ADVENTURES IN SIS WITH HINTS

EMBRACING THE BRAVE NEW WORLD WHERE WE MAKE IT UP AS WE GO

Martin R. Albrecht

5 November 2024

PROGRAMME

- The SIS with Hints Zoo is an attempt to keep track of all those new SIS-like assumptions that hand out additional hints.
- I will discuss several of these assumptions here, with a focus on computational hardness rather than design.
 - **Designers** Please consider whether you can re-use one of those many newfangled assumptions before introducing yet another one.

Cryptanalysts Analyse them!

• I will also dive a bit deeper into some recent adventures in SIS with hints.

Definition (M-(I)SIS)

- An instance of M-SIS is given by $\mathbf{A} \leftarrow \mathfrak{R}_q^{n \times m}$ and has solutions $\mathbf{u}^* \in \mathcal{R}^m$ such that $0 < \|\mathbf{u}^*\| \le \beta^*$ and $\mathbf{A} \cdot \mathbf{u}^* \equiv \mathbf{0} \mod q$.
- An instance of M-ISIS is given by $(\mathbf{A},\mathbf{t}) \leftarrow \mathcal{R}_q^{n\times m} \times \mathcal{R}_q^n$ and has solutions \mathbf{u}^* such that $0 < \|\mathbf{u}^*\| \le \beta^*$ and $\mathbf{A} \cdot \mathbf{u}^* \equiv \mathbf{t} \mod q$.
- Throughout, feel free to set $\mathcal{R} \coloneqq \mathbb{Z}$.
- I am not going to discuss issues arising over cyclotomic rings in any detail.

NOTATION II

• The kernel lattice $\Lambda_q^{\perp}(\mathbf{A})$ of \mathbf{A} consists of all integral vectors \mathcal{R}_q -orthogonal to the rows of \mathbf{A} :

$$\Lambda_q^{\perp}(A) := \{ \mathbf{x} \in \mathcal{R}^m : A \cdot \mathbf{x} \equiv \mathbf{0} \bmod q \}.$$

• I write **G** for "the Gadget matrix"

THE ORIGINAL: K-SIS

Definition

For any integer $k \geq 0$, an instance of the k-M-SIS problem¹ is a matrix $\mathbf{A} \longleftrightarrow \mathcal{R}_q^{n \times m}$ and a set of k vectors $\mathbf{u}_1, \dots \mathbf{u}_k$ s.t. $\mathbf{A} \cdot \mathbf{u}_i \equiv \mathbf{0} \mod q$ with $\|\mathbf{u}_i\| \leq \beta$. A solution to the problem is a nonzero vector $\mathbf{u}^* \in \mathcal{R}^m$ such that

$$\|\mathbf{u}^\star\| \leq \beta^*, \quad \mathbf{A} \cdot \mathbf{u}^\star \equiv \mathbf{0} \bmod q, \quad \text{and} \quad \mathbf{u}^\star \notin \mathcal{K}\text{-span}(\{\mathbf{u}_i\}_{1 \leq i \leq k}).$$

Dan Boneh and David Mandell Freeman. Linearly Homomorphic Signatures over Binary Fields and New Tools for Lattice-Based Signatures. In: *PKC 2011.* Ed. by Dario Catalano, Nelly Fazio, Rosario Gennaro and Antonio Nicolosi. Vol. 6571. LNCS. Springer, Berlin, Heidelberg, Mar. 2011, pp. 1–16. DOI: 10.1007/978-3-642-19379-8_1

¹This is the module variant defined in [ACLMT22].

K-SIS HARDNESS

- [BF11] showed that k-SIS (over \mathbb{Z}) is hard if SIS is hard for discrete Gaussian \mathbf{u}_i and for k = O(1).
- This reduction was improved to cover $k = \mathcal{O}(m)$.²
- No proof was provided for the module variant in [ACLMT22] but Sasha Laphia later proved it for k = O(1) (unpublished).

