PROYECTO COMPILANDO CONOCIMIENTO

ALGEBRA LINEAL

Transformaciones Lineales

Transformaciones Lineales

AUTOR:

Rosas Hernandez Oscar Andres

Índice general

1.	Trai	nsformaciones Lineales	2
	1.1.	Definición	3
	1.2.	Propiedades	5
2.	Ker	nel e Imagen	6
	2.1.	Kernel	7
	2.2.	Imágen	9
	2.3.	Propiedades de Ambas	11
3.	Tipe	os de Transformaciones	12
	3.1.	Inyectiva y Supreyectiva	13
		3.1.1. Suprayectiva	13
		3.1.2. Inyectiva	13
		3.1.3. Propiedades	13
	3.2.	Isomorfismo	14
		3.2.1. Propiedades	14

Capítulo 1

Transformaciones Lineales

1.1. Definición

Sea V y W dos espacios vectoriales sobre un **mismo** campo K. Una transformación lineal de $V \to W$ es una función que cumpla con esto:

 $\mathcal{T}: V \to W$ tal que $\forall v_1, v_2 \in V$ y $\forall \alpha \in K$ tenemos que se cumple que:

- $\mathcal{T}(v_1 + v_2) = \mathcal{T}(v_1) + \mathcal{T}(v_2)$
- $T(\alpha v_1) = \alpha T(v_1)$

Combinación Lineal

Podemos tambien tener que como consecuencia de lo que tenemos arriba que podemos encontrar que \mathcal{T} es una transformación lineal si y solo si se cumple que:

 $\forall v_1, v_2 \in V \text{ y } \forall \alpha, \beta \in K \text{ se cumple que:}$

$$\mathcal{T}(\alpha v_1 + \beta v_2) = \alpha \, \mathcal{T}(v_1) + \beta \, \mathcal{T}(v_2) \tag{1.1}$$

Saber si algo es una \mathcal{T}

Así que para probar que una \mathcal{T} es o no transformación lineal basta con verificar que se cumplan las 2 propiedades originales.

Ejemplos

Sea $\mathbb{R}^3 \to \mathbb{R}^2$ tal que:

$$\mathcal{T} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - z \\ y + z \end{pmatrix}$$

Probemos la primera propiedad como:

$$\mathcal{T}(v_1 + v_2) = \mathcal{T} \begin{pmatrix} x_1 & x_2 \\ y_1 + y_2 \\ z_1 & z_2 \end{pmatrix}$$

$$= \mathcal{T} \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix} = \frac{(x_1 + x_2) - (z_1 + z_2)}{(y_1 + y_2) + (z_1 + z_2)} = \frac{(x_1 - z_1)}{(y_1 + z_1)} + \frac{(x_2 - z_2)}{(y_2 + z_2)} = \mathcal{T} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \mathcal{T} \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$$

$$= \mathcal{T}(v_1) + \mathcal{T}(v_2)$$

Probemos la segunda propiedad:

$$\mathcal{T}(\alpha v_1) = \mathcal{T} \begin{pmatrix} x \\ \alpha \cdot y \\ z \end{pmatrix}$$

$$= \mathcal{T} \begin{pmatrix} \alpha x \\ \alpha y \\ \alpha z \end{pmatrix} = \frac{\alpha x - \alpha z}{\alpha y + \alpha z} = \alpha \cdot \frac{x - z}{y + z} = \alpha \mathcal{T} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \alpha \mathcal{T}(v_1)$$

Por lo tanto las 2 propiedades se cumplen así que si que es una transformación lineal.

1.2. Propiedades

El 0_v se preserva

Una Transformación Lineal debe llevar al 0_v de V al 0_v de WSu demostración es muy sencilla, pues $\mathcal{T}(0_v) = \mathcal{T}(v_v - v_v) = \mathcal{T}(v_v) - \mathcal{T}(v_v) = 0_w$

Operador Lineal

Decimos que \mathcal{T} (alguna transformación lineal) es un operador lineal en V si y solo si su dominio y su contradominio son el mismo.

Capítulo 2

Kernel e Imagen

2.1. Kernel

Definición

El Kernel de una Transformación Lineal o Núcleo es el conjunto de todos los vectores originales (osea $v \in V$) tales que al momento de aplicarles la transformación estos son llevados al origen (osea 0_w)

O dicho con el bello lenguaje de matemáticas:

$$Kernel(\mathcal{T}) = \{ v \in V | \quad \mathcal{T}(v) = 0_w \}$$
 (2.1)

Recuerda que un Kernel siempre siempre sera un Subespacio Vectorial y solemos llamar a su dimensión la 'Nulidad'.

