MA204: Mathematical Statistics

Tutorial 10

T10.1 Theorem on Multinomial Distribution

Let $(N_1, \ldots, N_m)^{\top} \sim \text{Multinomial}(n; p_1, \ldots, p_m)$, where $n = \sum_{j=1}^m N_j$ and $\sum_{j=1}^m p_j = 1$. Then, as n approaches infinity, we have

$$Q_n = \sum_{i=1}^m \frac{(N_j - np_j)^2}{np_j} \stackrel{\mathcal{L}}{\to} \chi^2(m-1).$$

T10.2 Issue and Preparation

— Let the true cdf of the population random variable X be $F(x; \boldsymbol{\theta})$, which is always unknown to users. Let $F_0(x; \boldsymbol{\theta})$ be the cdf of a specific distribution. Suppose that we wish to test

$$H_0$$
: $F(x; \boldsymbol{\theta}) = F_0(x; \boldsymbol{\theta})$ against H_1 : $F(x; \boldsymbol{\theta}) \neq F_0(x; \boldsymbol{\theta})$. (T10.1)

- Partition the sample space \mathbb{S} into $\mathbb{A}_1, \ldots, \mathbb{A}_m$ such that $\mathbb{A}_1, \ldots, \mathbb{A}_m$ are mutually exclusive and $\mathbb{S} = \bigcup_{j=1}^m \mathbb{A}_i$. Take a random sample X_1, \ldots, X_n from the population random variable X with the cdf $F(x; \boldsymbol{\theta})$.
- Let N_j be the number of X_1, \ldots, X_n that fall in the set \mathbb{A}_j , then

$$(N_1, \ldots, N_m)^{\mathsf{T}} \sim \text{Multinomial}(n; p_1, \ldots, p_m),$$

where

$$p_j = \Pr(X \in \mathbb{A}_j) = \int_{\mathbb{A}_j} dF(x; \boldsymbol{\theta}),$$

which can be estimated by $\hat{p}_j = N_j/n$ with $n = \sum_{j=1}^m N_j$.

T10.3 Chi-squared Test for Totally Known Null Distribution

- When the null distribution family $\{F_0(x; \boldsymbol{\theta}): \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$ and the parameter vector $\boldsymbol{\theta}$ are totally known, we define $p_{j0} = \int_{\mathbb{A}_j} dF_0(x; \boldsymbol{\theta})$.
- Both hypotheses H_0 and H_1 in (T10.1) reduces to

$$H'_0$$
: $p_j = p_{j0}$ for all $j = 1, \ldots, m-1$ against

 H_1' : $p_j \neq p_{j0}$ for at least one of $j = 1, \dots, m-1$.

— Under H'_0 ,

$$Q_n = \sum_{j=1}^m \frac{(N_j - np_{j0})^2}{np_{j0}} \xrightarrow{L} \chi^2(m-1).$$

— Thus, given the size α , the critical region of the chi-squared test is

$$\mathbb{C} = \left\{ (n_1, \dots, n_m)^{\mathsf{T}} : \ Q_n \geqslant \chi^2(\alpha, m - 1) \right\}.$$

T10.4 Chi-squared Test for Known Null Distribution Family but Unknown θ

- When the null distribution family $\{F_0(x; \boldsymbol{\theta}): \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$ is known, while the parameter vector $\boldsymbol{\theta}$ is unknown, we know that $p_{j0} = \int_{\mathbb{A}_j} dF_0(x; \boldsymbol{\theta}) = p_{j0}(\boldsymbol{\theta})$ is a function of $\boldsymbol{\theta}$. If $\hat{\boldsymbol{\theta}}$ is the MLE of $\boldsymbol{\theta}$, then $\hat{p}_{j0} = p_{j0}(\hat{\boldsymbol{\theta}})$ is the MLE of p_{j0} .
- Both hypotheses H_0 and H_1 in (T10.1) reduces to

$$H_0''$$
: $p_i = \hat{p}_{i0}$ for all $j = 1, \dots, m-1$ against

 H_1'' : $p_j \neq \hat{p}_{j0}$ for at least one of $j = 1, \dots, m-1$.

