Assignment 2

Problem 1 (1.5 points) (Show all intermediate steps. No intermediate steps will receive 0 point)

Convert integer -3 to 8 digit TC Binary. (0.5 point)

First, convert 3 to binary: $3=2^1+2^0=9$ ob 9000 0011 .

Then negate it:

```
0b 0000 0011 (3 in binary)
0b 1111 1100 (flip bits)
+ 0b 0000 0001 (add one)
-----
0b 1111 1101 (-3)
```

-3 in an 8-bit two's complement binary is 0b 1111 1101.

Convert decimal -1 to 8 digit TC Hex. (0.5 point)

First, convert 1 to hexadecimal: $1=1(16^0)=1$ 0x 0000 0001.

Then, negate it:

```
0x FFFF FFFF
- 0x 0000 0001 (1 in hex)
-----
0x FFFF FFFE (subtract from 0x FFFF FFFF)
+ 0x 0000 0001 (add one)
-----
0x FFFF FFFF (-1)
```

-1 in an 8-digit two's complement hexadecimal is 0x FFFF FFFF.

Convert integer -255 to 8 digit Hex (Hint: You can either convert 255 to Hex then negate with TC Hex rule, or you can convert -255 to TC Bin, then convert it to Hex) (0.5 point)

I'm doing the former, so: $255 = 15(16^1) + 15(16^0) = 100$ 0000 00FF .

```
0x FFFF FFFF
- 0x 0000 00FF (255 in hex)
```

-255 in an 8-digit two's complement hexadecimal is 0×10^{-2} FFFF FF01 .

Problem 2 Convert the 2-digit two's complement hexadecimal integer 0x6e to decimal. Show all intermediate steps clearly. (0.5 point)

First, we note that 0x6e is a positive integer because the leading digit here is less than eight. So, we can just convert it to decimal where E correspond to 14.

As such,
$$0x6e = 6(16^1) + 14(16^0) = 110$$
.

Problem 3 Convert the decimal integer -61 to an 8-bit two's complement binary integer. Show all intermediate steps clearly. (0.5 point)

First, convert 61 into hexadecimal: $61=3(16^1)+13(16^0)=100$ 0000 003D.

Using a reference table, we convert 0x 0000 003D to binary: 0b 0011 1101.

Dec	Bin	Hex
3	0011	3
13	1101	D

Then, negate it.

```
0b 0011 1101 (61 in binary)
0b 1100 0010 (flip bits)
+ 0b 0000 0001 (add one)
-----
0b 1100 0011 (-61)
```

-61 in an 8-bit two's complement binary is $\ \ exttt{0b} \ \ \ exttt{1100} \ \ \ exttt{0011}$.

Problem 4 You're given two 4-digit, 2's complement hexadecimal numbers X = 0xa731 and Y = 0xe6a2. Compute X-Y. Remember to indicate overflow if it

occurs. Show all intermediate steps clearly. (1 point)

First, negate Y to find -Y.

```
0x FFFF
- 0x E6A2 (Y)
-----
0x 195D (subtract from 0x FFFF)
+ 0x 0001 (add one)
-----
0x 195E (-Y)
```

Then, X-Y=X+(-Y). So:

```
1
0x A731 (X)
+ 0x 195E (-Y)
-----
0x C08F
```

In a 4-digit two's complement hexadecimal system, $X-Y={ t 0x t C08F}$.

Sanity check

	X	Y	-Y	X - Y
Hex	A731	E6A2	195E	C08F
Dec	-22735	-6494	6494	-16241

$$X - Y = -22735 - (-6494)$$
 $= -22735 + 6494$
 $= X + (-Y)$
 $= -22735 + 6494$
 $= -16241$

Problem 5 (1.5 point)

(1) Please insert the screenshot of your MARS register components. (0.25 point)

	Registers	Coproc 1	Coproc 0	
Name	Number		Value	
\$zero		0		0×00000000
\$at		1		0×10010000
\$v0		2		0x0000000a
\$v1		3		0×00000000
\$a0		4		0×10010000
\$a1		5		0×00000000
\$a2		6		0×00000000
\$a3		7		0×00000000
\$t0		8		0×00000000
\$t1		9		0×00000000
\$t2		10		0×00000000
\$t3		11		0×00000000
\$ t4		12		0×00000000
\$t5		13		0×00000000
\$t6		14		0×00000000
\$t7		15		0×00000000
\$s0		16		0×00000000
\$s1		17		0×00000000
\$s2		18		0×00000000
\$s3		19		0×00000000
\$s4		20		0×00000000
\$s5		21		0×00000000
\$ s6		22		0×00000000
\$s7		23		0×00000000
\$ t8		24		0×00000000
\$t9		25		0×00000000
\$k0		26		0×00000000
\$k1		27		0×00000000
\$gp		28		0×10008000
\$sp		29		0x7fffeffc
\$fp		30		0×00000000
\$ra		31		0x00000000
pc				0x00400018
hi				0×00000000
lo				0×00000000

(2) What is the data in Register \$v0? Write it down in hexadecimal. (In the example above, the data is 0xa). Your answer should start with "0x" which indicates it is a hexadecimal number. (0.25 point)

Data in Register \$v0 is 0x0000000a.

(3) Can you convert the data in Register \$v0 to decimal? Can you convert it to 32-bit binary? (Your answer should start with "Ob" which indicates it is a binary number) (0.25 point)

 0×00000000 in decimal is 10.

(4) Can you convert the data in Register \$gp to 32-bit binary? (0.25 point)

Data in Register \$gp is 0x10008000.

For each hexadecimal digit, there are eight bits. There are only two non-zero hexadecimal digits, namely 1 and 8.

Using a reference table, we convert 0x1 and 0x8 to binary as 0b0001 and 0b1000, respectively.

Dec	Bin	Hex
1	0001	1
8	1000	8

(5) Please insert your MARS data segment screenshot here (0.1 point)

(6) Please write down the 8 digit hexadecimal data saved in the memory address 0x10010018 according to your screenshot (0.2 point)

The data stored at 0x10010018 is 0x000000000.

(7) Please write down the 8 digit hexadecimal data saved in the memory address 0x10010024 according to your screenshot. (0.2 point)

The data stored at 0x10010024 is 0x000000000.