

III. Wnioskowanie statystyczne - ćwiczenia

Studia Podyplomowe

ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE

Struktura prezentacji

- Wprowadzenie 1.
- 2. Wybrane schematy losowania próby
 - 1. Losowanie proste
 - Losowanie warstwowe
- 3. Rozkłady teoretyczne zmiennych losowych
 - Rozkład normalny 1.
 - 2. Rozkład *t*-Studenta
 - 3. Rozkład x²
 - Rozkład Fishera-Snedecora 4.
- Weryfikacja hipotez statystycznych 4.
 - 1. Testy parametryczne
 - Test istotności dla średniej (mała i duża próba) 1.
 - 2. Test istotności dla różnicy średnich
 - 3. Test istotności dla średniej w próbach zależnych
 - Test istotności dla dwóch wariancji 4.
 - 5. Test istotności dla frakcji
 - Test istotności dla różnicy dwóch frakcji 6.
 - 2. Testy nieparametryczne
 - 1. Test zgodności rozkładów
 - 2. Test istotności dla mediany (ang. sign test)
 - 3. Test niezależności χ^2

Wprowadzenie

Etapy weryfikacji hipotez statystycznych

- 1. Sformułowanie hipotezy zerowej i alternatywnej.
- 2. Wybór testu i wyznaczenie jego wartości na podstawie próby.
- 3. Przyjęcie α i wyznaczenie wartości krytycznej testu, zbudowanie obszaru odrzucenia H_0 .
- 4. Podjęcie decyzji.

Przykład 1.1 Rozkład wzrostu w populacji A

Rys. 1

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 1.1 c.d. Rozkład średniej z prób z populacji A

Obs.	Próba 1	Próba 2	Próba 3	Próba 4	Próba 5
1	221	176	207	159	201
2	156	156	166	158	166
3	156	179	177	134	171
4	177	168	177	240	184
5	171	190	171	203	172
6	172	172	175	172	203
7	188	198	147	176	175
8	190	188	154	180	181
9	191	170	203	191	158
10	174	157	144	157	170
Średnia					
z próby	180	175	172	177	178
(w cm)					
	Rys. 2		·		

 H_0 : $\mu = \mu_0$

 H_1 : $\mu \neq \mu_0$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJEĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 1.1 – program

```
/*Losowanie z rozkładu normalnego*/
data normal;
 do x=1 to 100 by 1;
  wzrost=int(rannor(1234)*22+177);
  output;
 end;
run;
/*Histogram*/
proc sgplot data=normal;
 histogram wzrost;
run;
/*Próba prosta*/
proc surveyselect data=normal out=samples reps=5 n=10
method=srs noprint;
run;
/*Wyznaczenie średniej*/
proc means data=sout n mean maxdec=0;
 var wzrost;
 where replicate=1;
run;
```


Wybrane schematy losowania próby

- Metoda reprezentacyjna jest działem statystyki matematycznej, którego przedmiotem są zagadnienia doboru próby losowej ze zbiorowości generalnej oraz metody uogólniania wyników badania próbnego na całą populację.
- Sposób losowego doboru próby określa tzw. schemat losowania. Natomiast szacowaniem wartości nieznanych parametrów populacji na podstawie wyników uzyskanych z próby zajmuje się teoria estymacji statystycznej.

2.1 Losowanie proste

 Losowanie proste jest podstawowym schematem pobierania próby. Każda jednostka populacji ma w tym schemacie losowania identyczne prawdopodobieństwo znalezienia się w próbie. Próby proste mogą być pobierane, w zależności od typu badania, ze zwracaniem lub bez zwracania

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 2.1 Losowanie proste

- Ze zbioru *diagnoza07* wylosuj 100-elementową próbę stosując losowanie proste bez zwracania.
- Zadania → Dane → Próba losowa...

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 2.1 Losowanie proste

• Ze zbioru *diagnoza07* wylosuj 100-elementową próbę stosując losowanie proste.


```
/*Przykład 2.1
Losowanie proste*/
proc surveyselect
data=p.diagnoza07
out=work.sample1
method=srs
n=100;
run;
```


2.2 Losowanie warstwowe

 Schemat losowania warstwowego znajduje zastosowanie w sytuacji, gdy wyniki badania uogólnia się w pierwszej kolejności na podpopulacje, a następnie na populację.

Przykład 2.2 Losowanie warstwowe

 Wylosuj 100-elementową próbę ze zbioru diagnoza07 w taki sposób, aby liczba reprezentantów poszczególnych województw w próbie losowej była proporcjonalna do ich liczebności w zbiorze wejściowym. Próbę dobieramy metodą losowania warstwowego proporcjonalnego. Ponadto w próbie losowej mają znaleźć się wyłącznie unikalne obserwacji (losowanie bez zwracania).

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJEĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 2.2 Losowanie warstwowe - rozwiązanie


```
/*Przykład 2.2
Sortowanie*/
proc sort
 data=p.diagnoza07;
by woi;
run;
/*Próba warstwowa*/
proc surveyselect
 data=p.diagnoza07
 out=work.sample2
 method=srs
 n=100;
 strata woj /
  alloc=prop;
run;
```


Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 2.2 Losowanie warstwowe – porównanie odsetka gospodarstw w ramach województw

Populacja					
Województwo	n	%	n skumul.		
DOLNOŚLĄSKIE	108	7.20	108		
KUJAWSKO-POMORSKIE	80	5.33	188		
LUBELSKIE	76	5.07	264		
LUBUSKIE	59	3.93	323		
ŁÓDZKIE	92	6.13	415		
MAŁOPOLSKIE	115	7.67	530		
MAZOWIECKIE	164	10.93	694		
OPOLSKIE	66	4.40	760		
PODKARPACKIE	92	6.13	852		
PODLASKIE	57	3.80	909		
POMORSKIE	88	5.87	997		
ŚLĄSKIE	153	10.20	1150		
ŚWIĘTOKRZYSKIE	83	5.53	1233		
WARMIŃSKO-MAZURSKIE	75	5.00	1308		
WIELKOPOLSKIE	121	8.07	1429		
ZACHODNIOPOMORSKIE	71	4.73	1500		

Próba – losowanie warstwowe					
Województwo	n	%	n skumul.		
DOLNOŚLĄSKIE	7	7.00	7		
KUJAWSKO-POMORSKIE	5	5.00	12		
LUBELSKIE	5	5.00	17		
LUBUSKIE	4	4.00	21		
ŁÓDZKIE	6	6.00	27		
MAŁOPOLSKIE	8	8.00	35		
MAZOWIECKIE	11	11.00	46		
OPOLSKIE	4	4.00	50		
PODKARPACKIE	6	6.00	56		
PODLASKIE	4	4.00	60		
POMORSKIE	6	6.00	66		
ŚLĄSKIE	10	10.00	76		
ŚWIĘTOKRZYSKIE	6	6.00	82		
WARMIŃSKO-MAZURSKIE	5	5.00	87		
WIELKOPOLSKIE	8	8.00	95		
ZACHODNIOPOMORSKIE	5	5.00	100		

Rozkłady teoretyczne zmiennych losowych

- Rozkłady zmiennych losowych możemy przedstawiać za pomocą funkcji gęstości prawdopodobieństwa (w przypadku zmiennych ciągłych) lub funkcji prawdopodobieństwa (w przypadku zmiennych skokowych), jak i dystrybuanty.
- Chcąc wygenerować wartości funkcji gęstości rozkładu teoretycznego możemy skorzystać z polecenia PDF (ang. Probability Density Function). Jeśli interesuje nas wygenerowanie wartości dystrybuanty rozkładu, wtedy stosujemy polecenie CDF (ang. Cumulative Probability Distribution).

