Split-CNN: Splitting Window-based Operations in Convolutional Neural Networks for Memory System Optimization

Tian Jin, Seokin Hong

24th ACM International Conference on Architectural Support for Programming Languages and Operating Systems(ASPLOS), 2019

Presenter: Hyun-Tak Lim

http://esoc.hanyang.ac.kr/people/hyuntak_lim/index.html

May 26, 2020

Contents of presentation

- Introduction
- Key contribution
 - **❖** Split-CNN
 - Heterogeneous Memory Management System(HMMS)
- Evaluation
- Conclusion

Introduction

Memory Capacity Constraint

- Memory Bound Layers
- Larger Batch Size
- Higher Model Complexity

Introduction

Limitation of Layer-wise Allocation

- vDNN(sate of the art)
- Less memory requirements
- Some performance degradation
- Require complex and multi-stage tuning process

Introduction

Opportunity

Figure 2. Conventional and Split Convolutional Neural Network

- Op(X,k,s,p)
- Split_D (T, (S₀, · · · , S_{N-1}))
- $[T_0, \cdots, T_n]_D$
- $O = (O_0, \cdots, O_{N-1})$
- $/ = (10, \cdots, 1N-1)$

$$lb\left(I_{i}\right) = O_{i}s - p_{b} \tag{1}$$

$$ub(I_i) = (O_i - 1)s + k - p_b$$
 (2)

$$p_{i,b} = \begin{cases} p_b & i = 0\\ I_i + p_b - (O_i - 1)s & otherwise \end{cases}$$

$$p_{i,e} = \begin{cases} p_e & i = N-1\\ (O_{i+1}-1)s + k - (I_{i+1}+p_b) & otherwise \end{cases}$$

$$I = ComputeInputSplitScheme(k, s, p, O)$$
 (3)

$$X_0, \cdots, X_{N-1} = Split_W(X, \mathbf{I}) \tag{4}$$

$$\mathbf{p} = (p_0, \cdots, p_{N-1}) = ComputePadding(k, s, p, \mathbf{O}, \mathbf{I})$$
 (5)

$$\forall n \in \{0, \cdots, N-1\} \ Y_n = Op(X_n, k, s, p_i)$$
 (6)

$$Y = [Y_0, \cdots, Y_{N-1}]_W \tag{7}$$

Stochastic Splitting

$$s_i \sim DiscreteUniform\left(\lceil \frac{(i-\omega) \cdot L}{N} \rceil, \lfloor \frac{(i+\omega) \cdot L}{N} \rfloor\right)$$

Step 4. Offload (shown start only) and Prefetch (shown end only) Planning

Figure 3. Heterogeneous Memory Management System (HMMS)

Computation Graph

- -G = (N,E)
- Directed Acyclic Graph

Tensor Storage Object

- Separate conceptual and physical tensor
- TSO represent a contiguous region of memory storage space

Splitting and Graph Generation

- Split training model
- HMMS automatically transforms regular CNN to Split-CNN
- Serialize computation by topological sort

- Storage Assignment and Optimization
 - Assign each tensor in graph to a TSO
 - Keep reference counter for each TSO
 - Memory Optimization
 - 1) In-Place ReLu
 - 2) Summation Error Storage Object Sharing

Offload and Prefetch Planning

- Start of Offload: kick off the device to host memory transfer through idle memory stream
- *End of Offload*: synchronize computation stream with memory stream through which TSO of interest is transferred
- Start of Prefetch: retrieve content of TSO from host back to device via idle memory stream
- *End of Prefetch*: synchronize compute stream and memory stream before TSO appear as storage object

Offload and Prefetch Planning

```
Algorithm 1: Offload Planning Algorithm
 Data: serialized list of (fwd) operations in the CNN: ops
 Initialize offload_capacity_balance = 0;
 Initialize TSO to free = {};
 Initialize profile_exec_time as described;
 Initialize nvlink bandwidth as described;
 // Initialize memory and computation streams.
 Initialize mem stream ☐, comp stream ;
 for Operation op \in ops do
    input_TSO = TSO of input feature map of op;
    if no further write happens to input_TSO then
        Get an idle memory stream m.
        Plan to allocate host TSO for input TSO
         immediately before op starts executing.;
        Plan to transfer input_TSO to host via m
         immediately after op starts executing.;
        input TSO.stream = m.;
        Append input TSO to TSO to free.;
        offload_capacity_balance -= input_TSO.size;
    end
    // Compute the increase of offloading capacity by
     multiplying op execution time with nvlink
     bandwidth.
```

```
increase = profile_exec_time[op] *
    nvlink bandwidth;
   offload_capacity_balance += increase;
   if offload capacity balance \geq 0 or op is the last then
      for TSO tso \in TSO to free do
          Plan to synchronize with tso.stream
            immediately after op starts executing.;
          Plan to free tso immediately after the above
            synchronization.;
       end
      if TSO to free is not empty then
          Plan to synchronize with comp_stream after
           above synchronizations with memory
            stream.;
          offload capacity balance = 0;
          Clear TSO to free.
       end
   end
end
```

Static Memory Planning

- Three memory pools
 - 1) Host general purpose memory
 - 2) Device parameter memory
 - 3) Device general purpose memory

Methodology

- Model: AlexNet, VGG-19, ResNet-18, ResNet-50
- Batch size: 256 for ImageNet, 128 for CIFAR-10
- Splitting depth: 0%, 12.5%, 25.0%, 37.5%, 50%
- # of Splits: 1, 2, 3, 4, 6, 9

Split Depth

Figure 4. Effects of Splitting Depth on Test Error (lower is better)

Number of Split

Figure 5. Effects of Number of Splits on Test Error (lower is better)

Stochasticity

Figure 6. Effects of Stochasticity of Splitting on Test Error (lower is better)

Performance

Performance

Figure 7. Split-CNN Classification Performance on ImageNet

Performance

Classification Accuracy of Split-CNN				
Architecture	AlexNet	ResNet50	VGG19	ResNet18
Dataset	ImageNet	ImageNet	CIFAR	CIFAR
Splitting Depth	60%	81.2%	50 %	50 %
No. of Splits	4	4	4	4
Baseline Acc.	55.2 %	75.9 %	94.14 %	95.3 %
SCNN Acc.	55.0 %	74.7 %	93.02 %	94.8 %
SSCNN Acc.	55.9 %	74.9 %	94.58 %	95.5 %

Table 1. Classification Performance of Split-CNN

Methodology

- IBM Power System S822LC with T16GB esla P100 GPUs
- IBM Power8 CPU
- NVLink 1.0, bandwidth 34.1GB/s
- NVIDIA cuDNN V7

Training Throughput

Figure 8. Training Throughput with Three Scheduling Methods

Profiling Results

Figure 9. Profiling Results for VGG-19 with Three Offload-Scheduling Methods

Maximum Batch

Figure 10. Impact on the Maximum Batch Size and Throughput with number of splits = 4, depth $\approx 75\%$

Speedup

Figure 11. Speedup of Distributed Training with Split-CNN

Conclusion

- Presented Split-CNN
- Stochastic Split-CNN can enhance performance metrics
- Proposed HMMS
- Enabled training VGG-19 with 6x larger batch size, VGG-18 with 2x larger batch sizse

Thank you