C2062 – Anorganická chemie II

Bioanorganická chemie – kovy v biologických systémech

Zdeněk Moravec, hugo@chemi.muni.cz

$$H_3C$$
 H_3C
 H_3C
 H_3C
 CH_2
 CH_2
 CH_3
 CH_3

- Mezioborová vědní disciplína, stojí mezi chemií anorganickou, organickou a biochemií.
- Studuje funkci anorganických látek v biologických systémech.

Hemerythrin, protein obsahující železo.¹

¹Zdroj: BerserkerBen/Commons

- Hlavními oblastmi výzkumu jsou:
 - Metalloproteiny, metalloenzymy, biologicky aktivní komplexní sloučeniny.
 - Transport a uchovávání kovů v organismu.
 - Biomineralizace mechanismus biologického vzniku minerálů.
 - Kovy v medicíně, např. cisplatina.
 - Toxicita kovů pro člověka a jiné organismy.
 - Kovy v životním prostředí.

► Kovy v lidském těle (o váze 70 kg)

Kov	Obsah [mg]	Funkce
V	0,1	Enzymy
Со	3	Vitamín B12
Мо	5	Enzymy
Mn	12	Enzymy; fotoredoxní aktivita ve fotosystému II
Cr	14	Metabolismus glukózy
Ni	15	Enzymy
Cu	72	Přenos a ukládání O ₂ ; přenos elektronů
Zn	2300	Lewisova kyselina
Fe	4200	FeS proteiny, přenos a ukládání O ₂ a CO ₂
Na	90 000	Extracelulární tekutiny
K	120 000	Intracelulární tekutiny

Žlutá – makroprvky vyskytující se v organismech; zelená – stopové prvky; červená – stopové prvky vyskytující se jen v některých organismech

Sodík a draslík

- Dba prvky jsou velmi důležité pro všechny živočichy, vč. člověka.
- Sodík je součástí mimobuněčných tekutin.
- Draslík je součástí nitrobuněčných tekutin.
- Jejich transport skrz buněčnou membránu zajišťuje sodno-draselná pumpa.

Sodno-draselná pumpa.²

²Zdroj: LadyofHats/Commons

Hořčík

- Hořčík je součástí chlorofylu, zeleného rostlinného pigmentu, který se účastní fotosyntézy.
- Procesu, kdy z oxidu uhličitého a vody vzniká v přítomnosti světla cukr.

$$H_3C$$
 H_3C
 H_3C

Chlorofyl.3

³Zdroj: Yikrazuul/Commons

Hořčík

 $Fotosynt\'eza.^4$

⁴Zdroj: At09kg/Commons

Vanad

- Vanad má důležitější roli v mořském prostředí než v suchozemském.⁵
- Mořské řasy produkují vanadovou bromoperoxidasu, chloroperoxidasu a jodoperoxidasu, které jsou odpovědné za odstraňování peroxidu z organismu:
- $R-H+Br^{-}+H_{2}O_{2}\longrightarrow R-Br+H_{2}O+OH^{-}$
- Muchomůrky červené mají schopnost silně akumulovat vanad z okolí.⁶
- Vanad se v nich vyskytuje jako amavadinový anion, obsahuje vanad v oxidačním stavu IV, který je chelatován dvěma anionty kyseliny N-hydroxyimino-2,2'-dipropionové.

Muchomůrka červená (*Amanita muscaria*).⁷

⁵Vanadium in biological systems and medicinal applications

⁶Muchomůrka červená a vanad

⁷Zdroj: Oleg Bor/Commons

Vanad

Struktura amavadinu⁸

Krystalová struktura amavadinu. 10

⁸The Structural Characterization of Amavadin

 $^{^9\}mathsf{Zdroj}\colon\mathsf{Edgar}181/\mathsf{Commons}$

¹⁰Zdroj: Ben Mills/Commons

Vanad

- ► Hemovanadin je světle zelená bílkovina.
- Nachází se v krevních buňkách mořských perutýnů a dalších organismů.
- Na rozdíl od hemoglobinu není nosičem kyslíku.

Pospolitka zelenavá.¹¹

¹¹Zdroj: Bernard DUPONT/Commons

Molybden

- Koncentrace molybdenu v živých organismech je nízká, ale i tak je nezbytný.
- Nedostatek molybdenu u lidí není příliš častý, může způsobit mentální poruchy.¹²
- Nedostatek molybdenu u květáku a brokolice způsobuje tzv. vyslepnutí, čímž je myšleno netvoření růžic, příp. tvorba silně redukovaných růžic.¹³
- U kukuřice způsobuje nedostatek molybdenu předčasné klíčení semen.¹⁴
- Molybden se účastní fixace dusíku a metabolismu fosforu.
- ▶ Je součástí bílkoviny molybdoferredoxinu, která obsahuje Fe−S motiv a molybden oktaedricky koordinovaný sírou.¹⁵

