File: 2.3_Medeiros_Dashboard.ipynb

Names: Corinne Medeiros

Date: 1/10/21

Course: DSC 640 Data Presentation and Visualization

Desc: Assignment 2.3 Dashboard

Usage: Program imports, cleans, and organizes data, then generates exploratory charts.

```
In [1]: import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
```

San Francisco Airbnb and Housing Market Trends

Loading Airbnb Listings Data

These data come from http://insideairbnb.com/get-the-data.html). To look at listings over time, I downloaded their archival data from each December. In total, I have 6 years of listings data from 2015 to 2020. Before loading it into this project, I merged these 6 separate datasets using Tableau Prep Builder into a combined csv file.

Tableau Prep Builder Flow:


```
In [2]: # Loading merged Airbnb listings data
    sf_airbnb_df = pd.read_csv('listings-sf_2015-2020.csv', encoding = "ISO-8859
    -1", engine='python')

# Previewing data
    sf_airbnb_df.head()
```

Out[2]:

	Table Names	id	name	host_id	host_name	neighbourhood	room_type	price	number_c
0	listings- sanfrancisco- 2015.csv	4720512	Private Room in Guest House #105	202591	Jeffrey	Western Addition	Private room	80	
1	listings- sanfrancisco- 2015.csv	1214348	Hayes Valley Gem - Center of SF!	6608684	Dan	Western Addition	Entire home/apt	950	
2	listings- sanfrancisco- 2015.csv	8193992	Lower Pacific Heights Gem	7745422	NaN	Western Addition	Private room	350	
3	listings- sanfrancisco- 2015.csv	9668595	Simple Studio in the Center of SF	49963870	Elvi	Western Addition	Entire home/apt	99	
4	listings- sanfrancisco- 2015.csv	8521718	Amazing Attic Room in NOPA Duplex	30081902	Ben	Western Addition	Private room	175	

```
In [3]: # Changing 'Table Names' column name
    sf_airbnb_df.rename(columns={"Table Names": "Original File"}, inplace=True)
# Previewing data
    sf_airbnb_df.head()
```

Out[3]:

	Original File	id	name	host_id	host_name	neighbourhood	room_type	price	number_c
0	listings- sanfrancisco- 2015.csv	4720512	Private Room in Guest House #105	202591	Jeffrey	Western Addition	Private room	80	
1	listings- sanfrancisco- 2015.csv	1214348	Hayes Valley Gem - Center of SF!	6608684	Dan	Western Addition	Entire home/apt	950	
2	listings- sanfrancisco- 2015.csv	8193992	Lower Pacific Heights Gem	7745422	NaN	Western Addition	Private room	350	
3	listings- sanfrancisco- 2015.csv	9668595	Simple Studio in the Center of SF	49963870	Elvi	Western Addition	Entire home/apt	99	
4	listings- sanfrancisco- 2015.csv	8521718	Amazing Attic Room in NOPA Duplex	30081902	Ben	Western Addition	Private room	175	

In order to find the number of listings per year, I'm going to group by the original file names and calculate the unique values within the 'id' column.

```
In [4]: # Finding number of unique listings per year
        num listings per yr = sf airbnb df.groupby('Original File')['id'].nunique()
In [5]: print(num_listings_per_yr)
        Original File
        listings-sanfrancisco-2015.csv
                                          7165
        listings-sanfrancisco-2016.csv
                                          9066
        listings-sanfrancisco-2017.csv
                                          6650
        listings-sanfrancisco-2018.csv
                                          7072
        listings-sanfrancisco-2019.csv
                                          8533
        listings-sanfrancisco-2020.csv
                                          7087
        Name: id, dtype: int64
In [6]: type(num_listings_per_yr)
Out[6]: pandas.core.series.Series
```

```
In [7]: num_listings_per_yr_df = pd.DataFrame(data=num_listings_per_yr)
    num_listings_per_yr_df
```

Out[7]:

id

Original File	
listings-sanfrancisco-2015.csv	7165
listings-sanfrancisco-2016.csv	9066
listings-sanfrancisco-2017.csv	6650
listings-sanfrancisco-2018.csv	7072
listings-sanfrancisco-2019.csv	8533
listings-sanfrancisco-2020.csv	7087

```
In [8]: # Saving listings as list
listings_list = (num_listings_per_yr_df.iloc[:, 0]).tolist()

# Restructuring data into new dataframe
d = {'Year': [2015, 2016, 2017, 2018, 2019, 2020], 'Total Listings': listing
s_list}
total_listings_df = pd.DataFrame(data=d)

total_listings_df
```

