

Mestrado em Física Médica **DFA** FACULDADE DE CIÊNCIAS
UNIVERSIDADE DO PORTO
Faculdade de Ciências Universidade do Porto

Exemplos

1. Calibração de um acelerador linear utilizado em radioterapia.

Para a calibração de aceleradores lineares em radioterapia utilizase como referência o documento da IAEA TRS-398

Existem muitos factores (multiplicadores com dimensões) envolvidos na 'cadeia dosimétrica' que começa com um factor de calibração em termos de kerma no ar (N_K) medido utilizando fontes de 60 Co em laboratórios primários até à dose absorvida na água (D_w) determinada nos feixes em meio hospitalaror de correcção para uso de

 $D_{w,Q} = M_k N_{D,w,Q}, k_{Q,Q_0}$ $\text{Dose na água de feixe de qualidade "Q"} \\ \text{(não mensurável)} \\ \text{Medição realizada no hospital nas condições definidas no TRS-398}}$ $\text{Factor de multiplicação para dose na água para o feixe de referência da câmara de ionização utilizada.} \\ \text{(medido)}$

O factor k_{Q,Q_0}

$$k_{Q,Q_0} = rac{D_w^Q}{D_{air}^Q} \ rac{D_w^Q}{D_{air}^{Q_0}}$$

Não pode ser determinado experimentalmente

São utilizados métodos numéricos para determinar

Técnicas de Monte-Carlo

Nesta disciplina iremos falar muito de "técnicas de Monte-Carlo", por hoje vamos apenas dizer que são métodos numéricos que utilizam números aleatórios para a realização de cálculos. Neste caso em específico e na maioria dos casos as técnicas de Monte-Carlo em Física Médica são utilizadas para simular o transporte de partículas (fotões, electrões, protões, etc.)

Técnicas de Monte-Carlo para cálculo do factor

- · As câmaras de ionização são definidas de forma minuciosa e detalhada, para cálculo da dose no ar.
- É definido igualmente um pequeno volume de água para cálculo da dose na água.
- São utlizados normalmente ficheiros de "espaço de fase" que guardam informação medida ou simulada de partículas de feixes de diferentes qualidades (Varian, Siemens, Elekta, Co-60, etc etc etc.

Exradin A12S 0.25 cm³

Air, C552, PTFE, POM

Materials:

Exemplos de 2 câmaras de ionização simuladas

2. Cálculo de fármaco-cinética de um radiofármaco (lodo-131)

- Quando ingerimos/somos injectados/etc um fármaco, a sua cinética, i.e., a sua variação ao longo do tempo nos diferentes órgãos, não é possível de ser medida experimentalmente.
- Para realizar o estudo desta cinética utilizam-se "modelos compartimentais".
 Estes modelos consideram que cada órgão ou sistema de órgãos é um compartimento e que entre cada compartimento existem taxas de transferências que são proporcionais à quantidade de fármaco em cada órgão.
- O lodo 131 é utilizado na terapia de cancro da tiróide e hipertiroidismo. Normalmente é tomado via cápsulas que são ingeridas.
- . Em boivo á aprocentado a madala

Model parameters for iodine

		Untaka bu		Biological half-time (d)		
Age	<i>f</i> ₁	Uptake by thyroid, <i>f</i>	Faecal excretion, e	Thyroid T_a	Thyroid T_b	Rest of body T_c
Adult	1	0.3	0.2	0.25	80	12

Sangue

Tiróide

Bexiga

Resto do corpo

Intestinos

Sangue

Tiróide

Bexiga

Resto do corpo

Urina

Intestinos

Fezes

$$\frac{dA}{dt} = -\lambda_I A - \lambda_{AB} A + \lambda_{CA} C$$

$$\frac{dB}{dt} = -\lambda_I B + \lambda_{AB} A - \lambda_{BC} B$$

$$\frac{dC}{dt} = -\lambda_I C - \lambda_{CA} C - \lambda_{CF} C + \lambda_{BC} B$$

$$\frac{dD}{dt} = -\lambda_I D + \lambda_{AD} A$$

$$\frac{dF}{dt} = -\lambda_I F + \lambda_{CF} C$$

$$\frac{dA}{dt} = -\lambda_I A - \lambda_{AB} A + \lambda_{CA} C$$

$$\frac{dB}{dt} = -\lambda_I B + \lambda_{AB} A - \lambda_{BC} B$$

$$\frac{dC}{dt} = -\lambda_I C - \lambda_{CA} C - \lambda_{CF} C + \lambda_{BC} B$$

$$\frac{dD}{dt} = -\lambda_I D + \lambda_{AD} A$$

$$\frac{dF}{dt} = -\lambda_I F + \lambda_{CF} C$$

$$\frac{dA}{dt} = -\lambda_I A - \lambda_{AB} A + \lambda_{CA} C$$

$$\frac{dB}{dt} = -\lambda_I B + \lambda_{AB} A - \lambda_{BC} B$$

$$\frac{dC}{dt} = -\lambda_I C - \lambda_{CA} C - \lambda_{CF} C + \lambda_{BC} B$$

$$\frac{dD}{dt} = -\lambda_I D + \lambda_{AD} A$$

$$\frac{dF}{dt} = -\lambda_I F + \lambda_{CF} C$$

$$\frac{dA}{dt} = -\lambda_I A - \lambda_{AB} A + \lambda_{CA} C$$

$$\frac{dB}{dt} = -\lambda_I B + \lambda_{AB} A - \lambda_{BC} B$$

$$\frac{dC}{dt} = -\lambda_I C - \lambda_{CA} C - \lambda_{CF} C + \lambda_{BC} B$$

