09836759.110701

PCT/US00/07107

62

CLAIMS

We claim:

- An isolated nucleic acid molecule consisting essentially of a nucleotide 1. sequence that encodes a microbial β-glucuronidase, provided that the microbial βglucuronidase is not E. $coli \beta$ -glucuronidase.
- 2. The nucleic acid molecule of claim 1, wherein the microbial βglucuronidase is encoded by a nucleic acid molecule comprising nucleotides 1-1689 of Figures 41-J or by a nucleic acid molecule that hybridizes under stringent conditions to the complement of nucleotides 1-1689 of Figure 4I-J and which encodes a functional βglucuronidase.
- 3. The nucleic acid molecule of claim 1, wherein the microbial βglucuronidase comprises the amino acid sequences of Figure 5B, or a variants thereof, and which encodes a functional B-glucuronidase.
- The nucleic acid molecule of claim 1, wherein the microbe is a 4. eubacteria.
- The nucleic acid molecule of claim 4, wherein the eubacteria is 5. selected from the group consisting of purple bacteria, gram(+) bacteria, cyanobacteria, spirochaetes, green sulphur bacteria, bacteroides and flavobacteria, planctomyces, chlamydiae, radioresistant micrococci, and thermotogales.
- The nucleic acid molecule of claim 4, wherein the eubacteria is 6. selected from the group consisting of Staphylococcus, Bacillus, Salmonella, Enterobacter, Pseudomonas, Arthrobacter, Clavibacter and Thermotoga.

- 7. An isolated nucleic acid molecule encoding a thermostable β -glucuronidase, wherein the β -glucuronidase has a half-life of at least 10 min at 65°C.
- 8. The nucleic acid molecule of claim 11, wherein the thermostable β-glucuronidase is from *Thermotoga* or *Staphylococcus* groups.
- 9. An isolated nucleic acid molecule encoding a microbial β -glucuronidase, wherein the β -glucuronidase converts at least 50 nmoles of p-nitrophenyl-glucuronide to p-nitrophenyl per minute per μg of protein at 37°C.
- 10. An isolated nucleic acid molecule encoding a microbial β -glucuronidase, wherein the β -glucuronidase retains at least 80% of its activity in 10 mM glucuronic acid.
- 11. An isolated nucleic acid molecule encoding a fusion protein of a microbial β-glucuronidase or an enzymatically active portion thereof and a second protein.
- 12. The nucleic acid molecule of claim 11, wherein the second protein is an antibody or fragment thereof that binds antigen.
- 13. An expression vector, comprising a nucleic acid sequence encoding a microbial β -glucuronidase in operative linkage with a heterologous promoter, provided that the microbial β -glucuronidase is not *E. coli* β -glucuronidase.
- 14. The expression vector of claim 13, wherein the heterologous promoter is a promoter selected from the group consisting of a developmental type-specific promoter, a tissue type-specific promoter, a cell type-specific promoter and an inducible promoter.

PCT/US00/07107

WO 00/55333

- 15. The expression vector of claim 13, wherein the promoter is functional in a cell selected from the group consisting of a plant cell, a bacterial cell, an animal cell and a fungal cell.
- 16. The expression vector of claim 13, wherein the vector is a binary Agrobacterium tumefaciens plasmid vector.
- 17. The expression vector of claim 13, further comprising a nucleic acid sequence encoding a product of a gene of interest or portion thereof.
 - 18. The expression vector of claim 17, wherein the product is a protein.
- 19. The expression vector of claim 13, further comprising a nucleic acid sequence encoding a protein that specifically binds a cell, wherein the protein is fused to the sequence encoding β -glucuronidase and wherein the vector encodes a fusion protein.
- 20. The expression vector of claim 13, wherein the microbial β -glucuronidase is encoded by a nucleic acid molecule comprising nucleotides 1-1689 of Figures 4I-J or by a nucleic acid molecule that hybridizes under stringent conditions to the complement of nucleotides 1-1689 of Figure 4I-J and which encodes a functional β -glucuronidase.
- 21. The expression vector of claim 13, wherein the microbial β -glucuronidase comprises the amino acid sequences of Figure 5B, or a variants thereof, and which encodes a functional β -glucuronidase.
 - 22. The expression vector of claim 13, wherein the microbe is a eubacteria.
- 23. The expression vector of claim 22, wherein the eubacteria is selected from the group consisting of purple bacteria, gram(+) bacteria, cyanobacteria, spirochaetes,

WO 00/55333

green sulphur bacteria, bacteroides and flavobacteria, planctomyces, chlamydiae, radioresistant micrococci, and thermotogales.

