```
In [15]: import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import matplotlib.style as style
          import matplotlib.gridspec as gridspec
          import seaborn as sns
          from scipy import stats
          import os
          os.chdir('/Users/Lenovo/Desktop/EBAC')
          import warnings
          warnings.filterwarnings('ignore')
 In [3]: df = pd.read csv('House Pricing.csv')
          df.head()
             Id MSSubClass MSZoning LotFrontage LotArea Street
                                                                                                 Utilities ... PoolArea PoolQC Fenc
                                                                    Alley LotShape LandContour
          0
             1
                                   RL
                                               65.0
                                                       8450
                                                                                                   AllPub
                                                                                                                    n
                         60
                                                              Pave
                                                                    NaN
                                                                               Reg
                                                                                             Lvl
                                                                                                                          NaN
                                                                                                                                 Nal
                                   RL
                                               80.0
                                                       9600
                                                                                                   AllPub
                                                                                                                    0
          1
             2
                         20
                                                              Pave
                                                                     NaN
                                                                               Reg
                                                                                                                          NaN
                                                                                             LvI
                                                                                                                                 Nal
                                                                                                                    0
          2
             3
                         60
                                   RL
                                               68.0
                                                      11250
                                                              Pave
                                                                     NaN
                                                                               IR1
                                                                                             LvI
                                                                                                   AllPub
                                                                                                                          NaN
                                                                                                                                 Nal
          3
                         70
                                    RL
                                               60.0
                                                       9550
                                                              Pave
                                                                     NaN
                                                                                IR1
                                                                                             Lvl
                                                                                                   AllPub
                                                                                                                    0
                                                                                                                          NaN
                                                                                                                                 Nal
                                                                               IR1
                                                                                                                    Λ
             5
                         60
                                   RL
                                               84.0
                                                      14260
                                                              Pave
                                                                    NaN
                                                                                             Lvl
                                                                                                   AllPub
                                                                                                                          NaN
                                                                                                                                 Nal
         5 rows × 81 columns
 In [5]:
         #Estadistica Descriptiva
          df.describe()
                             MSSubClass
                                         LotFrontage
                                                            LotArea
                                                                     OverallQual OverallCond
                                                                                                 YearBuilt YearRemodAdd
                                                                                                                          MasVnrAre
          count 1460.000000
                              1460.000000
                                          1201.000000
                                                         1460.000000
                                                                     1460.000000
                                                                                  1460.000000
                                                                                              1460.000000
                                                                                                              1460.000000
                                                                                                                          1452.00000
                                                        10516 828082
                                                                                     5 575342 1971 267808
                                                                                                              1984 865753
                  730 500000
                                56 897260
                                            70 049958
                                                                        6 099315
                                                                                                                           103 68526
          mean
            std
                  421.610009
                                42.300571
                                            24.284752
                                                         9981.264932
                                                                        1.382997
                                                                                     1.112799
                                                                                                30.202904
                                                                                                                20.645407
                                                                                                                           181.06620
            min
                    1.000000
                                20.000000
                                            21.000000
                                                         1300.000000
                                                                        1.000000
                                                                                     1.000000
                                                                                              1872.000000
                                                                                                              1950.000000
                                                                                                                             0.00000
           25%
                  365.750000
                                20.000000
                                            59.000000
                                                         7553.500000
                                                                        5.000000
                                                                                     5.000000
                                                                                              1954.000000
                                                                                                              1967.000000
                                                                                                                             0.00000
           50%
                  730 500000
                                50 000000
                                            69 000000
                                                         9478 500000
                                                                        6 000000
                                                                                     5 000000
                                                                                                              1994 000000
                                                                                                                             0.00000
                                                                                              1973 000000
           75%
                 1095.250000
                                70.000000
                                            80.000000
                                                        11601.500000
                                                                        7.000000
                                                                                     6.000000
                                                                                              2000.000000
                                                                                                              2004.000000
                                                                                                                           166.00000
                1460.000000
                               190.000000
                                           313.000000
                                                      215245.000000
                                                                       10.000000
                                                                                     9.000000
                                                                                              2010.000000
                                                                                                              2010.000000
                                                                                                                          1600.00000
           max
         8 rows × 38 columns
In [17]: def plot dist char(df, feature):
              # Figura
              fig = plt.figure(constrained_layout=True, figsize=(15,10))
              grid = gridspec.GridSpec(ncols=3, nrows=2, figure=fig)
              # Media y Desviacion Estandar
              mu = np.mean(df[feature])
              sigma = np.std(df[feature])
              # Histograma
              ax1 = fig.add_subplot(grid[0, :2])
              ax1.set title('Histogram')
              sns.distplot(df.loc[:,feature], norm_hist=True, ax=ax1)
              plt.legend(['Normal dist. $\mu={:.2f}$ and $\sigma={:.2f}$'.format(mu, sigma)])
              # QQ Plot
              ax2 = fig.add_subplot(grid[1, :2])
              stats.probplot(df.loc[:,feature], plot=ax2)
              ax2.set_title('')
              # Box Plot
              ax3 = fig.add subplot(grid[:, 2])
              ax3.set_title('Box Plot')
              sns.boxplot(y=df.loc[:,feature], ax=ax3)
In [19]: # Visualizacion estadistica (SalePrice)
          plot_dist_char(df, 'SalePrice')
```



