Содержание

BB	Введение	
1	Вариант 1	6
2	Вариант 2	7
3	Вариант 3	8
4	Вариант 4	9
5	Вариант 5	9
6	Вариант 6	10
7	Вариант 7	11
8	Вариант 8	12
9	Вариант 9	13
10	Вариант 10	15
11	Вариант 11	15
12	Вариант 12	15

13 Bapı	риант 13	15
14 Bapı	риант 14	15
15 Bapı	риант 15	15
16 Bapı	риант 16	15
17 Bapı	риант 17	15
18 Bapı	риант 18	15
19 Bapı	риант 19	15
20 Bapı	риант 20	15
21 Bapı	риант 21	15
22 Bapı	риант 22	15
23 Bapı	риант 23	15
24 Bapı	риант 24	15
25 Bapı	риант 25	15

Введение

№1.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + \sin t$$
, $u|_{t=0} = x$, $u_t|_{t=0} = x$.

№1.2. Определить решение начальной задачи для однородного волнового уравнения в точке $x=\frac{\pi}{2}$. Начальные функции имеют вид

$$\varphi(x) = \begin{cases} \sin x, & |x| < \pi, \\ 0, & |x| > \pi; \end{cases} \psi(x) = \begin{cases} v_0, & |x| < \pi, \\ 0, & |x| > \pi. \end{cases}$$

№1.3. Построить профиль полуограниченной струны с жёстко закреплённым концом x = 0 в момент времени $t = \frac{5c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, 2h), $(3c, \frac{3h}{2})$, (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}.$

- **№1.4.** Полуограниченной струне со свободным концом x = 0 в начальный момент времени t = 0 с помощью поперечного удара передаётся импульс I в точках $x = x_0$ и $x = 4x_0$. Найти отклонения точек струны в момент времени $t = \frac{3x_0}{2a}$.
 - №1.5. Найти решение начально-краевой задачи

$$u_{tt} - 4u_{xx} = 0, \quad t > 0, \quad x > 0;$$

 $u|_{t=0} = 2 - x, \quad u_t|_{t=0} = 2,$
 $(u_t + 3u_x)|_{x=0} = 3t - e^t.$

№1.6. Решить задачу о колебаниях струны, один конец которой (x = 0) свободен, а другой $(x = \pi)$ — закреплён жёстко. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \cos\frac{x}{2}, \ u_t|_{t=0} = \cos\frac{x}{2}.$$

№1.7. Рассмотреть задачу о поперечных колебаниях струны, закреплённой на конце x=0 и подверженной на конце x=l действию силы $Asin\omega t$. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

№2.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + \cos t$$
, $u|_{t=0} = x$, $u_t|_{t=0} = 0$.

№2.2. Определить решение начальной задачи для однородного волнового уравнения в точке $x=\frac{\pi}{4}$. Начальные функции имеют вид

$$\varphi(x) = \begin{cases} \cos x, & |x| < \frac{\pi}{2}, \\ 0, & |x| > \frac{\pi}{2}; \end{cases} \psi(x) = \begin{cases} v_0, & |x| < \frac{\pi}{2}, \\ 0, & |x| > \frac{\pi}{2}. \end{cases}$$

№2.3. Построить профиль полуограниченной струны со свободным концом x = 0 в момент времени $t = \frac{3c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), $(2c, \frac{3h}{2})$, (3c, 2h), (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}.$

- №2.4. Полуограниченной струне c жёстко закреплённым концом x=0 в начальный момент времени t=0 c помощью поперечного удара передаётся импульс I в точках $x=x_0$ и $x=3x_0$. Найти отклонения точек струны в момент времени $t=\frac{3x_0}{2a}$.
 - №2.5. Найти решение начально-краевой задачи

$$4u_{tt} - u_{xx} = 0, \quad t > 0, \quad x > 0;$$

$$u|_{t=0} = \cos x, \quad u_t|_{t=0} = 0,$$

$$u|_{x=0} = 1 + \sin t.$$

№2.6. Решить задачу о колебаниях струны, один конец которой (x = 0) свободен, а другой $(x = \pi)$ — закреплён жёстко. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \cos\frac{x}{2}, \ u_t|_{t=0} = 0.$$

№2.7. Рассмотреть задачу о поперечных колебаниях струны, один конец которой (x=0) двигается по заданному закону $u|_{x=0}=A\sin\omega t$, а другой (x=l) — свободен. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

№3.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + xt$$
, $u|_{t=0} = x$, $u_t|_{t=0} = \sin x$.

