Visualization of Iris dataset

Summary of distributions

Some metrics

 $TP={
m true}$ positive, $TN={
m true}$ negative, $FP={
m false}$ positive, $FN={
m false}$ negative

Accuracy. The number of samples correctly classified out of all the samples present in the (test) set.

$$Accuracy = \frac{TP + TN}{(TP + TN + FP + FN)}$$

Precision (for the positive class). The number of samples actually belonging to the positive class out of all the samples that were predicted to be of the positive class by the model.

$$Precision = \frac{TP}{(TP + FP)}$$

Recall (for the positive class). The number of samples predicted correctly to be belonging to the positive class out of all the samples that actually belong to the positive class.

$$Recall = \frac{TP}{(TP + FN)}$$

F1-Score (for the positive class). The harmonic mean of the precision and recall scores obtained for the positive class.

$$F1 - score = \frac{2 * Precision * Recall}{(Precision + Recall)}$$

Naïve Bayes: confusion matrix

Naïve Bayes: code chunk and metrics

```
1 library(klaR)
2
3 # 1. Build a Naive Bayes Classifier
4 set.seed(2023)
5 nb_model <- NaiveBayes(Species ~ ., data=training) # train Na ve Bayes model
6 pred_nb <- predict(nb_model, testing) # apply Na ve Bayes model on test set
7 pred_nb_training <- predict(nb_model, training) # apply Na ve Bayes model on train set</pre>
```

	Training	Testing
accuracy	94.90	98.08
precision	94.91	97.92
recall	94.99	98.25
f1-score	94.95	98.08

Random Forest: confusion matrix

Random Forest: code chunk and metrics

	Training	Testing
accuracy	100.00	96.15
precision	100.00	96.02
recall	100.00	96.02
f1-score	100.00	96.02

Logistic Regression: confusion matrix

Confusion Matrix - Multinomial Logistic Regression Classifier

Logistic Regression: code chunk and metrics

```
1 library(stats4)
2 library(splines)
3 library(VGAM)
4
5 # 1. Build a Multinomial Logistic Regression Classifier
6 set.seed(2023)
7 mlr_model <- vglm(Species ~ ., family=multinomial, training)
8 pred_mlr_training<- predict(mlr_model, training, type = "response")
9 pred_mlr_testing<- predict(mlr_model, testing, type = "response")
10 predictions <- apply(pred_mlr_testing, 1, which.max)
11 predictions_training <- apply(pred_mlr_training, 1, which.max)</pre>
```

	Training	Testing
accuracy	100.00	98.08
precision	100.00	98.33
recall	100.00	97.78
f1-score	100.00	98.05

Support Vector Machines: confusion matrix

Confusion Matrix - Support Vector Machines Classifier

Support Vector Machines: code chunk and metrics

	Training	Testing
accuracy	96.94	96.15
precision	97.04	96.02
recall	96.90	96.02
f1-score	96.97	96.02

Neural Network: confusion matrix

Confusion Matrix - Neural Networks Classifier

Neural Networks: code chunk and metrics

```
1 library(neuralnet)
3 # 1. Build a Neural Network Classifier
4 set. seed (2023)
5 iris$setosa <- iris$Species=="setosa"
6 iris$virginica <- iris$Species == "virginica"
7 iris$versicolor <- iris$Species == "versicolor"
9 # spliting into test and training again because we added variables
10 ind <- sample(2, nrow(iris),replace=TRUE,prob=c(0.7,0.3))
11 training <- iris[ind==1,]; testing <- iris[ind==2,]
12
13 nn model <- neuralnet(setosa+versicolor+virginica ~
14
                           Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
15
                         data=training, hidden=c(10,10), rep = 5, err.fct = "ce",
                         linear.output = F. lifesign = "minimal".
16
17
                         stepmax = 1000000, threshold = 0.001)
```

	Training	Testing
accuracy	100.00	98.08
precision	100.00	98.33
recall	100.00	97.78
f1-score	100.00	98.05

Decision Tree: confusion matrix

Confusion Matrix - Decision Tree Classifier

Decision Tree: code chunk and metrics

Training	Testing
100.00	100.00
100.00	100.00
100.00	100.00
100.00	100.00
	100.00 100.00 100.00

XGBoost: confusion matrix

Confusion Matrix - XGBoost Classifier

XGBoost: code chunk and metrics

```
1 library(xgboost)
3 # 0. splitting the dataset into training and test sets
4 set.seed(2023)
5 ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7,0.3))
6 training <- iris[ind==1,]
7 testing <- iris[ind==2.]
8
9 xgb_training = xgb.DMatrix(data = as.matrix(training[,-5]), label = training
       [.51)
10 xgb_testing = xgb.DMatrix(data = as.matrix(testing[,-5]), label = testing[,5])
11
12 # 1. Build a XGBoost Classifier
13 set.seed(2023)
14 xgb_model <- xgboost(data=xgb_training, max.depth=3, nrounds=50)
15
16 pred xgb testing <- predict(xgb model, xgb testing)
17 pred_y_xgb_testing = as.factor((levels(testing[,5]))[round(pred_xgb_testing)])
```

	Training	Testing
accuracy	100.00	100.00
precision	100.00	100.00
recall	100.00	100.00
f1-score	100.00	100.00

References

The R Project for Statistical Computing:

https://www.r-project.org/

https://www.v7labs.com/blog/confusion-matrix-guide