DALC AI Study 2wk

DONGDUK AI LEARING CREW AI STUDY

TIME: PM 8~9

contents

Part1 Intro to skit-learn

- Skit-learn library
- Data pre-processing
- Cross Validation

Part2 | regression

- Regression
- Linear regression, Lasso, Ridge , Elastic

Part1 | Intro to skit-learn

- Skit-learn library
- Data preprocessing
- Cross Validation

Scikit-learn 라이브러리 소개

머신러닝 에 가장 많이 사용되는 라이브러리

outliers and modeling errors

1.1.17. Polynomial regression:

functions

extending linear models with basis

Across the module, we designate the vector $w=(w_1,\ldots,w_p)$ as <code>coef_</code> and w_0 as <code>intercept_</code>.

To perform classification with generalized linear models, see Logistic regression.

1.1.1. Ordinary Least Squares

Linear-Regression fits a linear model with coefficients $w=(w_1,\dots,w_p)$ to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation. Mathematically it solves a problem of the form:

$$\min_{m} ||Xw - y||_2^2$$

LinearRegression will take in its fit method arrays X, y and will store the coefficients w of the linear model in its coef_ member:

```
>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
>>> reg, ft([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression()
>>> reg, ft([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression()
>>> reg.coef_
array([0, 5, 0.5])
```

The coefficient estimates for Ordinary Least Squares rely on the independence of the features. When features are correlated and the columns of the design matrix X have an approximate linear dependence, the design matrix becomes close to singular and as a result, the least-squares estimate becomes highly sensitive to random errors in the observed target, producing a large variance. This situation of multicollinearity can arise, for example, when data are collected without an experimental design.

Conda install scikit-learn
Pip install scikit-learn

import sklearn

-> 해당 홈페이지

Scikit-learn 모듈

<u>더 자세한 모듈들 소개</u> (사이킷럿 홈페이지)

분류	모듈명	설명	
예제 데이터	sklearn.datasets	사이킷런에 내장되어 예제로 제공하는 데이터 세트	
데이터 분리, 검증 & 파라미터 튜닝	sklearn.model_selection	교차 검증을 위한 학습용/테스트용 분리, 그리드 서치(Grid Search)로 최적 파라미터 추출 등의 API 제공	
피처 처리	sklearn.preprocessing	데이터 전처리에 필요한 다양한 가공 기능 제공(문자열을 숫자형 코드 값으로 인코딩, 정규화, 스케일링 등)	
	sklearn.feature_selection	알고리즘에 큰 영향을 미치는 피처를 우선순위 대로 셀렉션 작업을 수행하는 다양한 기능 제공	
	sklearn.feature_extraction	텍스트 데이터나 이미지 데이터의 벡터화된 피처를 추출하는 데 사용됨.	
		예를 들어 텍스트 데이터에서 Count Vectorizer 나 Tf- Idf Vectorizer 등을 생성하는 기능 제공.	
		텍스트 데이터의 피처 추출은 sklearn.feature_extraction.text 모듈에, 이미지 데이터의 피처 추출은 sklearn.feature_extraction.image 모듈에 지원 API가 있음.	
피처 처리 & 차원 축소	sklearn.decomposition	차원 축소와 관련한 알고리즘을 지원하는 모듈임. PCA, NMF, Truncated SVD 등을 통해 차원 축소 기능을 수행할 수 있음	

분류	모듈명	설명
평가	sklearn.metrics	분류, 회귀, 클러스터링, 페어와이즈(Pairwise)에 대한 다양한 성능 측정 방법 제공
		Accuracy, Precision, Recall, ROC-AUC, RMSE 등 제공
		앙상블 알고리즘 제공
ML 알고리즘	sklearn.ensemble	랜덤 포레스트, 에이다 부스트, 그래디언트 부스팅 등을 제공
	sklearn.linear_model	주로 선형 회귀, 릿지(Ridge), 라쏘(Lasso) 및 로지스틱 회귀 등 회귀 관련 알고리즘을 지원. 또한 SGD(Stochastic Gradient Descent) 관련 알고리즘도 제공
	sklearn.naive_bayes	나이브 베이즈 알고리즘 제공. 가우시안 NB , 다항 분포 NB 등.
	sklearn.neighbors	최근접 이웃 알고리즘 제공. K-NN 등
	sklearn.svm	서포트 벡터 머신 알고리즘 제공
	sklearn.tree	의사 결정 트리 알고리즘 제공
	sklearn.cluster	비지도 클러스터링 알고리즘 제공
		(K-평균, 계층형, DBSCAN 등)
유틸리티	sklearn.pipeline	피처 처리 등의 변환과 ML 알고리즘 학습, 예측 등을 함께 묶어서 실행할 수 있는 유틸리티 제공

