SZÁMÍTÓGÉPES GRAFIKA

írta: dr. Szirmay-Kalos László

Borító: Tikos Dóra és Tüske Imre CD melléklet: Dornbach Péter Programok: dr. Szirmay-Kalos László és Fóris Tibor

Ábrák: Szertaridisz Elefteria

Lektor: dr. Tamás Péter

1999

1.	A sz	ámítógépes grafika céljai és feladatai	15
	1.1.	A modellezés feladatai	16
	1.2.	A képszintézis	18
	1.3.	A képszintézis lépései	22
		1.3.1. Objektum-primitív dekompozíció	23
		1.3.2. Világ-kép transzformáció	23
		1.3.3. Vágás	23
		1.3.4. Takarási feladat	23
		1.3.5. Árnyalás	24
		1.3.6. Színleképzés a megjelenítőeszközre	24
	1.4.	A számítógépes grafika jelfeldolgozási megközelítése	24
	1.5.	Rasztergrafikus rendszerek felépítése	24
	1.6.	A képek tárolása és utófeldolgozása	26
	1.7.	Program: TARGA formátumú képállományok kezelése	27
2.	Graf	fikus szoftver alrendszerek felépítése	29
	2.1.	•	30
	2.2.	A grafikus hardver illesztése	31
	2.3.	Program: egy egyszerű grafikus könyvtár	32
		2.3.1. A logikai és a fizikai szintek összekapcsolása	35
		2.3.1. A logikai és a fizikai szintek összekapcsolása2.3.2. A könyvtár megvalósítása DOS operációs rendszer alatt	35 36
		2.3.2. A könyvtár megvalósítása DOS operációs rendszer alatt	36
3.	A ge	2.3.2. A könyvtár megvalósítása DOS operációs rendszer alatt2.3.3. A könyvtár megvalósítása Ms-Windows környezetben	36 38
3.	_	2.3.2. A könyvtár megvalósítása DOS operációs rendszer alatt 2.3.3. A könyvtár megvalósítása Ms-Windows környezetben 2.3.4. Programtervezés eseményvezérelt környezetekben	36 38 41
3.	_	 2.3.2. A könyvtár megvalósítása DOS operációs rendszer alatt 2.3.3. A könyvtár megvalósítása Ms-Windows környezetben 2.3.4. Programtervezés eseményvezérelt környezetekben 	36 38 41 47 47
3.	3.1. 3.2.	2.3.2. A könyvtár megvalósítása DOS operációs rendszer alatt 2.3.3. A könyvtár megvalósítása Ms-Windows környezetben 2.3.4. Programtervezés eseményvezérelt környezetekben	36 38 41 47 47

		3.3.2. Bézier-approximáció	0
		3.3.3. Összetett görbék	1
	3.4.	Területek	7
	3.5.	Felületek	7
		3.5.1. Kvadratikus felületek	8
		3.5.2. Parametrikus felületek	8
	3.6.	Testek	9
		3.6.1. Felületmodellezés	9
		3.6.2. Konstruktív tömörtest geometria alapú modellezés 6	1
	3.7.	Program: paraméteres görbék	2
4.	Szín	elméleti alapok 6	5
	4.1.	A színek definiálása	6
		4.1.1. RGB színrendszer	7
		4.1.2. CMY színrendszer	7
		4.1.3. HLS színrendszer	7
	4.2.	Színkezelés a 2D és a 3D grafikában	8
	4.3.	Program: színkezelés	9
		4.3.1. Színillesztő függvények	9
		4.3.2. Spektrumok kezelése	0
		4.3.3. Színérzetek	1
5.	Geor	metriai transzformációk 73	3
	5.1.	Elemi affin transzformációk	3
		5.1.1. Eltolás	3
		5.1.2. Skálázás a koordinátatengely mentén	3
		5.1.3. Forgatás	4
		5.1.4. Nyírás	5
	5.2.	Transzformációk homogén koordinátás megadása	5
	5.3.	Transzformációk projektív geometriai megközelítése	6
	5.4.	Program: geometriai transzformációs osztály	9
6.	Virt	uális világmodellek tárolása 8.	3
	6.1.	Hierarchikus adatszerkezet	3
	6.2.	A geometria és topológia szétválasztása	3
	6.3.	CSG-fa	5
	6.4.	Megjelenítő állományok	6
	6.5.	Szabványos világmodellek	6
	6.6.	Program: hierarchikus 3D adatszerkezet	7

7.	A 2I) képszintézis	91
	7.1.	Vektorizáció	92
	7.2.	Modellezési transzformáció	93
	7.3.	Ablak-nézet transzformáció	94
	7.4.	A modellezési és az ablak-nézet transzformációk összefűzése	94
	7.5.	2D vágás	95
	7.6.	2D raszterizáció	100
		7.6.1. Szakaszok rajzolása	100
		7.6.2. Területelárasztás	105
		7.6.3. Területkitöltés	105
	7.7.	Pixel műveletek	110
		7.7.1. Dither alkalmazása	110
	7.8.	Interaktív 2D grafikus rendszerek	111
	7.9.	Program: 2D grafikus rendszer	114
8.	Az á	rnyalás optikai alapmodellje	123
	8.1.	A fényerősség alapvető mértékei	123
	8.2.	A kamerák jellemzése	125
	8.3.	A fény-felület kölcsönhatás: az árnyalási egyenlet	127
	8.4.	Az árnyalási egyenlet adjungáltja: a potenciál egyenlet	129
	8.5.	Az árnyalási illetve a potenciál egyenlet megoldása	130
	8.6.	BRDF modellek	131
		8.6.1. Klasszikus BRDF modellek	132
		8.6.2. Lambert-törvény	132
		8.6.3. Ideális visszaverődés	133
		8.6.4. Ideális törés	134
		8.6.5. Phong illuminációs modell és változatai	134
	8.7.	Fényelnyelő anyagok	137
	8.8.	Program: BRDF modellek	139
9.	A 3I) inkrementális képszintézis	143
	9.1.	Felületek tesszellációja	146
	9.2.	Modellezési transzformáció	146
	9.3.	Kamera definíció	146
	9.4.	A nézeti transzformáció	148
		9.4.1. Világ-koordinátarendszer — ablak-koordinátarendszer transz-	
		formáció	149
		9.4.2. Ablak-képtér transzformáció párhuzamos vetítés esetén	149
		9.4.3. Ablak-képtér transzformáció perspektív vetítés esetén	
	9.5	Nézeti csővezeték	154

		9.5.1. Vágás homogén koordinátákban	55
	9.6.	Takarási feladat megoldása	56
		9.6.1. Triviális hátsólap eldobás	56
		9.6.2. Z-buffer algoritmus	57
		9.6.3. Területfelosztó módszerek	
		9.6.4. Festő algoritmus	51
	9.7.	Lokális illuminációs algoritmusok	52
		9.7.1. Saját színnel történő árnyalás	54
		9.7.2. Konstans árnyalás	54
		9.7.3. Gouraud-árnyalás	54
		9.7.4. Phong-árnyalás	55
	9.8.	Program: 3D grafikus rendszer inkrementális képszintézissel 10	55
10		/ 1 " //	0.2
10.			83
		Az illuminációs modell egyszerűsítése	
		A tükör és törési irányok kiszámítása	
		A rekurzív sugárkövető program	
	10.4.	Metszéspontszámítás egyszerű felületekre	
		10.4.1. Háromszögek metszése	
		10.4.2. Implicit felületek metszése	
		10.4.3. Paraméteres felületek metszése	
		10.4.4. Transzformált objektumok metszése	
	10.5	10.4.5. CSG modellek metszése	
	10.5.	A metszéspontszámítás gyorsítási lehetőségei	
		10.5.1. Befoglaló keretek	
		10.5.2. Az objektumtér szabályos felosztása	
	10.6	10.5.3. Az objektumtér adaptív felosztása	
		Foton követés	
	10.7.	Program: rekurzív sugárkövetés) 5
11.	Glob	ális illuminációs algoritmusok 20	03
	11.1.	Integrálegyenletek megoldása	03
		11.1.1. Inverzió)4
		11.1.2. Véges-elem módszer)4
		11.1.3. Expanzió	05
		11.1.4. Monte-Carlo integrálás	07
		<u> </u>	12
	11.2.		12
		11.2.1. Forma faktor számítás	14
			17

	11.2.3. Progresszív finomítás	219 219
12.	. Raszteres képek csipkézettségének a csökkentése	229
	12.1. Előszűrés	230
	12.1.1. A szakaszok csipkézettségének csökkentése	231
	12.2. Utószűrés	
	12.3. Program: sugárkövetés kiegészítése csipkézettség csökkentéssel	236
13.	. Textúra leképzés	237
	13.1. Paraméterezés	238
	13.1.1. Explicit egyenlettel definiált felületek paraméterezése	238
	13.1.2. Háromszögek paraméterezése	239
	13.2. Textúra leképzés a sugárkövetésben	239
	13.3. Textúra leképzés az inkrementális képszintézisben	240
	13.4. A textúrák szűrése	241
	13.5. Bucka leképzés	243
	13.6. Visszaverődés leképzés	245
	13.7. Program: sugárkövetés kiegészítése textúra leképzéssel	245
14.	. Térfogat modellek és térfogatvizualizáció	247
	14.1. Direkt térfogatvizualizációs módszerek	247
	14.1.1. Térfogat vetítés	249
	14.1.2. Térfogati sugárkövetés	249
	14.2. A voxel szín és az opacitás származtatása	250
	14.3. Indirekt térfogatvizualizációs módszerek	251
	14.3.1. Masírozó kockák algoritmusa	251
	14.3.2. Fourier-tér módszerek	252
	14.4. Program: masírozó kockák algoritmusa	254
15.	. Fraktálok	257
	15.1. A Hausdorff-dimenzió	257
	15.1.1. Fraktális dimenzió nem önhasonló objektumokra	
	15.2. Brown-mozgás alkalmazása	
	15.3. Kaotikus dinamikus rendszerek	
	15.4. Kaotikus dinamikus rendszerek a síkon	
	15.4.1. Julia-halmazok	
	15.4.2. A Mandelbrot-halmaz	

15.5. Iterált függvényrendszerek	272
15.5.1. Iterált függvényrendszerek attraktorának előállítása	273
15.5.2. IFS modellezés	
15.5.3. Fraktális képtömörítés	
15.6. Program: IFS rajzoló	
16. Számítógépes animáció	281
16.1. Pozíció-orientáció mátrixok interpolációja	284
16.2. A kameraparaméterek interpolációja	
16.3. Mozgás tervezés	
16.4. Dupla pufferelés	
17. Térfogat modellek és térfogatvizualizáció	289
17.1. Direkt térfogatvizualizációs módszerek	289
17.1.1. Térfogat vetítés	
17.1.2. Térfogati sugárkövetés	
17.2. A voxel szín és az opacitás származtatása	
17.3. Indirekt térfogatvizualizációs módszerek	
17.3.1. Masírozó kockák algoritmusa	
17.3.2. Fourier-tér módszerek	
17.4. Program: masírozó kockák algoritmusa	
18. CD melléklet	315
18.1. Demonstrációs programok a könyv fejezeteihez	315
18.1.1. A programokat felépítő közös fájlok	
18.1.2. Grafikus keretrendszer Ms-Windows és DOS/BGI környezetre	
18.1.3. Példa alkalmazások	
Irodalomjegyzék	327

Életünk folytonos szemlélődéssel telik, figyeljük környezetünket és feldolgozzuk a minket ért hatásokat. A hatások gondolatokat és érzelmeket keltenek bennünk, amelyeket szeretnénk kifejezni, maradandóvá tenni és másokkal megosztani. A képek formájában befogadott és továbbadott információk mindig is fontosak voltak az emberek számára. Képek, rajzok segítségével a bonyolult gondolatokat is egyszerűen és közérthetően kifejezhetjük, az ilyen formában kapott információkat gyorsan befogadjuk, megértjük és könnyen megjegyezzük. A kis gyermekektől kezdve, a festőkön át, a tervező mérnökökig mindenki szívesen "rajzolgat", hogy elképzeléseit mások számára is elérhetővé tegye. A számítógép ebben a folyamatban hatékony társ lehet, mert képes arra, hogy a fejünkben körvonalazódó vázlatokat átvegye és azokból meggyőző képeket készítsen. A számítógép munkája során alkalmazhatja a fizika törvényeit, Dali vagy Picasso stílusát, az építészek vagy a gépészek által követett rajzolási szabályokat, vagy akár teljesen újszerű látásmódot is követhet. Így a kapott eredmény lehet olyan, mintha csak fényképezőgéppel vagy ecsettel készítettük volna, olyan, mintha egy tervezőiroda műszaki rajzolóinak a szorgalmát és ügyességét dicsérné, de bepillantást engedhet olyan világokba is, amelyekből még sohasem értek minket képi hatások, ezért többségünk számára mindig is felfoghatatlanok voltak.

A számítógépes grafika célja az, hogy a számítógépből olyan eszközt varázsoljon, amely vázlatos gondolatainkról képeket alkot. Egy ilyen eszköz sokrétű ismereteket foglal magában. A gondolatainkban szereplő alakzatok megadásához a geometriához kell értenünk, a fény hatásának modellezéséhez az optika törvényeit alkalmazzuk. A számítógép monitorán megjelenő képet az emberi szem érzékeli és az agy dolgozza fel, ezért a számítási folyamatoknak figyelembe kell venniük az emberi szem és agy lehetőségeit és korlátait is. Mivel a "fényképezést" számítógépes programmal kell megoldani, a szoftvertechnológia, algoritmusok és adatszerkezetek ismeretétől sem tekinthetünk el. Ráadásul a képek megjelenítéséhez és előállításához a szűkre szabott idő miatt hardver támogatás is szükséges, ezért a legjobb, ha már most elkezdjük felfrissíteni a hardver ismereteinket.

A számítógépes grafika nehéz, mert nagyon sokféle tudást kell megszereznünk ahhoz, hogy igazán sajátunknak érezzük. Ugyanakkor a számítógépes grafika nagyon

szép is, mert kincseket lelhet benne az integrálegyenletekkel foglalkozó matematikus, az optikában vagy a Maxwell-egyenletekben elmélyedő fizikus, a látás rejtelmeit kutató orvos, az adatstruktúrákkal és az algoritmusokkal bűvészkedő programozó, és az egészet alkalmazó képzőművész vagy tervezőmérnök. Az interaktív grafikus programok, képek, filmek, számítógépes játékok formájában megjelenő eredmény pedig mindannyiunk gyönyörűségére szolgál. Ezen könyv elsősorban szoftvertervezők és programozók számára készült, szerkezete a Budapesti Műszaki Egyetem informatikus és villamosmérnöki szakjain előadott számítógépes grafika tárgy tematikáját követi.

A könyv célja, hogy megtanítsa az olvasót arra, hogy hogyan kell grafikus rendszereket fejleszteni. Az előismeretek is ennek megfelelőek, a könyv nagy része ugyan csupán középiskolai matematikai és fizikai ismereteket használ, azonban néhány rész épít a természettudományi és műszaki egyetemeken oktatott matematikára is.

Habár a könyv elsősorban szoftverfejlesztőknek szól, a magam részéről reménykedem abban, hogy a szoftverfejlesztőkön kívül a grafikus rendszerek felhasználóihoz és a számítógépes játékokat megszállottként űzőkhöz is eljut, és ezáltal jobban megértik és megbecsülik kedvenc alkalmazói rendszerüket, és talán kedvet kapnak ahhoz is, hogy a felhasználók roppant széles táborából a fejlesztők sokkal szűkebb táborába kalandozzanak el.

A könyv algoritmusainak a nyelve

A grafikai algoritmusokat két szinten tárgyaljuk. Először egy matematikai jelöléseket használó pszeudokód segítségével fogalmazzuk meg az algoritmusokat. Az utasításokat külön sorba írjuk vagy vesszővel választjuk el egymástól. Ez a pszeudokód a feltételt a ciklus elején vizsgáló ciklusokat for és endfor illetve while és endwhile utasítások közé, a feltételt a ciklus végén vizsgáló ciklusokat do és while illetve repeat és until utasítások közé, végül a feltétel nélküli ciklusokat loop és endloop utasítások közé helyezi el. A függvényekből, szubrutinokból a return utasítás segítségével térhetünk vissza, a függvények bemeneti és kimeneti paramétereit általában a \rightarrow jel választja el. Ahol ezt külön szeretnénk hangsúlyozni, ott az egész változókat nagy betűvel jelöljük. A szokásos matematikai jelölések mellett a pszeudokód még alkalmazza a legközelebbi egészt megkereső round és az egészrészt előállító trunc függvényeket, valamint a C++ nyelvből kölcsönzött, a változót eggyel inkrementáló ++ operátort és a x változót y-nal növelő x += y műveletet. A Pixel(x, y, color) művelet az x, y koordinátájú képpontot color színre állítja.

A pszeudokódon túl a legfontosabb algoritmusok C++ nyelvű implementációját is megadjuk. Ezen példák megértéséhez alapvető programozási ismeretek szükségesek. A programok elkészítése során arra törekedtünk, hogy azok szépek és könnyen érthetők legyenek.

A CD melléklet

A könyvhöz CD melléklet is tartozik, amelyet Dornbach Péter állított össze részben a saját maga, Fóris Tibor és jómagam által írt programokból, részben szabadon terjeszthető, forrásnyelven rendelkezésre álló programokból. A CD tartalmazza a könyvben tárgyalt példaprogramokat, valamint forráskóddal együtt feltett kész grafikai alkalmazásokat, mint a *StingRay* Monte-Carlo sugárkövető program, az *Eagles* valósidejű helikopter szimulátor, a népszerű *DOOM* játékprogram, a *PovRay* sugárkövető program különböző platformokra a kiegészítő programokkal együtt, *OpenGL* könyvtárak, dokumentációk és példák, *DirectX* futtató környezet, és egy *JPEG* konverter program. A fentieken kívül *MGF*, *3DS* és *PovRay* formátumú geometriai adatbázisokat, ezen adatbázisok értelmező programjait és képeket tettünk a CD-re. A CD lehetőségeit *html* böngészőkkel, azaz például a *Internet Explorer* program segítségével, tárhatjuk fel.

Hogyan készült a könyv?

A szerkesztési munkákat Latex szövegszerkesztővel végeztük, a magyar ékezetekkel és az elválasztással Verhás Péter által készített HION program, a magyar megjegyzésekkel ellátott programlistákkal pedig Kocsis Tamás HUTA programja birkózott meg. A könyvben szereplő képek egy részét a CD-n található mintaprogramok segítségével számítottuk ki és TARGA illetve JPEG formátumban mentettük el. A mások által készített képeket általában GIF vagy JPEG formátumban kaptuk meg. A képeket az xv program alakította egységesen EPS formátumra. A rajzokat Szertaridisz Elefteria részben tgif programmal, részben CorelDraw programmal készítette, és a további műveletekhez ugyancsak EPS formátumban állította elő. A grafikonokat a gnuplot program rajzolta meg a mérési eredményekből. A lefordított Latex fájlt és az EPS formátumú grafikus elemeket a dvips programmal Postscript alakra hoztuk amit egy saját programmal tükröztünk. Ezzel a tükörírásos fekete-fehér oldalakat már nyomtathattuk is, a színes oldalakat, azonban még cián, magenta, sárga és fekete árnyalatokra bontottuk és a 4 színre külön készítettünk nyomdai sablonokat.

Hogyan készült a borító?

A borítót Tikos Dóra és Tüske Imre tervezte. A borítón szereplő 3 dimenziós objektumtér képét sugárkövető algoritmus számította ki. A keletkezett képre a *Photoshop* programmal kerültek rá a feliratok és a logók, majd ugyanezen program bontotta fel a színes képet cián, magenta, sárga és fekete árnyalatokra, amelyeket egyenként levilágítva kaptuk meg a nyomdai maszkokat.

Köszönetnyilvánítás

A könyv a Budapesti Műszaki Egyetem Irányítástechnika és Informatika Tanszékén készült, az itt rendelkezésre álló számítástechnikai infrastruktúra felhasználásával, és a kollegáim támogatásával. Személyes köszönetemet szeretném kifejezni dr. Márton Gábornak, dr. Horváth Tamásnak, Fóris Tibornak, Csébfalvi Balázsnak, Dornbach Péternek, Szalavári Zsoltnak, Pap Gábornak, Fábián Jánosnak, Szirmay-Kalos Barnabásnak és a Bécsi Műszaki Egyetem Számítógépes Grafika Intézete oktatóinak, hogy az általuk készített képeket, programrészleteket felhasználhattam a könyvben, dr. Tamás Péternek, Megyeri Zsuzsának és Keszthelyi Máriának a könyv különböző változatainak az átnézéséért. A kutatási munkát a KHVM Konvergencia stratégia az informatikában elnevezésű pályázat és a T029135 számú OTKA pályázat támogatta.

Egy könyv elkerülhetetlen sorsa az, hogy olvasói kisebb-nagyobb hibákat találnak benne. Hálás lennék azoknak, akik kritikai észrevételeiket eljuttatják hozzám (email: szirmay@iit.bme.hu). A megjegyzéseknek — legyenek azok bármilyen elmarasztalóak is — nemcsak azért örülnék, mert hozzájárulnának ahhoz, hogy egy esetleges későbbi kiadásban kevesebb hiba maradjon, hanem azért is, mert ezek az észrevételek talán azt is mutatnák, hogy vannak, akik a könyvet elmélyülten és gyakorta forgatják.

Budapest, 1999.

Linuay- Kalos Rails

1. fejezet

A számítógépes grafika céljai és feladatai

A számítógépes grafika feladata az, hogy a felhasználó számára egy virtuális világról fényképeket készítsen és azt a számítógép képernyőjén megjelenítse. A világ leírását nevezzük modellezésnek. Ezt követi a képszintézis, amely a memóriában tárolt világról fényképet készít.

1.1. ábra. A számítógépes grafika adatfolyam-modellje

1.1. A modellezés feladatai

A modellezés során virtuális világot írunk le a modellezőprogram utasításai és rögzített elemkészlete segítségével. A modellező lehet a felhasználó, vagy akár az alkalmazói program. A felhasználók a modellt általában interaktív módon építik fel. Az interaktív világépítés során elemi parancssorozattal definiáljuk a modellt, és minden egyes parancs után a képszintézis képet készít a modell aktuális állapotáról. Ily módon folyamatos visszajelzést kapunk a készülő virtuális világról.

1.2. ábra. Egy tipikus modellezőprogram felhasználói felülete

A modellezés terméke a *virtuális világ*, amelyet a felhasználó módosíthat, a képszintézis programmal megjeleníthet, vagy akár más programokkal analizálhat. A módosíthatóság és más programokkal történő elemezhetőség érdekében a virtuális világ modell belső reprezentációja nem kötődhet nagyon szorosan a képszintézishez, hanem természetes fogalmakat és dimenziókat kell használnia. A felhasználói interfészen megjelenő fogalmak (objektum, primitív, stb.) alapján építkező virtuális világokban könnyen meg-

1.1. A modellezés feladatai 17

oldható, hogy a felhasználó egy modellelemet kiválasszon, és azt interaktív eszközökkel módosítsa, esetleg le is törölje. A természetes dimenziókat használó tér referencia rendszerét gyakran *világ-koordinátarendszer*nek nevezzük. Az interaktív rendszerekben szükségképpen megjelenik az utolsó műveletek hatását megszüntető *visszavonás* (*Undo*) művelet. Ezt többféleképpen is megvalósíthatjuk. A legegyszerűbb esetben tároljuk a világmodell korábbi állapotait és szükség esetén azokhoz térünk vissza. Jobb megoldásnak tűnik, ha a felhasználó által kiadott parancsokat tároljuk, és vagy az utolsó műveletek inverzét hajtjuk végre, vagy a teljes modellt letöröljük és a műveletsort a korábbi műveletig újra lejátsszuk.

1.3. ábra. Egy egyszerű rajzolóprogram (Paintbrush)

Egyszerűbb *rajzolóprogram*ok (például a *Paintbrush*) magát a képet tekintik a virtuális világ modelljének. Ilyen rendszerekben a korábban bevitt elemek nem választhatók ki, nem módosíthatók és nem távolíthatók el, csupán újabb elemekkel elfedhetők. Az ilyen rendszerek használata tehát egyrészt nehézkes, másrészt az elkészült "modell" a megjelenítésen kívül másra nem használható.

1.2. A képszintézis

A képszintézis (rendering vagy image synthesis) célja a virtuális világ lefényképezése. A fényképezés során többféle "látásmódot" követhetünk. A két legkézenfekvőbb módszer a rajzolás és a természet folyamatainak a szimulálása. Az első esetben a keletkező képek műszaki rajzszerűek lesznek, a második esetben pedig a keletkező képek annyira fognak hasonlítani a valódi fényképekre, amennyire a szimuláció során követtük a fizikai törvényeket (1.4., 17.19. ábra). Habár ezen könyv döntő részben a 2 dimenziós műszaki rajz és a 3 dimenziós fényhatások fizikai törvényeit alkalmazó fényképezési eljárásokkal foglalkozik, a számítógépes grafika lehetőségei nem merülnek ki ezekben. Fényképezhetünk absztrakt világokat is, és ezáltal láthatóvá tehetjük a gazdasági folyamatokat, bonyolult áramlási rendszereket (1.5. ábra), ipari irányítási rendszerek pillanatnyi állapotát (1.7. ábra), egy számítógépes tomográf vagy más fizikai mérőeszköz által összegyűjtött adathalmazt (1.6. ábra), egy többdimenziós függvényt vagy akár egy síkbeli illetve térbeli gráfot (1.8. ábra).

1.4. ábra. 3D világok fényképei: Bal: a fény fizikailag pontos szimulációja [SK98b]; Jobb: Egyszerűsített árnyalási modellel dolgozó valósidejű helikopter szimulátor [Dor97]

Az igazán valósághű képek előállítását *fotorealisztikus képszintézis*nek nevezzük. *Valósághűség*en azt értjük, hogy a számítógép monitorán kibocsátott hullámok megközelítőleg hasonló illúziót keltenek, mintha a valós világot szemlélnénk.

Ebben a folyamatban három alapvető szereplő vesz részt:

 Az első a számítógépes program, amely a világleírás alapján szimulálja a virtuális térben bekövetkező fényhatásokat és vezérli a grafikus megjelenítőt. 1.2. A képszintézis 19

1.5. ábra. Absztrakt világok fényképei: gazdasági és áramlástani modellek vizualizációja (Bécsi Műszaki Egyetem, Számítógépes Grafika Intézet) [Löf98]

1.6. ábra. Absztrakt világok fényképei: számítógépes tomográf mérési eredményeinek vizualizációja [BSKG97]

1.7. ábra. Bp-Hegyeshalom vasút folyamat-vizualizációja [SKMFF96]

1.2. A képszintézis 21

1.8. ábra. Absztrakt világok fényképei: függvények és gráfok megjelenítése [SK94]

- A második a grafikus megjelenítő, amely a képernyő kijelölt pontjait a vezérlés által meghatározott spektrumú fény kibocsátására gerjeszti.
- Végül az utolsó szereplő az emberi szem, amely a fényhullámokat felfogja és az agyban színérzetet hoz létre.

Képszintézis rendszerek létrehozása során tehát ismernünk kell a fény-anyag kölcsönhatás alapvető fizikai modelljét, a megjelenítő rendszerek képességeit és az emberi szem tulajdonságait egyaránt.

Ezek alapján nyilvánvaló, hogy a számítógépes programnak olyan pontosan kell szimulálnia a valós fényhatásokat, amilyennek a követésére a kijelző egyáltalán képes, és amilyennek a megkülönböztetésére a szem alkalmas. Ez utóbbi miatt a számítógépes grafika nem csupán a fizikai illetve matematikai modellek alkalmazása, hanem olyan tudomány, amely az emberi szem korlátait is képes saját előnyére fordítani. Erre annál is inkább szüksége van, mert a bonyolult fizikai modellek megoldásához roppant kevés idő áll rendelkezésre. Gondoljunk csak a mozgókép sorozatot valós időben előállító repülőgép szimulátorra, vagy csupán egy kommersz játékprogramra. Ahhoz, hogy a mozgás folytonosnak tűnjön, másodpercenként legalább 15 képet kell előállítani. Mivel egy közepesnél jobb képernyő képe viszont kb. egy millió képpontból áll, egyetlen képpont színének meghatározásához átlagosan kb. $1\sec/15/10^6\approx 60$ nsec (!) idő áll rendelkezésre, ami viszont az operatív tár egyetlen memória ciklusidejénél is kisebb. Gondolkozzunk el ezen egy kicsit! Egy képpont színének meghatározásához ki kell nyomoznunk, hogy abban melyik objektum látszik, majd a fényhatásokat szimulálva

számítanunk kell a róla visszaverődő színt. Ehhez a processzornak számtalan utasítást kell végrehajtania, amelyek mindegyike több ciklusból áll, majd beírnia az eredményt a tárba. Hogyan is lehetséges a számításokat és a beírást kevesebb idő alatt elvégezni, mint egyetlen ciklusidő, vagy akár az eredmény beírásának az ideje? Ezen könyv elkészítésekor többek között erre a kérdésre próbáltunk választ adni.

A képszintézis algoritmusai függnek attól, hogy a virtuális modell 2 vagy 3 dimenziós (mérnöki vizualizációban ennél magasabb dimenziók is előfordulhatnak), ezért a képszintézis algoritmusokat alapvetően eszerint osztályozzuk. Tehát a két dimenziós, vagy röviden 2D modellek megjelenítése esetén 2D képszintézisről vagy 2D számítógépes grafikáról, míg a három dimenziós, azaz 3D modellek megjelenítése esetén 3D grafikáról fogunk beszélni.

1.3. A képszintézis lépései

1.9. ábra. 2D és 3D képszintézis összehasonlítása

A 2D képszintézis egy téglalap alakú 2D ablakot (window) helyez a síkban ábrázolt virtuális világra, lefényképezi azon objektumokat, objektumrészleteket, amelyek az ablak belsejébe esnek, majd a képet a képernyő ugyancsak téglalap alakú nézetében (viewport) megjeleníti. A 3D képszintézis ezzel szemben egy általános helyzetű téglalapot tesz be a világ-koordinátarendszerbe, szemet vagy kamerát helyez el az ablak

mögött és a világnak a szemből az ablakon keresztül látható részéről készít képet, amit végül ugyancsak a képernyő nézetében jelenít meg.

1.3.1. Objektum-primitív dekompozíció

A virtuális világot általában az adott alkalmazási területen természetes fogalmakkal definiáljuk és tároljuk. Például egy térinformatikai rendszer alapvető objektumai az épület, út, hálózat, település, stb. Egy általános képszintézis program viszont nyilván nem készülhet fel egyszerre az összes alkalmazási terület fogalmainak megértésére, hanem a saját alkalmazásfüggetlen objektumaival dolgozik. A képszintézis program által kezelt alapobjektumok általában a *geometriai primitív*ek, mint például a poligon, gömb, fényforrás, stb. Ezért a képszintézis első lépése a virtuális világmodellnek, a képszintézis program számára történő lefordítása.

1.3.2. Világ-kép transzformáció

A világ-koordinátarendszerben rendelkezésre álló primitívek alapján a képernyőn — azaz egy másik koordináta rendszerben — kell képet készíteni. A koordinátarendszer váltásához geometriai transzformációk szükségesek. 3D grafikában ez a transzformáció vetítést is tartalmaz, hiszen a modell 3 dimenziós, míg a kép mindig 2.

1.3.3. Vágás

A képszintézis a modell azon részét fényképezi, amely a 2D ablakon belül, vagy a 3D ablak és a szem által definiált végtelen piramison belül helyezkedik el. Az ezeken kívül eső objektumokat, objektumrészleteket valamikor ki kell válogatni és el kell hagyni. Ezt a folyamatot nevezzük *vágás*nak (*clipping*).

1.3.4. Takarási feladat

A transzformációk több objektumot is vetíthetnek ugyanarra a képpontra. Ilyenkor el kell döntenünk, hogy melyiket jelenítsük meg, azaz melyik takarja a többi objektumot az adott pontban. Ezt a lépést *takarás*nak, vagy *takart felület/él elhagyás*nak (*hidden surface/line elimination*) nevezzük. 2D grafikában nincs olyan geometriai információ, amely alapján ezt a döntést meghozhatnánk, ezért a *takarás*t az objektumok egy különleges tulajdonsága, az ún. *prioritás*a alapján határozhatjuk meg. 3D grafikában nyilván a szempozícióhoz legközelebbi objektumot kell választanunk.

1.3.5. Árnyalás

Ha sikerült eldönteni, hogy egy képpontban melyik objektum látszik, akkor a képpontot ennek megfelelően kell kiszínezni. 2D grafikában a színezés az objektum saját színével történik. 3D grafikában viszont a látható szín a térben fennálló fényviszonyok bonyolult függvénye. Összehasonlítva a 2D és 3D grafika képszintézis lépéseit megállapíthatjuk, hogy a 3D grafikát a takarás és az *árnyalás* (*shading*) teszi nehezebbé a 2D grafikánál.

1.3.6. Színleképzés a megjelenítőeszközre

Az árnyalás a kép egyes pontjain keresztül a szembe jutó fény intenzitását határozza meg a hullámhossz függvényében. A hullámhosszfüggő intenzitás-eloszlást *spektrum*nak nevezzük. Ezen spektrum által keltett színérzetet kell a megjelenítőeszköz lehetőségeinek a figyelembevételével a lehető legpontosabban visszaadni, azaz a spektrumot le kell képezni az eszköz által megjeleníthető hullámhosszokra és intenzitásokra (*tone-mapping*).

1.4. A számítógépes grafika jelfeldolgozási megközelítése

A grafikus program a képet a számítógép memóriájában állítja elő, amely alapján a megjelenítő elektronika vezérli a monitort. A kép memóriában lévő reprezentációját digitális képnek nevezzük. A digitális kép a folytonos, 2 dimenziós képet véges számú elemből építi fel. Amennyiben az alapvető építőelem a szakasz, vektorgrafikáról beszélünk. Ha az építőelem téglalap alakú kicsiny terület, ún. pixel, akkor a rendszerünk rasztergrafikus. Jelen jegyzet csak a rasztergrafikus megjelenítőkkel foglalkozik. A pixel szó a picture és element, kép és elem angol szavak kompozíciója.

A digitális képben tárolt szakaszhalmazt, vagy pixelhalmazt a monitoron kell megjelenítenünk. A jelenleg használatos *katódsugár csöves monitor*ban a megjelenítő egyes pontjait vörös, kék és zöld színű fény emittálására bírhatjuk 3 elektronsugár segítségével. A három különböző hullámhosszon kibocsátott fotonok arányának változtatásával a szemben különböző színérzet keletkezik.

1.5. Rasztergrafikus rendszerek felépítése

A rasztergrafikus rendszereknél a kép szabályos négyzetrácsba szervezett pixelekből állítható össze. Az egyes pixelek színét meghatározó számot speciális memóriába, a rasztertárba kell beírni. Az elektronsugarak állandó pályát járnak be és egymás alatti vízszintes vonalakat húzva végigpásztázzák a képernyőt. A megjelenítő elektronika a pásztázás alatt rasztertár tartalom alapján modulálja az elektronsugarak intenzitását, ily módon kialakítva a képet.

Az 1.10. ábra egyszerű rasztergrafikus rendszert mutat be. A *grafikus processzor* a rasztertárat illeszti a számítógép rendszerbuszához és elvégzi az alacsonyszintű rajzolási műveleteket. A legegyszerűbb rendszerekben a grafikus processzor el is maradhat, ilyenkor a számítógép központi processzora hajtja végre a rajzolási műveleteket is.

1.10. ábra. Rasztergrafikus rendszerek felépítése (valós szín mód)

A rasztertár olyan nagy kapacitású, speciális szervezésű memória, amely minden egyes pixel színét egy memóriaszóban tárolja. A szó szélessége (n) a legegyszerűbb rendszerekben általában 4, személyi számítógépekben 8, grafikus munkaállomásokban 12, 24 sőt 36, vagy 48. A pixel színének a szavakban tárolt biteken történő kódolására két módszer terjedt el.

- 1. **Valós szín mód** esetén a szót három részre osztjuk, ahol az egyes részek a vörös, zöld és kék színkomponensek színintenzitását jelentik.
- Indexelt szín mód, vagy más néven pszeudo szín mód esetén az egyes szavakat dekódoló memória, ún. lookup tábla (LUT) vagy paletta címeiként értelmezzük, és a vörös, zöld és kék komponensek tényleges intenzitásait ebben a dekódoló memóriában helyezzük el (1.11. ábra).

Ha a rasztertárban egy pixelhez n bit tartozik, akkor valós szín módban a megjeleníthető színek száma 2^n . Indexelt szín módban az egyszerre megjeleníthető színek száma ugyancsak 2^n , de, hogy melyek ezek a színek, az már a paletta tartalmától függ. Ha a palettában egy színkomponenst m biten ábrázolunk, akkor a lehetséges színek száma 2^{3m} .

Látnunk kell, hogy az indexelt szín mód egy pótmegoldás, hogy a pixelenként kevés bitet tartalmazó grafikus rendszerekben a rövidre szabott takarónkat meghosszabbítsuk.

1.11. ábra. Indexelt szín módot használó rasztergrafikus rendszer felépítése

A monitor képének stabilizálásához a rasztertár tartalmát rendszeresen (legalább másodpercenként 50-100-szor) ki kell olvasni, és a képernyőre a képet újra fel kell rajzolni. A pixelek egymás utáni kiolvasását a *képernyőfrissítő egység* vezérli, amely szinkronizációs jeleket biztosít a monitor számára annak érdekében, hogy az elektronsugár a pixelsor végén fusson vissza a képernyő bal szélső oldalára.

A monitor számára a digitális színinformációt analóg jellé kell átalakítani, amelyet három D/A átalakító végez el.

A pixel sorok és oszlopok száma definiálja a grafikus rendszer *felbontás*át. Egy olcsóbb rendszerben a tipikus felbontás 640×480 , 1024×768 , a professzionális grafika pedig 1280×1024 , vagy 1600×1200 felbontással jellemezhető. Professzionális rendszerekben tehát a pixelek száma 1 millió felett van. Figyelembe véve, hogy egy másodperc alatt ezt az 1 millió pixelt legalább 50-szer kell kiolvasni, az egy pixel kiolvasására, dekódolására és digitál-analóg átalakítására kevesebb mint 20 nsec áll rendelkezésre.

A rasztertár mérete — színkomponensenként 8 bitet feltételezve $1280 \times 1024 \times 24$ bits ≈ 3 Mbyte — nem engedi meg, hogy ilyen nagysebességű memória áramkörökből építkezzünk. Szerencsére a rasztertárhozzáférés koherens jellege (mindig soronként, egy soron belül pedig egymás utáni pixelenként vesszük elő az adatokat a képernyőfrissítéshez) lehetővé teszi, hogy a pixeleket párhuzamosan olvassuk ki a rasztertárból. A kiolvasott pixelek egy shift-regiszterbe kerülnek, amelynek végén az egymás utáni pixelek már 20 nsec-ként kicsöpögtethetők.

1.6. A képek tárolása és utófeldolgozása

Azon túl, hogy a képszintézis által kiszámított kép általában a megjelenítőeszközre kerül, gyakran felmerül az igény, hogy a képet egy állományba elmentsük és egy másik rendszerbe átvigyük. A képeket akkor vihetjük át másik rendszerbe, ha az állomány formátuma szabványos és a másik rendszer számára érthető. Számos különböző formátum

létezik, amelyek tárolhatják a kép méretét és a képpontok színértékeit tömörítetlen formában (*BMP*, *TARGA*, stb.) vagy különböző veszteség nélküli vagy veszteséges tömörítési módszerrel sűrítve (*GIF*, *TIFF*, *JPEG*, *PCX*, stb.). Egyes formátumokban (*MPEG*) nem csupán önálló képeket, hanem képsorozatokat, animációkat is tárolhatunk.

1.12. ábra. Egy képfeldolgozó program kezelői felülete (xv)

A képfeldolgozó programok a grafikus rendszereknek egy különleges típusát jelentik. Ezen rendszerek bemeneti adatként egy digitális képet kapnak, amelyből általában transzformált képeket, ritkábban a képek alapján valamilyen geometriai információt állítanak elő [SP92].

1.7. Program: TARGA formátumú képállományok kezelése

Ebben a fejezetben TARGA formátumú képek kiírásához és beolvasásához adunk meg osztályokat. A TGAOutputFile osztály segítségével a képet egy *TARGA* formátumú képállományba menthetjük, a TGAInputFile felhasználásával pedig a képet az állományból betölthetjük. Egy TARGA formátumú állomány egy 18 bájtos fejrésszel kezdődik, ami tartalmazza a kép szélességét (width), magasságát (height), és az egyes pixelekhez tartozó bitek számát (jelen megoldásban egy pixelt 1 bájtos vörös (r), 1 bájtos zöld (g) és 1 bájtos kék (b) értékkel írunk le). A két implementációs osztály a konstruktorban kezeli a fájl fejrészét, a Pixel tagfüggvény pedig az egyes pixeleket kiírja, illetve beolvassa.

```
class TGAOutputFile {
FILE * file;
public :
   TGAOutputFile( char * outputfilename, int width, int height ) {
      file = fopen(outputfilename, "wb");
      fputc(0,file); fputc(0,file); fputc(2,file);
      for (int i = 3; i < 12; i++) fputc (0, file);
      fputc(width & 0xff, file);
      fputc(width / 256, file);
      fputc(height & 0xff, file);
      fputc(height / 256, file);
      fputc(24, file); fputc(32, file);
   void Pixel( double r, double g, double b ) {
      if (b > 1.0) b = 1.0; fputc(b * 255, file);
      if (g > 1.0) g = 1.0; fputc(g * 255, file);
      if (r > 1.0) r = 1.0; fputc(r * 255, file);
   ~TGAOutputFile() { fclose(file); }
};
//----
class TGAInputFile {
FILE * file;
public:
   TGAInputFile( char * inputfilename, int& width, int& height ) {
      file = fopen(inputfilename, "rb");
      for(int i = 0; i < 12; i++) fgetc(file);
      width = fgetc(file) + fgetc(file) * 256L;
      height = fgetc(file) + fgetc(file) * 256L;
      fgetc(file); fgetc(file);
   void Pixel( double& r, double& g, double& b ) {
      b = fgetc(file) / 255.0;
      g = fgetc(file) / 255.0;
      r = fgetc(file) / 255.0;
   ~TGAInputFile() { fclose(file); }
};
```

2. fejezet

Grafikus szoftver alrendszerek felépítése

A 2.1. ábra egy tipikus interaktív grafikus program struktúrát mutat be.

2.1. ábra. A grafikus szoftver felépítése

A felhasználó a *grafikus beviteli eszköz*ök segítségével avatkozhat be a program működésébe. A grafikus beviteli eszközök 2D abszolút vagy relatív pozíció adatot, 3D abszolút vagy relatív pozíció adatot vagy karaktersorozatot szolgáltathatnak. A beviteli eszközöket megszakítási rutinok illesztik a programhoz. A megszakítási rutinok a beviteli eszközök eseményeit egy vagy több *eseménysor*ba pakolják. A grafikus program ezt az eseménysort figyeli, és ha abban megjelenik valami, akkor reagál rá.

2.1. Programvezérelt és eseményvezérelt interakció

A felhasználói beavatkozások kezelésére alapvetően két programozási technikát használhatunk. A hagyományos ún. programvezérelt interakcióban a program tölti be az irányító szerepet, a felhasználó pedig válaszol a feltett kérdésekre. Amikor a számítások során a programnak új bemeneti adatra van szüksége, erről értesítést küld a felhasználónak, majd addig várakozik, amíg az választ nem ad a kérdésre. A jól ismert printf-scanf C függvénypár ennek tipikus megvalósítása. Ebben az esetben a begépelt karakterek értelmezéséhez szükséges állapotinformációt (például a 123 valakinek a kora vagy egy banki átutalás összege) az határozza meg, hogy pontosan hol tartunk a program végrehajtásában. A programvezérelt interakció alapvető hiányossága, hogy egyszerre egyetlen beviteli eszköz kezelésére képes. Ha ugyanis a program felteszi a kérdését a felhasználónak, akkor addig nem lép tovább, amíg a scanf függvény vissza nem tér a kérdésre adott válasszal, így ezalatt rá sem nézhet a többi beviteli eszközre. A másik fő probléma, hogy a felhasználói kommunikáció és a program feldolgozó része nem válik el élesen egymástól. Emiatt a felhasználói kommunikációban nem használhatunk előre definiált magas szintű könyvtári szolgáltatásokat. Következésképpen csak korlátozott minőségű felhasználói kommunikáció valósítható meg elfogadható ráfordítás árán.

2.2. ábra. Programvezérelt és eseményvezérelt programok szerkezete

Az eseményvezérelt interakcióban a felhasználó irányít, a program passzívan reagál a felhasználói beavatkozásokra. A program nem vár egyetlen eszközre sem, hanem periodikusan teszteli, hogy valamelyik eszközön történt-e esemény, így tetszőleges számú beviteli eszköz is kezelhető. Minden pillanatban a felhasználó választhat, hogy melyik beviteli eszközt használja. Ebben az esetben az esemény értelmezését nem végezhetjük el aszerint, hogy éppen hol tartunk a programban, hiszen az eseményt mindig ugyanott, az eseménysor tesztelésénél kezdjük feldolgozni. Az események értelmezéséhez szük-

séges állapotinformációt explicit módon, változókban kell tárolni. Vegyük észre, hogy az eszközök tesztelése és az eseménysor kezelése, sőt bizonyos alapvető eseményekre elvárt reakció (például az egér mozgatásakor a kurzort is mozgatni kell) független az alkalmazástól, ezért ezt egyszer kell megvalósítani és egy könyvtárban elérhetővé tenni. Az alkalmazásfüggő rész az egyes eseményekre reagáló rutinok gyűjteménye (szokásos elnevezések az esemény kezelő vagy trigger). Ez egyrészt előnyös, mert az alkalmazói program fejlesztőjét megkímélhetjük az interakció alapvető programjainak a megírásától. Másrészt viszont felborul az a jól megszokott világképünk, hogy a belépési ponttól kezdve a program egy jól meghatározott, átlátható szálon fut végig. A programfejlesztő szempontjából az eseményvezérelt rendszerek különálló triggerek látszólag független gyűjteményei, ahol még azt sem mindig mondhatjuk meg, hogy ezeket milyen sorrendben hajtja végre a program. Az eseményvezérelt rendszerek programozása tehát nehezebb, de a nagyobb odafigyelés feltétlenül megtérül. Ezt bizonyítja az a tény is, hogy a modern, interaktív szoftvereket előállító eszközök mind az eseményvezérelt filozófiát követik.

A eseményekre reagáló program egyrészt modellezési feladatokat végezhet, azaz megváltoztathatja a virtuális világot reprezentáló adatstruktúrát (vagy adatbázist), másrészt módosíthatja a kamera paramétereit. Mindkét esetben a képet újra kell számítani a képszintézis alrendszer segítségével. A program az újraszámított képet a grafikus megjelenítő eszközön mutatja meg a felhasználónak.

2.2. A grafikus hardver illesztése

A program a grafikus hardver szolgáltatásait a *grafikus könyvtár*ak segítségével érheti el. A grafikus könyvtárak általában hierarchikus rétegeket képeznek, és többé-kevésbé szabványosított interfésszel rendelkeznek. A grafikus könyvtárak kialakításakor igye-keznek követni a *logikai ki-bevitel* és a *rajzolási állapot* elveit.

A logikai ki-bevitel azt jelenti, hogy a műveletek paraméterei nem függnek a hardver jellemzőitől, így az erre a felületre épülő program hordozható lesz. A koordinátákat például a megjelenítőeszköz felbontásától függetlenül célszerű megadni, a színt pedig elvonatkoztatva az egy képponthoz tartozó rasztertárbeli bitek számától.

A rajzolási állapot használatához az a felismerés vezet, hogy már az olyan egyszerűbb grafikus primitívek rajzolása is, mint a szakasz, igen sok jellemzőtől, ún. attribútumtól függhet, például a szakasz színétől, vastagságától, mintázatától, a szaggatási közök színétől és átlátszóságától, a szakaszvégek lekerekítésétől, stb. Ezért ha a primitív összes adatát egyetlen függvényben próbálnánk átadni, akkor a függvények paraméterlistáinak nem lenne se vége se hossza. A problémát a rajzolási állapot koncepció bevezetésével oldhatjuk meg. Ez azt jelenti, hogy a könyvtár az érvényes attribútumokat egy belső táblázatban tartja nyilván. Az attribútumok hatása mindaddig érvényben ma-

rad, amíg meg nem változtatjuk azokat. Az attribútumok kezelése a rajzolóparancsoktól elkülönített attribútumállító függvényekkel lehetséges.

Számos grafikus könyvtár ismeretes, amelyek kapcsolódhatnak az operációs rendszerhez (*Ms-Windows GDI, X-Window*, a hardverhez (*OpenGL, Starbase, TEK-STI*), a programozási nyelvhez (ObjectWindows, MFC), de léteznek szabványos, gyártófüggetlen interfészek is (*GKS, CGI, PHIGS*, stb.). Az elérhető szolgáltatások köre a szakaszrajzolástól egészen a textúrákkal kiegészített 3D felületek megjelenítéséig terjedhet.

2.3. Program: egy egyszerű grafikus könyvtár

A grafikus könyvtárak általában a bemeneti események feldolgozását az esemény elosztóig bezárólag végzik el, a grafikus megjelenítő vezérlését pedig az alacsony szintű primitívek megjelenítésétől kezdve vállalják fel. A következőkben egy egyszerű grafikus könyvtárat mutatunk be, amely a beviteli eszközöket eseményvezérelten kezeli, a grafikus kimenetet pedig mind fizikai, mind pedig logikai módon illeszti. A logikai szint a fizikai szintre épül, elfedve annak hardverfüggő sajátosságait.

A könyvtárunktól mindössze a pont és a szakasz rajzolását várjuk el. A pont és a szakasz attribútumai a pont illetve a szakasz színe és a *raszter operáció*, amely azon logikai műveletet határozza meg, amelyet a rasztertár eredeti tartalmára és a szakasz színére végre kell hajtani, hogy a rasztertár új értékét előállítsuk. Tekintsük továbbá a kezdőpont koordinátáit is a szakasz attribútumának, így a szakaszrajzolás függvényben csak a végpont szerepel. A könyvtár rutinjai a fizikai szinten a következők:

```
typedef int PCoord;
typedef long PColor;
void Pixel(PCoord X, PCoord Y, PColor color);
void PLine(PCoord X, PCoord Y);
void PMove(PCoord X, PCoord Y);
void PSetColor( PColor color );
```

Ezekben a rutinokban az X, Y koordináták a pixelkoordinátákban értendők. A fizikai címek használatához szükséges lehet a megjelenítőeszköz felbontásának lekérdezése is:

```
void GetResolution( PCoord& px, PCoord& py );
```

A raszteroperációk közül a rasztertárnak az új színnel történő átírását (SET) és az új és a régi szín bitenkénti modulo 2 összegét (ún. kizáró vagy, illetve XOR) engedjük meg.

```
typedef enum {SET, XOR} ROP;
void RasterOp( ROP rop );
```

A logikai ki-bevitel elveinek megfelelően a rutinok paraméterezése nem függhet az aktuális eszköz fizikai jellemzőitől, mint például a felbontástól, vagy az egy pixelhez tartozó bitek számától. A koordináták logikai megadásának egyik lehetséges módja, ha a paraméterek a teljes ablakméret arányában adják a kívánt pozíciót, így a koordináták egy [0...1] tartományban lévő értéket vehetnek fel. A logikai koordinátákat Coord típussal definiáljuk. Az eszközkoordináták maximális értékének lekérdezéséhez létrehozzuk a GetDevice (Coord& x, Coord& y) függvényt. A kimenetet valóban logikai szinten kezelő könyvtáraknál tehát ez az x és y változóba 1 értéket ír. Fizikai szintű eszközkezelés esetén a változókba a vízszintes és a függőleges felbontás kerül. A színt logikai módon a rendszerben elérhető maximum értékre vetített relatív R, G, B értékekkel adhatjuk meg. Összefoglalva a könyvtár logikai szintű szolgáltatásai:

```
typedef double Coord;
typedef struct { double R, G, B; } Color;

void GetDevice(Coord& x, Coord& y);
void Pixel(Coord x, Coord y, Color color);
void DrawLine(Coord x, Coord y);
void Move(Coord x, Coord y);
void SetColor(Color color);
void Clear();
```

Az eseményvezérelt filozófiának megfelelően a bemeneti eseményekről a könyvtár értesíti az alkalmazást, szemben a programvezérelt megoldással, amikor az alkalmazás rákérdez, hogy történt-e bemeneti esemény. Az egyszerű könyvtárunk egér és billentyűzet eseményeket kezel. A könyvtár egy billentyű lenyomásakor a KeyboardEvent üzenetet küld az alkalmazásnak, a bal egérgomb lenyomásakor egy MouseLeftBtnDown üzenetet, az egérgomb elengedésekor egy MouseLeftBtnUp üzenetet, végül az egér mozgatásakor MouseMove üzeneteket. A KeyboardEvent üzenet paramétere a lenyomott billentyű ASCII kódja, az egérüzenetek paramétere pedig a kurzor aktuális pozíciója. Előfordulhat, hogy valamilyen ok miatt — például a felhasználó egy másik ablakot húzott el ezen ablak előtt — az ablak tartalma érvénytelenné válik, és ezért újra kell rajzolni. Erről a könyvtár a ReDraw üzenettel értesítheti az alkalmazást.

Összefoglalva a következő rutinokat az alkalmazásban kell implementálni, és ezeket a könyvtár hívja a megfelelő események bekövetkeztekor:

```
void KeyboardEvent( int keyASCII );
void MouseLeftBtnDown( Coord x, Coord y );
void MouseLeftBtnUp( Coord x, Coord y );
void MouseRightBtnDown( Coord x, Coord y );
void MouseRightBtnUp( Coord x, Coord y );
void MouseMove( Coord x, Coord y );
void ReDraw();
```

Objektum-orientált környezetekben a grafikus kimenethez kapcsolódó műveleteket általában egyetlen ablakosztályban Window foglaljuk össze. A konkrét alkalmazás ebből örökléssel hozza létre az elvárt működésnek megfelelő ablakot. Mivel az ablakok "egyénisége" abból adódik, hogy a bemeneti eseményekre másképpen reagálnak, az öröklés során a eseménykezelő virtuális függvényeket át kell definiálni. Az új függvények természetesen használhatják a könyvtárban megírt rajzoló parancsokat.

```
class Window {
//-----
   void GetDevice( Coord& x, Coord& y );
   void Pixel(Coord x, Coord y, Color c);
   void SetColor( Color c );
   void Move(Coord x, Coord y);
   void DrawLine(Coord x, Coord y);
   void RasterOp( ROP r );
   void Clear();
   virtual void KeyboardEvent( int keyASCII ) {}
   virtual void MouseLeftBtnDown( Coord x, Coord y ) {}
   virtual void MouseLeftBtnUp( Coord x, Coord y ) {}
   virtual void MouseRightBtnDown( Coord x, Coord y ) {}
   virtual void MouseRightBtnUp( Coord x, Coord y ) {}
   virtual void MouseMove( Coord x, Coord y ) {}
   virtual void ReDraw() {}
public:
   Window() { pwindow = this; }
   void Execute();
};
extern Window * pwindow = NULL;
```

Végül a program indulásakor a könyvtár az alkalmazás inicializálásához meghív egy AppStart függvényt, ami az alkalmazás belépési pontjának tekinthető. Az AppStart létrehozza az alkalmazói ablak egy példányát, és a könyvtár Execute függvényével beindítja az üzenetsor ciklikus lekérdezését:

```
class MyWindow : public Window { ... };

void AppStart() {
    MyWindow win;
    win.Execute();
}
```

2.3.1. A logikai és a fizikai szintek összekapcsolása

A logikai szinten elérhető szolgáltatások a fizikai szint szolgáltatásaira épülnek. Ehhez a bemeneti láncon a fizikai eszközkoordinátákat logikai eszközkoordinátákra kell alakítani, a kimeneti láncon pedig éppen fordítva, a logikai koordinátákat vissza kell alakítani eszközfüggő értékekre.

A transzformációk elvégzéséhez feltételezzük, hogy az eszköz fizikai felbontásának megfelelően már kitöltöttük a device téglalap változót, amivel az átalakítás már könnyen elvégezhető:

```
typedef struct { int left, top, right, bottom; } RECT;
RECT device;

void Physical2LogicalCoord( PCoord X, PCoord Y, Coord& x, Coord& y ) {
    x = (Coord)(X - device.left) / (device.right - device.left);
    y = (Coord)(Y - device.bottom) / (device.top - device.bottom);
}

void Logical2PhysicalCoord( Coord x, Coord y, PCoord& X, PCoord& Y ) {
    X = x * (device.right - device.left) + device.left;
    Y = y * (device.top - device.bottom) + device.bottom;
}
```

A színek átalakításához a paletta azon bejegyzéseit kell azonosítani, amelyek a leginkább hasonlítanak a megjelenítendő színre. Amennyiben a paletta a BLACK, BLUE, GREEN, RED, YELLOW, MAGENTA, CYAN és WHITE sorokban rendre a fekete, kék, zöld, piros, sárga, magenta, cián és fehér színeket tartalmazza, akkor a konverzió a következőképpen végezhető el:

```
int Logical2PhysicalColor( Color c ) {
   if (col.R <= 0.5 && col.G <= 0.5 && col.B <= 0.5) return BLACK;
   if (col.R < 0.5 && col.G < 0.5 && col.B >= 0.5) return BLUE;
   if (col.R < 0.5 && col.G >= 0.5 && col.B < 0.5) return GREEN;
   if (col.R >= 0.5 && col.G < 0.5 && col.B < 0.5) return RED;
   if (col.R >= 0.5 && col.G < 0.5 && col.B < 0.5) return YELLOW;
   if (col.R >= 0.5 && col.G < 0.5 && col.B < 0.5) return MAGENTA;
   if (col.R < 0.5 && col.G >= 0.5 && col.B >= 0.5) return CYAN;
   if (col.R >= 0.5 && col.G >= 0.5 && col.B >= 0.5) return WHITE;
}
```

Ezek felhasználásával a kimenetet logikai szinten kezelő szolgáltatásokat a fizikai szintű szolgáltatásokra vezethetjük vissza:

```
void Window :: Move( Coord x, Coord y ) {
    PCoord X, Y; Logical2PhysicalCoord( x, y, X, Y ); PMove( X, Y );
}

void Window :: DrawLine( Coord x, Coord y) {
    PCoord X, Y; Logical2PhysicalCoord( x, y, X, Y ); PLine( X, Y );
}

void Window :: Pixel( Coord x, Coord y, Color col ) {
    PCoord X, Y; Logical2PhysicalCoord(x, y, X, Y); Pixel(X, Y, col);
}

void Window :: SetColor( Color col ) {
    PSetColor( Logical2PhysicalColor( col ) );
}
```

2.3.2. A könyvtár megvalósítása DOS operációs rendszer alatt

A billentyűzet és az egér illesztését elvégezhetjük a hardver portok fizikai kezelésével is, de jelentős fáradságot takarítunk meg, ha kihasználjuk azt, hogy a a DOS/BIOS operációs rendszer, illetve a C könyvtár már számos dolgot megvalósít a billentyűzet és az egér kezeléséből. A billentyűzetet kezelő operációs rendszer szolgáltatásokat legkönynyebben C könyvtári rutinokon keresztül érhetjük el. A kbhit rutin ellenőrzi, hogy történt-e klaviatúra esemény, a getch rutin pedig visszaadja a leütött billentyű kódját.

Az egérkezelő DOS hívásokhoz sajnos nem tartoznak C könyvtári függvények, ezért a gépi kódú részleteket magunknak kell a magas szintű nyelvhez illeszteni. Az egérkezelő funkciók a 33h DOS híváshoz kapcsolódnak. Például az egér pillanatnyi, a képernyő pixelegységeiben mért pozícióját és a gombok státuszát a következő rutinnal kaphatjuk meg:

```
#define IRET
                    0xCF
static REGS regs;
#define REG( r ) regs.x.##r
#define MOUSE_IT int86(0x33, &regs, &regs)
//-----
void getmouse( int * px, int * py, int * pstat ) {
//-----
   REG(ax) = 3;
                        // funkció = státusz lekérdezés
   MOUSE_IT;
   *pstat = REG(bx);
                     // gomb státusz: 0. bit bal, 1. bit jobb
                       // X pozíció pixel koordinátákban
   *px = REG(cx);
                        // Y pozíció pixel koordinátákban
   *ру
        = REG(dx);
}
```

A rutin az egér aktuális pozícióját a pX és pY paraméterek által megcímzett változóba, a bal gomb státuszát pedig pstat című változóba teszi.

A fizikai eszközkoordinátákat logikai eszközkoordinátákká kell alakítani. A következő programrészlet BGI grafikus szolgáltatásokkal a fizikai felbontásnak megfelelően kitölti a device téglalap változót:

```
device.left = 0; device.right = getmaxx();
device.bottom = 0; device.top = getmaxy();
```

A beviteli eszközöket pediorikusan tesztelő főciklus ugyancsak a könyvtárba kerül:

```
void Window :: Execute() {
//-----
   PCoord X, Y, X_old, Y_old;
   int stat, leftstat_old = 0, rightstat_old = 0;
   for(;;) {
                                      // főciklus
       if ( kbhit() ) {
   int c = getch();
                                     // billentyűzet tesztelése
                                     // billentyűzet lekérdezése
           KeyboardEvent( c );
       int rightstat = stat & 2;
                                     // jobb gomb
       Coord x, y;
       Physical2LogicalCoord(X, Y, x, y); // átalakítás logikai koordinátákká
                                      // ha a koordináta változott ...
       if (X != X_old || Y != Y_old) pwindow -> MouseMove(x, y);
       if (leftstat != leftstat_old) { // ha a bal gomb státusza változott ...
           if (leftstat > 0)    pwindow -> MouseLeftBtnDown( x, y );
                              pwindow -> MouseLeftBtnUp( x, y );
       if (rightstat != rightstat_old) { // ha a bal gomb státusza változott ...
           if (rightstat > 0) pwindow -> MouseRightBtnDown( x, y );
           else
                             pwindow -> MouseRightBtnUp( x, y );
       }
                                        // felkészülünk a következő ciklusra
       X_old = X; Y_old = Y;
       leftstat_old = leftstat, rightstat_old = rightstat;
}
```

A grafikus üzemmód be- és kikapcsolását, valamint a fizikai szintű grafikus kimeneti rutinokat például a *BGI grafikus könyvtár* [SP92] szolgáltatásaira építve valósíthatjuk meg.

```
#include <graphics.h>

void InitGraph( ) {
    int          GraphDriver = DETECT;
    int          GraphMode;
    initgraph( &GraphDriver, &GraphMode, "." );
    device.left = 0; device.right = getmaxx( );
    device.bottom = 0; device.top = getmaxy( );
}

void CloseGraph( ) { closegraph(); }

void Pixel( PCoord X, PCoord Y, PColor color ) { putpixel(X, Y, col); }

void PSetColor( PColor col ) { setcolor( col ); }

void PMove( PCoord X, PCoord Y ) { moveto(X, Y); }

void PLine( PCoord X, PCoord Y ) { lineto(X, Y); }
```

2.3.3. A könyvtár megvalósítása Ms-Windows környezetben

Az Ms-Windows már maga is egy eseményvezérelt grafikus könyvtárat tartalmaz, ezért a könyvtárunk megvalósítása során csak az üzenet- és paraméterkonverzióval kell megbirkóznunk.

Az Ms-Windows minden olyan helyzetben, amikor a programunktól valamilyen reakciót vár el, egy üzenetet továbbít az alkalmazás ablakkezelő függvényének. Az ablakkezelő függvény egy lehetséges kialakítása az alábbi:

```
#include <windows.h>
static HDC hdc;
                                         // attribútum tábla azonosító
char
            szClassName[] = "grafika";
                                        // ablak osztály neve
long FAR PASCAL WndProc(HWND hwnd, WORD wmsg, WORD wPar, LONG lPar) {
//----
   PAINTSTRUCT
                ps;
   switch ( wmsq ) {
   case WM_PAINT:
                            // Ablak tartalma érvénytelen
       GetClientRect ( hwnd, &device ); // ablakméret lekérdezése
       hdc = BeginPaint(hwnd, &ps);
       if (pwindow) pwindow -> ReDraw();
       EndPaint( hwnd, &ps );
       break;
                          // Bal egérgomb lenyomás
   case WM LBUTTONDOWN:
   case WM_LBUTTONUP:
                           // Bal egérgomb elengedés
   case WM_RBUTTONDOWN:
                           // Jobb egérgomb lenyomás
   case WM_RBUTTONUP:
                           // Jobb egérgomb elengedés
```

```
// Egér mozgatás
    case WM_MOUSEMOVE:
        hdc = GetDC ( hwnd ); // attribútum tábla lekérés
        PCoord X = LOWORD (1Par); // az esemény fizikai koordinátái
        PCoord Y = HIWORD(lPar);
        Coord x, y;
        Physical2LogicalCoord(X, Y, x, y); // átalakítás logikai koordinátává
        switch ( wmsg ) {
                                  // az alkalmazás eseménykezelőjének átadjuk
        case WM_LBUTTONDOWN: pwindow -> MouseLeftBtnDown(x, y); break;
        case WM_LBUTTONUP: pwindow -> MouseLeftBtnUp(x, y); break;
        case WM_RBUTTONDOWN: pwindow -> MouseRightBtnDown(x, y); break;
        case WM_RBUTTONUP: pwindow -> MouseRightBtnUp(x, y); break;
        case WM_MOUSEMOVE: pwindow -> MouseMove(x, y);
        ReleaseDC ( hwnd, hdc ); // attribútum tábla felszabadítás
        break;
     case WM_CHAR:
                                  // klaviatúra esemény
         hdc = GetDC( hwnd );
         pwindow -> KeyboardEvent ( wPar ); // átadjuk az alkalmazásnak
         ReleaseDC( hwnd, hdc );
         break;
                                  // Menü elem kiválasztás esemény
     case WM COMMAND:
         hdc = GetDC( hwnd );
         pwindow -> MenuCommand( wPar );
                                                // átadjuk az alkalmazásnak
         ReleaseDC( hwnd, hdc );
         break:
    default:
                                  // Minden más eseményre az alapértelmezésű reakció
        return DefWindowProc( hwnd, wmsg, wPar, lPar );
    }
    return 0;
}
```

Ez az ablakkezelő függvény az ablak érvényesítése miatti újrarajzolás (WM_PAINT) esemény hatására az alkalmazói ablak ReDraw függvényét aktivizálja. Ebben az üzenetben az ablakkezelő függvény felméri az aktuális ablak méreteit, és az eredményt a device változóba írja. Ezt a méretet használja a program a fizikai-logikai eszközkoordináta transzformációk során.

Az ablakkezelő függvény az egérrel kapcsolatos eseményeknél (WM_LBUTTONDOWN, WM_LBUTTONUP, WM_RBUTTONUP, WM_MOUSEMOVE) először a fizikai eszközkoordinátákat logikai eszközkoordinátákká alakítja, majd az egér bal illetve jobb gombjának megnyomása esetén meghívja az alkalmazói ablak az adott eseménynek megfelelő rutinját. Végül a WM_CHAR klaviatúra eseményt ugyancsak az alkalmazói ablak tagfüggvényéhez továbbítja.

A grafikus rajzoló parancsok:

```
void Pixel ( PCoord X, PCoord Y, PColor color )
   SetPixel( hdc, X, Y, color );
void PMove( PCoord X, PCoord Y ) { MoveTo( hdc, X, Y ); }
void PLine( PCoord X, PCoord Y ) { LineTo( hdc, X, Y );}
void PRasterOp( ROP r ) {
   switch (r) {
   case SET: SetROP2( hdc, R2_COPYPEN ); break;
   case XOR: SetROP2 ( hdc, R2_XORPEN ); break;
}
   Az inicializáló rész az üzenetciklussal:
void InitWindowClass( HANDLE hInstance, HANDLE hPrevInstance ) {
//----
   WNDCLASS wndclass;
   strcpy(szClassName, "grafika");
   if (!hPrevInstance) {
                             = CS_HREDRAW | CS_VREDRAW;
       wndclass.style
       wndclass.lpfnWndProc = WndProc; // ablakkezelő függvény
       wndclass.hInstance = hInstance; // program azonosító
       wndclass.hIcon
                             = LoadIcon( hInstance, IDI_APPLICATION );
       wndclass.hCursor = LoadCursor( NULL, IDC_ARROW );
       wndclass.hbrBackground = GetStockObject( WHITE_BRUSH );
       wndclass.lpszMenuName = "windowsmenu"; // menünév az erőforrás fájlban
       wndclass.lpszClassName = szClassName; // osztálynév
       wndclass.cbClsExtra = 0;
       wndclass.cbWndExtra
                             = 0;
       if ( !RegisterClass( &wndclass ) ) exit( -1 );
    }
}
void InitWindow( HANDLE hInstance, int nCmdShow ) {
    HWND hwnd = CreateWindow( szClassName, // osztálynév
                        "grafika",
                                            // megfogó csík
                        WS_OVERLAPPEDWINDOW, // az ablak stílusa
                        CW_USEDEFAULT, // kezdeti x pozíció
                        CW_USEDEFAULT,
                                            // kezdeti y pozíció
                        CW USEDEFAULT,
                                            // kezdeti x méret
                                             // kezdeti v méret
                        CW USEDEFAULT,
                                             // szülő ablak azonosító
                        NULL,
                        NULL,
                                            // menü azonosító, ha nem az osztályé
                        hInstance,
                                             // program azonosító
```

```
// paraméterlista vége
                              NULL );
     if (! hwnd) exit(-1);
                                                        // ablak megjelenítése
     ShowWindow(hwnd, nCmdShow);
     UpdateWindow( hwnd );
                                                         // érvénytelenítés
}
//-----
// egy Windows program itt indul
int PASCAL WinMain ( HANDLE hInstance, // program azonosító

HANDLE hPrevInstance, // ugyanezen osztály már futó példánya

LPSTR lpszCmdLine, // parancssor argumentumok

int nCmdShow ) { // ablak megjelenése
     InitWindowClass(hInstance, hPrevInstance); // ablak osztály inicializálás
     InitWindow( hInstance, nCmdShow );
                                                          // ablak példány inicializálás
                                                           // alkalmazás indítás
    AppStart();
    return 0;
}
void Window :: Execute() { // eseménykezelés
    MSG msq;
    while( GetMessage( &msg, NULL, 0, 0 ) ) {
                                                              // esemény hurok
         TranslateMessage(&msg); // klaviatúra esemény konverzió
DispatchMessage(&msg); // esemény átadása az alkalmazásnak
     }
}
```

Az InitWindowClass és InitWindow függvények részletes megvalósítása bármilyen Windows programozással kapcsolatos irodalomban megtalálható.

2.3.4. Programtervezés eseményvezérelt környezetekben

Az interaktív rendszerek modellezésének, tervezésének és implementációjának alapelveit egy egyszerű feladat megoldásával mutatjuk be. A példa különböző színű szakaszokat helyez el a képernyőre "gumivonal" technikával. A felhasználó a gumivonal módszerrel egy szakaszt úgy definiálhat, hogy a szakasz egyik végpontján lenyomja az egér gombját, majd lenyomott gombbal elkezdi mozgatni az egeret. A kijelölt kezdőpont és az aktuális pozíció közé a program egy ideiglenes szakaszt húz, ami követi az egér mozgását. A szakasz a gumi formából akkor merevedik meg, ha elengedjük az egérgombot. Ebben a pillanatban a program a végleges színnel felrajzolja a szakaszt a képernyőre, majd felkészül a következő szakasz fogadására.

Egy program tervezése során a programunk adatait, funkcionalitását és dinamikáját kell kialakítanunk [LKSK95]. A funkcionalitáson azon feldolgozási lépéseket (úgyne-

vezett transzformációkat) értjük, amelyek a bemeneti adatokból előállítják a kimeneti adatokat. A dinamika a feldolgozási lépések időbeliségét határozza meg. Interaktív rendszerekben különösen nagy jelentősége van a rendszer dinamikájának, hiszen a felhasználók minden pillanatban nagyon sokféle igényt támaszthatnak a rendszerrel szemben, ezért a feldolgozási lépéseket nagyon sok különféle sorrendben kell végrehajtani.

A grafikus rendszerekben az adat-, a funkcionális- és a dinamikus-modell hármasát még a program megjelenési modellje egészíti ki, amely rendelkezik arról, hogy a program milyen látványt produkáljon a felhasználó számára a képernyőn. A megjelenési modellt az adott grafikus felület építőelem készletéből (*widget*) alakíthatjuk ki.

Az interaktív rendszerek specifikálása általában a probléma szereplőinek azonosításával, azaz az adatmodell kialakításával kezdődik. A megoldandó feladatunkban ilyen szereplők a *felhasználó* (User) (ő minden interaktív rendszerben jelen van) és a rajzolás alatt álló *szakasz* (Line).

Az eseményvezérelt rendszereket a felhasználói igények működtetik, lényegében mindent a felhasználói beavatkozások, események indítanak el. Ezért a következő lépés a felhasználó és a program közötti lehetséges párbeszéd típusok megfogalmazása. Ez a párbeszéd olyan, mintha a felhasználó a fejében futtatná le a "programot", amely során a programból rutinokat hívogat. A példában három *dialógus* szerepel, nevezetesen "egy szakasz felvétele", a "rajzolási szín beállítása" és a "képernyő törlése". Egy szakasz felvétele során a felhasználói események sorrendje és a program reakciói az egyes eseményekre a következők:

- Kezdőpont kijelölés
- 2. Gumivonal mozgatás: gumivonal felrajzolás
- 3. Gumivonal mozgatás: gumivonal áthelyezés
- 4. ...
- 5. Gumivonal mozgatás: gumivonal áthelyezés
- 6. Végpont kijelölés: végleges felrajzolás a rajzolási színnel

Ebben a *forgatókönyv*ben az egyes bejegyzésekben a felhasználói eseményeket és a program reakcióit kettősponttal választottuk el.

A szín beállítása és képernyő törlés triviális dinamikával rendelkezik, hiszen a felhasználó kiadja az ilyen értelmű parancsot, a program pedig tudomásul veszi azt.

Mivel a párbeszédek a felhasználói felület szintjén definiálják a rendszert, a párbeszédeket ki kell terjeszteni a rendszer belső objektumaira is, azaz meg kell mondani, hogy egy a felhasználói felületen megjelent igény kielégítésében a program objektumai

miként vesznek részt. A program objektumainak együttműködését *kommunikációs diagram*okon írjuk le, amelyek azt mutatják be, hogy egy felhasználói esemény melyik objektumhoz jut el, és az milyen más objektumoknak üzen a feladat elvégeztetése során.

2.3. ábra. A gumivonal rajzolás kommunikációs diagramja

Az objektumok közötti párbeszédek feltérképezése után az egyes objektumok belsejének modellezése következik. Miként azt a kommunikációs diagram bemutatja, egy objektum az őt ért üzenet hatására más objektumoknak üzenhet. Előfordulhat, hogy a küldött üzenet nem csak az utolsó kapott üzenet függvénye, hanem a korábbi üzenetek is befolyásolják a viselkedést. Az objektum tehát emlékeket hordozhat a korábbi üzenetekről. Az emlékeket az objektum *állapot*ában tároljuk. Első megközelítésben a kommunikációs diagramon minden két kapott üzenet közötti időt az objektum egy új állapotának tekintjük. Az állapotváltozásokat és az állapotokhoz kapcsolódó tevékenységeket pedig az objektum állapottáblájában foglaljuk össze. Az *állapottábla* oszlopai az üzeneteket, a sorai pedig a lehetséges állapotokat jelképezik, az egyes táblázatelemekbe pedig az adott állapotban elvégzendő tevékenységet és a következő állapotot írjuk be.

Figyeljük meg, hogy az állapottábla kitöltését soronként végezzük, hiszen a kommunikációs diagramról az olvasható le, hogy az objektum egy adott állapotból milyen következő állapotba jut a különböző üzenetek hatására. A szakasz kommunikációs diagramjának vizsgálata során három állapotot különböztethetünk meg: "nyugalmi" (IDLE) állapotot, amikor nem rajzolunk, a kezdőpont kijelölését szimbolizáló "kezdő" (START) állapotot, és a vonalat gumiként húzogató "gumi" (RUBBER) állapotot. Az állapotok tevékenységének leírása során a Set start és Set end a szakasz kezdő és végpontjának beállítását, a DrawRubber függvény a szakasz XOR módban történő felrajzolá-

üzenet	kezdőpont kijelölés	gumivonal mozgatás	végpont kijelölés
nyugalmi	Set start		
	kezdő		
kezdő		Set end DrawRubber	
		gumi	nyugalmi
gumi		DeleteRubber Set end DrawRubber	DeleteRubber Set end Draw
		gumi	nyugalmi

2.4. ábra. A szakasz állapottáblája

sát, a DeleteRubber függvény egy másodszori XOR típusú felrajzolással a szakasz letörlését, a Draw pedig a SET típusú felrajzolását jelenti.

Az állapottáblák felvétele után a rendszer specifikálása befejeződött, a következő fázis a rendszer tervezése. A tervezés során figyelembe kell venni a konkrét implementációs környezet lehetőségeit, és az absztrakt eseményeket és funkciókat a rendelkezésre álló elemekre kell leképezni.

A kialakított könyvtárunk a következő fizikai eseményeket kezeli: karakter bevitel, egérgomb lenyomás, egér mozgatás, egérgomb elengedés. Kézenfekvő a logikai események és a fizikai események következő összerendelése: az egérgomb lenyomása a szakasz kezdőpontját jelöli ki, az egér mozgatás a gumivonal mozgatás eseményt jelenti, az egérgomb elengedése a végpont kijelölésének felel meg, az R billentyű piros, a G billentyű zöld, a B pedig kék rajzolási színt állít be, a C billentyű lenyomásának hatására pedig töröljük a képernyőt.

