Artificial Self-insurance for Heterogeneous Households Using GQ-learning

Noah Williams, Ivy X. Yang

Department of Economics University of Miami

May 16, 2025

Contribution

Merge causal inference methods with reinforcement learning

This method could

- Relax assumptions on laws of motion while keeping casual interpretation.
- Use causal structural estimates to find decision rules.
- Use decision rules to simulate counterfactuals for policy analysis.
- Use sparse-on-time individual panel data with higher frequency and high dimension macro time series.

References

- HANK model: compute policy functions at a steady state to respond to shocks: Melcangi and Sterk (2024), Acharya et al. (2023), Luetticke (2021), Kaplan et al. (2018).
- Reinforcement learning applications: Cong et al. (2022), Rao and Jelvis (2023), or simply a policy function generator: Fatih and Paolo (2022), Moll (2024).
- Reduce the high-dimensional macro state space: Bayer et al., (2024), Fernandez-Villaverde et al. (2021), Han et al. (2021), and Payne et al., 2024.

Based on the idea of

- 1. Reinforcement learning: Sutton and Barto (2013)
- 2. **G-estimation:** Robins et al. (1992a), Lewis and Syrgkanis (2021), Yang (2025).
- 3. **Adaptive learning:** Williams (2024), Evans and Honkapohja (2001), and Marcet and Sargent (1989)

Basic Algorithm

The basic algorithm includes:

- G-estimation, a method that predicts future micro-level states using past choices and current macro state.
- Q-learning, a reinforcement learning algorithm that derives policy functions through reward optimization.

GQ-learning combines the two, which is an algorithm for reinforcement learning.

Aims at estimating the non-linear law of motion $f(\cdot)$:

$$S_{i,t+1} = f(a_{i,t}, S_{i,t}, \underline{L}_t | x_i)$$
(1)

- $S_{i,t+1} = \{w_{i,t+1}, y_{i,t+1}\}$, micro-level state variables include wealth and income.
 - State variables.
- $a_{i,t} = \{\pi_{i,t}, c_{i,t}\}$, choice variables (action space) include portfolio choice $\pi_{i,t}$ and the consumption-to-wealth ratio $c_{i,t}$.
 - Action space.
- $L_t = \{L_t^y, L_t^A\}$, macro-level state includes the source of shock we are interested in L_t^y , and a component L_t^A .
 - Environment.
- x_i time invariant household specific variables.

G-estimation Stage 1:

$$\mathbb{E}[\hat{a}_{i,t}|a_{i,t-1},x_{i},L_{t}^{y},L_{t}^{A})]$$

$$=\eta_{0}+\eta_{1}a_{i,t-1}+\eta_{2}x_{i}+\eta_{3}L_{t}^{y}+\eta_{4}L_{t}^{A}$$

G-estimation Stage 2: Structural estimation for the future state

$$\begin{split} \mathbb{E}[S_{i,t+1}|a_{i,t},a_{i,t-1},x_i,S_{i,t},L_t^{y},L_t^{A}] \\ =& \beta_0 + \underbrace{\beta_1 a_{i,t-1} + \beta_2 S_{i,t} + \beta_3 x_i + \beta_4 [L_t^{y} + L_t^{A}]}_{\text{immediate effect}} \\ &+ \beta_5 \underbrace{\left(1 + L_t^{y} + L_t^{A}\right) \hat{a}_{i,t}}_{\text{adjustment term of expectation}} \\ &+ \psi \underbrace{\left(1 + L_t^{y} + L_t^{A}\right) a_{i,t}}_{\text{treatment effect}} \end{split}$$

Baseline model to Q-learning

The law of motion:

$$w_{i,t+1}(\underline{L_t}) = [\underbrace{(1+r^f) + \pi_{i,t}(r_{i,t}^s(\underline{L_t}) - r^f)}_{1+r_{i,t}}](w_{i,t}(\underline{L_t}) - C_{i,t}) + y_{i,t}(\underline{L_t})$$
(2)

