

Ministerul Educației Naționale Inspectoratul Școlar Județean Satu Mare

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema a IV-a – Diferite roți electrice

Nr.	Sarcina de lucru nr. 1	Punctaj
item		-
1.a.	Pentru: expresia momentului care tinde să învârtească roata în jurul axei proprii $M = \frac{B \cdot i \cdot R^2}{2}$ 0,2	1,50p 0p
	• expresia legii de mişcare a roţii $\frac{B \cdot i \cdot R^2}{2} = J \cdot \frac{d\omega}{dt}$ 0,2	0р
	expresia tensiunii electromotoare induse în spiţa care se roteşte $ E_{indus} = \frac{B \cdot \omega \cdot R^2}{2} $ 0,2	0р
	• expresia energiei cinetice de rotație pentru roată $W_{cinetic} = \frac{J \cdot \omega^2}{2}$ 0,2	0р
	• expresia energiei câmpului magnetic din jurul bobinei $W_{magnetic} = \frac{L \cdot i^2}{2}$ 0,2	0р
	$\bullet i \cdot E = \frac{dW_{cinetic}}{dt} + \frac{dW_{magnetic}}{dt}$	0р
	• expresia pentru bilanţul puterilor $i \cdot \left(E - L \cdot \frac{di}{dt}\right) = J \cdot \omega \cdot \frac{d\omega}{dt}$ 0,3	0р
1.b.	Pentru:	1,50p
	aplicarea legii a doua a lui Kirchhoff $\begin{cases} E = E_{indus} + L \cdot \frac{di}{dt} \\ E = \frac{B \cdot \omega \cdot R^2}{2} + L \cdot \frac{di}{dt} \end{cases}$ 0,3	0р
		0р

),20p	
	$\bullet i(t) = \frac{2E}{B \cdot R^2} \cdot \sqrt{\frac{J}{L}} \cdot \sin\left(\frac{B \cdot R^2}{2 \cdot \sqrt{L \cdot J}} \cdot t\right)$),50p	
1.c.	Pentru:		0,50p
	$ \omega(t) = \frac{2}{B \cdot R^2} \cdot \left(E - L \frac{di}{dt} \right) $ $ \omega(t) = \frac{2E}{B \cdot R^2} \cdot \left(1 - \cos \left(\frac{B \cdot R^2}{2 \cdot \sqrt{L \cdot J}} \cdot t \right) \right) $ $ 0$),20p	
	• $\omega(t) = \frac{2E}{B \cdot R^2} \cdot \left(1 - \cos\left(\frac{B \cdot R^2}{2 \cdot \sqrt{L \cdot J}} \cdot t\right)\right)$),30p	
Nr. item	Sarcina de lucru nr. 2		Punctaj
2.a.	Pentru:		0,50p
),10p	
		,20p	
	3—cinetic III Gt	,, _ 0p	
	• expresia vitezei unghiulare iniţiale a roţii $\omega_0 = B \cdot \frac{R^2}{2J} \cdot Q_0$),20p	
2.b.	Pentru:		1,50p
	• expresia legii conservării energiei $\frac{C \cdot u^2}{2} + \frac{J \cdot \omega^2}{2} + \frac{\gamma \cdot \alpha^2}{2} = const$),30p	
	$oldsymbol{\Delta}$),20p	
	$\varepsilon + \Omega^2 \cdot \alpha = 0 \text{ , unde } \Omega^2 = \frac{\gamma}{J + \frac{C \cdot B^2 \cdot R^4}{4}}$),50p	
	$\bullet \alpha(t) = \frac{B \cdot R^2 \cdot Q_0}{2J \cdot \Omega} \cdot \sin(\Omega \cdot t)$),50p	

2.c.	Pentru:		1,00p
	expresia vitezei unghiulare a roţii $\omega(t) = \frac{B \cdot R^2 \cdot Q_0}{2J} \cdot \cos(\Omega \cdot t)$	0,50p	
	expresia sarcinii electrice de pe armăturile condensatorului $\begin{cases} Q(t) = E_{indus} \cdot C \\ Q(t) = \frac{B^2 \cdot R^4 \cdot C \cdot Q_0}{4J} \cdot cos(\Omega \cdot t) \end{cases}$	0,50p	
Nr. item	Sarcina de lucru nr. 3		Punctaj
3.a.	Pentru:		1,50p
	• expresia puterii electrice disipate în rezistență $P = \frac{\omega^2 \cdot B^2 \cdot R^4}{4R_e}$	0,30p	
	expresia puterii mecanice datorată greutății (care este forța activă în sistem) $P_{mecanic} = m \cdot g \cdot a \cdot \omega$	0,30p	
	bilanţul de putere pentru sistem, la staţionaritate $m \cdot g \cdot a \cdot \omega_{stationar} = \frac{\left(\omega_{stationar}\right)^2 \cdot B^2 \cdot R^4}{4R_e}$	0,30p	
	$\bullet \omega_{\text{stationar}} = \frac{4R_{\text{e}} \cdot m \cdot g \cdot a}{B^2 \cdot R^4}$	0,30p	
	• expresia vitezei maxime $v_{max} = \frac{4R_e \cdot m \cdot g \cdot a^2}{B^2 \cdot R^4}$	0,30p	
3.b.	Pentru:		2,00p
	bilanţul de putere pentru sistem (caz general) $\frac{d}{dt} \left(J \cdot \omega^2 + \frac{m \cdot a^2 \cdot \omega^2}{2} \right) = m \cdot g \cdot a \cdot \omega - \frac{\omega^2 \cdot B^2 \cdot R^4}{4R_e}$	0,40p	
		0,40p	

ecuația omogenă $\begin{cases} \varepsilon = -\frac{\omega \cdot B^2 \cdot R^4}{4R_e \cdot (2J + m \cdot a^2)} \\ \frac{d\omega}{\omega} = -\frac{B^2 \cdot R^4}{4R_e \cdot (2J + m \cdot a^2)} \cdot dt \end{cases}$	
soluția ecuației omogene $\omega = const \cdot e^{-\frac{B^2 \cdot R^4}{4R_e \cdot (2J + m \cdot a^2)}t}$ 0,20p	
 ω stationar - o soluție particulară a ecuației neomogene 0,20p 	
soluția generală a ecuației neomogene $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet $	
$\bullet \omega(t) = \frac{4R_e \cdot m \cdot g \cdot a}{B^2 \cdot R^4} \left(1 - e^{-\frac{B^2 \cdot R^4}{4R_e \cdot (2J + m \cdot a^2)} \cdot t} \right)$ $0,20p$	
Punctaj total - Problema a IV - a	10p

© Barem de evaluare și de notare propus de:

Dr. Delia DAVIDESCU – Facultatea de Fizică – Universitatea Bucureşti Dr. Adrian DAFINEI – Facultatea de Fizică – Universitatea Bucureşti