Assignment – 13, 14, 15

Course: SC-374

Computational and Numerical Methods

Instructor: Prof. Arnab Kumar

Made by:

Yatin Patel – 201601454

Rutvik Kothari – 201601417

SET - 13

Numerical stability and implicit methods

Problem - 1

♦ Statement:

The initial-value problem Y'(x) = LY(x), Y(0) = 1, x > 0, can be numerically sloved by euler's method according to $yn = (1 + Lh)^n$. Test the stability of this method at the fixed value of x = 0.2 for h = 0.1, 0.05, 0.01, 0.001. L = -100. Carry out similar with the backward euler method.

$$Y(0.2) = 2.0612e - 09$$

h	xf	хb
0.1	81	0.0082645
0.05	256	0.0007716
0.02	1	1.6935e-05
0.01	0	9.5367e-07
0.001	7.0551e-10	5.2658e-09

SET - 14

Trapezoidal method

Problem - 1

♦ Statement:

Consider the following initial value problems, Numerically solve both by Euler's method and trapezoidal method, for range 0 <= x <= 6, separately using h = 0.2,0.1,0.05. For each problem, plot the numerical solutions for every value of h along with the analytical solution. Compare the graphs for errors.

(A)
$$Y'(x) = -Y(x)$$
, $Y(0) = 1$.

- (a) Graph of function for h = 0.2 , h = 0.1 and h = 0.05
- (1) for h = 0.2

(2) for h = 0.1

(3) for
$$h = 0.05$$

(b) Error function for h = 0.2, h = 0.1 and h = 0.05

(B)
$$Y'(x) = \frac{(Y(x) + x^2 - 2)}{(x+1)}, Y(0) = 2.$$

- (a) Graph of function for h = 0.2, h = 0.1 and h = 0.05
- (1) for h = 0.2

(2) for h = 0.1

(3) for h = 0.05

(b) Error function for h = 0.2, h = 0.1 and h = 0.05

<u>SET - 15</u>

Taylor's method

Problem - 1

♦ Statement:

On the initial-value problem, $Y'(x) = -Y(x) + 2\cos x$, Y(0) = 1, apply both the first order and second order taylor method for 0 <= x <= 10.

Use h = 0.1,0.05. Plot the results of both methods along with the exact integral solutions for comparison.

(a) Graph of function for h = 0.1 and h = 0.05 both first-order and second-order

(b) Graph of error function for h = 0.1 and h = 0.05 both first-order and second-order

