

## SILICONAIR2 USER MANUAL

IEEE802.15.4/ZigBee Module

#### Overview

Tigo designed SILICONAIR2 is a low power, high performance surface integrated module on board targeted at ZigBee networking applications. RF modules on board use NXP's JN5148 wireless microcontroller to provide comprehensive solution with large memory, high CPU and radio performance and all RF components included.

### **RF Module on Board**



#### **Features: Module**

- 2.4GHz IEEE802.15.4 & ZigBee compatible
- Sleep current (with active sleep timer) 2.6μA
- Receiver sensitivity –95dBm
- TX power +3.24dBm max.
- 2.7-3.6V operation
- PCB Antenna Gain +2dBi
- TX current 37mA max.
- RX current 37 mA max.
- Dimension: 18 x 30 x 3.5mm

Industrial temp (-40 °C to +85 °C)

Lead-free and RoHS compliant

### **Features: Microcontroller**

- 32-bit RISC CPU, up to 32MIPs with low power
- 128kB ROM stores system code
- 128kB RAM stores system data and bootloaded program code
- 4Mbit serial flash for program code and data
- JTAG debug interface
- 4-input 12-bit ADC, 2 12-bit DACs, 2 comparators
- 3 application timer/counters,
   3 system timers
- 2 UARTs
- SPI port with 5 selects
- 2-wire serial interface
- 4-wire digital audio interface
- Watchdog timer
- Up to 21 DIO



## **Declaration**

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- 1. this device may not cause interference, and
- 2. this device must accept any interference, including interference that may cause undesired operation of the device.

The radiated output power of this device is below the IC radio frequency exposure limits. Nevertheless, the device should be used in such a manner that the potential for human contact during normal operation is minimized. In order to avoid the possibility of exceeding the IC radio frequency exposure limit, human proximity to the antenna should not be less than 20 Cm.

Cet appareil est conforme à Industrie Canada une licence standard RSS exonérés (s). Son fonctionnement est soumis aux deux conditions suivantes:

- 1. Cet appareil ne doit pas provoquer d'interférences
- 2. Cet appareil doit accepter toute interférence reçue, y compris les interférences pouvant provoquer un fonctionnement indésirable de l'appareil.

La puissance de sortie rayonnée de cet appareil est inférieure aux limites d'exposition de radio de fréquence IC. Néanmoins, le dispositif doit être utilisé de telle manière que le potentiel de contact humain pendant l'utilisation normale soit minimisé. Afin d'éviter la possibilité de dépasser la limite d'exposition de fréquence radio de la IC, la proximité humaine à l'antenne ne doit pas être inférieure à 20 cm.



## 1. Introduction

SILICONAIR2 module integrated on board provides Tigo products with communication protocol which allows IEEE802.15.4 [1] wireless applications, using Jennic's JenNet networking protocol or ZigBee PRO, to be quickly and easily included in product designs. RF module on board integrate all of the RF components required, removing the need to have separate RF module and assembly requirement. Products can be designed by simply adding module circuit on board and connecting sensors and switches to the IO pins. RF modules on board use Jennic's single chip IEEE802.15.4 Wireless Microcontroller, allowing Tigo to make use of the extensive chip development support material. Hence, this range of modules design on board allow Tigo to bring wireless applications to product in the minimum time with significantly reduced development effort and cost.

## 1.1. Wireless Transceiver

The Wireless Transceiver comprises a 2.45GHz radio, a modem, a baseband controller and a security coprocessor. The security coprocessor provides hardware-based 128-bit AES-CCM\* modes as specified by the IEEE802.15.4 2006 standard. Specifically this includes encryption and authentication covered by the MIC –32/ -64/ -128, ENC and ENC-MIC –32/ -64/ -128 modes of operation.

The transceiver elements (radio, modem and baseband) work together to provide IEEE802.15.4 Medium Access Control (MAC) under the control of a protocol stack. Applications incorporating IEEE802.15.4 functionality can be rapidly developed by combining user-developed application software with a protocol stack library.

## 1.2. Feature of SiliconAir2 Module on Board

- 2.4GHz IEEE802.15.4 & ZigBee Compatible
- 2.7-3.6V Operation
- Sleep Current ( with Active Sleep Timer ) 2.6µA
- Receiver Sensitivity -95dBm
- TX Power +3.24dBm
- Antenna Gain +2dBi
- TX Current 37mA
- RX Current 37mA





