<王道考研系列>赠品:2009-2015年计算机考研试题及答案

2015 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

一 合试题	·、单项选择题:第 要求。	1~40 小题,	每小题 2 分,	共80分。	下列每题给出	出的四个选项中,	只有一个选	近最符
1	己知程序如下:							
1.	int S(int n)							
	{ return (n<=0))?0:s(n-1)+n	;}					
	<pre>void main()</pre>							
4 11	{ cout<< S(1)	-			. A + A A \ . → L			
	序运行时使用栈来仍					<u> </u>		
	$main() \rightarrow S(1) \rightarrow S(0)$. ,			
	$main() \rightarrow S(0) \rightarrow S(1)$			D. $S(1) \rightarrow S($	(0)→main()			
	先序序列为 a,b,c,d					D 16		
	13					D. 16	П	
	下列选项给出的是					可一棵哈大曼树的	是。	
	24,10,5 和 24,10,7							
	24,10,10 和 24,14,1		7 Jal. / Axar Jal.	D. 24,10,5 7			T-5124-T-5	+ 17/4- —
	现有一棵无重复关		〈州(AVL 州),	屮 ////////////////////////////////////	身到一个阵 户序列。	ト列大士は	≶ 半衡─
	叙述中,正确的是_	<u></u>		ъ Ы.Н.В.I				
	根结点的度一定为			B. 树中最小				
	最后插入的元素一						步月電上	11 TH
	设有向图 G=(V,E),				$v_1>, < v_0, v_2>,$	$\{v_0, v_3\}, \{v_1, v_3\}$	。右从坝只	V_0 开始
	行深度优先遍历,贝 ~		可週历净列个			D 7		
	2	B. 3		C. 4	17 1 1	D. 5	日秋田桐(1	、 、 <i>左</i> 左
	求下面带权图的最			E兄貴期下()	Kruskal)昇海	5男2次选甲但个	定晋里姆(I	rim)异
	V ₄ 开始)第2次选		_ 0	C = (W, W)		D (U.U.)		
Α.	(V_1,V_3)	$\mathbf{B}. (\mathbf{V}_1, \mathbf{V}_4)$	(C. (V_2, V_3)		D. (V_3, V_4)		
			(V 8	5	2 <i>)</i> 11			
			V	3 8 V	1)			
7.	下列选项中,不能	构成折半查找中	中关键字比较周	亨列的是	o			
A	. 500,200,450,180			B. 500,450,	200,180			
C.	180,500,200,450			D. 180,200,	500,450			
8.	已知字符串 S 为"a	baabaabacacaab	aabcc",模式是	串 t 为"abaabo	:"。采用 KM	P 算法进行匹配,	第一次出现	"失配"
$(s[i] \neq t[$	j]) 时,i=j=5,则下	次开始匹配时,	i和j的值分	·别是。				
A	. i=1,j=0	B. i=5,j=0		C. i=5,j=2		D. i=6,j=2		
9.	下列排序算法中,	元素的移动次数	女与关键字的	初始排列次序	无关的是	o		
A	. 直接插入排序	B. 起泡排	学	C. 基数排序	F	D. 快速排序		
10	. 已知小根堆为 8,15	5,10,21,34,16,12	,删除关键字	8 之后需重建	堆,在此过程	中,关键字之间的	比较次数是	o

A. 1 B. 2	C. 3 D. 4
11. 希尔排序的组内排序采用的是。	
A. 直接插入排序 B. 折半插入排序	C. 快速排序 D. 归并排序
12. 计算机硬件能够直接执行的是。	
I. 机器语言程序 II. 汇编语言程序 III.	
A. 仅I B. 仅I、II	
13. 由 3 个 "1" 和 5 个 "0" 组成的 8 位二进制剂	
A126 B125	
14. 下列有关浮点数加减运算的叙述中,正确的是	Ē。
I. 对阶操作不会引起阶码上溢或下溢	
II. 右规和尾数舍入都可能引起阶码上溢 III. 左规时可能引起阶码下溢	
III. 在戏时可能引起所再下温 IV. 尾数溢出时结果不一定溢出	
A. 仅II、III	B. 仅I、II、IV
C. 仅I、III、IV	D. I. II. III. IV
	印 Cache 之间采用直接映射方式,主存块大小为 4 个字,每字 32
位,采用回写(Write Back)方式,则能存放 4K 字数打	
A. 146k B. 147K	
	add xaddr, 3",其中 xaddr 是 x 对应的存储单元地址。若执行该指
	的 TLB,且 Cache 使用直写(Write Through)方式,则完成该指
令功能需要访问主存的次数至少是。	
	C. 2 D. 3
17. 下列存储器中,在工作期间需要周期性刷新的	
A. SRAM B. SDRAM	C. ROM D. FLASH
18. 某计算机使用 4 体交叉编址存储器, 假定在存	存储器总线上出现的主存地址 (十进制) 序列为 8005,8006,8007,
8008, 8001, 8002, 8003, 8004, 8000, 则可能发生证	方存冲突的地址对是。
A. 8004 和 8008 B. 8002 和 8007	C. 8001 和 8008 D. 8000 和 8004
19. 下列有关总线定时的叙述中,错误的是	°
A. 异步通信方式中,全互锁协议最慢	
B. 异步通信方式中, 非互锁协议的可靠性最差	
C. 同步通信方式中, 同步时钟信号可由各设备损	
D. 半同步通信方式中,握手信号的采样由同步时	
	8ms,每个磁道包含 1000 个扇区,则访问一个扇区的平均存取时间
大约是。	
	C. 16.3ms D. 20.5ms
	下,CPU 和打印控制接口中的 I/O 端口之间交换的信息不可能
是。	
	C. 设备状态 D. 控制命令
	6阱(trap)和终止(abort)三类。下列有关内部异常的叙述中,
错误的是。 A. 内部异常的产生与当前执行指令相关	
B. 内部异常的检测由 CPU 内部逻辑实现	
C. 内部异常的恒则由 CPU 内部逻辑实现	
D. 内部异常的响应及生任指令执行过程中 D. 内部异常处理后返回到发生异常的指令继续执	九行
23. 处理外部中断时,应该由操作系统保存的是	
A. 程序计数器(PC)的内容	。 B.通用寄存器的内容
* *	D. Cache 中的内容
∠ + + - \	

24. 假定下列指令已装入指令寄存器。则执行时不	可能导致 CPU 从用户态势	变为内核态(系统态)的是。
A. DIV R0,R1 ; $(R0)/(R1)\rightarrow R0$		
B. INT n ; 产生软中断		
C. NOT RO ; 寄存器 RO 的内容取非		
D. MOV RO, addr ; 把地址 addr 处的内存	数据放入寄存器 R0 中	
25. 下列选项中,会导致进程从执行态变为就绪态	的事件是	
A. 执行 P(wait)操作	B. 申请内存失败	
	D. 被高优先级进程抢占	
26. 若系统 S1 采用死锁避免方法,S2 采用死锁检	2测方法。下列叙述中,正	确的是。
I. S1 会限制用户申请资源的顺序,而 S2 不会		
II. S1 需要进程运行所需资源总量信息,而 S2 不	需要	
III. S1 不会给可能导致死锁的进程分配资源,而 S	32 会	
A. 仅 I 、 II B. 仅 II 、 III	C. 仅I、III	D. I、II、III
27. 系统为某进程分配了 4 个页框,该进程已访问	的页号序列为 2,0,2,9,3,4,2	,8,2,4,8,4,5。若进程要访问的下一页的
页号为7,依据 LRU 算法,应淘汰页的页号是。		
A. 2 B. 3	C. 4	D. 8
28. 在系统内存中设置磁盘缓冲区的主要目的是	o	
A. 减少磁盘 I/O 次数	B. 减少平均寻道时间	
A.减少磁盘 I/O 次数 C.提高磁盘数据可靠性	D. 实现设备无关性	
29. 在文件的索引节点中存放直接索引指针 10 个,	一级和二级索引指针各1	个。磁盘块大小为 1KB,每个索引指
针占 4 个字节。若某文件的索引节点已在内存中,则把	该文件偏移量(按字节编	址)为 1234 和 307400 处所在的磁盘
块读入内存,需访问的磁盘块个数分别是。		
A. 1,2 B. 1,3	C. 2,3	D. 2,4
30. 在请求分页系统中,页面分配策略与页面置换		
A. 可变分配,全局置换	B. 可变分配,局部置换	
C. 固定分配,全局置换	D. 固定分配,局部置换	
31. 文件系统用位图法表示磁盘空间的分配情况,		
块和块内字节均从0开始编号。假设要释放的盘块号为	409612,则位图中要修改	的位所在的盘块号和块内字节序号分
别是。		
A. 81, 1 B. 81, 2		
32. 某硬盘有 200 个磁道(最外侧磁道号为 0),磁		
磁道并从外侧向内侧移动。按照 SCAN 调度方法处理完		
A. 208 B. 287	C. 325	D. 382
33. 通过 POP3 协议接收邮件时,使用的传输层服	务类型是 <u></u> 。	
A. 无连接不可靠的数据传输服务		
B. 无连接可靠的数据传输服务		
C. 有连接不可靠的数据传输服务		
D. 有链接可靠的数据传输服务		
34. 使用两种编码方案对比特流 01100111 进行编码	另的结果如 卜 图	5 1 和编码 2 分别是。
比特流 0 1 1	0 0 1 1	1
编码1		
编码2]
	\sqcup \sqcup \sqcup \sqcup	니
A NRZ 和曼彻斯特编码	B NRZ 和差分曼彻斯特	·····································

D. NRZI 和差分曼彻斯特编码

C. NRZI 和曼彻斯特编码

- 35. 主机甲通过 128kbps 卫星链路,采用滑动窗口协议向主机乙发送数据,链路单向传播延迟为 250ms,帧长为 1000 字节。不考虑确认帧的开销,为使链路利用率不小于 80%,帧序号的比特数至少是
 - A. 3
- B. 4
- C. 7
- D. 8
- 36. 下列关于 CSMA/CD 协议的叙述中,错误的是____。
- A. 边发送数据帧, 边检测是否发生冲突
- B. 适用于无线网络,以实现无线链路共享
- C. 需要根据网络跨距和数据传输速率限定最小帧长
- D. 当信号传播延迟趋近0时,信道利用率趋近100%
- 37. 下列关于交换机的叙述中,正确的是____。
- A. 以太网交换机本质上是一种多端口网桥
- B. 通过交换机互连的一组工作站构成一个冲突域
- C. 交换机每个端口所连网络构成一个独立的广播域
- D. 以太网交换机可实现采用不同网络层协议的网络互联
- 38. 某路由器的路由表如下表所示:

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
目的网络	下一跳	接口				
169.96.40.0/23	176.1.1.1	S1				
169.96.40.0/25	176.2.2.2	S2				
169.96.40.0/27	176.3.3.3	S3				
0.0.0.0/0	176.4.4.4	S4				

若路由器收到一个目的地址为 169.96.40.5 的 IP 分组,则转发该 IP 分组的接口是____。

- A. S1
- B. S2
- C. S3
- D. S4

39. 主机甲和主机乙新建一个 TCP 连接,甲的拥塞控制初始阈值为 32KB,甲向乙始终以 MSS=1KB 大小的段发送数据,并一直有数据发送;乙为该连接分配 16KB 接收缓存,并对每个数据段进行确认,忽略段传输延迟。若乙收到的数据全部存入缓存,不被取走,则甲从连接建立成功时刻起,未发送超时的情况下,经过 4 个 RTT 后,甲的发送窗口是。

- A. 1KB
- B. 8KB
- C. 16KB
- D. 32KB

40. 某浏览器发出的 HTTP 请求报文如下:

GET /index.html HTTP/1.1 Host: www.test.edu.cn Connection: Close Cookie: 123456

下列叙述中,错误的是。

- A. 该浏览器请求浏览 index.html
- B. Index.html 存放在 www.test.edu.cn 上
- C. 该浏览器请求使用持续连接
- D. 该浏览器曾经浏览过 www.test.edu.cn
- 二、综合应用题: 第41~47 小题, 共70 分。
- 41.(15 分)用单链表保存 m 个整数,结点的结构为: [data][link],且|data|≤n(n 为正整数)。现要求设计一个时间复杂度尽可能高效的算法,对于链表中 data 的绝对值相等的结点,仅保留第一次出现的结点而删除其余绝对值相等的结点。例如,若给定的单链表 head 如下:

则删除结点后的 head 为:

要求:

- 1)给出算法的基本设计思想。
- 2) 使用 C 或 C++语言,给出单链表结点的数据类型定义。
- 3) 根据设计思想,采用C或C++语言描述算法,关键之处给出注释。
- 4) 说明你所设计算法的时间复杂度和空间复杂度。
- 42. (8分)已知含有5个顶点的图G如下图所示。

请回答下列问题:

- 1) 写出图 G 的邻接矩阵 A (行、列下标从 0 开始)。
- 2) 求 A^2 , 矩阵 A^2 中位于 0 行 3 列元素值的含义是什么?
- 3) 若已知具有 $n(n \ge 2)$ 个顶点的图的邻接矩阵为 B_n 则 $B^m(2 \le m \le n)$ 中非零元素的含义是什么?
- 43. (13 分) 某 16 位计算机的主存按字节编码,存取单位为 16 位; 采用 16 位定长指令字格式; CPU 采用单总线结构,主要部分如下图所示。图中 $R0\sim R3$ 为通用寄存器; T 为暂存器; SR 为移位寄存器,可实现直送(mov)、左移一位 (left) 和右移一位 (right) 3 种操作,控制信号为 SRop,SR 的输出由信号 SRout 控制; ALU 可实现直送 A (mova)、A 加 B (add)、A 减 B (sub)、A 与 B (and)、A 或 B (or)、非 A (not)、A 加 1 (inc) 7 种操作,控制信号为 ALUop。

请回答下列问题。

- 1) 图中哪些寄存器是程序员可见的? 为何要设置暂存器 T?
- 2) 控制信号 ALUop 和 SRop 的位数至少各是多少?
- 3) 控制信号 SRout 所控制部件的名称或作用是什么?
- 4) 端点①~⑨中, 哪些端点须连接到控制部件的输出端?
- 5)为完善单总线数据通路,需要在端点①~⑨中相应的端点之间添加必要的连线。写出连线的起点和终点, 以正确表示数据的流动方向。
 - 6) 为什么二路选择器 MUX 的一个输入端是 2?
- 44. (10分)题 43 中描述的计算机,其部分指令执行过程的控制信号如下图所示。

题图 a 部分指令控制信号

该机指令格式如下图所示,支持寄存器直接和寄存器间接两种寻址方式,寻址方式位分别为 0 和 1,通用寄存器 $R0\sim R3$ 的编号分别为 0、1、2 和 3。

题图 b 指令格式

请回答下列问题。

- 1) 该机的指令系统最多可定义多少条指令?
- 2) 假定 inc、shl 和 sub 指令的操作码分别为 01H、02H 和 03H,则以下指令对应的机器代码各是什么?
- ① inc R1 ; $R1+1\rightarrow R1$ ② shl R2,R1 ; $(R1) << 1\rightarrow R2$
- ③ sub R3, (R1),R2 ; $((R1))-(R2) \rightarrow R3$
- 3)假设寄存器 X 的输入和输出控制信号分别为 Xin 和 Xout,其值为 1 表示有效,为 0 表示无效(例如,PCout=1 表示 PC 内容送总线),存储器控制信号为 MEMop,用于控制存储器的读(read)和写(write)操作。写出 题图 a 中标号①~⑧处的控制信号或控制信号的取值。
 - 4) 指令 "sub R1,R3,(R2)" 和 "inc R1"的执行阶段至少各需要多少个时钟周期?
- 45.(9 分)有 $A \times B$ 两人通过信箱进行辩论,每个人都从自己的信箱中取得对方的问题。将答案和向对方提出的新问题组成一个邮件放入对方的邮箱中。假设 A 的信箱最多放 M 个邮件,B 的信箱最多放 N 个邮件。初始时 A 的信箱中有 x 个邮件(0 < x < M),B 的信箱中有 y 个(0 < y < N)。辩论者每取出一个邮件,邮件数减 1。A 和 B 两人的操作过程描述如下:

```
      CoBegin

      A{
      B{

      while(TRUE){
      while(TRUE){

      从A的信箱中取出一个邮件;
      D答问题并提出一个邮件;

      回答问题并提出一个新问题;
      P新邮件放入A的信箱;

      **
      **

      **
      **

      **
      **

      **
      **

      **
      **

      **
      **

      **
      **

      **
      **

      **
      **

      **
      **

      **
      **

      **
      **
```

CoEnd

当信箱不为空时,辩论者才能从信箱中取邮件,否则等待。当信箱不满时,辩论者才能将新邮件放入信箱,否则等待。请添加必要的信号量和 P、V(或 wait、signal)操作,以实现上述过程的同步。要求写出完整过程,并说明信号量的含义和初值。

46. (6分) 某计算机系统按字节编址,采用二级页表的分页存储管理方式,虚拟地址格式如下所示:

10 位	10 位	12位
页目录号	页表索引	页内偏移量

请回答下列问题。

- 1) 页和页框的大小各为多少字节? 进程的虚拟地址空间大小为多少页?
- 2) 假定页目录项和页表项均占4个字节,则进程的页目录和页表共占多少页?要求写出计算过程。
- 3) 若某指令周期内访问的虚拟地址为 0100 0000H 和 0111 2048H,则进行地址转换时共访问多少个二级页表?要求说明理由。
- 47. (9 分)某网络拓扑如图所示,其中路由器内网接口、DHCP 服务器、WWW 服务器与主机 1 均采用静态 IP 地址配置,相关地址信息见图中标注;主机 2~主机 N 通过 DHCP 服务器动态获取 IP 地址等配置信息。

请回答下列问题。

- 1) DHCP 服务器可为主机 $2\sim$ 主机 N 动态分配 IP 地址的最大范围是什么? 主机 2 使用 DHCP 协议获取 IP 地址的过程中,发送的封装 DHCP Discover
- 2) 若主机 2 的 ARP 表为空,则该主机访问 Internet 时,发出的第一个以太网帧的目的 MAC 地址是什么? 封装主机 2 发往 Internet 的 IP 分组的以太网帧的目的 MAC 地址是什么?
- 3)若主机 1 的子网掩码和默认网关分别配置为 255.255.255.0 和 111.123.15.2,则该主机是否能访问 WWW 服务器? 是否能访问 Internet?请说明理由。

2015 年计算机学科专业基础综合试题参考答案

一、单项选择题

1.	A	2.	В	3.	D	4.	D	5.	D	6.	C	7.	A	8.	C
9.	C	10.	C	11.	A	12.	A	13.	В	14.	D	15.	C	16.	В
17.	В	18.	D	19.	C	20.	В	21.	В	22.	D	23.	В	24.	C
25.	D	26.	В	27.	A	28.	A	29.	В	30.	C	31.	C	32.	C
33.	D	34.	A	35.	В	36.	В	37.	A	38.	C	39.	A	40.	C

二、综合应用题

- 41. 解答:
- 1) 算法的基本设计思想

算法的核心思想是用空间换时间。使用辅助数组记录链表中已出现的数值,从而只需对链表进行一趟扫描。 因为 $|data| \le n$,故辅助数组 q 的大小为 n+1,各元素的初值均为 0。依次扫描链表中的各结点,同时检查 q [|data|] 的值,如果为 0,则保留该结点,并令 q [|data|]=1;否则,将该结点从链表中删除。

2) 使用 C 语言描述的单链表结点的数据类型定义

```
typedef struct node {
   int     data;
   struct node *link;
}NODE;
Typedef NODE *PNODE;
```

3) 算法实现

```
void func (PNODE h,int n)
{ PNODE p=h,r;
  int *q,m;
  q=(int *)malloc(sizeof(int)*(n+1));//申请 n+1 个位置的辅助空间
  for (int i=0; i<n+1; i++) //数组元素初值置 0
      *(q+i)=0;
   while(p->link!=NULL)
   { m=p->link->data>0? p->link->data:-p->link->data;
     if (* (q+m) == 0) //判断该结点的 data 是否已出现过
                           //首次出现
      \{ * (q+m) = 1;
                            //保留
        p=p->link;
     }
                            //重复出现
     else
     { r=p->link;
                            //删除
        p->link=r->link
        free(r);
     }
   }
   free (q);
```

【评分说明】若考生设计的算法满足题目的功能要求且正确,则酌情给分。

4) 参考答案所给算法的时间复杂度为 O(m), 空间复杂度为 O(n)。

【评分说明】若考生所估计的时间复杂度和空间复杂度与考生实现的算法一致,可给分。

42. 解答:

1)图G的邻接矩阵A如下:

2) A²如下:

0行3列的元素值3表示从顶点0到顶点3之间长度为2的路径共有3条。

3) B^m (2≤m≤n) 中位于 i 行 j 列 (0≤i, j≤n-1) 的非零元素的含义是: 图中从顶点 i 到顶点 j 长度为 m 的路径

条数。

43. 解答:

1)程序员可见寄存器为通用寄存器($R0\sim R3$)和 PC。因为采用了单总线结构,因此,若无暂存器 T,则 ALU 的 A、B 端口会同时获得两个相同的数据,使数据通路不能正常工作。

【评分说明】回答通用寄存器($R0\sim R3$),给分;回答 PC,给分;部分正确,酌情给分。设置暂存器 T 的原因若回答用于暂时存放端口 A 的数据,则给分,其他答案,酌情给分。

- 2) ALU 共有 7 种操作, 故其操作控制信号 ALUop 至少需要 3 位; 移位寄存器有 3 种操作, 其操作控制信号 SRop 至少需要 2 位。
 - 3) 信号 SRout 所控制的部件是一个三态门,用于控制移位器与总线之间数据通路的连接与断开。

【评分说明】只要回答出三态门或者控制连接/断开,即给分。

4)端口①、②、③、⑤、⑧须连接到控制部件输出端。

【评分说明】答案包含④、⑥、⑦、⑨中任意一个,不给分;答案不全酌情给分。

5) 连线 1, ⑥→⑨: 连线 2, ⑦→④。

【评分说明】回答除上述连线以外的其他连线,酌情给分。

6)因为每条指令的长度为 16 位,按字节编址,所以每条指令占用 2 个内存单元,顺序执行时,下条指令地址为 (PC)+2。MUX 的一个输入端为 2,可便于执行(PC)+2 操作。

44. 解答:

- 1) 指令操作码有 7 位,因此最多可定义 $2^7 = 128$ 条指令。
- 2) 各条指令的机器代码分别如下:
 - ① "inc R1"的机器码为: 0000001 0 01 0 00 0 00, 即 0240H。
 - ② "shl R2, R1"的机器码为: 0000010 0 10 0 01 0 00, 即 0488H。
 - ③ "sub R3, (R1), R2"的机器码为: 0000011 0 11 1 01 0 10, 即 06EAH。
- 3) 各标号处的控制信号或控制信号取值如下:
 - 10; 2mov; 3mova; 4left; 5read; 6sub; 7mov; 8Srout.

