Optimization: Solutions

September 12, 2018

Exercises

- 1. Prove Rolle's Theorem.
- 2. Characterize the stationary point(s) of¹

$$f(x_1, x_2) = x_1^2 + x_2^2$$

Are these points maxima, minima, or saddle points?

3. Characterize local optima and solve²

$$\max_{x_1, x_2} f(x_1, x_2) = 3x_1 x_2 - x_1^3 - x_2^3$$

- 4. Prove that the least squares objective function is convex, implying that the first order conditions are sufficient to characterize the β that solves Equation ??.
- 6. Consider the problem

$$\max_{x_1, x_2} x_1 x_2$$
subject to $x_1 + x_2 = 1$

Think about the geometry of the problem. What is the constraint set? Then solve it using the method of Legrange.³

³ Carter Example 5.14