

A Schlumberger Company

SH323 • SH223 • SH123 5 A, 3 V Voltage Regulator

Hybrid Products

Description

The SH232 is a hybrid regulator with 5.0 V fixed output and 3.0 A output capability. It has the inherent characteristics of the monolithic 3-terminal regulators, i.e., full thermal overload, short circuit and safe area protection. All devices are packaged in hermetically sealed TO-3s providing 50 W power dissipation. If the safe operating area is exceeded, the device shuts down rather than failing or damaging other system components (Note 1). This feature eliminates costly output circuitry and overly conservative heat sinks typical of high-current regulators built from discrete components.

- **3.0 A OUTPUT CURRENT**
- INTERNAL CURRENT AND THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT PROTECTION
- LOW DROPOUT VOLTAGE (TYPICALLY 2.0 V @ 3.0 A)
- 50 W POWER DISSIPATION
- STEEL TO-3 PACKAGE
- ALL PIN-FOR-PIN COMPATIBLE WITH THE LM323, SG323

Connection Diagram 2-Pin Metal Package

(Top View)

Order Information					
Type	Package	Code	Part No.		
SH323	Metal	GN	SH323SC		
SH223	Metal	GN	SH223SV		
SH123	Metal	GN	SH123SM		

Block Diagram

Absolute Maximum Ratings

Input Voltage

Input-to-Output Voltage

Differential

Output Short Circuited Internal Power Dissipation

Operating Junction Temperature

Industrial Temperature Range SH223SV

40 V

35 V

150°C

Military Temperature Range

SH123SM

Commercial Temperature Range

SH323SC

Storage Temperature Range

Pin Temperature (Soldering, 60 s)

-55°C to +150°C 300°C

-55°C to +150°C

0°C to +150°C

-25°C to +150°C

50 W @ 25°C Case

Electrical Characteristics T_J = 25°C, V_{IN} = 10 V, I_{OUT} = 2.0 A unless otherwise specified.

		Limits				
Symbol	Characteristic	Min	Тур	Max	Unit	Condition
Vout	Output Voltage	4.85	5.0	5.25	V	I _{OUT} = 2.0 A
ΔV _{OUT}	Line Regulation (Note 2)		10	25	mV	V _{IN} = 7.5 to 25 V
ΔV _{OUT}	Load Regulation (Note 2)		10	50	mV	10 mA ≤ I _{OUT} ≤ 3.0 A
lQ	Quiescent Current		3.0	10	mA	IOUT = 0
RR	Ripple Rejection	60			dB	I _{OUT} = 1.0 A, f = 120 Hz, 5.0 V _{pk-pk}
$\overline{V_n}$	Output Noise		40		μVRMS	$10 \text{ Hz} \le \text{f} \le 100 \text{ kHz}, \text{V}_{\text{IN}} = 10 \text{ V}$
V _{DD}	Dropout Voltage (Note 3)		2.0	2.3	V	I _{OUT} = 3 A
los	Short Circuit Current Limit		7.0	12.0	Apk	V _{IN} = 10 V

Notes

- 1. This voltage regulator offers output transistor safe area protection. However, to maintain full protection, the device must be operated within the maximum input-to-output voltage differential ratings, as listed on this data sheet under "Absolute Maximum Ratings." For applications violating these limits. device will not be fully protected.
- 2. Load and line regulation are specified at constant junction
- temperature. Pulse testing is required with a pulse width ≤ 1 ms and a duty cycle ≤ 5%. Full Kelvin connection methods must be used to measure these parameters.
- 3. Dropout Voltage is the input-output voltage differential that causes the output voltage to decrease by 5% of its initial value.

Typical Performance Curves

Short Circuit Current

Maximum Power Dissipation

Dropout Voltage

3

Typical Performance Curves (Cont.)

Line Regulation

Line Transient Response

Ripple Rejection

Load Regulation

Load Transient Response

V_{OUT} vs Junction Temperature

Output Impedance

Output Noise Voltage

Quiescent Current

Test Circuit

Fixed Output Voltage

Design Considerations

This device has thermal overload protection from excessive power and internal short circuit protection which limits the circuit's maximum current. Thus, the device is protected from overload abnormalities. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150°C). It is recommended by the manufacturer that the maximum junction temperature be kept as low as possible for increased reliability. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used.

Package	Тур	Max
	hetaJC	hetaJC
TO-3	1.8	2.5

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A}}{\theta_{JC} + \theta_{CA}}$$
$$\theta_{CA} = \theta_{CS} + \theta_{SA}$$

Solving for
$$T_J$$
:
 $T_J = T_A + P_D (\theta_{JC} + \theta_{CA})$

Where:

T_J = Junction Temperature
 T_A = Ambient Temperature
 P_D = Power Dissipation

 $\theta_{
m JC}$ = Junction-to-case thermal resistance $\theta_{
m CA}$ = Case-to-ambient thermal resistance $\theta_{
m CS}$ = Case-to-heat sink thermal resistance $\theta_{
m SA}$ = Heat sink-to-ambient thermal resistance

The device is designed to operated without external compensation components. However, the amount of external filtering of this voltage regulator depends upon the circuit layout. If in a specific application the regulator is more than four inches from the filter capacitor, a 1 μF solid tantalum capacitor should be used at the input. A 0.1 μF capacitor should be used at the output to reduce transients created by fast switching loads, as seen in the basic test circuit. These filter capacitors must be located as close to the regulator as possible.

Caution: Permanent damage can result from forcing the output voltage higher than the input voltage. A protection diode from output to input should be used if this condition exists.