Лекция 9

Ilya Yaroshevskiy

January 11, 2021

Contents

1	Локально потенциальные векторные поля	1
	1.1 Интеграл локально потенциального векторного поля по непрерывному пути	1
2	Сходимость рядов	3
3	Степенные ряды	4

1 Локально потенциальные векторные поля

1.1 Интеграл локально потенциального векторного поля по непрерывному пути

Лемма 1 (о гусенице). $\gamma:[a,b] \to \mathop{O}_{om\kappa.\ MH.} \subset \mathbb{R}^m$ — непрерывное Тогда $\exists \partial poбление \quad a=t_0 < t_1 < t_2 < \cdots < t_n=v$ $u \; \exists \; uapu \; B_1, \; \ldots, \; B_n \subset O \quad \gamma[t_{k_1},t_l] \subset B_k$

Proof. $\forall c \in [a,b]$ возьмем $B_c := B(\gamma(c), \frac{r_c}{\text{произвол!!}}) \subset O$

 $\tilde{\alpha}_c := \inf \{ \alpha \in [a, b] | \gamma[\alpha, c] \subset B_c \}$

 $\tilde{\beta}_c := \sup \{ \alpha \in [a, b] | \gamma[c, \beta] \subset B_c \}$

Возьмем (α_c, β_c) : $\tilde{\alpha}_c < \alpha_c < c < \beta_c < \tilde{\beta}_c$

Таким образом $c\mapsto (\alpha_c,\beta_c)$ — открытое покрытие [a,b]

Для случая c=a или c=b вместо (α_c,β_c) берем $[a,\beta_a),\ (\alpha_b,b]$

[a,b] — компактен \Rightarrow $[a,b] \subset \bigcup_{\text{кон.}} (\alpha_c,\beta_c)$, н.у.о ни один интервал не накрывается целиком остальными $\forall (\alpha_c,\beta_c) \; \exists d_c$ — принадлежащая "только этому" интервалу

Точка
$$t_k$$
 выбирается на отрезке (d_k, d_{k+1}) и $t_k \in (\alpha_k, \beta_k) \cap (\alpha_{k+1}, \beta_{k+1})$ $\gamma([t_{k-1}, t_l]) = \gamma(\alpha_k, \beta_k) \subset B_k$

 Π римечание. $\forall \delta > 0$ мы можем требовать чтобы все $r_k < \delta$

Примечание. В силу формулы "произвол!!" можно требовать, чтобы шары B_c удовлетворяли локальному условию

 $\mathit{Пример}.$ Пусть V — локально потенциальное векторное поле в O мы можем требовать, чтобы во всех шарах B_c существовал потенциал V.

Назовем в этом случае набор $\{B_k\} - V$ - гусеница

Определение. V - локально потенциальное векторное поле в $O \subset \mathbb{R}^m$ $\gamma, \tilde{\gamma}: [a,b] \to O$ называются **похожими** (V - похожими) если у них есть общая V - гусеница $\exists t_0 = a < t_1 < t_2 < \dots < t_n = v \quad \exists$ шары $B_k \subset O$ $\gamma[t_{k-1},t_k] \subset B_k, \ \tilde{\gamma}[t_{k-1},t_k] \subset B_k$

 $Cnedcmeue\ 1.\ V$ — локально потенциальное векторное поле Тогда любой путь V - похож на ломаную

Лемма 2 (о равенстве интегралов локально потенциального векторного поля по похожим путям). V - локально потенциальное векторное поле в $O \subset \mathbb{R}^m$

$$\gamma, \tilde{\gamma}: [a,b] \to O-V$$
 - похожие, кусочно гладкие, $\gamma(a)=\tilde{\gamma}(a), \ \gamma(b)=\tilde{\gamma}(b)$ Тогда $\int_{\gamma} \sum V_i dx_i = \int_{\tilde{\gamma}} \sum V_i dx_i$

 $\mathit{Proof.}\ \mathsf{Берем}\ \mathsf{общую}\ V$ - гусеницу

Пусть f_k - потенциал V в шаре B_k

 $a = t_0 < t_1 < \dots < t_n = b$

Поправим потенциал(прибавим константы)

 $f_k((t_k)) = f_{k+1}(\gamma(t_k))$ при $k=1,2,\ldots,n$ Тогда

$$\int_{\gamma} \sum V_i dx_i = \sum \int_{[t_{k-1}, t_k]} \dots \xrightarrow{\text{обобщ. } \phi\text{-ла H.-Л.}} \sum f_k(\gamma(t_k)) - f_k(\gamma(t_{k-1})) =$$
 (1)