Podemos decir que el Kernel es el espacio solución del Sistema Homogeneo.

$$\{x \in K^m | Ax = 0_{m \times 1}\}$$

Ejemplo

Encuentra el Kernel de la siguiente Transformación Lineal: $\mathcal{T}: \mathbb{R}^3 \to \mathbb{R}_2[x]$ tal que: $\mathcal{T}(a,b,c) = (a+b) + (a-c)x + (2a+b-c)x^2$

Lo que nos estan pidiendo es:

$$Kernel(\mathcal{T}) = \{(a, b, c) \in \mathbb{R}^3 | \mathcal{T}(a, b, c) = 0 + 0x + 0x^2 \}$$

Veamos que para hacerlo solo basta con que cumplan que:

$$a + b = 0$$
$$a - c = 0$$
$$2a + b + c = 0$$

Podemos hacer Gauss - Jordan:

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Por lo tanto podemos ver que:

$$a+b=0 \rightarrow a=-b$$

 $a-c=0 \rightarrow a=c$

Por lo tanto podemos ver que:

$$Kernel(\mathcal{T}) = \{(a, b, c) \in \mathbb{R}^3 | a = -b, a = c\}$$

Finalmente aplicamos la transformación con estas propiedades y tenemos que:

$$Kernel(\mathcal{T}) = \{(a, -a, a) \in \mathbb{R}^3 | a \in \mathbb{R}\}$$

Y si te das cuenta estas ya describiendo un espacio vectorial que esta definido como:

$$Kernel(\mathcal{T}) = \{\alpha(1, -1, 1) | \alpha \in \mathbb{R}\}$$

Sera tal vez una linea, pero no deja de ser espacio vectorial, cuyo vector base es:

$$Kernel(\mathcal{T}) = <(1, -1, 1)>$$

2.2. Imágen

Tambien tenemos a la hermana perdida del Kernel, la llamamos la **Imágen**, la cual la definimos así:

Definición

La imágen de una Transformación Lineal es el conjunto de todos los vectores nuevos (osea $w \in W$) que podemos 'crear' desde los vectores originales (osea $v \in V$) usando la Transformación Lineal.

O dicho con el bello lenguaje de matemáticas:

$$Imagen(\mathcal{T}) = \{ w \in W | \exists v \in V, \quad \mathcal{T}(v) = w \}$$

$$(2.2)$$

Recuerda que una Imagen siempre siempre sera un Espacio Vectorial y solemos llamar a su dimensión 'Rango'.

Podemos decir que el Imagen es el conjunto de terminos independientes para los cuales hay solución.

$$\{b \in K^m | \exists x \in K^m, Ax = b\}$$

Ejemplo

Encuentra la Imagen de la siguiente Transformación Lineal: $\mathcal{T}: \mathbb{R}^3 \to \mathbb{R}_2[x]$ tal que: $\mathcal{T}(a,b,c) = (a+b) + (a-c)x + (2a+b-c)x^2$

Lo que nos estan pidiendo es:

$$Imagen(\mathcal{T}) = \{a_0 + a_1 x + a_2 x^2 \in R_2[x] | \exists (a, b, c) \in \mathbb{R}^3, \quad \mathcal{T}(a, b, c) = a_0 + a_1 x + a_2 x^2 \}$$

Es decir, lo que se nos esta pidiendo es que:

$$a + b = a_0$$
$$a - c = a_1$$
$$2a + b + c = a_2$$

Y pos preguntas para que valores de a_0, a_1, a_2 tiene solución el sistema que planteamos allá arriba.

Es decir lo que tenemos que hacer es ver las soluciones de este sistema de ecuaciones, podemos hacer Gauss - Jordan:

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \rightarrow_{Usando:Gauss-Jordan} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_0 - a_1 \\ a_2 - a_1 - a_0 \end{pmatrix}$$

Por lo tanto podemos ver que:

$$a_2 - a_1 - a_0 = 0 \rightarrow a_2 = a_1 + a_0$$

Y ya solo sustituyendo tenemos que:

$$Imagen(\mathcal{T}) = \{a_0 + a_1 x + (a_0 + a_1) x^2 \in R_2[x] | a_2 = a_0 + a_1, | a_0, a_1 \in \mathbb{R} \}$$
$$= \{a_0(1 + x^2) + a_1(x + x^2) \in R_2[x] | a_0, a_1 \in \mathbb{R} \}$$