【评分说明】答对两个给分。

4) 指令 "sub R1, R3, (R2)"的执行阶段至少包含 4个时钟周期;指令 "inc R1"的执行阶段至少包含 2个时钟周期。

45. 解答:

semaphore Full_A=x; //Full_A 表示 A 的信箱中的邮件数量
semaphore Empty_A=M-x; //Empty_A 表示 A 的信箱中还可存放的邮件数量
semaphore Full_B=y; //Full_B 表示 B 的信箱中的邮件数量
semaphore Empty_B=N-y; //Empty_B 表示 B 的信箱中还可存放的邮件数量
semaphore mutex_A=1; //mutex_A 用于 A 的信箱互斥
semaphore mutex_B=1; //mutex_B 用于 B 的信箱互斥

Cobegin

A{	B{
while(TRUE){	while(TRUE){
P(Full_A);	P(Full_B);
P(mutex_A);	P(mutex_B);
从 A 的信箱中取出一个邮件;	从 B 的信箱中取出一个邮件;
V(mutex_A);	V(mutex_B);
V(Empty_A);	V(Empty_B);
回答问题并提出一个新问题;	回答问题并提出一个新问题;
P(Empty_B);	P(Empty_A);
P(mutex_B);	P(mutex_A);
将新邮件放入B的信箱;	将新邮件放入 A 的信箱;

V(mutex_B);	V(mutex_A);
V(Full_B);	V(Full_A);
}	}
}	}

【评分说明】

- 1)每对信号量的定义及初值正确,给分。
- 2) 每个互斥信号量的 P、V 操作使用正确,各给分。
- 3)每个同步信号量的 P、V 操作使用正确,各给分。
- 4) 其他答案酌情给分。

46. 解答:

- 1) 页和页框大小均为 4KB。进程的虚拟地址空间大小为 $2^{32}/2^{12}=2^{20}$ 页。
- 2) $(2^{10}*4)/2^{12}$ (页目录所占页数) + $(2^{20}*4)/2^{12}$ (页表所占页数) =1025 页。
- 3) 需要访问一个二级也表。因为虚拟地址 0100 0000H 和 0111 2048H 的最高 10 位的值都是 4,访问的是同一个二级页表。

【评分说明】用其他方法计算,思路和结果正确同样给分。

47. 解答:

- 1)DHCP 服务器可为主机 2~主机 N 动态分配 IP 地址的最大范围是: 111.123.15.5~111.123.15.254; 主机 2 发送的封装 DHCP Discover 报文的 IP 分组的源 IP 地址和目的 IP 地址分别是 0.0.0.0 和 255.255.255.255.255。
- 2) 主机 2 发出的第一个以太网帧的目的 MAC 地址是 ff-ff-ff-ff-ff; 封装主机 2 发往 Internet 的 IP 分组的以太网帧的目的 MAC 地址是 00-a1-a1-a1-a1。
- 3) 主机 1 能访问 WWW 服务器,但不能访问 Internet。由于主机 1 的子网掩码配置正确而默认网关 IP 地址被错误地配置为 111.123.15.2(正确 IP 地址是 111.123.15.1),所以主机 1 可以访问在同一个子网内的 WWW 服务器,但当主机 1 访问 Internet 时,主机 1 发出的 IP 分组会被路由到错误的默认网关(111.123.15.2),从而无法到达目的主机。

2014 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

— 、	单项选择题:第 1~40 小	、题,每小题 2 分,	共80分。	下列每题给出的四个	·选项中,只有一	一个选项最符
合试题要	要求。					
1.	下列程序段的时间复杂度是	·				
	<pre>count=0; for(k=1; k<=n; k*=2) for(j=1; j<=n; j++) count++;</pre>					
	A. $O(log_2n)$	B. O(n)	C. O(nlog ₂	n) D. O(n	(2)	
2. 素依次是	假设栈初始为空,将中缀表 <u>-</u> 。	达式 a/b+(c*d-e*f)/ؤ	g转换为等的	的后缀表达式的过程	中,当扫描到 f l	时,栈中的元
	A. +(*-	B. +(-*	C. /+(*-	* D. /+	. *	
	循环队列放在一维数组 A[0	-				
	F入队和出队操作,队列中	最多能容纳 M-1 /	个元素。初始	台时为空。下列判断队	(空和队满的条件	牛中,正确的
是	=	mt Mr.				
		队满: en	,	<i>'</i>		
		队满: en				
	C. 队空: end2 == (end1+1) D. 队空: end1 == (end2+1)		,	*		
	苦对如下的二叉树进行中序					
7.	有内外上的一人的还的工方	XXIII XIIIXX		(16) 111 121 M. // // // // (16) 111 121 M. // // // // // // // // // // // // //	6	
			a			
			(b) (c	·)		
		1	\overrightarrow{d} \overrightarrow{x}			
			e			
	A. e、c B. e 将森林 F 转换为对应的二叉		C. d、c 內个数等于_	D. b、	a	
	A.T中叶结点的个数		B. T 中度	为1的结点个数		
	C. T 中左孩子指针为空的约	结点个数	D. T 中右	该子指针为空的结点 个	~数	
	5个字符有如下4种编码方			>14 4H1/4-1H4/H/M1	<i></i>	
	A. 01,0000,0001,001,1	• •	B. 011,000	.001,010,1		
	C. 000,001,010,011,100			10,1110,1100		
	对如下所示的有向图进行拓	扑排序,得到的拓				
-	A. 3,1,2,4,5,6		B. 3,1,2,4,6	5,5		
	C. 3,1,4,2,5,6		D. 3,1,4,2,0	5,5		

是____。

	A. 存储效率	В	. 散列函数	
	C. 装填 (装载) 因子	D	. 平均查找长度	
9.	在一棵具有 15 个关键字的	的 4 阶 B 树中,含关键字	产的结点个数最多是	o
	A. 5	B. 6 C	. 10	D. 15
10	. 用希尔排序方法对一个数	(据序列进行排序时,若	第 1 趟排序结果为 9,1,4,	13,7,8,20,23,15,则该趟排序采用的增
量(间	隔)可能是。			
	A. 2	B. 3 C	. 4	D. 5
11	. 下列选项中,不可能是快	R速排序第2趟排序结果	的是。	
	A. 2,3,5,4,6,7,9	В	. 2,7,5,6,4,3,9	
	C. 3,2,5,4,7,6,9	D	. 4,2,3,5,7,6,9	
12	. 程序 P 在机器 M 上的执	行时间是 20 秒,编译优	化后,P 执行的指令数	减少到原来的 70%,而 CPI 增加到原
来的 1.2	2倍,则 P 在 M 上的执行时	计间是。		
	A. 8.4 秒	B. 11.7秒 C	. 14 秒	D. 16.8 秒
13	. 若 x=103, y=-25, 则下列	列表达式采用8位定点剂	码运算实现时, 会发生	溢出的是。
	A. x+y	Bx+y C	. х-у	Dx-y
14	. float 型数据常用 IEEE754	4 单精度浮点格式表示。	假设两个 float 型变量 y	x 和 y 分别存放在 32 位寄存器 f_1 和 f_2
中,若(f ₁)=CC90 0000H, (f ₂)=B0C	0 0000H,则x和y之间]的关系为。	
	A. x <y td="" 且符号相同<=""><td>В</td><td>.x<y td="" 且符号不同<=""><td></td></y></td></y>	В	.x <y td="" 且符号不同<=""><td></td></y>	
	C. x>y 且符号相同	B D	.x>y 且符号不同	
15	. 某容量为 256MB 的存储	器由若干 4M×8 位的 D	RAM 芯片构成,该 DR	AM 芯片的地址引脚和数据引脚总数
是	•			
是	_° A. 19	B. 22 C	. 30	D. 36
	_。 A.19 .采用指令 Cache 与数据 C			D. 36
	. 采用指令 Cache 与数据 C A. 降低 Cache 的缺失损	Cache 分离的主要目的是 失 B	。 . 提高 Cache 的命中率	
	. 采用指令 Cache 与数据 C	Cache 分离的主要目的是 失 B	。 . 提高 Cache 的命中率	
16	采用指令 Cache 与数据 CA. 降低 Cache 的缺失损C. 降低 CPU 平均访存时	Cache 分离的主要目的是 失 B 时间 D	。 . 提高 Cache 的命中率 . 减少指令流水线资源/	
16	 采用指令 Cache 与数据 C A. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 某计算机有 16 个通用寄 	Cache 分离的主要目的是 失 B 时间 D 存器,采用 32 位定长指	·。 . 提高 Cache 的命中率 . 减少指令流水线资源 。令字,操作码字段(含	中突
16 17 操作数	 采用指令 Cache 与数据 C A. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 某计算机有 16 个通用寄 	Cache 分离的主要目的是 失 B 寸间 D 存器,采用 32 位定长指 F器直接寻址和基址寻址	·。 . 提高 Cache 的命中率 . 减少指令流水线资源 。令字,操作码字段(含	中突 寻址方式位)为 8 位,Store 指令的源
16 17 操作数	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 . 某计算机有 16 个通用寄和目的操作数分别采用寄存则 Store 指令中偏移量的好 A32768~+32767	Cache 分离的主要目的是 供 B 时间 D 存器,采用 32 位定长指 E器直接寻址和基址寻址 取值范围是。	. 提高 Cache 的命中率 . 提高 Cache 的命中率 . 减少指令流水线资源 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768	中突 寻址方式位)为 8 位,Store 指令的源
16 17 操作数	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 . 某计算机有 16 个通用寄和目的操作数分别采用寄存则 Store 指令中偏移量的好 A32768~+32767	Cache 分离的主要目的是 大 B 时间 D 存器,采用 32 位定长指 器直接寻址和基址寻址 取值范围是。	. 提高 Cache 的命中率 . 提高 Cache 的命中率 . 减少指令流水线资源 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768	中突 寻址方式位)为 8 位,Store 指令的源
	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存即 . 某计算机有 16 个通用寄知目的操作数分别采用寄存则 Store 指令中偏移量的现在,-32768~+32767 C65536~+65535	Cache 分离的主要目的是 供 B 时间 D 存器,采用 32 位定长指 E器直接寻址和基址寻址 取值范围是。 B D	. 提高 Cache 的命中率 . 减少指令流水线资源》 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768 65535~+65536	中突 寻址方式位)为 8 位,Store 指令的源
16 17 操作数 码表示, 18	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 某计算机有 16 个通用寄护 即目的操作数分别采用寄存则 Store 指令中偏移量的时 A32768~+32767 C65536~+65535 . 某计算机采用微程序控制	Cache 分离的主要目的是 失 B 时间 D 存器,采用 32 位定长指 序器直接寻址和基址寻址 取值范围是。 B D 则器,共有 32 条指令,②	. 提高 Cache 的命中率 . 减少指令流水线资源 令字,操作码字段(含于式。若基址寄存器可32767~+3276865535~+65536 . 共的取指令微程序包含	中突 寻址方式位)为 8 位,Store 指令的源 使用任一通用寄存器,且偏移量用补
16 17 操作数 码表示, 18	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 . 某计算机有 16 个通用寄和目的操作数分别采用寄存则 Store 指令中偏移量的时 A32768~+32767 C65536~+65535 . 某计算机采用微程序控制条微指令组成,采用断定法	Cache 分离的主要目的是 失 B 时间 D 存器,采用 32 位定长指 序器直接寻址和基址寻址 取值范围是。 B D 则器,共有 32 条指令,②	. 提高 Cache 的命中率 . 减少指令流水线资源》 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768 65535~+65536 . 共的取指令微程序包含 条微指令地址,则微指令	中突 寻址方式位)为 8 位,Store 指令的源 使用任一通用寄存器,且偏移量用补 · 2 条微指令,各指令对应的微程序平
16 17 操作数 码表示, 18 均由 4 ³	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 某计算机有 16 个通用寄护 即目的操作数分别采用寄存则 Store 指令中偏移量的时 A32768~+32767 C65536~+65535 . 某计算机采用微程序控制条微指令组成,采用断定法 A. 5 B.	Cache 分离的主要目的是 失 B 时间 D 存器,采用 32 位定长指 序器直接寻址和基址寻址 取值范围是。 B D 引器,共有 32 条指令,经 (下地址字段法) 确定下	. 提高 Cache 的命中率 . 减少指令流水线资源》 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768 65535~+65536 . 共的取指令微程序包含 条微指令地址,则微指令	中突 寻址方式位)为 8 位,Store 指令的源 使用任一通用寄存器,且偏移量用补 2 条微指令,各指令对应的微程序平 令中下地址字段的位数至少是。
16 17 操作数; 码表示, 18 均由 4 ;	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 某计算机有 16 个通用寄护 即目的操作数分别采用寄存则 Store 指令中偏移量的时 A32768~+32767 C65536~+65535 . 某计算机采用微程序控制条微指令组成,采用断定法 A. 5 B.	Cache 分离的主要目的是 供 B 对间 D 存器,采用 32 位定长指 医器直接寻址和基址寻址 取值范围是。 B D 引器,共有 32 条指令,经 (下地址字段法)确定下 6 C 中地址线复用方式,其中	. 提高 Cache 的命中率 . 减少指令流水线资源》 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768 65535~+65536 . 共的取指令微程序包含 条微指令地址,则微指令 . 8 . 地址/数据线有 32 根,原	中突 寻址方式位)为 8 位,Store 指令的源使用任一通用寄存器,且偏移量用补 2 条微指令,各指令对应的微程序平 令中下地址字段的位数至少是。 D. 9 总线时钟频率为 66MHz,每个时钟周
16 17 操作数 码表示, 18 均由 4 ¹⁹ 期传送i	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 . 某计算机有 16 个通用寄产和目的操作数分别采用寄存则 Store 指令中偏移量的时 A32768~+32767 C65536~+65535 . 某计算机采用微程序控制条微指令组成,采用断定法 A. 5 B. 某同步总线采用数据线和两次数据(上升沿和下降沿名A. 132 MB/s B.	Cache 分离的主要目的是 供 B 对间 D 存器,采用 32 位定长指 医器直接寻址和基址寻址 取值范围是。 B D 划器,共有 32 条指令,经 (下地址字段法)确定下 6 C 中地址线复用方式,其中 各传送一次数据),该总约 264 MB/s C	. 提高 Cache 的命中率 . 减少指令流水线资源》 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768 65535~+65536 . 共的取指令微程序包含 条微指令地址,则微指令 条微指令地址,则微指令 . 8 . 地址/数据线有 32 根,原 线的最大数据传输率(总约	中突 寻址方式位)为 8 位,Store 指令的源使用任一通用寄存器,且偏移量用补 2 条微指令,各指令对应的微程序平 令中下地址字段的位数至少是。 D. 9 总线时钟频率为 66MHz,每个时钟周 线带宽)是。 D. 1056 MB/s
16 17 操作数 码表示, 18 均由 4 5 19 期传送问	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存即 . 某计算机有 16 个通用寄知目的操作数分别采用寄存则 Store 指令中偏移量的时 A32768~+32767 C65536~+65535 . 某计算机采用微程序控制条微指令组成,采用断定法 A. 5 B. 某同步总线采用数据线和两次数据(上升沿和下降沿着 A. 132 MB/s B. 一次总线事务中,主设备	Cache 分离的主要目的是 供 B 对间 D 存器,采用 32 位定长指 医器直接寻址和基址寻址 取值范围是。 B D 则器,共有 32 条指令,经 (下地址字段法)确定下 6 C 中地址线复用方式,其中 36 C 36 C 36 C 36 C 37 C 38 C 39 C 40 C	. 提高 Cache 的命中率 . 减少指令流水线资源》 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768 65535~+65536 . 共的取指令微程序包含 条微指令地址,则微指令 条微指令地址,则微指令 . 8 . 地址/数据线有 32 根,原 线的最大数据传输率(总约	中突 寻址方式位)为 8 位,Store 指令的源使用任一通用寄存器,且偏移量用补 2 条微指令,各指令对应的微程序平令中下地址字段的位数至少是。 D. 9 总线时钟频率为 66MHz,每个时钟周 线带宽)是。
16 17 操作数 码表示, 18 均由 4 5 19 期传送问	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存时 . 某计算机有 16 个通用寄产和目的操作数分别采用寄存则 Store 指令中偏移量的时 A32768~+32767 C65536~+65535 . 某计算机采用微程序控制条微指令组成,采用断定法 A. 5 B. 某同步总线采用数据线和两次数据(上升沿和下降沿名A. 132 MB/s B.	Cache 分离的主要目的是 供 B 对间 D 存器,采用 32 位定长指 医器直接寻址和基址寻址 取值范围是。 B D 则器,共有 32 条指令,经 (下地址字段法)确定下 6 C 中地址线复用方式,其中 36 C 36 C 36 C 36 C 37 C 38 C 39 C 40 C	. 提高 Cache 的命中率 . 减少指令流水线资源》 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768 65535~+65536 . 共的取指令微程序包含 条微指令地址,则微指令 条微指令地址,则微指令 . 8 . 地址/数据线有 32 根,原 线的最大数据传输率(总约	中突 寻址方式位)为 8 位,Store 指令的源使用任一通用寄存器,且偏移量用补 2 条微指令,各指令对应的微程序平 令中下地址字段的位数至少是。 D. 9 总线时钟频率为 66MHz,每个时钟周 线带宽)是。 D. 1056 MB/s
16 17 操作数 码表示, 18 均由 4 5 19 期传送问	. 采用指令 Cache 与数据 CA. 降低 Cache 的缺失损 C. 降低 CPU 平均访存即 . 某计算机有 16 个通用寄知目的操作数分别采用寄存则 Store 指令中偏移量的时 A32768~+32767 C65536~+65535 . 某计算机采用微程序控制条微指令组成,采用断定法 A. 5 B. 某同步总线采用数据线和两次数据(上升沿和下降沿着 A. 132 MB/s B. 一次总线事务中,主设备	Cache 分离的主要目的是 供 B 对间 D 存器,采用 32 位定长指 子器直接寻址和基址寻址 取值范围是。 B D 引器,共有 32 条指令,经 (下地址字段法)确定下 6 C 中地址线复用方式,其中 各传送一次数据),该总约 264 MB/s C 各只需给出一个首地址,	. 提高 Cache 的命中率 . 减少指令流水线资源》 令字,操作码字段(含 方式。若基址寄存器可 32767~+32768 65535~+65536 . 共的取指令微程序包含 条微指令地址,则微指令 . 8 . 地址/数据线有 32 根,是 . 数据传输率(总约 . 528 MB/s . 从设备就能从首地址开	中突 寻址方式位)为8位,Store 指令的源使用任一通用寄存器,且偏移量用补 2条微指令,各指令对应的微程序平令中下地址字段的位数至少是。 D. 9 总线时钟频率为66MHz,每个时钟周线带宽)是。 D. 1056 MB/s 始的若干连续单元读出或写入多个数

21	.卜列有关 I/O 接口的叙述中,错误的是	_ •	
	A. 状态端口和控制端口可以合用同一个寄存	器	
	B. I/O 接口中 CPU 可访问的寄存器称为 I/O		
	C. 采用独立编址方式时, I/O 端口地址和主		
	D. 采用统一编址方式时,CPU 不能用访存排		
22			事式 电影响应氏分次的基层还识时间
	. 若某设备中断请求的响应和处理时间为 100ns		
万 50ns,	,则在该设备持续工作过程中,CPU 用于该设		<u></u>
		C. 37.5%	D. 50%
23	. 下列调度算法中,不可能导致饥饿现象的是_		
	A. 时间片轮转	B. 静态优先数调度	
	C. 非抢占式短作业优先	D. 抢占式短作业优先	
24	. 某系统有 n 台互斥使用的同类设备,三个并发	发进程分别需要 3、4、5 f	台设备,可确保系统不发生死锁的设备
数 n 最/	小为。		
<i>> 11 -1 1</i>	A. 9 B. 10	C 11	D 12
25	. 下列指令中,不能在用户态执行的是。		D. 12
23	· ·		
	A. trap 指令 B. 跳转指令		D. 美中断指令
26	. 一个进程的读磁盘操作完成后,操作系统针对	讨该进程必做的是。	
	A. 修改进程状态为就绪态	B. 降低进程优先级	
	C. 给进程分配用户内存空间	D. 增加进程时间片大小	`
27	. 现有一个容量为 10GB 的磁盘分区,磁盘空间	l以簇(Cluster)为单位进行统	分配,簇的大小为4KB,若采用位图法
管理该分	分区的空闲空间,即用一位(bit)标识一个簇是否	被分配,则存放该位图所	需簇的个数为。
	A. 80 B. 320		
28	. 下列措施中,能加快虚实地址转换的是		
ī.	增大块表(TLB)容量 II. 让页表常驻内存	- III. 增大交换区(swan)	
	A. 仅I B. 仅II	C. 仅I、II	D ∕⊽ II. III
20	. 在一个文件被用户进程首次打开的过程中, 护		
29	A. 将文件内容读到内存中	KIF次元而IKI17足。	
	B. 将文件控制块读到内存中		
	C. 修改文件控制块中的读写权限	4 □	
	D. 将文件的数据缓冲区首指针返回给用户进		
	. 在页式虚拟存储管理系统中,采用某些页面置		
配给该运	进程的页框个数的增加而增加。下列算法中,可	•	
	I. LRU 算法 II. FIFO		
	A. 仅II B. 仅I、II	C. 仅I、III	D. 仅II、III
31	. 下列关于管道(Pipe)通信的叙述中,正确的是	o	
	A. 一个管道可实现双向数据传输		
	B. 管道的容量仅受磁盘容量大小限制		
	C. 进程对管道进行读操作和写操作都可能被	·ICH ·	
22	D. 一个管道只能有一个读进程或一个写进程	刈共採作	
32	. 下列选项中,属于多级页表优点的是。		
	A. 加快地址变换速度		
	C. 减少页表项所占字节数		内存空间
33	. 在 OSI 参考模型中,直接为会话层提供服务的		
	A. 应用层 B. 表示层	C. 传输层	D. 网络层
34	. 某以太网拓扑及交换机当前转发表如下图所示,	主机 00-e1-d5-00-23-a1 向	主机 00-e1-d5-00-23-c1 发送 1 个数据帧,
主机 00	-e1-d5-00-23-c1 收到该帧后,向主机 00-e1-d5-0	0-23-a1 发送 1 个确认帧,	交换机对这两个帧的转发端口分别是

)。 交换机 目的地址 端口 00-e1-d5-00-23-b1 00-e1-d5-00-23-a1 00-e1-d5-00-23-b1 00-e1-d5-00-23-c1 B. {2,3}和{1} C. {2,3}和{1,2} D. {1,2,3}和{1} A. {3}和{1} 35. 下列因素中,不会影响信道数据传输速率的是 D. 信号传播速度 A. 信噪比 B. 频率宽带 C. 调制速率 36. 主机甲与主机乙之间使用后退 N 帧协议(GBN)传输数据,甲的发送窗口尺寸为 1000,数据帧长为 1000 字节, 信道带宽为100Mbps, 乙每收到一个数据帧立即利用一个短帧(忽略其传输延迟)进行确认,若甲、乙之间的单向传播延 迟是 50ms,则甲可以达到的最大平均数据传输速率约为。 A. 10Mbps D. 100Mbps B. 20Mbps C. 80Mbps 37. 站点A、B、C通过CDMA共享链路,A、B、C的码片序列(chipping sequence)分别是(1,1,1,1)、(1,-1,1,-1)和(1,1,-1,-1)。 若 C 从链路上收到的序列是(2,0,2,0,0,-2,0,-2,0,2,0,2), 则 C 收到 A 发送的数据是____。 B. 101 A. 000 C. 110 D. 111 38. 主机甲和主机乙已建立了 TCP 连接, 甲始终以 MSS=1KB 大小的段发送数据, 并一直有数据发送; 乙每收到 一个数据段都会发出一个接收窗口为 10KB 的确认段。若甲在 t 时刻发生超时时拥塞窗口为 8KB,则从 t 时刻起,不再 发生超时的情况下,经过10个RTT后,甲的发送窗口是 B. 12KB C. 14KB D. 15KB 39. 下列关于 UDP 协议的叙述中,正确的是__ I. 提供无连接服务 II. 提供复用/分用服务 III. 通过差错校验,保障可靠数据传输 C. 仅II、III D. I. II. III A. 仅 I B. 仅 I、 II 40. 使用浏览器访问某大学 Web 网站主页时,不可能使用到的协议是___ B. ARP C. UDP D. SMTP

- 二、综合应用题: 第41~47 小题, 共70 分。
- 41. (13 分)二叉树的带权路径长度(WPL)是二叉树中所有叶结点的带权路径长度之和。给定一棵二叉树 T,采用二叉链表存储,结点结构为:

left	weight	right
------	--------	-------

其中叶结点的 weight 域保存该结点的非负权值。设 root 为指向 T 的根结点的指针,请设计求 T 的 WPL 的算法,要求:

- 1)给出算法的基本设计思想;
- 2) 使用 C 或 C++语言,给出二叉树结点的数据类型定义;
- 3) 根据设计思想,采用C或C++语言描述算法,关键之处给出注释。
- 42. (10 分)某网络中的路由器运行 OSPF 路由协议,题 42 表是路由器 R1 维护的主要链路状态信息(LSI),题 42 图 是根据题 42 表及 R1 的接口名构造出来的网络拓扑。

		R1的LSI	R2的LSI	R3的LSI	R4的LSI	备 注		
Router ID		10.1.1.1	10.1.1.2	10.1.1.5	10.1.1.6	标识路由器的 IP 地址		
	ID	10.1.1.2	10.1.1.1	10.1.1.6	10.1.1.5	所连路由器的 Router ID		
Link1	IP	10.1.1.1	10.1.1.2	10.1.1.5	10.1.1.6	Link1 的本地 IP 地址		
	Metric	3	3	6	6	Link1 的费用		

题 42 表 R1 所维护的 LSI

	ID	10.1.1.5	10.1.1.6	10.1.1.1	10.1.1.2	所连路由器的 Router ID
Link2	IP	10.1.1.9	10.1.1.13	10.1.1.10	10.1.1.14	Link2 的本地 IP 地址
	Metric	2	4	2	4	Link2 的费用
Net1	Prefix	192.1.1.0/24	192.1.6.0/24	192.1.5.0/24	192.1.7.0/24	直连网络 Netl 的网络前缀
INCLI	Metric	1	1	1	1	到达直连网络 Net1 的费用

题 42 图 R1 构造的网络拓扑

请回答下列问题。

- 1) 本题中的网络可抽象为数据结构中的哪种逻辑结构?
- 2)针对题 42 表中的内容,设计合理的链式存储结构,以保存题 42 表中的链路状态信息(LSI)。要求给出链式存储结构的数据类型定义,并画出对应题 42 表的链式存储结构示意图(示意图中可仅以 ID 标识结点)。
 - 3) 按照迪杰斯特拉(Dijkstra)算法的策略,依次给出 R1 到达题 42 图中子网 192.1.x.x 的最短路径及费用。
 - 43. (9分) 请根据题 42 描述的网络,继续回答下列问题。
- 1)假设路由表结构如下表所示,请给出题 42 图中 R1 的路由表,要求包括到达题 42 图中子网 192.1.x.x 的路由,且路由表中的路由项尽可能少。

- 2) 当主机 192.1.1.130 向主机 192.1.7.211 发送一个 TTL=64 的 IP 分组时,R1 通过哪个接口转发该 IP 分组? 主机 192.1.7.211 收到的 IP 分组 TTL 是多少?
 - 3) 若 R1 增加一条 Metric 为 10 的链路连接 Internet,则题 42 表中 R1 的 LSI 需要增加哪些信息?
- 44. (12 分)某程序中有如下循环代码段 p "for(int i=0; i< N; i++) sum+=A[i];"。假设编译时变量 sum 和 i 分别分配在寄存器 R1 和 R2 中。常量 N 在寄存器 R6 中,数组 A 的首地址在寄存器 R3 中。程序段 P 起始地址为 0804 8100H,对应的汇编代码和机器代码如下表所示。

编号	地址	机器代码	汇编代码	注释
1	08048100H	00022080Н	loop: sll R4,R2,2	$(R2) \le 2 \rightarrow R4$
2	08048104Н	00083020Н	add R4,R4,R3	$(R4)+(R3) \rightarrow R4$
3	08048108H	8C850000H	load R5,0(R4)	$((R4)+0) \rightarrow R5$
4	0804810CH	00250820Н	add R1,R1,R5	$(R1)+(R5) \rightarrow R1$
5	08048110H	20420001H	add R2,R2,1	$(R2)+1 \rightarrow R2$
6	08048114H	1446FFFAH	bne R2,R6,loop	if(R2)!=(R6) goto loop

执行上述代码的计算机 M 采用 32 位定长指令字,其中分支指令 bne 采用如下格式:

31	26	25	21 20	16	15		0
	OP	Rs		Rd		OFFSET	

- OP 为操作码; Rs 和 Rd 为寄存器编号; OFFSET 为偏移量,用补码表示。请回答下列问题,并说明理由。
- 1) M 的存储器编址单位是什么?
- 2) 已知 sll 指令实现左移功能,数组 A 中每个元素占多少位?
- 3) 题 44 表中 bne 指令的 OFFSET 字段的值是多少? 已知 bne 指令采用相对寻址方式, 当前 PC 内容为 bne 指令地

