OR

10. a) Explain the concept of controllability and observability. State the necessary conditions to be satisfied.

b) Obtain the time response of the following system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ -2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} t$$

Where u(t) is the unit step function occurring at t = 0. Assume zero initial conditions.

www.rgpvonline.in

www.rgpvonline.in

Roll No

EC - 502

B.E. V Semester

Examination, December 2013

Control Systems

Time: Three Hours

Maximum Marks: 70

Note: Attempt any one question from each unit. All questions carry equal marks.

Unit - I

1. a) Obtain transfer function of the system shown in figure and draw its electrical analog. 7

b) Find closed loop transfer function of system shown in figure.

OR

2. ω_j resent the following set of equations by a signal flow graph and determine the overall gain relating x_5 and x_1 .

$$x_2 = ax_1 + fx_2$$

www.rgpvonline.in

$$x_3 = bx_2 + ex_4$$

$$x_a = cx_3 + hx_5$$

$$x_5 = dx_4 + gx_2$$

b) How to reduce the parameter variations by using the feedback in a system.

Unit - II

- 3. a) Explain time response of first-order systems to the unitstep Input and unit-ramp Input. Find steady state error for both response.
 - b) What is effects of additions of poles and zeros to closed loop system.

OR.

 a) Find out the conditions for stability for the systems whose characteristics equations given below. The case where stability is suggested for real values of K. determine the values of K which will cause sustained oscillations. Find the frequency of oscillations.

$$S^4 + 20S^3 + 224S^2 + 1240S + 2400 + K = 0$$

b) Write down the guidelines for sketching root locus. 6

Unit - III

- 5. a) What is the correlation between transient response and frequency response.
 - b) State and explain the Nyquist stability criterion.

OR

www.rgpvonline.in

- 6. a) Draw the polar plots of the following transfer function. Find out the magnitude and frequency at imaginary axis when the plot crosses.
 - b) The open-loop transfer function of closed loop system is

$$G(s)H(s) = \frac{4s+1}{s^2(s+1)(2s+1)}$$

Determine stability.

Unit - IV

- 7. a) What is compensation? Discuss various types of compensators.
 - b) Draw a phase-lead network and explain phase-lead compensation.

OR

8. a) Solve the difference equation

$$x(k+2)-3x(k+1)+2x(k)=4^k; x(0)=0, x(1)=1$$

b) Write down the properties of Z-transform and define Z-transform.

Unit - V

9. For a system represented by the state equation $\dot{x} = Ax(t)$ the

response is
$$x(t) = \begin{bmatrix} e^{-2t} \\ -2e^{-2t} \end{bmatrix}$$
 when $x(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and

$$x(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix} \text{ when } x(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Determine the system matrix A and the state transition matrix.

14

7