Basic probability theory

Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lecture 3

ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

©Chrysafis Vogiatzis. Do not distribute without permission of the author

Last time..

We discussed different ways to count.

- **Multiplication rule:** when tasked with making k choices, each of them with n_i options (i = 1, ..., k): $n_1 \cdot n_2 \cdot ... \cdot n_k$
- Permutation of all elements of a set: when having n elements to arrange in an ordered fashion: $P_n = n \cdot (n-1) \cdot \ldots \cdot 1 = n!$
- Permutation of part of the elements of a set: when picking r < n elements to arrange in an ordered fashion:</p>

$$P_{n,r} = n \cdot (n-1) \cdot \ldots \cdot (n-r) = \frac{n!}{(n-r)!}$$

- Permutation of groups of indistinguishable elements: when faced with k groups of elements, each with n_i items, then the distinguishable permutations are: $\frac{n!}{n_1! \cdot n_2 \cdot \dots \cdot n_k}$
 - **Combinations:** when picking r < n elements to arrange in an unordered fashion: $C_{n,r} = \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!}$
- We tied counting to quantifying probabilities in the case of equally probable events.

Last time..

- We discussed different ways to count.
 - **Multiplication rule:** when tasked with making k choices, each of them with n_i options (i = 1, ..., k): $n_1 \cdot n_2 \cdot ... \cdot n_k$
 - Permutation of all elements of a set: when having n elements to arrange in an ordered fashion: $P_n = n \cdot (n-1) \cdot \ldots \cdot 1 = n!$
 - **Permutation of part of the elements of a set:** when picking r < n elements to arrange in an ordered fashion:

$$P_{n,r} = n \cdot (n-1) \cdot \ldots \cdot (n-r) = \frac{n!}{(n-r)!}$$

- Permutation of groups of indistinguishable elements: when faced with k groups of elements, each with n_i items, then the distinguishable permutations are: $\frac{n!}{n_1! \cdot n_2 \cdot ... \cdot n_k!}$
- **Combinations:** when picking r < n elements to arrange in an unordered fashion: $\boxed{C_{n,r} = \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!}}$
- We tied counting to quantifying probabilities in the case of equally probable events.

Probability

As a reminder, probability is a real number that quantifies the likelihood of an event happening.

- **1** $P(E) \geq 0$.
- **2** If E = S, then P(E) = 1.
- If E_1, E_2, \dots, E_m are m mutually exclusive events then:

$$P(E_1 \cup E_2 \cup ... \cup E_m) = P(E_1) + P(E_2) + ... + P(E_m)$$

or:

$$P\left(\bigcup_{i=1}^m E_i\right) = \sum_{i=1}^m P(E_i).$$

Probability

As a reminder, probability is a real number that quantifies the likelihood of an event happening.

- **1** $P(E) \ge 0$.
- **2** If E = S, then P(E) = 1.
- If E_1, E_2, \dots, E_m are m mutually exclusive events then:

$$P(E_1 \cup E_2 \cup ... \cup E_m) = P(E_1) + P(E_2) + ... + P(E_m)$$

or:

$$P\left(\bigcup_{i=1}^m E_i\right) = \sum_{i=1}^m P(E_i).$$

The three axioms above immediately give us some very useful properties:

- Probability is always between 0 and 1.
- $\blacksquare P(\overline{E}) = 1 P(E).$
- If $E_1 \subseteq E_2$, then $P(E_1) \le P(E_2)$.

Union and intersection of events

Recall that for any two events E_1 , E_2 , we have:

- $E_1 \cup E_2$: at least one of E_1, E_2 should happen.
- $E_1 \cap E_2$: both E_1 and E_2 should happen.

Union and intersection of events

Recall that for any two events E_1 , E_2 , we have:

- $E_1 \cup E_2$: at least one of E_1, E_2 should happen.
- $E_1 \cap E_2$: both E_1 and E_2 should happen.

From this definition, we may deduce that:

$$P(E_1) \le P(E_1 \cup E_2)$$
 $P(E_2) \le P(E_1 \cup E_2)$

$$P(E_1\cap E_2)\leq P(E_1) \qquad \qquad P(E_1\cap E_2)\leq P(E_1)$$

Union and intersection of events

Recall that for any two events E_1 , E_2 , we have:

- $E_1 \cup E_2$: at least one of E_1, E_2 should happen.
- $E_1 \cap E_2$: both E_1 and E_2 should happen.

