Entregable 1: convexidad, optimalidad y métodos de descenso

10 de agosto de 2023

Instrucciones

Objetivo El objetivo del informe es mostrar que el estudiante fue capaz de resolver una serie de problemas teóricos e implementar y analizar una serie de problemas prácticos. En el primer caso, es fundamental justificar cualquier paso no trivial de la resolución. En el caso de problemas prácticos, es fundamental analizar y comentar todo resultado que se obtenga.

Contenido El informe debe contener: resolución detallada de problemas teóricos, resultados de los problemas prácticos, análisis y discusión de los resultados obtenidos. No es necesario (ni aconsejable) incluir: letra de ejercicios, código de los ejercicios prácticos. El código de los ejercicios prácticos debe incluirse en un archivo aparte para posible referencia por parte de los docentes.

Autoría Esta es una tarea *individual*. Sus ejercicios deben ser resueltos por el estudiante cuyo nombre, cédula y firma se deben incluir en la carátula del informe. No es admisible la realización colectiva de ninguno de los ejercicios ni sus partes. Tampoco es admisible la búsqueda y/o reutilización, total o parcial, de material en Internet u otros medios, así como entregas disponibles de años anteriores.

Sí es admisible y aconsejable consultar, cotejar, e intercambiar ideas y sugerencias con otros estudiantes. También es admisible utilizar material de referencia tales como: documentación sobre lenguajes de programación, resultados, definiciones y propiedades matemáticas, incluyendo todo el material expuesto en el teórico de este curso, tanto teórico como práctico.

También es admisible la reproducción e inclusión de recetas y código relacionado con aspectos auxiliares, tales como el graficado de funciones, etc., que no hacen al objetivo de los ejercicios.

Sanciones Cualquier violación a las anteriores reglas constituye una *falta disciplinaria*. En primera instancia, dicha falta implica la pérdida de los puntos del obligatorio en su totalidad. En caso de reincidencia, se desvinculará al estudiante del curso y quedará registrado como reprobado.

Conformidad

Todo informe debe incluir una carátula identificando claramente el obligatorio al que hace referencia, la fecha, y el/la autor/a del trabajo. En el último caso, debe incluirse nombre, cédula de identidad (o equivalente), y firma, preferentemente digital. Asimismo, debe incluirse de manera obligatoria el siguiente texto:

i) He leído y estoy de acuerdo con las Instrucciones especificadas en la carátula obligatorio. ii) He resuelto por mi propia cuenta los ejercicios, sin recurrir a informes de otros compañeros, o soluciones existentes. iii) Soy el único autor de este trabajo. El informe y todo programa implementado como parte de la resolución del obligatorio son de mi autoría y no incluyen partes ni fragmentos tomados de otros informes u otras fuentes, salvo las excepciones mencionadas.

Ejercicio 1 - Convexidad

Sean $f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_k(\mathbf{x})$ funciones convexas, y $X_1, X_2, \dots, X_p \subseteq \mathbb{R}^n$ conjuntos convexos no vacíos.

- a) Probar que $g(\mathbf{x}) = \sum_i w_i f_i(\mathbf{x})$ es convexa si $w_i \ge 0$.
- **b)** Probar que $l(\mathbf{x}) = f_1(\mathbf{A}\mathbf{x} + \mathbf{b})$ es convexa.
- c) Probar que $Y = \bigcap_{i \in \mathbb{N}} X_i$ es un conjunto convexo.
- d) Mostrar que toda bola Euclidea $B(\mathbf{c}, r) = \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} \mathbf{c}|| \le r\}$ es convexa.

Ejercicio 2 - Interpretación geométrica

Considérese el problema

$$\min_{\substack{(x,y)\in\mathbb{R}^2}} -\log(y^2 - x^2)$$
sujeto a: $x^2 + y^2 \le 1$

$$2x - y \le 0$$

$$y \ge 1/2$$

$$x \ge 0.$$
(1)

Usando los resultados del ejercicio 1, pruebe que:

- a) La función de costo es convexa en la componente convexa de su dominio dada por: $\{(x,y) \in \mathbb{R}^2 \mid y > |x|\}$. (sugerencia: recordar que $\log a + \log b = \log(ab)$).
- b) El conjunto factible X dado por las restricciones es convexo:

$$X := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x \ge 0, 2x - y \le 0, y \ge 1/2\}.$$

- c) Represente en un dibujo el conjunto X, y las curvas de nivel de la función de costo. Marque el valor al que corresponde cada curva de nivel.
- d) A partir del dibujo anterior, deduzca que la solución del Problema (1) es $(x^*, y^*) = (0, 1)$

