

High Voltage Laboratory

Prof. Dr. Christian Franck

 $ETH\ Z\ddot{i}_{\dot{c}}\frac{1}{2}rich$ $Physikstr.\ 3,\ ETL$ $8092\ Zurich$ Switzerland

FEASIBILITY STUDY ON THE USE OF CUR-RENT TRANSFORMERS IN DIELECTRIC SPEC-TROSCOPY

GROUP PROJECT, SEMESTER PROJECT

Deuschle Leonard, Philipp, Aron dleonard@ethz.ch, philipar@ethz.ch

Supervisor: Raphael Fárber Autumn Semester 2015

Aufgabenstellung

Diese Seite wird durch die Originalaufgabenstellung ersetzt.

Kurzfassung

Der Zweck der Kurzfassung ist, die wesentlichen Informationen und Konsequenzen aus der Arbeit dem Leser in kurzer Form anzubieten. Sie soll daher folgendermassen aufgebaut werden:

- 1. Problemstellung (inkl. Hintergrund)
- 2. Innovation / Neue Elemente
- 3. Methode / Lösungswege
- 4. Wesentliche Resultate
- 5. Schlussfolgerungen
- 6. Konsequenzen für die Fachwelt, das Projekt oder weitere Arbeiten

Contents

1	Introduction				
	1.1	Vorbemerkung	1		
	1.2	Beispiele			
	1.3	Etwas Beispieltext	2		
2	The	eory	6		
	2.1	Debye model	6		
	2.2	Fourier Coefficients of trapezoidal pulse train	8		
3	Met	thods	9		
	3.1	Simulation of capacitance	9		
	3.2	Signal analysis of the Debye model	9		
4	Results				
	4.1	Simulation of Capacitance values	11		
	4.2	Complex effective permittivity	11		
	4.3	Performance of integrator	11		
	4.4	Dielectric Spectroscopy	11		
5	Disc	cussion	12		
6	Con	nclusions 1			
Bi	bliog	raphy	14		

1 Introduction

1.1 Vorbemerkung

Am besten wird die Einführung am Schluss geschrieben. Man darf sich jedoch bereits jetzt Gedanken zur Arbeit machen. Text (kurz) für nicht-Fachkundige, damit sie in etwa verstehen können, um was es geht, bzw. welches Gebiet behandelt worden ist.

Themen die behandelt werden könnten:

- Rechtfertigung der Aufgabenstellung
- Ziel der Arbeit bzw. Untersuchung
- Abgrenzung des Themas und themenbezogene Definitionen
- Geschichte und stand der Forschung
- Überblick über Aufbau der Thesis und Argumentation

1.2 Beispiele

1.2.1 Bilder

Nach möglichkeit Arbeit so gestalten, dass man sie mit einem S/W Kopierer kopieren kann. Speziell darauf achten, dass Grafiken S/W tauglich sind.

Bilder und Tabellen sind Gleitobjekte, die LATEXdort einfügt, wo es sie für sinnvoll platziert hält. Daher sind Abbildungen und Tabellen im Text zu referenzieren.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Figure 1.1: ETH-Logo

1.2.2 Tabellen

Ein Beispiel für eine Tabelle (siehe Seite 2).

Text1	Zahl	zahl	noch eine
Text12	Zahl345	zahl4	noch
$\underline{\text{Text}123}$	Zahl4	zah8ltg	eine

Table 1.1: Eine Tabelle

1.3 Etwas Beispieltext

Im Text kann nun jetzt beispielsweise Literatur zitiert werden [WNP⁺88]. Vielleicht interessiert auch was [Zwi86] oder [WWvdL88] geschrieben haben. Ausserdem sind auch Verweise auf Abbildungen (siehe Abbildung 1.1 oder auch auf Tabellen, wie z.B. Tabelle 1.1, möglich.

Der Text ist die deutsche Übersetzung des "'De finibus bonorum et malorum"' von Cicero.

