Non-standard Preferences

Time preferences

Advanced course in Behavioural and Psychological Economics Tampere University

January, 2025

Link to updated version

Bibliography:

- DellaVigna, S. (2009). 'Psychology and Economics: Evidence from the field'. *Journal of Economic Literature*, 47(2): 315-372.
- Ericson, K. M., & Laibson, D. (2019). 'Intertemporal Choice'. *In Handbook of Behavioral Economics-Foundations and Applications* (Vol. 2, pp. 1-67).

Topics

Introduction

Exercise

Deadlines

Credit

Savings

Default effects

Introduction

Standard theory poses:

$$\max_{x_t^i \in X_t} \sum_{t=0}^{\infty} \delta^t \sum_{s_t \in S_t} p(s_t) U(x_t^i \mid s_t) \tag{1}$$

- $U(x \mid s)$: utility
- x^t : period t payoffs
- p(s): probability of state s
- δ : (time-consistent) discount factor

Introduction

Standard theory poses:

$$\max_{x_t^i \in X_t} \sum_{t=0}^{\infty} \frac{\delta^t}{s_t \in S_t} p(s_t) U(x_t^i \mid s_t) \tag{1}$$

- $U(x \mid s)$: utility
- x^t : period t payoffs
- p(s): probability of state s
- δ : (time-consistent) discount factor

... but utility discounting is **not just exponential**

Discounted Utility

Suppose:

$$x \perp s$$
 (x is orthogonal to s)

- Payoffs do not depend on states of the world
- Individual i maximize $\sum_{t=0}^{\infty} \delta^t U(x_t^i)$

$$\sum_{t=0}^{\infty} \delta^t U(x_t^i) = \delta^0 U(x_t^i) + \delta U(x_{t+1}^i) + \delta^2 U(x_{t+2}^i) + \delta^3 U(x_{t+3}^i) + \dots$$

• For $\delta = .9$

$$\sum_{t=0}^{\infty} \delta^t U(x_t^i) = (1)U(x_t) + (.9)U(x_{t+1}) + (.81)U(x_{t+2}) + (.729)U(x_{t+3}) + \dots$$

Theory

- Standard model assumes a **discount factor** (δ) that:
 - Allows comparing utility in different periods
 - Is independent of when utility is evaluated
 - ightarrow i.e., time consistency

Theory

- Standard model assumes a **discount factor** (δ) that:
 - Allows comparing utility in different periods
 - Is independent of when utility is evaluated
 - \rightarrow i.e., time consistency

Empirical Evidence

• Discounting is **steeper in the immediate future** than further ahead

Theory

- Standard model assumes a **discount factor** (δ) that:
 - Allows comparing utility in different periods
 - Is independent of when utility is evaluated
 - ightarrow i.e., time consistency

Empirical Evidence

- Discounting is steeper in the immediate future than further ahead
 - Thaler (1981) finds people are indifferent between:
 - \rightarrow \$15 now and \$20 in one month
 - ightarrow \$15 now and \$100 in ten years

Discount Rate

We can compute the annualized discount rate $(\delta) = \left(\frac{F}{P}\right)^{\frac{1}{t}} - 1$

- 1 15 now versus 20 in one month
 - For P=15 (Present value), F=20 (Future value), and t=1 month $(\frac{1}{12}$ years)

$$\delta_1 = \left(\frac{20}{15}\right)^{\frac{1}{(12)}} - 1 = 1.333^{12} - 1 \approx 30.57 = \boxed{3,057\%}$$

Discount Rate

We can compute the annualized discount rate $(\delta) = \left(\frac{F}{P}\right)^{\frac{1}{t}} - 1$

- 15 now versus 20 in one month
 - For P=15 (Present value), F=20 (Future value), and t=1 month $(\frac{1}{12}$ years)

$$\delta_1 = \left(\frac{20}{15}\right)^{\frac{1}{(12)}} - 1 = 1.333^{12} - 1 \approx 30.57 = \boxed{3,057\%}$$

