APEC Math Review Functions

Natalia Ordaz Reynoso

Summer 2019

Relations

Definition: A relation on a set A is a subset $R \subseteq AxA$. We can denote this set by $(x,y) \in R$ or xRy.

- A relation is a set.
- Preference relations are the precursors of utility functions.
- Example: let $a = \{1, 2, 3, 4\}$ and consider the following set: $R = \{(1, 1), (2, 1), (2, 2), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (4, 1)\} \subseteq A \times A$
- Let S be a relation on AxA, defined by "having the same parity as"
- How about the "at least as good asi.

Properties of Relations

Let R be a relation on A

- R is *reflexive* if xRx for every $x \in S$
- R is symmetric if $xRy \Rightarrow yRx$ for all $x, y \in A$
- R is transitive if whenever xRy and yRz then xRz

Examples: \geq , =, \neq , are they reflexive, symmetric, transitive?

The Book of Proof has a deeper discussion of relations, including diagrams and a lot of examples. Go through chapter 11 (sections 1 and 2) if you feel like you need to.

We can generalize the notion of relations on A to relations from A to B

Functions

Definition: suppose A and B are sets. a function f from A to B (f:A \rightarrow B) is a relation $f \subseteq AxB$ satisfying the property that $\forall a \in A$ the relation f contains exactly one ordered pair of form (a,b).

We abbreviate $(a, b) \in f$ to f(a)=b

- not all relations are functions
- Draw figure 12.2 on the board
- domain, codomain, range
- A function is really just a special kind of set.
- $f = g \iff f(x) = g(x) \forall x \in A$, where A is the domain of f and g

Injective and Surjective Functions

A function $f: A \rightarrow B$ is:

- Injective (one to one) if $\forall a, a' \in A, a \neq a'$ implies $f(a) \neq f(a')$
- Surjective (or onto B) if $forallb \in B, \exists a \in Astf(a) = b$
- Bijective if f is both injective and surjective

Visual description on the board, some examples

Composition of Functions

- if $f:A\to B$ and $g:B\to C$, then $gof(x)=g(f(x)):A\to C$
- Theorem: Composition of functions is associative: $(h \circ g) \circ f = h \circ (g \circ f)$
- If f and g are surjective, then $g \circ f$ is also surjective.

Inverse Functions

- Definition: if $f: A \to B$ is bijective, then its inverse is the function $f^{-1}: B \to A$. The two functions obey the equations $f^{-1} \circ f(x) = x$ and $f \circ f^{-1}(x) = x$
- Theorem: $f: a \to B$ is bijective if and only if it's inverse f^{-1} is a function from B to A

Image and Preimage

Definition: Let $f: A \rightarrow B$ be a function.

- **1** If $X \subseteq A$, the image of X is the set $f(X) = \{f(x) : x \in X\} \subseteq B$
- ② if $Y \subseteq B$, the preimage of Y is the set $f^{-1}(Y) = \{x \in A : f(x) \in Y\} \subseteq A$.

Theorem: given f: A, let $W, X \subseteq A$, and $Y, Z \subseteq B$. Then:

- $f(W \cup X) = f(W) \cup f(X)$
- **3** $X \subseteq f^{-1}(f(X))$
- **5** $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$
- **o** $f(f^{-1}(Y))$ ⊆ Y

Homogeneity

Consider functions $f(x_1, x_2, ..., x_N)$ defined for all $(x_1, x_2, ..., x_n) \ge 0$

Definition: a function $f(x_1, x_2, ..., x_N)$ is homogeneous of degree $r \in \mathbb{Z}$ if $\forall t > 0$ we have

$$f(tx_1, tx_2, ..., tx_N) = t^r f(x_1, x_2, ..., x_n)$$

- Examples: $f(x_1, x_2) = x_1/x_2$, $f(x_1, x_2) = (x_1x_2)^{1/2}$
- Note: what happens if I take $t = 1/x_1$ to a homogeneous function of degree 0? 1?

Homogeneity

Theorem M.B.1: if $f(x_1, x_2, ..., x_N)$ is homogeneous of degree $r \in \mathbb{Z}$, then $\forall n \in \mathbb{N}$, the partial derivative function $(x_1, x_2, ..., x_N)/\partial x_n$ is homogeneous of degree r-1

Level sets and Homogeneity

- Definition: a level set of function f(.) is a set of the form $\{x \in \mathbb{R}^N_+ : f(x) = k \text{ for some real number } k$
- A radial expansion of this set is obtained by multiplying each vector x by some positive scalar.
- If f(.) is homogeneous of any degree, then $f(x_1, x_2, ..., x_N) = f(x'_1, x'_2, ..., x'_N)$ implies $f(tx_1, tx_2, ..., tx_N) = f(tx'_1, tx'_2, ..., tx'_N)$ for any positive t
- ie, a radial expansion of a level set of f(.) gives another level set of f(.)
- See that this implies that the slopes of the level sets of f are unchanged along any ray that passes through the origin.

