VERSUCH NUMMER

TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1 Theorie

[sample]

2 Durchführung

3 Auswertung

3.1 Wheatstonesche Brücke

Die gesuchten Widerstände R_3 und R_4 werden mehrfach durch Variation von R_2 gemessen. Der erste unbekannte Widerstand R_{11} berechnet sich nach (). Genau wie in 3.1 wird

Tabelle 1: Messung von R_3 und R_4

$R_2[\Omega]$	R_3 in Skalenanteilen	$R_3[\Omega]$	$R_4[\Omega]$	$R_{11}[\Omega]$
500	496	494,52	505,48	489,16
664	425	423,73	$576,\!27$	488,24
1000	329	$328,\!02$	671,98	488,14

 R_2 variiert und R_3 und R_4 gemsssen. Nun wird der zweite unbekannte Widerstand R_{10} berechnet nach ().

Tabelle 2: Messung von R_3 und R_4

$R_2[\Omega]$	R_3 in Skalenanteilen	$R_3[\varOmega]$	$R_4[\varOmega]$	$R_{11}[\Omega]$
500	325	324,03	675,97	239,68
664	266	264,20	$735,\!80$	$238,\!42$
1000	194	$193,\!42$	806,58	$239,\!80$

Zur Ermittlung der gesuchten Widerstände R_3 und R_4 werden die Messdaten gemittelt und die Standardabweichung mit Python berechnet. Nun kann nach (),(),() berechnet werden. Die Werte von R_{11} und R_{10} werden mit Python gemittelt und die Standardabweichung berechnet:

$$\begin{split} R_{11} &= (488, 51 \pm 0, 5623) \\ R_{10} &= (420, 46 \pm 2, 2640) \,. \end{split}$$

Außerdem werden die Fehler nach Gauss´scher Fehlerfortpflanzung berechnet. Nach Herstellerangaben beläuft sich der unsystematische relative Fehler aller Referenzbauteile auf $\pm 0,2\%$ und der Quotient $\frac{R_3}{R_4}$ zeigt eine unsystematische Abweichung bis zu $r_{\frac{R_3}{R_4}}$

 $\pm 0,5\%$. Somit lässt sich der Gauss'scher Fehler berechnen:

$$\begin{split} r_{Gauss} &= \sqrt{{r_{R_2}}^2 + r_{\frac{R_3}{R_4}}^2} \\ \sigma_{Gauss} &= \bar{x} \cdot r_{Gauss} \,. \end{split}$$

Damit ergibt sich für R_{11}

$$\begin{split} R_{11} &= (0, 54 \pm 2, 85) \\ R_{10} &= (0, 54 \pm 2, 66) \,. \end{split}$$

3.2 Kapazitätsmessbrücke

Die Kapazität C_2 wird nun zweifach variiert. C_1 und C_3 werden nach Gleichung () berechnet. Wie bei 3.1 wird der Mittelwert und die Standardabweichung berechnet.

Tabelle 3: Messung von C_1

$C_2 in [\mathrm{nF}]$	R_3 in Skalenanteilen	$R_3[\Omega]$	$R_4[\Omega]$	$C_1 in[nF]$
597	487	485,54	,	$632,\!56$
994	602	$600,\!20$	$399,\!80$	$662,\!11$
450	406	404,79	$595,\!21$	$661,\!69$

Tabelle 4: Messung von C_4

$C_2[nF]$	R_3 in Skalenanteilen	$R_3[\Omega]$	$R_4[\Omega]$	$C_3[nF]$
597	590	588,24	411,76	417,89
994	704	701,90	298,10	$422,\!16$
450	518	$516,\!45$	$483,\!55$	$421,\!33$

$$\begin{split} C_1 &= (652, 12 \pm 16, 94) \\ C_3 &= (420, 46 \pm 2, 26) \,. \end{split}$$

Bei der Gauss´schen Fehlerfortpflanzung gilt für X:

$$C: r_{Gauss} = \sqrt{r_{C_2}^2 + r_{\frac{R_4}{R_3}^2}} \,.$$

So ergibt es sich zu (mit $r_{R_2} = \pm 3\%$):

$$\begin{split} C_1 &= (0,54 \pm 3,52) \\ C_3 &= (0,54 \pm 2,27) \, . \end{split}$$

3.3 Induktivitätsmessbrücke

Der Widerstand R_4 ergibt sich aus der Differenz des Gesamtwidersatndes mit R_3 und R_{17} werden nach Gleichungen () und () berechnet. Die Induktivität und Verlustwiderstand wird in der Tabelle aufgelistet. Für den Gauss´schen Fehler gilt:

Tabelle 5: Messung L_x und R_x

$L_2[\mathrm{mH}]$	R_2 in Skalenanteilen	$R_2[\varOmega]$	R_3 in Skalenanteilen	$R_3[\varOmega]$	$R_4[\varOmega]$	$R_{19}[\varOmega]$	$L_{17}[\mathrm{mH}]$
27,5	56	55,89	608	606,18	393,82	55,89	42,32

$$\begin{split} L:r_{Gauss} &= \sqrt{{r_{L_2}}^2 + r_{\frac{L_2}{R_4}}^2} \\ R:r_{Gauss} &= \sqrt{{r_{L_2}}^2 + r_{\frac{R_3}{R_4}}^2}. \end{split}$$

(mit $r_{R_2}=3\%,\,\frac{R_3}{R_4}=0,5\%,\,r=0,2\%$) Daraus ergibt sich der Gauss-Fehler:

$$L = 0.54$$

 $R = 3.04$.