- 2 15 now versus 100 in ten years
 - For P=15 (Present value), F=100 (Future value), t=10 years

$$\delta_2 = \left(\frac{100}{15}\right)^{\frac{1}{10}} - 1 = 6.67^{\frac{1}{10}} - 1 \approx .21 = \boxed{21\%}$$

Theory

- Standard model assumes a **discount factor** (δ) that:
 - Allows comparing utility in different periods
 - Is independent of when utility is evaluated
 - ightarrow i.e., time consistency

Empirical Evidence

- Discounting is **steeper in the immediate future** than further ahead
 - Thaler (1981) finds people are indifferent between:
 - \rightarrow \$15 now and \$20 in one month (3,057% annual discount!)
 - \rightarrow \$15 now and \$100 in ten years (21% annual discount)

Theory

- Standard model assumes a **discount factor** (δ) that:
 - Allows comparing utility in different periods
 - Is independent of when utility is evaluated
 - ightarrow i.e., time consistency

Empirical Evidence

- Discounting is steeper in the immediate future than further ahead
 - Thaler (1981) finds people are indifferent between:
 - → \$15 now and \$20 in one month (3,057% annual discount!)
 - \rightarrow \$15 now and \$100 in ten years (21% annual discount)
 - McClure et al. (2004) explores the neural underpinnings:
 - → Payoffs in the present activate different neural systems than decisions involving only payoffs in future periods

Self-Control Problems

- When evaluating the distant future:
 - More patience
 - People make plans to:
 - → Exercise
 - → Stop smoking
 - → Improve themselves
- When the future gets near:
 - Discounting gets steeper
 - People:
 - → Binge-eat
 - $\rightarrow \ \, \text{Light (last) cigarette}$
 - $\rightarrow \ \, \text{Stay put}$

Following Laibson (1997) and O'Donoghue & Rabin (1999) Suppose that an individual considers her utility throughout many periods:

$$U_t = u_t + \beta \sum_{t=1}^{\infty} \delta^t u_t = u_t + \beta \delta u_{t+1} + \beta \delta^2 u_{t+2} + \beta \delta^3 u_{t+3} + \dots$$
 (2)

- u_t : period t utility
- δ : discount factor
- β : captures self-control problems, restricted to $\beta \leq 1$

This model (quasi-hyperbolic preferences) differs from the standard model in β

- if $\beta < 1$ the discounting between present and future is higher
 - e.g., if T=2, $\beta=.5$ and $\delta=.9$ $U_t=u_t+\beta\delta u_{t+1}=u_t+(.5)\times(.9)u_{t+1}=u_t+(.45)u_{t+1}$ Period 2 utility is weighted at 45% of period 1 utility
- if $\beta = 1$ we have the standard model
 - e.g., if T=2, $\beta=1$ and $\delta=.9$ $U_t=u_t+\beta\delta u_{t+1}=u_t+(1)\times (.9)u_{t+1}=u_t+(.9)u_{t+1}$ Period 2 utility is weighted at 90% of period 1 utility

Following O'Donoghue & Rabin (2001)

Suppose that an individual expects her utility to be:

$$\hat{U}_{t+s} = u_{t+s} + \hat{\beta}\delta u_{t+s+1} + \hat{\beta}\delta^2 u_{t+s+2} + \hat{\beta}\delta^3 u_{t+s+3} + \dots$$
(3)

• $\hat{\beta}$: captures expectations about time preferences, restricted to $\hat{\beta} \geq \beta$

11

- if $\hat{\beta} = 1$ the individual is *fully naive* about self-control problems
 - Will decide without considering that in the future she will have self-control problems
- if $\hat{\beta} > \beta$ the individual is *partially naive* about self-control problems
- if $\hat{\beta} = \beta$ the individual is sophisticated
 - Will take into account her self-control problems when deciding

Consider the choice between eating a fruit or a chocolate bar as a dessert

Chocolate bar

- Immediate reward: $u_1 > 0$
- Future cost: $u_2 < 0$

Fruit

- Immediate cost: $u_1 < 0$
- Future reward: $u_2 > 0$

- Focusing on the **chocolate bar** $(u_1 > 0, u_2 < 0)$:
 - Planning ahead
 - ightarrow Consume chocolate bar if $u_1+\delta u_2\geq 0$
 - Deciding in the moment
 - \rightarrow Consume chocolate bar if $u_1 + \beta \delta u_2 \geq 0$
 - ightarrow Remember eta < 0, so $|eta \delta u_2| \leq |\delta u_2|$
 - I would consume more than what I would want to do beforehand!