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Wykreślanie rozkładów w SAS (funkcje *PDF* i *CDF*)

```
data normal;
 do x=-10 to 10 by 0.1;
  y pdf=pdf('normal',x,0,1);
  y cdf=cdf('normal', x, 0, 1);
 output;
 end:
run;
/*opcje graficzne*/
goptions reset=all i=join hsize=6 vsize=5;
 axis1 label=("u");
 axis2 label=(f=greek "f" f=simplex "(u)");
 axis3 label=(f=greek "F" f=simplex "(u)");
/*funkcja gęstości prawdopodobieństwa*/
proc gplot data=normal;
plot y pdf*x/ haxis=axis1 vaxis=axis2 ;
run;
/*dystrybuanta*/
proc gplot data=normal;
plot y cdf*x/haxis=axis1 vaxis=axis3;
run;
```


Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Rozkłady dostępne w ramach funkcji *PDF* i *CDF*

- Zero-jedynkowy (BERNOULLI);
- Beta (BETA);
- Dwumianowy (BINOMIAL);
- Cauchy'ego (CAUCHY);
- Chi-Kwadrat (CHISQUARE);
- Wykładniczy (EXPONENTIAL);
- F-Snedecora (F);
- Gamma (GAMMA);
- Geometryczny (GEOMETRIC);
- Hipergeometryczny (HYPERGEOMETRIC);
- Laplace'a (LAPLACE);

- Logistyczny (LOGISTIC);
- Lognormalny (LOGNORMAL);
- Ujemny dwumianowy (NEGBINOMIAL);
- Normalny (NORMAL|GAUSS);
- Mieszanina rozkładów normalnych (NORMALMIX);
- Pareto (PARETO);
- Poissona (POISSON);
- *t*-Studenta (T);
- Jednostajny (UNIFORM);
- Walda (odwrócony rozkład normalny) (WALD|IGAUSS);
- Weibulla (WEIBULL).

Przykład 3.1 Rozkład normalny

- Sporządź wykres standardowego rozkładu normalnego.
- Podaj wartości *u* wyznaczające obszar krytyczny w teście dwustronnym. Przyjmij α =0,05.
- Zaznacz obszar krytyczny na wykresie z punktu
 1.1.

Przykład 3.1 Rozkład normalny - rozwiązanie

Przykład 3.2 *t* - Studenta

- Sporządź wykres rozkładu t-Studenta z 10 stopniami swobody.
- Podaj wartości t wyznaczające obszar krytyczny w teście dwustronnym. Przyjmij α =0,05.
- Zaznacz obszar krytyczny na wykresie z punktu
 2.1.

Studia Podyplomowe ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE W Historii Zdarzoń i Analiz Wielensziemowych Instytut Statystyki i Domografii. S

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 3.2 *t* – Studenta - rozwiązanie

Studia Podyplomowe

ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH **BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"**

Przykład 3.3 Porównanie rozkładu normalnego i rozkładu t-Studenta.

```
Mała próba:
t = pdf('t', x, 10);
```

Duża próba: t2 = pdf('t', x, 500);

Przykład 3.4 Rozkład χ²

- Sporządź wykres rozkładu χ^2 z 10 stopniami swobody.
- Podaj wartości χ^2 wyznaczające obszar krytyczny w teście dwustronnym. Przyjmij α =0,05.

Przykład 3.4 Rozkład χ^2 - rozwiązanie

Przykład 3.5 Rozkład *Fishera-Snedecora*

- Sporządź wykres rozkładu $Fz v_1=3$ i $v_2=10$ stopniami swobody.
- Wyznacz wartość Fwyznaczającą obszar krytyczny w teście prawostronnym. Przyjmij α =0,05.

Przykład 3.4 Rozkład *Fishera-Snedecora - rozwiązanie*

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Weryfikacja hipotez statystycznych

- Testy statystyczne dzielimy na parametryczne oraz nieparametryczne. Zgodnie z przyjętym kryterium podziału możemy wyróżnić następujące testy statystyczne:
- Parametryczne:
 - test istotności dla średniej,
 - test istotności dla różnicy dwóch średnich,
 - test istotności dla wariancji,
 - test istotności dla dwóch wariancji,
 - test istotności dla frakcji.
- Nieparametryczne:
 - testy zgodności (χ², Shapiro-Wilka, Kołmogorowa-Smirnowa, Cramera-von Misesa, Andersona-Darlinga),
 - test znaków (testowanie istotności mediany),
 - test serii,
 - test niezależności χ^2 .

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Podejście tradycyjne i współczesne w podejmowaniu decyzji weryfikacyjnej (1)

- Przed przejściem do opisu poszczególnych testów, należy zaznaczyć, iż obecnie możemy wyróżnić dwa podejścia stosowane do weryfikacji hipotez statystycznych, a mianowicie podejście tradycyjne oraz współczesne.
- W podejściu tradycyjnym, które prezentowane jest w większości podręczników wprowadzających do statystyki decyzja weryfikacyjna podejmowana jest w oparciu **o wartość** statystyki testującej i wyznaczony obszar krytyczny. Wartość statystyki testującej obliczana jest na podstawie próby. Obszar krytyczny wyznacza pewna, odczytywana z tablic statystycznych wartość w rozkładzie statystyki testującej. Jeżeli wartość statystyki testującej znajduje się w obszarze krytycznym, hipotezę zerową odrzucamy.

Podejście tradycyjne i współczesne w podejmowaniu decyzji weryfikacyjnej (2)

 W podejściu współczesnym, weryfikacja hipotez statystycznych polega na porównaniu przyjętego poziomu istotności α z prawdopodobieństwem P(ang. pvalue), które jest nazywane krytycznym poziomem **istotności**. P należy interpretować, jako najniższy poziom istotności, przy którym następuje odrzucenie weryfikowanej hipotezy. Decyzję weryfikacyjną przy wyznaczonej wartości testu empirycznego można podjąć porównując wartość przyjętego poziomu istotności α z wartością P(krytycznym poziomem istotności). Prawdopodobieństwo *P* może być traktowane jako miara wiarygodności sprawdzonej hipotezy (im mniejsze *P*, tym mniej wiarygodna jest weryfikowana hipoteza).