From this definition, we may deduce that:

$$P(E_1) \le P(E_1 \cup E_2)$$
 $P(E_2) \le P(E_1 \cup E_2)$
 $P(E_1 \cap E_2) \le P(E_1)$ $P(E_1 \cap E_2) \le P(E_1)$

Additionally:

$$P(E_1 \cup E_2) \leq P(E_1) + P(E_2)$$

Example

Recall the grades from 3 different professors for the same class.

Letter Grade	Professor 1	Professor 2	Professor 3	Total
Α	108	20	30	158
В	44	49	46	139
С	11	15	15	41
D	0	1	8	9
Total	163	85	99	347

You call on 1 student out of the 347, what is the probability:

- **11** E_1 : you pick a student from Professor 1's class?
- **2** E₂: you pick a student who received an A in the class?
- **3** $E_1 \cap E_2$: you pick a student who was both in Professor 1's class and received an A in the class?

Example

Recall the grades from 3 different professors for the same class.

Letter Grade	Professor 1	Professor 2	Professor 3	Total
A	108	20	30	158
В	44	49	46	139
С	11	15	15	41
D	0	1	8	9
Total	163	85	99	347

You call on 1 student out of the 347, what is the probability:

1 E₁: you pick a student from Professor 1's class?

$$P(E_1) = 163/347 = 0.4697.$$

2 E₂: you pick a student who received an A in the class?

 $P(E_2) = 158/347 = 0.4553.$

3 $E_1 \cap E_2$: you pick a student who was both in Professor 1's class and received an A in the class?

Example

Recall the grades from 3 different professors for the same class.

Letter Grade	Professor 1	Professor 2	Professor 3	Total
A	108	20	30	158
В	44	49	46	139
С	11	15	15	41
D	0	1	8	9
Total	163	85	99	347

You call on 1 student out of the 347, what is the probability:

11 E_1 : you pick a student from Professor 1's class?

$$P(E_1) = 163/347 = 0.4697.$$

2 E_2 : you pick a student who received an A in the class?

$$P(E_2) = 158/347 = 0.4553.$$

3 $E_1 \cap E_2$: you pick a student who was both in Professor 1's class and received an A in the class?

Example

Recall the grades from 3 different professors for the same class.

Letter Grade	Professor 1	Professor 2	Professor 3	Total
A	108	20	30	158
В	44	49	46	139
С	11	15	15	41
D	0	1	8	9
Total	163	85	99	347

You call on 1 student out of the 347, what is the probability:

1 E_1 : you pick a student from Professor 1's class?

$$P(E_1) = 163/347 = 0.4697.$$

2 E_2 : you pick a student who received an A in the class?

$$P(E_2) = 158/347 = 0.4553.$$

3 $E_1 \cap E_2$: you pick a student who was both in Professor 1's class and received an A in the class?

$$P(E_1 \cap E_2) = 108/347 = 0.3112.$$

Example

We calculated:

- $P(E_1) = 163/347 = 0.4697.$
- $P(E_2) = 158/347 = 0.4553.$
- $P(E_1 \cap E_2) = 108/347 = 0.3112.$

What is the probability you pick a student who either got an A or was in Professor 1's class?

Example

We calculated:

- $P(E_1) = 163/347 = 0.4697.$
- $P(E_2) = 158/347 = 0.4553.$
- $P(E_1 \cap E_2) = 108/347 = 0.3112.$

What is the probability you pick a student who either got an A or was in Professor 1's class?

This is $P(E_1 \cup E_2)$: if we only consider E_1 and E_2 we are double counting the outcomes in both E_1 and E_2 .

Example

We calculated:

- $P(E_1) = 163/347 = 0.4697.$
- $P(E_2) = 158/347 = 0.4553.$
- $P(E_1 \cap E_2) = 108/347 = 0.3112.$

What is the probability you pick a student who either got an A or was in Professor 1's class?

This is $P(E_1 \cup E_2)$: if we only consider E_1 and E_2 we are double counting the outcomes in both E_1 and E_2 .

Overall:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Example

We calculated:

- $P(E_1) = 163/347 = 0.4697.$
- $P(E_2) = 158/347 = 0.4553.$
- $P(E_1 \cap E_2) = 108/347 = 0.3112.$

What is the probability you pick a student who either got an A or was in Professor 1's class?

This is $P(E_1 \cup E_2)$: if we only consider E_1 and E_2 we are double counting the outcomes in both E_1 and E_2 .

Overall:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

See the worksheet for the union of more than 2 events.