- Focusing on the **fruit** $(u_1 < 0, u_2 > 0)$:
 - Planning ahead
 - \rightarrow Consume fruit if $u_1 + \delta u_2 \geq 0$
 - Deciding in the moment
 - \rightarrow Consume fruit if $u_1 + \beta \delta u_2 > 0$
 - ightarrow Remember eta < 0, so $|eta \delta u_2| \leq |\delta u_2|$
 - I would consume less than what I would want to do beforehand!

- How can sophisticated agents solve this?
 - Look for commitment devices to:
 - → Increase investments
 - → Reduce present consumption
- Partially naive agents would still mispredict their consumption/investment decisions
 - Planning ahead (and focusing on fruit)
 - ightarrow Consume fruit if $u_1 + \hat{eta} \delta u_2 \geq 0$
 - · Deciding in the moment
 - \rightarrow Consume fruit if $u_1 + \beta \delta u_2 \geq 0$
 - ightarrow With $\hat{eta}>eta$, then $|eta\delta u_2|\leq \left|\hat{eta}\delta u_2
 ight|$
 - Would still consume less than what wanted to do beforehand!

Cases

- 1 Exercise
- 2 Deadlines
- 3 Credit
- 4 Savings
- **5** Default effects

Topics

Introduction

Exercise

Deadlines

Credit

Savings

Default effects

Exercise

DellaVigna & Malmendier (2006): Health clubs in the US

Exercise

DellaVigna & Malmendier (2006): Health clubs in the US

- Setup:
 - X_M : Monthly membership for L = \$80
 - X_P : Pay-per-visit membership with \$10 per visit
- Optimal choice:
 - Choose monthly membership $\Leftrightarrow p \times E(x_M|X_M) \ge L$
 - ightarrow Expected price per attendance (x_M) under X_M is lower than X_P

Exercise

DellaVigna & Malmendier (2006): Health clubs in the US

- Evidence:
 - Users choosing the monthly membership visit 4.4 times per month
 - This implies a cost of \sim \$17 per visit
 - ightarrow Choosing X_M is more expensive than choosing X_P (\$10 per visit)
- Explanation:
 - Users are purchasing a commitment device to exercise more:
 - ightarrow Marginal cost of each visit is \$0 under the monthly membership
 - Overestimation of attendance

Topics

Introduction

Exercise

Deadlines

Credit

Savings

Default effects

Ariely & Wertenbroch (2002): Professionals enrolled in executive education at MIT

Ariely & Wertenbroch (2002): Professionals enrolled in executive education at MIT

- Setup:
 - Course with 3 homework assignments required
 - Possibility to set binding deadlines:
 - → Delays imply lower grades
 - → No feedback until the end of the course
- Evidence:
 - 68% of deadlines were set before the end of the semester

Ariely & Wertenbroch (2002): Professionals enrolled in executive education at MIT

- Theory:
 - Standard Model:
 - ightarrow Incentive to set the last day of the semester as the deadline
 - → No constraints are better than constraints
 - Self-Control:
 - → Homework is an investment
 - → People spend less time than wished ex ante
 - → Deadlines force future self to spend more time

Ariely & Wertenbroch (2002): Professionals enrolled in executive education at MIT

- Open questions:
 - Does self-control improve performance?
 - Are chosen deadlines optimal?
- Experiment:
 - 3 error-detection homework assignments with 3 treatment conditions:
 - → T0: No deadlines (all due after 3 weeks)
 - → T1: Possibility to set binding deadlines
 - → T2: Equal-spaced deadlines (one every week)
 - Evidence:
 - \rightarrow Self-set **deadlines improve performance**: score of 105 in T1 vs. 70 in T0
 - \rightarrow Self-set deadlines are not optimal (partial naïveté in self-control): 105 in T1 vs. 130 in T2

