A'INGAE REDUPLICATION IS PHONOLOGICALLY OPTIMIZING

Maksymilian Dąbkowski

University of California, Berkeley

Overview

- A'ingae (or Cofán, 150 639-3: con): an understudied and endangered Amazonian isolate
- the reduplicant: suffix -7σ ineffability: only disyllabic roots can be reduplicated
- root parsed as a trochaic foot second syllable undergoes monophthongization
- the base + the reduplicant together (henceforth *reduplicated stem*) = $(\sigma_1 \sigma_2) \sigma_2$
- model: reduplicant-specific *cophonology* (e. g. Orgun, 1996; Sande et al., 2020)
- a ranking of constraints independently motivated elsewhere in A'ingae (Dąbkowski, 2022)
- A'ingae reduplication is highly phonologically optimizing
- all the data were collected by the author

Description and analysis

- the reduplication of a verb expones subject superplurality (i.e. a large number of entities)
- - 7σ can attach to disyllabic roots, either underlyingly stressless (1b.i-ii) or stressed (1b.iii-iv)¹
- ineffability: monosyllabic and trisyllabic roots cannot be reduplicated (1a,c)

(1) a.	Monosyllabic		b.	Disyllabic c.			Trisyllabic		
	ROOT	REDUPL		ROOT	REDUPLICATED		ROOT R	EDUPL	
i.	p ^h i 'sit'		i.	fetha 'open'	('fet ^h a?)t ^h a	i.	otisi 'wash han	ds' —	
ii.	ã 'eat'		ii.	fiite 'help'	('fɨite?)te	ii.	opat ^h i 'pick'		
iii.	"do 'split'		iii.	('kati) 'cast'	('kati?)ti	iii.	aviha 'rejoice'		
iv.	khe 'get lost'		iv.	('ãnã) 'sleep	' ('ãnã?)nã	iv.	siforo 'fart'		
V.	kɨ 'get warm	<u> </u>	V.	findii 'sweep	$(f_{i}^{n}d_{i}^{n})^{n}d_{i}$	V.	('kõ ⁿ da)se 'tell'		
vi.	ⁿ dzai 'sit'		vi.	opii 'shelter'	('opɨʔ)pɨi	vi.	('afa)se 'offend'		

- in reduplicated stems, stress on the second syllable to the left of the reduplicant (1b.i-iv)
- independently attested effect in A'ingae to occur with any ?-initial suffix (Dąbkowski, 2022)
 (2b-c, cf. default penultimate stress in 2a)
- modeled with AL?): Every glottal stop is right-aligned with a foot (tableau in 3)

(2)	a. / f i ite -hi/	b. /fiite -?he/	c. / fiite -? ^ŋ gi /	d. /fɨ̄ndɨi -?he/	e. /findii -?ngi/
	[fɨi(ˈtehi)]	[('fɨite?)he]	[(ˈfɨiteʔ)ŋgi]	[fŧ̃('ndɨi?he)]	[fɨ̃(ˈndɨ̃iʔŋgi)]
	help -prcl	help -ıpfv	help -ven	sweep -ipfv	sweep -ven

- the last vowel in diphthong-final roots is truncated (1b.v-vi), but preserved in the reduplicant
- independently attested restriction on A'ingae foot shape (Dąbkowski, 2022)
- FтSн: Feet are binary trochees with monomoraic (i.e. light; non-diphthongal) right branches.
- Dąbkowski motivates FtSH with (2d-e); high ranking of FtSH results in a violation of AL?)
- in reduplication, the violated constraint is $\boxed{\text{MaxV}}$: For every vowel in the input, there is a corresponding vowel in the output (tableau in 5)
- regular ?-initial suffixes and -?σ both avoid violations of FтSH, but in different ways
- ¹ Both stressless and stressed roots surface with penultimate stress in isolation. In morphologically complex forms, penultimate default stress is assigned to underlyingly stressless forms $/fet^ha-hi/$ 'open-prcl' $\rightarrow [fe('t^hahi)]$, but underlying stress surfaces faithfully /('kati)-hi/ 'cast-prcl' $\rightarrow [('kati)hi]$.

