Lecture #18. Q. Protocols 2 Communications

I. Perspective

II. Classical comm. complexity

IV. Ex. Finger printing (Q)
IV. Digital signatures

I a pss

 $I_{c} \approx$ measure of

II./ Comm Cplxty => general setting f: [0,13"x[0,1] 7 [0,1] Alice xelo,1}" Bob 1×€{0,13" do they need to compute f? How much comm =Options: O class/Q 3 Compute - exactly (0-err) - bounded error - 1 sided error 3 Shared randomness or entanglement \Rightarrow Ex: Equality $f(x,y) = EQ(x,y) = \int_{-1}^{1} x = y$ Deterministic D(EQ)=n exact Randon R(EQ) Rand. Protocol ⇒ Setup : A' & Bagree en P> n/E Compute: A(Z)= X+x2+ X3Z2+ + + xn Zn-1 B(Z)= Y1+1/2 Z+ Y3Z2+ + yn Zn-1 note f_{cr} C(z) = A(z) - B(z)X=X (=) C=0 X±y → #(Z's S.t. C(Z)=0) ≤ N Protocol/ random $Z \in F(P)$ Sends (Z,A(Z))A chooses

B computes C(Z) outputs EQ if C=0

NEQ other

Analysis//
$$Prob(C(z)=0) \leq \frac{n}{p} < \epsilon$$

A sends $2 \log P = O(\log n + \log \log)$, $R(EQ) \sim O(\log n)$

Problem	Exact CI	Random	.Q	Quantum Q.E exact
EQ	n	log.n	logn	n
Parity, inner product	h	n	n	n
DICI	n	n /	√n	?
Deutsch J.	$n \mid$	logn	lagn	logn
RAZ	1_	n'4/logn	logn	-

III / Fingerprinting

) 3 parity model "similt, msg passing", Andrew Yao (1979)

⇒ Classical:
$$\exists n \rightarrow m$$
 code (classical)

$$\begin{cases}
E(x) \in \{0,1\}^m | x \in \{0,1\}^n \\
m = Cn
\end{cases}$$

$$\text{dist}(E(x), E(T) \ge (+f) m, if x \ x \ f, C is constant$$

-

Let Ei(X) denote ith bit. Suppose A & B share a secret key 156.6,13 log 1
Protocol// Ex(x)
$A:X$ Ref $B:Y$ $E_{K}(Y)$
$Prob(E_{K}(x) \neq E_{K}(x) x \neq y) \geq 1 - \delta$; correctness δ is constant.
"Boosting": repeat times Prob(err) -> f" Disadvantage: Secret keys
With no secret ter open problem Fao 1996: Ambainis, Babai
Newmann & Szegedy —Q(Vn) bits ⇒ Q. Protocol
-> needs Ollogn) qubits, no secret key Buhirman, Cleve, Watrow 2001
$ \begin{array}{c c} A:x & \\ \hline & \\ & \\$

Two theorems Thm D: 3 2 states 1/x> of m qubits satisfying < 1/x/1/x > = f, for x = x' and f const prof Let $|7 \times > = \sum_{k=0}^{m-1} |E_k(x) > |k| > \sqrt{m}$,

Then $|7 \times |7 \times > = 1$. < 1/2/>= th = < K1 K = Ex(x) [Ex(y)> = $\frac{1}{m}$ $\frac{1}{k}$ $\langle E_k(x) | E_k(y) \rangle$ $\leq \pm .m\delta = \delta_{1}$ note: Stabiliers also work! Thm @: Given two State 14, > 14, > _ such that A) 14x>=14x> or B) /</x/7/>/ < S which one is true can be determined w. prob error = 1+52 Proof Swap test 10> H X 1/2>-- Swap -10, 1/2, 2/2) -> (0+1) (1/2 1/2) -> 0xx+1xx -> (O+1) 1/2 + (O-1) 1/2 1/2

= 0(次次+分次)+1(次次-少次) symmetric

Prob(
$$Z=1|X+y$$
)= $|X||9>|^2$ $\frac{1}{4}$

$$=\frac{1}{4}|(X+|-(X+|)(|X+|-|X+|)|$$

$$=\frac{1}{4}(2-2|X||X|)^2$$

$$\geq \frac{1}{2}(|-S^2|)$$
Prob of err $\leq \frac{1}{2}(|+S^2|)$

Note: No clonning theorem proves that there is no EQ (exact test).

Repeat: $O(\log \frac{1}{2})$ times
$$\rightarrow Perr \leq E$$

Cancept: Replaced shared randomness with qubits!

Desirable properties
Dunfogeable Non-reputiable
Defficient (keys reusable)
=> One-time classical DSS (Lamport 179)
Let for be a one-way function.
public knowledge
gen (c, f(k))
1 fox
(Ka, K,)
befoil) sig b(Kb) B) or
C
$(b, f(k_0))$ match?
o v and
$\frac{e \times ample}{f([x,y]) = xy}$
Ko= [7,13], f(Ko)=91
$K_1 = [3,17], f(k_1) = 51$
Public keys (0,91), (1,51)
msg(0,[7,13]) $msg(1,[3,17])$
Rompel 90: Info-secure DSS
C) M/F

V Quantum DSS	
Pef	
K to I fr	-
L bits n qubits	
n~O(log L)	
Q. Fingerprinting states	
V / V	
Claim	
One-way tunction	
One-way function Pf Holevos theorem!	
· ·	
$\frac{protecol}{gen} \frac{(o, 1f_0)}{(1/1f_0)} \in P_{E}$	
gen gen	
(ko, kj)	
b -> sign (b, K6), B	
Swap test	
EQ test 3 probabilistic => Repeatince m keys	
for each b	
If k > leak s log l bits => limit Copies to information about k T< L/n	A CO. A. S. MINISTER A. P.
Are all Pris same?	
Are all TRS same: [YKZ B]	
A Symmetry test.	
14, > C	

=> main result! Info-theoretical secure one-time public key DSS whose classical msg b is signed by classical private key (Kb) corresp. public quantum lay 17 kb. size of(b) = 1 bit Kb=O(Lm) bits |fk>=O(m log L) qubits # copies Ifr> = Tog L

Prob[Successful fengery] <= -(1- [-s]) m
Prob[Successful reput.] <= -(1- [-s]) m where C.C. const.

Problems to attack.

- > Ways to re-use keys?

 > Reduce to using no QC or Qmemory.

 > what are G.G?
- . => phys impl.

Security

