Effective Data Visualization Workshop

Kira Tebbe - February 25, 2020

Who is this person I'm listening to???

Data science + sociology = seeing patterns through the noise

1. Why is data visualization important?

- 2. What is wrong with these plots?
- 3. What are the important parts of a visualization?

4. What are my best practices?

5. How would you visualize this data?

Why is data viz important?

Data = information

Data visualization = communication

Good data visualization = effective communication

What do mediocre visualizations give us?

- Misleading results
- Incorrect interpretations
- Confusion
- Lack of attention
- Worse impression of work quality

What's wrong with these plots?

European Parliament Party Breakdown

Percent Job Losses In Post WWII Recession

Percent Job Losses Relative To Peak Employment Month

2003 to 2018, Format(s): LP/EP & Vinyl Single Source: RIAA

2003 to 2018, Format(s): LP/EP & Vinyl Single Source: RIAA

Parts of a visualization

For context: two types of data visualization

- 1. Exploratory → meant for you, don't yet know what the data says
- 2. Explanatory \rightarrow meant for audience, you know what you want to say
 - What we're focusing on!

- Believe in bar, line, and scatter plots → your audience already recognizes them
- 2. Use reasonable axis tick lengths \rightarrow the default may not make sense
- 3. Use color sparingly \rightarrow and when you do use it, be intentional and internally consistent
 - Color gradients for density
 - If referring to the same thing in multiple plots, use the same color each time
 - Make your gridlines gray and don't use minor gridlines
- 4. Legends (usually) suck
- 5. Use descriptive titles \rightarrow tell your viewer what they should see
 - Traditional scientific titles are not explanatory
 - Don't make your audience struggle make your point as clear as possible
- 6. Make your text bigger than you'd think \rightarrow nobody likes to squint
- 7. Consider your data-to-ink ratio → remove distractions

- 1. Believe in bar, line, and scatter plots → your audience already recognizes them
- 2. Use reasonable axis tick lengths → the default may not make sense
- 3. Use color sparingly \rightarrow and when you do use it, be intentional and internally consistent
 - Color gradients for density
 - If referring to the same thing in multiple plots, use the same color each time
 - Make your gridlines gray and don't use minor gridlines
- 4. Legends (usually) suck
- 5. Use descriptive titles \rightarrow tell your viewer what they should see
 - Traditional scientific titles are not explanatory
 - Don't make your audience struggle make your point as clear as possible
- 6. Make your text bigger than you'd think \rightarrow nobody likes to squint
- 7. Consider your data-to-ink ratio → remove distractions

- 1. Believe in bar, line, and scatter plots → your audience already recognizes them
- 2. Use reasonable axis tick lengths \rightarrow the default may not make sense
- 3. Use color sparingly \rightarrow and when you do use it, be intentional and internally consistent
 - Color gradients for density
 - If referring to the same thing in multiple plots, use the same color each time
 - Make your gridlines gray and don't use minor gridlines
- 4. Legends (usually) suck
- 5. Use descriptive titles → tell your viewer what they should see
 - Traditional scientific titles are not explanatory
 - Don't make your audience struggle make your point as clear as possible
- 6. Make your text bigger than you'd think \rightarrow nobody likes to squint
- 7. Consider your data-to-ink ratio → remove distractions

SEVEN BEST PRACTICES

- 1. Believe in bar, line, and scatter plots → your audience already recognizes them
- 2. Use reasonable axis tick lengths \rightarrow the default may not make sense
- 3. Use color sparingly → and when you do use it, be intentional and internally consistent
 - Color gradients for density
 - If referring to the same thing in multiple plots, use the same color each time
 - Make your gridlines gray and don't use minor gridlines
- 4. Legends (usually) suck
- 5. Use descriptive titles → tell your viewer what they should see
 - Traditional scientific titles are not explanatory
 - Don't make your audience struggle make your point as clear as possible
- 6. Make your text bigger than you'd think → nobody likes to squint
- 7. Consider your data-to-ink ratio → remove distractions

- 1. Believe in bar, line, and scatter plots → your audience already recognizes them
- 2. Use reasonable axis tick lengths \rightarrow the default may not make sense
- 3. Use color sparingly \rightarrow and when you do use it, be intentional and internally consistent
 - Color gradients for density
 - If referring to the same thing in multiple plots, use the same color each time
 - Make your gridlines gray and don't use minor gridlines
- 4. Legends (usually) suck
- 5. Use descriptive titles → tell your viewer what they should see
 - Traditional scientific titles are not explanatory
 - Don't make your audience struggle make your point as clear as possible
- 6. Make your text bigger than you'd think \rightarrow nobody likes to squint
- 7. Consider your data-to-ink ratio → remove distractions