A logikai eseményeknek a fizikai eseményekkel történő felváltása után az állapottáblák közvetlenül implementációs programokká alakíthatók. Mivel az eseményvezérelt programoknak az egyes fizikai eseményekre kell reagálniuk, az állapottáblákat a fizikai eseményeknek (üzeneteknek) megfelelő oszloponként dolgozzuk fel, és az üzenetek kezelését a lehetséges állapotok szerint külön ágakban végezzük el. Az egyes ágakban a következő állapotot is beállítjuk, hogy a jövőbeli események feldolgozása során emlékezhessünk ezen esemény bekövetkeztére. Vegyük észre, hogy a soronként felírt állapottáblák oszloponkénti kiolvasása azt jelenti, hogy a felhasználó szemszögéből a program szemszögére térünk át.

Az állapotokban végzett tevékenységeket programutasításokra és a rendelkezésre álló szolgáltatásokra kell visszavezetni. Ezek a szolgáltatások a Window osztály nem virtuális tagfüggvényei. Jelen feladatban a Set start és Set end a saját adattagok értékének megváltoztatását, a Draw normál rajzolást, a DrawRubber és DeleteRubber funkciók pedig XOR módú rajzolást jelentenek. Ezek alapján a Line osztály definíciója a következő:

```
class Line {
//----
   enum { IDLE, START, RUBBER } state;
   Coord start_x, start_y, end_x, end_y;
   Color c;
   void DrawRubber() {
      pwindow -> RasterOp(XOR);
      Draw();
      pwindow -> RasterOp(SET);
   }
   void DeleteRubber() { DrawRubber(); }
   void Draw() {
      pwindow -> SetColor( c );
      pwindow -> Move( start_x, start_y );
      pwindow -> DrawLine( end_x, end_y );
public:
   Line() { state = IDLE; }
   void SetColor( Color c0 ) { c = c0; }
   void SetStart( Coord x, Coord y ) {
      start_x = x; start_y = y; state = START;
   void SetEnd( Coord x, Coord y ) {
      switch (state) {
      case START: state = IDLE; break;
      case RUBBER: DeleteRubber();
                  end_x = x; end_y = y;
                  Draw();
                  state = IDLE; break;
   }
```

Az alkalmazás elkészítéséhez az általános Window osztályt az elvárt viselkedésnek megfelelően specializálni kell, majd a belépési ponton egy ilyen típusú objektumot kell létrehozni. A specializáció a szükséges mezők felvételét és azon felhasználói eseményeket kezelő rutinok átírását jelenti, amelyekre az alapértelmű reakció nem megfelelő:

```
//-----
class RubberWindow : public Window {
Line line;
   void MouseLeftBtnDown( Coord x, Coord y ) { line.SetStart(x, y); }
   void MouseLeftBtnUp( Coord x, Coord y ) { line.SetEnd(x, y); }
   void MouseMove( Coord x, Coord y ) { line.MoveRubber(x, y); }
   void KeyboardEvent( int keyASCII ) {
      switch ( keyASCII ) {
      case 'R': line.SetColor(Color(1, 0, 0)); break;
      case 'G': line.SetColor(Color(0, 1, 0)); break;
      case 'B': line.SetColor( Color(0, 0, 1) ); break;
      case 'C': Clear(); break;
      case 'Q': Quit();
public:
   RubberWindow() { line.SetColor(Color(1, 0, 0)); }
};
```

Végül az alkalmazás belépési pontján létrehozzuk az ablakobjektumot és beindítjuk az üzenetciklus működését:

```
void AppStart() {
    RubberWindow win;
    win.Execute();
}
```

3. fejezet

A geometriai modellezés

A virtuális világ definiálását *modellezés*nek nevezzük. A modellezés során megadjuk a világban szereplő objektumok geometriáját, megjelenítési attribútumait és egyéb alkalmazásfüggő paramétereit (például egy ellenállás nagyságát, egy alkatrész anyagát, stb.). A következőkben a 2D és 3D geometria definiálásával foglalkozunk. A 2D és 3D grafikának azon objektumok lehetnek a részei, amelyek nem lógnak ki a 2 illetve a 3 dimenzióból. Ezek a 0 dimenziós pontok, az 1 dimenziós görbék, a 2 dimenziós síkbeli területek és térbeli felületek, valamint a 3 dimenziós testek. A *mérnöki megjelenítésben*ban (*scientific visualisation*) magasabb dimenziójú adatok is előfordulhatnak, ezeket a megjelenítés előtt vetíteni kell a 2 vagy 3 dimenziós térbe. A dimenzió fogalmának megfelelő általánosítása esetén beszélhetünk nem egész dimenziós objektumokról, ún. *fraktál*okról is. A fraktálokat külön fejezetben tárgyaljuk.

3.1. Pontok

Egy *pont* egy alkalmasan választott koordinátarendszerben a koordináták megadásával definiálható.

3.2. Görbék

Görbén folytonos vonalat értünk. Matematikai szempontból a görbe pontok halmaza. Ez a halmaz skalár egyenletekkel vagy vektor egyenlettel definiálható, amelyeket a görbe pontjai elégítenek ki. Egy 2D görbét megadó egyenletet felírhatunk *explicit* módon:

$$x = x(t), \quad y = y(t), \quad t \in [0, 1],$$
 (3.1)

vagy implicit formában is:

$$f(x,y) = 0. ag{3.2}$$

Például egy (x_0, y_0) középpontú, R sugarú $k\ddot{o}r$ explicit egyenlete:

$$x = x_0 + R \cdot \cos 2\pi t, \quad y = y_0 + R \cdot \sin 2\pi t, \quad t \in [0, 1],$$
 (3.3)

illetve implicit egyenlete:

$$(x - x_0)^2 + (y - y_0)^2 - R^2 = 0. (3.4)$$

Az explicit forma akkor előnyös, ha pontokat kell generálnunk a görbén. Ekkor a [0,1] intervallumon kijelölünk megfelelő számú t_i paraméterpontot, és behelyettesítjük az egyenletbe. Az implicit forma viszont különösen alkalmas arra, hogy eldöntsük, hogy egy adott pont illeszkedik-e a görbére. Ehhez az adott pontot be kell helyettesítenünk az egyenletbe és ellenőrizni, hogy 0-t kapunk-e eredményül. A számítógépes grafikában elsősorban az első funkcióra van szükség, ezért általában explicit egyenleteket használunk.

A 3D görbéket explicit formában adhatjuk meg:

$$x = x(t), \quad y = y(t), \quad z = z(t), \quad t \in [0, 1].$$
 (3.5)

Például egy (x_1, y_1, z_1) -tól (x_2, y_2, z_2) -ig tartó 3D szakasz egyenlete:

$$x = x_1 \cdot t + x_2 \cdot (1 - t), \quad y = y_1 \cdot t + y_2 \cdot (1 - t), \quad z = z_1 \cdot t + z_2 \cdot (1 - t), \quad t \in [0, 1].$$
(3.6)

Az explicit vagy implicit egyenletek implementálásával a grafikai programunkat felkészíthetjük *klasszikus görbeszegmens*ek (kör, szakasz, ellipszis, stb.) kezelésére. A modellezés ekkor az egyenletek ismeretlen paramétereinek (például egy kör középpontja és sugara) megadását jelenti.

3.3. Szabadformájú görbék

A modellezési igények általában nem elégíthetők ki csupán klasszikus görbeszegmensekkel. Felvetődhet ugyan, hogy bármely görbe kellő pontossággal közelíthető például sok kis szakasszal, de ez nem mindenütt differenciálható görbéket eredményez, ami például mechanikai alkatrészeknél megengedhetetlen. Ezért egy olyan függvényosztályra van szükség, amelyben a görbe alakja a differenciálhatóság garantálásával tetszőlegesen kialakítható.

Egy kézenfekvő függvényosztály a polinomok osztálya,

$$x(t) = \sum_{i=0}^{n} a_i \cdot t^i, \quad y(t) = \sum_{i=0}^{n} b_i \cdot t^i, \quad t \in [0, 1],$$
 (3.7)

amelyben egy görbét az a_i, b_i polinomegyütthatók megadásával specifikálhatunk. Vektoros alakban:

$$\vec{r}(t) = \sum_{i=0}^{n} [a_i, b_i] \cdot t^i, \quad t \in [0, 1].$$
(3.8)

Sajnos a polinomegyütthatóknak nincs szemléletes tartalma, ezért a modellezés során használatuk kényelmetlen. Az együtthatók közvetlen megadása helyett azt az eljárást követhetjük, hogy a felhasználótól csak ún. *vezérlőpont*okat (*control point*) kérünk, amelyek meghatározzák a görbe alakját. Egy pont könnyen kijelölhető interaktív módszerekkel, például az egér segítségével. Majd a modellezőprogramra bízzuk, hogy a megadott vezérlőpont sorozatra egy görbét illesszen, azaz kiszámolja a megfelelő polinomegyütthatókat.

Alapvetően két illesztési stratégia létezik. Amennyiben megköveteljük, hogy a görbe átmenjen a vezérlőpontokon, az eljárást *interpoláció*nak nevezzük. Az *approximáció*s módszerek ezzel szemben nem garantálják, hogy a számított görbe telibe találja a vezérlőpontokat, csak annyit, hogy nagyjából követi az általuk kijelölt irányvonalat. Az engedményért cserébe számos jó tulajdonságot várhatunk a görbétől.

3.3.1. Lagrange-interpoláció

Tegyük fel, hogy a megadott vezérlőpont sorozat $\vec{r}_1, \vec{r}_2, \ldots \vec{r}_n$. Keressük azt a minimális fokszámú L(t) polinomot, amely t_1 -nél \vec{r}_1, t_2 -nél \vec{r}_2 , stb. t_n -nél \vec{r}_n értéket vesz fel. Figyelembe véve a feltételek számát, a megfelelő polinom n-1-d fokú, az ismeretlen $[a_i,b_i]$ együtthatókat pedig megkaphatjuk, ha minden j $(j=1,2\ldots,n)$ vezérlőpontra felírjuk a

$$\vec{r}(t_j) = [x(t_j), y(t_j)] = \sum_{i=0}^{n-1} [a_i, b_i] \cdot t_j^i = \vec{r}_j$$

egyenletet és megoldjuk $[a_i,b_i]$ -re a keletkező egyenletrendszert. Ennek az egyenletrendszernek mindig van megoldása, hiszen az egyenletrendszerből keletkező Vandermonde-determináns nem lehet zérus.

Van azonban egy egyszerűbb eljárás is, ugyanis kapásból fel tudjuk írni a megoldást:

$$\vec{r}(t) = \sum_{i=1}^{n} L_i(t) \cdot \vec{r}_i,$$
 ahol $L_i(t) = \frac{\prod\limits_{j \neq i} (t - t_j)}{\prod\limits_{j \neq i} (t_i - t_j)}.$ (3.9)

Az $L_i(t)$ lényegében az i. pont súlyát határozza meg a paraméter függvényében, ezért súlyfüggvénynek (blending function) nevezzük. A 3.1. ábra súlyfüggvényei $t_1=0$, $t_2=0.33$, $t_3=0.67$ és $t_4=1$ paraméterekkel készültek. Figyeljük meg, hogy a $t=t_i$ értékre egyetlen súlyfüggvény vesz fel 1 értéket, az összes többi pedig zérus,

3.1. ábra. Lagrange-interpoláció és súlyfüggvényei

így valóban $\vec{r}(t_i) = \vec{r_i}$. Sajnos bizonyos tartományokban a súlyfüggvények negatív értékűek, itt a vonatkozó vezérlőpont taszítja a görbét. Ebből származik az a tény, hogy a Lagrange-interpoláció hajlamos az oszcillációra, azaz olyan kanyarulatok létrehozására, amely nem következne a vezérlőpont-sorozatból. Másik fő nehézség az, hogy a görbe kényelmetlenül alakítható, hiszen a súlyfüggvények a teljes tartományon zérustól különbözők, azaz egy vezérlőpont a görbe minden részére hat. Gondoljunk arra, hogy a görbe már majdnem mindenütt jó, csak egy kicsit kellene alakítani rajta, de egy vezérlőpont módosítása a görbét mindenhol megváltoztatja, tehát ott is ahol már nagy nehezen elegyengettük.

3.3.2. Bézier-approximáció

Ha feladjuk azt a megkötést, hogy a görbének át kell mennie a vezérlőpontokon, akkor a vezérlőpontokból nem következő hullámosság eltüntethető. Azok a görbék simák és hullámoktól mentesek, amelyek nem lépnek ki a vezérlőpontok konvex burkából (egy ponthalmaz konvex burka (convex hull) az a minimális konvex halmaz, ami a ponthalmazt tartalmazza). Konvex burokkal például az ajándékok becsomagolása során találkozhatunk, hiszen a szépen kifeszített csomagolópapír éppen a tárgyak konvex burkára simul rá). A konvex burokban maradás feltétele az, hogy a súlyfüggvények ne legyenek negatívak és összegük mindenhol 1 legyen. Ekkor egy adott paraméterre a görbe pontját egy olyan mechanikai rendszer súlypontjaként is elképzelhetjük, amelyben az egyes referenciapontokba a súlyfüggvények pillanatnyi értékével megegyező súlyt helyezünk el. Nyilvánvaló, hogy pozitív súlyoknál a súlypont nem kerülhet a rendszer konvex burkán kíviilre.

Egy fontos súlyfüggvénykészlethez juthatunk a $(t+(1-t))^m$ binomiális tétel szerinti kifejtésével. A kifejtés egyes tagjait Bernstein-polinomoknak nevezünk:

$$(t + (1 - t))^m = \sum_{i=0}^m {m \choose i} t^i \cdot (1 - t)^{m-i}.$$
 (3.10)

$$B_i^{(m)}(t) = \binom{m}{i} t^i \cdot (1-t)^{m-i}.$$
 (3.11)

3.2. ábra. Bézier-approximáció és súlyfüggvényei

A definícióból rögtön adódik, hogy $\sum_{i=0}^m B_i^{(m)}(t)=1$, és ha $t\in[0,1]$, akkor $B_i^{(m)}(t)\geq 0$, tehát a görbe kielégíti a konvex burok tulajdonságot. Mivel $B_0^{(m)}(0)=1$ és $B_m^{(m)}(1)=1$, a görbe átmegy az első és utolsó vezérlőpon-

Mivel $B_0^{(m)}(0) = 1$ és $B_m^{(m)}(1) = 1$, a görbe átmegy az első és utolsó vezérlőponton, de általában nem megy át a többi vezérlőponton. Mint az könnyen bebizonyítható, a görbe kezdete és vége érinti a vezérlőpontok által alkotott sokszöget (3.2. ábra).

3.3.3. Összetett görbék

A bonyolult görbéket nagyon sok vezérlőponttal definiálhatjuk. A görbeillesztés során alapvetően két eljárást követhetünk. Vagy egyetlen magas fokszámú polinomot illesztünk a görbére, vagy több alacsony fokszámút. A magas fokszámú polinomok hajlamosak a hullámosságra, ezért nem szeretjük őket. Ezért vonzóbb lehetőséget nyújt a több alacsony fokszámú görbeszegmens alkalmazása. A több görbeszegmensből építkező görbéket összetett görbéknek (composite curve) nevezzük.

3.3. ábra. Két görbe illeszkedésének folytonossági osztályai

Az összetett görbék alkalmazása során meg kell birkóznunk a szegmensek folytonos illesztésének a problémájával. A kérdéskör tárgyalását néhány definícióval kezdjük.

Két görbét geometriai értelemben 0-d rendűen folytonos (G^0 folytonos) illeszkedésűnek mondunk, ha a keletkező görbe megrajzolható anélkül, hogy a ceruzánkat fel kellene emelnünk. Más megközelítésből, két görbe parametrikus értelemben 0-d rendűen folytonos (C^0 folytonos) illeszkedésű, ha a keletkező függvény folytonos, azaz $r_1(t_{\rm end})=r_2(t_{\rm start})$. Nyilván a G^0 és a C^0 ugyanazt a tulajdonságot írja le két eltérő szemszögből. Mind a G geometriai, mind pedig a C parametrikus folytonosság tovább fokozható. Beszélhetünk például G^1 folytonos illeszkedésről, ha a görbék érintői is párhuzamosak. A parametrikus illeszkedés tetszőleges fokszámra általánosítható. Két görbét akkor nevezünk C^n folytonos illeszkedésűnek, ha az egyik görbe deriváltjai a végponton megegyeznek a másik görbe deriváltjaival a kezdőponton az n. deriváltig bezárólag.

Ezek után az alapvető kérdés az, hogy milyen szintű folytonosságot értelmes megkövetelnünk. Vegyünk két példát! Legyen egy meghajlított rúd alakja az y(x) függvény. A mechanika törvényei szerint a rúd belsejében ébredő feszültség arányos az y(x) második deriváltjával. Ha azt szeretnénk, hogy a rúd ne törjön el, a feszültség nem lehet végtelen, aminek elégséges feltétele, ha a rúd alakja C^2 folytonos. A második példánkban gondoljunk az animációra, amikor a t paraméter az időt képviseli, a görbe pedig a pozíció vagy orientáció valamely koordinátáját. A mozgás akkor lesz valószerű, ha kielégíti a fizikai törvényeket, többek között Newton második törvényét, miszerint a pozícióvektor második deriváltja arányos az erővel. Mivel az erő valamilyen rugalmas mechanizmuson keresztül hat, nem változhat ugrásszerűen, így a görbe szükségképpen C^2 folytonos. A két példa alapján, megfelelő mérnöki lendülettel jelentsük ki, hogy a mérnöki alkalmazásokban gyakran C^2 folytonos görbékre van szükségünk. A C^2 folytonos összetett görbék neve spline.

Harmadfokú spline

A C^2 folytonos illesztés követelménye az egyes görbeszegmensek illesztési pontjaira eltérő második deriváltat írhat elő. A legegyszerűbb polinom, amelynél a második derivált nem állandó, harmadfokú. A következőkben ilyen szegmensekkel foglalkozunk. Egy harmadfokú szegmens általános alakja

$$\vec{p}(t) = \vec{a}_3 t^3 + \vec{a}_2 t^2 + \vec{a}_1 t + \vec{a}_0.$$
 (3.12)

Az \vec{a}_3 , \vec{a}_2 , \vec{a}_1 , \vec{a}_0 polinomegyütthatók helyett használhatunk más reprezentációt is, például a szegmenst jellemző függvények és a deriváltjaik értékét a kezdő és végpontban. Ezek és a polinomegyütthatók között egy-egy értelmű kapcsolat van:

$$\vec{p}(0) = \vec{a}_0,$$

$$\vec{p}(1) = \vec{a}_3 + \vec{a}_2 + \vec{a}_1 + \vec{a}_0,$$

$$\vec{p}'(0) = \vec{a}_1,$$

$$\vec{p}'(1) = 3\vec{a}_3 + 2\vec{a}_2 + \vec{a}_1.$$
(3.13)

3.4. ábra. Harmadfokú spline

Tegyük fel, hogy a megadott $\vec{r}_1, \vec{r}_2, \dots, \vec{r}_n$ vezérlőpont sorozatra úgy illesztjük a szegmenseket, hogy az első szegmensünk az \vec{r}_1 -től az \vec{r}_2 -ig tartson, a második az \vec{r}_2 -től az \vec{r}_3 -ig, stb. Ehhez az i. szegmens paramétereit úgy kell megválasztani, hogy

$$\vec{p}_i(0) = \vec{r}_i, \quad \vec{p}_i(1) = \vec{r}_{i+1}.$$
 (3.14)

Ezzel a szegmensek 4 reprezentánsából kettőt kötöttünk meg. Vegyük még ehhez hozzá további feltételként, hogy a görbe legyen C^1 folytonos, azaz az egymást követő szegmensek megfelelő reprezentánsai legyenek azonosak:

$$\vec{p}_i'(1) = \vec{p}_{i+1}'(0). \tag{3.15}$$

A deriváltak tényleges értékét pedig úgy határozzuk meg, hogy a határon még a C^2 folytonosság is teljesüljön:

$$\vec{p}_i''(1) = \vec{p}_{i+1}''(0). \tag{3.16}$$

Ez egy lineáris egyenletrendszert jelent az ismeretlen $\vec{p}_i'(0), \vec{p}_i'(1)$ paraméterekre, amelyet megoldva minden görbeszegmens reprezentációja meghatározható. Mivel az ismeretlenek száma éppen kettővel több mint az egyenletek száma, az egyenletrendszernek végtelen sok megoldása van, azaz végtelen sok különböző interpolációs görbe létezik. Ha a görbe kezdő és végpontján a deriváltak értékét (a sebességet) megadjuk, akkor a feladat megoldása egyértelművé válik.

B-spline

A harmadfokú spline-nál egy ügyes reprezentációt használtunk, amellyel a C^1 folytonosságot már azáltal is sikerült biztosítani, hogy a 4 reprezentánsból 2-t a két egymás utáni szegmens közösen birtokolt. Ezek után már csak a C^2 folytonosság garantálása igényelt izzadságcseppeket.

3.5. ábra. A B-spline szegmensek illeszkedése

Felvetődhet a kérdés, hogy nincs-e olyan reprezentáció, amelyben a 4 reprezentáns-ból háromnak a közös birtoklása automatikusan garantálja a C^2 folytonosságot is. Keressük a görbeszegmenst a szokásos alakban, ahol a 4 vezérlőpont súlyozásával kapjuk meg a görbét:

$$\vec{r}(t) = B_0(t) \cdot \vec{r}_0 + B_1(t) \cdot \vec{r}_1 + B_2(t) \cdot \vec{r}_2 + B_3(t) \cdot \vec{r}_3. \tag{3.17}$$

Ekkor a görbe természetes reprezentánsai a vezérlőpontok, tehát célunk olyan súlyfüggvények keresése, amelyek biztosítják, hogy ha két egymást követő szegmens közösen használ a 4 vezérlőpontból hármat, akkor a két szegmens C^2 folytonosan illeszkedik egymáshoz.

Egy elégséges feltételrendszerhez jutunk, ha a súlyfüggvények úgy kapcsolódnak egymáshoz, mint a cirkuszi elefántok, és ráadásul C^2 folytonosan. Pontosabban a B_0

az 1 értéknél C^2 folytonosan a 0-hoz tart, B_1 az 1 értéknél C^2 folytonosan folytatható a B_0 0-nál induló alakjával, hasonlóan a B_2 a B_1 -ével, a B_3 a B_2 -ével, végül a B_3 az 0-ból C^2 folytonosan indul. Ez összesen 15 vektorfeltételt jelent, a szegmensek 4 vektoregyütthatói összesen pedig 16 vektorismeretlent tartalmaznak. Ha még hozzávesszük feltételként, hogy a súlyfüggvények összege mindig 1-t adjon, akkor a feladat teljesen határozottá válik, amelyet megoldva a következő súlyfüggvényekhez jutunk:

$$B_0(t) = \frac{(1-t)^3}{6},$$

$$B_1(t) = \frac{1+3(1-t)+3t(1-t)^2}{6},$$

$$B_2(t) = \frac{1+3t+3(1-t)t^2}{6},$$

$$B_3(t) = \frac{t^3}{6}.$$
(3.18)

3.6. ábra. B-spline approximáció és bázisfüggvényei

Vegyük észre, hogy a súlyfüggvények nem negatívak, tehát a görbeszegmens mindig a 4 vezérlőpont konvex burkán belül van. Másrészt, nincs olyan paraméterérték, ahol a súlyfüggvények egyetlen súlyfüggvény kivételével 0 értéket vennének fel, így a görbe általában nem megy át a vezérlőpontokon (approximációs tulajdonságú).

Ezen súlyfüggvénykészlettel definiált szegmensekből összerakott görbe neve *B-spline*. A B-spline görbének van egy igen hasznos tulajdonsága, amellyel a korábban definiált görbék nem rendelkeznek. Egy vezérlőpont csak az összetett görbe 4 legközelebbi szegmensének alakjára hat, a távolabbi részekre nem, tehát egy vezérlőpont megváltoz-

3.7. ábra. B-spline lokális vezérelhetősége: a 4. vezérlőpont áthelyezése csak a görbe első részét módosítja

tatása a görbe egy kicsiny részét módosítja. Az ilyen típusú görbéket *lokálisan vezérelhető* görbéknek nevezzük. A lokális vezérelhetőséget az tudja értékelni, aki interaktív módszerekkel már próbált bonyolult görbét rajzolni.

Bár a B-spline görbe alapvetően approximációs jellegű, interpolációs feladatokra is használható. Ha például olyan görbét szeretnénk, amely átmegy a $\vec{p_1}, \vec{p_2}, \ldots, \vec{p_n}$ pontokon, akkor az interpolációs B-spline görbe $\vec{r_0}, \vec{r_2}, \ldots, \vec{r_{n+1}}$ vezérlőpontjait például azzal a feltételrendszerrel határozhatjuk meg, hogy az első szegmens kezdőpontja legyen $\vec{p_1}$, végpontja pedig $\vec{p_2}$, a második kezdete $\vec{p_2}$, végpontja $\vec{p_3}$, stb., a n+1. kezdőpontja $\vec{p_n}$, végpontja pedig $\vec{p_{n+1}}$. Ez egy lineáris egyenletrendszert eredményez az ismeretlen vezérlőpont seregre [Wat89].

A spline-ok általánosításaival újabb, még rugalmasabban alakítható görbecsaládokhoz jutunk. Például mind a harmadfokú spline-t, mind a B-spline-t kiterjeszthetjük oly módon, hogy az egymást követő szegmensek különböző méretű paramétertartományt fedjenek le (idáig feltettük, hogy minden szegmensnek a paramétertartományban egy egységnyi intervallum felel meg). A B-spline ezen változatát *nem-uniform B-spline-nak (non-uniform B-spline vagy NUBS)* nevezzük. Egy másik fajta általánosítás a súlyfüggvényekre nem csupán polinomokat enged meg, hanem két polinom hányadosát is. A B-spline-ból ezen a módon *racionális B-spline-t (rational B-spline vagy RBS)* hozhatunk létre. A két kiterjesztés egyszerre is alkalmazható, amivel a *nem-uniform racionális B-spline-*hoz (*non-uniform rational B-spline* vagy *NURBS*) juthatunk el.

3.4. Területek 57

3.4. Területek

A *terület*ek síkbeli alakzatok, amelyeknek határa és belseje van. A határ lényegében egy görbe, amelyet a korábbi fejezet módszereivel írhatunk le. A belső tartomány fogalma többféleképpen is értelmezhető:

- 1. A belső pontok azok, amelyeket ha a végtelen távolból közelítenénk meg, a határgörbét páratlan számúszor lépnénk át.
- 2. A belső pontok azok, amelyeket nem lehet a végtelen távolból anélkül elérni, hogy ne metszenénk a határgörbét.
- 3. Egy adott kezdeti ponthoz képest belső pontok azok, amelyeket a kezdeti pontból elérhetünk anélkül, hogy a határon átlépnénk.

3.8. ábra. A terület belsejének három értelmezése

3.5. Felületek

A 3D felületek, a 2D görbékhez hasonlóan definiálhatók explicit egyenletekkel:

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v), \quad u, v \in [0, 1],$$
 (3.19)

vagy *implicit egyenlet*tel:

$$f(x, y, z) = 0. (3.20)$$

Például egy (x_0, y_0, z_0) középpontú, R sugarú $g\ddot{o}mb$ explicit egyenletei:

$$x = x_0 + R \cdot \cos 2\pi u \cdot \sin \pi v, \qquad y = y_0 + R \cdot \sin 2\pi u \cdot \sin \pi v, \qquad z = z_0 + R \cdot \cos \pi v,$$
$$u, v \in [0, 1], \tag{3.21}$$

illetve implicit egyenlete

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 - R^2 = 0. (3.22)$$

3.5.1. Kvadratikus felületek

Egy fontos felületosztályhoz juthatunk, ha az olyan implicit egyenleteket tekintjük, ahol bármely változó legfeljebb másodfokú alakban szerepelhet. Az összes ilyen egyenlet megadható egy általános ún. homogén koordinátás alakban:

$$[x, y, z, 1] \cdot \mathbf{Q} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = 0,$$
 (3.23)

ahol \mathbf{Q} egy 4×4 -es konstans együtthatómátrix.

A kvadratikus felületek speciális típusai a gömb, hengerpalást, kúp, paraboloid, hiperboloid, stb. (3.9. ábra).

3.9. ábra. Kvadratikus felületek (bal) és Bézier-felület (jobb)

3.5.2. Parametrikus felületek

A parametrikus felületek kétváltozós polinomok:

$$\vec{r}(u,v), \qquad u,v \in [0,1].$$

A polinomokat a görbékhez hasonlóan általában nem közvetlenül a polinomegyütthatókkal, hanem a vezérlőpontokból súlyfüggvényekkel állítjuk elő:

$$\vec{r}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \vec{r}_{ij} \cdot B_{ij}(u,v).$$
(3.24)

3.6. Testek 59

A $B_{ij}(u,v)$ súlyfüggvény egy kézenfekvő definíciójához jutunk, ha két, a görbéknél megismert súlyfüggvény szorzatát képezzük. Például a *Bézier-felület* (3.9. ábra) súlyfüggvénye:

$$B_{ij}(u,v) = \binom{n}{i} \cdot u^i \cdot (1-u)^{n-i} \cdot \binom{m}{j} \cdot v^i \cdot (1-v)^{m-j}. \tag{3.25}$$

3.6. Testek

Testnek a 3D tér egy korlátos részhalmazát nevezzük. Ebben a halmazban belső pontok azok, amelyeknek van olyan bármilyen kicsiny nem zérus méretű környezete, amelyben minden pont a halmazhoz tartozik. A halmaz nem belső pontjait határpontoknak nevezzük. Elvárjuk, hogy a határpontok valóban 3D tartományokat fogjanak közre, azaz, hogy a határpontok bármely környezetében legyenek belső pontok is. Ez a feltétel lényegében azt akadályozza meg, hogy a testnek alacsonyabb dimenzióssá fajuló részei legyenek. Más szemszögből, ha a test pontjaiból eltávolítjuk a határpontokat, majd a keletkező halmazt lezárjuk, azaz hozzávesszük azon pontokat, amelyek feltétlenül szükségesek ahhoz, hogy a halmaz minden pontját belső ponttá tegyék, akkor éppen az eredeti halmazt kapjuk vissza. Az olyan halmazokat, amelyek a belső pontjaik lezártjai, reguláris halmazoknak nevezzük.

3.10. ábra. Egy reguláris halmaz (bal szélső kép) és egy nem reguláris halmaz (jobb szélső kép) belső pontjai és lezártja

A következőkben az általános testek létrehozásának két legfontosabb módszerével ismerkedünk meg.

3.6.1. Felületmodellezés

Egy általános test létrehozása visszavezethető a *határfelület*ek definíciójára. Ha a határfelületeket egymástól függetlenül adjuk meg, akkor nem lehetünk biztosak abban, hogy azok hézagmentesen illeszkednek egymáshoz és egy érvényes 3D testet fognak

(3.26)

közre. Ezért a testmodellezésnek olyan műveletekkel kell építkeznie, amelyek a test *to- pológiai helyesség*ét garantálják. Az ilyen felületi modellezőket nevezzük *határfelület reprezentációs* (*boundary representation*) vagy *B-rep* rendszereknek.

3.11. ábra. Euler-műveletek

Az egyszerűség kedvéért foglalkozzunk csak lyukakat nem tartalmazó poliéderek létrehozásával. Egy ilyen poliéder érvényességének szükséges feltétele, hogy ha l lapot, c csúcsot és e élt tartalmaz, akkor fennáll az Euler-tétel:

l + c = e + 2.

3.12. ábra. Tetraéder felépítése Euler-műveletekkel

Azokat az elemi műveleteket, amelyek során ezen egyenlet érvényes marad, *Euler-művelet*eknek nevezzük. Az Euler-műveleteknek egy egyszerűsített halmazát láthatjuk a 3.11. ábrán (valóságban ennél több művelet szükséges, hiszen ezekkel csak olyan test hozható létre, amely nem tartalmaz lyukakat).

Ha tehát az Euler-műveletek segítségével építkezünk, a testünk minden pillanatban

3.6. Testek 61

kielégíti az Euler-egyenletet. A 3.12. ábrán egy tetraéder Euler-műveletekkel történő felépítése látható.

3.6.2. Konstruktív tömörtest geometria alapú modellezés

A konstruktív tömörtest geometria (Constructive Solid Geometry vagy CSG) az összetett testeket primitív testekből halmazműveletek (egyesítés, metszet, negáció) alkalmazásával építi fel (3.13. ábra). Annak érdekében, hogy a keletkező test mindig kielégítse a

3.13. ábra. A három alapvető halmazművelet egy nagy gömbre és 6 kis gömbre: egyesítés, különbség és metszet

testekkel szemben támasztott követelményeinket — azaz ne tartalmazzon alacsonyabb dimenziójú elfajult részeket — nem a közönséges halmazműveletekkel, hanem azok regularizált változataival dolgozik. Egy regularizált halmazműveletet úgy végzünk el, hogy először kivesszük a halmazokból a határpontokat, elvégezzük a belső pontokra a normál halmazműveletet, majd a keletkező halmazt lezárjuk, azaz hozzávesszük annak határpontjait.

Bonyolult objektumok nem állíthatók elő a primitív testekből valamely reguláris halmazművelet egyszeri alkalmazásával, hanem egy teljes műveletsorozatot kell végrehajtani. Mivel az egyes műveletek két operandusa lehet primitív test vagy akár primitív testekből korábban összerakott összetett test, a teljes konstrukció egy bináris fával szemléltethető, amelynek csúcsán a végleges objektum, levelein a primitív objektumok, közbenső csúcspontjain pedig a műveletsor részeredményei láthatók (3.14. ábra).

A CSG módszer érdekes kiterjesztéséhez jutunk, ha a szigorú faszerkezet helyett megengedünk ciklusokat is a gráfban (17.5. ábra).

3.14. ábra. Összetett objektum felépítése halmazműveletekkel

3.7. Program: paraméteres görbék

Ebben a fejezetben paraméteres görbeprimitíveket megvalósító osztályokat mutatunk be. Az osztályok létrehozásánál felhasználjuk a dinamikusan nyújtózkodó tömböt megvalósító generikus Array osztályt. Az ilyen osztállyal definiált tömbök kezdő méretét a konstruktorban adhatjuk meg. Ha az index operátor index határ túllépést észlel, a tömb dinamikusan megnöveli a lefoglalt területet. A Size tagfüggvény megmondja, hogy mi volt az eddigi legnagyobb hivatkozott index.

Minden modell alapja a "pont" illetve a "vektor", amit a Point 2D osztály definiál:

```
Point2D operator-() { return Point2D(-x, -y); }
Point2D operator+(Point2D p) { return Point2D(x+p.x, y+p.y); }
Point2D operator*(double s) { return Point2D(x*s, y*s); }
double Length() { return sqrt(x*x + y*y); }
double& X() { return x; }
double& Y() { return y; }
};
typedef Point2D Vector2D;
```

Egy primitívet, legyen az szakasz, sokszög, görbe, stb. pontokkal adunk meg, így az általános primitív pontokat tárol. A konkrét típusokat az általános típusból örökléssel definiálhatjuk.

A görbe a vezérlőpontjaiból interpolációval (vagy approximációval) állítja elő egy tetszőleges paraméterértékre a görbe egy adott pontját.

A különböző görbetípusok különböző polinomokat használnak ahhoz, hogy az interpoláció során a vezérlőpontokból a görbe pontját kiszámítsák. Ezért a görbetípusokat az általános görbe fogalomból és egy polinomból építhetjük fel.

```
double L( int i, double tt ) {
     double Li = 1.0;
      for(int j = 0; j < Degree(); j++) {
        if (i != j) Li *= (tt - t(j)) / (t(i) - t(j));
     return Li;
  void DistributeKnotPars( int n ) {
     for (int i = 0; i <= n; i++) t(i) = (double)i / n;
};
class LagrangeCurve2D : public Curve2D, public LagrangePolinom {
//-----
public:
  LagrangeCurve2D( Color c ) : Curve2D( c ), LagrangePolinom( ) { }
  Point2D Interpolate( double tt ) {
     Point2D rr(0, 0);
     for(int i = 0; i < Degree(); i++) rr += Point(i) * L(i, tt);
     return rr;
};
//----
class BezierPolinom {
public:
  double B( int i, double tt, int m ) {
     double Bi = 1.0;
     for (int j = 1; j \le i; j++) Bi *= tt * (m-j)/j;
              ; j < m; j++) Bi *= (1-tt);
     return Bi;
   }
};
class BezierCurve2D : public Curve2D, public BezierPolinom {
public:
  BezierCurve2D( Color c ) : Curve2D( c ), BezierPolinom( ) { }
  Point2D Interpolate (double tt ) {
     double Bi = 1.0;
     Point2D rr(0, 0);
     for(int i = 0; i < PointNum(); i++)
        rr += Point(i) * B(i, tt, PointNum());
     return rr;
};
```

4. fejezet

Színelméleti alapok

A fény elektromágneses hullám, amelynek spektrális tulajdonságai a szemben színérzetet keltenek. A szem igen rossz spektrométer, amely a három különböző típusú érzékelőjével (ún. csappal vagy fotopigmenttel) a beérkező fényenergiát három, kissé átlapolódó tartományban összegzi. Következésképpen bármely színérzet három skalárral, ún. tristimulus értékekkel megadható. A lehetséges színérzetek alkotják a színteret, amely az elmondottak szerint egy három dimenziós térként képzelhető el. A térben kijelölhető egy lehetséges koordinátarendszer oly módon, hogy kiválasztunk három elég távoli hullámhosszt, majd megadjuk, hogy három ilyen hullámhosszú monokromatikus fénynyaláb milyen keverékével kelthető az adott érzet. A komponensek intenzitásait tristimulus koordinátáknak nevezzük.

Az alábbi egy megfelelő készlet, amely az önmagukban vörös (*red*), zöld (*green*) és kék (*blue*) színérzetet okozó hullámhosszakból áll:

$$\lambda_{\rm red} = 700 \; {\rm nm}, \; \lambda_{\rm green} = 561 \; {\rm nm}, \; \lambda_{\rm blue} = 436 \; {\rm nm}. \eqno(4.1)$$

Egy λ hullámhosszú monokromatikus fénynyaláb keltette ekvivalens színérzetet ezek után az $(r(\lambda), g(\lambda)$ és $b(\lambda))$ színillesztő függvényekkel adjuk meg, amelyeket fiziológiai mérésekkel határozhatunk meg (4.1. ábra). Ha a λ hullámhosszal végigmegyünk a látható tartományon, akkor a szivárvány színeit, azaz egy prizma által előállított színképet jeleníthetjük meg (17.10. ábra), hiszen a prizma is a keverékszínt monokromatikus komponensekre bontja.

Amennyiben az érzékelt fénynyaláb nem monokromatikus, az r,g,b tristimulus koordinátákat az alkotó hullámhosszak által keltett színérzetek összegeként állíthatjuk elő. Például, ha a fényenergia spektrális eloszlása $\Phi(\lambda)$, akkor a megfelelő koordináták:

$$r = \int_{\lambda} \Phi(\lambda) \cdot r(\lambda) \, d\lambda, \qquad g = \int_{\lambda} \Phi(\lambda) \cdot g(\lambda) \, d\lambda, \qquad b = \int_{\lambda} \Phi(\lambda) \cdot b(\lambda) \, d\lambda. \quad (4.2)$$

4.1. ábra. Az $r(\lambda)$, $g(\lambda)$ és $b(\lambda)$ színillesztő függvények

Figyeljük meg a 4.1. ábrán, hogy az $r(\lambda)$ függvény (kisebb mértékben a $g(\lambda)$ is) az egyes hullámhosszokon negatív értékeket vesz fel. Ez azt jelenti, hogy van olyan monokromatikus fény, amelynek megfelelő színérzetet nem lehet előállítani a megadott hullámhosszú fénynyalábok keverékeként, csak úgy, ha előtte az illesztendő fényhez vörös komponenst keverünk. Tekintve, hogy a monitorok szintén a fenti hullámhoszszú fénynyalábok keverékével készítenek színes képet, lesznek olyan színek, amelyeket sohasem reprodukálhatunk a számítógépünk képernyőjén.

Az emberi szem-agy páros nem tud különbséget tenni két eltérő spektrum között, amennyiben azokra ugyanaz az r,g,b érték adódik. A hasonló színérzetet keltő fénynyalábokat *metamer*eknek nevezzük. A számítógép képernyőjén, a tv-képernyőhöz hasonlóan, vörös, zöld és kék színű fénynyalábokat emittáló foszforrétegek gerjesztésére van lehetőségünk. A célunk tehát az, hogy kiszámítsuk, hogy milyen intenzíven kell gerjeszteni ezeket a rétegeket ahhoz, hogy az elvárt színérzettel megegyező színérzetet keltsenek.

4.1. A színek definiálása

A színérzet három skalárral jellemezhető, így a színérzetek terét mint egy 3 dimenziós teret képzelhetjük el (4.2. és 17.11. ábrák). A tér pontjainak azonosításához egy bázist (koordinátarendszert) kell megadnunk. A bázis számtalan különböző módon létrehozható, így a színek is többféleképpen definiálhatók.

4.1. A színek definiálása 67

4.2. ábra. RGB, CMY és a HLS színrendszerek

4.1.1. RGB színrendszer

Az *RGB színrendszer* vagy *additív színrendszer* a bázis felállítása során a monitorban végbemenő folyamatot követi. Azt határozzuk meg, hogy a *vörös* (*Red*), *zöld* (*Green*) és *kék* (*Blue*) érzetet keltő, monokromatikus nyalábokból milyen keverék hozza létre az elvárt színérzetet.

4.1.2. CMY színrendszer

A CMY színrendszer vagy szubtraktív színrendszer a nyomtatás szimulációja. Ebben a rendszerben azt mondjuk meg, hogy mennyi cián (Cyan), magenta (Magenta) és sárga (Yellow) színt kell kivonni a fehérből (mennyi ilyen festéket kell rákenni a fehér lapra), hogy a keverék a kívánt színérzetet keltse.

4.1.3. HLS színrendszer

Az RGB és CMY színrendszerek fizikai folyamatokhoz kapcsolódnak, így nem kellően szemléletesek. Természetesebb, ha egy színt a *színárnyalat*tal, a *fényességg*el és a
telítettséggel adunk meg. Ez olyan bázis felállítását jelenti, ahol a színkocka egy pontjához úgy jutunk el, hogy elsétálunk a főátlón valameddig, azaz megmondjuk, hogy
a szín mennyi szürkét tartalmaz, azután elfordulunk valamerre a főátlóval merőleges
irányban, azaz definiáljuk a színárnyalatot, végül eltávolodunk a főátlótól, azaz relatíve
csökkentjük a szürke arányát és ezáltal növeljük a szín telítettségét. A főátlón megtett
relatív távolságot fényességnek (L), a színárnyalatot meghatározó szöget árnyalatnak
(H), a főátlótól a kocka széléhez viszonyított relatív távolságot (S) pedig telítettségnek
nevezzük (17.11. ábra). A 17.11. ábrán a főátlóra merőleges hatszögeket körökbe foglaltuk. Ezekben a körökben a szürke a kör középpontján van. Két, a középpontra nézve
szimmetrikus elhelyezkedésű színt komplementer színeknek nevezünk, mert keverékük
mindig fehér (pontosabban szürke). Megjegyezzük, hogy az emberi szem számára egy
több színből álló színvilág akkor harmonikus, ha az abban előforduló színek keveréke
fehér. Tehát ha egy hölgy csinosnak szeretne látszani, akkor azt tanácsolhatjuk neki,

hogy a szoknyáját és a blúzát célszerűen komplementer színekből, tehát valamely kör két szimmetrikusan elhelyezkedő pontjáról válassza. Ha a cipője is eltérő színű, akkor pedig három, 120 fokos szögben látszó pontot válasszon ki.

4.2. Színkezelés a 2D és a 3D grafikában

A 2D grafikában az objektumok saját színét jelenítjük meg, így miután meghatároztuk, hogy egy pixelben melyik objektum látszik, az adott pixelt az objektum színével kell kiszínezni.

3D grafikában azonban egy objektumról a kamerába jutó fény spektruma a térben lévő anyagok optikai tulajdonságainak és a fényforrásoknak a függvénye. Jelöljük a fényforrások által kibocsátott spektrumfüggvényt $\Phi_l(\lambda)$ -val (ez a hullámhosszon kívül a kibocsátási ponttól és az iránytól is függhet). Egy P pixelen keresztül a kamerába jutó spektrum a fényforrások spektrumának lineáris funkcionálja:

$$\Phi_P(\lambda) = \mathcal{L}(\Phi_l(\lambda)).$$

A funkcionált a felületi geometria, optikai tulajdonságok és a kamera állása határozza meg. A pixel r,g,b értékeit a színillesztő függvényekkel súlyozott integrálokkal határozhatjuk meg. Az integrálokat numerikus módszerekkel becsüljük. Például a vörös komponens:

$$r_P = \int_{\lambda} \Phi_P(\lambda) \cdot r(\lambda) \, d\lambda = \int_{\lambda} \mathcal{L}(\Phi_l(\lambda)) \cdot r(\lambda) \, d\lambda \approx \sum_{i=1}^n \mathcal{L}(\Phi_l(\lambda_i)) \cdot r(\lambda_i) \cdot \Delta\lambda. \tag{4.3}$$

Ezt azt jelenti, hogy a fényforrások intenzitását és a felületek visszaverődését n különböző hullámhosszon kell megadni (n szokásos értékei 3, 8, 16). A reprezentatív hullámhosszokon a pixelen keresztüljutó teljesítményt egyenként számítjuk ki, majd a 4.3 képlet alkalmazásával meghatározzuk a megjelenítéshez szükséges r, g, b értékeket.

A számítást gyakran csak a vörös, zöld és kék hullámhosszokra végezzük el. Ekkor a fényforrások spektruma helyett dolgozhatunk azok r, g, b értékeivel.

A megjelenítőeszközre történő színleképzés során azt is figyelembe kell vennünk, hogy a monitorok és nyomtatók által előállítható színdinamika (intenzitásváltozás) meszsze elmarad az emberi szem által érzékelhetőtől, ezért a számított értékeket még mindenképpen skálázni kell. A skálázás lehet lineáris vagy logaritmikus. A skálázás járulékos feladata lehet a *gamma-korrekció* is, azaz a monitor nem linearitásának a kiküszöbölése. Igényes alkalmazásokban a leképzés még figyelembe veszi a monitor környezetében érvényes fényviszonyokat is, hiszen a szem ezekhez adaptálódott, mielőtt a képernyőre néztünk volna.

Általában azt mondhatjuk, hogy ha a fizikai modellel számított színt közvetlenül írnánk be a rasztertárba, a keltett színérzet a megjelenítő eszköz és az érzékelés nem-linearitásai miatt torz lenne. Ezért a beírás előtt a színt a megjelenítő eszköz és érzékelés nem-linearitásainak az inverzével elő kell torzítani. Ezt a torzítást színleképző operátornak (tone-mapping operator) nevezzük.

4.3. Program: színkezelés

Ebben a fejezetben a színek kezeléséhez szükséges osztályokat és függvényeket adjuk meg.

4.3.1. Színillesztő függvények

Egy monokromatikus fénysugár által keltett színérzetet a *színillesztő függvény*ek segítségével határozzuk meg. A színillesztő függvényeket (4.1. ábra) diszkrét pontokban a matchfunc táblázatban tároljuk, a függvényértéket egy tetszőleges hullámhosszra a tárolt értékekből a ColorMatch függvény interpolálja.

```
#define LAMBDALOW
                         393
#define LAMBDAHIGH
                         689
SpectrumVal matchfunc[NMATCHVALUE] = {
    \{392, 0.0022, -0.0006, 0.0090\}, \{408, 0.0290, -0.0095, 0.1440\},
    \{425, 0.0760, -0.0340, 0.6300\}, \{444, 0.0000, 0.0000, 1.0000\},
    \{465, -0.2250, 0.1630, 0.7400\}, \{487, -0.4230, 0.4410, 0.2160\},
    {512,-0.3220, 0.8370, 0.0278}, {540, 0.5610, 1.0540,-0.0082},
    {571, 2.2400, 0.7590, -0.0078}, {606, 3.0800, 0.1790, -0.0026},
    {645, 1.0000, 0.0000, 0.0000}, {689, 0.0601, -0.0005, 0.0000}
};
void ColorMatch( double lambda, double& r, double& g, double& b ) {
    for ( int l = 1; l < size of matchfunc; <math>l++ ) {
        if (lambda < matchfunc[1].lambda) {
            double la2 = lambda - matchfunc[1-1].lambda;
            double la1 = matchfunc[1].lambda - lambda;
            double la = la1 + la2;
            r = (la1 * matchfunc[l-1].r + la2 * matchfunc[l].r)/la;
            g = (la1 * matchfunc[l-1].g + la2 * matchfunc[l].g)/la;
            b = (la1 * matchfunc[l-1].b + la2 * matchfunc[l].b)/la;
            break;
    }
}
```

4.3.2. Spektrumok kezelése

A spektrum egy hullámhosszfüggvény, amelynek értékét NLAMBDA diszkrét pontban tartjuk nyilván. A spektrumfüggvényt megvalósító osztályt sablonként definiáljuk, amelyet az NLAMBDA változóval paraméterezhetünk. A diszkrét pontokban a hullámhosszértéket a lambdas [NLAMBDA] tömb, az intenzitásértékeket pedig a I [NLAMBDA] tömb tárolja. A közbenső értékeket pedig ezekből a pontokból interpoláljuk.

A Convert Torge tagfüggvény a spektrumból numerikus integrálással számítja ki az ekvivalens vörös, zöld és kék komponenseket. A spektrumfüggvényen aritmetikai műveletek definiálhatók, mint két függvény összeadása, szorzása és skalárral történő nyújtása. A Luminance tagfüggvény egyetlen skalárral jellemzi a spektrumfüggvény összes energiáját.

```
\#define foreach(1) for(int 1 = 0; 1 < NLAMBDA; 1++)
//-----
template < int NLAMBDA > class Spectrum {
static double lambdas[NLAMBDA];
protected:
   double I[NLAMBDA];
public:
   Spectrum( double gray = 0 ) { foreach(l) I[l] = gray; }
   double& Int( int l ) { return I[l]; }
   void ConvertToRGB( double& R, double& G, double& B ) {
       R = 0; G = 0; B = 0;
       double prev_lambda = 392;
       foreach(1) {
          double r, g, b, dl;
          ColorMatch( lambdas[1], r, q, b );
          dl = (lambdas[l] - prev_lambda) / (LAMBDAHIGH-LAMBDALOW);
          R += I[1] * r * dl; G += I[1] * q * dl; B += I[1] * b * dl;
          prev_lambda = lambdas[1];
       if (R < 0) R = 0; if (G < 0) G = 0; if (B < 0) B = 0;
   Spectrum operator*( double s ) {
       Spectrum<NLAMBDA> res; foreach(l) res.I[l] = I[l] * s;
       return res;
   Spectrum operator* ( Spectrum& m ) {
       Spectrum<NLAMBDA> res; foreach(l) res.I[l] = I[l] * m.I[l];
       return res;
   void operator*=( Spectrum& m ) { (*this) = (*this) * m; }
```

```
Spectrum operator/( double d ) {
        Spectrum<NLAMBDA> res; foreach(l) res.I[l] = I[l] / d;
        return res;
   void operator/=( double d ) { (*this) = (*this) / d; }
   Spectrum operator+( Spectrum& d ) {
        Spectrum<NLAMBDA> res; foreach(l) res.I[l] = I[l] + d.I[l];
        return res;
   void operator+=( Spectrum& d ) { (*this) = (*this) + d; }
   double Red() {
        double R, G, B; ConvertToRGB(R, G, B); return R;
    }
   double Green() {
       double R, G, B; ConvertToRGB(R, G, B); return G;
   double Blue()
        double R, G, B; ConvertToRGB(R, G, B); return B;
   double Luminance( ) {
       double sum = 0; foreach(1) sum += I[1]/NLAMBDA; return sum;
   int operator!=( double c ) { return ( c != Luminance( ) ); }
};
```

4.3.3. Színérzetek

A színérzet (Color) lényegében három elég távoli hullámhosszt tartalmazó spektrummal jellemezhető.

```
void CMYTORGB( double C, double M, double Y );
void HLSTORGB( double H, double L, double S );
double Red() { return R; }
double Green() { return G; }
double Blue() { return B; }
};
```

CMY átalakítása RGB modellre

Az RGB és CMY modellek ugyanazon kocka két átellenes sarokpontján felállított, a kocka éleivel megegyező bázisvektorokkal rendelkező koordinátarendszerek.

HLS átalakítása RGB modellre

A HLS színrendszer a csúcsára állított színkocka pontjait, az átlón megtett távolság (L), az átlótól való eltávolodás (S) és az eltávolodási irány (H) hármasával azonosítja.

```
//----
double Color :: HexaCone( double s1, double s2, double hue ) {
//----
  while (hue > 360) hue -= 360;
  while (hue < 0)
               hue += 360;
  if (hue < 60) return (s1 + (s2 - s1) * hue/60);
  if (hue < 180) return (s2);
  if (hue < 240) return (s1 + (s2 - s1) * (240-hue)/60);
  return (s1);
}
//-----
void Color :: HLSToRGB( double H, double L, double S ) {
//----
  double s2 = (L \le 0.5) ? L * (1 + S) : L * (1 - S) + S;
  double s1 = 2 * L - s2;
  if (S == 0) \{ R = G = B = L; \}
  else {
     R = HexaCone(s1, s2, H - 120);
     G = HexaCone(s1, s2, H);
     B = HexaCone(s1, s2, H + 120);
}
```

5. fejezet

Geometriai transzformációk

A számítógépes grafikában a kép geometriáját az objektumok geometriája alapján határozzuk meg. A geometria megváltoztatását *geometriai transzformáció*nak nevezzük.

Mivel a számítógépekben mindent számokkal jellemzünk, a geometriai leírást is számok megadására vezetjük vissza. Az euklideszi geometria algebrai alapját a Descartes-koordinátarendszer adja, amelyben egy pontot a tengelyekre vetített távolságokkal jellemzünk. Síkban ez egy (x,y) számpárt, térben pedig egy (x,y,z) számhármast jelent. A transzformáció pedig ezeken a vektorokon értelmezett matematikai művelet.

5.1. Elemi affin transzformációk

A párhuzamos egyeneseket párhuzamos egyenesekbe átvivő transzformációt affin transzformációnak nevezzük. A lineáris transzformációk mind ilyenek.

5.1.1. Eltolás

Az *eltolás* egy konstans \vec{p} vektort ad hozzá a transzformálandó ponthoz:

$$\vec{r}' = \vec{r} + \vec{p}. \tag{5.1}$$

5.1.2. Skálázás a koordinátatengely mentén

A *skálázás* a távolságokat és a méreteket a különböző koordinátatengelyek mentén függetlenül módosítja. Például egy [x,y,z] pont skálázott képe:

$$x' = S_x \cdot x, \quad y' = S_y \cdot y, \quad z' = S_z \cdot z. \tag{5.2}$$

Ezt a transzformációt mátrixszorzással is leírhatjuk:

$$\vec{r}' = \vec{r} \cdot \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & S_z \end{bmatrix} . \tag{5.3}$$

5.1.3. Forgatás

A z tengely körüli ϕ szöggel történő forgatás az x és y koordinátákat módosítja, a z koordinátát változatlanul hagyja.

5.1. ábra. Forgatás a z tengely körül

Az elforgatott pont x és y koordinátái a következőképpen fejezhetők ki:

$$x' = x \cdot \cos \phi - y \cdot \sin \phi, \quad y' = x \cdot \sin \phi + y \cdot \cos \phi.$$
 (5.4)

Mátrix műveletekkel:

$$\vec{r}'(z,\phi) = \vec{r} \cdot \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}. \tag{5.5}$$

Az x és y tengelyek körüli forgatásnak hasonló alakja van, csupán a koordináták szerepét kell felcserélni:

$$\vec{r}'(x,\phi) = \vec{r} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 - \sin\phi & \cos\phi \end{bmatrix}, \quad \vec{r}'(y,\phi) = \vec{r} \cdot \begin{bmatrix} \cos\phi & 0 - \sin\phi \\ 0 & 1 & 0 \\ \sin\phi & 0 & \cos\phi \end{bmatrix}. \tag{5.6}$$

A három tengely körüli egymás utáni forgatással bármely orientáció előállítható:

$$\vec{r}'(\alpha,\beta,\gamma) = \vec{r} \cdot \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \beta & 0 - \sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & \sin \gamma \\ 0 - \sin \gamma & \cos \gamma \end{bmatrix}.$$
(5.7)

5.1.4. Nyírás

Tegyük fel, hogy az xy lapjánál rögzített téglatestet a lappal párhuzamos erővel paralelepipedonná deformáljuk (5.2. ábra). A torzítást leíró transzformáció a z koordinátát változatlanul hagyja, mialatt az x és y koordinátákat a z koordinátával arányosan módosítja. A torzító transzformációt nyírásnak (shearing) nevezzük.

5.2. ábra. Nyírás

A nyírás ugyancsak megadható egy mátrix művelettel:

$$\vec{r}' = \vec{r} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & 1 \end{bmatrix}. \tag{5.8}$$

5.2. Transzformációk homogén koordinátás megadása

Az idáig megismert transzformációk, az eltolást kivéve, mátrixszorzással is elvégezhetők. Ennek különösen azért örülünk, mert ha egymás után több ilyen transzformációt kell végrehajtani, akkor a transzformációs mátrixok szorzatával (más néven konkatenáltjával) való szorzás egyszerre egy egész transzformáció sorozaton átvezeti a pontot. Sajnos az eltolás ezt a szép képet eltorzítja. Más oldalról megközelítve a kérdést a lineáris transzformációknál az eredményül kapott koordináták az eredeti koordináták lineáris függvényei, tehát általános esetben:

$$\vec{r}' = \vec{r} \cdot \mathbf{A} + \vec{p},\tag{5.9}$$

ahol **A** egy mátrix, amely az elmondottak szerint jelenthet forgatást, nyírást, skálázást, stb. sőt ezek tetszőleges kombinációját is. A különálló \vec{p} vektor pedig az eltolásért felelős.

Az eltolás és a többi transzformáció egységes kezelésének érdekében szeretnénk az eltolást is mátrixművelettel leírni. Egy háromdimenziós eltolást sajnos nem erőltethetünk be egy 3×3 mátrixba, mert egyszerűen ott már nincs erre hely. Ha azonban a mátrixot 4×4 -esre egészítjük ki, akkor már az eltolást is mátrixszorzással kezelhetjük. Ehhez persze a vektorunkat is ki kell bővíteni egy újabb koordinátával. Tekintsük ezen újabb koordinátát 1 értékűnek, hiszen ekkor

$$[\vec{r}',1] = [\vec{r},1] \cdot \begin{bmatrix} A_{11} & A_{12} & A_{13} & 0 \\ A_{21} & A_{22} & A_{23} & 0 \\ A_{31} & A_{32} & A_{33} & 0 \\ p_x & p_y & p_z & 1 \end{bmatrix} = [r \cdot \mathbf{A} + \vec{p},1].$$
 (5.10)

A Descartes-koordináták egy újabb 1 értékű koordinátával történő kiegészítését a pont *homogén koordinátás alak*jának nevezzük.

5.3. Transzformációk projektív geometriai megközelítése

Idáig pusztán annak érdekében, hogy az eltolást is beleerőltessük a mátrixművelettel megadható transzformációk körébe, a Descartes-koordinátákat kiegészítettük egy misztikus, konstans 1 értékű koordinátával, és az egészet elneveztük homogén koordinátás alaknak. Természetesen ennek a kis trükknek sokkal mélyebb matematikai tartalma van, amit ebben a fejezetben szeretnénk megvilágítani.

Mivel a számítógépes grafika 2 dimenziós képeket állít elő 3 dimenziós objektumokról, a képszintézisben mindenképpen megjelenik a *vetítés*, mint dimenziócsökkentő művelet. A természetes képalkotásnak leginkább megfelelő *középponti vetítés*, vagy más néven *centrális vetítés* kezelésénél azonban nehézségeket jelent, hogy az *euklideszi tér*ben nem minden pont vetíthető centrálisan. Ezért a transzformációinkat érdemes egy másfajta geometriára, az ún. *projektív geometriára* alapozni [Her91] [Cox74].

A projektív geometriát a középpontos vetítést tanulmányozva közelíthetjük meg (5.3. ábra). A képsíkkal párhuzamos vetítősugarakkal jellemezhető pontoknak nem felel meg képpont az euklideszi geometriában. Ezek a pontok a "végtelenbe" vetülnek, amely nem része az euklideszi térnek. Az euklideszi tér tehát lyukas. A projektív geometria ezeket a lyukakat tömi be oly módon, hogy kiegészíti az euklideszi teret újabb pontokkal. Az új pontok, ún. *ideális pont*ok, az euklideszi térben nem vetíthető pontok vetületei lesznek. Az ideális pontok párhuzamos egyenesek illetve síkok "metszéspontjaként" is elképzelhetőek.

A számítástechnikában mindent számokkal jellemzünk, így a projektív tér pontjait is számokkal szeretnénk definiálni. Mivel a szokásos *Descartes-koordinátarendszer* és az euklideszi tér pontjai között kölcsönösen egyértelmű kapcsolat áll fenn, a Descartes-koordinátarendszer nyilván alkalmatlan az új pontok befogadására. A új algebrai alapot

5.3. ábra. Középpontos vetítés

jelentő homogén koordinátákat például egy mechanikai analógia segítségével vezetjük be.

Adjuk meg a pontjainkat, mint egy mechanikai rendszer súlypontját, amelyben egy p_1 referencia pontban X_h súlyt helyezünk el, egy p_2 referencia pontban Y_h súlyt, egy p_3 pontban Z_h súlyt és végül egy p_4 pontban w súlyt. A súlyok nem feltétlenül pozitívak, így a súlypont valóban bárhová kerülhet, ha a referencia pontok nem esnek egy síkba. Ha a referencia pontok az euklideszi tér pontjai és a $h = X_h + Y_h + Z_h + w$ összsúly nem zérus, akkor a súlypont nyilván az euklideszi térben marad.

Definíciószerűen nevezzük a (X_h, Y_h, Z_h, h) négyest $(h = X_h + Y_h + Z_h + w)$ a súlypont homogén koordinátáinak. Az elnevezés onnan származik, hogy ha az összes súlyt ugyanazzal a skalárral szorozzuk, a súlypont nem változik, tehát minden, nem zérus λ -ra ekvivalensek a $(\lambda X_h, \lambda Y_h, \lambda Z_h, \lambda h)$ pontok.

Mivel a projektív tér része az euklideszi tér (az euklideszi tér pontjait az ideális pontokból megkülönböztetendő *affin pont*oknak nevezzük), és az euklideszi tér pontjait Descartes-koordinátákkal is megadhatjuk, ezekre a pontokra léteznie kell valamilyen összefüggésnek a Descartes-koordináták és a homogén koordináták között. Egy ilyen összefüggés felállításához a két koordináta rendszer viszonyát (a Descartes-koordinátarendszer tengelyeinek és a homogén koordinátarendszer referencia pontjainak viszonyát) rögzíteni kell. Tegyük fel például, hogy a referencia pontok a Descartes-koordinátarendszer [1,0,0], [0,1,0], [0,0,1] és [0,0,0] pontjaiban vannak. A mechanikai rendszerünk súlypontja (ha a h teljes súly nem zérus) az $\mathbf{i}, \mathbf{j}, \mathbf{k}$ Descartes-koordinátarendszerben

$$r(X_h, Y_h, Z_h, h) = \frac{1}{h}(X_h \cdot [1, 0, 0] + Y_h \cdot [0, 1, 0] + Z_h \cdot [0, 0, 1] + w \cdot [0, 0, 0]) = 0$$

$$\frac{X_h}{h} \cdot \mathbf{i} + \frac{Y_h}{h} \cdot \mathbf{j} + \frac{Z_h}{h} \cdot \mathbf{k}. \tag{5.11}$$

Tehát az (X_h, Y_h, Z_h, h) homogén koordinátás alak és az (x, y, z) Descartes-koordinátás alak közötti összefüggés $(h \neq 0)$:

$$x = \frac{X_h}{h}, \quad y = \frac{Y_h}{h}, \quad z = \frac{Z_h}{h}.$$
 (5.12)

A negyedik koordinátával történő osztást homogén osztásnak nevezzük.

Homogén koordinátákkal *sík*okat is jellemezhetünk. Tekintsünk egy Descartes-koordinátarendszerben megadott síkot, amelynek egyenlete:

$$a \cdot x + b \cdot y + c \cdot z + d = 0. \tag{5.13}$$

Alkalmazzuk a homogén és Descartes-koordináták között fennálló összefüggést:

$$a \cdot \frac{X_h}{h} + b \cdot \frac{Y_h}{h} + c \cdot \frac{Z_h}{h} + d = 0 \implies a \cdot X_h + b \cdot Y_h + c \cdot Z_h + d \cdot h = 0. \tag{5.14}$$

Vegyük észre, hogy az ezen egyenletet kielégítő pontok köre nem változik, ha az egyenlet együtthatóit ugyanazzal a skalárral szorozzuk. Egy [a,b,c,d] homogén koordináta négyes tehát nem csak pontokat, hanem síkokat is definiálhat. Ennek messzemenő következményei vannak a projektív geometriában. Az összes olyan tétel, amely pontokra érvényes, igaz lesz síkokra is. Az elvet általánosan *dualitás*nak nevezik.

Most terjesszük ki a vizsgálatunkat az ideális pontokra is. Ezek úgy képzelhetők el, mint a párhuzamos síkok közös pontjai, ezért a továbbiakban a síkok metszését tanulmányozzuk. Legyen a két párhuzamos sík homogén koordinátás alakja [a, b, c, d] és [a, b, c, d'] ($d \neq d'$). A síkok egyenlete:

$$a \cdot X_h + b \cdot Y_h + c \cdot Z_h + d \cdot h = 0,$$

 $a \cdot X_h + b \cdot Y_h + c \cdot Z_h + d' \cdot h = 0.$ (5.15)

Formálisan mindkét egyenletet a következő pontok elégítik ki:

$$a \cdot X_h + b \cdot Y_h + c \cdot Z_h = 0 \qquad \text{és} \qquad h = 0. \tag{5.16}$$

Az euklideszi geometriában párhuzamos síkoknak nincs közös pontja, így ezek a közös pontok nem lehetnek az euklideszi térben, következésképpen a projektív tér ideális pontjai. Az ideális pontok homogén koordinátáiban tehát h=0. Ezek az ideális pontok a "végtelent" reprezentálják, de oly módon, hogy különbséget tesznek különböző végtelenek között aszerint, hogy azok milyen (a,b,c) irányban találhatók.

A geometriai transzformációk a pontok koordinátáira értelmezett függvények. A számítógépes grafikában általában lineáris függvényeket használunk. Az euklideszi térben a lineáris transzformáció általános alakja a következő:

$$[x', y', z'] = [x, y, z] \cdot \mathbf{A}_{3 \times 3} + [p_x, p_y, p_z].$$
 (5.17)

Homogén lineáris transzformációk definiálásánál figyelembe kell vennünk, hogy a homogén koordináták invariánsak a skalárral történő szorzásra, ezért nem engedhetünk meg additív konstanst a transzformációban:

$$[X_h', Y_h', Z_h', h'] = [X_h, Y_h, Z_h, h] \cdot \mathbf{T}_{4 \times 4}. \tag{5.18}$$

Az euklideszi tér lineáris transzformációi a homogén lineáris transzformációk részhalmazát képezik, hiszen affin pontokra:

$$[x', y', z', 1] = [x, y, z, 1] \cdot \begin{bmatrix} 0 \\ \mathbf{A}_{3 \times 3} & 0 \\ 0 \\ \vec{p} & 1 \end{bmatrix}.$$
 (5.19)

A transzformációs mátrixban a forgatást, nyírást, skálázást, stb. leíró 3×3 -as A mátrix a T mátrix bal felső minormátrixa, a \vec{p} eltolásvektor pedig az utolsó sorba kerül. A mátrix 4. oszlopa az euklideszi tér lineáris transzformációiban konstans [0,0,0,1]. Ha a 4. oszlopot megváltoztatjuk, akkor olyan homogén lineáris transzformációkhoz juthatunk, amelyek az euklideszi tér nem lineáris transzformációi.

Amennyiben egymás után több transzformációt kell végrehajtanunk, a pontokat definiáló vektorokat a transzformációs mátrixokkal kell végigszorozni. Ugyanezt a hatást érhetjük el, ha először előállítjuk a mátrixok szorzatát, és az eredő mátrixszal szorzunk. Végső soron bármilyen összetett transzformáció végrehajtható egyetlen 4×4 mátrix szorzással. A mátrixszorzás után, ha a 4. koordináta 1-től különböző, még a koordinátákat végig kell osztanunk a 4. koordinátával.

A homogén koordináták jól alkalmazhatók kvadratikus alakok (3.5.1. fejezet) és a racionális spline-ok, például a *NURBS* tárgyalásánál (3.3.3. fejezet). Egy Descartes-koordinátarendszerben a vezérlőpontokra racionális törtfüggvényekkel illesztett görbe ugyanis elképzelhető úgy is, mintha a homogén koordinátás térben normál polinomok-kal illesztenénk.

5.4. Program: geometriai transzformációs osztály

A geometriai transzformációk pontokat és vektorokat változtatnak meg, ezért először a pontokat képviselő Point3D osztályt írjuk le, majd a Vector3D típust ennek hasonmásaként definiáljuk. A pontokon és a vektorokon a szokásos műveletek a negáció, összeadás, kivonás, skalárral történő szorzás és osztás, két vektor skaláris és vektoriális szorzatának képzése, a vektor hosszának meghatározása, a normalizálás és az egyes koordináták lekérdezése.

```
class Point3D {
//-----
   Coord x, y, z;
public:
   Point3D(Coord x0 = 0, Coord y0 = 0, Coord z0 = 0) {
       x = x0; y = y0; z = z0;
   Point3D operator-() { return Point3D( -x, -y, -z ); }
   Point3D operator+( Point3D& p ) {
       return Point3D(x + p.x, y + p.y, z + p.z);
   Point3D operator-( Point3D& p ) {
      return Point3D(x - p.x, y - p.y, z - p.z);
   Point3D operator% ( Point3D& v ) {
       return Point3D(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x);
   }
   void
          operator+=( Point3D& p ) { x += p.x; y += p.y; z += p.z; }
   void
          operator/=( double d ) { x /= d; y /= d; z /= d; }
   Point3D operator*( double s ) { return Point3D( x*s, y*s, z*s ); }
   Point3D operator/( double s ) { return Point3D( x/s, y/s, z/s ); }
   double operator*(Point3D& p) { return (x*p.x + y*p.y + z*p.z); }
   double Length() { return sqrt(x*x+y*y+z*z); }
   void
         Normalize() { *this = (*this) * (1/Length()); }
   double& X() { return x; }
   double& Y() { return y; }
   double& Z() { return z; }
};
typedef Point3D Vector3D;
```

Egy homogén koordinátás pont a Descartes-koordinátahármasnak egy negyedik koordinátával történő kiegészítéseként adható meg.

Végül egy homogén lineáris transzformáció egy 4×4 -es mátrixszal írható le. A mátrixelemeket a különböző jellegű transzformációk különböző módon inicializálják. A transzformációkat egymással konkatenálhatjuk, és alkalmazhatjuk azokat homogén koordinátás pontokra.

```
enum TransType {TRANSLATION, SCALE, ZROT, YSHEAR,
              ZSHEAR, AFFIN, PROJECTIVE };
HomPoint3D nv;
class Transform3D {
double m[4][4];
public:
   Transform3D() { SetIdentity(); }
   Transform3D(TransType t, HomPoint3D v1,
                                           HomPoint3D v2 = nv,
                          HomPoint3D v3 = nv, HomPoint3D v4 = nv) {
       switch(t) {
       case TRANSLATION:
          SetIdentity();
          m[3][0] = v1.X(); m[3][1] = v1.Y(); m[3][2] = v1.Z();
          break:
       case AFFIN:
          m[0][0] = v1.X(); m[0][1] = v1.Y(); m[0][2] = v1.Z();
          m[0][3] = 0;
          m[1][0] = v2.X(); m[1][1] = v2.Y(); m[1][2] = v2.Z();
          m[1][3] = 0;
          m[2][0] = v3.X(); m[2][1] = v3.Y(); m[2][2] = v3.Z();
          m[2][3] = 0;
          m[3][0] = v4.X(); m[3][1] = v4.Y(); m[3][2] = v4.Z();
          m[3][3] = 1;
          break;
       case PROJECTIVE:
          m[0][0] = v1.X(); m[0][1] = v1.Y(); m[0][2] = v1.Z();
          m[0][3] = v1.h();
          m[1][0] = v2.X(); m[1][1] = v2.Y(); m[1][2] = v2.Z();
          m[1][3] = v2.h();
          m[2][0] = v3.X(); m[2][1] = v3.Y(); m[2][2] = v3.Z();
          m[2][3] = v3.h();
          m[3][0] = v4.X(); m[3][1] = v4.Y(); m[3][2] = v4.Z();
          m[3][3] = v4.h();
   }
```

```
Transform3D( TransType t, double s1, double s2=0, double s3=0) {
        SetIdentity();
        switch(t) {
        case SCALE:
            m[0][0] = s1; m[1][1] = s2; m[2][2] = s3;
            break:
        case ZROT:
            m[1][1] = cos(s1); m[1][2] = sin(s1);
            m[2][1] = -\sin(s1); \quad m[2][2] = \cos(s1);
            break;
        case ZSHEAR:
            m[2][0] = s1; m[2][1] = s2;
            break;
        }
    }
    void SetIdentity() {
        for (int i = 0; i < 4; i++)
            for (int j = 0; j < 4; j++) m[i][j] = (i == j);
    Transform3D operator*( Transform3D& tr ) {
        Transform3D res;
        for(int i = 0; i < 4; i++) {
            for (int j = 0; j < 4; j++) {
                res.m[i][j] = 0;
                for (int k = 0; k < 4; k++)
                    res.m[i][j] += m[i][k] * tr.m[k][j];
        return res;
    }
    void operator*=( Transform3D& tr ) { *this = (*this) * tr; }
    HomPoint3D Transform( HomPoint3D& p ) {
        HomPoint3D res;
        res.X() = p.X() * m[0][0] + p.Y() * m[1][0] +
                  p.Z() * m[2][0] + p.h() * m[3][0];
        res.Y() = p.X() * m[0][1] + p.Y() * m[1][1] +
                  p.Z() * m[2][1] + p.h() * m[3][1];
        res.Z() = p.X() * m[0][2] + p.Y() * m[1][2] +
                  p.Z() * m[2][2] + p.h() * m[3][2];
        res.h() = p.X() * m[0][3] + p.Y() * m[1][3] +
                 p.Z() * m[2][3] + p.h() * m[3][3];
        return res;
    }
} ;
```

6. fejezet

Virtuális világmodellek tárolása

A modellezés során a számítógépbe bevitt információt a program adatszerkezetekben tárolja. Az adatszerkezetek többféleképpen kialakíthatóak. Az egyes struktúrák különböző mértékben illeszkednek az adott modellezési folyamathoz, illetve a megjelenítéshez.

6.1. Hierarchikus adatszerkezet

A virtuális világ szerkezete hierarchikus. A világ objektumokat tartalmaz, az objektumok primitív objektumokat, a primitív objektumok geometriáját pedig leggyakrabban pontok, ritkábban paraméterek határozzák meg (például egy paraméteres görbe reprezentálható a vezérlőpontjaival vagy a polinomegyütthatóival). A hierarchikus felépítésnek megfelelő objektum-modell az 6.1. ábrán látható.

Egy *objektum* szokásos *attribútum*ai: az objektum neve, a *modellezési transzformáció*ja, a 2D képszintézisben használt *prioritás*a, a képszintézis gyorsítását szolgáló *befoglaló doboz*, stb. A *primitív*eknek többféle típusa lehetséges, úgy mint szakasz, görbe, felület, poligonháló, test, stb. A primitívek attribútumai a primitív típusától függnek.

6.2. A geometria és topológia szétválasztása

Az 6.1. ábra tisztán hierarchikus modelljével szemben több kifogás emelhető. A hierarchikus modell a különböző primitívek közös pontjait többszörösen tárolja, azaz nem használja ki, hogy a különböző primitívek általában illeszkednek egymáshoz, így a pontokat közösen birtokolják. Ez egyrészt helypazarló, másrészt a transzformációkat feleslegesen sokszor kell végrehajtani. Ráadásul ha az interaktív modellezés során a felhasználó módosít egy pontot, akkor külön figyelmet kíván valamennyi másolat korrekt megváltoztatása. Ezt a problémát megoldhatjuk, ha a pontokat eltávolítjuk az objektu-

6.1. ábra. A világleírás osztály és objektum diagramja

mokból és egy közös tömbben foglaljuk össze. Az objektumokban csupán mutatókat helyezünk el a saját pontok azonosítására (6.2. ábra).

6.2. ábra. A világleírás kiemelt geometriai információval

A javított modellünk tehát két részből áll. A pontokat tartalmazó tömb lényegében a geometriát határozza meg. Az adatstruktúra többi része pedig a részleges topológiát írja le, azaz, hogy egy objektum mely primitívekből áll és a primitíveknek melyek a definíciós pontjai.

