

УДК 576.893.194 : 597(924.16)

ЖИЗНЕННЫЕ ЦИКЛЫ НЕКОТОРЫХ МИКСОСПОРИДИЙ РЫБ КОЛЬСКОГО ПОЛУОСТРОВА

Б. С. Шульман

В результате проведенных ежемесячных сезонных исследований паразитофауны щуки, гольяна и окуня установлено, что одногодичный жизненный цикл у миксоспоридий имеет *Henneguya creplini*. У других видов (*Chloromyxum esocinum*, *Ch. mitenevi*, *Myxobolus cyprinæ*) жизненный цикл более короткий, вследствие чего рыбы могут заражаться ими несколько раз в году и в разные сезоны года.

Для более полного представления о численности паразитов рыб в водоеме, равно как и о патогенном воздействии их на хозяев, наряду с фаунистическими исследованиями необходимы ежемесячные наблюдения над сезонной динамикой паразитофауны в течение нескольких лет. Только в этом случае имеется возможность точно проследить влияние погодных условий каждого сезона на жизненный цикл, развитие и численность паразитов в зависимости от таковых каждого конкретного года.

В связи с этим с мая 1974 по сентябрь 1977 г. в Печозере бассейна р. Тулома нами проводились исследования сезонной динамики паразитофауны наиболее массовых видов рыб: щуки, гольяна и окуня. При этом ежемесячно (за редким исключением) вскрывалось по 15 экз. каждого вида рыб. Часть материала (по некоторым моногенеям, цестодам и trematодам) уже опубликована (Б. Шульман, 1977, 1980). В настоящей статье приводятся результаты исследований миксоспоридий, данные о которых излагались лишь в очень краткой форме (Б. Шульман, 1985).

Хорошо выраженный годичный цикл наблюдается у *Henneguya creplini*, паразитирующей на жабрах окуня (см. рисунок). Исследования этой рыбы начались в июне 1974 г. и только в сентябре были обнаружены цисты без спор. Далее следуют постепенное нарастание зараженности и созревание спор. Вплоть до февраля 1975 г. включительно все цисты, обнаруженные на жабрах окуня, были лишены спор. В марте началось спорообразование, завершившееся появлением в апреле—мае сформированных спор. По мере разрыва зрелых цист и выхода из них спор зараженность рыб уменьшалась и полностью сошла на нет к июню, когда единичные споры были обнаружены лишь у одной из исследованных рыб. В июле появились цисты новой генерации, лишенные спор. В общих чертах такой одногодичный цикл повторялся на протяжении всех лет наших исследований. Однако на рисунке видно, что в разные годы имелись некоторые отклонения от этой общей схемы. Так, в 1974 г. незрелые цисты появились в сентябре, в 1975 — в июле, а в 1976 и 1977 гг. — в августе. По-видимому, эти различия связаны с погодными условиями года и прежде всего с температурой воды. Действительно, появление цист новой генерации всегда имело место лишь тогда, когда среднемесячная температура воды опускалась до 13° и ниже. Это хорошо согласуется с данными о том, что резистентность орга-

