การแปลงเสียงเป็นข้อความสำคัญ

เสนอ

ผศ.ดร.ณัฐโชติ พรหมฤทธิ์ อ.ดร.สัจจาภรณ์ ไวจรรยา

จัดทำโดย

นางสาวกมลวัทน์	โตรักษา	รหัสนักศึกษา 650710150
นางสาวศิริวรรณ	พอกสนิท	รหัสนักศึกษา 650710432
นางสาวรวินท์นิภา	ดำรงบูรณะกุลชัย	รหัสนักศึกษา 650710713
นางสาวศศิมา	พังยาง	รหัสนักศึกษา 650710722

รายงานนี้เป็นส่วนหนึ่งของวิชาวิทยาการข้อมูลและเครื่องมือ (Data science and tools)

ภาคเรียนที่ 1 ปีการศึกษา 2567

สาขาเทคโนโลยีสารสนเทศ คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร

บทคัดย่อ

รายงานเรื่องการแปลงเสียงเป็นข้อความสำคัญ มีวัตถุประสงค์เพื่อแปลงเสียงเป็นข้อความช่วยแก้ปัญหา ในการติดตามเนื้อหาในชั้นเรียน โดยช่วยลดเวลาในการฟังคลิปเสียงย้อนหลังและทำให้ผู้เรียนสามารถสรุปเนื้อหา ได้รวดเร็วขึ้น ทั้งยังเพิ่มประสิทธิภาพในการจัดเก็บและเข้าถึงข้อมูล ทำให้เหมาะสำหรับผู้เรียนทั่วไปและผู้ที่มีความ ต้องการพิเศษ เช่น ผู้ที่มีปัญหาทางการได้ยิน โดยในการทำรายงานครั้งนี้ได้ดำเนินการตัดคลิปเป็นคลิปละ 5 นาที, แปลงไฟล์ .mp4 เป็น .wav, กำจัด noise ของไฟล์เสียง, แปลงไฟล์เสียงเป็นข้อความ, ซ่อมคำ และสรุปข้อความ การแปลงเสียงเป็นข้อความสำคัญผลการดำเนินงานพบว่าจากการทำไฟล์เสียงที่ได้ไปแปลงเป็นข้อความ

การแบลงเลยงเบนซอความสาคญผลการตาเนนงานพบวาจากการทาเพลเลยงทเตเบแบลงเบนซอความโดยใช้ whisper มีข้อความที่หายไปหรือผิดพลาดจึงต้องทำการซ่อมแซมคำ และทำการสรุปข้อความด้วยทำ จำนวนคลิปทั้งหมด 10 ไฟล์ การวัดประสิทธิภาพของการสรุปข้อความแสดงค่า rouge เฉลี่ยของไฟล์เสียงทั้งหมด

สารบัญ

เรื่อง	หน้า
บทคัดย่อ	ก
บทที่ 1 บทนำ	1
บทที่ 2 ทฤษฎีและความรู้ที่เกี่ยวข้อง	2
บทที่ 3 ขั้นตอนและวิธีการดำเนินงาน	3
บทที่ 4 ผลการดำเนินงาน	6
บทที่ 5 สรุปผลและอภิปราย	9
เอกสารอ้างอิง	10

บทที่ 1 บทนำ

เทคโนโลยีในปัจจุบันมีความก้าวหน้าในการพัฒนาอุปกรณ์อิเล็กทรอนิกส์ ที่ส่งผลให้สามารถตอบสนอง ความต้องการของผู้ใช้งานได้หลากหลาย ทำให้การรับ-ส่งข้อมูลข่าวสารทางอิเล็กทรอนิกส์เป็นที่นิยมอย่าง แพร่หลาย ดังนั้นสารสนเทศ (Information) เป็นสิ่งที่จำเป็นสำหรับทุกองค์กร มีการใช้สารสนเทศเข้ามาช่วย ใน การบริหารจัดการ และข้อมูลทั้งหมดจะต้องถูกจัดเก็บเข้าสู่ระบบคอมพิวเตอร์ด้วยอุปกรณ์นำเข้าตามประเภทของ ข้อมูล ข้อมูลต่าง ๆ นั้นอาจจะเป็นได้ทั้ง ข้อความ (Text) ตัวเลข (Number) ภาพนิ่ง (Still Images) ภาพเคลื่อนไหว (Video) ซึ่งขึ้นอยู่กับแหล่งข้อมูลและประเภทของแหล่งข้อมูล

