Politechnika Warszawska

Zakład Podstaw Konstrukcji

Wprowadzenie do PTC Creo

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

14 lipca 2023 Wersja 1.2

Schemat postępowania

- * budowa modelu geometrycznego (Creo Parametrics),
- * przejście do Creo Simulate,
- * stworzenie modelu obliczeniowego,
 - ** uproszczenie geometrii,
 - ** definicja warunków brzegowych,
 - ** definicja obciążeń,
 - ** definicja materia<mark>łu</mark>,
 - ** definicja połączeń,
 - ** generowanie siatki,
- * obliczenia,
- * analiza wyników.

Warszawska

Wyznaczyć linię ugięcia oraz przemieszczenie końca belki wspornikowej o przekroju prostokątnym 100x50x5. Belka jest utwierdzona jednostronnie i obciążona siłą skupioną o wartości 10kN.

Schemat rozwiązania

- * utworzyć nowy plik,
- * Uruchomić szkicowaniku na płaszczyźnie **Front**, narysować linię prostą o odpowiedniej długości i zakończyć szkic,
- * uruchomić Simulate (**Aplications/Simulate**),
- * stworzyć model uproszczony (Insert/Beam),
- * w **References** wybrać **Edge/Curve** i wskazać narysowaną linię w szkicowniku,
- * w **Beam Definition/Section/More/New** wybrać wymiary przek<mark>r</mark>oju belki,
- * wskazać materiał,

Schemat rozwiązania

- * ustalić warunki brzegowe *Insert/Displacement Constraint* wybrać punkt i odebrać wszystkie stopnie swobody (*Fixed*),
- zdefiniować obciążenie i grawitację (wybór drugiego skrajnego punktu),
- * dokonać wyboru analizy (Run Design Study/File/New Static/OK),
- uruchomić obliczenia (Run/Start),
- * sprawdzić wyniki (**Review Results**): aby wyświetlić wykres wybrać typ **Graph** (Displacement).

Dla belki pokazanej na schemacie wyznaczyć naprężenia zredukowane i linię ugięcia belki. Przekrój belki taki sam jak w poprzednim zadaniu.

P<mark>olite</mark>chnika Warszawska

Warszawska

Wyznaczyć mapę przemieszczeń zredukowanych oraz linię ugięcia belki pokazanej na schemacie. Przyjąć przekrój profilu jak wcześniej. W lewej części belki obciążenie wzrasta liniowo według funkcji

$$q_1(\mathbf{x}) = 1500 \cdot \mathbf{x}$$

Schemat rozwiązania

Realizacja (tak jak poprzednio). Należy narysować dwie linie odpowiedzialne za położenie i długość obciążenia ciągłego. Dodać dwa punkty jako podpory.

Przy definiowaniu obciążenia (W polu **Distribution** wybrano opcję **Total Load**, w oknie **Spatial Variation** opcję **Function of Coordinates** i po wybraniu f(x) zdefiniowano funkcję (wpisać x).

Przed definicją drugiego obciążenia należy dodać drugi układ współrzędnych w miejscu początkowego obciążenia.

Politechnika Warszawska

Wyznaczyć naprężenia zredukowane i linię ugięcia w kratownicy. Przekrój belek taki sam jak w poprzednim zadaniu.

P<mark>olite</mark>chnika Warszawska

Bibliografia

T. Kucharski. Mechanika ogólna: rozwiązywanie zagadnień z MATHCAD-em. Wydawnictwa Naukowo-Techniczne, 2015. isbn:

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskie!". 2011. isbn: 9788388906343.

E. Lisowski. Integracja modelowania 3D, kinematyki i wytrzymałości w programie Creo Parametric. Wydawnictwo PK, 2013. isbn:

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne, tom 2. WNT, 2015. isbn: 9788393491360.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.

E. Winter. Using Pro/Weld in Creo 2.0.

