IMU_ESP32S3_MPU6050_HMC5883L_SSD1306

基于ESP32的IMU系统与OLED显示屏

简介

本项目实现了一个基于ESP32微控制器的惯性测量单元(IMU)系统·集成了MPU6050(6轴加速度计和陀螺仪)、HMC5883L(3轴磁力计)和SSD1306 OLED显示屏(128x64像素)。系统通过卡尔曼滤波融合传感器数据·实时计算并显示设备的俯仰(pitch)、滚转(roll)和偏航(yaw)角度·适用于机器人、无人机或可穿戴设备等需要精确姿态测量的场景。

硬件要求

元件清单

元件	描述	备注
ESP32微控制器	ESP32开发板(如DevKitC)或ESP32S3芯片	ESP32S3需USB转串口烧录
MPU6050传感器模块	6轴加速度计和陀螺仪	I2C通信,地址0x68或0x69
HMC5883L传感器模块	3轴数字磁力计	I2C通信·地址0x1E
SSD1306 OLED显示屏	128x64像素	I2C通信
触控按钮(4个)	用于电源、模式、冻结和预留功能	连接到GPIO 15、16、17、18
跳线	用于连接元件	
面包板或PCB	用于安装元件	
电源	若不使用带USB的开发板需单独电源	3.3V
USB转串口转换器	如CP2102或CH340·仅ESP32S3芯片需要	用于程序烧录

引脚接线图

PROFESSEUR: M.DA ROS

所有传感器和显示屏通过I2C接口连接到ESP32的GPIO 21(SDA)和GPIO 22(SCL)。按钮连接到指定GPIO 引脚。以下是详细接线表:

元件	引脚	ESP32连接	备注
MPU6050	SDA	GPIO 11	I2C数据线
MPU6050	SCL	GPIO 12	I2C时钟线
MPU6050	VCC	3.3V	电源
MPU6050	GND	GND	接地
HMC5883L	SDA	GPIO 11	I2C数据线

元件	引脚	ESP32连接	备注
HMC5883L	SCL	GPIO 12	I2C时钟线
HMC5883L	VCC	3.3V	电源
HMC5883L	GND	GND	接地
SSD1306 OLED	SDA	GPIO 11	I2C数据线
SSD1306 OLED	SCL	GPIO 12	I2C时钟线
SSD1306 OLED	VCC	3.3V	电源
SSD1306 OLED	GND	GND	接地
电源按钮	-	GPIO 15	控制电源开关
模式按钮	-	GPIO 16	切换绝对/相对模式
冻结按钮	-	GPIO 17	冻结/解冻显示
	-	GPIO 18	 预留未来功能

ESP32S3芯片额外接线(若使用芯片而非开发板):

- TX (ESP32S3) → RX (USB转串口)
- RX(ESP32S3) → TX(USB转串口)
- CH_PD (ESP32S3) → 3.3V (USB转串口)
- EN (ESP32S3) → 3.3V (USB转串口)
- GND(ESP32S3) → GND(USB转串口)
- VCC(ESP32S3) → 3.3V(USB转串口)

注意:所有I2C设备(MPU6050、HMC5883L、SSD1306)共享相同的SDA和SCL线。按钮连接需使用内部上拉电阻或外部上拉电阻。

软件结构

程序结构框图

软件基于FreeRTOS实现多任务处理,包含以下并发任务:

- 传感器任务:以20 Hz频率从MPU6050和HMC5883L读取数据·发送到传感器队列。
- **处理任务**:从传感器队列接收数据·使用卡尔曼滤波计算姿态(俯仰、滚转、偏航)·以5 Hz频率发送到姿态队列。
- 显示任务:从姿态队列接收数据,以5 Hz频率更新OLED显示屏。
- 按钮任务: 监控按钮状态, 处理电源开关、模式切换(绝对/相对)和显示冻结。
- 初始化与校准任务: 启动时初始化I2C接口、传感器, 并执行校准。

框图描述:

- **输入**: MPU6050 (加速度、角速度)、HMC5883L (磁场)
- 任务流程:

- 传感器任务 → 传感器队列 → 处理任务 → 姿态队列 → 显示任务
- 按钮任务 → 处理用户输入
- 输出: SSD1306 OLED显示屏
- 同步机制:使用FreeRTOS队列(sensor_queue、attitude_queue)和信号量(i2c_mutex、ssd1306_mutex、calibration_done_sem)进行任务问通信和资源保护。

