TTTTGACCAT	GCAACTCTGG	TAATGCGCCG	TATTGCATAA	ATGATAGTGT	TACCTTTAAA	14100
25	AAGACTTGCG	CGATATCTTC	AAATAACGTC	ATGACATCAT	TTTTAGAAAT	ATTATCTTTT	14160
	CCACAAATCA	TTTGATATAA	AGTGCGATCA	TTTGCCGCGA	GTGCTGCCAT	TGACACTAGC	14220
	TGTTGCGTAT	CATTTTTGGC	TAGCACTTCG	GGATACTTTC	TTAGCTGAAC	AGTTAGATGA	14280
30	CCTAATTGAT	CTTTGAAAAT	ATCATTATCT	TGACCCATAT	ATGACCACCA	AGCTGTTTCA	14340
	TCACAAACCA	TGACATACTT	AGCTAGTGCT	TCATCTTTTT	CTATAAGCTG	ACGTAATAAT	14400
25	TGTTCTGCTT	GTTCTCCGTT	TTTCATGTAA	CGCGTAGGCG	TTAGCCTTAA	TGCGCCTAAT	14460
35	GACTGCATTG	CAAATGGTAC	TTTGACATGG	TTATACGGTG	CGCCAATATC	AATTAATGAA	14520
	CGCATACTTG	AAGACGACAG	ATAATCTCCA	AATTTTAACG	GTAATAGTAC	AACCAACTTT	14580
40	TCACTAATCT	CTTTCGCAAA	GACGTTCGGC	AGAATATGCT	GATATTGCCA	AGGATGTACC	14640
	GGAAATAGTA	CATAGTCATC	TATTGATAAC	CCTTGATCAT	TTAACATGTC	TGTCGCTTGT	14700
	TCTTTTATAG	GTACTGTCAA	ATTTTCTAAT	TCATCGATAT	TTGCAGTATC	GCCATGAATC	14760
45	ATATGTGTCT	TTTTAACTGC	TGCAACCATT	AAAGGAAATG	ATTGATTTAA	TTCAGCTTGA	14820
	TACACTTGAT	AATCCGCTTC	TCTTAATCCT	CTTTTTTCTT	TAGCTAATGG	ATGAAATGGA	14880
•	CGATCTTTTA	AACTTGCAAA	CTGCTCTGAC	ATCACAAAAG	GATGTGACGC	ТАААТСТААТ	14940
50	TCTGATAATT	GTTTAGCAAG	CTGTGTGGCA	GCAGTAGTCA	GTCCTTCTTC	AACGCGAGCC	15000
	ACTTCCCATT	CATGACTTAG	ATCACAATTC	ATATTAGCAA	TTGTTTGCCA	AAATTCAGCT	15060
<i>55</i>	GCCGTTAAAG	GTTGCTTAGA	CACCCTTCCC	TCTATCGTAA	TTGGTTGTGA	ACTTTCGTAA	15120
55							

	TATATCAAAA	GCGTTTGTCC	GTTTTCTTTA	GTAATCTCAC	TATTCGATAC	AATTCCGGCT	15240
_	ATATCTTCAA	ATAATAATGC	ATCAACTAAA	TCTCTTAATA	TTATCGCTTG	TGCTGTATTG	15300
5	ACTGCTGTAT	GATTCTGCAA	TGTTCAGACA	CCTCGCATTC	TTAATATAGG	TTCAATGTTG	15360
	TCCCAATATT	TIGITGTTGT	GCCTGTTGAT	ATAAAATA	AGCACTTGAA	ATATCTTCGA	15420
10	TAGCCATACC	CATCGGATTA	AGTAATATGA	TCTCATCATC	GTCTTCACGT	CCTGGTATGT	15480
	CACCTGTCAC	AAGTTGTCCT	AGTTCAGCAT	GAAGAGCTTC	TTTGCTGAAT	TTACCTTCTA	15540
	ACACCAATTG	GTTAATAGTT	TTCTTTTCTC	GATTACATTG	TGACCAGTCA	TCTACTACGA	15600
15	CTTTGTCAGC	TTTAATAAAG	ACTTCTTTAT	GCACATCCAT	GATAGAAATG	TTGCTAATAA	15660
	ATGCACCCTT	TTGTAACCAA	TCATATTCAA	TGTATGGTTG	ATCCGTTACG	GTACATGTAA	15720
	TGACTACTTC	ACCATTTGAT	ACTGCTTCTT	TAGCATTTTC	TGTCGCAATA	TTTAATTAAA	15780
20	CCGGACGCTG	TTGTTGCCAT	CTATCAACAA	AGCGTGCACA	TGCTTCAGAG	AATTGATCGT	15840
	AAACAAACAC	GCGTTCAATA	TGATCGAATT	GCTCTAACAT	ACTTTGTAAT	TGCTTGTCTC	15900
25	CGATTAGCCC	GCATCCAATG	ATTGTTAAGT	CTTTAAATCC	TTTTTTAGCC	AAATGCTTTG	15960
	CTGCAATCAC	TGAAACTGCT	GCAGTACGCA	TACTACTAAT	TAAACTTGCT	TCCATAACTG	16020
	CAATTGGATA	ATTCGTTTCT	GGATCATTCA	AAATAATGAC	GCCACTTGCA	CGCTCCATAT	16080
30	TACGTTTCGA	TGGATTGTCG	TGCTTACTAC	CTATCCACTT	AATACCTGAA	ATTGCGTGTT	16140
	CACCACCGAT	ATGACTTGGC	ATTGCAATAA	TTCGATCTGC	GATGTGTCCA	TTTTCAGGAT	16200
	CCLGTCTTAA	ATACGGCTTA	AGCGGTTGTA	CAAAATCATT	GTGCGCATGG	GCTGTTAATG	16260
35	CTTCTGTTAA	TGCGTCCACA	TAAACTTGTG	AATGATTACC	TCCCGCTTGT	TCAATATCTG	16320
	ATCTATTTAA	ATACAACATC	TCTCTatTCa	TTCTGaTTTA	ACTCCTTGTC	TTGATTTCAT	16380
40	TTTTTCTAAC	CATGTATCTG	AATAAACTAA	ATCTAAGTAA	CGATCGCCTC	GATCTGGTAA	16440
40	AATCGTGACA	ATTGTTGCAC	CTTCTTCAAT	TGACGTTATC	AACTGCTCAA	TCGCTGCAAT	16500
	AATCGAACCT	GTTGAACCTC	CGGCAAATAT	GCCTTCATAA	TCAATCAGTT	TTCGACAGCC	16560
45	CAAAGCAGAT	TGATAATCAT	CTACATGGAT	CACTTGATTA	ATTTCTGATC	TATTCAATAT	16620
	TTCGGGTACA	CGACTAGCAC	CGATACCAGG	TAATTCTCTA	TTAATAGGTT	TGTCACCAAA	16680
	AATGACTGAC	CCTTTCGCAT	CAACAGCAAC	AATTTGTGCG	TTTGGATGCA	CTTCTTTTAT	16740
50	TTTTCTACTC	ATACCCATAA	TGCTACCTGT	CGTGCTGACT	GGCGCGACAA	AATAATCTAT	16800
	AGGTTGCTTA	ATTGTTTCAA	CAATCTCTGT	GCCTGCACCA	TGATAATGGG	ATTGCCAATT	16860
	TAACTCATTC	GCATATTGAT	TAATCCAATA	TGCATCGTCA	ATAGTGGCTA	ACAGTTCTTG	16920

92

TACATTGGCA	CCATAACTTT	TAATAATTTT	CAAATTTGTT	GGTGATATTT	TAGGATCAAC	17040
AACACACGTG	AGTTTTAATC	CCTTGATTTT	AGCTATCATT	GCCAACGCAA	TGCCTAAATT	17100
ACCAGAAGTA	CTTTCAATTA	AATGTGTATT	CTCAGTGATT	AAACCATGTT	TAATACCATG	17160
TTCAATGATG	TACTTGGCAG	GTCGATCTTT	CATGCTGCCT	CCAGGATTCA	TATACTCTAA	17220
CTTTGCAAAC	ACTTCATGTT	TCGGAAATAG	TTGATGAAGT	TGAACCATAG	GTGTTTGCCC	17280
TACAGAATCT	AACAATGAAT	CGTGCACATG				17310

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5423 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

ATACTAGTAA GCGCATCGGT TA	TTGACATC GAATTCAACT	TTAACAGTTT	TCATGTTCGG	60
TGATGTTTCa ATAGAATGTG TG	IGTIGTAC TIGCGCATTI	ATATTTCCAC	CTAAATTACT	120
TAAGTTTCCT GTAATACTAG AA	ATGTCAGG TGCGTTTAAT	GTAGGTTGAA	ATGCATCAAC	180
TACTTTATCT GCAACATTAG AAA	ACATTACG GATAACTTTA	CTTGAATGAT	TATCTATACC	240
TTTAACGAAA CCTAACATTG AA	FACATACC AACATCCATG	AATTCACGTG	AAGGTGAGTG	300
AATACCTAGC GCTCTTTTGG CTC	GCATTTAA AGCACCTTTT	GCTACACTAG	CTGCTTTTTC	360
AGCTAAGTCT CTAGCCATAT TAG	CCAATACC TCTCATCAAA	CCACGGATCA	TATCAGCACC	420
TGCTGATACA AAGTCATCCA CAA	AAGCTTTT AACTTTATTT	ACTGCATTTG	TCATACCTTG	480
ACTAACTTTG TTTACAACAT TAA	ACGAATCC TTGAACAACT	CTATTAACAA	rgttaattag	540
CCTACLTGTL ATAGTAGATA CCC	CatnGCAT ACCTTTAGTG	ACMATGAAGT	TCCAAGCTTG	600
AGACATTTTG TCTGATATAG TTC	GAAACAAC TTGTGTGAAT	ATGCTTACAA	CTTTATTCCA	660
AATTGTCGTT AATATACCAG ATA	AAGAAACT CCAAATCGTA	TTCCATATAT	TAGAAATAAA	720
ACTCCATGCC GCTTGTAACG CAC	STAGATAT AGCTGTAGTG	ATAGCGTTCC .	AAACCTTAGT	780
TGCCACAGTA ACTATAGTGT TCC	CACAACGT TTGTAAGAAC	GTCCAAATAG	CGTTCCAAAT	840
TGTTATTGCG ATAGTCATAA TTC	STGGTAAA CACTGTAGTT	ATTACAGTGA	CTAACAAATT	900
CCAAATCGTA GTAGCGATTG TA	ATTATCGT ATTCCAGATT	GTACTTAAGA	ACGTCCAAAT	960
AGCTGTCCAT ATCGTCATAA CTA	ATTGTCAT TATCGTCGTG	AAAACAGTTG	TAATGATTGT	1020

	ATAAGCGACT	ATTTGATTCC	AAACAATCAT	TATAAAATTG	TAAACATTCG	ATACTGCTGT	1140
_	AGTGATAGCT	GTTAAAATAG	CATTCCATAC	AACCGAAGCT	ACAGCTTTTA	ATACATTCCA	1200
5	AACATTAACC	ATAAACGTTT	TTATCGCATT	CCAAGCATTT	ATAATAAAGT	TTCTGAATCC	1260
	TTCATTTTTA	TTCCACAATA	AAACGAATAT	AGCTATTAAT	GCAGCAATTA	CACCAATTAC	1320
10	TATTGTTATT	GGACCGCCTA	AAATACCAAA	CACAGTTACT	AGTCCTGTGA	TAGCATTTCT	1380
	AATTAATCCA	ATCTTACCGA	ATAACAATTG	GAATATAACT	GATATAATTT	TTAATGGTCC	1440
	TTTTAATAAC	ATGAACGCAC	CTTTTAAAAT	TGTTAATCCC	GCTCTTAATA	AACCGAACTT	1500
15	ACTTACTAAT	GCAATGTTTC	TACCTATTAA	TCCGCCACCC	ATAAAGTTAG	ATACAGCAAG	1560
	AATAATCGGT	ATTAAAAATC	TAAATGCACC	AACTAAAGTT	ATAATGACAC	CAACTAATTG	1620
	TGCTGTAGCT	GGATGCGCCT	CAAACAAGTT	AGCTATCCAA	CCAGTTATTG	CAACTGCAAC	1680
20	GCGTAATACT	GCACTAGCTA	TAGGAGCCAT	TGCTGTTGCG	AATGCArmTA	ATCCTCTTGC	1740
	GATGTTTCCA	ATCAATTGCA	TTATTAGTGG	TCCATTTGTT	TGTATATAAC	TGACAAAGTC	1800
25	TTTAAACCCT	TGAGATTGTC	CTACTTGTTC	AGACCATTCC	CTAAACTTAG	CTGTCATTTG	1860
	TTCAAGAGAT	TGGAATATGC	CAGTTGATGA	TCCGCTGAAT	GCATTCATCA	AATTGTTAAT	1920
	TCCAACGAAA	ACATTTTTGA	AAATATTACC	AATGATAGGT	AAGTTTGTTT	TTGTGTATTC	1980
30	AATAAAACGA	GTTATCGAAT	TTTCTCCAGC	TGCACTATTA	GCCCAGTTAG	AGAAAGATTG	2040
	ACCTAATCTA	TCCAACCAAT	CAGCCGACCA	TTGAAACAGT	GGTGCTAATT	GCGTGAATAC	2100
	ATTGACTAAT	CCGTCACCAA	AACCACCTGC	AGCACTTAAT	AGCTTGTTAA	ATACCGAAAC	2160
35	ACCCGTTGTA	TTCATCATAT	TAAAGAATCT	TGAAGCTACA	CTGCTATTTT	"CAGCCCATTT	2220
•	AAGCACGCTT	TGAGACGCTT	CTTCCATTCC	TCTTGAAATA	CCACTAAAAA	ACGGTTGTAA	2280
40	GCTCTGCATT	GCAGTTTTAA	CAGTATTTAA	ACCATTTGCA	AGAGTTGTGA	AGATAGCGGA	2340
	TTGATTTTGC	TTTATAATAT	CAGTCCATGC	TGACTTTACG	CCATCTAACG	CTTTTTTGTA	2400
	TTCGTTTGTT	GCTGAGCTAG	CTTGTAAAGT	GCCATCATTA	AGCATCTTTA	TAGCGCTGAT	2460
45	AGCCATTGCG	CCAAACGCTA	CAAATCCTGC	TCCCGCTATT	GCTACGGCAC	CACCTAAAGC	2520
	AAGTACACCA	CCAGTTAACA	CTTTGATAGC	GTTTAATAGC	GCAAATACTA	CAGGTACTAC	2580
	GCTCGCTATT	ACAGGTATTA	AGATACTAAA	AGATGATGTA	AGTAATCCAC	CAACCATATT	2640
50	AGAACCTACA	GTACCGAACA	CACGGAACAT	ATTAGCTAAA	TTCCCCATCT	GTCTTTGAAA	2700
	ATTGTCATTT	GCTTTTATTA	TGTAGGCATA	AGCTTTCTTT	AAACCATTAG	TATCGACATC	2760
	TACCTTTGTT	GTTTTTTTGT	TCGGCAATGC	GTCTAATGAT	TTTTTAAACG	CATAAATAGT	2820

	AAGTTCTTCT	TTAGTACGTT	TGATTTTAGA	GTTAGCAACA	CCATTGTCCA	CGTCTATAAT	2940
	AGCTTTGGCT	TTAGACCTAT	TTAATGCTTC	GAGACTAGCT	TTAGATACTT	TTAACACTCG	3000
5	ATTGAATTTA	CTGTTATCTG	CATTGACGTC	AATATTGACA	CGTTTCTTTT	CTAATTCTGA	3060
	TAATTTAGCT	TCTGTTTCAG	CGATATCTTT	AATCAACTTT	TGTTTTTGCA	ACTTAACTTC	3120
10	TGGTGTAACT	TCTTTAGAGT	TTAGTTTGTC	TAGTTCAAAA	TTCGATTCTA	GTACCTTTTG	3180
. •	TTGTAAATCT	TGTATACTAG	CATCTAATTT	AGCTTTTACA	TTTTTGTTAC	TAAAGGCATC	3240
	TAAAGACTTT	TTAGCAACTT	TGATAGTTTT	TTGTAAATTT	TTATCGTTAG	CGTTTAATTC	3300
15	AACATCTTTA	GTTTGATCTG	CTACTCGTTT	AAATCTTTGC	ACAGACTTAA	CCGCACTATC	3360
	AATTTGCCTT	TTGAATTTGG	CTACACTAGC	TTCAATAGTC	GCTTTAATTT	TATATTCCGT	3420
	CACATTAACA	CCTCTCTTTC	TATTGCTTAT	TAAATTCTGC	TATAACTTTA	AAGAATTCAT	3480
20	TATTTTGTGG	TTCGTATTCA	TCACGTTCGC	TACTAAATCT	TATATCTTTA	CCTTCGTTAA	3540.
	GCCGTTGGAT	ATTTTCTTCA	TAAGGCAATA	CGTCGTTTGC	ATTGTTAAAA	ACATATTCCT	3600
nc.	CTTTAGGTTT	ATTTTCTGTC	CCAACATTTT	TAGTAGCTGC	AGCATCACGA	ATAGCAAACG	3660
25	CAAGTTTGTA	ACGTTCGAAT	TCTTGGGTTA	GCATTTCATA	CTCTTTCGCA	TACATTCGAT	3720
	AGTTAȚATTC	TGTTAATGTC	ATTTGCTCAA	TAACGTTCAA	ATCTGTAATA	CCAAGTGTTG	3780
10	ACATACAAGT	TATAACGATT	CTGTCGTAAG	TTATTAGGCT	TCCGCTGGTT	TTTCTTCCGT	3840
	TTCCACTACT	TCGACTAGGT	TTCGGGTCAT	AGGTCGCTTT	CCCAACTCCG	TTAAAATATC	3900
	CGAACCGAAT	TCTTCTAGTC	CGATATTTTC	TGCGATTTCA	TCTAATGCTT	CATCAATGTT	3960
5	ATTAATAGTA	ATTGCTTGTT	TTTTTAAGTG	AGATGTAGCT	GCGATTAAAA	CTTCGCCAAT	4020
	CACAACCGGA	TTTCCACTTT	CTAAACCTAC	AGGCAACATT	GATACACCTT	GACCGATAGA	4080
	AGCTŦGTTCA	ACTTTTAAAC	CTAATCGGTT	ATCGATTTCT	CTTAAAAATT	TAAAACCAAA	4140
· ·	ACTTAATTCT	AATGACTTTC	CGTTAATTTC	TACATTCATA	ACTTAAAATC	TCCATTCATA	4200
	ATTAATTTAA	ACAAAATAAA	mArGCTTAAC	GCCCTATTTT	TATACCTCTC	TTGGTGCAAC	4260
5	CGGTGGTGAA	TCTACTTTAG	GTTGTGGAAT	TGCTGTTAAA	TCTTCGCCAG	TTAATGCATC	4320
	TGCTTTTGTA	GTGTCGTGGA	ATCTGTATCC	AGTCGCCTTA	AGTTTCTTTG	TTACAGCCTC	4380
	AGGTAGTGTT	GCAAATCCAC	GTTGGAAACG	ACCATTCACT	CCATATTCAT	ATTCATATTC	4440
0	ATCAATACCG	TTAGCTTCTG	CTTTTAATTC	AAATTTATTG	TGGAAACCTT	GGAAATATTT	4500
	CGCTTTAAAT	TTAGCGGAAT	CCCCATTTTT	GCCTGGTATT	CTACTTTCAA	CTTCCCAAGC	4560
	ттсатасаат	accccateta	CAACTGCATC	ттсаатттса	тстссаваат	ССТСАССАТА	4620

	GTCCATTGTA	TCCTCTGTAT	CTGTATCAGC	TTCATGTGAT	AAGCCGTATT	CAGTTAAAAA	4740
	AAGCATTTTA	GTAGCATCTA	CTTTTTCGCC	AGCTTTTCTA	AATAAAATAA	TACGATCATT	4800
5	ACTATTTTTC	ATATTTGCCA	TTCAATATTC	CTCCGTTTTT	TAAAATGTTT	TGTAAGATAT	4860
	CGTTACTGAT	GTGTGTAGCA	ATTCTTGATT	GGTAGTATCA	TCAACTAACT	GTGTGATGTT	4920
10	AGTATCTTCT	TCTTCAAAGT	CATAATCGTT	TGTTTTAACG	CTAGGTGTTA	AATCATCAAT	4980
	ACATCTTTTA	ACAAGTCCGT	CATGATGTCC	TAAATCATCG	CTTACACTCC	AAATATCAAT	5040
	AACTAAATTC	GTATCGCCAG	AATAACTATC	AAACGTGTAC	TTACTTCTAT	TTGACTCCGG	5100
15	CATTTTTATT	ACAAAAAAAG	GATACGGAAT	CTCTTGTTGC	ATCTCTTTAC	GAGAAATAAC	5160
	AGGGAATCCA	TATCCTTGTA	GCGTTTCATA	CGCTTTATTA	TAAAGTTGTA	AGTTCGGTGT	5220
	CATGCTTTTA	TCTCCTATTC	AAACAACGCT	TTCAATTCTT	CTACAGTTGA	TTTCCTAATC	5280
20	ACTTCGTATA	CCGGCCACAT	AAAAGGTTCA	GCCTCCATGT	ATCGAGTACC	AAATTCTAAG	5340
٠	AAACCACTAT	AAGCTGCGTG	CGATGTGATA	GTGTATTGCA	AATCGCCAGT	TTTTTTATAT	5400
25	CTGATATTGC	GTGATAAATT	ACC				5423

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6251 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25: 35

60	AACAAAAGCA	GAAGGTATTA	TCGTATTAAG	AACCAGTCTA	GTTCAATTAG	AAACGCAGAT
120	GGTTAACTGA	ATTCATGAAT	TGATGTGACA	AAGCGTTAAA	CAAATTAGAC	AATACGAGAC
180	CATTACATCA	ACTTTGAACA	CTTGGACTTT	AATTAGAGAC	GAAAAATATA	TGAACTAAGA
240	CTGAACTGTT	TATGCATTTA	TCGTAGAACC	TATTACGTGC	AAAGAGGATT	TCCTAAAAGT
300	ACGAAGCAAT	AAGTCATCTG	TAGATTAGAA	AATGGCTAAA	TTACGTATGC	TTTATTCGAA
360	CTTTTGAACT	GATCGTTTAC	ATCATTTATT	ACCAAGTTAA	TATGACATAG	TGAAATTGAT
420	CACCAATACG	GATTTAAAAG	AATTTTTAGA	GTGTTAATGA	CAGAAATCCA	AACTGAAGCA
480	CTGCAATTTG	ACAGTAGTTG	TTCAGGAAAA	GTGATGTAGG	TTACTTCAAG	TATGCATCGA
540	CTGAAATTTT	ATGGTACCAA	ATCAGCATTG	CTGGTTATCA	TTAAAAACTG	TATGTATGCG
600	ACGTTGCATT	GATTCTATGA	TTTATTTGGA	GTTTAATGGC	CATGCTGAAA	AGCAGAGCAA

55

30

40

45

50

7 1.

	TACGATTGAT	TGTTTAATTG	GAACCCATGC	TTTGATTCAA	GATGATGTGA	TTTTCCATAA	72
	TGTTGGTTTA	GTAATTACAG	ATGAACAACA	TCGATTTGGT	GTGAATCAAC	GCCAGCTTTT	78
5	AAGAGAAAA	GGTGCAATGA	CGAATGTGTT	ATTTATGACA	GCAACGCCGA	TACCAAGAAC	84
	ACTAGCAATA	TCAGTTTTTG	GTGAGATGGA	TGTGTCTTCA	ATTAAACAAT	TACCAAAAGG	90
10	TCGTAAACCT	ATCATTACTA	CTTGGGCAAA	GCATGAGCAA	TACGATAAAG	TTTTGATGCA	96
	AATGACCTCA	GAGTTGAAAA	AAGGTCGTCA	AGCATATGTC	ATTTGCCCGC	TAATAGAAAG	102
	TTCTGAGCAT	CTCGAAGATG	TTCAAAATGT	TGTCGCATTG	TACGAGTCTT	TACAACAGTA	108
15	TTATGGTGTT	TCCCGTGTAG	GGTTATTGCA	TGGTAAGTTA	TCTGCCGATG	AAAAAGATGA	1140
	GGTCATGCAA	AAGTTTAGTA	ATCATGAGAT	AAATGTTTTA	GTTTCTACTA	CTGTTGTTGA	1200
	AGTAGGTGTT	AATGTACCGA	ATGCAACTTT	TATGATGATT	TATGATGCGG	ATCGCTTTGG	1260
20	ATTATCAACT	TTACATCAGT	TACGCGGTCG	TGTAGGTAGA	AGTGACCAGC	AAAGTTACTG	1320
	TGTTTTAATT	GCATCCCCTA	AAACAGAAAC	AGGAATTGAA	AGAATGACAA	TTATGACACA	1380
25	AACAACGGAT	GGATTTGAAT	TGAGTGAACG	AGACTTAGAA	ATGCGTGGTC	CTGGAGATTT.	1440
25	CTTTGGTGTT	AAACAAAGTG	GaTTGCCAGA	TTTCTTAGTT	GCCAATTTAG	TTGAAGATTA	1500
	TCGTATGTTA	GAAGTTGCTC	GTGATGAAGC	AGCTGAACTT	ATTCAATCTG	GCGTATTCTT	1560
30	TGAAAATACG	TATCAACATT	TACGTCATTT	TGTTGAAGAA	AATTTATTAC	ATCGTAGTTT	1620
	TGACTAATTG	CCATGCTGAT	TTGTCAATTT	GAGTGCAACa	CTTCGTTAAT	TGAGTGATAT	1680
	GACACTTGAA	CTATTTAAAT	GTAAAGTGGT	ATTTTAACAA	TTTATAAATT	TTCGACTAAA	1740
35	TAATAGCTAA	ATATTACAGT	TATTTGTTGA	GTCGGTTAAA	TAGAAAGTGT	TATGATATGT	1800
	GAGGAATGTT	TAAGACTAGG	TACTAAAAAA	TGAGGGGTGA	GACGTTGAAA	CTAAAGAAAG	1860
	ATAÃCGTAG	AGAAGCAATC	AGACAACAAA	TTGATAGCAA	TCCCTTCATC	ACAGACCATG	1920
40	AACTAAGCGA	CTTATTTCAA	GTGAGTATAC	AAACAATTCG	TTtAGaTCGC	ACTTATTTAA	1980
	ACATACCAGA	ATTAAGGAAG	CGTATTAAAT	TAGTTGCTGA	AAAGAATTAT	GACCAAATAA	2040
45	GTTCTATTGA	AGAACAAGAA	TTTATTGGTG	ATTTGATTCA	AGTCAATCCa	AATGTTAAAG	2100
	CGCAATCAAT	TTTAGATATT	ACATCGGATT	CTGTTTTTCA	TAAAACTGGA	ATTGCGCGTG	2160
	GTCATGTGCT	GTTTGCTCAG	GCAAATTCGT	TATGTGTTGC	GCTAATTAAG	CAACCAACAG	2220
50	TTTTAACTCA	TGAGAGTAGC	ATTCAATTTA	TTGAAAAAGT	TAAATTAAAA	GATACGGTAA	2280
	GAGCAGAAGC	ACGAGTTGTA	AATCAAACTG	CAAAACATTA	TTACGTCGAA	GTAAAGTCAT	2340
	ATGTTAAACA	TACATTAGTT	TTCAAAGGAA	TAAAATTTA	GTTTTATGAT	AAGCGAGGAT	2400

	TTAGAAGCCG	TACAAAAGGC	TGTTGAAGAC	TTTAAAGATC	TAGAAATTAT	ACTTTTCGGT	2520
	GACGAAAAA	AGTATAATCT	GAACCATGAA	CGAATCGAAT	TTAGACATTG	TTCTGAAAAG	2580
5	ATTGAAATGG	AAGATGAGCC	TGTTAGAGCG	ATTAAACGTA	AAAAAGATAG	CTCAATGGTA	2640
	AAAATGGCTG	AAGCTGTGAA	ATCTGGTGAA	GCAGATGGAT	GTGTGTCAGC	AGGTAATACT	2700
10	GGTGCTTTAA	TGTCAGCTGG	TTTATTCATT	GTTGGACGTA	TTAAAGGTGT	AGCTAGACCG	2760
	GCTTTAGTAG	TAACATTGCC	AACGATTGAT	GGAAAAGGTT	TTGTCTTTTT	AGACGTTGGT	2820
	GCAAATGCTG	ATGCTAAACC	TGAACACTTA	TTACAGTATG	CGCAACTAGG	GGATATTTAT	2880
15	GCTCAAAAAA	TTAGAGGTAT	TGATAATCCG	AAAATCTCAT	TATTAAATAT	AGGAACCGAG	2940
	CCAGCTAAAG	GTAATAGTTT	AACGAAAAA	TCATATGAGT	TATTAAATCA	TGATCATTCA	3000
	TTGAATTTTG	TTGGGAATAT	TGAAGCGAAG	ACATTAATGG	ATGGCGATAC	AGATGTTGTA	3060
20	GTTACCGATG	GCTATACTGG	GAACATGGTC	CTTAAAAATT	TAGAAGGTAC	TGCAAAATCA	3120
	ATCGGTAAAA	TGTTAAAAGA	TACGATTATG	AGTAGTACTA	TTAAATAAAA	AGCAGGTGCA	3180
25	ATATTGAAGA	AAGATTTAGC	TGAATTCGCT	AAAAAGATGG	ATTACTCAGA	ATACGGTGGT	3240
25	TCCGTATTAT	TAGGATTGGA	AGGTACTGTA	GTTAAAGCAC	ACGGTAGTTC	AAATGCTAAA	3300
	GCTTTTTATT	CTGCAATTAG	ACAAGCGAAA	ATCGCAGGAG	AACAAAATAT	TGTACAAACA	3360
30	ATGAAAGAGA	CTGTAGGTGA	AtCAAATGaG	Taaaacagca	ATTATTTTTC	CGGGACAAGG	3420
	TGCCCAAAAA	GTTGGTATGG	CGCAAGATTT	GTTTAACAAC	AATGATCAAG	CAACTGAAAT	3480
	TTTAACTTCA	GCAGCGAACA	CATTAGACTT	TGATATTTTA	GAGACAATGT	TTACTGATGA	3540
35	AGAAGGTAAA	TTGGGTGAAA	CTGAAAACAC	ACAACCAGCT	TTaTTGaCGC	aTAGTTCGGC	3600
	ATTATTAGCA	GCGCTAAAAA	ATTTGAATCC	TGATTTTACT	ATGGGGCATA	GTTTAGGTGA	3660
	ATATTCAAGT	TTAGTTGCAG	CTGACGTATT	ATCATTTGAA	GATGCAGTTA	AAATTGTTAG	3720
40	AAAACGTGGT	CAATTAATGG	CGCAAGCATT	TCCTACTGGT	GTAGGAAGCA	TGGCTGCAGT	3780
	ATTGGGATTA	GATTTTGATA	AAGTCGATGA	AATTTGTAAG	TCATTATCAT	CTGATGACAA	3840
45	AATAATTGAA	CCAGCAAACA	TTAATTGCCC	AGGTCAAATT	GTTGTTTCAG	GTCACAAAGC	3900
	TTTAATTGAT	GAGCTAGTAG	AAAAAGGTAA	ATCATTAGGT	GCAAAACGTG	TCATGCCTTT	3960
	AGCAGTATCT	GGACCATTCC	ATTCATCGCT	AATGAAAGTG	ATTGAAGAAG	ATTTTTCAAG	4020
50	TTACATTAAT	CAATTTGAAT	GGCGTGATGC	TAAGTTTCCT	GTAGTTCAAA	ATGTAAATGC	4080
	GCAAGGTGAA	ACTGACAAAG	AAGTAATTAA	ATCTAATATG	GTCAAGCAAT	TATATTCACC	4140
	ACTACAATTC	አ ተተ አ አ ርተ ር ል ል	СУСУУЛСССТ	AATAGACCAA	GGTGTTGATC	ATTTTATTGA	4200

	AACATCAATT	CAAACTTTAG	AAGATGTGAA	AGGATGGAAT	GAAAATGACT	AAGAGTGCTT	4320
	TAGTAACAGG	TGCATCAAGA	GGAATTGGAC	GTAGTATTGC	GTTACAATTA	GCAGAAGAAG	4380
6	GATATAATGT	AGCAGTAAAC	TATGCAGGCA	GCAAAGAGAA	AGCTGAAGCA	GTAGTCGAAG	4440
	AAATCAAAGC	TAAAGGTGTT	GACAGTTTTG	CGATTCAAGC	AAATGTTGCC	GATGCTGATG	4500
0	AAGTTAAAGC	AATGATTAAA	GAAGTAGTTA	GCCAATTTGG	TTCTTTAGAT	GTTTTAGTAA	4560
•	ATAATGCAGG	TATTACTCGC	GATAATTTAT	TAATGCGTAT	GAAAGAACAA	GAGTGGGATG	4620
	ATGTTATTGA	CACAAACTTA	AAAGGTGTAT	TTAACTGTAT	CCAAAAAGCA	ACACCACAAA	4680
5	TGTTAAGACA	ACGTAGTGGT	GCTATCATCA	ATTTATCAAG	TGTTGTTGGA	GCAGTAGGTA	4740
	ATCCGGGACA	AGCAAACTAT	GTTGCAACAA	AAGCAGGTGT	TATTGGTTTA	ACTAAATCTG	4800
	CGGCGCGTGA	ATTAGCATCT	CGTGGTATCA	CTGTAAATGC	AGTTGCACCT	GGTTTTATTG	4860
0	TTTCTGATAT	GACAGATGCT	TTAAGTGATG	AGCTTAAAGA	ACAAATGTTG	ACTCAAATTC	4920
	CGTTAGCACG	TTTTGGTCAA	GACACAGATA	TTGCTAATAC	AGTAGCGTTC	TTAGCATCAG	4980
_	ACAAAGCAAA	ATATATTACA	GGTCAAACAA	TCCATGTAAA	TGGTGGAATG	TACATGTAAT	5040
5	ATATTTGAGC	TAAAGCTCAT	TGACGCAGTG	GTTGACTGGT	CATCCAATGG	AGAATTGTCT	5100
	GACCTAGTCA	ACTTTGCGGG	GGAAATTCTA	AGCAACCTAG	ATAAGGTTCC	AGAATTTCTC	5160
o	CCTAAGAAAC	ACTAATCAAT	aaattgwtaa	GTGTTTCTAA	AATTTCTACT	TGTTTTTAG	5220
	TAAAATTTAA	GGGAAAATAT	AGTAGTCTAT	GTATAGGCAT	TTTTAAAGGA	GGTGAATCGA	5280
	CGTGGAAAAT	TTCGATAAAG	TAAAAGATAT	CATCGTTGAC	CgTTTAGGTG	TAGACGCTGA	5340
5	TAAAGTAACT	GAAGATGCAT	CTTTCAAAGA	TGATTTAGGC	GCTGACTCAC	TTGATATCGC	5400
	TGAATTAGTA	ATGGAATTAG	AAGACGAGTT	TGGTACTGAA	ATTCCTGATG	AAGAnGCTGA	5460
	AAAAATCAAC	ACTGTTGGTG	ATGCTGTTAA	ATTTATTAAC	AGTCTTGAAA	AATAATAAAT	5520
0	CTTACATCTG	GGTCGTCAGT	ATTGTCGACT	CAGTTTTTTT	CTTTAATTAT	CAATAGTTTT	5580
	AACGTAAAAT	TAAAGATGAT	TCAAGAGCAA	CACATAAAGG	AGATAAAATA	ATGTCTAAAC	5640
5	AAAAGAAAAG	TGAGATAGTT	AATCGTTTTA	GAAAGCGCTT	TGATACTAAA	ATGACAGAGT	5700
	TAGGCTTTAC	TTATCAAAAT	ATTGATTTAT	ACCAACAAGC	ATTTTCGCAT	TCGAGTTTTA	5760
	TTAATGATTT	TAATATGAAT	CGTTTAGACC	ATAATGAGCG	TTTAGAGTTT	TTGGGTGATG	5820
o	CGGTATTAGA	ATTGACGGTT	TCACGATATT	TATTTGATAa	ACATCCCAAC	TTGCCAGAAG	5880
	GGAATTTAAC	AAAAATGCGT	GCCaCTATTG	TATGTGAGCC	CtCACTkGTA	ATATTTGCGA	5940
	מברדים מממים	ATTCAACCAA	АТСАТТТАС	TTGGTAAAGG	TGAAGAGAAA	ACAGGGGAC	6000

ATCAAGGACT	AGATATAGTT	TGGAAATTTG	CTGAGAAAGT	CATTTTCCCA	CATGTAGAAC	6120	
AAAATGAGTT	ATTAGGCGTG	GTAGATTTTA	AAACACAATT	CCAAGAATAT	GTGCACCAGC	6180	
AAAATAAAGG	TGATGTAACC	TATAATTTAA	TAAAAGAAGA	GGGACCGGCA	CATCATCGTC	6240	
TATTCACTTC	A					6251	
(2) INFORMATION FOR SEQ ID NO: 26:							
(i) SI	EQUENCE CHAP	ACTERISTICS	S:		•		

- (A) LENGTH: 4920 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

20 ACCTACTGAA GTTGCTAATT TTTTGGAGCA ACTAAGCACT GAAATTGAAC GTCTTAAAGA 60 AGATAAAAA CAACTTGAAA AAGTAATCGA AGAGAGAGAT ACTAATATTA AGTCTTATCA 120 AGACGTGGCA TCAATCTGTA AGTGATGCTT TGATACAAGC TCAAAAAGCT GGTGAAGAAA 180 25 CTAAGCAAGC TGCAGAGAAA CAAGCTGAAG CGATTATAGC TAAGGCAGAA GCGCAAGCTA 240 ATCARATGGT TGGTGACGCG GTAGARARAG CACGCCGTTT AGCATTCCAG ACTGRAGATA 300 TGAAACGTCA ATCAAAAGTA TTTAGATCGC GTTTCCGTAT GTTAGTTGAA GCGCAATTAG 360 30 ACTTATTANA ANACGAAGAT TGGGATTACT TGTTGAATTA TGATTTAGAC GCTGAACAAG 420 TGACGCTTGA AAATATTCAT CATTTGCATG AAAATGATTT AAAGCCAGAT GAAGTTGCAG 480 CARATGCACA ARATRATGCA TCARATACAC CAGACARTAR TCARCARTCC ARTGATTCAG 540 35 AAACAACTAA GAAGTAAGAA TTAAATAAAG ACAGACGCGT AATATACATT TAACTTTTCA 600 CAGCGAATTA GGTAATGGTG AGAGCCTAGT AAAAGCATGT ATGTTATATC ACTGGCTTTT 660 40 TAATATTTAA ATAATGTAAT GAGAGAACTC TAAGTTGAGT TAATAAGGGT GGTACCGCGA 720 GCAATCGTCC CTTTTAATTT AACTTAGAGT TTTTTAAATT TTTAAGGAGT GAAAAAAATG 780 GATTACAAAG AAACGTTATT AATGCCTAAA ACAGATTTCC CAATGCGAGG TGGTTTACCA 840 45 AACAAGGAAC CGCAAATTCA AGAAAAATGG GATGCAGAAG ATCAATACCA TAAAGCGTTA 900 GAAAAAATA AAGGTAACGA AACATTCATT TTACATGATG GCCCACCATA CGCGAATGGT 960 AACTTACATA TGGGACATGC CTTGAACAAA ATTTTAAAAG ACTTTATTGT ACGTTATAAA 1020 50 ACTATGCAAG GGTTCTATGC ACCATACGTA CCAGGTTGGG ATACACATGG TTTACCAATT 1080 GAACAAGCAT TAACGAAAAA AGGTGTTGAC CGAAAGAAAA TGTCAACAGC TGAATTCCGT 1140

55

5

10

	TTAGGTGTTC	GTGGTGACTT	TAATGATCCA	TATATTACAT	TAAAACCTGA	ATACGAAGCT	1260
	GCACAAATTC	GTATTTTTGG	AGAAATGGCA	GATAAAGGTT	TAATTTATAA	AGGTAAAAG	1320
5	CCAGTTTATT	GGTCTCCTTC	AAGTGAGTCT	TCATTAGCAG	AAGCAGAAAT	TGAATATCAC	1380
	GATAAACGTT	CAGCATCAAT	TTACGTTGCA	TTTGACGTTA	AAGATGACAA	AGGTGTCGTT	1440
10	GATGCAGATG	CTAAATTTAT	TATCTGGACA	ACAACGCCAT	GGACAATTCC	ATCAAATGTT	1500
	GCGATTACCG	TTCATCCTGA	ATTAAAATAT	GGTCAATACA	ATGTAAATGG	CGAAAAATAT	1560
	ATTATTGCAG	AAGCCTTGTC	TGACGCTGTA	GCAGAAGCAC	TGGaTTGGGA	TAAAGCATCA	1620
15	ATCAAATTAG	AAAAAGAATA	CACAGGTAAA	GAATTAGAGT	ATGTTGTAGC	ACAACATCCA	1680
	TTCTTAGACA	GAGAATCGTT	AGTGATTAAT	GGTGATCATG	TTACTACAGA	TGCTGGTACA	1740
	GGTTGTGTAC	ATACAGCACC	AGGTCACGGG	GAAGATGACT	ATATTGTTGG	TCAAAAATAT	1800
20	GAATTGCCAG	TAATTAGTCC	AATCGATGAT	AAAGGTGTAT	TTACTGAAGA	AGGCGGCCAA	1860
	TTTGAAGGGA	TGTTCTATGA	TAAAGCTAAT	AAAGCCGTTA	CTGATTTATT	AACAGAAAAA	1920
25	GGTGCACTAT	TAAAATTAGA	CTTTATTACA	CATAGCTATC	CACACGACTG	GAGAACAAAA	1980
	AAACCTGTAA	TCTTCCGTGC	TACACCACAA	TGGTTTGCCT	CAATCAGTAA	AGTAAGACAA	2040
	GATATTTTAG	ATGCAATCGA	AAATACAAAC	TTCAAAGTAA	ATTGGGGTAA	AACACGTATT	2100
30	TACAATATGG	TTCGTGACCG	TGGCGAATGG	GTTATTTCTC	GTCAACGTGT	GTGGGGTGTA	2160
	CCGTTACCAG	TATTTTATGC	TGAAAATGGC	GAAATTATCA	TGACGAAAGA	AACAGTGAAT	2220
	CATGTTGCTG	ATTTATTTGC	AGAACACGGT	TCAAATATTT	GGTTTGAAAG	AGAAGCGAAA	2280
35	GACTTACTAC	CAGAAGGATT	TACACATCCA	GGCAGCCCTA	ACGGTACATT	TACTAAAGAA	2340
	ACAGACATTA	TGGACGTTTG	GTTTGATTCT	GGTTCATCAC	ACCGTGGCGT	GTTGGAAACA	2400
40	AGAÇCGGAAT	TAAGTTTCCC	AGCGGATATG	TATTTAGAAG	GTAGTGACCA	ATATCGTGGT	2460
40	TGGTTCAACT	CTTCTATCAC	AACTTCAGTT	GCTACAAGAG	GAGTATCACC	TTATAAATTC	2520
	TTACTTTCTC	ATGGTTTTGT	TATGGACGGT	GAAGGTAAGA	AAATGAGTAA	ATCTTTAGGT	2580
45	AATGTGATTG	TACCTGACCA	AGTGGTTAAA	CAAAAAGGTG	CTGATATTGC	GAGACTTTGG	2640
	GTAAGTAGTA	CGGACTATTT	AGCTGATGTT	AGAATTTCTG	ATGAAATTTT	AAAACAAACA	2700
	TCTGATGTTT	ATCGTAAAAT	CAGAAATACA	TTAAGATTTA	TGTTAGGTAA	CATTAACGAT	2760
50	TTCAATCCTG	ACACAGATAG	CATTCCTGAA	TCAGAGTTAT	TAGAAGTGGA	TCGTTACTTG	2820
	CTAAATCGTT	TACGTGAATT	TACTGCAAGT	ACGATTAACA	ACTATGAAAA	CTTTGACTAC	2880
	тттаататтт	ATCAAGAAGT	TCAAAACTTT	ATCAATGTTG	AGTTAAGTAA	TTTCTATTTG	2940

	CAAACAGTGT	TATATCAAAT	TTTAGTTGAT	ATGACGAAGT	TGTTAGCACC	AATCTTAGTG	3060
5	CATACAGCTG	AAGAAGTTTG	GTCTCATACA	CCACATGTTA	AAGAAGAAAG	TGTTCACTTA	3120
	GCAGACATGC	CTAAAGTTGT	AGAAGTAGAT	CAAGCTTTAT	TGGATAAATG	GCGTACATTT	3180
	ATGAATTTAC	GTGATGATGT	GAACCGTGCA	TTAGAAACTG	CTCGTAATGA	AAAAGTTATT	3240
10	GGTAAATCAT	TAGAAGCTAA	AGTTACGATT	GCTAGTAACG	ATAAATTTAA	TGCATCTGAA	3300
	TTCTTAACTT	CATTTGATGC	ATTACATCAA	TTATTTATCG	TGTCACAAGT	TAAAGTTGTA	3360
	GATAAGTTAG	ACGATCAGGC	AACAGCTTAT	GAACATGGTG	ATATTGTCAT	CGAACATGCA	3420
15	GATGGTGAAA	AATGTGAAAG	ATGTTGGAAC	TATTCAGAGG	ATCTTGGTGC	TGTTGATGAA	3480
	TTGACGCATC	TATGTCCACG	ATGCCAACAA	GTTGTAAAAT	CACTTGTATA	ATTGAAATTG	3540
00	TATAAAGTAC	TCATACAGAT	GATATAAATT	AAAGCTCTCT	TCATAATCAT	GTTGTAGTTT	3600
20	TTGTTGACAT	GATGAAGAGA	GTTTTTTTGT	GAATAAAAA	ATGACCAAGT	TACCGGTCAT	3660
	ATATGTAAAA	AATGTGCGAT	TTACTAAAAT	TTATTAAAAA	CAGGAATGGT	ACAAATTCTC	3720
25	TGAGGCATAT	AAATGCGTTA	TAGTTGCTAT	TCTCAATTAT	GTTCGCGATA	ATTTTAAGTA	3780
	AAAGTAAGCA	CAGATATTGA	ATTTGATAGG	AGTTAATTGA	ATGTATCATA	ACAGTAACGC	3840
	AAACTTTGTC	AATGGTATCA	CTTTAAATGT	GAGAGATAAG	AATGAATTAA	AGCCATTTTA	3900
30	TGAGGACATA	TTAGGATTAA	ATATTATAAA	TGAGACATTA	ACATCGATAC	AATATGAAGT	3960
	AGGTCAAAAT	AATCATGTCA	TTACACTTGT	TGAATTACAA	AATGGACGTG	AACCTTTAAT	4020
	GTCCGAAGCG	GGACTGTTTC	ATATCGCAAT	TAAACTACCT	CAAATTAGTG	ATTTAGCTAA	4080
35	TTTACTAATT	CATTTAAGCG	AATATGATAT	TCCAGTTAAC	GGAGGTATAC	AGCCTGCTTC	4140
	GTTATCATTA	TTTTTTGAAG	ACCCGGAAGG	AAACGGTTTT	AAATTTTATG	TTGATAAAGA	4200
40	CGAAGCGCAA	TGGACGAGGC	TTTAATAAAA	AGTAAAAATT	GATATTAGAC .	CATTAAATGT	4260
	ACCGAGATTA	GTGAGTCATG	CAACAAAATT	GTTATGGTTA	GGTATTCCAG	ATGACGCTAT	4320
	TATAGGTGCA	TTGCATATTA	AGACAATTCA	TTTATCAGAG	GTAAAAGAGT	ACTACCTCGA	4380
4 5	TTATTTTGGA	TTAGAGCAAT	CGGCATATAT	GGATGATTAT	TCAATATTTT	TAGCATCGAA	4440
	TGGCTATTAT	CAACATTTGG	CCATGAATGA	TTGGGTATCA	GCAACGAAAC	GTGTAGAAAA	4500
	TTTTGATACG	TATGGATTAG	CAATTGTTGA	CTTTCATTAT	CCTGAAACAA	CACATTTAAA	4560
50	TTTACAAGGT	CCGGATGGTA	TCTATTATCG	CTTTAATCAT	ATCGAAGTTG	AAGATTAGTA	4620
	TATACTTTGA	ATGGACGAAC	CATATAATGA	ATCGTTTTTA	ATGATCTTTT	TATACAAGTT	4680
	ATGAAGGAGG	CTGGGACATT	AAGTTCTTAG	GCAATGTAAA	AAGCTGATTT	СТАТТААТТА	4740

TTTTCCTTAT ATTAATTGCC ATTAATACAA AACCTAGCTC TCGTTTAACT TTATTTATTC	4860
CTCGAACTGA CATTCGnGTG AACTCAAAAT nGCCTACTTn CTTAAATTAC CAATATCTAT	4920
(2) INFORMATION FOR SEQ ID NO: 27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 626 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
TGGATTGCCA TTACATGGAC AAGATTTAAC TGAATCAATT ACACCATATG AAGGTGGTAT	60
CGCTTTTGCA AGTAAACCAT TAATTGATGC TGATTTTATT GGTAAATCTG TATTAAAAGA	120
TCAAAAAGAA AATGGTGCAC CAAGAAGAAC AGTGGGATTA GAATTACTTG AAAAAGGAAT	180
TGCAAGAACT GGTTATGAAG TTATGGATTT AGATGGAAAT ATTATTGGAG AAGTAACTTC	240
AGGAACACAG TCTCCATCAT CAGGAAAATC AATTGCACTT GCAATGATAA AAAGAGATGA	300
GTTTGAAATG GGTAGAGAGT TGCTTGTTCA AGTTCGTAAG CGTCAATTAA AAGCGAAAAT	360
TGTTAAGAAA AATCAAATTG ATAAATAATT AAAAAGGGGT GTGCATTGTG AGTCATCGTT	420
ATATACCTTT AACTGAAAAA GACAAGCAAG AAATGTTACA AACAATTGGT GCAAAATCTA	480
TAGGAGAATT ATTCGGTGAT GTACCAAGTG ACATTTATT AAATAGAGAT TTAAATATTG	540
CTGAAGGCGA ACGGAGAACA ACGTTACTTA GAAGATTNAA TCGCATTGCA AGCAAGAGTA	600
TCACTAGAGG AACGCGTACA TCGTTT	626
(2) INFORMATION FOR SEQ ID NO: 28:	
<pre>(i) SEQUENCE CHARACTERISTICS:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
nggaagtggt gtatatattt gtaatgagtg tattgaatta tgctcagaaa tcgtcgaaga	60
AGAATTAGCT CAAAACACTT CTGAAGCGAT GACAGAATTA CCTACTCCTA AAGAAATTAT	120
GGATCATTTA AACGAATATG TTATTGGTCA AGAAAAAGCT AAAAAATCTT TAGCTGTAGC	180
TGTTTATAAC CACTATAAGC GTATTCAACA ATTAGGACCA AAAGAAGATG ATGTTGAATT	240

	AACCTTAGCC	AAGACGTTGA	ATGTACCATT	TGCAATTGCA	GATGCGACAA	GTTTAACTGA	360
5	AGCTGGTTAT	GTAGGCGATG	atgttgaaaa	TATCTTGTTG	AGATTAATTC	AAGCAGCTGA	420
5	CTTTGACATT	GATAAAGCCG	AAAAAGGTAT	TATTTATGTA	GATGAAATTG	ATAAAATTGC	480
	ACGTAAATCT	GAAAACACAT	CTATAACACG	TGACGTTTCA	GGTGAAGGTG	TTCAACAAGC	540
10	ATTGCTTAAA	ATCTTAGAAG	GTACGACTGC	AAGTGTTCCG	CCACAAGGTG	GACGCAAACA	600
	TCCAAACCAA	GAAATGATTC	AAATTGATAC	AACAAATATC	TTATTTATTC	TTGGTGGTGC	660
	CTTTGATGGT	ATTGAAGAAG	TGATTAAGCG	CCGTCTTGGT	GAAAAAGTTA	TTGGTTTCTC	720
15	AAGCAATGAA	GCTGATAAAT	ATGACGAACA	AGCATTATTA	GCACAAATTC	GCCCAGAAGA	780
	TTTGCAAGCC	TATGGTTTGA	TTCCTGAATT	TATCGGACGT	GTGCCAATTG	TAGCTAATTT	840
	AGAAACATTA	GATGTAACTG	CGTTGAAAAA	CATCTTAACG	CAACCTAAAA	ATGCACTTGT	900
20	GAAACAATAT	ACTAAAATGC	TGGAATTAGA	TGATGTGGAT	TTAGAGTTCA	CTGAAGAAGC	960
	TTTATCAGCA	ATTAGTGAAA	AAGCAATTGA	AAGAAAAACA	GGTGCGCGTG	GTTTACGTTC	1020
25	AATCATAGAA	GAATCGTTAA	TCGATATTAT	GTTTGATGTG	CCTTCTAACG	AAAATGTAAC	1080
	GAaGGTAGTT	ATTACAGCAC	AAACmATTAA	TGrAGaACTG	AACCAG		1126
	(2) INFORM	ATION FOR SI	EQ ID NO: 25	9:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4392 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

ATTGACTTCT	TAGCAATnAA	TaTGAGTGAA	GAACGTACTG	TTGAAGTACC	AGTTCAATTA	60
GTTGGTGAAG	CAGTAGGCGC	TAAAGAAGGC	GGCGTAGTTG	AACAACCATT	ATTCAACTTA	120
GAAGTAACTG	CTACTCCAGA	CAATATTCCA	GAAGCAATCG	AAGTAGACAT	TACTGAATTA	180
AACATTAACG	ACAGCTTAAC	TGTTGCTGAT	GTTAAAGTAA	CTGGCGACTT	CAAAATCGAA	240
AACGATTCAG	CTGAATCAGT	AGTAACAGTA	GTTGCTCCAA	CTGAAGAACC	AACTGAAGAA	300
GAAATCGAAG	CTATGGAAGG	CGAACAACAA	ACTGAAGAAC	CAGAAGTTGT	TGGCGAAAGC	360
AAAGAAGACG	AAGAAAAAAC	TGAAGAGTAA	TTTTAATCTG	TTACATTAAA	GTTTTTATAC	420
TTTGTTTAAC	AAGCACTGTG	CTTATTTTAA	TATAAGCATG	GTGCTTTTTG	TGTTATTATA	480
AAGCTTAATT	AAACTTTATT	ACTTTGTACT	AAAGTTTAAT	TAATTTTAGT	GAGTAAAAGA	540

