CONTENTS

Abstract

List of Figures

CHAPTER 1

Introduction	1-13
1.1 Wireless Ad Hoc networks	1
1.2 History on packet radio	2
1.3 Early work on MANET	2
1.4 Classification Of Multicast Routing Protocols	7
1.4.1 Application Independent	7
1.4.2 Application Dependent	7
1.4.3 Based on Topology	7
1.4.4 Tree Based	8
1.4.5 Source Tree Based	8
1.4.6 Shared Tree Based	8
1.4.7 Mesh Based	8
1.4.8 Based on Initialization approach	8
1.4.9 Source Initiated	9
1.4.10 Receiver Initiated	9
1.4.11 Hybrid approach	9
1.5 Based on Routing scheme	9
1.5.1 Reactive approach	9

1.5.2 Proactive approach	9
1.5.3 Hybrid approach	9
1.6 Based on Maintenance approach	10
1.6.1 Soft- State approach	10
1.6.2 Hard- State approach	10
1.7 Classification of Topology based Routing Pro	otocols 10
1.7.1 Tree Based Multicast Routing Proto	cols 11
1.7.2 Multicast Ad-hoc On-demand Dista	nce Vector 11
1.7.3 Bandwidth Efficient Multicast Rout	ing Protocol 12
1.7.4 Ad Hoc Multicast Increasing Id-nun	nbers 12
1.7.5 The Differential Destination Multica	ast Protocol 13
Chapter 2	
LITERATURE SURVEY	14-15
2.1 Robustness versus Efficiency	14
2.2 Active Adaptability	14
2.3 Unlimited Mobility	15
2.4 Integrated Multicast	15
CHAPTER 3	
MAODV PROTOCOL	20-33
3.1 Route Tables	22
3.2 MAODV Terminology	23
3.3 Group leader	23

3.4 Group leader table	24
3.5 Multicast tree	24
3.6 Multicast route table	24
3.7 Reverse route	24
3.8 Maintaining Multicast Tree Utilization Records	24
3.9 Generating Route Requests	25
3.10 Controlling Route Request broadcasts	26
3.11 Receiving Route Requests	26
3.12 Generating Route Replies	27
3.13 Forwarding Route Replies	28
3.14 Route Activation	28
3.15 Multicast Tree Pruning	30
3.16 Repairing a Broken Link	30
3.17 Tree Partitions	32
3.18 Reconnecting Two Trees	33
Chapter-4	
Software Requirements	35-54
4.1 Ubuntu 16.04 Operating System	35
4.2 History	35
4.3 Features	37
4.4 Security	38
4.5 Steps to install Ubuntu 16.04	38

4.6 Network Simulator-2.34	49
4.7 Simulation workflow	50
4.8 Topology definition	50
4.9 Model development	50
4.10 Node and link configuration	51
4.11 Execution	51
4.12 Performance analysis	51
4.13 Graphical Visualization	51
4.14 Installation of Ns-2.34 in Ubuntu 16.04	51
4.15 Eval Vid-2.7 in NS-2.34	53
4.16 Architecture of ns-2 and EvalVid	54
Chapter-5	
IMPLEMENTATION OF PROJECT	57-60
5.1 Step by step procedure	57
5.2 Generation of Traffic and Topology file	58
5.3 Program Execution	59
Chapter-6	
6.1 QoS Parameters	63
6.2 Graphs showing QoS parameters	64
Results	60-65
CONCLUSION AND FUTURE SCOPE	66

Abstract

Wireless mesh networks (WMNs) facilitate both data transfer and real-time applications over wireless medium. Owing to the shared nature of wireless frequencies, bandwidth limitation is a major challenge facing WMNs. If real-time multimedia applications, such as live video among multiple clients streaming, are shared using unicast communications, it could result in network resources starvation. Multicast transmission saves network resources by replicating live multimedia transmitted data from one source to multiple destinations using the same stream. This has developed a novel implementation of a multicast extension to ad hoc on-demand distance vector (MAODV) routing protocol in Linux kernel 2.6 user space, which is referred to as unidirectional link-aware MAODV (UDL-MAODV). Multicast video transmissions use user datagram protocol, which does not use implicit handshaking dialogues for guaranteeing reliability of data. Therefore the authors propose and have implemented modifications to the MAODV route discovery process to improve the reliability of multicast video transmissions.

LIST OF FIGURES

Fig 1.1 Classification of Multicast Routing Protocols	7
Fig 1.2 Classification of Topology based Routing Protocols	10
Fig 4.1 Figure shows space allocated to windows	39
Fig 4.2 Figure shows Disk Management tool	39
Fig 4.3 Figure shows size allocation to LINUX	40
Fig 4.4 Shows Linux GRUB	41
Fig 4.5 Shows language selection in Ubuntu installation	42
Fig 4.6 Shows permissions for Ubuntu	43
Fig 4.7 Shows permission for Ubuntu	43
Fig 4.8 Shows disk partitions	44
Fig 4.9 Time zone selection	45
Fig 4.10 Shows Keyboard layout selection	46
Fig 4.11 Shows Username and password textboxes	46
Fig 4.12 & 4.13 Shows Ubuntu installation progress	47
Fig 4.14 Shows Ubuntu boot screen	48
Fig 4.15 Shows Ubuntu Desktop	49
Fig 4.16 Percentage symbol in terminal shows installation of ns	53
Fig 4.17 Basic architecture of ns-2 and Eval Vid	55
Fig 5.1 Integrated architecture of ns-2 and Eval Vid	56
Fig 5.2 Snap of source video trace	58
Fig 6.1 Screenshot of video trace file	60

Fig 6.2 Figure shows the terminal window running ns-2.34	60
Fig 6.3 Figure shows the terminal window running ns-2.34	61
Fig 6.4 Figure shows the NAM window	61
Fig 6.5 Figure shows data transmission pattern in the NAM	62
Fig 6.6 The figure shows parameters calculated	62
Fig 6.7 The about graph shows the finish time	63
Fig 6.8 The above graph shows Ratio of sent to received packets	63
Fig 6.9 The above graph shows Throughput values	64
Fig 6.10 The above graph shows Jitter rate	64
Fig 6.11 The above graph shows routing load values	65