Chapter Two Basic Topology

Part 2: Metric Spaces

In mathematics, space = set + structure(s).

<u>Definition 4</u>. Let X be a set. A function $d: X \times X \to [0, \infty)$ is called a <u>metric</u> (or <u>distance</u>) on X if

- i) $\forall x, y \in X, d(x, y) = 0 \iff x = y;$
- **ii)** $\forall x, y \in X, d(x, y) = d(y, x);$
- iii) $\forall x, y, z \in X, d(x, z) \leq d(x, y) + d(y, z)$. (Triangle inequality)

In this case, (X, d) is called a metric space.

Examples. (1) For $x, y \in \mathbb{R}$, d(x, y) = |x - y| defines a metric on \mathbb{R} .

More general, for
$$x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n, d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
 is

a metric on \mathbb{R}^n . With is metric, \mathbb{R}^n is called the *n*-dimensional Euclidean space.

- (2) Similarly, d(x,y) = |x-y| defines a metric on \mathbb{C} .
- (3) On the set \mathbb{R}^n (n > 1), the following are other distance functions which are all "equivalent to" the Euclidean metric d:

for
$$1 \le p < \infty$$
, $d_p(x, y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}$; $d_\infty(x, y) = \max_{1 \le i \le n} |x_i - y_i|$.

It is clear that the Euclidean metric in (1) is just d_2 .

- (4) Let X be a set. Define $d: X \times X \to [0, \infty)$ by $d(x, y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$ Then d is a metric on X, and (X, d) is called a discrete metric space.
- (5) Let (X, d) be a metric space and $Y \subseteq X$. Let d_Y be the restriction of d to $Y \times Y$ (i.e., $d_Y(y_1, y_2) = d(y_1, y_2)$ for all $y_1, y_2 \in Y$). Then d_Y is a metric on Y, and Y with this metric is called a subspace of X.

Some Concepts on Metric Spaces.

Let (X, d) be a metric space, $x \in X$, and r > 0.

(i) Define $B(x,r) = \{y \in X : d(x,y) < r\}$, called the <u>open ball centred at x with radius r</u>, or the r-neighborhood of x.

E.g., in
$$\mathbb{R}$$
, $B(x,r) = (x-r, x+r)$

A general <u>neighborhood of x</u> is a subset U of X such that $B(x,r) \subseteq U$ for some r > 0.

E.g., in \mathbb{R} , [x-r,x+r), [x-r,x+2r], etc. are all neighborhoods of x.

Exercise. For $p = 1, 2, \infty$, compare the subsets $B_p((0,0), 1)$ of \mathbb{R}^2 , where

$$B_p((0,0),1) = \{(x,y) \in \mathbb{R}^2 : d_p((x,y),(0,0)) < 1\} \quad (p=1,2,\infty).$$

(ii) A subset G of X is called open if $\forall x \in G, \exists r > 0, B(x,r) \subseteq G$.

E.g., in \mathbb{R} , the interval (0,1) is open, but the interval [0,1) is not open.

 \emptyset and X are open in X.

(iii) Let $E \subseteq X$. x is called a <u>limit point of E</u> (or, cluster point, or accumulation point)

if $\forall r > 0$, $B(x,r) \cap E$ contains $y \neq x$ (that is, $(B(x,r) - \{x\}) \cap E \neq \emptyset$).

We let E' = the set of all limit points of E, called the derived set of E.

E.g., in \mathbb{R} , 0 is a limit point of E = (0, 1) though 0 is not in (0, 1). In this case, E' = [0, 1]. Also in \mathbb{R} , if $E = \{0, 1\}$, then $E' = \emptyset$.

(iv) A subset E of X is called <u>closed</u> if $E' \subseteq E$.

E.g., in \mathbb{R} , the set $\{0,1\}$ is closed but (0,1) is not closed.

 \emptyset and X are closed in X.

Theorem 4 (Theorem 2.19). Let (X, d) be a metric space, $x \in X$ and r > 0. Then B(x, r) is open in X.

<u>Proof.</u> Let $y \in B(x,r)$. We need find $\varepsilon > 0$ such that $B(y,\varepsilon) \subseteq B(x,r)$.

Let $\varepsilon = r - d(x, y)$. Then $\varepsilon > 0$ since $y \in B(x, r)$. Now $\forall z \in B(y, \varepsilon)$, we have

$$d(z,x) \leq d(z,y) + d(y,x) < \varepsilon + d(y,x) = r,$$

and thus $z \in B(x,r)$. Therefore, $B(y,\varepsilon) \subseteq B(x,r)$. Hence, B(x,r) is open.

Theorem 5 (Theorem 2.23). Let E be a subset of a metric space (X, d). Then

- (i) E is open $\iff X E$ is closed;
- (ii) E is closed $\iff X E$ is open.

<u>Proof.</u> (i) " \Longrightarrow ". Suppose E is open. We need prove that $(X - E)' \subseteq X - E$.

Let $x \in (X - E)'$. Then $\forall r > 0$, $\left(B(x, r) - \{x\}\right) \cap (X - E) \neq \emptyset$, which is equivalent to $B(x, r) - \{x\} \nsubseteq E$. So, $\forall r > 0$, $B(x, r) \nsubseteq E$, and thus $x \notin E$ (since E is open). That is, $x \in X - E$. Therefore, we obtain that $(X - E)' \subseteq X - E$, and hence X - E is closed.

"\(\infty\)". Suppose X - E is closed. We need prove that $\forall x \in E, \exists r_0 > 0, B(x, r_0) \subseteq E$. Let $x \in E$. Then $x \notin (X - E)'$, since $(X - E)' \subseteq X - E$. Thus $\exists r_0 > 0$ such that

 $(B(x,r_0)-\{x\})\cap (X-E)=\emptyset$; that is, $B(x,r_0)-\{x\}\subseteq E$. Since $x\in E,\, B(x,r_0)\subseteq E$.