In [29]: # Visualizacion estadistica (GrLivArea)
plot\_dist\_char(df, 'GrLivArea')



In [31]: # Visualizacion estadistica (2ndFlrSF)
plot\_dist\_char(df, '2ndFlrSF')



# Conclusion

En este caso, para estas 3 variables, podemos observar que no tienen una distribucion normal.

```
In [33]: # Seleccion de variables numericas
df_nuevo = df.select_dtypes(include = 'number')
df_nuevo.corr()
```

|               | ld        | MSSubClass | LotFrontage | LotArea   | OverallQual | OverallCond | YearBuilt | YearRemodAdd | MasVnrArea |
|---------------|-----------|------------|-------------|-----------|-------------|-------------|-----------|--------------|------------|
| ld            | 1.000000  | 0.011156   | -0.010601   | -0.033226 | -0.028365   | 0.012609    | -0.012713 | -0.021998    | -0.050298  |
| MSSubClass    | 0.011156  | 1.000000   | -0.386347   | -0.139781 | 0.032628    | -0.059316   | 0.027850  | 0.040581     | 0.022936   |
| LotFrontage   | -0.010601 | -0.386347  | 1.000000    | 0.426095  | 0.251646    | -0.059213   | 0.123349  | 0.088866     | 0.193458   |
| LotArea       | -0.033226 | -0.139781  | 0.426095    | 1.000000  | 0.105806    | -0.005636   | 0.014228  | 0.013788     | 0.104160   |
| OverallQual   | -0.028365 | 0.032628   | 0.251646    | 0.105806  | 1.000000    | -0.091932   | 0.572323  | 0.550684     | 0.411876   |
| OverallCond   | 0.012609  | -0.059316  | -0.059213   | -0.005636 | -0.091932   | 1.000000    | -0.375983 | 0.073741     | -0.128101  |
| YearBuilt     | -0.012713 | 0.027850   | 0.123349    | 0.014228  | 0.572323    | -0.375983   | 1.000000  | 0.592855     | 0.315707   |
| YearRemodAdd  | -0.021998 | 0.040581   | 0.088866    | 0.013788  | 0.550684    | 0.073741    | 0.592855  | 1.000000     | 0.179618   |
| MasVnrArea    | -0.050298 | 0.022936   | 0.193458    | 0.104160  | 0.411876    | -0.128101   | 0.315707  | 0.179618     | 1.000000   |
| BsmtFinSF1    | -0.005024 | -0.069836  | 0.233633    | 0.214103  | 0.239666    | -0.046231   | 0.249503  | 0.128451     | 0.264736   |
| BsmtFinSF2    | -0.005968 | -0.065649  | 0.049900    | 0.111170  | -0.059119   | 0.040229    | -0.049107 | -0.067759    | -0.072319  |
| BsmtUnfSF     | -0.007940 | -0.140759  | 0.132644    | -0.002618 | 0.308159    | -0.136841   | 0.149040  | 0.181133     | 0.114442   |
| TotalBsmtSF   | -0.015415 | -0.238518  | 0.392075    | 0.260833  | 0.537808    | -0.171098   | 0.391452  | 0.291066     | 0.363936   |
| 1stFlrSF      | 0.010496  | -0.251758  | 0.457181    | 0.299475  | 0.476224    | -0.144203   | 0.281986  | 0.240379     | 0.344501   |
| 2ndFlrSF      | 0.005590  | 0.307886   | 0.080177    | 0.050986  | 0.295493    | 0.028942    | 0.010308  | 0.140024     | 0.174561   |
| LowQualFinSF  | -0.044230 | 0.046474   | 0.038469    | 0.004779  | -0.030429   | 0.025494    | -0.183784 | -0.062419    | -0.069071  |
| GrLivArea     | 0.008273  | 0.074853   | 0.402797    | 0.263116  | 0.593007    | -0.079686   | 0.199010  | 0.287389     | 0.390857   |
