METODY NUMERYCZNE – LABORATORIUM

Zadanie 6 – Rozwiązywanie układu równań różniczkowych

Opis rozwiązania

W zadaniu zastosowano dwie wersje metody Rungego-Kutty do rozwiązywania układu równań różniczkowych czwartego stopnia: najczęściej stosowaną wersję klasyczną i najdokładniejszą wersję opartą o wzór Ralstona. Program napisany w ramach zadania rozwiązuje układ dany równaniem:

$$\begin{split} \frac{di_{1}(t)}{dt} &= \frac{1}{\det M\varphi(t)} \left[\left(L_{r_{2}}R_{m\delta} + R_{mFe}\varphi(t) \right) \frac{1}{w_{2}} + w_{2} \right) \left(e_{1}(t) - R_{1}i_{1}(t) \right) - w_{1}(u_{e}(t) + R_{2}i_{2}(t)) \right] \\ \frac{d\varphi(t)}{dt} &= \frac{1}{\det M(\varphi)} \left[\frac{w_{1}}{w_{2}} L_{r_{2}}(e_{1}(t) - R_{1}i_{1}(t)) + L_{r_{1}}(u_{e}(t) + R_{2}i_{2}(t)) \right] \\ \frac{di_{o}(t)}{dt} &= (u_{e}(t) - R_{o}i_{o}(t)) \frac{1}{L_{o}} \\ \frac{du_{e}(t)}{dt} &= (i_{2}(t) - i_{o}(t)) \frac{1}{C} \end{split}$$

Algorytm metod prezentuje się następująco:

- 1. Przyjmujemy wartość niewiadomej $y_r(x_0)$ jako warunek początkowy tej zmiennej y_{r0} .
- 2. Obliczamy wartość współczynnika k_{rl} , wyrażającego się wzorem $k_{rl} = hf_r(x_0, y_{10}, y_{20}, ..., y_{n0})$ gdzie h jest zadanym krokiem całkowania w przedziale $[t_0, t_l]$.
- 3. Obliczamy wartość współczynnika k_{r2} , wyrażającego się wzorem $k_{r2} = h f_r (x_0 + a_2 h, y_{n0} + a_2 k_{n1})$, gdzie $a_2 = 0.5$ dla wersji klasycznej i $a_2 = 0.4$ dla wersji opartej o wzór Ralstona.
- 4. Obliczamy wartość współczynnika k_{r3} , wyrażającego się wzorami $k_{r3} = hf_r(x_0 + 0.5 h, y_{n0} + 0.5 k_{n2})$ dla wersji klasycznej i $k_{r3} = hf_r(x_0 + 0.45573726 h, y_{n0} + 0.29697760 k_{n1} + 0.15875966 k_{n2})$ dla wersji opartej o wzór Ralstona
- 5. Obliczamy wartość współczynnika k_{r3} , wyrażającego się wzorami $k_{r4} = hf_r(x_0 + h, y_{n0} + k_{n3})$ dla wersji klasycznej i $k_{r4} = hf_r(x_0 + h, y_{0n} + 0.21810038 k_{n1} 3.05096470 k_{n2} + 3.83286432 k_{n3})$ dla wersji opartej o wzór Ralstona
- 6. Obliczamy wartość niewiadomej y_{n+1} na podstawie wzoru $y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ dla wersji klasycznej i $y_{n+1} = y_n + 0.17476028 k_1 0.55148053 k_2 + 1.20553547 k_3 + 0.17118478 k_4$ dla wersji opartej o wzór Ralstona.

Wyniki

W poniższej tabeli zaprezentowane zostały wyniki uzyskane przez program dla konkretnych wartości kroku całkowania. Przyjęto: $t_0 = 0$, $t_1 = 0.2$

Przebieg: $i_l(t)$ Kroki: $t_l/512$ oraz $t_l/128$

Przy większym kroku całkowania mamy do czynienia z niewielkimi rozbieżnościami między obiema wersjami na korzyść wersji opartej o wzór Ralstona.

Przebieg $\varphi(t)$ Kroki: $t_I/512$ oraz $t_I/64$ Jak widać podanie kroku ma duży wpływ na kształt wykresu. Na powyższym wykresie (z prawej) występują poważne zakłócenia.

Przebieg $u_c(t)$ Kroki: $t_1/512$ oraz $t_1/256$ Krok całkowania ma także wpływ na wartości przedstawione na wykresie. Na powyższych wykresach zauważalny jest wzrost wartości dla większego kroku całkowania.

Wnioski

- Wybór kroku całkowania ma duży wpływ na wartości, które osiągane są przez program. Im mniejszy krok, tym graniczne wartości są mniejsze.
- Krok całkowania wpływa także na kształt wykresu. Dla dużego kroku mieliśmy do czynienia ze sporymi zakłóceniami występującymi na wykresie.
- Metoda Rungego-Kutty oparta o wzór Ralstona okazuje się być bardziej dokładną o czym świadczyć mogą wyniki z przebiegu $i_l(t)$.