EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours: T 4-5:30 or by appointment

Recap

- How are satisfiability and inference related?
- What is a clause? What is CNF?
- How do we set up satisfiability as goal directed search? (the 4 things)
- What is the general strategy behind DPLL?
- What is the pure literal heuristic?
- What is unit propagation?
- What is early termination?
- To set up satisfiability as optimization, the objective function is _____, the states are _____ and the operators are _____.
- How does WalkSAT work?
- What parameters govern the hardness of a SAT problem?
- Why?
- What is a "phase transition" behavior?
- Where are the hardest SAT problems located?

Today

Probability theory (Ch 13, Russell and Norvig)

Probability Theory

 A language that augments propositional logic with "degrees of belief," and associated mechanics for reasoning in this augmented language

I think it is 60% likely that it will rain tomorrow.

RainTomorrow=true 60%

(proposition) (degree of belief)

Random Variable (R.V.)

- A variable that refers to an uncertain fact
 - Analogous to proposition symbol
 - Has a domain that can be discrete or continuous
 - For this class, focus on discrete case
- For each value (or set of values), we can specify a degree of belief that shows how much we believe the stated fact---this is the probability associated with the fact
 - Denoted Pr(.)

Example

- $RainTomorrow \in \{True, False\}$
 - $-\Pr(RainTomorrow=True)=0.6$

- $Current_X_Position \in (-\infty, +\infty)$
 - $-\Pr(-1 \le Current_X_Position) = 0.2$

Atomic Event

- If the state of the world is described by n r.v.'s and we assign values to all of them, this defines an atomic event
 - (Analog of a row in a truth table)

• Example: suppose a footman is in a grid maze and is uncertain about an enemy archer's (x, y) location. Then (x=2, y=3) could be an atomic event.

Events and the Sample Space

- Atomic events are mutually exclusive and exhaustive
 - At most one can be the true state of affairs
 - The true state of affairs must be one of them
- An "event" is a collection of atomic events
 - Example: the event $\{x=2\}$ is the collection of atomic events $\{(x=2, y=1), (x=2, y=2), (x=2, y=3), ...\}$
- The "sample space" is the collection of all possible atomic events ()
 - Analog of the full truth table

Picture

Atomic Events

X position

Joint Probability

- Just like we assign degrees of belief to single r.v.'s, we can do the same for groups of r.v.'s
 - Pr(RainTomorrow=Yes, CloudyTomorrow=Yes) = 0.99
 - $-\Pr(-1 \le x, y \le 1) = 0.2$
 - In particular, we can assign degrees of belief to atomic events

Axioms of Probability

- For any event E, $0 \le \Pr(E) \le 1$
- $Pr(\Omega)=1$
- For mutually disjoint events, the probability of the union is given by:

$$\Pr(\bigcup_{i=1} E_i) = \sum_{i=1} \Pr(E_i)$$

In particular this must apply to atomic events.

Picture

Sample Space: Total "area"=1

Pr(E)=area under E

Using the axioms

Various other facts can be deduced from these axioms

• Suppose E is some event and E is the event in Ω that includes everything not in E (the "complement" of E). What is $Pr(\overline{E})$?

Rationality and Probability Theory

- Could there be other ways of representing uncertainty?
 - Dempster-Shafer, "Fuzzy" logic, etc

 But probability theory has a major positive result: suppose someone's degrees of belief for some set of events does NOT obey the axioms of probability. Then there is a way to bet against them such that they will always lose money (utility) over time. (Bruno de Finetti 1931)

Probability Density Functions

- Earlier we defined probabilities associated with r.v.'s: Pr(RainTomorrow = Yes) = 0.8
- A function that maps every value of an r.v. to a probability is called a probability density function (p.d.f.)

$$p_{RainTomorrow}(x) = \begin{cases} 0.8 \text{ if } x = Yes \\ 0.2 \text{ if } x = No \end{cases}$$

$$p_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, x \in \{-\infty, +\infty\}$$

