EE24BTECH11033 - Kolluru Suraj

Question:

Point (-4, 2) lies on the line segment joining the points A(-4, 6) and B(-4, -6).

Solution:

Here
$$\mathbf{A} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -4 \\ -6 \end{pmatrix}$, and \mathbf{C} be $\mathbf{C} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$

point	Coordinates
A	(-4, 6)
В	(-4, -6)
С	(-4, 2)

TABLE 0: variables used

Points A, B, C are defined to be collinear if

$$rank(\mathbf{B} - \mathbf{A} \quad \mathbf{C} - \mathbf{A}) = 1 \tag{0.1}$$

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 0 \\ -12 \end{pmatrix} \tag{0.2}$$

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} \tag{0.3}$$

From equations 0.1 and using 0.2 and 0.3, the collinearity matrix can be expressed as

$$\begin{pmatrix} 0 & 0 \\ -12 & -4 \end{pmatrix} \tag{0.4}$$

which is a rank 1 matrix. To find the ratio which C divides A, B. Using section formula,

$$\binom{-4}{2} = \frac{\binom{-4}{6} + k \binom{-4}{-6}}{1+k}$$
 (0.5)

$$\implies 2k \begin{pmatrix} 0 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 4 \end{pmatrix} \tag{0.6}$$

or,
$$k = \frac{1}{2}$$
. (0.7)

Since the ratio is positive and the 3 points are collinear we can conclude that point C lies on the line segment joining A, B

1

Fig. 0.1: Line connecting ABC