Therefore, we prove that E is open.

(ii) Replacing E by X - E in (i), we get X - E is open $\iff X - (X - E) = E$ closed.

In a metric space (X, d), the "closed" ball centred at x with radius r is defined by

$$B[x,r] = \{ y \in X : d(x,y) \le r \}.$$

Corollary 5. B[x,r] is closed.

Proof. By Theorem 5, we only need prove that X - B[x, r] is open.

Let $z \in X - B[x, r]$. Then d(z, x) > r. Let $\varepsilon = d(z, x) - r$. Then $\varepsilon > 0$. We prove below that $B(z, \varepsilon) \subseteq X - B[x, r]$.

Let $y \in B(z, \varepsilon)$. Then $d(y, z) < \varepsilon = d(z, x) - r$, or d(z, x) - d(y, z) > r. Since

$$d(z,x) \le d(z,y) + d(y,x),$$

we obtain that

$$d(y,x) \ge d(z,x) - d(z,y) > r.$$

Hence, $y \in X - B[x, r]$. Therefore, we have $B(z, \varepsilon) \subseteq X - B[x, r]$.

Therefore, we prove that X - B[x, r] is open.

Theorem 6 (Theorem 2.24). Let (X, d) be a metric space.

- (i) If $\{G_{\alpha}\}$ is a family of open sets in X, then $\bigcup_{\alpha} G_{\alpha}$ is open in X.
- (ii) If G_1, \dots, G_n are open sets in X, then $\bigcap_{i=1}^n G_i$ is open in X.

<u>Remark 1</u>. The above (i) and (ii) together with " \emptyset , X are open" are used as the definition of a topology on X.

<u>Proof.</u> (i) Let $x \in \bigcup_{\alpha} G_{\alpha}$. Then $x \in G_{\alpha_0}$ for some α_0 . Since G_{α_0} is open, $\exists r > 0$ such that $B(x,r) \subseteq G_{\alpha_0} \subseteq \bigcup_{\alpha} G_{\alpha}$. Therefore, we obtain that $\bigcup_{\alpha} G_{\alpha}$ is open.

(ii) Let $x \in \bigcap_{i=1}^n G_i$. Then for each $1 \leq i \leq n$, $\exists r_i > 0$ such that $B(x, r_i) \subseteq G_i$. Let $r = \min\{r_1, \dots, r_n\}$. Then r > 0 and $B(x, r) \subseteq G_i$ for all $1 \leq i \leq n$. Hence, $B(x, r) \subseteq \bigcap_{i=1}^n G_i$. Therefore, we prove that $\bigcap_{i=1}^n G_i$ is open.

By Theorems 5 and 6 together with DeMorgan's Laws, we have the following corollary on closed sets.

Corollary 6. Let (X, d) be a metric space.

- (i) If $\{F_{\alpha}\}$ is a family of closed sets in X, then $\bigcap_{\alpha} F_{\alpha}$ is closed in X.
- (ii) If F_1, \dots, F_n are closed sets in X, then $\bigcup_{i=1}^n F_i$ is closed in X.

Note that \emptyset and X are both open and closed (called <u>clopen</u>). Therefore, \emptyset is the smallest open set and X is the largest open set, and \emptyset is the smallest closed set and X is the largest closed set.

Question. For any $\emptyset \subseteq E \subseteq X$, does E have the largest open/closed subset, and does E have the smallest open/closed superset?

E.g., (0,1) does not have largest closed subset; [0,1] does not have smallest open superset.

<u>Definition 5.</u> Let $E \subseteq X$. The <u>closure</u> of E is the set $\overline{E} = E \cup E'$.

An element x of X is called an <u>interior point</u> of E if $\exists r > 0$, $B(x,r) \subseteq E$. The <u>interior</u> of E is the set E° of all interior points of E.

• By definition, we have $\underline{E^{\circ} \subseteq E \subseteq \overline{E}}$.

Characterizations of Closure and Closed Sets.

Comparing with $x \in E' \iff \forall r > 0, (B(x,r) - \{x\}) \cap E \neq \emptyset$ (definition), we have

(I) $x \in \overline{E} \iff \forall r > 0, B(x,r) \cap E \neq \emptyset$. Therefore, $E_1 \subseteq E_2 \implies \overline{E_1} \subseteq \overline{E_2}$.

<u>Proof.</u> Since $\overline{E} = E \cup E'$, we have $x \in \overline{E} \implies \forall r > 0, B(x,r) \cap E \neq \emptyset$.

Conversely, suppose that $\forall r > 0$, $B(x,r) \cap E \neq \emptyset$. If $x \in E$, then $x \in \overline{E}$; if $x \notin E$, then $\forall r > 0$, $\left(B(x,r) - \{x\}\right) \cap E = B(x,r) \cap E \neq \emptyset$, that is, $x \in E' \subseteq \overline{E}$. So, in both cases, we have $x \in \overline{E}$.

(II) \overline{E} is always closed.

Proof. To prove that \overline{E} is closed, we need show that $\overline{E}' \subseteq \overline{E}$.

Let
$$x \in \overline{E}'$$
. Then $\forall r > 0$, $(B(x,r) - \{x\}) \cap \overline{E} \neq \emptyset$.

Assume that $x \notin \overline{E}$. Then, by (I), $\exists r_0 > 0$ such that $B(x, r_0) \cap E = \emptyset$. Since $B(x, r_0)$ is open, we have $B(x, r_0) \cap E' = \emptyset$. It follows that

 $B(x,r_0) \cap \overline{E} = B(x,r_0) \cap (E \cup E') = (B(x,r_0) \cap E) \cup (B(x,r_0) \cap E') = \emptyset,$ contradicting to $(B(x,r_0) - \{x\}) \cap \overline{E} \neq \emptyset$. Therefore, $x \in \overline{E}$. Hence, we have $\overline{E}' \subseteq \overline{E}$.