²San Ling, Duong Hieu Phan, Damien Stehlé and Ron Steinfeld. Hardness of k-LWE and Applications in Traitor Tracing. In: *CRYPTO 2014, Part I.* ed. by Juan A. Garay and Rosario Gennaro. Vol. 8616. LNCS. Springer, Berlin, Heidelberg, Aug. 2014, pp. 315–334. DOI: 10.1007/978-3-662-44371-2 18.

WHAT CAN IT DO?

- linearly homomorphic signatures
- \cdot removing the random oracle from GPV signatures at the price of restricting to k signatures
- traitor-tracing (by extension to k-LWE³)

• ...

³It is exactly what you think it is

PERSPECTIVE

Leakage Resilience

Alice has A, T s.t. $T \in \mathcal{R}^{m \times m}$ is short and $A \cdot T \equiv 0 \mod q$, i.e. T is trapdoor. Even given, say, 1/2 of the columns T it is hard to recover a full trapdoor.

THE CRISIS OF KNOWLEDGE

ASSUMPTIONS

K-R-ISIS

Definition (K-M-ISIS Admissible)

Let $g(\mathbf{X}) := \mathbf{X}^{\mathbf{e}} := \prod_{i \in \mathbb{Z}_w} X_i^{e_i}$ for some exponent vector $\mathbf{e} \in \mathbb{Z}^w$. Let $\mathcal{G} \subset \mathcal{R}(\mathbf{X})$ be a set of such monomials with $k := |\mathcal{G}|$. We call a family \mathcal{G} k-M-ISIS-admissible if all $g \in \mathcal{G}$ have constant degree, all $g \in \mathcal{G}$ are distinct and $0 \notin \mathcal{G}$.

Definition (K-M-ISIS Assumption)

Let $\mathbf{t} = (1, 0, ..., 0)$. Let \mathcal{G} be k-M-ISIS-admissible. Let $\mathbf{A} \leftarrow \mathfrak{R}_q^{n \times m}$, $\mathbf{v} \leftarrow \mathfrak{s} (\mathcal{R}_q^{\star})^{w}$. Given $(\mathbf{A}, \mathbf{v}, \mathbf{t}, \{\mathbf{u}_g\})$ with \mathbf{u}_g short and $g(\mathbf{v}) \cdot \mathbf{t} \equiv \mathbf{A} \cdot \mathbf{u}_g \mod q$ it is hard to find a short \mathbf{u}^{\star} and small \mathbf{s}^{\star} s.t. $\mathbf{s}^{\star} \cdot \mathbf{t} \equiv \mathbf{A} \cdot \mathbf{u}^{\star} \mod q$.

When n = 1, we call the problem K-R-ISIS.

Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable - (Extended Abstract). In: CRYPTO 2022, Part II. ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13508. LNCS. Springer, Cham, Aug. 2022, pp. 102–132. DOI: 10.1007/978-3-031-15979-4_4

K-R-ISIS HARDNESS

Some reductions (none cover the interesting cases):

- K-R-ISIS is as hard as R-SIS when m>k or when the system generated by $\mathcal G$ is efficiently invertible.
- k-M-ISIS is at least as hard as K-R-ISIS: K-M-ISIS is a true generalisation of K-R-SIS.
- Scaling (g, g^*) multiplicatively by any non-zero g does not change the hardness: may normalise to $g^* \equiv 1$.
- $(\mathcal{G}, 1)$ is as hard as $(\mathcal{G}, 0)$ for any \mathcal{G} : non-homogeneous variant is no easier than the homogeneous variant.

Direct cryptanalysis:

- a direct SIS attack on A.
- finding short \mathcal{R} -linear combinations of \mathbf{u}_i
- finding \mathcal{K} -linear combinations of \mathbf{u}_i that produce short images.

... all seem hard.

KNOWLEDGE K-R-ISIS

The assumption states that for any element $c \cdot \mathbf{t}$ that the adversary can produce together with a short preimage, this is some small linear combination of the preimages $\{\mathbf{u}_g\}$:

Definition (Knowledge K-R-ISIS)

If an adversary outputs any c, \mathbf{u}_c s.t.

$$c \cdot \mathbf{t} \equiv \mathbf{A} \cdot \mathbf{u}_c \mod q$$

There is an extractor that – given the adversary's randomness – outputs short $\{c_q\}$ s.t.

$$c \equiv \sum_{g \in G} c_g \cdot g(\mathbf{v}) \bmod q.$$

Think $\mathbf{t} = (1,0)$ and the second component serves as a "check equation": The assumption only makes sense for n > 1.

