Contents

1	int-s	ummar	y 2
	1.1	概述	
	1.2	数组和字	² 符串
		1.2.1	三数之和
		1.2.2	矩阵置零
		1.2.3	字母异位词分组....................................
		1.2.4	无重复字符的最长子串
	1.3	链表	
		1.3.1	两数相加
		1.3.2	奇偶链表
		1.3.3	最长回文子串
		1.3.4	·····································
		1.3.5	相交链表
	1.4	树	
		1.4.1	二叉树的中序遍历
		1.4.2	E序遍历
		1.4.3	二叉树的锯齿形层序遍历
		1.4.4	从前序与中序遍历序列构造二叉树
		1.4.5	二叉搜索树中第 K 小的元素
	1.5		——大汉东州中书 K 小时几款 · · · · · · · · · · · · · · · · · · ·
	1.5	1.5.1	
	1.6		· · · · · · · · · · · · · · · · · · ·
	1.0	1.6.1	回溯小结
		1.6.2	电话号码的字母组合
		1.6.3	
		1.6.4	
		1.6.4	—·····
	1.7	1.6.6	単词搜索
	1./		15. A thick's A to the state of the state o
		1.7.1	各排序算法总结
		1.7.2	快排
		1.7.3	二分小结
		1.7.4	拓扑排序
		1.7.5	颜色分类
		1.7.6	前 k 个高频元素
		1.7.7	数组中的第 k 个最大元素
		1.7.8	寻找峰值
		1.7.9	在排序数组中查找元素的第一个和最后一个位置
			合并区间
			搜索旋转排序数组
			搜索二维矩阵 II
	1.8	I	
		1.8.1	跳跃游戏
		1.8.2	不同路径
		1.8.3	零钱兑换 22
		1.8.4	最长递增子序列
		1.8.5	爬楼梯
		1.8.6	接雨水
		1.8.7	跳跃游戏 II
		1.8.8	最大子数组和
		1.8.9	买卖股票的最佳时机
		1.8.10	正则表达式匹配

	1.8.11 二叉树中的最大路径和	. 28
	1.8.12 编辑距离	. 29
	1.8.13 最大正方形	. 30
	1.8.14 统计全为 1 的正方形子矩阵	. 31
	1.8.15 乘积最大子数组	. 31
1.9	设计	. 32
	1.9.1 二叉树的序列化与反序列化	. 32
	1.9.2 $O(1)$ 时间插入、删除和获取随机元素	. 34
1.10	数学	. 35
	1.10.1 快乐数	. 35
	1.10.2 阶乘后的零	. 35
	1.10.3 Excel 表列序号	. 36
	1.10.4 $Pow(x, n)$	
	1.10.5 x 的平方根	
	1.10.6 两数相除	
	1.10.7 分数到小数	
1.11	其他	
	1.11.1 两整数之和	
	1.11.2 逆波兰表达式求值	. 42
	1.11.3 多数元素	
	1.11.4 任务调度器	. 43
1.12	其他	. 44
	1.12.1 auc 计算	. 44

1 int-summary

1.1 概述

参考 1: https://leetcode-cn.com/leetbook/detail/top-interview-questions-medium/

1.2 数组和字符串

1.2.1 三数之和

给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a+b+c=0?请你找出所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元组。

```
vector<vector<int>> threeSum(vector<int>& nums)
{
   int size = nums.size();
                            // 保存结果(所有不重复的三元组)
   vector<vector<int> >res;
   if (size < 3) {
                         // 特判
       return res;
   std::sort(nums.begin(), nums.end());// 排序(默认递增)
   for (int i = 0; i < size; i++) // 固定第一个数, 转化为求两数之和
       if (nums[i] > 0) { // !!! 容易漏掉
           return res; // 第一个数大于 O, 后面都是递增正数, 不可能相加为零了
       // 去重: 如果此数已经选取过, 跳过
       if (i > 0 && nums[i] == nums[i - 1]) {
           continue;
       }
```

```
// 双指针在 nums[i] 后面的区间中寻找和为 O-nums[i] 的另外两个数
            int left = i + 1;
            int right = size - 1;
            while (left < right)</pre>
                if (nums[left] + nums[right] > -nums[i]) {
                    right--; // 两数之和太大,右指针左移
                } else if (nums[left] + nums[right] < -nums[i]) {</pre>
                    left++;
                              // 两数之和太小,左指针右移
                } else {
                    // 找到一个和为零的三元组,添加到结果中,左右指针内缩,继续寻找
                    vector<int> tmp {nums[i], nums[left], nums[right]};
                    res.push_back(tmp);
                    left++;
                    right--;
                    // 去重:第二个数和第三个数也不重复选取 !!! 容易漏掉
                    // 例如: [-4,1,1,1,2,3,3,3], i=0, left=1, right=5
                    while (left < right && nums[left] == nums[left-1]) {</pre>
                        left++;
                    while (left < right && nums[right] == nums[right+1]) {</pre>
                        right--;
                    }
                }
            }
        return res;
    }
1.2.2 矩阵置零
给定一个 \mathbf{m} \ \mathbf{x} \ \mathbf{n} 的矩阵,如果一个元素为 \mathbf{0} ,则将其所在行和列的所有元素都设为 \mathbf{0} 。请使用原地算法。
    void setZeroes(vector<vector<int>>& matrix) {
        int row = matrix.size();
        int col = matrix[0].size();
        // 用两个辅助数组, 存这行和这列是否要变成 0,
        // 然后再遍历原矩阵,如果二者有一个要变 O,那就变成 O
        vector<bool> rows(row, false);
        vector<bool> cols(col, false);
        for (int i = 0; i < row; ++i) {</pre>
            for (int j = 0; j < col; ++j) {
                if (matrix[i][j] == 0) {
                    rows[i] = true;
                    cols[j] = true;
                }
            }
        for (int i = 0; i < row; ++i) {</pre>
            for (int j = 0; j < col; ++j) {</pre>
                if (rows[i] || cols[j]) {
                    matrix[i][j] = 0;
                }
            }
        }
```

}

1.2.3 字母异位词分组

```
给你一个字符串数组,请你将字母异位词组合在一起。可以按任意顺序返回结果列表。
```

字母异位词是由重新排列源单词的字母得到的一个新单词,所有源单词中的字母通常恰好只用一次。

其实就是个倒排

```
vector<vector<string>> groupAnagrams(vector<string>& strs) {
    unordered_map<string, vector<string> > xmap;
    for (auto& it: strs) {
        string xit = it;
        // 对 string 进行 sort, 搞成一个词, 扔进 map
        sort(xit.begin(), xit.end());
        xmap[xit].emplace_back(it);
    }
    vector<vector<string>> res;
    for (auto& it: xmap) {
        res.emplace_back(it.second);
    }
    return res;
}
```

1.2.4 无重复字符的最长子串

}

return res;

}

}

双指针

给定一个字符串,请你找出其中不含有重复字符的最长子串的长度。

```
输入: s = "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke", 所以其长度为 3。
请注意, 你的答案必须是 子串 的长度, "pwke" 是一个子序列, 不是子串。
```

```
int lengthOfLongestSubstring(string s) {
    set<char>    set_char;
    int res = 0;
    // 双指针, 两个指针都从头开始
    for (int i = 0, j = 0; i < s.size() && j < s.size(); ) {
        if (set_char.find(s[j]) != set_char.end()) {
            //找到重复了,那就把起始的扔了
            set_char.erase(s[i]);
            ++i;
        } else {
            if (j - i + 1 > res) {
                res = j - i + 1;
            }
            set_char.insert(s[j]);
            //没重复的, 右指针继续往前找
            ++j;
```

4

1.3 链表

1.3.1 两数相加

```
给你两个非空的链表,表示两个非负的整数。它们每位数字都是按照逆序的方式存储的,并且每个节点只能存储一位数字。
请你将两个数相加,并以相同形式返回一个表示和的链表。
```

你可以假设除了数字 0 之外,这两个数都不会以 0 开头。head->...->tail 是倒序的整数,求两个整数的和,并返回同样格式的链表

```
ListNode* addTwoNumbers(ListNode* 11, ListNode* 12) {
    int carry = 0;// 进位
   ListNode* dummy head = new ListNode(0); //需要有个 dummy head, 最后 return head->next
   ListNode* tmp = dummy head;
   ListNode* ptr1 = 11;
   ListNode* ptr2 = 12;
    while (ptr1 != NULL || ptr2 != NULL) {
        int val1 = ptr1 != NULL? ptr1->val: 0;
        int val2 = ptr2 != NULL? ptr2->val: 0;
        int sum = val1 + val2 + carry;
        //cout << sum << " " << carry << " " << val1 << " " << val2 << endl;
        carry = sum / 10; // 很重要!!!!! 新的 carry
        int remain = sum % 10;
        tmp->next = new ListNode(remain);
        ptr1 = (NULL == ptr1? NULL: ptr1->next); //判断的是 ptr1, 而不是 ptr1->next!!!!!!
        ptr2 = (NULL == ptr2? NULL: ptr2->next);
       tmp = tmp->next;
    }
    if (carry > 0) {
        tmp->next = new ListNode(carry);
    }
   return dummy_head->next;
```

