XC6121/XC6122 XC6123/XC6124 Series

ETR0209-011

Voltage Detector with Watchdog Function and ON/OFF Control (VDF=1.6V~5.0V)

■GENERAL DESCRIPTION

The XC6121/XC6122/XC6123/XC6124 series is a group of high-precision, low current consumption voltage detectors with watchdog functions incorporating CMOS process technology. The series consist of a reference voltage source, delay circuit, comparator, and output driver. With the built-in delay circuit, the series do not require any external components to output signals with release delay time. The output type is VDFL low when detected. The EN/ENB pin can control ON and OFF of the watchdog functions. By setting the EN/ENB pin to low or high level, the watchdog function can be OFF while the voltage detector remains operation. Since the EN/ENB pin of the XC6122 and XC6124 series is internally pulled up to the VIN pin or pulled down to the V_{SS} pin, these series can be used with the EN/ENB pin left open when the watchdog functions is used. The detect voltages are internally fixed 1.6V ~ 5.0V in increments of 0.1V, using laser trimming technology. Six watchdog timeout periods are available in a range from 50ms to 1.6s. Five release delay times are available in a range from 3.13ms to 400ms.

APPLICATIONS

- Microprocessor watchdog monitoring and reset circuits
- Memory battery backup circuits
- System power-on reset circuits
- Power failure detection

■FEATURES

Detect Voltage Range : 1.6V ~ 5.0V, +2% (0.1V increments)

: VDFL x 5% (TYP.) **Hysteresis Width Operating Voltage Range** : 1.0V ~ 6.0V

Detect Voltage Temperature

Operating Ambient Temperature

Characteristics +100ppm/°C (TYP.) **Output Configuration** N-channel open drain Watchdog Pin Watchdog input

> If watchdog input maintains 'H' or 'L' within the watchdog timeout period, a reset signal is output

from the RESETB pin.

EN/ENB Pin : When the EN/ENB pin voltage is

set to low or high level, the watchdog function is forced off.

: EU RoHS Compliant, Pb Free

Release Delay Time : 400ms, 200ms, 100ms, 50ms,

3.13ms (TYP.)

Watchdog Timeout Period 1.6s, 800ms, 400ms, 200ms,

100ms, 50ms (TYP.) -40°C~ +85°C

Packages : SOT-25, USP-6C **Environmentally Friendly**

■TYPICAL APPLICATION CIRCUIT

■TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs. Input Voltage

■PIN CONFIGURATION

* The dissipation pad for the USP-6C package should be solder-plated in reference mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the Vss (No. 5) pin.

■PIN ASSIGNMENT

PIN NI	JMBER	PIN NAME	FUNCTION	
SOT-25	USP-6C	T II V I V III I	TONOTION	
1	4	RESETB	Reset Output	
2	5	V _{SS}	Ground	
3	2	EN/ENB	Watchdog ON/OFF Control	
4	1	WD	Watchdog	
5	6	V _{IN}	Power Input	
-	3	NC	No Connection	

■PRODUCT CLASSIFICATION

Selection Guide

	RESET OU	JTPUT		EN/ENB PIN	FUNCTION
SERIES	VDFL (RESETB) (*1)	VDFH (RESET)	HYSTERESIS	EN/ENB Input	Pull-Up or Down
	VBIE (REGETB)	vorm (neoer)		Logic (*2)	Resistor
XC6121	N-channel open drain			EN	With No Pull-Up
XC0121	N-channer open drain	-		EIN	Resistor
XC6122	N channel open drain			EN	With Pull-Up
AC0122	N-channel open drain	-	Available:	LIN	Resistor
XC6123	N-channel open drain		V _{DFL} x 5% (TYP.)	ENB	With No Pull-Down
AC0123	N-channer open drain	-		CIND	Resistor
XC6124	N channol open drain			ENB	With Pull-Down
AC0124	N-channel open drain	-		CIND	Resistor

^(*1) The output type of RESETB is set to L level at the time of detection.

