Urbanization influences communities of milkweed-specialist herbivorous insects

ON_herb Figures

Lindsay S. Miles Vanessa J. Nahn David Murray-Stoker Marc T. J. Johnson

Contents

Contents	
Colour Palettes	2
Site Map	3
Abundance, Richness, & Diversity Toronto	4
Abundance, Richness, & Diversity 5 Cities	8
Leaf Herbivory Toronto	12
Leaf Herbivory 5 Cities	13
Community Composition Toronto	15
Community Composition 5 Cities	16
Abundance-by-Dispersal Toronto & 5 Cities	18
R Session Information	20
## Load the tidyverse library(tidyverse)	
## Map library(maps) library(mapdata) library(maptools) library(ggmap)	
<pre>## Figures library(calecopal) library(ggpubr) library(grid) library(gridExtra) library(scales)</pre>	
## Load the final workspace	
load("data_analysis/1-analyses/ON_herb-analyses-workspace.RData")	
## Read in site information	

```
site.information <- read_csv(
   "data/site_information.csv",
   col_types = c("fffnnnf"),
   show_col_types = FALSE
  )</pre>
```

Colour Palettes

Site Map

```
## Compute bounding box
ON_bbox <- make_bbox(lat = Latitude, lon = Longitude, data = site.information)

## Get map from google
ON_big <- get_map(location = ON_bbox, source = "google", maptype = "satellite")

## Plot points and colour by city
site.map <- ggmap(ON_big) +
    geom_point(
          data = site.information,
          mapping = aes(x = Longitude, y = Latitude, color = City, pch = Habitat)
          ) +
    scale_colour_manual(values = superbloom.map, name = "City") +
    scale_shape_manual(values = c(17, 19), name = "Habitat") +
    labs(x = "Longitude", y = "Latitude") +
    theme_pubr()</pre>
```

Abundance, Richness, & Diversity | Toronto

```
## Abundance
# Early
toronto.early.abundance.figure <- ggscatter(</pre>
   data = filter(toronto.herbivores, Season == "Early"),
   x = "Distance",
   y = "Summed_Abundance",
   size = 2,
   color = "#A292C8",
   xlab = "Distance",
   ylab = "Community Abundance",
   title = "(A) Early Season Abundance",
   ggtheme = theme_pubr(),
   legend = "right",
   conf.int = TRUE
) +
    geom_smooth(method = "glm", formula = y ~ x, se = TRUE,
                            method.args = list(family = "quasipoisson"),
                            colour = "#A5BA92", fill = "#A5BA92") +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
   rremove("x.text") +
   rremove("xlab")
# Late
toronto.late.abundance.figure <- ggscatter(</pre>
   data = filter(toronto.herbivores, Season == "Late"),
   x = "Distance",
   y = "Summed_Abundance",
   size = 2,
   color = "#A292C8",
   xlab = "Distance",
   ylab = "Community Abundance",
   title = "(B) Late Season Abundance",
   ggtheme = theme_pubr(),
   legend = "right",
   conf.int = TRUE
    geom_smooth(method = "glm", formula = y ~ x, se = TRUE,
                            method.args = list(family = "quasipoisson"),
                            colour = "#A5BA92", fill = "#A5BA92") +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
   rremove("xy.text") +
   rremove("xlab") +
   rremove("ylab")
## Richness
# Early
```

```
toronto.early.richness.figure <- ggscatter(</pre>
   data = filter(toronto.herbivores, Season == "Early"),
   x = "Distance",
   y = "Richness",
   size = 2,
   color = "#A292C8",
   xlab = "Distance",
   ylab = "Species Richness",
   title = "(C) Early Season Richness",
   ggtheme = theme_pubr(),
   legend = "right",
   conf.int = TRUE
) +
    geom_smooth(method = "glm", formula = y ~ x, se = TRUE,
                            method.args = list(family = "poisson"),
                            colour = "#A5BA92", fill = "#A5BA92") +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
   rremove("x.text") +
   rremove("xlab")
# Late
toronto.late.richness.figure <- ggscatter(</pre>
   data = filter(toronto.herbivores, Season == "Late"),
   x = "Distance",
   y = "Richness",
   size = 2,
   color = "#A292C8",
   xlab = "Distance",
   ylab = "Species Richness",
   title = "(D) Late Season Richness",
   ggtheme = theme_pubr(),
   legend = "right",
   conf.int = TRUE
) +
   geom_smooth(method = "glm", formula = y ~ x, se = TRUE,
                            method.args = list(family = "poisson"),
                            colour = "#A5BA92", fill = "#A5BA92") +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
   rremove("xy.text") +
   rremove("xlab") +
   rremove("ylab")
## Diversity
# Early
toronto.early.diversity.figure <- ggscatter(</pre>
   data = filter(toronto.herbivores, Season == "Early"),
   x = "Distance",
   y = "Diversity",
```

```
size = 2,
   color = "#A292C8",
   xlab = "Distance",
   ylab = "Diversity",
   title = "(E) Early Season Diversity",
   ggtheme = theme_pubr(),
   legend = "right",
   conf.int = TRUE
) +
    geom_smooth(method = "lm", formula = y ~ x, se = TRUE,
                            colour = "#A5BA92", fill = "#A5BA92") +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20")
# Late
toronto.late.diversity.figure <- ggscatter(</pre>
   data = filter(toronto.herbivores, Season == "Late"),
   x = "Distance",
   y = "Diversity",
   size = 2,
   color = "#A292C8",
   xlab = "Distance",
   ylab = "Diversity",
   title = "(F) Late Season Diversity",
   ggtheme = theme_pubr(),
   legend = "right",
   conf.int = TRUE
) +
   geom_smooth(method = "lm", formula = y ~ x, se = TRUE,
                           colour = "#A5BA92", fill = "#A5BA92") +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
   rremove("y.text") +
   rremove("ylab")
## Arrange the panel figure
toronto.ARD.figure <- ggarrange(</pre>
   toronto.early.abundance.figure, toronto.late.abundance.figure,
   toronto.early.richness.figure, toronto.late.richness.figure,
   toronto.early.diversity.figure, toronto.late.diversity.figure,
   nrow = 3,
   ncol = 2,
   align = "v",
   legend = "none"
## Export the figure
ggsave("fig_2-toronto_ARD-base.pdf",
             plot = toronto.ARD.figure,
             device = "pdf",
```

```
path = "figures/",
width = 12,
height = 10,
units = "in",
dpi = 900)
```

