/20

Cahier d'examen

MTH1008

Sigle du cours

Identification de l'étudiant(e)				Réservé
Nom: χΑ		Prénom : JASON		1.2,75/3
Signature : Ammy		Matricule : 2348245	Groupe : 05	2. 2 /2
Sigle et titre du cours MTH1008 – Algèbre linéaire appliquée				3. 3 /4
				4.2.7/13
Professeur		Groupe	Trimestre	5. 3/5/14
Houda Trabelsi		TOUS	Automne 2024	6.3,7514
Jour	Date	Durée	Heures	TOTAL:
Dimanche	17 novembre 2024	2 heures	13h00 à 15h00	17.1 (12
Documentation		Calculatrice	Outils électroniques	/
⊠ Aucune		Non- programmable permise (AEP)	Les appareils électroniques	
☐ Toute			personnels sont interdits.	
	particulières			
	Directives p	particulières		
vous ne pouvez p	répondra à aucune ques pas répondre à une quest puestion suivante.	tion durant cet examen. S ion pour diverses raisons	i vous estimez que , veuillez le justifier	
2- Répondez directement sur le cahier dans les sections réservées à chaque question.				
3- 3 pages supplémentaires sont disponibles à la fin du cahier.				
4- Écrivez votre dén numérisé , ni corr		U RECTO SEULEMENT. L	e verso ne sera ni	
Cet examen contient 6 questions sur un total de 24 pages				
(Excluant cette page).				
La pondération de cet examen est de 20 %				
Vous devez répondre sur : ☐ le questionnaire ☒ le cahier ☐ les deux				
Vous devez remettre le questionnaire : ⊠ oui ☐ non				
L'étudiant doit honore	r l'engagement pris lors (de la signature du code de	e conduite	

QUESTION #1 (3 points)

(2,35)

1)
$$A = \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 1 \\ k & k & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 1 \\ 0 & k - k^2 - 2 \end{bmatrix} \sim \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -2 - k_1 k^2 \end{bmatrix} \sim \begin{bmatrix} -2 - k_1 k^2 = 0 \\ k_1 = -1 & k_2 = 2 \\ k_2 = 2 & k_3 = (k - k^2) l_2$$

3.
$$N=2=7$$
 $A=\begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 2 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Notions
$$B = base de l'innage de A, $B = \{\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \}$$$

0,31

OUESTION #2 (suite)

1.
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 0 \end{bmatrix} 0, S[Dis] 2. her (A) = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & -1 & 1 & 1 & 0 \end{bmatrix}$$

inversible. En effet, now pouvous véntier cela à partir du fait que le noyau de A inclut seulement le vecteur nui et le fait que l'image de A est IR3. Cela vert donc dire que les hynes et colonne de A sout lineairement inacpendentes: le déterminant de A \pm 0. L'injectionté et la surjectionté est prouvée par la solution unique pour tout $A\vec{x} = \vec{b}$ où $\vec{x} = A^{-1}\vec{b}$, et ce pour tout \vec{b} apparament à IR3. $O_1S[O1S]$

:. Base de Ker(A) =
$$\varphi$$

QUESTION #2 (suite)

QUESTION # 2 (2 points)

J'AI LAISSÉ MES DÉMARCHES POUR LA QUESTION 42 À LA PAGE 3 (PAGE POUR LA SUFFE DE LA QUESTION 1).

QUESTION #2 (suite)

QUESTION # 2 (suite)

QUESTION #3 (4 points)

 $\sqrt{\Lambda}$

1. Faix, [67] est inversible, man non diagonalisable pursqu'elle admet sevement un vecteur propre: P et P' dons PDP' ne pourent pas être formes solon une D diagonale avec les valours propres sur la cliquencole.

0/2/0/21

Vrai, par définition et si de dimension man: n=rg(A) + dim (Kor(A))

La valour maximale que rg(A) pout prembre est n, le nombre de colonnes

: rg(A) ± n /

matrice A

3. 1

Vrai.
$$A\vec{x} = \lambda \vec{x} \implies \vec{x} = A^{-1}\lambda \vec{x}$$

 $\Rightarrow \hat{x} = \lambda A^{-1}\vec{x}$ $\Rightarrow \hat{x} = A^{-1}\vec{x}$

Donc Attest, une valer propre de A-1

QUESTION #3 (suite)

H. Vrai: mxn où m=4, n=4 et n=rg(A) + dim (ker(A))

0/2/0/2

5. Vrai , à partir de n verteux linéarement indépendants, les n verteux of général un base de l'espace vertural. Si on rajute un autre recteur à cet ensumble de n renteux, il sora possible de l'exprimer comme un combination linéarie des n vectors originaux. Cola rendrait l'ensemble linéarement dépendant.

6/25/A

Vrai purique cela signific qu'elles ont les mêmes vatour propres. Les des matrices apphyront home le même ellet liveaire sous des brises différents ou similares si elles sont égales. Non.

