周学们货

4. 双折射现象的解释

双折射

偏振光与自然光

光波:特定频率范围内的电磁波.

光矢量(light vector): 电磁波的电场强度 \bar{E} 矢量.

电磁波是横波,光矢量振动方向与光传播方向垂直.

横波有偏振(polarization) 现象 纵波无偏振问题

二、光的偏振态

光 { 自然光 | 完全偏振光 | 偏振光 | 3 | 部分偏振光

- ②线(平面)偏振光
- 4 椭圆偏振光
- ⑤ 圆偏振光

1.自然光

普通光源发光:

每个光波列: 横波 — 偏振光

一束光: 由于光振动方向的随机性, 统计结果显示, 各种取向的光矢量振幅相等.

光矢量对传播方向均匀对称分布 — 非偏振.

正交分解:

一对互相垂直, 互相独立, 振幅相等的光振动

无固定相位差,非相干叠加

2. 线(平面)偏振光

光振动只有一个确定方向

线偏振光:一束光的光矢量只沿含一个确定的方向 振动,叫做线偏振光,简称偏振光.

振动面: 光振动方向与传播方向所确定的那平面.

- 4. 椭圆偏振光
- 5. 圆偏振光

光矢量旋转,

其端点轨迹为截面是

椭圆

的螺旋线

如何产生偏振光?如何检验光的偏振状态?

- (1) 晶体的二向色性
- (2) 自然光在媒质界面上的折射和反射
- (3) 晶体的双折射
- (4) 激光

马吕斯定律

一、偏振片的起偏和检偏

偏振片(polaroid): 能吸收某一方向的光振动,而只让与之垂直方向上的光振动通过的一种薄片(二向色性的晶体,如电气石).

偏振化方向(polarizing direction):

允许通过的光

振动方向.

偏振片的用途: "起偏"和"检偏"

(1) 自然光强 I_0 →线偏振光强:

$$I = \frac{I_0}{2}$$

透射光强不变, 无消光

- (2) 线偏振光强 I_0 \rightarrow 线偏振光
 - 有两次消光现象

(3) 部分偏振光(混合) →线偏振光

有两次极大极小

二、马吕斯定律(Malus law) ——光强度变化规律

自然光入射 I。 偏振片

$$I = \frac{1}{2}I_0$$

线偏振光入射 I_0 偏振片 $I = I_0 \cos^2 \alpha$

$$I = I_0 \cos^2 \alpha$$

 α : 光振动方向与偏振片偏振化方向的夹角

$$A_1 = A \cos \alpha$$

$$\frac{I}{I_0} = \frac{A_1^2}{A^2} = \cos^2 \alpha$$

部分偏振光入射: 自然光与线偏振光叠加

一束光强为10的自然光通过两个偏振化方向成60° 的偏振片后,光强为

$$\bigcirc \frac{1}{2}I_0$$

$$2 \frac{1}{4}I_0$$

$$\frac{1}{8}I_0$$

①
$$\frac{1}{2}I_0$$
 ② $\frac{1}{4}I_0$ ③ $\frac{1}{8}I_0$ ④ $\frac{1}{16}I_0$

$$\frac{1}{2}I_0\cos^2\alpha = \frac{1}{2}I_0\cdot\cos^260^\circ = \frac{1}{8}I_0$$

2) 一束部分偏振光可视为由强度为 I_1 的自然光和强度为 I_2 的竖直振动的线偏振光组成,让它连续通过偏振片 P_1 、 P_2 ,其中 P_1 的偏振化方向竖直偏转 α 角, P_2 再偏转 θ 角,求出射光的强度。

3) 要让一束线偏振光的振动方向旋转90°至少要几块偏振片? 如何放置?

至少两块偏振片,如图放置:

$$I_0 \cos^2 \alpha \cdot \cos^2 (\frac{\pi}{2} - \alpha) = I_0 \cos^2 \alpha \cdot \sin^2 \alpha = \frac{1}{4} I_0 \sin^2 2\alpha$$

当 $\alpha = 45^{\circ}$ 时,出射光强最大: $\frac{1}{4}I_0$

三、偏振片的应用

立体电影

流水画

小 结

- 光的偏振态
 - ① 自然光

- ② 线(平面)偏振光
- ③ 部分偏振光 ④ 椭圆偏振光 ⑤圆偏振光

透射光的起偏和捡偏

自然光

起偏

偏振光 检偏

偏振光

马吕斯定律(Malus law) ——光强度变化规律

$$I = I_0 \cos^2 \alpha$$

反射和折射时的偏振

一、反射起偏

1. 一般情况下得部分偏振光

垂直分量与平行分量比例随i变

2. 当入射角i。满足

$$i = i_0 = \arctan \frac{n_2}{n}$$

反射光为线偏振光 (\bot)

折射光仍为部分偏振光 (// >」)

注意: //: 只折射不反射 ⊥:又反射又折射

i_0 :布儒斯特角(起偏振角)

$$\tan i_0 = \frac{n_2}{n_1}$$

布儒斯特定律

$$\cos i_0 = \sin \gamma$$

$$i_0 + \gamma = \frac{\pi}{2}$$

反射线与折射线垂直

二、光以 $i = i_0$ 角入射,通过玻璃片堆折射起偏

折射光: 近似线偏振光(//)

(垂直振动成分一次次被反射掉)

驾驶员戴上偏振太阳镜可以防止马路反射光的炫目.