流程图

1. 启动:

- 。 初始化ESP32S3外设(I2C、GPIO)
- o 创建FreeRTOS任务和队列

2. 校准:

- 。 校准MPU6050 (加速度计和陀螺仪,设备需静止)
- 。 校准HMC5883L(磁力计,需缓慢旋转设备)

3. 主循环:

- 传感器任务:持续读取传感器数据并发送到队列
- 处理任务:从队列接收数据,处理并发送到显示队列
- 显示任务:从队列接收数据,更新显示屏
- o 按钮任务:持续监控按钮并处理事件

4. 关机:

• 长按电源按钮,暂停任务并关闭系统

传感器与显示屏简介

MPU6050

MPU6050是一个6轴惯性测量单元 · 包含3轴加速度计(量程 \pm 4g)和3轴陀螺仪(量程 \pm 500 dps) · 它通过 I2C通信(地址0x68或0x69) · 用于测量设备的俯仰和滚转角度。更多信息可参考 MPU6050教程。

HMC5883L

HMC5883L是一个3轴数字磁力计·用于测量磁场以确定偏航(罗盘方向)。它通过I2C通信(地址0x1E), 支持倾斜补偿以提高精度。更多信息可参考 HMC5883L与ESP32接口。

SSD1306 OLED显示屏

SSD1306是一个128x64像素的OLED显示屏,通过I2C通信,显示实时传感器数据,包括俯仰、滚转、偏航、加速度、陀螺仪和磁力计读数。支持绝对和相对模式,并可根据Z轴加速度自动翻转显示。更多信息可参考ESP32与SSD1306教程。

使用说明

硬件设置

- 1. 按照引脚接线图连接MPU6050、HMC5883L、SSD1306和按钮到ESP32S3。
- 2. 若使用ESP32S3芯片,连接USB转串口模块(TX、RX、CH PD、EN、GND)。
- 3. 使用面包板或PCB固定元件,确保3.3V电源稳定。

程序烧录

1. 使用ESP32S3开发板:

- 。 使用ESP-IDF或Arduino IDE (需安装ESP32支持)上传main.c程序。

2. 使用ESP32S3芯片:

- 连接USB转串口模块(如CP2102或CH340)。
- 使用ESP-IDF或Arduino IDE烧录程序,确保正确配置串口引脚。

操作

• 开机:短按电源按钮(GPIO 15)。

• **关机**:长按电源按钮(>2秒)。

• 模式切换:按模式按钮(GPIO 16)切换绝对/相对测量模式。

• 冻结显示:按冻结按钮(GPIO 17)冻结/解冻显示。

• **预留功能**: 预留按钮(GPIO 18) 为未来功能保留。

调试与日志

- 系统使用ESP_LOG框架记录日志·标签为"mpu6050 test"和"SSD1306"。
- 定期记录任务堆栈使用情况以监控内存使用。
- 校准期间需保持设备静止(MPU6050)或缓慢旋转(HMC5883L)。

当前存在的问题

1. 数据更新速度慢:

- 传感器任务以20 Hz频率生成数据,而处理任务和显示任务以5 Hz频率消费数据,导致生产速度快于消费速度,可能造成sensor_queue和attitude_queue队列满溢。日志中会记录"传感器队列已满"或"姿态队列已满"的警告。
- **潜在解决方案**:优化处理任务的计算效率(如简化卡尔曼滤波算法)或增加队列大小·同时调整任务调度优先级以平衡生产和消费速度。

2. 关机后无法正常开机:

- 系统运行一段时间后,关机(长按电源按钮)并再次短按电源按钮可能无法正常开机,表现为任务未正确恢复或系统未完全初始化。
- **潜在原因**:可能是任务挂起/恢复逻辑问题·或电源管理状态未正确重置。需要检查 button task中的任务恢复逻辑和硬件电源管理电路。

未来展望

1. 添加可视化更好的仪表界面:

- 当前SSD1306显示屏以文本形式显示数据·未来计划开发图形化仪表界面(如指针式仪表或3D 姿态可视化)·以提高用户体验。
- 。 实现方式可能包括使用SSD1306的图形库绘制动态仪表盘,或升级到更高分辨率的显示屏(如 SSD1327或彩色TFT屏)以支持更复杂的可视化。
- 需优化显示任务以确保图形渲染不影响实时性能。

硬件从新设计

物料

GY-521模块,MPU6050,接口定义VCC,GND,SCL,SDA,XDA,SCL,ADO,INT

GY-271模块,HMC5883L,接口定义VCC,GND,SCL,SDA,DRDY

轻触开关

0.96寸OLED SSD1306模块,接口定义VCC,GND,SCL,SDA

因为I2C总线的通讯拥挤,可以选择使用SPI通讯.

