

Arrangement

Arrangement: Complexity

Junhui DENG

deng@tsinghua.edu.cn

Arrangement Complexity

- ❖ For A(H) an arrangement of n hyperplanes in E^d
 - 1) how many k-faces could A(H) have?
 - 2) how many incidences could A(H) have?
- \clubsuit For $0 \le k \le d$, let
 - 1) $f_k(H) = | \{ k faces of A(H) \} |$
 - 2) $i_k(H) = | \{ incidences between k-face and (k+1)-faces of A(H) \} |$
- ❖ For n and d two positive integers, let
 - 1) $f_k^{(d)}(n) = \max \{ f_k(G) \mid A(G) \text{ is an arrangement in } \mathcal{E}^d, |G| = n \}$, and
 - 2) $i_k^{(d)}(n) = \max \{ i_k(G) \mid A(G) \text{ is an arrangement in } \mathcal{E}^d, |G| = n \}$
- *Problems: $f_k^{(d)}(n) = ?$ $i_k^{(d)}(n) = ?$

//upper bounds

Simple Arrangements

❖ An arrangement A(H) of n hyperplanes in E^d is called simple if
any d − k of the hyperplanes intersect in a common k-flat

Complexity of Simple Arrangements

 \clubsuit If A(H) is a simple arrangement of n hyperplanes in \mathcal{E}^d , then

1)
$$f_k(H) = \sum_{i=0}^k {d-i \choose k-i} {n \choose d-i}$$
, for $0 \le k \le d$, and

2)
$$i_k(H) = 2*(d - k)*f_k(H)$$
, for $0 \le k \le d - 1$

4

Complexity of General Arrangements

\Leftrightarrow For any integers $d \ge 1$ and $n \ge 1$, we have

1)
$$f_k^{(d)}(n) = \sum_{i=0}^k {d-i \choose k-i} {n \choose d-i}$$
, for $0 \le k \le d$,

2)
$$i_k^{(d)}(n) = 2*(d-k)*f_k^{(d)}(n)$$
, for $0 \le k \le d-1$, and

$$3)i_k(H) = i_k^{(d)}(n)$$
 and $f_k(H) = f_k^{(d)}(n)$ iff $A(H)$ is simple

❖ Buck's Counting (1943)

1)
$$f_k^{(d)}(n) = (n, d-k) \sum_{i=0}^k {n-d+k \choose i}$$
, for $0 \le k \le d$, and

2)
$$f_k(H) = f_k^{(d)}(n)$$
 iff A(H) is simple