Testy parametryczne

Studia Podyplomowe ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH

BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Test istotności dla średniej

• Hipoteza zerowa w teście istotności dla średniej jest przypuszczeniem, że średnia m cechy X jest równa m_0 , co formalnie zapisujemy jako:

$$H_0$$
: $m=m_0$

• Hipoteza alternatywna może być **dwustronna** bądź **jednostronna**. Przypuszczenie, że **średnia** m **jest różna od** m_0

$$H_1$$
: $m \neq m_0$

- Hipotezy jednostronne formułowane są w sposób następujący:
- średnia m jest większa od m_o hipoteza prawostronna

$$H_1: m > m_0$$

• średnia m jest mniejsza od m_{o} – hipoteza lewostronna

$$H_1$$
: $m < m_0$

Test istotności dla średniej w SAS

- Test istotności dla średniej możemy przeprowadzić z wykorzystaniem EG za pomocą polecenia *t Test* (proc ttest). Należy zaznaczyć, iż raport otrzymywany za pomocą polecenia *t Test* zawiera wartość *P* dla hipotezy alternatywnej <u>dwustronnej</u>. W celu uzyskania wartości *P* dla hipotezy alternatywnej jednostronnej należy dokonać odpowiedniego przekształcenia wartości *P*:
- dla hipotezy prawostronnej prawidłowe jest przekształcenie postaci: 0.5Pdla t>0 (w szczególnym przypadku, gdy wartość statystyki testującej jest niedodatnia, co raczej jest hipotetyczne, należy zastosować przekształcenie: 1-0.5Pdla $t \le 0$),
- dla hipotezy lewostronnej prawidłowe jest przekształcenie postaci: 0.5Pdla t<0 (w szczególnym przypadku, gdy wartość statystyki testującej jest nieujemna, co raczej jest hipotetyczne, należy zastosować przekształcenie: 1-0.5Pdla $t \ge 0$).

Opis konstrukcji testu istotności dla średniej

Typ hipotezy alternatywnej	Zapis hipotezy zerowej i hipotezy alternatywnej	Hipoteza alternatywna słownie	Odczyt P z raportu EG
Hipoteza alternatywna dwustronna	$H_0: m = m_0$ $H_1: m \neq m_0$	Średnia m jest różna od m _o	Р
Hipoteza alternatywna jednostronna (prawostronna)	$H_0: m = m_0$ $H_1: m > m_0$	Średnia m jest większa od m ₀	0,5P dla t>0 1-0,5P dla t≤0
Hipoteza alternatywna jednostronna (lewostronna)	$H_0: m = m_0$ $H_1: m < m_0$	Średnia m jest mniejsza od m ₀	1-0,5P dla t≥0 0,5P dla t<0

Statystyka testująca w teście dla średniej, znane σ

Przyjmijmy, że dysponujemy n-elementową próbą losową $(X_1, X_2, ..., X_n)$.

Hipoteza o średniej *m* w populacji normalnej ze znanym odchyleniem standardowym σ. W tym przypadku statystyka testująca dana jest następującą formułą:

$$U = \frac{\overline{X} - m_0}{\sigma} \sqrt{n} \qquad \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Uposiada przy prawdziwej H_0 standardowy rozkład normalny. Przypadek ten, możemy uznać za teoretyczny, gdyż w praktyce, rzadko znana jest wartość odchylenia standardowego w populacji.

Studia Podyplomowe ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH

BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Statystyka testująca w teście dla średniej, nieznane σ

Hipoteza o średniej m w populacji normalnej, gdy odchylenie standardowe σ nie jest znane. Decyzja weryfikacyjna podejmowana jest w tym przypadku na podstawie statystyki:

$$t = \frac{\bar{X} - m_0}{s} \sqrt{n}$$
 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$

Statystyka *t* dana wzorem ma rozkład *t*-Studenta z *n*-1 stopniami swobody.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Statystyka testująca w teście dla średniej, dowolny rozkład, duża próba

Hipoteza o średniej w populacji o dowolnym rozkładzie na podstawie dużej próby ($n \ge 30$). W tym przypadku wykorzystujemy statystykę postaci:

$$U = \frac{\bar{X} - m_0}{\sigma} \sqrt{n}$$

która ma w przybliżeniu standardowy rozkład normalny. W sytuacji, gdy nie jest znana wartość odchylenia standardowego w populacji, σ możemy zastąpić odchyleniem standardowym z próby s

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Jest to uzasadnione, ze względu na dużą liczebność próby.

Przykład 4.1 Test istotności dla średniej, mała próba

- Zbiór *axles* (STAT z SAS, s.162).
- **PROC TTEST (EG**: ANOVA TEST T...)
- Zgodnie z zapotrzebowaniem maszyna wykonująca osie jest ustawiona na produkcję osi o średnicy 24 mm. Ze względu na brak precyzji, średnicę wyprodukowanej osi uznajemy za zmienną losową o rozkładzie normalnym N(m,σ). Proces produkcyjny uznajemy za nieprawidłowy jeżeli: m ≠ 24 (przeciętna średnic istotnie różni się od zadanej wielkości) lub σ>0.13 (wzrasta odsetek osi o średnicach odbiegających od zadanej wielkości). Naszym zadaniem jest weryfikacja hipotezy dotyczącej wartości średniej m.
 - Zapisz hipotezę dotyczącą przeciętnej średnicy osi.
 - Wylicz statystykę testową i podejmij decyzję weryfikacyjną.
 - Sporządź wykres pudełkowy rozkładu średnic.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH

sas.

BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.1 Test istotności dla średniej, mała próba –rozwiązanie w SAS

1. Weryfikacja poddana jest następująca hipoteza:

$$H_0$$
: $m = 24$,

$$H_1: m \neq 24.$$

2. Mała próba, a więc korzystamy z statystyki danej rozkładem *t*-Studenta:

$$t = \frac{\overline{X} - m_0}{s} \sqrt{n} = \frac{24,02 - 24}{0,2021} \sqrt{15} = 0,3833$$

3. Przyjmujemy α =0,05. W teście dwustronnym obszar odrzuceń hipotezy zerowej, czyli tzw. **obszar krytyczny** dany jest następującą równością:

$$P(\mid t \mid \ge t_{0.05:n-1}) = 0.05$$

Wartość krytyczną dla przyjętego poziomu istotności oraz n-1=14 stopni swobody odczytujemy z tablic rozkładu t-Studenta. Wartość krytyczna wynosi $t_{0,05;14}$ =2,145. Ponieważ wartość statystyki testującej nie znalazła się w obszarze krytycznym

 $|t| = |0,3833| < 2,145 = t_{0,05;14}$

brak jest podstaw do odrzucenia hipotezy zerowej zakładającej, że przeciętna średnica osi otrzymywanych w wyniku procesu produkcyjnego jest równa 24 mm. Nie ma zatem podstaw by twierdzić, iż proces produkcyjny odbiega od przyjętej normy.

Obszar krytyczny – przykład 4.1

Źródło: Statystyka od podstaw z systemem SAS, 2013, s. 166.