- 址,通过分析题 44 表中指令地址和 bne 指令内容,推断出 bne 指令的转移目标地址计算公式。
- 4) 若 M 采用如下"按序发射、按序完成"的 5 级指令流水线: IF (取值)、ID (译码及取数)、EXE (执行)、MEM (访存)、WB (写回寄存器),且硬件不采取任何转发措施,分支指令的执行均引起 3 个时钟周期的阻塞,则 P 中哪些指令的执行会由于数据相关而发生流水线阻塞?哪条指令的执行会发生控制冒险?为什么指令 1 的执行不会因为与指令 5 的数据相关而发生阻塞?
- 45. 假设对于 44 题中的计算机 M 和程序 P 的机器代码, M 采用页式虚拟存储管理; P 开始执行时, (R1)=(R2)=0, (R6)=1000, 其机器代码已调入主存但不在 Cache 中;数组 A 未调入主存,且所有数组元素在同一页,并存储在磁盘同一个扇区。请回答下列问题并说明理由。
 - 1) P 执行结束时, R2 的内容是多少?
- 2) M 的指令 Cache 和数据 Cache 分离。若指令 Cache 共有 16 行,Cache 和主存交换的块大小为 32 字节,则其数据区的容量是多少?若仅考虑程序段 P 的执行,则指令 Cache 的命中率为多少?
- 3)P在执行过程中,哪条指令的执行可能发生溢出异常?哪条指令的执行可能产生缺页异常?对于数组A的访问,需要读磁盘和TLB至少各多少次?
- 46. 文件 F 由 200 条记录组成,记录从 1 开始编号。用户打开文件后,欲将内存中的一条记录插入到文件 F 中,作为其第 30 条记录。请回答下列问题,并说明理由。
- 1) 若文件系统采用连续分配方式,每个磁盘块存放一条记录,文件 F 存储区域前后均有足够的空闲磁盘空间,则完成上述插入操作最少需要访问多少次磁盘块? F 的文件控制块内容会发生哪些改变?
- 2) 若文件系统采用链接分配方式,每个磁盘块存放一条记录和一个链接指针,则完成上述插入操作需要访问多少次磁盘块?若每个存储块大小为1KB,其中4个字节存放链接指针,则该文件系统支持的文件最大长度是多少?
- 47. 系统中有多个生产者进程和多个消费者进程,共享一个能存放 1000 件产品的环形缓冲区(初始为空)。当缓冲区未满时,生产者进程可以放入其生产的一件产品,否则等待;当缓冲区未空时,消费者进程可以从缓冲区取走一件产品,否则等待。要求一个消费者进程从缓冲区连续取出 10 件产品后,其他消费者进程才可以取产品。请使用信号量P,V(或 wait(), signal())操作实现进程间的互斥与同步,要求写出完整的过程,并说明所用信号量的含义和初值。

2014 年计算机学科专业基础综合试题参考答案

一、单项选择题

```
1. C
      2. B
           3. A 4. D
                         5. C
                               6. D
                                     7. D
                                            8. D
9. D 10. B 11. C 12. D 13. C 14. A
                                      15. A
                                           16. D
17. A 18. C 19. C
                         21. D
                  20. C
                               22. B
                                      23. A
                                            24. B
25. D 26. A 27. A 28. C
                         29. B
                               30. A
                                      31. C 32. D
33. C 34. B 35. D 36. C 37. B
                               38. A
                                      39. B 40. D
```

二、综合应用题

- 41. 解答:
- 1) 算法的基本设计思想:
- ① 基于先序递归遍历的算法思想是用一个 static 变量记录 wpl, 把每个结点的深度作为递归函数的一个参数传递, 算法步骤如下:

若该结点是叶子结点,那么变量 wpl 加上该结点的深度与权值之积;

若该结点非叶子结点,那么若左子树不为空,对左子树调用递归算法,若右子树不为空,对右子树调用递归算法,深度参数均为本结点的深度参数加 1:

最后返回计算出的 wpl 即可。

② 基于层次遍历的算法思想是使用队列进行层次遍历,并记录当前的层数,

当遍历到叶子结点时,累计wpl;

当遍历到非叶子结点时对该结点的把该结点的子树加入队列;

当某结点为该层的最后一个结点时,层数自增1;

队列空时遍历结束,返回 wpl。

2) 二叉树结点的数据类型定义如下:

```
typedef struct BiTNode {
  int weight;
  struct BiTNode *lchild, *rchild;
  }BiTNode, *BiTree;
```

- 3) 算法代码如下:
- ① 基于先序遍历的算法:

② 基于层次遍历的算法:

```
#define MaxSize 100 //设置队列的最大容量
int wpl_LevelOrder(BiTree root){
```

```
BiTree q[MaxSize]; //声明队列, end1 为头指针, end2 为尾指针
                           //队列最多容纳 MaxSize-1 个元素
int end1, end2;
                           //头指针指向队头元素,尾指针指向队尾的后一个元素
end1 = end2 = 0;
                        //初始化 wpl 和深度
//lastNode 用来记录当前层的最后一个结点
int wpl = 0, deep = 0;
BiTree lastNode;
                        BiTree newlastNode;
lastNode = root;
newlastNode = NULL;
q[end2++] = root;

      hile(end1 != end2) {
      //层次遍历,若队列不空则循环

      BiTree t = q[end1++];
      //拿出队列中的头一个元素

while(end1 != end2){
 if(t->lchild == NULL & t->lchild == NULL) {
     wpl += deep*t->weight;
                            //若为叶子结点,统计wpl
     }
                            //若非叶子结点把左结点入队
 if(t->lchild != NULL) {
     q[end2++] = t->lchild;
     newlastNode = t->lchild;
                            //并设下一层的最后一个结点为该结点的左结点
     }
                            //处理叶节点
 if(t->rchild != NULL) {
     q[end2++] = t->rchild;
     newlastNode = t->rchild;
                            //若该结点为本层最后一个结点,更新 lastNode
 if(t == lastNode) {
     lastNode = newlastNode;
                            //层数加1
     deep += 1;
     }
 }
                            //返回 wpl
return wpl;
}
```

42. 解答:

- 1)题中给出的是一个简单的网络拓扑图,可以抽象为无向图。
- 2) 链式存储结构的如下图所示。

弧结点的两种基本形态

Flag=1	Next					
ID						
I	IP					
Metric						

Flag=2	Next				
Prefix					
Mask					
Metric					

表头结点 结构示意 RouterID

LN_link

Next

其数据类型定义如下:

```
typedef struct{
unsigned int ID, IP;
}LinkNode; //Link的结构
typedef struct{
unsigned int Prefix, Mask;
}NetNode; //Net的结构
typedef struct Node{
int Flag; //Flag=1为Link;Flag=2为Net
union{
 LinkNode Lnode;
NetNode Nnode
}LinkORNet;
unsigned int Metric;
struct Node *next;
}ArcNode; //弧结点
typedef struct HNode{
unsigned int RouterID;
ArcNode *LN link;
Struct HNode *next;
```

} HNODE; //表头结点

对应题 42 表的链式存储结构示意图如下。

3) 计算结果如下表所示。

-	目的网络	路径	代价(费用)
步骤1	192.1.1.0/24	直接到达	1
步骤2	192.1.5.0/24	R1→R3→192.1.5.0/24	3
步骤3	192.1.6.0/24	R1→R2→192.1.6.0/24	4
步骤4	192.1.7.0/24	R1→R2→R4→192.1.7.0/24	8

43. 解答:

1)因为题目要求路由表中的路由项尽可能少,所以这里可以把子网 192.1.6.0/24 和 192.1.7.0/24 聚合为子网 192.1.6.0/23。其他网络照常,可得到路由表如下:

目的网络	下一条	接口
192.1.1.0/24	_	E0
192.1.6.0/23	10.1.1.2	L0
192.1.5.0/24	10.1.1.10	L1

- 2) 通过查路由表可知: R1 通过 L0 接口转发该 IP 分组。(1 分)因为该分组要经过 3 个路由器(R1、R2、R4), 所以 主机 192.1.7.211 收到的 IP 分组的 TTL 是 64-3=61。
 - 3) R1 的 LSI 需要增加一条特殊的直连网络, 网络前缀 Prefix 为 "0.0.0.0/0", Metric 为 10。

44. 解答:

- 1)已知计算机 M 采用 32 位定长指令字,即一条指令占 4B,观察表中各指令的地址可知,每条指令的地址差为 4 个地址单位,即 4 个地址单位代表 4B,一个地址单位就代表了 1B,所以该计算机是按字节编址的。
- 2)在二进制中某数左移二位相当于乘以四,由该条件可知,数组间的数据间隔为4个地址单位,而计算机按字节编地址,所以数组A中每个元素占4B。
- 3)由表可知,bne 指令的机器代码为 1446FFFAH,根据题目给出的指令格式,后 2B 的内容为 OFFSET 字段,所以该指令的 OFFSET 字段为 FFFAH,用补码表示,值为-6。当系统执行到 bne 指令时,PC 自动加 4,PC 的内容就为 08048118H,而跳转的目标是 08048100H,两者相差了 18H,即 24 个单位的地址间隔,所以偏移地址的一位即是真实 跳转地址的-24/-6=4 位。可知 bne 指令的转移目标地址计算公式为(PC)+4+OFFSET*4。
 - 4) 由于数据相关而发生阻塞的指令为第2、3、4、6条,因为第2、3、4、6条指令都与各自前一条指令发生数据

相关。

第6条指令会发生控制冒险。

当前循环的第五条指令与下次循环的第一条指令虽然有数据相关,但由于第 6 条指令后有 3 个时钟周期的阻塞,因而消除了该数据相关。

45. 解答:

- 1) R2 里装的是 i 的值,循环条件是 i<N(1000),即当 i 自增到不满足这个条件时跳出循环,程序结束,所以此时 i 的值为 1000。
 - 2) Cache 共有 16 块, 每块 32 字节, 所以 Cache 数据区的容量为 16*32B=512B。
- P 共有 6 条指令,占 24 字节,小于主存块大小(32B),其起始地址为 0804 8100H,对应一块的开始位置,由此可知 所有指令都在一个主存块内。读取第一条指令时会发生 Cache 缺失,故将 P 所在的主存块调入 Cache 某一块,以后每次读取指令时,都能在指令 Cache 中命中。因此在 1000 次循环中,只会发生 1 次指令访问缺失,所以指令 Cache 的命中率为: (1000×6-1)/(1000×6)=99.98%。
- 3)指令 4 为加法指令,即对应 sum+=A[i],当数组 A 中元素的值过大时,则会导致这条加法指令发生溢出异常;而指令 2、5 虽然都是加法指令,但他们分别为数组地址的计算指令和存储变量 i 的寄存器进行自增的指令,而 i 最大到达 1000,所以他们都不会产生溢出异常。

只有访存指令可能产生缺页异常,即指令3可能产生缺页异常。

因为数组 A 在磁盘的一页上,而一开始数组并不在主存中,第一次访问数组时会导致访盘,把 A 调入内存,而以后数组 A 的元素都在内存中,则不会导致访盘,所以该程序一共访盘一次。

每访问一次内存数据就会查 TLB 一次,共访问数组 1000 次,所以此时又访问 TLB1000 次,还要考虑到第一次访问数组 A,即访问 A[0]时,会多访问一次 TLB (第一次访问 A[0]会先查一次 TLB,然后产生缺页,处理完缺页中断后,会重新访问 A[0],此时又查 TLB),所以访问 TLB 的次数一共是 1001 次。

46. 解答:

1) 系统采用顺序分配方式时,插入记录需要移动其他的记录块,整个文件共有 200 条记录,要插入新记录作为第 30 条,而存储区前后均有足够的磁盘空间,且要求最少的访问存储块数,则要把文件前 29 条记录前移,若算访盘次数 移动一条记录读出和存回磁盘各是一次访盘,29 条记录共访盘 58 次,存回第 30 条记录访盘 1 次,共访盘 59 次。

F的文件控制区的起始块号和文件长度的内容会因此改变。

- 2)文件系统采用链接分配方式时,插入记录并不用移动其他记录,只需找到相应的记录,修改指针即可。插入的记录为其第 30 条记录,那么需要找到文件系统的第 29 块,一共需要访盘 29 次,然后把第 29 块的下块地址部分赋给新块,把新块存回内存会访盘 1 次,然后修改内存中第 29 块的下块地址字段,再存回磁盘,一共访盘 31 次。
- 4 个字节共 32 位,可以寻址 2^{32} =4GB 块存储块,每块的大小为 1KB,即 1024B,其中下块地址部分占 4B,数据部分占 1020B,那么该系统的文件最大长度是 4G×1020B=4080GB。

47. 解答:

这是典型的生产者和消费者问题,只对典型问题加了一个条件,只需在标准模型上新加一个信号量,即可完成指定要求。

设置四个变量 mutex1、mutex2、empty 和 full, mutex1 用于一个控制一个消费者进程一个周期(10 次)内对于缓冲区的控制,初值为 1, mutex2 用于进程单次互斥的访问缓冲区,初值为 1, empty 代表缓冲区的空位数,初值为 0, full 代表缓冲区的产品数,初值为 1000,具体进程的描述如下:

```
semaphore mutex1=1;
semaphore mutex2=1;
semaphore empty=n;
semaphore full=0;
producer(){
 while(1){
     生产一个产品;
                           //判断缓冲区是否有空位
     P(empty);
                           //互斥访问缓冲区
     P(mutex2);
     把产品放入缓冲区;
                           //互斥访问缓冲区
     V(mutex2);
     V(full);
                           //产品的数量加1
```

```
consumer() {
while(1){
                         //连续取 10 次
 P(mutex1)
    for(int i = 0; i <= 10; ++i){
       - (1ull);
P(mutex2);
从缓冲区距
                         //判断缓冲区是否有产品
                         //互斥访问缓冲区
        从缓冲区取出一件产品;
                         //互斥访问缓冲区
        V(mutex2);
        V(empty);
                         //腾出一个空位
        消费这件产品;
    }
 V(mutex1)
 }
```

2013 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

- 合试是		单项选择题:第 1 [~] E求。	~40 小题,每小题	2分,	共 80	分。 ⁻	下列每	·题给出	出的四个	个选项	中,	只有一	-个选项最符
		已知两个长度分别为	m和n的升序链表,	若将它	它们合	·并为一	个长点	度为 m	+n 的區	译字链 表	麦, 贝	最坏情	青况下的时间
		A. O(n)	B. $O(m \times n)$	C. O	(min(ı	m, n))	D.	O(max	x(m, n))			
2	2.	一个栈的入栈序列为	1, 2, 3, …, n, 其出村		<u>E</u> p₁, p	p_2, p_3, \cdot	••, p _n °	若 p ₂ =	-3,则	p ₃ 可能	取值	的个数	[是。
		A. n-3	B. n-2	C. n-	-1		D.	无法研	角定				
3	3. 3	若将关键字 1, 2, 3, 4	, 5, 6, 7 依次插入到	初始为2	这的平	を衡二プ	叉树 T	中,则	「中 T	変 多	子为0)的分录	支结点的个数
是		_•											
		A. 0	B. 1										
4	١.	已知三叉树 T 中 6 个						外部)	路径长	:度最小	、是_	o	
		A. 27	B. 46					56					
5		若 X 是后序线索二叉								间的是	롿	°	
	4	A. X 的父结点C. X 的左兄弟结点		B. 以	Y为	根的于	² 树的:	最左下:	结点				
6	5. -	在任意一棵非空二叉	排序树 T_1 中,删除基	き结点 v	之后	形成二	工叉排序	字树 T ₂	,再将	v 插入	T_2 开	彡成二♡	义排序树 T3。
下列争		T_1 与 T_3 的叙述中,											
		I . 若 v 是 T_1 的叶结											
		II ,若 v 是 T_1 的叶结	i点,则 T₁与 T₃相同										
		Ⅲ. 若 v 不是 T ₁ 的叶											
		\mathbb{N} .若 \mathbf{v} 不是 \mathbf{T}_1 的叶											
		A. 仅I、III					D.	仅II、	IV				
7	7.	设图的邻接矩阵A如	下所示。各顶点的度	依次是		<u> </u>							
				1		0 1							
				$A = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	1 1							
				0	1	0 0							
				_1	0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$							
	1	A. 1, 2, 1, 2	B. 2, 2, 1, 1	C. 3,	4, 2, 3	3	D.	4, 4, 2	, 2				
8	3.	若对如下无向图进行:	遍历,则下列选项中	,不是	广度值	优先遍	历序列	间的是_	0				
		A. h, c, a, b, d, e, g, f		В. е,	a, f, g	g, b, h, c	e, d						
	(C. d, b, c, a, h, e, f, g		D. a,	b, c, c	d, h, e, t	f, g						

9. 下列 AOE 网表示一项包含 8 个活动的工程。通过同时加快若干活动的进度可以缩短整个工程的工期。下列选 项中, 加快其进度就可以缩短工程工期的是

A. c和e

B. d和c

C. f和d

D. f和h

10. 在一棵高度为2的5阶B树中,所含关键字的个数最少是

B. 7

C. 8

D. 14

11. 对给定的关键字序列 110, 119, 007, 911, 114, 120, 122 进行基数排序,则第 2 趟分配收集后得到的关键字序列

A. 007, 110, 119, 114, 911, 120, 122 B. 007, 110, 119, 114, 911, 122, 120

C. 007, 110, 911, 114, 119, 120, 122 D. 110, 120, 911, 122, 114, 007, 119

12. 某计算机主频为 1.2GHz, 其指令分为 4 类, 它们在基准程序中所占比例及 CPI 如下表所示。

指令类型	所占比例	CPI
A	50%	2
В	20%	3
С	10%	4
D	20%	5

该机的 MIPS 数是

A. 100

B. 200

C. 400

D. 600

13. 某数采用 IEEE754 单精度浮点数格式表示为 C640 0000H,则该数的值是____

A. -1.5×2^{13}

B. -1.5×2^{12}

C. -0.5×2^{13}

D. -0.5×2^{12}

14. 某字长为 8 位的计算机中,已知整型变量 $x \times y$ 的机器数分别为 $[x]_{*}=1$ 1110100, $[y]_{*}=1$ 0110000。若整型变量 z=2*x+v/2,则z的机器数为

A. 1 1000000 B. 0 0100100

C. 1 0101010

D. 溢出

15. 用海明码对长度为 8 位的数据进行检/纠错时,若能纠正一位错,则校验位数至少为

B. 3

C. 4

D. 5

16. 某计算机主存地址空间大小为 256 MB, 按字节编址。虚拟地址空间大小为 4GB, 采用页式存储管理, 页面大 小为4KB, TLB(快表)采用全相联映射,有4个页表项,内容如下表所示。

有效位	标记	页框号	
0	FF180H	0002H	•••
1	3FFF1H	0035H	•••
0	02FF3H	0351H	•••
1	03FFFH	0153H	•••

则对虚拟地址 03FF F180H 进行虚实地址变换的结果是。

A. 015 3180H

B. 003 5180H

C. TLB 缺失

D. 缺页

17. 假设变址寄存器 R 的内容为 1000H, 指令中的形式地址为 2000H; 地址 1000H 中的内容为 2000H, 地址 2000H 中的内容为 3000H, 地址 3000H 中的内容为 4000H, 则变址寻址方式下访问到的操作数是____

A. 1000H

B. 2000H

C. 3000H

D. 4000H

18. 某 CPU 主频为 1.03GHz,采用 4 级指令流水线,每个流水段的执行需要 1 个时钟周期。假定 CPU 执行了 100 条指令,在其执行过程中,没有发生任何流水线阻塞,此时流水线的吞吐率为

A. 0.25×10⁹条指令/秒

B. 0.97×109条指令/秒

	C. 1.0×10 ⁹ 条指令/秒 D. 1.03×10 ⁹ 条指令/秒
10	D. 1.05/10 宗语 3/15 D. 下列选项中,用于设备和设备控制器(I/O 接口)之间互连的接口标准是
1)	A. PCI B. USB C. AGP D. PCI-Express
20	ハ. Tel =
20	I. 磁盘镜像 II. 条带化 III. 奇偶校验 IV. 增加 Cache 机制
	A. 仅I、II B. 仅I、III C. 仅I、III和IV D. 仅II、III和IV
21	. 某磁盘的转速为 10 000 转/分,平均寻道时间是 6ms,磁盘传输速率是 20MB/s,磁盘控制器延迟为 0.2ms,读
	4KB的扇区所需的平均时间约为。
4人	A. 9ms B. 9.4ms C. 12ms D. 12.4ms
22	2. 下列关于中断 I/O 方式和 DMA 方式比较的叙述中,错误的是
22	A. 中断 I/O 方式请求的是 CPU 处理时间,DMA 方式请求的是总线使用权
	B. 中断响应发生在一条指令执行结束后,DMA 响应发生在一个总线事务完成后
	C. 中断 I/O 方式下数据传送通过软件完成,DMA 方式下数据传送由硬件完成
	D. 中断 I/O 方式适用于所有外部设备,DMA 方式仅适用于快速外部设备
22	. 用户在删除某文件的过程中,操作系统不可能执行的操作是。
23	
	A. 删除此文件所在的目录 B. 删除与此文件关联的目录项 C. 删除与此文件对应的文件控制块 D. 释放与此文件关联的内存缓冲区
24	· 为支持 CD-ROM 中视频文件的快速随机播放,播放性能最好的文件数据块组织方式是 。
24	A. 连续结构 B. 链式结构 C. 直接索引结构 D. 多级索引结构
25	A. 连续结构 B. 链式结构 C. 直接系引结构 D. 多级系引结构 5. 用户程序发出磁盘 I/O 请求后,系统的处理流程是: 用户程序→系统调用处理程序→设备驱动程序→中断处理
	. 用广程序及山磁盘 IO 请求后,东莞的处理抓摆定: 用广程序》系统调用处理程序》设备驱动程序》中断处理 其中,计算数据所在磁盘的柱面号、磁头号、扇区号的程序是。
狂力。	
	A. 用户程序 B. 系统调用处理程序 C. 设备驱动程序 D. 中断处理程序
26	5. 若某文件系统索引结点(inode)中有直接地址项和间接地址项,则下列选项中,与单个文件长度无关的因素
是 <u></u>	
Æ	
	A. 索引结点的总数 B. 间接地址索引的级数 C. 地址项的个数 D. 文件块大小
27	7. 设系统缓冲区和用户工作区均采用单缓冲,从外设读入 1 个数据块到系统缓冲区的时间为 100,从系统缓冲区
	个数据块到用户工作区的时间为5,对用户工作区中的1个数据块进行分析的时间为90(如下图所示)。进程从
-	入并分析 2 个数据块的最短时间是 。
八叉庆	/ () 万 () 2
	90
	用户工作区
	5
	系统缓冲区
	100
	外设
	A. 200 B. 295 C. 300 D. 390
28	A. 200 B. 293 C. 300 B. 390 B
20	I. 整数除以零 II. sin()函数调用 III. read 系统调用
	1. 金数様のマ II. SIII()函数過冷 III. lead 系列過冷 A. 仅 I 、 II B. 仅 I 、 III C. 仅 II 、 III D. I 、 II 和 III
20	A. 汉 I、 II B. 汉 I、 III C. 汉 II、 III D. I、 II 和 III D. I、 II 和 III D. I 、 II 和 III D. II 和 III 和 III D. II 和 III D. II 和 III 和 I
29	A. BIOS B. ROM C. EPROM D. RAM
20	A. BIOS B. ROM C. EPROM D. RAM D. RAM D. A. BIOS B. ROM D. RAM D. RAM D. RAM
30	. 右用广进程切问内存时广生缺贝,则下列远项中,操作系统可能执行的操作是。 Ⅰ. 处理越界错 Ⅱ. 置换页 Ⅲ. 分配内存
21	A. 仅 I 、 II
31	.某系统正在执行三个进程 P1、P2 和 P3,各进程的计算(CPU)时间和 I/O 时间比例如下表所示。

	计算时间	I/O 时间
P1	90%	10%
P2	50%	50%
Р3	15%	85%

为提高系统资源利用率,合理的进程优先级设置应为。

- A. P1 > P2 > P3 B. P3 > P2 > P1
- C. P2 > P1 = P3 D. P1 > P2 = P3
- 32. 下列关于银行家算法的叙述中,正确的是。
 - A. 银行家算法可以预防死锁
 - B. 当系统处于安全状态时,系统中一定无死锁进程
 - C. 当系统处于不安全状态时,系统中一定会出现死锁进程
 - D. 银行家算法破坏了死锁必要条件中的"请求和保持"条件
- 33. 在 OSI 参考模型中,下列功能需由应用层的相邻层实现的是
 - A. 对话管理
- B. 数据格式转换 C. 路由选择
- D. 可靠数据传输
- 34. 若下图为 10BaseT 网卡接收到的信号波形,则该网卡收到的比特串是____。

- A. 0011 0110
- B. 1010 1101
- C. 0101 0010 D. 1100 0101
- 35. 主机甲通过1个路由器(存储转发方式)与主机乙互联,两段链路的数据传输速率均为10Mbps,主机甲分别 采用报文交换和分组大小为 10kb 的分组交换向主机乙发送 1 个大小为 8Mb(1M=10⁶kb)的报文。若忽略链路传播延迟、 分组头开销和分组拆装时间,则两种交换方式完成该报文传输所需的总时间分别为。。。
 - A. 800ms, 1600ms
- B. 801 ms, 1600ms
- C. 1600ms, 800ms
- D. 1600 ms, 801ms
- 36. 下列介质访问控制方法中,可能发生冲突的是____。
- B. CSMA
- C. TDMA
- D. FDMA
- 37. HDLC 协议对 01111100 01111110 组帧后对应的比特串为。
 - A. 011111100 001111110 10
- B. 01111100 01111101 01111110
- C. 011111100 011111101 0
- D. 01111100 01111110 01111101
- 38. 对于 100Mbps 的以太网交换机,当输出端口无排队,以直通交换(cut-through switching)方式转发一个以太 网帧(不包括前导码)时,引入的转发延迟至少是。
 - A. Ous
- B. 0.48us
- C. 5.12us
- D. 121.44μs
- 39. 主机甲与主机乙之间已建立一个 TCP 连接,双方持续有数据传输,且数据无差错与丢失。若甲收到1个来自 乙的 TCP 段, 该段的序号为 1913、确认序号为 2046、有效载荷为 100 字节,则甲立即发送给乙的 TCP 段的序号和确 认序号分别是。
 - A. 2046, 2012
 - B. 2046, 2013
- C. 2047, 2012 D. 2047, 2013
- 40. 下列关于 SMTP 协议的叙述中,正确的是。
 - I. 只支持传输 7 比特 ASCII 码内容
 - Ⅱ. 支持在邮件服务器之间发送邮件
 - III. 支持从用户代理向邮件服务器发送邮件
 - IV. 支持从邮件服务器向用户代理发送邮件
 - A. 仅 I、II 和III