The second proof. We just need to prove that $X - \overline{E}$ is open.

Let $x \in X - \overline{E}$. By (I), $\exists r > 0$ such that $B(x,r) \cap E = \emptyset$. Now $\forall y \in B(x,r)$, $\exists \varepsilon_y > 0$ such that $B(y,\varepsilon_y) \subseteq B(x,r)$ and hence $B(y,\varepsilon_y) \cap E = \emptyset$. That is, $\forall y \in B(x,r)$, $y \notin \overline{E}$. Thus $B(x,r) \subseteq X - \overline{E}$. Therefore, $X - \overline{E}$ is open.

(III) E is closed $\iff E = \overline{E}$.

Proof. " \Longrightarrow ". It follows from the definition of \overline{E} .

" \Leftarrow ". It holds by (II).

(IV) $\overline{E} = \bigcap \{F : E \subseteq F \subseteq X \text{ and } F \text{ is closed}\}$, and hence \overline{E} is the smallest closed set in X containing E.

Proof. Since \overline{E} is closed, we have that $\bigcap \{F : E \subseteq F \subseteq X \text{ and } F \text{ is closed}\} \subseteq \overline{E}$.

Conversely, if $E \subseteq F \subseteq X$ and F is closed, then by (I) and (III), $\overline{E} \subseteq \overline{F} = F$. Hence,

$$\overline{E} \subseteq \bigcap \{F : E \subseteq F \subseteq X \text{ and } F \text{ is closed}\}.$$

Therefore, $\overline{E} = \bigcap \{F : E \subseteq F \subseteq X \text{ and } F \text{ is closed}\}$, and \overline{E} is the smallest closed set in X containing E.

<u>Theorem 7</u> (Theorem 2.28). Let $E \subseteq \mathbb{R}$ be non-empty and bounded above. Then we have $\sup(E) \in \overline{E}$. Similarly, if $E \subseteq \mathbb{R}$ is non-empty and bounded below, then $\inf(E) \in \overline{E}$.

Proof. Let $y = \sup(E)$. To get $y \in \overline{E}$, we need show that

$$\forall \varepsilon > 0, \ B(y,\varepsilon) \cap E = (y - \varepsilon, y + \varepsilon) \cap E \neq \emptyset.$$

Let $\varepsilon > 0$. Then $\exists x \in E, y - \varepsilon < x$. On the other hand, we have $x \leq y < y + \varepsilon$. Therefore, $x \in (y - \varepsilon, y + \varepsilon) \cap E$, and hence $(y - \varepsilon, y + \varepsilon) \cap E \neq \emptyset$.

Characterizations of Interior and Open Sets.

Parallel to the results on the closure \overline{E} and closed sets, we have the followings on the interior E° and open sets.

- (V) $E^{\circ} = \bigcup \{G : G \subseteq E \text{ and } G \text{ is open}\}\$, and hence E° is the largest open subset of E.
- (VI) E is open $\iff E = E^{\circ}$.

Definition 6. Let X be a metric space, $E \subseteq X$ and $x \in X$. x is called a boundary point of E if $\forall r > 0$, $B(x,r) \cap E \neq \emptyset$ and $B(x,r) \cap (X-E) \neq \emptyset$. We use ∂E to denote the set of all boundary points of E, called the boundary of E.

By (I), we have

(VII)
$$\partial E = \overline{E} \cap \overline{(X-E)}$$
. Therefore, ∂E is closed.

(VIII)
$$\overline{E} = E \cup \partial E$$
.

Note. Though $\overline{E} = E \cup E' = E \cup \partial E$, in general, $\partial E \not\subseteq E'$ and $E' \not\subseteq \partial E$. (Examples?)

By the definition of E° and ∂E , we have

(IX)
$$E^{\circ} = E - \partial E = \overline{E} - \partial E$$
.

Example. Let (X, d) be a discrete metric space. Then every subset E of X is open, since

$$\forall x \in E, \ B\left(x, \frac{1}{2}\right) = \{x\} \subseteq E.$$

Hence, every subset E of X is also closed. Now we have

$$E^{\circ} = E = \overline{E}, \ E' = \emptyset, \ \text{and} \ \partial E = \overline{E} \cap \overline{(X - E)} = E \cap (X - E) = \emptyset.$$

Chapter Two Basic Topology

Part 3: Compact Sets in Metric Spaces

<u>Definition 7</u>. Let X be a metric space and let $K \subseteq X$. A family $\{G_{\alpha}\}$ of open sets in X is called an <u>open cover</u> of K if $K \subseteq \bigcup_{\alpha} G_{\alpha}$. The set K is called <u>compact</u> if every open cover of K has a finite <u>subcover</u> of K; that is. if $K \subseteq \bigcup_{\alpha} G_{\alpha}$, then $\exists \alpha_1, \dots, \alpha_n$ such that $K \subseteq \bigcup_{i=1}^n G_{\alpha_i}$.

Examples. (i) Every finite subset of X is compact.

- (ii) Every infinite discrete metric space X is not compact. In fact, in this case, $\forall x \in X$, $\{x\} = B(x, 1)$ is open but the open cover $\{\{x\} : x \in X\}$ of X has no finite subcover.
- (iii) In \mathbb{R} , $[0, \infty)$ is not compact. E.g., $\{(-1, n) : n \in \mathbb{N}\}$ is an open cover of $[0, \infty)$, but it has no finite subcover of $[0, \infty)$.
- (iv) In \mathbb{R} , [0,1) is not compact. E.g., $\{(-1,1-\frac{1}{n}):n\in\mathbb{N}\}$ is an open cover of [0,1), but it has no finite subcover of [0,1).
- (v) In \mathbb{R} , every [a, b] is compact. In fact, we will see that a subset of \mathbb{R} is compact if and only if it is bounded and closed.