照相机安上偏振镜可以产生不同的效果,看出来了吗?

用偏光镜消除了反射偏振光,使玻璃门内的人物清晰可见.

散射光的偏振性

照相机按上偏振镜可以产生不同的效果

1)
$$i \neq i_0$$

$$i_0 = \arctan \frac{n_2}{n_1}$$

2) 试比较起偏角与全反射临界角

	条件	关系式	现象	
全反射	光密→光疏 $i \ge i_0$	$\sin i_0 = \frac{n_2}{n_1}$ 临界角	n_1 i n_2	无折 射线
起偏振	光 密 $i=i_0$	$\tan i_0 = \frac{n_2}{n_1}$ 布鲁斯特角	n_1 i_0 n_2	折射线 与反射 线垂直

双折射现象

方解石晶体(CaCO₃) 的双折射现象

双折射现象:

一束光进入某种晶体后会出现两束折射光的现象.

寻常光线(o光) (ray): 恒遵守通常折射定律的光线. ordinary

非常光线(e光) (extraordinary ray): 非恒遵守通常折

射定律的光线.

检偏器检验表明:

o光和e光都是线偏振光。

原因:晶体(CaCO₃)各向异性

在各方向传播速率 u_0 相同 $n_0 = \frac{c}{u} = 1$ 恒量

在不同方向上 u_e 不相同 $n_e = \frac{c}{u} \neq 1$ 恒量

二、几个重要概念

1. 晶体的光轴

晶体内 $u_0=u_e$ 的特殊方向

双轴晶体

单轴晶体

方解石(碳酸钙晶体)

结构:形状为平行六面体 各晶面为菱形

一对约102°的钝角 —对约 78°的锐角 菱体的四对顶点中只有一对顶点是由

三个钝角面会合而成 (图中A、B)

通过A或B,并与三个会合钝角的 边成等角的直线方向,就是方解石 晶体的光轴方向.

与此平行通过晶体的直线都是光 轴方向.

沿解理面截取的 等榜长的方解石菱块

2. 正晶体和负晶体

主折射率
$$n_{\rm o} = \frac{c}{u_{\rm o}}$$
 $n_{\rm e} = \frac{c}{u_{\rm e}}$

o光波面: 球面

e光波面: 椭球面

光轴方向相切

$$(u_{\rm o} = u_{\rm e})$$

3. 晶体的主截面

光轴与晶面法线组成的平面.入射线 在主截面内时,两 条折射线均在主截 面内.

折射光与光轴构成的平面

○光振动⊥它的主平面

e光振动//它的主平面

の光的王平面一般, 二者主平面不重合o、e光振动不垂直

特例: 当入射光在主截面内时

o**光⊥主截面**

e光//主截面

二者互相垂直

三、用惠更斯原理解释双折射

o, e光重合, 无双折射。 光轴与光线垂直结果如何?

o, e光同方向, 但有光程差, 有双折射.

四、双折射起偏仪器

1. 尼科耳棱镜 将天然的方解石晶体按一定的要求加工成两块直角棱镜, 然后再用特种树胶(n=1.53)把它们粘合起来制成一块斜长方形的光学棱镜.

$$n_{\rm o} = 1.65$$
 $n_{\rm e} = 1.48$ $n_{\rm e} < n < n_{\rm o}$

2. 格兰—傅科棱镜

将一块方解石晶体加工成直角长方体,再切成两个楔型,切开的两部分不用树胶粘合,而代以空气层.

例. 用方解石割成一个 60° 的正三角形棱镜, 光轴垂直于棱镜的正三角形截面. 设非偏振光的入射角为i, 而e光在棱镜内的折射线与镜底边平行, 求入射角i, 并在图中画出 o 光的光路. (已知 n_0 =1.66, n_e =1.49)

解:设 e 光的折射角为 γ_e ,

由图得:

$$\gamma_{\rm e} = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

由折射定律得

$$\sin i = n_e \sin \gamma_e = 1.49 \times \sin 30^\circ = 0.745$$

 $i = 48^\circ 10'$

$$\sin i = n_o \sin \gamma_o \implies \sin \gamma_o = \sin i/n_o$$

$$\sin \gamma_{\rm o} = \sin 48^{\circ} 10' / 1.66 = 0.449$$

$$\gamma_0 = 26^{\circ}40'$$

