Classifier Explanation

Applis

LIME

Example Traffic Sign Recognition

SP-LIME

Classifier Explanation Introduction to the Algorithms LIME and SP-LIME

Leonhard Applis

TH Nürnberg

21.1.2019

Introduction

2 LIME

3 Example: Traffic Sign Recognition

4 SP-LIME

Me: Hey Siri, order me a Pizza

Siri: (After a short break that nearly drains your whole battery) Ok, I'm calling your mother...

Me: Wait! Why would you do this!?

Siri: This is the 5th time you ordered Pizza this week.

What do we want from our model?

- Why did failed predictions fail?
- Why did correct predictions succeed?
- Why is my model uncertain about a prediction?

special importance: setting a model *live*, where it's not *prelabeled*

SP-LIMI Interpretations must be ...

- human-readable
- reproducable (same input + same model \rightarrow same output)

Difficulties:

- Models can be huge (millions of weights)
- Inputvectors can be huge (e.g. images)
- Some models are to complex by it's structure to be readable, (e.g. neural networks)

Intro LIME

Example Traffic Sign Recognition SP-

Figure: LIME-Text: predicting "Atheism" for given text

Both algorithms predict correct - yet Algorithm 2 has strange reasons.

Trusting a Model

Classifier Explanation

Leonhar Applis

Intro

Exampl Traffic Sign Recogni tion

SP-LIM trusting predictions \neq trusting a model

What do we want?

- get an overview of our Model
- 2 compare models in reasonable time
- proove correctness & flaws of a model
- improve our models

Prooving a Model

Classifier Explanation

Leonhar Applis

Intro LIMI

Example Traffic Sign Recogni tion

SP-LIME Several topics which benefit from machine learning, but need special care:

- Terrorism-detection
- Medical diagnosis & prescriptions
- Fraud-detection

Noone will buy a model, if you can't prove that it's performing reasonable predictions.

Improving a Model

Classifier Explanation

Leonhai Applis

LIME

Example Fraffic Sign Recognition

SP-LIM There are several issues, at which explanations can help you improve your models:

- Filtering of Features
- Find overfitted weighting of features
- Find Links in Classification (Similiar Classes and Features)

Gaining insights from explanations can help you improve your model!

Classifier Explanation

Leonhar Applis

Intr

LIME

Example Traffic Sign Recogni tion

SP-

Introduction

2 LIME

- 3 Example: Traffic Sign Recognition
- 4 SP-LIME

What do we want:

- Human Readable Model Explanation
- For Every Classifier
- For Every Input

$features \neq human readable$

To gain readability:

- show influence relative to each other, not as numbers
- only show most important features
- use *superpixels* instead of pixels

- lacksquare G be any possible explanation model
- ② g be our explanation Model
- $\ \ \Omega(g)$ the complexity of our Model
 - Weights in a regressions model
 - Depth of an decisiontree
 - Number of trees in a random forest
- \bullet f: Features -> Class be the real classification
- \bullet $\Pi_x(z)$ as proximity-measure from x to z
- \bullet $\mathcal{L}(f,g,\Pi_x)$ measure of un-faithfullness of g compared to f given the proxmity Π_x

Minimizing Fidelity \cdot Interpretability

Classifier Explanation

Leonhai Applis

LIME

Example Traffic Sign Recognition

SP-LIMI Wanted:

$$\xi(x) = argmin_{g \in G} \mathcal{L}(f, g, \Pi_x) + \Omega(g)$$

Read:

- We want for every input x
- an explanation(-model)
- \bullet where complexity of g and the failure of g are minimal
- \bullet given a set of possible explanations G

We do so by picking samples x as subsets from an input x and **optimizing** our model g ¹

¹We do not really check different models, we train one (♂) (३) (३) (३)

Local Interpretable Model-Agnostic Explanations The LIME-Algorithm

Classifier Explanation

Leonhar Applis

Intro
LIME

Exampi Traffic Sign Recogni tion

SP-LIMI Additional Requirements:

 ${f LASSO}^2$ - Least Absolute Shrinkage and Selection Operator

Machine Learning algorithm to select most important features relative to each other.

G are only $sparse\ linear\ regression\ models$ (e.g. Decision Trees or simple logistic regression)

Require: Classifier f, Number of samples N

Require: Instance x, and its interpretable version x'

Require: Similarity kernel π_x , Length of explanation K

$$\mathcal{Z} \leftarrow \{\};$$

foreach $i \in \{1, 2, ..., N\}$ do

$$z_i^{\cdot} \leftarrow sample_around(x^{\cdot});$$

 $\mathcal{Z} \leftarrow \mathcal{Z} \cup z_i^{\cdot}, f(z_i, \pi_x(z_i));$

end

 $w \leftarrow K - Lasso(\mathcal{Z}, K) \triangleright with \ z_i$ as features, f(z) as target; return w;

²Further Reading:

Introduction

2 LIME

3 Example: Traffic Sign Recognition

SP-LIME

Trafficsign-Recognition Explaining RandomForests for Textclassification

Classifier Explanation

Leonhar Applis

LIM

Example: Traffic Sign Recogni-

SP-

Setup Problem, Show Code, Plot Examples, nice This could be left out from the presentation, and just be a live demo Do both: LIME and ANCHOR and sample with SPLIME

Classifier Explanation

Leonhar Applis

LIME

Exampl Traffic Sign

Recogni tion

SP-LIME Introduction

2 LIME

3 Example: Traffic Sign Recognition

4 SP-LIME

Problem with Sampling

Classifier Explanation

Leonhar Applis

LIMI

Example Traffic Sign Recogni tion

SP-

Explain that we have to little time to inspect everything Looking for a new way to pick samples

Submodular Pick The SPLIME Algorithm

Classifier Explanation

Leonhar Applis

Intro

LIMI

Example Traffic Sign Recognition

SP-

Here is the Pseudocode $\,$

SPLIME Example

Classifier Explanation

Applis

LIMI

Example Traffic

Sign Recogni tion

SP-

I guess this needs more than 2 Pages, we should add an example $\,$