VDD=3.0V @ +25°C

| Typical DC Characteristics                                                |                   | Notes                                                        |
|---------------------------------------------------------------------------|-------------------|--------------------------------------------------------------|
| Deep sleep current                                                        | 1.3uA             |                                                              |
| Sleep current                                                             | 2.6uA             | With active sleep timer                                      |
| Radio transmit current                                                    | 15mA              | CPU in doze, radio transmitting                              |
| Radio receive current                                                     | 18mA              | CPU in doze, radio receiving                                 |
| Centre frequency accuracy                                                 | +/-25ppm          | Additional +/-15ppm allowance for temperature and ageing     |
| Typical RF Characteristics                                                |                   | Notes                                                        |
| Receive sensitivity                                                       | -95dBm            | Nominal for 1% PER, as per 802.15.4 section 6.5.3.3 (Note 1) |
| Maximum Transmit power                                                    | +3.24dBm          | Nominal                                                      |
| Transmit power at 3.6V                                                    |                   | With Vdd=3.6V                                                |
| Maximum input signal                                                      | +5dBm             | For 1% PER, measured as sensitivity                          |
| RSSI range                                                                | -95 to -10<br>dBm |                                                              |
| RF Port impedance – uFl connector                                         | 50 ohm            | 2.4 - 2.5GHz                                                 |
| VSWR (max)                                                                | 2:1               | 2.4 - 2.5GHz                                                 |
| Peripherals                                                               |                   | Notes                                                        |
| Master SPI port                                                           | 5 selects         | 250kHz - 16MHz                                               |
| Slave SPI port                                                            | ✓                 | 250kHz - 8MHz                                                |
| Two UARTs                                                                 | ✓                 | 16550 compatible                                             |
| Two-wire serial I/F (compatible with SMbus & I <sup>2</sup> C)            | ✓                 | Up to 400kHz                                                 |
| Two programmable Timer/Counters with capture/compare facility, Tick timer | ✓                 | 16MHz clock                                                  |
| Two programmable Sleep Timers                                             | ✓                 | 32kHz clock                                                  |
| Digital IO lines (multiplexed with UARTs, timers and SPI selects)         | 21                |                                                              |
| Four channel Analogue-to-Digital converter                                | ✓                 | 12-bit, up to 100ks/s                                        |
| Two channel Digital-to-Analogue converter                                 | ✓                 | 12-bit, up to 100ks/s                                        |
| Two programmable analogue comparators                                     | ✓                 | Ultra low power mode for sleep                               |
| Internal temperature sensor and battery monitor                           | ✓                 |                                                              |



# 3. I/O Configuration





# 4. Assignment

| Pin | Signal         | Function                                                                   | Alternative Function               |  |
|-----|----------------|----------------------------------------------------------------------------|------------------------------------|--|
| 1   | ADC4           | Analogue to Digital input                                                  |                                    |  |
| 2   | DAC1           | Digital to Analogue output                                                 |                                    |  |
| 3   | DAC2           | Digital to Analogue output                                                 |                                    |  |
| 4   | COMP2+         | O and a section O insection                                                |                                    |  |
| 5   | COMP2-         | Comparator 2 inputs                                                        |                                    |  |
| 6   | SPICLK         | SPI master clock out                                                       |                                    |  |
| 7   | SPIMISO        | SPI Master In/Slave Out                                                    |                                    |  |
| 8   | SPIMOSI        | SPI Master Out/Slave In                                                    |                                    |  |
| 9   | SPISSZ         | SPI select from module - SS0 (output)                                      |                                    |  |
| 10  | DIO0/SPISEL1   | SPI Slave Select1 (output)                                                 | General Purpose Digital I/O DIO0   |  |
| 11  | DIO1/SPISEL2   | SPI Slave Select2 (output)                                                 | General Purpose Digital I/O DIO1   |  |
| 12  | DIO2/SPISEL3*  | SPI Slave Select3 (output)                                                 | General Purpose Digital I/O DIO2 * |  |
| 13  | SPISSM         | SPI select to FLASH (input)                                                |                                    |  |
| 14  | SPISWP         | FLASH write protect (input)                                                |                                    |  |
| 15  | DIO3/SPISEL4*  | SPI Slave Select4 (output)  General Purpose Digital I/O DIO                |                                    |  |
| 16  | DIO4/CTS0      | UART0 Clear To Send (input) /TCK (JTAG)  General Purpose Digital I/O DIO4  |                                    |  |
| 17  | DIO5/RTS0      | UART0 Request To Send (output) /TMS(JTAG) General Purpose Digital I/O DIO5 |                                    |  |
| 18  | DIO6/TXD0      | UART0 Transmit Data (output) /TDO(JTAG)  General Purpose Digital I/O DIO6  |                                    |  |
| 19  | DIO7/RXD0      | UART0 Receive Data (input) / TDI(JTAG) General Purpose Digital I/O DIO     |                                    |  |
| 20  | DIO8/TIM0GT    | Timer0 clock/gate (input)  General Purpose Digital I/O DIC                 |                                    |  |
| 21  | DIO9/TIM0_CAP  | Timer0 capture (input)  General Purpose Digital I/O DIO                    |                                    |  |
| 22  | DIO10/TIM0_OUT | Timer0 PWM (output)  General Purpose Digital I/O D                         |                                    |  |
| 23  | DIO11/TIM1GT   | Timer1 clock/gate (input)  General Purpose Digital I/O DIO11               |                                    |  |
| 24  | VDD            | 3V power                                                                   |                                    |  |
| 25  | GND            | Digital ground                                                             |                                    |  |
| 26  | VSSA           | Analogue ground                                                            |                                    |  |
| 27  | DIO12/TIM1_CAP | Timer1 capture (input)                                                     | General Purpose Digital I/O DIO12  |  |
| 28  | DIO13/TIM1_OUT | Timer1 PWM (output) General Purpose Digital I/O DIO13                      |                                    |  |
| 29  | RESETN         | Active low reset                                                           |                                    |  |



