

AUTOMATED TRACKING SYSTEM OF GOODS FOR THE WHOLESALE AND RETAIL SEGMENTS IN THE FOOD INDUSTRY

MSc Research Proposal

UNIVERSITY OF CAMPINAS | INSTITUTE OF COMPUTING

Discipline: MO911 - Introduction to Methodologies for Development of Research Project

Professor: Ariadne Maria Brito Rizzoni Carvalho

Student: Marcelo Oliveira Fernandes | RA 160109

January 15th, 2021

AGENDA

- Introduction
- Literature Review
- System Overview
- Research Proposal
- Timeline
- References

INTRODUCTION

INTRODUCTION

- Scope of the research is focused on wholesale and retail segments:
- There are many systems available in the industry. Some of these key system features are:
 - Store floor automation
 - Allocation of employees
 - Flow of information
 - Reduction of levels of exposure rupture

- Correct pricing of items
- Receiving goods
- Inventory control
- Replacement of products

- Main goals:
 - Maximize sales
 - Improve shopping experience to the end customers
 - Minimize losses

INTRODUCTION (cont.)

- Known issues:
 - Semi-automated processes
 - Bottleneck
 - Security
- Research goal
 - Deploys passive sensors network
 - Automatically monitor merchandises
 - Extend available tasks
 - Enhance productivity
 - Enhance security
 - Minimize losses

LITERATURE REVIEW

LITERATURE REVIEW

- Business case: Amazon Go[I]
 - Grocery store does not have a checkout point
 - Clients collect their required merchandise and leave the store
 - Charges are directly addressed to their Amazon account
- Architecture of these systems is complex
 - Sensors connected to wireless/ wireline networks
 - Provide indoor location of the products and information about their availability
 - Data is sent out to a core location
 - Automated tasks are generated

LITERATURE REVIEW (cont.)

- Indoor localization of the goods is key for the whole process[5]
- Diversity of indoor active and passive sensors
 - Camera
 - RFID tags [6]
 - Printed sensors [7]
- Wireless networks
 - Wireless Local Area Network (WLAN)
 - Geomagnetic-Based Positioning System
 - Ultra-Wideband (UWB)
 - Wifi [8]

- ZigBee [9]
- Wireless Sensor Network (WSN) [10]
- Radio Frequency Identification (RFID)

SYSTEM OVERVIEW

SYSTEM OVERVIEW

- Proposed design is based on the following IoT architecture layers
 - Sensors
 - Network
 - Support and Data
 - Application
 - Management and Security
- These modules are assembled as shown next

SYSTEM OVERVIEW – SENSOR LAYER

- Responsible for the interface between the merchandises and the wireless segment of the network layer
- Standard supermarket has an average of 50,000 products or SKU's [12]
- One-on-one match with the number of sensors physically attached to these products
- Merchandises are resting on the shelves or in movement inside the carts
- Geographic position are tracked
- Passive sensors (tags) should be inexpensive

SYSTEM OVERVIEW – SENSOR LAYER (cont.)

- Passive sensors must have low-power consumption
- Passive sensors must be reachable by the wireless network
- The tag has a unique

SYSTEM OVERVIEW – NETWORK LAYER

- Main challenges to overcome in this layer
 - Deal with a large concentration of sensors
 - Products position
 - Products can also be stored on upper shelves
 - Products can be inside of carts
 - Positioning algorithms are key for location tracking

SYSTEM OVERVIEW – NETWORK LAYER (cont.)

- Wireless network must be designed to provide a strong and reliable connection
 - Line of sight condition
 - Propagation phenomena affect the signal strength
 - Shadow areas
- Latency
 - Massive data processing
 - Middleware devices

SYSTEM OVERVIEW – SUPPORT AND DATA LAYER

- Generic support capabilities
 - Data processing or
 - Data storage
- Specific support capabilities
 - Requirements of diversified applications
 - Various detailed capability groupings

SYSTEM OVERVIEW – APPLICATION LAYER

- Contains IoT applications
 - Protocol definition
 - Program definition

SYSTEM OVERVIEW – MANAGEMENT CAPABILITIES LAYER

- IoT management capabilities
 - Traditional fault
 - Configuration
 - Accounting
 - Performance and security (FCAPS) classes
- Generic management capabilities
 - Device management
 - Local network topology management
 - Traffic and congestion management
- Specific management capabilities
 - Application-specific requirements

SYSTEM OVERVIEW – SECURITY CAPABILITIES LAYER

- Generic security capabilities are independent of applications
 - Application layer
 - Network layer
 - Device layer
- Specific security capabilities are closely coupled with application-specific requirements

