Digital Signal Processing

Multirate DSP

Bibliography:

- · Lyons Ch 10
- · Porat Ch. 12

- Many situations motivates changing the sampling rate:
 - Computational cost optimization

Application requirements

Implications of adding samples:

Implications of discarding samples:

- Decimation by M means discarding M-1 of M samples.
- Interpolation by L means adding L-1 zeros
- What should h[n] be for each case ?

More about up/downsampling

More about up/downsampling

Up/downsampling are not time invariant ops.

Antialiasing filter

When decimating, alias must be eliminated previous to decimation

Antialiasing filter

When interpolating, first add zeros and then filter alias

Sampling rate conversion

Sampling rate conversion can be achieved via interpolation or decimation

$$f_{2} = k \cdot f_{S}$$

When k is not an integer, can be aproximated

$$f_{_{2}} = L/M \cdot f_{_{S}}$$

Sampling rate conversion

For large M or L sampling rate changes, try the factorization of M and L

This is equivalent to perform decimation/interpolation in several stages.

Noble identities

- Efficient decimation motivation:
 - Save computations posteriorly discarded

Decimate, then filter

Efficient decimation

$$H(z) = \sum_{l=0}^{N-1} z^{-l} E_l(z^N)$$

$$E_l(z) = \sum_{n=-\infty}^{\infty} e_l(n) z^{-n}, \ l = 0, 1, \dots, N-1,$$

$$e_l(n) \stackrel{\Delta}{=} h(Nn+l)$$
. (lth subphase filter).

Efficient decimation

$$H(z) = \sum_{l=0}^{N-1} z^{-l} E_l(z^N)$$

$$E_l(z) = \sum_{n=-\infty}^{\infty} e_l(n) z^{-n}, \ l = 0, 1, \dots, N-1,$$

$$e_l(n) \stackrel{\Delta}{=} h(Nn+l)$$
. (lth subphase filter).

Following the initial example for M = 3

- Efficient interpolation motivation:
 - Save computations when mult. by zeros

Following the interp. example

