

# Roadmap

- Discussion
- Problem Set #0
- Reminders
- Facts: GDP and GDP growth
- Theory: the production function
- Inputs: capital and labor
- Productivity

2

# Discussion: inflation

- · Linpei Zhang
  - My father in law just came from Beijing. His biggest complaint was inflation in China. Although overall inflation is not high, the price of the food has increased substantially.
- Questions
  - What is inflation?
  - Why are people concerned about it?
  - Where does it come from?

3

# Problem Set #0

- Math and spreadsheet skills
  - Spreadsheets: essential life skill
  - Exponents and logarithms: used extensively in first half [LN]
  - Calculus: used sparingly, not on exams
- Answers will be posted Saturday afternoon
- Question 3 makes two points that will come up later
  - GDP, C, and I move up and down together (correlations)

- I moves a lot more than the others (standard deviation)

4



# Reminder: Problem Set #1

- Due next class
- Do in groups of one to five
- Send questions to me or TF (I'll post answers in announcements)
- Start with the data download step of Question 3 (Any problems, let me know)

# Reminder: Announcements/Discussion

- Links on course website
- Optional signups for email delivery

7

# Reminder: real and nominal GDP

- Real GDP ("quantity")
  - GDP in constant dollars
  - GDP in 2005 USD
  - GDP in 1990 international prices
  - GDP in LCU
  - GDP chain-weighted in 2010 USD
- Nominal GDP ("value = price times quantity")
  - GDP at current prices

8

# Reminder: where are we headed?

- Module 1: long-term economic performance
  - Why are some countries rich, and others poor?
  - Where are the economic and business opportunities?
- $\bullet \ \ Our\ proposed\ answer\ (developed\ over\ several\ weeks)$ 
  - Business opportunities and economic performance generally reflect effective markets backed by institutions that keep them honest.

9

# Facts: GDP per capita

# Economic history of the world

| Statistic                    | Year |      |       |       |  |
|------------------------------|------|------|-------|-------|--|
|                              | 1    | 1000 | 1820  | 2008  |  |
| Population<br>(millions)     | 225  | 267  | 1,042 | 6,694 |  |
| GDP Per Capita<br>(1990 USD) | 467  | 425  | 666   | 7,614 |  |
| Life expectancy (years)      | 24   | 24   | 26    | 66    |  |

Source: Angus Maddison, Millenial Perspective



| Region              | Year |      |       |        |  |
|---------------------|------|------|-------|--------|--|
|                     | 0    | 1000 | 1820  | 2008   |  |
| Western Europe      | 599  | 425  | 1,218 | 21,672 |  |
| Western "offshoots" | 400  | 400  | 1,202 | 30,152 |  |
| Japan               | 400  | 425  | 669   | 22,816 |  |
| Latin America       | 400  | 400  | 691   | 6,973  |  |
| Former USSR         | 400  | 400  | 688   | 7,904  |  |
| China               | 450  | 466  | 600   | 6,725  |  |
| Africa              | 472  | 425  | 420   | 1,760  |  |
| World Average       | 467  | 453  | 666   | 7,614  |  |







# Questions

- What separates successes from others?
  - What factors facilitate good performance?
  - What factors generate business opportunities?
- Why?
  - Why did Western Europe do so well?
  - Why not the Greeks and Romans?
  - Why not China, India, the Islamic World?
- Could the future be different?

A controlled experiment

Nores F14 2.668 VIX 11162 158F8-11102 158F8

3381

1256

# Theory: The Production Function

# Why theory?

- A tool to help us organize our thoughts
- What separates successes from others?
- What factors facilitate good performance?
- What factors offer attractive business opportunities?

20



# Theory: the math

- The idea: relate output to inputs
- Mathematical version ("production function"):

$$Y = A F(K,L) = A K^{\alpha} L^{1-\alpha}$$

- A formula we can compute in a spreadsheet
- Definitions:
  - K = quantity of physical capital used in production (plant and equipment)
  - L = quantity of labor used in production
  - A = total factor productivity (everything else)
  - $\alpha$  = a parameter we set equal to 1/3 (more soon)

22

# **Production function properties**

- More inputs lead to more output
  - Positive marginal products of capital and labor
- Diminishing marginal products
  - If we increase one input at a time, each increase leads to less additional output
  - Marginal product = partial derivative of production function