3.4 Induktivitätsmessung mittels Maxwell - Brücke

Die Induktivität und der Verlustwiderstand werden nach Gleichungen () und () berechnet Der Gauss´scher Fehler wird wie folgt berechnet:

Tabelle 6: Messung in L_{17} und R_x

$C_4[\mathrm{nF}]$ $R_2[\Omega]$	R_3 in Skalenanteilen	$R_3[\varOmega]$	R_4 in Skalenanteilen	$R_4[\varOmega]$	$R_{17}[]\varOmega]$	$L_{17}[\mathrm{mH}]$
597 1000	74	73,78	793	791,42	93,22	44,05

$$\begin{split} L:r_{Gauss} &= \sqrt{{r_{R_2}}^2 + {r_{R_3}}^2 + r_{C_4}^2} \\ R:r_{Gauss} &= \sqrt{{r_{R_2}}^2 + {r_{R_3}}^2 + r_{R_4}^2} \,. \end{split}$$

Es ergibt:

$$L = 3,0133$$

 $R = 4,25$.

3.5 Wien-Robinson-Brücke

Die Brückenspannung U_{Br} wird bei unterschiedlichen Frequenzen f gemessen. Die Widerstände der Bauteile sind der folgenden Tabelle zu entnehmen.

Tabelle 7: Bauteile der Wien-Robinson-Brücke

$2R'[\Omega]$	$R'[\varOmega]$	$C_{?}[\mathrm{nF}$	$R[\Omega]$
1000	500	992	1000

Tabelle 8: Messwerte der Wien-Robinson-Brücke

Frequenz f [Hz]	U_{Br} [V]	U_S [V]	$\omega = 2\pi fRC$	$\Omega = \frac{f}{f_0}$	$\frac{U_{Br}}{U_{S}}$	nach Gleichung ()
160	0,043	2,5	0,9973	1,0000	0,0172	0
50	0,6	2,6	0,3116	0,3125	0,2308	0,2312
60	$0,\!53$	2,6	$0,\!374$	$0,\!375$	0,2308	0,2023
80	0,4	2,6	$0,\!4986$	0,5	0,1538	0,1491
100	$0,\!26$	2,6	0,6233	0,625	0,1	0,1030
120	$0,\!17$	2,6	0,748	0,75	0,0654	0,0636
125	$0,\!16$	2,6	0,7791	0,7813	0,0615	$0,\!05467$
130	$0,\!14$	2,6	0,8103	0,8125	0,0538	0,0460
135	0,093	2,6	0,8414	0,8438	0,0358	0,0377
140	0,074	2,6	0,8726	$0,\!875$	0,0285	0,0296
145	0,06	2,6	0,9038	0,9063	0,0231	$0,\!02185$
150	0,042	2,6	0,953	0,9375	0,0162	0,0143
165	0,05	2,6	1,0284	1,0313	0,0192	0,0068
170	0,059	2,6	1,0596	1,0625	0,0227	0,0135
175	0,067	2,6	1,0908	1,0938	0,0258	0,02
180	0,078	2,6	1,1219	$1,\!125$	0,03	$0,\!02615$
185	0,089	2,6	$1,\!1531$	$1,\!5625$	0,0342	0,097
190	0,11	2,6	1,1843	$1,\!175$	0,0423	$0,\!0381$
200	$0,\!14$	2,6	$1,\!2467$	$1,\!25$	0,0538	0,0494
220	0,18	2,6	1,3712	$1,\!375$	0,0692	0,0704
250	$0,\!25$	2,6	$1,\!5582$	$1,\!5625$	0,0962	0,9797
300	$0,\!27$	2,6	1,8699	1,875	0,1038	$0,\!1361$
350	$0,\!39$	2,6	$2,\!1815$	$2,\!1875$	0,15	$0,\!1665$
400	$0,\!45$	2,6	2,4932	2,5	0,1731	$0,\!1912$
500	$0,\!53$	2,5	$3,\!1165$	$3,\!125$	0,212	$0,\!2277$
700	0,64	2,5	4,3630	$4,\!375$	$0,\!256$	0,2701
1000	0,7	2,5	6,2329	$6,\!25$	0,28	$0,\!2990$
2000	0,79	2,5	$12,\!4658$	12,5	0,316	0,3240
3000	0,81	2,6	18,6988	18,75	0,3115	$0,\!3291$
10 000	0,8	2,6	$62,\!3292$	62,5	0,3077	0,3329

3.6 Klirrfaktormessung

Der Klirrfaktor wird durch die Messergebnisse der Wien-Robinson-Brücke bestimmt nach Gleichung (). Der Klirrfaktor ist also der Quotient aus der Wurzel aus der Summe der Amplitudenquadrate aller Oberwellen und der Amplitude der Grundwelle. Die Amplitude der Grundwelle ($\Omega=1$) ist in diesem Fall $U_1=2,5$ V. Die zweite Oberwelle ($\Omega=2$) lässt sich berechnen nach

$$U_2 = \frac{U_{Br}(1)}{\sqrt{\frac{1}{9} \frac{(2^2 - 1)^2}{(1 - 2^2)^2 + 9 \cdot 2^2}}} \,. \tag{1}$$

Die Amplitude der Oberwelle der Brückenschaltung ist bekannt, aber die Amplitude der Oberwelle des Sinusgenerators wird aber noch benötigt. Es ergibt sich der Klirrfaktor:

$$k \approx 0,1153 = .$$

4 Diskussion

Wenn man die statische Fehler mit den Gaußfehler vergleicht konnte festgestellt werden, dass der Gaußfehler größer als die statische Fehler sind., daher sind die Gaußfehler die relevanten Fehler. In Allgemeinen kann gesagt werden, dass es sich um kleine Fehler handelt aufgrund der Fehler der Bauteile. Um genauere Ergebnisse zu erhalten, müssen mehrere Verusche durchgeführt werden.