ข้อมูลสารสนเทศในระบบไฟล์เสียง เป็นระบบสารสนเทศแบบหนึ่งมีความสำคัญและได้รับความนิยม เนื่องจากเข้าถึงได้ในวงกว้าง และได้รับความนิยม อีกทั้งประโยชน์ของการแปลงเสียงเป็นข้อความเป็นเรื่องที่ท้า ทายในการจำแนกและเรียงลำดับข้อมูลในคลังที่มีไฟล์วิดีโอและเสียงจำนวนมาก สามารถใช้ที่เก็บข้อมูลนี้สำหรับ การอ้างอิงและวิจัยโดยการถอดเสียงเป็นข้อความ ตัวอย่างเช่น Audioburst ใช้ซอฟต์แวร์การถอดเสียงอัตโนมัติ เพื่อสร้างพื้นที่เก็บข้อมูลการบันทึกเสียงของรายการทอล์คโชว์ที่มีเนื้อหาที่ทุกคนสามารถค้นหาและแชร์ได้และ สอดคล้องกับงานวิจัยของ เชาวลิต จันภิรมย์ (2565) และคณะ ได้ศึกษาวิจัยเรื่อง การพัฒนาระบบแปลงไฟล์ภาพ และเสียงเป็นข้อความจากหน้าซองจดหมาย ด้วยการประมวลผลภาพ พบว่าระบบแปลงไฟล์ภาพและเสียงเป็นข้อความจากหน้าซองจดหมายด้วยการประมวลผลภาพให้มีประสิทธิภาพด้วยภาษาไทยและอังกฤษทำการแก้ไข และพัฒนาระบบให้สามารถทำงานได้ครบทุกฟังก์ชัน ส่วนความพึงพอใจต่อระบบแปลงไฟล์ภาพและเสียงเป็นข้อความจากหน้าซองจดหมายด้วยการประมวลผลภาพ ในภาพรวมอยู่ในระดับมาก และสอดคล้องกับงานวิจัยของ ธานิล ม่วงพูล (2564) และคณะ ได้ศึกษาวิจัยเรื่อง แอปพลิเคชันสำหรับการแปลงเสียงเป็นข้อความสำหรับผู้พิการ ทางหูโดยใช้ Google API แอปพลิเคชันนี้สามารถนำไปใช้แปลงข้อความในที่ประชุม ผู้ใช้เพียงแก้ไขข้อความ บางส่วน โดยไม่จำเป็นต้องถอดเทปใหม่ และทำให้การเปลี่ยนแปลงมีความถูกต้องมากขึ้น

ดังนั้นทางกลุ่มของพวกเราจึงจัดทำการแปลงเสียงเป็นข้อความใจความสำคัญเพื่อได้ข้อความสรุปบทเรียน ที่ต้องการโดยไม่ให้เสียเวลาฟังไฟล์เสียงแล้วสรุป

บทที่ 2 ทฤษฎีและความรู้ที่เกี่ยวข้อง

2.1. การแปลงไฟล์เสียงเป็นข้อความ (Speech-to-Text)

ใช้ Whisper ซึ่งเป็นโมเดล Speech-to-Text ที่พัฒนาโดย OpenAI สามารถแปลงเสียงเป็นข้อความได้อย่างมี ประสิทธิภาพ รองรับหลายภาษาและมีความแม่นยำสูง แม้ในสภาพเสียงที่มีเสียงรบกวน

• การกำจัดเสียงรบกวน ใช้ไลบรารี noisereduce สำหรับลดเสียงรบกวนในไฟล์เสียง เพื่อปรับปรุงคุณภาพเสียงก่อนประมวลผล ด้วย Whisper

2.2. การสรุปข้อความ (Text Summarization)

