Ausgabe: 02. Mai 2023 _____ Kle

Kleingruppenübungen: vom 09.05 bis zum 12.05

Einführung in die angewandte Stochastik

Kleingruppenübung 3

Aufgabe 11

Weisen Sie nach, dass die nachstehenden Funktionen Zähldichten bzw. Dichtefunktionen auf dem jeweils angegebenen Träger darstellen:

- (i) $p_k = p(1-p)^k, k \in \mathbb{N}_0$, für ein $p \in (0,1)$ (Geometrische Verteilung Geo(p)),
- (ii) $p_k = \frac{\lambda^k}{k!} e^{-\lambda}, k \in \mathbb{N}_0$, für ein $\lambda > 0$ (Poisson–Verteilung $Poi(\lambda)$),
- (iii) $f(x) = \lambda e^{-\lambda x}, x \ge 0$, für ein $\lambda > 0$ (Exponentialverteilung $Exp(\lambda)$),
- (iv) $f(x) = \frac{\alpha}{x^{\alpha+1}}, x \ge 1$, für ein $\alpha > 0$ (Pareto-Verteilung $Par(\alpha)$).

Definition

Sei $\Omega \neq \emptyset$ eine Menge und $A \subset \Omega$. Dann heißt die Funktion

$$\mathbb{1}_A : \Omega \mapsto \mathbb{R}, \quad \omega \mapsto \mathbb{1}_A(\omega) := \begin{cases} 1, & \omega \in A, \\ 0, & \omega \notin A. \end{cases}$$

Indikatorfunktion von A.

Es gilt also $\mathbb{1}_A(\omega) = 1$ für $\omega \in \Omega$, wenn das Ereignis A eingetreten ist, bzw. $\mathbb{1}_A(\omega) = 0$, wenn das Ereignis A nicht eingetreten ist. Beachten Sie außerdem, dass in dieser Definition Ω nicht notwendigerweise abzählbar sein muss.

Aufgabe 12

Sei (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum (d.h. $\Omega \neq \emptyset$ ist eine Ergebnismenge, \mathcal{F} ist eine zugehörige σ -Algebra über Ω und P ist eine zugrundeliegende Wahrscheinlichkeitsverteilung auf Ω).

(a) Sei \mathcal{G} eine σ -Algebra über \mathbb{R} und $B \in \mathcal{G}$. Zeigen Sie, dass für jedes Ereignis $A \in \mathcal{F}$ durch die Indikatorfunktion $\mathbb{1}_A$ eine Zufallsvariable auf (Ω, \mathcal{F}, P) gegeben ist.

Hinweis: Sie müssen hierfür die Messbarkeit der Indikatorfunktion nachweisen, d.h. Sie müssen zeigen, dass für $B \in \mathcal{G}$

$$\mathbb{1}_A^{-1}(B) := \{ \omega \in \Omega : \mathbb{1}_A(\omega) \in B \} \in \mathcal{F}$$

gilt.

(b) Seien $A_1, \ldots, A_n \in \mathcal{F}$ Ereignisse für $n \in \mathbb{N}$. Wir definieren nun die Indikatorsumme

$$X(\omega) := \sum_{i=1}^{n} \mathbb{1}_{A_i}(\omega) = \mathbb{1}_{A_1}(\omega) + \dots + \mathbb{1}_{A_n}(\omega), \quad \omega \in \Omega.$$

Was wird durch die Indikatorsumme X ausgedrückt?

(c) Sei $k \in \mathbb{N}$ mit $k \leq n$. Was wird durch die Ereignisse

$$\{X \le k\}$$
 und $\{X \ge k\}$

ausgedrückt?

- (d) Ein Versuch mit den möglichen Ergebnissen Treffer und Niete werde 2n mal durchgeführt. Die ersten n Versuche bilden die erste Versuchsreihe, die zweiten n Versuche bilden die zweite Versuchsreihe. Beschreiben Sie folgende Ereignisse mit Hilfe geeigneter Zufallsvariablen:
 - (i) In der ersten Versuchsreihe tritt mindestens ein Treffer auf.
 - (ii) Bei beiden Versuchsreihen treten gleich viele Treffer auf.
 - (iii) Die zweite Versuchsreihe liefert mehr Treffer als die erste.
 - (iv) In jeder Versuchsreihe gibt es mindestens eine Niete.

Aufgabe 13

Gegeben seien die Funktionen f_c $(c \in \mathbb{N})$ mit

$$f_c(x) = \begin{cases} 0, & \text{für } x < 0, \\ \frac{1}{9}(x-3)^c, & \text{für } 0 \le x \le 3, \\ 0, & \text{für } x > 3. \end{cases}$$

- (a) Für welche Werte $c \in \mathbb{N}$ ist f_c Dichtefunktion einer Wahrscheinlichkeitsverteilung?
- (b) Ermitteln Sie (für die in (a) bestimmten Werte c) die zur Dichtefunktion f_c gehörende Verteilungsfunktion.
- (c) Berechnen Sie $P(X \in (1,2])$, wobei P die zugrundeliegende Wahrscheinlichkeitsverteilung bezeichnet.