Programming Question-5

The due date for this homework is Mon 12 Aug 2013 10:59 AM MSK (UTC +0400).

☐ In accordance with the Coursera Honor Code, I (Nadezhda Ryabtsova) certify that the answers here are my own work.

Question 1

In this programming problem you'll code up Dijkstra's shortest-path algorithm.

Download the text file here. (Right click and save link as).

The file contains an adjacency list representation of an undirected weighted graph with 200 vertices labeled 1 to 200. Each row consists of the node tuples that are adjacent to that particular vertex along with the length of that edge. For example, the 6th row has 6 as the first entry indicating that this row corresponds to the vertex labeled 6. The next entry of this row "141,8200" indicates that there is an edge between vertex 6 and vertex 141 that has length 8200. The rest of the pairs of this row indicate the other vertices adjacent to vertex 6 and the lengths of the corresponding edges.

Your task is to run Dijkstra's shortest-path algorithm on this graph, using 1 (the first vertex) as the source vertex, and to compute the shortest-path distances between 1 and every other vertex of the graph. If there is no path between a vertex v and vertex 1, we'll define the shortest-path distance between 1 and v to be 1000000.

IMPLEMENTATION NOTES: This graph is small enough that the straightforward O(mn) time implementation of Dijkstra's algorithm should work fine. OPTIONAL: For those of you seeking an

additional challenge, try implementing the heap-based version. Note this requires a heap that
supports deletions, and you'll probably need to maintain some kind of mapping between
vertices and their positions in the heap.
☐ In accordance with the Coursera Honor Code. I (Nadezhda Rvabtsova) certify that the

Submit Answers

answers here are my own work.

Save Answers

You cannot submit your work until you agree to the Honor Code. Thanks!

Time remaining 305:50:42