KU LEUVEN

On Translation-like Actions, Amenability and Homology on Discrete Spaces

Gael Deniz

Faculty of Science
Department of Mathematics

We study finitely generated infinite groups

 We study finitely generated infinite groups by representing them as graphs (=Cayley graphs)

- We study finitely generated infinite groups by representing them as graphs (=Cayley graphs)
- Main topic: Regular spanning trees in Cayley graphs

- We study finitely generated infinite groups by representing them as graphs (=Cayley graphs)
- Main topic: Regular spanning trees in Cayley graphs
- Extra topic: The Uniformly Finite Homology

Regular spanning trees

Theorem: Regular trees of Cayley graphs

Let G be a finitely generated infinite group, then there exists a Cayley graph Cay(G, S) of G allowing a regular spanning tree.

Introduction

Sources

- [7] Clara Löh. Geometric group theory. Springer, 2017.
- [8] Brandon Seward. Burnside's problem, spanning trees and tilings. Geometry & Topology, 18(1):179–210, 2014.
- Kevin Whyte. Amenability, bilipschitz equivalence, and the von neumann conjecture. arXiv preprint math/9704202, 2008.

Table of Contents

Introduction

Preliminaries

Regular trees in Cayley graphs

Preliminaries

Overview

Introduction

Preliminaries

Regular trees in Cayley graphs

Cayley graphs Examples

• the *n*-dimensional grids $Cay(\mathbb{Z}^n, \{e_1, ..., e_n\})$

Figure: A picture of (a part of) $Cay(\mathbb{Z}^2, \{(1,0), (0,1)\})$.

Cayley graph of \mathbb{F}_2

• Cay(F₂, {a, b})

Figure: The Cayley graph of \mathbb{F}_2 .

- Note that \mathbb{F}_2 is a 4-regular spanning tree
- The degree or valency of a vertex is the number of adjacent edges.

Preliminaries

Figure: Representation of $G = \mathbb{Z} * \mathbb{Z}_3$.

Cayley graphs $D_{\infty} = \langle a, b | b^2, abab \rangle$

Figure: The graph $Cay(D_{\infty}, \{a, b\})$.

Figure: The graph $Cay(D_{\infty}, \{ab, b\})$.

A connected graph is a metric space

Figure: The graph $Cay(D_{\infty}, \{a, b\})$.

Holy Trinity (Drie-eenheid)

Definition amenable

Definition (Amenable)

A discrete metric space X is amenable if and only if it contains a Følner sequence. A Følner sequence consists of finite sets F_n (growing balls) such that for any R > 0:

$$\label{eq:final_problem} \text{lim}\, \frac{|\partial_R F_n|}{|F_n|} = 0.$$

(Volume >> boundary)

Amenability

- Examples are \mathbb{Z}^n and \mathbb{R}^n
- Volume ball of size $R \approx R^n$.
- Surface/Boundary ball of size $R \approx R^{n-1}$.

Amenability

- Examples are \mathbb{Z}^n and \mathbb{R}^n
- Volume ball of size R ≈ Rⁿ.
- Surface/Boundary ball of size R ≈ Rⁿ⁻¹.
- Why is Usain Bolt quicker than Blake.

Nonamenable group \mathbb{F}_2

 \mathbb{F}_2 is nonamenable as for every finite set F

$$|\partial F| \ge |F|$$
.

Figure: The Cayley graph of \mathbb{F}_2 .

Definition Regular spanning trees

Definition (Regular trees)

Let $k \in \mathbb{N}$, we define the k-regular tree T_k as the tree where each vertex has valency k.

Definition (Spanning subgraph)

Let Γ be a graph. A spanning subgraph $\Phi \subset \Gamma$ satisfies

$$V(\Gamma) = V(\Phi).$$

Overview

Introduction

Preliminaries

Regular trees in Cayley graphs

2 failed conjectures

- 2. The Von Neumann conjecture: Does every nonamenable finitely generated group contain the free group \mathbb{F}_2 ?

