CSE 321a: Computer Organization (I) Third Year, Computer & Systems Engineering

Solution to Assignment #2

Consider two single-level cached memory systems: MS1 and MS2. Each of which ...

1. Show the address format for each of the two memory systems MS₁ and MS₂.

```
s + w = log_2 1M = 20
w = log_2 16 = 4
For MS_1:
d = log_2 (64K/(16*2)) = 11
                                    Tag (s-d)
                                                                       Set (d)
                                                                                            Word (w)
Format:
                                      [5 bits]
                                                                       [11 bits]
                                                                                             [4 bits]
For MS<sub>2</sub>:
r = log_2 (16K/16) = 10
                                    Tag (s-r)
                                                                       Line (r)
                                                                                            Word (w)
Format:
                                      [6 bits]
                                                                       [10 bits]
                                                                                             [4 bits]
```

2. Fill up the following table according to the read and write operations that instructions make during the first two iterations of the loop.

	Iteration 1st								$2^{ m nd}$						
	Instruction	1 st	2 nd		3 rd	4 th		5 th	1 st	2 nd		3 rd	4 th		5 th
	<u>F</u> etch/ <u>E</u> xecute (F/E)	F	F	E	F	F	Е	F	F	F	Е	F	F	Е	F
	Read/Write (R/W)	R	R	R	R	R	W	R	R	R	R	R	R	W	R
	Address (Hexadecimal)	2F6BA	2F6BC	4BEE4	2F6BE	776AE	0F6B8	776B0	2F6BA	2F6BC	4BEE4	2F6BE	776AE	0F6B8	776B0
MS_1	Set (Hexadecimal)	76B	76B	3EE	76B	76A	76B	76B	76B	76B	3EE	76B	76A	76B	76B
	Tag (Hexadecimal)	5	5	9	5	E	1	E	5	5	9	5	E	1	E
	<u>H</u> it/ <u>M</u> iss (H/M)	M	Н	M	Н	M	M	M	Н	Н	Н	Н	Н	M	M
	Write back? (Y/N)	N	N	N	N	N	N	Y	N	N	N	N	N	N	Y
MS ₂	Line (Hexadecimal)	36B	36B	3EE	36B	36A	36B	36B	36B	36B	3EE	36B	36A	36B	36B
	Tag (Hexadecimal)	В	В	12	В	1D	3	1D	В	В	12	В	1D	3	1D
	C <u>1</u> /C <u>2</u> (1/2)	1	1	2	1	1	2	1	1	1	2	1	1	2	1
	<u>H</u> it/ <u>M</u> iss (H/M)	M	Н	M	Н	M	M	M	M	Н	Н	Н	Н	Н	M

3. Estimate the **overall hit ratio** that each of the two memory systems MS1 and MS2 achieves in this benchmarking experiment? *Hint: Ignore the first iteration of the loop in your calculations.*

- For MS_1 :
 - o The cache access pattern stabilizes from the second iteration on.
 - Overall hit ratio (H₁) \approx hit ratio during second iteration = 5/7
- For MS_2 :
 - The cache access pattern stabilizes from the second iteration on.
 - Overall hit ratio (H₂) \approx hit ratio during second iteration = 5/7
- 4. Suppose the main memories used in MS1 and MS2 have the same performance. Show that the two memory systems will almost have the same **average access time** (according to this benchmarking experiment) if:
 - The cache in MS1 is **seven** times faster than the main memory.
 - The instruction cache in MS2 is **ten** times faster than main memory.
 - The data cache in MS2 is **four** times faster than main memory.

```
Suppose TM = 140x
```

- For MS_1 :
 - \circ T_C = T_M/7 = 20x
 - o Average access time $(T_{avl}) = T_C + (1 H_1) * T_M = 20x + (1 5/7) * 140x = 60x$
- For MS_2 :
 - \circ T_{C1} = T_M/10 = 14x and T_{C2} = T_M/4 = 35x
 - Here we can't use the formula for average access time because the cache is split!!
 - The cache access pattern stabilizes from the second iteration on.
 - o Average access time $(T_{avl}) \approx$ average access time during second iteration

```
= (3*T_{C1} + 2*T_{C2} + 2*(T_{C1}+T_{M})) / 7 = (42x + 70x + 308x) / 7 = 60x
```

Conclusion: average access time of MS₁ (T_{av1}) \approx average access time of MS₂ (T_{av2})

- 5. Specify which of the two memory systems would benefit from a **change in its write policy**. Justify your answer quantitatively based on this benchmarking experiment.
 - For MS_1 :
 - Switching to no-write-allocate ==> hit ratio changes from ~5/7 to ~6/7 (since from second loop iteration on, the "read from 776B0" will become a cache hit!) ==> BETTER!!
 - Switching to write-through ==> hit ratio does not change, and total number of writes to main memory does not change as well ==> SAME!!
 - For MS_2 :
 - Switching to no-write-allocate \Longrightarrow hit ratio changes from $\sim 5/7$ to $\sim 4/7$ (since the "write to 776B0" will be always a cache miss!). \Longrightarrow **WORSE!!**
 - Switching to write-back ==> hit ratio does not change but total number of memory writes will be reduced to just one (just the final write)! ==> BETTER!!

Conclusion: MS₁ will benefit by switching its write-miss policy to no-write-allocate, and MS₂ will benefit by switching its write-hit policy to write-back.