- 1. Believe in bar, line, and scatter plots \rightarrow your audience already recognizes them
- 2. Use reasonable axis tick lengths \rightarrow the default may not make sense
- 3. Use color sparingly \rightarrow and when you do use it, be intentional and internally consistent
 - Color gradients for density
 - If referring to the same thing in multiple plots, use the same color each time
 - Make your gridlines gray and don't use minor gridlines
- 4. Legends (usually) suck
- 5. Use descriptive titles \rightarrow tell your viewer what they should see
 - Traditional scientific titles are not explanatory
 - Don't make your audience struggle make your point as clear as possible
- 6. Make your text bigger than you'd think \rightarrow nobody likes to squint
- 7. Consider your data-to-ink ratio → remove distractions

Why do legends suck?

Label your data directly

Label your data directly

Label your data directly

- 1. Believe in bar, line, and scatter plots → your audience already recognizes them
- 2. Use reasonable axis tick lengths \rightarrow the default may not make sense
- 3. Use color sparingly \rightarrow and when you do use it, be intentional and internally consistent
 - Color gradients for density
 - If referring to the same thing in multiple plots, use the same color each time
 - Make your gridlines gray and don't use minor gridlines
- 4. Legends (usually) suck
- 5. Use descriptive titles → tell your viewer what they should see
 - Traditional scientific titles are not explanatory
 - Don't make your audience struggle make your point as clear as possible
- 6. Make your text bigger than you'd think \rightarrow nobody likes to squint
- 7. Consider your data-to-ink ratio → remove distractions

Tell your viewer what they should see

Tell your viewer what they should see

Tell your viewer what they should see

- 1. Believe in bar, line, and scatter plots → your audience already recognizes them
- 2. Use reasonable axis tick lengths \rightarrow the default may not make sense
- 3. Use color sparingly \rightarrow and when you do use it, be intentional and internally consistent
 - Color gradients for density
 - If referring to the same thing in multiple plots, use the same color each time
 - Make your gridlines gray and don't use minor gridlines
- 4. Legends (usually) suck
- 5. Use descriptive titles \rightarrow tell your viewer what they should see
 - Traditional scientific titles are not explanatory
 - Don't make your audience struggle make your point as clear as possible
- 6. Make your text bigger than you'd think → nobody likes to squint
- 7. Consider your data-to-ink ratio → remove distractions

Nobody likes to squint!

Nobody likes to squint!

- 1. Believe in bar, line, and scatter plots → your audience already recognizes them
- 2. Use reasonable axis tick lengths \rightarrow the default may not make sense
- 3. Use color sparingly \rightarrow and when you do use it, be intentional and internally consistent
 - Color gradients for density
 - If referring to the same thing in multiple plots, use the same color each time
 - Make your gridlines gray and don't use minor gridlines
- 4. Legends (usually) suck
- 5. Use descriptive titles \rightarrow tell your viewer what they should see
 - Traditional scientific titles are not explanatory
 - Don't make your audience struggle make your point as clear as possible
- 6. Make your text bigger than you'd think \rightarrow nobody likes to squint
- 7. Consider your data-to-ink ratio → remove distractions

Things to remove

PRIMARY PRODUCT Units

PRIMARY PRODUCT: unit sales exceed plan by nearly 20% year to date

PRIMARY PRODUCT Units

Drawing from tabular data

Budget (thousands)	Director Gender	Ticket Sales (thousands)	Budget (thousands)	Director Gender	Ticket Sales (thousands)
100	Female	500	100	Male	50
200	Female	600	200	Male	100
300	Female	750	300	Male	250
400	Female	800	400	Male	400
500	Female	900	500	Male	500
600	Female	950	600	Male	750
700	Female	1,000	700	Male	900
800	Female	1,050	800	Male	1,000
900	Female	1,100	900	Male	1,200
1,000	Female	1,100	1,000	Male	1,500

Initial sketches of plots

Thank you!

https://github.com/ktebbe/DataViz

Additional resources

- Storytelling with Data books http://www.storytellingwithdata.com/books
- Free e-book on visualization- https://serialmentor.com/dataviz/
- Intro to *ggplot* in R https://www.williamrchase.com/slides/ggplot_intro.html
 and https://evamaerey.github.io/ggplot_flipbook/ggplot_flipbook_xaringan.html#1
- ggplot examples https://wilkelab.org/practicalgg
- Slide deck on data communication -https://www.amelia.mn/TeachingDataCommunication.pdf