низма рыб и выработка ими антител проявляются при температуре воды не ниже 13° (Лукьяненко, 1971; Г. Шульман, 1972), а приживаемость многих паразитов в рыбе заметно уменьшается или совсем сходит на нет при повышенных значениях летней температуры (Awachie, 1968; Kennedy, 1971; Лосева, Гуркина, 1974, и др.). Поэтому температура воды 13°, вероятно, является тем пределом, выше которого заражение окуня *H. creplini* невозможно. Соответственно появление новой генерации этого паразита всегда совпадало с понижением среднемесечной температуры воды до 13° и ниже. Именно по этой причине появление незрелых цист на жабрах окуня в 1974 г., характеризующееся самой высокой летней температурой, задержалось до сентября, а в 1975 г. с самым холодным летом оно произошло в июле, т. е. на 2 мес. раньше. При этом сроки появления новой генерации оказывали влияние на ход сезонной зараженности окуня *H. creplini* в каждом конкретном году. При позднем заражении (1974 г.) развитие спор в цистах носило кучный характер: спорообразование началось ровно на 6-й месяц после появления первых вегетативных стадий (в марте) и завершилось в апреле—мае. Раннее заражение в 1975 г. несколько осложнило общую картину зараженности окуня генераций данного года. Усиление инвазии, наблюдавшееся с июля, достигло максимума в сентябре—октябре, что свидетельствует о том, что новое заражение миксоспоридиями происходило в течение всего летне-осеннего периода. В декабре было вскрыто только 2 экз. окуней. Однако даже у них обнаружены цисты, в которых началось формирование спор. Очевидно, раннее заражение вызвало раннее формирование спор (примерно на 5-й месяц). Поскольку заражение в июле еще не было высоким, формирование спор в декабре и в январе наблюдалось у небольшого числа особей. В январе 1976 г. у некоторой части рыб обнаружены цисты как с полностью сформировавшимися, так и формирующими спорами. Однако большинство окуней содержало цисты без спор, несомненно, относящиеся к тем заражениям, которые произошли в более поздние сроки (сентябрь—октябрь). Формирование спор у них падает на февраль и март. Примерно с 20 марта появляются полностью сформированные споры. Таким образом, более ранние сроки заражения, заметно удлинившие сроки появления новых инвазий, сильно осложнили картину развития цист и созревания в них спор: у части паразитов споры появились уже в середине зимы, в то время как у основной части они созрели лишь к апрелю—маю.

Наиболее сложная сезонная динамика зараженности окуня *H. creplini* имела место в 1976—1977 гг. Незрелые цисты появились в августе. В сентябре—октябре наблюдалось обычное нарастание зараженности этим паразитом (до 66.6%). Однако в ноябре у всех 13 вскрытых окуней мы не обнаружили ни одной цисты. К сожалению, нам не удалось исследовать окуней в декабре. В январе

Сезонная динамика зараженности окуня *Henneguya creplini*.

1 — цисты без спор; 2 — цисты с формирующими спорами; 3 — цисты с сформированными спорами; 4 — рыба не исследовалась. Числа — температура воды, в °. Выделенные числа — температура при появлении цист новой генерации. По оси ординат — месяцы.

1977 г. окунь оказались слабо зараженными миксоспоридиями (всего 20 %), причем формирование спор в них не отмечалось. В феврале наметилось усиление зараженности (73.3 %). Небольшая часть рыб содержала цисты, в которых началось формирование спор. В марте несколько увеличилось число таких цист. Примерно с 10-го апреля в некоторых цистах (около 20 %) появились уже сформировавшиеся споры. Наконец, с мая по июль встречались цисты только со зрелыми спорами. Количество таких цист сошло на нет лишь в июле, т. е. с опозданием по сравнению с предыдущими годами на месяц. Создается впечатление, что в 1976—1977 гг. мы имели дело с двумя группами миксоспоридий, сроки заражения которых заметно не совпадают. Трудно также объяснить, куда могли исчезнуть рыбы, заразившиеся *H. creplini* с августа по октябрь. В январе 1977 г. наблюдалась лишь незначительная зараженность рыб цистами, лишенными спор. Эта зараженность увеличивалась в последующие месяцы. Основное созревание спор падает на май, и заражение сходит на нет в июле. Такое положение можно объяснить, лишь предположив, что в ноябре 1976 г. на смену рыбам, зараженным *H. creplini*, из реки пришли другие окунь, свободные от данного паразита. Попав в озеро, они заразились *H. creplini*, что мы и наблюдали в 1977 г. Небольшое количество вскрытий в конце 1976 г. лишило нас возможности проследить начало заражения. По-видимому, какое-то количество из ранее зараженных окуней сохранилось, но они не были обнаружены нами в ноябре ввиду меньшего числа вскрытий, а в декабре рыба не исследовалась. О том, что это могло быть, косвенным образом свидетельствует наличие в феврале и марте небольшого числа рыб, зараженных цистами с формирующимися спорами. В пользу того, что озерное стадо рыб пополнилось окунями из реки, свидетельствует их слабая зараженность в ноябре 1976 г. паразитической копеподой *Achtheres percarum* и метацеркариями trematod, что характерно для речных окуней (табл. 1). Обращает на себя внимание зараженность окуня *Tylodelphys clavata* в ноябре: экстенсивность заражения меньше, а интенсивность заражения и индекс обилия мало отличаются от таковых предыдущих 2 мес. Однако самая высокая интенсивность заражения *T. clavata* (19 и 46 экз.) в этом месяце наблюдалась лишь у тех двух окуней, которые были заражены *A. percarum*. Возможно, это и были представители озерного стада, не зараженные *H. creplini*. По-видимому, приток речных окуней в Печозере имеет место в конце каждого года, о чем свидетельствует снижение экстенсивности заражения рыб *H. creplini* в это время. Однако наиболее сильно это проявилось в конце 1976 г. С более поздним заражением этим паразитом окуней, пришедших из реки, по-видимому, связаны и наиболее поздние находки цист со зрелыми спорами *H. creplini* в июле 1977 г.