¹²Molybdenum

¹³Mo-deficientní vyslepnutí květáku a brokolice

¹⁴Soil acidity effects on premature germination in immature maize grain

¹⁵Molybdoferredoxin

Molybden

Předčasně naklíčená kukuřice. 16

Wolfram

- ▶ Wolfram je nejtěžším kovem, který se vyskytuje v biologických systémech.
- Vyskytuje se u některých prokaryotních bakterií, kde je součástí enzymů oxidoreduktas, např. aldehyd ferredoxin oxidoreduktázy.¹⁷

Mechanismus funkce aldehyd ferredoxin oxidoreduktázy. 18

¹⁷Aldehyde Oxidoreductases from *Pyrococcus furiosus*

¹⁸Zdroj: jejeni6/Commons

Mangan

- Mangan je pro organismus člověka nezbytný, dlouhodobý nedostatek vede k cévním problémům. Dochází ke změnám metabolismu cholesterolu a jeho ukládání na cévní stěny.
- Také má důležitou roli v metabolismu cukrů a jeho nedostatek může způsobit cukrovku.
- Nadbytek manganu může vést k problémům v nervové soustavě a dlouhodobě zvýšený příjem může způsobit až Parkinsonovu nemoc.
- Je součástí superoxid dismutásy 2 (SOD2).
- Doporučená denní dávka pro člověka je 2–5 mg denně. Hlavními zdroji jsou obilniny, hrášek, špenát a ořechy.¹⁹

¹⁹Výživový význam manganu

Mangan

Mechanismus přenosu elektronu pomocí SOD2 proteinu.²⁰

²⁰Zdroj: Jarjarbinks98/Commons

Železo

- Železo je asi nejdůležitějším přechodným kovem pro biologii živočichů i rostlin.
- Tělo dospělého člověka obsahuje zhruba 4 g železa, z toho tři gramy připadají na hemoglobin.
- Hemoglobin je bílkovina transportující kyslík, najdeme ho v červených krvinkách.²¹
- Obsahuje železnatý ion ve vyskospinovém stavu komplexovaný porfyrinovým ligandem.
- Po navázání kyslíku, nedojde k oxidaci na Fe^{III}, ale ke změně stavu na nízkospinový, diamagnetický. Zároveň se na železo váže histidin.
- Kromě kyslíku, transportuje hemoglobin i CO₂.

Okysličené a neokysličené červené krvinky.²²

²¹Transport kyslíku krví

²²Zdroj: Rogeriopfm/Commons

Železo

Hemoglobin s navázaným kyslíkem, oxidem uhličitým a oxidem uhelnatým.²³

²³Zdroj: Gladissk/Commons

Železo

- Železo je součástí i jiných bílkovin, ty často obsahují vazbu Fe-S (tzv. FeS proteiny).
- Železo je vázáno k postranním řetězcům aminokyselin cysteinu a histidinu.²⁴
- ► Tyto proteiny mají funkci transferu elektronů (oxidoreduktasy nebo transelektronasy).
- Během transferu elektronů dochází ke změně oxidačního stavu železa z II na III, oba stavy jsou ve vysokospinové konfiguraci.

²⁴Iron-Sulfur Proteins

Kobalt

- Kobalt je esenciální pro metabolismus všech živočichů.
- Je složkou vitamínu B12, označovaného jako kobalamin.
- ▶ Vitamín byl objeven roku 1926 G. R. Minotem a W. P. Murphym.
- ▶ Jeho hlavní funkcí je regulace syntézy DNA, ale podílí se také na syntéze mastných kyselin a produkci energie.
- Bakterie v žaludku přežvýkavců dokáží zpracovat soli kobaltu na vitamín B12, proto je jeho přítomnost v půdě (v nízké koncentraci) důležitá pro zdraví pasoucích se zvířat.
- Na konci 19. století bylo zjištěno, že zhoubné onemocnění ovcí a hovězího dobytka je způsobeno právě nedostatkem kobaltu a nikoliv železa, jak se dříve předpokládalo.²⁵
- U člověka způsobuje nedostatek vitamínu B12 chudokrevnost, únavu, zácpu, pokles váhy. Může způsobovat i neurologické změny (deprese).

 $^{^{25}}$ Cobalt, Copper and Molybdenum in the Nutrition of Animals and Plants \equiv \rightarrow

Kobalt

$$H_2NOC$$
 H_2NOC
 H

 \mathbf{R} = 5'-deoxyadenosyl, CH₃, OH, CN

Struktura kobalaminu.²⁶

²⁶Zdroj: Hbf878/Commons

Kobalt

- Hlavním zdrojem vitamínu B12 jsou živočišné produkty: maso, vejce, sýry.
- Doporučená denní dávka je 2–3 μ g denně.
- Kobalamin je oranžová, diamagnetická látka.
- Koordinační sféra je obdobná, jako u železa v hemu.
- Kobalt je koordinován ke čtyřem dusíkům v rovině korrinového kruhu, pátý dusík je nad rovinou kruhu.
- Šestá pozice je obsazena uhlíkovým atomem z ligandu R.