- 24. The expression vector of claim 22, wherein the eubacteria is selected from the group consisting of Staphylococcus, Salmonella, Bacillus, Enterobacter, Pseudomonas, Arthrobacter, Clavibacter and Thermotoga.
- 25. The expression vector of claim 13, wherein the microbial β -glucuronidase is a thermostable β -glucuronidase, wherein the β -glucuronidase has a half-life of at least 10 min at 65°C.
- 26. The expression vector of claim 25, wherein the thermostable β -glucuronidase is from *Thermotoga* or *Staphylococcus* groups.
- 27. The expression vector of claim 13, wherein the microbial β -glucuronidase converts at least 50 nmoles of p-nitrophenyl-glucuronide to p-nitrophenyl per minute per μg of protein at 37°C.
- 28. The expression vector of claim 13, wherein the microbial β -glucuronidase retains at least 80% of its activity in 10 mM glucuronic acid.
- 29. The expression vector of claim 13, wherein the microbial β -glucuronidase is an enzymatically active portion thereof.
 - 30. A host cell containing the vector according to claim 13.
- 31. The host cell of claim 30, wherein the host cell is selected from the group consisting of a plant cell, an insect cell, a fungal cell, an animal cell and a bacterial cell.

- 32. An isolated form of recombinant microbial β -glucuronidase, provided that the microbial β -glucuronidase is not E. coli β -glucuronidase.
 - 33. The β -glucuronidase of claim 32, wherein the microbe is a eubacteria.
- 34. The β-glucuronidase of claim 33, wherein the eubacteria is selected from the group consisting of purple bacteria, gram(+) bacteria, cyanobacteria, spirochaetes, green sulphur bacteria, bacteroides and flavobacteria, planctomyces, chlamydiae, radioresistant micrococci, and thermotogales.
- 35. The β-glucuronidase of claim 33, wherein the eubacteria is selected from the group consisting of *Staphylococcus* group, *Salmonella* group, *Enterobacter* group, *Pseudomonas* group, *Arthrobacter* group, *Clavibacter* group and *Thermotoga* group.
- 36. The β-glucuronidase of claim 32, wherein the β-glucuronidase is encoded by a nucleic acid molecule comprising nucleotides 1-1689 of Figure 4I-J or by a nucleic acid molecule that hybridizes under stringent conditions to the complement of nucleotides 1-1689 of Figure 4I-J and which encodes a functional β-glucuronidase.
- 37. The β -glucuronidase of claim 32, comprising the amino acid sequences of Figure 5B, or a variant thereof, and which encodes a functional β -glucuronidase.
- 38. A method for monitoring expression of a gene of interest or a portion thereof in a host cell, comprising:
- (a) introducing into the host cell a vector construct, the vector construct comprising a nucleic acid molecule according to claim 1 and a nucleic acid molecule encoding a product of the gene of interest or a portion thereof;
- (b) detecting the presence of the microbial β -glucuronidase, thereby monitoring expression of the gene of interest.