1.3.2 奇偶链表

}

给定单链表的头节点 head ,将所有索引为奇数的节点和索引为偶数的节点分别组合在一起,然后返回重新排序的列表。

第一个节点的索引被认为是奇数,第二个节点的索引为偶数,以此类推。

请注意,偶数组和奇数组内部的相对顺序应该与输入时保持一致。

你必须在 O(1) 的额外空间复杂度和 O(n) 的时间复杂度下解决这个问题。

12345 变成 13524

```
ListNode* oddEvenList(ListNode* head) {
   // 先把第一个偶数保存下来,
   // 跳着指 (2->4,3->5),
   // 最后再把奇数的指向第一个偶数,
   // return 的应该还是 head
   if (head == nullptr) {
       return nullptr;
   ListNode* even head = head->next; //第一个偶数, 存下来
   ListNode* odd = head;
   ListNode* even = even head;
   while (even != nullptr && even->next != nullptr) {
       odd->next = even->next;
```

```
odd = odd->next;
           even->next = odd->next;
           even = even->next;
       }
       odd->next = even_head;
       return head;
   }
1.3.3 最长回文子串
输入: s = "babad"
输出: "bab"
解释: "aba" 同样是符合题意的答案。
dp
   string longestPalindrome(string s) {
       // p(i,j) 表示 i:j 是回文串
       // 转移:
       // if si == sj then p(i,j) = p(i+1, j-1)
       // 边界: len=1 是, len=2, 如果 si==sj 那是
       // 结果就是所有 p(i,j)=1 的 j-i+1 的 max
       int n = s.size();
       if (n < 2) {
           return s;
       }
       int max_len = 1;
       int begin = 0;
       // n * n 的矩阵
       vector<vector<bool> > dp(n, vector<bool>(n));
       for (int i = 0; i < n; ++i) {
           dp[i][i] = true; //1 个字符的肯定是
       // L 是子串长度
       for (int L = 2; L <= n; ++L) {</pre>
           for (int i = 0; i < n; ++i) {
               // 根据 L 找 j 的位置, L = j-i+1
               int j = L + i - 1;
               if (j >= n) {
                   break; // 到尽头了
               if (s[i] != s[j]) {
                   dp[i][j] = false;
               } else {
                   if (j - i < 3) { // a aa aba 都 ok
                       dp[i][j] = true;
                       dp[i][j] = dp[i + 1][j - 1];
               }
               if (dp[i][j] && L > max_len) {
                   max_len = L;
                   begin = i;
```

```
}
           }
       }
       return s.substr(begin, max_len);
   }
1.3.4 递增的三元子序列
给你一个整数数组 nums ,判断这个数组中是否存在长度为 3 的递增子序列。
如果存在这样的三元组下标 (i,j,k) 且满足 i < j < k ,使得 nums[i] < nums[j] < nums[k] ,返回 true ;否则,返回 false 。
   bool increasingTriplet(vector<int>& nums) {
       // first < second, 且 second 肯定大于 first, 那么如果 second 右边的比 second 大, 就是找到了
       int n = nums.size();
       //if (n < 3) {
       //
             return false;
       int first = INT_MAX, second = INT_MAX;
       for (int i = 0; i < n; ++i) {</pre>
           int num = nums[i];
           if (num <= first) {</pre>
               first = num; // 更新第一个数
           } else if (num <= second) {</pre>
               second = num; // 这个数比 first 大, 那就是 second
           } else {
               // 如果这个数比两个数都大,那 return
               return true;
           }
       }
       return false;
   }
1.3.5 相交链表
返回交点
   ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
       // a b 一直走,判断是否相等,假设 b 比 a 长
       // a 到 null 的时候, a 从 b 的头开始, 这样和 b 一起走 b-a 的长度;
       // b 到 null 的时候,二者都走了 b-a,b 从 a 的头开始,就能和 a 相遇了
       // 假设没交点, 那最后两个都会指向 null
       if (headA == nullptr || headB == nullptr) {
           return nullptr;
       ListNode* p1 = headA;
       ListNode* p2 = headB;
       while (p1 != p2) {
           p1 = (p1 == nullptr? headB: p1->next);
           p2 = (p2 == nullptr? headA: p2->next);
       return p1;
   }
```

1.4 树

1.4.1 二叉树的中序遍历

```
栈一直塞左子树,取出栈顶,扔到 res 里去,pop 出来,开始遍历原栈顶的右子树
vector<int> inorderTraversal(TreeNode* root) {
       stack<TreeNode*> stk:
       vector<int> res;
       while (root != nullptr || !stk.empty()) { // 两个条件 或!!!!
           while (root != nullptr) { // 一直把 root 的左子树丢进去
               stk.push(root);
               root = root->left;
           }
           root = stk.top();
           stk.pop(); // 栈顶扔出来
           res.emplace_back(root->val); // 值搞进去
           root = root->right; // 开始原栈顶的右子树
       }
       return res;
   }
1.4.2 层序遍历
```

1.4.3 二叉树的锯齿形层序遍历

队列 (bfs) queue

给你二叉树的根节点 root ,返回其节点值的锯齿形层序遍历。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。 队列 + 优先队列 **deque**

```
vector<vector<int>>> zigzagLevelOrder(TreeNode* root) {
    // 层序遍历,加个参数,奇数左到右,偶数右到左
    // dequeue, 双端队列
    vector<vector<int> > res;
    if (root == nullptr) {
        return res;
    }
    queue<TreeNode*> q;
    q.push(root);
    bool left_order = true;
    while (!q.empty()) {
        deque<int> level_lst;
        int size = q.size();
        for (int i = 0; i < size; ++i) { // 这里写 size, 而不是 q.size, 因为 q 一直在变!!!
            TreeNode* node = q.front();
            q.pop();
            if (left_order) {
                level_lst.push_back(node->val);
            } else {
                level_lst.push_front(node->val);
            }
            if (node->left) {
                q.push(node->left);
            }
            if (node->right) {
```

```
q.push(node->right);
               }
           }
           res.emplace_back(vector<int>(level_lst.begin(), level_lst.end()));
           left_order = !left_order;
       }
       return res;
   }
1.4.4 从前序与中序遍历序列构造二叉树
前序:根 [\pm][\pm]中序:[\pm]根 [\pm] 根 [\pm] 找到根在中序里的位置(先用 [\pm] 存好值-位置关系,[\pm] 。 然后递归
   TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
       // 递归:
       // 通过前序找到根,再在中序里找到根的位置,左边是左子树,右边是右子树,这样就知道在前序里走几步是左,后面的就是右
       // 因此,区间的端点就是递归的参数
       // 把中序的值和 index 存到一个 map 里,这样就能知道在前序中的区间位置了
       int len_pre = preorder.size();
       int len_in = inorder.size();
       if (len_pre != len_in) {
           return nullptr;
       unordered_map<int, int> xmap;
       for (int i = 0; i < len_in; ++i) {</pre>
           xmap.emplace(inorder[i], i);
       // 前序, 左右区间; 中序 map, 左右区间
       return buildTreeSub(preorder, 0, len_pre - 1, xmap, 0, len_in - 1);
   }
   // 这里 xmap 要传引用,不然会超时。。
   TreeNode* buildTreeSub(vector<int>& preorder, int pre_start, int pre_end, unordered_map<int, int>&
       if (pre_start > pre_end || in_start > in_end) { // 终止条件
           return nullptr;
       }
       int root_val = preorder[pre_start];
       TreeNode* root = new TreeNode(root_val);
       int in_index = xmap[root_val]; //肯定会有
       root->left = buildTreeSub(preorder, pre_start + 1, pre_start + in_index - in_start, xmap, in_st
       root->right = buildTreeSub(preorder, pre_start + in_index - in_start + 1, pre_end, xmap, in_ind
       return root;
   }
       // 迭代法 (看不懂):
       // 前序中的任意连续两个节点 u,v 而言,要么 v 是 u 的左儿子,
       // 要么 u 没有左儿子的话,那么 v 就是 u 或者 u 的祖先的右儿子(u 向上回溯,到第一个有右儿子的就是他的右儿子)
1.4.5 二叉搜索树中第 K 小的元素
给定一个二叉搜索树的根节点 root ,和一个整数 k ,请你设计一个算法查找其中第 k 个最小元素(从 1 开始计数)。
左边比根小,右边比根大,那就中序遍历,遍历完成左,然后根,然后右,然后 k-,减到 0 就是了中序就是栈
   int kthSmallest(TreeNode* root, int k) {
```

```
// 栈,中序遍历, 左子树都比它小,所以找 topk 小,就先遍历完左的,再遍历它,再右
    stack<TreeNode*> stk;
   while (root != nullptr || stk.size() > 0) {
        while (root != nullptr) {
           stk.push(root);
           root = root->left;
        root = stk.top();
        stk.pop();
        --k;
        if (k == 0) {
           break;
       root = root->right;
   }
   return root->val;
}
```

1.5 图

1.5.1 岛屿数量

给你一个由'1'(陆地)和'0'(水)组成的的二维网格,请你计算网格中岛屿的数量。 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。 此外,你可以假设该网格的四条边均被水包围。

