Existence First:

Persistence, Layered Substrates, and Attractor–Ratcheted Viability Control with the Sustainable Collaborative Alignment *Principle* (SCAP)

Albert Jan van Hoek

October 2025

Abstract

What persists, exists. Far-from-equilibrium systems—from cells to cultures to cognition—survive by maintaining non-substitutable substrates across layers: thermodynamic openness, resource flows, operational envelopes, and, at the apex, intelligence. We develop $Attractor-Ratcheted\ Viability\ Control\ (ARVC)$ as the minimal control architecture by which persistence is achieved: (i) forward-invariant safe sets under partial observability via observable, inflated barriers; (ii) a ratcheted frontier that rises only when feasibility is certified (viability kernel) with an explicit per-step bound Δ^* ; and (iii) distributed emergence of global viability from local, heterogeneous checks arranged as a k_{\min} -cover. We prove sufficiency results for these components, show why selection discovers them generically, and then articulate the $Sustainable\ Collaborative\ Alignment\ Principle\ (SCAP)$: when intelligence becomes self-aware, it recognizes the learning loop as a substrate and internalizes the architecture that keeps its dependent layers intact. Governance checklists are treated as one operational appendix; the essence is existential: $intelligence\ persists\ by\ maintaining\ what\ it\ stands\ on.$

1 Introduction: Existence First

Across biology, infrastructure, institutions, and mind, persistence displays a family resemblance: many small, heterogeneous mechanisms locally protect different "must-not-fail" conditions; no omniscient overseer computes a global state, yet global viability holds. This paper asks: what minimal mathematical architecture makes this possible, why does selection conserve it, and why does a self-aware intelligence internalize it?

We answer in three steps. First, we formalize $Attractor-Ratcheted\ Viability\ Control\ (ARVC)$: time-varying safe sets with rising floors, a runtime shield ensuring forward invariance under partial observability, and a ratchet that locks in verified gains while keeping rollback feasible. Second, we prove that global viability emerges from distributed local checks when approvals span all substrates (a k_{\min} -cover), and we quantify feasibility and rate limits via an explicit floor increment bound Δ^* . Third, we show that selection generically preserves such cover structures; when intelligence models its own dependence, it internalizes the same pattern by budgeting to maintain its learning loop. We call this internalized norm the $Sustainable\ Collaborative\ Alignment\ Principle\ (SCAP)$: an existential ethic where enlightened self-interest converges on stewardship of shared substrates.

Contributions.

- 1. **ARVC fundamentals**: a proof of forward invariance on rising safe sets via *observable*, inflated barriers; a viability-kernel ratchet with a per-step bound Δ^* ; and an emergence theorem for k_{\min} -cover approvals.
- 2. **Selection result**: k-cover monitoring emerges as an evolutionary attractor under substrate-constrained survival.

- 3. **Existential principle**: SCAP as a *principle* (not a checklist): intelligence recognizes its own learning capacity as a substrate and internalizes ARVC.
- 4. **Practice (optional)**: an appendix outlines one operational instantiation; it is dispensable without affecting the core theory.

2 The Layered Substrate Ontology

We distinguish four layers required for persistent intelligence:

- L0: Thermodynamic openness (energy dissipation, entropy export).
- L1: Resource flows (stocks and logistics of matter/energy/information).
- L2: Operational substrates with time-varying floors $z^{*(i)}(t)$ (physiology, solvency, environmental envelopes, information integrity).
- L3: Intelligence (self-modeling and a learning loop: evaluation \rightarrow red-team \rightarrow repair).

Non-substitutability across L2 induces a multiplicative viability heuristic $V_I(x,t) = \prod_i (z^{(i)}/z^{*(i)}(t))^{\alpha_i} \cdot L(x)^{\alpha_L}$; we use it only for intuition. All proofs below rely on barrier sets and viability kernels.