Scikit-learn 모듈 실행 예시

```
## 기초 수학 연산 및 행렬계산
import numpy as np
                                                  ## 데이터프레임 사용
import pandas as pd
                                                  ## iris와 같은 내장 데이터 사용
from sklearn import datasets
from sklearn.model selection import train test split
                                                ## train, test 데이터 분할
from sklearn.linear_model import LinearRegression
                                                ## 선형 회귀분석
                                                ## 로지스틱 회귀분석
from sklearn.linear_model import LogisticRegression
                                                  ## 나이브 베이즈
from sklearn.naive bayes import GaussianNB
                                                  ## 서포트 벡터 머신
from sklearn import svm
from sklearn import tree
                                                  ## 의사결정나무
                                                  ## 랜덤포레스트
from sklearn.ensemble import RandomForestClassifier
                                                  ## plot 그릴때 사용
import matplotlib.pyplot as plt
```

```
# 분류용 가상 데이터 만들기
from sklearn.datasets import make_classification
```

Scikit-learn 연습용 데이터 셋

<u>연습용 데이터셋 종류</u> (사이킷런 홈페이지)

```
1 import pandas as pd
2 from sklearn.datasets import load_iris
3
4 iris = load_iris()
5
6 print("들어 있는 key들", iris.keys())
7
8 iris_data = iris.data
9 iris_label = iris.target
10
11 # 독특하게 내장 데이터셋이 df로 들어 있는게 아니라 ndarray로 들어있으며
12 # target, target_names, feature_names가 별도로 iris의 키로 들어 있음
13 print("data type", type(iris_data))
14 print("target 값", iris_label)
15 print("target 많", iris.target_names)
16
17 # 따라서 이를 df로 만들기 위해서 별도의 가공이 필요함
18 iris_df = pd.DataFrame(iris_data, columns=iris.feature_names)
19 iris_df['label'] = iris.target
20 iris_df.head()
```

```
import pandas as pd
from sklearn.datasets import load_iris

iris = load_iris() print("들어 있는 key들", iris.keys())
iris_data = iris.data iris_label = iris.target

# 독특하게 내장 데이터셋이 df로 들어 있는게 아니라 ndarray로 들어있으며
# target, target_names, feature_names가 별도로 iris의 키로 들어 있음

print("data type", type(iris_data))
print("target 값", iris_label)
print("target 명", iris.target_names)
# 따라서 이를 df로 만들기 위해서 별도의 가공이 필요함

iris_df = pd.DataFrame(iris_data, columns=iris.feature_names)
iris_df['label'] = iris.target
iris_df.head()
```

결과:

들머 있는 key들	dict_keys(['data	i', 'target', 'target.	_names', 'DESCR', 'featι	ıre_names', 'fil	enam
data type <class< th=""><th>'numpy.ndarray'</th><th></th><th></th><th></th><th></th></class<>	'numpy.ndarray'				
target 값 [000	000000000	00000000000	0000000000000	0000	
00000000	00000111				
	22222222				
2 2]					
target 명 ['seto	sa' 'versicolor'	'virginica']			
sepal lengt	th (cm) sepal	width (cm) petal	length (cm) petal w	idth (cm) lab	el
0	5.1	3.5	1.4	0.2	
1	4.9	3.0	1.4	0.2	
2	4.7	3.2	1.3	0.2	
3	4.6	3.1	1.5	0.2	
	F 0	3.6	1.4	0.2	0
4	5.0	5.0	1.4	0.2	

Part2 | regression

- Regression
- Linear regression, Lasso, Ridge , Elastic

Regression

분류 구현 클래스

DesicionTreeClassifier RandomForestClassifier GradientBoostingClassifier GaussianNB SVC

회귀 구현 클래스

LinearRegreesion Ridge Lasso

RandomForestRegressor GradientBoostingRegreesor

example

선형회귀

1. 단순 선형 회귀

$$y = Wx + b$$

2. 다중 선형 회귀

$$y = W_1 x_1 + W_2 x_2 + \dots + W_n x_n + b$$

최적의 회귀 계수를 찾아내는 것이 핵심

최적의 회귀 계수 찾기

사용된 idea

Ex. 2차 함수의 최저점 구하기> 2차함수의 미분 값인 1차 함수의 기울기(접선의 기울 기)가 가장 작은 값을 찾는다.

