Errata for "An Introduction to Infinite-Dimensional Differential Geometry"

The list below collects errata and misprints for the first edition of "An Introduction to Infinite-Dimensional Differential Geometry" published by Cambridge University Press.

Last changes: June 12, 2023

- p.4 Theorem 1.7: Though not strictly an error, it would be prudent to stress that the two points should be distinct. Change the last sentence to ..., that is, for each pair $x, y \in E, x \neq y$ there exists a continuous linear $\lambda \colon E \to \mathbb{R}$ such that $\lambda(x) \neq \lambda(y)$.
- p.10 proof of 1.20: $E \times F$ should be $E_1 \times E_2$ and H in the definition of I_i should be F.
- p.12 proof of Lemma 1.25, line 5: missing t_n^{-1} between the limit and the bracket.
- p.18 proof of 1.39 line 4 of the proof $V_{\phi} \colon F \to V_{\phi}$ should read $V_{\phi} \cap F_{\phi} \to V_{\phi}$. line 8 of the proof $f^{-1}(U_{\phi})$ should be $f^{-1}(U_{\phi} \cap N)$. In this and the next line the spaces F should be F_{ϕ} .
- p.19 Lemma 1.41 proof of (b) the Formula should read

$$h_{\psi} \circ h_{\phi}^{-1}(y) = \dots = d(\psi \circ \phi^{-1})(p_{\phi}; y).$$

- p.20 l.3 in the displayed formula replace v with y.
- p.62, 3.31.: The definition of the logarithmic derivative is missing an inverse. It should read

$$\delta^{\ell}(c) \colon [a,b] \to \mathbf{L}(G), t \mapsto T\lambda_{c(t)}^{-1}(\dot{c}(t)).$$

- 4.17: S_2 and $S_{U,2}$ are the same map, so S_2 should be relabeled $S_{U,2}$.
- p. 123, Exercise 6.1.1 (b) the set should read $\overline{\{y \in M \mid h(y) \neq y\}}$ instead of $\overline{\{y \in M \mid h(x) \neq x\}}$.
- p. 139, the integral in the statement of 7.2 should be \int_0^1 not \int_a^b . In the proof it should rather be $g(q(s,\cdot))$ instead of g(q(s)) and after the first equality of the displayed equation in the proof, the first term should read $g_U(c(t), B_U(c(t), c'(t), c'(t)), h(t))$.
- p. 140, the integrals should be $\int_{\mathbb{S}^1}$ instead of $\int_{\mathbb{S}^1}$