

LIQUID CRYSTAL DISPLAY ELEMENT

Patent Number: JP63128315
Publication date: 1988-05-31
Inventor(s): EGUCHI TOSHIYASU
Applicant(s): VICTOR CO OF JAPAN LTD
Requested Patent: JP63128315
Application Number: JP19860275570 19861119
Priority Number(s):
IPC Classification: G02F1/133; G09F9/30
EC Classification:
Equivalents:

Abstract

PURPOSE: To improve the contrast and the electrooptic characteristic by providing spacers, which control the thickness of liquid crystal layers, in spacer part corresponding positions provided in parts other than picture element corresponding parts between a pair of substrates.

CONSTITUTION: Liquid crystal layers 11, electrodes 10a and 10b, and oriented films are laminated and a pair of substrates 9a and 9b, which hold liquid crystal layers 1 at intervals of a prescribed gap between themselves and at least one of which is transparent, to constitute a liquid crystal display element.

Spacers 12 which control the thickness of liquid crystal layers 11 are provided in spacer part corresponding positions provided in parts other than picture element corresponding to parts between a pair of substrates 9a and 9b. Therefore, spacers 12 do not exist in picture element corresponding parts to prevent orientation defects of liquid crystal layers 11 in picture element corresponding parts which have a direct influence upon liquid crystal display. Thus, the display element superior in contrast and electrooptic characteristic is obtained.

Data supplied from the esp@cenet database - I2

⑯ 日本国特許庁 (JP)

⑪ 特許出願公開

⑫ 公開特許公報 (A)

昭63-128315

⑬ Int.Cl.⁴G 02 F 1/133
G 09 F 9/30

識別記号

3 2 0
3 2 3

厅内整理番号

7370-2H
6866-5C

⑭ 公開 昭和63年(1988)5月31日

審査請求 未請求 発明の数 1 (全3頁)

⑮ 発明の名称 液晶表示素子

⑯ 特願 昭61-275570

⑰ 出願 昭61(1986)11月19日

⑱ 発明者 江口 稔康 神奈川県横浜市神奈川区守屋町3丁目12番地 日本ピクターブ株式会社内

⑲ 出願人 日本ピクター株式会社 神奈川県横浜市神奈川区守屋町3丁目12番地

⑳ 代理人 弁理士 伊東 忠彦 外1名

明細書

1. 発明の名称

液晶表示素子

2. 特許請求の範囲

(1) 液晶層と、夫々電極及び配向膜を積層形成されており該液晶層を所定間隔をもって挟持する少なくとも一方が透明な一対の基板とにより構成される液晶表示素子において、該一対の基板間の画素対応部以外に設けられるスペース部に対応位置に、上記液晶層の厚さを制御するスペーサを設けてなることを特徴とする液晶表示素子。

(2) 該スペーサは接着力を有する材質よりなり、該一対の基板と夫々接着して該一対の基板を対向離間した状態で固定することを特徴とする特許請求の範囲第1項記載の液晶表示素子。

(3) 該スペーサは熱可塑性樹脂であることを特徴とする特許請求の範囲第2項記載の液晶表示素子。

(4) 該スペーサは遮光する性質を有する材質よ

りなることを特徴とする特許請求の範囲第1項乃至第3項のいずれかに記載の液晶表示素子。

3. 発明の詳細な説明

産業上の利用分野

本発明は液晶表示素子に係り、特にコントラスト及び電気光学特性を向上し得る液晶表示素子に関する。

従来の技術

第3図に従来の液晶表示素子1の構成を示す。同図に示されるように、一般に液晶表示素子1は、大略液晶層2と、透明電極3a, 3b等が形成されてなる基板4a, 4bと、図示しない偏光板とにより構成されている。この種の液晶表示素子1において、液晶層2の厚さ寸法を一定とするため一対の基板4a, 4bを所定寸法で一様に離間させる手段として、基板4a, 4bの端部のみならず、内側部分にもスペーサ5(ガラスファイバー、ガラス微小球、高分子樹脂の微小粒子、結晶アルミニナ粒子等)を分散、介在させ、一対の基板4a, 4bを対向させている。

一方、液晶表示のコントラストを向上させるために、画素対応部以外（画素間スペース）の基板4a上には常時光を遮蔽する遮蔽膜6が形成されていた。この遮蔽膜6は、上記画素間スペースに黒色の染色物を塗布したり、或は光を透過しない金属膜を被膜することにより形成されていた。

発明が解決しようとする問題点

しかるに上記従来の液晶表示素子1では、画素対応部に対してもスペーサ5が介在し（図中矢印Aで示す）、その為に、液晶層2内の液晶とスペーサ5の屈折率など光学的特性の違いから、表示の品位を劣化させるばかりかスペーサ5として使用した粒子と液晶との境界面に於いて多くの欠陥を境界とした不連続な分子配列を形成され、これによりコントラストが低下し電気光学特性が悪化するという問題点があった。

また、スペーサ5の介在により液晶層2の厚さが所望の厚さより小さくなることは防止できるが、一対の基板4a, 4bが歪み湾曲が発生したとき液晶層2の厚さがスペーサ5の直径より大なる部

分が生じ、それを原因としてパネルに干渉色を生じ、あるいは駆動電圧の設定にも不都合を生じ、著しく表示品位を低下させるという問題点があつた。一方、従来の遮蔽膜6の形成は煩雑な形成工程を伴い、液晶表示素子1の製造工程が複雑化し製品価格が高くなるという問題点があつた。