Abundance, Richness, & Diversity | 5 Cities

```
## Abundance
# Early
five.cities.early.abundance.figure <- ggerrorplot(</pre>
   data = filter(five.cities.herbivores, Season == "Early"),
   x = "Habitat",
   y = "Summed_Abundance",
   size = 1.5,
   width = 2,
   desc_stat = "mean_se",
   color = "City",
   palette = superbloom.5,
   xlab = "Habitat",
   ylab = "Community Abundance",
   title = "(A) Early Season Abundance",
   ggtheme = theme_pubr()
   ) %>%
   facet(
       facet.by = "City",
       nrow = 1,
       ncol = 5
   ) +
    stat_summary(aes(group = City), fun = mean, geom = "path",
                            color = superbloom.10.lines) +
   scale_y_continuous(breaks = c(0, 60, 120, 180)) +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
   rremove("x.text") +
   rremove("xlab")
five.cities.late.abundance.figure <- ggerrorplot(</pre>
   data = filter(five.cities.herbivores, Season == "Late"),
   x = "Habitat",
   y = "Summed_Abundance",
   size = 1.5,
   width = 2,
   desc_stat = "mean_se",
   color = "City",
   palette = superbloom.5,
   xlab = "Habitat",
   ylab = "Community Abundance",
   title = "(B) Late Season Abundance",
   ggtheme = theme_pubr()
   ) %>%
   facet(
       facet.by = "City",
       nrow = 1,
       ncol = 5
   ) +
    stat_summary(aes(group = City), fun = mean, geom = "path",
```

```
color = superbloom.10.lines) +
    scale_y_continuous(breaks = c(0, 1000, 2000, 3000, 4000)) +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
   rremove("x.text") +
   rremove("xlab") +
   rremove("ylab")
## Richness
# Early
five.cities.early.richness.figure <- ggerrorplot(</pre>
   data = filter(five.cities.herbivores, Season == "Early"),
   x = "Habitat",
   y = "Richness",
   size = 1.5,
   width = 2,
   desc_stat = "mean_se",
   color = "City",
   palette = superbloom.5,
   xlab = "Habitat",
   ylab = "Richness",
   title = "(C) Early Season Richness",
   ggtheme = theme pubr()
   ) %>%
   facet(
        facet.by = "City",
       nrow = 1,
       ncol = 5
    stat_summary(aes(group = City), fun = mean, geom = "path",
                             color = superbloom.10.lines) +
    scale_y_continuous(breaks = c(1, 2, 3, 4)) +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
   rremove("x.text") +
   rremove("xlab")
# Late
five.cities.late.richness.figure <- ggerrorplot(</pre>
   data = filter(five.cities.herbivores, Season == "Late"),
   x = "Habitat",
   y = "Richness",
   size = 1.5,
   width = 2,
   desc_stat = "mean_se",
   color = "City",
   palette = superbloom.5,
   xlab = "Habitat",
   ylab = "Richness",
   title = "(D) Late Season Richness",
```

```
ggtheme = theme_pubr()
    ) %>%
   facet(
       facet.by = "City",
       nrow = 1,
       ncol = 5
   ) +
    stat_summary(aes(group = City), fun = mean, geom = "path",
                            color = superbloom.10.lines) +
   scale_y_continuous(breaks = c(1, 2, 3, 4)) +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
   rremove("x.text") +
   rremove("xlab") +
   rremove("ylab")
## Diversity
# Early
five.cities.early.diversity.figure <- ggerrorplot(</pre>
   data = filter(five.cities.herbivores, Season == "Early"),
   x = "Habitat",
   y = "Diversity",
   size = 1.5,
   width = 2,
   desc_stat = "mean_se",
   color = "City",
   palette = superbloom.5,
   xlab = "Habitat",
   ylab = "Diversity",
   title = "(E) Early Season Diversity",
   ggtheme = theme_pubr()
   ) %>%
   facet(
       facet.by = "City",
       nrow = 1,
       ncol = 5
   ) +
    stat_summary(aes(group = City), fun = mean, geom = "path",
                             color = superbloom.10.lines) +
   scale_y_continuous(breaks = c(0, 0.25, 0.50, 0.75, 1.00, 1.25)) +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20")
# Late
five.cities.late.diversity.figure <- ggerrorplot(</pre>
   data = filter(five.cities.herbivores, Season == "Late"),
   x = "Habitat",
   y = "Diversity",
   size = 1.5,
   width = 2,
```

```
desc_stat = "mean_se",
color = "City",
palette = superbloom.5,
xlab = "Habitat",
ylab = "Diversity",
title = "(F) Late Season Diversity",
ggtheme = theme_pubr()
) %>%
facet(
   facet.by = "City",
   nrow = 1,
   ncol = 5
) +
stat_summary(aes(group = City), fun = mean, geom = "path",
                         color = superbloom.10.lines) +
scale_y_continuous(breaks = c(0, 0.5, 1.0)) +
font("xlab", size = 18, color = "gray0") +
font("ylab", size = 18, color = "gray0") +
font("xy.text", size = 14, color = "gray20") +
rremove("ylab")
```

```
## Arrange the panel figure
five.cities.ARD.figure <- ggarrange(
    five.cities.early.abundance.figure, five.cities.late.abundance.figure,
    five.cities.early.richness.figure, five.cities.late.richness.figure,
    five.cities.early.diversity.figure, five.cities.late.diversity.figure,
    nrow = 3,
    ncol = 2,
    align = "v",
    legend = "top",
    common.legend = TRUE
)</pre>
```

