Ecuación de Bouc-Wen

$$\dot{z} = \frac{k}{f_{v}} \dot{u} \left[1 - |z|^{n} \left(\beta \times \operatorname{sgn} \left(\dot{u} z \right) + \gamma \right) \right]$$

Datos:

$$f_y = 25$$

$$\beta = 0.90$$

$$k = 8.5$$

$$\gamma = 0.10$$

$$p = 0.017$$

$$n = 1$$

Desplazamientos (u):

Reemplazando los datos tenemos:

$$\dot{z} = 0.34 \dot{u} \left[1 - \left| z \right|^n \left(0.90 \times \text{sgn} \left(\dot{u} z \right) + 0.10 \right) \right]$$

CASO 01 (de 1@2): z > 0 y u > 0

Condiciones iniciales z(0) = 0

$$\dot{z} = 0.34 \dot{u} \left[1 - z \left(0.90 \times 1 + 0.10 \right) \right]$$

$$\dot{z} = 0.34 \dot{u} [1 - z]$$

Resolviendo la ecuación diferencial:

$$z(u) = 1 - e^{\frac{-17u}{50}}$$

El punto 2 es +0.5, por lo tanto, evaluamos con ese valor:

$$z(0.5) = 1 - e^{\frac{-17(0.5)}{50}} = 0.1563$$

Esta solución reemplazar en la siguiente formula:

$$F(u) = pku + (1-p) f_v \times z$$

<u>CASO 02 (de 2@3)</u>: z > 0 y u < 0

Condiciones iniciales z(0.5) = 0.1563

$$\dot{z} = 0.34 \dot{u} \left[1 - |z|^n \left(0.90 \times \text{sgn} \left(-1 \times +1 \right) + 0.10 \right) \right]$$

$$\dot{z} = 0.34 \dot{u} \left[1 - |z| (0.90 \times \text{sgn}(-1) + 0.10) \right]$$

$$\dot{z} = 0.34 \dot{u} \left[1 - z \left(0.90 \times (-1) + 0.10 \right) \right]$$

$$\dot{z} = 0.34 \,\dot{u} [1 + 0.80z]$$

Resolviendo la ecuación diferencial con las condiciones iniciales:

$$z(u) = 1.2275 \times e^{\frac{34u}{125}} - \frac{5}{4}$$

Calculamos el valor de u cuando z = 0

$$1.2275 \times e^{\frac{34u}{125}} - \frac{5}{4} = 0 \qquad u = 0.0668$$

Por lo tanto, el tramo de 2@3 va de 0.5@0.0668

CASO 03 (de 3@4): z < 0 y u < 0 donde u va hasta -0.5

Condiciones iniciales z(0.0668) = 0

$$\dot{z} = 0.34 \dot{u} \left[1 - |z| (0.90 \times \text{sgn} (-1 \times -1) + 0.10) \right]$$

$$z = 0.34 u [1 - (-z)(0.90 + 0.10)]$$

$$\dot{z} = 0.34 \dot{u} [1+z]$$

Resolviendo la ecuación diferencial con las condiciones iniciales:

$$z(u) = 0.9776 \times e^{\frac{17u}{50}} - 1$$

Calculamos el valor de z cuando u = -0.5

$$z(-0.5) = 0.9776 \times e^{\frac{17(-0.5)}{50}} - 1 = -0.1752$$

Condiciones iniciales z(-0.5) = -0.1752

$$\dot{z} = 0.34 \dot{u} \left[1 - |z| (0.90 \times \text{sgn} (-1 \times +1) + 0.10) \right]$$

$$\dot{z} = 0.34 \dot{u} \left[1 - (-z)(-0.90 + 0.10) \right]$$

$$\dot{z} = 0.34 \dot{u} [1 - 0.80z]$$

Resolviendo la ecuación diferencial con las condiciones iniciales:

$$z(u) = \frac{5}{4} - 1.2440 \times e^{\frac{-34u}{125}}$$

como en el punto 5, z(u) = 0 debemos calcular en valor de u en ese punto:

$$\frac{5}{4} - 1.2440 \times e^{\frac{-34u}{125}} = 0 \qquad u = -0.01768$$

Estos 4 casos completan un ciclo, estos ciclos se repiten n veces.

