EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

07126445

PUBLICATION DATE

16-05-95

APPLICATION DATE

02-11-93

APPLICATION NUMBER

05295937

APPLICANT: AGENCY OF IND SCIENCE & TECHNOL;

INVENTOR: ISHII NOBUNAO;

INT.CL.

: C08L 23/00 C08J 7/00 C08J 7/00 C08K 3/22 C08K 5/01

TITLE

: NON-HALOGENIC FLAME-RETARDANT RESIN MOLDING USED UNDER

RADIATION-EXPOSED ENVIRONMENT

ABSTRACT :

PURPOSE: To obtain a non-halogenic flame-retardant resin molding used under

radiation-exposed environment and having excellent radiation resistance without impairing

flame retardance.

CONSTITUTION: This resin molding is obtained by subjecting a resin composition prepared by blending 100 pts.wt. of a polyolefin-based resin with 80-200 pts.wt. of magnesium hydroxide and 0.5-10 pts.wt. of 2,4-diphenyl-4-methyl-1-pentene to

cross-linking treatment.

COPYRIGHT: (C)1995,JPO

NSDOCID: <JP 407126445A_AJ_> (19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-126445

(43)公開日 平成7年(1995)5月16日

(51) Int.Cl. ⁶ C 0 8 L C 0 8 J	23/00 7/00	識別記号 L D D 3 0 1 3 0 5	庁内整理番号 7310-4F 7310-4F	FΙ			ł	技術表示	:箇所
C08K	3/22 5/01	K E C K E H		審査請:	求 有	請求項の数 2	FD	(全 6	頁)
(21)出願番号	;	特顧平5-295937		(71)出願人	工業技	術院長			
(22)出願日		平成 5 年(1993)11月	32	(72)発明者	石井 東京都	3千代田区霞が関 伸尚 3千代田区丸の内 2 工業株式会社内			

(54) 【発明の名称】 放射線被曝環境下用非ハロゲン系難燃性樹脂成形体

(57)【要約】

【目的】 優れた耐放射線性を有する放射線被曝環境下 用の非ハロゲン系難燃性樹脂成形体を提供する。

【構成】 ポリオレフィン系樹脂100重量部に対して、水酸化マグネシウム $80\sim200$ 重量部および2, $4-ジフェニル-4-メチル-1-ペンテン<math>0.5\sim10$ 重量部を配合した樹脂組成物に、架橋処理を施したことを特徴とする。

【効果】 放射線被曝環境下において難燃性が何ら阻害されることなく、優れた耐放射線性を有する。

【特許請求の範囲】

【請求項1】 ポリオレフィン系樹脂100重量部に対 して、水酸化マグネシウム80~200重量部および 2, 4-ジフェニル-4-メチル-1-ペンテン0.5 ~10重畳部および所望量の架橋剤を配合した樹脂組成 物に、加熱による架橋処理を施したことを特徴とする放 射線被曝環境下用非ハロゲン系難燃性樹脂成形体。

【請求項2】 ポリオレフィン系樹脂100重量部に対 して、水酸化マグネシウム80~200重量部および 2, 4-ジフェニル-4-メチル-1-ペンテン0.5 ~10重量部を配合した樹脂組成物に、電子線照射によ る架橋処理を施したことを特徴とする放射線被曝環境下 用非ハロゲン系難燃性樹脂成形体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、放射線被曝環境下にお いて優れた耐放射線性を発揮する放射線被曝環境下用非 ハロゲン系の難燃性樹脂成形体に関する。

[0002]

【従来の技術】従来から、原子力発電所を始めとする放 20 射線被曝環境で使用される電線・ケーブルは、その電気 絶縁物が耐放射線性に優れていることが要求されてい る。また同時に、高い安全性を維持するため、万一の火 災時にも優れた耐延焼性を有していることが要求されて いる。これらの要求を満たすため、現用材では、ポリエ チレン等のポリオレフィン樹脂にハロゲン系難燃剤を配 合した難燃性樹脂組成物が使用されている。しかしなが ら、このようなハロゲン系難燃剤配合の組成物による成 形体は、燃焼時に金属腐食性ガスや多量の煙を発生する などの問題があった。一方、最近、ポリオレフィン樹脂 30 に金属水和物を多量に配合した非ハロゲン系の難燃性樹 脂組成物の開発・実用化が進んでいる。このような非ハ ロゲン系の難燃性樹脂組成物を用いた成形体は、燃焼時 の発煙量も少なく、金属腐食性を示すハロゲン系ガスを 発生させないなどの利点があるため、高度の安全性を必 要とする原子力発電所などの用途にも、その応用が期待 されている。

[0003]

