Code: 13A05302

B.Tech II Year I Semester (R13) Supplementary Examinations June 2015

DISCRETE MATHEMATICS

(Common to IT & CSE)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Show that the propositions $p \rightarrow q$ and $\neg p \lor q$ are equivalent.
 - (b) State pigeonhole principal.
 - (c) When a lattice is said to be bounded?
 - (d) Prove that P, P $\rightarrow q$, $q \rightarrow r \Rightarrow r$.
 - (e) State Lagrange's theorem in δ group theory.
 - (f) Prove that the identity of a subgroup is same as that of the group.
 - (g) State any two properties of a group.
 - (h) Find the recurrence relation satisfying the equation: $y_n = A(3)^n + B(-4)^n$.
 - (i) What is the generating function of the sequence {0, 1, 0-1, 0, 1, 0, -1, 0 -----}
 - (j) What is a spanning tree?

PART – B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

If n Pigeonholes are occupied by (kn+1) pigeons, where n is positive integer, prove that at least one Pigeonhole is occupied by k+1 or more Pigeons. Hence, find the minimum number of m integers to be selected from S = {1, 2, 3 -----9} so that the sum of two of the m integers are given.

(OR)

Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.

UNIT - II

In a Lattice (L, \leq), prove that $x \lor (y \land z) \leq (x \lor y) \land (x \lor z)$.

OR)

5 If (A, \leq) and (B, \leq) are posets, then prove that $\{A \times B, \leq\}$ is a poset with partial order \leq defined as $(a, b) \leq (a b)$, if $a \leq a$ in A, if $b \leq b$ in B.

UNIT - III

6 State and prove Lagrange's theorem.

(OR)

Let $(S,^*)$ be a semi group, then prove that there exists a homomorphism $g: S \to S^S$ Where $< S^S, 0 >$ is a semi group of a function from S to S under the operation of the composition.

www.ManaResults.co.idantd.in page 2

Code: 13A05302

R13

UNIT - IV

- 8 (a) Prove by mathematical induction, $3^{2n+1} + (-1)^n 2 = 0 \pmod{3}$.
 - (b) Using the generating function, solve the difference equation

$$y_{n+2} - y_{n+1} - 6y_n = 0, y_1 = 1, y_0 = 2.$$

Solve the recurrence relation, S(n) = S(n-1) + 2(n-1) with S(0) = 3, S(1) = 1 by finding its generating function.

UNIT - V

Define a planar graph, show that K_5 is non-planar.

(OR)

11 (a) Define spanning tree of a graph of G. Find all the spanning trees of a following graph

(b) Apply Kruskal's algorithm to find a minimal spanning tree of the following weighted graph.