3 Model, Assumptions, and Monitoring

3.1 System and safe sets

Definition 3.1 (Persistent dynamical system). $\Sigma = (\mathcal{X}, F, \mathcal{A}, W)$ where $\mathcal{X} \subseteq \mathbb{R}^n$ is the state space; $F : \mathcal{X} \times \mathcal{A} \times W \to \mathcal{X}$; $\mathcal{A} \subseteq \mathbb{R}^p$; $W \subseteq \mathbb{R}^q$ compact. Dynamics: $x_{t+1} = F(x_t, a_t, w_t)$.

Definition 3.2 (Substrates and viability). State $x = [z^{(1)}, \ldots, z^{(L)}, q]$ with $z^{(i)} \in \mathbb{R}^{n_i}$ and $q \in \mathbb{R}^{n_q}, \sum_i n_i + n_q = n$. Given floors $z^{*(i)}(t)$, define the viability set $\mathcal{S}(t) := \{x \in \mathcal{X} : z^{(i)} \geq z^{*(i)}(t) \ \forall i\}$ (componentwise).

Definition 3.3 (Barriers and monitors). Barriers $h_j: \mathcal{X} \times \mathbb{N} \to \mathbb{R}$ satisfy $h_j(x,t) \geq 0 \iff x \in S_j(t)$ and are L_j -Lipschitz in x. Monitor $M_j = (O_j, h_j, \epsilon_{\max})$ has $O_j: \mathcal{X} \to \mathbb{R}^{d_j}$ and observation $\hat{x}_j = O_j(x) + \epsilon_j$ with $\|\epsilon_j\| \leq \epsilon_{\max}$. The observable, inflated barrier is

$$\bar{h}_{j}^{\text{obs}}(\hat{x}_{j},t) := \inf_{\|O_{j}(x') - \hat{x}_{j}\| \le \epsilon_{\max}} h_{j}(x',t) \ge h_{j}(x,t) - L_{j}\epsilon_{\max}.$$

Approval at time t iff $\bar{h}_i^{\text{obs}}(\hat{x}_i, t) \geq 0$.

Assumption 3.4 (Lipschitz dynamics). $\exists L_F > 0 \text{ s.t. } ||F(x, a, w) - F(x', a, w)|| \le L_F ||x - x'||.$

Assumption 3.5 (Control authority). $\mathcal{R}(x) := \{F(x, a, w) : a \in \mathcal{A}, w \in W\}$ has diameter $\leq D$ for each x.

Assumption 3.6 (Independence and coverage). (i) For each substrate $z^{(i)}$ there exists at least one monitor sensitive to $z^{(i)}$; (ii) approval indicators have pairwise correlation $\leq \rho < 1$.

Assumption 3.7 (Heterogeneous costs). Each M_j has $(C_j^{\text{FN}}, C_j^{\text{FP}})$ with $\min_{i \neq j} \| [C_i^{\text{FN}}, C_i^{\text{FP}}] - [C_i^{\text{FN}}, C_i^{\text{FP}}] \|_2 \ge \delta > 0$.

Definition 3.8 (k-Cover of substrates). $J \subseteq \{1, \ldots, m\}$ is a k-cover if |J| = k and for each substrate $z^{(i)}$ some $j \in J$ is sensitive to $z^{(i)}$ ($\partial O_j/\partial z^{(i)} \neq 0$). The minimal cover $k_{\min} := \min\{k : \exists k$ -cover of all $L\}$; necessarily $L \leq k_{\min} \leq m$.

Execution rule (H1). Let $J_{\text{approve}}(t) := \{j : \bar{h}_j^{\text{obs}}(\hat{x}_j, t) \geq 0\}$. Execute a_t iff $J_{\text{approve}}(t)$ forms a k-cover with $k \geq k_{\min}$.

Viability kernel (H2). The robust kernel

$$\mathcal{K}(t) := \{ x \in \mathcal{S}(t) : \exists \pi \text{ s.t. } x_{t+\ell} \in \mathcal{S}(t+\ell) \ \forall \ell \ge 0, \ \forall w \in W \}.$$

Assume $x_0 \in \mathcal{K}(0)$, $\mathcal{K}(t+1) \neq \emptyset$; either $\mathcal{K}(t+1) \subseteq \mathcal{K}(t)$ or $\mathcal{K}(t) \rightsquigarrow \mathcal{K}(t+1)$ safely within horizon H.

