Nous innovons pour votre réussite!

EXAMEN

Transferts de chaleur et de masse SEMESTRE: S5 (TRONC COMMUN - ING) - Groupe G1, G2 et G3 Durée : 2 h Pr. E. AFFAD

Le 29 janvier 2019

Consignes:

- Écrivez votre nom et prénom avant de commencer sur tous les documents (feuilles doubles et feuilles de brouillon).
- La simple utilisation de téléphone portable (non éteint, appel ou réponse à un appel, usage de sa fonction calculatrice...) peut être considérée comme une tentative de fraude.
- L'échange de tout instrument de travail est strictement interdit (blanco, calculatrice, règle, gomme, stylos...). L'étudiant doit se doter des outils nécessaires lui permettant de passer son contrôle en toute autonomie.
- Encadrez la réponse définitive qui devra être sous forme de formule. Vous écrirez ensuite l'application numérique, précédée par « A.N. : », le cas échéant.
- Aucun échange de documents ne sera autorisé entre étudiants, dans le cas ou ils sont autorisés!

Nous innovons pour votre réussite!

EXERCICE 1 (5 pts)

Soit une fenêtre à double vitrage de 1,2 m de haut et de 2 m de large, composée de deux couches de verre de 3 mm d'épaisseur (k 0,78 W / m \cdot ° C) séparées par un air stagnant de 12 mm de large (k 0,026 W / m \cdot Â ° C). Pendant une journée au cours de laquelle la pièce est maintenue à 24 ° C tandis que la température à l'extérieur est de -5 ° C.

Prendre les coefficients de transfert de chaleur par convection à l'intérieur et à l'extérieur : hi=10 W/m2 · °C et he=25 W/m2 · °C.

Pendant une journée au cours de laquelle la pièce est maintenue à 24 ° C tandis que la température à l'extérieur est de -5 ° C, on demande de déterminez :

a-le taux de chaleur échangé à travers cette fenêtre à double vitrage

- b- la température de sa surface interne dans le cas où on utilise un simple vitrage et dans le cas de double vitrage
- c- Conclusion

EXERCICE 2 (5pts)

Le mur d'un réfrigérateur est constitué d'isolant en fibre de verre (k=0,035 W / m· ° C), intercalé entre deux couches de tôle épaisse de 1 mm (k=15,1 W / m· ° C). L'espace réfrigéré est maintenu à 3 ° C et les coefficients de transfert de chaleur moyens aux surfaces intérieure et extérieure du mur sont de hi=4 W / m² · ° C et he=9 W / m² ° C , respectivement. La température de la cuisine est en moyenne de 25 ° C. Sachant que la température de la surface extérieure est de 20 ° C, déterminez l'épaisseur d'isolant en fibre de verre utilisé.

Nous innovons pour votre réussite!

EXERCICE 3 (5 pts)

Durant une froide journée d'hiver, le vent souffle à 55 km / h parallèlement au mur d'une maison mesurant 4 m de haut et 10 m de long. L'air extérieur est à 5 ° C et la température de surface du mur est de 12 ° C.

- a- Déterminez le taux de perte de chaleur de ce mur par convection vers son environnement.
- b-Quel serait ce taux de chaleur si la vitesse du vent était doublée?

On donne

La conductivité thermique k =0,02428 W/m · °C

Le nombre de Prandtl: Pr =0.7340

La viscosité cinématique: $v = 1,413 \cdot 10^{-5} \text{ m}^2/\text{s}$

EXERCICE 4 (5 pts)

Soit un corps cubique de 20 cm 20 cm 20 cm à 1000 K suspendu dans l'air. En supposant que ce corps se rapproche beaucoup d'un corps noir, déterminez

- a- le taux de chaleur que le cube émet par rayonnement, en W
- b- le pouvoir émissif du corps noir spectral à une longueur d'onde de 4 m.

Nous innovons pour votre réussite!

