Теория вероятностей Итоговый диктант, определения

Основано на лекциях Аксёновой Екатерины Файл создан Заблоцким Данилом

Содержание

1	Алгебра событий	2
2	Сигма-алгебра событий	2
3	Борелевская сигма-алгебра	2
4	Определение меры	3
5	Аксиомы вероятности	3
6	Определение вероятности в классической схеме	4
7	Формула числа перестановок	4
8	Формула числа размещений	4
9	Формула числа сочетаний	4
10	Формула числа размещений с повторениями	5

1 Алгебра событий

Определение (Алгебра). \mathcal{F} – семейство подмножеств Ω , \mathcal{F} – *алгебра*, если:

- 1. $\Omega \in \mathcal{F} \ (\emptyset \in \mathcal{F})$.
- 2. $A \in \mathcal{F} \implies \overline{A} \in \mathcal{F}$.
- 3. $A, B \in \mathcal{F} \implies AB \in \mathcal{F}, A + B \in \mathcal{F}.$

2 Сигма-алгебра событий

Определение (σ -алгебра). \mathcal{F} – семейство подмножеств Ω , \mathcal{F} – σ -алгебра, если:

- 1. $\Omega \in \mathcal{F} \ (\emptyset \in \mathcal{F})$.
- 2. $A \in \mathcal{F} \implies \overline{A} \in \mathcal{F}$.
- 3. $A, B \in \mathcal{F} \implies AB \in \mathcal{F}, A + B \in \mathcal{F}.$
- 4. $\forall \{A_{\alpha}\} \subset \mathcal{F} \bigcap_{\alpha} A_{\alpha} \in \mathcal{F}$ и $\bigcup_{\alpha} A_{\alpha} \in \mathcal{F}$.

3 Борелевская сигма-алгебра

Примечание. Взято не из лекций.

Определение (Борелевская σ -алгебра). \mathbb{R} — топологическое пространство, борелевская σ -алгебра — это алгебра, порожденная всеми интервалами.

4 Определение меры

Примечание. Взято не из лекций.

Определение (Мера). Пусть X — некоторое множество и Σ — α -алгебра над X.

Функция μ из Σ в расширенную действительную числовую прямую называется *мерой*, если она удовлетворяет следующим свойствам:

ullet неотрицательность: для всех E в Σ имеем

$$\mu(E) \geqslant 0;$$

• пустой набор:

$$\mu(\varnothing) = 0;$$

• счетная аддитивность (или σ -аддитивность): для всех счетных наборов попарно непересекающихся множеств в Σ :

$${E_k}_{k=1}^{\infty}$$

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k).$$

5 Аксиомы вероятности

Определение. Вероятностное пространство (Ω, \mathcal{F}, P) .

 Ω – множество элементарных исходов, \mathcal{F} – σ -алгебра подмножеств $\Omega,$ P – мера на $\mathcal{F},$ $P:\mathcal{F}\to\mathbb{R},$

- (A_1) $\forall A \in \mathcal{F} \ P(A) \geqslant 0.$
- $\widehat{A_2}$ $P(\Omega)=1$ (условие нормировки).
- $\widehat{(A_3)} \ \forall A, B \in \mathcal{F} \ AB = \varnothing \implies P(A+B) = P(A) + P(B).$
- (A_4) $\{A_n\} \subset \mathcal{F} A_{n+1} \leqslant A_n \bigcap_n A_n = \varnothing,$

 $\lim_{n\to\infty} P(A_n) = 0$ (непрерывность меры).

6 Определение вероятности в классической схеме

Определение (Вероятность в классической схеме). Ω – конечное множество равновозможных исходов. \mathcal{F} – все подмножества Ω (их $2^{|\Omega|}$),

$$P(A) = \frac{|A|}{|\Omega|}.$$

7 Формула числа перестановок

Определение (формула числа перестановок). *Число перестановок* n различных шаров (перестановки отличаются порядком шаров) – P(n),

$$P(n) = n!$$
, $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 = n!$, $0! = 1$.

Пусть есть n_1, \ldots, n_m шаров m видов, $n = n_1 + \ldots + n_m$. Число перестановок этих n шаров равно $P(n_1, \ldots, n_m)$,

$$P(n_1, \dots, n_m) = \frac{(n_1 + \dots + n_m)!}{n_1! n_2! \dots n_n!}.$$

8 Формула числа размещений

Определение (Формула числа размещений). $Pазмещения \ n$ элементов по k местам. Выкладываем в ряд k шариков из имеющихся n:

$$A_n^k = n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}.$$

9 Формула числа сочетаний

Определение (Формула числа сочетаний). Сочетания k элементов из n. Число k-элементарных подмножеств из n-элементов множества – C_n^k ,

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{(n-k)!k!}.$$

10 Формула числа размещений с повторениями

Замечание. Если мы разрешим шарики повторять, то получим размещения с повторениями:

$$\overline{A_n^k} = n \cdot n \cdot \dots \cdot n = n^k.$$