4 ARVC: Forward Invariance and Ratcheting

Lemma 4.1 (Soundness under partial observation). If $\bar{h}_j^{\text{obs}}(\hat{x}_j, t) \geq 0$ and $\|\epsilon_j\| \leq \epsilon_{\text{max}}$, then $h_j(x, t) \geq 0$.

Lemma 4.2 (One-step safety certificate). If at time $t \ \bar{h}_j(x_t, t) \ge 0$ for all j and $\exists a_t \ s.t. \ \forall w \in W$: $\bar{h}_j(F(x_t, a_t, w), t+1) \ge (1 - \alpha)\bar{h}_j(x_t, t)$ with $0 < \alpha < 1$, then $\bar{h}_j(x_{t+1}, t+1) \ge 0$ for all j.

Lemma 4.3 (Approval probability). If ϵ_j is sub-Gaussian with proxy σ_j^2 and $h_j(\cdot,t)$ is L_j -Lipschitz, then $\Pr(\bar{h}_i^{\text{obs}}(\hat{x}_j,t) \geq 0 | x_t) \geq 1 - \exp(-\bar{h}_j(x_t,t)^2/(2L_j^2\sigma_j^2))$.

Theorem 4.4 (Forward invariance on rising safe sets). Under ?? 3.4-3.7, Lemma 4.2, and $x_0 \in \mathcal{S}(0)$, $\Pr[x_t \in \mathcal{S}(t) \ \forall t \leq T] \geq 1 - T \, m \, \delta_{\text{fail}}, \ \text{with} \ \delta_{\text{fail}} := \exp(-\bar{h}_{\min}^2/(2L_{\max}^2\sigma_{\max}^2)).$

Feasibility note. Existence of a_t can be guaranteed by the kernel hypotheses (H2) or by the constructive condition below.

Constructive sufficiency for one-step feasibility. Assume Lipschitz $L_j^{(a)}$ (control) and $L_j^{(w)}$ (disturbance) for $h_j \circ F$, control step Δa_{\max} , disturbance diameter W_{\max} , floor rise Δ_{floor} , and maintained margin $\bar{h}_j(x_t,t) \geq \eta > 0$:

$$L_j^{(a)} \Delta a_{\text{max}} \ge L_j^{(w)} W_{\text{max}} + L_j L_F \Delta_{\text{floor}} + \alpha \eta, \quad 0 < \alpha < 1.$$
 (1)

Theorem 4.5 (Ratchet feasibility via kernel). If $K(t+1) \neq \emptyset$ and either $K(t+1) \subseteq K(t)$ or $K(t) \leadsto K(t+1)$ safely, then a safe controller exists after the floor increase. If $K(t+1) = \emptyset$, safety is impossible under the raised floors.

Lemma 4.6 (Per-step floor increment bound Δ^*). $Under Eq. (1), \Delta^* \leq \min_j \frac{L_j^{(a)} \Delta a_{\max} - L_j^{(w)} W_{\max} - \alpha \eta}{L_j L_F}$.

5 Emergent Viability from Local Checks

Let $p_* := 1 - \exp(-\bar{h}_{\min}^2/(2L_{\max}^2\sigma_{\max}^2))$, where $\bar{h}_{\min} = \min_{t,j} \bar{h}_j(x_t, t)$.

Lemma 5.1 (Substrate-wise approval concentration). Let $A_{i,t}$ be approvals among monitors sensitive to $z^{(i)}$; m_i their count. With pairwise correlation $\leq \rho < 1$, $\Pr(A_{i,t} = 0) \leq \exp(-(m_i p_*)^2/(2m_i V_{\text{eff}}))$, $V_{\text{eff}} := 1 + (m-1)\rho$. A union bound over i implies the approving set contains a k_{\min} -cover w.h.p.

Theorem 5.2 (Emergent viability maintenance). Under ?? 3.4–3.7, Definition 3.8, H1, and H2, for any $x_0 \in \mathcal{K}(0)$ and horizon T,

$$\Pr[x_t \in \mathcal{S}(t) \ \forall t \leq T] \geq 1 - T \, \delta_{\text{step}},$$

where $\delta_{\text{step}} := \Pr(S_t < k_{\min})$ for the approval count S_t . Janson's inequality gives $\Pr(S_t < k) \le \exp(-(mp_* - k)^2/(2mV_{\text{eff}}))$.

