

Probabilidades

Felipe Figueiredo

Probabilidades I

Probabilidades básicas

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Sumário

Probabilidades I

Probabilidades

Felipe Figueiredo

Definition

Experimento aleatório é um experimento no qual se conhece os resultados possíveis, mas não se pode saber qual ocorrerá.

- Caso repetido em condições idênticas, o resultado geralmente é diferente.
- Formulam-se esses problemas de acordo com alguns conjuntos típicos.

Probabilidades

Felipe Figueiredo

Definition

Experimento aleatório é um experimento no qual se conhece os resultados possíveis, mas não se pode saber qual ocorrerá.

- Caso repetido em condições idênticas, o resultado geralmente é diferente.
- Formulam-se esses problemas de acordo com alguns conjuntos típicos.

Probabilidades

Felipe Figueiredo

Definition

Experimento aleatório é um experimento no qual se conhece os resultados possíveis, mas não se pode saber qual ocorrerá.

- Caso repetido em condições idênticas, o resultado geralmente é diferente.
- Formulam-se esses problemas de acordo com alguns conjuntos típicos.

Probabilidades I

> Felipe Figueiredo

Definition

Espaço amostral (S) é o conjunto de todos os resultados possíveis no problema.

Definition

- De quantas maneiras um evento pode ocorrer?
- Contar a quantidade (tamanho do conjunto) e dividir pela quantidade total de possibilidades

Probabilidades I

> Felipe Figueiredo

Definition

Espaço amostral (S) é o conjunto de todos os resultados possíveis no problema.

Definition

- De quantas maneiras um evento pode ocorrer?
- Contar a quantidade (tamanho do conjunto) e dividir pela quantidade total de possibilidades

Probabilidades I

> Felipe Figueiredo

Definition

Espaço amostral (S) é o conjunto de todos os resultados possíveis no problema.

Definition

- De quantas maneiras um evento pode ocorrer?
- Contar a quantidade (tamanho do conjunto) e dividir pela quantidade total de possibilidades

Probabilidades

Felipe Figueiredo

Definition

Espaço amostral (S) é o conjunto de todos os resultados possíveis no problema.

Definition

- De quantas maneiras um evento pode ocorrer?
- Contar a quantidade (tamanho do conjunto) e dividir pela quantidade total de possibilidades

Felipe Figueiredo

Probabilidades

Definition

Probabilidade do evento E (P(E)) é a razão entre o número de elementos do evento E e do espaço amostral S. Entende-se pela frequência de ocorrência do evento E.

$$P(E) = \frac{\#E}{\#S}$$

Example

Para se determinar a probabilidade de uma pessoa estar infectada com o Dengue em uma amostra pode-se considerar a frequência relativa do número de infectados em relação ao total.

Probabilidades I

> Felipe Figueiredo

Definition

Probabilidade do evento E (P(E)) é a razão entre o número de elementos do evento E e do espaço amostral S. Entende-se pela frequência de ocorrência do evento E.

$$P(E) = \frac{\#E}{\#S}$$

Example

Para se determinar a probabilidade de uma pessoa estar infectada com o Dengue em uma amostra pode-se considerar a frequência relativa do número de infectados em relação ao total.

Propriedades das probabilidades

Probabilidades I

- Evento impossível: $P(\emptyset) = 0$
- Evento certo: P(S) = 1
- $0 \le P(E) <= 1 (= 100\%)$

Propriedades das probabilidades

Probabilidades

- Evento impossível: $P(\emptyset) = 0$
- Evento certo: P(S) = 1
- $0 \le P(E) <= 1 (= 100\%)$

Propriedades das probabilidades

Probabilidades I

- Evento impossível: $P(\emptyset) = 0$
- Evento certo: P(S) = 1
- $0 \le P(E) <= 1 (= 100\%)$

