CS559 Lecture 19-20: More Texture

Part 5: Shadow Maps

Shadow Maps

Note: This is online one way to do shadows

The details on how it works change

Idea: Can the Light See the Object?

We know how to make a picture of what the **camera** sees (warning - we didn't discuss how this works yet)

Use the same method to ask what the **light** sees

put the "camera" where the light source is

Shadow mapping

- 1. Take a picture from the light position
 - camera at light source
 - what objects are visible to the light (everything else shadow)
 - o use this picture as the **shadow map**
- 2. Draw the "regular picture"
 - o for each pixel on an object
 - o see if pixel is visible in shadow map

Shadow Map Test

How do we know if the pixel is the same pixel in the shadow map?

- check color (not a good idea)
- check depth (most common approach)

o can be problematic (small errors cause big problems) c

Shadow Map Resolution

- Size of Shadow Map Matters
 - spotlight (can be small)
 - directional light source (area)
 - point light? (needs to be a cube/sphere)

Shadow Maps in THREE

Of course it makes it easy!

- Tell the lights to cast shadows
 - they will make shadow maps
- Tell the objects to cast shadows
 - they will be rendered in all passes
- Tell the objects to receive shadows
 - their shaders will access the shadow maps
- Tell the renderer to do shadows
 - o it will set up the multiple passes

Summary: Advanced Texture Hacks

- Normal and Bump Maps for surface details
- Layered Textures to mix effects
- Lightmaps / Ambient occlusion for pre-computed lighting
- Environment Maps for Reflections (and lighting)
- Shadow Maps for Shadows

Hacks?

Why Hacks? Can't we do something more principled?

We use hacks because they are implemented efficiently in the graphics hardware.

(guess what we learn about next)