B. 仅I、II和IV

C. 仅 I、III和IV

D. 仅II、III和IV

二、综合应用题: 第41~47 小题, 共70 分。

41. (13 分) 已知一个整数序列 $A=(a_0,a_1,\cdots,a_{n+1})$,其中 $0 \le a_i < n \ (0 \le i < n)$ 。若存在 $a_{n1}=a_{n2}=\cdots=a_{nm}=x$ 且 m>n/2 $(0 \le p_k \le n, 1 \le k \le m)$,则称 x 为 A 的主元素。例如 A= (0, 5, 5, 3, 5, 7, 5, 5),则 5 为主元素;又如 A= (0, 5, 5, 3, 5, 1, 5, 5)7),则A中没有主元素。假设A中的n个元素保存在一个一维数组中,请设计一个尽可能高效的算法,找出A的主 元素。若存在主元素,则输出该元素;否则输出-1。要求:

- (1) 给出算法的基本设计思想。
- (2) 根据设计思想, 采用 C、C++或 Java 语言描述算法, 关键之处给出注释。
- (3) 说明你所设计算法的时间复杂度和空间复杂度。
- 42. $(10 \, \mathcal{D})$ 设包含 4 个数据元素的集合 S={ "do", "for", "repeat", "while"}, 各元素的查找概率依次为: p1=0.35, p2=0.15, p3=0.15, p4=0.35。将 S 保存在一个长度为 4 的顺序表中,采用折半查找法,查找成功时的平均查找长度为 2.2。请回答:
- (1) 若采用顺序存储结构保存 S,且要求平均查找长度更短,则元素应如何排列?应使用何种查找方法?查找成功时的平均查找长度是多少?
- (2) 若采用链式存储结构保存 S,且要求平均查找长度更短,则元素应如何排列?应使用何种查找方法?查找成功时的平均查找长度是多少?
- 43. (9分) 某 32 位计算机,CPU 主频为 800MHz,Cache 命中时的 CPI 为 4,Cache 块大小为 32 字节;主存采用 8 体交叉存储方式,每个体的存储字长为 32 位、存储周期为 40ns;存储器总线宽度为 32 位,总线时钟频率为 200MHz,支持突发传送总线事务。每次读突发传送总线事务的过程包括:送首地址和命令、存储器准备数据、传送数据。每次 突发传送 32 字节,传送地址或 32 位数据均需要一个总线时钟周期。请回答下列问题,要求给出理由或计算过程。
 - (1) CPU 和总线的时钟周期各为多少?总线的带宽(即最大数据传输率)为多少?
 - (2) Cache 缺失时,需要用几个读突发传送总线事务来完成一个主存块的读取?
 - (3) 存储器总线完成一次读突发传送总线事务所需的时间是多少?
- (4) 若程序 BP 执行过程中,共执行了 100 条指令,平均每条指令需进行 1.2 次访存, Cache 缺失率为 5%,不考虑替换等开销,则 BP 的 CPU 执行时间是多少?
- 44. (14 分) 某计算机采用 16 位定长指令字格式,其 CPU 中有一个标志寄存器,其中包含进位/借位标志 CF、零标志 ZF 和符号标志 NF。假定为该机设计了条件转移指令,其格式如下:

15	11	10	9	8	7	0
00000		C	Z	N	OFF	FSET

其中,00000 为操作码 OP; C、Z 和 N 分别为 CF、ZF 和 NF 的对应检测位,某检测位为 1 时表示需检测对应标志位,需检测的标志位中只要有一个为 1 就转移,否则不转移,例如,若 C=1,Z=0,N=1,则需检测 CF 和 NF 的值,当 CF=1 或 NF=1 时发生转移; OFFSET 是相对偏移量,用补码表示。转移执行时,转移目标地址为 $(PC)+2+2\times OFFSET$; 顺序执行时,下条指令地址为(PC)+2。请回答下列问题。

- (1) 该计算机存储器按字节编址还是按字编址?该条件转移指令向后(反向)最多可跳转多少条指令?
- (2) 某条件转移指令的地址为 200CH,指令内容如下图所示,若该指令执行时 CF=0,ZF=0,NF=1,则该指令执行后 PC 的值是多少?若该指令执行时 CF=1,ZF=0,NF=0,则该指令执行后 PC 的值又是多少?请给出计算过程。

15	11	10	9	8	7	0
00000)	0	1	1	111	100011

- (3) 实现"无符号数比较小于等于时转移"功能的指令中, C、Z和N应各是什么?
- (4) 以下是该指令对应的数据通路示意图,要求给出图中部件①~③的名称或功能说明。

45. (7分) 某博物馆最多可容纳 500 人同时参观,有一个出入口,该出入口一次仅允许一个人通过。参观者的活动描述如下:

请添加必要的信号量和 P、V(或 wait()、signal())操作,以实现上述过程中的互斥与同步。要求写出完整的过程,说明信号量的含义并赋初值。

- 46. (8分)某计算机主存按字节编址,逻辑地址和物理地址都是32位,页表项大小为4字节。请回答下列问题。
- (1) 若使用一级页表的分页存储管理方式,逻辑地址结构为:

```
页号 (20 位) 页内偏移量 (12 位)
```

则页的大小是多少字节? 页表最大占用多少字节?

(2) 若使用二级页表的分页存储管理方式,逻辑地址结构为:

设逻辑地址为LA,请分别给出其对应的页目录号和页表索引的表达式。

(3) 采用(1) 中的分页存储管理方式,一个代码段起始逻辑地址为0000 8000H,其长度为8 KB,被装载到从物理地址0090 0000H 开始的连续主存空间中。页表从主存0020 0000H 开始的物理地址处连续存放,如下图所示(地址大小自下向上递增)。请计算出该代码段对应的两个页表项的物理地址、这两个页表项中的页框号以及代码页面2的起始物理地址。

47. (9分) 假设 Internet 的两个自治系统构成的网络如题 47 图所示,自治系统 ASI 由路由器 R1 连接两个子网构成; 自治系统 AS2 由路由器 R2、R3 互联并连接 3 个子网构成。各子网地址、R2 的接口名、R1 与 R3 的部分接口 IP 地址如题 47 图所示。

题 47 图 网络拓扑结构

请回答下列问题。

(1) 假设路由表结构如下表所示。请利用路由聚合技术,给出 R2 的路由表,要求包括到达题 47 图中所有子网的路由,且路由表中的路由项尽可能少。

目的网络	下一跳	接口
------	-----	----

- (2) 若 R2 收到一个目的 IP 地址为 194.17.20.200 的 IP 分组, R2 会通过哪个接口转发该 IP 分组?
- (3) R1与R2之间利用哪个路由协议交换路由信息?该路由协议的报文被封装到哪个协议的分组中进行传输?

2013 年计算机学科专业基础综合试题参考答案

一、单项选择题

```
1. D
     2. C 3. D 4. B 5. A 6. C 7. C 8. D
9. C 10. A 11. C 12. C 13. A 14. A 15. C 16. A
17. D 18. C 19. B
                  20. B
                               22. D
                                     23. A
                         21. B
                                            24. A
                         29. D
                               30. B
                                     31. B
25. C 26. A 27. C
                  28. B
                                            32. B
33. B 34. A 35. D 36. B
                       37. A
                              38. B
                                    39. B
                                           40. A
```

二、综合应用题

- 41. 解答:
- (1) 给出算法的基本设计思想:

算法的策略是从前向后扫描数组元素,标记出一个可能成为主元素的元素 Num。然后重新计数,确认 Num 是否是主元素。

算法可分为以下两步:

- ① 选取候选的主元素:依次扫描所给数组中的每个整数,将第一个遇到的整数 Num 保存到 c 中,记录 Num 的出现次数为 1;若遇到的下一个整数仍等于 Num,则计数加 1,否则计数减 1;当计数减到 0 时,将遇到的下一个整数保存到 c 中,计数重新记为 1,开始新一轮计数,即从当前位置开始重复上述过程,直到扫描完全部数组元素。
- ② 判断 c 中元素是否是真正的主元素: 再次扫描该数组,统计 c 中元素出现的次数,若大于 n/2,则为主元素;否则,序列中不存在主元素。
 - (2) 算法实现:

```
int Majority(int A[],int n)
                                //c 用来保存候选主元素, count 用来计数
   int i,c,count=1;
   c=A[0];
                                //设置 A[0]为候选主元素
                                //查找候选主元素
   for(i=1;i<n;i++)
          if(A[i]==c)
             count++;
                                //对 A 中的候选主元素计数
          else
                                //处理不是候选主元素的情况
          if (count>0)
             count--;
                                //更换候选主元素,重新计数
             else
              { c=A[i];
                 count=1;
   if(count>0)
          for(i=count=0;i<n;i++) //统计候选主元素的实际出现次数
          if(A[i]==c)
             count++;
                               //确认候选主元素
   if(count>n/2) return c;
   else return -1;
                                //不存在主元素
}
```

(3) 说明算法复杂性:

参考答案中实现的程序的时间复杂度为 O(n), 空间复杂度为 O(1)。

- 42. 解答:
- (1) 采用顺序存储结构,数据元素按其查找概率降序排列。

采用顺序查找方法。

查找成功时的平均查找长度=0.35×1+0.35×2+0.15×3+0.15×4=2.1。

(2)【答案一】

采用链式存储结构,数据元素按其查找概率降序排列,构成单链表。

采用顺序查找方法。

查找成功时的平均查找长度=0.35×1+0.35×2+0.15×3+0.15×4=2.1。

【答案二】

采用二叉链表存储结构,构造二叉排序树,元素存储方式见下图。

采用二叉排序树的查找方法。

查找成功时的平均查找长度=0.15×1+0.35×2+0.35×2+0.15×3=2.0。

43. 解答:

(1) CPU 的时钟周期为: 1/800MHz=1.25ns。

总线的时钟周期为: 1/200MHz=5ns。

总线带宽为: 4 B×200MHz=800MB/s 或 4 B/5 ns=800MB/s。

- (2) Cache 块大小是 32 B, 因此 Cache 缺失时需要一个读突发传送总线事务读取一个主存块。
- (3)一次读突发传送总线事务包括一次地址传送和 32 B 数据传送:用 1 个总线时钟周期传输地址;每隔 40 ns/8=5 ns 启动一个体工作(各进行 1 次存取),第一个体读数据花费 40 ns,之后数据存取与数据传输重叠;用 8 个总线时钟周期传输数据。读突发传送总线事务时间:5 ns+40 ns+8×5 ns=85 ns。
- (4) BP 的 CPU 执行时间包括 Cache 命中时的指令执行时间和 Cache 缺失时带来的额外开销。命中时的指令执行时间: 100×4×1.25 ns=500ns。指令执行过程中 Cache 缺失时的额外开销: 1.2×100×5%×85 ns=510 ns。BP 的 CPU 执行时间: 500 ns+510 ns=1 010 ns。

44. 解答:

(1) 因为指令长度为 16 位,且下条指令地址为(PC)+2,故编址单位是字节。

偏移量 OFFSET 为 8 位补码,范围为-128~127,故相对于当前条件转移指令,向后最多可跳转 127 条指令。

- (2) 指令中 C=0, Z=1, N=1, 故应根据 ZF 和 NF 的值来判断是否转移。当 CF=0, ZF=0, NF=1 时,需转移。已 知指令中偏移量为 1110 0011B=E3H, 符号扩展后为 FFE3H, 左移一位(乘 2)后为 FFC6H, 故 PC 的值(即转移目标 地址)为 200CH+2+FFC6H=1FD4H。当 CF=1, ZF=0, NF=0 时不转移。PC 的值为: 200CH+2=200EH。
 - (3) 指令中的 C、Z 和 N 应分别设置为 C=Z=1, N=0。
- (4) 部件①: 指令寄存器 (用于存放当前指令); 部件②: 移位寄存器 (用于左移一位); 部件③: 加法器 (地址相加)。

45. 解答:

定义两个信号量

```
参观;
P(mutex);
出门;
V(mutex);
V(empty);
...
}
coend
```

46. 解答:

(1) 因为页内偏移量是 12 位, 所以页大小为 4 KB。

页表项数为 $2^{32}/4K=2^{20}$,该一级页表最大为 $2^{20}\times4$ B=4 MB。

(2) 页目录号可表示为: (((unsigned int)(LA))>>22) & 0x3FF。

页表索引可表示为: (((unsigned int)(LA))>>12) & 0x3FF。

(3) 代码页面 1 的逻辑地址为 0000 8000H,表明其位于第 8 个页处,对应页表中的第 8 个页表项,所以第 8 个页表项的物理地址=页表起始地址+8×页表项的字节数= 0020 0000H+8×4=0020 0020H。由此可得如下图所示的答案。

47. 解答:

(1)在AS1中,子网153.14.5.0/25和子网153.14.5.128/25可以聚合为子网153.14.5.0/24;在AS2中,子网194.17.20.0/25和子网194.17.21.0/24可以聚合为子网194.17.20.0/23,但缺少194.17.20.128/25;子网194.17.20.128/25单独连接到R2的接口E0。

于是可以得到 R2 的路由表如下:

目的网络	下一跳	接口
153.14.5.0/24	153.14.3.2	S0
194.17.20.0/23	194.17.24.2	S1
194.17.20.128/25	_	E0

- (2) 该 IP 分组的目的 IP 地址 194.17.20.200 与路由表中 194.17.20.0/23 和 194.17.20.128/25 两个路由表项均匹配,根据最长匹配原则,R2 将通过 E0 接口转发该 IP 分组。
 - (3) R1 与 R2 之间利用 BGP4(或 BGP)交换路由信息; BGP4的报文被封装到 TCP协议段中进行传输。

2012 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

一、单项选择题	: 第1~40小题,	每小题2分,	共80分。	下列每题给出的四个选项中,	只有一个选项最符
合试题要求。					

1. 求整数 n(n≥0)阶乘的算法如下,其时间复杂度	:是	0
-----------------------------	----	---

```
int fact(int n) {
         if (n<=1) return 1;
         return n*fact(n-1);
                                  C. O(nlog_2n)
                                                D. O(n^2)
     A. O(log_2n)
                    B. O(n)
   2. 已知操作符包括'+'、'-'、'*'、'/'、'('和')'。将中缀表达式 a+b-a*((c+d)/e-f)+g 转换为等价的后缀表达式
ab+acd+e/f-*-g+时,用栈来存放暂时还不能确定运算次序的操作符,若栈初始时为空,则转换过程中同时保存在栈中的
操作符的最大个数是
                                  C. 8
     A. 5
                    B. 7
                                               D. 11
```

- 3. 若一棵二叉树的前序遍历序列为 a, e, b, d, c, 后序遍历序列为 b, c, d, e, a, 则根结点的孩子结点
 - A. 只有 e
- B. 有e、b
- C. 有e、c
- D. 无法确定
- 4. 若平衡二叉树的高度为6,且所有非叶结点的平衡因子均为1,则该平衡二叉树的结点总数为
- B. 20
- C. 32
- D. 33

5. 对有 n 个结点、e 条边且使用邻接表存储的有向图进行广度优先遍历,其算法时间复杂度是

A. O(n)

- B. O(e)
- C. O(n+e)
- D. O(n*e)
- 6. 若用邻接矩阵存储有向图,矩阵中主对角线以下的元素均为零,则关于该图拓扑序列的结论是____。
 - A. 存在, 且唯一

- B. 存在, 且不唯一
- C. 存在,可能不唯一
- D. 无法确定是否存在
- 7. 对如下有向带权图,若采用迪杰斯特拉(Dijkstra)算法求从源点 a 到其他各顶点的最短路径,则得到的第一条 最短路径的目标顶点是 b,第二条最短路径的目标顶点是 c,后续得到的其余各最短路径的目标顶点依次是。。

- A. d,e,f
- B. e,d,f
- C. f,d,e
- D. f,e,d
- 8. 下列关于最小生成树的叙述中,正确的是
 - I. 最小生成树的代价唯一
 - II. 所有权值最小的边一定会出现在所有的最小生成树中
 - III. 使用普里姆(Prim)算法从不同顶点开始得到的最小生成树一定相同
 - IV. 使用普里姆算法和克鲁斯卡尔(Kruskal)算法得到的最小生成树总不相同
 - A. 仅 I
- B. 仅II
- C. 仅 I、III
- D. 仅II、IV
- 9. 己知一棵 3 阶 B-树,如下图所示。删除关键字 78 得到一棵新 B-树,其最右叶结点中的关键字是

19. 某同步总线的时钟频率为 100MHz, 宽度为 32 位, 地址/数据线复用, 每传输一个地址或数据占用一个时钟周

期。	若该	该总线支持突发 (猝发) 传输方式,	则一次"主存写'	"总线事务传统	俞 128 位数	据所需要的明	寸间至少是。
		A. 20ns	B. 40ns		C. 50ns	D.	80ns	
	20.	下列关于 USB 总	总线特性的描述中,	错误的是	_ •			
		A. 可实现外设施	的即插即用和热拔	插				
		B. 可通过级联为	方式连接多台外设					
		C. 是一种通信。	总线,连接不同外部	分				
		D. 同时可传输:	2 位数据,数据传统	渝率高				
	21.	下列选项中,在	I/O 总线的数据线	上传输的信息包括	括。			
		I . I/O 接口中的	勺命令字 Ⅱ.	I/O 接口中的状	态字 III.	. 中断类型	号	
		A. 仅I、II	B. 仅 I	、 III	C. 仅II、III	D.	$I \cup I \cup II$	
	22.	响应外部中断的	过程中,中断隐指	令完成的操作,	除保护断点外	,还包括_	o	
		I . 关中断	II. 保存通用寄存	字器的内容 I	II. 形成中断原	服务程序入	.口地址并送 I	PC .
		A. 仅I、II	B. 仅 I	、 III	C. 仅II、III	D.	$I \cup I \cup II$	
	23.	下列选项中,不	可能在用户态发生	的事件是	0			
		A. 系统调用	B. 外部	中断	C. 进程切换	D.	缺页	
	24.	中断处理和子科	是序调用都需要压	栈以保护现场,	中断处理一定	会保存而	子程序调用ス	下需要保存其内容的
是_		_						
		A. 程序计数器			B. 程序状态	字寄存器		
		C. 通用数据寄存			D. 通用地址	寄存器		
	25.		储器的叙述中,正	·				
			能基于连续分配技					
			量只受外存容量的					
	26.	操作系统的I/O	子系统通常由四个月	昙次组成, 每一层	言明确定义了 与	9邻近层次	的接口。其合	理的层次组织排列顺
序是	<u>-</u>	o						
		,	次件、设备无关软件		, , ,	- · •		
		B. 用户级 I/O 转	次件、设备无关软件	牛、中断处理程序	序、设备驱动程	是字		
		C. 用户级 I/O 转	次件、设备驱动程序	亨、设备无关软件	丰、中断处理程	記字		

27. 假设 5 个进程 P0、P1、P2、P3、P4 共享三类资源 R1、R2、R3,这些资源总数分别为 18、6、22。T0 时刻的 资源分配情况如下表所示,此时存在的一个安全序列是。

进程	已分配资源			资源最大需求		
近性	R1	R2	R3	R1	R2	R3
P0	3	2	3	5	5	10
P1	4	0	3	5	3	6
P2	4	0	5	4	0	11
Р3	2	0	4	4	2	5
P4	3	1	4	4	2	4

A. P0, P2, P4, P1, P3

B. P1, P0, P3, P4, P2

C. P2, P1, P0, P3, P4

D. P3, P4, P2, P1, P0

- 28. 若一个用户进程通过 read 系统调用读取一个磁盘文件中的数据,则下列关于此过程的叙述中,正确的是____。
 - I. 若该文件的数据不在内存,则该进程进入睡眠等待状态

D. 用户级 I/O 软件、中断处理程序、设备无关软件、设备驱动程序

- II. 请求 read 系统调用会导致 CPU 从用户态切换到核心态
- III. read 系统调用的参数应包含文件的名称

A. 仅I、II

- B. 仅 I、III C. 仅 II、III D. I、II 和 III
- 29. 一个多道批处理系统中仅有 P1 和 P2 两个作业, P2 比 P1 晚 5ms 到达,它们的计算和 I/O 操作顺序如下:
 - P1: 计算 60ms, I/O 80ms, 计算 20ms

	P2: 计算 120ms,I/O 40ms,计算 40ms
若る	「考虑调度和切换时间,则完成两个作业需要的时间最少是。
	A. 240ms B. 260ms C. 340ms D. 360ms
30.	若某单处理器多进程系统中有多个就绪态进程,则下列关于处理机调度的叙述中,错误的是。
	A. 在进程结束时能进行处理机调度
	B. 创建新进程后能进行处理机调度
	C. 在进程处于临界区时不能进行处理机调度
	D. 在系统调用完成并返回用户态时能进行处理机调度
31.	下列关于进程和线程的叙述中,正确的是。
	A. 不管系统是否支持线程,进程都是资源分配的基本单位
	B. 线程是资源分配的基本单位,进程是调度的基本单位
	C. 系统级线程和用户级线程的切换都需要内核的支持
22	D. 同一进程中的各个线程拥有各自不同的地址空间
32.	下列选项中,不能改善磁盘设备 I/O 性能的是。 A. 重排 I/O 请求次序 B. 在一个磁盘上设置多个分区
	C. 预读和滞后写 D. 优化文件物理块的分布
22	在 TCP/IP 体系结构中,直接为 ICMP 提供服务的协议是。
33.	A. PPP B. IP C. UDP D. TCP
3.4	在物理层接口特性中,用于描述完成每种功能的事件发生顺序的是 。
27,	A. 机械特性 B. 功能特性 C. 过程特性 D. 电气特性
35.	以太网的 MAC 协议提供的是。
35.	A. 无连接不可靠服务 B. 无连接可靠服务
	C. 有连接不可靠服务 D. 有连接可靠服务
36.	两台主机之间的数据链路层采用后退 N 帧协议(GBN)传输数据,数据传输速率为 16 kbps,单向传播时延为
	数据帧长度范围是 128~512 字节,接收方总是以与数据帧等长的帧进行确认。为使信道利用率达到最高,帧
字号的出	2 特数至少为。
	A. 5 B. 4 C. 3 D. 2
37.	下列关于 IP 路由器功能的描述中,正确的是。
	I. 运行路由协议,设置路由表
	II. 监测到拥塞时,合理丢弃 IP 分组
	III. 对收到的 IP 分组头进行差错校验,确保传输的 IP 分组不丢失
	IV. 根据收到的 IP 分组的目的 IP 地址,将其转发到合适的输出线路上
	A. 仅III、IV B. 仅 I 、II、III
	C. 仅I、II、IV D. I、II、III、IV
38.	ARP 协议的功能是。
	A. 根据 IP 地址查询 MAC 地址 B. 根据 MAC 地址查询 IP 地址
•	C. 根据域名查询 IP 地址 D. 根据 IP 地址查询域名
	· 某主机的 IP 地址为 180.80.77.55,子网掩码为 255.255.252.0。若该主机向其所在子网发送广播分组,则目的地
亚	. A 100 00 77 0
40	A. 180.80.76.0 B. 180.80.76.255 C. 180.80.77.255 D. 180.80.79.255 若用户 1 与用户 2 之间发送和接收电子邮件的过程如下图所示,则图中①、②、③阶段分别使用的应用层协
以刊 以赴	
	用户1的

- A. SMTP、SMTP、SMTP
- B. POP3, SMTP, POP3
- C. POP3, SMTP, SMTP
- D. SMTP, SMTP, POP3
- 二、综合应用题: 第41~47 题, 共70分。
- 41. 设有 6 个有序表 A、B、C、D、E、F,分别含有 10、35、40、50、60 和 200 个数据元素,各表中元素按升序排列。要求通过 5 次两两合并,将 6 个表最终合并成 1 个升序表,并在最坏情况下比较的总次数达到最小。请回答下列问题。
 - 1)给出完整的合并过程,并求出最坏情况下比较的总次数。
 - 2) 根据你的合并过程,描述 N(N≥2) 个不等长升序表的合并策略,并说明理由。
- 42. 假定采用带头结点的单链表保存单词,当两个单词有相同的后缀时,则可共享相同的后缀存储空间,例如,"loading"和"being"的存储映像如下图所示。

设 str1 和 str2 分别指向两个单词所在单链表的头结点,链表结点结构为 data next ,请设计一个时间上尽可能高效的算法,找出由 str1 和 str2 所指向两个链表共同后缀的起始位置(如图中字符 i 所在结点的位置 p)。要求:

- 1)给出算法的基本设计思想。
- 2) 根据设计思想,采用 C 或 C++或 Java 语言描述算法,关键之处给出注释。
- 3) 说明你所设计算法的时间复杂度。
- 43. 假定某计算机的 CPU 主频为 80MHz, CPI 为 4, 平均每条指令访存 1.5 次, 主存与 Cache 之间交换的块大小为 16B, Cache 的命中率为 99%, 存储器总线宽度为 32 位。请回答下列问题。
- 1)该计算机的 MIPS 数是多少?平均每秒 Cache 缺失的次数是多少?在不考虑 DMA 传送的情况下,主存带宽至少达到多少才能满足 CPU 的访存要求?
- 2) 假定在 Cache 缺失的情况下访问主存时,存在 0.0005%的缺页率,则 CPU 平均每秒产生多少次缺页异常? 若页面大小为 4KB,每次缺页都需要访问磁盘,访问磁盘时 DMA 传送采用周期挪用方式,磁盘 I/O 接口的数据缓冲寄存器为 32 位,则磁盘 I/O 接口平均每秒发出的 DMA 请求次数至少是多少?
 - 3) CPU 和 DMA 控制器同时要求使用存储器总线时,哪个优先级更高?为什么?
- 4)为了提高性能,主存采用 4 体低位交叉存储模式,工作时每 1/4 个存储周期启动一个体。若每个体的存储周期 为 50ns,则该主存能提供的最大带宽是多少?
- 44. 某 16 位计算机中,带符号整数用补码表示,数据 Cache 和指令 Cache 分离。题 44 表给出了指令系统中部分指令格式,其中 Rs 和 Rd 表示寄存器,mem 表示存储单元地址,(x)表示寄存器 x 或存储单元 x 的内容。

	指令的汇编格式	指令功能
加法指令	ADD Rs, Rd	(Rs)+(Rd)->Rd
算术/逻辑左移	SHL Rd	2*(Rd)->Rd
算术右移	SHR Rd	(Rd)/2->Rd
取数指令	LOAD Rd, mem	(mem)->Rd
存数指令	STORE Rs, mem	(Rs)->mem

指令系统中部分指令格式

该计算机采用 5 段流水方式执行指令,各流水段分别是取指(IF)、译码/读寄存器(ID)、执行/计算有效地址(EX)、访问存储器(M)和结果写回寄存器(WB),流水线采用"按序发射,按序完成"方式,没有采用转发技术处理数据相关,并且同一个寄存器的读和写操作不能在同一个时钟周期内进行。请回答下列问题:

- 1)若 int 型变量 x 的值为-513,存放在寄存器 R1 中,则执行指令 "SHL R1"后,R1 的内容是多少?(用十六进制表示)
- 2) 若某个时间段中,有连续的 4 条指令进入流水线,在其执行过程中没有发生任何阻塞,则执行这 4 条指令所需的时钟周期数为多少?

