FEDERAL STATE AUTONOMOUS EDUCATIONAL INSTITUTION OF HIGHER EDUCATION "NATIONAL RESEARCH UNIVERSITY HIGHER

SCHOOL OF ECONOMICS"

MOSCOW INSTITUTE OF ELECTRONICS AND MATHEMATICS TECHNICAL SPECIFICATION

" Python in Data Science"

Analysis of COVID-19 statistics in different countries

USER MANUAL

Student:

Mohamed Abdelhafiz Salem Abdelhafiz Youssef

Email: abmokhamed@edu.hse.ru

Phone number: +79067678234

Supervisor: Polyakov Konstantin Lvovich

Content table

1.	Install Prerequisites	4
	Python 3.10	4
	Anaconda	4
	MySQL + MySQL Workbench	4
2.	Project	4
3.	Virtual Environment	5
4.	Database	7
5.	Python Interpreter	8
6.	Run the Program	8
7.	User App Guide	9
	Loading & Preprocessing	9
	Data Filtering	11
	Statistics	11
	Visualization	12
	Configuration	12

List of figures

Figure 1 - Project Structure	4
Figure 2 - Anaconda Prompt	5
Figure 3 - Working Folder	5
Figure 4 - Virtual environment creation	5
Figure 5 - Environment activation	5
Figure 6 - Environment activated	5
Figure 7 - Install dependencies	5
Figure 8 - Environment selection	ε
Figure 9 - Spyder installation and launch	ε
Figure 10 - Spyder IDE	6
Figure 11 - MySQL Workbench	7
Figure 12 - Database creation	7
Figure 13 - MySQL configuration	7
Figure 14 - Python interpreter	8
Figure 15 - Environment check	8
Figure 16 - App	9
Figure 17 - Database Connection	9
Figure 18 - Clear Table	10
Figure 19 - Data loading from CSVs	10
Figure 20 - Data cleaning	10
Figure 21 - Data insertion	11
Figure 22 - Data Filtering Page	11
Figure 23 - Statistics page	12
Figure 24 - Visualization page	12
Figure 25 - Configuration page	12

1. Install Prerequisites

Python 3.10

Check if Python is already installed in CMD:

- python --version on Windows
- python3 --version on Linux/MacOs

Something like Python 3.10.6 should appear

If not installed:

Download the latest stable version (preferably Python 3.10 at least)

Download it from: https://www.python.org/downloads/

Run the installer and check the box that says "Add Python to PATH" before clicking "Install Now"

Anaconda

Check if Anaconda is already installed in CMD:

• conda --version

Something like conda 24.x.x should appear

If not installed:

Download it from: https://www.anaconda.com/download

Run the installer and accept all default settings.

MySQL + MySQL Workbench

Download it from: https://dev.mysql.com/downloads/

Download the one complete version of the installer (300mb+)

Run the installer and select the **FULL** installation and continue with execute and install, make sure to remember the **password**, the **port** and the **user**.

2. Project

After downloading the project ZIP file, Find the downloaded ZIP file (Work.zip) in your **Downloads** folder or wherever you saved it and extract it. The structure of the folder is the following:

Figure 1 - Project Structure

3. Virtual Environment

After extracting the Zip file, Open anaconda Prompt, we will use the Anaconda Navigator later.

Figure 2 - Anaconda Prompt

Access the path to your extracted Work folder. If the folder was extracted in Downloads, it should be something like: C:\Users\abahr\Downloads\Work\Work

Access Folder: cd C:\Users\abahr\Downloads\Work\Work

Figure 3 - Working Folder

Create virtual environment: conda create --name covid_analysis_env python=3.10

(base) C:\Users\abahr\Downloads\Work\Work>conda create --name covid_analysis_env python=3.10

Figure 4 - Virtual environment creation

Activate it: conda activate covid_analysis_env

(base) C:\Users\abahr\Downloads\Work\Work>conda activate covid_analysis_env

Figure 5 - Environment activation

 Base will change into covid_analysis_env which means the environment is activated

(covid_analysis_env) C:\Users\abahr\Downloads\Work>

Figure 6 - Environment activated

• Install all dependencies: pip install-r requirements.txt

(covid_analysis_env) C:\Users\abahr\Downloads\Work\Work>pip install -r requirements.txt

Figure 7 - Install dependencies

Now Open Anaconda Navigator and choose the environment we just created

Figure 8 - Environment selection

Search for Spyder, Install It and launch it

Figure 9 - Spyder installation and launch

Inside Spyder Open the covid analysis.py and the config.ini files from Work/Scripts folder

Figure 10 - Spyder IDE

4. Database

Now after Opening **covid_analysis.py** and **config.ini** in spyder we need to configure the **database** information's so:

• Open MySQL Workbench

Figure 11 - MySQL Workbench

- At the bottom you can see MySQL localhost connection click on it, it will ask for **user** and **password**, the ones you used during installation, and then it will take you into this interface
- Create a new database schema and name it **covid analysis db**, it's empty for now.

Figure 12 - Database creation

• Now we go back to spyder to update the **config.ini** file for now it's something like this, fill the variables with the right information's: **password** and **user** used during **installation**, and the **name** of the database we just created

Figure 13 - MySQL configuration

5. Python Interpreter

Inside Spyder in Tools>Preferences>Python Interpreter choose the one used by the environment we created previously. (In our example covid_analysis_env\python.exe). Click apply, maybe you will need to restart Spyder for the change to take action

Figure 14 - Python interpreter

You should see the environment we are using at the bottom of Spyder, make sure it's the right one:

Figure 15 - Environment check

6. Run the Program

Now go to the covid analysis.py file opened in Spyder and run it and the GUI must appear

7. User App Guide

Once you run the covid_analysis.py file the tkinter app will appear, a sidebar on the left to make the navigation easy and better. The app has 5 pages one for Data Loading and Preprocessing, a page where you can read data and filter it, a page for statistics, export and report generation, a page for visualization and a page for configuration of the app.

Figure 16 - App

Loading & Preprocessing

The following instructions in **Loading/Preprocessing** page are **mandatory before anything else**, after you have done them, you can skip them on the next launch

a. At first the user must Connect to the database; this will create the covid data table in database if it doesn't exist.

Figure 17 - Database Connection

b. The user can use Clear table to delete all rows from database and start fresh.

Figure 18 - Clear Table

c. Load data will read the data from the csv files inside the DATA folder.

Figure 19 - Data loading from CSVs

d. Clean data to prevent having null values in database, it helps checking and filling fields with appropriate default data.

Figure 20 - Data cleaning

e. At the end, the user must insert that data into the database so it can be used later.

Figure 21 - Data insertion

Data Filtering

The next page is **Data Filtering** where the user must first load data and then he can filter by **year**, **country** and **month**, the user can choose either **one**, **two** or **three at a time** to filter.

Figure 22 - Data Filtering Page

Statistics

The next page is **Statistics** where the user must first load data and then can select from a dropdown menu an option for statistics.

- The user can after, generate a report, which will be stored inside Work/Output/reports folder.
- The user can after, export the statistic, which will be stored inside Work/Output/exports folder.

Figure 23 - Statistics page

Visualization

The next page is **Visualization** where the user must first load data and then can select from a dropdown menu an option for visualization.

Figure 24 - Visualization page

Configuration

The last page is the **Configuration** page where the user can customize the interface by changing the fonts and colors, when the changes are saved, the app will automatically restart to show updates.

Figure 25 - Configuration page