

Data Sheet December 1992 File Number 3338

CMOS Presettable Up/Down Counters

CD4510BMS Presettable BCD Up/Down Counter and the CD4516BMS Presettable Binary Up/Down counter consist of four synchronously clocked D-type flip-flops (with a gating structure to provide T-type flip-flop capability) connected as counters. These counters can be cleared by a high level on the RESET line, and can be preset to any binary number present on the jam inputs by a high level on the PRESET ENABLE line. The CD4510BMS will count out of non-BCD counter states in a maximum of two clock pulses in the up mode, and a maximum of four clock pulses in the down mode.

If the CARRY IN input is held low, the counter advances up or down on each positive-going clock transition. Synchronous cascading is accomplished by connecting all clock inputs in parallel and connecting the CARRY OUT of a less significant stage to the CARRY IN of a more significant stage.

The CD4510BMS and CD4516BMS can be cascaded in the ripple mode by connecting the CARRY OUT to the clock of the next stage. If the UP/DOWN input changes during a terminal count, the CARRY OUT must be gated with the clock, and the UP/DOWN input must change while the clock is high. This method provides a clean clock signal to the subsequent counting stage. (See Figures 13, 14.)

These devices are similar to types MC14510 and MC14516.

The CD4510BMS and CD4516BMS are supplied in these 16-lead outline packages:

Braze Seal DIP *H4W †H45 Frit Seal DIP *FBF †H1F

Ceramic Flatpack H6W

Features

- · High Voltage Types (20V Rating)
- CD4510BMS BCD Type
- CD4516BMS Binary Type
- Medium Speed Operation
 - fCL = 8MHz Typ. at 10V
- Synchronous Internal Carry Propagation
- Reset and Preset Capability
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Standardized Symmetrical Output Characteristics
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Up/Down Difference Counting
- Multistage Synchronous Counting
- Multistage Ripple Counting
- Synchronous Frequency Dividers

Pinout

CD4510BMS, CD4516BMS TOP VIEW

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD)0.5V to +20V (Voltage Referenced to VSS Terminals)
,
Input Voltage Range, All Inputs0.5V to VDD +0.5V
DC Input Current, Any One Input
Operating Temperature Range55°C to +125°C
Package Types D, F, K, H
Storage Temperature Range (TSTG)65°C to +150°C
Lead Temperature (During Soldering) +265°C
At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for
10s Maximum

Reliability Information

Thermal Resistance	θ_{ja}	θ_{jc}
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD		
For TA = -55°C to +100°C (Package Type		
For TA = +100°C to +125°C (Package 1	Type D, F, K)	Derate
Linear	ity at 12mW	¹ /OC to 200mW
Device Dissipation per Output Transistor.		100mW
For TA = Full Package Temperature Rar	nge (All Pac	kage Types)
Junction Temperature		+175 ⁰ C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A			LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDI	O or GND	1	+25 ^o C	-	10	μΑ
				2	+125 ^o C	-	1000	μΑ
		VDD = 18V, VIN = VDI	O or GND	3	-55 ⁰ C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25 ^o C	-100	-	nA
				2	+125 ^o C	-1000	-	nA
			VDD = 18V	3	-55 ⁰ C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25 ^o C	-	100	nA
				2	+125 ^o C	-	1000	nA
			VDD = 18V	3	-55 ⁰ C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load (Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4	4V	1	+25 ^o C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	.5V	1	+25 ^o C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	.5V	1	+25 ^o C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6	6V	1	+25 ^o C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5	5V	1	+25 ^o C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	.5V	1	+25 ^o C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	3.5V	1	+25 ^o C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	ιA	1	+25 ^o C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA	1	1	+25 ^o C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25 ^o C	VOH >	VOL <	V
		VDD = 20V, VIN = VDI	O or GND	7	+25 ^o C	VDD/2	VDD/2	
		VDD = 18V, VIN = VDI	O or GND	8A	+125 ^o C			i
		VDD = 3V, VIN = VDD	or GND	8B	-55 ⁰ C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5\	/, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being im- 3. For accuracy, voltage is measured differentially to VDD. Limit is plemented.