	CTTACTAAGC	TAAAGAATAA	TGATAATTGA	TGGCAATGGC	GGAAAATGGA	TGTTGTCATT	660
_	ATAATAATAA	ATGAAACAAT	TATGTTGGAG	GTAAACACGC	ATGAAATGTA	TTGTAGGTCT	720
5	AGGTAATATA	GGTAAACGTT	TTGAACTTAC	AAGACATAAT	ATCGGCTTTG	AAGTCGTTGA	780
	TTATATTTTA	GAGAAAATA	ATTTTTCATT	AGATAAACAA	AAGTTTAAAG	GTGCATATAC	840
10	AATTGAACGA	ATGAACGGCG	ATAAAGTGTT	ATTTATCGAA	CCAATGACAA	TGATGAATTT	900
	GTCAGGTGAA	GCaGTTGCAC	CGATTATGGA	TTATTACAAT	GTTAATCCAG	AAGATTTAAT	960
	TGTCTTATAT	GATGATTTAG	ATTTAGAACA	AGGACAAGTT	CGCTTAAGAC	AAAAAGGAAG	1020
15	TGCGGGCGGT	CACAATGGTA	TGAAATCAAT	TATTAAAATG	CTTGGTACAG	ACCAATTTAA	1080
	ACGTATTCGT	ATTGGTGTGG	GAAGACCAAC	GAATGGTATG	ACGGTACCTG	ATTATGTTTT	1140
	ACAACGCTTT	TCAAATGATG	AAATGGTAAC	GATGGAAAAA	GTTATCGAAC	ACGCAGCACG	1200
20	CGCAATTGAA	AAGTTTGTTG	AAACATCACG	ATTTGACCAT	GTTATGAATG	AATTTAATGG	1260
	TGAAGTGAAA	TAATGACAAT	ATTGACAACG	CTTATAAAAG	AAGATAATCA	TTTTCAAGAC	1320
25	CTTAATCAGG	TATTTGGACA	AGCAAACACA	CTAGTAACTG	GTCTTTCCCC	GTCAGCTAAA	1380
.0	GTGACGATGA	TTGCTGAAAA	ATATGCACAA	AGTAATCAAC	AGTTATTATT	AATTACCAAT	1440
	AATTTATACC	AAGCAGATAA	ATTAGAAACA	GATTTACTTC	AATTTATAGA	TGCTGAAGAA	1500
80	TTGTATAAGT	ATCCTGTGCA	AGATATTATG	ACCGAAGAGT	TTTCAACACA	AAGCCCTCAA	1560
	CTGATGAGTG	AACGTATTAG	AACTTTAACT	GCGTTAGCTC	aaggtaagaa	AGGGTTATTT	1620
	ATCGTTCCTT	TAAATGGTTT	GAAAAAGTGG	TTAACTCCTG	TTGAAATGTG	GCAAAATCAC	1680
15	CAAATGACAT	TGCGTGTTGG	TGAGGATATC	GATGTGGACC	AATTTCTTAA	CAAATTAGTT	1740
	AATATGGGGT	ACAAACGGGA	ATCCGTGGTA	TCGCATATTG	GTGAATTCTC	ATTGCGAGGA	1800
	GGTÄTTATCG	ATATCTTTCC	GCTAATTGGG	GAACCAATCA	GAATTGAGCT	ATTTGATACC	1860
10	GAAATTGATT	CTATTCGGGA	TTTTGATGTT	GAAACGCAGC	GTTCCAAAGA	TAATGTTGAA	1920
	GAAGTCGATA	TCACAACTGC	AAGTGATTAT	ATCATTACTG	AAGAAGTGAT	CAGCCATCTT	1980
15	AAAGAAGAGT	TAAAAACTGC	ATATGAAAAT	ACAAGACCCA	AAATAGATAA	ATCAGTGCGC	2040
	AATGATTTGA	AAGAAACGTA	TGAAAGCTTT	AAATTATTCG	AAAGTACATA	CTTTGATCAT	2100
	CAAATACTAC	GTCGCTTAGT	AGCGTTTATG	TATGAAACAC	CTTCGACAAT	TATTGAGTAT	2160
io	TTCCAAAAAG	ATGCAATCAT	TGCAGTTGAT	GAATTTAATC	GTATTAAAGA	AACTGAAGAA	2220
	AGTTTAACAG	TAGAGTCTGA	TTCGTTTATT	AGCAATATTA	TTGAAAGTGG	TAATGGATTT	2280
	ATAGGACAAA	GTTTTATAAA	ATATGATGAT	TTTGAAACAT	TGATTGAAGG	CTATCCTGTC	2340

	TCATGTAAAC	CTGTCCAACA	ATTTTATGGG	CAATATGACA	TTATGCGTTC	TGAATTTCAA	2460
_	CGATATGTTA	ATCAAAACTA	TCATATCGTG	GTTTTGGTCG	AAACCGAAAC	TAAAGTTGAA	2520
5	CGTATGCAAG	CGATGTTAAG	TGAAAtGCAT	ATTCCATCAA	TAACAAAATT	GCATCGCTCA	2580
	ATGTCATCGG	GGCAAGCAGT	GATTATTGAA	GGCAGTTTAT	CTGAAGGATT	TGAACTACCT	2640
10	GATATGGGAT	TAGTTGTCAT	TACTGAGCGT	GAGCTTTTTA	AATCAAAACA	GAAAAAGCAA	2700
	CGAAAACGTA	CGAAAGCTAT	CTCAAATGCT	GAAAAAATTA	AGTCTTACCA	AGATTTAAAT	2760
	GTGGGAGATT	ATATTGTTCA	TGTGCATCAT	GGTGTTGGTA	GATATTTAGG	TGTTGAGACG	2820
15	CTCGAAGTGG	GGCAAACGCA	TCGTGATTAT	ATTAAATTGC	AATATAAAGG	TACGGATCAA	2880
	CTATTTGTTC	CAGTAGATCA	AATGGATCAA	GTTCAAAAAT	ATGTAGCTTC	GGAAGATAAG	2940
	ACGCCAAAAT	TAAATAAACT	CGGTGGCAGT	GAATGGAAAA	AAACAAAAGC	TAAAGTTCAA	3000
20	CAAAGTGTTG	AAGATATTGC	TGAAGAGTTG	ATTGATTTAT	ATAAAGAAAG	AGAAATGGCA	3060
	GAAGGTTATC	AATATGGGGA	AGACACAGCT	GAGCAAACAA	CATTTGAATT	AGATTTTCCA	3120
25	TATGAACTTA	CGCCTGACCA	AGCTAAATCT	ATCGATGAAA	TTAAAGATGA	CATGCAAAAA	3180
.5	TCGCGTCCAA	TGGATCGCTT	GCTATGTGGT	GATGTTGGTT	ATGGTAAAAC	TGAAGTTGCA	3240
	GTGAGAGCAG	CATTCAAAGC	TGTAATGGAA	GGAAAGCAGG	TTGCATTTTT	AGTTCCTACA	3300
ю	ACTATTTTAG	CTCAGCAACA	TTATGAGACG	TTAATTGAGC	GTATGCAAGA	TTTTCCTGTT	3360
	GAAATTCAAT	TAATGAGTCG	TTTTAGAACG	CCTAAAGAGA	TAAAACAAAC	TAAGGAAGGA	3420
	CTTAAAACTG	GATTTGTTGA	CATAGTTGTT	GGTACACACA	AATTACTTAG	TAAAGATATA	3480
5	CAGTATAAAG	ATTTAGGGCT	GTTGATTGTA	GATGAAGAAC	AACGATTTGG	TGTACGCCAT	3540
	AAAGAGCGTA	TTAAAACATT	AAAACATAAT	GTAGATGTAC	TAACATTGAC	TGCAACCCCA	3600
_	ATAGCTAGAA	CATTGCATAT	GAGTATGCTA	GGTGTGCGGG	ATTTGTCAGT	GATTGAAACG	3660
0	CCGCCAGAAA	ATCGTTTCCC	AGTTCAAACA	TATGTATTAG	AACAGAACAT	GAGTTTTATC	3720
	AAAGAAGCTT	TAGAAAGAGA	ACTATCCCGT	GATGGCCAAG	TGTTTTATCT	AAATAATT	3780
5	GTGCAATCCA	TTTATGaAAA	ACGAGAACAA	CTCCAGATGT	TAATGCCAGA	TGCTAACATT	3840
	GCAGTTGCTC	ATGGACAAAT	GACAGAGCGC	GATTTAGAAG	AAACGATGTT	AAGTTTTATC	3900
	AATAATgaat	ATGATATTTT	AGTAACGACG	ACGATTATTG	AAACAGGTGT	CGATGTCCCA	3960
o	AATGCAAATA	CTTTGATCAT	TGAAGATGCA	GATCGCTTTG	GATTGAGTCA	GTTGTATCAA	4020
	TTAAGAGGTC	GTGTTGGTCG	TTCAAGTCGT	ATTGGTTATG	CATACTTCTT	ACATCCAGCA	4080
	AATAAGGTAC	TAACTGAGAC	TGCAGAAGAT	CGATTACAAG	CGATTAAAGA	ATTTACGGAG	4140

	TTAGGTAAAC AACAGCACGG CTTTATTGAT ACAGTTGGAT TTGATTTGTA CAGTCAAATG	4260
	TTAGAAGAAG CTGTAAATGA AAAACGTGGT ATTAAGGAAC CAGAATCTGA GGTGCCAGAA	4320
5	GTCGAAGTTG ATTTAAACTT GGATGCATAT TTGCCAACAG AATATATTGC AAATGAACAA	4380
	GCTAAAATTG AA	4392
10	(2) INFORMATION FOR SEQ ID NO: 30:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 729 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	-
20	TTTCTTTTGA ATCTATATCG AGGTGGTTGG TAGGTTCATC TAAAATAAGT ACATTGTCAC	60
	GTTGCAACAT AAGTAGTGCT AGTTGTAAAC GTGCTTTTTC ACCACCAGAT AAATCATTAA	120
25	TTATCTTTT AACATCGTCT TGTACAAATA AGAAACGTCC AAGAACTGCT CGAATATCTT	180
25	TTTCATTCAT TAACGGATAT TGATCCCACA CATAATCTAA AATCGTTTTA CTAGATTTAA	240
	ATTCTGCTTG CTTTTGATCA TAATAACCAA TTTGTAAATT TGCGCCGAAA GTAATATCGC	300
30	CATTAAGCGC TTTTTGTTGA TTAGCAATAG TTTTAATTAA GGTCGATTTT CCAATACCAT	360
	TTGGCCCAAT GATTGCTATA TGATCGCCTT TAGAGACCTC TATACTCATA GGTTTGGTAA	420
	TTGCAGTTTG ATAACCGATT TCTAAATTTT TTACATGCAT GACGTCATTA CCTGTATTCC	480
35	GGTCAAAGCC AAATTGAATA TTTGCACTTT TGGCATCTAA CATTGGTTTA TCAATGCGTT	540
	CCATTTTTC TAAAATCTTA CGTCTACTTT TTGCCATTCC ACTTGTTGAA GCACGGGTAA	600
40	TATTTTTCTC AACAAAAGTT TCTAATCGTT TTATTTCTGC TTGTTGACTT TCATATTCTT	660
40	GCATTCGTTT TTGATAATAT AAATCCCGTT GCTGTATAAA TTCCTCGTAA TTACCAACAT	720
	AGCGTTTGA	729
45	(2) INFORMATION FOR SEQ ID NO: 31:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13856 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
-	·= • = = = = : :	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

55

	TGATGTTTCG	ATACATTTGT	TGCACCTTGT	GGATATACTT	TAAAGGTTGT	GTCGTATGTT	. 120
	TCCTTACTAT	CTTTAGCTTC	AGATTCCTGT	GATTCAACCG	TTTTATATTT	TTCAAGTGCA	180
5	TGTCCTTCAA	TATCAACTCG	TGGAATAATG	CGATTCAACC	ATGCTGGTAA	ATACCACGAA	240
	CCTTTCCCAA	ACAATTTCGt	TAATGCAGGA	ATTAACATCA	TECTGACTAC	GAAGGCATCA	300
10	AAGAGTACAC	CAAACGCTAA	TGCCATACCC	ATTGATTTAA	TCATGACATC	TTCTTGGAAT	360
,0	ACAAACGCAA	AGAAGACACT	AAACATAATT	AATGCAGCTG	CTACAATAAC	AGGACCGCTT	420
	TCTTTCAATC	CTACTTTGAT	AGAATAATCA	TTATCCCCTG	TTTTACTATm	yyCTTCATGr	480
15	ATTCGCGACA	TAAGGAAGAC	TTCATAATCC	ATCGCTAATC	CAAATAAGAT	ACCTATAGTA	540
	ATAACCGGTA	AAAATGCTAG	CATTGGTCCT	GTCGTTTCAA	TACCAAACAG	ACCTTTCATA	600
	AAACCATCTT	GCATTACTAA	TGTTGTAAAT	CCTAATGTTG	CCATTAATGA	CAAGACGAAT	660
20	CCTAAAACTG	CTTTTAATGG	TATTAGAATT	GAACGGAAGA	CAATCATTAA	TAAGAAAAAT	720
	GCTAATACAA	CAATGACTGA	GGCAAATAAA	GGTATCGCCT	CATTTAACTT	TTTAGACATA	780
	TCAATATTAA	TGACACTTTG	TCCCGAAATC	TCCGTTTTGA	ACCCATATTT	ATCTTGTGCA	840
25	TCTTTATGAT	AATCTCGTAA	ATCATGCACT	AAATCATTTG	TACTCTCTGC	ATTAGGCCCT	900
	TGCTTAGGTA	TCACGACCAT	CAAAGCGTAA	TCATTATCTT	TACTCATTTG	TGGTGGCGTA	960
30	ACGATATCTA	CATTTTTCTT	ATCTTTAATA	TCTTTATATA	CAGACTGTAA	ATCTTGTTGT	1020
	AATCCTTGTG	GATCATCCTT	TTTATCTTTC	ACATTTATCA	ACATCGGTAT	TTGGCCATTA	1080
	AATCCTTCAC	CAAATTTATC	CGAGATAATA	TCGTAAGCTT	TTTTCTGTGT	AGAATCTGCT	1140
35	GGTTTAACAC	CGTCATCTGG	AATACCAAGT	CGCATATGAC	TAACTGGTAT	TGCAGCTGCT	1200
	ACTAATATGA	TTAAACCTAG	TAATACTGCC	GCAAGTGCAT	TTCCTGTAAT	AAATTTAGAC	1260
	CATGGCGTAT	CAATATCTTT	TTTGAATTTA	GACTGTAATT	TATTCACTTT	AATGCGTTtA	1320
40	TGGAAAATGC	TTATTAATGC	AGGTAATAAA	GTTAAAGCGC	TAAGTACTGC	AAAAACAACA	1380
	CTAATTGCCG	AAGCAAATCC	CATTACCGCT	AAGAAGTCAA	TGCCTACTAA	TGATAAACCA	1440
45	CATACTGCAA	TTACAACTGT	TACACCAGCA	AAAACAACTG	CACTACCTGC	TGTTCCTATT	1500
	GCAAGACCAA	TGCCTTTAAT	GTAATCTGTT	TCAGTTTTCA	TAACTTGTCG	ATATCTGAAT	1560
	AAAATAAATA	ATGCATAATC	GATACCAACT	GCTAGTCCAA	TCATTACGGC	TAATGTCAGT	1620
50	GTGACATTTG	GTATATCGAA	TGCATAAGTT	AACAAACTGA	TAATACCTAC	ACCAGAGGCT	1680
	AGACCAATCA	ATGCACTTAT	AATTGGTAAT	CCTGCAGCAA	TGACTGAACC	GAATGTGATT	1740
	AACAGTACAA	CAAATGCAAC	AATAATACCA	ACTAGTTCAG	AATTACCGCC	TACTTCTGTA	1800

					> mamma > am	N N CCTC N T N T	1920
				TCTTTTAAAG			1920
_	GTGATATCTG	CAAATGCAGT	TGTTTTATCT	TTACTAATTT	GCTTATTTTC	ATAAGGATCT	1980
5	GATATTTTAT	CAATGTGCTT	GTCATCTTTT	TTAATATCAT	CTAACGTTTT	CTTAATATCT	2040
	TTAGTAATGT	TCGGTTGCAC	AATACCATCA	TCTTTAGTCG	TCTTAAAGAC	AACACGTATT	2100
10	TGTGCCTTTT	CACTATCTTG	ATTAAAATGT	TTTTCAATCT	TTTTATTCGT	ATCTAACGAC	2160
	TCTAATCCTG	TCATTTTAAT	ATCATTGTCA	AATTTCGGTG	CATTTGTAGC	AAGTGGTATC	2220
	AATATTGCAG	CTACAATCAC	TATCCATGCA	ATGACCGCGG	ACCATTTATG	TTTTGCGATG	2280
15	AATGTCCCCA	TCTTATATAA	AAATTTTGCC	AAAGTATATT	GCCTCCTTTT	AAAATCAACG	2340
	TTATAGTTTA	AATATACAGT	GTAGATTATT	GTTCGATTAT	AGTATCTATC	CCCGACCTCT	2400
	TAAAGAATCA	ATTGGAAAAT	TITGTATATT	AAACTACACA	CAAAGGAGAA	ATGTAGATGA	2460
20	AAGAGACTGA	TTTACGAGTT	ATAAAGACAA	AAAAAGCATT	GTCGAGTAGC	TTGCTACAAT	2520
	TGTTAGAACA	GCAATTATTC	CAAACGATTA	CTGTCAATCA	AATTTGCGAC	AACGCACTCG	2580
25	TACACCGTAC	AACATTTTAT	AAACATTTTT	ATGATAAATA	TGATCTTCTA	GAGTACTTGT	2640
25	TCAATCAATT	GACTAAAGAC	TACTTTGCTA	GAGATATCAG	TGACCGTCTT	AATCATCCAT	2700
	TCCAAACGAT	GAGTGATACG	ATTAATAATA	AAGAGGATTT	GAGAGAAATC	GCAGAATTCC	2760
30	AAGAAGAAGA	CGCTGAATTT	AATAAAGTAT	TAAAAAATGT	CTGCATTAAA	ATTATGCATA	2820
	ACGATATCAA	AAATAATAGA	GACCGTATCG	ATATTGACAG	CGACATCCCA	GATAATCTCA	2880
	TATTTTATAT	TTATGACTCG	TTGATTGAAG	GTTTTATACA	TTGGATAAAA	GATGAAAAA	2940
35	TTGATTGGCC	TGGCGAAGAT	ATTGATAACA	TTTTCCATAG	ATTAATCAAT	ATTAAGATTA	3000
	AATAGTAGAT	GAGAAACTCA	TGAGCGTTAC	CAACATTCAT	AATAAAAACG	ATAGTGKACA	3060
	CGTTÄATGAA	TTCGTGTACT	ACTATCGTTT	TTTATTTTTA	TCGTGCTTAT	CGCTATTAAA	3120
40	ACAACTGATA	CACAACACAT	AAACTATGAA	GAAAAAAATA	AATCCGCTAT	CTAAATGACT	3180
	TTGACTCAGT	TGTTTAAATG	ACCAAATTGC	TAATACAATT	CCCATTATTA	TTGAAATAAC	3240
45	GTATCTCACA	TTCTTATACC	TATAATCCTT	TTCTAAAAAT	ATGGTTGCTA	TTACTTAATT	3300
	TTTAAAGTTA	ТАААТАААА	GAGCCAACCG	CAATGGATGG	CCCTTGTTCA	TTATGAAGCA	3360
	TTAGAACATT	TCTGAAACAA	CCTTTTGTTC	TAAGAAGTGT	AATAAGTAGT	CTGGACTACC	3420
50	TGTTTTAGCG	TCCGTACCTG	ACATTTTGAA	ACCACCAAAT	GGATGGTATC	CAACAACTGC	3480
	TGAAGTACAG	CCTCTGTTAA	GGTATAAATT	GCCTACATCA	AATTCGTTTA	CCGCTTTAAT	3540
	CCAATGCTCG	CGATTATTTG	TAATCACTGC	ACCAGTTAAA	CCGTAATCTG	TATCATTTGC	3600

	TTCTTCTTGC	ATGATTCTAT	CTTTAGATTT	AAGTCCTGAA	ATGATTGTTG	GTTCTACAAA	3720
	GTAACCTTTT	GAATCATCAG	TGCCGCCACC	TTGTTCTAAT	TTACCTTCTT	CTTTACCAAT	3780
5	CTCAATATAA	TTTTTAATCT	TATCAAATTG	TTTTTTTTA	ATAACTGGGC	CCATATACGT	3840
	ATTGTCTACA	GTATTGCCCA	ACGTTAATTC	TTTTGTTAAT	TTGATTGATT	TCTCTAATAC	3900
10	TTCGTCATAA	ACGTCTTTAT	GCACAATTGC	ACGTGAACAT	GCTGAACATT	TTTGACCAGA	3960
,,	AAAACCAAAT	GCTGACGTTA	CAATAGCTTC	TGCTGCCATA	TCTGTATCAA	TATTTTCATC	4020
	AACTACAATG	GCATCTTTAC	CACCCATTTC	AGCGATAACA	CGTTTCAAGA	AGTTTTGACC	4080
15	TTCTTGAACA	ACGGCACTAC	GTTCATAAAT	TCTAGTACCT	GTCGCACGTG	ATCCTGTAAA	4140
	TGTAACGAAA	TGCGTATCTT	TATGATCAAC	TAAGTAATCA	CCAATTTCTT	TCGGATCACC	4200
	AGGAACAAAG	TTAACTACGC	CTTTTGGTAA	TCCTGCTTCT	TCTAAAATTT	CCATTAATTT	4260
20	ATAAGCGATA	TAAGGTGTAT	CCTCAGCAGG	TTTCAATAAC	ACTGTATTAC	CTGCCACAAC	4320
	TGGTGCTAAA	GTTGTACCAG	CCATAATCGC	AAACGGGAAG	TTCCACGGCG	GAATTGTAAC	4380
	ACCTGTACCA	ATTGATTTAT	AGAAATATTT	ATTGTGTTCA	CCTTCACGAT	CAAGTACTGG	4440
25	CTTACCTTGA	GCCAAGTCCA	TCATTGAACG	TGCATAGTAT	TCAATAAAAT	CAATACCTTC	4500
	AGCTGCATCA	CCAACTGCTT	CATCCCATGG	CTTACCTGCT	TCATAAACCA	TAATTGCTGC	4560
30	AATTTCCGCT	TTTCGACGAC	GAATAATTGC	CGAAACACGT	AACATAAGCT	CTGCACGATC	4620
	ATTTGCTGAC	CATGTTTTCC	AAGATTTATA	AGCTTCGTTT	GCTGCTTTAA	ACGCATCTTC	4680
	AACATCTTGT	TTTGTTGCCT	TTGATGCATT	TGCAATCACT	TGTGATGTGT	CTGCAGGATT	4740
35	GATTGATTTA	ATTTTGTCAT	CTTTGAAAAT	CTTCTCTCCA	TTAATCACTA	ATGGTATGTC	4800
	TTGACCTAAT	TCTTTTTCCA	CGTCTTTCAA	TGCTTTCTTA	AACATATCCA	CATTTTCTTG	4860
	GACTGAAAAA	TCGTAACCAG	GTTCATTTTT	AAATTCTACT	ACCATGTACA	CTTACCCCCT	4920
40	ATAÄATTTTG	AAAGTGGTTT	AACCCTTTGA	TTTAATGATA	TAACATCATT	TAAACTCATT	4980
	TTACTATGAT	TAAGGTTAGT	TTTGCAATCG	CTTTCATTTT	TATGTTTTAT	CACTTATTCT	5040
45	CAAGTATTTT	GAAATTGATT	GGTTACTTTT	TAXAATTTAT	ATGGGTCGCA	ACTGCTACTT	5100
	TATCGTTTCG	TCATTTAATG	TTTCGGATGG	TAGGTCATTA	TCAATTTTAC	GAACGACTTT	5160
	ACAAGGGTTT	CCAACCGCTA	AGCTGTGTGG	CGGAATATCT	TTAGTGACAA	CACTACCAGC	5220
50	ACCAATCACA	CTGCCTTCTC	CAATCGTCAC	CCCTGGTAAC	ACGGCTACAT	GACCGCCAAA	5280
	CCAAGTATTA	CTGCCAATAT	GAATGGGTCC	GGCTTTTTCA	AAACCTTCAT	TTCTATGATG	5340
	GAAATTAAGT	GGATGTGTCG	CTGTGTAGAA	TCCACAATTA	GGTCCTATAA	AAACATTATC	5400

	TCCTAGTTTA	ACGTTCCAAC	CATAATCTGT	ATCAAAAGGA	ATCGAAATAC	TTACATTGTC	5520
_	TGTTGTTGTT	TGAAATAATT	GATCAATTAA	TTCCTTTCTT	TTATTTGTAG	CACTCGGTCT	5580
5	TGTATGATTT	AATTCAAAGC	AAATATCTTT	CGCTCGTGCA	CGTTCATTGA	TTAAGTATTG	5640
	ATCAAAGTTT	GCATCGTACC	ATTTTTCTGC	TAACATTTTT	TCTTTTTCAG	TCATTACACC	5700
o	TTTCAACTCC	TAATAACTTA	TTTACTTGTT	TAAAAGTTAA	TCAAATAAAC	CTTCGCCTAT	5760
	GCAACTAATA	CGCTATAACA	TTATGAAATC	ATGACCTTAT	CACCCTTATC	TATACAATTC	5820
	TCGCATCAAA	TACTGCTAAA	GTAGTAGATA	AATTCAATAC	TACAGACGCA	TTCATTTTTT	5880
5	AATCTATTAA	CGTACAATGT	GAGTAAGAGA	AATATAAAGG	AGTATGATAG	CGATGAGAAT	5940
	ATTAATTACA	GGCACAGTTG	CTATCTTAAT	CATTCTAGGT	TTGGTCAAAA	CGATACAAGA	6000
	TTACGAAATG	ACAAACGACA	CGAGTCGTCA	GTTGTCAGAC	AACAAAGATG	ATGATAAAGT	6060
	CATCCATCTT	AATAATTTTA	AAAATTTACA	TGCGAAAGAA	TTTAACCCAT	CTGATTTCTT	6120
	TTAAGTCACC	TAAGAATTGC	AAATCCAGAA	GTCATTTAAG	TTTTACCTTT	CATTCATACA	6180
5	TCCTŤTAATA	TTAATTACGA	CTTCTTTTAT	ATAGATGCTA	AGTAGAGAGA	TTGTTGTGCA	6240
3	ATGTTTGCAC	GGCAATCTCT	CTTTTTCTTT	TTAAAATTGG	TAAAAGTAAA	ACGCAACGAT	6300
	TGACTTATAT	ACCTATAGGG	GGTACATTAG	ACGTGTAACA	ATGAATCACA	GGGAGGCAAT	6360
·.	AATGTGGCTA	ATACGAAAAA	AACAACATTA	GATATCACTG	GTATGACTTG	TGCCGCATGT	6420
	TCAAATCGTA	TCGAAAAGAA	ACTGAATAAA	CTTGATGACG	TTAATGCCCA	AGTGAATTTA	6480
	ACTACAGAGA	AAGCAACTGŤ	TGAGTATAAC	CCTGATCAAC	ATGATGTCCA	AGAATTTATT	6540
5	AATACGATTC	AACATTTAGG	TTACGGTGTC	GCTGTAGAAA	CTGTCGAATT	AGACATTACA	6600
	GGTATGACTT	GTGCTGCATG	CTCAAGCCGT	attgaaaaag	TGTTAAATAA	AATGGACGGC	6660
	GTTCAAAATG	CAACGGTCAA	TTTAACAACA	GAGCAAGCTA	AAGTTGACTA	TTATCCTGAA	6720
0	GAAACAGATG	CTGATAAACT	TGTCACTCGC	ATTCAAAAAT	TAGGTTATGA	CGCGTCTATT	6780
	AAAGATAACA	ATAAAGATCA	AACGTCACGC	AAAGCTGAAG	CGCTACAACA	TAAATTGATT	6840
5	AAGCTTATCA	TATCAGCAGT	ATTATCTTTA	CCACTATTAA	TGTTAATGTT	TGTACATCTT	6900
	TTCAATATGC	ATATACCAGC	ACTATTTACG	AATCCATGGT	TCCAATTTAT	TTTAGCTACA	6960
	CCTGTACAAT	TTATTATTGG	ATGGCAATTT	TATGTAGGTG	CTTATAAAAA	CTTAAGAAAT	7020
50	GGTGGCGCCA	ATATGGATGT	ACTTGTTGCT	GTTGGTACAA	GTGCAGCATA	TTTTTACAGT	7080
	ATTTATGAAA	TGGTTCGTTG	GCTAAATGGC	TCAACAACGC	AACCGCATTT	ATACTTTGAA	7140
	ACAAGCGCCG	TACTAATTAC	CTTAATCTTA	TTCGGTAAGT	ATTTAGAAGC	TAGAGCGAAG.	7200

	TTAAAAGATG	GTAATGAAGT	GATGATTCCT	CTAAATGAAG	TACATGTTGG	AGATACACTT	7320
	ATCGTTAAAC	CAGGTGAAAA	GATACCTGTT	GATGGCAAAA	TTATTAAAGG	TATGACTGCC	7380
5	ATCGACGAAT	CTATGTTAAC	AGGTGAATCT	ATCCCTGTTG	AGAAGAATGT	TGATGATACT	7440
	GTAATTGGTT	CAACGATGAA	CAAAAACGGT	ACTATTACTA	TGACAGCAAC	AAAAGTTGGC	7500
10	GGGGACACTG	CGTTGGCAAA	TATTATTAAA	GTTGTCGAAG	AAGCTCAAAG	TTCTAAAGCG	7560
70	CCGATTCAAC	GATTGGCAGA	TATTATTTCT	GGTTATTTCG	TTCCTATCGT	TGTTGGTATC	7620
	GCACTATTAA	CATTTATCGT	GTGGATTACT	TTAGTTACAC	CAGGTACATT	TGAACCTGCA	7680
15	CTTGTTGCGA	GTATTTCCGT	TCTCGTCATT	GCTTGTCCAT	GCGCATTGGG	ACTTGCTACA	7740
	CCAACTTCTA	TTATGGTAGG	TACTGGTCGC	GCTGCTGaAA	ATGGTATITT	ATTTAAAGGT	7800
	GGCGAGTTTG	TTGAACGCAC	ACATCAAATT	GATACCATCG	TTTTAGATAA	GACGGGTACC	7860
20	ATTACAAATG	GTCGTCCAGT	CGTGACAGAT	TATCATGGTG	ACAATCAAAC	GCTACAACTA	7920
	CTTGCTACTG	CTGAAAAAGA	TTCTGAACAC	CCATTGGCAG	AAGCCATTGT	CAATTATGCA	7980
	AAAGAAAAGC	AATTAATATT	AACTGAGACA	ACAACATTTA	AAGCAGTACC	TGGCCATGGT	8040
25	ATTGAAGCAA	CGATTGATCA	TCACCATATA	TTGGTTGGTA	ACCGTAAATT	AATGGCTGAC	B100
	AATGATATTA	GCTTGCCTAA	GCATATTTCT	GATGATTTAA-	CACATTATGA	ACGAGATGGT	8160
30	AAAACTGCTA	TGCTCATTGC	TGTTAATTAT	TCATTAACTG	GTATCATCGC	AGTGGCAGAT	8220
	ACTGTCAAAG	ATCATGCCAA	AGATGCTATA	AAACAATTGC	ATGATATGGG	CATTGAAGTT	8280
-	GCCATGTTAA	CTGGCGATAA	TAAAAACACT	GCTCAAGCCA	TTGCAAAACA	AGTAGGCATA	8340
35	GATACTGTTA	TTGCAGATAT	TITACCAGAA	GAAAAAGCTG	CACAAATTGC	GAAACTACAG	8400
	CAACAAGGTA	AGAAGGTTGC	GATGGTTGGT	GACGGTGTAA	ATGATGCACC	TGCATTAGTT	8460
	AAAGCTGATA	TCGGTATCGC	CATTGGTACA	GGTACAGAAG	TTGCCATTGA	AGCAGCTGAT	8520
40	ATTACTATTC	TTGGTGGCGA	CTTGATGCTT	ATTCCTAAAG	CCATTTATGC	AAGTAAAGCA	8580
	ACCATTCGTA	ATATTCGTCA	AAATCTATTT	TGGGCATTCG	GCTATAATAT	TGCCGGTATC	8640
45	CCTATAGCTG	CATTGGGCTT	ACTTGCGCCA	TGGGTTGCTG	GTGCTGCAAT	GGCACTAAGT	8700
	TCAGTAAGTG	TTGTCACAAA	CGCACTTAGA	TTGAAAAAGA	TGCGATTAGA	ACCACGCCGT	8760
	AAAGATGCCT	AGATTCCTTA	ATAATGAAGG	ATTCGTTGGT	GATTCTGAGA	TAGGCTAGTG	8820
50	ATTGGCTCTA	TAATGTCGCG	GTTTAyaGTt	GGATCTTCGC	TCCAACTGCA	TATATAGTNA	8880
	CACTTTTCGC	TTGGCGAATT	AGTGTATCTT	ACCTAATAGC	TCCGCCTATT	AGGTTCCATC	8940
	AATATTATAA	ATAATAAGTA	CACTACGGTT	TACAGTTGGA	TCTTCGCTCC	AACTGCATAA	9000

						and the second second	
	GAAATTTTAA	ATGTTGAAGG	TATGAGCTGT	GGTCACTGCA	AAAGTGCTGT	TGAATCTGCA	9120
	TTAAATAATA	TTGACGGTGT	CACTTCAGCT	GACGTTAACC	TTGAAAATGG	TCAAGTAAGT	9180
5	GTTCAATATG	ATGACAGTAA	AGTTGCTGTA	TCTCAAATGA	AAGACGCAAT	TGAAGATCAA	9240
	GGTTACGATG	TCGTTTAATT	AGGCAATATT	CAACGTÇATC	AACACCAAAT	TAAAAAATCG	9300
10	AACTGATGAG	AATCCCAACA	ATCCAAATTA	TCTCATCAGT	TCGATTTTTA	ATTTACTCGT	9360
10	AACCTAGTAT	CTCCAGTCTG	CAATACATCT	AATGTTGCAT	CTAATGCATC	GACAATTAGA	9420
	TTTTTAACTG	CAGCTTCAGT	ATAAAACGCA	ATATGTGGTG	TTAATATGAC	ATCTTCCCTG	9480
15	TCAATCAACG	ATTCTAACAA	TGGATCGTTC	AGTGTTTTGC	CCCTTTGATC	ACTTGGGAAA	9540
	AGTTTGCGTT	CAAATTCATA	CGTATCAAGT	GCTGCACCTT	TAATCACACC	ATTGTCTAAT	9600
	GCGTCTAATA	ACGCCTTAGT	ATCTACTAAA	GAACCTCTCG	CACAATTGAC	AAATACTGCG	9660
20	CCCTTTTTAA	AATGTTTAAA	TAATTCAGCA	TTAAATAGAT	AATGATTATA	TTTCGTTGCA	9720
	GGTACATGTA	ATGTCACGAT	ATCAGCACCT	TCAACCGCTT	CCTCAATCGT	ATCTTTGTAA	9780
	TCGACATACG	TTGCAATTTT	AGCATTAGGA	AACGGtCGTA	TGCGACCACA	TCACTTTGAT	9840
25	AACCATTGGC	AAATATATCG	GCTACTACAC	GGCCAATTCG	ACCTGTACCA	ATAACAGCTA	9900
	CTTTTAAATC	TTTAATGGAT	TTCGATAAAA	TAGTAGGTTC	CCATCTAAAA	TCATGCTCCC	9960
30	GCACTTTCGT	TTGAATTTGA	TTAAAATGAC	GAACCACATT	AATAGCCTGG	TTCACAGCAA	10020
	ACTCCGCAAT	TGAATTCGGA	GAGTATGACG	GCACATTTGA	CACAATAAAG	TTATACTTGT	10080
	TTGCTAACTC	CAAATCATAT	GTATCAAATC	CAGCACTACG	TTGTGCGATT	TGTTTAATAC	- 10140
35	CTAGTTCATT	TAATCGTTTA	TAAACATGCT	CTGATAATGG	TATTTGTTGT	GATAGCGATA	10200
	AGCCATCATA	ACCAGCGACA	CCTTCAACAT	TGTCATCAGT	TAATGCTTCT	TTAGTAATAT	10260
	CTACCTCAAC	ATGATGTTTC	TCTGCCCACG	CCTTGATATA	AGGCATATCT	TCATCACGTA	10320
40	CACTCATGAT	TTTAATTTTT	GTCATTTTAA	CATCACCCTT	AACTTTATTA	TTCATATAAA	10380
	TATGCTAGTT	CTGTTAATCT	TATTGCAGCT	TCGTCTAATT	TCTGGTCATC	TAACGCCAAT	10440
45	GAAATTCTCA	CATAACGATT	ACCATTCTCT	CCAAATGGTT	TCCCTGGAGC	AACAAGTATT	10500
.0	GACTTCTCTT	GCACTAAAAA	TTGCTCAAAT	TGCTCGCTGT	CATAACCAGG	CGGTGTTTCC	10560
	AACCATACAT	ATATGCCACC	TTTAGCATGA	ACAAATGGCA	AATCAGCTTT	TGCAAGCATG	10620
50	GCTTCGAATC	GGTCACGACG	TGTTTTAAAT	ACATTGCTTT	GTTCTTCTAA	AAAATCATCA	10680
	TAATGATTCA	AAGCATATAT	TGCGGCATCT	TGTAATGCAC	CAAACATCCC	ageatttgtg	10740
	TGCGTTTGGT	ACTITITCAA	AGCTTGAATC	ATATCTTTAT	TACCAACTGC	AAAACCGACT	10800

	CCATTTTCCG	AAGCAAGTAT	ACTAGGATTT	TTAGCGTCGA	AACCGAAAGC	ACCATAAGCA	10920
	AAATCATGCA	CGATTTTAGT	GTCTGTACCT	TTAAATTTAG	CTATCGCTTC	ATCAAAAACT	10980
5	TCTTTCGTAG	CTGTCGATCC	AGTTGGATTA	TTTGGATACG	TTAAATAAAT	GAGTTTTGTT	11040
	TTATCTATTA	TTTGTGAATC	AACTTTGGAC	CAATCTGGCA	AATAATGTGG	CGGTTCTAAA	11100
10	TTAAGCGGGA	CTGGCTTGCC	ATCAGCTAAA	AGTACACCTG	CTAAATAATC	CGTGTAGCCT	11160
	GGATCAGGTA	GTAATACATA	GTCTCCTGGA	TTGATAACAC	ATGTTGGTAC	TGCCACTAAT	11220
	CCATTTTTTG	TACCATATAA	AATGCATACT	TCATCTTCTT	TATCTAACGT	CACATTATAT	11280
15	TGTCTTTGAT	AAAAATCTAC	AATAGCTTGC	TTGAACGCTT	CTTTACCATG	AAAAGCACCA	11340
	TATTTTTGAT	TTTCAGGAAT	AGTTAGTGCT	TTTTGAAAAT	GATCAATAAT	ACCITGTGGC	11400
	GTGGGCCCAT	CAGGGATTCC	AACTGCCATA	TTAATTAATG	GCAATGGTCC	ATGTTCGATT	11460
20	TTACGTCCCA	TCGTTTTCCC	GAAATAACTA	TCAGGGATAT	TTGCTAATTT	GTTAGAGATC	11520
	ATCAAATTCC	TCCTCTATCA	TTAAACATAG	CCTGGGCGAC	TATCATAATC	CTAACAACTT	11580
	GTATCACTCT	CATTTAGATG	GTTACAATGA	CATCGCCATT	CACCGTTATG	TTCAACAGAA	11640
25	CTTATGACAC	ACGTTGTATT	GAATGAATTT	ATTTTCATTT	TAGGTAGGTA	TAATATTATT	11700
	GTCAATATTA	GGAATTTTCA	GATTAATATG	CACTCAATCG	TTATGATTTA	ACTGTCATGC	11760
30	ATATCCGCAT	GCGCAACCAG	TTAGATATGC	TTATATAAAG	TATAACGCCC	ATCAAGGTAC	11820
	GTATTCAAAC	GTGAACCTTA	ACAGGCGTCA	TTCATTGTTA	AATAAAACTT	CTTAAGCACA	11880
	TACTTATTTC	ACTATGCCTT	TTACGTTCCC	CTTATACTTT	TCTCACATCT	TTCTCTTAGA	11940
35	CTACTCCCTT	ATACGCCCCG	CTCAATATCT	TTAATCATTT	CATCTACAGT	TATTTTCGCA	12000
	CTCGTTAAGA	CAATAGGAAC	GCCTGCACCT	GGATGCGTAC	TTGCACCTGC	AAATATAAAA	12060
	TCTTTATAAT	CTCGCGATAC	ATTTTGTGGA	CGATAATAAT	TACTTTGCGC	TAAAGTTGGC	12120
40	ATTAAACCGA	ATGCCGAACC	AAATTTCGCA	TGATACGTTT	GCTCAAAATC	ATTTGGCGTA	12180
	AAGATTGTTT	CTGAAACAAT	ATGCGATTTT	ATATCTTCAA	ATACTTCAAT	CGTTGCTAAT	12240
45	TTACGATAAA	TAATTTCCTT	TATTTGTTGC	GTCAAAGCTT	CATCTGACCA	ATCGATTCCG	12300
	CTACCTGTTT	TAAGTTCCGG	CGTCGGCATT	AGCACATAAA	TACCAGTTTT	GCCTTCTGGC	12360
	GCAAGTGÁTT	TATCAGCGAC	CGCTGGTACA	TACACATAAA	TAGAAGGATC	ATATGATAAA	12420
50	CGTCCCTCAA	ATATTTCTTC	AATATTGCCT	CTAAAGTCAT	CTGAAAAAAT	AACATTATGA	12480
	AGTCTCACTT	GATCTGTCAC	ATCAATATCT	ATACCGATAT	ACATTAAAAA	TGCTGAACAA	12540
	GAGTAATCTA	AGTCTGCAAT	TTTATGTGGT	GGATACTTTT	TAATAGGTGC	AAAATCTGGC	12600

	ATGTCACCAT	TCACTTTTAT	CGCATCGGCC	CGTTTGAATT	TAGGATCAAT	AATAATTTGC	12720
	TCAATTTCAG	CATTTAGTTC	AATATTAACG	CCTAAGTCTT	TATTTAATTG	CGCTAGCCCT	12780
5	TGAGCCATGC	CATACATACC	GCCTTTAATA	AAATGCACAC	CAAACATCAT	TTCAATCATA	12840
	GGAATAATTG	AATATAGTGA	CGGCCTCGT	TTTGGATCAA	TTCCTATGTA	TAACGTTTGA	12900
10	AACGCTAAAA	GCTTTTGTAT	CTTTTCGTTA	TCAATATAAT	GTTCAATTAG	CTGATCTGCA	12960
	TGATTTAACG	TTTTTAACTT	AGCACCTTGC	ACAAGTGACG	TCATATTATA	AAAGTCACTC	13020
	GGTTTGCGAT	ACGTTCTTTC	TAAGAAATAG	CGACGTGCAA	TTTCATATTT	TTTATAAACA	13080
15	TCCGTTAAAA	AGGACATAAA	ACCATGCGTT	GAACCAGGTT	CTATACTTTC	TAGCATTTGC	13140
	TGTAATTCAG	CTAAATCTGT	AGGCACCGTT	ATACGATCAT	CGTGGTCAAA	ATACACATCG	13200
	TAAATATAAC	GTAATTGTCT	CAATTCAATA	TAATCTTCAT	AATTTTTACC	ACACGCTGTA	13260
20	AAAACATCTT	TATAAACATC	TGGCATCATG	ACAATTGTGG	GACCCATATC	AAATGTAAAG	13320
	CCGTCTTTCT	TTAATTGATT	CATACGCCCG	CCTACATTAT	TATTTTTTC	AAATATCGTC	13380
25	ACTTCATGAC	CTTGAGAAGC	AATACGGGCT	GCCGCTGCTA	ATCCTGTGAC	ACCTGCACCA	13440
2.5	ATTACTGCAA	TCTTCATTAT	TCAACCACCT	ATATTCTATG	ATATTTACTA	TTTATTTCAT	13500
	GAAACAACTT	TGCCTTTTTC	CTCTTATCCA	CAAAAACACG	TTCATGTAAT	GTATAGTTAG	13560
30	CCTGTCTCAC	TTCGTCCAGT	ATTTCAATAT	ATATACGTGC	TGCTAATTCT	ATGATTGGTT	13620
	GTGCTTCAAT	ACTAAATACT	TTGATTTGAT	CCATAACATC	TTGAAAATCT	TTTTCTGCGA	13680
	TAGCTGCATA	ATATTCCCAT	AAGTCAATAT	AATGATTATT	AACACCATTT	TGGTACACTT	13740
35	CAGCAATATC	AACTTCATAT	TGCTTTAATC	GTTGCTTACT	AAAATATATC	CGTTCATTGT	13800
	CAAAATCTTC	ACCGACATCT	CTTAATATAT	TAAnGGGATC	CTCTAGAGTC	GACCTG	13856
	(2) INFORMA	TION FOR SE	Q ID NO: 32	2 :			

40

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10088 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

ATATATAAAT ATAGATTAAG TATATAGATT AATCAACTTT TTTGGAAGAG CAAATCACGC 60 AATCAACAAA TAATATAAGA AGTTTTTGCG ATAGTTTTAA AATAGCTGTA ATAGAATACT 120 AAATGTGACA AACTTAGAAC TAATATCAAG TGTTGATGTT TTGAATATAA AAATGCTAAT 180

55

	ATAATTGGTT	AATATATGAG	TAATTAGAAA	ATAGACAAAG	GATGACGATI	TATGTATATC	300
	AATATGAAAG	ATTATGGGTT	AACAGGCATA	AACAAAACTA	AAGATACTCG	AGCAATACAA	360
5	CGTGCGTTAA	ATCGTGGAAG	ATGTAAACCA	ACGACAGTTT	ATATACCGAA	AGGGACGTAT	420
	GATATTTGCA	AACCATTAAC	GATATATGGC	AATACAACAC	TTTTGTTAGA	TAATGAAACT	480
0	ATTTTACGCC	GATGTCATTC	TGGTCCTTTA	TTAAAAAATG	GTCGTCGCTT	TGGTTTTTAT	540
	CGTGGTTATA	ATGGACACAG	TCATATTCAT	ATTAAAGGCG	GCAAGTTTGA	TATGAATGGT	600
	GTATCGTATC	CTTATAACAA	TACAGCTATG	TGCATTGGGC	ATGCTGAAGA	TATTCAATTA	660
5	ATAGGTGTGA	CCATTAAGAA	TGTAGTGAGT	GGTCATGCAA	TTGATGCTTG	TGGGATTAAC	720
	GGACTCTATA	TTAAAAGCTG	TTCATTTGAA	GGATTCATAG	ACTATAGTGG	CGAACCTTTT	780
	ATTCTGAAGC	AATACAATTA	GACATTCAAG	TACCTGGTGC	TTTTCCAAAA	TTCGGAACGA	840
0	CAGATGGTAC	GATAACGAAA	AATGTCATTA	TCGAAGATTG	TTATTTTGGA	CCTTCAGAAT	900
	TGCCCGAAAT	GGGAAGTTGG	AATCGTGCTA	TTGGCTCACA	TGCAAGTAGA	CATAATCGAT	960
5	ACTATGAGAA	TATTCATATT	AGAAATAATA	TATTTGAAGA	TATACAAGGT	TATGCATTAA	1020
•	CTCCCTTGaA	GTATAAAGAT	GCTTTCATTA	TTAATAATAA	GTTTATTAAC	TGTGaGGGTG	1080
	GCATTAGATA	TTTAGGAGTT	AGAGATGGTA	AAAATGCAGC.	AGATGTGaTG	ACAGGAAAAG	1140
o	ACTTAGGTTC	CCAAGCAGGC	ATAAATATGA	ATATAATTGG	AAATGAATTT	AAAGGATCAA	1200
	TGTCTAAAGA	TGCGATACAT	GTACGTAATT	ATAATAATGT	TAAACATAAA	GATGTATTAA	1260
	TCGTTGGGAA	TACATTCAAT	AATTCGACTC	AATCAATTCA	TTTAGAAGAT	ATTGATACAG	1320
5	TGTTTTTAAG	TCCTGTTGAA	GCGGGTATTC	AAGTTACTAC	AATCAATGTA	GATGAAATAA	1380
	AAAAGTAAAA	AGTTTCGCAT	GACATTAGGA	TTAAGAATAG	TAGATAATTT	TTGAAAGCGC	1440
•	ATTEATAAAA	CGGTATAAAT	ATGCTATAAT	AAACCCAATT	ATCTGATAAA	AGGGGTATTT	1500
0	TGACGGTAAT	GATAATACAA	GATAGACAAC	TTTCTATACT	CTAATATAGT	GAGTTGAAGT	1560
	AGCTTGTCAT	AATCATCATG	AGGGGGAAAT	TTATGGCTTA	TTTCAATCAA	CATCAATCAA	1620
5	TGATATCGAA	AAGGTATTTA	ACATTCTTTT	CAAAATCAAA	GAAAAAGAAA	CCGTTTAGTG	1680
	CGGGACAACT	TATTGGACTA	ATATTAGGTC	CATTACTTTT	CCTATTAACA	TTATTATTCT	1740
	TTCATCCACA	AGACTTACCT	TGGAAAGGCG	TCTATGTTTT	AGCGATTACT	TTATGGATTG	1800
9	CGACTTGGTG	GATTACTGAA	GCAATTCCTA	TTGCAGCAAC	GAGCTTATTA	CCAATTGTGT	1860
	TATTACCATT	AGGTCATATA	CTTACACCAG	AACAAGTATC	ATCCGAATAT	GGCAATGATA	1920
	TTATCTTTTT	GTTTTTAGGT	GGATTTATTT	TGGCAATTGC	AATGGAAAGA	ጥርር እ እ ጥጥጥ እ ር	1000

	TTGGATTCAT	GGTGGCAACA	GGATTCTTAT	CTATGTTTGT	ATCGAACACT	GCAGCTGTAA	2100
	TGATTATGAT	TCCGATTGGT	TTAGCAATTA	TTAAGGAAGC	ACATGATITA	CAAGAAGCCA	2160
6	ATACGAATCA	AACAAGTATT	CAAAAGTTTG	AAAAATCTCT	AGTTTTAGCA	ATTGGCTATG	2220
	CAGGTACGAT	TGGTGGCTTG	GGTACATTAA	TCGGAACCCC	GCCATTAATT	ATTTTAAAAG	2280
	GACAATACAT	GCAACATTTT	GGACATGAAA	TTAGTTTTGC	TAAATGGATG	ATTGTAGGGA	2340
10	TTCCAACGGT	CATTGTTTTG	TTAGGTATTA	CTTGGCTCTA	TTTAAGATAT	GTTGCGTTTA	2400
	GACATGATTT	GAAATATTTa	CCTGGTGGTC	AGACGTTAAT	TAAACAAAAG	TTAGACGAGC	2460
15	TTGGCAAAAT	GAAGTATGAA	GAAAAGGTAG	TACAAACTAT	CTTTGTACTT	GCTAGCTTAT	2520
	TATGGATTAC	AAGAGAGTTT	CTTCTGAAAA	AATGGGAAGT	TACGTCATCT	GTTGCAGATG	2580
	GTACGATTGC	TATTTTTATA	TCAATATTAT	TATTTATTAT	TCCAGCTAAA	AATACTGAAA	2640
20	AACATCGCCG	TATCATTGAC	TGGGAAGTTG	CAAAAGAGCT	CCCTTGGGGT	GTATTAATTT	2700
	TATTTGGTGG	CGGTTTAGCA	TTAGCGAAAG	GTATTTCTGA	AAGTGGTTTA	GCAAAATGGT	2760
	TAGGCGAACA	GTTGAAATCA	TTAAATGGTG	TTAGTCCGAT	TCTTATTGTA	ATTGTCATAA	2820
25	CAATCTTTGT	CTTATTTTTA	ACTGAAGTGA	CATCTAATAC	TGCAACTGCA	ACGATGATTT	2880
	TACCGATTTT	AGCAACGTTG	TCTGTTGCTG	TTGGAGTGCA	TCCATTACTA	CTTATGGCAC	2940
30	CTGCAGCTAT	GGCGGCTAAC	TGTGCATACA	TGTTACCAGT	AGGGACACCA	CCGAATGCAA	3000
	TTATCTTTGG	TTCTGGTAAA	ATATCTATCA	AACAAATGGC	ATCAGTAGGA	TTCTGGGTAA	3060
	ACTT <u>A</u> ATCAG	TGCAATAATT	ATTATTTTAG	TCGTGTATTA	TGTAATGCCT	ATAGTTTTAG	3120
35	GTATTGATAT	AAATCAACCA	CTGCCATTGA	AATAGTAATT	GCAGATTAGA	ACGAAAAATA	3180
	AAAGGTTACA	TTAGCAATTG	CTTGGACGAG	TGGTAACGAA	ACGTATACCG	CAGCATCGTG	3240
	TAABAACAAT	ACAAACAAAA	GAAAGTCAAC	CAAGGATGGA	TTCCTATTTT	AATCCTTGGT	3300
40	TGACTCTTTA	AATTTATTTT	ATTGTAGAAC	CTAGAAAATA	AAGTTTAATT	AAAAGCACCA	3360
	ATCATTTCTA	CTTTGAAATC	TAAGGTTTCT	AAAATAGCAA	TGACTTTCTT	TATATCGGTT	3420
45	GTAATTGCAG	AATCAGCCTG	AACGAAAAAT	CGATACATAC	CTAATTGTGT	TTTTAAAGGA	3480
	CGAGACTCAA	TCCAGGATAA	ATTAATATTA	AACAAAGCAA	ATGTATTAAG	CACACTTGCT	3540
	AACAACCCAG	GTTTATCATG	CATTGGTGTA	ATTAAAAACA	TCAATGATGT	CGCATTTTGA	3600
50	TCAAATTGCT	GCTGATTTTT	ТАТААСТААА	AAACGTGTCA	CGTTATGTGG	ATAGTCTTCA	3660
	ATATGTGTAT	CAATAGGTGT	AAAACCATAA	GctTCGCCAC	TACCTAAAGG	TGCAATTGCT	3720
	CCAACCCCAT	מהלילות ע ע הינותרה	ACTOR B ACTO	TONDOTTO	TOTOTONON	A TO CA CA CA CA	2000

