Learning to Verify the Heap

Siddharth Krishna

Marc Brockschmidt, Yuxin Chen, Byron Cook, Pushmeet Kohli, Daniel Tarlow and He Zhu

Verifying heap-manipulating programs

```
procedure insert(lst: Node, elt: Node)
  returns (res: Node)
  requires elt \mapsto null * lseg(lst, null)
  ensures lseg(res,null)
  if (lst != null)
    var curr := lst;
    while (nondet() && curr.next != null)
      invariant curr \neq null : elt \mapsto null * lseg(lst, curr) * lseg(curr, null)
      curr := curr.next;
    elt.next := curr.next;
    curr.next := elt;
    return 1st;
  else return elt;
```

Verifying heap-manipulating programs

```
procedure insertion sort(lst: Node)
  requires lseg(lst, null) * lst \neq null
  ensures slseg(lst,null)
  var prv := null, srt := lst;
  while (srt != null)
    invariant (prv = null * srt = lst * lseg(lst, null))
     || (lseg(lst,prv) * pr \mapsto srt * lseg(srt,null))|
    var curr := srt.next;
    var min := srt;
    while (curr != null)
      invariant (prv = null * lseg(lst, srt) * lseg(srt, min) * lseg(min, curr) * lseg(curr, null))
        || (lseg(lst,prv) * lseg(prv,srt) * lseg(srt,min) * lseg(min,curr) * lseg(curr,null))
      invariant min \neq null
      if (curr.data < min.data) {</pre>
        min := curr;
      curr := curr.next;
    var tmp := min.data;
    min.data := srt.data;
    srt.data := tmp;
    prv := srt;
    srt := srt.next;
```

But how do we find these annotations?

Data

```
procedure insert(lst: Node, elt: Node)
  returns (res: Node)
  requires elt \mapsto null * lseg(lst, null)
  ensures lseg(res,null)
  if (lst != null)
    var curr := lst;
    while (nondet() && curr.next != null)
      invariant curr \neq null : elt \mapsto null * lseg(lst, curr)
                            * lseg(curr,null)
      curr := curr.next;
    elt.next := curr.next;
    curr.next := elt;
    return lst;
  else return elt;
```


Machine Learning

In this talk

- ML based formula prediction
 - Arbitrary (pre-defined) inductive predicates
 - Nested predicates
 - Disjunctions
 - Predictions are not training ⇒ fast
- Refinement loop with program verifier
- Data invariants
 - Functional correctness
- Fully automatically verify programs
 - merge & quick sort

$$x = 1: y \mapsto z * z \mapsto y$$

SL of list segments

```
lseg(x,y) \coloneqq \exists z. (x = y : emp) \lor (x \neq y : x \mapsto z * lseg(z,y))
```

```
lseg(x, null)

\equiv \exists z . x \neq null : x \mapsto z * lseg(z, null)

\equiv ...

\equiv x \mapsto z * z \mapsto null * emp
```


Learning

Previous ML: numeric

The problem

Solution

• Formulas as parse trees from grammar:

```
Formula → \exists Var.Formula \mid Heaplets

Heaplets → Heaplet * Heaplets | emp

Heaplet → ls(Expr, Expr, \lambda Var, Var, Var, Var \rightarrow Formula)

\mid tree(Expr, \lambda Var, Var, Var, Var \rightarrow Formula)

Expr → 0 \mid Var
```

Solution

```
Formula \rightarrow \exists Var. Formula | Heaplets | Heaplets \rightarrow Heaplet * Heaplets | emp | Heaplet \rightarrow ls(Expr, Expr, \lambda Var, Var, Var, Var \rightarrow Formula) | tree(Expr, \lambda Var, Var, Var, Var, Var \rightarrow Formula) \int 0 | Var
```

$$ls(x,t,_) * ls(t,t,_)$$

Key idea

Each production step is a classification task

- Input graphs $\rightarrow \phi \in \mathbb{R}^d$ feature vector
- Example:
 - Feature: $\phi = \max \text{ degree}$
 - Classifier: $ITE(\phi < 3, ls, tree)$

Prediction

Sequence of production choices

```
Happhelos | Malle aprice Emphada) | the aprices | tree(Expr, ...)
```

- 1. Existentials: Name "special" graph nodes
- 2. Number of heap parts
- 3. Type of data structure
- 4. Argument names
- 5. Repeat for nested structures

Training data

- Enumerate formulas & satisfying states
 - Fast and plenty!

```
lseg(lst, curr) \\ lseg(curr, lst) \\ lseg(lst, curr) * lseg(curr, null) \\ ... \\ curr \neq null : elt \mapsto null * lseg(lst, curr) * lseg(curr, null) \\ ...
```