Ordering Information

XC6121①②③④⑤⑥–⑦ (*²): N-channel Open Drain Output (RESETB), EN Pin: No Pull-Up Resistor XC6122①②③④⑤⑥–⑦ (*²): N-channel Open Drain Output (RESETB), EN Pin: Pull-Up Resistor XC6123①②③④⑤⑥–⑦ (*²): N-channel Open Drain Output (RESETB), ENB Pin: No Pull-Down Resistor XC6124①②③④⑤⑥–⑦ (*²): N-channel Open Drain Output (RESETB), ENB Pin: Pull-Down Resistor

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
		Α	3.13ms (TYP.)
		С	50ms (TYP.)
1	Release Delay Time(*1)	D	100ms (TYP.)
		E	200ms (TYP.)
		F	400ms (TYP.)
		2	50ms (TYP.)
		3	100ms (TYP.)
2	Watchdog Timeout Period	4	200ms (TYP.)
		5	400ms (TYP.)
		6	1.6s (TYP.)
		7	800ms (TYP.)
34	Detect Voltage	16 ~ 50	Detect voltage
3.4	Detect Voltage	16 ~ 50	ex.) 4.5V: ③⇒4, ④⇒5
		MR	SOT-25 (3,000/Reel)
E V E - (7)(*2)	Packages	MR-G	SOT-25 (3,000/Reel)
56-7(*2)	(Order Unit)	ER	USP-6C (3,000/Reel)
		ER-G	USP-6C (3,000/Reel)

^(*1) Please set the release delay time shorter than or equal to the watchdog timeout period. ex.) XC6121D327MR or XC6121D627MR

^(*2) EN input logic: The watchdog function turns on when the EN pin becomes high level.

ENB input logic: The watchdog function turns on when the ENB pin becomes low level.

^(*2) The "-G" suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.

■BLOCK DIAGRAMS

●XC6121 Series

●XC6122 Series

■BLOCK DIAGRAMS (Continued)

●XC6123 Series

●XC6124 Series

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAMETER		SYMBOL	RATINGS	UNITS	
		Vin	Vss -0.3 ~ 7.0	V	
Input Volta	age	V _{EN} /V _{ENB}	Vss-0.3~Vin+0.3≦7.0	V	
		V_{WD}	Vss -0.3 ~ 7.0	V	
Output Cur	rent	I _{RBOUT}	20	mA	
Output Vol	age	V _{RESETB}	Vss -0.3 ~ 7.0	V	
Dower Dissipation	SOT-25	D4	250	mW	
Power Dissipation USP-6C		Pd	120	IIIVV	
Operating Ambient Temperature		Topr	-40 ~ +85	°C	
Storage Temp	erature	Tstg	-55 ~ + 125	°C	

■ ELECTRICAL CHARACTERISTICS

Ta=25 °C

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNITS	CIRCUIT
Detect Voltage	VDFL	V _{EN} =Vss		VDFL(T) × 0.98	VDFL(T)	VDFL(T) × 1.02	V	1
Hysteresis Width	VHYS	V _{EN} =Vss		VDFL × 0.02	VDFL × 0.05	VDFL × 0.08	V	1
			$V_{IN}=V_{DFL(T)}\times0.9V$	-	5	11	μΑ	
Supply Current (*1)	Iss	WD=OPEN	V _{IN} =V _{DFL(T)} ×1.1V	-	10	16		2
			V _{IN} =6.0V	-	12	18	1	
Operating Voltage	Vin			1.0	-	6.0	V	1)
			VIN=1.0V	0.15	0.5	-		
Output Current	IRBOUT	N-ch.	VIN=2.0V (VDFL(T)> 2.0V)	2.0	2.5	-	mA	3
Output Ourient	INDOOT	VDS=0.5V	VIN=3.0V (VDFL(T)>3.0V)	3.0	3.5	-	111/5	9
		-	VIN=4.0V (VDFL(T) >4.0V)	3.5	4.0	-		
Temperature Characteristics	ΔVDFL / ΔTopr•VDFL	-40°C <u>≤</u> Topr <u>≤</u>	_85 °C	-	<u>+</u> 100	-	ppm/ °C	1
				2.00	3.13	5.00		
			is increased from	37	50	63	1	
Release Delay Time (VDFL<1.8V)	t_{DR}	1.0V to 2.0V	the release time level	75	100	125	ms	4
(VDFL <u>≤</u> 1.6V)		and attains to the release time level, and the Reset output pin releases.		150	200	250	-	
				300	400	500		
				2.00	3.13	5.00		
		Time until VIN is increased from 1.0V to (VDFL x 1.1V) and attains to the release time level,		37	50	63	ms	4
Release Delay Time (VDFL≥1.9V)	t _{DR}			75	100	125		
(VDFL <u>2</u> 1.9V)		and the Reset output pin releases.	150	200	250			
			•	300	400	500	1	
Detect Delay Time	t _{DF}	Time until VIN is decreased from 6.0V to 1.0V and attains to the detect voltage level, and the Reset output pin detects while the WD pin left open.		-	5.5	33	μs	4
VDFL Leakage Current	ILEAK	VIN=6.0V, V _{RESETB} =6.0V		-	0.01	0.1	μΑ	3
-				37	50	63		
		Time until VIN	increases form	75	100	125		
Watchdog		1.0V to 2.0V		150	200	250	Ī	©
Timeout Period (VDFL≤1.8V)	t _{WD}	the Reset out	put pin is released to go	300	400	500	ms	5
(VDI L <u>=</u> 1.0V)		into the detec	tion state. (WD=OPEN)	600	800	1000	1	
				1200	1600	2000	1	
				37	50	63		
		Time until VIN	increases from	75	100	125	ms	
Watchdog		1.0V to (VDFL		150	200	250		(F)
Timeout Period (VDFL≥1.9V)	t_WD	and the Rese	t output pin is released to	300	400	500		5
(*5.2=1.0*)		go into the de	tection state. (WD=OPEN)	600	800	1000		
				1200	1600	2000	1	

