

## 17240 - Tecnologías Para Minería Clase 3: Ajuste de Curvas

#### René Torres

Universidad de Santiago de Chile Departamento de Ingeniería Mecánica e-mail: rene.torres.a@usach.cl

24 de septiembre de 2023

# Regresión Lineal

#### Motivación



#### Ecuación

**Sea** 
$$y = a + bx$$

$$Y = X\hat{\beta}$$

Donde:

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \hat{\beta} = \begin{bmatrix} a \\ b \end{bmatrix}$$

Solución

$$\hat{\beta} = \left(X^T X\right)^{-1} X^T Y$$

## Residuo

$$S_r = \sum (y_i - f(x))^2$$

#### Coeficiente de determinación

$$r^2 = 1 - \frac{S_r}{S_t}$$

#### Coeficiente de correlación

$$r = \sqrt{r^2} = \sqrt{1 - \frac{S_r}{S_t}}$$

#### Media o promedio

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

#### Error respecto a la media

$$S_t = \sum (y_i - \bar{y})^2$$

## Desviación estándar

$$S_y = \sqrt{\frac{S_t}{n-1}}$$

## Linealización



## **Ejemplos**

Se tienen los siguientes datos:

| X | у   |  |  |
|---|-----|--|--|
| 1 | 1   |  |  |
| 2 | 1.5 |  |  |
| 3 | 2   |  |  |
| 4 | 3   |  |  |
| 5 | 4   |  |  |
| 6 | 5   |  |  |
| 7 | 8   |  |  |
| 8 | 10  |  |  |
| 9 | 13  |  |  |

- Realice un ajuste lineal y polinomial de grado 2
- Determine cuál es el mejor ajuste. Justifique

## **Ejemplos**

1) Un investigador reporta los datos tabulados a continuación, de un experimento para determinar la tasa de crecimiento de bacterias k (por día), como función de la concentración de oxígeno c (mg/L).

| С | 0.5 | 0.8 | 1.5 | 2.5 | 4.0 |
|---|-----|-----|-----|-----|-----|
| k | 1.1 | 2.4 | 5.3 | 7.6 | 8.9 |

Se sabe que los datos pueden modelarse por medio de la siguiente ecuación:

$$k = \frac{k_{max}c^2}{c_s + c^2}$$

Donde  $k_{max}$  y  $c_s$  son constantes. Utilice la regresión lineal para estimar los valores de  $k_{max}$  y  $c_s$  que mejor ajustan los datos y pronostique la tasa de crecimiento para una concentración de oxígeno de 2.0 mg/L.