Damit Ihr indess erkennt, woher dieser ganze Irrthum gekommen ist, und weshalb man die Lust anklagt und den Schmerz lobet, so will ich Euch Alles eröffnen und auseinander setzen, was jener Begründer der Wahrheit und gleichsam Baumeister des glücklichen Lebens selbst darüber gesagt hat. Niemand, sagt er, verschmähe, oder hasse, oder fliehe die Lust als solche, sondern weil grosse Schmerzen ihr folgen, wenn man nicht mit Vernunft ihr nachzugehen verstehe. Ebenso werde der Schmerz als solcher von Niemand geliebt, gesucht und verlangt, sondern weil mitunter solche Zeiten eintreten, dass man mittelst Arbeiten und Schmerzen eine grosse Lust sich zu verschaften suchen müsse. Um hier gleich bei dem Einfachsten stehen zu bleiben, so würde Niemand von uns anstrengende körperliche Uebungen vornehmen, wenn er nicht einen Vortheil davon erwartete. Wer dürfte aber wohl Den tadeln, der nach einer Lust verlangt, welcher keine Unannehmlichkeit folgt, oder der einem Schmerze ausweicht, aus dem keine Lust hervorgeht?

Dagegen tadelt und hasst man mit Recht Den, welcher sich durch die Lockungen einer gegenwärtigen Lust erweichen und verführen lässt, ohne in seiner blinden Begierde zu sehen, welche Schmerzen und Unannehmlichkeiten seiner deshalb warten. Gleiche Schuld treffe Die, welche aus geistiger Schwäche, d.h. um der Arbeit und dem Schmerze zu entgehen, ihre Pflichten verabsäumen. Man kann hier leicht und schnell den richtigen Unterschied treffen; zu einer ruhigen Zeit, wo die Wahl der Entscheidung völlig frei ist und nichts hindert, das zu thun, was den Meisten gefällt, hat man jede Lust zu erfassen und jeden Schmerz abzuhalten; aber zu Zeiten trifft es sich in Folge von schuldigen Pflichten oder von sachlicher Noth, dass man die Lust zurückweisen und Beschwerden nicht von sich weisen darf. Deshalb trifft der Weise dann eine Auswahl, damit er durch Zurückweisung einer Lust dafür eine grössere erlange oder durch Uebernahme gewisser Schmerzen sich grössere erspare.

Damit Ihr indess erkennt, woher dieser ganze Irrthum gekommen ist, und weshalb man die Lust anklagt und den Schmerz lobet, so will ich Euch Alles eröffnen und auseinander setzen, was jener Begründer der Wahrheit und gleichsam Baumeister des glücklichen Lebens selbst darüber gesagt hat. Niemand, sagt er, verschmähe, oder hasse, oder fliehe die Lust als solche, sondern weil grosse Schmerzen ihr folgen, wenn man nicht mit Vernunft ihr nachzugehen verstehe. Ebenso werde der Schmerz als solcher von Niemand geliebt, gesucht und verlangt, sondern weil mitunter solche Zeiten eintreten, dass man mittelst Arbeiten und Schmerzen eine grosse Lust sich zu verschaften suchen müsse. Um hier gleich bei dem Einfachsten stehen zu bleiben, so würde Niemand von uns anstrengende körperliche Uebungen vornehmen, wenn er nicht einen Vortheil davon erwartete. Wer dürfte aber wohl Den tadeln, der nach einer Lust verlangt, welcher keine Unannehmlichkeit folgt, oder der einem Schmerze ausweicht, aus dem keine Lust hervorgeht?

Dagegen tadelt und hasst man mit Recht Den, welcher sich durch die Lockungen einer gegenwärtigen Lust erweichen und verführen lässt, ohne in seiner blinden Begierde zu sehen, welche Schmerzen und Unannehmlichkeiten seiner deshalb warten. Gleiche Schuld treffe Die, welche aus geistiger Schwäche, d.h. um der Arbeit und dem Schmerze zu entgehen, ihre Pflichten verabsäumen. Man kann hier leicht und schnell den richtigen Unterschied treffen; zu einer ruhigen Zeit, wo die Wahl der Entscheidung völlig frei ist und nichts hindert, das zu thun, was den Meisten gefällt, hat man jede Lust zu erfassen und jeden Schmerz abzuhalten; aber zu Zeiten trifft es sich in Folge von schuldigen Pflichten oder von sachlicher Noth, dass man die Lust zurückweisen und Beschwerden nicht von sich weisen darf. Deshalb trifft der Weise dann eine Auswahl, damit er durch Zurückweisung einer Lust dafür eine grössere erlange oder durch Uebernahme gewisser Schmerzen sich grössere erspare.

