- $a \in A$ элемент a принадлежит множеству A, например, $2 \in \mathbb{N}$.
- $a \notin A$ элемент a не принадлежит множеству A, например $-5 \notin \mathbb{N}$
- $A\subset B-A$ является подмножеством B (все элементы A принадлежат B), например $\{1,2,3\}\subset\{1,2,3,4,5\}.$
- \emptyset пустое множество.
- $A \cap B$ пересечение множеств A и B (множество всех элементов, принадлежащих A и B).
- $A \cup B$ объединение множеств A и B (множество всех элементов, принадлежащих либо A, либо B).
- $A \setminus B$ разность множеств A и B (множество всех элементов, принадлежащих A, но не принадлежащих B).

Задача 1. Часто множества изображают в виде кругов на плоскости (диаграммы Эйлера-Венна). Посмотрите на следующие диаграммы Эйлера-Венна и запишите, каким множествам соответствуют заштрихованные области. Для записи используйте символы ∪, ∩, \ и скобки.

Задача 2. Каждый третий политик – бизнесмен, а каждый четвертый бизнесмен – политик. Кого больше, политиков или бизнесменов?

Задача 3. Пусть , $A = \{2k+1, k \in \mathbb{Z}\}$, $B = \{3k, k \in \mathbb{Z}\}$. (A — нечетные, B — делящиеся на 3). Найдите пересечение $A \cap B$ и разность $B \setminus A$.

Задача 4. Число x натуральное. Среди утверждений 1) 2x > 70, 2) x < 100, 3) 3x > 25, 4) $x \geqslant 10$, 5) x > 5 три верных и два неверных. Чему равно x?

Задача 5. Перед футбольным матчем команд «Север» и «Юг» было дано пять прогнозов: 1) ничьей не будет; 2) в ворота «Юга» забьют; 3) «Север» выиграет; 4) «Север» не проиграет; 5) в матче будет забито ровно 3 гола. После матча выяснилось, что верными оказались ровно три прогноза. С каким счётом закончился матч?

Задача 6. Расставьте вместо многоточий слова «необходимо», «достаточно», и там, где это возможно, «необходимо и достаточно» так, чтобы получились верные суждения.

- а) Для того, чтобы число x делилось на $5, \ldots$ чтобы его десятичная запись кончалась цифрой 0.
- **б)** Для того, чтобы число x делилось на $9, \ldots,$ чтобы сумма цифр его десятичной записи делилась на 3.
- в) Для того, чтобы параллелограмм ABCD был ромбом, ..., чтобы его диагонали делили пополам внутренние углы. г) Для того, чтобы параллелограмм ABCD был квадратом, ..., чтобы его стороны были равны.

Определение 1. Будем говорить, что утверждение $\overline{P_1}$ является *отрицанием* к утверждению P_1 , если $\overline{P_1}$ верно тогда и только тогда, когда не верно P_1 .

- **Задача 7.** Покажите, что если из P_1 следует P_2 , то это равносильно тому, что из $\overline{P_2}$ следует $\overline{P_1}$.
- **Задача 8.** Докажите, что если m > 1 и (m-1)! + 1 делится на m, то число m простое.
- Задача 9. Равносильны ли утверждения «кто не с нами, тот против нас» и «кто не против нас, тот с нами»?

Задача 10. Рассмотрим утверждения вида « P_1 и P_2 » (обозначается $P_1 \wedge P_2$) и « P_1 или P_2 » (обозначается $P_1 \vee P_2$). Докажите следующие теоремы (правила де Моргана):

а) Утверждение $\overline{P_1 \wedge P_2}$ равносильно $\overline{P_1} \vee \overline{P_2}$; 6) Утверждение $\overline{P_1} \vee \overline{P_2}$ равносильно $\overline{P_1} \wedge \overline{P_2}$.

Задача 11. Однажды принцесса сказала: «Хочу, чтобы мой муж был красивый, не был глупым или некрасивым, или чтобы был некрасивым, но не был глупым». Упростите данное утверждение.

Задача 12. Рассмотрим утверждения вида «для любого $h \in H$ верно Q» (обозначается $\forall h \in H : Q$) и «существует $h \in H$ такой, что верно Q» (обозначается $\exists h \in H : Q$). Постройте отрицания к этим утверждениям.

Задача 13. Постройте отрицание к утверждению «для любого четырехугольника существует вписанная в него окружность» и покажите, что оно истинно.

Задача 14. В квадрате 3×3 закрашено 5 клеток. Докажите, что найдется закрашенная клетка, в строке и в столбце которой найдется еще по одной закрашенной клетке.

Задача 15. Постройте отрицания к следующим утверждениям:

- в каждом классе найдется ученик, который решил хотя бы одну задачу из контрольной.
- б) Найдется класс, в котором каждый ученик решил хотя бы одну задачу из контрольной.
- в) Существует такая задача, что в каждом классе хотя бы один ученик ее решил.
- г) Для каждой задачи есть класс, в котором все ученики ее решили.
- д) Есть город, в каждом районе которого есть улица, на которой в каждом доме есть однокомнатная квартира.
- е) В каждом городе есть магазин, в котором нет хлеба, и никто из продавцов не знает, когда он будет.

Задача 16. Попытайтесь формализовать фразу «ученики должны показывать свои тетради учителям», рассматривая множества учеников, тетрадок и учителей. Придумайте несколько вариантов, как это можно сделать.

1	2	3	4	5	6 a	6 6	6 в	6 г	7	8	9	10 a	10 б	11	12	13	14	15 a	15 б	15 B	15 г	15 д	15 e	16