Matrices de covarianzas

Contents

Sean m+1 variables, con n observaciones cada una:

se define la covarianza entre las variables x_j e y como:

$$cov(x_j, y) = S_{jy} = \frac{\sum_{i=1}^{n} (x_{ji} - \bar{x}_j)(y_i - \bar{y})}{n-1}, \quad j \in [1, m], \quad i \in [1, n]$$

y la covarianza entre las variables x_j e x_k como:

$$cov(x_j, x_k) = S_{jk} = \frac{\sum_{i=1}^{n} (x_{ji} - \bar{x}_j)(x_{ki} - \bar{x}_k)}{n-1}, \quad j, k \in [1, m], \quad i \in [1, n]$$

Se define la matriz de covarianzas para x_j y x_k como:

$$S_{xx} = \begin{bmatrix} S_{11} & S_{12} & \cdots & S_{1m} \\ S_{21} & S_{22} & \cdots & S_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ S_{m1} & S_{m2} & \cdots & S_{mm} \end{bmatrix}$$

Se define la matriz de covarianzas entre x_j e y como:

$$S_{xy} = \begin{bmatrix} S_{1y} \\ S_{2y} \\ \dots \\ S_{my} \end{bmatrix}$$