A hierarchikus modellel szemben a következő kifogásunk az lehet, hogy az adatstruktúrából nem olvasható ki közvetlenül a teljes *topológia*i információ. Például nem

6.3. CSG-fa 85

tudhatjuk meg, hogy egy pontra mely primitívek illeszkednek, illetve egy primitív mely objektumokban játszik szerepet. Ilyen topológiai információra azért lehet szükségünk, hogy eldöntsük, hogy a virtuális világ csak érvényes 2D illetve 3D objektumoknak a gyűjteménye, vagy elfajult korcsok is az objektumaink közé keveredtek. A beteg objektumok kiszűrése nem a képszintézis miatt fontos, hanem azért, mert a modell alapján esetleg szeretnénk térfogatot számítani, vagy egy NC szerszámgéppel legyártatni a tervezett objektumot.

A teljes topológiai információ az illeszkedéseket kifejező mutatók beépítésével reprezentálható. Egy ilyen modell a 3D felületi modellek tárolására kifejlesztett *szárnyasél adatstruktúra* [Bau72] (6.3. ábra), amelyben minden illeszkedési relációt mutatók fejeznek ki. Az adatszerkezet központi eleme az él, amelyben mutatókkal hivatkozunk a két végpontra, az él jobb és bal oldalán lévő lapokra, és a két lapon a megelőző és a következő élekre. A végpontok ugyancsak hivatkoznak az egyik illeszkedő élre, amiből a mutatókon keresztül már minden illeszkedő él előállítható. Hasonlóképpen a lapok is hivatkoznak egyik élükre, amelyből az összes határgörbe származtatható.

6.3. ábra. Szárnyas él adatstuktúra

A szárnyas él adatstruktúrát általában a topológiai helyességet hangsúlyozó *B-rep modellező*k használják.

6.3. CSG-fa

A hierarchikus modell más irányú javításához juthatunk, ha nem korlátozzuk a hierarchia mélységét, és egy szinten nem csupán az alacsony szintű objektumok egyesítését, hanem bármilyen halmazműveletet megengedünk. Mivel a halmazműveletek általában binárisak, a keletkező modell egy bináris fa, amelynek levelei primitív testeket képviselnek, a többi csomópontja pedig a gyermekobjektumokon végrehajtott halmazműveletet (3.14. ábra). Ezen modell különösen jól illeszkedik a konstruktív tömörtest geometriához, ezért a bináris fa szokásos elnevezése a *CSG-fa*.

6.4. Megjelenítő állományok

Ismét másfajta adatstruktúrához juthatunk, ha a lehető leggyorsabb megjelenítés érdekében alakítjuk át a szerkezetet. A megjelenítés gyorsítását szem előtt tartva, a primitív objektumok és pontok elérésénél nem alkalmazunk mutatókat, és kihasználjuk, hogy az egymást követő primitívek attribútumai igen gyakran megegyezőek, ezért nem érdemes az attribútumokat minden primitívnél tárolni, majd a megjelenítés során beállítani. Ehelyett az éppen érvényes attribútumok értékét külön táblázatban tároljuk, és ezek addig érvényben maradnak, amíg egy attribútumállító primitív meg nem változtatja valamelyiket.

A mutatók kiküszöbölése az adatstruktúra összetolását jelenti. Az összetolás során problémát jelent, hogy a különböző típusú primitívek mérete általában eltérő. A megoldást a változó hosszú utasításkészletű processzorok programtárolási módszere adja. Helyezzük el a modellt egy bájtokat tartalmazó tömbben, ahol minden primitív egy vagy több bájtot foglal el. Minden primitív első bájtja a primitív típusát azonosítja, amelyből az is kiderül, hogy még hány bájt tartozik a primitívhez. Egyrészt ezen tény miatt, másrészt pedig amiatt, mert az attribútum állításokat elválasztottuk a primitívektől, a primitíveket nem lehet tetszőleges sorrendben feldolgozni, kizárólag a leírás sorrendjében.

Ezek után a lineáris adatstruktúrát, más néven *megjelenítő állomány*t úgy is elképzelhetjük, mint egy gépi kódú programot, amelynek utasításai a vonalhúzás, vonalszín beállítás, poligon rajzolás, stb. A Tektronix grafikus munkaállomásokban például a grafikus processzor utasításkészlete éppen ilyen, ezért a megjelenítés úgy történik, hogy a grafikus processzor memóriájába beírjuk a megjelenítő állományt, majd a grafikus processzor végrehajtja a "programot".

6.5. Szabványos világmodellek

Az állományokban tárolt virtuális világ szerkezetére számos több, szélesebb körben elfogadott, szabványos megoldás ismeretes. Ezek egy része valóban termékfüggetlen és szabványnak tekinthető (*IGES*, *NFS*, *MGF*, stb.). Másik részük viszont csak elterjedt modellező vagy képszintézis programok leíró nyelvei (*POVRAY*, *3D-Studio*, *AutoCad*, *Open-Inventor*, stb.). Ha magunk írunk grafikus rendszert, akkor azt is célszerű felkészíteni valamely elterjedt formátum megértésére, mert ebben az esetben könnyen átvehetjük a mások által sok fáradság árán létrehozott modelleket. Elegendő egy gyakori formátum értelmezését beépíteni a programba, hiszen léteznek és elérhetőek olyan konverziós programok, amelyek a szabványos formákat egymásba átalakítják.

6.6. Program: hierarchikus 3D adatszerkezet

Az adatszerkezetet megvalósító osztályokat a hierarchia szerint alulról felfelé építjük fel. A hierarchia alján a primitívek vannak, amelyek az általános Primitive3D osztályból származtathatók. Egy primitív geometriáját pontokkal írjuk le, megjelenítéséhez pedig legalább a színe szükséges. A pontokat a dinamikusan nyújtózkodó tömböt megvalósító generikus Array osztályból paraméterezett Array<Point3D> típusú points tömbben tároljuk, a színt pedig az R, G, B komponenseket tartalmazó Color típusú változó jellemzi. Az Array osztály deklarációját a 3.7. fejezetben találhatjuk meg.

A PolyLine3D az általános primitívben tárolt pontokat egyenes szakaszokkal köti össze. A poligon megadásához egyéb adatra nincs szükség, így ebben az osztályban nem definiálunk új adattagokat és tagfüggvényeket.

A Curve3D osztály egy általános görbetípust képvisel. Az alaposztálytól örökölt pontok most a görbe vezérlő pontjai. A görbe pontjait a vezérlő pontokból a görbe típusának megfelelő interpolációs vagy approximációs eljárással állíthatjuk elő, amelyet az Interpolate tagfüggvény valósít meg. A különböző görbetípusok ezt a tagfüggvényt másképpen implementálják, amelyhez más polinomfüggvényt használnak fel.

A LagrangeCurve3D az interpolációhoz a LagrangePolinom osztályban definiált L(i,tt) Lagrange interpolációs függvényt alkalmazza.

A BezierCurve3D az approximációhoz a BezierPolinom osztályban definiált B(i,tt, m) *Bernstein-polinom*okat használja.

A PolyFace3D osztály háromszögeket tárol, amelyek tetszőleges felületeket közelíthetnek. Most az alaposztálytól örökölt pontok a háromszögek csúcspontjai.

Egy 3D objektum (Object 3D) tetszőleges számú és típusú primitívet tartalmazhat, ezért itt a primitívek címeit tároljuk. Másrészt az objektumhoz egy modellezési transzformáció tartozik, amely elhelyezi az objektumot a világ-koordinátarendszerben.

Az osztály lehetőséget ad arra, hogy egy új primitívet az objektumhoz vegyünk (AddPrimitive), egy adott primitívet (Primitive), illetve a primitívek számát (PrimitiveNum) lekérdezzük, és hogy a transzformációhoz hozzáférjünk (Transform).

A virtuális világ (VirtualWorld) objektumokból áll, amelyhez új objektumokat lehet hozzávenni (AddObject), le lehet kérdezni az objektumok számát (ObjectNum) és az egyes objektumokat (Object).

7. fejezet

A 2D képszintézis

A 2D képszintézis célja az objektumok képernyőre transzformálása és a nézetbe eső részek megjelenítése. A megjelenítés a rasztertár megfelelő pixeleinek kiszínezésével történik. Az objektumok geometriai definíciója a lokális modellezési koordinátarendszerben áll rendelkezésre, így a képszintézis innen indul. Először az objektumokat egy közös világ-koordinátarendszerbe transzformáljuk. A 2D világ-koordinátarendszerben megadjuk a 2D kamerát jelképező ablakot. Az ablak belsejébe eső elemeket a képernyő-koordinátarendszer nézetébe vetítjük, és itt megkeressük a geometriai elemeket közelítő pixeleket.

A képszintézis során a következő feladatokat végezzük el:

- Vektorizáció: A virtuális világban tárolt szabadformájú elemeket (például körívek, interpolációs vagy spline görbék) pontok, szakaszok és poligonok halmazával közelítjük.
- 2. Transzformáció: a lokális koordinátarendszerben adott geometriai elemekre a világ-koordinátarendszerben, majd a képernyő koordinátarendszerben van szükségünk. A koordinátarendszerváltás homogén lineáris geometriai transzformációt igényel, amelyet mátrixszorzással fogunk realizálni.
- 3. *Vágás*: A képernyőn csak az jeleníthető meg, ami a nézet téglalapján belül van, így azon geometriai elemeket, illetve a geometriai elemek azon részeit, amelyek a nézet, illetve az ablak téglalapján kívülre kerülnek, el kell távolítani.
- Pásztakonverzió, vagy más néven raszterizáció: A képernyő-koordinátarendszerbe transzformált és a nézet belsejébe eső geometriai elemek képét pixelek átszínezésével közelítjük.

7.1. ábra. A 2D képszintézis lépései

7.1. Vektorizáció

A vektorizáció a szabad formájú elemeket pontokkal, szakaszokkal és poligonokkal közelíti. Erre a lépésre azért van szükség, mert a transzformációs és a vágási lépéseket a pontokra, szakaszokra és poligonokra viszonylag könnyen végre tudjuk hajtani, ráadásul ezek a lépések nem változtatják meg az elem típusát. Gondoljunk arra, hogy egy szakasz a homogén lineáris transzformáció és a vágás után is szakasz lesz. A szakasz transzformációja a végpontok transzformációjával elvégezhető, a vágáshoz pedig lineáris egyenleteket kell megoldani. Ezzel szemben ha például egy kört transzformálnánk, abból könnyen születhet a körnél sokkal bonyolultabb képződmény.

A vektorizáció során mind az önálló görbéket, mind a területek határait egyenes szakaszok sorozatával közelítjük, így a görbékből szakaszok, a területekből poligonok keletkeznek.

Tegyük fel, hogy a görbe $\vec{r}=\vec{r}(t), t\in[0,1]$ explicit egyenletével adott. Egy megfelelő szakasz sorozat előállítható, ha a [0,1] tartományon kijelöljük a $t_0=0< t_1<\ldots t_{n-1}< t_n=1$ pontokat, és a görbe ilyen paraméterértékeknek megfelelő pontjait szakaszokkal kötjük össze. A közelítő szakaszok végpontjai a következők:

$$[\vec{r}(t_0), \vec{r}(t_1)], [\vec{r}(t_1), \vec{r}(t_2)], \dots, [\vec{r}(t_{n-1}), \vec{r}(t_n)].$$

Az n és t_0, t_1, \ldots, t_n paraméterek megválasztása jelentős mértékben meghatározza a közelítés pontosságát. Kiválasztásuk heurisztikus módszerrel történhet. Például lehet a kiválasztás célja az, hogy a keletkező szakaszok képernyő koordinátarendszerbeli képe ne legyen hosszabb néhány pixelnél, hiszen ekkor a raszterizáció hibája mellett az egyenes szakaszokkal történő közelítés hibája elhanyagolható.

7.2. Modellezési transzformáció

A modellezési transzformáció a koordinátákat a lokális modellezési koordinátarendszerből a világ-koordinátarendszerbe viszi át. A modellezési transzformáció a koordinátarendszer váltó transzformációk egy esete.

7.2. ábra. 2D modellezési transzformáció

Tegyük fel, hogy a geometria az \vec{a}, \vec{b} lokális modellező koordinátarendszerben ismert, de nekünk az x,y világ-koordinátarendszerbeli koordinátákra van szükségünk. Tegyük fel továbbá, hogy a lokális modellező koordinátarendszer \vec{a} és \vec{b} egységvektorai, valamint \vec{o} origója a világ-koordinátarendszerben adott:

$$\vec{a} = [a_x, a_y], \quad \vec{b} = [b_x, b_y], \quad \vec{o} = [o_x, o_y].$$
 (7.1)

Rendeljük össze egy \vec{p} pont x, y világ-koordinátarendszerbeli koordinátáit, az α, β lokális modellezési koordinátarendszerbeli koordinátáival:

$$\vec{p} = \alpha \cdot \vec{a} + \beta \cdot \vec{b} + \vec{o} = [x, y]. \tag{7.2}$$

Ezen egyenlet homogén koordinátás alakban ugyancsak felírható:

$$[x, y, 1] = [\alpha, \beta, 1] \cdot \begin{bmatrix} a_x & a_y & 0 \\ b_x & b_y & 0 \\ o_x & o_y & 1 \end{bmatrix} = [\alpha, \beta, 1] \cdot \mathbf{T}_M. \tag{7.3}$$

7.3. Ablak-nézet transzformáció

Az ablak-nézet transzformáció a 2D sík pontjait eltolja, és a két koordinátatengely mentén nagyítja oly módon, hogy az ablak téglalapjának a képe a nézet téglalapja legyen (7.3. ábra). Legyen az ablak bal alsó sarka a (w_x, w_y) pont, szélessége w_w , magassága w_h . Hasonlóképpen a nézet bal alsó sarka (v_x, v_y) , szélessége v_w , magassága v_h .

7.3. ábra. Ablak-nézet transzformáció

Miként behelyettesítéssel könnyen meggyőződhetünk róla, az ablak sarkait a nézet sarkaiba átvivő transzformáció:

$$X = \frac{x - w_x}{w_w} \cdot v_w + v_x, \qquad Y = \frac{y - w_y}{w_h} \cdot v_h + v_y. \tag{7.4}$$

Mátrix alakban:

$$\mathbf{T}_{V} = \begin{bmatrix} v_{w}/w_{w} & 0 & 0\\ 0 & v_{h}/w_{h} & 0\\ v_{x} - v_{w} \cdot w_{x}/w_{w} & v_{y} - v_{h} \cdot w_{y}/w_{h} & 1 \end{bmatrix}.$$
 (7.5)

7.4. A modellezési és az ablak-nézet transzformációk összefűzése

A képszintézis egy pont lokális modellezési koordinátarendszerbeli $\vec{r_l}$ koordinátái alapján először meghatározza a világ-koordinátarendszerbeli $\vec{r_w}$ koordinátákat, majd kiszámítja a képernyő-koordinátarendszerbeli $\vec{r_s}$ koordinátákat.

$$\vec{r}_w = \vec{r}_l \cdot \mathbf{T}_M, \qquad \vec{r}_s = \vec{r}_w \cdot \mathbf{T}_V. \tag{7.6}$$

Két mátrixszorzás helyett ugyanez egyetlen mátrixszorzással is megoldható, ha a szorzásban a modellezési és az ablak-nézet transzformációk konkatenáltját, az ún. *összetett*

7.5. 2D vágás 95

transzformációt (\mathbf{T}_C) használjuk:

$$\mathbf{T}_C = \mathbf{T}_M \cdot \mathbf{T}_V, \qquad \vec{r}_s = \vec{r}_l \cdot \mathbf{T}_C. \tag{7.7}$$

7.5. 2D vágás

A 2D vágással a geometriai elemek azon részét távolítjuk el, amelyek a vágási téglalapon kívülre esnek. A vágási téglalap lehet az ablak téglalapja, amennyiben a világkoordinátarendszerben végezzük ezt a műveletet, vagy a nézet téglalapja, ha a vágásra a képernyő-koordinátarendszerben kerül sor. Ha a virtuális világ közvetlenül világ-koordinátákban adott, akkor célszerű az ablakra vágni, hiszen ekkor az eldobott elemek transzformációját megtakaríthatjuk. Ha viszont a virtuális világ egyes objektumai külön modellezési koordinátarendszerben definiáltak, akkor a nézetre vágás jár kevesebb művelettel. Az ablakra vágás ilyenkor egy modellezési transzformációt igényel minden elemre, majd a vágáson átjutott elemekre egy ablak-nézet transzformációt. Ezzel szemben a nézetre vágáshoz minden pontra egyetlen összetett transzformáció szükséges.

A vágás folyamata természetesen független attól, hogy ablakról vagy nézetről van szó, hiszen mindkét esetben a vágási tartomány egy koordinátatengelyekkel párhuzamos oldalú téglalap. Jelöljük ezen téglalap minimális és maximális koordinátáit $x_{\min}, y_{\min}, x_{\max}, y_{\max}$ -szal.

Emlékezzünk vissza, hogy a vektorizáció jóvoltából csak pontok, szakaszok és poligonok vágásával kell foglalkoznunk. A pontok vágása könnyen elintézhető. Egy x,y pont a téglalapon belül van, ha az alábbi egyenlőtlenségek teljesülnek:

$$x \ge x_{\min}, \quad x \le x_{\max}, \quad y \ge y_{\min}, \quad y \le y_{\max}.$$
 (7.8)

Vegyük észre, hogy az egyes egyenlőtlenségek azt mutatják, hogy az adott pont a téglalapot határoló 4 egyenesnek a téglalap felőli vagy azon túli oldalán van! Ez lényegében azt jelenti, hogy a pont objektum téglalapra vágását az objektum 4 félsíkra való vágására vezettük vissza. Mivel a téglalap a négy félsík metszete, egy pont akkor és csak akkor belső pontja a téglalapnak, ha mind a négy félsík tekintetében belső pont. Ezt érdemes megjegyezni, mert a szakasz- és a poligonvágás is ugyanerre az elvre épül.

Szakaszok vágása

Vezessük vissza az $[(x_1,y_1),(x_2,y_2)]$ végpontokkal definiált szakasz téglalapra vágását félsíkokra történő vágásra. Például tekintsük az $x \le x_{\max}$ félsíkot (a többi teljesen analóg módon kezelhető).

Három esetet kell megkülönböztetni:

1. Ha a szakasz mindkét végpontja belső pont, akkor a teljes szakasz belső pontokból áll, így megtartjuk.

7.4. ábra. A szakasz és félsík határának lehetséges elhelyezkedése és metszéspontja

- Ha a szakasz mindkét végpontja külső pont, akkor a szakasz minden pontja külső pont, így a vágás a teljes szakaszt eltávolítja.
- 3. Ha a szakasz egyik végpontja külső pont, a másik végpontja belső pont, akkor ki kell számítani a szakasz és a félsík határának metszéspontját, és a külső végpontot fel kell cserélni a metszésponttal. Figyelembe véve, hogy a szakasz pontjai kielégítik a

$$x(t) = x_1 + (x_2 - x_1) \cdot t, \quad y(t) = y_1 + (y_2 - y_1) \cdot t$$

egyenletet, a félsík határa pedig kielégíti az $x = x_{\text{max}}$ egyenletet, a metszéspont t_i paraméterét és (x_i, y_i) koordinátáit a következőképpen határozhatjuk meg:

$$x_{\max} = x(t_i) = x_1 + (x_2 - x_1) \cdot t_i \implies t_i = \frac{x_{\max} - x_1}{x_2 - x_1} \implies (x_i, y_i) = (x_{\max}, y_1 + (y_2 - y_1) \cdot \frac{x_{\max} - x_1}{x_2 - x_1}). \tag{7.9}$$

A szakasz téglalapra vágásához ezt az algoritmust mind a négy félsíkra végre kell hajtani. Ez az algoritmus ugyan jól működik, de nem elég gyors. A gyorsításhoz észre kell vennünk, hogy a vágás három felvázolt esetéből az első kettő gyorsan megoldható, de a harmadik lényegesen nagyobb számítási időt igényel. Ha a négy félsíkra vágást egymástól függetlenül, szekvenciálisan hajtjuk végre, akkor előfordulhat, hogy az egyik félsíkra végigkínlódjuk a harmadik esetet, majd rájövünk, hogy a következő félsík tekintetében a szakasz teljes egészében külső, így eldobandó. Érdemes lenne az egyszerű logikai műveleteket előrehozni, és a metszéspontszámítással csak végső esetben foglalkozni. Meglepő módon már ezt az egyszerűnek látszó feladatot is nagyon sokféleképpen

7.5. 2D vágás 97

lehet megoldani, így sok különböző vágóalgoritmus ismeretes [CB78, LB84, Duv90]. Mi csupán a legelterjedtebbel fogunk megismerkedni, amelyet *Cohen-Sutherland vágási algoritmus*nak neveznek.

7.5. ábra. A sík pontjainak kódolása

Rendeljünk minden egyes félsíkhoz egy bitet, amely egy pontra 1 értékű, ha a pont a félsíkon belül van, és 0, ha kívül. A szakasz végpontjait ily módon egy-egy 4 bites kóddal jellemezhetjük (7.5. ábra).

Ha mindkét végpont kódja 0000, a végpontok a félsíkokon belül vannak, tehát a vágási téglalapon is belül vannak. Ekkor a szakasz összes pontja a vágási téglalapon belül van. Ezt az esetet nevezzük *triviális elfogadás*nak. Ha viszont valamelyik bitben mindkét végpont kódja 1, akkor mindkét végpont a bitnek megfelelő félsíkon kívül van, így a teljes szakasz eldobandó. Ez a *triviális eldobás* esete. Ezen két esetet anélkül sikerült elintézni, hogy egyetlen metszéspontot is számítani kellett volna. Ha egyik eset sem áll fenn, akkor van legalább egy olyan bit, amelyben az egyik végpont 0, míg a másik 1 értékű. Ez azt jelenti, hogy van egy olyan félsík, amelyhez képest az egyik végpont külső pont, míg a másik belső. Az előző algoritmussal erre a félsíkra kell a metszéspontot meghatározni és a külső pontot a metszésponttal felváltani. Az új szakaszra a vizsgálatok újra kezdhetők.

Összefoglalásképpen bemutatjuk a Cohen-Sutherland vágás programját. A program bemeneti paraméterként kapja a szakasz két végpontját. Az algoritmus a visszatérési értékében jelzi, hogy a vágás eredményeképpen maradt-e valami a szakaszból, és ha igen, akkor a bemeneti paraméterek módosításával végzi el a vágást.

```
\begin{aligned} & \text{BOOL LineClipping}(P_1, P_2) \\ & C_1 = \operatorname{Code}(P_1), \ C_2 = \operatorname{Code}(P_2) \\ & \operatorname{loop} \\ & \text{if } (C_1 = 0 \ \text{AND} \ C_2 = 0) \ \text{then return TRUE} \\ & \text{if } (C_1 \& C_2 \neq 0) \ \text{then return FALSE} \\ & f = \operatorname{Bit index ahol} C_1 <> C_2 \\ & P^* = \operatorname{A}(P_1, P_2) \ \text{szakasz \'es a } f. \ \text{f\'els\'ik hat\'ar metsz\'espontja} \\ & C^* = \operatorname{Code}(P^*) \\ & \text{if } C_1[f] = 1 \ \text{then } P_1 = P^*, \ C_1 = C^*; \\ & \text{else} \\ & P_2 = P^*, \ C_2 = C^* \\ & \text{endloop} \end{aligned}
```

Először a C_1 és C_2 kódokat számítjuk ki a végpontok x, y koordinátáira az

$$x < x_{\min}, y < y_{\min}, x > x_{\max}, y > y_{\max}$$

relációk ellenőrzésével. A hurokban először a triviális elfogadás és eldobás lehetőségét ellenőrizzük, majd ha egyikkel sem élhetünk, kiválasztjuk azt a félsíkot, amelynek megfelelő kódbit a két végpontra eltérő. A szakasz és a félsík határoló egyenese közötti metszéspontot a 7.9 egyenlet megfelelő változatával határozhatjuk meg. A rossz oldalon, azaz az 1. kódbittel rendelkező végpontot a metszéspontra cseréljük, majd a következő ciklusban ismét a triviális eldobás illetve elfogadás esetével próbálkozunk.

Poligonok vágása

A poligonok téglalapra vágását is 4 egymás után végrehajtott félsíkra vágással realizáljuk.

7.6. ábra. Poligonvágás

7.5. 2D vágás 99

A vágás során egyrészt az egyes csúcspontokat kell megvizsgálni, hogy azok belső pontok-e vagy sem. Ha egy csúcspont belső pont, akkor a vágott poligonnak is egyben csúcspontja. Ha viszont a csúcspont külső pont, nyugodtan eldobhatjuk. Másrészt vegyük észre, hogy az eredeti poligon csúcsain kívül a vágott poligonnak lehetnek új csúcspontjai is, amelyek az élek és a félsík határolóegyenesének a metszéspontjai. Ilyen metszéspont akkor keletkezhet, ha két egymást követő csúcs közül az egyik belső, míg a másik külső pont. A csúcsok egyenkénti vizsgálata mellett tehát arra is figyelni kell, hogy a következő pont a félsík tekintetében ugyanolyan típusú-e (7.6. ábra).

Tegyük fel, hogy az eredeti poligonunk pontjai a $p[0],\ldots,p[n-1]$ tömbben érkeznek, a vágott poligon csúcsait pedig a $q[0],\ldots,q[m-1]$ tömbbe kell elhelyezni. A vágott poligon csúcsait az m változóban számoljuk. Az implementáció során egy kis apró kellemetlenséget okoz az, hogy általában az i. csúcsot követő csúcs az i+1., kivéve az utolsó, az n-1. csúcs esetében, hiszen az ezt követő a 0. Ezt a kellemetlenséget elháríthatjuk, ha a p tömböt kiegészítjük még egy (p[n]=p[0]) elemmel, amely még egyszer tárolja a 0. elemet. Ezek után a vágóalgoritmus, amely a Sutherland-Hodge-man-poligonvágás [SH74] nevet viseli:

```
\begin{aligned} \textbf{PolygonClipping}(p[n] &\to q[m]) \\ m &= 0 \\ \text{for } i &= 0 \text{ to } n-1 \text{ do} \\ &\text{ if } p[i] \text{ belső pont then} \\ &q[m++] &= p[i] \\ &\text{ if } p[i+1] \text{ külső pont then} \\ &q[m++] &= (p[i], p[i+1]) \text{ szakasz \'es a f\'els\'ik hat\'ar metsz\'espontja} \\ &\text{ endif} \\ &\text{ else} \\ &\text{ if } p[i+1] \text{ belső pont then} \\ &q[m++] &= (p[i], p[i+1]) \text{ szakasz \'es a f\'els\'ik hat\'ar metsz\'espontja} \\ &\text{ endif} \\ &\text{ endif} \\ &\text{ endif} \end{aligned}
```

Az algoritmusban a "belső pont" illetve a "külső pont" vizsgálatokhoz a félsík határoló egyenesének koordinátáját és a csúcspont koordinátáját hasonlítjuk össze. Például az ablak jobb oldalánál ha $x>x_{\rm max}$ akkor a pont külső, egyébként belső.

Alkalmazzuk gondolatban a vágóalgoritmust olyan konkáv poligonra, amelynek a vágás következtében több részre kellene esnie. (7.7. ábra). Az egyetlen tömböt produkáló algoritmus képtelen a széteső részek elkülönítésére, és azokra a helyekre, ahol valójában nem keletkezhet él, páros számú élt hoz létre.

A különálló részeket összekapcsoló páros számú él nem okoz problémát a kitöltésnél, ha olyan kitöltő algoritmust használunk, amely a belső pontokat a következő elv

7.7. ábra. Konkáv poligonok vágása

alapján határozza meg: a kérdéses pontból egy félegyenest indítunk a végtelen felé és megvizsgáljuk, hogy az hányszor metszi a poligon határát. Páratlan számú metszéspont esetén a pontot belső pontnak tekintjük, egyébként a pont külső pont.

7.6. 2D raszterizáció

A *raszterizáció* során azokat a pixeleket azonosítjuk, amelyek átszínezésével a képernyő-koordinátarendszerbe transzformált geometriai alakzat formáját közelíthetjük.

A raszterizáció alapobjektuma a pixel, a geometriai primitívekkel dolgozó korábbi lépésekkel ellentétben. Előfordulhat, hogy egy geometriai objektum rajzolásához nagyon sok pixel kell (szakaszoknál 1000, területeknél akár egy millió), ezért a raszterizáció elvárt sebessége több nagyságrenddel meghaladja az idáig tárgyalt műveletekét.

A vektorizációnak köszönhetően, akárcsak a vágásnál, most is csak pontok, szakaszok és poligonok raszterizációjával kell foglalkoznunk.

A pont most is a könnyű eset. Nyilván azt a pixelt színezzük át, amelynek középpontja a ponthoz a legközelebb van. Ha a pont koordinátái (X,Y), akkor a legközelebbi pixel a rasztertár (round(X), round(Y)) eleme.

7.6.1. Szakaszok rajzolása

Jelöljük a szakasz végpontjait (x_1, y_1) , (x_2, y_2) -vel. Ezen képernyő-koordináták a transzformációk, a vágás és az egész értékre kerekítés után állnak elő. Tegyük fel továbbá, hogy midőn az első végpontból a második felé haladunk, mindkét koordináta nő, és a gyorsabban változó irány az x, azaz

$$\Delta x = x_2 - x_1 \ge \Delta y = y_2 - y_1 \ge 0.$$

7.6. 2D raszterizáció 101

Ebben az esetben a szakasz enyhén emelkedő. A többi eset a végpontok és az x, y koordináták megfelelő felcserélésével analóg módon kezelhető.

A szakaszrajzoló algoritmusokkal szemben alapvető elvárás, hogy az átszínezett képpontok között ne legyenek lyukak, és a keletkezett kép ne legyen vastagabb a feltétlenül szükségesnél. Ez az enyhén emelkedő szakaszok esetén azt jelenti, hogy minden pixel oszlopban pontosan egy pixelt kell átszínezni, nyilván azt, amelynek középpontja a szakaszhoz a legközelebb van. Az egyenes egyenlete:

$$y = m \cdot x + b$$
, ahol $m = \frac{y_2 - y_1}{x_2 - x_1}$, és $b = y_1 - x_1 \cdot \frac{y_2 - y_1}{x_2 - x_1}$, (7.10)

alapján, az x koordinátájú oszlopban a legközelebbi pixel függőleges koordinátája:

$$Y = round(m \cdot x + y_1).$$

Ezzel el is jutottunk az első szakaszrajzoló algoritmusunkhoz:

```
\begin{aligned} \mathbf{DrawLine}(x_1, y_1, x_2, y_2) \\ m &= (y_2 - y_1)/(x_2 - x_1) \\ b &= y_1 - x_1 \cdot (y_2 - y_1)/(x_2 - x_1) \\ \text{for } X &= x_1 \text{ to } x_2 \text{ do} \\ y &= m \cdot x + b \\ Y &= round(y) \\ \text{Pixel}(X, Y, color) \\ \text{endfor} \end{aligned}
```

Ennek az algoritmusnak egyetlen szépséghibája a lassúsága, ami abból adódik, hogy minden pixel előállításához lebegőpontos szorzást, összeadást és lebegőpontos-egész átalakítást végez.

Asszimetrikus DDA szakaszrajzoló algoritmus

A gyorsítás alapja a számítógépes grafika alapvető módszere, amelyet inkrementális elvnek nevezünk. Ez azon a felismerésen alapul, hogy általában könnyebben meghatározhatjuk az y(X+1) értéket az y(X) felhasználásával, mint közvetlenül az X-ből. Egy szakasz esetén:

$$y(X + 1) = m \cdot (X + 1) + b = m \cdot X + b + m = y(X) + m,$$

ehhez egyetlen lebegőpontos összeadás szükséges (m törtszám). Az elv lényegében a Taylor-soros közelítésből származik, ezért az elv gyakorlati alkalmazását DDA (Digitális Differenciális Analizátor) algoritmusnak nevezik.

A DDA elvű szakaszrajzoló algoritmus:

```
\begin{aligned} \mathbf{DDADrawLine}(x_1,y_1,x_2,y_2) \\ m &= (y_2-y_1)/(x_2-x_1) \\ y &= y_1 \\ \text{for } X &= x_1 \text{ to } x_2 \text{ do} \\ Y &= round(y) \\ \text{Pixel}(X,Y,color) \\ y &= y+m \\ \text{endfor} \end{aligned}
```

További gyorsítás érhető el *fixpontos számábrázolás*, segítségével. Ez azt jelenti, hogy a törtszám 2^T -szeresét tároljuk egy egész változóban, ahol T a törtbitek alkalmasan megválasztott száma. A törtbitek számát úgy kell megválasztani, hogy a leghoszszabb ciklusban se halmozódhasson fel akkora hiba, hogy elrontsa a pixelkoordinátákat. Ha a leghosszabb szakasz hossza L, akkor az ehhez szükséges bitek száma $\log_2 L$.

A fixpontos, nem egész számok összeadásához az egész változókat kell összeadni, amely egyetlen gépi utasítást igényel, sőt néhány elemmel áramköri szinten realizálható. A kerekítés operáció pedig helyettesíthető egészrész képzéssel, ha előtte a számhoz 0.5-öt hozzáadunk. Az egészrész képzés a törtbitek levágását jelenti, így a teljes szakaszrajzolás hardverben könnyen implementálható. Hardver implementáción olyan szinkron digitális hálózatot értünk, amely minden egyes órajelre egy újabb pixel címét állítja elő a kimenetén (7.8. ábra).

7.8. ábra. DDA szakaszrajzoló hardware

A DDA algoritmussal még mindig nem lehetünk teljes mértékben elégedettek. Egyrészt a szoftver implementáció során a fixpontos ábrázolás és egészrész képzés eltolási

7.6. 2D raszterizáció 103

(shift) műveleteket igényel. Másrészt, igaz szakaszonként csupán egyszer, az m meredekség kiszámításához osztani kell.

Mindkét problémával sikeresen birkózik meg a *Bresenham-algoritmus* [Bre65], amelyet a következő fejezet mutat be.

Bresenham szakaszrajzoló algoritmus

7.9. ábra. A Bresenham-algoritmus által használt jelölések

Jelöljük a szakasz és a legközelebbi pixel középpont függőleges, előjeles távolságát s-sel, a szakasz és a legközelebbi pixel feletti pixel függőleges távolságát t-vel (7.9. ábra). Ahogy a következő oszlopra lépünk, az s és t értékei változnak. Nyilván az eredetileg legközelebbi pixel sora és az eggyel feletti sor közül addig választjuk az alsó sort, amíg annak a távolsága tényleg kisebb mint a felette lévő pixel középpont és a szakasz távolsága, azaz ha s < t. Bevezetve az e = s - t hibaváltozót, addig nem kell megváltoztatnunk az átfestendő pixel sorát, amíg e < 0. Az s,t,e változók számításához az inkrementális elvet használhatjuk ($\Delta x = x_2 - x_1$, $\Delta y = y_2 - y_1$):

$$\begin{split} s(X+1) &= s(X) + \frac{\Delta y}{\Delta x}, \quad t(X+1) = t(X) - \frac{\Delta y}{\Delta x} &\Longrightarrow \\ e(X+1) &= e(X) + 2\frac{\Delta y}{\Delta x}. \end{split}$$

Ezek az összefüggések akkor igazak, ha az X+1. oszlopban ugyanazon sorokban lévő pixeleket tekintjük, mint a megelőzőben. Előfordulhat azonban, hogy az új oszlopban

már a felső pixel kerül közelebb a szakaszhoz (az e hibaváltozó pozitívvá válik), így az s,t,e mennyiségeket ezen pixel, és az ezen pixel feletti pixelre kell meghatározni. Erre az esetre a következő képletek vonatkoznak:

$$s(X+1) = s(X) + \frac{\Delta y}{\Delta x} - 1, \qquad t(X+1) = t(X) - \frac{\Delta y}{\Delta x} + 1, \Longrightarrow$$
$$e(X+1) = e(X) + 2(\frac{\Delta y}{\Delta x} - 1).$$

Figyeljük meg, hogy az s előjeles távolságot jelent, azaz az s negatív, ha a szakasz az alsó pixelközéppont alatt található. Feltételezhetjük, hogy az algoritmus indulásakor egy pixel középpontban vagyunk, tehát:

$$s(x_1) = 0$$
, $t(x_1) = 1 \implies e(x_1) = s(x_1) - t(x_1) = -1$.

Ezekkel a képletekkel önmagukban még nem nyertünk semmit. Az e hibaváltozó léptetéséhez nem egész összeadás szükséges, a növekmény meghatározása pedig osztást igényel. Vegyük észre azonban, hogy nekünk csak a hibaváltozó előjelére van szükségünk, hiszen akkor kell az Y változót eggyel léptetni, ha a hibaváltozó pozitívvá válik! Használjuk a hibaváltozó helyett, az $E=e\cdot\Delta x$ döntési változót! Enyhén emelkedő szakaszok esetén ($\Delta x>0$) ez pontosan akkor vált előjelet, amikor a hibaváltozó. A döntési változóra érvényes képleteket a hibaváltozóra vonatkozó képletek Δx -szel történő szorzásával kapjuk meg:

$$E(X+1) = \left\{ \begin{aligned} E(X) + 2\Delta y, \text{ ha Y-t nem kell léptetni,} \\ E(X) + 2(\Delta y - \Delta x), \text{ ha Y-t léptetni kell.} \end{aligned} \right.$$

A döntési változó kezdeti értéke pedig $E = e(x_1) \cdot \Delta x = -\Delta x$.

A döntési változó egész kezdeti értékről indul és minden lépésben egész számmal változik, tehát az algoritmus egyáltalán nem használ törteket. Ráadásul a növekmények előállításához csupán egész összeadás (illetve kivonás), és 2-vel való szorzás szükséges. A teljes *Bresenham-algoritmus*:

```
\begin{aligned} & \mathbf{BresenhamLine}(x_1,y_1,x_2,y_2) \\ & \Delta x = x_2 - x_1, \ \Delta y = y_2 - y_1 \\ & dE^+ = 2(\Delta y - \Delta x), \ dE^- = 2\Delta y \\ & E = -\Delta x \\ & Y = y_1 \\ & \text{for } X = x_1 \text{ to } x_2 \text{ do} \\ & \text{ if } E \leq 0 \text{ then } E += dE^- \\ & \text{ else } E += dE^+, \ Y++ \\ & \text{ Pixel}(X,Y,color) \\ & \text{ endfor } \end{aligned}
```

7.6. 2D raszterizáció 105

7.6.2. Területelárasztás

A területelárasztó algoritmusok (flood-fill) a rasztertár aktuális tartalma alapján működnek. Azon pixeleket színezik át, amelyek egy adott kezdeti pontból (magból vagy forrásból) a valamilyen módon definiált határ átlépése nélkül elérhetőek. Szükségünk van tehát egy feltételre, amely alapján egy pixelről megmondhatjuk, hogy az hozzátartozik-e az átszínezendő területhez, vagy határpont (például az átszínezendő pixelek színe "piros", a határpontoké pedig nem).

A kitöltő algoritmusnak ezek után két feladata van. Egyrészt ellenőrzi, hogy az aktuális pixel belső pont-e, és ha igen, akkor kitölti. Másrészt, ha a pixel belső pixel, akkor a szomszéd pixelek szintén potenciális belső pixelek, így azokat ugyanúgy ellenőrizni kell és szükség estén ki kell tölteni. A szomszéd pixelek fogalmát kétféleképpen is lehet értelmezni. Egyrészt definiálhatunk két pixelt szomszédként, ha közös élük van, másrészt mondhatjuk azt is, hogy két pixel akkor szomszédos, ha közös csúcsuk van. Az első értelmezés szerint egy pixelnek 4 szomszédja van, ezért az ezt alkalmazó algoritmust 4-szeresen összetett területkitöltő algoritmusnak nevezzük. A második értelmezés szerint egy pixelnek 8 szomszédja van, így a realizáció 8-szorosan összetett területkitöltő eljárás.

Egy 4-szeresen összetett területkitöltő algoritmus rendkívül egyszerű rekurzív szubrutinnal megvalósítható. A szubrutin a mag koordinátáit kapja meg bemeneti paraméterként.

```
\begin{aligned} \textbf{FloodFill}(x,y) & \text{if pixel}[x][y] \text{ belső pont then} \\ & \text{Pixel}(x,y,color) \\ & \text{Flood}(x,y-1) \\ & \text{Flood}(x,y+1) \\ & \text{Flood}(x-1,y) \\ & \text{Flood}(x+1,y) \\ & \text{endif} \end{aligned}
```

A "belső pont" feltétel annak ellenőrzését jelenti, hogy a pixel hozzátartozik-e a kitöltendő területhez vagy sem. A 8-szorosan összetett területkitöltő szubrutin igen hasonló, csak a rekurziót még az

$$(x-1,y-1),(x+1,y-1),(x-1,y+1),(x+1,y+1)$$

pixelekre is folytatni kell.

7.6.3. Területkitöltés

A területkitöltő algoritmusok a határoló szakaszok geometriai definícióját kapják meg. A geometriai definíció szokásos formája a csúcsok egy m elemű tömbje (ez a tömb

7.10. ábra. Területkitöltés

A kitöltést célszerűen vízszintes pásztánként végezzük. Egyetlen pásztára az átszínezendő pixelek a következőképpen határozhatók meg. Kiszámítjuk a poligon éleinek metszéspontjait a vízszintes pásztával. A metszéspontokat az x koordináta alapján nagyság szerint rendezzük, majd átszínezzük a nulladik és az első pont közötti, a második és a harmadik pont közötti, általában a 2i. és 2i+1. pont közötti pixeleket (7.10. ábra). Ez a módszer azokat a pontokat színezi ki, amelyeket ha végtelen távolból közelítünk meg, akkor páratlan számúszor kell átlépnünk a poligon határán.

Az első poligonkitöltő algoritmusunk tehát:

```
\begin{aligned} & \textbf{FillPolygonSlow}(q[m]) \\ & \text{for } Y = 0 \text{ to } Y_{\text{max}} \text{ do} \\ & \text{scanline} = Y \\ & k = 0 \\ & \text{for } e = 0 \text{ to } m - 1 \text{ do} \\ & \text{ if scanline a } q[e] \text{ \'es } q[e+1] \text{ cs\'ucsok k\"oz\"ott van then} \\ & x[k++] = (q[e], q[e+1]) \text{ szakasz \'es a scanline metsz\'espontja endif} \\ & \text{endfor} \\ & x[k] \text{ t\"omb rendez\'ese} \\ & \text{for } i = 0 \text{ to } k/2 - 1 \text{ do} \\ & \text{ for } X = x[2i] \text{ to } x[2i+1] \text{ do Pixel}(X,Y,\operatorname{Color}(X,Y)) \\ & \text{endfor} \end{aligned}
```

Az algoritmus a kitöltést az Y koordinátával definiált vízszintes pásztákra (scanline) végzi el. Egyetlen pásztára végigveszi az összes élt. Az e. él végpontjai a poligon

7.6. 2D raszterizáció 107

e. és e+1. csúcsa. Ha a két végpont közrefogja a pásztát, akkor létezik metszéspont az él és a pászta között. A metszéspontok az x tömbben gyűlnek, a metszéspontok számát a k változó tárolja. Mivel a metszéspontok nem feltétlenül rendezettek az x koordináta szerint, a Sort függvény elvégzi a rendezést, majd minden második, és az azt követő metszéspont közé eső pixeleket kiszínezzük.

Az egyes pixelek színét meghatározó *Color* függvény lehet konstans, amennyiben egy adott színnel szeretnénk kitölteni. Mintával való kitöltés esetén azonban a szín függ a pixel koordinátáktól.

Egyszerű, 2D mintázatokat hozhatunk létre mintacsempék segítségével. Egy mintacsempe a színek 2 dimenziós tömbje, amely mindig ugyanabban a méretben és a koordinátarendszer tengelyeivel párhuzamosan kerül a képernyőre. A csempézés folyamatát úgy képzelhetjük el, hogy egy burkoló adott referenciaponttól kezdve kicsempézi az egész képernyőt, és azon részeket, amelyek a poligonon kívülre esnének, kalapáccsal leveri. Ha a mintacsempe definíciója a pattern $[s_x][s_y]$ tömbben van, és a referenciapont koordinátái az (o_x, o_y) , akkor a *Color* függvény implementációja:

```
\begin{aligned} \mathbf{Color}(X,Y) \\ x &= (X-o_x) \bmod s_x \\ y &= (Y-o_y) \bmod s_y \\ \mathrm{return} \ \ \mathbf{pattern}[x][y] \\ \end{aligned} end
```


7.11. ábra. Kitöltés mintacsempékkel

Az első poligonkitöltő algoritmusunk túl lassú, ezért javításra szorul. A gyenge pontok és kiküszöbölésük módjai az alábbiak:

Az élek és a pászta között csak akkor keletkezhet metszéspont, ha a pászta y koordinátája az él minimális és maximális y koordinátája között van, ezért csak ezekre érdemes a metszéspontot kiszámítani. Az ilyen éleket aktív éleknek nevezzük. Az

implementációhoz létre kell hoznunk az ún. *aktív él listát*, amely mindig csak az aktív éleket tartalmazza.

2. Két szakasz közötti metszéspontszámítás lebegőpontos szorzást, osztást és összeadást tartalmaz, ezért időigényes. Az inkrementális elv felhasználásával azonban a metszéspont meghatározható a megelőző pászta metszéspontjából egyetlen fixpontos, nem-egész összeadással (7.12. ábra).

7.12. ábra. A pászta és az élek közötti metszéspont inkrementális számítása

Az inkrementális elv használatakor figyelembe kell vennünk, hogy az x koordináta növekménye az egymást követő y egész értékekre $\Delta x/\Delta y$, ami nem egész szám, tehát az x érték tárolására fixpontos tört ábrázolást kell használnunk. Egy aktív él reprezentációja tehát tartalmazza a fixpontos ábrázolású $\Delta x/\Delta y$ növekményt, az ugyancsak fixpontos ábrázolású x metszéspontot, valamint a szakasz maximális függőleges koordinátáját ($y_{\rm max}$). Erre azért van szükségünk, hogy el tudjuk dönteni, hogy az Y pászták növelése során mikor fejezi be az él aktív pályafutását, azaz mikor kell eltávolítani az aktív él listából.

7.13. ábra. Aktív él lista szerkezete

A programunk működése tehát a következőképpen foglalható össze. A Y pásztákat egymás után generáljuk. Minden pásztára megnézzük, hogy mely élek válnak pont

7.6. 2D raszterizáció 109

ekkor aktívvá, azaz mely élek minimális y koordinátája egyezik meg a pászta koordinátájával. Ezeket az éleket betesszük az aktív él listába. Egyúttal az aktív él listát átvizsgáljuk, hogy vannak-e ott nyugdíjba vonuló élek is, amelyek maximális y koordinátája megegyezik a pászta koordinátájával. A nyugdíjba vonuló éleket kivesszük a listából (vegyük észre, hogy ebben a megoldásban az él alsó végpontját az él részének tekintjük, a felső pontját viszont nem). A kitöltés előtt gondoskodunk arról, hogy az aktív él listában az élek az x koordináta szerint rendezettek legyenek, majd minden második él közötti pixeleket átszínezzük. A kitöltés után az aktív él lista tagjaiban a metszéspontokat felkészítjük a következő pásztára, azaz minden él x tagjához hozzáadjuk az él $\Delta x/\Delta y$ növekményét. Majd kezdjük az egészet előlről a következő pásztára.

```
FillPolygonFast(q[m])
   for Y=0 to Y_{
m max} do
         for e=0 to m-1 do
               edge = (q[e], q[e + 1])
               if y_{\min}(\text{edge}) = Y \text{ then } \text{Put\_AET}(\text{edge})
         endfor
         for minden edge élre az AET-ben do
               if y_{\max}(\text{edge}) \geq Y then Delete_AET(edge)
         endfor
         Resort_AET
         for minden második l élre az AET-ben do
               for X = round(x[l]) to round(x[l+1]) do
                     Pixel(X, Y, Color(X, Y))
               endfor
         for minden l élre az AET-ben do x[l] + = \Delta x/\Delta y
   endfor
end
```

A gyors algoritmus is vízszintes pásztánként dolgozik, egy pászta feldolgozását az aktívvá váló élek $(y_{\min}(\text{edge}) = Y)$ aktív listába fűzésével kezdi. Az aktív él listát három művelet kezeli. A Put_AET(edge) művelet az él adatai alapján előállítja az aktív él lista egy elemének az adatait $(y_{\max}, \Delta x/\Delta y, x)$, és a keletkező rekordot beteszi a listába. A Delete_AET művelet egy listaelemet töröl a listából. Erre akkor kerül sor, ha egy él éppen befejezi az aktív létet $(y_{\max}(\text{edge}) \geq Y)$. A Resort_AET az x mező alapján átrendezi a listát. A rendezés után az algoritmus minden második él és a következő él közötti pixeleket kiszínezi, és végül az inkrementális képletek alkalmazásával az aktív él lista elemeit a következő pásztára lépteti.

Még ezen algoritmuson is tudunk gyorsítani. Vegyük észre ugyanis, hogy egyrészt felesleges a kitöltést a képernyő minden vízszintes pásztájára megkísérelni, elegendő lenne csak a csúcsok minimális és maximális y koordinátái közötti intervallumot tekinteni. Ahhoz, hogy eldöntsük, hogy egy adott pásztánál melyik él válik aktívvá, ebben

a megoldásban mindig az összes élt ellenőriznünk kell. Érdemes tehát a pászták indítása előtt egy listák tömbje kiegészítő adatstruktúrát felépíteni, amelyben az y. tömbelem azon éleket tartalmazza, amelyek éppen az y koordinátánál válnak aktívvá, majd a kitöltés során egy pásztánál csak a megfelelő tömbelemhez tartozó listát átmásolni az aktív él listába.

7.7. Pixel műveletek

A raszterizációs fázis kimenete egy pixelsorozat, amelynek végső célja a rasztertár. A pixel műveletek az egyes pixelek színét még a beírás előtti utolsó pillanatban módosíthatják.

A módosítást elvégezhetjük a rasztertár adott helyén lévő pixel értékével úgy, hogy a rasztertárból kiolvasott és a raszterizáció eredményeként kapott színeket valamilyen aritmetikai vagy logikai műveletnek vetjük alá, és ennek az eredményét írjuk be a rasztertárba. Például súlyozott átlag képzésével az objektum átlátszóvá tehető. "Kizáró vagy" (\oplus) művelettel pedig ideiglenes rajzokat vihetünk be a rasztertárba, amelyeket aztán az alakzat újabb "kizáró vagy" típusú rajzolásával el is tüntethetünk onnan, hiszen fennáll az $A \oplus B \oplus B = A$ azonosság (ez a grafikus kurzor legegyszerűbb megvalósítása).

7.7.1. Dither alkalmazása

A rasztertár korlátozott kapacitása miatt az egy pixelhez tárolható bitek száma nem lehet túlságosan nagy (olcsóbb rendszerekben mindössze 4 vagy 8 bit). Az előállított színeket tehát újra kell kvantálni, hogy beférjenek a rasztertárba. Az újrakvantálás hatása különösen akkor zavaró, ha a megjelenített szín nem állandó, hanem lassan változó. Ekkor ugyanis a kevés rendelkezésre álló szín miatt a képernyőn a változás ugrásszerűen következik be, a folytonosan változó szín helyett pedig álladó színű csíkokat látunk (17.12. ábra).

A megoldást a *dither* jelentheti, amely a végső kvantálás előtt egy 0 várható értékű nagyfrekvenciás zajt kever a megjelenítendő színekhez, majd a zajos jelet kvantálja. A zaj megmozgatja a kvantáló előtt a jelet. Az állandó színt a zaj és a kvantálás együttes hatása az egyik pixelben lefelé csonkítja, a szomszédjában pedig esetleg felfelé kerekíti, mégpedig azzal a valószínűséggel, amennyire közel vagyunk a kvantálási szintekhez. Messziről ránézve ezekre a zajos képekre, a szem átlagolja a nagyfrekvenciás zajt, és az átlag értéket, azaz a tényleges színt érzékeli. Különböző dither típusokat láthatunk a 17.13. és 7.14. ábrákon.

7.14. ábra. Véletlen és szabályos ditherek fekete-fehér képen

Egy periodikus ditherfüggvény elemei például egy mátrixban is megadhatók:

$$D^{(4)} = \frac{1}{16} \cdot \begin{bmatrix} 0 & 8 & 2 & 10 \\ 12 & 4 & 14 & 6 \\ 3 & 11 & 1 & 9 \\ 15 & 7 & 13 & 5 \end{bmatrix}$$
 (7.11)

7.8. Interaktív 2D grafikus rendszerek

Az interaktív rendszerekben a felhasználó és a grafikus rendszer egy "folyamatos szabályozási körré" kapcsolódik össze (7.15. ábra). A felhasználó minden elemi parancsának hatását rögtön láthatja.

Eddig a képszintézis lépéseit tárgyaltuk, azaz azon műveletket, amelyek a virtuális világ lefényképezésével előállítják képet. Ezt a műveletsorozatot kimeneti csővezetéknek (output pipeline) nevezzük. A képszintézis (rendering) során a kimeneti csővezetéket úgy működtetjük, hogy sorban elővesszük a virtuális világ objektumait, egy objektumra pedig annak primitívjeit, vektorizáljuk őket és a keletkező pontokat, szakaszokat és poligonokat (sőt karaktereket, bit-térképeket, stb.) végigvezetjük a kimeneti csővezetéken. Mivel a később rajzolt objektum elfedheti a korábban rajzoltakat, az ob-

112 7. A 2D képszintézis

7.15. ábra. 2D grafikus rendszerek felépítése

jektumok és primitívjeik *prioritás*át a virtuális világban felvett sorrend határozza meg. A *takarás*i sorrendet az objektumok és a primitívek sorrendjének megváltoztatásával módosíthatjuk.

Az interaktív grafikus rendszerekben a felhasználó a grafikus beviteli eszközzel (tablet, egér, stb.), az eszköz által mozgatott kurzor segítségével a képernyőn jelöl ki pontokat. A kurzor mozgatásához a beviteli eszköz saját eszköz-koordinátarendszeréből az adatokat át kell transzformálni a képernyő-koordinátarendszerbe. Például egy tablet az aktuális pozíciót általában 12 bites x és y koordinátákkal adja fel, amely alapján a kurzort az 1280×1024 -as felbontású képernyő megfelelő helyére kell vinni.

Az ily módon kijelölt pontokat a virtuális világ a lokális modellezési koordinátarendszerekben tárolja, így az inverz összetett transzformációval ide kell konvertálni a koordinátákat. Ezt a transzformációs láncot *bemeneti csővezeték*nek (*input pipeline*) nevezzük.

A felhasználó több különböző céllal vihet be pontokat. Egyrészt a pontot beépítheti a virtuális világ valamely objektumába, vagy egy már létrehozott objektumot kiválaszthat azzal, hogy rámutat a kurzor segítségével (*Pick*), végül egy kiválasztott pontot módosíthat az új pont segítségével.

A kiválasztási művelet

A kiválasztási művelet végrehajtása során végig kell nézni a virtuális világ összes elemét és az egyes elemekre meg kell vizsgálni, hogy a bevitt pont — legalábbis közelítőleg — rajta van-e az adott elemen. Előfordulhat, hogy a képszintézis több elemet is ugyanarra képpontra vetít, ekkor a képernyőn a legnagyobb prioritású, azaz a világban a leghátrébb lévő elem látható. A kiválasztásnak ilyen esetekben nyilván ezt a legnagyobb prioritású elemet kell azonosítania. Ezért a kiválasztás során a virtuális világot a képszintézis által használt prioritással ellentétes sorrendben dolgozzuk fel, és az első olyan elemet jelöljük ki, amelyen rajta van a bevitt pont.

Annak eldöntése, hogy egy pont rajta van-e egy általános elemen, nem tűnik egyszerű feladatnak. Mégis könnyen megbirkózhatunk vele, ha felismerjük, hogy a képszintézis éppen ezen feladat inverze, ugyanis a képszintézis megkeresi az összes olyan pixelt, amely az elemhez hozzátartozik. Ezért egy lehetséges megoldás az, ha beindítjuk a rajzolást — esetleg úgy, hogy a rasztertár tartalmának átírását letiltjuk — és figyeljük, hogy a kiválasztási pontnak megfelelő pixelt kellene-e rajzolni vagy sem. Ha ez bekövetkezik, a pont rajta van az elemen.

Az általános tapasztalat szerint remegő kézzel elég nehéz egy 1 pixel széles szakaszt eltalálni, ezért a kiválasztást tűréssel végezzük. Például a kiválasztási pont körül felveszünk egy kis (például 10×10 pixeles) *tűrési négyzet*et (*pick-window*), és azt figyeljük, hogy ezen négyzet belső pixeleit megváltoztatjuk-e.

A kiválasztási műveletet felgyorsíthatjuk azzal, hogy a raszterizáció lépését kihagy-

114 7. A 2D képszintézis

juk és a vágási téglalapnak a kiválasztási pont körüli tűrési négyzetet tekintjük. Ha a vágási művelet azt mondja, hogy az elemet rajzolni kellene, akkor biztosan megváltoztatnánk olyan pixeleket, amelyek a tűrési négyzet belsejében vannak.

7.9. Program: 2D grafikus rendszer

Az ismertetendő világmodellben törtvonalakat PolyLine2D és görbéket Curve2D tárolhatunk.

A Lagrange- és a Bézier-görbék megadásánál felhasználtuk a 6.6. fejezetben definiált osztályokat. Az ottani tagfüggvényeket kiegészítettük a képszintézishez szükséges vektorizációs művelettel, amely egy Primitive2D típusú objektumot egy csak szakaszokból álló és a képszintézis műveletsorán végigvezethető RenderPrimitive2D típusú objektummá alakítja. A vektorizáció pontokat jelöl ki a görbén, amelyhez az Interpolate tagfüggvényt használjuk.

```
//-----
class Primitive2D {
Array<Point2D> points;
              color;
public:
  Primitive2D( Color& c, int n = 0) : color(c), points(n) { }
  Point2D& Point( int i ) { return points[i]; }
        PointNum() { return points.Size(); }
  virtual RenderPrimitive2D * Vectorize() { return NULL; }
};
//----
class PolyLine2D : public Primitive2D {
//----
public:
  PolyLine2D( Color& c ) : Primitive2D( c ) { }
  RenderPrimitive2D * Vectorize() {
      LineList2D * p = new LineList2D(Col(), 2 * PointNum() - 2);
      for( int i = 0; i < PointNum(); i++ ) {</pre>
         if (i < PointNum() - 1) p \rightarrow Point(2*i)
                                         = Point(i);
         if (i > 0)
                           p \rightarrow Point(2*i - 1) = Point(i);
      return p;
};
```

```
class Curve2D : public Primitive2D {
//-----
public:
  Curve2D( Color& c ) : Primitive2D( c ) { }
  virtual Point2D Interpolate( double tt ) = 0;
  RenderPrimitive2D * Vectorize() {
      LineList2D * p = new LineList2D(Col(), 2 * NVEC);
      for ( int i = 0; i \le NVEC; i++ ) {
         Point2D pi = Interpolate( (double)i/NVEC );
         if (i < NVEC) p \rightarrow Point(2 * i) = pi;
         if (i > 0) p -> Point (2 * i - 1) = pi;
     return p;
};
//----
class LagrangeCurve2D : public Curve2D, public LagrangePolinom {
//----
public:
  LagrangeCurve2D( Color c ) : Curve2D( c ), LagrangePolinom( ) { }
  Point2D Interpolate( double tt ) {
      Point2D rr(0, 0);
      for(int i = 0; i < Degree(); i++) rr += Point(i) * L(i, tt);
      return rr;
   }
};
//----
class BezierCurve2D : public Curve2D, public BezierPolinom {
//-----
public:
  BezierCurve2D( Color c ) : Curve2D( c ), BezierPolinom( ) { }
  Point2D Interpolate (double tt ) {
      double Bi = 1.0;
     Point2D rr(0, 0);
      for (int i = 0; i < PointNum(); i++)
         rr += Point(i) * B(i, tt, PointNum());
     return rr;
};
```

A modellhierarchia magasabb szintjein a primitívekből objektumokat (Object2D) képezhetünk, amelyeket azután betehetjük a virtuális világba (VirtualWorld). Minden objektumhoz önálló modellezési transzformáció tartozik.

116 7. A 2D képszintézis

```
//----
class Object2D {
//-----
  Array<Primitive2D *> prs;
  Transform2D
                  tr;
public:
  Object2D() { }
  void AddPrimitive( Primitive2D * p ) { prs[ prs.Size() ] = p; }
  Primitive2D * Primitive( int i ) { return prs[i]; }
  Transform2D& Transform() { return tr; }
  int PrimitiveNum() { return prs.Size(); }
};
class VirtualWorld {
Array<Object2D *> objs;
public:
  VirtualWorld() : objs(0) { }
  Object2D * Object( int o ) { return objs[o]; }
  void AddObject( Object2D * o ) { objs[ objs.Size() ] = o; }
  int ObjectNum() { return objs.Size(); }
};
  A képszintézis előkészítéséhez definiáljuk a téglalap RectAngle osztályt:
```

```
//----
class RectAngle {
//----
   Coord left, right, bottom, top;
   RectAngle(Coord l=0, Coord b=0, Coord r=1, Coord t=1)
   : left(l), right(r), bottom(b), top(t) { }
   double Left() { return left; }
   double Right() { return right; }
   double Bottom() { return bottom; }
   double Top() { return top; }
   double HSize() { return (right - left); }
   double VSize() { return (top - bottom); }
   double HCenter() { return ((right + left)/2); }
   double VCenter() { return ((top + bottom)/2); }
   Point2D Origin() { return Point2D(left, bottom); }
   int Code( Point2D& p ) {
      int c0 = left > p.X(), c1 = right < p.X(),
      int c2 = bottom > p.Y(), c3 = top < p.Y();
      return (c0 | (c1 << 1) | (c2 << 2) | (c3 << 3));
   }
};
```

A vektorizáció során RenderPrimitive2D objektumok keletkeznek, amelyekre már értelmezhetők a képszintézishez szükséges transzformáció (Transform), vágás (Clip) és raszterizáció (Draw) műveletek. A transzformáció általánosan elvégezhető a definíciós pontok transzformálásával, a vágás és rajzolás azonban már attól függ, hogy milyen konkrét primitívtípust dolgozunk fel.

A szakasz (Line2D) és a törtvonal (LineList2D) a RenderPrimitive2D konkrét változatai, amelyekben a vágás és rajzolás műveletek értelmet kapnak.

```
class Line2D : public RenderPrimitive2D {
//-----
public:
  Line2D( Point2D v1, Point2D v2, Color c )
  : RenderPrimitive2D( c, 2 ) { Point(0) = v1; Point(1) = v2; }
        Clip( RectAngle& cliprect );
  BOOL
  void
        Draw( Window * scr );
};
//----
class LineList2D : public RenderPrimitive2D {
public:
  LineList2D( Color c, int n = 0 ) : RenderPrimitive2D( c, n ) { }
  BOOL Clip( RectAngle& cliprect );
  void Draw( Window * scr );
};
```

118 7. A 2D képszintézis

A szakasz vágásához a tárgyalt *Cohen-Sutherland vágási algoritmus*t használhatjuk:

```
//-----
BOOL Line2D :: Clip( RectAngle& cliprect ) { // Cohen-Sutherland
//-----
   Point2D& p1 = Point(0);
   Point2D& p2 = Point(1);
   int c1 = cliprect.Code( p1 );
   int c2 = cliprect.Code( p2 );
   for(;;) {
       if (c1 == 0 \&\& c2 == 0) return TRUE;
       if ( (c1 & c2) != 0 ) return FALSE;
       int f;
       if ((c1 \& 1) != (c2 \& 1)) f = 1;
       else if ((c1 \& 2) != (c2 \& 2)) f = 2;
       else if ((c1 & 4) != (c2 & 4)) f = 4;
       else
       double dy = p2.Y() - p1.Y(), dx = p2.X() - p1.X();
       double xi, yi;
       Point2D pi;
       switch (f) {
       case 1:
          yi = p1.Y() + dy * (cliprect.Left() - p1.X()) / dx;
          pi = Point2D( cliprect.Left(), yi );
          break:
       case 2:
          yi = p1.Y() + dy * (cliprect.Right() - p1.X()) / dx;
          pi = Point2D( cliprect.Right(), yi );
          break;
       case 4:
          xi = p1.X() + dx * (cliprect.Bottom() - p1.Y()) / dy;
          pi = Point2D( xi, cliprect.Bottom() );
          break;
       case 8:
          xi = p1.X() + dx * (cliprect.Top() - p1.Y()) / dy;
          pi = Point2D( xi, cliprect.Top() );
       if (c1 & f) { p1 = pi; c1 = cliprect.Code( pi ); }
              { p2 = pi; c2 = cliprect.Code( pi ); }
       else
   }
}
```

A rajzolást a fizikai szinten a PLine függvény végzi el, amit a *Bresenham-algorit-mus*nak megfelelően implementálhatunk:

```
extern Pixel (int x, int y, PColor color);
static int x1 = 0, y1 = 0;
#define XSTEPINIT int dep = 2*(dy - dx), dem = 2*dy, e = -dx, y = y1;
#define YSTEPINIT int dep = 2*(dx - dy), dem = 2*dx, e = -dy, x = x1;
#define XSTEP_YINCR {
       if ( e \le 0 ) { e += dem; } else { e += dep; y++; }
      Pixel(x, y, color);
#define XSTEP_YDEC {
      if ( e <= 0 ) { e += dem; } else { e += dep; y--; }
      Pixel(x, y, color);
}
#define YSTEP_XINCR {
      if ( e \le 0 ) { e += dem; } else { e += dep; x++; }
      Pixel(x, y, color);
}
#define YSTEP_XDEC {
      if ( e <= 0 ) { e += dem; } else { e += dep; x--; }
      Pixel(x, y, color);
//-----
//-----
   int dx = x2 - x1, dy = y2 - y1;
   if (dx >= 0 && dy >= 0) {
       if (dx >= dy) {
          XSTEPINIT
          for ( int x = x1; x \le x2; x++ ) XSTEP_YINCR
       } else {
          YSTEPINIT
          for ( int y = y1; y \le y2; y++ ) YSTEP_XINCR
   } else if (dx < 0 \&\& dy >= 0) {
      dx = -dx;
       if (dx >= dy) {
          XSTEPINIT
          for ( int x = x1; x >= x2; x-- ) XSTEP_YINCR
       } else {
          YSTEPINIT
          for ( int y = y1; y \le y2; y++ ) YSTEP_XDEC
       }
```

120 7. A 2D képszintézis

```
} else if (dx >= 0 && dy < 0) {
        dy = -dy;
        if (dx >= dy) {
            XSTEPINIT
            for ( int x = x1; x \le x2; x++ ) XSTEP_YDEC
        } else {
            YSTEPINIT
            for ( int y = y1; y \ge y2; y-- ) YSTEP_XINCR
    } else {
        dx = -dx; dy = -dy;
        if (dx >= dy) {
            XSTEPINIT
            for ( int x = x1; x \ge x2; x-- ) XSTEP_YDEC
            YSTEPINIT
            for ( int y = y1; y >= y2; y-- ) YSTEP_XDEC
        }
    }
}
```

A 2D képszintézis kamerája két téglalapból áll. Az egyik téglalap a virtuális világ megjelenítendő tartományát jelöli ki (window), a másik pedig a képernyő azon tartományát, ahová a képet el kell helyezni (viewport). A vágási tartomány (cliprect) általában megegyezik a nézettel (viewport), de az alábbi modell megenged a nézettől eltérő vágási téglalapot is. A CalcTransf tagfüggvény az ablak és a nézet paramétereiből meghatározza a nézeti transzformációs mátrixot (transf).

```
//----
class Camera2D {
//----
   RectAngle window, cliprect, viewport;
   Transform2D transf;
   void CalcTransf() {
      Transform2D wintrans(TRANSLATION, - window.Origin() );
      Transform2D winviep(SCALE, viewport.HSize()/window.HSize(),
                             viewport.VSize()/window.VSize() );
      Transform2D viewtrans(TRANSLATION, viewport.Origin() );
      transf = wintrans * winviep * viewtrans;
   }
public:
   Camera2D()
   : window(0, 0, 1, 1), viewport(0, 0, 1, 1), cliprect(0, 0, 1, 1) {
      CalcTransf();
   }
   void SetWindow( RectAngle w ) { window = w; CalcTransf(); }
   void SetViewport( RectAngle v ) { viewport = v; CalcTransf(); }
```

```
void SetClipWindow( RectAngle v ) { cliprect = v; }
RectAngle Window() { return window; }
RectAngle Viewport() { return viewport; }
RectAngle ClipWindow() { return cliprect; }
Transform2D ViewTransform() { return transf; }
};
```

A képszintézishez szükséges összes információt a színtérben (Scene) foglaljuk öszsze. A színtér a virtuális világmodellen (world) kívül még tartalmazza a kameraparamétereket (camera), a megjelenítőobjektum azonosítóját (scr), és az interaktív felépítés során aktuális objektum (actobj) és primitív (actprim) sorszámát. A színtér Render művelete előállítja a virtuális világ képét a megadott kameraállásból, a Pick művelet pedig megkeresi, hogy egy pontban melyik objektum látszik a képernyőn.

Az InputPipeline a bemeneti csővezetéken vezeti végig a felhasználó által megadott pontot és nézeti transzformáció, valamint az aktuális objektum modellezési transzformációja alapján előállítja a pont lokális modellezési koordinátarendszerbeli képét.

A Render tagfüggvény elvégzi a képszintézist, amely a következő lépésekből áll: képernyő törlése, az egyes objektumoknak megfelelő modellezési illetve összetett transzformációk számítása, az objektumok primitívjeinek vektorizálása és a vektorizált primitívek transzformálása, vágása és végül raszterizálása.

122 7. A 2D képszintézis

A Pick tagfüggvény megkeresi, hogy a felhasználó melyik objektumra mutatott rá, és visszaadja annak sorszámát, vagy -1-t, ha a megadott pont környezetében nincs objektum. Az objektumok vizsgálatát a prioritásnak megfelelően a rajzolással ellentétes sorrendben végezzük el. Egyetlen objektum ellenőrzése a kijelölt pont környezetét jelentő ablakra (pickwindow) történő vágási algoritmussal történik.

```
int Scene :: Pick (Coord x, Coord y ) {
//----
   RectAngle pickwindow(x - PICKRECT_X, y - PICKRECT_Y,
                         x + PICKRECT_X, y + PICKRECT_Y );
   for(int actobj = world.ObjectNum() - 1; actobj >= 0; actobj--) {
       Object2D * obj = world.Object( actobj );
       Transform2D Tm = obj -> Transform();
       Transform2D Tv = camera.ViewTransform();
       Transform2D Tc = Tm \star Tv;
        for(int p = obj \rightarrow PrimitiveNum() -1; p >= 0; p--) {
           RenderPrimitive2D * rp = obj -> Primitive(p) -> Vectorize();
           rp -> Transform( Tc );
           if ( rp -> Clip(pickwindow) ) { delete rp; return actobj; }
           delete rp;
        }
   }
   return -1;
}
```

8. fejezet

Az árnyalás optikai alapmodellje

A 3D képszintézis célja, hogy a fényforrások, a felületek geometriája, a felületek optikai jellemzői és a kamerák tulajdonságai alapján meghatározza, hogy az egyes kamerák milyen "színt", azaz milyen spektrumú fényt érzékelnek. A kérdéskör bevezetése során meg kell ismerkednünk a fényerősség alapvető mértékeivel, a kamerák és a fényviszszaverődés fizikai modelljeivel. Ez a fejezet összefoglalja azon optikai törvényeket, amelyeket a 3D számítógépes grafika használ. Az intuitív magyarázatok mellett a teljesség kedvéért ismertetjük a levezetéseket is, ámbár ezek tényleges megértése nélkül is alkalmazhatjuk a kiadódó képleteket a grafikus algoritmusainkban.

8.1. A fényerősség alapvető mértékei

Ebben a fejezetben a fényátadás alapvető mérőszámait és számítási eljárásait tekintjük át. A vizsgálatunkat λ hullámhosszú monokromatikus fényre végezzük el, mivel a teljes spektrumban történő analízis több ilyen elemzésre vezethető vissza. A bemutatandó anyagjellemzők nyilván függhetnek a megadott hullámhossztól.

Egy felület különböző irányokban sugározhat, ezért szükséges a térbeli irányok formalizálása. Emlékezzünk arra, hogy a síkban az irányokat szögekkel jellemezhetjük. Egy szög egy egységkör egy ívével adható meg, értéke pedig ezen ív hossza. A szög azon irányokat foglalja magában, amelyek a szög csúcsából az ív valamely pontjába mutatnak. A normál szög fogalmának általánosításával jutunk el az illuminációs gömb és a térszög fogalmához. A térbeli irányokat a 2D egységkör mintájára ún. *illuminációs gömb* segítségével definiálhatjuk egyértelműen. Ez az egység sugarú gömb azon térszögeket tartalmazza, ahová a középpontban lévő forrás sugározhat. A *térszög* (solid angle) az egységgömb felületének egy része, amelyet ezen felület méretével számszerűsítünk. Egy térszög azon irányokat tartalmazza, amelyek a gömb középpontjából a felületrész valamely pontjába mutatnak. A térszög mértékegysége a szteradián [sr].

8.1. ábra. A térszög definíciója

Egy dA felületelem egy \vec{p} pontból

$$d\omega = \frac{dA \cdot \cos \theta}{r^2} \tag{8.1}$$

térszög alatt látszik, ahol r a \vec{p} pont és dA felületelem távolsága, θ pedig a dA felületi normálisa és a \vec{p} iránya közötti szög (8.1. ábra).

Az átadott fény erősségét több különböző mértékkel jellemezhetjük. A fluxus (Φ) egységnyi idő alatt, adott hullámhossz tartományban, egy hipotetikus határfelületen átadott energia. A fluxus mértékegysége a watt [W]. A fluxus értéke önmagában nem mond semmit, mert mindig tisztázni kell, hogy pontosan milyen felületen átlépő energiát vizsgálunk. Egy nagy fluxusérték tehát lehet egyrészt annak a következménye, hogy erős sugárzó van a közelben, másrészt annak is, hogy nagy felületet tekintünk. Ezért a számítógépes grafikában a fluxus helyett általában a radianciát használjuk. A radiancia, vagy intenzitás (L), egy dA felületelemet $d\omega$ térszögben elhagyó $d\Phi$ infinitezimális fluxus osztva a kilépési irányból látható területtel ($dA \cdot \cos \theta$) és a térszöggel:

$$L = \frac{d\Phi}{dA \cdot d\omega \cdot \cos \theta}.$$
 (8.2)

A radiancia mértékegysége: $[W \cdot m^{-2} \cdot sr^{-1}]$. Figyeljük meg, hogy a radiancia valóban csak az adott irányú sugárzás erősségét minősíti. Ha kétszer akkora térszögben méricskélünk, a fluxus ugyan kétszer akkora lesz, de a térszöggel történt osztás után változatlan eredményhez jutunk. Hasonlóan, ha a sugárzó kétszer akkora területét vizsgáljuk, akkor a fluxus megint közel kétszer akkora lesz, viszont a területtel osztva megint csak függetleníthetjük a radianciát a sugárzó területétől.

Miután megismerkedtünk az alapvető mennyiségekkel, nézzük meg, hogy miként határozhatók meg egy olyan elrendezésben, ahol egy dA felületelem kibocsátott fényteljesítménye egy másik dA' felületelemre jut (8.2. ábra). Ha a felületelemek látják

8.2. ábra. Két infinitezimális felületelem között átadott fluxus

egymást, és a dA intenzitása a dA' irányába L, akkor 8.2 egyenlet szerint az átadott fluxus:

$$d\Phi = L \cdot dA \cdot d\omega \cdot \cos \theta. \tag{8.3}$$

Az 8.1 definíció felhasználásával a térszöget kifejezhetjük a dA' látható területével. Ezzel egy alapvető egyenlethez jutunk, amely a *fotometria alaptörvénye*:

$$d\Phi = L \cdot \frac{dA \cdot \cos \theta \cdot dA' \cdot \cos \theta'}{r^2}.$$
 (8.4)

Ezen egyenlet szerint az átadott fluxus egyenesen arányos a forrás radianciájával, forrás és az antenna látható területével és fordítottan arányos a távolságukkal.

Vegyük észre, hogy 8.1 definíció alkalmazásával az átadott teljesítmény a következő alakban is felírható:

$$d\Phi = L \cdot dA' \cdot \frac{dA \cdot \cos \theta}{r^2} \cdot \cos \theta' = L \cdot dA' \cdot d\omega' \cdot \cos \theta', \tag{8.5}$$

amely szerint ugyanolyan képlet vonatkozik a sugárzó felületelemre (8.2 egyenlet), mint a sugárzást felfogó antennára.

8.2. A kamerák jellemzése

Egy *kamera* elemi kamerák, vagy mérőeszközök gyűjteményeként fogható fel, ahol minden elemi kamera egyetlen skalár mennyiséget mér. Egy elemi kamera általában egy pixelen átjutó fényt detektál, de mérheti a felületelemet adott térszögben elhagyó fényteljesítményt is.

Rendeljünk minden elemi kamerához egy $W^e(\vec{y},\omega)$ érzékenység függvényt, amely megmutatja, hogy az \vec{y} pontból az ω irányba kibocsátott egységnyi energiájú foton mekkora hatást kelt a műszerünkben. Ha az elemi kamera a pixelen átjutó teljesítményt méri, akkor nyilván az érzékenység függvény 1 értékű azon pontokra és irányokra, amely pontokat a szempozícióval összekötve éppen az adott irányt kapjuk, és minden más esetben zérus.