Joint PDF

 Using joint probability, we can define joint density functions for collections of random variables

$$p_{R,C}(R = x, C = y) = \begin{cases} 0.5 \text{ if } x = Yes, y = Yes \\ 0.2 \text{ if } x = No, y = Yes \\ 0.2 \text{ if } x = Yes, y = No \\ 0.1 \text{ if } x = No, y = No \end{cases}$$

All PDFs must sum to 1

 X_2

Example

Joint Probability Density Function

Terminology and Results

Conditional Probability

• The conditional probability of X given Y is:

$$p_{X|Y}(X = x \mid Y = y) = \frac{p_{X,Y}(X = x, Y = y)}{p_{Y}(Y = y)}$$

$$X=x, Y=y \text{ ("," means AND)}$$

$$Y=y$$

Product Rule

From the definition of conditional probability:

$$p_{X,Y}(X = x, Y = y) =$$
 $p_{Y}(Y = y) p_{X|Y}(X = x | Y = y)$

Marginalization ("Summing out")

For any two random variables X and Y:

$$p_X(X = x) = \sum_{y} p_{X,Y}(X = x, Y = y)$$

Conditioning

$$p(X = x) = \sum_{y} p(X = x, Y = y)$$
 Marginalization

$$= \sum_{y} p(X = x | Y = y) p(Y = y)$$
 Product Rule

Bayes' Rule

(Rev. Thomas Bayes 1763)

$$p(C = c \mid E = e) = \frac{p(C = c, E = e)}{p(E = e)}$$

Def. of Conditional Prob.

$$=\frac{p(E=e \mid C=c) p(C=c)}{p(E=e)}$$

Product Rule

$$= \frac{p(E = e \mid C = c) p(C = c)}{\sum_{c'} p(E = e \mid C = c') p(C = c')}$$

Conditioning

The importance of Bayes' Rule

- Let C be a random variable with values that are possible "causes"
- Let E denote a random variable with values that are possible effects of each cause
- It is often easy to specify p(E=e/C=c), much harder to specify p(C=c/E=e)
- Bayes' Rule therefore allows us to reason backwards over uncertain events---fundamental to learning

Example

- Lung cancer can be caused by smoking or by a genetic defect. 5% of the population are smokers. 2 in 3 who smoke and 1 in 100 who don't get the disease.
- Suppose X has lung cancer. What is the probability X smokes?

Example

$$P(S) = 0.05, P(LC \mid S) = 0.67, P(LC \mid \overline{S}) = 0.01$$

$$P(S \mid LC) = \frac{P(LC \mid S)P(S)}{P(LC \mid S)P(S) + P(LC \mid \overline{S})P(\overline{S})}$$

$$= \frac{0.67 \times 0.05}{0.67 \times 0.05 + 0.01 \times 0.95} = 0.78$$

Summarizing a PDF

A PDF is a large table of numbers

- But generally, we don't need to know the entire thing; often the "highlights" are enough
 - Expectation and Variance
 - (statistics)

Expectation

• The expectation of r.v. X is defined as:

$$E(X) = \sum_{x} x p_X(x)$$

• The "average value" of X under $p_X(x)$

Expectation example

A coin has 0.99 probability of showing heads.
 You get \$0 if the coin shows heads, and \$10 else. How much do you expect to get if I toss the coin?

$$E(X) = \sum_{x} x p_X(x) = (0*0.99 + 10*0.01) = \$0.1$$

Variance

• The variance of r.v. X is defined as:

$$V(X) = E([X - E(X)]^{2})$$

$$= \sum_{x} (x - E(X))^{2} p_{X}(x)$$

• The "average spread" of values *around the* average of the r.v.