KNOWLEDGE K-R-ISIS: THE AUDACITY

The knowledge k-M-ISIS assumption, as stated, only makes sense for $\eta \geq 2$, i.e. not for k-R-ISIS. To see this, consider an adversary $\mathcal A$ which does the following: First, it samples random short $\mathbf u$ and checks whether $\mathbf A \cdot \mathbf u$ mod q is in the submodule of $\mathcal R_q^\eta$ generated by $\mathbf t$. If not, $\mathcal A$ aborts. If so, it finds c such that $\mathbf A \cdot \mathbf u = c \cdot \mathbf t$ mod q and outputs $(c, \mathbf u)$. When $\eta = 1$ and assuming without loss of generality that $\mathcal T = \{(1,0,\ldots,0)^{\mathsf T}\}$, we observe that t=1 generates $\mathcal R_q$, which means $\mathcal A$ never aborts. Clearly, when $\mathcal A$ does not abort, it has no "knowledge" of how c can be expressed as a linear combination of $\{g(\mathbf v)\}_{g \in \mathcal G}$. Note that when $\eta \geq 2$ the adversary $\mathcal A$ aborts with overwhelming probability since $\mathbf A \cdot \mathbf u$ mod q is close to uniform over $\mathcal R_q^\eta$ but the submodule generated by $\mathbf t$ is only a negligible faction of $\mathcal R_q^\eta$. However, in order to be able to pun about "crises of knowledge", we also define a ring version of the knowledge assumption. In the ring setting, we consider proper ideals rather than submodules.

KNOWLEDGE K-R-ISIS: ALMOST INSTANT KARMA

The Knowledge K-M-ISIS assumptions is "morally"⁴ false.

$$\begin{pmatrix} \mathsf{C} \\ \mathsf{0} \end{pmatrix} \equiv \begin{pmatrix} \mathsf{A}_1 \\ \mathsf{A}_2 \end{pmatrix} \cdot \mathsf{U} \bmod q.$$

- U is a trapdoor for A_2
- Use it to find a short preimage of some $(c^*,0)$ using, say, Babai rounding.
- It will change c* but we're allowed to output anything in the first component.

Hoeteck Wee and David J. Wu. Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis. In: ASIACRYPT 2023, Part V. ed. by Jian Guo and Ron Steinfeld. Vol. 14442. LNCS. Springer, Singapore, Dec. 2023, pp. 201–235. DOI: 10.1007/978-981-99-8733-7_7

⁴The assumption is technically unfalsifiable but for all intents and purposes it is wrong by inspection of the attack.

KNOWN KNOWLEDGE ASSUMPTIONS ARE WRONG QUANTUMLY

Our main result is a quantum polynomial-time algorithm that samples well-distributed LWE instances while provably not knowing the solution, under the assumption that LWE is hard. Moreover, the approach works for a vast range of LWE parametrizations, including those used in the above-mentioned SNARKs.

Thomas Debris-Alazard, Pouria Fallahpour and Damien Stehlé. Quantum Oblivious LWE Sampling and Insecurity of Standard Model Lattice-Based SNARKs. In: 56th ACM STOC. ed. by Bojan Mohar, Igor Shinkar and Ryan O'Donnell. ACM Press, June 2024, pp. 423–434. DOI: 10.1145/3618260.3649766

BASIS

BASIS (RANDOM)

We consider k = 2, for simplicity.

Definition (BASIS_{rand})

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$. We're given

$$B := \begin{pmatrix} A_1 & 0 & -G \\ 0 & A_2 & -G \end{pmatrix}$$

and a short T s.t. $G \equiv B \cdot T \mod q$ where A_i are uniformly random for i > 1 and $A_1 := [\mathbf{a} | \mathbf{A}^T]^T$ for uniformly random A and \mathbf{a} .

