EXHIBIT I

The Best Scientific and Economic Evidence Says NO

The Best Scientific and Economic Evidence Says NO

Published October 2016

The Mission of the Coalition is to promote an understanding of the beneficial role of Carbon Dioxide (CO2) to life on Earth. There is a critical need to counter the demonization of CO2. Scientific evidence shows that more CO2 is benefitting life on Earth that the additional greenhouse warming it produces will be modest and beneficial. Computer predictions of harmful effects have already been invalidated by recent observations and by geological history.

To achieve Coalition objectives, it will enlist individuals with the expertise to effectively and objectively refute the assertions of climate alarmists and to demonstrate the benefits of CO2 and fossil energy.

1621 North Kent Street, Suite 603
Arlington, Virginia 22209
www.co2coalition.org
info@co2coalition.org
571-970-3180

Preface

This white paper summarizes the views of the CO2 Coalition, a new and independent non-profit organization that seeks to engage thought leaders, policy makers, and the public in an informed, dispassionate discussion of how our planet will be affected by carbon dioxide (CO₂) emissions.

In our two previous white papers, Carbon Dioxide Benefits the World; See for Yourself and A Primer on Carbon Dioxide and Climate (both available at www.co2coaliton.org), the Coalition set forth the argument that additional CO₂ emissions will be a net benefit, rather than a problem, for the world and explored the science behind the interaction between CO₂ and climate.

Our third major report—A Climate Surprise, an account of our first national conference, in NYC, March 29, 2016—offers added detail on issues such as the benefits to agriculture, along with climate economics and global temperature trends based upon the most reliable satellite instruments.

The present white paper is the first in a new ongoing series of special studies examining how CO_2 helps our world now and in the future. This analysis considers a major question raised by many people: "If there is uncertainty about the impacts of more CO_2 in the atmosphere, shouldn't we buy insurance?" Just as the Coalition has urged in all of its work, please read the assessment here and "see for yourself" what path you prefer.

Individuals and businesses routinely purchase insurance to guard against various forms of risk, such as fire, theft, or other loss. This logic of self-protection also applies to climate change.

—"The Cost of Delaying Action to Stem Climate Change," President's Council of Economic Advisers, July 2014

Executive Summary

President Obama's Council of Economic Advisers asserts that climate insurance, like fire insurance, is just common sense. Their analogy, however, is fundamentally wrong.

House fires are not only serious, but also common. We know what causes them, how often they occur, and the amount of damage that results. For a few hundred dollars a year, a homeowner can protect himself against a known risk of a catastrophic incident. Yet there is no empirical evidence that catastrophic climate change is a risk at all.

Many people refer to carbon dioxide (CO₂) as a "pollutant;" in reality, CO₂ gas is a natural part of the ecosystem—and essential to life on Earth. CO₂ levels are currently at record low levels compared with those that prevailed over most of the Earth's history.

There is no empirical evidence that catastrophic climate change is a risk at all.

The modest increases in CO₂ levels that

have occurred over the past century—thanks, in part, to the combustion of fossil fuels—have led to a pronounced and well-documented greening of the Earth. Plants grow better and are more drought resistant with more CO₂. This greening has benefitted—and will continue to benefit—human society, particularly the world's poor, whose lives depend on productive agriculture.

The actions necessary to reduce CO₂ emissions by any meaningful amount as "insurance" against climate change would be painful for Western countries and devastating for poor countries. Sensible people spend their insurance dollars carefully to protect their families against real risks. "Climate insurance" would simply be a waste of scarce resources.

I. Is Every Insurance Policy a Good Idea?

Insurance policies allow people to pool their funds to protect themselves against known risks. The risks associated with floods, fires, hurricanes, premature death, and other harmful events can generally be calculated from actual experience. People pay a premium for insurance coverage whose price is slightly above its statistical value; but in return, they receive peace of mind knowing that they will be covered if they are one of the unlucky few who suffer harm.

In 2015, for example, fire departments in the U.S. responded to 365,500 home fires, which caused \$7 billion in direct damage.¹ In any given year, roughly one in 265 insured homes suffers a fire-related loss.² The average loss is quite predictable: about \$19,000 for each fire, or roughly \$70 for each insured homeowner. This situation fits the insurance model perfectly.

Almost everyone buys insurance in one form or another; but most people treat insurance salesmen with understandable skepticism. Salesmen, after all, are trying to sell you something. Sensible people choose their policies carefully and buy insurance only under three circumstances:

The risk must be real. Fire insurance makes sense. Yet suppose that your insurance agent offered
you a policy to protect your home against a meteor strike. Even though such an event is unlikely,
the salesman argues, the consequences would be disastrous—for this reason, you should buy
insurance coverage.

According to the Planetary Science Institute, hundreds of thousands of meteors enter the Earth's atmosphere every year and about 500 hit the Earth's surface.³ The probability that a meteor will strike your house in any given year is about one in ten billion. In other words, a meteor will hit some house in the U.S. roughly once every 140 years. The statistical value of such a policy would be a small fraction of a penny: insuring against such an event would be foolish.

- The policy must be priced fairly. If your house is worth \$250,000 and the chance of losing your home in a fire is one in 350, you would not pay \$10,000 a year for an insurance policy. If you did, you would give your insurance company the full value of your home every 25 years, even though the odds of a fire are less than one in fifteen over that period. Insurance costs real money and all but the wealthiest people need to budget their insurance dollars carefully.
- The policy must protect you. If your insurance agent offered you a homeowner's policy with a premium of \$100 per year—but a payout of only 1% of your house's value in the event of a fire you would turn him down.

Climate "insurance" fails all three of these tests. Catastrophic climate change is a hypothesis without empirical support. Significant reductions in global CO₂ emissions would be enormously expensive, limiting living standards in the West and preventing the world's poor from lifting themselves out of poverty.

Moreover, the policies that are under discussion in the United Nations negotiating framework would have virtually no impact on the amount of CO₂ in the atmosphere. Therefore, such policies would offer no protection against the catastrophic climate scenarios that these policies are intended to address.

II. Are Precautions Always Sensible?

The insurance model doesn't work for all possible risks. Hypothetical events, such as nuclear war or massive solar flares, are potentially catastrophic, but their probabilities are unknown. Furthermore, there is no way to accumulate sufficient cash to cover an event that would devastate society. We don't buy insurance policies against nuclear war. We try to stop it from happening.

In other words, we talk about *precautions*, not *insurance*. The President's Council of Economic Advisers is not really proposing a climate-insurance policy but rather a precautionary reduction of carbon-dioxide emissions to forestall a supposed catastrophe.

Even if the climate risk is unknown, shouldn't we cut CO₂ emissions just in case? Aren't we always better off reducing risk? The answer to both questions is no.

Modern industrial societies are remarkably safe by historical standards; but risks still abound, including from illness, war, accidents, crime, pollution, bad weather, and other hazards of our complex world. Intelligent people understand these risks and take sensible precautions for themselves and their progeny. The key word: sensible.

President Obama once said, "This is the only planet we've got. And years from now, I want to be able to look our children and grandchildren in the eye and tell them that we did everything we could to protect it." Our children and grandchildren want a world that's not only safe, but also free and prosperous. If we squander our children and grandchildren's economic and cultural inheritance chasing phantoms, they won't thank us. For the sake of future generations, we need to make sound decisions about risks.

Most animals rely on instinct to avoid risks. They know what predators smell like and react quickly to the scent. When they hear a sudden noise, they run. Fortunately, humans are uniquely equipped to understand and manage risks by applying our innate intelligence—one of our major evolutionary advantages.

Intelligence, however, has its drawbacks. Most adults are smart enough to avoid sticking their hand in a tiger's cage or standing in an open field during a thunderstorm. Our caution about reasonable fears is called "common sense." Unfortunately, we also have the ability to see risks that do not exist, overestimate small risks, and take excessive measures to avoid perceived risks.

Successful risk management requires prioritizing the full range of possibilities; selecting for action those risks that are serious and avoidable; and rejecting action for those that are not. This process is not easy. Yet in addition to our individual brains, we have another crucial advantage. As a society, we can gather and share data regarding risks and then apply the most powerful tool that humans have developed: science.

Science allows us to discriminate among potential risks and take not every possible precaution but justified precautions. For example, should we take the train as a precaution against dying in a plane crash? After all, a simple steel machine moving along a fixed track at 60 miles per hour seems intuitively safer than a fragile and technologically complex aluminum tube hurtling through the air at 600 miles an hour six miles above the Earth.

Actual data, however, tell us that this intuition is wrong. The U.S. suffers one fatality for every 20 million passenger-miles traveled on trains but only one fatality for every 40 *billion* passenger miles on planes.⁵ Even though planes are much safer than trains, 15%–20% of the population have a fear of flying and 2%–3% are sufficiently afraid that they avoid air travel altogether.⁶

Science allows us to discriminate among potential risks and take not every possible precaution but justified precautions.

John Madden, the Oakland Raiders coach and TV football commentator, famously preferred to travel around the U.S. by bus rather than by plane. Taking a bus might make sense for reasons of convenience—or even to avoid anxiety—but it's a terrible riskmanagement strategy.

Today, Americans are bombarded with risk claims and accompanying demands for precautionary action. Do cell phones cause brain cancer? Do vaccines cause autism? Are

genetically-modified foods dangerous? Do artificial sweeteners cause cancer? Has the Earth's ozone layer disappeared? Can I get cancer from living near power lines? Do nuclear power plants emit harmful radiation? Is the Earth running out of mineral resources? Will burning fossil fuels make our planet unlivable?

Humans cannot function if we treat every possible risk as both real and catastrophic. We have limited resources of time and money: we must prioritize the risks that we wish to address. Infinite precautions are a recipe for paralysis. Furthermore, some precautions can cause severe damage, regardless of the good intentions of their promoters.

Consider the pesticide DDT. The successful drive to outlaw DDT began in 1962 with the publication of Rachel Carson's book *The Silent Spring*, which claimed that DDT was carcinogenic and would devastate bird populations. A nascent environmental movement, fueled by the media, demanded a ban on DDT as a precaution against its supposedly severe environmental and health effects. The argument: caution demanded action, even if the science was not rock solid.

More than 50 years later, the science of DDT remains controversial. The pesticide may be carcinogenic and may cause problems among bird populations. The damage caused by our "precautions," however, is undisputed.

Despite decades of efforts to find improved methods of preventing and curing mosquito-borne malaria, DDT remains the most effective weapon against this killer disease.⁷

According to the Centers for Disease Control and Prevention, 214 million people contracted malaria in 2015 and 438,000 people died, primarily African children.⁸ Since the 1972 ban on DDT, roughly 20 million people have died from malaria.

Only recently have international bodies, such as the World Health Organization, reluctantly begun to accept the limited use of DDT as a life-saving approach to mosquito control. The preemptive ban on DDT may not have been wise, after all.

III. Is Climate Risk Real?

Media accounts of the present and future effects of human-caused climate change present a bleak picture. The message: human emissions of CO₂ are bringing rapidly rising seas, a dramatic increase in extreme weather events, widespread crop failures, climate refugees, and rising military tensions. Some U.S. political leaders have even called human-caused climate change the greatest threat to national security that our nation faces. Science, however, paints a dramatically different picture.

Carbon dioxide (CO₂) is most assuredly not a "pollutant." The combustion of fossil fuels and many

other human activities—including every breath we exhale—do release carbon-dioxide gas into the atmosphere; but CO₂ is not a contaminant like oxides of sulfur and nitrogen, lead, or arsenic.

Instead, carbon dioxide is essential for—and a benefit to—life on Earth. Current CO_2 levels are about 400 ppm (parts per million), a record low level compared with those that prevailed over most

Carbon dioxide is essential for—and a benefit to—life on Earth

of the Earth's history. The modest increases of CO₂ that have already occurred over the past century (thanks, in part, to the combustion of fossil fuels) have led to a pronounced and well-documented greening of the Earth.

Plants grow better and are more drought resistant with more CO₂. This greening has benefitted—and will continue to benefit—human society, particularly the world's poor, whose lives depend on productive agriculture.

So what exactly is the supposed risk of climate change? Is it true, as some claim, that the adverse effects of atmospheric warming will ultimately overwhelm the clear and present benefits of CO₂? The argument here is not whether carbon dioxide warms the atmosphere. Physics tells us that CO₂ is a greenhouse gas, and virtually everyone agrees on this point. The critical questions are *how much* warming will occur and what the consequences of that warming will be.

Straightforward calculations show that if atmospheric carbon-dioxide levels were doubled, with no changes in the relative humidity, cloudiness, or other atmospheric properties, the Earth's surface would warm by about 1° C, a critical parameter known as the feedback-free equilibrium climate sensitivity. A temperature increase of this magnitude over the course of the twenty-first century would be highly beneficial to mankind. The U.N. Intergovernmental Panel on Climate Change (IPCC), however, argues that equilibrium climate sensitivity is much higher: 1.5°–4.5° C.

Why this discrepancy? The high IPCC sensitivities are generated by climate models, which make assumptions that lead to feedback effects from humidity and other properties of the atmosphere that amplify the warming effect of greenhouse gases.

According to NASA, atmospheric CO_2 concentrations have increased from about 290 ppm in 1880 to about 400 ppm today, an increase of nearly $40\%.^{10}$ But CO_2 is not the only greenhouse gas. Other anthropogenic greenhouse gases—mainly methane (CH_4), halocarbons, and nitrous oxide (N_2O)—have increased the warming effect, "radiative forcing," by about the same amount as CO_2 .

If human activity were responsible for all the observed warming, the total temperature increase since 1880 should thus be close to what we would see from a doubling of CO_2 in the atmosphere. NASA data indicate that average surface temperatures have increased by only about 1° C between 1880 and 2015. These observations offer no support for high sensitivity.

The high-sensitivity climate models used by the IPCC can reproduce observational data only with major *ad hoc* analytical contortions, such as the assumption that aerosols—such as sulfate particles in the upper atmosphere—reflect enough sunlight back into space to act as a massive offset to warming from more greenhouse gases. If only 'most' of the warming since 1960 is due to human activity (which is what the IPCC claims), then the task of making high sensitivity compatible with empirical observations becomes even more difficult and implausible.

The predictions of catastrophe contradict the geological record, too. The Earth has already experienced much higher CO₂ levels than those prevailing today, and life flourished on the land and in the oceans. A doubling or even quadrupling of CO₂ levels over the next century or two would likely produce positive results for humankind.

Some argue that the complete lack of empirical evidence for accelerated warming is irrelevant; 97% of scientists, they point out, believe that climate change is "real." This famous 97% figure is based on literature reviews or surveys asking broad questions, such as whether the respondent agrees that manmade CO₂ contributes to warming.

Virtually everyone agrees that climate change is "real" in the sense that the Earth's climate changes over time and that CO₂ has some influence on that change. Still, surveying opinions on vague questions adds nothing to a reliable understanding of climate science.

Too often, observers attribute every variation in local weather patterns to sweeping human-induced climate change. NASA, for example, cites as evidence of man-made climate change the observed rise in sea levels, the observed increase in the temperature of the atmosphere and the oceans, shrinking

ice sheets, declining Arctic sea ice, glacial retreat, extreme weather events, ocean acidification, and decreased snow cover.¹²

But this evidence supports such a sweeping assertion only if we really know how to distinguish anomalies from natural variability. The geologic record shows that climate has varied greatly over time. We are only now beginning to understand cyclical variations in ocean currents, for example, which may explain much, or even all, of the warming observed in recent years.

Some of these ocean cycles operate over periods of years; some work over decades, centuries, and even millennia. No individual—whether a trained scientist or an average citizen—can conclude from personal experience that the climate is changing outside natural variability without much stronger evidence than exists today.

The high climate sensitivities required to support claims of catastrophic effects are a *prediction* about future developments, not a *description* of the present condition of the climate. There is no convincing evidence that these predictions will come true.

Debunking catastrophic climate predictions has been likened to the stance of tobacco companies denying that smoking is hazardous. This charge fails. The correlation between smoking and lung cancer is so strong that it can no longer be dismissed as coincidence.

According to the American Lung Association, in 2015, lung cancer accounted for the deaths of 158,000 Americans—27% of all cancer deaths. More than 130,000, or 82%, of those who died of lung cancer were smokers.¹³ Actual deaths are evidence; predicted deaths are not. The conclusion that smoking is dangerous is based on science, not on opinion and certainly not on computer models.

