Designing multistability with AND gates

Alan Veliz-Cuba

Department of Mathematics, University of Dayton

April 29, 2025

Outline

- Introduction/Motivation
 - Bistability
- Preliminaries
 - Approach
 - Conjunctive networks
- Results
 - Designing multistability
 - Minimal networks

Problem

Problem

How can we control the attractor landscape?

Outline

- Introduction/Motivation
 - Bistability
- Preliminaries
 - Approach
 - Conjunctive networks
- Results
 - Designing multistability
 - Minimal networks

Bistability

Two coexisting stable patterns:

How to design bistability?

Minimal network must have a positive feedback loop.

How to design bistability?

Minimal network must have a positive feedback loop.

Example of designed bistability: Genetic toggle switch

Example of designed bistability: Genetic toggle switch

Synthetic gene network is bistable!

Nature, 2000.

Main questions

- How to design multistability? How to construct a network that has a given number of stable steady states?

- How to make the size of the network (number of variables) minimal?

Outline

- Introduction/Motivation
 - Bistability
- Preliminaries
 - Approach
 - Conjunctive networks
- Results
 - Designing multistability
 - Minimal networks

AND gates

AND gates

AND gates can be modeled as a product of Hill functions

output =
$$H(x_1)H(x_2)\cdots H(x_N)$$

where
$$H(z) = \frac{z^n}{\theta^n + z^n}$$
, $\theta = 0.5$ (threshold), $n = \text{large}$

Why AND gates?

- AND gates have already been constructed in the lab

- Positive interaction can be replaced by two negative interactions

Differential equations with AND gates

A system of differential equations of the form $\frac{dx_i}{dt} = \prod_{k \in I_i} \frac{x_k''}{\theta^n + x_k^n} - x_i$ is called a *conjunctive network*.

Differential equations with AND gates

A system of differential equations of the form $\frac{dx_i}{dt} = \prod_{k \in L} \frac{x_k}{\theta^n + x_k^n} - x_i$ is called a *conjunctive* network.

Example.

$$\frac{dx_1}{dt} = \frac{x_1^n}{\theta^n + x_1^n} \frac{x_2^n}{\theta^n + x_2^n} - x_1,$$

$$\frac{dx_2}{dt} = \frac{x_1^n}{\theta^n + x_1^n} - x_2$$

Outline

- Introduction/Motivation
 - Bistability
- Preliminaries
 - Approach
 - Conjunctive networks
- Results
 - Designing multistability
 - Minimal networks

Main questions

1. How to design a network that has a given number of stable steady states?

2. How to make the number of variables minimal?

Main results

1. There exists an algorithmic way to design a network with a given number of stable steady states.

Lemma. (For large n) A conjunctive network with strongly connected wiring diagram has exactly 2 stable steady states; the zero steady state and a *positive* steady state that converges to $\mathbf{1} = (1, \dots, 1)$.

What about the general case?

What about the general case?

More than 2 stable steady states!

Consider a conjunctive network with **strongly connected components** (scc) G_1, \ldots, G_r .

Consider a conjunctive network with **strongly connected components** (scc) G_1, \ldots, G_r . For example,

Consider a conjunctive network with **strongly connected components** (scc) G_1, \ldots, G_r . For example,

Theorem. (For large n) For any antichain $\{G_{k_1}, \ldots, G_{k_l}\}$ (collection of scc that have **no path between them**), there is a stable steady state x such that $x_i = 0$ if there is a path from some G_{k_j} to i. Also, all stable steady states have that form.

Example.

There are 3 antichains: $\{\}, \{G_1\}, \{G_2\},$ corresponding to: ("1","1","1"), (0,0,0), ("1","1",0),

The conjunctive network has 3 steady states.

Consider a conjunctive network with **strongly connected components** (scc) G_1, \ldots, G_r .

Consider a conjunctive network with **strongly connected components** (scc) G_1, \ldots, G_r . For example,

Consider a conjunctive network with **strongly connected components** (scc) G_1, \ldots, G_r . For example,

Theorem. (For large n) If $\{G_{k_1}, \ldots, G_{k_l}\}$ is an antichain, then there is a stable steady state x such that $x_i = 0$ if there is an path from some G_{k_j} to i. Furthermore, all stable steady states have that form.