【発明が解決しようとする課題】しかしながら、このよ うな従来の非ハロゲン系の難燃性樹脂成形体は、大量の 放射線を被曝すると非常に脆くなり、特に伸び特性が低 下し、その実用性が著しく低下する欠点があった。本発 明は、従来の非ハロゲン系の難燃性樹脂成形体に見られ た放射線劣化性に着目し、放射線被曝環境下において優 れた耐放射線性を発揮する放射線被曝環境下用の非ハロ ゲン系難燃性樹脂成形体を提供することを目的とするも のである。

[0004]

【課題を解決するための手段】本発明は、上記目的達成

に対して安定化効果をもつことに着目し、架橋反応を利 用して非ハロゲン系の難燃性樹脂組成物に、このベンゼ ン環を有するモノマーを導入することで成形体の耐放射 線性を向上させ得たものである。即ち、本発明の放射線 被曝環境下用の非ハロゲン系難燃性樹脂成形体は、ポリ オレフィン系樹脂100重量部に対して、水酸化マグネ シウ Δ 80~200 重点部および2,4-ジフェニルー 4-メチル-1-ペンテン0. 5~10重量部および所 望量の架橋剤を配合した樹脂組成物に、加熱による架橋 処理を施してなることを特徴とするものである。

【0005】また、本発明の他の放射線被曝環境下用の 非ハロゲン系難燃性樹脂成形体は、ポリオレフィン系樹 脂100重量部に対して、水酸化マグネシウム80~2 00重量部および2,4-ジフェニル-4-メチル-1 -ペンテン0.5~10重量部を配合した樹脂組成物 に、放射線照射による架橋処理を施してなることを特徴 とするものである。

【0006】本発明におけるポリオレフィン系樹脂とし ては、水酸化マグネシウムの高配合が可能なものであれ ば、特に限定されるものでないが、好ましいものとして は、極低密度ポリエチレン (VLDPE)、エチレン-エチルアクリレート共重合体(EEA)、エチレン-酢 酸ピニル共重合体(EVA)、エチレン-メチルアクリ レート共重合体(EMA)等が挙げられる。難燃性付与 剤として、水酸化マグネシウムを配合する理由は、水酸 化マグネシウム以外の金属水和物では、得られる成形体 の電気特性が低下するためである。また、水酸化マグネ シウムの配合量は、ポリオレフィン系樹脂100重量部 に対して80~200重量部が好ましく、80重量部未 満では、得られる成形体の難燃性が不十分であり、20 0 重量部を超えた量であると、得られる成形体の機械的 特性が著しく低下する等の問題がある。なお、水酸化マ グネシウムの粒径は、平均粒径で0.8~5μm程度の ものが好ましい。

【0007】また、2、4-ジフェニル-4-メチルー 1-ペンテンの配合量は、ポリオレフィン系樹脂100 重量部に対して、0.5里量部~10重量部が好まし く、0.5重量部未満では、得られる難燃性樹脂成形体 への耐放射線性付与効果が薄く、また、10重量部を超 えて多量に配合しても耐放射線性付与効果の一層の向上 は認められず、反面、組成物の架橋度が大きく低下する ようになり、実用的な機械的強度をもった成形体が得ら れなくなる。

【0008】本発明の樹脂成形体は、架橋剤を用いる化 学架橋法または電子線等を照射する放射線照射架橋法に よって架橋処理が施される。架橋剤を用いる化学架橋法 の場合では、例えばジクミルパーオキサイド (DC ス(t-ブチルパーオキシ-m-イソプロピル) ベンゼ のため鋭意検討した結果、ベンゼン環の π 電子が放射線 50 ン、m-(t-ブチルパーオキシイソプロビル) イソプ

-358-

ロピルベンゼン等の有機過酸化物を架橋剤として用い、 その配合量はポリオレフィン系樹脂100重量部に対し て、0.5~10重量部程度を配合すればよい。なお、 化学架橋法および放射線照射架橋法などにより架橋処理 すると、架橋反応だけでなく、ポリマー鎖の切断反応が 生起し、架橋反応が阻害される場合があるため、架橋処 理時にポリマー鎖の切断反応を抑制し、架橋反応を促進 する効果のある架橋助剤を併用するのが好ましい。この ような目的に用いられる好ましい架橋助剤としては、ト リアリルイソシアネート (TAIC)、トリアリルシア 10 シートについて、機械的特性、難燃性、耐放射線性等を ヌレート(TAC)、トリメチロールプロパントリメタ アクリレート (TMPT) 等がある。

[0009]

【作用】本発明の放射線被曝環境下用の非ハロゲン系難 燃性樹脂成形体では、配合した2, 4-ジフェニル-4 -メチル-1-ペンテンが、架橋処理時にその分子内の 二重結合の部分を介してポリオレフィン系樹脂にグラフ トしてベンゼン環を有する2, 4-ジフェニル-4-メ