There is no comparable evidence for the possibility of catastrophic climate change. In healthy scientific fields, the estimated uncertainty of key parameters decreases with time as our understanding grows. The link between smoking and lung cancer grew stronger with each passing year, but the evi-

dence for catastrophic global warming has become weaker over time.

Warming, especially over the past 20 years, has been much less than originally predicted. The key parameter of climate sensitivity—the equilibrium temperature rise from doubling CO₂ concentrations—has also become less certain. In fact, the IPCC has increased its range of uncertainly for this critical parameter, from 2.0–4.5°C in its 2007 report to 1.5–4.5° C in its latest 2014 report.

Catastrophic effects are a prediction about future developments, not a description of the present condition of the climate. There is no convincing evidence that these predictions will come true.

IV. How Much Would a "Climate-Insurance Policy" Cost?

Even if the risk of climate catastrophe is very small, couldn't we reduce carbon-dioxide emissions with minimal cost while creating positive economic and environmental benefits for society? The answer is no: the costs of carbon reduction are high and the collateral damage would be significant.

Fossil fuels are woven into the fabric of modern economic life. Oil, coal, and natural gas account for over 85% of total world primary energy supply and are likely to remain the dominant energy sources for decades to come. The World Bank estimates current global GDP at about \$73 trillion per year. The total market value of all fossil fuels sold in the world today is \$5 trillion—6 trillion per year. Or 6%—8% of world economic output.

Energy is an essential input: its cost and performance affect everything we do. Economists call this a "multiplier" effect, and the multiplier for energy is very large, indeed.

Oil provides critical mobility for people and freight. Coal generates the low-cost electricity that supports an industrial base and a modern living standard, particularly in countries such as China and India. Natural gas heats our homes and generates electric power cleanly and efficiently. Oil

Oil, coal, and natural gas account for over 85% of total world primary energy supply and are likely to remain the dominant energy sources for decades to come.

and natural gas provide feedstocks for plastics and other essential products.

When energy prices rise, the prices of everything we buy rise, too. These negative effects cascade through the economy, affecting productivity, output, and employment. By the same token, declining energy prices spur economic growth.

The process of economic development itself and the rise out of soul-crushing poverty in developing countries are, in large measure, driven by the substitution of chemical energy for human and animal power. A key component of any economic-growth strategy, for rich and poor countries alike, is access to low-cost, high-performance sources of energy.

Meaningful reductions in carbon-dioxide emissions would mean converting the global economy to renewable wind and solar power. Unfortunately, renewables are expensive and unreliable.

Today, the lowest-cost source of large-scale electric power in the U.S. is advanced combined-cycle generation fueled by low-priced natural gas. Onshore wind power costs about 2½ times as much, offshore wind power 6 times as much, solar photovoltaic power 5 times as much, and solar thermal power 8 times as much.¹⁷ Widespread use of these energy sources to reduce carbon-dioxide emissions would place a severe burden on the budgets of middle-class Americans and would seriously hamper the ability of the world's poor to escape poverty.

Wind and solar energy are also "intermittent" (i.e., power is available only when nature provides it). The old proverb, "make hay while the sun shines," embodies some ancient truths about solar power. You only get power when the sun shines, none at all at night, and not much on a cloudy day. If necessary, a combined-cycle natural gas plant can operate 85% of the time or more. Overall, solar-energy systems operate only around 15% of the time; wind-power systems, which operate about 25% of the time, are not much better.

This lack of predictability and reliability is unmanageable for modern electric grids except in very small doses and with significant transmission and dispatch costs. Today's modern economy relies on electricity available not only in large quantities but when needed and at precise voltages and frequencies. Renewable energy cannot currently—or foreseeably—meet these technical needs.

In addition to its high cost, renewable electricity's role in the energy economy is severely constrained by the lack of storage technology. Batteries are particularly critical to the use of electricity in transportation. Today's electric-car batteries cost thousands of dollars yet provide only limited range. Battery and other electricity-storage technologies have improved in recent years; but they are still inadequate to support large-scale renewable-energy use.

The case for deploying wind and solar energy rests on five major fallacies:

- 1. "Renewable energy sources are free." While the fuel cost of wind and solar power is zero, the capital/maintenance costs of the machines that convert wind and sun into stable, usable electricity are prohibitively high.
- 2. "Fossil fuels appear less expensive than renewables only because of heavy subsidies to fossil fuels." In some countries, primarily oil- and gas-exporters, fuel is sold at artificially low prices to local citizens. For example, gasoline costs \$0.02 per gallon in Venezuela, \$0.88 per gallon in Kuwait, and \$1.49 per gallon in Iran.¹⁸

In the industrialized countries, however, fossil fuels are heavily taxed. For example, the Organisation for Economic Co-operation and Development (OECD) identified about \$54 billion in fossil-fuel tax breaks and subsidies in its member states in 2013,¹⁹ but neglected to mention the \$475 billion in excise taxes that these same countries imposed on fossil fuels—above and beyond the normal levels of consumer taxation (general sales taxes or value-added tax). One cannot reasonably argue that wind turbines are having trouble competing in Illinois because the mullahs sell cheap gasoline in Tehran.

Contrary to the arguments of renewable-energy manufacturers, wind and solar power benefit from substantial federal, state, and local subsidies that give them a competitive advantage over conventional energy sources. According to the U.S. Department of Energy's Energy Information Administration, wind and solar power each receives more federal subsidies than coal, oil, natural gas, and nuclear power combined.

On the more meaningful measure of subsidies per unit of energy consumed, fossil fuels receive about \$0.10 per million Btu²⁰ while wind and solar enjoy subsidies averaging \$1.90 per MBtu. State and local subsidies add still more to government-bestowed wind and solar favoritism.²¹

3. "Air pollution from fossil fuels is a killer." The International Monetary Fund (IMF), for example, estimates that fossil fuels cost the global economy \$2.2 trillion annually in air pollution, 60% of which is in China. ²² Since renewable electricity emits no air pollutants, the implication is that the rapid elimination of fossil fuels must carry major public-health benefits.

It's certainly true that burning fossil fuels emits real pollutants—such as oxides of sulfur and nitrogen, carbon monoxide, and particulates (soot)—but energy is, as noted, a critical element of economic growth. Low cost, high-performance energy brings substantial benefits as well as drawbacks.

Until the 1980s, for example, China was a country of generalized misery—a vast home not to

U.S.-style poverty (where the annual poverty-income threshold for a family of four is now \$24,300)²³ but abject poverty (defined by the World Bank as living on less than \$1.90 per day). In Communist China, a life of malnutrition, backbreaking labor, disease, infant mortality, constant worry, and an early grave were the rule, not the exception.

China's post-Mao economic reforms, which allowed substantial parts of the country to

Low cost, high-performance energy brings substantial benefits as well as drawbacks.

enjoy the benefits of freer markets and international trade, have brought extraordinary results. According to the World Bank, the number of Chinese living below the \$1.90/day line decreased, from 66% (750 million people) in 1990 to 11.2% (150 million people) in 2010.²⁴

The availability of low-cost electricity has supported rapid industrial growth in China, including export industries that currently generate over \$2 trillion annually in foreign exchange, as well as industries that have attracted over \$100 billion annually in foreign direct investment. These earnings have created several hundred million modern jobs, which provide sufficient income to allow a Chinese worker to have quality housing, a balanced diet, medical care, mobility, and leisure time.

A direct result of increased wealth is an improvement in general health and a longer life expectancy. According to the UN, average life expectancy in China increased from 59 years in 1970 to about 75 years today. Low-cost electricity using inexpensive coal cannot account for all of that improvement, but its contribution is significant.

Life expectancy is not the only metric of well-being. Living even a modest middle-class lifestyle, as many hundreds of millions of Chinese can now do, is vastly superior in terms of human welfare than living as a subsistence peasant.

Since China began its economic reforms in 1979, 170 million—340 million Chinese migrated from farms to cities in search of economic opportunity, despite urban air pollution.²⁶ The IMF study cited above implies that China's economic-development process—and the decisions of several hundred million Chinese—have been deeply irrational, and that these people would have been better off in poverty, but with cleaner air.

4. "Scaling-up wind- and solar-power systems will drive their costs down a steep curve, ultimately making them less expensive than fossil fuels." Not all technologies enjoy economies of scale. Solar panels have gotten cheaper in recent years largely because of rapid growth in Chinese manufacturing, spurred by low labor costs and supportive government policies.

Although solar-equipment manufacturers often point to a high growth rate as a sign of success, solar energy remains a negligible component of world energy supply—with only about 1% of the global electricity market in 2015²⁷—despite several decades of government subsidies.

Wind power has done somewhat better, with about 4% of the world electricity market.⁴⁰ Wind turbines have also gotten less expensive, but not primarily through improved technology. Wind farms and individual wind turbines have simply gotten bigger; as a result, they have become highly controversial in many places.

At least in the U.S., scale-up is likely to be a limitation, not a boost, for wind power. Moreover, wind power is available disproportionately at night, when electricity demand is low and other power plants are idle.

5. "The high costs of renewable energy will be offset by the growth and employment benefits of developing a new industry." It is not possible to increase economic output by raising the cost of essential inputs. Otherwise, the government could improve our economy by outlawing power tools and earthmoving machines.

Some workers might benefit from the resulting increased employment; but the cost of everything we build would go up, and everyone else would suffer. Living standards come from productivity, not the number of jobs.

Theemployment/growthargumentassumes that government planning is superior to free markets in allocating capital and generating employment. Yet central planning didn't work for the Soviet Union in the twentieth century; it won't work anywhere else in the twenty-first century.

It is not possible to increase economic output by raising the cost of essential inputs.

The above fallacies for renewable energy aim to convince the public that eliminating fossil fuels

aim to convince the public that eliminating fossil fuels would be relatively painless, and, therefore, easy to accept as a precaution against catastrophic climate change. In reality, real reductions in fossil-fuel use would have a severe adverse effect on the living standards of low- and middle-income Americans, as well as a devastating impact on the world's poorest, most vulnerable people.

V. The Politicians' Dilemma

Elected leaders are well aware of the potential negative consequences of climate policy for economic growth. In the political arena, calls to phase out fossil fuels are inevitably limited to long-term aspirations unaccompanied by any discussion of means and the consequences of those means.

For example, in May 2015, President Obama said: "I am working internationally to reduce our carbon emissions and to replace over time fossil fuels with clean energies. ... But I think that it is important also to recognize that that is going to be a transition process. In the meantime, we are going to continue to be using fossil fuels."²⁸

The President's caution makes good sense; but how meaningful are the "transitional" steps that he is proposing? The IPCC argues that—to avoid what has been characterized as "dangerous warming," defined as 2° C above pre-industrial levels— CO_2 emissions must be reduced by 40%–70% below 2010 levels by 2050.²⁹ Global CO_2 emissions in 2010 were about 31.5 billion metric tonnes (mt) per year.³⁰

A 40% reduction would require emissions in 2050 to be no more than about 19 billion mt, a decrease of 12.5 billion mt. Since 2010, however, global emissions have *increased* to 33.5 billion mt, so the IPCC's suggested reduction is, at a minimum, 14.5 billion mt from today's level.

Meeting this target would require annual emissions reductions averaging about 1.5% per year—not too difficult at first blush. But U.S. Energy Information Administration projections show carbon-dioxide emissions continuing to increase by about 1% per year for the foreseeable future, assuming climate policies in place today.³¹

This growth does not come from rich Americans wasting energy, but from the world's poor working their way out of poverty. Compared with the above projection, meeting the IPCC's precautionary target would require reductions of about 2.5% per year—a significantly more challenging feat. For example, an annual 2.5% reduction implies global CO₂ emissions of no more than 27 billion mt by 2030, a 12 billion mt reduction compared with the EIA projection for that year.

At the December 2015 UN Paris Conference, delegates claimed a major breakthrough in emissions reductions by agreeing to a set of Intended Nationally Determined Contributions. In reality, INDCs are nothing more than "promises to make future promises." But take the delegates at their word.

The American pledge was a 26%–28% reduction from the 2005 level of 6.1 billion mt by 2025, which translates into a reduction of only about 1 billion mt by 2025, compared with the EIA projection. The selection of 2005 as the base year is instructive. U.S. CO_2 emissions peaked in that year and have been on a downward trend since, thanks largely to the replacement of coal by low-cost natural gas, which emits about 40% less CO_2 per unit of electrical-energy generated as coal.

How about China—now the world's largest emitter, at 9.2 billion mt per year, or 27% of the global total? China's INDC³² promises that by 2030, China will (a) reduce carbon intensity (kilograms of CO_2 per dollar of GDP) by at least 60% compared with 2005; (b) increase the share of non-fossil energy to 20%; and (c) reach its peak carbon-dioxide emissions.

Interestingly, these promises are all in line with projections of Chinese economic growth made before the Paris talks started. In essence, the Chinese government has committed to nothing more than continued economic growth; in return, it received congratulations and high praise from around the world. The U.S. and China, which account for about 45% of total global ${\rm CO_2}$ emissions, have together committed to nothing more than slightly slower growth in carbon-dioxide emissions—not much of a precaution.

Political leaders know that serious carbon reductions would bring higher energy prices, economic recession, and a premature end to their careers. According to the World Bank, U.S. economic growth has averaged 1.2% per year over the past eight years, compared with a 2.8% average over the past 50 years.

The European Union has managed only 0.4% annual growth over the past eight years;³³ the World Bank does not expect much improvement in the E.U.'s economic-growth rate in the next few years, either.³⁴ This dismal economic situation leaves little political maneuvering room for severe carbon reductions.

Many of our leaders are attempting to square this circle by offering lofty rhetoric and symbolic actions, hoping that their environmental constituents will be mollified while the economy is allowed to grow. Still, many of these symbolic actions, such as tax credits for wind power, preferential prices for wind and solar, and renewable portfolio standards, cost real money and hit the pocketbooks of middle-class families—through direct taxes or higher utility bills.

Spain and Germany, for example, have spent billions of dollars on renewable-energy programs,

which now contribute 11% and 12% of their energy requirements respectively, while their consumers endure residential electricity prices 2-3 times higher than those in the United States.

The proposed American climate policies are no more than a rounding error on global atmospheric CO₂ concentrations. Recalling that the IPCC wants to limit the global temperature rise to 2° C and assuming climate sensitivity at the high end of the IPCC range (4.5° C),

Political leaders know that serious carbon reductions would bring higher energy prices, economic recession, and a premature end to their careers.

a 20% cut in U.S. carbon-dioxide emissions would reduce global temperatures by only 0.02° C by 2100^{35} —hardly a precaution against alleged climate risk.

VI. Real Precautions

Drastic reductions in fossil-fuel use should not be seen as a simple precaution against climate catastrophe. As shown above, such a policy would be a cost without benefit.

Consider other instructive cases. Start with house fires. In addition to buying insurance to protect against fire losses, we also take steps to minimize kitchen dangers. Good-quality appliances, smoke detectors, ground-fault interrupters, and proper electrical wiring and gas supply are all sensible steps. What we don't do: ban kitchens as a precaution against kitchen fires. Kitchens are too useful and necessary.

Next, consider road accidents. In 2013, the U.S. suffered 35,500 automobile-related deaths.³⁶ We all buy automobile insurance to protect against loss; but we don't ban automobiles as a precaution. Instead, we work to make cars safer, with considerable success.

Confusing carbon dioxide with real pollutants will impede—not advance—environmental progress.

According to the National Safety Council, the risk of death in motor-vehicle accidents fell from 7.6 fatalities per 100,000 vehicle-miles in 1950 to 1.2 in 2013—while total vehicle-miles driven increased more than six-fold. ³⁷ The U.S. and most other countries have made great progress by focusing on safety improvements, including seat belts, air bags, better road design, stricter enforcement of traffic laws, improved vehicle crash-resistance, and other useful steps.

Finally, consider fossil fuels, which have shown similar successes in implementing genuinely effective precautions. Between 1980 and 2015, U.S. consumption of fossil fuels (oil, natural gas, and coal) grew from 69.8 quadrillion Btu (Q) to 79.3 Q, an increase of about 14%.³⁸

According to the Environmental Protection Agency, emissions of critical pollutants in the U.S. declined as follows over the same period: sulfur dioxide was down 85%, carbon monoxide, 85%, nitrogen dioxide, 60%, and particulates, 40%.³⁹ These accomplishments are impressive.

