Networked Embedded Systems NES for Automotive Applications

Dr.-Ing. Vlado Handziski

Summer Semester 2015

From mechanical and hydraulic to electronic

- ► Exponential rise in the number of complex electronic systems
- ▶ Driver assistance
 - Anti-lock Braking System (ABS)
 - ► Electronic Stability Program (ESP)
 - Electric Power Steering (EPS)
 - ► active suspension
 - ► engine control
- ▶ Device control
 - ▶ lights
 - wipers
 - ▶ doors
 - windows
- Entertainment and communication
 - ▶ radio
 - DVD
 - ► hand-free phones
 - navigation systems

From point-to-point to multiplexed communication

- Originally, each new function was implemented as a stand-alone electronic control unit (ECU)
- ► Hard to implement functions distributed over several ECUs
- ▶ In modern cars more than 70 ECUs exchange up to 2500 signals
- Point-to-point connections between the ECUs lead to inefficient information exchange O(n²) communication channels are needed
- ► Weight, cost, complexity and reliability issues
- Use of networks with multiplexed communication over a shared bus as an alternative

Typical network architecture in a modern car

CAN Controller area network GPS Global Positioning System

GSM Global System for Mobile Communications

LIN Local interconnect network

MOST Media-oriented systems transport

Diversity in QoS requirements

- ► Functional domains of automotive electronics
 - powertrain (engine and transmission)
 - chassis (suspension, steering and braking)
 - body (comfort functions)
 - telematics (wireless communication, vehicle monitoring, GPS)
 - multimedia (entertainment systems, mobile communication)
 - ► safety (air-bags, belt pretension, active headrest)
- Diversity in performance and safety needs
 - ▶ response time
 - ▶ iitter
 - ▶ bandwidth
 - error control
 - redundancy

Automotive communication protocols

- Society for Automotive Engineers (SAE) classification of automotive car protocols
- ► Four classes based on data transmission speed and traffic needs
- ► Class A
 - ▶ data rate lower than 10 kbit/s
 - ► simple control data with low-cost technology
 - ► mainly used in body domain
 - Examples: LIN, TTP/A
- ► Class B!
 - ▶ data rate between 10 and 125 kbit/s
 - ▶ support of data exchange between ECUs to reduce number of sensors
 - Examples: J1850, low-speed CAN

Automotive communication protocols (cont'd)

▶ Class C

- data rate between 125 kbit/s and 1Mbit/s
- high-speed real-time communication
- mainly used in powertrain and chassis domain
- ► Examples: high-speed CAN

► Class D

- data rate higher than 1Mbit/s
- safety-critical applications with predictability and fault-tolerance needs
- multimedia data
- gateways between subsystems
- Examples: TTP/C, FlexRay

Component Interoperability

- ► Performance, quality and safety depend on tight cooperation of many subsystems
 - Complex cooperative multi-partner development process with suppliers and OEMs
 - ▶ Problem of interoperability of components
 - portability of components from one ECU to another
 - reuse of components between different platforms
 - Need for an abstraction layer that decouples the application development from the evolution of the underlying hardware

Requirements for automotive system software

- ▶ Hide the heterogeneity
 - APIs that are independent from the underlying protocols or CPU architecture
- ▶ Hide the distribution
 - APIs that are the same for intra-ECU, inter-ECU, inter-domain communication
- ▶ Provide high-level services
 - APIs that raise the level of abstraction, simplify the development and increase quality through reuse of validated services
- ► Provide QoS guarantees
 - APIs that boost the QoS provided by lower-level protocols through additional error control mechanisms

OSEK/VDX

- ▶ Defined by the OSEK/VDX consortium (www.osek-vdx.org)
- OSEK/VDX communication layer
 - Common software interfaces and behavior for internal and external communication between application components
 - Statically defined signal packing
 - Automatic serialization and queuing
- ▶ OSEK/VDX transport layer
 - Segmentation and reassembly of frames
- OSEK/VDX OS
 - Services for task, event and interrupt management
- Does not provide full transparency for inta-ECU and inter-ECU application process communication
- Does not obey TT approach and can not be used directly on top of a TT protocol like TTP/C or FlexRay
- Some of these deficiencies are addressed in OSEK/VDX FTCom allowing operation on top of a TT OS like OSEK/VDX Time

AUTOSAR

- Defined by the consortium (www.autosar.org)
- Main goal is to improve the quality and reliability of the automotive embedded systems
- ▶ Focuses on the architecture of the software embedded in an ECU
 - Application Layer
 - ► Basic software
 - Run-time environment
- ► Hides the characteristics of the hardware platform *as well as the distribution* of the application software components
- ► Two communication models
 - Sender/Receiver (data exchange)
 - Explicit mode
 - ► Implicit mode
 - ► Client/Server (function invocation)