13.LIMITS AND DERIVATIVES SYNOPSIS

Limit of a function at a point is the common value of the left and right hand limits, if they coincide.

For functions f and g the following holds:

1.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2. $\lim_{x \to a} [f(x).g(x)] = \lim_{x \to a} f(x).\lim_{x \to a} g(x)$

2.
$$\lim_{x \to a} [f(x).g(x)] = \lim_{x \to a} f(x).\lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Following are some of the standard limits:

1.
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

$$2. \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

3.
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

4.
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

5.
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$$

6.
$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$$

The derivative of a function f at any point x is defined by $f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

1

For the functions u and v following holds:

1.
$$\left(u \pm v\right)' = u' \pm v'$$

2.
$$(uv)' = u'v + v'u$$
 (product rule)

3.
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$
 (Quotient rule)

Some standard derivatives:

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

LIMITS AND DERIVATIVES

SECTION A (1 MARK)

MCQ:

1. $\lim_{x\to 0} \frac{\sin x}{x (1+\cos x)}$ is equal to

(b)
$$\frac{1}{2}$$

$$(d) -1$$

2. $\lim_{x \to \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$ is equal to

$$(b) -1$$

3. $\lim_{x \to 0} \frac{|x|}{x}$ (a) 1

4. $\lim_{n\to\infty} \frac{1+2+3+\dots+n}{n^2}$, $n\in \mathbb{N}$ is equal to

(c)
$$\frac{1}{2}$$

(d)
$$\frac{1}{4}$$

5. If $f(x) = x \sin x$, then $f'(\frac{\pi}{2})$ is equal to

(d)
$$\frac{1}{2}$$

6. $\lim_{x \to \pi} \frac{\sin x}{x - \pi}$ is (a) 1

7. $\lim_{x \to 0} \frac{x^2 \cos x}{1 - \cos x}$ is

(b)
$$\frac{3}{2}$$

(c)
$$-\frac{3}{2}$$

8. $\lim_{x\to 0} \frac{(1+x)^n - 1}{x}$ is (a) n

$$(c)-n$$

9. $\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}$ is

(b)
$$\frac{m}{n}$$

$$(c)-\frac{m}{n}$$

(d)
$$\frac{m^2}{n^2}$$

10. $\lim_{x \to 0} \frac{1 - \cos 4\theta}{1 - \cos 6\theta}$ is
(a) $\frac{4}{9}$

(a)
$$\frac{4}{9}$$

(b)
$$\frac{1}{2}$$

$$(c) - \frac{1}{2}$$

$$(d) -1$$

11. $\lim_{x \to 0} \frac{\cos \cot x - \cot x}{x}$ is (a) $-\frac{1}{2}$

(a)
$$-\frac{1}{2}$$

(c)
$$\frac{1}{2}$$

12. $\lim_{x\to 0} \frac{\sin x}{\sqrt{x+1}-\sqrt{1-x}}$ is (a) 2

(a)
$$\overset{\circ}{2}$$

$$(d) -1$$

13.
$$\lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x - 2}{\tan x - 1}$$
 is

(a) 3

(b) 1

(c) 0

(d) $\sqrt{2}$

14.
$$\lim_{x \to 1} \frac{(\sqrt{x}-1)(2x-3)}{2x^2+x-3}$$
 is (a) $\frac{1}{10}$

(b) $-\frac{1}{10}$

(c) 1

(d) None of these

Fill in the blanks:

15. If
$$f(x) = \frac{\tan x}{x - \pi}$$
, then $\lim_{x \to \pi} f(x) = \underline{\hspace{1cm}}$

16.
$$\lim_{x \to 0} \left(\sin mx \cot \frac{x}{\sqrt{3}} \right) = 2$$
, then $m =$

17.
$$\lim_{x \to 3^+} \frac{x}{[x]} =$$

18. If
$$y = \sqrt{x} + \frac{1}{\sqrt{x}}$$
, then $\frac{dy}{dx}$ at $x = 1$ is _____

19. If
$$f(x) = \frac{x-4}{2\sqrt{x}}$$
, then $f'(1)$ is _____

VSA:

20. Evaluate:
$$\lim_{x \to -1} \frac{x^3 + 1}{x^2 - 1}$$
21. Evaluate:
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$

21. Evaluate:
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$

22. Find the derivative of
$$1/\chi^2$$
.

23. Evaluate
$$\lim_{x\to 0} \frac{\sin x^{\circ}}{x}$$

24. Find the derivative of
$$f(x) = x^2 - 5x + 9$$
 at $x = 3$.

Section-B (2 Marks)

25. Let
$$f(x) = \begin{cases} \cos x & \text{if } x \ge 0 \\ x + k & \text{if } x < 0 \end{cases}$$
, find the value of constant k, given that $\lim_{x \to 0} f(x)$ exists