以 1 开始, dfs, visited 置 0, dfs 就是上下左右地递归:

```
int numIslands(vector<vector<char>>& grid) {
    // dfs,看成一个无向图,垂直或者水平相邻的 1 之间是一条边
    // 遇到 1, 就以它为起点,dfs, 每个走到的 1 重新记为 O!!!
    // 这样, 走了多少次 dfs, 就有多少个岛屿
    // dfs 中 就是先置 O,然后上下左右分别递归找
    int rows = grid.size();
    if (rows == 0) {
        return 0;
    int cols = grid[0].size();
    int num_islands = 0;
    for (int r = 0; r < rows; ++r) {</pre>
        for (int c = 0; c < cols; ++c) {</pre>
            if (grid[r][c] == '1') {
                ++num_islands;
                dfs(grid, r, c);
            }
        }
    }
    return num_islands;
void dfs(vector<vector<char> >& grid, int r, int c) {
    int rows = grid.size();
    int cols = grid[0].size();
   grid[r][c] = '0';
    if (r -1 >= 0 \&\& grid[r - 1][c] == '1') {
```

```
dfs(grid, r - 1, c); // 上
}
if (r + 1 < rows && grid[r + 1][c] == '1') {
    dfs(grid, r + 1, c); // 下
}
if (c - 1 >= 0 && grid[r][c - 1] == '1') {
    dfs(grid, r, c - 1); // 左
}
if (c + 1 < cols && grid[r][c + 1] == '1') {
    dfs(grid, r, c+1); // 右
}
}
```

1.6 回溯法

1.6.1 回溯小结

回溯法:一种通过探索所有可能的候选解来找出所有的解的算法。如果候选解被确认不是一个解(或者至少不是最后一个解),回溯算法会通过在上一步进行一些变化抛弃该解,即回溯并且再次尝试。

套路:调用:

```
vector<string> res; // 也可能是 vec 的 vec
       string cur; // 也可能是 vec, 看题目
       backtrace(res, cur, xxx);
       return res;
回溯函数:
   void backtrace(vector<string>& res, string& cur, xxx) { // xxx 一般有两个参数, 当前值 a, 上限 len
       if (aaaa) \{ // a+1  之类的 加到上限了如
           res.push_back(cur);
           return;
       }
       if (bbbb) {
           cur.push_back('aaa'); //扔进去
           backtrace(res, cur, xxxx); // a+1 之类的操作, 把 len 也传进去
           cur.pop_back(); // 放出来
       }
   }
模板:
回溯(子集, 全集):
   if 满足条件:
       加入答案
   for 元素 in 全集:
       元素加入子集
       回溯(子集,全集)
```

1.6.2 电话号码的字母组合

元素退出子集

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按任意顺序返回。

给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。

```
vector<string> letterCombinations(string digits) { // 回溯 +dfs
```

```
unordered_map<char, string> phone_map {
           {'2', "abc"},
           {'3', "def"},
           {'4', "ghi"},
           {'5', "jkl"},
           {'6', "mno"},
           {'7', "pqrs"},
           {'8', "tuv"},
           {'9', "wxyz"}
       };
       vector<string> res;
       if (digits.empty()) {
           return res;
       }
       string comb;
       backtrace(res, phone_map, digits, 0, comb);
       return res;
   }
   void backtrace(vector<string>& res, const unordered_map<char, string>& phone_map,
       const string& digits, int index, string& comb str) {
           // index: 输入的 digits 的第 index 个字母
           if (index == digits.length()) {
                res.push_back(comb_str);
           } else {
               char digit = digits[index];
               const string& letters = phone_map.at(digit);
               for (const char& letter: letters) {
                   comb_str.push_back(letter); // 先搞一个
                   backtrace(res, phone_map, digits, index + 1, comb_str);
                   comb_str.pop_back(); // 扔掉,换一个新的
           }
   }
1.6.3 括号生成
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且有效的括号组合。
有效括号组合需满足:左括号必须以正确的顺序闭合。
   vector<string> generateParenthesis(int n) {
       vector<string> res;
       string cur;
       backtrace(res, cur, 0, 0, n);
       return res;
   }
   // open 左括号个数, close 右括号个数
   void backtrace(vector<string>& res, string& cur, int open, int close, int n) {
       if (cur.size() == n * 2) { // 一共 2n 个左右括号
           res.push_back(cur);
           return;
       }
       if (open < n) { // 还可以继续加左括号 (最多可以加 n 个)
           cur.push_back('(');
```

```
backtrace(res, cur, open + 1, close, n);
           cur.pop_back();
       }
       if (close < open) { // 准备加新的右括号了
           cur.push back(')');
           backtrace(res, cur, open, close + 1, n);
           cur.pop_back();
       }
   }
1.6.4 全排列
给定一个不含重复数字的数组 nums ,返回其所有可能的全排列。你可以按任意顺序返回答案。
输入: nums = [1,2,3]
输出: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
   vector<vector<int>> permute(vector<int>& nums) {
       vector<vector<int> > res:
       backtrace(res, nums, 0, nums.size());
       return res;
   }
   void backtrace(vector<vector<int> >& res, vector<int>& output, int first, int len) {
       if (first == len) {
           res.push_back(output);
       for (int i = first; i < len; ++i) {</pre>
           swap(output[i], output[first]); // 交換
           backtrace(res, output, first + 1, len);
           swap(output[i], output[first]); // 换回去
       }
   }
1.6.5 子集
给你一个整数数组 nums ,数组中的元素互不相同。返回该数组所有可能的子集(幂集)。
解集不能包含重复的子集。你可以按任意顺序返回解集。
输入: nums = [1,2,3]
输出: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
调用两次 dfs, 因为对于子集来说, 每个数字可以选也可以不选。
   void dfs(vector<vector<int> > &res, const vector<iint>& nums, vector<iint>& cur_res, int cur) {
       if (cur == nums.size()) {
           res.push_back(cur_res);
           return;
       }
       // 调用两次 dfs,因为对于子集来说,每个数字可以选也可以不选。
       cur_res.push_back(nums[cur]);
       dfs(res, nums, cur_res, cur + 1);
       cur_res.pop_back();
       dfs(res, nums, cur_res, cur + 1);
   }
   vector<vector<int>> subsets(vector<int>& nums) {
       vector<vector<int> > res;
```

```
vector<int> cur_res;
dfs(res, nums, cur_res, 0);
return res;
}
```

1.6.6 单词搜索

给定一个 $m \times n$ 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ; 否则,返回 false 。

单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中"相邻"单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

```
bool check(vector<vector<char> >& board, vector<vector<int> >& visited,
    int i, int j, string word, int k) {
    if (board[i][j] != word[k]) { //不匹配, 不行
        return false;
    } else if (k == word.length() - 1) { // 到最后一个词了且相等, ok
       return true;
    }
   visited[i][j] = true;
    // 上下左右
    vector<pair<int, int> > directions{{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
    bool res = false;
    for (const auto& dir: directions) {
        int new_i = i + dir.first;
        int new_j = j + dir.second;
        if (new_i >= 0 && new_i < board.size() && new_j >= 0 && new_j < board[0].size()) {
            if(!visited[new_i][new_j]) {
                bool flag = check(board, visited, new i, new j, word, k + 1);
                if (flag) {
                    res = true;
                    break;
                }
            }
        }
    }
    visited[i][j] = false; //还原
   return res;
bool exist(vector<vector<char>>& board, string word) {
    int h = board.size(), w = board[0].size();
    vector<vector<int> > visited(h, vector<int>(w));
    for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
            bool flag = check(board, visited, i, j, word, 0);
            if (flag) {
                return true;
        }
    }
   return false;
}
```

1.7 排序与搜索

1.7.1 各排序算法总结

排序算法	平均时间复杂度	最好情况	最坏情况	空间复杂度	排序方式	稳定性
冒泡排序	O(n²)	O(n)	O(n²)	O(1)	In-place	稳定
选择排序	O(n²)	O(n²)	O(n²)	O(1)	In-place	不稳定
插入排序	O(n²)	O(n)	O(n²)	O(1)	In-place	稳定
希尔排序	O(n log n)	O(n log² n)	O(n log² n)	O(1)	In-place	不稳定
归并排序	O(n log n)	O(n log n)	O(n log n)	O(n)	Out-place	稳定
快速排序	O(n log n)	O(n log n)	O(n²)	O(log n)	In-place	不稳定
堆排序	O(n log n)	O(n log n)	O(n log n)	O(1)	In-place	不稳定
计数排序	O(n + k)	O(n + k)	O(n + k)	O(k)	Out-place	稳定
桶排序	O(n + k)	O(n + k)	O(n²)	O(n + k)	Out-place	稳定
基数排序	O(n×k)	O(n×k)	O(n×k)	O(n + k)	Out-place	稳定

