Fonction Inverse

Terminale STMG2

1 Représentation de la fonction inverse

Définition 1. On appelle fonction inverse la fonction définie sur $]-\infty;0[\,\cup\,]0;+\infty[\,$ qui à un nombre x associe le nombre $\frac{1}{x}$.

Remarque. Cette définition indique que la fonction inverse n'est pas définie en 0. Pour rappel, il est **interdit de diviser** par 0.

Exemple. Donner l'inverse de $2; 4; -2; \frac{1}{2}; -0, 2; 0; 3, 25.$

Proposition 1. La fonction inverse est représentée par la courbe représentative suivante.

2 Dérivée

Proposition 2. La fonction inverse est dérivable sur $]-\infty;0[\ \cup\]0;+\infty[$, et sa dérivée est définie par

$$x \mapsto -\frac{1}{x^2}$$

Proposition 3. *La fonction inverse est décroissante sur* $]-\infty;0[$ *, et décroissante sur* $]0;+\infty[$ *.*

x	$-\infty$ () +∞
Signe de $f'(x)$	_	_
Variations de f		

Fonction Inverse Terminale STMG2

3 Comportement assymptotique

Remarque. On appelle f la fonction inverse définie sur \mathbb{R}^* . Alors,

- Plus les valeurs de x augmentent, et plus la valeur de f(x) diminue et se rapproche de 0.
- Plus les valeurs de x se rapprochent de 0 en restant positives, et plus la valeur de f(x) est grande.

On constate un comportement similaire quand on observe le comportement de f(x) pour des valeurs de x négatives.

Proposition 4. *Soit f la fonction inverse. Alors,*

$$\lim_{x \to -\infty} = 0$$

$$\lim_{x\to 0^-}=-\infty$$

$$\lim_{x\to 0^+}=+\infty$$

$$\lim_{x\to +\infty}=0$$

Définition 2. On dit que la courbe représentative de la fonction inverse :

- admet une assymptote horizontale d'équation y = 0 en $-\infty$ et en $+\infty$;
- admet une assymptote verticale d'équation x = 0.

Remarque. Le tableau de variation de la fonction inverse peut être complété ainsi.

