EECS 545: Machine Learning

Lecture 15. Unsupervised Learning: Clustering

Honglak Lee and Michał Dereziński 03/07/2022

Outline

- Unsupervised Learning: Clustering
 - K-means clustering
- Expectation Maximization
 - Gaussian Mixtures

Clustering

- Motivating example:
 Customer segmentation
 - Group customers so that it can be helpful for decision making (e.g., cred)
- High debt & Low income

 Low debt & High income

 Low debt & High income

 t card request approval) or

High debt & High income

- decision making (e.g., credit card request approval) or marketing (e.g., promotion of products)
- Customer information (e.g., income, debt, age, etc.)
 can be used for input features.
- A type of unsupervised learning
 - No label/target needed to learn the grouping

K-Means

- Given unlabeled data {x⁽ⁿ⁾}
 (n=1,...,N),
- And believing it belongs in K clusters (say K=2 here),
- How do we find the clusters?
 - What would be the objective function?

- Use indicator variables r_{nk} in $\{0,1\}$.
 - $-r_{nk} = 1$ if $\mathbf{x}^{(n)}$ is in cluster k.
 - and $r_{ni} = 0$ for all j other than k.

- Find cluster centers μ_k and assignments r_{nk} to minimize the distortion measure J
 - Sum of squared distance of points from the center of its own cluster (*Intracluster variation*):

$$J = \sum_{k=1}^{K} \sum_{n=1}^{N} r_{nk} \|\mathbf{x}^{(n)} - \mu_k\|^2$$

- Initialize the cluster centers (centroids) arbitrarily.
- Repeat the following updates until convergence
 - 1. $r := \arg\min_{r} J(r, \mu)$
 - 2. $\mu := \arg\min_{\mu} J(r, \mu)$

where
$$J = \sum_{k=1}^{K} \sum_{n=1}^{N} r_{nk} \|\mathbf{x}^{(n)} - \mu_k\|^2$$

- Set the cluster centers arbitrarily.
- Repeat until convergence:

- Note: E, M stands for:
 - E: Expectation
 - M: Maximization

(We will revisit this later.)

 Cluster assignment ("E-Step"): assign each point to closest center.

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}^{(n)} - \mu_{j}\|^{2} \\ 0 & \text{otherwise} \end{cases}$$

Parameter update ("M-Step"): update the centers

$$\mu_k = rac{\sum_n r_{nk} \mathbf{x}^{(n)}}{\sum_n r_{nk}}$$
 Q. Verify this

- Select K. Pick random centroids.
 - Here K=2.

K-Means Clustering Cluster assignment Step ("E-Step")

Assign each point to the nearest center.

K-Means Clustering Update parameters (centroids) ("M-Step")

Compute new centers for each cluster.

K-Means Clustering Cluster assignment Step ("E-Step") again

Re-assign points to the now-nearest center.

K-Means Clustering Update parameters (centroids) ("M-Step") again

Compute centers for the new clusters.

K-Means Clustering Another Cluster assignment Step ("E-Step")

Reassign the points to centers.

Update parameters (centroids) ("M-Step") again

New centers.

Another Cluster assignment Step ("E-Step")

New cluster assignments.

Update parameters (centroids) ("M-Step") again

The cluster centers have stopped changing.

Convergence

- The objective function of K-means decreases monotonically as the K-means procedure reduces J in both E-step and M-step.
- Convergence is relatively quick, in steps.
 - blue circles after E-step: assign each point to a cluster
 - red circles after M-step: recompute the cluster centers
 - However, all those distance computations are expensive.

Convergence

- No guarantee that we found the globally optimal solution. The quality of local optimum depends on the initial values.
- The following clustering is a stable local optima

Gaussian Mixtures and Expectation-Maximization

Hard and Soft Clusters

- K-Means uses hard clustering assignment.
 - A point belongs to exactly one cluster.
- Mixture of Gaussians uses soft clustering.
 - A point could be explained by more than one cluster.
 - Different clusters take different levels of "responsibility" (posterior probability) for that point.

Mixtures of Gaussians

 Mixtures of Gaussians make it possible to describe much richer distributions.

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

Mixtures of Gaussians

Note the mixing coefficients in

(a)
$$\mathcal{N}(\pi_{3}, \Sigma_{3})$$
0.5
0 $\mathcal{N}(\pi_{1}, \Sigma_{1})$
0.2
0 $\mathcal{N}(\pi_{1}, \Sigma_{1})$
 $\pi_{1} = 0.5$
 $\pi_{2} = 0.3$
 $\pi_{3} = 0.2$

 $p(\mathbf{z}) = \prod \pi_k^{z_k}$

 $p(\mathbf{x}) = \sum_{k=1}^{n} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \mathbf{\Sigma}_k) \quad \sum_{k=1}^{n} \pi_k = 1$

• Let z in
$$\{0,1\}^K$$
 be a 1-of- K random variable;

$$p(z_k = 1) = \pi_k$$
 $p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\mu_k, \mathbf{\Sigma}_k)$

$$p(\mathbf{x}) = \sum p(\mathbf{z})p(\mathbf{x}|\mathbf{z}) = \sum^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \mathbf{\Sigma}_k)$$

Mixtures of Gaussians

- To generate samples from a Gaussian mixture distribution p(x), use p(x,z):
 - Select a value **z** from the marginal $p(\mathbf{z})$;
 - Then select a value **x** from $p(\mathbf{x} \mid \mathbf{z})$ for that **z**.