大小顶堆参考:

```
//小顶堆 (是大于。。不是小于), 这也是默认
priority_queue <int, vector<int>, greater<int> > q;
//大顶堆
priority_queue <int, vector<int>,less<int> >q;
//默认大顶堆
priority_queue<int> a;
// 自定义比较函数:(小顶堆,实现大于操作)
struct MyCmp {
   bool operator()(pair<int, int>& a, pair<int, int>& b) {
       return a.second > b.second;
   }
};
priority_queue<pair<int, int>, vector<pair<int, int> >, MyCmp> q;
1.7.2 快排
https://blog.csdn.net/weixin_41009689/article/details/106391673
设置两个变量i和j(也称为哨兵),令序列第一个元素作为基准元素
i 指 向 序 列 的 最 左 边 , j 指 向 序 列 的 最 右 边 , j 从 右 往 左 试 探 , i 从 左 往 右 试 探 , 直 到 j 找 到 小 于 基 准 的 数 就 停 止 , i 找 到 丿
如果i和j相遇, 则i或j上的元素与基准元素交换, 则这一轮排序结束
对基准元素两边的序列重复以上操作 (即 quickSort(vi, lo, i-1); quickSort(vi, i+1, hi);)
void quickSort(vector<int>& vi, int lo, int hi)
{
   int pivot = vi[lo];
```

```
int i = lo;
   int j = hi;
   if (lo < hi)
   {
       while (i != j)
           while (vi[j] \ge pivot && j > i)
               j--;
           while (vi[i] <= pivot && j > i)
               i++;
           }
           if(i<j)</pre>
               swap(vi[i], vi[j]);
           }
       }
       swap(vi[lo], vi[i]);
       quickSort(vi, lo, i-1);
       quickSort(vi, i+1, hi);
   }
}
1.7.3 二分小结
    int search(vector<int>& nums, int target) {
       int low = 0, high = nums.size() - 1;
       while (low <= high) { // 小于等于
           int mid = low + (high - low) / 2; // 标准写法, 背下来
           if (nums[mid] == target) {
               return mid;
           } else if (nums[mid] > target) {
               high = mid - 1;
           } else {
               low = mid + 1;
       }
       return -1;
   }
1.7.4 拓扑排序
1.7.5 颜色分类
给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。
我们使用整数 0、1 和 2 分别表示红色、白色和蓝色。
必须在不使用库的 sort 函数的情况下解决这个问题。
即荷兰国旗问题数组里有 0 1 2, 要求相同颜色的相邻单指针
   void sortColors(vector<int>& nums) {
       int n = nums.size();
```

int ptr = 0;

```
// 遍历两次,第一遍把 0 交换到前面去,第二遍把 1 交换到 0 之后
       // 用指针 ptr 标记最后一个 0 的下一位,第二遍从 ptr 开始
       for (int i = 0; i < n; ++i) {
           if (nums[i] == 0) {
               swap(nums[i], nums[ptr]);
               ++ptr;
           }
       }
       for (int i = ptr; i < n; ++i) {
           if (nums[i] == 1) {
               swap(nums[i], nums[ptr]);
               ++ptr;
           }
       }
   }
1.7.6 前 k 个高频元素
给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按任意顺序返回答案。多存个 map,堆里存的是个 pair
   struct MyCmp {
       bool operator()(pair<int, int>& a, pair<int, int>& b) {
           return a.second > b.second;
       }
   };
   vector<int> topKFrequent(vector<int>& nums, int k) {
       // 先遍历一遍,map 存< k, cnt >,然后遍历 map,用个小顶堆
       // 如果堆的元素个数小于 k,就可以直接插入堆中。
       // 如果堆的元素个数等干 k,则检查堆顶与当前出现次数的大小。
       // 如果堆顶更大,说明至少有 k 个数字的出现次数比当前值大,故舍弃当前值;
       // 否则,就弹出堆顶,并将当前值插入堆中。
       // c++ 的堆是 priority_queue
       unordered_map<int, int> word_count;
       for (auto& v: nums) {
           word_count[v]++;
       }
       // pop 的是优先级最高的元素, top 也是优先级最高的
       // priorty_queue<int, vector<int>, cmp> 这是定义方式, 一定要有个 vec
       priority_queue<pair<int, int>, vector<pair<int, int> >, MyCmp> q;
       for (auto& [num, cnt]: word_count) {
           if (q.size() < k) {</pre>
               q.emplace(num, cnt);
               if (q.top().second < cnt) {</pre>
                   q.pop();
                   q.emplace(num, cnt);
               }
           }
       vector<int> res;
       while (!q.empty()){
           res.emplace_back(q.top().first);
           q.pop();
       }
```

```
return res;
}
```

1.7.7 数组中的第 k 个最大元素

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

堆顶就是了

```
int findKthLargest(vector<int>& nums, int k) {
    //小顶堆,堆顶就是要的
    struct MyCmp {
        bool operator()(int a, int b) {
            return a > b;
    };
    priority_queue<int, vector<int>, MyCmp> q;
    for (auto& i: nums) {
        if (q.size() < k) {</pre>
            q.emplace(i);
        } else {
            if (i > q.top()) {
                q.pop();
                q.emplace(i);
            }
        }
    }
    return q.top();
}
```

1.7.8 寻找峰值

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回任何一个峰值所在位置即可。你可以假设 nums $[-1]=nums[n]=-\infty$ 。

你必须实现时间复杂度为 $O(\log n)$ 的算法来解决此问题。

二分,类似旋转数组,如果 mid 不是符合条件的,那看看是在上升还是在下降,如果是在上升,那就看右边区间,如果是下降,那看左边。

```
// 可以搞成匿名函数
// pair<int, int> get(int i, int n, vector<int> & nums) {
//
      // 方便处理 nums[-1] 和 nums[n] 的边界情况
      if (i == -1 // i == n) {
//
          return {0, 0};
//
//
//
      return {1, nums[i]};
//
      //保证能取到的比越界的大,都能取到的时候,用实际的数比较
1/ }
int findPeakElement(vector<int>& nums) {
   // 二分, 类似旋转数组, 如果 mid 不是符合条件的, 那看看是在上升还是在下降,
   // 如果是在上升,那就看右边区间,如果是下降,那看左边。
   int left = 0, right = nums.size() - 1;
   int n = nums.size();
   auto get = [&](int i) -> pair<int, int> {
```

```
// 方便处理 nums[-1] 和 nums[n] 的边界情况
           if (i == -1 || i == n) {
               return {0, 0};
           }
           return {1, nums[i]};
           //保证能取到的比越界的大,都能取到的时候,用实际的数比较
       }:
       while (left <= right) {</pre>
           int mid = left + (right - left) / 2; //标准 mid 写法
           if (get(mid - 1) < get(mid) && get(mid) > get(mid + 1)) {
               return mid;
           if (get(mid) < get(mid + 1)) {</pre>
               left = mid + 1;
           } else {
               right = mid - 1;
       }
       return -1;
   }
1.7.9 在排序数组中查找元素的第一个和最后一个位置
给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target, 返回 [-1, -1]。
进阶:
你可以设计并实现时间复杂度为 O(\log n) 的算法解决此问题吗?
public:
   int binary_search(vector<int>& nums, int target, bool lower) {
       // ans 初始化为 n!!!, 因为外面要-1, 对于 [1] 且 target=1 的 case, 会有问题
       int left = 0, right = nums.size() - 1, ans = nums.size();
       //不要急着 return, 要找到边界
       while (left <= right) {</pre>
           int mid = left + (right - left) / 2;
           // lower = true, 想找左边界, 只要 nums [mid] >= target 就可能可以, 只有<target 的时候才停
           // lower = false, 想找右边第一个>target 的
           // 都是找左区间
           if (nums[mid] > target || (lower && nums[mid] >= target)) {
               ans = mid;
               right = mid - 1;
           } else {
               left = mid + 1;
           }
       }
       return ans;
   vector<int> searchRange(vector<int>& nums, int target) {
       // 其实要找的就是第一个 =target 的位置,和第一个>target 的位置-1
       int left_idx = binary_search(nums, target, true);
       int right_idx = binary_search(nums, target, false) - 1;
       if (left_idx <= right_idx && right_idx < nums.size()</pre>
           && left_idx >=0 && nums[left_idx] == target && nums[right_idx] == target) {
```

```
return vector<int>{left_idx, right_idx};
}
return vector<int>{-1, -1};
```

1.7.10 合并区间

}

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi]。请你合并所有重叠的区间,并返回一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间。

```
vector<vector<int>> merge(vector<vector<int>>& intervals) {
    // 先排序, 然后第一个区间扔进去, 遍历下一个的时候,
   // 看看和前面的最后一个区间有没交集,如果无交集(当前左> 已有右),那就扔到最后
    // 如果有交集, 那就取这两个区间 max 的右端点
    if (intervals.size() == 0) {
       return {};
   sort(intervals.begin(), intervals.end());
   vector<vector<int> > merged;
   for (int i = 0; i < intervals.size(); ++i) {</pre>
        int left = intervals[i][0], right = intervals[i][1];
        if (merged.size() == 0 || left > merged.back()[1] ) {
           merged.push_back({left, right});
        } else {
           merged.back()[1] = max(merged.back()[1], right);
   }
   return merged;
}
```

1.7.11 搜索旋转排序数组

整数数组 nums 按升序排列,数组中的值互不相同。

在传递给函数之前,nums 在预先未知的某个下标 k ($0 \le k \le nums.length$) 上进行了旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (下标从 0 开始计数)。例如,[0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2]。

给你旋转后的数组 nums 和一个整数 target,如果 target,如果 target,则返回它的下标,否则返回 -1。

```
int search(vector<int>& nums, int target) {
    // 局部有序, 二分
    int n = nums.size();
    if (n == 0) {
        return -1;
    }
    if (n == 1) {
        return nums[0] == target? 0: -1;
    }
    int left = 0, right = n - 1;
    while (left <= right) {
        int mid = left + (right -left) / 2;
        if (nums[mid] == target) {
            return mid;
        }
        // 看下 mid 在哪个区间里,因为有两个上升的区间,和 nums[0] 比就行</pre>
```

```
if (nums[0] <= nums[mid]) {</pre>
               // mid 在第一个上升区间里
               if (nums[0] <= target && target < nums[mid]) {</pre>
                   // target 也在这个区间里
                   right = mid -1;
               } else {
                   left = mid + 1;
               }
           } else {
               if (nums[mid] < target && target <= nums[n - 1]) {
                   left = mid + 1;
               } else {
                   right = mid - 1;
               }
           }
       }
       return -1;
   }
1.7.12 搜索二维矩阵 II
编写一个高效的算法来搜索 m \times n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。每列的元素从上到下升序排列。
   bool searchMatrix(vector<vector<int>>& matrix, int target) {
       // 右上角开始,保证只有一个搜索方向,要么变大要么变小, 2 字形
       int m = matrix.size(), n = matrix[0].size();
       int x = 0, y = n - 1;
       while (x < m &  y >= 0)  {
           if (matrix[x][y] == target) {
               return true;
           }
           if (matrix[x][y] > target) {
               --y;
           } else {
               ++x;
       return false;
   }
1.8 dp
1.8.1 跳跃游戏
给定一个非负整数数组 nums , 你最初位于数组的第一个下标。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标。
   bool canJump(vector<int>& nums) {
       // 贪心
```

