アルゴリズム論2

第 9 回: Arrangement (3)

関川 浩

2016/11/09

- Arrangement の概要 (前々回)
- Arrangement の応用 (前回)
- Arrangement の構成 (今回)

- 1 2 次元の場合
 - 逐次添加による zone の構成法
 - 直線の zone 定理
 - Arrangement を構成する計算量

- ② 高次元の場合
 - 超平面の zone 定理
 - Zone の facet の数
 - Arrangement を構成する計算量

- ① 2次元の場合
- ② 高次元の場合

逐次添加による zone の構成法 (1/4)

$$L = \{l_1, \ldots, l_n\}$$
: \mathbb{R}^2 内の n 本の直線の集合

- $L_1 = \{l_1\}$ $L_k = L_{k-1} \cup \{l_k\} \ (k = 2, ..., n)$
- ullet L_1 の arrangement から始めて一本ずつ直線を追加し arrangement を 更新

Arrangement を表現するデータ構造

- 各頂点に, その頂点に接続する 4 辺を反時計回りの順で記憶
- 各辺に、その辺を含む直線と、その辺の両端点の頂点を記憶

逐次添加による zone の構成法 (2/4)

$A(L_{k-1})$ から $A(L_k)$ を構成するアルゴリズム

- (1) $x = -\infty$ で l_k のすぐ上にある直線を l とする l に含まれる一番左の辺を e とし, $v = -\infty$ とする
- (2) e の下に接続している $\mathcal{A}(L_{k-1})$ の面の境界を以下のようにたどる
 - ullet e と l_k の交点がなければ, v と反対側の e の頂点を改めて v とし, v において e の次 (反時計回りで) の辺を改めて e とし, (2) の先頭へ
 - ullet e と l_k が交点を持てば、その交点により e, l_k を分割 v において e の次 (反時計回りで) の辺を改めて e とし、(2) の先頭へ
- (3) 以下, すでに arrangement に存在していた (k-1) 本の直線すべてと l_k が交わるまで続ける

逐次添加による zone の構成法 (3/4)

注意

- このアルゴリズムにより
 - *l_k* 上に現われるすべての頂点
 - それにより分割される $\mathcal{A}(L_{k-1})$ のすべての辺

を列挙可能 (どのタイミングで何を記憶するかは省略した)

ullet その手間: l_k と交わる面の, 境界上でたとる辺の数に比例

逐次添加による zone の構成法 (4/4)

Arrangement への直線 l_k の追加

Zone とその組合せ複雑度

定義 (直線の zone)

 $l_1, \ldots, l_k \subset \mathbb{R}^2$: 直線

$$\{C \in \mathcal{A}(\{l_1,\ldots,l_{k-1}\}) \mid C$$
は cell かつ $C \cap l_k \neq \emptyset\}$

を l_k の zone という

定義 (直線の zone の組合せ複雑度)

- Zone の i 次元の組合せ複雑度: Zone の各 cell の i-face の数の総和
- 単に組合せ複雑度といったら各次元の複雑度の最大値

Zone の例

直線の Zone 定理 (1/3)

定理 1 (直線の zone 定理)

 $l_1,\ldots,l_n\subset\mathbb{R}^2$: 直線 $\mathcal{A}(\{l_1,\ldots,l_n\})$ において, 各 l_i の zone の組合せ的複雑度は O(n)

証明 (1/2)

 $H = \{l_1, \dots, l_n\},\$

 $b \subset \mathbb{R}^2$: 直線, $b \neq l_i$ $(i = 1, \ldots n)$ とする

 $A(H \cup \{b\})$: 単純かつ b は水平としてよい

主張: b の zone に含まれる cell の辺の数は高々 6n

どの l_i も b と平行ではないから, zone の辺 e に対して, それを含む直線を l_j とすると

 $b \cap l_i$ が着目している cell c の左 (右) \iff e が c の左 (右) 支持辺

直線の zone 定理 (2/3)

証明 (2/2)