У других видов миксоспоридий (*Chloromyxum esocinum*, *Ch. mitenevi*, Мухо-

Таблица 1
Зараженность окуня некоторыми паразитами в сентябре—ноябре 1976 г.

Паразит	Сентябрь		Октябрь		Ноябрь	
	% заражения	Интенсивность инвазии	% заражения	интенсивность инвазии	% заражения	интенсивность инвазии
<i>Henneguya creplini</i>	60.0	(1—38) 5.2	66.6	(1—39) 5.5	0	0
<i>Cotylurus variegatus</i>	100.0	(8—762) 223.6	100.0	(16—657) 213.9	100.0	(11—337) 115.2
<i>Tylodelphys clavata</i>	100.0	(3—70) 15.9	100.0	(3—32) 11.7	76.9	(2—46) 10.8
<i>Achtheres percarum</i>	86.6	(1—6) 2.2	80.0	(1—28) 4.3	15.3	(1—8) 0.7

Примечание. В скобках минимальные и максимальные значения, за скобками индекс обилия.

Таблица 2

Сезонная зараженность щуки *Chloromyxum esocinum* (в %) в разные годы

Месяц	1974	1975	1976	1977
Январь		—	33.3	1 из 11
Февраль	0	0	0	
Март	0	0	0	
Апрель	6.6	0	33.3	
Май	60.0	6.6	86.6	
	П ПС С	С *	П ПС С	
Июнь	40.0	93.3	100.0	86.6
	П С	П ПС С	П ПС С	П ПС С
Июль	0	86.6	73.3	53.3
	П ПС С	П С	П С	
Август	66.6	26.6	20.0	40.0
	П	П С	П	П ПС С
Сентябрь	0	13.3	6.6	2 из 6
	С	П	П	
Октябрь	0	0	6.6	
		П		
Ноябрь	0	0	0	
Декабрь	0	0	0	

П р и м е ч а н и е. Здесь и в табл. 3, 4: П — плазмодии, ПС — плазмодии со спорами, С — споры, звездочкой отмечены единичные споры, тире — рыбу не исследовали.

Таблица 3

Сезонная зараженность гольяна *Chloromyxum mitenevi* (в %) в разные годы

Месяц	1974	1975	1976	1977
Январь		73.3	1 из 10	100.0
	П С	П	П ПС С	
Февраль		80.0	13.3	100.0
	П С	П ПС С	П ПС С	
Март		20.0	60.0	20.0
	С	П С	С *	
Апрель		53.3	53.3	66.6
	П ПС С	С *	П ПС С	
Май	80.0	60.0	26.6	66.6
	П С	П С	С	П ПС С
Июнь	46.6	73.3	46.6	40.0
	П С	П С	С	П С
Июль	13.3	33.3	20.0	20.0
	С	П С	С	П С
Август	13.3	13.3	0	0
	С	С		
Сентябрь	6.6	6.6	13.3	
	С	П	П С *	
Октябрь	0	53.3	80.0	
	П С *	П ПС С		
Ноябрь	0	20.0	0	
	П С			
Декабрь	66.6	0	13.3	
	П С			