Variance example

A coin has 0.99 probability of showing heads.
 You get \$0 if the coin shows heads, and \$10 else. What is the variance of your takings?

$$E(X) = \sum_{x} x p_{X}(x) = (0*0.99 + 10*0.01) = \$0.1$$

$$V(X) = E([X - E(X)]^{2})$$

$$= (0 - 0.1)^{2} * 0.99 + (10 - 0.1)^{2} * 0.01$$

$$= 0.99$$

Variance example

A coin has 0.99 probability of showing heads.
 You get \$10 if the coin shows heads, and \$0 else. What is the variance of your takings?

$$E(X) = \sum_{x} x p_{X}(x) = (10*0.99 + 0*0.01) = \$9.9$$

$$V(X) = E([X - E(X)]^{2})$$

$$= (10-9.9)^{2} * 0.99 + (0-9.9)^{2} * 0.01$$

$$= 0.99$$

Variance example 3

A coin has 0.5 probability of showing heads.
 You get \$0 if the coin shows heads, and \$10 else. What is the variance of your takings?

$$E(X) = \sum_{x} x p_{X}(x) = (0*0.5 + 10*0.5) = \$5$$

$$V(X) = E([X - E(X)]^{2})$$

$$= (0-5)^{2}*0.5 + (10-5)^{2}*0.5$$

$$= 25$$

Statistical Independence

 Two r.v.'s X and Y are statistically independent if

$$p_{X,Y}(X = x, Y = y) = p_X(X = x)p_Y(Y = y)$$

 If so, we can reason separately about x and y and then combine results---key factor in gaining efficiency (later)

Consequence

$$p_{X|Y}(X = x | Y = y) = \frac{p_{X,Y}(X = x, Y = y)}{p_Y(Y = y)}$$

$$= \frac{p_X(X = x)p_Y(Y = y)}{p_Y(Y = y)}$$

$$= p_X(X = x)$$

Conditional Independence

 Two r.v.'s X and Y are conditionally independent given a third, R, if

$$p_{X,Y|R}(X = x, Y = y | R = r) =$$

$$p_{X|R}(X = x | R = r) p_{Y|R}(Y = y | R = r)$$

Probabilistic Inference

 We are given a joint density function over a collection of random variables

- Based on this pdf, we want to find the probability of some event, given observed variables
 - Observed variables are evidence
 - Events are described by query variables

Example

CloudyTomorrow	RainTomorrow	WetGrass	Probability
No	No	No	0.4
No	No	Yes	0.01
No	Yes	No	0
No	Yes	Yes	0.01
Yes	No	No	0.15
Yes	No	Yes	0.02
Yes	Yes	No	0.01
Yes	Yes	Yes	0.4

 $Pr(WetGrass = Yes \mid CloudyTomorrow = Yes)$?

Inference by Enumeration

- We are given a pdf over a collection of r.v.'s X
 - Of these, we observe evidence E=e ($E\subseteq X$)
 - We are interested in the query variable V
 - Let \mathbf{Y} be $\mathbf{X} \setminus \{\mathbf{E}, V\}$ (everything in \mathbf{X} not in \mathbf{E} and not V)
 - Note $X = Y \cup E \cup V$
 - Sometimes called "nuisance" variables

• We want $p(V=v/\mathbf{E}=\mathbf{e})$

Inference by Enumeration

$$p(V = v \mid \mathbf{E} = \mathbf{e}) = \frac{p(V = v, \mathbf{E} = \mathbf{e})}{p(\mathbf{E} = \mathbf{e})}$$

$$p(V = v, \mathbf{E} = \mathbf{e}) = \sum_{\mathbf{y}} p(V = v, \mathbf{E} = \mathbf{e}, \mathbf{Y} = \mathbf{y}) \quad \mathbf{Y} = \mathbf{X} \setminus \{\mathbf{E}, V\}$$

$$p(\mathbf{E} = \mathbf{e}) = \sum_{v} \sum_{\mathbf{y}} p(V = v, \mathbf{E} = \mathbf{e}, \mathbf{Y} = \mathbf{y})$$

$$p(V = v \mid \mathbf{E} = \mathbf{e}) = \sum_{v} \sum_{\mathbf{y}} p(V = v, \mathbf{E} = \mathbf{e}, \mathbf{Y} = \mathbf{y})$$

$$p(V = v \mid \mathbf{E} = \mathbf{e}) = \sum_{v} \sum_{\mathbf{y}} p(V = v, \mathbf{E} = \mathbf{e}, \mathbf{Y} = \mathbf{y})$$