RuleML Overview and Position Statement

The RuleML Initiative

Prepared by (in alphabetical order): Harold Boley, Mike Dean, Benjamin Grosof, Michael Kifer, Said Tabet, Gerd Wagner

W3C Workshop on Rule Languages for Interoperability Position Paper [96]: 27-28 April 2005

http://www.ruleml.org

The Web Rule Language in its Context RuleML, WSML, SWSL View

Introduction

- The RuleML Initiative was formed in 2000 to provide a neutral platform for semantic interoperation of rules, across the Web, between commercially important rule systems:
 - Production rules
 - Relational databases
 - Prolog
 - Event-Condition-Action rules
- ... → Enable rule-based Semantic Web Services
- Pioneered webized representation of a modular family of rule sublanguages, catering to a variety of needs on the Web

RuleML is ...

An open semantic standard for

Semantics founded on logical knowledge representation

1. Rule Modeling:

- Data model integrates
 - Ordered XML trees
 - Labeled RDF graphs
- Abstract syntax uses MOF
 - Mappings for OMG PRR [<u>53</u>] and SBVR [<u>85</u>]

2. Rule Classification: Modular Family of

- XML Schemas and associated
- (Model-Theoretic, Well-Founded) Semantics

RuleML is ...

An open semantic standard for **Rule**

- 3. Serialization: XML, RDF, Presentation
- 4. **Distributedness**: Fully webized, cf. N3 [94]
- 5. Interoperation:
 - Mature experience with RDF/RuleML [93] and
 OWL: <u>SWRL</u> [81]; also with F-logic: <u>SWSL</u> [124]
 - Adapt Sublanguages, write XSLT, ... Translators, or establish APIs such as JSR94 [107]
- 6. **Execution**: Mandarax, jDREW [49], Jess, XSB ...
- 7. **Tools**: SweetRules V2.1, IW Editor, ... ⁴

RuleML Identifies ...

- Expressive sublanguages
 - for Web rules
 - explored mostly with
 - Derivation rules: to derive beliefs
 - Reaction rules: to perform actions
 - empowering their subcommunities

SWRL FOL, SWSL-Rules in RuleML Family

RuleML Specification & Interoperation

- Rule Family specified via XML Schemas
 - All sublanguages, pre-release: RuleML 0.89
 - First Order Logic, cf. SCL [103]: FOL RuleML 0.9
 - With Ontology language, cf. [81]: SWRL 0.7
 - A Semantic Web Rule Language combining OWL and RuleML
 - With Services language, cf. [124]: SWSL 0.91
- Rule Translators in & out (e.g. Jess, XSB)
 - Interoperation between many commercially important rule systems

(FOL) RuleML Has N-ary Relations & Functions, Extending SWRL (FOL)

- N-ary relations (predicate symbols)
 - Extends SWRL, which is unary/binary
- N-ary constructors (function symbols)
 - Extends SWRL, which uses individuals as 0-ary constructors (function-free)

FOL RuleML: Syntax and Semantics

- Spec: http://www.w3.org/Submission/2005/SUBM-FOL-RuleML-20050411
- Modular combination of syntactically characterized new sublanguages with:
 - Explicit quantifiers
 - Head disjunctions
 - Equivalence and Negation
- Semantics is FOL model theory
- (Pragmatics via performatives)

Business Rule: Positional

1. 2. 3.

"The discount for a customer buying a product is 5 percent if the customer is premium and the product is regular."

Implies Data model: head body Atom And Atom Atom product 5.0 discoun customer Rel Ind Var Var product regular customer Rel Var Rel Var

Serialization:

```
<Implies>
  <head>
    <Atom>
      <Rel>discount</Rel>
      <Var>customer</Var>
      <Var>product</Var>
      <Ind>5.0</Ind>
    </Atom>
  </head>
  <body>
    <And>
      <Atom>
        <Rel>premium</Rel>
        <Var>customer</Var>
      </Atom>
      <Atom>
        <Rel>regular</Rel>
        <Var>product</Var>
      </Atom>
    </And>
                         10
  </body>
</Implies>
```

DTD for Recursive FO Formulas

```
<!ENTITY % foformula
       "(Atom | And | Or | Neg | Implies | Equivalent | Forall | Exists)">
<!ELEMENT Atom (Rel, (Ind | Var | Cterm)*)>
<!ELEMENT Cterm (Ctor, (Ind | Var | Cterm)*)>
<!ELEMENT And ((%foformula;)*)>
<!ELEMENT Or ((%foformula;)*)>
<!ELEMENT Neg (%foformula;)>
<!ELEMENT Implies (%foformula;, %foformula;)>
<!ELEMENT Equivalent (%foformula;, %foformula;)>
<!ELEMENT Forall (Var+, %foformula;)>
<!ELEMENT Exists (Var+, %foformula;)>
<!ELEMENT Ind (#PCDATA)>
                                → Translated to XML Schema
<!ELEMENT Var (#PCDATA)>
                                   since RuleML 0.88
<!ELEMENT Rel (#PCDATA)>
<!ELEMENT Ctor (#PCDATA)>
```

Slotted (FOL) RuleML Extension

- N-ary relations and constructors can contain set of slots ('user-labeled arcs')
 - Enables Object Oriented modeling:
 - rdf:Descriptions (rather than triples)
 - RDFS and OWL class descriptions
 - Positional logic Frame logic (F-logic)
- Serialization of SWSL-Rules

Business Rule: Slotted (for 00)

buyer item

rebate

"The discount for a customer buying a product is 5 percent if the customer is premium and the product is regular."

