Stability & Small Oxillations in general habonomic Systems

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial \dot{q}} = \Omega \qquad q = (q_1, \dots, q_N)$$

$$L = T - V \qquad \Omega (q, \dot{q}, t)$$

Kinetic Energy:

$$T = \frac{1}{2} \sum_{i=1}^{N} m_{i} |\dot{r}_{i}|^{2}; \quad \underline{r}_{2} = \underline{r}_{i}(q_{i}, ..., q_{N}, t)$$

$$= D T = \frac{1}{2} \sum_{i=1}^{N} m_{i} \left[\sum_{j=1}^{N} \left(\frac{\partial \dot{r}_{i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial \dot{r}_{i}}{\partial t} \right) \right]. \left[\right]$$

$$T = \frac{1}{2} \sum_{i,j=1}^{N} m_{ij} (q_{i}t) \dot{q}_{i} \dot{q}_{j} + \sum_{i=1}^{N} b_{i}(q_{i}t) \dot{q}_{i} + C(q_{i}t)$$

$$T_{0}$$

Natural Mechanical System: By definition is one for which Ti=To=0

Example (1)

It M [
$$\dot{x}$$
 + \dot{q} (\dot{q} Sin α)²] + \dot{q} M $\dot{\alpha}$ ²

Gen. Coordinates (α , q) = 1> Natural System

(2) Same Prublem with the Constraint $i=V(t)=prescribed \mid \Rightarrow D$ gen. Coordinate 9

(Integrable non habonomic Constraint) $T=\frac{1}{2}m\Gamma(v+q^2G_0q)^2+(q^2E_N)^2J+\frac{1}{2}Mv^2$ non-natural System

(3) if
$$q = (\hat{q}, \hat{q})$$
, $\frac{\partial \hat{q}}{\partial \hat{q}} = 0$; $\frac{\partial \hat{q}}{\partial \hat{q}} = 0$. (4) is a quilibrium Convertionable Convertionable $\frac{\partial \hat{q}}{\partial \hat{q}} = 0$. The general sum associated with \hat{q} reduced Set of eyns for \hat{q} .

The finite energy in reduced Coordinates (Assume unreduced System natural)

 $T = \frac{1}{2} \sum_{i,j=1}^{N-1} m_{ij} \hat{q}_{ij} \hat{q}_{j} + \frac{1}{2} \sum_{j=1}^{N-1} m_{ij} \hat{q}_{ij} \hat{q}_{j} + \frac{1}{2} m_{ij} \hat{q}_{ij} \hat{q}_{j} \hat{q}_{ij} \hat{q}_{j} + \frac{1}{2} m_{ij} \hat{q}_{ij} \hat{$

+ 000/ 1002/ =0

let
$$M(1)$$
 $M = M(90)$: mass matrix

Symmetric $(M = M^T)$

and positive-definite $(X^T M X)$ 0)

(2)
$$G = \left[\frac{\partial b}{\partial q} - \frac{\partial b^T}{\partial q}\right] \left[q \text{ gyvoscopic matrix}\right]$$

$$G = \left[\frac{\partial b}{\partial q} - \frac{\partial b^T}{\partial q}\right] \left[q \text{ gyvoscopic matrix}\right]$$

$$G = \left[\frac{\partial b}{\partial q} - \frac{\partial b^T}{\partial q}\right] \left[q \text{ gyvoscopic matrix}\right]$$

$$G = \left[\frac{\partial b}{\partial q} - \frac{\partial b^T}{\partial q}\right] \left[q \text{ gyvoscopic matrix}\right]$$

$$G = \left[\frac{\partial b}{\partial q} - \frac{\partial b^T}{\partial q}\right] \left[q \text{ gyvoscopic matrix}\right]$$

$$G = \left[\frac{\partial b}{\partial q} - \frac{\partial b^T}{\partial q}\right] \left[q \text{ gyvoscopic matrix}\right]$$

$$G = \left[\frac{\partial b}{\partial q} - \frac{\partial b^T}{\partial q}\right] \left[q \text{ gyvoscopic matrix}\right]$$

$$G = \left[\frac{\partial b}{\partial q} - \frac{\partial b^T}{\partial q}\right] \left[q \text{ gyvoscopic matrix}\right]$$

(3)
$$K = \frac{\partial^2 V}{\partial q^2}\Big|_{q=q_0}$$
 Triffness matrix $K = K = D$ K is Symmetric if q is Tralle eq. = D $K = PO = itive$ definite