<u>Definition 8.</u> A subset E of a metric space is called <u>bounded</u> if $\exists r > 0$ and $x_0 \in X$ such that $E \subseteq B(x_0, r)$.

Note.
$$\forall x_0 \in X, X = \bigcup_{r>0} B(x_0, r) = \bigcup_{n=1}^{\infty} B(x_0, n).$$

Theorem 8. Every compact set in a metric space is bounded and closed.

Therefore, if E is either unbounded or non-closed, then E is not compact.

Proof. Let K be a compact set in a metric space (X, d). Pick $x_0 \in X$.

Claim 1: $\exists r_0 > 0, K \subseteq B(x_0, r_0).$

Since K is compact and $K \subseteq X = \bigcup_{r>0} B(x_0, r), \exists r_1, \dots, r_n > 0$ such that $K \subseteq \bigcup_{i=1}^n B(x_0, r_i)$.

Let
$$r_0 = \max\{r_1, \dots, r_n\}$$
. Then $r_0 > 0$ and $K \subseteq \bigcup_{i=1}^n B(x_0, r_i) = B(x_0, r_0)$.

Claim 2: K is closed (i.e., $\overline{K} \subseteq K$).

Assume that $\overline{K} \nsubseteq K$. Then $\exists x \in \overline{K}$ such that $x \notin K$. In this case, $\forall y \in K$, d(y,x) > 0. Let $r_y = d(y,x)/2$. Then $\forall y \in K$, $B(x,r_y) \cap B(y,r_y) = \emptyset$. Now $\{B(y,r_y) : y \in K\}$ is an open cover of K. Since K is compact, $\exists y_1, \dots, y_n \in K$ such that $K \subseteq \bigcup_{i=1}^n B(y_i, r_{y_i})$.

Let $r = \min\{r_{y_1}, \dots, r_{y_n}\}$. Then r > 0 and for $1 \le i \le n$, we have

$$B(x,r) \cap B(y_i, r_{y_i}) \subseteq B(x, r_{y_i}) \cap B(y_i, r_{y_i}) = \emptyset,$$

i.e., $B(x,r) \cap B(y_i,r_{y_i}) = \emptyset$ for $i = 1, \dots, n$. Thus we get

$$B(x,r) \cap K \subseteq \bigcup_{i=1}^{n} (B(x,r) \cap B(y_i, r_{y_i})) = \emptyset,$$

that is, $B(x,r) \cap K = \emptyset$, contradicting that $x \in \overline{K}$. Therefore, $\overline{K} \subseteq K$

<u>Remark 2</u>. The converse of Theorem 8 is not true). E.g., any infinite discrete space X is closed and bounded (since $X = B(x_0, 2)$ for any $x_0 \in X$), but X is not compact.

Theorem 9. Let K be a compact set in metric space and let F be a closed subset of K. Then F is compact.

Proof. Let $\{G_{\alpha}\}$ be an open cover of F. Then $\{X - F\} \cup \{G_{\alpha}\}$ is an open cover of K. Since K is compact, $\exists \alpha_1, \dots, \alpha_n$ such that

$$K \subseteq (X - F) \cup (G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}).$$

Now $F = F \cap K \subseteq (F \cap (X - F)) \cup (G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}) = G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}$. Hence, $\{G_{\alpha}\}$ has a finite subcover $\{G_{\alpha_1}, \cdots, G_{\alpha_n}\}$ of F. Therefore, F is compact.

Corollary 7. Let E be a subset of a compact metric space. Then

E is compact \iff E is closed.

Theorem 10. Let $a, b \in \mathbb{R}$ be such that a < b. Then [a, b] is compact in \mathbb{R} .

<u>Proof.</u> Assume that $\{G_{\alpha}\}$ is an open cover of [a,b] which has no finite subcover of [a,b]. Let c = (a+b)/2. Then either [a,c] or [c,b] cannot be covered by finitely many G_{α} . We denote this subinterval of [a,b] by $[a_1,b_1]$. Replacing [a,b] by $[a_1,b_1]$ and continuing this

- 1) $[a, b] \supseteq [a_1, b_1] \supseteq [a_2, b_2] \supseteq \cdots$;
- 2) each $[a_n, b_n]$ cannot be covered by finitely many G_{α} ;

process, we get a sequence $\{[a_n, b_n]\}$ of closed intervals such that

3) $b_n - a_n = (b - a)/2^n$.

Now we have

$$a \le a_1 \le a_2 \le a_3 \le \cdots \le b_3 \le b_2 \le b_1 \le b.$$

Let E be the set of all a_n , and let $x = \sup(E)$. Then $a_n \le x \le b_n$ for all n (note that each b_n is an upper bound of E). That is, $x \in [a_n, b_n]$ for all n.

On the other hand, $x \in G_{\alpha_0}$ for some α_0 because $x \in [a, b]$. Since G_{α_0} is open, $\exists r > 0$ such that $(x - r, x + r) \subseteq G_{\alpha_0}$. Choose n_0 such that $(b - a)/2^{n_0} < r$. Then we have

$$x - a_{n_0} \le b_{n_0} - a_{n_0} = (b - a)/2^{n_0} < r$$
, or $\underline{a_{n_0} > x - r}$,

and
$$b_{n_0} - x \le b_{n_0} - a_{n_0} = (b - a)/2^{n_0} < r$$
, or $\underline{b_{n_0}} < x + r$.

So, we that $[a_{n_0}, b_{n_0}] \subseteq (x - r, x + r) \subseteq G_{\alpha_0}$, contradicting that $[a_{n_0}, b_{n_0}]$ cannot be covered by finitely many G_{α} . Therefore, $\{G_{\alpha}\}$ has a finite subcover of [a, b].

Therefore, [a, b] is compact.

Corollary 8. Let $E \subseteq \mathbb{R}$. Then E is compact \iff E is bounded and closed.

Proof. " \Longrightarrow ". It holds by Theorem 8.