Conditional probabilities

Sometimes, we are interested in finding the likelihood of an event under certain circumstances. We formally define this as the probability that an event E_2 happens given that event E_1 has happened and we write¹:

$$P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}.$$

If two events are mutually exclusive, we have that $P(E_2|E_1)=0$.

Based on the formula for calculating conditional probabilities, we also have the multiplication rule for probabilities:

$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2|E_1).$$

¹Be careful: we need $P(E_1) > 0$ for this to make sense. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

Conditional probabilities

Sometimes, we are interested in finding the likelihood of an event under certain circumstances. We formally define this as the probability that an event E₂ happens given that event E₁ has happened and we write¹:

$$P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}.$$

If two events are *mutually exclusive*, we have that $P(E_2|E_1) = 0$.

Based on the formula for calculating conditional probabilities, we also have the multiplication rule for probabilities:

$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2|E_1).$$

¹Be careful: we need $P(E_1) > 0$ for this to make sense. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

Conditional probabilities

Sometimes, we are interested in finding the likelihood of an event under certain circumstances. We formally define this as the probability that an event E_2 happens given that event E_1 has happened and we write¹:

$$P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}.$$

If two events are *mutually exclusive*, we have that $P(E_2|E_1) = 0$.

Based on the formula for calculating conditional probabilities, we also have the multiplication rule for probabilities:

$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2|E_1).$$

¹Be careful: we need $P(E_1) > 0$ for this to make sense. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

Independent events

Two events are **independent** if knowledge that one has happened does not affect the probability of the other, that is:

$$P(E_2|E_1) = P(E_2) \text{ or } P(E_1|E_2) = P(E_1)$$

Equivalently, two events are independent if

$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2).$$

This is easily shown by using the fact that

$$\overbrace{P(E_2|E_1)}^{P(E_2)} = \frac{P(E_1 \cap E_2)}{P(E_1)} \implies P(E_1 \cap E_2) = P(E_1) \cdot P(E_2).$$

Independent events

Two events are **independent** if knowledge that one has happened does not affect the probability of the other, that is:

$$P(E_2|E_1) = P(E_2) \text{ or } P(E_1|E_2) = P(E_1).$$

Equivalently, two events are independent if

$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2).$$

This is easily shown by using the fact that

$$\underbrace{P(E_2)}_{P(E_2|E_1)} = \frac{P(E_1 \cap E_2)}{P(E_1)} \implies P(E_1 \cap E_2) = P(E_1) \cdot P(E_2).$$

Independent events

Two events are **independent** if knowledge that one has happened does not affect the probability of the other, that is:

$$P(E_2|E_1) = P(E_2)$$
 or $P(E_1|E_2) = P(E_1)$.

Equivalently, two events are independent if

$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2).$$

This is easily shown by using the fact that

$$\overbrace{P(E_2|E_1)}^{P(E_2)} = \frac{P(E_1 \cap E_2)}{P(E_1)} \implies P(E_1 \cap E_2) = P(E_1) \cdot P(E_2).$$

Example

- What is the probability that you draw a 2? These are 4 lans in the deck: 4/52 == 1/13.
- 2 What is the probability that you draw a diamond?
- 3 What is the probability that you draw a diamond or a spade?
- 4 What is the probability that you draw a diamond and a spade?
- Are "drawing a diamond" and "drawing a red card" independent events?
- Are "drawing a 2" and "drawing a red card" independent events?

Example

- 1 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond?
- What is the probability that you draw a diamond or a spade?
- 4 What is the probability that you draw a diamond and a spade?
- Are "drawing a diamond" and "drawing a red card" independent events?
- 6 Are "drawing a 2" and "drawing a red card" independent events?

Example

- 1 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond?
- What is the probability that you draw a diamond or a spade?
- What is the probability that you draw a diamond and a spade?
- Are "drawing a diamond" and "drawing a red card" independent events?
- 6 Are "drawing a 2" and "drawing a red card" independent events?

Example

- 1 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- 2 What is the probability that you draw a diamond?
- What is the probability that you draw a diamond or a spade?
- What is the probability that you draw a diamond and a spade?
- **5** Are "drawing a diamond" and "drawing a red card" independent events?
- Are "drawing a 2" and "drawing a red card" independent events?

Example

Consider a deck of 52 cards, with 13 cards from each suit: spades \spadesuit , hearts \heartsuit , diamonds \diamondsuit , clubs \clubsuit .

- 1 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- 2 What is the probability that you draw a diamond?

There are 13 of each suit in the deck: 13/52 = 1/4.

