

R1.07 - Outils mathématiques fondamentaux Contrôle Continu (1h) Mercredi 7 décembre 2022 - A. Ridard

1

Chaque système linéaire devra être résolu par la méthode du pivot de Gauss. Aucune permutation d'équations et encore moins d'inconnues n'est autorisée.

Exercice 1. Déterminer les coordonnées du vecteur (1,1,1) dans la base (1,2,0),(-1,-3,1),(1,4,1) de \mathbb{R}^3 .

On chacke x, \$, 8 \in R +q (1.1.1) = x(1.2.0) + \$(-1.-3,1) + 8(1.4.1) = (4-\$+8, 24-3\$+48, \$+8)

Pour cela, on résout le système linéaire suivent :

$$\begin{cases} x - \beta + 8 = 1 \\ 2x - 3\beta + 48 = 1 \\ \beta + 8 = 1 \end{cases}$$

$$\iff \begin{cases} 2 - \beta + 8 = 1 \\ -3 + 28 = -1 \\ 3 + 8 = 1 \end{cases}$$

$$\iff \begin{cases} A &= 2 \\ B &= 1 \end{cases}$$

les coordonnées sont 2, 1 et 0

Rq: on a ben 2(1,20)+1x(-1,-3,1)+0x(1,41) = (1,1,1)

Exercice 2.

On considère $P = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0\}.$

Un étudiant affirme que P = Vect(1,1,0), (-1,0,1), un autre prétend que P = Vect(1,1,0), (0,1,1).

Détailler la démarche (très probablement) suivie par chacun des étudiants.

Pour le penier:
$$P = \{(x,y,s) \in \mathbb{R}^3 \mid x = y - y\}$$

$$= \{(y-3,y,s) \mid y,s \in \mathbb{R}\}$$

$$= \{(x,x+3,s) \mid (y-3) \in \mathbb{R}\}$$

$$= \{(x,x+3,s) \mid (x,s \in \mathbb{R}\}$$

(1, 1, 2) - (11) 01 (12-1) 14 4(-35) 2

Exercice 3.

Résoudre les systèmes suivants et exprimer, s'il est non vide, l'ensemble des solutions sous forme de "Vect".

1.
$$\begin{cases} x + y + z - 3t = 0 \\ x - 3y + z + t = 0 \\ x + y - 3z + t = 0 \\ -3x + y + z + t = 0 \end{cases}$$

$$(=) \begin{cases} 2 + y + 3 - 3t = 0 \\ -4y + 4t = 0 \\ 43 - 4t = 0 \end{cases}$$

$$\iff \begin{cases} x + y + 3 - 3t = 0 \\ -4y + 4t = 0 \\ 0 = 0 \\ 4 \leftarrow 4 + 4 = 0 \end{cases}$$

$$\iff \begin{cases} x \\ \Rightarrow \end{cases} \begin{cases} x \\ y \\ z = t \end{cases}$$

$$\begin{aligned} & \mathcal{G} = \lambda (t, t, t, t) | t \in \mathbb{R} \\ & = \lambda t (1, 1, 1, 1) | t \in \mathbb{R} \\ & = \lambda t (1, 1, 1, 1) | t \in \mathbb{R} \\ & = \lambda t (1, 1, 1, 1) | t \in \mathbb{R} \end{aligned}$$

Cette étape n'est per obligatoire, on peut remarquer que Ly = -Lz et donc l'etirer Ly du rystème.

2.
$$\begin{cases} x - y + z = 1 \\ 2x - 3y + 4z = 1 \\ x - 2y + 3z = 1 \end{cases}$$

$$\iff \begin{cases} x - y + 3 = 1 \\ -y + 23 = -1 \\ -y + 23 = 0 \\ -3 \leftarrow L_3 - L_1 \end{cases}$$

$$(=) \begin{cases} x - y + \xi = 1 \\ -y + 4\xi = -1 \\ 0 = 1 \quad 4\xi = -4 \end{cases}$$

L'égalité 0=1 est toujours fausse, le nystème n'a donc jes de solution : $J=\emptyset$.

to a spole offs de la company de la company

Andre Sold to

only (

REAL PROPERTY

(digital) but

Exercice 4.

Pour chaque question, indiquer la (les) bonne(s) réponse(s). Une case cochée justement rapporte 1 point, une case cochée injustement enlève 0.5 point, et une case non cochée ne rapporte ni n'enlève aucun point. Si le total des points est négatif, la note globale attribuée à l'exercice est 0.

	_	
	1	
- [0	
		1
	-1	1
	1.	-1
-	-	-

$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$	$ \begin{pmatrix} 3 \\ 9 \end{pmatrix}, D = \begin{pmatrix} 3 & -1 \\ 7 & -1 \end{pmatrix} $	$et E = \begin{pmatrix} 4 & 6 \\ -2 & 2 \end{pmatrix}.$
--	--	--	---

$$AB = D$$

$$\square$$
 BA = E

$$\square$$
 AB = BA

1. On considère les matrices :

$$A = \begin{pmatrix} 1 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 0 & 1 \\ 1 & -1 \\ 2 & 1 \end{pmatrix} \text{ et } E = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}.$$

$$\Box A + B = \begin{pmatrix} 2 & 0 & 3 \end{pmatrix}$$

$$\Box$$
 CA = $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$

Exercice 5.

On considère A =
$$\begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{pmatrix}$$
.

1. Calculer A².

$$\begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{pmatrix}$$

2. (Bonus) Montrer par récurrence : $\forall n \in \mathbb{N}^*$, $A^n = A$.

$$A^{n+1} = A^n \times A = A \times A = A$$

(HR) Ly d'après question 1.