

CALCULUS II 2013 Fall Midterm Exam Dept. or School Student ID

Dept. or School

Student ID

Year

proctor

Name

※ Your answer must be provided with descriptions how to get the answer.

1.(5 point) Let $\{\overrightarrow{v_n}\}_{n=1}^{\infty}$ be a sequence of vectors generated by the recurrence relation: $\overrightarrow{v_n}$ be the vector projection of $\overrightarrow{v_{n-1}}$ onto $\overrightarrow{v_{n-2}}$ for $n \geq 3$, where two initial $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ are vectors with $|\overrightarrow{v_1}| = 2$, $|\overrightarrow{v_2}| = 3$, and $|\overrightarrow{v_1}| \cdot |\overrightarrow{v_2}| = 5$.

Compute $\sum_{n=1}^{\infty} \left| \overrightarrow{v_n} \right|$.

2.(5 point) Suppose a surface is generated by rotating the parabola $z=4y^2,\,x=0$ about the z-axis.

Write an equation of the surface in spherical coordinates.

3.(6 point) Let L be the line of intersection of the planes $x+y+z=c$ and $cx+cy+z=c$, where c is a real number, not equal to 1. (1)(3 point) Find parametric equations for L .	
(2)(3 point) Find the point on the line L that is closest to the point $(1,2,3)$.	

2013 Fall Midterm Exam Student ID Name	CALCULUS II 2013 Fall Midterm Exam	Pept. or School Year pro	or
		Name Name	

5.(6 point) Let a function f be defined on \mathbb{R}^2 by

$$f(x,y) = \begin{cases} \frac{xy^2}{\sqrt{x^4 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

(1)(3 point) Investigate the continuity of f at (0, 0).

(2)(3 point) Do the partial derivative $D_y f(0,0) = \frac{\partial}{\partial y} f(0,0)$ exist? If it exists, find it by **the definition of partial derivative**.

If x changes from 0.6 to 0.61 and y changes from 0 to 0.01, find the value of dz.

CALCULUS II	Dept. or School	Year	proctor	
2013 Fall Midterm Exam	Student ID	Name		
7.(6 point) If $z=f(x+\sqrt{2}t)+g(x-\sqrt{2}t)$, find the value of t satisfying the equation $\frac{\partial^2 z}{\partial t^2}=k\frac{\partial^2 z}{\partial x^2}$	'c			