| BsmtFullBath  | 0.002289  | 0.003491   | 0.100949    | 0.158155  | 0.111098    | -0.054942   | 0.187599  | 0.119470     | 0.085310   |
| BsmtHalfBath  | -0.020155 | -0.002333  | -0.007234   | 0.048046  | -0.040150   | 0.117821    | -0.038162 | -0.012337    | 0.026673   |
| FullBath      | 0.005587  | 0.131608   | 0.198769    | 0.126031  | 0.550600    | -0.194149   | 0.468271  | 0.439046     | 0.276833   |
| HalfBath      | 0.006784  | 0.177354   | 0.053532    | 0.014259  | 0.273458    | -0.060769   | 0.242656  | 0.183331     | 0.201444   |
| BedroomAbvGr  | 0.037719  | -0.023438  | 0.263170    | 0.119690  | 0.101676    | 0.012980    | -0.070651 | -0.040581    | 0.102821   |
| KitchenAbvGr  | 0.002951  | 0.281721   | -0.006069   | -0.017784 | -0.183882   | -0.087001   | -0.174800 | -0.149598    | -0.037610  |
| TotRmsAbvGrd  | 0.027239  | 0.040380   | 0.352096    | 0.190015  | 0.427452    | -0.057583   | 0.095589  | 0.191740     | 0.280682   |
| Fireplaces    | -0.019772 | -0.045569  | 0.266639    | 0.271364  | 0.396765    | -0.023820   | 0.147716  | 0.112581     | 0.249070   |
| GarageYrBlt   | 0.000072  | 0.085072   | 0.070250    | -0.024947 | 0.547766    | -0.324297   | 0.825667  | 0.642277     | 0.252691   |
| GarageCars    | 0.016570  | -0.040110  | 0.285691    | 0.154871  | 0.600671    | -0.185758   | 0.537850  | 0.420622     | 0.364204   |
| GarageArea    | 0.017634  | -0.098672  | 0.344997    | 0.180403  | 0.562022    | -0.151521   | 0.478954  | 0.371600     | 0.373066   |
| WoodDeckSF    | -0.029643 | -0.012579  | 0.088521    | 0.171698  | 0.238923    | -0.003334   | 0.224880  | 0.205726     | 0.159718   |
| OpenPorchSF   | -0.000477 | -0.006100  | 0.151972    | 0.084774  | 0.308819    | -0.032589   | 0.188686  | 0.226298     | 0.125703   |
| EnclosedPorch | 0.002889  | -0.012037  | 0.010700    | -0.018340 | -0.113937   | 0.070356    | -0.387268 | -0.193919    | -0.110204  |
| 3SsnPorch     | -0.046635 | -0.043825  | 0.070029    | 0.020423  | 0.030371    | 0.025504    | 0.031355  | 0.045286     | 0.018796   |
| ScreenPorch   | 0.001330  | -0.026030  | 0.041383    | 0.043160  | 0.064886    | 0.054811    | -0.050364 | -0.038740    | 0.061466   |
| PoolArea      | 0.057044  | 0.008283   | 0.206167    | 0.077672  | 0.065166    | -0.001985   | 0.004950  | 0.005829     | 0.011723   |
| MiscVal       | -0.006242 | -0.007683  | 0.003368    | 0.038068  | -0.031406   | 0.068777    | -0.034383 | -0.010286    | -0.029815  |
| MoSold        | 0.021172  | -0.013585  | 0.011200    | 0.001205  | 0.070815    | -0.003511   | 0.012398  | 0.021490     | -0.005965  |
| YrSold        | 0.000712  | -0.021407  | 0.007450    | -0.014261 | -0.027347   | 0.043950    | -0.013618 | 0.035743     | -0.008201  |
| 0 - I - D :   | 0.004047  | 0.004004   | 0.054700    | 0.000040  | 0.700000    | 0.077050    | 0.500007  | 0.507404     | 0.477400   |