Description and analysis, part 2

I assume that reduplication involves a violation of Into: No syllable in the input has multiple correspondents in the output. Since reduplication is modeled as input-output correspondence, the input diphthong is faithfully rendered in the reduplicant, avoiding a gratuitous violation of MaxV.

Finally, mono- and trisyllabic roots cannot be reduplicated (1a,c). I attribute this to $AL[_{\omega}f]$: *Every foot is aligned with the left edge of the word.*

In the cophonology of the reduplicative -7σ , $\text{AL}[_{\omega}\text{f}]$ ranks above the Empty Output Constraint (EOC): Assign a violation mark to the empty output (Prince et al., 1993). Other constraints which outrank EOC include $\text{Max}\sigma$: Input syllables have correspondents in the output, which prevents the truncation of trisyllabic stems, and the previously introduced AL?) and FtSh. This ranking captures the impossibility of reduplicating mono- and trisyllabic roots (4, 6).

(3) $fet^{h}a - 2\sigma$ (7) $(7$	EOC	MAXV	$ I_{ m NT} \sigma$
i. Ø	*		
ii. fet ^h a?t ^h a *			*
iii. ('fetha?)tha			*
			<u> </u>
(5) $f_{i}^{n}dii - 2\sigma$ (5) $f_{i}^{n}dii - 2\sigma$ (7) $f_{i}^{n}dii - 2\sigma$ (7) $f_{i}^{n}dii - 2\sigma$ (7)	\mathcal{C}	4XV	ΓG
$(5) f\tilde{i}^n dii - 2\sigma \qquad \vec{\exists} , \vec{\exists} , \vec{\exists} , \vec{\exists} \rangle$	angle $ m H$	\sum_{i}	Z
i. Ø	*		
i. Ø ii. fŧ̃ ⁿ dŧĩ? ⁿ dŧi *	*		*
·	*		*
ii. findiî?ndii *	*	*	* * *

$(4) p^h i - 7\sigma$	ALI	FTSH	$\operatorname{AL}[\omega]$	MAX	EOC	≪ MAX	$\int_{\rm INT}$	
i. Ø					*			
ii. p ^h i?p ^h i	*						*	
iii. (' p^h i?) p^h i		*					*	
iv. $(p^hi?p^hi)$	*						*	
				, .		•		
(6) atapa -?σ	(AL?	FTSH,	$\operatorname{AL}[\omega f]$	\bigotimes	EOC	MAXV	$I_{ m NT}\sigma$
i. Ø						*		
ii. atapa?pa		*						*
iii. a('tapa?)p	oa		:	*				*
iv. ('tapa?)pa	a				*		*	*

Elevator pitch

shows link

Digital poster

shows link

Comments, questions

dabkowski@berkeley.edu

Alternative analyses

The account above models the shape of the reduplicated stem with a reduplicant-specific ranking of constraints which are independently attested in the A'ingae grammar. An alternative analysis could make use of a subcategorization frame, such as (7).

(7) SUBCATEGORIZATION FRAME FOR -7σ : $\#\sigma\sigma$ (i. e. -7σ selects for a disyllabic stem)

The frame in (7) allows for dispensing with the EOC, since (7) does the job of ruling out the reduplication of mono- and trisyllabic roots. However, subcategorization is an arbitrary selectional requirement and need not be phonologically optimizing (Paster, 2007). As a consequence, (7) misses the phonological motivation behind the root size restriction: The root must be disyllabic because it is parsed as a foot. This is in turn because -7σ is ?-initial and the A'ingae glottal stops, as per AL?), must be right aligned with a foot.

Finally, the phonology of reduplicated stems differs from other affixes in a way not captured by (7): Diphthongs in weak branches of a foot are avoided by truncating the diphthong in reduplication (FτSH » MaxV, as in 1b.v-vi), but by misaligning the glottal stop with the foot elsewhere (FτSH » Al?), as in 2d-e). In sum, the subcategorization analysis misses the phonologically optimizing aspect of A'ingae reduplication and still requires associating the reduplicative -?σ