08/11/2023

MAXIMUM AVERAGE POWER TRANSFER

$$Z_{Th} = R_{Th} + jX_{Th}$$

$$Z_{L} = R_{L} + jX_{L}$$

Power is max if
$$R_L = R_{Th}$$
 equivalently, $Z_L = \overline{Z_{Th}}$

$$\frac{dP}{dR_L} = 0 \qquad \frac{dP}{dX_L} = 0 \qquad \frac{Z_L = Z_{Th}}{Z_{th}}$$

$$\frac{dP}{dR_L} = 0 \qquad \frac{dP}{dX_L} = 0 \qquad \frac{Z_L = Z_{Th}}{Z_{th}}$$

EXAMPLE

find load impedence (Z1) that gets max Power. Calculate Pmax

$$P_{\text{max}} = \frac{|V_{\text{Th}}|^2}{8R_{\text{Th}}}$$

$$Z_{Th} = (4 \Lambda) | (8-6j) + 5j$$

$$= 4(8-6j) + 5j$$

$$= 12-6j$$

$$=\frac{44-8}{15}$$
 jtsj

$$Z_{L} = \frac{1}{2} \frac{1}{15} = \frac{44}{15} - \frac{67}{15}$$

find 4th:

$$10 = 4i + (8-6j)i$$

$$10 = i(s^2 - 6j)$$

$$\frac{0}{12-6j} = i$$

$$\left(\frac{2}{3} + \frac{1}{3}i\right)\left(8 - 6i\right)$$

$$\dot{c} = \left(\frac{2}{3} + \frac{1}{3}\dot{j}\right)A$$

$$P_{\text{max}} = \frac{(7-45)^2}{8(2.93)} = 2.368W$$

EXAMPLE :

$$\begin{array}{r}
 150 / 30 = (40 - 30 j + 20 j)i \\
 156 / 30 = i \\
 \hline
 40 - (0 j) \\
 = 2 - 615 + 2.53 j$$

$$V_{Th} = -50.577 + 52.3$$
 $= 72.76 (134)$.

$$\frac{\left(72.76\right)^2}{8\times\left(\frac{160}{17}\right)} = 70.311 \,\mathrm{V}$$

Effective (or) RMS Value

$$P = \frac{1}{T} \int_{0}^{t^{2}R} dt = R \int_{0}^{t^{2}dt} dt = I_{RMS}^{2}R$$

$$I_{eff} = \int_{0}^{t^{2}dt} \int_{0}^{t^{2}dt} dt = I_{RMS}$$

$$V_{eff} = \int_{0}^{t^{2}R} \int_{0}^{t^{2}dt} dt = I_{RMS}$$

$$i(t) = I_{m} \cos \omega t$$

$$i^{2}(t) = I_{m}^{2} \cos^{2} \omega t$$

$$i^{2}(t) dt = I_{m}^{2} \left(\frac{1 + \cos 2\omega t}{2} \right) dt$$

$$\int i^{2}(t) dt = I_{m}^{2} \left(\int_{0}^{\infty} \frac{dt}{2} + \int_{0}^{\infty} \frac{\cos 2\omega t}{4\omega} d(2\omega t) \right)$$

$$\int i^{2}(t) dt = I_{m}^{m} \left[\int_{2}^{\infty} + \left[\frac{\sin 2\omega t}{4\omega} \right]_{0}^{\infty} \right] = \frac{I_{m}^{2} T}{2}$$

$$\int i^{2}(t) dt = I_{m}^{m} \left[\int_{2}^{\infty} + \left[\frac{\sin 2\omega t}{4\omega} \right]_{0}^{\infty} \right] = \frac{I_{m}^{2} T}{2}$$

$$\int i^{2}(t) dt = I_{m}^{m} \left[\int_{0}^{\infty} + \left[\frac{\sin 2\omega t}{4\omega} \right]_{0}^{\infty} \right] = \frac{I_{m}^{2} T}{2}$$

$$P = \frac{1}{2} V_{m} I_{m} \cos (\theta_{V} - \theta_{i}) = \frac{V_{m}}{\sqrt{2}} \cdot \frac{I_{m}}{\sqrt{2}} \cos (\theta_{V} - \theta_{i})$$

$$= V_{RMS} I_{RMS} \cos (\theta_{V} - \theta_{i})$$

$$v(t) = \begin{cases} losint & o < t < \tau \\ 0 & \pi < t < 2\pi \end{cases}$$

$$V_{RMS}^{2} = \frac{1}{T} \int v^{2}(t) dt$$

$$= \frac{1}{T} \left[\int |\cos i n^{2} t dt \right]$$

$$= \frac{1}{T} \int |\cos i n^{2} t dt$$

$$= \frac{100}{T} \int \left(\frac{1-\cos 2t}{2} \right) dt$$

$$= \underbrace{100}_{T} \int_{Q} \left(\underbrace{\frac{1-\omega s2t}{2}}_{2} \right)$$

$$= \frac{100}{2T} \left[t \right] = \frac{100}{4\pi}$$

$$= 25$$

$$P = \frac{V_{RMS}}{R} = \frac{25}{10} = 2.5W \left[\frac{V_{RMS}}{V_{RMS}} \right] = 5V$$

find Paug

R=61

find P61

$$V_{RMS} = \int_{0}^{T} \int v^{2}(t)dt = \int_{0}^{\pi} \int |\cos v|^{2}t dt + \int_{0}^{\pi} |\cos v|^{2}t dt$$

09/11/2023

APPARENT POWER (S)

S" is the product of rms. values of Voltage and current. Its the "Rating" of equipments.

