Investigations Into Brownian Motion:

Optical Trapping

MIT Department of Physics 10/22/21

Vedang Lad

Partner: Bryan Sperry

What is Optical Trapping

- Piconewton sized forces on micron sized dielectric objects with infrared laser
- Revolutionary in Biophysics
- Pick up, move around, and interact with small biological systems

Arthur Ashkin

Goal: Determine the Boltzmann Constant

How has it been done before?

- Dielectric-constant gas thermometry
 - Gas response to electric fields
- Acoustic thermometry
- Speed of sound in a gas is directly dependent on its temperature How will we do it?
- Brownian motion and power spectral density using optical trapping

The Physics of Optical Trapping

- Momentum
- Scattered light creates a scattering force
- Refracted light creates gradient force

Set Up

Trap in X-Y Focus laser with Z

Math of Optical Trapping

 β hydrodynamic drag coefficient

 α harmonic optical trap of stiffness

d diameter of bead

 η viscosity of the medium

Wiener-Khinchin theorem to define a "power spectral distribution" function

Equipartition theorem...

$$\beta x' + \alpha x = F(t)$$

$$\beta = 3\pi \eta d$$

$$S_{xx}(f) = \frac{K_B T}{\pi^2 \beta (f^2 + f_0^2)}$$

$$f_0 = \frac{\alpha}{2\pi \beta}$$

Step One: Obtain Calibration

- Problem?
 - o QPD millivolts
 - Photodiode
 - o Piezo volts
 - Strain gauge
- How do we extract the position?
 - Pass through over fixed bead sample!

Part 1: Relationship between QPD and Piezos

Reducing systematic errors:

- Three trials for each X and Y at each laser current for the fixed bead sample
- Laser intervals for experiment: 100, 125, 150, 175, 200

Part 2: Relationship between Piezo and Position

- Four different points
- Preset at two

The Complete Conversion from QPD to Position

Step Two: Power Spectral Distribution

- Fourier transform QPD data using signal processing trick
- Fit
 - Extract boltzmann constant
 - Extract stiffness
- Function to fit:

$$S_{xx}(f) = \frac{A}{f^2 + f_0^2}$$

$$\beta = 3\pi\eta d$$

$$S_{xx}(f) = \frac{K_B T}{\pi^2 \beta (f^2 + f_0^2)}$$

$$f_0 = \frac{\alpha}{2\pi\beta}$$

Power Spectral Distribution Plot

Fitted Power Spectrum Density: QPD X and QPD Y

Putting It All Together

Trap Stiffness for X and Y

Determination of Boltzmann Constant for X and Y

Grand Finale: Boltzmann Constant

$$k_B = QPD X: 1.79 \times 10^{-23} \pm 1.10 \cdot 10^{-23} \frac{J}{K}$$

$$k_B = QPD \ Y: 1.72 \times 10^{-23} \pm 3.94 \cdot 10^{-24} \ \frac{J}{K}$$

Error Discussion

- Heating due to laser $T = 293 \pm 5 K$
- Piezo electronics (strain gauge)
- Lens and coverslip
- Other
- Propagation (statistical)

in reality • 10%

• **5**%

• 3%

• 1%

Conclusion

$$\begin{aligned} k_B &= QPD \ X: \ 1.79 \times 10^{-23} \pm 1.10 \cdot 10^{-23} \ (stat) \pm 0.34 \times 10^{-23} (sys) \ \frac{J}{K} \\ k_B &= QPD \ Y: \ 1.72 \times 10^{-23} \pm 0.39 \cdot 10^{-23} \ (stat) \pm 0.32 \times 10^{-23} (sys) \ \frac{J}{K} \end{aligned}$$

- Calibration but inherent dependence on electronics
- Measure active temperature of water
- No way to quantify interactions between stage, slip, oil, and lens

They were within error of each other different from the true value of $1.38 \times 10^{-23} \frac{J}{K}$

Resources

[1] J. L. Staff, Photoelectric effect lab guide (2018), jLab E-Library, URL http://web.mit.edu/8.13/www/JLExperiments/JLExp51.pdf

[2] UC. B. Staff, Advanced Experimentation Laboratory (2018), University of California, Berkeley, URL http://experimentationlab.berkeley.edu/sites/default/files/writeups/OTZ.pdf

[3] P. Bevington and D. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 2003).

Thank You

Average Chi Square Probability: 0.702, 0.771

Standard Deviation: 0.261, 0.229