Example

Probabilidade de observar cara em uma moeda:

$$P(\text{cara}) = \frac{1}{2}$$

Example

Probabilidade de observar um número par num dado

$$P(par) = \frac{3}{6} = \frac{1}{2}$$

Example

Probabilidade de sortear um ás no baralho

$$P(A) = \frac{4}{52} = \frac{1}{13}$$

Probabilidades I

Example

Probabilidade de observar cara em uma moeda:

$$P(\text{cara}) = \frac{1}{2}$$

Example

Probabilidade de observar um número par num dado

$$P(par) = \frac{3}{6} = \frac{1}{2}$$

Example

Probabilidade de sortear um ás no baralho

$$P(A) = \frac{4}{52} = \frac{1}{13}$$

Probabilidades I

Example

Probabilidade de observar cara em uma moeda:

$$P(\text{cara}) = \frac{1}{2}$$

Example

Probabilidade de observar um número par num dado

$$P(\text{par}) = \frac{3}{6} = \frac{1}{2}$$

Example

Probabilidade de sortear um ás no baralho

$$P(A) = \frac{4}{52} = \frac{1}{13}$$

Probabilidades I

Probabilidades I

Felipe Figueiredo

Example

Um casal tem três filhos. Qual é a probabilidade de que duas das três crianças sejam meninos?

menino-menina-menina menino-menina-menino-menino-menino menino-menino menina-me

$$P(\text{dois meninos}) = \frac{3}{8}$$

(MFM, MMF, FMM)

Probabilidades I

Felipe Figueiredo

Example

Um casal tem três filhos. Qual é a probabilidade de que duas das três crianças sejam meninos?

menino-menina-menina menino-menina-menino-menino-menino menino-menino menina-menino-menina menina-menino-menino menina-menina-menina-menina menina-menina-menina-menino-menino

$$P(\text{dois meninos}) = \frac{3}{8}$$

(MFM, MMF, FMM)

Probabilidades I

Felipe Figueiredo

Example

Um casal tem três filhos. Qual é a probabilidade de que duas das três crianças sejam meninos?

menino-menina-menina menino-menina-menino-menino-menino menino-menino menina-menino-menina menina-menino-menina menina-menina-menina-menina-menina menina-menina-menina-menino-menino-menina-me

$$P(\text{dois meninos}) = \frac{3}{8}$$
 (MFM, MMF, FMM)

Exercício

De acordo com o problema anterior, qual é a probabilidade de

- Exatamente uma menina?
- ② Exatamente duas meninas?
- Três meninas?

Solução

- \bigcirc $\frac{3}{8}$ (MMF, MFM, FMM)
- \bigcirc $\frac{3}{2}$ (MFF, FMF, FFM)
- \bigcirc $\frac{1}{8}$ (FFF)

Probabilidades I

Exercício

De acordo com o problema anterior, qual é a probabilidade de

- Exatamente uma menina?
- ② Exatamente duas meninas?
- Três meninas?

Solução

- \bigcirc $\frac{3}{8}$ (MMF, MFM, FMM
- (MFF, FMF, FFM)
- $\frac{1}{8}$ (FFF)

Probabilidades

Exercício

De acordo com o problema anterior, qual é a probabilidade de

- Exatamente uma menina?
- 2 Exatamente duas meninas?
- Três meninas?

Solução

- MMF, MFM, FMM
- \bigcirc $\stackrel{3}{=}$ (MFF, FMF, FFM)
- $\frac{1}{8}$ (FFF)

Probabilidades

Exercício

De acordo com o problema anterior, qual é a probabilidade de

- Exatamente uma menina?
- 2 Exatamente duas meninas?
- 3 Três meninas?

Solução

- \bigcirc $\frac{3}{8}$ (MMF, MFM, FMM
- \bigcirc $\stackrel{3}{=}$ (MFF, FMF, FFM)
- 6 ½ (FFF)

Probabilidades

Exercício

De acordo com o problema anterior, qual é a probabilidade de

- Exatamente uma menina?
- 2 Exatamente duas meninas?
- Três meninas?

Solução

- $\frac{1}{8}$ (FFF)

Probabilidades

Exercício

De acordo com o problema anterior, qual é a probabilidade de

- Exatamente uma menina?
- ② Exatamente duas meninas?
- Três meninas?

Solução

- $\frac{1}{8}$ (FFF

Probabilidades

Exercício

De acordo com o problema anterior, qual é a probabilidade de

- Exatamente uma menina?
- 2 Exatamente duas meninas?
- Três meninas?

Solução

Probabilidades

Exercício

De acordo com o problema anterior, qual é a probabilidade de

- Exatamente uma menina?
- ② Exatamente duas meninas?
- Três meninas?

