- 1 Perform data preprocessing on following dataset.
 - -Analyses on the dataset
 - -preprocess on null dataset
 - -what is dirty data set
 - -how to handle continues values
 - -differentiate between continues and discrete/categorical values.

Owns Home	Married	Gender	Employed	Creadit Rating	Risk Class
Yes	Yes	Male	Yes		В
No	No	Female	Yes		А
Yes	Yes	Female	Yes	В	С
Yes		Male	No	В	В
No	Yes	Female	Yes	В	С
No	No	Female	Yes	В	А
No	No	Male	No	В	В
Yes		Female	Yes	А	Α
No	Yes	Female	Yes	А	С
Yes	Yes	Female	Yes	Α	С

- Perform data preprocessing on following dataset.
 - -Analyses on the dataset
 - -preprocess on null dataset
 - -what is dirty data set
 - -how to handle continues values
 - -differentiate between continues and discrete/categorical values.

Sr.No	Debt	Collateral	Income	Credit-History	Risk
1	high	none	0-15k	bad	high-risk
2	high	none	15-35k	unknown	high-risk
3	low	none	15-35k	unknown	Moderate risk
4	low	none	0-15k		high-risk
5	low	none	over 35k		low risk
6	low	adequate	over 35k	unknown	low risk
7	low	none	0-15k	bad	high-risk
8	low	adequate	over 35k	bad	Moderate risk
9	low	none	over 35k	good	
10	high	adequate	over 35k	good	
11	high	none	0-15k	good	high-risk
12	high	none	15-35k	good	Moderate risk

- **3** Perform data preprocessing on following dataset.
 - -Analyses on the dataset
 - -preprocess on null dataset
 - -what is dirty data set
 - -how to handle continues values
 - -differentiate between continues and discrete/categorical values.

Day	Outlook	Temperature	Humidity	Wind	Play ball
D1	SUNNY	НОТ	HIGH	WEAK	NO

		1			, , , , , , , , , , , , , , , , , , , ,	
	D2	SUNNY	НОТ	HIGH	STRONG	NO
	D3	OVERCAST	HOT	HIGH	WEAK	YES
	D4	RAIN	MILD	HIGH	WEAK	YES
	D5	RAIN	COOL	NORMAL	WEAK	YES
	D6	RAIN	COOL	NORMAL	STRONG	NO
	D7	OVERCAST	COOL	NORMAL	STRONG	YES
	D8		MILD	HIGH		NO
	D9		COOL	NORMAL		YES
	D10	RAIN	MILD	NORMAL	WEAK	YES
	D11	SUNNY		NORMAL	STRONG	YES
	D12	OVERCAST		HIGH	STRONG	YES
	D13	OVERCAST	НОТ	NORMAL	WEAK	YES
	D14	RAIN	MILD	HIGH	STRONG	NO
				Į.		
4	Compi	ite the stands	ard deviations for	the following	cate.	
4	-		0,25,27,38,57]	the following	sets.	
			2,33,44,55,66]			
	·		as a larger spread :	and compute	covariance	for that sat
	Justify	WIIICH SET HE	is a larger spread a	and compute of	COVALIANCE	101 mai sei
	-		1.1.1.1.0	1 0 11		
	_		ard deviations for	the following	sets:	
		[0,8,12,20,2	· · · · · -			
		[8,9,11,12,15				
	Justify	which set ha	as a larger spread	and compute	covariance	for that set
5	Apply l	PCA concepts	on given 2X2 matr	ix.		
	_	_				
	$A = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$	3				
	LS	-11				
	1					

	Apply PCA concepts on given 2X2 matrix.
	$A = \begin{bmatrix} 6 & 4 \\ 5 & 10 \end{bmatrix}$
6	In the example below, the x-axis represents age OF CAR, and the y-axis represents speed. We have registered the age and speed of 13 cars as they were passing a tollbooth. Predict the speed of 23 years old car , using in a linear regression. X(age of car) = [5,7,8,7,2,17,2,9,4,11,12,9,6] y (speed)= [99,86,87,88,111,86,103,87,94,78,77,85,86].
7	In the example below, the x-axis represents age OF CAR, and the y-axis represents speed. We have registered the age and speed of 13 cars as they were passing a tollbooth. Predict the speed of 18 years old car , using in a linear regression. X(age of car) = [5,7,8,7,2,17,2,9,4,11,12,9,6] y (speed)= [99,86,87,88,111,86,103,87,94,78,77,85,86].
8	In the example below, the x-axis represents year of experience, and the y-axis represents salary. We have registered the details of 10 employees. Predict the salary for 15 years' experience, using in a linear regression. X(yr of experience)=[1.1, 1.3, 1.5, 2.2, 3.9, 4, 5.1, 5.3, 8.2, 9, 10.5] Y(salary)=[39343, 46205, 39891, 55794, 66029, 83088, 113812, 105582, 112635, 122391]
9	In the example below, the x-axis represents year of experience, and the y-axis represents salary. We have registered the details of 10 employees. Predict the salary for 23 years' experience, using in a linear regression. X(yr of experience)=[1.1, 1.3, 1.5, 2.2, 3.9, 4, 5.1, 5.3, 8.2, 9, 10.5] Y(salary)=[39343, 46205, 39891, 55794, 66029, 83088, 113812, 105582, 112635, 122391]
10	In the example below, the x-axis represents market spend for advertisement, and the y-axis represents profit. New Start-up Company spend money for advertisement tentative 10 events are given in database. Predict the profit for 9 lakh spend on marketing using in a linear regression.

