Machine Learning

7. dimensionaliteitsreductie, word embeddings en RNN's

ML: Actueel

OpenAl launches an Alpowered browser: ChatGPT Atlas

T□ TechCrunch

OpenAl announced Tuesday the launch of its Al-powered browser, ChatGPT Atlas, a major step in the company's quest to unseat Google as the main way people find information online.

 \mathbb{X}

Yesterday we launched ChatGPT Atlas, our new web browser. In Atlas, ChatGPT agent can get things done for you. We're excited to see how this feature makes work and day-to-day life more efficient and effective for people.

ChatGPT agent is powerful and helpful, and designed to be Show more

6:40 PM · Oct 22, 2025

(i)

The glaring security risks with Al browser agents

The main concern with AI browser agents is around "prompt injection attacks," a vulnerability that can be exposed when bad actors hide malicious instructions on a webpage. If an agent analyzes that web page, it can be tricked into executing commands from an attacker.

Onderwerpen

- Dimensionaliteitsreductie
 - Hoe verminder je het aantal features met zo min mogelijk informatieverlies?
- Word embeddings
 - Hoe codeer je woorden zodat een neuraal netwerk ermee kan werken?
- Recurrente neurale netwerken
 - Hoe bouw je een netwerk met context en geheugen, bijvoorbeeld voor NLP?

ml:dimensionality reduction

Dimensionality: Blessing or Curse?

Curse of Dimensionality

- Elke feature erbij betekent een extra dimensie
 - Exponentiële groei
 - Performance-problemen
- Meer dimensies \rightarrow datapunten komen verder uit elkaar te liggen
 - 2D-eenheidsvierkant: gem. afstand 0,52
 - 3D-eenheidskubus: gem. afstand 0,66
 - 1mD-eenheidshyperkubus: gem. afstand 408,25
 - Data wordt steeds ijler/sparser
 - Exponentieel meer data nodig, anders risico op overfitting van model
 - Clustering wordt erg lastig

Dimensionaliteitsreductie

- Dus: problemen met performance, clustering en overfitting
- Daarom: aantal dimensies terugbrengen
- Diverse technieken
 - Projectie
 - Manifold Learning
 - Principal Components Analysis

Projectie

Manifold Learning

2D doorsnede, parallel aan x1

2D doorsnede, opgerold in de 3^e dim.

Principal Components Analysis (PCA)

- Ook bekend als Factoranalyse
- Voorbeeld van unsupervised learning
 - Net als Clustering
- Transformatie van de oorspronkelijke data
- Aantal features = max. aantal dimensies
- In 2 dimensies vind je max. 2 PC's
 - De eerste lijkt op lineaire regressie
 - De tweede staat er haaks op
- Meer dimensies => meer PC's
 - Steeds haaks op het hyperplane van de vorige PC's
- Idee: met minder dimensies (#PC < #dim) zoveel mogelijk van de feature-informatie behouden

Bron: researchgate.net

Hoe zat het ook alweer: variantie

$$\bullet \ \sigma^2 = \frac{\sum_{i=1}^n (x_i - \mu)^2}{n}$$

- Gemiddelde gekwadrateerde afwijking van het gemiddelde
- Wortel van de variantie = standaarddeviatie
- Zegt dus iets over de spreiding van de data

Wat is een Principal Component (PC)?

- Elke PC verklaart een percentage van de variantie van de data
 - Keuze van de as zodanig dat dit % zo hoog mogelijk is
 - Of: zo klein mogelijke MSD tussen data en projectie daarvan op de as
- Elke PC is een combinatie van features
 - Voorbeeld:
 - PC1 = 0.5 F1 + 0.2 F2
 - PC2 = -0.2 F1 + 0.05 F2

Bron: researchgate.net

Toepassingen van PCA

- Dimensionaliteitsreductie
- Compressie

Intermezzo: live coding

Notebook over PCA met scikit-learn

taal coderen: naïeve aanpak

woordgrootte in het Nederlands


```
w freqs = list(df['percentage'])
l freqs = list(ldf['percentage']/100)
result = ''
# we maken een stuk tekst van veertig woorden
for in range (40):
    w lengte = np.random.choice(np.arange(len(w freqs)), p=w freqs)
    for in range(w lengte):
        result += chr(ord('a') + np.random.choice(np.arange(26), p=l freqs))
    result += ' '
result
```

p: 1-D array-like, optional

The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribution over all entries in a.

