Uvod u aritmetiku eliptičkih krivulja

Konstrukcija i svojstva *l*-adskih brojeva - 21. lekcija

Definicija. Neka je l fiksiran prost broj i neka n prolazi skupom prirodnih brojeva. **Cijeli** l-adski broj je, prema definiciji, niz brojeva

$$a = (a_1, a_2, a_3, ...)$$

takav da je n-ta koordinata zadana modulo l^n i da za svaki prirodni n bude $a_{n+1}=a_n$ modulo l^n .

Ovo je jedna od konstrukcija cijelih l-adskih brojeva (inače uobičajeno je govoriti o p-adskim brojevima, ali u ovom kontekstu povijesno se pojavljuje oznaka l). Vrijedi sljedeće:

- (i) Definicija jednakost cijelih l-adskih brojeva. Dva su cijela l-adska broja $a=(a_1,a_2,a_3,\ldots)$ i $b=(b_1,b_2,b_3,\ldots)$ jednaka ako je $a_n=b_n$ za sve n.
- (ii) Skup svih cijelih l-adskih brojeva (oznaka \mathbf{Z}_l) je komutativni prsten s jedinicom uz neutralni element 0 := (0,0,0,...), suprotni element $-a := (-a_1,-a_2,-a_3,...), 1 := (1,1,1,...)$, te uz pokomponentno zbrajanje i množenje, tj.

 $a+b:=(a_1+b_1,a_2+b_2,a_3+b_3,...);\ ab:=(a_1b_1,a_2b_2,a_3b_3,...).$ Lako se pokaže da je sve dobro definirano i da svojstva vrijede (tu je bitno da je prirodno preslikavanje s cijelih brojeva modulo l^{n+1} na cijele brojeve

modulo l^n homomorfizam prstena - koji je ujedno i surjekcija). Na primjer, ako je $a_{n+1} = a_n$ modulo l^n i $b_{n+1} = b_n$ modulo l^n , onda je i $a_{n+1}b_{n+1} = a_nb_n$ modulo l^n .

- (iii) Prsten cijelih brojeva **Z** prirodno se ulaže u prsten cijelih l-adskih brojeva preko $m \mapsto (m, m, m, ...)$. Od sad ćemo l-adski broj (m, m, m, ...) jednostavno označavati kao m. Posebice, pisat čemo $m(a_1, a_2, a_3, ...)$ umjesto $(ma_1, ma_2, ma_3, ...)$.
- (iv) Svaki se cijeli l-adski broj $(a_1, a_2, a_3, ...)$ različit od nule jednoznačno zapisuje kao $l^r(b_1, b_2, b_3, ...)$ gdje je r prirodan broj ili 0, a $(b_1, b_2, b_3, ...)$ je l-adski broj sa svojstvom $b_1 \neq 0$ modulo l.

za dokaz neka je r+1 prvi indeks n za koji je $a_n \neq 0$ modulo l^n . Dakle, $a_r = 0$ modulo l^r , pa je i $a_{r+1} = 0$ modulo l^r . Zato je $a_{r+1} = l^r b_1$ gdje je $b_1 \neq 0$ modulo l. Dalje $a_{r+2} = a_{r+1}$ modulo l^{r+1} pa je i a_{r+2} djeljiv s l^r . Slično je a_{r+2} djeljiv s l^r itd. Zato su dobro definirani brojevi b_2, b_3, \dots tako da bude

$$a = l^r(b_1, b_2, b_3, ...).$$

 Kako je $l^rb_k=a_{r+k},$ za svek, vrijedi $l^rb_{k+1}=l^rb_k$ modulo $l^{r+k},$ pa je $b_{k+1}=b_k$ modulo l^k , što znači da je sve dobro definirano.

- (v) \mathbf{Z}_l je prsten bez djelitelja nule. To proizlazi izravno iz (iv), jer ako su a, c različiti od nule, onda je
- $a = l^r(b_1, b_2, b_3, ...)$ i $c = l^s(d_1, d_2, d_3, ...)$, gdje su $b_1, d_1 \neq o$ modulo l. Kako je $ad = l^{r+s}(b_1d_1, b_2d_2, b_3d_3, ...)$ i kako je $b_1d_1 \neq 0$ modulo l, zaključujemo da je $ab \neq 0$.
- (vi) $a = l^r(b_1, b_2, b_3, ...)$ je invertibilan ako i samo ako je r = 0 i $b_1 \neq 0$ modulo l. Drugim riječima $a = (a_1, a_2, a_3, ...)$ je invertibilan ako i samo ako je $a_1 \neq 0$.

