DIBR for Immersive Videos: Traditional Depth Estimators versus Learning-Based Depth Estimators

Smitha Lingadahalli Ravi

Orange Labs \mid INSA Rennes, France

July 4th, 2022

- Overview
- 2 Depth-Image-Based-Rendering
- 3 Results

- Overview
- 2 Depth-Image-Based-Rendering
- 3 Results

Objective

- The moving picture experts group (MPEG) has been actively developing the MPEG Immersive Video (MIV) standard to efficiently transmit 6 degrees of freedom for realistic and virtual environments.
- The MIV is a concrete step towards a complete chain for immersive video coding, delivery, and rendering.

Objective

- Only studied for their depth accuracy.
- Assumption: Learning-based depth estimation would soon outperform the traditional depth estimators that are currently used.

- Overview
- 2 Depth-Image-Based-Rendering
- 3 Results

Settings

- Traditional Methods: Depth Estimation Reference Software (DERS), Immersive Video Depth Estimation Software (IVDE).
- Learning-Based Methods: GA-Net (Stereo), GWC-Net (Stereo) and R-MVSNet (Multi-View), AA-RMVSNet (Multi-View), IBRNet (Multi-View).
- Synthesis: Test Model for Immersive Video (TMIV)
- Dataset: MPEG-I Sequences.

- Overview
- 2 Depth-Image-Based-Rendering
- 3 Results

Results

	IV-PSNR †								
Sequences	Original	DERS	IVDE	GANet	GWCNet	RMVSNet	AARMVSNet	IBRNet	IBRNet(FT
Frog	36.92	34.96	35.13	35.87	35.29	30.28	34.48	31.52	32.18
Kitchen	40.81	38.46	38.92	39.27	38.63	35.74	37.61	38.64	39.42
Shaman	45.74	41.18	42.06	41.38	41.55	36.79	38.25	40.34	42.28
Painter	45.35	39.37	39.82	38.91	39.67	37.02	39.29	38.14	38.47
Street	41.59	39.61	38.81	40.56	40.08	35.09	39.92	38.94	37.96
Carpark	42.17	39.45	38.29	40.39	39.78	34.78	37.16	37.68	37.41
Fan	37.88	35.13	36.71	34.84	34.29	33.68	34.48	34.92	35.21
Mirror	41.52	38.56	40.46	35.67	35.12	33.46	34.18	36.92	38.18
Average	41.37	38.34	38.77	38.36	38.05	34.66	36.92	37.13	37.65
	LPIPS 1								
Sequences	Original	DERS	IVDE	GANet	GWCNet	RMVSNet	AARMVSNet	IBRNet	IBRNet(FT)
Frog	0.118	0.137	0.149	0.134	0.141	0.212	0.178	0.198	0.193
Kitchen	0.112	0.131	0.126	0.129	0.129	0.151	0.140	0.129	0.132
Shaman	0.087	0.102	0.112	0.109	0.106	0.184	0.168	0.119	0.101
Painter	0.091	0.121	0.114	0.132	0.118	0.149	0.125	0.141	0.138
Street	0.109	0.120	0.126	0.125	0.119	0.165	0.112	0.153	0.151
Carpark	0.104	0.124	0.129	0.118	0.128	0.193	0.152	0.148	0.145
Fan	0.105	0.130	0.121	0.135	0.138	0.152	0.141	0.138	0.132
Mirror	0.101	0.118	0.109	0.117	0.130	0.148	0.131	0.128	0.121
Average	0.103	0.124	0.123	0.125	0.126	0.169	0.143	0.144	0.139
	SSIM †								
Sequences	Original	DERS	IVDE	GANet	GWCNet	RMVSNet	AARMVSNet	IBRNet	IBRNet(FT
Frog	0.864	0.852	0.849	0.856	0.852	0.784	0.817	0.795	0.798
Kitchen	0.912	0.881	0.885	0.892	0.882	0.861	0.872	0.879	0.902
Shaman	0.926	0.916	0.901	0.906	0.912	0.882	0.892	0.915	0.919
Painter	0.920	0.884	0.896	0.882	0.887	0.859	0.879	0.872	0.875
Street	0.915	0.887	0.880	0.894	0.889	0.865	0.881	0.871	0.874
Carpark	0.919	0.879	0.871	0.883	0.880	0.856	0.861	0.868	0.869
Fan	0.904	0.875	0.889	0.872	0.868	0.852	0.856	0.864	0.870
Mirror	0.924	0.889	0.908	0.892	0.889	0.875	0.882	0.885	0.891
Average	0.910	0.882	0.884	0.884	0.881	0.854	0.867	0.868	0.874

Results 00000

Results

References

- [1] [N18450] E. Juarez, Manual of Depth Estimation Reference Software (DERS 8.0), ISO/IEC JTC1/SC29/WG11 MPEG2019/N18450, March 2019, Geneva, Switzerland.
- [2] [N19224] Manual of Immersive Video Depth Estimation, ISO/IEC JTC1/SC29/WG11 MPEG2020/N19224, Online, April 2020.
- [3] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. GA-Net: Guided aggregation net for end-to-end stereo matching. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- [4] Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and Hongsheng Li. Group-wise correlation stereo network. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019
- Yao, Yao, et al. MVSNet: Depth inference for unstructured multi-view stereo. Proceedings of the European Conference on Computer Vision (ECCV), 2018.
- [6] Wei, Zizhuang, et al. AA-RMVSNet: Adaptive aggregation recurrent multi-view stereo network. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
- [7] Test Model 4 for Immersive Video, ISO/IEC JTC1/SC29/WG11MPEG/N18795, October 2019, Geneva, Switzerland.
- [8] Wang, Qianqian, et al. IBRNet: Learning multi-view image-based rendering. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
- [9] Overview and Efficiency of Decoder-Side Depth Estimation in MPEG Immersive Video / Dawid Mieloch, Patrick Garus, Marta Milovanovic, Joel Jung, Jun Young Jeong, Smitha Lingadahalli Ravi, Basel Salahieh // IEEE Transactions on Circuits and Systems for Video Technology -2022. p. 1-15

Thanks!