- · Constant returns to scale
  - If we double \*\*both\*\* inputs, we double output (no inherent advantage or disadvantage to size)



# Where does $\alpha$ come from?

- Capital's share of value-added
- If you know calculus, this is how we show it
  - Profit is

Profit = 
$$pY - rK - wL = pAK^{\alpha}L^{1-\alpha} - rK - wL$$

- Maximize profit by setting derivative wrt K equal to zero

$$dProfit/dK = \alpha pAK^{\alpha-1}L^{1-\alpha} - r = 0$$

- Multiply by K

$$\alpha pAK^{\alpha}L^{1-\alpha} = rK$$

$$\alpha = rK / pAK^{\alpha}L^{1-\alpha}$$

- Evidence (last week): about 1/3

25

# Capital (K)

- What we mean: plant and equipment, physical capital
- Why does it change?
  - Depreciation/destruction
  - New investment ("capex")
- Mathematical version:

$$K_{t+1} = K_t - \delta_t K_t + I_t$$

$$= (1 - \delta_t)K_t + I_t$$

• Adjustments for quality?

26

# Measuring capital

- Option #1: direct surveys of plant and equipment
- Option #2: perpetual inventory method
  - Pick an initial value K<sub>0</sub>
  - Pick a depreciation rate (or measure depreciation directly)
  - Measure K like this:

$$K_{t+1} = (1 - \delta_t)K_t + I_t$$

- In practice, #2 is the norm:
  - Get I from "NIPA"
  - Set  $\delta = 0.06$  [ballpark number]
  - Example:  $K_{2010} = 100$ ,  $\delta = 0.06$ ,  $I = 12 \rightarrow K_{2011} = ??$



29



#### Labor (L)

- What we mean: units of work effort
- · Why does it change?
  - Population growth
  - Fraction of population employed (extensive margin)
  - Hours worked per worker (intensive margin)
- Our starting point: number of people working

# Measuring labor

- · Our starting point
  - L = number of people working
- Adjustments for hours worked
  - Replace L with hL (h = hours per worker)
- · Adjustments for skill, education
  - Replace L with HL (H = "human capital")
  - $\,$   $\,$  H commonly connected to years of school

















# Comparing China and Mexico

- Different "demographics"
  - China has had "one child" rule since 1979, low birth rate
  - Mexico has high birth rate
- How does that show up in (say) GDP per capita?
  - If kids don't work, then having lots of them reduces the ratio of workers to population
  - Ditto having lots of retired people

39





# Standard number Average product of labor: Y/L How do we measure it? Measure output and input, take the ratio Our number Total Factor Productivity (TFP): A = Y/F(K,L)

Productivity (A)

• How do we measure it?

# **Productivity**

• Solve the production function for A

$$Y = A K^{\alpha} L^{1-\alpha}$$

$$A = Y/[K^{\alpha}L^{1-\alpha}] = (Y/L)/(K/L)^{\alpha}$$

• Example: Y/L = 33, K/L = 65:

$$A = 33/65^{1/3} = 8.21$$

• Note: units meaningless, but comparisons across time or countries are useful

43

# **Production function review**

• Remember: Y = A F(K,L)

- What changes in this equation if
  - A firm builds a new factory?
  - Fewer people retire at 65
  - Workers shift from agriculture to industry in Viet Nam?
  - Competition drives inefficient firms out of business?
  - Venture capital fund identifies good unfunded projects?
  - Alaska builds a bridge to nowhere?
  - China invests in massive infrastructure projects?

44

# What have we learned?

• The production function links output to inputs and productivity:

$$Y = A K^{\alpha} L^{1-\alpha}$$

- Capital input (K)
  - Plant and equipment, a consequence of investment (I)
- Labor input (L)
  - Population growth, age distribution, participation, hours (h), skill (H)
- TFP (A) can be inferred from data on output and inputs

45

# The Global Economy

Solow's Growth Model



# Roadmap

- In the news
- Saving and growth
- Solow's model and convergence
- India

47

#### In the news: Greece

- Joachim Fels, Morgan Stanley
  - Events around Greece underscored our concerns.
     Following the Eurogroup's ultimatum, the Greek government – hit by a slew of resignations – now has to pass the reform and austerity measures in Parliament.
     More uncertainties lie ahead, including whether the deal will be approved by German parliament and whether a sufficient number of investors participates in the debt swap.
- What is he saying?
- Do you agree?

