

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS INGENIERÍA CIENCIAS DE LA COMPUTACIÓN

PERÍODO ACADÉMICO: 2025-A

ASIGNATURA: ICCD412 Métodos Numéricos GRUPO: GR2

TIPO DE INSTRUMENTO: Tarea 06

FECHA DE ENTREGA LÍMITE: 09/05/2025

ALUMNO: Freire Ismael

TEMA

Método de la bisección

OBJETIVOS

• Aplicar el método de la secante para resolver la ecuación planteada en clase, comparando su eficiencia y convergencia con el método de Newton-Raphson

DESARROLLO

1. Use el método de la secante para encontrar una solución para x = cos(x) (f(x) = cos(x) - x = 0 con tolerancia tal que:

$$|p_n - p_{n-1}| < (tolerancia = 10^{-16})$$

y compare las aproximaciones con las determinadas en el ejemplo visto en clase, el cual aplica el método de Newton, resuelva hasta llegar a la

misma tolerancia para este método también. Suponga que usamos $p_0 = 0.5$ y $p_1 = \pi/4$, trabaje con 13 cifras decimales de redondeo.

Resolución mediante el método de la Secante:

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)	error < tolerancia (10^-16)
1	0,5000000000000	0,7853981633974	0,7363841388366	0,3775825618904	-0,0782913822109	0,7363841388366	0,0490140245609
2	0,7853981633974	0,7363841388366	0,7390581392139	-0,0782913822109	0,0045177185222	0,7390581392139	0,0026740003773
3	0,7363841388366	0,7390581392139	0,7390851493373	0,0045177185222	0,0000451772160	0,7390851493373	0,0000270101234
4	0,7390581392139	0,7390851493373	0,7390851332151	0,0000451772160	-0,0000000269822	0,7390851332151	0,0000000161222
5	0,7390851493373	0,7390851332151	0,7390851332152	-0,0000000269822	0,0000000000002	0,7390851332152	0,000000000001
6	0,7390851332151	0,7390851332152	0,7390851332152	0,0000000000002	0,0000000000000	0,7390851332152	0,000000000000

Figura 1: Soluciones método de la Secante.

Como se obversa la raíz converge cerca de $x_n=0.7390851332152$ para la tolerancia requerida.

Seguidamente, se presenta la resolución mediante el método de Newton-Raphson:

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-16)
1	0,7853981633974	0,7395361335152	-0,0782913822109	-1,7071067811866	0,7395361335152	0,0458620298822
2	0,7395361335152	0,7390851781060	-0,0007548746825	-1,6739452882820	0,7390851781060	0,0004509554092
3	0,7390851781060	0,7390851332152	-0,0000000751299	-1,6736120623614	0,7390851332152	0,0000000448908
4	0,7390851332152	0,7390851332152	0,0000000000000	-1,6736120291832	0,7390851332152	0,0000000000000

Figura 2: Soluciones método de Newton-Raphson

Como se obversa la raíz converge cerca de $x_n = 0.7390851332152$ para la tolerancia requerida.

Finalmente, comparando ambos métodos se nota que el segundo, Newton-Raphson, ha resultado en menor iteraciones, 4 respecto a 6, lo que conlleva a menor tiempo de ejecición y por ende a que el método de Newton sea el más eficiente para este caso.