RETAIL SALES FORECASTING ANALYSIS

LEVERAGING MACHINE LEARNING TO PREDICT WEEKLY SALES

By: Abhishek Kumar & Team

Date=05-05-2025

PROJECT OVERVIEW

Objective:

Forecast weekly sales and identify key drivers (e.g., promotions, holidays, economic factors).

Key Questions:

- What factors drive sales?
- How do markdowns impact sales?
- Can historical data predict future sales accurately?

Success Metrics:

- R² score
- Actionable business insights

DATA SOURCES

Datasets Used:

1. Features.csv

- Environmental/economic data (Temperature, Fuel Price, CPI, Unemployment, MarkDowns, IsHoliday).
- Size: 8,190 rows × 12 columns.

2. Stores.csv

- Store characteristics (Type, Size).
- Size: 45 rows × 3 columns.

3. Train.csv

- Historical sales data (Store, Dept, Weekly_Sales, Date).
- Size: 421,570 rows × 5 columns.

Merged Dataset:

• Final size: 421,570 rows × 16 columns.

DATA CLEANING & PREPROCESSING

Steps Taken:

- 1. Handled Missing Values:
 - o Filled missing MarkDown values with 0 (no discount applied).
- 2. Data Transformation:
 - Log-transformed Weekly_Sales and MarkDown columns to reduce skewness.
- 3. Outlier Treatment:
 - Clipped extreme values in Unemployment using IQR.
- 4. Feature Engineering:
 - Extracted date components (Year, Month, Week, Day).

Before vs After:

• Skewness reduced from 3.26 to near-normal for Weekly_Sales.

Key Insights:

- 1. Sales Distribution:
 - Right-skewed; most sales are low, with few high outliers.
- 2. Store Types:
 - Type A stores dominate and have higher sales (likely due to larger size).
- 1. Holiday Impact:
 - No significant sales boost during holidays.
- 2. Correlations:
 - o Positive: Size, MarkDowns.
 - Negative: Unemployment, CPI.

FEATURE SELECTION & VIF

Multicollinearity Check:

- Dropped high-VIF features
 (Month, Week, Day, MarkDownl, MarkDown4).
- Final VIF < 5 for all retained features.

Retained Features:

Store, Dept, IsHoliday, Temperature,
 Fuel_Price, MarkDown5, CPI,
 Unemployment, Type, Size, Year.

MODEL BUILDING

Algorithm: Random Forest Regressor

Hyperparameters:

• n_estimators=40, max_depth=10.

Performance Metrics:

• Train R²: 0.89

• Test R²: 0.82

• Interpretation: Model generalizes well with minimal overfitting.

FORECASTING EXAMPLE

Sample Prediction:

Predicted Sales for custom data: [6543.21]

Input Features:

Store=1, Dept=1, IsHoliday=0,
 Temperature=50°F, Fuel_Price=3\$,
 MarkDown5=0`.

CONCLUSION & NEXT STEPS

Summary:

- Achieved 82% accuracy in forecasting sales using Random Forest.
- Identified key drivers: store size, markdowns, and economic indicators.

Next Steps:

- 1. Incorporate external data (e.g., local events, competitor pricing).
- 2. Test advanced models
- 3. Deploy as a dashboard for real-time decision-making.

Q&A

"Thank you for your time and attention!"