Solução

- $\frac{1}{8} (FFF)$

Probabilidades I

Probabilidades I

> Felipe Figueiredo

Definition

O complemento \bar{E} de um evento E consiste em todas as possibilidades em que o evento E não ocorre.

Definition

Probabilidade complementar $P(\bar{E})$ (ou $P(E^c)$) de um evento E é a probabilidade do evento E não ocorrer.

$$P(\bar{\bar{E}}) = 1 - P(E)$$

Probabilidades I

> Felipe Figueiredo

Definition

O complemento \bar{E} de um evento E consiste em todas as possibilidades em que o evento E não ocorre.

Definition

Probabilidade complementar $P(\bar{E})$ (ou $P(E^c)$) de um evento E é a probabilidade do evento E não ocorrer.

$$P(\bar{\bar{E}}) = 1 - P(E)$$

Exercício

Qual é a probabilidade de se observar um número ímpar no dado?

Solução

$$P(\text{impar}) = 1 - P(\text{par}) = 1 - \frac{1}{2} = \frac{1}{2}$$

Exercício

Qual é a probabilidade de se sortear uma carta no baralho que não seja um ás?

Solução

$$P(\bar{A}) = 1 - P(A) = 1 - \frac{1}{13} = \frac{12}{13}$$

Probabilidades I

Exercício

Qual é a probabilidade de se observar um número ímpar no dado?

Solução

$$P(\text{impar}) = 1 - P(\text{par}) = 1 - \frac{1}{2} = \frac{1}{2}$$

Exercício

Qual é a probabilidade de se sortear uma carta no baralho que não seja um ás?

Solução

$$P(\bar{A}) = 1 - P(A) = 1 - \frac{1}{13} = \frac{12}{13}$$

Probabilidades I

Exercício

Qual é a probabilidade de se observar um número ímpar no dado?

Solução

$$P(\text{impar}) = 1 - P(\text{par}) = 1 - \frac{1}{2} = \frac{1}{2}$$

Exercício

Qual é a probabilidade de se sortear uma carta no baralho que não seja um ás?

Solução

$$P(\bar{A}) = 1 - P(A) = 1 - \frac{1}{13} = \frac{12}{13}$$

Probabilidades I

Exercício

Qual é a probabilidade de se observar um número ímpar no dado?

Solução

$$P(\text{impar}) = 1 - P(\text{par}) = 1 - \frac{1}{2} = \frac{1}{2}$$

Exercício

Qual é a probabilidade de se sortear uma carta no baralho que não seja um ás?

Solução

$$P(\bar{A}) = 1 - P(A) = 1 - \frac{1}{13} = \frac{12}{13}$$

Probabilidades I

Eventos compostos

Probabilidades

Felipe

Figueiredo

Example

Quantas ervilhas têm caule verde ou flor roxa?

Figura: Fonte: Triola, 2004.

Regra da Soma

Probabilidades I

> Felipe Figueiredo

Definition

P (A ou B) = P(A) + P(B) - P(A e B)

Interpretação

P (A ou B) = P(A ocorre ou B ocorre ou ambos ocorrem)

 Atenção: não podemos contabilizar o evento P(A e B) duas vezes.

Regra da Soma

Probabilidades I

> Felipe Figueiredo

Definition

P(A ou B) = P(A) + P(B) - P(A e B)

Interpretação

P(A ou B) = P(A ocorre ou B ocorre ou ambos ocorrem)

 Atenção: não podemos contabilizar o evento P(A e B) duas vezes.

Regra da Soma

Probabilidades

Felipe Figueiredo

Definition

P (A ou B) = P(A) + P(B) - P(A e B)

Interpretação

P (A ou B) = P(A ocorre ou B ocorre ou ambos ocorrem)

 Atenção: não podemos contabilizar o evento P(A e B) duas vezes.

- Probabilidades I
 - Felipe Figueiredo

- Não podem ocorrer simultaneamente
- Eventos (conjuntos) disjuntos

Figura: Fonte: Triola, 2004.

- Probabilidades I
 - Felipe Figueiredo

- Não podem ocorrer simultaneamente
- Eventos (conjuntos) disjuntos

Figura: Fonte: Triola, 2004.

