Roll No .: CS22B2026

Name: P Veeruh

Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram End Semester Examination – July 2023

Course Code: MA1002

Course Title: Linear Algebra

Batch: CS22B2

Category: Core

Date of Examination: 07.07.2023

Instructors: M Subramani / S Vijayakumar

Duration: 3 hours

Maximum Marks: 60

- (1.) Prove that equivalent systems of linear equations have exactly the same solutions. (4)
- 2. Let A_1, \ldots, A_k be $n \times n$ matrices. Prove that if $A = A_1 \ldots A_k$ is an invertible matrix, then each of A_1, \ldots, A_k is invertible. (3)
- (3) Let A be an $n \times n$ matrix. Prove that the following are equivalent:
 - (i) A is invertible.
 - (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
 - (iii) The system of equations AX = Y has a solution X for each $n \times 1$ vector Y.
- 4. Let F be a field and let S be any nonempty set. Let V be the set of all functions from S to F. Show that V is a vector space under the operations of addition and scalar multiplication of functions.
 (3)
- Show that the vectors α₁ = (1,1,0,0), α₂ = (0,0,1,1), α₃ = (1,0,0,4) and α₄ = (0,0,0,2) form a basis for ℝ⁴. Express each of the standard basis vectors of ℝ⁴ as a linear combination of α₁,...,α₄. Hence express any vector (x₁, x₂, x₃, x₄) in ℝ⁴ as a linear combination of α₁,...,α₄.
- 6. Prove that every linearly independent subset of a finite dimensional vector space V is a part of a basis for V.
- 7. Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1, -1, 1) = (1, 0) and T(1, 1, 1) = (0, 1)?
- 8. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection of the xy-plane about the line through the points (0,0) and (3,4). Find a formula for T(x,y). Show also that it is a linear transformation. (4)
- State and prove the rank-nullity theorem (dimension theorem).
- (10) Let V be a vector space with dim V = n. Let W₁ and W₂ be any subspaces of V such that dim W₁ + dim W₂ = n. Prove that there is a linear transformation T: V → V such that the null space N(T) = W₁ and the range R(T) = W₂.
 (3)
- 11. Let A be any matrix over a field F. Prove that the row rank of A equals its column rank. (3)

- 13. Find the eigenvalues and the corresponding eigenspaces of the matrix $A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$. (3)
- 14. Diagonalize the matrix $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$. (6)
- 15. Show that the dot product of vectors in \mathbb{R}^3 is an inner product. (2)
- State and prove the Cauchy-Schwarz inequality.
- 17. Prove that any set of nonzero orthogonal vectors is linearly independent. (2)
- 18. Apply the Gram-Schmidt process to the vectors $\beta_1 = (1,0,1)$, $\beta_2 = (1,0,-1)$ and $\beta_3 = (0,3,4)$ to obtain an orthonormal basis for \mathbb{R}^3 with the standard inner product. (3)

À.