Damit Ihr indess erkennt, woher dieser ganze Irrthum gekommen ist, und weshalb man die Lust anklagt und den Schmerz lobet, so will ich Euch Alles eröffnen und auseinander setzen, was jener Begründer der Wahrheit und gleichsam Baumeister des glücklichen Lebens selbst darüber gesagt hat. Niemand, sagt er, verschmähe, oder hasse, oder fliehe die Lust als solche, sondern weil grosse Schmerzen ihr folgen, wenn man nicht mit Vernunft ihr nachzugehen verstehe. Ebenso werde der Schmerz als solcher von Niemand geliebt, gesucht und verlangt, sondern weil mitunter solche Zeiten eintreten, dass man mittelst Arbeiten und Schmerzen eine grosse Lust sich zu verschaften suchen müsse. Um hier gleich bei dem Einfachsten stehen zu bleiben, so würde Niemand von uns anstrengende körperliche Uebungen vornehmen, wenn er nicht einen Vortheil davon erwartete. Wer dürfte aber wohl Den tadeln, der nach einer Lust verlangt, welcher keine Unannehmlichkeit folgt, oder der einem Schmerze ausweicht, aus dem keine Lust hervorgeht?

Dagegen tadelt und hasst man mit Recht Den, welcher sich durch die Lockungen einer gegenwärtigen Lust erweichen und verführen lässt, ohne in seiner blinden Begierde zu sehen, welche Schmerzen und Unannehmlichkeiten seiner deshalb warten. Gleiche Schuld treffe Die, welche aus geistiger Schwäche, d.h. um der Arbeit und dem Schmerze zu entgehen, ihre Pflichten verabsäumen. Man kann hier leicht und schnell den richtigen Unterschied treffen; zu einer ruhigen Zeit, wo die Wahl der Entscheidung völlig frei ist und nichts hindert, das zu thun, was den Meisten gefällt, hat man jede Lust zu erfassen und jeden Schmerz abzuhalten; aber zu Zeiten trifft es sich in Folge von schuldigen Pflichten oder von sachlicher Noth, dass man die Lust zurückweisen und Beschwerden nicht von sich weisen darf. Deshalb trifft der Weise dann eine

Auswahl, damit er durch Zurückweisung einer Lust dafür eine grössere erlange oder durch Uebernahme gewisser Schmerzen sich grössere erspare.

Damit Ihr indess erkennt, woher dieser ganze Irrthum gekommen ist, und weshalb man die Lust anklagt und den Schmerz lobet, so will ich Euch Alles eröffnen und auseinander setzen, was jener Begründer der Wahrheit und gleichsam Baumeister des glücklichen Lebens selbst darüber gesagt hat. Niemand, sagt er, verschmähe, oder hasse, oder fliehe die Lust als solche, sondern weil grosse Schmerzen ihr folgen, wenn man nicht mit Vernunft ihr nachzugehen verstehe. Ebenso werde der Schmerz als solcher von Niemand geliebt, gesucht und verlangt, sondern weil mitunter solche Zeiten eintreten, dass man mittelst Arbeiten und Schmerzen eine grosse Lust sich zu verschaften suchen müsse. Um hier gleich bei dem Einfachsten stehen zu bleiben, so würde Niemand von uns anstrengende körperliche Uebungen vornehmen, wenn er nicht einen Vortheil davon erwartete. Wer dürfte aber wohl Den tadeln, der nach einer Lust verlangt, welcher keine Unannehmlichkeit folgt, oder der einem Schmerze ausweicht, aus dem keine Lust hervorgeht?