Topics

Introduction

Exercise

Deadlines

Credit

Savings

Default effects

- Setup:
 - Credit card company randomly mailed offers:
 - \rightarrow T0: 6.9% interest for first 6 months, 16% afterwards
 - → T1: 4.9% interest for first 6 months, 16% afterwards
 - ightarrow T2: 6.9% interest for first 6 months, 14% afterwards
- Evidence:
 - Average borrowings:
 - \rightarrow \$2000 during the first 6 months
 - \rightarrow \$1000 afterwards (up to 15 months after change of rate)

- Theory:
 - Standard Model:
 - → In T1 the offer is 2% rate for first 6 months
 - \rightarrow In **T2** the offer is 2% rate for last 15 months
 - → Response to T1 should be smaller than to T2
 - → Calculation:

in T1:
$$2000 \times \left(\frac{6}{12}\right) \times 2\% = 20$$
 in T2: $1000 \times \left(\frac{15}{12}\right) \times 2\% = 25$

- Evidence:
 - Increase in take-up for T1: 386 per 100k
 - Increase in take-up for T2: 154 per 100k
 - T1 vs. T0 is 2.5 times larger than for T2 vs. T0
 - Individuals over-respond to the first six-months discount
- Interpretation:
 - Individuals **naively believe** they will not borrow much after the discount period ends

Topics

Introduction

Exercise

Deadlines

Credit

Savings

Default effects

Savings

Ashraf, Karlan, & Wesley (2006): Savings behavior in the Philippines

Savings

Ashraf, Karlan, & Wesley (2006): Savings behavior in the Philippines

- Motivation:
 - How to reconcile?
 - \rightarrow Liquid debt: \sim 12% of annual income, implies high impatience
 - Illiquid wealth accumulation: >200% of annual income towards retirement, implies high patience
 - Proposed solution: Commitment device
- Setup:
 - Philippine bank randomly assigned customers to:
 - ightarrow T0: Verbal encouragement to save
 - → T1: Commitment device

Customers could not access savings until reaching a self-specified goal

Savings

Ashraf, Karlan, & Wesley (2006): Savings behavior in the Philippines

- Evidence:
 - High demand for commitment: ~25% of customers accepted the commitment device
 - Savings increased:
 - \rightarrow T1: 33.3% increase
 - \rightarrow **T0**: 27.7% increase

Topics

Introduction

Exercise

Deadlines

Credit

Savings

Default effect

Default effects

- Tendency for an agent to generally accept the default option
- One of the most robust findings in applied economics since 2000!
- Observed in contexts such as:
 - Health clubs
 - Organ donation
 - Insurance plan choice
 - Retirement plan choice
- Widely applied in public (and private) policy

Madrian & Shea (2001): Company-offered 401(k) plans in the US

- Setup:
 - T0: Default is non-participation
 - → Employer match-up: 50% of contributions
 - T1: Default is participation at 3%
 - → Employer match-up: 50% of contributions
 - Employees can override default via phone call or form submission
- Evidence:
 - Participation rate:
 - \rightarrow T0: 49%
 - \rightarrow T1: 86%

Madrian & Shea (2001): Company-offered 401(k) plans in the US

- Explanation:
 - Transaction costs?
 - → Unlikely: Costs are too low compared to benefits
 - \rightarrow e.g., Average match-up provides \$1.2k in annual benefits
 - Self-control and naïveté?
 - → Decisions involves:
 - Immediate disutility (i.e., transaction cost)
 - Delayed benefit
 - → Agent behavior:
 - Postpones decision (i.e., self-control problem)
 - Believes they will act tomorrow (i.e., naïveté)
 - → Can result in infinite procrastination

Carroll et al. (2009): Forcing Choice as a Solution

- Setup:
 - New hires at a company:
 - → T0: Free to choose a retirement plan
 - → T1: Required to choose a retirement plan
- Evidence:
 - Participation rate:
 - \rightarrow T0: 50% choose a 401(k) plan
 - \rightarrow T1: 80% choose a 401(k) plan