Contents

1	Public key cryptography	:
2	Big numbers	:
3	Modular Arithmetic3.1 The Congruence Relation3.2 Logarithms	
4	Diffie-Hellman 4.1 Why is DH KEX Secure? 4.2 Vulnerabilities	
5	Elliptic Curve Cryptography	:

1 Public key cryptography

- Two keys, a public key and a private key
- Public-key (asymmetric) cryptography hinges upon the premise that: It is computationally infeasible to calculate a private from a public key
- Public-key cryptography gains us a few important abilities:
 - We can exchange a private symmetric key in the open
 - We can verify the sender of a message
 - Non-repudiation you can't deny you did something

Symmetric	Asymmetric
One Key	Two Keys
Keys are usually 128 or 256-bits	Keys are much longer, 2048 or 4096-bits
Usually extremely fast	Computationally slower
Longer term communication	Key exchange, verification and authentication only
Based on circuits of permutation and substitution	Based entirely on mathematical principles

2 Big numbers

- Modular arithmetic and integer factorisation drive public-key cryptography
- As computer power increases, we can increase the size of these numbers to preserve the integrity of our algorithms

3 Modular Arithmetic

A system of arithmetic based around **cycles of numbers**. Numbers modulo n are a *finite field*. Can think of it as a circle, because the set of numbers is limited and goes in a loop

3.1 The Congruence Relation

For a positive integer n, two numbers a and b are said to be *congruent modulo* n, if their difference ab is an integer **multiple** of n (that is, if there is an integer k such that ab = k * n). This congruence relation is typically considered when a and b are integers, and is denoted

$$a \equiv b \pmod{n} \tag{1}$$

$$a \pmod{n} = b \pmod{n} \tag{2}$$

When you apply modulo makes no difference

$$((a \bmod n) + (b \bmod n)) \bmod n = (a+b) \bmod n \tag{3}$$

$$((a \bmod n) * (b \bmod n)) \bmod n = (a * b) \bmod n \tag{4}$$

3.2 Logarithms

A logarithm is the inverse function to exponentiation

$$a^b = c (5)$$

$$b = log_a c \tag{6}$$

When operating $\mod n$, we call the operation a discrete logarithm. Discrete logs are much harder to compute. The number that is raised to a certain power, is called the **generator** \mathbf{g}

$$a^b = c \pmod{n}$$

$$b = \mathrm{dlog}_{a,n}(c)$$

$$7^2 = 4 \pmod{9}$$

$$2 = dlog_{7.9}(4)$$

4 Diffie-Hellman

- Two parties can jointly agree a shared secret over an insecure channel
- Mathematically, what we are doing is both calculating the same value, mod a prime p
- Look at notes:

4.1 Why is DH KEX Secure?

- The secret shared key is gab
- Yet, only g, p, g a and g b have been transmitted and are public
- The only way to calculate g^{ab} is either $(g^a)^b$ or $(g^b)^a$
- The only way to find a or b is solve:

$$a = \log_{g,p}(g^b)$$

$$b = \log_{g,p}(g^a)$$

4.2 Vulnerabilities

Man-in-the-middle: A third party could intercept the initial communication from Alice, then create two separate key exchanges with both Alice and Bob. An asymmetric protocol is required to prevent this

4.3 Perfect Forward Secrecy

- Theres always a chance a DHKEX key might be broken
- If we establish a symmetric key, how long should we use it for?
- Perfect forward secrecy means we generate new keys for each session, rather than persistent keys

4.4 Ephemeral Mode

- In protocols like TLS, running Diffie-Hellman in ephemeral mode forces a new key exchange every time
- The recommended settings for TLS are now 2048-bit DH keys, in ephemeral mode

5 Elliptic Curve Cryptography

Elliptic curves, of the form $y^2 = x^3 + ax + b$ can be used in place of mod arithmetic in DHKEX Elliptic curves are much stronger than traditional public-key schemes for the **same key length**

Reference section

finite field

A finite field is a set of numbers in which we can add, subtract, multiply and divide, and stay within that set