Using satellite observations to monitor long-term changes in air quality in cities

<u>Karn Vohra</u>¹, Eloïse A Marais², William J Bloss¹, Louisa Kramer¹, Peter Porter³

¹University of Birmingham, United Kingdom;

²University of Leicester, United Kingdom;

³Birmingham City Council, Birmingham, United Kingdom

kxv745@student.bham.ac.uk

GEES DR conference (8th May'19)

What do these emission trends tell us?

Figure 1: Trends in annual emissions of sulphur dioxide, nitrogen oxides, non-methane volatile organic compounds, ammonia and particulate matter (PM₁₀, PM_{2.5}) in the UK: 1970 – 2017

The index line is a comparator that shows the level of emissions if they had remained constant from the beginning of the time series.

Target cities in the UK and India

Why satellite observations?

How do satellites collect data? SUN **SATELLITES CLOUDS INSTRUMENTS COLUMNAR DENSITY** (molecules/cm²) **WATER BODIES INFRASTRUCTURE FLORA**

Surface NO₂ monitoring sites in Birmingham

6 sites considered (Mar'11-Sep'16)

Concentration $(\mu g/m^3)$

Evaluation of satellite-based NO₂?

6.5 km

Pollutant	NO ₂
Satellite	NASA Aura
Instrument	Ozone Monitoring Instrument (OMI)
Ground resolution	13 km x 24 km
Overpass time	1330 local time

Trends in satellite-based NO₂?

Evaluation of satellite-based NH₃?

Pollutant	NH ₃
Satellite	MetOp - A
Instrument	Infrared Atmospheric Sounding Interferometer (IASI)
Ground resolution	12 km diameter
Overpass time	0930 and 2130 local time

Trends in satellite-based NH₃?

Key Takeaways

- ➤ Consistent satellite and ground-based NO₂ and NH₃ give us confidence to apply satellite observations to monitor air quality in cities
- ➤ OMI NO₂ declined by 35% in both London and Birmingham from 2005 to 2018 while it has increased by 28% over Delhi and by 12% over Kanpur
- ➤ IASI NH₃ shows no significant trend over the 4 target cities

Next Steps

- ➤ Evaluate satellite data over **New Delhi** and **Kanpur** for NO₂ and NH₃
- > Apply the same approach to other pollutants:

SO₂, formaldehyde, CO

> Validate Defra air quality monitoring tools