26. Find the positive value of n so that
$$\lim_{x\to 3} \frac{x^n - 3^n}{x - 1} = 108$$
.

27. If
$$y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}$$
, find $\frac{dy}{dx}$.

28. Find
$$\lim_{x\to 1} [x-1]$$
 where [] is greatest integer function.

29. Evaluate
$$\lim_{x\to 2} \frac{x^{10}-1024}{x^5-32}$$
.

Section C(4/6 marks)

30. Differentiate with respect to x, from first principles.

a. $\sin x$

b. tan x

c. sec x

d. $x \cos x$

e. $cos^2 x$

f. $\cos x^2$

g. $\frac{1}{\sqrt{x}}$

h. $\tan 2x$

i. $\sin \sqrt{x}$

j. $x^3 - 1$

k. $\sqrt{\sin x}$

1. $sin^3 x$

$$m. \cot (2x + 3)$$

n.
$$\sec 3x$$

o.
$$x^2 \cos x$$

p.
$$\frac{\sin x}{x}$$

q.
$$\frac{x^2+3}{x}$$

31. Evaluate

a.
$$\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}$$

b.
$$\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}$$
 c.
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x}$$

c.
$$\lim_{x\to 0} \frac{1-\cos x}{\sin^2 x}$$

$$d. \lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1-2x}}{\sin x}$$

e.
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos e^2 x - 2}{\cot x - 1}$$

d.
$$\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1-2x}}{\sin x}$$
 e. $\lim_{x \to \frac{\pi}{4}} \frac{\cos e^2 x - 2}{\cot x - 1}$ f. $\lim_{x \to \frac{\pi}{6}} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}}$

g.
$$\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{3x - 2} - \sqrt{x + 2}}$$

g.
$$\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{3x - 2} - \sqrt{x + 2}}$$
 h. $\lim_{x \to a} \frac{(x + 2)^{5/3} - (a + 2)^{5/3}}{x - a}$ i. $\lim_{x \to \frac{\pi}{4}} \frac{\tan^3 x - \tan x}{\cos(\frac{\pi}{4} + x)}$

i.
$$\lim_{x \to \frac{\pi}{4}} \frac{\tan^3 x - \tan x}{\cos(\frac{\pi}{4} + x)}$$

j.
$$\lim_{x \to \frac{\pi}{2}} \frac{1 + \cos 2x}{(\pi - 2x)^2}$$

$$k. \lim_{x \to \frac{\pi}{2}} \frac{1-\sin^3 x}{\cos^2 x}$$

$$\lim_{x\to 0} \frac{1-\cos x\sqrt{\cos 2x}}{x^2}$$

m.
$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan^2 x}{\cos x - \sin x}$$

32. If
$$y = \sec x + \tan x$$
, show that $\cos x \frac{dy}{dx} = y$.

33. If
$$y = cosec x + cot x$$
, show that $\sin x \frac{dy}{dx} + y = 0$.

34. If
$$y = a \sin x + b \cos x$$
, show that $y^2 + \left(\frac{dy}{dx}\right)^2 = a^2 + b^2$.

35. If
$$y = x \sin x$$
, prove that $\frac{1}{y} \frac{dy}{dx} = \frac{1}{x} + \cot x$

36. If
$$f(x) = \begin{cases} x + \frac{1}{2}, x > \frac{1}{2} \\ 0, x = \frac{1}{2} \\ 2x, x < \frac{1}{2} \end{cases}$$
 find $\lim_{x \to \frac{1}{2}} f(x)$

37. For what value of
$$p$$
 does $\lim_{x\to 1} f(x)$ exists where $f(x) = \begin{cases} 2px + 3, & \text{if } x < 1 \\ 1 - px^2, & \text{if } x > 1 \end{cases}$

