EECS 112 & CSE 132, FALL 2017

Homework 4

Due date: December 1, 2017

Student ID:								Name:
1. Below is a list of 64-bit memory address references, given as word addresses: 0x03, 0xb4, 0x2b, 0x02, 0xbf, 0x58, 0xbe, 0x0e, 0xb5, 0x2c, 0xba, 0xfd Consider a direct-mapped cache with 16 one-word blocks. Assume that cache is initially empty.								
miss without instance if fin	1.a. Write down a sequence of characters showing the result of each reference. 'H' for a hit, 'P' for a miss without having to replace a block already in cache, 'R' for a miss requiring replacement. For instance if first four references are miss on empty cache, second four are hits, and third four references are misses requiring replacement, the character sequence will be 'PPPPHHHHRRRR'							
		J					•	

1.b. Repeat 1.a. for a direct mapped cache with two-word blocks and the same total number of blocks as 1.a.

address	Result	Content after reference

1.c. Repeat 1.a. for a direct mapped cache with four-word blocks and the same total number of blocks as 1.a.

Reference	Result	Content after reference

1.d. Which cache choice is optimum for the given access sequence?					
bytes. Assum	e that the inp	ut byte address		city of 2^B bytes, and a ulate the total number of dirty bit.	
	s latency give			es latency. Find the bloc ne for instruction and da	
8: 4%	16: 3%	32: 2%	64: 1.5%	128: 1%	
3.1. Miss per	nalty is 20 ×E	cycles			

3.2. Miss penalty is 20 +B cycles				
3.3 N	liss penalty is constan	ıt		
	1			
Λ Δ ς α	sume that main memor	ry accesses take 70 pc	and that 36% of all instructions access data memory.	
			ached to each of two processors, P1 and P2.	
I IIC I	L1 Size	L1 Miss Rate	L1 Hit Time	
P1	2 KiB	8.0%	0.66 ns	
P2	4 KiB	6.0%	0.90 ns	
1 2	TILD	0.070	0.50 115	
<i>4</i> 1 <i>4</i>	Assuming that the I 1 h	nit time determines the	e cycle times for P1 and P2, what are their respective	
	rates?	in time determines the	e cycle times for 1.1 and 1.2, what are then respective	
CIOCK	rates:			
4.2. \	What is the Average M	lemory Access Time for	or P1 and P2 (in cycles)?	

5. Solve problem 1.b replacing the direct-mapped cache with the following cache designs (total number of blocks and block size is the same as problem 1.b). Each valid entry should look like $<i,\{tag1,lru1\}$, ..., $\{tag_n,lru_n\}>$, where n is the number of blocks you can put in a row, and lru is the true LRU counter.

5.a. 2-way set associative cache

Reference	Result	Content after reference

5.b. 4-way set associative cache

Reference	Result	Content after reference		
5.c. For this specific example, what is the advantage of 4-way compared to 2-way?				