bolus cybinae) жизненный цикл более короткий, благодаря чему рыбы могут заражаться ими несколько раз в году и в разные сезоны года. Так, у *Ch. esocinum*, паразита щуки, он длится 15 дней (Юнчис, Чернышева, 1977). Однако многократное заражение этим паразитом, по данным тех же авторов, имеет место лишь у молоди рыб, не уходящих далеко от мест скопления спор, т. е. нерестилищ. В связи с этим *Ch. esocinum* в желчном пузыре молоди встречается в течение всего года на всех этапах жизненного цикла. У взрослых рыб заражение проявляется несколько иначе. Их массовое заражение происходит только во время нереста. С отходом щук от нерестилища *Ch. esocinum* у них встречается очень редко. В наших исследованиях единственным постоянным сроком заражения взрослой щуки *Ch. esocinum* является конец весны—начало лета (май—июнь) (табл. 2). В это время в желчном пузыре хозяина наблюдаются все фазы жизненного цикла этого паразита (плазмодии, плазмодии со спорами, споры). Вторичное заражение происходит спорадически, причем каждый год в разные сезоны. Так, в 1974 г. заражение наблюдалось еще и в августе, в 1975 — в июле—сентябре, в 1976 — в январе, а также в июле—октябре, в 1977 г. — в январе, апреле и в июле—сентябре. По-видимому, это заражение носит случайный характер или связано с временным пребыванием взрослой щуки в местах скопления спор, т. е. на нерестилищах.

Примерно такую же картину заражения показывает и *Ch. mitenevi* из желчного пузыря гольяна. Зараженность этим паразитом наблюдалась в течение всего года (за исключением 1—2 любых месяцев в году) (табл. 3). Вероятно, именно в это время гольяны отходят от мест скопления спор. Все остальное время они находятся вблизи нерестилищ, что и обуславливает их почти постоянное высокое заражение этим паразитом. Обычно во все годы, кроме 1976, высокая зараженность гольяна этим паразитом наблюдалась с апреля по июнь. Весенне-летний подъем зараженности связан с пребыванием гольяна на нерестилищах. Второй подъем наблюдается в зимнее время, но в разные годы он при-

Таблица 4
Сезонная зараженность щуки *Myxidium lieberkuehni* (в %) в разные годы

Месяц	1974	1975	1976	1977	Месяц	1974	1975	1976	1977
Январь			80.0 П С	11 из 11 П	Июль	80.0 П	93.3 П С	73.3 П С	100.0 П С
Февраль	100.0 П С*	100.0 П	100.0 П		Август	86.6 П	100.0 П	100.0 П	100.0 П С*
Март	100.0 П С*	93.3 П	100.0 П		Сентябрь	100.0 П	100.0 П С*	100.0 П	6 из 6 П С*
Апрель	100.0 П	100.0 П	100.0 П		Октябрь	6 из 7 П	100.0 П	100.0 П	
Май	100.0 П	93.3 П С	100.0 П С		Ноябрь	30.8 П С*	8 из 9 П С*	6 из 6 П	
Июнь	86.6 П С	100.0 П С	93.3 П С	100.0 П С	Декабрь	2 из 2 П С*	2 из 2 П	4 из 4 П	

ходился на различные сроки, зимой 1974—1975 гг. — на декабрь—февраль. В 1975 г. имел место сдвиг подъема на октябрь—ноябрь. В 1976 г. вспышка зараженности наблюдалась в октябре, а в 1977 г. — в январе и феврале. Таким образом, второй подъем зараженности гольяна *Ch. mitenevi* в отдельные следующие друг за другом годы не совпадает и зависит от конкретных погодных условий каждого года и связанного с этим поведения гольяна. Одновременное нахождение миксоспоридий на всех этапах жизненного цикла затрудняет точное определение времени, необходимое для созревания спор в плазмодиях. По-видимому, оно колеблется между 20—30 днями.