	x(Market spend)=[471784.1, 443898.53, 407934.54, 383199.62, 366168.42, 362861.36, 127716.82, 323876.68, 311613.29, 304981.62]
	y(profit)=[192261.83, 191792.06, 191050.39, 182901.99, 166187.94, 156991.12, 156122.51, 155752.6, 152211.77, 149759.96]
11	In the example below, the x-axis represents market spend for advertisement, and the y-axis represents profit. New Start-up Company spend money for advertisement tentative 10 events are given in database. Predict the profit for 13 lakh spend on marketing using in a linear regression.
	x(Market spend)=[471784.1, 443898.53, 407934.54, 383199.62, 366168.42, 362861.36, 127716.82, 323876.68, 311613.29, 304981.62]
	y(profit)=[192261.83, 191792.06, 191050.39, 182901.99, 166187.94, 156991.12, 156122.51, 155752.6, 152211.77, 149759.96]
12	Design and implement MP model for AND GATE
	-Design Truth Table for AND GATE
	-Design NN network
	-Design ACTIVATION function
13	Design and implement MP model for ANDNOT GATE
	-Design Truth Table for ANDNOT GATE
	-Design NN network
	-Design ACTIVATION function
14	Design and implement MP model for OR GATE
	-Design Truth Table for OR GATE
	-Design NN network

-Design ACTIVATION function

15 Perform Navie Bayes algorithm using given dataset for unknown sample.

X= {OVERCAST, MILD, NORMAL, STRONG, ?}

					Play
Day	Outlook	Temperature	Humidity	Wind	ball
D1	SUNNY	HOT	HIGH	WEAK	NO
D2	SUNNY	HOT	HIGH	STRONG	NO
D3	OVERCAST	НОТ	HIGH	WEAK	YES
D4	RAIN	MILD	HIGH	WEAK	YES
D5	RAIN	COOL	NORMAL	WEAK	YES
D6	RAIN	COOL	NORMAL	STRONG	NO
D7	OVERCAST	COOL	NORMAL	STRONG	YES
D8	SUNNY	MILD	HIGH	WEAK	NO
D9	SUNNY	COOL	NORMAL	WEAK	YES
D10	RAIN	MILD	NORMAL	WEAK	YES
D11	SUNNY	MILD	NORMAL	STRONG	YES
D12	OVERCAST	MILD	HIGH	STRONG	YES
D13	OVERCAST	HOT	NORMAL	WEAK	YES
D14	RAIN	MILD	HIGH	STRONG	NO

16

Perform Navie Bayes algorithm using given dataset for unknown sample.

P{credit-History-bad, Debt- high, Collateral- none, Income-(15-35K)}

Sr.No	Debt	Collateral	Income	Credit-History	Risk
1	high	none	0-15k	bad	high-risk
2	high	none	15-35k	unknown	high-risk
3	low	none	15-35k	unknown	Moderate risk
4	low	none	0-15k	unknown	high-risk
5	low	none	over 35k	unknown	low risk
6	low	adequate	over 35k	unknown	low risk
7	low	none	0-15k	bad	high-risk
8	low	adequate	over 35k	bad	Moderate risk
9	low	none	over 35k	good	low risk
10	high	adequate	over 35k	good	low risk
11	high	none	0-15k	good	high-risk
12	high	none	15-35k	good	Moderate risk

17

Perform Navie Bayes algorithm using given dataset for unknown sample.

P(X|Cj)=p{Yes,no,female,yes,A}

Owns Home	Married	Gender	Employed	Creadit Rating	Risk Class
Yes	Yes	Male	Yes	A	В

No	No	Female	Yes	А	А
Yes	Yes	Female	Yes	В	С
Yes	No	Male	No	В	В
No	Yes	Female	Yes	В	С
No	No	Female	Yes	В	А
No	No	Male	No	В	В
Yes	No	Female	Yes	А	Α
No	Yes	Female	Yes	А	С
Yes	Yes	Female	Yes	А	С

Apply K(=2)-Means algorithm over the data (185, 72), (170, 56), (168, 60), (179,68), (182,72), (188,77) up to two iterations and show the clusters. Initially choose first two objects as initial centroids.

19 The problem is as follows. You are given 15 points in the Cartesian coordinate system as follows. solve a numerical problem using k means clustering.

П		
	Point	Coordinates
	A1	(2,10)
	A2	(2,6)
	A3	(11,11)

A4	(6,9)		
A5	(6,4)		
A6	(1,2)		
A7	(5,10)		
A8	(4,9)		
A9	(10,12)		
A10	(7,5)		
A11	(9,11)		
A12	(4,6)		
A13	(3,10)		
A14	(3,8)		
A15	(6,11)		
	A6 A7 A8 A9 A10 A11 A12 A13 A14	A6 (1,2) A7 (5,10) A8 (4,9) A9 (10,12) A10 (7,5) A11 (9,11) A12 (4,6) A13 (3,10) A14 (3,8)	A6 (1,2) A7 (5,10) A8 (4,9) A9 (10,12) A10 (7,5) A11 (9,11) A12 (4,6) A13 (3,10) A14 (3,8)

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

We have 4 medicines as our training data points object and each medicine has 2 attributes. Each attribute represents coordinate of the object. We have to determine which medicines belong to cluster 1 and which medicines belong to the other cluster.

Object	Attribute1 (X): weight index	Attribute 2 (Y): pH
Medicine A	1	1
Medicine B	2	1
Medicine C	4	3
Medicine D	5	4