Serialization: <Implies> <head> <Atom> Data model: **Implies** <Rel>discount</Rel> <slot><Ind>buyer</Ind><Var>customer</Var></slot> <slot><Ind>item</Ind><Var>product</Var></slot> body head <slot><Ind>rebate</Ind><Ind>5.0</Ind></slot> Atom And </Atom> </head> \ <body> rebate <And> item Atom Atom <Atom> buver <Rel>premium</Rel> 5.0 customer product <Var>customer</Var> Rel Var Ind Var </Atom> <Atom> <Rel>regular</Rel> product <Var>product</Var> regular customer </Atom> Rel Var Rel Var </And>13 </body>

</Implies>

Some RuleML Use Cases

- RACSA, RALOCA, RACOFI: Rule Applying Agents for Comparison Shopping, Learning Object Comparison, and COllaborative FIltering (led to inDiscover.net)
- NBBizKB: New Brunswick Business Knowledge Base uses OO RuleML for data validation and <u>integration</u>
- <u>AgentMatcher</u>: e-Learning metadata interchanged in Weighted OO RuleML
- <u>Teclantic</u>: Startup project descriptions for Atlantic technology transfer in Weighted OO RuleML
- Regulatory guidelines for financial services in the US, Can, and UK by Inference Web Inc.
- MITRE Convoy Mission [28]

SweetRules & MIT RuleML Use Cases

- Contracts/negotiation, advertising/discovery
 - E-procurement, E-selling
 - Pricing, terms & conditions, supplier qualification, ...
- Monitoring:
 - Exception handling, e.g., of contract violations
 - Late delivery, refunds, cancellation, notifications
 - Notifications, personal messaging, and other workflow
- Trust Policies: authorization, confidentiality & privacy, security, access control
 - E.g., financial services, health care
 - Extensive analysis of business case/value
- Semantic mediation: rule-based ontology translation, context-based information integration
- Object-oriented process ontologies: MIT Process Handbook
 - With default inheritance

Lessons from RuleML Experience

- Rule standardization process requires
 - Long-term vision
 - Engaging with all stake-holders
 - Full understanding of needs of various communities
- Each sublanguage also requires very strict and explicit scope to guarantee delivery of mature results in a phased fashion
- Focussing on certain sublanguages will be necessary for planned W3C Working Group

The Web Rule Language in its Context RuleML, WSML, SWSL View

Position Based on Experience

- Since 2000 the RuleML Initiative has engaged/collaborated with:
 - Large variety of use cases: finance, insurance,
 e-commerce, supply-chain, security & trust, biomed, ...
 - RDF, N3, TRIPLE
 - OWL, DL, Joint Committee
 - Semantic Web Services, SWSI, WSMO
 - Development of dozens of tools
- Pioneered webized representation of modular family of rule sublanguages, catering to a variety of needs on the Web

Position: Proposed Scope of WG (1)

First Phase (ca. 9 months):

- Start with LP expressiveness including
 Datalog Horn + NAF, then add logical functions
- Enable use of RDF and of OWL-DL [81]
- Draw especially on:
 - Use cases
 - RuleML, SWSL [124], WSML [44, 128],
 N3 [94], TRIPLE [98], SCL/KIF [103]

Position: Proposed Scope of WG (2)

First Phase (cont'd):

- Add some subset of following ten features:
 - Slotted/Frame syntax; webized OIDs/labels
 - Datatyping; lists
 - Signature declarations
 - Lloyd-Topor: syntactic sugar for enriched connectives
 - Integrity constraints, mutual exclusions, functional dependency
 - Prioritized conflict handling, cf. Courteous
 - Procedural attachments, cf. Situated:
 - built-ins/tests/sensors
 - actions/effectors
 - events/time
 - Hilog: syntactic sugar for restricted higher-order
 - User-defined head equality and functions
 - Reification

Position: Proposed Scope of WG (3)

Second Phase (additional ca. 6-9 months):

- Extend for more expressiveness as required by more use cases and doable in that period
 - -Vote now for your top k out of 10 ☺

Upcoming Events

- Workshop on Protégé with Rules
- Will be held in conjunction with <u>8th Intl. Protégé Conference</u>, on 18 July 2005
- Deadline for paper or abstract submissions: 1 June 2005
- http://www.med.univ-rennes1.fr/~cgolb/Protege2005/ProtegeWithRulesCFP.htm
- RuleML-2005: International Conference on Rules and Rule Markup Languages for the Semantic Web
- Will be held in conjunction with <u>ISWC-2005</u>, on 10-11 November 2005
- Deadline for paper submissions: 1 July 2005
- http://2005.ruleml.org