Confusing carbon dioxide with real pollutants will impede—not advance—environmental progress. Policies to reduce CO₂, an essential component of life on Earth, carry no benefit. After all, babies breathe out CO₂, not sulfur or fly ash. Our environmental policy should continue to focus squarely on reducing contaminants that harm public health.

History demonstrates that wealthy countries have the resources to clean up their environments, while poor countries do not. According to a 2014 report by the World Health Organization, six of the world's 10 most polluted cities are in India, three are in Pakistan, and one is in Iran.

Los Angeles now ranks as the world's 605th most polluted city, London is 829th, and New York is 918th.⁴⁰ Shouldn't developing countries have the same chance for success as Western countries?

VI. Conclusion

Two different salesmen are urging the world to purchase "climate insurance." One wants to sell a policy with an exorbitant premium to protect against a non-existent risk. The second, mostly political leaders, offers an expensive policy that provides zero protection against any risk. The Coalition's advice? Decline both offers.

Endnotes

- 1. National Fire Protection Association, http://www.nfpa.org/news-and-research/fire-statistics-and-reports/fire-statistics-fires-by-property-type/residential/home-fires.
- 2. Insurance Information Institute, http://www.iii.org/fact-statistic/homeowners-and-renters-insurance.
- 3. Planetary Science Institute, https://www.psi.edu/epo/fag/meteor.html.
- 4. President Obama, weekly radio address, Apr. 18, 2015.
- 5. U.S. Department of Transportation, Bureau of Transportation Statistics, http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/index.html.
- 6. Matthew Laker, "Specific Phobia: Flight", Activitas Nervosa Superior 54, no. 3–4 (2012), http://www.activitas.org/index.php/nervosa/article/viewFile/138/175.
- 7. Editorial, British Medical Journal, Nov. 15, 2007, http://www.bmj.com/content/335/7628/1001.
- 8. "Malaria", Centers for Disease Control and Prevention, https://www.cdc.gov/malaria.
- 9. "The Use of DDT in Malaria Vector Control: WHO Position Statement," World Health Organization, 2011, http://apps. who.int/iris/bitstream/10665/69945/1/WHO_HTM_GMP_2011_eng.pdf.
- 10. National Aeronautics and Space Administration, Goddard Institute for Space Studies, http://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt.
- 11. "Global Climate Change, Vital Signs of the Planet," National Aeronautics and Space Administration, http://climate.nasa. gov/vital-signs/global-temperature.
- 12. National Aeronautics and Space Administration, http://climate.nasa.gov/evidence.
- 13. "Lung Cancer Fact Sheet," American Lung Association, http://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/learn-about-lung-cancer/lung-cancer-fact-sheet.html.
- 14. Statistical Review of World Energy, BP, 2016, http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
- 15. "World DataBank," World Bank, http://databank.worldbank.org/data/download/GDP.pdf.
- 16. Bruce M. Everett, "Are Fossil Fuels Subsidized?" Working Paper, The Fletcher School, Tufts University.
- 17. "Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2016," Energy Information Administration, http://www.eia.gov/forecasts/aeo/assumptions/pdf/table_8.2.pdf.
- 18. "Gasoline Prices Around the World: The Real Cost of Filling Up," Bloomberg, Jul. 18, 2016, http://www.bloomberg.com/graphics/gas-prices.
- 19. "Fossil Fuel Support," Organisation for Economic Co-operation and Development, http://stats.oecd.org/Index.aspx? DataSetCode=FFS_AUS.
- 20. British thermal unit—equal to the amount of energy required to raise one pound of water by one degree Fahrenheit.
- 21. "Direct Federal Financial Interventions and Subsidies in Energy in Fiscal Year 2013," U.S. Department of Energy, Energy Information Administration, Mar. 23, 2015, https://www.eia.gov/analysis/requests/subsidy.

- 22. "How Large Are Global Energy Subsidies?" International Monetary Fund, 2015, www.imf.org/external/pubs/ft/wp/2015/wp15105.pdf#page=7&zoom=auto,-170,420.
- 23. "U.S. Federal Poverty Guidelines Used to Determine Financial Eligibility for Certain Federal Programs," U.S. Department of Health and Human Services, Office of The Assistant Secretary for Planning and Evaluation, https://aspe.hhs.gov/poverty-guidelines.
- 24. World Bank, http://povertydata.worldbank.org/poverty/country/CHN.
- 25. "Poverty and Equity, Country Dashboard, China" World Bank, http://data.un.org/Data.aspx?d=WDI&f=Indicator_ Code%3ASP.DYN.LE00.IN.
- 26. Kam Wing Chan, "China, Internal Migration", University of Washington, 2011.
- 27. "Statistical Review of World Energy," BP, 2016, http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
- 28. Remarks by President Obama in Press Conference after GCC Summit, May 14, 2015, https://www.whitehouse.gov/the-press-office/2015/05/14/remarks-president-obama-press-conference-after-gcc-summit.
- 29. "Synthesis Report, Summary for Policy Makers," U.N. Intergovernmental Panel on Climate Change, 2014, https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf.
- 30. "Statistical Review of World Energy, 2016," BP, http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
- 31. "International Energy Outlook, 2016," U.S. Department of Energy, Energy Information Administration, http://www.eia. gov/forecasts/ieo/pdf/appa.pdf.
- 32. Climate Action Tracker, http://climateactiontracker.org/countries/china.html.
- 33. "GDP at Market Prices (Constant 2010 US\$)," World Bank, http://data.worldbank.org/indicator/NY.GDP.MKTP.KD.
- 34. "Global Economic Prospects: Divergences and Risks," World Bank, 2016, http://www.worldbank.org/en/publication/global-economic-prospects.
- 35. "Current Wisdom: We Calculate, You Decide—A Handy-Dandy Carbon Tax Temperature-Savings Calculator," Cato Institute, http://www.cato.org/blog/current-wisdom-we-calculate-you-decide-handy-dandy-carbon-tax-temperature-savings-calculator.
- 36. "Injury Facts, 2015 Edition," National Safety Council, http://www.nsc.org/Membership%20Site%20Document%20Library/2015%20Injury%20Facts/NSC_InjuryFacts2015Ed.pdf.
- 37. National Safety Council, 'Injury Facts, 2015 Edition', at http://www.nsc.org/Membership%20Site%20Document%20 Library/2015%20Injury%20Facts/NSC_InjuryFacts2015Ed.pdf"
- 38. "Monthly Energy Review," U.S. Department of Energy, Energy Information Administration, Aug. 2016, http://www.eia.gov/totalenergy/data/monthly/pdf/sec1_3.pdf.
- 39. "National Air Quality: Status and Trends of Key Air Pollutants," U.S. Environmental Protection Agency, https://www.epa.gov/air-trends.
- 40. "Ambient (Outdoor) Air Pollution in Cities Database 2014 Measured by PM2.5," World Health Organization, http://www.who.int/phe/health_topics/outdoorair/databases/cities-2014/en.

CO2 Coalition Board of Directors

Bruce Everett, PhD: Faculty, Tufts University's Fletcher School; over forty years of experience in the international energy industry. (Moved from Advisory Committee)

Will Happer, PhD: Cyrus Fogg Brackett Professor of Physics (emeritus) Princeton University, former Director Office of Energy Research Director of Research, U.S. Department of Energy, co-founder Magnetic Imaging Technologies.

Richard Lindzen, PhD: Emeritus Alfred P. Sloan Professor of Meteorology, member National Academy of Sciences, fellow of the American Meteorological Society and American Association for the Advancement of Science, author of 200 scientific articles and books.

Patrick Moore, PhD: Co-founder and 15-year leader of Greenpeace (1971-1986). Chairman and Chief Scientist, Ecosense Environmental. Leader, Campaign to Allow Golden Rice Now.

Rodney Nichols: former Chief Executive Officer of the New York Academy of Sciences; Scholar-in-Residence at the Carnegie Corporation of New York, former Executive Vice President Rockefeller University.

Norman Rogers: Founder of Rabbit Semiconductor company; policy advisor to The Heartland Institute; member of the American Geophysical Union and the American Meteorological Society.

HarrisonSchmitt, PhD: geologist, astronautandlast mantowalk the moon (Apollo 17), adjunct professor physics University of Wisconsin-Madison, and former U.S. Senator from New Mexico.

Leighton Steward: geologist, former Chairman, Louisiana Land and Exploration Company; chair, Institute for the Study of Earth and Man Southern Methodist University, author.

Founder

Roger Cohen, PhD: fellow of the American Physical Society. Former Manager Strategic Planning Exxon-Mobil Research and Engineering.

CO2 Coalition Advisory Committee

Larry Bell, PhD: Professor University of Houston, established the research program in space architecture, author of Climate of Corruption: Politics and Power Behind the Global Warming Hoax.

Edward Bohn, PhD: Co-founder and first president of Tempress Technologies, Inc., former Director for Planning and New Business Ventures for the TRW Space and Defense Group; former nuclear reactor research scientist at Argonne National Laboratory

Jan Breslow, MD: Senior Attending Physician, Frederick Henry Leonhardt Professor, Laboratory of Biochemical Genetics and Metabolism, Rockefeller University.

Bruce Everett, PhD: faculty Tufts University's Fletcher School, over forty years of experience in the international energy industry.

Gordon Fulks, PhD: University of Chicago Laboratory for Astrophysics, Mission Research Corporation, Corbett, Oregon.

Kathleen Hartnett-White: distinguished fellow and director of the Armstrong Center for Energy and the Environment, Texas Public Policy Foundation, former chair Texas Commission on Environmental Quality.

Craig Idso, PhD: founder Center for the Study of Carbon Dioxide and Global Change, member American Association for the Advancement of Science, American Geophysical Union, and the American Meteorological Society.

Wallace Manheimer, PhD: Naval Research Laboratory, Plasma Physics Division (retired).

Pat Michaels, PhD: director of the Center for the Study of Science, Cato Institute, past president American Association of State Climatologists, former Virginia state climatologist, program chair American Meteorological Society.

Mark Mills: senior fellow Manhattan Institute, CEO Digital Power Group, a tech-centric capital advisory group, faculty Fellow McCormick School of Engineering and Applied Science at Northwestern University.

Norman Rogers: founder of Rabbit Semiconductor company, policy advisor to The Heartland Institute, member of the American Geophysical Union and the American Meteorological Society.

Roy Spencer, PhD: Principal Research Scientist at the University of Alabama Huntsville; served as Senior Scientist for Climate Studies at NASA's Marshall Space Flight Center; co-developer of satellite temperature measurement system.

Lorraine Yapps Cohen: former communications & marketing manager ExxonMobil, columnist Examiner newspapers.

CO2 FUNDAMENTALS

The debate about global warming and climate change has shifted from genuine scientific exploration to a campaign demonizing CO2. The use of energy, the primary source of human CO2 emissions, have played an essential role in the economic progress and improved standard of living that has been experienced in many nations since the Industrial Revolution

The mission of the Coalition is to demonstrate with science-based facts that:

CO2 is a nutrient that is essential to life CO2 at current levels and higher enables plants. trees, and crops to grow faster and more efficiently. It is essential for life.

Just as we require oxygen for life, our economy requires energy, often described as the oxygen or lifeblood of the economy. Energy must be abundant, reliable, and reasonably priced for an economy to achieve robust and sustained growth

Carbon dioxide (CO2) is a natural and beneficial constituent of the atmosphere. By volume percentage, 99% of dry air is nitrogen (78%) and oxygen (23%) Most of the rest is argon (0.93%) with carbon dioxide amounting to only 0.04%, but slowly increasing. Even smaller amounts of other gases, neon, helium, methane etc., make up the remainder

Atmospheric CO2 is essential to life on earth, since plants use sunlight to combine CO2 molecules from the air with H2O molecules to make carbohydrates (for example, suger) and other organic compounds in the process, oxygen molecules (O2) are released to the atmosphere. At CO2 levels less than 150 ppm (parts per million), most plants stop growing. Over most of the history of multicellular life on earth, CO2 levels have been three or four times higher than present levels: Current CO2 levels of 400 ppm are still much less than optimum for most plant growth

Air also contains water vapor (H2O), from as much as 7% in the humid tropics to less than 1% on a cold winter day Human exhaled breath typically contains 4% to 5% CO2 and about 6% H2O.Water vapor.

Water vapor, clouds and carbon dioxide hinder the escape of thermal radiation to space and allow the earth's surface to be warm enough for life. Without this "greenhouse warming" most of the oceans would be frozen. Increasing levels of the greenhouse gas CO2 from fuel combustion will slightly increase the surface temperature of the earth Observations indicate that every doubling of the CO2 concentration will increase the earth's surface temperature by 1 to 2.C. and perhaps less. The warming is so small that the resulting longer growing seasons and increased plant productivity from additional CO2 will of great benefit to life on earth

Higher carbon dioxide levels will be beneficial for the Developing World. See our White Papers

Carbon Dioxide Benefits the World: See for Yourself

A Primer on Carbon Dioxide and Climate

Does the World Need Climate Insurance?

LATEST ARTICLES

919x 44 2919 ELEVATED CO2 AND ELEVATED TEMPERATURE IMPROVE THE QUANTITY AND CHAPTER TEMMERATURE IMPROVE THE QUANTITY AND QUALITY OF SOYBEAN AND MAIZE VIELDS

THURSDAY MAY 23 2019

"RESPONDING TO THE GLOBAL ASSESSMENT REPORT OF THE INTERGOVERNMENTAL SCIENCE-POLICY PLATFORM ON BIODIVERSITY AND ECOSYSTEM SERVICES

THE INTERACTIVE EFFECTS OF CO2 AND LIGHT INTENSITY ON ORCHID FLOWERING

SIGN UP FOR OUR NEWSLETTER

Enter your e-mail address to receive updates on the Coalition and its research

LATEST FROM CO2 COALITION ON TWITTER

50slcl(3) for the purpose of educating thought leaders, policy makers, and the public about the important contribution made by carbon dioxide to our lives and the economy.

"CO2 is the primary raw material from which (plants) produce matter to build tissue. Plant tissues are the ultimate source of food for all animals. including humans. In this sense, carbon dioxide is the basis of nearly all life on Earth * https://bit.ly/f30gOrZB

co2coalition.org d 60 W2 A 20

LATEST FROM CO2 COALITION ON

about 7 days ago from Twitter Web Clent

Listen to Dr. Patrick Moore BEx. Chairman of the CO2 Coalition, tertify about claims that climate change L https://tcs/56UmBxSJaS

LATEST ARTICLES

CO2Coalition MAY 24, 2010

Elevated CO2 and Elevated Temperature Improve the Quantity and Quality of Soybean and Maize Yields

Date May 24 2019 Flaber Reviewed Quio, Y. Malo, S. U. Q., Sin, J. Liso X and Tang C. 2019 Elevated CO2 and temperature increase gain oil contentation but their impacts on grain yield offer between soybean and makes grown in a temperature segon. Science of the "Data Environment 656, 405-412, Quio et al. (1905) recently investigated the impact.

Continue Reading.

"Responding to the Global Assessment Report of the Interpovernmental Science-Policy Platform on Biodiversity and Ecosystem Services."

Date May 23, 2019 By Dr. Patrick Moore, Ph.D. Date May 23, 300g By D. Plathick Moore Ph.D. Testifying before house Commistee on Natural Resources Subcommittee on Willer. Oceans and Wildlife Chairman Huffman, Rashing Member McClistock, and members of the Committee Thank you for the opportunity to leatify at boday's hearing in 1027, as a Ph.D. subart the occlopy I joined an activist group in a church basement. Continue Reading.

MAY 23, 2019 CO2Cosition MAY 20, 2019

Date May 20, 2019 Paper Reviewed Cho, A.R., Song S.J., Chung, S.W. and Kim, Y.J. 2019, CD2 enrichment with higher light level enropewer flowering quality of Philaderopois Quiene Beer Maneform Scientia Horticalizate and 739-514. Wilking a statisground for their shay, Cho et al. (body incle that "The generhouse includy) has Linning encophead the value of enhancing photolynthesis by manipulating Continue Reading.