	TTTTTAATAT	CAGAAATGGA	ATCTGTTCCA	TTACCATATA	ATGCAAAGTT	AATATCTAAA	3900
	CGTATTTCAC	CGTGTGCAAA	GACATCTTGC	TGTGCAAGTG	CATCTGCCAC	AATGTTGATT	3960
5	GTTCCTTCTA	TAGAATTTTC	AATAGGGACA	ACACCAATCG	ATGTGTCATC	ATCTGCAACT	4020
	GCCTTGATGA	CTTCAAATAA	ATTTGACTTT	GGTTGAAAAG	TIGCTICATT	TTCAGAAAAA	4080
10	TACTGACGAC	AAGCCAAATA	TGAAAATGTA	CCTTTAGGGC	СТАЛАТАЛТА	TAATTGCATA	4140
	TGCTACACCT	CTACTAACTT	AATGATGGAA	AGGGCACTGG	TTAGCATTTG	ATTCTTTCTT	4200
	TTTATAGAAA	AAGTTTGGAT	CTTTTACTGT	ATTGTCATAT	CCGTGATGAT	AATTTGACGT	4260
15	CAATGTTGGA	GATAATGGCG	GTGCTAGCCA	AGACCATTTT	CCGGTAACTT	GACGACCTTG	4320
	TTGTGCTTCG	TTACGTTCGA	ATAGTTCGAA	TTGCTTTGCA	GCGGTCAAAT	GATCGACAAT	4380
	TGATACGCCT	TCTTTTTAA	AGGAATGATA	CACAGCATAG	TTCAATTCAA	CAAGTGCTCG	4440
20	ATCTTTATTA	AATGAATTAT	TTTTAAGTGT	ATCAAATTCA	AACGCATCTG	CAACTTTTTC	4500
	TAGTAAATTG	TAACGGTAAT	CATCAATAAA	GTTACGTACG	CCAATTTCAG	TTACCATATA	4560
25	CCAACCGTTA	AAGGGTGCAG	TTGGATATAC	AATGCCACCG	ATTTTTAAGT	CCATATTGGA	4620
25	AATGATAGGG	ACTGCATACC	ATTTTAAGTT	CAATTTTCTT	AATTTTGGAT	AATGATTATG	4680
	TTCAATAGGT	ACTTCTTTAA	TTAATGAAGT	AGGATATTCG	TAAAATTTAA	CTGACTCATT	4740
30	AGGTAATTGG	TAAATCAGTG	GTAACACGTC	AAAATTAGTA	CCTTTTCCTT	TCCAACCTAA	4800
	GTGATTTGCT	AAGCGTGTAA	CTTCTTTTTC	AGCAGGATCA	CCACAATTGT	CATAGCCAGC	4860
	ATAGCGAATT	AATTGATTGT	TGAAAATTTT	AGGTCCATCC	TTTGGAGCAT	ATATAGTAAT	4920
35	ATACGGCTTT	AATTTACCTT	CATTTGTAGC	CTGTGTAATA	TGATAAGTAA	TTGATGATAA	4980
	GAACGATGCT	TCGTCAGTAA	CATCTCTTGC	ATCAATGACA	TTTAACGAAT	CCCAAAATAA	5040
40	ACGACCAATG	CAACGATTTG	AATTACGCCA	AGCCATTTTA	GCACCATAAA	TAAGTTCTTC	5100
40			CAGTTTCTTT				5160
	ATTGATAATT	TGCGTTTCAT	AATGACACTC	TTTATACATG	TTTTCTATGA	AAGCTTGAGC	5220
45	CTCTTTAAAT	AACATTAACA	ACACCTCGCT	TTATATTATA	GTCTACATTA	TTAAAATACT	5280
			CATTAAATTG		•		5340
						AATATTTAGG	5400
50						ACATAATGAC	5460
						AAAAATGGCT	5520
	GTATTTGATT	TGTATTTTAG	AAAAATGCCA	TTTAATAGTG	GCTATGCTGT	TTTTAATGGT	5580

	TTAAAGTCTA	TTGGCTACAA	GGATGATTTC	TTATCATATT	TAAAAGATTT	AAAATTCACA	5700
5	GGCAGCATCC	GTTCGATGCA	AGAAGGCGAA	TTATGCTTTG	GTAACGAACC	ATTGTTACGC	5760
•	GTAGAAGCAC	CATTGATTCA	AGCGCAATTA	ATAGAAACAA	TTTTATTAAA	CATTGTAAAT	5820
	TTCCATACAT	TAATTACAAC	AAAGGCTAGC	AGAATTCGTC	AAATTGCATC	AAATGATAAA	5880
10	TTAATGGAGT	TTGGTACACG	TCGTGCGCAA	GAAATTGATG	CAGCATTGTG	GGGCGCTAGA	5940
	GCTGCTTACA	TCGGGGGCTT	TGATTCTACA	AGTAATGTTA	GGGCGGGGAA	ATTATTTGGT	6000
	ATACCTGTGT	CTGGTACACA	TGCACATGCA	TTTGTCCAAA	CTTATGGAGA	CGAATATGTT	6060
15	GCCTTCAAAA	AATATGCTGA	AAGACATAAA	AATTGTGTGT	TCCTAGTAGA	TACATTCCAT	6120
	ACTTTAAAAT	CTGGCGTGCC	AAATGCAATA	AAAGTTGCAA	AAGAATTAGG	TGACAAAATT	6180
	AACTTTGTAG	GTATTCGATT	AGATTCTGGA	GATATCGCTT	ATTTATCTAA	AGAGGCAAGA	6240
20	CGTATGCTTG	ATGAAGCAGG	ATTTACTGAA	ACTAAAATTA	TCGCGTCTAA	TGATTTGGAT	6300
	GAAGAAACGA	TTACGAGTTT	GAAAGCACAA	GGTGCAAAAG	TAGATTCTTG	GGGCGTTGGT	6360
25	ACAAAGCTGA	TTACAGGATA	CGATCAACCA	GCATTAGGTG	CAGTATATAA	ACTTGTAGCT	6420
	ATTGAAAATG	AAGATGGTTC	ATATAGTGAT	CGTATTAAAT	TATCAAATAA	CGCTGAAAAG	6480
	GTTACGACGC	CAGGTAAGAA	AAATGTATAT	CGCATTATAA	ACAAGAAAAC	AGGTAAGGCA	6540
30	GAAGGCGATT	ATATTACTTT	GGAAAATGAA	AATCCATACG	ATGAACAACC	TTTAAAATTA	6600
	TTCCATCCAG	TGCATACTTA	TAAAATGAAA	TTTATAAAAT	CTTTCGAAGC	CATTGATTTG	6660
	CATCATAATA	TTTATGAAAA	TGGTAAATTA	GTATATCAAA	TGCCAACAGA	AGATGAATCA	6720
35	CGTGAATATT	TAGCACTAGG	ATTACAATCT	ATTTGGGATG	AAAATAAGCG	TTTCCTGAAT	6780
	CCACAAGAAT	ATCCAGTCGA	TTTAAGCAAG	GCATGTTGGG	ATAATAAACA	TAAACGTATT	6840
40	TTTGAAGTTG	CGGAACACGT	TAAGGAGATG	GAAGAAGATA	ATGAGTAAAT	TACAAGACGT	6900
				TATCGATAGT			6960
	AAAGCAATTT	TTAAAAAATT	ATGTACAATC	ACATTCATTT	ATAAAATCTT	TAGTGTTAGG	7020
45	TATTTCAGGA	GGACAGGATT	CTACATTAGT	TGGAAAACTA	GTACAAATGT	CTGTTAACGA	7080
	ATTACGTGAA	GAAGGCATTG	ATTGTACGTT	TATTGCAGTT	AAATTACCTT	ATGGAGTTCA	7140
	AAAAGATGCT	GATGAAGTTG	AGCAAGCTTT	GCGATTCATT	GAACCAGATG	AAATAGTAAC	7200
50 .	AGTCAATATT	AAGCCTGCAG	TTGATCAAAG	TGTGCAATCA	TTAAAAGAAG	CCGGTATTGT	7260
	TCTTACAGAT	TTCCAAAAAG	GAAATGAAAA	AGCGCGTGAA	CGTATGAAAG	TACAATTTTC	7320
	AATTGCTTCA	AACCGACAAG	GTATTGTAGT	AGGAACAGAT	CATTCAGCTG	AAAATATAAC	7380

	TAAACGACAA	GGTCGTCAAT	TATTAGCGTA	TCTTGGTGCG	CCAAAGGAAT	TATATGAAAA	7500
	AACGCCAACT	GCTGATTTAG	AAGATGATAA	ACCACAGCTT	CCAGATGAAG	ATGCATTAGG	7560
5	TGTAACTTAT	GAGGCGATTG	ATAATTATTT	AGAAGGTAAG	CCAGTTACGC	CAGAAGAACA	7620
	AAAAGTAATT	GAAAATCATT	ATATACGAAA	TGCACACAAA	CGTGAACTTG	CATATACAAG	7680
10	ATACACGTGG	CCAAAATCCT	AATTTAATTT	TTTCTTCTAA	CGTGTGACTT	AAATTAAATA	7740
	TGAGTTAGAA	TTAATAACAT	TAAACCACAT	TCAGCTAGAC	TACTTCAGTG	TATAAATTGA	7800
	AAGTGTATGA	actaaagtaa	GTATGTTCAT	TTGAGAATAA	ATTTTTATTT	ATGACAAATT	7860
5	CGCTATTTAT	TTATGAGAGT	TTTCGTACTA	TATTATATTA	ATATGCATTC	ATTAAGGTTA	7920
	GGTTGAAGCA	GTTTGGTATT	TAAAGTGTAA	TTGAAAGAGA	GTGGGGCGCC	TTATGTCATT	7980
	CGTAACAGAA	AATCCATGGT	TAATGGTACT	AACTATATTT	ATCATTAACG	TTTGTTATGT	8040
20	AACGTTTTTA	ACGATGCGAA	CAATTTTAAC	GTTGAAAGGT	TATCGTTATA	TTGCTGCATC	8100
	AGTTAGTTTT	TTAGAAGTAT	TAGTTTATAT	CGTTGGTTTA	GGTTTGGTTA	TGTCTAATTT	8160
	AGACCATATT	СААААТАТТА	TTGCCTACGC	ATTTGGTTTT	TCAATAGGTA	TCATTGTTGG	8220
25	TATGAAAATA	GAAGAAAAAC	TGGCATTAGG	TTATACAGTT	GTAAATGTAA	CTTCAGCAGA	8280
	ATATGAGTTA	GATTTACCGA	ATGAACTTCG	aaatttagga	TATGGCGTTA	CGCACTATGC	8340
o	TGCGTTTGGT	AGAGATGGTA	GTCGTATGGT	GATGCAAATT	TTAACACCAA	GAAAATATGA	8400
	ACGTAAATTG	ATGGATACGA	TAAAAAATTT	AGATCCGAAA	GCATTTATCA	TTGCGTATGA	8460
	ACCTCGAAAC	ATACATGGTG	GATTCTGGAC	TAAAGGCATT	CGTCGTAGAA	AGCTTAAAGA	8520
5	TTATGAACCA	GAAGAACTGG	AAaGTGTAGT	AGAaCATGAA	aTTCmAAGTA	AaTGAGAaTG	8580
	AAmCAATtGC	TGATTGTTTG	TCACGAATGA	AAtGCAAGGG	TATATGCCGG	TAAAACGTAT	8640
	TGAAAAACCC	GTGTTTCAAG	AGCAAAAAGA	TGGCACGGTT	GAAGTATCAC	ATCAAGAAAT	8700
o	CGTTTTTGTA	GGTAAGAAAA	TCCAATAACA	TAATCCAATT	TAAATAAAGA	CTATTTGAAG	8760
	AGGAAAGGCT	ATTCAAAGTT	TGAGTAATTT	TACTTTGAAT	AGCCTATTTG	TTTATACATG	8820
5	CAAGATGCTC	GATCCATATT	GTATGAGAAA	CCCCCAGCAA	GCTATATAAA	GCATATGCTG	8880
	GGGGTTCTTA	AAATTTTAAA	AATTATTGTT	AGATTATATA	TATCGTCGCT	TTTTCTAAAA	8940
	CAATCTCATC	GCATGAAATT	TTTTCTTCCT	AGAGACCTTT	AATAAGATTA	ATAGTTTACT	9000
o	TAATCATATC	TAGATAGTCT	TATGACTTAT	GCTTAATGAA	AGTCATTCTA	GGAGAAGTTC	9060
	CCAAAGCTTC	TGTGTTCATA.	ATTGTTAGTA	GTATTTTATT	ATCATTTGGT	ATAAATATTT	9120
	CAATAACAAT	TGAGCTATTA	TTTTTTTTTTTT	ATAATGTGAG	TTGTTTGTGT	ጥር ጥል ጥጥጥ	9180

	CATTTAAATC	TTGAGGATGC	CATTCTCCCT	CAATAATATT	AAGATAATAC	TTAGCCTCTG	9300
	AATTACATTT	GAATTTATCA	ATACTAAATA	ATTCAATTTG	TTCCATAATA	TTATTTACCT	9360
5	TTCTAAAATA	CAAATTTTAA	TAACCATAAA	TAGATGAATA	CCATCGATAA	TGGTCGCCAT	9420
	TGGATACTGG	AATAACATTG	TTTTTAGCAT	CTTGAGTCAT	AAAACCATTA	TCCCATGGAT	9480
10	TCCATATAAT	TATAACCTCT	TGTCCATTAT	CTAATTTAGC	GTTCCCAACA	ACTGCCATGG	9540
	CATGCCCTGC	GTGCATACCA	TTTCTTGATT	CTACTCTACT	ACCTAAAACA	GCAATTCCTT	9600
	TATTATTTT	AGTAAGATTG	TCAACTTCAT	TATATGTAGT	CATTCTATTA	AGAAGTTGTG	9660
15	GACTTCTTCC	CTGAGTTTGT	ССААААТААА	TCATCTCTCT	TGGCGTTAAA	CCAGTAAATT	9720
	GGAATCGTTG	TCCTTGTAAG	TTTGGGTGTA	AAAATCTCAT	CACAGCTTCT	GCATGATATT	9780
	TGTTAGTATT	ATAAGTCGCA	TTTAGTAATT	CAGACATCGT	ATAGCCTGCA	CACCAACCAT	9840
20	TGTTACCTTG	AGTTTCTCTT	ATCTTGAAAT	TCTCAAGTTT	ATTTATATAT	TGsTCGTTGT	9900
	AAGTATAATT	ATTACTTTTA	AATTGACTAG	TTGGCATAGT	GACAGAAGCT	TTTTGCTTTA	9960
	GTTGCGTTAC	ATTATTGCCA	GTAGGTATAC	TCTCAGTCTT	TnTnAACTnT	nTATCTTCTA	10020
25	GACGTGGTGT	TTTTAGTACT	AGTTTAGCTT	TATGATTTTG	AGTACCACAT	AGTAACCTTT	.10080
	TGAGTTGT						10088

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7563 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

\mathbb{C} (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGGÂAACGnA	CCCnATGCGT	ATGCTTGACG	TGCCAAAATT	AAATACGAAG	TTCATAGCTT	6
TGAGGTACCA	GAAGAACATT	TATCTGGTCA	AGAAGTCGCA	Gnactcatac	AAGCAAATGT	120
TAAAACAGTA	TTTAÄAACGC	TTGTTCTAGA	AAATACAAAA	CATGAACATT	TTGTATTTGT	180
TATCCCAGTA	AGTGAAACTT	TAGATATGAA	AAAGGCAGCT	GCTTTGGTTG	GAGAGAAGAA	240
ATTGCAGCTT	ATGCCTTTAG	ATAATTTGAA	AAATGTAACG	GGATACATTC	GTGGTGGGTG	300
TTCGCCTGTT	GGTATGAAAA	CATTGTTTCC	AACAGTCGTT	GACAAATCGT	GTGAAAATTA	360
TAGTCATATC	AGTGTGAGTG	GTGGGCTTCG	AACAATGCAA	ATCACAATAG	CŢGTTGAGGA	420
TTTGATTACA	ATAACTAAAG	GCAAAATTGG	AGCAGTTATC	CATGAATGAT	ТААТААСААС	480

55

30

35

40

45

	TGCCACACTC	CTTTTTGATT	GAATTAGCAT	TTTACGATCA	TAAACAGTCA	TTATAATTGA	600
	GTATTTGAAC	ATAAAAATGT	AATTTTATCG	TAACAATTTG	AGTGTTTGTG	ATTGTTTTTG	660
5	GTAATTTATG	ATTGAAAAGT	GAAAGCGTAC	TCATTATAAT	ACAAAGTGAG	ATGGGGTGAT	720
	GATGATAATT	ACTGAAAAAA	GACACGAGTT	AATATTAGAA	GAACTTTCGC	ACAAAGATTT	780
	TTTGACTTTA	CAAGAATTAA	TAGATCGAAC	TGGTTGCAGT	GCTTCAACAA	TACGArGAGA	840
10	TTTATCTAAA	CTACAACAAT	TAGGGAAATT	GCAACGTGTG	CATGGTGGTG	CAATGTTAAA	900
	AGAAAATCGT	ATGGTTGAGG	CGAATTTAAC	TGAAAAATTA	GCAACGAATC	TTGATGAAAA	960
15	GAAAATGATT	GCTAAAATAG	CAGCTAATCA	AATCAACGAT	AATGAATGCT	TATTTATCGA	1020
	TGCTGGTTCA	TCTACATTGG	AGCTAATTAA	ATATATTCAA	GCGAAAGATA	TCATTGTGGT	1080
	AACCAATGGT	TTAACACATG	TAGAAGCTTT	ACTTAAAAAA	GGTATTAAAA	CAATTATGCT	1140
20	AGGTGGTCAA	GTTAAAGAAA	ATACACTTGC	TACGATTGGT	TCTAGTGCTA	TGGAGATATT	1200
	AAGACGATAT	TGTTTCGATA	AAGCTTTTAT	CGGGATGAAT	GGATTAGATA	TTGAACTTGG	1260
. •	ATTAACTACT	CCCGATGAGC	AAGAGGCATT	AGTTAAACAA	ACAGCAATGT	CATTAGCCAA	1320
25	TCAATCATTT	GTACTTATAG	ATCATTCTAA	GTTTAATAAA	GTATATTTTG	CTCGTGTACC	1380
	TTTGCTAGAA	AGTACGACAA	TCATCACATC	TGAAAAAGCA	TTAAATCAAG	AATCGTTAAA	1440
30	AGAATACCAA	CAAAAGTATC	ACTTTATAGG	AGGGACTTTA	TGATTTATAC	AGTGACTTTC	1500
30	AATCCTTCAA	TTGACTATGT	CATTTTTACG	AATGATTTTA	AAATTGATGG	TTTGAACAGA	1560
	GCAACAGCAA	CATATAAATT	CGCTGGGGGG	AAAGGTATTA	ATGTCTCGCG	CGTCTTAAAG	1620
35	ACATTGGATG	TTGAGTCAAC	TGCCTTGGGA	TTTGCAGGTG	GATTTCCTGG	GAAATTCATT	1680
35	ATAGATACAT	TAAATAACAG	TGCAATTCAA	TCGAATTTTA	TTGAAGTTGA	TGAAGATACA	1740
	CGTATTAATG	TGAAATTAAA	AACAGGACAA	GAAACAGAAA	TCAATGCACC	GGGTCCTCAT	1800
40	ATAACGTCAA	CACAATTTGA	ACAACTGTTA	CAACAAATTA	AAAATACAAC	AAGCGAAGAT	1860
	ATAGTTATTG	TTGCTGGAAG	TGTACCAAGT	AGTATTCCAA	GCGATGCGTA	TGCGCAAATT	1920
	GCACAAATTA	CAGCACAGAC	AGGTGCTAAA	TTAGTAGTCG	ACGCTGAAAA	AGAATTGGCT	1980
45	GAAAgCGTTT	TACCATATCA	TCCACTATTT	ATTAAACCTA	ATAAAGATGA	ATTAGAAGTG	2040
	ATGTTTAATA	CAACAGTGAA	CTCAGACACA	GATGTTATTA	AATATGGTCG	TTTGTTAGTT	2100
50	GATAAAGGTG	CGCAATCTGT	TATTGTCTCG	CTTGGCGGTG	ATGGTGCTAT	TTATATTGAT	2160
	AAAGAAATCA	GTATTAAAGC	AGTTAATCCA	CAAGGGAAAG	TGGTTAATAC	AGTTGGCTCT	2220
	GGTGATAGTA	CAGTTGCAGG	CATGGTGGCT	GGAATTGCTT	CAGGTTTAAC	GATTGAAAAA	2280

	CGGGACGCTA	TAGAAAAAAT	AAAATCACAA	GTTACGATTA	GCGTACTTGA	TGGGGAGTGA	2400
	AAATAATGAG	AGTAACAGAG	TTATTAACAA	AAGATACAAT	AGCAATGGAT	TTAATGGCAA	2460
6	ATGACAAAAA	TGGTGTTATT	GATGAGTTAG	TAAATCAATT	AGACAAAGCA	GGTAAATTAA	2520
	GTGATGTCGC	GTCATTTAAG	GAAGCGATTC	ACAATCGAGA	ATCACAAAGT	ACAACTGGTA	2580
40	TCGGCGAAGG	TATTGCCATT	CCACATGCCA	AAGTGGCCGC	AGTTAAGTCA	CCAGCTATTG	2640
10	CGTTTGGTAA	ATCTAAAGCA	GGCGTAGATT	ATCAAAGTTT	GGATATGCAA	CCAGCACACT	2700
	TATTCTTTAT	GATTGCAGCG	CCAGAAGGTG	GCGCCCAAAC	ACATCTAGAT	GCTTTAGCTA	2760
15	AGTTGTCTGG	TATTTTAATG	GATGAAAATG	TACGTGAGAA	ATTATTACAT	GCTTCATCAC	2820
	CTGAAGAAGT	ACTAGCGATC	ATAGATGAGG	CTGATGATGA	AGTGACAAAA	GAAGAAGAGG	2880
	CAGAAGCTGA	AGCACAACAA	GTTGCAACTG	CAGAACAATC	ATCTAAACAA	TCTAATGAGC	2940
20	CATATGTGTT	AGCAGTAACT	GCTTGTCCAA	CAGGTATTGC	ACACACATAT	ATGGCACGTG	3000
	ATGCATTGAA	AAAGCAAGCG	GATAAAATGG	GTATTAAAAT	TAAAGTAGAA	ACGAATGGTT	3060
	CAAGCGGCAT	TAAAAACCAT	TTAACTGAAC	AAGATATTGA	AAATGCAACA	GGTATCATTG	3120
25	TTGCTGCTGA	TGTTCATGTT	GAGACGGATC	GCTTCGATGG	TAAAAATGTC	GTAGAAGTAC	3180
	CAGTAGCAGA	TGGTATTAAA	CGCCCAGAAG	AATTAATTAA	TAAAGCATTA	GATACAAGTC	3240
30	GTAAACCTTT	TGTTGCCCGT	GATGGTCAAA	GAAAAGGTAA	CTCAAATGAC	AGTCAAGAAA	3300
	AATTAAGCCC	AGGTAAAGCA	TTCTATAAAC	ACTTAATGAA	CGGTGTTTCT	AACATGTTGC	3360
	CACTTGTAAT	ATCTGGTGGT	ATTTTAATGG	CAATTGTATT	TTTATTTGGA	GCAAATTCAT	3420
35	TTAATCCAAA	AAGCTCAGAG	TACAATGCGT	TTGCAGAGCA	GCTTTGGAAC	ATTGGTAGTA	3480
20 25 30 35 40 45	AAAGTGCATT	CGCGTTAATC	ATTCCAATTT	TATCTGGATT	CATTGCACGT	AGTATTGCGG	3540
	ATAAACCTGG	TTTCGCTTCA	GGTCTTGTAG	GTGGTATGTT	AGCAATTTCA	GGTGGTTCAG	3600
40	GATTTATTGG	TGGTATTATT	GCAGGTTTCT	TAGCAGGTTA	CTTAACACAA	GGTGTTAAAG	3660
	CCATGACACG	TAAGTTACCA	CAAGCATTAG	AGGGATTAAA	GCCAACATTA	ATTTATCCAC	3720
45				TGATTTATGC			3780
45	GGTTAAATCA	TTTGTTATTA	GATGGATTAA	ACAATTTATC	AGGTTCTAAT	ATTGTATTAT	3840
	TAGGTTTAGT	TATTGGCGCT	ATGATGGCGA	TTGATATGGG	CGGTCCATTC	AACAAAGCGG	3900
50	CATATGTTTT	TGCAACAGGT	GCGTTGATTG	AAGGTAATGC	AGCACCAATT	ACAGCTGCAA	3960
•	TGATTGGTGG	TATGATTCCA	CCGTTAGCAA	TTGCGACAGC	GATGTTAATT	TTTAGACGTA	4020
•	AATTTACAAA	AGAACAACGT	GGTTCAATTA	TCCCTAACTA	TGTGATGGGT	ATGTCATTTA	4080

	TGATTGGTTC	AGGTATAGGT	GGCGCAATTG	CTTTAGGCTT	AGGTTCACGA	ATTACTGCGC	420
	CACATGGTGG	TATTATTGTA	ATTGTTGGTA	CTGATGGTGC	ACACTTACTT	CAAACTCTTA	426
5	TTGCACTTCT	AGTTGGCACA	TTAGTTTCAG	CATTAATTTA	CGGTTTAATC	AAACCAAAGT	432
	TAACTGAAAC	AGAAATCGAA	GCTTCAAAAT	CAATGGACGA	GTAGTTTTAA	TGATGTAAAA	438
10	TGATTGTTAG	CAAAGAGCTT	CATATTAAGT	TGTATGTTCA	ATGAATATAT	GTTAGTTTTA	444
70	TATATCGTGT	TAACGGTAGC	TTATACAAAG	CTGTAAAAAC	ACTITCTATT	AATTCAGTTT	450
	TTATGAATTG	ATATGAAAGT	GTTTTTATTT	TTAGATAAAT	GAATGAAGAA	ATAGACACCA	456
15	CAAATGTATA	GACTTTTTTA	ATATTTTGCA	AAAAGTTATG	CCAAACGAAG	CAGATATAGT	462
	AAAATATGAG	TGTCTTAAAG	TGAAAATTTA	TAAATAAAGA	AGGGTTTATA	CGTGTCAGAA	4686
	TTAATTATAT	ATAACGGCAA	AGTTTATACT	GAAGATGGCA	AAATCGATAA	TGGTTACATT	4740
20	CATGTGAAAG	ATGGACAGAT	TGTTGCAATT	GGAGAAGTGG	ATGATAAAGC	AGCAATTGAT	4800
	AATGATACGA	CAAATAAAAT	TCAAGTGATT	GATGCTAAAG	GTCATCATGT	ATTACCAGGT	4860
	TTTATTGATA	TACATATTCA	TGGTGGTTAT	GGTCAAGATG	CAATGGATGG	GTCATACGAT	4920
· 25	GGCTTAAAAT	ATCTATCCGA	AAATTTGTTG	TCTGAAGGGA	CGACATCATA	CTTGGCCACT	4980
	ACAATGACGC	AATCGACTGA	TAAAATAGAT	AATGCACTTA	CAAATATTGC	TAAATATGAA	5040
30	GCGGAgCAAG	ATGTTCACAA	TGCAGCGGAA	ATTGTAGGTA	TACATTTAGA	AGGACCATTT	5100
	ATATCTGAAA	ATAAAGTTGG	TGCTCAACAT	CCGCAATACG	TTGTACGCCC	ATTTATCGAT	5160
	AAAATTAAAC	ATTTTCAAGA	GACTGCTAAC	GGATTAATAA	AGATTATGAC	GTTTGCACCT	5220
35	GAAATTGAAG	GTGCAAAAGA	AGCGCTTGAA	ACGTATAAAG	ATGACATTAT	TTTTTCAATT	5280
	GGTCATACAG	TAGCAACATA	CGAAGAAGCA	GTTGAAGCTG	TTGAGCGAGG	AGCTAAACAT	5340
	GTCACGCATT	TATATAATGC	AGCGACGCCA	TTCCAACATA	GAGAACCAGG	TGTTTTTGGA	5400
40	GCAGCATGGT	TGAATGATGC	TCTACATACC	GAAATGATTG	TTGATGGCAC	TCATTCTCAT	5460
	CCGGCATCGG	TTGCAATTGC	TTACCGTATG	AAAGGTAATG	AACGTTTTTA	TTTAATTACC	5520
45	GATGCAATGC	GTGCAAAAGG	TATGCCTGAA	GGAGAATATG	ATTTGGGTGG	ACAAAAAGTA	5580
	ACTGTTCAAT	CGCAACAAGC	ACGTCTTGCA	AATGGTGCGC	TTGCTGGTAG	TATTTTAAAA	5640
	ATGAATCATG	GGTTACGTAA	CTTAATATCA	TTTACAGGTG	ATACATTAGA	TCATTTATGG	5700
50	CGAGTAACAA	GTTTAAATCA	AGCCATTGCA	TTAGGTATCG	ATGATAGAAA	AGGTAGTATT	5760
	AAAGTAAATA	AGGATGCAGA	TCTTGTTATT	CTAGATGATG	ATATGAATGT	AAAATCTACA	5820
	מדממממדמ	CCAACCTTCA	СУСУДДТАСС	ממדמממדממד	ממייית מיית מ	ስጥርጥስጥር <i>ር</i> ስ ስ	E000

	TTTTCTGGGG	GTGTCTAAAT	GGGAAGGCGA	TAACATGTAG	TTGTAATTTA	AGTCATAGTG	6000
	ATAAATTTGA	ATGCGTGTTA	CCCATGAGTG	ACACATATAA	CATGGAGGTG	AATCCCTAGA	6060
5	AATAGGGAAT	TAATTGGAAA	CTTCGACCAT	AATTAGTTTG	ATTATATTTA	TTCTATTAAT	6120
	TGCATTAACC	ACTGTATTTG	TTGGTTCAGA	ATTTGCATTA	GTAAAAATTA	GAGCAACAAG	6180
o	AATTGAACAG	CTAGCAGATG	AAGGAAATAA	ACCTGCTAAA	ATAGTAAAAA	AGATGATTGC	6240
U	TAATCTAGAT	TATTATCTTT	CTGCTTGTCA	GTTAGGTATA	ACAGTAACAT	CTTTAGGGTT	6300
	AGGTTGGCTT	GGTGAACCAA	CGTTTGAAAA	GCTATTACAC	CCAATATTTG	AAGCAATCAA	6360
5	TTTACCAACT	GCATTAACGA	CGACGATTTC	GTTTGCAGTG	TCATTTATAA	TCGTTACGTA	6420
	TTTGCATGTA	GTACTTGGTG	AATTAGCGCC	TAAATCTATA	GCTATTCAAC	ATACTGAAAA	6480
	GCTTGCTTTA	GTATATGCAA	GACCATTGTT	CTATTTCGGT	AACATTATGA	AACCATTGAT	6540
0	TTGGCTGATG	AATGGTTCTG	CACGTGTTAT	TATTAGAATG	TTTGGTGTAA	ATCCTGATGC	6600
	CCAAACTGAT	GCAATGTCAG	AAGAAGAAAT	CAAAATTATT	ATTAACAATA	GTTATAATGG	6660
•	TGGAGAAATC	AACCAAACTG	AATTGGCATA	TATGCAAAAT	ATCTTTTCAT	TCGATGAAAG	6720
5	ACATGCAAAA	GATATAATGG	TACCTAGAAC	TCAAATGATT	ACACTAAATG	AACCTTTTAA	6780
	TGTAGACGAA	TTACTAGAAA	CAATAAAAGA	ACATCAATTT	ACGCGTTATC	CAATTACTGA	6840
0	TGATGGTGAT	AAAGACCACA	TTAAAGGATT	TATTAACGTC	AAAGAATTTT	TAACTGAATA	6900
	CGCTTCTGGA	AAAACGATTA	AAATAGCAAA	CTATATACAT	GAGTTGCCAA	TGATTTCAGA	6960
	GACAACACGT	ATCAGTGATG	CATTAATTAG	AATGCAACGT	GAACATGTAC	ATATGAGTCT	7020
5	TATTATAGAT	GAATATGGTG	GAACGGCAGG	TATTTTAACG	ATGGAAGATA	TTTTAGAAGA	7080
	AATCGTTGGA	GAAATTCGTG	ATGAATTTGA	TGATGATGAA	GTGAATGATA	TCGTTAAAAT	7140
	TGATAATAAG	ACATTCCAAG	TAAATGGCAG	AGTACTATTG	GATGATTTAA	CTGAAGAGTT	7200
9	CGGTATAGAA	TTTGATGACT	CTGAGGATAT	TGATACGATA	GGTGGATGGT	TACAATCTCG	7260
	TAATACCAAT	TTACAAAAAG	ATGATTACGT	GGATACAACT	TATGATCGCT	GGGTTGTTTC	7320
_	AGAAATCGAT	AACCACCAAA	TTATTTGGGT	GATATTAAAC	TATGAATTTA	ATGAAGCGAG	7380
5	ACCTACTATC	GGACAGTCTG	ATGAAGATGA	AAAATCAGAA	TAGATATTAA	TATATAAACC	7440
	AACTAAGAAT	GATTTAATTC	ATTTTTGGTT	GGTTATTTTT	TTGACTAAAA	TTAAngaaaa	7500
)	GTGAAAATAG	TATTGGAACT	CAATATCTTT	aatgatttaa	TGAATAAnTT	TTATTGAAAG	7560
	CGA						7563

(2) INFORMATION FOR SEQ ID NO: 34:

9			 		 31,500
			4		
	·*				
•					
•			٠.		
	1				
•					
				•	

(A) LENGTH: 3492 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

10	TTATATCAAC TTCATGGCGG AACCATTGAT GACCCATTAG ACGAAACAAT AAGCGCATTT	60
	SATGAATTGA AACAAGAAGG AATTATACGT GCTTACGGTA TTTCTTCTAT TCGCCCAAAT	120
	GTAATTGATT ATTATTTAAA ACATAGTCAA ATCGAAACGA TAATGTCTCA ATTCAATTTG	180
· 15	ATTGATAATC GTCCAGAATC ATTATTAGAT GCAATTCACA ACAATGATGT TAAAGTATTG	240
	GCAAGAGGAC CTGTGTCTAA AGGATTATTA ACTTCAAACA GTGTTAATGT GCTCGACAAT	300
	AAATTTAAAG ATGGTATTTT TGATTATTCT CATGATGAAT TGGGTGAAAC AATAGCCTCT	360
20	ATTAAAGAAA TIGAAAGTAA TITATCTGCA TIGACATTTA GTTATTTAAC ATCACATGAC	420
	GTGCTTGGTT CCATCATTGT AGGTGCAAGT AGCGTCGACC AATTAAAAGA AAATATTGAA	480
25	AACTATCATA CTAAAGTTAG TTTAGATCAG ATTAAAACAG CAAGAGCTCG TGTAAAGGAT	540
	TTGGAATATA CCAATCATTT AGTGTAGAAG TCATTTTCAG TAATAAAAAC AGCAGCATGA	600
	GGCGTTTCAT TATAAAAATG CCTTACTGCT GTTGTTTATG TACAATTCGC TATAATTTAT	660
30	GATTATGATT ACTCACTTAT GATAGAAATT AAAGCGTTGT CCTCACGCAT CAGTATTTAG	720
	TAATTTCGCC TTGCGGCATT GCCTTAAGCA AACTTCTGCC ACTTCATCTC TTAATAATTT	780
	TATTAAAACA TCTTTCTATA TTTCACTTCG CATGTTGATT CATCATTATT AGTTATTATT	840
35	TGTACACCCA GCACATTTCC TTGCAACACA AGTAGTTTGA ATTTTTCACA AGTATAATAT	900
	AATGTACCGT CTGAAATTTG GTCTACAGAA ATATCGCCTA AAATATCCAG CACTGTAAAT	960
	TCTTCAAATA CTGATAGTTG TTCCGCATAT CGTACACAAA GTCTTACCAC ACTCTCCGAT	1020
40	TGACAGTTCA TTGCCATCCC ACCTATTTAT GCTTTATTTT TAAATAATTT AGGGAAACAT	1080
	CGTTCAAAAA ATCTAGGCGC AATTTGATAC ATTTTCAACG CATGATGCAT CCATTTAGGC	1140
45	CGATTAATTT CCAATTGTTT TGTTTTAATG CCATAAATGA TATCTTCTGC AAGCTGATTA	1200
	GCATCAAGCA TAATTTCCCC CATCTTTTTA GCATACTTCA TTGATGGGTC GGCTTTTTGA	1260
	TGAAAAGGTG TATCAATCGG GCCAACATTA ACTGTCATGA TATGTAAGTT TGGTGACTCT	1320
50	AGTCTTAAAG CATTCATTAA TGCATAAAAC CCTGCTTTCG ATGCCCCATA ATGTGCAGCA	1380
	TTTGCTTGTG TGGAAAATGC AGCTTGACTT GAAATACCTA CAATATGTGC GTTAGATGTT	1440
	AAATATGGTC TCAACACAGT ATATAAAACA TTAAAACTAA TTAAATTAAG CTGATACGTT	1500

	TAAATGAATC	CATCGAATGA	TGTATTGTCT	TCAAATTGCA	GTGCCTGTAT	CGACTTCAAA	1620
	TCATTTAAGT	CACAAGGAAT	AACATTTATA	GTTTTCCCCA	ATTCCTGTTC	AAAGATTCTA	1680
5	GTTGCTTTAT	CAACATCACG	CACCAACAAC	GTTACATGCA	CTTTATTTTC	TAGTAACTTT	1740
	CGGACAATCG	ATAAACCTAA	ACCACTCGTA	CCACCAGTCA	CTATAAAATG	TTGTCCTTTC	1800
10	ATCAATTAAC	CTTCCTTTTC	AATTATATAG	AATGCAATTT	ATCAACTTTA	CATAATTGAG	1860
	ACAAGTTGAT	TATCTTTCCT	ATATATATA	CAATAATAAG	AAAATATAAC	ATACAAATCA	1920
	AAAACTAAAG	GGATGTGaCG	TTAATGrAAC	TCGTATTTTA	TGGAGCTGGT	AATATGGCAC	1980
15	AAGCTATATT	TACAGGRATT	ATTAACTCMA	GCAACTTAGA	TGCCAATGAT	ATATATTAA	2040
	CAAATAAATC	TAATGAACAA	GCTTTAAAAG	CATTCGCTGA	AAAACTAGGT	GTTAACTATA	2100
-	GTTATGAtGA	TGCGACATTA	TTAAAAGATG	CAGAYTATGT	ATTTTTAGGT	ACCAAACCAC	2160
20	ATGACTTTGA	TGCTCTAGCA	ACACGCATCA	AACCACATAT	TACAAAAGwC	AATTGCTTCA	2220
	TTTCAATTAT	GGCAGGTATT	CCGATTGATT	ATATTAAACA	ACAATTAGAA	TGCCAAAATC	2280
	CaGTTGCTAG	AATTATGCCA	AACACAAATG	CGCAAGTTGG	ACACTCTGTT	ACTGGCATTA	2340
25	GTTTTTCAAA	CAACTTTGAC	CCTAAATCTA	aagatgaaat	TAACGATTTA	GTTAAAGCAT	2400
•	TTGGTTCTGT	AATTGAAGTA	TCAGAAGATC	ATTTACATCA	AGTAACAGCT	ATCACCGGAA	2460
30	GCGGCCCAGC	TATTTTTTA	CATGTATTCG	AGCAATATGT	TAAAGCTGGT	aCsAAACTTG	2520
	GTCTAGAAAA	AGAACAAGTT	GAAGAATCTA	TACGCAACCT	TATTATAGGT	ACAAGTAAGA	2580
	TGATTGAACG	TTCAGALTTG	AGCATGGCTC	aattaagaaa	AAATATTACC	TCTAAAGGTG	2640
35	GTACGACACA	AGCTGGCCTT	GATACATTGT	CACAATATGA	TTTAGTATCT	ATTTTCGAAG	2700
	ATTGTCTAAA	CGCTGCCGTC	GACCGTAGTA	TTGAACTTTC	TAATATAGAA	GACCAATAAA	2760
	AACAAACCCG	CCAACACATG	TATGCATCAT	CGCAAGCACT	GTGTTTGACG	GGTTATTTTT	2820
40	TTATTTAATA	GTTATTTGGC	AAGCATTGTT	TATTACTTTG	TCATTAGATT	TTAAAACTAT	2880
	CAAAATCTTT	TACAAAATTA	AAATTAGGTG	TATCTTCATT	TTGTATCAAT	GTTTGATAAA	2940
	TTTCATTTAT	ATCTTCTGTA	TTATAGCGAT	TGCTCAAATG	TGTAATCAAC	GTACGTTTAA	3000
45	CATTGGCTTC	TTTTATCAAT	GCAAATACGT	CTTCAATATG	GCTATGATGA	TAATTGTTGG	3060
	CTAAATGCTT	TTCACCATCT	ATATAGGTCG	CTTCATGTAC	CATCACATCA	GCATCTCTAG	3120
50	AAATCACACG	TTCATTAGAA	CATGGTTTTG	TATCACCAAA	AATTGCTACA	ACTGGACCCT	3180
- -	GTTTGGACTC	ACCTCTAAAA	TCTTTTGATT	GATAAACTTG	ACCATTATGT	TCAAATGTAT	3240
	CATCACATTT	ייי ליידייריידיריי א	ייי אייייי א כיכ א כי	СТССТТСАВС	አርርአ አጥርጥጥ	ጥጥጥ እ ለመርጥጥ	2200

	CATGATTAAG TAAATGCGCC TCTACAGTAA AACCATCCAT GATGATATGT CAGATGATCA	3420
	TCGATTTCAA TATATGLAAT TGGATAGTTT AAATGTGACT CTGATAAATT CATAGACATT	3480
5	TCCACATATG CT	3492
	(2) INFORMATION FOR SEQ ID NO: 35:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1973 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	r	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	ATCTAGCGGT ACAAGCGTCT TGGAGGCTAG TATGTTGAAC ATTGTAAACC CTGAAGATCA	60
20	CTTCGTTGTC ATTGTTTCAG GTGCCTTTGG TAACCGATTT AAACAAATTG CACAAACTTA	120
	TTACAAAAAT GTGCATATTT ATGACGTAAC ATGGGGAGAA GCTGTAGATG TCAAAGATTT	180
	CATCAATTTC CTTTCAACTT TAAATGTTGA AGTTAAAGCA GTATTTAGTC AATATTGCGA	240
5	AACATCTACG ACAGTGCTAC ACCCTATTCA CGAGTTAGGA AATGCCATTA ATCAATTTAA	300
	TAGTAATATT TATTTTGTAG TTGACGGCGT AAGTEGCATT GGTGCTGTTG ATGTTGACAT	360
_	TAACAAAGAT AAAATTGATG TACTTGTTTC TGGTAGTCAA AAAGCAATTA TGTTACCTCC	420
0	AGGATTAGCT TTTGTAGCTT ATAGCCACCG TGCAAAAGAA CATTTCAAAG AAGTAACTAC	480
	GCCAAAATTT TATCTAGACT TAAATAAATA CATTTCGTCA CAAGCTGACA ATTCTACACC	540
5	GTTCACACCA AATGTGTCTT TATTTAGAGG TGTAAATGCA TACGTTGAAA CCGTAAAAGC	600
	AGAAGGTTTC AATCACGTAA TAGCACGACA CTATGCAATT AGAAATGCAT TAAGAAGCGC	660
	CTTAAAAGCA TTAGATTTAA CTTTATTAGT CAATGATAAA GATGCATCTC CAACGGTTAC	720
o	AGCATTCAAA CCTAATACAA ATGATGAAGT GAAAATAATC MAAGATGAAC TTAAAAATTIG	780
	CTTTAAAATA ACAATTGCng GTGGTCAAGG CCATCTTAAA GGTCAAATTT ThAGAATTGG	840
	TCATATGGGG AAAATTAGTC CTTTCGATAT TTTATCGGTA GTATCTGCTT TAGAAATTAT	900
5	TTTAACTGAA CACCGTAAAG TTAACTATAT CGGTAAAGGT ATATCAAAAT ATATGGAGGT	960
	TATTCATGAA GCAATTTAAT GTACTCGTTG CAGATCCCAT ATCAAAAGAT GGTATCAAAG	1020
	CATTATTAGA TCACGAACAA TTCAATGTAG ATATTCAAAC TGGCTTGTCC GAAGAAGCAT	1080
o	TAATCAAAAT TATACCTTCA TACCATGCTT TAATCGTTCG TAGTCAAACT ACGGTTACTG	1140
	AAAATATCAT AAATGCTGCT GATTCTTTAA AAGTAATCGC ACGCGCCGGT GTTGGTGTAG	1200

GTAATACGAT	TTCAGCTACT	GAACATACAC	TGGCAATGTT	ATTATCAATC	GCACGAAATA	1320
TTCCGCAAGC	ACACCAATCA	CTTACAAATA	AAGAATGGAA	TCGAAATGCA	TTTAAAGGTA	1380
CTGAGCTTTA	TCATAAAACA	TTAGGTGTCA	TTGGTGCTGG	TAGAATTGGT	TTAGGTGTTG	1440
					TTAACGGATG	1500
					CAACATTCTG	1560
ATTTCGTTAC	ATTACATACA	CCACTAACAC	СТААААСААА	AGGCTTAATT	AATGCTGTCT	1620
TTTTTGCCAA	AGCAAAACCT .	AGTTTGCAAA	TAATCAATGT	GGCACGTGGT	GGTATTATTG	1680
ATGAAAAGGC	GCTAATAAAA	GCATTAGACG	AAGGACAAAT	TAGTCGGGCA	GCTATCGATG	1740
TGTTTGAACA	TGAACCTGCA	ACTGACTCGC	CTCTTGTTGC	ACATGATAAA	ATTATTGTTA	1800
CACCTCATTT	GGGTGCTTCA A	ACAGTCGAAG	CTCAAGAAAA	AGTGGCAATT	TCTGTTTCAA	1860
ATGAAATCAT	CGAAATTTTA 1	ATTGATGGTA	CTGTAACGCA	TGCAgTGAAT	GCACCTAAAA	1920
	CAATATAGAT (1973
(2) INFORMA	TION FOR SEC	2 ID NO: 36	:			

25

20

5

10

15

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7620 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

30

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA 60 TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT 120 AAATAAACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA 180 TCACTGTCAT AATAACTATC GATAATCTGT AATACTATAT AAAATATAAT ACTGAATACT 240 GTCATAATCA TTGGAAATAA CATTGTTCTT GATATATCGT GAAATCTTCG AACGCACAAC 300 GCTAAATTTG GAATAAACGT TGCCAAACTA TAGACAAAAG TATACACAGA TGTAAGGATA 360 ATCATCAATA TACTCATAAC TATTAATGTT TCGTTATCCG CCGCTATAGA AATAAAGAAT 420 AGAAATAGGT TTATTATTAG CACACACA GCTGGAACCA TAAGTATCAA ATGCCATAGT 480 GCCATATACC AATATTCACT ACGTCTTGAT CTCCCCTTAA AATTTACATA ATTTTTCCAA 540 AATAAAACGA ATGATTTCAT AAAACCTACT TGAGGTAATT GTTCCATTGT AATCTCCCTT 600 TCGTTAATCA TATTTATATT TTTAATTATT GTTACCGTTA TAATTTACAA GATTCATTAT 660

	GTAAAATGAA	AACCCGCTAC	AAGTACACAT	CTATATGGAG	ACTCATTTGA	AAGTCAACGC	780
	TTCGTTAACT	АТАСТАААА	TATGTCATAC	TGCAATGTTC	ACGTTTAAAA	GAGTCTCAAT	840
6	CTATGCAAAT	AAAATATTCC	ATAACAAAGT	ATATACTTTA	CATTTTTATA	ATTCTTAACA	900
	ATACTATTTT	ATCAAACATT	TACCACAATA	AAAATATCTI	TTTCATTTTT	ATTTAAATTA	960
10	ATCATATAAT	TGCGAGGAGA	ATATTATGGA	TTTCGTTAAT	AATGATACAA	GACAAATTGC	1020
	TAAAAACTTA	TTAGGTGTCA	AAGTGATTTA	TCAGGATACC	ACTCAAACGT	ATACAGGCTA	1080
•	CATCGTGGAA	ACGGAAGCTT	ACTTAGGTTT	GAATGATCGT	GCGGCTCATG	GCTATGGCGG	1140
15	TAAAATAACA	CCTAAAGTCA	CGTCATTATA	TAAACGTGGT	GGTACAATTT	ATGCACATGT	1200
	CATGCATACG	CATTTACTCA	TTAATTTTGT	AACAAAATCT	GAAGGTATAC	CTGAAGGCGT	1260
	ACTTATCCGC	GCAATTGAAC	CAGAAGAAGG	TTTATCCGCT	ATGTTCCGTA	ACAGAGGTAA	1320
20	GAAAGGCTAC	GAGGTAACGA	ATGGCCCAGG	AAAATGGACT	AAGGCATTTA	ACATTCCACG	1380
	GGCTATCGAT	GGCGCTACGT	TAAATGACTG	TAGATTGTCT	ATTGATACTA	AGAATCGTAA	1440
	ATATCCTAAA	GATATTATTG	CTAGTCCACG	AATCGGTATT	CCAAATAAAG	GTGATTGGAC	1500
25	ACATAAATCT	TTACGTTACA	CAGTGAAAGG	TAATCCATTT	GTGTCTCGCA	TGCGTAAATC	1560
	AGATTGTATG	TTTCCCGAAG	ATACTTGGAA	ATAAATGCCA	TCTTTCATTG	ATTACTATCA	1620
30	TGAAAATGAA	ATCTATCTCC	TTATAAGTCA	ATCAATCGTG	CCGTCAACAT	GCGGATGGGT	1680
	TGATTGTTTT	TCTTTGTATC	CATCATATTT	TTTGATTCAT	CTCCTCTTAT	TGAACTTGTT	1740
	CTTAATTATA	AAATATAACA	ATAGAATTAT	TTATAATTAT	TAAATTTAGA	TGCATTAATA	1800
35	TTATTGATAT	TATTTTCAAA	AACTAGAAAT	ATTGATTTGT	TGCATGTATA	ATGTTAAAAG	1860
30	CGCCCTTTTA	TAACGCTTAC	ATATAAAAGC	TTATTTAGGG	AGAGGGATAT	TCAACAAGGG	1920
	GGATTTGAAA	ATGATAGAAC	TTAATGCAAT	TACAACATTA	TGTTTAGCTT	GTATCCTTTA	1980
10	TTTACTTGGT	AAGGCTATCG	TTAATCACGT	TAATTTTTTA	AAACGTATTT	GTATACCAGC	2040
	ACCAGTGATT	GGCGGCTTAA	TCTTTGCTAT	TTTAGTTGCG	GCTTTGGATT	CATTTGGCAT	2100
	GGTTAAGATT	AAATTAGATG	CTTCATTCAT	TCAAGATTTC	TTCATGTTAG	CATTCTTTAC	2160
15	GACAATCGGT	CTTGGTGCAT	CATTGAAATT	ATTTAAATTA	GGTGGCAAAG	TCTTGCTATT	2220
	ATACTTTATG	TTTTGTGCTA	TCATTTCAGT	CATTCAAAAC	ATAGTTGGTG	TATCACTAGC	2280
50	AAAAGTATTA	AATATTAAAC	CTTTGTTAGG	ATTAACAGCA	GGTTCCATGT	CTATGGAAGG	2340
-	CGGTCATGGT	AATGCTGCTG	CTTATGGTAA	GACAATTCAA	GATTTAGGTA	TTGATTCGGC	2400
	ACTGACAGCC	COMMINGORO	CTCCAACTTT	ACCOCCOTO	TTTCC & CCCC	TT TO COMMO	2460

	ATTTAAAGAT	TATAGCCAAG	TAGCATATAA	CGAACATTTA	CATAGTAAAT	TTAATGCCAC	2580
_	TGAAGTATTC	TTCATTCAAT	TTACAATCGT	TGTATTCTGT	ATGGCAGTTG	GAAGTTATTT	2640
5	CAGTCATTTG	TTTACAGCTC	AAACAGGGAT	TAATGTTCCA	ATTTACGTTG	GCTCATTATT	2700
	TGTAGCTGTT	ATTGTCCGAA	ATATCTCTGA	AAGTTTTAAT	TTTAATATTG	TAGATTTAAA	2760
o	AATTACTAAT	CAAATTGGCG	ATGTCGCATT	AGGTATTTTC	TTATCTCTTG	CGCTAATGAG	2820
	CATTCAATTA	ATCGAAATTT	ATAAACTTGC	TATACCTCTT	ATTATTATCG	TTTTAGTTCA	2880
	AGTTGTCGTT	ATGATTTTAT	TTGCTGTTTT	AATTTTATTT	AGAGGTTTAG	GAAAAGATTA	2940
5	TGATGCTGCA	GTAATGGTAG	GTGGTTTTAT	CGGTCATGGG	CTTGGTGCAc	GCCAAATGCC	3000
	ATGGCAAATT	TAGATGTTAT	TACTAAAAAA	TATGGAAACT	CACCTAAAGC	ATATTTAGTT	3060
	GTACCTATTG	TTGGTGCATT	CTTAATCGAT	TTAATTGGTG	TTATAGTCAT	TATGGGATTC	3120
0	ATACAATGGT	TTAGTTAAAC	ACCAAACTCA	TAAATAAAAG	AGGAGGCCTT	CGCCTCcTcT	3180
	TTTATTTATC	CTCGATGTAT	ATTCAAGTTA	CGTTGTTCTA	TCCATGACAA	TATTTCCGGA	3240
_	CTAAATACGA	TTTGTTTTTG	TGTTAAGTCG	TCAATATTTT	TAGCATCTAA	CATCGTCATT	3300
5	ATTGATTTCA	TGTGTTCAAT	AAATGATTCT	ACATAAGCTA	CTGTATGTGC	AATGCCATTA	3360
	TTTTCAACTT	GATTTAAAAA	CGGACGTGAC	ATACCAGTTG	CCTTTGCACC	AAGTGCTAAA	3420
o	CTTTTAATTG	CATCGAGTGG	TGTACGTAAA	CCACCACTCG.	CGAAAACTGA	AATTTCGCTT	3480
	TGATAAGCCG	TTGTTTCAAG	TAATGACTCA	ACTGTAGACT	GTCCCCATGA	TGATAAGTAA	3540
	TCCATATCTT	TATTTGCACG	ACGTTCATTT	TCAATATCTA	CAAAGTTAGT	ACCACCTTTG	3600
5	CCACTAACAT	CGACATACTT	GACGCCTATT	TGTTGTAAGT	CATGCATTAA	TTCTTTGCTC	3660
	ATACCAAATC	CAACTTCTTT	TATAATGACT	GGAACAGACA	CTCGTGATAC	AATCGACGCT	3720
	ATATTATCTA	ACCAAGTCAC	AAATTCACGA	TTCCCTTCAG	GCATAACTAA	TTCTTGAGGA	3780
0	GAATTAACAT	GGATTTGTAA	CGCTTGTGCC	TCAAGTAATT	CAACTGCTTC	CAAAGCCTTT	3840
	TCTACTGGTA	CGTCCGCACC	AACATTGCTA	AAAATCATGC	CTTCAGGATT	CATTTTTCGC	3900
	GCAATCGTAA	ACGTCTCAGC	CATGCGTGGA	TTTCTCAATG	CCGCATGTGT	TGATCCAACT	3960
15	GCCATCGCTA	AGCCAGTTTC	TCTTGCAACT	ACAGCTAGCT	TTTCATTGAT	GTTTTTCGTC	4020
	CACTCGCTAC	CACCCGTCAT	TGCATTAATA	TAAACCGGAT	ATGCCATCGT	TAAGTCAGGC	4080
50	GTCTGTGATG	TCAAATCGAT	ATCATTTACA	TTAATTGATG	GGATAGAATG	ATGCACAAAA	4140
	CGCATCTTAT	CAAAATCTGA	ATGCATTGCG	TCAGATTGGG	CCATTGCTAT	TTCAACATGT	4200
	TO STORMER	TOTO TOTO TOTO	TOTAL A A A TOTAL	COCATORATORA	A A COTTA COTTO	TOTO COMO NOTO	4260

