<u>2</u>

<u>3</u>

1

<u>2</u>

1

I CLAIM:

1. A Polymer Electrolyte Membrane (PEM) fuel cell Membrane Electrode Assembly (MEA) apparatus comprising:

a conductive planar substrate having a front surface and an opposing back surface, the planar substrate also having a porous region;

catalyst material affixed to at least said back surface of said porous region;

polymer electrolyte material affixed to said front surface of said planar substrate, the polymer electrolyte material having an anode surface and an opposing cathode surface;

an anode conductor coupled with said anode surface of said polymer electrolyte material;

a gas-diffusion electrode affixed to said anode conductor; and a cathode conductor electrically coupled to the conductive substrate through an opening in the polymer electrolyte material.

- 2. An MEA according to claim 1 further comprising a layered stack of catalyst and palladium disposed between said front surface of said porous region of said planar substrate and said polymer electrolyte material.
- 3. An MEA according to claim 1 further comprising a transition layer disposed between said polymer electrolyte material and said anode conductor for improving catalysis of fuel.
- 4. An MEA according to claim 1 further comprising a water barrier adjacent to said back surface catalyst material.

<u>3</u>

1

<u>2</u>

- 5. An MEA according to claim 1 wherein said anode conductor and said cathode
 conductor are coplanar.
- 6. An MEA according to claim 1 wherein said polymer electrolyte material is less
 than approximately 30 microns thick.
- 7. An MEA according to claim 1 wherein said polymer electrolyte material is less
 than approximately 5 microns thick.
 - 8. An MEA according to claim 1 wherein said polymer electrolyte material is less than approximately 1 micron thick.
 - 9. An MEA according to claim 1 wherein said polymer electrolyte material comprises a perfluorocarbon copolymer proton-conducting material.
 - 10. An MEA according to claim 1 wherein said polymer electrolyte material comprises NAFION, a registered trademark of I.E. DuPont Nemours and Company.
 - 11. An MEA according to claim 1 wherein said catalyst material comprises one or more metals chosen from the group consisting of platinum, iridium, palladium, rhodium, molybdenum, gold, and nickel.
 - 12. An MEA according to claim 1 wherein said catalyst material comprises platinum.
- 13. An MEA according to claim 1 wherein said catalyst material comprises an alloy of platinum and rhodium.

<u>5</u>

1

<u>2</u>

1

<u>2</u>

- 14. An MEA according to claim 1 wherein said substrate comprises silicon.
- 15. An MEA according to claim 1 wherein said substrate comprises a conductive
 2 silicon layer on sapphire.
 - 16. An MEA according to claim 1 wherein said substrate comprises one or more semiconductor compound selected from the group known as the III-V family.
 - 17. An MEA according to claim 1 further comprising a fuel cell body operably connected to said MEA portion.
 - 18. An MEA according to claim 1 further comprising an electronic circuit portion of said substrate and operably coupled to said anode conductor and said cathode conductor.
 - 19. An MEA according to claim 18 wherein said electronic circuit is integral with said membrane electrode assembly.
 - 20. An integrated circuit based fuel cell apparatus comprising:
 - a Polymer Electrolyte Membrane (PEM) fuel cell Membrane Electrode Assembly (MEA); and
 - an integrated circuit operably coupled to said membrane electrode assembly.
 - 21. An integrated circuit based fuel cell apparatus according to claim 20 wherein said integrated circuit comprises a fuel cell control circuit.

<u>2</u>

<u>3</u>

- 22. An integrated circuit based fuel cell apparatus according to claim 20 wherein
 said integrated circuit comprises a driven device.
- 23. An integrated circuit based fuel cell apparatus according to claim 20 further
 comprising a fuel cell body operably connected to said MEA.
- 24. An integrated circuit based fuel cell apparatus according to claim 20 further
 comprising a planar substrate.
 - 25. An integrated circuit based fuel cell apparatus according to claim 24 wherein said MEA further comprises a porous region of said planar substrate.
 - 26. An integrated circuit based fuel cell apparatus according to claim 24 wherein said planar substrate comprises silicon.
 - 27. An integrated circuit based fuel cell apparatus according to claim 24 wherein said planar substrate comprises a conductive silicon layer on sapphire.
 - 28. An integrated circuit based fuel cell apparatus according to claim 24 wherein said substrate comprises one or more semiconductor compound selected from the group known as the III-V family.
 - 29. An integrated circuit based fuel cell apparatus according to claim 20 wherein said polymer electrolyte material comprises a perfluorocarbon copolymer proton-conducting material.