Formulaire

DESCRIPTION STORM AND ADDRESS STORM AND ADDRESS ADDRES

La résistance d'un mur simple : Rth=e/kA

La résistance superficielle : 1/hA

Le flux de chaleur par conduction : $Q = \Delta T/Rth$

Loi de Newton : $Q = h S \Delta T$

Loi de Fourier : $q = -k \operatorname{grad} T$ (où q est le taux de chaleur)

Le nombre de Reynolds : Re=(VL/v)

Le nombre de Nusselt : Nu=h L/k

Loi de Stephan-Boltzman gérant le rayonnement: $E=A \sigma T^4$

Le flux spectrale est donné par :

$$E_{b,\lambda}(T) = \frac{c_1}{\lambda^5 \left(\exp(\frac{c_2}{\lambda T}) - 1 \right)} \quad enW/m^2/(\mu m)$$

$$c_1 = 3,74310^8 \quad W \,\mu \, m^4 \,/\, m^2$$

$$c_2 = 1,438710^4$$
 µm.K

Les corrélations le nombre de Nusselt en convection forcée:

- Cas de plaque plane et pour un régime quelconque (laminaire ou turbulent)

Nu =
$$\frac{hL}{k}$$
 = (0.037 Re_L^{0.8} - 871)Pr^{1/3} 0.6 \le Pr \le 60
5 \times 10⁵ \le Re_L \le 10⁷

- Cas de cylindre

$$Nu_{cyl} = \frac{hD}{k} = 0.3 + \frac{0.62 \text{ Re}^{1/2} \text{ Pr}^{1/3}}{[1 + (0.4/\text{Pr})^{2/3}]^{1/4}} \left[1 + \left(\frac{\text{Re}}{282,000} \right)^{5/8} \right]^{4/5}$$

Nous innovons pour votre réussite!

Les corrélations le nombre de Nusselt en convection naturelle:

Empirical correlations for the ave		er for natural	conve	ction over surfac	es	
Geometry Characteristic length L_c		Range of Ra		Nu		
Vertical plate		10 ⁴ -10 ⁹ 10 ⁹ -10 ¹³		$Nu = 0.59Ra^{1/3}_{1}$ $Nu = 0.1Ra^{1/3}_{2}$	(9:	G TOTAL CONTRACTOR OF THE CONT
	L	Entire range		$Nu = \left\{ 0.825 + \frac{0.387 \text{Ra}]^{.6}}{(1 + (0.492/\text{Pr})^{9/16})^{8/77}} \right\}^{2} \qquad (9-21)$ (complex but more accurate) Use vertical plate equations for the upper surface of a cold plate and the lower surface of a hot plate Replace g by g cos0 for Ra < 10^{9}		21)
Inclined plate	ned plate					
Serioestal plate Seriace area A and perimeter p) (a) Upper surface of a hot plate (or lower surface of a cold plate) Hot surface T T A ₃ /p		10 ⁶ -10 ⁷ 10 ⁷ -10 ¹¹		Nu = $0.54Ra_L^{1/4}$ (9-22) Nu = $0.15Ra_L^{1/3}$ (9-23)		
(b) Lower surface of a hot plate for apper surface of a cold plate)		105-1011		Nu = 0.27Ra	(9-	(9-24)
Vertical cylinder					A vertical cylinder can be trevertical plate when $D \ge \frac{35L}{\text{Gr}_1^{1/4}}$	eated as a
Horizontal cylinder T ₃ D D		Ra _D		r≤ 10 ¹²	$Nu = \left\{ 0.6 + \frac{0.387R}{11 + (0.559/l)} \right\}$	$(9-25)^{9/16}$
Sphere D			$Ra_D \le 10^{11}$ (Pr ≥ 0.7)		$Nu = 2 + \frac{0.589 \text{Ra}/4}{11 + (0.469/P_f)^{0/16/4/9}} $ (9-26)	