WHITE PAPERS

| What Rising CO2 Means for Global. | Climate Change and Health Food Security

STUDIES AND RESOURCES,

CO2Coalition FEBRUARY 23, 2019 CO2Coalition AUGUST 1, 2018

CO2Coaldon NOVEMBER 9, 2016

Does the World Need Climate Insurance? The Best Scientific and Economic Evidence Says NO

Freface This white paper cummarises the views of the CD2 Coalition a new and independent non-postif organization that seeks to empage thought sealers polycymakers and the public in an informed, dispassionate discussion of how our planet will be affected by carbon dispassionate discussion of how our planet will be affected by carbon dispassionate discussion of how our planet will be affected by carbon displaced from-post or organization displaced from-post or organization summarized the specific clear that additional CD2 will be

CO2Coaldion FEBRUARY 1, 2016

See Ali Publications

The CO2 Coalition was established in 2015 as a 500lcR3 for the purpose of educating thought leaders, policy makers, and the public about the important contribution made by carbon dioxide to our lives and the economy.

LIKE US ON FACEBOOK

CO2 Coalition

"CO2 is the pressary raw material from which [planfa] produce enabled to build issue. Plant issues are the utimate source of food for all animals, including humans, in this sense, carbon diouse is the biasis of nearly at life on Earth." https://doi.org/10.1007/23

An ex -is

LATEST FROM CO2 COALITION ON TWITTER

Follow CO2 Conition 000

NEWS

ABOUT CO2 FUNDAMENTALS STUDIES & RESOURCES ON THE HILL VIEWS AND DEBATES VIDEO AND MEDIA NEWS

ø

important contribution made by carbon dioxide to leaders, policy makers, and the public about the The CO2 Coalition was established in 2015 as a 501(c)(3) for the purpose of educating thought our lives and the economy.

LIKE US ON FACEBOOK

→ Share CO2 Coalition F Like Page

Be the first of your friends to like this

"CO2 is the primary raw material from which [plants] produce matter to build tissue. Plant tissues are the ultimate carbon dioxide is the basis of nearly including humans. In this sense, source of food for all animals,

co2coalition.org CO2COALITION.ORG

all life on Earth." https://bit.ly/30gOrZB

LATEST FROM CO2 COALITION ON TWITTER

earch by Dr. John Christy. https://tco Fortunately, th lyc8 Climate models still running 3 proving to be food sl s too hot. #whatclimatecrisis from Twitter Web Client about 5 days ago

000

Follow CO₂ Coalition

Judith A Curry Statement to the Committee on Natural Resources of the United States House of Representatives Ocasio-Cortez and Pingree and Climate Change Debate

There is No Carbon Tax in The U.S., But The Midterms Could Change That

LATEST FROM CO2 COALITION ON TWITTER

CO, Coalition

Sinvating CO3 and Dimuted Sumperature Improve the Goaletty and Guality of Guylean and Males Oxfold Researcy Collection (CO2 and Light Immetty on Artaclic Surface Mats Bolazo Viole).

Stability of Ecosystem CO: Flux in Response to Changes in Reproprietation in a Seminaria Graziand Violation Actific Selection

A New Temperature Records action From Central Aria Share 422 Years Of No Warning Encord Cooling

VIDEO AND MEDIA

Published on Apr 25, 2016

Published on Apr 25, 2016

Published on Apr 25, 2016
For the New Christon Bern Weingurten, convenentator and Founder & CEO of ChangeUp Media sits down with New Slevyn international bestseiling authors political proviol, cutantal ortics and hardword climate change disoperter Mark Steyn for an in-depth interview

isles-champions/46367090-4A43-4E48-SECA-F6EsoABsDoDE Html

Published on Apr 25, 2016

Mark Stevn international bestselling author political

Published on Apr 25, 2016
Mark Shiyn informational bestselling author political
puncit and harderied clamate change discenter angues
that curvate change alarmets in accelerate are also to
rescriberary, not the 'Big Di' companies accused of such
activities by Sention like Shedon Whitehouse, during
ain in -depth intensities.

•

Published on Apr 25, 2016

Mark Steyn international bestselling author political Mail Steyn infernational best-belling author political punds and hardened climate funning discerder explains what the de-development climate change crowd seeks, and the battle believen the two competing wexts for printherian climate supremiscrats and blamic supremiscrats.

Published on Apr 25, 2016 Mark Steyn international bestselling author political pundit and fundamed climate change dissenter argues, that we should celebrate the warming of the last fivo-centuries as creating the conditions for widespread. edom and opportunity, during an in-depth salarying

Published on Apr 25, 2015
MT Profestor Emerture of Melecorology Ritchard Lindzen
tablis about the insoliticably infart-wheel link between the
body politic and climited scientificst with respect to
promoting the climate aluminot narrative argumen? I don't think any field curvive this degree of corruption without
losing if mothing effort its peth respect."

Published on Apr 25, 2015
Professor of Economics and Research Chair in Energy,
Ecology and Prosperity at the Frontier Centre for Public
Policy Dr. Ross Middlack decisions the wide dispenses
behavior the wipocted results of climate models and real-life cissarvations during an in-depth interview for The New Criterion by Ben Weingarten

Published on Apr 25, 2036
Professor of Economics and Research Chair in Energy,
Ecology and Prospertly at the Rootier Cierte for Public
Policy Dr. Root Affirsk discusses the importance of
suprover climate models in justifying emiscemental
interactions of the Company of the Com policy commitments, during an in-depth interview for The New Criterion by Ben Weingarten

Published on Agr 25, 2015.
Professor of Economics and Releaseth Chair in Energy,
Ecology and Prosperity at the Fixeder Centre for Public
Policy CR Ross McKiffelds regulates with clamate change
altermatic continues to cling to their inersistive in polic of
major flavor in them calls during an in-depth interview for
The New Criterion.

CO2 Coalition "What if" 30

CO2 Coaltion 36 second ad What In

CO2 Coalition Bear and Sunflower ad

COg Coastron 30 second aid 'Bear and Sunflower'

VIDEO AND MEDIA

Published on Apr 25, 2016

Published on Apr 25, 2016

Published on Apr 18, 2019.

For the New Christian Berr Weingarten, commentator and Founder & CEO of Changelip Media sits down with Mark Steyn international bestsessing authors political puriod, cultural ordic and hardened climate change disserter Mark Steyn for an in-depth interview.

isles-champions/46367090-4A43-4E48-SECA-FEEGABLDODE HIM

>

Published on Apr 25, 2016

Mark Stevn international bestselling author political Main Sayn, intervalonal bestselling author, political pundl and treatment climate change discertion elucidates the stakes of his free speech case against Dr Michael E. Marrin, and argines: "It matters of public policy can be changed into court froms and decided by juries. then there is no First Amendment."

Mark Steyn: 'Big Climate G... . 🖎 🥕

Published on Apr 25, 2016
Mark Shiyn informational bestselling author political
puncit and harderied clamate change discenter angues
that curvate change alarmets in accelerate are also to
rescriberary, not the 'Big Di' companies accused of such
activities by Sention like Shedon Whitehouse, during
ain in -depth intensities.

Published on Apr 25, 2016

Mark Steyn international bestselling author political Mail Steyn infernational best-belling author political punds and hardened climate funning discerder explains what the de-development climate change crowd seeks, and the battle believen the two competing wexts for printherian climate supremiscrats and blamic supremiscrats.

The Major Problem at the ... 6

Published on Apr 25, 2016 Mark Steyn international bestselling author political pundit and fundamed climate change dissenter argues, that we should celebrate the warming of the last fivo-centuries as creating the conditions for widespread. edom and opportunity, during an in-depth salarying

Published on Apr 3, 2018
MIT Profestor Emeriture of Melecorology Richard Lindzen
tablis about the resorticably intertwined link between the
body potitic and climate scientists with respect to
promoting the climate aluminst narrative arguing 1 contthis any field universe this degree of compilion without
losing if malting often its self-respect." Published on Apr 25, 2015
Professor of Economics and Research Chair in Energy,
Ecology and Prosperity at the Frontier Centre for Public
Policy Dr. Ross Middlack decisions the wide dispenses
behavior the wipocted results of climate models and real-life cissarvations during an in-depth interview for The New Criterion by Ben Weingarten

Published on Apr 25, 2036
Professor of Economics and Research Chair in Energy,
Ecology and Prospertly at the Rootier Cierte for Public
Policy Dr. Root Affirsk discusses the importance of
suprover climate models in justifying emiscemental
interactions of the Company of the Com policy commitments, during an in-depth interview for The New Criterion by Ben Weingarten

Published on Agr 25, 2015.
Professor of Economics and Releaseth Chair in Energy,
Ecology and Prosperity at the Fixeder Centre for Public
Policy CR Ross McKiffelds regulates with clamate change
altermatic continues to cling to their inersistive in polic of
major flavor in them calls during an in-depth interview for
The New Criterion.

CO2 Coalition "What if" 30

CO2 Coaltion 36 second ad What In

CO2 Coalition Bear and Sunflower ad

COg Coastron 30 second aid 'Bear and Sunflower'

The CO2 Coalition was established in 2015 as a society for the purpose of educating thought leaders policy makers, and the public about the important contribution made by carbon disside to our lives and the economy.

LIKE US ON FACEBOOK

CO2 Coalition

CO2 is the primary raw material from which [plants] produce matter to build assue. Plant issues are the ultimate source of lood for all arrivals, including humans. In this sense, carbon dioxide the basis of mently all life on Earth." https://doi.org/10.1007/j.000728.

distr. \$82 426

LATEST FROM CO2 COALITION ON TWITTER

alemal 5 clayo ago from Twelter Web Client Important research by Dr. John Christy, tips://i.co/AheW/wpyc6 Climate models still running 3 times too hot. #whatclimateous:

.00

Carbon Dioxide and Climate

Table of Contents

Introduction	2
1. Global Warming: A Brief History and Future Prospects	3
2. How Much Warming?	
Net Assessment	10
3. Harmful Effects of CO ₂	12
Sea Levels	
Arctic Sea Ice	15
Extreme Weather	17
Ocean Acidification	22
4. The Benefits of More CO ₂	27
Conclusion	32
References	33
Board of Directors	37
Advisory Committee	38
Figures and Tables	
Figure 1. Warming from Atmospheric CO ₂ , for Assumed Doubling Sensitivities	
from Equation (1)	4
Figure 2. Average Global Temperature During the 20th Century's Two Warming Periods .	7
Figure 3. Trends in Global Mean Temperature, 1993–2012 (a) and 1998–2012 (b)	9
Figure 4. Sea level Rise Since the Last Glaciation	13
Figure 5. Trends in Global Mean Sea Level	14
Figure 6. Model Projections of the Rate of Arctic Sea-Level Loss	15
Figure 7. Arctic Sea Ice	16
Figure 8. Antarctic Sea Ice	17
Figure 9. U.S. Land Area Facing Moderate-to-Extreme Drought Conditions	18
Figure 10. U.S. Land Area Facing Moderate to Extreme Wet Conditions	18
Figure 11. Strong Tornadoes in the U.S. Since 1954	19
Figure 12. ACE Index for the Atlantic Basin, Since 1880	20
Figure 13. CEI Since 1910	22
Figure 14. Global Weather-related Losses as a Percentage of Global GDP, 1990–2012	22
Figure 15. Computed pH of Ocean Water vs. Atmospheric CO ₂ Concentration	24
Figure 16. North Pacific pH Along Longitude 152° west (pH at 25 C), 2006	25
Figure 17. Natural pH Fluctuations at 15 Locations Worldwide	26
Figure 18. CO ₂ Measurements at Point Barrow, Alaska, Since 1974	30
Figure 19. Global Trends in Gross Vegetative Productivity, 1982–2011	32

Introduction

The public requires an informed, dispassionate discussion of how our planet will be affected by CO₂ released from the combustion of fossil fuel and other sources. In a white paper, entitled *Carbon Dioxide Benefits the World; See for Yourself* the CO₂ Coalition, a new and independent non-profit organization summarized the scientific case that additional CO₂ will be a net benefit for the world. Following the words of the United States Declaration of Independence, the Coalition believes that "a decent respect to the opinions of mankind" requires that they should declare the causes which impel them to this politically incorrect view—and in more detail than is appropriate for a White Paper. That is the purpose of the present paper, a *A Primer on Carbon Dioxide and Climate*.

Atmospheric water, H_2O , as vapor and clouds, is by far the most important source of greenhouse warming of the Earth's surface. Atmospheric CO_2 also contributes to greenhouse warming but much less than H_2O . More CO_2 will cause some additional warming, both directly and with amplification (or possibly attenuation) by feedbacks, which are still very poorly understood. In addition to modest warming from more CO_2 , the earth's temperature is affected by many other factors. Among these are solar activity, the distribution of atmospheric water vapor and clouds, atmospheric and ocean circulation patterns, volcanic activity, slow changes in the earth's orbital parameters. Whether more CO_2 will be good or bad for life on earth does not depend on the mere existence of greenhouse warming and related effects from more CO_2 , like changes in the pH of the oceans, and benefits to plant growth. The issue is the magnitudes of the effects. As detailed below, we are persuaded that the net effects of increasing CO_2 will be very good for the world, and especially for its human population.

1. Global Warming: A Brief History and Future Prospects

Over the past 30 years, scientists have failed to significantly advance our understanding of the critical parameter: the sensitivity of atmosphere temperature to changes in CO₂ concentrations.

Svante Arrhenius, the great Swedish chemist, may have been the first to make a quantitative estimate of warming from CO_2 . In his pioneering paper, On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground (1896), Arrhenius claimed that decreasing CO_2 to 2/3 of its then current value would cause the surface temperature to fall by 3.5 C, while increasing CO_2 by a factor of 3/2 would cause the temperature to increase by 3.4 C.

Summarizing his estimates, Arrhenius writes³ "Thus, if the quantity of carbonic acid increases in geometric progression, the augmentation of the temperature will increase very nearly in arithmetic progression." This remarkable conjecture implies a logarithmic dependence of the temperature increase on the CO_2 concentration, C, as represented by **Equation (1)**. T_1 and T_2 represent the Earth's equilibrium temperatures at CO_2 concentrations, C_1 and C_2 , respectively (both assumed to be more than a few ppm), and log_2 (x) denotes the base-2 logarithm of x (i.e., log_2 (2) = 1).

$$\Delta T = S \log_2(C_2/C_1) \text{ where } \Delta T = T_2 - T_1$$
 (1)

The parameter, S, is the doubling sensitivity, or equilibrium climate sensitivity, and it is normally given in degrees Celsius. The Earth's average surface temperature will eventually increase by an amount S of the atmospheric concentration if CO_2 were to double. The warmings from Equation (1) are plotted in **Figure 1** for a starting CO_2 concentration, C_1 = 400 parts per million by volume (ppm), for a range of possible doubling sensitivities, and assuming atmospheric levels of CO_2 continue to increase indefinitely at the current rate of 2 ppm/year.

Figure 1. Warming from Atmospheric CO₂, for Assumed Doubling Sensitivities from Equation (1)*

*The IPCC's range of uncertainty in the value of S extends from 1.5 C to 4.5 C, with a central value of 3.0 C. However, various empirical observations indicate that the doubling sensitivity is close to its "feedback-free" value of S = 1 C. While Figure 1 indicates the number of years needed to increase global temperature by 2 C, these are underestimates, especially for the high sensitivities, because they do not include the substantial delays (decades to centuries) needed for the oceans to equilibrate with the atmosphere.

Source: (R.S. Lindzen (1995) Constraining possibilities versus signal detection, in Natural Climate Variability on Decade-to-Century Time Scales, Ed. D.G. Martinson, pp 182-186 National Academy Press, (Washington, DC, 1995)

The change of temperature, ΔT , in Equation (1) is the value averaged over the Earth's entire surface. It is a very small number compared with the temperature differences between day and night, or between winter and summer, or over the various solar and oceanic cycles at most locations on Earth. More CO_2 hinders atmospheric radiative heat transport but has no direct effect on convective heat transport. Since radiative heat transport is most important at night and near the poles, the surface warming from more CO_2 is be expected to be greater at night than during the day, and greater near the poles than near the equator,

If a 50% increase of CO_2 were to increase the temperature by 3.4 C—as in Arrhenius's aforementioned example—the doubling sensitivity would be S = 5.8 C. However, in his subsequent book, Worlds in the Making; the Evolution of the Universe (1906), Arrhenius again states the logarithmic law of warming, but with a somewhat smaller climate sensitivity, S = 4 C: "If the quantity of carbon dioxide in the air should sink to one half its present percentage, the

temperature would fall by 4 K [i.e., degrees Kelvin, the same change as in degrees Celsius]; a diminution to one-quarter would reduce the temperature by 8 K. On the other hand any doubling of the percentage of carbon dioxide in the air would raise the temperature of the Earth's surface by 4 K and if the carbon dioxide were increased by four fold, the temperature would rise by 8 K."