Q: Why do we care about this?

Homothetic Functions

Definition: Let f() be homogeneous of some degree and h() be an increasing function of one variable. Then $h(f(x_1,...x_N))$ is called homothetic.

- Note that f and h have the same level sets.
- Monotonic transformations of homogeneous functions

Euler's Formula

Theorem M.B.2: (Euler's Formula) Let $f(x_1, x_2, ..., x_N)$ be homogeneous of degree r, and differentiable. Then at any $(\bar{x}_1, ..., \bar{x}_N)$ we have:

$$\sum_{n=1}^{N} \frac{\partial f(\bar{x}_1, ..., \bar{x}_N)}{\partial x_n} \bar{x}_n = rf(\bar{x}_1, ..., \bar{x}_N)$$

In matrix notation: $\nabla f(\bar{x}) \cdot \bar{x} = rf(\bar{x}_1, ..., \bar{x}_N)$

What does this mean for a function that is homogeneous of degree 0?

Euler

Convex Structures and Optimization

(Sundaram Chapter 7: read the intro!)

- Why do we study convex things?
- Turns out that when optimization problems meet certain convexity properties, first order conditions are not only necessary but they are sufficient.
- Whoa, what? Yes, even global optima. Yes, even unique.
- So, we study all sort of convex objects. Remember the initial questionnaire?
- convexity assumptions are pretty strong. Why are we ok with these?
- convex constraints and concave objective function imply FOC are sufficient (and necessary) for global maxima.
- convex constraints and convex objective function...

Concave and Convex Functions

Definition: Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$, and let D be a convex set. The subgraph of f and the epigraph of f are defined by:

$$subf = \{(x,y) \in Dx\mathbb{R} : f(x) \ge f(y)$$

$$epif = \{(x,y) \in Dx\mathbb{R} : f(x) \le f(y)$$

A function f is said to be concave on D if *sub f* is a convex set. f is said to be convex on D if *epi f* is a convex set.

Concave and Convex Functions

Theorem 7.1 A function $f: D \to \mathbb{R}$ is concave on D if and only if for all x, y in D, and $\alpha \in (0,1)$, it is the case that:

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y)$$

How do we modify this theorem for convexity?

Can a function be concave and convex? can a function be neither? Take $f(x) = x^3$ in the reals, x=-2, y=2, $\alpha = 1/4$

How about strict convexity and concavity? take $f(x) = x^{\lambda}$

Strict Concavity, Strict Convexity

- A function f is (strictly convex) in D if and only if -f is (strictly concave) in D
- We will skip the rest of Sundaram Chapter 7 for now!
- Just know that convexity has important implications for: continuity, differentiability.
- now MWG

MWG on Concavity

We will consider functions of N variables, defined on a domain A that is convex, $A \subseteq \mathbb{R}^N$.// We denote $x = (x_1, ..., x_N)$

• Definition: The function $f: A \to \mathbb{R}$ is concave if

$$f(\alpha x' + (1-)x) \ge \alpha f(x')(1-\alpha)f(x)$$

for all $x, x' \in A, \alpha \in [0, 1]$. If the inequality is stric, we say that f is strictly concave.

- Examples on the board
- The straight line connecting two points lies entirely below the graph of a function (strict concavity)

Concavity

- Note that the previous condition is equivalent to $f(\alpha_1 x^1 + ... \alpha_K x^K) \ge \alpha_1 f(x^1) + ... + \alpha_k f(x^k)$ for any collection of vectors in A and numbers α_i that add up to one
- It is easier if we think of f(A) as a set.
- One example: (Jensen's Inequality) $f(\int x dF) \ge \int f(x) dF$ for any distribution function $F: \mathbb{R}[0,1]$
- The properties of convexity and strict convexity are defined analogously (inequality reversed)
- f is concave if and only if -f is convex

Concavity and Convexity

Alternative Characterization of Concavity

Let $f:A\to\mathbb{R}$ be continuously differentiable. It is concave if and only if

$$f(x+z) \leq f(x) + \nabla f(x) * z$$

For all $x \in A, z \in \mathbb{R}^N$ (with $x + z \in A$)

- Graph on the board MC3
- Any tangent to the graph must lie weakly above the graph

Aside: Matrices

The $N \times N$ matrix M is negative semidefinite if

$$z \cdot Mz \leq 0$$

 $\forall z \in \mathbb{R}^N$. If the inequality is strict for all non-zero z, then the matrix M is negative definite. Reversing the inequality we get the concept of positive semidefinite and positive definite matrices. (We will go deeper into this later on!)