38 rows × 38 columns

**SalePrice** -0.021917 -0.084284

0.351799 0.263843 0.790982

-0.077856 0.522897

0.507101

0.477493

```
# Agrega un título a la gráfica
plt.title("Heatmap of all the Features", fontsize=20)
```

Out[37]: Text(0.5, 1.0, 'Heatmap of all the Features')



## Conclusion

Las variables que mas se relacionan a SalePrice son OverallQual, GrLivArea y Garagecars

```
In [45]: import statsmodels.api as sm

df_nuevo = df_nuevo.dropna()
y = df_nuevo['SalePrice']
X = df_nuevo.drop(columns='SalePrice')

#Reporte de regresion
X = sm.add_constant(X)
modelo = sm.OLS(y, X).fit()

# 5. Muestra el resumen del modelo
print(modelo.summary())
```

### OLS Regression Results

| ===========       |                  |                                |           |
|-------------------|------------------|--------------------------------|-----------|
| Dep. Variable:    | SalePrice        | R-squared:                     | 0.810     |
| Model:            | 0LS              | Adj. R-squared:                | 0.803     |
| Method:           | Least Squares    | F-statistic:                   | 131.8     |
| Date:             | Wed, 23 Jul 2025 | <pre>Prob (F-statistic):</pre> | 0.00      |
| Time:             | 19:54:27         | Log-Likelihood:                | -13358.   |
| No. Observations: | 1121             | AIC:                           | 2.679e+04 |
| Df Residuals:     | 1085             | BIC:                           | 2.697e+04 |
| Df Model:         | 35               |                                |           |
| Covariance Type:  | nonrobust        |                                |           |

