1997 FG3.1

設 m 為滿足不等式 14x - 7(3x - 8) < 4(25 + x)的整數。求 m 的最小值。 Let m be an integer satisfying the inequality: 14x - 7(3x - 8) < 4(25 + x). Find the least value of m.

1998 HG3

若 $-6 \le a \le 4$ 及 $3 \le b \le 6$, 求 $a^2 - b^2$ 的最大值。

If $-6 \le a \le 4$ and $3 \le b \le 6$, find the greatest value of $a^2 - b^2$.

2010 HI8

在圖二中, $\triangle ABC$ 满足: $x \ge y \ge z$ 及 4x = 7z。若 x 的最大值是 m,x 的最小值是 n,求 m+n 的值。 In Figure 2, ABC is a triangle satisfying $x \ge y \ge z$ and 4x = 7z. If the maximum value of x is m and the minimum value of x is n, find the value of m+n.

2011 HG3

已知 $a \cdot b \cdot c$ 為整數,且 a+b=2011, c-a=2010, $a < b \circ$ 求 a+b+c 的可能最大值。

Given that a, b and c are integers, and a + b = 2011, c - a = 2010, a < b. Find the greatest possible value of a + b + c.

2013 FI2.4

如圖二,三角形 XYZ 的角度滿足 $\angle Z \le \angle Y \le \angle X$ 且 $2 \cdot \angle X = 6 \cdot \angle Z$ 。

 $\angle Z$ 的最大可能值是 d° ,求 d 的值。

In Figure 2, the angles of triangle XYZ satisfy $\angle Z \le \angle Y \le \angle X$ and $2 \cdot \angle X = 6 \cdot \angle Z$.

If the maximum possible value of $\angle Z$ is d° , find the value of d.

2014 HI10

已知 $\triangle ABC$ 為一銳角三角形,其中 $\angle A > \angle B > \angle C$ 。若 x° 為 $\angle A - \angle B$ 、 $\angle B - \angle C$ 及 $90^{\circ} - \angle A$ 中的最小值,求 x 的最大值。

Given that $\triangle ABC$ is an acute triangle, where $\angle A > \angle B > \angle C$.

If x° is the minimum of $\angle A - \angle B$, $\angle B - \angle C$ and $90^{\circ} - \angle A$, find the maximum value of x.

2014 FI1.2

如果 10 個不同的正整數的平均值是 10, 求這 10 個數中,最大的一個數 β最大可能值。

Created by Mr. Francis Hung

If the average of 10 distinct positive integers is 10, what is the largest possible value of the largest integer, β , of the ten integers?

2014 FI4.2

考慮形如 $\frac{n}{n+1}$ 的分數,當中n 是一個正整數。若同時把該分數的分子和

分母減去 1 ,得出的分數是小於 $\frac{6}{7}$,且大於 0 ,求這樣的分數的數目 β 。

Consider fractions of the form $\frac{n}{n+1}$, where n is a positive integer. If 1 is subtracted from both the numerator and the denominator, and the resultant fraction remains positive and is strictly less than $\frac{6}{7}$,

determine, β , the number of these fractions.

2017 HI2

已知 $0 \le p \le 1$,求 $Q = 3p^2(1-p) + 6p(1-p)^2 + 3(1-p)^3$ 的最大值。 Given that $0 \le p \le 1$, find the greatest value of $Q = 3p^2(1-p) + 6p(1-p)^2 + 3(1-p)^3$. **2017 HG5**

設 Q 為所有能滿足不等式 $\frac{9p^2}{\left(\sqrt{3p+1}-1\right)^2} < 3p+10$ 的整數 p 之和,

求 Q 的值。

Let Q be the sum of all integers p satisfying the inequality

$$\frac{9p^2}{\left(\sqrt{3p+1}-1\right)^2} < 3p+10$$
, find the value of Q .

1997 FG3.1	1998 HG3	2010 HI8	2011 HG3	2013 FI2.4
-3	27	154	5026	36
2014 HI10	2014 FI1.2	2014 FI4.2	2017 HI2	2017 HG5
15	55	5	3	10

Created by Mr. Francis Hung
Page 2

Last updated: 2021-03-20