(https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html)

evahhose te eoiertneak rdreadg idhs adi al dsdlo hgsbn egveint ui edj vilejrees liiniga epejithv atree tf nojatt ea nod trnnir etesoejmltrhal ztnilsentcr orsrmeg gru dlptr asone beaoebjee leimf touhrl tmr Intvfeueal ge iaeeeavwbl oeer runvaliaw se hrnd baed iee heuvt naeeattn dgrnretilm er	
sehvpet nmkp eydienee algfi ttp dtsp atpdjed rea vn penr koeee aenogra tne dn edetvsns tbidl zidive nkablsehi anaerodt tv pone eded nue tltr eoonggt btoa oond dsr norleeo ac ioioeu nrsbndn mrh	

Op basis van digrammen

	A	В	C	D	Z
A			AC		AZ
В	BA	BB	BC	BD	BZ
C	CA	CB	CC	CD	CZ
• • •					
Z	ZA	ZB	ZC	ZD	ZZ

Nederlandse digrammen

	digram	aantal	percentage
0	aa	27107958	1.655611
1	ab	952105	0.058150
2	ac	3883815	0.237203
3	ad	3747459	0.228875
4	ae	632509	0.038630

digram	aantal	percentage
en	85425765	5.217355
er	52558556	3.209999
de	52042236	3.178465
an	36996593	2.259557
te	30808553	1.881624
ee	29967844	1.830278
ge	28092308	1.715730
in	27499971	1.679553
aa	27107958	1.655611
et	27080811	1.653953
	en er de an te ge in aa	en 85425765 er 52558556 de 52042236 an 36996593 te 30808553 ee 29967844 ge 28092308 in 27499971 aa 27107958

deangemp iejawoorelro alkewestriietereds tond bbendeanza enomenet ik geienonu ekenpelutabe ineeti prllopooha geap oedale nkinenwaveus
olzoerie etdtgear aadeuiziod viitonno ti bieglaonletsta beftaodeziui enlftrseellisi inreesatieitalbedihe stjnitil dodeee oeritejler epvede enonuu
hewigechrdel etgeoouiin iegeou jcanrore keineepm enoobios areeseeiijak ljtkdoagetaaer keedinukgeas tsrdvekemershi lgthrgaatrdu
geklelmstevren

iets minder naïeve aanpak

weten welke wet geldt weten welke wet geldt et **e** weten welke wet geldt te n weten welke wet geldt n W weten welke wet geldt e W weten welke wet geldt weten welke wet geldt k el weten welke wet geldt lk e {'we':{'t':1, 'l':1}}

voorspelling

input

```
with open('data/wiki.txt', 'r') as f:
    data = ''.join([line.strip().lower() for line in f.readlines()])

model = NGramModel(4)
model.fit(data)
print(model.predict('afge', 300))
```

afgeleidt tot voorbeeldelijk, gen.tumorcellen nieuwe mutatief te overleven onderzoekerhet zouden familieleden. sommige tumorsuppressorgenen ande een tegen de typen als remmers.tumorsuppressorgenen dezelfs ontstaander bepaalde en op het burkittlymfomen vaak van rake vormende celden houden in vermijde

word embeddings

Recipe steps

Corpus sentence

"Stir until the cheese is melted and all ingredients are incorporated, about 3 minutes."

['stir', 'cheese', 'melt', 'ingredient', 'incorporate', 'minute']

"flip back over and toast in a 400 degree oven for about 8 to 10 minutes."

['flip', 'toast', 'degree', 'oven', 'minute']

[['stir', 'cheese', 'melt', 'ingredient', 'incorporate', 'minute'], ['melt', 'butter', 'heavy', 'bottom', 'saucepan', 'medium', 'heat', 'whisk', 'flour'], ..., ['flip', 'toast', 'degree', 'oven', 'minute']]

altijd		1	
november		5	
altijd		1	
regen		6	
altijd		1	
dit		2	
lege		4	
hart	-	3	

bag of words

one-hot encoding

Probleem van homoniemen

Er zit geen koffie meer in de bus.

Nu is **de bus** weer te laat!

	d1	d2	d3	d4
altijd	0.23	0.23	0.23	0.23
november	0.86	0.23	0.34	0.58
altijd	0.23	0.23	0.23	0.23
regen	0.74	0.12	0.23	0.29
altijd	0.23	0.23	0.23	0.23
dit	0.25	0.83	0.19	0.03
lege	0.38	0.04	0.01	0.23
hart	0.92	0.39	0.21	0.09

Rozado, David (2020). Word embeddings map words in a corpus of text to vector space https://doi.org/10.1371/journal.pone.0231189.g008

Afstands-/gelijkheidsmaten voor vectoren

- Euclidisch: afstand tussen de punten in de ruimte
- Cosinusgelijkheid: hoek tussen de vectoren

$$d(\mathbf{A},\mathbf{B}) = d(\mathbf{B},\mathbf{A}) = \sqrt{(A_1 - B_1)^2 + (A_2 - B_2)^2 + \dots + (A_n - B_n)^2}$$

$$= \sqrt{\sum_{i=1}^n (A_i - B_i)^2}$$

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum_{i=1}^n A_i B_i}{\sqrt{\sum_{i=1}^n A_i^2} \sqrt{\sum_{i=1}^n B_i^2}}$$

Bron:https://medium.com/@sasi24/cosine-similarity-vs-euclidean-distance-e5d9a9375fc8

