Matematiske metoder (MM 529)

Stephan Brandt

Syddansk Universitet, Odense

26. 11. 2013

Complex numbers

Set of complex numbers $\mathbb{C}=\{a+i\cdot b\mid a,b\in\mathbb{R}\}$. i: imaginary unit. z=a+ib: $a=\operatorname{Re}(z)$ real part, $b=\operatorname{Im}(z)$ imaginary part. Conjugate complex number of z=a+ib: $\bar{z}=a-ib$, i.e. the complex number with $\operatorname{Re}(\bar{z})=\operatorname{Re}(z)$ and $\operatorname{Im}(\bar{z})=-\operatorname{Im}(z)$. Representation in the complex plane: Real axis for the real part, imaginary axis for the imaginary part.

Complex plane

Each complex number z is a point in the complex plane represented by a vector.

Uniquely described by pair (a, b), where a = Re(z) and b = Im(z), or

by pair (r, φ) of length r and direction (angle) φ of the vector.

Polar coordinates

Uniquely described by pair (r, φ) of length r and angle φ .

Length: $r=|z|=\sqrt{a^2+b^2}$ absolute value (or modulus) of z. Angle $\varphi=\arg(z)$ with the positive real axis (argument of z). Argument not unique, $\varphi+2k\pi$, $k\in\mathbb{Z}$ further arguments (usual agreement: any angle φ is an argument of z=0).

Polar coordinates

Uniquely described by pair (r, φ) of length r and angle φ . Polar coordinates:

Length: $r=|z|=\sqrt{a^2+b^2}$ absolute value (or modulus) of z. Angle $\varphi=\arg(z)$ with the positive real axis (argument of z). $z=r(\cos\varphi+i\sin\varphi)$, i.e. $\mathrm{Re}(z)=r\cos\varphi$ and $\mathrm{Im}(z)=r\sin\varphi$.

Representations of complex numbers

Algebraic representation by real part a and imaginary part b: z = a + ib.

Polar coordinates: absolute value r and angle φ :

$$z = r(\cos\varphi + i\sin\varphi).$$

Exponential representation: $z = re^{i\varphi}$.

(in fact, exponential function on the imaginary axis satisfies $e^{i\varphi} = \cos \varphi + i \sin \varphi$, $\varphi \in \mathbb{R}$. Periodic with period 2π .)

Changing representations:

Given (r, φ) then

$$a = r \cos \varphi, \ b = r \sin \varphi.$$

Given (a, b) then $r = \sqrt{a^2 + b^2}$, $\tan \varphi = \frac{\sin \varphi}{\cos \varphi} = \frac{b}{a}$ if $a \neq 0$.

Therefore

$$\varphi = \left\{ \begin{array}{ll} \arctan \frac{b}{a} & \text{if } a > 0, \\ \arctan \frac{b}{a} + \pi & \text{if } a < 0, \\ \frac{\pi}{2} & \text{if } a = 0, b > 0, \\ -\frac{\pi}{2} & \text{if } a = 0, b < 0, \end{array} \right.$$

is an argument of the form $-\frac{\pi}{2} \le \varphi < \frac{3\pi}{2}$.

Arithmetic operations, different representations

Arithmetic operations, algebraic representation:

Addition/Subtraction

$$(a + ib) \pm (c + id) = (a \pm c) + i(b \pm d).$$

Multiplication

$$(a+ib)\cdot(c+id)=(ac-bd)+i(ad+bc).$$

Division

$$\frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$$

if $c + id \neq 0$.

Powers? Example:

$$(a+ib)^3 = a^3 + 3a^2ib + 3a(ib)^2 + (ib)^3 = a^3 - 3ab^2 + i(3a^2b - b^3).$$

Arithmetic operations, different representations

Polar coordinates, exponential representation:

$$z = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}, \ w = s(\cos \theta + i \sin \theta) = se^{i\theta}.$$

Addition/Subtraction

Rewrite z and w in algebraic representation!

