A single qubit

Ryuhei Mori

Tokyo Institute of Technology

6, Oct, 2020

A single bit

Let
$$u := \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

- Set of states = $\{\omega \in \mathbb{R}^2 \mid \omega \in C_{\geq 0}, \langle u, \omega \rangle = 1\}.$
- Set of binary measurements = $\{e \in \mathbb{R}^2 \mid e \in C_{>0}, u e \in C_{>0}\}.$

A single qubit

Let
$$u:=\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
 and $\langle e,\omega\rangle:=\mathsf{Tr}(e\omega).$

- Set of states = $\{\omega \in V \mid \omega \in C_{\succ 0}, \langle u, \omega \rangle = 1\}.$
- Set of binary measurements = $\{e \in V \mid e \in C_{\succ 0}, u e \in C_{\succ 0}\}.$

A single qubit

A qubit can be represented by

$$\rho = \frac{1}{2} (I + r_X X + r_Y Y + r_Z Z)$$

for
$$[r_X \ r_Y \ r_Z] \in \mathbb{R}^3$$
 satisfying $r_X^2 + r_Y^2 + r_Z^2 \leq 1$.

• A qubit can be represented by a point $[r_X \ r_Y \ r_Z]$ in a three-dimensional sphere of radius 1.

The Bloch sphere

Complex space and Hermitian operator

- \mathcal{X} : A finite-dimensional inner product space on \mathbb{C} .
- $\mathcal{L}(\mathcal{X})$: A set of linear operators on \mathcal{X} .

For $A \in \mathcal{L}$, an adjoint map A^{\dagger} of A is a unique operator satisfying

$$\langle v, Aw \rangle = \langle A^{\dagger}v, w \rangle$$

for any v, $w \in \mathcal{X}$. $H \in \mathcal{L}(\mathcal{X})$ is Hermitian if and only if $H^{\dagger} = H$.

• $\mathcal{H}(\mathcal{X})$: A set of Hermitian operators on \mathcal{X} .

 $\mathcal{L}(\mathcal{X})$ and $\mathcal{H}(\mathcal{X})$ are often regarded as inner product space on \mathbb{C} and \mathbb{R} , respectively for the Hilbert–Schmidt inner product $\langle A,B\rangle=\mathrm{Tr}(A^{\dagger}B)$.

Spectral decomposition theorem

Definition (Normal operator)

 $A \in \mathcal{L}(\mathcal{X})$ is said to be normal if $AA^{\dagger} = A^{\dagger}A$.

Hermitian matrix $(H^{\dagger} = H)$ and unitary matrix $(UU^{\dagger} = I)$ are normal.

Theorem (Spectral decomposition theorem)

 $A \in \mathcal{L}(\mathbb{C}^n)$ is normal if and only if there exist orthonormal basis $\{|\psi_j\rangle\}$ of \mathbb{C}^n and complex numbers $\{\lambda_j\}$ such that

$$A = \sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}|.$$

Pauli matrices

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} \begin{bmatrix} 1 & -i \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -i \end{bmatrix} \begin{bmatrix} 1 & i \end{bmatrix}$$

Braket notation

$$egin{align} |0
angle := egin{bmatrix} 1 \ 0 \end{bmatrix}, & |1
angle := egin{bmatrix} 0 \ 1 \end{bmatrix} \ |+
angle := rac{1}{\sqrt{2}} egin{bmatrix} 1 \ 1 \end{bmatrix}, & |-
angle := rac{1}{\sqrt{2}} egin{bmatrix} 1 \ -1 \end{bmatrix} \ &= rac{1}{\sqrt{2}} (|0
angle + |1
angle), & = rac{1}{\sqrt{2}} (|0
angle - |1
angle) \end{split}$$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

for
$$|\alpha|^2 + |\beta|^2 = 1$$
.

$$\langle \psi | = |\psi \rangle^{\dagger} = \alpha^* \langle 0 | + \beta^* \langle 1 | = \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix}$$

Pauli matrices in braket notation

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \ket{0}\bra{0} - \ket{1}\bra{1}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \ket{+} \bra{+} - \ket{-} \bra{-}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} \begin{bmatrix} 1 & -i \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -i \end{bmatrix} \begin{bmatrix} 1 & i \end{bmatrix}$$

Special states

$$\rho = \frac{1}{2} (I + r_X X + r_Y Y + r_Z Z)$$
$$r_X^2 + r_Y^2 + r_Z^2 \le 1.$$

Coordinate	State
[0 0 0]	$\frac{1}{2}I$
[1 0 0]	$\frac{1}{2}(I+X)=\ket{+}\bra{+}$
[-1 0 0]	$\frac{1}{2}(I-X)=\ket{-}\bra{-}$
[0 0 1]	$\frac{1}{2}(I+Z)=\ket{0}\bra{0}$
[0 0 -1]	$rac{1}{2}(I-Z)=\ket{1}ra{1}$

Special states in the Bloch sphere

Pure states are rank-1 density operators

 ρ is a pure state

$$\stackrel{\mathsf{def}}{\iff} \ \rho \neq p \rho_1 + (1-p) \rho_2 \quad \forall p \in [0,1] \ \mathsf{and} \ \mathsf{states} \ \rho_1 \neq \rho_2.$$

Lemma

A quantum state ρ is a pure state if and only if ρ is rank-1.

