

Grundlagen der Informationstechnik - Nachrichtentechnik

Vorlesung: Eduard A. Jorswieck

Übung: Dr. Bile Peng

Wintersemester 2023-2024, 11. January 2024

Kanalkapazität I

Erinnere 4. Vorlesung letzte Folie

Für einen diskreten gedächtnislosen Kanal (DMC) ist die Kanalkapazität die maximal erreichbare wechselseitige Information

$$C = \max_{f_X(x)} I(X; Y) = \max_{f_X(x)} \{H(X) - H(X|Y)\} = \max_{f_X(x)} \{H(Y) - H(Y|X)\}.$$

Shannons Kanalcodierungstheorem und Rückrichtung

C sei die Kanalkapazität eines Kanals und C(n, k, d) ein Blockcode.

- a) Ist R < C, so existieren Blockcodes der Rate R und Länge n für die gilt $\lim_{n\to\infty} P_B^n \to 0$.
- b) Ist $R \geqslant C$, so gilt für alle Codes $\lim_{n\to\infty} P_B^n = 1$.

Kanalkapazität II

ullet Kapazität für BSC mit Bitflip-Wahrscheinlichkeit ϵ gilt

$$C_{BSC} = 1 - H_b(\epsilon)$$
.

■ Für den BEC ist die Kapazität

$$C_{BEC} = 1 - \epsilon$$
.

 Für den AWGN mit Sendeleistung P und Rauschleistung N ist die Kapazität

$$C_{AWGN} = \log_2(1 + P/N).$$

 Wir werden jetzt komplexere Kanäle und deren Kapazität besprechen.

Rayleigh-Kanal I

 Ein typisches Kanalmodell für einen Fading-Kanal (Schwundkanal) besteht aus einer AWGN Komponente und einer multiplikativen Komponente, die die Dämpfung und Laufzeit des Sendesignals auf dem Kanal beschreibt

Das Signalmodell ist

$$y_i = h_i \cdot x_i + n_i$$
.

Rayleigh-Kanal II

- AWGN n_i und Kanalkoeffizient h_i.
- Typische Annahme, dass h_i konstant ist w\u00e4hrend der \u00fcbertragung eines Codewortes. (quasi-static block fading)
- Mit Sendeleistung P_i und Rauschleistungsdichte N_0 beträgt die Kapazität ($SNR = P_i/N_0$)

$$C(h_i) = \frac{1}{2} \log \left(1 + \frac{|h_i|^2 P_i}{N_0} \right) = 1/2 \log(1 + SNR|h_i|^2).$$

■ Da der Kanalkoeffizient h_i als Zufallsvariable modelliert wird, ist die Kapazität $C(h_i)$ auch eine Zufallsvariable.

Rayleigh-Kanal III

Beim Rayleigh-Fading wird der Betrag von h Rayleigh-verteilt angenommen und die Phase gleichverteilt. Damit ergibt sich h als komplexe mittelwertfreie Gaußverteilung mit Varianz 1:

$$h \sim \mathcal{CN}(0, 1)$$
.

Die mittlere Kapazität heißt ergodische Kapazität und ist¹

$$C_{avg} = \mathbb{E}_h\left[C(h)
ight] = rac{1}{\log_e(2)} \exp\left(rac{1}{SNR}
ight) \mathrm{Ei}igg(rac{1}{SNR}igg).$$

Die kumulative Verteilungsfunktion heißt Ausfallwahrscheinlichkeit

$$\mathbb{P}(C(h) \leqslant R) = 1 - \exp(1 - 2^R).$$

¹Ei ist die Integralexponentialfunktion: $\operatorname{Ei}(x) = \int_{-\infty}^{x} \frac{e^{t}}{t} dt$.

Mobilfunkkanal I

Mobilfunkkanal II

LTI-System mit Impulsantwort h(t):

$$h(t) = \sum_{i=0}^{l-1} a_i \cdot \delta(t - \tau_i).$$

 Am Empfänger kommt AWGN dazu und das Empfangssignal ergibt sich als

$$y(t) = s(t) * h(t) + n(t).$$

Mit Mobilität der Sender und Empfänger, sowie durch Bewegungen der lokalen Streuer, ändert sich der Kanal h(t). Er muss also am Empfänger geschätzt werden.

Mobilfunkkanal III

- Die Kohärenzzeit des Kanals ist definiert als die Zeit, in der der Kanal konstant ist.
- Während dieser Zeit wird der Kanal durch ein **Trainingssequenz** $s_T(t)$, das am Empfänger bekannt ist, geschätzt:

$$y(t) = h(t) * s_T(t) + n(t).$$

■ Ist die Trainingssequenz $s_T(t)$ und damit $S_T(f)$ bekannt, kann die Kanalübertragungsfunktion einfach berechnet werden:

$$ilde{\mathcal{H}}(f) = rac{\mathcal{Y}_{\mathcal{T}}(f)}{\mathcal{S}_{\mathcal{T}}(f)}.$$

Mobilfunkkanal IV

 Anschließend kann ein beliebiges Signal x(t) im Bildbereich rekonstruiert werden

$$\tilde{X}(f) = \frac{Y(f)}{\tilde{H}(f)}.$$

Nr. Symbole der Trainingssequenzen	
$0 \mid (-1, +1, -1, -1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +$)
)
2 (+1, -1, -1, -1, +1, -1, -1, +1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +)
$\overline{3}$ (-1, -1, -1, -1, +1, -1, +1, +1, +1, +1, +1, +1, +1, +1)
$4\mid(+1,-1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1$)
$ \boxed{5 \mid (-1, -1, +1, -1, +1, -1, -1, +1, +1, +1, +1, +1, +1, -1, +1, +1, -1) } $)
$6 \mid (-1, -1, -1, -1, -1, +1, -1, -1, +1, +1, +1, +1, -1, +1, +1, +1)$)
7 (-1, -1, -1, +1, +1, +1, -1, +1, -1, +1, -1, -1, -1, +1, -1)

Mehrteilnehmer Netzwerke I

In sehr vielen Anwendungen gibt es mehr als einen Sender und/oder einen Empfänger. Deshalb hier eine Übersicht über die vier grundlegenden Elemente:

- Vielfachzugriffskanal (Multiple Access Channel)
- Broadcastkanal (Broadcast Channel)
- Interferenzkanal (Interference Channel)
- Relaiskanal (Relay Channel)

Modul Netzwerkinformationstheorie

Im Modul Netzwerkinformationstheorie werden diese vier Elemente im Detail besprochen und informationstheoretisch untersucht, d.h., Kapazitätsregionen und Verfahren werden besprochen.