チル-1-ペンテンが樹脂中に導入されると共に、架橋 反応に関与する架橋助剤的な働きをして、架橋した成形 体の耐放射線性を向上させる。

[0010]

【実施例】以下、本発明を実施例を挙げて説明する。 (実施例1~5、比較例1~5)表1に示す各成分をそ

れぞれ混合した組成物をロールで均一に混練した後、温 度160℃、30分間プレス成形して試験用架橋物シー トをそれぞれ作製した。こうして作製した試験用架橋物 測定評価した。得られた結果を表1に併記する。なお、 一般に、ケーブルの絶縁体やシースの引張強度は、J1 S規格ではポリエチレンやポリ塩化ビニルでは10MP a 程度以上が要求される。また、伸びについては、曲げ に対するフレキシビリティが必要なことから、ア線照射 後の伸び率が高いほど良い。

[0011]

【表1】

6

				実	稻	164			보	**	壓	
			- .	2	. es	4	5	-	2	3	4	r.
	エチレン一酢酸ヒニル 共重	共重合体¹¹	100	100	100	١	ı	100	100	100	100	
댎	極低密度ポリエチレ	チレンロ	-	—	1	100	100		-			100
∢a	水酸化マグネシウム**	1)	100	100	100	100	100	100	901	100	100	901
	2, 4~ジフュニルー4ーメチルー」ーペンテン	ペンテン	2	5	10	5	10	1	1	1	15	I
Ħ	トリアリルイソシア	メレート	1		1	Į.	2		2	ıs	1	2
郶	ジクミルパーオキサ	1 F	2.5	S	2	2	2	2	2	2.5	5	2
	々の缶∵		7	l	7	2	7	7	1	7	7	7
	酸聚指数		29.4	28.4	27.6	25.9	25.4	28.1	28.5	28.5	27.2	25.9
*	引張強度 (MPa)		14.3	12.6	11.6	13.7	12.7	13.3	15.1	14.6	8.7	15.7
:	毎 な (%)		560	598	640	352	640	535	910	495	730	505
#	総子線周射線面。) 10×10°Cv	引强強度 (NPa)	11.6	11.5	11.0	11.3	10.7	10.7	12.3	11.7	(8 /	9.3
1		伸 び(%)	320	333	393	204	252	195	243	221	(5 /	65
	総7線照射線型。 2 95×10° Cv	引張強灰(MPa)	8.8	8. 1	7.8	10.0	9.6	11.4	10.5	10.3	(1)	11.2
		伸 び(%)	178	185	250	155	168	132	153	135	8 /	29
# 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# + * * * * * * * * * * * * * * * * * *	400									

fir_1, 2-7t fot/1/2) 2 重量的、 合床 **₩**≥ 恕しい **らい名混回原** :品图下線 · ··· 2 00 **""**ACO $r \ge 1$ さりは に 1化了値照 おこ学リで 割力がジン上面 并本和子財狼 三日協入初? 22222

11

ーボンレ

R

【0012】表1から明らかなように、ポリオレフィン 系樹脂としてエチレンー酢酸ピニル共重合体を用い、こ れに、2、4-ジフェニル-4-メチル-1-ペンテン を配合し化学架橋処理した実施例1~3の成形体は、γ 線総照射線量が1, 0×10° Gyで、その引張強度は 11.0~11.6MPaを保有し、伸びも320~3 93% (γ線照射線前の56~62%) の高い伸びを保 持していた。また、 r 線総照射線量が 2, 25×106

し、伸びも178~250% (γ線照射線前の30~3 9%) の伸びを保持していた。これに対して、2,4-ジフェニルー4ーメチルー1-ペンテンを配合しない比 較例1~3の成形体は、γ線総照射線量が1, 0×10 6 Gyで、その引張強度は10.7~12.3MPaと 本発明の実施例品と同等の引張強度を保有していたが、 伸びは195~243% (7線照射線前の36~48 %) に大幅に低下した。そして、γ線総照射線量が2, Gyでも、その引張強度は7.8~8.8MPaを保有 50 25×10⁶ Gyでは、その引張強度は10.5~11.