Probabilidades

Felipe Figueiredo

Não são mutuamente exclusivos

Example

A = Escolher estudante

B = Escolher mulher

Example

A = Escolher mulher

B = Escolher tipo sanguíneo O+

Example

A = Escolher homem

B = Escolher olhos castanhos

Não são mutuamente exclusivos

Example

A = Escolher estudante

B = Escolher mulher

Example

A = Escolher mulher

B = Escolher tipo sanguíneo O+

Example

A = Escolher homem

B = Escolher olhos castanhos

Probabilidades I

Não são mutuamente exclusivos

Example

A = Escolher estudante

B = Escolher mulher

Example

A = Escolher mulher

B = Escolher tipo sanguíneo O+

Example

A = Escolher homem

B = Escolher olhos castanhos

Probabilidades I

São mutuamente exclusivos

Example

Sortear uma carta no baralho

A = Observar um valete

B = Observar um rei

Example

A = Estar grávida

B = Não estar grávida

Example

A = Tipo sanguíneo A

B = Tipo sanguíneo B

Probabilidades I

Probabilidades

Felipe Figueiredo

São mutuamente exclusivos

Example

Sortear uma carta no baralho

A = Observar um valete

B = Observar um rei

Example

A = Estar grávida

B = Não estar grávida

Example

A = Tipo sanguíneo A

B = Tipo sanguíneo B

São mutuamente exclusivos

Example

Sortear uma carta no baralho A = Observar um valete

B = Observar um rei

Example

A = Estar grávida

B = Não estar grávida

Example

A = Tipo sanguíneo A

B = Tipo sanguíneo B

Probabilidades I

Probabilidades I

- Se A e B são mutuamente exclusivos, P(A e B)=0
- Nesse caso, P(A ou B) = P(A) + P(B)

Probabilidades I

- Se A e B são mutuamente exclusivos, P(A e B)=0
- Nesse caso, P(A ou B) = P(A) + P(B)

Probabilidades I

> Felipe Figueiredo

Exercício

Você sorteia uma carta em um baralho comum. Qual é a probabilidade de se observar um valete ou um rei?

Solução

$$P(J \text{ ou } K) = \frac{4}{52} + \frac{4}{52} = \frac{8}{52} = \frac{2}{13}$$

Probabilidades

Felipe Figueiredo

Exercício

Você sorteia uma carta em um baralho comum. Qual é a probabilidade de se observar um valete ou um rei?

Solução

$$P(J \text{ ou } K) = \frac{4}{52} + \frac{4}{52} = \frac{8}{52} = \frac{2}{13}$$

Exercício

considere 4 tipos de sintomas (S) e pacientes terminais (T) e não terminais (N).

um paciente ter o sintoma 3 ou ser um paciente terminal?

S	Ν	Т	total
1	4	3	7
2	0	5	5
3		4	12
4	12	0	12
total	24	12	36

Solução

A = sintoma 3

B = paciente 7

 $\frac{1}{9} + \frac{1}{9} - \frac{1}{9} = \frac{5}{9}$

Probabilidades I Felipe Figueiredo

Exercício

Considere 4 tipos de sintomas (S) e pacientes terminais (T) e não terminais (N).

um paciente ter o sintoma 3 ou ser um paciente terminal?

Qual é a probabilidade de

S	N	Т	total
1	4	3	7
2	0	5	5
3	8	4	12
4	12	0	12
total	24	12	36

Probabilidades

Felipe Figueiredo

Solução

A = sintoma 3

B = paciente 7

Probabilidades

Felipe

Figueiredo

Exercício

Considere 4 tipos de sintomas (S) e pacientes terminais (T) e não terminais (N).

Qual é a probabilidade de um paciente ter o sintoma 3 ou ser um paciente terminal?

S	N	Т	total
1	4	3	7
2	0	5	5
3	8	4	12
4	12	0	12
total	24	12	36

Solução

A = sintoma 3

B = paciente T

Exercício

Considere 4 tipos de sintomas (S) e pacientes terminais (T) e não terminais (N).

Qual é a probabilidade de um paciente ter o sintoma 3 ou ser um paciente terminal?