^{0.050}V max.

^{2.} Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM					
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS			
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	400	ns			
Clock to Q Output	TPLH1		10, 11	+125 ^o C, -55 ^o C	-	540	ns			
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	420	ns			
Preset or Reset to Q	TPLH2		10, 11	+125 ⁰ C, -55 ⁰ C	-	567	ns			
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	480	ns			
Clock to Carry Out	TPLH3		10, 11	+125°C, -55°C	-	648	ns			
Propagation Delay	TPHL4				VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	250	ns
Carry In to Carry Out	TPLH4		10, 11	+125 ^o C, -55 ^o C	-	338	ns			
Propagation Delay	TPHL5	VDD = 5V, VIN = VDD or GND	9	+25°C	-	640	ns			
Preset or Reset to Carry Out	TPLH5	(Note 3)	10, 11	+125 ⁰ C, -55 ⁰ C	-	864	ns			
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25 ^o C	-	200	ns			
TTLH			10, 11	+125 ^o C, -55 ^o C	-	270	ns			
Maximum Clock Input Fre-	FCL	VDD = 5V, VIN = VDD or GND	9	+25 ^o C	2	-	MHz			
quency			10, 11	+125°C, -55°C	1.48	-	MHz			

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.
- 3. Reset to Carry Out (TPLH) only.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125 ^o C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125 ^o C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125 ⁰ C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125 ⁰ C	0.9	-	mA
				-55 ^o C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125 ⁰ C	2.4	-	mA
				-55 ⁰ C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125 ^o C	-	-0.36	mA
				-55 ⁰ C	-	-0.64	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125 ⁰ C	-	-1.15	mA
				-55 ⁰ C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125 ^o C	-	-0.9	mA
				-55 ⁰ C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125 ⁰ C	-	-2.4	mA
				-55 ^o C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	+7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25 ^o C	-	200	ns
Clock to Q Output	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	150	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25 ^o C	-	210	ns
Preset or Reset to Q	TPLH2	VDD = 15V	1, 2, 3	+25 ^o C	-	160	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	240	ns
Clock to Carry Out	TPLH3	VDD = 15V	1, 2, 3	+25 ^o C	-	180	ns
Propagation Delay	TPHL4	VDD = 10V	1, 2, 3	+25 ^o C	-	120	ns
Carry In to Carry Out	TPLH4	VDD = 15V	1, 2, 3	+25°C	-	100	ns
Propagation Delay Preset	TPHL5 TPLH5	VDD = 10V	1, 2, 3, 4	+25 ^o C	-	320	ns
or Reset to Carry Out		VDD = 15V	1, 2, 3, 4	+25 ^o C	-	250	ns
Transition Time	TTLH	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTHL	VDD = 15V	1, 2, 3	+25 ^o C	-	80	ns
Maximum Clock Input Fre-	FCL	VDD = 10V	1, 2	+25 ^o C	4	-	MHz
quency		VDD = 15V	1, 2	+25 ^o C	5.5	-	MHz
Minimum Hold Time	TH	VDD = 5V	1, 2, 3	+25 ^o C	-	70	ns
Preset Enable to JN		VDD = 10V	1, 2, 3	+25 ^o C	-	40	ns
		VDD = 15V	1, 2, 3	+25°C	-	40	ns
Minimum Data Setup Time	TS	VDD = 5V	1, 2, 3	+25°C	-	25	ns
Preset Enable to JN		VDD = 10V	1, 2, 3	+25 ^o C	-	10	ns
		VDD = 15V	1, 2, 3	+25 ^o C	-	10	ns
Minimum Data Hold Time	TH	VDD = 5V	1, 2, 3	+25 ^o C	-	60	ns
Clock to Carry In		VDD = 10V	1, 2, 3	+25 ^o C	-	30	ns
		VDD = 15V	1, 2, 3	+25°C	-	30	ns
Minimum Clock Hold Time	TH	VDD = 5V	1, 2, 3	+25 ^o C	-	30	ns
Clock to Up/Down		VDD = 10V	1, 2, 3	+25 ^o C	-	30	ns
		VDD = 15V	1, 2, 3	+25°C	-	30	ns
Input Capacitance	CIN	Any Input	1, 2	+25 ^o C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. Reset to Carry Out (TPLH) only.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