Multiplication

$$z \cdot w = rs(\cos(\varphi + \theta) + i\sin(\varphi + \theta))$$

= $rse^{i(\varphi + \theta)} = |z||w|e^{i(\arg(z) + \arg(w))}$.

Division

$$\frac{z}{w} = \frac{r}{s}(\cos(\varphi - \theta) + i\sin(\varphi - \theta))$$

$$= \frac{r}{s}e^{i(\varphi - \theta)} = \frac{|z|}{|w|}e^{i(\arg(z) - \arg(w))}, w \neq 0.$$

Arithmetic operations, different representations

Polar coordinates, exponential representation:

$$z = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}, \ w = s(\cos \theta + i \sin \theta) = se^{i\theta}.$$

Multiplication

$$z \cdot w = rs(\cos(\varphi + \theta) + i\sin(\varphi + \theta))$$
$$= rse^{i(\varphi + \theta)} = |z||w|e^{i(\arg(z) + \arg(w))}.$$

Multiply absolute values, add angles.

Division

$$\frac{z}{w} = \frac{r}{s}(\cos(\varphi - \theta) + i\sin(\varphi - \theta))$$
$$= \frac{r}{s}e^{i(\varphi - \theta)} = \frac{|z|}{|w|}e^{i(\arg(z) - \arg(w))}, w \neq 0.$$

Form quotient of absolute values, substract angles.

Powers and roots

Polar coordinates, exponential representation:

$$z = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}.$$

Powers of complex numbers

nth power of z.

$$z^n = r^n(\cos n\varphi + i\sin n\varphi) = r^n e^{in\varphi} = |z|^n e^{in\arg(z)}, n \in \mathbb{Z}.$$

Take nth power of absolute value, multiply angle by n. Example:

$$(1+i)^{10} = (\sqrt{2}e^{i\pi/4})^{10} = (\sqrt{2})^{10}e^{i\cdot 10\cdot \pi/4} = 2^5e^{i5\pi/2} = 32i.$$

Roots: Square roots of 4: ± 2 , all solutions of $x^2 = 4$, all zeroes of the polynomial $x^2 - 4$.

In \mathbb{R} : Polynomial of degree $n \geq 0$ has at most n zeroes.

Fundamental Theorem of Algebra

Every (real or complex) polynomial of degree $n \ge 0$ has exactly n zeroes in \mathbb{C} (counting multiplicities).

Polar coordinates, exponential representation:

$$z = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}.$$

Calculate all *n*th roots of z, $n \in N$.

If w is an nth root of z, then $w^n = z$, therefore

$$|w| = \sqrt[n]{|z|}$$
 and $n \arg(w) = \arg(z) = \varphi + 2k\pi$, $k \in \mathbb{Z}$.

Example: All 5th roots of $1=1+i\cdot 0=1$ $e^{i\cdot 0}\in \mathbb{C}.$

 $w^5 = 1$, therefore

$$|w| = 1$$
 and $5 \arg(w) = \arg(1) = 0 + 2k\pi, \ k \in \mathbb{Z},$

$$arg(w) = \frac{2k\pi}{5}$$
, $k \in \mathbb{Z}$ has the five different solutions for $0 \le k \le 4$: $arg(w) = 0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}$, since $\frac{10\pi}{5} = 2\pi = 0 + 2\pi$,

$$\arg(w) = 0, \frac{\pi}{5}, \frac{\pi}{5}, \frac{\pi}{5}, \frac{\pi}{5}, \sin ce = \frac{2\pi}{5} = 2\pi = 0 + 2\pi$$

 $\frac{12\pi}{5} = \frac{2\pi}{5} + 2\pi$.

 $\frac{2\pi}{5} = \frac{2\pi}{5} + 2\pi$.

Geometric interpretation: The 5th (nth) roots of one are the vertices of a regular 5-gon (n-gon) inscribed in the unit circle in the complex plane.