" \Leftarrow ". Suppose E is bounded and closed. Then $E \subseteq [a,b]$ for some $a,b \in \mathbb{R}$ with a < b. Since [a,b] is compact (Theorem 10) and E is closed, by Theorem 9, E is compact.

Theorem 11. Let K be a compact set in a metric space. Then for any infinite subset A of K, $A' \cap K \neq \emptyset$.

Proof. Assume that A is an infinite subset of K but $A' \cap K = \emptyset$.

Then $\forall x \in K$, since $x \notin A'$, $\exists r_x > 0$, $(B(x, r_x) - \{x\}) \cap A = \emptyset$. Now $\{B(x, r_x) : x \in K\}$ is an open cover of K, and hence $\exists x_1, \dots, x_n \in K$ such that $K \subseteq \bigcup_{i=1}^n B(x_i, r_{x_i})$.

Since A is infinite, we can pick $y \in A - \{x_1, \dots, x_n\}$. Now $y \in K$, but for all $1 \le i \le n$, since $(B(x_i, r_{x_i}) - \{x_i\}) \cap A = \emptyset$, we have $y \notin B(x_i, r_{x_i})$, contradicting that $K \subseteq \bigcup_{i=1}^n B(x_i, r_{x_i})$. Therefore, $A' \cap K \ne \emptyset$.

Remark 3. The converse of Theorem 11 is also true.

<u>Weierstrass Theorem</u>. Every bounded infinite subset of \mathbb{R} has a limit point.

<u>Proof.</u> Suppose A is a bounded infinite subset of \mathbb{R} . Then $A \subseteq [a,b]$ for some $a,b \in \mathbb{R}$ with a < b. Since [a,b] is compact, by Theorem 11, $A' \cap [a,b] \neq \emptyset$, and hence $A' \neq \emptyset$.

Chapter Three Numerical Sequences and Series

Part 1: Covnvergent Sequences

<u>Definition 1</u>. Let (X, d) be a metric space and let $\{x_n\}$ be a sequence in X. We say that $\{x_n\}$ is <u>convergent</u> if $\exists x \in X$ such that $\forall \varepsilon > 0$, $\exists N = N(\varepsilon) \in \mathbb{N}$, $\forall n \geq N$, $d(x_n, x) < \varepsilon$.

In this case, we say that $\underline{\{x_n\}}$ converges to \underline{x} , and write $\lim_{n\to\infty} x_n = x$ (or $x_n\to x$).

The above is the so-called ε -N description of $x_n \to x$.

We say that $\{x_n\}$ is <u>divergent</u> if $\{x_n\}$ is not convergent; that is, $\forall x \in X$, $\{x_n\}$ does not converge to x.

Basic Facts on Convergence and Divergence.

- (i) Changing finitely many terms in a sequence does not affect its convergence or limit.
- (ii) $x_n \to x$ in $X \iff d(x_n, x) \to 0$ in \mathbb{R} .
- (iii) Geometry description:

 $x_n \to x$ means that $\forall \varepsilon > 0$, there are at most finitely many terms x_n outside the ball $B(x, \varepsilon)$; $x_n \not\to x$ means that $\exists \varepsilon_0 > 0$, there are infinitely many terms x_n outside the ball $B(x, \varepsilon_0)$.

- (iv) " $x_n \not\to x$ " is the negation of " $x_n \to x$ ", and it means that either $\{x_n\}$ is divergent or $x_n \to y$ but $y \neq x$.
- (v) The $\underline{\varepsilon}$ -N description of $x_n \not\to x$: $\underline{\exists \varepsilon_0 > 0, \forall N, \exists n \geq N, d(x_n, x) \geq \varepsilon_0}$. The above n can be denoted by n_N and can be chosen inductively such that $n_1 < n_2 < \cdots$.
- (vi) The $\underline{\varepsilon}$ -N description of divergence of $\{x_n\}$: $\forall x \in X, \exists \varepsilon_0 > 0, \forall N, \exists n \geq N, d(x_n, x) \geq \varepsilon_0$. Here, $\varepsilon_0 = \varepsilon_0(x)$ and n = n(N, x).

Examples.

$$1) \lim_{n\to\infty}\frac{1}{n}=0.$$

<u>Proof.</u> Given $\varepsilon > 0$. Let $N = 1 + \left[\frac{1}{\varepsilon}\right]$ ($[\cdot]$ denotes the integer part function). Then $N > \frac{1}{\varepsilon}$, or $\frac{1}{N} < \varepsilon$. Thus $\forall n \ge N$, we have $\left|\frac{1}{n} - 0\right| = \frac{1}{n} \le \frac{1}{N} < \varepsilon$. Therefore, $\lim_{n \to \infty} \frac{1}{n} = 0$.

2)
$$\lim_{n \to \infty} \left(1 + \frac{(-1)^n}{n} \right) = 1.$$

Proof. Given $\varepsilon > 0$. Let N be the same as in 1) above. Then $\forall n \geq N$, we have

$$\left|1 + \frac{(-1)^n}{n} - 1\right| = \left|\frac{(-1)^n}{n}\right| = \frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

Therefore,
$$\lim_{n\to\infty} \left(1 + \frac{(-1)^n}{n}\right) = 1$$
.

3) Let $x_n = c$ for all n. Then $\lim_{n \to \infty} x_n = c$.

<u>Proof.</u> Given $\varepsilon > 0$. Let N = 1. Then $\forall n \geq N$, we have $|x_n - c| = 0 < \varepsilon$. Therefore, $\lim_{n \to \infty} x_n = c$.

4) Let $x_n = (-1)^n$. Then $\{x_n\}$ is divergent.

<u>Proof.</u> We need prove that $\forall x \in \mathbb{R}, x_n \not\to x$. Let $x \in \mathbb{R}$.

