

TELSA AUTOPILOT

BREAKING DOWN TESLA'S AI DAY PRESENTATIONS (PART II)

Gene Olafsen

OVERVIEW

- Part I
 - Tesla Vision
 - Planning and Control
- Part II
 - Manual Labeling
 - Auto Labeling
 - Simulation
- Part II
 - HW Integration
 - Dojo

ACKNOWLEDGEMENT AND REFERENCE

- The screenshots and content is largely taken from the AI Day presentations.
- Tesla Al Day YouTube
- 1612.03144.pdf (arxiv.org)

DATA

- The story of datasets is critical.
- The hundreds of millions of parameters must be set correctly for the neural networks to make 'correct' predictions.
- Datasets in the vector space must be clean and diverse.

TOPICS

- Manual Labeling
- Auto Labeling
- Simulation
- Scaling Data Generation

LABELING HISTORY

- About four years ago, Tesla was using a third-party to obtain datasets.
- High latency to get the datasets and the quality was not 'amazing'.
- In the spirt of full vertical integration at Tesla, the data acquisition and labeling task was brought in house.

VERTICAL INTEGRATION

- Currently there is a I,000 person labeling team that works very closely with the engineers.
- All the infrastructure that supports the labeling process was built from scratch.

IMAGE SPACE LABELING

- Four years ago, most of the labeling was performed in image space.
- A lot of time is spent annotating and drawing bounding boxes around objects.

LABELING

- Directly labeling in vector space.
- This is a reconstruction of the ground plane on which the car drove.

HUMAN/COMPUTER COLLABORATION

- The labels are produced in vector space and being re-projected into the images.
- This system increases labeling throughput by 100X.
- However, this was not good enough because people are good at semantics while computers excel at geometry, reconstruction, triangulation, tracking.

AUTO LABELING

- The task of training the network requires many more human labeling experts.
- Tesla has invested in a massive auto-labeling pipeline.

LIFE OF A CLIP

CLIP PROCESSING

- A clip has dense sensor data and may contain up to a minute of video.
- Acquired from either engineering test cars or customer cars.
- Pipeline servers produce segmentation masks, depth, etc.
- Then on to other processing which creates the labels and produces the data to train the networks.

ROAD IDENTIFICATION

- The first task is to label the road surface, which can typically be represented by splines or meshes.
- Tesla uses a technique that queries XY points on the ground and asks for the height as well as various semantics: curbs, lane boundaries, etc.
- Given an XY, you get a Z and this 3D point can be projected into all the camera views.

POINTS

The system makes millions of these queries and calculates lots of points. And all the points are re-projected into all the camera views.

RECONSTRUCTING THE ROAD

 The points are consistent across space and time.

RECONSTRUCT THE ROAD FROM A SINGLE CAR

 Using this technique a car can map out the path around the car.

COLLECT DIFFERENT TRIPS IN THE SAME LOCATION

 A location can be collected by the same car or different vehicles.

COMBINED TRIPS

- Here 16 trips are composited together for the same intersection.
- This labels both where the car drove, but other parts of the road as well. A good way to check that the labels of the points from other vehicles are in agreement.
- Human labelers can then clean up any noise.

WALL, BARRIERS, ETC.

- A reconstructed 3D point cloud of walls and other obstacles.
- Notice the high density of the point cloud.

OCCULED ACTORS

- The advantage of working with the data offline, is the benefit of hindsight.
- The velocity of any actor can be tested by predicing the velocity, acceleration, direction, etc. and then comparing the guess to the actual values.
- The system can even predict actors that are occluded.
- The planner needs to know these possible behaviours, even if they are occluded.

COMBINED

- Putting it all together.
- Tesla trains on a million+ clips.

NO RADAR

- Truck dumps snow from roof on a moving car.
- The car does not 'remember' the car in front of it in poor visibility.
- Tesla removed RADAR within three months

SIMILAR EVENTS

- They had their fleet of vehicles find similar conditions.
- 10K similar clips were collected and labelled in a week.

VEHICLE PERSISTENCE

The system now remembers when conditions deteriorate.

SIMULATION

- Point cloud data can be used to create a simulation from any camera angle.
- Autopilot is controlling the car with the icon over the roof.

PERFECT LABELS

- The simulation space has perfect labels.
 - Kinematics
 - Depth
 - Surface Normals
 - Segmentation

WHY SIMULATION

- Scenes that are rare or situations that need to be considered.
- Scenes that could take 'forever' to label.
- Vary situations with small adjustments.

ACCURATE CAMERA SIMULATION

- The simulation must match what the real cameras 'see'.
- Model properties of the camera.
- The simulation can even be used to help with sensor design and placement.

PHOTOREALISTIC

- The simulation is ray traced.
- The goal is to be visually indistinguishable from reality.
- This rendering system also has a NN stack to add more realism.

DIVERSE ACTORS AND LOCATION

Thousands of Unique Vehicles, Pedestrians, & Props 2000+ Miles of Hand-Built Roads Using In-House Pipeline

SCENE GENERATON

- Scenes are generated by hand, proceduraly and ML-based adversarial.
- When Autopilot encounters a situation where it fails- many more scenes are created around the failure point to learn/train solutions.

REAL -> SYNTHETIC

Building a pipeline to replicate scenarios and environments anywhere a Tesla vehicle has driven.

ENHANCE WITH NEURAL RENDER

- Lefthand side was captured by the cameras.
- Righthand side is rendered from the simulation pipeline.

SIMULATION TODAY

A half-billion labels.

FUTURE SIMULATION

 In the next several months, these are the tasks that will be included.