Polar coordinates, exponential representation:

$$z = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}.$$

Calculate all *n*th roots of z, $n \in N$.

If w is an nth root of z, then $w^n = z$, therefore

$$|w| = \sqrt[n]{|z|}$$
 and $n \arg(w) = \arg(z) = \varphi + 2k\pi$, $k \in \mathbb{Z}$.

Therefore $arg(w) = \frac{\varphi}{n} + 2\pi \frac{k}{n}$ with the *n* different solutions for $0 \le k \le n-1$:

$$\arg(w) = \frac{\varphi}{n}, \frac{\varphi}{n} + \frac{2\pi}{n}, \frac{\varphi}{n} + \frac{4\pi}{n}, \dots, \frac{\varphi}{n} + \frac{2(n-1)\pi}{n}.$$

Geometric interpretation: The *n*th roots of $z \neq 0$ are the vertices of a regular *n*-gon inscribed in the circle of radius $\sqrt[n]{|z|}$ around the origin of the complex plane.

Example: Third roots w of $z=1+i=\sqrt{2}e^{i\pi/4}$ satisfy $|w|=\sqrt[3]{\sqrt{2}}=\sqrt[6]{2}$ and $3\arg w=\frac{\pi}{4}$, with the three different solutions $\arg(w)=\frac{\pi}{12}+k\frac{2\pi}{3},\ k=0,1,2$. Therefore

$$w = \sqrt[6]{2}e^{i\pi/12}, \sqrt[6]{2}e^{i9\pi/12}, \sqrt[6]{2}e^{i17\pi/12}$$

are the three different third roots of z

Is
$$\sum_{n=k}^{\infty} a_i$$
 convergent, where all $a_n > 0$?

Two more criteria:

Root test

Suppose

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}(a_n)^{1/n}=c.$$

If c < 1 then the series is convergent and if c > 1 then the series diverges to infinity. If c = 1 both is possible.

Ratio test

Suppose

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=c.$$

If c < 1 then the series is convergent and if c > 1 then the series diverges to infinity. If c = 1 both is possible.

Root test

Suppose

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} (a_n)^{1/n} = c.$$

If c < 1 then the series is convergent and if c > 1 then the series diverges to infinity. If c = 1 both is possible.

Example:
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
 is convergent, since $\lim_{n\to\infty} (a_n)^{1/n} = \frac{1}{2} < 1$.

Ratio test

Suppose

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=c.$$

If c<1 then the series is convergent and if c>1 then the series diverges to infinity. If c=1 both is possible.

Root test

Suppose

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}(a_n)^{1/n}=c.$$

If c<1 then the series is convergent and if c>1 then the series diverges to infinity. If c=1 both is possible.

Ratio test

Suppose

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=c.$$

If c<1 then the series is convergent and if c>1 then the series diverges to infinity. If c=1 both is possible.

Which one to choose? Depends mainly on the structure of the summands (even though the ratio test is a tiny little bit stronger).

Ratio test

Suppose

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=c.$$

If c < 1 then the series is convergent and if c > 1 then the series diverges to infinity. If c = 1 both is possible.

Examples:
$$\sum_{n=1}^{\infty} \frac{1}{n} \text{ satisfies } c = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n}{n+1} = 1,$$

$$\sum_{n=1}^{\infty}\frac{1}{n^2} \text{ satisfies } c=\lim_{n\to\infty}\frac{n^2}{(n+1)^2}=\lim_{n\to\infty}\left(1-\frac{2n+1}{(n+1)^2}\right)=1.$$

The first series diverges while the second converges.

Absolute and conditional convergence

Absolute and conditional convergence

$$\sum_{n=k}^{\infty} a_n \text{ is called absolutely convergent if } \sum_{n=1}^{\infty} |a_n| \text{ is convergent.}$$

If $\sum_{n=k}^{\infty} a_n$ is convergent but $\sum_{n=1}^{\infty} |a_n|$ is divergent then the first series is called conditionally convergent.

