Class February 23

1. Direct Products and Finite Abelian Groups

Definition 0.1. G always denotes a group. G is the inner direct product of the subgroups $A, B \leq G$ if i) $A \triangleleft G$, $B \triangleleft G$ ii) $A \cap B = \{e\}$ iii) G = AB. The notation for direction products is $G = A \times B$.

Lemma 0.2. Assume $G = A \times B$.

- (a) A and B commute element-wise i.e. $ab = ba \ \forall a \in A, b \in B$.
- (b) if A and B are abelian, then so is G.

Proof. (a) Consider the commutators $[a,b] := (aba^{-1})b^{-1} = a(ba^{-1}b^{-1}) \in A \cap B = \{e\}$ $\implies aba^{-1}b^{-1} = e \implies ab = ba \ \forall a \in A, b \in B$

(b) $g_1, g_2 \in G \implies \exists a_1, a_2 \in A, b_1, b_2 \in B \text{ s.t. } g_1 = a_1b_1 \text{ and } g_2 = a_2b_2 \implies g_1g_2 = a_1b_1a_2b_2 = a_1a_2b_1b_2 \text{ and because } A, B \text{ are abelian, this equals } a_2(a_1b_2)b_1 = a_2b_2a_1b_1 = g_2g_1 \qquad \Box$

Example 0.3. (a) $V = <(12)(34) > \times <(13)(24) > \cong \mathbb{Z}_2 \times \mathbb{Z}_2$

- (b) $U(8) = \{[1], [3], [5], [7]\} = <[3] > \times <[5] > \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$
- (c) $\mathbb{Z}_6 = <[3]> \cong \mathbb{Z}_3 \times <[2]> \cong \mathbb{Z}_2$
- (d) $D_6 = \{b^i, ab^i \mid 0 \le i \le 5\}$ such that $a^2 = b^6 = e$, $aba^{-1} = aba = b^{-1}$. Therefore, $D_6 \cong \langle b^3 \rangle \times \{e, b^2, b^4, a, ab^2, ab^4\} \implies D_6 \cong \mathbb{Z}_2 \times D_3$
- (e) By contrast, neither D_4 nor Q_8 can be written as direct products of two proper subgroups (Exercise).
- (f) Trivially, $\forall G, G = G \times \{e\}$

Lemma 0.4. If $|G| = p^2$, p is prime, then either G is cyclic or $G = A \times B \cong \mathbb{Z}_p \times \mathbb{Z}_p$ with subgroups A and B of order p.

Proof. G is a p-group so the center Z(G) is nontrivial. Assume $Z(G) = p \implies G/Z(G) \cong \mathbb{Z}_p$ $\implies G/Z(G)$ is cyclic and therefore G is abelian. But this is a contradiction, because if G is abelian, |G| = |Z(G)| by definition. Therefore, we know that G is abelian and G = Z(G).

Assume G is not cyclic $\implies |g| = p \ \forall g \in G \setminus \{e\}$. Pick any $a \in G \setminus \{e\}$ and set $A = \langle a \rangle \leq G$ $\implies |a| = |A| = p$. Therefore, $|G \setminus A| = p^2 - p > 0 \implies G \setminus A \neq \emptyset$. Pick $b \in G \setminus A$ and set $B := \langle b \rangle \leq G \implies |b| = |B| = p$.

Now, check (1) $A \triangleleft G, B \triangleleft G$ because G is abelian. (2) $A \cap B = \{e\}$. If $e \neq x \in A \cap B$ $\implies |x| = p \implies A = \langle x \rangle = B \implies b \in A$ which is a contradiction. (3) G = AB. $AB = \frac{|A||B|}{|A \cap B|} = \frac{p*p}{1} = p^2 = |G| \implies G = AB$

Class February 26

Lemma 0.5. If $G = A \times B$ with subgroups $A, B \leq G$, then |ab| = lcm(|a|, |b|) if $a \in A, b \in B$

Remark 0.6. If $a, b \in G$ with $|a|, |b| < \infty$, then |ab|, |b| = lcm(|a|, |b|) of ab = ba. If $ab \neq ba$, you cannot say anything about |ab|. If ab = ba, then |ab| < lcm(|a|, |b|) is possible in general (e.g. $b = a^{-1}$). If ab = ba and gcd(|a|, |b|) = 1, then |ab| = |a||b| = lcm(|a|, |b|). This uses the fact that |ab| = |a||b| = lcm(|a|, |b|).

Definition 0.7. The (outer) direct product of the groups A, B is defined as $A \times B = \{(a, b) | a \in A, b \in B\}$ as set with a binary operation $\implies (a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2) \ \forall a_1, a_2 \in A \ \text{and} \ \forall b_1, b_2 \in B.$

This yields a group since (i) $A \times B$ satisfies associativity since A and B do (ii) $e_{A \times B} = (e_A, e_B)$ and (iii) $(a, b)^{-1} = (a^{-1}, b^{-1})$ for $a \in A, b \in B$.

Define $\iota_A:A\to A\times B$ which maps $a\to(a,e)$ and $\iota_B:B\to A\times B$ which maps $b\to(e,b)$. Then, ι_A,ι_B are injective group homomorphisms.

 $A \cong \iota_A(A) =: A' = \{(a,e) | a \in A\} \leq A \times B \text{ and } B \cong \iota_B(B) =: B' = \{(e,b) | b \in B\} leq A \times B.$

Remark 0.8. Properties of subgroups A', B' of $A \times B$:

- (1) $A', B' \triangleleft A \times B$, e.g. $(\widetilde{a}, b)(a, e)(\widetilde{a}^{-1}, b^{-1}) = (\widetilde{a}a\widetilde{a}^{-1}, beb^{-1}) = (\widetilde{a}a\widetilde{a}^{-1}, e) \in A'$
- (2) $A' \cap B' = \{(a,b) \in A \times B | b = e, a = e\} = \{(e,e)\}.$
- (3) $G = A'B' \implies \text{given } (a,b) \in A \times B, \text{ then } (a,b) = (a,e)(e,b)$

The consequence is that the outer product equals the inner product such that $A \times B = A' \times B'$

Lemma 0.9. Assume that $G = A \times B$ (inner; $A, B \leq G$) and that A', B' are groups with $A' \cong A$ and $B' \cong B$. Then, $G \cong A' \times B'$ (outer).

An application of this is that if $|G| = A \times B$ with $|A| = |B| = p \implies G \cong \mathbb{Z}_p \times \mathbb{Z}_p$ (outer).

Class February 28