Question	Answer	Marks	Guidance
(a)	Sector area = $\frac{1}{2}r^2\left(\frac{\pi}{6}\right)\left[=\frac{\pi}{12}r^2\right]$	B1	Using $\frac{1}{2}r^2\theta$ with θ in radians SOI.
			B0 if using a value for r .
	$BD = \sin \frac{\pi}{6} r \left[= \frac{1}{2} r \right] \text{ and } AD = \cos \frac{\pi}{6} r \left[= \frac{\sqrt{3}}{2} r \right]$	В1	SOI Finding triangle area. Decimals B0 unless exact values seen in working.
	so triangle area = $\frac{1}{2} \left(\sin \frac{\pi}{6} r \right) \left(\cos \frac{\pi}{6} r \right) \left[= \frac{1}{2} \times \frac{1}{2} r \times \frac{\sqrt{3}}{2} r \right]$		
	$\mathbf{or} \ \frac{1}{2}r\left(\cos\frac{\pi}{6}r\right)\left(\sin\frac{\pi}{6}\right)\left[=\frac{1}{2}r\times\frac{\sqrt{3}}{2}r\times\frac{1}{2}\right]$		
	Area of $BCD = \frac{1}{12}\pi r^2 - \frac{\sqrt{3}}{8}r^2$	B1	OE e.g. $\frac{r^2}{4} \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2} \right)$ with $\cos \frac{\pi}{6}$ and $\sin \frac{\pi}{6}$ evaluated.
			Must be exact, in terms of r^2 . ISW
		3	

Question	Answer	Marks	Guidance
(b)	Angle $BAC = \sin^{-1} \left(\frac{\sqrt{3}}{2} r \right) \left[= \frac{\pi}{3} \right]$	B1	SOI by length of AD, CD or arc, or by perimeter.
	Length $AD = \cos \frac{\pi}{3} r \left[= \frac{1}{2} r \right]$ [so length $CD = \frac{1}{2} r$]	M1	SOI Finding length by Pythagoras, or by trigonometry with <i>their</i> angle <i>BAC</i> , provided $BAC \neq \frac{\pi}{6}$.
	Length of arc $BC = r \times \frac{\pi}{3}$	M1	SOI Using $r\theta$ with θ in radians. Condone $\theta = \frac{\pi}{6}$.
	Perimeter of $BCD = \frac{\sqrt{3}}{2}r + \frac{1}{2}r + \frac{\pi}{3}r$	A1	OE e.g. $r\left(\frac{\sqrt{3}+1}{2}+\frac{\pi}{3}\right)$ with e.g. $\cos\frac{\pi}{3}$ evaluated.
			Must be exact, in terms of r . ISW
		4	