Baseline model to Q-learning

The law of motion:

$$w_{i,t+1}(\underline{L_t}) = [\underbrace{(1+r^f) + \pi_{i,t}(r_{i,t}^s(\underline{L_t}) - r^f)}_{1+r_{i,t}}](w_{i,t}(\underline{L_t}) - C_{i,t}) + y_{i,t}(\underline{L_t})$$
(2)

Baseline model

$$V(S_{i,t}, L_t) = \max_{a_{i,t}} \{ u(C_{i,t}) + \beta \mathbb{E}_t [V(S_{i,t+1}, L_{t+1})] \}$$
(3)

Baseline model to Q-learning

The law of motion:

$$w_{i,t+1}(\underline{L_t}) = \underbrace{[(1+r^f) + \pi_{i,t}(r_{i,t}^s(\underline{L_t}) - r^f)]}_{1+r_{i,t}}(w_{i,t}(\underline{L_t}) - C_{i,t}) + y_{i,t}(\underline{L_t})$$

Baseline model

$$S_{i,t+1} = f(a_{i,t}, S_{i,t}, \frac{L_t}{L_t}|x_i)$$

 $L_{t+1} = g(L_t, \epsilon_{t+1})$

 $V(S_{i,t}, L_t) = \max_{a_{i,t}} \{ u(C_{i,t}) + \beta \mathbb{E}_t [V(S_{i,t+1}, L_{t+1})] \}$

Given an arbitrary action \bar{a} , the Q-learning process is:

$$Q(\bar{a}, S_{i,t}, L_t) = u(\bar{c}) + \beta \mathbb{E}_t \max_{z} Q[a, f(\bar{a}, S_{i,t}, L_t | x_i), L_{t+1}]$$

(2)

(3)

Algorithm

A toy model - linear G-estimation with the temporal difference (TD) method of Q-learning

Set an initial Q-value for each agents $Q_{i,0}$

Algorithm

A toy model - linear G-estimation with the temporal difference (TD) method of Q-learning

Set an initial Q-value for each agents
$$Q_{i,0}$$

Agents (households) choose a pair of choice variables from the action space $a_{i,t} = \{c_j, \pi_k\}$.

$\mathsf{Algorithm}^{\mathsf{I}}$

A toy model - linear G-estimation with the temporal difference (TD) method of Q-learning

Set an initial Q-value for each agents
$$Q_{i,0}$$

Agents (households) choose a pair of choice variables from the action space $a_{i,t} = \{c_j, \pi_k\}$.

With the current $a_{i,t}$, we could predict $w_{i,t+1}$ with the G-estimation, and update the Q-function:

$$\max_{c,\pi} Q_t(c,\pi,w_{t+1}(c_j,\pi_k)) = \max_{j,k} Q_t(j,k,n)$$

Algorithm

A toy model - linear G-estimation with the temporal difference (TD) method of Q-learning

Set an initial Q-value for each agents
$$Q_{i,0}$$

Agents (households) choose a pair of choice variables from the action space $a_{i,t} = \{c_j, \pi_k\}$.

With the current $a_{i,t}$, we could predict $w_{i,t+1}$ with the G-estimation, and update the Q-function:

$$\max_{c,\pi} Q_t(c,\pi,w_{t+1}(c_j,\pi_k)) = \max_{j,k} Q_t(j,k,n)$$

Solve this to get the counterfactual optimal action $a_{i,t}^* = \{c_i^*, \pi_k^*\}$

Algorithm

The iteration method used here is the Temporal-Difference (TD). The Q-function is updating on a 3-D grid by ϵ -greedy methods

• **if exploitation** - choose actions according to the maximization.

$$Q_{t+1}(c_t, \pi_t, w_t) = Q_t(c_t, \pi_t, w_t) + \gamma * [u(c_t, w_t) + \beta Q_t(c^*, \pi^*, w_{t+1}) - Q_t(c_t, \pi_t, w_t)]$$

• if exploration - choose actions randomly from the grid.

$$Q_{t+1}\left(c_{t},\pi_{t},w_{t}\right)=Q_{t}\left(c_{t},\pi_{t},w_{t}\right)+\gamma*\left[u\left(c_{t},w_{t}\right)+\beta Q_{t}\left(c_{j},\pi_{k},w_{t+1}\right)-Q_{t}\left(c_{t},\pi_{t},w_{t}\right)\right]$$

Stop when $|(Q_{n,t+1} - Q_{n,t})/Q_{n,t}| < \text{threshold - converges.}$

GQ-algorithm application to the real-world data

How do households make portfolio choices facing income and macro shocks?