ใช้โมเดล BERT ร่วมกับ PageRank Algorithm ในการสรุปข้อความภาษาไทย โดย:

- BERT สร้างเวกเตอร์แสดงความสัมพันธ์ระหว่างประโยค
- PageRank จัดอันดับความสำคัญของประโยค เพื่อเลือกประโยคที่สำคัญที่สุดมาสร้างสรุป

บทที่ 3 ขั้นตอนและวิธีการดำเนินงาน

ขั้นตอนและวิธีการดำเนินงานเพื่อแปลงไฟล์เสียงเป็นข้อความสำคัญโดยใช้เทคนิค noisereduce, whisper, nlp, word tokenize ผู้วิจัยจะอธิบายถึง 3.1 การกำจัด noise ของเสียง 3.2 แปลงเสียงเป็น ข้อความ 3.3 ช่อมแชมข้อความ และ 3.4การนำข้อความมาสรุป โดยมีรายละเอียดดังนี้

3.1 การกำจัด noise ของเสียง

ดาวน์โหลดคลิป ใช้โปรแกรมหรือเว็บไซต์ที่สามารถดาวน์โหลดคลิปยูทูปมาเก็บไว้ในโฟลเดอร์ แปลงคลิป mp4 ให้อยู่ในรูปของไฟล์นามสกุลของ .wav โดยใช้ library moviepy,subprocessและกำจัดเสียงรบกวนในไฟล์ เสียงเครื่องมือที่ใช้ในขั้นตอนนี้คือ noisereduce ซึ่งเป็นไลบรารีที่สามารถลดเสียงรบกวนจากไฟล์เสียงได้อย่างมี ประสิทธิภาพโดยจะทำการกรองเสียงที่ไม่ต้องการออกไปเพื่อให้ได้เสียงที่คมชัดและเหมาะสมสำหรับการแปลง เป็นข้อความเนื่องจากเสียงรบกวนที่ไม่จำเป็นอาจส่งผลให้ผลลัพธ์จากการแปลงเสียงเป็นข้อความไม่แม่นยำ

ภาพ 1 กราฟเวลาของไฟล์เสียงที่ไม่สะอาดกับไฟล์เสียงที่ผ่านการลดเสียงรบกวน

3.2 การแปลงเสียงเป็นข้อความ

ในขั้นตอนนี้ เราจะใช้ Whisper ซึ่งเป็นโมเดลการแปลงเสียงเป็นข้อความจาก OpenAI ที่สามารถแปลง ไฟล์เสียงเป็นข้อความได้อย่างแม่นยำ โดยโมเดลนี้สามารถรองรับหลายภาษาและมีความสามารถในการแปลงเสียง จากไฟล์ต่างๆ รวมถึงเสียงที่มีคุณภาพไม่สูงมาก หลังจากที่ได้ทำการกรองเสียงรบกวนแล้ว ข้อความที่ได้จากการ แปลงเสียงจะถูกนำไปใช้งานต่อไปโดยมีขั้นตอนดังต่อไปนี้

3.2.1 ติดตั้งและตั้งค่าโมเดล Whisper

เริ่มต้นด้วยการติดตั้งไลบรารี Whisper

3.2.2 โหลดไฟล์เสียง

อ่านไฟล์เสียงที่ต้องการแปลงเป็นข้อความ เช่น ไฟล์ WAV, MP3, หรือ M4A โดยใช้ไลบรารี pydub หรือ librosa ตัวอย่างการโหลดไฟล์

3.2.4 โหลดโมเดล Whisper

ใช้ whisper.load_model("large") เพื่อโหลดโมเดลขนาดใหญ่ของ Whisper สำหรับการถอด เสียง (Transcription)

3.2.5 แปลงเสียงเป็นข้อความ

ใช้ฟังก์ชัน model.transcribe เพื่อถอดเสียงจากไฟล์เสียง โดยระบุภาษาเป็นภาษาไทย (language="th")