№3.2. Определить решение начальной задачи для однородного волнового уравнения в момент времени $t = \frac{\pi}{4a}$. Начальные функции имеют вид

$$\varphi(x) = \begin{cases} \sin x, & |x| < \pi, \\ 0, & |x| > \pi; \end{cases} \psi(x) = \begin{cases} v_0, & |x| < \pi, \\ 0, & |x| > \pi. \end{cases}$$

№3.3. Построить профиль полуограниченной струны со свободным концом x = 0 в момент времени $t = \frac{3c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, 2h), (3c, 2h), (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}$.

- **№3.4.** Полуограниченной струне c жёстко закреплённым концом x=0 в начальный момент времени t=0 c помощью поперечного удара передаётся импульс I в точках $x=\frac{x_0}{2}$ и $x=x_0$. Найти отклонения точек струны в момент времени $t=\frac{3x_0}{2a}$.
 - №3.5. Найти решение начально-краевой задачи

$$9u_{tt} - u_{xx} = 0, \quad t > 0, \quad x > 0;$$

$$u|_{t=0} = \sin x, \quad u_t|_{t=0} = 1,$$

$$u|_{x=0} = \sin t.$$

№3.6. Решить задачу о колебаниях струны, один конец которой (x = 0) закреплён жёстко, а другой $(x = \pi)$ — свободен. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \sin\frac{x}{2}, \ u_t|_{t=0} = 0.$$

№3.7. Рассмотреть задачу о поперечных колебаниях струны, свободной на конце x=0 и подверженной на конце x=l действию силы $A\sin\omega t$. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

№4.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + xt$$
, $u|_{t=0} = x$, $u_t|_{t=0} = \sin x$.

№4.2. Определить решение начальной задачи для однородного волнового уравнения в момент времени $t = \frac{\pi}{4a}$. Начальные функции имеют вид

$$\varphi(x) = \begin{cases} \cos x, & |x| < \frac{\pi}{2}, \\ 0, & |x| > \frac{\pi}{2}; \end{cases} \psi(x) = \begin{cases} v_0, & |x| < \frac{\pi}{2}, \\ 0, & |x| > \frac{\pi}{2}. \end{cases}$$

№4.3. Построить профиль полуограниченной струны со свободным концом x = 0 в момент времени $t = \frac{5c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, h), (3c, h), (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x = \frac{5c}{2}$.

- **№4.4.** Полуограниченной струне c жёстко закреплённым концом x = 0 в начальный момент времени t = 0 c помощью поперечного удара передаётся импульс I в точках $x = x_0$ и $x = 2x_0$. Найти отклонения точек струны в момент времени $t = \frac{3x_0}{2a}$.
 - №4.5. Найти решение начально-краевой задачи

$$u_{tt} - 4u_{xx} = 0, \quad t > 0, \quad x > 0;$$

 $u|_{t=0} = x^2, \quad u_t|_{t=0} = 2,$
 $(u_t + 3u_x)|_{x=0} = 2.$

№4.6. Решить задачу о колебаниях струны, оба конца которой $(x = 0, x = \pi)$ — свободны. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \cos x$$
, $u_t|_{t=0} = 0$.

№4.7. Рассмотреть задачу о поперечных колебаниях струны со свободным концом x=0, если на конце x=l задано смещение $u|_{x=l}=A\sin\omega t$. Начальные условия — нулевые. Найти решение при всех $0< t<\frac{3l}{2a}$.

5. Вариант 5

№5.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + 2t$$
, $u|_{t=0} = x$, $u_t|_{t=0} = \sin x$.

№5.2. Определить решение начальной задачи для однородного волнового уравнения в момент времени $t=\frac{1}{a}$. Начальные функции имеют вид

$$\varphi(x) = \left\{ \begin{array}{ll} x^2 - 2x, & 0 < x < 2, \\ 0, & x < 0 \text{ или } x > 2; \end{array} \right. \psi(x) = \left\{ \begin{array}{ll} v_0, & 0 < x < 2, \\ 0, & x < 0 \text{ или } x > 2. \end{array} \right.$$

№5.3. Построить профиль полуограниченной струны с жёстко закреплённым концом x = 0 в момент времени $t = \frac{3c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, 2h), (3c, 2h), (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}$.

