# Weakly Supervision Twitter Profile

Speaker: @cympfh

September 10, 2014

■ Twitter ユーザーの個人情報の推定

- Twitter ユーザーの個人情報の推定
- 友達の推薦、広告とかに使える

- Twitter ユーザーの個人情報の推定
- 友達の推薦、広告とかに使える
- 実際、性別による広告ターゲティングが使われてる (" 広告主の方へ: Twitter プロモ商品で性別のターゲティ ングが可能になりました")

- Twitter ユーザーの個人情報の推定
- 友達の推薦、広告とかに使える
- 実際、性別による広告ターゲティングが使われてる (" 広告主の方へ: Twitter プロモ商品で性別のターゲティ ングが可能になりました")
- (個人的に) ネトストが効率化される

## リンク

- http://aritter.github.io/ 作者の一人のサイト
- http: //www.aclweb.org/anthology/P/P14/P14-1016.pdf 論文はここ

# 目次

- 1 導入
- 2 関連研究
- 3 データ
- 4 モデル
  - 推定
- 5 実験

ユーザーのツイートと友達関係からそのユーザーの (Facebookっぽい) プロフィールを生成する

- 配偶者
- 学歴 (在学してる大学)
- ■職業
- ■趣味
- 宗教
- 出身地
- 現住所
- ■家族

ユーザーのツイートと友達関係からそのユーザーの (Facebookっぽい) プロフィールを生成する

- 配偶者
- 学歴 (在学してる大学)
- ■職業
- ■趣味
- 宗教
- ■出身地
- 現住所
- ■家族

ツイートの中で言及があれば、強い証拠になる.というか、 そのような言及はあると仮定する.

#### 配偶者 (の Twitter ID)

@hogehoge has taken all the kids today so I can go shopping -CHILD FREE!

#### 学歴 (学校の名前)

I got accepted to be part of the UofM engineering safety pilot program in FSU.

#### 職業 (会社名)

first day of work at HuffPo, a sports bar woo come visit me yo..

## 先行研究

- Twitter のプロフィール当ての先行
  - 年齢 Rao+ 2010
  - 政治的意見 (極性) Pennacchiotti & Popescu 2011, Conovt+ 2011
  - 性別 Ciot+ 2013, Liu & Ruth 2013, Liu+2012
- 訓練データの作成のコスト
  - 例えば上の Cio+ 2013 は、プロフィール画像を人間が 見て手で性別を書きだした

#### 知見

- Distant supervision a.k.a. weak supervision
  - 後述
- Homophily
  - (ネットにおける) 友達関係は同じ属性 (趣味とか) を持ちやすい
  - 今回の場合、「学歴」「職業」についてはかなり利きそう
  - 逆に「配偶者」については全く効かなそう
  - 属性の性質によって恣意的に

# **Distant supervision**

"Distant supervision for relation extraction without labeled data"

Mintz+, 2009

http://web.stanford.edu/~jurafsky/mintz.pdf

訓練データの作成に手でラベルを付与する代わりに、知識データベース (e.g. Freebase  $^1$ ) を間に挟んで手間を省く.

<sup>1</sup>http://www.freebase.com/

# 訓練データの作成

#### 3つの属性

- ■学歴
- 職業
- 配偶者

について、それぞれ、Twitter ID をノードとするグラフを3つ作る.(一つのユーザーについて3つの属性を揃えるわけではない)

学歴、職業、については Google+ を用いる. 最終的に Twitter ID と紐付け したいので、

- (「学歴」or
- 「職業」) and
- 「Twitter へのリンク」

を満たすプロフィールページ を探す.



Google+ "knowledge base"

#### エイリアス

データベースである Freebase を用いる "Harvard University"

"Harvard" "Harvard U"

ightarrow 何か一つ

Freebase is an open, Creative Commons licensed graph database with more than 23 million entities.

An **entity** is a single person, place, or thing. Freebase connects entities together as a graph.

Ways to use Freebase:

- Use Freebase's Ids to uniquely identify entities anywhere on the web
- Query Freebase's data using MQL
- Build applications using our API or Acre, our bosted development platform

## データの広げ方

Google+, Twitter の友達関係の両方を用いて、ユーザーを 追加してく.

ただし、Twitter の友達関係は、あとで素性として使う.