S	Ν	Т	total
1	4	3	7
2	0	5	5
3	8	4	12
4	12	0	12
total	24	12	36

Solução

A = sintoma 3

B = paciente T

$$P(A) = \frac{12}{36} = \frac{1}{3}$$

 $P(B) = \frac{12}{36} = \frac{1}{3}$

$$P(A e B) = \frac{4}{36} = \frac{1}{36}$$

P(A ou B) =
$$\frac{1}{3} + \frac{1}{3} - \frac{1}{9} =$$

Probabilidades

Exercício

Considere 4 tipos de sintomas (S) e pacientes terminais (T) e não terminais (N).

Qual é a probabilidade de um paciente ter o sintoma 3 ou ser um paciente terminal?

S	Ν	Т	total
1	4	3	7
2	0	5	5
3	8	4	12
4	12	0	12
total	24	12	36

Solução

A = sintoma 3

B = paciente T

$$P(A) = \frac{12}{36} = \frac{12}{36}$$

 $P(B) = \frac{12}{36} = \frac{12}{36}$

$$P(A e B) = \frac{4}{36} = \frac{1}{9}$$

$$P(A \text{ ou } B) = \frac{1}{3} + \frac{1}{3} - \frac{1}{9} = \frac{1}{3}$$

Probabilidades

Exercício

Considere 4 tipos de sintomas (S) e pacientes terminais (T) e não terminais (N).

Qual é a probabilidade de um paciente ter o sintoma 3 ou ser um paciente terminal?

S	Ν	Т	total
1	4	3	7
2	0	5	5
3	8	4	12
4	12	0	12
total	24	12	36

Solução

A = sintoma 3

B = paciente T

$$P(A) = \frac{12}{36} = \frac{1}{3}$$

$$P(A e B) = \frac{4}{36} = \frac{1}{9}$$

P(A) =
$$\frac{12}{36} = \frac{1}{3}$$

P(B) = $\frac{12}{36} = \frac{1}{3}$
P(A e B) = $\frac{4}{36} = \frac{1}{9}$
P(A ou B) = $\frac{1}{3} + \frac{1}{3} - \frac{1}{9} = \frac{5}{9}$

Probabilidades

Probabilidades

Felipe Figueiredo

Exercício

	0				total
Rh+	156	139	37	12	344
Rh-		25			65
total	184	164	45	16	409

- Quantas pessoas tem sangue O ou A?
- Quantas pessoas tem sangue B ou Rh-?

Solução

- $P(O \text{ ou } A) = \frac{164}{409} + \frac{164}{409} = \frac{346}{409} \approx 0.85$
- $P(B \text{ ou Rh-}) = \frac{45}{400} + \frac{65}{400} \frac{6}{400} = \frac{102}{400} \approx 0.25$

Exercício

	0				total
Rh+	156	139	37	12	344
Rh-		25			65
total	184	164	45	16	409

- Quantas pessoas tem sangue O ou A?
- Quantas pessoas tem sangue B ou Rh-?

Solução

$$P(O \text{ ou } A) = \frac{184}{409} + \frac{164}{409} = \frac{348}{409} \approx 0.85$$

① P(O ou A) =
$$\frac{184}{409} + \frac{164}{409} = \frac{348}{409} \approx 0.85$$

② P(B ou Rh-) = $\frac{45}{409} + \frac{65}{409} - \frac{8}{409} = \frac{102}{409} \approx 0.25$

Exercício

	0	Α	В	AB	total
Rh+	156	139	37	12	344
Rh-	28	25	8	4	65
total	184	164	45	16	409

- Quantas pessoas tem sangue O ou A?
- Quantas pessoas tem sangue B ou Rh-?

Solução

1 P(O ou A) =
$$\frac{184}{409} + \frac{164}{409} = \frac{348}{409} \approx 0.85$$

P(B ou Rh-) =
$$\frac{45}{409} + \frac{65}{409} - \frac{8}{409} = \frac{102}{409} \approx 0.25$$

Exercício

	0	Α	В	AB	total
Rh+	156	139	37	12	344
Rh-	28	25	8	4	65
total	184	164	45	16	409

- Quantas pessoas tem sangue O ou A?
- Quantas pessoas tem sangue B ou Rh-?