	ATTACAGCTA	AGCAAATATA	ATATCCATAA	TGTAAATGTA	ATGCCGGCAT	ATTTACAAAG	4380
5	TTCATACCAT	AAATCCCAGC	TATGAATGTT	AACGGTGAAA	ATATAACTGA	TACTAATGTC	4440
3	AGTACTTGCA	TAATACTATT	CATTCTAAAT	GACGTGTATG	ACTCAAAATT	TTCTCGTATT	4500
	TCGTTTGTCA	TTTCTTGAGC	AGTACGAATG	ATATTACGTT	GCTTAATCAA	GTGGTCATCG	4560
10	ATATGTTGAA	TGTATAGCGA	ATGTTTATTA	TCTATAATCA	AATCACCATT	TTGTTTCATT	4620
	GTATCAATTA	GCTCTTGCAT	AGGAAACAGT	ACACGTTTTA	CTTTAATCAA	ATCCGAACGT	4680
	AACTTAAAGA	CACTATCCAT	GACCATTTTA	TTAAAGCGAT	CATCTACATG	GCGGTCTTCA	4740
15	AAATGATAAA	CACTATCTTC	AAGTGCATAT	ACAAAGTTGA	AATATTTATC	AACCATCATA	4800
	TCTAAAATTA	ATATGACGAC	ATCTGCACAA	TCTAATTCTG	CATCTAATGT	ATTCATATAC .	4860
	TTATAGACTA	CTTTATTTAA	TGATTCCAAC	GTTTGATGAT	GATATGTTAC	TAATACATTG	4920
20	TCTTGTATAA	AAATATTTAG	TGCTATTGGT	GAATAGTTTG	ACCCCATAAT	ACTATGGAAT	4980
	ACTAAGTATT	GATAATCTTT	ATAAGATTTA	TATTTAGCTC	GTGGCATACC	GTTAATTGCA	5040
	TCATCCACTT	CTAAATCATT	AAAATTAAAA	TGTGCTTTAA	ACCATTCATT	TTCTTGTTCA	5100
25	TTCGGTTCAT	CAAAATCATA	CCAAACAATA	GTCGCATCTT	TTGGTATCTC	TTTGATATCA	5160
	TCAACTACTT	TAAACGGTTC	ATATGTAGTT	TGATACCGTA	TCTTTAAAGC	CATCGATACT	5220
30	CCCCTAAAT	AACGAATTCT	CTATTATTTT	ATCATGAATT	AAATAACGTG	TATGTCTTAA	5280
	TTTATTTTAG	TATGATAGTC	ACTAAGGAGA	TGGTTATTAT	CAAACAACTT	TTTACACATA	5340
	CTCAAACCGT	AACATCTGAA	TTCATTGACC	ATAACAATCA	TATGCATGAT	GCAAATTATA	5400
35	ATATCATTTT	TAGTGACGTC	GTGAATCGTT	TTAATTACAG	CCACGGTCTT	TCTTTAAAAG	5460
	AACGCGAAAA	TTTAGCATAT	ACGCTATTTA	CACTAGAAGA	ACATACGACA	TACCTCTCAG	5520
	AATTGTCTCT	TGGCGATGTA	TTTACTGTTA	CTTTATATAT	TTATGATTAC	GATTATAAGC	5580
	GGTTGCATTT	ATTTTTAACA	TTAACTAAAG	AAGATGGTAC	ACTAGCATCA	ACAAATGAAG	5640
	TAATGATGAT	GGGAATTAAT	CAGCACACAC	GTCGTTCTGA	TGCTTTTCCT	GAATCATTTT	570 0
16	CAACACAAAT	AGCACACTAT	TATAAAAATC	AATCAACTAT	CACTTGGCCT	GAACAATTAG	5760
15	GACATAAAAT	AGCAATTCCA	CACAAAGGAG	CATTAAAATG	ACAGATGCAT	TACAACAAAA	5820
	GATTCATATC	GAATTACTAG	ATTTATTAGA	TGATGTTAAG	TTTGAATTAA	CAGAATTAAA	5880
50	TGCACAAAAA	GGGTTATACA	TTAACGGACC	AGCAAATCAG	CTACTTAAGC	GTGGCGTGCA	5940
	TATGGCTTAT	GTTCAAGGAC	AAAAGCAAGC	CATCGATAAT	ATTATGACTA	TTGTGGAACA	6000
	ACACCTTCAA	асатсавсат	ттсстасаас	АТТАТСАТАА	דעמעמטידידע	CACCTTCCTC	6060

	ATAATTTTT	AGATCAATTT	TATCAAATTA	AAGGGCAATA	CITTATCATC	ACACATATCA	6180
_	ATACACTTAT	TGGTGATTTT	CACTCAGAAG	CTCATTAACA	ATTAGTCTAT	ATAACCCTTG	6240
5	CTATATTTTC	AAAAACAAAA	CCCAATTACG	TTTTCATGTC	AAATATCATC	TTGCATGAAA	6300
	TCGTAACTGG	GTCATTTATA	TGTTATTAGT	TATTTTGTGT	TACATCCTCA	TCTATCGATT	6360
10	TGGCAATTTG	TTTAATAGCT	TTATGTGATT	GTCTAATTGG	ATAAATTGGA	AAATCATGTA	6420
	CCATCTTAGG	ATAATCATAA	AACTCAATGT	ATTGATGATG	TTGCAACATC	ATTTGTTCAA	6480
•	ATAGCTTCAT	ATCAGGATGT	GTCATTTCAC	GTCCACCACC	AAACATATAA	ACTGGTGGCA	6540
15	ATCCTTCTAT	TGTGCCATTA	ATTGGCGATA	TGCGCTTATC	TGTTAATGGT	AGGCCATTCG	6600
	CCCATTTTTT	CATAATCTCA	TTGACACCAA	ACTGACTTAG	aACCGCATCT	TGTTCGATTA	6660
	AGGCGTCCGA	AATATCTTTA	TTAGATAGTG	TTGCATCTAA	AATTGGTGAG	ATTAAATACA	6720
20	ATTTATTCGG	TAATGGCTGT	TGATTAKCTA	AAAGAGATTG	TACAAAGGAT	AATGCCAGTG	6780
	CACCACCTGA	ACCATCACCC	ATGACTACGA	CATTTTGATG	TCCTACTTCA	GATACTAATT	6840
	Gatcataaac	ACGTTGTATC	GCTTGGnAAA	GTATCGTCaA	TATGRAAACT	CTGGTGTCTT	6900
25	TGGATAGATA	GGCAGTACAA	CCTCATATAA	TGLACTTAAA	GTGATTTTAT	CCCAACAATC	6960
	TCCAATGGAA	CGGTGATGGT	TGTAGTGCAT	TGAATCCACC	GTGAATATAT	AAAATTTTCT	7020
	TATCAATTTG	ATGTCTGAAA	TTAAAGCGAA	AGACTTGCAT	ATCATCTAAT	GACAATTTTT	7080
	CTAAATTTGC	TTTAACATTT	AATGTTGAAG	GCTGCTTATG	TTTTTTTCTA	TTTTCAATTT	7140
	CTCTTTTATA	AAAAAATCTT	TCAACATCTT	GATCATTTTT	AAACATAATC	GAGCGATTGT	7200
15	GAAGCAÄATA	TTTATTGACA	ACGCTATTCA	TAACACGGTT	TCTAATCAAT	GTCTTAACCT	7260
	ACCTTTATAT	ATTTTATGTA	TCCAATGATk	GTCTATCCCC	TACATTCTTT	GCCAAAAAA	7320
	GTATATAATG	TAGAAGATAT	TTTCTTTTTC	ACTITCAAAT	TTAAGACTAC	AATTGAACAG	7380
10	TGATTTTTCA	TCATTATAAC	AGACAACTAG	ACATATTGAT	aagtaaagaa	AAGAACTTTA	7440
	TACGGAGGTA	CCTTGCATGA	CAAATCCAAA	TCAACGATTA	GAACCATTTG	ATGAGACATT	7500
15	TCAACAACCG						7560
NJ	CATGATTATT				GCTGGAATAC	AGCATGGTGG	7620
	/AL THRODIAN	TION DOD OF	O TO MO. 33	h _			

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9834 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

	GTCATEACCG	amTTTCtTAG	AATCATTTAA	AGATGATAAA	TATACAAACG	TTGGTAATTT	60
5	AAAAGAAGTG	AATTTTGATA	AAATTGCTGC	GACGAAACCC	GAAGTAATCT	TTATCTCTGG	120
	ACGTACAGCT	AATCAAAAGA	ATTTAGATGA	ATTCAAAAAA	GCTGCACCTA	AAGCGAAAAT	180
	TGTTTATGTT	GGTGCAGATG	AAAAGAACTT	AATTGGTTCA	ATGAAACAAA	ACACTGAAAA	240
10	TATCGGAAAA	ATTTACGATA	AAGAAGATAA	AGCTAAAGAA	TTAAATAAAG	ATTTAGATAA	300
	CAAAATTGCT	TCAATGAAAG	ATAAAACGAA	AAACTTCAAT	AAAACTGTTA	TGTATTTACT	360
15	AGTTAACGAA	GGTGAATTAT	CAACATTTGG	ACCTAAAGGT	CGTTTTGGTG	GATTAGTTTA	420
	CGATACATTA	GGATTCAATG	CAGTTGATAA	AAAAGTAAGT	AATAGCAATC	ATGGACAAAA	480
	TGTTTCTAAC	GAATATGTTA	ATAAAGAAAA	TCCAGATGTT	ATTTTAGCGA	TGGATAGAGG	540
20	TCAAGCGATA	AGTGGTAAAT	CAACTGCGAA	ACAAGCATTA	AATAATCCTG	TATTAAAAAA	600
	TGTTAAAGCA	ATTAAAGAAG	ACAAAGTATA	TAATTTAGAT	CCTAAATTAT	GGTACTTTGC	660
	AGCTGGATCA	ACTACAACTA	CAATTAAACA	AATTGAGGAA	CTTGATAAAG	TTGTAAAATA	720
25	ATTTTAAAAG	AGGGGAACAA	TGGTTAAAGG	TCTTAATCAT	TGCTCCCCTC	TTTTCTTTAA	780
	AAAAGGAAAT	CTGGGACGTC	AATCAATGTC	CTAGACTCTA	AAATGTTCTG	TTGTCAGTCG	840
	TTGGTTGAAT	GAACATGTAC	TTGTAACAAG	TTCATTTCAA	TACTAGTGGG	CTCCAAACAT	900
30	AGAGAAATTT	GATTTTCAAT	TTCTACTGAC	AATGCAAGTT	GGCGGGGCCC	AAACATAGAG	960
	AATTTCAAAA	AGGAATTCTA	CAGAAGTGGT	GCTTTATCAT	GTCTGACCCA	CTCCCTATAA	1020
35	TGTTTTGACT	ATGTTGTTTA	AATTTCAAAA	TAAATATGAT	AGTGÄTATTT	ACAGCGATTG	1080
TGTTAAAGCA ATTAAAGAAG ACAAAGTATA TAATTTAGAT CCTA AGCTGGATCA ACTACAACTA CAATTAAACA AATTGAGGAA CTTG 25 ATTTTAAAAG AGGGGAACAA TGGTTAAAGG TCTTAATCAT TGCT AAAAGGAAAT CTGGGACGTC AATCAATGTC CTAGACTCTA AAAT TTGGTTGAAT GAACATGTAC TTGTAACAAG TTCATTTCAA TACT	TATATTCATT	GATTGTTAAT	1140				
	TCGTGTTTCC	ATACACCGCA	TAAGATTGCT	TTTTCGTTAA	ATGAAGGCTC	AGACCAACGC	1200
40	TTAATGGCGT	GCTTTTCAAA	CTCATTATGG	CACTTATAGC	ATGGATAGTA	TTTATTACAA	1260
	CATTTAAATT	TAATAGCAAT	AATATCTTCT	TCGGTAAAAT	AATGGCGACA	scgTGTTTCA	1320
	GTATCGATTA	ATGAACCATA	AACTTTAGGC	ATAGACAAAG	CTCCTTAACT	TACGATTCCT	1380
45	TTGGATGTTC	ACCAATAATG	CGAACTTCAC	GATTTAATTC	AATGCCAAAT	TTTTCTTTGA	1440
	CGGTCTTTTG	TACATAATGA	ATAAGGTTTT	CATAATCTGT	AGCAGTTCCA	TTGTCTACAT	1500
	TTACCATAAA	ACCAGCGTGT	TTGGTTGAAA	CTTCAACGCC	GCCAATACGG	TGACCTTGCA	1560
50	AATTAGAATC	TTGTATCAAT	TTACCTGCAA	AATGACCAGG	CGGTCTTTGG	AATACACTAC	1620
	CACATGAAGG	ATACTCTAAA	GGTTGTTTAG	ATTCTCTACG	TTCTGTTAAA	TCATCCATTT	1680

	AGTGTTCTTT	TTGAATAATG	CTATTACGAT	AATCTAACTC	TAATTCTTTT	GTTGTAAGTT	1800
	TAATTAACGA	GCCTTGTTCG	TTTACGCAAA	GCGCATAGTC	TATACAATCT	TTAACTTCGC	1860
5	CACCATAAGC	GCCAGCATTC	ATATACACTG	CACCACCAAT	TGAACCTGGA	ATACCACATG	1920
	CAAATTCAAG	GCCAGTAAGT	GCGTAATCAC	GAGCAACACG	TGAGACATCA	ATAATTGCAG	1980
	CGCCGCTACC	GGCTATTATC	GCATCATCAG	ATACTTCGAT	ATGATCTAGT	GATAATAAAC	2040
10	TAATTACAAT	ACCGCGAATA	CCACCTTCAC	GGATAATAAT	ATTTGAGCCA	TTTCCTAAAT	2100
	ATGTAACAGG	AATCTCATTT	TGaTAGGCAT	ATTTAACAAC	TGCTTGTACT	TCTTCATTTT	2160
15	TAGTAGGGGT	AATGTAAAAG	TCGGCATTAC	CACCTGTTTT	AGTATAAGTG	TATCGTTTTA	2220
15	AAGGTTCATC	AACTTTAATT	TTTTCATTTG	GGATAAGTTG	TTGTAAAGCT	TGATAGATGT	2280
	CTTTATTTAT	CACTTCTCAG	TACATCCTTT	CTCATGTCTT	TAATATCATA	TAGTATTATA	2340
20	CCAATTTTAA	AATTCATTTG	CGAAAATTGA	AAAGAAAGTA	TTAGAATTAG	TATAATTATA	2400
	AAATACGGCA	TTATTGTCGT	TATAAGTATT	TTTTACATAG	TTTTTCAAAG	TATTGTTGCT	2460
	TTTGCATCTC	ATATTGTCTA	ATTGTTAAGC	TATGTTGCAA	TATTTGGTGT	TTTTTTGTAT	2520
25	TGAATTGCAA	AGCAATATCA	TCATTAGTTG	ATAAGAGGTA	ATCAAGTGCA	AGATAAGATT	2580
	CAAATGTTTG	GGTATTCATT	TGAATGATAT	GTAGACGCAC	CTGTTGTTTT	AGTTCATGAA	2640
	AATTGTTAAA	CTTCGCCATC	ATAACTTTCT	TAGTATATTT	ATGATGCAAA	CGATAAAACC	2700
30	CTACATAATT	TAAGCGTTTT	TCATCTAAGG	ATGTAATATC	ATGCAAATTT	TCTACACCTA	2760
	CTAAAATATC	TAAAATTGGC	TCTGTTGAAT	ATTTAAAATG	aTGctACCGC	CAATATGTTT	2820
35	TGTATATTTT	ACTGGGCTGT	CTAAGAGGTT	GAATAATAAT	GATTCAATTT	CAGTGTATTG	2880
33	TGATTGAAAA	CAATTAGTTA	AATCACTATT	AATGAATGGT	TGAACATTTG	AATACATGAT	2940
	AAAÇTCCTTT	GATATTGAAA	ATTAATTTAA	TCACGATAAA	GTCTGGAATA	CTATAACATA	3000
40	ATTCATTTTC	ATAATAAACA	TGTTTTTGTA	TAATGAATCT	GTTAAGGAGT	GCAATCATGA	3060
	AAAAAATTGT	TATTATCGCT	GTTTTAGCGA	TTTTATTTGT	AGTAATAAGT	GCTTGTGGTA	3120
	ATAAAGAAAA	AGAGGCACAA	CATCAATTTA	CTAAGCAATT	TAAAGATGTT	GAGCAAAAAC	3180
45	AAAAAGAATT	ACAACATGTC	ATGGATAATA	TACATTTGAA	AGAAATTGAT	CATCTAAGTA	3240
	AAACTGATAC	AACTGATAAA	AATAGTAAAG	AATTTAAGGC	ACTACAAGAA	GATGTTAAAA	3300
	ACCATCTCAT	ACCTAAATTT	GAAGCATATT	ATAAGTCAGC	AAAAAATTTG	CCTGATGATA	3360
50	CAATGAAAGT	TAAGAAATTA	AAAAAAGAAT	ATATGACGCT	TGCAAATGAG	AAGAAGGATG	3420
	CGATATATCA	AAAAAAATTA	TTCATAGGTT	TATGTAATCA	ATCTATCAAG	TATAACGAAG	3480

	AATTAGCTGA	TAATAAAAGT	GAAGCAACTA	ATCTTACGAC	AAAATTAGAA	CATAATAATA	3600
	AAGCGTTAAG	AGATACTGCG	AAGAAGAACC	TAGATGATAG	TAAAGAAAAT	GAAGTAAAAG	3660
5	GCGCGATTAA	AAATCACATT	ATGCCAATGA	TTGAAAAGCA	AATTACCGAT	ATTAACCAAA	3720
·	CTAATATTAG	TGATAAGCAT	GTTAATAATG	CAAGGAAAAA	CGCAATAGAA	ATGTATTACA	3780
	GTCTGCAGAA	CTATTATAAT	ACACGTATTG	AAACAATAAA	GGTTAGTGAG	AAGTTATCAm	3840
10	AAGTCGATGT	AGATAAGTTG	CCGAAAAAGG	GTATAGATAT	AACTCACGGC	GATAAAGCCT	3900
	TTGAAAAAA	GCTTGAAAAA	TTAGAAGAAA	ААТААСТАТА	ATCATTTTTC	AAAGTTAAAA	3960
15	ATTTTGAATT	TATGGTTAAC	ATGTCAACTT	ACTATGTGTA	TAATGGTAAA	CATTGATATT	4020
,-	AACTATATGT	ATAAAAATGT	CACGCAGATG	СТАТТТАААТ	GTGATAAATA	TTTTTAGAGG	4080
	TGAATAGAGT	GGCTATAAAG	CTAAGTTCAA	TTGACCAATT	TGAACAGGTT	ATTGAGGAAA	4140
20	ATAAATATGT	TTTTGTATTA	AAACATAGTG	AAACTTGTCC	AATATCGGCA	AATGCGTACG	4200
	ATCAATTTAA	TAAATTTTTA	TATGAACGCG	ATATGGACGG	TTATTATTTG	ATTGTCCAAC	4260
	AAGAACGCGA	TTTGTCAGAT	TATATTGCTA	AAAAAACGAA	CGTTAAACAT	GAATCACCTC	4320
25	AAGCATTTTA	TTTTGTAAAT	GGTGAAATGG	TTTGGAATCG	AGACCACGGT	GATATCAATG	4380
	TGTCGTCATT	AGCACAAGCA	GAAGAATAAT	GAAACTATAG	GGTTGGAACA	TTTTGCCTTA	4440
	CACTACTAGA	CGTGAATAGC	ACAACTTAAA	TTCGTGTGAA	TCAGAGTAGT	TTGGCTATAA	4500
30	TGATGTTCTG	ACCTTTTATT	TTATGTCACC	TTTAGAAGCA	GTTAAGTTAG	TACTTTTTTA	4560
	CAAACATATG	TATAATATAT	TCGAGTATTT	TTATTGAAAa	tattttggaa	AACGACGAAT	4620
35	CCAATAAGAA	AATTTAAACA	TGATTTGTAA	GTTAGTTTAA	TAGGAAATAT	ATGCTAAACC	4680
	AAAAGAAGCA	TATTGTTATT	TACTGGAATA	ATTAATAATC	ATGTCATGTT	AAATGTTAGC	4740
	ATATAATCAC	GAGATAAAAT	СТААААТТТА	AGATTAATCT	TTTATGAATA	AAAAACGTAT	4800
40	CACAACAAAT	AATAAAGTAA	GGTGGTCAAG	GTTATGAAAG	TATTAGTAGC	CATGGATGAG	4860
	TTTCATGGAA	TTATTTCAAG	TTATCAAGCT	AATAGATATG	TTGAAGAGGC	AGTTGCAAGC	4920
	CAAATTGAAA	CTGCAGATGT	AGTTCAAGTA	CCATTGTTTA	ATGGAAGACA	TGAATTATTA	4980
45	GATTCTGTAT	TTTTATGGcm	ATCTGGGCaA	AAGTATCGTA	TACCAGTACA	TGATGCAGAT	5040
	ATGAATGAAG	TTGAAGGTGT	TTACGGACAA	ACTGATACAG	GGATGACCGT	TATCGAGGGG	5100
	AATTTATTTT	TAAAAGGTAA	AAAACCAATT	GTTGAACGAA	CAAGTTATGG	TTTAGGAGAA	5160
50	ATGATTAAAC	ATGCATTAGA	TAACGACGCA	AAACATGTTG	TAATTTCACT	AGGTGGGATT	5220
	GATAGTTTTG	ATGCTGGTGC	AGGTATGTTA	CAAGCATTAG	GTGCTCAATT	CTATGATGAC	5280

7.

	GATATGTCGA	ACTTACACCC	TAAAATGGAA	ACAGCAAGAA	TTCAAGTAAT	GTCGGATTTT	5400
	TCAAGTCGAT	TATATGGTAA	GCAAAGTGAA	ATCATGCAAA	CTTATGATGC	GCATCAGTTG	5460
5	AATCATAATC	AAGCAGCAGA	AATCGATAAT	TTAATTTGGT	ATTTTAGTGA	GTTATTTAAA	5520
	AGTGAATTGA	AAATTGCAAT	TGGTCCAGTT	GAACGTGGTG	GTGCTGGTGG	TGGAATTGCA	5580
	GCAGTCTTGA	ATGGACTGTA	TCAAGCTGAA	ATATTAACCA	GTCATGCATT	AGTAGACCAA	5640
10	CTAACACATT	TAGAAAATTT	AGTTGAACAA	GCGGATTTAA	TTATTTTTGG	AGAAGGATTA	5700
	AATGAAAATG	ATCAGTTGCT	AGAAACGACA	ACATTGCGTA	TTGCAGAACT	TTGTCATAAA	5760
15	CATCAAAAGG	TTGCCATTGC	AATTTGTGCA	ACTGCTGAAA	AGTTTGATTT	ATTTGAATCA	5820
15	CAAGGGGTTA	CAGCAATGTT	TAATACATTT	ATCGATATGC	CAGAAACTTA	TACTGACTTT	5880
	AAAATGGGtT	ACAAATTAGG	CATTATACGG	TTCAGTCTTT	AAAACTGTTG	AAAACACATT	5940
20	TTAATGTTGA	GGTTTAGTAA	AGAAGGACTA	AATTGGTGAT	GCTGTCATGA	TGGTTAATAA	6000
	CATTTATGAT	GGTTAGCAAA	ACGAATTAGA	AGATCGAAAG	TATACGTAAA	AAATATGAAA	6060
	AATCACGCTA	TCATTGCACT	GAATGTTAGC	GTGATTTTTA	TATATTAATT	AAGCCTGAGT	6120
25	TGAACTAGTA	TATAATCGTT	GGTTTTTAGT	GATTTTCAGC	GATATCTTCT	ACAATTCCAA	6180
	TGATTACTTG	TACTGCTTTT	TCCATAACAT	CAATGGATGC	aTATTCATAT	GGGCCGTGGA	6240
	AGTTACCGCA	ACCTGTAAAG	ATGTTTGGAG	TTGGTAACCC	CATAAATGAC	AATTGTGAAC	6300
30	CATCTGTACC	ACCGCGAATA	GGTTCAGTGT	TTGCTGGAAT	ATCTAATTTG	GCAAAGACAC	6360
	GTTTAGGTAT	ATCAATAATA	TGAGGCAATG	GTAATATTTT	TTCTGCCATA	TTGAAATATT	6420
25	GATCCGATAT	ATCAACTTTA	ACTGGATAAT	TTTCAAAATG	GGCATTGATA	TCGTCACGTA	6480
35	TTTCTAAAAT	ACGTTTCTTA	CGCAATTCGA	ATTGTTTTTT	ATCATGATCA	CGAATAATGT	6540
	ATTGCAAAGT	TGCTTTTTCA	ACAGTTCCTT	CAAAGTTCAT	TAAGTGATAA	AAGCCTTCGT	6600
40	ATCCTTCTGT	TCGCTCCGGA	ACTTCACTAT	CAGGTAGCAA	ACTATCGAAT	TGTTCACCTA	6660
	AACGTATTGC	GTTTACCATT	GCATTTTTAG	CTGAACCAGG	ATGAACATTT	ACACCGTGGC	6720
	ATGTAATAAC	CGCTTCAGCA	GCGTTAAAGC	TTTCATATTG	TAATTCTCCA	TATTGACTAC	6780
45	CATCCATAGT	ATAAGCAAAA	TCAGCATTGA	AGCGGTCAAC	ATCAAATTTA	TGTGGACCAC	6840
	GACCGATTTC	TTCGTCTGGT	GTAAATCCAA	TGCGAATGGT	ACCATGTTTA	ATTTCTGGAT	6900
	GTTCTTGTAA	ATAACAAATA	GCTTCCATAA	TTTCCACAAT	ACCCGCTTTA	TCGTCTGCAC	6960
50	CTAGTAACGA	TGTACCATCA	GTTACCATTA	ATGTATGACC	AACTAAACTG	TTAAGTTCTG	7020
	GAAATACTTT	AGGATCTAAG	ACACGTTTAG	TATTGCCTAG	TTTGTATGGC	TTACCATCAT	7080

	GCGCCAAAAA	TCCAACTGTT	GGGACGTCGA	CATCGATGTT	ACTTTCTAAT	GTAGCAAATA	720
	AGTAGCCATT	TTCATCTAAA	TCAGTTGGCA	ATCCTAATTG	TTGTAATTCT	TTTTCTAATA	726
5	AATGTAACAA	ATCCCATTGC	TTTTCAGTTG	AAGGTGTTGT	TGTAGATTTT	GGATCAGATT	732
	GCGTATCAAT	TGTCGTATAT	CTTGTTAATC	TATCTATCAA	TTGGTTCTTC	ATTATATTCG	738
	ACCCCTTAAA	CTCTATTATT	CATGTTGTAA	GATTTTTTAT	ATGTCTTACC	TTTGATTTTA	744
10	CCATACAGTT	GTTTGATACG	TGTGTATAGG	TAATATAGAA	TTTCAGAAAC	TAATATACCG	750
	AAAGCAATCG	CACCTGAAAT	CAGTGTACTT	CTAAAAATGT	ATTTACAGCA	CTTGTATAAT	756
15	CATTTGATAC	TAAAAAACGA	GTCGCTTGAT	AAGCTGCACC	ACCAGGTACT	AATGGTATAA	7626
	TGCCTGGCAC	TATGAATATA	ATTACCGGTC	GTTTATATCT	GCGACTCATA	GTATGACTCA	7686
	TTAAGCCTAA	AATTAAGCTT	CCCAAAAATG	AAGCGCCAAC	TTTTCCAAAC	TCTAAATCTA	7740
20	CCGTTAATTG	GTAAATCGTC	CATGCAATGG	CACCCACAAA	TCCACATGCT	ACTAAGAGGC	7800
	GTTTGGGTGC	ATTGAAAATG	ATAGAGAAAA	GTACTGTTGA	TATAAAGCTG	ATTGTAAAAT	7860
	GAAATAAATA	AAATAGCATG	CTTTAACAGT	CCTTCCTTAA	ATGATTAATA	AAACGATTGC	7920
25	GACACCAGCA	CCGATTGCGA	ATGCTGTTAA	TGCAGCTTCA	ACACCGCGAG	ACATACCTGC	7980
	AAGTAATTCA	CCCGCTAATA	AATCTCGAAT	GGCATTGGTA	ATTAATATAC	CAGGGACAAG	8040
	TGGCATGACA	CTGGCTATAG	TAATGATATC	TTGATTGGTT	GCAATGCCTA	ATTTAGTAAA	8100
30	TGTGGCTGCA	ATGGATATGA	CCACAGCGGC	TGCAACAAAC	TCTGAGAAAA	ATTTAATTTG	8160
	TATATAGCGT	tGCACAAAGC	TGAATGTTAA	AAATGCGGAT	CCGCCAGCAA	TGACTGCAAT	8220
35	CCAACAATCT	GATGCGACAC	CACCAAACAT	AAATAGGAAG	AAGCCACATG	CAATGGCAGC	8280
	TGCAAAGAAA	TTCGTTAAAA	AAGAATATTG	TAATGATGCA	TGCTGTAAAT	GAATAAATTC	8340
	AGATTTAGCT	TCATCAATTG	TGAGTTCTTT	ATTTGATATT	TTACGTGAAA	GACTATTCGT	8400
40	TAAAGCGATT	TTCTCTAAAT	CTGTTGTACG	CTCTTGTACA	CGAATTAATC	TTGTACTTGT	8460
	TCGATCGTTT	aatgaaaaaa	TAATTGCAGT	TGAACTGACA	AAACTATATG	TATTATGAAG	8520
	ACCATAACTA	TGTGCGATAC	GGTTCATTGT	ATCTTCAACT	CGATATGTTT	CAGCACCTGA	8580
45	TTCaAGTAAA	ATTCTACCTG	CAATTAATAC	AACATCAATC	ACTTTGTTTT	CATCTATAAT	8640
	TGTGATTGAA	TCTGGCATAT	CAATTCACCT	CCAATGATAT	GTGTTATTTA	TTTGAACAAT	8700
	TGAAGTTTAC	AACTTGTTGT	TACAACTTTC	AATAGTGAGA	CTTTGTGTTA	GTATGATGAA	8760
50						ACTATGATTT	8820
	*****	A A C C A TT A A C	* Cutatataticatica	THE COURT AND A A	መመረግ አመስ አመስረገ	CCTTABACAT	0000

	TTTACGCTGT	GATTTTGGAT	CGTCATCTGT	TAAATAACCA	ACACCGATAG	ACACTGACAA	9000
	TTTAATAACT	TCTTTGTTTG	GTAAATGGAA	TGATGATTTT	TCAACACCCG	AACGAATATT	9060
5	TTCAGCTAAT	TTAACACTTT	GATCAAGTGA	ATAATTGTGA	ATGACAACTG	AGAACTCTTC	9120
	GCCACCATTT	CTAAAAATTT	TAAATTGATT	CGGCACATAG	TTTTTAAGTA	ATTGAGACAT	9180
	TTGTTTTAAT	ACAGCATCAC	CTGATTTGTG	TGAGTAGGTA	TCATTGaCAT	CTTTAAATCC	9240
10	ATCGATATCG	ATTAATAATA	ATGCGATACT	TTGATGTTCT	TTTTCAGCTT	TTCGTGAAAT	9300
	TTCATTTAAA	TGTCTATCAA	ATTCTTTTAC	ATTACCTAAG	CCTGTTAAGT	AATCATATTT	9360
15	ATCTTCGTTT	TCATAACGAT	TTACGAGTGA	GAAGAAATGC	CAAATATCGA	CAAATGTTAT	9420
	CGCTGAAGCT	AAAGTGATAA	TTAATGAAAT	TGGTATTAAA	ATGATAACTT	CCGATAGTGT	9480
	GTAAATAGGA	CTCACTAACG	CGACACCAAA	TAAAATGATT	ATTGTAACAA	CATTAAGTAT	9540
20	TAATAATGAT	AGCACATCAT	TTTGTTTTAA	AAATGGTCCA	ATAGCACTTG	TTACTGCAGC	9600
	AATAACAATC	AACGTAACAC	CGTACATAAT	CGAGTTGTTA	AATACTACAA	TTTCAACAAT	9660
	TGCTACAATT	ACTGTGGCAG	ATAATGTATA	GACCATATTT	GTAAATCTAC	СТАААААСАА	9720
25	TAAAGGAACG	AATGTTAAGT	GAATTAAATA	ATCTTCACGA	TAAGGGATAG	GGTAGACAGA	9780
	TAATAATAAT	GATACGATTG	TCATTAAAAC	AGTGACATAA	GCCTTAGAAA	AAAC	9834
	(2) INFORMA	TION FOR SE	Q ID NO: 38	:			

30

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23439 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

45

50

C(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

TCTCAATCAG ATGAAAAATT GCATATCGTA GGTTTTACAG AAAGTGCAAA ATATAATGCG 60 TCATCAGTCA TTTTCACGAA TGACGCTACC ATTGCCAAGA TCAATCCTAG ATTGACTGGA 120 GATAAAATTA ATGCAGTTGT TGTACGTGAT ACAAATTGGA AAGACAAAAA ATTAAACCAA 180 GAGCTTGAAG CGGTAAGTAT TAATGACTTT ATTGAAAATT TACCAGGTTA TAAACCACAG 240 AACTTAACAT TAAACTTTAT GATTTCATTC TTATTTGTCA TTTCAGCTAC AGTTATAGGC 300 ATTTTCCTAT ATGTCATGAC ATTACAAAAG ACGAGTTTAT TTGGCATATT AAAAGCTCAA 360 GGATTTACGA ATGGCTATTT GGCGAATGTG GTAATTTCGC AGACGGTCAT ATTAGCACTA 420 TITGGTACGG CATTTGGCTT ACTGTTAACA GGCGTTACAG GTGCATTTTT ACCTGATGCA 480

	TCTGTATTAG	GAAGTTTATT	CTCCATTTTA	ACAATTAGAA	AAATAGATCC	GTTAAAGGCG	600
	ATTGGGTAGG	AGGTGTAGCA	aatgttgaaa	TTTGAAAATG	TAACAAAGTC	ATTTAAAGAT	660
5	GGGAATCGTA	ACATTGAAGC	GGTTAAAGAT	ACAAATTTTG	AGATAAATAA	AGGTGATATT	720
	ATAGCATTGG	TTGGACCTTC	TGGCTCTGGT	AAAAGTACAT	TTCTAACTAT	GGCAGGTGCT	780
	TTACAAACAC	CGACATCTGG	GCACATTTTA	ATCAATAACC	AAGATATTAC	GACAATGAAG	840
10	CAAAAAGCAT	TGGCAAAAGT	TAGAATGTCT	GAAATAGGTT	TTATTTTACA	AGCTACAAAC	900
	CTTGTACCAT	TTTTAACGGT	AAAGCAACAA	TTTACATTAT	TGAAAAAGAA	AAATAAGAAT	960
15	GTTATGTCTA	ATGAAGACTA	TCAGCAACTT	ATGTCACAAT	TAGGTCTAAC	TTCATTGCTT	1020
	AATAAGTTAC	CTTCAGAAAT	TTCAGGTGGT	CAGAAACAAC	GTGTGGCGAT	AgCaAAGCGT	1080
	TATATACGAA	TCCGTCGATT	ATTTTAGCGG	ATGAACCTAC	CGCGGCGTTA	GATACTGAAA	1140
20	ATGCGATTGA	AGTCATTAAA	ATTCTACGTG	ATCAAGCCAA	ACAAAGAAAG	AAAGCATGTA	1200
	TTATTGTTAC	ACATGATGAA	CGACTTAAAG	CATATTGTGA	TCGTTCATAT	CATATGAAAG	1260
	ATGGCGTCCT	TAATCTTGAA	AATGAAACAG	TAGAATAGTT	TTATTAAGCC	GGTACATCAT	1320
25	GTGCCGGTAT	TTTTATGTTT	ATGTATTATT	TGAATAAACT	TTCACATTCA	ATTAATAATA	1380
	ATTATTATCG	AAAATCAGAA	ATATTCCGTG	ATATATAAA	TTTTTTGTAG	TAAAATGGCC	1440
	TCTAAGTATT	CAATATTTAA	ATATGGGGAT	TGAATATAAA	ATTATCGTAA	TGGGGGTCAA	1500
30	TGGTTATGGA	TTTATTGATA	GGTACTTTAT	TTTTATTTT	GGTCTTAGTG	ATTTTTACAT	1560
	TATTTACATA	TAAAĢCGCCT	AATGGTATGC	GTGCCATGGG	AGCATTAGCT	AATGCAGCAA	1620
25	TCGCAACATT	TTTAGTGGAA	GCATTTAATA	AATATGTTGG	TGGCGAAGTA	TTCGGTATTA	1680
35	AATTTTTAGA	AGAGCTAGGA	GACGCTGCGG	GAGGTCTAGG	TGGTGTCGCT	GCCGCTGGAT	1740
	TAACAGCATT	AGCTATCGGT	GTGTCACCAG	TATATGCATT	AGTTATAGCA	GCCGCGTGCG	1800
40	GTGGTATGGA	TTTATTACCA	GGTTTCTTTG	CGGGTTATAT	GATTGGATAT	GTGATGAAAT	1860
	ATACAGAGAA	ATATGTGCCG	GATGGTGTCG	ACTTAATTGG	ATCGATTGTC	ATCTTAGCGC	1920
	CATTAGCTCG	TCTTATTGCA	GTATTATTAA	CGCCAGTAGT	GAATAGTACA	TTGATTCGAA	1980
45	TTGGTGATAT	TATCCAAAGT	AGTACGAATA	CGAATCCAAT	TATCATGGGT	ATCATTTTAG	2040
	GTGGTATTAT	TACGGTTGTC	GGCACAGCGC	CATTGAGTTC	AATGGCATTG	ACAGCATTAT	2100
	TAGGTTTAAC	GGGTGTACCT	ATGGCTATTG	GTGCCATGGC	AGCATTTAGT	TCGGCATTTA	2160
50	TGAATGGGAC	GCTATTCCAT	CGCTTAAAAT	TAGGTGATCG	TAAGTCTACG	ATTGCAGTAA	2220
	GTATTGAACC	TTTATCACAA	GCAGATATTG	TATCAGCCAA	TCCAATTCCA	ATCTATATTA	2280

	ATGCGACAGG	TACAGCTACA	CCGATTGCAG	GATTTTTAGT	TATGTTTGGA	TTTAATCATC	2400
	CGACGACAAT	TGTGATTTAT	GGTGTAGTAA	TGGCGATTGT	AGGTGCGCTT	GCAGGTTATC	2460
5	TTGGTTCAAT	TGTATTTAAA	AAATATCCAA	TIGITACTAA	GCAAGACATG	ATTAATCGAG	2520
	GTGCAGTAGA	CGCATAGCAT	CATCATATTG	AATAGTAAAA	ACAAATAAAA	CATAGTAACG	2580
	TGATTCAGTC	GATGTAACAG	TCGATAATGA	GTCACGTTTT	TTTATAGAAA	AATACAAGAC	2640
10	ATAAAAATGT	CATAATTTAT	TGTCGACAAA	TATCATACTG	TATAAACATT	TATCATTTTC	2700
	TCAAGTACCT	TTTACACGAT	GGAATGAACT	TACTTTTTAC	GAAATTATGC	GTATTTTATA	2760
45	AACAAATATC	ATTGATATAA	CGGTAAATGT	AAGCGTTTAC	AACAGAAATA	ACAGCATGCT	2820
15	ACGATATTTT	TGTAAATTCA	CTGATTCAAG	TATTTTAAGT	CAATATGAGG	AGGGATGTTA	2880
	TGAGCGATTC	TGAGAAAGAA	ATTTTAAAAA	GAATTAAAGA	TAATCCGTTT	ATTTCACAAC	2940
20	GTGAACTTGC	TGAGGCAATT	GGATTATCTA	GACCCAGCGT	AGCAAACATT	ATTTCAGGAT	3000
	TAATACAAAA	GGAATATGTT	ATGGGAAAGG	CATATGTTTT	AAATGAAGAT	TATCCTATTG	3060
	TTTGTATTGG	CGCAGCGAAT	GTAGATCGTA	AGTTTTATGT	GCATAAAAAT	TTAGTTGCAG	3120
25	AAACATCAAA	TCCTGTAACG	TCAACACGCT	CTATTGGTGG	CGTAGCAAGA	AATATTGCTG	3180
	AGAACTTAGG	TAGGCTTGGC	GAAACGGTCG	CTTTTTTATC	TGCTAGTGGA	CAAGATAGTG	3240
	AATGGGAAAT	GATTAAACGA	TTGTCCACAC	CATTTATGAA	TTTGGATCAT	GTTCAACAAT	3300
30	TTGAAAATGC	GAGTACAGGT	TCATATACAG	CTTTAATTAG	TAAAGAAGGC	GACATGACAT	3360
	ATGGCTTaGC	AGATATGGAA	GTGTTTGACT	ACATTACGCC	TGAATTTTTA	ATTAAGCGTT	3420
	CACACTTATT	GAAAAAGGCT	AAGTGCATTA	TTGTAGATTT	GAATTTAGGC	AAAGAGGCAT	3480
35	TAAACTTCTT	ATGTGCCTAT	ACCACGAAAC	ATCAAATCAA	ATTAGTTATC	ACCACGGTTT	3540
	CTTCCCCAAA	AATGAAAAAT	ATGCCTGATT	CATTACATGC	TATTGATTGG	ATTATCACGA	3600
40	ATAAAGATGA	AACAGAAACA	TACTTAAATT	TAAAAATAGA	ATCTACTGAT	GATTTAAAAA	3660
40	TAGCTGCTAA	ACGCTGGAAT	GATTTAGGTG	TTAAAAATGT	TATTGTGACA	AATGGCGTGA	3720
	AAGAACTCAT	TTATCGAAGT	GGTGAGGAAG	AAATCATTAA	GTCAGTTATG	CCATCAAATA	3780
45	GTGTGAAAGA	TGTTACAGGT	GCAGGCGATT	CATTCTGTGC	TGCAGTAGTG	TATAGCTGGT	3840
	TAAATGGGAT	GTCTACTGAA	GATATATTAA	TTGCTGGTAT	GGTTAACGCA	AAGAAAACGA	3900
	TAGAAACGAA	ATATACAGTT	AGGCAAAACC	TAGATCAACA	GCAACTTTAT	CACGATATGG	3960
50	AGGATTATAA	AAATGGCAAA	TTTACAAAAG	TATATTGAGT	ATTCTCGAGA	AGTTCAGCAA	4020
	GCACGGGAGA	ACAATCAACC	GATTGTAGCA	TTAGAATCAA	CAATTATTTC	GCATGGTATG	4080

	GCCATTCCAG	CAACCATAGO	CATTATAGAT	GGCAAAATTA	AAATTGGTTT	AGAAAGCGAA	4200
	GATTTAGAAA	TACTGGCAAC	TAGTAAAGAC	GTTGCTAAAG	TATCTAGAAG	GGATTTAGCA	4260
5	GAAGTTATTG	CGATGAAGTG	TGTTGGTGCT	ACTACTGTAG	CGACGACGAT	GATATGTGCT	4320
	GCAATGGCTG	GTATTCAATT	TTTTGTTACA	GGAGGTATTG	GGGGCGTCCA	TAAAGGTGCA	4380
	GAACATACGA	TGGACATTTC	AGCAGACTTA	GAAGAACTGT	CTAAAACAAA	TGTCACTGTT	4440
10	ATCTGTGCAG	GTGCCAAATC	AATTTTAGAC	TTACCTAAGA	CGATGGAGTA	TTTAGAAACA	4500
	AAAGGCGTTC	CAGTTATTGG	ATATCAAACG	AATGAATTGC	CAGCATTCTT	CACTCGCGAA	4560
5	AGCGGTGTTA	AGTTAACAAG	TTCGGTTGAA	ACGCCAGAAC	GACTTGCTGA	CATTCATTTA	4620
	ACAAAACAGC	AGTTAAATCT	TGAAGGTGGC	ATTGTTGTTG	CTAATCCAAT	TCCATATGAG	4680
	CATGCCTTAT	CAAAAGCATA	TATTGAGGCA	ATCATAAATG	AAGCTGTTGT	TGAAGCGGAA	4740
20	AATCAAGGTA	TTAAAGGTAA	GGACGCCACA	CCGTTCTTGT	TAGGGAAAAT	TGTAGAAAAA	4800
	ACGAATGGTA	AAAGTTTAGC	AGCAAATATA	AAACTTGTTG	AAAACAATGC	GGCGTTGGGT	4860
	GCTAAAATTG	CTGTCGCTGT	TAATAAATTA	TTGTAGGTGA	TGATACATGA	ATATTTTATT	4920
25	CGCTATCACA	GGGATAGCAT	TTGCACTATT	TGTTGCGTTT	TTATTCAGTT	TTGATCGTAA	4980
	AAAAATAGAC	TTCAAAAAGA	CGTTAATAAT	GATATTTATT	CAAGTGTTGA	TCGTGTTATT	5040
	TATGATGAAC	ACAACGATTG	GTTTGACAAT	TTTAACTGCA	CTAGGTTCAT	TTTTTGAAGG	5100
ю	GCTAATAAAT	ATTAGTAAAG	CAGGCATAAA	TTTTGTTTTT	GGAGATATAC	AAAATAAAA	5160
•	TGGCTTTACG	TTCTTTTTAA	ACGTATTACT	GCCATTAGTT	TTTATTTCTG	TATTAATAGG	5220
5					TATGTAGGTA		5280
	_				ATTTCAACAG		5340
	•					GAGCGAAATT	5400
o					GCAATGCTAG		5460
					TTAAATATTT		5520
					ACTGATGTTG		5580
5					ACAGGAAAAC		5640
					TTTAAAATCG		5700
	AGCCGTAATG						5760
o					GCACCAATCG		5820
	GGGGATTCCA	TGGAGCGAAC	TGTTCCAGCT	GGCTCTTTAA	TGGCGACTAA	ATTAATTACA	5880

	CAAGGTATCA	TTTCAGTTTA	CTTAGTAAGC	TTCGCTAATT	TTGGTACGGT	TGGTATCATC	6000
	GTAGGTTCAA	TTAAAGGCAT	TAGTGATAAA	CAAGGAGAAA	AAGTTGCATC	CTTTGCAATG	6060
5	AGGTTGCTAC	TTGGTTCAAC	TCTAGCTTCA	ATCATTTCAG	GATCAATCAT	TGGCTTAGTA	6120
	TTGTAAATGA	ATCGAAGTAC	CTAAATTAAA	TTCATGGCAA	AGCTAAACCC	CGTCACCAAG	6180
o	TTGGCGCAAC	AGCGcATgcA	TAACTTAGTG	ACGGGGTTTT	ATCATAACAA	TCTACTTTTT	6240
U	CGTAGCCGTT	TTTGAAATGT	ATGTTGATGG	TTTATCTTTT	TCAAAAATTG	TTAATCCCGT	6300
	TATATCTTTT	TTATGTTTTG	AAGGGACAAT	GAAGCTAAGT	ATATAAGCAA	AGACAAAAGC	6360
5	AACTGTAAAT	GAAATGGTAG	ATACATAGAA	AGGTGAGTTA	CCTTTGCCAA	CACCATTATA	6420
	GACATAAGCA	AAGATGATAC	CCAATATTAA	TCCACAAATA	ACACCGAATG	TATTCGTACG	6480
	TTTAGTGAAA	ATACCAACTG	CAAATACACC	AGCCAATGGA	ACGCCGAATA	ATCCAGTCAC	6540
0	AAACAAGAAT	AAATCCCATA	AGTCATTTGA	ATTAGAAGCA	ATTAAGTATA	GTGACATTCC	6600
	AAAACCGAAA	ATACCTGCAA	TGATAATAAT	GAAACGTGCA	AAGTTAACTT	CGTGTCGCTC	6660
	GCTACCTTTT	CCGAAGAAGC	GTTGCTTAAT	GTCGATTGAA	ATACAAGCAG	ATATAGAATT	6720
25	TAAACTAGAT	GAAATGGTAG	ACTGTGCAGC	GGCGAAAATG	GCTGCAATAA	GTAATCCTGC	6780
	TACAAATGGT	GGCATCTCAG	TCAAAATGAA	ATATGGCACT	ACAGATGATG	TATTGAAGCC	6840
	TTTTGGTAAA	ACAGCTTCAT	GTGTATAAAA	TGAATACAGC	ATTGTACCCA	TACCATAAAA	6900
10	TAAGGGTGCT	GAAATTAAAG	CTAGGATACC	ATTTGTCCAT	AACGATTTAT	TTGTTTCTTT	6960
	TAAACTATCA	GAAGCTTGAT	AACGCTGCAC	GACGTCTTGA	CTCGCTGTGT	ATTGATACAA	7020
35	GTTGTTGAAA	ATATTTCCTA	GGAAAATAAT	TGGAATGGCA	GCTGCCGCAG	TATTTAGTTT	7080
-	CCAATTGTCT	GCACTAATTA	ATTTTTTGTG	CTCAATCGCA	TCTGCAAAGA	CAGTGCCGAA	7140
	ACCCCTTTA	ATGTTCACAA	CACCTAGAAT	AATAATAACT	AAAGCGCCGC	СТААТААААТ	7200
40	GACGCCTTGA	ATGAAATCAC	TCCAAACCAC	ACCTTCGAAA	CCACCTAAAA	ATGTATATAA	7260
	AATACATAGT	AAACCAACGA	GTGATGCAAC	GATATAAGGG	TTCATGTCTG	ATACAGATGT	7320
	GATTGCTAAT	GTTGGTAAGT	AGATAACAAT	TGCAACACGC	CCTAAATGGT	AAACGACAAA	7380
45	TAATAATGAG	CCAATGACAC	GTATGCTAGG	GCCAAATCTA	GCTTCTAAAT	ATTCATATGC	7440
	AGATGTTACC	TTTAACTTTT	TAAAGAAAGG	GACATAGAAA	TAAATAAGTA	ATGGAATAAT	7500
	TGCGACGATA	GCAATGTTAC	CAGCGATATA	TGACCAATCT	GTTAAAAATG	CTTTCTCTGG	7560
50	TGTCGACATA	AATGTAATCG	CACTTAACGT	AGTAGCATAA	ATTGAAAAGC	CAACTACCCA	7620
	AGATGGCAAG	CGACCACTTG	CGGTAAAGAA	ACTATTGGTA	CTTTGGCTCG	CGCGCTTGGT	7680

	TGTGCCAAAT	CCAACTTCTT	TCATGGGCAA	CATCCCCTTT	ACAATGTATT	GATTCTTTGA	7800
	TGTCTATAAA	TCGTATTTTG	CAATGAGTTG	ATCTAATGTT	TGTCGATGTG	CTTCGTTAAA	7860
6	AGGTTTGAAA	GGTCTTTTCG	GTAATCCTGC	ATCAATGCCA	CGATGACGTA	ATATTTCTTT	7920
	CAATGTTGGA	TAAATCCCCA	TTGATAACAC	TGTTTCGATA	ATGTCGTTTG	AATCATGTTG	7980
	CAGTTGGTAA	GCTTCTTGAA	TTTGACCTTG	TCGTGCTAAG	TCGAAGATTT	TTCTTGCACG	8040
10	GCGACCATTA	ACGTTATATG	TAGAACCAAT	TGCACCATCT	ACGCCAGAAA	TCGTAGCTTG	8100
	AACTAACATT	TCATCAAAGC	CAGATAAGAT	TAATTTGTCT	GGGAATGCTT	TTCTAATACG	8160
15	TTCGAGTAGG	AAGAAGTTTG	GCGCTGTATA	TTTAACACCA	ACAATTTTTT	CATGATTAAA	8220
	TAGCTCGCTG	AATTGTTCAA	TAGAAATATT	CACACCTGTT	AAATCTGGTA	TTGCATAAAT	8280
	AATCATATTG	TTCTGAGTTG	CTTCGATAAT	ATCGAAATAG	TAATCTCTAA	TTTCTTCAAA	8340
20	agtaaatgga	TAGTAGAATG	GTGTTACGGC	AGAAAGTGCA	TCATAACCGA	GTTCTGTGGC	8400
	ATATTTTCCA	AGTTCAATGG	CTTCATTTAA	ATCTAACGAA	CCTACTTGAG	CAATCAATTT	8460
	CACTTTATCC	CCAACTGCCT	CTTTGGCAAC	CTTGAAAACT	TGCTTCTTCT	GCTCTGTATT	8520
25	TAATAAAAAG	TTTTCGCCTG	AGCTACCATT	TACATAAAGA	CCGTCTAATT	CTTCAGTTTC	8580
	AATGGCATTT	TGAGCAATTT	GTTTAAGTCC	TTGTTCATTT	ACTTGACCAT	TTTCATCAAA	8640
	AGGAACGAGT	AACGCTGCAT	ATAAACCTTT	TAAATCTTTG	TTCATTATGA	AGTCCCTCCA	8700
30	AAAATCATTT	GATAATATAG	TTTACAGCTA	TAATTGTAAA	CGCTATCATA	AAATGTAACA	8760
	ATATCTTTTT	GAAAATTGTA	GTCATATTTA	TGTATAATTA	ATGAAAATGT	TTTTCAAAAT	8820
	CAATAGAAAT	GGAGTGAGTA	AGGTGTATTA	CATCGCAATC	GATATTGGAG	GCACTCAAAT	8880
35	TAAATCGGCA	GTTATTGATA	AGCAATTGAA	TATGTTTGAC	TATCAACAAA	TATCAACGCC	8940
	GGACAACAAA	AGTGAGCTTA	TTACTGACAA	agtatatgag	ATTGTAACAG	GATATATGAA	9000
40	GCAATATCAG	TTGATCCAAC	CTGTCATAGG	TATTTCATCA	GCAGGCGTTG	TTGATGAACA	9060
	AAAAGGCGAA	ATTGTATACG	CAGGGCCAAC	CATTCCGAAT	TATAAAGGTA	CTAATTTTAA	9120
	GCGATTATTA	AAATCACTGT	CTCCTTATGT	CAAAGTAAAA	AATGATGTAA	ACGCTGCATT	9180
45	ACTAGGCGAA	TTGAAATTAC	ATCAATATCA	AGCAGAACGG	ATCTTTTGTA	TGACGCTTGG	9240
	TACAGGCATT	GGGGGTGCGT	ACAAGAATAA	TCAAGGTCAT	ATTGATAATG	GTGAGCTTCA	9300
	TAAGGCAAAT	GAAGTTGGGT	ATTTATTGTA	TCGTCCAACT	GAAAATACAA	CGTTTGAGCA	9360
50	ACGTGCTGCA	ACGAGTGCAT	TGAAAAAGCG	CATGATTGCC	GGAGGATTTA	CGAGAAGCAC	9420
	A CATCTCCCA	CTATTCTTC	A A C C A C CTTC A	3 C 3 3 C C C C C 3 C	CAMADEGGA A	110111000	0400

