EE5110: Probability Foundations for Electrical Engineers

July - Nov 2024

1 Real Random Variable

- 1. Motivation
 - in many experiments, sample points are in \mathbb{R}^k
 - in other experiments, we can associate numbers to sample points
 - real numbers for sample points permits us to exploit the mathematical structure and do computations
- 2. Definition of a real random variable
 - Consider a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. A function $X : \Omega \to \mathbb{R}$ is called a real random variable on the probability space if

$$X^{-1}(B) = \{\omega : X(\omega) \in B\} \in \mathcal{F}$$

for all $B \in \mathcal{B}(\mathbb{R})$. The probability that the random variable takes value in the set B is defined as

$$P_X(B) = P(X^{-1}(B)) = P(X \in B) = P(\{\omega : X(\omega) \in B\})$$

 P_X is called the distribution of r.v. X

- An equivalent description is $X : \Omega \to \mathbb{R}$ is a real random variable on a probability space if $\{\omega : X(\omega) \le x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$. In other words, $P(X \le x)$ must be well-defined.
- 3. A random variable X inspires a new probability space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathsf{P}_X)!$
 - $\Omega_X = \mathbb{R}$
 - $\mathcal{F} = \mathcal{B}(\mathbb{R})$
 - $\mathsf{P}_X((-\infty,x]) = \mathsf{P}(X \le x) = \mathsf{P}(\{\omega: X(\omega) \le x\})$ thus defined is the probability measure on the space; P_X is non-negative, normalized and countably additive!
 - It is common practice to describe the derived probability space directly!
- 4. Comments
 - $X(\omega) = x$ is the realized outcome of the random variable; event $B \in \mathcal{B}(\mathbb{R})$ is said to occur if $x \in B$ is realized, or if $\omega \in X^{-1}(B)$ occurs.

- a random variable is neither random nor a variable! The randomness is in the original probability space and in the realization of ω . Given ω , $X(\omega)$ is fixed!
- a random variable may be discrete, continuous or a mixture
- common and conceivable functions are often random variables!
- 5. Example of a random variable
 - let $\Omega = \{H, T\}$, \mathcal{F} be the power set, and let p be the bias of the coin
 - Define X(H) = 1 and X(T) = 0. Then, X is a real-random variable.
 - What is $P_X(\{1\}) = P(X = 1)$ and $P_X(\{0\}) = P(X = 0)$?
 - Draw $P(X \le x)$ for all $-\infty < x < \infty$.
 - X is an example of a discrete real random variable!
- 6. A random variable $X: \Omega \to \mathbb{R}$ is called a discrete type random variable if there exists a discrete (finite or countable) set of real numbers $\{x_1, x_2, \dots\}$ such that

$$P(X \in \{x_1, x_2, \cdots\}) = 1$$

In particular, X is discrete if $X(\Omega)$ is discrete!

- Define $p_X(x_i) = \mathsf{P}_X(\{x_i\}) = \mathsf{P}(X = x_i) = \mathsf{P}(\{\omega : X(\omega) = x_i\})$ for all $i = 1, 2, \dots$ $\{p_X(x_1), p_X(x_2), \dots\}$ is called the probability mass function (p.m.f.) of X.
 - (non-negative) $p_X(x_i) \ge 0$
 - (normalized) $\sum_{i=1}^{\infty} p_X(x_i) = 1$
 - (countably additive) for $B \in \mathcal{B}(\mathbb{R})$, $\mathsf{P}_X(B) = \sum_{\{i: x_i \in B\}} p_X(x_i)$
- $\{x_1, x_2, \dots, \}$ and p.m.f. $\{p_X(\cdot)\}$ describes the derived probability space completely!
- 7. Examples of discrete random variables
 - **Bernoulli** $(p:0 \le p \le 1)$: $(\{0,1\}, 2^{\Omega_X}, P_X)$ where

$$p_X(0) = 1 - p$$
, and $p_X(1) = p$

• Uniform $(N: N \in \mathbb{N})$: $(\{1, 2, \dots, N\}, 2^{\Omega_X}, \mathsf{P}_X)$ where

$$p_X(i) = \frac{1}{N}$$
 for all $i = 1, 2, \dots, N$

• Geometric $(p: 0 : <math>(\mathbb{N}, 2^{\Omega_X}, \mathsf{P}_X)$ where

$$p_X(i) = (1-p)^{i-1}p$$
 for all $i \in \mathbb{N}$

• Indicator random variable (also a Bernoulli random variable)

- Constant random variable (degenerate random variable)
- 8. Exercise: How would you construct a given discrete random variable from a uniform random variable with finer resolution?
- 9. Exercise: Compute P(X > k) for X, a geometric random variable with parameter p.
- 10. Conditioning a random variable
 - The conditional p.m.f. of a random variable X, conditioned on a event A with P(A) > 0 is defined as

$$\mathsf{P}(X=x|A) = p_{X|A}(x) = \frac{\mathsf{P}(\{\omega: X(\omega) = x\} \cap A)}{\mathsf{P}(A)}$$

- $\{p_{X|A}(x)\}$ is a valid probability mass function, i.e., it is non-negative, normalized, and it sums to one.
- We say that the random variable X is independent of the event A if $p_{X|A}(x) = p_X(x)$ for all x.
- 11. Exercise: Compute P(X > k + l | X > k) and P(X = k + l | X > k) for X, a geometric random variable with parameter p.
- 12. Functions of a random variable
 - Consider a probability space $(\Omega, \mathcal{F}, \mathsf{P})$ and let $X : \Omega \to \mathbb{R}$ be a random variable.
 - Let $f: \mathbb{R} \to \mathbb{R}$ be such that

$$f^{-1}(C) = \{x : f(x) \in C\} \in \mathcal{B}(\mathbb{R})$$

for all $C \in \mathcal{B}(\mathbb{R})$, i.e., f is a nice (measurable) function.

- Define Y = f(X) or $Y(\omega) = f(X(\omega))$. Then, Y is a real random variable.
- \bullet When X is discrete, Y is discrete. Further,

$$p_Y(y) = P_Y(\{y\}) = P_X(\{x : f(x) = y\}) = P(\{\omega : f(X(\omega)) = y\})$$

- 13. Example: Let X be a uniform random variable with parameter N=6. Define $Y=X^2$. Compute $\{p_Y(\cdot)\}$.
- 14. Example: Consider two independent throws of a six-faced dice. Let X denote the sum of the two throws. Find
 - (a) P(X = 7)
 - (b) P(X = 7 | one of the throw is 6)
 - (c) P(X = 7|X > 6)