Solução

1 P(O ou A) =
$$\frac{184}{409} + \frac{164}{409} = \frac{348}{409} \approx 0.85$$

2 P(B ou Rh-) =
$$\frac{45}{409} + \frac{65}{409} - \frac{8}{409} = \frac{102}{409} \approx 0.25$$

Regra da Multiplicação

Probabilidades I

- Como determinar a probabilidade de dois eventos A e B ocorrerem simultaneamente?
- Para calcular isso, precisamos primeir determinar se eles são dependentes ou independentes.
- Assim, podemos aplicar a Regra da Multiplicação.

Regra da Multiplicação

Probabilidades I

- Como determinar a probabilidade de dois eventos A e B ocorrerem simultaneamente?
- Para calcular isso, precisamos primeir determinar se eles são dependentes ou independentes.
- Assim, podemos aplicar a Regra da Multiplicação.

Regra da Multiplicação

Probabilidades

- Como determinar a probabilidade de dois eventos A e B ocorrerem simultaneamente?
- Para calcular isso, precisamos primeir determinar se eles são dependentes ou independentes.
- Assim, podemos aplicar a Regra da Multiplicação.

Se você retirar duas ervilhas sem reposição dessa amostra, qual a probabilidade de de a primeira ter caule verde, e a segunda ter caule amarelo?

Probabilidades

I

Felipe
Figueiredo

Figura: Fonte: Triola, 2004.

Se você retirar duas ervilhas sem reposição dessa amostra, qual é a probabilidade de a primeira ter caule verde, e a segunda ter caule amarelo?

Probabilidades I Felipe

Figueiredo

Solução

Primeira ervilha:

$$P(\text{verde}) = \frac{8}{14}$$

Segunda ervilha:

$$P(\text{amarelo}) = \frac{6}{13}$$

Probabilidades I Felipe Figueiredo

- Observe que o segundo evento foi influenciado pelo primeiro!
- Isso modifica a probabilidade do segundo ocorrer depois do primeiro.
- Lê-se: probabilidade do segundo ocorrer dado que o primeiro ocorreu.

Probabilidades I

- Observe que o segundo evento foi influenciado pelo primeiro!
- Isso modifica a probabilidade do segundo ocorrer depois do primeiro.
- Lê-se: probabilidade do segundo ocorrer dado que o primeiro ocorreu.

Probabilidades I

- Observe que o segundo evento foi influenciado pelo primeiro!
- Isso modifica a probabilidade do segundo ocorrer depois do primeiro.
- Lê-se: probabilidade do segundo ocorrer dado que o primeiro ocorreu.

Probabilidade condicional

Probabilidades I

> Felipe Figueiredo

Definition

$$P(B|A) = \frac{P(A \in B)}{P(A)}, \text{ se } P(A) > 0$$

Interpretação

P(B|A) = Probabilidade de B ocorrer, dado que A ocorreu.

Manipulando a fórmula, temos que
 P(A e B) = P(A)P(B|A) (regra da multiplicação)

Probabilidade condicional

Probabilidades I

> Felipe Figueiredo

Definition

$$P(B|A) = \frac{P(A \in B)}{P(A)}, \text{ se } P(A) > 0$$

Interpretação

P(B|A) = Probabilidade de B ocorrer, dado que A ocorreu.

Manipulando a fórmula, temos que
 P(A e B) = P(A)P(B|A) (regra da multiplicação)

Probabilidade condicional

Probabilidades I

> Felipe Figueiredo

Definition

$$P(B|A) = \frac{P(A \in B)}{P(A)}, \text{ se } P(A) > 0$$

Interpretação

P(B|A) = Probabilidade de B ocorrer, dado que A ocorreu.

Manipulando a fórmula, temos que
 P(A e B) = P(A)P(B|A) (regra da multiplicação)

Probabilidades

Felipe Figueiredo

Example

Pesquisadores contaram crianças que tem um certo gene G e seus QIs

QI	possui o gene	não possui o gene	total
elevado	33	19	52
normal	39	11	50
total	72	30	102

Qual é a probabilidade de uma criança ter QI elevado, dado que ela possui o gene G?

Solução

$$P(Q| elevado|G) = \frac{33}{72}$$

Eventos Dependentes

Probabilidades

Felipe Figueiredo

Example

Pesquisadores contaram crianças que tem um certo gene G e seus QIs

QI	possui o gene	não possui o gene	total	
elevado	33	19	52	
normal	39	11	50	
total	72	30	102	

Qual é a probabilidade de uma criança ter QI elevado, dado que ela possui o gene G?