Obszar krytyczny – przykład 4.1

Analogiczne wnioskowanie możemy przeprowadzić odwołując się do współczesnego podejścia w testowaniu hipotez statystycznych, bazującego na krytycznym poziomie istotności (*P*). W teście istotności dla średniej, gdy korzystamy ze statystyki testującej, wartość *P* obliczana jest jako:

 $P=P(|t| \ge |t_{obl.}|)$ – przy hipotezie alternatywnej dwustronnej

 $P=P(t \ge t_{obl.})$ – przy hipotezie alternatywnej prawostronnej

 $P=P(t \le t_{obl.})$ – przy hipotezie alternatywnej lewostronnej

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Krytycznym poziom istotności *P*w teście istotności dla średniej – przykład 4.1

Źródło: Statystyka od podstaw z systemem SAS, 2013, s. 167.

Studia Podyplomowe

ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.1 Test istotności dla średniej, mała próba -rozwiązanie w SAS

N	N	lean S	Std Dev	Std Err	Minim	num	Maximum
15	24.0	0200	0.2021	0.0522	23.6	400	24.3200
M	ean	95% C	L Mean	Std Dev	95% CL	Std Dev	
24.0	200	23.9081	24.1319	0.2021	0.1480	0.3187	

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Procedura TTEST

```
ods graphics on;
proc ttest data = biblioteka.zbiór
PLOTS(ONLY) = (lista wykresów)
alpha = poziom istotności
h0 = wartość średnia w H_0;
var zmienna
side=2; /*(2 możemy zastąpić przez
"l" lub "u" w zależności od H<sub>1</sub>) */
run;
ods graphics off;
```


Przykład 4.2 Test istotności średniej

- Zbiór danych wages zawiera dane o godzinowym wynagrodzeniu w dolarach próby pracowników pewnej firmy. Zweryfikuj hipotezę, że wynagrodzenie w tej firmie wynosi \$9 za godzinę, wobec hipotezy alternatywnej, że wynagrodzenie to jest większe od \$9.
 - 1. Zapisz hipotezę.
 - 2. Wylicz statystykę testową.
 - 3. Przyjmij wartość α.
 - 4. Podejmij decyzję weryfikacyjną.
 - 5. Sporządź wykres pudełkowy oraz histogram rozkładu wynagrodzenia.

4.3 Test istotności dla różnicy średnich

Oznaczmy przez X_1 badaną cechę w populacji pierwszej, a przez X_2 tę samą cechę w populacji drugiej. Liczebności badanych prób oznaczmy przez n_1 i n_2 . Hipoteza zerowa w teście istotności dla różnicy średnich zakłada, że różnica pomiędzy średnimi cechy w badanych populacjach przyjmuje określoną wartość δ_0 :

$$H_0: m_1-m_2 = \delta_0$$

Postać hipotezy alternatywnej w omawianym teście zależy od tego, jak sformułowane jest przypuszczenie co do relacji pomiędzy m_1 - m_2 oraz δ_0

4.3 Test dla różnicy średnich –postać H₁

Typ hipotezy alternatywnej	Zapis hipotezy zerowej i hipotezy alternatywnej	Hipoteza alternatywna słownie	Odczyt P z raportu EG
Hipoteza alternatywna dwustronna	$H_0: m_1 - m_2 = \delta_0 H_1: m_1 - m_2 \neq \delta_0$	Różnica średnich m_1 - m_2 jest nierówna δ_0	P
Hipoteza alternatywna jednostronna (prawostronna)	$H_0: m_1 - m_2 = \delta_0$ $H_1: m_1 - m_2 > \delta_0$	Różnica średnich m_1 - m_2 jest większa od δ_0	0,5P dla t>0 1-0,5P dla t≤0
Hipoteza alternatywna jednostronna (lewostronna)	$H_0: m_1 - m_2 = \delta_0$ $H_1: m_1 - m_2 < \delta_0$	Różnica średnich m_1 - m_2 jest mniejsza od δ_0	1-0,5P dla t≥0 0,5P dla t<0

Studia Podyplomowe

ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH **BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"**

4.3 Test dla różnicy średnich, statystyka testująca (1)

Procedura weryfikacyjna zależna jest od sposobu doboru prób z badanych populacji, a także od założeń co do rozkładu X_1 i X_2 . Przy porównaniu dwóch średnich możemy wyodrębnić następujące przypadki:

- **Próby** n_1 i n_2 pobierane są niezależnie z obu populacji
- a) X_1 ma w populacji rozkład normalny $N(m_1,\sigma_1)$, a X_2 ma rozkład $N(m_2,\sigma_2)$, przy czym znane są wartości odchyleń standardowych σ_1 i σ_2 . Do weryfikacji sformułowanej hipotezy korzystamy ze statystyki:

$$U = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(m_{1} - m_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

która ma standardowy rozkład normalny.

b) X_1 ma w populacji rozkład N (m_1,σ_1) , a X_2 ma rozkład N (m_2,σ_2) . Wartości odchyleń standardowych σ_1 i σ_2 są nieznane, ale jednakowe ($\sigma_1 = \sigma_2$). W tym przypadku, stosujemy statystykę postaci:

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(m_{1} - m_{2}\right)}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

$$S_{p}^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJEĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.3 Test dla różnicy średnich, statystyka testująca (2)

- Próby n_1 i n_2 pobierane są niezależnie z obu populacji
- c) X_1 ma w populacji rozkład normalny $N(m_1,\sigma_1)$, a X_2 ma rozkład $N(m_2,\sigma_2)$. Wartości odchyleń standardowych σ_1 i σ_2 są nieznane, ale wiemy, że $\sigma_1 \neq \sigma_2$. W tej sytuacji statystyka testująca (t Satterthwaite a)

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(m_{1} - m_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} \qquad v = \frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2}}{n_{1} - 1} + \frac{\left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{n_{2} - 1}}$$

ma asymptotyczny rozkład *t*-Studenta o *v* stopniach swobody, gdzie:

d) X_1 i X_2 mają dowolne rozkłady. Próba losowa jest duża. W tym przypadku do weryfikacji hipotezy dotyczącej różnicy średnich stosujemy statystykę U, która ma asymptotyczny rozkład N(0,1).

$$U = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(m_{1} - m_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJEĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.3 Test dla różnicy średnich, statystyka testująca (3)

Próby n_1 i n_2 są zależne, z czym mamy do czynienia w sytuacji, gdy pomiar badanej cechy przeprowadzony jest np. dwukrotnie wśród tych samych jednostek (np. ocena zainteresowania pewnym produktem wystawiona przez respondenta przed i po kampanii reklamowej). Tego typu eksperyment charakteryzuje występowanie par obserwacji powiązanych $X_{1,i}$ i $X_{2,i}$ (i=1,2,...,n). Decyzję weryfikacyjną podejmujemy na podstawie zmiennej losowej R_i = $X_{1,i}$ - $X_{2,i}$ będącej różnicą pomiędzy obserwacjami dokonanymi w momentach t_1 i t_2 . Zwykle interesuje nas odpowiedź na pytanie, czy średnia różni się istotnie pomiędzy badanymi pomiarami (δ_0 =0). Zakładając, że dysponujemy małą próbą, a zmienne R_i mają w populacji rozkład normalny z nieznanym odchyleniem standardowym, za sprawdzian postawionej hipotezy przyjmujemy statystykę t która ma rozkład t- Studenta o n-1 stopniach swobody.

$$t = \frac{\overline{R}}{S_{R}} \sqrt{n}$$
 $\overline{R} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$ $S_{R} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (R_{i} - \overline{R})^{2}}$

Przykład 4.3 Test istotności dla różnicy średnich

Przypuszcza się, że średnia liczba klientów odwiedzających pewien sklep z artykułami gospodarstwa domowego jest znacznie większa w dzień weekendowy, w porównaniu z dniem roboczym. W celu weryfikacji sformułowanego przypuszczenia, wylosowano 20 dni roboczych i 20 dni weekendowych, dla których zgromadzono informację o liczbie klientów odwiedzających ten sklep.

