Building a Robot Judge: Data Science for Decision-Making

4. Regression Discontinuity and Diff-in-Diff

16th October 2022

Machine learning:

y can be multi-dimensional, x can be high-dimensional.

Machine learning:

- y can be multi-dimensional, x can be high-dimensional.
- learn a high-dimensional vector of parameters θ to approximate a (potentially non-linear) function

$$y_i = h(\mathbf{x}; \theta)$$

that predicts y given covariates x.

Machine learning:

- y can be multi-dimensional, x can be high-dimensional.
- learn a high-dimensional vector of parameters θ to approximate a (potentially non-linear) function

$$y_i = h(\mathbf{x}; \theta)$$

that predicts y given covariates x.

▶ if we collected more data on x, we could predict the associated ŷ.

Machine learning:

- y can be multi-dimensional, x can be high-dimensional.
- learn a high-dimensional vector of parameters θ to approximate a (potentially non-linear) function

$$y_i = h(\mathbf{x}; \theta)$$

that predicts y given covariates x.

- if we collected more data on x, we could predict the associated \hat{y} .
- but $h(\cdot)$ does not provide a counterfactual prediction that is, how the outcome would change if x's were exogenously shifted.

Econometrics (applied statistical causal inference):

y is one-dimensional, x is low-dimensional.

Machine learning:

- y can be multi-dimensional, x can be high-dimensional.
- learn a high-dimensional vector of parameters θ to approximate a (potentially non-linear) function

$$y_i = h(x; \theta)$$

that predicts y given covariates x.

- if we collected more data on x, we could predict the associated \hat{y} .
- but h(·) does not provide a counterfactual prediction – that is, how the outcome would change if x's were exogenously shifted.

Econometrics (applied statistical causal inference):

- \triangleright y is one-dimensional, x is low-dimensional.
- ightharpoonup estimate a low-dimensional causal parameter ho using

$$y_i = \alpha_i + x_i \cdot \rho + \epsilon_i$$

where i indexes over documents, α_i includes control variables (and fixed effects), \cdot is dot product, and ϵ_i is the error residual.

Machine learning:

- y can be multi-dimensional, x can be high-dimensional.
- learn a high-dimensional vector of parameters θ to approximate a (potentially non-linear) function

$$y_i = h(x; \theta)$$

that predicts y given covariates x.

- if we collected more data on x, we could predict the associated \hat{y} .
- but $h(\cdot)$ does not provide a counterfactual prediction that is, how the outcome would change if x's were exogenously shifted.

Econometrics (applied statistical causal inference):

- \triangleright y is one-dimensional, x is low-dimensional.
- ightharpoonup estimate a low-dimensional causal parameter ho using

$$y_i = \alpha_i + x_i \cdot \rho + \epsilon_i$$

where i indexes over documents, α_i includes control variables (and fixed effects), \cdot is dot product, and ϵ_i is the error residual.

- ρ gives a prediction how outcome y would change if treatment variable x were exogenously shifted.
- useful for policy evaluation.
- ► Glossary for machine learning vs causal inference terms: https://bit.ly/ML-Econ-Glossary.

Outline

Regression Discontinuity Design

Fixed Effects

Panel Data / Differences-in-Difference

- ► The speciality of applied economists is **natural experiments**.
 - contexts using observational data that approximate a randomized trial.

- ▶ The speciality of applied economists is **natural experiments**.
 - contexts using observational data that approximate a randomized trial.
- ▶ RDD is one of those approaches:
 - threshold rules that are based on some ex-ante score: "running variable"

- ► The speciality of applied economists is **natural experiments**.
 - contexts using observational data that approximate a randomized trial.
- ▶ RDD is one of those approaches:
 - threshold rules that are based on some ex-ante score: "running variable"
- Example "running variables" (also called forcing or assignment variable):
 - Score in entry exams
 - Income for subsidy eligibility
 - Age limit for alcohol consumption
 - Votes in an election

- ▶ The speciality of applied economists is **natural experiments**.
 - contexts using observational data that approximate a randomized trial.
- RDD is one of those approaches:
 - threshold rules that are based on some ex-ante score: "running variable"
- Example "running variables" (also called forcing or assignment variable):
 - Score in entry exams
 - ► Income for subsidy eligibility
 - Age limit for alcohol consumption
 - Votes in an election
- ▶ If there is some randomness in the running variable, being just above or just below the threshold is randomly assigned.