2 failed conjectures

- 2. The Von Neumann conjecture: Does every nonamenable finitely generated group contain the free group \mathbb{F}_2 ?

Figure: Alfred Tarski. Source: Wikipedia

Translation-like actions, a geometric messias

Forget the group structure and look at its metric!

Definition (Translation-like action)

An action by Γ on X is translation-like if it is **free**, and satisfies for all g,

$$(g \cdot) \approx \operatorname{Id}_X$$
.

Or equivalently, $\{d(g \cdot x, x) | x \in X\}$ is bounded for all g.

Translation-like actions, a geometric messias

Theorem (Geometric Burnside Problem)

A finitely generated group G is infinite if and only if it admits a **translation-like action by** \mathbb{Z} .

Theorem (Geometric Von Neumann Theorem)

A finitely generated group G is nonamenable if and only if it admits a **translation-like action by** the free group \mathbb{F}_2 .

Regular trees in Cayley graphs

Figure: The results of the day and their relations.

(T)BP: (transitive) geometric Burnside problem.

VN: geometric Von Neumann theorem.

Transitive translation-like actions

Theorem (Burnside Problem transitive version)

G is infinite and has at most 2 ends if and only if it admits a transitive translation-like action by \mathbb{Z} .

Theorem (Geometric Von Neumann Theorem)

G is nonamenable if and only if it admits a **transitive** translation-like action by the free group \mathbb{F}_2 .

Transitive translation-like actions

Theorem (Burnside Problem transitive version)

G is infinite **and has at most 2 ends** if and only if it admits a **transitive** translation-like action by \mathbb{Z} .

Theorem (Geometric Von Neumann Theorem)

G is nonamenable if and only if it admits a **transitive** translation-like action by the free group \mathbb{F}_2 .

Definition (Ends)

"Ends are infinite components you can separate by removing a finite part."

Drawing ends

Actions → *Subgraphs*

Let us say $(1\cdot)$ moves every element to the right.

Figure: The graph $Cay(D_{\infty}, \{a, b\})$.

Figure: Action on $\mathbb{Z} \curvearrowright D_{\infty}$.

Construction of the Subgraph

For an action $H \curvearrowright Cay(G, S)$ and Cay(H, U), we hence construct a graph

$$\Phi = (G, \{\{g, u \cdot g\} | g \in G, u \in U\}).$$

• G has a transitive translation-like action by \mathbb{Z} .

- G has a transitive translation-like action by \mathbb{Z} .
 - \Rightarrow we have a spanning subgraph $\mathbb{Z} \subset Cay(G, S)$.

- G has a transitive translation-like action by \mathbb{Z} .
 - \Rightarrow we have a spanning subgraph $\mathbb{Z} \subset Cay(G, S)$.
 - \Rightarrow 2-regular spanning tree

- G has a transitive translation-like action by \mathbb{Z} .
 - \Rightarrow we have a spanning subgraph $\mathbb{Z} \subset Cay(G, S)$.
 - ⇒ 2-regular spanning tree

Theorem (2-regular spanning trees \mathbb{Z} in Cayley graphs)

Let G be a finitely generated group with at most two ends, then there exists a Cayley graph Cay(G, S) of G allowing a 2-regular spanning tree.

Von Neumann using Subgraphs

Theorem (Transitive geometric Von Neumann theorem)

Let G be a finitely generated group and $k \in \mathbb{Z}_{\geq 3}$, then the following statements are equivalent.

- G is non-amenable.
- 2. There exists a 4-regular spanning tree $\Phi \subset Cay(G, W)$.

$$\Phi \cong \mathbb{F}_2$$
.

(We can replace \mathbb{F}_2 by any regular tree T_k)

We have the following

• If G has at most two ends, G admits a 2-regular spanning tree.

We have the following

• If *G* has at most two ends, *G* admits a 2-regular spanning tree. *In particular*: If *G* is **amenable**, *G* admits a 2-regular spanning tree.