	AGGGCTTATA	TTAATTGGGG	GCGGTATATC	TGAACAAGGA	GATAATCTCA	TTAAATATAT	9600
_	CGAGCCGAAA	GTTGCACACT	ATTTACCAAA	AGACTATGTT	TATGCACCAA	TACAAACGAC	9660
5	TAAGAGTAAA	AATGATGCAG	CATTATATGG	CTGTTTGCAA	TGATAGTTGA	AAGAAGGAGT	9720
	CATTCTAAAA	TAGAATTTGA	AACCGTTACG	AGAGATGAGA	GCTGTTGTTA	GTTCCACACA	9780
10	TCACACTCTA	TCTAGGACCA	ATCTAAACTA	TATCAACCAA	CAGTGTGCCA	CGGGCAAATT	9840
	AAATTGAAGA	AGCTGAGATA	TTAAAATTTT	AGAAAATGTA	AAAAAATATT	TGGTATTGAA	9900
	ATTAAAAAAG	CACCTAGCAA	CTCGTTGGGA	CAATCACGAT	GATTGTCTAC	AGTTGCAGGT	9960
15	GGATTTGAAT	ATACTACTAG	TTATTTGTTG	TCTAGGATAA	TAGATTTAGT	ATGTTGATAA	10020
	GTTTGACTCA	GATTCGTATT	TTCTAATAAA	TGATAACTCA	CGATATCGAT	TAAAAAGAGT	10080
	GTCGCAATTT	GTGTGTTGAT	AAATTGATGG	TCGGTATTAC	GCGATTGATC	CGTTGTTAAA	10140
20	AGTACTAAAT	CTGCACAATC	TGTAAGTTTA	CTACCTTCAA	AATTTGTGAT	GGCAACGACA	10200
	TATGCACCAT	GAGATTTGGC	GACTTCCGCT	GCAGAAATTA	ATTCCGAAGT	ATTACCACTA	10260
	TTTGACATAG	CAATAAACAT	ATCCGAATGA	GATAGTAGGG	ATGCCGATAT	TTTCATTAAA	10320
25	TGTGAATCGG	TAGTAACATT	ACCTTTTAGC	CCCATACGAA	TCATACGATA	ATAAAATTCA	10380
• ()	GTCGCTGATA	AACCAGAGCT	ACCTAGTCCA	GCAAAGAGTA	TATGTCGACT	TGATTGAAGT	10440
	TTGTCGATAA	AGGTTTGGAT	AATGTCGTTA	TCAATAAATT	CACCAGTTTG	TTGAATGATT	10500
30	TGTTGATGAT	ATTTATGAAT	TCTTTGAATA	ATTGGGCTAT	TTTCAATAAC	TGTCTCTGTC	10560
	ATTTCTTGTT	GAATATTAAA	TTTTAAATCT	TGGAAATTCT	CATAATCCAG	CTTATGACTA	10620
35	AAGCGTGTCA	TCGTTGCTGG	TGATGTACCA	ATCGCATGGG	CTAAGGAGTT	AATCGTTGAA	10680
	AAGGCATCGC	TATAACCATT	TTGTCTTATA	TAATTGACGA	TGCGTTTATC	AGTTTTTGTA	10740
	AATAAATGTT	GATAACGTTG	AACACGATTC	TCAAATTTCA	TTGTGTCACC	CCTTCATCTT	10800
40	AATGATTACT	ATTATATATG	AAAAATATTT	TCAAGATAGT	AAAAAGCATT	GATAAAAATT	10860
	ATCTTAATGA	TATATTGTAA	ATGACTTTAC	GTGAAAAAAC	GACTTATGGA	GTGAGGAATA	10920
	ATGTTACCAC	ATGGATTAAT	AGTATCTTGT	CAGGCACTAC	CAGATGAACC	ATTGCATTCA	10980
45	TCTTTTATTA	TGTCGAAAAT	GGCATTAGCT	GCGTATGAAG	GTGGTGCTGT	TGGTATTCGC	11040
	GCAAATACTA	AGGAAGACAT	TTTAGCAATT	AAAGAAACGG	TAGATTTACC	AGTTATTGGC	11100
	ATTGTGAAAC	GTGACTATGA	TCACTCAGAT	GTTTTCATTA	CTGCAACGTC	AAAAGAAGTT	11160
50	GATGAACTGA	TAGAAAGCCA	ATGTGAAGTC	ATTGCATTGG	ATGCAACGTT	ACAGCAACGT	11220
	000000000000	CCTTTACACCA	እ ተምእርምአጥር እ	TATATTACAA	CACATCCACC	CARCOTTCAA	11290

	TATATTGGCA	CGACGTTACA	TGGCTATACT	AGTTATACGC	AAGGACAATT	ACTTTATCAA	11400
	AATGACTTCC	AATTTTTAAA	AGATGTACTA	CAAAGTGTTG	ATGCAAAAGT	TATTGCGGAA	11460
5	GGTAATGTCA	TTACACCGGA	TATGTATAAA	CGTGTGATGG	ACTTAGGCGT	TCATTGTTCA	11520
	GTCGTTGGTG	GTGCGATAAC	ACGACCAAAA	GAAATTACGA	AACGTTTTGT	TCAAATTATG	11580
	GAAGATTAAA	TGATAACGAT	AAAAAAACGA	GATGACCATC	ATTAATTAAA	GGCACCTAAT	11640
10	TATCTTAGGT	GGCTGAATGA	ATGTAATGGG	TTCATCTCGT	TTTGTTTGTT	TATGATAGTG	11700
	ATTTTATTTT	CAACTTTATC	CAAAAATAAG	TAAAGCGACG	GGGATGGTGA	TTAATAGCGA	11760
15	CAACGCCACG	CGTAAAAACC	AAATGATGAT	GAGTTTCCAG	ACAGGTATTT	TAATTTCAGT	11820
-	TGCTAGTATA	CATGGCACTA	ATGCTGAGAA	AAAGATAATG	GCTGATACGC	TTACTACACC	11880
	GACGACAAAT	TTAGTACTCA	TTGCAGCTTT	AGTTACTAAC	AAAGATGGTA	GAAACATCTC	11940
20	TACAATAGAA	AckCTGACGC	TTTTGCTAGT	AAAGCCTGAT	CAGCAATTGG	GAAAATATAA	12000
	ATAAATGGAT	AGAAGATATA	GCCAAGCCAA	TCAATGAATG	GTGTATAGTT	CGCTACAATC	12060
	AGTCCTAAAA	AACCAATCGA	TAATATAGAA	GGTAAAATAC	CAACAGTCAT	TTCTAAACCG	12120
?5	TCTTTCAAAT	TGTCCCAAAC	GTTCTTCACG	AGAGATGGTG	TTAATGCATT	TTGTTTCATC	12180
	GCCTCTGCAT	ATGCAGTTTT	CAGTCTGCTT	CCTTCAATAG	CAACTTCTTG	TTCTCCTTCT	12240
	TGTCCGTTAT	AATATTCTGT	TGATTCATTG	CTGATTGGCG	GTAGCCATGC	AGTAATTGCA	12300
30	GTCACGACAA	ATGTGATGAC	TAAAGTTATC	CAAAAGTATA	AATTCCAATG	CGGCATTAAT	12360
	CCTAAAGTTT	TAGCAACGAT	AATCATAAAA	GTTGCTGAAA	CTGTTGAAAA	GCCAGTCGCA	12420
·-	ATAATCGTGG	CTTCTCGTTT	GTTGTACATC	CCTTGCTTAT	AGACACGATT	AGTAATCAAT	12480
35	AATCCTAAGG	AATAACTGCC	GACAAACGAA	GCCACTGCAT	CGACAGCGGA	TTTTCCTGGT	12540
	GTTTTAAAAA	TAGGTCTCAT	AATAGGCTCC	ATATAAACAC	CGACAAATTC	TAATAAGCCA	12600
10	TAGCCCACTA	ATAAAGAAAG	cGcAATTGCA	CCTACTGGAA	TTAAGATACT	TAATGGCATC	12660
	ATTAATTTT	САААСААААА	CGGACCATAG	TTAGCTTTAA	ATAGTATTGA	TGGACCGATT	12720
	TTAAATACAT	ACATTATACC	GATCATTGCA	CCTGCAACTT	TDTAATAAAT	AATGACCAAG	12780
15	TTTGTGATTG	AAGTCATAAA	AGTACGTCTC	ACTATTGGTA	ACGCTGTACC	AATTAAAATC	12840
	ATAATCAGTG	CAACATAGGG	CATAAGTGGA	CCTATGATTG	AGCGAATGGC	TAGATGAACA	12900
	TGATCGACGA	AAATAGTGTT	GTTACCATTA	ATCGTAAAAG	GAATAAAGAA	ACATAGTATG	12960
50	CCCACTAAAC	TATAGACAAA	AAAACGCCAT	GCACTTGGTT	GTTGTGCATT	AGAATGATAT	13020
	ma s mma s mm s	************	mmmommma a a	man an an	***	1 mags mags	

	ATAGTTTGAA	TTATTTTCAT	ACCAATACAA	ATTAACTAAT	TATATATAGA	TTGAAACTAT	13200
	ATTACTTAAT	ATTTATAAAA	TCTTAAATGT	TGTTGTGTTG	ATTCAACACC	ACAACTAAAA	13260
5	GTGTTTATAA	ATTATTTGGA	AATACACATA	TTTGTAAATG	ATTAGTATCG	ATTTAATATC	13320
	GTATTATTAA	ATTTTTATTA	ATTTTGTAGT	CTTAATCMAA	AAATAATATA	TGTCATGTTA	13380
	TATTGAAGGT	GCAGTTGTTT	TTCATTCTCA	AGAGGGGGTC	AAAAAAATAC	TTTTGAGGTG	13440
10	ATTATATGTT	AAGAGGACAA	GAAGAAAGAA	AGTATAGTAT	TAGAAAGTAT	TCAATAGGCG	13500
	TGGTGTCAGT	GTTAGCGGCT	ACAATGTTTG	TTGTGTCATC	ACATGAAGCA	CAAGCCTCGG	13560
5	AAAAAACATC	AACTAATGCA	GCGGCACAAA	AAGAAACACT	AAATCAACCG	GGAGAACAAG	13620
_	GGAATGCGAT	AACGTCACAT	CAAATGCAGT	CAGGAAAGCA	ATTAGACGAT	ATGCATAAAG	13680
	AGAATGGTAA	AAGTGGAACA	GTGACAGAAG	GTAAAGATAC	GCTTCAATCA	TCGAAGCATC	13740
ro	AATCAACACA	AAATAGTAAA	ACAATCAGAA	CGCAAAATGA	TAATCAAGTA	AAGCAAGATT	13800
	CTGAACGACA	AGGTTCTAAA	CAGTCACACC	AAAATAATGC	GACTAATAAT	ACTGAACGTC	13860
	AAAATGATCA	GGTTCAAAAT	ACCCATCATG	CTGAACGTAA	TGGATCACAA	TCGACAACGT	13920
5	CACAATCGAA	TGATGTTGAT	AAATCACAAC	CATCCATTCC	GGCACAAAAG	GTAATACCCA	13980
	ATCATGATAA	AGCAGCACCA	ACTTCAACTA	CACCCCCGTC	TAATGATAAA	ACTGCACCTA	14040
•	AATCAACAAA	AGCACAAGAT	GCAACCACGG	ACAAACATCC	AAATCAACAA	GATACACATC	14100
ю	AACCTGCGCA	TCAAATCATA	GATGCAAAGC	AAGATGATAC	TGTTCGCCAA	AGTGAACAGA	14160
	AACCACAAGT	TGGCGATTTA	AGTAAACATA	TCGATGGTCA	AAATTCCCCA	GAGAAACCGA	14220
	CAGATAAAAA	TACTGATAAT	AAACAACTAA	TCAAAGATGC	GCTTCAAGCG	CCTAAAACAC	14280
5	GTTCGACTAC	AAATGCAGCA	GCAGATGCTA	AAAAGGTTCG	ACCACTTAAA	GCGAATCAAG	14340
	TACAACCACT	TAACAAATAT	CCAGTTGTTT	TTGTACATGG	ATTTTTAGGA	TTAGTAGGCG	14400
o	ATAÁTGCACC	TGCTTTATAT	CCAAATTATT	GGGGTGGAAA	TAAATTTAAA	GTTATCGAAG	14460
	AATTGAGAAA	GCAAGGCTAT	AATGTACATC	AAGCAAGTGT	AAGTGCATTT	GGTAGTAACT	14520
	ATGATCGCGC	TGTAGAACTT	TATTATTACA	TTAAAGGTGG	TCGCGTAGAT	TATGGCGCAG	14580
5	CACATGCAGC	TAAATACGGA	CATGAGCGCT	ATGGTAAGAC	TTATAAAGGA	ATCATGCCTA	14640
	ATTGGGAACC	TGGTAAAAAG	GTACATCTTG	TAGGGCATAG	TATGGGTGGT	CAAACAATTC	14700
	GTTTAATGGA	AGAGTTTTTA	AGAAATGGTA	ACAAAGAAGA	AATTGCCTAT	CATAAAGCGC	14760
io	ATGGTGGAGA	AATATCACCA	TTATTCACTG	GTGGTCATAA	CAATATGGTT	GCATCAATCA	14820
	CAACATTACC	22000000	N NOCOMPOS C	********	MB B COMMOG CB	*****	

	ATTTAGGATT	AACGCAATGG	GGCTTTAAAC	AATTACCAAA	TGAGAGTTAC	ATTGACTATA	15000
	TAAAACGCGT	TAGTAAAAGC	AAAATTTGGA	CATCAGACGA	CAATGCTGCC	TATGATTTAA	15060
5	CGTTAGATGG	CTCTGCAAAA	TTGAACAACA	TGACAAGTAT	GAATCCTAAT	ATTACGTATA	15120
	CGACTTATAC	AGGTGTATCA	TCTCATACTG	GTCCATTAGG	TTATGAAAAT	CCTGATTTAG	15180
10	GTACATTTTT	CTTAATGGCT	ACAACGAGTA	GAATTATTGG	TCATGATGCA	AGAGAAGAAT	15240
10	GGCGTAAAAA	TGATGGTGTC	GTACCAGTGA	TTTCGTCATT	ACATCCGTCC	AATCAACCAT	15300
	TTGTTAATGT	TACGAATGAT	GAACCTGCCA	CACGCAGAGG	TATCTGGCAA	GTTAAACCAA	15360
15	TCATACAAGG	ATGGGATCAT	GTCGATTTTA	TCGGTGTGGA	CTTCCTGGAT	TTCAAACGTA	15420
	AAGGTGCAGA	ACTTGCCAAC	TTCTATACAG	GTATTATAAA	TGACTTGTTG	CGTGTTGAAG	15480
	CGACTGAAAG	TAAAGGAACA	CAATTGAAAG	CAAGTTAAAT	TCATCTTCTG	AATTTAATAT	15540
20	GCTATGTAAA	TCGTGCTGTT	ATCATGGCAC	ATCAGATATA	AGTAGCATCA	CAGTGTTGAA	15600
	TTTAAAAATA	GTAAAGTGAA	ATAAAGCGCC	TGTCTCATTA	GCGAAAACTA	AAGGGACAGG	15660
	CGTATCTGTT	TATGAGCTTA	ataaattgta	TGAATAATAT	GGTTGATCGA	ATAACTGTTT	15720
25	ATCATGATGA	TAAATTGAGT	TTTTTAAAAT	AATGATATAT	TACATCATTG	TTATAGCGTT	15780
	TAAGAAATCA	ACAACTTTAC	GATAAATAGT	GATTGCTTCG	TCATTAGGTC	TACGATCAAA	15840
	ATCATGCTCG	TTTTTATTCA	CGCGTTCAAA	TGTTGAATGT	GGAACATGAT	TCATGATATG	15900
30	TTCGCTTTCC	TCAACGGGAA	CATCATAATC	GCCATTACAA	TGCGCAATGA	AAACAGGTGG	15960
	AAGTGTTTTA	AGTTCATCTG	GTGCAATATT	ATATTTTGAA	TTAGTATAAT	CAGCAATGTT	16020
35	AATCATATTT	ATCCATTTAC	CTGTGCCACG	TGCATAAACG	TAGATTAAAA	AACGTTGTGC	16080
35	GATTTGATCT	TGAACAACCG	GTGTTGGTGA	AGTGAGTTGT	GCAATCATTG	TTTCGTTTAC	16140
	GCTTTGAGCT	ATTTTTGCGT	AATAACTATT	AGTTGTTTTA	AAAGGTTCAG	TGTTGATGCG	16200
40	ACTATAACCA	TAAAAATCAA	TAACACCATC	AATATCTCTG	TCTCGTGCAA	TTAATAGACT	16260
	TAAATATGCA	CCTGATGATC	TGCCAAAGGT	AAAAATAGGG	CAATTAGAAT	ATTGTGATTG	16320
	AATCGCATCG	AATGAtGCgn	AGNACATCCT	CAATAATGCA	ATCGAGACTT	ACTTCTGGTA	16380
45	ATAAACGAŤA	ACTTAGTTGA	ATTAAATCGT	AATGTTCCGT	AAGATATCGA	TATACTGTGG	16440
	GGATAAATCG	TTAGCTTTAC	CGAACATTAA	TCCACCACCG	TGGATGTAGA	CAATAGCGCC	16500
	TTTTGTTGGT	TGATTTTTTG	CTTTAATAAT	TGTGTAAGGT	AATGCAAATG	CATCTTTAGT	16560
50	AATTACTTTA	TCTTTAATTT	CAGTCACGAT	TTAATAGGCT	CCTTATTTTT	GATATTGATG	16620
	TO BOTTO BOTTO BOTTO	N CHACACALLE N	ስምተተርርስጥርስ	እ አ አ አ ጥ አ ር ጥ ር ጥ	таасассатс	AGTCATGATA	16680

	CATCATTTTA	ACAATATCTT	TAAAAGCAGC	ATGTGGAATG	GCTAAATCTT	CTAAATCTGC	16800
	CATAGAAAAT	TCAAGATTGA	TATCATGTGG	TCGCTGTTCA	GCAAGTTTAT	GCACAAAGTC	16860
5	aggttctgtg	ACAAAAGGCG	AAGACATGCC	GACCATATCT	GCATGTTGTA	AAGCATCTAA	16920
	AGCÄGACTCT	GGAGAATTAA	TCCCGCCACT	TGCAATTAAA	GGGATACGAC	CTGCTAAATG	16980
o	TTCATAGACA	ATTTGGTTAA	CTGGTCGACC	GAAATGATCA	CCTGGTGTAC	GAGACGTATT	17040
	TTGATAAATA	TGTCGACCCC	AGCTAGCGAT	TGCTAAGTAT	TGGATGTTTG	AAACGTCCAT	17100
	GACCCAATTG	ATTAATTGGT	TGAACTCGTC	AATGGTATAT	CCTAAATCAC	TGCCTCTGGT	17160
5	TTCTTCTGGC	GTTGCTCGAA	ATCCTAAAAT	AAAATTGTCA	GGTGCTTCTT	TATCAATCAC	17220
	TTCTTGTACC	GCACGCATAA	CTTCTAAACA	TAATCTTGCA	CGATTTTTTA	ATGAGTCGGC	17280
	ACCGTAATGG	TCTGTACGTT	TATTCGAAAA	AGTTGAGAAA	aatgtttgaa	TCAGCAAACG	17340
0	TTGTGCAATC	GAAATTTCCA	CACCATCAAA	ACCTGCTTTA	ATCGCGCGTA	ATGTAGCATC	17400
	GCGATACTGC	TGAATGATGC	TATTGATTTT	CTCATGAGAC	ATGGCGATAA	CATCGTGTTC	17460
	AATCGGTGAA	TGCAATGTCA	TAGGGCTTGG	TCCATACACC	TTTCCAAAAT	TTAAAATGGC	17520
25	TTGAȚTTGAA	AAACGACCAG	CATGCGCTAg	CTGGATAATA	GCGAGGCTAC	CATGTTGTTT	17580
	CATCGTAGAT	GCCATGTTAG	TTAATCCAGG	GATACAAGCA	TCATGATCAA	TATTAAAGCC	17640
	ATATTCAAAC	AATTGACCAT	AAGGTTCAAT	GTAAGCAGCG	CCGGTGACTT	GCATTCCAGC	17700
10	TGAATTAGAG	CGACGTGCAG	CATAAGCCAA	GTCTTCTTTT	GTAATATAGC	CTTCTTTTGT	17760
	TGATGTGTTT	ACGGTCATTG	GTGATAATAC	AAAGCGATTC	GAAATTTTGA	TGCCATTAGG	17820
35	TAAGTGGATT	GATTGTAAAA	GTGGTTTGTA	TCGGTACATA	CTATGATTCC	TTTTCTATTC	17880
.5	AATATTGTTT	TCAAAGTACC	ATGGAAAGAA	TGAATAATCA	ATGATGAACA	GTCTTGATAG	17940
	AATAGAATTG	GTACATGGAA	AGTATTTTTA	AAATTAAACT	AATGAATGGC	ATTTGTAGGT	18000
10	CTGAAAATAT	GAATATGAAA	AAGAAAAATA	AAGGCGAAAA	GATATAAAAG	TTAATTGAAA	18060
						TAAAATGTTA	18120
	TGTCGGTTTG	ACATGACAGG	ATAAGTTTGG	AGATGACGGA	TTGGTTAAAT	TAAGCGTATT	18180
45	AGACTATGCC	TTAATAGATG	AAGGTAAGGA	TGCACAAAAG	GCATTGCAAG	ATTCAGTGAC	1824
	ACTTGCAAAA	TTAGCAGATC	GACTTGGCTT	TAAGCGAATT	TGGTTTACGG	AACATCATAA	1830
	TGTACCAGCG	TTTGCGTGTA	GTAGTCCAGA	ACTITTGATG	ATGCATACAT	TGGCGCAGAC	1836
50	AAATCACATA	CGAGTTGGCT	CTGGTGGTGT	GATGCTGCCG	CACTATCGAC	CTTATAAAAT	1842
			WOOD A COOPER	יי ממטיטידמידמי	ന്നു മുന്നു മുന്ന	ТАССТАТТСС	1848

	TAGTTACGAT	GAATCGATTT	CGTTATTACG	TGATTATCTT	ACAATAAAGG	ATAAACCAAG	18600
	TGCGCATACG	TTAGGTGTCC	AACCACACAT	TGATCATTTT	CCAGAAATGT	GGTTATTAAG	18660
5	TAGTAGCGCA	ACATCTGCCA	AAATAGCTGC	CGAACTAGGT	ATAGGGCTTT	CTGTTGGAAC	18720
	ATTTTTGCTA	CCAGATATAA	ATGCGATACA	TACAGCGAAG	GATAACATTG	ATATTTACAA	18780
	AAAACATTTC	CAAGCATCAA	CGATTAAAAT	GGACGCAAAG	GTGATGGCAT	CTGTATTTGT	18840
10	CATTGTAGCT	GATAACGAAG	CGGAAGTAGC	AGCATTACAA	CATGCCTTAG	ATGTTTGGTT	18900
	attaggtaaa	TTACAATTTG	CAGAATTTGA	AGATTTTCCT	TCAGTAGACA	CAGCACAAAA	18960
15	GTATAAGCTT	AATGATCGAG	ACAAAGAGAT	GATTCAAGCA	CATCAAGCAC	GCATCATTGC	19020
	AGGTACACAA	GAAAAGGTTA	AAGCACAATT	AGATGATTTC	ATTGCTACGT	TTGAAGTTGA	19080
	TGAGGTGTTA	GTAGCACCGC	TTATTCCAGG	TATTGAACAG	CGTTGTAAAA	CATTAAAATT	19140
20	ACTCGCGGAA	ATTTATTTGT	AGCATTTTAA	ATAGAAGAGA	AAGGATGAAG	AADTADAATA	19200
	AAAGTTAGCC	AATTATTTAT	GGGTAGAAAA	AGTAGGAGAT	TTGTATGTGT	TTAGTATGAC	19260
	ACCTGAATTG	CAAGATGATA	TTGGGACAGT	AGGTTATGTT	GAATTCGTAA	GTCCAGATGA	19320
25	AGTTAAAGTG	GATGATGAAA	TTGTGAGTAT	CGAAGCATCG	AAAACGGTCA	TTGATGTGCA	19380
	AACGCCATTG	TCAGGAACGA	TTATTGAGCG	AAATACAAAA	GCGGAAGAAG	AACCGACAAT	19440
	TTTAAACTCT	GAAAAACCAG	AAGAAAATTG	GTTGTTCAAA	TTGGATGATG	TCGATAAAGA	19500
30	AGCATTCCTA	GCATTACCGG	AGGCTTAAAT	GGAAACGTTA	AAATCAAATA	AAGCGAGACT	19560
	TGAATATTTA	ATCAATGATA	TGCATCGAGA	GAGAAATGAC	AATGACGTAT	TGGTAATGCC	19620
35	ATCTTCATTT	GAAGATTTGT	GGGAATTATA	TCGAGGCTTA	GCAAATGTCA	GACCGGCATT	19680
33	ACCTGTAAGT	GATGAATATT	TAGCTGTACA	AGATGCTATG	TTAAGTGATT	TGAATCGTCA	19740
	ACATETTACG	GATTTGAAGG	ATTTGAAGCC	GATAAAAGGT	GACAATATCT	TTGTTTGGCA	19800
40	AGGTGATATC	ACGACGTTAA	AAATCGATGC	TATTGTTAAT	GCTGCAAATA	GTCGTTTTCT	19860
	AGGATGTATG	CAAGCTAATC	ATGACTGCAT	TGATAATATT	ATTCATACAA	AAGCGGGTGT	19920
	TCAAGTTCGA	CTTGATTGTG	CAGAGATCAT	TCGACAACAA	GGGCGCAATG	AAGGTGTAGG	19980
45	TAAAGCCAAA	ATAACACGTG	GATATAATTT	GCCAGCAAAG	TATATAATTC	ATACGGTTGG	20040
	TCCGCAAATA	CGTCGATTGC	CTGTTTCAAA	GATGAATCAG	GACTTGTTAG	CTAAATGTTA	20100
•	TCTTAGCTGT	CTTAAATTGG	CTGATCAACA	TAGTTTAAAT	CATGTCGCTT	TTTGCTGTAT	20160
50	ATCTACAGGT	GTATTTGCTT	TTCCTCAAGA	TGAAGCAGCA	GAAATTGCTG	TTCGAACAGT	20220
	AGAAAGCTAT	CTCAAAGAAA	CAAATTCAAC	ATTGAAAGTC	GTGTTCAATG	TATTTACAGA	20280

	CAATGTCTCT	GTTAATGGAT	GACAAGACAA	AGCAGGCTGA	AGTATTGCGT	ACTGCGATTG	2040
	ATGAAGCAGA	TGCGATAGTG	ATTGGAATTG	GTGCAGGCAT	GTCTGCATCT	GACGGATTTA	2046
5	CATATGTAGG	AGAGCGTTTT	ACGGAAAATT	TCCCAGATTT	TATTGAAAAA	TATCGCTTCT	2052
	TTGATATGTT	GCAAGCGAGT	TTACATCCTT	ATGGCAGTTG	GCAAGAGTAT	TGGGCATTTG	2058
10	AGAGTCGTTT	TATTACATTA	AACTATTTAG	ATCAACCTGT	AGGTCAGTCT	TACCTCGCTT	2064
10	TAAAATCCTT	GGTGGAAGGT	AAACAGTACC	ACATTATAAC	TACGAATGCA	GATAATGCTT	2070
	TCGATGTAGC	TGATTATGAT	ATGACTCATG	TATTTCATAT	ACAAGGGGAG	TATATACTGC	2076
15	AACAGTGTAG	CTCAGCATTG	TCATGCTCAA	ACGTATCGCA	ATGATGATTT	AATTCGTAAA	20820
	ATGGTTGTTG	CGCAACAAGA	TATGCTTATA	CCTTGGGAGA	TGATTCCAAG	ATGTCCAAAA	20880
	TGTGATGCCC	CAATGGAAGT	GAATAAACGT	AAAGCGGAAG	TTGGGATGGT	TGAAGATGCT	20940
20	GAATTTCATG	CGCAACTACA	TCGTTATAAT	GCTTTTCTAG	AGCAACATCA	AGATGATAAA	21000
	GTGTTGTATT	TGGAAATTGG	AATTGGTTAT	ACTACACCAC	AATTTGTGAA	GCATCCTTTT	21060
	CAGCGTATGA	CACGTAAAAA	TGAAAATGCC	CTTTATATGA	CGATGAATAA	AAAGGCATAT	21120
. 25	CGCATTCCGA	ATTCAATTCA	AGAACGTACC	ATACATTTAA	CTGAGGATAT	CTCAACATTG	21180
	ATTACAGCAG	CACTCCGGAA	CGACAGCACA	ACGAAAAATA	ACAACATTGG	AGAGACAGAA	21240
	GATGTACTTA	ATAGAACCGA	TTAGAAATGG	AGAATATATT	ACTGATGGTG	CGATTGCACT	21300
30	CGCTATGCAA	GTTTATGTTA	ACCAGCATAT	CTTTTTAGAT	GAAGATATTT	TATTCCCTTA	21360
	TTATTGTGAT	CCAAAAGTGG	AAATTGGACG	TTTTCAAAAT	ACTGCTATAG	AAGTGAATCA	21420
35	AGATTATATA	GATAAACACA	GTATTCAAGT	AGTTCGCCGA	GATACTGGTG	GTGGCGCTGT	21480
	GTATGTTGAT	AAAGGTGCCG	TTAATATGTG	TTGTATTTTA	GAACAAGACA	CTTCAATTTA	21540
	TGGTĞATTTT	CAACGATTTT	ATCAACCAGC	TATAAAGGCG	TTGCATACAT	TAGGTGCAAC	21600
40	AGATGTGGTA	CAAAGCGGTA	GAAATGATTT	AACATTGAAT	GGTAAAAAAG	TGTCAGGCGC	21660
	CGCAATGACA	TTAATGAATA	ATCGTATTTA	TGGCGGTTAT	TCGCTATTAC	TTGATGTTAA	21720
	TTATGAAGCA	ATGGATAAAG	TGTTAAAGCC	TAATCGCAAA	AAGATTGCAT	CGAAAGGGAT	21780
45	TAAATCTGTG	CGCGCACGTG	TTGGTCATCT	TAGAGAAGCA	CTGGATGAAA	AGTATCGTGA	21840
	TATAACCATT	GAAGAATTTA	TAATTTAAA	GGTGACGCAG	ATTTTGGGAA	TCGATGACAT	21900
	TAAAGAGGCG	AAACGATATG	AATTAACGGA	TGCAGATTGG	GAAGCGATTG	ATGAATTAGC	21960
50						ATGAATACAA	22020
	maan naman n	NO NOW TO THE OWN	CROCER COOR	3030303303	» mmmcmcmmc	******	

	AGAAGCATTA	CAAGGAACAA	AAATGACAAG	AGAAGATTTA	ACGCATCAGT	TAAAGCAATT	22200
	AGACATCGTT	TATTATTTTG	GCAATGTTAC	GGTAGAAGCA	TTAGTGGATA	TGATTTTAAG	22260
5	TTAATATTGT	TATTTTATGT	ATGCTGAATC	ATTGGAAGTG	TTTGCTTGCT	CTTGAAAAGG	22320
	TGACAATAGT	GTTTGGTGAA	GGTTGAACAT	ATGAGTGGAA	ATTATTGCCT	TTAACTATTC	22380
10	AAAGTATGAT	ATATATATGG	TITTTGTTTC	TAAATGATTG	GGTATTTGAA	AATAGATGAG	22440
10	TTTAATATTT	TAAGGAATAT	AATGATGTTT	ACTTTTATAA	TTCATATAGA	ATATTAAGCA	22500
	ATATAAGTCT	GTTGATATAT	ACAAAATATA	ATGACTGCTA	TAATGAGTAA	TCAATAGACA	22560
15	CAAAGAGGAG	ATTATGTGAT	GAATAATAAA	GTATTAGTAA	CCGGTGGTAC	AGGGTTTGTT	22620
	GGCATGCGAA	TTATTTCACG	ATTATTAGAA	CAAGGTTATG	ACGTACAAAC	GACGATACGT	22680
	gatttaagta	aagctgataa	agtaattaaa	ACAATGCAAG	ACAATGGCAT	TTCCACAGAG	22740
20	CGATTAATGT	TTGTCGAAGC	GGATTTATCA	CAAGATGAAC	ATTGGGATGA	AGCAATGAAA	22800
	GATTGCAAGT	ATGTCTTGAG	TGTAGCATCT	CCGGTGTTTT	TCGGTAAAAC	AGACGATGCA	22860
	GAAGTGATGG	CGAaCTGcAA	TTGAAGGTAT	ACAACGTATT	TTAAGAGCTG	CAGAACATGC	22920
25	GGGTGTTAAA	CGTGTGGTAA	TGACTGCAAA	CTTTGGTGCA	GTTGGTTTTA	GTAATAAAGA	22980
	TAAAAATTCA	ATCACAAATG	AAAGTCATTG	GACAAATGAA	GATGAACCAG	GCTTATCAGT	23040
	ATATGAAAAA	TCAAAATTGT	TAGCTGAAAA	GGCAGCGTGG	GATTTTGTTG	AGAATGAAAA	23100
30	TACAACAGTA	GAATTTGCCA	CAATCAATCC	AGTTGCAATT	TTTGGGCCAT	CATTAGATGC	23160
	ACACGTTTCA	GGAAGCTTTC	ATTTATTAGA	AAATTTATTG	AATGGTTCAA	TGAAACGTGT	23220
35	ACCGCAAATT	CCGTTAAATG	TTGTTGATGT	GAGĀĞÁCGTA	GCTGAACTGC	ACATTTTGGC	23280
	AATGACAAAT	GAACAAGCTA	ATGGCAAGCG	ATTTATTGCG	ACGGCTGATG	GACMAATTWA	23340
	tTTGTTGGGA	ATTGcCAAAt	TAATTAAAGA	AAAGGGCCTG	GAAATAGCTC	CAAAAGTTCC	23400
40	TACTAAAAA	TTACCCAGCT	TTATTTTGAG	CnAnGnGCC			23439

(2) INFORMATION FOR SEQ ID NO: 39:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4522 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39: CCCTTTGAGA GTATATCATC TAGTCAAATT ATGCCTGTCA TTAGAGCGAC TAGCTTTGAT

60

55

50

	TATTATGCAG	TCGATTTAGG	GAAATCATAT	CGTCTAATTG	ACGAAAGCAT	GTTAGAGGAT	180
	TTGAAGTTAA	CTGAACAACA	AATAAGAGAA	ATGTCTCTGT	TTAATGTTAG	AAAATTGTCA	240
5	AATTCATATA	CGACTGATGA	AGTAAAAGGT	AATATTTTTT	ATTTTATTAA	CTCAAATGAC	300
	GGGTATGATG	CAAGTAGGAT	ACTAAATACT	GCATTTTTAA	ATGAAATTGA	GGCACAATGT	360
	CAAGGCGAAA	TGCTCGTAGC	AGTGCCACAC	CAAGATGTGT	TAATTATTGC	AGATATACGC	420
10	AATAAAACAG	GATATGATGT	GATGGCACAT	TTAACAATGG	AATTTTTCAC	TAAAGGTCTA	480
	GTTCCAATTA	CATCATTATC	CTTTGGATAT	AAACAGGGTC	ATCTTGAACC	GATATTTATT	540
15	TTAGGTAAAA	ATAATAAACA	AAAAAGAGAT	CCAAACGTGA	TTCAGCGTTT	AGAAGCAAAT	600
,,,	CGTCGTAAAT	TTAATAAAGA	TAAATAGAAA	TAATTGGATA	AGGAGTTTTG	TCATAATGAA	660
	TTTATTTTAC	AATCCTAAAT	ATGTAGGAGA	TGTCGCATTT	TTACAAATTG	AACCAGTTGA	720
20	AGGTGAATTA	AACTACAATA	AAAAAGGTAA	TGTTGTTGAA	ATTACLAATG	AAGGTAATGT	780
	TGTAGGTTAT	AATATTTTTG	AAATTTCAAA	AGATATAACA	ATTGAAGAAA	AAGGTCATAT	840
	TAAATTAACT	GATGAACTTG	TAAATGTATT	CCAAAAGCGT	ATTTCAGAAG	CTGGTTTTGA	900
25	TTATAAATTA	AATGCTGATC	TATCACCGAA	ATTIGTAGTT	GGCTACGTTG	AAACTAAAGA	960
	CAAACATCCT	GATGCAGATA	AATTAAGTGT	actaaatgta	AACGTTGGAA	ATGACACATT	1020
	ACAAATTGTA	TGTGGCGCGC	CTAACGTTGA	AGCTGGACAG	AAAGTTGTTG	TTGCTAAAGT	1080
30	AGGTGCAGTG	ATGCCTAGCG	GTATGGTAAT	TAAAGATGCT	GAATTACGTG	GTGTTGCCTC	1140
	AAGCGGTATG	ATTTGTTCAA	TGAAAGAATT	GAATTTACCT	AATGCACCTG	AAGAAAAAGG	1200
	TATTATGGTA	TTAAATGACA	GCTATGAAAT	TGGACAAGCA	TTtTTGAAT	AATTAAGGAA	1260
35	GGTAGTGAAA	ATATGAGCTG	GTTTGATAAA	TTATTCGGCG	AAGATAATGA	TTCAAATGAT	1320
	GACTIGATIC	ATAGAAAGAA	AAAAAGACGT	CAAGAATCAC	AAAATATAGA	Tracgatcat	1380
40	GACTCATTAC	TGCCTCAAAA	TAATGATATT	TATAGTCGTC	CGAGGGGAAA	ATTCCGTTTT	1440
70	CCTATGAGCG	TAGCTTATGA	AAATGAAAAT	GTTGAACAAT	CTGCAGATAC	TATTTCAGAT	1500
•	GAAAAAGAAC	AATACCATCG	AGACTATCGC	AAACAAAGCC	ACGATTCTCG	TTCACAAAAA	1560
45	CGACATCGCC	GTAGAAGAAA	TCAAACAACT	GAAGAACAAA	ATTATAGTGA	ACAACGTGGG	1620
	AATTCTAAAA	TATCACAGCA	AAGTATAAAA	TATAAAGATC	ATTCACATTA	CCATACGAAT	1680
	AAGCCAGGTA	CATATGTTTC	TGCAATTAAT	GGTATTGAGA	AGGAAACGCA	CAAGCCAAAA	1740
50	ACACATAATA	TGTATTCTAA	TAATACAAAT	CATCGTGCTA	AAGATTCAAC	TCCAGATTAT	1800
	CACAAAGAAA	GTTTCAAGAC	TTCAGAGGTA	CCGTCAGCTA	TTTTTGGCAC	AATGAAACCT	1860

	AAACAAAAAT	ATGATAAATA	TGTAGCTAAG	ACGCAAACGT	CTCAAAATAA	ACAATTAGAA	1980
	CAAGAAAAAC	AAAATGATAG	TGTTGTCAAA	CAAGGAACTG	CATCTAAATC	ATCTGATGAA	2040
5	AATGTATCAT	CAACAACAAA	ATCAATGCCT	AATTATTCAA	AAGTTGATAA	TACTATCAAA	2100
	ATTGAAAATA	TTTATGCTTC	ACAAATTGTT	GAAGAAATTA	GACGTGAACG	AGAACGTAAA	2160
	GTGCTTCAAA	AGCGTCGATT	TAAAAAAGCG	TTGCAACAAA	AGCGTGAAGA	ACATAAAAAC	2220
0	GAAGAGCAAG	ATGCAATACA	ACGTGCAATT	GATGAAATGT	ATGCTAAACA	AGCGGAACgC	2280
	TATGTTGGTG	ATAGTTCATT	AAATGATGAT	AGTGACTTAA	CAGATAATAG	TACAGATGCT	2340
	AGTCAGCTTC	ATACAAATGG	CATAGAGAAT	GAAACTGTAT	CAAATGATGA	AAATAAACAA	2400
5	GCGTCAATAC	AAAATGAAGA	CACTAATGAC	ACTCATGTAG	ATGAAAGTCC	ATACAATTAT	2460
	GAGGAAGTTA	GTTTGAaTCA	AGTATCGACA	ACAAAACAAT	TGTCAGATGA	TGAAGTTACG	2520
	GTTTCGAATG	TAACGTCTCA	ACATCAATCA	GCACTACAAC	ATAACGTTGA	AGTAAATGAT	2580
0	AAAGATGAAC	TAAAAAATCA	ATCCAGATTA	ATTGCTGATT	CAGAAGAAGA	TGGAGCAACG	2640
	aATAAAGAAG	aatattcagk	AAGTCAAATC	GATGATGCAG	AATTTTATGA	ATTAAATGAT	2700
5	ACAGAAGTAG	ATGAGGATAC	TACTTCAAAT	ATCGAAGATA	ATACCAATAG	AAACGCGTCT	2760
•	GAAATGCATG	TAGACGCTCC	TAAAACGCAA	GAGTACGCAG	TAACTGAATC	TCAAGTAAAT	2820
	AATATCGATA	AAACGGTTGA	TAATGAAATT	GAATTAGCAC	CGCGTCATAA	AAAAGATGAC	2880
0	CAAACAAACT	TAAGTGTCAA	CTCATTGAAA	ACGAATGATG	TGAATGATAA	TCATGTTGTG	2940
	GAAGATTCAA	GCATGAATGA	AATAGAAAAG	AATAACGCAG	AAATTACAGA	AAATGTGCAA	3000
	AACGAAGCAG	CTGAAAGTGA	ACAAAATGTC	GAAGAGAAAA	CTATTGAAAA	CGTAAATCCA	3060
5	AAGAAACAGA	CTGAAAAGGT	TTCAACTTTA	AGTAAAAGAC	CATTTAATGT	TGTCATGACG	3120
	CCATCTGATA	AAAAGCGTAT	GATGGATCGT	AAAAAGCATT	CAAAAGTCAA	TGTGCCTGAA	3180
	TTAAAGCCTG	TACAAAGTAA	GCAAGCTGTG	agtgaaagaa	TGCCTGCGAG	TCAAGCCACA	3240
0	CCATCATCAA	GATCTGATTC	ACAAGAGTCA	AATACAAATG	CATATAAAAC	AAATAATATG	3300
	ACATCAAACA	ATGTTGaGAA	CAATCAACTT	ATTGGTCATG	CAGAAACAGA	AAATGATTAT	3360
	CAAAATGCAC	AACAATATTC	AGAGCAGAAA	CCTTCTGTTG	aTTCAACTCA	AACGGAAATA	3420
5	TTTGAAGAAA	GTCAAGATGA	TAATCAATTG	GAAAATGAGC	AAGTTGATCA	ATCAACTTCG	3480
	TCTTCAGTTT	CAGAAGTAAG	CGACATAACT	GAAGAAAGCG	AAGAAACAAC	ACATCCAAAC	3540
io	AATACTAGTG	GACAACAAGA	TAATGATGAT	CAACAAAAAG	ATTTACAGTC	ATCATTTTCA	3600
	AATAAAAATG	AAGATACAGC	TAATGAAAAT	AGACCTCGGA	CGAACCAACA	AGATGTTGCA	3660

	CCAAGTGTTT CATTACTAGA AGAACCACAA GTTATTGAGT CGGACGAGGA CTGGATTACA	3780
	GATAAAAGA AAGAACTGAA TGACGCATTA TTTTACTTTA ATGTACCTGC AGAAGTACAA	3840
5	GATGTAACTG AAGGTCCAAG TGTTACAAGA TTTGAATTAT CAGTTGAAAA AGGTGTTAAA	3900
	GTTTCAAGAA TTACGGCATT ACAAGATGAC ATTAAAATGG CATTGGCAGC GAAAGATATT	3960
	CGTATAGAAG CGCCTATTCC AGGAACTAGT CGTGTTGGTA TTGAAGTTCC GAACCAAAAT	4020
10	CCAACGACAG TCAACTTACG TTCTATTATT GAATCTCCAA GTTTTAAAAA TGCTGAATCT	4080
	AAATTAACAG TTGCGATGGG GTATAGAATT AATAATGAAC CATTACTTAT GGATATTGCT	4140
15	AAAACGCCAC ACGCACTAAT TGCAGGTGCA ACTGGATCAG GGAAATCAGT TTGTATCAAT	4200
	AGTATITIGA TGTCTTTACT ATATAAAAAT CATCCTGAGG AATTAAGATT ATTACTTATC	4260
	GATCCAAAAA TGGTTGAATT AGCTCCTTAT AATGGTTTGC CACATTTAGT TGCACCGGTA	4320
20	ATTACAGATG TCAAAGCAGC TACACAGAGT TTAAAATGGG CCGTAGAAGA AATGGAACGA	4380
	CGTTATAAGT TATTTGCACA TTACCCATGT ACGTANTATA ACAGCATTTA ACNAAAAAGC	4440
	CCCATATGAT GAAAGAATGn CAAAAATTGT CATTGTAATT GATGAGTTGG CTGATTTAAT	4500
25	GATGATGGTC CGCAAGAAGT TG	4522
	(2) INFORMATION FOR SEQ ID NO: 40:	٠
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 751 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
	TCAAGTTTAC GGATACGTAT ATATTTTGCA TGACATTTAG TGCAATAATA TTCATAATTT	60
	GCCCGTTGTT GATAGCTTTC AATGCTGTTA CAAAATCTAG GCGCTCCAAC CTGTTGGCTC	120
40	AATCGTTTAA AATCTTGATC TTTATGTTGA TAACCTTTAC CAGCAATATG CAAGTGATAA	180
	TGACACAATT CGTGCAGTAT AATTTTTACA ACAGCATCTT CTCCATAATG CTCATATTGT	240
15	TTTGGATTAA TTTCAATATC ATGGGACTTT AAAAGATAAC GTCCGCCTGT TGTACGTAAC	300
	CTTTTATTAA AATATGCACA ATGTCGAAAC GTACGTCCAA ATTTTTCTTC CGAAAGATTC	360
	TCAACCATTC GCTGAAGTTT GTCATTATTC ATGTGGATCA ATCATCGTTA ATGATACTTT	420
50	GTCTTTATTT TTGTCAATAC TGTAAATCCA AACGTCAACG ATATCACCAA CACTGACAAT	480

ATCCATTGGA TTTTTTACGA ACTTCTTAGA AAGTTTCGAA ACATGGACAA GTCCATCTTG

55

660

TTTCATTCCT TCTTGTAAAT CTTCAATTGA TAGCACATCG GATTTAAGGA TTGGTGTTTC

	AAACTCGTCC CTTGGATCTC GATTAGGTGC GTTCAAGGAT TTAATAATAT CCTCTAATGT	720
5	AGGTACACCG ACTTGTAATT CAATCGCCAG T	751
	(2) INFORMATION FOR SEQ ID NO: 41:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1076 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15		
-	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	TCTCCAGCTT TAACTTGATC TGGCACTTTA ACAATTGTCT GATCCATACA TACGCGACCA	60
20	ATAACTTCGC ATTGATGACC ATTTACATTT ACAAAGCTAC CTTGCATTAT GCGTAAATGG	120
	CCATCTGCAT ATCCAATAGG TAACAATGCT ATTGTAGTTG GGTCAGTAGC TGTATAAGTT	180
	GCACCATAAC TTACAGACTC ACCCGCTTGT AGCGTCTTTG TTTGAACTAC ATTAGCAATT	240
25	AATTGCACAC TTGGTTTAAG GTGTACTTTA ACTTTTTGCT GTACATACTC TGATGGATAA	300
	TATCCATAAA GGGAAATTCC TGGTCTTATT GCATTACAGA ATTGGCAATC CATTAATAGA	360
	GAGCCTGCTG AGTTCTGACA ATGTATATAT TCAGGTTTAA TTGCTTCATT GACCATATCT	420
30	TTAAAACGTT GATATTGTTC AGTTGTCATA TCTCCTGGTT CGTCAGCACA GGCAAAGTGT	480
	GTAAACACGC CTTCAAATAC AAGTTGCTCA TATTGTTGAA TGATTTCAAT CACTTCTTGA	540
	TACGTTTTAG TATCTTTAAT ACCTAAACGT CCCATTCCTG TATCTAATTT AATGTGCAAC	600
35	CATAACTTTT TCTCTTGCTC ACCAGAAATG TTTTTAATTG CTTCTTTCAA CCACTGTTTA	660
	GACGGAACCG TTAAGGCAAC TCGGTGTTGT ATCGCTTTAT CAATATCTTT AGCTGGTAAC	720
	ACACCTAAGA CTAAAATTTT AGCAGTAATC CCATGCATTC TAAGTTCTAT CGCTTCATCT	780
40	AACGTTGCTA CAGCAAAAAA TGTGGCGCCA TTTTCCATTA AATGACGTGC TACTTTAACA	840
	CTACCTAGTC CATAGGCATT GGCTTTAACG ACAGCCATCA CTGTTTTATT TGGATGCAAT	900
45	GTACTGAATA CTTTGAAATT TGATGCAACA GCGTTTAAAT CTACATTCAT ATACGCAGAT	960
-13	CTATAATATT TATCCGACAT ATTACTTCCT CCTGTAATTC CCACACGTTT TAAAACTAGA	1020
	TCTTAATTAT CATTGTATAA CAAATTTAAA ATGCTGACTT TTCTAAAACA ACTTGG	1076
50	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2930 base pairs	

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42: TGACCACAT GCCCAATACA ACCATCCCAT GGTAAAGCCA AGAGATGAGT CAATAAAGCG 60 TGTTGAATAA GAGCTGAATG AACCTGATAC TGGATAAAAT GTTGCCAACT CTCCAATTGA 120 10 TGACATTAAG AAATATAGCA TGACACCAAT AACAAGATAA GCGAGTATAG CGCCTCCAGG 180 ACCAGCTTGA GAAATGATAT TACCAGTAGC TACAAATAGA CCAGTCCCAA TTGCACCACC 240 TATAGCAATC ATGGAAATGT GTCTTGAGTT AAGACTACGG TTCATTTTAT TATCTTCCAT 300 15 ATTTAGTCTC CCATCTATTT AAATATACCC ATTATTGTAA GCTTTTTAAG TGTACTATTC 360 AATAACTATT TAGTACTGTA AAGCGAAAAA ATTAAAATTT TCTGATTTTT TAATCATCTT 420 GAGCATGTIT AATTGTAATT TTGATGGGGT TAAATTATAA TATGTATTAA ATTATAATTA 480 20 TMATAAATTG TGGAGGGATG ACTATGTCAC AACAAGACAA AAAGTTAACT GGTGTTTTTG 540 GGCATCCAGT ATCAGACCGA GAAAATAGTA TGACAGCAGG GCCTAGGGGA CCTCTTTTAA 600 25 TGCAAGATAT TTACTTTTTA GAGCAAATGT CTCAATTTGA TAGAGAAGTA ATACCAGAAC 660 GTCGAATGCA TGCCAAAGGT TCTGGTGCAT TTGGGACATT TACTGTAACT AAAGATATAA 720 CAAAATATAC GAATGCTAAA ALATTCTCTG AAATAGGTAA GCAAACCGAA ATGTTTGCCC 780 30 GTTTCTCTAC TGTAGCAGGA GAACGTGGTG CTGCTGATGC GGACGTGACA TTCGAGGATT 840 TGCGTTAAAG TTCTACACTG AAGAAGGGAA CTGGGATTTA GTAGGGAATA ACACACCAGT 900 ATTCTTCTTT AGAGATCCAA AGTTATTTGT TAGTTTAAAT CGTGCGGTGA AACGAGATCC 960 35 TAGAACAAAT ATGAGAGATG CACAAAATAA CTGGGATTTC TGGACGGGTt TCCAGAAGCA 1020 TTGCACCAAG TAACGATCTT AATGTCAGAT AGAGGGATTC CTAAAGATTT ACGTCATATG 1080 CATGGGTTCG GTTCTCACAC ATACTCTATG TATAATGATT CTGGTGAACG TGTTTGGGTT 1140 40 AAATTCCATT TTAGAACGCA ACAAGGTATT GAAAACTTAA CTGATGAAGA AGCTGCTGAA 1200 ATTATAGCTA CAGATCGTGA TTCATCTCAA CGCGATTTAT TCGAAGCCAT TGAAAAAGGT 1260 GATTATCCAA AATGGACAAT GTATATTCAA GTAATGACTG AGGAACAAGC TAAAAACCAT 1320 45 AAAGATAATC CATTTGATTT AACAAAAGTA TGGTATCACG ATGAGTATCC TCTAATTGAA 1380 GTTGGAGAGT TTGAATTAAA TAGAAATCCA GATAATTACT TTATGGATGT TGAACAAGCT 1440 GCGTTTGCAC CAACTAATAT TATTCCAGGA TTAGATTTTT CTCCAGACAA AATGCTGCAA 1500 50 GGGCGTTTAT TCTCATATGG CGATGCGCAA AGATATCGAT TAGGAGTTAA TCATTGGCAG 1560