0.96村OLED SSD1306模块,7针接口定义 GND,VCC,D0,D1,RES,DC,CS

GND 电源地, VCC 3.3V~5V, D0, SPI时钟线(SPI_CLK), D1,SPI数据线(SPI_MOSI), RES,复位, DC, 数据/命令选择脚,CS,片选信号,低电平有效,CS不可悬空.

CH340G

ESP32-S3FN8

ESP32-S3-WROOM-1-N16R8

H/W 硬件参考

技术参考手册 (PDF) 技术规格书 (PDF)

SPI分配

SPI2 管脚对应表

管脚名称	GPIO编号 (SPI2)
CS0	10
SCLK	12
MISO	13
MOSI	11
QUADWP	14
QUADHD	9

技术规格书 (PDF)

第 30 章 SPI 控制器(SPI)

30.1 概述

串行外设接口(SPI)是一种同步串行接口,可用于与外围设备进行通信。ESP32-S3芯片集成了四个SPI控制器:

- SPI0
- SPI1
- 通用SPI2 · 即GP-SPI2

• 和通用SPI3,即GP-SPI3

SPIO 和 SPI1 控制器主要供内部使用以访问外部flash及PSRAM。本章节主要介绍GP-SPI控制器,即GP-SPI2 和GP-SPI3。

(所以毫无疑问应该选择SPI2)

30.5.8.3 主机全双工通信(仅支持1-bit模式)

Master (GP-SPI2)	Direction	Slave
FSPID	\rightarrow	MOSI
FSPIQ	←	MISO
FSPICLK	\rightarrow	CLK
FSPICS0	→	CS

附录A-ESP32-S3管脚总览

GPIO9~GPIO14并未高亮,说明无限制和关键作用,可以放心使用.

I2C 分配

技术规格书 (PDF)

4.2.1.2 I2C 接口

管脚分配

I2C 的管脚可以为任意GPIO、通过GPIO交换矩阵配置。

2.3.1 IO MUX 功能

部分直接源自特定外设(U0TXD、MTCK等)·包括UARTO/1、JTAG、SPIO/1和SPI2

(意味着I2C 并没有不通过IO MUX 矩阵的更特殊接口)

RTC GPIO0,RTC GPIO3均被标记为黄色

技术参考手册 (PDF)2.3.4 GPIO 和RTC_GPIO 的限制

本章节的表格中·部分管脚功能有高亮标记。推荐优先使用没有高亮的GPIO或RTC_GPIO管脚。如需更多管脚·请谨慎选择高亮的GPIO或RTC_GPIO管脚·避免与重要功能冲突。

技术规格书 (PDF)附录A-ESP32-S3管脚总览

可知标黄原因:

PROFESSEUR: M.DA ROS

GPIO0,复位时IE,WPU,复位后IE,WPU.

GPIO3,复位时IE,复位后IE.

Boot 模式控制

复位释放后·GPIO0、GPIO1、GPIO2和GPIO46在复位时的值将共同决定Boot模式。表8.2-1列出了GPIO0、GPIO1、GPIO2 和 GPIO46 的 Strapping 值及其对应的系统启动模式。

表8.2-1. 系统启动模式

Boot Mode	GPIO0	GPIO46	GPIO1	GPIO2
SPI Boot Mode	1	Х	Х	Х
Joint Download Boot Mode	0	0	Х	Х
SPI Download Boot Mode	0	1	1	0

x:任何取值均不会对结果有影响,因此可忽略。

Joint Download Boot 模式下支持以下下载方式:

- USB Download Boot
- -USB-Serial-JTAG Download Boot
- -USB-OTG Download Boot
- UART Download Boot

SPI DownloadBoot模式:GPIO1和GPIO2不是strapping管脚,但使用SPI Download Boot 模式时需要预留GPIO1和GPIO2。GPIO1和GPIO2默认浮空,在复位时处于高阻抗状态。

在SPI Boot 模式下,ROM引导加载程序通过从SPIflash中读取程序来启动系统。SPIBoot模式可进一步细分为以下两种启动方式:

- 常规flash启动方式:支持安全启动。ROM引导加载程序将程序从flash加载到SRAM,并执行。在大多数实际应用场景中,上述执行的程序多为二级引导程序,该二级引导程序将启动最终的应用程序。
- 直接启动方式:不支持安全启动·程序直接从flash中运行。如需使能这一启动方式·请确保下载至flash的bin 文件其前两个字(地址:0x42000000)为0xaedb041d。

在Joint Download Boot 模式下,用户可通过UART或USB接口将二进制文件下载至flash,或将二进制文件下载至SRAM并在SRAM中运行程序。

在SPI Download Boot 模式下,用户可通过SPI接口将二进制文件下载至flash,或将二进制文件下载至SRAM并运行SRAM中的程序.

所以GPIO0 GPIO1 GPIO2 GPIO3都最好不使用.

管脚配置一栏为复位时和复位后预设配置缩写

- •IE-输入使能
- •WPU-内部弱上拉电阻使能
- •WPD-内部弱下拉电阻使能
- USB_PU-USB上拉电阻使能-USB管脚(GPIO19和GPIO20)默认开启USB功能·此时管脚是否上拉由USB上拉决定。USB上拉由USB_SERIAL_JTAG_DP/

DM_PULLUP控制·USB上拉电阻的具体阻值可通过USB_SERIAL_JTAG_PULLUP_VALUE位控制·详见《ESP32-S3技术参考手册》

章节USB串口/JTAG控制器。-USB管脚关闭USB功能时,用作普通GPIO,默认禁用管脚内部弱上/下拉电阻,可通过IO_MUX_FUN_WPU/WPD配置,

详见《ESP32-S3技术参考手册》>章节IOMUX和GPIO交换矩阵。

EFUSE_DIS_PAD_JTAG的值为

- 0-弱上拉电阻使能
- 1-管脚浮空

SSD1306 7PIN design

taobao

0.96村OLED SSD1306模块,7针接口定义 GND,VCC,D0,D1,RES,DC,CS

引脚名称	描述	备注
GND	电源地	
VCC	电源 (3.3V~5V)	工作电压范围
D0	SPI时钟线 (SPI_CLK)	
D1	SPI数据线 (SPI_MOSI)	
RES	复位信号	
DC	数据/命令选择脚	
CS	片选信号 (低电平有效)	不可悬空

MPU6050 design

copy from MPU6050

JLC 页面

再次对比原理图封装无问题.

对比芯片封装也无问题, 引脚间距0.5, QFN4x4mm, 热焊盘2.7x2.7, 打大过孔, 拉长焊盘,好焊接.

data sheet

描述

其数字运动处理器(DMP)提供的融合运动数据输出,大幅降低了对系统处理器频繁轮询传感器数据的需求。 1024字节片上FIFO缓冲区通过让系统处理器突发读取传感器数据后进入低功耗模式,有效降低系统整体功耗。

封装 4x4x0.9mm(QFN)

PROFESSEUR: M.DA ROS

MPU-6050仅支持I2C串行接口且设有独立VLOGIC引脚;

3轴陀螺仪、3轴加速度计及数字运动处理器™(DMP)。通过专用I2C传感器总线,可直接接入外部3轴电子罗盘数据,输出完整的9轴MotionFusion™融合数据。

7.2 Typical Operating Circuit

对比电路图无问题,对比封装,无问题.

I2C 上拉电阻10K

AD0 下拉到地, 简化电路, 固定I2C 地址.

FSYNC 帧同步数字输入,不使用下拉到地.

CLKIN 外部输入时钟信号,不使用下拉到地.

INT 需要找一个引脚.

9.2 I2C Interface

当MPU-60X0与系统处理器通信时,始终作为从机设备工作(此时系统处理器担任主机角色)。SDA和SCL 线路通常需要上拉电阻连接至VDD电源,总线最高传输速率为400kHz。

MPU-60X0的7位从机地址为b110100X,其中最低位(LSB)由AD0引脚的电平状态决定。这一特性支持将 两个MPU-60X0设备连接到同一I2C总线:在此配置下,一个设备的地址应为b1101000(AD0引脚置为逻辑 低电平),另一个设备的地址则为b1101001(AD0引脚置为逻辑高电平)。

所以I2C地址为 b1101000 (0x68) (104)