38. Find the derivatives of:

a.
$$\frac{x\sin x + 2x^2}{\cos x}$$

b.
$$\frac{\sin x - x \cos x}{x \sin x + \cos x}$$

c.
$$\frac{3+5\cos x}{5+3\cos x}$$

$$d. \frac{3}{x^2 + \sin x - \cos x}$$

e.
$$\frac{1-\tan x}{1+\tan x}$$

f.
$$x^3 \sin x + 2x \cos x$$

g.
$$(x + sec x)(x - tan x)$$

h.
$$\frac{3x-4}{x+1}$$

i.
$$x^2 \sin x$$

$$j. \frac{x + \cos x}{\tan x}$$

$$k. \sqrt{\frac{1+\sin x}{1-\sin x}}$$

39. a.
$$\lim_{x \to 2} \frac{e^x - e^2}{x - 2}$$

b.
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{x}$$

c.
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2x}{x^2}$$

d.
$$\lim_{x\to 0} \frac{3^{2x}-2^{3x}}{x}$$

e.
$$\lim_{x \to 0} \frac{3^{2x} - 1}{2^{3x} - 1}$$

f.
$$\lim_{x\to 0} \frac{e^x - x - 1}{x}$$

g.
$$\lim_{x\to 0} \frac{e^{bx} - e^{ax}}{x}$$

$$h. \quad \lim_{x\to 0}\frac{a^x-b^x}{x}$$

i.
$$\lim_{x \to 0} \frac{e^{\tan x} - 1}{x}$$

39. a.
$$\lim_{x \to 2} \frac{e^{x} - e^{2}}{x - 2}$$
 b. $\lim_{x \to 0} \frac{e^{x} - e^{-x}}{x}$ c. $\lim_{x \to 0} \frac{e^{x} + e^{-x} - 2}{x^{2}}$ d. $\lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{x}$ e. $\lim_{x \to 0} \frac{3^{2x} - 1}{2^{3x} - 1}$ f. $\lim_{x \to 0} \frac{e^{x} - x - 1}{x}$ g. $\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x}$ h. $\lim_{x \to 0} \frac{a^{x} - b^{x}}{x}$ i. $\lim_{x \to 0} \frac{e^{\tan x} - 1}{x}$ j. $\lim_{x \to 0} \frac{e^{3+x} - \sin x - e^{3}}{x}$

SCORING KEY

1.	b 2.	a	3.	d	4.	С	5.	b	
6.	c 7.	a	8.	a	9.	b	10.	a	
11.	c 12.	c	13.	d	14.	b			
15.	1								
16.	$m = \frac{2\sqrt{3}}{3}$								
17.	1								
18.	0								
19.	$\frac{0}{4}$								
20.	3								
	$-\frac{3}{2}$								
21.	3								
22.	$\frac{-2}{x^3}$								
	$\overline{x^3}$								
23.	π								
	180								
24.	1								
25.	k=1								
26.	4								
27.	-4x								
	$\frac{-4x}{(x^2-1)^2}$								
28.	Limit does not exist								
29.	64								
30.	a. cos x			b. sec ²	b. sec ² x				
	c. sec x tan x				d. cosx – xsinx				
	e. –sin2x				$f 2x \sin x^2$				
	$2x^{\frac{1}{2}}$			h. 2 se	$h. 2 \sec^2 2x$				
	ans Tr								
	1. $\frac{1}{2\sqrt{x}}$			J. 3x ²	j. $3x^2$				
	k. $\frac{\cos x}{}$			1. 3sin	² x co	os x			
	$2\sqrt{\sin x}$								
	$m 2\cos e$	$c^2(2x+3)$		n. 3sec	c3x ta	n3x			

	$0. \ 2x\cos x - x^2\sin x$	$p. \frac{x\cos x - \sin x}{x^2}$						
	q. $\frac{x^2 - 3}{x^2}$							
31.	a. 4	b. $\frac{25}{36}$						
	c. $\frac{1}{2}$	d. 2						
	e. 2	f. 2						
	g. 8	h. $\frac{5}{3}(a+2)^{2/3}$						
	i4	j. 1/2						
	k. 3/2	1. 3/2						
	m. $2\sqrt{2}$							
36.	1							
37.	-2/3							
38.	a. $\frac{\cos x \sin x + x + 4x \cos x + 2x^2 \sin x}{\cos^2 x}$							
	b. $\frac{x^2}{(x\sin x + \cos x)^2}$							
	$c. \frac{-16\sin x}{\left(5 + 3\cos x\right)^2}$							
	d. $\frac{-3(2x + \cos x = \sin x)}{(x^2 + \sin x - \cos x)^2}$							
	-2							
	e. $\frac{2}{(\cos x + \sin x)^2}$							
	f. $x(3x-2)\sin x + (x^3+2)\cos x$							
	g. $(1 + \sec x \tan x)(x - \tan x) +$	$-(x + \sec x)(1 - \sec^2 x)$						
	h. 7							
	$\int_{0}^{\infty} \frac{1}{(x+1)^2}$							
	i. $x^2 \cos x + 2x \sin x$							
	ton u(1 sin u) (u + see u)e	$\sec^2 x$						
	$j. \frac{\tan x(1-\sin x)-(x+\cos x)\sin x}{\tan^2 x}$							
	k. $\frac{1}{1-\sin x}$							
39.		$\log \frac{9}{2}$ e. $\frac{\log 9}{2}$ f. 0 g. b-a						
	a. e^2 b. 2 c. 1 d. lo	$\log \frac{1}{8} \qquad \text{e. } \frac{\log 8}{\log 8} \qquad \text{f. 0} \qquad \text{g. b-a}$						
	h. loga- logb i. 1 j. e	e^3-1						
	1	ı						