Ejercicio 3 - Puntos críticos y óptimos globales

Grafique las funciones objetivo de los siguientes problemas. A partir de dichos gráficos, determine dónde se alcanzan los mínimos **globales** en cada conjunto factible. Estudie los puntos donde se anula el gradiente, indicando si son mínimos **locales** o **globales**, máximos locales o globales, **puntos silla**, o si caen fuera del conjunto factible.

a)

$$\min_{x \in \mathbb{R}} 4x^4 - x^3 - 4x^2 + 1$$
 s. to: $-1 \le x \le 1$

b)

$$\min_{x \in \mathbb{R}} x^3$$
s. to: $-1 \le x \le 1$

 $\mathbf{c})$

$$\min_{x \in \mathbb{R}} (x - a)^2 + 1$$

s. to: $-1 \le x \le 1$

Discuta en función del parámetro $a \in \mathbb{R}$.

d)

$$\begin{split} & \min_{(x,y) \in \mathbb{R}^2} \ \left(\| (x,y) - (\bar{x},\bar{y}) \|_2^2 + 1 \right); \\ & \text{s. to: } (x,y) \in [0,1]^2 \end{split}$$

con
$$(\bar{x}, \bar{y}) = (2, 1/2)$$
 y $[0, 1]^2 = \{(x_1, x_2) \in \mathbb{R}^2 : 0 \le x_1 \le 1, 0 \le x_2 \le 1\}.$

Represente en \mathbb{R}^2 las curvas de nivel de la función objetivo $f(x,y) = \|(x,y) - (\bar{x},\bar{y})\|^2 + 1$. Junto con esto, represente el conjunto factible $B = [0,1]^2$, como intersección de los siguientes conjuntos:

$$S_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 0 \le x_1 \le 1\} \subset \mathbb{R}^2, \quad S_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 0 \le x_2 \le 1\} \subset \mathbb{R}^2.$$

Indique si la función objetivo y el conjunto factible son convexos.

Ejercicio 4 - Descenso por gradiente

Considere el problema de mínimos cuadrados

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

donde la matriz \mathbf{A} y el vector \mathbf{b} corresponden a \mathbf{A} -asc y \mathbf{b} -asc en los archivos adjuntos.

- a) Escriba la condición de optimalidad y exprese la solución analítica \mathbf{x}^* de este problema para \mathbf{A} y \mathbf{b} genéricos.
- b) Calcular y mostrar la solución del problema anterior usando los datos provistos en los archivos mencionados.
- c) Implementar y probar el método de descenso por gradiente para los siguientes tipos de paso: a) paso fijo $s = \frac{1}{2\|\mathbf{A}\|_2^2}$, b) paso decreciente $s_k = 0.001 * \frac{1}{k}$, c) paso exacto (line search), d) regla de Armijo.
- d) Graficar el valor del error relativo $\|\mathbf{x}^* \mathbf{x}^t\| / \|\mathbf{x}^*\|$ vs. iteración t para los cuatro algoritmos implementados.
- e) Escribir un breve informe incluyendo código, gráficas y conclusiones. En particular, especifique la condición de parada usada en cada caso, y detalle la cantidad de iteraciones y tiempo consumido (total y por iteración) en cada caso.

Ejercicio 5 - Mínimos cuadrados con restricciones

a) Indique si el siguiente problema es convexo:

$$\min_{(x,y)\in\mathbb{R}^2}\{\;5x^2+5y^2+5x-3y-6xy+5/4\},\quad R>0\quad\text{dado;}$$
 sujeto a $\;x^2+y^2\leq R^2$

- b) Muestre que la restricción está activa para R < 1/2.
- c) Escriba un programa que resuelva el problema anterior para R=1/4, utilizando el método *Projected Gradient* (PGD), con $\alpha=1$. Es decir: $x_{k+1}=[x_k-s_k\nabla f(x_k)]_+$. Pruebe con las siguientes variantes:
 - paso decreciente $s_k = 1/k$.
 - line search en la dirección de $\nabla f(x_k)$. Es decir: $s_k = \arg\min_{s>0} f(x_k s\nabla f(x_k))$.

Grafique a) la sucesión de puntos obtenidos por el método en el plano (x^k, y^k) (muestre la región factible para referencia), b) el valor de la función de costo y c) el valor de $\|(x^k, y^k) - (x^{k-1}, y^{k-1})\|$.