Az összes pont és irány hatását az elemi hatások összegeként írhatjuk fel. Felhasználva a fluxus és a radiancia közötti összefüggést, egy adott hullámhosszon detektált fényteljesítmény

$$\int_{S} \int_{\Omega} d\Phi(\vec{y}, \omega) \cdot W^{e}(\vec{y}, \omega) = \int_{S} \int_{\Omega} L(\vec{y}, \omega) \cdot \cos \theta \cdot W^{e}(\vec{y}, \omega) \, d\omega \, d\vec{y} = \mathcal{M}L, \quad (8.6)$$

ahol $\mathcal M$ a radianciamérő operátor. A képletet a következőképpen értelmezhetjük. Ahhoz, hogy például egy pixelen keresztül a szembe jutó teljesítményt meghatározzuk, számba kell venni a szemből a pixelen keresztül látható felületi pontok szemirányú radianciáját $(L(\vec y,\omega))$. A szemből látható pontokat és az innen a szembe mutató irányokat az érzékenység függvény jelöli ki $(W^e(\vec y,\omega))$. A $\cos\theta$ azért van a képletben, hogy képviselje azt a hatást, hogy lapos szögben a felületre nézve nagy területeket is igen kicsinek láthatunk.

Összefoglalva, az egyes pixelek színének a meghatározásához a felületi radiancia ismerete szükséges.

8.3. ábra. Egy egyszerű kameramodell

Egy konkrét kameramodell létrehozásához tekintsük a pixelen keresztül a szemretina Δp területére egységnyi idő alatt eső energiát (8.3. ábra). Jelöljük a pixelen keresztülmenő irányokat összefogó térszöget $\Delta \omega$ -val. A pixelen keresztül látható terület nagysága $r^2 \cdot \Delta \omega / \cos \theta$, ahol r a látható terület távolsága, θ pedig a látható terület normálvektorának és a szem irányának a szöge. Ezen felület pontjaiból azon irányokba sugárzott fény jut a retinára, amelyek a $\Delta p/r^2$ nagyságú térszögön belül vannak. Amennyiben a retinára a pixelen keresztül érkező fényt mérjük, a $W^e(\vec{y},\omega)$ érzékenység függvény 1 a pixelen keresztül látható felületi pontokra és azon irányokra, amelyek ezen pontokból a retina felé mutatnak.

Így a mért fényteljesítmény:

$$\Phi_p = \int_S \int_\Omega L(\vec{y}, \omega) \cos \theta \cdot W^e(\vec{y}, \omega) \, d\omega \, d\vec{y} \approx$$

$$L(\vec{y}, \omega) \cdot \cos \theta \cdot \frac{r^2 \cdot \Delta \omega}{\cos \theta} \cdot \frac{\Delta p}{r^2} = L(\vec{y}, \omega) \cdot \Delta p \cdot \Delta \omega, \tag{8.7}$$

azaz egy arányossági tényezőn kívül csak a látható pont radianciájától függ. A látható terület távolsága kiesett a képletből, ami megfelel annak a tapasztalatnak, hogy egy objektumra (például a falra) ránézve ugyanolyan fényesnek érezzük akkor is, ha közelebb megyünk hozzá, vagy ha eltávolodunk tőle.

8.3. A fény-felület kölcsönhatás: az árnyalási egyenlet

A fény-felület kölcsönhatás során egy fénysugár által megvilágított felület a beérkező fényteljesítmény egy részét különböző irányokban visszaveri, míg másik részét elnyeli.

Az optikailag tökéletesen sima felületekre a visszaverődést a visszaverődési törvény, a fénytörést a Snellius-Descartes-törvény írja le. A felületi egyenetlenségek miatt azonban a valódi felületek bármely irányba visszaverhetik, illetve törhetik a fényt. Ezeket a hatásokat a valószínűségszámítás eszközeivel modellezhetjük.

Tegyük fel, hogy az ω' irányból egy foton érkezik a felület \vec{x} pontjába. A foton ω irányú továbbhaladását a következő feltételes valószínűség-sűrűségfüggvénnyel jellemezzük:

$$r(\omega', \vec{x}, \omega) \cdot d\omega = \Pr\{\text{a foton az } \omega \text{ irány körüli } d\omega \text{ térszögben megy } | \omega' \text{ irányból jön}\}.$$
(8.8)

Ez a valószínűség-sűrűségfüggvény az anyag optikai tulajdonságait írja le. Erősen tükröző felületeknél, nagy a valószínűsége annak, hogy a foton az elméleti visszaverődési irány közelében halad tovább. Matt felületeknél viszont a különböző irányokban történő kilépés hasonló valószínűségű.

Most térjünk rá annak vizsgálatára, hogy a felület egy adott irányból milyen fényesnek látszik. Egy ω irány körüli $d\omega$ térszögbe visszavert vagy tört fluxust megkaphatjuk, ha tekintjük az összes lehetséges ω' bejövő irányt, és az ezekből érkező fluxusok hatását összegezzük:

$$\int_{\Omega} (r(\omega', \vec{x}, \omega) \, d\omega) \cdot \Phi^{\text{in}}(\vec{x}, \omega', d\omega') \tag{8.9}$$

Az összegzés során a bejövő energiát (fotonokat) aszerint súlyozzuk, hogy mi a valószínűsége, hogy a bejövő foton éppen a nézeti irányba verődik vissza.

Amennyiben a felület maga is fényforrás, a

$$\Phi^{e}(\vec{x},\omega) = L^{e}(\vec{x},\omega) \cdot dA \cdot \cos\theta \cdot d\omega \tag{8.10}$$

kisugárzott fénymennyiség ugyancsak hozzájárul a kimeneti fluxushoz.

8.4. ábra. Az árnyalási egyenlet geometriája

A lehetséges hatásokat összegezve:

$$\Phi^{\text{out}}(\vec{x},\omega) = \Phi^{e}(\vec{x},\omega) + \int_{\Omega} (r(\omega',\vec{x},\omega) \ d\omega) \cdot \Phi^{\text{in}}(\vec{x},\omega',d\omega'). \tag{8.11}$$

A fluxus és a radiancia közötti 8.2 összefüggést felhasználva:

$$\Phi^{\text{in}}(\vec{x}, \omega', d\omega') = L^{\text{in}}(\vec{x}, \omega') \cdot dA \cdot \cos \theta' \cdot d\omega', \quad \Phi^{\text{out}}(\vec{x}, \omega, d\omega) = L(\vec{x}, \omega) \cdot dA \cdot \cos \theta \cdot d\omega.$$
(8.12)

Behelyettesítve ezeket a 8.11 egyenletbe, és mindkét oldalt elosztva $dA \cdot d\omega \cdot \cos \theta$ -val:

$$L(\vec{x},\omega) = L^{e}(\vec{x},\omega) + \int_{\Omega} L^{\text{in}}(\vec{x},\omega') \cdot \cos\theta' \cdot \frac{r(\omega',\vec{x},\omega)}{\cos\theta} d\omega'. \tag{8.13}$$

A foton haladását leíró valószínűség-sűrűségfüggvény és a kimeneti szög koszinuszának hányadosa, az optikai anyagmodellek egy alapvető mennyisége, amelynek neve kétirányú visszaverődés eloszlási függvény, vagy röviden BRDF (Bi-directional Reflection Distribution Function):

$$f_r(\omega', \vec{x}, \omega) = \frac{r(\omega', \vec{x}, \omega)}{\cos \theta}.$$
 (8.14)

A BRDF mértékegysége 1 per szteradián $[sr^{-1}]$.

Visszatérve a 8.13 egyenlethez, az $L^{\rm in}(\vec{x},\omega')$ bejövő radiancia egyenlő az \vec{x} pontból a $-\omega'$ irányba látható \vec{y} pont ω' irányú radianciájával. Vezessük be a

$$\vec{y} = h(\vec{x}, \omega').$$

láthatóság függvényt, amely megmondja, hogy egy pontból egy adott irányba milyen másik felületi pont látszik. Ezzel végre eljutottunk a fényátadás alapvető integrálegyenletéhez, az árnyalási egyenlethez (rendering equation) [Kaj85]:

$$L(\vec{x},\omega) = L^{e}(\vec{x},\omega) + \int_{\Omega} L(h(\vec{x},-\omega'),\omega') \cdot f_{r}(\omega',\vec{x},\omega) \cdot \cos\theta' \, d\omega'. \tag{8.15}$$

Az árnyalási egyenlet, bár bonyolultnak látszik, valójában rendkívül egyszerűen értelmezhető. Egy felületi pont adott irányú radianciája $(L(\vec{x},\omega))$ megegyezik a felületi pont ilyen irányú saját emissziójának $(L^e(\vec{x},\omega))$ és a különböző irányból ide jutó radiancia $(L(h(\vec{x},-\omega'),\omega'))$ az adott irányba történő visszaverődésének az összegével. A visszaverődést a $f_r(\omega',\vec{x},\omega)\cdot\cos\theta'$ $d\omega'$ tag jellemzi, amely lényegében annak az fényútnak a valószínűségét határozza meg, amely a nézeti irányt a visszaverődésen keresztül a $d\omega'$ elemi térszöggel köti össze.

Minden egyes árnyalási feladat annyi árnyalási egyenlettel adható meg, ahány reprezentatív hullámhosszon dolgozunk. Az $(L^e, f_r(\omega', \vec{x}, \omega))$ paraméterek a különböző hullámhosszokon eltérőek lehetnek.

Bevezetve a fény-felület kölcsönhatást leíró \mathcal{T} integráloperátort

$$(\mathcal{T}L)(\vec{x},\omega) = \int_{\Omega} L(h(\vec{x}, -\omega'), \omega') \cdot f_r(\omega', \vec{x}, \omega) \cdot \cos \theta' \ d\omega', \tag{8.16}$$

felállíthatjuk az árnyalási egyenlet rövid alakját:

$$L = L^e + \mathcal{T}L. \tag{8.17}$$

8.4. Az árnyalási egyenlet adjungáltja: a potenciál egyenlet

A radiancia nem az egyetlen mérték, amelyet a számítógépes grafika használ. A fényátadás vizsgálatával más mértékekre nyilván más egyenleteket állíthatunk fel. Ebben a fejezetben, a részletes levezetést mellőzve, a potenciált meghatározó egyenletet ismertetjük.

Az idáig tárgyalt radiancia a felületek sugárzási intenzitását fejezi ki, amely részint a saját emisszióból, részint a többi felület sugárzásának visszaverődéséből áll össze. Ha a fényátadási jelenséget egy sugárzó és egy detektor kölcsönhatásaként képzeljük el, akkor a radiancia a jelenséget a sugárzó szempontjából írja le. A potenciál a radianciához hasonlóan alapvető mérték, amely azonban ugyanazt a jelenséget a detektor szemszögéből tárgyalja. A potenciál definíciója a következő: tekintsünk egy elemi kamerát, és tegyük fel, hogy az \vec{y} felületi pont az ω' irányba egy egységnyi energiájú fotonnyalábot bocsát ki. A fotonok egy része a visszaverődések után az elemi kamerába jut. A kamerába jutó energiát az \vec{y} pont ω' irányú potenciáljának nevezzük.

8.5. ábra. A potenciál egyenlet által használt jelölések

A fény-felület kölcsönhatás a radiancia átadás mellett a potenciál átadásával is leírható. Ha a visszaverődésektől eltekintünk, akkor nyilván $W(\vec{y}, \omega') = W^e(\vec{y}, \omega')$.

Ha a visszaverődéseket is követjük, a potenciálra az árnyalási egyenlet adjungált egyenlete, a *potenciál egyenlet* [PM95] írható fel.

$$W = W^e + T'W. (8.18)$$

 \mathcal{T}' a potenciálátadást leíró integráloperátor

$$(\mathcal{T}'W)(\vec{y},\omega') = \int_{\Omega} W(h(\vec{y},\omega'),\omega) \cdot f_r(\omega',h(\vec{y},\omega'),\omega) \cdot \cos\theta \ d\omega, \tag{8.19}$$

ahol a θ a felületi normális és az ω kimeneti irány közötti szög. Ez az egyenlet azt mondja, hogy egy felületi pontból adott irányba kibocsátott foton műszerre gyakorolt hatását felírhatjuk a közvetlen hatás és a visszaverődések utáni indirekt hatás összegeként.

Ezen integrálegyenlet megoldásával ugyancsak meghatározhatjuk az elemi kamerába jutó fényteljesítményt:

$$\int_{S} \int_{\Omega} L^{e}(\vec{y}, \omega) \cos \theta \cdot W(\vec{y}, \omega) d\omega d\vec{y}. \tag{8.20}$$

8.5. Az árnyalási illetve a potenciál egyenlet megoldása

Matematikai szempontból az árnyalási (és a potenciál) egyenlet egy másodfajú *Fred-holm-féle integrálegyenlet*, amelyben az ismeretlen radianciafüggvényt kell meghatározni. Ez a radianciafüggvény egyrészt önállóan, másrészt az integrálon belül jelenik

8.6. BRDF modellek 131

meg. Azt is mondhatjuk, hogy az egyenletben az integrál és az azon kívüli részek között csatolás van, mert mindkettő függ az ismeretlen radianciától. Intuitíven megközelítve ezt a kérdést, egy felületi pont sugárzása a visszaverődések miatt függhet a többi pont intenzitásától, azok sugárzása viszont akár éppen a kérdéses felületi pont fényességétől. Ez a kölcsönös függés kapcsolja össze a különböző pontok radianciáját.

Ilyen integrálegyenletek megoldása általában meglehetősen időigényes. Ha gyorsabban szeretnénk képet kapni, akkor a megoldandó feladat egyszerűsítéséhez folyamodhatunk, elfogadva azt is, hogy a fizikai modell egyszerűsítése a valósághűség romlásához vezethet.

A rendelkezésre álló technikákat három nagy kategóriába sorolhatjuk, amelyek a gyorsaság-valósághűség ellentmondó követelménypárt különböző kompromisszummal elégítik ki (17.15. ábra).

A lokális illuminációs algoritmusok az árnyalási egyenlet drasztikus egyszerűsítésével kiküszöbölnek mindenféle csatolást, azaz egy felület fényességének meghatározásához nem veszik figyelembe a többi felület fényességét. Megvilágítás csak a képen közvetlenül nem látható absztrakt fényforrásokból érkezhet. A csatolás megszűntetésével az árnyalási egyenletben az integrálból eltűnik az ismeretlen függvény, így az integrálegyenlet megoldása helyett csupán egy egyszerű integrált kell kiértékelnünk.

A *sugárkövetés illuminációs algoritmusa* a csatolást csak véges számú ideális visz-szaverődésre és törésre követi.

A *globális illuminációs algoritmus*ok az integrálegyenletet a csatolással együtt próbálják megoldani, vállalva az ezzel járó munkamennyiséget is.

8.6. BRDF modellek

Valósághű képek előállítása során olyan BRDF modelleket kell használnunk, amelyek nem sértik az alapvető fizikai törvényeket, mint például a BRDF-k szimmetriáját kimondó *Helmholtz-törvény*t, vagy az *energiamegmaradás* törvényét.

A Helmholtz-féle szimmetria, vagy *reciprocitás* [Min41] szerint a fénysugár megfordítható, azaz a BRDF-ben a bejövő és kimenő irányok felcserélhetőek:

$$f_r(\omega, \vec{x}, \omega') = f_r(\omega', \vec{x}, \omega). \tag{8.21}$$

Ez a tulajdonság az, amely miatt a valószínűség-sűrűségfüggvényekkel szemben a BRDF-eket részesítjük előnyben az optikai anyagmodellek megadásánál. A szimmetria miatt

$$f_r(\omega', \vec{x}, \omega) \cdot \cos \theta' = f_r(\omega, \vec{x}, \omega') \cdot \cos \theta' = \frac{r(\omega, \vec{x}, \omega')}{\cos \theta'} \cdot \cos \theta' = r(\omega, \vec{x}, \omega').$$
 (8.22)

Az energiamegmaradás elve értelmében, egy önállóan nem sugárzó felületelem nem adhat ki több fotont (nagyobb fluxust), mint amit maga kapott, vagy másképpen, a tetszőleges irányú visszaverődés teljes valószínűsége nyilván nem lehet egynél nagyobb.

A tetszőleges irányú visszaverődést albedonak nevezzük. Az albedo definíciója:

$$a(\vec{x}, \omega') = \int_{\Omega} f_r(\omega', \vec{x}, \omega) \cdot \cos \theta \ d\omega \le 1.$$
 (8.23)

Az energiamegmaradás elve értelmében az árnyalási egyenlet integráloperátora *kontrakció*, azaz a visszavert radianciafüggvény normája az eredeti radianciafüggvény normájánál kisebb. Ennek az a következménye, hogy az operátor egymás utáni alkalmazása során a visszavert radiancia zérushoz tart. Miként a megoldási módszerek ismertetésénél látni fogjuk, a kontrakció garantálja, hogy az iterációs megoldások konvergálnak.

A reciprocitást és az energiamegmaradás elvét nem sértő BRDF-eket *fizikailag pla-uzibilis*nek nevezzük [Lew93].

8.6.1. Klasszikus BRDF modellek

A BRDF modellek bemutatása során a következő jelöléseket használjuk: \vec{N} a felületelemre merőleges egységvektor, \vec{L} a fényforrás irányába mutató egységvektor, \vec{V} a nézőirányba mutató egységvektor, \vec{R} az \vec{L} tükörképe az \vec{N} -re vonatkoztatva, \vec{H} az \vec{L} és \vec{V} közötti felező egységvektor.

8.6.2. Lambert-törvény

Optikailag nagyon durva, ún. *diffúz* anyagok esetén a visszavert radiancia független a nézeti iránytól. Fehérre meszelt falra, homokra, matt felületre nézve ugyanazt a hatást érzékeljük ha merőlegesen nézünk rá, mintha élesebb szögben vizsgálódnánk.

8.6. ábra. Diffúz visszaverődés

A Helmholtz-féle reciprocitás értelmében a BRDF ekkor a bejövő iránytól sem függhet, azaz a BRDF konstans:

$$f_r(\vec{L}, \vec{V}) = k_d. \tag{8.24}$$

8.6. BRDF modellek 133

Az energiamegmaradás miatt az albedo diffúz visszaverődés esetén sem lehet 1-nél nagyobb, így a k_d diffúz visszaverődési együtthatóra a következő korlát állítható fel:

$$a(\vec{L}) = \int_{\Omega} k_d \cdot \cos \theta \ d\omega = k_d \cdot \pi \quad \Longrightarrow \quad k_d \le \frac{1}{\pi}.$$
 (8.25)

8.6.3. Ideális visszaverődés

Az ideális tükör teljesíti a geometriai optika által kimondott visszaverődési törvényt miszerint a beesési irány (\vec{L}) , felületi normális (\vec{N}) és a kilépési irány (\vec{V}) egy síkban van, és a θ' beesési szög megegyezik a θ visszaverődési szöggel $(\theta'=\theta)$. Az ideális tükör tehát csak az \vec{R} visszaverődési irányba ver vissza, egyéb irányokba nem. A BRDF tehát Dirac-delta függvénnyel adható meg (a Dirac-delta a 0 értéknél végtelen, minden más értéknél zérus, de integrálja 1):

$$f_r(\vec{L}, \vec{V}) = k_r \cdot \frac{\delta(\vec{R} - \vec{V})}{\cos \theta'},$$
 az energiamegmaradáshoz $k_r \le 1.$ (8.26)

Még a tökéletes tükrök is elnyelik a beérkező fény egy részét. A visszavert és beeső energia hányadát az anyag *Fresnel-együttható*ja fejezi ki, ami pedig az anyag *törésmutató*jából számítható ki. A törésmutató dielektrikumoknál skalár, az elektromosságot vezető fémeknél azonban komplex szám. Jelöljük a törésmutató valós részét *n*-nel, a vezetőképességet kifejező képzetes részét pedig κ-val.

8.7. ábra. Arany, réz és ezüst törésmutatója a hullámhossz függvényében

Legyen a beérkező fénysugár és a felületi normális által bezárt szög θ' , a törési irány és a normális közötti szög pedig θ . A *Fresnel-egyenlet*ek a visszavert és a be-

érkező fénynyalábok energiahányadát fejezik ki külön arra az esetre, amikor a fény polarizációja párhuzamos, és arra, amikor a polarizáció merőleges a felülettel:

$$F_{\perp}(\lambda, \theta') = \left| \frac{\cos \theta - (n + \kappa \jmath) \cdot \cos \theta'}{\cos \theta + (n + \kappa \jmath) \cdot \cos \theta'} \right|^{2}, \qquad F_{\parallel}(\lambda, \theta') = \left| \frac{\cos \theta' - (n + \kappa \jmath) \cdot \cos \theta}{\cos \theta' + (n + \kappa \jmath) \cdot \cos \theta} \right|^{2}, \tag{8.27}$$

ahol $\jmath=\sqrt{-1}$. Ezen egyenleteket az elektromágneses hullámok terjedését leíró Maxwell-egyenletekből származtathatjuk. Nem polarizált fény esetében a párhuzamos (\vec{E}_{\parallel}) és merőleges (\vec{E}_{\perp}) mezőknek ugyanaz az amplitúdója, így a visszaverődési együttható:

$$k_r = F(\lambda, \theta') = \frac{|F_{\parallel}^{1/2} \cdot \vec{E}_{\parallel} + F_{\perp}^{1/2} \cdot \vec{E}_{\perp}|^2}{|\vec{E}_{\parallel} + \vec{E}_{\perp}|^2} = \frac{F_{\parallel} + F_{\perp}}{2}.$$
 (8.28)

8.6.4. Ideális törés

Az ideális törés során a fény útja követi a *Snellius-Descartes-törvény*t, miszerint a beesési irány (\vec{L}) , felületi normális (\vec{N}) és a törési irány (\vec{V}) egy síkban van, és

$$\frac{\sin \theta'}{\sin \theta} = n,$$

ahol n az anyag relatív törésmutatója. Így a BRDF az ideális visszaverődéshez hasonlóan ugyancsak Dirac-delta jellegű függvény

$$f_r(\vec{L}, \vec{V}) = k_t \cdot \frac{\delta(\vec{T} - \vec{V})}{\cos \theta'}, \tag{8.29}$$

ahol \vec{T} a törési irány.

8.6.5. Phong illuminációs modell és változatai

Az inkoherens visszaverődést általában két tényezőre bontjuk. Diffúz visszaverődésre, amelyet a Lambert-törvénnyel írunk le, és spekuláris visszaverődésre, amelyre külön modellt állítunk fel.

A Phong BRDF a spekuláris visszaverődés egyszerű empirikus modellje [Pho75]. A spekuláris felületek a beérkező fény jelentős részét az elméleti visszaverődési irány környezetébe verik vissza. Ezt a jelenséget modellezhetjük bármely olyan függvénnyel, amely a visszaverődési irányban nagy értékű, és attól távolodva rohamosan csökken.

Phong a következő függvényt javasolta erre a célja:

$$f_{r,\text{Phong}}(\vec{L}, \vec{V}) = k_s \cdot \frac{(\vec{R} \cdot \vec{V})^n}{(\vec{N} \cdot \vec{L})}$$
 (8.30)

8.6. BRDF modellek 135

8.8. ábra. Alumínium, arany, réz és ezüst Fresnel-együtthatója a hullámhossz és a beesési szög függvényében

8.9. ábra. Spekuláris visszaverődés

ahol \vec{R} az \vec{L} vektor tükörképe a felületi normálisra.

A k_s faktor a Fresnel-együtthatóval arányos, de annál kisebb, hiszen a felület most nem ideális tükör. A k_s faktort dielektrikumoknál tekinthetjük hullámhossz és beesési szög függetlennek (egy műanyagon, a fehér fény által létrehozott tükrös visszaverődés fehér).

8.10. ábra. A reciprok Phong (bal) és a max Phong (jobb) modellek összehasonlítása (n=20). A reciprok Phong modell nagy látószögekre elfeketedik.

Az eredeti Phong-modell fizikailag nem plauzibilis, mert nem szimmetrikus. Ezért a fotorealisztikus képszintézisben ehelyett a következő változatokat használják [ICG86]:

$$f_{r,\text{reciprocalPhong}}(\vec{L}, \vec{V}) = k_s \cdot (\vec{R} \cdot \vec{V})^n$$
 (8.31)

Az ilyen modell által visszavert radiancia nagy beesési szögekre zérushoz tart, ami nem felel meg a gyakorlati tapasztalatainknak. Ezt a hiányosságot küszöböli ki a következő változat [NNSK98]:

$$f_{r,\text{maxPhong}}(\vec{L}, \vec{V}) = k_s \cdot \frac{(\vec{R} \cdot \vec{V})^n}{\max((\vec{N} \cdot \vec{V}), (\vec{N} \cdot \vec{L}))}$$
(8.32)

Az energiamegmaradáshoz a következő feltételt kell garantálni [LW94]:

$$k_s \le \frac{n+2}{2\pi}.\tag{8.33}$$

Ha a k_s paramétert a Fresnel-együttható alapján határozzuk meg, akkor gondot jelent az, hogy milyen beesési szögre tekintsük annak az értékét. A felületi normális és a fényvektor szöge most nem megfelelő, egyrészt azért, mert ekkor a BRDF nem lesz szimmetrikus, másrészt azért, mert a felületi egyenetlenségek következtében egy pontban a tényleges normálvektor nem állandó, hanem valószínűségi változó. Ha a felületet kis, véletlenszerűen orientált ideális tükrök gyűjteményének tekintjük, akkor azon felületelemek, amelyek \vec{L} -ből \vec{V} irányba vernek vissza, a visszaverődési törvénynek megfelelően $\vec{H}=(\vec{L}+\vec{V})/2$ normálvektorral rendelkeznek. Így a beesés szögének koszinuszát a $(\vec{H}\cdot\vec{L})$ skalárszorzatból számolhatjuk ki.

8.7. Fényelnyelő anyagok

Az árnyalási, illetve a potenciál egyenlet származtatása során feltételeztük, hogy a felületek között a fényintenzitás nem csökken, azaz a térben nincsenek fényelnyelő és szóró anyagok (participating media). Ha felhőket, tüzet, füstöt, ködöt, stb. szeretnénk megjeleníteni, akkor a korábbi feltételezésekkel alkotott modellek elégtelennek bizonyulnak, tehát általánosítani kell őket.

Tekintsünk egy fényelnyelő, fényszóró, sőt akár fényemittáló ($t\tilde{u}z$) anyagon áthaladó sugarat! Egy ds elemi szakaszon a sugár L intenzitásának megváltozása több tényező függvénye:

- A fény a pálya mentén elnyelődik illetve az eredetileg sugárirányú fotonok más irányba szóródnak az anyag molekuláival bekövetkező ütközések során. Ezen hatás következménye egy $-\kappa_t \cdot L$ mértékű változás (*outscattering*).
- A fényintenzitás az anyag saját emissziójával növekedhet: $\kappa_a \cdot L^e$.
- Az eredetileg más irányú fotonok a molekulákba ütközve éppen a sugár irányában folytatják az útjukat (inscattering). Ha az ω' irányból az elemi ds szakasz környezetébe $L_i(\omega')$ radiancia érkezik, az ω sugárirányban történő visszaverődés valószínűség-sűrűségfüggvénye pedig $f(\omega',\omega)$, akkor ez a hatás az intenzitást

$$L_{\rm is}(s) = \int_{\Omega} L_i(\omega') \cdot f(\omega', \omega) \ d\omega'$$

mennyiséggel növeli.

8.11. ábra. A sugár intenzitásának változása

Összefoglalva a sugár radianciájára a következő egyenlet érvényes:

$$\frac{dL(s,\omega)}{ds} = -\kappa_t(s) \cdot L(s,\omega) + \kappa_a(s) \cdot L^e(s,\omega) + L_{is}(s,\omega) =$$

$$-\kappa_t(s) \cdot L(s,\omega) + \kappa_a(s) \cdot L^e(s,\omega) + \int_{\Omega} L_i(s,\omega') \cdot f(\omega',\omega) \, d\omega'. \tag{8.34}$$

Ebben az egyenletben az ismeretlen radiancia több helyen is szerepel, megtalálható derivált formában, normál alakban, sőt az L_i mögé rejtve még integrálva is. Mivel a feladat sokkal egyszerűbb lenne, ha az L_i független lenne az ismeretlen radianciától és valaki megsúgná nekünk az L_i értékét, a gyakorlatban sokszor olyan egyszerűsítő feltételezéseket teszünk, amelyek ehhez az esethez vezetnek. Ekkor a fénynek csak az egyszeres szóródását (single scattering) számítjuk, a többszörös szóródást (multiple scattering) elhanyagoljuk.

Az egyszeres szóródást leíró egyszerűsített integrálegyenletet a szuperpozíció elv segítségével oldhatjuk meg. Először tegyük fel, hogy az intenzitást növelő $L^e(s,\omega)$ és $L_{\rm is}(s,\omega)$ tényezők csak egy τ pontban különböznek zérustól. Ezek hatását egy s pontban úgy kapjuk, hogy figyelembe vesszük a folyamatos csökkenést:

$$\delta_{\tau}L(s,\omega) = e^{-\int_{s}^{\tau} \kappa_{t}(p) dp} \cdot (\kappa_{a}(\tau) \cdot L^{e}(\tau,\omega) + L_{is}(\tau,\omega)). \tag{8.35}$$

Amennyiben nem csak a τ pontban növekedhet az intenzitás, úgy az elemi hatásokat

8.12. ábra. A "nagy bumm" és a föld környezeti katasztrófájának szimulációja [Sza95]

összegezni kell, tehát:

$$L(s,\omega) = \int_{s}^{T} \delta_{\tau} L(s,\omega) d\tau = \int_{s}^{T} e^{-\int_{s}^{\tau} \kappa_{t}(p) dp} \cdot (\kappa_{a}(\tau) \cdot L^{e}(\tau,\omega) + L_{is}(\tau,\omega)) d\tau, \quad (8.36)$$

ahol T a maximális sugárparaméter.

8.8. Program: BRDF modellek

Az anyagok optikai tulajdonságai a BRDF függvénnyel jellemezhetők. A BRDF függvény visszatérési értéke egy spektrum, hiszen a belépési és kilépési irányon kívül még függhet a hullámhossztól is.

Az Emitter fényt bocsát ki magából:

A diffúz anyagok a fényt a különböző irányokba egyenletesen verik vissza. A DiffuseMaterial osztály BRDF-je tehát konstans.

A SpecularMaterial a Phong-modell szerinti BRDF-t valósítja meg. A Ks visz-szaverődési tényező a fizikai plauzibilitáshoz még megengedett maximumra vetített érték. Ezen kívül az osztály még a shine simasági paramétert tartalmazza.

```
//----
class SpecularMaterial : virtual public Material {
//----
   SColor Ks;
   double shine;
public:
   SpecularMaterial(): Ks(0) { shine = 10; }
   SColor& ks() { return Ks; }
   double& Shine() { return shine; }
   SColor BRDF (Vector3D& L, Vector3D& N, Vector3D& V) {
      double cos_in = L * N;
      if (\cos_i n > 0 \&\& ks() != 0) {
          Vector3D R = N \star (2.0 \star cos_in) - L;
          double cos_refl_out = R * V;
          if (cos_refl_out > EPSILON) {
             SColor ref = ks() * (shine + 2) / M_PI / 2.0;
             return (ref * pow(cos_refl_out, shine));
```

```
}
    return SColor(0);
}
double AverageAlbedo( Vector3D& N, Vector3D& V ) {
    return (ks().Luminance() * 2 * M_PI/(Shine() + 2));
}
```

A Phong-modell visszaverődési tényezője műanyagoknál általában hullámhossz független konstans (egy fehér fénnyel megvilágított műanyagon a tükrözési folt a műanyag színétől függetlenül fehér), fémeknél azonban erősen függ a hullámhossztól és a beesési szögtől. Ezt a függést úgy modellezhetjük, ha a visszaverődési tényezőt megszorozzuk az anyag *Fresnel-együttható*jával. A Fresnel-függvényt az anyag komplex törésmutatójából számíthatjuk. A következő programrészlet különböző hullámhosszokra megadja az alumínium és az arany komplex törésmutatóját, valamint a Fresnel-függvény számítási algoritmusát.

```
#define NREFIDX 8
struct RefIdx {double lambda, n, k; }
    alu[NREFIDX] = {
        {400, 0.4900, 4.8600},
        {450, 0.6180, 5.4700},
        {500, 0.7690, 6.0800},
        {550, 0.9580, 6.6900},
        {600, 1.2000, 7.2600},
        {650, 1.4700, 7.7900},
        {700, 1.8300, 8.3100},
        {750, 2.4000, 8.6200}
    },
    gold[NREFIDX] = {
        {400, 1.6580, 1.9560},
        {450, 1.5102, 1.8788},
        {500, 0.8469, 1.8753},
        {550, 0.3485, 2.7144},
        {600, 0.2177, 2.9097},
        {650, 0.1676, 3.1138},
        {700, 0.1605, 3.9784},
        {750, 0.1680, 4.5886},
    };
```

```
//-----
class FresnelFunction {
RefIdx refidx[NREFIDX];
public:
   FresnelFunction( RefIdx r[] ) {
       for (int l = 0; l < NREFIDX; l++) refidx[l] = r[l];
   double Fresnel (double lambda, double theta) {
       double n, k;
       for ( int l = 1; l < NREFIDX; l++ ) {
           if (lambda < refidx[1].lambda) {</pre>
              double la2 = lambda - refidx[1-1].lambda;
              double la1 = refidx[1].lambda - lambda;
              double la = la1 + la2;
              n = (la1 * refidx[l-1].n + la2 * refidx[l].n)/la;
              k = (la1 * refidx[l-1].k + la2 * refidx[l].k)/la;
              break;
           }
       double t1 = n*n - k*k - sin(theta) * sin(theta);
       double t2 = sqrt(t1*t1 + 4.0*n*n*k*k);
       double a2 = 0.5 * (t2 + t1), a = sqrt(a2);
       double t3 = a2 + 0.5 * (t2 - t1);
       double t4 = 2.0 * a * cos(theta);
       double fsd = (t3 + t4 + cos(theta) *cos(theta));
       double Fs = (fsd > EPSILON) ?
                  (t3 - t4 + cos(theta) *cos(theta))/fsd : 0;
       double t5 = 2.0 * a * sin(theta) * tan(theta);
       double t6 = t3 + \sin(theta) * \sin(theta) * \tan(theta) * \tan(theta);
       double Fp = (t6 + t5 > EPSILON) ?
                 Fs * (t6 - t5)/(t6 + t5) : 0;
       return ((Fp + Fs)/2.0);
   }
} ;
```

9. fejezet

A 3D inkrementális képszintézis

A 3D képszintézis során a 3D lokális koordinátarendszerekben, vagy közvetlenül a világ-koordinátarendszerben definiált modellről egy, a világ-koordinátarendszerben elhelyezett kamerával fényképet készítünk, és azt a képernyő nézetében megjelenítjük. Az alapfeladatok — transzformáció, vágás, takarás és árnyalás — végrehajtása során két eljárást követhetünk. Az alapfeladatokat vagy pixelenként egymástól függetlenül hajtjuk végre, vagy pedig a feladatok egy részének elvégzése során elvonatkoztatunk a pixelektől, és az objektumtér nagyobb részeit egységesen kezeljük. Az első módszert sugárkövetésnek, a másodikat inkrementális képszintézisnek nevezzük. Mindkét eljárásnak megvannak a maga előnyei és hátrányai.

A sugárkövetés (ray-tracing) teljesen önállóan kezel egy pixelt, és azt a pixelközépponton keresztül látható objektumnak megfelelően színezi ki. Egyetlen pixel számításához tehát az objektumtér egyetlen pontját kell ismernünk. Ezen pont azonosításához félegyenest indítunk a szemből az adott pixel középpontján keresztül az objektumtérbe, meghatározzuk a félegyenes metszéspontjait az objektumtér objektumaival, majd a metszéspontok közül kiválasztjuk a szemhez legközelebbit. Vegyük észre, hogy a metszéspont előállításával a transzformáció, vágás és takarás feladatait is egy füst alatt elintéztük! Az egyetlen még megoldandó probléma az árnyalás, amely a látható pont radianciáját az optikai modell egyszerűsített változatával számítja ki.

Az inkrementális képszintézis az alapfeladatok egy részét a pixel felbontástól teljesen függetlenül, az objektumtér ábrázolási pontosságának megfelelően a feladathoz optimálisan illeszkedő koordinátarendszerben végzi el, a feladatok másik részénél pedig kihasználja az inkrementális elv nyújtotta lehetőségeket. Az inkrementális elv alkalmazása azt jelenti, hogy egy pixel takarási és árnyalási információinak meghatározása során jelentős számítási munkát takaríthatunk meg, ha a megelőző pixel hasonló adataiból indulunk ki, és nem kezdjük a számításokat nulláról. Annak érdekében, hogy az objektumainkat transzformálni és vágni tudjuk, olyan reprezentációra van szükségünk, amelyre ezen műveletek könnyen elvégezhetők, és nem vezetnek ki a reprezentáció-

ból. A 2D képszintézishez hasonlóan — ahol ezt a feladatot a vektorizációval oldottuk meg — az inkrementális képszintézis első lépéseként a felületeket háromszöghálóval közelítjük. Ezt a lépést *tesszelláció*nak nevezzük.

A sugárkövetést összehasonlítva az inkrementális képszintézissel, a sugárkövetés javára elmondható, hogy nem igényel tesszellációt, explicit transzformációkat és vágást, így lényegesen könnyebben implementálható. Hátránya viszont, hogy mivel a pixeleket függetlenül kezeli, nem használja újra az egyszer nagy nehezen megszerzett takarási vagy árnyalási információkat, így kétségkívül lassabb, mint az inkrementális algoritmus.

9.1. ábra. Az inkrementális 3D képszintézis lépései

Ebben a fejezetben az inkrementális képszintézissel foglalkozunk, a sugárkövetésre a következő fejezetben térünk vissza. Az inkrementális képszintézis során a következő feladatokat végezzük el:

- 1. Tesszelláció: A virtuális világban tárolt szabadformájú elemeket (pl. felületek, testek) 3D szakaszok és poligonok halmazával közelítjük. Amennyiben a képszintézis során végig kitöltött poligonokkal dolgozunk, tömörtest megjelenítésről (solid rendering) fogunk beszélni, ha viszont a testeket, felületeket a poligonhálós közelítésük éleinek felrajzolásával jelenítjük meg, huzalváz megjelenítéshez (wireframe rendering) jutunk.
- 2. Transzformáció: A lokális koordinátarendszerben adott geometriai elemekre a világ-koordinátarendszerben, majd a képernyő-koordinátarendszerben van szükségünk. A koordinátarendszer váltás homogén lineáris geometriai transzformációt igényel, amit mátrixszorzással valósítunk meg.

- 3. *Vágás*: Ebben a lépésben eltávolítjuk azon geometriai elemeket, illetve a geometriai elemek azon részeit, amelyek nem vetülhetnek az ablak téglalapjára.
- 4. *Takarási feladat*: A transzformációk több objektumot is vetíthetnek ugyanarra a képpontra. Ilyenkor el kell döntenünk, hogy melyik van a legközelebb a szempozícióhoz, azaz ebben a pontban melyik takarja a többi objektumot. Huzalváz megjelenítés esetén ezt a lépést ki is hagyhatjuk (9.2. ábra).
- 5. Árnyalás: Ha sikerült eldönteni, hogy egy képpontban melyik objektum látszik, akkor a képpontot ennek megfelelően kell kiszínezni. Legegyszerűbb esetben a 2D grafika mintájára az objektumok saját színét használjuk. Ezt gyakran alkalmazzuk huzalváz megjelenítéskor (9.2. ábra), sőt használhatjuk tömörtest megjelenítéskor is, de ez nagyon csúnya képeket eredményez (17.16. ábra). Szép képekhez akkor juthatunk, ha a színt a térben fennálló fényviszonyokból a fizikai folyamatok egyszerűsített szimulációjával számítjuk (17.16. ábra). Még huzalváz megjelenítés esetén is érdemes valamilyen rendkívül egyszerű színezést alkalmazni. Például a távolabbi éldarabokat levághatjuk, vagy az élek azon pontjait, amelyek a szemhez közelebb vannak, nagyobb intenzitással rajzolhatjuk, mint a hátrébb lévőket. Ezen eljárásokat mélységi vágásnak (depth clipping) illetve mélységi intenzitás modulációnak (depth cuing) nevezzük (9.3. ábra).

9.2. ábra. Huzalváz képszintézis takarás nélkül (bal) és takarással (jobb) (Pixar)

9.3. ábra. Távolabbi élek vágása (bal) és mélységi intenzitásmoduláció (jobb) (Pixar)

9.1. Felületek tesszellációja

A tesszelláció a 2D vektorizáció általánosításaként képzelhető el. Egy $\vec{r}(u,v)$ felületet oly módon közelíthetünk háromszögekkel, hogy az $u \in [0,1], v \in [0,1]$ paramétertartományban kijelölünk $n \times m$ pontot és az

$$[\vec{r}(u_i,v_j),\vec{r}(u_{i+1},v_j),\vec{r}(u_{i+1},v_{j+1})] \qquad \text{\'es a} \qquad [\vec{r}(u_i,v_j),\vec{r}(u_{i+1},v_{j+1}),\vec{r}(u_i,v_{j+1})]$$

háromszögeket minden $i=1\dots n-1$ és $j=1\dots m-1$ indexre hozzáadjuk a keletkező háromszöglistához.

9.2. Modellezési transzformáció

Ha az objektumok a saját lokális modellezési koordinátarendszereikben állnak rendelkezésre, akkor a képszintézis során a közös világ-koordinátarendszerbe kell átvinni őket. Ez egy \mathbf{T}_M modellezési transzformációt igényel, amely a 2D modellezési transzformáció közvetlen 3D kiterjesztése.

9.3. Kamera definíció

A 3D grafikában a szempozícióból egy téglalap alakú ablakon keresztül látható képet szeretnénk előállítani, így a pixeleknek az ablakon kis téglalapok felelnek meg. Az ablak a világ-koordinátarendszerben általános helyzetű és orientációjú lehet, az ablak mögött a szempozíció is bárhol elhelyezhető.

9.3. Kamera definíció 147

9.4. ábra. A kamera geometriai paramétereinek a definíciója

A kamerát a következő paraméterekkel definiálhatjuk:

• Az ablak középpontját egy világ-koordinátarendszerbeli ponttal, ún. *nézeti referencia pont*tal adjuk meg, amelyet általában a $v\vec{r}p$ vektorral jelölünk. Az ablak orientációját egy u,v,w koordinátarendszerrel jellemezzük, amelynek origója a nézeti referencia pont, az \vec{u} és \vec{v} vektorok pedig az ablak vízszintes és függőleges irányát határozzák meg. A \vec{w} vektor az ablak síkjára merőleges egységvektor. Az $\vec{u}, \vec{v}, \vec{w}$ egységvektorok definíciójához a felhasználó általában megadja az ablak síkjának normálvektorát $(v\vec{p}n)$ és a függőleges irányt jelölő $v\vec{u}p$ vektort, amelyekből az egységvektorok a következőképpen számíthatók ki:

$$\vec{w} = \frac{v\vec{p}n}{|v\vec{p}n|}, \quad \vec{u} = \frac{\vec{w} \times v\vec{u}p}{|\vec{w} \times v\vec{u}p|}, \quad \vec{v} = \vec{u} \times \vec{w}.$$
 (9.1)

Szemben a jobbsodrású x,y,z világ-koordinátarendszerrel, az u,v,w koordinátarendszer balsodrású, hiszen ez felel meg annak a természetes képnek, hogy az \vec{u} jobbra mutat, a \vec{v} felfelé és a \vec{w} pedig arra, amerre nézünk.

- Az ablak vízszintes és függőleges méreteit két számmal, a w_w és w_h paraméterekkel adjuk meg. A *zoom* kameraművelet az ablak méretének szabályozásával érhető el.
- A kép a virtuális világnak az ablak síkjára vett vetülete. A képszintézis során általában kétféle vetítési típus használatos: párhuzamos vetítés, amikor a vetítősugarak párhuzamosak, és perspektív vetítés, amikor a vetítősugarak a szempozícióban találkoznak.

- Perspektív vetítés esetén a szempozíció határozza meg a vetítési középpontot (éye). Párhuzamos vetítéskor a kamera csupán egy irányt definiál, amellyel a vetítősugarak párhuzamosak.
- Nyilván az objektumtérnek csak azon részei láthatók a képen, amelyek a szem előtt helyezkednek el, tehát a szem mögötti objektumokat a képszintézis során vágással el kell távolítani. A vágási tartományt az első és hátsó vágósík bevezetésével tovább korlátozhatjuk. Csak azon objektumok vesznek részt a képszintézisben, amelyek az ablakkal párhuzamos két vágósík között helyezkednek el. A vágósíkok az ablak síkjával párhuzamosak így az u, v, w koordinátarendszerben egy-egy számmal megadhatók (fp az első vágósíkra, bp a hátsó vágósíkra). Perspektív vetítés esetén ez a paraméter a szemtől való távolságot, párhuzamos vetítés esetén pedig a nézeti referencia ponttól való távolságot jelenti.

9.5. ábra. A koordinátatengelyekkel párhuzamos irányokkal dolgozó párhuzamos vetítés (bal) és általános helyzetű perspektív vetítés (jobb) (Pixar)

9.4. A nézeti transzformáció

A képszintézis során el kell dönteni, hogy az objektumok hogyan takarják egymást, és csak a látható objektumokat kell megjeleníteni. Ezen műveleteket közvetlenül a világ-koordinátarendszerben is el tudnánk végezni, ekkor azonban egy pont vetítése egy általános helyzetű egyenes és az ablak metszéspontjának a kiszámítását igényelné, a takarás pedig az általános pozíciójú szemtől való távolsággal dolgozna. Sokkal jobban járunk, ha ezen műveletek előtt áttranszformáljuk a teljes objektumteret egy olyan

koordinátarendszerbe, ahol a vetítés és takarás triviálissá válik. Ezt a rendszert 3D képernyő-koordinátarendszernek nevezzük, amelyben az X,Y koordináták azon pixelt jelölik ki, amelyre a pont vetül, a Z koordináta alapján pedig eldönthetjük, hogy két pont közül melyik van a szemhez közelebb. Célszerűen a Z koordináta normalizált, azaz az első vágósík transzformált koordinátája 0, a hátsó vágósíké pedig 1.

A transzformációt egy koordinátarendszereken átvezető transzformáció sorozattal definiáljuk, bár végül az eredő transzformációt egyetlen mátrixszorzással valósítjuk meg. A transzformációsorozat, és így az eredő mátrix is függ attól, hogy a vetítés párhuzamos avagy perspektív.

9.4.1. Világ-koordinátarendszer — ablak-koordinátarendszer transzformáció

Először a pontokat az ablakhoz rögzített u, v, w koordinátarendszerbe visszük át. Ez egy koordinátarendszerváltó transzformáció, így a 7.2. fejezet eredményei hasznosíthatók. A keresett transzformáció:

$$[\alpha, \beta, \gamma, 1] = [x, y, z, 1] \cdot \mathbf{T}_{\mathbf{nvw}}^{-1}, \tag{9.2}$$

ahol a $\mathbf{T_{uvw}}$ mátrix sorai az \vec{u} , \vec{v} , \vec{w} egységvektorok és az origót meghatározó $v\vec{r}p$ nézeti referencia pont világ-koordinátarendszerbeli koordinátái:

$$\mathbf{T_{uvw}} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ vrp_x & vrp_y & vrp_z & 1 \end{bmatrix}.$$
 (9.3)

9.4.2. Ablak-képtér transzformáció párhuzamos vetítés esetén

Nyírás

Speciális esetben előfordulhat, hogy nem merőlegesen nézünk rá az ablakra, azaz a szempozíció eye_u illetve eye_v koordinátái zérustól különbözők (9.6. ábra). A nézeti irányt kiegyenesíthetjük az objektumtér torzításával. A torzítás egy *nyírási transzformáció*t igényel. Az eredeti w koordinátát megtartó nyírás általános formája:

$$\mathbf{T_{shear}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ s_u & s_v & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \tag{9.4}$$

9.6. ábra. Nyírás, amely a nézeti irányt az ablakkal merőlegessé teszi

A transzformációnak az $[eye_u, eye_v, eye_w, 1]$ projektort a $[0, 0, eye_w, 1]$ vektorba kell átvinnie. Ezt a feltételt a következő s_u és s_v értékek elégítik ki:

$$s_u = -\frac{eye_u}{eye_w}, \quad s_v = -\frac{eye_v}{eye_w}.$$
 (9.5)

Képernyő transzformáció

Párhuzamos vetítés esetén a nyírás után a világ képre vetíthető tartománya téglatest alakú, amelynek oldalai párhuzamosak a koordinátatengelyekkel, két átellenes sarokpontja pedig $(-w_w/2, -w_h/2, fp)$, $(w_w/2, w_h/2, bp)$. A képernyő-koordinátarendszerben a világ ugyancsak ilyen állású téglatest, de a sarokpontjai $(V_x - V_{sx}/2, V_y - V_{sy}/2, 0)$, $(V_x + V_{sx}/2, V_y + V_{sy}/2, 1)$.

Az első téglatestet a másikba átvivő transzformáció:

$$\mathbf{T_{viewport}} = \begin{bmatrix} V_{sx}/w_w & 0 & 0 & 0\\ 0 & V_{sy}/w_h & 0 & 0\\ 0 & 0 & 1/(bp - fp) & 0\\ V_x & V_y & -fp/(bp - fp) & 1 \end{bmatrix}.$$
(9.6)

Összefoglalva, párhuzamos vetítés esetén a teljes nézeti transzformáció a következő elemi transzformációk kompozíciója:

$$\mathbf{T_{V}} = \mathbf{T_{uvw}^{-1}} \cdot \mathbf{T_{shear}} \cdot \mathbf{T_{viewport}},$$

$$[X, Y, Z, 1] = [x, y, z, 1] \cdot \mathbf{T_{V}}.$$
(9.7)

A $\mathbf{T}_{\mathbf{V}}$ mátrixot nézeti transzformációs mátrixnak nevezzük.

9.4.3. Ablak-képtér transzformáció perspektív vetítés esetén

Mozgatás a szembe

Első lépésként a koordinátarendszer középpontját az ablak középpontjából a szempozícióba helyezzük át. Ez egy $-e\vec{y}e$ vektorral jellemzett eltolás:

$$\mathbf{T_{eye}} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ -eye_u & -eye_v & -eye_w & 1 \end{bmatrix}. \tag{9.8}$$

Nyírási transzformáció

Hasonlóan a párhuzamos vetítéshez, ha eye_u illetve eye_v nem zérus, az ablak középpontján átmenő vetítősugár nem merőleges az ablakra. A szükséges korrekciót az objektumoknak nyírási transzformációval történő torzításával végezhetjük el:

$$\mathbf{T_{shear}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -eye_u/eye_w & -eye_v/eye_w & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
(9.9)

Normalizáló transzformáció

A nyírás után a képszintézisben részt vevő pontok tartománya egy szimmetrikus csonka gúla (9.8. ábra). A további műveletekhez normalizáljuk ezt a gúlát oly módon, hogy a

9.8. ábra. Normalizáló transzformáció

csúcsában a nyílásszög 90 fok legyen, a hátsó vágósík pedig az 1 értékre kerüljön. A normalizálás egy egyszerű skálázás a koordinátatengelyek mentén:

$$\mathbf{T_{norm}} = \begin{bmatrix} -2 \cdot eye_w / (w_w \cdot bp) & 0 & 0 & 0 \\ 0 & -2 \cdot eye_w / (w_h \cdot bp) & 0 & 0 \\ 0 & 0 & 1/bp & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \tag{9.10}$$

Perspektív transzformáció

Utolsó lépésként a csonka gúlát a képernyő-koordinátarendszer téglatestére kell leképezni.

Egy ilyen transzformáció a gúla csúcsát, azaz a szempozíciót, a végtelenbe viszi át, így nem lehet az euklideszi tér lineáris transzformációja. Szerencsére a projektív tér lineáris transzformációi között találunk megfelelőt:

$$\mathbf{T_{persp}} = \begin{bmatrix} V_{sx}/2 & 0 & 0 & 0\\ 0 & V_{sy}/2 & 0 & 0\\ V_x & V_y & bp/(bp - fp) & 1\\ 0 & 0 & -fp/(bp - fp) & 0 \end{bmatrix}.$$
 (9.11)

Miként behelyettesítéssel meggyőződhetünk róla, ez a transzformáció az eredetileg a szempozícióban találkozó projektorokból párhuzamosakat csinál, hiszen a [0,0,0,1] szempozíciót valóban a [0,0,-fp/(bp-fp),0] ideális pontba viszi át. A perspektív transzformáció az euklideszi tér nem lineáris transzformációja, ezért a transzformációs mátrix utolsó oszlopa nem a szokásos [0,0,0,1] vektor. Következésképpen a keletkező

9.9. ábra. Transzformáció a normalizált nézetből a képernyő-koordinátarendszerbe

homogén koordinátanégyes negyedik koordinátája nem lesz 1 értékű. Ezért, ha Descartes-koordinátákban szeretnénk megkapni a transzformáció eredményét, a 4. homogén koordinátával végig kell osztani a többi koordinátát. Így a teljes perspektív transzformáció:

$$[X_h, Y_h, Z_h, h] = [X_c, Y_c, Z_c, 1] \cdot \mathbf{T_{persp}},$$

$$[X, Y, Z, 1] = [\frac{X_h}{h}, \frac{Y_h}{h}, \frac{Z_h}{h}, 1].$$
(9.12)

A homogén lineáris transzformációk lineáris halmaz tartók, tehát egyenest egyenesbe, síkot síkba visznek át. Véges objektumok esetén, mint a szakasz vagy a poligon azonban, problémák merülhetnek fel, ha a $\mathbf{T_{persp}}$ mátrixszal való szorzás az objektum valamely pontját ideális pontba, azaz a h=0 hipersíkra transzformálja. Mivel a szem a vetítés középpontja, és az ablak a vetítés síkja, ez akkor fordul elő, ha az objektumunk metszi a szempozíción átmenő, és az ablakkal párhuzamos síkot. Egy szem előtt kezdődő és a szem mögött végződő szakaszból olyan szakasz lesz, amely egy végtelen távoli pontot is tartalmaz. Ez még nem lenne baj, hiszen a projektív geometriában ez megengedett, csak a Descartes-koordinátarendszerbe való visszatérés során tudomásul kell venni, hogy a szakaszunk képe 2 félegyenes lesz. A perspektív transzformációt tehát nem lehet minden járulékos meggondolás nélkül, csak a szakasz két végpontjára (vagy a poligon csúcsaira) végrehajtani, aztán azt mondani, hogy a keletkező szakasz a transzformált végpontok között van (vagy a keletkező poligont a transzformált csúcsok definiálják). Előfordulhat, hogy a transzformáció eredményét a szakasz egyenesének azon pontjai alkotják, amelyek éppenhogy nem a transzformált pontok között, hanem azok átellenes oldalain találhatók. Ez az átfordulási probléma, amit a vágási tartomány megfelelő beállításával és a vágás megfelelő időben történő elvégzésével

oldhatunk meg. Ha megköveteljük, hogy az első vágósík mindig a szem előtt legyen, és a vágást a perspektív transzformáció homogén osztásának elvégzése előtt végrehajtjuk, akkor a homogén osztás pillanatában már semelyik objektum sem tartalmazhat ideális pontot.

Összefoglalva, a perspektív vetítéskor érvényes nézeti transzformáció:

$$\mathbf{T}_{\mathbf{V}} = \mathbf{T}_{\mathbf{uvw}}^{-1} \cdot \mathbf{T}_{\mathbf{eye}} \cdot \mathbf{T}_{\mathbf{shear}} \cdot \mathbf{T}_{\mathbf{norm}} \cdot \mathbf{T}_{\mathbf{persp}},$$

$$[X_h, Y_h, Z_h, h] = [x, y, z, 1] \cdot \mathbf{T}_{\mathbf{V}},$$

$$[X, Y, Z, 1] = [\frac{X_h}{h}, \frac{Y_h}{h}, \frac{Z_h}{h}, 1].$$
(9.13)

9.5. Nézeti csővezeték

A lokális modellezési koordinátarendszertől a képernyőig tartó transzformáció sorozatot *nézeti csővezeték*nek (*viewing pipeline*) nevezzük, amelyen az objektumokat definiáló pontok "végigfolynak".

9.10. ábra. Nézeti csővezeték párhuzamos vetítés esetére

9.11. ábra. Nézeti csővezeték perspektív vetítés esetére

9.5. Nézeti csővezeték 155

A vágási feladatot elvileg több koordinátarendszerben is végre lehet hajtani, ezek közül a 9.10. ábra csupán egyetlen lehetőséget mutat be. A csővezeték végén a primitívek a képernyő-koordinátarendszerben "csöpögnek ki", ahol optimális körülmények között oldhatjuk meg a takarási feladatot, és végezhetjük el a vetítést. Ebben a koordinátarendszerben ugyanis két pont akkor takarja egymást, ha az X és Y koordinátáik megegyeznek, és az látszik, amelynek Z koordinátája kisebb. A vetítés pedig a Z koordináta nullázását jelenti.

Sajnos a nézeti transzformációk nem szögtartók, így az árnyalási számításokat nem végezhetjük a képernyő-koordinátarendszerben (emlékezzünk vissza az árnyalási egyenletben szereplő $\cos\theta$ -ra és a BRDF-ben szereplő szögekre, amelyeket nem torzíthatunk el). Az árnyaláshoz szükséges szögeket tehát a világ-koordinátarendszerben kell számolni.

A vágás célja az összes olyan objektumrészlet eltávolítása, amely nem vetülhet az ablakra, vagy amely nem az első és hátsó vágósíkok között van. Párhuzamos vetítés esetén a vágást elvileg bármely koordinátarendszerben elvégezhetjük, de ez a legkevesebb művelettel a képernyő-koordinátarendszerben jár. Itt a vágási tartomány egy koordinátatengelyekkel párhuzamos téglatest, amelyre a 2D vágási algoritmusok (Cohen-Sutherland vágási algoritmus, Sutherland-Hodgeman-poligonvágás) közvetlen 3D kiterjesztéseivel vághatunk, így ezzel nem is fárasztjuk a tisztelt olvasót. Perspektív vetítés esetén, az átfordulási probléma kiküszöbölése miatt, a vágást a homogén osztás előtt kell végrehajtani. A leghatékonyabb, és egyben a legizgalmasabb a homogén osztást közvetlenül megelőző pillanat megragadása. Ekkor már szoroztunk a perspektív transzformációs mátrixszal, tehát pontjaink a 4D térben találhatók. A következő szakaszban azt mutatjuk meg, hogy ebben a 4D térben mi a megfelelő vágási tartomány és a 2D vágási algoritmusok milyen apróbb módosításokat igényelnek.

9.5.1. Vágás homogén koordinátákban

A homogén koordinátás vágási határokat a képernyő-koordinátarendszerben megfogalmazott feltételek visszatranszformálásával kaphatjuk meg. A homogén osztás után a vágási határok a következők:

$$X_{\min} = V_x - V_{sx}/2$$
, $X_{\max} = V_x + V_{sx}/2$, $Y_{\min} = V_y - V_{sy}/2$, $Y_{\max} = V_y + V_{sy}/2$.

Az ún. belső pontok tehát a következő egyenlőtlenségeket elégítik ki:

$$X_{\min} \le X_h/h \le X_{\max}, \quad Y_{\min} \le Y_h/h \le Y_{\max}, \quad 0 \le Z_h/h \le 1$$
 (9.14)

A másik oldalról, a szem előtti tartományok a normalizált nézeti koordinátarendszerben pozitív Z_c koordinátákkal rendelkeznek, és a perspektív transzformációs mátrixszal való szorzás után a 4. homogén koordináta $h=Z_c$ lesz. Tehát további követelményként megfogalmazzuk a h>0 feltételt. Ekkor viszont beszorozhatjuk a 9.14.

egyenlőtlenségeket h-val, így eljutunk a 4D vágási tartomány definíciójához:

$$X_{\min} \cdot h \le X_h \le X_{\max} \cdot h, \quad Y_{\min} \cdot h \le Y_h \le Y_{\max} \cdot h, \quad 0 \le Z_h \le h.$$
 (9.15)

9.6. Takarási feladat megoldása

A takarási feladatot a képernyő-koordinátarendszerben oldjuk meg. Pontokra és szakaszokra a probléma triviális, így itt csak a poligonok takarását vizsgáljuk. Gyakran feltételezzük, hogy a poligon háromszög, ami nem jelent különösebb korlátozást, hiszen minden poligon háromszögekre bontható. Feltételezzük továbbá azt is, hogy kívülről nézve a testre a poligonok csúcsainak sorrendje az óramutatóval megegyező bejárású. Ekkor az

$$\vec{n} = (\vec{r}_2 - \vec{r}_1) \times (\vec{r}_3 - \vec{r}_1) \tag{9.16}$$

formulával minden poligonra kiszámítható egy olyan normálvektor, amely a testből kifelé mutat.

9.6.1. Triviális hátsólap eldobás

9.12. ábra. Normál vektorok és hátsó lapok

A triviális hátsólap eldobás azon a felismerésen alapszik, hogy ha a képernyő-koordinátarendszerben egy lap normál vektorának pozitív Z koordinátája van, akkor ez a lap a test hátsó, nem látható oldalán foglal helyet, így eldobandó. Ha az objektumtér egyetlen konvex testet tartalmaz, akkor ezzel a takarási feladatot meg is oldottuk. Bonyolultabb esetekben, azaz amikor a test nem konvex, vagy a tér több testet is tartalmaz, az első lapok is takarhatják egymást, ezért nem ússzuk meg a takarási feladatot ilyen egyszerűen. A triviális hátsólap eldobást ekkor is érdemes alkalmazni, mert ez a takarási algoritmusok által kezelendő lapok számát átlagosan a felére csökkenti.

9.6.2. Z-buffer algoritmus

A *z-buffer algoritmus* a takarási feladatot az egyes pixelekre oldja meg, oly módon, hogy minden pixelre megkeresi azt a poligont, amelynek a pixelen keresztül látható pontjának a *z* koordinátája minimális. A keresés támogatására minden pixelhez, a feldolgozás adott pillanatának megfelelően tároljuk az abban látható felületi pontok közül a legközelebbi *z* koordinátáját. Ezt a *z* értékeket tartalmazó tömböt nevezzük *z-buffer*nek vagy *mélység-puffer*nek.

A poligonokat egyenként dolgozzuk fel, és meghatározzuk az összes olyan pixelt, amely a poligon vetületén belül van. Ehhez egy 2D poligonkitöltő algoritmust kell végrehajtani. Amint egy pixelhez érünk, kiszámítjuk a felületi pont z koordinátáját és összehasonlítjuk a z-bufferben lévő értékkel. Ha az ott található érték kisebb, akkor a már feldolgozott poligonok között van olyan, amelyik az aktuális poligont ebben a pontban takarja, így az aktuális poligon ezen pontját nem kell megrajzolni. Ha viszont a z-bufferbeli érték nagyobb, akkor az idáig feldolgozott poligonokat az aktuális poligon takarja ebben a pontban, ezért ennek a színét kell beírni az aktuális pixelbe és egyúttal a z értékét a z-bufferbe.

A z-buffer módszer algoritmusa tehát:

```
raszter memória = háttér szín z-buffer = \infty; for minden o objektumra do for o objektum vetületének minden p pixelére do if o objektum p-ben látható pontjának Z koordinátája < zbuffer[p] then p színe = o színe ebben a pontban zbuffer[p] = o objektum p pixelben látható pontjának Z koordinátája endif endfor
```

A z-buffer ∞ -nel történő inicializálása ténylegesen a lehetséges legnagyobb Z érték használatát jelenti. Az algoritmus részleteinek a bemutatása során feltesszük, hogy az objektumok háromszögek, és aktuálisan a

$$\vec{r}_1 = [X_1, Y_1, Z_1], \quad \vec{r}_2 = [X_2, Y_2, Z_2], \quad \vec{r}_3 = [X_3, Y_3, Z_3]$$

csúcspontokkal definiált háromszöget dolgozzuk fel. A raszterizációs algoritmusnak elő kell állítania a háromszög vetületébe eső X,Y pixel címeket a Z koordinátákkal együtt (9.13. ábra). Az X,Y pixel címből a megfelelő Z koordinátát a háromszög síkjának az egyenletéből származtathatjuk, azaz a Z koordináta az X,Y koordináták valamely lineáris függvénye. A háromszög síkjának az egyenlete:

$$\vec{n} \cdot [X, Y, Z] = C,$$
 ahol $\vec{n} = (\vec{r}_2 - \vec{r}_1) \times (\vec{r}_3 - \vec{r}_1),$ $C = \vec{n} \cdot \vec{r}_1.$ (9.17)

9.13. ábra. Egy háromszög a képernyő-koordinátarendszerben

Ebből a Z(X,Y) függvény:

$$Z(X,Y) = \frac{C - n_X \cdot X - n_Y \cdot Y}{n_Z}.$$
(9.18)

Az inkrementális elv felhasználásával ezen képlet jelentősen egyszerűsíthető:

$$Z(X+1,Y) = Z(X,Y) - \frac{n_X}{n_Z} = Z(X,Y) + \delta Z_X.$$
 (9.19)

9.14. ábra. Inkrementális Z érték számítás

Mivel a δZ_X paraméter állandó az egész háromszögre, csak egyszer kell kiszámítani. Egyetlen pásztán belül, a Z koordináta kiszámítása tehát egyetlen összeadást igényel. A határvonalakat a poligonkitöltésnél megismert módon ugyancsak előállíthatjuk egyenesgenerátorok segítségével, sőt a határvonal mentén a pászták kezdeti Z koordinátája is egyetlen összeadással kiszámítható a megelőző pászta kezdeti Z koordinátájából (9.14. ábra). A teljes inkrementális algoritmus, amely a háromszög alsó illetve felső felét tölti ki:

```
\begin{split} X_{\text{start}} &= X_1 + 0.5, \ X_{\text{end}} = X_1 + 0.5, \ Z_{\text{start}} = Z_1 + 0.5 \\ \text{for } Y &= Y_1 \text{ to } Y_2 \text{ do} \\ Z &= Z_{\text{start}} \\ \text{for } X &= \text{Trunc}(X_{\text{start}}) \text{ to } \text{Trunc}(X_{\text{end}}) \text{ do} \\ z &= \text{Trunc}(Z) \\ \text{ if } z &< \text{Zbuffer}[X,Y] \text{ then} \\ \text{ Pixel}(X,Y,\text{color}) \\ \text{ Zbuffer}[X,Y] &= z \\ \text{ endif} \\ Z &+= \delta Z_X \\ \text{ endfor} \\ X_{\text{start}} &+= \delta X_Y^s, \ X_{\text{end}} += \delta X_Y^e, \ Z_{\text{start}} += \delta Z_Y^s \\ \text{endfor} \\ \end{split}
```

Ha a számokat fixpontosan ábrázoljuk, ez az algoritmus egyszerű MSI elemek felhasználásával hardverben is realizálható. A mai korszerű munkaállomások és PC-s 3D grafikus kártyák ilyen egységekkel rendelkeznek.

9.6.3. Területfelosztó módszerek

A különböző felületelemek a képen összefüggő pixeltartományon keresztül látszanak. Ezen koherenciatulajdonság miatt célszerűnek látszik a takarási feladatot pixelnél nagyobb egységekre megoldani. A poligonok és az ablak lehetséges viszonyait a 9.15. ábrán láthatjuk. Ha szerencsénk van, és az objektumtérben csak különálló és körülvevő poligonok vannak, akkor a teljes ablakban vagy egyetlen poligon látszik, vagy egyetlen egy sem. Így a takarási feladatot elegendő egyetlen pixelre megoldani, a láthatóság a többi pixelben is hasonló. Egyetlen pixelre például *sugárkövetés*sel dönthetjük el, hogy abban melyik objektum látszik. Ez a módszer egy félegyenest (ún. sugarat) indít a szempozícióból a pixel középpontján keresztül az objektumtérbe, meghatározza a félegyenes és a poligonok metszéspontjait, végül azonosítja azt a poligont, amelynek metszéspontja a szemhez a legközelebb van. Az egy pixel elemzésével leküzdhető szerencsés eset akkor áll fenn, amikor egyetlen él sem vetül az ablakra. Ekkor a poligon élek vetületére alkalmazott szakaszvágó algoritmus (7.5. fejezet) úgy találja, hogy a szakasz teljes egészében eldobandó.

9.15. ábra. Poligon-ablak relációk: különálló (a), körülvevő (b), metsző (c), tartalmazott (d)

Ha viszont nem vagyunk ebben a szerencsés helyzetben, akkor az ablakot négy egybevágó ablakra bontjuk fel és újra megvizsgáljuk, hogy szerencsénk van-e vagy sem. Az eljárás, amelyet *Warnock-algoritmus*nak neveznek, rekurzíven ismételgeti ezt a lépést, amíg vagy sikerül visszavezetni a takarási feladatot a szerencsés esetre, vagy az ablak mérete a pixel méretére zsugorodik. A pixel méretű ablaknál az újabb felosztások már értelmetlenné válnak, így erre a pixelre már a szokásos módon (például sugárkövetéssel) kell megoldanunk a takarási feladatot.

A módszer algoritmusának leírása során X_1, Y_1 -gyel jelöljük az ablak bal alsó és X_2, Y_2 -vel a jobb felső koordinátáit:

```
Warnock(X_1, Y_1, X_2, Y_2)
          if X_1 \neq X_2 or Y_1 \neq Y_2 then
              if legalább egy él esik az ablakba then
                   X_m = (X_1 + X_2)/2
                   Y_m = (Y_1 + Y_2)/2
                   Warnock(X_1, Y_1, X_m, Y_m)
                   Warnock(X_1, Y_m, X_m, Y_2)
                   Warnock(X_m, Y_1, X_2, Y_m)
                   Warnock(X_m, Y_m, X_2, Y_2)
                   return ;
              endif
         // a X_1, Y_1, X_2, Y_2 téglalap homogén
         polygon = a (X_1 + X_2)/2, (Y_1 + Y_2)/2 pixelhez legközelebbi poligon
         if nincs poligon then X_1, Y_1, X_2, Y_2 téglalap kitöltése háttér színnel
         else
                                    X_1, Y_1, X_2, Y_2 téglalap kitöltése a polygon színével
end
```

9.6.4. Festő algoritmus

A festés során a későbbi ecsetvonások elfedik a korábbiakat. Ezen egyszerű elv kiaknázásához rendezzük a poligonokat oly módon, hogy egy P poligon csak akkor állhat a sorrendben egy Q poligon után, ha $nem\ takarja$ azt. Majd a kapott sorrendben visszafelé haladva rajzoljuk a poligonokat egymás után a rasztertárba! Ha egynél több poligon vetül egy pixelre, a pixel színe az utoljára rajzolt poligon színével egyezik meg. Mivel a rendezés miatt éppen ez takarja a többit, ezzel a $festő\ algoritmus$ sal a takarási feladatot megoldottuk [NNS72].

A poligonok megfelelő rendezése több problémát is felvet, ezért vizsgáljuk meg ezt a kérdést kicsit részletesebben! Azt mondjuk, hogy egy "P poligon $nem\ takarja$ a Q poligont", ha P-nek semelyik pontja sem takarja Q valamely pontját. Ezen reláció teljesítéséhez a következő feltételek valamelyikét kell kielégíteni:

- 1. $z_{\min}(P) > z_{\max}(Q)$ (a P poligon minden pontja hátrébb van a Q poligon bármely pontjánál);
- 2. a P poligon vetületét befoglaló téglalapnak és a Q poligon vetületét befoglaló téglalapnak nincs közös része;
- 3. P valamennyi csúcsa (így minden pontja) messzebb van a szemtől, mint a Q síkja;
- 4. Q valamennyi csúcsa (így minden pontja) közelebb van a szemhez, mint a P síkja;
- 5. a P és Q vetületeinek nincs közös része.

A felsorolt feltételek ellenőrzésének számításigénye a sorrendnek megfelelően nő, ezért az ellenőrzéseket a fenti sorrendben végezzük el.

9.16. ábra. Egy példa, amikor $z_{\max}(P) > z_{\max}(Q)$, de P takarja Q-t

Első lépésként rendezzük a poligonokat a maximális z koordinátájuk szerint úgy, hogy a közeli poligonok a lista elején, a távoli poligonok pedig a lista végén foglaljanak helyet. Ez önmagában még nem elég, hiszen előfordulhat, hogy az így kapott listában valahol borul a "P poligon nem takarja a Q poligont" reláció (9.16. ábra).

Ezért minden egyes poligont össze kell vetni valamennyi, a listában előtte álló poligonnal, és ellenőrizni kell a megadott feltételeket. Ha azok valamelyike minden előbb álló poligonra teljesül, akkor az adott poligon helye megfelelő. Ha viszont a poligonunk takarja valamelyik előbb álló poligont, akkor a takart poligont az aktuális poligon mögé kell vinni a listában, és a mozgatott poligonra visszalépve újra kell kezdeni a feltételek ellenőrzését.

9.17. ábra. Ciklikus takarás

Előfordulhat, hogy ez az algoritmus mókuskerékbe kerül, amiből képtelen szabadulni. Például ha két poligon egymást takarja (9.17. ábra bal oldala), az ismertetett algoritmus ezen két poligon végtelenített cserélgetésébe torkollik. Még gonoszabb esetet mutat be ugyanezen ábra jobb oldala, amikor kettőnél több poligon ciklikus takarásának lehetünk tanúi.

Ezeket a ciklikus átlapolásokat a poligonok megfelelő vágásával oldhatjuk fel, és ezáltal átsegíthetjük az algoritmusunkat a kritikus pontokon. A ciklikus átlapolások felismeréséhez a mozgatáskor a poligonokat megjelöljük. Ha még egyszer mozgatni kell őket, akkor valószínűsíthető, hogy ennek oka a ciklikus átlapolás. Ekkor az újból mozgatott poligont a másik poligon síkja mentén két részre vágjuk.

9.7. Lokális illuminációs algoritmusok

A takarási algoritmusok minden pixelre meghatározzák az ott látható poligont. A hátralévő feladat az adott pixelben látható felületi pont színének kiszámítása. Az árnyalási egyenlet szerint ehhez az adott pontból látható többi felületet kell számba venni, és azok

fényességéből (radianciájából) következtetni az adott pont fényességére. Ez persze a róka fogta csuka esete, mert a többi pont fényessége viszont az adott pont fényességétől függ, azaz a különböző pontok fényességei között kölcsönös csatolás van.

A lokális illuminációs algoritmusok az árnyalási egyenlet drasztikus egyszerűsítésével kiküszöbölnek mindenféle csatolást, azaz egy felület radianciájának meghatározásához nem veszik figyelembe a többi felület fényességét. Megvilágítás csak a képen közvetlenül nem látható absztrakt fényforrásokból érkezhet. A csatolás megszűntetésével az árnyalási egyenletben az integrálból eltűnik az ismeretlen függvény, így az integrálegyenlet megoldása helyett csupán egy egyszerű integrált kell kiértékelnünk.

A feladat tovább egyszerűsíthető, ha a lokális megvilágítás számításánál nem csupán a többi tárgy fényességét nem vesszük figyelembe, hanem azok geometriai elhelyezkedését sem, és az absztrakt fényforrásokat minden pontból láthatóként kezeljük. Ezzel a lépéssel lényegében az *árnyék*ok számítását takarítjuk meg [Cro77].

A fizikai modell durva egyszerűsítése természetesen a valósághűség csorbulásához vezet. Cserébe viszont lényegesen könnyebben kaphatunk képeket, sőt megfelelő hardvertámogatás birtokában, akár valós időben futó animációkat is készíthetünk.

Az elmondott egyszerűsítések következtében a 8.15 árnyalási egyenlet a következő *illuminációs képlet*tel helyettesíthető:

$$L(x,\omega) = L^{e}(x,\omega) + k_{a} \cdot L^{a} + \sum_{l} f_{r}(\omega'_{l}, \vec{x}, \omega) \cdot \cos \theta'_{l} \cdot L^{\text{in}}(\vec{x}, \omega'_{l}), \qquad (9.20)$$

ahol $L^{\mathrm{in}}(\vec{x},\omega_l')$ az l. absztrakt fényforrásból az \vec{x} pontba az ω_l' irányból érkező radiancia.

A $k_a \cdot L^a$ egy új tényező, amit *ambiens tag*nak nevezünk. Az ambiens tag feladata az, hogy az egyéb elhanyagolásokat kompenzálja. Az ambiens megvilágítást a tér minden pontjában és irányában állandónak tekintjük. A felületi pont az ambiens fény k_a -szorosát veri vissza.

Mivel az illuminációs képletben szögek is találhatók, és a képernyő-koordinátarendszerbe vezető transzformációk között nem szögtartók is vannak, az illuminációs képletet a világ-koordinátarendszerben kell kiértékelni.

Miként a takarási feladatnál is láttuk, gyakran érdemes a feladatot pixeleknél nagyobb egységekben kezelni, azaz kihasználni, hogy ha a szomszédos pixelekben ugyanazon felület látszik, akkor ezen pixelekben látható felületi pontok optikai paraméterei, normálvektora, megvilágítása, sőt végső soron akár a látható színe is igen hasonló. Tehát vagy változtatás nélkül használjuk a szomszédos pixelekben végzett számítások eredményeit, vagy pedig az inkrementális elv alkalmazásával egyszerű formulákkal tesszük azokat aktuálissá az új pixelben. A következőkben ilyen technikákat ismertetünk.

9.7.1. Saját színnel történő árnyalás

A saját színnel történő árnyalás a 2D képszintézis árnyalási módszerének direkt alkalmazása. Előnye, hogy nem igényel semmiféle illuminációs számítást, viszont a keletkezett képeknek sincs igazán 3D hatásuk (17.16. ábra).

9.7.2. Konstans árnyalás

A konstans árnyalás a poligonokra csak egyszer számítja ki az absztrakt fényforrások hatását. Amennyiben valamelyik pixelben a poligon látszik, akkor mindig ezt a konstans színt írja a rasztertárba. Az eredmény általában elég lesújtó, mert a képről ordít, hogy a felületeket sík poligonokkal közelítettük (17.16. ábra).