Solução

$$P(QI \text{ elevado}|G) = \frac{33}{72}$$

Probabilidades I Felipe Figueiredo

Exercício

QI	possui o gene	não possui o gene	total
elevado	33	19	52
normal	39	11	50
total	72	30	102

Qual é a probabilidade de uma criança não ter o gene?

Qual é a probabilidade de uma criança não ter o gene, dado que ela tem o QI normal?

Probabilidades

I

Felipe
Figueiredo

Exercício

QI	possui o gene	não possui o gene	total
elevado	33	19	52
normal	39	11	50
total	72	30	102

- Qual é a probabilidade de uma criança não ter o gene?
- Qual é a probabilidade de uma criança não ter o gene, dado que ela tem o QI normal?

Probabilidades

I

Felipe
Figueiredo

Exercício

QI	possui o gene	não possui o gene	total
elevado	33	19	52
normal	39	11	50
total	72	30	102

- Qual é a probabilidade de uma criança não ter o gene?
- Qual é a probabilidade de uma criança não ter o gene, dado que ela tem o QI normal?

Solução

QI	possui o gene	não possui o gene	total
elevado	33	19	52
normal	39	11	50
total	72	30	102

$$P(\bar{G}) = \frac{30}{102}$$

1
$$P(\bar{G}) = \frac{30}{102}$$

2 $P(\bar{G}|N) = P(N)P(\bar{G} \in N)$

$$P(N) = \frac{50}{102}$$

$$P(\bar{G} \in N) = \frac{11}{102}$$

$$P(\bar{G}|N) = \frac{11}{50}$$

Probabilidades

Solução

QI	possui o gene	não possui o gene	total
elevado	33	19	52
normal	39	11	50
total	72	30	102

$$P(\bar{G}) = \frac{30}{102}$$

•
$$P(\bar{G}) = \frac{30}{102}$$

• $P(\bar{G}|N) = P(N)P(\bar{G} \in N)$

$$P(N) = \frac{50}{102}$$

$$P(\bar{G} \in N) = \frac{11}{102}$$

$$P(\bar{G}|N) = \frac{11}{50}$$

Probabilidades

Solução

QI	possui o gene	não possui o gene	total
elevado	33	19	52
normal	39	11	50
total	72	30	102

- 1 $P(\bar{G}) = \frac{30}{102}$ 2 $P(\bar{G}|N) = P(N)P(\bar{G} \in N)$

$$P(N) = \frac{50}{102}$$

$$P(\bar{G} \in N) = \frac{11}{102}$$

$$P(\bar{G}|N) = \frac{11}{50}$$

Probabilidades

Eventos Independentes

Probabilidades I

> Felipe Figueiredo

Definition

$$P(B|A) = P(B)$$

Interpretação

Se dois eventos A e B são independentes a ocorrência de um não afeta a ocorrência do outro.

Eventos Independentes

Probabilidades I

> Felipe Figueiredo

Definition

$$P(B|A) = P(B)$$

Interpretação

Se dois eventos A e B são independentes a ocorrência de um não afeta a ocorrência do outro.

Regra da Multiplicação

Probabilidades I

- No caso geral, a regra da multiplicação segue a fórmula P(B e A) = P(A)P(B|A)
- Mas se A e B são independentes, então P(B|A) = P(B)
- Nesse caso, $P(B \in A) = P(A)P(B)$

Regra da Multiplicação

Probabilidades I

- No caso geral, a regra da multiplicação segue a fórmula P(B e A) = P(A)P(B|A)
- Mas se A e B são independentes, então P(B|A) = P(B)
- Nesse caso, $P(B \in A) = P(A)P(B)$

Regra da Multiplicação

Probabilidades I

- No caso geral, a regra da multiplicação segue a fórmula P(B e A) = P(A)P(B|A)
- Mas se A e B são independentes, então P(B|A) = P(B)
- Nesse caso, $P(B \in A) = P(A)P(B)$

Probabilidades I

> Felipe Figueiredo

Exercício

Considere a tabela que relaciona resultados de teste de gravidez com o desfecho de estar ou não grávida

0		•		
	teste positivo	teste negativo	total	
grávida	80	5	85	
não grávida	3	11	14	
total	83	16	99	

