Accurate MS/MS Spectral Prediction with CFM-ID 4.0

Fei Wang^{1,3}, Siyang Tian^{1,2}, Jaanus Liggand^{2,4}, David Arndt², Russell Greiner^{1,3}, David S. Wishart^{1,2}

¹Department of Computing Science, ²Department of Biological Science, University of Alberta, Edmonton, Alberta, Canada

³Alberta Machine Intelligence Institute (AMII), Edmonton, Alberta, Canada

⁴Institute of Chemistry, University of Tartu, Tartu, Estonia

Introduction

CFM-ID is a software package that uses machine learning to accurately predict the Ionization Tandem Electrospray Spectrometry (ESI-MS/MS) spectra for organic compounds. It can perform the following three tasks: (1) Predict the spectra for a given chemical structure, (2) annotate the peaks in a set of given spectra of a known chemical structure, and (3) classify the structure for a target spectrum. CFM-ID 3.0 is a state-of-thefor ESI-MS/MS program prediction, as well as spectrum-to-compound classification. In this work, we are introducing the significantly improved version, CFM-ID 4.0. It is freely available as both, a web version (cfmid4.wishartlab.com), and a downloadable software package.

CFM-ID 4.0 Improvements

- Learned parameters via Deep Neural Networks
- Learned parameters from molecular topology
- Improved ring cleavage model
- Expanded training set by 3x (QToF)
- Added rule-based schema for
 - Acylcarnitines
 - Acylcholines
 - Polyphenols
 - Flavonols

Graph Based Feature Representation

Expanding Rule Based Predictors

Compound class	Number of	Covered Adduct
	Covered Rules	Types
acylcarnitines	9	[M]+
acylcholines	11	[M]+
flavonols	47	$[M+H]^+, [M-H]^-$
flavones	20	$[M+H]^+, [M-H]^-$
flavanones	15	$[M+H]^+, [M-H]^-$
flavonoid-3-O-glycosides	36	$[M+H]^+, [M-H]^-$
flavonoid-7-O-glycosides	63	$[M+H]^+, [M-H]^-$
flavonoid-7-O-glucuronides	12	[M+H] ⁺ , [M-H] ⁻
4'-O-methylated flavonoids	53	[M+H] ⁺ , [M-H] ⁻
7-O-methylated flavonoids	36	$[M+H]^+, [M-H]^-$
3'-O-methylated flavonoids	11	[M-H]-

Predicted Spectra

Results

Spectral Prediction Performance

10-Fold Cross Validation Results on Metlin 2015 [M+H]+ Set

Spectral Classification Performance CASMI 2016 (Category 3)

208 compounds

	TOP 1	TOP 3	TOP 10
CFM-ID 2.0 Alone	120	160	182
CFM-ID 4.0 Alone	147	178	203
CFM-ID 3.0 + Expt. Spectra + Meta data	149	194	204
CFM-ID 4.0 + Expt. Spectra + Meta data	165	197	207
MS-Finder (post-hoc)	146	162	174

Conclusions

In this work, we introduced a novel tensor representation for describing chemical structures and used it to extend the capabilities of existing CFM-ID machine learning methods in ESI-MS/MS spectral prediction tasks. Alongside machine learning based improvements, we proposed new rule-based methods to further enhance the CFM-ID 4.0 system's predictive ability for specific classes of chemicals, where the machine learning model suffers. The *in-silico* spectra prediction performance of these novel methods was examined against empirical results on multiple ESI-MS/MS data sets, encompassing a wide range of chemical classes, in both positive and negative ionization modes. While still imperfect, our proposed method outperformed the legacy CFM-ID model by a significant margin across all data sets. In addition, we demonstrated CFM-ID 4.0's in-silico compound identification ability via the CASMI 2016 competition (category 3), where CFM-ID 4.0 achieved better identification results then all existing approaches.

CFM-ID Webservice

Web Service:

http://cfmid4.wishartlab.com Docker Hub Access:

https://hub.docker.com/r/wishartl ab/cfmid

Source Code:

https://bitbucket.org/wishartlab/cf m-id-code/

https://bitbucket.org/wishartlab/m srb-fragmenter

Acknowledgements