Жизненный цикл *Myxobolus cybinae*, паразита гольяна, неоднократно повторяющийся в течение года. Зрелые споры его встречались в любое время года. Высокая зараженность гольяна этим паразитом в течение всего года пока не дает возможности определить продолжительность его жизненного цикла.

Недостаточно ясна сезонная динамика зараженности *Myxidium lieberkuehni*. Плазмодии наблюдались в течение круглого года у большинства щук. Спорообразование имело место обычно весной и в начале лета, хотя в отдельные годы затягивалось до конца лета (табл. 4). Объяснить причину этого явления мы пока не можем.

Таким образом, характер сезонных изменений зараженности миксоспоридиями в значительной степени зависит от погодных условий каждого конкретного года. Причем эти изменения по-разному проявляются у видов с большей или меньшей продолжительностью их жизненного цикла.

Л и т е р а т у р а

- Лосева Т. Г., Гуркина Р. М. Сезонные изменения паразитофауны плотвы и густеры озера Верхнее Врево Ленинградской области // 6-е Всесоюз. совещ. по болезням и паразитам рыб. Тез. докл. М., 1974. С. 146—148.
- Лукьяненко В. И. Иммунобиология рыб. М.: Пищевая промыш., 1971. 354 с.
- Шульман Б. С. Сезонная динамика моногеней рода *Gyrodactylus* с гольяном, *Phoxinus phoxinus*, реки Печи (Кольский полуостров) // Исследования моногеней в СССР (Матер. Всесоюз. симпоз. по моногенеям). Л., 1977. С. 65—71.
- Шульман Б. С. К адаптации паразитов рыб в условиях Крайнего Севера // 9-я конф. Украин. паразитол. о-ва. Ч. 4. 1980. С. 178—179.
- Шульман Б. С. Сезонная и годичная динамика жизненных циклов некоторых миксоспоридий (*Myxosporidia*) рыб Кольского полуострова // 8-е Всесоюз. совещ. по паразитам и болезням рыб. Тез. докл. Л., 1985. С. 151—152.
- Шульман Г. Е. Физиолого-биохимические особенности годовых циклов рыб. М., 1972. 367 с.
- Юнчес О. Н., Чернышева Н. Б. Некоторые данные по биологии миксоспоридий с молоди рыб озера Врево // Изв. ГосНИОРХ. 1977. Т. 119. С. 134—141.

A w a c h i e I. B. E. On the bionomics of *Crepidostomum metoecus* (Braun, 1900) and *Crepidostomum farionis* (Müller, 1784) (Trematoda: Allocreadiidae) // Parasitol. 1968. Vol. 58, N 2. P. 307—324.

K e n n e d y C. R. The effect of temperature upon the establishment and survival of the Cestode *Caryophyllaeus laticeps* in orfe, *Leuciscus idus* // Parasitol. 1971. Vol. 63. P. 59—66.

ПИНРО им. Н. М. Книповича,
Мурманск

Поступила 14.07.1987

LIFE CYCLES OF SOME MYXOSPORIDIANS FROM FISHES OF THE KOLA PENINSULA

B. S. Shulman

S U M M A R Y

Monthly studies on the seasonal parasite fauna dynamics of pike, minnow and perch were carried out from May, 1974 to September, 1977. It was found out that the myxosporidian *Henneguya creplini* has a one-year life cycle. The infection of perch with this parasite takes place at a water temperature not exceeding 13°. In other species (*Chloromyxum esocinum*, *Ch. mitenevi*, *Myxobolus cybinae*) the life cycle is shorter, in consequence of which fishes can be infected with these parasites several times a year and in different seasons. The nature of seasonal changes in abundance of myxosporidiants depends to a great extent on weather conditions of each concrete year.
