第三種オイラー型メルセンヌ超完全数のダブル B 型解について

梶田光

2025/08/19

1. はじめに

第三種オイラー型メルセンヌ完全数とは、以下の連立方程式の解のことである:

$$\begin{cases} \overline{h}A = 2h\varphi(a) + \overline{h}m + \overline{h}, \\ \varphi(A) = a + m \end{cases}$$

なお、慣例で n-1 のことを \overline{n} と書く.

飯高先生によって始められた一般化された完全数の研究では、自然数 α, β を固定したとき、 $a = \alpha p, A =$ βq $(p,q: \text{prime}, \gcd(\alpha,p) = \gcd(\beta,q) = 1)$ の形の解が複数個存在するならば、その解をまとめてダブル B 型解 とよぶ.

補題 1.1:
$$a,b,c,d$$
 が無平方数で, $\frac{\varphi(a)\varphi(b)}{ab} = \frac{\varphi(c)\varphi(d)}{cd}$ ならば, $ab=cd$.

これは φ^k 同値の中で証明されている補題 「 $I \geq 1$ 個の無平方数の列 $(\alpha_1,...,\alpha_I)$ と $(\beta_1,...,\beta_I)$ について, $\prod_i \frac{\varphi(\alpha_i)}{\alpha_i} = \prod_i \frac{\varphi(\beta_i)}{\beta_i}$ ならば $\prod_i \alpha_i = \prod_i \beta_i$ 」の i=2 の場合である.

定理 1.1: ダブル B 型解の係数と平行移動 α, β と m は以下のいずれかを満たす.

- $\begin{array}{ll} \bullet & \alpha=1, \beta=2^eh^f, m=\frac{-h-1-2^e\overline{h}h^f}{h+1} \\ \bullet & \alpha=2^e, \beta=h^f, m=-\overline{h}h^f-h2^e+\overline{h} \end{array}$
- $\alpha = h^f, \beta = 2^e, m = -2h^f 2^e + 1$

 p_0, p_1 のことをまとめて p と書き, q_0, q_1 のことをまとめて q と書くと, 下の連立方程式は 2 つの解を持

$$\begin{cases} \overline{h}\beta q = 2h\varphi(\alpha)\overline{p} + \overline{h}m + \overline{h}, \\ \varphi(\beta)\overline{q} = \alpha p + m \end{cases}$$

これはp,qに関する連立一次方程式とみなすことができる.

よって、その係数行列 $\begin{pmatrix} \overline{h}\beta & 2h\varphi(\alpha) \\ \varphi(\beta) & \alpha \end{pmatrix}$ の行列式 $\overline{h}\alpha\beta - 2h\varphi(\alpha)\varphi(\beta)$ は0に等しい. したがって $\frac{\varphi(\alpha)\varphi(\beta)}{\alpha\beta} = \frac{\overline{h}}{2h}$

$$x=\mathrm{rad}(\alpha), y=\mathrm{rad}(\beta) \text{ \succeq $\%$ if if, } \frac{\varphi(x)}{x}=\frac{\varphi(\alpha)}{\alpha}, \frac{\varphi(y)}{y}=\frac{\varphi(\beta)}{\beta} \text{ \sharp b, } \frac{\varphi(x)\varphi(y)}{xy}=\frac{\overline{h}}{2h}=\frac{\varphi(2)\varphi(h)}{2h}.$$

したがって 補題 1.1 より $rad(\alpha)rad(\beta) = xy = 2h$ で、したがって係数は以下の 4 パターンがあり得る.

- $\alpha = 1, \beta = 2^e h^f$
- $\alpha = 2^e, \beta = h^f$
- $\alpha = h^f, \beta = 2^e$
- $\alpha = 2^e h^f, \beta = 1$

これらを定義式から

$$\begin{cases} \overline{h}\beta q = 2h\varphi(\alpha)\overline{p} + \overline{h}m + \overline{h} & \dots(\mathbf{A}) \\ \varphi(\beta)\overline{q} = \alpha p + m & \dots(\mathbf{B}) \end{cases}$$

に代入する.

 $(1) \alpha = 1, \beta = 2^e h^f$ の場合

$$\begin{split} \overline{h}2^eh^fq &= 2h\overline{p} + \overline{h}m + \overline{h} & \dots (\mathbf{A}), \\ \overline{h}2^eh^f\overline{q} &= 2hp + 2hm & \dots (\mathbf{B}) \times 2h \end{split}$$

したがって,
$$\overline{h}2^eh^f=-2h-(h+1)m+\overline{h}$$
 より, $m=\frac{-h-1-\overline{h}2^eh^f}{h+1}$ を得る.

(2) $\alpha=2^e,\beta=h^f$ の場合

$$\begin{split} \overline{h}h^fq &= h2^e\overline{p} + \overline{h}m + \overline{h} & \dots (\mathbf{A}), \\ \overline{h}h^f\overline{q} &= h2^ep + hm & \dots (\mathbf{B}) \times 2h \end{split}$$

したがって、 $\overline{h}h^f = -h2^e - m + \overline{h}$ より、 $m = -\overline{h}h^f - h2^e + \overline{h}$.

(3) $\alpha = h^f, \beta = 2^e$ の場合

$$\begin{split} \overline{h}2^eq &= 2\overline{h}h^f\overline{p} + \overline{h}m + \overline{h} & \dots(A), \\ \overline{h}2^e\overline{q} &= 2\overline{h}h^fp + 2\overline{h}m & \dots(B) \times 2\overline{h} \end{split}$$

したがって, $\overline{h}2^e=-2\overline{h}h^f-\overline{h}m+\overline{h}$ より, $m=-2h^f-2^e+1$.

 $(4) \alpha = 2^e h^f, \beta = 1$ の場合

$$\overline{h}q = \overline{h}2^e h^f \overline{p} + \overline{h}m + \overline{h} \qquad \dots(A),$$

$$\overline{h}\overline{q} = \overline{h}2^e h^f \overline{p} + \overline{h}m \qquad \dots(B) \times \overline{h}$$

しかし、これを引くと $\overline{h} = -\overline{h}2^e h^f + \overline{h}$ を得るが、この式は成立しない.