Example.

Example.

There are 30 antichains: \emptyset , $\{G_1\}$, $\{G_2\}$, $\{G_3\}$, $\{G_4\}$, $\{G_5\}$, $\{G_6\}$, $\{G_7\}$, $\{G_1, G_2\}$, $\{G_1, G_4\}$, $\{G_1, G_6\}$, $\{G_2, G_4\}$, $\{G_2, G_6\}$, $\{G_2, G_7\}$, $\{G_3, G_4\}$, $\{G_3, G_5\}$, $\{G_3, G_6\}$, $\{G_3, G_7\}$, $\{G_4, G_5\}$, $\{G_4, G_7\}$, $\{G_5, G_6\}$, $\{G_6, G_7\}$, $\{G_1, G_2, G_4\}$, $\{G_1, G_2, G_6\}$, $\{G_2, G_4, G_7\}$, $\{G_2, G_6, G_7\}$, $\{G_3, G_4, G_5\}$, $\{G_3, G_4, G_7\}$, $\{G_3, G_5, G_6\}$, $\{G_3, G_6, G_7\}$

The conjunctive network has 30 steady states.

Outline

- Introduction/Motivation
 - Bistability
- Preliminaries
 - Approach
 - Conjunctive networks
- Results
 - Designing multistability
 - Minimal networks

Designing networks with arbitrary stable steady states

How can we design a network with s steady states?

ANS: Construct a wiring diagram with s antichains.

$$\mathbf{a}_{G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_{s-1}}$$

Designing networks with arbitrary stable steady states

How can we design a network with s steady states?

ANS: Construct a wiring diagram with *s* antichains.

For s = 5:

$$\frac{dx_1}{dt} = \frac{x_1^n}{\theta^n + x_1^n} - x_1$$

$$\frac{dx_2}{dt} = \frac{x_2^n}{\theta^n + x_2^n} \frac{x_1^n}{\theta^n + x_1^n} - x_2$$

$$\frac{dx_3}{dt} = \frac{x_3^n}{\theta^n + x_3^n} \frac{x_2^n}{\theta^n + x_2^n} - x_3$$

$$\frac{dx_4}{dt} = \frac{x_4^n}{\theta^n + x_4^n} \frac{x_3^n}{\theta^n + x_3^n} - x_4$$

Designing networks with arbitrary stable steady states

Biological example for s = 5:

Network topology of a gene network using repression only:

Outline

- Introduction/Motivation
 - Bistability
- Preliminaries
 - Approach
 - Conjunctive networks
- Results
 - Designing multistability
 - Minimal networks

ANS: 99 variables

ANS: 99 variables

How can we make the number of variables minimal?

ANS: 99 variables

How can we make the number of variables minimal?

ANS: Smallest wiring diagram with s antichains (previous theorem) $\mathcal{N}(s) := \text{size of smallest wiring diagram with } s$ antichains

Two cases for s = number of stable steady states:

Case 1. $s = 2^N$ for some N:

Two cases for s = number of stable steady states:

Case 1. $s = 2^N$ for some N: Must use N uncoupled variables.

Two cases for s = number of stable steady states:

Case 1. $s = 2^N$ for some N: Must use N uncoupled variables.

$$\mathbf{a}$$
 G_1 G_2 \cdots G_N \mathbf{b} $\bigcap_{\mathbf{1}}$ $\bigcap_{\mathbf{2}}$ \cdots $\bigcap_{\mathbf{N}}$

$$\frac{dx_i}{dt} = \frac{x_i^n}{\theta^n + x_i^n} - x_i , \quad i = 1, \dots, N$$

Case 2. $2^{N-1} < s < 2^N$: Must use at least N variables.

Results

Minimal networks: Preliminary remarks

Two cases for s = number of stable steady states:

Case 1. $s = 2^N$ for some N: Must use N uncoupled variables.

Case 2. $2^{N-1} < s < 2^N$: Must use at least N variables.

Idea: Start with N uncoupled variables (2^N stable steady states) and add connectivity.

Case 2. $2^{N-1} < s < 2^N$: Must use at least N variables.

Idea: Start with N uncoupled variables (2^N stable steady states) and add connectivity.

