Examen en électrotechnique

1ère année Tronc Commun Ingénierie

Exercice 1: (12 points)

La plaque signalétique d'un transformateur monophasé porte les indications suivantes :

15KV/220V - 50Hz - 125KVA

Dans un essai à vide sous tension primaire nominale, on a relevé $U_{20}=231V$, $I_{10}=0,45A$ et $P_{10}=660W$. Un essai en court-circuit, sous tension réduite U_{1CC} =500V, a donné I_{2CC} = 560A'et P_{1CC} =3200W. La section du circuit magnétique est S=170cm². L'induction maximale est B_{max}=1,2T.

- Calculer le courant nominal I_{2n} du transformateur.
- Calculer le rapport de transformation m.
- 3°) Calculer les nombres de spires n_1 au primaire et n_2 au secondaire.
- 4°) En utilisant les résultats de l'essai à vide, calculer R_F et X_m .

Quelle serait l'indication d'un wattmètre placé au secondaire ?

- 5°) En utilisant les résultats de l'essai en court-circuit, calculer rt2 et xt2.
- 6°) Calculer, pour la moitié du courant nominal, la tension secondaire U2 dans le cas d'une charge :
 - a- purement résistive ;
 - b- purement inductive.
- 7°) Le transformateur est chargé maintenant par un récepteur constitué d'une résistance R=0,5Ω en parallèle avec un condensateur de capacité C=1mF. Calculer :
 - a- l'impédance complexe Z ainsi que son module et son argument ;
 - b- la tension secondaire U₂;
 - c- le courant secondaire I₂;
 - d- le rendement η du transformateur.

Exercice 2: (8 points)

La plaque signalétique d'un transformateur triphasé $\mathbf{D}\mathbf{y}_n$ porte les indications suivantes :

250 KVA - 20KV/380V - 50Hz

Lors d'un essai à vide sous tension primaire entre phases $U_1 = 20 \text{KV}$, on a relevé une tension secondaire entre phases $U_{20} = 400V$, $P_{10} = 2KW$ et $Q_{10} = 40KVAR$.

Un essai en court-circuit sous tension primaire entre phases $U_{1CC} = 750V$, a donné $I_{2CC} = 250A$ et $P_{1CC} = 2.4KW$.

1°) Que signifie Dyn?

- 2°) Calculer le rapport de transformation m.
- 3°) Calculer le nombre de spires n_2 de chaque enroulement secondaire sachant que le nombre de spires de chaque enroulement primaire est $n_1 = 600$.
- 4°) Donner le schéma équivalent simplifié par phase à vide du transformateur et calculer la résistance équivalente fer R_F et la réactance magnétisante X_m .
- 5°) En utilisant les résultats de l'essai en court-circuit, calculer r₁₂ et x₁₂.
- 6°) Calculer le courant nominal secondaire I2n.
- 7°) Le transformateur alimente une charge capacitive, de facteur de puissance $\cos \varphi_2 = 0.8$, absorbant le courant nominal.
 - a- Calculer la tension secondaire U2 entre phases.
 - b- Calculer le rendement η du transformateur.