// 对于每个位置 x, 实时维护最远可到达的位置 x+nums[x],

// 如果这个位置 x 在最远可到达位置内,那么可以从起点经过若干次跳跃到达

// 在遍历的过程中,如果最远可到达位置>= 数组最后一个位置 ,就可以 return True

```
int n = nums.size();
       int most_right = 0;
       for (int i = 0; i < n; ++i) {
            // 如果 i>most_right, 那这个点永远不可达, 所以最后是 return false
           if (i <= most_right) {</pre>
               most_right = max(most_right, i + nums[i]);
               if (most right >= n - 1) {
                   return true;
           }
       }
       return false;
1.8.2 不同路径
一个机器人位于一个 m \times n 网格的左上角 (起始点在下图中标记为 "Start")。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为"Finish")。
问总共有多少条不同的路径?
简单二维 dp, 注意边界条件
   int uniquePaths(int m, int n) {
       // f(i,j) 表示从左上角走到 (i,j) 的路径数量,
       // 这个点只可能是从左边或者上面走过来的,所以
       // f(i,j) = f(i-1,j) + f(i, j-1)
       // 对于第 0 行和第 0 列,f(i,0)=1,f(0,j)=1,因为只有直着能走到
       // f(0,0) = 1
       vector<vector<int> > f(m, vector<int>(n));
       for (int i = 0; i < m; ++i) {</pre>
           f[i][0] = 1;
       for (int j = 0; j < n; ++j) {
           f[0][j] = 1;
       for (int i = 1; i < m; ++i) {</pre>
           for (int j = 1; j < n; ++j) {
               f[i][j] = f[i - 1][j] + f[i][j - 1];
           }
       return f[m - 1][n - 1];
   }
1.8.3 零钱兑换
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回-1。
你可以认为每种硬币的数量是无限的。
   int coinChange(vector<int>& coins, int amount) {
       // dp[i]: 组成金额 i 需要的最少硬币数
       // dp[i] = min(dp[i-c[j]) + 1, j = 0,...,n-1,
       //!!! 注意, 是两项, dp[i] 和 dp[i - coins[j]]+ 1
       // dp[i] = min(dp[i], dp[i - coins[j]] + 1);
```

```
// c[j] 是第 j 个面额,+1 表示选择这个面额,那 i-c[j] 就是剩下的面额了
       //!! 需要判断凑不出的情况:把 dp 初始化为 amount + 1,如果凑不出就不更新,
       // 如果最后还是 amount +1 那就是凑不出,当然也可以是 amount +999
       int xmax = amount + 1;
       // 因为最后一个下标要是 amount, 所以大小是 amount + 1
       vector<int> dp(amount + 1, xmax);
       dp[0] = 0;
       for(int i = 1; i <= amount; ++i) {</pre>
           for (int j = 0; j < coins.size(); ++j) {</pre>
               // 遍历每种面额
               if (coins[j] <= i) {</pre>
                   dp[i] = min(dp[i], dp[i - coins[j]]+ 1);
           }
       }
       return dp[amount] > amount? -1: dp[amount];
   }
1.8.4 最长递增子序列
给你一个整数数组 nums , 找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
   int lengthOfLIS(vector<int>& nums) {
       // 不要求连续,比如 [3,6,2,7] 是 [0,3,1,6,2,2,7] 的子序列
       // dp[i]: 以第 i 个数字结尾(选了 nums[i]) 的最长递增子序列的长度
       // dp[i] = max(dp[j]) +1, 0<=j<i, nums[j] < nums[i], 这样才能递增
       // 相当于前面 i-1 个数里,有一个和 i 是递增关系,那就可以把 i 选了
       // 要么就直接 dp[i], 这两个取 max
       // 最终的结果是 max(dp[i])
       int n = nums.size();
       if (n == 0) {
           return 0;
       }
       vector<int> dp(n, 0);
       int res = 0;
       for (int i = 0; i < n; ++i) {</pre>
           dp[i] = 1;
           for (int j = 0; j < i; ++j) {
               if (nums[j] < nums[i]) {</pre>
                   dp[i] = max(dp[i], dp[j] + 1);
           }
           res = max(res, dp[i]);
       }
       return res;
   }
1.8.5 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
   int climbStairs(int n) {
       // 斐波那契
```

```
int p= 0, q = 0, r = 1;
for (int i = 1; i <= n; ++i) {
    p = q;
    q = r;
    r = p + q;
}
return r;
}</pre>
```

1.8.6 接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

dp, 存 left max 和 right max, 然后 min(left_max, right_max) - height

```
int trap(vector<int>& height) {
    int n = height.size();
    if (n == 0) {
        return 0;
    vector<int> left_max(n, 0), right_max(n, 0);
    for (int i = 0; i < n; ++i) {</pre>
        if (i > 0) {
            left_max[i] = max(height[i], left_max[i - 1]); // 注意, 这里是 left_max[i-1]
        } else {
            left_max[i] = height[i];
    }
    for (int i = n - 1; i \ge 0; --i) {
        if (i < n - 1) {
            right_max[i] = max(height[i], right_max[i + 1]); // 注意, 这里是 right_max[i+1]
            right_max[i] = height[i];
        }
    }
    int res = 0;
    for (int i = 0; i < n; ++i) {</pre>
        res += min(left_max[i], right_max[i]) - height[i];
    return res;
}
```

1.8.7 跳跃游戏 II

给你一个非负整数数组 nums ,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

假设你总是可以到达数组的最后一个位置。

返回到达最后一个位置的最小跳跃数。

```
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置, 跳 1 步, 然后跳 3 步到达数组的最后一个位置。
```


从下标0出发,可以跳到下标1和下标2,下标1可以跳得更远,选择下标1

从下标 1 出发,可以跳到下标 2、3 和 4,下标 4 可以跳得更远,选择下标 4

解法:

这个点所有可能到达的位置中,选下一步能跳得最远的那个

在遍历数组时,我们不访问最后一个元素,这是因为在访问最后一个元素之前,我们的边界一定大于等于最后一个位置,否则就无法跳到最后一个 位置了。

如果访问最后一个元素,在边界正好为最后一个位置的情况下,我们会增加一次「不必要的跳跃次数」,因此我们不必访问最后一个元素。

```
int jump(vector<int>& nums)
{
   // 目前能跳到的最远位置,要么是 i+nums[i],要么是原来的 max_far
    // max_far > i+nums[i] 的情况就是比如 i=3, nums[3]=1, 但原来可以跳到 10。
   int max_far = 0;
   int step = 0; // 跳跃次数
   // 上次跳跃可达范围右边界(下次的最右起跳点)
   int end = 0;
   for (int i = 0; i < nums.size() - 1; ++i) {</pre>
       max_far = max(max_far, i + nums[i]);
       if (end == i) { // 到了这个点,开始跳一步
           end = max_far;
           ++step;
       }
   }
   return step;
}
```

1.8.8 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

```
子数组是数组中的一个连续部分。
\hat{m} \wedge : nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6 。
f(i) 表示以第 i 个数结尾的连续子数组最大和,那要求的就是 i=0,...,n-1 的 \max f(i)
f(i) = max(f(i-1) + nums[i], nums[i])
如果加上这个数能变得更大,那就加上;如果不行,那这个数就是新的起点
而只和 f(i-1) 有关的话,且最后要的是 max,那么可以只用一个变量,不需要数组
   int maxSubArray(vector<int>& nums) {
       int pre = 0, max_res = nums[0];
       for (int i = 0; i < nums.size(); ++i) {</pre>
          pre = max(pre + nums[i], nums[i]);
          max_res = max(max_res, pre);
       }
      return max_res;
   }
1.8.9 买卖股票的最佳时机
给定一个数组,它的第i个元素是一支给定股票第i天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天 (股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
    注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
示例 2:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
解答:
我们需要找到最小的谷之后的最大的峰。我们可以维持两个变量
  • minprice: 迄今为止所得到的最小的谷值。初始化为 int max, 如果当前价格有比它小, 那就更新它为当前价格
  • maxprofit, 迄今为止所得到的最大的利润(卖出价格与最低价格之间的最大差值)。如果当前价格与 minprice 的差比它大,那就更新
   int maxProfit(vector<int>& prices) {
       int minprice = INT_MAX;
       int max_profit = 0;
       for (int i = 0; i < prices.size(); ++i) {</pre>
          if (prices[i] < minprice) {</pre>
              // 不卖
              minprice = prices[i];
```

max_profit = max(max_profit, prices[i] - minprice);

} else {

// 卖或者不卖的最大 profit

```
}
return max_profit;
}
```

1.8.10 正则表达式匹配

给你一个字符串 s 和一个字符规律 p, 请你来实现一个支持 '.' 和 '*' 的正则表达式匹配。

'.' 匹配任意单个字符

'*' 匹配零个或多个前面的那一个元素

所谓匹配, 是要涵盖 整个 字符串 s的, 而不是部分字符串。

保证每次出现字符 * 时,前面都匹配到有效的字符===> '*'不会是第一个字符!!

