Classwork 03: Simple Linear Regression CPE 490/590 ST

Instructor: Rahul Bhadani

1 Simple Linear Regression

Consider the dataset that exhibits linear relationship between Units Sold in 1000 (predictor variable x), and profit in percentage (y):

UnitSold_in_1000 x_i	Profits_Pct y _i
0.54	3.69
0.72	4.58
0.6	4.03
0.54	3.67
0.42	3.40
0.64	4.03
0.43	3.76
0.89	4.61
0.96	4.98
0.38	2.89

$$n = 10$$
.

Calculate the following quantity ($\sum_{i=1}^{10}$ is shorthanded as \sum) (10 points):

1.

$$\sum x_i = 6.12$$

$$\sum (x_i - \overline{x}) =$$
 b· **D**

8.

2.

6.

$$\sum (y_i - \overline{y}) = \bigvee_{i=1}^{n} \mathbf{0}^{i} \mathbf{0}$$

9.

$$\sum x_i^2 =$$
 4.0906

3.

4.

$$\bar{x} = 6.61$$

7.

$$\sum (x_i - \overline{x})^2 = 0.34516$$
 $\sum y_i^2 = 160.6454$

$$\sum y_i^2 = 60.6454$$

₹ (x;-\f) (x; -\f) =

In an ideal scenario, the data was obtained from a linear model $Y = Xw_1 + w_0$. The given data comes follows the $y_i = x_i w_1 + w_0 + \epsilon_i$ where ϵ_i is the error introduced by gather data such that $\epsilon_i \sim \mathcal{N}(\mu = 0, \sigma = 0.3).$

We will fit our data into the linear model $y_i = x_i w_1 + w_0$ with the hope of minimizing the cost function (or error):

$$Q = \frac{1}{n} \sum_{i} (y_i - \hat{y})^2 \tag{1}$$

where $\hat{y} = x_i \hat{w}_1 + \hat{w}_0$.

The least-square solution gives the normal equation by solving:

$$\sum y_i = n\hat{w}_0 + \hat{w}_1 \sum x_i \sum x_i y_i = \hat{w}_0 \sum x_i + \hat{w}_1 \sum x_i^2$$
 (2)

which gives

$$\hat{w}_1 = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2} = \frac{1.03622}{6.34516} = 3.002143$$
(3)

(4 Points)

and

$$10^{\circ} = 3.964 - 3.002143 \times 0.612$$

$$= 2.1267$$

$$\hat{w}_0 = \overline{y} - \hat{w}_1 \overline{x} =$$

$$2.1267$$

(2 Points)

Alternatively, we can take the derivative of the cost function which can be re-written as

$$Q = \frac{1}{n} \sum (y_i - (w_1 x_i + w_0))^2 \tag{5}$$

Taking the partial derivative with respect to w_1 and w_0 :

$$\frac{\partial Q}{\partial w_1} = -\frac{2}{\pi} \mathcal{Z} \mathcal{X}_i \left(y_i - (w_1 x_i + w_0) \right)$$

$$Set \frac{\partial Q}{\partial w_1} = 0$$

$$-\frac{2}{\pi} \mathcal{Z} \mathcal{X}_i \left(y_i - (w_1 x_i + w_0) \right) = 0$$

$$(6)$$

(5 Points)

$$\frac{\partial Q}{\partial w_0} = -\frac{2}{n} \mathcal{Z} \left(Y_i - (W_1 X_i' + W_0) \right)$$

$$\frac{\partial Q}{\partial w_0} = 0$$

$$\frac{$$

(5 Points)

Setting above to 0 gives the following set of equations:

$$w_{1} = \frac{n(\sum_{i=1}^{n} x_{i} y_{i}) - (\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} y_{i})}{n(\sum_{i=1}^{n} x_{i}^{2}) - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$w_{0} = \frac{1}{n}(\sum_{i=1}^{n} y_{i}) - w_{1} \frac{1}{n}(\sum_{i=1}^{n} x_{i})$$
(8)

Putting the value in the above equations should give an estimated \hat{w}_0 and \hat{w}_1 . Write down what you got in that Equation.

$$\hat{w}_1 = \frac{10 \times (25.2959) - (6.12 \times 39.64)}{10 \times 4.0906 - (6.12)^2} = 3.00244$$

$$\hat{w}_0 = \left(\frac{1}{10} \times 39.64\right) - 8.06214 \times 100$$

$$=$$
 3.964-0.300214x6.12
 $=$ 3.964-1.8373 = 2.1267

(5 Points)

Using \hat{w}_0 and \hat{w}_1 , we can obtain \hat{y}_i , the estimated response. Using estimated response and actual response, we can calculate Sum of Square Error (SSE) and Total Square Sum (SSTO) as:

SSE =
$$\sum (y_i - \hat{y}_i)^2 = 0.4015$$

MSE = $\frac{\text{SSE}}{n-2} = 6.00509875$
SSTO = $\sum (y_i - \bar{y})^2 = 3.51244$ (11)

(2 Points)

Calculate the goodness of fit using the coefficient of determination R^2 :

$$R^2 = 1 - \frac{\text{SSE}}{\text{SSTO}} = 0$$
 ' 88 5692 (12)

(2 Points)

Based on the value of R^2 how good fit is the linear model on the given dataset?

(2 Points)

Next, we calculate the standard deviation on the estimated coefficients or weight (\hat{w}_1 , and \hat{w}_0).

(2 Points)

$$s^{2}[\hat{w}_{0}] = \text{MSE}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{\sum(x_{i} - \overline{x})^{2}}\right) = \mathbf{0} \cdot \mathbf{0} \mathbf{5} \mathbf{9} \mathbf{4}$$

$$\tag{14}$$

(2 Points)

Now, we need to calculate the 95% confidence interval on the estimated \hat{w}_1 and \hat{w}_0 for which $\alpha = 0.05$ (use t(0.975, 8) = 2.306):

(2 Points)

$$\hat{w}_{0} \pm t(1 - 0.05/2, 10 - 2)s^{2}[\hat{w}_{0}]$$

$$2 \cdot 1267 \pm \left(2 \cdot 306710 \cdot 0599\right)$$

$$= \left[1 \cdot 9897, 2 \cdot 2636\right]$$
(16)

(2 Points)

Now, consider a new data point $x_{new} = 0.47$ Units Sold (in 1000). Based on the linear regression model that we developed, what is the estimated/predicted profit percent for the given quantity **(5 Points)**?

$$\hat{y} = x_{new} \hat{w_i} + \hat{v_o}$$

$$= 6.47 \times 3.00214 + 2.1267$$

$$= 3.5377$$