Out[8]:

	Year	Total Listings
0	2015	7165
1	2016	9066
2	2017	6650
3	2018	7072
4	2019	8533
5	2020	7087

Loading Housing Data

Home Values

The original source of these data is https://www.zillow.com/research/data/ (https://www.zillow.com/research/data/). Since I'm only focusing on the city of San Francisco, I removed the rest of the rows in Excel and added a header column up front before loading it into this project.

```
In [9]: # Loading modified housing data
          sf_housing_df = pd.read_csv('zillow-sf.csv', header=None, index_col=0)
          # Previewing data
          sf_housing_df.head()
 Out[9]:
                     1
                            2
                                   3
                                                 5
                                                                7
                                                                                     10 ...
              0
           Date 1/31/96 2/29/96 3/31/96 4/30/96 5/31/96 6/30/96 7/31/96 8/31/96 9/30/96 10/31/96 ...
           Home
                 293098 292149 291505 290377 289565 289195 288911 289376
                                                                         290090
                                                                                 291385 ... 14<sup>-</sup>
           Value
          2 rows × 299 columns
In [10]: # Transposing dataframe to switch rows to columns
          sf housing df t = sf housing df.T
          # Previewing data
          sf_housing_df_t.head()
Out[10]:
               Date Home Value
           1 1/31/96
                        293098
           2 2/29/96
                        292149
          3 3/31/96
                        291505
           4 4/30/96
                        290377
           5 5/31/96
                        289565
In [11]: # Checking dataframe summary
          sf_housing_df_t.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 299 entries, 1 to 299
          Data columns (total 2 columns):
                         299 non-null object
          Date
          Home Value
                         299 non-null object
          dtypes: object(2)
          memory usage: 17.0+ KB
```

```
In [12]: # Changing dates to datetime format
    sf_housing_df_t['Date'] = pd.to_datetime(sf_housing_df_t['Date'])
# Previewing data
    sf_housing_df_t.head()
```

Out[12]:

```
        Date
        Home Value

        1
        1996-01-31
        293098

        2
        1996-02-29
        292149

        3
        1996-03-31
        291505

        4
        1996-04-30
        290377

        5
        1996-05-31
        289565
```

```
In [13]: # Changing Home Value to numeric format
sf_housing_df_t['Home Value'] = pd.to_numeric(sf_housing_df_t['Home Value'])
# Previewing data
sf_housing_df_t.head()
```

Out[13]:

	Date	Tionic value
1	1996-01-31	293098
2	1996-02-29	292149
3	1996-03-31	291505
4	1996-04-30	290377
5	1996-05-31	289565

Date Home Value

```
In [14]: # Checking dataframe summary
sf_housing_df_t.info()
```

```
In [15]: # Setting Date as index
    sf_housing_df_t = sf_housing_df_t.set_index('Date')

# Previewing data
    sf_housing_df_t.head()
```

Out[15]:

Home Value

Date	
1996-01-31	293098
1996-02-29	292149
1996-03-31	291505
1996-04-30	290377
1996-05-31	289565

Loading Housing Data

Rental Prices

The original source of these data is https://www.zillow.com/research/data/ (https://www.zillow.com/research/data/). Since I'm only focusing on the city of San Francisco, I removed the rest of the rows in Excel and added a header column up front before loading it into this project.

```
# Loading modified housing data
In [16]:
           sf_rentals_df = pd.read_csv('zillow-sf-rent.csv', header=None, index_col=0)
           # Previewing data
           sf_rentals_df.head()
Out[16]:
                                                                             10 ...
                     1
                           2
                                  3
                                              5
                                                           7
                                                                                      62
                                                                                            63
                                                                                                   64
                                                    6
                                                                 8
               0
                 2015-
                                                                                    2020-
                        2015-
                              2015-
                                    2015-
                                           2015-
                                                 2015-
                                                       2015-
                                                             2015-
                                                                    2015-
                                                                          2015-
                                                                                          2020-
                                                                                                2020-
            Date
                                                          07
                                                                      09
                                                                             10
                    01
                          02
                                 03
                                       04
                                             05
                                                   06
                                                                80
                                                                                      02
                                                                                            03
                                                                                                   04
            Rent
                                                       2791
                  2636
                        2664
                               2692
                                     2720
                                           2744
                                                 2768
                                                              2812
                                                                    2832
                                                                          2852
                                                                                    3220
                                                                                          3203
                                                                                                 3187
            Price
```