3.2.6 บันทึกผลลัพธ์เป็นไฟล์ .txt

3.3. การซ่อมแซมข้อความ

การซ่อมแซมข้อความ (Text Repair) เป็นกระบวนการที่สำคัญในการปรับปรุงและแก้ไขข้อความที่มี ข้อผิดพลาด หรือไม่สมบูรณ์ เพื่อให้ข้อความพร้อมใช้งานในการประมวลผลในขั้นตอนถัดไป กระบวนการซ่อมแซม ข้อความนี้ใช้เทคนิคจาก การประมวลผลภาษาธรรมชาติ (Natural Language Processing - NLP) เพื่อช่วยให้ การซ่อมแซมมีประสิทธิภาพมากขึ้น โดยมีขั้นตอนที่สำคัญในการดำเนินการ ดังนี้:

ขั้นตอนในการซ่อมแซมข้อความด้วย NLP

3.3.1 การซ่อมแซมคำที่ผิด โดยใช้ Natural Language Processing

- เนื่องจากเสียงที่แปลงออกมาเป็นข้อความมีคำผิดที่เยอะ จึงใช้เทคนิคการประมวลผล การประมวลผลภาษาธรรมชาติ Natural Language Processing
 - O นำเข้าไลบรารี่ Natural Language Processing
 - ใส่ข้อความที่ต้องการแก้ไข
 - กดประมวลผลให้คำที่ต้องการแก้ไขประมวลผลออกมา โดยใช้

3.3.2 การซ่อมแซมคำที่ผิด โดยใช้ Google Suggest API

- เนื่องจากเสียงที่แปลงออกมาเป็นข้อความมีคำผิดที่เยอะ และเป็นคำที่ไม่คุ้นชิน จึงใช้เทคนิคการดึงคำจาก Google Suggest API
 - 0 นำเข้าไลบรารี่ request, xmltodict
 - ใส่ข้อความที่ผิดที่ต้องการได้รับการแก้ไข
 - O กดประมวลผลคำที่ต้องการให้แก้ไข โดยจะไปดึงคำจาก google search

4.4. การสรุปข้อความ

ในกรณีที่ข้อความที่ได้รับมีความยาวมาก การสรุปข้อความสามารถช่วยให้ข้อความสั้นลงและจับ สาระสำคัญได้ง่ายขึ้น ขั้นตอนนี้จะใช้การประมวลผลข้อความเพื่อลดขนาดและรักษาความหมายส่วนของการนำ ข้อความมาสรุป (Text Summarization) ซึ่งเป็นการใช้โมเดลประมวลผลภาษา (เช่น Wangchanberta) เพื่อสรุป ใจความสำคัญจากเอกสารต้นฉบับ โดยใช้กระบวนการดังนี้:

4.4.1 โหลดโมเดลและเตรียมข้อมูล

ติดตั้งและโหลดโมเดล Wangchanberta เตรียมไฟล์ข้อความและแบ่งออกเป็นประโยค

4.4.2 ประมวลผลข้อมูลเบื้องต้น

ลบช่องว่าง (Whitespace) ที่ไม่จำเป็นและเข้ารหัสข้อความเป็นหน่วยย่อย (Subword)

4.4.3 คำนวณ Sentence Similarity และสร้างกราฟ

ใช้โมเดลคำนวณ Sentence Vector,คำนวณค่า Similarity ระหว่างประโยคสร้างกราฟเชื่อมโยง ความสัมพันธ์ระหว่างประโยค

4.4.4 คำนวณค่า PageRank และจัดลำดับประโยค

คำนวณค่า PageRank ของแต่ละประโยค จัดเรียงประโยคตามความสำคัญ

4.4.5 เลือกประโยคสำคัญและไฮไลท์

เลือก 20% ของประโยคที่มีค่า PR สูงที่สุดต่อมาบันทึกข้อความพร้อมไฮไลท์

บทที่ 4 ผลการดำเนินงาน

4.1 การตัดเสียงให้เหลือ 5 นาที

การตัดคลิปเสียงเป็นการตัดคลิปเสียงให้ย่อย ๆ เป็นคลิปละ 5 นาที เพื่อเพิ่มประสิทธิภาพในการทำงาน ของทำงานในขั้นตอนอื่นๆ เช่น คลิปต้นแบบ 1 ชั่วโมง แบ่งเป็นคลิปละ 5 นาที ได้ทั้งหมด 12 คลิป

