2° Teste AL—LCC

Nome N^{o} Data- 09/01/2018

Nas perguntas de escolha múltipla e verdadeira ou falsa, cada resposta certa vale 0.5 valor e cada resposta errada vale -0.1.

- 1. O vetor $\begin{bmatrix} -\frac{9}{2} \\ -4 \\ 1 \end{bmatrix}$ é vetor próprio de $\begin{bmatrix} 8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -4 \end{bmatrix}$, associado ao valor próprio: (a) 1 (b) $4(\checkmark)$ (c) -4 (d) 6
- 2. Seja $A = \begin{bmatrix} 5 & 0 & 4 & 0 \\ 0 & 1 & -3 & 0 \\ -3 & 0 & \alpha & 0 \\ 0 & 0 & -5 & \beta \end{bmatrix}$. det A =(a) $60 + 20\alpha\beta$ (b) $20\alpha + 15\beta$ (c) $(\checkmark) 12\beta + 5\alpha\beta$ (d) $60\alpha 3\alpha\beta$
- 3. Seja $T:R^3\to R^2$ a transformação linear definida por

$$T(x, y, z) = (x + 2y + z, x + 3y + 2z), (x, y, z) \in \mathbb{R}^3$$

e as sehuintes afirmações

- (i) T é injetiva
- (ii) T não é sobrejetiva
- (iii) T não é injetiva e $(1, -1, 1) \in Nuc(T)$
- (iv) T é sobrejetiva e $(1, -1, 1) \in Nuc(T)$

Qual é a lista completa de afirmações verdadeiras?

- (a) i (b) i e ii (c) ii e iii (d)(\checkmark) iii e iv.
- 4. Seja A uma matriz 2×2 , traço(A) = 6 e det(A) = 5. Quais são valores prórprios de A?

 (a) 2,3(b) -2,-3(c) (\checkmark) 1,5(d) -1,-5.
- 5. Seja A uma matriz 3 × 3 com 0 o valor próprio de multiplicidade algébrica 3. Qual é o polinómio caraterística de A?
 (a) (λ − 1)³
 (b)(√) λ³
 (c) (λ − 3)
 (d) nada pode se concluir.
- 6. Seja $A = \begin{bmatrix} 1 & k \\ k & 2 \end{bmatrix}$. Qual é o valor de k para que 1 seja um valor próprio de A?

(a) 1 (b) 2 (c) 3 (d)(\checkmark) 0.

- 7. (a) Seja A uma matriz de 3 por 3 com valores próprios $\lambda=1,2,3,$ então A é invertivél. $V(\checkmark)$ F
 - (b) Seja A uma matriz de 3 por 3 com valores próprios $\lambda=1,2,3,$ então A é diagonalizavél.

 $V(\checkmark)$ F

(c) Seja A uma matriz de 3 por 3 com valores próprios $\lambda = 1, 2, 2$, então A não é diagonalizavél.

 $V F(\checkmark)$

- (d) Seja A uma matriz diagonalizavél, então A^3 também é diagonalizavél. $V(\checkmark)$ F
- 8. (a) Seja $Ax = \lambda x$ para alguns λ , então x é um vetor próprio de A.

V $F(\checkmark, x \text{ não pode ser vetor nulo})$

- (b) O valor próprio de A está no diagonal principal de A. V $F(\checkmark)$
- (c) Sejam v_1 e v_2 vetores prórios associados aos valores próprios λ_1 e λ_2 de uma matriz A. Então, se v_1 e v_2 são linearmente independentes, λ_1 e λ_2 são diferentes.

 $V F(\checkmark)$

(d) Se v_1 e v_2 são 2 vetores prórios de A associados ao 2 valores próprios λ_1 e λ_2 diferentes, então v_1 e v_2 são linearmente independentes.

 $V(\checkmark)$ F

- 9. (a) Seja A semelhante a B. Então det(A) = det(B). $V(\checkmark)$
 - (b) Seja A semelhante a B. Então A e B tem mesmos valores próprios. $V(\checkmark)$ F
 - (c) Se det(A) = 0, então há duas linhas ou colunas são iguais ou uma linha ou uma coluna é zero.
 - $ext{V} ext{F}(\checkmark)$
 - (d) Seja A semelhante a B. Então tr(A) = tr(B). $V(\checkmark)$
- 10. (a) A transformação $f: \mathbb{R}^n \to \mathbb{R}^m$ é linear se e só se $f(c_1v_1 + c_2v_2) = c_1f(v_1) + c_2f(v_2)$ para todos v_1 e $v_2 \in \mathbb{R}^n$ e c_1 e $c_2 \in \mathbb{R}$.
 - $V(\checkmark)$ F
 - (b) Se A é uma matriz de 3×2 , então a transformação linear A não pode ser injetiva. V $\mathcal{F}(\checkmark)$
 - (c) O núcleo de A é o conjunto de solução de Ax = 0. $V(\checkmark)$
 - (d) Se existir um b tal que Ax = b é impossével, então a transformação linear A não pode ser injetiva.
 - $V(\checkmark)$ F
- 11. Seja $f:U\to V$ uma aplicação linear de U em V, e $B=\{u_1,u_2,...,u_n\}$ uma base de U. Então
 - (a) O conjunto $f(B) = \{f(u_1), f(u_2), \dots, f(u_n)\}\$ gera V. V
 - (b) O conjunto $f(B) = \{f(u_1), f(u_2), ..., f(u_n)\}$ gera U V $F(\checkmark)$
 - (c) O conjunto $f(B) = \{f(u_1), f(u_2), ..., f(u_n)\}$ é uma base de V. V
 - (d) O conjunto $f(B) = \{f(u_1), f(u_2), ..., f(u_n)\}$ é linearmente independente. V $F(\checkmark)$

A questão que se segue deverá ser resolvida integralmente e devidamente justificada.