Dagegen tadelt und hasst man mit Recht Den, welcher sich durch die Lockungen einer gegenwärtigen Lust erweichen und verführen lässt, ohne in seiner blinden Begierde zu sehen, welche Schmerzen und Unannehmlichkeiten seiner deshalb warten. Gleiche Schuld treffe Die, welche aus geistiger Schwäche, d.h. um der Arbeit und dem Schmerze zu entgehen, ihre Pflichten verabsäumen. Man kann hier leicht und schnell den richtigen Unterschied treffen; zu einer ruhigen Zeit, wo die Wahl der Entscheidung völlig frei ist und nichts hindert, das zu thun, was den Meisten gefällt, hat man jede Lust zu erfassen und jeden Schmerz abzuhalten; aber zu Zeiten trifft es sich in Folge von schuldigen Pflichten oder von sachlicher Noth, dass man die Lust zurückweisen und Beschwerden nicht von sich weisen darf. Deshalb trifft der Weise dann eine Auswahl, damit er durch Zurückweisung einer Lust dafür eine grössere erlange oder durch Uebernahme gewisser Schmerzen sich grössere erspare.

Damit Ihr indess erkennt, woher dieser ganze Irrthum gekommen ist, und weshalb man die Lust anklagt und den Schmerz lobet, so will ich Euch Alles eröffnen und auseinander setzen, was jener Begründer der Wahrheit und gleichsam Baumeister des glücklichen Lebens selbst darüber gesagt hat. Niemand, sagt er, verschmähe, oder hasse, oder fliehe die Lust als solche, sondern weil grosse Schmerzen ihr folgen, wenn man nicht mit Vernunft ihr nachzugehen verstehe. Ebenso werde der Schmerz als solcher von Niemand geliebt, gesucht und verlangt, sondern weil mitunter solche Zeiten eintreten, dass man mittelst Arbeiten und Schmerzen eine grosse Lust sich zu verschaften suchen müsse. Um hier gleich bei dem Einfachsten stehen zu bleiben, so würde Niemand von uns anstrengende körperliche Uebungen vornehmen, wenn er nicht einen Vortheil davon erwartete. Wer dürfte aber wohl Den tadeln, der nach einer Lust verlangt, welcher keine Unannehmlichkeit folgt, oder der einem Schmerze ausweicht, aus dem keine Lust hervorgeht?

Dagegen tadelt und hasst man mit Recht Den, welcher sich durch die Lockungen einer gegenwärtigen Lust erweichen und verführen lässt, ohne in seiner blinden Begierde zu sehen, welche Schmerzen und Unannehmlichkeiten seiner deshalb warten. Gleiche Schuld treffe Die, welche aus geistiger Schwäche, d.h. um der Arbeit und dem

Schmerze zu entgehen, ihre Pflichten verabsäumen. Man kann hier leicht und schnell den richtigen Unterschied treffen; zu einer ruhigen Zeit, wo die Wahl der Entscheidung völlig frei ist und nichts hindert, das zu thun, was den Meisten gefällt, hat man jede Lust zu erfassen und jeden Schmerz abzuhalten; aber zu Zeiten trifft es sich in Folge von schuldigen Pflichten oder von sachlicher Noth, dass man die Lust zurückweisen und Beschwerden nicht von sich weisen darf. Deshalb trifft der Weise dann eine Auswahl, damit er durch Zurückweisung einer Lust dafür eine grössere erlange oder durch Uebernahme gewisser Schmerzen sich grössere erspare.

2 Theory

2.1 Debye model

2.1.1 Derivation of maximum $tan(\delta)$

The aim of this section is to derive the formula for the maximum $tan(\delta)$ in order to adjust its value to a disired one.

$$\epsilon_{eff}^*(\omega) = \frac{C^*(\omega)}{C_0} \tag{2.1}$$

$$\epsilon^* = \epsilon_r - j \cdot \epsilon_r'' \tag{2.2}$$

$$\epsilon_r' = \epsilon_\infty + \frac{\epsilon_{stat} - \epsilon_\infty}{1 + (\omega \cdot \tau)^2} \tag{2.3}$$

$$\epsilon_r'' = \omega \cdot \tau \cdot \frac{\epsilon_{stat} - \epsilon_{\infty}}{1 + (\omega \cdot \tau)^2} \tag{2.4}$$