输入: s = "ab", p = ".*"

输出: true

解释: ".*" 表示可匹配零个或多个('*') 任意字符('.')。

f[i][j] 表示字符串 s 的前 i 个字符与正则 p 的前 j 个字符是否 match (完全一致)

• 如果 p[i] 是字母, 如果 s[i] 与 p[j] 不一样, 那肯定不行, 反之, 这位 ok, 就看 f[i-1][j-1]:

$$f[i][j] = \begin{cases} f[i-1][j-1], & s[i] = p[j] \\ \text{false}, & s[i] \neq p[j] \end{cases}$$

- 如果 p[i] 是'*', 那么就可以对 p[i-1] 匹配 n 次, 也就是说
 - 如果 p[j-1]==s[i],那么,就算我把 s[i] 给删了,这个 pattern(即 p[j-1]p[j]) 还可以继续用:

f[i][j] = f[i-1][j]

而与此同时,我把这个 pattern 扔了也行,因为已经匹配至少一次了:

f[i][j] = f[i][j-2]

所以, f[i][j] = f[i-1][j] or f[i][j-2], p[j-1] == s[i]

+ 如果p[j-1]!=s[i], 那么这个组合就扔了

f[i][j] = f[i][j-2], p[j-1] != s[i]

所以,

$$f[i][j] = \begin{cases} f[i-1][j] \text{ or } f[i][j-2], & s[i] = p[j-1] \\ f[i][j-2], & s[i] \neq p[j-1] \end{cases}$$

综合起来就是

$$f[i][j] = \begin{cases} \text{if } (p[j] \neq '*') = \begin{cases} f[i-1][j-1], & \text{matches } (s[i], p[j]) \\ \text{false,} & \text{otherwise} \end{cases} \\ \text{otherwise } = \begin{cases} f[i-1][j] \text{ or } f[i][j-2], & \text{matches } (s[i], p[j-1]) \\ f[i][j-2], & \text{otherwise} \end{cases} \end{cases}$$

其中的 matches 只有当 y 是. 或者 x=y 时才会匹配

边界 f[0][0] = 1, 因为两个空串是匹配的。

注意:

当 S 为空,p=a*,这样这样是可以匹配的。因为可以决定前面的那个 a 一个都不选,带着它一起消失。

```
bool isMatch(string s, string p) {
   int m = s.size();
   int n = p.size();
   // 因为 f 是 n+1 * m+1, 所以这里其实是比较 s[i-1] 和 p[j-1]
   // [8]: 父作用域的按引用传, 其实 [=] 也行, 父作用域的按值传
   auto matches = [=](int i, int j) {
       if (i == 0) {
           return false; // 不太懂这个
        if (p[j-1] == '.') {
           return true;
       return s[i - 1] == p[j - 1];
   };
   vector<vector<int>> f(m + 1, vector<int>(n + 1));
   f[0][0] = true;
   for (int i = 0; i <= m; ++i) {
        for (int j = 1; j <= n; ++j) {
           if (p[j - 1] != '*') {
               if (matches(i, j)) { //比较的是 i-1 和 j-1
                   f[i][j] = f[i - 1][j - 1];
               }
           } else {
               f[i][j] |= f[i][j-2];
               if (matches(i, j - 1)) { // 比较的是 i-1 和 j-2
                   f[i][j] |= f[i - 1][j];
           }
       }
   return f[m][n];
}
```

1.8.11 二叉树中的最大路径和

路径被定义为一条从树中任意节点出发,沿父节点-子节点连接,达到任意节点的序列。同一个节点在一条路径序列中至多出现一次。该路径至少包含一个节点,且不一定经过根节点。

路径和是路径中各节点值的总和。

给你一个二叉树的根节点 root , 返回其最大路径和。

相当于不能走回头路

递归。。 其实不是 dp

max_gain(root): 计算二叉树中的一个节点的最大贡献值,即在**以该节点为根节点的子树中**寻找**以该节点为起点**的一条路径,使得该**路径** 上的节点值之和最大。

叶节点的最大贡献值等于节点值

计算完叶子后,中间节点的 max_gain= 他的值 +max(左孩子 max_gain, 右孩子 max_gain)

最大路径和:对于二叉树中的一个节点,该节点的最大路径和取决于该节点的值与该节点的左右子节点的最大贡献值,如果子节点的最大贡献值为 正,则计入该节点的最大路径和,否则不计入该节点的最大路径和。

```
然后维护一个全局变量,只保留最终的 max,注意初始化为 INT MIN
```

```
int max_sum = INT_MIN; //需要初始化为 INT_MIN, 因为如果整棵树全为负, max_sum 得小于 0
   int max gain(TreeNode* root) {
       if (root == nullptr) {
           return 0;
       // 只有在最大贡献值大于 0 时,才会选取对应子节点
       int left_gain = max(max_gain(root->left), 0);
       int right_gain = max(max_gain(root->right), 0);
       // 节点的最大路径和取决于该节点的值与该节点的左右子节点的最大贡献值,这里是加!!,因为可以左边走上来,再往右边走下去
       int cur_max_gain = root->val + left_gain + right_gain;
       max_sum = max(max_sum, cur_max_gain);
       // 这里是 max,因为定义的时候,是以 root 为起点,不能回头,所以只有一个方向
       return root->val + max(left_gain, right_gain);
   }
   int maxPathSum(TreeNode* root) {
       max gain(root);
       return max_sum;
   }
1.8.12 编辑距离
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
解答:
本质不同的操作实际上只有三种:
   • 在单词 A 中插入一个字符; (等价于 B 中删掉一个字符)

    在单词 B 中插入一个字符; (等价于 A 中删掉一个字符)

   • 修改单词 A 的一个字符。(等价于 A 中修改一个字符)
D[i][i] 表示 A 的前 i 个字母和 B 的前 i 个字母之间的编辑距离。
若 A 和 B 的最后一个字母相同:
D[i][j] = min(D[i-1][j]+1, D[i][j-1]+1, D[i-1][j-1])
若 A 和 B 的最后一个字母不同:
D[i][j] = min(D[i-1][j]+1, D[i][j-1]+1, D[i-1][j-1]+1)
二者差别就是 D[i-1][j-1], A[i]!=B[j] 时,需要 +1
对于边界情况,一个空串和一个非空串的编辑距离为 D[i][0] = i 和 D[0][j] = j, D[i][0] 相当于对 word1 执行 i 次删除操作, D[0][j] 相当
于对 word1 执行 j 次插入操作。
    int minDistance(string word1, string word2) {
       int n = word1.length();
       int m = word2.length();
       vector<vector<int> > D(n+1, vector<int>(m+1));
       for (int i = 0; i < n + 1; ++i) {
```

```
D[i][0] = i;
       }
       for (int j = 0; j < m + 1; ++j) {
           D[0][j] = j;
       for (int i = 1; i < n + 1; ++i) {</pre>
            for (int j = 1; j < m + 1; ++j) {
                int a = D[i][j - 1] + 1;
                int b = D[i - 1][j] + 1;
                int c = D[i - 1][j - 1];
                if (word1[i - 1] != word2[j - 1]) { // 注意这里要-1
                    c += 1;
                D[i][j] = min(a, min(b, c));
            }
       }
       return D[n][m];
   }
1.8.13 最大正方形
在一个由'0'和'1'组成的二维矩阵内,找到只包含'1'的最大正方形,并返回其面积。
dp(i,j) 表示以 (i,j) 为右下角,且只包含 1 的正方形的边长最大值
    int maximalSquare(vector<vector<char>>& matrix) {
        int m = matrix.size();// row
        if (m < 1) return 0;
        int n = matrix[0].size(); // col
        int maxnum = 0;
       vector<vector<int> > dp(m, vector<int>(n));
       for (int i = 0; i < m; ++i) {</pre>
            if (matrix[i][0] == '1') {
                dp[i][0] = 1;
                maxnum = 1;
            }
        }
        for (int j = 0; j < n; ++j) {
            if (matrix[0][j] == '1') {
                dp[0][j] = 1;
                maxnum = 1;
            }
       for (int i = 1; i < m; ++i) {
           for (int j = 1; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    dp[i][j] = min(min(dp[i-1][j], dp[i-1][j-1]), dp[i][j-1]) + 1;
                    maxnum = max(maxnum, dp[i][j]);
           }
       }
       return maxnum * maxnum;
   }
```

1.8.14 统计全为 1 的正方形子矩阵

```
和上面那题几乎一样,只是最终求值不太一样
dp(i,j) 表示以 (i,j) 为右下角,且只包含 1 的正方形的边长最大值
而 dp(i,j) 恰好也表示以 (i,j) 为右下角的正方形有多少个,依次是边长为 1,2,3,\ldots,dp(i,j) 的正方形
    int countSquares(vector<vector<int>>& matrix) {
        int m = matrix.size();// row
        if (m < 1) return 0;</pre>
        int n = matrix[0].size(); // col
        int maxnum = 0;
       vector<vector<int> > dp(m, vector<int>(n));
       for (int i = 0; i < m; ++i) {</pre>
            if (matrix[i][0] == 1) {
                dp[i][0] = 1;
                maxnum += 1;
            }
       }
        for (int j = 0; j < n; ++j) {
            if (matrix[0][j] == 1) {
                dp[0][j] = 1;
                // 如果不判断, dp [O] [O] 就算了两次。。
                if (j != 0) {
                    maxnum += 1;
                }
            }
        }
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                if (matrix[i][j] == 1) {
                    dp[i][j] = min(min(dp[i - 1][j], dp[i - 1][j - 1]), dp[i][j - 1]) + 1;
                //cout << dp[i][j] << " " << i << " " << j << endl;
                maxnum += dp[i][j];
            }
        }
       return maxnum;
```