RESEARCH PROPOSAL

RESEARCH PROPOSAL – PROOF OF CONCEPT

- Build up environments to validate the architecture technical performance
 - Small Environment <= 100 SKUs</p>
 - 100 < Medium Environment <= 30.000 SKUs
 - Large Environment > 30.000 SKUs
- Main features validation
 - Tag localization and navigation
 - Tag information storage and update
 - Tag insertion/ deletion
- This project requires stakeholder sponsorship

RESEARCH PROPOSAL – ANALYSIS OF THE RESULTS

- Documentation
- Results
- Publication

RESEARCH PROPOSAL – CONCLUSION AND FURTHER RESEARCH

- Architecture technical performance
- Cost of the entire network vs. standard labor operation
- Cost-benefit analysis and user experience
- Further research
 - Integration with legacy systems
 - Attached passive sensors

TIMELINE

TIMELINE

	2021										2022													
ROADMAP	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03	04	05	06	07	80	09	10	11	12
Architecture Survey																								
Wireless Standards																								
Passive Sensor																								
Selection of Models																								
Unitary Testing																								
Mediation Device																								
Selection of Models																								
Unitary Testing																								
Architecture Integration Deployment																								
Server to Mediation Device																								
Mediation Device to Passive Sensor																								
Field Test - Functional Testing for:																								
Small Environment <= 100 SKUs																								
100 < Medium Environment <= 30.000 SKUs																								
Large Environment > 30.000 SKUs																								
Documentation and Publication																								

REFERENCES

REFERENCES

- [1] K.Wankhede, B.Wukkadada and V. Nadar, "Just Walk-Out Technology and its Challenges: A Case of Amazon Go," 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, 2018, pp. 254-257, doi: 10.1109/ICIRCA.2018.8597403.
- [2] Ives B, Cossick K, Adams D., "Amazon Go: Disrupting retail? Journal of Information Technology Teaching Cases." 2019; 9(1):2-12. doi:10.1177/2043886918819092
- Chen, Rong, Li Peng, and Yi Qin. "Supermarket shopping guide system based on Internet of things." (2010): 17-20.
- [4] Hussien, Naseer, et al. "Smart Shopping System with RFID Technology Based on Internet of Things." (2020): 17-29.
- [5] W. Li, Z. Chen, X. Gao, W. Liu and J. Wang, "Multimodel Framework for Indoor Localization Under Mobile Edge Computing Environment," in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4844-4853, June 2019, doi: 10.1109/JIOT.2018.2872133.
- [6] S. Sundaresan, R. Doss, S. Piramuthu and W. Zhou, "Secure Tag Search in RFID Systems Using Mobile Readers," in IEEE Transactions on Dependable and Secure Computing, vol. 12, no. 2, pp. 230-242, March-April 2015, doi: 10.1109/TDSC.2014.2302305.
- [7] GligoricN, KrcoS, HakolaL, VehmasK, DeS, MoessnerK, JanssonK, Polenzl, van Kranenburg R. "SmartTags: IoT Product Passport for Circular Economy Based on Printed Sensors and Unique Item-Level Identifiers." Sensors. 2019; 19(3):586.

REFERENCES (cont.)

- [8] X. Du, K. Yang and D. Zhou, "MapSense: Mitigating Inconsistent WiFi Signals Using Signal Patterns and Pathway Map for Indoor Positioning," in IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4652-4662, Dec. 2018, doi: 10.1109/JIOT.2018.2797061.
- [9] Baronti, P., Pillai, P., Chook, V.W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). "Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards". Computer communications, 30(7), 1655-1695.
- [10] Milyeykovski, V., Segal, M., & Shpungin, H. (2013, May). "Location, location: Using central nodes for efficient data collection in wsns". In 2013 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt) (pp. 333-340). IEEE.
- [11] ITU-T (2012). Recommendation ITU-TY.2060. Overview of the Internet of Things. ITU-T Study Group 13
- [12] Bala, P.K. (2012), "Improving inventory performance with clustering based demand forecasts", Journal of Modelling in Management, Vol. 7 No. 1, pp. 23-37.
- [13] ISO/IEC 18000-63:2015, "Information technology Radio frequency identification for item management Part 63: Parameters for air interface communications at 860 MHz to 960 MHz Type C". https://www.iso.org/standard/63675.html
- [14] S. Li et al., "A −20 dBm Passive UHF RFID Tag IC With MTP NVM in 0.13-μm Standard CMOS Process," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4566-4579, Dec. 2020, doi: 10.1109/TCSI.2020.3007952.
- [15] M. D.Yacoub, "The κ-μ Distribution and the η-μ Distribution," in IEEE Antennas and Propagation Magazine, vol. 49, no. 1, pp. 68-81, Feb. 2007, doi: 10.1109/MAP.2007.370983.

Q&A

Thank you!

m160109@dac.unicamp.br

