

Georgia Tech Night Rover

Autonomous Solar Harvesting Planetary Rover

Cornell Cup USA presented by Intel May 5th, 2012

Team Members

- David Esposito Computer Science
- Farzon Lotfi Computer Science
- Roberto Pereira Computer Engineering
- Kevin Reilley Aerospace Engineering
- John Richardson Electrical Engineering

- Faculty Advisor
 - Dr. Jay Summet College of Computing

Design Competitions

- Intel Cornell Cup
 - May 2012

- NASA Night Rover Centennial Challenge
 - Spring 2013

NASA Centennial Challenge

- Requirements
 - Maximum distance over 72 hour period
 - Autonomous traversal of rugged terrain
 - Conversion of solar energy to mechanical energy
- Goals
 - Continuous motion over 72 hour period
 - Harvested solar power meets or exceeds power consumed

Intel Cornell Cup

Requirements

- Design toward Centennial Challenge requirements and build functional prototype
- Maximum distance over 24 hours in environment with smooth surfaces e.g. parking deck

Goals

- Accurate environment sensing with at least one level of redundancy
- Minimize mass and power consumption
- Integration of electrical and software sub-systems

Continuous Motion and Power Requirements

- Batteries start fully charged at sunset
- Discharge and fully recharge over 24 hours
- Based on theoretical and experimental power budget, 5.6 Ah required at 12.8V

Solar Power Requirements

- Batteries fully recharged at end of 24 hours period i.e sunset
- 25W panel required for adjusted power requirements

 18V @ 3.4A panel charges batteries and supplies power to remaining electrical system

Distance Sensing

- LIDAR module provides 360 degree distance information for the environment
- IR sensors provides real time collision detection

Sun Seeking Path Planning

 Current sensors are used to keep track of the amount of power available

 Photocells tell the state of the solar panel with respect to light intensity

Electrical Subsystem Monitoring

- Temperature and current sensors are used to prevent failure of the batteries and Atom board
- Monitoring battery voltage and input/output current provides the battery state of charge
 Georgia

Software Purpose

- Primary Functionality
 - Build a 2D representation of the environment from LIDAR data
 - Generate weighted paths through the environment
 - Generate and transmit atomic instructions to Arduino motor controller
- Additional functionality
 - Live data monitoring
 - Data logging for further algorithm analysis and future simulations

Atom to Arduino - USB Protocol

- Choose USB for simplicity and reliability
- Sync byte to ensure proper parsing

Live Data Monitoring

Live Data

About GT Night Rover

Help

Geogria Tech Night Rover

Autonomous Solar Harvesting Planetary Rover

Battery SOC = 0.00%

Battery V = 0.00 V

Solar Panel V = 0.00 V

Battery Current = 0.00 A

Solar Panel Current = 0.00 A

Total Power = 0.00 W

Cpu 1 = 26.95% Cpu 2 = 28.44% Memory = 46.66% Program Alive Time = 28.00% Program Sleep Time = 58.11% IO Wait Time = 1.13%

Structural Design and Influences

- Requirements
 - Design toward NASA Centennial Challenge
 - Navigate smooth terrain (Cornell Cup)
 - Maximize distance traveled with minimum power consumption
 - Maintain structural integrity during possible collisions
- Influences
 - NASA Planetary Rovers
 - Experimental high speed navigation technique

Structure Overview

- Altered-rocker-bogie design
 - Fixed rocker joint and free bogie joint
 - More motors with smaller current draw

- Closed body design
 - Added structural integrity
 - Mass reduced using lexan enclosure

Obstacles Encountered

- Turning
 - Wide wheel base with soft rubber wheels
 - Solution: omni-directional wheels

- Gear box structural integrity
 - Increased wheel diameter and force on small risers and screws
 - Temporary Solution: solid axel using larger motor
 - Future Solution: custom gearbox to place structural loads on properly supported axels

Project Status

- Electrical Sub-System
 - Confirmed power budget and power source ratings
 - Functional environmental sensing with built in redundancy
 - Functional motor speed and direction control
- Software Sub-System
 - Successful environment sensing and reconstruction
 - Solar seeking path planning
 - Live data monitoring for debugging
 - Reliable communication protocols
- Structural
 - Design toward NASA Night Rover Centennial Challenge

Acknowledgements

- Gracious appreciation is extended to
 - Financial and corporate sponsors
 - Cornell University faculty and staff
 - Judges through out the semester
 - Intel's technical support staff
 - GT Electrical and Mechanical Engineering Departments
 - Dr. Summet