	GGTCAAATGC	GCGTAGTTGA	CAATAACCAA	GGTGGAGGAA	CACATTATTA	TCCAAATAAC	1680
	CATGGTAAAT	TTGATTCTCA	ACCTGAATAT	AAAAAGCCAC	CATTCCCAAC	TGATGGATAC	1740
5	GGCTATGAAT	ATAATCAACG	TCAAGATGAT	GATAATTATT	TTGAACAACC	AGGTAAATTG	1800
	TTTAGATTAC	AATCAGAGGA	CGCTAAAGAA	AGAATTTTTA	CAAATACAGC	AAATGCAATG	1860
	GAAGGCGTAA	CGGATGATGT	TAAACGACGT	CATATTCGTC	ATTGTTACAA	AGCTGACCCA	1920
10	GAATATGGTA	AAGGTGTTGC	AAAAGCATTA	GGTATTGATA	TAAATTCTAT	TGATCTTGAA	1980
	ACTGAAAATG	ATGAAACATA	CGAAAACTTT	GAAAAATAAA	TTTGATATGT	AGTTTCTATA	2040
	TTGCGTAGTT	GAGCAGTTTA	TGATATCATA	ATAAATCGTA	AAGATTCCTA	ACAAGAGAGG	2100
15	GTGTTTAACG	TGCGCGTAAA	CGTAACATTA	GCATGCACAG	AATGTGGCGA	TCGTAACTAT	2160
	ATCACTACTA	AAAATAAACG	TAATAATCCT	GAGCGTATTG	AAATGAAAAA	ATATTGCCCA	2220
20	AGATTAAACA	AATATACGTT	ACATCGTGAA	ACTAAGTAAT	TCTTATCATT	CAAATACGAC	2280
20	GATTTGAAAA	TAAAGCGGGC	TTACCTATTA	TATTGGGGAG	CTCGCTTTTT	TATGAAATTT	2340
	TTGTGAAGAG	TGATTAATGG	ATTGAGTTTC	ATCGGTAGAA	CAATATATGA	TTATATTAGT	2400
25	TGTTACTTTA	TTAAAATTTG	AGAATATTTA	TAGAAGGAAA	TAGATTACTG	AAATATTTTA	2460
	GTCACTTTGT	TAGCGAATGC	TTGAAAGAGT	ATTTAATATA	GTAGAATTTA	AAATTTCAAA	2520
	GCGGAATTTA	ATAAGTACGA	AGTAGTTCTG	GGTATGTTTT	ATAAATGTTC	GATAATACAC	2580
30	TTTAATCTTA	AATATGATGG	TTTAGAAAAT	GATTTAACAA	AGAAATGAaA	CTTTACTGTT	2640
	GAATTATGTG	AGGATTGTGT	AATATATAA	ATCGTAATAA	TTACGATTTG	ATAAAAAGTG	2700
	AGGTAACTAT	ATATGGCTAA	GAAATCTAAA	ATAGCAAAAG	AGAGAAAAAG	AGAAGAGTTA	2760
35	GTAAATAAAT	ATTACGAATT	ACGTAAAGAG	TTAAAAGCAA	AAGGTGATTA	CGAAGCGTTA	2820
	AGAAAATTAC ·	CAAGAGATTC	ATCACCTACA	CGTTTAACTA	GAAGATGTAA	AGTAACTGGA	2880
	AGACCTAGAG	GTGTATTACG	TAAATTTGAA	ATGTCTCGTA	TTGCGTTTAG		2930
40	(2) INFORMA	TION FOR SE	Q ID NO: 43) :			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3606 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

CTTCTTGCCA TGGCTCTCTT TATTTAAAAA TGCTTCCAAC TTGTCCATTT GATTGTTTCT 60

55

45

	TTATAAAAAA	CTAATTTTAC	AAATGCTTTT	GCGTTCTTAC	AAAAAATGCA	TTTGACTATT	180
	ATTATAATAA	GCGTATAATT	GTCGCATATT	ATTTTTTGTA	TTTTTGGCAA	TAACGAAGGA	240
5	GTATTTATGA	ATAAAGACAA	GCAATTGCAC	AACGACAAAA	TCAATCTATC	CCAATTAGTC	300
	TTATTAGGGT	TAGGCTCTTT	AATAGGATCT	GGTTGGCTAT	TIGGIGCGIG	GGAAGCATCA	360
	TCAATAGCTG	GACCAGCAGC	AATCATATCA	TGGGTTCTTG	GATTCCTAGT	CATTGGAACC	420
10	ATTGCCTATA	ACTACATTGA	AATCGGCACA	ATGTTTCCTC	AATCAGGTGG	CATGAGTAAC	480
	TATGCCCAGT	ATACACATGG	CTCATTATTA	GGCTTTATTG	CTGCTTGGGC	GAATTGGGTG	540
	TCTTTGGTGA	CAATAATACC	TATCGAAGCT	GTGTCAGCTG	TTCAATATAT	GAGTTCTTGG	600
15	CCGTGGCATT	GGGCGAAACC	AATGAGATAT	TTAATGGAAA	ATGGCTCTAT	TAGCACATAC	660
	GGATTGCTAG	CTGTATATCT	CATCATTGTT	ATTTTTTCAT	TATTAAACTA	TTGGTCCGTA	720
	AAACTTTTAA	CATCATTTAC	GAGTTTAATT	TCTGTATTTA	AATTAGGCGT	ACCCATGTTA	780
20	ACCATCATCA	TGTTGATGCT	ATCAGGATTC	GACACTTCAA	ATTACGGCCA	TTCGGCAAGC	840
	ACATTTATGC	CTTACGGAAG	TGCACCGATT	TTTGCTGCAA	CAACAGCATC	AGGGATTATT	900
25	TTTTCATTCA	ATTCATTCCA	GACAATTATT	AATATGGGTT	CAGAAATTAA	AAATCCTGAA	960
	AAAAATATCG	CAAGAGGCAT	CGCTATCTCA	CTGTCAATCA	GTGCAGTGTT	GTACATCATT	1020
	TTACAAAGTA	CGTTTATCAC	TTCTATGCCT	CAATCAATGT	TACAACATAG	TGGATGGAAT	1080
30	GGCATCAACT	TCAATTCACC	ATTTGCTGAT	TTAGCTATCT	TATTAGGAAT	TAATTGGCTC	1140
	GCAATTTTAC	TATACATTGA	AGCTTTTGTA	TCACCATTCG	GTACTGGCGT	GTCATTTGTC	1200
	GCCGTTACAG	GTCGAGTTTT	ACGAGCAATG	GAGAAAAATG	GACATATCCC	TAAATTTCTT	1260
35	GGGAAGATGA	ATGAAAAATA	TCATATCCCA	CGTGTAGCAA	TCATCTTTAA	TGCCATCATT	1320
	AGTATGATTA	TGGTTACATT	ATTTAGAGAT	TGGGGTACGC	TAGCAGCAGT	TATTTCTACT	1380
	GCAACTTTAG	TAGCCTATTT	AACTGGCCCA	ACGACAGTGA	TTGCATTAAG	AAAAATGGGA	1440
40	CCAACAATGA	CTCGTCCATT	TAGAGCAAAA	ATTTTAAAAG	TAATGGCACC	ATTATCATTT	1500
	GTATTAGCTT	CATTAGCTAT	ATATTGGGCA	ATGTGGCCAA	CAACGGCTGA	AGTTATTTTA	1560
	ATCATTATAC	TTGGATTACC	AATCTACTTC	TTCTATGAAT	ATCGTATGAA	TTGGCGTAAT	1620
45	ACAAAGAAAC	AAATTGGTGG	TAGCTTATGG	ATTATTGTAT	ATTTAATCGT	GCTATCAATA	1680
	CTGTCATTTA	TAGGAAGCAA	AGAATTTAAA	GGCTTAAATA	TGATTCACTA	TCCATTTGAC	1740
	TTTATCGTTA	TTATTATTGT	GGCACTTATC	TTCTATTACA	TCGGTACAAC	GAGTTCATTT	1800
50	GAAAGCGTCT	ATTTCCGTCG	CGCAACACGA	ATCAATACGA	AGATGCGTGA	GTCACTAAAT	1860

	CACACACATT	AACCAACCAT	TGATTTCAAC	ATCTTGGTTG	GTTTTTTATT	TTGAAAATCG	1980
	GTTATAAATA	ACTAACATAA	CAAGATGATG	ATCAGGCTGG	GACATAAATC	AATGTTCTAT	2040
5	GCTCTACGAA	gTTATATTGG	CAGTAGTTGA	CTGAACGAAA	ATGCGCTTGT	AACAAGCTTT	2100
	TTTCGATTCT	AGTCAGGGGC	CCCAACACAG	AGAATTTCGA	AAAGAAATTC	TACAGGCAAT	2160
	GCAAGTTGGG	GTGGGACGAC	GATAAAGAAA	TACTTTTTCT	ATAGAAATTA	GTATYCCTTA	2220
10	TGCATGAGTT	TTACTCATGT	ATTCATATTT	TTAAGTACAC	ATTAGCTGTG	GCTAATGTAT	2280
	AAGAACCACT	ACATAATAAA	TCATTTGTGG	CTCTTTATCA	TTTCTGTCCC	ACTCCCGTAG	2340
	AAGTACATCA	TATAATGCTG	AAAATGGTTT	GAGTTAAAAC	AGATATCAAG	CTCGTCTGAT	2400
15	TCAGTÇACAA	AATTGTCTTG	TTATACTTGT	CACCTATCAT	CTATAGACCG	TGGTATGATT	2460
	AAATTGGGGA	TGATAAAGGA	GGTTAATAAA	TATGAAGATT	AATACTACAG	GTGGTCAAAT	2520
	TCATGGTATT	ACACAAGATG	GTTTAGATAT	CTTCTTAGGC	ATTCCTTATG	CAGAACCACC	2580
20	AGTTCATGAC	AATCGCTTTA	AACATTCTAC	GTTAAAAACA	CAATGGTCAG	AGCCAATTGA	2640
	TGCAACTGAA	ATACAACCCA	TCCCACCGCA	ACCAGACAAC	AAATTAGAAG	ATTTTTTCTC	2700
25	CTCACAATCT	ACAACTTTTA	CTGAACATGA	AGACTGTTTA	TATCTAAATA	TTTGGAAACA	2760
.5	ACATAATGAT	CAGACGAAGA	AACCTGTCAT	CATTTATTTT	TATGGTGGTA	GTTTTGAAAA	2820
	TGGTCATGGT	ACAGCCGAAC	TCTATCAACC	GGCACATTTA	GTACAAAATA	ACGACATTAT	2880
30	CGTTATTACA	TGCAATTATC	GTTTAGGCGC	ATTAGGATAT	TTAGACTGGT	CATATTTTAA	2940
	TAAAGATTIT	CATTCCAATA	ATGGCCTTTC	AGATCAAATC	aatgtcataa	AATGGGTGCA	3000
	TCAATTTATT	GAATCCTTCG	GTGGCGACGC	TAATAACATT	ACTTTAATGG -	GTCAGTCTGC	3060
35	AGGCAGTATG	AGCATTTTGA	CTTTACTTAA	AATACCTGAC	ATTGAGCCAT	ACTTCCATAA	3120
	AGTCGTTCTA	CTAAGTGGCG	CACTACGATT	AGACACCCTT	GAGAGTGCAC	GCAATAAAGC	3180
	ACAACATTTC	CAAAAAATGA	TGCTCGATTA	TTTAGATACA	GATGATGTTA	CATCATTATC	3240
ю	GACAAATGAT	ATTCTTATGC	TGATGGCGAA	gcTAAAACAA	TCTCGAGGAC	CTTCTAAAGG	3300
	GCTTGATTTA	ATATATGCGC	CTATTAAAAC	AGATTATATA	CAAAATAATT	ATCCAACAAC	3360
	GAAACCAATT	TTTGCATGTT	ATACAAAAGA	TGAAGGCGAT	ATTTATATTA	CTAGTGAACA	3420
15	GAAAAAATTA	TCGCCGCAAC	GCTTTATCGA	CATTATGGAA	TTAAATGATA	TTCCTTTAAA	3480
	ATACGAAGAT	GTTCAGACGG	CGAAGCAACA	ATCTTTAGCG	ATTACACATT	GTTATTTCaA	3540
	ACAGCCGATG	aAGCAATTTT	TACMACMACT	CAATATACMA	GATTCCAACC	GCACCAACTA	3600
60	ጥርረርርጥጥ						3505

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15109 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

10	GAAATTAAAA	AAGCAATTGG	nACAAGATGC	AACAGTGTCA	TTGTTTGATG	AATTTGATAA	60
	AAAATTATAC	ACTTACGGCG	ATAACTGGGG	TCGTGGTGGA	GAAGTATTAT	ATCAAGCATT	120
	TGGTTTGAAA	ATGCAACsAG	AACAACAAAA	GTTAACTGCA	AAAGCAGGTT	GGGCTGAAGT	180
15	GAAACAAGAA	GAAATTGAAA	AATATGCTGG	TGATTACATT	GTGAGTACAA	GTGAAGGTAA	240
	ACCTACACCA	GGATACGAAT	CAACAAACAT	GTGGaAGAAT	TTGAAAGCTA	CTAAAGAAGG	300
20	ACATATTGTT	AAAGTTGATG	CTGGTACATA	CTGGTACAAC	GATCCTTATA	CATTAGATTT	360
20	CATGCGTAAA	GATTTAAAAG	TAATTAAAmA	TAAAGCTGCA	AAATAATTCA	GCTATATAAG	420
	TTAGTGAAAT	GAGAGTCTGA	AACATATCAA	TCTTTTGATA	TTGTATTAGG	CTCTTATTTT	480
25	TATAGCTAGA	AAGTTAGATA	TTTGTATTTT	TTTAAATAAT	AAGTGCCGTT	GTTATCGTTC	540
	ATTTAATTAA	ATGATAGATT	AGTATTATTA	TAGCTAAAGT	AGTATACCTG	AGAAAATAGC	600
	TCAATGTATC	TCTTTATTAA	TAAGTTATAT	CATAATTATT	TTAGTGCATA	CTTTATGGAA	660
30	GGGATATCAG	GGAATGGCTT	TCAATTAAAG	AAGAGGTTTA	AAAGGATTAC	AACAGAATGT	720
	TATGATTTTG	TAGAAAGATA	TATAACAACG	TTTTATAAAA	ACATAATATT	GTTAATGGAA	780
	AATGAAATGT	AAGGGGGATT	TCGAGTGACT	AAGAAAGTTT	ATTTTAACCA	CGATGGTGGT	840
35	GTAGATGATT	TAGTATCTCT	ATTTTTTTA	TTACAAATGG	AAAACGTTCA	ATTGATAGGG	900
	GTCAGTACAA	TTGGTGCTGA	TTGTTATTTA	GAGCCATCTT	TGAGCGCATC	AGTAAAAATT	960
	ATTÂATCGTT	TTTCAAATGA	AGATATTCAA	GTTGCGCCAT	CATATGAACG	AGGAAAAAAT	1020
40	CCATTTCCTA	AAGAATGGCG	TATGCATGCC	TTTTTTATGG	ACGCATTGCC	AATTTTAAAT	1080
	GAGCCAGTCA	AACATGTTGC	TTCAAATGTG	AGCGACAAAG	AAGCCTTTGA	AGACATTATT	1140
	CAAACTTTAA	AGAGACAATC	AGAAAAGTA	ACATTATTAT	TTACAGGCCC	GCTTACAGAT	1200
45	TTAGCAAAAG	CACTACAAAA	AGATTCATCT	ATCGTTCAGT	ATATAGAAAA	ATTAGTTTGG	1260
	ATGGGTGGCA	CCTTTTTACC	AAAAGGAAAT	GTTGAAGAAC	CTGAGCATGA	TGGTTCTGCA	1320
	GAATGGAATG	CATATTGGGA	TCCAGAAGCG	GTTAAAATTG	TTTTTGATAG	CGATATAGAG	1380
50	ATTGATATGG	TTGCTTTAGA	AAGTACGAAT	CAAGTACCGC	TAACGTTAGA	TGTTAGACAA	1440

55

	GTACCACCAT	TAACACACTT	TATAACAAAT	TCTACTTACT	TTTTATGGGA	TGTTTTAACG	1560
	ACTGCTTATA	TTGGTAACAA	GGACTTGGTT	CATTCAATTG	AGAAAAAAGT	CGATGTAATA	1620
5	AGTTATGGAC	CAAGTCAAGG	TAAGACATTT	GAGTGTAAAG	ATGGGCGCAA	AATTAATGTC	1680
	ATAAATCATG	TAGATAACAA	CGCATTTTTT	GATTATATAA	CTGCACTTGC	TAAAAAGTA	1740
	AATTAACAGC	TGTGTAGAAT	AATTAAGGTT	TTAATTTATA	TAGAACAACT	TATTGTAAAC	1800
10	TTTTCATTTC	TTAAAGTTTA	CAATGGTGCT	ATAATAATGG	TCATGAAATA	CGAAAGGAAG	1860
	TAAAAAATGA	CAACAAAACA	GTTAGTATAT	ACAGCTTTAA	TGACAGCGAT	TATCGCTATT	1920
	TTAGGATTGG	TACCGGTAAT	TCCACTACCA	TTTTCTTCAG	TACCAATTGT	ACTTCAAAAC	1980
15	ATTGGTATTT	TCTTAGCAGG	TGCGATTTTA	GGACGTAAAT	ATGGCACATT	AAGTGTTATC	2040
	GTCTTTTTAT	TATTAGTAGT	TGCTGGCTTG	CCATTGTTAT	CAGGTGGTCG	CGGTGGCATC	2100
	GGTGTATTCG	CAGGTCCTTC	AGCAGGGTTT	TTACTATTAT	ATCCAGTTGT	AGCATTCATG	2160
20	ATTGGGGCGA	TTCGAGATAG	ATTCATCAAT	GAAATTAATT	TCTGGATTTT	ATTCGTTGGT	2220
	ATTTTAGTTT	TTGGTGTTAT	AGCATTAGAT	GTTATTGGTA	CATTGATTAT	GGGCATGATT	2280
-25	ATTAACATAC	CATTTACGAA	AGCTATTTCA	ATTTCATTAG	CTTATTTGCC	TGGTGATATA	2340
-25	TTAAAAGCAA	TTGTAGCAAG	TTTGATTGGT	ACAGCTTTAC	TTAATCACTC	GCAGTTTCGT	2400
	CAAATTATGG	GAATAAAATA	ATCATATTTA	AGATAGTAAA	GTAATTGAAT	AAGTTGCTTT	2460
30	GAAATTTATA	AAAGTGAAAG	GAGTAGGTGT	CAATGGCTAG	TATAAGTATG	TCAGATATAT	2520
	ATTGTAACGG	CACTATATTT	GAAAATGACG	ACGAGCAGTT	GATTTATTTA	ACGCCTTCTT	2580
	TTCCACAACG	ATACACAAGT	AACACATGGA	AAAAATATAT	GACGCCTACC	CAAGAGCGAT	2640
35	GGCTGAAAGA	CTTAGAACGT	CAACATCAAT	TACATACAAA	TCAAGGTTCA	AATCATTATG	2700
	CGTTTAGTTT	CCCGGAAAAT	GAACAACTTG	ATAATCATTG	GATGGCTATG	TTTAAAGATA	2760
	TGAATTTTGA	ACTAGGTATT	ATGGAATTGT	ATGCCATAGA	AAGTGATGCG	CTTGCCAATT	2820
40	TGCCGCGTAA	CTCTGACGTT	GAAATTGCCA	TCGTTGACGA	GTCGCATATA	GATGCCTATT	2880
	TAAAAGTTGC	ATATCAGTTT	AGTTTGCCAT	TTGGAAAAGA	CTATGCAGAT	GCACATGAAG	2940
	AAATGGTAAG	GGAACATTAT	CAAAAAGATG	TGATTAAACG	CTTAGTAGCT	TATTTAAATA	3000
45	ATGAACCTAT	TGGCGTTGTA	GATGTCATTG	AAAGTGAAAA	TTACATTGAA	TTAGATGGAT	3060
	TTGGTGTATT	AGAACAATTT	CGGCACCAAG	GAATTGGATC	TACAATTCAA	TCGTTGATAG	3120
	GTGAATACGC	CATATCAAAA	AATCACAAAC	CAATCATATT	AGTTGCAGAT	GGTGAAGATA	3180
50	CAGCAAAAGA	TATGTATGCA	AAGCAAGGTT	ATGTCTATCA	ATCGTTTTGT	ТАТСАВАТАТ	3240

	TAAGCTGGTT	TCGAGTAGAA	ATCAACTTAC	TGCTTTTTAA	ATTGTTTTGA	GCTACTTATA	3360
	CTTATAAAAA	TAGTGCGTTT	AAATTGTTGA	TTCATGTAGA	ATATCGTTCA	TTATGACACA	3420
5	CTATAATGAA	TATGTTATTG	TTCAGAATCA	ATGATACGTT	CTGGATGACT	GTATATATTA	3480
	AAGCCACCAT	TTCGAATAAA	TCCAACTGCC	GTAATATITA	GGTCATTAGC	TAAGGTTACA	3540
10	GCAAGCGTTG	TCGGAGCTGA	TTTAGATAAA	ATGACGCCAA	CACCAATTTT	TGCGGCTTTA	3600
70	ATTAAAATTT	CTGATGAAAT	ACGTCCACTA	ААААТТААТА	CTTTATCTCG	GACAGTAATA	3660
	TGTCGCTGAA	TACAAAATCC	ATATAATTTA	TCTAGAGCGT	TATGTCTACC	AATGTCTTGT	3720
15	CGATGTACAA	AAAATGTCAA	ACCATCGCTT	ATAGCAGCAT	TATGTAAGCC	ACCTGTTTCT	3780
	TGGTAAATAT	GACTTGCACT	TTGTAATCGA	GTCATCATGT	TAATAATTTG	CATTGGAGTT	3840
	AAAGTGATTT	TAGACATAGA	TGTTTTAGCG	ATAGCAGCAT	CATTTTGAAA	ATAAAACTCA	3900
20	CGACTCTTTC	CGCAACAAGA	TGCAATCATT	CGTTTTGTGG	AATATTGAAA	GCGATCGCCT	3960
	AAATCTTTAT	TAAGTTCAAC	ATGGGCAAAA	CCTTTACTAT	CATCAATCAG	TACAGATTTT	4020
	AATTCATCTC	GCTTTAAAAT	GGCACCTTCC	GAAGCCAGAA	ATCCAATGAC	TAACTCCTCA	4080
25	AGGTTTGTTG	GACTGCATAT	AACAGTCGCA	AATTCTTCAC	CATTCACCAT	AATTGTAAGT	4140
	GGAAATTCTG	TCACATATTG	ATCTGTTGTA	TTGAATAATT	TTCCATCTTC	ATATCTAACA	4200
3 0	ATTGGTTGAC	CTAAAGATAC	ATCTTTGTTC	ATTATCTAAC	CCCTTTAATT	AGCTTAAACT	4260
30	TTATTTTAAA	GCAATTTGCT	TAAAATTTTA	ACATATTTGC	TTAAGTTTGA	AATTTGATTG	4320
	ATAAAAATA	ATAGCGAGCA	ATCTGTTTGA	TTTAAATTGA	ATTCGAGAAT	ATACATACTA	4380
35	GGGCATCAAT	TATAAATAT	CAATCTTATG	CAAATTTGAC	AATTGTTTGA	ATCAATATAT	4440
	AAACAGGCAA	CGGTTCTTTT	CAAATATAAT	AGTAAGTGTA	TAATGAAAAT	GTAAATATTA	4500
	TTAAĀAATGG	GGGTTCACTC	AATGAAATTG	AAACGTTTAT	TTGCTGTTGT	GATTGCAATG	4560
40	CTTTTAGTAT	TAGCTGGTTG	CTCTAATTCT	AACGATAATA	ATGAAAGTAA	AAAAGATGAC	4620
	GCAGACAATG	GTAAGAAACA	AGAGATTCAA	GTTGCAGCGG	CAGCAAGTTT	AACAGATGTA	4680
	ACCAAGAAAT	TAGCTTCAGA	AAAAATTTA	GAGCATAAAA	ATGCTGATAT	TAAATTTAAC	4740
45	TATGGTGGAT	CAGGGGCATT	AAGAAAACAA	ATTGAATCAG	GCGCACCTGT	TGACGTATTT	4800
	ATGTCTGCAA	ATACTAAAGA	TGTAGATGCA	TTAAAAGACA	AGAATAAAGC	GCATGATACA	4860
. .	TATAAATATG	CGAAAAATAG	TCTAGTATTA	ATTGGTGATA	AAGATTCAAA	TTACACTTCA	4920
50	GTAAAAGACT	TAAAAGACAA	TGATAAATTA	GCATTAGGTG	AAGTGAAAAC	TGTACCAGCA	4980
	CCDDDDDTDTC	CCAAACACTA	TTTACATAAC	A ATTA BOTTOM	TTABACABCT	CCAAACMAAA	5040

	CAAGGTTTTG	TGTATAAAAC	TGACTTATAT	AAACAAAATA	AAAAAATTGA	TACTGTAAAA	5160
	GTAATTAAAG	AAGTAGAACT	TAAGAAGCCA	ATCACATACG	AAGCTGGTGC	TACATCAGAT	5220 .
5	AGTAAATTAG	CAAAAGAGTG	GATGGAATTC	TTAAAATCAG	ATAAAGCTAA	AGAAATACTA	5280
	AAAGAATACC	ACTTTGCAGC	ATAAGGAGTT	GTAATCCATG	CCTGACTTAA	CACCTTTTTG	5340
	GATATCAATA	CGAGTTGCTG	TAATCAGTAC	GATTATTGTA	ACGGTTTTAG	GTATTTTTAT	5400
10	ATCTAAATGG	TTGTATCGTC	GTAAGGGTTC	GTGGGTTAAA	GTATTGGAAA	GTTTATTGAT	5460
	ATTACCTATT	GTTTTGCCGC	CAACGGTATT	AGGTTTTATT	CTATTAATCA	TCTTCTCGCC	5520
	AAGAGGACCA	ATCGGTCAAT	TCTTTGCGAA	TGTACTACAT	TTACCTGTAG	TGTTCACTTT	5580
15	GACAGGTGCT	GTGATAGCAT	CTGTCATTGT	TAGTTTTCCA	CTAATGTATC	AACATACTGT	5640
	GCAAGGCTTC	AGAGGTATAG	ACACGAAAAT	GATTAATACA	GCTAGAACGA	TGGGAGCAAG	5700
20	TGAAACGAAA	ATTTTCCTCA	AATTAATTTT	ACCATTAGCT	AAACGCTCTA	TTTTAGCAGG	5760
	TATAATGATG	AGTTTTGCTC	GTGCATTAGG	TGAGTTTGGT	GCTACATTAA	TGGTTGCAGG	5820
	ATATATTCCA	AATAAAACGA	ATACACTACC	TTTAGAAATA	TACTTCTTAG	TGGAACAAGG	5880
?5	TAGAGAAAAT	GAAGCGTGGT	TATGGGTATT	AGTGCTAGTC	GCATTCTCTA	TTGTGGTTAT	5940
	ATCTACAATT	AATTTATTGA	ATAAAGATAA	ATATAAGGAG	GTCGACTAGA	TGCTTAAAAT	6000
	CAATGTGAAA	TATCAATTAA	AGAACACTTT	AATTCGCATC	AATATAGATG	ATACTGAACC	6060
30	TATTTAAAAA	GCAGTTCGTG	GTCCATCTGG	CATTGGTAAA	ACTACTGTTT	TAAATATGAT	6120
	TGCCGGATTA	CGTAAAGCAG	ATGAAGCTAT	TATCGAAGTG	AATGGGCAAT	TACTTACTGA	6180
	TACGGCAAAA	AACGTGAATG	TTAAAATTCA	ACAACGACGT	ATTGGATATC	TGTTTCAAGA	6240
3 5	CTACCAATTG	TTTCCTAATA	TGACGGTCTA	TAAAAATATT	ACTITITATGG	CTGAACCATC	6300
	TGAACATC	GATCAATTAA	TTCAAACTTT	AAACATTGAT	CATTTGATGA	AACAATATCC	6360
10	TATGACATTG	TCAGGTGGAG	AGGCACAACG	TGTAGCACTT	GCACGTGCAC	TTAGCACTAA	6420
	ACCAGATTTA	DATTATTTA	ATGAACCTTT	TTCTAGTTTG	GATGATACTA	CAAAAGATGA	6480
	GAGTATTACA	TTAGTTAAAC	GTATTTTCAA	CGAATGGCAA	ATACCAATCA	TATTTGTGAC	6540
15	ACATTCAAAC	TATGAAGCAG	AACAAATGGC	TCATGAAATT	ATTACAATTG	GGTAATCATT	6600
	TATTTGCCAT	TAAAGAGTTT	AGAACGTATT	TAAAATTGTA	GAAGTGAATG	CTTCTATCAG	6660
	CATTTTAATG	ATGTTTTAAA	CTCTTTTTTA	GGGGCAGTTT	TTTTGAGAGA	CATTGACGCG	6720
50	CGTCATATAA	TGAAAGTAAT	GATAAAAAGA	AAGGATAACT	TAATGTGAGT	CAAGAACGTT	6780
	ATTCAAGGCA	TTTATTTAA	AAACAAATAG	GTGAAATAGG	TCAAAGCAAA	ATAAATCAAA	6840

	GAGCAGGCAT	TGCCAAACTA	ATCATTGTTG	ATAGAGATTA	TATTGAATTT	AGTAATTTAC	6960
	AAAGACAAAC	ATTGTTTACT	GAAGAAGATG	CTTTGAAAAT	GATGCCTAAG	GTGGTTGCAG	7020
5	CTAAAAAGCA	TTTGCTAGCG	TTACGTAGTG	ATGTTGATAT	TGATGATTAT	ATTGCCCATG	7080
	TGGATTATTA	TTTTTTGGAA	ACACATGGAC	AGGACGTTGA	CGTTATTATT	GATGCAACCG	7140
	ATAACTTTGA	AACACGACAA	CTGATTAATG	ATTTTGCATA	TAAATATCGT	ATACCTTGGA	7200
10	TTTATGGTGG	TGTTGTACAG	AGTACATATA	CAGAAGCTGC	ATTTATACCT	GGTAAAACAC	7260
	CTTGCTTTAA	CTGTTTGGTA	CCACAATTGC	CAGCATTAAA	TTTAACATGT	GATACAGTAG	7320
15	GGGTCATTCA	ACCTGCCGTG	ACGATGGCAA	CAAGTTTACA	ATTAAGAGAT	GCGATGAAAG	7380
	TATTAACGGA	ACAACCAATT	GACACAAAAA	TAACTTATGG	CGATATTTGG	GAAGGTAGTC	7440
	ATTATTCATT	TGGTTTCAGT	AAAATGCAAC	GTTCAGACTG	TACAACTTGT	GGAGATGTAC	7500
20	CAAGTTATCC	GTATTTAAAC	AAGAATGAAC	AACGTTATGC	AACATTGTGT	GGTAGAGACA	7560
	CTGTACAGTA	tgaaaaitgca	TCAATTACAC	ACGACATTCT	TGTTCAATTT	TTAAAACAAC	7620
	ATCAGTTAAA	TTATCGCAGT	AATTCGTATA	TGGTTATGTT	TGAATTTAAA	GGACACCGCA	7680
?5	TTGTTGCTTT	TAAAGGTGGA	AGGTTTTTAA	TACATGGCAT	GACACGCACA	TCAGATGCCA	7740
	CACATCTAAT	GAATTTATTG	TTTGGATAAA	AAAAGATAAG	ACAAAAGGAG	TGTAATATTA	7800
	TGGGCGAACA	TCAAAACGTT	AAATTGAATC	GTACAGTTAA	AGCAGCCGTA	CTAACGGTAT	7860
30	CAGATACTAG	AGACTTTGAT	ACAGATAAAG	GTGGTCAATG	CGTGCGCCAA	CTATTACAAG	7920
	CAGATGACGT	TGAAGTGAGT	GACGCACATT	ATACAATTGT	GAAAGATGAA	AAAGTAGCCA	7980
35	TCACGACGCA	GGTGAAGAAG	TGGTTAGAAG	AAGATATTGA	TGTCATCATT	ACGACTGGTG	8040
	GAACAGGTAT	TGCACAACGT	GATGTGACGA	TTGAAGCAGT	AAAACCACTT	TTAACTAAAG	8100
	AGATAGAAGG	CTTTGGGGAA	TTGTTTAGAT	ATTTGAGTTA	TGTTGAAGAT	GTTGGCACGC	8160
10	GTGCATTATT	GTCTCGTGCT	GTAGCAGGTA	CAGTTAATAA	TAAATTGATA	TTTTCGATTC	8220
	CAGGATCAAC	AGGCGCAGTT	AAATTAGCAT	TAGAAAAGCT	CATTAAACCA	GAATTAAATC	8280
	ATCTGATTCA	TGAGCTTACA	AAATAATTTA	TTGATTTGAT	TGGCGTTGAÄ	AATCTCCAGA	8340
15	TTTACCGCCA	GACTTGCTTT	CAAGGTAGGT	TTCGCCAATA	ATCATACCTT	TATCAACTGC	8400
	TTTCGTCATG	TCGTAAATGG	TTAAAGCCGT	TGCTGATGCA	GCGGTTAAAG	CTTCCATTTC	8460
	AACACCGGTT	TTGCCAGTTG	TAGAGACAGT	TGTTTGAATG	TTTAAAGTAT	AAAGGGGTGC	8520
50	ATTTGTTTCA	TCCCAGCTGA	AGTGAACATC	TATGCCAGTC	AATGGTAATG	GATGGCACAT	8580
	CGGAATAAGT	GTTGATGTAT	TTTTGGCAGC	CATAATACCA	GCGATTTGAG	CAGTGTTCAA	8640

	AATGCTTGAA	TGAGCGACAG	CAGTTCTTTT	TGTAATTTGT	TTGTCTGATA	CATCGACCAT	8760
	TTTGGCGTGG	CCTTGTTGAT	TAATATGAGT	AAACTCAGTC	ATTTTACCCC	TCCTAGTGCA	8820
5	TCTAGTATAT	CATGAAAAAA	TAAAAGTTTT	GGAGATGATT	TTTAATGGTA	GTAGAAAAA	8880
	GAAACCCAAT	CCCAGTTAAA	GAAGCAATTC	AACGTATCGT	TAATCAGCAG	AGTTCAATGC	8940
10	CGGCAATTAC	GGTAGCACTT	GAAAAAAGTC	TAAATCATAT	CTTAGCAGAA	GATATTGTAG	9000
10	CTACTTATGA	TATACCAAGG	TTTGATAAAT	CACCTTATGA	TGGTTTTGCA	ATTCGCAGTG	9060
	TTGATTCACA	AGGGGCAAGT	GGTCAGAATC	GCATTGAGTT	TAAAGTGATT	GATCATATTG	9120
15	GTGCAGGTTC	AGITTCTGAT	AAATTAGTTG	GGGATCACGA	AGCGGTGCGT	ATTATGACTG	9180
	GAGCACAAAT	ACCTAATGGC	GCAGATGCTG	TTGTTATGTT	TGAACAAACG	ATTGAACTAG	9240
	AAGATACATT	TACAATTCGT	AAACCATTTT	CAAAAAATGA	AAATATATCT	TTAAAAGGTG	9300
20	AAGAAACAAA	GACAGGCGAT	GTTGTTCTAA	AAAAAGGACA	AGTAATTAAT	CCAGGGGCTA	9360
	TCGCGGTCCT	TGCAACATAT	GGCTATGCAG	AGGTTAAAGT	TATTAAGCAA	CCGAGTGTCG	9420
	CTGTTATTGC	AACAGGAAGC	GAATTATTAG	ATGTTAATGA	TGTATTAGAA	GATGGGAAAA	9480
25	TTCGTAACTC	TAATGGCCCA	ATGATTCGTG	CCTTAGCAGA	AAAATTAGGT	CTTGAAGTTG	9540
	GTATTTACAA	AACACAAAAA	GATGATTTAG	ATAGTGGCAT	CCAAGTCGTT	AAAGAAGCTA	9600
	TGGAAAAACA	TGATATCGTT	ATTACAACGG	GCGGAGTTTC	TGTTGGAGAT	TTTGACTATT	9660
30	TACCTGAGAT	TTATAAGGCT	GTAAAGGCGG	AAGTGTTATT	TAATAAAGTA	GCAATGCGTC	9720
	CTGGTAGCGT	AACAACGGTT	GCATTTGTAG	ATGGAAAGTA	TTTGTTTGGa	TTATCTGGAA	9780
35	ATCCATCAGC	TTGTTTTACA	GGATTTGAAC	TATTTGTGAA	nCCAGCTGTT	AAACATATGT	9840
00	GTGGCGCACT	AGAAGTCTTC	CCGCAAATAA	TTAAAGCAAC	ATTAATGGAA	GATTTTACCA	9900
	AGGÇAAACCC	ATTCACACGA	TTTATACGTG	CTAAAGCAAC	GTTAACAAGT	GCTGGAGCTA	9960
40	CTGTAGTACC	TTCAGGATTC	AATAAATCAG	GTGCGGTTGT	AGCGATTGCA	CATGCTAACT	10020
	GTATGGTCAT	GTTACCAGGA	GGGTCACGTG	GTTTTAAAGC	GGGGCATACA	GTAGATATTA	10080
	TATTGACTGA	ATCTGACGCT	GCTGAAGAGG	AACTTCTTTT	ATGATTTTAC	AAATTGTAGG	10140
45	TTACAAAAAG	TCTGGTAAGA	CAACATTGAT	GAGGCATATT	GTCTCTTTCT	TAAAGTCACA	10200
	TGGTTATACA	GTTGCTACTA	TTAAACATCA	TGGGCATGGT	AAGGAAGATA	TTCAATTACA	10260
	GGATTCAGAC	GTCGATCACA	TGAAGCATTT	TGAAGCGGGG	GCAGATCAAA	GTATTGTACA	10320
50	AGGTTTTCAA	TATCAGCAAA	CTGTAACACG	TGTAGATAAT	CAAAATCTTA	CTCAAATTAT	10380
	TCAAAAATCT	ביייים מים מיייים	ACACCAATAT	CCTATTACTT	CAACCCTTTA	3 3 3 3 TO COTO 3	10440

	GAATGTTTGT	TATAGCATTA	ATGTAAGGGA	GCATGAAGAT	TTTACAGCAT	TTGAGCAATG	10560
	GTTATTAAAT	AAAATTAAAA	ATGATTGTGA	TACACAATTA	ACATAGAGGA	TTGAAATGAA	10620
5	TGAAACAATT	TGAAATCGTG	ACAGAACCGA	TACAAACAGA	ACAATATCGT	GAATTCACTA	10680
	TAAATGAATA	TCAAGGTGCA	GTAGTTGTTT	TTACCGGTCA	TGTTCGCGAA	TGGACTAAAG	10740
	GCGTCAAAAC	GGAATATTTA	GAATATGAAG	CGTATATTCC	AATGGCTGAA	AAGAAATTGG	10800
10	CACAAATTGG	AGATGAAATA	AATGAAAAAT	GGCCTGGAAC	GATAACGAGT	ATTGTTCATA	10860
	GAATAGGGCC	ATTACAAATT	TCAGATATCG	CTGTATTAAT	TGCGGTTTCT	TCACCGCATC	10920
15	GTAAAGATGC	CTATCGAGCA	AATGAATATG	CAATTGAGCG	TATAAAAGAA	ATTGTTCCGA	10980
	TTTGGAAAAA	AGAAATTTGG	GAAGATGGTT	CAAAATGGCA	AGGGCATCAA	AAAGGGAATT	11040
	ATGAAGAAGC	AAAGAGGGAG	GAATAAGAGA	GATGAAGGTA	CTTTACTTCG	CAGAAATTAA	11100
20	AGATATATTA	CAAAAAGCAC	AGGAAGATAT	TGTGCTTGAA	CAAGCATTGA	CTGTACAACA	11160
	ATTTGAAGAT	TTATTGTTTG	AACGTTATCC	GCAAATCAAT	AATAAAAAGT	TTCAAGTTGC	11220
	TGTAAATGAG	GAATTTGTAC	AAAAATCGGA	TTTCATTCAA	CCTAATGATA	CTGTTGCATT	11280
25	AATTCCACCG	GTTAGTGGAG	GTTAAGGGAG	CATGAAAGCA	ATAATTCTTG	CAGGTGGTCA	11340
	TTCAGTGCGA	TTTGGTAAGC	CCAAAGCTTT	TGCGGAAGTG	AACGGTGAGA	CCTTTTATAG	11400
	TAGAGTAATT	AAGACATTAG	AATCAACAAA	TATGTTCAAT	GAAATTATTA	TTAGTACAAA	11460
30	TGCGCAATTG	GCAACGCAAT	TTAAATATCC	AAATGTTGTT.	ATAGATGATG	AGAATCATAA	11520
	TGATAAAGGT	CCATTAGCAG	GAATTTATAC	AATCATGAAG	CAACATCCTG	AAGAAGAATT	11580
	GTTTTTTGTC	GTTTCTGTTG	ATACACCAAT	GATTACTGGT	AAAGCTGTAA	GCACGTTGTA	11640
35	TCAGTTTTTA	GTTTCTCATC	TTATTGAAAA	TCATTTAGAT	GTCGCAGCTT	TTAAAGAAGA	11700
	TGGALGTTTT	ATTCCAACAA	TTGCATTTTA	TAGTCCGAAT	GCATTAGGCG	CTATAACTAA	11760
40	AGCACTACAT	TCTGATAATT	ACAGTTTTAA	AAATGTATAT	CATGAATTAT	CAACGGATTA	11820
	TTTGGATGTA	AGGGATGTAG	ATGCGCCCTC	ATATTGGTAC	AAAAATATAA	ATTATCAGCA	11880
	TGATTTGGAC	GCTTTAATTC	AAAAATTGTA	AGCTGTTAGG	AGGTCCACAA	ATGGTAGAAC	11940
45	AAATAAAAGA	TAAACTAGGA	CGTCCCATCC	GTGACTTACG	GTTATCTGTG	ACAGATCGGT	12000
	GTAACTTTAG	GTGTGATTAT	TGCATGCCTA	AAGAGGTATT	TGGAGATGAT	TTCGTATTTT	12060
	TACCTAAAAA	TGAACTTTTA	ACGTTTGATG	AAATGGCTAG	AATCGCTAAG	GTATATGCAG	12120
50	AATTAGGTGT	ATAAAAAAA	CGCATTACAG	GTGGAGAACC	ATTGATGCGA	CGGGATTTAG	12180
	ATGTACTTAT	ACCTAAATTA	בסתמממתממ	ATCCTATTCA	ACATATTCOM	TTC 3 CTC 3 CT 3	12240

	ATGTCAGTTT	GGATGCTATT	GATGATACGC	TATTTCAATC	AATCAATAAT	CGTAATATTA	12360
	AAGCGACTAC	GATTTTAGAA	CAAATTGATT	ACGCGACGTC	TATTGGTTTG	AATGTAAAAG	12420
5	TAAATGTTGT	TATACAAAAA	GGTATTAACG	ATGATCAAAT	CATACCAATG	CTTGAATATT	12480
	TTAAAGATAA	ACATATAGAG	ATTCGATTTA	TAGAATTTAT	GGATGTTGGT	AATGATAATG	12540
	GATGGGATTT	CAGTAAAGTT	GTAACTAAAG	ATGAAATGCT	TACAATGATA	GAGCAGCACT	12600
10	TTGAAATCGA	TCCTGTAGAA	CCAAAATATT	TTGGGGAAGT	AGCAAAATAT	TATCGCCATA	12660
	AGGATAATGG	TGTTCAATTT	GGTTTGATTA	CAAGTGTTTC	ACAATCATTT	TGTTCTACAT	12720
	GTACACGCGC	AAGGCTGTCA	TCAGATGGGA	AGTTTTACGG	ATGTTTATTT	GCAACTGTCG	12780
15	ATGGATTTAA	CGTTAAAGCG	TTTATTCGTT	CTGGCGTGAC	CGACGAAGAA	TTAAAAGAAC	12840
	AATTTAAAGC	TTTATGGCAA	ATAAGAGATG	ATCGATATTC	AGATGAGAGA	ACTGCTCAAA	12900
20	CAGTTGCCAA	TCGTCAACGT	AAAAAGATAA	ACATGAATTA	TATTGGTGGT	TAATGTGTAG	12960
	GGACCACTAC	ATATTAAATC	ATTAGAGATG	TTTTAATATT	TCTGTCTTAC	TCCCTAAAAT	13020
	ACAATATTAT	TTATTAAAGT	AAAAACGGTC	ATATCTATGC	CAGATTTAAT	AGAAATGATC	13080
25	GTTTTTAAAG	TTTTTACAAG	TTGGCGGGGC	CCCAACACAG	AAGCTGACAG	AAAGTCAGCT	13140
	TACAATAATG	TGCAAGTTGG	CGGGGCCCCA	ACATAGAGAA	TTTCAAAAAG	AAATTCTACA	13200
	GACAATGCAA	GTTGGGGAAC	GGGGCCCCAA	CACAGAAGGT	GACGAAAAGT	CAGCATACAA	13260
30	TAATGTGCAA	GTTGGCGGGG	CCCCAACATA	GAGAATTTCA	AAAGAAATTC	TACAGACAAT	13320
	GCAAGTTGGG	GATCAACGAA	ATAAATTTTA	TGAGAATATC	ATTTCTATCC	CACTCTTAAG	13380
	AATCACTACA	TAATAAATCT	TTAGTGGTTC	TTTAACATTG	ATGTCACACT	CCATGCCATT	13440
35	GAGTTGTAAT	ATATCTTTTT	TAGGTATAAA	TGTTGTCGAA	TAAACAACAA	GTTGTCCAAA	13500
	AGATATAAAT	CTAAACAAGA	TATAGCCAGC	AATTTAATAT	TTGTAATAGA	TAAAATGCTA	13560
	AGTTTGATAT	TTAAATAATA	TAAGTAATTG	TATAATAATA	TGAATTACAA	ACATCTAAGA	13620
10	AGAAACATAG	GAGGCATCAT	ATTATGAGTA	ATAAAGTTCA	ACGTTTTATA	GAAGCAGAAA	13680
	GGGAGTTAAG	TCAGTTAAAG	CACTGGTTAA	AAACAACACA	TAAGATTTCA	ATTGAAGAAT	13740
15	TTGTAGTCCT	TTTTAAAGTG	TATGAAGCTG	aaaagattag	CGGTAAAGAA	TTGAGGGATm	13800
	CATTACATTT	TGAAATGCTA	TGGGATACAA	GTAAAATCGA	TGTGATTATC	CGTAAAaTCT	13860
	ATAAAAAAGA	GCTTATTTCT	AAATTGCGTT	CTGAAACGGA	TGAAAGACAA	GTATTCTATT	13920
50	TCTATAGTAC	TTCTCAAAAG	AAATTGTTAG	ATAAAATTAC	TAAAGAAATA	GAAGTGTTAA	13980
	GCGTTACAAA	CTAAAAACTT	aAAAAgcaTG	CCAATCTCTA	TTCATCATAA	TTGCGTCTTG	14040

	GTTCATGGCA	TTTCTAGTTA	CATGACGTCC	ATGAATTAAG	AAGTAAACAA	GCATAGTAAT	14160
	GATTGCTAAA	GCGGCCATAA	AGCCGAAGAT	TTCACTATAT	GAAAACATAT	GAGTAAATAA	14220
5	CCCAAGGAAT	GATGGACCGA	AGCCGACACC	TGCATCTAGA	CCAACGTAAA	AAGTAGATGT	14280
	CGCGATACCA	TATTTAATCG	GGGGTGAGAC	TTTTATCGCA	ATAGATTGCA	TTGCAGATGA	14340
	TAAATTTCCA	TACCCTAAAC	CTAGGCAAGC	ACCAGCAAGT	AATATTAACC	AGCTTTGATA	14400
10	GCTTGAAATT	AAGCATACAA	ATGAAAGGAA	AAGCATGATA	AATGCTGGGT	AGACAATAAT	14460
	ATTTTCATTT	TTATCATCCA	TCAATCTACC	AGCAATAGGT	CTAGTAATTA	ACGATGCTAT	14520
	AGCATAGCAA	ATAAAGAAAT	AGCTTGCTGC	AGTGACTAGG	TGTCGCTCTA	AAGCAAATGC	14580
15	TTGTAAATAA	GTTAGGATGG	ACGCATAGGT	AACGCCAATT	AAAAGCATAA	TTACAGCAAC	14640
	AGGAATGGCC	TCTTTTGCAA	TAAATTGATG	AATACTAAAT	CTTGGTTTAT	CAATGACATT	14700
20	AGTTTCAGTT	TIGTTATTTG	TTACTTCGAA	ATCAACTTTT	ATAAATAATG	AGATAATGAG	14760
	TCCGAGTATG	CCTAATATGA	CACAAATAAT	AAACAGTAAG	TCAATTGCGT	ATTTTGTAAT	14820
	AAGTAACATG	CCTAGAAATG	GGCCAATCGC	TGTACCTAAT	ACTAAACTTA	AGGAAAATAA	14880
25	ACTGATGCCT	TCACTTTTTC	TATTAACAGG	GGTAACGTAT	GCCGCAATAG	TACCTGTTGC	14940
	AGTTGTCACA	ACTGCAGTTG	CGATACCGTT	TATGAGACGT	ACAAAGATTA	AAAAAGCTAA	15000
	AGATCCATCA	АТААААТААА	GTAATTGCGT	gataattaaa	GCAATTAAAC	CAATAAATAA	15060
30	TAATCGTTTA	GGTCCrATTT	SATTTACAAA	TTTACCTGTA	GCAAATCGA	١	15109

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9072 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40

45

50

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

GAGAGTCAAT	GGCAAGAAGA	ATATAAATAT	TTGAGAGCGT	TAATCTITAA	TGAAACAGAA	60
TTAGAGGAAG	CGTATAAATG	GATGCATCCT	TGTTACACGT	TGAATAATAA	AAATGTAGTA	120
CTTATCCATG	GCTTCAAAAA	TTATGTTGCA	CTATTATTTC	ATAAAGGTGC	CATTTTGGAG	180
GATAAATATC	ATACACTCAT	TCAACAGACT	GAAAAGGTGC	AAGCAGCTCG	TCAGTTACGA	240
TTTGAAAATI	TAACAGAGAT	TCAAGCACGT	ACCGAAGAAA	TTAAATATTA	TCTAGCCGAA	300
GCAATTAAAG	CTGAAAAAGC	TGGTAAAAA	GTTGAAATGA	AGAAAACAGA	GGAATATGTT	360

	AAATTAACGC	CAGGCAGACA	ACATCAATAT	ATATATCATA	TTGGACAAGC	TAAACGCAgT	480
	Ggaacaagac	AAAAGCGTGT	TGAAAAGTAT	ATTAACCAAA	TACTAGAAGG	TAAAGGGATG	540
5	CATGATAAGT	AATTAATGAG	TAAAGCATAC	CGGTTATACA	ACAACATACA	AGATGACACG	600
	AAACAACCAA	TGGCTCATGC	TGTTGGTTGT	TTTTTTAGGT	GTGTCTGTCA	TGGGCAACAC	660
	TTTGACGTTG	GAATTCCGTT	ACAGGCTTGG	GAGTAGAAAA	TGTTAGCAAA	AGGCAAGGGT	720
10	GTCTACAATG	AATGATGAAG	ATATTAAAAT	ATAAGGATGA	CTTTGTGAGT	GGCGGATGGG	780
	CGGTTGTCCG	TCTGTAACAA	TGGATGCGTG	TGCATTATTA	CAAAAATTCG	ACTTTTGTAA	840
	TAATATTTCA	CATTTTCGAC	ACTTTTTTGC	TATAAAACAA	CCAATTGAGC	GATAATAAAT	900
15	TCGCTTTTAA	AAAATATGAG	TTATCTATTT	AGTTGCCAAA	GATAAAATAA	TAATGTTTAA	960
	TAACATCATA	TAGAGTATGT	TAGTTTTAAA	TGTCGAATAT	ACGAATGTGC	AAACAAAGTA	1020
20	ATCGGTAGAA	ATTCAACATA	CATAGCGCCG	TTTACTGTTA	AGTATTCACA	TTACAGATGA	1080
	AAAATATAAA	ATTCTACATA	ATCAAGACCA	TGATGTGTAC	TTGTTTAACT	TATGACTCTA	1140
	TTTGTTTAAC	AATTGCGATA	ATGGTCTTTT	TATTTTATGC	GTATCATTCG	TCATATTTTT	1200
25	TATGAGGAAG	GAGAAATGAT	TATGTTAAGT	ATTAAGCATT	TAACGAAAAT	TTATTCTGGT	1260
	AATAAAAAGG	CAGTAGATGA	CATCTCTTTA	GATATTCAAT	CTGGGGAATT	TATCGCATTT	1320
	ATTGGAACCA	GTGGAAGTGG	CAAAACGACT	GCTTTAAGAA	TGATAAACCG	TATGATTGAA	1380
30	GCGACAGAAG	GACAAATTGA	AATTGATGGT	AAAGATGTTC	GGAGTATGAA	TCCTGTCGAA	1440
	TTGCGTAGAA	ATATTGGCTA	TGTTATTCAA	CAAATTGGCT	TAATGCCTCA	TATGACGATT	1500
	AAAGAGAATA	TTGTGTTGGT	ACCCAAATTG	TTGAAATGGA	CTAAAGAGGA	AAAGGATAAA	1560
35	CGTGCAAAGG	AATTAATTAA	ACTTGTGGAT	TTACCGGAGT	CATTTTTAGA	GCGTTATCCA	1620
	GCAGAACTAT	CAGGTGGGCA	ACAACAACGT	ATCGGTGTTG	TAAGAGCACT	TGCGGCCGAA	1680
10	CAAGATATTA	TTTTAATGGA	TGAACCTTTT	GGTGCATTGG	ATCCTATTAC	GAGAGATACG	1740
,0	TTACAAGATT	TAGTTAAAAC	GTTACAACGA	AAATTAGGCA	AGACGTTTAT	CTTTGTAACA	1800
	CATGATATGG	ATGAAGCGAT	TAAATTAGCA	GACAAAATTT	GTATTATGTC	AGAAGGTAAG	1860
15	GTGGTGCAAT	TTGATACGCC	AGACAATATT	TTAAGACATC	CCGCAAATGA	TTTTGTACGT	1920
	GATTTTATAG	GACAAAATAG	ACTGATTCAA	GACCGTCCCA	ATGACAAGAC	TGTAGAAGGT	1980
	GTAATGATTA	AACCAATCAC	GATACAAGCA	GAAGCAACAC	TGAATGACGC	CGTTCATATT	2040
5 <i>0</i>	ATGAGACAAA	AACGTGTTGA	TACTATTTTT	GTAGTAGATA	GTAATAACCA	TTTACTAGGT	2100