— Under H_0'' ,

$$\hat{Q}_n = \sum_{j=1}^m \frac{(N_j - n\hat{p}_{j0})^2}{n\hat{p}_{j0}} \xrightarrow{L} \chi^2(m - q - 1),$$

where q is the dimension of $\boldsymbol{\theta} = (\theta_1, \dots, \theta_q)^{\mathsf{T}}$.

— Thus, given the size α , the critical region of the chi-squared test is

$$\mathbb{C} = \left\{ (n_1, \dots, n_m)^{\mathsf{T}} : \ \hat{Q}_n \geqslant \chi^2(\alpha, m - q - 1) \right\}.$$

Example T10.1 (The Mendelian model). According to the Mendelian model of inheritance, the first generations of a self-fertilized flower were expected to flower red, pink, and white in the ratio 1:2:1. There were 240 progeny produced with 55 red plants, 132 pink plants, and 53 white plants. Are these data reasonably consistent with the Mendelian model at 0.05 significance level?

Solution: According to the Mendelian model,

$$p_{10} = \frac{1}{4}$$
, $p_{20} = \frac{1}{2}$ and $p_{30} = \frac{1}{4}$,

so that

$$np_{10} = 240 \times \frac{1}{4} = 60, \quad np_{20} = 120, \quad np_{30} = 60.$$

We wish to test

$$H_0$$
: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, $p_3 = \frac{1}{4}$ against H_1 : H_0 is not true.

Since

$$Q_{240} = \sum_{j=1}^{3} \frac{(N_j - np_{j0})^2}{np_{j0}}$$

$$= \frac{(55 - 60)^2}{60} + \frac{(132 - 120)^2}{120} + \frac{(53 - 60)^2}{60}$$

$$= 2.43 < \chi^2(0.05, 2) = 5.99,$$

we cannot reject H_0 at 0.05 significance level. Thus, these data are reasonably consistent with the Mendelian model at the 0.05 significance level.

Example T10.2 (A Poisson distribution). In the 98 year period from 1900 to 1997, there were 159 U.S. land falling hurricanes. The numbers of hurricanes per year are summarized as follows:

Times of hurricanes per year (j)	0	1	2	3	4	5	6	Total
Frequency of years (N_j)	18	34	24	16	3	1	2	98

Does the number of land falling hurricanes per year follow a Poisson distribution when the approximate significance level is taken to be 0.05?

Solution: We wish to test

 H_0 : The distribution is Poisson against

 H_1 : The distribution is not Poisson.

Under H_0 , the maximum likelihood estimate of λ is

$$\hat{\lambda} = \bar{x} = 0 \times \frac{18}{98} + 1 \times \frac{34}{98} + 2 \times \frac{24}{98} + 3 \times \frac{16}{98}$$
$$+ 4 \times \frac{3}{98} + 5 \times \frac{1}{98} + 6 \times \frac{2}{98}$$
$$= \frac{159}{98} = 1.622.$$

Now

$$\hat{p}_{j0} = p_{j0}(\hat{\lambda}) = \frac{\hat{\lambda}^j}{j!} e^{-\hat{\lambda}}, \quad j = 0, 1, \dots, 5, \qquad \hat{p}_{6,0} = 1 - \sum_{j=0}^5 \hat{p}_{j0},$$

and n = 98, we obtain

	j	0	1	2	3	4	5	$6 \geqslant 6$
Λ	V_{j}	18	34	24	16	3	1	2
\hat{p}	j0	0.1974	0.3203	0.2598	0.1405	0.0570	0.0185	0.0064
n_I	\hat{p}_{j0}	19.3466	31.3889	25.4635	13.7711	5.5857	1.8125	0.6317

Those classes with expected frequencies less than 5 should be combined with the adjacent class. Therefore, we combine the last 3 classes, and the revised table is

j	0	1	2	3	$4 (\geqslant 4)$	
N_j	18	34	24	16	6	
\hat{p}_{j0}	0.1974	0.3203	0.2598	0.1405	0.0819	
$n\hat{p}_{j0}$	19.3466	31.3889	25.4635	13.7711	8.0299	

So we have

$$\hat{Q}_{98} = \sum_{j=0}^{4} \frac{(N_j - n\hat{p}_{j0})^2}{n\hat{p}_{j0}} = 1.2690 < \chi^2(0.05, 5 - 1 - 1) = 7.81.$$

Thus, we cannot reject H_0 when the approximate significance level is taken to be 0.05. \parallel