House Price Prediction in Iowa State

By,
Akshit Meghawat, ammeghaw
Harika Malapaka, hsmalapa
Sanya Kathuria, skathur2

NC STATE UNIVERSITY

INTERIOR FEATURES

Bedrooms Flooring

Beds: 7 Floor size: 18,398 sqft

Bathrooms Flooring: Carpet, Hardwood, Tile

Baths: 8 full, 4 half Other Interior Features

Fireplace

View Virtual Tour

SPACES AND AMENITIES

Spaces Amenities
Wet Bar Elevator

Pool Security System

Fitness Center

Tennis Court

CONSTRUCTION

Type and Style

Single Family

Materials

Exterior material: Stone

EXTERIOR FEATURES

Patio

Porch

Datia

Dates

Built in 1999

Lot

Lot: 15.27 acres

Given Features of a House.

Predict it's Price?

Introduction and Motivation

Business Point of View

How does he predict which house is the best?

Solution: Use this model

Class Point of View

Using Neural Networks With Regression

deepleaming4j

Dataset

Target attribute :

Sale Price of the house

Ex: \$39050

Dataset contains 80 attributes

EX: Basement Quality: good

Train Dataset

Test Dataset

80 Columns

Literature Survey

- Advanced Machine learning
 - Data Cleaning
 - Data Preprocessing
 - Supervised Learning (Neural Network)
 - Regression

Data Cleaning and Preprocessing

The below steps were applied on both train and test data:

Data Cleaning steps:

1.Removing Outliers

2. Handle Missing Values

3.Aggregations

Newly Processes Data:

Train-set: 1417 rows, 67 columns Test set: 1459 rows, 66 columns

Data Preprocessing

Data Preprocessing steps: Normalization (Min Max Scaler)

- Used only continuous features
- Used continuous and categorical features

train-numerical.csv train-categorical.csv train-all.csv test-numeric.csv test-categorical.csv test-all.csv

Method: Linear Regression

$$Y = b_0 + b_1x_1 + b_2x_2 + + b_nx_n$$

Independent Variables (Features)

Dependent Variable (Target)

							7		
TotalBsmtSF	LowQualFinSF		Fireplaces	GarageYrBlt	GarageCars	MiscVal	MoSold	YrSold	SalePrice
0.249532	0.0		0.000000	0.978109	0.50	0.0	0.545455	0.50	0.239442
0.224891	0.0		0.000000	0.970149	0.25	0.0	0.727273	0.75	0.081664
0.392389	0.0		0.333333	0.998507	0.75	0.0	0.454545	0.25	0.238575
0.192140	0.0		0.000000	0.955721	0.25	0.0	0.454545	0.00	0.093800
0.283843	0.0		0.333333	0.990050	0.50	0.0	0.363636	0.25	0.251406

Method: Neural Net Regression

Broadly speaking we experimented with multiple 'sizes' of networks.

- Deep network: 100, 50, 25, 12, 6
- Medium sized network: 50, 25, 12, 6, 3
- Small sized network: 20, 10, 5

Shallow Net :
Only 1 hidden layer

Number of neurons : 5, 12,, 400

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Results (1)

Continuous Features:

 Regressor	MSE	Neural Net Layers	Number of Neurons in each layer
DNN Regression (complex)	0.0026	5	100, 50, 25, 12, 6
DNN Regression (medium)	0.0040	5	50, 25, 12, 6, 3
DNN Regression (small)		3	20, 10, 5
Shallow Regression	0.0063	1	5
Shallow Regression		1	12
Shallow Regression	0.0028	1	25
Shallow Regression		1	50
Shallow Regression	0.0027	1	100
Shallow Regression	0.0026	1	200
Shallow Regression	0.0026	1	400
Linear regression	0.0028	% <u>—</u> %	_

Results (2)

Continuous and Categorical Features:

Regressor	MSE	Neural Net Layers	Number of Neurons in each layer
DNN Regression (complex)	0.0020	5	100, 50, 25, 12, 6
DNN Regression (medium)	0.0027	5	50, 25, 12, 6, 3
DNN Regression (small)	0.0016	3	20, 10, 5
Shallow Regression	0.0021	1	5
Shallow Regression	0.0018	1	12
Shallow Regression	0.0019	1	25
Shallow Regression	0.0019	1	50
Shallow Regression	0.0019	1	100
Shallow Regression	0.0019	1	200
Shallow Regression	0.0020	1	400
Linear regression	0.0024	-	(A.T.)

Comparison Of Advanced Regression with Simple Linear Regression

Linear Regression Advanced regression

Is their performance Comparable?

Answer: YES (After using feature scaling)

Then why use Advanced techniques?

NC STATE UNIVERSITY

Leaky ReLU max(0.1x, x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Conclusions

- 60 % of the work was to clean and preprocess the data.
- As we make the model complicated with more number of layers and neurons, the model might be over-fitted.
- Educated guesses would be good in selecting the number of layers and number of neurons
- Linear regression might not be the best approach.
- MSE value is lower when we use all features instead of only continuous values as features.

Thank you!

