

SVKM's NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B. Tech (COMPUTER)

Year: III

Semester: V

Academic Year: 2018-2019

Subject: Theoretical Computer Science

Date: 24 November 2018

Marks: 60 -

Time: 10.00 am to 1.00 pm

Durations: 3 (hrs) 2 No. of Pages: _____2

Re-examination (2014-15/2015-16/2016-17)

Instructions: Candidate should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

1) Question no. 1 is compulsory.

- 2) Out of remaining questions, attempt any 4 questions.
- 3) in all five questions to be attempted.
- 4) Answer to each new question to be started on a fresh page.
- 5) Figures in brackets on the right hand side indicate full marks.

Q.1 a) Construct epsilon NFA for the regular expression (0(0+1)*01)

6) Assume suitable data if necessary.

ζ.,	b) c)	Compare Moore and Mealy machine State and prove pumping lemma for regular languages	4M 4M
Q.2	a)	Explain the terms Recursive language and recursively enumerable language with example	6M
	b)	Explain Post correspondence problem with example	6M
Q.3	a)	Convert following grammar to CNF $S \rightarrow ASB \epsilon$ $A \rightarrow AaS a$ $B \rightarrow SbS A bb$	6M
	b)	Design PDA to accept the language L=a ⁿ b ⁿ	6M
Q.4	a) b)	Design divisibility by 5 tester for decimal numbers using finite automata Let $G=(N, T, P, S)$ be the CFG having following set of production rules $S \rightarrow aAS a$ $A \rightarrow SbA SS ba$ Derive the string 'aabbaa' using leftmost derivation and rightmost derivation. Also draw parse tree.	6M 6M
Q.5	a)	Design turing machine to accept the language containing equal number of a's and b's. $\Sigma = \{a,b\}$	6M
	b)	Explain halting problem in turing machine	6M
Q.6	a)	Explain different types of grammars with example	6M

4M

	b)	Design mealy machine to find 2's complement of a number and covert it to Moore machine	6M
Q.7	a)	Explain Rice's theorem	4M
	b)	Explain post correspondence problem with example	4M
*	c)	Explain properties of regular language	4M