- 3 What is the probability that you draw a diamond or a spade?
- 4 What is the probability that you draw a diamond and a spade?
- **5** Are "drawing a diamond" and "drawing a red card" independent events?
- 6 Are "drawing a 2" and "drawing a red card" independent events?

Example

- 1 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond?

 There are 13 of each suit in the deck: 13/52 = 1/4.
- 3 What is the probability that you draw a diamond or a spade?
- 4 What is the probability that you draw a diamond and a spade?
- Are "drawing a diamond" and "drawing a red card" independent events?
- 6 Are "drawing a 2" and "drawing a red card" independent events?

Example

Consider a deck of 52 cards, with 13 cards from each suit: spades . hearts ♥, diamonds ♦, clubs ♣.

- 11 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond?

There are 13 of each suit in the deck: 13/52 = 1/4.

3 What is the probability that you draw a diamond or a spade? The suits are mutually exclusive: 1/4 + 1/4 = 1/2.

Example

Consider a deck of 52 cards, with 13 cards from each suit: spades . hearts ♥, diamonds ♦, clubs ♣.

- 11 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond? There are 13 of each suit in the deck: 13/52 = 1/4.
- 3 What is the probability that you draw a diamond or a spade? The suits are mutually exclusive: 1/4 + 1/4 = 1/2.
- What is the probability that you draw a diamond and a spade?

Example

Consider a deck of 52 cards, with 13 cards from each suit: spades . hearts ♥, diamonds ♦, clubs ♣.

- 11 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond? There are 13 of each suit in the deck: 13/52 = 1/4.
- 3 What is the probability that you draw a diamond or a spade? The suits are mutually exclusive: 1/4 + 1/4 = 1/2.
- What is the probability that you draw a diamond and a spade?

Example

Consider a deck of 52 cards, with 13 cards from each suit: spades . hearts ♥, diamonds ♦, clubs ♣.

- 11 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond? There are 13 of each suit in the deck: 13/52 = 1/4.
- 3 What is the probability that you draw a diamond or a spade? The suits are mutually exclusive: 1/4 + 1/4 = 1/2.
- What is the probability that you draw a diamond and a spade?
- 5 Are "drawing a diamond" and "drawing a red card" independent events?

Example

- 1 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond?

 There are 13 of each suit in the deck: 13/52 = 1/4.
- 3 What is the probability that you draw a diamond or a spade? The suits are mutually exclusive: 1/4 + 1/4 = 1/2.
- 4 What is the probability that you draw a diamond and a spade?
- Are "drawing a diamond" and "drawing a red card" independent events?

 They are not. Knowing we drew a red card, changes the probability of picking a diamond from 1/4 to 1/2.
- 6 Are "drawing a 2" and "drawing a red card" independent events?

Example

Consider a deck of 52 cards, with 13 cards from each suit: spades \spadesuit , hearts \heartsuit , diamonds \diamondsuit , clubs \clubsuit .

- 1 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond?

 There are 13 of each suit in the deck: 13/52 = 1/4.
- What is the probability that you draw a diamond or a spade?

 The suits are mutually exclusive: 1/4 + 1/4 = 1/2.
- 4 What is the probability that you draw a diamond and a spade?
- Are "drawing a diamond" and "drawing a red card" independent
- events? They are not. Knowing we drew a red card, changes the probability of picking a diamond from 1/4 to 1/2.

 6 Are "drawing a 2" and "drawing a red card" independent events?
- They are. Drawing a two has a 4/52 = 1/13 chance, even after knowing we drew a red card; similarly drawing a red card has a

1/2 chance, even after we know we picked a "2".

Example

Consider a deck of 52 cards, with 13 cards from each suit: spades \spadesuit , hearts \heartsuit , diamonds \diamondsuit , clubs \clubsuit .

- 1 What is the probability that you draw a 2? There are 4 twos in the deck: 4/52 = 1/13.
- What is the probability that you draw a diamond?

There are 13 of each suit in the deck: 13/52 = 1/4.

- What is the probability that you draw a diamond or a spade?

 The suits are mutually exclusive: 1/4 + 1/4 = 1/2.
- 4 What is the probability that you draw a diamond and a spade?
 - The suits are mutually exclusive: 0
- Are "drawing a diamond" and "drawing a red card" independent events?

 They are not. Knowing we drew a red card, changes the probability of picking a diamond from 1/4 to 1/2.
- 6 Are "drawing a 2" and "drawing a red card" independent events?

They are. Drawing a two has a 4/52 = 1/13 chance, even after knowing we drew a red card; similarly drawing a red card has a 1/2 chance, even after we know we picked a "2".