4MPaとあまり低下しなかったが、仲ぴは132~ 153% (γ線照射線前の24~30%) と大幅に低下 したものとなった。また、2、4-ジフェニル-4-メ チルー1-ペンテンの配合量が、本発明での規定量より 多い配合量である比較例4の成形体は、架橋阻害により γ線照射前の引張強度の初期値が、既に8.7MPaと 一段と低いものであった。

【0013】また、ポリオレフィン系樹脂として極低密 度ポリエチレンを用いた実施例4~5および比較例5で は、実施例4~5の成形体は、γ線総照射線量が1,0 ×10° Gyで、その引張強度は10.7~11.3M Paを保有し、伸びも204~252% (r線照射前の 39~43%) と高い伸びを保持していた。これに対し て、2、4-ジフェニル-4-メチル-1-ペンテンを 配合しない比較例5の成形体は、γ線総照射線量が1, 0×10⁶ Gyで、その引張強度は9.3MPaと大幅 に低下し、仲びも65%と (r線照射前の19%) に大* *幅に低下した。そして、γ線総照射線量が2,25×1 0 f Gyでは、その引張強度は11.2MPaとあまり 低下しなかったが、伸びは50%以下と(線照射前の9 %以下) 大幅に低下したものとなった。

【0014】 (実施例6~7、比較例6~7) 表2に示 す各成分をそれぞれ混合した組成物をロールで均一に混 練した後、帯状に取り出し、これを粒状(角ペレット) 化した。次に、この粒状ペレットを押出機を用いて太さ 2 mm² の導体上に外径が3.4 mmとなるように押出 被覆して絶縁電線を製造した。次に、この製造した絶縁 電線に照射量15Mrad、加速電圧750kevの条 件で電子線照射して架橋処理した。以上のようにして製 造した架橋絶縁電線について、機械特性、難燃性、耐放 射線性等を測定した。得られた結果を表2に併記する。

[0015]

【表2】

			実施例		比較例	
			6	7.	6	7
•	エチレンー酢酸ピニル 共1	重合体!	90	90	90	90
58	変性直鎖状低密度:	ポリエチレン ²⁾	10	10	10	10
合	水酸化マグネシウン	ړ 3)	120	120	120	120
垂	2. 4-ジフェニル-4-メチル-1	ーペンテン	2	5		15
盘	トリアリルインシフ	アヌレート		_	2	_
部	ジクミルパーオキャ	ナイド		_	_	
	その他り		5	5	5	5.
	酸素指数		29. 4	28.5	29.4	27. 2
特	引張強度 (MPa)		13.5	11.9	14.4	6. 6
าจ	伸 び (%)		503	623	435	716
性	総γ線照射線量 ⁶¹ 1.0×10 ⁶ Gy	引張強度 (MPa)	13.6	11.3	10.7	5
CE.	1.0×10 Gy	伸 び(%)	368	385	180	5
	轮γ線照射線量 ⁶⁾ 2.25×10 ⁶ Gy	引張強度(MPa)	10.8	11.5	12. 9	_ 3
	2. 23 ~ 10 · Gy	伸 び(%)	88	105	50>	6

NI.0.8g/10nin. VA含有量 28% MI.1.0g/10min. 密度 0.92g/cm 3 商品名 キスマ5.J 1 重量部、利(2,2,4-トリメチルー1.2-ラヒトロキノリン)4 重量部、

殴/ s. -4 角量部 0 M P a を下回っているため試験せず。 は、 C o ^{co}線源により線量率 1 × 10 ^{co}Gy/H

【0016】表2から明らかなように、実施例6~7の 架橋絶縁電線の絶縁体は、γ線総照射線量が1, 0×1

と γ 線照射処理前とほとんど変わらず、また、伸びは3 68~385% (γ線照射処理前の61~73%) を保 0° Gyで、その引張強度は11. 3~13. 6MPa 50 有していた。そして、γ線総照射線量が2, 25×10

⁶ Gyでは、その引張強度は10.8~11.5MPa を保有し、仲びも88~105% (γ線照射前の16~ 17%)を保有していた。これに対して、2,4-ジフ エニルー4-メチルー1-ベンテンを配合しない比較例 6の絶縁体は、 γ 線総照射線 $\mathbb R$ が1, 0 imes 1 0 6 $\mathbf G$ $\mathbf y$ で、その引張強度は10.7MPaを保有していたが、 伸びは180%と(γ線照射処理前の41%)大幅に低 下した。そして、γ線総照射線量が2, 25×10° G yでは、その引張強度は12.9MPaと高くなり、伸 びは50%以下と(γ線照射処理前の11%以下)大幅 10 の実用的価値は極めて大きいものである。 に低下したものとなった。また、2, 4-ジフェニルー

4-メチル-1-ペンテンの配合量が、本発明での規定 量より多い配合量である比較例7の絶縁体は、架橋阻害 によりγ線照射前の引張強度の初期値が、既に 6. 6 M Paと一段と低いものであった。

10

[0017]

【発明の効果】以上、実施例から明らかなように、本発 明の放射線被曝環境下用の非ハロゲン系難燃性樹脂成形 体は、放射線被曝環境下において難燃性が何ら阻害され ることなく、優れた耐放射線性を有するものであり、そ