- 39. A method for transforming a host cell with a gene of interest or portion thereof, comprising:
- (a) introducing into the host cell a vector construct, the vector construct comprising a nucleic acid sequence encoding a microbial β -glucuronidase, provided that the microbial β -glucuronidase is not E. coli β -glucuronidase, and a nucleic acid sequence encoding a product of the gene of interest or a portion thereof, such that the vector construct integrates into the genome of the host cell;
- (b) detecting the presence of the microbial β -glucuronidase, thereby establishing that the host cell is transformed.
 - 40. A method for positive selection for a transformed cell, comprising:
- (a) introducing into a host cell a vector construct, the vector construct comprising nucleic acid sequence encoding a microbial β-glucuronidase, provided that the microbial β-glucuronidase is not *E. coli* β-glucuronidase;
- (b) exposing the host cell to the sample comprising a glucuronide, wherein the glucuronide is cleaved by the β-glucuronidase, such that the compound is released, wherein the compound is required for cell growth.
- 41. The method of claim 40, further comprising introducing into the host cell a vector construct comprising a nucleic acid sequence encoding a microbial glucuronide permease.
- 42. The method of any one of claims 38-40, wherein the host cell is selected from the group consisting of a plant cell, an animal cell, an insect cell, a fungal cell and a bacterial cell.
 - 43. A method of producing a transgenic plant that expresses a microbial β -glucuronidase, comprising:
 - (a) introducing an expression vector comprising a nucleic acid sequence encoding a microbial β -glucuronidase in operative linkage with a heterologous promoter,

provided that the microbial β -glucuronidase is not E. coli β -glucuronidase, into an embryogenic plant cell; and

- (b) producing a plant from the embryogenic plant cell, wherein the plant expresses the β -glucuronidase.
 - 44. The method of claim 43, wherein the transgenic plant is rice.
 - 45. A method for positive selection for a transformed cell, comprising:
- (a) introducing into a host cell a vector construct, the vector construct comprising nucleic acid sequence encoding a microbial β -glucuronidase, provided that the microbial β -glucuronidase is not E. coli β -glucuronidase;
- (b) exposing the host cell to the sample comprising a glucuronide, wherein the glucuronide is cleaved by the β -glucuronidase, such that the compound is released, wherein the compound is required for cell growth
- 46. A transgenic plant cell comprising an expression vector, comprising a nucleic acid sequence encoding a microbial β -glucuronidase in operative linkage with a heterologous promoter, provided that the microbial β -glucuronidase is not E. coli β -glucuronidase.
- 47. A transgenic plant comprising an expression vector, comprising a nucleic acid sequence encoding a microbial β -glucuronidase in operative linkage with a heterologous promoter, provided that the microbial β -glucuronidase is not E coli β -glucuronidase.
 - 48. A seed from the transgenic plant of claim 47.
- 49. A transgenic aquatic animal cell comprising an expression vector, comprising a nucleic acid sequence encoding a microbial β-glucuronidase in operative linkage with a heterologous promoter.

- 50. A transgenic aquatic animal comprising an expression vector, comprising a nucleic acid sequence encoding a microbial β-glucuronidase in operative linkage with a heterologous promoter.
- 51. A method for identifying a microorganism that secretes βglucuronidase, comprising:
- (a) culturing the microorganism in a medium containing a substrate for β -glucuronidase, wherein the cleaved substrate is detectable, and wherein the microorganism is an isolate of a naturally occurring microorganism or a transgenic microorganism; and
- (b) detecting the cleaved substrate in the medium; therefrom identifying an organism that secretes β -glucuronidase.

WO 00/55333

- 52. The method of claim 51, wherein the microorganism is isolated from soil, mud, skin, mucus or fecal matter.
- 53. The method of claim 51, wherein the microorganism is cultured under conditions unfavorable to growth of *Staphylococcus* and favourable to other microorganisms.
- 54. A method for providing an effector compound to a cell in a transgenic plant, comprising:
- (a) growing a transgenic plant that comprises an expression vector, comprising a nucleic acid sequence encoding a microbial β -glucuronidase in operative linkage with a heterologous promoter and a nucleic acid sequence comprising a gene encoding a cell surface receptor for an effector compound.
- (b) exposing the transgenic plant to a glucuronide, wherein the glucuronide is cleaved by the β-glucuronidase, such that the effector compound is released.

- 55. The method of claim 54, further comprising introducing into the transgenic plant a vector construct comprising a nucleic acid molecule encoding a glucuronide permease.
- 56. The method of claim 55, further comprising introducing into the transgenic plant a vector construct comprising a nucleic acid sequence that binds the effector compound.
- 57. The method of claim 56, further comprising a gene of interest in operative linkage with the nucleic acid sequence that binds the effector compound.
- 58. The method of claim 54, wherein the effector compound is hydrophobic.
- 59. The method of claim 56, wherein the effector compound is either ecdysone or a glucocorticoid.