If x = 1, let $\varepsilon_0 = 2$. In this case, $\forall N$, we choose n = 2N + 1 > N, and thus

$$|x_n - 1| = |-1 - 1| = 2 \ge \varepsilon_0.$$

Hence, $x_n \not\to 1$.

In the following, we suppose $x \neq 1$. Then $\varepsilon_0 = |1 - x| > 0$. In this case, $\forall N$, we choose n = 2N > N, and thus

$$|x_n - x| = |1 - x| = \varepsilon_0 \ge \varepsilon_0.$$

Hence, $x_n \not\to x$.

Therefore, $\forall x \in \mathbb{R}, x_n \not\to x$, and thus $\{x_n\}$ is divergent.

5) Let $x_n = n$. Then $\{x_n\}$ is divergent.

Proof. We need prove that $\forall x \in \mathbb{R}, x_n \not\to x$. Let $x \in \mathbb{R}$.

Take $\varepsilon_0 = 1$. Then $\forall N$, choose $n = \max\{N, [|x|] + 2\}$. Thus $n \geq N$, and we have

$$|x_n - x| = |n - x| \ge |n - |x| \ge |n - ([|x|] + 1) \ge 1 = \varepsilon_0.$$

Therefore, $\forall x \in \mathbb{R}, x_n \not\to x$, and hence $\{x_n\}$ is divergent.

<u>Definition 2</u>. Let $\{x_n\}$ be a sequence in \mathbb{R} .

We write $\lim_{n\to\infty} x_n = \infty$ (or $x_n \to \infty$) if $\underline{\forall M \in \mathbb{R}, \exists N, \forall n \geq N, x_n > M}$.

Similarly, we write $\lim_{n\to\infty} x_n = -\infty$ (or $x_n \to -\infty$) if $\underline{\forall M \in \mathbb{R}, \exists N, \forall n \geq N, x_n < M}$.

• Clearly, $x_n \to \pm \infty \implies \{x_n\}$ is divergent. E.g., in 5), $x_n \to \infty$ and hence it is divergent. However, the sequence in 4) is divergent, but $x_n \not\to \pm \infty$.

<u>Theorem 1</u> (Uniqueness of Limit). Let (X, d) be a metric space and let $\{x_n\}$ be a sequence in X. If $x_n \to x$ and $x_n \to y$, then x = y.

<u>Proof.</u> Assume that $x_n \to x$ and $x_n \to y$, but $x \neq y$. Then d(x,y) > 0. Let $\varepsilon = d(x,y)/2$. Then $\varepsilon > 0$ and $B(x,\varepsilon) \cap B(y,\varepsilon) = \emptyset$. For this ε , we have

$$\exists N_1, \forall n \geq N_1, d(x_n, x) < \varepsilon \text{ (since } x_n \to x),$$

$$\exists N_2, \, \forall n \geq N_2, \, d(x_n, y) < \varepsilon \ (\text{since } x_n \to y).$$

Let $n_0 = \max\{N_1, N_2\}$. Then $d(x_{n_0}, x) < \varepsilon$ and $d(x_{n_0}, y) < \varepsilon$, and thus we have

$$d(x,y) \leq d(x,x_{n_0}) + d(x_{n_0},y) = d(x_{n_0},x) + d(x_{n_0},y) < 2\varepsilon = d(x,y),$$

that is, d(x,y) < d(x,y), a contradiction. Therefore, x = y.

Theorem 2. Any convergent sequence in a metric space is bounded.

<u>Proof.</u> Suppose $x_n \to x$ in a metric space (X, d). We prove that $\exists M > 0, \forall n, x_n \in B(x, M)$. For $\varepsilon = 1, \exists N, \forall n \geq N, d(x_n, x) < 1$. Let $M = 1 + \max\{d(x_1, x), \dots, d(x_{N-1}, x)\}$. Then $\forall n$, we have $d(x_n, x) < M$.

Remark 1. The converse of Theorem 2 is not true. E.g., $x_n = (-1)^n$.

Theorem 3 (Squeeze Theorem in \mathbb{R}). Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be sequences in \mathbb{R} such that $a_n \to x$, $c_n \to x$, and $\forall n, a_n \le b_n \le c_n$. Then $b_n \to x$.

<u>Note</u>. Here either $x \in \mathbb{R}$ or $x = \pm \infty$. We only prove the case when $x \in \mathbb{R}$. Also, in the theorem, we can only require that $a_n \leq b_n \leq c_n$ holds for all $n \geq n_0$ for some n_0 .

Proof. Given $\varepsilon > 0$. Since $a_n \to x$ and $c_n \to x$, $\exists N_1, N_2 \in \mathbb{N}$ such that

$$\forall n \geq N_1, |a_n - x| < \varepsilon \text{ and } \forall n \geq N_2, |c_n - x| < \varepsilon.$$

Let $N = \max\{N_1, N_2\}$. Then $\forall n \geq N$, we have $|a_n - x| < \varepsilon$ and $|c_n - x| < \varepsilon$; that is,

$$x - \varepsilon < a_n < x + \varepsilon$$
 and $x - \varepsilon < c_n < x + \varepsilon$.

In this case, we have $x - \varepsilon < a_n \le b_n \le c_n < x + \varepsilon$; that is,

$$x - \varepsilon < b_n < x + \varepsilon$$
, or $|b_n - x| < \varepsilon$.

So, we prove that $\forall \varepsilon > 0, \exists N, \forall n \geq N, |b_n - x| < \varepsilon$. Therefore, $b_n \to x$.

Corollary 1. If $0 \le a_n \le b_n$ for all n and $b_n \to 0$, then $a_n \to 0$.

Question. If $0 \le a_n \le b_n$ for all n and $b_n \to 1$, is $\{a_n\}$ convergent?

Corollary 2. Let (X, d) be a metric space and let $\{x_n\}$ be a sequence in X. If $d(x_n, x) \leq c_n$ for all n and $c_n \to 0$, then $x_n \to x$ in X.