9.7.3. Gouraud-árnyalás

A Gouraud-árnyalás a háromszögek csúcspontjaiban értékeli ki a fényforrásokból idejutó fény visszaverődését. Az illuminációs képlet alkalmazásánál az eredeti felület normálvektorával dolgozik, azaz a tesszellációs folyamat során a kiadódó pontokban a normálvektort is meg kell határozni, amit a poligonháló visz magával a transzformációk során. Ezután a Gouraud-árnyalás a háromszög belső pontjainak színét a csúcspontok színéből lineárisan interpolálja. Vegyük észre, hogy ez pontosan ugyanaz az algoritmus, ahogyan a z mélység koordinátát a háromszög három csúcspontjából lineáris interpolációval határozzuk meg, így az ott említett inkrementális módszer itt is használható!

A Gouraud-árnyalás programja, amely egy háromszög alsó felét színezi ki:

```
\begin{split} X_{\text{start}} &= X_1 + 0.5, \quad X_{\text{end}} = X_1 + 0.5 \\ R_{\text{start}} &= R_1 + 0.5, \quad G_{\text{start}} = G_1 + 0.5, \quad B_{\text{start}} = B_1 + 0.5 \\ \text{for } Y &= Y_1 \text{ to } Y_2 \text{ do} \\ R &= R_{\text{start}}, \quad G = G_{\text{start}}, \quad B = B_{\text{start}} \\ \text{for } X &= \text{Trunc}(X_{\text{start}}) \text{ to } \text{Trunc}(X_{\text{end}}) \text{ do} \\ \text{Pixel}(X, Y, \text{Trunc}(R), \text{Trunc}(G), \text{Trunc}(B)) \\ R &+= \delta R_X, \quad G += \delta G_X, \quad B += \delta B_X \\ \text{endfor} \\ X_{\text{start}} &+= \delta X_Y^s, \quad X_{\text{end}} += \delta X_Y^e \\ R_{\text{start}} &+= \delta R_Y^s, \quad G_{\text{start}} += \delta G_Y^s, \quad B_{\text{start}} += \delta B_Y^s \\ \text{endfor} \end{split}
```

A Gouraud-árnyalás akkor jó, ha a háromszögön belül a szín valóban közelítőleg lineárisan változik. Ez nagyjából igaz diffúz visszaverődésű objektumokra, de elfogadhatatlan tükrös illetve spekuláris visszaverődésű felületekre. A lineáris interpoláció ilyen esetben egyszerűen kihagyhatja vagy szétkenheti a fényforrás tükröződő foltját (17.16. ábra).

9.7.4. Phong-árnyalás

A *Phong-árnyalás* az illuminációs képletben felhasznált normálvektort interpolálja a háromszög csúcspontjaiban érvényes normálvektorokból. Az illuminációs képletet pedig minden pixelre külön határozza meg.

A Phong-árnyalás a színtérben nemlineáris interpolációnak felel meg, így nagyobb poligonokra is megbirkózik a tükrös felületek gyorsan változó radianciájával (17.16. ábra). A Phong-árnyalás programja:

```
\begin{split} X_{\text{start}} &= X_1 + 0.5, \ X_{\text{end}} = X_1 + 0.5, \ \vec{N}_{\text{start}} = \vec{N}_1 \\ \text{for } Y &= Y_1 \text{ to } Y_2 \text{ do} \\ \vec{N} &= \vec{N}_{\text{start}} \\ \text{for } X &= \text{Trunc}(X_{\text{start}}) \text{ to } \text{Trunc}(X_{\text{end}}) \text{ do} \\ &\qquad (R,G,B) = \text{ShadingModel}(\vec{N}) \\ &\qquad \text{Pixel}(X,Y,\text{Trunc}(R),\text{Trunc}(G),\text{Trunc}(B)) \\ \vec{N} &+ = \delta \vec{N}_X \\ \text{endfor} \\ X_{\text{start}} &+ = \delta X_Y^s, \ X_{\text{end}} + = \delta X_Y^e, \ \vec{N}_{\text{start}} + = \delta \vec{N}_Y^s \end{split}
```

A Phong-árnyalás a Gouraud-árnyalás olyan határeseteként is elképzelhető, amikor a tesszelláció finomításával poligonok vetített területe a pixelek méretével összevethető.

9.8. Program: 3D grafikus rendszer inkrementális képszintézissel

A 3D világmodellben primitívek (Primitive3D) szerepelnek, amelyeket kiegészítünk tesszellációs függvényekkel (Tesselate). A képszintézis során a modell primitívjeit tesszelláljuk, azaz az általános görbéket és felületeket szakaszokkal és háromszögekkel közelítjük. A tesszelláció eredménye egy RenderPrimitive3D típusú objektum.

A tesszelláció eredménye egy görbe (Curve3D) esetén egy LineList3D típussal megadott törtvonal.

Egy gömb (Sphere) a közepét jelentő ponttal, a sugarával és a felületi optikai tulajdonságaival adható meg. A középpontot a jelen esetben egy elemű points tömb tárolja, az optikai tulajdonságokat a DiffuseSpecularMaterial osztály képviseli, amelyeket az ambiens visszaverődési tényező (Ka) egészít ki. A Tesselate tagfüggvény a polárkoordináták tartományát osztja fel egyenletesen és az így adódó pontokra illeszt egy háromszöghálót (TriangleList3D). A háromszögháló csúcspontjaihoz hozzárendeli a gömb ezen pontban érvényes normálvektorát, amelyet majd az illuminációs képletek kiértékelésénél használunk fel.

```
for (int i = 0, t = 0; i < NFI; i++) {
            for (int j = 0; j < NTETA; j++) {
                double dfi = 2.0*M_PI/NFI, dte = M_PI/NTETA;
                double x1 = \sin(i*dfi) * \sin(j*dte);
                double y1 = -\cos(i*dfi) * \sin(j*dte);
                double z1 = cos(j*dteta);
                double x2 = \sin(i*dfi) * \sin((j+1)*dteta);
                double y2 = -\cos(i*dfi) * \sin((j+1)*dteta);
                double z2 = cos((j+1)*dteta);
                int ii = (i+1 == NFI) ? 0 : i+1;
                double x3 = \sin(ii*dfi) * \sin(j*dteta);
                double y3 = -\cos(ii*dfi) * \sin(j*dteta);
                double x4 = \sin(ii*dfi) * \sin((j+1)*dteta);
                double y4 = -\cos(ii*dfi) * \sin((j+1)*dteta);
                Vector3D n1(x1, y1, z1), n2(x2, y2, z2),
                         n3(x3, y3, z1), n4(x4, y4, z2);
                Point3D p1 = Point(0) + n1 \star R,
                        p2 = Point(0) + n2 * R
                        p3 = Point(0) + n3 * R,
                        p4 = Point(0) + n4 * R;
                if (j == 0)
                    p -> AddTriangle( t++, p2, p4, p1, n2, n4, n1 );
                else if (j == NTETA-1)
                    p -> AddTriangle( t++, p1, p2, p3, n1, n2, n3 );
                else {
                    p -> AddTriangle( t++, p1, p2, p3, n1, n2, n3 );
                    p -> AddTriangle( t++, p2, p4, p3, n2, n4, n3 );
                }
            }
        }
        return p;
    }
};
```

A DiffuseSpecularMaterial osztály olyan anyagokat képes modellezni, amelyek részben diffúz, részben spekuláris jelleg szerint verik vissza a rájuk eső fényt.

A tesszelláció eredményeként kapott RenderPrimitive3D típusú objektumokat már transzformálhatjuk (Transform), vághatjuk és raszterizálhatjuk (Draw), sőt a fényforrások és a szempozíció ismeretében a megvilágításukat is meghatározhatjuk. A vágást két lépésben végezzük el. A DepthClip tagfüggvény az első és hátsó vágósíkra vág, és mivel ezt a lépést a homogén osztás előtt kell végrehajtani, homogén koordinátákkal dolgozik. A Clip tagfüggvény pedig a homogén osztás után a nézet téglalapjára vág. A primitív árnyalása a világkoordinátarendszerben történik, ezért a normálvektorokat a TransformNormals tagfüggvénnyel kell transzformálni. Az illuminációs képleteket az Illuminate tagfüggvényben számítjuk.

```
class RenderPrimitive3D : public Emitter {
//----
protected:
   Array<HomPoint3D> tpoints;
public:
   RenderPrimitive3D (Color c = 0, int n = 0)
   : tpoints(n), Emitter(c) { }
   HomPoint3D& Point( int i ) { return tpoints[i]; }
         PointNum() { return tpoints.Size(); }
   void Transform( Transform3D tr ) {
      for(int i = 0; i < PointNum(); i++)
          Point(i) = tr.Transform( Point(i) );
   void HomDivPoints() {
      for (int i = 0; i < PointNum(); i++)
          Point(i) = Point(i).HomDiv();
   virtual void TransformNormals( Transform3D tr ) { }
   virtual BOOL DepthClip() = 0;
   virtual BOOL Clip( RectAngle& cliprect ) = 0;
   virtual void Illuminate(Lights& 1, Color& La, Point3D& eye) { };
   virtual void Draw( Window * scr ) = 0;
};
```

A Line3D a legegyszerűbb olyan primitív, amelyre a képszintézis ténylegesen elvégezhető.

A 3D szakaszok vágására a Cohen-Sutherland vágási algoritmust használhatjuk.

```
BOOL Line3D :: DepthClip() { // Cohen-Sutherland
   HomPoint3D& p1 = Point(0);
   HomPoint3D\& p2 = Point(1);
   for(;;) {
        int c1 = (p1.Z() < 0) | ((p1.Z() > p1.h()) << 1);
        int c2 = (p2.Z() < 0) | ((p2.Z() > p2.h()) << 1);
        if (c1 == 0 \&\& c2 == 0) return TRUE;
        if ( (c1 & c2) != 0 ) return FALSE;
        int f = ((c1 \& 1) != (c2 \& 1)) ? 1 : 2;
        HomPoint3D pi;
        double ti;
        switch (f) {
        case 1:
            ti = (0 - p1.Z()) / (p2.Z() - p1.Z());
            pi = p1 + (p2 - p1) * ti;
            break;
        case 2:
            ti = (p1.h()-p1.Z()) / (p2.Z()-p1.Z()-p2.h()+p1.h());
            pi = p1 + (p2 - p1) * ti;
        if (c1 & f) { p1 = pi; }
        else
              \{ p2 = pi; \}
}
```

```
BOOL Line3D :: Clip( RectAngle& cliprect ) { // Cohen-Sutherland
   HomPoint3D& p1 = Point(0);
   HomPoint3D\& p2 = Point(1);
   for(;;) {
       int c1 = cliprect.Code( Point2D(p1.X(), p1.Y()) );
        int c2 = cliprect.Code(Point2D(p2.X(), p2.Y()));
       if (c1 == 0 && c2 == 0) return TRUE;
       if ( (c1 & c2) != 0 ) return FALSE;
       int f;
       if (c1 \& 1) != (c2 \& 1) f = 1;
       else if ((c1 \& 2) != (c2 \& 2)) f = 2;
       else if ((c1 \& 4) != (c2 \& 4)) f = 4;
       else
                                        f = 8;
       double dx = p2.X() - p1.X();
       double dy = p2.Y() - p1.Y();
       HomPoint3D pi;
       switch (f) {
       case 1: pi = p1 + (p2 - p1) * (cliprect.Left() - p1.X()) / dx;
               break;
       case 2: pi = p1 + (p2 - p1) * (cliprect.Right() - p1.X()) / dx;
               break;
        case 4: pi = p1 + (p2 - p1) * (cliprect.Bottom() - p1.Y()) / dy;
               break;
       case 8: pi = p1 + (p2 - p1) * (cliprect.Top() - p1.Y()) / dy;
       if (c1 & f) { p1 = pi; }
       else { p2 = pi; }
   }
}
```

Egy 3D szakasz raszterizálása a 2D vetületének felrajzolását jelenti. A rajzolási színnek az objektum saját színét választjuk.

A háromszöglista felületek tesszellációjából keletkezik. Az örökölt points tömb most a háromszögek csúcspontjait tartalmazza. A csúcspontokban érvényes normálvektorokat a normals tömbben tároljuk. A két AddTriangle tagfüggvény abban tér el egymástól, hogy az első a három csúcspontban a háromszög tényleges normálvektorát használja, a második pedig a kapott normálvektorokat. Az illuminációs képletet az Illuminate függvényben számítjuk a DiffuseSpecularMaterial-tól örökölt módszerrel és az ambiens visszaverődési tényező (ka) felhasználásával. A számított színek a colors tömbbe kerülnek.

```
class TriangleList3D : public RenderPrimitive3D,
                    public DiffuseSpecularMaterial {
//----
   Array< Vector3D > normals;
   Array< Color >
                  colors;
   SColor
                   ka;
   Point3D& N1(int i) { return normals[3 * i]; }
   Point3D& N2(int i) { return normals[3 * i + 1]; }
   Point3D& N3(int i) { return normals[3 * i + 2]; }
public:
   TriangleList3D(Color e, Color ka0, Color kd0,
                  Color ks0, double shine, int n = 0)
   : RenderPrimitive3D(e, 3 * n), ka(ka0),
     DiffuseSpecularMaterial(kd0, ks0, shine),
     normals(3 * n), colors(3 * n) { }
   void AddTriangle( int i, Point3D p1, Point3D p2, Point3D p3 ) {
       P1(i) = p1; P2(i) = p2; P3(i) = p3;
       Vector3D normal = ((p2 - p1) % (p3 - p1));
       normal.Normalize(); N1(i) = N2(i) = N3(i) = normal;
   void AddTriangle (int i, Point3D p1, Point3D p2, Point3D p3,
                          Vector3D n1, Vector3D n2, Vector3D n3) {
       P1(i) = p1; P2(i) = p2; P3(i) = p3;
       N1(i) = n1; N2(i) = n2; N3(i) = n3;
   int TriangleNum() { return PointNum() / 3; }
   HomPoint3D& P1(int i) { return Point(3 * i); }
   HomPoint3D& P2(int i) { return Point(3 * i + 1); }
   HomPoint3D& P3(int i) { return Point(3 * i + 2); }
   void TransformNormals( Transform3D tr ) {
       for(int i = 0; i < normals.Size(); i++)</pre>
          normals[i] = tr.Transform( normals[i] ).HomDiv();
   BOOL
         DepthClip();
   BOOL Clip( RectAngle& cliprect );
   void
         Illuminate(Lights& lights, Color& La, Point3D& eye);
   void Draw(Window * scr);
};
```

A háromszögeket a *Sutherland-Hodgeman-poligonvágás*sal vághatjuk. A mélységi vágást homogénkoordinátákban, a nézeti vágást pedig Descartes-koordinátákban kell végrehajtani. Itt csak a mélységi vágást adjuk közre, de a CD mellékletben a nézeti vágás is megtalálható.

```
BOOL TriangleList3D :: DepthClip() { // Sutherland-Hodgeman
//-----
   Array<HomPoint3D> clippoints( PointNum() );
   Array<Color> clipcolors(PointNum());
   const double Zmin = 0, Zmax = 1;
   for (int t = 0, clipped = 0; t < PointNum() / 3; t++) {
       HomPoint3D q1[8], q2[8];
       Color c1[8], c2[8];
       for ( int j = 0; j < 3; j++) {
           c1[j] = colors[3*t + j]; q1[j] = Point(3*t + j);
       }
       int n = 3, m = 0, i;
       for (i = 0; i < n; i++) {
           int i1 = (i+1) % n;
           double z1 = q1[i].Z(), z2 = q1[i1].Z();
           double h1 = q1[i].h(), h2 = q1[i1].h(), ti;
           if (z1 >= Zmin * h1) {
               c2[m] = c1[i]; q2[m++] = q1[i];
               if (z2 < Zmin * h2) {
                   ti = (z1 - Zmin*h1) / (Zmin*(h2 - h1) - (z2 - z1));
                   c2[m] = c1[i] + (c1[i1] - c1[i]) * ti;
                   q2[m++] = q1[i] + (q1[i1] - q1[i]) * ti;
               }
           } else {
               if (z2 >= Zmin * h2) {
                   ti = (z1 - Zmin*h1) / (Zmin*(h2 - h1) - (z2 - z1));
                   c2[m] = c1[i] + (c1[i1] - c1[i]) * ti;
                   q2[m++] = q1[i] + (q1[i1] - q1[i]) * ti;
               }
      }
      n = m; m = 0;
      for (i = 0; i < n; i++) {
           int i1 = (i+1) % n;
           double z1 = q2[i].Z(), z2 = q2[i1].Z();
           double h1 = q2[i].h(), h2 = q2[i1].h(), ti;
           if (z1 \le Zmax * h1) {
```

```
c1[m] = c2[i]; q1[m++] = q2[i];
                if (z2 > Zmax * h2) {
                    ti = (z1 - Zmax*h1) / (Zmax*(h2 - h1) - (z2 - z1));
                    c1[m] = c2[i] + (c2[i1] - c2[i]) * ti;
                    q1[m++] = q2[i] + (q2[i1] - q2[i]) * ti;
                }
            } else {
                if (z2 \le Zmax * h2) {
                    ti = (z1 - Zmax*h1) / (Zmax*(h2 - h1) - (z2 - z1));
                    c1[m] = c2[i] + (c2[i1] - c2[i]) * ti;
                    q1[m++] = q2[i] + (q2[i1] - q2[i]) * ti;
                }
            }
      for (i = 1; i < m-1; i++) {
           clipcolors[clipped]=c1[0]; clippoints[clipped++]=q1[0];
           clipcolors[clipped]=c1[i]; clippoints[clipped++]=q1[i];
           clipcolors[clipped]=c1[i+1]; clippoints[clipped++]=q1[i+1];
       }
   }
   if (clipped == 0) return FALSE;
   else { tpoints = clippoints; colors = clipcolors; return TRUE; }
}
```

A háromszöglista árnyalásához a háromszögek csúcspontjaiban értékeljük ki az illuminációs képletet.

```
//-----
void TriangleList3D :: Illuminate ( Lights& lights,
                            Color& La,
                            Point3D& eye) {
//----
   for( int i = 0; i < PointNum(); i++ ) {</pre>
      Point3D x = Point(i);
      colors[i] = Le() + ka * La;
      for(int l = 0; l < lights.Size(); l++) {
         Vector3D L = lights[1] -> LightDir( x );
         Vector3D N = normals[i];
         double cost = N * L;
         if (cost > 0) {
             Vector3D V = eye - x; V.Normalize();
             colors[i] += BRDF(L,N,V) * lights[l] -> Le(x,-L) * cost;
      }
   }
}
```

A rajzoláshoz a csúcspontok Descartes-koordinátáit és a kiszámított színeket az ablak 3D háromszögrajzoló függvényének (DrawTriangle) adjuk át.

Az ablak 3D háromszögrajzoló függvénye elvégzi a koordináták és a színek logikaifizikai konverzióját és továbbadja a háromszöget a fizikai szintű PFacet függvénynek, amely *z-buffer*-t használ a takarási feladat megoldásához és *Gouraud-árnyalás*-t a háromszög belső pontjaiban a szín előállításához.

A ZBuffer osztály a z-buffer kezelését valósítja meg.

```
typedef unsigned char ZCoord;
class ZBuffer {
//----
   ZCoord ** z_buffer;
   int XMAX, YMAX;
public:
   void Initialize( PCoord xmax, PCoord ymax ) {
      XMAX = xmax; YMAX = ymax;
      z_buffer = new ZCoord*[YMAX+1];
      for(int y=0; y<=YMAX; y++) z_buffer[y] = new ZCoord[XMAX+1];</pre>
      Clear();
   ZCoord Get(int x, int y) { return z_buffer[y][x]; }
   void Set(int x, int y, ZCoord z) {
      if (x>=0 \&\& x<=XMAX \&\& y>=0 \&\& y<=YMAX) z_buffer[y][x] = z;
   void Clear() {
      for (int y = 0; y \le YMAX; y++)
          for (int x = 0; x \le XMAX; x++) z_buffer[y][x] = MAXZ;
};
ZBuffer zbuffer;
```

A PFacet függvény egy 3D háromszöget jelenít meg *z-buffer* takarási algoritmussal és *Gouraud-árnyalás* alkalmazásával. A sebességi igények miatt (és a hardver implementáció illusztrálása céljából) a rutin csak egész műveleteket használ. Ehhez a nem egész mennyiségeket fixpontosan ábrázolja, ahol a felhasznált egész változó alsó NFRACT bitje a törtrészt, a többi bit pedig az egészrészt jelképezi. A FIXP makro egy számot normál ábrázolásból fixpontos ábrázolásúra, a TRUNC pedig fixpontosról normál ábrázolásúra alakít át.

```
else
if (p[1].y<=p[2].y && p[2].y<=p[0].y) { p0=p[1]; p1=p[2]; p2=p[0]; }
else
if (p[2].y<=p[0].y && p[0].y<=p[1].y) { p0=p[2]; p1=p[0]; p2=p[1]; }
else
if (p[0].y<=p[2].y && p[2].y<=p[1].y) { p0=p[0]; p1=p[2]; p2=p[1]; }
if (p[1].y<=p[0].y && p[0].y<=p[2].y) { p0=p[1]; p1=p[0]; p2=p[2]; }
else
if (p[2].y<=p[1].y && p[1].y<=p[0].y) { p0=p[2]; p1=p[1]; p2=p[0]; }
long nz = (long)(p1.x - p0.x) * (p2.y - p0.y) -
          (long) (p2.x - p0.x) * (p1.y - p0.y);
if (nz == 0) return;
int Dy10 = p1.y - p0.y, Dy20 = p2.y - p0.y, Dy21 = p2.y - p1.y;
long
Dx10=FIXP(p1.x-p0.x), Dx20=FIXP(p2.x-p0.x), Dx21=FIXP(p2.x-p1.x),
Dz10=FIXP(p1.z-p0.z), Dz20=FIXP(p2.z-p0.z), Dz21=FIXP(p2.z-p1.z),
DR10=FIXP(p1.R-p0.R), DR20=FIXP(p2.R-p0.R), DR21=FIXP(p2.R-p1.R),
DG10=FIXP(p1.G-p0.G), DG20=FIXP(p2.G-p0.G), DG21=FIXP(p2.G-p1.G),
DB10=FIXP(p1.B-p0.B), DB20=FIXP(p2.B-p0.B), DB21=FIXP(p2.B-p1.B);
long dx02, dx01, dx12, dz02, dz01, dz12;
long dR02, dR01, dR12, dG02, dG01, dG12, dB02, dB01, dB12;
if (Dy20 != 0) {
    dx02 = Dx20/Dy20; dz02 = Dz20/Dy20;
    dR02 = DR20/Dy20; dG02 = DG20/Dy20; dB02 = DB20/Dy20;
if (Dy10 != 0) {
    dx01 = Dx10/Dy10; dz01 = Dz10/Dy10;
    dR01 = DR10/Dy10; dG01 = DG10/Dy10; dB01 = DB10/Dy10;
if (Dy21 != 0) {
    dx12 = Dx21/Dy21; dz12 = Dz21/Dy21;
    dR12 = DR21/Dy21; dG12 = DG21/Dy21; dB12 = DB21/Dy21;
int left = nz < 0;
long nzx = (long)(p1.y - p0.y) * (p2.z - p0.z) -
           (long)(p2.y - p0.y) * (p1.z - p0.z);
long nRx = (long) (p1.y - p0.y) * (p2.R - p0.R) -
           (long) (p2.y - p0.y) * (p1.R - p0.R);
long nGx = (long)(p1.y - p0.y) * (p2.G - p0.G) -
           (long) (p2.y - p0.y) * (p1.G - p0.G);
long nBx = (long)(p1.y - p0.y) * (p2.B - p0.B) -
           (long) (p2.y - p0.y) * (p1.B - p0.B);
long dz_x = -FIXP(nzx)/nz;
```

}

```
long dR_x = -FIXP(nRx)/nz, dG_x = -FIXP(nGx)/nz, dB_x = -FIXP(nBx)/nz;
long dxS, dxE, dzS, dRs, dGs, dBs, z, R, G, B;
if(Dy10 > 0) {
    if (left) { dxS = dx01; dxE = dx02; dzS = dz01;
                  dRs = dR01; dGs = dG01; dBs = dB01; }
    else
                { dxS = dx02; dxE = dx01; dzS = dz02;
                  dRs = dR02; dGs = dG02; dBs = dB02; }
    long xs=FIXP(p0.x)+HALF, xe=FIXP(p0.x)+HALF, zs=FIXP(p0.z)+HALF;
    long Rs=FIXP(p0.R)+HALF, Gs=FIXP(p0.G)+HALF, Bs=FIXP(p0.B)+HALF;
    for (int y = p0.y; y \le p1.y; y++) {
        z = zs, R = Rs, G = Gs, B = Bs;
        for (int x = TRUNC(xs); x \le TRUNC(xe); x++) {
            int Z = TRUNC(z);
            if ( Z \le \text{zbuffer.Get}(x, y) ) {
                zbuffer.Set(x, y, Z);
                Pixel(x, y, TRUNC(R), TRUNC(G), TRUNC(B));
            }
            z += dz_x; R += dR_x; G += dG_x; B += dB_x;
        xs += dxS; xe += dxE; zs += dzS;
        Rs += dRs; Gs += dGs; Bs += dBs;
    }
}
if (Dy21 > 0) {
    if (left) { dxS = -dx12; dxE = -dx02; dzS = -dz12;
                dRs = -dR12; dGs = -dG12; dBs = -dB12; }
              \{ dxS = -dx02; dxE = -dx12; dzS = -dz02; \}
    else
                dRs = -dR02; dGs = -dG02; dBs = -dB02; }
    long xs=FIXP(p2.x)+HALF, xe=FIXP(p2.x)+HALF, zs=FIXP(p2.z)+HALF;
    long Rs=FIXP(p2.R)+HALF, Gs=FIXP(p2.G)+HALF, Bs=FIXP(p2.B)+HALF;
    for (int y = p2.y; y >= p1.y; y--) {
        z = zs, R = Rs, G = Gs, B = Bs;
        for (int x = TRUNC(xs); x \le TRUNC(xe); x++) {
            int Z = TRUNC(z);
            if ( Z \le zbuffer.Get(x, y) ) {
                zbuffer.Set(x, y, Z);
                Pixel(x, y, TRUNC(R), TRUNC(G), TRUNC(B));
            z += dz_x; R += dR_x; G += dG_x; B += dB_x;
        }
        xs += dxS; xe += dxE; zs += dzS;
        Rs += dRs; Gs += dGs; Bs += dBs;
    }
}
```

A kameraosztály tartalmazza a nézeti transzformáció számításához szükséges adatokat.

```
enum ProjType { PARALLEL, PERSPECTIVE };
class Camera3D {
Point3D vrp;
   Vector3D vpn, vup, eye, world_eye;
   Coord fp, bp;
   RectAngle window, viewport;
   Transform3D transf;
   ProjType projtype;
   void CalcTransf();
public:
   Camera3D()
   : vrp(0,0,0), vpn(0,0,-1), vup(0,1,0), eye(0,0,-1),
    window(-1,-1,1,1), viewport(0, 0, 1, 1) {
      fp = 0.5, bp = 1.5, projtype = PERSPECTIVE;
      CalcTransf();
   Vector3D GetWorldEye( ) { return world_eye; }
   RectAngle Viewport() { return viewport; }
   Transform3D ViewTransform() { return transf; }
};
```

A CalcTransf a kameraparaméterek alapján meghatározza a nézeti transzformációs mátrixot.

```
switch (projtype) {
    case PARALLEL:
        Transform3D Tviewport (SCALE,
                               viewport. HSize()/window. HSize(),
                               viewport.VSize()/window.HSize(),
                               1/(bp-fp));
        Tviewport *= Transform3D (TRANSLATION,
                                 Vector3D(viewport.HCenter(),
                                           viewport.VCenter(),
                                            -fp/(bp-fp)));
        transf = Tuvw * Tshear * Tviewport;
   case PERSPECTIVE:
        Transform3D Teye (TRANSLATION, -eye);
        Transform3D Tnorm(SCALE,
                          -2 * eye.Z() / (window.HSize() * bp),
                          -2 * eye.Z() / (window.VSize() * bp),
                          1/bp);
        Transform3D Tpers (PROJECTIVE,
                          HomPoint3D(viewport.HSize()/2, 0, 0, 0)
                          HomPoint3D(0, viewport.VSize()/2, 0, 0),
                          HomPoint3D(viewport.HCenter(),
                                      viewport.VCenter(),
                                      bp/(bp-fp), 1),
                          HomPoint3D(0, 0, -fp/(bp-fp), 0));
        transf = Tuvw * Teye * Tshear * Tnorm * Tpers;
    }
}
```

A megvilágításért az ambiens fényen kívül az absztrakt fényforrások felelősek. Egy absztrakt fényforrás lehet *irányfény* típusú, amikor a fény egy irányból jön, és intenzitása független a fényforrás távolságától (a nap lényegében ilyen), vagy *pontfény* típusú, amikor a fény egy pontból jön, és erőssége a távolság négyzetével csökken. Az irányfényeket a DirectionalLight osztállyal, a pontfényeket pedig a PositionalLight osztállyal definiálhatjuk, amelyeket a közös Light osztályból származtattunk.

```
class DirectionalLight : public Light {
Vector3D dir;
public:
  DirectionalLight( Vector3D& p, SColor& inten ) : Light(inten) {
     p.Normalize(); dir = p;
  Vector3D LightDir(Point3D& x) { return dir; }
};
//-----
class PositionalLight : public Light {
Point3D pos;
public:
  PositionalLight ( Point3D& p, SColor& inten )
  : Light(inten), pos(p) { }
  Point3D& Pos() { return pos; }
  Vector3D LightDir(Point3D& x) {
     Vector3D v = (pos - x);
     v.Normalize();
     return v;
  SColor Le (Point3D& x, Vector3D& dir) {
     return (Light::Le(pos, dir) / ((x - pos) * (x - pos)));
  }
};
typedef Array<Light *> Lights;
```

A 2D grafikus rendszerhez hasonlóan a képszintézishez szükséges összes információt a színtérben (Scene) foglaljuk össze. A színtér tartalmazza a megjelenítőobjektum azonosítóját (scr), a virtuális világmodellt (world), a kameraparamétereket (camera), a fényforrásokat (lightsources), és az ambiens megvilágítás intenzitását (La). A Define tagfüggvény felépíti a virtuális modellt és definiálja a kamerát, valamint a fényforrásokat, a Render tagfüggvény pedig elvégzi a képszintézist.

```
public:
    Scene(Window * ps ) { scr = ps; }
    void Define();
    void Render();
};
```

A Define következő kialakítása egy gömböt ad meg, amely két háromszögből öszszerakott téglalapon áll.

```
//----
void Scene :: Define() {
//-----
   Object3D * pobj1 = new Object3D();
   Sphere * pspr1 = new Sphere( Point3D( 1, -0.7, 1.5 ), 0.9 );
   pspr1 \rightarrow kd() = Color(0.2, 0.2, 0.15);
   pspr1 \rightarrow ks() = 0.3;
   pobj1 -> AddPrimitive( pspr1 );
   world.AddObject(pobj1);
   Object3D * pobj2 = new Object3D();
   PolyFace3D * ptriangs1 = new PolyFace3D( 2 );
   ptriangs1 -> AddTriangle( 0, Point3D(-3, -1.6, 0),
                              Point3D(-3, -1.6, 3),
                              Point3D(3, -1.6, 3));
   ptriangs1 -> AddTriangle( 1, Point3D(3, -1.6, 3),
                              Point3D(3, -1.6, 0),
                              Point3D(-3, -1.6, 0);
   ptriangs1 \rightarrow kd() = 0.05;
   ptriangs1 \rightarrow ks() = 0.8;
   pobj2 -> AddPrimitive( ptriangs1 );
   world.AddObject(pobj2);
                                                 // vrp
   camera.SetCamera(Point3D(0, 0.9, 0),
                    Vector3D(0, -0.82, 1),
                                                  // vpn
                    Vector3D(0, 1, 0),
                                                  // vup
                    Point3D(0, 0, -8),
                                                 // eye
                    RectAngle(-1.6,-1.6,1.6,1.6),
                                                 // window
                                                  // fp
                    8,
                                                  // bp
                    15,
                    PERSPECTIVE
                  );
   La = 0.1;
   lightsources[0] = new PositionalLight( Point3D( 5, 10, -7 ),
                                       Color(250));
   lightsources[1] = new PositionalLight(Point3D(-5, 0, -7),
                                       Color(150));
}
```

A Render tagfüggvény számítja ki a képet. Először törli a képernyőt és inicializálja a z-buffer memóriát, majd sorra veszi a virtuális világ objektumait. Az egyes objektumok feldolgozása során a függvény az objektum primitívjeit tesszellálja, és a tesszellált primitívet a világ-koordinátarendszerbe transzformálja. Itt kiszámítjuk a primitív megvilágítását, majd végigvezetjük a nézeti csővezeték transzformációs és vágási lépésein, végül felrajzoljuk a képernyőre. A helyes takarási viszonyok kialakításáért a z-buffer felelős.

```
void Scene :: Render() {
    scr -> Clear();
    zbuffer.Clear();
    for(int o = 0; o < world.ObjectNum(); o++) {</pre>
        Object3D * obj = world.Object( o );
        Transform3D Tv = camera.ViewTransform();
        Transform3D Tm = obj -> Transform();
        for(int p = 0; p < obj -> PrimitiveNum(); p++) {
            RenderPrimitive3D * rp = obj->Primitive(p)->Tesselate();
            rp -> Transform( Tm );
            rp -> TransformNormals( Tm );
            rp -> Illuminate(lightsources, La, camera.GetWorldEye());
            rp -> Transform( Tv );
            if ( rp -> DepthClip( ) ) {
                rp -> HomDivPoints();
                if ( rp -> Clip(camera.Viewport()) ) rp -> Draw(scr);
            delete rp;
        }
    }
}
```

10. fejezet

A sugárkövetés

A *sugárkövetés* a képernyő pixeleire egymástól függetlenül oldja meg a takarási és árnyalási feladatokat.

10.1. Az illuminációs modell egyszerűsítése

A rekurzív sugárkövetés a lokális illuminációs algoritmusokhoz hasonlóan, de kevésbé durván egyszerűsíti az árnyalási egyenletet. A lehetséges visszaverődésekből és törésekből elkülöníti a geometriai optikának megfelelő ideális (ún. koherens) eseteket, és csak ezekre hajlandó a többszörös visszaverődések és törések követésére. A többi, ún. inkoherens komponensre viszont lokális illuminációs módszerekhez hasonlóan elhanyagolja a csatolásokat és csak az absztrakt fényforrások direkt megvilágítását veszi figyelembe.

Az elmondott elhanyagolások következtében az *illuminációs képlet* a következő alakra egyszerűsödik:

$$L(\vec{x}, \omega) = L^{e}(\vec{x}, \omega) + k_{a} \cdot L^{a} + \sum_{l} f_{ri}(\omega'_{l}, \vec{x}, \omega) \cdot \cos \theta'_{l} \cdot L^{\text{in}}(\vec{x}, \omega'_{l}) +$$

$$k_{r} \cdot L^{\text{in}}(\vec{x}, \omega_{r}) + k_{t} \cdot L^{\text{in}}(\vec{x}, \omega_{t}), \tag{10.1}$$

ahol ω_r az ω tüköriránya, ω_t a fénytörésnek megfelelő irány, $f_{ri}(\omega_l', \vec{x}, \omega)$ a diffúz és a spekuláris visszaverődést jellemző BRDF, $L^{\text{in}}(\vec{x}, \omega_l')$ pedig az l. absztrakt fényforrásból az \vec{x} pontba az ω_l' irányból érkező radiancia.

Egy pixel színének számításához mindenekelőtt a pixelben látható felületi pontot kell megkeresnünk. Ehhez a szempozícióból a pixel középpontján keresztül egy félegyenest, ún. sugarat indítunk. A sugár legközelebbi metszéspontja az illuminációs képletben szereplő \vec{x} pont lesz, a félegyenes irányvektora pedig a $-\omega$ iránynak felel

meg. Ezekkel a paraméterekkel kiértékeljük az illuminációs képletet, és a pixelt ennek megfelelően kiszínezzük.

Az illuminációs képlet kiértékeléséhez a következőket kell elvégezni:

- Az \vec{x} felületi pont és ω nézeti irány ismeretében a saját sugárzás és az ambiens visszaverődés minden további nélkül kiértékelhető.
- A tükörirányból érkező fény visszaveréséhez kiszámítjuk a tükörirányt és meghatározzuk az innen érkező radianciát, amit a látható színben k_r súllyal veszünk figyelembe. Vegyük észre, a tükörirányból érkező radiancia számítása pontosan ugyanarra a feladatra vezet, amit a pixel színének a számításához végzünk el, csupán a vizsgált irányt most nem a szem és a pixel középpont, hanem a tükörirány határozza meg. Az implementáció szintjén ebből nyilván egy rekurzív program lesz.
- A törési irányból érkező fény töréséhez szintén rekurzív módon egy új sugarat indítunk a törési irányba, majd az onnan visszakapott radianciát a k_t tényezővel megszorozzuk.
- Az inkoherens visszaverődések kiszámításához minden egyes fényforrásról eldöntjük, hogy az látszik-e az adott pontból vagy sem. Most ugyanis nem tételezzük fel automatikusan, hogy a fényforrások a felületi pontból láthatóak, így a képen *árnyék*ok is megjelenhetnek. Ha tehát az l. fényforrás teljesítménye Φ_l , pozíciója pedig $\vec{y_l}$, akkor a beérkező radiancia:

$$L^{\text{in}}(\vec{x}, \omega_l') = v(\vec{x}, \vec{y_l}) \cdot \frac{\Phi_l}{|\vec{x} - \vec{y_l}|^2},$$
 (10.2)

ahol a $v(\vec{x}, \vec{y})$ láthatósági indikátor változó azt mutatja meg, hogy az \vec{x} pontból látható-e (v=1) a fényforrás vagy sem (v=0). Amennyiben a fényforrás és a pont között átlátszó objektumok vannak, a v 0 és 1 közötti értéket is felvehet. A v tényező kiszámításához egy sugarat indítunk az \vec{x} pontból a fényforrás felé és ellenőrizzük, hogy ez az \acute{a} rnyék sug \acute{a} r metsz-e objektumot, mielőtt elérné a fényforrást, majd a metszett objektumok k_t átlátszósági tényezőit összeszorozva meghatározzuk v értékét. Valójában ilyenkor a fény törését is figyelembe kellene venni, de ez meglehetősen bonyolult lenne, ezért nagyvonalúan eltekintünk tőle.

Az illuminációs képlet paraméterei elvileg hullámhossztól függőek, tehát a sugár által kiválasztott felület radianciáját minden reprezentatív hullámhosszon tovább kell adnunk.

10.2. A tükör és törési irányok kiszámítása

10.1. ábra. A tükörirány és a törési irány kiszámítása

A tükörirányt a következőképpen számíthatjuk ki (10.1. ábra):

$$\omega_r = (\omega - \vec{N} \cdot \cos \alpha) - \vec{N} \cdot \cos \alpha = \omega - 2\cos \alpha \cdot \vec{N}. \tag{10.3}$$

ahol α a beesési szög, melynek koszinusza a $\cos\alpha=(\vec{N}\cdot\omega)$ skalárszorzattal állítható elő.

A *törési irány* meghatározása egy kicsit bonyolultabb. Ha a törés szöge β , akkor a törés irányába mutató egységvektor:

$$-\omega_t = -\cos\beta \cdot \vec{N} + \sin\beta \cdot \vec{N}_{\perp}. \tag{10.4}$$

ahol \vec{N}_{\perp} a normálvektorra merőleges, a normálvektor és a beesési vektor síkjába eső egységvektor:

$$\vec{N}_{\perp} = \frac{\cos \alpha \cdot \vec{N} - \omega}{|\cos \alpha \cdot \vec{N} - \omega|} = \frac{\cos \alpha \cdot \vec{N} - \omega}{\sin \alpha}$$
(10.5)

Ezt behelyettesítve és felhasználva a Snellius-Descartes-törvényt, miszerint

$$\frac{\sin \alpha}{\sin \beta} = n$$

(n a relatív törésmutató), a következő összefüggéshez jutunk:

$$\omega_t = \cos \beta \cdot \vec{N} - \frac{\sin \beta}{\sin \alpha} (\cos \alpha \cdot \vec{N} - \omega) = \frac{\omega}{n} - \vec{N} (\frac{\cos \alpha}{n} - \cos \beta) =$$

$$\frac{\omega}{n} - \vec{N} \left(\frac{\cos \alpha}{n} - \sqrt{1 - \sin^2 \beta} \right) = \frac{\omega}{n} - \vec{N} \left(\frac{\cos \alpha}{n} - \sqrt{1 - \frac{(1 - \cos^2 \alpha)}{n}} \right). \tag{10.6}$$

A képletben szereplő n relatív törésmutató értéke attól függ, hogy most éppen belépünk-e az anyagba, vagy kilépünk belőle (a két esetben ezek az értékek egymásnak reciprokai). Az aktuális helyzetet a sugár irány és a felületi normális által bezárt szög, illetve a skaláris szorzat előjele alapján ismerhetjük fel. Ha a négyzetgyök jel alatti tag negatív, akkor a *teljes visszaverődés* esete áll fenn, tehát az optikailag sűrűbb anyagból a fény nem tud kilépni a ritkább anyagba.

10.3. A rekurzív sugárkövető program

10.2. ábra. Rekurzív sugárkövetés

A sugárkövető programunk az egyes pixelek színét egymás után és egymástól függetlenül számítja ki:

```
for minden p pixelre do r = \operatorname{szemb\'ol} a \text{ pixel k\"ozeppontj\'aba mutat\'o sug\'ar} color of p = \mathbf{Trace}(r, 0) endfor
```

A $\mathbf{Trace}(r,d)$ szubrutin az r sugár irányából érkező radianciát határozza meg rekurzív módon. A d változó a visszaverődések, illetve törések számát tartalmazza, annak érdekében, hogy a rekurzió mélységét korlátozzuk:

```
Color Trace(r, d)
        if d>d_{\max} then return L^a
                                                                                    // rekurzió korlátozása
        (q, \vec{x}) = \mathbf{Intersect}(r)
                                                                          // q: objektum, \vec{x}: felületi pont
        if nincs metsz\'espont then return L^a
       \omega = r irányvektora
        c = L_a^e(\vec{x}, \omega) + k_a \cdot L^a
        for l. fényforrásra do
               r_s = \vec{x}-ből induló, \vec{y}_l felé mutató sugár
                                                                                             // árnyék sugár
               (q_s, \vec{x}_s) = \mathbf{Intersect}(r_s)
                if nincs metszéspont OR |\vec{x}_s - \vec{x}| > |\vec{y}_l - \vec{x}| then #fényforrás nem takart
                     c += f_{ri}(\omega_l, \vec{x}, \omega) \cdot \cos \theta_l \cdot \Phi_l / |\vec{x} - \vec{y}_l|^2
               endif
        endfor
        if k_r(\vec{x}) > 0 then
               r_r = az r tükörirányába mutató sugár
               c += k_r(\vec{x}) \cdot \mathbf{Trace}(r_r, d+1)
        endif
        if k_t(\vec{x}) > 0 then
               r_t = az r törési irányába mutató sugár
               c += k_t(\vec{x}) \cdot \mathbf{Trace}(r_t, d+1)
        endif
        return c
end
```

A szubrutin kezdetén a rekurzió mélységének korlátozására egyrészt azért van szükség, hogy a tükörszobában fellépő végtelen rekurziót elkerüljük, másrészt pedig azért, hogy az elhanyagolható sokadik visszaverődések kiszámítására ne pazaroljuk a drága időnket.

10.4. Metszéspontszámítás egyszerű felületekre

Az **Intersect**(*r*) függvény az *r* sugár és a legközelebbi felület metszéspontját keresi meg. A gyakorlati tapasztalatok szerint a sugárkövető programunk a futás során az idő 75–96%-t az **Intersect**(*r*) rutinban tölti, ezért ennek hatékony implementációja a gyors sugárkövetés kulcsa. A sugarat általában a következő egyenlettel adjuk meg:

$$\vec{r}(t) = \vec{s} + t \cdot \vec{d}, \quad (t \in [0, \infty)). \tag{10.7}$$

ahol \vec{s} a kezdőpont, $\vec{d} = -\omega$ a sugár iránya, a t sugárparaméter pedig kifejezi a kezdőponttól való távolságot. A következőkben áttekintjük, hogy a különböző primitív típusok hogyan metszhetők el az ily módon megadott sugárral.

10.3. ábra. Sugárkövetéssel előállított tipikus kép: középső gömb koherensen törő, a többi gömb és az alaplap koherensen visszaverő; a fényforrások láthatóságszámítása miatt éles árnyékok keletkeznek

10.4.1. Háromszögek metszése

A *háromszög*ek metszése két lépésben történik. Először előállítjuk a sugár és a háromszög síkjának a metszéspontját, majd eldöntjük, hogy a metszéspont a háromszög belsejében van-e. Legyen a háromszög három csúcsa \vec{a} , \vec{b} és \vec{c} . Ekkor a háromszög síkjának normálvektora $(\vec{b}-\vec{a})\times(\vec{c}-\vec{a})$, egy helyvektora pedig \vec{a} , tehát a sík p pontjai kielégítik a következő egyenletet:

$$((\vec{b} - \vec{a}) \times (\vec{c} - \vec{a})) \cdot (\vec{p} - \vec{a}) = 0. \tag{10.8}$$

A sugár és a sík közös pontját megkaphatjuk, ha a sugár egyenletét behelyettesítjük a sík egyenletébe, majd a keletkező egyenletet megoldjuk az ismeretlen t paraméterre. Ha a kapott t^* érték pozitív, akkor visszahelyettesítjük a sugár egyenletébe, ha viszont negatív, akkor a metszéspont a sugár kezdőpontja mögött van. A sík metszése után azt kell ellenőriznünk, hogy a kapott \vec{p} pont vajon a háromszögön kívül vagy belül helyezkedik-e el. A \vec{p} metszéspont akkor van a háromszögön belül, ha a háromszög mind a három oldalegyeneséhez viszonyítva a háromszöget tartalmazó félsíkban van:

$$((\vec{b} - \vec{a}) \times (\vec{p} - \vec{a})) \cdot ((\vec{b} - \vec{a}) \times (\vec{c} - \vec{a})) \ge 0,$$

$$((\vec{c} - \vec{b}) \times (\vec{p} - \vec{b})) \cdot ((\vec{b} - \vec{a}) \times (\vec{c} - \vec{a})) \ge 0,$$

$$((\vec{a} - \vec{c}) \times (\vec{p} - \vec{c})) \cdot ((\vec{b} - \vec{a}) \times (\vec{c} - \vec{a})) \ge 0.$$

$$(10.9)$$

10.4.2. Implicit felületek metszése

A síkmetszéshez hasonlóan egy *gömb*re úgy kereshetjük a metszéspontot, ha a sugár egyenletét behelyettesítjük a gömb egyenletébe:

$$|(\vec{s} + t \cdot \vec{d}) - \vec{c}|^2 = R^2 \tag{10.10}$$

majd megoldjuk t-re az ebből adódó

$$(\vec{d})^2 \cdot t^2 + 2 \cdot \vec{d} \cdot (\vec{s} - \vec{c}) \cdot t + (\vec{s} - \vec{c})^2 - R^2 = 0$$
 (10.11)

egyenletet. Csak a pozitív valós gyökök érdekelnek bennünket, ha ilyen nem létezik, az azt jelenti, hogy a sugár nem metszi a gömböt. Ez a módszer bármely más kvadratikus felületre használható. A kvadratikus felületeket különösen azért szeretjük a sugárkövetésben, mert a metszéspontszámítás másodfokú egyenletre vezet, amit a megoldóképlet alkalmazásával könnyen megoldhatunk.

Általánosan egy F(x,y,z)=0, implicit egyenlettel definiált felületek metszéséhez a sugáregyenletnek az implicit egyenletbe történő behelyettesítésével előállított

$$f(t) = F(s_x + d_x \cdot t, s_y + d_y \cdot t, s_z + d_z \cdot t) = 0$$

nemlineáris egyenletet kell megoldani, amelyhez numerikus gyökkereső eljárásokat használhatunk [SKe95].

10.4.3. Paraméteres felületek metszése

Az $\vec{r} = \vec{r}(u,v)$, $(u,v \in [0,1])$ paraméteres felület és a sugár metszéspontját úgy kereshetjük meg, hogy először az ismeretlen u,v,t paraméterekre megoldjuk a

$$\vec{r}(u,v) = \vec{s} + t \cdot \vec{d} \tag{10.12}$$

háromváltozós nem lineáris egyenletrendszert, majd ellenőrizzük, hogy a t pozitív és az u,v paraméterek valóban a [0,1] tartomány belsejében vannak-e.

A gyakorlatban a nemlineáris egyenletrendszerek megoldása helyett inkább azt az utat követik, hogy a felületeket poligonhálóval közelítik (emlékezzünk vissza, hogy ez az ún. *tesszelláció*s folyamat különösen egyszerű paraméteres felületekre), majd ezen poligonhálót próbálják elmetszeni. Ha sikerül metszéspontot találni, az eredményt úgy lehet pontosítani, hogy a metszéspont környezetének megfelelő paramétertartományban egy finomabb tesszellációt végzünk, és a metszéspontszámítást újra elvégezzük.

10.4.4. Transzformált objektumok metszése

A sugárkövetés egyedülálló tulajdonsága, hogy nem igényel tesszellációt, azaz az objektumokat nem kell poligonhálóval közelíteni, mégis implicit módon elvégzi a nézeti transzformációs, vágási, vetítési és takarási feladatokat. Ha az objektumokat közvetlenül a világ-koordinátarendszerben írjuk le, ezek elegendőek is a teljes képszintézishez. Ha viszont az objektumok különálló modellezési koordinátarendszerben találhatók, a modellezési transzformációt valahogyan meg kell valósítani. Ez ismét csak elvezet minket ahhoz a problémához, hogy hogyan is kell transzformálni például egy gömböt. Szerencsére ezt a kérdést megkerülhetjük, ha nem az objektumot, hanem a sugarat transzformáljuk, hiszen a sugár és egy T transzformációval torzított objektum metszéspontját kiszámíthatjuk úgy is, hogy meghatározzuk a T inverzével transzformált sugár és az objektum metszetét, majd a T alkalmazásával az eredeti sugárra képezzük a pontokat.

10.4.5. CSG modellek metszése

A konstruktív tömörtest geometria (CSG) a modelleket egyszerű primitívekből (kocka, henger, kúp, gömb, stb.) halmazműveletek $(\cup^*, \cap^*, \setminus^*)$ segítségével állítja elő. Egy objektumot általában egy bináris fa adatstruktúra ír le, amelyben a levelek a primitíveket azonosítják, a belső csomópontok pedig a két gyermeken végrehajtandó geometriai transzformációkat és az eredmény előállításához szükséges halmazműveletet. A fa gyökere magát az objektumot képviseli, a többi csomópont pedig a felépítéshez szükséges egyszerűbb testeket.

Ha a fa egyetlen levélből állna, akkor a sugárkövetés könnyen megbirkózna a sugár és az objektum közös pontjainak azonosításával. Tegyük fel, hogy a sugár és az objektum felülete közötti metszéspontok $t_1 \leq t_2, \ldots \leq t_{2k}$ sugárparamétereknél találhatók. Ekkor a sugár a $(\vec{s}+t_1\cdot\vec{d},\vec{s}+t_2\cdot\vec{d}),\ldots(\vec{s}+t_{2k-1}\cdot\vec{d},\vec{s}+t_{2k}\cdot\vec{d})$, pontpárok közötti szakaszokon (ún. belső szakaszok (ray-span)) a primitív belsejében, egyébként a primitíven kívül halad. A szemhez legközelebbi metszéspontot úgy kaphatjuk meg, hogy ezen szakaszvégpontok közül kiválasztjuk a legkisebb pozitív paraméterűt. Ha a paraméter szerinti rendezés után a pont paramétere páratlan, a szem az objektumon kívül van, egyébként pedig az objektum belsejében ülve nézünk ki a világba. Az esetleges geometriai transzformációkat az előző fejezetben javasolt megoldással kezelhetjük.

Most tegyük fel, hogy a sugárral nem csupán egy primitív objektumot, hanem egy CSG fával leírt struktúrát kell elmetszeni! A fa csúcsán egy halmazművelet található, ami a két gyermekobjektumból előállítja a végeredményt. Ha a gyermekobjektumokra sikerülne előállítani a belső szakaszokat, akkor abból az összetett objektumra vonatkozó belső szakaszokat úgy kaphatjuk meg, hogy a szakaszok által kijelölt ponthalmazra végrehajtjuk az összetett objektumot kialakító halmazműveletet. Emlékezzünk vissza, hogy a CSG modellezés regularizált halmazműveleteket használ, hogy elkerülje a há-

romnál alacsonyabb dimenziójú elfajulásokat. Tehát, ha a metszet vagy a különbség eredményeképpen különálló pontok keletkeznek, azokat el kell távolítani. Ha pedig az egyesítés eredménye két egymáshoz illeszkedő szakasz, akkor azokat egybe kell olvasztani.

10.4. ábra. Belső szakaszok és a kombinálásuk

Az ismertetett módszer a fa csúcsának feldolgozását a részfák feldolgozására és a belső szakaszokon végrehajtott halmazműveletre vezette vissza. Ez egy rekurzív eljárással implementálható, amelyet addig folytatunk, amíg el nem jutunk a CSG-fa leveleihez.

```
CSGIntersect(ray, node)
  if node nem levél then
    left span = CSGIntersect(ray, node bal gyermeke);
    right span = CSGIntersect(ray, node jobb gyermeke);
    return CSGCombine(left span, right span, operation);
  else (node primitív objektumot reprezentáló levél)
    return PrimitiveIntersect(ray, node);
  endif
end
```

10.5. A metszéspontszámítás gyorsítási lehetőségei

A sugárkövetést megvalósító algoritmus minden egyes sugarat minden objektummal összevet és eldönti, hogy van-e köztük metszéspont. A módszer jelentősen gyorsítható lenne, ha az objektumok egy részére kapásból meg tudnánk mondani, hogy egy adott sugár biztosan nem metszheti őket (mert például a sugár kezdőpontja mögött, vagy nem a sugár irányában helyezkednek el), illetve miután találunk egy metszéspontot, akkor ki tudnánk zárni az objektumok egy másik körét azzal, hogy ha a sugár metszi is őket, akkor biztosan ezen metszéspont mögött helyezkednek el. Ahhoz, hogy ilyen döntéseket hozhassunk, ismernünk kell az objektumteret. A megismeréshez egy előfeldolgozási fázis szükséges, amelyben egy adatstruktúrát építünk fel. A sugárkövetés végrehajtásakor pedig a kívánt információkat ebből az adatstruktúrából olvassuk ki.

10.5.1. Befoglaló keretek

A legegyszerűbb gyorsítási módszer a *befoglaló keret*ek (*bounding volume*) alkalmazása. A befoglaló keret egy egyszerű geometriájú objektum, tipikusan gömb vagy téglatest, amely egy-egy bonyolultabb objektumot teljes egészében tartalmaz. A sugárkövetés során először a befoglaló keretet próbáljuk a sugárral elmetszeni. Ha nincs metszéspont, akkor nyilván a befoglalt objektummal sem lehet metszéspont, így a bonyolultabb számítást megtakaríthatjuk.

A befoglaló keretet úgy kell kiválasztani, hogy a sugárral alkotott metszéspontja könnyen kiszámítható legyen, és ráadásul kellően szorosan körbeölelje az objektumot. A könnyű metszéspontszámítás követelménye feltétlenül teljesül a gömbre, hiszen ehhez csak egyetlen másodfokú egyenletet kell megoldani.

A *Cohen-Sutherland vágási algoritmus* bevetésével a koordinátatengelyekkel párhuzamosan felállított befoglaló dobozokra ugyancsak hatékonyan dönthetjük el, hogy a sugár metszi-e őket. A vágási tartománynak a dobozt tekintjük, a vágandó objektumnak pedig a sugár kezdőpontja és a maximális sugárparaméter által kijelölt pontja közötti szakaszt. Ha a vágóalgoritmus azt mondja, hogy a szakasz teljes egészében eldobandó, akkor a doboznak és a sugárnak nincs közös része, következésképpen a sugár nem metszhet semmilyen befoglalt objektumot.

A befoglaló keretek hierarchikus rendszerbe is szervezhetők, azaz a kisebb keretek magasabb szinteken nagyobb keretekbe foghatók össze. Ekkor a sugárkövetés során a befoglaló keretek által definiált hierarchiát járjuk be.

10.5.2. Az objektumtér szabályos felosztása

Tegyünk az objektumtérre egy szabályos 3D rácsot és az előfeldogozás során minden cellára határozzuk meg a cellában lévő, vagy a cellába lógó objektumokat. A sugár-

követés fázisában egy adott sugárra a sugár által metszett cellákat a kezdőponttól való távolságuk sorrendjében látogatjuk meg. Egy cellánál csak azon objektumokat kell tesztelni, amelyeknek van közös része az adott cellával. Ráadásul ha egy cellában az összes ide tartozó objektum tesztelése után megtaláljuk a legközelebbi metszéspontot, be is fejezhetjük a sugár követését, mert a többi cellában esetlegesen előforduló metszéspont biztosan a metszéspontunk mögött van.

Az objektumtér szabályos felosztásának előnye, hogy a meglátogatandó cellák könynyen előállíthatók a DDA algoritmus három dimenziós általánosításának segítségével [FTK86], hátránya pedig az, hogy gyakran feleslegesen sok cellát használ. Két szomszédos cellát ugyanis elég lenne csak akkor szétválasztani, ha azokhoz az objektumok egy más halmaza tartozik. Ezt az elvet követik az adaptív felosztó algoritmusok.

10.5.3. Az objektumtér adaptív felosztása

Az objektumtér adaptív felosztása rekurzív megközelítéssel lehetséges. Foglaljuk kezdetben az objektumainkat egy koordinátatengelyekkel párhuzamos oldalú dobozba. Vizsgáljuk meg, hogy a dobozunk homogénnek tekinthető-e, azaz a benne legfeljebb 1 (általánosabban legfeljebb adott számú) objektum van-e. Ha igen, a felosztással elkészültünk. Ha nem, a dobozt a felezősíkjai mentén 8 egybevágó részre bontjuk és a keletkező részdobozokra ugyanezt az eljárást folytatjuk.

10.5. ábra. A síkot felosztó négyes fa. Ennek a 3D változata az oktális fa

Az eljárás eredménye egy *oktális fa* (10.5. ábra). A fa levelei azon elemi cellák, amelyekhez a belógó objektumokat nyilvántartjuk.

A felosztás adaptivitását fokozhatjuk, ha egy lépésben nem mind a három felezősík mentén vágunk, hanem egy olyan (általában ugyancsak a koordinátarendszer valamely tengelyére merőleges) síkkal, amely az objektumteret a lehető legigazságosabban felezi meg. Ez a módszer egy bináris fához vezet, amelynek neve *bináris particionáló fa*, vagy *BSP-fa*.

10.6. ábra. Bináris particionáló fa

Az adaptív felosztás kétségkívül kevesebb memóriát igényel, mint a tér szabályos felosztása. Azonban egy új problémát vet fel, amivel foglalkoznunk kell. A szabályos felosztás rácsán szakaszrajzoló algoritmusok segítségével kényelmesen sétálhattunk, azaz könnyen eldönthettük, hogy egy cella után melyik lesz a következő, ami a sugár útjába kerül. Az adaptív felosztásoknál egy cella után következő cella meghatározása már nem ilyen egyszerű. A helyzet azért nem reménytelen, és a következő módszer elég jól megbirkózik vele. Az aktuális cellában számítsuk ki a sugár kilépési pontját, azaz a sugárnak és a cellának a metszéspontját, majd adjunk hozzá a metszéspont sugárparaméteréhez egy "kicsit"! A kicsivel továbblendített sugárparamétert visszahelyettesítve a sugáregyenletbe, egy, a következő cellában lévő pontot kapunk. Azt, hogy ez melyik cellához tartozik, az adatstruktúra bejárásával dönthetjük el. Kézbe fogván a pontunkat a fa csúcsán belépünk az adatstruktúrába. A pont koordinátáit a felosztási feltétellel (oktális fánál az aktuális doboz középpontjával, bináris particionáló fánál pedig a sík koordinátájával) összehasonlítva eldönthetjük, hogy melyik úton kell folytatni az adatszerkezet bejárását. Előbb-utóbb eljutunk egy levélig, azaz azonosítjuk a pontot tartalmazó cellát.

10.6. Foton követés

10.6. Foton követés

A foton követés (photon-tracing) a sugárkövetés inverze, amikor a fényutakat nem a szemből, hanem a fényforrásoktól kezdjük építeni. Egy fényút a fényforrás egy pontján kezdődik. Itt kiválasztunk egy irányt, és elindítunk egy sugarat ebben az irányban. Ha az eltalált felület diffúz visszaverődést tartalmaz, annak intenzitását a sugár által szállított radiancia és a megtalált pont optikai jellemzői alapján számítjuk ki. Ezt követően eldöntjük, hogy ez a pont hat-e közvetlenül valamely pixelre, azaz látható-e valamely pixelben, és ha igen, annak színéhez hozzáadjuk a pont hatását. A pont láthatóságának eldöntéséhez egy sugarat indítunk a pontból a szem felé, és ellenőrizzük, hogy ez a sugár metsz-e valamilyen objektumot, mielőtt elérné a szemet. Ha a megtalált pont koherensen törő vagy visszaverő felülethez tartozik, akkor rekurzíven gyermeksugarakat indítunk a törő és visszaverő irányokba, és az egész eljárást megismételjük.

10.7. Program: rekurzív sugárkövetés

Egy sugár (Ray) kezdőponttal (start) és irányvektorral (dir) jellemezhető.

Egy ideális tükör csak az elméleti visszaverődési irányba veri vissza a fényt. A BRDF tehát egyetlen irányban végtelen értékű, másutt pedig zérus, így nem reprezentálható közvetlenül. Ehelyett az ideális tükröket jellemző anyagoknál előállíthatjuk azt az irányt, amerre a fény folytatja az útját (ReflectionDir).

Az ideális fénytörő anyag szintén csak egyetlen irányba adja tovább a fényt, amelyet a RefractionDir függvénnyel számíthatunk ki az anyag törésmutatójából (N). A függvény bemeneti paraméterei között szerepel az out változó is, amely jelzi, hogy a fénytörő felületet kívülről vagy belülről közelítjük-e meg. Ha belülről jövünk, akkor a törésmutató reciprokát kell használni. A függvény a visszatérési értékében jelzi, ha teljes visszaverődés miatt nem létezik törési irány.

```
//----
class IdealRefractor {
//-----
   SColor Kt;
   double N;
public:
   IdealRefractor(): Kt(0) \{ N = 1; \}
   SColor& kt() { return Kt; }
   double& n() { return N; }
   BOOL RefractionDir(Vector3D& L, Vector3D& N, Vector3D& V,
                  BOOL out) {
      double cn = ( out ) ? n() : 1.0/n();
      double cosa = N * V;
      double disc = 1 - (1 - \cos a * \cos a) / cn / cn;
      if (disc < 0) return FALSE;
      L = N * (cosa / cn - sqrt(disc)) - V / cn;
      return TRUE;
};
```

Általános esetben egy anyag a beérkező fényt részben diffúz és spekuláris jelleg szerint, vagy akár ideális tükör vagy fénytörő anyagként veri vissza:

Egy általános objektum primitívekből áll.

Egy primitív felületének optikai tulajdonságaival és a geometriájával jellemezhető. Az optikai tulajdonságok az általános anyagjellemzőket és az ambiens visszaverődési tényezőt (Ka) foglalják magukban. A geometriai tulajdonságok két eljárással kérdezhetők le: egy adott sugár metszi-e a primitívet, és ha igen, milyen sugárparaméternél (Intersect); illetve egy adott felületi pontban hogyan áll a felület normálvektora (Normal).

```
Point3D dummy;
class Primitive3D : public Emitter {
protected:
   SColor
   GeneralMaterial mat;
   Primitive3D( ) : Ka( 0.1 ) { }
   SColor& ka( Point3D x = dummy ) { return Ka; }
   SColor& kd( Point3D x = dummy ) { return mat.kd(); }
   SColor& ks(Point3D x = dummy) { return mat.ks(); }
   double& Shine ( Point3D x = dummy ) { return mat.Shine(); }
   SColor& Le( Point3D x, Vector3D dir ) { return Emitter :: Le(); }
   SColor& kr( Point3D x = dummy ) { return mat.kr(); }
   SColor& kt( Point3D x = dummy ) { return mat.kt(); }
   double& n( Point3D x = dummy ) { return mat.n(); }
   BOOL ReflectionDir(Vector3D& L, Vector3D& N, Vector3D& V,
                    Point3D& x) {
      return mat.ReflectionDir(L, N, V);
   BOOL RefractionDir (Vector3D& L, Vector3D& N, Vector3D& V,
                    Point3D& x, BOOL out) {
      return mat.RefractionDir(L, N, V, out);
   }
```

```
SColor BRDF(Vector3D& L, Vector3D& N, Vector3D& V, Point3D& x) {
    return mat.BRDF(L, N, V);
}
virtual double Intersect( Ray& r ) = 0;
virtual Vector3D Normal(Point3D& x) = 0;
};
```

A geometriai információ és műveletek tényleges megadásához ismernünk kell az objektum típusát és alakját. Például egy gömböt definiáló osztály a következőképpen adható meg.

```
class Sphere : public virtual Primitive3D {
Point3D center;
   double radius;
public:
   Sphere (Point 3D& cent, double rad)
   : Primitive3D() { center = cent; radius = rad; }
   double Intersect ( Ray& r );
   Vector3D Normal(Point3D& x) { return ((x - center)/radius); }
};
//----
double Sphere :: Intersect( Ray& r ) {
//-----
   Vector3D dist = r.Start() - center;
   double b = (dist * r.Dir()) * 2.0;
   double a = (r.Dir() * r.Dir());
   double c = (dist * dist) - radius * radius;
   double discr = b * b - 4.0 * a * c;
   if (discr < 0) return -1;
   double sqrt_discr = sqrt( discr );
   double t1 = (-b + sqrt_discr)/2.0/a;
   double t2 = (-b - sqrt_discr)/2.0/a;
   if (t1 < EPSILON) t1 = -EPSILON;
   if (t2 < EPSILON) t2 = -EPSILON;
   if (t1 < 0 \&\& t2 < 0) return -1;
   double t;
   if (t1 < 0 \&\& t2 >= 0)
                            t = t2;
   else if (t2 < 0 \&\& t1 >= 0) t = t1;
   else if (t1 < t2)
                             t = t1;
   else
                             t = t2;
   return t;
}
```

Az inkrementális képszintézisben használt kamerát egyetlen olyan tagfüggvénnyel kell kiegészíteni, amely egy képernyőn lévő ponthoz megkeresi azt a sugarat, amely a szemből indul, és éppen ezen a ponton megy keresztül.

```
//----
class RayCamera : public Camera3D {
//----
public:
   Ray GetRay (Coord X, Coord Y) {
      Vector3D w = vpn; w.Normalize();
      Vector3D u = w % vup; u.Normalize();
      Vector3D v = u % w;
      Transform3D Tuvw( AFFIN, u, v, w, vrp );
      Vector3D world_eye = Tuvw.Transform( (HomPoint3D)eye );
      double x, v;
      x = window.HSize()/viewport.HSize() * (X - viewport.HCenter());
      y = window.VSize()/viewport.VSize() * (Y - viewport.VCenter());
      Vector3D dir = u * x + v * y - world_eye;
      return Ray( world_eye + vrp, dir );
   }
};
```

A virtuális világ különböző típusú objektumok gyűjteménye. Az egyes objektumok primitívekből állnak, amelyeket egymás után a NextPrimitive tagfüggvény szolgáltat.

A színtér ismét a virtuális világból, a kamerából és a fényforrásokból áll.

```
//----
class Scene {
//-----
   VirtualWorld
                        world;
   RayCamera
                        camera;
   Array< PositionalLight * > lightsources;
   SColor
                         La;
   Primitive3D * Intersect ( Ray& r, Point3D& x );
   SColor
            IntersectShadow( Ray r, double maxt );
            DirectLightsource(Primitive3D * q, Vector3D& V,
   SColor
                           Vector3D& N, Point3D& x);
            Trace(Ray r, int depth);
   SColor
   void
            WritePixel ( PCoord X, PCoord Y, SColor col );
public:
   Scene() { Define(); }
   void Define();
   void Render();
};
```

Az Intersect tagfüggvény megkeresi azon primitívet, amelyet a sugár a kezdőpontjához legközelebb metsz, és visszatérési értékként megadja a primitív címét, az x változóban pedig a metszéspont koordinátáit.

```
//-----
Primitive3D * Scene :: Intersect ( Ray& r, Point3D& x ) {
//-----
          t = -1;
   double
   Primitive3D * po = NULL, * p;
   while( (p = world.NextPrimitive()) != NULL ) {
      double tnew = p \rightarrow Intersect(r);
      if (tnew > 0 && (tnew < t | | t < 0)) {
         t = tnew;
         po = p;
      }
   }
   if (t > 0) x = r.Start() + r.Dir() * t;
   return po;
}
```

Az IntersectShadow az árnyéksugarakat követi a sugár kezdőpontjától a maxt maximális sugárparaméterig, és kiszámítja az ezalatt eltalált primitívek eredő átlátszóságát.

A DirectLightsource tagfüggvény a saját emisszió és az absztrakt fényforrások közvetlen hatását határozza meg.

```
SColor Scene :: DirectLightsource (Primitive3D * q, Vector3D& V,
                                 Vector3D& N, Point3D& x) {
//----
    SColor c = q - \sum (x, V) + q - ka(x) * La;
    for (int l = 0; l < lightsources.Size(); <math>l++) {
       Vector3D L = lightsources[1] -> Pos() - x;
       double lightdist = L.Length();
       L /= lightdist;
       SColor atten = IntersectShadow(Ray(x, L), lightdist);
        if (atten != 0) {
           double cost = N * L;
           if (cost > 0)
                c += atten * q->BRDF(L, N, V, x) *
                    lightsources[l] \rightarrow Le(x, -L) * cost;
       }
   return c;
}
```

A program legfontosabb része a sugarat rekurzívan követő Trace függvény.

```
SColor Scene :: Trace(Ray r, int d) {
//----
   if (d > maxdepth) return La;
   Point3D x;
   Primitive3D * q = Intersect(r, x);
   if (q == NULL) return La;
   Vector3D normal = q \rightarrow Normal(x);
   BOOL out = TRUE;
   if ( normal * (-r.Dir()) < 0) { normal = -normal; out = FALSE; }</pre>
   SColor c = DirectLightsource(q, -r.Dir(), normal, x);
   if (q->kr(x) != 0) {
       Vector3D reflectdir;
       q -> ReflectionDir(reflectdir, normal, -r.Dir(), x);
       c += q->kr(x) * Trace(Ray(x, reflectdir), d+1);
    if (q->kt(x) != 0) {
       Vector3D refractdir;
       if (q -> RefractionDir(refractdir, normal, -r.Dir(), x, out)) {
           c += q -> kt(x) * Trace(Ray(x, refractdir), d+1);
   return c;
}
```

A képszintézis végrehajtása során minden egyes pixelközépponton keresztül egy sugarat indítunk az objektumtérbe, majd a sugárkövetés által számított színnek megfelelően kiszínezzük a pixelt.

11. fejezet

Globális illuminációs algoritmusok

A globális illuminációs algoritmusok az árnyalási egyenletet (vagy a potenciál egyenletet) a benne lévő csatolás elhanyagolása nélkül oldják meg, ily módon képesek a többszörös fényvisszaverődések pontos kezelésére (emlékezzünk vissza, hogy a *lokális illuminációs algoritmus*ok a többszörös visszaverődéseket egyáltalán nem vették figyelembe, a *rekurzív sugárkövetés* pedig csak a koherens komponensekre követte a fény útját). Formálisan a globális illuminációs algoritmusok az

$$L = L^e + \mathcal{T}L$$

integrálegyenlet (8.15) megoldása után kiszámolják a mérőeszközbe — tipikusan egy pixelbe — jutó fényteljesítményt a

$$P = \mathcal{M}L$$

operátor (8.6 egyenlet) alkalmazásával (vagy megoldják a potenciál egyenletet, és ez alapján határozzák meg a mérőeszközbe jutó teljesítményt).

A következőkben először az integrálegyenletek numerikus megoldásának általános elveivel foglalkozunk, majd konkrét globális illuminációs algoritmusokat ismertetünk.

11.1. Integrálegyenletek megoldása

A globális illuminációs algoritmusoknak egy integrálegyenletet kell numerikusan megoldaniuk, amelyet alapvetően három különböző módon tehetünk meg: inverzió, expanzió vagy iteráció felhasználásával.

11.1.1. Inverzió

Az *inverzió* az ismeretlen függvénytől függő tagokat az egyenlet egyik oldalán csoportosítja, majd formálisan egy inverziós műveletet hajt végre:

$$L = L^e + \mathcal{T}L \implies (1 - \mathcal{T})L = L^e \implies L = (1 - \mathcal{T})^{-1}L^e. \tag{11.1}$$

A mért teljesítmény tehát:

$$\mathcal{M}L = \mathcal{M}(1-\mathcal{T})^{-1}L^e. \tag{11.2}$$

Sajnos a \mathcal{T} operátor egy integrál operátor, így nem invertálható közvetlenül (fájdalom, de az integrál jellel nem lehet osztani). Így a következő fejezetben ismertetendő véges-elem módszer segítségével az integáloperátort egy mátrixszal közelítjük, majd a keletkező lineáris egyenletrendszert a szokásos módszerekkel oldhatjuk meg.

11.1.2. Véges-elem módszer

A folytonos paraméterű függvények véges adattal történő közelítő megadására a *végeselem módszer*t (*finite-element method*) használhatjuk. Ennek lényege, hogy a függvényt függvénysorral közelítjük, azaz a következő alakban keressük:

$$L(p) \approx \sum_{j=1}^{n} \mathbf{L}_{j} \cdot b_{j}(p), \tag{11.3}$$

ahol $b_j(p)$ előre definiált bázis függvények, \mathbf{L}_j pedig skalár tényezők. Két függvény szorzatának a teljes térre vett integrálját a két függvény *skalárszorzat*ának hívjuk, és a következőképpen jelöljük:

$$\langle f, g \rangle = \int f(p) \cdot g(p) \, dp.$$

Az egyszerűség kedvéért feltételezzük, hogy a különböző bázisfüggvények szorzatának a teljes térre vett integrálja zérus, tehát:

$$\langle b_i, b_j \rangle = \int b_i(p) \cdot b_j(p) \, dp = 0$$
 ha $i \neq j$.

A zérus skalárszorzat szemléletesen úgy is értelmezhető, hogy a bázisfüggvények egymásra "merőlegesek", tehát ortogonális rendszert alkotnak.

Az egyik leggyakrabban használt bázisfüggvény készlet a közelítendő függvény értelmezési tartományát véges számú tartományra bontja, és az *i*. bázisfüggvényt 1 értékűnek tekinti az *i*. tartományban, minden más tartományban 0-nak. A megoldandó

 $L(p) = L^e(p) + \mathcal{T}L(p)$ integrálegyenletbe a függvénysoros közelítést behelyettesítve a következő egyenletet kapjuk:

$$\sum_{j=1}^{n} \mathbf{L}_j \cdot b_j(p) = \sum_{j=1}^{n} \mathbf{L}_j^e \cdot b_j(p) + \mathcal{T} \sum_{j=1}^{n} \mathbf{L}_j \cdot b_j(p).$$
 (11.4)

Szorozzuk meg skalárisan az egyenletet egyenként az összes bázisfüggvénnyel. Az ortogonalitási feltétel miatt az i. bázisfüggvénnyel való szorzás a következő egyenletre vezet:

$$\mathbf{L}_{i} = \mathbf{L}_{i}^{e} + \sum_{j=1}^{n} \frac{\langle \mathcal{T}b_{j}, b_{i} \rangle}{\langle b_{i}, b_{i} \rangle} \cdot \mathbf{L}_{j}.$$
(11.5)

A véges-elem módszer alkalmazása tehát a függvénysor együtthatóira egy lineáris egyenletrendszert eredményezett:

$$\mathbf{L} = \mathbf{L}^e + \mathbf{R} \cdot \mathbf{L}, \quad \text{ahol } \mathbf{R}_{ij} = \frac{\langle \mathcal{T}b_j, b_i \rangle}{\langle b_i, b_i \rangle}.$$
 (11.6)

Erre a lineáris egyenletrendszerre az inverzió — például Gauss-elimináció alkalmazásával — már ténylegesen elvégezhető:

$$\mathbf{L} = \mathbf{L}^e + \mathbf{R} \cdot \mathbf{L} \implies (\mathbf{1} - \mathbf{R}) \cdot \mathbf{L} = \mathbf{L}^e \implies \mathbf{L} = (\mathbf{1} - \mathbf{R})^{-1} \mathbf{L}^e.$$
 (11.7)

A függvénysor együtthatóiból viszont a függvényérték a $\sum_{j=1}^{n} \mathbf{L}_{j} \cdot b_{j}(p)$ képlet alkalmazásával tetszőleges p pontra megkapható.