Data:

Micro-level (PSID) 2009-2021 $S_{i,t}$, $a_{i,t}$, x_i

- Wealth and labor income $S_{i,t} = \{w_{i,t}, y_{i,t}\}$
- Stock value and consumption/wealth ratio $a_{i,t} = \{\pi_{i,t}, c_{i,t}\}$
- Baseline feature x_i

Macro-level (FRED) $L_t = \{L_t^y, L_t^s, r_t^f, L_t^A\}$

- High-dimensional macroeconomic variables L_t^A .
- Deflated S&P500 index L^s_t
- 3-Month Treasury Bill Secondary Market Rate r^f_t
- Aggregate income L^y_t
 "Real Rersonal Income Excluding Current
 Transfer Receipt".

Table: The second stage regression of G-estimation with PSID (2009-2021)

14/: 1	V
vv1,t+1	$y_{i,t+1}$
-4.252e+06	1.416e + 04
(4.04e+06)	(9.3e+04)
-0.10	0.69***
(0.19)	(0.16)
71.78	-1.48
(82.37)	(1.85)
	(4.04e+06) -0.10 (0.19) 71.78

	$w_{i,t+1}$	$y_{i,t+1}$
L_t^y	-854.48	-10.38
Real personal income	(701.67)	(16.15)
$\overline{L_t^s}$	-2428.33	-7.01
S&P500t	(2658.62)	(60.15)
r_t^f	-3.212e+8*	-5.06e + 5
risk free rate	(1.36e + 8)	(3.19e+6)
L_t^{A1}	6.269e+8*	9.89e+5
component 1	(2.65e+05)	(6.22e+6)
L_t^{A2}	3.786e+06	2.101e+04
Component 2	(3.43e+05)	(7.78e+04)
$\overline{(1+L_t) imes \hat{\pi}_{i,t}}$	-3070.33	32.35
Effect of expectation	(3369.29)	(75.61)
$\overline{(1+L_t) imes \pi_{i,t}}$	29.04	-3.94
Joint effect	(116.669)	(2.35)

Households' wealth levels are more affected by the macroeconomic factors, while labor income is more persistent.

w is not well fitted: $R^2(w)=0.711$ and adjusted $R^2(w)=0.421$ y is well fitted: $R^2(y)=0.988$ and adjusted $R^2(y)=0.976$

Policy functions by GQ-learning compared with the real data

Reward function: $U(C) = \frac{C^{1-\gamma}}{1-\gamma}$, $\gamma = 0.85$, discount factor $\beta = 0.95$.

Figure: Recovery Policy Functions for Portfolio Choice.

GQ-learning results: Consumption ratio $c_{i,t}$

Figure: Recovery Policy Functions for Consumption Ratio.

This is not read from the data

π of a counterfactual low income level

Figure: Aggregate income level is 8 trillion (16.2 trillion in Jan.2024)

c/w of a counterfactual low income level

Figure: Aggregate income level is 8 trillion (16.2 trillion in Jan.2024)

π of a counterfactual decrease real risk-free rate

Figure: If cut r_f by 1% (the mean of r_f is 1.18%)

c/w of a counterfactual decrease real risk-free rate

Figure: If cut r_f by 1% (the mean of r_f is 1.18%)

π of a counterfactual increase real risk-free rate

Figure: If raise r_f by 1% (the mean of r_f is 1.18%)

Observe choices at finer granular

The End