Leaf Herbivory | Toronto

```
toronto.leaf.herbivory.figure <- ggscatter(</pre>
   data = toronto.leaf.damage,
   x = "Distance",
    y = "Mean_Leaf_Herbivory",
    color = "Season",
   palette = toronto.2,
   xlab = "Distance",
   ylab = "Mean Leaf Herbivory (%)",
   ggtheme = theme_pubr(),
   legend = "right",
   add = "reg.line",
    conf.int = TRUE
) +
    font("xlab", size = 18, color = "gray0") +
    font("ylab", size = 18, color = "gray0") +
    font("xy.text", size = 14, color = "gray20")
```

Leaf Herbivory | 5 Cities

```
## Early
five.cities.early.leaf.herbivory.figure <- ggerrorplot(</pre>
   data = filter(five.cities.leaf.damage, Season == "Early"),
   x = "Habitat",
   y = "Mean_Leaf_Herbivory",
   size = 1.5,
   width = 2,
   desc_stat = "mean_se",
   color = "City",
   palette = superbloom.5,
   xlab = "Habitat",
   ylab = "Mean Leaf Herbivory (%)",
   title = "(A) Early Season Leaf Herbivory",
   ggtheme = theme_pubr()
   ) %>%
   facet(
       facet.by = "City",
       nrow = 1,
       ncol = 5
   ) +
    stat_summary(aes(group = City), fun = mean, geom = "path",
                             color = superbloom.10.lines) +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20")
## Late
five.cities.late.leaf.herbivory.figure <- ggerrorplot(</pre>
   data = filter(five.cities.leaf.damage, Season == "Late"),
   x = "Habitat",
   y = "Mean Leaf Herbivory",
   size = 1.5,
   width = 2,
   desc_stat = "mean_se",
   color = "City",
   palette = superbloom.5,
   xlab = "Habitat",
   ylab = "Mean Leaf Herbivory (%)",
   title = "(B) Late Season Leaf Herbivory",
   ggtheme = theme_pubr()
   ) %>%
   facet(
       facet.by = "City",
       nrow = 1,
       ncol = 5
   ) +
    stat_summary(aes(group = City), fun = mean, geom = "path",
                            color = superbloom.10.lines) +
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
```

```
rremove("ylab")
```

```
## Arrange the panel figure
five.cities.leaf.herbivory.figure <- ggarrange(
    five.cities.early.leaf.herbivory.figure,
    five.cities.late.leaf.herbivory.figure,
    nrow = 1,
    ncol = 2,
    align = "v",
    legend = "top",
    common.legend = TRUE
)</pre>
```

Community Composition | Toronto

```
toronto.herbivore.abundances.wide <- toronto.herbivores %>%
    select(Population, Distance, Season) %>%
    bind_cols(toronto.community.matrix)

toronto.herbivore.abundances.long <- toronto.herbivore.abundances.wide %>%
    gather(Herbivore_Species, Measurement, Danaus:Liriomyza, factor_key = TRUE)
```

```
toronto.herbivore.abundances.figure <- ggscatter(</pre>
    data = toronto.herbivore.abundances.long,
    x = "Distance",
   y = "Measurement",
    point = FALSE,
    color = "Herbivore_Species",
