Null Space

• **Definition**: The **null space** of a matrix $A \in \mathbb{R}^{m \times n}$ is the set of all solutions of a homogeneous linear system, $A\mathbf{x} = \mathbf{0}$. We denote the null space of A as Nul A.

• For
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
, \mathbf{x} should satisfy the following:
$$\mathbf{a}_1^T \mathbf{x} = 0, \mathbf{a}_2^T \mathbf{x} = 0, ..., \mathbf{a}_m^T \mathbf{x} = 0$$

• That is, x should be orthogonal to every row vector in A.

Null Space is a Subspace

• **Theorem**: The null space of a matrix $A \in \mathbb{R}^{m \times n}$ is a subspace of \mathbb{R}^n . In other words, the set of all the solutions of a system $A\mathbf{x} = \mathbf{0}$ is a subspace of \mathbb{R}^n .

• **Note**: An eigenspace thus have a set of basis vectors with a particular dimension.

Orthogonal Complement

- If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be **orthogonal to** W.
- The set of all vectors z that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} (and read as "W perpendicular" or simply "W perp").
- A vector $\mathbf{x} \in \mathbb{R}^n$ is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
- W^{\perp} is a subspace of \mathbb{R}^n .
- Nul $A = (\operatorname{Row} A)^{\perp}$.
- Likewise, Nul $A^T = (\operatorname{Col} A)^{\perp}$.

Fundamental Subspaces Given by A

FIGURE 8 The fundamental subspaces determined by an $m \times n$ matrix A.

Eigenspace

• Note that the dimension of the eigenspace (corresponding to a particular λ) can be larger than one. In this case, any vector in the eigenspace satisfies

$$T(\mathbf{x}) = A\mathbf{x} = \lambda \mathbf{x}$$