What's next:

General Static World
Road Topology
More Vehicle & Pedestrians
Reinforcement Learning

SCALING DATA GENERATION

- To get rid of the RADAR sensor
 - I0+ billion labels
 - 2.5 million clips
- Compute was scaled across thousands of GPUs and about 20K CPU cores.
- Included in the comput loop were over 2,000 Autopilot system cores.
- This is Tesla's smallest comput cluster.

HARDWARE INTEGRATION

Minimizes Latency and maximizes framerate

NEURAL NET COMPILER

The jobs that need to be run on the vehicle are scheduled for throughput.

TWO COMPUTE ENGINES

- Only one has control of the car at a time.
- The other is used as a compute extension.
- Those roles are interchangeable.

AI EVALUATION INFRASTRUCTURE

Tesla runs a million evaluations a week for any code change that the team produces.

TOOLS

 This tool compares the output of code revisions to iterative video clips.

TRAINING COMPUTE

- Just shy of I0K GPUs.
- Which is more than the top 5 supercomputers in the world.

INTRODUCING DOJO

A super fast training computer.

GOALS

- Achieve best Al training performance
- Enable larger and more complex NN models
- Power efficient and cost effective compute

DISTRIBUTED COMPUTE ARCHITECTURE

- Very easy to scale the compute.
- Difficult to scale bandwidth.
- Extremely difficult to reduce latency.

DOJO ARCHITECTURE

- Large compute plane filled with robust compute elements, backed with a large pool of memory and interconnected with high bandwidth/low latency fabric. (2D mesh)
- Big neural networks are partioned and mapped to extract parallelism.
- Neural compiler (of Tesla's design) will exploit spacial and temporal locality to reduce communication demandsbandwidth communication can keep scaling as the compute plan grows.

PERFORMANCE AND ALL LEVELS

Tesla wants to attack the problem at all levels.

TRAINING NODE

- The smallest compute entity and is designed to provide seemless scaling.
 - If it is too small, it runs fast, but synchronization and software will not scale.
 - If it is too big, it will complex to implement, and produce memory bottleneck issues.

OPTIMIZING BANDWITH AND LATENCY

- Picked the farthest a signal could travel in a very high clock cycle (2+ GHtz)
- They 'drew' a box around that distance and filled it with wires, giving the highest bandwidth that can feed the box.
- Then added ML compute and a large pool of SRAM.
- Finally a programmable control core.

HIGH-PERFORMANCE TRAINING NODE

 Smallest entity of scale defined.

PACKING A PUNCH

- More than one terra-flop of compute (BF16/CFP8)
- 64 GFLOPS for FP32
- 512 GB/s transfer in each cardinal direction

ARCHITECTURE

- A capable architecture that can do compute and data transfer simultaneously.
- Fully optimized for ML workloads.

MODULAR

Physically, the training node is designed to reside next to other training nodes in any direction.

COMPUTE ARRAY

354 Training Nodes

362 TFLOPs BF16/CFP8
22.6 TFLOPs FP32

 The high bandwidth fabric supports 10TBps bidirectional throughput on a chip.

I/O RING

 More than two times the throughput of the state of the art network switch chips.

DI CHIP

362 TFLOPs BF16/CFP8
22.6 TFLOPs FP32

10TBps/dir. on-Chip Bandwidth 4TBps/edge. off-Chip Bandwidth

400W TDP

645mm² 7nm Technology

50 Billion Transistors

11+ Miles Of Wires

- 100% of the area is used for ML or bandwidth support.
- GPU-level compute with CPU-level flexibility.

DI CHIP EXCELS

SUPER SCALE

- DI chips connect to each other without additional hardware, Tesla put 500,000 training nodes together to form their compute plane.
- I,500 D1 chips connected together.

DOJO AT SCALE

Then they added Dojo Interface Processors as the host bridge, connected PCI Gen4 interfaces.

TRAINING TILE

- A training tile consists of 25 known 'good' Dojo processors.
- The maximum bandwidth is preserved.
- A high-density, high-bandwidth connection preserves the bandwidth coming out of the training tile.
- 9 PFLOPs BF16/CFP8
- Massive 36TB/s off-tile bandwidth
- Larges multi-chip-module in the industry

POWER DELIVERY

- To power the tile, Tesla created voltage regulators that re-flowed directly on top of each Dojo chip.
- Integrated the electrical, mechanical and thermal pieces with a 52VDC input.

TRAINING TILE

Unprescedented integration.

9 PFLOPs

36TB/s I/O BW

< 1 cu Ft

FIRST FUNCTIONAL TILE

 On a limited cooling bed, Tesla was able to run GPT2 on the compute tile.

SAMPLE TRAINING MATRIX

- A 2x3 tile tray is a sample training matrix, with two trays in a cabinet.
- Tesla assembled 10 cabinets with 1.1 ExaFlop capability.
- 120 training tiles, 3,000 Dojo chips, > 1M traing nodes

LOGICAL VIEW OF THE SYSTEM

 Not every job requires a huge cluster. The compute plan can be subdivided into sections that can be used for different workloads.

HOW DOES A USER LEVERAGE THIS SYSTEM?

Minimal code change to scripts.

DOJO COMPILER ENGINE

- The compiler uses multiple techniques to extract the most performance from the compute configuration.
- The compiler can handle highly dynamic control flows, such as loops and if/then/else branches.

SOFTWARE STACK

- Extensions to PyTorch.
- Custom profilers and debuggers that work with the new stack.

FASTEST AITRAINING COMPUTER

- 4X performance (at the same cost)
- I.3X Better Performance per Watt
- 5X smaller footprint

THANK YOU