<u>Theorem 4</u>. Let $\{a_n\}$ and $\{b_n\}$ be sequences in \mathbb{R} such that $a_n \to a$, $b_n \to b$ and $\forall n$, $a_n \le b_n$. Then $a \le b$.

<u>Proof.</u> Assume that a > b, Take $\varepsilon_0 = (a - b)/2$. Then $\varepsilon_0 > 0$. For this ε_0 , $\exists N_1, N_2$ such that

$$\forall n \ge N_1, |a_n - a| < \varepsilon_0 \text{ and } \forall n \ge N_2, |b_n - b| < \varepsilon_0.$$

Let $N = \max\{N_1, N_2\}$. Then $|a_N - a| < \varepsilon_0$ and $|b_N - b| < \varepsilon_0$. In this case, we have

$$b_N < b + \varepsilon_0 = a - \varepsilon_0 < a_N$$
; that is, $b_N < a_N$,

a contradiction. Therefore, we have $a \leq b$.

Exercise. We can give a direct proof of Theorem 4 by showing that $a \leq b + \varepsilon$ for all $\varepsilon > 0$.

<u>Theorem 5</u>. Let $\{a_n\}$ and $\{b_n\}$ be sequences in \mathbb{R} such that $a_n \to a$ and $b_n \to b$. Then

- (i) $a_n + b_n \rightarrow a + b$ and $a_n b_n \rightarrow a b$;
- (ii) $a_n b_n \to ab$, and $ca_n \to ca$ for all $c \in \mathbb{R}$;
- (iii) $\frac{a_n}{b_n} \to \frac{a}{b}$ if $b \neq 0$ and $b_n \neq 0$ for all n.

Proof. (i) Given $\varepsilon > 0$. Then $\exists N_1, N_2$ such that

$$\forall n \geq N_1, |a_n - a| < \varepsilon/2 \text{ and } \forall n \geq N_2, |b_n - b| < \varepsilon/2.$$

Let $N = \max\{N_1, N_2\}$. Then $\forall n \geq N$, we have

$$|(a_n \pm b_n) - (a \pm b)| = |(a_n - a) \pm (b_n - b)| \le |a_n - a| + |b_n - b| < \varepsilon.$$

(ii) Given $\varepsilon > 0$. Choose η such that $0 < \eta < \min\{1, \varepsilon (1 + |a| + |b|)^{-1}\}$. Then $\exists N_1, N_2$ such that

$$\forall n \geq N_1, |a_n - a| < \eta \quad \text{and} \quad \forall n \geq N_2, |b_n - b| < \eta.$$

Let $N = \max\{N_1, N_2\}$. Then $\forall n \geq N$, we have

$$|a_n b_n - ab| = |(a_n - a)(b_n - b) + (a_n - a)b + a(b_n - b)|$$

$$\leq |a_n - a||b_n - b| + |a_n - a||b| + |a||b_n - b|$$

$$< \eta^2 + \eta|b| + |a|\eta = \eta(\eta + |a| + |b|)$$

$$< \eta(1 + |a| + |b|) < \varepsilon.$$

Therefore, $a_n b_n \to ab$. In particular, if $b_n = c$ for all n, then $b_n \to c$ and hence $ca_n \to ca$.

(iii) First, we prove that $\frac{1}{b_n} \to \frac{1}{b}$. Given $\varepsilon > 0$. Since $b \neq 0$, |b| > 0. Let

$$\beta = \min \{ |b|/2, |b|^2 \varepsilon/2 \}.$$

Then $\beta > 0$. So, $\exists N, \forall n \geq N, |b_n - b| < \beta$, and thus

$$|b_n| = |(b_n - b) + b| \ge |b| - |b_n - b| \ge |b|/2$$

and

$$\left| \frac{1}{b_n} - \frac{1}{b_n} \right| = \left| \frac{b - b_n}{b_n b} \right| = \frac{|b_n - b|}{|b_n| |b|} \le \frac{2|b_n - b|}{|b|^2} < \frac{2\beta}{|b|^2} \le \varepsilon.$$

Therefore, $\frac{1}{b_n} \to \frac{1}{b}$. It follows from (ii) that $\frac{a_n}{b_n} = a_n \frac{1}{b_n} \longrightarrow a \frac{1}{b} = \frac{a}{b}$.

To prove some basic limits, we need the following Binomial Theorem and Binomial Inequality.

They can be proved by using the PMI.

Binomial Theorem. For all $x \in \mathbb{R}$ and $n \in \mathbb{N}$, we have

$$(1+x)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} x^k = 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + \dots + x^n.$$

Binomial Inequality. For all $x \ge -1$ and $n \in \mathbb{N}$, we have $(1+x)^n \ge 1 + nx$.

Four Basic Limits.

(i)
$$\forall p > 0, \ \frac{1}{n^p} \to 0.$$

<u>Proof.</u> Given $\varepsilon > 0$. Choose $N = 1 + \left[\frac{1}{\varepsilon^{1/p}}\right]$. Then $N > \frac{1}{\varepsilon^{1/p}}$, or $\frac{1}{N^p} < \varepsilon$. Now $\forall n \ge N$, we have $\left|\frac{1}{n^p} - 0\right| = \frac{1}{n^p} \le \frac{1}{N^p} < \varepsilon$. Therefore, $\frac{1}{n^p} \to 0$.

(ii) If $a \in \mathbb{R}$ and |a| < 1, then $a^n \to 0$.

<u>Proof.</u> Suppose |a| < 1. Then $b = \frac{1}{|a|} - 1 > 0$. By Binomial Inequality, we have $(1+b)^n \ge 1 + nb$; that is, $\frac{1}{|a|^n} \ge 1 + nb$, or $|a^n| = |a|^n \le \frac{1}{1+nb} < \frac{1}{nb}$.

Since $\frac{1}{nb} \to 0$, by Squeeze Theorem, $|a^n - 0| = |a^n| \to 0$ and hence $a^n \to 0$.