## 配偶関係

配偶者をわざわざ書かせる SNS は Facebook くらいしか ないので、これを用いる. ただしこれだけだと少ないので Freebase を用いて /PEOPLE/PERSON/SPOUSE にあるものを追加する.

| То         | From       | Spouse               |
|------------|------------|----------------------|
| 7/1/2011   | 4/26/1986  | Maria Shriver        |
|            |            | Arnold Schwarzenegge |
|            | 8/28/2004  | Michelle Hlubinka    |
|            |            | Robert Cook          |
| 2014 March | 7/28/1983  | Lyudmila Putina      |
|            |            | Vladimir Putin       |
| 1958       | 8/11/1950  | Verena Huber-Dyson   |
|            |            | Freeman Dyson        |
|            | 11/21/1958 | Imme Dyson           |
|            |            | Freeman Dyson        |
| 5/29/1958  | 9/14/1939  | Theodora Lynch       |
|            |            | J. Paul Getty        |
| 1935       | 12/1/1932  | Ann Rork             |
|            |            | J. Paul Getty        |
| 8/4/1932   | 12/31/1928 | Adolphine Helmle     |
|            |            | J. Paul Getty        |
| 1928       | 1926       | Allene Ashby         |
|            |            | J. Paul Getty        |
| 9/6/1973   | 12/6/1962  | Diane Cilento        |
|            |            | Sean Connery         |
|            | 5/6/1975   | Micheline Roquebrune |

#### http:

//www.freebase.com/people/marriage?instances=

#### また配偶関係は反射関係を持つはず

a isSpouseOf b = b isSpouseOf a

ことから、

 $a ext{ isSpouseOf } b$  かどうかが分からなくても、 $b ext{ isSpouseOf } a$  が分かれば、そちらも決定できる.

## データの統計

以上のように集めたデータセットを正のデータとする.異なる組み合わせを負のデータとして作る.\_

|               | Education | Job   | Spouse |
|---------------|-----------|-------|--------|
| #Users        | 7,208     | 1,806 | 1,636  |
| #Pos Entities | 451       | 380   | 3121   |
| #Neg Entities | 7.0e6     | 4.4e6 | 8.8e6  |

Table 2 の一部

提案されるモデル

# 変数

- ユーザー: 1 < *i*, *j* < *M*
- 属性: *k* = Spouse, Education, Job
- ユーザー *i* によるツイート (集合): *X<sub>i</sub>* = {*x<sub>i,j</sub>*}
- エンティティ: e (属性問わず)
- ユーザー *i* の属性 *k* についての友達の集合: F<sub>i</sub><sup>k</sup>
  - *k* = Education, Job の場合は単なるフォロー関係
  - *k* = Spouse の場合は、配偶者 の単集合
- *z*<sup>k</sup><sub>ie</sub>: ユーザー i の属性 k が e であるかどうか
- $z_{i,x}^k$ : ユーザー i のツイート x が属性 k についての言及であるかどうか

# 戦略

GLOBAL  $z_{i,e}^k$ : ユーザーi の属性k がe であるかどうか LOCAL  $z_{i,x}^k$ : ユーザーi のツイートx が属性k についての言及であるかどうか

最終的には  $z_{i,e}^k$  を知りたい.

GLOBAL は直接それを推定する.

LOCAL はツイートの単位で  $z_{i,x}^k$  を推定する.最後に OR をとれば、

$$z_{i,e}^k = \exists x \in \{x | x \in X_i \land e \in x\}. \ z_{i,x}^k$$

#### モデル

友達が  $F_i^k$  で今までに  $X_i$  という発言をしてきたユーザー i の属性 k が e である確率 .

#### Eq. 2

$$\Psi(z_{i,e}^k, X_i, F_i^k : \Theta) \propto \Psi_{text}(z_{i,e}^k, X_i) \times \Psi_{\textit{Neigh}}(z_{i,e}^k, F_i^k)$$

右辺は、"テキスト的要因" と"隣人的要因" とに分離して独立と仮定している.

#### テキスト的要因

エンティティ e と テキスト  $X_i$  から得る素性ベクトルを  $\psi_{text}(z_{i,e}^k, X_i)$  として、

$$\Psi_{text}(z_{i,e}^k, X_i) = \exp\left[\Theta_{text}^k ^T \cdot \psi_{text}(z_{i,e}^k, X_i)\right]$$

 $\Theta_{text}^{k}$  は重みベクトル

## 隣人的要因

ユーザーiの友達jの発言 $X_j$ を見て、決める.

$$\Psi_{Neigh}(z_{i,e}^k, F_i^k) = \prod_{j \in F_i^k} \Phi_{Neigh}(z_{i,e}^k, X_j)$$

where

$$\Phi_{\textit{Neigh}}(z_{i,e}^k, X_j) = \exp\left[\Theta_{\textit{Neigh}}^k{}^T \cdot \psi_{\textit{Neigh}}(z_{i,e}^k, X_j)\right]$$

## 素性ベクトルの作り方

#### そんなに面白くない

- エンティティが大文字で始まるか
- エンティティの長さ
- POS tag
- エンティティの辞書にマッチする語がツイート中にあるかどうか

## 配偶関係の場合の隣人関係

本来、ユーザーiの配偶者がjなら

$$F_i^{Spouse} = \{j\}$$

だけど、分からない間はそうはいかないので、ツイート中に現れた Twitter ID 全ての集合を用いる.

## 推定のアルゴリズム

推定したNユーザーの周り $(F_i^k)$ の属性が既知の場合と分かってなN場合.

