Rob 501 Handout: Grizzle Cauchy Sequence Example and Contraction Mapping Theorem

Suggested Exercise: Suppose A is a square invertible matrix and we want to solve Ax = b. You know a few ways to do this, such as inverting A or using QR-factorization. Here, I will let you investigate another method via Contraction Mappings! Recall in the following that we assume A is invertible.

- Let's first note that the solution to $A^{\top}Ax = A^{\top}b$ is the same as that of Ax = b.
- We recall that $A^{\top}A > 0$ hence its e-values are all positive.
- Find the range of $\alpha > 0$ such that $-1 < \lambda_{\max}(I \alpha A^{\top} A) < 1$. **Hint**: For any square real matrix M, e-values of I + M satisfy: $\lambda_i(I + M) = 1 + \lambda_i(M)$.
- Exercise: Recall from the SVD Handout, $\sqrt{\lambda_{\max}(M^{\top}M)}$ is the *induced* 2-norm of the matrix M. Prove that if M is real and symmetric, then $\sqrt{\lambda_{\max}(M^{\top}M)} = |\lambda_{\max}(M)|$.
- Define $P(x) := x \alpha (A^{\top}Ax A^{\top}b)$, for an α you found above.
- Check that $x^* = P(x^*) \Leftrightarrow A^\top A x^* A^\top b = 0$
- Choose random A and b with A invertible. Choose a random initial condition x_0 . Define

$$x_{k+1} = P(x_k)$$

and check that the resulting sequence approaches a solution to Ax = b.

- Choose different values of α and see what you get.
- Remark: $||P(x) P(y)||_2 \le |\lambda_{\max}(I \alpha A^{\top}A)|||x y||_2$. Hence, you will see in Thursday's lecture that you are building a Cauchy Sequence when you choose α such that $0 \le |\lambda_{\max}(I \alpha A^{\top}A)| < 1$.