Example: Effect of Minimum Legal Drinking Age on Death Rates

Carpenter and Dobkin (2009)

- \triangleright outcome variable Y_i : death rate
- ightharpoonup running variable x_i : age
- ▶ cutoff: c = 21, age where minors can suddenly drink legally
- ► treatment $D = \mathbb{I}[x_i > c]$: legal drinking status

Example: Effect of Minimum Legal Drinking Age on Death Rates

Carpenter and Dobkin (2009)

- \triangleright outcome variable Y_i : death rate
- ightharpoonup running variable x_i : age
- ightharpoonup cutoff: c = 21, age where minors can suddenly drink legally
- ▶ treatment $D = \mathbb{I}[x_i > c]$: legal drinking status

RDD Estimation

► OLS regression:

$$Y_i = \alpha + \rho \mathbb{I}[x_i > c] + f(x_i)'\beta + \epsilon_i$$

- $ightharpoonup f(x_i)$ includes polynomials in the forcing variable
 - generally linear or quadratic
 - can also interact with being above or below the cutoff

rdd = smf.ols(formula="death_rate ~ above_21 + age + age_squared", data=df).fit()

Localizing around cutoff

- ▶ Standard practice is to limit sample to a small bandwidth around the cutoff point
 - treatment more likely to be exogenous.

```
df_rdd = df[(df.age >= 19) & (df.age <= 22)]
rdd = smf.ols(formula="death_rate ~ above_21", data=df_rdd).fit()</pre>
```

Localizing around cutoff

- ▶ Standard practice is to limit sample to a small bandwidth around the cutoff point
 - treatment more likely to be exogenous.

```
df_rdd = df[(df.age >= 19) & (df.age <= 22)]
rdd = smf.ols(formula="death_rate ~ above_21", data=df_rdd).fit()</pre>
```

- ► How to choose the bandwidth?
 - Trade-off: the closer you get the better it is for identification, but the less data you have.
 - there are formulas for "optimal bandwidth" (e.g.: Imbens-Kalyanaraman 2011, Calonico, Cattaneo and Titiunik 2014).
 - can use the rdrobust package.
 - should also explore robustness to different bandwidths

Testing the validity of RDD

- ▶ RD Design can be invalid if individuals can precisely manipulate the assignment variable x_i in order to get (or to avoid) treatment.
- ► Testing for validity:
 - 1. Density of the running variable should be continuous (McCrary test)
 - Predetermined characteristics should have the same distribution just above and just below the cut off

Testing the validity of RDD

- ▶ RD Design can be invalid if individuals can precisely manipulate the assignment variable x_i in order to get (or to avoid) treatment.
- ► Testing for validity:
 - 1. Density of the running variable should be continuous (McCrary test)
 - Predetermined characteristics should have the same distribution just above and just below the cut off
- ► Another problem: other important variables are changing at the cutoff besides the treatment you had in mind.
 - have to think carefully / check if observable / run placebos.

Manipulation Test: Density Around Cutoff

Bagues and Campa (2017): Histograms of Population Around Population Thresholds

Manipulation Test: Effect on Past Covariates

Bagues and Campa (2017): Federal Transfers Per Capita

RDD: Recap

- Useful method to analyze the impact of treatment when the assignment varies discontinuously due to some rules!
 - (test score, electoral results, income threshold, etc.)
- Graphical analysis is key, and can be very convincing
- Need a large sample around the threshold
- Have to check for manipulation at the threshold

Activity: Think of an RD Design

- 4 minutes:
 - ► Think of an idea for a regression discontinuity design
 - something from your field/hobby/etc
 - write down the associated variables:
 - outcome, running variable, threshold
- 6 minutes, with a partner:
 - take turns describing your RDD idea
 - then, for your partner's design, try to propose potential problems:
 - how would manipulation around the cutoff happen in your partner's example?
 - could other relevant variables be changing at the cutoff besides the treatment you had in mind?
 - discuss together: how would you test/fix these problems?