- Zapisz hipotezę.
- Wylicz statystykę testową i podejmij decyzję weryfikacyjną.
- Sporządź wykres pudełkowy rozkładu liczby klientów w grupach.

Studia Podyplomowe

ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.3 Test istotności dla różnicy średnich rozwiązanie

 $H_0: m_1-m_2=0$

 $H_1: m_1-m_2 < 0$

DZIEN	Ν	Mean	Std Dev	Std Err	Minimum	Maximum
DR	20	18.0500	6.5008	1.4536	9.0000	31.0000
WE	20	20.0500	7.5705	1.6928	8.0000	36.0000
Różn. (1-2)		-2.0000	7.0560	2.2313		

Method	Variances	DF	Wartość t	Pr < t
Wariancji sumarycznej	Równe	38	-0.90	0.1879
Satterthwaite'a	Nierówne	37.151	-0.90	0.1879

Equality of Variances							
Wartość							
Method	Num DF	Den DF	F	Pr. > F			
Folded F	19	19	1.36	0.5130			

Przykład 4.4 Test istotności dla różnicy średnich – duża próba

PROC TTEST (EG: ANOVA – TEST T...)

Zweryfikuj hipotezę o równości poziomu wynagrodzenia w grupach płci.

- Zapisz hipotezę.
- Wylicz statystykę testową i podejmij decyzję weryfikacyjną.
- Sporządź wykres pudełkowy rozkładu wynagrodzenia w grupach płci.

Przykład 4.5 Test istotności dla różnicy średnich – próby zależne PROC TTEST (EG: ANOVA – TEST T...)

- Zbiór noise zawiera wyniki badania głośności tłumika samochodowego w zależności od strony jego montażu. Sprawdź czy wyniki pozwalają twierdzić, że strona montażu tłumika wpływa na poziom hałasu samochodu.
 - Zapisz hipotezę.
 - Wylicz statystykę testową i podejmij decyzję weryfikacyjną.
 - Sporządź wykres pudełkowy rozkładu wynagrodzenia w grupach płci.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.5 Test istotności dla różnicy średnich – próby zależne - rozwiązanie

 $H_0: m_R = 0$

 $H_1: m_R \neq 0$

N	Mean	Std Dev	Std Err	Minimum	Maximum
18	0.2778	14.4987	3.4174	-25.0000	30.0000

Mean	95% CL	Mean	Std Dev	95% CL Std Dev		
0.2778	-6.9323	7.4878	14.4987	10.8796	21.7356	

DF	Wartość t	Pr. > t
17	0.08	0.9362

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.6 Test istotności dla różnicy średnich – próby zależne - rozwiązanie

Zbiór $XM13_05$ zawiera informacje o rocznym wynagrodzeniu managerów z działów finansów i marketingu. Pary managerów (finansów i marketingu) były dobierane zgodnie z wynikami testu kompetencji, tzn. najpierw losowano parę managerów, którzy osiągnęli wynik z zakresu a_0 - a_1 , następnie parę managerów z wynikiem a_1 - a_2 , itd. Na podstawie otrzymanej próby, sprawdź czy średnia występuje statystycznie istotna różnica pomiędzy rocznym wynagrodzeniem managerów finansów i managerów marketingu.

- Zapisz hipotezę.
- Wylicz statystykę testową i podejmij decyzję weryfikacyjną.
- Sporządź wykres pudełkowy rozkładu różnicy wynagrodzenia pracowników obu oraz rozkłady dla każdej grupy z osobna.

4.7 Test istotności dla wariancji

 Przyjmijmy, że badana jest populacja o rozkładzie normalnym z nieznaną wartością średniej i odchylenia standardowego $N(m,\sigma)$. Hipoteza zerowa w teście istotności dla wariancji zakłada, że σ przyjmuje określoną wartość σ_0 $(H_0:\sigma=\sigma_0)$. Postać hipotezy alternatywnej zależy od tego jak sformułowano przypuszczenie co do relacji pomiędzy σ i σ_0

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.7 Test istotności dla wariancji – postać H₁

Typ hipotezy alternatywnej	Zapis hipotezy zerowej i hipotezy alternatywnej	Hipoteza alternatywna słownie
Hipoteza alternatywna dwustronna	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	Wariancja σ^2 jest różna od ${\sigma_0}^2$
Hipoteza alternatywna jednostronna (prawostronna)	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	Wariancja σ^2 jest większa od $\sigma_0^{\ 2}$
Hipoteza alternatywna jednostronna (lewostronna)	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	Wariancja σ^2 jest mniejsza od $\sigma_0^{\ 2}$

Hipoteza dotycząca wariancji w populacji weryfikowana jest na podstawie n-elementowej próby losowej $(X_1, X_2, ..., X_n)$, za pomocą statystyki χ^2 :

$$\chi^{2} = \frac{(n-1)S^{2}}{\sigma_{0}^{2}} \qquad S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

gdzie \overline{X} to średnia arytmetyczna z próby. Statystyka ta ma rozkład *chi-kwadrat* o n-1 stopniach swobody.

Przykład 4.7 Test istotności dla wariancji

- Uzupełnij badanie jakości procesu produkcyjnego (patrz Przykład 4.1) o test istotności dla wariancji. Sprawdź czy σ>0.13, co oznaczałoby wzrost odsetka osi o średnicach odbiegających od zadanej wielkości).
 - Zapisz hipotezę.
 - Wylicz statystykę testową i podejmij decyzję weryfikacyjną.