11.1.3. Expanzió

Az expanzió az integrálegyenletben lévő csatolást rekurzív behelyettesítéssel oldja fel, amelynek eredményeképpen a megoldást egy végtelen Neumann-sor alakjában állítjuk elő. Helyettesítsük be a jobb oldali L függvénybe az $L^e + \mathcal{T}L$ alakú teljes jobb oldalt, ami az egyenlet szerint nyilván egyenlő L-lel:

$$L = L^{e} + TL = L^{e} + T(L^{e} + TL) = L^{e} + TL^{e} + T^{2}L.$$
 (11.8)

Ugyanezt ismételjük meg n-szer:

$$L = \sum_{i=0}^{n} \mathcal{T}^{i} L^{e} + \mathcal{T}^{n+1} L.$$
 (11.9)

Mivel minden egyes visszaverődés csökkenti a teljes energiát, a $\mathcal T$ operátor kontrakció, ezért $\lim_{n\to\infty}\mathcal T^{n+1}L=0$, tehát:

$$L = \sum_{i=0}^{\infty} \mathcal{T}^i L^e. \tag{11.10}$$

A mért fényteljesítmény pedig:

$$\mathcal{M}L = \sum_{i=0}^{\infty} \mathcal{M}\mathcal{T}^i L^e. \tag{11.11}$$

A végtelen sor egyes tagjainak intuitív jelentése van: $\mathcal{T}^0L^e=L^e$ a fényforrások direkt hozzájárulása a mért fényteljesítményhez, \mathcal{T}^1L^e az egyszeres visszaverődésekből származik, \mathcal{T}^2L^e a kétszeres visszaverődésekből, stb.

Vizsgáljuk meg a sor i. tagját (T^iL^e) , amely egy i dimenziós integrál. Például i=2 esetben

$$(\mathcal{T}^2 L^e)(\vec{x}_1, \omega) = \int_{\Omega_1} \int_{\Omega_2} f_r(\omega_1', \vec{x}_1, \omega) \cdot \cos \theta_1' \cdot f_r(\omega_2', \vec{x}_2, \omega_1') \cdot \cos \theta_2' \cdot L^e(\vec{x}_3, -\omega_2') d\omega_2 d\omega_1,$$

$$(11.12)$$

ahol:

$$\vec{x}_2 = h(\vec{x}, -\omega_1'), \vec{x}_3 = h(h(\vec{x}, -\omega_1'), -\omega_2').$$
(11.13)

11.1. ábra. Az T^2L^e integrandusa egy két lépéses gyűjtőséta

Általában az integrandus értéke az $(\omega_1', \omega_2', \dots \omega_i')$ pontban a következőképpen határozható meg. A szemből a pixel középponton keresztül egy sugarat küldünk a térbe a látható pont meghatározására. Majd innen rekurzív módon folytatjuk a sugárkövetést ω_1' irányba, a megtalált felületi pontból ω_2' irányba, egészen az i. visszaverődésig. A visszaverődési lánc végén leolvassuk a felületi pont emisszióját, majd megszorozzuk az

egyes visszaverődések koszinuszos taggal súlyozott BRDF értékeivel. Az ilyen láncok elnevezése *gyűjtőséta* (*gathering walk*).

Vegyük észre, hogy egyetlen n hosszú visszaverődési láncot felhasználhatunk az 1-szeres, 2-szeres, ..., n-szeres visszaverődési tagok becslésére, ha az emissziót nem csupán az utolsó pontban, hanem minden meglátogatott pontban leolvassuk.

A potenciál egyenletet szintén megoldhatjuk az expanzió segítségével. Ekkor egy $(\vec{y}, \omega_1', \omega_2', \dots \omega_i')$ pontban az integrandus értékét úgy kaphatjuk meg, hogy elindulunk egy fényforrásbeli \vec{y} pontból az ω_1 irányba, majd a megtalált pontból rekurzíve az ω_2 , stb. ω_i irányba, végül az utolsó pontot összekötjük a szempozícióval. Ha az utolsó pont és a szem között nincs takaró objektum, akkor ez a fénypálya azon pixel színéhez járul hozzá, amelyet az utolsó pontot és a szemet összekötő szakasz metsz. Az úton szállított energia pedig a kezdeti pont emissziója szorozva a BRDF-ekkel, és az egyes visszaverődéseknél érvényes nézőirány és a normálvektor szögének koszinuszával. Ezen utak neve *lövőséta* (shooting walk).

11.2. ábra. Az T'^2W^e integrandusa egy két lépéses lövőséta

Megjegyezzük, hogy a koszinuszos tényezőkben a gyűjtőséták a fényirány és a normálvektor szögét, a lövőséták pedig a nézeti irány és a normálvektor szögét használják. Másrészt a gyűjtősétákban a fényforrás szöge, a lövősétában pedig az utoljára meglátogatott felület és a szem iránya által bezárt szög koszinusza kiesik, így ezekkel nem kell szorozni.

11.1.4. Monte-Carlo integrálás

Az árnyalási egyenlet megoldása során igen magas dimenziós integrálokat kell kiértékelnünk, amelyhez numerikus integrálformulákat használhatunk. Egy *integrálformula*

11.3. ábra. 100 mintapont szabályos rácson (bal) és véletlenszerűen (jobb)

11.4. ábra. Az első 10 és 100 mintapont a Halton alacsony diszkrepanciájú sorozatból

általános alakja:

$$\int_{V} f(\mathbf{z}) d\mathbf{z} \approx \frac{1}{M} \cdot \sum_{i=1}^{M} f(\mathbf{z}_{i}) \cdot w(\mathbf{z}_{i}), \tag{11.14}$$

ahol w az integrálformulának megfelelő súlyfüggvény. Az alapvető kérdés az, hogy hol kell felvenni a \mathbf{z}_i mintapontokat ahhoz, hogy a minták számának növelésével gyorsan a tényleges megoldáshoz konvergáljunk.

A legismertebb lehetőség a mintapontok szabályos rácson történő elhelyezése, ami konstans 1/V súlyfüggvénnyel az integrál téglányszabály alkalmazásával történő kiértékeléséhez, nem konstans súlyfüggvényekkel pedig a trapéz szabályhoz illetve a Simpson-szabályhoz vezet. Sajnos ugyanolyan pontosság eléréséhez ezek a formulák egy 1 dimenziós integrálhoz M darab, egy 2 dimenziós integrálhoz M^2 darab, általában egy D dimenziós integrálhoz már M^D darab mintapontot igényelnek, azaz a számítási komplexitás az integrálási tartomány dimenziójának exponenciális függvénye. A jelenség magyarázata az, hogy magas dimenziókban a szabályos rács sorai és oszlopai között nagy űrök tátongnak, ezért a mintapontok nem töltik ki elegendően sűrűn az integrálási tartományt (11.3. ábra). Az M^D darab mintapontigény elfogadhatatlan a magas dimenziójú integráloknál, ezért más stratégia után kell néznünk.

A mintapontokat megválaszthatjuk véletlenszerűen is. A következőképpen láthatjuk be, hogy asszimptotikusan ez is korrekt módon becsüli az integrál értékét. Szorozzuk be és egyszersmind osszuk is el az integrandust egy $p(\mathbf{z})$ valószínűség sűrűség függvénnyel (az osztás kioltja a szorzás hatását, tehát ez nyilván semmiféle változást nem okoz)! Majd ismerjük fel, hogy az így kapott integrál a várható érték képlete! A várható értéket pedig jól becsülhetjük a minták átlagával és a nagy számok törvénye szerint a becslés a tényleges várható értékhez tart. Formálisan:

$$\int_{V} f(\mathbf{z}) d\mathbf{z} = \int_{V} \frac{f(\mathbf{z})}{p(\mathbf{z})} \cdot p(\mathbf{z}) d\mathbf{z} = E\left[\frac{f(\mathbf{z})}{p(\mathbf{z})}\right] \approx \frac{1}{M} \cdot \sum_{i=1}^{M} \frac{f(\mathbf{z}_{i})}{p(\mathbf{z}_{i})}.$$
 (11.15)

A becslés hibáját most a szórás fejezi ki. Legyen a $p(\mathbf{z})$ sűrűségfüggvényű \mathbf{z} valószínűségi változó $f(\mathbf{z})/p(\mathbf{z})$ transzformáltjának szórása σ . Ha a mintákat egymástól függetlenül választjuk ki, akkor az M minta átlagának szórása σ/\sqrt{M} , az integrálási tartomány dimenziójától függetlenül. A szórás és a klasszikus hiba fogalmát ugyancsak a nagy számok törvényei segítségével kapcsolhatjuk össze. Ezek szerint 0.997 valószínűséggel mondhatjuk, hogy M kísérlet elvégzése után az integrálbecslés hibája $3\sigma/\sqrt{M}$ -nél kisebb lesz.

A σ tényezőt úgy csökkenthetjük, hogy a $p(\mathbf{z})$ -t a lehetőségek szerint az integrandussal arányosan választjuk meg, azaz ahol az integrandus nagy, oda sok mintapontot koncentrálunk. Ennek a szóráscsökkentő eljárásnak a neve fontosság szerinti mintavétel (importance sampling).

11.5. ábra. A fontosság szerinti mintavétel hatása — A felső kép csak a koszinuszos taggal arányos sűrűségű mintákkal, az alsó pedig a BRDF és a koszinuszos taggal arányos valószínűségsűrűség felhasználásával készült

A véletlen mintapontokkal dolgozó eljárást *Monte-Carlo módszer*nek nevezzük, amelynek nagy előnye, hogy a komplexitása nem függ a tartomány dimenziójától [Sob91]. A véletlen pontsorozatok magasabb dimenzióban egyenletesebbek, mint a szabályos rácsok. Megjegyezzük, hogy léteznek olyan determinisztikus pontsorozatok, amelyek még a véletlen pontsorozatoknál is egyenletesebben töltik ki a rendelkezésre álló teret. A nagyon egyenletes eloszlás miatt *alacsony diszkrepanciájú sorozat*oknak nevezik őket (11.4. ábra) [Nie92, PFTV92, Knu81, Sob91].

Végtelen dimenziós integrálok kiértékelése

Az árnyalási egyenlet megoldásánál a kiértékelendő integrálok alakja $n=1,2,\ldots\infty$ értékre a következő:

$$(\mathcal{T}^n L^e)(\vec{x}_1, \omega) = \int_{\Omega_1} \dots \int_{\Omega_n} r_1 \cdot \dots \cdot r_n \cdot L^e \, d\omega_n \dots d\omega_1, \tag{11.16}$$

ahol r_i az i. visszaverődés BRDF-je és koszinusz tényezője. Elvileg végtelen sok ilyen integrált kellene kiértékelni, amelyek dimenziója szintén végtelenhez tart. Ezt nyilván nem tudjuk elvégezni, ezért valahogy határt kell szabni a számításoknak. Például mondhatjuk azt, hogy csak legfeljebb $n_{\rm max}$ visszaverődésig vagyunk hajlandók szimulálni a fény útját, így csak $n_{\rm max}$ darab integrált kell számítanunk, ahol az utolsó dimenziója $2n_{\rm max}$ (egy irányt két skalár jellemez). Ez az elhanyagolás nyilván torzítja a becslésünket.

Szerencsére egy ügyes trükkel kiküszöbölhetjük ezt a hibát. A jól ismert pisztolyos "játék" analógiája miatt orosz rulettnek nevezett módszer lényege a következő. Miután a bolyongás i. lépését megtettük, véletlenszerűen eldöntjük, hogy folytassuk-e a bolyongást vagy sem. Dobjunk fel egy kétforintost, amely p_i valószínűséggel esik arra az oldalra, hogy folytassuk a bolyongást és $1-p_i$ valószínűséggel arra, hogy fejezzük be. Ha nem folytatjuk a bolyongást, az n>i visszaverődésekből származó energia zérus. Ha viszont folytatjuk a bolyongást, akkor a véletlenszerűen elhanyagolt energia kompenzálása érdekében megszorozzuk a számított L^{in} értéket $1/p_i$ -vel. Várható értékben a becslés helyes lesz:

$$E[\tilde{L}^{in}] = p_i \cdot \frac{L^{in}}{p_i} + (1 - p_i) \cdot 0 = L^{in}.$$
 (11.17)

A p_i valószínűséget általában úgy választjuk meg, hogy az az r_i súly integráljával, azaz az *albedo*val (8.23 egyenlet) azonos legyen.

11.1.5. Iteráció

Az *iteráció* alapja az a felismerés, hogy az árnyalási egyenlet megoldása a következő iterációs séma *fixpont*ja:

$$L^{(m)} = L^e + \mathcal{T}L^{(m-1)}. (11.18)$$

Tehát ha az iteráció konvergens, akkor bármely kezdeti függvényből a megoldáshoz konvergál. Az integráloperátor kontrakciós jellege miatt az iteráció konvergens, és a megoldás mindig létezik és egyértelmű. A mért fényteljesítményt ekkor határértékként állítjuk elő:

$$\mathcal{M}L = \lim_{m \to \infty} \mathcal{M}L^{(m)}.$$
 (11.19)

A radianciafüggvény iteráció alatti tárolására véges-elem megközelítést alkalmazhatunk. Legyen most is:

$$L^{(m)} \approx \sum_{j=1}^{n} \mathbf{L}_{j}^{(m)} \cdot b_{j}(p).$$
 (11.20)

Behelyettesítve a 11.18. egyenletbe, majd az egyenletet skalárisan szorozva a bázisfüggvényekkel:

$$\mathbf{L}^{(m)} = \mathbf{L}^e + \mathbf{R} \cdot \mathbf{L}^{(m-1)}. \tag{11.21}$$

Ezzel lényegében a véges-elemes megközelítésből adódó lineáris egyenletrendszer iterációs megoldásához jutunk.

11.2. Diffúz eset: radiosity

Tekintsük azt az egyszerűsített esetet, amikor minden felület csak diffúz módon sugároz, és a fényforrások is csak diffúz emisszióra képesek. Ekkor a radiancia irányfüggetlen. A véges-elem megközelítéshez osszuk fel a felületeket kis elemi poligonokra! Az i. poligon területét és pontjainak halmazát jelöljük ΔA_i -vel. A bázis-függvények diffúz esetben szintén csak a pozíciótól függnek. Tehát a véges-elem közelítés formális alakja:

$$L(\vec{x}) \approx \sum_{j=1}^{n} \mathbf{L}_{j} \cdot b_{j}(\vec{x})$$
 (11.22)

ahol egy alkalmasan választott bázis:

$$b_i(\vec{x}) = \begin{cases} 1 \text{ ha } \vec{x} \in \Delta A_i, \\ 0 \text{ egyébként.} \end{cases}$$
 (11.23)

A véges-elem módszerből kapott lineáris egyenletrendszer:

$$\mathbf{L} = \mathbf{L}^e + \mathbf{R} \cdot \mathbf{L} \implies (\mathbf{1} - \mathbf{R}) \cdot \mathbf{L} = \mathbf{L}^e.$$
 (11.24)

ahol a 11.6 egyenlet szerint:

$$\mathbf{R}_{ij} = \frac{\langle Tb_j(\vec{x}), b_i(\vec{x}) \rangle}{\langle b_i, b_i \rangle} = \frac{1}{\Delta A_i} \cdot \int_S \int_\Omega b_j(h(\vec{x})) \cdot f_r(\vec{x}) \cdot \cos \theta_{\vec{x}}' \, d\omega' \cdot b_i(\vec{x}) \, d\vec{x}. \quad (11.25)$$

A térszög definíciója szerint

$$b_j(h(\vec{x})) \cdot d\omega' = v(\vec{x}, \vec{y}) \cdot \frac{\cos \theta_{\vec{y}} \cdot d\vec{y}}{r^2},$$

ahol $r = |\vec{x} - \vec{y}|$ az \vec{x} és \vec{y} pontok távolsága, $v(\vec{x}, \vec{y})$ pedig a *láthatósági indikátor függvény*, amely 1 értéket vesz fel, ha a két pont látja egymást, illetve 0 értéket, ha a két pontot valami eltakarja egymás elől. Behelyettesítve a 11.25. egyenletbe:

$$\mathbf{R}_{ij} = \frac{1}{\Delta A_i} \cdot \int_{S} \int_{S} v(\vec{x}, \vec{y}) \cdot b_j(\vec{y}) \cdot b_i(\vec{x}) \cdot f_r(\vec{x}) \cdot \frac{\cos \theta'_{\vec{x}} \cdot \cos \theta_{\vec{y}}}{r^2} d\vec{y} d\vec{x}.$$
 (11.26)

Vezessük be a diffúz reflektanciát a $\varrho = f_r \cdot \pi$ egyenlettel! A diffúz reflektancia a felület albedoja, amely azt fejezi ki, hogy a felület a beérkező energia hányad részét veri vissza a féltérbe.

Mivel az i. bázisfüggvény az i. felületelemen 1, azon kívül pedig zérus, a 11.25. egyenlet a következő alakra hozható:

$$\mathbf{R}_{ij} = \frac{\langle \mathcal{T}b_j(\vec{x}), b_i(\vec{x}) \rangle}{\langle b_i, b_i \rangle} = \frac{f_i}{\Delta A_i} \cdot \int_{\Delta A_i} \int_{\Delta A_j} v(\vec{x}, \vec{y}) \cdot \frac{\cos \theta'_{\vec{x}} \cdot \cos \theta_{\vec{y}}}{r^2} \, d\vec{y} \, d\vec{x} = \varrho_i \cdot F_{ij}.$$
(11.27)

Az \mathbf{R}_{ij} mátrixelem tehát két tényező, a BRDF és egy geometriától függő tag szorzata. A geometriai tényezőt *forma faktor*nak nevezzük. A forma faktor a j. felületelemről kibocsátott energiának azt a hányadát adja meg, amely éppen az i. felületelemre jut:

$$F_{ij} = \frac{1}{\Delta A_i} \cdot \int_{\Delta A_i} \int_{\Delta A_j} v(\vec{x}, \vec{y}) \cdot \frac{\cos \theta'_{\vec{x}} \cdot \cos \theta_{\vec{y}}}{\pi \cdot r^2} d\vec{y} d\vec{x}.$$
 (11.28)

Az F_{ii} formafaktor jelentése a felület által önmagára sugárzott energiahányad. Mivel az elemi felületek sík poligonok, az F_{ii} zérus.

A formafaktorok bevezetésével a radianciára vonatkozó 11.24 egyenletrendszer a következő alakú lesz:

$$\begin{bmatrix} 1 - \varrho_{1}F_{11} & -\varrho_{1}F_{12} & \dots & -\varrho_{1}F_{1N} \\ -\varrho_{2}F_{21} & 1 - \varrho_{2}F_{22} & \dots & -\varrho_{2}F_{2N} \\ \vdots & & & & \\ -\varrho_{N}F_{N1} & -\varrho_{N}F_{N2} & \dots & 1 - \varrho_{N}F_{NN} \end{bmatrix} \begin{bmatrix} L_{1} \\ L_{2} \\ \vdots \\ L_{N} \end{bmatrix} = \begin{bmatrix} L_{1}^{e} \\ L_{2}^{e} \\ \vdots \\ L_{N}^{e} \end{bmatrix}.$$
(11.29)

A lineáris egyenlet megoldásával a radianciát egyetlen hullámhosszon határozhatjuk meg. Színes képek előállításához legalább három különböző hullámhosszon kell a fényátadás elemzését elvégezni.

Összefoglalva a radiosity módszer alapvető lépései:

- 1. F_{ij} forma faktor számítás.
- 2. A fényforrások (L_i^e) emissziójának leolvasása a $\lambda_1, \lambda_2 \dots \lambda_n$ reprezentatív hullámhosszokon (legegyszerűbb esetben a vörös, zöld és kék szín hullámhosszain).
- 3. A lineáris egyenletrendszer megoldása Gauss-eliminációval vagy iterációval minden egyes reprezentatív hullámhosszra, amelynek eredményeként kapjuk a $L_i^{\lambda_1}$, $L_i^{\lambda_n}$ értékeket.
- 4. A kép generálása a kameraparaméterek figyelembevételével elvileg bármely takarási algoritmus felhasználásával.

A módszer direkt végrehajtása szögletes képeket eredményez azon feltételezés miatt, hogy a felületelemek radianciája állandó. Ez a kellemetlen vizuális hatás eltüntethető *Gouraud-árnyalás* segítségével. A Gouraud-árnyalás alkalmazása esetén először az egy csúcspontban illeszkedő felületek radianciáinak az átlagát hozzárendeljük a csúcsponthoz. Majd minden felületelem belsejében a radianciát a csúcspontjainak a radianciáiból lineáris interpolációval határozzuk meg.

11.2.1. Forma faktor számítás

A forma faktorok meghatározásának több módszere is geometriai megfontolásokon alapul. Ezek az eljárások a forma faktor integrált valamely közvetítő felületen értékelik ki. A közvetítő felület lehet félgömb [GCT86], félkocka [CG85], tetraéder [BKP91], sík, stb. A geometriai módszerek a forma faktor kettős integráljából a külső integrált egyszerű, egypontos téglányszabállyal közelítik:

$$F_{ij} = \frac{1}{\Delta A_i} \cdot \int_{\Delta A_i} \int_{\Delta A_j} v(\vec{x}, \vec{y}) \cdot \frac{\cos \theta'_{\vec{x}} \cdot \cos \theta_{\vec{y}}}{\pi \cdot r^2} d\vec{y} d\vec{x} \approx \int_{\Delta A_j} v(\vec{x}_i, \vec{y}) \cdot \frac{\cos \theta'_{\vec{x}_i} \cdot \cos \theta_j}{\pi \cdot r^2} d\vec{y},$$
(11.30)

ahol \vec{x}_i az *i*. poligon középpontja.

Nusselt [SH81] észrevette, hogy ez a képlet azon alakzat területének π -ed részét határozza meg, amelyet a ΔA_j -nak az \vec{x}_i -ből látható pontjainak az \vec{x}_i fölé emelt félgömbre vetítésével, majd onnan a félgömb alapkörére történő továbbvetítésével kapunk. Tehát a formafaktorok számításához ezt a területet kell meghatározni. A félgömb központi szerepének elismeréseként az algoritmust *félgömb algoritmus*nak (hemisphere) nevezzük.

11.6. ábra. Radiosity módszerrel készült kép

11.7. ábra. A félgömb algoritmus geometriai háttere

Az i. poligonra az összes F_{ij} forma faktor meghatározható egyetlen olyan láthatósági számítással, ahol az ablak a félgömb felülete, a szempozíció pedig az i. poligon középpontja. Bontsuk fel az alapkör területét P^2 darab azonos területű kis "pixelre", és minden pixel félgömbre vetített pontján keresztül keressük meg a látható felületet. Ha a j. felület n_j darab pixelnek megfelelő irányban látszik, akkor az F_{ij} formafaktor becslése n_j/P^2 .

A bonyolult ablak miatt a félgömb algoritmus általában sugárkövetést használ, ami nem kellően gyors. Az ablak formája szerencsére egyszerűsíthető, és közvetítő felületként *félkocka (hemicube)* alakzatot [CG85] vagy akár *derékszögű tetraéder*t [BKP91] alkalmazhatunk. A *félkocka algoritmus*ban a láthatóságot a félkocka 5 oldallapjára, a *derékszögű tetraéder algoritmus*ban a három oldallapra kell meghatározni. Mivel ezek egyszerű téglalapok (a tetraéder esetén kiterjeszthető egyszerű téglalappá), az inkrementális képszintézisben megismert gyors láthatósági algoritmusok az eredeti formájukban használhatók.

11.8. ábra. Forma faktor számítás félkockával

A közvetítő geometria megváltoztatását kompenzálnunk kell a területszámítás során. Ezért ezekben az algoritmusokban nem csupán a pixelek számát összegezzük, hanem a pixelek helyének megfelelően súlyfüggvényeket használunk. A súlyfüggvények az egységnyi magasságú és 2 egység szélességű és mélységű félkocka z, y és x tengelyekre merőleges lapjain (11.8. ábra):

$$w_z = \frac{1}{\pi(x^2 + y^2 + 1)^2}, \ w_y = \frac{z}{\pi(x^2 + z^2 + 1)^2}, \ w_x = \frac{z}{\pi(z^2 + y^2 + 1)^2}.$$
 (11.31)

A félkocka módszer z-bufferes takarási algoritmussal kombinált változata a következő-

képpen néz ki:

11.2.2. A lineáris egyenletrendszer megoldása

A radiosity módszer alkalmazása során adódó lineáris egyenletrendszert elvileg több különböző módszerrel is megoldhatjuk. Az egyik legkézenfekvőbb módszer, a *Gauss-elimináció* numerikusan instabil, és időigénye az ismeretlenek számának köbével arányos (a poligonszám gyakran a $10^4..10^6$ tartományba esik).

Az Gauss-elimináció helyett az iterációt használhatjuk:

$$\mathbf{L}^{(m+1)} = \mathbf{R} \cdot \mathbf{L}^{(m)} + \mathbf{L}^e. \tag{11.32}$$

Az iteráció konvergenciáját az biztosítja, hogy az \mathbf{R} mátrix ∞ -normája a maximális diffúz reflektanciát nem haladhatja meg, ami pedig fizikailag plauzibilis modelleknél 1-nél kisebb.

Ha a felületek saját emissziójával indulunk az iteráció egyes lépései mindig eggyel több visszaverődést építenek be a megoldásba:

$$\mathbf{L}^{(0)} = \mathbf{L}^{e},$$

$$\mathbf{L}^{(1)} = \mathbf{R} \cdot \mathbf{L}^{(0)} + \mathbf{L}^{e} = \mathbf{R} \cdot \mathbf{L}^{e} + \mathbf{L}^{e},$$

$$\mathbf{L}^{(2)} = \mathbf{R} \cdot \mathbf{L}^{(1)} + \mathbf{L}^{e} = \mathbf{R}^{2} \cdot \mathbf{L}^{e} + \mathbf{R} \cdot \mathbf{L}^{e} + \mathbf{L}^{e},$$

$$\vdots$$

$$\mathbf{L}^{(m)} = \mathbf{R} \cdot \mathbf{L}^{(m-1)} + \mathbf{L}^{e} = \mathbf{R}^{m} \cdot \mathbf{L}^{e} + \mathbf{R}^{m-1} \cdot \mathbf{L}^{e} + \dots + \mathbf{L}^{e}.$$
(11.33)

A konvergencia sebessége növelhető, ha a normál (ún. *Jacobi-iteráció*) helyett *Gauss-Seidel-iteráció*t használunk vagy a *szukcesszív túlrelaxálás* módszerét alkalmazzuk [R76].

11.2.3. Progresszív finomítás

A progresszív finomítás [CCWG88] speciális iterációs eljárás, ami a numerikus matematikában Southwell-iteráció néven ismeretes.

A normál iteráció minden egyes lépése az összes poligon radianciáját továbbadja. Ez a teljes formafaktor mátrix előállítását igényli (elrettentésképpen, ha a poligonok száma 10^5 , a formafaktorok száma 10^{10}), ráadásul csak az időt pazaroljuk olyan poligonok esetében, amelyeknek a radianciája zérus, vagy legalábbis elhanyagolható. Ha viszont csak egy vagy néhány poligon radianciáját adnánk tovább, akkor a többi poligon radianciája elveszne az iteráció során, ami a végső képben energiahiányhoz vezetne. A megoldást olyan iterációs séma kidolgozása jelenti, ahol nyilvántartjuk, hogy melyik felületről, mennyi radianciát adtunk tovább, és mennyi vár még továbbadásra (így energia nem vész el az iteráció alatt) és egy iterációs lépésben csak annak a poligonnak a még át nem adott radianciáját szórjuk a térbe a többi felület felé, amelyiknek a még szét nem szórt energiája maximális. Mivel minden iterációs lépésben csak egyetlen poligon radianciáját lőjük szét a térben, a formafaktor mátrixnak mindig csak egyetlen oszlopára van szükségünk, így a normál iteráció gigantikus memóriaigényétől megszabadulhatunk.

Az j. poligonnak az U_j még szét nem szórt radianciájának a szétszórása az i. poligon még szét nem szórt radianciáját $\varrho_j \cdot F_{ij} \cdot U_i$ értékkel növeli, azaz egyetlen poligon energiájának a szórásához a forma faktor mátrix egy oszlopát kell ismernünk. Egy félkocka lépéssel a forma faktor mátrix egy sorát tudjuk meghatározni, ezt a tudást azonban közvetlenül hasznosíthatjuk a mátrix oszlopának előállításakor is, hiszen:

$$F_{ji} \cdot \Delta A_j = F_{ij} \cdot \Delta A_i \implies F_{ij} = F_{ji} \cdot \frac{\Delta A_j}{\Delta A_i} \quad (i = 1, \dots, N)$$
 (11.34)

Ezek alapján az iteratív algoritmus:

```
for j=1 to N do L_j=L_j^e,\ U_j=L_j^e do j=\text{a maximális }U_j\cdot A_j \text{ értékkel rendelkező felület indexe }F_{j1},F_{j2},\ldots,F_{jN} \text{ számítása egy félkockával }  for i=1 to N do \Delta L_i=\varrho_i\cdot U_j\cdot F_{ji}\cdot \Delta A_j/\Delta A_i U_i+=\Delta L_i L_i+=\Delta L_i endfor U_j=0 error=\max\{U_1,U_2,...,U_N\} while error>\epsilon
```

Belátható, hogy ez az algoritmus is mindig konvergens, ha a diffúz reflektanciák egynél kisebbek [SKe95].

11.3. Véletlen bolyongáson alapuló algoritmusok

Az expanziós eljárás magas dimenziójú integrálok kiértékelésére vezeti vissza az árnyalási (vagy potenciál) egyenlet megoldását. A magas dimenziójú integráloknál a klaszszikus integrálformulák exponenciális komplexitása miatt Monte-Carlo eljárásokat kell alkalmaznunk. Ez azt jelenti, hogy az integrálszabály mintapontjait véletlenszerűen választjuk ki. Mivel az árnyalási egyenlet változói irányok, ez olyan sugárkövető eljárásra vezet, ahol a következő irányt véletlenszerűen választjuk ki. Intuitíve az eljárás olyan, mintha véletlenszerűen bolyonganánk a térben.

A Monte-Carlo integrálás elveinek ismertetésénél láttuk, hogy a véletlen irányokat célszerű olyan valószínűség eloszlásból generálni, ami arányos az integrandussal, azaz a radiancia, a BRDF valamint a felületi normális és az irány koszinuszának szorzatával. Sajnos a bejövő radianciát nem ismerjük (éppen azért számolunk, hogy ezt meghatározzuk), ezért a fontosság szerinti mintavételt általában csak a koszinuszos taggal súlyozott BRDF fontos irányai szerint végezzük el.

A véletlen bolyongáson alapuló algoritmusokat aszerint osztályozhatjuk, hogy azok az árnyalási egyenletet megoldó gyűjtősétákat tesznek, vagy pedig a potenciál egyenletet megoldó lövősétákat követnek.

11.3.1. Inverz fényútkövetés

A Kajiya által javasolt *inverz fényútkövetés* (path tracing) [Kaj86] véletlen gyűjtősétákkal dolgozik. A szempozícióból indulunk, akár a sugárkövetésnél, de most minden

11.9. ábra. Inverz fényútkövetés

egyes metszéspontnál véletlenszerűen választjuk ki a továbbhaladási irányt, mégpedig olyan valószínűség-sűrűségfüggvény szerint, ami arányos a BRDF és a kilépő szög koszinuszának a szorzatával. Minden lépés után az orosz rulett szabályai szerint, az albedonak megfelelő valószínűséggel folytatjuk a bolyongást.

A fontosság szerinti mintavétel és az orosz rulett súlya együttesen kioltja a BRDFeket és a koszinuszos tagokat. Így a bolyongás végén leolvasott emissziót semmilyen tényezővel sem kell szorozni, csupán az átlagolást kell elvégezni.

Fénykövetés

A fénykövetés (light tracing) [DLW93] lövősétákat alkalmaz. Az egyes séták kezdőpontját és irányát véletlenszerűen választjuk ki a fényforrások pontjaiból és a sugárzási irányaiból. A fénysugár az indítása után véletlenül verődik ide-oda a térben. Az irányokat a BRDF és a koszinuszos tag szorzatával arányos valószínűség-sűrűségfüggvényből mintavételezzük, a bolyongást minden lépés után az orosz rulett felhasználásával, az albedoval megegyező valószínűséggel folytatjuk.

11.10. ábra. Fénykövetés

Minden visszaverődési pontot összekötünk a szempozícióval, és ellenőrizzük, hogy lehet-e ennek hatása valamely pixelre. Ha lehet, a pixel színéhez hozzáadjuk a visszaverődés hatását.

Kétirányú fényútkövetés

A kétirányú fényútkövetés (bi-directional path tracing) [LW93, VG95] az inverz fényút-követés és a fénykövetés kombinációja. Ez a módszer egyszerre indít egy gyűjtősétát és egy lövősétát majd a két séta végpontjait összeköti.

11.11. ábra. Kétirányú fényutak egyetlen összekötő sugárral

11.12. ábra. Kétirányú fényutak az összes lehetséges összekötő sugárral

Ha az összekötő sugár útjába más objektumok kerülnek, a fényút által szállított energia zérus, egyébként pedig a lövőséta végén érvényes teljesítményt kell radianciává alakítani, majd a gyűjtősétával a szembe szállítani. Az átalakításhoz a lövőséta teljesítményét a

$$\frac{\cos\theta'\cdot\cos\theta}{r^2}$$

tényezővel kell szorozni, ahol az r az összekötő sugár hossza, θ' illetve θ pedig a gyűjtőséta és a lövőséta utolsó felületelemein érvényes normálvektorok és az összekötő sugár által bezárt szögek.

Az algoritmust tovább javíthatjuk, ha nem csak a két séta végpontjait, hanem az összes pontját összekötjük (11.12. ábra).

Foton térkép

A kétirányú fényútkövetés egy gyűjtősétát egyetlen lövősétával köt össze. Milyen jó lenne, ha először a lövősétákat számíthatnánk ki, és a gyűjtősétákat pedig nem csupán egyetlen egy, hanem egyszerre az összes lövősétával megpróbálnánk összekötni. Kívánságunkat a foton térképek [JC95, Jen96, JC98] alkalmazásával teljesíthetjük. A *foton térkép* (*photon-map*) olyan adatstruktúra, amely a sok lövőséta hatását tömören tárolja.

11.13. ábra. Foton térkép

A foton térkép a foton találatok gyűjteménye. Egy találatot a foton által a különböző hullámhosszokon szállított energiával (ez nem fizikai foton, ami csak egy hullámhoszszon visz energiát), a találat helyével, a foton érkezési irányával és a felületi normálissal együtt tárolunk. A foton találatokat a hatékony előkeresés érdekében *kd-fa* adatstruktúrába szervezzük. A gyűjtőséták alatt az árnyalási egyenlet következő közelítésével dolgozunk:

$$L(\vec{x}, \omega') = \int_{\Omega} L(h(\vec{x}, -\omega'), \omega') \cdot f_r(\omega', \vec{x}, \omega) \cdot \cos \theta' \ d\omega' =$$

$$\int_{\Omega} \frac{d\Phi(\omega')}{dA\cos\theta'd\omega'} \cdot f_r(\omega', \vec{x}, \omega) \cdot \cos\theta' \ d\omega' \approx \sum_{i=1}^{n} \frac{\Delta\Phi(\omega_i')}{\Delta A} \cdot f_r(\omega_i', \vec{x}, \omega), \quad (11.35)$$

ahol $\Delta\Phi(\omega_i')$ a ΔA felületre a ω_i' irányból érkező foton energiája. A $\Delta\Phi$ és a ΔA mennyiségeket a \vec{x} pont környezetében található foton találatok tulajdonságaiból approximáljuk a következő eljárással: Az \vec{x} köré egy gömböt teszünk, amelyet addig pumpálunk, amíg az éppen n foton találatot tartalmaz (az n az algoritmus globális paramétere). Ha ekkor a gömb sugara r, akkor a felületelem területe $\Delta A = \pi r^2$.

11.4. Program: inverz fényútkövetés

A következőkben a sugárkövető programunkat úgy módosítjuk, hogy a metszéspontokban véletlenszerűen generálja a következő irányt. A fontosság szerinti mintavétel alkalmazásához a folytatási irány valószínűségsűrűsége a BRDF és a koszinuszos tényező szorzatával arányos, ezért először a BRDF modelleket egészítjük ki egy-egy Reflection tagfüggvénnyel, amely előállítja a megfelelő L véletlen irányt és visszaadja ennek a valószínűségét is. A UNIFORM(i) makro Monte-Carlo algoritmusoknál a [0, 1] intervallumba eső véletlen számokat állít elő. Alacsony diszkrepanciájú sorozatoknál azonban a UNIFORM(i) a i. független sorozat következő elemét adja vissza.

```
class DiffuseMaterial : virtual public Material {
//----
   SColor Kd;
public:
   DiffuseMaterial( SColor kd0 ) : Kd(kd0) { }
   SColor& kd() { return Kd; }
   SColor BRDF (Vector3D& L, Vector3D& N, Vector3D& V) { return Kd; }
   double Reflection(Vector3D& L, Vector3D& N, Vector3D& V, int d) {
       double u = UNIFORM(3*d + 3), v = UNIFORM(3*d + 4);
       double theta = asin(sqrt(u)), phi = M_PI * 2.0 * v;
       Vector3D O = N % Vector3D(0, 0, 1);
       if (O.Length() < EPSILON) O = N % Vector3D(0, 1, 0);
       Vector3D P = N % O;
       L = N * cos(theta) + O * sin(theta) * cos(phi) +
           P * sin(theta) * sin(phi);
       double prob = cos(theta) / M_PI;
       return prob;
   double AverageAlbedo( Vector3D& N, Vector3D& V ) {
       return Kd.Luminance() * M_PI;
};
```

```
class SpecularMaterial : virtual public Material {
//-----
   SColor Ks;
   double shine;
public:
   SpecularMaterial(): Ks(0) { shine = 10; }
   SColor& ks() { return Ks; }
   double& Shine() { return shine; }
   SColor BRDF (Vector3D& L, Vector3D& N, Vector3D& V);
   double Reflection(Vector3D& L, Vector3D& N, Vector3D& V, double d) {
       double u = UNIFORM(3*d + 3), v = UNIFORM(3*d + 4);
       double cos_ang_V_R = pow(u, 1.0/(shine+1));
       double sin_ang_V_R = sqrt(1.0 - cos_ang_V_R * cos_ang_V_R);
       Vector3D O = V % Vector3D(0, 0, 1);
       if (0.Length() < EPSILON) O = V % Vector3D(0, 1, 0);
       Vector3D P = 0 % V;
       Vector3D R = 0 * sin_anq_V_R * cos(2.0 * M_PI * v) +
                  P * sin\_ang\_V\_R * sin(2.0 * M\_PI * v) +
                  V * cos_ang_V_R;
       L = N * (N * R) * 2.0 - R;
       double cos_ang_N_L = N * L;
       if (cos_ang_N_L < 0) return 0;
       double prob = (shine+1)/2/M_PI * pow(cos_ang_V_R, shine);
       return prob;
   double AverageAlbedo( Vector3D& N, Vector3D& V ) {
       return ks().Luminance();
   }
};
```

Az egyszerre többféle visszaverődési tulajdonságot mutató anyagokat úgy kezelhetjük, hogy a visszaverődés során véletlenszerűen választunk egy visszaverődési típust és a következő sugárirányt ezen típusnak megfelelően határozzuk meg. A fontosság szerinti mintavételezés elve szerint a modellek között az átlag albedojuk arányában kell választani. A GeneralMaterial osztály SelectReflectionModel tagfüggvénye az átlagalbedo szerint véletlenszerűen választja ki a következő Reflection függvény által felhasznált visszaverődés típust (a választás eredménye a selected változóba kerül). Az ily módon generált irányból érkező fényt természetesen a kiválasztott típusnak megfelelő BRDF-el kell szorozni. Mivel annak valószínűsége zérus, hogy az ideális visszaverődés vagy törés éppen egy pont- vagy iránytípusú absztrakt fényforrást talál telibe, a direkt megvilágítás számításához csak a diffúz és spekuláris visszaverődés összegét kell figyelembe venni. Ehhez a DeselectReflectionModel függvény alaphelyzetbe állítja a selected változót.

```
class GeneralMaterial: public DiffuseMaterial, public SpecularMaterial,
                    public IdealReflector, public IdealRefractor {
//----
   enum {NO, DIFFUSE, SPECULAR, REFLECTOR, REFRACTOR, ALL} selected;
public:
   GeneralMaterial() { selected = ALL; }
   double SelectReflectionModel(Vector3D& L, Vector3D& N,
                              Vector3D& V, int d) {
       double akd = DiffuseMaterial :: AverageAlbedo(N, V);
       double aks = SpecularMaterial :: AverageAlbedo(N, V);
       double akr = kr().Luminance();
       double akt = kt().Luminance();
       double r = UNIFORM(3*d + 2);
       if ((r -= akd) < 0) { selected = DIFFUSE; return akd; }
       if ((r -= aks) < 0) { selected = SPECULAR; return aks; }
       if ((r -= akr) < 0) { selected = REFLECTOR; return akr; }
       if ((r -= akt) < 0) { selected = REFRACTOR; return akt; }
       selected = NO; return 0.0;
                                          // orosz rulett
   double Reflection (Vector3D& L, Vector3D& N, Vector3D& V,
                    BOOL out, int d) {
       switch (selected) {
       case DIFFUSE: return DiffuseMaterial :: Reflection(L, N, V, d);
       case SPECULAR: return SpecularMaterial :: Reflection(L, N, V, d);
       case REFLECTOR: return (double)ReflectionDir(L, N, V);
       case REFRACTOR: return (double) RefractionDir(L, N, V, out);
       default:
                     return 0;
   void DeselectReflectionModel() { selected = ALL; }
   SColor BRDF (Vector3D& L, Vector3D& N, Vector3D& V) {
       double cost;
       switch (selected) {
       case DIFFUSE: return DiffuseMaterial :: BRDF(L, N, V);
       case SPECULAR: return SpecularMaterial :: BRDF(L, N, V);
       case REFLECTOR: cost = N * L;
                      if (cost > EPSILON) return (kr() / cost);
                                        return SColor(0);
                      else
       case REFRACTOR: cost = -(N * L);
                      if (cost > EPSILON) return (kt() / cost);
                      else
                                        return SColor(0);
       case ALL:
                      return (DiffuseMaterial :: BRDF(L, N, V) +
                             SpecularMaterial :: BRDF(L, N, V));
       default:
                     return SColor(0);
   }
};
```

Az inverz fényútkövetés módszerét a PathTrace tagfüggvényben implementáltuk, amely a fényút irányait rekurzív módon véletlenszerűen határozza meg. A sugár színének meghatározásához először megkeressük a sugár kezdőpontjához legközelebbi felületi pontot és ebben a pontban kiszámítjuk a saját emissziót, valamint az ambiens fény és a direkt fényforrások hatását. Ezután az átlagalbedoknak megfelelően visszaverődési modellt választunk, majd a választott modellnek megfelelően véletlen fényirányt állítunk elő. A fényirányból érkező fényt a PathTrace rekurzív hívásával számítjuk ki, amit a választott modell szerinti BRDF-fel szorzunk és a fontosság szerinti mintavételezés képletének megfelelően a kiválasztási valószínűséggel osztunk.

```
SColor Scene :: PathTrace(Ray r, int d) {
//----
   if (d > MAXDEPTH) return La;
   Point3D x;
   Primitive3D * q = Intersect(r, x);
   if (q == NULL) return La;
   Vector3D normal = q \rightarrow Normal(x);
   BOOL out = TRUE;
   if (normal * (-r.Dir()) < 0) { normal = -normal; out = FALSE; }
   SColor c = q \rightarrow Le(x, -r.Dir()) + q \rightarrow ka(x) * La;
   q -> DeselectReflectionModel();
   c += DirectLightsource(q, -r.Dir(), normal, x);
   double prob = q->SelectReflectionModel(normal, -r.Dir(), x );
                                                  // orosz rulett
   if (prob < EPSILON) return c;
   Vector3D newdir;
   prob *= q->Reflection( newdir, normal, -r.Dir(), x, out );
   if (prob < EPSILON) return c;
   double cost = newdir * normal;
   if (cost < 0) cost = -cost;
   if (cost > EPSILON) {
       SColor w = q - BRDF (newdir, normal, -r.Dir(), x) * cost / prob;
       if (w.Luminance() > EPSILON)
           c += PathTrace(Ray(x, newdir), d+1) * w;
   return c;
}
```

Az inverz fényútkövetés az egyes pixelekhez tartozó fényutak hatásának átlagolásával határozza meg a pixelek színét. Most az első irány nem a pixel középpontján megy keresztül, hanem a pixel területén egyenletes valószínűségeloszlás szerint véletlenszerűen választjuk.

12. fejezet

Raszteres képek csipkézettségének a csökkentése

A képszintézis *raszterizáció*s lépése a folytonos geometriát diszkrét pontokban mintavételezi, majd a képet kis téglalapokból rakja össze. A *mintavételezési eljárás* minősége a felbontástól függ, de tökéletes sohasem lehet, ugyanis a geometriában hirtelen változások is előfordulhatnak, aminek következményeként a kép Fourier-transzformáltjában tetszőlegesen magas frekvenciák is megjelennek. Mint ismeretes, a mintavételezés következményeként az eredeti jel Fourier-transzformáltja periodikusan megismétlődik, így az eredetileg magas frekvenciájú komponensek "álruhában" alacsony frekvencián is feltűnhetnek. Ezt nevezzük *alias* jelenségnek. A mintavételezett jel analóg rekonstrukciója a kép konstans színű téglalapokkal történő előállításával történik, ami ugyancsak messze van az optimálistól. A mintavételezési és visszaállítási hibák együttesen a raszteres képek *csipkézettség*éhez vezetnek.

A hibák csökkentésére a következő lehetőségek állnak rendelkezésre:

- A rasztertár és a képernyő felbontásának, azaz a mintavételi frekvenciának a növelése. Ennek a megközelítésnek erős technológiai korlátai vannak, ráadásul az emberi szem igen érzékeny a csipkék periodikus mintázataira, így még nagy felbontásnál is kiszúrja ezeket.
- 2. Az alias jelenséget kiküszöbölhetjük, ha a geometriát a mintavételezés előtt szűrjük, annak érdekében, hogy a Fourier-transzformáltja sávkorlátozott legyen. Ez az eljárás a raszterizációt valamilyen aluláteresztő szűrővel kombinálja. A nagyfrekvenciás viselkedést persze ez a módszer is torzítja, de legalább megakadályozza, hogy a mintavételi frekvencia felénél nagyobb frekvenciájú komponensek az alacsonyfrekvenciás tartományban is feltűnjenek. Ezt a megközelítést előszűrésnek nevezzük.
- 3. A képet a rasztertár felbontásánál nagyobb felbontással számítjuk, majd a beírás

pillanatában a pixelhez tartozó szubpixelek színtartalmait átlagoljuk. A módszer neve *túlmintavételezés* illetve *utószűrés*.

4. A mintavételi pontokat nem egy szabályos rácsból, hanem véletlenszerűen választjuk ki. Ezzel a mintavételi hibák periodikus jellegzetességeit véletlen zajjal cseréljük ki, amely a szem számára sokkal kevésbé zavaró [Coo86, SKe95, SK95]. Ezt sztochasztikus mintavételezésnek nevezzük.

12.1. ábra. Sakktábla szabályos ráccsal történő mintavételezéssel (bal) és sztochasztikus mintavételezéssel (jobb)

12.1. Előszűrés

Tegyük fel, hogy az előállítandó képet a megjelenítés során az x tengely mentén Δx periódussal, az y tengely mentén pedig Δy periódussal mintavételezzük (a képernyő-koordinátarendszerben $\Delta x=1, \Delta y=1$). A mintavételi törvény szerint a mintavételezési frekvencia felénél nagyobb frekvenciák kiszűrése szükséges az alias hatás megszüntetéséhez. A szűrés a frekvenciatartomány helyett a képsíkon is elvégezhető, ha a szűrő súlyfüggvényével konvolváljuk a jelet. Legyen az eredeti jel I(x,y), a szűrő súlyfüggvénye pedig f(x,y). A szűrt jel a következő konvolúciós integrállal állítható elő:

$$I_f(x,y) = I(x,y) * f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(t,\tau) \cdot f(x-t,y-\tau) dt d\tau.$$
 (12.1)

12.1. Előszűrés 231

Az ideális aluláteresztő szűrő súlyfüggvénye a sinc függvény:

$$f(x,y) = \frac{\sin(x \cdot \pi/\Delta x)}{x \cdot \pi/\Delta x} \cdot \frac{\sin(y \cdot \pi/\Delta y)}{y \cdot \pi/\Delta y} = \operatorname{sinc}(\frac{x \cdot \pi}{\Delta x}) \cdot \operatorname{sinc}(\frac{y \cdot \pi}{\Delta y})$$
(12.2)

Sajnos az ezt a függvényt alkalmazó konvolúciós integrál meglehetősen bonyolult, ráadásul negatív — azaz a képernyőn nem ábrázolható — színeket is eredményezhet. Ezért a gyakorlatban közelítő aluláteresztő szűrőket alkalmazunk.

A két legfontosabb szűrőtípus a

1. doboz szűrő:

$$f(x,y) = \begin{cases} 1 \text{ ha } |x| < \Delta x/2 \text{ \'es } |y| < \Delta y/2, \\ 0 \text{ egy\'ebk\'ent.} \end{cases} \tag{12.3}$$

2. kúp szűrő:

$$f(x,y) = \begin{cases} (1-r) \cdot 3/\pi \text{ ha } r < 1, \\ 0 \text{ egyébként,} \end{cases}$$
 (12.4)

ahol
$$r(x, y) = \sqrt{(x/\Delta x)^2 + (y/\Delta y)^2}$$
.

A doboz szűrő alkalmazása után az X, Y pixel középpontban a jel értéke:

$$I_{\text{box}}(X,Y) = \int_{X-0.5}^{X+0.5} \int_{Y-0.5}^{Y+0.5} I(t,\tau) dt d\tau.$$
 (12.5)

Ha a pixelt metsző primitívek (például szakaszok, poligonok, stb.) közül a p. színe I_p , a metszet területe pedig A_p , akkor a pixel szűrt színe:

$$I_{\text{box}}(X,Y) = \sum_{p=1}^{P} I_p \cdot A_p.$$
 (12.6)

12.1.1. A szakaszok csipkézettségének csökkentése

Építsünk be doboz szűrőt a szakaszrajzoló algoritmusba! A 12.6. egyenlet értelmében a pixelek intenzitásait úgy határozhatjuk meg, hogy egy 1 pixel szélességű szakaszt — ún. vonalzót — a raszterhálóra teszünk, és a pixelek színében a szakasz színét a pixelekkel alkotott közös résznek megfelelően súlyozzuk.

Csak az enyhén emelkedő szakaszokkal foglalkozunk. A 12.2. ábra alapján kijelenthetjük, hogy egyetlen oszlopban maximum három pixel metszheti a vonalzónkat. Jelöljük a három pixel és a szakasz közötti függőleges távolságokat r-rel, s-sel t-vel, és tegyük fel, hogy $s < t \le r$! Egyszerű geometriai megfontolások alapján fennállnak a s, t < 1, s + t = 1 és $r \ge 1$ relációk.

12.2. ábra. Szakasz doboz szűrése

A A_s , A_t és A_r területek nem csupán az r,s és t távolságoktól, hanem a szakasz meredekségétől is függnek, azonban ezt a következő közelítésekkel kiküszöbölhetjük:

$$A_s \approx (1-s), \quad A_t \approx (1-t), \quad A_r \approx 0.$$
 (12.7)

Az $y = m \cdot x + b$ szakaszra az s és t paramétereket a következőképpen számíthatjuk ki:

$$s = m \cdot x + b - \text{Round}(m \cdot x + b) = \text{Error}(x) \text{ és } t = 1 - s$$
 (12.8)

ahol az Error(x) a raszteres közelítés hibája.

A doboz szűrő alkalmazásával a két legközelebbi pixel színe:

$$I_s = I \cdot (1 - \text{Error}(x)), \quad I_t = I \cdot \text{Error}(x), \quad (I \text{ az } R, G \text{ \'es } B \text{ komponenseket jelenti}).$$

Az inkrementális elv ezen képletek kiértékelését is egyszerűsíti. Az inkrementális képletek arra az esetre, amikor az y koordinátát nem léptetjük:

$$I_s(x+1) = I_s(x) - I \cdot m,$$
 $I_t(x+1) = I_t(x) + I \cdot m.$ (12.10)

Az inkrementális képletek arra az esetre, amikor az y koordinátát léptetjük:

$$I_s(x+1) = I_s(x) - I \cdot m + I, \quad I_t(x+1) = I_t(x) + I \cdot m - I.$$
 (12.11)

12.1. Előszűrés 233

Végül a Bresenham-algoritmus csipkézettség csökkentővel kiegészített változata:

```
 \begin{aligned} & \text{AntiAliasedBresenhamLine}(x_1,y_1,x_2,y_2,I) \\ & \Delta x = x_2 - x_1, \  \, \Delta y = y_2 - y_1 \\ & E = -\Delta x \\ & dE^+ = 2(\Delta y - \Delta x), \  \, dE^- = 2\Delta y \\ & dI^- = \Delta y/\Delta x \cdot I, \  \, dI^+ = I - dI^- \\ & I_s = I + dI^-, \  \, I_t = -dI^- \\ & y = y_1 \\ & \text{for } x = x_1 \text{ to } x_2 \text{ do} \\ & \text{ if } E \leq 0 \text{ then } E += dE^-, \  \, I_s -= dI^-, \  \, I_t += dI^- \\ & \text{ else } E += dE^+, \  \, I_s += dI^+, \  \, I_t -= dI^+, \  \, y ++ \\ & \text{ Add Frame Buffer}(x,y,I_s) \\ & \text{ Add Frame Buffer}(x,y+1,I_t) \\ & \text{ endfor} \end{aligned}
```

Az "Add Frame Buffer(x,y,I)" rutin a rasztertár tartalmával átlagolja a szakasz színét:

```
\begin{aligned} & \operatorname{color}_{\operatorname{old}} = \operatorname{frame\_buffer}[x,y] \\ & \operatorname{frame\_buffer}[x,y] = \operatorname{color}_{\operatorname{line}} \cdot I + \operatorname{color}_{\operatorname{old}} \cdot (1-I) \end{aligned}
```

Ezeket a sorokat az R, G, B komponensekre külön kell végrehajtani.

12.2. Utószűrés

Az utószűrés a rasztertár felbontásánál nagyobb felbontással számítja ki a képet ($\Delta x = 1/N, \Delta y = 1/N$), majd valamilyen digitális szűrőalgoritmussal határozza meg a tényleges pixelek színét.

$$I_{sf}(X,Y) = \sum_{i} \sum_{j} I(i \cdot \Delta x, j \cdot \Delta y) \cdot f(X - i \cdot \Delta x, Y - j \cdot \Delta y)$$
 (12.12)

Az egyik legegyszerűbb szűrő a doboz szűrő digitális változata:

$$I_{\text{box}}(X,Y) = \frac{1}{(N+1)^2} \sum_{i=-N/2}^{N/2} \sum_{j=-N/2}^{N/2} I(X - i \cdot \Delta x, Y - j \cdot \Delta y)$$
 (12.13)

Ezen képlet azt mondja, hogy a pixel színét a pixelhez tartozó szubpixelek színértékeinek az átlagaként kaphatjuk meg.

12.4. ábra. Poligon rajzolás utószűrés nélkül (felső sor) és utószűréssel (alsó sor)

Az utószűrés jól használható 2D területek és 3D felületek raszterizációja során. A képszintézis algoritmust változtatás nélkül végrehajtjuk a nagyobb felbontásra, majd a rasztertárba írás pillanatában megvalósítjuk az utószűrési műveletet.

Amennyiben a szubpixeleket a pixelen belül nem szabályos rácson, hanem véletlenszerűen helyezzük el, a *sztochasztikus mintavételezés* és az utószűrés házasságához jutunk. A módszert gyakran használják a *sugárkövetés*sel együtt, hiszen az nem igényli a mintavételi pontok szabályos rácsba szervezését. 12.2. Utószűrés 235

12.5. ábra. 100 × 100 felbontással (felső sor) és 200 × 200 felbontással (alsó sor) készült képek. A bal oldalon lévő képeknél nem használtunk csipkézettség csökkentést, a jobb oldali kép viszont sztochasztikus mintavételezés és utószűrés kombinációját használó csipkézettség csökkentő eljárással készült. A pixelek színét 10 mintából doboz szűrővel számítottuk.

12.3. Program: sugárkövetés kiegészítése csipkézettség csökkentéssel

A sugárkövetés könnyen kiegészíthető a sztochasztikus mintavételezés és az utószűrés kombinációját alkalmazó csipkézettségcsökkentő algoritmussal. Ekkor egyetlen pixel színét nem egyetlen sugár követésével számítjuk, hanem több olyan sugárból kapott szín átlagából, amelyeknek a döfési pontja a pixel területén egyenletes eloszlású. Az alábbi programban az UNIFORM(i) jelenthet egy [0,1] tartományban egyenletes eloszlású valószínűségi változót, vagy az i. független alacsony diszkrepanciájú sorozatot is.

13. fejezet

Textúra leképzés

Az árnyalási egyenletben szereplő BRDF nem szükségképpen állandó a felületen, hanem pontról pontra változhat. Változó BRDF-ek segítségével finom részleteket, ún. textúrát tudunk megjeleníteni anélkül, hogy a felületek geometriáját túlságosan elbonyolítanánk.

A változó optikai paramétereket általában egy, a geometriától független koordinátarendszerben, a *textúratér*ben tároljuk. Ebben a térben a textúra megadható függvényként, vagy akár tömbben tárolt adathalmazként is. Az utóbbi esetben egyetlen tömbelem neve textúra elem, vagy röviden *texel*. A textúratér pontjait és a lokális modellezési koordinátarendszerben definiált objektumok felületi pontjait egy transzformációval kell összerendelni. Ezt a transzformációt *paraméterezés*nek nevezzük.

A modellezési transzformáció a lokális modellezési koordinátarendszert a világ-koordinátarendszerbe viszi át, ahol elvégezzük az árnyalási számításokat. A sugárkövetés a takarási feladatot is itt oldja meg. Az inkrementális képszintézis módszerek azonban a világ-koordinátarendszerből továbblépnek a képernyő-koordinátarendszerbe a vetítés és a takarási probléma egyszerűsítésének érdekében. A világ-koordinátarendszerből a pixelekhez vezető transzformációt *vetítés*nek nevezzük (13.1. ábra).

A pixelek és a textúratérbeli pontok közötti kapcsolat bejárására két lehetőségünk van:

- 1. a *textúra alapú leképzés* a textúra térben lévő ponthoz keresi meg a hozzátartozó pixelt.
- 2. a képtér alapú leképzés a pixelhez keresi meg a hozzá tartozó textúra elemet.

A textúra alapú leképzés általában hatékonyabb, de alapvető problémája, hogy nem garantálja, hogy a textúra térben egyenletesen kijelölt pontok képei a képernyőn is egyenletesen helyezkednek el. Így előfordulhat, hogy nem minden érintett pixelt színezünk ki, vagy éppenséggel egy pixel színét feleslegesen sokszor számoljuk ki. A képtér alapú leképzés jól illeszkedik az inkrementális képtér algoritmusok működéséhez,

238 13. Textúra leképzés

13.1. ábra. Textúra leképzés

viszont használatához elő kell állítani a paraméterezési és a vetítési transzformációk inverzét, ami korántsem könnyű feladat.

A textúrák lehetnek 1, 2, sőt 3 [Pea85] dimenziósak. Mi csak a 2 dimenziós esettel foglalkozunk, amely úgy is elképzelhető, hogy a textúrát "rátapétázzuk" a felületekre.

13.1. Paraméterezés

A paraméterezés a 2D textúratér egységnégyzetét az objektum felületére vetíti. A következőkben a legfontosabb primitívtípusok paraméterezési lehetőségeivel ismerkedünk meg.

13.1.1. Explicit egyenlettel definiált felületek paraméterezése

Mivel az explicit egyenlettel definiált felületeket úgyis két, a [0,1] tartományba eső paraméter segítségével definiáljuk, ezen paraméterek közvetlenül alkalmazhatók textúra koordinátaként is. A képtér alapú leképzésnél használt inverz transzformáció, azaz amikor egy [x,y,z]=r(u,v) pontból kell a megfelelő u,v koordinátákat előállítani azonban már nem ilyen egyszerű, mert nemlineáris egyenletek megoldását igényli.

13.2. ábra. Gömb különböző 2D textúrákkal

13.1.2. Háromszögek paraméterezése

A paraméterezés egy textúra térbeli, $v_1(u,v), v_2(u,v), v_3(u,v)$ csúcsú 2D háromszöget képez le egy $\vec{V}_1(x,y,z), \vec{V}_2(x,y,z), \vec{V}_3(x,y,z)$ csúcsú 3D háromszögre. A transzformációtól elvárjuk, hogy a háromszöget valóban háromszögbe vigye át. A legegyszerűbb ilyen transzformáció a lineáris leképzés:

$$[x, y, z] = [u, v, 1] \cdot \begin{bmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{bmatrix} = [u, v, 1] \cdot \mathbf{P}.$$
 (13.1)

Az ismeretlen mátrixelemeket azokból a feltételekből határozhatjuk meg, hogy a $v_1(u,v)$ pontot a $\vec{V}_1(x,y,z)$ pontra kell transzformálni, a $v_2(u,v)$ pontot a $\vec{V}_2(x,y,z)$ -re, a $v_3(u,v)$ -t pedig a $\vec{V}_3(x,y,z)$ -ra.

Képtér alapú leképzéskor az inverz transzformáció szükséges:

$$[u, v, 1] = [x, y, z] \cdot \mathbf{P}^{-1}.$$
 (13.2)

13.2. Textúra leképzés a sugárkövetésben

A sugárkövetés a világ-koordinátarendszerben határozza meg a látható pontokat, amelyekre számítani kell a visszavert radianciát. A világ-koordinátarendszerbeli pontból az inverz modellezési transzformációval először a lokális modellezési koordinátarendszerbe megyünk vissza, majd innen az inverz paraméterezéssel a textúra térbe, ahol a BRDF paraméterek megtalálhatóak.

Explicit egyenlettel definiált felületek esetén a sugár-felület metszéspont számítás során, mintegy melléktermékként kiadódik a metszéspont u,v paramétere is, ami automatikus inverz paraméterezést jelent. Egyéb felületekre az inverz paraméterezést külön el kell végezni.

13.3. Textúra leképzés az inkrementális képszintézisben

Az inkrementális képszintézis algoritmusok az egyes pixelekben látható felületi pontokat a képernyő-koordinátarendszerben keresik meg. Ebben a koordinátarendszerben a látható felületi pontot az (X,Y) pixel cím egyértelműen azonosítja, a Z koordináta csak a takarási feladat megoldásához szükséges, a textúra leképzés során nem.

A paraméterezés tárgyalása során egy homogén lineáris transzformációval teremtettünk kapcsolatot a textúra tér és a lokális modellezési koordinátarendszer között. A lokális modellezési koordinátarendszert a világ-koordinátarendszerrel majd a képernyő-koordinátarendszerrel ugyancsak homogén lineáris transzformációk kapcsolják össze, amit modellezési illetve nézeti transzformációknak neveztünk. Tehát a textúra teret a képernyő-koordinátarendszerbe átvivő transzformáció szintén homogén lineáris transzformáció, ami a paraméterezés, a modellezési transzformáció és a nézeti transzformáció kompozíciója.

A transzformáció általános alakja:

$$[X \cdot q, Y \cdot q, q] = [u, v, 1] \cdot \mathbf{C}_{3 \times 3}. \tag{13.3}$$

Az egyes koordinátákra (c_{ij} a $C_{3\times3}$ mátrix i, j. eleme):

$$X(u,v) = \frac{c_{11} \cdot u + c_{21} \cdot v + c_{31}}{c_{13} \cdot u + c_{23} \cdot v + c_{33}}, \quad Y(u,v) = \frac{c_{12} \cdot u + c_{22} \cdot v + c_{32}}{c_{13} \cdot u + c_{23} \cdot v + c_{33}}.$$
 (13.4)

Az inverz transzformáció pedig (C_{ij} a $\mathbf{C}_{3\times 3}^{-1}$ mátrix i, j. eleme)

$$[u \cdot w, v \cdot w, w] = [X, Y, 1] \cdot \mathbf{C}_{3 \times 3}^{-1}. \tag{13.5}$$

$$u(X,Y) = \frac{C_{11} \cdot X + C_{21} \cdot Y + C_{31}}{C_{13} \cdot X + C_{23} \cdot Y + C_{33}}, \quad v(X,Y) = \frac{C_{12} \cdot X + C_{22} \cdot Y + C_{32}}{C_{13} \cdot X + C_{23} \cdot Y + C_{33}}.$$
(13.6)

A képtér algoritmusok során alkalmazott inverz textúra leképzést az inkrementális koncepció alkalmazásával tehetjük még hatékonyabbá. Legyen az u(X) tényezőt meghatározó hányados számlálója uw(X), a nevezője pedig w(X). Az u(X+1)-t az

13.4. A textúrák szűrése 241

u(X)-ból két összeadással és egyetlen osztással számíthatjuk a következő képlet alkalmazásával:

$$uw(X+1) = uw(X) + C_{11}, \quad w(X+1) = w(X) + C_{13}, \quad u(X+1) = \frac{uw(X+1)}{w(X+1)}.$$
(13.7)

Hasonló összefüggések érvényesek a v koordinátára is.

13.4. A textúrák szűrése

A textúra tér és a képernyő-koordinátarendszer közötti leképzés a textúra tér egyes részeit nagyíthatja, más részeit pedig összenyomhatja. Ez azt jelenti, hogy a képernyőtérben egyenletes sűrűséggel kiválasztott pixel középpontok igen egyenlőtlenül mintavételezhetik a textúrát, ami végső soron mintavételezési problémákat okozhat. Ezért a textúra leképzésnél a mintavételezési problémák elkerülését célzó szűrésnek különleges jelentősége van.

13.3. ábra. A pixel képének approximációja

A textúra szűrés nehézsége abból fakad, hogy a textúra tér és a képtér közötti leképzés nem lineáris. Például, ha doboz szűrést szeretnénk alkalmazni, a pixel textúra térbeli képében kell a texeleket átlagolni, ami szabálytalan, általános görbék által határolt terület. A szokásos eljárások ezt az általános területet egyszerű területekkel, például ellipszissel, négyszöggel, téglalappal vagy négyzettel közelítik (13.3. ábra). 242 13. Textúra leképzés

Négyzettel történő közelítés esetén egyetlen pixel színét ezek után úgy határozhatjuk meg, hogy megkeressük a pixel sarokpontjainak megfelelő textúratérbeli pontokat, előállítjuk a négy pontot tartalmazó legkisebb négyzetet, majd átlagoljuk a négyzetben lévő texelek színeit. A számítási időt integráló táblázatok, ún. *piramis*ok használatával csökkenthetjük.

A képpiramis

A piramisok a textúrát (általános esetben egy képet) több felbontáson tárolják. Két egymást követő tábla felbontásának aránya általában 2. Az egymást követő képeket egy kép piramisként is elképzelhetjük, amelyben a legnagyobb felbontású kép a piramis alján, a legdurvább felbontású pedig a piramis tetején foglal helyet.

13.4. ábra. A textúratár mip-map szervezése

A textúraképeket általában *mip-map adatstruktúrába* szervezik [Wil83] (13.4. ábra), amelyben a $M \times M$ eredeti felbontású MM mip-map tömbben a D szintű textúra u,v koordinátájú pontját a következőképpen kereshetjük meg:

$$\begin{split} R(u,v,D) &= MM[(1-2^{-D})\cdot M + u\cdot 2^{-D}, (1-2^{-D})\cdot M + v\cdot 2^{-D}],\\ G(u,v,D) &= MM[(1-2^{-(D+1)})\cdot M + u\cdot 2^{-D}, (1-2^{-D})\cdot M + v\cdot 2^{-D}],\\ B(u,v,D) &= MM[(1-2^{-D})\cdot M + u\cdot 2^{-D}, (1-2^{-(D+1)})\cdot M + v\cdot 2^{-D}]. \end{split} \tag{13.8}$$

A képpiramis egy speciális képviselője egy rendkívül hasznos elvnek, amit *részletezettségi szintek* elvének (*level of detail (LOD)*) nevezünk. Ez az elv azt mondja,

13.5. Bucka leképzés 243

hogy a különböző modelleket érdemes több különböző pontosságon is nyilvántartani, és valamilyen automatikus mechanizmussal mindig azt a minimális bonyolultságú változatot kiválasztani, ami az adott kameraállásnak még éppen megfelel. A képpiramis a textúrákra és a képekre alkalmazza ezt az elvet. Lényegében hasonló megközelítést alkalmaznak a szimulációs és animációs programok is, amelyek a tárgyakat különböző geometriai pontosságú modellekkel írják le, és a kamera távolsága alapján automatikusan választják az éppen megfelelőt.

13.5. Bucka leképzés

A felületi normálvektor alapvető szerepet játszik BRDF definíciókban. Hepehupás felületek, mint például a kráterekkel tarkított bolygók, sötétebb, illetve világosabb foltokkal rendelkeznek amiatt, hogy a buckákon a normálvektor és a fényforrás által bezárt szög eltérhet az átlagos megvilágítási szögtől.

A hepehupás felületek geometriai modellel történő leírása igen nehéz és keserves feladat lenne, nem beszélve a bonyolult geometrián dolgozó takarási feladat megoldásának szörnyűségeiről. Szerencsére létezik egy módszer, amely lényegesen egyszerűbb, de a hatás tekintetében a geometriai modellekétől nem marad el lényegesen. A módszer, amit bucka leképzésnek (bump-mapping) nevezünk, a textúra leképzéshez hasonló, de most nem a BRDF valamely elemét, hanem a normálvektornak a geometriai normálvektortól való eltérését tároljuk külön táblázatban. A transzformációs, takarási, stb. feladatoknál egyszerű geometriával dolgozunk — a holdat például gömbnek tekintjük — de az árnyalás során a geometriából adódó normálvektort még perturbáljuk a megfelelő táblázatelemmel [Bli78]. Tegyük fel, hogy a buckákat is tartalmazó felület az $\vec{r}(u,v)$ egyenlettel, míg az egyszerű geometriájú közelítése az $\vec{s}(u,v)$ egyenlettel definiálható. Az $\vec{r}(u,v)$ -t kifejezhetjük úgy is, hogy a sima felületet a normálvektorjának irányába egy kis d(u,v) eltolással módosítjuk (13.5. ábra).

13.5. ábra. A buckák leírása

Mivel az $\vec{s}(u,v)$ felület \vec{n}_s normálvektorát a felület (\vec{s}_u,\vec{s}_v) parciális deriváltjainak

vektoriális szorzataiként is kifejezhetjük, a következő kifejezéshez jutunk:

$$\vec{r}(u,v) = \vec{s}(u,v) + d(u,v) \cdot [\vec{s}_u(u,v) \times \vec{s}_v(u,v)]^0 = \vec{s}(u,v) + d(u,v) \cdot \vec{n}_s^0$$
 (13.9)

(0 hatvány az egységvektort jelöli). Az $\vec{r}(u, v)$ felület parciális deriváltjai:

$$\vec{r}_u = \vec{s}_u + d_u \cdot \vec{n}_s^0 + d \cdot \frac{\partial \vec{n}_s^0}{\partial u}, \qquad \vec{r}_v = \vec{s}_v + d_v \cdot \vec{n}_s^0 + d \cdot \frac{\partial \vec{n}_s^0}{\partial v}.$$
 (13.10)

Az utolsó tagok elhanyagolhatók, hiszen mind a d(u,v) eltolás, mind pedig a sima felület normálvektorának változása kicsiny:

$$\vec{r}_u \approx \vec{s}_u + d_u \cdot \vec{n}_s^0, \qquad \vec{r}_v \approx \vec{s}_v + d_v \cdot \vec{n}_s^0. \tag{13.11}$$

A buckás felület normálvektora ezek után:

$$\vec{n}_r = \vec{r}_u \times \vec{r}_v = \vec{s}_u \times \vec{s}_v + d_u \cdot \vec{n}_s^0 \times \vec{s}_v + d_v \cdot \vec{s}_u \times \vec{n}_s^0 + d_u d_v \cdot \vec{n}_s^0 \times \vec{n}_s^0.$$
 (13.12)

Az utolsó tag nyilván zérus a vektoriális szorzat tulajdonságai miatt. Ezen kívül használhatjuk a következő helyettesítéseket:

$$\vec{n}_s = \vec{s}_u \times \vec{s}_v, \quad \vec{s}_u \times \vec{n}_s^0 = -\vec{n}_s^0 \times \vec{s}_u,$$

13.6. ábra. Buckás gömb textúrázott alaplapon

Végül a buckás felület normálvektora a következőképpen közelíthető:

$$\vec{n}_r = \vec{n}_s + d_u \cdot \vec{n}_s^0 \times \vec{s}_v - d_v \cdot \vec{n}_s^0 \times \vec{s}_u. \tag{13.13}$$

A d(u,v) eltolásfüggényt a textúrákhoz hasonló táblázatban tároljuk, amely neve bucka tábla. A buckás felület normálvektora az eltolásfüggvény deriváltjait tartalmazza, amit véges differenciákkal közelíthetünk. Legyen a B bucka tábla egy $N \times N$ méretű tömb. A közelítő deriváltak:

```
\begin{split} U &= \operatorname{Trunc}(u*N), \ V = \operatorname{Trunc}(v*N) \\ &\text{if } U < 1 \text{ then } U = 1 \\ &\text{if } U > N-2 \text{ then } U = N-2 \\ &\text{if } V < 1 \text{ then } V = 1 \\ &\text{if } V > N-2 \text{ then } V = N-2 \\ d_u(u,v) &= (B[U+1,V] - B[U-1,V]) \cdot N/2 \\ d_v(u,v) &= (B[U,V+1] - B[U,V-1]) \cdot N/2 \end{split}
```

13.6. Visszaverődés leképzés

A textúraleképzés egy szellemes alkalmazása az ideális tükrök szimulációja az inkrementális képszintézis keretein belül, amelyet *visszaverődés leképzés*nek (*reflectionmapping*) nevezünk [MH84]. Ennek lényege az, hogy külön képszintézis lépéssel meghatározzuk, hogy mi látszik a tükörirányban, majd a képet textúraként rátapétázzuk a tükröző objektumra (17.17. ábra).

13.7. Program: sugárkövetés kiegészítése textúra leképzéssel

Egy textúra (Texture) texelek tömbjeként adható meg, amely az egységnégyzetbeli ponthoz előkeresi a megfelelő texelt.

Egy textúrázott primitív (TexturedPrimitive3D) a normál primitív és a textúra képességeit hordozza magában. A textúrázott primitívben a normál primitív BRDF-jét átdefiniáljuk, hiszen most az a felület mentén változhat. Jelen esetben a diffúz visszaverődési tényezőt vesszük a textúra tömbből. A felületi pontok és a textúratér koordináták összerendelését a Parameterize tagfüggvény végzi el.

```
class TexturedPrimitive3D: virtual public Primitive3D,
                    public Texture {
//----
public:
  TexturedPrimitive3D (int UMAX, int VMAX)
  : Primitive3D(), Texture(UMAX, VMAX) { }
  SColor BRDF (Vector3D& L, Vector3D& N, Vector3D& V, Point3D& x);
  virtual Point2D Parameterize (Point3D& x) = 0;
};
//----
SColor TexturedPrimitive3D :: BRDF(Vector3D& L, Vector3D& N,
                     Vector3D& V, Point3D& x) {
  Point2D tc = Parameterize(x);
  mat.kd() = Texel(tc.X(), tc.Y());
  return mat.BRDF(L, N, V);
```

A tényleges textúrázott primitívtípusokat az általános típus specializálásával készíthetjük el, amelyben a (Parameterize) tényleges értelmet nyer. Például egy textúrázott gömb (TexturedSphere) definíciója:

14. fejezet

Térfogat modellek és térfogatvizualizáció

Egy térfogat modell (volumetric model) úgy képzelhető el, hogy a 3D tér egyes pontjaiban sűrűségértékeket adunk meg. A feladat tehát egy v(x,y,z) függvény reprezentálása. A gyakorlatban általában térfogatmodellekre vezetnek a mérnöki számítások (pl. egy elektromágneses térben a potenciáleloszlás). Az orvosi diagnosztikában használt CT (számítógépes tomográf) és MRI (mágneses rezonancia mérő) a céltárgy (tipikusan emberi test) sűrűségeloszlását méri, így ugyancsak térfogati modelleket állít elő.

A térfogati modellt általában szabályos ráccsal mintavételezzük, és az értékeket egy 3D mátrixban tároljuk. Úgy is tekinthetjük, hogy egy mintavételi érték a térfogat egy kicsiny kockájában érvényes függvényértéket képviseli. Ezen elemi kockákat térfogatelemnek, vagy *voxel*nek nevezzük.

Nyilván az elemi kockák direkt felrajzolásának nem sok értelme lenne, hiszen ekkor csak a térfogat külső oldalain lévő értékeket láthatjuk (egy páciens fejéről azért csinálunk CT-t, hogy belsejét vizsgálhassuk, nem pedig azért, hogy az arcában gyönyörködjünk). A teljes térfogat áttekintéséhez bele kell látnunk a térfogatba, tehát a térfogati modellt célszerű úgy kezelni, mintha az részben átlátszó anyagból állna. A térfogatot alkotó "ködöt" két alapvetően különböző módon jeleníthetjük meg. A *direkt módszer*ek közvetlenül a térfogati modellt fényképezik le, az *indirekt módszer*ek pedig először átalakítják egy másik modellre, amelyet azután a szokásos módszerekkel jeleníthetünk meg.

14.1. Direkt térfogatvizualizációs módszerek

A direkt módszerek a ködöt a képsíkra vetítik és számba veszik az egyes pixeleknek megfelelő vetítősugarak által metszett voxeleket. A pixelek színét a megfelelő voxelek színéből és átlátszóságából határozzák meg.

