Chapter 8 Solutions

Andrew Wu Wasserman: All of Statistics

April 1, 2025

Problem 8.4. Let X_1, \ldots, X_n be distinct observations (no ties.) Show that there are $\binom{2n-1}{n}$ distinct bootstrap samples.

Solution. We want to compute the number of ways to select n of X_1, \ldots, X_n with replacement.

Imagine instead that we have n stars, and n-1 bars, and that we order them in a row. We claim any distinct arrangement is equivalent to a distinct bootstrap sample.

Given an arrangement of stars and bars, we will say that the number of times X_i is picked is equal to the number of stars between bar i-1 and bar i (with the caveat that X_1 is picked k times, where k is the number of stars before the first bar, and that X_n is picked k times, where k is the number of stars after the last bar.) Moreover, given a bootstrap sample, we can replicate the procedure in reverse.

Therefore there is a correspondence between distinct arrangements and distinct bootstrap samples, and so there are $\binom{2n-1}{n}$ distinct bootstrap samples.

Problem 8.5. Let X_1, \ldots, X_n be distinct observations (no ties.) Let X_1^*, \ldots, X_n^* denote a bootstrap sample, and let $\overline{X}_n^* = \frac{1}{n} \sum_{i=1}^n X_i^*$. Find the following:

- $\mathbb{E}(\overline{X}_n^*|X_1,\ldots,X_n),$
- $\mathbb{V}(\overline{X}_n^*|X_1,\ldots,X_n),$
- $\mathbb{E}(\overline{X}_n^*)$,
- $\mathbb{V}(\overline{X}_n^*)$.

Solution. We have

$$\mathbb{E}(\overline{X}_n^*|X_1,\dots,X_n) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n X_i^* \middle| X_1,\dots,X_n\right)$$
$$= \frac{1}{n} \cdot n \cdot \mathbb{E}(X_i^*|X_1,\dots,X_n)$$
$$= \overline{X}_n.$$

And for the variance,

$$\mathbb{V}(\overline{X}_{n}^{*}|X_{1},...,X_{n}) = \mathbb{V}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*}\middle|X_{1},...,X_{n}\right)$$

$$= \frac{1}{n^{2}} \cdot n \cdot \mathbb{V}(X_{i}^{*}|X_{1},...,X_{n})$$

$$= \frac{1}{n}[(\mathbb{E}((X_{i}^{*})^{2})|X_{1},...,X_{n}) - (\mathbb{E}(X_{i}^{*})|X_{1},...,X_{n})^{2}]$$

$$= \frac{1}{n}\left[\frac{1}{n}(X_{1}^{2}+...+X_{n}^{2}) - \overline{X}_{n}^{2}\right]$$

Next, we have

$$\mathbb{E}(\overline{X}_n^*) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n X_i^*\right)$$
$$= \frac{1}{n} \cdot n \cdot \mathbb{E}(X_i^*)$$
$$= \mathbb{E}(X_1).$$

And finally,

$$\begin{split} \mathbb{V}(\overline{X}_n^*) &= \mathbb{E}(\mathbb{V}(\overline{X}_n^*|X_1,\dots,X_n)) + \mathbb{V}(\mathbb{E}(\overline{X}_n^*|X_1,\dots,X_n)) \\ &= \mathbb{E}\left(\frac{1}{n}\left(\frac{1}{n}\left(X_1^2 + \dots + X_n^2\right) - \overline{X}_n^2\right)\right) + \mathbb{V}(\overline{X}_n) \\ &= \frac{1}{n}\left[\mathbb{E}\left(\frac{1}{n}(X_1^2 + \dots + X_n^2)\right) - \mathbb{E}\left(\overline{X}_n^2\right)\right] + \frac{1}{n^2} \cdot n \cdot \mathbb{V}(X_1) \\ &= \frac{1}{n}\left[\frac{1}{n} \cdot n \cdot \mathbb{E}(X_1^2) - \mathbb{V}(\overline{X}_n) - \mathbb{E}(\overline{X}_n)^2\right] + \frac{1}{n}\mathbb{V}(X_1) \\ &= \frac{1}{n}\left(\mathbb{E}(X_1^2) - \frac{1}{n}\mathbb{V}(X_1) - \mathbb{E}(X_1)^2\right) + \frac{1}{n}\mathbb{V}(X_1) \\ &= \frac{1}{n} \cdot \frac{n-1}{n} \cdot \mathbb{V}(X_1) + \frac{1}{n}\mathbb{V}(X_1) \\ &= \frac{2n-1}{n^2}\mathbb{V}(X_1). \end{split}$$

Problem 8.7. Let $X_1, \ldots, X_n \sim \text{Uniform}(0, \theta)$. Let $\widehat{\theta} = \max\{X_1, \ldots, X_n\}$. With $\theta = 1$ and n = 50, find the distribution of $\widehat{\theta}$. Show that if $\widehat{\theta}^*$ is a bootstrapped estimate for $\widehat{\theta}$, then $\mathbb{P}(\widehat{\theta}^* = \widehat{\theta}) \approx 0.632$.

Solution. We have, for $0 \le x \le \theta$,

$$\mathbb{P}(\widehat{\theta} \le x) = \mathbb{P}(X_1, \dots, X_n \le x)$$
$$= \mathbb{P}(X_1 \le x)^n$$
$$= \left(\frac{x}{\theta}\right)^n.$$

Thus $F(x) = \left(\frac{x}{\theta}\right)^n$ for $0 \le x \le \theta$, so $f(x) = F'(x) = \frac{1}{\theta^n} n x^{n-1}$. Taking $\theta = 1$ and n = 50, we obtain $f(x) = 50x^{49}$.

Now, if $\widehat{\theta}^*$ is a bootstrapped estimate for θ , we find $\widehat{\theta}^*$ by picking n times from $\{X_1, \ldots, X_n\}$ with replacement, and then taking the maximum of those picks. Without loss of generality, assume $X_n = \max\{X_1, \ldots, X_n\}$. Then, $\mathbb{P}(\widehat{\theta}^* \neq \widehat{\theta})$ is the probability that none of the picks are X_n , so thus $\mathbb{P}(\widehat{\theta}^* \neq \widehat{\theta}) = (\frac{n-1}{n})^n$. It follows that

$$\mathbb{P}(\widehat{\theta}^* = \widehat{\theta}) = 1 - \left(\frac{n-1}{n}\right)^n$$
$$= 1 - \left(1 - \frac{1}{n}\right)^n$$
$$\approx 1 - \frac{1}{e} \approx 0.632.$$

Problem 8.8. Let $T_n = \overline{X}_n^2$, $\mu = \mathbb{E}(X_1)$, $\alpha_k = \int |x - \mu|^k dF(x)$, and $\widehat{\alpha}_k = n^{-1} \sum_{i=1}^n |X_i - \overline{X}_n|^k$. Show that

$$v_{\text{boot}} = \frac{4\overline{X}_n^2 \widehat{\alpha}_2}{n} + \frac{4\overline{X}_n \widehat{\alpha}_3}{n^2} + \frac{\widehat{\alpha}_4}{n^3}.$$

Solution.	. See this StackExchange post; I was unable to solve	this problem myself.]