3) 若高级语言程序中某赋值语句为 x=a+b, x、a 和 b 均为 int 型变量,它们的存储单元地址分别表示为[x]、[a]和 [b]。该语句对应的指令序列及其在指令流水线中的执行过程如下图所示。

							时间]单元						
指令	1	2	3	4	5	6	7	8	9	10	11	12	13	14
I_1	IF	ID	EX	M	WB									
I_2		IF	ID	EX	M	WB								
I_3			IF				ID	EX	M	WB				
I_4							IF				ID	EX	M	WB

图 指令序列及其执行过程示意图

则这 4 条指令执行过程中, I, 的 ID 段和 I4 的 IF 段被阻塞的原因各是什么?

- 4) 若高级语言程序中某赋值语句为 x=x*2+a, x 和 a 均为 unsigned int 类型变量,它们的存储单元地址分别表示为 [x]、[a],则执行这条语句至少需要多少个时钟周期?要求模仿题 44 图画出这条语句对应的指令序列及其在流水线中的执行过程示意图。
 - 45. 某请求分页系统的局部页面置换策略如下:

系统从 0 时刻开始扫描,每隔 5 个时间单位扫描一轮驻留集(扫描时间忽略不计),本轮没有被访问过的页框将被系统回收,并放入到空闲页框链尾,其中内容在下一次分配之前不被清空。当发生缺页时,如果该页曾被使用过且还在空闲页链表中,则重新放回进程的驻留集中,否则,从空闲页框链表头部取出一个页框。

假设不考虑其他进程的影响和系统开销。初始时进程驻留集为空。目前系统空闲页框链表中页框号依次为 32.15、21.41。进程 P 依次访问的<虚拟页号,访问时刻>是: <1,1>.<3,2>.<0,4>.<0,6>.<1,11>.<0,13>.<2,14>。请回答下列问题。

- 1) 访问<0,4>时,对应的页框号是什么?说明理由。
- 2) 访问<1,11>时,对应的页框号是什么?说明理由。
- 3) 访问<2.14>时,对应的页框号是什么?说明理由。
- 4) 该策略是否适合于时间局部性好的程序?说明理由。
- 46. 某文件系统空间的最大容量为 4TB(1TB= 2^{40} B),以磁盘块为基本分配单位。磁盘块大小为 1KB。文件控制块(FCB)包含一个 512B 的索引表区。请回答下列问题。
- 1)假设索引表区仅采用直接索引结构,索引表区存放文件占用的磁盘块号,索引表项中块号最少占多少字节?可支持的单个文件最大长度是多少字节?
- 2)假设索引表区采用如下结构:第0~7字节采用<起始块号,块数>格式表示文件创建时预分配的连续存储空间,其中起始块号占6B,块数占2B;剩余504字节采用直接索引结构,一个索引项占6B,则可支持的单个文件最大长度是多少字节?为了使单个文件的长度达到最大,请指出起始块号和块数分别所占字节数的合理值并说明理由。
- 47. 主机 H 通过快速以太网连接 Internet,IP 地址为 192.168.0.8,服务器 S 的 IP 地址为 211.68.71.80。H 与 S 使用 TCP 通信时,在 H 上捕获的其中 5 个 IP 分组如题 47-a 表所示。

		是图 47	-a 1x		
编号		IP 分组的	前 40 字节内容	字(十六进制)	
1	45 00 00 30	01 9b 40 00	80 06 1d e8	c0 a8 00 08d3	44 47 50
	0b d9 13 88	84 6b 41 c5	00 00 00 00	70 02 43 80	5d b0 00 00
2	43 00 00 30	00 00 40 00	31 06 6e 83	d3 44 47 50	c0 a8 00 08
	13 88 0b d9	e0 59 9f ef	84 6b 41 c6	70 12 16 d0	37 e1 00 00
3	45 00 00 28	01 9c 40 00	80 06 1d ef	c0 a8 00 08	d3 44 47 50
	0b d9 13 88	84 6b 41 c6	e0 59 9f f0	50 f0 43 80	2b 32 00 00
4	45 00 00 38	01 9d 40 00	80 06 1d de	c0 a8 00 08	d3 44 47 50

题 47-a 表

	0b d9 13 88	84 6b 41 c6	e0 59 9f f0	50 18 43 80	e6 55 00 00
5	45 00 00 28	68 11 40 00	31 06 06 7a	d3 44 47 50	c0 a8 00 08
3	13 88 0b d9	e0 59 9f f0	84 6b 41 d6	50 10 16 d0	57 d2 00 00

回答下列问题。

- 1) 题 47-a 表中的 IP 分组中,哪几个是由 H 发送的?哪几个完成了 TCP 连接建立过程?哪几个在通过快速以太网 传输时进行了填充?
 - 2) 根据题 47-a 表中的 IP 分组,分析 S 已经收到的应用层数据字节数是多少?
- 3) 若题 47-a 表中的某个 IP 分组在 S 发出时的前 40 字节如题 47-b 表所示,则该 IP 分组到达 H 时经过了多少个路由器?

题 47-b 表

来自S的分组	45 00 00 28	68 11 40 00	40 06 ec ad	d3 44 47 50	ca 76 01 06
水白の町が塩	13 88 a1 08	e0 59 9f f0	84 6b 41 d6	50 10 16 d0	b7 d6 00 00

注: IP 分组头和 TCP 段头结构分别如题 47-a 图,题 47-b 图所示。

题 47-a 图 IP 分组头结构

题 47-b 图 TCP 段头结构

2012 年计算机学科专业基础综合试题参考答案

一、单项选择题

1.	В	2.	A	3.	A	4.	В	5.	C	6.	C	7.	C	8.	A
9.	D	10.	A	11.	D	12.	D	13.	В	14.	D	15.	D	16.	A
17.	C	18.	C	19.	C	20.	D	21.	D	22.	В	23.	C	24.	В
25.	В	26.	A	27.	D	28.	A	29.	В	30.	C	31.	A	32.	В
33.	В	34.	C	35.	A	36.	В	37.	C	38.	A	39.	D	40.	D

二、综合应用题

41. 解答:

本题同时对多个知识点进行了综合考查。对有序表进行两两合并考查了归并排序中的 Merge()函数;对合并过程的设计考查了哈夫曼树和最佳归并树。外部排序属于大纲新增考点。

1)对于长度分别为 m, n 的两个有序表的合并,最坏情况下是一直比较到两个表尾元素,比较次数为 m+n-1 次。故最坏情况的比较次数依赖于表长,为了缩短总的比较次数,根据哈夫曼树(最佳归并树)思想的启发,可采用如图所示的合并顺序。

根据上图中的哈夫曼树,6个序列的合并过程为:

第1次合并:表A与表B合并,生成含有45个元素的表AB;

第2次合并:表 AB 与表 C 合并,生成含有 85 个元素的表 ABC;

第 3 次合并: 表 D 与表 E 合并, 生成含有 110 个元素的表 DE;

第 4 次合并: 表 ABC 与表 DE 合并, 生成含有 195 个元素的表 ABCDE;

第 5 次合并:表 ABCDE 与表 F 合并,生成含有 395 个元素的最终表。

由上述分析可知,最坏情况下的比较次数为:第1次合并,最多比较次数=10+35-1=44;第2次合并,最多比较次数=45+40-1=84;第3次合并,最多比较次数=50+60-1=109;第4次合并,最多比较次数=85+110-1=194;第5次合并,最多比较次数=195+200-1=394。

故比较的总次数最多为: 44+84+109+194+394=825。

2) 各表的合并策略是:在对多个有序表进行两两合并时,若表长不同,则最坏情况下总的比较次数依赖于表的合并次序。可以借用哈夫曼树的构造思想,依次选择最短的两个表进行合并,可以获得最坏情况下最佳的合并效率。

42. 解答:

- 1) 顺序遍历两个链表到尾结点时,并不能保证两个链表同时到达尾结点。这是因为两个链表的长度不同。假设一个链表比另一个链表长 k 个结点,我们先在长链表上遍历 k 个结点,之后同步遍历两个链表,这样就能够保证它们同时到达最后一个结点。由于两个链表从第一个公共结点到链表的尾结点都是重合的,所以它们肯定同时到达第一个公共结点。算法的基本设计思想:
 - ① 分别求出 str1 和 str2 所指的两个链表的长度 m 和 n。
 - ② 将两个链表以表尾对齐: 令指针 p、q 分别指向 str1 和 str2 的头结点,若 m>=n,则使 p 指向链表中的第 m-n+1

个结点; 若 m<n,则使 q 指向链表中的第 n-m+1 个结点,即使指针 p 和 q 所指的结点到表尾的长度相等。

- ③ 反复将指针 p 和 q 同步向后移动,并判断它们是否指向同一结点。若 p 和 q 指向同一结点,则该点即为所求的共同后缀的起始位置。
 - 2) 算法的 C 语言代码描述:

3) 时间复杂度为: O(len1+len2)或 O(max(len1,len2)), 其中 len1、len2 分别为两个链表的长度。

43. 解答:

1) 平均每秒 CPU 执行的指令数为: 80M/4=20M, 故 MIPS 数为 20;

平均每条指令访存 1.5 次, 故平均每秒 Cache 缺失的次数=20M×1.5×(1-99%)=300K;

当 Cache 缺失时,CPU 访问主存,主存与 Cache 之间以块为传送单位,此时,主存带宽为 16B×300K/s =4.8MB/s。在不考虑 DMA 传输的情况下,主存带宽至少达到 4.8MB/s 才能满足 CPU 的访存要求。

- 2) 题中假定在 Cache 缺失的情况下访问主存,平均每秒产生缺页中断 300000×0.0005%=1.5 次。因为存储器总线 宽度为 32 位,所以每传送 32 位数据,磁盘控制器发出一次 DMA 请求,故平均每秒磁盘 DMA 请求的次数至少为 1.5×4KB/4B=1.5K=1536B。
 - 3) CPU 和 DMA 控制器同时要求使用存储器总线时, DMA 请求优先级更高;

因为 DMA 请求得不到及时响应, I/O 传输数据可能会丢失。

4) 4 体交叉存储模式能提供的最大带宽为 4×4B/50ns=320MB/s。

44. 解答:

- 1)x 的机器码为[x] $_{**}$ =1111 1101 1111 1111B,即指令执行前(R1)=FDFFH,右移 1 位后为 1111 1110 1111 1111B,即指令执行后(R1)=FEFFH。
 - 2) 至少需要 4+(5-1)=8 个时钟周期数。
- 3) I_3 的 ID 段被阻塞的原因:因为 I_3 与 I_1 和 I_2 都存在数据相关,需等到 I_1 和 I_2 将结果写回寄存器后, I_3 才能读寄存器内容,所以 I_3 的 ID 段被阻塞。

 I_4 的 IF 段被阻塞的原因:因为 I_4 的前一条指令 I_5 在 ID 段被阻塞,所以 I_4 的 IF 段被阻塞。

4) 因 2*x 操作有左移和加法两种实现方法,故 x=x*2+a 对应的指令序列为

 I_1 LOAD R1, [x] I_2 LOAD R2, [a] I_3 SHL R1 //或者 ADD R1, R1 ADD R1, R2 I_4 **STORE** I_5 R2, [x]

这5条指令在流水线中执行过程如下图所示。

		时间单元															
指令	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
I_1	IF	ID	EX	M	WB												
I_2		IF	ID	EX	M	WB											
I_3			IF			ID	EX	M	WB								
I ₄						IF				ID	EX	M	WB				

2012 年计算机学科专业基础综合试题参考答案

I ₅					IF		ID	EX	M	WB

故执行 x=x*2+a 语句最少需要 17 个时钟周期。

45. 解答:

- 1) 页框号为 21。理由: 因为起始驻留集为空,而 0 页对应的页框为空闲链表中的第三个空闲页框 21,其对应的页框号为 21。
- 2) 页框号为32。理由:因 11>10 故发生第三轮扫描,页号为1 的页框在第二轮已处于空闲页框链表中,此刻该页 又被重新访问,因此应被重新放回驻留集中,其页框号为32。
- 3)页框号为41。理由:因为第2页从来没有被访问过,它不在驻留集中,因此从空闲页框链表中取出链表头的页框 41,页框号为41。
 - 4) 合适。理由:如果程序的时间局部性越好,从空闲页框链表中重新取回的机会越大,该策略的优势越明显。 46. 解答:
- 1)文件系统中所能容纳的磁盘块总数为 4TB/1KB=2³²。要完全表示所有磁盘块,索引项中的块号最少要占 32/8=4B。 而索引表区仅采用直接索引结构,故 512B 的索引表区能容纳 512B/4B=2⁷个索引项。每个索引项对应一个磁盘块,所以该系统可支持的单个文件最大长度是 128×1KB=128KB。
- 2)块号占 6B、块数占 2B 时,共可以表示 2^{16} 个磁盘块,即 2^{26} =64MB; 直接索引区共 504B/6B=84 个索引项。所以该系统可支持的单个文件最大长度是 $2^{26}B+84KB=65620KB$ 。

合理的起始块号和块数所占字节数分别为 4,4(或 1,7 或 2,6 或 3,5)。理由:块数占 4B 或以上,就可表示 4TB 大小的文件长度,达到文件系统的空间上限。

47. 解答:

1)由于题 47-a 表中 1、3、4 号分组的源 IP 地址(第 13~16 字节)均为 192.168.0.8(c0a8 0008H),因此可以判定 1、3、4 号分组是由 H 发送的。

题 47-a 表中 1 号分组封装的 TCP 段的 FLAG 为 02H (即 SYN=1, ACK=0), seq=846b 41c5H, 2 号分组封装的 TCP 段的 FLAG 为 12H (即 SYN=1, ACK=1), seq=e059 9fefH, ack=846b 41c6H, 3 号分组封装的 TCP 段的 FLAG 为 10H (即 ACK=1), seq=846b 41c6H, ack= e059 9ff0H, 所以 1、2、3 号分组完成了 TCP 连接建立过程。

由于快速以太网数据帧有效载荷的最小长度为 46 字节,表中 3、5 号分组的总长度为 40 (28H) 字节,小于 46 字节,其余分组总长度均大于 46 字节。所以 3、5 号分组通过快速以太网传输时进行了填充。

- 2) 由 3 号分组封装的 TCP 段可知,发送应用层数据初始序号为 seq=846b 41c6H,由 5 号分组封装的 TCP 段可知,ack 为 seq=846b 41d6H,所以 5 号分组已经收到的应用层数据的字节数为 846b 41d6H 846b 41c6H=10H=16。
- 3)由于 S 发出的 IP 分组的标识=6811H,所以该分组所对应的是题 47-a 表中的 5 号分组。S 发出的 IP 分组的 TTL=40H=64,5 号分组的 TTL=31H=49,64-49=15,所以,可以推断该 IP 分组到达 H 时经过了 15 个路由器。

2011 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

	、单项选择题:1~4 (请在答题卡上将所设		分,共 80 分。下列	每小题给出的四个选项中,只	有一项符合题目
1.	设n是描述问题规模	的非负整数,下面程	序片段的时间复杂度	是。	
	<pre>x=2; while(x<n 2)<br="">x=2*x;</n></pre>				
	的出栈序列中,以元素	依次进入初始为空的	栈中,若元素进栈后 ೬。	可停留、可出栈,直到所有元素	零都出栈,则在 所
	为空,且要求第1个进	注 入队列的元素存储在	E A [0]处,则初始时:	nt 和 rear 分别指向队头元素和原front 和 rear 的值分别是。	
	A. 0, 0 若一棵完全二叉树有 A. 257	768 个结点,则该二 B.258	C. 384	7是 D. 385	小小小
5. 不会是 <u></u>				, 4和4, 3, 2, 1, 则该二叉标 D. 4, 3, 2, 1	§的中净遍历净外
		告点的树,其叶结点个 B.116	〉数为 116,该树对应 C.1895	区的二叉树中无右孩子的结点个 D. 1896	数是。
7.	A. 95, 22, 91, 24, C. 21, 89, 77, 29,	94, 71	B. 92, 20, 91, 34	4, 88, 35	
8.	下列关于图的叙述中 I. 回路是简单路径 II. 存储稀疏图,用 III. 若有向图中存在 A. 仅 II	邻接矩阵比邻接表更 拓扑序列,则该图不	存在回路	D. 仅I、III	
9.	为提高散列(Hash) I.增大装填(载) II.设计冲突(碰撞 III.处理冲突(碰撞	因子)少的散列函数		•	
10	A. 仅 I . 为实现快速排序算法		C.仅 I 、II 目的存储方式是		
		B. 散列存储			\m+6\\1<=\\1\\
	.已知序列 25,13,1 行的比较次数是		在序列尾部插入新力	元素 18,将其再调整为大根堆,	调整过程中元素
之时处?		-° B. 2	C. 4	D. 5	

	12.	下列选项。	中,描述	浮点数	操作速度	指标的是_	0				
		A. MIPS		В.	CPI	C.	IPC		D.	MFLOPS	
	13.	float 型数i	居通常用	IEEE 7	754 单精度	医浮点数格	式表示。	若编译	泽器将	float 型变量 x 分配到	到一个 32 位浮点寄存器
FR1	中,	且 x=-8.25	,则 FR1	1 的内邻	容是	0					
		A. C1040	0000Н	В. (C242 0000	_)Н С.	C184 00	H000	D.	C1C2 0000H	
	14.	下列各类和									
		A. EPRO						_	D.	SRAM	
	15.										片组成 32MB 的主存储
器,		储器地址智							, , , ,		1,177,04,077,177,171,171
нн 7	/14 14	A. 22 位							D.	26 位	
	16										中,不属于偏移寻址方
-1-44				1 1-0 11	ни 1 1. П 2	1 /1/24		H III/*/	411///		1 3 1 1/14 1 1/14/15 (1 2007)
八比	定	o	4 L.I	ъ	#11 = 11	C	4n 34 = 1.	L.I	ъ	과 □ □ □ □	
		A. 间接表									
۸ ،								、苓标	志 ZF	、符号标志 SF 和溫出	出标志 OF,条件转移指
令 b	gt (;	无符号整数						_			
										CF+SF=1	
		下列给出的									
		I. 指令格	·式规整上	1长度-	一致	II .	. 指令和	数据按	边界	对齐存放	
		Ⅲ. 只有 L	oad/Store	指令才	上能对操作	=数进行存	储访问				
		A. 仅 I、	II	B. /	仅II、III	C.	仅I、	III	D.	I、II、III	
	19.	假定不采用	∄ Cache	和指令	>预取技术	、 且机器	处于"升	于中断"	状态	,则在下列有关指令	执行的叙述中,错误的
是		_0									
		A. 每个指	令周期中	‡ CPU	都至少访	问内存一	次				
		B. 每个指	令周期-	一定大	于或等于-	一个 CPU	时钟周期	FI .			
		C. 空操作	指令的排	旨令周期	期中任何智	寄存器的内	內容都不	会被改变	变		
		D. 当前程	是序在每条	条指令	执行结束时	付都可能被	皮外部中	断打断			
	20.	在系统总统									
		A. 指令	41,43,44,1		•	В.					
		A. 指令 C. 握手。	(広ダ) た	= 므 .				刑具			
	21								Μ.	1 (0<:<1) 丰三井	1 加山岭洲东京龙 艺
山 座											L _i 级中断进行屏蔽。若 蓝字里
中断	<u> ПП)У</u>									程序中设置的中断屏	阪子走。
		A. 11110				С.					V6 77 171 44 n 1 61 171 181 181 181
7. .t											一次所用的时钟周期数
						 据小去矢,	母杪需	灯具鱼1	1年少	▷ 200 次,则 CPU 用	于设备 A 的 I/O 的时间
占整	个(PU 时间的									
		A. 0.02%				С.					
	23.	下列选项中							法是_	o	
		A. 先来先				В.	高响应	比优先			
		C. 时间片	於转			D.	非抢占	式短任金	务优差	t	
	24.	下列选项。	中,在用	户态执	行的是	o					
		A. 命令解	解释程序			В.	缺页处	理程序			
		C. 进程调	度程序			D.	时钟中	断处理和	程序		
	25.	在支持多约	线程的系:	统中,	进程P创	建的若干	个线程不	能共享	的是_	o	
		A. 进程 F	的代码	没		В.	进程P	中打开的	的文件	‡	
		A. 进程 F C. 进程 F	的全局多	变量		D.	进程P	中某线	程的相		
	26.	用户程序									

此时的安全序列是____。 A. P1, P2, P3, P4

- A. 用户程序→系统调用处理程序→中断处理程序→设备驱动程序
- B. 用户程序→系统调用处理程序→设备驱动程序→中断处理程序
- C. 用户程序→设备驱动程序→系统调用处理程序→中断处理程序
- D. 用户程序→设备驱动程序→中断处理程序→系统调用处理程序
- 27. 某时刻进程的资源使用情况如下表所示。

 进程		已分配资源			尚需分配			可用资源	
近性	R1	R2	R3	R1	R2	R3	R1	R2	R3
P1	2	0	0	0	0	1			
P2	1	2	0	1	3	2	0	2	1
P3	0	1	1	1	3	1	U	2	1
P4	0	0	1	2	0	0			

B. P1, P3, P2, P4

		C. P1, P4, P3, P2 D.	不存在的
	28.	在缺页处理过程中,操作系统执行的操作	作可能是。
		I. 修改页表 II. 磁盘 I/O	III. 分配页框
		A. 仅I、II B. 仅II	C. 仅III D. I、II和III
	29.	当系统发生抖动(thrashing)时,可以采	取的有效措施是。
		I. 撤销部分进程 II. 增加磁盘	交换区的容量
		III. 提高用户进程的优先级	
			C. 仅III D. 仅 I、II
	30.	在虚拟内存管理中,地址变换机构将逻辑	肆地址变换为物理地址,形成该逻辑地址的阶段是 。
		A. 编辑 B. 编译	C. 链接 D. 装载
	31.	某文件占10个磁盘块,现要把该文件磁	盘块逐个读入主存缓冲区,并送用户区进行分析,假设一个缓冲区与
_/	~ 磁盘	盘块大小相同,把一个磁盘块读入缓冲区的	的时间为 100μs,将缓冲区的数据传送到用户区的时间是 50μs,CPU
			和双缓冲区结构下,读入并分析完该文件的时间分别是。
			Β. 1550μs、1100μs
		C. 1550µs, 1550µs	D. 2000μs 2000μs
	32.	有两个并发执行的进程 P1 和 P2, 共享初]值为 1 的变量 x。P1 对 x 加 1,P2 对 x 减 1。加 1 和减 1 操作的指令
序列	刊分别]如下所示。	
		//加1操作	//减1操作
		load R1,x //取x到寄存器 R1 中	load R2, x
			dec R2
		store x,R1 //将R1的内容存入x	store x,R2
	两个	个操作完成后,x 的值。	
		A. 可能为-1 或 3	B. 只能为1
		C. 可能为0、1或2	
	33.	TCP/IP 参考模型的网络层提供的是	
		A. 无连接不可靠的数据报服务	
		C. 有连接不可靠的虚电路服务	
	34.		s,采用 4 相位调制,则该链路的波特率是。
			C. 4800 波特 D. 9600 波特
	35.	数据链路层采用选择重传协议(SR)传统	俞数据,发送方已发送了 0~3 号数据帧,现已收到 1 号帧的确认,而
0,	2 号帧	贞依次超时,则此时需要重传的帧数是	
		A. 1 B. 2	C. 3 D. 4
	36.	下列选项中,对正确接收到的数据帧进行	于确认的 MAC 协议是。
		A CSMA B CDMA	C. CSMA/CD D. CSMA/CA

37. 某网络拓扑如下图所示,路由器 R1 只有到达子网 192.168.1.0/24 的路由。为使 R1 可以将 IP 分组正确地路由到图中所有的子网,则在 R1 中需要增加的一条路由(目的网络,子网掩码,下一跳)是

A. 192.168.2.0 255.255.255.128 192.168.1.1 B. 192.168.2.0 255.255.255.0 192.168.1.1 C. 192.168.2.0 255.255.255.128 192.168.1.2 D. 192.168.2.0 255.255.255.0 192.168.1.2

38. 在子网 192.168.4.0/30 中, 能接收目的地址为 192.168.4.3 的 IP 分组的最大主机数是____。

A 0

B. 1

C. 2

D. 4

- 39. 主机甲向主机乙发送一个(SYN=1, seq=11220)的 TCP 段,期望与主机乙建立 TCP 连接,若主机乙接受该连接请求,则主机乙向主机甲发送的正确的 TCP 段可能是_____。
 - A. (SYN=0, ACK=0, seq=11221, ack=11221)
 - B. (SYN=1, ACK=1, seq=11220, ack=11220)
 - C. (SYN=1, ACK=1, seq=11221, ack=11221)
 - D. (SYN=0, ACK=0, seq=11220, ack=11220)
- 40. 主机甲与主机乙之间已建立一个 TCP 连接,主机甲向主机乙发送了 3 个连续的 TCP 段,分别包含 300B、400B 和 500B 的有效载荷,第 3 个段的序号为 900。若主机乙仅正确接收到第 1 和第 3 个段,则主机乙发送给主机甲的确认序号是。
 - A. 300
- B. 500
- C. 1200
- D. 1400
- 二、综合应用题: 第41~47 小题, 共70 分。请将答案写在答题纸指定位置上。
- 41. (8分)已知有6个顶点(顶点编号为0~5)的有向带权图G,其邻接矩阵A为上三角矩阵,按行为主序(行优先)保存在如下的一维数组中。