				LIM			
PARAMETER	SYMBOL	CONDITIONS	NOTES	NOTES TEMPERATURE		MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25 ^o C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25 ^o C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND	1	+25 ^o C	VOH > VDD/2	VOL < VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25 ^o C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre	Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (F	Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (F	Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	O RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
CD4510BMS		-				
Static Burn-In 1 (Note 1)	2, 6, 7, 11, 14	1, 3-5, 8-10, 12, 13, 15	16			
Static Burn-In 2 (Note 1)	2, 6, 7, 11, 14	8	1, 3-5, 9, 10, 12, 13, 15, 16			
Dynamic Burn- In (Note 1)	-	1, 3, 4, 8, 9, 12, 13	10, 16	2, 6, 7, 11, 14	15	5
Irradiation (Note 2)	2, 6, 7, 11, 14	8	1, 3-5, 9, 10, 12, 13, 15, 16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagrams

FIGURE 1. CD4510BMS

Logic Diagrams (Continued)

FIGURE 2. CD4516BMS

TRUTH TABLE

CL	CI	U/D	PE	R	ACTION
Х	1	X	0	0	NO COUNT
	0	1	0	0	COUNT UP
	0	0	0	0	COUNT DOWN
Х	Х	Х	1	0	PRESET
Х	X	X	X	1	RESET

X = DON'T CARE

Typical Performance Characteristics

FIGURE 3. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 7. TYPICAL TRANSITION TIME vs LOAD CAPACITANCE

FIGURE 4. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 6. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 8. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE FOR CLOCK-TO-Q OUTPUTS

Typical Performance Characteristics (Continued)

10⁴ AMBIENT TEMPERATURE (TA) POWER DISSIPATION PER GATE (PD) (µW) = +25°C VOLTS (VDD) 10³ 10² CL = 50pF CL = 15pF ** 10 4 6 8 4 6 8 10³ 10² 01 10⁴ 10 INPUT FREQUENCY (fCL) (kHz)

FIGURE 9. TYPICAL MAXIMUM CLOCK INPUT FREQUENCY vs SUPPLY VOLTAGE

FIGURE 10. TYPICAL DYNAMIC POWER DISSIPATION vs FREQUENCY

vss

Test Circuit and Waveform

FIGURE 11. POWER DISSIPATION TEST CIRCUIT AND INPUT WAVEFORM

Acquisition System

FIGURE 12. TYPICAL 16 CHANNEL, 10 BIT DATA ACQUISITION SYSTEM

Timing Diagrams

FIGURE 13. CD4510BMS

FIGURE 14. CD4516BMS

* CARRY OUT lines at the 2nd, 3rd, etc., stages may have a negative-going glitch pulse resulting from differential delays of different CD4010/16BMS IC'S. These negative going glitches do not affect proper CD4029BMS operation. However, if the CARRY OUT signals are used to trigger other edge-sensitive logic devices, such as FF'S or counters, the CARRY OUT signals should be gated with the clock signal using a 2-input OR gate such as CD4071BMS.

Ripple Clocking Mode: The up/down control can be changed at any count. The only restriction on changing the up/down control is that the clock input to the first counting stage must be high. For cascading counters operating in a fixed up-count or down-count mode, the OR gates are not required between stages, and CO is connected directly to the CL input of the next stage with CI grounded.

FIGURE 15. CASCADING COUNTER PACKAGES

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902

TEL: (321) 724-7000 FAX: (321) 724-7240 **EUROPE**

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium

TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA

Intersil (Taiwan) Ltd.

7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310

FAX: (886) 2 2715 3029