Elevenítsük fel a radianciát a fényelnyelő anyagokban leíró 8.34. egyenletet! Feltehetjük, hogy az anyag nem bocsát ki fényt magából. Ekkor egy sugár mentén a radiancia

14.1. ábra. CT és MRI mérések vizualizációja

a fényelnyelés miatt csökken, a sugár irányába ható visszaverődés miatt viszont nő:

$$\frac{dL(s,\omega)}{ds} = -\kappa_t(s) \cdot L(s,\omega) + L_{is}(s). \tag{14.1}$$

Amennyiben $L_{is}(s)$ ismert, az egyenlet megoldása:

$$L(s,\omega) = \int_{s}^{T} e^{-\int_{s}^{\tau} \kappa_{t}(p) dp} \cdot L_{is}(\tau,\omega) d\tau, \qquad (14.2)$$

ahol T a maximális sugárparaméter.

Az integrálok kiértékeléséhez a [0,T] sugárparaméter tartományt kis intervallumokra osztjuk és az integrált téglányszabállyal becsüljük. Ez megfelel a folytonos differenciálegyenletet véges differenciaegyenlettel történő közelítésének:

$$\frac{\Delta L(s,\omega)}{\Delta s} = -\kappa_t(s) \cdot L(s,\omega) + L_{is}(s) \implies$$

$$L(s + \Delta s, \omega) = L(s,\omega) - \kappa_t(s) \cdot \Delta s \cdot L(s,\omega) + L_{is}(s) \cdot \Delta s. \tag{14.3}$$

Jelöljük a $L_{is}(s) \cdot \Delta s$ szórt radianciát C(s)-sel, amit ezek után a voxel saját színének tekintünk. Az $\alpha(s) = \kappa_t \cdot \Delta s$ érték — amelyet *opacitás*nak nevezünk — a két minta közötti fényelnyelést jellemzi. Ezekkel az új jelölésekkel:

$$L(s + \Delta s, \omega) = (1 - \alpha(s)) \cdot L(s, \omega) + C(s). \tag{14.4}$$

Ezt az egyenletet a térfogat vizualizálásakor a pixelekhez tartozó sugarakra kell megoldani. A sugarak definiálása során kiindulhatunk a térfogatból, vagy a képernyő pixeleiből egyaránt. Az első módszer neve térfogat vetítés [DCH88] a másodiké pedig térfogati sugárkövetés [Lev88, Lev90]. A térfogat vetítés az inkrementális képszintézishez, azon belül pedig a festő algoritmushoz hasonlít, a térfogati sugárkövetés pedig a normál sugárkövetés adaptációja.

14.2. ábra. Térfogat vetítés (bal) és térfogati sugárkövetés (jobb)

14.1.1. Térfogat vetítés

A térfogat vetítés a térfogatból indul, és a térfogati adathalmazt az ablak síkjával párhuzamos, Δs távolságra lévő síkok mentén mintavételezi, majd az egyes síkokat az ablakra vetíti. A feldolgozást a szemtől távolabbi síkokkal kezdjük és onnan közeledünk a szempozíció felé. A feldolgozás adott pillanatában érvényes $L(s,\omega)$ akkumulálódó radianciát a pixelekben tároljuk. Így egy sík vetítése során a 17.4. egyenletet az egyes pixelekben tárolt L(s) érték és a C(s) vetített érték felhasználásával számítjuk ki. Ha az összes síkon végigmentünk, a megjelenítendő színeket a pixelekben akkumulálódott radiancia határozza meg.

14.1.2. Térfogati sugárkövetés

A térfogati sugárkövetés a pixelektől indul. A pixel középpontokon keresztül egy-egy sugarat indítunk a térfogatba, és a sugár mentén haladva oldjuk meg a 17.4 egyenletet.

Amennyiben a fénnyel megegyező irányban haladunk, a 17.4 egyenletet az eredeti formájában értékeljük ki. Sajnos ez a módszer gyakran felesleges számításokat igényel, hiszen a számításokat a legtávolabbi voxeleknél kezdjük, amelyek az esetek döntő részében úgysem látszanak a képen. Ezért célszerűbb, ha a fénnyel szemben haladunk a sugárintegrál kiértékelésekor. Természetesen ekkor a 17.4 egyenletet ki kell facsarni.

Tegyük fel, hogy a szemből már az s paraméterig jutottunk, és idáig úgy találtuk, hogy a sugár mentén az s paraméter és a szem között $L^*(s,\omega)$ radiancia akkumulálódott, és az integrált opacitás, amivel a s utánról érkező radianciát kell szorozni pedig $\alpha^*(s)$. Ha a sugárparamétert Δs -sel léptetjük, akkor a következő inkrementális összefüggések érvényesek:

$$L^*(s - \Delta s, \omega) = L^*(s, \omega) + (1 - \alpha^*(s)) \cdot C(s), \tag{14.5}$$

$$1 - \alpha^*(s - \Delta s) = (1 - \alpha(s)) \cdot (1 - \alpha^*(s)). \tag{14.6}$$

Most a pixelek színét az $L^*(0)$ érték határozza meg. Ha az összefüggések inkrementális kiértékelése során úgy találjuk, hogy az $1-\alpha^*(s-\Delta s)$ mennyiség egy küszöb érték alá került, befejezhetjük a sugár követését, mert a hátrébb levő voxelek hatása elhanyagolható.

14.2. A voxel szín és az opacitás származtatása

A térfogatvizualizációs algoritmusok a voxelek saját színével és opacitásértékeivel dolgoznak, amelyeket a v(x,y,z) mért voxelértékekből származtathatunk. A gyakorlatban többféle módszer terjedt el, amelyek különböző megjelenítésekhez vezetnek.

Az egyik leggyakrabban használt eljárás a felületi modellek árnyalását adaptálja a térfogatra (17.8. ábra). Az árnyalási paraméterek származtatáshoz osszuk fel a mért v(x,y,z) sűrűségfüggvény értékkészletét adott számú intervallumra (például, a CT és az MRI képeknél a levegő, lágy szövet és a csont sűrűségértékeit érdemes elkülöníteni). Az egyes intervallumokhoz diffúz és spekuláris visszaverődési tényezőt, valamint átlátszóságot adunk meg. Absztrakt fényforrások jelenlétét feltételezve, például a Phong illuminációs képlet segítségével meghatározzuk a voxelhez rendelhető színt. Az illuminációs képletek által igényelt normálvektort a v(x,y,z) gradienséből kaphatjuk meg.

Ha a 3D voxelek mérete a,b és c, akkor a gradiens vektor egy x,y,z pontban:

$$\operatorname{grad} v = \begin{pmatrix} \frac{v(x+a, y, z) - v(x-a, y, z)}{2a} \\ \frac{v(x, y+b, z) - v(x, y-b, z)}{2b} \\ \frac{v(x, y, z+c) - v(x, y, z+c)}{2c} \end{pmatrix}.$$
 (14.7)

Teljesen homogén tartományokban a gradiens zérus, tehát a normálvektor definiálatlan, ami a képen zavarokat okozhat. Ezeket eltüntethetjük, ha a voxelek opacitását a megadott átlátszóság és a gradiens abszolút értékének a szorzataként számítjuk, hiszen ekkor a homogén tartományok teljesen átlátszóak lesznek.

Egy másik módszer azt feltételezi, hogy a megvilágítás a térfogat túlsó oldaláról jön. Ha az opacitást a v(x,y,z)-vel arányosan választjuk, a pixelek színe arányos lesz az integrált opacitással, azaz a v(x,y,z) sugármenti integráljával. Mivel a röntgensugarak is hasonlóan nyelődnek el, a kép hatásában a *röntgen kép*ekre emlékeztet.

Végül egy gyorsan kiértékelhető, és ugyanakkor az orvosi diagnosztikában rendkívül hasznos megjelenítési eljáráshoz jutunk, ha minden sugár mentén az v(x,y,z)maximumával arányosan színezzük ki a pixeleket (1.6. ábra jobb oldala).

14.3. Indirekt térfogatvizualizációs módszerek

Az indirekt módszerek a térfogati modellt egy másfajta modellre alakítják át, majd azt fényképezik le.

14.3.1. Masírozó kockák algoritmusa

A legkézenfekvőbb közbenső reprezentáció a felületi modell, hiszen a felületi modellek megjelenítése a számítógépes grafika leginkább kimunkált területe. Egy térfogati modellből elvileg úgy nyerhetünk felületeket, hogy azonosítjuk a 3D térfogat szintfelületeit, azaz azon 2D ponthalmazokat, ahol a v(x,y,z) megegyezik a megadott szintértékkel. Ez korántsem olyan könnyű, mint ahogyan első pillanatban látszik, hiszen mi a v(x,y,z) függvényt csak diszkrét értékekben ismerjük, a közbenső pontokat a tárolt adatok interpolációjával kell előállítani.

Egy ilyen, az interpolációt és a szintfelületet megkeresését párhuzamosan elvégző módszer a *masírozó kockák algoritmus* (*marching cubes algorithm*). Az algoritmus első lépésben a szintfelület értékének és a voxelek értékének az összehasonlításával minden voxelre eldönti, hogy az belső voxel-e avagy külső voxel. Ha két szomszédos voxel eltérő típusú, akkor közöttük határnak kell lennie. A határ pontos helye a voxelek élein az érték alapján végzett lineáris interpolációval határozható meg. Végül az éleken kijelölt pontokra háromszögeket illesztünk, amelyekből összeáll a szintfelület. A háromszög illesztéshez figyelembe kell venni, hogy egy zárt alakzat az egy pontra illeszkedő 8 voxelt összesen 256-féleképpen metszheti, amiből végül 14 ekvivalens eset különíthető el (17.3. ábra). A metszéspontokból a háromszögekhez úgy juthatunk el, hogy először azonosítjuk a megfelelő esetet, majd eszerint definiáljuk a háromszögeket.

14.3. ábra. Egy zárt alakzat az egy pontra illeszkedő 8 voxelt összesen 14 féleképpen metszheti

14.3.2. Fourier-tér módszerek

A Fourier-transzformációnak több hasznos tulajdonsága van: egyrészt a gyors Fourier-transzformációs módszerrel hatékonyan elvégezhető akár magasabb dimenziókban is, másrészt a transzformált értéke a 0 frekvencián megegyezik a függvény integráljával. Mivel a röntgenszerű megjelenítéshez a v(x,y,z) függvényt a különböző sugarak mentén kell integrálni, a megjelenítéshez az adathalmaz Fourier-transzformáltja vonzóbbnak tűnik mint maga a mért adat.

A $V(\omega_x,\omega_y,\omega_z)$ Fourier-transzformált és a v(x,y,z) eredeti adat között a következő összefüggés áll fenn:

$$V(\omega_x, \omega_y, \omega_z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v(x, y, z) \cdot e^{-2\pi \jmath (x\omega_x + y\omega_y + z\omega_z)} dx dy dz, \qquad (14.8)$$

ahol
$$j = \sqrt{-1}$$
.

Vegyük észre, hogy a $V(\omega_x,\omega_y,0)$ metszet (slice) éppen a z irányú sugarakkal számított kép 2D Fourier-transzformáltja. Hasonlóan a $V(\omega_x,0,\omega_z)$ az y irányú sugarakkal, a $V(0,\omega_y,\omega_z)$ pedig az x irányú sugarakkal vett integrálok Fourier-transzformáltja. Ráadásul — a Fourier-transzformáció sajátosságai miatt — általános orientáció-

14.4. ábra. Fourier-tér módszer

jú metszetek képzésével tetszőleges irányból látott kép Fourier-transzformáltja számítható. Ha az ablak orientációját az oldalakkal párhuzamos $W_u=(\omega_{ux},\omega_{uy},\omega_{uz})$ és $W_v=(\omega_{vx},\omega_{vy},\omega_{vz})$ vektorokkal definiáljuk, akkor a kép Fourier-transzformáltja az

$$P(\omega_u, \omega_v) = V(\omega_{ux}\omega_u + \omega_{vx}\omega_v, \omega_{uy}\omega_u + \omega_{vy}\omega_v, \omega_{uz}\omega_u + \omega_{vz}\omega_v)$$
(14.9)

összefüggéssel határozható meg. Ebből pedig egy u,v koordinátájú pixelnek megfelelő integrál értéke inverz Fourier-transzformációval számítható:

$$p(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(\omega_u, \omega_v) \cdot e^{2\pi j(u\omega_u + v\omega_v)} d\omega_u d\omega_v.$$
 (14.10)

Az eljárás a viszonylag számításigényes 3D Fourier-transzformáció egyszeri végrehajtása után, tetszőleges irányú megjelenítéshez már csak 2D inverz Fourier-transzformációkat alkalmaz, ezért interaktív körbejáráshoz vagy animációhoz javasolható.

14.4. Program: masírozó kockák algoritmusa

A masírozó kockák algoritmus a voxel tömb által reprezentált függvény szintfelületeit azonosítja, és azokra egy háromszögsorozatot illeszt. A szintfelület sokféleképpen metszhet egy voxelt, amit aszerint osztályozhatunk, hogy melyik csúcspont van a keresett felületi érték felett illetve alatt. A voxel 8 csúcsának osztályozása során kapott érték egy konfigurációt jelent. Ezek a konfigurációk egy 256 soros táblázatba gyűjthetők (polytab), amelynek soraiban a –1-gyel lezárt sorozat számhármasai azonosítják az adott eset poligonizációjához szükséges háromszögeket [Pap98]. A táblázatból kiolvashatjuk, hogy melyik éleket kell metszenünk a poligonok csúcsainak meghatározásához. A csúcsokat lineáris interpolációval számoljuk ki. Az alábbiakban ezen táblázatból csupán egy részletet mutatunk be, a teljes tábla a CD-n megtalálható.

```
int polytab[256][32]=
{
                                                 //
\{-1,\},
                                                      0:00000000, f:0
\{1,0,4,0,3,0,-1,\},
                                                      1:00000001, f:1
                                                 //
\{1,0,1,2,1,5,-1,\},
                                                 //
                                                      2:00000010, f:1
                                                      3:00000011, f:2
\{1,5,4,0,1,2,1,2,4,0,3,0,-1\},
                                                 //
\{1,0,1,5,1,2,-1,\},
                                                 // 253:11111101, f:1
                                                 // 254:11111110, f:1
\{1,0,3,0,4,0,-1,\},
\{-1,\},
                                                 // 255:111111111, f:0
};
```

A következő tömbökben azt tartjuk nyilván, hogy a kocka egyes csúcsai a bal-alsóhátsó sarokhoz képest milyen relatív x, y és z koordinátákkal rendelkeznek.

```
int x_relpos_tab[8]={0, 1, 1, 0, 0, 1, 1, 0};  // x-ben
int y_relpos_tab[8]={0, 0, 0, 0, 1, 1, 1, 1};  // y-ben
int z_relpos_tab[8]={0, 0,-1,-1, 0, 0,-1,-1};  // z-ben
```

A Volume osztály egy size felbontású térfogatmodellt testesít meg. Az osztály konstruktora fáljból beolvassa voxelértékeket, az Interpolate tagfüggvénye a voxelkockák élein interpolálja a hely- és irányvektorokat. A MarchingCube pedig az ismertetett algoritmussal egyetlen voxelre megvizsgálja, hogy a szintfelület metszi-e azt, és előállítja a metsző szintfelület háromszöghálós közelítését. A teljes térfogat modell megjelenítéséhez a MarchingCube tagfüggvényt minden egyes voxelre meg kell hívni. A kapott háromszögeket a szokásos 3D csővezetéken végigvezetve jeleníthetjük meg.

```
class Volume {
//-----
  int size;
  BYTE *** grid;
public:
  Volume( char * filename );
  int GridSize() { return size; }
  BYTE V(int x, int y, int z) {
       if (x < 0 | | y < 0 | | z < 0 | |
           x \ge size \mid \mid y \ge size \mid \mid z \ge size) return 0;
       return grid[x][y][z];
  }
  void Interpolate ( Point 3D& point 1, Point 3D& point 2,
                   Point3D& norm1, Point3D& norm2,
                   double value1, double value2, double isolevel,
                   Point3D& point, Point3D& norm ) {
       double m = (isolevel - value1) / (value2 - value1);
       point = point1 + (point2 - point1) * m;
       norm = norm1 + (norm2 - norm1) * m;
  TriangleList3D * MarchingCube(int x, int y, int z, double isolevel);
};
Volume :: Volume( char * filename ) {
   size = 0;
   FILE * file = fopen(filename, "rb");
   if (fscanf(file, "%d", &size) != 1) return;
   grid = new BYTE**[size];
   for (int x = 0; x < size; x++) {
       grid[x] = new BYTE*[size];
       for (int y = 0; y < size; y++) {
           grid[x][y] = new BYTE[size];
           for (int z = 0; z < size; z++)
              grid[x][y][z] = fgetc(file);
   }
```

```
TriangleList3D * Volume :: MarchingCube( int x, int y, int z,
                                double isolevel ) {
//----
   BYTE cubeindex = 0;
   if (V(x,y,z) < isolevel) cubeindex|=1;
if (V(x+1,y,z) < isolevel) cubeindex|=2;
   if (V(x+1,y,z-1) < isolevel) cubeindex|=4;
   if (V(x,y,z-1) < isolevel) cubeindex|=8;
if (V(x,y+1,z) < isolevel) cubeindex|=16;
   if (V(x+1,y+1,z) < isolevel) cubeindex|=32;
   if (V(x+1,y+1,z-1) < isolevel) cubeindex |=64;
   if (V(x,y+1,z-1) < isolevel) cubeindex|=128;
   if ( cubeindex == 0 || cubeindex == 255 ) return NULL;
   TriangleList3D * tlist =
        new TriangleList3D(0 /* emisszio */, 0.1 /* ka */,
                           0.4 /* kd */, 0.2 /* ks */, 10 /* shine */);
   for (int j = 0, t = 0; polytable[cubeindex][j] != -1; j += 6) {
        Point3D p1, p2, point[3], n1, n2, norm[3];
        for ( int j1 = 0; j1 < 6; j1 += 2 ) {
            int x1 = x + x_relpos_tab[polytable[cubeindex][j+j1]];
            int y1 = y + y_relpos_tab[ polytable[cubeindex][j+j1] ];
            int z1 = z + z_relpos_tab[ polytable[cubeindex][j+j1] ];
            Point3D point1(x1, y1, z1);
            Point3D norm1 (V(x1-1,y1,z1) - V(x1+1,y1,z1),
                          V(x1, y1-1, z1) - V(x1, y1+1, z1)
                           V(x1, y1, z1-1) - V(x1, y1, z1+1));
            double value1 = V(x1, y1, z1);
            int x2 = x + x_{polytable}[cubeindex][j+j1+1]];
            int y2 = y + y_relpos_tab[ polytable[cubeindex][j+j1+1] ];
            int z2 = z + z_relpos_tab[ polytable[cubeindex][j+j1+1] ];
            Point3D point2(x2, y2, z2);
            Point3D norm2 (V(x2-1,y2,z2) - V(x2+1,y2,z2),
                           V(x2,y2-1,z2) - V(x2,y2+1,z2),
                           V(x2,y2,z2-1) - V(x2,y2,z2+1));
            double value2 = V(x2, y2, z2);
            Interpolate( point1, point2, norm1, norm2, value1, value2,
                         isolevel, point[j1/2], norm[j1/2]);
            norm[j1/2].Normalize();
        }
        tlist -> AddTriangle( t++, point[0], point[1], point[2],
                                   norm[0], norm[1], norm[2]);
   return tlist;
}
```

15. fejezet

Fraktálok

15.1. A Hausdorff-dimenzió

*Fraktál*on tört-dimenziós alakzatot értünk. Ez első hallásra meglepő, hiszen a klasszikus definíció alapján a *dimenziószám* csak természetes szám lehet. A klasszikus *topológiai dimenzió* definíciója így hangzik:

- 1. A pont 0 dimenziós.
- 2. Egy alakzat n dimenziós, ha két részre lehet vágni egy n-1 dimenziós alakzattal, de kevesebb dimenzióssal nem.

Ahhoz tehát, hogy nem egész dimenziókról beszélhessünk, magának a dimenziónak kell új értelmezést adni. Nyilván olyat, ami a megszokott objektumainkra visszaadja a klasszikus dimenziószámot, viszont lehetőség van olyan beteg objektumok létrehozására, amelyekre nem egész dimenzió adódik. Ezt az általánosított dimenziót nevezzük *Hausdorff-dimenzió*nak, amely az önhasonlóság fogalmán alapul.

15.1. ábra. Klasszikus önhasonló objektumok dimenziója

Vegyünk például egy 1 dimenziós szakaszt és r=1/n-szeres hasonlósági transzformációval kicsinyítsük le. A kapott kis szakaszból N=n darab összeragasztásával megkaphatjuk az eredeti szakaszunkat. Hasonló kísérletet elvégezhetünk egy 2 dimenziós téglalappal is. Az r=1/n hasonlósági transzformációval kapott kis téglalapból $N=n^2$ szükséges az eredeti téglalap lefedéséhez. A térben egy 3 dimenziós téglatest r=1/n arányú kicsinyített változatából $N=n^3$ darabot kell felhasználnunk az eredeti téglatest felépítéséhez.

Úgy tűnik, hogy D dimenzióban az r kicsinyítési arány és a kicsinyített változatból az eredeti lefedéséhez szükséges darabszám között az alábbi összefüggés állítható fel:

$$N = \frac{1}{r^D}. ag{15.1}$$

Ha ezt elfogadjuk, sőt a definíció rangjára emeljük, akkor ezen összefüggés alapján definiálhatjuk egy ponthalmaz Hausdorff-dimenzióját:

$$D = \frac{\log N}{\log 1/r}.\tag{15.2}$$

Az első fraktálunk világra hozásához már nincs más feladatunk, mint egy olyan ponthalmazt találni, amelyre a fenti mérőszám nem egész. Egy megfelelő ponthalmaz a Koch-görbe, amely rekurzív definícióval adható meg.

Induljunk ki egy szakaszból, harmadoljuk el, majd a középső harmad felé emeljünk egy szabályos háromszöget és a szakaszdarabot cseréljük le a háromszög másik két oldalával (15.2. ábra). Ezzel a művelettel a szakaszt egy négy szakaszból álló törtvonallal váltottuk fel. Most ismételjük meg a műveletet mind a 4 szakaszra, majd rekurzív módon végtelen sokszor minden keletkező szakaszra. A határértékként kapott alakzat neve *Koch-görbe*.

A görbe önhasonló, mert 4 darab, az eredetivel hasonló alakzatból áll, amelyből egy az eredetiből 1/3 szoros nyújtással állítható elő. Tehát a Koch-görbére N=4 és r=1/3. Így a Koch-görbe dimenziója

$$D_{\text{Koch}} = \frac{\log 4}{\log 3} \approx 1.26$$

ami nem egész, tehát a Koch-görbe fraktál. A fraktális tulajdonság intuitíve is érzékelhető abból, hogy a görbe hossza végtelen (minden iteráció során a hossz 4/3-szorosára nő), azaz már kilóg az 1 dimenzióból, de területe — lévén, hogy mégiscsak egy véges tartományban tekergőző görbéről van szó — zérus, azaz még nem kétdimenziós. A dimenziónak tehát valahol az 1 és 2 között kell lennie. A fraktálokra általában is jellemző, hogy a szokásos mértékek, mint a hossz, terület, térfogat, rájuk nem értelmezhetők.

15.2. ábra. A Koch-görbe alakulása az iterátió során

15.1.1. Fraktális dimenzió nem önhasonló objektumokra

A Koch-görbe kapcsán megfigyeltük, hogy az iteráció során egyre kisebb kanyarokat véve, a hossza végtelenhez divergál annak ellenére, hogy csak egy véges tartományban tekergőzik. Ez azt is jelenti, hogy a görbére nézve nem látszik rajta, hogy végtelen hoszszú, csak akkor tudatosul bennünk, ha egyre inkább kinagyítva a görbét a hullámossága csak nem akar csökkenni. Ezen tulajdonság alapján megpróbálhatjuk véges vonalzóval megmérni a görbénk hosszát.

Pontosabban tegyük fel, hogy egy l hosszú vonalzót akarunk ráilleszteni a görbére, és számláljuk, hogy ez hányszor sikerül. Ha l=r=1/3, akkor n=N=4-szer tudjuk rátenni a Koch-görbére. Ha viszont $l=r^2=1/3^2$, akkor $n=N^2=4^2$ -szer sikerül. Általában, ha a vonalzónk hossza $l=r^m$, akkor $n=N^m$ - szer illeszthetjük a görbére, tehát a mért hossz $h(l)=l\cdot n=l\cdot N^m$. Felhasználva a fraktális dimenzió definíciójaként szolgáló 15.2 egyenletet, a mért hossz:

$$h(l) = l \cdot N^m = l \cdot \left(\frac{1}{r^D}\right)^m = l \cdot \left(\frac{1}{r^m}\right)^D = l \cdot \left(\frac{1}{l}\right)^D = \frac{1}{l^{D-1}}.$$
 (15.3)

A szokásos értelemben vett hosszt az $l \to 0$ határesetként kapjuk, amikor erre a görbére $h(l) \to \infty$, így számunkra nincs különösebb információtartalma. Viszont a divergencia sebessége a képlet szerint a fraktális dimenziótól függ, így ez alapján is definiálhatjuk a fraktális dimenziót. Ráadásul a véges vonalzóval történő hosszmérést nem önhasonló objektumokra is elvégezhetjük, így egy általános dimenziófogalomhoz juthatunk.

Legyen tehát a dimenzió értelmezése a következő: végezzünk véges, egyre kisebb vonalzókkal hosszméréseket. A mért hosszt ábrázoljuk a vonalzó hosszának függvényeként logaritmikus skálán. Mivel

$$\log h(l) = -(D-1) \cdot \log l \tag{15.4}$$

a mérési pontok egy olyan egyenes mentén helyezkednek el, amelynek meredeksége (-(D-1)). Az emelkedési szögből tehát a görbe fraktális dimenziója meghatározható. Ez a dimenziófogalom önhasonló objektumokra visszaadja a 15.2 egyenlet definícióját, de annál általánosabb, hiszen nem önhasonló objektumokra is alkalmazható.

Tudományunkat felhasználhatjuk például Nagy-Britannia partjának vagy az EKG görbék fraktális dimenziójának meghatározására. Az EKG vagy EEG görbék fraktális dimenziójának orvosi diagnosztikai értéke van. Egy másik gyakorlati alkalmazás lehet a katonai légi és űrfelvételek automatikus feldolgozása. Mivel az euklideszi geometrián nevelkedett mérnökeink egész dimenziókban gondolkodnak, az ember alkotta objektumok határvonalai tipikusan egész dimenziósak. Nem így a természet, amely sokkal inkább a fraktális dimenziókat kedveli. Ezért ha egy légi felvételen azonosítjuk a jó közelítéssel egész dimenziós határral rendelkező objektumokat, akkor van némi esélyünk arra, hogy egy erdő mélyére rejtett rakétasilóra bukkanunk.

A véges vonalzóanalógia mintájára bevezethetjük a *dobozdimenzió* fogalmát is. Tegyünk a görbére egy rácsot, melyben egy elemi téglalap a görbét befoglaló téglalap λ -szoros kicsinyítése. Ha λ -val 0-hoz tartunk, azaz a rácsot fokozatosan finomítjuk, a vonalzóval történő mérésnél használt gondolatmenettel bizonyíthatjuk, hogy egy fraktálnál a görbe által metszett elemi négyzetek száma arányos $1/\lambda^D$ -vel. Ezt az információt szintén felhasználhatjuk a dimenzió kiszámítására.

15.2. Brown-mozgás alkalmazása

A fraktálok számítógépes grafikai felhasználásához szükségünk van olyan matematikai gépekre, amelyek tömegtermékként ontják az kívánt fraktálokat. Egy ilyen gép a Brown-mozgás matematikai modellje, a Wiener-féle sztochasztikus folyamat. Ez olyan véletlen valós X(t) függvény, amely 1 valószínűséggel a 0-ból indul, folytonos, és az X(t+s)-X(t) növekmények 0 várható értékű normális eloszlást követnek, és két nem átlapolódó intervallumban egymástól függetlenek.

A független növekményűségből következik, hogy a növekmények szórásnégyzete arányos az intervallum hosszával. A bizonyításhoz írjuk fel a szórás képletét

$$\sigma^{2}(s) = D^{2}[X(t+s) - X(t)] = E[(X(t+s) - X(t))^{2}] - E^{2}[(X(t+s) - X(t))].$$
 (15.5)

Mivel a növekmény várható értéke zérus, a második tag eltűnik. Vegyünk fel egy tetszőleges $t+\tau$ pontot a t+s és a t között:

$$E[(X(t+s) - X(t))^{2}] = E[(X(t+s) - X(t+\tau) + X(t+\tau) - X(s))^{2}] =$$

$$E[(X(t+s) - X(t+\tau))^{2}] + E[(X(t+\tau) - X(t))^{2}] +$$

$$2 \cdot E[(X(t+s) - X(t+\tau)) \cdot (X(t+\tau) - X(t))]$$
(15.6)

A független növekményűség felhasználásával, majd kihasználva, hogy a növekmények várható értéke zérus, a

$$E[(X(t+s) - X(t+\tau)) \cdot (X(t+\tau) - X(t))] =$$

$$E[(X(t+s) - X(t+\tau))] \cdot E[(X(t+\tau) - X(t))] = 0.$$
(15.7)

tag eltűnik, így:

$$E[(X(t+s)-X(t))^2] = E[(X(t+s)-X(t+\tau))^2] + E[(X(t+\tau)-X(t))^2]. \eqno(15.8)$$

Tehát a szórásnégyzetre a következő függvényegyenlet érvényes:

$$\sigma^2(s) = \sigma^2(s - \tau) + \sigma^2(\tau). \tag{15.9}$$

Mint arról behelyettesítéssel könnyen meggyőződhetünk, ezen függvényegyenlet megoldása a lineáris függvény, azaz $\sigma^2(s) = c \cdot s$, ahol c állandó.

Ez a görbe csak statisztikai értelemben önhasonló. Hasonlítsuk össze az eredeti X(t) függvényt és a paraméter tartomány transzformálásával kapott $X(\lambda \cdot t)$ függvényt. A növekmény mindkettőben zérus várható értékű, normális eloszlású valószínűségi változó, de az eredeti szórásnégyzete t-vel arányos, a transzformálté pedig $\lambda \cdot t$ -vel. Ha tehát a paraméterében λ -val zsugorított függvényt értékben $\sqrt{\lambda}$ -val összenyomjuk, az eredeti X(t)-vel statisztikailag megegyező folyamathoz jutunk.

15.3. ábra. A Brown-mozgás dobozdimenziójának meghatározása

Ezt a tulajdonságot felhasználhatjuk a görbe dobozdimenziójának kiszámítására. Tekintsük a görbe egy szakaszát és foglaljuk egy téglalapba (15.3. ábra). Bontsuk fel a téglalapot $N\times N$ darab, az eredeti téglalapból λ hasonlósági transzformációval előállítható kis téglalapra és számláljuk meg, hány kis téglalapon megy át a görbénk. Egy oszlop a téglalap paramétertartománybeli $\lambda=1/N$ zsugorításával állítható elő. A statisztikai önhasonlóság miatt, a görbe várható magassága ekkor a téglalap magasságának $\sqrt{\lambda}$ -szorosa, tehát egy oszlopban a görbe átlagosan $N\cdot\sqrt{\lambda}$ dobozt metsz. Ez minden oszlopra így van, azaz a metszett dobozok száma:

$$n(\lambda) = N \cdot N \cdot \sqrt{\lambda} = \frac{1}{\lambda^{1.5}}$$
 (15.10)

A Brown-mozgás dobozdimenziója tehát 1.5.

A Brown-mozgás egy realizációját közelítőleg például a véletlen középpont elhelyező algoritmussal állíthatjuk elő (a tényleges függvény, miként a Koch-görbénél, ezen folyamat határértékeként kapható meg). A görbét a [0,1] intervallumban közelítjük. A 0 pontban, a görbe értéke 0, az egy pontban pedig egy normális eloszlású valószínűségi változó, amelynek a szórásnégyzete σ^2 . Generáljunk tehát ilyen eloszlású ξ_0 véletlen számot és a kapott értéket rendeljük az 1 ponthoz. Most folytassuk a görbe pontjának meghatározását az intervallum felezőpontjában. Mind az intervallum kezdőpontjához képest, mind pedig az intervallum végpontjához képest a felezőpont normális eloszlású

15.4. ábra. Brown-mozgás trajektóriájának létrehozása véletlen középpont elhelyezéssel

 $\sigma^2/2$ szórással. Ha tehát a két végpont átlagát tekintjük, amelynek mindkét végponthoz képest $\sigma^2/2$ a szórása, az átlaghoz képest már csak egy $\sigma^2/4$ szórású véletlen változóval kell perturbálni a felezőpontban felvett értéket. Legyen a perturbáció a véletlen ξ_1 . A kiadódó két intervallumra ugyanez az eljárás folytatható, az n. lépésben a ξ_n perturbáció szórása $\sigma^2/2^{n+1}$.

A módszer könnyen kiterjeszthető felületekre. Egy egységnégyzetből indulunk ki és a négy sarokpontban véletlenszerűen kijelölünk egy értéket. A négyzet oldalfelező pontjaiban és a középpontjában lévő pontok magasságágait a sarokpontok átlagának perturbációjaként kapjuk meg. Az új pontok segítségével a négyzetet 4 kis négyzetre bontjuk, és ugyanezt az eljárást rekurzívan folytatjuk, a perturbációk szórását minden rekurziós szinten felezve.

15.3. Kaotikus dinamikus rendszerek

Kaotikus dinamikus rendszeren olyan determinisztikus rendszert értünk, amely látszólag véletlenszerűen működik. Ebben semmi meglepő sincs, környezetünk tele van ilyen rendszerekkel. Például a csapból kifolyó vízre ható nehézségi erő egy nagyon egyszerű mechanikai rendszert képez, amelyet megoldva folyamatosan vékonyodó vízsugarat kellene kapnunk. Ez egy darabig így is van, de jobban kinyitva a csapot turbulens jelenségek lépnek fel, amelyek a viselkedést véletlenszerűvé teszik.

A jelenség lényegét egy klasszikus példán mutatjuk be, amely az egész témakör vizsgálatát elindította. A példa egy szigeten zárt közösségben élő nyulak számának évenkénti változását vizsgálja. Nyilván amíg kevés nyúl van, a táplálék nem okoz gondot, de a kevés papanyúl és mamanyúl következménye a kevés gyermeknyúl, így a nyúlpopuláció nő, de csak az aktuális nyúlszámmal arányosan. Ha viszont a nyulak száma nagy, a táplálékszűke miatt sokan éhenpusztulnak, mégpedig a nyulak számával arányosan. Legyen a sziget maximális teherbírására vetített normalizált nyúlszám az n. évben S_n . Mind a nyulak szaporulatát, mind a táplálék szűkösségét figyelembe véve, a

15.5. ábra. A nyúl populáció változása különböző C erősítési tényezőkre

nyúlszám évenkénti változására a következő modell állítható fel:

$$S_{n+1} = C \cdot S_n \cdot (1 - S_n).$$

A modell szerint az S_{n+1} maximális ha $S_n=0.5$, innen 0-ig a kevés papa és mama miatt, innen 1-ig pedig a répa és fű szűke miatt az S_{n+1} csökken.

Vizsgáljuk meg a nyúlszám alakulását az egymást követő években különböző C értékekre (15.5. ábra). Ha C kicsi (jelen modellben 1-nél kisebb), a nyulak száma 0-hoz konvergál (15.5. ábra). Közepes C értéknél a nyúlszám egy pozitív értékhez tart, azaz a nyulak száma állandósul a szigeten. Ez a két eset nem is annyira érdekes. Viszont ha C nagy, akkor a nyúlszám kaotikusan ugrándozik, és a görbére nézve az az érzésünk támad, hogy az teljesen véletlenszerű. Pedig a görbét egy egyszerű, determinisztikus modell iterálásával állítottuk elő. A véletlenszerűségnek még van egy másik fontos ismérve is. Ha az iterációt két akármilyen közel lévő, de különböző pontból indítjuk, a görbék egy idő után teljesen különbözőkké válnak. Az ilyen jellegű mozgást nevezzük kaotikus mozgásnak.

Ezt a jelenséget matematikushoz illő módon is megfogalmazhatjuk. A kaotikus mozgásnál a mozgás autokorrelációs függvénye zérushoz tart, azaz egy idő után a korábbi pontok, így a kezdeti pont is teljesen jelentéktelenné válik. Ekkor viszont a mozgás teljesítménysűrűség spektruma — ami az autokorrelációs függvény Fourier-transzformáltjaként állítható elő — nem lesz sávkorlátozott. A véletlenszerűnek látszó viselkedést éppen az okozza, hogy a mozgásban akármilyen magas frekvenciák is előfordulhatnak.

Megjegyezzük, hogy a kaotikus, tehát véletlennek látszó, de azért mégiscsak determinisztikus folyamatokat aknázzák ki a *véletlenszám generátor*ok is.

15.4. Kaotikus dinamikus rendszerek a síkon

A számítógépes grafikában a *kaotikus dinamikus rendszer*ek azért fontosak, mert segítségükkel szép képeket állíthatunk elő. Mivel a kép két dimenziós, ezért olyan rendszereket fogunk vizsgálni, ahol az aktuális állapot a sík egy pontjának felel meg. Algebrailag a sík egy pontját egy x,y valós számpárral, vagy akár egyetlen z komplex számmal is jellemezhetjük. A rendszer mozgása során egy pontsorozatot — ún. trajektóriát — jár be, amelyet megjelenítve képeket kaphatunk.

Tekintsük példaként a

$$z_{n+1} = F(z_n) = z_n^2$$

rendszert, amely az aktuális állapotot jellemző komplex számot minden iterációban négyzetre emeli. Polárkoordinátákban ($z_n=r_n\cdot e^{j\phi_n}$) az iterációs formula:

$$r_{n+1} = r_n^2, \quad \phi_{n+1} = \phi_n \cdot 2.$$
 (15.11)

Nyilván ha $r_0 > 1$, akkor az iteráció során a szám abszolút értéke divergens lesz, tehát az iteráció a végtelenbe visz bennünket. Ha viszont $r_0 < 1$, akkor az abszolút érték és ezáltal a szám is a zérushoz konvergál. A 0 és a ∞ az iteráció *fixpont*jai, mert ezeket behelyettesítve az iterációs képletbe a következő pontként önmagukat kapjuk vissza.

A konvergens és divergens esetek közötti határeset az $r_0=1$ esete. Ekkor a szám abszolút értéke végig 1 marad, fázisszöge pedig a $\phi_0 \cdot 2^n$ értékeket veszi fel, azaz az iteráció az egységkörön kalandozik (mégpedig kaotikus módon). Az egységkör bármely pontjából is indulunk, az iteráció nem térít le bennünket az egységkörről. A kör bármely z pontjára az y=F(z) pont is a körön van, és megfordítva, bármely y körön lévő ponthoz találunk a körön olyan z pontot, amelyre y=F(z). Ezt röviden úgy is megfogalmazhatjuk, hogy az egységkör pontjainak H halmaza kielégíti a

$$H = F(H) \tag{15.12}$$

halmazegyenletet, azaz a H halmaz az iteráció fix "pontja". Definíciószerűen egy F függvényre a H=F(H) egyenletet kielégítő halmazt a függvény attraktorának nevezzük.

Egy fixpontot, vagy akár a teljes attraktort stabilnak mondunk, ha egy kicsit elmozdulva onnan az iterációt folytatva visszatalálunk a fixpontba illetve az attraktorba. A fixpont illetve az attraktor labilis, ha az elmozdítás után az iteráció egyre jobban távolodik a fixponttól illetve az attraktortól. A labilis fixpont egy hegycsúcsnak, a labilis attraktor egy hegygerincnek, a stabil fixpont egy mélyedésnek, a stabil attraktor pedig egy völgynek felel meg. Mivel az attraktor két különböző fixpont vonzáskörzetének a határa, az attraktor akkor stabil, ha a két fixpont labilis, és megfordítva az attraktor akkor labilis, ha a két fixpont stabil. A $z_{n+1}=z_n^2$ iterációban a 0 és a ∞ stabil fixpontok, az egységkör pedig labilis attraktor.

15.4.1. Julia-halmazok

Számunkra az attraktorok azért érdekesek, mert általában igen összetett alakúak és fraktális tulajdonságúak. A z^2 függvényre ez még nem igaz, de csak egy kicsit kell módosítani rajta, hogy valóban bonyolult attraktorokhoz jussunk. Tekintsük az

$$F(z)=z^2+c, \quad \text{ ahol } c \text{ tetszőleges komplex szám}$$
 (15.13)

függvényt, amelynek attraktorait (15.7. ábra) *Julia-halmaz*oknak nevezzük (a férfi olvasókat ki kell ábrándítanom, a Julia nem egy szép hölgy keresztneve, hanem egy közel egy évszázada élt francia matematikus vezetékneve).

Egy függvény attraktorát alapvetően két algoritmussal jeleníthetjük meg, attól függően, hogy az attraktor stabil vagy labilis.

Labilis attraktorok megjelenítése

Ha az attraktor labilis, akkor bármely pontból kiindulva előbb-utóbb valamelyik fixpontot közelítjük meg, még akkor is, ha valamilyen csoda folytán a kezdeti pont az attraktoron van, hiszen a számítási pontatlanságok miatt úgyis el fogunk onnan távolodni. A sík minden pontjából tehát egy iterációt kell indítanunk, és megvizsgálnunk, hogy az hova konvergál (divergál), ami alapján az egyes pontok vonzáskörzetekhez rendelhetők. Az egyik vonzáskörzetet más színűre színezve mint a másikat, egy kitöltött Julia-halmazt kapunk, amelynek határa a tényleges attraktor. Legyen például a divergens tartomány fehér, a konvergens tartomány fekete.

A sík összes pontjának tesztelése nyilván lehetetlen, de szerencsére kihasználhatjuk, hogy a képernyőnk úgyis véges számú pixelből áll, ezért elég csak a pixelközéppontoknak megfelelő komplex számokra elvégezni a vizsgálatot.

Tegyük fel, hogy az $X_{\max} \times Y_{\max}$ felbontású képernyőt úgy helyezzük rá a komplex számsíkra, hogy a bal alsó sarok a $x_l + j \cdot y_b$ komplex számra, a jobb felső pedig a $x_r + j \cdot y_t$ komplex számra kerüljön. Tehát a *nézet* a $[(0,0),(X_{\max},Y_{\max})]$ téglalap, az ablak pedig az $[(x_l,y_b),(x_r,y_t)]$. A nézetből az ablakra vetítő transzformáció:

```
\begin{aligned} \textbf{ViewportWindow}(~X,Y \rightarrow x,y) \\ x &= x_l + (x_r - x_l) \cdot X/X_{\max} \\ y &= y_b + (y_t - y_b) \cdot Y/Y_{\max} \end{aligned} end
```

A rajzoló program, amely a Julia-halmaznak az ablakon belüli részét rajzolja:

```
 \begin{array}{l} \textbf{JuliaDraw}(\,c\,) \\ & \text{for } Y=0\,\text{to }Y_{\max}\,\text{do} \\ & \text{for } X=0\,\text{to }X_{\max}\,\text{do} \\ & \text{ViewportWindow}(X,Y\to x,y) \\ & z=x+\jmath\cdot y \\ & \text{for } i=0\,\text{to } n\,\text{do } z=z^2+c \\ & \text{if } |z|>\text{``infinity''}\,\text{then }\operatorname{Pixel}(X,Y,\operatorname{feh\'{e}r}) \\ & \text{else} & \text{Pixel}(X,Y,\operatorname{fek\acute{e}te}) \\ & \text{endfor} \\ & \text{endfor} \\ \end{array}
```

Az algoritmusban a divergenciát csak közelítőleg vizsgálhatjuk. Az iterációs formulát például $n=10^6$ -szor alkalmazzuk, majd ellenőrizzük, hogy a kapott komplex szám abszolút értéke például "infinity"= 10^4 -t meghaladja-e vagy sem.

Úgynevezett *színes Julia-halmaz*okat kapunk, ha a divergencia sebessége alapján egy színinformációt rendelünk a kiindulási állapotot meghatározó pixelhez, azaz a színt a $|z_n|$ alapján számítjuk.

15.6. ábra. Kitöltött és színes Julia-halmazok a $-2 \le \Re z \le 2, -2 \le \Im z \le 2$ tartományban (c = -0.9 + 0.12)

Stabil attraktorok megjelenítése

A stabil attraktorok előállításakor könnyű dolgunk van. Bárhonnan is indulunk el, előbb-utóbb megközelítjük az attraktort, majd ettől kezdve az attraktor pontjait látogatjuk meg. Tehát csak iterálni kell, és az első néhány pont eldobása után kiszínezni a meglátogatott pontoknak megfelelő pixeleket.

Ez a módszer az $F(z)=z^2+c$ iteráció során nem működik, hiszen az attraktor labilis. Ha viszont kihasználjuk azt a felismerést, hogy ha egy H halmaz az F-nek attraktora, azaz F(H)=H, akkor az inverz függvénynek is attraktora, hiszen ekkor $F^{-1}(H)=H$. Ráadásul ami eredetileg stabil volt, az labilissá válik, és megfordítva, ami eredetileg labilis volt abból stabil lesz. Mivel ekkor a függvény inverzét iteráljuk, az eljárás neve inverz iterációs módszer.

 ${\rm \mathring{A}}\ F(z)=z^2+c$ inverze nem függvény, csupán leképzés, mert nem egyértelmű:

$$F^{-1}(z) = \pm \sqrt{z - c}. (15.14)$$

Ez azt jelenti, hogy ha egyetlen pontból indítjuk az iterációt, az első lépés után 2, a második után 4, az n. után 2^n pontot kell kezelnünk, amely keserves memóriagondokat okozhat. Felmerül a kérdés, hogy nincs-e olyan stratégia, amely a $+\sqrt{z-c}$ és $-\sqrt{z-c}$ közül mindig csak egyet választ ki, mégis az iteráció elegendően sűrűn bejárja a teljes attraktort. A probléma megvilágításának érdekében tegyük fel, hogy c=0,

amikor az attraktor az egységkör, a polárkoordinátás iterációs formulák pedig:

$$r_{n+1} = \sqrt{r_n} = r_0^{1/2^n}, \quad \phi_{n+1} = \begin{cases} \phi_n/2, & \text{ha a } +\sqrt{z-c} \text{ függvényt alkalmazzuk,} \\ \phi_n/2 + \pi, & \text{ha a } -\sqrt{z-c} \text{ függvényt alkalmazzuk.} \end{cases}$$

Az abszolút érték bármely kezdeti értékről rohamléptekkel tart 1-hez, így gyorsan megközelítjük az attraktort. A fázisszög vizsgálatára vezessünk be egy indikátor változót. Legyen $\delta_n=1$, ha a $-\sqrt{z-c}$ formulát alkalmazzuk az n. iteráció során, különben pedig 0. Ezzel az indikátorváltozóval a fázisszög az n. iteráció után:

$$\phi_{n+1} = \frac{\phi_0}{2^n} + \pi \cdot (\delta_n + \frac{\delta_{n-1}}{2} + \frac{\delta_{n-2}}{4} + \dots + \frac{\delta_0}{2^n}). \tag{15.16}$$

Vegyük észre, hogy a kezdeti pont ϕ_0 hatása rohamosan eltűnik a képletből, tehát a mozgás kaotikus. Mivel a δ számok 0 és 1 értékeket vehetnek fel, a zárójelben megadott összeget úgy is elképzelhetjük, mint egy 2-s számrendszerben felírt kettedes törtszámot:

$$\phi_{n+1} = \frac{\phi_0}{2^n} + \pi \cdot (\delta_n \cdot \delta_{n-1} \delta_{n-2} \dots \delta_0)$$
 (15.17)

A törtszám hossza minden iterációban nő, de a tört végén levő biteknek már nincs különösebb jelentőségük. Ezért amikor azt vizsgáljuk, hogy az iteráció során valóban megfelelő sűrűn lefedjük-e az attraktort, elegendő csak a tört első N jegyét tekinteni:

$$\phi_{n+1} \approx \pi \cdot (\delta_n \cdot \delta_{n-1} \delta_{n-2} \dots \delta_{n-N}). \tag{15.18}$$

Az attraktor megfelelő sűrű lefedéséhez az szükséges, hogy a $[0..2\pi]$ tartományban előállított fázisszögek között ne legyen nagy lyuk, azaz, hogy a $(\delta_n.\delta_{n-1}\delta_{n-2}\ldots\delta_{n-N})$ bináris számban mindenféle lehetséges kombináció előforduljon. Ezt legegyszerűbben úgy biztosíthatjuk, ha a δ számokat egymástól függetlenül és véletlenszerűen választjuk ki.

Általában is igaz, hogy a többértékű leképzések iterációja során elegendő minden lépésben csak az egyik alkotó függvényt alkalmazni, ha azt véletlenszerűen választjuk ki.

Érdekes megfigyelnünk, hogy az alkotó függvények kiválasztási valószínűségének (amennyiben az nem zérus) semmiféle hatása sincs az attraktor alakjára. Csupán azt határozza meg, hogy az iteráció során az attraktor mely tartományait milyen valószínűséggel látogatjuk meg.

A programban ismét feltételezzük, hogy a $n\acute{e}zet$ a $[(0,0),(X_{\max},Y_{\max})]$ téglalap, az ablak pedig az $[(x_l,y_b),(x_r,y_t)]$ téglalap. Most alapvetően a komplex számsíkon mozgunk és onnan vetítünk a képernyőre, tehát az ablakból a nézetbe átvivő transzformációra van szükségünk:

```
\begin{aligned} \textbf{WindowViewport}(\ x,y \rightarrow X,Y) \\ X &= X_{\max} \cdot (x-x_l)/(x_r-x_l) \\ Y &= Y_{\max} \cdot (y-y_b)/(y_t-y_b) \end{aligned} end
```

E vetítés által kijelölt pixel akkor van a képernyő belsejében, ha az eredeti pont az ablakon belül van. Ennek ellenőrzésére használhatjuk a következő pontvágó rutint:

```
BOOL ClipWindow( x,y) if (x_l \le x \le x_r \text{ AND } y_b \le y \le y_t) then return TRUE else return FALSE end
```

A Julia-halmaz előállítása inverz iterációs módszerrel:

```
 \begin{array}{l} \textbf{JuliaInverseIteration}(\ c\ ) \\ \textbf{Kezdeti}\ z\ \text{\'ert\'ek}\ v\'alaszt\'asa \\ \textbf{for}\ i=0\ \text{to}\ n\ \text{do} \\ x=\Re z \\ y=\Im z \\ \textbf{if}\ ClipWindow}(x,y) \\ \textbf{WindowViewport}(x,y\to X,Y) \\ \textbf{Pixel}(X,Y,\text{fekete}) \\ \textbf{endif} \\ z=\sqrt{z-c} \\ \textbf{if}\ rand()>0.5\ \text{then}\ z=-z \\ \textbf{endfor} \\ \end{array}
```

A kezdeti z érték egyetlen jelentősége az, hogy ha túl távol van az attraktortól, akkor az iterációból sok kezdeti elemet kell figyelmen kívül hagyni. A legszerencsésebb, ha rögtön az attraktorból indulunk. A $\sqrt{z-c}$ illetve a $-\sqrt{z-c}$ fixpontjai biztosan részei az attraktornak, ezért célszerű valamelyiket kijelölni kezdeti értékként:

$$z = \pm \sqrt{z - c}$$
 \Longrightarrow $z^2 - z + c = 0$ \Longrightarrow $z = \frac{1}{2} + \sqrt{\frac{1}{4} - c}$. (15.19)

15.4.2. A Mandelbrot-halmaz

Különböző komplex c számokkal előállított Julia-halmazokat (15.7. ábra) nézegetve megállapíthatjuk, hogy azok vagy összefüggő halmazok, vagy különálló, egymással nem érintkező pontok gyűjteményei (ún. *Cantor-féle halmaz*). Egy Mandelbrot nevű matematikus arra keresett választ, hogy c-nek milyen tulajdonságúnak kell lennie ahhoz, hogy a Julia-halmaz összefüggő legyen, és hogy nevét megörökítse, el is nevezte az ilyen tulajdonságú komplex számok halmazát *Mandelbrot-halmaz*nak.

15.7. ábra. A Julia-halmazok a $-2 \le \Re z \le 2, -2 \le \Im z \le 2$ tartományban: bal: $c=-0.9+0.12 \jmath; jobb: c=-1.2+0.4 \jmath$

15.8. ábra. A normál és a színes Mandelbrot-halmaz

Miként az viszonylag könnyen belátható [PSe88], a Julia-halmaz akkor lesz összefüggő, ha a c komplex szám része vagy a Julia-halmaz attraktorának, vagy a konvergens tartományának. Ennek megfelelően a c komplex számról úgy dönthető el, hogy része-e a Mandelbrot-halmaznak, hogy megvizsgáljuk, hogy a $z_{n+1}=z_n^2+c$ iteráció divergens-e a $z_0=c$ értékre (vegyük észre, hogy $z_0=0$ kezdeti értékkel is dolgozhatunk, hiszen az első lépés ekkor éppen a c-be visz).

A Mandelbrot-halmaz rajzoló program tehát:

```
\begin{array}{l} \textbf{MandelbrotDraw()} \\ & \text{for } Y=0 \, \text{to } Y_{\max} \, \text{do} \\ & \text{for } X=0 \, \text{to } X_{\max} \, \text{do} \\ & \text{ViewportWindow}(X,Y\to x,y) \\ & c=x+j\cdot y \\ & z=0 \\ & \text{for } i=0 \, \text{to } n \, \text{do } z=z^2+c \\ & \text{if } |z| > \text{"infinity" then } \operatorname{Pixel}(X,Y,\operatorname{feh\acute{e}r}) \\ & \text{else} & \text{Pixel}(X,Y,\operatorname{fek\acute{e}te}) \\ & \text{endfor} \\ & \text{endfor} \\ & \text{end} \end{array}
```

A Julia-halmazokhoz hasonlóan *színes Mandelbrot-halmaz*okat is előállíthatunk, ha nem csupán a divergencia meglétét ellenőrizzük, hanem a divergencia sebessége alapján (a $|z_n|$ felhasználásával) színezzük ki a kezdeti pontot.

15.5. Iterált függvényrendszerek

A Julia-halmazok, bár nagyon szépek, nem kellően változatosak. A változatosság hiánya abból adódik, hogy a Julia-halmazt definiáló egyetlen komplex szám túlságosan kicsiny szabadságfokot biztosít számunkra az attraktor kialakítására. Ezért érdemes más leképzésekkel dolgozni, amelyekben a szabad paraméterek száma az igényeknek megfelelően változtatható.

A legegyszerűbb függvény, ami eszünkbe juthat, a lineáris, amely a sík x,y pontját a következőképpen képezi le:

$$[x', y'] = W(x, y) = [x, y] \cdot \mathbf{A} + \vec{p}$$
 (15.20)

Ennek az iterációnak két fixpontja van. Az egyik a

$$[x,y] = [x,y] \cdot \mathbf{A} + \vec{p} \tag{15.21}$$

egyenlet véges megoldása, a másik a végtelen. A lineáris függvénnyel végzett iteráció konvergens, ha az $\bf A$ mátrixszal való szorzás *kontrakció*, azaz

$$||\vec{u} \cdot \mathbf{A}|| \le s \cdot ||\vec{u}|| \tag{15.22}$$

ahol s<1. A kontrakció szemléletes jelentése az, hogy ha egy halmazra végrehajtjuk a leképzést, akkor a halmaz pontjai közötti eredeti távolságok legalább s<1-szeresükre zsugorodnak (15.9. ábra). A leképzés akkor kontrakció, ha az $\bf A$ mátrix valamely normája 1-nél kisebb.

15.9. ábra. Kontraktív leképzés

Az iteráció mindenképpen egyetlen pontra fog rázsugorodni (ha a végtelent is egy pontnak tekintjük), tehát a H=F(H) halmazegyenletet kielégítő halmaz, azaz az attraktor, egyetlen pontból áll. Az egyetlen pontból álló képek pedig nem különösebben izgalmasak. A lineáris függvényeket mégsem kell teljesen elvetnünk. Több lineáris függvény alkalmazásával ugyanis többértékű lineáris leképzéseket építhetünk fel, amelyeknek már sokkal szebb attraktora van. Legyen tehát a leképzésünk:

$$F(x,y) = W_1(x,y) \lor W_2(x,y) \lor \dots \lor W_n(x,y).$$
 (15.23)

Az F attraktorát iterációs módszerrel fogjuk előállítani, amelyre akkor van esélyünk, ha az attraktor stabil. Az attraktor stabilitásának feltétele az, hogy a végtelen egyik lineáris függvénynek se legyen stabil fixpontja, azaz minden alkotó lineáris függvény kontrakció legyen.

15.5.1. Iterált függvényrendszerek attraktorának előállítása

Ha mindegyik alkotó lineáris leképzés kontrakció, akkor az attraktor stabil, tehát bármely pontból indulunk is, az iteráció az attraktorhoz fog konvergálni, és ha már az attraktoron vagyunk, akkor ott is maradunk. Miként azt a többértékű leképzések attraktorának vizsgálatánál megállapítottuk, elegendő a többértékű leképzésből annak egyetlen

függvényét alkalmazni minden egyes iterációs lépésben, ha a választást véletlenszerűen tesszük meg. Rendeljünk a lineáris függvényekhez egy valószínűséget oly módon, hogy az i. függvényt minden lépésben, egymástól függetlenül p_i valószínűséggel választjuk. Amíg a p_i valószínűségek nem nullák, a tényleges megválasztásuk semmiféle hatással sincs az attraktorra, csak az attraktor tartományainak a meglátogatási valószínűségébe szól bele. Elképzelhetjük úgy is az iterációs folyamatot, mint egy részeg sofőr által vezetett, homokot szállító teherautó bolyongását. A következő pontot az aktuális pontból egy véletlenül választott függvénnyel állítjuk elő, majd a pontra érkezve ledobunk egy lapát homokot. Elegendően sokat bolyongva a homokunkat az attraktorra terítjük szét. A lineáris függvények meghatározzák, hogy hol lesz homok, a valószínűségek pedig azt, hogy hol lesz nagyobb és hol kisebb kupac. A homok mennyisége alapján az attraktor pontjaihoz színinformációt rendelhetünk.

A $W_1(x,y), W_2(x,y), \ldots, W_n(x,y)$ lineáris függvények halmazát az alkalmazásuk p_1, p_2, \ldots, p_n valószínűségével együtt *iterált függvényrendszer*nek (*Iterated Function System*) vagy *IFS*-nek nevezzük.

Miként a Julia-halmaz iterációs elvű rajzolásánál láttuk, célszerű már a kezdeti pontot is az attraktoron kiválasztani, mert ekkor nem kell eldobni az iteráció első néhány pontját sem. Egy alkalmas attraktorbeli pont lehet bármely lineáris függvény véges fixpontja, amit a 15.21 egyenlet megoldásával kaphatunk.

15.10. ábra. IFS rajzolás véletlen bolyongással

Az IFS rajzoló programunk ezek után:

```
\begin{split} \textbf{IFSDraw}(\,) & \text{for } X = 0 \text{ to } X_{\text{max}} \text{ do for } Y = 0 \text{ to } Y_{\text{max}} \text{ do } m[X][Y] = 0 \\ [x,y] \text{ kezdeti \'ert\'eke az } [x,y] = [x,y] \cdot \mathbf{A}_1 + \vec{p}_1 \text{ megold\'asa} \\ & \text{for } i = 0 \text{ to } n \text{ do} \\ & \text{ if ClipWindow}(x,y) \\ & \text{ WindowViewport}(x,y \to X,Y) \\ & m[X][Y] + + \\ & \text{ endif} \\ & k \text{ v\'alaszt\'asa v\'eletlenszer\~uen } p_k \text{ val\'osz\'in\~us\'eggel} \\ & [x,y] = [x,y] \cdot \mathbf{A}_k + \vec{p}_k \\ & \text{ endfor} \\ & \text{ for } X = 0 \text{ to } X_{\text{max}} \text{ do for } Y = 0 \text{ to } Y_{\text{max}} \text{ do} \\ & \text{ Pixel}(X,Y,color(m[X][Y])) \\ & \text{ endfor} \\ & \text{endfor} \\ \end{split}
```

A k index p_k valószínűséggel történő kiválasztása a következőképpen lehetséges:

```
\begin{aligned} k &= 1, s = p_1 \\ r &= rand() \\ \text{while } s < r \text{ do } s += p_k, k +\!\!\!+\!\!\!+ \end{aligned}
```


15.11. ábra. IFS által definiált egyszerű rajzok: 2D és 3D Sierpienski-halmazok (a 2D Sierpienski-halmaz IFS-e 3 lineáris transzformációt tartalmaz), és egy páfrány (az IFS 4 lineáris transzformációt tartalmaz)

15.5.2. IFS modellezés

Az előző fejezetben azt tárgyaltuk, hogy egy IFS által definiált attraktort hogyan lehet megjeleníteni. Most a másik irányt fogjuk követni, amikor adott egy T halmaz és keressük azt az IFS-t, tehát azon $W_1(x,y), W_2(x,y), \ldots, W_n(x,y)$ lineáris függvényeket, amelyek éppen ezt állítják elő. Az attraktort definiáló egyenlet:

$$T = W_1(T) \cup W_2(T) \cup \ldots \cup W_n(T).$$
 (15.24)

Emlékezzünk vissza, hogy az attraktor stabilitásának az a feltétele, hogy a $W_i(T)$ a T halmaz kicsinyítése legyen, tehát ezen egyenlet szerint az IFS definiálásához a halmazunkat saját kicsinyített képeivel kell lefedni.

A modellezés általános programja tehát

```
\begin{aligned} i &= 0 \\ \text{repeat} \\ &i + + \\ \text{Keress } W_i\text{-t úgy, hogy } W_i(T) \subseteq T \\ \text{until } T &= W_1(T) \cup W_2(T) \cup \ldots \cup W_i(T) \\ \text{end} \end{aligned}
```

A halmaz részét lefedő W_i transzformációkat létrehozhatjuk manuális vagy automatikus eljárásokkal egyaránt. A manuális eljárás, amelynek neve a *referencia pontok módszere*, az eredeti halmazból 3 pontra mondja meg, hogy az hova kerüljön. Ezzel 6 skaláregyenletet állítunk fel, amelyeket megoldva a W_i leképzés 6 paramétere kiszámítható.

15.12. ábra. IFS modellezés a referencia pontok módszerével

Az 15.12. ábra a páfrányt definiáló 4 lineáris transzformáció előállítását mutatja be. Az első transzformáció a páfrányt a jobb alsó levelébe viszi át:

$$W_1(x,y) = [x,y] \cdot \begin{bmatrix} -0.15 & 0.26 \\ 0.28 & 0.24 \end{bmatrix} + [0,100].$$

A második a páfrányt a bal alsó levelére képezi le:

$$W_2(x,y) = [x,y] \cdot \begin{bmatrix} 0.2 & 0.23 \\ -0.26 & 0.22 \end{bmatrix} + [0,44].$$

A harmadik egy csöppet kicsinyít, és a páfrányt arra a részére vetíti, amelyből a két alsó levél és a közöttük lévő függőleges szárdarab hiányzik:

$$W_3(x,y) = [x,y] \cdot \begin{bmatrix} 0.85 & -0.04 \\ 0.04 & 0.85 \end{bmatrix} + [0,160].$$

Végül az utolsó erősen kicsinyít függőleges irányban és brutálisan összenyomja a páfrányt vízszintes irányban, hogy előállítsa a szárnak az alsó két levél közötti részét:

$$W_4(x,y) = [x,y] \cdot \begin{bmatrix} 0 & 0 \\ 0 & 0.16 \end{bmatrix} + [0,0].$$

A gyakorlati esetekben az eredeti halmazunkat általában csak közelítőleg tudjuk lefedni a halmaz kicsinyített képeivel, így a kapott IFS attraktora az eredeti halmaztól eltér. A hiba nagysága egyrészt a lefedés hibájától, másrészt a lineáris függvények kontrakciójától függ.

15.13. ábra. Hausdorff-távolság

Két ponthalmaz közötti eltérés számszerűsítésére a *Hausdorff-távolság*ot használhatjuk, amely azon utak maximumát jelenti, amelyet az egyik halmaz pontjaiból elindulva kell megtenni, hogy a másik halmaz legközelebbi pontjába eljussunk. A Hausdorff-távolság teljesíti a matematikában használt távolságfogalom kritériumait: nem negatív, egy halmaz önmagától vett távolsága zérus, és fennáll a háromszög-egyenlőtlenség.

A közelítő lefedés miatt az IFS attraktora és az eredeti T halmaz nem fog megegyezni. A távolságukat a *kollázs tétel* fogalmazza meg. A kollázs tétel kimondja, hogy ha a T halmaz és a $W(T) = \bigcup W_i(T)$ lefedésének távolsága ε -on belül van, azaz

$$h(T, W(T)) < \varepsilon,$$

akkor a W(T) leképzés \mathcal{A} attraktora és a T halmaz közötti távolságra fennáll a következő egyenlőtlenség:

$$h(T, \mathcal{A}) < \frac{\varepsilon}{1-s},$$
 (15.25)

ahol s a $W_i(T)$ függvények kontrakciói közül a maximális.

A tétel bizonyítása során egyrészt a háromszög-egyenlőtlenséget használjuk ki, másrészt pedig a leképzés kontraktív tulajdonságát. A feltétel szerint $h(T,W(T))<\varepsilon$. Ha T-t és W(T)-t is leképezzük a W leképzéssel, akkor a kontrakció miatt minden távolság s-szeresére zsugorodik, tehát:

$$h(W(T), W^2(T)) < s \cdot \varepsilon.$$

Teljesen analóg módon $h(W^i(T), W^{i+1}(T)) < s^i \cdot \varepsilon$. Tekintsük a $h(T, W^i(T))$ távolságot. A háromszög-egyenlőtlenség felhasználásával

$$h(T, W^{i}(T)) < h(T, W(T)) + h(W(T), W^{2}(T)) + \dots + h(W^{i-1}(T), W^{i}(T)) < \varepsilon + s\varepsilon + \dots + s^{i-1}\varepsilon.$$

$$(15.26)$$

Mivel az attraktor definíciója szerint $\mathcal{A}=\lim_{i\to\infty}W^i(T)$, a T halmaz és az \mathcal{A} attraktor távolsága:

$$h(T, \mathcal{A}) = \lim_{i \to \infty} h(T, W^{i}(T)) < \varepsilon + s\varepsilon + s^{2}\varepsilon + \dots = \frac{\varepsilon}{1 - s}.$$
 (15.27)

Ezzel a kollázs tételt bebizonyítottuk.

15.5.3. Fraktális képtömörítés

Az IFS rendszerek egyik legfontosabb alkalmazási területe a *képtömörítés* (*image compression*). Láttuk ugyanis, hogy egyszerű, néhány paraméterrel megadható IFS-k milyen bonyolult attraktorokat eredményezhetnek. Mivel az IFS a képet saját transzformáltjaival fedi le, ez a módszer akkor hatékony, ha a képben sok önhasonló részlet ismerhető fel. Természetes objektumoknál ez a feltétel teljesül. A *fraktális képtömörítés*hez az idáig megismert IFS fogalom némi általánosításra szorul, egyrészt azért, hogy árnyalatos, illetve színes képeket is kezelni tudjon, másrészt azért, hogy a hatékonyság növelésének érdekében az önhasonlóságot csak ott erőltesse, ahol az tényleg fennáll.

A sík egyes pontjaihoz tehát egy g szürkeségi szintet (általános esetben R, G, B értékeket) rendelünk, a lineáris transzformációt pedig még két paraméterrel egészítjük ki. Az egyik paraméter skálázza a pont szürkeségi szintjét, a másik pedig kijelöli a kép azon részhalmazát, amelyre a transzformáció végrehajtandó. Ezeket a rendszereket particionált IFS-nek vagy PIFS-nek nevezzük [Fis97].

15.6. Program: IFS rajzoló

Az affin leképzések inicializálásához, végrehajtásához és a fixpont megkereséséhez mindenekelőtt a 2D transzformációs osztályt egészítjük ki.

```
//----
class Transform2D {
double m[3][3];
public:
   Transform2D( double m00, double m01, double m10, double m11,
              double m20, double m21 ) {
      m[0][0] = m00; m[0][1] = m01; m[0][2] = 0;
      m[1][0] = m10; m[1][1] = m11; m[1][2] = 0;
      m[2][0] = m20; m[2][1] = m21; m[2][2] = 1;
   Point2D AffineTransform( Point2D& p ) {
      return Point2D(p.X() * m[0][0] + p.Y() * m[1][0] + m[2][0],
                    p.X() * m[0][1] + p.Y() * m[1][1] + m[2][1]);
   Point2D FindFixPoint() {
      double det = (m[0][0]-1.0)*(m[1][1]-1.0)-m[0][1]*m[1][0];
      return Point2D((m[0][1]*m[2][1]-m[2][0]*(m[1][1]-1))/det,
                   (m[1][1]*m[2][0]-(m[0][0]-1)*m[2][1])/det);
};
```

A virtuális világmodell jelen esetben egy IFS, azaz affin leképzések és az alkalmazási valószínűségük gyűjteménye.

```
double MapProbability( int i ) { return p[i]; }
void AddMap( Transform2D& w0, double p0 ) {
    w[ w.Size() ] = w0; p[ p.Size() ] = p0;
}
int MapNum() { return w.Size(); }
};
```

A színtér továbbra is a virtuális világot, a kamerát és a megjelenítőeszközt foglalja magában. A képszintézis véletlen bolyongással történik. Az első leképzés fixpontjából indulunk, majd az alkalmazási valószínűségek szerint választunk egy leképzést, amivel transzformáljuk az aktuális pontot. Az így előállított pontsorozat azon elemeinek képét, amelyek az ablak belsejében vannak, a képernyőn kiszínezzük.

```
class Scene {
//----
               scr;
   VirtualWorld world;
   Camera2D
               camera;
public:
   Scene(Window * ps ) { scr = ps; }
   void Render();
};
void Scene :: Render() {
//-----
   unsigned long niteration = 100000L;
   scr -> Clear();
   Point2D p = world.AffineMap(0).FindFixPoint();
   for( long i = 0; i < niteration; i++ ) {</pre>
      if ( camera.Window( ).Code( p ) == 0 ) {
          Point2D ip = camera.ViewTransform().AffineTransform(p);
          scr -> Pixel( ip.X(), ip.Y(), Color(1) );
      double r = RND, sum = world.MapProbability(0);
      int k = 1;
      while( sum <= r ) sum += world.MapProbability( k++ );</pre>
      p = world.AffineMap(k-1).AffineTransform(p);
}
```

16. fejezet

Számítógépes animáció

Az animáció a virtuális világ és a képszintézis időbeli változásainak a követését jelenti. Elméletileg a virtuális világ és a kamera bármilyen paramétere definiálható időfüggvényként, legyen az pozíció, orientáció, méret, szempozíció, szín, normálvektor, BRDF, alak, stb., de ebben a könyvben csak a mozgás és a kamera animációval foglalkozunk.

A mozgás megjelenítéséhez az animáció nem csupán egyetlen képet generál, hanem egy teljes képsorozatot, ahol minden egyes kép egyetlen időpillanatnak felel meg. A felhasználóban a mozgás illúzióját kelthetjük, ha a képsorozat képeit gyorsan egymás után jelenítjük meg. Figyelembe véve, hogy az objektumaink geometriáját az objektumok lokális modellezési koordinátarendszereiben adjuk meg, az objektum pozíciója illetve orientációja a modellezési transzformáció változtatásával vezérelhető. Ez a modellezési transzformáció a világ-koordinátarendszerbe helyezi át az objektumot, ahol a kamera relatív pozícióját és orientációját is meghatározzuk. A kamera paraméterek viszont a nézeti transzformációra vannak hatással, ami az objektumot a világ-koordinátarendszerből a képernyő-koordinátarendszerbe viszi át. A transzformációk 4×4 -es mátrixokkal reprezentálhatók. Legyen az o objektum időfüggő modellezési transzformációja $\mathbf{T}_{\mathbf{M},\mathbf{o}}(t)$, az időfüggő nézeti transzformáció pedig $\mathbf{T}_{\mathbf{V}}(t)$. A beépített órát használó animációs program vázlata:

```
Óra inicializálás( t_{\mathrm{start}} ) do t = Óra lekérdezés for minden egyes o objektumra do \mathbf{T_{M,o}} = \mathbf{T_{M,o}}(t) \mathbf{T_{V}} = \mathbf{T_{V}}(t) Képszintézis while t < t_{\mathrm{end}}
```

A felhasználó akkor érzékeli a képsorozatot folyamatos mozgásként, ha másodpercenként legalább 15 képet vetítünk neki. Ha a számítógép képes ilyen sebességgel elvégezni a képszintézis lépéseit, valós idejű animációról beszélünk. Ha viszont a számítógépünk nem ilyen gyors, akkor az animáció két fázisban készülhet. Az elsőben kiszámítjuk és a háttértárra mentjük a képeket, majd a második fázisban a háttértárról beolvasva a mozgáshoz szükséges sebességgel visszajátsszuk őket. Amennyiben az első fázisban a képeket analóg jelként video szalagra írjuk, az animáció számítógép nélkül egy videomagnóval is lejátszható. A nem valós idejű animáció általános programja:

```
// képrögzítés
t = t_{\text{start}}
do
      for minden egyes o objektumra do T_{M,o} = T_{M,o}(t)
     \mathbf{T}_{\mathbf{V}} = \mathbf{T}_{\mathbf{V}}(t)
     Képszintézis
     Képtárolás
     t += \Delta t
while t < t_{\rm end}
Óra inicializálás( t_{\text{start}} )
                                                                                // animáció: visszajátszás
do
     t = Óra lekérdezés
     Következő kép betöltése
     t += \Delta t
     while (t > \text{Ora lekérdezés}) \text{ Várj}
while t < t_{\rm end}
```


16.1. ábra. Egy m tömegű pont dinamikája

Az animáció célja *valószerű mozgás* létrehozása. A mozgás akkor valószerű, ha kielégíti a fizikai törvényeket, ugyanis mindennapjaink során ilyen mozgásokkal találkozunk (a természet általában jól tudja a fizikát, és be is tartja a törvényeit). A mozgás

alapvető törvénye a *Newton-törvény*, amely szerint a testre ható erő arányos a mozgásvektor második deriváltjával.

A mozgásvektort a pont \vec{r}_L lokális koordinátáiból a modellezési transzformáció fejezi ki

$$\vec{r}(t) = \vec{r}_L \cdot \mathbf{T}_{\mathbf{M}}(t), \tag{16.1}$$

így \vec{D} erőt elszenvedő, m tömegű test pályája:

$$\frac{\vec{D}}{m} = \frac{d^2 \vec{r}(t)}{dt^2} = \vec{r}_L \cdot \frac{d^2 \mathbf{T_M}(t)}{dt^2}.$$
 (16.2)

Mivel az erők valamilyen rugalmas mechanizmuson keresztül hatnak, nem változhatnak ugrásszerűen, következésképpen a mozgásvektor C^2 folytonos (3.3.3. fejezet).

Az animáció központi feladata olyan $\mathbf{T_M}(t)$ és $\mathbf{T_V}(t)$ mátrixok definiálása, amely egyrészt a felhasználó által elképzelt mozgást adja vissza, másrészt kielégíti a valószerű mozgás követelményeit. A feladat megoldása a szabadformájú görbéknél megismert módszerekkel lehetséges. A felhasználó a mozgás során bejárt pozíciókat és orientációkat csak néhány vezérlőpontban definiálja, amiből a program a többi pillanat mozgásparamétereit interpolációs vagy approximációs technikákkal határozza meg.

16.2. ábra. Mozgástervezés interpolációval

16.1. Pozíció-orientáció mátrixok interpolációja

Mint azt a 5.2. fejezetben láttuk, tetszőleges pozíció, illetve orientáció megadható a következő mátrixszal:

$$\begin{bmatrix} \mathbf{A}_{3\times3} & 0 \\ \mathbf{O} & 0 \\ \vec{q} & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ q_x & q_y & q_z & 1 \end{bmatrix}.$$
(16.3)

A \vec{q} vektor a pozíciót, az $\mathbf{A}_{3\times3}$ pedig az orientációt határozza meg. A \vec{q} vektor elemeit egymástól függetlenül vezérelhetjük, az $a_{11},\ldots a_{33}$ elemeket viszont nem, hiszen azok összefüggnek egymással. A függés abból is látszik, hogy az orientáció szabadságfoka 3, a mátrixelemek száma pedig 9. Egy érvényes orientációs mátrix nem módosíthatja az objektum alakját, amelynek feltétele, hogy a mátrix sorvektorai egymásra merőleges egységvektorok legyenek.

Az interpoláció során a pozícióvektor elemeit függetlenül interpolálhatjuk, az orientációmátrix elemeit azonban nem, hiszen a független változtatás nem érvényes orientációkat is eredményezhetne. A megoldást a független orientációs paraméterek terében végrehajtott interpoláció jelenti. Például használhatjuk az orientáció jellemzésére a *roll/pitch/yaw* szögeket, amelyek egy orientációhoz úgy visznek el, hogy először a z tengely körül α szöggel, majd y tengely körül β szöggel, végül az x tengely körül γ -szöggel forgatnak. Összefoglalva a mozgás függetlenül vezérelhető paraméterei:

$$\mathbf{p}(t) = [x(t), y(t), z(t), \alpha(t), \beta(t), \gamma(t)]. \tag{16.4}$$

A képszintézis során a modellezési transzformációra van szükségünk, amit az interpolált *paraméter vektor*ból számíthatunk ki:

$$\mathbf{A} = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \beta & 0 - \sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & \sin \gamma \\ 0 - \sin \gamma & \cos \gamma \end{bmatrix}, \quad (16.5)$$

$$\vec{q} = [x, y, z]. \tag{16.6}$$

A valószerű mozgás biztosításához az $\bf A$ mátrix és a $\vec q$ vektor elemeinek C^2 folytonos görbéknek kell lenniük. Ezt a paraméter vektor elemeinek C^2 folytonos interpolációjával vagy approximációjával teljesíthetjük. Kézenfekvő lehetőség például a $\it B$ -spline görbék alkalmazása.