(iii)
$$n^{\frac{1}{n}} \rightarrow 1$$
.

<u>Proof.</u> Let $x_n = n^{\frac{1}{n}} - 1$. Then $x_n \ge 0$ and $n^{\frac{1}{n}} = 1 + x_n$. We prove that $x_n \to 0$ to obtain $n^{\frac{1}{n}} \to 1$. By Binomial Theorem, we have

$$n = (1+x_n)^n = 1 + nx_n + \frac{n(n-1)}{2!}x_n^2 + \dots + x_n^n \ge \frac{n(n-1)}{2}x_n^2$$

So, $\forall n \geq 2$, we have $x_n^2 \leq \frac{2}{n-1}$, or $0 \leq x_n \leq \frac{\sqrt{2}}{\sqrt{n-1}}$. By Squeeze Theorem, $x_n \to 0$.

(iv) If
$$p > 0$$
, then $p^{\frac{1}{n}} \to 1$.

<u>Proof.</u> Pick N such that $\frac{1}{N} \leq p \leq N$. Then $\forall n \geq N$, we have $\frac{1}{n} \leq \frac{1}{N} \leq p \leq N \leq n$

and hence $\frac{1}{n^{1/n}} \leq p^{1/n} \leq n^{1/n}$. By Squeeze Theorem and the limit in (iii), $p^{\frac{1}{n}} \to 1$.

<u>Definition 3</u>. A sequence $\{x_n\}$ in \mathbb{R} is called <u>increasing</u> if $a_n \leq a_{n+1}$ for all n, and is called decreasing if $a_n \geq a_{n+1}$ for all n.

• An increasing sequence is bounded below (since $a_1 \leq a_n$ for all n), and a decreasing is bounded above (since $a_n \leq a_1$ for all n).

<u>Theorem 6</u> (Monotone Convergence Theorem). Every bounded monotone sequence in \mathbb{R} is convergent. More precisely, we have

- (i) If $\{a_n\}$ is \uparrow and bounded, then $a_n \to \sup_{k \ge 1} a_k$;
- (ii) If $\{a_n\}$ is \downarrow and bounded, then $a_n \to \inf_{k\geq 1} a_k$.

Proof. We prove (i) only. (ii) can be proved similarly.

Suppose $\{a_n\}$ is a bounded increasing sequence in \mathbb{R} . Let $a = \sup_{k \geq 1} a_k$. Then $a \in \mathbb{R}$. We

prove that $a_n \to a$. Given $\varepsilon > 0$. Then $\exists N, a_N > a - \varepsilon$. Thus $\forall n \geq N$, we have

$$a - \varepsilon < a_N \le a_n \le a < a + \varepsilon;$$

that is, $|a_n - a| < \varepsilon$. Therefore, $a_n \to a$.

<u>Remark 2</u>. If $\{a_n\}$ is \uparrow and unbounded, then $a_n \to \infty$; if $\{a_n\}$ is \downarrow and unbounded, then $a_n \to -\infty$.

Example. Let $a_1 = 1$ and $a_{n+1} = \sqrt{1 + a_n}$ $(n \ge 1)$. Prove that $\{a_n\}$ is convergent in \mathbb{R} .

<u>Proof.</u> Using PMI, we prove that for all n, $a_n < 2$ and $a_{n+1} \ge a_n$, and hence $\{a_n\}$ is convergent by the MCT.

For n = 1, we have $a_1 < 2$ and $a_2 = \sqrt{2} \ge a_1$.

Assume that $a_k < 2$ and $a_{k+1} \ge a_k$ for some $k \in \mathbb{N}$. Then we have

$$a_{k+1} = \sqrt{1+a_k} < \sqrt{1+2} = \sqrt{3} < 2$$

and

$$a_{k+2} = \sqrt{1 + a_{k+1}} \ge \sqrt{1 + a_k} = a_{k+1}.$$

Therefore, by PMI, $a_n < 2$ and $a_{n+1} \ge a_n$ hold for all $n \in \mathbb{N}$.

Questions. (i) $\lim_{n\to\infty} a_n = ?$ (ii) What is the conclusion if $a_1 = 3?$

Theorem 7. Let (X, d) be a metric space, $E \subseteq X$ and $x \in X$. Then

- (i) $x \in \overline{E} \iff \exists$ a sequence $\{x_n\}$ in E such that $x_n \to x$;
- (ii) $x \in E' \iff \exists$ a sequence $\{x_n\}$ in $E \{x\}$ such that $x_n \to x$.

<u>Proof.</u> (i) " \Longrightarrow ". Suppose $x \in \overline{E}$. Then $\forall n, B\left(x, \frac{1}{n}\right) \cap E \neq \emptyset$ and hence we can pick $x_n \in B\left(x, \frac{1}{n}\right) \cap E$. Now $\{x_n\}$ is a sequence in E and $d(x_n, x) < \frac{1}{n}$ for all n. Therefore, $x_n \to x$.

" \Leftarrow ". Suppose $\{x_n\}$ is a sequence in E such that $x_n \to x$. Let r > 0. Then $\exists N$, $\forall n \ge N, d(x_n, x) < r$. In particular, we have $x_N \in B(x, r) \cap E$. So, $B(x, r) \cap E \ne \emptyset$. Therefore, $x \in \overline{E}$.

(ii) This can be proved by replacing E by $E - \{x\}$ in the above.

<u>Remark 3</u>. If $x \in E'$, then $\forall r > 0$, $(B(x,r) - \{x\}) \cap E$ is an infinite set. So, in (ii), the sequence $\{x_n\}$ can be taken as a sequence of distinct terms.

Corollary 3. let (X, d) be a metric space and $E \subseteq X$. Then

 $E \text{ is closed} \iff [\forall \text{ sequence } \{x_n\} \text{ in } E, x_n \to x \implies x \in E].$