Examples:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 is conditionally convergent,

while
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 is absolutely convergent.

Theorem

Every absolutely convergent series is convergent.

Absolute and conditional convergence, reordering summands

Absolute and conditional convergence

$$\sum_{n=k}^{\infty} a_n \text{ is called absolutely convergent if } \sum_{n=1}^{\infty} |a_n| \text{ is convergent.}$$

If $\sum a_n$ is convergent but $\sum |a_n|$ is divergent then the first series is called conditionally convergent.

Reordering summands:

Reordering summands:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 is (conditionally) convergent, but first summing the even index summands and then the odd index summands gives

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots - \left(1 + \frac{1}{3} + \frac{1}{5} + \dots\right) = \sum_{n=1}^{\infty} \frac{1}{2n} - \sum_{n=1}^{\infty} \frac{1}{2n-1}$$
$$= \infty - \infty = ?$$

Absolute and conditional convergence, reordering summands

Absolute and conditional convergence

 $\sum_{n=k}^{\infty} a_n \text{ is called absolutely convergent if } \sum_{n=1}^{\infty} |a_n| \text{ is convergent.}$

If $\sum_{n=k}^{\infty} a_n$ is convergent but $\sum_{n=1}^{\infty} |a_n|$ is divergent then the first series is called conditionally convergent.

Reordering Theorem

If $\sum_{n=1}^{\infty}a_n=s\in\mathbb{R}$ is absolutely convergent, then for any reordering (including the signs) of the summands the sum converges to s.

Alternating series

Alternating series

A sequence (a_n) is called alternating if $a_n \cdot a_{n+1} < 0$ for all $n \ge k$.

The infinite sum $\sum_{n=k} a_n$ over an alterating sequence is an alternating series.

l.e., consecutive summands have different signs (where θ counts for both signs).

Example:
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$$
 is an alternating series.

Convergence of alternating series under much weaker circumstances than in the general case:

Alternating series test

If $(|a_n|)$ is monotonously decreasing (i.e. $|a_{n+1}| \le |a_n|$) and $\lim_{n \to \infty} a_n = 0$ then $\sum_{n=1}^{\infty} a_n$ is convergent.

Definition: Ordinary differential equation (ODE)

An ordinary differential equation is an equation of the form

$$y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)}),$$

where y = y(x) is a function of the variable x.

The highest derivative n occurring in the equation is the order of the ODE.

Counterpart: partial differential equation (PDE) with more than one variable x.

The general solution: all functions y(x) that satisfy the equality. Examples:

$$y'' = \frac{y^2}{x}$$
; $y' = y - x$; $y''' = 2y'' - y' + y + e^x$.

First order differential equations

First order differential equation

$$y'(x) = f(x, y) = f(x, y(x)).$$

The derivative of y at x depends on x and on the function value y(x).

Example: y' = y - x.

Initial value problem

Solve y'(x) = f(x, y) subject to $y(x_0) = a$.

Example: Solve y' = y - x subject to y(0) = 1.

Solution: y(x) = x + 1, because y(0) = 0 + 1 = 1 and

$$1 = v'(x) = x + 1 - x = 1.$$

General initial value problem

Solve $y^{(n)}(x) = f(x, y, y', y'', \dots, y^{(n-1)})$ subject to $y(x_0) = a_0, y'(x_0) = a_1, \dots, y^{(n-1)}(x_0) = a_{n-1}.$

Geometric interpretation of first order ODE

$$y'(x) = f(x, y).$$

For every point (x, y) of the plane, f(x, y) is the derivative of the function y(x) at x.

Slope field

To every point (x, y) of the plane we assign the slope f(x, y).

Solutions of the ODE: any function whose graph follows the slopes of the slope field.

Example: slope field

Slope field of y' = f(x, y) = y - x: Solution y = x + 1 visible.