そこで本発明では、上記、従来の問題点を解消し、良好なコントラスト及び電気光学特性が得られる合理的なパネル間隙の形成と、画素間スペースの遮光とを可能とし得るスペーサを有した液晶表示素子を提供することを目的とする。

問題点を解決するための手段

上記問題点を解決するために本発明では、液晶層と、夫々電極及び配向膜を積層形成されており液晶層を所定間隔をもって挟持する少なくとも一方が透明な一対の基板とにより構成される液晶表示素子において、上記一対の基板間の画素対応部以外に設けられるスペース部対応位置に、上記液晶層の厚さを制御するスペーサを設けた。

- 3 -

- 4 -

作用

液晶表示素子を上記構成とすることにより画素対応部にスペーサが介在することがなくなり、よって液晶表示に直接影響を与える画素対応部における液晶の配向欠陥を防止することができる。

実施例

次に本発明になる液晶表示素子の一実施例について第1図及び第2図を用いて説明する。尚、第1図は液晶表示素子8の平面図であり、また第2図は第1図におけるII-II線に沿う断面図である。

各図において9a, 9bは例えばフロートガラス等の平滑性の良好な透明ガラス基板であり、夫々対向する面の所定位置には透明電極10a, 10bが第1図において左右方向に亘り帯状に形成されている（第1図では電極10aを破線で示す）。この透明電極10a, 10bは例えば酸化インジウムのような金属酸化物よりも、薄膜形成長技術により基板9a, 9b上に画素に対応する所定パターンで被膜形成されている。尚、この透明電極10a, 10bが形成された基板10a,

10bの液晶11と接する内側面には図示しない分子配向膜が被膜されると共にラビング処理が施される。

12は本発明の要部となるスペーサである。このスペーサ12は、黒色系色素を混入された熱可塑性樹脂よりなり、画素対応部以外の位置に設けられるスペース部（各透明電極10aに挟まれた部分）に形成位置を選定されて配設されている。即ち、スペーサ12は画素対応位置に形成された透明電極10aに挟まれた状態（第1図に示す）で帯状に形成されている。このスペーサ12を形成するに際しては、まず透明電極3aが形成されてなる基板4aに上記の黒色系色素が混入された熱可塑性樹脂を所望する液晶層の厚さ寸法と等しいか、或はこれより若干大なる厚さ寸法まで塗布形成し、透明電極3aを残してバターニングする。続いて上記熱可塑性樹脂がバターン形成された基板4aと、これと対をなす一方の基板4bを平行度正しく対向させながら、所望の液晶層の厚さ寸法となるまで加圧し加熱する。これにより熱可塑

- 5 -

-76-

- 6 -

性樹脂は接着力をもって両基板4a, 4bを接着し、既にこれを冷却固化することによりスペーサ12が形成されると共に基板4a, 4bは所定寸法離間されて固定され、第1図及び第2図に示す液晶セル14が形成される。尚、第1図中13は液晶11を封入するためのシール部材であり、液晶11は矢印Bで示す液晶注入部より液晶セル14内に注入される。この際、液晶11はスペーサ12の隙間から液晶セル14内の隙間へ容易に充填されてゆき、液晶表示素子8が形成される。上記の如くスペーサ12を形成することにより、従来のようにスペーサが不均一に分散されることはない。これに加えてスペーサ12に接着力を付与することにより対向する基板4a, 4bは接着力を介して密着されるため、基板4a, 4bの歪み弯曲は相互に引かれ、液晶層厚が均一に保持され干渉色や表示むらの発生しない合理的なパネル間隔を形成できる。

前記したようにスペーサ12の配設位置は画素対応部以外のスペース部位置、即ち、従来の液晶

表示素子1(第3図に示す)における遮蔽膜6の形成位置である。よって画素部に液晶以外の物が存在するようなことはなく、液晶表示のコントラスト及び電気光学特性を向上させることができる。更にスペーサ12には黒色系色素が混入されているため遮光機能を有し、スペーサ12により常時光を有効に遮蔽することができる。

尚、上記実施例ではスペーサ12を帯状のバターンとしたがこれに限るものではなく、例えば画素対応位置以外の位置に格子状或は断続的に形成しても良い。

また、上記実施例では、透明電極3aがストライプ状に形成された基板4aに対するスペーサ12の形成について述べたが、アクティブ素子を基板に作り込む方式の液晶セルなど透明電極がストライプ状でないものにも実施することができる。

また、一方の基板4a上にスペーサ12を形成するものに限らず、双方の基板4a, 4b上にスペーサ12を夫々形成してから、液晶セルを組み立てる構成としても良いことは勿論のことである。

- 7 -

- 8 -

発明の効果

上述の如く本発明になる液晶表示素子では、一対の基板間の画素対応部以外に設けられるスペース部対応位置に液晶層の厚さを制御するスペーサを設けることにより、画素対応部にスペーサによる液晶の配向欠陥を防止することができ、その結果、コントラスト電気光学特性の良好な表示素子が得られ、またスペーサに接着力を付与することにより、液晶層厚を一様に保つことが可能となり、干渉色の発生を有効に防止することができ、更にスペーサは、画素間スペースの遮光に利用することも可能である等の特長を有する。

4. 図面の簡単な説明

第1図は本発明になる液晶表示素子の一実施例の平面図、第2図は第1図におけるII-II線に沿う断面図、第3図は従来の液晶表示素子の一例の断面図である。

8…液晶表示素子、9a, 9b…基板、10a, 10b…透明電極、11…液晶、12…スペーサ、14…液晶セル。

第1図

第2図

第3図