Math 11, Fall 2007 Lecture 10

Scott Pauls 1

¹Department of Mathematics Dartmouth College

10/17/07

Outline

- Review and overview
 - Last class
- 2 Today's material
 - The gradient
- Group Work
- 4 Next class

Outline

- Review and overview
 - Last class
- Today's material
 - The gradient
- Group Work
- A Next class

Differentiation

The chain rule

•
$$f(x, y), x = x(s), y = y(x)$$

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds}$$

•
$$f(x, y), x = x(s, t, r), y = y(s, t, r)$$

$$f_s = f_x x_s + f_y y_s$$

$$f_t = f_x x_t + f_t y_t$$

Outline

- Review and overview
 - Last class
- Today's material
 - The gradient
- Group Work
- A Next class

The gradient vector field

- We have already seen the importance of the partial derivatives, f_x , f_y
- If $f: \mathbb{R}^2 \to \mathbb{R}$, then $\nabla f = f_X \vec{i} + f_y \vec{j}$ gives a vector field on \mathbb{R}^2 called the gradient vector field.
- If $f: \mathbb{R}^3 \to \mathbb{R}$, then $\nabla f = f_x \vec{i} + f_y \vec{j} + f_z \vec{k}$

∇f and directional derivatives

Theorem: Let (x_0, y_0) be a point in the plane and $\vec{u} = \langle a, b \rangle$ a vector. Then, if $f : \mathbb{R}^2 \to \mathbb{R}$,

$$D_{\vec{u}}f(x_0,y_0) = \nabla f(x_0,y_0) \cdot \vec{u}$$

Proof of Theorem

Let $g(t) = f(x_0 + ta, y_0 + tb)$ and compute the derivative of g at zero:

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h}$$

$$= \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h} = D_{\vec{u}}f(x_0, y_0)$$

But, we may also view g(t) as f(x, y) with

 $x = x_0 + ta$, $y = y_0 + tb$ and compute g'(0) using the chain rule:

$$\frac{dg}{dt} = f_x x_t + f_y y_t$$

Since $x_t = a$, $y_t = b$, at t = 0 we have

$$g'(0) = f_x(x_0, y_0)a + f_y(x_0, y_0)b = \nabla f(x_0, y_0) \cdot \langle a, b \rangle$$

Q.E.D.

Direction of maximal ascent

The graident point in the direction of maximal ascent of the function. In other words, out of all the unit vectors, $D_{\vec{u}}f$ is largest when $\vec{u} = \frac{\nabla f}{|\nabla f|}$.

Why is this true?

What is the direction of maximal descent? What happens at a minimum or maximum?

Cor: $D_{\vec{u}}f = 0$ for all \vec{u} if and only if $\nabla f = \vec{0}$

Direction of maximal ascent

The graident point in the direction of maximal ascent of the function. In other words, out of all the unit vectors, $D_{\vec{u}}f$ is largest when $\vec{u} = \frac{\nabla f}{|\nabla f|}$.

Why is this true?

What is the direction of maximal descent? What happens at a minimum or maximum?

Cor: $D_{\vec{u}}f = 0$ for all \vec{u} if and only if $\nabla f = \vec{0}$

Rates of change using the gradient

Let
$$f(x, y) = xy - y^2 + x^3$$

- What is the direction of maximal ascent at (x, y) = (1, 0)?
- If you are walking along the surface alogn the curve $\langle x(t), y(t), f(x(t), y(t)) \rangle$ and at t = 1 you are at the point (1, 1, 1) traveling in the direction x'(t) = -1, y'(t) = 0, what is your instantaneus rate of change in the z direction at that time?

Tangent lines and planes

- Think of z = f(x, y) as a level set F(x, y, z) = f(x, y) z = 0. What is ∇F ? Can we easily write the tangent plane to the surface using ∇F ?
- Show that ∇f is orthogonal to the curve f(x, y) = 0 (or, in three variables, the surfaces f(x, y, z) = 0.

Tangent lines and planes

- Think of z = f(x, y) as a level set F(x, y, z) = f(x, y) z = 0. What is ∇F ? Can we easily write the tangent plane to the surface using ∇F ?
- Show that ∇f is orthogonal to the curve f(x, y) = 0 (or, in three variables, the surfaces f(x, y, z) = 0.

Work for next class

• Reading: 15.7

• f07hw11