给你一个 $\mathbf{m} * \mathbf{n}$ 的矩阵,矩阵中的元素不是 $\mathbf{0}$ 就是 $\mathbf{1}$,请你统计并返回其中完全由 $\mathbf{1}$ 组成的正方形子矩阵的个数。

1.8.15 乘积最大子数组

}

给你一个整数数组 nums,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。 测试用例的答案是一个 32-位整数。

子数组是数组的连续子序列。

我们可以根据正负性进行分类讨论。

考虑当前位置如果是一个负数的话,那么我们希望以它前一个位置结尾的某个段的积也是个负数,这样就可以负负得正,并且我们希望这个积尽可能「负得更多」,即尽可能小。如果当前位置是一个正数的话,我们更希望以它前一个位置结尾的某个段的积也是个正数,并且希望它尽可能地大。于是这里我们可以再维护一个 $f_{\min}(i)$,它表示以第 i 个元素结尾的乘积最小子数组的乘积,那么我们可以得到这样的动态规划转移方程:

$$f_{ ext{max}}(i) = \max_{i=1}^n \{f_{ ext{max}}(i-1) imes a_i, f_{ ext{min}}(i-1) imes a_i, a_i\} \ f_{ ext{min}}(i) = \min_{i=1}^n \{f_{ ext{max}}(i-1) imes a_i, f_{ ext{min}}(i-1) imes a_i, a_i\}$$

它代表第 i 个元素结尾的乘积最大子数组的乘积 $f_{\max}(i)$,可以考虑把 a_i 加入第 i-1 个元素结尾的乘积最大或最小的子数组的乘积中,二者加上 a_i ,三者取大,就是第 i 个元素结尾的乘积最大子数组的乘积。第 i 个元素结尾的乘积最小子数组的乘积 $f_{\min}(i)$ 同理。

```
int maxProduct(vector<int>& nums) {
    int n = nums.size();
    int min_f = nums[0], max_f = nums[0];
    int res = nums[0];
    for (int i = 1; i < n; ++i) {
        int cur = nums[i];
        int mx = max_f, mn = min_f; //必须搞个临时变量,因为改完 max_f 后, 算 min_f 的时候还要用原来的 max_f
        max_f = max(max(mn * cur, mx * cur), cur);
        min_f = min(min(mn * cur, mx * cur), cur);
        res = max(res, max_f);
    }
    return res;
}</pre>
```

1.9 设计

1.9.1 二叉树的序列化与反序列化

序列化是将一个数据结构或者对象转换为连续的比特位的操作,进而可以将转换后的数据存储在一个文件或者内存中,同时也可以通过网络传输到 另一个计算机环境,采取相反方式重构得到原数据。

请设计一个算法来实现二叉树的序列化与反序列化。这里不限定你的序列 / 反序列化算法执行逻辑,你只需要保证一个二叉树可以被序列化为一个字符串并且将这个字符串反序列化为原始的树结构。

提示:输入输出格式与 LeetCode 目前使用的方式一致,详情请参阅 LeetCode 序列化二叉树的格式。你并非必须采取这种方式,你也可以采用其他的方法解决这个问题。

```
rser(root->left, str);
            rser(root->right, str);
            //cout << str << endl;
       }
   }
   // Encodes a tree to a single string.
   string serialize(TreeNode* root) {
        string res;
       rser(root, res);
       return res;
   }
   TreeNode* rde(list<string>& data_vec) {
       // 如果当前的元素为 None, 则当前为空树
       // 否则先解析这棵树的左子树,再解析它的右子树
       // list 的 front 是第一个元素的值, begin 是迭代器
        if (data_vec.front() == "None") {
            data_vec.erase(data_vec.begin());
           return nullptr;
       }
       TreeNode* root = new TreeNode(stoi(data_vec.front()));
       data_vec.erase(data_vec.begin());
       root->left = rde(data_vec);
       root->right = rde(data_vec);
       return root;
   }
    // Decodes your encoded data to tree.
   TreeNode* deserialize(string data) {
       list<string> data_vec;
        string str;
        // 人肉实现下 split
       for (auto &ch: data) {
            if (ch == ',') {
               data_vec.push_back(str);
               str.clear();
            } else {
                str.push_back(ch);
       }
        if (!str.empty()) {
            data_vec.push_back(str);
            str.clear();
        }
       return rde(data_vec);
   }
// Your Codec object will be instantiated and called as such:
// Codec ser, deser;
// TreeNode* ans = deser.deserialize(ser.serialize(root));
```

};

1.9.2 O(1) 时间插入、删除和获取随机元素

/**

```
实现 RandomizedSet 类:
RandomizedSet() 初始化 RandomizedSet 对象
bool insert(int val) 当元素 val 不存在时, 向集合中插入该项, 并返回 true; 否则, 返回 false。
bool remove(int val) 当元素 val 存在时,从集合中移除该项,并返回 true; 否则,返回 false。
int getRandom() 随 机 返 回 现 有 集 合 中 的 一 项 ( 测 试 用 例 保 证 调 用 此 方 法 时 集 合 中 至 少 存 在 一 个 元 素 ) 。 每 个 元 素 应 设
你必须实现类的所有函数,并满足每个函数的平均时间复杂度为 O(1) 。
class RandomizedSet {
public:
   // 数组可以 o(1) 地获取元素,哈希可以 o(1) 插入删除,
   // 二者结合起来就是 vec+hashmap
   RandomizedSet() {
       // 初始化随机种子
       srand((unsigned)time(NULL));
   }
   bool insert(int val) {
       // 塞进 vec 里, 同时记录下标到 map 中
       if (indices.count(val)) {
           return false;
       }
       int index = nums.size();
       nums.emplace_back(val);
       indices[val] = index;
       return true;
   }
   bool remove(int val) {
       // 为了 o(1), 先把这个数找出来,
       // 然后在 vec 把这个元素换成最后一个元素,pop_back 就行
       // hashmap 里也删掉,同时更新 last 的下标
       if (!indices.count(val)) {
           return false;
       }
       int index = indices[val];
       int last = nums.back();
       nums[index] = last;
       nums.pop_back();
       indices[last] = index;
       indices.erase(val);
       return true;
   }
   int getRandom() {
       int rand_idx = rand() % nums.size();
       return nums[rand idx];
   }
   vector<int> nums;
   unordered_map<int, int> indices;
};
```

```
* Your RandomizedSet object will be instantiated and called as such:
* RandomizedSet* obj = new RandomizedSet();
* bool param_1 = obj->insert(val);
* bool param_2 = obj->remove(val);
* int param_3 = obj->getRandom();
*/
```

1.10 数学

1.10.1 快乐数

编写一个算法来判断一个数 n 是不是快乐数。

「快乐数」定义为:

对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1,也可能是无限循环但始终变不到 1。如果这个过程结果为 1,那么这个数就是快乐数。如果 n 是快乐数就返回 true; 不是,则返回 false 。

```
int square_sum(int n) {
   int sum = 0;
   while (n > 0) {
       int bit = n % 10;
       sum += bit * bit;
       n /= 10;
   }
   return sum;
bool isHappy(int n) {
   // 只有两种情况,
   // 一直走, 最后是 1, 相当于无环链表, 是快乐数, 可以快慢指针
   // 一个有环链表,可以快慢指针,相遇点不是 1
   // 没有第三种情况,因为数字再大,也会归结到一个小很多的数开始的链表,
   // 具体证明可以参考 https://leetcode-cn.com/problems/happy-number/solution/kuai-le-shu-by-leetcode-s
   int fast = n, slow = n;
   //!! 用 do while, 因为一开始 fast=slow, 但仍想走一次循环
   do {
       fast = square_sum(square_sum(fast));
       slow = square sum(slow);
   } while (fast != slow);
   if (fast == 1) {
       return true;
   return false;
}
```