16.2. A kameraparaméterek interpolációja

A *kamera animáció* kissé bonyolultabb, mint az objektumok mozgatása, mert a kamerához több paraméter tartozik, mint a pozíció és az orientáció. Emlékezzünk vissza, hogy a kamerát általában a következő folytonos paraméterekkel jellemezzük:

- 1. $v\vec{r}p$: a nézeti referencia pont, amely az ablak középpontja,
- 2. $v\vec{p}n$: ablak normálvektora,
- 3. $v\vec{u}p$: az ablak függőleges iránya,
- 4. w_h, w_w : az ablak vízszintes és függőleges méretei,
- 5. $e\vec{y}e$: a szempozíció,
- 6. fp, bp: az első és hátsó vágósíkok.

Ezen paraméterek egymástól függetlenül vezérelhetők, így a kamera paraméter vektora:

$$\mathbf{p_{cam}}(t) = [v\vec{r}p, v\vec{p}n, v\vec{u}p, w_h, w_w, e\vec{y}e, fp, bp]. \tag{16.7}$$

Egy t időpillanatra a paraméter vektor aktuális értékéből számíthatjuk a T_V nézeti transzformációs mátrixot.

16.3. Mozgás tervezés

A mozgás tervezés a vezérlőpontok felvételével kezdődik. A felhasználó felvesz egy $t_1, t_2 \dots t_n$ időpont sorozatot és elhelyezi az objektumokat és a kamerát ezen időpontokban. Az elhelyezés történhet a transzformációs mátrix interaktív vezérlésével, vagy közvetlenül a paraméter vektor megadásával. Az első esetben a paraméter vektort a program számítja ki a transzformációs mátrixból. A t_i időpillanatban beállított elrendezés az egyes objektumok paramétereire egy $\mathbf{p_o}(t_i)$ vezérlőpontot határoz meg. Ezen vezérlőpontokat felhasználva a program minden objektum minden paraméterére egy C^2 folytonos görbét illeszt (például B-spline-t).

Az animációs fázisban a program az aktuális idő szerint mintavételezi a paraméterfüggvényeket, majd a paraméterekből kiszámítja a transzformációs mátrixokat, végül a transzformációs mátrixok felhasználásával előállítja a képet.

Összefoglalva a mozgástervezés és az animáció főbb lépései:

```
Vezérlőpontok definiálása: t_1,\ldots,t_n // tervezés for minden egyes k vezérlőpontra do for minden egyes o objektumra do o objektum elrendezése: \mathbf{p_o}(t_k) = [x(t_k),y(t_k),z(t_k),\alpha(t_k),\beta(t_k),\gamma(t_k)]_o
```

```
endfor
       Kamera beállítás: \mathbf{p_{cam}}(t_k)
for minden egyes o objektumra do
       Interpolálj egy C^2 függvényt: \mathbf{p}_{\mathbf{o}}(t) = [x(t), y(t), z(t), \alpha(t), \beta(t), \gamma(t)]_o
Interpolálj egy C^2 függvényt a kameraparaméterekhez: \mathbf{p_{cam}}(t)
Óra inicializálás(t_{\text{start}})
                                                                                                    // animáció
do
     t = Óra leolvasás
     for minden egyes o objektumra do
             mintavételezés t-ben: \mathbf{p}_{\mathbf{o}} = [x(t), y(t), z(t), \alpha(t), \beta(t), \gamma(t)]_o
             T_{M,o} = T_{M,o}(p_o)
     endfor
     A kamerához mintavételezés t-ben: \mathbf{p_{cam}} = \mathbf{p_{cam}}(t)
     T_{\mathbf{V}} = T_{\mathbf{V}}(\mathbf{p_{cam}})
     Képszintézis
while t < t_{\rm end}
```

Ennek a megközelítésnek több hátránya is van. Tegyük fel például, hogy az animáció megtekintése után úgy találjuk, hogy a film egy része túl lassú, ezért fel kívánjuk gyorsítani ezt a részt. Az egyetlen dolog amit tehetünk, hogy újból kezdjük a tervezést, ami nyilván meglehetősen keserves. A probléma abból származik, hogy a mozgástervezési eljárás nem választja szét az időzítési információkat a pályák geometriai megfogalmazásától.

A megoldást a színészi és rendezői álmokat dédelgetők jól ismerik. Egy színházi előadás színpadra állítása ugyanis nagyon hasonló az animáció tervezéséhez. Ha az előadást a fenti algoritmusnak megfelelően rendeznénk, az azt jelentené, hogy minden színésznek tudnia kellene a színpadra lépésének pontos idejét. Nem nehéz elképzelni, hogy ha az előadás késik, akkor milyen zűrzavart okozna, hogy minden egyes színész menetrendjét megfelelően átprogramozzuk. Szerencsére a színházak nem így működnek, hanem ehelyett a színészek azt tudják, hogy nekik melyik színben kell megjelenniük. Az előadás alatt csak a színházi ügyelő követi az előadást, és közli a színészekkel, hogy melyik szín következik. Tehát az időzítést (színházi ügyelő) és a mozgást (színészek mely színben jelennek meg) sikeresen szétválasztottuk.

Használjuk ugyanezt az eljárást! Az animációs szekvenciát *keret*ekre (*frame*) osztjuk, és a mozgást a keretek függvényében specifikáljuk. Az interpoláció vezérlőpontjaihoz, az ún. *kulcskeret*ekhez (*keyframe*) célszerűen az első, második, harmadik, stb. számot rendeljük. Majd a geometriától függetlenül megmondjuk, hogy a kereteknek mely időpillanatokban kell bekövetkezniük. Az időzítés megadása során a keretekhez

16.3. Mozgás tervezés 287

16.3. ábra. Animáció keretek felhasználásával

időfüggvényt rendelünk. Az animációs fázisban először az aktuális időhöz a keretet számítjuk ki, majd a keret ismeretében a mozgás paramétereket, ezekből pedig a transzformációs mátrixokat.

```
// Geometriai tervezés for minden egyes k_f kulcskeretre do for minden egyes o objektumra do o objektum elrendezése: \mathbf{p_o}(k_f) = [x(k_f), y(k_f), z(k_f), \alpha(k_f), \beta(k_f), \gamma(k_f)]_o endfor Kamera beállítás: \mathbf{p_{cam}}(k_f); endfor for minden egyes o objektumra do Interpolálj egy C^2 függvényt: \mathbf{p_o}(f) = [x(f), y(f), z(f), \alpha(f), \beta(f), \gamma(f)]_o endfor Interpolálj egy C^2 függvényt a kameraparaméterekhez: \mathbf{p_{cam}}(f)
```

for minden egyes k_f kulcskeretre do Add meg azt a t_{k_f} -t, amelyre $\mathcal{F}(t_{k_f}) = k_f$

Interpolálj egy C^2 függvényt: $\mathcal{F}(t)$

```
\label{eq:localization} \begin{split} &\textit{// Animáció} \\ &\textit{Óra inicializálás}(t_{\text{start}}) \\ &\textit{do} \\ & t = \textit{Óra leolvasás} \\ &\textit{$f = \mathcal{F}(t)$;} \\ &\textit{Minden $o$ objektumra} \\ & &\textit{mintavételezés $f$-ben: } \mathbf{p_o} = [x(f), y(f), z(f), \alpha(f), \beta(f), \gamma(f)]_o \\ &\mathbf{T_{M,o}} = \mathbf{T_{M,o}}(\mathbf{p_o}) \\ &\textit{endfor} \\ &\textit{A kamerához mintavételezés $f$-ben: } \mathbf{p_{cam}}(f) \\ &\mathbf{T_{V}} = \mathbf{T_{V}}(\mathbf{p_{cam}}) \\ &\textit{Képszintézis} \\ &\textit{while } t < t_{end} \end{split}
```

16.4. Dupla pufferelés

Az animáció alatt a képeket gyorsan egymás után generáljuk és kihasználjuk, hogy a gyorsan levetített állóképsorozatot a szem mozgásként érzékeli.

16.4. ábra. Dupla puffer rendszerek

Valósidejű megjelenítés esetén a használt takarási algoritmus függvényében a számított kép fokozatosan alakul ki a számítógép képernyőjén, amely alatt rövid időre olyan poligonok is feltűnhetnek, amelyek egyáltalán nem látszhatnának. Ez észrevehető villogáshoz vezet. A klasszikus mozgófilmek világában hasonló probléma kiküszöbölésére a vetítőt letakarjuk, mialatt az egyik képkockáról a másikra lépünk át. Ugyanezt az elvet itt is használhatjuk. Ehhez két rasztertár szükséges. Egy adott pillanatban az egyiket megjelenítjük, a másikba pedig rajzolunk. Amikor a kép elkészült, az elektronsugár képvisszafutási ideje alatt a két rasztertár szerepet cserél.

17. fejezet

Térfogat modellek és térfogatvizualizáció

Egy térfogat modell (volumetric model) úgy képzelhető el, hogy a 3D tér egyes pontjaiban sűrűségértékeket adunk meg. A feladat tehát egy v(x,y,z) függvény reprezentálása. A gyakorlatban általában térfogatmodellekre vezetnek a mérnöki számítások (pl. egy elektromágneses térben a potenciáleloszlás). Az orvosi diagnosztikában használt CT (számítógépes tomográf) és MRI (mágneses rezonancia mérő) a céltárgy (tipikusan emberi test) sűrűségeloszlását méri, így ugyancsak térfogati modelleket állít elő.

A térfogati modellt általában szabályos ráccsal mintavételezzük, és az értékeket egy 3D mátrixban tároljuk. Úgy is tekinthetjük, hogy egy mintavételi érték a térfogat egy kicsiny kockájában érvényes függvényértéket képviseli. Ezen elemi kockákat térfogatelemnek, vagy *voxel*nek nevezzük.

Nyilván az elemi kockák direkt felrajzolásának nem sok értelme lenne, hiszen ekkor csak a térfogat külső oldalain lévő értékeket láthatjuk (egy páciens fejéről azért csinálunk CT-t, hogy belsejét vizsgálhassuk, nem pedig azért, hogy az arcában gyönyörködjünk). A teljes térfogat áttekintéséhez bele kell látnunk a térfogatba, tehát a térfogati modellt célszerű úgy kezelni, mintha az részben átlátszó anyagból állna. A térfogatot alkotó "ködöt" két alapvetően különböző módon jeleníthetjük meg. A *direkt módszer*ek közvetlenül a térfogati modellt fényképezik le, az *indirekt módszer*ek pedig először átalakítják egy másik modellre, amelyet azután a szokásos módszerekkel jeleníthetünk meg.

17.1. Direkt térfogatvizualizációs módszerek

A direkt módszerek a ködöt a képsíkra vetítik és számba veszik az egyes pixeleknek megfelelő vetítősugarak által metszett voxeleket. A pixelek színét a megfelelő voxelek színéből és átlátszóságából határozzák meg.

Elevenítsük fel a radianciát a fényelnyelő anyagokban leíró 8.34. egyenletet! Feltehetjük, hogy az anyag nem bocsát ki fényt magából. Ekkor egy sugár mentén a radiancia

17.1. ábra. CT és MRI mérések vizualizációja

a fényelnyelés miatt csökken, a sugár irányába ható visszaverődés miatt viszont nő:

$$\frac{dL(s,\omega)}{ds} = -\kappa_t(s) \cdot L(s,\omega) + L_{\rm is}(s). \tag{17.1}$$

Amennyiben $L_{is}(s)$ ismert, az egyenlet megoldása:

$$L(s,\omega) = \int_{s}^{T} e^{-\int_{s}^{\tau} \kappa_{t}(p) dp} \cdot L_{is}(\tau,\omega) d\tau, \qquad (17.2)$$

ahol T a maximális sugárparaméter.

Az integrálok kiértékeléséhez a [0,T] sugárparaméter tartományt kis intervallumokra osztjuk és az integrált téglányszabállyal becsüljük. Ez megfelel a folytonos differenciálegyenletet véges differenciaegyenlettel történő közelítésének:

$$\frac{\Delta L(s,\omega)}{\Delta s} = -\kappa_t(s) \cdot L(s,\omega) + L_{is}(s) \implies$$

$$L(s + \Delta s,\omega) = L(s,\omega) - \kappa_t(s) \cdot \Delta s \cdot L(s,\omega) + L_{is}(s) \cdot \Delta s. \tag{17.3}$$

Jelöljük a $L_{is}(s) \cdot \Delta s$ szórt radianciát C(s)-sel, amit ezek után a voxel saját színének tekintünk. Az $\alpha(s) = \kappa_t \cdot \Delta s$ érték — amelyet *opacitás*nak nevezünk — a két minta közötti fényelnyelést jellemzi. Ezekkel az új jelölésekkel:

$$L(s + \Delta s, \omega) = (1 - \alpha(s)) \cdot L(s, \omega) + C(s). \tag{17.4}$$

Ezt az egyenletet a térfogat vizualizálásakor a pixelekhez tartozó sugarakra kell megoldani. A sugarak definiálása során kiindulhatunk a térfogatból, vagy a képernyő pixeleiből egyaránt. Az első módszer neve térfogat vetítés [DCH88] a másodiké pedig térfogati sugárkövetés [Lev88, Lev90]. A térfogat vetítés az inkrementális képszintézishez, azon belül pedig a festő algoritmushoz hasonlít, a térfogati sugárkövetés pedig a normál sugárkövetés adaptációja.

17.2. ábra. Térfogat vetítés (bal) és térfogati sugárkövetés (jobb)

17.1.1. Térfogat vetítés

A térfogat vetítés a térfogatból indul, és a térfogati adathalmazt az ablak síkjával párhuzamos, Δs távolságra lévő síkok mentén mintavételezi, majd az egyes síkokat az ablakra vetíti. A feldolgozást a szemtől távolabbi síkokkal kezdjük és onnan közeledünk a szempozíció felé. A feldolgozás adott pillanatában érvényes $L(s,\omega)$ akkumulálódó radianciát a pixelekben tároljuk. Így egy sík vetítése során a 17.4. egyenletet az egyes pixelekben tárolt L(s) érték és a C(s) vetített érték felhasználásával számítjuk ki. Ha az összes síkon végigmentünk, a megjelenítendő színeket a pixelekben akkumulálódott radiancia határozza meg.

17.1.2. Térfogati sugárkövetés

A térfogati sugárkövetés a pixelektől indul. A pixel középpontokon keresztül egy-egy sugarat indítunk a térfogatba, és a sugár mentén haladva oldjuk meg a 17.4 egyenletet.

Amennyiben a fénnyel megegyező irányban haladunk, a 17.4 egyenletet az eredeti formájában értékeljük ki. Sajnos ez a módszer gyakran felesleges számításokat igényel, hiszen a számításokat a legtávolabbi voxeleknél kezdjük, amelyek az esetek döntő részében úgysem látszanak a képen. Ezért célszerűbb, ha a fénnyel szemben haladunk a sugárintegrál kiértékelésekor. Természetesen ekkor a 17.4 egyenletet ki kell facsarni.

Tegyük fel, hogy a szemből már az s paraméterig jutottunk, és idáig úgy találtuk, hogy a sugár mentén az s paraméter és a szem között $L^*(s,\omega)$ radiancia akkumulálódott, és az integrált opacitás, amivel a s utánról érkező radianciát kell szorozni pedig $\alpha^*(s)$. Ha a sugárparamétert Δs -sel léptetjük, akkor a következő inkrementális összefüggések érvényesek:

$$L^*(s - \Delta s, \omega) = L^*(s, \omega) + (1 - \alpha^*(s)) \cdot C(s), \tag{17.5}$$

$$1 - \alpha^*(s - \Delta s) = (1 - \alpha(s)) \cdot (1 - \alpha^*(s)). \tag{17.6}$$

Most a pixelek színét az $L^*(0)$ érték határozza meg. Ha az összefüggések inkrementális kiértékelése során úgy találjuk, hogy az $1-\alpha^*(s-\Delta s)$ mennyiség egy küszöb érték alá került, befejezhetjük a sugár követését, mert a hátrébb levő voxelek hatása elhanyagolható.

17.2. A voxel szín és az opacitás származtatása

A térfogatvizualizációs algoritmusok a voxelek saját színével és opacitásértékeivel dolgoznak, amelyeket a v(x,y,z) mért voxelértékekből származtathatunk. A gyakorlatban többféle módszer terjedt el, amelyek különböző megjelenítésekhez vezetnek.

Az egyik leggyakrabban használt eljárás a felületi modellek árnyalását adaptálja a térfogatra (17.8. ábra). Az árnyalási paraméterek származtatáshoz osszuk fel a mért v(x,y,z) sűrűségfüggvény értékkészletét adott számú intervallumra (például, a CT és az MRI képeknél a levegő, lágy szövet és a csont sűrűségértékeit érdemes elkülöníteni). Az egyes intervallumokhoz diffúz és spekuláris visszaverődési tényezőt, valamint átlátszóságot adunk meg. Absztrakt fényforrások jelenlétét feltételezve, például a Phong illuminációs képlet segítségével meghatározzuk a voxelhez rendelhető színt. Az illuminációs képletek által igényelt normálvektort a v(x,y,z) gradienséből kaphatjuk meg.

Ha a 3D voxelek mérete a,b és c, akkor a gradiens vektor egy x,y,z pontban:

$$\operatorname{grad} v = \begin{pmatrix} \frac{v(x+a, y, z) - v(x-a, y, z)}{2a} \\ \frac{v(x, y+b, z) - v(x, y-b, z)}{2b} \\ \frac{v(x, y, z+c) - v(x, y, z+c)}{2c} \end{pmatrix}.$$
 (17.7)

Teljesen homogén tartományokban a gradiens zérus, tehát a normálvektor definiálatlan, ami a képen zavarokat okozhat. Ezeket eltüntethetjük, ha a voxelek opacitását a megadott átlátszóság és a gradiens abszolút értékének a szorzataként számítjuk, hiszen ekkor a homogén tartományok teljesen átlátszóak lesznek.

Egy másik módszer azt feltételezi, hogy a megvilágítás a térfogat túlsó oldaláról jön. Ha az opacitást a v(x,y,z)-vel arányosan választjuk, a pixelek színe arányos lesz az integrált opacitással, azaz a v(x,y,z) sugármenti integráljával. Mivel a röntgensugarak is hasonlóan nyelődnek el, a kép hatásában a *röntgen kép*ekre emlékeztet.

Végül egy gyorsan kiértékelhető, és ugyanakkor az orvosi diagnosztikában rendkívül hasznos megjelenítési eljáráshoz jutunk, ha minden sugár mentén az v(x,y,z)maximumával arányosan színezzük ki a pixeleket (1.6. ábra jobb oldala).

17.3. Indirekt térfogatvizualizációs módszerek

Az indirekt módszerek a térfogati modellt egy másfajta modellre alakítják át, majd azt fényképezik le.

17.3.1. Masírozó kockák algoritmusa

A legkézenfekvőbb közbenső reprezentáció a felületi modell, hiszen a felületi modellek megjelenítése a számítógépes grafika leginkább kimunkált területe. Egy térfogati modellből elvileg úgy nyerhetünk felületeket, hogy azonosítjuk a 3D térfogat szintfelületeit, azaz azon 2D ponthalmazokat, ahol a v(x,y,z) megegyezik a megadott szintértékkel. Ez korántsem olyan könnyű, mint ahogyan első pillanatban látszik, hiszen mi a v(x,y,z) függvényt csak diszkrét értékekben ismerjük, a közbenső pontokat a tárolt adatok interpolációjával kell előállítani.

Egy ilyen, az interpolációt és a szintfelületet megkeresését párhuzamosan elvégző módszer a *masírozó kockák algoritmus* (*marching cubes algorithm*). Az algoritmus első lépésben a szintfelület értékének és a voxelek értékének az összehasonlításával minden voxelre eldönti, hogy az belső voxel-e avagy külső voxel. Ha két szomszédos voxel eltérő típusú, akkor közöttük határnak kell lennie. A határ pontos helye a voxelek élein az érték alapján végzett lineáris interpolációval határozható meg. Végül az éleken kijelölt pontokra háromszögeket illesztünk, amelyekből összeáll a szintfelület. A háromszög illesztéshez figyelembe kell venni, hogy egy zárt alakzat az egy pontra illeszkedő 8 voxelt összesen 256-féleképpen metszheti, amiből végül 14 ekvivalens eset különíthető el (17.3. ábra). A metszéspontokból a háromszögekhez úgy juthatunk el, hogy először azonosítjuk a megfelelő esetet, majd eszerint definiáljuk a háromszögeket.

17.3. ábra. Egy zárt alakzat az egy pontra illeszkedő 8 voxelt összesen 14 féleképpen metszheti

17.3.2. Fourier-tér módszerek

A Fourier-transzformációnak több hasznos tulajdonsága van: egyrészt a gyors Fourier-transzformációs módszerrel hatékonyan elvégezhető akár magasabb dimenziókban is, másrészt a transzformált értéke a 0 frekvencián megegyezik a függvény integráljával. Mivel a röntgenszerű megjelenítéshez a v(x,y,z) függvényt a különböző sugarak mentén kell integrálni, a megjelenítéshez az adathalmaz Fourier-transzformáltja vonzóbbnak tűnik mint maga a mért adat.

A $V(\omega_x,\omega_y,\omega_z)$ Fourier-transzformált és a v(x,y,z) eredeti adat között a következő összefüggés áll fenn:

$$V(\omega_x, \omega_y, \omega_z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v(x, y, z) \cdot e^{-2\pi \jmath (x\omega_x + y\omega_y + z\omega_z)} dx dy dz, \qquad (17.8)$$

ahol
$$j = \sqrt{-1}$$
.

Vegyük észre, hogy a $V(\omega_x,\omega_y,0)$ metszet (slice) éppen a z irányú sugarakkal számított kép 2D Fourier-transzformáltja. Hasonlóan a $V(\omega_x,0,\omega_z)$ az y irányú sugarakkal, a $V(0,\omega_y,\omega_z)$ pedig az x irányú sugarakkal vett integrálok Fourier-transzformáltja. Ráadásul — a Fourier-transzformáció sajátosságai miatt — általános orientáció-

17.4. ábra. Fourier-tér módszer

jú metszetek képzésével tetszőleges irányból látott kép Fourier-transzformáltja számítható. Ha az ablak orientációját az oldalakkal párhuzamos $W_u=(\omega_{ux},\omega_{uy},\omega_{uz})$ és $W_v=(\omega_{vx},\omega_{vy},\omega_{vz})$ vektorokkal definiáljuk, akkor a kép Fourier-transzformáltja az

$$P(\omega_u, \omega_v) = V(\omega_{ux}\omega_u + \omega_{vx}\omega_v, \omega_{uy}\omega_u + \omega_{vy}\omega_v, \omega_{uz}\omega_u + \omega_{vz}\omega_v)$$
(17.9)

összefüggéssel határozható meg. Ebből pedig egy u,v koordinátájú pixelnek megfelelő integrál értéke inverz Fourier-transzformációval számítható:

$$p(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(\omega_u, \omega_v) \cdot e^{2\pi j(u\omega_u + v\omega_v)} d\omega_u d\omega_v.$$
 (17.10)

Az eljárás a viszonylag számításigényes 3D Fourier-transzformáció egyszeri végrehajtása után, tetszőleges irányú megjelenítéshez már csak 2D inverz Fourier-transzformációkat alkalmaz, ezért interaktív körbejáráshoz vagy animációhoz javasolható.

17.4. Program: masírozó kockák algoritmusa

A masírozó kockák algoritmus a voxel tömb által reprezentált függvény szintfelületeit azonosítja, és azokra egy háromszögsorozatot illeszt. A szintfelület sokféleképpen metszhet egy voxelt, amit aszerint osztályozhatunk, hogy melyik csúcspont van a keresett felületi érték felett illetve alatt. A voxel 8 csúcsának osztályozása során kapott érték egy konfigurációt jelent. Ezek a konfigurációk egy 256 soros táblázatba gyűjthetők (polytab), amelynek soraiban a –1-gyel lezárt sorozat számhármasai azonosítják az adott eset poligonizációjához szükséges háromszögeket [Pap98]. A táblázatból kiolvashatjuk, hogy melyik éleket kell metszenünk a poligonok csúcsainak meghatározásához. A csúcsokat lineáris interpolációval számoljuk ki. Az alábbiakban ezen táblázatból csupán egy részletet mutatunk be, a teljes tábla a CD-n megtalálható.

```
int polytab[256][32]=
{
                                                 //
\{-1,\},
                                                      0:00000000, f:0
\{1,0,4,0,3,0,-1,\},
                                                      1:00000001, f:1
                                                 //
\{1,0,1,2,1,5,-1,\},
                                                 //
                                                      2:00000010, f:1
                                                      3:00000011, f:2
\{1,5,4,0,1,2,1,2,4,0,3,0,-1\},
                                                 //
\{1,0,1,5,1,2,-1,\},
                                                 // 253:11111101, f:1
                                                 // 254:11111110, f:1
\{1,0,3,0,4,0,-1,\},
\{-1,\},
                                                 // 255:111111111, f:0
};
```

A következő tömbökben azt tartjuk nyilván, hogy a kocka egyes csúcsai a bal-alsóhátsó sarokhoz képest milyen relatív x, y és z koordinátákkal rendelkeznek.

```
int x_relpos_tab[8]={0, 1, 1, 0, 0, 1, 1, 0};  // x-ben
int y_relpos_tab[8]={0, 0, 0, 0, 1, 1, 1, 1};  // y-ben
int z_relpos_tab[8]={0, 0,-1,-1, 0, 0,-1,-1};  // z-ben
```

A Volume osztály egy size felbontású térfogatmodellt testesít meg. Az osztály konstruktora fáljból beolvassa voxelértékeket, az Interpolate tagfüggvénye a voxelkockák élein interpolálja a hely- és irányvektorokat. A MarchingCube pedig az ismertetett algoritmussal egyetlen voxelre megvizsgálja, hogy a szintfelület metszi-e azt, és előállítja a metsző szintfelület háromszöghálós közelítését. A teljes térfogat modell megjelenítéséhez a MarchingCube tagfüggvényt minden egyes voxelre meg kell hívni. A kapott háromszögeket a szokásos 3D csővezetéken végigvezetve jeleníthetjük meg.

```
class Volume {
//-----
  int size;
  BYTE *** grid;
public:
  Volume( char * filename );
  int GridSize() { return size; }
  BYTE V(int x, int y, int z) {
       if (x < 0 | | y < 0 | | z < 0 | |
           x \ge size \mid \mid y \ge size \mid \mid z \ge size) return 0;
       return grid[x][y][z];
  }
  void Interpolate ( Point 3D& point 1, Point 3D& point 2,
                   Point3D& norm1, Point3D& norm2,
                   double value1, double value2, double isolevel,
                   Point3D& point, Point3D& norm ) {
       double m = (isolevel - value1) / (value2 - value1);
       point = point1 + (point2 - point1) * m;
       norm = norm1 + (norm2 - norm1) * m;
  TriangleList3D * MarchingCube(int x, int y, int z, double isolevel);
};
Volume :: Volume( char * filename ) {
   size = 0;
   FILE * file = fopen(filename, "rb");
   if (fscanf(file, "%d", &size) != 1) return;
   grid = new BYTE**[size];
   for (int x = 0; x < size; x++) {
       grid[x] = new BYTE*[size];
       for (int y = 0; y < size; y++) {
           grid[x][y] = new BYTE[size];
           for (int z = 0; z < size; z++)
              grid[x][y][z] = fgetc(file);
   }
```

```
TriangleList3D * Volume :: MarchingCube( int x, int y, int z,
                                double isolevel ) {
//----
   BYTE cubeindex = 0;
   if (V(x,y,z) < isolevel) cubeindex|=1;
if (V(x+1,y,z) < isolevel) cubeindex|=2;
   if (V(x+1,y,z-1) < isolevel) cubeindex|=4;
   if (V(x,y,z-1) < isolevel) cubeindex|=8;
if (V(x,y+1,z) < isolevel) cubeindex|=16;
   if (V(x+1,y+1,z) < isolevel) cubeindex|=32;
   if (V(x+1,y+1,z-1) < isolevel) cubeindex |=64;
   if (V(x,y+1,z-1) < isolevel) cubeindex|=128;
   if ( cubeindex == 0 || cubeindex == 255 ) return NULL;
   TriangleList3D * tlist =
        new TriangleList3D(0 /* emisszio */, 0.1 /* ka */,
                           0.4 /* kd */, 0.2 /* ks */, 10 /* shine */);
   for (int j = 0, t = 0; polytable[cubeindex][j] != -1; j += 6) {
        Point3D p1, p2, point[3], n1, n2, norm[3];
        for ( int j1 = 0; j1 < 6; j1 += 2 ) {
            int x1 = x + x_relpos_tab[polytable[cubeindex][j+j1]];
            int y1 = y + y_relpos_tab[ polytable[cubeindex][j+j1] ];
            int z1 = z + z_relpos_tab[ polytable[cubeindex][j+j1] ];
            Point3D point1(x1, y1, z1);
            Point3D norm1 (V(x1-1,y1,z1) - V(x1+1,y1,z1),
                          V(x1, y1-1, z1) - V(x1, y1+1, z1),
                           V(x1, y1, z1-1) - V(x1, y1, z1+1));
            double value1 = V(x1, y1, z1);
            int x2 = x + x_{polytable}[cubeindex][j+j1+1]];
            int y2 = y + y_relpos_tab[ polytable[cubeindex][j+j1+1] ];
            int z2 = z + z_relpos_tab[ polytable[cubeindex][j+j1+1] ];
            Point3D point2(x2, y2, z2);
            Point3D norm2 (V(x2-1,y2,z2) - V(x2+1,y2,z2),
                           V(x2,y2-1,z2) - V(x2,y2+1,z2),
                           V(x2,y2,z2-1) - V(x2,y2,z2+1));
            double value2 = V(x2, y2, z2);
            Interpolate( point1, point2, norm1, norm2, value1, value2,
                         isolevel, point[j1/2], norm[j1/2]);
            norm[j1/2].Normalize();
        }
        tlist -> AddTriangle( t++, point[0], point[1], point[2],
                                   norm[0], norm[1], norm[2]);
   return tlist;
}
```


17.5. ábra. A CSG módszer ciklikus általánosításával készült modell. A hóembereket közönséges CSG modellek, a fenyőfát rekurzív CSG definiálja. A képet az ART program sugárkövetéssel készítette (Bécsi Műszaki Egyetem, Számítógépes Grafika Intézet).

17.6. ábra. 3D világok fényképei: Bal: Globális illuminációs módszer, amely a fényvisszaverődéseket fizikailag pontosan szimulálja; Jobb: Lokális illuminációs algoritmus.

17.7. ábra. Dinamikus rendszerek viselkedésének megjelenítése [Löf98]

17.8. ábra. Számítógépes tomográf mérési eredményeinek vizualizációja [BSKG97].

17.9. ábra. Phong illuminációs modell n=2,5,10,50 értékekre.

17.10. ábra. Monokromatikus fények keltette színérzetek a 390-690 nm tartományban. A szivárvány színei, amit prizmával is előállíthatunk.

17.11. ábra. Felső sor: színek a színkockában: állandó R értékek mentén vett metszetek; Alsó sor: színek a HLS színkúpban: állandó L érték mellett vett metszetek.

17.12. ábra. Jenny 256, 16 és 8 színben. Kevés szín alkalmazása esetén az eredetileg folytonos színfüggvény a durva kvantálás miatt jól látható ugráshelyeken változik.

17.13. ábra. Véletlen és szabályos ditherek színes képen [PTG95]. A szem számára a véletlen ditherek kellemesebbek, mert nem ismeri fel a periodikus hatásokat.

17.14. ábra. Arany Beethoven, réz golyó és piramis egy ezüst tálcán. A fémes hatást a Fresnel-függvénynek a max Phong modell BRDF-jébe történt beépítésével értük el. A tálca (n=5000) nem ideális tükör. A kép Monte-Carlo sugárkövetéssel (inverz fényút követés) készült [NNSK98].

lokális illuminációs módszer árnyékszámítással

rekurzív sugárkövetés

globális illuminációs módszer

17.15. ábra. Lokális illuminációs módszer, sugárkövetés és globális illuminációs módszer összehasonlítása. A képek a CD-n levő példaprogrammal készültek. A futási idők rendre 90 sec, 95 sec, 135 sec, 9 óra

árnyalás saját színnel

konstans árnyalás

Gouraud-árnyalás diffúz felületekre

Gouraud-árnyalás spekuláris felületekre

Phong-árnyalás finoman tesszellált felületekre Phong-árnyalás durván tesszellált felületekre

17.16. ábra. Képszintézis különböző árnyalási modellekel (Pixar). Figyeljük meg, hogy a Gouraud-árnyalás spekuláris visszaverődésű felületekre csak igen finom tesszelláció mellett használható, míg a Phong-árnyalás mindig kielégítő eredményt ad.

Fresnel együtthatóval súlyozott BRDF

textúrák alkalmazása

visszaverődés leképzés a padlón

17.17. ábra. Bonyolult árnyalási modellek használata (Pixar).

17.18. ábra. Sugárkövetéssel készült képek (POVRAY program).

17.19. ábra. Fotorealisztikus képszintézis és a valóság összevetése. A felső kép az Aizu Egyetem előcsarnokáról készült fénykép, az alsó az előcsarnok modelljének Monte-Carlo sugárkövetéssel számított szintetikus képe (University of Aizu).

17.20. ábra. Radiosity módszerrel előállított képek.

17.21. ábra. Nagyon bonyolult objektumtér radiosity módszerrel készült képe (University of Cornell).

17.22. ábra. Foton térkép alkalmazása (Mental Images)

17.23. ábra. Kétirányú fénykövetés Metropolis fontosság szerinti mintavételezéssel (Eric Veach [VG97]).

17.24. ábra. Mandelbrot-halmaz megjelenítése. A felső képen a divergencia sebessége csak a színt határozza meg, az alsó képen pedig mind a színt mind pedig a magasságértéket (W. Jensen).

17.25. ábra. Véletlen középpont-elhelyezéssel generált hegyek (a felső képen a rekurziós mélység 4, az alsó képen pedig 7). A megjelenítéshez sugárkötegekkel dolgozó fénykövetési algoritmust használtunk [SK98c].

17.26. ábra. IFS és CSG modellezés kombinációjával előállított modell (Bécsi Műszaki Egyetem, Számítógépes Grafika Intézet).

17.27. ábra. IFS modellek — "Hausdorff-szoba" (Bécsi Műszaki Egyetem, Számítógépes Grafika Intézet).

18. fejezet

CD melléklet

A könyvhöz tartozó CD melléklet WEB böngészők (Netscape Communicator, Internet Explorer, stb.) felhasználásával interaktívan kezelhető. Az összes funkció kihasználásához Windows95 vagy Windows98 operációs rendszer szükséges. A CD lehetőségeinek feltárását a gyökérben lévő index.htm fájl megnyitásával kezdhetjük. Amennyiben a böngészőprogramunk a munkakönyvtárat nem helyezi át automatikusan, a böngészőt, úgy célszerű indítani, hogy a "kezdet" tulajdonságot a CD gyökérkönyvtárára állítjuk. Ennek hiányában a példaprogramok esetleg nem találják meg az adatfájljaikat.

A bejárható lapokon található horgok némelyike nem a CD-re mutat, hanem a további, részletesebb információk eredeti internet címére. Így ha gépünk közvetlenül kapcsolódik az internethez, a CD-ről indulva a számítógépes grafika állandóan bővülő és frissülő virtuális könyvtárához juthatunk el.

A CD-n a példaprogramok, teljes grafikus alkalmazások forrásnyelvű programjai (Eagles helikopter szimulátor, StingRay Monte-Carlo sugárkövető program, DOOM játékprogram, JPEG konverter, OpenGL könyvtárak és segédprogramok, DirectX futtatókörnyezet), grafikus tervezőprogramok leírónyelvének értelmezői (MGF), számítógépes grafikával készült képek, MGF, 3DS és PovRay formátumú geometriai adatbázisok és teljes, angol nyelvű dokumentációk találhatók (OpenGL, MGF). A képtárban híres képszintézis programok által készített képek, és a szerzők saját munkái láthatók. A képekhez tartozó horgokról a képek létrehozását tárgyaló honlapokhoz is eljuthatunk.

18.1. Demonstrációs programok a könyv fejezeteihez

A könyv egyes fejezetei végén C++ nyelvű programrészletek mutatják be, hogy az elmélet hogyan alkalmazható a gyakorlatban. A programok teljes változatban a CD-n is megtalálhatók. A programokat Borland C++ és Microsoft C++ fordítóprogrammal fordítottuk le. A fordítás során "nagy memóriamodellt" illetve WIN32 módot kell választani. A fordítóprogram kapcsolóinak és a defines.h fájl WINDOWS konstansának

316 18. CD melléklet

a megfelelő beállításával Ms-Windows és DOS környezetben futtatható programokat hozhatunk létre. Mivel a demonstrációs célok miatt a programok minden grafikus funkciót maguk valósítanak meg, az Ms-Windows és a DOS/BGI könyvtár szolgáltalásai közül csak a pixel írást és olvasást, a képernyő törlést, valamint a billentyűzet- és egérkezelést használjuk. A különböző példaprogramok közös keretrendszert használnak és az algoritmus fájlok egy részét is közösen birtokolják. A következőkben áttekintjük a forrásfájlokat, a könyvtár és az egyes példák működését.

18.1.1. A programokat felépítő közös fájlok

• defines.h: fordítási paraméter fájl

Ebben a fájlban leírhatjuk, hogy a következő fordítás során DOS vagy Ms-Windows alkalmazást kívánunk-e a készíteni (WINDOWS), a könyvtár logikai vagy fizikai eszközkoordinátákkal dolgozzon-e (LOGCOORD), foglaljunk-e memóriát a z-buffernek (ZBUFFER), és hogy mekkora legyen a grafikus terület maximális mérete (XRES, YRES). Előfordulhat, hogy a lefordított program rögtön az indítás után "Dinamikus memória elfogyott" hibaüzenettel leáll. Ezen úgy segíthetünk, hogy vagy teljes egészében kikapcsoljuk a z-buffer memóriát (a 2D programok és a sugárkövetés úgysem használják), vagy pedig csökkentjük a grafikus terület méretét.

• types.h: általános típus fájl

Ez a fájl a beállított környezet alapján elhelyezi a megfelelő include direktívákat (Ms-Windows esetén a windows.h-t, DOS esetén a graphics.h-t) és definiálja a környezetfüggetlen elérés típusait (Coord, RGBColor).

• array.h: generikus dinamikus tömb

Ebben a fájlban az Array generikus dinamikus tömböt definiáltuk.

• menu.h: egyszerű menü

Ebben a fájlban találhatjuk meg a lehetséges felhasználói parancsokat bemutató Menu osztályt.

• draw.h: a fizikai szintű kezelés deklarációs fájlja

Itt a fizikai szintű elérés típusait (PCoord, PColor, ROP, PVertex) és függvényeinek a prototípusát adjuk meg.

• draw.cpp: a fizikai szintű rajzolás fájlja

A PLine rutinban a szakaszrajzoláshoz a *Bresenham-algoritmus*t implementáltuk. A 3D háromszögek árnyalt megjelenítését a PFacet eljárás végzi el, amely

a takarási viszonyokat *z-buffer algoritmus*sal határozza meg, a színt pedig *Gou-raud-árnyalás*sal interpolálja.

objwin.h: az objektum-orientált, logikai szintű eszközkezelő deklarációs fájlja

Itt található a Window osztály, ami a grafikus kimenetet eszközfüggetlen módon illeszti és eseményvezérelt felhasználói kommunikációt valósít meg.

• window.cpp: az objektum-orientált eszközkezelő implementációs fájlja

A Window osztály tagfüggvényein kívül itt írtuk le azokat a beviteli eszközöket illesztő rutinokat és fizikai szintű kiviteli eljárásokat (Pixel, PReadPixel, PClear) is, amelyek függnek a futási környezettől (jelen esetben Ms-Windows vagy DOS/BGI). Ez azt jelenti, hogy ha az olvasó más környezetekben is szeretné használni a megadott programokat, csak ezt a fájlt kell kiegészítenie.

• tga.h: TARGA fájlkezelő osztályok definíciója

A TARGA formátum kezelését két osztály támogatja. A TGAOutputFile egy TARGA fájlt készít el, a TARGAInputFile pedig egy TARGA fájlt olvas be. Ezen osztályokat használjuk a képek mentéséhez és betöltéséhez.

• color.h: színkezelés deklarációs fájlja

Ebben a fájlban található a Spectrum generikus osztály és a Color szín osztály definíciója.

color.cpp: színkonverziós függvények

Ez az implementációs fájl a Color osztály színkonverziós rutinjait és a színillesztő függvényeit definiálja.

• 2d.h: 2D geometria

Itt írtuk le az euklideszi pont (Point2D), a projektív pont (HomPoint2D), a téglalap (RectAngle), és a geometriai transzformációk (Transform2D) osztályait.

• polynom.h: paraméteres görbék polinomjai

A Lagrange-interpolációhoz és Bézier-approximációhoz szükséges polinomok szerepelnek ebben a fájlban.

• world2.h: a 2D virtuális világ objektumtípusai

Ez a fájl írja le a 2D virtuális modellek szerkezetét.

318 18. CD melléklet

• world2.cpp: a 2D virtuális világ vektorizációja

A fájlban található tagfüggvények a 2D virtuális világ objektumaihoz tartozó vektorizációs algoritmusokat implementálják.

• camera2.h: 2D kamera

Az ablakból és a nézetből álló 2D kameraosztályt (Camera2D) találhatjuk meg itt, amely a 2D nézeti transzformáció előállításáért felelős.

• pipe2.h: 2D kimeneti csővezeték típusai

A fájl a 2D kimeneti csővezetéken átvihető objektumtípusokat (pont, szakasz, téglalap, szakaszlista) adja meg, és leírja a transzformációjukat.

• pipe2.cpp: 2D kimeneti csővezeték eljárásai

Itt lelhetjük fel a 2D kimeneti csővezeték eljárásait, mint például a *Cohen-Sut-herland szakasz vágás* algoritmusát.

• 3d.h: 3D geometria

Ez a 3D euklideszi (Point3D) és projektív pont (HomPoint3D), és a 3D homogén lineáris geometriai transzformáció (Transform3D) definíciós fájlja.

• world3.h: a 3D virtuális világ objektumtípusai

A fájl a 3D virtuális világ objektumait definiálja. A virtuális világ transzformálható objektumokból áll, amelyek primitívekből épülnek fel. Egy primitív képviselhet egy gömböt (Sphere), háromszögekkel közelített felületet (PolyFace3D), törtvonalat (PolyLine3D) vagy különböző súlyfüggvényeket használó paraméteres görbéket (Curve3D).

world3.cpp: a 3D virtuális világ vektorizációja és tesszellációja

Itt adtuk meg a 3D virtuális világ objektumaihoz tartozó vektorizációs és tesszellációs algoritmusokat. A képszintézis első lépéseként az általános primitíveket pontokkal, szakaszokkal és háromszögekkel közelítjük. A szakaszokkal történő közelítést *vektorizáció*nak, a háromszögekkel történő közelítést pedig *tesszelláció*nak nevezzük. Görbéket nyilván csak vektorizálni lehet, a felületeket viszont tetszés szerint vektorizálhatjuk vagy tesszellálhatjuk. Az első esetben *huzalváz megjelenítés*hez, a másodikban pedig *tömör megjelenítés*hez jutunk.

• camera3.h: 3D kamera deklarációja

A fájl a 3D virtuális világ leképzéséhez szükséges kamerát definiálja (Camera3D), amely a nézeti transzformáció előállításáért felelős.

• camera3.cpp: 3D nézeti transzformáció előállítása

A fájlban 3D nézeti transzformációt kiszámító CalcTransf tagfüggvényt implementáltuk mind párhuzamos, mind pedig perspektív vetítés esetére.

• pipe3.h: 3D kimeneti csővezeték objektumtípusai

A 3D kimeneti csővezetéken átvihető objektumokat a RenderPrimitive3D osztályból származtathatjuk. Az ilyen objektumok konkrét típusai a pont (Marker3D), a szakasz (Line3D), a szakaszlista (LineList3D) és a háromszöglista (TriangleList3D). Az objektumok pontjait (Transform) és normálvektorait (TransformNormals) transzformálhatjuk, és homogén osztással előállíthatjuk a transzformált pontok Descartes-koordinátáit (HomDivPoints). A vágási műveleteket két lépésben hajthatjuk végre. A DepthClip homogén koordinátákban az első és hátsó vágósíkra vág, a Clip pedig Descartes-koordinátákban nézet téglalapjára. Az Illuminate tagfüggvény a normálvektorok alapján az egyes pontokban látható radianciát számítja ki, a Draw pedig raszterizálja a primitíveket.

• pipe3.cpp: a 3D csővezeték eljárásai

A 2D kimeneti csővezeték eljárásait találhatjuk itt meg, mint például a *Cohen-Sutherland szakasz vágás* homogén koordinátákra és 3D térre általánosított algoritmusát, és a brdf. h-ban megfogalmazott BRDF modellekre építő illuminációs algoritmust.

• brdf.h: BRDF modellek

A felületek optikai tulajdonságait a BRDF modellekkel írjuk le. Egy felület lehet fénykibocsátó (Emitter) és a környezetéből ideérkező fényt is visszaverheti illetve törheti. A visszaverődés lehet diffúz (DiffuseMaterial), spekuláris (SpecularMaterial) vagy ideális (IdealReflector). A fénytörésnél csak az ideális esetet modellezzük (IdealRefractor). Ebből az inkrementális képszintézisben a DiffuseSpecularMaterial osztályt használjuk, a sugárkövetés pedig mindet. A FresnelFunction fémekre a visszaverődési tényezőt számítja ki. A GeneralMaterial a különböző visszaverődési és törési típusokat egyesíti. Egy BRDF modellnek alapvetően két funkciója van. Egyrészt a BRDF függvény megmondja, hogy adott irányú megvilágítás és nézőpont esetén milyen intenzitású fényt érzékel a megfigyelő. Másrészt, egy belépő irány birtokában a BRDF és a kilépő szög koszinusza szorzatának arányában egy véletlen kilépő irányt kell generálni. Ebből a két funkcióból az elsőre minden algoritmusnak szüksége van, a másodikat viszont csak a Monte-Carlo módszerek használják. A brdf.h fájlban az SColor típus megadásánál két lehetőség közül

320 18. CD melléklet

választhatunk. Mivel a sugárkövető program mindenütt az SColor típust használja, a brdf.h-ban szereplő RGBCOL konstans értékével szabályozhatjuk, hogy a spektrumot csak a vörös, zöld és kék színek hullámhosszain számítjuk vagy több hullámhosszon követjük a fény terjedését a térben.

• brdf.cpp: fémek törésmutatói

A fájlban a fémekhez szükséges törésmutató táblázatokat találhatjuk meg, amelyeket a Fresnel-együtthatók számításához használunk. Itt definiáljuk az alacsony diszkrepanciájú sorozatot jelképező objektum egy példányát is.

18.1.2. Grafikus keretrendszer Ms-Windows és DOS/BGI környezetre

A programok egy közös grafikus könyvtárat illetve keretet használnak, amely a fordításnak megfelelően Ms-Windows vagy DOS környezetben eszközfüggetlen grafikus megjelenítést és eseményvezérelt interakciót valósít meg. A könyvtár felépítését a 2.3. fejezetben tárgyaltuk.

A könyvtárhoz a következő fájlok tartoznak: defines.h, types.h, array.h, menu.h, draw.cpp, objwin.h, window.cpp. Egy alkalmazás úgy építhet a könyvtár szolgáltatásaira, hogy a Window osztályból egy alkalmazás specifikus osztályt származtat (ennek neve MyWindow), amelyben az ablak alkalmazásfüggő részeit leírja. Ezt követően a belépési ponton (AppStart) létrehozzuk az ablakobjektumot és beindítjuk az üzenetciklust.

18.1.3. Példa alkalmazások

TARGA formátumú képek megjelenítése: tgashow.exe

A tgashow példaprogram TARGA típusú képfájlokat jelenít meg. A programot az 1.7. fejezetben tárgyaltuk. A képfájl nevét parancssor argumentumként kell megadni. A megjelenített képet *medián szűrő* és *doboz szűrő* algoritmusokkal módosíthatjuk, majd az eredményt eltárolhatjuk (18.1. ábra).

Az alkalmazás belépési pontját, az ablakobjektumát és a szűrőalgoritmusokat a tgashow.cpp fájl tartalmazza. A programhoz, az általános keretfájlokon kívül, a tga.h fájl tartozik, amelyben a TARGA fájlkezelő osztályok definíciója található.

Gumivonal rajzoló program: gumi.exe

Ez a program a 2.3.4. fejezetben tárgyalt gumivonal rajzoló implementációja, amely az eseményvezérelt programozás fogásait mutatja be (18.2. ábra). A teljes program a gumi.cpp fájlban olvasható, amelyet a keretrendszerhez kell hozzászerkeszteni.

18.1. ábra. TARGA formátumú képek megjelenítése

18.2. ábra. Gumivonal rajzoló program

322 18. CD melléklet

Színszerkesztő: color.exe

18.3. ábra. Színszerkesztő program

A színszerkesztő program a 4.3. fejezet színkezelő osztályait és algoritmusait használja fel. A program segítségével a grafikus terület háttérszínét változtathatjuk RGB, CMY, HLS színrendszerben, illetve egy monokromatikus spektrum hullámhosszának a módosításával (18.3. ábra). Az interaktív kezelői felületet a colgen.cpp fájl valósítja meg, amely épít a color.h színosztályaira és a color.cpp-ben implementált színkonverziós és a színillesztő algoritmusokra.

2D grafikus rendszer: 2d.exe

Ez az alkalmazás egy teljes 2D grafikus rendszert mutat be. A program lényeges elemeit a 7.9. fejezetben ismertettük. A program segítségével interaktív módon törtvonalakat, Bézier-görbéket és Lagrange-görbéket definiálhatunk. A korábban definiált görbéket az egér kurzor és a bal egérgomb segítségével kiválaszthatjuk. A kiválasztott görbét áthelyezhetjük, ha a kiválasztott görbe felett a bal egérgombot ismételten lenyomjuk, majd az egérgombot nyomva tartva az egeret mozgatjuk. A kiválasztott objektumokat XOR módban rajzoljuk, az áthelyezés hasonló a gumivonal technikához (18.4. ábra).

A program tartalmazza a görbék modellezéséhez szükséges adatszerkezeteket és algoritmusokat. A megjelenítéshez a teljes 2D grafikus csővezetéket implementáltuk, amely vektorizálja a görbéket, alkalmazza a modellezési és nézeti transzformációkat,

18.4. ábra. 2D grafikus rendszer

elvégzi a vágást, majd raszterizálja a kapott szakaszokat. A 2d. cpp fájl a virtuális világot és a kamerát összefogó színteret (Scene), a színtér módosításához és megjelenítéséhez szükséges függvényeket, azaz a bemeneti és a kimeneti csővezeték algoritmusait, és a felhasználói interakció eljárásait adja meg. Az alkalmazás a virtuális világmodell felállításához a world2.h és world2.cpp fájlok programjait, a kamera kezeléshez a camera2.h osztályait, a kimeneti csővezeték megvalósításához pedig a pipe2.h és pipe2.cpp fájlok szolgáltatásait használja. A kimeneti csővezeték végén megjelenő szakaszokat a keret draw.cpp fájljában implementált a *Bresenham-algoritmus* raszterizálja. A pixel műveleteket a window.cpp fájlban valósítottuk meg.

3D grafikus rendszer inkrementális képszintézissel: 3d.exe

Ez az alkalmazás egy teljes 3D grafikus képszintézis rendszert mutat be, amely z-buffer takarási algoritmust és Gouraud-árnyalást alkalmaz (18.5. ábra).

A 3D. cpp fájl a virtuális világot és a kamerát összefogó színteret (Scene), a kimeneti csővezetéket működtető függvényt (Render), és a felhasználói interakció eljárásait adja meg. A virtuális világot a sphere fájlban építjük fel. Az alkalmazás a virtuális világmodell felállításához felhasználja a world3.h és a world3.cpp fájlok programjait, a kamera kezeléshez a camera3.h fájl és a camera3.cpp fájl osztályait, a kimeneti csővezeték megvalósításához a pipe3.h és a pipe3.cpp szolgáltatásait, az illuminá-

324 18. CD melléklet

18.5. ábra. 3D grafikus rendszer inkrementális képszintézissel

ciós számításoknál pedig a brdf.h, a brdf.cpp és a light.h fájlokat.

A kimeneti csővezeték végén megjelenő szakaszokat a keret draw.cpp fájljában implementált *Bresenham-algoritmus* raszterizálja, a 3D háromszögeket (*facet*) pedig a z-buffer takarási módszert és a Gouraud árnyalási eljárást megvalósító PFacet függvény alakítja át pixelekké. Ezen műveletek kódolása során a nagysebességű, célszerűen gépi kódú implementáció, illetve a hardver támogatás lehetőségének a bemutatása érdekében csak egész műveleteket használtunk.

Sugárkövetés: ray.exe

Ez a példa több alapvető módszert demonstrál, a nem-rekurzív és a rekurzív sugárkövetést, a sugárkövetés kiegészítését a sztochasztikus mintavételezés és az utószűrés kombinálását alkalmazó csipkézettség csökkentéssel, és egy inverz fényútkövetés elvű Monte-Carlo globális illuminációs algoritmust. A felületek optikai tulajdonságainál textúra leképzést is beállíthatunk (18.6. ábra). A sugárkövető algoritmusok a ray.cpp fájlban találhatók, amelyek a textúra leképzésnél, az illuminációs és mintavételezési lépéseknél építenek a brdf.h és a brdf.cpp fájlok szolgáltatásaira, a fényforrások kezelésénél a light.h fájl osztályaira, a kamera szimulációja során pedig a camera3.h-ban definiált osztályra. A virtuális világot a tsphere fájlban építjük fel. A véletlen és kvázi-véletlen számsorozatokat a uniform.h fájlban állítjuk elő.

18.6. ábra. Sugárkövetés

Térfogatvizualizáció masírozó kockák algoritmussal: march.exe

Ez az alkalmazás egy voxeltömböt tölt be a parancssor argumentumával megnevezett fájlból, majd az interaktívan változtatható érték felhasználásával a masírozó kockák algoritmussal szintfelületet generál, amit az inkrementális 3D képszintézis rendszer kimeneti csővezetékén jelenít meg. A térfogatmodellt leíró fájl bináris. A fájl egy egész számmal kezdődik, amely meghatározza a voxeltömb felbontását. A méret mezőt követő bájtsorozat pedig az egyes voxelek sűrűségértékeit adja meg. Ha például az első szóban 128-t találunk, a fájl még ezen kívül $128 \times 128 \times 128$ bájtot tartalmaz.

A masírozó kockák algoritmus és a kezelői felület a march. cpp fájlban található. A voxel és a szintfelület lehetséges metszeteit a polytab.h fájlban adtuk meg. Az alkalmazás ezen kívül felhasználja az általános keretrendszert és a 3D kamera fájlokat (camera3.h, camera3.cpp), a kimeneti csővezeték fájljait (pipe3.h és pipe3.cpp) és a BRDF fájlt (brdf.h).

IFS megjelenítő: ifs.exe

Ez az alkalmazás a parancssorban megadott nevű fájlból egy IFS-t olvas be és azt véletlen bolyongással megjeleníti. Az IFS megjelenítő és a kezelői felület az ifs.cpp fájlban található. Az alkalmazás ezen kívül felhasználja az általános keretrendszert, a 2D kamera fájlt (camera2.h) és a transzformációs fájlt (2d.h).

326 18. CD melléklet

18.7. ábra. Térfogatvizualizáció masírozó kockák algoritmussal

18.8. ábra. IFS megjelenítő

- [ANW67] J. Ahlberg, E. Nilson, and J. Walsh. *The Theory of Splines and their Applications*. Academic Press, 1967.
- [Arv86] J. Arvo. Backward ray tracing. In SIGGRAPH '86 Developments in Ray Tracing, 1986.
- [Arv91] J. Arvo. Linear-time voxel walking for octrees. *Ray Tracing News*, 1(2), 1991. available under anonymous ftp from weedeater.math.yale.edu.
- [AW87] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. In *Proceedings of Eurographics* '87, pages 3–10, 1987.
- [Bau72] B. G. Baumgart. Winged-edge polyhedron representation. Technical Report STAN-CS-320, Computer Science Department, Stanford University, Palo Alto, CA, 1972.
- [BBB87] R. Bartels, J. Beatty, and B. A. Barsky. An Introduction on Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann, Los Altos, CA, 1987.
- [Bez72] P. Bezier. Numerical Control: Mathematics and Applications. Wiley, Chichester, 1972
- [BG89] P. Burger and D. Gillies. *Interactive Computer Graphics: Functional, Procedural and Device-Level Methods*. Addison-Wesley, Wokingham, England, 1989.
- [BKP91] J. C. Beran-Koehn and M. J. Pavicic. A cubic tetrahedra adaption of the hemicube algorithm. In James Arvo, editor, *Graphics Gems II*, pages 299–302. Academic Press, Boston, 1991.
- [Bli77] J. F. Blinn. Models of light reflections for computer synthetized pictures. In *Computer Graphics (SIGGRAPH '77 Proceedings)*, pages 192–198, 1977.
- [Bli78] J. F. Blinn. Simulation of wrinkled surfaces. In *Computer Graphics (SIGGRAPH '78 Proceedings)*, pages 286–292, 1978.
- [BN76] J. F. Blinn and M. E. Newell. Texture and reflection in computer generated images. *Communications of the ACM*, 19(10):542–547, 1976.
- [Bre65] J. E. Bresenham. Algorithm for computer control of a digital plotter. *IBM Systems Journal*, 4(1):25–30, 1965.

[BS63] P. Beckmann and A. Spizzichino. *The Scattering of Electromagnetic Waves from Rough Surfaces*. MacMillan, 1963.

- [BSKG97] Csébfalvi B., L. Szirmay-Kalos, and Márton G. Fast opacity control in rendering of volumetric ct data. In *Winter School of Computer Graphics* '97, pages 79–87, Plzen, Czech Republic, 1997.
- [Cat78] E. Catmull. A hidden-surface algorithm with anti-aliasing. In *Computer Graphics* (SIGGRAPH '78 Proceedings), pages 6–11, 1978.
- [CB78] M. Cyrus and J. Beck. Generalized two- and three-dimensional clipping. *Computers and Graphics*, 3(1):23–28, 1978.
- [CCWG88] M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg. A progressive refinement approach to fast radiosity image generation. In *Computer Graphics* (SIGGRAPH '88 Proceedings), pages 75–84, 1988.
- [CG85] M. Cohen and D. Greenberg. The hemi-cube, a radiosity solution for complex environments. In *Computer Graphics (SIGGRAPH '85 Proceedings)*, pages 31– 40, 1985.
- [Chi88] H. Chiyokura. Solid Modelling with DESIGNBASE. Addision Wesley, 1988.
- [CLSS97] P. H. Christensen, D. Lischinski, E. J. Stollnitz, and D. H. Salesin. Clustering for glossy global illumination. ACM Transactions on Graphics, 16(1):3–33, 1997.
- [Coo86] R. L. Cook. Stochastic sampling in computer graphics. *ACM Transactions on Graphics*, 5(1):51–72, 1986.
- [Cox74] H.S.M. Coxeter. *Projective Geometry*. University of Toronto Press, Toronto, 1974.
- [CPC84] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In *Computer Graphics (SIGGRAPH '84 Proceedings)*, pages 137–145, 1984.
- [Cro77] F. C. Crow. Shadow algorithm for computer graphics. In *Computer Graphics* (SIGGRAPH '77 Proceedings), pages 242–248, 1977.
- [Cse97] B. Csebfalvi. A review of Monte-Carlo ray tracing algorithms. In *CESCG '97*, *Central European Seminar on Computer Graphics*, pages 87–103, 1997.
- [CT81] R. Cook and K. Torrance. A reflectance model for computer graphics. *Computer Graphics*, 15(3), 1981.
- [DCH88] A.D. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. *Computer Graphics*, 22(4), 1988.
- [Deá89] I. Deák. Random Number Generators and Simulation. Akadémia Kiadó, Budapest, 1989.
- [Dév93] F. Dévai. Computational Geometry and Image Synthesis. PhD thesis, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary, 1993.

[DH92] John Denskin and Pat Hanrahan. Fast algorithms for volume ray tracing. *Workshop on Volume Visualization*, pages 91–98, 1992.

- [DLW93] P. Dutre, E. Lafortune, and Y. D. Willems. Monte Carlo light tracing with direct computation of pixel intensities. In *Compugraphics '93*, pages 128–137, Alvor, 1993.
- [Dor97] P. Dornbach. Eagles pc based virtual reality engine for terrain modelling. In *Central European Seminar on Computer Graphics, CESCG '97*, pages 11–22, 1997.
- [Duv90] V. Duvanenko. Improved line segment clipping. *Dr. Dobb's Journal*, july, 1990.
- [Ede87] H. Edelsbrunner. *Algorithms in Combinatorial Geometry*. Springer-Verlag, Berlin, 1987.
- [Far88] G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, New York, 1988.
- [Fed95] M. Feda. *Radiosity*. Institute of Computer Graphics, Vienna University of Technology, Vienna, 1995.
- [FFC82] A. Fournier, D. Fussel, and L. C. Carpenter. Computer rendering of stochastic models. *Communications of the ACM*, 25(6):371–384, 1982.
- [Fis97] Y. Fisher. Fractal Image Compression. 1997.
- [FS75] R. Floyd and L. Steinberg. An adaptive algorithm for spatial gray scale. In Society for Information Display 1975 Symposium Digest of Tecnical Papers, page 36, 1975.
- [FTK86] A. Fujimoto, T. Takayuki, and I. Kansei. Arts: Accelerated ray-tracing system. *IEEE Computer Graphics and Applications*, 6(4):16–26, 1986.
- [FvD82] J. D. Foley and A. van Dam. *Fundamentals of Interactive Computer Graphics*. Addison-Wesley,, Reading, Mass., 1982.
- [FvDFH90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. *Computer Graphics: Principles and Practice*. Addison-Wesley, Reading, Mass., 1990.
- [GCT86] D. P. Greenberg, M. F. Cohen, and K. E. Torrance. Radiosity: A method for computing global illumination. *The Visual Computer 2*, pages 291–297, 1986.
- [Gla89] A. S. Glassner. An Introduction to Ray Tracing. Academic Press, London, 1989.
- [Gla95] A. Glassner. *Principles of Digital Image Synthesis*. Morgan Kaufmann Publishers, Inc., San Francisco, 1995.
- [Gro95] E. Groeller. *Scientific Visualisation*. Technical University of Vienna, Institute of Computer Graphics, Vienna, 1995. in German.
- [GSS81] S. Gupta, R. Sproull, and I. Sutherland. Filtering edges for gray-scale displays. In *Computer Graphics (SIGGRAPH '81 Proceedings)*, pages 1–5, 1981.

[Hal86] R. Hall. A characterization of illumination models and shading techniques. *The Visual Computer 2*, pages 268–277, 1986.

- [Hal89] R. Hall. *Illumination and Color in Computer Generated Imagery*. Springer-Verlag, New York, 1989.
- [Hap63] B. Hapke. A theoretical photometric function for the lunar surface. *Journal of Geophysical Research*, 68(15), 1963.
- [Hec86] P. S. Heckbert. Survey of texture mapping. *IEEE Computer Graphics and Applications*, 6(11):56–67, 1986.
- [Hec97] P. Heckbert. Brdf viewer, http://www.cs.cmu.edu/afs/cs.cmu.edu/user/ph/www/src/illum. 1997.
- [Her91] Ivan Herman. *The Use of Projective Geometry in Computer Graphics*. Springer-Verlag, Berlin, 1991.
- [HS67] H. C. Hottel and A. F. Sarofin. *Radiative Transfer*. McGraw-Hill, New-York, 1967.
- [HSA91] P. Hanrahan, D. Salzman, and L. Aupperle. Rapid hierarchical radiosity algorithm. *Computer Graphics (SIGGRAPH '91 Proceedings)*, 1991.
- [HTSG91] X. He, K. Torrance, F. Sillion, and D. Greenberg. A comprehensive physical model for light reflection. *Computer Graphics*, 25(4):175–186, 1991.
- [Hun87] R. W. Hunt. *The Reproduction of Colour*. Fountain Press, Tolworth, England, 1987.
- [ICG86] D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for non-diffuse environments. In *Computer Graphics (SIGGRAPH '86 Proceedings)*, pages 133– 142, 1986.
- [JC95] H. W. Jensen and N. J. Christensen. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. *Computers and Graphics*, 19(2):215–224, 1995.
- [JC98] H. W. Jensen and P. H. Christensen. Efficient simulation of light transport in scenes with participating media using photon maps. *Computers and Graphics* (SIGGRAPH '98 Proceedings), pages 311–320, 1998.
- [Jen96] H. W. Jensen. Global illumination using photon maps. In *Rendering Techniques* '96, pages 21–30, 1996.
- [JGMHe88] K. I. Joy, C. W. Grant, N. L. Max, and Lansing Hatfield (editors). Computer Graphics: Image Synthesis. IEEE Computer Society Press, Los Alamitos, CA., 1988.
- [Kaj85] J. T. Kajiya. Anisotropic reflection models. In *Computer Graphics (SIGGRAPH '85 Proceedings)*, pages 15–21, 1985.
- [Kaj86] J. T. Kajiya. The rendering equation. In *Computer Graphics (SIGGRAPH '86 Proceedings)*, pages 143–150, 1986.

[Kel96] A. Keller. Quasi-Monte Carlo Radiosity. In X. Pueyo and P. Schröder, editors, Rendering Techniques '96 (Proc. 7th Eurographics Workshop on Rendering), pages 101–110. Springer, 1996.

- [Ken94] E. Ken. Reflectance phenomenology and modeling tutorial. 1994. http://www.erim.org.
- [Knu81] D.E. Knuth. *The art of computer programming. Volume 2 (Seminumerical algorithms)*. Addison-Wesley, Reading, Mass. USA, 1981.
- [Kra89] G. Krammer. Notes on the mathematics of the phigs output pipeline. *Computer Graphics Forum*, 8(8):219–226, 1989.
- [LB84] Y.D. Lian and B.A. Barsky. A new concept and method for line clipping. *ACM TOG*, 3(1):1–22, 1984.
- [Lev88] M. Levoy. Display of surfaces from ct data. *IEEE Computer Graphics and Application*, 8:29–37, 1988.
- [Lev90] M. Levoy. Efficient ray tracing of volume data. ATG, 9(3):245–261, 1990.
- [Lew93] R. Lewis. Making shaders more physically plausible. In *Rendering Techniques* '93, pages 47–62, 1993.
- [LH91] David Laur and Pat Hanrahan. Hierarchical splatting: A progressive refinement algorithm for volume rendering. *Computer Graphics (SIGGRAPH '91 Proceedings)*, pages 285–288, 1991.
- [LKSK95] Z. László, K. Kondorosi, and L. Szirmay-Kalos. *Objektum-orientált szoftverfejlesztés*. ComputerBooks, Budapest, 1995.
- [Löf98] H. Löffelmann. Visualizing Local Properties and Characteristic Structures of Dynamical Systems. PhD thesis, Vienna University of Technology, http://www.cg.tuwien.ac.at/~helwig/diss, 1998.
- [LW93] E. Lafortune and Y. D. Willems. Bi-directional path-tracing. In *Compugraphics* '93, pages 145–153, Alvor, 1993.
- [LW94] E. Lafortune and Y. D. Willems. Using the modified phong reflectance model for physically based rendering. Technical Report RP-CW-197, Department of Computing Science, K.U. Leuven, 1994.
- [Män88] M. Mäntylä. Introduction to Solid Modeling. Computer Science Press, Rockville, MD., 1988.
- [Már95a] G. Márton. Acceleration of ray tracing via voronoi-diagrams. In Alan W. Paeth, editor, *Graphics Gems V*, pages 268–284. Academic Press, Boston, 1995.
- [Már95b] G. Márton. Stochastic Analysis of Ray Tracing Algorithms. PhD thesis, Department of Process Control, Technical University of Budapest, Budapest, Hungary, 1995.

[MH84] G. S. Miller and C. R. Hoffman. Illumination and reflection maps: Simulated objects in simulated and real environment. In *Computer Graphics (SIGGRAPH '84 Proceedings)*, 1984.

- [Min41] M. Minnaert. The reciprocity principle in lunar photometry. *Astrophysical Journal*, 93:403–410, 1941.
- [NFML88] Derek R. Ney, Elliot K. Fishman, Donna Magid, and Marc Levoy. Computed tomography data: Principles and techniques. *IEEE Computer Graphics and Ap*plication, 8, 1988.
- [Nie92] H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM, Pennsilvania, 1992.
- [NNL98] L. Neumann, A. Neumann, and Szirmay-Kalos L. Analysis and pumping up the albedo function. Technical Report TR-186-2-98-20, Institute of Computer Graphics, Vienna University of Technology, 1998. www.cg.tuwien.ac.at/.
- [NNS72] M. E. Newell, R. G. Newell, and T. L. Sancha. A new approach to the shaded picture problem. In *Proceedings of the ACM National Conference*, pages 443– 450, 1972.
- [NNSK98] L. Neumann, A. Neumann, and L. Szirmay-Kalos. New simple reflectance models for metals and other specular materials. Technical Report TR-186-2-98-17, Institute of Computer Graphics, Vienna University of Technology, 1998. www.cg.tuwien.ac.at/.
- [NS79] W. M. Newman and R. F. Sproull. *Principles of Interactive Computer Graphics, Second Edition*. McGraw-Hill Publishers, New York, 1979.
- [ON94] M. Oren and S. Nayar. Generalization of lambert's reflectance model. *Computer Graphics (SIGGRAPH '94 Proceedings)*, pages 239–246, 1994.
- [Pap98] G. Papp. Skalármező poligonizációja, marching cubes, felületrekonstrukció. http://www.inf.bme.hu/~rod/onlab, 1998.
- [Pea85] D. R. Peachey. Solid texturing of complex surfaces. In *Computer Graphics (SIG-GRAPH '85 Proceedings)*, pages 279–286, 1985.
- [PF90] P. Poulin and A. Fournier. A model for anisotropic reflection. *Computer Graphics*, 24(4):273–281, 1990.
- [PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. *Numerical Recipes in C (Second Edition)*. Cambridge University Press, Cambridge, USA, 1992.
- [Pho75] B. T. Phong. Illumination for computer generated images. *Communications of the ACM*, 18:311–317, 1975.
- [PM95] S. N. Pattanik and S. P. Mudur. Adjoint equations and random walks for illumination computation. *ACM Transactions on Graphics*, 14(1):77–102, 1995.

[PP98] J. Prikryl and W. Purgathofer. Perceptually based radiosity. In *Eurographics '98*, STAR — State of the Art Report, 1998.

- [PS85] F. P. Preparata and M. I. Shamos. *Computational Geometry: An Introduction*. Springer-Verlag, New York, 1985.
- [PSe88] F. Peitgen and D. Saupe (editors). The Science of Fractal Images. Springer-Verlag, New York, 1988.
- [PTG95] W. Purgathofer, R. Tobler, and M. Geiler. Improved threshold matrices for ordered dithering. In Alan W. Paeth, editor, *Graphics Gems V*, pages 297–301. Academic Press, Boston, 1995.
- [R76] P. Rózsa. Lineáris algebra és alkalmazásai. Műszaki Könyvkiadó, Budapest, 1976.
- [RA89] D. F. Rogers and J. A. Adams. *Mathematical Elements for Computer Graphics*. McGraw-Hill, New York, 1989.
- [Rog85] D. F. Rogers. *Procedural Elements for Computer Graphics*. McGraw Hill, New York, 1985.
- [SAWG91] F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A global illumination solution for general reflectance distributions. *Computer Graphics (SIGGRAPH '91 Proceedings)*, 25(4):187–198, 1991.
- [Sbe96] M. Sbert. The Use of Global Directions to Compute Radiosity. PhD thesis, Catalan Technical University, Barcelona, 1996.
- [SC94] F. Sillion and Puech C. *Radiosity and Global Illumination*. Morgan Kaufmann Publishers, Inc., San Francisco, 1994.
- [SDS95] F. Sillion, G. Drettakis, and C. Soler. Clustering algorithm for radiance calculation in general environments. In *Rendering Techniques* '95, pages 197–205, 1995.
- [SH74] I.E. Sutherland and G.W. Hodgman. Reentrant polygon clipping. *Communications of the ACM*, 17(1):32–42, 1974.
- [SH81] R. Siegel and J. R. Howell. *Thermal Radiation Heat Transfer*. Hemisphere Publishing Corp., Washington, D.C., 1981.
- [SK94] L. Szirmay-Kalos. Dynamic layout algorithm to display general graphs. In Paul Heckbert, editor, *Graphics Gems IV*. Academic Press, Boston, 1994. http://www.iit.bme.hu/~szirmay.
- [SK95] L. Szirmay-Kalos. Stochastic sampling of two-dimensional images. In *COMPU-GRAPHICS* '95, Alvor, 1995.
- [SK96] L. Szirmay-Kalos. Application of variational calculus in the radiosity method. *Periodica Polytechnica (Electrical Engineering)*, 40(2):123–138, 1996.
- [SK98a] L. Szirmay-Kalos. Global ray-bundle tracing. Technical Report TR-186-2-98-18, Institute of Computer Graphics, Vienna University of Technology, 1998. www.cg.tuwien.ac.at/.

[SK98b] L. Szirmay-Kalos. Stochastic iteration for non-diffuse global illumination. Technical Report TR-186-2-98-21, Institute of Computer Graphics, Vienna University of Technology, 1998. www.cg.tuwien.ac.at/.

- [SK98c] L. Szirmay-Kalos. Stochastic methods in global illumination state of the art report. Technical Report TR-186-2-98-23, Institute of Computer Graphics, Vienna University of Technology, 1998. www.cg.tuwien.ac.at/.
- [SKe95] L. Szirmay-Kalos (editor). *Theory of Three Dimensional Computer Graphics*. Akadémia Kiadó, Budapest, 1995. http://www.iit.bme.hu/~szirmay.
- [SKFNC97] L. Szirmay-Kalos, T. Fóris, L. Neumann, and B. Csébfalvi. An analysis to quasi-Monte Carlo integration applied to the transillumination radiosity method. *Computer Graphics Forum (Eurographics'97)*, 16(3):271–281, 1997.
- [SKM94] L. Szirmay-Kalos and G. Márton. On hardware implementation of scanconversion algorithms. In 8th Symp. on Microcomputer Appl., Budapest, Hungary, 1994.
- [SKMFF96] L. Szirmay-Kalos, G. Márton, T. Fóris, and J. Fábián. Application of object-oriented methods in process visualisation. In *Winter School of Computer Graphics* '96, pages 349–358, Plzen, Czech Republic, 12–16 February 1996. http://www.iit.bme.hu/~szirmay.
- [SKP98] L. Szirmay-Kalos and W. Purgathofer. Quasi-Monte Carlo solution of the rendering equation. Technical Report TR-186-2-98-24, Institute of Computer Graphics, Vienna University of Technology, 1998. www.cg.tuwien.ac.at/.
- [Sob91] I. Sobol. Die Monte-Carlo Methode. Deutscher Verlag der Wissenschaften, 1991.
- [SP92] V. Székely and A. Poppe. *Számitógépes grafika alapjai IBM PC-n*. Computer-Books, Budapest, 1992.
- [SPS98] M. Stamminger, Slussalek P., and H-P. Seidel. Three point clustering for radiance computations. In *Rendering Techniques* '98, pages 211–222, 1998.
- [SSS74] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characterization of ten hidden-surface algorithms. *Computing Surveys*, 6(1):1–55, 1974.
- [SWZ96] P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo techniques for direct lighting calculations. *ACM Transactions on Graphics*, 15(1):1–36, 1996.
- [Sza95] Zs. Szalavári. Rendering natürlicher atmosphärisher lichteffecte. Technical report, http://www.cg.tuwien.ac.at/research/rendering/halos, 1995.
- [Tob98] R. F. Tobler. ART Advanced Rendering Toolkit. Technical report, 1998. http://www.cg.tuwien.ac.at/ reseach/ rendering/ ART.
- [TS66] K. Torrance and M. Sparrow. Off-specular peaks in the directional distribution of reflected thermal distribution. *Journal of Heat Transfer Transactions of the ASME*, pages 223–230, May 1966.
- [Uli87] R. Ulichney. *Digital Halftoning*. Mit Press, Cambridge, MA, 1987.

[Vea97] E. Veach. *Robust Monte Carlo Methods for Light Transport Simulation*. PhD thesis, Stanford University, http://graphics.stanford.edu/papers/veach_thesis, 1997.

- [VG95] E. Veach and L. Guibas. Bidirectional estimators for light transport. In *Computer Graphics (SIGGRAPH '95 Proceedings)*, pages 419–428, 1995.
- [VG97] E. Veach and L. Guibas. Metropolis light transport. *Computer Graphics (SIG-GRAPH '97 Proceedings)*, pages 65–76, 1997.
- [War92] G. Ward. Measuring and modeling anisotropic reflection. *Computer Graphics*, 26(2):265–272, 1992.
- [War94] G. J. Ward. The RADIANCE lighting simulation and rendering system. *Computer Graphics*, 28(4):459–472, 1994.
- [Wat89] A. Watt. Fundamentals of Three-dimensional Computer Graphics. Addision-Wesley, 1989.
- [Wil83] L. Williams. Pyramidal parametric. In *Computer Graphics (SIGGRAPH '83 Proceedings)*, volume 17, pages 1–11, 1983.
- [Wol90] G. Wolberg. *Digital Image Warping*. IEEE Computer Society Press, Washington, DC., 1990.
- [WS82] G. Wyszecki and W. Stiles. *Color Science: Concepts and Methods, Quantitative Data and Formulae.* Wiley, New York, 1982.