- Theorem: The (twice continuously differentiable) function $f:A\to\mathbb{R}$ is concave if and only if $D^2f(x)$ is negative semidefinite $\forall x\in A$. If $D^2f(x)$ is negative definite $\forall x\in A$, then the function is strictly concave.
- What does this mean for N=1?

Quasi-Convexity

Sundaram Chapter 8

- Convexity might be quite restrictive
- We can weaken the assumption by replacing it with another one: quasi-convexity
- Some trade-offs: not sufficient for global optima
- Some useful properties remain, especially for Khun-Tucker, which we will see later on.

Quasi-concave and Quasi-convex functions

Let $f: D \to \mathbb{R}$, D a convex subset of \mathbb{R}^n . The upper contour set of f at $a \in \mathbb{R}$, denoted Uf(a) is defined as:

$$Uf(a) = \{x \in D : f(x) \ge a\}$$

while the lower contour set, denoted Lf(a) is defined as:

$$Lf(a) = \{x \in D : f(x) \le a\}$$

- The function f is said to be quasiconcave on D if Uf(a) is a convex set for all a
- The function f is said to be quasiconvex on D if Lf(A) is a convex set for all a

Quasi-concave Functions

Theorem 8.1: $f: D \to \mathbb{R}$ is quasi-concave on D if and only if for all x, y elements of D, $\lambda \in (0,1)$, it is the case that:

$$f(\lambda x + (1 - \lambda)y) \ge \min\{f(x), f(y)\}$$

Theorem 8.2: The function $f: D \to \mathbb{R}$ is (strictly) quasi-concave on D if and only if -f is (strictly) quasi-convex in D.

Quasi-convexity as a Generalization of Convexity

From Theorem 8.1 it is easy to see that all concave functions are also quasi-concave (why?, prove it)

- The converse is not true, take $f(x) = x^3$
- Theorem 8.3: Any monotone transformation of a concave function results in a quasi-concave function.
- Note that:
 - quasi-concave and quasi-convex functions need not be continuous in the interior of their domains
 - They can have local optima that are not global optima
 - Section 10 FOC are not sufficient to identify even local optima under quasi-convexity

Example: page 209 of Sundaram.

Quasi-convex and Quasi-concave Functions

Theorem 8.8: let $f: D \to \mathbb{R}$ be a C^1 function, where $D \subset \mathbb{R}^n$ is convex and open. Then f is a quasi-concave function on D if and only if it is the case that for any $x, y \in D$,

$$f(y) \ge f(x) \Rightarrow Df(x)(y-x) \ge 0$$

Quasi-convex and Quasi-concave Functions

Theorem 8.9: let $f: D \to \mathbb{R}$ be a C^2 function, where $D \subset \mathbb{R}^n$ is convex and open. Then:

- if f is quasi-concave on D, we have $(-1)^k |C_k(x)| \ge 0$ for k=1, ..., n
- ② if $(-1)^k |C_k(x)| > 0$ for all $k \in \{1, 2, ..., m\}$ then f is quasi-concave on D.

Sundaram Exercises:

From Chapter 7: 1-13, Chapter 8: 1-10

MWG on Quasi-concavity

Definition: The function $f:A\to\mathbb{R}$, defined on the convex set $A\subseteq\mathbb{R}^N$ is quasiconcave if its upper contour sets $\{x\in A: f(x)\geq t\}$ are convex sets, that is if $f(x)\geq t$ and $f(x')\geq t$ implies that $f(\alpha x+(1-\alpha)x')\geq t$ for any real number t, $x,x'\in A$, $\alpha\in[0,1]$

Analogously, we say that a function is quasiconvex if its lower contour sets are convex

Note that f is quasiconcave IFF -f is quasiconvex

Level sets

• Level sets of a quasiconcave function: what do they look like?

Level sets

- Level sets of a quasiconcave function: what do they look like?
- Ok, what are level sets?
- Figure M.C.4

Ok, now see that from the definition of quasiconcavity it follows that all concave functions are quasiconcave. The converse is not true: concavity is a stronger property than quasiconcavity (what does stronger mean?)

