密码学第三次作业

张津婵-1901210582

1. DDT 和 LAT 表的计算

实现思路:

查阅公开信息,得到 ZUC 算法的 S0,S1 两个 S 盒信息。每个 S 盒中有 256 个 16 进制数。为方便计算,定义函数 int2bin(x),用于将 int 类型的数字转换为对应的 8 位二进制串,并初始化 256*256 大小的二维数组 DDT 和 LAT 用于存储差分分析表和线性逼近表。定义 get_DDT 和 get_LAT 得到 DDT 和 LAT。

定义 saveTable(table,filename)和 printTable(table),存储和打印二维数组 DDT 和 LAT。

差分分析表的计算-----get_DDT(s)

令 $x= x'^x''$, diff= y'^y'' 其中 x' 和 x'' 表示输入明文, y'' 个 y''' 表示对应的输出

对于某固定的 x, 可通过遍历找到满足 $x=x'^x'$ 的 x'、x'', 通过 S 盒置换得到对应的 y'、 y'', 再异或计算即可得到 diff= y'^y'' 。通过 for 循环,遍历 x 从 0 到 255,遍历 diff 从 0 到 255,在 DDT[x][diff]进行计数,遍历结束即可得到最终结果。

线性逼近表的计算-----get_LAT(s)

每个 x、y 都可表示为 8 位的二进制数。定义函数 fun(i,x,j,y) 进行异或计算(如, i=5 (00000101), x= (x1x2x3x4x5x6x7x8), 将 i 和 x 进行按位异或)

要得到 LAT 表,需要统计所有可能的 $xi^yj=0$ 。遍历时,y 由 x 进行 S 盒置换得到,并使用 count 对 fun 的异或结果进行统计,最后令 LAT[i][j]=128-count。遍历结束即可得到最终结果。

运行结果:

DDT (s0) python 输出截图: (完整结果见 DDT1.txt)

DT(s)):																						
I	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	- 2
- 1	256	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
- 1	0	0	0	2	4	2	0	0	4	0	0	2	8	2	0	0	0	0	0	0	0	4	
- 1	0	2	0	0	0	2	0	2	4	2	4	2	0	2	0	0	0	0	0	0	0	2	
i	0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	0	0	0	0	4	0	0	
- i	0	2	4	2	4	0	0	0	4	2	0	2	4	4	0	4	0	0	0	0	0	0	
i	0	2	0	0	0	0	0	2	0	0	0	2	4	2	0	0	0	2	0	0	0	6	
i	0	0	0	0	0	0	0	2	0	2	0	0	0	0	4	0	0	4	4	0	0	0	
i	0	0	4	0	0	0	0	0	0	0	0	2	0	2	0	0	0	2	0	4	0	4	
i	0	4	4	4	4	4	0	4	0	4	0	4	0	4	0	4	8	0	0	0	0	0	
i	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	2	0	0	
0	0	2	0	0	0	2	4	0	0	2	4	0	0	2	0	0	0	0	0	2	0	0	
1	0	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	4	0	0	4	0	4	0	0	4	0	0	0	0	0	0	4	
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	6	4	0	
4	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	4	0	0	0	2	4	0	
5	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	4	4	0	4	
6	0	4	0	4	0	4	0	4	0	4	0	4	0	4	0	4	0	0	0	0	0	0	
7	0	2	0	2	0	0	4	0	0	2	0	2	0	0	4	0	0	0	0	2	0	0	
8	0	2	0	2	0	2	0	0	4	2	4	0	0	2	0	2	0	2	0	0	0	0	
9	0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	0	0	0	0	0	0	0	
0 i	0	2	4	2	4	0	0	0	4	2	0	2	4	4	0	4	0	0	0	0	0	0	

DDT (s1) python 输出截图: (完整结果见 DDT2.txt)

LAT (s0) python 输出截图: (完整结果见 LAT1.txt)

