

Ecole Nationale des Sciences Appliquées Kénitra

Examen de Probabilité

(Durée 1H30)

La présentation des copies et la précision des raisonnements constitueront des éléments importants pour l'évaluation des copies. **Aucun résultat non justifié ne sera accepté**. Tout échange de matériel, de quelconque nature que ce soit, est interdit.

Bon courage

Questions de cours: (3 points) Soit X une variable aléatoire suivant une loi normale d'espérance m et d'écart-type $\sigma > 0$.

- 1. Tracer sommairement le graphe de la densité de probabilité de X.
- 2. Que représente $P(X \le a)$ sur ce graphe?
- 3. Sur le graphe tracé précédemment, indiquer une zone d'aire d'environ 93%.

Exercice: Une usine dispose d'une machine pour détecter une certaine défectuosité d'un équipement électronique. Les résultats sont comme suit:

- Si l'équipement possède le défaut: la machine détecte le défaut dans 90% des cas et dans 10% des cas elle échoue.
- Si l'équipement ne possède pas le défaut: la machine l'indique correctement dans 99% des cas et elle échoue dans 1% des cas.
- 1. Dans une large population d'équipements où l'on sait que 0.1% des équipements possèdent le défaut, quelle est la probabilité qu'un équipement tiré au hasard soit détecté défectueux par la machine.

<u>MB:</u> Si vous ne parvenez pas à calculer cette valeur, vous pouvez l'appeler α et travailler avec α dans la suite.

- 2. On procède à des tirages avec remise n fois successives, $n \ge 30$. Soit X_n la variable aléatoire qui donne le nombre total d'équipements que la machine considère défectueux durant ces n tirages.
 - (a) Donner l'espérance mathématique ainsi que la variance de X_n en fonction de n.
 - (b) Pour $k \in \mathbb{N}$ fixé, calculer $\lim_{n \to \infty} P(X_n \ge k)$.
 - (c) Donner un entier N_0 et deux réels m et ε , avec $\varepsilon > 0$, vérifiants:

$$P(m - \varepsilon \le X_{N_0} \le m + \varepsilon) \ge 90\%$$

3. Calculer la valeur de $P(49 \le X_{1000} \le 51)$.

(On ne demande pas de correction de continuité.)

4. Trouvez le plus petit entier $k \in \mathbb{N}$ vérifiant:

$$P(X_{1000} > k) < 75\%$$

5. La durée de vie (en unité de temps) d'un équipement électronique de l'usine est une variable aléatoire T prenant toutes les valeurs de l'ensemble $[0, +\infty[$ et dans la loi de probabilité admet comme densité la fonction f définie par:

$$f(x) = le^{-3x}$$
 si $x > 0$ et 0 sinon

où un l est un réel strictement positif.

- (a) Calculer la valeur de l.
- (b) Calculer l'espérance et la variance de T.
- (c) Calculer p(10 < T < 20).

Table de la loi $\mathcal{N}(\mathbf{0},\mathbf{1})$

u	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0 . 95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900