    palette = cal_palette(name = "kelp1", n = 9, type = "continuous"),
    xlab = "Distance",
    ylab = "Herbivore Abundance",
    ggtheme = theme_pubr(),
    add = "reg.line",
    conf.int = TRUE
) %>%
    facet(
        facet.by = "Season",
       nrow = 1,
       ncol = 2
    font("xlab", size = 18, color = "gray0") +
    font("ylab", size = 18, color = "gray0") +
    font("xy.text", size = 14, color = "gray20") +
    coord_cartesian(ylim = c(0, 22.5))
```

Community Composition | 5 Cities

```
five.cities.herbivore.abundances.wide <- five.cities.herbivores %%
    select(City, Habitat, Season) %>%
    bind_cols(five.cities.community.matrix)
five.cities.herbivore.abundances.long.filtered <- five.cities.herbivore.abundances.wide %>%
    gather(Herbivore_Species, Measurement, Danaus:Liriomyza, factor_key = TRUE) %>%
   filter(Herbivore_Species != "Aphis")
## Toronto colour palette
toronto.continuous <- cal_palette(name = "kelp1", n = 9, type = "continuous")
## Set the 5 Cities herbivore palette to match Toronto
five.cities.herbivore.colours <- toronto.continuous[c(1:2, 5:9)]
## Early
five.cities.early.herbivore.abundances.figure <- ggerrorplot(</pre>
   data = filter(five.cities.herbivore.abundances.long.filtered, Season == "Early"),
   x = "Habitat",
   y = "Measurement",
   size = 1.5,
   width = 2,
   desc_stat = "mean_se",
   color = "Herbivore_Species",
   palette = five.cities.herbivore.colours,
   xlab = "Habitat",
   ylab = "Herbivore Abundance",
   title = "(A) Early Season Abundances",
   ggtheme = theme_pubr()
   ) %>%
   facet(
       facet.by = "City",
       nrow = 1,
       ncol = 5
   font("xlab", size = 18, color = "gray0") +
   font("ylab", size = 18, color = "gray0") +
   font("xy.text", size = 14, color = "gray20") +
    coord_cartesian(ylim = c(0, 18.5))
five.cities.late.herbivore.abundances.figure <- ggerrorplot(</pre>
   data = filter(five.cities.herbivore.abundances.long.filtered, Season == "Late"),
   x = "Habitat",
   y = "Measurement",
   size = 1.5,
   width = 2,
   desc stat = "mean se",
   color = "Herbivore_Species",
   palette = five.cities.herbivore.colours,
  xlab = "Habitat",
```

```
ylab = "Herbivore Abundance",
title = "(B) Late Season Abundances",
ggtheme = theme_pubr()
) %>%
facet(
    facet.by = "City",
    nrow = 1,
    ncol = 5
) +
font("xlab", size = 18, color = "gray0") +
font("ylab", size = 18, color = "gray0") +
font("xy.text", size = 14, color = "gray20") +
coord_cartesian(ylim = c(0, 31.5)) +
rremove("ylab")
```

```
## Arrange the panel figure
five.cities.herbivore.abundances.figure <- ggarrange(
    five.cities.early.herbivore.abundances.figure,
    five.cities.late.herbivore.abundances.figure,
    nrow = 1,
    ncol = 2,
    align = "hv",
    legend = "top",
    common.legend = TRUE
)</pre>
```