L	AT(SØ):																						
	- 1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
0		128	0	0	0	0	0	0	0	θ	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	- i	0	0	0	0	0	0	0	0	0	0	16	16	0	0	0	0	0	0	-8	-8	8	8	
2	- i	0	0	0	0	0	0	-8	8	0	0	8	-8	16	-16	8	8	32	0	-8	-8	0	0	
3	i	0	0	0	0	0	0	8	8	0	0	8	-8	0	0	8	-8	16	0	0	0	-8	8	
4	i	0	0	0	-16	-16	0	0	0	0	0	-8	-8	-8	8	16	-16	-32	0	-8	8	-8	-8	
5	i	0	0	16	0	0	0	-16	16	0	0	-8	-8	8	8	0	0	-16	0	0	0	-16	16	
6	- 1	0	0	0	0	-16	0	-8	8	0	0	0	0	8	-8	8	8	0	0	0	0	-8	8	
7	- 1	0	0	0	0	0	0	8	8	0	0	-16	16	8	8	-8	8	0	0	8	-8	0	0	
8	- 1	0	0	-32	0	0	0	0	0	0	0	8	8	-8	8	8	-8	0	0	8	8	-8	8	
9	- 1	0	0	0	0	0	0	0	0	-16	-16	8	8	-8	-8	8	8	0	0	16	16	0	0	
10	9	0	0	0	0	0	0	-8	8	-16	16	0	0	8	-8	0	0	0	-16	-16	-16	8	8	
1	1	0	0	0	0	0	0	-8	-8	0	0	0	0	-8	-8	0	0	0	0	-8	-8	-16	16	
12	2	0	0	-16	0	0	-16	16	16	0	0	0	0	0	0	8	-8	0	-16	0	0	0	0	
13	3	0	0	0	-16	0	0	0	0	0	0	0	0	0	0	-8	-8	0	0	8	-8	8	-8	
14	1	0	0	0	0	0	-16	8	-8	0	0	-8	8	0	0	0	0	0	0	8	-8	0	0	
15		0	0	0	0	0	0	8	8	0	0	-8	8	16	16	16	-16	0	0	0	0	8	8	
16		0	0	0	0	-8	-8	0	0	8	-8	-8	0	-8	8	0	-8	16	16	8	-16	0	0	
1		0	0	0	0	0	0	-8	-8	0	0	8	0	0	0	0	8	0	0	0	-8	8	-8	
18		0	32	0	-32	8	-8	8	-8	0	0	0	8	8	-8	0	8	0	0	-8	0	0	0	
19		0	0	0	0	0	0	0	-16	-24	-24	0	8	0	0	16	-8	0	0	0	8	8	8	
20	9	0	32	0	32	-8	-8	0	0	0	0	0	8	0	0	-8	0	0	0	-8	0	8	-8	

LAT (s1) python 输出截图: (完整结果见 LAT2.txt)

-	zuc	ddt_lat ×																						
_	LAT(
-1-		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1																								
===	0	128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
=+	1	1 0	6	-2	12	8	2	-2	8	10	12	12	6	6	-12	0	-2	6	-8	4	-2	2	-16	0
	2	0	-10	2	-12	6	4	-4	6	4	10	-2	8	-2	-12	12	6	12	-2	6	12	-6	4	-8
=	3	0	8	-8	12	2	-10	6	-2	-6	14	14	-10	12	12	12	-8	10	-14	10	-10	8	-12	12
=	4	0	12	-6	2	-14	6	-4	12	4	-8	6	-10	10	-2	12	12	-12	16	-10	-2	-14	-2	-12
_	5	0	-6	12	2	2	8	-2	8	-14	8	-6	12	-4	-2	-12	-6	10	-8	-2	8	-4	-10	-8
	6	0	2	4	6	-4	-2	-4	-2	8	-6	4	-2	-4	-2	-12	-2	12	10	8	-2	4	-6	-4
	7	0	-4	-2	2	8	8	-14	2	-14	2	-4	12	14	-6	-12	-8	-14	6	-8	-4	-6	2	-12
	8	0	2	8	-2	-14	-12	2	0	4	-14	12	-10	6	-12	6	-8	0	2	0	-2	-6	4	-6
	9	0	-4	14	-2	-2	-2	-4	0	-2	-14	-8	8	-8	-8	2	-2	6	-10	12	-8	0	4	6
	10	0	-12	-2	-6	8	-4	2	-10	4	12	2	2	8	-8	2	-14	4	4	10	2	12	-12	6
	11	0	2	4	-10	-16	-10	-8	14	-14	-12	2	-12	2	-8	6	12	2	12	-2	8	-10	-12	6
	12	0	2	10	-12	8	2	2	-4	0	-10	2	8	-12	-6	-10	-12	4	-2	-2	8	8	-6	-6
	13	0	4	4	8	-4	12	-16	0	-10	2	-2	2	-6	2	2	2	2	-6	-10	6	-2	-6	2
	14	0	-4	-8	8	-6	14	-2	-2	0	0	8	12	2	10	6	10	-12	4	4	8	-6	2	-2
	15	0	2	2	-8	2	0	0	-14	-6	4	-8	6	-8	6	2	4	2	-4	12	10	4	-14	10
	16	0	-12	14	10	4	-8	14	10	6	-2	-12	-12	-14	-14	12	-12	-4	8	-10	-6	4	-8	10
	17	0	-14	0	-6	0	6	-12	10	-4	-10	0	2	0	-2	-8	-10	-6	0	6	4	10	-12	2
	18	0	-2	-8	2	6	-12	-10	0	2	12	-6	-8	-12	14	-12	2	0	-6	-4	-6	10	12	-2
	10	I A	-16	2	6	_2	-14	α	а	A	A	-6	6	-14	_2	0	_0	_10	_10	12	_0	_17	_0	-14

2. 为什么最后增加 Key Mixing 操作?

由于 S 盒是可逆的,如果不在最后一轮进行异或轮秘钥,那么攻击者拿到密文即可通过 S 盒进行解密,得到 S 盒的输入。在最后增加 Key Mixing 操作提高了密码算法的安全性。