# In the news: inflation

- Joachim Fels, Morgan Stanley
  - With central banks around the world opening the monetary floodgates, it is only a question of time until markets start to worry about the consequences for inflation. Our Asia (ex-Japan) and Latin America teams are looking for inflation rates to creep higher after the middle of the year.
- What is he saying?
- Do you agree?

# Saving and growth

- JFK in 1960, height of Cold War
  - Rapid growth in USSR, also high saving and investment rates
  - Cause and effect?
- US analysts in 1985
  - Rapid growth in Asian "tigers," lots of saving
  - Cause and effect?
- China in 2010
  - Rapid growth, saving close to 50% of GDP
  - Does India need to do the same?

# Saving and growth

- How does saving generate growth?
- Critical to long-run performance?

# Solow's Model 52

# Solow model

- · How it works
  - Saving finances capital accumulation
  - More capital leads to greater output
  - Impact eventually tails off: diminishing marginal product of capital

53

# Solow model: equations

• Production function:

 $Y = A K^{\alpha} L^{1-\alpha}$ 

• Flow identity:

I = S

• Saving:

S = sY

• Capital stock:

 $\Delta K = I - \delta K$ 

# Solow model: analysis

• "Analysis" here means we substitute like crazy

$$\Delta K = sY - \delta K$$

= 
$$sAK^{\alpha}L^{1-\alpha} - \delta K$$

- For the time being, A, L don't change
- $\bullet \;\; Two \; competing forces on K$ 
  - Depreciation drives K down
  - Saving drives K up
  - Which is stronger?
  - Where does diminishing returns show up?

\_\_\_



# Solow model: convergence

- Eventually the two forces balance
  - Capital stock eventually stops changing
  - Output does, too
- Solow's answer to JFK
  - USSR won't catch up through saving alone
- Do we see convergence in the data?







# Level effects v. growth effects

- Level effect: change in GDP level
  - Temporary change in growth rate
- Growth effect: permanent change in growth rate
- Level or growth effect?
  - Saving rate
  - Population growth



# Population growth?

- How does it work?
- Increases GDP
- Decreases GDP per capita if K is fixed
  - Capital per worker falls
  - Increases share of young, who don't work
- Doesn't vary enough to account for growth experiences



# India

- Saving and investment rates well below China's
- How important is this to India's future?

# India

- Experiments with Solow model
  - Benchmark: start model in 2010 and see what happens
  - Raise saving rate
  - Introduce productivity growth
- What has the biggest impact?

67

# India

- Solow model inputs (estimates for 2010)
  - Output Y=GDP: 3.87 trillion 2005 USD
  - Capital K: 5.78 trillion 2005 USD
  - Labor L: 0.450 billion people
  - Productivity A: how do we compute this?
  - Saving/investment rate s: 0.25
  - Depreciation rate delta: 0.06
- Experiments
  - Raise saving rate
  - Add productivity growth

68

# India

- Solow model experiments
  - Raise saving rate
  - Add labor force growth
  - Add productivity growth
  - Increase productivity growth

69

# India

| Scenario                     | GDP  |
|------------------------------|------|
| 2010                         | 3.87 |
| 2050: no-growth benchmark    |      |
| 2050: higher saving (+5%)    |      |
| 2050: population growth (1%) |      |
| 2050: TFP growth (2%)        |      |
| 2050: TFP growth (+1%)       |      |

70

# India

| Scenario                     | GDP   |
|------------------------------|-------|
| 2010                         | 3.87  |
| 2050: no-growth benchmark    | 6.08  |
| 2050: higher saving (+5%)    | 6.61  |
| 2050: population growth (1%) | 8.72  |
| 2050: TFP growth (2%)        | 18.02 |
| 2050: TFP growth (+1%)       | 31.09 |

\_\_

# What have we learned?

- Solow model
  - Growth comes from saving and capital accumulation
  - Diminishing returns kills this off quickly
  - Conclusion: saving and capital formation can't be the keys to prosperity (in the US, in China, in India, etc)
  - Still a useful forecasting tool
- If not capital, what?
  - TFP growth

# For the ride home

- US healthcare
  - What's the biggest problem you see?
  - How would you solve it?