4	6	8	8	8	5	8	8	8	4	3	8	8	3	3

要求:

- (1) 写出图G的邻接矩阵A。
- (2) 画出有向带权图 G。
- (3) 求图 G 的关键路径,并计算该关键路径的长度。
- 42.(15 分)一个长度为 L(L \geq 1)的升序序列 S,处在第 L/2 个位置的数称为 S 的中位数。例如,若序列 SI=(11,13,15,17,19),则 SI 的中位数是 15,两个序列的中位数是含它们所有元素的升序序列的中位数。例如,若 S2=(2,4,6,8,20),则 S1 和 S2 的中位数是 11。现在有两个等长升序序列 A 和 B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列 A 和 B 的中位数。要求:
 - (1) 给出算法的基本设计思想。
 - (2) 根据设计思想,采用 C、C++或 Java 语言描述算法,关键之处给出注释。
 - (3) 说明你所设计算法的时间复杂度和空间复杂度。
 - 43. (11 分) 假定在一个 8 位字长的计算机中运行如下 C 程序段:

unsigned int x=134; unsigned int y=246; int m=x; int n=y;

```
unsigned int z1=x-y;
unsigned int z2=x+y;
int k1=m-n;
int k2=m+n;
```

若编译器编译时将 8 个 8 位寄存器 R1~R8 分别分配给变量 x、y、m、n、z1、z2、k1 和 k2。请回答下列问题。(提示:带符号整数用补码表示。)

- (1) 执行上述程序段后,寄存器 R1、R5 和 R6 的内容分别是什么(用十六进制表示)?
- (2) 执行上述程序段后,变量 m 和 k1 的值分别是多少(用十进制表示)?
- (3)上述程序段涉及带符号整数加/减、无符号整数加/减运算,这四种运算能否利用同一个加法器辅助电路实现? 简述理由。
- (4) 计算机内部如何判断带符号整数加/减运算的结果是否发生溢出?上述程序段中,哪些带符号整数运算语句的 执行结果会发生溢出?
- 44.(12 分)某计算机存储器按字节编址,虚拟(逻辑)地址空间大小为 16MB,主存(物理)地址空间大小为 1MB,页面大小为 4KB;Cache 采用直接映射方式,共 8 行;主存与 Cache 之间交换的块大小为 32B。系统运行到某一时刻时,页表的部分内容和 Cache 的部分内容分别如题 44(a)图、题 44(b)图所示,图中页框号及标记字段的内容为十六进制形式。

虚页号	有效位	页框号	
0	1	06	•••
1	1	04	•••
2	1	15	
3	1	02	•••
4	0	_	
5	1	2B	
6	0		•••
7	1	32	•••

行号	有效位	标记	•••
0	1	020	
1	0	_	
2	1	01D	
3	1	105	
4	1	064	
5	1	14D	
6	0	_	
7	1	27A	

题 44(a)图 页表的部分内容

题 44(b)图 Cache 的部分内容

请回答下列问题。

- (1) 虚拟地址共有几位,哪几位表示虚页号?物理地址共有几位,哪几位表示页框号(物理页号)?
- (2) 使用物理地址访问 Cache 时,物理地址应划分成哪几个字段?要求说明每个字段的位数及在物理地址中的位置。
- (3) 虚拟地址 001C60H 所在的页面是否在主存中?若在主存中,则该虚拟地址对应的物理地址是什么?访问该地址时是否 Cache 命中?要求说明理由。
- (4) 假定为该机配置一个 4 路组相联的 TLB 共可存放 8 个页表项,若其当前内容(十六进制)如题 44(c)图所示,则此时虚拟地址 024BACH 所在的页面是否存在主存中?要求说明理由。

组号	有效位	标记	页框号									
0	0	_	_	1	001	15	0	_	_	1	012	1F
1	1	013	2D	0	_	_	1	008	7E	0	_	_

题 44(c)图 TLB 的部分内容

45. (8分) 某银行提供 1 个服务窗口和 10 个供顾客等待的座位。顾客到达银行时,若有空座位,则到取号机上领取一个号,等待叫号。取号机每次仅允许一位顾客使用。当营业员空闲时,通过叫号选取一位顾客,并为其服务。顾客和营业员的活动过程描述如下:

```
cobegin
{
    process 顾客i
    {
    从取号机获取一个号码;
    等待叫号;
```

```
获取服务;
}
process 营业员
{
    while (TRUE)
    {
        叫号;
        为客户服务;
    }
} coend
```

请添加必要的信号量和 P、V(或 wait()、signal())操作,实现上述过程中的互斥与同步。要求写出完整的过程,说明信号量的含义并赋初值。

- 46. (7 分) 某文件系统为一级目录结构,文件的数据一次性写入磁盘,已写入的文件不可修改,但可多次创建新文件。请回答如下问题。
- (1) 在连续、链式、索引三种文件的数据块组织方式中,哪种更合适?要求说明理由。为定位文件数据块,需要FCB中设计哪些相关描述字段?
 - (2) 为快速找到文件,对于FCB,是集中存储好,还是与对应的文件数据块连续存储好?要求说明理由。
- 47. (9 分) 某主机的 MAC 地址为 00-15-C5-C1-5E-28, IP 地址为 10.2.128.100 (私有地址)。题 47(a)图是网络拓扑,题 47(b)图是该主机进行 Web 请求的 1 个以太网数据帧前 80B 的十六进制及 ASCII 码内容。

题 47(a)图 网络拓扑

```
      0000
      00 21 27 21 51 ee 00 15
      c5 c1 5e 28 08 00 45 00
      .!!!Q.....^(..E.

      0010
      01 ef 11 3b 40 00 80 06
      ba 9d 0a 02 80 64 40 aa
      ...:@......d@.

      0020
      62 20 04 ff 00 50 e0 e2
      00 fa 7b f9 f8 05 50 18
      b ...P....{...P.

      0030
      fa f0 1a c4 00 00 47 45
      54 20 2f 72 66 63 2e 68
      .....GE T/rfc.h

      0040
      74 6d 6c 20 48 54 54 50
      2f 31 2e 31 0d 0a 41 63
      tml HTTP/1.1..Ac
```

题 47(b)图 以太网数据帧(前 80B)

请参考图中的数据回答以下问题。

- (1) Web 服务器的 IP 地址是什么?该主机的默认网关的 MAC 地址是什么?
- (2) 该主机在构造题 47(b)图的数据帧时,使用什么协议确定目的 MAC 地址? 封装该协议请求报文的以太网帧的目的 MAC 地址是什么?
- (3) 假设 HTTP/1.1 协议以持续的非流水线方式工作,一次请求一响应时间为 RTT,rfc.html 页面引用了 5 个 JPEG 小图像,则从发出题 47(b)图中的 Web 请求开始到浏览器收到全部内容为止,需要多少个 RTT?
 - (4) 该帧所封装的 IP 分组经过路由器 R 转发时,需修改 IP 分组头中的哪些字段?
 - 注:以太网数据帧结构和 IP 分组头结构分别如题 47(c)图、题 47(d)图所示。

6B	6B	2B	46-1500B	4B
目的 MAC 地址	源 MAC 地址	类型	数 据	CRC

题 47(c)图 以太网帧结构

题 47(d)图 IP 分组头结构

2011 年计算机学科专业基础综合试题参考答案

一、单项选择题

1.	A	2.	В	3.	В	4.	C	5.	C	6.	D	7.	Α	8.	C
9.	D	10.	A	11.	В	12.	D	13.	A	14.	В	15.	D	16.	A
17.	C	18.	D	19.	C	20.	C	21.	D	22.	C	23.	В	24.	A
25.	D	26.	В	27.	D	28.	D	29.	A	30.	C	31.	В	32.	C
33.	Α	34.	В	35.	В	36.	D	37.	D	38.	C	39.	C	40.	В

二、综合应用题

41. 解答:

1) 用 "平移"的思想,将前 5 个、后 4 个、后 3 个、后 2 个、后 1 个元素,分别移动到矩阵对角线("0")右边的行上。图 G 的邻接矩阵 A 如下所示。

$$\mathbf{A} = \begin{pmatrix} 0 & 4 & 6 & \infty & \infty & \infty \\ \infty & 0 & 5 & \infty & \infty & \infty \\ \infty & \infty & 0 & 4 & 3 & \infty \\ \infty & \infty & \infty & 0 & \infty & 3 \\ \infty & \infty & \infty & \infty & 0 & 3 \\ \infty & \infty & \infty & \infty & \infty & 0 \end{pmatrix}$$

2) 根据上面的邻接矩阵, 画出有向带权图 G, 如下图所示。

3) 即寻找从0到5的最长路径。得到关键路径为0→1→2→3→5(如下图所示粗线表示),长度为4+5+4+3=16。

42. 解答:

1) 算法的基本设计思想如下。

分别求出序列 A 和 B 的中位数,设为 a 和 b,求序列 A 和 B 的中位数过程如下:

- ① 若 a=b,则 a 或 b 即为所求中位数,算法结束。
- ② 若 a<b, 则舍弃序列 A 中较小的一半,同时舍弃序列 B 中较大的一半,要求舍弃的长度相等。
- ③ 若 a>b,则舍弃序列 A 中较大的一半,同时舍弃序列 B 中较小的一半,要求舍弃的长度相等。

在保留的两个升序序列中,重复过程 1)、2)、3),直到两个序列中只含一个元素时为止,较小者即为所求的中位数。

2) 算法的实现如下:

```
int M_Search(int A[],int B[],int n) {
    int s1=0,d1=n-1,m1,s2=1,d2=n-1,m2;
    //分别表示序列 A 和 B 的首位数、末位数和中位数
    while(s1!=d1||s2!=d2) {
        m1=(s1+d1)/2;
        m2=(s2+d2)/2;
```

```
if(A[m1] == B[m2])
                       //满足条件1)
     return A[m1];
                       //满足条件2)
  if(A[m1]<B[m2]){
     if((s1+d1)%2==0){
                       //若元素个数为奇数
                       //舍弃 A 中间点以前的部分, 且保留中间点
        s1=m1;
                        //舍弃 B 中间点以后的部分, 且保留中间点
        d2=m2;
                        //元素个数为偶数
     else{
        s1=m1+1;
                        //舍弃 A 中间点及中间点以前部分
                        //舍弃 B 中间点以后部分且保留中间点
       d2=m2;
  }
                        //满足条件3)
  else{
                        //若元素个数为奇数
     if((s1+d1)%2==0) {
       d1=m1;
                        //舍弃 A 中间点以后的部分, 且保留中间点
        s2=m2;
                        //舍弃 B 中间点以前的部分, 且保留中间点
     }
                        //元素个数为偶数
     else{
                       //舍弃 A 中间点以后部分,且保留中间点
       d1=m1+1;
        s2=m2:
                        //舍弃 B 中间点及中间点以前部分
return A[s1] < B[s2]? A[s1]: B[s2];
```

3) 算法的时间复杂度为 O(log₂n), 空间复杂度为 O(1)。

43. 解答:

1) 134=128+6=1000 0110B, 所以 x 的机器数为 1000 0110B, 故 R1 的内容为 86H。

246=255-9=1111 0110B, 所以 y 的机器数为 1111 0110B。

x-y: 1000 0110+0000 1010=(0)1001 0000, 括弧中为加法器的进位, 故 R5 的内容为 90H。

x+y: 1000 0110+1111 0110=(1)0111 1100,括弧中为加法器的进位,故 R6 的内容为 7CH。

2) m 的机器数与 x 的机器数相同,皆为 86H=1000 0110B,解释为带符号整数 m(用补码表示)时,其值为-111 1010B=-122。

m-n 的机器数与 x-y 的机器数相同,皆为 90H=1001 0000B,解释为带符号整数 kl(用补码表示)时,其值为-111 0000B=-112。

3)能。n 位加法器实现的是模 2^n 无符号整数加法运算。对于无符号整数 a 和 b,a+b 可以直接用加法器实现,而 a-b 可用 a 加 b 的补数实现,即 a-b=a+[-b] (mod 2^n),所以 n 位无符号整数加/减运算都可在 n 位加法器中实现。

由于带符号整数用补码表示,补码加/减运算公式为: $[a+b]_{*}=[a]_{*}+[b]_{*}\pmod{2^{n}}$, $[a-b]_{*}=[a]_{*}+[-b]_{*}\pmod{2^{n}}$,所以n 位带符号整数加/减运算都可在n 位加法器中实现。

4)带符号整数加/减运算的溢出判断规则为:若加法器的两个输入端(加法)的符号相同,且不同于输出端(和)的符号,则结果溢出,或加法器完成加法操作时,若次高位的进位和最高位的进位不同,则结果溢出。

最后一条语句执行时会发生溢出。因为 1000 0110+1111 0110=(1)0111 1100,括弧中为加法器的进位,根据上述溢出判断规则,可知结果溢出。

44. 解答:

- 1)虚拟地址为24位,其中高12位为虚页号。物理地址为20位,其中高8位为物理页号。
- 2) 20 位物理地址中,最低 5 位为块内地址,中间 3 位为 Cache 行号,高 12 位为标志。
- 3)在主存中。虚拟地址 001C60H=0000 0000 0001 1100 0110 0000B, 故虚页号为 0000 0000 0001B, 查看 0000 0000 0001B=001H 处的页表项,由于对应的有效位为 1,故虚拟地址 001C60H 所在的页面在主存中。

页表 001H 处的页框号(物理页号)为 04H=0000 0100B, 与页内偏移 1100 0110 0000B 拼接成物理地址: 0000 0100 1100 0110 0000B=04C60H。

对于物理地址 0000 0100 1100 0110 0000B, 所在主存块只能映射到 Cache 的第 3 行 (即第 011B 行); 由于该行的

有效位=1,标记(值为 105H) ≠04CH(物理地址高 12 位),故访问该地址时 Cache 不命中。

4) 虚拟地址 024BACH=0000 0010 0100 1011 1010 1100B, 故虚页号为 0000 0010 0100B; 由于 TLB 只有 8/4=2 个组, 故虚页号中高 11 位为 TLB 标记,最低 1 位为 TLB 组号,它们的值分别为 0000 0010 010B(即 012H)和 0B,因此,该虚拟地址所对应物理页面只可能映射到 TLB 的第 0 组。

由于组 0 中存在有效位=1、标记=012H 的项,所以访问 TLB 命中,即虚拟地址 024BACH 所在的页面在主存中。45. 解答:

- 1) 互斥资源: 取号机(一次只一位顾客领号), 因此设一个互斥信号量 mutex。
- 2) 同步问题:顾客需要获得空座位等待叫号,当营业员空闲时,将选取一位顾客并为其服务。空座位的有、无影响等待顾客数量,顾客的有、无决定了营业员是否能开始服务,故分别设置信号量 empty 和 full 来实现这一同步关系。另外,顾客获得空座位后,需要等待叫号和被服务。这样,顾客与营业员就服务何时开始又构成了一个同步关系,定义信号量 service 来完成这一同步过程。

```
//空座位的数量
semaphore empty=10;
                         //互斥使用取号机
semaphore mutex=1;
semaphore full=0;
                         //已占座位的数量
semaphore service=0;
                         //等待叫号
process 顾客 i{
   P(empty);
                         //等空位
                         //申请使用取号机
   P(mutex);
  从取号机上取号;
                         //取号完毕
  V(mutex);
  V(full);
                         //通知营业员有新顾客
  P(service);
                         //等待营业员叫号
  接受服务;
process 营业员{
   while (True) {
                         //没有顾客则休息
     P(full);
     V(empty);
                         //离开座位
     V(service);
                         //叫号
     为顾客服务;
   }
```

46. 解答:

- 1)在磁盘中连续存放(采取连续结构),磁盘寻道时间更短,文件随机访问效率更高;在FCB中加入的字段为: <起始块号,块数>或者<起始块号,结束块号>。
- 2)将所有的 FCB 集中存放,文件数据集中存放。这样在随机查找文件名时,只需访问 FCB 对应的块,可减少磁头移动和磁盘 I/O 访问次数。

47. 解答:

- 1)64.170.98.32,00-21-27-21-51-ee。以太网帧头部 6+6+2=14(字节),IP 数据报首部目的 IP 地址字段前有 $4\times4=16$ (字节),从以太网数据帧第一字节开始数 14+16=30(字节),得目的 IP 地址 40.aa.62.20(十六进制),转换为十进制得 64.170.98.32。以太网帧的前 6 字节 00-21-27-21-51-ee 是目的 MAC 地址,本题中即为主机的默认网关 10.2.128.1 端口的 MAC 地址。
- 2) ARP FF-FF-FF-FF-FF-ARP 协议解决 IP 地址到 MAC 地址的映射问题。主机的 ARP 进程在本以太网以广播的形式发送 ARP 请求分组,在以太网上广播时,以太网帧的目的地址为全 1,即 FF-FF-FF-FF-FF-FF。
- 3)6。HTTP/1.1 协议以持续的非流水线方式工作时,服务器在发送响应后仍然在一段时间内保持这段连接,客户机在收到前一个响应后才能发送下一个请求。第一个 RTT 用于请求 Web 页面,客户机收到第一个请求的响应后(还有五个请求未发送),每访问一次对象就用去一个 RTT。故共 1+5=6 个 RTT 后浏览器收到全部内容。
- 4)源 IP 地址 0a.02.80.64 改为 65.0c.7b.0f; 生存时间(TTL)减 1;校验和字段重新计算。私有地址和 Internet 上的主机通信时,须由 NAT 路由器进行网络地址转换,把 IP 数据报的源 IP 地址(本题为私有地址 10.2.128.100)转换为 NAT 路由器的一个全球 IP 地址(本题为 101.12.123.15)。因此,源 IP 地址字段 0a 02 80 64 变为 65 0c 7b 0f。 IP 数据报

每经过一个路由器,生存时间 TTL 值就减 1,并重新计算首部校验和。若 IP 分组的长度超过输出链路的 MTU,则总长度字段、标志字段、片偏移字段也要发生变化。

注意: 题 47-b 图中每行前 4bit 是数据帧的字节计数,不属于以太网数据帧的内容。

2010 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

一、单项选择题:第 1~40 小题,每小 合试题要求。	小题 2 分,共 80 乡	[}] 。下列每题给出	的四个选项中,只	有一个选项最符
1. 若元素 a、b、c、d、e、f 依次进栈,	允许进栈、退栈操作	作交替进行,但不	允许连续三次进行退	! 栈操作,则不可
能得到的出栈序列是。				•
A. dcebfa	B. cbdaef	•		
C. bcaefd	D. afedcb			
2. 某队列允许在其两端进行入队操作, 进行出队操作,则不可能得到的出队序列是_		行出队操作。若元	素a、b、c、d、e 依	沃入此队列后再
A. bacde	B. dbace			
C. dbcae	D. ecbad			
3. 下列线索二叉树中(用虚线表示线索),符合后序线索枫	村定义的是。		
a b c Null b	a c Null	a b c Null	b c)
A. B.	C	•	D.	
4. 在图 B-1 所示的平衡二叉树中,插入			(24)	二叉树。在新平
衡二叉树中, 关键字 37 所在结点的左、右 A. 13, 48	1 1 组点中保存的 5 B. 24,48	大连于分别		是。
C. 24, 53	D. 24, 90	13	(53)	
5. 在一棵度为 4 的树 T 中,若有 20 个		个度为3的	(37) (90)	结点,1个度为
2 的结点,10 个度为1 的结点,则树 T 的叶约		1 20 4 - 14		7,7,7,7
A. 41 B. 82	C. 113	D. 122	图 B-1	
6. 对 n (n≥2) 个权值均不相同的字符	构造成赫夫曼树。	下列关于该		赫夫曼树的叙
述中,错误的是。				
A. 该树一定是一棵完全二叉树				
B. 树中一定没有度为1的结点				
C. 树中两个权值最小的结点一定是!	兄弟结点			
D. 树中任一非叶结点的权值一定不	小于下一层任一结,	点的权值		
7. 若无向图 G=(V, E)中含有 7 个顶点,	要保证图G在任何	情况下都是连通的],则需要的边数最少	▶是。
A. 6 B. 15	C. 16	D. 21		

8. 对图 B-2 进行拓扑排序,可以得到不同的拓扑序列的个数是_

9. 已知一个长度为 16 的顺序表 L, 其元素按关键字有序排列。若采用折半查找法查找

图 B-2

一个 L 中不存在的元素,则关键字的比较次数最多的是。	
A. 4 B. 5 C. 6 D. 7	
10. 采用递归方式对顺序表进行快速排序。下列关于递归次数的叙述中,正确的是。	
A. 递归次数与初始数据的排列次序无关	
B. 每次划分后, 先处理较长的分区可以减少递归次数	
C. 每次划分后,先处理较短的分区可以减少递归次数	
D. 递归次数与每次划分后得到的分区的处理顺序无关	
11. 对一组数据(2,12,16,88,5,10)进行排序,若前三趟排序结果如下:	
第一趟排序结果: 2, 12, 16, 5, 10, 88	
第二趟排序结果: 2, 12, 5, 10, 16, 88	
第三趟排序结果: 2, 5, 10, 12, 16, 88	
则采用的排序方法可能是。	
A. 冒泡排序 B. 希尔排序 C. 归并排序 D. 基数排序	
12. 下列选项中,能缩短程序执行时间的措施是。	
I. 提高 CPU 时钟频率 II. 优化数据通路结构	
III. 对程序进行编译优化	
A. 仅 I 和 II B. 仅 I 和 III C. 仅 II 和 III D. I 、 II 和 III	
13. 假定有 4 个整数用 8 位补码分别表示 r1=FEH,r2=F2H,r3=90H,r4=F8H,若将运算结果存放在一个	· 8 位寄
存器中,则下列运算中会发生溢出的是。	
A. $r1 \times r2$ B. $r2 \times r3$	
C. $r1 \times r4$ D. $r2 \times r4$	
14. 假定变量 i、f 和 d 的数据类型分别为 int、float 和 double(int 用补码表示,float 和 double 分别用 IEE	
精度和双精度浮点数格式表示),已知 i=785,f=1.5678e3,d=1.5e100。若在 32 位机器中执行下列关系表达式,	则结果
为"真"的是。	
I. $i=(int)(float)i$ II. $f=(float)(int)f$	
III. f=(float)(double)f	
A. 仅 I 和 II B. 仅 I 和 III C. 仅 II 和 III D. 仅 III 和 IV 15. 假定用若干个 2K×4 位的芯片组成一个 8K×8 位的存储器,则地址 0B1FH 所在芯片的最小地址是	
13. 假定用有干了 28.44 位的心方组成	<u> </u>
16. 下列有关 RAM 和 ROM 的叙述中,正确的是。	
I. RAM 是易失性存储器,ROM 是非易失性存储器	
II. RAM 和 ROM 都采用随机存取方式进行信息访问	
III. RAM 和 ROM 都可用作 Cache	
IV. RAM 和 ROM 都需要进行刷新	
A. 仅 I 和 II B. 仅 II 和 III	
C. 仅 I 、II和IV D. 仅 II 、III和IV	
17. 下列命中组合情况中,一次访存过程中不可能发生的是。	
A. TLB 未命中,Cache 未命中,Page 未命中	
B. TLB 未命中,Cache 命中,Page 命中	
C. TLB 命中,Cache 未命中,Page 命中	
D. TLB 命中,Cache 命中,Page 未命中	
18. 下列寄存器中,汇编语言程序员可见的是。	
A. 存储器地址寄存器(MAR) B. 程序计数器(PC)	
C. 存储器数据寄存器(MDR) D. 指令寄存器(IR)	
19. 下列选项中,不会引起指令流水线阻塞的是。	
A. 数据旁路(转发) B. 数据相关	

C. 条件转移

- D. 资源冲突
- 20. 下列选项中的英文缩写均为总线标准的是。
 - A. PCI, CRT, USB, EISA
 - B. ISA, CPI, VESA, EISA
 - C. ISA, SCSI, RAM, MIPS
 - D. ISA, EISA, PCI, PCI-Express
- 21. 单级中断系统中,中断服务程序内的执行顺序是___
 - I. 保护现场
- II. 开中断
- III. 美中断
- Ⅳ. 保存断点

- V. 中断事件处理 VI. 恢复现场
- Ⅶ. 中断返回
- A. $I \rightarrow V \rightarrow VI \rightarrow II \rightarrow VII$
- B. $III \rightarrow I \rightarrow V \rightarrow VII$
- C. $III \rightarrow IV \rightarrow V \rightarrow VI \rightarrow VII$
- D. $\mathbb{N} \to \mathbb{I} \to \mathbb{N} \to \mathbb{N} \to \mathbb{N}$
- 22. 假定一台计算机的显示存储器用 DRAM 芯片实现,若要求显示分辨率为 1600×1200,颜色深度为 24 位,帧 频为 85Hz,显存总带宽的 50%用来刷新屏幕,则需要的显存总带宽至少约为。
 - A. 245Mbit/s

B. 979Mbit/s

C. 1 958Mbit/s

- D. 7 834Mbit/s
- 23. 下列选项中,操作系统提供给应用程序的接口是_____
 - A. 系统调用

B. 中断

C. 库函数

- D. 原语
- 24. 下列选项中,导致创建新进程的操作是_____。
 - Ⅰ. 用户登录成功 Ⅱ. 设备分配
- III. 启动程序执行

- A. 仅 I 和 II
- B. 仅II和III
- C. 仅 I 和III
- D. I、II和III
- 25. 设与某资源关联的信号量初值为 3,当前值为 1。若 M 表示该资源的可用个数,N 表示等待该资源的进程数,则 M、N 分别是_____。
 - A. 0, 1
- B. 1, 0
- C. 1, 2
- D. 2, 0
- 26. 下列选项中,降低进程优先级的合理时机是。
 - A. 进程的时间片用完
 - B. 进程刚完成 I/O, 进入就绪列队
 - C. 进程长期处于就绪列队中
 - D. 进程从就绪状态转为运行状态
- 27. 进程 P0 和 P1 的共享变量定义及其初值为:

boolean flag[2];

int turn=0;

flag[0]=FALSE; flag[1]=FALSE;

若进程 P0 和 P1 访问临界资源的类 C 伪代码实现如下:

```
void P0() //进程 P0
{
while(TRUE)
{
    flag[0]=TRUE; turn=1;
    while(flag[1]&&(turn==1))
        ;
    临界区;
    flag[0]=FALSE;
}
}
```

```
void P1() //进程 P1
{
  while(TRUE)
{
    flag[1]=TRUE; turn=0;
    while(flag[0]&&(turn==0))
    ;
    临界区;
    flag[1]=FALSE;
}
}
```