Many subsequent studies of the physics of greenhouse gases have confirmed Arrhenius's conjecture that the temperature varies with the logarithm of the concentration of atmospheric CO_2 , as in Equation (1). The logarithmic dependence arises from a peculiar detail of how CO_2 absorbs infrared radiation of various frequencies⁵—a peculiarity not shared with other greenhouse gases, particularly the most important, water vapor (H_2O), or the far less important greenhouse gas, methane (CH_4).

The logarithmic dependence is an important result in its own right: it reveals that adding more CO_2 to the atmosphere is a process of diminishing returns. For example, raising the value of C by 250 ppm from a starting value of 250 ppm will warm the Earth by an amount, S; but raising C by another 250 ppm, from 500 ppm to 750 ppm, will cause additional warming of only 0.58 S.

The numerical value of S—the sensitivity of the atmosphere to changes in C—is influenced by complex, poorly understood interactions between the atmosphere, the surface, the oceans, water vapor and clouds, and perhaps by extraterrestrial influences like solar activity or the cosmic ray background, that may influence cloud nucleation. Arrhenius's limited understanding of the absorption of radiation by CO₂, as well as the structure and dynamics of the atmosphere and its interactions with land and ocean, allowed him to make only an educated guess of the doubling sensitivity.

More than a century later—and after tens of billions of dollars spent on climate science—the value of S remains largely an educated guess. The IPCC's most recent report (2013) states: "equilibrium climate sensitivity (the doubling sensitivity) is likely in the range 1.5 K–4.5 K (high confidence)." Remarkably this range is unchanged from the IPCC's first report (1990), which was based on research results available at that time, much of which was performed in the 1980s.

2. How Much Warming?

Because the associated science remains poorly understood, the computer models used to predict future warming do not incorporate known natural phenomena that significantly influence temperatures. To compensate, the models use a variety of special parametrizations, or "fudge factors."

Correctly estimating the magnitude of future atmospheric warming depends, critically, on the value of S. It also depends on future economic growth, technology, and energy-demand scenarios as well as the many natural factors that influence CO₂ emissions and absorption from the atmosphere. Such variables have large lead times and may imply large future investments.

This discussion focuses on observational evidence related to the magnitude of S, the doubling sensitivity. Given knowledge of S, one can then estimate scientifically plausible future warming for various assumptions regarding future emissions.

High estimates of S derive primarily from computer climate models, not from empirical data. These models attempt to simulate the Earth's climate system in as much detail as possible. However, even with the most powerful supercomputers, science is not close to incorporating key climate processes and phenomena in a way that mirrors reality. For example, energy-exchange processes associated with evaporation, precipitation, and cloud formation—on a variety of dimensional and time scales—are extremely complex, poorly understood, and unreliably simulated.

Such models do not include significant natural internal variability associated with processes operating on time scales of less than a decade, several decades, or even centuries. Therefore models do not include natural variability that could offset, and at times exceed, the effects of human activities. The IPCC's widely publicized finding that the recent increases of CO₂ and other greenhouse gases are the cause of most of the Earth's warming in the last half of the 20th century requires that one assume that natural causes of past climate change have mysteriously ceased. But poorly understood natural factors caused large climate changes in the fairly recent past: for example, the Medieval Warm Period, when Vikings settled Greenland or the Little Ice Age when the settlements were frozen out, and severe weather conditions prevailed over much of the globe. The most natural explanation for the warming from 1980 to 2000, and the lack of significant warming since around 1995 is that modest warming from steadily increasing atmospheric CO₂ was amplified for a few decades by natural warming, like the interval 1980 to 2000, and then nearly cancelled for a few more decades, as in the interval from 1995 to the present.

The inability to include key elements of natural internal variability also affects the capacity of computer climate models to hindcast, that is, to replicate climate history, especially the warming that occurred in the first half of the 20th century. During roughly 1910–40, atmospheric CO₂ levels were too small to have caused much warming. **Figure 2**—which shows global average temperatures during 1895–1946 and 1957–2008—demonstrates the problem faced by computer climate models. Figure 2 shows nearly identical temperature rises over identical 52-year periods: the later warming episode has been ascribed by climate modelers primarily to human greenhouse gas emissions, especially CO₂; yet the earlier episode had an uncannily similar temperature rise, in magnitude and trajectory, despite the absence of significant CO₂ increases at the time. The earlier warming episode, began near the end of the Little Ice Age, a period that began about the year 1400 and ended around 1900, and coincided with several centuries of greatly diminished solar activity.⁸ Models have difficulty reproducing this earlier episode and must resort to a number of special adjustments to compensate.⁹

Figure 2. Average Global Temperature During the 20th Century's Two Warming Periods*

^{*}The warming from 1957–2008 is on the left. The irregular blue lines are monthly data. The smooth red lines are polynomial fits to the monthly data. The earlier warming, from 1895 to 1946, occurred before significant CO₂ increases and must come from other, natural influences.

Source: HadCRUT3 data set, Climatic Research Unit of the University of East Anglia

To reproduce the later 20th century warming using a high value of S (3 C or larger), as well as little in the way of natural internal variability, climate models must assume that cooling anthropogenic aerosols canceled much of the warming from more CO₂ Without aerosol cooling, models would predict substantially more warming than has been observed.

Volcanic aerosols, such as those that arose from the Pinatubo eruption of 1991, are observed to be a temporary cooling source. ¹⁰ Climate models assume longer-term cooling effects from anthropogenic aerosols, mainly a byproduct of combustion. The behavior of aerosols, especially their interaction with clouds and precipitation, is poorly understood. The IPCC consistently identifies aerosols as the largest source of uncertainty in the calculation of radiative forcing—the quantity that drives climate change in climate models. ¹¹

Different models use different values¹² of aerosol cooling, so aerosols are essentially a fudge factor to enable models to reproduce the late 20th century warming while retaining a high value of S. The IPCC has further obscured the fudge-factor nature of aerosol cooling by defining it as part of the calculated anthropogenic forcing. Without a solid understanding of the aerosol cooling factor—and without consistency in its magnitude among different models—the IPCC's claim that climate models confirm that the late 20th century warming arose mainly from human greenhouse gas emissions has little scientific merit. Given the incompleteness and uncertainties of current climate models, analysis and evaluation of their performance must fall back on the fundamental feature of the scientific method: comparing prediction to subsequent observation.

Contrary to the predictions of most climate models, there has been little, if any, recent warming of the Earth's surface: satellite measurements, as well as published statistical analyses, ¹³ show that the lower atmosphere and the Earth's surface have experienced virtually no warming for 20 years or more. ¹⁴ This absence of warming—a flat-lining of global temperature—has occurred despite a simultaneous 13% increase in atmospheric CO₂.

On page 13 of the Summary for Policy Maker of the Fifth Assessment Report of the IPCC we read "The total anthropogenic radiative forcing best estimate for 2011 is 43% higher than that reported in [the 4th Assessment Report of 2007] for the year 2005. This is caused by a combination of continued growth in most greenhouse gas concentrations and improved estimates of RF [radiative forcing] by aerosols indicating a weaker net cooling effect (smaller negative RF)." Thus, the radiative forcing from greenhouse gases was actually 43% higher than the IPCC estimated six years earlier (partly because the aerosol cooling component was realized to be smaller than previously thought). Yet this large computed increase in radiative forcing produced little, if any, increase in global temperature.

The discrepancy between models and observations is summarized by Fyfe et al (**Figure 3**)¹⁵; the actual warming during 1993–2012 was about one-half of the predicted value; the warming during 1998–2012 was about one-fifth of that predicted. The actual discrepancy is likely worse than indicated by Fyfe et al, who used surface temperature records plagued with systematic errors, such as urban heat island effects arising from poor station siting¹⁶ and inhomogeneities¹⁷ that give a false additional warming trend to the Earth's land surface temperature.¹⁷ Satellite data¹⁸ offer more accurate, unbiased measurements of atmospheric temperature and display generally smaller longer-term temperature trends than surface data sets.

Figure 3. Trends in Global Mean Temperature, 1993–2012 (a) and 1998–2012 (b)*

^{*}Histograms of observed trends (red hatching) from the HadCRUT4 data set. Histograms of model trends (gray bars) are based on 117 simulations by climate models; black curves are smoothed versions of the histograms. The ranges of observed trends represent observational uncertainty and errors; ranges for the models' trends reflect forcing uncertainties, as well as differences in model responses to external forcing (the doubling sensitivity, S).

Source: (J.C Fyfe et al, Overestimated Global Warming over the Past 20 Years, Nature Climate Change 3, 767 (2013)

The number and diversity of explanations for the discrepancies between predicted and observed temperature changes shown in Fig. 3, shows that the science is far from "settled," as enthusiasts frequently claim. In fact, the simplest and most likely explanation for the predictive failure of climate models is that the IPCC's central value for doubling sensitivity, (S = 3.0 C), is far too large.

With a smaller value of S, normal, natural processes become more likely to offset the effect of increasing CO₂.—this is what we have probably observed for the last 20 years. Further, as discussed below, various empirical studies utilizing differing approaches and assumptions, find values of S of around 1 C—below the lower limit of the IPCC's uncertainty range.

What is the actual value of S? If one assumes negligible overall feedback, that is negligible amplification or attenuation of the warming from ${\rm CO_2}$ alone, the doubling sensitivity can be calculated to be about S = 1 C, well below the central value of 3 C and far below the upper end of 4.5 C. Empirical approaches using entirely different methods find a value of S of around 1 C—the value associated with vanishing net feedbacks. For example several investigations of the relationship between satellite measurements of changes in terrestrial outgoing radiation and short-term natural fluctuations in surface or atmospheric temperature show that the Earth cools itself off far more efficiently when warmed than is predicted by climate models.

Research probing the empirical relationship between the sun's influence on cosmic ray flux and terrestrial paleoclimate²¹ has found strong correlations consistent with values of S of around 1.3 C, while an analysis of 20^{th} century instrumental data found a best estimate of $0.9 \, \text{C}.^{22}$ A recent study, covering the period 1750-2011 and using the IPCC's computed figures for radiative forcing, finds $S = 1.6 \, \text{C},^{22}$ with recent findings of smaller aerosol cooling reducing the best estimate to $S=1.45 \, \text{C}.^{24}$ All of these findings, though differing in methodology and approach, were anchored in the analysis and interpretation of empirical data.

The much larger doubling sensitivities claimed by the IPCC arise from the climate models' assumption of large positive feedbacks that amplify the basic radiative warming mechanism. To achieve the IPCC's central estimate of S = 3 C, the sum of all feedbacks must raise S from its feedback-free value of about 1 C by a factor of 3—and even more to reach its upper limit of 4.5 C.

The most popular proposed feedback mechanism arises from a computed increase of water vapor at higher altitudes of the atmosphere. Changes in cloudiness can provide significant positive feedback that increases S; or negative feedback that decreases S, depending on the details of the response of high and low clouds to the basic radiative warming mechanism. The complexity and difficulty in modeling changes in clouds is responsible for much of the variation between models, and is likely largely responsible for much of the average model's greatly exaggerated values of S.²⁵ It is therefore not surprising that different assumptions and different theoretical approaches to physical processes in models yield greatly different results for S. For example, a recent climate model formulation by Harde yields the value S = 0.6 C, even lower than the aforementioned studies.²⁶

A further methodological problem with the climate models that contributes to the lack of progress in reducing the uncertainty in S is the practice of treating variation between models as random noise, rather than as a source of information about the physics of climate. Treating variations as random noise leads to the idea of a model "ensemble average," wherein the broad envelope of the models' predictions represents only statistical uncertainty, not clues as to why some models do better than others. While an individual model's results are uncertain due to chaotic variations between runs, the practice of treating intramodel variation as statistical noise slows progress in understanding the physics of climate.

Net Assessment

The weight of empirical evidence, based on decades of data gathering and analysis, points to a doubling sensitivity, S, significantly smaller than the IPCC's central estimate of 3 C. As discussed, S may well be below even the lower end of the IPCC's range of 1.5 C. These differences have an enormous impact on the magnitude of future warming scenarios. A value of S = 1 C, the current rate of increase of atmospheric CO_2 (about 2 ppm per year) predicts only about 0.6 C global warming over the next century.

Put in perspective, this prospective future warming is less than the 20th century warming already recorded by surface temperature data sets. Since most projections call for CO_2 emissions to peak sometime this century, ultimately slowing the rate of increase of atmospheric CO_2 , even this small warming may be an overestimate. In this paper, we take a CO_2 -induced future warming of about 1 C as a notional expected value, with the realization that this number may well be overestimated.

This modest warming is well below that considered by economists analyzing possible economic costs from future warming. More typically, a 2.5 C–3 C rise, or more, is assumed as scripture. At values of 1 C, Tol's review ²⁷ finds generally small net beneficial effects on global GDP, but with large attendant uncertainties. None of the studies include the positive effects of CO₂ fertilization and water-use efficiency on crop productivity, to be discussed later.

Though there is much less methane ($\mathrm{CH_4}$) in the atmosphere than $\mathrm{CO_2}$ (about 1.9 ppm vs. 400 ppm), on a per-molecule basis $\mathrm{CH_4}$ should be a far stronger greenhouse gas than $\mathrm{CO_2}$: whereas $\mathrm{CO_2}$ is well into its saturation, or diminishing returns, regime—where the forcing is proportional only to the log of concentration (Equation (1))—the forcing from the much less abundant $\mathrm{CH_4}$ is less "saturated." According to the IPCC, the current atmospheric radiative forcing from additional methane, relative to that in 1750, is fully half that of additional $\mathrm{CO_2}$.²⁸

The calculation of radiative forcing by methane in the atmosphere is complicated by two factors that create large uncertainty. First, in the actual atmosphere the infrared wavelengths corresponding to the key methane absorption band are dominated by a coincident strong water vapor absorption band, thereby limiting additional radiative forcing from methane. Second, unlike CO_2 , methane is chemically active in the atmosphere: its decay products—ozone O_3 , stratospheric water vapor, and a small amount of CO_2 —are themselves greenhouse gases and contribute to radiative forcing.

To compute methane's radiative forcing, the reaction pathways must be known accurately for the conditions found in the atmosphere where the chemistry takes place. The radiative forcing of each end product in the atmosphere must then be computed accurately. Presumably these key uncertainties will be reduced with future research.

According to the IPCC, the total radiative forcing from all anthropogenic greenhouse gases is already nearly equivalent to the doubling of CO₂ relative to the pre-industrial era.²⁸ Yet we have not experienced global warming remotely near the level implied by the high doubling sensitivities proposed by the IPCC—another sign that global warming prospects have been exaggerated.

The temperature impact of trace greenhouse gases such as methane (CH4), nitrous oxide (N2O), and halocarbons (CFCs), must be reduced by the same approximate factor of three as for CO2, as discussed above. This is because the model-computed radiative forcings from these trace gases have been subjected to the same positive feedbacks used to exaggerate the climatic effects of CO_2 forcing.

3. Harmful Effects of CO,

Widely available weather data fail to show evidence of the extreme effects extensively repeated in the popular media.

Hundreds of harmful effects have been ascribed to "climate change." Virtually every unusual event or alleged trend has been "traced" to humanity's impact on the climate, with the burning of fossil fuels typically singled out as the root cause. But much of the alleged effect is usually strongly influenced by factors other than climate change.

