NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2018-2019

MH1812 - DISCRETE MATHEMATICS

December	2018

TIME ALLOWED: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains SEVEN (7) questions and comprises FOUR (4) printed pages.
- 2. Answer **ALL** questions. The marks for each question are indicated at the end of each question.
- 3. Answer each question beginning on a FRESH page of the answer book.
- 4. This IS NOT an OPEN BOOK exam.
- 5. Candidates may use calculators. However, they should write down systematically the steps in the workings.

70 /	TT-	0.1	0
IVI	H_1	81	12

QUESTION 1.

- (a) Prove that $\neg p \rightarrow \neg q$ and its inverse are not logically equivalent. (10 marks)
- (b) Prove that $(q \land (p \rightarrow \neg q)) \rightarrow \neg p$ is a tautology using propositional equivalence and the laws of logic. (10 marks)

QUESTION 2.

Prove that $\sum_{j=n}^{2n-1} (2j+1) = 3n^2$ for all positive integers n. (12 marks)

QUESTION 3.

Find the solution to the recurrence relation $a_n = a_{n-1} + 2n + 1$ with $a_0 = 2$. (10 marks)

MH1812

QUESTION 4.

- (a) x_1, x_2, \ldots, x_k are positive integers such that $\sum_{i=1}^k x_i = n$, for some positive integers k, n and $n \ge k$. How many distinct tuples of (x_1, x_2, \ldots, x_k) are there? (6 marks)
- (b) How many distinct tuples of $(x_1, x_2, ..., x_k)$ are there for the above question if $x_1, x_2, ..., x_k$ are non-negative integers, rather than positive integers? (4 marks)
- (c) How many bit strings contain exactly 5 '0's and 9 '1's if every '0' must be immediately followed by a '1'?

 (4 marks)

QUESTION 5.

Prove by the method of membership table that

$$\overline{(A-B)\cup(B-A)}=(A\cap B)\cup(\overline{A}\cap\overline{B}).$$

(14 marks)

QUESTION 6.

Let $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and define the relation R as follows: $\forall x, y \in A$, $x R y iff <math>3^x \equiv 3^y \mod 5$.

- (a) Prove R is an equivalence relation. (8 marks)
- (b) List all the equivalence classes and all the elements in each class. (8 marks)

QUESTION 7.

Define a function $f: D \to \mathbb{Z}$ by $f(x) = x^2 + 5$, where $D = \{-4, -3, -2, -1, 0\}$.

- (a) Find the range of the function. (8 marks)
- (b) Find f^{-1} . (6 marks)

END OF PAPER

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

MH1812 DISCRETE MATHEMATICS

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.