2 rows × 71 columns

```
In [17]: # Transposing dataframe to switch rows to columns
    sf_rentals_df_t = sf_rentals_df.T

# Previewing data
    sf_rentals_df_t.head()
```

Out[17]:

	Date	Rent Price
1	2015-01	2636
2	2015-02	2664
3	2015-03	2692
4	2015-04	2720
5	2015-05	2744

```
In [18]: # Changing dates to datetime format
sf_rentals_df_t['Date'] = pd.to_datetime(sf_rentals_df_t['Date'])
# Previewing data
sf_rentals_df_t.head()
```

Out[18]:

	Date	Rent Price
1	2015-01-01	2636
2	2015-02-01	2664
3	2015-03-01	2692
4	2015-04-01	2720
5	2015-05-01	2744

```
In [19]: # Changing Rent Price to numeric format
sf_rentals_df_t['Rent Price'] = pd.to_numeric(sf_rentals_df_t['Rent Price'])
# Previewing data
sf_rentals_df_t.head()
```

Out[19]:

	Date	Rent Price
1	2015-01-01	2636
2	2015-02-01	2664
3	2015-03-01	2692
4	2015-04-01	2720
5	2015-05-01	2744

```
In [20]: # Checking dataframe summary
         sf_rentals_df_t.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 71 entries, 1 to 71
         Data columns (total 2 columns):
         Date
                       71 non-null datetime64[ns]
         Rent Price
                      71 non-null int64
         dtypes: datetime64[ns](1), int64(1)
         memory usage: 4.2 KB
In [21]: # Setting Date as index
         sf rentals df t = sf rentals df t.set index('Date')
         # Previewing data
         sf_rentals_df_t.head()
Out[21]:
```

Rent Price

Date	
2015-01-01	2636
2015-02-01	2664
2015-03-01	2692
2015-04-01	2720
2015-05-01	2744

Data Visualization

After loading and cleaning, I have 4 dataframes to work with for visualizations:

```
sf_airbnb_df
total_listings_df
sf_housing_df_t
sf rentals df t
```

```
In [22]: # Writing cleaned data to csv files
         sf_airbnb_df.to_csv('sf_airbnb_df.csv')
         total_listings_df.to_csv('total_listings_df.csv')
         sf_housing_df_t.to_csv('sf_housing_df_t.csv')
         sf rentals df t.to csv('sf rentals df t.csv')
```

Line Chart - Airbnb listings

San Francisco Airbnb Listings 2015 - 2020

Bar Chart - Airbnb listings

San Francisco Airbnb Listings 2015 - 2020

Line Chart - Home Values

```
In [25]: # Filtering housing data to 2015 - 2020
housing_df_subset = sf_housing_df_t.loc['2015-12-01':'2020-12-31']
housing_df_subset.head()
```

Out[25]:

Home Value

Date	
2015-12-31	1193367
2016-01-31	1208674
2016-02-29	1215580
2016-03-31	1212365
2016-04-30	1198282

```
In [31]: from pandas.plotting import register_matplotlib_converters
         register_matplotlib_converters()
         # Creating figure and plot space
         fig, ax = plt.subplots(figsize=(15, 9))
         plt.plot(housing_df_subset.index, housing_df_subset['Home Value'], marker=
         'o',)
         # Adding commas to y-axis
         ax.get yaxis().set major formatter(
             mpl.ticker.FuncFormatter(lambda y, p: format(int(y), ',')))
         plt.xlabel('Date', fontsize=20)
         plt.xticks(fontsize=15)
         plt.ylabel('Home Values', fontsize=20)
         plt.yticks(fontsize=15)
         plt.suptitle('San Francisco Home Values\n2015 - 2020', fontsize=20)
         plt.savefig('homes-linechart.png')
         plt.show()
```

San Francisco Home Values 2015 - 2020

Line Chart - Rental Prices

San Francisco Rent Prices 2015 - 2020

Now that I've explored and organized my data, I'll use Tableau to generate some nicer looking graphs.