

UNIVERSIDADE FEDERAL DE SERGIPE

DEPARTAMENTO DE ESTATÍSTICA E CIÊNCIAS ATUARIAIS

Disciplina: ESTAT0072 – Probabilidade I

Professor: Sadraque E.F. Lucena

Lista de Exercícios 1

- 1.1) Suponha que o conjunto fundamental seja formado pelos inteiros positivos de 1 a 10. Sejam $A = \{2, 3, 4\}, B = \{3, 4, 5\}$ e $C = \{5, 6, 7\}$. Enumere os elementos dos seguintes conjuntos:
 - (a) $A^c \cap B$.
 - (b) $A^c \cup B$.
 - (c) $A \cap (B \cup C)^c$.
 - (d) $A \cup (B \cap C)^c$.
- 1.2) Suponha que o conjunto fundamental U seja formado por $U = \{x \mid 0 \le x \le 2\}$. Sejam os conjuntos A e B definidos da forma seguinte: $A = \{x \mid 1/2 < x \le 1\}$ e $B = \{x \mid 1/4 \le x < 3/2\}$. Descreva os seguintes conjuntos:
 - (a) $(A \cup B)^c$.
 - (b) $A \cup B^c$.
 - (c) $(A \cap B)^c$.
 - (d) $A^c \cap B$.
- 1.3) Quais das seguintes relações são verdadeiras?
 - (a) $(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$.
 - (b) $A \cup B = (A \cup B^c) \cup B$.
 - (c) $A^c \cap B = A \cup B$.
 - (d) $(A \cup B)^c \cap C = A^c \cap B^c \cap C^c$.
 - (e) $(A \cap B) \cap (B^c \cap C) = \emptyset$.
- 1.4) Suponha que o conjunto fundamental seja formado por todos os pontos (x, y) de coordenadas ambas inteiras, e que estejam dentro ou sobre a fronteira do quadrado limitado pelas retas x=0, y=0, x=6 e y=6. Enumere os elementos dos seguintes conjuntos:
 - (a) $A = \{(x, y) \mid x^2 + y^2 \le 6\}.$
 - (b) $B = \{(x, y) \mid y \le x^2\}.$
 - (c) $C = \{(x, y) \mid x \le y^2\}.$
 - (d) $B \cap C$.
 - (e) $(B \cup A) \cap C^c$.

- 1.5) Empregue o diagrama de Venn para estabelecer as seguintes relações:
 - (a) $A \subset B \in B \subset C$ implica que $A \subset C$.
 - (b) $A \subset B$ implica que $A = A \cap B$.
 - (c) $A \subset B$ implica que $B^c \subset A^c$.
 - (d) $A \subset B$ implica que $A \cup C \subset B \cup C$.
 - (e) $A \cap B = \emptyset$ e $C \subset A$ implicam que $B \cap C = \emptyset$.