Ly Pavg = $\frac{V_m I_m}{2} cos(\theta_V - \theta_i) = \frac{V_{RMS} I_{RMS}}{\sqrt{V_{SM}}} \frac{cos(\theta_V - \theta_i)}{\sqrt{V_{SM}}}$ Power factor ("pf")

→ Pavg = S · Pf pf: cosine of phase diff·b/w voltage fourrent (or) cosine of Lle of load impedence.

 \rightarrow S \rightarrow has units as Volt-Ampere (VA)

 \rightarrow we specifically say VA f not W to distinguish S from Pavg (Pavg/P \rightarrow active power - useful/real power) \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow Apparent power

,			
Purely Resistive (only R)	8,-0;=0, Pf=1	P/s=1 all Pavy Consumed	
Purely reactive (only Lorc)	$\theta_{V}-\theta_{1}=\pm 90^{\circ}$ $Pf=0$	P=0, no Pavg consumed	
Resistive & Reactive (Rand Lorc)	• θ _V -θ;>0 • θ _V -θ;<0	·Lagging-inductive . Leading-eapacitive	
Lagging Leading			
* pill = actual power + pf. pena	lty * G	wrt arrent.	
to make pf -> 1, L&C are used together.			
capacitors are used as condensess in order to improve pf.			
COMPLEX POWER (S)			
L, "S" is the product of the valtage and the complex			
conjugate of the current			
o J	V = Vm / Ov I	= Im (0;	
V Load, Z		= Im 1-0i	
ō	= LVIX = VRMSI	RMS 18V-Bi	
	= V _{RMS} I	rms cos(Ov-Oi)	
reactive power	$+(V_{R}$	ums Irns sin (Ov-Oi))j	
MIDWS WORK to weath Measured happen (to weath in VAR	< S = P+	Qj	
MIDWS WORK to weath measured happen (to weath in VAR	active	you stive	
active - actual work	Power	power	
done by source	Sout	exchanged blw rice 4 reactive load)	

 $Q = 0 \rightarrow Yesistive pf = 1$

Q <0 -> capachive, leading pf

Q 70 -> inductive, lagging pf

Q is read.

but in low levels.

else, more power will be drawn by reactive load...

 $S = P + Q_J^2 \cdot J + SI = \sqrt{P^2 + Q^2}$ $Cos\theta = \frac{P}{S} \cdot J + Sin\theta = \frac{Q}{S}$

$$Z = R + jX = \sqrt{R^2 + x^2} = |Z|$$

$$Cos O = R$$

$$|Z|$$

$$\theta = \tan^{-1}(\frac{x}{R})$$
 $\cos \theta = \cos \left[\tan^{-1}(\frac{x}{R})\right]$

Apparent Power
$$\rightarrow V_{RMS} \cdot I_{RMS} = \sqrt{P^2 + Q^2}$$
 (S)

Real Power $\rightarrow S\cos(\theta_V - \theta_i)$ (Re(S)) \rightarrow (P)

Reactive Power $\rightarrow S\sin(\theta_V - \theta_i)$ (Im(S))

Power factor $\rightarrow \cos(\theta_V - \theta_i)$ (P/S \rightarrow Pf)

14/11/2023

EXAMPLE:

$$Pf = \cos(\theta_V - \theta_i) = \cos(-20 - 10) = +\cos 30 = \sqrt{3}$$

$$Pf = R/2 = \frac{Re(z)}{2} = \frac{86 \cos 30 / 0}{30 / 30} = \frac{V(t)}{i(t)}$$

$$= \cos 30 / 30 = V_m / \theta v$$

$$\frac{30 - 30}{30 - 30} = \frac{2}{30 - 30}$$

EXAMPLE:

$$I_m(z) = \frac{1}{j\omega C} = -\frac{j}{\omega C}$$

$$-15j=-j \Rightarrow \omega = 1$$

$$Z = (60+40 j) \Lambda j V(t) = 320 \cos(377t+10°) V$$

$$60^{4}$$
 40° 60° 6

$$Z=R+\int_{X} X \rightarrow +ve \Rightarrow 0v-0; >0$$

$$\Rightarrow |0v>0; | \text{linductive}$$

$$\frac{1}{2} \times \left(\frac{320 / 10}{72 \cdot 111 / 33 \cdot 7} \cdot \frac{320 / 10}{2 \times 72 \cdot 111} \right) = \frac{320^{2} / -13 \cdot 7}{2 \times 72 \cdot 111} = \frac{1420 / -13 \cdot 7}{2}$$

find pf, Pavg.

$$Z_{eq} = \left(\frac{34}{5} - \frac{8}{5}\right) \mathcal{N}$$

$$\cos\theta = \frac{34/5}{6.98} \cdot \frac{6.8}{6.98} = 0.9734$$

$$\cos\theta = \frac{34/5}{6.98} \cdot \frac{6.98}{6.98} \cdot \frac{9}{6.98} \cdot \frac{9}{6.98}$$
(leading)
capacitive

$$i_{RMS} = \frac{v_{RMS}}{z}$$

$$= \frac{30.00}{6.98.6-13.24}$$

= 4.29 /13.24.

EXAMPLE

(a) complex & apparent power, (b) real & reactive power (c) Pf & impedence.

(a)
$$V = 60/-10$$
; $V_{RMS} = 6\%2/-10$ & $I = 1.5/50$; $I_{RMS} = \frac{1.5}{50}$

Complex P = VRMs. IRMS

(b) Real = Re(Complex P) = 45 cos(-60) = 22.5 VA Reactive = Im(complex P) = 45 sin(-60) = -45 x 0.867

(leading)

(e) pf = los (bu-oi) = cos(-60) = 0-5 (leading) capacitive

$$Z = \frac{60/-10}{1.5/50} = 40/-60 \Lambda$$

16