	ATTITAAAAA GAAACGITAG GAATGIACCI GICGIAGAIG ATCAACAGCG IITAGIAGGA	2280
	CTGATTACGC GTGCCAATGT TGTTGATATT GTATATGACA CGATTTGGGG CGATAGTGAG	2340
5	GATACAGTGC AAACAGAACA TGTGGGGGAA GACACTGCGT CCTCAAAAGT GCATGAGCAA	2400
	CACACTACTA ATGTCAAAGT ACGTGACATA GGAGATGATA AATCATGATT GAGTTCCTAC	2460
	ATGAACATGG TGGACAGTTG ATGTCGAAAA CACTGGAACA TTTCTATATT TCTATAGTGG	2520
10	CATTATTACT TGCCATCATT GTTGCAGTAC CTATAGGCAT TTTATTATCA AAAACAAAGC	2580
	GAACTGCCAA TATTGTATTA ACTGTGGCAG GTGTCTTACA AACTATTCCA ACACTAGCTG	2640
15	TACTTGCTAT TATGATACCG ATTTTTGGTG TTGGTAAAAC GCCTGCAATT GTAGCGCTAT	2700
	TTATTTATGT ATTATTACCT ATTTTAAATA ACACGGTACT CGGTGTTCAA AATATTGATA	2760
	GCAACATTAA AGAAGCTGGA AAAAGTATGG GAATGACACA ATTTCAATTG ATGAAGGATG	2820
20	TTGAATTGCC GTTAGCATTG CCGCTTATCA TTGGTGGCAT TCGTTTGTCA TCTGTGTATG	2880
	TAATTAGTTG GGCTACACTT GCAAGTTATG TAGGTGCGGG TGGATTAGGT GATTTCATTT	2940
	TCAATGGTTT AAATTTATAT GATCCACTGA TGATTGTAAC TGCAACGGTA CTCGTTACTG	3000
25	CACTAGCATT AGGTGTTGAT GCCTTATTAG CTTTAGTTGA AAAATGGGTA GTTCCCAAAG	3060
	GCTTAAAAGT ATCTGGATAA TTAGGAGGCT AAGATAATGA AGAAAATTAA ATATACTT	3120
•	GTCGTGTTTG TCTTATCGCT TACCGTATTA TCTGGATGTA GTTTGCCCGG ACTAGGTAGT	3180
30	AAGAGCACGA AAAATGATGT CAAAATTACA GCATTATCAA CAAGCGAATC GCAAATTATT	3240
	TCACATATGT TACGGTTGTT AATAGAGCAT GATACACACG GTAAGATAAA GCCAACATTA	3300
	GTAAATAATT TAGGGTCAAG TACGATTCAA CATAATGCCT TAATTAATGG GGATGCTAAT	3360
35	ATATCAGGTG TTAGATATAA TGGCACAGAT TTAACGGGAG CTTTGAAGGA AGCACCAATT	3420
	AAAAATCCTA AGAAAGCAAT GATAGCAACA CAACAAGGAT TTAAAAAGAA ATTTGATCAA	3480
40	ACGITITITG ATTCGTATGG TTTTGCGAAT ACGTATGCAT TCATGGTAAC GAAGGAAACC	3540
	GCTAAAAAAT ATCATTTAGA GACAGTTTCA GATTTAGCAA AGCATAGTAA AGATTTACGT	3600
	TTAGGTATGG ATAGTTCATG GATGAATCGT AAAGGCGATG GCTATGAAGG ATTTAAAAAA	3660
45	GAGTATGGTT TTGACTTTGG TACAGTGAGA CCAATGCAAA TAGGTCTAGT CTACGACGCA	3720
	TTAAACTCAG AGAAGTTAGA CGTTGCATTA GGTTATTCTA CAGATGGTCG AATTGCGGCG	3780
	TATGATTTGA AAGTACTTAA AGATGATAAA CAATTTTTCC CACCTTATGC TGCGAGTGCT	3840
50	GTTGCAACAA ATGAATTATT ACGGCAACAC CCAGAACTTA AAACGACGAT TAATAAGTTG	3900
	ACAGGAAAGA TTTCGACTTC AGAGATGCAA CGCTTGAATT ATGAAGCGGA TGGTAAAGGT	3960

55 ·

	AAAGGTGGTC	ATAAGTAATG	GAAGGTAATT	TATTACAGCA	ATTATTCAAT	TATTATGTTA	4080
	CGAACTTTGG	TTATCTATGG	GATTTATTTT	TCAAACACTT	ATTAATGTCT	GTCTATGGTG	4140
5	TGCTGTTTGC	AgCTTTAATT	GGTATTCCAT	TGGGAATCTT	GCTTGCaAGA	TACACAAAAC	4200
	TTTCTGGATT	TGTAATTACA	ATTGCAAATA	TAATTCAAAC	AGTTCCAGTC	ATTGCAATGT	4260
	TAGCTATITT	AATGTTAGTC	ATGGGCTTAG	GTTCAGAAAC	AGTAGTTTTA	ACAGTGTTTT	4320
10	TATATGCGTT	ACTTCCAATT	АТААААААСА	CTTATACTGG	TATAGCTAGT	GTTGATGCGA	4380
	ATATTAAGGA	TGCTGGCAAA	GGTATGGGAA	TGACACGCAA	TCAAGTGCTA	CGAATGATTG	4440
15	AATTACCGTT	ATCTGTTTCG	GTTATTATCG	GTGGCATTCG	TATTGCCTTG	GTTGTTGCGA	4500
	TAGGTGTTGT	TGCCGTTGGA	TCATTTATAG	GAGCACCTAC	GCTTGGTGAC	ATTGTGATTC	4560
	GTGGTACAAA	TGCGACGGAT	GGCACAACGT	TTATTTTAGC	AGGTGCGATT	CCGATTGCTA	4620
20	TCATTGCAAT	CGTCATTGAT	GTACTATTAA	GATTTTTAGA	AAAACGATTA	GACCCAACAA	4680
	CACGACATCG	TAAAAATCAA	TCTAATCATC	GGCCGCAAAG	TATTAATATG	TAATAGTAGA	4740
1	AGATGTTTAT	AATTTAGCGA	TTTCGTTTCA	TGATTTATAA	AAAATGAGGC	TACTCAAGGA	4800
25	GCTCAAATAA	TCTTTGAGTA	GCCTTTTTAT	AGGTTGTGTT	TGTATGCGTT	TACACTAAAA	4860
	TAGCAATTAT	TATCATGAAA	GTTTTTGGAT	AAAAAGCGTT	AATTATTGTA	AAAATACTAA	4920
	AAAATGAGAT	GTTTTATTTA	TAATTTTCTG	CAAATTTATG	ATATTGTTTC	TTAATATATC	4980
30	ATATTAAAA	TTTGTTTTTC	TTAAACATAG	GAGGCTTATC	TAATTCATGG	ACACATCAAA	5040
	ACAATTTAGA	GGTGACAACC	GATTGCTTTT	GGGTATCGTT	TTAGGGGTTA	TTACCTTTTG	5100
25	GCTATTCGCG	CAGTCACTTG	TTAATCTTGT	TGTCCCATTA	CAATCAACAT	ATAGTAGTGA	5160
35	CGTTGGAACG	ATAAATATCG	CTGTTAGCTT	ATCTGCCTTA	TTTGCTGGTT	TGTTTATCGT	5220
	AGGTGCTGGT	GATGTTGCTG	ATAAATTTGG	TCGCGTCAAA	ATTACTTATG	TAGGATTGAT	5280
40	ATTAAATGTT	GTAGGTTCAT	TACTCATCAT	CATTACACCT	TTGCCAGCAT	TTTTAATTAT	5340
	AGGTAGAATA	ATTCAAGGTT	TGTCTGCAGC	ATGTATTATG	CCATCAACAC	TTGCTATTAT	5400
	TAACGAATAT	TATATTGGTA	CAAGAAGACA	ACGTGCCTTA	AGCTATTGGT	CTATTGGTTC	5460
45	TTGGGGTGGT	AGTGGTATTT	GTACGTTGTT	TGGTGGCTTA	ATGGCTACAT	ATATAGGTTG	5520
	GCGTTCAATA	TITGTTGTTT	CAATTCTATT	AACATTATTA	GCAATGTACT	TAATCAAACA	5580
	TGCACCTGAG	ACTAAAGCAG	AACCAATCAA	AGGTATGAAA	GCAGAAGCTA	AAAAGTTTGA	5640
50	CGTTATTGGT	TTAGTCATTT	TAGTAGTGAC	GATGTTAAGT	TTAAATGTAA	TCATCACACA	5700
	GACGTCTCAT	ጉተጥርርጥተጥልር	عملمانات لا تراثيمين	እ አጥጥርጥ አርታርጥ	ביתים איניים איניים	TOTTE A TOTO	E760

+.5

	AATTTTTAAA	AATAGAGGAT	ACAGTGGTGC	AACTATTTCA	AACTTCTTAT	TAAATGGTGT	5880
	AGCAGGTGGT	GCACTTATCG	TTATTAACAC	GTATTATCAA	CAACAATTAG	GATTTAATTC	5940
5	TTCGCAAACG	GGTTATATTT	CATTAACGTA	TTTAATAACA	GTGTTGTCAA	TGATTCGTGT	6000
	AGGTGAAAAG	ATTTTATCTC	AACATGGTCC	GAAGCGCCCA	CTATTACTAG	GAAGTGGCTT	6060
	TACAGTGATT	GGGTTAATCT	TATTGTCGTT	AACATTTTTA	CCAGAAGTGT	GGTATATCAT	6120
10	ATCTAGTATA	GTTGGATATT	TATTGTTTGG	TACTGGTTTA	GGATTATATG	CTACACCATC	6180
	AACTGATACA	GCAGTTGCTA	GTGCGCCAGA	TGATAAGTCG	GGTGTTGCTT	CAGGTGTGTA	6240
	TAAAATGGCG	TCATCATTAG	GAAATGCATT	TGGAGTAGCA	GTATCTGGTA	CGGTTTATAC	6300
15	TGTGTTAGCA	GCTAATTTAA	ATTTGAACTT	AGGTGGTTTC	ACAGGTATGA	TGTTTAATGC	6360
	CTTGCTAGCA	ATTGTTGCAT	TTTTAGTCAT	TTTACTATTA	GTTCCTAAAA	ATCAAACGAA	6420
20	TTTGTAAAAC	TGAAATGAAA	GCAAGTTATT	ATGTAGGGAT	TTTAAAGGAA	ATTTTGTGAA	6480
	AGTAAGTTTA	TCATACACAC	TTAATGTTGC	GTATTGACGT	TTAATGTTAG	GTGTGTTCTT	6540
	TTATAGACGA	TAAAAGCTGT	GTGCATATTA	AGCGAATGAT	TTTCAAATTG	ACGCTAATAT	6600
25	GCGAAAGTAG	TATTTTTAAA	ATGAACAACA	ACGATGAAGA	GGGGTTTATA	GGATGAAAAT	6660
	TGCAATTGCT	GGATCGGGTG	CATTAGGTAG	TGGCTTTGGT	GCCAAACTAT	TTCAAGCAGG	6720
	ATATGATGTC	ACACTTATTG	ACGGATATAC	ATCTCATGTT	GAAGCGGTTA	AGCAACATGG	6780
30	ATTAAATATA	ACGATTAATG	GAGAGGCATT	CGAGTTAAAC	ATTCCGATGT	ATCATTTTAA	6840
	TGATCAACCG	GACGAAAGCA	TTTACGATGT	TGTCTTTCTA	TTTCCAAAGT	CTATGCAATT	6900
	AAAAGAAGTG	ATGGAAGATA	TGAAGCCACA	TATTGATAAT	GAAACGATCG	TCGTATGTAC	6960
35	GATGAATGGT	CTGAAGCATG	AAGAAGTCAT	TGCGCAGTAT	GTTGCTCAAT	CACAAATTGT	7020
	CAGAGGTGTT	ACGACTTGGA	CGGCAGGTCT	TGAAAGCCCT	GGACACAGTC	ATTTACTTGG	7080
40	TAGTGGACCA	GTTGAAATAG	GTGAACTAGT	GGATGAAGGT	AAAGAAAATG	TTATAAAAGT	7140
40	TGCTGATTTA	CTTAACGAAG	CGGAATTGAA	TGGTGTCATT	AGTAAAGATT	TATACCAATC	7200
	GATTTGGAAA	AAGATTTGTG	TTAATGGTAC	GGCAAATGCA	TTAAGCACAG	TGTTGGAGTG	7260
45	TAATATGGCA	TCGCTGAATG	AAAGTAGTTA	TGCGAAGTGT	TTGATTTATA	AATTAACGCA	7320
	AGAAATAGTG	CATGTAGCGA	CGATTGATAA	TGTTCATTTA	AATGTTGATG	AAGTATTTGA	7380
	ATATTTAGTT	GATTTAAATG	AAaAAGTTGG	TGCGCATTAT	CCATCCATGT	ATCAAGATTT	7440
50	AATTGTTAAT	AATAGAAAAA	CTGAAATTGA	TAATTATT	GGCGCAGTTG	CAACATTAGG	7500
	TAAACAACGT	Catattgaag	CGCCAGTCAA	TCGCTTTATT	ACTGATTTAA	TTCATACTAA	7560

	CAATCACGTG	ATATTACGGT	CATTATTAAG	ATTGAAATGT	AAATAAATAA	GAACAGCAGT	7680
	AAGGTACTTT	CAAATTGAAA	TGATCTTGGT	GCTGTTTTTC	TTGATTGATC	TTCGTCATAA	7740
5	TTCAGATTTG	TCATAGGCTA	CGACATACTA	TTAGTATTTA	CTAGACAGTT	TTTACGACGA	7800
	CACTTTGAAA	AATTTTGAGG	CAAATCATTT	GGAAGTCTCA	CGTGAATTTT	GTAAACTCAT	7860
	CAAGCAAGTA	ATTATATTA	AAAGACAAAT	AGAGAAAAGG	TGTTTATAAT	GAGTAAAATT	7920
10	TTTGTAACTG	GTGCAACGGG	CCTTATTGGC	ATTAAATTAG	TTCAAAGACT	AAAAGAAGAG	7980
	GGGCATGAGG	TTGCTGGTTT	TACTACATCT	GAGAATGGTC	AACAAAAGCT	AGCTGCTGTT	8040
15	AATGTAAAAG	CATATATTGG	TGATATATTA	AAAGCTGATA	CTATTGATCA	AGCGTTAGCA	8100
	GATTTTAAAC	CAGAAATCAT	TATCAATCAA	ATTACGGATT	TAAAAAATGT	TGATATGGCA	8160
	GCAAATACGA	AAGTACGTAT	TGAAGGTTCT	AAAAACCTAA	TTGATGCGGC	GAAAAAGCAT	8220
20	GACGTTAAGA	AAGTAATTGC	CCAAAGTATT	GCCTTTATGT	ATGAACCTGG	CGAAGGATTA	8280
	GCAAATGAGG	AAACTTCACT	TGATTTTAAC	TCAACTGGCG	ATAGAAAAGT	AACGGTTGAT	8340
	GGTGTGGTTG	GTTTAGAAGA	AGAAACGGCT	CGTATGGATG	AATACGTTGT	TTTACGTTTT	8400
25	GGCTGGTTAT	ATGGCCCAGG	TACTTGGTAC	GGAAAAGATG	GCATGATTTA	TAATCAATTT	8460
	ATGGATGGTC	AAGTGACACT	TTCAGATGGC	GTAACATCAT	TTGTGCATCT	TGATGATGCA	8520
	GTTGAAACAT	CTATTCAAGC	TATTCATTTT	GAAAATGGTA	TCTATAATGT	AGCAGATGAT	8580
30	GCĂCCTGTTA	AAGGTTCTGA	ATTTGCAGAA	TGGTATAAAG	AACAACTTGG	TGTTGAACCA	8640
	AATATTGATA	TTCAACCTGC	GCAACCATTT	GAACGTGGCG	TAAGCAATGA	GAAGTTTAAA	8700
	GCGCAAGGTG	GTACTCTGAT	TTATCAAACT	TGGAAAGATG	GCATGAATCC	AATTAAATTAA	8760
35	TAATTTATCC	GTTTAATATA	CAAAGAATAA	AGACTTGGTC	GAATCGTGGA	TGATATATTA	8820
	TCAAACGCAC	GGCTCGAACA	AGTCTTTTTT	ATTATGTCTT	CGTTATCTTT	GTATGAAGGA	8880
40	ATAACAGAAT	TACAATTAAT	GTACTGAATA	ATGCAATTAA	TGTTGTGATT	AGTGCTAATT	8940
••	TAATTTCTAT	TGGTAGCCAA	GTCAGTACAA	AAGACCAATT	ATTGCTACCG	AGAATGAGAT	9000
	ATGGTAATGC	ATATAATATG	AGCGCTAAAG	CGATACATAT	ACATAATGAT	AACCAACTCA	9060
45	ATACAGCAAT	cc					9072

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16826 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

	GTGGAACAG	TGTAACTATA	TCATTTCTT	CAACATTTA	T TGGGAAAAT	TTAGCTACAT	. 60
5						AGTGACAATA	
						TTAGTCATGA	
		•				GATTCAAGTT	240
10						GTGAGTATTA	300
						TATATGACGC	
						GGTCTAAATG	420
15						AATATTATAG	
						AAAAAGATTT	480
						CCAACTCAAT	540
20		•				TGGCCATATG	600 660
						CGCATTCGAC	720
25						AATTTCTTTA	720
					GAAATATGAT		
*					TTTACACAGA		840 900
30						ACAGGTGCAA	
					TAATAGACAT		960
			-		CTACTTACTA		1020
35		•			GTATGACATG		1080
					TGAGCAATAC		1140
	•				GACACTTATC		1200
40					TGGTCATGGT		1260
					TGTTAAAATG		1320
					TGTATGTATT		1380
45					TGGCTATCTT		1440
							1500
						GAACAATATG	1560
50	ATGCGGGTAT				TCAACTCT		1620
	WALCHOLOGIAM	CONNITORNE	CACALGGG II.	AGCGCGCACA	יואנאים איים איין מ	እ እ እ / ገ እጥ አ እ አ ጥ	3 600

	AAGCGATTAT	TCGATGTAGT	GAGTTCAATA	TATGGTTTAG	TAGTTTTAAG	TCCGATTCTG	1800
	TTAATTACAG	CATTACTAAT	TAAAATGGAa	TCACCTGGAC	CAGCCATTTI	CAAACAAAAA	1860
5	AGACCGACGA	TTAATAATGA	ATTGTTTAAT	ATTTATAAGT	TTAGATCAAT	GAAAATAGAC	1920
	ACACCTAATG	TTGCAACTGA	TTTAATGGAT	TCAACATCGT	ATATAACAAA	GACAGGGAAG	1980
	GTCATTCGTA	AGACCTCTAT	TGATGAATTG	CCACAATTAT	TGAATGTTTT	AAAAGGAGAA	2040
10	ATGTCAATTG	TAGGTCCTAG	ACCAGCGCTT	TATAATCAAT	ACGAATTAAT	CGAAAAACGT	2100
	ACAAAAGCGA	ACGTGCATAC	GATTAGACCA	GGTGTGACAG	GACTAGCTCA	AGTGATGGGG	2160
15	AGAGATGATA	TCACTGATGA	TCAAAAAGTA	GCGTATGATC	ATTATTACTT	AACACATCAA	2220
	TCTATGATGC	TTGATATGTA	TATCATATAT	AAAACAATTA	AAAATATCGT	TACTTCAGAA	2280
	GGTGTGCATC	ACTAATGAGA	AAAAATATTT	TAATTACAGG	CGTACATGGA	TATATCGGTA	2340
20	ATGCTTTAAA	AGATAAGCTT	ATTGAACAAG	GACATCAAGT	AGATCAAATT	AATGTTAGGA	2400
	ATCAATTATG	GAAGTCGACC	TCGTTCAAAG	ATTATGATGT	TTTAATTCAT	ACAGCAGCTT	2460
	TGGTTCACAA	CAATTCACCT	CAAGCAAGGC	TATCTGATTA	TATGCAAGTG	AATATGTTGC	2520
25	TGACGAAACA	ATTGGCACAA	AAGGCTAAAG	CTGAAGACGT	TAAACAATTT	ATTTTTATGA	2580
	GTACTATGGC	AGTTTATGGA	AAAGAAGGTC	ATGTTGGTAA	ATCAGATCAA	GTTGATACAC	2640
	AAACACCAAT	GAACCCTACG	ACCAACTATG	GTATTTCCAA	AAAGTTCGCT	GAACAAGCAT	2700
30	TACAAGAATT	GATTAGTGAT	TCGTTTAAAG	TAGCAATTGT	GAGACCACCA	ATGATTTATG	2760
	GTGCACATTG	CCCAGGAAAT	TTCCAACGGT	TAATGCAATT	GTCAAAGCGA	TTGCCAATCA	2820
	TTCCCAATAT	TAACAATCAG	CGCAGTGCAT	TATATATTAA	ACATCTGACA	GCATTTATTG	2880
35	ATCAATTAAT	ATCATTAGAA	GTGACAGGTG	TGTACCATCC	TCAAGATAGT	TTTTACTTTG	2940
	ATACATCGTC	AGTAATGTAT	GAAATACGTC	GCCAATCACA	TCGTAAAACG	GTATTGATCA	3000
10	ACATGCCTTC	AATGCTAAAT	AAGTATTTTA	ATAAGTTGTC	GGTCTTTAGA	AAATTATTCG	3060
	GCAATTTAAT	ATACAGCAAT	ACGTTATATG	AATAATAAA	TGCACTTGAA	ATTATTCCTG	3120
	GAAAAATGTC	ACTTGTTATT	GCGGACATCA	TGGATGAAAC	GACAACCAAA	GATAAGGCAT	3180
15	AAGTCATCTA	AAAATAAATT	TCAACATACA	AATCGTTTTA	TTTGGAGGTT	ATAGTATGAA	3240
	GTTAACAGTA	GTTGGCTTAG	GTTATATTGG	TTTACCAACA	TCAATTATGT	TTGCAAAACA	3300
	TGGcGTCGAT	GTGCTTGGTG	TTGATATTAA	TCAGCAAACG	ATTGATAAGT	TACAAAGTGG	3360
50	TCAAATTAGT .	ATTGAAGAAC	CTGGATTACA	AGAGGTTTAT	GAAGAGGTAC	TGTCATCGGG	3420
	AAAATTCAAC	CTD TOTA ON B	CCCCACAGCC	A TO COLOUR A COLOUR A	mmma maa mma	CCCMMCCC	

	TAGTATTTTA	TCATTTTTAG	AAAAAGGAAA	TACCATTATT	GTAGAGTCGA	CAATTGCGCC	3600
	TAAAACGATG	GATGATTTTG	TAAAACCAGT	CATTGAAAAT	TTAGGGTTTA	CAATAGGTGA	3660
5	AGATATTTAT	TTAGTGCATT	GTCCAGAACG	TGTACTGCCA	GGAAAAATTT	TAGAAGAATT	3720
	AGTTCATAAC	AATCGTATCA	TTGGCGGTGT	GACTGAAGCT	TGTATTGAAG	CGGGTAAACG	3780
	TGTCTATCGC	ACATTCGTTC	AGGGAGAAAT	GATTGAAACA	GATGCACGTA	CTGCTGAAAT	3840
10	GAGTAAGCTA	ATGGAAAACA	CATATAGAGA	CGTGAACATT	GCTTTAGCTA	ATGAATTAAC	3900
	AAAAATTTGC	AATAACTTAA	ATATTAATGT	ATTAGATGTG	ATTGAAATGG	CAAACAAACA	3960
15	TCCGCGTGTT	AACATCCATC	AGCCTGGTCC	AGGTGTAGGC	GGTCATTGTT	TAGCTGTTGA	4020
	TCCGTACTTT	ATTATTGCTA	AAGACCCTGA	AAATGCAAAG	TTAATTCAAA	CTGGACGTGA	4080
	ТААТТААТАА	TCAATGCCGG	CCTATGTTGT	TGATACAACG	AAGCAAATCA	TCAAAGTGTT	4140
20	GAGCGGGAAT	AAAGTCACAG	TATTTGGTTT	AACTTATAAA	GGTGATGTTG	ATGATATAAG	4200
	AGAATCACCA	GCATTTGATA	TTTATGAGCT	ATTAAATCAA	GAACCAGACA	TAGAAGTATG	4260
	TGCTTATGAT	CCACATGTTG	AATTAGATTT	TGTGGAACAT	GATATGTCAC	ATGCTGTCAA	4320
25	AGACGCATCG	CTAGTATTGA	TTTTAAGTGA	CCACTCAGAA	TTTAAAAATT	TATCGGACAG	4380
	TCATTTTGAT	AAAATGAAGC	ATAAAGTGAT	TTTTGATACA	AAAAATGTTG	TGAAATCATC	4440
	ATTTGAAGAT	GTATCGTATT	ATAATTATGG	CAATATATTT	AATTTTATCG	ACAAATAAAA	4500
30	TGTGTCAAAC	TAGGGCATAC	ATGATTAAGG	AAAGATAAGC	TGTCATGTGT	TTGAACTTCA	4560
	GAGAGGATAA	TGTTATGAAA	ÄAAATTATGG	TTATTTTCGG	TACGAGACCC	GAAGCAATAA	4620
	AAATGGCACC	ATTAGTAAAA	GAAATTGATC	ATAATGGGAA	CTTTGAAGCG	AACATTGTGA	4680
35	TTACAGCACA	ACATAGAGAT	ATGTTAGATA	GTGTGTTAAG.	TATATTTGAT.	ATTCAAGCTG	4740
	ATCATGATTT	AAATATTATG	CAAGATCAAC	AAACATTAGC	AGGCCTTACG	GCGAATGCAC	4800
40	TTGCTAAACT	TGATAGCATC	ATTAATGAGG	AACAACCGGA	TATGATTTTA	GTACATGGTG	4860
	ATACTACAAC	GACTTTTGTA	GGAAGTTTGG	CAGCATTTTA	TCATCAAATT	CCGGTCGGAC	4920
	ATGTAGAAGC	TGGACTTCGA	ACACATCAGA	AATACTCACC	ATTTCCTGAA	GAGTTAAATC	4980
45	GAGTCATGGT	AAGTAATATT	GCTGAATTGA	ATTTTGCGCC	AACAGTAATT	GCAGCTAAAA	5040
	ATTTACTTTT	TGAAAACAAA	GACAAAGAGC	GTATCTTTAT	TACTGGAAAT	ACAGTTATTG	5100
	ACGCATTGTC	AACAACAGTT	CAAAATGATT	TTGTTTCAAC	GATTATTAAT	AAACATAAAG	5160
50	GCAAGAAAGT	TGTTTTACTA	ACAGCGCATC	GTCGTGAAAA	TATTGGGGAA	CCGATGCATC	5220
	AGATTTTTAA	AGCAGTAAGA	GATTTGGCAG	ATGAATATAA	AGATGTTGTC	TTCATTTATC	5280

	GGATTGAATT	AATTGAGCCA	TTAGATGCGA	TTGAGTTCCA	TAATTTTACA	AATCAATCGT	5400
	ACCTCGTGCT	GACAGATTCT	GGTGGTATTC	AAGAGGAGGC	TCCTACATTT	GGAAAACCTG	5460
5	TGTTGGTATT	AAGGAATCAT	ACAGAGCGTC	CCGAAGGCGT	TGAGGCGGGA	ACATCGAGAG	5520
	TAATTGGCAC	AGATTATGAC	AATATTGTTC	GAAATGTGAA	ACAATTGATT	GAGGATGATG	5580
	AAGCGTATCA	ACGTATGAGT	CAAGCGAATA	ATCCATATGG	TGATGGACAA	GCATCACGAC	5640
10	GTATTTGTGA	AGCAATAGAA	TATTATTTTG	GATTGCGCAC	AGACAAGCCG	GATGAATTCG	5700
	TACCTTTACG	TCACAAATAA	TAAAAAACCC	CTAATCATGA	AGTTGGTTTA	GACAACCAGC	5760
15	GGTGACTAGG	GGTTTTTAAT	TTTATTTATA	TTGATAGTGG	TAGCCAATAT	CATATTTGAA	5820
	TACTTTATTT	GATAATATTG	GACTTTGCTG	TCCATCGTCA	TCACTTTTTA	AACGTACATT	5880
	TTTATGAGCT	TCTTTAAATA	CATCGGAATT	CAACCAATTA	TTAAAGCTAT	CTTCAGATTC	5940
20	CCAAATAGTT	AAGATTTTAA	CTTCGTCTGT	ATCCTCGGTA	TTTAATGTTT	TAGTGACAAA	6000
	CATTTGTTGG	AAGCCTTCAA	TAGTTTCAAT	ACCTTGTCTA	TTGTAAAAAC	GTTCAATCGT	6060
	TTCTTCCGCA	CTGCCTTTTT	GTAATTGTAA	TCTATTTTCT	GCCATAAACA	TGGGCAATCA	6120
25	CTCCTCTATT	TTATGATTTG	ATTTGGGTAA	TGTTTTTACA	AATGTAAAGA	GTACAGCGGT	6180
	TTGTATGATA	ACCATTATGA	TTAATCCTAC	ACGGACTGCA	AGAACATCCA	CCATATAAAT	6240
	TGAAAAACCT	ATTACAATGT	ATAAGCTAAT	TAAAATTTTA	ATTTTCTGTT	GTAGCGTGTA	6300
30	GCCTCGATGT	AAATAAAAGT	TTTCTACATA	TTCTTTATAA	ATTTTTTGAT	TAATAAGCCA	6360
	ATTGTAAAAG	CGATCTGAAC	TTCGAGCAAA	GCAAAAAACT	GCTACGAGTA	AAAAAGGGGT	6420
	CGTTGGCAGT	AAAGGTAATA	CGGCACCTGC	AATACCAAGC	GCTGTAAATA	TTAAGCCAAT	6480
35	GACGATTAAA	ATAAGTCGCA	TTGAAAAAAC	TCCATTCTAG	TACTAATGCG	CATGTAATAT	6540
	TGTTTTAGTA	ATATAACTCA	TGCTAAATAT	AATGTGTATG	ATAAGTGCAA	TGACTCAGTA	6600
10	AAATGAAACG	ATGTTGAATT	ATCCTTGTCA	CATTAACGCA	TTTTAAGCGC	GACTTTCATA	6660
••	ACAACCAAAC	TATTTAATGA	GAATTATTCT	CAAGTATTAT	AGTTATATTA	TGTGTTTTAT	6720
	TTTTGAAAAG	TGCAATATGT	TTTCGAAAAT	AAGATTATTT	TTATGTGCAA	AAACGACGCA	6780
15	AAAGTTTTAA	AAATGAGACT	TCTGTGAGCT	GATTATTTTA	TAAAATGTAA	ACGCTTACTA	6840
	TATAATGTGA	ATCATATCGT	TTAAAAGCAT	TATTAAATAT	GATGCTAAGA	GATTTATATT	6900
	ATAGCCAATA	AACAAAGGAG	AGATAATATG	GCAGTAAACG	TTCGAGATTA	TATTGCAGAG	6960
50	AATTATGGTT	TATTTATCAA	TGGGGAATTT	GTTAAAGGTA	GCAGTGACGA	AACAATCGAA	7020
	GTGACTAATC	CAGCAACTGG	AGAAACACTA	TCACATATTA	CAAGAGCAAA	AGATAAAGAT	7080

55

· ___

	TCAGAACGTG	CACAAATGTT	GCGTGATATT	GGTGATAAAT	TAATGGCACA	AAAAGATAAA	7200
	ATTGCAATGA	TTGAAACATT	AAATAATGGT	AAACCGATTC	GTGAGACAAC	AGCAATTGAT	7260
5	ATTCCATTTG	CTGCAAGACA	TTTCCATTAT	TTCGCAAGTG	TTATTGAAAC	AGAAGAAGGT	7320
•	ACAGTGAATG	ATATCGATAA	AGACACAATG	AGTATCGTAC	GACATGAGCC	GATTGGCGTC	7380
10	GTAGGTGCTG	TIGITGCTTG	GAACTTCCCA	ATGCTATTAG	CTGCATGGAA	GATTGCGCCA	7440
10	gCCATTGCTG	CAGGTAATAC	AATTGTGATT	CAACCTTCGT	CTTCAACACC	ATTAAGTTTA	7500
	TTGGAAGTTG	CTAAAATTTT	CCAAGAGGTA	TTACCTAAAG	GTGTTGTCAA	TATACTAACG	7560
15	GGTAAAGGTT	CAGAATCAGG	TAATGCAATT	TTCAATCATG	ATGGTGTAGA	TAAATTATCA	7620
	TTTACGGGCT	CAACTGATGT	AGGTTATCAA	GTTGCCGAAG	CTGCAGCAAA	ACATCTAGTA	7680
	CCCGCTACAT	TAGAGCTTGG	TGGTAAAAGC	GCCAATATCA	TATTAGATGA	TGCTAATTTA	7740
20	GACCTTGCAG	TTGAAGGTAT	TCAGTTAGGT	ATTTTATTCA	ACCAAGGTGA	AGTATGTAGT	7800
	GCAGGTTCTC	GATTATTAGT	TCATGAAAAA	ATTTATGATC	AATTGGTGCC	ACGTTTACAA	7860
	GAGGCATTTT	CAAATATTAA	AGTTGGAAAT	CCACAAGATG	AAGCTACACA	AATGGGTAGT	7920
?5	CAAACTGGTA	AGGATCAATT	AGATAAAATT	CAATCATATA	TTGATGCAGC	AAAAGAATCA	7980
	GATGCACAAA	TTTTAGCAGG	CGGTCATCGC	TTAACTGAAA	ATGGATTAGA	TAAAGGGTTC	8040
	TTCTTTGAGC	CGACATTAAT	TGCtGTGCCA	GACAATCATC	ACAAATTAGC	ACAAGAAGAA	8100
80	ATATTTGGAC	CAGTGTTAAC	agtgattaaa	GTGAAGGACG	ATCAAGAAGC	AATTGATATA	8160
	GCTAATGATT	CTGAGTATGG	TTTAGCAGGC	GGTGTATTTT	CTCAAAATAT	CACACGTGCA	8220
	TTAAATATTG	CTAAAGCTGT	ACGTACAGGA	CGTATTTGGA	TTAACACTTA	CAACCAAGTA	8280
15	CCAGAAGGCG	CACCATTTGG	TGGTTATAAA	AAATCAGGTA	TCGGTCGAGA	AACTTATAAA	8340
	GGTGCGTTAA	GTAACTATCA	ACAAGTTAAA	AATATTTATA	TTGATACAAG	CAATGCTTTA	8400
0	AAAGGTTTGT	ACTAGAATAA	ATATCGTTTC	TGAAGCGTGT	TTGTAGGTCA	GTCTAGCGGT	8460
	AAGTCTTAAC	ATTTAACGGC	GTTGTTTAGA	TTTTAAGCAA	AACAAAATAT	ATAGGAACAC	8520
	GTATCATGAT	ATTAGGATAT	AATGACTAAA	ATAATAGCAG	TAGGATGGTT	TTTAATTGCA	8580
5	AATCATCTTA	CTGCTGTTTT	TAATTATGCT	AATTTGCGAT	GCGGCTATTA	TAAGGACAGA	8640
	GTTGTTTATT	AATTATGGTG	ATTTAGAAAT	ATGAAGTTCA	ATATGCAAAG	TCATCGTTTG	8700
	TTTTAATATG	CGGAACAATC	ATTAAAGTTA	TTGCGATTTT	TTGAACTTAA	TGAAACTAAA	8760
0	CAATAAATTT	GAGATACTTT	TTTGTCATTT	TTATGTAACT	AACACAATAA	TCTCGTACAT	8820
	TATTAAAATT	TTCTATATGA	TAGGAATAAA	GCAAAGCGCG	AGTGTGCTGT	AAAACTTTTC	8880

	GATGATGTAT	AAATCATGGT	TAATTACGGA	AGCATTAATA	TTAACCTGAG	AAGCTATAAA	9000
	GAATTATTTT	TAAAAGCGAC	AATATTAAAT	ACGACGCATT	TATTTAGGAG	TGGCAAACGT	9060
5	ATGAATGGGA	AAAAGGCGAA	TACGATAAAC	AGATACAAAT	ATTTTCATCA	TGTCAATCAT	9120
	CAAAAAATTC	AACAAAGTTC	TAAAAAGACG	CTGTGGGCAT	CACTAATCAT	CACATTGTTA	9180
	TTTACAGTGA	TTGAATTTGT	CGGAGGTTTA	GTATCTAATt	CATTGGCATT	ACTGTCAGAT	9240
10	TCATTTCATA	TGCTTAGTGA	TGTATTAGCA	CTTGGTTTAT	CTATGTTGGC	CATTTATTTT	9300
	GCAAGTAAAA	AGCCGACTGC	ACGATACACA	TTTGGATATT	TAAGATTTGA	GATATTAGCT	9360
15	GCATTTTTAA	ATGGTTTAGC	ATTAATTGTA	ATTTCAATCT	GGATTTTATA	TGAAGCTATT	9420
	GTACGTATTA	TTTATCCGCA	ACCAATTGAA	AGTGGCATTA	TGTTTATGAT	TGCTAGTATT	9480
	GGTTTACTCG	TCAATATTAT	TTTGACTGTT	ATCCTTGTAA	GGTCTTTAAA	ACAAGAAGAC	9540
20	AATATCAATA	TTCAAAGTGC	ATTATGGCAT	TTCATGGGAG	ACTTATTGAA	CTCTATTGGT	9600
	GTCATCGTTG	CAGTTGTATT	GATTTACTTT	ACAGGATGGC	GCATCATCGA	CCCAATCATT	9660
	AGTATTGTAA	TTTCACTCAT	CATTTTACGT	GGTGGTTATA	AAATTACGCG	TAATGCgTGG	9720
25	LTAATTTTAA	TGGAAAGTGT	GCCTCAACAT	TTGGATACTG	ATCAAATTAT	GGCAGATATT	9780
	AAAAACATAG	ATGGCATATT	AGATGTACAT	GAATTTCATT	TGTGGAGTAT	TACAACAGAG	9840
	CATTATTCAT	TAAGTGCCCA	TGTTGTGTTA	GATAAAAAAT	ATGAGGGTGA	TGATTATCAA	9900
30	GCGATTGATC	AAGTATCATC	ATTGTTGAAA	GAAAAATATG	GCATTGCACA	TTCAACGTTG	9960
	CAAATTGAAA	ACTTGCAATT	GAATCCATTA	GATGAGCCAT	ACTTCGACAA	ATTAACATAA	10020
	ATAAAACATT	GTAGCGCCTA	AAACATTAAT	CTATGTCATA	GGCGCACGTT	TCGTTTTATA	10080
15	CTTATGTTGC	ATCATTTAAA	TGATTTTCGT	CAATTTCTTT	GATGCTATCT	ACATCTAACA	10140
	CGACATCTTT	AGGTTTCAAA	ATATGAATAT	GTTTTTCATC	ATTTGTATGT	AAAATGCGTT	10200
10	CTATGATGTA	CCTTTGACCG	GCCATTGTTT	CTACAGCAAT	CTTTTTGTTT	CTAGCTAAAC	10260
	TTGCTACGAC	AGATTCTTTA	TCCATAATGA	TAGCCCCCTA	TATATATGTT	TATTTACTTA	10320
•	TACCCTAACA	TGATTTTTAT	ACTCTTTGAA	AATATATTTT	ACAGAATTTT	ATCTAAATAT	10380
15	TAAAAAATT	ATCTTAATAT	CCTTGTAATC	CGATAAGAAT	TATAGTAATA	TTTTTTCAAC	10440
	CATTGTTATA	GGAGGTCTTA	TTAATGACAT	TATTTTTATT	AGAAGCTAAC	AATCTTGATT	10500
	TTGCATCAAC	GAAAGAAGAA	CTAGAAGCAA	AGGCAGCATC	ACTATCTACG	AAGACAATTC	10560
50	CAACATTAAT	TGAAGTACAA	GCTACTGAAA	ATTTAACTCA	TGGTTATTTT	ATTGTGGAAG	10620
	CAAATGACGA	aGCAGAAGCT	AAACAATTTT	TAACAGAAGC	AGATATTAGT	ATTCAATTAG	10680

15	COLLIBERTOR	urmeatru	141111111111111	•	~~		
	ATATAACAAT	TCACGATATA	AGGGCTGTGT	TTGGCATAGC	CCTTTAGATA	TACACTTAAT	11280
	TCCTATTAAA	ATAGTAGGGA	TTAAAAGGGG	GCTTGTCATG	ATTAAAATTC	AACAATTACA	11340
20	ACATCACTTT	GGATCACATA	AAGTAATTCA	TAACTTTAAT	TTGGACATTA	GCAAGGGAGA	11400
	AATAGTCACT	TTCATAGGGA	AAAGTGGTTG	CGGAAAGTCT	ACTITACTCA	ATATTATCGG	11460
	TGGATTTATT	CATCCATCGT	CTGGTCGTGT	CATTATTGAT	AACGAAATTA	AACAACAGCC	11520
25	ATCTCCAGAT	TGTTTAATGC	TATTTCAACA	TCATAATTTG	CTGCCATGGA	AAACGATTAA	11580
	TGACAACATT	AGGATTGGAT	TACAACAGAA	AATTAGTGAT	GAAGAGATTA	ACGCACAGCT	11640
	TAAATTAGTT	GATTTAGAAG	ACAGGGGAAA	GCATTTTCCC	GAGCAACTGT	CCGGGGGTAT	11700
30	GAAACAACGT	GTGGCACTAT	GTCGAGCGCA	TGTGCATAAG	CCTAACGTTA	TATTGATGGA	11760
	TGAGCCATTA	GGTGCATTAG	ATGCATTTAC	ACGTTATAAA	CTTCAGGATC	AACTAGTGCA	11820
	aCTAAAACAT	AAAACGCAAT	CAACTATTAT	TTTAGTGACG	CATGACATTG	ATGAAGCTAT	11880
35	TTATCTTTCC	GACCGCATTG	TTCTGTTAGG	TGAAGGGTGC	AATATTATTT	CTCAATATGA	11940
	AATTACAGCA	TCACATCCAC	GCAGTCGTAA	TGATAGCCAC	CTACTTAAGA	TTCGTAATGA	12000
	AATTATGGAA	ACATTTGCAT	TGAATCATCA	TCAAGTTGAA	CCTGAATATT	ATTTATAAGG	12060
40	AGTGAGTGAC	GATGAAAAGG	TTAAGCATAA	TCGTCATCAT	TGGAATCTTT	ATAATTACAG	12120
	GATGTGAT T G	GCAAAGGACG	TCTAAAGAAC	GGTCTAAAAA	TGCCCAAAAT	CAGCAAGTGA	12180
45	TTAAAATTGG	ATATTTGCCG	ATTACACATT	CAGCTAATTT	GATGATGACT	TATTAAAAAA	12240
40	TATCACAATA	CAATCATCCG	AAATATAAAC	TAGAATTAGT	TAAATTCAAT	AATTGGCCAG	12300
	ATTTAATGGA	CGCATTAAAC	AGTGGTCGTA	TTGATGGTGC	ATCAACTTTA	ATAGAGCTAG	12360
50	CGATGAAATC	AAAACAGAAG	GGCTCAAATA	TAAAGGCTGT	GGCATTGGGC	CATCATGAAG	12420
	GCAATGTCAT	TATGGGACAA	AAAGGTATGC	ACTTAAATGA	ATTTAATAAT	AATGGCGATG	12480

	GTAAACAATT	AAAGATTAAA	CCGGGGCATT	TTAGCTATCA	TGAAATGTCG	CCAGCAGAAA	12600
	TGCCAGCCGC	ATTGAGTGAA	CACAGAATTA	CAGGGTATTC	TGTAGCCGAA	CCATTCGGTG	12660
5	CACTGGGTGA	AAAGTTAGGC	AAAGGTAAGA	CTTTGAAACA	TGGTGATGAC	GTTATACCTG	12720
	ATGCGTATTG	CTGTGTGCTA	GTACTGAGAG	GGGAATTGCT	TGATCAACAC	AAGGATGTAG	12780
	CGCAAgCATT	TGTACAAGAT	TATAAAAAGT	CTGGCTTTAA	AATGAATGAT	CGCAAGCAAA	12840
10	GTGTAGACAT	TATGACGCAT	CATTTTAAAC	AAAGTCGTGA	CGTTTTAACA	CAGTCAGCGG	12900
	CATGGACATC	CTATGGTGAT	TTAACAATTA	AGCCATCCGG	CTATCAAGAA	ATTACGACAT	12960
15	TGGTAAAACA	ACATCATTTG	TTTAATCCAC	CTGCATATGA	TGACTTTGTT	GAACCGTCAT	13020
15	TGTATAAGGA	GGCATCGCGT	TCATGACACG	TCCCACAAAT	AACAAATTTA	TATTACCTAT	13080
	TATCACATTT	ATTATTTTCT	TAGGCATTTG	GGAAATGGTC	ATTATTATTG	GGCATTACCA	13140
20	ACCTGTATTG	TTACCGGGTC	CTGCTCTTGT	AGGAAAAAGT	ATATGGTCTT	TCATTGTTAC	13200
	TGGAGAAATT	TTCCAACATT	TAGCAATTAG	TTTATGGAGA	TTTGTAGCGG	GCTTTGTTGT	13260
	CGCATTGTTG	GTTGCTATTC	CATTGGGCTT	CTTGCTTGGA	AGGAATCGTT	GGCTATACAA	13320
25	CGCTATCGAA	CCGCTATTTC	aattgattag	GCCGATATCT	CCGATAGCAT	GGGCACCATT	13380
	TGTTGTTCTA	TGGTTTGGTA	TTGGTAGTTT	GCCAGCGATT	GCGATTATTT	TTATCGCTGC	13440
	TTTTTTCCCA	ATTGTGTTCA	ATACTATTAA	AGGCGTTAGA	GACATTGAAC	CTCAATATTT	.13500
30	AAAAATAGCA	GCAAATTTAA	ATTTAACTGG	GTGGTCATTG	TATCGCAATA	TATTATTTCC	13560
	CGGGGCATTT	AAACAAATCA	TGGCTGGGAT	ACATATGGCG	GTAGGAACAA	GTTGGATATT	13620
	TTTAGTTTCT	GGTGAAATGA	TTGGTGCACA	ATCGGGATTA	GGTTTTTTAA	TCGTTGATGC	13680
35	ACGAAATATG	TTGAACTTAG	AAGATGTTTT	AGCAGCAATA	TTCTTTATCG.	GATTATTTGG	13740
	TTTTATTATT	GATCGATTCA	TTAGTTATAT	TGAGCAGTTT	ATACTTAGAA	GATTTGGTGA	13800
	ATAÄGGAGAG	ATGATGATGA	CTTTAGAAAC	GCTTATCAAA	GAACAATTAG	ATCCTCATTT	13860
40	AGTAGAAGTT	GATGAAGGGA	CGTATTATCC	GAGAACATTT	ATTCAGCAAT	TATTTGTAGA	13920
	TGGTTATITC	GGTGAGGCGG	CATTGAGAAA	AAATGCTGAA	GTAATCGAAG	CTGTATCGCA	13980
45	GTCTTGTTTG	ACAACAGGAT	TTTGTTTATG	GTGCCAATTA	GCTTTTTCAA	CGTATTTAGA	14040
••	AAATGCCACG	CAGCCACATT	TAAATAATGA	CTTACAACAG	CAATTGTTAT	CTGGAGAAAT	14100
	ATTAGGTGCT	ACCGGATTGT	CTAATCCGAT	GAAGTCATTT	AATGATTTAG	AAAAGTTGAA	14160
50	CCTTGAACAC	ACTTATGTTG	ATGGACAATT	GGTTGTCAGT	GGACGTATGC	CAGCTGTAAG	14220
	ת מרות מידים מידים	CAACACCATT	יבידים: בידים בידים בידים בידים בידים בידים בידים בידים בידים בידים בידים בידים בידים בידים בידים בידים בידים	CATTTCAAA	САТСАВТСВТ	CAGATGAATT	14280

	TTTAGGAGTC	AACGGGTCAG	CAACGTATCA	AATCACATTG	AATCAAGTCG	TAGTGCCACA	14400
	ATCACAAATT	ATCACGCATG	ATGCGAAGCA	GTTTGCGGCA	ACTATTCGCC	CGCAATTTAT	14460
5	TGCTTACCAA	ATTCCAATAG	GATTAGGCTC	AATTAAAAGT	TCTTTAGAGT	TAATTGATGC	14520
	ATTTTCAAAT	GTGCAAAACG	GAATAAATCA	ATATTTAGAG	TATGATGTTG	AAGCTTTTAA	14580
	AAAACGTTAT	CGTCAACTTA	GAGAGGAATA	TTATGCAATA	TTAGATGACG	GTAACTTAAC	14640
10	TTCACATTTA	AATGAATTAA	TATCATTGAA	GAAGGACATC	GGCTATTTAT	TGTTAGATGT	14700
	AAATCAAGCT	TCTGTTGTCA	ATGGTGGTTC	TAGAGCGTAC	ACACCATATT	CGCCACAAGT	14760
15	TCGCAAGTTA	AAAGAAGGAT	TCTTCTTCGC	AGCATTGACA	CCGACATTAA	GACATTTAGG	14820
,,,	TAAACTTGAA	GCAGAGTTGA	AGGGGTAAGT	GTGATAAGCT	GATTTTTTGT	TTAGATGCGT	14880
	TTGTTGAAAC	AAATTTTTTA	ATAATATAAA	TCTTAGTTTA	TAAACATTTT	CTGTTAATTT	14940
20	GTTATATCCT	TTTAACTAGG	AAAATATACA	TTTCGTAATA	ATAATAATCG	TTATCATTGA	15000
	AAAAGTGTTA	ATAAGGTGTA	TAATGAAAAT	GTGAACAATT	AATGAACTTC	TTATTTTAAA	15060
	GAAGGTGAAT	ACTATAGATA	CGCATACTAA	AGAACAACAA	TTCTCGAATC	TAGTAAGATC	15120
25	TTATCGTAAA	GAATACGTGG	GTAAAGGACC	CAATAGTATT	CGAGTGTCGT	TTAAAGATAA	15180
	TTGGGCGATT	GCACATATGA	CAGGTGTTTT	GAGTAAAGTT	GAGAGTTTTT	ACCTAAACGA	15240
	CAAACGCAAT	GAATCGATGC	TCCATTATAC	ACGCACAGAG	AAGATTAAAC	AGATGTATAA	15300
30	AGAAATAGAT	GTAAATGAGA	TGGAAAGTCT	TGTAGGCGCT	AAGTTTGTAA	AATTATTTAC	15360
	AGATATTGAT	TTGAATGATG	ATGAAGTCAT	TTCAATATTT	GTTTTCGATA	AGTCAATAGA	15420
	ATAAGTGTTG	CTGGTGTAAG	GTACACGGTG	CTGTTTGCTA	ACTTCGCTTT	GAATTTAACA	15480
35	ATAATTCAAG	GGGGTGGTAT	GTCAAACGGT	GCCGTTTTTT	TGTCATATTT	TTAAAACAAG	15540
	CAAÇÂTGCAA	CACGTACTTT	AAGGAAGTCA	AAATTTATCA	TTTAGGAGAG	ATGGATATGA	15600
	AAAŤCGTAGC	ATTATTTCCA	GAAGCAGTAG	AAGGTCAAGA	AAATCAATTA	CTTAATACTA	15660
10	AAAAAGCATT	AGGATTAAAA	ACATTTTTAG	AGGAAAGAGG	ACATGAGTTC	ATTATATTAG	15720
	CAGATAATGG	TGAAGACTTA	GATAAACATT	TACCAGATAT	GGATGTGATT	ATTAGTGCGC	15780
4 5	CATTTTATCC	TGCATATATG	ACTCGTGAAC	GTATTGAAAA	AGCACCGAAC	TTGAAATTAG	15840
	CAATTACAGC	AGGTGTAGGA	TCTGACCATG	TAGATTTAGC	GGCAGCAAGT	GAACACAATA	15900
	TTGGTGTCGT	TGAAGTTACA	GGAAGTAATA	CAGTTAGTGT	GGCAGAACAT	GCGGTTATGG	15960
50	ATTTATTAAT	ACTTCTTAGA	AACTATGAAG	AAGGTCATCG	TCAATCAGTA	GAAGGTGAAT	16020
	GGAACTTGTC	TCAAGTAGGT	AATCATGCGC	ATGAATTACA	ACACAAAACA	ATTGGTATTT	16080

TACAACACTA	TGATCCAATC	AATCAACAAG	ACCATAAATT	GTCTAAATTT	GTAAGCTTTG	16200
ATGAACTTGT	TTCAACAAGT	GATGCGATTA	CAATTCATGC	ACCATTAACA	CCAGAAACTG	16260
ATAACTTATT	TGATAAAGAT	GTTTTAAGTC	GTATGAAAAA	ACACAGTTAT	TTAGTGAATA	16320
CTGCACGTGG	TAAAATTGTA	AATCGCGATG	CGTTAGTTGA	agcgttagca	TCCGAGCATT	16380
TACAAGGATA	TGCTGGTGAT	GTTTGGTATC	CaCAACCtGC	ACCTGCTGAT	CATCCATGGA	16440
GAACAATGCC	TAGAAATGCT	ATGACGGTTC	ACTATTCAGG	TATGACTTTA	GAAGCACAAA	16500
AACGTATTGA	AGATGGAGTT	AAAGATATTT	TAGAGCGTTT	CTTCAATCAT	GAACCTTTCC	16560
AAGATAAAGA	TATTATTGTT	GCAAGTGGTC	GTATTGCTAG	TAAAAGTTAT	ACAGCTAAAT	16620
AGAATAAGGA	TGCTGGGCTA	GCGATTAACG	CTTTCAATTT	TATATAAATG	AATCATATAA	16680
GCACTACTGC	TGTTGTAAAG	ATGGCAGTAG	TTTTTTTATG	ATTACATCTA	AGTATAGTCA	16740
CGGCTATGTT	AGGACAATGA	TTTAACATTT	ACGCACATAT	GTGTTCACTT	ACGCAATTAT	16800
TGAnAAATnT	CATTCATGTG	GnAATC				16826

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4012 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