Studia Podyplomowe

ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH **BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"**

Przykład 4.7 Test istotności dla wariancji rozwiązanie

$$\sigma_0 = 0.13 \Rightarrow \sigma_0^2 = 0.0169$$

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_1: \sigma^2 > \sigma_0^2$$

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} = \frac{(15-1)0,2021^2}{0,0169} \approx 33,83$$

	13	chi2	1	critcal_value	13	p_value
1		33.834319527		23.684791305		0.0021805382

4.8 Test istotności dla dwóch wariancji

Załóżmy, że badane są populacje o rozkładach normalnych $N(m_1, \sigma_1)$ i $N(m_1, \sigma_2)$. Parametry rozkładów obu populacji nie są znane. Hipoteza zerowa w teście zakłada równość wariancji, co zapisujemy jako: $H_0:\sigma_1=\sigma_2$. H_1 formułujemy jako:

Typ hipotezy alternatywnej	Zapis hipotezy zerowej i hipotezy alternatywnej	Hipoteza alternatywna słownie	Odczyt P z raportu EG
Hipoteza alternatywna dwustronna	$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	Wariancje σ_1^2 i σ_2^2 nie są sobie równe	Р
Hipoteza alternatywna jednostronna (prawostronna)	$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$	Wariancja σ_1^2 jest większa od σ_2^2 (przy założeniu $s_1^2 > s_2^2$)	0,5P

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.8 Test istotności dla dwóch wariancji – statystyka testująca

Sformułowana hipoteza weryfikowana jest na podstawie niezależnych prób z obu populacji, za pomocą statystyki:

$$F = \frac{S_{\text{max}}^2}{S_{\text{min}}^2} \qquad S_{\text{max}}^2 = \max\{S_1^2, S_2^2\}, \qquad S_{\text{min}}^2 = \min\{S_1^2, S_2^2\},$$

 S_1^2 i S_2^2 oznaczają wariancje z badanych prób. Statystyka F ma rozkład F-Snedecora z $v_1 = n_1$ -1 i $v_2 = n_2$ -1 stopniami swobody.

Przykład 4.8 Test istotności dla dwóch wariancji

PROC TTEST (EG: ANOVA – TEST T...)

Zweryfikuj hipotezę o równości wariancji w populacjach klientów sklepu z Przykładu 4.3.

Hipoteza:

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

	Equality of Variances						
				Wartość			
	Method	Num DF	Den DF	F	Pr. > F		
	Folded F	19	19	1.36	0.5130		

4.9 Test istotności dla frakcji

Przyjmijmy, że populacja ma rozkład zerojedynkowy z parametrem p. Parametr p możemy interpretować jako frakcję elementów wyróżnionych w populacji, tzn. odsetek elementów populacji, dla których badana cecha przyjmuje określoną wartość. Hipoteza zerowa w teście dla frakcji zakłada, że parametr p jest równy p_0 co zapisujemy jako: H_0 : $p=p_0$.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.9 Test istotności dla frakcji – postać H₁

Typ hipotezy alternatywnej	Zapis hipotezy zerowej i hipotezy alternatywnej	Hipoteza alternatywna słownie	Odczyt P z raportu EG
Hipoteza alternatywna dwustronna	$H_0: p = p_0$ $H_1: p \neq p_0$	Wskaźnik struktury p różni się od p_0	P _{dwustronne}
Hipoteza alternatywna jednostronna (prawostronna)	$H_0: p = p_0$ $H_1: p > p_0$	Wskaźnik struktury p przyjmuje wartość większą od p ₀	P _{jednostronne} dla U>0 1-P _{jednostronne} dla U≤0
Hipoteza alternatywna jednostronna (lewostronna)	$H_0: p = p_0$ $H_1: p < p_0$	Wskaźnik struktury p przyjmuje wartość mniejszą od p ₀	1-P _{jednostronne} dla U≥0 P _{jednostronne} dla U<0

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJEĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.9 Test istotności dla frakcji – statystyka testująca (1)

Hipoteza dotycząca frakcji weryfikowana jest na podstawie *n*-elementowej próby losowej, w oparciu o statystykę:

$$\hat{p} = \frac{X}{n}$$

gdzie:

X- liczba elementów wyróżnionych w próbie,

n - liczebność próby.

Statystyka \hat{p} ma asymptotyczny rozkład normalny:

$$N\left(p,\sqrt{\frac{p(1-p)}{n}}\right)$$

Studia Podyplomowe

ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH **BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"**

4.9 Test istotności dla frakcji – statystyka testująca (2)

Do podjęcia decyzji weryfikacyjnej korzystamy z wystandaryzowanej wartości statystyki \hat{p} :

$$U = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

która ma graniczny rozkład normalny N(0,1). Przyjmuje się, iż z rozkładu granicznego możemy skorzystać, gdy:

$$n\hat{p}(1-\hat{p}) \ge 5$$

Przykład 4.9 Test istotności dla frakcji

Dystrybutor elektroniki użytkowej szacuje, że 1/5 zakupów w jego sieci realizowana jest za pośrednictwem serwisu internetowego. Naszym celem jest zweryfikowanie powyższej hipotezy na podstawie próby 200 losowo dobranych transakcji z roku 2005.

- Wyznacz liczebności i częstości sprzedaży tradycyjnej i internetowej.
- Zapisz hipotezę.
- Wylicz statystykę testową i podejmij decyzję weryfikacyjną.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.9 Test istotności dla frakcji – rozwiązanie

$$H_0: p = 0, 2,$$

$$H_1: p \neq 0, 2.$$

			Liczebność	Procent
KANAL	Liczebność	Procent	skumulowana	skumulowany
Internet	35	17.50	35	17.50
Sklep	165	82.50	200	100.00

Test of H0: Proportion = 0.2			
ASE under H0	0.0283		
Z	-0.8839		
One-sided Pr < Z	0.1884		
Two-sided Pr > Z	0.3768		

Przykład 4.10 Test istotności dla frakcji

Zbiór *oty* zawiera dane o liczbie osób z nadwagą w pewnej próbie losowej. Zweryfikuj następujące hipotezy:

- Odsetek osób otyłych w populacji wynosi 55%.
- Odsetek osób otyłych w populacji wynosi 50%.

4.11 Test dla różnicy dwóch frakcji

Statystka w teście dla różnicy dwóch frakcji:

$$U = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} \square N(0,1)$$

$$\hat{p}_{k} = \frac{X_{k}}{n_{k}}$$

$$\hat{p} = \frac{\sum_{k=1}^{K} X_{k}}{\sum_{k=1}^{K} n_{k}}$$

Przykład 4.11 Test dla różnicy dwóch frakcji

Zbiór *XM13_09* (Keller 2008, s. 486).

Firma GPG zajmuje się produkcją kosmetyków. Ze względu na niską sprzedaż jednego z żelów pod prysznic dział marketingu zdecydował się na zmianę opakowania. Zaprojektowano dwa nowe wzory opakowania A oraz B. W ciągu jednego tygodnia jeden ze wzorów był dostępny w markecie S1, a drugi w markecie *S2*. Za test atrakcyjności opakowania przyjęto odsetek łącznej sprzedaży żeli w każdym z marketów. Zweryfikuj hipotezę, że projekt A cieszy się większą popularnością niż B_{\bullet} (Kod żelu firmy GPG to 9077.).

Testy nieparametryczne

4.12 Test zgodności rozkładów

Do podjęcia decyzji o istotności różnicy pomiędzy rozkładem empirycznym a rozkładem teoretycznym możemy wykorzystać następujące testy: *Kołmogorowa-Smirnowa*, *Andersona-Darlinga* oraz *Craméra-Von Misesa*. Wszystkie trzy testy bazują na porównaniu dystrybuant rozkładu empirycznego i teoretycznego.