The loss tangents are given by:

$$tan(\delta) = \frac{\kappa + \omega \cdot \epsilon_0 \cdot \epsilon_r''}{\omega \cdot \epsilon_0 \cdot \epsilon_r'} \tag{2.5}$$

$$tan(\delta_L) = \frac{\kappa}{\omega \cdot \epsilon_0 \cdot \epsilon_r'} \tag{2.6}$$

$$tan(\delta_{pol}) = \frac{\epsilon_r''}{\epsilon_r'} \tag{2.7}$$

2 Theory 7

We are measuring in the frequency domain from 10^{-6} Hz to 10^{11} Hz

$$\epsilon^*(\omega) = \frac{1}{j\omega Z^*(\omega)C_0} \tag{2.8}$$

$$Z_0(\omega) = \left[\frac{1}{R_\infty} + \frac{1}{R_i + \frac{1}{j\omega C_i}} + j\omega C_0\right]^{-1} = \left[\frac{1}{R_\infty} + \frac{j\omega C_i}{j\omega R_i C_i + 1} + j\omega C_0\right]^{-1}$$
(2.9)

$$\epsilon^*(\omega) = \frac{\left[\frac{1}{R_\infty} + \frac{j\omega C_i}{j\omega C_i R_i + 1} + j\omega C_0\right]}{j\omega C_0} = \frac{1}{j\omega C_0 R_\infty} + \frac{C_i/C_0}{j\omega C_i R_i + 1} + 1$$
(2.10)

We split this term up into real and impaginary part

$$\epsilon_r' = 1 + \frac{C_i/C_0}{\omega^2 C_i^2 R_i^2 + 1} \tag{2.11}$$

$$\epsilon_r'' = -j \left(\frac{1}{\omega C_0 R_\infty} + \frac{\omega C_i^2 R_i / C_0}{\omega^2 C_i^2 R_i^2 + 1} \right)$$
 (2.12)

$$tan(\delta) = tan(\delta_L) + tan(\delta_P ol) = \frac{\omega^2 \tau^2 + 1}{\omega C_0 R_{\infty} (2 + \omega^2 \tau^2)} = \frac{\omega \tau \Delta \epsilon}{\epsilon_{stat} + \omega^2 \tau^2}$$
(2.13)

$$\frac{\partial tan(\delta)}{\partial \omega} = \frac{\left[\omega C_0 R_{\infty}(2+\omega^2\tau^2)\right] \cdot 2\omega\tau^2 - (\omega^2\tau^2 + 1)\left[C_0 R_{\infty}(2+3\omega^2\tau^2)\right] + \frac{\tau\Delta\epsilon\left[\epsilon_{stat} + \omega^2\tau^2\right] - 2\omega\tau^2\left[\omega\tau\Delta\epsilon\left[\epsilon_{stat} + \omega^2\tau^2\right]\right]}{\left[\epsilon_{stat} + \omega^2\tau^2\right]} + \frac{\tau\Delta\epsilon\left[\epsilon_{stat} + \omega^2\tau^2\right] - 2\omega\tau^2\left[\omega\tau\Delta\epsilon\left[\epsilon_{stat} + \omega^2\tau^2\right]\right]}{\left[\epsilon_{stat} + \omega^2\tau^2\right]}$$

$$(2.14)$$

Um das Maximum von $\tan(\delta_{pol})$ zu finden wird der zweite Term in der Ableitung 0 gesetzt.

$$\tau \Delta \epsilon [\epsilon_{stat} + \omega^2 \tau^2] - 2\omega \tau^2 [\omega \tau \Delta \epsilon] = 0$$
 (2.15)

$$\omega^2(\tau^3 \Delta \epsilon - 2\tau^3 \Delta \epsilon) = -\tau \Delta \epsilon \cdot \epsilon_{stat} \tag{2.16}$$

2 Theory 8

$$\omega^2 = \frac{\tau \Delta \epsilon \epsilon_{stat}}{\tau^3 \Delta \epsilon} \tag{2.17}$$

$$\omega = \sqrt{\frac{\epsilon_{stat}}{\tau^2}} \tag{2.18}$$

$$\tan(\delta_L)_{max} = \frac{\epsilon_{stat} \Delta \epsilon}{2\epsilon_{stat}} = \frac{1}{2} \frac{\Delta \epsilon}{\sqrt{\epsilon_{stat}}}$$
(2.19)

2.2 Fourier Coefficients of trapezoidal pulse train

$$U_n = \frac{2U_0}{i\omega_n T} \left[e^{\frac{j\omega_n \tau}{2}} sinc \frac{\omega_n \tau_r}{2} - e^{\frac{-j\omega_n \tau}{2}} sinc \frac{\omega_n \tau_f}{2} \right]$$
(2.20)