■ ELECTRICAL CHARACTERISTICS (Continued)

Ta=25 °C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Watchdog Minimum Pulse Width	twdin	VIN=6.0V, Apply pulse from 6.0V to 0V to the WD pin.	300	-	-	ns	6
Watchdog High Level Voltage	VWDH	VIN=VDFL x 1.1V ~ 6.0V	VIN x 0.7	-	6	V	6
Watchdog Low Level Voltage	VWDL	VIN=VDFL x 1.1V ~ 6.0V	0	-	VIN x 0.3	V	6
Watchdog Pull-down Resistance	Rwb	Vwd=6V, Rwd=Vwd/Iwd	300	600	900	kΩ	7
EN/ENB High Level Voltage	VENH/VENBH	VIN=VDFL x 1.1V ~ 6.0V	1.3	-	VIN	V	8
EN/ENB Low Level Voltage	VENL/VENBL	VIN=VDFL x 1.1V ~ 6.0V	0	-	0.35	V	8
EN Pull-up Resistance (*2)	Ren	VIN=6.0V, V _{EN} =0V, REN=VIN / IEN	1.0	1.6	2.4	МΩ	9
ENB Pull-down Resistance (*3)	RENB	VIN=6.0V, V _{ENB} =6V, RENB=VENB / IENB	1.0	1.0	2.4	IAI 25	9

NOTE:

 $^{**}_{\text{\tiny MAL}}V_{\text{DFL}(T)}$ =Setting detect voltage value

The EN/ENB pin is CMOS input. For the XC6122 (pull-up resistor) and XC6124 (pull-down resistor), supply current increases in the following values when the watchdog function is OFF.

XC6122 Series : (VIN-VEHL) /1.6M Ω (TYP.) XC6124 Series : VEHBH/1.6M Ω (TYP.)

(*2) For the XC6122 series only.

^{*} In case where no EN/ENB pin's condition written in the test condition field, $V_{EN}=V_{IN}$ and $V_{ENB}=V_{SS}$.

The condition when the watchdog pin is ON.

^(*3) For the XC6124 series only.

■OPERATIONAL EXPLANATION

The XC6121/6122/6123/6124 series compare, using the error amplifier, the voltage of the internal voltage reference source with the voltage divided by R1, R2 and R3 connected to the VIN pin. The resulting output signal from the error amplifier activates the watchdog logic, delay circuit and the output driver. When the VIN pin voltage gradually falls and finally reaches the detect voltage, the RESETB pin output goes from high to low in the case of the VDFL type ICs.

<RESETB / RESET Pin Output Signal>

* VDFL (RESETB) type - output signal: Low when detected.

The RESETB pin output goes from high to low whenever the VIN pin voltage falls below the detect voltage. The RESETB pin remains low for the release delay time (tDR) after the VIN pin voltage reaches the release voltage. If neither rising nor falling signals are applied to the WD pin within the watchdog timeout period, the RESETB pin output remains low for the release delay time (tDR), and thereafter the RESET pin outputs high level signal.

