ex amples

- (i) random/fixtitions 2xL (i) single link perdulum
- - a) p-p (1) b) control partitioning (2)

$$M\ddot{o} + C(0,\dot{\alpha})\dot{\alpha} + G(\alpha) = Z$$

(3) Cartesian-based tracking

$$q = \{x,y\}$$
 $qret \cdot \{xret, yret\}\}$
 $qret \cdot \{xret, yret\}\}$
 $qret = f(oret)$

Inverse kinematics: $oret \cdot f'(qret)$

use Fsolve

Differentiate $aq = a$
 $qret = df'(oret)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot oret \cdot (J = af)$
 $qret = J \cdot$

$$7 = M[\dot{a}_{ref} - k_{p}(o - o_{ref}) - k_{d}(o - o_{ref})] + c(a, \dot{a})\dot{a} + G(o)$$

Example

Leninscate

9ref =?
$$Z = 0, 2II$$

 $(xref, yref)$
 $X = Aa cos (at) dZ$
 dt

Control schemes

$$M(0)\ddot{o} + C(0,\dot{a})\dot{o} + G(0) = Z$$

(3) Feed Forward

good when manipulator is in vertical plane & moving slowly.

when manipulates moves fast C(o,o)o is substantially

sub stantially