Main Melody Extraction with Source-Filter NMF and CRNN

ircam

Centre
Pompidou

Dogac Basaran, Slim Essid, Geoffroy Peeters dogac.basaran@ircam.fr, slim.essid,geoffroy.peeters@telecom-paristech.fr

Introduction

We propose a Convolutional-Recurrent Neural Network (CRNN) model whose pretraining is based on the SF-NMF model [1].

Contributions:

- State-of-the-art performance achieved without large training datasets or data augmentation.
- Results on MedleyDB demonstrate the usefulness of a good input salience representation to the network.

Melody/non-melody

Pretraining with SF-NMF

Source Filter - Nonnegative Matrix Factorization (SF-NMF) model:

$$\mathbf{V} \approx \mathbf{\hat{V}} = \mathbf{V}^{F_0} \odot \mathbf{V}^{\Phi} + \mathbf{V}^{B}$$

$$= \underline{\mathbf{W}}^{F_0} \mathbf{H}^{F_0} \odot \mathbf{W}^{\Phi} \mathbf{H}^{\Phi} + \mathbf{W}^{B} \mathbf{H}^{B}$$

$$= \underline{\mathbf{W}}^{F_0} \mathbf{H}^{F_0} \odot \underline{\mathbf{W}}^{\Gamma} \mathbf{H}^{\Gamma} \mathbf{H}^{\Phi} + \mathbf{W}^{B} \mathbf{H}^{B}$$

 \mathbf{W}^{F_0} : Preconstructed basis, each column represents the harmonic structure of an F^0

 \mathbf{H}^{F_0} : Each row represents the activation of an $F^0 \to \mathbf{A}$ Salience Representation

CNN Architecture 1 (CNN1)

Classification

- Input resolution: 5 F^0 s per semitone, from A1 (55Hz) to A6 (1760Hz) \to 301 features per frame

- 62 classes: 1 non-melody class, 61 tar-

get F^0 classes in semitone resolution

- Layer 1: Focuses the energy around semitones on top of them (conv. with strides of 5), decrease frequency resolution to semitone.
- Layers 2 & 3: For learning to overcome one-tone and one-semitone confusion errors.
- Layer 4: For learning octave error patterns.

Experimental Setup

- Evaluation on MedleyDB: Melody 2 definition.
- Models trained on 67 tracks of MedleyDB Metrics:

Overall Accuracy (OA), Raw Pitch Accuracy (RPA), Raw Chroma Accuracy (RCA), Voicing Recall (VR), Voicing False Alarm (VFA)

Network variants:

SF-CRNN-1: CNN1 + 1 layer BiGRU (128 Units) + Classification layer (307,199 params)
SF-CRNN-2: CNN2 + 1 layer BiGRU (160 Units) + Classification layer (854,319 params)
CQT-CRNN-2: same as above but with CQT input.

SF-CNN: CNN2 + Classification layer

Baseline: CNN2 with Harmonic-CQT input

(406,253 parameters) [2]

- No MaxPooling or Dropout
- With early stopping
- CNN: trained on 0.29-sec (25-frame) patches
- RNN: trained on 5.8-sec (500-frame) patches

Experimental Results

- SF-CRNN1 beats the baseline on OA, RPA, RCA and VR with 1/3 amount of training data and less parameters.
- A better initial saliency representation results in better performance (SF-CRNN2 vs. CQT-CRNN2).
- Temporal tracking with RNN significantly improves the performance of the system (SF-CNN vs. SF-CRNN2).
- CNN1 (low resolution) performs better than CNN2 (high resolution) (SF-CRNN1 vs. SF-CRNN2)

\mathbf{H}^{F_0} vs. \mathbf{CQT} as salience

- \mathbf{H}^{F_0} has much higher RPA and RCA than CQT
- \mathbf{H}^{F_0} is better initial salience representation.

	$oldsymbol{H}^{F_0}$	CQT
RPA	0.538 ± 0.141	0.210 ± 0.16
RCA	0.648 ± 0.127	0.411 ± 0.15

Singing voice vs. instrument

	SF-CRNN-1		Baseline	
	S.V.	Ins.	S.V.	Ins.
OA	0.638	0.466	0.598	0.424
RPA	0.791	0.647	0.784	0.619
RCA	0.804	0.726	0.823	0.717

40% of training data is enough for SF-CRNN1 to reach OA of CQT-CRNN2 with full training data.

CRNN Activations

(Top-left) \mathbf{H}^{F_0} as input to CRNN (Top-right) CNN1 activations (Bottom-left) Classifier activations (Bottom right) Ground-truth annotations.

Conclusion and Future Work

- Pretraining stage has proven very effective.
- Proposed system achieves the state-of-the-art with lower complexity and less training data.
- Future goals: to jointly train SF-NMF and CRNN models, and to improve \mathbf{H}^{F_0} for more discriminative salience representation.

References

- [1] J. L. Durrieu, B. David, and G. Richard. A musically motivated mid-level representation for pitch estimation and musical audio source separation. IEEE Journal of Selected Topics in Signal Processing, 2011.
- 2] R.M. Bittner, B. McFee, J. Salamon, P. Li, and J.P. Bello. Deep salience representations for f0 estimation in polyphonic music. In 18th International Society for Music Information Retrieval Conference, ISMIR, 2017.

Acknowledgements

This research was partially supported by the DigThatLick project (http://dig-that-lick.eecs.qmul.ac.uk)