第一次報告

4105053128 唐永承

Problem

$$\|y_{1} - D_{1}x_{1}\|_{F}^{2} + \|y_{2} - D_{2}x_{2}\|_{F}^{2} + \lambda \|D_{1}^{T}D_{2}\|_{F}^{2} + \Gamma_{x}(x_{1}) + \Gamma_{x}(x_{2}) + \Gamma_{D}(D_{1}) + \Gamma_{D}(D_{2})$$

 y_1 : picture 1

 y_2 : picture 2

 D_1 : dictionary for picture 1

 D_2 : dictionary for picture 2

 x_1 : sparse representation of picture 1 for D_1

 x_2 : sparse representation of picture 2 for D_2

 λ : regularization parameters

 Γ_{χ} : constraint for x (make it sparse)

 Γ_D : constraint for D (normalize)

Proximal Algorithm

- •Proximal operator : $prox_{\lambda f}(v) = \underset{x}{\operatorname{argmin}} (f(x) + \frac{1}{2\lambda} ||x v||^2)$
- Proximal gradient method :

F(x) = f(x) + g(x), f(x) is continuously differentiable and g(x) is not continuous

(1)gradient step

$$v^t = x^t - \lambda \nabla f(x^t)$$

(2)proximal operator step

$$x^{t+1} = prox_x(v^t)$$

•When ∇f is Lipschitz continuous with constant $L, \lambda \in (0, \frac{1}{L}]$

Solution

$$||y_1 - D_1 x_1||_F^2 + ||y_2 - D_2 x_2||_F^2 + \lambda ||D_1^T D_2||_F^2 + \Gamma_{\chi}(x_1) + \Gamma_{\chi}(x_2) + \Gamma_{D}(D_1) + \Gamma_{D}(D_2)$$

f: differentiable

g:nonconvex

- Let f be the red line part, and g be the blue line part
- Solving D_1 , D_2 , x_1 , x_2 via proximal algorithm, respectively
- Re-compute Lipschitz constant each iteration

lambda = 0, iteration = 1000

before dictionary learning

$$||y_1 - D_1 x_1||_F = 220.18268975817733$$

 $||y_2 - D_2 x_2||_F = 222.28837786521683$
 $||D_1^T D_2||_F = 15.93912746115688$
 $||y_1^T y_2||_F = 4652.819827829139$

$$||y_1 - D_1 x_1||_F = 34.72835875511873$$

 $||y_2 - D_2 x_2||_F = 39.37764567597413$
 $||D_1^T D_2||_F = 33.47709294532105$
 $||y_1^T y_2||_F = 1377.193986001195$

lambda = 1, iteration = 1000

before dictionary learning

$$||y_1 - D_1 x_1||_F = 220.18268975817733$$

 $||y_2 - D_2 x_2||_F = 222.28837786521683$
 $||D_1^T D_2||_F = 15.93912746115688$
 $||y_1^T y_2||_F = 4652.819827829139$

$$||y_1 - D_1 x_1||_F = 32.52759512164004$$

 $||y_2 - D_2 x_2||_F = 42.42109661711466$
 $||D_1^T D_2||_F = 21.11685321894725$
 $||y_1^T y_2||_F = 1090.59509862585$

lambda = 5, iteration = 1000

before dictionary learning

$$||y_1 - D_1 x_1||_F = 220.18268975817733$$

 $||y_2 - D_2 x_2||_F = 222.28837786521683$
 $||D_1^T D_2||_F = 15.93912746115688$
 $||y_1^T y_2||_F = 4652.819827829139$

$$||y_1 - D_1 x_1||_F = 36.97705376300321$$

 $||y_2 - D_2 x_2||_F = 63.10484695717596$
 $||D_1^T D_2||_F = 14.558816422370223$
 $||y_1^T y_2||_F = 829.6839292239839$

lambda = 10, iteration = 1000

before dictionary learning

$$||y_1 - D_1 x_1||_F = 220.18268975817733$$

 $||y_2 - D_2 x_2||_F = 222.28837786521683$
 $||D_1^T D_2||_F = 15.93912746115688$
 $||y_1^T y_2||_F = 4652.819827829139$

$$||y_1 - D_1 x_1||_F = 42.907315307035326$$

 $||y_2 - D_2 x_2||_F = 72.9588111422319$
 $||D_1^T D_2||_F = 7.658268715329088$
 $||y_1^T y_2||_F = 388.02419599750397$

lambda = 20, iteration = 1000

before dictionary learning

$$||y_1 - D_1 x_1||_F = 220.18268975817733$$

 $||y_2 - D_2 x_2||_F = 222.28837786521683$
 $||D_1^T D_2||_F = 15.93912746115688$
 $||y_1^T y_2||_F = 4652.819827829139$

$$||y_1 - D_1 x_1||_F = 65.82048708056374$$

 $||y_2 - D_2 x_2||_F = 89.64607277704985$
 $||D_1^T D_2||_F = 5.808565750146154$
 $||y_1^T y_2||_F = 343.6802912825157$

lambda = 50, iteration = 1000

before dictionary learning

$$||y_1 - D_1 x_1||_F = 220.18268975817733$$

 $||y_2 - D_2 x_2||_F = 222.28837786521683$
 $||D_1^T D_2||_F = 15.93912746115688$
 $||y_1^T y_2||_F = 4652.819827829139$

$$||y_1 - D_1 x_1||_F = 84.74730986884552$$

 $||y_2 - D_2 x_2||_F = 100.01402097663563$
 $||D_1^T D_2||_F = 2.509107459832805$
 $||y_1^T y_2||_F = 354.63651448064314$

lambda = 100, iteration = 1000

before dictionary learning

$$||y_1 - D_1 x_1||_F = 220.18268975817733$$

 $||y_2 - D_2 x_2||_F = 222.28837786521683$
 $||D_1^T D_2||_F = 15.93912746115688$
 $||y_1^T y_2||_F = 4652.819827829139$

$$||y_1 - D_1 x_1||_F = 131.8448164823175$$

 $||y_2 - D_2 x_2||_F = 131.53127587105865$
 $||D_1^T D_2||_F = 127.0613438885982$
 $||y_1^T y_2||_F = 203.13003871859212$

