Digging Deeper into Fundamentals

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Work through the logic of a specific machine learning problem

Run programs on different inputs using placeholders and feed dictionaries

Use variables to hold values which the program updates

Make TensorBoards more useful using named scopes

Understanding Linear Regression

X Causes Y

Cause Independent variable

EffectDependent variable

Wealth Increases Life Expectancy

Cause

Wealth of individuals

Effect

How long they expect to live

Lower Home Prices Away from the City

Cause

Distance in miles from the city center

Effect

Price per square foot of homes

X Causes Y

Cause Explanatory variable

EffectDependent variable

Simple Regression

Regression Equation:

$$y = A + Bx$$

$$y_1 = A + Bx_1$$

$$y_3 = A + Bx_3$$

Linear Regression involves finding the "best fit" line

Let's compare two lines, Line 1 and Line 2

The first line has y-intercept A₁

In the first line, if x increases by 1 unit, y decreases by B₁ units

The second line has y-intercept A₂

In the second line, if x increases by 1 unit, y decreases by B₂ units

Minimising Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines 1 and 2

Minimising Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines 1 and 2

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

Linear Regression Algorithms in Practice

Estimate initial values for A and B

Find the errors for the regression line with those values

Feed errors back and get new values for A and B

Start off with some values for A and B

Calculate the least square error and feed that back

This will give us new values for A and B

Adjust values of A and B by feeding back the error values

Adjust values of A and B by feeding back the error values

The "best fit" line is called the regression line

Regression is an example of a supervised learning algorithm

Placeholders

Machine learning algorithms can be applied to a variety of problems

The model should have the ability to accept the different X and Y values

Placeholder

Hold the place for a Tensor that will be fed at runtime, in effect becoming an "input" node

Abrahams, Sam; Hafner, Danijar; Erwitt, Erik; Scarpinelli, Ariel (2016-07-23). TensorFlow For Machine Intelligence: A hands-on introduction to learning algorithms

Specify placeholders in our simple math operations

Use a feed dictionary to feed these into TensorFlow operations

Work with fetches and the feed_dict passed to Session.run() operations

Variables

Start off with some values for A and B

Calculate the least square error and feed that back

This will give us new values for A and B

Adjust values of A and B by feeding back the error values

Adjust values of A and B by feeding back the error values

The "best fit" line is called the regression line

The values of A and B are updated till we get the best fit line

Machine learning algorithms iterate to get closer to the solution

The model should have the ability to hold constantly changing values

Constants, Placeholders and Variables

Constants

Immutable values which do not change

Placeholders

Assigned once and do not change after

Variables

Are constantly recomputed

Variables

Mutable Tensor values that persist across multiple calls to Session.run()

Abrahams, Sam; Hafner, Danijar; Erwitt, Erik; Scarpinelli, Ariel (2016-07-23). TensorFlow For Machine Intelligence: A hands-on introduction to learning algorithms

Use variables and update their values when the program runs

The default graph and explicitly specified graphs

Improve debugging using the named scope

Interactive sessions in TensorFlow

Summary

Implement placeholders and variables in TensorFlow

Make TensorBoards more useful using named scopes