

TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH II Chương 9 Hiệu suất Máy tính

5/31/24

Nội dung

- Thời gian thực thi và Hiệu suất
- Clock
- **CPI**
- Các yếu tố ảnh hưởng tới hiệu suất
- Các kỹ thuật nâng cao hiệu suất
- ■Bài tập

Thời gian thực thi và Hiệu suất (1/2)

- Thời gian thực thi: Tổng thời gian để hoàn thành một tác vụ nào đó
 - ☐ Truy cập ổ đĩa, bộ nhớ, I/O, OS, v.v...
- Hiệu suất: Số lượng tác vụ hoàn thành trong một đơn vị thời gian

$$Hiệu suất = \frac{1}{Thời gian thực thi}$$

Thời gian thực thi và Hiệu suất (2/2)

Máy tính X có hiệu suất cao hơn máy tính Y nghĩa là gì?

 $\begin{array}{ccc} \text{Hiệu suất}_{X} & > & \text{Hiệu suất}_{Y} \\ \hline \frac{1}{\text{Thời gian thực thi}_{X}} & > & \frac{1}{\text{Thời gian thực thi}_{Y}} \\ \text{Thời gian thực thi}_{Y} & > & \text{Thời gian thực thi}_{X} \end{array}$

- Máy tính A cần 10s để hoàn thành chương trình P. Máy tính B cần 15s để hoàn thành chương trình P.
 - Máy tính nào có hiệu suất cao hơn?
 - Nhanh hơn bao nhiêu lần?

Clock (1/3)

- Máy tính cần một clock để xác định khi nào một thao tác được thực hiện trong phần cứng
 - □Khối tạo ra các khoảng thời gian định thời cho máy tính làm việc này được gọi là khối tạo clock.
- Hai khái niệm liên quan đến clock:
 - ☐ Chu kỳ (Clock cycle)
 - ☐ Tần số (Clock rate hoặc clock frequency)

Clock (2/3)

Chu kỳ clock và tần số clock

Chu kỳ clock = 0.5 x 10⁻⁹ giây (Clock cycle time/clock cycle/ cycle time)

Tần số clock (Clock rate) =
$$\frac{1}{\text{Chu kỳ clock}} = \frac{1}{0.5 \times 10^{-9}} = 2 \times 10^{9} \text{ Hz} = 2 \text{ GHz}$$

2. Clock (3/3)

Thời gian thực thi = Tổng số chu kỳ clock * Chu kỳ clock

Thời gian thực thi =
$$\frac{\text{Tổng số chu kỳ clock}}{\text{Tần số clock}}$$

Tăng hiệu suất bằng cách giảm chu kỳ clock (tăng tần số clock)

- Máy tính A chạy ở tần số 2 Ghz cần 10s để hoàn thành chương trình P. Máy tính B chỉ cần 6s để hoàn thành chương trình P nhưng tổng số chu kỳ cần để hoàn thành chương trình P nhiều gấp 1.2 lần so với máy tính A.
 - ☐ Máy tính B chạy ở tần số bao nhiêu?

CPI (Clock cycle Per Instruction) (1/2)

Tổng số chu kỳ clock = Tổng số lệnh * CPI

Thời gian thực thi = Tổng số lệnh * CPI * Chu kỳ clock

Thời gian thực thi =
$$\frac{Tổng số lệnh * CPI}{Tần số clock}$$

- Máy tính A: Chu kỳ clock = 250ps, CPI = 2.0
- Máy tính B: Chu kỳ clock = 500ps, CPI = 1.2
- Cả 2 máy tính đều có cùng ISA. Máy tính nào nhanh hơn và nhanh hơn bao nhiều lần?

CPI (Clock cycle Per Instruction) (2/2)

Mỗi tập lệnh có nhiều nhóm lệnh khác nhau

Chu kỳ clock =
$$\sum_{i=1}^{n} (CPI_i * Số lệnh trong nhóm_i)$$

$$CPI = \frac{\text{chu kỳ clock}}{\text{Tổng số lệnh}} = \sum_{i=1}^{n} \left(CPI_i * \frac{\text{Số lệnh trong nhóm}_i}{\text{Tổng số lệnh}} \right)$$

- Có 2 cách biên dịch chương trình bằng cách sử dụng các nhóm lệnh A, B, C như bảng dưới.
 - Cách biên dịch nào tạo ra tổng số lệnh nhỏ hơn?
 - Cách biên dịch nào tạo ra chương trình chạy nhanh hơn? CPI là bao nhiệu?