<Hysteresis>

When the internal comparator output is high, the NMOS transistor connected in parallel to R3 is turned ON, activating the hysteresis circuit. The difference between the release and detect voltages represents the hysteresis width, as shown by the following calculations:

VDFL (detect voltage) = (R1+R2+R3) x Vref / (R2+R3) VDR (release voltage) = (R1+R2) x Vref / (R2) VHYS (hysteresis width) = VDR-VDFL (V) VDR > VDFL

- * Please refer to the block diagrams for R1, R2, R3 and Vref.
- * Hysteresis width is selectable from VDFL x 0.05V (TYP.).

<Watchdog (WD) Pin>

The series use a watchdog timer to detect malfunction or "runaway" of the microprocessor. If neither rising nor falling signals are applied from the microprocessor within the watchdog timeout period, the RESETB pin output maintains the detection state for the release delay time (tDR), and thereafter the RESETB pin outputs low to high signal. The watchdog pin is pulled down to the V_{SS} internally. When the watchdog pin is not connected, A reset signal comes out after the watchdog timeout period. Six watchdog timeout period settings (twD) are available in 1.6s, 800ms, 400ms, 200ms, 100ms, and 50ms.

<EN Pin>

In case where the watchdog function is not used, When the EN pin input driven to low level, only the watchdog function is forced off while the detect voltage circuit remains operation. For using the watchdog function, the EN pin should be used in high level. Even after the input voltage and the EN pin voltage are driven back high, the RESETB pin output maintains the detection state for the release delay time (TDR). (Refer to the TIMING CHART 1-①.) The watchdog function recovers immediately when the input voltage becomes higher than the release voltage and the EN pin voltage driven from low to high level. (Refer to the TIMING CHART 1-②.) A diode, which is an input protection element, is connected between the EN pin and VIN pin. Therefore, if the EN pin is applied voltage that exceeds VIN, the current will flow to VIN through the diode. For avoiding any damage to the IC, please use this IC within the stated maximum ratings (Vss -0.3 ~ VIN +0.3) on the EN pin.

<ENB Pin>

In case where the watchdog function is not used, when the ENB pin input driven to high level, only the watchdog function is forced off while the detect voltage circuit remains operation. For using the watchdog function, the ENB pin should be used in low level. Even after the input voltage and the ENB pin voltage are driven back low, the RESETB pin output maintains the detection state for the release delay time (tdr). (Refer to the TIMING CHART 2-①.) The watchdog function recovers immediately when the input voltage becomes higher than the release voltage and the ENB pin voltage driven from high to low level. (Refer to the TIMING CHART 2-②.) A diode, which is an input protection element, is connected between the ENB pin and VIN pin. Therefore, if the ENB pin is applied voltage that exceeds VIN, the current will flow to VIN through the diode. For avoiding any damage to the IC, please use this IC within the stated maximum ratings (Vss -0.3 ~ VIN +0.3) on the ENB pin.

<Release Delay Time>

Release delay time (tDR) is the time that elapses from when the VIN pin reaches the release voltage, or when the watchdog timeout period expires with no rising signal applied to the WD pin, until the RESETB pin output is released from the detection state. Five release delay time (tDR) watchdog timeout period settings are available in 400ms, 200ms, 100ms, 50ms, and 3.13ms.

<Detect Delay Time>

Detect Delay Time (tDF) is the time that elapses from when the VIN pin voltage falls to the detect voltage until the RESETB pin output goes into the detection state.

TIMING CHARTS

- 1. XC6121/XC6122 Series (EN products)
- ullet N-ch Open Drain Output (Rpull=100k Ω)

•tof (N-ch Open Drain Output, Rpull=100k Ω)

■TIMING CHARTS (Continued)

- 2. XC6123/XC6124 Series (ENB products)
- ullet N-ch Open Drain Output (Rpull=100k Ω)

●toF (N-ch Open Drain Output, Rpull=100k Ω)