Outline

Regression Discontinuity Desigr

Fixed Effects

Panel Data / Differences-in-Differences

Week 2 Recap: Adjusting for Confounders

- ▶ Want to estimate effect of an explanatory variable *D* on an outcome *Y*.
 - but there is an observed confounder A that would bias an estimate of a causal relationship.

Week 2 Recap: Adjusting for Confounders

- ▶ Want to estimate effect of an explanatory variable *D* on an outcome *Y*.
 - but there is an observed confounder A that would bias an estimate of a causal relationship.
 - e.g. effect of drinking coffee on study productivity; confounders could be the time of day.

Week 2 Recap: Adjusting for Confounders

- ▶ Want to estimate effect of an explanatory variable *D* on an outcome *Y*.
 - ▶ but there is an observed confounder *A* that would bias an estimate of a causal relationship.
 - e.g. effect of drinking coffee on study productivity; confounders could be the time of day.
- If confounders are observed, can identify effect of D on Y by "adjusting for" or "controlling for" A.
- two ways to do that:
 - 1. residualize D and Y on A and estimate relationship between \tilde{D} and \tilde{Y} .
 - 2. include A in a linear regression with outcome Y and predictor D.

Fixed Effects: Intuition

- ▶ Most of the time, there are many potential confounders that cannot be observed.
- ▶ in the coffee-productivity example, for each person *i*:
 - ▶ whether *i*'s parents drink coffee
 - how close *i* live to a coffee shop
 - etc.

Fixed Effects: Intuition

- ▶ Most of the time, there are many potential confounders that cannot be observed.
- ▶ in the coffee-productivity example, for each person *i*:
 - whether i's parents drink coffee
 - how close i live to a coffee shop
 - etc.
- ▶ What if we can observe i's productivity multiple times?
 - sometimes i had coffee, and sometimes not.
 - then could "control" for the person themselves, rather than their individual characteristics.
 - this adjusts for everything unique to the individual *i*, whether it is observed or not.

Fixed Effects: Residualization Approach

In Week 2 we had outcome Y, treatment D, confounder A. We adjusted for A by:

- 1. learn the function $\hat{D}(A)$, compute residual $\tilde{D} = D \hat{D}$
- 2. learn the function $\hat{Y}(A)$, compute residual $\tilde{Y} = Y \hat{Y}$
- 3. if A is the only confounder, the relationship between \tilde{D} and \tilde{Y} is causal.

Fixed Effects: Residualization Approach

In Week 2 we had outcome Y, treatment D, confounder A. We adjusted for A by:

- 1. learn the function $\hat{D}(A)$, compute residual $\tilde{D} = D \hat{D}$
- 2. learn the function $\hat{Y}(A)$, compute residual $\tilde{Y} = Y \hat{Y}$
- 3. if A is the only confounder, the relationship between \tilde{D} and \tilde{Y} is causal.

With fixed effects, we have N individuals, indexed by i, and T periods, indexed by t:

- 1. de-mean (center) D_{it} for each i i.e., form $\bar{D}_i = \frac{1}{T} \sum_t D_{it}$, then compute residual $\tilde{D}_{it} = D_{it} \bar{D}_i, \forall i$.
- 2. de-mean Y_{it} the same way o $ilde{Y}_{it}$

Fixed Effects: Residualization Approach

In Week 2 we had outcome Y, treatment D, confounder A. We adjusted for A by:

- 1. learn the function $\hat{D}(A)$, compute residual $\tilde{D} = D \hat{D}$
- 2. learn the function $\hat{Y}(A)$, compute residual $\tilde{Y} = Y \hat{Y}$
- 3. if A is the only confounder, the relationship between \tilde{D} and \tilde{Y} is causal.

With fixed effects, we have N individuals, indexed by i, and T periods, indexed by t:

- 1. de-mean (center) D_{it} for each i i.e., form $\bar{D}_i = \frac{1}{T} \sum_t D_{it}$, then compute residual $\tilde{D}_{it} = D_{it} \bar{D}_i, \forall i$.
- 2. de-mean Y_{it} the same way o $ilde{Y}_{it}$
- 3. if all confounders are at the level of i (there are no confounders that vary over time within i), the relationship between \tilde{D}_{it} and \tilde{Y}_{it} is causal.