	TTCAATGAGA	GTAGTGGGCT	GATGTTTAGC	GATATCGCGT	AAGATTAACC	ATTGGCCATA	60
•	ATATATATTG	TGTTTTTCTA	AAATCGGCTC	GGCTAATTTT	AAATAGGGGC	GATATATTGT	120
	TATAAAACTA	TTGAAAAATT	CTTGTGATAG	CATAGTGACA	TCTCCTAAGA	CAAAATAGTT	180
	AGCTTAGCTA	mCCTTTTTAC	AACAATAGTA	ATTATAAAAC	GGGAGCAATT	AGAAATCAAT	240
	ATATAATTAT	TAAGAGCAAA	ATATTATA	CTTTGTTAAA	ATAAGCGTAA	TTACATGTAA	300
	ATAGGGGGAT	ACTAATGATA	TTGAAATTTG	aTCACATCAT	TCATTATATA	GATCAGTTAG	360
	ATCGGTTTAG	TTTTCCAGGA	GATGTTATAA	AATTACATTC	AGGTGGGTAT	CATCATAAAT	420
	ATGGAACATT	CAATAAATTA	GGTTATATCA	ATGAAAATTA	TATTGAGCTA	CTAGATGTAG	480
	AAAATAATGA	AAAGTTGAAA	AAGATGGCAA	AAACGATAGA	mGGCGGAGTC	GCTTTTGCTA	540
	CTCAAATTGT	TCAAGAGAAG	TATGAGCAAG	GCTTTAAAAA	TATTTGTTTG	CGTACAAATG	600
	ATATAGAGGC	AGTTAAAAAT	AAACTACAAA	GTGAGCAGGT	TGAAGTAGTA	GGGCCGATTC	660

					1011111111	MIIGITOIC	1320
20	ATATCAAACA	CCTCATTGTT	AGATTATTGA	CATTATAACA	GGGGTAATTG	TATATGAACA	1380
	TTAATGTGGT	TGCTTGAGGA	AAAATTTATT	CATTGAAGTC	AAGTTGGTTC	ATTTTAGAAA	1440
	TGAATATCGT	GTTAGATGAT	GAAAGTATAT	TGAAGTATAG	GTAACTAGTT	GAAAAGTATT	1500
25	AATTGTACGA	TAACATTAAA	TTTAACACGA	AACATAGATA	TAAAATGATT	CACAATTAAA	1560
	ATGGGTAAAT	TTGAACTTGC	TAAACTATTA	ATTGGAGCAT	GGACATTICA	AAAATAAGAG	1620
	TTCAAATCTT	ACACAAGCTC	TGAATCGACA	CTATAAGATA	CAAACTGTAT	AATTAAAGGT	1680
30	ATTGTTAAAT	AGAAGGAGAT	ATCATAAATC	ATGGAAAAGA	TGCATATCAC	TAATCAGGAA	1740
	CATGACGCAT	TTGTTAAATC	CCACCCAAAT	GGAGATTTAT	TACAATTAAC	GAAATGGGCA	1800
	GAAACAAAGA	AATTAACTGG	ATGGTACGCG	CGAAGAATCG	CTGTAGGTCG	TGACGGTGAA	1860
35	GTTCAGGGTG	TTGCGCAGTT	ACTTTTTAAA	AAAGTACCTA	AATTACCTTA	TACGCTATGT	1920
	TATATTTCGC	GTGGTTTTGT	TGTTGATTAT	agtaataaag	AAGCGTTAAA	TGCATTGTTA	1980
	GACAGTGCAA	AAGAAATTGC	TAAAGCTGAG	AAAGCGTATG	CAATTAAAAT	CGATCCTGAT	2040
40	GTTGAAGTTG	ATAAAGGTAC	AGATGCTTTG	CAAAATTTGA	AAGCGCTTGG	TTTTAAACAT	2100
	AAAGGATTTA	AAGAAGGTTT	ATCAAAAGAC	TACATCCAAC	CACGTATGAC	TATGATTACA	2160
45	CCAATTGATA	AAAATGATGA	TGAGTTATTA	AATAGTTTTG	AACGCCGAAA	TCGTTCAAAA	2220
45	GTGCGCTTGG	CTTTAAAGCG	AGGTACGACA	GTAGAACGAT	CTGATAGAGA	AGGTTTAAAA	2280
	ACATTTGCTG	AGTTAATGAA	AATCACTGGG	GAACGCGATG	GCTTCTTAAC	GCGTGATATT	2340
50	AGTTACTTTG	ATTTATAAAA	TGATGCGTTG	CATGAAGATG	GAGATGCTGA	ACTATTTTTA	2400
	GTAAAGTTGG	ATCCAAAAGA	AAATATAGCG	AAAGTAAATC	AAGAATTGAA	TGAACTTCAT	2460

	CAAAATATGA	TTAATGATGC	GCAAAATAAA	ATTGCTAAAA	ATGAAGATIT	AAAACGAGAC	2580
	CTAGAAGCTT	TAGAAAAGGA	ACATCCTGAA	GGTATTTATC	TTTCTGGTGC	ACTATTAATG	2640
5	TTTGCTGGCT	CAAAATCATA	TTACTTATAT	GGTGCGTCTT	CTAATGAATT	TAGAGATTTT	2700
	TTACCAAATC	ATCATATGCA	GTATACGATG	ATGAAGTATG	CACGTGAACA	TGGTGCAACA	2760
10	ACTTACGATT	TCGGTGGTAC	AGATAATGAT	CCAGATAAAG	ACTCAGAACA	TTATGGATTA	2820
10	TGGGCATTTA	AAAAAGTGTG	GGGAACATAC	TTAAGTGAAA	AGATTGGTGA	ATTTGATTAT	2880
	GTATTGAATC	AGCCATTGTA	CCAATTAATT	GAGCAAGTTA	AACCGCGTTT	AACAAAAGCT	2940
15	AAAATTAAAA	TATCTCGTAA	ATTAAAACGA	AAATAGATTA	ACGACTGAAA	TCTGAACGCT	3000
	CATAAGACTG	TCATTTGCGT	TCAGATTTTT	TTACACAATA	TAGAATGGTT	GAGTAAAATA	3060
	TTTTTGAATA	TAGTGAAAGA	GGGGGAAGTA	CTGTGATAAA	AAAGCTATTA	CAATTTTCTT	3120
20	TAGGGAATAA	GTTTGCTATC	TTTTTAATGG	TTGTTTTAGT	TGTCTTGGGC	GGTGTATATG	3180
	CGAGTGCTAA	ATTGAAATTA	GAATTACTAC	CAAATGTACA	AAATCCAGTT	ATTTCAGTTA	3240
	CAACAACAAT	GCCGGGTGCA	ACGCCACAAA	GTACCCAAGA	TGAAATAAGT	AGTAAAATTG	3300
25	ACAATCAAGT	AAGATCATTG	GCATATGTGA	AAAATGTTAA	AACGCAATCC	ATACAAAATG	3360
	CTTCAATTGT	AACAGTTGAA	TATGAAAATA	ATACAGATAT	GGATAAAGCA	GAAGAACAGC	3420
	TTAAAAAAGA	AATCGATAAA	ATTAAATTTA	AAGATGAAGT	TGGTCAACCA	GAATTAAGAC	3480
30	GTAATTCGAT	GGATGCTTTT	CCGGTTTTAG	CATATTCATT	TTCAAATAAA	GAGAATGACT	3540
	TGAAAAAAGT	AACGAAAGTA	CTGAATGAAC	AATTAATACC	AAAATTGCAA	ACGGTAGATG	3600
	GTGTGCAAAA	TGCGCAATTA	AATGGGCAGA	CGAACCGTGA	AATCACCCTT	AAATTTAAGC	3660
35	AAAATGAACT	TGAAAAATAT	GGGTTGACTG	CTGATGATGT	AGAAAACTAT	CTAAAAACGG	3720
	CAACÃAGAAC	AACGCCACTT	GGATTGTTCC	AATTTGGTGA	TAAAGATAAT	CAATTGTTGT	3780
40	TGATGGTCAA	TATCAATCTG	TTGATGCTTT	TAAAAACATA	AATATTCCAT	TAACGTGGCA	3840
40	GGAGGACCAA	GGGCATCTCA	TCCCAAAGTG	ACCATAAACC	AAATTCAGCC	ATGTCAGACG	3900
•	TTATCAGGCA	TCACCACAGC	AAATTCAAAG	CGTCAGCnCC	AATATATAGT	GGATGCCGCA	3960
45	nGAACTAGGG	GTTTAGCGnT	ATCAGTGGTG	TGGCGACTCT	ATTCTAAACG	AT	4012

(2) INFORMATION FOR SEQ ID NO: 48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7778 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

	CAATATAGGT	CGCCGAGTTT	CAACTACATC	AACTGGTTCA	GTTACATTAG	ATAATGCGCT	60
5	AGGTGTAGGT	GGCTATCCTA	AAGGACGAAT	TATTGAAATT	TATGGTCCTG	AAAGTTCTGG	120
	TAAGACAACA	GTAGCGCTTC	ACGCTATTGC	TGAAGTACAA	AGTAATGGCG	GGGTGGCAGC	180
	ATTTATCGAT	GCTGAACATG	CTTTAGATCC	AGAATATGCT	CAAGCATTAG	GCGTAGATAT	240
10	CGATAATTTA	TATTTATCGC	AACCGGATCA	TGGTGAACAA	GGTCTTGAAA	TCGCCGAAGC	300
	ATTTGTTAGA	AGTGGTGCAG	TTGATATTGT	AGTTGTAGAC	TCAGTTGCTG	CTTTAACACC	360
15	TAAAGCTGAA	ATTGAAGGAG	AAATGGGAGA	CACTCACGTT	GGTTTACAAG	CTCGTTTAAT	420
15	GTCACAAGCG	TTACGTAAAC	TTTCAGGTGC	TATTTCTAAA	TCAAATACAA	CTGCTATTTT	480
	CATCAACCAA	ATTCGTGAAA	AAGTTGGTGT	TATGTTCGGT	AATCCAGAGA	CTACACCAGG	540
20	TGGACGTGCA	TTAAAATTCT	ATAGTTCAGT	AAGACTAGAA	GTACGTCGTG	CAGAACAGCT	600
	TAAACAAGGA	CAAGAAATTG	TAGGTAATAG	AACTAAAATT	AAAGTCGTTA	AAAATAAAGT	660
	GGCACCACCA	TTTAGAGTAG	CTGAAGTTGA	TATTATGTAT	GGACAAGGTA	TTTCTAAAGA	720
25	GGGTGAACTT	ATTGATTTAG	GTGTTGAAAA	CGACATCGTT	Gataaatcag	GAGCATGGTA	780
	TTCTTACAAT	GGCGAACGAA	TGGGTCAAGG	TAAGGAAAAT	GTTAAAATGT	ACTTGAAAGA	840
	AAATCCACAA	ATTAAAGAAG	AAATTGATCG	TAAATTGAGA	GAAAAATTAG	GTATATCTGA	900
30	TGGTGATGTT	GAAGAAACAG	AAGATGCACC	AAAGTCATTA	TTTGACGAAG	AATAGTACAC	960
	TATATTTAAA	CTATAGTTAA	ACTTAGCAAA	TATCCTTATA	GGATTGATTG	AAAGTGATAT	1020
	TCATCTCATA	AAGCTAGAAT	AATATCTAAC	TTTATGGGAT	ACACTACAAA	TCGAGACTAT	1080
35	AAGGTTTTTT	ATTTTATTTA	TTATTACATT	ATCAATAGTT	TTATAATCGA	GCTTCAAAAC	1140
-	TTTAGAAAAT	AGTAGAAATA	GCATTCAATA	TAGTGCAAAA	GTGCAAATTG	ATAACTTGAC	1200
	ACTTATCTCC	TATAAACCGT	ACAATTAATT	TGTATGATTT	TTAATATATA	TCATAAAGTC	1260
40	ATATTGAATT	TCATATAAAG	AGCAAACCCT	AGAAAAGGAG	GTGTTTGTGT	GAATTTATTA	1320
•	AGCCTCCTAC	TCATTTTGCT	GGGGATCATT	CTAGGAGTTG	TTGGAGGGTA	TGTTGTTGCC	1380
45	CGAAATTTGT	TGCTTCAAAA	GCAATCACAA	GCTAGACAAA	CTGCCGAAGA	TATTGTAAAT	1440
40	CAAGCACATA	AAGAAGCTGA	CAATATCAAA	AAAGAGAAAT	TACTTGAGGC	AAAAGAAGAA	1500
	AACCAAATCC	TAAGAGAACA	AACTGAAGCA	GAACTACGAG	AAAGACGTAG	CGAACTTCAA	1560
50	AGACAAGAAA	CCCGACTTCT	TCAAAAAGAA	GAAAACTTAG	AGCGCAAATC	TGATCTATTA	1620
	GATAAAAAAG	ATGAGATTTT	AGAGCAAAAA	GAATCAAAAA	TTGAAGAAAA	ACAACAACAA	1680

	CGCATCTCCG	GTCTCACTCA	AGAAGAAGCT	ATTAATGAGC	AACTTCAAAG	AGTAGAGGAA	1800
	GAACTGTCAC	AAGATATTGC	AGTACTTGTT	AAAGAAAAAG	AAAAAGAAGC	TAAAGAAAAA	1860
5	GTTGATAAAA	CAGCAAAAGA	ATTATTAGCT	ACAGCAGTAC	AAAGATTAGC	AGCAGATCAC	1920
	ACAAGTGAAT	CAACGGTATC	AGTAGTTAAC	TTACCTAATG	ATGAGATGAA	AGGTCGAATC	1980
	ATTGGACGAG	AAGGACGAAA	CATCCGCACA	CTTGAAACTT	TAACTGGCAT	TGATTTAATT	2040
10	ATTGATGACA	CACCAGAAGC	GGTTATATTA	TCTGGTTTTG	ATCCAATAAG	AAGAGAAATT	2100
	GCTAGAACAG	CACTTGTTAA	CTTAGTATCT	GATGGACGTA	TTCATCCAGG	TAGAATTGAA	2160
15	GATATGGTCG	AAAAAGCTAG	AAAAGAAGTA	GACGATATTA	TTAGAGAAGC	AGGTGAACAA	2220
	GCTACATTTG	AAGTGAACGC	ACATAATATG	CATCCTGACT	TAGTAAAAAT	TGTAGGGCGT	2280
	TTAAACTATC	GTACGAGTTA	CGGTCAAAAT	GTACTTAAAC	ATTCAATTGA	AGTTGCGCAT	2340
20	CTTGCTAGTA	TGTTAGCTGC	TGAGCTAGGC	GAAGATGAGA	CATTAGCGAA	ACGAGCTGGA	2400
	CTTTTACATG	ATGTTGGTAA	AGCAATTGAT	CATGAAGTAG	AAGGTAGTCA	TGTTGAAATC	2460
	GGTGTAGAAT	TAGCGAAAAA	ATATGGTGAA	AATGAAACAG	TTATTAATGC	AATCCATTCT	2520
25	CATCATGGTG	ATGTTGAACC	TACATCTATT	ATATCTATCC	TTGTTGCTGC	TGCAGATGCA	2580
•	TTGTCTGCGG	CTCGTCCAGG	TGCAAGAAAA	GAAACATTAG	AGAATTATAT	TCGTCGATTA	2640
	GAACGTTTAG	AAACGTTATC	AGAAAGTTAT	GATGGTGTAG	AAAAAGCATT	TGCGATTCAG	2700
30	GCAGGTAGAG	AAATCCGAGT	GATTGTATCT	CCTGAAGAAA	TTGATGATTT	AAAATCTTAT	2760
	CGATTGGCTA	GAGATATTAA	AAATCAGATT	GAAGATGAAT	TACAATATCC	TGGTCATATC	2820
	AAGGTGACAG	TTGTTCGAGA	GACTAGAGCA	GTAGAATATG	CGAAATAATT	TTTGTCTCCC	2880
3 5	TCACAAATTA	GTGAGGGAGC	TTTTTTAAGT	TGTAGTCTTA	ALCTAGTTAG	ACACCACTTT	2940
•	ATCGGTAATA	ACTATATTAA	ACAGTAGTTA	TTTGAAAGTA	AGACGGACCT	TAAATTATAT	3000
40	AAGAAGTTAT	TGCTTTTAAT	AAAAATGTTT	TAGGCTTCGT	AATTACTATA	TATTATATTT	3060
40	GTAAACCTAT	AAAGATGATT	GGTTTTCTAT	CCAATAAAAA	AGAAGAGAAG	ATGTAACACA	3120
	TCTTCTCTTC	yGCAATATTA	ATTAGGATTT	ATTTCTAAGT	TGAGTTATTT	TAATTGTAAA	3180
45	TCTGTTTTCT	TTAATTCTTT	TATAACTTCT	GCAGTATCAT	AACAATTTGT	TGCAATTGTT	3240
	GAATATCTCT	CTGCTAAACG	ATATGCATTA	ATGTAAAGCT	TTAAACTTTC	TTTAGCTATA	3300
	TCCTCTGCAT	CTTCGAATTT	TGATGGGTTA	GACATAACCA	CTAATTCTGC	AAATTTTTCT	3360
50	GGATCAATAT	TAATAGACAT	GTATTTATTT	ACAACTCCTA	TTTATTTTGA	TGTCTTAATA	3420
	CTANCATATO	CAACTTTTCA	CACAAAGTAA	ТСТСТСТТ	TAATTGAAGA	ΔΔΔΥΔΔΥΥΥ	3480

	GGATGAACAA	AACATGAGAA	TAATGTTTAT	AGGGGATATC	GTAGGTAAAA	TTGGACGAGA	3600
	CGCAATTGAA	ACGTACATAC	CTCAACTGAA	GCAAAAGTAT	AAACCAACAG	TTACAATTGT	3660
5	AAATGCTGAA	AATGCAGCAC	ATGGTAAAGG	TTTGACTGAA	ATATATAAA	AACAATTACT	3720
	AAGAAATGGT	GTAGATTTCA	TGACTATGGG	TAATCACACA	TATGGTCAAC	GTGAAATTTA	3780
	TGATTTTATA	GATGAAGCAA	AACGACTAGT	AAGACCAGCG	AATTTTCCGG	ATGAAGCGCC	3840
10	GGGAATTGGT	ATGAGATTTA	TACAAATTAA	TGATATTAAA	CTTGCAGTTA	TTAATCTGCA	3900
	AGGAAGAGCG	TTTATGCCAG	atattgatga	TCCTTTTAAA	AAGGCAGATC	AATTAGTCAA	3960
	GGAAGCACAA	GAACAAACTC	CGTTTATATT	TGTTGATTTT	CATGCAGAAA	CAACTTCTGA	4020
15	AAAGTATGCA	ATGGGATGGC	ATTTAGATGG	TAGASTAGCG	CTGTTGTTGG	AACGCATACA	4080
	CACATTCAAA	CAGCAGATGA	ACGTATTTTA	CCAAAGGGGA	CAGGGTATAT	AACGGATGTT	4140
20	GGTATGACAG	GTTTTTATGA	TGGCATTTTA	GGAATAAATA	AAACAGAGGT	AATTGAGCGT	4200
	TTTATCACTA	GTTTGCCACA	AAGACATGTT	GTTCCAAATG	AAGGTAGAAG	TGTATTATCT	4260
	GGTGTTGTTA	TTGATTTAGA	CAAAGAAGGT	AAAACAAAGC	ACATCGAACG	TATATTGATA	4320
25	AATGATGACC	ATCCATTTTC	AACATTTTAA	AATTACGTAA	GTAAACATTC	GAATTGGACC	4380
	CTATCGTCCA	TTAGTATGAA	TITAATATAG	TACCACTGTT	TACATAGTAA	ATCGGTGGTT	4440
	CTTTTTGTTA	TCATTTAATA	TGAAATATAT	CCATAGGAGG	CATATAACTA	TGAAACCACA	4500
30	ATTATCGTGG	AAAGTTGGCG	GTCAACAAGG	CGAAGCTATT	GAATCAACTG	GGGAAATCTT	4560
	CGCTACGGCT	ATGAATAGAA	AAGGATATTA	TTTATATGGA	TATAGACATT	TTTCAAGTCG	4620
	TATCAAAGGT	GGACATACGA	TAAAATAATA	TAGAGTTTCT	ACGACGCCTG	TTCATGCAAT	4680
35	TAGTGATGAT	TTAGATATTT	TGATTGCATT	TGACCAAGAA	ACAATTGATG	TTAACCATCA	4740
	TGAAATGAGA	GAAGACAGTA	TTATTTTACC	TGATGCCAAG	GCTAAACCTG	TGAAaCCAGA	4800
	AGGÄTGTCAT	GCACAGCTTA	TTGAATTACC	TTTTACAGCA	ACCGCTAAAG	AATTAGGTAC	4860
40	AGCATTAATG	AAAAACATGG	TTGCAATAGG	TGCTACTAGC	GCATTGATGA	ATTTGAATAC	4920
	AAATACATTT	GAAGAACTTA	TTACTAATAT	GTTTTCTAAA	AAAGGTGACA	AGGTAGTTGA	4980
45	AGTCAATATC	CAAGCATTAA	ACGAAGGTTA	TCAATTAATG	CAATCTCGCT	TACCTGAAAT	5040
45	CTACGGGGAC	TTTGAATTAG	AGTCAACAGA	TGCACTACCA	CATCTATATA	TGATTGGTAA	5100
	CGATGCCATT	GGATTAGGTG	CAATTGCTGC	AGGTTCACAA	TTTATGGCGG	CATATCCTAT	5160
50	TACACCTGCG	TCTGAAGTTA	TGGAATATAT	GATTGCCAAT	ATATCTAAAG	TAAACGGAGC	5220
*	GGTTATTCAA	ACAGAAGATG	AAATTGCTGC	TGTAACTATG	GCTATTGGTG	CAAATTATGG	5280

	IGGATIATET	GGIAIGACIG	AMACGCCATT	AGICATIATI	MINCCCNAC	GAGGIGGACC	3400
5	TTCTACTGGA	TTACCTACGA	AACAAGAACA	GTCAGATTTA	ATGCAAATGA	TTTATGGTAC	5460
	ACATGGTGAT	ATTCCAAAAA	TTGTTGTAGC	ACCAACAGAT	GCAGAAGATG	CATTTTATTT	5520
	AACTATGGAA	GCATTTAATT	TAGCAGAACA	ATATCAATGC	CCTGTTATAG	TTCTAAGTGA	5580
10	TTTGCAATTA	TCTTTAGGTA	AACAAACTGT	TGAAAAATTA	GATTATAATC	GTATTGAAAT	5640
	TAAACGTGGT	GAAATCATTC	AATCTGATAT	TGAACGTGAA	GAAGATGATA	AAGGTTATTT	5700
	CAAGCGTTAT	GCGTtAACAT	CCGATGGTGT	TTCTCCTAGA	CCTATCCCCG	GTGTTAAAGG	5760
15	AGGTATTCAT	CATATAACTG	GTGTGGAaCa	CAATGAAGAA	GGTAAACCTA	GTGAATCTGC	5820
	GTCAAATAGA	CAACAACAAA	TGGAAAAACG	AATGCGTAAA	ATTGAGCAGT	TACTAATTGA	5880
	ATCGCCAGTA	GAAGCTAACT	TACAACATGA	GGATGCAGAT	ATTCTTTATA	TCGGTTTTAT	5940
20	TTCTACAAAA	GGTGCAATTC	AAGAAGGTAG	TAACCGTTTG	AATCAACAAG	GCATAAAAGT	6000
	TAACACTATA	CAAATTAGAC	AATTGCATCC	ATTCCCAACA	AGCGTTATTC	AAGATGCAGT	6060
25	TAATAAAGCG	AAGAAAGTCG	TTGTAGTGGA	GCACAATTAT	CAAGGACAAT	TGGCTAGTAT	6120
	TATAAAAATG	AATGTCAATA	TTCATGATAA	GATTGAAAAT	TATACAAAGT	ATGATGGGAC	6180
	ACCTTTCCTA	CCACATGAAA	TCGAAGAAAA	AGGCAAAATA	ATTGCTACTG	AAATAAAGGA	6240
30	GATGGTATAG	ATGGCGACAT	TTAAAGATTT	TAGAAATAAT	GTTAAGCCTA	ACTGGTGCCC	6300
	CGGATGTGGC	GATTTCTCAG	TACAAGCTGC	AATTCAAAAA	GCAGCCGCAA	ATATAGGGTT	6360
	AGAACCTGAA	GAAGTAGCTA	TCATCACCGG	TATAGGATGT	TCTGGCCGTC	TTTCAGGATA	6420
35	TATTAATTCT	TATGGCGTTC	ATTCTATTCA	CGGACGTGCA	TTACCTTTAG	CTCAAGGTGT	6480
	AAAAATGGCG	AATAAAGATT	TAACTGTTAT	TGCATCGGGA	GGAGATGGTG	ATGGTTATGC	6540
10	TATAGGTATG	GGGCATACAA	TCCATGCTTT	AAGAAGAAAT	ATGAACATGA	CGTATATAGT	6600
	CATGGATAAT	CAAATTTATG	GTTTGACAAA	GGGACAAACA	TCGCCGTCAT	CAGCAGTAGG	6660
	ATTTGTTACT	AAAACAACGC	CAAAAGGTAA	TATAGAAAAA	AATGTTGCGC	CTTTAGAATT	6720
45	AGTATTATCA	TCTGGTGCCA	CATTTGTAGC	CCAAGGTTTT	TCAAGCGATA	TTAAAGGATT	6780
	AACAAAACTA	ATTGAAGATG	CAATTAATCA	TGATGGATTT	TCATTCGTTA	ATGTCTTTTC	6840
	ACCATGTGTG	ACTTATAATA	AAATTAACAC	ATACGATTGG	TTTaAAGAAC	ATTTAACAAG	6900
50	TGTTGATGAC	ATTGAAAATT	ATGATTCTAC	AGATAAACAA	TTAGCGACTA	AAACTGTTAT	6960
	TGAACATGAA	TCTTTAGTAA	CTGGTATTGT	TTATCAAGAT	AAAGAAACAC	CATCATATGA	7020
e c	ATCECAAATT	AAAGAGTTAG	ATGATmCACC	ACTTGCTAAA	AGAGATATCa	AAATTaCTGA	7080

TGTATTTATA	ACAGATCCAT	TTATGCTACT	CAGTTTTTTA	CTATTACAAA	AAATAAAGGA	7200
GTTTTTAAAA	ATGAAAGACA	CATTAATGAG	TATACAAATA	ATTCCTAAAA	CACCAAACAA	7260
TGACAATGTT	ATACCTTACG	TAGACGAGGC	GATTAAAATA	ATTGACGAAT	CTGGTTTGCA	7320
TTTTAGAGTA	GGTCCGTTAG	AAACGACAGT	ACAAGGAAAT	ATGAATGAAT	GTTTAATTTT	7380
AATACAATCA	TTAAATGAAC	GAATGGTGGA	ACTTGAATGT	CCAAGTATTA	TTAGCCAAGT	7440
TAAGTTTTAT	CATGTGCCAG	ATGGCATCAC	TATTGAAACT	TTAACTGAAA	AATATGATGA	7500
ATAACATTAA	aagtgaagta	AACTGGATTT	GAATTGGCTT	GTTAGAGATG	ACGTATAACT	7560
TTAACTGTTT	TTGCACTTTA	TAGTTAAATT	TAATATAATT	ATTAAATGAT	ACGGGCAAAT	7620
AGAAAGGATT	TTGTAAAGTG	AACGAAGAAC	AAAGAAAAGC	AAGTTCTGTA	GATGTTTTAG	7680
CTGAGAGAGA	TAAGAAAGCA	GAAAAAGATT	ATAGTAAATA	TTTTGAACAT	GTTTATCAGC	7740
CGCCTAATTT	AAAAGCAAGC	GCAAAAAAAG	AGGTnAAA			7778

(2) INFORMATION FOR SEQ ID NO: 49:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1128 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

AGATGAAGTT	GTTACGAAAA	TTGCGTACGC	TGTTTCAGAA	CATGTCAAAA	TAGAAACAGG	60
TAATCCATTC	TTTCAAACAT	CACATAGTGG	TTGTGCGACG	GGCGGATCCT	GTAATTGTTC	120
АТТАТААААА	ACATCGAGTC	AGAAAAAGGT	GGTTATTGAA	CCACTAACTA	GCATCTGACT	180
CGATGTTTTT	ATTTATTCGG	GATTGTTTGT	TTGAATTGTT	GTGCTAAATC	TGGTCGATCT	240
GTCACAATCG	TGTGTGCACC	TTTTTGGTAT	AAATCATTCA	TCAGATTTAT	ACTATTTACG	300
CCATAATAGC	CTGGAATGAT	ATTCATATCA	TTTAACCATT	TGATAAAACG	AGATGAAGTC	360
AAATCAATGC	CTTTAAAATG	AGTAGGCATT	TGGAACGTTT	GTGCTAATGG	TTGGTAGTAC	420
CTACCACCTA	ATAAATGATA	TTTTAAAAAT	GCTTCTGTAA	CTTCCTGTTG	GCTAGCACCA	480
ATTGCGACGG	ATCCTTGTGC	AATTTTATTA	AAACGAACGA	TTTGTTCTTT	ATAAAAACTT	540
GTCACAAGAA	CGCGGTCAAA	TGCTTGATTT	TCTGCAATTG	TATCAAACAT	AATTTGTGGT	600
GCGATTGAGC	CTTCATAGGA	TTCAGGAGCA	TCTTTTAAGT	CTACGTTTAT	ATACATATCA	660
GGATATTGCT	TCAGCAACTC	ATCGAAGGTT	AGTATAGCTG	TGTGTGCATG	ACCACGATAT	720

	AATGTATGGG	CACTAACTTT	TCCAGAGCCG	TTCGTCGTTC	TATCAACAGT	TGCGTCATGA	840
	AAAACGATAA	GCTGTTGATC	TTTTGTGAGT	CTCACATCTG	TTTCAAAGCC	ATCAACGCCT	900
	AATTGTTTAG	CATAGTCAAA	TGCAAGTTGC	GTTTGCTCTG	GTCTTAAAGC	CATACCACCG	960
	CGATGCGCAA	ATATATATGG	TGCATTGCCT	TTGAAAAAG	CAGGGATGGT	TTGCTTTTTA	1020
)	GTAATCACTT	TATTTTTATT	GATCATTAAT	AGACTACTTA	AAAATCCAGC	ACCGACTAGT	1080
	ACCGCATTTA	AAATGTTTCT	GTTTACnTTT	TTCATAAAAA	ATTCCTCC		1128
	(2) INFORM	ATION FOR SE	EQ ID NO: 50	0:			
i		EQUENCE CHAP (A) LENGTH:					

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

CAAGCAAACA	ATCGTCGATA	AAATTGCTAA	AATAATAAA	GTAATTCGAA	CTTTCATCAT	60
GATCATCCTT	TGTTTATAGA	GTCAATATAA	GTATGGAATA	TGTTAGGTAT	ATAGTCAAAT	120
GCGTCAACTA	ATGGGAATTT	TGGCATAGAT	AGAGAATTTA	AGGCAATTAA	AAAGGCATCA	180
AACAGTAATA	TGCTGCTTGA	TGCCCAAATG	ATGACTTTAG	CTAAATTGAT	TAGTCACTTT	240
TAAAGATAAA	GAATTGTCAT	GAATTAAAAC	TCATGTAATG	ATGTGTTACA	TTTCGCAATG	300
ATGGCTTTCA	GTTATTTATC	GATAACATCA	CTCTTGATAC	CTTTAGATTT	TAAGAAATCT	360
TTAATTTTAT	CTTGTTGCTT	TTTATTAACA	TCACCGGCAT	ATTTTGTTGG	CACGTCGACA	420
ACATTGATTT	TATTTTGCGG	TTGATAGCTA	AGCTTTTCAA	TATCTTCATC	AACATTGGCG	480
ATTOTACTAT	TTAAAGCTTT	GAAGTAATTC	ATCATTAATT	CAACGGGTTT	CTTATATTCT	540
TTAGGAATAT	TGTTTTCAGT	GACAAATTTC	TTGAAATGCA	AATCGTTTTT	AACAGCTAAG	600
TTAGATAAGT	GGCTAAGTGT	TTCTGCTTGT	TTTTCAGTCA	CTTTTGTTTG	ACTGTCAATT	660
TGTTTATCTA	GTTTATGTTG	CATAATATAT	TTGTTATCAA	GTATATCGCT	ATTTACAGAC	720
AAATACTTTT	CTATAGCTTG	CTTCATCTCT	GCATCACTAA	TATCACTATT	TTTCTTATCT	780
GAGTTAAAGA	TATCTTTTGT	tTCTAATTTT	TTAGCGCTTT	TAGGTGCATG	GATGCCAGTA	840
CTTGTATGAT	GATCTTCGTT	ATCAGATTGA	TCGGACGCGC	AACCTGTAAG	AATTAATGTC	900
GATGCTAAAA	ATGTACTTAG	TAGTAATCTC	TTTTTCATAA	TGTAATATAA	CTCCTTAGTT	960
TATCTTTAAT	TGAAAAAATA	TGTATTCATG	TTTAATAGAG	TAACATTGAA	TTAGTTTGGA	1020

	TCTATCAATA	ATGCATCATT	TTGGACGTTG	TTAAGGATAG	CTTTATCTAT	AAATAACTGC	1140
_	ATAATTGGTT	GTACTAATTT	AGACGTAGGT	ATCGTACGTA	AAAGCATAAT	AATTTCGTTC	1200
5	ACATACTTTT	CTTTCTCAAT	ATCATTTTC	ATATTGATTT	GTTTGCGAGA	GGTACATACT	1260
	TTAAGCATTA	TCGCACATCT	CGTTGTATAT	ATTAAGTTTA	TCATAACATG	ATTTTATGTC	1320
10	GGGATAAAAA	AATAACAGCA	TCTTAACAAA	TGTAAGATAC	TGTCAGTGAA	ATGAATGAAA	1380
	CTTTAGTTTC	TGATAATATA	GTCAAAGGCA	TTTAATGCTG	CATTTGCACC	AGCGCCCATT	1440
	GAAATGATAA	TTTGTTTGTT	CTTCTGATCT	GTGACATCGC	CAGCAGCAAA	TATTCCAGGA	1500
15	ACATTCGTAT	TATTGTTACG	ATCAATCACA	ATTTCACCAC	GTTCGTTTAA	TTCAACAGCA	1560
	TCGTTTAACC	ATGATGTGTT	TGGAAGTAAA	CCAATTTGAA	CAAAGATACC	ATCTAAGTTA	1620
	AGTAGATGTT	CTTCGCCGGT	GTTCATGTCT	TCGTAACGTA	TACCTGTAAC	ATGGTCTTCT	1680
20	CCGACAACTT	CAGTAGTTTT	GGCATTTGTT	TTGATATCAA	CATTTGATAA	AGAACGTAAA	1740
	CGATCTTGTA	ACACGTTGTC	TGCTTTTAAT	TCGCTAGCGA	ATTCGAATAA	TGTAACATGA	1800
25	TTAACGATAC	CAGCAAGGTC	AATTGCTGCT	TCAACCCCAG	AGTTACCGCC	ACCGATAACT	1860
	GCTACGTCTT	TATTTTCAAA	TAGAGGTCCG	TCACAGTGAG	GGCAGAATGC	AACACCTTTA	1920
	TTAATCAATT	GCTCTTCACC	TGGAATGTTT	AGCTTACGCC	AACCTGCACC	AGTAGCAATA	1980
30	ATGACTGTTT	TACTTTCTAA	GACAGCACCG	TTTTCTAACG	TAACTTTAAT	TGCTTCGTCA	2040
	GTCTTTTCGA	TATCTGTAGC	ACGTATACCT	GTCATTGCAT	CAATGTCATA	TTGATCAATG	2100
	TGCGCTGCTA	AGTTAGAAGA	AAATTCAGAA	CCAGTTGTTT	CTTTAACAGT	AATGAAGTTC	2160
35	TCAATACCAG	CAGTATCATT	AACTTGGCCA	CCGATACGAT	CAGCAACTAT	ACCAGTACGT	2220
	AAACCTTTAC	GTGCTGTGTA	AATCGCTGCA	CTACCACTAG	CAGGACCACC	ACCAACGATT	2280
40	AAGÁCATCAT	AAGGTTCTTT	ATTTTCAAAC	TCAGATGCAT	CTGCCGTACT	GCCTAGTTTC	2340
	GAAAGAATAT	CTTGGATTGT	CATACGACCA	TTGCCAAATT	CTTCGCCATT	TAAAAAGACA	2400
	GCAGGGACTG	CCATGATGTT	TTCAGATTCT	TCACGGAACA	CTGCACCATC	AATCATAGAA	2460
45	TGCGTGATGT	TAGGGTTGAT	CACACTCATT	AAGTTAAGTG	CTTGAACGAC	ATCAGGACAT	2520
	TTTTGACACG	TTAAACTAAT	GAATGTTTCA	AAATGGAATG	AACCTTCTAA	TTTTTTAATT	2580
	TGGTCAATGA	TTGACTGTTT	TTCTTTAGGT	GCACGACCAC	TAACCTGTAA	AATTGCTAAA	2640
50	ACAAGTGAGT	TAAACTCGTG	ACCTAATGGA	ATACCTGCAA	ATGTTACACC	TGTTTCTTCG	2700
	CCAGGACGAT	TGACTGAGAA	ACTTGGTGTA	CGTTTTAAAG	ATTTTTCAGA	AAGAGATAGT	2760
	CTAGGTGACA	TATCAGTAAT	TTCTGTCAAC	AAATCTTTAA	GTTCTTTGGA	TTTATCATCT	2820

	IGIIGIIIIA	ARICAGCATI	MAGCAIGGII	GIAMIGCCIC	CITAGATITI	ACCIACIANA	2.340
_	TCTAAACCAG	GTTGCAATGT	TTTAGCGCCT	TCTTCCCATT	TAGCTGGGCA	TACTTCGCCA	3000
5	GGGTTTTTAC	GAACATATTG	AGCTGCTTTG	ATTTTGTGAG	CTAATGTACT	AGCGTCACGG	3060
	CCAATTCCGT	CAGCGTTAAT	TTCAGATGCT	TGTACAACAC	CGTCTGGGTC	GATAATGAAT	3120
10	GTACCACGTT	GAGCTAAACC	AGTAGCTTCA	TCTAATACAT	CAAAATTACG	AGTGATTGTT	3180
	TGTGATGGGT	CACCAATCAT	AGTGTAAGTG	ATTTTGCTAA	TTGCATCTGA	ATGGTCATGC	3240
	CATGCTTTGT	GTACGAAGTG	AGTATCAGTT	GATACTGAGA	ATACATTTAC	GCCTAATTTT	3300
15	TGTAATTCTT	CATATTGGTT	TTGTAAGTCT	TCTAATTCAG	TTGGACAAAC	GAATGAGAAG	3360
	TCAGCAGGAT	AGAAGCATAC	TACGCTCCAA	GAACCTTTTA	AATCTTCTTG	TGTAACTTCT	3420
	TTAAATTGAT	CTTTTTTTGG	ATCGAAArCT	TGCGCTGTAA	ATGGTAAGAT	TTCTTTGTTA	3480
20	ATTAATGACA	TAAATATCTT	CCTCCTAAGA	ATTTAAGTAT	GAATTAGAAC	TATCAATTGA	3540
	TTGCGCTTAA	TTATAATAAT	TCTAATCTCT	TAGTTAGCAT	TATTACATTT	TGATCCAGAA	3600
25	TAGTCAACTG	GATAACTTTG	TAAAGTGAAT	GATTACTTTT	Aaaataaaga	AAGATAATAT	3660
	AAAGTGCTTT	GATAATGGAT	TTTGTAGTTG	ATGATTTAAA	AGGTTGTGTC	TATATTTAAT	3720
	ATCTTGATTT	TAATGTAAAA	AATGTAAAAA	AAGAAGATTT	GTATTCTCAA	CTAAGTCAAC	3780
30	CTTATTGATA	ATGGTATGAG	AATATTTGTT	CGAGATGGAT	GAAGGTAATG	AGTGAGAAAC	3840
	TGGATTTTTA	AAGTATGAGA	CAATATTTTA	AAAAGTTCAA	TTATTAACTT	ATAAGCAAAT	3900
05	AATTGCTATA	AAAAAGTTTG	GACGTGTACA	ATTGCAATAT	GAAGATTTTA	AATTAATTGT	3960
35	AAAGTATCGA	GGAGTGGGTA	ACGTGTCAGA	ACATGTATAT	AATCTTGTGA	AAAAGCATCA	4020
	TTCTGTTAGA	AAATTTAAGA	ATAAACCTTT	AAGTGAAGAC	GTTGTTAAGA	AATTGGTAGA	4080
40	AGCTGGACAA	AGCGCTTCGA	CGTCAAGTTT	CCTGCAAGCA	TACTCAATTA	TTGGTATCGA	4140
	CGATGAGAAG	attaaagaaa	ATTTACGAGA	AGTTTCTGGA	CAACCTTATG	TTGTAGAAAA	4200
	TGGCTATTTA	TTCGTCTTTG	TTATTGATTA	TTATCGTCAT	CATTTAGTTG	ATCAACATGC	4260
45	TGAAACTGAT	ATGGAAAATG	CATATGGTTC	AACGGAAGGT	TTGCTAGTAG	GTGCAATCGA	4320
	TGCAGCATTA	GTTGCCGAAA	ATATTGCGGT	AACTGCTGAA	GATATGGGGT	ATGGCATTGT	4380
50	CTTTTTAGGA	TCATTAAGAA	ATGATGTTGA	ACGCGTTCGA	GAAATTTTAG	ACTTACCTGA	4440
50	CTATGTCTTC	CCGGTATTTG	GTATGGCAGT	AGGGGAACCC	GCAGATGACG	AAAATGGTGC	4500
	AGCCAAGCCA	CGCTTACCAT	TTGACCATGT	CTTCCATCAT	AATAAGTATC	ATGCTGATAA	4560
55	GGAAACACAG	TATGCACAAA	TGGCAGATTA	CGACCAGACA	ATCAGCGAGT	ACTATGATCA	4620

	CAAAGCAAGA	TTAGATATGT	TAGAACAATT	GCAAAAATCA	GGCTTAATAC	AGCGATAGCA	4740
	AGATACCAAA	ATAACCCGCC	CCCCTCTAGC	TTAAAATGAT	AAGTATAGCT	AGAGGGGGCG	4800
5	GGTATTTCTT	GCAATGAATT	AGTGTGAAGT	TAATGCAGCA	TTATCATTTG	AATCGAAAGT	4860
	ATCTTTATCC	CAATGTTTAG	TTAACTTGGC	GGTACCTGTA	CCAGCTAGCA	TTGAATCGTT	4920
10	CACGTTTAAT	GCTGTTCTAC	CCATGTCAAT	CAATGGTTCA	ACGGAGATGA	GCACGCCGGc	4980
10	TAAAGCGACT	GGCAAGTTTA	ACGTTGACAA	CACCAATATG	GATGCAAATG	TAGCCCCGCC	5040
	ACCGACGCCA	GCAACGCCGA	ATGAACTAAT	AATCACGACA	GCGATTAACG	TTACAATAAA	5100
15	TTGTAAATCA	ATTTCTACAT	TAGCGACGGG	TGCGACCATA	ATTGCAAGCA	TGGCAGGGTA	5160
	AATGCCTGCA	CAACCATTTT	GTCCAATCGA	CAATCCAAAT	GTCGCAGCGA	AATTGGCAAT	5220
	ACCTTCTGGC	ACGCCTAGAC	GTCTTGTTTG	TGTTTGTACA	TTCAATGGTA	AGGCACCCGC	5280
20	GCTTGAGCGT	GATGTGAATG	CAAAGATTAA	TACTTCCAAA	GTCTTTTTAA	CATAGCGAAT	5340
	TGGGCTAATA	CCTAACAGGC	TTAAAATAAT	TAAGTGAATG	ATATACATC G	TAATTAATGC	5400
	AGCGTACGAT	GCGATTAAGA	ATTTTCCTAA	AGTCCAAATG	GCGCCAAAGT	CACTTGTCGA	5460
25	TAATGTGTTG	GCCATAATTG	CTAATACACC	GTATGGCGTT	AAACGTAAGA	CGAACGTCAC	5520
	AATCGCCATT	ACTAGTGAAT	AGATAGCGTC	AATCGCACGC	TTAAGCAATT	CACCATGATC	5580
30	AGGTTGTTTG	CGTnTACGCG	TAAATAAGCA	AATCCTATAA	ACGAAGCAAA	TATCACGACA	5640
	GCAATCGTGG	aAGTTGCACG	TTGTCCaGTG	AAATCTAAGA	ATGGATTTTT	AGGCAATAAT	5700
	TCCAAAATTT	GTTGTGGTAA	CGTATGTGCT	GTTAAATCTT	TCGCTTGTTT	AGCAATTTCG	5760
35	CTTCCACGTG	CTTGTTCAGC	GTTACCAAGG	TTAATTGTTG	ATGCATCTAA	ACCAAACACC	5820
	AAGGCATACA	CAACACCAAC	AATCGCAGCA	ATGGTGACAG	TGCCAATTAA	AAAGATAAAA	5880
	ATGAGACTAC	CAATTTTAGC	AAACTTTTCT	CCGATTTGAA	TTTTAGTGAA	TGCAGCTACA	5940
40	ATAGAAATGA	AAATTAAAGG	CATAACAATC	ATTTGCAACA	ATGCAACGTA	ACCTTGTCCG	6000
	ACAATGTTGA	ACCAGTCACT	TGTTGATGTA	ATAACATTCG	AATGTGTGCC	ATAAATAAGA	6060
45	TGCAATAACA	CACCGAATAC	TATACCAATC	CCTAAAGCTG	TAAACACACG	TTTCGCAAAA	6120
	GATATATGTT	TGCGAGCCAT	CATGTGCAAT	ATTACGATGA	AAATCACCAA	TACAATAATA	6180
	TTAATCAGTG	TAAGAAAAGC	ATTCATGAAC	GTCACTCCTT	AAATTTTTGA	ATATAATTCC	6240
50	GACTAGTATG	CT					6252

(2) INFORMATION FOR SEQ ID NO: 51:

55

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6730 base pairs

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi)	SEQUENCE DE	SCRIPTION: S	SEQ ID NO:	51:		
ATCAAATCnC	AAAATATTTA	TTAATnAnAA	GGGGATTATC	CaTGTgAGAA	ACAAAGTAAT	60
GCTCTTTTT	TACCTCTTGT	GGGTTGAAAA	aTGGATCATC	AGAGATAGAC	TTCTTCTTTT	120
TCGAAGATGA	CATTTGATAC	TTTAATCTTC	TAAAACCATA	ACTTGTCGCA	TCAAAAATGC	180
CTTCTTGTAC	AAGTAAAATC	AAAAATATGC	TAATAAAAAT	AATTAATGAA	ACATAAAACA	240
ATATATTAA	ATATGTAATG	ATAGTATGGC	TATTAAAAAG	CCATATAATA	AACGTTAATA	300
TTGGCGTTAT	TAGTGCCATT	CCAAGCCATT	TTTTCAACAT	TTGATCACTC	CCACTTATAG	360
AAAACTCTTA	CGCATAGTTT	ACATTAAAAT	CAGACATTGA	GGAATGATTT	TTTAATTTCT	420
TCAGCTTTAT	TGAAATTCTA	AAATCAATCA	TTCTTCATTA	GTTTAAAGCA	AAAAAATATT	480
GATATATAGT	AAATATTGTA	TATATAATAT	TAGTTAAGAT	TTCaGAAAAT	TTTGAAGGGA	540
ATGGAAATTT	AGAAATCGGA	ATTTGTTAGA	GGAGGGGATT	AGATGGGGAA	ATATATTTTC	600
AAACGATTTA	TTTATATGCT	TATTTCTTTA	TTTATTATTA	TTACAATTAC	ATTTTTCTTA	660
ATGAAATTAA	TGCCAGGTTC	GCCATTTAAC	GATGCTAAAT	TAAATGCTGA	ACAAAAAGAA	720
ATTTTAAATG	AAAAATATGG	ATTAAATGAT	CCTGtAGCTA	CGCAGTATTT	ACATTATTTA	780
AAAAATGTTG	TTACAGGCGA	TTTTGGTAAT	TCATTCCAGT	ATCATAATCA	ACCTGTGTGG	840
GATTTGATTA	AACCGAGACT	ACTACCTTCT	TTTGAAATGG	GTCTTACAGC	AATGTTCaTC	900
GGTGTGATAC	TGGGACTTAT	TTTAGGTGTT	GCAGCAGCTA	CTAAACAAAA	TTCTTGGGTT	960
GACTATACAA	CTACAGTTAT	TTCAGTTATT	GCAGTATCTG	TACCATCTTT	TGTACTTGCT	1020
GTACTTTTAC	AATATGTATT	TGCAGTTAAA	TTAAGATGGT	TCCCAGTAGC	TGGATGGGAA	1080
GGTTTTTCGA	CCGCGGTATT	ACCGTCACTT	GCATTATCTG	CAGCTGTTTT	AGCAACTGTC	1140
GCCAGATACA	TAAGAGCAGA	GATGATAGAG	GTATTAAGTT	CAGACTATAT	TTTATTAGCG	1200
AGAGCTAAAG	GTAATTCGAC	AATGCGTGTA	CTTTTTGGAC	ATGCACTTAG	AAATGCTTTA	1260
ATTCCAATTA	TTACAATTAT	CGTTCCCATG	TTAGCAAGTA	TTTTAACAGG	CACTTTAACA	1320
ATTGAAAATA	TTTTTGGAGT	TCCTGGATTA	GGGGATCAAT	TCGTACGTTC	AATTACAACA	1380
AATGATTTCT	CAGTAATCAT	GGCAATCACA	CTATTATTTA	GCACACTGTT	TATCGTTTCT	1440
ATTTTTATTG	TAGATATTTT	GTACGGTGTG	ATAGATCCAC	GAATTCGTGT	TCcAAGgAGG	1500
AATAAAAT	TGGCTGAAAA	TAAAAACAAT	TTGTCGATTA	ACGACGATCA	TTCTAATGCA	1560

	TGAATCAGGA	ACCTGAAATG	CAACGAGAAA	GCAAAAACTT	TTGGCAAGAT	GCTTGGGCTC	1680
5	AGTTAAAACG	AAATAAGTTA	GCTGTTGTCG	GTATGATAGG	TTTAATTATC	ATTGTAATAT	1740
	TTGCTTTTAT	CGGTCCAGTT	ATAAATAAAC	ATGATTATGC	TGAACAAAAT	GTAGAACATA	1800
	GAAATCTTCC	GGCAAAAATA	CCTGTATTAG	ACAAAGTTCC	ATTTTTACCT	TTTGATGGTA	1860
10	AAGATGCAGA	TGGCAAGGAT	GCTTATAAAG	CAGCAAATGC	TAAAGAAAAT	TATTGGTTTG	1920
	GTACTGATCA	GTTGGGTCGA	GATTTATGGA	CAAGAACATG	GAAAGGTGCT	CAAATTTCAT	1980
-	TGTTTATCGG	TGTTGTTGCA	GCGATGTTAG	ATATTTTTAT	TGGTGTTGTA	TATGGTGCGA	2040
15	TTTCTGGATT	CTTCGGTGGA	CGTGTCGATA	CGATTATGCA	ACGTATACTT	GAAGTCATAG	2100
	CATCTATTCC	GAATTTAATT	GTCGTAATTT	TATTTGTATT.	aatitttgaa	CCATCCATTT	2160
	GGACAATTAT	ATTGGCTATG	TCTATCACAG	GCTGGTTAGG	CATGAGCAGA	GTTGTACGTG	2220
20	GAGAATTTTT	AAAATTAAAA	AATCAAGAGT	TTGTCATGGC	TTCGAAAACA	TTGGGGGCTT	2280
	CAAAATTCAA	ATTGATATTT	AAGCATATTT	TACCTAATAC	ATTAGGTGCT	ATCGTGGTTA	2340
25	CATCAATGTT	TACAGTACCT	AGTGCTATTT	TCTTCGAAGC	ATTTTTA AGT	TTCATTGGTA	2400
	TAGGTGTACC	CGCACCTCAA	ACATCGTTAG	GGTCATTAGT	AAATGATGGG	CGCGCAATGT	2460
	TATTAATTTA	TCCACATGAA	TTATTTATAC	CAGCAATGAT	TTTAAGTTTA	TTAATTCTAT	2520
30	TCTTTTACTT	ATTTAGTGAT	GGATTACGTG	ATGCATTTGA	TCCGAAAATG	CGTAAATAAA	2580
	AAGGGGGCAT	AGCATATGAC	TGAAAGAATA	TTAGAAGTAA	ATGATTTGCA	TGTTTCCTTT	2640
	GATATTACAG	CAGGGGAAGT	GCAGGCAGTG	AGAGGCGTAG	ATTTTTATTT	GAACAAAGGG	2700
35	GAAACATTGG	CAATTGTTGG	TGAATCAGGT	TCAGGTAAAT	CTGTAACAAC	AAAAGCAATT	2760
	ACAAAATTAT	TCCAAGGGGA	CACAGGAAGA	ATTAAAAAGG	GAGAAATTTT	ATTTTTAGGG	2820
40	GAAGÁTTTAG	CAAAAAAACC	TGAAAATGAG	TTGATTAAAT	TACGTGGCAA	AGATATTTCA	2880
,••	ATGATCTTTC	AAGATCCAAT	GACATCTTTA	AACCCAACGA	TGCAAATTGG	TAAACAAGTC	2940
	ATGGAACCAT	TAATTAAGCA	CAAAAATTAT	AGTAAAGCAC	AAGCTAAAAA	GCGCGCATTG	3000
45	GAAATACTAA	ATCTTGTAGG	TTTACCAAAT	GCAGAAAAA	GATTTAAAGC	ATATCCTCAT	3060
	CAATTTTCAG	GTGGACAAAG	GCAAAGAATT	GTTATTGCAA	CCGCATTAGC	TTGTGAACCT	3120
	AAAGTGCTCA	TTGCTGATGA	ACCAACGACT	GCATTAGACG	TAACGATGCA	GGCACAAATT	3180
50	TTAGATTTAA	TGAAAGAACT	ACAACAAAAA	ATCGATACAG	CAATTATTTT	TATAACGCAT	3240
	GATTTAGGGG	TTGTTGCGAA	TATTGCTGAT	AGAGTGGCAG	TTATGTATGG	TGGTCAAATG	3300
	GTTGAAACAG	GAGATGTTAA	CGAAATATTT	TATGATCCAA	AGCATCCATA	TACATGGGGA	3360