Vialka s vitamínem B12.27

²⁷Zdroj: Wesalius/Commons

Nikl

- Oproti železu a kobaltu je biologický význam niklu výrazně nižší.
- ► [NiFe] hydrogenáza je enzym katalyzující reverzibilní přeměnu molekulárního vodíku v některých prokaryotních organismech:²⁸
- $H_2 \Longrightarrow 2H^+ + 2e^-$
- Struktura enzymu obsahuje aktivní místo tvořené ionty Fe a Ni vázanými přes sulfidické můstky.
- Železo je stabilně v oxidačním stavu II, redoxních dějů se účastní nikl.

Aktivní místa NiFe hydrogenasy.²⁹

²⁸Fundamentals and electrochemical applications of [Ni–Fe]-uptake hydrogenases

²⁹Zdroj: CHEM8240edpt/Commons

Měď

- Měď patří mezi prvků důležité pro živé organismy.
- Vyskytuje se v řadě enzymatických cyklů, např. v metabolismu sachardidů a také při tvorbě kostní hmoty a červených krvinek.
- Měď je součástí hemocynianu, analogu hemoglobinu u některých živočichů.
- Denní dávka mědi by se měla pohybovat mezi 1 a 100 mg. Zdroji mědi jsou ořechy, houby, korýši, měkkýši, játra a kakao.
- Nedostatek mědi se projevuje chudokrevností, zhoršením metabolismu sacharidů a zpomalením duševního vývoje.
- Při předávkování mědí hrozí podobné obtíže jako u kadmia a rtuti.

Měď

- ► Hemocyanin, je metaloprotein obsahující dva ionty mědi.
- Je součástí respiračního cyklu měkkýšů a některých členovců.
- lonty mědi slouží k navázání molekuly kyslíku.
- Při oxidaci přechází bezbarvá forma (Cu^I) na modrou (Cu^{II}).

Molekulová struktura hemocyaninu.30

³⁰Zdroj: Cuff ME, Miller KI, van Holde KE, Hendrickson WA/Commons

Zinek

- Zinek patří mezi nejdůležitější kovy pro rostliny i živočichy.
- Lidské tělo obsahuje asi 2–4 g zinku, většinu ve formě enzymů.
- Zinek je Lewisovská kyselina, proto je z katalytického hlediska velice zajímavý.
- ▶ Také je velice flexibilní z hlediska koordinační geometrie, proto umožňuje rychlou změnu konformace enzymu.
- Zinek je součástí mnoha metalloenzymů, zapojuje se do homeostázy, imunitní odpovědi, apoptózy, stárnutí buněk a je také důležitým antioxidantem.
- ▶ Nedostatek zinku se projevuje mnoha symptomy:³¹
 - lámavostí vlasů a nehtů
 - suchou a popraskanou kůží
 - zpomalením růstu u dětí
 - šeroslepostí
 - nechutenstvím

 $^{^{31}}Zinc$

Kadmium

- Toxicita kadmia je dána tím, že kadmium vstupuje do metabolických drah zinku. Tím tyto dráhy narušuje.
- Otravu je možné potlačit podáváním zinku.
- Při inhalaci dochází primárně k poškození plic.
- Kadmium může také do těla vstupovat kůží.
- Velkým problémem při otravě kadmiem je dlouhý poločas jeho eliminace, takže může docházet k postupné akumulaci kadmia v organismu i při expozici nižším dávkám.
- Při projevu symptomů jsou následky otravy nevratné a dochází k postupnému zhoršování stavu.
- Kadmium může také podpořit rozvoj rakoviny plic a prostaty. Na druhou stranu, u některých nádorů mohou může kadmium působit jako supresivní látka.

Rtuť

- Rtuť je toxická ve všech formách, jako kov i jako anorganické a organokovové sloučeniny Hg²⁺ a Hg₂²⁺. 32
- K intoxikaci může dojít jak vlivem přírodních jevů (ze zemské kůry se uvolňuje i více než 5 000 tun rtuti ročně), tak vlivem průmyslové činnosti (těžba zlata, elektrolytické procesy, apod.).
- Kvůli vysoké těkavosti jsou často vdechována páry rtuti, která pak prostupuje z plic do dalších orgánů (ledvin, CNS, červených krvinek).
- Vysoká mobilita rtuti v organismu je dána její rozpustností v tucích, což umožňuje transport přes buněčné membrány.
- Při chronické expozici dochází k poškozování CNS, které se projevuje třesavkou, emocionální nestabilitou a změnami chování. Dochází také k poškození ledvin a v případě těhotných žen i k poškození plodu.