ภาพ 2 ไฟล์เสียงทั้งหมดที่ตัดเป็น 5 นาทีของคลิปที่ 1

ภาพ 3 ไฟล์เสียงที่ถูกตัดเป็น 5 นาที

4.2 การกำจัด noise ของคลิปเสียง

การกำจัด noise ของคลิปเสียงเป็นการจัดการเพื่อเพิ่มประสิทธิภาพของเสียง โดยในกระบวนการเพิ่ม ความดังของเสียง มีการใช้เอฟเฟคดังนี้

- Noise Gate
- Compressor
- Low Shelf Filter

4.3 การแปลงเสียงให้เป็นข้อความ

การแปลงเสียงเป็นข้อความ เป็นการทดสอบเพื่อได้ข้อความที่จะนำไปสรุป ซึ่งเสียงนำมาแปลงเป็น ข้อความจะผ่านการกำจัด noise เพื่อให้เสียงประสิทธิภาพแล้ว ในการแปลงเสียงเป็นข้อความแสดงให้เห็นถึง ศักยภาพของโมเดล Whisper ในการถอดเสียงพูดภาษาไทย ซึ่งอาจจะมีบางคำที่ไม่สามารถทราบความหมาย หรือ ถอดออกมาได้ไม่ครบครัน มีคำที่แปลงหรือถอดออกมาจากไฟล์เสียงผิด มีการสะกดไม่ถูกต้อง คำถอดมาไม่ตรงกับ คำพูดในเสียง จึงต้องนำข้อความที่แปลงออกมาไปสู่ขั้นตอนการซ่อมแซมข้อความ

ภาพ 4 คำที่ผิดจากการแปลงเสียงเป็นข้อความ

4.4 การซ่อมแซมคำ

การซ่อมคำนั้น เป็นการแก้ไขคำที่ผิดพลาดจากการแปลงล์เสียงเป็นข้อความ เช่น สะกดผิด คำภาษาอื่นๆ เป็นต้น มาซ่อมแซมโดย ใช้ไลบรารี่ PyThaiNLP ร่วมกัน function spell (pythainlp.spell) และสุดท้ายเป็น วิธีการใช้ไลบรารี requests และ xmltodict ใช้ประโยชน์จาก Google Suggest API ในการตรวจเช็คคำผิดได้ โดยเข้าถึงได้ผ่านลิงค์ https://www.google.com/complete/search?output=toolbar&q=คำผิด จะได้ข้อมูล xml กลับมา

4.5 การสรุปข้อความ

การสรุปข้อความ เป็นการนำข้อความที่ได้จากการแปลงจากเสียงและซ่อมแซมคำและมาทำ text highlight และทดสอบความแม่นยำเมื่อเทียบกับที่ทางผู้จัดทำได้สรุปข้อความในชุดเดียวกัน และแสดงเป็นข้อมูล rouge ได้ผลดังนี้

```
a Sum/Signals of the sum was token used a service of a service of the sum of
```

ภาพ 5 ผลการสรุปของไฟล์ที่ 9

ภาพ 6 ผลการสรุปเฉลี่ยของไฟล์ที่ 9

```
avg_rouge1 = sum([result["Rouge1"] for result in results]) / len(results) avg_rouge2 = sum([result["Rouge2"] for result in results]) / len(results) avg_rouge1 = sum([result["RougeL"] for result in results]) / len(results) avg_rouge = sum([result["Avg Rouge"] for result in results]) / len(results) print(f"ตำเฉลี่ยของ Rouge1 จากการทดสอบ 10 ชุดคือ: {avg_rouge1}") print(f"ตำเฉลี่ยของ Rouge2 จากการทดสอบ 10 ชุดคือ: {avg_rouge2}") print(f"ตำเฉลี่ยของ Rouge1 จากการทดสอบ 10 ชุดคือ: {avg_rouge}") print(f"ตำเฉลี่ยของ Avg Rouge จากการทดสอบ 10 ชุดคือ: {avg_rouge}") ตำเฉลี่ยของ Rouge1 จากการทดสอบ 10 ชุดคือ: 0.5482500000000001 ตำเฉลี่ยของ Rouge2 จากการทดสอบ 10 ชุดคือ: 0.3577 ตำเฉลี่ยของ Rouge1 จากการทดสอบ 10 ชุดคือ: 0.34875 ตำเฉลี่ยของ Avg Rouge จากการทดสอบ 10 ชุดคือ: 0.4207499999999999
```