则并发执行进程 P0 和 P1 时产生的情形是。

A. 不能保证进程互斥进入临界区,会出现"饥饿"现象

	28. 释放	C. D. 某题	不能保证进程互能保证进程互斥能保证进程互斥能保证进程互斥基于动态分区存储原序为:分配 15M	进入进入	临界区,会日 临界区,不是的计算机,	出现"切 会出现' 其主存?	L饿"现象 '饥饿"现象 ^{字量为 55MI}	! 3 (初始					
			7MB L質和立田一紹五				10MB				五丰福日	는 J. 쓰 2D	` ''
为:	29.	米1	十算机采用二级页	衣的	刀分贝仔陌官	理 力 八,	按子下编习	E,贝力	ヘハン	J 2~B, ∫	八衣坝)	人小为 2B,	这 挥地址结构
/3:					Z 3 1		= 1			/心42目	_		
					页目录号		页号			偏移量			
	逻辑	地	业空间大小为 216	页,	则表示整个	逻辑地	址空间的页	目录表	を中包	含表项目	的个数字	至少是	°
		A.	64	В.	128	C.	256	Γ). 51	2			
			文件索引节点中有										
			可接地址索引,每	个地	址项大小为	4B。若研	兹盘索引块和	口磁盘数	数据均	快大小均	为 256B	,则可表示	示的单个文件最
大长					510HD	a	1.055110			. 510HD			
					519KB		1 057KB	L). 16	513KB			
			置当前工作目录的 节省外存空间	上多			节省内存空	रांन					
			加快文件的检索	凍度					東度				
			也用户通过键盘登										
			命令解释程序	.~!~	196-19 H76		中断处理程						
			系统调用服务程	序			用户登录程						
			列选项中,不属于		S体系结构所								
			网络的层次				每层使用的						
			协议的内部实现:	细节			每层必须完		 計能				
			图 B-3 所示的采用					3/9 4 H 3 /	7110				络中,所有链
			俞速率为 100Mbit∕										大小为 20B。
若主	机 H	1 向]主机 H2 发送一/	个大	小为 980 000	B 的文件	丰,则在不			Ψ-			考虑分组拆装
时间	和传	播到	延迟的情况下,从	H1 :	发送开始到 I	12 接收5	完为止,需	Н1				H2	要的时间至少
是		0									ſ		
		A.	80ms			В.	80.08ms			图 B-	.3		
		C.	80.16ms			D.	80.24ms						
	35.	某	自治系统内采用 R	IP 🕏	议,若该自	治系统区	内的路由器]	R1 收至	其邻	居路由都	肾R2的	距离矢量,	距离矢量中包
含信	息 <n< td=""><td>et1,</td><td>16>,则能得出的</td><td>结论</td><td>论是。</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></n<>	et1,	16>,则能得出的	结论	论是。								
		A.	R2 可以经过 R1	到达	net1,跳数	为17							
			R2 可以到达 net										
			R1 可以经过 R2			为17							
			R1 不能经过 R2										
			各由器 R 因为拥塞	丢到	平 IP 分组,则				组的》	原主机发	送的 IC	MP 报文类	型是。
			路由重定向				目的不可达	5					
		C.	源点抑制			D.	超时						

37. 某网络的 IP 地址空间为 192.168.5.0/24, 采用定长子网划分, 子网掩码为 255.255.255.248, 则该网络中的最大

B. 32, 6

D. 8, 30

A. 32, 8

C. 8, 32

子网个数、每个子网内的最大可分配地址个数分别是____。

38. 下列网络设备中, 能够抑制广播风暴的是。

I. 中继器

II. 集线器

Ⅲ. 网桥

IV. 路由器

A. 仅I和II

B. 仅III

C. 仅III和IV

D. 仅IV

39. 主机甲和主机乙之间已建立了一个 TCP 连接, TCP 最大段长度为 1 000B。若主机甲的当前拥塞窗口为 4 000B,在主机甲向主机乙连续发送两个最大段后,成功收到主机乙发送的第一个段的确认段,确认段中通告的接收窗口大小为 2 000B,则此时主机甲还可以向主机乙发送的最大字节数是____。

A. 1000

B. 2000

C. 3000

D. 4000

40. 如果本地域名服务器无缓存,当采用递归方法解析另一网络某主机域名时,用户主机、本地域名服务器发送的域名请求消息数分别为。

A. 一条、一条

B. 一条、多条

C. 多条、一条

D. 多条、多条

二、综合应用题: 第41~47 题, 共70 分。

- 41.(10 分)将关键字序列(7、8、30、11、18、9、14)散列存储到散列表中。散列表的存储空间是一个下标从0开始的一维数组,散列函数为 H(key)=(key×3) mod 7,处理冲突采用线性探测再散列法,要求装填(载)因子为0.7。
 - 1)请画出所构造的散列表。
 - 2) 分别计算等概率情况下查找成功和查找不成功的平均查找长度。
- 42. (13 分) 设将 n (n>1) 个整数存放到一维数组 R 中。试设计一个在时间和空间两方面都尽可能高效的算法。将 R 中保存的序列循环左移 p (0<p<n) 个位置,即将 R 中的数据由 ($X_0, X_1, \cdots, X_{n-1}$) 变换为 ($X_p, X_{p+1}, \cdots, X_{n-1}, X_0, X_1, \cdots, X_{n-1}$)。要求:
 - 1)给出算法的基本设计思想。
 - 2)根据设计思想,采用 C、C++或 Java 语言描述算法,关键之处给出注释。
 - 3) 说明你所设计算法的时间复杂度和空间复杂度。
- 43. (11 分)某计算机字长为 16 位,主存地址空间大小为 128KB,按字编址。采用单字长指令格式,指令各字段 定义如图 B-4 所示。

- 1	5 12	11	6	5	0
	OP	Ms	Rs	Md	Rd
		酒場作 粉		日的操作粉	

图 B-4

转移指令采用相对寻址方式,相对偏移量用补码表示,寻址方式定义见表 B-1。

表 B-1

Ms/Md	寻址方式	助记符	含义
000B	寄存器直接	Rn	操作数=(Rn)
001B	寄存器间接	(Rn)	操作数=((Rn))
010B	寄存器间接、自增	(Rn)+	操作数=((Rn)),(Rn)+1→Rn
011B	相对	D(Rn)	转移目标地址=(PC)+(Rn)

注: (X)表示存储器地址 X 或寄存器 X 的内容。

请回答下列问题:

- 1)该指令系统最多可有多少条指令?该计算机最多有多少个通用寄存器?存储器地址寄存器(MAR)和存储器数据寄存器(MDR)至少各需要多少位?
 - 2) 转移指令的目标地址范围是多少?
- 3) 若操作码 0010B 表示加法操作(助记符为 add),寄存器 R4 和 R5 的编号分别为 100B 和 101B,R4 的内容为 1234H,R5 的内容为 5678H,地址 1234H 中的内容为 5678H,地址 5678H 中的内容为 1234H,则汇编语言为"add(R4).

(R5)+"(逗号前为源操作数,逗号后为目的操作数)对应的机器码是什么(用十六进制表示)?该指令执行后,哪些寄存器和存储单元中的内容会改变?改变后的内容是什么?

44. (12 分) 某计算机的主存地址空间大小为 256MB, 按字节编址。指令 Cache 和数据 Cache 分离, 均有 8 个 Cache 行, 每个 Cache 行大小为 64B, 数据 Cache 采用直接映射方式。现有两个功能相同的程序 A 和 B, 其伪代码如下:

```
程序 B:
int a[256][256]
......
int sum_array2()
{
int i,j,sum=0;
for(j=0;j<256;j++)
   for(i=0;i<256;i++)
        sum+=a[i][j];
   return sum;
}
```

假定 int 类型数据用 32 位补码表示,程序编译时 i、j、sum 均分配在寄存器中,数组 a 按行优先方式存放,其首地 址为 320 (十进制数)。请回答下列问题,要求说明理由或给出计算过程。

- 1) 若不考虑用于 Cache 一致性维护和替换算法的控制位,则数据 Cache 的总容量为多少?
- 2) 数组元素 a[0][31]和 a[1][1]各自所在的主存块对应的 Cache 行号分别是多少(Cache 行号从 0 开始)?
- 3)程序A和B的数据访问命中率各是多少?哪个程序的执行时间更短?
- 45. (7分)假设计算机系统采用 CSCAN (循环扫描)磁盘调度策略,使用 2KB 的内存空间记录 16 384 个磁盘块的空闲状态。
 - 1) 请说明在上述条件下如何进行磁盘块空闲状态的管理。
- 2)设某单面磁盘旋转速度为6000r/min,每个磁道有100个扇区,相邻磁道间的平均移动时间为1ms。若在某时刻,磁头位于100号磁道处,并沿着磁道号增大的方向移动(如图B-5所示),磁道号请求队列为50,90,30,120,对请求队列中的每个磁道需读取1个随机分布的扇区,则读完这4个扇区点共需要多少时间?要求给出计算过程。
- 3) 如果将磁盘替换为随机访问的 Flash 半导体存储器(如 U 盘、SSD 等),是否有比 CSCAN 更高效的磁盘调度 策略?若有,给出磁盘调度策略的名称并说明理由;若无,说明理由。

46. (8 分)设某计算机的逻辑地址空间和物理地址空间均为 64KB,按字节编址。若某进程最多需要 6 页(Page)数据存储空间,页的大小为 1KB,操作系统采用固定分配局部置换策略为此进程分配 4 个页框(Page Frame)。在时刻 260 前的该进程访问情况见表 B-2(访问位即使用位)。

表 B-2

页号	页框号	装入时刻	访问位
0	7	130	1
1	4	230	1
2	2	200	1
3	9	260	1

当该进程执行到时刻 260 时,要访问逻辑地址为 17CAH 的数据。请回答下列问题:

1) 该逻辑地址对应的页号是多少?

- 2) 若采用先进先出 (FIFO) 置换算法,该逻辑地址对应的物理地址是多少? 要求给出计算过程。
- 3) 若采用时钟(CLOCK)置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程(设搜索下一页的指针沿顺时针方向移动,且当前指向2号页框,示意图如图B-6所示)。
- 47. (9分) 某局域网采用 CSMA/CD 协议实现介质访问控制,数据传输速率为10Mbit/s,主机甲和主机乙之间的距离为2km,信号传播速度为200000km/s。请回答下列问题,要求说明理由或写出计算过程。
- 1) 若主机甲和主机乙发送数据时发生冲突,则从开始发送数据时刻起,到 两台主机均检测到冲突时刻止,最短需经过多长时间?最长需经过多长时间(假 设主机甲和主机乙发送数据过程中,其他主机不发送数据)?
- 2) 若网络不存在任何冲突与差错,主机甲总是以标准的最长以太网数据帧(1518B)向主机乙发送数据,主机乙每成功收到一个数据帧后立即向主机甲发送一个64B的确认帧,主机甲收到确认帧后方可发送下一个数据帧。此时主机甲的有效数据传输速率是多少(不考虑以太网的前导码)?

2010 年计算机学科专业基础综合试题参考答案

一、单项选择题

1.	D	2.	C	3.	D	4.	C	5.	В	6.	A	7.	C	8.	В
9.	В	10.	D	11.	A	12.	D	13.	В	14.	В	15.	D	16.	A
17.	D	18.	В	19.	A	20.	D	21.	A	22.	D	23.	A	24.	C
25.	В	26.	A	27.	D	28.	В	29.	В	30.	C	31.	C	32.	В
33.	C	34.	C	35.	D	36.	C	37.	В	38.	D	39.	Α	40.	Α

二、综合应用题

41. 解答:

1) 由装载因子为 0.7,数据总数为 7,得一维数组大小为 7/0.7=10,数组下标为 $0\sim9$ 。所构造的散列函数值见表 B-3。

key	7	8	30	11	18	9	14
H(key)	0	3	6	5	5	6	0

采用线性探测再散列法处理冲突,所构造的散列表见表 B-4。

表 B-4

地址	0	1	2	3	4	5	6	7	8	9
关键字	7	14		8		11	30	18	9	

2) 查找成功时,是根据每个元素查找次数来计算平均长度的,在等概率的情况下,各关键字的查找次数见表 B-5。

表 B-5

key	7	8	30	11	18	9	14
次数	1	1	1	1	3	3	2

故 ASL 成于 查找次数/元素个数=(1+2+1+1+1+3+3)/7=12/7。

这里要特别防止惯性思维。查找失败时,是根据查找失败位置计算平均次数,根据散列函数 mod 7,初始只可能在 $0\sim6$ 的位置。等概率情况下,查找 $0\sim6$ 位置查找失败的查找次数见表 B-6。

表 B-6

H(key)	0	1	2	3	4	5	6
次数	3	2	1	2	1	5	4

故 ASL 不成是 查找次数/散列后的地址个数=(3+2+1+2+1+5+4)/7=18/7。

42. 解答:

1) 算法的基本设计思想:

可以将这个问题看作是把数组 ab 转换成数组 ba(a 代表数组的前 p 个元素,b 代表数组中余下的 n-p 个元素),先 将 a 逆置得到 $a^{-1}b$, 再将 b 逆置得到 $a^{-1}b^{-1}$,最后将整个 $a^{-1}b^{-1}$ 逆置得到($a^{-1}b^{-1}$) $^{-1}$ =ba。设 Reverse 函数执行将数组元素逆置的操作,对 abcdefgh 向左循环移动 3(p=3)个位置的过程如下:

Reverse (0,p-1)得到 cbadefgh; Reverse (p,n-1)得到 cbahgfed; Reverse (0,n-1)得到 defghabc。

- 注: Reverse 中,两个参数分别表示数组中待转换元素的始末位置。
- 2) 使用 C 语言描述算法如下:

```
void Reverse(int R[], int from, int to) {
   int i, temp;
   for(i=0;i<(to-from+1)/2;i++)
      { temp=R[from+i];R[from+i]=R[to-i];R[to-i]=temp;}
}//Reverse
void Converse(int R[], int n, int p) {
   Reverse(R,0,p-1);
   Reverse(R,0,n-1);
   Reverse(R,0,n-1);
}</pre>
```

3)上述算法中 3 个 Reverse 函数的时间复杂度分别为 O(p/2)、O((n-p)/2)和 O(n/2),故所设计的算法的时间复杂度为 O(n),空间复杂度为 O(1)。

另解,借助辅助数组来实现。

算法思想: 创建大小为 p 的辅助数组 S,将 R 中前 p 个整数依次暂存在 S 中,同时将 R 中后 n-p 个整数左移,然后将 S 中暂存的 p 个数依次放回到 R 中的后续单元。

时间复杂度为 O(n), 空间复杂度为 O(p)。

43. 解答:

- 1)操作码占 4 位,则该指令系统最多可有 2^4 =16 条指令;操作数占 6 位,寻址方式占 3 位,于是寄存器编号占 3 位,则该机最多有 2^3 =8 个通用寄存器;主存容量为 128KB,按字编址,计算机字长为 16 位,划分为 128KB/2B= 2^{16} 个存储单元,故 MDR 和 MAR 至少各需 16 位。
- 2)PC 和 Rn 可表示的地址范围均为 $0\sim2^{16}$ –1,而主存地址空间为 2^{16} ,故转移指令的目标地址范围为 $0000H\sim FFFFH$ $(0\sim2^{16}$ –1)。
 - 3) 汇编语句 "add (R4), (R5)", 对应的机器码为 0010 0011 0001 0101B=2315H。

该指令执行后,寄存器 R5 和存储单元 5678H 的内容会改变。执行后,R5 的内容从 5678H 变成 5679H。存储单元 5678H 中的内容变成该加法指令计算的结果 5678H+1234H=68ACH。

44. 解答:

- 1) 数据 Cache 有 8 个 Cache 行,每个 Cache 行大小为 64B,Cache 中每个字块的 Tag 字段的位数为 28-9=19 位,此外还需使用一个有效位,合计 20 位。因此,数据 Cache 的总容量应为 8×(64+20/8)B=532B。
 - 2) 数组 a 在主存的存放位置及其与 Cache 之间的映射关系如图 B-7 所示。

数组按行优先方式存放,首地址为 320,数组元素占 4 个字节。a[0][31]所在的主存块对应的 Cache 行号为 $(320+31\times4)/64=6$; a[1][1]所在的主存块对应的 Cache 行号为 $(320+256\times4+1\times4)/64$ mod 8=5。

- 3)编译时 I, j, sum 均分配在寄存器中,故数据访问命中率仅考虑数组 a 的情况。
- ① 该程序的特点是数组中的每个元素仅被使用一次。数组 a 按行优先存放,数据 Cache 正好放下数组半行中的全部元素,即元素的存储顺序与使用次序高度的吻合,每个字块的 16 个 int 型元素中,除访问的第一个不会命中,接下来的 15 个都会命中。访问全部字块都符合这一规律,故命中率为 15/16,即程序 A 的数据访问命中率为 93.75%。

图 B-7

② 程序 B 按照数组的列执行外层循环,在执行内层循环的过程中,将连续访问不同行的同一列的数据,不同行的同一列数组使用的是同一个 Cache 单元,每次都不会命中,故命中率为 0。

由于从 Cache 读数据比从主存读数据快很多,所以程序 A 的执行比程序 B 快得多。

注意: 本题考查 Cache 容量计算,直接映射方式的地址计算,以及命中率计算(注意:行优先遍历与列优先遍历命中率差别很大)。 表 B-7

45. 解答:

1) 用位图表示磁盘的空闲状态。每位表示一个磁盘块需要 16 384/32=512 个字= 512×4 个字节=2KB,正好可放在系中。

2) 采用 CSCAN 调度算法,访问磁道的顺序和移动的 B-7。

被访问的下一个磁道号	移动距离(磁道数)
120	20
30	90
50	20
90	40

的空闲状态,共 统提供的内存

磁道数见表

移动的磁道数为 20+90+20+40=170, 故总的移动磁道时间为 170ms。

由于转速为6000r/min,则平均旋转延迟为5ms,总的旋转延迟时间=20ms。

由于转速为 6000r/min,则读取一个磁道上一个扇区的平均读取时间为 0.1ms,总的读取扇区的时间为 0.4ms。

综上,读取上述磁道上所有扇区所花的总时间为190.4ms。

3)采用 FCFS(先来先服务)调度策略更高效。因为 Flash 半导体存储器的物理结构不需要考虑寻道时间和旋转延迟,可直接按 I/O 请求的先后顺序服务。

46. 解答:

1)由于该计算机的逻辑地址空间和物理地址空间均为 $64KB=2^{16}B$,按字节编址,且页的大小为 $1KB=2^{10}B$,故逻辑地址和物理地址的地址格式均为:

页号/页框号(6位)	页内偏移量(10 位)

17CAH=0001 0111 1100 1010B, 可知该逻辑地址的页号为 000101B=5。

- 2)根据 FIFO 算法,需要替换装入时间最早的页,故需要置换装入时间最早的 0 号页,即将 5 号页装入 7 号页框中,所以物理地址为 0001 1111 1100 1010B=1FCAH。
- 3)根据 CLOCK 算法,如果当前指针所指页框的使用位为 0,则替换该页;否则将使用位清零,并将指针指向下一个页框,继续查找。根据题设和示意图,将从 2 号页框开始,前 4 次查找页框号的顺序为 2→4→7→9,并将对应页框的使用位清零。在第 5 次查找中,指针指向 2 号页框,因 2 号页框的使用位为 0,故淘汰 2 号页框对应的 2 号页,把 5 号页装入 2 号页框中,并将对应使用位设置为 1,所以对应的物理地址为 0000 1011 1100 1010B=0BCAH。

47. 解答

1)当主机甲和主机乙同时向对方发送数据时,信号在信道中发生冲突后,冲突信号继续向两个方向传播。这种情况下两台主机均检测到冲突需要经过的时间最短,等于单程的传播时延 t0=(2km)/ (200 000km/s)=0.01ms。

主机甲(或主机乙)先发送一个数据帧,当该数据帧即将到达主机乙(或主机甲)时,主机乙(或主机甲)也开始发送一个数据帧,这时,主机乙(或主机甲)将立刻检测到冲突,而主机甲(或主机乙)要检测到冲突,冲突信号还需要从主机乙(或主机甲)传播到主机甲(或主机乙),因此甲、乙两台主机均检测到冲突所需的最长时间等于双程的传播时延 2t0=0.02ms。

2)主机甲发送一个数据帧的时间,即发送时延 $t1=1518\times8bit/(10Mbit/s)=1.2144ms$; 主机乙每成功收到一个数据帧后,向主机甲发送确认帧,确认帧的发送时延 $t2=(64\times8bit)/(10Mbit/s)=0.0512ms$; 主机甲收到确认帧后,即发送下一数据帧,故主机甲的发送周期 T=数据帧发送时延 t1+确认帧发送时延 t2+双程传播时延=t1+t2+2t0=1.2856ms; 于是主机甲的有效数据传输率为 (1500×8) /T=12000bit/1.2856ms $\approx 9.33Mbit/s$ (以太网有效数据为 1500B,即以太网帧的数据部分)。

2009 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

	~40 小题,每小题 2 分,共 8	80分。下列每题给出的四	个选项中,只有	i一个选项最符
合试题要求。				
1. 为解决计算机主机与	5打印机之间速度不匹配问题,通	通常设置一个打印数据缓冲[区, 主机将要输出	出的数据依次写
入该缓冲区,而打印机则依?	次从该缓冲区中取出数据。该缓	冲区的逻辑结构应该是	o	
		D. 图		
	初始状态均为空,元素 a, b, c,	•	(')	栈 S。若每个元
	且7个元素出队的顺序是b,d,	c, f, e, a, g, 则栈 S	(2) (3)	的容量至少
是。 A. 1 B.	2 C. 3	D. 4 (4) (5)	
	所示。设N代表二叉树的根,L		\rightarrow	R 代表根结点
	字列是 3,1,7,5,6,2,4,则		6 (7)	K NACKSIA
	NRL C. RLN		图 A-1	
	满足平衡二叉树定义的是			
	<u> </u>	_		
\Diamond	$\frac{1}{2}$			
d Ø	P	00		
<i>b</i> 0 (3	4		
А. В.	С.	D.		
	対的第6层(设根为第1层)有8	<u> </u>	对的结点个数 最 。	多是 。
	52 C. 111	D. 119	4 H 4 F H 7 M 1 P 9 M 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1	
6. 将森林转换为对应的	的二叉树,若在二叉树中,结点 ι	ı 是结点 v 的父结点的父结	点,则在原来的	森林中,u和v
可能具有的关系是。				
I. 父子关系	II. 兄弟关系			
Ⅲ. u 的父结点与 v	的父结点是兄弟关系			
A. 只有II B.	I 和 II C. I 和 III	D. I、II和III		
	图特性的叙述中,正确的是	_°		
I. 所有顶点的度之				
Ⅱ. 边数大于顶点个				
Ⅲ. 至少有一个顶点		u b I fuiii		
A. 只有 I				
•	m 阶 B 树定义要求的是			
A. 根结点最多有 m	** * * * *	叶结点都在同一层上		
	均升序或降序排列 D. 叶结		油軟与油料	1 11.44: E1
9. 口知天诞子序列 5, 8 A. 3, 5, 12, 8, 2	,12,19,28,20,15,22 是小根均 8 20 15 22 10	世(取小堆), 個八大键子 3,	炯 金川(似地疋。
B. 3, 5, 12, 19,				
C. 3, 8, 12, 5, 2				
C. J, O, 12, J, Z	0, 13, 22, 20, 17			

]	D. 3	3, 12, 5, 8, 28	8, 20, 15,	22, 19							
10.	若数	效据元素序列 11	, 12, 13,	7, 8, 9,	23,	4,5 是采用	目下列排	非序方法之一	得到的第二	趟排序后的结果	4,则
该排序算	法是	!能是。									
	A.	冒泡排序	B. 插入:	排序	C.	选择排序	D.	二路归并排	序		
11.	冯•	诺依曼计算机中	指令和数据	均以二进制	形式	存放在存储器	器中,Cl	PU 区分它们的	的依据是	o	
	A.	指令操作码的译	科码结果		В.	指令和数据	的寻址》	方式			
		指令周期的不同									
12.		トC 语言程序在							其中 x 和 z	为 int 型. v为	short
		7,y=-9 时,执 <i>1</i>						· -) (12 1 · 2	7,3 1110 11.7 17.3	511011
王。 コ n		x=0000007FH,		•		y 15 2 HJ (EL.)) //1//C	°			
		x=0000007FH,	•								
		x=0000007FH,	-								
			•								
12		x=0000007FH,	•			三管 扣投孔	, A)	手口业心兴 山下空。	止心 .几还.	上粉6570577 \$11 15	3 *\r_1\r
		点数加、减运算;									
		F,且位数分别判 ま B B	3 2 1八4H 1 1	四(均含 2	业何	「亏怪」。右側	月 四 个 多	$(X=2^{-}\times29/32)$	$Y = 2^{3} \times 5/8,$,则用孑思加没	、汀昇
X+Y 的角		结果是。			_						
		00111 1100010				00111 01000	10				
		01000 0010001				发生溢出					
		十算机的 Cache					(即每约	组2块)。每	个主存块大	小为 32B,按字	'节编
址。主存	129	号单元所在主有	 字块应装入:	到的 Cache	组号	;是。					
	A.	0	B. 1		C.	4	D.	6			
15.	某ì	十算机主存容量为	为 64KB,其	其中 ROM	区为	4KB,其余	为 RAN	Æ区,按字节	5编址。现要	E用 2K×8 位的	ROM
芯片和4	K×4	位的 RAM 芯片	来设计该有	存储器,则	需要	上述规格的]	ROM 芯	片数和 RAN	A 芯片数分别	别是。	
	A.	1, 15	B. 2, 15	5	C.	1, 30	D.	2、30			
16.	某机	门器字长为16位,	主存按字	节编址,转	移指	令采用相对表	引 址,	两个字节组成	战,第一字节	为操作码字段,	第二
字节为相	对位	移量字段。假定	取指令时,	每取一个与	Z节 P	C 自动加 1。	若某转	移指令所在主	上存地址为20	000H,相对位科	多量字
段的内容	为0	6H,则该转移指	令成功转移	后的目标地	址是	<u>.</u>					
	A.	2006Н	B. 20071	Н	C.	2008H	D.	2009H			
17.	下列	列关于 RISC 的叙	双述中,错i	吴的是	o						
	A.	RISC 普遍采用	微程序控制	器							
	В.	RISC 大多数指	令在一个时	·钟周期内9	完成						
	C.	RISC 的内部通	用寄存器数	量相对 CI	SC 衾	,					
		RISC 的指令数					小				
18.		+算机的指令流						1时间(忽略。	各功能段ラロ	间的缓存时间)	分别
		s、70ns、和60n							1 7 1101 2 2 1	1111/02/11/11/11/11	73 /33
/ 3 / JOIIS (90ns	B. 80ns	→ Villa Ci			D.				
10		力加。 寸于微程序控制器		坎生!! 哭 的!!			ъ.	OOHS			
19.		指令执行速度慢									
		指令执行速度慢									
		指令执行速度快									
		指令执行速度的						.			
		及某系统总线在 -		期中并行位	传输	4B 信息,-	一个总统	浅周期占用 2	2 个时钟周月	期,总线时钟频	平为
10MHz,	则总	总线带宽是	<u> </u>								
			B. 20MI			40MB/s					
21.	假设	及某计算机的存储	者系统由 Ca	ache 和主存	字组成	龙,某程序执	行过程	中访存 1000	次,其中访问	问 Cache 缺失(未命
中)50%	欠, 师	则 Cache 的命中	率是	.0							
	A.	5%	B. 9.5%		C.	50%	D.	95%			