Training data

- For each (formula, state) pair:
 - Walk through parse tree and generate labelled training data for each predictor

$$Heaplet \rightarrow ls(Expr, Expr, _) \mid tree(Expr, _)$$

$$\phi = (0, 1, 2, 5, 1, 1, 0, ..., 1), P = Is$$

Formula $\rightarrow \exists Var.Formula \mid Heaplets$

For every node:

- Part of / can reach an SCC
- In- and out-degrees
- Above/below average in/out degrees

ML Predictor: NN with maximum likelihood

Heaplets → *Heaplet* * *Heaplets* | *emp*

For every node:

- 1-gram = (in-degree, out-degree)
- 1-gram depth

For the graph:

Frequencies of 1-grams and 2-grams

ML predictor: logistic regression

$$Heaplet$$
 → $ls(Expr, Expr, _)$
 $|tree(Expr, _)$

For every node not defined so far:

In- and out-degree features from before

For the set of such nodes:

• Num of nodes of in/out degree $\leq k$

ML predictor: logistic regression

$Expr \rightarrow 0 \mid Var$

Consider enclosed defining identifiers.

For every identifier x and enclosed defining identifier e:

- x reaches/reached by e
- x directly reaches/reached by e
- x simply reaches/reached by e
- x is part of/reaches an SCC
- Frequency of 1 and 2-grams reachable by x

ML predictor: NN with maximum likelihood

Comparison to previous ML

Numeric Invariants:

- Training at verification time
- Training data: Observations
- Desired Invariant
 - ~ Model

Our Heap Invariants:

- Training beforehand
- Training data: Independent
- Desired Invariant
 - ~ Predicted Label

Platypus

Algorithm 1 Pseudocode for PlatypusCore

```
Input: Grammar G, input objects \hat{\mathcal{H}}, (partial) parse tree \mathcal{T} = (\mathcal{A}, g, ch), nonterminal node a to expand
```

```
1: N \leftarrow g(a) {nonterminal symbol of a in \mathcal{T}}
2: \phi \leftarrow \phi^N(\hat{\mathcal{H}}, \mathcal{T}) {compute features}
```

- 3: $P \leftarrow \text{most likely production } N \rightarrow \mathcal{S}^+ \text{ from } G \text{ considering } \phi$
- 4: $\mathcal{T} \leftarrow$ insert new nodes into \mathcal{T} according to P
- 5: for all children $a' \in ch(a)$ labeled by nonterminal do
- 6: $\mathcal{T} \leftarrow \mathsf{PlatypusCore}(G, \hat{\mathcal{H}}, \mathcal{T}, a')$
- 7: return \mathcal{T}

Aside: nested data structures

Fig. 4: Binary tree of panhandle lists described by the formula $\operatorname{tree}(x, \lambda i_1, i_2, i_3, i_4 \to \exists t. \operatorname{ls}(i_2, t, \top) * \operatorname{ls}(t, t, \top))$

Disjunctions

Disjunctions

• Clustering!

Clustering

- Group together similar points
 - Similar: distance measure
 - We use Euclidean distance
- Input:
 - $\widehat{H} \to \phi^{\widehat{H}}$ as points in \mathbb{R}^n
- Output:
 - Disjunction of prediction for each cluster

Features

- Reachability
 - Between every two variables
 - Reflexive, without passing through other variables

 Pick K random points as cluster centers (means)

Shown here for K=2

Iterative Step 1

 Assign data points to closest cluster center

Iterative Step 2

 Change the cluster center to the average of the assigned points

Repeat until convergence

Refinement

Antendering.e.?Locust

```
procedure insert(lst: Node, elt: Node)
 returns (res: Node)
 requires elt \mapsto null * lseg(lst, null)
 ensures lseg(res,null)
                                                               1st, curr
  if (lst != null)
    var curr := lst;
                                                                                                                                                       curr \neq null:
    while ( ? && curr.next != null)
                                                                                                                                          elt \mapsto null * lseg(lst, curr) * lseg(curr, null)
      curr := curr.next;
    elt.next := curr.next;
    curr.next := elt;
    return 1st;
                                                                                                                                                                             procedure insert(lst: Node, elt: Node)
                                                                                                                                                                                returns (res: Node)
                                                                                                                                                                                requires elt \mapsto null * lseg(lst,null)
                                                                                                                                                                                ensures lseg(res,null)
                                                                                                                                                                                if (lst != null)
                                                                                                                                                                                 var curr := lst;
                                                                                                                                                                                 while ( ? && curr.next != null)
                                                                                                    no
                                                                                                                                                                                    invariant curr \neq null : elt \mapsto null
                                                                                                                                                                                   * lseg(lst,curr) * lseg(curr,null)
                                                                                                                                                                                    curr := curr.next;
                                                                                                                                                                                 elt.next := curr.next;
                                                                                                                                                                                 curr.next := elt;
                                                                                                                                                                                  return lst;
                                                                       yes
                                                                                                                         GRASShopper
```