ภาพ 7 ผลการสรุปเฉลี่ยของไฟล์ทั้งหมด

บทที่ 5 สรุปผลและอภิปราย

บทความนี้นำเสนอการสรุปข้อความจากคลิปเสียง โดยใช้วิธีการแปลงคลิปเสียงเป็นข้อความ และนำ ข้อความไปสรุป ในการรวบรวมคลิปเสียงการเรียนจากในยูทูปและคลิปที่ทางผู้จัดทำอัดไว้ จากนั้น แปลงไฟล์ นามสกุล .mp4 เป็น .wav โดยใช้ไลบลารี่ moviepy, subprocess แล้วจากนั้นกำจัด noise ของเสียง โดยใช้ noisereduce ซึ่งเป็นไลบลารี่ที่สามารถลดเสียงรบกวน แล้วจึงทำไฟล์เสียงที่ได้ไปแปลงเป็นข้อความโดยใช้ whisper ซึ่งอาจมีข้อความที่หายไปหรือผิดพลาดจึงต้องทำการซ่อมแซมคำ และทำการสรุปข้อความด้วยทำ จำนวนคลิปทั้งหมด 10 ไฟล์ การวัดประสิทธิภาพของการสรุปข้อความแสดงค่า rouge เฉลี่ยของไฟล์เสียงทั้งหมด ซึ่งจากประสิทธิภาพที่ได้ หากปรับปรุงการทำงานในขั้นตอนต่างๆให้ดีขึ้นอาจนำไปพัฒนาเป็นระบบช่วยสรุปข้อความได้ต่อไป

เอกสารอ้างอิง

- [1] อ.พรหมฤทธิ์ และ อ.สัจจาภรณ์, "การไฮไลท์ใจความสำคัญภาษาไทยแบบอัตโนมัติด้วย Bert Model และ PageRank Algorithm," 24 กันยายน 2566 [Online]. Available: https://blog.pjjop.org/thai-text-summarization-with-bert-and-pagerank/ [Access 17 พฤศจิกายน 2567].
- [2] <u>Sattaya Sing</u>, "สู่ความเงียบสงัด EP.2: เริ่มต้นเขียน Noise Cancellation อย่างง่ายด้วยภาษา Python," 19 มกราคม 2564 [Online]. Available: https://medium.com/super-ai-engineer/ .[Access 18 พฤศจิกายน 2567].
- [3] เชาวลิต จันภิรมย์และคณะ, "การพัฒนาระบบแปลงไฟล์ภาพและเสียงเป็นข้อความจากหน้าซองจดหมาย" 2023 [Online].Available: https://so05.tci-thaijo.org/index.php/jmctrmutp/article/view/260003. [Access 18 พฤศจิกายน 2567]
- [4] ธานิล ม่วงพูลและคณะ, "แอปพลิเคชันสำหรับการแปลงเสียงเป็นข้อความสำหรับผู้พิการทางหูโดยใช้ Google API" 2021 [Online]. Available: https://pws.npru.ac.th/signal/data/files.pdf [Access 14 พฤศจิกายน 2567]
- [5] ชุลีพร ยงเกียรติพานิช, "การสรุปใจความสำคัญแบบสกัดจากบทความโดยใช้ออนโทโลยีและวิธีการทางกราฟ" 2018 [Online].Available: https://digital.car.chula.ac.th/chulaetd/3268/ [Access 15 พฤศจิกายน 2567]
- [6] ศรัญญา นาทองห่อ, "การสรุปใจความสำคัญของข้อความแบบสกัดสำหรับข่าวท่องเที่ยวภาษาไทย" 2020 [Online].Available: https://digital.car.chula.ac.th/chulaetd/3797/ [Access 16 พฤศจิกายน 2567]