Nhóm lệnh	A	В	C
CPI cho mỗi nhóm	1	2	3
Số lệnh cho cách 1	2	1	2
Số lệnh cho cách 2	4	1	1

Các yếu tố ảnh hưởng tới hiệu suất

- Các thành phần của hiệu suất:
 - ☐ Thời gian thực thi
 - ☐ Tổng số lệnh
 - □ Tần số
 - **CPI**

Yếu tố phần cứng/phần mềm	Tác động vào gì?
Thuật toán	Tổng số lệnh, và có thể cả CPI
Ngôn ngữ lập trình	Tổng số lệnh, CPI
Trình biên dịch	Tổng số lệnh, CPI
Kiến trúc tập lệnh	Tổng số lệnh, tần số, CPI

Các kỹ thuật nâng cao hiệu suất

- Giảm thời gian thực thi
 - □ Tăng tần số clock (Bị giới hạn bởi phần cứng)
 - □ Pipeline: Thực thi đồng thời **nhiều lệnh** bằng cách chia chu kỳ thực thi lệnh thành các stage. Tại một thời điểm, một lệnh chỉ được thực thi một stage
 - ☐ Tiên đoán: Dự đoán việc nhảy (các lệnh nhảy) có xảy ra hay không
 - ☐ Multicore: Thực thi đồng thời **nhiều chương trình** bằng cách tăng số lượng bộ xử lý
 - Multithread: Thực thi đồng thời **nhiều tác vụ** bằng cách tăng số lượng đơn vị xử lý
 - □ Phân cấp bộ nhớ: Sử dụng các bộ nhớ nhanh cho việc thao tác với dữ liệu, sử dụng các bộ nhớ chậm cho việc lưu trữ dữ liệu, ...

Bài tập (1/4)

Giả sử rằng 1 lệnh toán học cần 1 chu kỳ; 1 lệnh nạp dữ liệu từ bộ nhớ hoặc ghi dữ liệu vào bộ nhớ cần 5 chu kỳ; 1 lệnh rẽ nhánh cần 2 chu kỳ. Tìm thời gian thực thi của một chương trình chạy trên bộ xử lý 2 GHz? Biết số lệnh từng loại là: 500 lệnh toán học, 100 lệnh nạp, 50 lệnh ghi và 50 lệnh rẽ nhánh.

Bài tập (2/4)

Cho 3 bộ xử lý P1, P2 và P3 cùng chạy một chương trình với các tần số xung clock và CPI được cho như bảng bên dưới:

Bộ xử lý	Tần số	CPI
P1	2 Ghz	1.5
P2	1.5 Ghz	1
P3	3 Ghz	2.5

Bộ xử lý nào có hiệu xuất cao nhất?

Bài tập (3/4)

Cho 3 bộ xử lý P1, P2 và P3 cùng chạy một chương trình với các tần số xung clock và CPI được cho như bảng bên dưới:

Bộ xử lý	Tần số	CPI
P1	2 Ghz	1.5
P2	1.5 Ghz	1
P3	3 Ghz	2.5

Bộ xử lý P1 cần 10 (s) để thực thi chương trình. Tìm thời gian thực thi của Bộ xử lý P2?

Bài tập (4/4)

Xét 2 cách hiện thực khác nhau của cùng kiến trúc tập lệnh lên hai bộ xử lý P1 và P2. Có 3 lớp lệnh: A, B và C. Tần số xung clock và CPI của mỗi cách thiết kế được cho như bảng bên dưới:

Bộ xử lý	Tần số	CPI lớp A	CPI lớp B	CPI lớp C
P1	1.5 Ghz	1	2	3
P2	2 Ghz	2	2	2

Bộ xử lý nào sẽ chạy nhanh hơn với một chương trình có 500 lệnh lớp A, 200 lệnh lớp B và 100 lệnh lớp C?

THẢO LUẬN