- Determine a probabilidade de a mulher testar positivo, dado que ela está grávida
- 2 Determine a probabilidade de a mulher estar grávida, dado que ela testou positivo

Probabilidades I

> Felipe Figueiredo

Exercício

Considere a tabela que relaciona resultados de teste de gravidez com o desfecho de estar ou não grávida

	teste positivo	teste negativo	total
grávida	80	5	85
não grávida	3	11	14
total	83	16	99

- Determine a probabilidade de a mulher testar positivo, dado que ela está grávida
- 2 Determine a probabilidade de a mulher estar grávida dado que ela testou positivo

Probabilidades I

> Felipe Figueiredo

Exercício

Considere a tabela que relaciona resultados de teste de gravidez com o desfecho de estar ou não grávida

	teste positivo	teste negativo	total
grávida	80	5	85
não grávida	3	11	14
total	83	16	99

- Determine a probabilidade de a mulher testar positivo, dado que ela está grávida
- ② Determine a probabilidade de a mulher estar grávida, dado que ela testou positivo

Solução

	teste positivo	teste negativo	total
grávida	80	5	85
não grávida	3	11	14
total	83	16	99

P(positivo|grávida) =

$$\frac{\frac{80}{99}}{\frac{85}{99}} = \frac{80}{85} \approx 0.941$$

Alternativamente, apenas consultando a tabela:

$$P(positivo|grávida) = \frac{80}{85} \approx 0.94$$

2 P(grávida|positivo) = $\frac{80}{83} \approx 0.964$

Probabilidades I

Solução

	teste positivo	teste negativo	total
grávida	80	5	85
não grávida	3	11	14
total	83	16	99

• P(positivo|grávida) =

$$\frac{\frac{80}{99}}{\frac{85}{99}} = \frac{80}{85} \approx 0.941$$

Alternativamente, apenas consultando a tabela:

P(positivo|grávida) =
$$\frac{80}{85} \approx 0.941$$

2 P(grávida|positivo) = $\frac{80}{83} \approx 0.964$

Probabilidades I

Solução

	teste positivo	teste negativo	total
grávida	80	5	85
não grávida	3	11	14
total	83	16	99

P(positivo|grávida) =

$$\frac{\frac{80}{99}}{\frac{85}{99}} = \frac{80}{85} \approx 0.941$$

Alternativamente, apenas consultando a tabela:

P(positivo|grávida) =
$$\frac{80}{85} \approx 0.941$$

2 P(grávida|positivo) =
$$\frac{80}{83} \approx 0.964$$

Probabilidades I

Probabilidades | | Felipe | Figueiredo

- Para se determinar a probabilidade de um evento simples, basta considerar a frequência com que ele ocorre
- Para se calcular a probabilidade de um evento composto de um evento A ou um evento B usamos a regra da soma
- Para se calcular a probabilidade de um evento composto de um evento A e um evento B (simultaneamente) usamos a regra da multiplicação
- Em geral $P(A|B) \neq P(B|A)$

Probabilidades

I

Felipe
Figueiredo

- Para se determinar a probabilidade de um evento simples, basta considerar a frequência com que ele ocorre
- Para se calcular a probabilidade de um evento composto de um evento A ou um evento B usamos a regra da soma
- Para se calcular a probabilidade de um evento composto de um evento A e um evento B (simultaneamente) usamos a regra da multiplicação
- Em geral $P(A|B) \neq P(B|A)$

Probabilidades

I

Felipe
Figueiredo

- Para se determinar a probabilidade de um evento simples, basta considerar a frequência com que ele ocorre
- Para se calcular a probabilidade de um evento composto de um evento A ou um evento B usamos a regra da soma
- Para se calcular a probabilidade de um evento composto de um evento A e um evento B (simultaneamente) usamos a regra da multiplicação
- Em geral $P(A|B) \neq P(B|A)$

Probabilidades

I

Felipe
Figueiredo

- Para se determinar a probabilidade de um evento simples, basta considerar a frequência com que ele ocorre
- Para se calcular a probabilidade de um evento composto de um evento A ou um evento B usamos a regra da soma
- Para se calcular a probabilidade de um evento composto de um evento A e um evento B (simultaneamente) usamos a regra da multiplicação
- Em geral $P(A|B) \neq P(B|A)$