<u>1</u>

<u>2</u> <u>3</u>

<u>1</u>

<u>2</u>

1

2

- 30. An integrated circuit based fuel cell apparatus according to claim 20 wherein said polymer electrolyte material comprises NAFION, a registered trademark of
 I.E. DuPont Nemours and Company.
 - 31. An integrated circuit based fuel cell apparatus according to claim 20 wherein said polymer electrolyte material is less than approximately 30 microns thick.
 - 32. An integrated circuit based fuel cell apparatus according to claim 20 wherein said polymer electrolyte material is less than approximately 5 microns thick.
 - 33. An integrated circuit based fuel cell apparatus according to claim 20 wherein said polymer electrolyte material is less than approximately 1 micron thick.
 - 34. An integrated circuit based fuel cell apparatus according to claim 20 wherein said MEA further comprises a catalyst comprising one or more metals selected from the group platinum, iridium, palladium, rhodium, molybdenum, gold, and nickel.
 - 35. An integrated circuit based fuel cell apparatus according to claim 20 wherein said MEA further comprises a catalyst further comprising platinum.
 - 36. An integrated circuit based fuel cell apparatus according to claim 20 wherein said MEA further comprises a catalyst further comprising an alloy of platinum and rhodium.

2

1

2

1

37. An integrated circuit comprising:

a substrate having a Polymer Electrolyte Membrane (PEM) fuel cell Membrane Electrode Assembly (MEA) portion further comprising:

a porous region of said planar substrate having a front surface and an opposing back surface;

catalyst material affixed to said back surface and sidewalls of said porous region;

polymer electrolyte material affixed to said front surface of planar substrate, the polymer electrolyte material having an anode surface and an opposing cathode surface;

an anode conductor coupled with said anode surface of said polymer electrolyte material;

a gas-diffusion electrode affixed to said anode conductor;

a cathode conductor electrically coupled with said conductive portion of substrate wherein said cathode conductor is coplanar in relation to said anode conductor; and

said substrate also having an integrated circuit portion operably coupled to said MEA portion.

- 38. An integrated circuit according to claim 37 wherein said integrated circuit portion comprises a fuel cell control circuit.
- 39. An integrated circuit according to claim 37 wherein said integrated circuit portion comprises a driven device.
- 40. An integrated circuit according to claim 37 further comprising a fuel cell body operably connected to said MEA portion.

<u>2</u>

1

2

1

<u>2</u>

<u>3</u>

- 41. An integrated circuit according to claim 37 wherein said planar substrate
 comprises silicon.
- 42. An integrated circuit according to claim 37 wherein said planar substrate
 comprises silicon and sapphire.
 - 43. An integrated circuit according to claim 37 wherein said substrate comprises one or more semiconductor compound selected from the group known as the III-V family.
 - 44. An integrated circuit according to claim 37 wherein said polymer electrolyte material comprises a perfluorocarbon copolymer proton-conducting material.
 - 45. An integrated circuit according to claim 37 wherein said polymer electrolyte material comprises NAFION, a registered trademark of I.E. DuPont Nemours and Company.
 - 46. An integrated circuit according to claim 37 wherein said polymer electrolyte material is less than approximately 30 mils thick.
 - 47. An integrated circuit according to claim 37 wherein said polymer electrolyte material is less than approximately 5 mils thick.
 - 48. An integrated circuit according to claim 37 wherein said polymer electrolyte material is less than approximately 1 mil thick.

2

- 49. An integrated circuit according to claim 37 wherein said catalyst comprises
 one or more metals selected from the group platinum, iridium, palladium, gold,
 and nickel.
- 50. An integrated circuit according to claim 37 wherein said catalyst comprises
 platinum.
 - 51. An integrated circuit according to claim 37 wherein said catalyst comprises an alloy of platinum and rhodium.
 - 52. An integrated circuit according to claim 37 further comprising a layered stack of catalyst and palladium disposed between said front surface of said porous region of said planar substrate and said polymer electrolyte material.
 - 53. An integrated circuit according to claim 37 further comprising a transition layer disposed between said polymer electrolyte material and said anode conductor for lowering lateral electrical resistance.
 - 54. An integrated circuit according to claim 37 further comprising a water barrier adjacent to said back surface catalyst material.