Exercice 1 : Équations avec un quotient

Pour chacune des équations suivantes, préciser les valeurs interdites éventuelles puis résoudre l'équation :

1.
$$\frac{3x-7}{-3x} = -5$$
.

$$2. \ \frac{x^2+1}{4x-16}=0.$$

3. BONUS:
$$\frac{4}{9x+1} = \frac{4}{3x-2}$$
.

1. Déterminer les valeurs interdites revient à déterminer les valeurs qui annulent le dénominateur du quotient, puisque la division par 0 n'existe pas.

Or $-3x = 0 \iff x = 0$. Donc l'ensemble des valeurs interdites est $\{0\}$.

Pour tout $x \in \mathbb{R} \setminus \{0\}$,

$$\frac{3x-7}{-3x} = -5 \qquad \Longleftrightarrow \qquad \frac{3x-7}{-3x} = \frac{-5}{1}$$

$$\iff \qquad 3x-7 = -5 \times (-3x) \qquad \text{car les produits en croix sont \'egaux.}$$

$$\iff \qquad 3x-7 = 15x$$

$$\iff \qquad -12x = 7$$

$$\iff \qquad x = -\frac{7}{12}$$

Le nombre $-\frac{7}{12}$ n'est pas une valeur interdite, donc l'ensemble des solutions de cette équation est $\mathcal{S} = \left\{-\frac{7}{12}\right\}$.

2. $4x-16=0 \iff x=4$. Donc l'ensemble des valeurs interdites est $\{4\}$. Pour tout $x\in\mathbb{R}\smallsetminus\{4\}$,

$$\frac{x^2+1}{4x-16}=0 \qquad \Longleftrightarrow \qquad x^2+1=0 \qquad \text{car} \qquad \frac{A(x)}{B(x)}=0 \iff \quad A(x)=0 \text{ et } B(x)\neq 0$$

$$\iff \quad x^2=-1$$

Puisque -1 < 0, cette équation n'a pas de solution, donc l'ensemble des solutions est $\mathcal{S} = \emptyset$.

3. $9x + 1 = 0 \iff x = -\frac{1}{9}$ et $3x - 2 = 0 \iff x = \frac{2}{3}$. Donc l'ensemble des valeurs interdites est $\left\{-\frac{1}{9}; \frac{2}{3}\right\}$.

Pour tout $x \in \mathbb{R} \setminus \left\{-\frac{1}{9}\,;\, \frac{2}{3}\right\}$,

$$\frac{4}{9x+1} = \frac{4}{3x-2} \iff 4 \times (9x+1) = 4 \times (3x-2) \quad \text{car les produits en croix sont \'egaux.}$$

$$\iff 36x+4=12x-8$$

$$\iff 24x=-12$$

$$\iff x=-\frac{1}{2}$$

 $-rac{1}{2}$ n'est pas une valeur interdite, donc l'ensemble des solutions de cette équation est $\mathcal{S}=\left\{-rac{1}{2}
ight\}$.