Given (B, T) it is hard to find a short u^* s.t. $A \cdot u^* \equiv 0 \mod q$.

Hoeteck Wee and David J. Wu. Succinct Vector, Polynomial, and Functional Commitments from Lattices. In: EUROCRYPT 2023, Part III. ed. by Carmit Hazay and Martijn Stam. Vol. 14006. LNCS. Springer, Cham, Apr. 2023, pp. 385–416. DOI: 10.1007/978-3-031-30620-4_13

HARDNESS

BASIS_{rand} is as hard as SIS.

- We can construct **B** given **A** since we can trapdoor all A_i for i > 1.
- For each column $\mathbf{t} = (\mathbf{t}^{(1)}, \mathbf{t}^{(2)}, \mathbf{t}^{(G)})$ of T we have $\mathbf{A}_i \cdot \mathbf{t}^{(i)} \equiv \mathbf{G} \cdot \mathbf{t}^{(G)}$ where $\mathbf{G} \cdot \mathbf{t}^{(G)}$ is close to uniform.
- We can sample $\mathbf{t}^{(1)}$, compute $\mathbf{y} := \mathbf{A}_1 \cdot \mathbf{t}^{(1)}$ and then use the gadget structure of \mathbf{G} to find a short $\mathbf{t}^{(G)}$ s.t. $\mathbf{A}_i \cdot \mathbf{t}^{(i)} \equiv \mathbf{G} \cdot \mathbf{t}^{(G)}$.
- Using the trapdoors for A_i with i > 1 we can find $\mathbf{t}^{(i)}$ s.t. $A_i \cdot \mathbf{t}^{(i)} \equiv \mathbf{G} \cdot \mathbf{t}^{(G)}$.

BASIS (STRUCTURED)

We consider k = 2, for simplicity.

Definition (BASIS_{struct})

Let $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$. We are given

$$B := \begin{pmatrix} A_1 & 0 & -G \\ 0 & A_2 & -G \end{pmatrix}$$

and a short T s.t. $G \equiv B \cdot T \mod q$ where $A_i := W_i \cdot A$ for $W_i \leftarrow \mathbb{Z}_q^{n \times n}$.

Given $(B, A, \{W_i\}, T)$ it is hard to find a short u^* s.t. $A \cdot u^* \equiv 0 \mod q$.

Hoeteck Wee and David J. Wu. Succinct Vector, Polynomial, and Functional Commitments from Lattices. In: *EUROCRYPT 2023, Part III.* ed. by Carmit Hazay and Martijn Stam. Vol. 14006. LNCS. Springer, Cham, Apr. 2023, pp. 385–416. DOI: 10.1007/978-3-031-30620-4_13

Given an algorithm for solving $BASIS_{struct}$ there is an algorithm for solving k-M-ISIS (for some parameters).

PRISIS

Definition (PRISIS)

Let $\mathbf{A} \in \mathcal{R}_q^{n \times m}$. We're given

$$\mathsf{B} := \begin{pmatrix} \mathsf{A} & \mathsf{0} & \cdots & -\mathsf{G} \\ \mathsf{0} & w \cdot \mathsf{A} & \cdots & -\mathsf{G} \\ \mathsf{0} & \mathsf{0} & \ddots & -\mathsf{G} \\ \mathsf{0} & \cdots & w^{k-1} \cdot \mathsf{A} & -\mathsf{G} \end{pmatrix}$$

and a short T s.t. $G \equiv B \cdot T \mod q$.

Given (A, B, w, T) it is hard to find a short u^* s.t. $A \cdot u^* \equiv 0$.

Giacomo Fenzi, Hossein Moghaddas and Ngoc Khanh Nguyen. Lattice-Based Polynomial Commitments: Towards Asymptotic and Concrete Efficiency. Cryptology ePrint Archive, Report 2023/846. 2023. URL: https://eprint.iacr.org/2023/846

HARDNESS

PRISIS's additional structure allows to prove a broader regime as hard as M-SIS

If k = 2 then PRISIS is no easier than M-SIS

$$\mathsf{B} := \begin{pmatrix} \mathsf{A} & \mathsf{0} & -\mathsf{G} \\ \mathsf{0} & w \cdot \mathsf{A} & -\mathsf{G} \end{pmatrix}$$

The Trick

- Plant an NTRU instance in w, and use its trapdoor to construct the global trapdoor T
- · Can pick parameters for NTRU that are statistically secure

h-PRISIS

h-PRISIS [AFLN23] is a multi-instance version of PRISIS.

