1 Jacobian-vector products (for forward-mode autodiff)

Consider the parameterized ODE initial value problem

$$\dot{y} = f(t, y, a), \qquad y(0, a) = y_0(a),$$
 (1)

by which we mean

$$\partial_0 y(t, a) = f(t, y(t, a), a).$$
 $y(0, a) = y_0(a).$ (2)

We want to understand how the solution to the ODE changes (e.g. at particular values of t) for small perturbations of a. That is, we want to compute the Jacobian-vector product

$$(a, v) \mapsto \partial_1 y(t, a)[v]$$
 (3)

where v is a small perturbation to a.

Since the ODE holds true for all values of a (or at least those close to a particular a_0 in which we are interested), we can view both sides as functions of a, and assuming differentiability we can differentiate both sides with respect to a to find a new equation that must be satisfied:

$$\partial_1 \partial_0 y(t, a) = \partial_2 f(t, y(t, a), a) + \partial_1 f(t, y(t, a), a) \circ \partial_1 y(t, a). \tag{4}$$

Using the fact that partial derivatives commute, we can identify $z(t,a) \triangleq \partial_1 y(t,a)[v]$ as a new state vector to write a joint ODE system

where $g(t, y, z) = \partial_2 f(t, y, a)[v] + \partial_1 f(t, y, a)[z]$. Notice that the dynamics on the z component are linear/affine in z (and v!).