Fixed Effects: Regression Approach

In Week 2 we had the linear model

$$Y_i = \alpha + \beta D_i + \gamma a_i + \eta_i$$

ightharpoonup could adjust for observed confounder a_i by including it as a linear predictor in the regression.

Fixed Effects: Regression Approach

In Week 2 we had the linear model

$$Y_i = \alpha + \beta D_i + \gamma a_i + \eta_i$$

ightharpoonup could adjust for observed confounder a_i by including it as a linear predictor in the regression.

Now we have

$$Y_{it} = \alpha_i + \beta D_{it} + \epsilon_{it}$$

where t indexes time, and α_i is a "fixed effect" for person/group i.

- α_i includes a set of binary variables that equal one for observations in i.
- ▶ in machine learning this is called a one-hot-encoded categorical variable.

Notes on fixed effects

- Can be used in many contexts:
 - ▶ the "entity" *i* could be people or firms or cities or countries, etc
- Usually, there are many confounders in a regression, many of which we can't measure.
 - Fixed effects adjust for **all** of them at the level of *i*.
 - \blacktriangleright we are comparing i to itself at a different time i is its own control group!

Notes on fixed effects

- Can be used in many contexts:
 - ▶ the "entity" i could be people or firms or cities or countries, etc
- Usually, there are many confounders in a regression, many of which we can't measure.
 - Fixed effects adjust for **all** of them at the level of *i*.
 - \blacktriangleright we are comparing i to itself at a different time i is its own control group!
- ▶ With the regression approach, we can add multiple sets of fixed effects, e.g.:

$$Y_{it} = \alpha_i + \frac{\alpha_t}{\beta} D_{it} + \epsilon_{ict}$$

where now we have α_t , a "time fixed effect" which for example could represent time of day or day of the week – a set of dummies for observations at period t.

```
fe2 = smf.ols(formula="product ~ coffee + C(person_id) + C(time)", data=df).fit()
```

this is a "two-way fixed-effects" model, which we will come back to shortly.

Randomization Blocks

- \triangleright Consider an outcome Y_{ijc} in case i for judge j on court c, e.g. guilty/innocent.
- \blacktriangleright We want to estimate the effect of judge characteristic D_i , e.g. political party.
- lacktriangleright If judges get different types of cases, estimating \hat{eta} from

$$Y_{ijc} = \alpha + \beta D_j + \epsilon_{ijc}$$

would be biased $(cov(D_j, \epsilon_{ijc}) \neq 0)$ because the unobserved case characteristics (in ϵ_{ijc}) are affecting both D_j and Y_{ijc} .

Randomization Blocks

- ▶ Consider an outcome Y_{ijc} in case i for judge j on court c, e.g. guilty/innocent.
- \triangleright We want to estimate the effect of judge characteristic D_i , e.g. political party.
- lacktriangleright If judges get different types of cases, estimating \hat{eta} from

$$Y_{ijc} = \alpha + \beta D_j + \epsilon_{ijc}$$

would be biased $(cov(D_j, \epsilon_{ijc}) \neq 0)$ because the unobserved case characteristics (in ϵ_{ijc}) are affecting both D_i and Y_{ijc} .

- But say judges are randomly assigned within court.
 - Then, after conditioning on a court fixed effect α_c , there is no influence of the case-type confounders on the assigned judge characteristic (the treatment):

ightharpoonup Hence, we get causal estimates of \hat{eta} from

$$Y_{ijc} = \frac{\alpha_c}{\beta} + \beta D_j + \eta_{ijc}$$

Reading Regression Tables

Table 6: Impact of assignment to a judge with the same last name on defendant outcomes

	(1)	(2)	(3)	(4)
	Acquitted	Acquitted	Acquitted	Acquitted
Same last name	0.013**	0.014**	0.019*	0.025***
	(0.006)	(0.006)	(0.011)	(0.009)
Observations	2239516	2237502	2258437	2256242
Fixed Effect	Court-month	Court-month	Court-year	Court-year
Judge Fixed Effect	No	Yes	No	Yes

Standard errors in parentheses

Notes: This table reports results from a test of the impact of random assignment to a judge with the same last name as the defendant on likelihood of acquittal, see Equation 5. Charge section and last name fixed effects have been used across all columns reported.