- **№5.4.** Полуограниченной струне со свободным концом x = 0 в начальный момент времени t = 0 с помощью поперечного удара передаётся импульс I в точках x = l и x = 2l. Найти отклонения точек струны в момент времени $t = \frac{l}{2a}$.
 - №5.5. Найти решение начально-краевой задачи

$$u_{tt} - u_{xx} = 0, t > 0, x > 0;$$

 $u|_{t=0} = x + 1, u_t|_{t=0} = 1,$
 $u|_{x=0} = \cos t.$

№5.6. Решить задачу о колебаниях струны, один конец которой (x = 0) закреплён жёстко, а другой $(x = \pi)$ — свободен. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \sin\frac{x}{2}, \ u_t|_{t=0} = \sin\frac{x}{2}.$$

№5.7. Рассмотреть задачу о поперечных колебаниях струны, свободной на конце x=l и подверженной на конце x=0 действию силы $A\sin\omega t$. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

6. Вариант 6

№6.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + x$$
, $u|_{t=0} = x$, $u_t|_{t=0} = \cos x$.

№6.2. Определить решение начальной задачи для однородного волнового уравнения в момент времени $t=\frac{3}{4a}$. Начальные функции имеют вид

$$\varphi(x) = \left\{ \begin{array}{ll} x^2 + 2x, & -2 < x < 0, \\ 0, & x < -2 \text{ или } x > 0; \end{array} \right. \psi(x) = \left\{ \begin{array}{ll} v_0, & -2 < x < 0, \\ 0, & x < -2 \text{ или } x > 0. \end{array} \right.$$

№6.3. Построить профиль полуограниченной струны со свободным концом x = 0 в момент времени $t = \frac{5c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, 2h), (3c, 3h), (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}$.

- **№6.4.** Полуограниченной струне со свободным концом x=0 в начальный момент времени t=0 с помощью поперечного удара передаётся импульс I в точках $x=x_0$ и $x=\frac{3x_0}{2}$. Найти отклонения точек струны в момент времени $t=\frac{5x_0}{4a}$.
 - №6.5. Найти решение начально-краевой задачи

$$u_{tt} - u_{xx} = 0, t > 0, x > 0;$$

 $u|_{t=0} = x, u_t|_{t=0} = 1,$
 $u|_{x=0} = \sin t.$

№6.6. Решить задачу о колебаниях струны, один конец которой (x = 0) свободен, а другой $(x = \pi)$ — закреплён жёстко. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \cos\frac{3x}{2}, \ u_t|_{t=0} = \cos\frac{x}{2}.$$

№6.7. Рассмотреть задачу о поперечных колебаниях струны, если на конце x=0 задан закон движения $u_{x=0}=A\sin\omega t$, а конец x=l — жёстко закреплён. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

7. Вариант 7

№7.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + t$$
, $u|_{t=0} = \cos x$, $u_t|_{t=0} = \sin x$.

№7.2. Определить решение начальной задачи для однородного волнового уравнения в момент времени $t = \frac{3\pi}{4a}$. Начальные функции имеют вид

$$\varphi(x) = \begin{cases} \sin x, & |x| < \pi, \\ 0, & |x| > \pi; \end{cases} \psi(x) = \begin{cases} v_0, & |x| < \pi, \\ 0, & |x| > \pi. \end{cases}$$

№7.3. Построить профиль полуограниченной струны с жёстко закреплённым концом x = 0 в момент времени $t = \frac{3c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, 4h), (3c, 3h), (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}$.

- **№7.4.** Полуограниченной струне со свободным концом x=0 в начальный момент времени t=0 с помощью поперечного удара передаётся импульс I в точках $x=2x_0$ и $x=3x_0$. Найти отклонения точек струны в момент времени $t=\frac{5x_0}{4a}$.
 - №7.5. Найти решение начально-краевой задачи

$$u_{tt} - u_{xx} = 0, t > 0, x > 0;$$

 $u|_{t=0} = 2\sin x, u_t|_{t=0} = x + 1,$
 $u|_{x=0} = \sin t.$

№7.6. Решить задачу о колебаниях струны, один конец которой (x=0) свободен, а другой $(x=\pi)$ — закреплён жёстко. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \cos\frac{x}{2}, \ u_t|_{t=0} = \cos\frac{3x}{2}.$$

№7.7. Рассмотреть задачу о поперечных колебаниях струны, свободной на конце x=l и подверженной на конце x=0 действию силы $A\sin\omega t$. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

8. Вариант 8

№8.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + xt$$
, $u|_{t=0} = \cos x$, $u_t|_{t=0} = \sin x$.