System Analysis:

$$\tau_r = 0.5e^{-6} \tag{2.21}$$

$$\tau_f = 0.1e^{-6} \tag{2.22}$$

$$\tau = 1e^{-6} \tag{2.23}$$

Slopes of the curves:

- -1 on loglog plot after $\frac{2}{\tau}$ -2 on loglog plot after $\frac{2}{\tau_r}$

3 Methods

3.1 Simulation of capacitance

Figure 3.1: Field simulation of the low-voltage test cell (0.5 mm electrode distance) 3.1

3.2 Signal analysis of the Debye model

In order to emulate different dielectrica with their own respective dielectric loss tangent, different combinations of circuit elements were used. Each different circuit accounts for another loss tangent with respect to frequency. With the objective to assess the performance of the current transformer, reasonably high values for the $tan(\delta)$ were assumed (i.e. 0.05 to 0.2) since a lower loss tangent would require a higher resolution on the part of the current measurement.

«««< HEAD

3 Methods 10

Figure 3.2: Electron drift currents in Ar at 30 Td and in CO_2 at 65 Td, the latter was divided by 10 and shifted by 0.2 μ s. Dotted lines are averages of measured waveforms, solid lines are fits of Eq. XX. T marks the electron transit time, and the markers T_1 to T_3 are explained in section.

4 Results

4.1 Simulation of Capacitance values

4.1.1 Comparision of Capacitance in the simulation with a sphere geometry

The simulation of the capacitance for the cylindric geometry as a function of different distances with COMSOL leads to the following figure. The simulation of two spheres as well as the approximation formula result in a general shift which is due to the fact that it is a three electrode arrangement as the wall of the low-voltage introduces a new capacitance between the upper electrode and the wall which is not affected by the distance variation. This results in a reduction of the capacitance compared to the two spheres geometry. Thus, the simulated values for the low voltage test cell seem reasonable if one compares them to the results of the capacitance between two spheres.

4.2 Complex effective permittivity

4.2.1

======

Figure 4.1: Dependency of the electrode distance on the capacitance for the low voltage setup and two spheres $\epsilon = 3.5$

5 Results

5.1 Simulation of Capacitance values

5.1.1 Comparision of Capacitance in the simulation with a sphere geometry

The simulation of the capacitance for the cylindric geometry as a function of different distances with COMSOL leads to the following figure. The simulation of two spheres as well as the approximation formula result in a general shift which is due to the fact that it is a three electrode arrangement as the wall of the low-voltage introduces a new capacitance between the upper electrode and the wall which is not affected by the distance variation. This results in a reduction of the capacitance compared to the two spheres geometry. Thus, the simulated values for the low voltage test cell seem reasonable if one compares them to the results of the capacitance between two spheres.

Figure 5.1: Dependency of the electrode distance on the capacitance for the low voltage setup and two spheres ($\epsilon = 3.5$)

5 Results 13

- 5.2 Complex effective permittivity
- 5.2.1
- 5.3 Performance of integrator
- 5.4 Dielectric Spectroscopy

 $\gg \gg >$ origin/master

6 Discussion

Figure 6.1: Ein Beispiel für psfragfig-Bilder

7 Conclusions

Bibliography

- [WNP+88] N. Wiegart, L. Niemeyer, F. Pinnekamp, W. Boeck, J. Kindersberger, R. Morrow, W. Zaengl, M. Zwicky, I. Gallimberti, and S.A. boggs. Inhomogeneous field breakdown in gis – the prediction of breakdown probabilites and voltages. *IEEE Transactions on Power Delivery*, 1988.
- [WWvdL88] J.M. Wetzler, C. Wen, and P.C.T. van der Laan. Bandwidth limitations of gap current measurements. In conference record of the 1988 IEEE International Symposium on electrical Insulation, pages 355–358, 1988.
- [Zwi86] Matthias Zwicky. Zur Isolierfestigkeit von Schwefelhexafluorid (SF₆) bei Wechselspannung variabeler Frequenz (30 bis 200 Hz). PhD thesis, ETH Zürich, 1986.

Eigenständigkeitserklärung

Diese Seite wird durch die Eigenständigkeitserklärung ersetzt.