

WHAT IS CLAIMED IS:

1. A frequency converter for converting a frequency of an input signal to an arbitrary frequency, comprising:
 - 5 a polyphase structure filter for multiplying M polyphase filters each having $N=L/M$ coefficients (where L and M are both positive integers) determined by dividing L coefficients by M , by M signals determined by sampling signals for a period K of a sine wave having a period M/K for one sampling period, on a one-to-one basis; and
 - 10 a sampling frequency converter with a conversion ratio M .
2. The frequency converter as set forth in claim 1, further comprising:
 - 15 a polyphase structure filter or a sampling frequency converter with a conversion ratio M_1 , for multiplying M_1 polyphase filters by M_1 signals determined by sampling signals for a period K of a sine wave having a period M_1/K for one sampling period, on a one-to-one basis; and
 - 20 a polyphase structure filter or a sampling frequency converter with a conversion ratio M_2 , for multiplying $M_2=M-M_1$ polyphase filters by M_2 signals determined by sampling signals for a period K of a sine wave having a period M_2/K for one sampling period, on a one-to-one basis.
3. The frequency converter as set forth in claim 1, further comprising:
 - 25 an I -fold interpolator (where I is a positive integer) arranged in a stage following the polyphase structure filter;
 - wherein the polyphase structure filter multiplies $(M \times I)$ polyphase filters each having $P=L/(M \times I)$ coefficients determined by dividing L coefficients by $(M \times I)$, by $(M \times I)$ signals determined by sampling signals for a period K of a sine

wave having a period $(M \times I)/K$ for one sampling period, on a one-to-one basis; and

wherein the sampling frequency converter performs $1/(M \times I)$ -fold interpolation.

5

4. The frequency converter as set forth in claim 1, further comprising:

a $1/D$ -fold decimator (where D is a positive integer) arranged in a stage preceding the polyphase structure filter;

10 wherein the polyphase structure filter multiplies $(M \times D)$ polyphase filters each having $Q=L/(M \times D)$ coefficients determined by dividing L coefficients by $(M \times D)$, by $(M \times D)$ signals determined by sampling signals for a period K of a sine wave having a period $(M \times D)/K$ for one sampling period, on a one-to-one basis; and

15 wherein the sampling frequency converter performs $(M \times D)$ -fold interpolation.

5. A frequency converter for converting a frequency of an input signal to an arbitrary frequency, comprising:

20 a polyphase structure filter for multiplying M polyphase filters each having as one coefficient a code calculated by dividing M codes (where M is a positive integer) by M , by M signals determined by sampling signals for a period K of a sine wave having a period M/K for one sampling period, on a one-to-one basis; and

25 a sampling frequency converter with a conversion ratio M ; wherein the input signal is correlated with the code.

6. A frequency converter for converting a frequency of an input signal to an arbitrary frequency, the frequency converter including a polyphase

structure filter having M polyphase filters with $N=L/M$ coefficients determined by dividing L coefficients by M (where L and M are both positive integers), the frequency converter, comprising:

the polyphase filter including;

5 a coefficient bank for switching one bank each time M input discrete time sequences are received, and assigning P kinds (where P is a positive integer larger than 2) of filter coefficient sequences to multipliers of the polyphase filters one by one;

10 wherein the coefficient bank of an M^{th} polyphase filter provides P kinds of coefficient sequences for the M^{th} polyphase filter among P kinds of a total of M phase coefficients calculated by multiplying coefficients determined by repeating M original phase coefficient sequences of the polyphase filter P times in a phase direction by $P \times M$ signals determined by sampling signals for a period K of a sine wave having a period $P \times M / K$ for one sampling period, on a 15 one-to-one basis.