# **Power conditioning circuits**

### **Diodes:**





#### **Diode characteristics:**







Non-linear diode model.



$$A \stackrel{i_{ak}}{\longrightarrow} K \longrightarrow A \stackrel{i_{ak}}{\longrightarrow} \stackrel{V_f}{\longrightarrow} R_d \longrightarrow K$$

$$+ \stackrel{V_{ak}}{\longrightarrow} V_{ak}$$



$$A \stackrel{i_{ak}}{\longrightarrow} + \underbrace{v_{ak}} \stackrel{\vee}{\longrightarrow} K$$

$$A \stackrel{i_{ak}}{\longrightarrow} + \underbrace{v_{ak}} \stackrel{\vee}{\longrightarrow} K$$









Single-phase half wave rectifier















































Single-phase full wave bridge rectifier







Three-phase half wave rectifier















Three-phase full wave bridge rectifier





Single-phase full wave bridge rectifier with capacitive filter



Single-phase full wave bridge rectifier with capacitive filter



#### Solar cells:



#### **Solar cells:**







Image source: Specification sheet for KC200GT solar panel.

#### **Thyristors:**



#### Simple circuits with thyristors:



#### **MCMA140PD1200TB**

| Rectifier            |                                                                             |                            |                         | Ratings |      |      |      |
|----------------------|-----------------------------------------------------------------------------|----------------------------|-------------------------|---------|------|------|------|
| Symbol               | Definition                                                                  | Conditions                 |                         | min.    | typ. | max. | Unit |
| V <sub>RSM/DSM</sub> | max. non-repetitive reverse/forward blocking voltage $T_{VJ} = 25^{\circ}C$ |                            |                         |         | 1300 | V    |      |
| V <sub>RRM/DRM</sub> | max. repetitive reverse/forward blocking voltage                            |                            | $T_{VJ} = 25^{\circ}C$  |         |      | 1200 | ٧    |
| I <sub>R/D</sub>     | reverse current, drain current                                              | $V_{R/D} = 1200 \text{ V}$ | $T_{VJ} = 25^{\circ}C$  |         | _    | 100  | μΑ   |
|                      |                                                                             | $V_{R/D} = 1200 \text{ V}$ | $T_{vJ} = 140$ °C       |         | _    | 10   | mΔ   |
| V <sub>T</sub>       | forward voltage drop                                                        | $I_T = 150 A$              | $T_{vJ} = 25^{\circ}C$  |         |      | 1.29 | ٧    |
|                      |                                                                             | $I_{T} = 300 \text{ A}$    |                         |         |      | 1.63 | ٧    |
|                      |                                                                             | $I_T = 150 A$              | T <sub>vJ</sub> = 125°C |         |      | 1.28 | ٧    |
|                      |                                                                             | $I_T = 300 \text{ A}$      |                         |         |      | 1.70 | V    |
| I <sub>TAV</sub>     | average forward current                                                     | T <sub>C</sub> = 85°C      | T <sub>vJ</sub> = 140°C |         |      | 140  | Α    |
| T(RMS)               | RMS forward current                                                         | 180° sine                  |                         |         |      | 220  | Α    |

Typical ratings of the thyristor:

$$V_{bd} = V_{fd} = 1200 \text{ V}$$
 and  $V_f < 2 \text{ V}$ 

Datasheet reference: http://ixapps.ixys.com/datasheet/mcma140pd1200tb.pdf





Note the thyristor is switched on:

- --> Thyristor is forward biased (i.e.  $v_t > 0$ ) and
- --> Trigger current is applied at some instant (decided by a logic circuit), through the gate cathode terminals.

Also in reverse biased condition thyristor behaves similar to that of the diode.







#### **Thyristor Controlled Reactor (TCR):**

Back to back thyristors.



#### **Thyristor Controlled Reactor (TCR):**

Back to back thyristors.





# Philosophy of AC to DC Conversion

- Connection of input terminals to output terminals is changed based on the polarity of the input voltage waveform
- Output dc voltage is constructed from parts of input ac voltage
- Output is not a perfect dc



Source: lecture slides of Prof. Kishore Chatterjee, EE-IITB.

### HVDC converter operation

- Three phase Full Wave Converter
- Six pulse converter
- Assumptions:
  - 1) Switches are ideal
  - 2) AC source is infinite
  - 3) L<sub>f</sub> is large so that output current is a perfect dc current.