■NOTES ON USE

- 1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. When a resistor is connected between the VIN pin and the input, the VIN voltage drops while the IC is operating and a malfunction may occur as a result of the IC's through current.
- 3. In order to stabilize the IC's operations, please ensure that the VIN pin's input frequency's rise and fall times are more than $1 \mu \text{ s/V}$.
- 4. Noise at the power supply may cause a malfunction of the watchdog operation or the voltage detector. In such case, please strength VIN and GND lines. Also, please connect a capacitor such as $0.22 \,\mu$ F between the VIN pin and the GND pin and evaluate the device on the actual board carefully before use.
- 5. Protecting against a malfunction while the watchdog time out period, an ignoring time (no reaction time) occurs to the rise and fall times. Referring to the figure below, the ignoring time (no reaction time) lasts for 900μ s at maximum. (refer to the Figure 1 below)
- 6. The EN pin of the XC6121 series is not internally pulled up. When using the watchdog function, please drive the V_{EN} pin in high level. The EN pin of the XC6122 series is internally pulled up. The watchdog function can be used even the EN pin left open. The ENB pin of the XC6123 series is not internally pulled down. When using the watchdog function, please drive the V_{ENB} pin in low level. The ENB pin of the XC6124 series is internally pulled up. The watchdog function can be used even the ENB pin left open.
- 7. Torex places an importance on improving our products and its reliability.

 However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

[Figure1]

■PIN LOGIC CONDITIONS

PIN NAME	LOGIC	CONDITIONS	PIN NAME	LOGIC	CONDITIONS
V _{IN}	Н	H V _{IN} ≧V _{DFL} +V _{HYS}		Н	The state maintaining WD <u>≥</u> V _{WDH} for more than t _{WD}
VIN	L	V _{IN} <u>≤</u> V _{DFL}	WD	L	The state maintaining WD \leq V _{WDL} for more than t_{WD}
EN/ENB	Н	V _{EN} /V _{ENB} ≧1.30V		L→H	$V_{WDL} \rightarrow V_{WDH}$, $300 ns \le t_{WDIN} \le t_{WD}$
EIN/EINB	Ĺ	V _{EN} /V _{ENB} ≦0.35V		H→L	$V_{WDH} \rightarrow V_{WDL}$, $300 ns \le t_{WDIN} \le t_{WD}$

NOTE:

V_{DFL}: Detect Voltage V_{HYS}: Hysteresis Range V_{WDH}: WD High Level Voltage V_{WDL}: WD Low Level Voltage t_{WDIN}: WD Pulse Width t_{WD}: WD Timeout Period

For the details of each parameter, please see the electrical characteristics.

■FUNCTION CHART

VIN	XC6121/XC6122	XC6123/XC6124	V_{WD}	V _{RESETB} (*2)	
'	V_{EN}	V_{ENB}	****	NEGETB	
			Н		
Н	Н		L	Repeating detect and release (H→L→H)	
11		L	_	OPEN	
			L⇔H	Н	
Н	Н *1	Н		Н	
L]	L	I	L	

NOTE

- *1: Including all logics of the WD (V_{WD} =H, L, OPEN, H \rightarrow L, L \rightarrow H).
- *2: When the V_{RESETB} is High, the circuit is in the release state. When the V_{RESETB} is Low, the circuit is in the detection state.
- *3: V_{IN} =L and V_{EN} / V_{ENB} =H can not be combined because the rated input voltage of the EN/ENB pin is Vss-0.3V to V_{IN} +0.3V.
- *4: The RESETB pin becomes indefinite operation while 0.35V<V_{EN}/V_{ENB}<1.3V.
- *5: The EN pin of the XC6121 series is not internally pulled up. When using the watchdog function, please drive the V_{EN} pin in high level. The EN pin of the XC6122 series is internally pulled up. The watchdog function can be used even the EN pin left open. The ENB pin of the XC6123 series is not internally pulled down. When using the watchdog function, please drive the V_{ENB} pin in low level. The ENB pin of the XC6124 series is internally pulled up. The watchdog function can be used even the ENB pin left open.

■TEST CIRCUITS

Circuit ①

Circuit ②

Circuit ③

■TEST CIRCUITS (Continued)

Circuit 4

Circuit ⑤

Circuit 6

■TEST CIRCUITS (Continued)

Circuit ⑦

Circuit ®

Note: The above reference is about the EN/ENB logic operation.

Note: XC6122 series has EN pin, XC6124 Series has ENB pin.