Definition (h-PRISIS)

Let $\mathbf{A}_i \in \mathcal{R}_q^{n \times m}$ for $i \in \{1, h\}$. We're given

$$\mathsf{B}_i := egin{pmatrix} \mathsf{A}_i & \mathsf{0} & \cdots & -\mathsf{G} \\ \mathsf{0} & w_i \cdot \mathsf{A}_i & \cdots & -\mathsf{G} \\ \mathsf{0} & \mathsf{0} & \ddots & -\mathsf{G} \\ \mathsf{0} & \cdots & w_i^{k-1} \cdot \mathsf{A}_i & -\mathsf{G} \end{pmatrix}$$

and a short T_i s.t. $G \equiv B_i \cdot T_i \mod q$.

Given $(\{A_i\}, \{B_i\}, \{w_i\}, \{T\}_i)$ it is hard to find a short u_i^* s.t. $\sum A_i \cdot u_i^* \equiv 0 \mod q$.

HARDNESS

h-PRISIS is no easier than PRISIS [AFLN23]. In particular, if k=2 then h-PRISIS is no easier than M-SIS [AFLN23].

The Trick

- · Let U,V be short and satisfy $U\cdot V\equiv I.$
- We can re-randomise A_1 to A_i as $A_i := A_1 \cdot U$ and T as $T_i := V \cdot T$
- We have $\mathbf{A}_i \cdot \mathbf{T}_i \equiv \mathbf{A}_1 \cdot \mathbf{U} \cdot \mathbf{V} \cdot \mathbf{T} \equiv \mathbf{A} \cdot \mathbf{T}$.
- $\cdot \ \mathsf{U} \coloneqq \begin{pmatrix} \mathsf{I} & \mathsf{R}_1 \\ \mathsf{0} & \mathsf{I} \end{pmatrix} \cdot \begin{pmatrix} \mathsf{I} & \mathsf{0} \\ \mathsf{R}_2 & \mathsf{I} \end{pmatrix} \text{ and } \mathsf{V} \coloneqq \begin{pmatrix} \mathsf{I} & \mathsf{0} \\ -\mathsf{R}_2 & \mathsf{I} \end{pmatrix} \cdot \begin{pmatrix} \mathsf{I} & -\mathsf{R}_1 \\ \mathsf{0} & \mathsf{I} \end{pmatrix} \text{ where } \mathsf{R}_i \text{ are small.}$

ONE-MORE-ISIS

Definition (One-more-ISIS)

Let $\mathbf{A} \leftarrow \$ \mathbb{Z}_q^{n \times m}$.

Syndrome queries: can request a random challenge vector $\mathbf{t} \leftarrow \mathfrak{Z}_q^n$ which is added to some set \mathcal{S} .

Preimage queries: can submit **any** vector $\mathbf{t}' \in \mathbb{Z}_q^n$ will get a short vector $\mathbf{u}' \leftarrow \sharp D_{\mathbb{Z}^m,\sigma}$ such that $\mathbf{A} \cdot \mathbf{u}' \equiv \mathbf{t}' \mod q$. Denote k for the number of preimage queries.

The adversary is asked to output k+1 pairs $\{(\mathbf{u}_i^*, \mathbf{t}_i)\}_{1 \leq i \leq k+1}$ satisfying:

$$A \cdot u_i^* \equiv t_i \mod q$$
, $0 < ||u_i^*|| \le \beta^*$ and $t_i \in S$.

Shweta Agrawal, Elena Kirshanova, Damien Stehlé and Anshu Yadav. Practical, Round-Optimal Lattice-Based Blind Signatures. In: *ACM CCS 2022*. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers and Elaine Shi. ACM Press, Nov. 2022, pp. 39–53. DOI: 10.1145/3548606.3560650

HARDNESS

The hardness of the problem is analysed using direct cryptanalysis in the original paper. The authors give a combinatorial attack and a lattice attack.