現実世界においては、部分的には既知であることがある.

- NEIGH-OBSERVED
- NEIGH-LATENT

#### **NEIGH-OBSERVED**

周りの属性が既知なら、いきなり右辺が求まる.

$$z_{i,e}^k \leftarrow \mathrm{argmax}_z \Psi(z, X_i, F_i^k)$$

#### **NEIGHT-LATENT**

初期化 全ての 
$$z_{i,e}^k$$
 を  $\Psi_{text}$  で推定 更新 収束するまで for-each i, e  $z_{i,e}^k$  を  $\Psi$  で推定

入力  $\{(i, X_i, F_i^k)\}$ 

#### Eq. 2 (再掲)

$$\begin{array}{l} \Psi(z_{i,e}^k, X_i, F_i^k : \Theta) \propto \\ \Psi_{text}(z_{i,e}^k, X_i) \times \Psi_{Neigh}(z_{i,e}^k, F_i^k) \end{array}$$

 $z_{i,e}^k \leftarrow \operatorname{argmax}_z \Psi(z, X_i, F_i^k)$ 

#### ベースライン

Only-text さっきので  $\Psi_{text}$  しか使わない NELL NELL $^a$  にある大学名と会社名のリストとマッチしたら true と答える  $z_{x}^k$  を当てる

ahttp://rtw.ml.cmu.edu/rtw/kbbrowser/

#### LOCALの実験

- LOCAL(ENTITY): Entity-level:  $z_{i,e}^k$  を当てるタスク (GLOBAL と同じ)
- LOCAL(TWEET): Tweet-level:  $z_{i,x}^k$  を当てる (サブ) タスク

## 結果

|              |                | GLOBAL |       |       | LOCAL(ENTITY) |       |       | LOCAL(TWEET) |       |       |
|--------------|----------------|--------|-------|-------|---------------|-------|-------|--------------|-------|-------|
|              |                | P      | P R F |       |               | R     | F     | P            | R     | F     |
| Our approach | NEIGH-OBSERVED | 0.804  | 0.515 | 0.628 | 0.524         | 0.780 | 0.627 | 0.889        | 0.729 | 0.801 |
|              | NEIGH-LATENT   | 0.755  | 0.440 | 0.556 | 0.420         | 0.741 | 0.536 | 0.854        | 0.724 | 0.783 |
| Only-Text    |                | 0.735  | 0.393 | 0.512 | 0.345         | 0.725 | 0.467 | 0.809        | 0.724 | 0.764 |
| NELL         |                |        |       | _     | 0.170         | 0.798 | 0.280 | 0.616        | 0.848 | 0.713 |

Table 4: Results for Education Prediction

精度は GLOBAL > LOCAL 再現は GLOBAL < LOCAL — LOCAL において  $z_{i,e}^k$  は  $z_{i,x}^k$  の OR だから

|              |                | GLOBAL |       |       | LOCAL(ENTITY) |       |        | LOCAL(TWEET) |       |       |
|--------------|----------------|--------|-------|-------|---------------|-------|--------|--------------|-------|-------|
|              |                | P R F  |       |       | P             | R     | F      | P            | R     | F     |
| Our approach | NEIGH-OBSERVED | 0.643  | 0.330 | 0.430 | 0.374         | 0.620 | 0.467  | 0.891        | 0.698 | 0.783 |
|              | NEIGH-LATENT   | 0.617  | 0.320 | 0.421 | 0.226         | 0.544 | 0.319  | 0.804        | 0.572 | 0.668 |
| Only-Text    |                | 0.602  | 0.304 | 0.404 | 0.155         | 0.501 | 0.237  | 0.764        | 0.471 | 0.583 |
| NELL         | _              |        |       |       | 0.0079        | 0.509 | 0.0156 | 0.094        | 0.604 | 0.163 |

Table 5: Results for Job Prediction

- ■「学歴」より難しい (学生はすぐ宿題の話をするので 簡単)
- Only-Text < NEIGH-LATENT < NEIGH-OBSERVED から、隣人関係の有用性が言える

|              | GLOBAL    |       |       | LOC   | CAL(ENT | TY)   | LOCAL(TWEET) |       |       |  |
|--------------|-----------|-------|-------|-------|---------|-------|--------------|-------|-------|--|
|              | P         | R     | F     | P R   |         | F     | P            | R     | F     |  |
| Our approach | <br>0.870 | 0.560 | 0.681 | 0.593 | 0.857   | 0.701 | 0.904        | 0.782 | 0.839 |  |
| Only-Text    | <br>0.852 | 0.448 | 0.587 | 0.521 | 0.781   | 0.625 | 0.890        | 0.729 | 0.801 |  |

Table 6: Results for Spouse Prediction

## まとめ、感想

- 訓練データの作成には、属性ごとに工夫が必要
- 結果はそこまで属性によって偏らない