Abundance-by-Dispersal | Toronto & 5 Cities

```
toronto.abundance.by.dispersal.plot <- ggscatter(</pre>
    data = toronto.dispersal.data,
    x = "ln.Dispersal",
    y = "Abundance",
    color = "Season",
    palette = dispersal.colours,
    xlab = "Dispersal Distance",
    ylab = "Abundance Response",
   title = "(A) Toronto",
    ggtheme = theme_pubr(),
   legend = "right",
    add = "reg.line",
    conf.int = TRUE
) +
    font("xlab", size = 18, color = "gray0") +
    font("ylab", size = 18, color = "gray0") +
    font("xy.text", size = 14, color = "gray20")
five.cities.abundance.by.dispersal.plot <- ggscatter(</pre>
    data = five.cities.dispersal.data,
    x = "ln.Dispersal",
    y = "Abundance",
    color = "Season",
    palette = dispersal.colours,
   xlab = "Dispersal Distance",
    ylab = "Abundance Response",
   title = "(B) 5 Cities",
    ggtheme = theme_pubr(),
    legend = "right",
    add = "reg.line",
    conf.int = TRUE
) +
    font("xlab", size = 18, color = "gray0") +
    font("ylab", size = 18, color = "gray0") +
    font("xy.text", size = 14, color = "gray20") +
    rremove("ylab")
## Arrange the panel figure
```

```
## Arrange the panel figure
abundance.by.dispersal.figure <- ggarrange(
    toronto.abundance.by.dispersal.plot,
    five.cities.abundance.by.dispersal.plot,
    nrow = 1,
    ncol = 2,
    align = "v",
    legend = "top",
    common.legend = TRUE
)</pre>
```

```
## Export the figure
ggsave("fig_S4-abundance_by_dispersal-base.pdf",
```

```
plot = abundance.by.dispersal.figure,
device = "pdf",
path = "figures/",
width = 8,
height = 6,
units = "in",
dpi = 900)
```

R Session Information

Table 1: Packages required for data management and figure creation.

Package	Loaded Version	Date
calecopal	0.1.0	2021-05-24
dplyr	1.0.8	2022-02-08
forcats	0.5.1	2021-01-27
ggmap	3.0.0	2019-02-05
ggplot2	3.3.5	2021-06-25
ggpubr	0.4.0	2020-06-27
gridExtra	2.3	2017-09-09
kableExtra	1.3.4	2021-02-20
knitr	1.38	2022 - 03 - 25
mapdata	2.3.0	2018-03-30
maps	3.4.0	2021-09-25
maptools	1.1-3	2022-03-08
purrr	0.3.4	2020-04-17
readr	2.1.2	2022 - 01 - 30
scales	1.1.1	2020-05-11
sp	1.4-6	2021-11-14
stringr	1.4.0	2019-02-10
tibble	3.1.6	2021-11-07
tidyr	1.2.0	2022-02-01
tidyverse	1.3.1	2021-04-15