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Outline

Regression Discontinuity Desigr

Fixed Effects

Panel Data / Differences-in-Differences

Panel Data (Longitudinal Data) is Data Over Time

- \blacktriangleright we have outcomes y_{it} for "unit" (individual/group) i at time t
- ► N units and T time periods
 - ▶ a "balanced" dataset will have *NT* observations.
 - ▶ "unbalanced" panel data means that some unit-period pairs are missing e.g. due to entering or leaving the sample. this is not a problem in practice.
- ► The goal of panel data methods is to construct counterfactuals using the longitudinal structure of the data.

What if there is only one unit? Time Series Analysis

- In macroeconomics (analysis of the whole economy), you only observe one unit (the economy).
 - ▶ How to estimate causal effect of a macroeconomic policy like changing interest rates?

What if there is only one unit? Time Series Analysis

- In macroeconomics (analysis of the whole economy), you only observe one unit (the economy).
 - ▶ How to estimate causal effect of a macroeconomic policy like changing interest rates?

Source: Yixing Zu slides.

Example where previous methods fail

- Example: taxes raised in canton A, but **not** in canton B
 - ightharpoonup we observe employment Y_{jt} in time periods t before and after the reform in both cantons j
 - what is the effect of the tax rise D_{jt} on employment?

Example where previous methods fail

- Example: taxes raised in canton A, but not in canton B
 - ightharpoonup we observe employment Y_{jt} in time periods t before and after the reform in both cantons j
 - \blacktriangleright what is the effect of the tax rise D_{jt} on employment?
- naive OLS approach:

$$Y_{jt} = \alpha + \gamma D_{jt} + \varepsilon_{jt}$$

there are canton-level confounders biasing the estimate.

Example where previous methods fail

- Example: taxes raised in canton A, but not in canton B
 - we observe employment Y_{jt} in time periods t before and after the reform in both cantons j
 - \blacktriangleright what is the effect of the tax rise D_{it} on employment?
- naive OLS approach:

$$Y_{jt} = \alpha + \gamma D_{jt} + \varepsilon_{jt}$$

- there are canton-level confounders biasing the estimate.
- fixed effects approach:

$$Y_{it} = \alpha_i + \gamma D_{it} + \varepsilon_{it}$$

- $\hat{\gamma}$ estimates the pre/post change in employment for canton A
- but:
 - what if employment was already going up over time in all of switzerland?
 - \blacktriangleright the post-treatment estimate $\hat{\gamma}$ is biased upward by the time confounder.

Differences-in-Differences

- use canton B as a counterfactual to adjust for the time trend.
- ▶ In this example, the DD estimator is

$$[Y_{A1} - Y_{A0}] - [Y_{B1} - Y_{B0}]$$

employment change in <u>treated</u> canton, relative to employment change in comparison canton.

Differences-in-Differences

- use canton B as a counterfactual to adjust for the time trend.
- ▶ In this example, the DD estimator is

$$[Y_{A1} - Y_{A0}] - [Y_{B1} - Y_{B0}]$$

employment change in <u>treated</u> canton, relative to employment change in <u>comparison</u> canton.

in regression form, we estimate

$$Y_{jt} = \alpha_j + \frac{\alpha_t}{\alpha_t} + \gamma D_{jt} + \varepsilon_{jt}$$

where α_t is a **time fixed effect** – an indicator variable for each time period t.

Diff-in-diff: Checking for Parallel trends

- ► The identification assumption for diff-in-diff is "parallel trends" :
 - e.g., absent tax change, trend in employment would have been the same in cantons A and B.

Diff-in-diff: Checking for Parallel trends

- ▶ The identification assumption for diff-in-diff is "parallel trends" :
 - e.g., absent tax change, trend in employment would have been the same in cantons A and B.

Diff-in-diff: Checking for Parallel trends

- ▶ The identification assumption for diff-in-diff is "parallel trends" :
 - e.g., absent tax change, trend in employment would have been the same in cantons A and B.