Latent Variables

- A system with observed variables X,
 - may be far easier to understand in terms of additional variables **Z**,
 - but they are not observed (latent).
- For example, in a mixture of Gaussians,
 - The latent variable Z specifies which Gaussian generated the sample X.
 - The *responsibility* is the posterior $p(\mathbf{Z}|\mathbf{X})$.

Learning a Latent Variable Model

- We find model parameters by maximizing log likelihood of observed data.
- If we had complete data $\{X, Z\}$, we could easily maximize likelihood $p(X, Z|\theta)$
- Unfortunately, with incomplete data (X only),
 we must marginalize over Z, so

$$\ln p(\mathbf{X}|\theta) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta) \right\}$$

(The sum inside the log makes it hard.)

The EM Algorithm in General

- Expectation-Maximization is a general recipe for finding the parameters that maximize the (log) likelihood of latent variable models
- To find θ that maximizes the likelihood $p(\mathbf{X}|\theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta)$ the EM algorithm first introduces a new (variable) distribution $q(\mathbf{Z})$ over the latent variables.
- A lower bound $L(q, \theta)$ for the log-likelihood $p(\mathbf{X}|\theta)$ is established based on q and θ .
- Then, $q(\mathbf{Z})$ and θ are alternatingly updated (keeping the other fixed) so that $L(q, \theta)$ is maximized (similar to co-ordinate ascent) until convergence.

The EM Algorithm in General

- Our goal is to maximize $p(\mathbf{X}|\theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta)$
- For any distribution $q(\mathbf{Z})$ over latent variables

$$\begin{split} \log p(\mathbf{X}|\theta) &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}|\theta) \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{p(\mathbf{Z}|\mathbf{X}, \theta)} \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})} \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X}, \theta)} \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})} + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X}, \theta)} \\ &= \mathcal{L}(q, \theta) + KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})) \quad \theta \text{ omitted for brevity} \\ &> \mathcal{L}(q, \theta) \end{split}$$

Note: KL Divergence

Let p and q be probability distributions of a random variable Z.

$$KL(q \parallel p) = \mathbb{E}_{z \sim q(z)} \left[\log \frac{q(z)}{p(z)} \right] = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$$
$$= -\sum_{z} q(z) \log p(z) + \sum_{z} q(z) \log q(z)$$

This is one way to measure the **dissimilarity** of two probability distributions.

Remarks: (note: the first can be proved using Jensen's inequality)

- $KL(q || p) \ge 0$, with equality iff p = q.
- $KL(q \parallel p) \neq KL(p \parallel q)$ in general

Background note: Jensen's Inequality

• If f is convex, then for any θ_i s.t. $0 \le \theta_i \le 1$ $(\forall i)$ $\theta_1 + \theta_2 + \dots + \theta_k = 1$ $f(\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k)$

 It can be seen as a generalization of the definition of convex function:

```
f is convex \iff f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) for all 0 \le \theta \le 1
```

• Jensen's inequality can be written in expectation form (think of θ_i as probability mass for different outcome values x_i) $f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$

Background note: Jensen's Inequality

- If f is convex, then for any θ_i s.t. $0 \le \theta_i \le 1 \ (\forall i)$ $\theta_1 + \theta_2 + \dots + \theta_k = 1$ $f(\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k)$
- Jensen's inequality can be written in expectation form (think of θ_i as probability mass for different outcome values x_i): $f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$
- To show KL(q // p) is non-negative for any p, q, plug in f() = -ln () and the following.

$$\theta_i = q(z), x_i = \frac{p(z)}{q(z)}$$

- In() is concave
- -ln() is convex

The EM Algorithm in General

We have thus shown that:

$$\begin{split} \log p(\mathbf{X}|\theta) &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})} + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X}, \theta)} \\ &= \mathcal{L}(q, \theta) + KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})) \\ &\geq \mathcal{L}(q, \theta) \quad \text{Evidence Lower bound (ELBO) or variational lower bound} \end{split}$$

with equality holding if and only if

$$q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X})$$

- For a fixed θ , what is the q that maximizes $L(q, \theta)$?
- $p(\mathbf{Z}|\mathbf{X})$ because all other q result in strictly less than log $p(\mathbf{X}|\theta)$.