| Pin | Signal        | Function                                                             | Alternative Function              |
|-----|---------------|----------------------------------------------------------------------|-----------------------------------|
| 30  | DIO14/SIF_CLK | Serial Interface clock / Intelligent peripheral                      | General Purpose Digital I/O DIO14 |
| 31  | DIO15/SIF_D   | Serial Interface data / Intelligent Peripheral data output           | General Purpose Digital I/O DIO15 |
| 32  | DIO16         | Intelligent Peripheral data in                                       | General Purpose Digital I/O       |
| 33  | DIO17CTS1     | UART1 Clear To Send (input)/ Intelligent<br>Peripheral device select | General Purpose Digital I/O DIO17 |
| 34  | DIO18/RTS1    | UART1 Request To Send (output)/ Intelligent<br>Peripheral Interrupt  | General Purpose Digital I/O DIO18 |
| 35  | DIO19/TXD1    | UART1 Transmit Data (output)                                         | General Purpose Digital I/O DIO19 |
| 36  | DIO20/RXD1    | UART1 Receive Data (input)  General Purpose Digital I/O DIO20        |                                   |
| 37  | COMP1-        | Comparator 1 inputs                                                  |                                   |
| 38  | COMP1+        |                                                                      |                                   |
| 39  | ADC1          | Analogue to Digital input                                            |                                   |
| 40  | ADC2          | Analogue to Digital input                                            |                                   |
| 41  | ADC3          | Analogue to Digital input                                            |                                   |

## **MD100AB MANUAL**



# 5. Electrical Characteristics

In most cases, the Electrical Characteristics follows JN5148 chip. They are described in detail in the chip datasheet. Where there are differences, they are detailed below.

## 5.1. Maximum Ratings

Exceeding these conditions will result in damage to the device.

| Par                                                                                                     | ameter                            | Min   | Max                          |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|-------|------------------------------|
| Device supply voltage VDD                                                                               |                                   | -0.3V | 3.6V                         |
| Voltage on analogue pins VREF, ADC1-4, DAC1-2, COMP1M, COMP1P, COMP2M, COMP2P, IBIAS                    |                                   | -0.3V | VDD + 0.3V                   |
| Voltage on 5v tolerant digital pins DIO0-DIO8 & DIO11-20, RESETN                                        |                                   | -0.3V | Lower of (VDD + 2V) and 5.5V |
| Voltage on 3v tolerant digital pins DIO9, DIO10,<br>SPISSM, SPISWP, SPICLK, SPIMOSI, SPIMISO,<br>SPISSZ |                                   | -0.3V | VDD + 0.3V                   |
| Storage temperature                                                                                     |                                   | -40°C | 150ºC                        |
| ESD rating                                                                                              | Human Body Model 1                |       | 2.0kV                        |
|                                                                                                         | Machine Model <sup>2</sup>        |       | 200V                         |
|                                                                                                         | Charged Device Model <sup>3</sup> |       | 500V                         |

- 1) Testing for Human Body Model discharge is performed as specified in JEDEC Standard JESD22-A114.
- 2) Testing for Machine Model discharge is performed as specified in JEDEC Standard JESD11-A115.
- 3) Testing for Charged Device Model discharge is performed as specified in JEDEC Standard JESD22-C101.

This device is sensitive to ESD and should only be handled using ESD precautions.

# 5.2. Operating Conditions

| Supply                    | Min   | Max  |
|---------------------------|-------|------|
| VDD                       | 2.3V  | 3.6V |
| Ambient temperature range | -40°C | 85°C |



# **6. RF Module PCB Footprint**



# 7. Module Label Description

**Dimmensions**: 13x16mm

Label material - Polyimide L8001 3M



## xxxwwyynnnnn

xxx – HW Version 1.00 ww- manufactured work week (in the example is 44) yy – 2 last digits of year (14 for 2014) nnnnn – Running number from 000001-999999

## 8. The label on the host