u	Z	F	
0.00	0.0000	0.0000	
0.05	0.0169	0.4358	
0.10	0.0334	0.8644	_
0.15	0.0497	1.2858	C A
0.20	0.0657	1.7003	
0.25	0.0815	2.1080	S O
0.30	0.0970	2.5088	U
0.35	0.1122	2.9031	
0.40	0.1272	3.2908	1
0.45	0.1419	3.6721	
0.50	0.1563	4.0471	
0.50	0.1563	4.047	
0.45	0.1373	3.557	
0.40	0.1186	3.073	
0.35	0.1001	2.596	C
0.30	0.0819	2.125	A
0.25	0.0639	1.660	S O
0.20	0.0461	1.202	U
0.15	0.0286	0.749	,
0.10	0.0113	0.303	2
0.075	0.0028	0.082	
0.0668	0.0000	0.010	
0.0668	0.0001	0.011	
-0.05	-0.0389	-0.996	
-0.10	-0.0551	-1.415	С
-0.15	-0.0710	-1.827	A
-0.20	-0.0867	-2.232	S
-0.25	-0.1021	-2.631	0
-0.30	-0.1172	-3.023	
-0.35	-0.1321	-3.409	3
-0.40	-0.1467	-3.788	3
-0.45	-0.1611	-4.161	
-0.50	-0.1752	-4.528	
-0.50	-0.1752	-4.527	
-0.45	-0.1560	-4.031	
-0.40	-0.1370	-3.541	С
-0.35	-0.1182	-3.057	A
-0.30	-0.0998	-2.580	S
-0.25	-0.0815	-2.109	0
-0.20	-0.0635	-1.645	J
-0.15	-0.0458	-1.186	4
-0.10	-0.0283	-0.734	+
-0.05	-0.0110	-0.288	
-0.01768	0.0000	-0.002	

CONCLUSIÓN:

El programa debe recibir como entrada los desplazamientos \boldsymbol{u} :

$$[+0.5 -0.5 +0.5n]$$

Y como salida debe arrojar los valores de la tabla.

Como ejemplo si ingresamos los siguientes desplazamientos:

Tendríamos unos valores de salida para graficar lo siguiente:

Solución analítica de la Ecuación Diferencial

$$\dot{z} = \frac{k}{f_{v}} \dot{u} \left[1 - |z|^{n} \left(\beta \times \operatorname{sgn} \left(\dot{u} z \right) + \gamma \right) \right]$$

$$\frac{dz}{dt} = \frac{du}{dt} \frac{k}{f_{v}} \left[1 - \left| z \right|^{n} \left(\beta \times \operatorname{sgn} \left(\dot{u} z \right) + \gamma \right) \right] \text{ simplificamos } dt$$

$$\frac{dz}{du} = \frac{k}{f_{y}} \left[1 - \left| z \right|^{n} \left(\beta \times \operatorname{sgn} \left(\dot{u} z \right) + \gamma \right) \right]$$

Ahora reemplazamos valores

$$\frac{dz}{du} = \frac{34}{100} \left[1 - z \left(0.9 + 1 \right) \right]$$

$$\frac{dz}{du} = \frac{17}{50} - \frac{17}{50}z$$
 es una ecuación LINEAL NO HOMOGÉNEA

$$\frac{dz}{du} + \frac{17}{50}z = \frac{17}{50}\tag{1}$$

Tiene la forma:

$$\frac{dy}{dx} + P(x)y = f(x)$$

$$P(x) = \frac{17}{50}$$

Con eso calculamos el factor integrante:

$$e^{\int P(x)dx}$$

$$e^{\int P(u)du} = e^{\int \frac{17}{50}du}$$
 integrando $e^{\frac{17}{50}u}$

Multiplicamos con el factor integrante la ecuación (1)

$$\frac{dz}{du} \left(e^{\frac{17}{50}u} \right) + \frac{17}{50} z \left(e^{\frac{17}{50}u} \right) = \frac{17}{50} \left(e^{\frac{17}{50}u} \right)$$

El cual siempre va tener esta forma:

$$\frac{d}{dx} \left[e^{\int P(x)dx} y \right] = e^{\int P(x)dx} f(x)$$

$$\frac{d}{du} \left(e^{\frac{17}{50}u} z \right) = \left(e^{\frac{17}{50}u} \right) \frac{17}{50}$$

Integrando ambas partes:

$$\int \frac{d}{du} \left(e^{\frac{17}{50}u} z \right) = \int \left(e^{\frac{17}{50}u} \right) \frac{17}{50}$$

$$ze^{\frac{17}{50}u} = \frac{17}{50} \times \frac{50}{17} \left(e^{\frac{17}{50}u}\right) + c$$

$$z = 1 + ce^{-\frac{17}{50}u}$$

Condiciones iniciales z(0) = 0

$$c = -1$$

$$z(u) = 1 - e^{-\frac{17}{50}u}$$
 rpta