■TYPICAL PERFORMANCE CHARACTERISTICS

(1.) Supply Current vs. Input Voltage

(2.) Detect, Release Voltage vs. Ambient Temperature

(2.) Detect, Release Voltage vs. Ambient Temperature (Continued)

(3.) Nch Driver Output Current vs. VDS

(5.) Release Delay Time vs. Ambient Temperature

(4.) Driver Output Current vs. Input Voltage

(6.) Watchdog Timeout Period vs. Ambient Temperature

(7.) Release Delay Time vs. Input Voltage

(8.) Watchdog Timeout Period vs. Input Voltage

(9.) Watchdog Low Level Threshould vs. Ambient Temperature

(11.) Watchdog Pull-Down Resistance vs. Ambient Temperature

(12.) EN Pull-Up Resistance vs. Ambient Temperature

XC6121~XC6122 3.0 EN pull-up Resistance R EN (M요) 2.4 1.8 1.2 0.6 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (°C)

(14.) EN Ligh Level Voltage vs. Ambient Temperature

(13.) ENB Pull-Down Resistance vs. Ambient Temperature

(15.) EN High Level Voltage vs. Ambient Temperature

(16.) ENB Low Level Voltage vs. Ambient Temperature

(17.) ENB High Level Voltage vs. Ambient Temperature

■ PACKAGING INFORMATION

●SOT-25 Unit:mm 2.9 ± 0.2 +0. 0.4 -0.05 4 0~0.1 1.6 0.2MIN 2 3 0.15 ^{+0.1} -0.05 (0.95)1.9±0.2 L3MAX 1.1±0.1

●USP-6C

●USP-6C Reference Pattern Layout

●USP-6C Reference Metal Mask Design

■MARKING RULE

① represents product series

MARK	PRODUCT SERIES
_ <u>E</u>	XC6121*****
<u></u>	XC6122*****
<u>н</u>	XC6123*****
<u>K</u>	XC6124*****

② represents release delay time and watchdog timeout period

XC6121Series

MARK	RELEASE DELAY TIME	WATCH DOG TIMEOUT PERIOD	PRODUCT SERIES
0	3.13ms	50ms	XC6121A2****
1	3.13 ms	100ms	XC6121A3****
2	3.13 ms	200ms	XC6121A4****
3	3.13 ms	400ms	XC6121A5****
4	3.13 ms	800ms	XC6121A7****
5	3.13 ms	1.6s	XC6121A6****
6	50ms	50ms	XC6121C2****
7	50ms	100ms	XC6121C3****
8	50ms	200ms	XC6121C4****
9	50ms	400ms	XC6121C5****
Α	50ms	800ms	XC6121C7****
В	50ms	1.6s	XC6121C6****
Н	100ms	100ms	XC6121D3****
С	100ms	200ms	XC6121D4****
L	100ms	400ms	XC6121D5****
D	100ms	800ms	XC6121D7****
М	100ms	1.6s	XC6121D6****
Е	200ms	200ms	XC6121E4***
R	200ms	400ms	XC6121E5****
F	200ms	800ms	XC6121E7***
S	200ms	1.6s	XC6121E6****
Т	400ms	400ms	XC6121F5****
K	400ms	800ms	XC6121F7****
U	400ms	1.6s	XC6121F6****

XC6122/XC6123/XC6124Series

MARK	RELEASE DELAY TIME	WATCH DOG TIMEOUT PERIOD	PRODUCT SERIES
N	3.13ms	50ms	XC612*A2****
Р	3.13ms	100ms	XC612*A3****
R	3.13ms	200ms	XC612*A4****
S	3.13ms	400ms	XC612*A5****
Т	3.13ms	800ms	XC612*A7****
U	3.13ms	1.6s	XC612*A6****
V	50ms	50ms	XC612*C2****
Х	50ms	100ms	XC612*C3****
Y	50ms	200ms	XC612*C4****
Z	50ms	400ms	XC612*C5****
<u>A</u>	50ms	800ms	XC612*C7****
<u>B</u>	50ms	1.6s	XC612*C6****
Α	100ms	100ms	XC612*D3****
<u>C</u>	100ms	200ms	XC612*D4****
В	100ms	400ms	XC612*D5****
<u>D</u>	100ms	800ms	XC612*D7****
С	100ms	1.6s	XC612*D6****
D	200ms	200ms	XC612*E4****
Е	200ms	400ms	XC612*E5****
Н	200ms	800ms	XC612*E7***
F	200ms	1.6s	XC612*E6****
K	400ms	400ms	XC612*F5****
М	400ms	800ms	XC612*F7****
L	400ms	1.6s	XC612*F6****

■MARKING RULE (Continued)