The Trick

The key ingredient is that β^* is only marginally bigger than $\sqrt{m} \cdot \sigma$.

HARDNESS: LATTICE ATTACK

• The adversary requests $\geq m$ preimages of zero and uses that to produce a short basis T for the kernel of A, i.e.

$$A \cdot T \equiv 0 \mod q$$
.

- This is a trapdoor for A and thus permits to return short preimages for any target.
- However, this trapdoor is of degraded quality relative to the challenger's trapdoor.

Challenge

The key computational challenge then is to fix-up or improve this degraded trapdoor in order to be able to sample sufficiently short vectors.

Blind signatures.

FROM SPACE-TIME TO HINTED

HARDNESS OF LATTICE PROBLEMS

FROM SPACE-TIME TO HINTED HARDNESS OF LATTICE PROBLEMS

joint work with Russell W. F. $\mathrm{Lai}^{\mathrm{5}}$ and Eamonn W. Postlethwaite

⁵some slides nicked from Russell.

Public Key Matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$.

Secret Key Short basis of $\Lambda_a^{\perp}(A)$ of norm α .

Signature of μ Short vector **u** satisfying

$$A \cdot u \equiv H(\mu) \mod q$$
 and $\|u\| \le \beta \le \sqrt{m} \cdot \alpha$

where $H: \{0,1\}^* \to \mathbb{Z}_q^n$ is hash function modelled as a Random Oracle.

Security Proof \approx argument against signing the same μ twice:

 \cdot Signing same μ twice \Longrightarrow

$$\begin{aligned} \mathbf{A} \cdot \mathbf{u}_0 &\equiv \mathbf{A} \cdot \mathbf{u}_1 = \mathbf{H}(\mu) \bmod q, \\ \mathbf{A} \cdot (\mathbf{u}_0 - \mathbf{u}_1) &= \mathbf{0} \bmod q, \end{aligned}$$

i.e. gives away short vector $\mathbf{x}_0 - \mathbf{x}_1 \in \Lambda_q^{\perp}(\mathbf{A})$.

· Many $\mu \implies$ adversary gets short(-ish) basis of $\Lambda_q^{\perp}(\mathbf{A})$ of norm $\leq \sqrt{2 \, m} \cdot \alpha$.

Does this (really) help adversary forge signatures?

One-more-ISIS assumption suggest "no"!

THE *k*-HINT INHOMOGENEOUS SHORT INTEGER SOLUTION PROBLEM:

Definition (k-H-ISIS)

Let k, n, m, q, β , Dist, where

$$\forall \mathbf{A} \in \mathbb{Z}_q^{n \times m}, \ \mathsf{Dist}(\mathbf{A}) \subseteq_k \Lambda_q^{\perp}(\mathbf{A}) \quad \mathsf{and} \quad \beta^{\star} \leq r \cdot \|\mathsf{Dist}(\mathbf{A})\|$$

for some ratio $r \leq \text{polylog}(m)$.

Given $(A \leftrightarrow \mathbb{Z}_q^{n \times m}, y \leftrightarrow \mathbb{Z}_q^n, U \leftrightarrow \text{Dist}(A))$ find $\mathbf{u}^* \in \mathbb{Z}^m$ such that $A \cdot \mathbf{u}^* \equiv y \mod q$ and $\|\mathbf{u}^*\| \leq \beta^*$.

k-hint (Homogeneous) Short Integer Solution (k-H-SIS) Problem: Same thing but y = 0.

⁶We mostly care about $r \leq O(1)$ or at least $r \leq O(\log m)$.

SUCCESSIVE MINIMA AND SIVP

- Successive minima $\lambda_i(\Lambda)$ = radius of smallest ball containing i linearly independent lattice vectors.
- SIVP $_{\gamma}$: Given lattice $\Lambda \subseteq \mathbb{R}^m$, find m linearly independent lattice vectors of norm at most $\gamma \cdot \lambda_m(\Lambda)$.

