dotnet-project-overview.md 2025-02-21

.NET Document Management System with ML Classification

Project Overview and Architecture Document

Version 1.0 - February 19, 2025

Table of Contents

- 1. Introduction
- 2. Architecture Overview
- 3. System Components
- 4. Technology Stack
- 5. ML Integration Architecture
- 6. Security Architecture
- 7. Deployment Architecture
- 8. Performance Considerations

1. Introduction

Project Purpose

Development of an on-premises document management system with intelligent document classification using ML.NET. The system will provide secure document storage, versioning, and automated classification capabilities within an organization's internal infrastructure.

Key Objectives

- Secure document management and storage
- Automated document classification using ML.NET
- Integration with internal Active Directory
- High performance document processing
- Scalable on-premises deployment

2. Architecture Overview

System Architecture

The system follows Clean Architecture principles with clear separation of concerns:

```
DocumentManagement.NET/

DocumentManagement.Domain/ # Core business logic and entities

DocumentManagement.Application/ # Application services and interfaces

DocumentManagement.Infrastructure/ # External concerns and implementations

DocumentManagement.API/ # Web API layer

DocumentManagement.ML/ # ML.NET integration

DocumentManagement.Web/ # Frontend application
```

Design Principles

- Dependency Inversion Principle
- Clear separation of concerns
- Domain-driven design
- SOLID principles
- Repository pattern for data access
- CQRS for complex operations

3. System Components

Core Components

- 1. Document Management Core
 - o Document storage and retrieval
 - Version control
 - Metadata management
 - Search functionality
- 2. ML Classification Engine
 - ML.NET model training
 - Document classification
 - Model management
 - Feature extraction
- 3. Security Services
 - Authentication
 - Authorization
 - Audit logging
 - o File encryption
- 4. Storage Management
 - File system operations
 - MinIO integration
 - Caching layer
 - Backup management

Supporting Components

- 1. Background Services
 - Document processing
 - ML model training
 - System maintenance
 - Backup operations

2. Monitoring Services

- o System health
- Performance metrics
- Security monitoring
- ML model performance

4. Technology Stack

Core Technologies

- .NET 8.0
- ASP.NET Core Web API
- Entity Framework Core 8.0
- ML.NET 3.0
- SQL Server 2022

Frontend Options

- 1. Blazor WebAssembly
 - Blazor.WebAssembly
 - MudBlazor
 - o Blazor.WebAssembly.Authentication
- 2. React with TypeScript (Alternative)
 - o React 18+
 - TypeScript 5.0+
 - SignalR Core

Infrastructure

- MinIO Object Storage
- Elasticsearch (Search)
- Redis (Caching)
- NLog (Logging)

5. ML Integration Architecture

ML.NET Implementation

Classification Pipeline

- 1. Document Intake
 - File validation
 - Text extraction
 - Feature preprocessing
- 2. Classification
 - Model selection
 - Feature extraction
 - o Prediction
 - Confidence scoring
- 3. Model Management
 - Version control
 - Performance monitoring
 - Retraining triggers
 - Model deployment

6. Security Architecture

Authentication

- Windows Authentication
- JWT for API access
- Active Directory integration
- Role-based access control

Authorization

- Document-level permissions
- Feature-based access control
- Administrative boundaries
- Audit logging

Data Security

- At-rest encryption
- In-transit encryption
- Secure file storage
- Backup encryption

7. Deployment Architecture

On-Premises Infrastructure

High Availability

- Load balancing
- Failover clustering
- Database mirroring
- Storage redundancy

8. Performance Considerations

Optimization Strategies

- 1. Caching
 - Document metadata
 - Search results
 - ML model predictions
 - User permissions

2. Database Optimization

- Query optimization
- Indexing strategy
- Partitioning
- Memory optimization

3. Document Processing

- Parallel processing
- Batch operations
- Asynchronous processing
- Queue management

Scalability

1. Vertical Scaling

- CPU utilization
- Memory management
- Storage capacity
- Network bandwidth

2. Horizontal Scaling

- Application servers
- o Database read replicas
- o Storage nodes
- Processing nodes

Next Steps

- 1. Infrastructure Setup
- 2. Database Migration
- 3. Core Development
- 4. ML Model Development
- 5. Security Implementation
- 6. Testing and Validation