CIRCUITOS NEUMÁTICOS: DISEÑO Y ANÁLISIS

Simbología de las VÁLVULAS DISTRIBUIDORAS

Identificación de las vías de una VÁLVULA DISTRIBUIDORA

Numérica	Alfabética	
1 = Alimentación pneumática (aire comprimido) 2, 4, 6 = Orificios de utilización 3, 5 = Orificios de escape 10, 12, 14 = Pilotaxe da válvula	P = Alimentación de entrada (compresor) A, B, C = Circuítos de traballo R, S, T = Escape á atmosfera X, Y, Z = Conexións de pilotaxe	
Exemplo: Válvula 3/2 10 12 3 11	Exemplo: Válvula 3/2 P P	

FUNCIONAMIENTO válvulas distribuidoras

Simbología de las VÁLVULAS NO **DISTRIBUIDORAS**

Tipo de válvula	Figura	Símbolo	Descrición
1. Válvula antirretorno	-	−♦	Permiten a circulación do aire comprimido nun único sentido, quedando bloqueado o seu paso en sentido contrario. Para que haxa circulación, a presión do
Here I de la company			aire deberá superar a forza do resorte.
2. Válvula reguladora bidireccional		7	Regula a cantidade de aire en ambos sentidos. A regulación faise a través dun parafuso exterior.
3. Válvula reguladora unidireccional			Serve para regular o caudal de aire, nunha soa dirección, mediante o parafuso exterior. Se o aire circula en sentido contrario, a presión levanta a xunta, deixando o paso libre.
4. Válvula de simulta- neidade ou célula Y	P ₄ P ₂		Para que deixe pasar o aire, é necesario que este entre simultaneamente por ambos lados, coa mesma presión. Desta forma, o pistón queda no centro e o aire comprimido pode saír pola saída (S).
5. Válvula selectora de circuíto ou célula O	P ₄ P ₂		Permite a circulación de aire cando unha das dúas entradas dispón de presión.
6. Temporizador			Conséguese combinando unha válvula reguladora unidireccional e un depósito, colocados en serie. Canto maior é o depósito, máis tempo durará o retardo.

Ejemplos de CIRCUITOS **MANUALES**

pulsar a panca do distribuidor da squerda, entra aire no cilindro, deszando o émbolo ata a parte dereita. a que non se pulsa sobre o distribui-

a da dereita, o émbolo non volve á

sador e retroceso por resorte.

Control da velocidade de saída dun cilindro de dobre efecto con mando por botón e retroceso mediante panca.

Leva silenciador na saída do aire

Control dun cilindro de simple efecto Control da velocidade de saída dun Control da velocidade de saída e retromediante mando por panca e retroce- cilindro de simple efecto con velocida- ceso dun cilindro de simple efecto, por resorte. Escape de aire con de de retroceso rápido. Mando por pul-mediante mando por pedal e retorno mediante resorte

Control indirecto da saída e retroceso dun cilindro de dobre efecto. A pilotaxe do distribuidor é pneumático.

Ejemplos de CIRCUITOS SEMIAUTOMÁTICOS

Ejercicio 1

- Identifica y nombra todos los componentes del circuito
- Explica el funcionamiento del circuito.
- Indica el número de vías y posiciones de la válvula 1.1

EJERCICIO 2

- Identifica todos los componentes del circuito.
- Explica su funcionamiento

 $\begin{array}{c|c}
 & 1.0 \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$

EJERCICIO 3

- Identifica todos los componentes del circuito.
- Explica el funcionamiento del circuito.

EJERCICIO 4

- Identifica todos los componentes del circuito
- Explica el funcionamiento del circuito.

EJERCICIO 5

- Identifica y nombra todos los componentes del circuito.
- Explica el funcionamiento del circuito