	22.	卜列选项中,能引起外部中断的事件	是。	
		A. 键盘输入	B. 除数为0	
		A. 键盘输入C. 浮点运算下溢	D. 访存缺页	
	23.	单处理机系统中,可并行的是		
			Ⅲ处理机与通道 Ⅳ设备与设备	
		A. I、II和III		
		C. I、III和IV	D. II、III和IV	
	24	下列进程调度算法中,综合考虑进程		
	24.			
		A. 时间片轮转调度算法		
	2.5	C. 先来先服务调度算法		11.75
Laly J. I			个进程竞争使用,每个进程最多需要 3 台打印机。该系统可能会发	生 处
锁的	JK∄	的最小值是。		
		A. 2 B. 3		
	26.	分区分配内存管理方式的主要保护措		
		A. 界地址保护 B. 程序代码保	沪 C. 数据保护 D. 栈保护	
	27.	一个分段存储管理系统中,地址长度	为 32 位,其中段号占 8 位,则最大段长是。	
		A. 2^8B B. $2^{16}B$	C. $2^{24}B$ D. $2^{32}B$	
	28.	下列文件物理结构中,适合随机访问	且易于文件扩展的是。	
		A. 连续结构	B. 索引结构	
		C. 链式结构且磁盘块定长	D. 链式结构且磁盘块变长	
	29.	假设磁头当前位于第 105 道,正在向	磁道序号增加的方向移动。现有一个磁道访问请求序列为 35,45,	12,
68,	110,	,180,170,195,采用 SCAN 调度(电梯调度)算法得到的磁道访问序列是	
			5, 12 B. 110, 68, 45, 35, 12, 170, 180, 195	
			5, 68 D. 12, 35, 45, 68, 110, 170, 180, 195	
	30.	文件系统中,文件访问控制信息存储		
	50.		C. 用户口令表 D. 系统注册表	
	31		E建立 F1 的符号链接(软链接)文件 F2,再建立 F1 的硬链接文件:	F3
妖后		F1。此时, $F2$ 和 $F3$ 的引用计数值分		1 3 ,
1111/L	נציון נינונו ו		C. 1, 2 D. 2, 1	
	22	程序员利用系统调用打开 I/O 设备时		
			AN COMPANY OF THE PROPERTY OF	
		A. 逻辑设备名		
	2.2	C. 主设备号	D. 从设备号	
	33.	在OSI参考模型中,自下而上第一个		
			C. 会话层 D. 应用层	h.
			宽为 3kHz,采用 4 个相位,每个相位具有 4 种振幅的 QAM 调制技	术,
则该	通信	f链路的最大数据传输速率是。		
			C. 48Kbit/s D. 96Kbit/s	
			协议,发送方已经发送了编号为 0~7 的帧。当计时器超时时,若发	送方
只收	到 0)、2、3号帧的确认,则发送方需要重	发的帧数是。	
		A. 2 B. 3	C. 4 D. 5	
	36.	以太网交换机进行转发决策时使用的	PDU 地址是。	
		A. 目的物理地址	B. 目的 IP 地址	
		C. 源物理地址	D. 源 IP 地址	
	37.	在一个采用 CSMA/CD 协议的网络中	,传输介质是一根完整的电缆,传输速率为 1Gbit/s,电缆中的信号	传播
速度			00bit,则最远的两个站点之间的距离至少需要。	
		A. 增加 160m	B. 增加 80m	
		C. 减少 160m	D. 减少 80m	
		7 - No.	7 × 40	

38. 主机甲与主机乙之间已建立一个 TCP 连接, 主机甲向主机乙发送了两个连续的 TCP 段, 分别包含 300B 和 500B 的有效载荷, 第一个段的序列号为 200, 主机乙正确接收到两个段后, 发送给主机甲的确认序列号是 。

A. 500

- B. 700
- C. 800
- D. 1000

39. 一个 TCP 连接总是以 1KB 的最大段长发送 TCP 段,发送方有足够多的数据要发送。当拥塞窗口为 16KB 时发生了超时,如果接下来的 4 个 RTT (往返时间) 时间内的 TCP 段的传输都是成功的,那么当第 4 个 RTT 时间内发送的所有 TCP 段都得到肯定应答时,拥塞窗口大小是

A. 7KB

- B. 8KB
- C. 9KB
- D. 16KB
- 40. FTP 客户和服务器间传递 FTP 命令时,使用的连接是_____
 - A. 建立在 TCP 之上的控制连接
- B. 建立在 TCP 之上的数据连接
- C. 建立在 UDP 之上的控制连接
- D. 建立在 UDP 之上的数据连接
- 二、综合应用题: 第41~47 题, 共70 分。
- 41. (10 分) 带权图(权值非负,表示边连接的两项点间的距离)的最短路径问题是找出从初始项点到目标项点之间的一条最短路径。假设从初始项点到目标项点之间存在路径,现有一种解决该问题的方法:
 - ① 设最短路径初始时仅包含初始顶点,令当前顶点 u 为初始顶点;
 - ② 选择离 u 最近且尚未在最短路径中的一个顶点 v, 加入到最短路径中, 修改当前顶点 u=v;
 - ③ 重复步骤②, 直到 u 是目标顶点时为止。

请问上述方法能否求得最短路径?若该方法可行,请证明之;否则,请举例说明。

42. (15分) 已知一个带有表头结点的单链表,结点结构为:

data	link

假设该链表只给出了头指针 list。在不改变链表的前提下,请设计一个尽可能高效的算法,查找链表中倒数第 k 个位置上的结点(k 为正整数)。若查找成功,算法输出该结点的 data 域的值,并返回 1;否则,只返回 0。要求:

- 1) 描述算法的基本设计思想。
- 2) 描述算法的详细实现步骤。
- 3)根据设计思想和实现步骤,采用程序设计语言描述算法(使用 C、C++或 Java 语言实现),关键之处请给出简要注释。
- 43. (8 分) 某计算机的 CPU 主频为 500MHz, CPI 为 5 (即执行每条指令平均需 5 个时钟周期)。假定某外设的数据传输率为 0.5MB/s,采用中断方式与主机进行数据传送,以 32 位为传输单位,对应的中断服务程序包含 18 条指令,中断服务的其他开销相当于 2 条指令的执行时间。请回答下列问题,要求给出计算过程。
 - 1) 在中断方式下, CPU 用于该外设 I/O 的时间占整个 CPU 时间的百分比是多少?
- 2) 当该外设的数据传输率达到 5MB/s 时,改用 DMA 方式传送数据。假定每次 DMA 传送块大小为 5000B,且 DMA 预处理和后处理的总开销为 500 个时钟周期,则 CPU 用于该外设 I/O 的时间占整个 CPU 时间的百分比是多少(假设 DMA 与 CPU 之间没有访存冲突)?
- 44. (13 分) 某计算机字长为 16 位,采用 16 位定长指令字结构,部分数据通路结构如图 A-2 所示,图中所有控制信号为 1 时表示有效、为 0 时表示无效。例如,控制信号 MDRinE 为 1 表示允许数据从 DB 打入 MDR,MDRin 为 1 表示允许数据从内总线打入 MDR。假设 MAR 的输出一直处于使能状态。加法指令"ADD (R1),R0"的功能为(R0)+((R1)) →(R1),即将 R0 中的数据与 R1 的内容所指主存单元的数据相加,并将结果送入 R1 的内容所指主存单元中保存。

图 A-2

表 A-1 给出了上述指令取指和译码阶段每个节拍(时钟周期)的功能和有效控制信号,请按表中描述方式用表格. 列出指令执行阶段每个节拍的功能和有效控制信号。

	₹ A-1						
时钟	功能	有效控制信号					
C1	MAR←(PC)	PCout, MARin					
C2	MDR←M(MDR) PC←(PC)+1	MemR, MDRinE, PC+1					
C3	IR←(MDR)	MDRout, IRin					
C4	指令译码	无					

表 4-1

45. (7分) 三个进程 P1、P2、P3 互斥使用一个包含 N (N>0) 个单元的缓冲区。P1 每次用 produce()生成一个正整数并用 put()送入缓冲区某一空单元中; P2 每次用 getodd()从该缓冲区中取出一个奇数并用 countodd()统计奇数个数; P3 每次用 geteven()从该缓冲区中取出一个偶数并用 counteven()统计偶数个数。请用信号量机制实现这三个进程的同步与互斥活动,并说明所定义信号量的含义(要求用伪代码描述)。

46. (8分)请求分页管理系统中,假设某进程的页表内容见表 A-2。

表 A-2

页号	页框 (Page Frame) 号	有效位(存在位)
0	101H	1
1		0
2	254Н	1

页面大小为 4KB,一次内存的访问时间为 100ns,一次快表(TLB)的访问时间为 10ns,处理一次缺页的平均时间为 10⁸ns(已含更新 TLB 和页表的时间),进程的驻留集大小固定为 2,采用最近最少使用置换算法(LRU)和局部淘汰策略。假设①TLB 初始为空;②地址转换时先访问 TLB,若 TLB 未命中,再访问页表(忽略访问页表之后的 TLB 更新时间);③有效位为 0 表示页面不在内存中,产生缺页中断,缺页中断处理后,返回到产生缺页中断的指令处重新执行。设有虚地址访问序列 2362H、

1565H、25A5H, 请问:

- 1) 依次访问上述三个虚地址,各需多少时间?给出计算过程。
- 2) 基于上述访问序列, 虚地址 1565H 的物理地址是多少? 请说明理由。
- 47. (9 分) 某网络拓扑如图 A-3 所示,路由器 R1 通过接口 E1、E2 分别连接局域网 1、局域网 2,通过接口 L0 连接路由器 R2,并通过路由器 R2 连接域名服务器与互联网。R1 的 L0 接口的 IP 地址是 202.118.2.1,R2 的 L0 接口的 IP 地址是 202.118.2.2,L1 接口的 IP 地址是 130.11.120.1,E0 接口的 IP 地址是 202.118.3.1,域名服务器的 IP 地址是 202.118.3.2。

图 A-3

R1 和 R2 的路由表结构为:

目的网络 IP 地址	子网掩码	下一跳 IP 地址	接口
			_

- 1)将 IP 地址空间 202.118.1.0/24 划分为 2 个子网,分别分配给局域网 1、局域网 2,每个局域网需分配的 IP 地址数不少于 120 个。请给出子网划分结果,说明理由或给出必要的计算过程。
- 2) 请给出 R1 的路由表,使其明确包括到局域网 1 的路由、局域网 2 的路由、域名服务器的主机路由和互联网的路由。
 - 3)请采用路由聚合技术,给出R2到局域网1和局域网2的路由。

2009 年计算机学科专业基础综合试题参考答案

一、单项选择题

В C 3. D 4. B 5. C 1. 2. 6. 7. A 8. D 15. D 9. Α 10. B 11. C 12. D 13. D 14. C 16. C 19. D 17. A 18. A 20. B 21. D 22. A 23. D 24. D 25. C 26. A 27. C 28. B 29. A 30. A 31. B 32. A 33. B 34. B 35. C 36. A 37. D 38. D 39. C 40. A

二、综合应用题

41. 解答:

该方法不一定能(或不能)求得最短路径。

举例说明:

图 A-4 中,设初始顶点为 1,目标顶点为 4,欲求从顶点 1 到顶点 4 之间的最短路径,显然这两点之间的最短路径长度为 2。利用给定方法求得的路径长度为 3,但这条路径并不是这两点之间的最短路径。

图 A-5 中,设初始顶点为 1,目标顶点为 3,欲求从顶点 1 到顶点 3 之间的最短路径。利用给定的方法,无法求出顶点 1 到顶点 3 的路径。

42. 解答:

1) 算法的基本设计思想:

问题的关键是设计一个尽可能高效的算法,通过链表的一趟遍历,找到倒数第 k 个结点的位置。算法的基本设计思想: 定义两个指针变量 p 和 q, 初始时均指向头结点的下一个结点(链表的第一个结点)。p 指针沿链表移动,当 p 指针移动到第 k 个结点时,q 指针开始与 p 指针同步移动;当 p 指针移动到最后一个结点时,q 指针所指示结点为倒数 第 k 个结点。以上过程对链表仅进行一遍扫描。

- 2) 算法的详细实现步骤:
- ① count=0, p和q指向链表表头结点的下一个结点;
- ② 若p为空,转⑤;
- ③ 若 count 等于 k,则 q 指向下一个结点;否则,count=count+1;
- ④ p指向下一个结点,转②;
- ⑤ 若 count 等于 k,则查找成功,输出该结点的 data 域的值,返回 1;否则,说明 k 值超过了线性表的长度,查找失败,返回 0;
 - ⑥ 算法结束。
 - 3) 算法实现:

```
typedef int ElemType; //链表数据的类型定义
typedef struct LNode{ //链表结点的结构定义
ElemType data; //结点数据
struct Lnode *link; //结点链接指针
} *LinkList;
int Search_k(LinkList list,int k){
```

```
//查找链表 list 倒数第 k 个结点,并输出该结点 data 域的值
   LinkList p=list->link,q=list->link;
                                         //指针 p、q 指示第一个结点
   int count=0;
                                          //遍历链表直到最后一个结点
   while (p!=NULL) {
      if(count<k) count++;</pre>
                                          //计数,若 count<k 只移动 p
      else q=q->link;p=p->link;
                                          //之后让p、q 同步移动
   } //while
   if (count<k)
                                          //查找失败返回 0
      return 0:
                                          //否则打印并返回1
   else {
     printf("%d",q->data);
      return 1;
} //Search_k
```

提示: 算法程序题,如果能够写出数据结构类型定义,正确的算法思想都会至少给一半以上分数,如果能用伪代码写出自然更好,比较复杂的地方可以直接用文字表达。

43. 解答:

1)按题意,外设每秒传送 0.5MB,中断时每次传送 4B。中断方式下,CPU 每次用于数据传送的时钟周期为 5×18+5×2=100。

为达到外设 0.5MB/s 的数据传输率,外设每秒申请的中断次数为 0.5MB/4B=125 000。

1s 内用于中断的开销为 100×125 000=12 500 000=12.5M 个时钟周期。

CPU 用于外设 I/O 的时间占整个 CPU 时间的百分比为 12.5M/500M=2.5%。

2) 当外设数据传输率提高到 5MB/s 时,改用 DMA 方式传送,每次 DMA 传送 5 000B,1s 内需产生的 DMA 次数 为 5MB/5 000B=1 000。

CPU 用于 DMA 处理的总开销为 1 000×500=500 000=0.5M 个时钟周期。

CPU 用于外设 I/O 的时间占整个 CPU 时间的百分比为 0.5M/500M=0.1%。

44. 解答:

一条指令的执行过程通常由取指、译码和执行 3 个步骤完成,本题中取指用 3 个节拍、译码用 1 个节拍,执行加法运算并把结果写入主存如何完成呢?包括划分执行步骤、确定完成的功能、要提供的控制信号,这是本题要测试的内容。为回答这个问题,首先要看清图 A-2 中给出的部件组成情况和信息传送的路径。

要完成的功能是(R0)+((R1))→(R1), 从图 A-2 中看到:

- 1) R0、R1 都有送自己的内容到内总线的路径,控制信号分别是 R0out 和 R1out。
- 2) ALU 加运算, 2 个数据由工作寄存器 A 和内总线提供,控制信号是 Add; A 只接收内总线的内容,控制信号是 Ain; 结果需存 AC,控制信号是 ACin; AC 的内容可送内总线,控制信号是 ACout。
 - 3) PC 可接收内总线的内容,还可增 1,控制信号是 PCin 和 PC+1, PC 的内容可送内总线,控制信号是 PCout。
 - 4) 指令寄存器 IR 可接收内总线的内容,控制信号是 IRin。
 - 5)读/写存储器时,地址由 MAR 经 AB 提供,MAR 只接收总线上的信息,控制信号是 MARin。
- 6) 读存储器,提供读命令 MemR,并通过 DB 送入 MDR,控制信号是 MDRinE; MDR 的内容可送入总线,控制信号是 MDRout。
 - 7) 写存储器,提供写命令 MemW,数据由 MDR 通过 DB 送到存储器的数据引脚,控制信号是 MDRoutE。

然后是划分执行步骤、确定每步完成的功能、需要提供的控制信号。这是由指令应完成的功能、计算机硬件的实际组成情况和信息传送的可用路径共同决定的,基本原则是步骤越少越好。硬件电路要能支持,可以有多种方案,解题时应参照给出的答题格式,即取指和译码阶段的表 A-1 的内容,但不必把表已有的内容再抄一遍。

划分指令执行步骤、确定每步完成的功能、给出需要提供的控制信号。

请注意,(R0)+((R1))表示: R0 寄存器的内容与 R1 作地址从主存中读出来的数据完成加法运算; 而→(R1)表示把 R1 的内容作为主存储器的地址完成写主存操作。为防止出现误解,题中还特地对此作了文字说明。这条指令的功能是 先到主存储器取一个数,之后运算,再将结果写回主存储器。

- 1) 执行相加运算,需把存储器中的数据读出,为此首先送地址,将R1的内容送MAR,控制信号是R1out、MARin。
- 2) 启动读主存操作,读出的内容送入 MDR,控制信号是 MemR、MDRinE。还可同时把 R0 的内容经内总线送入

A,用到的控制信号是R0out、Ain。

- 3) 执行加法运算,即 A的内容与MDR的内容相加,结果保存到AC,控制信号是MDRout、Add、ACin。
- 4)要把 AC 的内容写入主存,由于 R1 的内容已经在 MAR 中,地址已经有了,但需要把写入的数据(已经在 AC 中)经内总线送入 MDR,控制信号是 ACout、MDRin。

5)给出写主存的命令,把 MDR 的内容经 DB 送存储器的数据线引脚,执行写操作,控制信号是 MDRoutE、MemW。这几个步骤是有先后次序的,前面的完成了,下一步才可以执行,保证了不会产生硬件线路的冲突。请注意,使用最为频繁的是内总线,它在任何时刻只能接收一个输入数据,并且向内总线发送信息的电路只能以三态门器件连接到内总线,5个向内总线发送信息的控制信号(ACout、PCout、R0out、R1out、MDRout)最多只能有一个为1,其他4个必须全为0,或者5个全为0。

仔细看一下,发现可以把第 2) 个步骤的操作划分到两个步骤中完成,一个步骤中安排 MDR 接收从存储器中读出的内容,到另外一个步骤实现 R0 的内容送入 A, 这多用了一个操作步骤,指令的执行速度会变慢。有些解题者在写存储器之前,还会再执行一次把 R1 的内容送 MAR, 尽管无此必要,但不属于原理上的错误。

当然还可以有其他的设计结果。

解题时这些叙述内容不必写出来(这里写出这些内容是希望帮助大家领会本题要测试的知识点和指令的执行过程),直接按照已经给出的表格的形式、提供的填写办法把设计的表格及其内容填好就可以了。

请注意,题目表格内容(告诉你答题的格式和答题内容的表达方式)与你答题的表格内容合在一起才是这条指令完整的执行过程,千万不要产生任何错觉。

参考答案一见表 A-3。

"A←(R0)"也可在 C7 "AC←(MDR)+(A)"之前单列的一个时钟周期内执行。

参考答案二见表 A-4。

表 A-3

时钟	功能	有效控制信号
C5	MAR←(R1)	R1out, MARin
C6	MDR←M(MAR) A←(R0)	MemR, MDRinE, R0out, Ain
C7	AC←(MDR)+(A)	MDRout, Add, ACin
C8	MDR←(AC)	ACout, MDRin
С9	M(MAR)←(MDR)	MDRoutE, MemW

表 A-4

时钟	功能	有效控制信号
C5	MAR←(R1)	R1out, MARin
C6	MDR←M(MAR)	MemR, MDRinE
C7	A←(MDR)	MDRout, Ain
C8	AC←(A)+(R0)	R0out, Add, ACin
C9	MDR←(AC)	ACout, MDRin
C10	M(MAR)←(MDR)	MDRoutE, MemW

45. 解答:

定义信号量 odd 控制 P1 与 P2 之间的同步; even 控制 P1 与 P3 之间的同步; empty 控制生产者与消费者之间的同步; mutex 控制进程间互斥使用缓冲区。程序如下:

```
semaphore odd=0, even=0, empty=N, mutex=1;
P1()
{
                         //生成一个数
  x=produce();
                         //判断缓冲区是否有空单元
  P(empty);
  P(mutex);
                         //缓冲区是否被占用
  Put();
                         //释放缓冲区
  V(mutex);
   if(x%2==0)
                         //如果是偶数,向 P3 发出信号
     V(even):
  else
                         //如果是奇数,向 P2 发出信号
     V(odd);
}
P2()
{
  P(odd);
                         //收到 P1 发来的信号, 已产生一个奇数
                         //缓冲区是否被占用
  P(mutex);
  getodd();
                         //释放缓冲区
  V(mutex);
                         //向 P1 发信号,多出一个空单元
  V(empty);
```

46. 解答:

1)根据页式管理的工作原理,应先考虑页面大小,以便将页号和页内位移分解出来。页面大小为 4KB,即 2¹²,则得到页内位移占虚地址的低 12 位,页号占剩余高位。可得三个虚地址的页号 P 如下(十六进制的一位数字转换成 4 位二进制,因此,十六进制的低三位正好为页内位移,最高位为页号):

2362H: P=2, 访问快表 10ns, 因初始为空, 访问页表 100ns 得到页框号, 合成物理地址后访问主存 100ns, 共计 10ns+100ns+210ns。

1565H: P=1,访问快表 10ns,落空,访问页表 100ns 落空,进行缺页中断处理 10⁸ns,访问快表 10ns,合成物理地址后访问主存 100ns,共计 10ns+100ns+10⁸ns+10ns+100ns=100 000 220ns。

25A5H: P=2,访问快表,因第一次访问已将该页号放入快表,因此花费 10ns 便可合成物理地址,访问主存 100ns,共计 10ns+100ns=110ns。

2) 当访问虚地址 1565H 时,产生缺页中断,合法驻留集为 2,必须从页表中淘汰一个页面,根据题目的置换算法,应淘汰 0 号页面,因此 1565H 的对应页框号为 101H。由此可得 1565H 的物理地址为 101565H。

47. 解答:

1) CIDR 中的子网号可以全 0 或全 1, 但主机号不能全 0 或全 1。

因此若将 IP 地址空间 202.118.1.0/24 划分为 2 个子网,且每个局域网需分配的 IP 地址个数不少于 120 个,子网号至少要占用一位。

由 $2^{6}-2<120<2^{7}-2$ 可知, 主机号至少要占用 7 位。

由于源 IP 地址空间的网络前缀为 24 位, 因此主机号位数+子网号位数=8。

综上可得主机号位数为7,子网号位数为1。

因此子网的划分结果为子网 1: 202.118.1.0/25, 子网 2: 202.118.1.128/25。

地址分配方案:子网1分配给局域网1,子网2分配给局域网2;或子网1分配给局域网2,子网2分配给局域网1。

2)由于局域网1和局域网2分别与路由器R1的E1、E2接口直接相连,因此在R1的路由表中,目的网络为局域网1的转发路径是直接通过接口E1转发的,目的网络为局域网2的转发路径是直接通过接口E2转发的。由于局域网1、2的网络前缀均为25位,因此它们的子网掩码均为255.255.255.128。

根据题意,R1 专门为域名服务器设定了一个特定的路由表项,因此该路由表项中的子网掩码应为 255.255.255.255.255. 对应的下一跳转发地址是 202.118.2.2,转发接口是 L0。

根据题意,到互联网的路由实质上相当于一个默认路由,默认路由一般写作 0/0,即目的地址为 0.0.0.0,子网掩码为 0.0.0.0。对应的下一跳转发地址是 202.118.2.2,转发接口是 L0。

综上可得到路由器 R1 的路由表如下。

若子网 1 分配给局域网 1, 子网 2 分配给局域网 2, 见表 A-5。

目的网络 IP 地址	子网掩码	下一跳 IP 地址	接口
202.118.1.0	255.255.255.128		E1
202.118.1.128	255.255.255.128		E2
202.118.3.2	255.255.255.255	202.118.2.2	LO
0.0.0.0	0.0.0.0	202.118.2.2	LO

表 A-5

若子网1分配给局域网2,子网2分配给局域网1,见表A-6。

表 A-6

目的网络 IP 地址	子网掩码	下一跳 IP 地址	接口
202.118.1.128	255.255.255.128		E1
202.118.1.0	255.255.255.128		E2
202.118.3.2	255.255.255.255	202.118.2.2	LO
0.0.0.0	0.0.0.0	202.118.2.2	L0

3)局域网 1 和局域网 2 的地址可以聚合为 202.118.1.0/24,而对于路由器 R2 来说,通往局域网 1 和局域网 2 的转发路径都是从 L0 接口转发,因此采用路由聚合技术后,路由器 R2 到局域网 1 和局域网 2 的路由,见表 A-7。

表 A-7

目的网络IP地址	子网掩码	下一跳 IP 地址	接口
202.118.1.0	255.255.255.0	202.118.2.1	LO