Supporting information for "Improved force field for molecular modeling of poly(3-hexylthiophene)"

Ram S. Bhatta[†], Yeneneh Y. Yimer[†], David S. Perry[#] and Mesfin Tsige[†]

[†]Department of Polymer Science, The University of Akron, Ohio 44325, United States

*Department of Chemistry, The University of Akron, Ohio 44325, United States

$$H_{5}$$
 H_{6}
 H_{6}
 H_{6}
 H_{6}
 H_{6}
 H_{6}
 H_{6}
 H_{7}
 H_{1}
 H_{1}
 H_{1}
 H_{1}
 H_{1}
 H_{2}
 H_{1}
 H_{1}
 H_{2}
 H_{1}
 H_{1}
 H_{3}
 H_{4}
 H_{5}
 H_{5}
 H_{5}
 H_{6}
 H_{6}

Fig. S1: Chemical structure of central two-monomer unit in a P3HT chain. Atom types are labeled with different numerical suffixes.

Table S1: Non-bonded parameters used in MD simulation of P3HT. P3HT atom types are defined in Fig. S1.

Atom type	$\sigma(\mathring{A})^{a,b}$	ε(kcal mol ⁻¹) ^{a,b}	$q(e)^{\mathrm{c}}$
C1	3.550	0.070	-0.0441
S1	3.550	0.250	-0.2171
C2	3.550	0.070	0.0318
C3	3.500	0.066	0.1278
H1	2.500	0.030	0.0039
C4	3.500	0.066	-0.0926
H2	2.500	0.030	0.0290
C5	3.500	0.066	0.0189
Н3	2.500	0.030	0.0036
C6	3.500	0.066	0.0289
H4	2.500	0.030	0.0069
C7	3.500	0.066	-0.1396
H5	2.500	0.030	0.0536
C8	3.500	0.066	-0.0670
Н6	2.500	0.030	0.0200
C9	3.550	0.070	-0.3128
H7	2.420	0.030	0.2356
C10	3.550	0.070	0.1762
			•

^aFrom Ref. [1]

Table S2: Bond-stretching parameters. Bond-stretching potential is defined by harmonic expression; $E_bond = k_r(r - r_{eq})^2$.

Bond type	$r_{eq}(\text{Å})$	k_r (kcal mol ⁻¹ Å ⁻²)
C9-H7 ^a	1.0822	370.63
C1/C10-S1 ^a	1.73373	291.25
C1-C2 ^a ; C9-C10 ^a	1.37368	514.27
C2-C3 ^b	1.50884	299.82
C2-C9 ^a	1.43277	453.1
C3-H1 ^b	1.09827	327.545
C3-C4°; C4-C5°; C5-C6°; C6-C7°; C7-C8°	1.54158	268
C4-H2°; C5-H3°; C6-H4°; C7-H5°; C8-H6°	1.09527	340
C1-C10	1.45	392.29

^aFrom Ref. [1]

^bFrom Ref. [2]

^cThis work

^bThis work

^cFrom Ref. [2]

Table S3: Angle-bending parameters. Angle-bending potential is defined by harmonic expression; $E_angle = k_{\theta}(\theta - \theta_{eq})^2$.

Angle type	$\theta_{eq}(ext{degree})$	k_{θ} (kcal mol ⁻¹ deg ⁻²)
C1-S1-C10 ^a	92.774	86.36
S1-C1-C2 ^a ; S1-C10-C9 ^a	110.292	86.36
C1-C2-C9 ^a ; C2-C9-C10 ^a	113.322	39.582
C2-C9-H7 ^a	123.7	35.263
C1-C10-C9 ^a ; C2-C1-C10 ^a	130.14	54.694
H7-C9-C10 ^a	122.979	35.263
S1-C1-C10 ^a ; S1-C10-C1 ^a	119.569	41.74
C3-C2-C9 ^b	123.378	166.545
C1-C2-C3 ^b	124.554	166.32
C2-C3-C4 ^b	115.44	120.14
C2-C3-H1 ^b	109.189	74.06
C3-C4-C5°; C4-C5-C6°; C5-C6-C7°; C6-C7-C8°	112.7	58.35
H1-C3-C4°; C3-C4-H2°; H2-C4-C5°; C4-C5-H3°;	110.7	37.5
H3-C5-C6 ^c ; C5-C6-H4 ^c ; H4-C6-C7 ^c ; C6-C7-H5 ^c ;	110.7	37.5
H5-C7-C8°; C7-C8-H6°	110.7	37.5
H1-C3-H1°; H2-C4-H2°; H3-C5-H3°; H4-C6-H4°;	107.8	33
H5-C7-H5°; H6-C8-H6°	107.8	33

^aFrom Ref. [1]

Table S4: Torsional parameters^a. Torsional potential is defined by multi-harmonic expression; $E_torsion = \sum_{n=0}^{4} V_n \cos^n \phi$.

Dihedral type	V_0 (kcal mol ⁻¹)	V_I (kcal mol ⁻¹)	V_2 (kcal mol ⁻¹)	V ₃ (kcal mol ⁻¹)	V_4 (kcal mol ⁻¹)
S1-C10-C1-S1 ^b	2.9533	0.1571	-4.2326	0.3979	1.8855
C9-C2-C3-C4 ^b	0.3175	1.127	14.143	-22.297	6.7188
C2-C1-S1-C10;	126.32	-109.81	-19.738	-25.303	28.53
C1-S1-C10-C9;	126.32	-109.81	-19.738	-25.303	28.53
C1-C2-C9-C10;	126.32	-109.81	-19.738	-25.303	28.53
C2-C9-C10-S1	126.32	-109.81	-19.738	-25.303	28.53
C2-C3-C4-C5	2.4469	-6.3946	10.747	30.695	11.139
C3-C4-C5-C6	1.9475	-3.7121	1.388	8.6305	1.6008
C4-C5-C6-C7	1.8922	-3.4904	1.4665	7.1418	0.2859
C5-C6-C7-C8	1.9788	-3.8476	1.1614	7.419	0.4146
S1-C10-C1-C2	2.9533	-0.1571	-4.2326	-0.3979	1.8855
C3-C2-C9-C10	117.65	238.26	205.96	112.81	27.467
C2-C9-C10-C1	75.595	116	42.679	-1.528	-3.8137
C10-C1-S1-C10	158.7	418.34	521.33	376.73	115.12

^aThis work

^bThis work

^cFrom Ref. [2]

^bFrom Ref. [3]

References:

- [1]. Marcon, V.; Raos, G., *J. Am. Chem. Soc.*, **2006**, *128*, 1408; (See also Marcon, V.; Raos, G., *J. Phys. Chem. B* **2004**, *108*, 18053 and Huang, D. M.; Faller, R.; Do, K.; Moule, A. J., *J. Chem. Theory Comput.* **2010**, *6*, 526-537).
- [2]. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., J. Am. Chem. Soc., 1996, 118, 11225.
- [3]. Bhatta, R. S.; Yimer, Y. Y.; Tsige, M.; Perry, D. S. Comput. & Theor. Chem. 2012, 995, 36