Proof.

Let the spectral decomposition of ρ be

$$\rho = \sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}|$$

where $\lambda_j \geq 0$ and $\sum_j \lambda_j = 1$. If ρ is not rank-1, ρ is a convex combination of quantum states $(|\psi_j\rangle\,\langle\psi_j|)_j$. $\operatorname{Tr}(\rho\,|\varphi\rangle\,\langle\varphi|)=1$ if and only if $\rho=|\varphi\rangle\,\langle\varphi|$ since $\operatorname{Tr}(\rho\,|\varphi\rangle\,\langle\varphi|)=\langle\varphi|\,\rho\,|\varphi\rangle=\sum_j \lambda_j|\,\langle\psi_j|\varphi\rangle\,|^2$. Assume that $\rho=|\varphi\rangle\,\langle\varphi|$ and $\rho=p\rho_1+(1-p)\rho_2$. Then, $\operatorname{Tr}(\rho_1\,|\varphi\rangle\,\langle\varphi|)=\operatorname{Tr}(\rho_2\,|\varphi\rangle\,\langle\varphi|)=1$ that means $\rho_1=\rho_2=\rho$.

Pure states and state vector

Pure state $|\psi\rangle \langle \psi|$ can be represented by a state vector $|\psi\rangle \in \mathbb{C}^2$ with $\langle \psi|\psi\rangle = 1$.

$$|\psi\rangle$$
 and $|\varphi\rangle:=\mathrm{e}^{i\theta}\,|\psi\rangle$ represent the same state since $|\psi\rangle\,\langle\psi|=|\varphi\rangle\,\langle\varphi|.$

Inner product of pure states

- ρ is a qubit pure state with a coordinate $[r_X r_Y r_Z]$.
- σ is a qubit pure state with a coordinate $[-r_X r_Y r_Z]$.

$$\operatorname{Tr}(\rho\sigma) = \operatorname{Tr}(\rho(I-\rho)) = \operatorname{Tr}(\rho) - \operatorname{Tr}(\rho^2) = 1 - 1 = 0$$

- $\rho = |\psi\rangle\langle\psi|$.
- $\sigma = |\varphi\rangle\langle\varphi|$.

$$\operatorname{Tr}(\rho\sigma) = \operatorname{Tr}(|\psi\rangle \langle \psi| |\varphi\rangle \langle \varphi|) = \langle \psi|\varphi\rangle \operatorname{Tr}(|\psi\rangle \langle \varphi|)$$
$$= \langle \psi|\varphi\rangle \langle \varphi|\psi\rangle = |\langle \psi|\varphi\rangle|^{2}$$

Single qubit measurement

Set of measurements =
$$\{(e_1, ..., e_k) \mid e_1 + \cdots + e_k = I, e_j \in C_{\succeq 0} \mid i = 1, 2, ..., k, k = 1, 2, ...\}$$

If $e_i e_j = \delta_{i,j} e_i$, the measurement is called an orthogonal measurement.

If $|0\rangle\langle 0|$ is measured by ($|0\rangle\langle 0|$, $|1\rangle\langle 1|$), the output is 0 with probability $\text{Tr}(|0\rangle\langle 0||0\rangle\langle 0|) = |\langle 0|0\rangle|^2 = 1$.

If $|+\rangle \langle +|$ is measured by ($|0\rangle \langle 0|$, $|1\rangle \langle 1|$), the output is 0 with probability $\text{Tr}(|0\rangle \langle 0| |+\rangle \langle +|) = |\langle 0|+\rangle |^2 = 1/2$.

If $|\psi\rangle\langle\psi|$ is measured by $(|\varphi_0\rangle\langle\varphi_0|, |\varphi_1\rangle\langle\varphi_1|)$, the output is 0 with probability $\text{Tr}(|\varphi_0\rangle\langle\varphi_0||\psi\rangle\langle\psi|) = |\langle\varphi_0|\psi\rangle|^2$.

Unitary operation

Unitary operation

$$ho\mapsto U
ho U^\dagger$$

It is easy to see that

- $\operatorname{Tr}(U\rho U^{\dagger})=1$
- $U\rho U^{\dagger} \succeq 0$

A pure state $|\psi\rangle$ is mapped to a pure state $U|\psi\rangle$.

U and $e^{i\theta}U$ are physically equivalent.

Examples of unitary operations

- The identity matrix 1.
- Pauli matrices X, Y and Z.
- Hadamard matrix $H := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

• Product UV of unitary operators U and V.

Multiplications of Pauli matrices

For any unitary matrices U and V, UV is also unitary matrix.