= "телесопическая" =
$$f_n(\gamma(b)) - f_1(\gamma(a))$$
 (2)

Для $\tilde{\gamma}$ воспользуемся свойством: $f_k\Big|_{B_k\cap B_{k+1}}=f_{k+1}\Big|_{B_k\cap B_{k+1}}$ и тогда аналогично $\int_{\tilde{\gamma}}\sum V_i dx_i=f_n(\tilde{\gamma}(b))-f_n(\tilde{\gamma}(a))$

Примечание. Вместо " $\gamma(a) = \tilde{\gamma}(a), \ \gamma(b) = \tilde{\gamma}(b)$ " можно взять условие " $\gamma, \tilde{\gamma}$ - петли, т.е. $\gamma(a) = \gamma(b), \ \tilde{\gamma}(a) = \tilde{\gamma}(b), \ u$ вообще говоря $\gamma(a) \neq \tilde{\gamma}(a)$ " Тогда утверждение Леммы 2 тоже верно

Лемма 3. $\gamma:[a,b]\to O$ - непрерывный, V - локально потенциальное векторное поле в O Тогда $\exists \delta>0$ Если $\tilde{\gamma},\tilde{\tilde{\gamma}}\to O$ таковы, что $\forall t\in[a,b]$ $|\gamma(t)-\tilde{\gamma}(t)|<\delta,\ |\gamma(t)-\tilde{\tilde{\gamma}}(t)|<\delta$ Тогда $\tilde{\gamma}$ и $\tilde{\tilde{\gamma}}$ (и $\gamma)$ — V - похожи

Proof. Берем V - гусеницу для γ

 δ_k - окрестнось множества $\gamma[t_{k-1},t_{\lceil k \rceil}]$

 $\forall k \; \exists \delta_k > 0 : \quad (\delta_k \text{ - окрестность } \gamma[t_{k-1}, t_k]) \subset B_k$

 δ - окрестность множества $A\!\colon \{x|\ \exists a\in A\ \rho(a,x)<\delta\}=\bigcup_{a\in A}B(a,\delta)$

Следует их компактности: пусть $B_k = B(w, r)$

 $t\in [\gamma_{k-1},\gamma_k]\mapsto
ho(\gamma(t),w)$ - непрерывная функция \Rightarrow достигает max $ho(\gamma(t),w)\leq r_0< r$ $\delta_k:=rac{r-r_0}{2}$

 $\rho(\gamma(t), w) \le r_0 < r \quad \delta_k := \frac{r_0}{2} \\
\delta := \min(\delta_1, \dots, \delta_k)$

Определение. Интеграл локально потенциального векторного поля V по непрерывному пути γ

Возьмем $\delta > 0$ из Леммы 3

Пусть $\tilde{\gamma} - \delta$ - близкий кусочно гладкий путь, т.е. $\forall t \ |\gamma(t) - \tilde{\gamma}(t)| < \delta$

Полагаем: $I(V, \gamma) = I(V, \tilde{\gamma})$

Следует из Леммы 3 и Леммы 2

2 Сходимость рядов

 $f_n \rightrightarrows f$ на E

 $\forall \varepsilon > 0 \ \exists V(\infty) \ \forall n \in V(\infty) \ \forall x \in E \ |f_n(x) - f(x)| < \varepsilon$ $f(x,y) \xrightarrow[x \to x_0]{} g(y)$ на множестве E(т.e. для $y \in E)$

 $\forall \varepsilon > 0 \ \exists V(x_0) \ \forall x \in \dot{V}(x_0) \ \forall t \in E|f(x,y) - g(y)| < \varepsilon$

Теорема 4.

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$
 (3)

Если один из предельных переходов равномерный

Теорема 1 (признак Дирихле). $\sum a_n(x)b_n(x)$ — вещественный ряд, $x \in X$ Пусть:

- 1. Частичные суммы ряда $\sum a_n$ равномерно ограничены $\exists C_a \ \forall N \ \forall x \in X \quad |\sum_{k=1}^n a_k(x)| \leq C_a$
- 2. $\forall x$ последовательность $b_n(x)$ монотонна по n и $b_n(x) \Longrightarrow 0$ на X

Тогда ряд $\sum a_n(x)b_n(x)$ рвномерно сходится на XДля числовых рядов: $\sum a_n b_n$

