CSE 342/542, Statistical Machine Learning, Winter 2022 Duration: 2 hours, Total marks # 17

Note:

- Write all required theory or calculations steps.
- Symbols have their usual meanings.

Q1. Following is a regression data:

ID	Height	Weight	label	
	(x_1)	(x_2)	(y)	
1	1	2	1	
2	0	1	1	
3	3	0	1	
4	1	1	-1	
5	2	1	-1	

A gradient boosting regression tree is determined using a model F(x) + h(x). Suppose you build F(x) and h(x) as trees with only two terminal nodes (decision stumps). The loss functions is mean squared error. Using a single cut across height at 1.1 and a single cut across weight at 1.1.

a. Find the regression model
$$F(x)$$
. [2]

b. Find
$$h(x)$$
. [2]

Q2. Consider the Adaboost algorithm. Consider the following classification dataset

ID	Height	Weight	Class
	(x_1)	(x_2)	(y)
1	1	2	1
2	0	1	1
3	3	0	1
4	1	1	-1
5	2	1	-1
6	2	2	-1

- a. Find a decision tree classifier with single cut (decision stump). Make one cut across x_1 at 1.1 and one cut across x_2 at 1.1. Find the classifier using weighted zero-one loss. Let this be $h_1(x)$. [2]
- b. Compute α_1 and updated weights.
- c. Compute $h_2(x)$ using a cut across x_1 at 1.1 and a cut across x_2 at 1.1. [2]

[1]

d. Find the output for $(x_1, x_2) = (3,0)$ using the final boosted classifier f(x). [1]

Note: In case the loss is equal in two cases, chose the tree with cut across **height** or x_1 .

Q3. It is IPL season. We have a match between Gujarat and Mumbai today. Lets suppose that you decide to check with your friends that which team will win a match with two inputs – form (x_1) and fitness (x_2) . If players are in form, then $(x_1=1)$ else $(x_1=0)$, if players are fit $(x_2=1)$ else $(x_2=0)$. Suppose you collected samples by asking 5 of your friends whose replies are $X = \{x_1, x_2\} = \{(1,0), (0,1), (1,1), (0,0), (0,1)\}$ for Gujarat $X = \{x_1, x_2\} = \{(0,0), (1,1), (1,1), (1,0), (0,0)\}$ for Mumbai

Assume that other required things are equal, who will win the match if $(x_1, x_2)=(1,0)$? Show the required theory. [3]

Q4. Consider the following data

Sample	Class 1			Class 2		
no.	(x_1)	(x_2)	(x_3)	(x_1)	(x_2)	(x_3)
1	1	0	-1	1	1	0
2	0	0	0	0	1	0
3	-1	1	1	0	0	0
4	No sample			-1	0	0

Suppose we use a trained encoder from an auto-encoder with the following structure. Let the output node has a linear activation.

- a. Find y for all inputs. Weights are w_1 =1, w_2 =0, w_3 =-1.
- b. Once you find y, compute mean and unbiased variance MLE estimate for each class using y. Assume a Gaussian distribution for y. [1]

[1]

c. Find the decision boundary between two classes using the components of part (b).[2]