Eficiencia Cuántica del Algoritmo de Shor

Descripción del Problema:

ullet Factorizar un número N en sus factores primos.

Complejidad Clásica:

- Algoritmo más eficiente: GNFS
- Complejidad: $O(\exp((\log N)^{1/3}(\log\log N)^{2/3}))$

Principios Cuánticos Utilizados:

- Superposición: Representa múltiples estados simultáneamente.
- Entrelazamiento: Correla qubits para operaciones paralelas.
- Interferencia Cuántica: Amplifica soluciones correctas.

Algoritmo de Shor:

1. Reducción Clásica a Problema de Período:

- Elige a tal que 1 < a < N.
- Encuentra el período r de $a^x \mod N$.
- Si r es par y $a^{r/2} \not\equiv -1 \mod N$, entonces $\gcd(a^{r/2} \pm 1, N)$ da factores de N.

2. Búsqueda Cuántica del Período:

 \bullet Usa la Transformada de Fourier Cuántica (QFT) para encontrar r en tiempo polinomial.

Complejidad Cuántica:

- **QFT:** Complejidad $O((\log N)^2)$.
- Total: $O((\log N)^2(\log \log N)(\log \log \log N))$.

Demostración de Complejidad:

- ullet Operador unitario U (multiplicación modular) en tiempo polinomial.
- QFT sobre n qubits $(n = \log N)$ en $O(n^2)$.
- Algoritmo de Shor en $O((\log N)^2(\log \log N)(\log \log \log N))$.

Conclusión:

• El algoritmo de Shor resuelve la factorización en tiempo polinomial usando cómputo cuántico, mostrando una ventaja significativa sobre los algoritmos clásicos.