

Monitoring of thermo-hydrological behaviour in Green Infrastructure

Dr Anil Yildiz^{1,2}

anil.yildiz@newcastle.ac.uk

Dr Ross Stirling^{1,2}

ross.stirling@newcastle.ac.uk

Prof Stephanie Glendinning²

stephanie.glendinning@ncl.ac.uk

0000-0002-5012-0487

¹ National Green Infrastructure Facility, Newcastle University, Newcastle upon Tyne, United Kingdom ² School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom

Background

- Roof precipitation drainage into the ground
 (Di Sipio and Bertermann, 2017)
- Irrigating trench areas
 (Naylor et al., 2015)
- Rain garden and rainwater harvest (Gao et al., 2016)

Combined ground heat exchanger – green infrastructure concept

Depth [mm]	Parameter(s)
40	Soil temperature
70	Soil temperature
80	Heat flux
100	Soil temperature, VWC, Suction
150	Soil temperature
250	Soil temperature, VWC, Suction, Thermal Conductivity
350	Soil temperature, VWC, Suction, Thermal Conductivity
450	Soil temperature, VWC, Suction
550	Soil temperature, VWC, Suction, Thermal Conductivity
650	Soil temperature, VWC, Suction
750	Soil temperature, VWC, Suction, Thermal Conductivity
800	Soil temperature
840	Soil temperature
900	Soil temperature
940	Heat flux

5/12

modified from Yildiz and Stirling (2021)

modified from Yildiz and Stirling (2021)

modified from Yildiz and Stirling (2021)

modified from Yildiz and Stirling (2021)

11/12

Thermo-hydrological conditions within an engineered green infrastructure component are conducive to efficient ground heat exchange.

Materials & Methods

The substrate maintained high thermal conductivity states, even under summer conditions.

Background

- The monitored soil-water-atmosphere interaction has illustrated the highly thermo-hydrologically coupled response of a functioning green infrastructure component.
- Such co-located systems have the potential for significant mutual benefit in terms of environmental and economic performance, leading to a more attractive proposition for sustainable water-energy approaches in urban environments.

12/12

You can download these slides on anilyildiz.info/presentations

You can watch how we commissioned the lysimeter setup on youtube.com/watch?v=e4RBqE6g_Jg&t

Follow NGIF on Twitter for updates on our work ongif_uk

This work was conducted within the framework of PLEXUS - Priming Laboratory EXperiments on infrastructure and Urban Systems (grant number EP/R013535/1) at the UKCRIC National Green Infrastructure Facility (grant number EP/R010102/1), and funded by the Engineering and Physical Sciences Research Council, UK

Journal publication:

Yildiz, A. and Stirling, R.A. 2021. Thermo-hydrological behaviour of green infrastructure: a comparative field and laboratory study. *Geomechanics for Energy and the Environment* 25, 100219. doi: 10.1016/j.gete.2020.100219.

All data is publicly available:

Yildiz, A. and Stirling, R.A. 2020. *PLEXUS* @ *NGIF - Field and laboratory measurements*. doi: <u>10.25405/data.ncl.c.5088419.v1</u>. All data analysis and visualisation scripts are available:

Yildiz, A. 2020. Data analysis and visualisation for lysimeter data. url: github.com/yildizanil/GETE-D-20-00044.