№8.2. Определить решение начальной задачи для однородного волнового уравнения в точке $x = -\frac{1}{2}$. Начальные функции имеют вид

$$\varphi(x) = \left\{ \begin{array}{ll} x^2 + 2x, & -2 < x < 0, \\ 0, & x < -2 \text{ или } x > 0; \end{array} \right. \psi(x) = \left\{ \begin{array}{ll} v_0, & -2 < x < 0, \\ 0, & x < -2 \text{ или } x > 0. \end{array} \right.$$

№8.3. Построить профиль полуограниченной струны со свободным концом x = 0 в момент времени $t = \frac{3c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, 3h), (3c, 2h), (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}$.

- №8.4. Полуограниченной струне c жёстко закреплённым концом x = 0 в начальный момент времени t = 0 c помощью поперечного удара передаётся импульс I в точках $x = x_0$ и $x = 5x_0$. Найти отклонения точек струны в момент времени $t = \frac{4x_0}{3a}$.
 - №8.5. Найти решение начально-краевой задачи

$$u_{tt} - 4u_{xx} = 0, t > 0, x > 0;$$

 $u|_{t=0} = 2 - x, u_t|_{t=0} = 1,$
 $(u_t + 3u_x)|_{x=0} = 3t - t^2.$

№8.6. Решить задачу о колебаниях струны, один конец которой (x = 0) закреплён жёстко, а другой $(x = \pi)$ — свободен. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \sin\frac{x}{2}, \ u_t|_{t=0} = \sin\frac{x}{2}.$$

№8.7. Рассмотреть задачу о поперечных колебаниях струны, свободной на конце x=0 и подверженной на конце x=l действию силы $A\sin\omega t$. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

9. Вариант 9

№9.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + 2xt$$
, $u|_{t=0} = x$, $u_t|_{t=0} = \sin x$.

№9.2. Определить решение начальной задачи для однородного волнового уравнения в момент времени $t=\frac{1}{4a}$. Начальные функции имеют

ВИД

$$\varphi(x) = \begin{cases} \sin \pi x, & 0 < x < 1, \\ 0, & x < 0 \text{ или } x > 1; \end{cases} \quad \psi(x) = \begin{cases} v_0, & 0 < x < 1, \\ 0, & x < 0 \text{ или } x > 1. \end{cases}$$

№9.3. Построить профиль полуограниченной струны со свободным концом x = 0 в момент времени $t = \frac{3c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, 4h), $(3c, \frac{7h}{2})$, (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}$.

- №9.4. Полуограниченной струне с жёстко закреплённым концом x=0 в начальный момент времени t=0 с помощью поперечного удара передаётся импульс I в точках $x=x_0$ и $x=\frac{3x_0}{2}$. Найти отклонения точек струны в момент времени $t=\frac{5x_0}{4a}$.
 - №9.5. Найти решение начально-краевой задачи

$$u_{tt} - 4u_{xx} = 0, \quad t > 0, \quad x > 0;$$

 $u|_{t=0} = 2 - x, \quad u_t|_{t=0} = 2,$
 $u_x|_{x=0} = \sin t - 1.$

№9.6. Решить задачу о колебаниях струны, один конец которой (x=0) закреплён жёстко, а другой $(x=\pi)-c$ вободен. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \sin\frac{3x}{2}, \ u_t|_{t=0} = 0.$$

№9.7. Рассмотреть задачу о поперечных колебаниях струны, подверженной на конце x = 0 действию силы $A \sin \omega_1 t$, а на конце x = l действию силы $A \sin \omega_2 t$. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{l}{a}$.

- 10. Вариант 10
- 11. Вариант 11
- 12. Вариант 12
- 13. Вариант 13
- 14. Вариант 14
- 15. Вариант 15
- 16. Вариант 16
- 17. Вариант 17
- 18. Вариант 18
- 19. Вариант 19
- 20. Вариант 20
- 21. Вариант 21
- 22. Вариант 22
- 23. Вариант 23
- 24. Вариант 24
- 25. Вариант 25