#### 6-pulse Converter



$$V_{ab} = \sqrt{3} V_m \sin(\omega t + 60^\circ)$$

$$V_{ac} = \sqrt{3} V_m \sin(\omega t)$$

$$V_{bc} = \sqrt{3} V_m \sin(\omega t - 60^\circ) V_{cn}$$

$$V_{an} = V_m \sin(\omega t + 30^\circ)$$

$$V_{an} = V_m \sin(\omega t - 90^\circ)$$

$$V_{bn} = V_m \sin(\omega t - 90^\circ)$$

$$V_{cn} = V_m \sin(\omega t - 210^\circ)$$

# When all the thyristors are permanently provided with gating signals



## Firing delay angle $\alpha = 30^{\circ}$



## Firing delay angle $\alpha = 60^{\circ}$



## Firing delay angle $\alpha = 90^{\circ}$



## Average output voltage

$$V_{0} = \frac{6}{2\pi} \int V_{ab} d(\omega t)$$

$$= \frac{6}{2\pi} \int \sqrt{3} V_{m} \sin(\omega t + 60^{\circ}) d(\omega t)$$

$$= \frac{3\sqrt{3}V_{m}}{\pi} \cos \alpha$$

$$= V_{d0} \cos \alpha$$

$$= V_{d0} \cos \alpha$$

$$= V_{d0} = \frac{3\sqrt{3}V_{m}}{\pi}$$

Equivalently, Vdo = 1.383 times line-line rms voltage on AC side

#### Converter Characteristics



## Operation in inverting mode



Current is maintained because of Vo – this role is played by the rectifier in an HVDC system.

#### Firing delay angle $\alpha = 150^{\circ}$



#### HVDC System – Two Terminal



α: Delay Angle of Converter

### HVDC System – Two Terminal



## Phase relation between Ph-A voltage and converter Ph-A fundamental input current



#### Both Sides Draw Reactive Power!



## Effect of Firing angle delay

- $\blacksquare$  Reduction in  $V_d$  by a factor of  $\cos \alpha$
- Increment in output voltage ripple
- Negative voltage period for  $\alpha > 60^{\circ}$
- Increases phase difference between phase current and voltage

#### $\alpha$ =30° and u<60°



## Commutation Margin: modified relationships

$$T_0 = \frac{\sqrt{3} \text{Vm}}{2 \text{WLc}} \left\{ \cos \alpha - \cos \left( \alpha + u \right) \right\}$$

DC current high, or AC Voltage Low: μ is larger

Magnitude of dc voltage reduces; minor effect on AC current harmonics

# What is Commutation Margin? (Inverter Valve voltage waveform)



# What is Commutation Margin? (Inverter Valve voltage waveform)



## Commutation Margin (Rectifier Valve voltage waveform)



 $\alpha = 30$ 

## 12 pulse configuration - Transformer



#### Single phase 3 winding transformer

From mmf balance:  $a*IaY + a*\sqrt{3}*Ia\Delta \cong Ia$ 

## 12 pulse configuration - Typical



## AC and DC voltages



Magnitude of AC voltage same (due to turns ratio), but phase shift of 30

#### AC side currents



#### AC side currents



## Types of HVDC systems

Two terminal (with DC transmission line, one rectifier terminal + one inverter terminal)

Back – to –Back (two terminal with no DC line – used for asynchronous tie)

Multi-terminal (with DC lines and several rectifier and/or inverter terminals connected to more than 2 nodes of the AC network)

#### Types of links

a) Monopolar b) Bipolar

## Types of Links: Monopolar



## HVDC bipolar converter station



Basic Equations



Vd, Id = direct voltage / current **per pole**, E = line to line rms

AC voltage, T: Turns ratio (note that taps are usually provided),

B = number of bridges **per pole**, Rdc = resistance of dc line **per pole** 

P = active power, Q=reactive power,  $Xc = \omega Lc = commutating$  reactance per bridge / per phase,

Subscripts 'r' and 'I' denote rectifier and inverter respectively.

 $\alpha$  = delay angle ,  $\gamma$  = extinction angle

**Note**: Figure above has one bridge and one pole.

12 pulse converters have 2 bridges per pole.

### Control Hierarchy

#### **System Control**

- Power Scheduling (Load Dispatch Centre)
- 2. Auxiliary Control
  - --- Damping control
  - --- SSR Damping Control
  - --- Reactive Power Control
  - ---Power/ Frequency Control

(Higher Level Control)

Converter Control

Firing Angle Control

(Lower Level Control)

### AC – DC system interaction

- Weak /Strong AC systems.
   Short Circuit ratio = short circuit MVA of AC system / dc converter MW rating
- Effective SCR also includes effect of filters, shunt capacitors, synchronous condensers etc.
  - "High ESCR" = (around 5), "Moderate ESCR" = 3 5, "Low SCR" = less than 2.
- Effective Inertia constant = Total H of AC system / MW rating of link.
  EIC should be atleast 2-3.
- Problems with weak systems: High dynamic overvoltages, voltage instability, harmonics and flicker