|               | coef       | std err  | t                   | P> t              | [0.025    | 0.975]    |  |  |
|---------------|------------|----------|---------------------|-------------------|-----------|-----------|--|--|
| const         | -3.351e+05 | 1.7e+06  | -0.197              | 0.844             | -3.67e+06 | 3e+06     |  |  |
| Id            | -1.2053    | 2.658    | -0.453              | 0.650             | -6.421    | 4.011     |  |  |
| MSSubClass    | -200.0623  | 34.511   | -5.797              | 0.000             | -267.779  | -132.346  |  |  |
| LotFrontage   | -116.0282  | 61.264   | -1.894              | 0.059             | -236.237  | 4.181     |  |  |
| LotArea       | 0.5422     | 0.158    | 3.442               | 0.001             | 0.233     | 0.851     |  |  |
| OverallQual   | 1.866e+04  | 1481.619 | 12.592              | 0.000             | 1.57e+04  | 2.16e+04  |  |  |
| OverallCond   | 5239.4864  | 1367.853 | 3.830               | 0.000             | 2555.550  | 7923.422  |  |  |
| YearBuilt     | 316.4201   | 87.663   | 3.610               | 0.000             | 144.412   | 488.428   |  |  |
| YearRemodAdd  | 119.4141   | 86.682   | 1.378               | 0.169             | -50.669   | 289.497   |  |  |
| MasVnrArea    | 31.4076    | 7.022    | 4.473               | 0.000             | 17.629    | 45.186    |  |  |
| BsmtFinSF1    | 9.6803     | 3.129    | 3.094               | 0.002             | 3.541     | 15.820    |  |  |
| BsmtFinSF2    | 0.6662     | 5.587    | 0.119               | 0.905             | -10.295   | 11.628    |  |  |
| BsmtUnfSF     | -2.6710    | 2.937    | -0.910              | 0.363             | -8.433    | 3.091     |  |  |
| TotalBsmtSF   | 7.6755     | 4.223    | 1.818               | 0.069             | -0.610    | 15.961    |  |  |
| 1stFlrSF      | 14.4718    | 8.483    | 1.706               | 0.088             | -2.173    | 31.117    |  |  |
| 2ndFlrSF      | 15.1237    | 7.713    | 1.961               | 0.050             | -0.010    | 30.258    |  |  |
| LowQualFinSF  | 1.9062     | 20.947   | 0.091               | 0.928             | -39.194   | 43.006    |  |  |
| GrLivArea     | 31.5017    | 7.767    | 4.056               | 0.000             | 16.262    | 46.741    |  |  |
| BsmtFullBath  | 9042.8022  | 3198.072 | 2.828               | 0.005             | 2767.697  | 1.53e+04  |  |  |
| BsmtHalfBath  | 2465.0370  | 5073.115 | 0.486               | 0.627             | -7489.190 | 1.24e+04  |  |  |
| FullBath      | 5433.1446  | 3531.117 | 1.539               | 0.124             | -1495.447 | 1.24e+04  |  |  |
| HalfBath      | -1098.3395 | 3321.384 | -0.331              | 0.741             | -7615.402 | 5418.723  |  |  |
| BedroomAbvGr  | -1.022e+04 | 2155.038 | -4.742              | 0.000             | -1.44e+04 | -5990.397 |  |  |
| KitchenAbvGr  | -2.202e+04 | 6709.938 | -3.282              | 0.001             | -3.52e+04 | -8857.560 |  |  |
| TotRmsAbvGrd  | 5464.1204  | 1487.289 | 3.674               | 0.000             | 2545.833  | 8382.408  |  |  |
| Fireplaces    | 4371.8698  | 2188.667 | 1.998               | 0.046             | 77.370    | 8666.369  |  |  |
| GarageYrBlt   | -47.2763   | 91.060   | -0.519              | 0.604             | -225.949  | 131.397   |  |  |
| GarageCars    | 1.685e+04  | 3490.579 | 4.827               | 0.000             | 1e+04     | 2.37e+04  |  |  |
| GarageArea    | 6.2744     | 12.127   | 0.517               | 0.605             | -17.521   | 30.070    |  |  |
| WoodDeckSF    | 21.4407    | 10.024   | 2.139               | 0.033             | 1.772     | 41.109    |  |  |
| OpenPorchSF   | -2.2524    | 19.486   | -0.116              | 0.908             | -40.486   | 35.982    |  |  |
| EnclosedPorch |            | 20.621   | 0.354               | 0.724             | -33.167   | 47.757    |  |  |
| 3SsnPorch     | 33.4852    | 37.584   | 0.891               | 0.373             | -40.261   | 107.232   |  |  |
| ScreenPorch   | 58.0465    | 20.407   | 2.844               | 0.005             | 18.005    | 98.088    |  |  |
| PoolArea      | -60.5171   | 29.898   | -2.024              | 0.043             | -119.182  | -1.852    |  |  |
| MiscVal       | -3.7615    | 6.960    | -0.540              | 0.589             | -17.419   | 9.896     |  |  |
| MoSold        | -221.6980  | 422.859  | -0.524              | 0.600             | -1051.411 | 608.015   |  |  |
| YrSold        | -247.4485  | 845.813  | -0.293              | 0.770             | -1907.064 | 1412.167  |  |  |
| Omnibus:      | ========   | 433.915  | =======<br>Durbin-W | =======<br>atson: | ========  | 1.941     |  |  |
| Prob(Omnibus) | :          | 0.000    |                     | Jarque-Bera (JB): |           | 64998.981 |  |  |
| Skew:         |            | -0.670   | Prob(JB)            |                   |           | 0.00      |  |  |
| Kurtosis:     |            | 40.280   | Cond. No            |                   | 1.21e+16  |           |  |  |

#### Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.39e-21. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

\_\_\_\_\_

```
In [47]: from statsmodels.stats.outliers_influence import variance_inflation_factor

# Calculamos el VIF para cada variable en X
vif = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]

# Creamos un DataFrame para mostrar los resultados
pd.DataFrame({'VIF': vif}, index=X.columns)
```

VIF const 2 396251e+06 ld 1.034686e+00 MSSubClass 1.718790e+00 LotFrontage 1.827885e+00 LotArea 1.356288e+00 OverallQual 3.461493e+00 OverallCond 1.765745e+00 YearBuilt 6.094850e+00 YearRemodAdd 2.747160e+00 MasVnrArea 1.464423e+00 BsmtFinSF1 BsmtFinSF2 inf **BsmtUnfSF** inf **TotalBsmtSF** inf 1stFlrSF inf 2ndFlrSF inf LowQualFinSF inf **GrLivArea** inf BsmtFullBath 2.219913e+00 BsmtHalfBath 1.151092e+00 FullBath 3.120675e+00 HalfBath 2.269333e+00 BedroomAbvGr 2.288685e+00 KitchenAbvGr 1.593948e+00 TotRmsAbvGrd 4.631822e+00 Fireplaces 1.585157e+00 GarageYrBlt 4.572723e+00 GarageCars 4.314005e+00 GarageArea 4.448564e+00 WoodDeckSF 1.234169e+00 **OpenPorchSF** 1.301930e+00 EnclosedPorch 1.320733e+00 3SsnPorch 1.035532e+00 **ScreenPorch** 1.150664e+00 PoolArea 1.196011e+00 MiscVal 1.100833e+00 MoSold 1.068357e+00

YrSold 1.054518e+00

Out[47]:

En este caso las variables que presentan un 'VIF' infinito (BsmtFinSF1, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF, 1stFlrSF, 2ndFlrSF, LowQualFinSF, GrLivArea), así como tambien YearBuilt.

```
In [52]: # Importar las librerías necesarias
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error
    import numpy as np

# Definir las variables: independiente (fertility) y dependiente (life)
X = df["GarageCars"].values
y = df["GarageArea"].values

# Redimensionar X para que tenga el formato correcto (n_samples, n_features)
X = X.reshape(-1, 1)

# Crear el modelo de regresión lineal
modelo = LinearRegression()
```

```
# Entrenar el modelo con los datos
modelo.fit(X, y)

# Realizar predicciones sobre los datos de entrada
predicciones = modelo.predict(X)

# Calcular el error cuadrático medio (RMSE)
rmse = np.sqrt(mean_squared_error(y, predicciones))

# Calcular el coeficiente de determinación R^2
r2 = modelo.score(X, y)

# Imprimir los resultados
print("R²: {:.2f}".format(r²))
print("RMSE: {:.2f}".format(rmse))
```

R<sup>2</sup>: 0.78 RMSE: 100.53

## Conclusion

Para el modelo de regresion lineal, tome las variables de GarageCars y GarageArea, porque eran las que mayor correlacion tenian, al correr el modelo, la R2 fue muy positiva, teniendo 0.78 como resultado.

In [ ]:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js