ENUMERATION AND SIEVING

Two types of lattice algorithms for $\gamma \leq \text{poly}(m)$:

Enumeration-type

- Enumerate over all non-zero vectors in Λ of norm at most β .
- Output the shortest vector.

Sieving-type

- Start with a long list of vectors in Λ .
- Search for an integer combination of vectors in the list which gives a shorter vector.
- Add resulting vector to the list.
- · Repeat.

LANDSCAPE

Space-time complexity of SIVP $_{\gamma}$ over $\Lambda_q^{\perp}(A)$ and for $\gamma \leq \text{poly}(m)$.

Algorithms	Time	Memory	Assumptions
Enumeration	$m^{\Theta(m)}$ $2^{\Theta(m)}$ $2^{\Theta(m)}$	poly(m)	-
Sieving		2 ^{⊖(m)}	-
Sieving (this work)		poly(m)	1) sub. exp. OWF and 2) k-H-SIS is easy

We write " (τ,μ) -algorithm" for algorithms running in time τ and memory μ .

Our Interpretation

Hinted lattice problems seem hard.

STEP 1: ENTROPIC REDUCTION FROM K-H-SIS TO K-H-ISIS

We show that the classic SIS to ISIS reduction gives the following:

k-H-SIS → k-H-ISIS

Let $\mathcal A$ be PPT adversary against k-H-ISIS, then there exists a PPT adversary $\mathcal B$ against k-H-SIS. The output of $\mathcal B$ follows a Gaussian distribution with some centre with high min-entropy.

 \mathcal{B}' s outputs are drawn from the following distribution:

- Sample from $\mathbf{g} \leftarrow \mathcal{D}_{\mathbb{Z}^m,s}$, where the Gaussian parameter s whp satisfies

$$s \geq \sqrt{m} \cdot \lambda_m(\Lambda_q^{\perp}(A)) \geq \eta_{\epsilon}(\Lambda_q^{\perp}(A)).$$

- Use ${\mathcal A}$ to choose a centre ${\mathbf c}$ from some distribution.
- · Write and output $\mathbf{g} \mathbf{c} \sim \mathcal{D}_{\Lambda_q^\perp(\mathbf{A}),s,-\mathbf{c}}$.

STEP 2: GAUSSIAN VECTORS GENERATE THE LATTICE

We prove the following lattice generation theorem:

Gaussian vectors generate the lattice

Let $\Lambda \subseteq \mathbb{R}^m$ be any lattice and suppose $s \geq \sqrt{m} \cdot \lambda_m(\Lambda)$. Let $\mathbf{x}_i \leftrightarrow \mathcal{D}_{\Lambda,s,\mathbf{c}_i}$ for $i=1,2,\ldots,t$ with arbitrary and potentially distinct centres \mathbf{c}_i . There exists $t^* = O(m \cdot \log(s\sqrt{m}))$ s.t. if $t \geq t^*$, then $\{\mathbf{x}_i\}_{i \in \{1,\ldots t\}}$ generates Λ with probability at least $1-2^{-\Omega(m)}$.

This was known only for $\mathbf{c}_i \coloneqq \mathbf{0}.^7$

⁷Ishay Haviv and Oded Regev. On the Lattice Isomorphism Problem. In: 25th SODA. ed. by Chandra Chekuri. ACM-SIAM, Jan. 2014, pp. 391–404. DOI: 10.1137/1.9781611973402.29.

STEP 3: IMPROVED ANALYSIS OF SIEVES

We prove the following sieving theorem:

Number of points in a ball

Let $S = \{\mathbf{x}_1, \dots, \mathbf{x}_t\} \subseteq \mathbb{R}^m$ be any set of t distinct vectors of norm $\|\mathbf{x}_i\| \leq \beta$.

Let $1 < \gamma$ be some improvement ratio.

There exists $t^* \leq 2^{O(m \log \gamma)}$ s.t., if $t \geq t^*$, then there exist i, j s.t. $0 < ||\mathbf{x}_i - \mathbf{x}_j|| \leq \beta/\gamma$.