主張: 左支持辺の数は高々 3n

H に含まれる直線の数 n についての帰納法

- n=0 ($H=\emptyset$) のときは明らかに成立
- n = k 1 のとき成立を仮定して n = k のとき

 $l \in H$: b との交点がもっとも右の直線

 $H\setminus\{l\}$ の zone の左支持辺の総数は高々 3n-3

これに l を加えると

- (1) H における b の zone のもっとも右の cell の l に含まれる辺
- (2) (1) の辺と接続する高々 2 辺
- の分だけ左支持辺が増えるので、このときも成立

直線の zone 定理 (3/3)

Arrangement を構成する計算量

n 本の直線の arrangement 中,着目している 1 直線と交わる cell を囲む 辺の数の総和は zone 定理より O(n)

- $\implies k-1$ 本の直線の arrangement に k 本目の直線を加える手間は O(k)
- \Longrightarrow 逐次添加法により n 本の直線の arrangement 全体を構成する手間は $O(n^2)$

- 1 2次元の場合
- ② 高次元の場合

超平面の zone 定理

定義 (超平面の zone)

 $\pi_1, \ldots, \pi_k \subset \mathbb{R}^d$: 超平面

$$\{C \in \mathcal{A}(\{\pi_1, \dots, \pi_{k-1}\}) \mid C$$
は cell かつ $C \cap \pi_k \neq \emptyset\}$

を π_k の zone という

定理 2 (超平面の zone 定理)

 $\pi_1, \ldots, \pi_n \subset \mathbb{R}^d$: 超平面

 $\{\pi_1,\ldots,\pi_n\}$ の arrangement において, 各 π_i の zone の組合せ的複雑度は $O(n^{d-1})$

注意

3 次元以上のとき, cell の境界の辺を時計回りの順に一列に並べることができない \Longrightarrow 2 次元の場合とは証明法が異なる

Zone の facet の数 (1/9)

注意

以下では zone の facet (d-1-face) の数についてのみ議論

- i-face $(1 \le i \le d-2)$ についても同様
- 0-face は $1, \ldots, (d-1)$ -faces の結果と Euler の関係式から

$$H = \{\pi_1, \dots, \pi_n\}$$
 $(\pi_i \subset \mathbb{R}^d \text{ は超平面})$ $(f, c) \iff \mathcal{A}(H) \mathcal{O}(d-1)\text{-face } f \text{ と}, \pi \mathcal{O} \text{ zone } \mathcal{O} \text{ cell } c \text{ が接続}$

定義

- $z(H,\pi)$: 接続関係 (f,c) の総数
- $z(H,\pi;\pi_i)$: $z(H,\pi)$ で数える接続関係 (f,c) の中で $f\in\pi_i\in H$ であるものの数

したがって,
$$\sum_{i=1}^{n} z(H,\pi;\pi_i) = z(H,\pi)$$

Zone の facet の数 (2/9)

ある超平面 $\pi_i \in H$ に対して以下を考える

- $\mathcal{A}(H \setminus \{\pi_i\})$
- $H/\pi_i = \{\pi_j \cap \pi_i \mid \pi_j \in H \setminus \{\pi_i\}\}\$ としたとき, $\mathcal{A}(H/\pi_i)$ と, その $\pi \cap \pi_i$ に関する zone

補題 1

$$z(H,\pi) - z(H,\pi;\pi_i) \le z(H \setminus \{\pi_i\},\pi) + z(H/\pi_i,\pi \cap \pi_i)$$

Zone の facet の数 (3/9)

証明

左辺: 以下の条件を満たす f, c についての接続関係 (f,c) の総数

- f: $\mathcal{A}(H)$ の π に関する zone の (d-1)-face で π_i に含まれないもの

これの右辺でのカウントを見る

場合分け

- (1) c が π_i と接続しない場合
- (2) c が π_i と接続, かつ, f が π_i と接続しない場合
- (3) c が π_i と接続, かつ, f が π_i と接続する場合

Zone の facet の数 (4/9)

証明

(1) c が π_i と接続しない場合 (f,c) は $\mathcal{A}(H\setminus\{\pi_i\})$ の π に関する zone での接続関係 $\Longrightarrow z(H\setminus\{\pi_i\},\pi)$ でそのまま数えられる

