2

3

4

5

6

7

8

9

10

11

12

1

2

Wherein I claim:

1. An imaging system comprising a surface for receiving an image, and a light modulator comprising a plurality of light valves in a two-dimensional array having orthogonal rows and columns in a first Cartesian coordinate system having a first and a second orthogonal axes, said columns arrayed along said first axis in the coordinate system; said rows arrayed along the second axis and a number of said rows forming a segment; and wherein said surface is transported relative to the modulator in a direction along a transport axis; wherein the first axis and the transport axis form an angle other than 90° , said angle α inversely proportional to the number of rows in the segment;

wherein the number of rows in the segment is n; n is an integer greater than 1; and the modulator comprises at least 2 segments; further wherein each light valve has an X dimension along the first axis and a Y dimension along the second axis, and X=Y and the angle $\alpha = \tan^{-1}(1/n)$.

- 2. The imaging system according to claim 1 wherein said angle is between about 2° and 45°.
- 3. The imaging system according to claim 1 further comprising a radiant energy source and at least one lens for directing said radiant energy onto said modulator.
- 1 4. The imaging system according to claim 1 further comprising at least one 2 lens for directing said radiant energy onto said surface.
- The imaging system according to claim 1 wherein said surface comprises a printing plate.

2

KUB 100US PATENT

6. The imaging system according to claim 1 wherein said surface comprises an image detecting element.

- 7. The imaging system according to claim 6 wherein said image detecting element is a photosensitive layer.
- 1 8. The imaging system according to claim 1 wherein said image detecting element is a plurality of photosensitive elements.
- 1 9. The imaging system according to claim 1 wherein said imaging surface is 2 an image display surface.
- 1 10. The imaging system according to claim 1 further comprising a modulator controller connected to said modulator for turning on and off any selected number of light valves in said light valve array.
- 1 11. The imaging system according to claim 10 further comprising a transporter for transporting said surface in a plane defined by said first coordinate system in the transport direction.
- 1 12. The imaging system according to claim 11 further including means for synchronizing said surface transporter and said modulator controller to repeatedly expose a same selected area on said surface using light valves in different light valve rows thereby to effect cumulative exposure of a desired surface area.
- 1 13. The imaging system of claim 1 wherein the surface for receiving an image is wrapped around a cylindrical drum which rotates in the transport direction.
- 1 14. The imaging system of claim 1 wherein the surface for receiving an 2 image is positioned on a flatbed.

2

3

1

4

1

2

3

4

5

1

2

3

1

KUB 100US PATENT

15. The imaging system of claim 1 further comprising a transport head that transports the light valve array, and wherein the imaging surface is a cylindrical drum and the transport head rotates around the cylindrical drum in the transport direction.

- 16. The imaging system according to claim 1 further comprising:
- 2 (a) a source of radiation and an optical projection system for directing at least a 3 portion of said radiation onto said modulator and therefrom onto said surface; and
 - (b) a scanning means for scanning said radiation on said surface.
 - 17. The imaging system of claim 1 wherein the light modulator is selected from the group consisting of an optical switch, a MEMS device, an electro-holographic device, an acousto-optic device, a liquid crystal display device, a Bragg grating device, a bubblejet device, a thermo-optic interferrametric device and a thermo capillary device.
 - 18. The imaging system of claim 1 wherein the surface for receiving an image is selected from the group consisting of a photosensitive surface, a display screen, a circuit board, and a radiation detection device.
- 1 19. A method of imaging using the imaging system of claim 1 wherein the light valves provide radiation below the exposure threshold of the image receiving surface.
 - 20. An method of imaging comprising:
- 2 (A) positioning a surface for receiving an image at a focal point of a light modulator;

KUB 100US PATENT

said light modulator comprising a plurality of light valves in a two-dimensional
array having orthogonal rows and columns in a first Cartesian coordinate system having
a first and a second orthogonal axes, said columns arrayed along said first axis in the
coordinate system; said rows arrayed along the second axis;

- (B) forming a segment comprising a number of said rows;
- 9 (C) activating said light valves;
 - (D) transporting said surface relative to the modulator in a direction along a transport axis, wherein the first axis and the transport axis form an angle α other than 90°, said angle α inversely proportional to the number of rows in the segment;
 - wherein the number of rows in the segment is n; n is an integer greater than 1; and the modulator comprises at least 2 segments;
 - further wherein each light valve has an X dimension along the first axis and a Y dimension along the second axis, and X=Y and the angle $\alpha=\tan^{-1}(1/n)$.