The EM Algorithm in General

- We also note that for a fixed q, $L(q, \theta)$ can be decomposed into two terms:
 - A weighted sum of log $p(\mathbf{X}, \mathbf{Z}|\theta)$. This is tractable and can be optimized wrt θ
 - Entropy of $q(\mathbf{Z})$ which is independent of θ since q is fixed. $\mathcal{L}(q,\theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{\log p(\mathbf{X},\mathbf{Z}|\theta)}{q(\mathbf{Z})}$

$$\mathcal{L}(q, \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{\log p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})}$$
$$= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z})$$

Thus, we can find θ that maximize $L(q, \theta)$ when q is fixed.

The EM Algorithm

- Initialize random parameters θ
- Repeat until convergence:
 - "E step": Set $q(\mathbf{Z}) = p(\mathbf{Z} | \mathbf{X}, \theta)$
 - "M step": Update θ via the following maximization

$$\operatorname{argmax}_{\theta} \mathcal{L}(q, \theta) = \operatorname{argmax}_{\theta} \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z} | \theta)$$

- Note we have assumed that $p(\mathbf{Z}|\mathbf{X}, \theta)$ is tractable (i.e., find exact posterior $p(\mathbf{Z}|\mathbf{X}, \theta)$).
 - Q. What if its not?

Visualize the Decomposition

$$\ln p(\mathbf{X}|\theta) = \mathcal{L}(q,\theta) + KL(q||p)$$

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})}$$

- Note: $KL(q||p) \ge 0$
 - with equality only when q=p.
- Thus, $\mathcal{L}(q,\theta)$
 - is a lower bound on $\ln p(\mathbf{X}|\theta)$
- which EM tries to maximize.

Visualize the E-Step

- E-Step changes q(Z) to maximize $\mathcal{L}(q, \theta)$
- So maximizes when KL(q||p) = 0

$$q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta)$$

Visualize the M-Step

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})}$$

- Holding q(Z) constant; increase $\mathcal{L}(q,\theta)$
- This increases $\ln p(\mathbf{X}|\theta)$
- But now $p \neq q$
- **SO** KL(q||p) > 0

Mixtures of Gaussians (recap)

• Let z in $\{0,1\}^K$ be a 1-of-K random variable;

$$p(z_k = 1) = \pi_k$$
 $\sum_{k=1}^{K} \pi_k = 1$

 Generate x from Gaussian given the selected cluster assignment z

$$p(\mathbf{x}|z_k=1) = \mathcal{N}(\mathbf{x}|\mu_k, \mathbf{\Sigma}_k)$$

0.5
$$0 \times (\pi_1, \Sigma_1)$$

$$\pi_1 = 0.5 \quad \pi_2 = 0.3 \quad \pi_3 = 0.2$$

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{N} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

Mixtures of Gaussians (recap)

• In other words, generate (sample) z then x:

$$p(z_k = 1) = \pi_k$$

$$\sum_{k=1}^K \pi_k = 1$$

$$p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\mu_k, \mathbf{\Sigma}_k)$$

• Joint and marginal distributions:

$$p(\mathbf{x}, \mathbf{z}) = \pi_k \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)$$

$$p(\mathbf{x}) = \sum p(\mathbf{z})p(\mathbf{x}|\mathbf{z}) = \sum^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

EM for Gaussian Mixtures (summary)

 Initialize means, covariances, and mixing coefficients for the K Gaussians.

• E Step: Given the coefficients, evaluate the responsibilities.

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(n)} | \mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}^{(n)} | \mu_i, \Sigma_i)} = P(z_k = 1 | \mathbf{x}^{(n)})$$

(Hint: Use Bayes Rule)

EM for Gaussian Mixtures (summary)

• M Step: Given the responsibilities, re-evaluate the coefficients (note: this is very similar to GDA!).

$$\pi_k^{\text{new}} = \frac{N_k}{N} = \frac{\sum_n \gamma(z_{nk})}{N}$$

$$\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}^{(n)}$$

$$\sum_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}^{(n)} - \mu_k^{\text{new}}) (\mathbf{x}^{(n)} - \mu_k^{\text{new}})^T$$

 Stop when either coefficients or log likelihood converges.

• Initialize parameters: means, covariances, and mixing coefficients.

First E Step

For each sample n, calculate:

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(n)} | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(n)} | \mu_j, \Sigma_j)}$$
$$= P(z_k = 1 | \mathbf{x}^{(n)})$$

First M Step

Update Gaussian parameters:

$$\pi_k^{\text{new}} = \frac{N_k}{N} = \frac{\sum_n \gamma(z_{nk})}{N}$$

$$\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}^{(n)}$$

$$\sum_{k}^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}^{(n)} - \mu_k^{\text{new}}) (\mathbf{x}^{(n)} - \mu_k^{\text{new}})^T$$

Second E and M Steps

Three more E-M cycles

Fifteen E-M cycles later

Relation to K-means

- In Guassian mixture, we fix the covariance matrix for each cluster as $\sigma^2 I$
- We take $\sigma^2 \rightarrow 0$
- The update equations coverge to doing K-means clustering

Thank you!

Quiz: Scan QR code / click here

Next class: EM for Gaussian Mixtures, Principal Component Analysis