- 1. частичные суммы a_n ограничены
- $2. \ b_n o 0, \ b_n$ монотонна

Тогда $\sum a_n b_n$ - сходится

Proof.

$$\sum_{k=M}^{N} a_k b_k = A_N b_N - A_{M-1} b_{M-1} + \sum_{k=M}^{N-1} A_k (b_k - b_{k+1}), \text{ где } A_k = \sum_{i=1}^{k} a_i$$
 (4)

преобразование Абеля(суммирование по частям)

$$\left| \sum_{k=M}^{N} a_k(x) b_k(x) \right| \le C_a \cdot |b_M| + C_a \cdot |b_{M-1}| + \sum_{k=M}^{N-1} C_a \cdot |b_k - b_{k+1}| \le C_a (|b_N(x)| + |b_{M-1}(x)| + \sum_{k=1}^{N-1} |b_k - b_{k+1}|) \le C_a \cdot |b_M| + C_a \cdot |b_M| +$$

$$\leq C_a(2|b_N(x)| + |b_{M-1}(x)| + |b_M(x)|)$$
 (6)

Переход (5) \rightarrow (6): в сумме все разности одного знака \Rightarrow "телескопическая" и равна $\pm (b_M - b_N)$ $\forall \varepsilon > 0 \ \exists K : \ \forall l > K \ \forall x \in X \ |b_l(x)| < \frac{\varepsilon}{4C_a}$

Значит при $M,N>K \quad \forall x\in X \quad \left|\sum_{k=M}^N a_k(x)b_k(x)\right|<\varepsilon$ — это критерий Больциано-Коши равномерной сходимости ряда

 $\Pi p u м e p$.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2} \quad x \in \mathbb{R} \tag{7}$$

1. f(x) — непрерывная функция на \mathbb{R} ?

Теорема Стокса-Зайдля

$$\left|\frac{\sin nx}{x^2}\right| < \frac{1}{x^2}$$
 $\sum \frac{1}{x^2}$

 $\left|\frac{\sin nx}{n^2}\right| \leq \frac{1}{n^2} \quad \sum \frac{1}{n^2}$ По признаку Вейерштрасса ряд равномерно сходится на $\mathbb{R} \Rightarrow f$ — непрерывна на \mathbb{R}

2. f — дифференцируема?

3 Степенные ряды

$$B(r_0,r)\subset\mathbb C$$
 - открытый круг $\sum_{n=1}^{+\infty}a_n(z-z_0)^n$, где $z_0\in\mathbb C,\ a_n\in\mathbb C,\ z$ — переменная $\in\mathbb C$

Теорема 2 (о круге сходимости степенного ряды). $\sum a_n(z-z_0)^n$ - степенной ряд Тогда выполняется ровно один из трех случаев:

- 1. Ряд сходится при всех $z \in \mathbb{C}$
- 2. Ряд сходится только при $z=z_0$
- 3. $\exists R \in (0, +\infty)$: при:
 - $|z-z_0| < R$ ряд сходится
 - $|z z_0| > R$ ряд расходится

Proof. Признак Коши: $\sum a_n \quad \lim \sqrt[n]{|a_n|} = r$

- r < 1 ряд сходится
- r > 1 ряд расходится

$$\sum a_n(z-z_0)^n$$

$$\lim \sqrt[n]{|a_n| \cdot |z - z_0|^n} = \lim \sqrt[n]{|a_n|} \cdot |z - z_0| = |z - z_0| \cdot \lim \sqrt[n]{|a_n|}$$
(8)

- \bullet lim $\sqrt[n]{|a_n|}=0$ тогда r=0 и есть (абсолютная) сходимость при всех z
- $\lim \sqrt[n]{|a_n|} = +\infty$ тогда $r = +\infty$ при $z \neq z_0$ А при $z = z_0$ ряд очевидно сходится

•
$$\lim \sqrt[n]{|a_n|} \neq 0, +\infty$$
 $|z - z_0| \cdot \lim \sqrt[n]{|a_n|} < 1 \Leftrightarrow |z - z_0| < \frac{1}{\lim \sqrt[n]{|a_n|}} \stackrel{\text{def}}{==} R$

- 1. $|z z_0| < R$ ряд сходится абсолютно
- $2. \ |z-z_0| > R$ ряд расходится, т.к. слагаемые $\not\to 0$

Определение (степенной ряд). $\sum a_n(z-z_0)^n$ число $R=\frac{1}{\lim \sqrt[n]{|a_n|}}$ — называется радиусом сходимости степенного ряда