변수가 여러 개? 편미분 사용

$$\frac{\partial R(w)}{\partial w_1} = \frac{2}{N} \sum_{i=1}^{N} -x_t * (y - (w_0 + w_1 x_i)) = -\frac{2}{N} \sum_{i=1}^{N} x_t * (실제값_i - 예측값_i)$$
$$\frac{\partial R(w)}{\partial w_0} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (w_0 + w_i x_i)) = -\frac{2}{N} \sum_{i=1}^{N} (실제값_i - 예측값_i)$$

Gradient descent process

step1

 w_1, w_0 를 임의의 값으로 설정하고 첫 비용 함수의 값을 계산합니다.

step2

 w_1 을 $w_1 - \eta \frac{2}{N} \sum_{i=1}^N x_i * (실제값_i - 예측값_i),$ w_0 을 $w_0 - \eta \frac{2}{N} \sum_{i=1}^N (실제값_i - 예측값_i)$ 으로 업데이트한 후 다시 비용 함수의 값을 계산합니다.

step3

비용 함수의 값이 감소했으면 다시 Step 2를 반복합니다. 더 이상 비용 함수의 값이 감소하지 않으면 그때의 w_1, w_0 를 구하고 반복을 중지합니다.

회귀 평가 지표

평가 방법	사이킷런 평가 지표 API	Scoring 함수 적용 값	수식
MAE	metrics.mean_absolute_erro r	'neg_mean_absolute_error'	$MAE = rac{\sum y - \hat{y} }{n}$
MSE	metrics.mean_squared_error	'neg_mean_squared_error'	$MSE = rac{\sum (y - \hat{y})^2}{n}$
R ²	metrics.r2_score	'r2'	$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$

사이킷 런은 RMSE를 제공 x

다항 회귀

```
from sklearn.preprocessing import PolynomialFeatures  \begin{array}{l} \textbf{X} = [[2,3]] \\ \textbf{print}(\textbf{X}) \\ \textbf{poly} = \textbf{PolynomialFeatures}() \\ \textbf{poly.fit}(\textbf{X}) \\ \textbf{print}(\textbf{poly.transform}(\textbf{X})) \\ \\ \# \ fit \Rightarrow \ transform \ \text{und} \ \Box \equiv \ \text{하나로 붙인 und} \ \text{fit_transform} \\ \textbf{poly.fit_transform}(\textbf{X}) \\ \\ [[2,3]] \\ [[1.2.3.4.6.9.]] \\ \textbf{array}([[1.,2.,3.,4.6.9.]]) \\ \end{array}
```

- -다항 회귀도 선형회귀
- : 선형/비선형 회귀를 나누는 기준은 회귀 계수가 선형/비선형인지에 따른 것이지 독립변수의 선형/ 비선형 여부와는 무관

규제

비용함수 목표

- 1. 학습데이터 잔차 최소화
- 2. 회귀계수 크기제어 (과적합방지)

$$RSS(W) + alpha2 * ||W||_2^2 + alpha1 * ||W||_1$$
Ridge (Lasso (L2방식)

ElasticNet (L1방식+L2방식)

규제

규제 (Regularization)

학습이 과대적합 되는 것을 방지하고자 일종의 penalty를 부여하는 것

L2 규제 (L2 Regularization)

- 각 가중치 제곱의 합에 규제 강도(Regularization Strength) λ를 곱한다.
- ♪ 사를 크게 하면 가중치가 더 많이 감소되고(규제를 중요시함), 차를 작게 하면 가중치가 증가한다(규제를 중요시하지 않음).

L1 규제 (L1 Regularization)

- 가중치의 제곱의 합이 아닌 **가중치의 합**을 더한 값에 규제 강도(Regularization Strength) λ를 곱하여 오차에 더한다.
- 어떤 가중치(w)는 실제로 0이 된다. 즉, 모델에서 완전히 제외되는 특성이 생기는 것이다.

L2 규제가 L1 규제에 비해 더 안정적이라 일반적으로는 L2규제가 더 많이 사용된다

Regression algorithm Solver 라든지 다른 매개변수도 있지만 기본적인 것만 정리함

클래스명	매개변수		속성		특징
	fit_intercept	defalut = True	coef_	fit()후 회귀계	
		절편을 계산할 것인지 결정		수 값을 저장	lasso, ridge, elasticnet 도
LinearRegression()		defalut = False		_	linearregression이가
		회귀를 수행하기 전 데이터 세트	intercept_		진 매개변수 가지고있음.
		정규화			
PolynomialFeatures()		단항식 피처를 degree에 해당하			
	degree	는 다항식 피처로 변환			
Ridge()	alpha	L2 규제 계수	coef_, intercept_		계수의 값을 작게해 과적
					합을 개선
Lasso()	alpha	L1규제 계수	coef_, intercept_		영향력이 크지 않은 계수
					의 값을 0으로 변환
ElasticNet()	alpha	a + b	coef_, intercept_		엘라스틱 넷 규제
	I1_ratio	a / (a+b)			= a * L1 + b* L2
from sklearn linear mo	del import LinearRegress	sion, Ridge, Lasso, FlasticNet	1		,

from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet

참고자료

https://teddylee777.github.io/scikit-learn/scikit-learn-linear-with-regularizations 파이썬 머신러닝 완벽가이드