Case 2. $2^{N-1} < s < 2^N$: Must use at least N variables.

Idea: Start with N uncoupled variables (2^N stable steady states) and add connectivity.

Example. For s = 3. Use N = 2 variables and add an edge from x_1 to x_2 .

Case 2. $2^{N-1} < s < 2^N$: Must use at least N variables.

Idea: Start with N uncoupled variables (2^N stable steady states) and add connectivity.

Example. For s = 3. Use N = 2 variables and add an edge from x_1 to x_2 .

a	b
C1	C ₁
C 2	\mathbb{C}_2

stable steady states: $2^2 = 4$ 3

Case 2. $2^{N-1} < s < 2^N$: Must use **at least** N variables. **Example.** For s = 5, 6, 7. Use N = 3 variables and add connectivity.

Case 2. $2^{N-1} < s < 2^N$: Must use at least N variables.

Example. For s = 5, 6, 7. Use N = 3 variables and add connectivity.

stable steady states: $2^3 = 8$

$$2^3 = 8$$

Case 2. $2^{N-1} < s < 2^N$: Must use at least N variables.

Example. For s = 5, 6, 7. Use N = 3 variables and add connectivity.

stable steady states: $2^3 = 8$

$$2^3 = 8$$

No way to get 7 stable steady states this way!

If $2^{N-1} < s < 2^N$, then N is **not** always the minimal number of variables, but it is a lower bound.

If $2^{N-1} < s < 2^N$, then N is **not** always the minimal number of variables, but it is a lower bound.

For s = 7 stable steady states, the minimal network has 4 variables.

$$\frac{dx_1}{dt} = \frac{x_1^n}{\theta^n + x_1^n} - x_1$$

$$\frac{dx_2}{dt} = \frac{x_1^n}{\theta^n + x_1^n} \frac{x_2^n}{\theta^n + x_2^n} - x_2$$

$$\frac{dx_3}{dt} = \frac{x_3^n}{\theta^n + x_3^n} - x_3$$

$$\frac{dx_4}{dt} = \frac{x_2^n}{\theta^n + x_2^n} \frac{x_3^n}{\theta^n + x_3^n} \frac{x_4^n}{\theta^n + x_4^n} - x_4$$

If $2^{N-1} < s < 2^N$, then N is **not** always the minimal number of variables.

If $2^{N-1} < s < 2^N$, then *N* is **not** always the minimal number of variables.

If $\mathcal{N}(s) := \text{size of smallest network with } s \text{ steady states, then:}$

 $\mathcal{N}(s)$ = size of smallest wiring diagram with s antichains

$$\lceil \log_2(s) \rceil \le \mathcal{N}(s)$$

$$\mathcal{N}(s_1s_2) = \mathcal{N}(s_1) + \mathcal{N}(s_2) ?$$

$$\mathcal{N}(s_1s_2) = \mathcal{N}(s_1) + \mathcal{N}(s_2)$$
 ? No

$$N(s_1s_2) = N(s_1) + N(s_2)$$
 ? No

$$\mathcal{N}(s_1s_2) \leq \mathcal{N}(s_1) + \mathcal{N}(s_2)$$

$$N(s_1s_2) = N(s_1) + N(s_2)$$
 ? No

$$\mathcal{N}(s_1s_2) \leq \mathcal{N}(s_1) + \mathcal{N}(s_2)$$

It turns out that

 $\mathcal{N}(s)$ = size of smallest topology with s open sets (OEIS A137813)

Future work

- Other gates (eg. OR, NAND)
- Achieve not only a given number but also a "steady state signature". Eg. What is the minimal size (N) of a network $(x_i' = f_i(x), i = 1, ..., N)$ that has exactly 3 steady states such that $(x_1, x_2, x_3) = (1, 1, 0)$, (0, 1, 1), (1, 0, 1)?

References/Funding

References

- A. Veliz-Cuba and R. Laubenbacher. Dynamics of semilattice networks with strongly connected dependency graph. Automatica, 2019.
- A. Veliz-Cuba et al. On the Relationship of Steady States of Continuous and Discrete Models Arising from Biology. Bulletin of Mathematical Biology, 2012.

Minimal network with 100 stable steady states

 $5 \times 5 \times 2 \times 2 = 100$ stable steady states