³²Intoxikace rtutí a jejími sloučeninami

Rtuť

- Při otravě rtutí se využívají chelatační činidla, které umožní rychlé vyloučení rtuti močí. Jde např. o 2,3-disulfanylpropan-1-ol (dimerkaprol).
- Při nižší expozici se používá také dimethylcystein.
- ▶ Je také možné využít 2,3-disulfanyljantarovou kyselinu (DMSA).

Olovo

- Olovo je těžký kov, je toxický i v malých koncentracích a má jak akutní, tak i chronické účinky.³³
- Toxické účinky lze vysvětlit vazbou olova na SH-skupiny enzymů, čímž dochází k jejich deaktivaci.³⁴
- Toxicita olova je velkým problémem u dětí, u nichž může zpomalit duševní vývoj.
- Typickými příznaky otravy olovem jsou bledost obličeje a rtů, nechutenství, anémie.
- Koncentrace olova v životním prostředí se stanovuje pomocí AAS, MS nebo diferenční pulzní voltametrie.
- Průmyslová spotřeba olova je průběžně snižována, využívají se bezolovnaté pájky, hledají se bezolovnaté náhrady střeliva.

³³Lead toxicity: a review

³⁴Působení olova na živé organismy

Arsen

- Arsenité sloučeniny jsou toxičtější než arseničné.
- Atoxyl byl využíván při léčbě spavé nemoci.
- Některé organické sloučeniny arsenu byly dříve využívány při léčbě syfilidy.
- V současnosti se sloučeniny arsenu využívají při léčbě africké trypanosomiasy.

Antimon

- Kovový antimon neovlivňuje lidské zdraví.
- Oxid antimonitý a další nerozpustné antimonité sloučeniny jsou nebezpečné při vdechování.
- Otrava antimonitými sloučeninami je podobná otravě arsenikem.
- Oxid antimonitý je také potenciálně karcinogení.

Selen

- Selen je větším množství toxický, ale ve stopovém množství je pro živočichy nezbytný.³⁵
- Je součástí aminokyselin selenocysteinu a selenomethioninu.
- Komerčně jsou dostupné doplňky stravy obsahující selen.³⁶
- Doporučená denní dávka selenu pro člověka je 1 mg.kg⁻¹.³⁷. Dávky vyšší než 10 mg.kg⁻¹.den⁻¹ jsou toxické.
- Přirozeným zdrojem selenu jsou cereálie a mořské produkty.
- Otravy selenem jsou vzácné, akutní otrava se projevuje česnekovým zápachem potu a z úst (Se(CH₃)₂). Chronická vypadáváním vlasů a nehtů.

 $^{^{35}\}mbox{Acute Selenium Toxicity Associated With a Dietary Supplement}$

³⁶Selen – zdroje, účinky a zásobování

³⁷Selen

Selen

Obsah selenu v potravinách

Potravina	Obsah selenu (µg/kg)
Rostlinné oleje	méně než 5
Ovoce	méně než 10
Zelenina	10–30
Obiloviny	10-500
Houby	20–100
Hovězí maso	20–80
Drůbeží maso	30–100
Vepřové maso	50–150
Játra	50–200
Vejce	100–200
Ryby a měkkýši	200–500
Ledviny	500-2000
Para-ořechy, brazilské ořechy	2000–5000

Selen

$$\bigcup_{Se}^{\circ} N - \bigcup_{N}^{\circ}$$

- Syntetické léčivo ebselen má anti-oxidační účinky a zdá se být slibným léčivem proti COVID-19.³⁸
- Syntéza ebselenu a jeho derivátů probíhá podle schématu:³⁹

COCI (Route I)
$$RNH_{2}$$

$$R = Ph$$

$$R = Ph$$

$$Cul (20-25 mol %), 1,10-phenanthroline Se, K2CO3, X = Cl, Br, I DMF, 100-110 °C$$

³⁸Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors

³⁹Synthesis and Antioxidant Activities of Novel Chiral Ebselen Analogues

Tellur

- Tellur není příliš rozšířený v biologických systémech a jeho toxikologie není dosud příliš prozkoumaná. 40
- Některé houby (např. Aspergillus fumigatus a Aspergillus terreus) dokáží místo síry využívat tellur.⁴¹

Obrázek: Plíseň Aspergillus na rajčeti.⁴²

⁴⁰Tellurium in Nature

 $^{^{41}}$ Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi

⁴²Zdroj: Multimotyl/Commons

Děkuji za pozornost

Zdeněk Moravec hugo@chemi.muni.cz https://is.muni.cz/www/moravec/