Consider asthma as an example. Its prevalence in the United States, especially in children, increased by nearly a factor of two in the late decades of the 20th century. This increase has since slowed, but asthma remains a major health problem. High levels of traditional air pollution, including indoor pollution, are implicated in rapidly developing countries, such as China.²⁹ Recent research has also implicated viruses in asthma attacks, as well as in the actual development of asthma.³⁰

In 2011, the National Institutes of Health stated: "...we don't know why asthma rates are rising...." Nevertheless, an alleged link between asthma and "climate change" is now promoted by the current U.S. administration—the Centers for Disease Control and Prevention website links asthma prevalence to climate change, invoking an alleged correlation with global warming (e.g., more frost free days, longer pollen seasons) as a cause of increased allergens and rising asthma prevalence. Yet there has been no global warming since around 1995. Further, because CO₂ partial pressures in human blood are around 40 Torr³³ in comparison to about 0.3 Torr for the current atmosphere with 400 ppm CO₂, doubling or quadrupling atmosphere concentrations of CO₂ cannot affect body chemistry.

All claims of harm from more CO₂ appear to lack scientific merit, but four require special attention because of their persistent coverage in the popular media and by government sources: sea level rise; Arctic sea ice melt; extreme weather; and ocean acidification. In the following we will summarize and assess the science for each of these.

Sea Levels

Historical data show that sea levels have been rising since the end of the last Ice Age (approximately 20,000 years ago). **Figure 4** illustrates the cumulative sea level rise—more than 400 feet—during this period. Early humans were able to walk to many places that are now islands, including Great Britain, Tasmania, and Sicily. It was also possible to walk from Siberia to Alaska. With the disappearance of the great land glaciers, the rate of sea level rise slowed substantially, averaging only 2–3 mm/year in the 20th century.

Figure 4. Sea level Rise Since the Last Glaciation

Source: K. Fleming et al., Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites, Earth and Planetary Science Letters Vol. 163, Issues 1-4 pp. 327-342 (1998).

Figure 5 shows detailed records, taken from the IPCC's Fifth Assessment Report, of the rate of global mean sea level (GMSL) rise in the 20th century and 21th century: the rate of sea level rise is clearly not uniform in recent times, varying substantially over decades. The rise in sea level also varies widely from place to place, with some locations actually experiencing a drop in sea level.³⁴

Spundary Spu

Figure 5. Trends in Global Mean Sea Level*

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Year

Data source: IPCC's Fifth Annual Report (2013), Working Group I, Figure 3.14

Figure 5 shows the pre-satellite era data joining smoothly with satellite altimetry measurements (beginning in 1993), and have since shown a steady increase of about 3.3 mm/year (or about 13 inches/century). There is no evidence of acceleration in the rate of sea level rise. In fact, the GMSL rise appears to have been as fast, or faster, in the mid-20th century as it is today—despite about 30% higher CO₂ now than in the mid-20th century and the subsequent warming of the last half of the 20th century. There is no evidence to support extreme claims of imminent coastline flooding, inundation of cities, or the disappearance of significant land areas. The empirical data on GMSL, as well as the outlook for only small future CO₂-induced warming suggest that fears of extreme and rapid GMSL rise are unfounded.

^{*18-}year tends estimated at one-year intervals. The shading represents the 90% confidence level. The vertical red bar represents the observed trend since 1993, per satellite altimetry, along with its 90% confidence level.

Arctic Sea Ice

The extent of Arctic sea ice, a popular "thermometer" for global warming, is made more vivid in the popular media by its possible connection to polar bear populations. As in the case of global temperature, climate models exhibit very high intra-model variability. **Figure 6** shows the projections of 21 models for the state of Arctic sea ice through the year 2100.³⁵ With such high variability, the utility of climate models as predictors of the future state of the Arctic appears very limited—and the value of empirical data, great.

Figure 6. Model Projections of the Rate of Arctic Sea-Level Loss*

Source: I. Eisenman et al, Consistent Changes in the Sea Ice Seasonal Cycle in response to Global Warming, J. Climate 24, 20 5325-5335 (October 2011) doi: http://dx.doi.org/10.1175/2011JCLI4051.1

^{*}September sea ice extent to the year 2100, relative to the 1980–2000 mean. Projections for the year 2100 vary from 85% (one model) ice cover to less than 1% ice cover (four models).

Figure 7 shows the extent of Arctic sea ice as monitored via satellite—the most accurate empirical data—since 1979. Since 2006, the trendline for Arctic sea ice has been constant, though punctuated by the large volatility that is characteristic of Arctic climate.

Figure 7. Arctic Sea Ice*

Source: Cryosphere Today of the University of Illinois Polar Research Group

While the satellite data reveal declining sea ice corresponding to the late 20th century warming, there is controversy over the state of Arctic ice in the *early* 20th century. A study of Arctic temperatures, utilizing floating buoy temperature measurements in the pre-satellite era, found that the Arctic was warmer in the 1930s than at the end of the 20th century. Between the 1930s temperature peak and the late 1960s, the Arctic displayed a rapid cooling of almost 2 C in only 30 years. The IPCC is aware of this issue and its Fifth Assessment Report states: "Arctic temperature anomalies in the 1930s were apparently as large as those in the 1990s and 2000s. There is still considerable discussion of the ultimate causes of the warm temperature anomalies that occurred in the Arctic in the 1920s and 1930s." The interval in the Arctic in the 1920s and 1930s." The interval in the Arctic in the 1920s and 1930s." The interval in the Arctic in the 1920s and 1930s." The interval in the Arctic in the 1920s and 1930s." The interval in the Arctic in the 1920s and 1930s." The interval in the Arctic in the 1920s and 1930s." The interval interval interval in the 1920s and 1930s.

Thus, as with global average temperature, there is the unresolved problem of reconciling a significant early 20th century natural warming of the Arctic with a later (presumed) mostly anthropogenic warming. While the decline and subsequent stabilization of Arctic sea ice are generally consistent with climate model forecasts and the temperature history of the Arctic, Antarctic sea ice behavior has confounded the predictions of climate models. As shown in **Figure 8**, Antarctic sea ice actually *increased* substantially during the same period that Arctic ice declined.

^{*}The vertical axis represents the monthly departure of sea ice area, from its 1979–2008 mean. The post-1979 decline—followed by stabilization since the mid-2000s (horizontal red line)—is clearly visible.

Figure 8. Antarctic Sea Ice*

Source: Cryosphere Today of the University of Illinois Polar Research Group

With the post 1979 Arctic sea-ice decrease and contemporaneous Antarctic sea-ice increase, the total global sea-ice area has remained constant, to within a few percent, throughout the late 20th century's warming period. Indeed, global sea ice has been essentially unchanged since 1979. The reasons for this unexpected result are the subject of ongoing research. Nevertheless, the empirical data give no indication of an impending disappearance of either Arctic or Antarctic sea ice. And with the outlook for only modest future warming from CO_2 , the prospect of the ultimate disappearance of global sea ice due to CO_2 appears remote.

Extreme Weather

U.S. government agencies maintain detailed weather records. As with other aspects related to global warming, the empirical data on extreme weather events tell a story very different from that typically recounted in popular media. For example, the National Oceanic and Atmospheric Agency (NOAA) monitors drought and wet conditions across the United States. **Figure 9** and **Figure 10** show the data, since 1910, on the share of U.S. land area classified as under conditions of moderate-to-severe drought and moderate-to-severe excessive moisture, respectively.

Some areas are always subject to excessively dry or wet conditions; sometimes these conditions persist for extended periods. But there are no data to suggest an overall trend of any kind for drought conditions. A U.S. government report notes: "droughts have, for the most part, become shorter, less frequent, and cover a smaller portion of the U.S. over the last century."³⁸

^{*}The vertical axis represents the departure of sea ice area, from its 1979–2008 mean. Note the increase in sea ice area during the late 20th century warming and into the 21st century warming hiatus.

Figure 9. U.S. Land Area Facing Moderate-to-Extreme Drought Conditions*

^{*}Though the Dust Bowl of the 1930s is visible, there is no discernible long term trend— there is a suggestion of possible cyclic effects.

Source: National Oceanic and Atmospheric Agency

Figure 10. U.S. Land Area Facing Moderate to Extreme Wet Conditions*

^{*}Though there is significant year-to-year volatility, there may be a small upward trend in the percentage of wet lands. However, streamflow data from the USGS suggest that floods have not increased in the US in frequency or intensity since at least 1950.³⁸

Source: National Oceanic and Atmospheric Agency

Deadly tornadoes strike the U.S. annually, primarily but not exclusively in the middle Mississippi valley. NOAA data on the number of strong tornadoes since 1954 are shown in **Figure 11**. Again, despite the late 20th century warming period, the data show no upward trend in strong tornadoes; in fact, there appears to be a slight downward trend in the frequency of strong tornadoes.

Figure 11. Strong Tornadoes in the U.S. Since 1954*

Source: National Oceanic and Atmospheric Agency

Hurricane landfalls in the U.S., such as Katrina in 2005, can inflict vast destruction. But U.S. government data show no trend in the number and intensity of Atlantic Basin tropical cyclones. **Figure 12** plots the accumulated cyclone energy (ACE) for Atlantic Basin tropical cyclones since 1880. The ACE index accounts for the number, intensity (sustained wind velocity), and lifetime of major storms: though there is substantial year-to-year volatility, these storms have not become more frequent, more intense, or more impactful in terms of damage to the U.S. economy.³⁹

^{*}Force F3 and greater on the Fujita scale. A slow decline in frequency appears to be visible. During this period, the total number of reported tornadoes—including weaker F1 and F2 tornadoes—rose because of the advent and deployment of radar-detection technology.

Figure 12. ACE Index for the Atlantic Basin, Since 1880*

^{*}The ACE index measures total tropical cyclone energy over a complete season: the number of storms, their intensity (wind velocity squared), and life. The data show the year-to-year volatility characteristic of tropical storm/hurricane activity, but there is no discernible trend.

Data source: U.S. National Hurricane Center

NOAA has developed, and tracks, a comprehensive composite index, the Climate Extremes Index (CEI), that takes into account a wide variety of weather extremes, including temperature (maximum and minimum temperatures much above or below normal), areas under severe drought or afflicted with excessive moisture, extremes in precipitation frequency and quantity in one-day events, and wind (tropical storms and hurricanes). While all areas of the U.S. occasionally experience weather extremes, **Figure 13** shows that, since 1910, the country has experienced no discernible trend in the overall frequency and extent of such effects. In fact the relatively small values of the CEI tell us that at any moment in time, only a small fraction of the US land area is experiencing weather extremes.

Figure 13. CEI Since 1910*

^{*}In the CEI, a value of 100 means that the entire contiguous U.S. is experiencing one or more types of extreme weather. The index displays no discernible overall trend and indicates that only a relatively small fraction of the contiguous US experiences extreme weather events at any moment in time.

Data source: National Oceanic and Atmospheric Agency

In case after case, observational data tell the same story: there is no evidence, in the country's extensive empirical records (maintained largely by U.S. government agencies), of a rising incidence of extreme weather events. What about the rest of the world? **Figure 14** shows that global weather-related losses, as a percentage of global GDP, actually declined by about 25% during 1990–2012—a fact inconsistent with claims of rising global losses from climate change.³⁸

Figure 14. Global Weather-related Losses as a Percentage of Global GDP, 1990–2012

Source R. A. Pielke Jr. Senate Testimony July 18, 2013³⁸

Limitations on data quality, availability, and consistency complicate assessments of global patterns of extreme weather. In a notable change from the earlier, more aggressive views espoused in its 2007 report, the IPCC's 2013 report takes a cautious posture, including the intuitively expected conclusion: "Numerous regional studies indicate that changes in the observed frequencies of extremes can be explained by or inferred by shifts in the overall probability distribution of the climate variable." 40

This means, for example, that an obvious expected consequence of 20th century warming is that there will be more days significantly warmer than previous normal highs and fewer days significantly cooler than previous normal lows. The implication of this statement—in view of studies finding improved mortality and human wellbeing at somewhat warmer temperatures—is that benefits to humanity from such warming are currently being realized.⁴¹

Ocean Acidification

It is widely asserted that CO_2 increases in the atmosphere threaten to make oceans acidic and harmful to marine life—despite the fact that current levels of CO_2 (about 400 ppm) are much less than the levels (several thousand ppm) that prevailed during most of the Phanerozoic eon, as life flourished in the oceans, as well as on land. As outlined below, the basic chemistry involved in the interaction between oceans and atmospheric CO_2 , shows that fears of destructive ocean "acidification" are unfounded.

The random molecular motion in water causes a small fraction of molecules to break apart into a positive hydrogen ion (H⁺) and a negative hydroxyl ion (OH⁻), represented symbolically by

$$H_{3}0 \leftrightarrow H^{+} + OH^{-}$$
 (2)

It is customary to use a dimensionless number, pH, to specify the concentrations (or more precisely, the "activities") of these ions. The concentrations, in units of moles per liter, are:

$$[H^+]=10^{-pH}$$
 and $[OH^-]=10^{pH-14}$. (3)

The product of the concentrations is the "dissociation constant" of water molecules:

$$[H^+][OH^-] = 10^{-14}$$
 (4)

This value is for a temperature of 25 C. The dissociation constant increases with temperature and has some dependence on pressure. As seen from **Equation (3)**, the pH of a solution depends logarithmically on the hydrogen (or hydroxyl) ion concentration.

$$pH = -\log[H+]. \tag{5}$$

By convention and for convenience, the pH is defined as the base-10 logarithm of the hydrogen-ion concentration in moles per liter. For a neutral solution—neither acidic nor alkaline—the hydrogen-ion concentration is equal to the hydroxyl-ion concentration (pH = 7 at 25 C). If the hydrogen ion concentration exceeds the hydroxyl ion concentration, the solution is said to be acidic (pH < 7); if the hydroxyl ion concentration exceeds the hydrogen ion concentration, the solution is said to be alkaline, or basic (pH > 7).

Ocean water is famously salty. Typical salinities are about 35 grams of salt per kilogram of ocean water—this is often written as 35%—though values can reach around 40% in the eastern Mediterranean and Red Sea and much smaller values elsewhere, for example about 32% off Alaska's southeast coast. Ordinary table salt (NaCl) dominates, but there are substantial amounts of other salts, such as KCl and MgSO4. These salts dissociate completely in the ocean into positive ions (cations), such as Na⁺, K⁺, and Mg²⁺, and negative ions (anions), such as Cl⁻ and SO₄^{-2.} These fully dissociated ions give salty ocean water a much higher electrical conductivity than fresh water. In practice, salinities are determined by measuring the electrical conductivity of ocean water, with appropriate corrections for temperature.

The positive charge of the fully dissociated cations slightly exceeds the negative charge of the fully dissociated anions. The Alkalinity, [A], is the excess of positive over negative charge (in moles of elementary charge per kg of ocean water) from the fully-dissociated ions. The value of the alkalinity is typically [A] \approx 2.3 mM (millimoles per kg) and is proportional to the salinity. But the net charge of ocean water must be zero. Therefore, about 2.3 mM of negative ions are needed to compensate for the excess positive charge of the cations. Most of these compensating anions are provided by the conjugate bases of weak acids, mostly notably bicarbonate ions, HCO_3 , and carbonate ions CO_3 from carbonic acid, H_2CO_3 . There are also much smaller contributions from boric, silicic, phosphoric, and other weak acids.

If these weak acids were not present, the excess positive charge from the fully dissociated ions would be compensated by negative hydroxyl ions, OH^- , which would make the oceans very alkaline indeed. Without atmospheric CO_2 to provide bicarbonate and carbonate ions, the oceans would have a pH of about 11.4, equal to that of household ammonia, and they would be very inhospitable to most life. Atmospheric CO_2 is essential to lowering the ocean's pH to a more moderate value. A representative value for the ocean surface is pH \approx 8. Because its high alkalinity, the ocean sucks CO_2 from the atmosphere—not unlike the alkaline scrubbers use to extract CO_2 from spacecraft and submarine cabins.

The oceans contain about 50 times more CO_2 than the atmosphere. The laws of physical chemistry determine how ocean pH changes with CO_2 . **Figure 15** shows how the computed pH of ocean water changes with atmospheric CO_2 (now about 400 ppm). Curves are shown for CO_2 alone—as well as for CO_2 plus the effect of naturally occurring boric acid, the next most important oceanic weak acid after CO_2 . Ocean water would remain comfortably alkaline up to CO_2

concentrations of even several thousand ppm—far larger than would be produced by burning all economically available fossil fuels. The tiny effect of boric acid, the next most important weak acid in the oceans, demonstrates that atmospheric CO₂ is indeed the dominant factor in transforming oceans from highly caustic to mildly alkaline. As discussed below, the pH changes associated with increased CO₂ are small compared with normal pH variations in nature.