Jedan je smjer očit: ako je a invertibilan, mora tako biti. Za obrat, ako je r=0, onda $a=(b_1,b_2,b_3,...)$, a kako je $b_1\neq 0$, postoji cijeli c_1 takav da je $b_1c_1=1$ modulo l. Posebno $c_1\neq 0$ modulo l. Kako je $b_2=b_1$ modulo l, vidimo da je b_2 invertibilan modulo l^2 . Zato postoji cijeli broj c_2 sa svojstvom $b_2c_2=1$ modulo l^2 . Slično konstruiramo brojeve c_3,c_4 itd. tako da vrijedi $b_n c_n = 1$ modulo l^n za sve n. Tada je $c := (c_1, c_2, ...)$ inverz od a. Da to dokažemo dovoljno je vidjeti da je c zaista cijeli l-adski broj. Treba vidjeti da je $c_2 = c_1$ modulo l, zatim da je $c_3 = c_2$ modulo l^2 itd. Zaista:

 $c_2-c_1=\frac{1}{a_2}-\frac{1}{a_1}=\frac{a_1-a_2}{a_1a_2}=0$ modulo l. Slično: $c_3-c_2=\frac{1}{a_3}-\frac{1}{a_2}=\frac{a_2-a_3}{a_2a_3}=0$ modulo l^2 itd. Uočite da smo usput dokazali i to da je $a:=(a_1,a_2,...)$ invertibilan ako i

samo ako su svi a_n invertibilni.

(vii) Prsten \mathbf{Z}_l ima jedinstveni prosti ideal (koji je onda ujedno i maksimalan). To je glavni ideal generiran s l, tj. $\mathcal{P}_l := l\mathbf{Z}_l = \{a \in \mathbf{Z}_l : a_1 = 0\}$ modulo l.

Lako se dokazuje da $\mathbf{Z}_l/\mathcal{P}_l \equiv \mathbf{Z}/l\mathbf{Z}$.

(viii) Prema (v) dobro je definirano polje razlomaka \mathbf{Q}_l od \mathbf{Z}_l . Vidimo

da se svaki element od \mathbf{Q}_l jednoznačno zapisuje kao

 $l^r u$

gdje je r cijeli broj, a u je invertibilan element od \mathbf{Z}_l .

Primjer. Znamo da jednadžba $x^2 = 2$ nema rješenja u polju racionalnih brojeva **Q**.

- (A) Ta jednadžba nema rješenja u \mathbf{Q}_3 . Dovoljno je pokazati da ona nema rješenja u \mathbf{Z}_3 . Naime, kad bi $a := (a_1, a_2, ...)$ bilo rješenje te jednadžbe, bilo bi $a_1^2 = 2$ modulo 3, a to je nemoguče.
- (B) Ta jednadžba ima rješenja u \mathbb{Z}_7 . Naime, kako je $2=3^2$ modulo 7, možemo staviti $a_1=3$. Za a_2 možemo staviti 10 jer je 10=3 modulo 7 i $10^2=2$ modulo 7^2 itd.

Da pokažemo da to uvijek možemo sprovesti, predpostavimo da smo konstruirali dobre $a_1,a_2,...,a_n$. Dakle, vrijedi $a_n^2=2+m7^n$ za neki cijeli m. Tada stavimo

$$a_{n+1} = a_n + k7^n$$

pri čemu ćemo k izabrati tako da bude $a_{n+1}^2=2$ modulo 7^{n+1} . Dakle, treba biti

 $a_n^2 + 2a_nk7^n + k^27^{2n} = 2$ modulo $7^{n+1},$ a za to je dovoljno da bude $m + 2a_nk = 0$ modulo 7,

tj. k = m modulo 7.

Napomenimo da smo ovako pokazali da se polje $\mathbf{Q}(\sqrt{2})$ ne može smjestiti u \mathbf{Q}_3 , ali da se to polje može smjestiti u \mathbf{Q}_7 . Govoreći malo neprecizno $\sqrt{2} \notin \mathbf{Q}_3$, ali $\sqrt{2} \in \mathbf{Q}_5$.

U sljedečoj lekciji ova če nam konstrukcija poslužiti za opis tzv. l-adske reprezentacije Galoisove grupe u grupu regularnih matrica s koeficijentima u \mathbf{Z}_l .