Badając zgodność rozkładu empirycznego z rozkładem teoretycznym, weryfikacji poddajemy hipotezę, iż cecha ma w populacji rozkład określony dystrybuantą $F_0(x)$, co zapisujemy:

 H_0 : $F(x) = F_0(x)$ - wskazanie na zgodność rozkładu empirycznego z rozkładem teoretycznym

 H_1 : $F(x) \neq F_0(x)$ - wskazanie na brak zgodności pomiędzy rozkładem empirycznym a rozkładem teoretycznym, gdzie F(x) to dystrybuanta empiryczna, a $F_0(x)$ to dystrybuanta rozkładu teoretycznego.

Studia Podyplomowe

ZY STATYSTYCZNE I DATA MINING W BIZNESIE

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH **BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"**

4.12 Test zgodności rozkładów – statystyka

testująca

W **teście Kołmogorowa-Smirnowa** miarą zgodności rozkładów jest statystyka D_n bazująca na największej różnicy pomiędzy wartościami dystrybuanty empirycznej i teoretycznej, dana formuła:

 $D_n = \sup |F_n(x) - F_0(x)|$

Testy Cramera-von Misesa öraz Andersona-Darlinga bazują na łącznej sumie kwadratów różnic pomiędzy wartościami z rozkładu empirycznego F(x) a wartościami rozkładu teoretycznego $F_0(x)$.

Statystyka Cramera-von Misesa zdefiniowana

$$W^{2} = n \int_{0}^{\infty} (F_{n}(x) - F_{0}(x))^{2} dF_{0}(x)$$

Przy obliczaniu statystyki **Andersona-Darlinga** różnice pomiędzy badanymi dystrybuantami są dodatkowo ważone, zgodnie z ich położeniem w rozkładzie cechy. Odchylenia na krańcach rozkładu mają większą wagę, niż odchylenia w centralnej części rozkładu.

$$A^{2} = n \int_{-\infty}^{\infty} \left(F_{n}(x) - F_{0}(x) \right)^{2} \frac{1}{\left(F_{0}(x) [1 - F_{0}(x)] \right)} dF_{0}(x)$$

4.12 Test zgodności rozkładów w SAS

W EG możemy przeprowadzić test zgodności dla następujących rozkładów (PROC UNIVARIATE):

- normalnego,
- lognormalnego,
- wykładniczego,
- Weibulla,
- beta,
- gamma,
- -kernel density.

Przykład 4.12 Test zgodności rozkładów

Zbiór *gosp08*

PROC UNIVARIATE (EG: OPISOWE – ANALIZA ROZKŁADU...)

Sporządź wykres rozkładu *wydatków gospodarstw domowych* oraz sprawdź jego zgodność z rozkładem lognormalnym.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.12 Test zgodności rozkładów - rozwiązanie

WYDM

4.13 Test istotności dla mediany

Test znaków (ang. *sign test*) stosowany jest do oceny różnic pomiędzy parami obserwacji (np. pomiędzy ocenami pewnych usług). Pary obserwacji oznaczmy przez (X_i, Y_i) , gdzie X_i oraz Y_i to oceny wystawione przez *i*-tą jednostkę. Hipoteza zerowa w teście znaków zakłada, że różnice pomiędzy obserwacjami rozkładają się równomiernie, co formalnie możemy zapisać jako: $H_0:P(X_i>Y_i)=0,5$. Tak sformułowana hipoteza równoważna jest przypuszczeniu, że mediana cechy przyjmuje w populacji określoną wartość m_0 $H_0:P(X_i>me_0)=0,5$. Z tego względu test znaków stosuje się do oceny istotności mediany.

4.13 Test istotności dla mediany – postać H₁

Typ hipotezy alternatywnej	Zapis hipotezy zerowej i hipotezy alternatywnej	Hipoteza alternatywna słownie	Odczyt P z raportu EG
Hipoteza alternatywna dwustronna	$H_0: P(X_i > me_0) = 0,5$ $H_1: P(X_i > me_0) \neq 0,5$	Mediana me jest różna od me_0	Р
Hipoteza alternatywna jednostronna (prawostronna)	$H_0: P(X_i > me_0) = 0,5$ $H_1: P(X_i > me_0) < 0,5$	Mediana <i>me</i> jest większa od <i>me</i> ₀	0,5P
Hipoteza alternatywna jednostronna (lewostronna)	$H_0: P(X_i > me_0) = 0,5$ $H_1: P(X_i > me_0) > 0,5$	Mediana <i>me</i> jest mniejsza od <i>me</i> ₀	0,5P

Studia Podyplomowe ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH

sas.

BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.13 Test istotności dla mediany – statystyka testująca (1)

W celu przeprowadzenia testu istotności dla mediany, w pierwszej kolejności wyznacza się liczbę obserwacji, które są uwzględniane przy weryfikacji hipotezy (n_t) . Są to wszystkie obserwacje o wartościach różnych od me_0 . Następnie zlicza się obserwacje, które przyjmują wartości większe od me_0 . Liczba obserwacji o wartościach przekraczających me_0 (n^+) jest zmienną losową o rozkładzie dwumianowym. Przez analogię do klasycznego eksperymentu Bernoulliego możemy przyjąć, iż:

- *n*⁺ jest liczbą sukcesów,
- n_t jest liczbą niezależnych prób, zaś
- p jest prawdopodobieństwem sukcesu w pojedynczej próbie.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJEĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.13 Test istotności dla mediany – statystyka testująca (2)

Jeżeli hipoteza zerowa jest prawdziwa, prawdopodobieństwo sukcesu w pojedynczej próbie wynosi p=0,5, a oczekiwana liczba sukcesów wynosi:

$$E(n^+) = n_t p = n_t / 2$$

Decyzję weryfikacyjną podejmujemy na podstawie statystyki:

 $M=n^+-\frac{n_t}{2}$

o rozkładzie dwumianowym z parametrami n_t oraz p. Przy prawdziwej hipotezie zerowej Mpowinna przyjmować wartości bliskie 0.

W sytuacji, gdy próba jest duża ($n_t > 10$) do weryfikacji postawionej hipotezy stosujemy statystykę U \sim N(0,1):

$$U = \frac{M}{0.5\sqrt{n_t}}$$

Przykład 4.13 Test istotności dla mediany

- **PROC UNIVARIATE (EG**: OPISOWE ANALIZA ROZKŁADU...)
- Losową próbę 10 studentów poproszono o ocenę dwóch marek lodów. Lody każdej z marek różniła zawartość cukru. W przypadku marki pierwszej ilość cukru była ograniczona. Lody drugiej marki zawierały standardową ilość tego składnika. Produkty oceniano w skali od 1 do 10, gdzie 1 oznaczała najniższą ocenę. Naszym celem jest weryfikacja przypuszczenia, że oceny wystawiane każdej z marek, istotnie się od siebie różnią. Do tego celu wykorzystamy test znaków (Sign test).