Figure 15. Computed pH of Ocean Water vs. Atmospheric CO, Concentration*

*Curves show the buffering effect of CO_2 alone and for CO_2 plus ocean boron content (0.42 x 10^3 M). The alkalinity of the ocean is assumed to be 2.3 mM. Increasing CO_2 from today's value, 400 ppm, to 500 ppm will reduce ocean pH by approximately 0.08; to 600 ppm will reduce pH by 0.15. The projected ocean pH reduction for a doubling of CO2 since the beginning of the industrial revolution (around 280 ppm in 1800) is 0.27, half of which has already occurred. A simple extrapolation of the current rate of increase of atmospheric CO_2 of 2 ppm per year would result in 600 ppm in the year 2100.

Source: R. W. Cohen and W. Happer, Fundamentals of Ocean pH (2015), http://co2coalition.org/fundamentals-of-ocean-ph/

For a CO₂ increase from the current 400 ppm to 600 ppm, the calculated decrease of average ocean pH is 0.15. Tans⁴² projected a similar change—0.16 pH units—for an emissions scenario that would reach 600 ppm near the end of the 21st century, with pH gradually increasing again in succeeding centuries as emissions subside. As shown in **Figure 15**, the pH of ocean water in equilibrium with the atmosphere has already decreased by about 0.14 since the start of the Industrial Revolution.

The pH of the ocean varies greatly with position and over time,⁴³ far more than the changes expected from increasing CO_2 levels. The pH, as measured on a series of cruises between Hawaii and Alaska, is shown in **Figure 16**: maximum values of about pH = 8.1 are measured in the warm, salty, surface water near Hawaii; minimum values, as low as pH = 7.3, are measured at depths of about 1,000 meters at mid-latitudes, or at a few hundred meters deep, off Alaska's south coast.

Figure 16. North Pacific pH Along Longitude 152° west (pH at 25 C), 2006

Source: Robert H. Byrne et al, *Direct observations of basin-wide acidification of the North Pacific Ocean*, Geophysical Research Letters 37, L02601, 2010 doi:10.1029/2009GL040999, 2010)

The dramatic decrease in pH with increasing depth in the north Pacific is due to the "biological carbon pump"—the rain of organic material from photosynthesizing organisms near the sunlit surface to the dark depths where photosynthesis ceases, and where organic material decomposes back into CO₂. This process neutralizes more of the natural alkalinity of the oceans. Not only does ocean pH change with geographical location and ocean depth, it changes dynamically from day to day. **Figure 17** shows such variations, as measured in near surface water at 15 locations worldwide.⁴⁴

^{*}Measured pH varies with position and depth, from 7.3 to 8.1.

And Process | Part |

Figure 17. Natural pH Fluctuations at 15 Locations Worldwide*

Source: G. E. Hofmann et al44

Only open ocean areas with insufficient nutrients for normal photosynthetic organisms have pH values that are stable from day to night. Otherwise, pH values tend to increase during the day, as photosynthesizing plankton convert dissolved CO_2 , HCO_3^{-1} , and CO_3^{-2} into the organic matter of their tissues, leaving fewer bicarbonate and carbonate ions to neutralize the ocean's natural alkalinity. At night, the respiration of living organisms and the decay of dead organisms convert organic matter back into CO_2 , and the pH decreases. Ocean life has adapted to these rapid natural variations of pH in time and space—variations far greater and faster than any projected slow change in ocean pH due to increased atmospheric CO_3 .

Measurements of average ocean pH over time are underway and are consistent with the slow rate of pH drop shown in Figure 14 and calculated in the Tans study.⁴² For example, the North Pacific basin-wide measurements⁴³ found an average decrease, over 0m–800m depth, of 0.023 pH units in 15 years (0.0015 pH unit per year), with no observed change below 800m. Monitoring of pH in the waters around Hawaii, Bermuda, and the Canary Islands over the last two to three decades shows similar rates of decrease: approximately 0.0016-0.0019 pH units annually.⁴⁵

^{*}Diurnal variations of one full pH unit are observed in some locations. Other locations experience changes of several tenths of a pH unit, over days and over weeks.

Laboratory studies show that for the small levels of pH changes of interest, there is little significant impact on the dozens of organisms studied;⁴⁶ indeed, some changes appear to be positive. In the 200 years since the start of the Industrial Revolution, aquatic species have successfully adapted to the oceans' average pH decrease of about 0.14 pH units. It is extremely unlikely that such animals will have trouble adapting to similarly small, slow, further changes in pH. As discussed above, over the Earth's history, CO₂ levels have averaged many thousands of ppm—up to tenfold current levels or likely future levels—while aquatic life thrived.

4. The Benefits of More CO,

During the past few decades, a remarkable, CO_2 -driven expansion of the Earth's plant biosphere has been discovered. It is already benefiting humanity and its positive impact will increase in future generations.

More CO_2 in the atmosphere will benefit the planet generally —and humanity in particular. Few realize that the Earth has experienced a CO_2 famine for millions of years. In the past ~550 million years since the Cambrian period⁴⁷—when abundant fossils first appeared in the sedimentary record— CO_2 levels have averaged thousands of parts per million (ppm), several times more than today's few hundred ppm. Preindustrial CO_2 levels of about 280 ppm were not much above the critical level (around 150 ppm) when many plants can die from CO_2 starvation.⁴⁸

Land plants get the carbon they need from CO_2 in the air. Most plants draw other essential nutrients—such as water, nitrogen, phosphorus, and potassium—from the soil. Just as plants grow better in fertilized, well-watered soils, they grow better in air with several times higher CO_2 concentrations than present values.

Green plants grow faster with more atmospheric CO_2 . Empirical studies show that their growth rate is approximately proportional to the square root of the CO_2 concentration. The increase in CO_2 concentrations, from about 300 ppm to 400 ppm over the past century, is thus expected to have increased their growth rate by about 15%. (Most crop yields have grown by far more than 15% over the past century, thanks to improved crop varieties, fertilizers, and water management, as well as more atmospheric CO_3 .)

The low current relatively low CO₂ levels have exposed a "design flaw"—made by nature several billion years ago when the enzyme, Ribulose-1,5-bisphosphate carboxylase/oxygenase ("rubisco") first evolved. Rubisco is the world's most abundant protein. Using the energetic molecule adenosine triphosphate (ATP) produced by the primary step of photosynthesis, rubisco converts CO₂ to simple carbohydrate molecules with three carbon atoms in a process called the C3 cycle or Calvin cycle. These simple carbohydrates are subsequently elaborated into sugar,

starch, amino acids, and all other molecules on which life depends. The last "c" in rubisco refers to rubisco's primary molecular target, CO_2 , and the last "o" in rubisco refers to an unintended secondary target—the O2 molecule. Rubisco evolved at a time when CO_2 levels were far higher than today and O_2 levels were much lower. Nature did not foresee the exceptionally low CO_2 levels and high O_2 levels that have prevailed for the past tens of millions of years. At the current low levels of atmospheric CO_2 , much of the CO_2 accessible to the leaf is used up during times of full sunlight. If rubisco, fueled by photosynthetically generated ATP, cannot find enough CO_2 , it will settle for an O_2 molecule and produce toxic byproducts, such as hydrogen peroxide, instead of useful carbohydrates. This "photo-oxidation" is a serious problem. At current low CO_2 levels, it leads to a reduction of photosynthetic efficiency by about 25% in C3 plants, including rice, soybeans, cotton, and many other major crops.

Low CO_2 levels of the past tens of millions of years have driven the development of so-called C4 plants—such as corn and sugar cane—that cope with the oxygen poisoning of rubisco by protecting it in special structures within the leaf. CO_2 molecules are ferried into the protective leaf structure by molecules with four carbons, which give the C4 pathway its name. The extra biochemical energy for the more elaborate C4 photosynthetic pathway comes at a cost, but one worth paying in times of unusually low CO_2 concentrations, such as the present.

In short, thousands of experiments leave little doubt that all plants—both the great majority, with the old-fashioned C3 path, as well as those with the novel C4 path—grow better with more CO_2 in the atmosphere. This benefit comes from the basic biophysics of photosynthesis. CO_2 , H_2O and sunlight are the most essential nutrients of plants, and more CO_2 suppresses the poisonous effects of O_2 to photosynthesizing plants.

But the nutritional and oxygen-detoxifying value of additional CO_2 is only part of its benefit to plants. Of equal or greater importance is the fact that more CO_2 in the atmosphere makes plants more drought-resistant. Plant leaves are perforated by stomata—tiny holes in the gas-tight surface skin that allow CO_2 molecules to diffuse from the outside atmosphere into the moist interior of the leaf, where they are photosynthesized into carbohydrates. A leaf in full sunlight can easily reach a temperature of 30 C, where the concentration of water molecules in the moist interior air of the leaf is about 42,000 ppm, more than one hundred times greater than the 400 ppm concentration of CO_2 in fresh air outside the leaf.

 ${\rm CO_2}$ molecules, which are much heavier than ${\rm H_2O}$ molecules, diffuse more slowly in air. Because of the relatively sluggish diffusion of ${\rm CO_2}$ molecules compared to ${\rm H_2O}$ molecules, and because of the much higher concentration of ${\rm H_2O}$ molecules in the leaf, as many as 100 ${\rm H_2O}$ molecules can

diffuse out of the leaf for each CO₂ molecule that is used in photosynthesis. This is the reason that most land plants need at least 100 grams of water to produce one gram of carbohydrate. Water use efficiency (WUE), the ratio of water that participates in plant metabolism to water lost, via transpiration, is a vitally important parameter in agronomy and other areas of plant biology. And WUE is increased by more atmospheric CO₂.

In the course of evolution, land plants have developed finely-tuned feedback mechanisms that allow them to grow leaves with more stomata in CO₂-poor air (such as today's atmosphere), or with fewer stomata for CO₂-rich air, like that which prevailed over most of the geological history of land plants. If the amount of CO₂ doubles in the atmosphere, plants reduce the number of stomata in newly grown leaves by about a factor of two. With half as many stomata to leak water vapor, and with other conditions held constant, plants require significantly less external water supply.

The recent modest increase in atmospheric CO₂ is already having a significant positive impact on plant life: the same kinds of results obtained under controlled conditions of greenhouses and laboratories are being observed in the natural world. Satellites, aircraft, and ground observations over the past few decades confirm an ongoing, significant expansion of the Earth's vegetation.

Perhaps the earliest signal that extensive "greening" of the planet was underway was the observation of large progressive increases in the amplitude of seasonal oscillations of CO₂ at measurement stations in high northern latitudes. In the early 1990s, Charles D. Keeling, a pioneering chemist, noticed that seasonal oscillations were indeed increasing in northern latitudes.⁵¹

A later study, led by the National Center for Atmospheric Research (NCAR), found that "seasonal CO₂ variations have substantially increased in amplitude over the last 50 years. The amplitude increased by roughly 50 percent across high latitude regions north of 45° N, in comparison to previous aircraft observations from the late 1950s and early 1960s." Heather Graven, lead researcher at the Scripps Institute of Oceanography, reported: "This means that more carbon is accumulating in forests and other vegetation and soils in the Northern Hemisphere during the summer, and more carbon is being released in the fall and winter."

In other words, the observation of larger seasonal CO₂ oscillations is a fingerprint of a plant biosphere that is expanding significantly—the plant biosphere is taking "deeper breaths" as it inhales more nourishment. **Figure 18** shows the results of CO₂ measurements at Point Barrow, Alaska, since 1974: the increase over time in the amplitude of seasonal oscillations is readily apparent.

Figure 18. CO₂ Measurements at Point Barrow, Alaska, Since 1974*

Point Barrow Measured Atmospheric CO2: 1974-2015

^{*}The increase in seasonal CO₂ variations is readily discernible and an early indicator of terrestrial greening due to more CO₂ in the atmosphere.

Source: Scripps Institute of Oceanography; Scripps CO, Program

The results of the NCAR study were published in the journal *Science*, where the authors stated: "None of the CIMP5 [IPCC climate] models can account for the increase in amplitude north of 45 deg between 1958–61 and 2009–11 and tend to underestimate both the $\rm CO_2$ amplitude change and [net ecosystem production] amplitude changes in northern ecosystems." Thus the same climate models that have failed to project global temperatures during the past 20 years have also failed to predict the response of the biosphere to increased atmospheric $\rm CO_2$.

It is now clear that both the Earth's northern latitudes and its entire plant biosphere are greening as a result of increased CO_2 in the atmosphere. While there may be multiple causes of greening in any particular location or region—including increased moisture, temperature, sunlight, and the availability of ground nutrients—statistical techniques can isolate the effect of increasing CO_2 from these other influences.

Satellite observations have provided data for plant cover of the entire globe. Biologist Ranga Myneni has quantified global greening on a grid of 8 km square pixels during 1982–2011. He found that more than 30% of the Earth's land area greened during this period—for a 14% overall increase in total gross vegetative productivity (**Figure 19**).⁵⁴ Greening was observed in all 12 vegetation types examined across the Earth's land surface, with about half of observed greening ascribed to the greater supply of CO₂.

Figure 19. Global Trends in Gross Vegetative Productivity, 1982-2011*

^{*}As recorded by satellite optical measurements.

Source: R. Myneni, *The Greening Earth*, "Probing Vegetation Conference, From Past to Future," July 4-5, 2013 (Antwerp, Belgium)

Recognizing that assigning cause and effect for greening can be difficult when more than one factor changes simultaneously, R. J. Donohue and colleagues focused their study on arid and semi-arid areas, including desert margins, where water supply is the strongest limitation on plant growth: The direct CO₂ effect on vegetation should be most clearly expressed in warm, arid environments where water is the dominant limit to vegetation growth."

The stomata response, discussed above, was tested with real-world empirical data. During the period of observation, Donohue and colleagues found that vegetative cover across these dry environments increased by 11%. They concluded: "Our results confirm that the anticipated CO₂ fertilization effect is occurring alongside ongoing anthropogenic perturbations to the carbon cycle and that the fertilization effect is now a significant land surface process."

Regional studies also confirm the Earth's ongoing greening, including sensitive regions of concern, such as the Amazon rainforest ("Satellite data have indicated higher greenness levels, a proven surrogate for carbon fixation, and [higher] leaf area during the dry season, relative to the wet season"); ⁵⁶ China ("Our... estimates suggest that, at the country scale, China's greening

was chiefly driven by rising atmospheric CO_2 concentrations (contributing 85%), although the dominant factor varies across different provinces");⁵⁷ and the central African forest and northern Savannah ("We find that the increase of atmospheric CO_2 by 52.8 ppm during the period of the study explains 30–50% of the increase in [inherent water use efficiency] and >90% of the [light use efficiency] trend over the central African forest...The [inherent water use efficiency] increases by 10-20% per decade during the 1982–2010 period over the northern savannahs").⁵⁸

Though there is little doubt that the Earth's $\mathrm{CO_2}$ -induced greening boosts crop productivity, disentangling the various influences on crops is complicated by direct anthropogenic interventions, such as fertilization, irrigation, and the development of superior crop varieties. Nevertheless, an extensive database has been compiled on thousands of $\mathrm{CO_2}$ -enrichment experiments, conducted on hundreds of different crops grown under a variety of conditions.

Using the crop database, an extensive bottoms-up analysis has been developed to estimate the recent and future economic impact of increasing CO₂, based on data for 45 key crops that comprise 95% of the world's agricultural food supply.⁵⁹ The analysis assumes that agricultural practices, under changing conditions, have adapted to capitalize fully on the fertilization and water-use efficiencies made available by increased atmospheric CO₂.

The study found that annual benefits during 1961–2011 easily reached \$100 billion (in 2004–06 dollars) late in the study period, with a total present value exceeding \$3 trillion. Future increases in CO_2 will likely further improve crop productivity, helping feed humanity's growing population. An additional benefit from rising productivity is that some land currently under cultivation will return to a more natural state. 50

Conclusion

Empirical data on global warming and carbon dioxide lead to an optimistic outlook for the Earth and its inhabitants. People everywhere can look forward to a greener, lusher, slightly warmer planet. More food can be grown while using less land to do so. Longer growing seasons are likely, and insecurity about hunger will decline.