We have the following

- If G has at most two ends, G admits a 2-regular spanning tree.
 In particular: If G is amenable, G admits a 2-regular spanning tree.
- If G is nonamenable, G admits a k-regular spanning tree T_k for all k > 3.

We have the following

- If G has at most two ends, G admits a 2-regular spanning tree.
 In particular: If G is amenable, G admits a 2-regular spanning tree.
- If G is nonamenable, G admits a k-regular spanning tree T_k for all k > 3.

Theorem: Regular trees of Cayley graphs

Let G be a finitely generated infinite group, then there exists a Cayley graph Cay(G, S) of G allowing a regular spanning tree.

Regular trees in Cayley graphs

Figure: The results of the day and their relations.

(T)BP: (transitive) geometric Burnside problem.

VN: geometric Von Neumann theorem.

Examples of the theorem

Figure: The graph $Cay(D_{\infty}, \{a, b\})$.

Examples of the theorem

Figure: \mathbb{Z}^2 Hamiltonian path

Homology

Overview

Introduction

Preliminaries

Regular trees in Cayley graphs

The Normal 0-homology H₀

Let (X, E) be a graph, define

- 0-chains C_0 as sums of vertices $\mathbb{Z}[X]$.
- 1-chains C_1 as sums of directed edges $\mathbb{Z}[E]$.
- The differential $\partial([x,y]) = [y] [x]$. We call $\text{Im } \partial = B_0$ the 0-boundaries
- The 0-homology

$$H_0=rac{C_0}{B_0},$$

So we have the equality of classes [x] = [y].

• The homology allows us to move points around.

Barcodes

Homology

Figure: The Cayley graph of F_2 .[?]

•
$$3[e] - 5[aba] + 4[a^{-1}b^{-1}a] = 2[e]$$

Normal homology $H_{\bullet}(X)$

Theorem

Let X be a group, then the homology $H_{\bullet}(X)$ as \mathbb{Z} -module is given by

$$H_0 \cong \mathbb{Z}$$
;

$$H_k = 0 \quad \forall k > 0.$$

The uniformly finite H_0^{uf}

- In the uniformly finite homology we allow infinite sums of both vertices and edges.
- However, every element

$$c = \sum_{x \in X} c_x[x] \in H_0^{uf}(X)$$

must satisfy,

$$\|c\|_{\infty} = \sup |c_x| < \infty.$$

Theorem

Let $S \subset X$, then we define the cycle (or class)

$$[S] := \sum_{s \in S} [s].$$

The set $\{[S]|S\subset X\}$ is a generating set of $C_0^{uf}(X)$ (and of $H_0^{uf}(X)$).

The uniformly finite H_0^{uf}

Take for instance $X = \langle t \rangle$ to be the infinite cyclic group then [e] is a boundary. Take an infinite path going to e

$$b = \sum_{t^n n \in \mathbb{N}} [t^{n+1}, t^n].$$

Then $[e] = \partial b$.

$$e \longrightarrow t \longrightarrow t^2 \longrightarrow t^3 \longrightarrow t^4 \longrightarrow \dots$$

Figure: The 1-chain -b, taking e along an infinite path.

Amenability with homology

Overview

Introduction

Preliminaries

Regular trees in Cayley graphs

When is [X] = 0?

Theorem

X is nonamenable if and only if $H_0^{uf}(X) = 0$.

Let X be amenable

Lemma

Let X be amenable then $H_0^{uf}(X) \neq 0$.

Proof.

- We will prove $[X] \neq 0$
- Let there be a $b \in C_1(X)$ such that $\partial b + [X] = 0$.
- Følner sequence $\lim_{n\to\infty} \frac{|\partial_r F_n|}{|F_n|} = 0$.
- Then the average number of paths going to a point is $|F_n|/|\partial_r F_n| \to \infty$. Contradiction!

F_2 has zero uniformly finite homology

Figure: binary tree paths

Amenability with homology

Questions?