3 represents detect voltage

XC6121 Series

DETECT **PRODUCT** MARK **VOLTAGE SERIES** (V) XC6121**16** F 1.6 1.7 XC6121**17** Н XC6121**18** Κ 1.8 1.9 XC6121**19** L Μ 2.0 XC6121**20** 2.1 XC6121**21** Ν Р 2.2 XC6121**22** R 2.3 XC6121**23** S XC6121**24** 2.4 Т 2.5 XC6121**25** U 2.6 XC6121**26** ٧ XC6121**27** 2.7 Χ 2.8 XC6121**28** Υ 2.9 XC6121**29** Ζ XC6121**30** 3.0 0 3.1 XC6121**31** 1 3.2 XC6121**32** 3.3 XC6121**33** 2 3.4 XC6121**34** 3 3.5 XC6121**35** 4 XC6121**36** 5 3.6 3.7 XC6121**37** <u>6</u> <u>7</u> 3.8 XC6121**38** XC6121**39** 8 3.9 4.0 XC6121**40** 9 41 XC6121**41** <u>A</u> 4.2 XC6121**42** <u>B</u> <u>C</u> 4.3 XC6121**43** D 4.4 XC6121**44** E 4.5 XC6121**45** 4.6 XC6121**46** F Н 4.7 XC6121**47** XC6121**48** <u>K</u> 4.8 XC6121**49** 4.9 M 5.0 XC6121**50**

XC6122/XC6123/XC6124 Series

	DETECT	
MARK	VOLTAGE	PRODUCT
	(V)	SERIES
Н	1.6	XC612***16**
K	1.7	XC612***17**
L	1.8	XC612***18**
M	1.9	XC612***19**
N	2.0	XC612***20**
Р	2.1	XC612***21**
R	2.2	XC612***22**
S	2.3	XC612***23**
Т	2.4	XC612***24**
U	2.5	XC612***25**
V	2.6	XC612***26**
Х	2.7	XC612***27**
Y	2.8	XC612***28**
Z	2.9	XC612***29**
<u>0</u>	3.0	XC612***30**
<u>1</u>	3.1	XC612***31**
<u>2</u>	3.2	XC612***32**
<u>3</u>	3.3	XC612***33**
<u>4</u>	3.4	XC612***34**
<u>5</u>	3.5	XC612***35**
<u>6</u>	3.6	XC612***36**
<u>7</u>	3.7	XC612***37**
<u>8</u>	3.8	XC612***38**
9	3.9	XC612***39**
<u>A</u>	4.0	XC612***40**
<u>B</u>	41	XC612***41**
<u>C</u>	4.2	XC612***42**
<u>D</u>	4.3	XC612***43**
<u>E</u>	4.4	XC612***44**
<u>E</u>	4.5	XC612***45**
<u>H</u>	4.6	XC612***46**
<u>K</u>	4.7	XC612***47**
L	4.8	XC612***48**
<u>M</u>	4.9	XC612***49**
<u>N</u>	5.0	XC612***50**

4 represents production lot number0 to 9 and A to Z and inverted 0 to 9 and A to Z repeated. (G, I, J, O, Q, W excluded.)

■MARKING RULE (Continued)

① represents product series

MARK	PRODUCT SERIES	
Р	XC6121*****	
K	XC6122*****	
R	XC6123*****	
U	XC6124*****	

2 represents release delay time

MARK	RELEASE DELAY TIME	PRODUCT SERIES
Α	3.13ms	XC612*A****
С	50ms	XC612*C****
D	100ms	XC612*D*****
Е	200ms	XC612*E****
F 400ms		XC612*F****

③ represents watchdog timeout period

MARK	WATCHDOG TIMEOUT PERIOD	PRODUCT SERIES
2	50ms	XC612*2****
3	100ms	XC612*3*****
4	200ms	XC612*4****
5	400ms	XC612*5****
7	800ms	XC612*7****
6	1.6s	XC612*6****

45 represents detect voltage

MARK		DETECT VOLTAGE (V)	PRODUCT SERIES
4	(5)	DETECT VOLIAGE (V)	1 NODGC1 SERIES
3	3	3.3	XC612***33**
5	0	5.0	XC612***50**

⑤ represents production lot number 0 to 9 and A to Z repeated. (G, I, J, O, Q, W excluded.)

USP-6C

^{*}No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.