QUESTION #3 (suite)

QUESTION # 4 (3 points)

1.
$$det(A-\lambda I) = 0$$

$$A - \lambda I = \begin{bmatrix} 3-\lambda & 0 & C \\ C & 2-\lambda & 1 \\ C & 1 & 2-\lambda \end{bmatrix}$$

$$= (3-\lambda)((2-\lambda)^{2}-1)=0$$

$$= (2-\lambda)^{2}+12=(2-\lambda-1)(2-\lambda+1)$$

$$= (3-\lambda)((2-\lambda-1)(2-\lambda+1))$$

$$\gamma = 3$$
 $\lambda_2 = 1$

$$m(\lambda_1)=2$$
 $m(\lambda_2)=1$

2.
$$\lambda = 3 = 3$$
 Ker $(A - 3I) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \end{bmatrix}$ [Noting $X_1 = t$ $X_2 = K$ $X_3 = K$ $X_4 = K$ $X_5 = K$ $X_$

$$Ker(A-3I) = \vec{x} = t \begin{bmatrix} 0 \\ 0 \end{bmatrix} + k \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 . $\forall t, k \in \mathbb{R}$
Base $Ker(A-3I) = \{ [0], [0] \}$

x2-x3=0

=7 x 2 = x 3

QUESTION #4 (suite)

$$\lambda = 1 \quad \text{Not } (A - 1I) = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix}$$

3. A est diagonalizable puisqu'an a 3 recters propres, avant que la somme des moltipliates p des valers propres. il ps

QUESTION #4 (suite)

QUESTION #4 (suite)

QUESTION #5 (4 points)

1.
$$dit(\frac{2}{1}, \frac{3}{2}, \frac{3}{3}) = 0$$

= $7(2-\lambda)^2 + 3 = 0$

= $7(2-\lambda)^2 - (\sqrt{3}i)^2 = 0$

= $7(2-\lambda)^2 + \sqrt{3}i$

2.
$$\frac{1+i}{1-i} = \frac{(1+i)^2}{1-i^2} = \frac{1+2i+i^2}{2} = \frac{2i}{2} = i = 0+i1$$

3. -16 = 16e^{iT} On cherche 1 por
$$3^{n} = -16$$

$$= 7 = \sqrt{\frac{16e^{i\pi i} 2\pi h}{16e^{i\pi i} 2\pi h}}$$

$$= 2e^{\frac{i\pi}{4}} = 2(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = \sqrt{2} + i \sqrt{2}$$

$$k = 1, 3z = 2e^{\frac{i\pi}{4}} = 2(\cos \frac{2\pi}{4} + i \sin \frac{3\pi}{4}) = \sqrt{2} + i \sqrt{2}$$

$$k = 3, 3y = 2e^{\frac{i\pi}{4}} = 2(\cos \frac{2\pi}{4} + i \sin \frac{3\pi}{4}) = \sqrt{2} - i \sqrt{2}$$

$$k = 2, 33 = 2e^{\frac{i\pi}{4}} = 2(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = -\sqrt{2} - i \sqrt{2}$$

QUESTION # 5 (suite)

QUESTION # 5 (suite)

H.
$$\frac{(i(1+\sqrt{3})^5}{(3-4i)^3} = \frac{(i+i^2)^5}{(3-4i)^3} = \frac{(i-1)^5}{(3-4i)^3} = \frac{(\sqrt{2}e^{i\frac{\pi}{4}})^5}{(5e^{i} \text{ archan } (\frac{\pi}{3}))^3} = A$$

Small = 33

QUESTION # 5 (suite)

QUESTION #5 (suite)

QUESTION # 6 (4 points)

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$|B| = -1 \Rightarrow | \text{ los colornes et ligres de } 0 \text{ sont prisonnent in the base do } 18.3$$

$$| \text{pursquishes give rent } |B|^{2}.$$

$$|C| = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 2 & -1 & 1 \\ 0 & 0 & 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

$$|C| = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 \end{bmatrix}$$

$$|C| = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 \end{bmatrix}$$

$$|C| = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 2 \\ -1 & 1 & -1 \end{bmatrix}$$

$$|C| = \begin{bmatrix} 2 & -1 & 3 \\ 1 & -1 & 2 \\ -1 & 1 & -1 \end{bmatrix}$$

QUESTION # 6 (suite)

3.
$$DQ = B$$

$$= D = BC^{-1}$$

$$= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 2 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$D = \sum_{i=1}^{n} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$D = \left\{ \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}$$

$$Q = \left[z \right]_{0} = \left[\frac{3}{-z} \right]$$

$$Q = \left[\frac{3}{-z} \right]$$

$$[2]_{B} = \begin{bmatrix} -1 & 10 & 1 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -5 \\ -8 \\ 6 \end{bmatrix}$$

QUESTION #6 (suite)

QUESTION #6 (suite)

Page supplémentaire

Page supplémentaire

Page supplémentaire