

Pimpri Chinchwad Education Trust's

Pimpri Chinchwad College of Engineering (PCCoE)

(An Autonomous Institute)

Affiliated to Savitribai Phule Pune University(SPPU)

FA-I Question Bank

Dept: AS & H A.Y. 2024-25 (Sem-II) Date: 18/02/2025

Unit: I & II Div. All Branch: Comp./IT

Course Name & Code: Computational Techniques (BSH24OE07)

Max. Marks: 20

1 Moulta Occasiona									
	I Marks Questions For a given distribution, if value of $cov(x, y) = -5.2$, $\sigma_x = 2.82$ then the value of								
1	regression coefficient b_{vx} is								
1	_		J		C0.75	D0.65			
2									
	If $\sum xy = 2638$, $\bar{x} = 14$, $\bar{y} = 17$, $n = 10$ then $cov(x, y)$ is								
	A)24.2	B)25			23.9	D) 20.5			
3	The equations of lines of regression are, $6x + 2y = 3$, $x + 4y = 1$ then value of regression								
	coefficients are, A. $b_{xy} = 0.25$, $b_{yx} = 0.5$					B. $b_{xy} = 0.3$, $b_{yx} = 0.2$			
	C. $b_{xy} = 0.5$, $b_{yx} = 0.25$					D. $b_{xy} = 0.5$, $b_{yx} = 0.25$			
	The regression lines are $3x+2y-26=0$ and $6x+y-31=0$. Then the correlation coefficient								
4	between x and y is,								
	A. 0.08335 B. 0.2887				C 0.2225	D0.2887			
5		In a Binomial distribution for n= 4, mean is 2 and variance is 1then $p(r \le 2)is$,							
		A. 0.531 B. 0.317 C. 0.688 D. 0.259							
	If A & B are two events such that $P(A) = 0.4$, $P(A \cup B) = 0.7$ and $P(A \cap B) = 0.2$ then								
6	P(B) = ?								
	A. 0.1					D. 0.5			
	25% lights produced by a machine are defective. The mean and standard deviation of defective								
7	lights in total of 800 are respectively,								
	A.150 & 200 B. 200 & 150 C. 15 & 20 D. 20 & 15								
	A die is thrown once. Random variable x denotes the digit that appears on top face. Then								
3	mathematical expectation of x is $A = \frac{7}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$								
	A. 7/2 B. 9/2 C. 5/2 D. 1/2 If x is random variable with distribution given below								
9	X	2	3	4	5				
		2	3	4	3				
	P(x)	5	7	9	11				
		$\frac{5}{k}$	$\frac{\overline{k}}{k}$	$\frac{1}{k}$	$\frac{1}{k}$				
		1							
	the value of k is								
	A. 16	B) 8	C) 4	18	D) 32				
				2 Ma	arks Questio	ns			

1	The arithmetic mean of series of 20 items were calculated by a student as 20. But while calculating an item 13 was misread as 30. Find the correct arithmetic mean.						
2	For least square fit of the straight line $y = ax + b$ to the data $x = 0$ 1 2 $y = -1$ 1 3 Find the values of a and b?						
3	Fit a linear curve of the type $y = ax + b$ for given data, $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
4	The equation of two regression line obtained in a correlation analysis are $4x - 5y + 33 = 0$, $20x - 9y - 107 = 0$ and variance of y is 16. Find variance of x.						
5	In a telephone exchange, the average number of phone calls get wrongly connected per day follows a Poisson's Probability distribution with a mean 3. What is the probability that on a certain day, number of wrongly connected calls is greater than 2?						
6	For a normal distribution mean is 1 and standard deviation is 3. Find $P(-1.43 \le x \le 6.19)$. [Given: $A(z = 0.81) = 0.2910$, $A(z = 1.73) = 0.4582$]						
7	Number of road accidents follows a Poission's distribution with mean 5, in a certain month on the highway Find the probability of more than 2 accidents.						
8	In a certain examination test 10000 students appeared in a subject of mathematics. Average marks obtained were 50% with standard deviation 5%. Marks are normally distributed. Find the number of students expected to get more than 60% marks. [for z=2, A=0.4772]						