$$\frac{dD}{dt} = -\lambda_I D + \lambda_{AD} A$$

$$\frac{dF}{dt} = -\lambda_I F + \lambda_{CF} C$$

$$\lambda_{AB} = f \cdot \lambda_a = 0.3 \times \frac{0.693}{0.25} = 0.832d^{-1}$$

$$\lambda_{BC} = \lambda_b = \frac{0.693}{80} = 0.00866d^{-1}$$

$$\lambda_{CA} = (1 - e) \cdot \lambda_c = 0.8 \times \frac{0.693}{12} = 0.0462d^{-1}$$

$$\lambda_{CF} = e \cdot \lambda_c = 0.2 \times \frac{0.693}{12} = 0.0116d^{-1}$$

$$\lambda_{AD} = (1 - f) \cdot \lambda_a = 0.7 \times \frac{0.693}{0.25} = 1.940d^{-1}$$

$$\frac{dA}{dt} = -\lambda_I A - \lambda_{AB} A + \lambda_{CA} C$$

$$\frac{dB}{dt} = -\lambda_I B + \lambda_{AB} A - \lambda_{BC} B$$

$$\frac{dC}{dt} = -\lambda_I C - \lambda_{CA} C - \lambda_{CF} C + \lambda_{BC} B$$

$$\frac{dD}{dt} = -\lambda_I D + \lambda_{AD} A$$

$$\frac{dF}{dt} = -\lambda_I F + \lambda_{CF} C$$

$$\lambda_{AB} = f \cdot \lambda_a = 0.3 \times \frac{0.693}{0.25} = 0.832d^{-1}$$

$$\lambda_{BC} = \lambda_b = \frac{0.693}{80} = 0.00866d^{-1}$$

$$\lambda_{CA} = (1 - e) \cdot \lambda_c = 0.8 \times \frac{0.693}{12} = 0.0462d^{-1}$$

$$\lambda_{CF} = e \cdot \lambda_c = 0.2 \times \frac{0.693}{12} = 0.0116d^{-1}$$

$$\lambda_{AD} = (1 - f) \cdot \lambda_a = 0.7 \times \frac{0.693}{0.25} = 1.940d^{-1}$$

$$\lambda_I = 0.086d^{-1}$$

$$\frac{dA}{dt} = -\lambda_I A - \lambda_{AB} A + \lambda_{CA} C$$

$$\frac{dB}{dt} = -\lambda_I B + \lambda_{AB} A - \lambda_{BC} B$$

$$\frac{dC}{dt} = -\lambda_I C - \lambda_{CA} C - \lambda_{CF} C + \lambda_{BC} B$$

$$\frac{dD}{dt} = -\lambda_I D + \lambda_{AD} A$$

$$\frac{dF}{dt} = -\lambda_I F + \lambda_{CF} C$$

$$\lambda_{AB} = f \cdot \lambda_a = 0.3 \times \frac{0.693}{0.25} = 0.832d^{-1}$$

$$\lambda_{BC} = \lambda_b = \frac{0.693}{80} = 0.00866d^{-1}$$

$$\lambda_{CA} = (1 - e) \cdot \lambda_c = 0.8 \times \frac{0.693}{12} = 0.0462d^{-1}$$

$$\lambda_{CF} = e \cdot \lambda_c = 0.2 \times \frac{0.693}{12} = 0.0116d^{-1}$$

$$\lambda_{AD} = (1 - f) \cdot \lambda_a = 0.7 \times \frac{0.693}{0.25} = 1.940d^{-1}$$

Para resolver este sistema de equações diferenciais utilizamos métodos numéricos!

Técnicas de Monte-Carlo para cálculo da dose absorvida em órgãos

- Já vimos como não é possível medir a dose absorvida em cada órgão, isto é válido também para radiodiagnóstico. Imaginemos um grupo de crianças que é submetido a um exame de cintigrafia renal, utilizando um composto 99mTc-DMSA.
- Podemos calcular a biocinética do composto no rim, mas também a dose em cada órgão de interesse (rins, fígado, baço, resto do corpo).
- Temos especial interesse em calcular a dose no rim. Isso pode ser feito com recurso a fantomas de VOXEL dedicados pediátricos que permitem correr o código MCNP utilizando o fantoma

BABY

CHILD

	BABY	CHILD
Gender	F	F
Age	8 weeks	7 y
Height (cm)	57	115
Weight (kg)	4.2	21.7
Kidney mass (g)	30.3	188.8
Matrix dimension	$267 \times 138 \times 142$	$256 \times 256 \times 144$
Original dimensions of the voxels	$(0.085 \times 0.085 \times 0.4 = 0.00289) \text{ cm}^3$	$(0.154 \times 0.154 \times 0.8 = 0.01897) \text{ cm}^3$

Teles, P., Mendes, M., Zankl, M., de Sousa, V., Santos, A. I., & Vaz, P. (2016). Assessment of the Absorbed Dose in the Kidney of Nuclear Nephrology Paediatric Patients using ICRP Biokinetic Data and Monte Carlo Simulations with Mass-Scaled Paediatric Voxel Phantoms. Radiation Protection Dosimetry. doi:10.1093/rpd/ncw096

Técnicas de Monte-Carlo para cálculo da dose no cristalino em cardiologia e radiologia de intervenção

- Exposição prolongada do cristalino a doses baixas de radiação pode levar ao aparecimento de cataratas
- Não existe uma forma de medir a dose no cristalino utilizando-se um "proxy" Hp(3) que depois é transformado em dose no cristalino a partir de cálculos usando Monte-Carlo
- Existem projectos que pretendem, por exemplo, fazer este cálculo em tempo real para ajudar o profissional a saber quando atingiu um determinado limite.

