K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Single Stage FET Amplifier

23th June, 2020 Numerical

- 1. For the network shown in figure 1
 - a) Find V_{GSQ} , I_{DQ} , V_{DS}
 - b) Find A_v , R_i , R_o

Given: $R_G = 1 \text{M}\Omega$, $R_D = 1.8 \text{k}\Omega$, $R_S = 240 \Omega$, $V_{DD} = 12 \text{V}$, $R_L = 10 \text{k}\Omega$, $r_d = 50 \text{k}\Omega$, $V_P = -3 \text{V}$, $I_{DSS} = 8 \text{mA}$, $C_{C1} = C_{C2} = 10 \mu \text{F}$

Figure 1: Circuit 1

Solution:

The above circuit is a self baised JFET amplifier

DC Analysis:

Assuming JFET is working in saturation region, $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_p} \right)^2$ also,

$$V_G = 0$$

$$V_S = I_D R_S$$

$$V_{GS} = -I_D R_S$$

$$V_{GS} = -I_D(240)$$
 — (1)

$$I_D = 8 \times 10^3 \left(1 + \frac{V_{GS}}{3}\right)^2 - (2)$$

Solving Equations (
$$1$$
) and (2)

$$V_{GS} = -8 \times 10^{-3} \times 240 \left(1 + \frac{2V_{GS}}{3} + \frac{(V_{GS})^2}{9} \right)$$
$$V_{GS} = -1.92 \left(1 + \frac{2V_{GS}}{3} + \frac{(V_{GS})^2}{9} \right)$$

$$V_{GS} = -1.92 - 1.28V_{GS} - 0.2133(V_{GS})^2$$

$$0.2133(V_{GS})^2 + 2.28V_{GS} + 1.92 = 0$$

$$V_{GS} = -0.9215 Vor - 9.76 V$$

$$V_{GS} = -\mathbf{0.9215V}$$
 $(V_{GS} > V_P)$

$$I_D = 8 \times 10^{-3} \left(1 - \frac{0.9215}{3} \right)^2$$

$$I_{DQ} = 3.849 \text{ mA}$$

Applying KVL to the drain source loop:

$$V_{DS} = V_{DD} - I_D R_D - I_D R_S$$

$$V_{DS} = 12 - (3.840 \times 1.8) - (3.84 \times 240)$$

$$V_{DS} = 4.1664 V$$

Small signal parameters:

$$g_{m} = rac{2I_{DSS}}{|V_{P}|} \left(1 - rac{V_{GS}}{V_{P}}\right)$$
 $g_{m} = rac{2 \times 8 \times 10^{-3}}{3} \left(1 - rac{-0.9215}{-3}\right)$
 $g_{m} = \mathbf{3.6951mA/V}$

Small signal equivalent circuit:

Figure 2: Small signal equivalent circuit

Input Resistance
$$(R_i) = 1M\Omega$$

Output Resistance
$$(R_o) = R_D || r_d || R_L$$

Output Resistance
$$(R_o) = 1.8 \times 10^3 \mid\mid 50 \times 10^3 \mid\mid 10 \times 10^3$$

Output Resistance $(R_o) = 1.48 \text{ k}\Omega$

Voltage Gain
$$(A_v) = \frac{-(R_D||r_o||R_S)}{\frac{1}{g_m} + R_S}$$

$$A_v = \frac{-11.48 \times 10^3}{\frac{1}{3.695} + 240}$$

$$A_v = -2.898$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows

Figure 3: Circuit Schematic

Figure 4: Input Output Waveform

Comparsion between simulated and theoretical values:

Parameters	Simulated	Theoretical
I_{DQ}	$3.842 \mathrm{mA}$	$3.840 \mathrm{mA}$
V_{GSQ}	-0.9221V	-0.9215
V_{DSQ}	4.1615V	4.1664V
A_v	-2.976	-2.898

Table 1: Numerical 1

2. For the network shown in figure 5

Find Z_i , Z_o , V_{out}

Given: $R_1 = 40 \text{M}\Omega$, $R_2 = 10 \text{M}\Omega$, $R_S = 1.2 \text{K}\Omega$, $V_{DD} = 12 \text{V}$, $R_D = 3.3 \text{k}\Omega$, $r_d = 40 \text{k}\Omega$, $V_{DD} = 30 \text{V}$, $V_{GS(th)} = 3 \text{V}$, $C_{C1} = C_{C2} = 22 \mu \text{F}$, $C_S = 100 \mu \text{F}$, $k_n = 0.4 \times 10^{-3} mA/V^2$

Figure 5: Circuit 2

Solution:

The above circuit is NMOS - CS amplifier

DC Analysis:

Assuming JFET is working in saturation region

$$V_{G} = \frac{R_{2}}{R_{1} + R_{2}} \times V_{DD}$$

$$V_{G} = \frac{10}{40 + 10} \times 30$$

$$V_{G} = 6V$$

$$V_{GS} = V_{G} - V_{S}$$

$$V_{S} = I_{D}R_{S}$$

$$V_{GS} = 6 - I_{D}R_{S}$$

$$V_{GS} = 6 - I_{D}(1.2 \times 10^{3}) - (1)$$

Assuming given NMOS is in Saturation region

$$I_D = k_n (V_{GS} - V_{GS(th)})^2$$

$$I_D = 0.4 \times 10^{-3} (V_{GS} - 3)^2 - (2)$$

Solving equation (1) and (2)

$$V_{GS} = 6 - (1.2 \times 10^3 \times 0.4 \times 10^{-3})((V_{GS})^2 - 6V_{GS} + 9)$$

$$V_{GS} = 6 - 0.48V_{GS}^2 + 2.88V_{GS} - 4.32$$

$$0.48V_{GS}^2 - 1.88V_{GS} - 1.68 = 0 \ V_{GS} = 4.667Vor - 0.75V$$

$$V_{GS} = 4.667 \mathbf{V}$$
 $\therefore (V_{GS} > V_{TH})$

$$I_{DQ} = 0.4 \times 10^{-3} (4.667 - 3)^2$$

$$I_{DQ} = 1.111 \text{mA}$$

Small signal parameters:

$$g_m = 2k_n(V_{GS} - V_{GS(th)})$$

$$g_m = 2 \times 0.4 \times 10^{-3} (4.667 - 3)$$

$$g_m = 1.3336 \text{ mA/V}$$

$$r_d = 40 \text{ k}\Omega \text{ (Given)}$$

Small signal equivalent circuit:

Figure 6: Small signal equivalent circuit

$$Z_i = R_1 || R_2 = 40 \times 10^6 || 10 \times 10^6 ||$$

$$Z_i = 8\mathbf{M}\Omega$$

$$Z_o = r_d || R_D = 40 \times 10^3 || 3.3 \times 10^3 ||$$

 $Z_o = 3048.498 \ \Omega$

$$A_v = -gm(r_o||R_D)$$

$$A_v = -1.3336 \times (40 \times 10^3 || 3.3 \times 10^3)$$

 $A_v = -4.0654$ (Negative sign indicates 180° out of phase between input and output)

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows

Figure 7: Circuit Schematic

Figure 8: Input Output Waveform

$\ \, {\bf Comparsion \ between \ simulated \ and \ theoretical \ values:}$

Parameters	Simulated	Theoretical
I_{DQ}	$1.111 \mathrm{mA}$	1.111mA
V_{GSQ}	4.667V	4.667V
A_v	-4.393	-4.0654

Table 2: Numerical 2