1. (2 valores) Seja A uma matriz $n \times n$ e x um vetor próprio de A associado a um valor próprio λ . Será que x tembém um vetor próprio de $A^2 + 3A$? Se for, qual é o valor próprio de $A^2 + 3A$? Justifique.

Res. $Ax = \lambda x, x \neq 0$, $(A^2 + 3A)x = A^2x + 3Ax = AAx + 3Ax = \lambda Ax + 3\lambda x = (\lambda^2x + 3\lambda x) = (\lambda^2 + 3\lambda)x$, por definição, x é um vetor próprio de $A^2 + 3A$, e $(\lambda^2 + 3\lambda)$ o valor próprio de $A^2 + 3A$.

2. (5 valores) Sejam U, V espaçoss vectoriais reais, $B = (v_1, v_2, v_3, v_4)$ uma base de $U, B_1 = (u_1, u_2, u_3)$ uma base de V e $f: U \to V$ a transformação linear tal que

$$M(f;B,B_1) = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 1. Justifica se f é injectiva e se f é sobrejectiva.
- 2. Calcule $f(-2v_1 + v_2)$.
- 3. Determine Nuc(f). Mostre que $\{-2v_1 + v_2, v_3\}$ é uma base de Nuc(f).

Res. (1). $B=(v_1,v_2,v_3,v_4)$ é uma base de U, então dim U=4, $B_1=(u_1,u_2,u_3)$ é uma base de V, dim V=3.

f é sobrejetiva se dimImf = dimV = 3. Como dim Im f=carf, vamos, então, calcular a caraterística de $M(f;B,B_1) = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $carM(f;B,B_1) = 2 \neq 3$, então f não é sobrejetiva.

Como $dimU = \overline{dimNuc(f)} + d\overline{im}Imf$, ou seja 4 = dimNuc(f) + 2, então dimNuc(f) = 2, logo f não é injetiva.

(2). $f(v_1) = u_1 + u_2$, $f(v_2) = 2u_1 + 2u_2$. Então $f(-2v_1 + v_2) = -2f(v_1) + f(v_2) = -2(u_1 + u_2) + 2u_1 + 2u_2 = 0_v$.

(3). por (2), o vetor $-2v_1+v_2\in Nuc(f)$. como $f(v_3)=0u_1+0u_2+0u_3$, então v_3 também em Nuc(f). Como dimNuc(f)=2, então vamos verifivar se conjunto $\{2v_1+v_2,v_3\}$ é linearmente independente, $\alpha(2v_1+v_2)+\beta v_3=0_u \Leftrightarrow 2\alpha v_1+2\alpha v_2+\beta v_3=0_u$, como (v_1,v_2,v_3) linearmente indepedentes, então $\alpha=0,\beta=0$.

como dimNuc(f) = 2 e $\{-2v_1 + v_2, v_3\}$ é um conjunto de vectores de Nuc(f) linearmente independente, concluimos que $\{-2v_1 + v_2, v_3\}$ é uma base de Nuc(f) e $Nuc(f) = <-2v_1 + v_2, v_3>$.

outro método, seja x um vetor qual de U, então $x = \alpha v_1 + \beta v_2 + \gamma v_3 + \delta v_4$. $Nuc(f) = \{x \in U : f(x) = 0_v\} = \{x \in U : f(\alpha v_1 + \beta v_2 + \gamma v_3 + \delta v_4) = 0_v\}$ $= \{x \in U : \alpha f(v_1) + \beta f(v_2) + \gamma f(v_3) + \delta f(v_4) = 0_v\}$ $= \{x \in U : \alpha (u_1 + u_2) + \beta (2u_1 + 2u_2) + \gamma (0) + \delta (u_1 - u_2 + u_3) = 0_v\}$ $= \{x \in U : (\alpha + 2\beta + \delta)u_1 + (\alpha + 2\beta - \delta)u_2 + \delta u_3 = 0_v\}$

 $= \{x = \alpha v_1 + \beta v_2 + \gamma v_3 + \delta v_4 \in U : \alpha + 2\beta = 0, \delta = 0\}$

 $= \{x - \alpha v_1 + \beta v_2 + \gamma v_3 + \delta v_4 \in \mathcal{C} : \alpha + 2\beta = 0, \delta = \{\beta(-2v_1 + v_2) + \gamma v_3, \beta, \delta \in R\}$

 $=<-2v_1+v_2,v_3>$. Depois prove que $\{-2v_1+v_2,v_3\}$ é linearmente independente, então forma uma base.

Também pode calcular o Nuc de M. Ou seja resolve Mx=0, tem se NucM=<(-2,1,0,0),(0,0,1,0)>, relativamente à base B, é $<-2v_1+v_2,v_3>$.