Paul Gustafson

Texas A&M University - Math 416

Instructor: Dr. Papanikolas

HW₂

27.18 Is $\mathbb{Q}[x]/(x^2 - 5x + 6)$ a field? Why?

Proof. No, x-2 and x-3 are zero divisors.

27.19 Is $K := \mathbb{Q}[x]/(x^2 - 6x + 6)$ a field? Why?

Proof. Yes, $x^2 - 6x + 6$ is irreducible over \mathbb{Q} by Eisenstein's criterion (p = 2). Hence, $\langle p(x) \rangle$ is maximal by Theorem 27.25. Hence, K is a field.

27.30 Prove that if F is a field, every proper nontrivial prime ideal of F[x] is maximal.

Proof. Let $N \subset F[x]$ be a proper nontrivial prime ideal of F[x]. By Theorem 27.24, N is principal; let p(x) be a generator of N.

To see that p(x) is irreducible, suppose p(x) = q(x)r(x) for q, r of degree less than p. Then since $N = \langle p(x) \rangle$ is a prime ideal, either q or r is a multiple of p. This contradicts the assumption that both q and r have degree less than p. Hence, p(x) is irreducible. Hence, since $N \neq 0$, Theorem 27.25 implies N is maximal.

27.33 Use the fact that, for any field F, F[x] is a PID to show TFAE:

- 1. Every nonconstant polynomial in $\mathbb{C}[x]$ has a zero in \mathbb{C} .
- 2. Let $f_1(x), \ldots, f_r(x) \in \mathbb{C}[x]$ and suppose that every $\alpha \in \mathbb{C}$ that is a zero of all r of these polynomials is also a zero of a polynomial g(x) in $\mathbb{C}[x]$. Then some power of g(x) is in the smallest ideal of $\mathbb{C}[x]$ that contains the r polynomials $f_1(x), \ldots, f_r(x)$.

Proof. Suppose 1 holds. Let $N \subset \mathbb{C}[x]$ be the ideal generated by $\{f_i\}_{i=1}^r$. Let p(x) generate N. If p is constant, then $N = \mathbb{C}[x]$, so the conclusion holds. Otherwise, by 1, p has a root $\beta \in \mathbb{C}$. Since p generates N, β is a root of every element of N. In particular, β is a root of every f_i . Conversely, suppose α is a root of f_i for all i. Then since the f_i generate N, α must be a root of p. Thus, the roots of p are precisely the simultaneous roots of the f_i .

By repeated application of 1 and the division algorithm, $p(x) = \prod_{i=1}^{n} (x - \alpha_i)^{e_i}$ where the α_i are distince. Let $e = \max_i e_i$. By repeated application of the division algorithm, $\prod_{i=1}^{n} (x - \alpha_i) \mid g(x)$. Hence, $p(x) \mid \prod_{i=1}^{n} (x - \alpha_i)^e \mid (g(x))^n$.

For the converse, suppose 2 holds. Suppose $f \in \mathbb{C}[x]$ has no zeros in \mathbb{C} . Then, by 2, if g(x) = 1, some power of g is in $N := \langle f \rangle$, i.e. $1 \in N$. But then $f(x) \mid 1$, so $\deg(f) = 0$.

29.30 Let E be an extension field of a finite field F, where F has q elements. Let $\alpha \in E$ be algebraic over F of degree n. Prove that $F(\alpha)$ has q^n elements.

Proof. This follows immediately from Theorem 29.18, which says that $F(\alpha)$ is an n dimensional vector space over F. Each coordinate has q choices, so there are q^n total elements in $F(\alpha)$.

29.31

- 1. Show that there exists an irreducible polynomial of degree 3 in $\mathbb{Z}_3[x]$.
- 2. Show from part (1) that there exists a finite field of 27 elements. (Hint: use 30)

Proof. Let $p(x) = x^3 - x + 1$. Since p has no roots in \mathbb{Z}_3 , it cannot have linear factors, so must be irreducible. Part 2 follows directly from 30.

29.34 Show that $S := \{a + b(\sqrt[3]{2}) + c(\sqrt[3]{2})^2 | a, b, c \in \mathbb{Q} \}$ is a subfield of \mathbb{R} by using Theorem 29.18.

Proof. By Eisenstein's criterion with $p=2, x^3-2$ is irreducible over \mathbb{Q} . Hence, since $\sqrt[3]{2}$ is of degree 3 over \mathbb{Q} , Theorem 29.18 states that the elements of $Q[\sqrt[3]{2}]$ are precisely the elements of S.