

Supporting Information for

Evidence for microbially-mediated tradeoffs between growth and defense throughout coral evolution

Hannah E. Epstein¹, Tanya Brown², Ayomikun O. Akinrinade^{2,3}, Ryan McMinds^{1,4}, F. Joseph Pollock^{5,6}, Dylan Sonett⁷, Styles Smith⁵, David G. Bourne^{8,9}, Carolina S. Carpenter^{10,11}, Rob Knight¹¹⁻¹⁴, Bette L. Willis^{8,15}, Mónica Medina⁵, Joleah B. Lamb³, Rebecca Vega Thurber¹, Jesse R. Zaneveld^{2*}

¹Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA ²School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA 98011, USA

³Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA ⁴Center for Global Health and Infectious Diseases Research, University of South Florida, 13201 Bruce B. Downs Blvd, MDC 56, Tampa, FL 33612, USA

*Jesse R. Zaneveld

Email: zaneveld@uw.edu

This PDF file includes:

Figures S1 to S4

⁵Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, PA 16802,

⁶Hawai i & Palmyra Program, The Nature Conservancy, Honolulu, HI, USA

⁷School of Pharmacy, University of Washington, Seattle, WA 98195, USA

⁸College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia

⁹Australian Institute of Marine Science, Townsville, Queensland 4810, Australia

¹⁰Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA

¹¹Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA

¹²Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA

¹³Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA

¹⁴Micronoma Inc., San Diego, La Jolla, CA 92121, USA

¹⁵ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia

Fig. S1. Ancestral state reconstructions mirroring disease susceptibility and microbial alpha diversity metrics, including A) species richness, B) evenness (Gini Index), and C) dominance (Simpson's Index).

Fig. S2. Ancestral state reconstructions mirroring disease susceptibility and microbial dominance of A) Alphaproteobacteria only and B) Gammaproteobacteria only.

Fig. S3. Growth rate vs. dominant taxon abundance (zeros excluded). R² of the correlations between average coral host growth rate and dominant taxon relative abundance in corals only where each taxon is present (zero counts excluded). Arrow direction indicates a positive or negative correlation, filled arrows refer to significant correlations, striped arrows indicate nominally significant correlations (did not pass multiple comparisons) and open arrows indicate insignificant correlations. Size of the arrow represents R² value (See Supplementary Data Table 9b for details).

Fig. S4. Model selection for phylogenetic causality analysis. These models represent the fourteen plausible causality pathways that were used in the phylogenetic causality analysis. EN = *Endozoicomonas* relative abundance, DS = coral disease susceptibility, and GR = coral growth rate.