DMP

MPU-60X0系列芯片内置的数字运动处理器(DMP)可将运动处理算法的计算任务从主处理器卸载。该 DMP能够从加速度计、陀螺仪及磁力计等第三方传感器获取数据并进行处理,处理结果既可通过DMP寄存 器读取,也可存入FIFO缓冲区。DMP还可调用MPU的一个外部引脚来生成中断信号。

DMP的核心价值在于为主处理器减轻时序处理负担并降低运算负荷。通常情况下,运动处理算法需以约 200Hz的高频率运行才能保证低延迟的精确运算——即便应用层更新速率低至5Hz(如低功耗用户界面场 景)也不例外。采用DMP可有效实现四大优势:降低系统功耗、简化时序控制、优化软件架构,并为应用 程序节省宝贵的主处理器运算资源。

(进一步了解发现好像DMP也没那么好用)

HMC5883L design

嘉立创 开发板模块资料

采购链接

HMC5883L资料下载链接 提取码:8888

数据手册

HMC5883L description

sch copy from QMC5883L

霍尼韦尔 HMC5883L 是一种表面贴装的高集成模块,并带有数字接口的弱磁传感器芯片,应用于低成本罗 盘和磁场检测领域。HMC5883L 包括最先进的高分辨率 HMC118X 系列磁阻传感器,并附带霍尼韦尔专利 的集成电路包括放大器、自动消磁驱动器、偏差校准、能使罗盘精度控制在 1°~2°的 12 位模数转换器.简易 的 I2C 系列总线接口。HMC5883L 是采用无铅表面封装技术,带有16引脚,尺寸为3.0X3.0X0.9mm。 低电压工作(2.16-3.6V)和超低功耗(100uA)

最大输出频率可达160Hz

供电压选择

PROFESSEUR: M.DA ROS

如果选择1.8V 供电, 会导致IO口需要转电平 3.3V 供电是可行的,所以选择3.3V供电.

I2C 地址转换表

地址类型	十六进制格式	二进制格式	十进制格式
7位设备地址	0x1E	b001 1110	30
8位读取地址	0x3D	b0011 1101	61
8位写入地址	0x3C	b0011 1100	60

7位地址 → 8位地地址

- 7位地址直接使用低7位
- 8位地址在7位地址前补0,并在末尾添加R/W位:
- **写入地址** = (7位地址 << 1) | 0

0x1E << 1 = 0x3C
0x3C | 0 = 0x3C</pre>

• **读取地址** = (7位地址 << 1) | 1

0x1E << 1 = 0x3C $0x3C \mid 1 = 0x3D$

引脚配置

引脚编 号	引脚名 称	描述
1	SCL	串行时钟 - I2C总线主/从时钟
2	VDD	电源(2.16V-3.6V)
3	NC	无连接
4	S1	连接 VDDIO
5	NC	无连接
6	NC	
7	NC	无连接
8	SETP	置位/复位带正-S/R电容(C2)连接
9	GND	电源接地
10	C1	存储电容器(C1)连接
11	GND	电源接地
12	SETC	S/R电容器(C2)连接-驱动端

引脚编 号	引脚名 称	描述
13	VDDIO	IO电源供应(1.7V-VDD)
14	NC	无连接
15	DRDY	数据准备,中断引脚。内部被拉高。当数据位于输出寄存器时会在低电位上停 250μsec
16	SDA	串行数据 - I2C总线主/从数据

按照推荐电路图设计

I2C上拉电阻选择为10K

QMC5883L design

这是HMC5883L的替代,引脚配置是一样的,封装也是一样的 LGA-16(3x3),轴的方向也一样,外围电路图也是一样.

QMC5883L JLC

QMC5883L description

QMC5883L 是一款多芯片三轴磁传感器。这款表面贴装、小尺寸芯片集成了磁传感器与信号调理专用集成电路(ASIC),主要面向无人机、机器人、移动设备及手持装置等高精度应用场景,如电子罗盘、导航和游戏交互。

基于霍尼韦尔(Honeywell)授权的先进磁阻(AMR)技术,QMC5883L结合定制设计的16位模数转换器(ADC)ASIC,具有低噪声、高精度、低功耗、偏移消除和温度补偿等优势,可实现1°至2°的罗盘航向精度。其I²C串行总线接口便干快速集成。

该传感器采用3x3x0.9mm³的16引脚栅格阵列(LGA)表面贴装封装。

低电压工作(2.16-3.6V)和超低功耗 (75uA) 最大输出频率可达200Hz