Previous sieve analyses were

- · heuristic (assuming vectors are uniformly distributed on the surface of a sphere) and
- only for $\gamma = O(1)$.

STEP 4: FINDING ONE MILDLY SHORT VECTOR

Suppose there exists a PPT entropic k-H-SIS solver ${\cal B}$ with ratio $\gamma_{\uparrow}>$ 1.

We construct a (2^{O(m)}, poly(m)) k-H-SIS solver \mathcal{B}' with constant ratio 1/ γ_{\downarrow} < 1.

Basic Idea

Run entropic kHSIS solver $\mathcal B$ many times to get $2^{\Omega(m)}$ vectors, then apply sieving theorem.

STEP 4: FINDING ONE MILDLY SHORT VECTOR (MORE DETAILS)

- 1. Success probability amplification: Repeat ${\cal B}$ to make success probability overwhelming.
- 2. Randomised memory-inefficient sieve:
 - Fill random tape of (amplified) \mathcal{B} with $t \geq 2^{\Omega(m)}$ independent randomness ρ_1, \ldots, ρ_t .
 - For each $i, j \in [t]$:
 - · Compute $\mathbf{x}_i \leftarrow \mathcal{B}(\mathbf{A}, \mathbf{U}; \rho_i)$.
 - · Compute $\mathbf{x}_i \leftarrow \mathcal{B}(\mathbf{A}, \mathbf{U}; \rho_i)$.
 - Output $\mathbf{x}_i \mathbf{x}_i$ if $0 < ||\mathbf{x}_i \mathbf{x}_i|| \le 1/\gamma_{\downarrow} \cdot ||\mathbf{U}||$.
 - Entropic-ness of \mathcal{B} + sieving theorem \implies Successful output with overwhelming probability.
- 3. Derandomisation: derandomise the double-loop with sub-exp. secure PRF.

STEP 5: FINDING LOTS OF MILDLY SHORT VECTORS

Suppose further that the entropic kHSIS solver ${\cal B}$ has Gaussian outputs.

We construct a $(2^{O(m)}, poly(m))$ sieving routine C:

Input (A, U) where U generates Λ_q^{\perp} (A).

 $\text{ Output } \ \mathbf{U}' \subset \mathbf{\Lambda}_q^{\perp}(\mathbf{A}) \ \text{generating} \ \mathbf{\Lambda}_q^{\perp}(\mathbf{A}) \ \text{with} \ \|\mathbf{U}'\| \leq 1/\gamma_{\downarrow} \cdot \|\mathbf{U}\|.$

Basic Idea

Run \mathcal{B}' many times to get $\Omega(m \cdot \log(s\sqrt{m}))$ vectors, then apply lattice generation theorem.

Need to be able to argue about output distribution.

Key Idea

Do not sieve over $g_i - c_i$ but over c_i in (g_i, c_i)

STEP 6: ITERATED SIEVING

Assume the existence of a chain of entropic k-H-SIS solvers $\mathcal{B}_1, \mathcal{B}_2, \ldots$ with Gaussian outputs with arbitrary (small) centres, accepting Gaussian inputs with arbitrary (small) centres.

We construct a $(2^{O(m)}, poly(m))$ algorithm solving SIVP $_{\gamma}$ for $\Lambda_q^{\perp}(A)$ with $\gamma \geq m$.

Basic Idea

Feed output of sieving subroutine to itself until improvement stops.

- Assume each \mathcal{B}_i succeeds with probability $2^{-O(m/\text{polylog}(m))}$
- Run chain of length $\log(m)$ to reduce norm by factor $2 \cdot \sqrt{m} \cdot \omega(\log(m))$
- Use discrete Gaussian sampler to produce "fresh" clean hints by factor $\sqrt{m} \cdot \omega(\log(m))$ larger
- · "Zig-zag" down

DESIGNERS PLEASE CONSIDER WHETHER YOU CAN RE-USE ONE OF THOSE MANY NEWFANGLED ASSUMPTIONS BEFORE INTRODUCING YET ANOTHER ONE.

CRYPTANALYSTS ANALYSE THEM!