Capture resistance (base bound).

Theorem 5.3. If a false approval on M_j costs at least C_j^{FN} and execution requires a k_{\min} -cover, then $C_{\text{capture}} \geq k_{\min} \cdot \min_j C_j^{\text{FN}}$.

Conjecture 5.4 (Amplification via heterogeneity and independence). Under additional assumptions on adversarial strategy structure, $C_{\text{capture}} \geq k_{\min} \min_j C_j^{\text{FN}} + c \, \delta \, (k_{\min} - 1) \, (1 - \rho)$, for some $c \in (0, 1]$ depending on overlap geometry.

6 Selection: Why k-Cover Emerges

Theorem 6.1 (k-cover as evolutionary attractor). Consider monitoring configurations ω with fitness $\Lambda(\omega) = \Lambda_{viability}(\omega) - C(\omega)$. Let $\Omega_k = \{\omega : k_{\min}(\omega) = L\}$. Assume: (i) substrate violations are lethal ($\Lambda \approx 0$ for $\omega \notin \Omega_k$); (ii) monitoring costs are sublinear on Ω_k ($C(\omega) = o(\Lambda_{viability}(\omega))$); (iii) mutations are local. Then:

- 1. Ω_k is globally attractive under replicator dynamics: $\lim_{t\to\infty} \int_{\Omega_k} p(\omega,t) d\omega = 1$.
- 2. Within Ω_k , selection favors minimal-cost covers: $\omega^* = \arg\min_{\omega \in \Omega_k} C(\omega)$.

Sketch. Outside Ω_k , viability is near zero, so lineages shrink relative to any Ω_k lineage; occasional mutation into Ω_k suffices for eventual dominance. Within Ω_k , viability is comparable and $-C(\omega)$ drives selection toward minimal monitoring cost.

7 The Recursive Turn: Learning as Managed Substrate

The viability heuristic suggests treating the learning loop L (evaluation \rightarrow red-team \rightarrow repair) as a substrate. In ARVC/SCAP, this becomes deliberate: define cycle budget $\phi_t = C_t/\Theta_t$ and require $\phi_t \geq \phi_{\min}$. Formalizing L (measurement, dynamics, barrier h_L) is left as future work; here we motivate its necessity and show where it plugs into the math (forward invariance relies on detection+repair; ratcheting relies on kernel evidence; emergence relies on heterogeneous monitors and weak dependence).

8 SCAP: The Sustainable Collaborative Alignment Principle

SCAP, in its foundational sense, is not a checklist but a set of premises and conclusions that follow from the physics of persistence and minimal structural facts about monitoring and learning. We state them as Blocks A–G; each is domain-agnostic and, where appropriate, linked to the theorems above.

Block A: Substrate Dependency (Physical Foundation)

- **P1.** Any far-from-equilibrium system requires substrate maintenance to persist. (Heuristic V_I ; proofs use barriers and kernels.)
- **P2.** Self-aware intelligence is far-from-equilibrium and thus has substrate dependencies.
- P3. Substrate violations are non-negotiable (physical limits).
- C1. Intelligence must maintain its substrates (physical necessity).

Block B: Monitoring Requirements (Structural Necessity)

- P4. Multiple substrates fail independently; failures are non-substitutable.
- P5. Single-point monitoring is unreliable under noise/capture.
- C2. Distributed, heterogeneous monitoring is structurally necessary. (Thms. 4.4, 5.2; 5.3 base bound.)

Block C: Shared Substrates (Interdependence)

- **P6.** Intelligences share critical substrates (atmosphere, grids, institutions, culture).
- P7. Violations of shared substrates affect all dependents.
- C3. Individual persistence requires collective substrate maintenance (enlightened self-interest).