Zone の facet の数 (5/9)

証明

- (2) c が π_i と接続, かつ, f が π_i と接続しない場合
 - f は $\mathcal{A}(H \setminus \{\pi_i\})$ の π に関する zone にそのまま出現
 - ullet c に対応する cell c' は, π_i により切断されていた部分を加えたもの

$$(f,c) \stackrel{\text{1:1}}{\longleftrightarrow} \mathcal{A}(H \setminus \{\pi_i\})$$
 の π に関する zone の (f',c) $\Longrightarrow z(H \setminus \{\pi_i\},\pi)$ で正しく数えられる

 π_i により切断されていた c' の一部で zone に含まれない cell の (d-1)-face で π_i に接続しないもの

- 右辺では $z(H \setminus \{\pi_i\}, \pi)$ で数えられる
- 左辺では数えられない
- ⇒ 右辺の方が真に大

Zone の facet の数 (6/9)

証明

(3) c が π_i と接続, かつ, f が π_i と接続する場合

 π_i に関して f と反対側に f と同じ超平面に含まれる (d-1)-face f' が存在

 $\mathcal{A}(H \setminus \{\pi_i\})$ では $f \cup f'$ が一つの (d-1)-face

- f' が $\mathcal{A}(H)$ で zone に現れないとき, 両辺で 1 ずつカウント
- f' も $\mathcal{A}(H)$ で zone に現れるとき,
 - 左辺では2回数えられるのに対し、
 - 右辺の $z(H \setminus \{\pi_i\}, \pi)$ では 1 回しか数えられない

しかし, この場合, $z(H/\pi_i, \pi \cap \pi_i)$ で f と f' の境界の (d-2)-face を 1 回数える

⇒ いずれにしても、この部分に関して左辺と右辺は等しい

以上より成立

Zone の facet の数 (7/9)

補題 2

 $H: \mathbb{R}^d$ における n 個の超平面の集合

z(n,d): 超平面 π に関する $z(H,\pi)$ の最大値

このとき以下が成立

$$(n-1)z(n,d) \le n(z(n-1,d) + z(n-1,d-1)) \tag{*}$$

Zone の facet の数 (8/9)

証明

補題1の式

$$z(H,\pi) - z(H,\pi;\pi_i) \le z(H \setminus \{\pi_i\},\pi) + z(H/\pi_i,\pi \cap \pi_i)$$

 e^{+} を, $\pi_i \in H$ に関して和をとる

$$(n-1)z(H,\pi) = \sum_{i=1}^{n} (z(H,\pi) - z(H,\pi;\pi_i))$$

$$\leq \sum_{i=1}^{n} (z(H \setminus \{\pi_i\},\pi) + z(H/\pi_i,\pi \cap \pi_i))$$

この不等式は任意の H, π について成立するから

$$(n-1)z(n,d) \le n(z(n-1,d) + z(n-1,d-1))$$

Zone の facet の数 (9/9)

補題 3

$$z(n,d) = O(n^{d-1})$$

証明

- ullet d=2 のとき, 直線のときの議論より $z(n,2) \leq 6n$
- $d \ge 3$ とし d-1 のとき成立と仮定 補題 2 の式 (*) を用いて z(n,d) を展開

$$z(n,d) \le \sum_{i=1}^{n-1} \frac{n}{n-i} z(n-i,d-1) + nz(1,d)$$

z(1,d)=2 と帰納法の仮定から

$$z(n,d) \le \sum_{i=1}^{n-1} 6n(n-i)^{d-3} + 2n \le 6n^{d-1}$$

となり成立

Arrangement を構成する計算量

n 本の超平面の arrangement 中, 着目している 1 超平面と交わる cell を囲む (d-1)-face の数の総和は zone 定理より $O(n^{d-1})$

- $\Longrightarrow k-1$ 個の超平面の arrangement に k 個目の超平面を加える手間は $O(k^{d-1})$
- \Longrightarrow 逐次添加法により n 個の超平面の arrangement 全体を構成する 手間は $O(n^d)$