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH
BLOK ZAJEĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.13 Test istotności dla mediany - rozwiązanie

 Ze względu na to, że interesuje nas wyłącznie różnica pomiędzy rozkładami ocen obu marek, postawioną hipotezę możemy zapisać w sposób następujący:

$$H_0: P(X_i > Y_i) = 0,5,$$

 $H_1: P(X_i > Y_i) \neq 0,5.$

Wartość zliczenia: mi0=0.00				
Liczba	Wartość			
Num Obs > Mu0	3			
Num Obs ^= Mu0	9			
Num Obs < Mu0	6			

Tests for Location: Mu0=0						
Test	Statystyka		Wartość p			
Student's t	t	-2.04656	Pr > t	0.0710		
Sign	M	-1.5	Pr >= M	0.5078		
Signed Rank	S	-15.5	Pr >= S	0.0664		

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJEĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.14 Test niezależności χ^2

Test niezależności χ^2 (ang. χ^2 test for independence) stosowany jest do badania zależności pomiędzy dwiema cechami (Xi Y). Załóżmy, że badane cechy są skokowe i przyjmują odpowiednio ki I kategorii. Przez p_{ij} oznaczmy prawdopodobieństwo, że losowo wybrany element populacji będzie przyjmował wartości cechy $X=x_i$ i jednocześnie $Y=y_i$. Przez p_i oraz p_j oznaczmy prawdopodobieństwa brzegowe odpowiednio Xi Y. Przykładowo, dla cechy X, p_i jest to prawdopodobieństwo, że losowo wybrany element populacji będzie przyjmował wartość cechy $X=x_i$ niezależnie od tego, jaką wartość przyjmie cecha Y. Hipoteza zerowa w teście niezależności χ^2 zakłada, że cechy Xi Ysą niezależne, co zapisujemy jako:

$$H_0: \bigwedge_{i,j} p_{ij} = p_{i.} p_{.j}$$

wobec hipotezy alternatywnej, która zakłada, że dla co najmniej jednej pary (*i,j*) prawdopodobieństwo w rozkładzie łącznym jest różne od iloczynu prawdopodobieństw w rozkładach brzegowych

$$H_1: \bigvee_{i,j} p_{ij} \neq p_{i.} p_{.j}$$
.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

4.14 Test niezależności χ^2 - statystyka testująca

Za sprawdzian hipotezy przyjmuje się statystykę:

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{\left(n_{ij} - \hat{n}_{ij}\right)^{2}}{\hat{n}_{ij}}$$

gdzie:

 n_{ij} - zaobserwowana liczebność dla i-tej i j-tej kategorii cech Xi Y,

 $\hat{n}_{ij} = \frac{n_{i.}n_{.j}}{n}$ -liczebność teoretyczna przy prawdziwej hipotezie zerowej, tj. niezależności cech $Xi\ Y$;

 $n_{i.} = \sum_{j=1}^{l} n_{ij}$ - wartość z rozkładu brzegowego dla i -tej kategorii cechy X

 $n_{.j} = \sum_{i=1}^{k} n_{ij}$ - wartość z rozkładu brzegowego dla *j-*tej kategorii cechy *Y.*

Statystyka χ^2 ma asymptotyczny rozkład *chi-kwadrat* z (k-1)(l-1) stopniami swobody

Studia Podyplomowe ANALIZY STATYSTYCZNE I DATA MINING W BIZNESIE Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH

BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

sas.

Przykład 4.14 Test niezależności χ²

Zbiór *Eurobarometr*

EG: Describe → Table Analysis

Test niezależności χ² zostanie zaprezentowany na przykładzie badania przeprowadzonego przez Komisję Europejską dotyczącego obaw mieszkańców krajów europejskich związanych z ekonomicznym i finansowym kryzysem z lat 2007–2009. Badanie *Europejczycy Wobec Kryzysu Gospodarczego* zostało przeprowadzone na próbie 27218 mieszkańców państw europejskich, którzy ukończyli 15 rok życia. Badanie to zrealizowano w styczniu i lutym 2009 r.

Naszym celem jest odpowiedź na następujące pytanie: czy obawy związane z ekonomicznym i finansowym kryzysem z lat 2007–2009 zależą od kraju pochodzenia respondenta? Badane cechy to *kraj (X)* oraz *konsekwencje (Y)*. Do oceny zależności pomiędzy cechami Xi Ywykorzystano test niezależności χ^2 .

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.14 Zbiór *Eurobarometr*

Lp.	Nazwa	Opis	Kategorie
1	Konsekwencje	Jak poważne konsekwencje dla Twojej osobistej sytuacji będzie miał obecny ekonomiczny i finansowy kryzys?	 Bardzo poważne konsekwencje Poważne konsekwencje Raczej nie będzie miał konsekwencji Nie będzie miał konsekwencji Nie wiem
2	Liczebność	Zmienna wskazująca na liczebność respondentów	-
3	Kraj	Kraj badania	-
4	Oznaczenie	Oznaczenie kraju badania	_

	⊚ Konsekwencje 😥	Liczebnosc	<u> </u>	Kraj 💩	Oznaczenie
1	1	75	Austria	AT	
2	2	311	Austria	AT	
3	3	443	Austria	AT	
4	4	105	Austria	AT	
5	5	66	Austria	AT	
6	1	176	Belgia	BE	
7	2	411	Belgia	BE	
8	3	378	Belgia	BE	
9	4	43	Belgia	BE	
10	5	10	Belgia	BE	

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.14 Test niezależności χ² - rozwiązanie

$$H_0: \bigwedge_{i,j} p_{ij} = p_{i.}p_{.j},$$

$$H_1: \bigvee_{i,j} p_{ij} \neq p_{i.}p_{.j}$$
.

Statystyka	DF	Wartość	Prawd.
Chi-Square	100	6262.2246	<.0001
Likelihood Ratio Chi-Square	100	6284.3899	<.0001
Mantel-Haenszel Chi-Square	1	71.3864	<.0001
Phi Coefficient		0.4934	
Contingency Coefficient		0.4425	
Cramer's V		0.2467	

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych, Instytut Statystyki i Demografii, SGH BLOK ZAJĘĆ III "WNIOSKOWANIE STATYSTYCZNE"

Przykład 4.14

Jak poważne konsekwencje dla Twojej osobistej sytuacji będzie miał obecny ekonomiczny i finansowy kryzys?

Literatura

- 1. E. Frątczak, A. Korczyński (2013) *Statystyka od podstaw z systemem SAS* (Warszawa: SGH)
- 2. J. Jóźwiak, J. Pogórski (2000) *Statystyka od podstaw* (Warszawa: PWE).
- 3. G. Keller (2008) *Managerial Statistics* (Mason: South-Western CENGAGE Learning)

III. Wnioskowanie statystyczne ćwiczenia - koniec

Adam Korczyński adam.korczynski@doktorant.sgh.waw.pl