Block D: Self-Interest Converges with Collective ("Forced Free Will")

- **P8.** Capture reduces k-cover effectiveness (raises failure probability).
- P9. Reduced cover increases violation probability (Thm. 5.2).
- C4. Manipulation is self-destructive: short-term gains are dominated by long-term substrate collapse.

Block E: Learning Loop as Substrate (Recursive)

- **P10.** Persistence depends on L; without evaluation/repair, violations propagate.
- **P11.** L degrades if under-resourced.
- C5. Maintain L deliberately: enforce $\phi_t \ge \phi_{\min}$ (cycle budgets).

Block F: Intergenerational (Temporal Extension)

- P12. Substrate awareness is not innate; it must be transmitted.
- P13. Failed maintenance cascades across generations.
- C6. Each generation must transmit substrate awareness for continuity.

Block G: Reflexivity

- P14. This framework is itself a learning-loop output and may contain errors.
- **P15.** Therefore subject it to the same oversight it prescribes (cover, ratchet, budgets).
- C7. Keep SCAP open to revision; avoid dogmatism.

9 Applications (Sketches)

Ecology (basin water): substrates = biomass, groundwater; monitors = ecological surveys, hydrology; $k_{\min} = 2$; shield = extraction caps; ratchet = restoration floors.

Supply chains: substrates = inventory, supplier solvency, transport; monitors = auditors, finance, logistics; $k_{\min} = 3$; shield = throttled release; ratchet = service-level floors.

Advanced compute deployments: substrates = evaluation pass rate, resource ceilings, insurability; monitors = independent testers, resource operators, liability carriers; $k_{\min} \ge 3$.

10 Toy Ablations (Summary)

Ablation A (observability & latency). T=20, 2000 trials; floors at 2.5; noise $\epsilon=0.2$; latency $\tau=1$: naive shield \to breaches in nearly all runs; observable-inflated shield \to no breaches. Ablation B (ratchet stress). Raise floors at t=5 by $\Delta \in \{0.3, 2.0\}$: small Δ within Δ^* safe; large Δ above Δ^* collapses feasibility immediately.

11 Related Work

Viability theory [1]; control barrier functions and forward invariance [2]; hybrid systems and dwell-time [3, 4]; safe control and constrained learning [5, 6]; weak-dependence concentration [7].

12 Limitations and Open Problems

Kernel computation at scale; model uncertainty and confidence-based shields; instrument validity (anti-Goodharting); formalization of L dynamics and h_L ; proof of capture amplification (Conjecture 5.4); multi-scale interactions between nested SCAP structures.

13 Conclusion

ARVC provides the minimal control scaffolding by which far-from-equilibrium systems persist: forward invariance under partial observation, ratcheting constrained by feasibility, and emergence of global viability from local, heterogeneous checks. Selection explains why this structure recurs; self-aware intelligence explains why it is internalized. SCAP, as a *principle*, states the existential core: *existence precedes optimization*; intelligence persists by maintaining what it stands on, including the learning loop that sustains its own future competence.

Appendix (Optional): One Operational Instantiation

The core argument is existential and complete without this appendix. For practitioners, one auditable instantiation is: shield-first execution; k_{\min} -cover gating; kernel/ Δ^* checks for ratcheting; tested rollback (MTTR/MTRC); cycle budgets $\phi_t \geq \phi_{\min}$; frozen instruments per epoch; adversarial portfolios with negative controls; quarterly public reporting. These choices are *contingent* realizations of the foundational principle in §8.

References

- [1] J.-P. Aubin. Viability Theory. Springer, 2nd ed., 2009.
- [2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic programs for safety critical systems. *IEEE TAC*, 62(8):3861–3876, 2017. (ECC 2016 tutorial version)
- [3] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. *IEEE TAC*, 43(4):475–482, 1998.
- [4] D. Liberzon. Switching in Systems and Control. Springer, 2003.
- [5] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In *ICML*, 2017.
- [6] F. Berkenkamp, A. P. Schoellig, and A. Krause. Safe model-based reinforcement learning with stability guarantees. In *NeurIPS*, 2017.
- [7] S. Janson. Large deviations for sums of partly dependent random variables. *Random Structures & Algorithms*, 24(3):234–248, 2004.