- XY = iZ
- YZ = iX
- ZX = iY

Pauli matrices X on the Bloch sphere

$$\rho = \frac{1}{2} (I + r_X X + r_Y Y + r_Z Z)$$

$$X \rho X^{\dagger} = X \rho X = \frac{1}{2} (X^2 + r_X X^3 + r_Y X Y X + r_Z X Z X)$$

$$= \frac{1}{2} (I + r_X X - r_Y Y - r_Z Z)$$

$$[r_X \ r_Y \ r_Z] \stackrel{X}{\longmapsto} [r_X \ -r_Y \ -r_Z]$$

 π -rotation with respect to X axis.

Similarly, Y and Z corresponds to π -rotation with respect to Y and Z axes, respectively.

Hadamard matrix

Hadamard matrix H is unitary and Hermitian.

$$\begin{split} H := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} &= |+\rangle \langle 0| + |-\rangle \langle 1| \\ &= |0\rangle \langle +| + |1\rangle \langle -| \\ \\ |0\rangle , |1\rangle &\stackrel{H}{\longleftrightarrow} |+\rangle , |-\rangle \\ \\ HXH = H(|+\rangle \langle +| -|-\rangle \langle -|)H \\ &= |0\rangle \langle 0| - |1\rangle \langle 1| = Z \end{split}$$

Similarly,
$$HZH = X$$
.
 $HYH = H(iXZ)H = iHXHHZH = iZX = -Y$

Hadamard matrix on the Bloch sphere

$$\rho = \frac{1}{2} \left(I + r_X X + r_Y Y + r_Z Z \right)$$

$$H\rho H^{\dagger} = H\rho H = \frac{1}{2} \left(H^2 + r_X HXH + r_Y HYH + r_Z HZH \right)$$
$$= \frac{1}{2} \left(I + r_X Z - r_Y Y + r_Z X \right)$$

$$[r_X \ r_Y \ r_Z] \xrightarrow{H} [r_Z \ -r_Y \ r_X]$$

Hadamard operation can be decomposed to $\pi/2$ -rotation with respect to Y axis

$$[r_X \ r_Y \ r_Z] \stackrel{R_Y(\pi/2)}{\longmapsto} [r_Z \ r_Y \ -r_X]$$

and X.

Rotation matrices

$$R_X(\theta) := \cos \frac{\theta}{2} I - i \sin \frac{\theta}{2} X$$

$$R_X(\theta)^{\dagger} = R_X(-\theta)$$

$$R_X(\theta) R_X(\theta)^{\dagger} = (\cos \frac{\theta}{2} I - i \sin \frac{\theta}{2} X)(\cos \frac{\theta}{2} I + i \sin \frac{\theta}{2} X)$$

$$= \cos^2 \frac{\theta}{2} I + \sin^2 \frac{\theta}{2} X^2 = I$$

$$R_X(\theta)X = XR_X(\theta), \quad R_X(\theta)Y = YR_X(-\theta), \quad R_X(\theta)Z = ZR_X(-\theta)$$

$$R_X(\theta)R_X(\tau) = R_X(\theta + \tau)$$

$$[1 \ 0 \ 0] \stackrel{R_X(\theta)}{\longmapsto} [1 \ 0 \ 0]$$

$$[0\ 1\ 0] \stackrel{R_X(\theta)}{\longmapsto} [0\ \cos\theta\ \sin\theta]$$

$$[0\ 0\ 1] \stackrel{R_X(\theta)}{\longmapsto} [0\ -\sin\theta\ \cos\theta]$$

Matrix function

Definition

For $f: \mathbb{C} \to \mathbb{C}$ and orthonormal basis $(|\psi_i\rangle)_i$ of \mathcal{X} ,

$$f\left(\sum_{j}\lambda_{j}\ket{\psi_{j}}ra{\psi_{j}}
ight):=\sum_{j}f(\lambda_{j})\ket{\psi_{j}}ra{\psi_{j}}.$$

For $H \in \mathcal{H}(\mathcal{X})$, $\exp(iH)$ is unitary.

Since the radius of convergense of exp at 0 is infinity,

$$\exp(A) = \sum_{j=0}^{\infty} \frac{1}{j!} A^{j}.$$

Assignments

• For $a, b, c, d \in \mathbb{R}$, show r_I , r_X , r_Y , $r_Z \in \mathbb{R}$ satisfying $\begin{bmatrix} a & b+ci \\ b-ci & d \end{bmatrix} = r_I I + r_X X + r_Y Y + r_Z Z.$

- Show a matrix representation of $\exp\left(-i\frac{\theta}{2}X\right)$ for $\theta \in \mathbb{R}$.
- [Advanced] For a_I , a_X , a_Y , $a_Z \in \mathbb{R}$, represents

$$\exp\left(i(a_II+a_XX+a_YY+a_ZZ)\right)$$

by a linear combination of I, X, Y and Z. A summation with infinite number of terms is not allowed.