Hundreds of millions of desperately poor people stand on the cusp of benefiting from the same advances in prosperity that affluent nations have already achieved. Moral and economic justifications intersect to argue that the available, reliable, and inexpensive sources of energy be used to foster development and modernization across the globe. Yes, there will be mild climate change, and it will benefit the world.

References

- 1. Carbon Dioxide Benefits the World; See for Yourself, http://co2coalition.org/wp-content/uploads/2015/10/CO2-report-FINALhires102715.pdf
- 2. J. R. Fleming, Historical Perspectives on Climate Change, (Oxford University Press, New York, 1998).
- 3. S. Arrhenius, On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground, Phil. Mag. S. 5., No. 251, pp. 237-276 (1987).
- 4. S. Arrhenius, Worlds in the Making; the Evolution of the Universe, p. 53, translated by Dr. H. Borns, Harper, New York, London, Harper, 1908.
- 5. D. J. Wilson and J. Gea-Banacloche, Simple model to estimate the contribution of CO2 to the Earth's greenhouse effect, Am. J. Phys. 80, 306 (2012).
- 6. Intergovernmental Panel on Climate Change, Fifth Assessment Report (AR5) WG1, http://www.climate change2013.org/images/report/WG1AR5_SPM_FINAL.pdf
- 7. W. Kininmonth, Physical Theories and Computer Simulations in Climate Science, Inference: International Review of Science 1, No. 1 (2014).
- 8. Nir J. Shaviv, On the 20th century global warming and the role of the sun, The Racah Insitute of Physics, The Hebrew University of Jerusalem. "2011 World Federation of Scientists International Seminar on Nuclear War and Planetary Emergencies" (World Scientific, 2012): http://phys.huji.ac.il/~shaviv/articles/erice2011.pdf
- 9. G.A. Meehl et al, Combination of Natural and Anthropogenic Forcings in 20th Century Climate, J. Climate, 17, 3721–3727 (2004) doi: http://dx.doi.org/10.1175/1520-0442(2004)017<3721:CONAAF> 2.0.CO;2).
- 10. R. Lindzen and C. Gianittsis, On the climatic implications of volcanic cooling J. Geophys. Res. 103, 5929 (1998).
- 11. IPCC 5th Annual Report WG1 (2013) Summary for Policy Makers, pp 11-12.
- 12. J.T. Kiehl, "Twentieth Century Climate Model Response and Climate Sensitivity," Geophys. Res. Lett. 34 (2007) doi: 10.1029/2007GL031383.
- 13. R.R. McKitrick, HAC-robust measurement of the duration of a trendless subsample in a global time series, Open Journal of Statistics 4 527-536 (2014)
- 14. Roy W. Spencer, University of Alabama Huntsville, Earth System Science Center http://www.drroy spencer.com/latest-global-temperatures/
- 15. J.C Fyfe et al, Overestimated Global Warming over the Past 20 Years, Nature Climate Change 3, 767 (2013).
- 16. United States Government Accountability Office, NOAA Can Improve Management of the U. S. Historical Climatology Network, GAO-11-800 (2011).

- 17. Ross J. McKitrick and Patrick J. Michaels, Quantifying the influence of anthropogenic surface processes and inhomogeneities on gridded global climate data, J. Geophys. Res. 112, D24509 (2007).
- 18. R. Spencer, http://www.drroyspencer.com/2015/04/version-6-0-of-the-uah-temperature-dataset-released-new-lt-trend-0-11-cdecade/
- 19. Reference 6, p 13.
- 20. R. S. Lindzen and Y-S Choi, On the determination of climate feedbacks from ERBE data, Geophys. Res. Lett. 36, L16705 (2009) doi:10.1029/2009GL039628; R. S. Lindzen and Y-S Choi, On the Observational determination of the climate sensitivity and its implications, Asia-Pacific J. Atmos. Sci. 47(4), pp 377-390 (2011) doi:10.1007/s13143-011-0023-x; R. W. Spencer and W. D. Braswell, On the diagnosis of radiative feedback in the presence of unknown radiative forcing, J. Geophys. Res. 115, D16109 (2010) doi:10.1029/2009JD013371; R. W. Spencer and W. D. Braswell, On the misdiagnosis of surface temperature feedbacks from variations in the earth's radiant energy balance, Remote Sensing 3, 1603-1613 (2011) doi:103390/rs3081603.
- 21. N. J. Shaviv, On climate response to changes in the cosmic ray flux and radiative budget, Journal Geophysical Research 110, A0815 (2005) doi: 10.1029/2004JA010866
- 22. S. Ziskin and N. J. Shaviv, Quantifying the role of solar radiative forcing over the 20th century, Advances in Space Research 50, 6, pp 762-776 (2012).
- 23. N. Lewis and J. A. Curry, The implications for climate sensitivity of AR5 forcing and heat uptake estimates, Climate Dynamics 45, No. 3-4, pp 1009-1023 (2014) doi: 10.1007/s00382-014-2342-y.
- 24. The results of Ref 23 were later reduced to a best estimate S= 1.45 C as a result of recent findings pointing to smaller aerosol cooling. The methodology and results are discussed here: http://judithcurry.com/2015/03/19/implications-of-lower-aerosol-forcing-for-climate-sensitivity/
- 25. Grahame L. Stephens, Cloud feedbacks in the climate system: a critical review, Journal of Climate 18, No. 2 (2005) doi: http://dx.doi.org/10.1175/JCLI-3243.1.
- H. Harde, Advanced Two-Layer Climate Model for the Assessment of global warming by CO2, Open Journal of Atmospheric and Climate Change ISSN(Print):2374-3794 ISSN (Online): 2374-3808 DOI: 10.15764/ACC.204.03001.
- 27. R. S. J. Tol, The Economic Effects of Climate Change, Journal of Economic Perspectives 23, No. 2 pp 29-51 (2009); W. D. Nordhaus, A Question of Balance: Weighing the Options on Global Warming Policies Yale University Press (New Haven and London, 2008).
- 28. IPCC Fifth Assesssment Report WG1 (2013) Summary for Policy Makers, p 14.
- 29. Lua Wilkenson, China's asthma problem is bad and growing worse, The Atlantic, June 26, 2013 http://www.theatlantic.com/china/archive/2013/06/chinas-asthma-problem-is-bad-and-growing-worse/277250/
- 30. Exploring the role of viral infections, Asthma Australia http://www.asthmaaustralia.org.au/Exploring_the_role_of_viral_infections.aspx); (NIH-Funded Scientists Identify Receptor for Asthma-Associated Virus National Institute of Allergy and Infectious Disease (NIH), April 6, 2015 http://www.niaid.nih.gov/news/newsreleases/2015/Pages/RCVreceptor.aspx

- 31. Asthma in the US, National Institute of Allergy and Infectious Disease (NIH), May 2011, http://www.niaid.nih.gov/topics/asthma/understanding/pages/usasthma.aspx.
- 32. http://www.cdc.gov/climateandhealth/effects/allergen.htm.
- 33. National Institute of Health, Blood Gases https://www.nlm.nih.gov/medlineplus/ency/article/003855.htm
- 34. Colorado Sea Level research Group Regional Sea Level Time Series http://se alevel.colorado.edu/content/regional-sea-level-time-series
- 35. I. Eisenman et al, Consistent Changes in the Sea Ice Seasonal Cycle in response to Global Warming, J. Climate 24, 20, pp. 5325-5335 (October 2011) doi: http://dx.doi.org/10.1175/2011JCLI4051.1.
- 36. I. V. Polyakov et al, Variability and Trends of Air Temperature and Pressure in the Maritime Arctic, 1875–2000, J. Climate 16, 12 2067-2077 (2003).
- 37. IPCC 5th Assessment Report WG1 (2013) Chapter 10, Detection and Attribution of Climate Change: from Global to Regional, p.907.
- 38. Statement of Dr. Roger A. Pielke, Jr. to the Committee on Environment and Public Works of the United States Senate: http://www.epw.senate.gov/public/_cache/files/a6df9665-e8c8-4b0f-a550-07669df4 8b15/71813hearingwitnesstestimonypielke.pdf
- 39. R. A. Pielke Jr. et al have analyzed the history of hurricane landfall damage in the U.S.: they concluded that, after accounting for inflation, changes in wealth, and population change at the coastal county level, there has been no trend in absolute damage since 1905. R. A. Pielke Jr. et al, Normalized Hurricane Damage in the United States: 1900–2005, Natural Hazards Review, pp 29-42 (2008) doi:10.1061/(ASCE)1527-6988.
- 40. IPCC 5th Assessment Report WG1 (2013) Chapter 2, Observations: Atmosphere and Surface p.209.
- 41. A. Gasparini et al, Mortality risk attributable to high and low ambient temperature: a multicountry observational study. The Lancet, May 2015, DOI: 10.1016/S0140-6736(14)62114-0.
- 42. P. Tans, An accounting of the observed increase in oceanic and atmospheric CO2 and an outlook for the future, Oceanography 22, 4 pp 26-35 (2009) 22 4, 26–35, http://dx.doi.org/10.5670/oceanog.2009.94.
- 43. Robert H. Byrne et al, Direct observations of basin-wide acidification of the North Pacific Ocean, Geophysical Research Letters 37 L02601, 2010 doi:10.1029/2009GL040999 (2010)
- 44. G. E. Hofmann et al, High frequency dynamics of ocean pH: a multi-ecosystem comparison, PLOS ONE (Public Library of Science), December 19, 2011, doi:10.1371/journal.pone.0028983
- 45. Bermuda Institute of Ocean Sciences. 2014 update to data published in N.R. Bates et al, Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean, Biogeosciences 9:2509-2522 (2012) doi:10.5194/bg-9-2509-2012; M. Gonzalez-Davila, Update to data originally published in M. Gonzalez-Davila et al, The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004, Biogeosciences 7:3067-3081 (2010) doi:10.5194/bg-7-3067-2010; J. Dore, update to data originally published in J. E. Dore et al, Physical and biogeochemical modulation of ocean acidification in the central North Pacific, Proc. Natl. Acad. Sci. USA 106, No. 30:12235-12240 doi:10.1073/pnas.0906044106.

- 46. C. Idso, CO2 Science, Ocean Acidification Database http://www.co2science.org/data/acidification/results.php.
- 47. R. A. Berner and C. Kothavala, GeocarbIII, a revised model of atmospheric CO2 over the Phanerozoic time, American Journal of Science, 301, 182 (2001); http://earth.geology.yale.edu/~ajs/2001/Feb/qn020100182.pdf
- 48. K. Dippery, D. T. Tissue, R. B. Thomas and B. R. Strain, Effects of low and elevated CO2 levels on C3 and C4 annuals, Oecologia, 101, 13 (1995).
- 49. M. B. Kirkham, Elevated Carbon Dioxide, impacts on soil and plant water relations: implications for horticulture CRC Press (Boca Raton, FL; March 15, 2011)
- 50. S. A. Prior et al. A review of elevated CO2 effects on plant growth HortScience 46 158 (2011).
- 51. C. D. Keeling et al, Interannual extremes in the rate of rise of carbon dioxide since 1980, Nature 375 666 (1995) doi:10.1038/375666a0.
- 52. Scripps News, Seasonal CO2 Amplitude is Growing as More is Added to the Atmosphere, Scripps Institute of Oceanography (UCSD), August 8, 2013: https://scripps.ucsd.edu/news/13139
- 53. H. D. Graven et al, Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960, Science 341 no. 6150 pp. 1085-1089, DOI: 10.1126/science.1239207 (2013).
- 54. R. Myneni, The Greening Earth, "Probing Vegetation Conference, From Past to Future," July 4-5, 2013 (Antwerp, Belgium); http://probing.vegetation.be/sites/default/files/pdf/dag1/1100-Ranga%20 Myneni-myneni-probing-vegetation-talk-2.pdf
- 55. R. J. Donohue et al, Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments, Geophysical Research Letters 40 pp. 3031-3035 (2013)
- 56. J. Bi et al, Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests, Environ. Res. Lett., 10 064014 doi: 10.1088/1748-9326/10/6/064014.
- 57. S. Piao et al, Detection and attribution of vegetation greening trend in China over the last 30 years, Global Change Biology, 21, 4 1601-1609 (2015) doi:10.1111/gcb12795.
- 58. A. K. Traore et al 1982-2010 Trends of light use efficiency and inherent water use efficiency in African vegetation: Sensitivity to climate and atmospheric CO2 concentrations, Remote Sens. 2014, 6(9), 8923-8944; doi:10.3390/rs6098923.
- 59. C. Idso, CO2 Science, The positive externalities of carbon dioxide: estimating the monetary benefits of rising atmospheric CO2 concentration on global food production. http://www.co2science.org/education/reports/co2benefits/introduction.php
- 60. J. H. Ausubel, The Great Reversal: Nature's Chance to Restore Land and Sea, Technology In Society, 22, 289-301 (2000).

CO2 Coalition Board of Directors

Roger Cohen, PhD: fellow of the American Physical Society. Former Manager Strategic Planning ExxonMobil Research and Engineering.

Will Happer, PhD: Cyrus Fogg Brackett Professor of Physics (emeritus) Princeton University, former Director Office of Energy Research Director of Research, U.S. Department of Energy, co-founder Magnetic Imaging Technologies.

Craig Idso, PhD: founder Center for the Study of Carbon Dioxide and Global Change, member American Association for the Advancement of Science, American Geophysical Union, and the American Meteorological Society.

Patrick Moore, PhD: Co-founder and 15-year leader of Greenpeace (1971-1986). Chairman and Chief Scientist, Ecosense Environmental. Leader, Campaign to Allow Golden Rice Now.

Rodney Nichols: former President and Chief Executive Officer of the New York Academy of Sciences; Scholar-in-Residence at the Carnegie Corporation of New York, former Executive Vice President Rockefeller University.

Harrison Schmitt, PhD: geologist, astronaut and last man to walk the moon (Apollo 17), adjunct professor physics University of Wisconsin-Madison, and former U.S. Senator from New Mexico.

Leighton Steward: geologist, author, Member, The Right Climate Stuff Ex-NASA Climate Research Team.

Emeritus.

William O'Keefe: Former Chief Executive Officer, George C. Marshall Institute; founder of Solutions Consulting; Executive Vice President and Chief Operating Officer, American Petroleum Institute; Chief Administrative Officer of the Center for Naval Analyses.

CO2 Coalition Advisory Committee

Larry Bell, PhD: Professor University of Houston, established the research program in space architecture, author of *Climate of Corruption: Politics and Power Behind the Global Warming Hoax*.

Bruce Everett, PhD: faculty Tufts University's Fletcher School, over forty years of experience in the international energy industry.

Kathleen Hartnett-White: distinguished fellow and director of the Armstrong Center for Energy and the Environment, Texas Public Policy Foundation, former chair Texas Commission on Environmental Quality.

Richard Lindzen, PhD: emeritus Alfred P. Sloan Professor of Meteorology, member National Academy of Sciences, fellow of the American Meteorological Society and American Association for the Advancement of Science, author of 200 scientific articles and books.

Pat Michaels, PhD: director of the Center for the Study of Science, Cato Institute, past president American Association of State Climatologists, former Virginia state climatologist, program chair American Meteorological Society.

Mark Mills: senior fellow Manhattan Institute, CEO Digital Power Group, a tech-centric capital advisory group, faculty Fellow McCormick School of Engineering and Applied Science at Northwestern University.

Norman Rogers: founder of Rabbit Semiconductor company, policy advisor to The Heartland Institute, member of the American Geophysical Union and the American Meteorological Society.

Roy Spencer, PhD: Principal Research Scientist at the University of Alabama Huntsville; served as Senior Scientist for Climate Studies at NASA's Marshall Space Flight Center; co-developer of satellite temperature measurement system.

Lorraine Yapps Cohen: former communications & marketing manager ExxonMobil, columnist Examiner newspapers.

The mission of the CO2 Coalition is to promote broader understanding of the beneficial effects of more carbon dioxide in the atmosphere around the world. The Coalition fosters informed debate on the scientific evidence, as summarized in this Primer. The Coalition's initial paper, published in the fall of 2015, urged the public to "see for yourself."

1621 North Kent Street, Suite 603
Arlington, Virginia 22209
www.co2coalition.org
info@co2coalition.org
571-970-3180