Quasiconcavity

Theorem M.C.3: The (continuously differentiable) function $f:A\to\mathbb{R}$ is quasiconcave IFF

$$\nabla f(x) \cdot (x'-x) \geq 0$$

whenever $f(x') \ge f(x)$, $\forall x, x' \in A$. The strict inequality depicts strict quasiconcavity

Theorem M.C.4 Theorem: The (twice continuously differentiable) function $f:A\to\mathbb{R}$ is quasiconcave if and only if $\forall x\in A$, the Hessian matrix $D^2f(x)$ is negative semidefinite in the subspace $\{z\in\mathbb{R}^N:\nabla f(x)\cdot z=0\}$, that is if and only if $z\cdot D^2f(x)z\leq 0$ whenever $\nabla f(x)\cdot z=0$

Continuity (B&S)

• Definition 5.1.1: Let $A \subseteq \mathbb{R}, f: A \to \mathbb{R}, c \in A$ Then f is continuous at c if given any $\epsilon > 0$, exists $\delta > 0$ such that $\forall x \in A$ that satisfies $|x - c| < \delta$ it is the case that $|f(x) - f(c)| < \epsilon$

Continuity (B&S)

- Definition 5.1.1: Let $A \subseteq \mathbb{R}, f: A \to \mathbb{R}, c \in A$ Then f is continuous at c if given any $\epsilon > 0$, exists $\delta > 0$ such that $\forall x \in A$ that satisfies $|x c| < \delta$ it is the case that $|f(x) f(c)| < \epsilon$
- Reminds us of the definition of limit (which we will see later!)
- f is continuous in a set A if it is continuous at all points of that set.
- adding, multiplying, compositions of continuous functions remain continuous.

Theorem of the maximum-minimum. if $f: I \to \mathbb{R}$, where I is closed and bounded (compact) and f is continuous, then f(x) has a maximum and a minimum in I

Theorem of the Intermediate Value (Bolzano

Let I be an interval and $f: I \to \mathbb{R}$ continuous in I. If $a, b \in I$, $k \in \mathbb{R}$ satisfies that f(a) < k < f(b) then there is $c \in I$ between a and b, such that f(c) = k

Continuity: Sequence Criterion

Definition M.F.1: The sequence $\{x_m\}$ converges to $x \in \mathbb{R}^N$, written as $\lim_{m \to \infty} x^m = x$ or $x_m \to x$, if for every $\epsilon > 0$ there is an integer M_{ϵ} such that $||x^m - x|| < \epsilon$ whenever $n > M_{\epsilon}$

Definition M.F.2: consider a domain $X \subset \mathbb{R}^N$. A function $f: X \to \mathbb{R}$ is continuous if $\in X$, and every sequence $x^m \to x$ in X, we have that $f(x^m)(x)$ Examples

Continuity

Theorem M.F.2: Suppose that $f: X \to \mathbb{R}^k$ defined in a nonempty subset of \mathbb{R}^N is continuous, then:

- **1** The image of a compact set under f(x) is compact
- ② Let k=1 and X be compact, then f(x) has a maximizer. $f(x) \geq f(x') \forall x' \in X$

Upper-hemicontinuity

Definition M.H.1: Given a set $A \subset \mathbb{R}^N$, a correspondence $f: A \to \mathbb{R}^k$ is a rule that assigns a set $f(x) \subset \mathbb{R}^k$ to every x in A

Definition M.H.2: Given a set $A \subset \mathbb{R}^N$ and the closed set $Y \subset \mathbb{R}^k$, the correspondence $f: A \to Y$ has a closed graph if for any two sequences $x^m \to x \in A, y^m \to y$, with $x^m \in A$ and $y^m \in f(x^m) \forall m$, we have $y \in f(x)$

- \rightarrow Note that this is the definition of closedness relative to AxY applied to the set $\{(x,y)\in AxY:y\in f(x)\}$
- → Why don't we have an equivalent definition for functions?

Upper-hemicontinuity

Definition M.H.3: Given a set $A \subset \mathbb{R}^N$, and the closed set $Y \subset \mathbb{R}^k$, the correspondence $f:A\to Y$ is upper-hemicontinuous (uhc) if it has a closed graph and the images of compact sets are bounded, that is for every compact set $B \subset A$ the set

 $f(B) = \{ y \in Y : y \in f(x) \text{ for some } x \in B \}$

In many cases, the range space Y is already compact, so we only need the closed graph condition.

Fixed Point Theorems

Theorem M.I.1 (Brouwer's Fixed Point Theorem) Let $A \subset \mathbb{R}^N$ be nonempty, compact and convex, $f: a \to A$. is a continuous function from A onto itself. Then f(.) has a fixed point, that is $\exists x \in A$ such that f(x) = x

Theorem M.I.2 (Kakutani's Fixed Point Theorem). Theorem M.I.1 (Brouwer's Fixed Point Theorem) Let $A \subset \mathbb{R}^N$ be nonempty, compact and convex, $f: a \to A$. is an upper-hemicontinuous correspondence from A onto itself such that the set $f(x) \subseteq A$ is nonempty and convex for every x in A. Then f has a fixed point

What is the difference between these two?

Suggested Exercises

Sundaram: Chapter 1: 46, 47, 48, 49, 51, 53, 54 Bartle and Sherbert Chapter 5.1: 1, 3, 6, 10, 11 Chapter 5.2: 2, 3, 8