P1 Chapter 11: Vectors

Representing Vectors

Representing Vectors

You should already be familiar that the value of a vector is the **displacement** in the x and y direction (if in 2D).

$$\vec{a} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$\vec{a} + \vec{b} = ?$$

$$2\vec{a} = ?$$

Bold notation is used in textbooks and exam papers but is awkward for handwriting.

$$\vec{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \vec{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

e.g.
$$\binom{4}{3} = 4 \binom{1}{0} + 3 \binom{0}{1} = 4\vec{i} + 3\vec{j}$$

Examples

If
$$a = 3i$$
, $b = i + j$, $c = i - 2j$ then:

- 1) Write a in vector form.
- 2) Find b + 2c in i, j form.

?

Exercise 11.2

Pearson Pure Mathematics Year 1/AS Pages 87

Homework Exercise

- 1 These vectors are drawn on a grid of unit squares. Express the vectors v_1 , v_2 , v_3 , v_4 , v_5 and v_6 in:
 - (i) i, j notation
 - (ii) column vector form

2 Given that $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{b} = 4\mathbf{i} - \mathbf{j}$, find these vectors in terms of \mathbf{i} and \mathbf{j} .

$$b = \frac{1}{2}a$$

$$d 2b + a$$

$$e 3a - 2b$$

$$f b - 3a$$

$$g 4b - a$$

a 4a
 b
$$\frac{1}{2}$$
a
 c -b
 d 2b + a

 e 3a - 2b
 f b - 3a
 g 4b - a
 h 2a - 3b

- 3 Given that $\mathbf{a} = \begin{pmatrix} 9 \\ 7 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 11 \\ -3 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -8 \\ -1 \end{pmatrix}$ find:

- **a** 5**a b** $-\frac{1}{2}$ **c c a** + **b** + **c d** 2**a b** + **c**
- e 2b + 2c 3a f $\frac{1}{2}a + \frac{1}{2}b$
- 4 Given that $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} \mathbf{j}$, find:

 - **a** λ if $\mathbf{a} + \lambda \mathbf{b}$ is parallel to the vector \mathbf{i} **b** μ if $\mu \mathbf{a} + \mathbf{b}$ is parallel to the vector \mathbf{j}

Homework Exercise

5 Given that $\mathbf{c} = 3\mathbf{i} + 4\mathbf{j}$ and $\mathbf{d} = \mathbf{i} - 2\mathbf{j}$, find:

a
$$\lambda$$
 if **c** + λ **d** is parallel to **i** + **j**

b
$$\mu$$
 if μ **c** + **d** is parallel to **i** + 3**j**

$$\mathbf{c}$$
 s if $\mathbf{c} - s\mathbf{d}$ is parallel to $2\mathbf{i} + \mathbf{j}$

d
$$t$$
 if $\mathbf{d} - t\mathbf{c}$ is parallel to $-2\mathbf{i} + 3\mathbf{j}$

6 In triangle ABC, $\overrightarrow{AB} = 4\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{AC} = 5\mathbf{i} + 2\mathbf{j}$. Find BC.

(2 marks)

7 OABC is a parallelogram.

P divides AC in the ratio 3:2. $\overrightarrow{OA} = 2\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OC} = 7\mathbf{i}$.

Find in i, j format and column vector format:

$$\overrightarrow{a} \overrightarrow{AC}$$

$$\overrightarrow{OP}$$

$$\overrightarrow{c} \overrightarrow{AP}$$

8 $\mathbf{a} = \begin{pmatrix} j \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 10 \\ k \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$

Given that $\mathbf{b} - 2\mathbf{a} = \mathbf{c}$, find the values of j and k.

(2 marks)

Problem-solving

You can consider $\mathbf{b} - 2\mathbf{a} = \mathbf{c}$ as two linear equations. One for the *x*-components and one for the *y*-components.

Homework Exercise

9
$$\mathbf{a} = \begin{pmatrix} p \\ -q \end{pmatrix}, \mathbf{b} = \begin{pmatrix} q \\ p \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$$

Given that $\mathbf{a} + 2\mathbf{b} = \mathbf{c}$, find the values of p and q.

(2 marks)

- 10 The resultant of the vectors $\mathbf{a} = 3\mathbf{i} 2\mathbf{j}$ and $\mathbf{b} = p\mathbf{i} 2p\mathbf{j}$ is parallel to the vector $\mathbf{c} = 2\mathbf{i} 3\mathbf{j}$. Find:
 - a the value of p (4 marks)
 - b the resultant of vectors a and b. (1 mark)

Homework Answers

1
$$\mathbf{v}_1$$
: 8i, $\binom{8}{0}$ \mathbf{v}_2 : 9i + 3j, $\binom{9}{3}$ \mathbf{v}_3 : -4i + 2j, $\binom{-4}{2}$
 \mathbf{v}_4 : 3i + 5j, $\binom{3}{5}$ \mathbf{v}_5 : -3i - 2j, $\binom{-3}{-2}$ \mathbf{v}_6 : -5j, $\binom{0}{-5}$

2 a 8i + 12j b i + 1.5j c -4i + j d 10i + j e -2i + 11j f -2i - 10j g 14i - 7j h -8i + 9j

3 a $\binom{45}{35}$ b $\binom{4}{0.5}$ c $\binom{12}{3}$ d $\binom{-1}{16}$ e $\binom{-21}{-29}$ f $\binom{10}{2}$

4 a $\lambda = 5$ b $\mu = -\frac{3}{2}$

5 a $\lambda = \frac{1}{3}$ b $\mu = -1$ c $s = -1$ d $t = -\frac{1}{17}$

6 i - j

7 a $\overrightarrow{AC} = 5\mathbf{i} - 4\mathbf{j} = \binom{5}{-4}$ b $\overrightarrow{OP} = 5\mathbf{i} + \frac{8}{5}\mathbf{j} = \binom{5}{8}$ c $\overrightarrow{AP} = 3\mathbf{i} - \frac{12}{5}\mathbf{j} = \binom{3}{-\frac{12}{5}}$

8 $j = 4, k = 11$ 9 $p = 3, q = 2$ 10 a $p = 5$ b $8\mathbf{i} - 12\mathbf{j}$