Group Theory

Homework Assignment 05

Spring, 2020

- 1. The elements of the group $G_1=\{E,a_2,a_3,\cdots,a_{g_1}\}$ commute with the elements of the group $G_2=\{E,b_2,b_3,\cdots,b_{g_2}\}$. That is, $a_ib_j=b_ja_i$ for $i=1,2,\cdots,g_1$ and $j=1,2,\cdots,g_2$. Here $a_1=E$ and $b_1=E$. Show that the direct product of G_1 and G_2 , $G_1\otimes G_2=\{a_ia_j;i=1,2,\cdots,g_1,j=1,2,\cdots,g_2\}$, is a group.
- 2. Show that if two matrices A and B are orthogonal, then their direct product $A \otimes B$ is also an orthogonal matrix.
- 3. The character table of D_3 is given by

	$C_1 = \{E\}$	$C_2 = \{D, F\}$	$C_3 = \{A, B, C\}$
Γ^1	1	1	1
Γ^2	1	1	-1
Γ^3	2	-1	0

Find the character table of $D_3 \otimes D_3$.

- 4. Show that the direct-product representation $\Gamma_1 \otimes \Gamma_2$ is an irreducible representation of $G_1 \otimes G_2$ if Γ_1 and Γ_2 are irreducible representations of G_1 and G_2 respectively.
- 5. Rotations in two dimensions can be parameterized by

$$R(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

- (a) Show that $R(\varphi_1)R(\varphi_2) = R(\varphi_1 + \varphi_2)$.
- (b) Show that $R(\varphi) = e^{\varphi a_1}$, where

$$a_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$