PCA (herhaling)

- Reductie van aantal features (dimensionality reduction)
- Bijvoorbeeld voor visualisatie of compressie
- Maakt nieuwe features (PC's) uit combinaties van de bestaande features
- Elke PC verklaart zoveel mogelijk variantie in de (resterende) data
- Kies de top-*n* PC's

NLPL	Repository	WebVectors	RegisterExplorer
------	------------	------------	------------------

	Download	Vector			Vocabulary		
ID	link	size	Window	Corpus	size	Algorithm ▲	Lemmatization
32	Download	100	10	Basque CoNLL17 corpus	426736	Word2Vec Continuous Skipgram	False
33	Download	100	10	Bulgarian CoNLL17 corpus	628026	Word2Vec Continuous Skipgram	False
34	Download	100	10	Catalan CoNLL17 corpus	799020	Word2Vec Continuous Skipgram	False
35	Download	100	10	ChineseT CoNLL17 corpus	1935503	Word2Vec Continuous Skipgram	False
36	Download	100	10	Croatian CoNLL17 corpus	928316	Word2Vec Continuous Skipgram	False
37	Download	100	10	Czech CoNLL17 corpus	1767815	Word2Vec Continuous Skipgram	False
38	Download	100	10	Danish CoNLL17 corpus	1655886	Word2Vec Continuous Skipgram	False
39	Download	100	10	Dutch CoNLL17 corpus	2610658	Word2Vec Continuous Skipgram	False
40	Download	100	10	English CoNLL17 corpus	4027169	Word2Vec Continuous Skipgram	False
41	Download	100	10	Estonian CoNLL17 corpus	926795	Word2Vec Continuous Skipgram	False
42	Download	100	10	Finnish CoNLL17 corpus	2433286	Word2Vec Continuous Skipgram	False
43	Download	100	10	French CoNLL17 corpus	2567698	Word2Vec Continuous Skipgram	False
44	Download	100	10	Galician CoNLL17 corpus	363106	Word2Vec Continuous Skipgram	False
45	Download	100	10	German CoNLL17 corpus	4946997	Word2Vec Continuous Skipgram	False
46	Download	100	10	Greek CoNLL17 corpus	1183194	Word2Vec Continuous Skipgram	False
47	Download	100	10	Hebrew CoNLL17 corpus	672384	Word2Vec Continuous Skipgram	False

Verschillende algoritmen voor word-embeddings

<u>Skipgram:</u> Voorspelt contextwoorden gegeven een doelwoord. Goed voor semantische relaties.

CBOW (Continuous Bag of Words): Voorspelt een doelwoord gegeven de contextwoorden. Snel en efficiënt voor frequentere woorden.

<u>FastText:</u> Breidt zowel Skipgram als CBOW uit door subwoorden te gebruiken, wat zorgt voor betere prestaties bij onbekende woorden en woorden met complexe morfologie.

Een veelgebruikt model, **Word2vec**, gebruikt een combinatie van CBOW en Skipgram om de embeddings te leren.

classificatie van embedding-modellen

voorgetrainde modellen

https://radimrehurek.com/gensim/

https://github.com/google-research/bert

https://spacy.io/

recurrente neurale netwerken

sequentiële data

geluidsgolven zijn sequentiële data, net als tekst 👺

RNN's: vier soorten

- Sequence to Sequence
 - een tijdreeks voorspellen o.b.v. het verleden, bijv. beurskoersen
- Sequence to Vector
 - alleen de laatste output gebruiken
 - bijv. sentiment-analyse
- Vector to Sequence
 - genereren van tekst, muziek, captions bij plaatjes e.d.
- Encoder-Decoder
 - bestaat uit sequence-to-vector en vector-to-sequence
 - bijv. vertalen, prompts beantwoorden
 - ligt aan de basis van het Transformer-model

Sequence to Vector

unrolled through time

Long Short-Term Memory

Because recurrent neural networks (RNNs) were known to suffer from the **vanishing gradient problem**, the long short-term memory (LSTM) was an improvement over them. The improvement was the introduction of a *gating function* into the state dynamics of RNNs. LSTMs use a hidden cell state vector \mathbf{c} to store long-term information.

All this is achieved by means of three gates: a forget gate f[t], an input gate i[t], and an output gate o[t].

Gated Recurrent Unit

Minder complex dan LSTM. r[t] = update gate, z[t] = gate controller

Nadelen van RNN's

- Exploding/vanishing (unstable) gradients
 - Mogelijke oplossingen: goede initialisatie, verzadigende activatiefuncties (σ , tanh), normalisatie, dropout
- Beperkt kortetermijn-geheugen
 - LSTM en GRU lossen dit deels op
- Trainen kost veel tijd
- Niet te parallelliseren
- Niet te stacken

Sigmoid, tanh en ReLU. Bron: researchgate.net

Daarom...

Afsluiting: live Notebook over tekstgeneratie met een RNN

