BGS SV3 Selection

Changhoon Hahn (Princeton)

on behalf of BGS working group

star-galaxy separation

not in Gaia in Gaia but G - rr > 0.6

star-galaxy separation

not in Gaia in Gaia but G - rr > 0.6

spatial masks

around BS and GC

star-galaxy separation

not in Gaia in Gaia but G - rr > 0.6

spatial masks

around BS and GC

fiber-mag cut

$$r_{\text{fiber}} < 22.9 + (r - 17.8) \text{ for } r < 17.8$$

 $r_{\text{fiber}} < 22.9 \text{ for } 17.8 < r < 20$

star-galaxy separation

not in Gaia in Gaia but G - rr > 0.6

spatial masks

around BS and GC

fiber-mag cut

 $r_{\text{fiber}} < 22.9 + (r - 17.8) \text{ for } r < 17.8$ $r_{\text{fiber}} < 22.9 \text{ for } 17.8 < r < 20$

quality cuts

nobs_i > 0 for
$$i = g, r, z$$

-1 < $g - r$ < 4, -1 < $r - z$ < 4

BGS SV3 target selection what you might've missed — r discrepancy between DECaLS and BASS/MzLS

 $\Delta r_{\rm offset} = 0.04$ to BASS/MzLS r and $r_{\rm fiber}$ to match DECaLS target densities

BGS SV3 target selection *what you might've missed* — Bright limit cut (r > 12) & (r fibertot < 15)

removes 1.4 deg^{-2} ; rfibertot removes stars and saturated point sources

BGS SV3 target selection *what you might've missed* — WISE-AGN selection

```
agnw2 = (z - w2 - (g - r) > -0.5) \& \
        (w2snr > 10) &\
        ((maskbits \& 2**(9)) == 0) \& \
        (w2flux > 0)
quality = (rflux > 0) & (gflux > 0) & (zflux > 0) &
          (gfluxivar > 0) & (rfluxivar > 0) & (zfluxivar > 0) &
          (gnobs >= 1) & (rnobs >= 1) & (znobs >= 1) &
                                                                                        \sim 3 \text{ deg}^{-2} AGN in BGS
          (imaging_mask(maskbits, bgsmask=True)) &
          ((gaiagmag == 0) | ((gaiagmag != 0) & (gaiagmag > 16))) &
          (r < 20.3) & (r > 16) &
          (rfib < 22) & (rfibtot > 15) &
          (((rfib < 21.5) \& (r > 19.5)) | (r < 19.5)) \&
          (((\_psflike(objtype)) \& (r < 17.5)) | (\sim\_psflike(objtype)))
stars = ((gaiagmag != 0) & (Grr < 0.6)) | ((gaiagmag == 0) & (_psflike(objtype)))
additional = ((w1 - w2) > -0.2) &
             (z - w1 - (q - r) > -0.7) \& 
             (w1snr > 10)
AGN = (agn_ext) & (quality) & \sim ((stars) & (\sim agn_ext)) & (Grr < 0.6) & (gaiagmag != 0)
```


BGS BRIGHT: (r < 19.5) & (all other cuts)

BGS FAINT: (19.5 < r < 20.3) & (r_{fiber} – color cut) & (all other cuts)

BGS BRIGHT: (r < 19.5) & (all other cuts)

 $860 \, \deg^{-2}$

BGS FAINT: (19.5 < r < 20.3) & ($r_{\rm fiber}$ – color cut) & (all other cuts) $630~{\rm deg^{-2}}$

BGS SV3 target selection *what you might've missed* — target density will be matched to $1,400 \text{ deg}^{-2}$ for the main survey

BGS BRIGHT:
$$(r < 19.5)$$
 & (all other cuts)
$$860 \ \mathrm{deg^{-2}}$$

$$20.175$$
 BGS FAINT: $(19.5 < r < \frac{20.3}{20.3})$ & $(r_{\mathrm{fiber}} - \mathrm{color} \ \mathrm{cut})$ & (all other cuts)
$$\frac{630}{540} \mathrm{deg^{-2}}$$

BGS SV3 *z* **success** estimated from redrock outputs of SV3 exposures with 160 < BGS_EFFTIME_BRIGHT < 180

ZWARN = 0

DELTACHI2 > 40

SPECTYPE != 'STAR'

0.0 < Z < 0.6

ZERR < 0.0005 (1 + Z)

BGS SV3 z **success** estimated from redrock outputs of SV3 exposures with 160 < BGS_EFFTIME_BRIGHT < 180

> 95% for both BGS BRIGHT and BGS FAINT

BGS SV3 z **success** estimated from redrock outputs of SV3 exposures with 160 < BGS_EFFTIME_BRIGHT < 180

> 95 % for both BGS BRIGHT and BGS FAINT

BGS SV3 z **success** estimated from redrock outputs of SV3 exposures with 160 < BGS_EFFTIME_BRIGHT < 180

> 95% for both BGS BRIGHT and BGS FAINT

BGS SV3 z **success** estimated from redrock outputs of SV3 exposures with 160 < BGS_EFFTIME_BRIGHT < 180

also low stellar contamination

BGS SV3 d*N*/d*z* estimated from successful SV3 redshifts

BGS SV3 dN/dz/N estimated from successful SV3 redshifts compared to BGS MXXL mocks

BGS SV3 $\overline{n}(z)$ estimated from successful SV3 redshifts compared to FDR

BGS BRIGHT is in good agreement with FDR $\overline{n}(z)$

	targets (\deg^{-2})	exposures (\deg^{-2})	good z 's (\deg^{-2})	baseline sample
BGS BRIGHT				
BGS FAINT				

	targets (\deg^{-2})	exposures (\deg^{-2})	good z 's (\deg^{-2})	baseline sample
BGS BRIGHT	860			
BGS FAINT	540			

BGS BRIGHT: (r < 19.5) & (all other cuts)

 $860 \, \deg^{-2}$

20.175

BGS FAINT: (19.5 < $r < \frac{20.3}{}$) & (r_{fiber} – color cut) & (all other cuts)

 $630 - \text{deg}^{-2}$

540

	targets (\deg^{-2})	exposures (\deg^{-2})	good z 's (\deg^{-2})	baseline sample
BGS BRIGHT	860			
BGS FAINT	540			

fiber efficiencies estimated from SV3 and fiberassign runs

credit: David Sierra-Porta, Mike Wilson, Jaime Forero

	targets (\deg^{-2})	exposures (\deg^{-2})	good z 's (\deg^{-2})	baseline sample
BGS BRIGHT	860	688		
BGS FAINT	540	324		

fiber efficiencies estimated from SV3 and fiberassign runs

credit: David Sierra-Porta, Mike Wilson, Jaime Forero

	targets (\deg^{-2})	exposures (\deg^{-2})	good z 's (\deg^{-2})	baseline sample
BGS BRIGHT	860	688	678	
BGS FAINT	540	324	317	

	targets (\deg^{-2})	exposures (\deg^{-2})	good z 's (\deg^{-2})	baseline sample
BGS BRIGHT	860	688	678	9.5M
BGS FAINT	540	324	317	4.4M

