Zadanie 6.

Wiązka zadań Od szczegółu do ogółu

Rozważmy następujący algorytm:

Dane:

k — liczba naturalna,

 $A[1...2^k]$ — tablica liczb całkowitych.

Algorytm 1:

```
n \leftarrow 1
\mathbf{dla} \ i=1,2,...,k \ \mathbf{wykonuj}
n \leftarrow 2 \cdot n
s \leftarrow 1
\mathbf{dop\acute{o}ki} \ s < n \ \mathbf{wykonuj}
j \leftarrow 1
\mathbf{dop\acute{o}ki} \ j < n \ \mathbf{wykonuj}
(*)
\mathbf{je\grave{z}eli} \ A[j] > A[j+s]
\mathbf{zamie\acute{n}}(A[j],A[j+s])
\mathbf{j} \leftarrow \mathbf{j} + 2 \cdot s
\mathbf{s} \leftarrow 2 \cdot s
\mathbf{zwr\acute{o}\acute{c}} \ A[1]
```

Uwaga: Funkcja *zamień*(A[j],A[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].

6.1.

Prześledź działanie algorytmu 1 dla podanych poniżej wartości k i początkowych zawartości tablicy A. W każdym wierszu poniższej tabeli wpisz końcową zawartość tablicy A.

k	Początkowa zawartość tablicy A[12 ^k]	Końcowa zawartość tablicy A[12 ^k]
2	[4, 3, 1, 2]	[1, 4, 3, 2]
2	[2, 3, 4, 1]	
3	[1, 2, 3, 4, 5, 6, 7, 8]	
3	[8, 7, 6, 5, 4, 3, 2, 1]	
3	[4, 5, 6, 1, 8, 3, 2, 4]	

6.2.

Wskaż, które z poniższych zdań są prawdziwe (P), a które fałszywe (F), wstawiając znak X w odpowiedniej kolumnie:

	P	F
Po zakończeniu działania algorytmu 1 komórka $A[2^k]$ zawiera największą z liczb $A[1],,A[2^k]$.		
Po zakończeniu działania algorytmu 1 spełniona jest nierówność $A[i] \le A[i+1]$ dla każdego i , takiego że $1 \le i \le 2^k$.		
Po zakończeniu działania algorytmu 1 komórka $A[1]$ zawiera najmniejszą z liczb $A[1],,A[2^k]$.		

6.3.

Wskaż, które z poniższych zdań są prawdziwe (P), a które fałszywe (F), wstawiając znak X w odpowiedniej kolumnie. Przyjmij, że $n=2^k$ oraz k>1:

	P	F
Instrukcja jeżeli w wierszu (*) jest wykonywana mniej niż 2 <i>n</i> razy.		
Instrukcja jeżeli w wierszu (*) jest wykonywana mniej niż $n/2$ razy.		
Możliwe jest dobranie takiej początkowej zawartości $A[12^k]$, że instrukcja zamiany z wiersza (**) nie zostanie wykonana ani razu.		
Możliwe jest dobranie takiej początkowej zawartości $A[12^k]$, że instrukcja zamiany z wiersza (**) zostanie wykonana co najmniej $2n^2$ razy.		

6.4.

Rozważmy poniższy algorytm podobny do algorytmu 1.

```
Wejście: k — liczba naturalna,

A[1...2^k] — tablica liczb całkowitych.

Algorytm 2:

n \leftarrow 1

dla i=1,2,...,k wykonuj

n \leftarrow 2 \cdot n

s \leftarrow 1

dopóki s < n wykonuj

j \leftarrow 1

dopóki j < n wykonuj

j \leftarrow 1

j \leftarrow 1
```

zwróć A[1], A[2], ..., A[n]

Uwaga: Funkcja *zamień*(A[j],A[j+1]) zamienia miejscami wartości A[j] oraz A[j+1].

Uzupełnij luki w poniższych zdaniach. Przyjmij $n=2^k$ oraz k>1.

Wiersz (*) algorytmu 2 wykonywany będzie w przebiegu algorytmu

- niż *n* razy,
- $\operatorname{niz} n^2 \operatorname{razy}$.

Publikacja opracowana przez zespół koordynowany przez **Renatę Świrko** działający w ramach projektu *Budowa banków zadań* realizowanego przez Centralną Komisję Egzaminacyjną pod kierunkiem Janiny Grzegorek.

Autorzy

dr Lech Duraj dr Ewa Kołczyk Agata Kordas-Łata dr Beata Laszkiewicz Michał Malarski dr Rafał Nowak Rita Pluta Dorota Roman-Jurdzińska

Komentatorzy

prof. dr hab. Krzysztof Diks prof. dr hab. Krzysztof Loryś Romualda Laskowska Joanna Śmigielska

Opracowanie redakcyjne

Jakub Pochrybniak

Redaktor naczelny

Julia Konkołowicz-Pniewska

Zbiory zadań opracowano w ramach projektu Budowa banków zadań,
Działanie 3.2 Rozwój systemu egzaminów zewnętrznych,
Priorytet III Wysoka jakość systemu oświaty,
Program Operacyjny Kapitał Ludzki

