Problem set 6: Bayesian OLS

Ancilla Marie Inocencio

Q1) OLS

. reg lwage educ exper smsa black south

Source	SS	df	MS		Number of obs F(5, 3004)		3,010 232.21
Model	165.205654	5	33.041130	8 Pro	, 3004) b > F	=	0.0000
Residual	427.435957	3,004	.14228893	4 R-s	R-squared Adj R-squared		0.2788
				– Adj			0.2776
Total	592.641611	3,009	.19695633	5 Roo	t MSE	=	.37721
	•						
lwage	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
educ	.073807	.0035336	20.89	0.000	.066878	4	.0807356
exper	.0393134	.0021955	17.91	0.000	.035008	5	.0436183
smsa	.1647411	.0156919	10.50	0.000	.133973	2	.195509
black	1882225	.0177678	-10.59	0.000	223060	7	1533843
south	1290528	.0152285	-8.47	0.000	158912	2	0991935
_cons	4.913331	.0631212	77.84	0.000	4.78956	6	5.037096

- Q2) Bayes using Metropolis-Hastings, use flat prior, plot histograms
 - a) Bayes Metropolis- Hastings algorithm, using flat prior for all

. bayesmh lwage educ exper smsa black south, likelihood(normal({var})) prior({lwage: _cons educ exper smsa black south}, flat) prior({var}, jeffreys)

```
Burn-in ...
Simulation ...
```

Model summary

Likelihood:

lwage ~ normal(xb_lwage, {var})

Priors:

{lwage:_cons educ exper smsa black south} ~ 1 (flat) (1) $\{var\} ~ \sim jeffreys$

(1) Parameters are elements of the linear form xb_lwage.

Bayesian normal regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	3,010
	Acceptance rate =	.2392
	Efficiency: min =	.001266
	avg =	.005404
Log marginal likelihood = -1360.3484	max =	.01671

						Equal-tailed		
		Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]	
lwage								
	educ	.0743258	.0034661	.000904	.0740133	.0683067	.0806296	
	exper	.039635	.0020627	.000434	.0396168	.0357716	.0437261	
	smsa	.1647284	.0160211	.00193	.1645684	.1353478	.1966974	
	black	1878744	.0173699	.002068	1880804	2207895	1541442	
	south	1292823	.0156651	.003353	1309543	1542596	0897909	
	_cons	4.903147	.0634373	.017832	4.915855	4.772623	4.999295	
	var	.1422125	.0036658	.000284	.1421001	.1349064	.1492788	

Note: There is a high-autocorrelation after 500 lags.

b) Using prior from data provided (see do file for how variance was computed)

. bayesmh lwage educ exper smsa black south, likelihood(normal({var})) prior({lwage: _cons exper smsa black south}, flat) prior({lwage: educ},normal(0.06,1.97)) prior({var}, > jeffreys)

Burn-in ...
Simulation ...

Model summary

Likelihood:

lwage ~ normal(xb_lwage, {var})

Priors:

{lwage:_cons exper smsa black south} \sim 1 (flat) (1) {lwage:educ} \sim normal(0.06,1.97) (1) {var} \sim jeffreys

(1) Parameters are elements of the linear form xb_lwage.

Bayesian normal regression	MCMC iterations	=	12,500
Random-walk Metropolis-Hastings sampling	Burn-in	=	2,500
	MCMC sample size	=	10,000
	Number of obs	=	3,010
	Acceptance rate	=	.1611
	Efficiency: min	=	.001562
	avg	=	.01878
Log marginal likelihood = -1361.7424	max	=	.04299

		Mean	Std. Dev.	MCSE	Median	Equal-tailed [95% Cred. Interval]		
lwage								
	educ	.0740197	.0035785	.00083	.074168	.0670933	.0803022	
	exper	.0393839	.0021328	.000468	.0393931	.0353249	.0433556	
	smsa	.166106	.0154831	.000816	.1658339	.1344929	.1964983	
	black	1891804	.017245	.001689	1893191	2233642	1556895	
	south	128783	.015629	.000754	1280511	1594032	0996628	
	_cons	4.908498	.0627174	.015867	4.904118	4.801841	5.029297	
	var	.1422329	.0036017	.000188	.1423463	.1351181	.1493051	

3) Doing a side-by-side comparison, prior distribution for education improved, centering around values closer to the mean. As a model, using prior from another study improved average efficiency (from 0.0054 to 0.01878) and at lower acceptance rate (from 0.239 to 0.161).

Flat prior for all

Using prior from another study

Flat prior for all

Using prior from another study