Data invariants

Beetle

lseg	g(lst, curr)		[2]	[2, 4]
lseg	g(curr, null)	[2, 4, 6, 9]	[4, 6, 9]	[6, 9]
lseg	g(elt, null)	[7]	[7]	[7]
lst.	data	2	2	2
cur	r.data	2	4	6
elt.	data	7	7	7

 $\forall u.u \in FP(lseg(lst, curr)) \Rightarrow u.data < curr.data$ $\forall u, v. FP(lseg(lst, curr)): u \rightarrow^+ v \Rightarrow u.data \leq v.data$ $\forall u, v. FP(lseg(curr, null)): u \rightarrow^+ v \Rightarrow u.data \leq v.data$ $curr.data \leq elt.data$

Beetle

- Abstract domain:
 - Quantified Octagons $(x \le y)$ + Reachability $(u \to^+ v)$

$$\Omega_{\text{shape}}(\varphi_{\ell}) = \{ u \in \mathsf{FP}(d), \mathsf{FP}(d) : u \to^+ v, \mathsf{FP}(d) : u \searrow v \mid d \in \mathit{Mem}(\varphi_{\ell}) \}$$

$$\Omega_{fld}(\ell) = \{u.fld \le x, x \le u.fld, u.fld \le x.fld, x.fld \le u.fld \mid x \in Vars(\ell)\}$$
$$\cup \{u.fld \le v.fld, v.fld \le u.fld\}$$

• Look for invariants of the form: $\forall u, v. \omega_{shape} \Rightarrow \psi_{fld}$

Analog to functional version from:

He Zhu, Gustavo Petri, Suresh Jagannathan, Automatically Learning Shape Specifications, PLDI 2016

CEGAR loop

Algorithm 3 Pseudocode for Beetle

```
Input: Program P and entry procedure p with precondition \varphi_p, locations L requiring
     program annotations, shape annotations \varphi_{\ell} for \ell \in L
                                                                                            \{\text{see Sect. 4.1}\}
 1: I \leftarrow \text{sample initial states satisfying } \varphi_p
 2: S^+ \leftarrow execute p on I to map location \ell \in L to set of observed states
 3: while true do
         for all \ell \in L do
             \varphi_{\ell}^{sd} \leftarrow \mathsf{DOrderImp}(\varphi_{\ell}, S^{+}(\ell), S^{-}(\ell))
 5:
      P' \leftarrow \text{annotate } P \text{ with inferred } \varphi_{\ell}^{sd}
 6:
         if GRASShopper(P') returns counterexample s then
 7:
             if s is new counterexample then
 8:
                  update S^+, S^- to contain s for correct location
                                                                                            \{\text{see Sect. }4.2\}
 9:
10:
              else return FAIL
         else return SUCCESS
11:
```

Cricket

Results:

Memory safety + functional correctness for linked list programs:

Example	Platypus	Locust	DOrderImp	Beetle	Cricket
concat	2s	✓ 68s (1 it.)	32s	✓ 34s (4 it.)	102s
сору	2s	✓ 30s (1 it.)	8s	✓ 18s (2 it.)	52s
dispose	1s	✓ 4s (1 it.)	0s	✓ 1s (2 it.)	4s
double_all	2s	✓ 29s (1 it.)	_	X	_
filter	2s	✓ 6s (1 it.)	1s	\checkmark 5s (2 it.)	12s
insert	2s	✓ 8s (1 it.)	1s	✓ 3s (1 it.)	11s
${\tt insertion_sort}$	$5\mathrm{s}$	✓ 23s (1 it.)	41s	✓ 207s (30 it.)	249s
$merge_sort$	15s	✓ 83s (4 it.)	21s	✓ 159s (41 it.)	273s
pairwise_sum	2s	✓ 254s (1 it.)	_	X	_
quicksort	$5\mathrm{s}$	✓ 21s (1 it.)	24s	✓ 41s (11 it.)	$67\mathrm{s}$
remove	2s	✓ 7s (1 it.)	19s	✓ 24s (5 it.)	31s
reverse	2s	✓ 8s (1 it.)	1s	✓ 4s (1 it.)	12s
$\mathtt{strand}_{\mathtt{sort}}$	17s	✓ 85s (5 it.)	_	X	_
traverse	2s	✓ 6s (1 it.)	1s	✓ 1s (1 it.)	$7\mathrm{s}$

Going beyond:

- Platypus: features picked manually
- Automate?
- Gated Graph Sequence Neural Networks
 - Heap graphs as input
 - Can learn reachability properties
 - Accuracy: 89.11% -> 89.96%

In this talk

- ML based formula prediction
 - Arbitrary (pre-defined) inductive predicates
 - Nested predicates
 - Disjunctions
 - Predictions are not training ⇒ fast
- Refinement loop with program verifier
- Data invariants
 - Functional correctness
- Fully automatically verify programs
 - merge & quick sort