Y si te das cuenta estas ya describiendo un espacio vectorial que esta definido como:

$$Imagen(\mathcal{T}) = \{\alpha(1+x^2) + \beta(x+x^2) | \alpha, \beta \in \mathbb{R}\}\$$

Y cuyos vectores base son:

$$Imagen(T) = <(1+x^2), (x+x^2)>$$

2.3. Propiedades de Ambas

Podemos hablar de que ambas paracen ser como hermanas perdidas, veamos que propiedades tenemos:

- Llamemos Rango a $Dim(Imagen(\mathcal{T}))$
- Llamemos Nulidad a $Dim(Kernel(\mathcal{T}))$
- Ambas Son SubEspacios Vectoriales.
- Estas deacuerdo que todos los vectores o bien son llevados al cero vector o no, así que tiene sentido hablar de que La Suma de la Nulidad con el Rango te da la dimensión de V, es decir: dim(V) = dim(Kernel) + dim(Imagen)

Capítulo 3

Tipos de Transformaciones

3.1. Inyectiva y Supreyectiva

Vamos a declarar muchas cosas, así que empecemos:

- Sea $\mathcal{T}: V \to W$ una transformación lineal.
- Sea $S \subseteq V$ donde S es un conjunto de vectores base (tal que $\langle S \rangle = V$)
- Además sean $v_1, v_2, \dots \in V$ y linealmente independientes.

Obviamente sabemos que $\langle \mathcal{T}(S) \rangle = Imagen(\mathcal{T})$

3.1.1. Suprayectiva

Recuerda que el hecho de que una función f(x) sea suprayectiva si es que existe para cualquier y podemos encontrar a una x tal que f(x) = y. Esto tambien lo podemos ver si es que Imagen(f) = y

 \mathcal{T} es suprayectiva si y solo si $\langle \mathcal{T}(s) \rangle = W$

Esto lo que nos dice es a que vectores puedo alcanzar basicamente.

3.1.2. Inyectiva

Recuerda que el hecho de una función f(x) sea inyectiva si es que para cualquiera x_1, x_2 que pase que $f(x_1) = f(x_2)$ implica que $x_1 = x_2$.

 \mathcal{T} es inyectiva si y solo si $Kernel(\mathcal{T}) = \{0_v\}$

Ademas podemos saber que si \mathcal{T} es inyectiva, entonces $\mathcal{T}(v_1) + \mathcal{T}(v_2) + \cdots$ son linealmente independientes.

3.1.3. Propiedades

Sea $\mathcal{T}_1: V \to W$ y $\mathcal{T}_2: W \to U$ transformaciones lineales.

- \bullet Si \mathcal{T}_1 es biyectiva, entonces \mathcal{T}_1^- 1 : $W\to V$ también es una Transformación Lineal.
- $\mathcal{T}_2 \circ \mathcal{T}_1 : V \to U$ es una Transformación Lineal.

3.2. Isomorfismo

Sea $\mathcal{T}: V \to W$ una transformación lineal.

Decimos que \mathcal{T} es un isoformismo y que V es isomorfo a W $(V \cong W)$ si \mathcal{T} es biyectiva.

Decir que V sea isomorfo con W quiere decir que existe alguna transformación lineal Biyectiva entre ambas.

Algo interesante que recordar es que (obviamente) también es que $\mathcal{T}^-1:W\to V$ es una transformación lineal y también es un isomorfismo.

Podemos ademas saber que \cong es una relación de equivalencia. Esto quiere decir que:

- $V\cong V$
- $(V \cong W)$, entonces $(W \cong V)$
- $(V \cong W)$ y $(W \cong U)$, entonces $(V \cong U)$

3.2.1. Propiedades

Sea $\mathcal{T}_1: V \to W$ una transformación lineal isomorfa.

Esto quiere decir que si yo tengo ciertos vectores, una base de V v_1, v_2, \ldots entonces $\mathcal{T}(v_1), \mathcal{T}(v_2), \ldots$ será una base de W.

Por lo que acabamos de ver, podemos estar seguro de que si 2 espacios vectoriales son isomorfos, entonces la dimensión de ambos espacios vectoriales será igual.

De hecho este es un Teorema bonito: Dos espacios vectoriales que tienen la misma dimensión (obvio infinito no cuenta) ssi son isomorfos.

Bibliografía

[1] ProbRob Youtube.com