Two-Way Fixed-Effects Regression

► The regression form

$$Y_{jt} = \alpha_j + \alpha_t + \gamma D_{jt} + \varepsilon_{jt}$$

generalizes to > 2 groups and > 2 periods

Two-Way Fixed-Effects Regression

► The regression form

$$Y_{jt} = \alpha_j + \alpha_t + \gamma D_{jt} + \varepsilon_{jt}$$

generalizes to > 2 groups and > 2 periods

- TWFE is an empirical workhorse.
 - e.g., in our eample, taxes and employment across cantons could be correlated for many confounding reasons.
 - ► TWFE / Diffs-in-diffs holds constant many of the most important confounders:
 - time-invariant canton-level factors
 - nationwide time-varying factors

Two-Way Fixed-Effects Regression

▶ The regression form

$$Y_{jt} = \alpha_j + \alpha_t + \gamma D_{jt} + \varepsilon_{jt}$$

generalizes to > 2 groups and > 2 periods

- TWFE is an empirical workhorse.
 - e.g., in our eample, taxes and employment across cantons could be correlated for many confounding reasons.
 - ► TWFE / Diffs-in-diffs holds constant many of the most important confounders:
 - time-invariant canton-level factors
 - nationwide time-varying factors
- Potential confounders must
 - vary over time by canton
 - be correlated with outcome variable
 - be correlated with the timing of treatment/reforms

Threats to validity for TWFE regression

- ► Can check that treatment cantons evolved similarly to comparison cantons before reform.
 - can also add canton-specific trends.

Threats to validity for TWFE regression

- Can check that treatment cantons evolved similarly to comparison cantons before reform.
 - can also add canton-specific trends.
- Skeptical questions to ask:
 - Why did the treatment group adopt the policy, and not the control group?
 - Were other policies adopted at the same time that might also affect the outcome?
 - Could the treatment spill over into the comparison cantons?

A note on standard errors

- Consider the regression for cantonal tax cuts and employment. We have 26 cantons.
 - the default standard errors formula for OLS assume that all observations are independent realizations.
- Compare the following analyses:
 - including the 10 years before and after the reform (N = 260)
 - ightharpoonup including the 20 years before and after (N=520)

A note on standard errors

- Consider the regression for cantonal tax cuts and employment. We have 26 cantons.
 - the default standard errors formula for OLS assume that all observations are independent realizations.
- Compare the following analyses:
 - including the 10 years before and after the reform (N = 260)
 - including the 20 years before and after (N = 520)
- ▶ Using the default SE's, the second analysis would give much more precise estimate, even though the data contain nearly equivalent information.

Clustering Standard Errors

Cluster standard errors:

- statistically acknowledges how many independent sources of information there are in the data.
- the standard approach is to cluster at the unit where treatment is assigned.
 - in this example, by canton.

```
dd = smf.ols(formula="emp ~ tax + C(canton) + C(time)", data=df)
result = dd.fit(cov_type="cluster",cov_kwds={"groups":df["canton"]})
```

for city-level reforms cluster by city, etc.

Event Study: Dynamic Treatment Effects

▶ So far we have estimated regressions like

$$Y_{jt} = \alpha_j + \alpha_t + \beta D_{jt} + \varepsilon_{jt}$$

- $\hat{\beta}$ will give us the average effect in the post-treatment period, relative to pre-treatment and to the control group.
- ▶ What if we care about the dynamics of the effect? How it changes over time?

Event Study: Dynamic Treatment Effects

▶ So far we have estimated regressions like

$$Y_{jt} = \alpha_j + \alpha_t + \beta D_{jt} + \varepsilon_{jt}$$

- $\hat{\beta}$ will give us the average effect in the post-treatment period, relative to pre-treatment and to the control group.
- What if we care about the dynamics of the effect? How it changes over time?
- The proper way to do this is with a "panel event study", where we estimate

$$Y_{jt} = \alpha_j + \alpha_t + \sum_{\tau = -W, \tau \neq -1}^{W} \beta_\tau \mathsf{D}_{jt}^\tau + \varepsilon_{jt}$$

- here, each item D_{jt}^{τ} represents a "lead" or a "lag" of treatment time. so, e.g., $\tau = 0$ for the period of treatment, $\tau = 1$ is the year after, $\tau = -2$ is two years before, etc.
- au=-1, the year before treatment, is dropped o it is the reference year, and $\hat{\beta}_{\tau}$ measures the difference relative to $\tau=-1$.
- see "The Effect", Section 18.2 and 18.3 for more detail.

Group Activity