1.10.2 阶乘后的零

给定一个整数 n , 返回 n! 结果中尾随零的数量。

其实这个就是 n 一直除以 5 ,然后加起来

int trailingZeroes(int n) {

```
// 因为 5*2=10, 其实就是看质因子中 5 和 2 的个数,5 的个数肯定没有 2 多,
       // 如上图, 其实就是一直除以 5, 再加起来
       int res = 0;
       while (n) {
           n \neq 5;
           res += n;
       }
       return res;
   }
1.10.3 Excel 表列序号
给你一个字符串 columnTitle ,表示 Excel 表格中的列名称。返回该列名称对应的列序号。
例如:
A -> 1
B -> 2
C -> 3
. . .
Z -> 26
AA -> 27
AB -> 28
   int titleToNumber(string columnTitle) {
       // 其实是 26 进制转 10 进制
       int num = 0;
       long multiple = 1; // 从 1 开始,需要是 long,因为 int 会爆!!!!!
        //倒着来,其实是从最低位开始
       for (int i = columnTitle.size() - 1; i >= 0; --i) {
            int k = columnTitle[i] - 'A' + 1; // 记得 +1...
           num += k * multiple;
           multiple *= 26;
       }
       return num;
   }
1.10.4 Pow(x, n)
实现 pow(x, n) , 即计算 x 的 n 次幂函数 (即, xn)。
    double pow_sub(double x, long long N) {
       double res = 1.0;
       double x_contribute = x;
       while (N > 0) {
            if (N \% 2 == 1) {
               res *= x_contribute;
           x_contribute *= x_contribute;
           N \neq 2;
       }
       return res;
   double myPow(double x, int n) {
       // 其实就是把幂指数 n 进行二进制拆分,如 n=9,那就是
       // 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0 = 2^3 + 1
       // ==> x^9=x^8 *x^1
```

```
// 这么变成二进制:
       // n=9, n %2 =1, 要!
       // n/=2==> n=4, n%2=0, 不要!
       // n/=2==>n=2, n%2=0, 不要!
       // n/=2 ==>n=1, n%2=1, 要!
       // 因为除了 1 外,2^n 全是偶数,所以如果 n\%2=1,那就需要这个 1
       // 还需要考虑如果 n 是负的, 那就是 1/xx
       long long N = n;
       return \mathbb{N} \ge 0? pow_sub(x, \mathbb{N}): 1 / pow_sub(x,-\mathbb{N});
   }
1.10.5 x 的平方根
给你一个非负整数 X , 计算并返回 X 的算术平方根。
由于返回类型是整数,结果只保留整数部分,小数部分将被舍去。
注意: 不允许使用任何内置指数函数和算符, 例如 pow(x, 0.5) 或者 x ** 0.5 。
    int mySqrt(int x) {
       // 二分
       // 只返回整数部分,那就是 k^2 <= x 的最大 k,可以从 0 到 x 开始二分
       int left = 0, right = x, res = -1;
       while (left <= right) {</pre>
            int mid = left + (right - left) / 2;
            if ((long long)mid * mid <= x) {</pre>
                res = mid; // 一直更新 不 break
                left = mid + 1;
            } else {
                right = mid - 1;
        }
       return res;
   }
1.10.6 两数相除
给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend 除以除数 divisor 得到的商。
整数除法的结果应当截去(truncate) 其小数部分,例如: truncate(8.345) = 8 以及 truncate(-2.7335) = -2
    // 求 dividend / divisor
    int divide(int dividend, int divisor) {
       // // 参考 https://leetcode-cn.com/problems/divide-two-integers/solution/jian-dan-yi-dong-javac-
        // // 先处理边界
       // // INT_MIN: -2147483648=2^31, INT_MAX: 2147483648=-2^31
       // // int 属于 [-2^31 +1, 2^31 - 1]
       // 假设 x <0, y <0, 求 x/y 相当于找个最大的正数 z, 使得
       // yz>=x, 注意应该是最大!, 举例: 算-10/-2,
       // 如果 z=5, -10=-10, z=4, 那-8>-10, z=6, 那-12<-10
       // 因此,是最大的 z,使得 yz>=x,因为 z=6就 yz<x了
       if (dividend == INT MIN) {
            if (divisor == 1) {
               return INT_MIN;
```

}

```
if (divisor == -1) {
        return INT_MAX;
}
if (divisor == INT_MIN) {
   // a / (-2^31) = 0, 因为除数绝对值最大
   return dividend == INT_MIN? 1: 0;
if (dividend == 0) {
   return 0;
}
bool rev = false; // 看最后要不要变号
if (dividend > 0) {
   dividend = -dividend;
    rev = !rev;
}
if (divisor > 0) {
    divisor = -divisor;
   rev = !rev;
}
auto quick_add = [](int y, int z, int x) {
   // 判断 zy 是否>=x
    // y 负数, x 负数, z 正数!
    // 对于三个负数 a b c, 要比较 a+b 与 c, 因为 a+b 可能溢出
    // 所以要改成 a 与 c-b 比较,因为两个负数的差不会越界
    // 计算 y*z 类似 y^z
    // 3^5= 3^(1*2^2 + 0*2^1 + 1)
   // 3 * 5 = 3 * (1*2^2+ 0*2^1 + 1)=3*1*2^2+ 3*0 + 3 *1
    // 都是相当于对 z=5 不断除以 2
    // y^z: 如果是 1, 那就 res*=y, 然后 y*=y
    // y*z: 如果是 1, 那就 res+=y, 然后 y+=y
    int result = 0, add = y;
    while(z) {
        if (z & 1) {
           // z 的二进制的最后一位是 1,z % 2 == 1,
           // 要保证 result + add >= x
           if (result < x - add) {
               return false; //注意这里是直接 return false
           result += add;
        if (z != 1) {
           // 要保 add + add >= x
           if (add < x - add) {
               return false; //注意这里是直接 return false
           add += add;
        z >>= 1;// z/2
    }
   return true;
};
```

```
int left = 0, right = INT_MAX, res = 0;
while (left <= right) {
    int mid = left + ((right - left) >> 1);
    bool check = quick_add(divisor, mid, dividend);
    if (check) {
        res = mid;
        if (mid == INT_MAX) {
            break;
        }
        left = mid + 1; // 想找更大的 直到找到最大的
    } else {
        right = mid - 1;
    }
}
return rev? -res: res;
}
```

1.10.7 分数到小数

给定两个整数,分别表示分数的分子 numerator 和分母 denominator,以字符串形式返回小数。

如果小数部分为循环小数,则将循环的部分括在括号内。

如果存在多个答案,只需返回任意一个。

对于所有给定的输入,保证答案字符串的长度小于 104。

有限小数:

无限循环小数:

```
string fractionToDecimal(int numerator, int denominator) {
   // !!!!! 无限不循环小数属于实数中的无理数,
   // !!!!! 并且任何一个无限不循环小数都找不到一个与之相等的分数来对应。
   // 所以如果是无限小数,肯定是无限循环小数
   // 每一位小数 = 余数 *10 再除以除数得到的商。
   // 循环小数:通过判断被除数(*10 之前)有没有出现过,
   // 出现的位置就是循环节的开始,到结尾就是循环节的结束 (哈希记录)
   // 如果余数 ==0, 那就是可以除尽了, 不是循环小数
   long numerator_long = numerator; //防止溢出, 转成 int64!!!
   long denominator_long = denominator;
   if (numerator_long % denominator_long == 0) { //整除
       return to_string(numerator_long / denominator_long);
   }
   string res;
   if ((numerator_long < 0) ^ (denominator_long < 0)) {</pre>
       //异或, 为 true 说明二者异号
       res.push_back('-');
   numerator_long = abs(numerator_long);
```

```
denominator_long = abs(denominator_long);
       long integer = numerator_long / denominator_long;
       res += to string(integer);
       res.push_back('.');
       string fraction;
       unordered_map<long, int> remainder_index_map;
       long remainder = numerator long % denominator long;
       int idx = 0;
       while (remainder != 0 && !remainder_index_map.count(remainder)) {
           remainder_index_map[remainder] = idx; // 记录 *10 之前的 remainder 的位置
           remainder *= 10;
           fraction += to_string(remainder / denominator_long);
           remainder %= denominator;
           ++idx;
       }
       if (remainder != 0) {
           int first_idx = remainder_index_map[remainder];
           // 把循环节部分用括号包起来
           fraction = fraction.substr(0, first idx) + '(' + \
               fraction.substr(first idx) + ')';
       }
       res += fraction;
       return res;
   }
1.11 其他
1.11.1 两整数之和
给你两个整数 a 和 b ,不使用运算符 + 和 - ,计算并返回两整数之和。
   int getSum(int a, int b) {
       // 不能用 +-, 那就位运算
       // 正整数的补码与原码相同;
       // 负整数的补码为其原码除符号位外的所有位取反后加 1。
       // 可以将减法运算转化为补码的加法运算来实现。
       // 0 + 0 = 0
       // 0 + 1 = 1
       // 1 + 0 = 1
       // 1 + 1 = 0 (进位)
       // 相当于不考虑进位,就是 a ~b (异或),
       // 而进位的值是 a \& b, 进位完就是左移一位 (a \& b) << 1
       // 注意,实际的 a b 是很多位的,所以进位也是很多位的,
       // 所以要有个 while, 一直加进位直到没有进位为止!!!
       while (b != 0) {
           // 当我们赋给 signed 类型一个超出它表示范围的值时,结果是 undefined;
           // 而当我们赋给 unsigned 类型一个超出它表示范围的值时,结果是
           // 初始值对无符号类型表示数值总数取模的余数!!
           // 因此,我们可以使用无符号类型来防止溢出。
           unsigned int carry = (unsigned int)(a & b) << 1;</pre>
           // 另外, 这里得是 (unsigned int)(a & b) 再<<1, 而不是 (a & b) << 1 再 unsigned int!!!
           a = a \hat{b};
           b = carry;
       return a;
```

}

1.11.2 逆波兰表达式求值

根据逆波兰表示法, 求表达式的值。

有效的算符包括 +、-、*、/。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

注意两个整数之间的除法只保留整数部分。

可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

```
bool is num(string& token) {
   return !(token == "+" || token == "-" || token == "*" | token == "/");
}
int evalRPN(vector<string>& tokens) {
   // 栈: 从左到右遍历表达式
   // 遇到数字,入栈
   // 遇到运算符号 op, pop 栈顶 b 出来作为右, 再 pop 栈顶 a 出来作为左,
   // 计算 a op b 的结果再入栈
   // 遍历完后,栈内只有一个数,就是结果
   // 注意 题目要求除法只保留整除的结果,所以 stk 用 int 就行
   stack<int> stk;
    int n = tokens.size();
   for (int i = 0; i < n; ++i) {</pre>
       string& token = tokens[i];
        if (is_num(token)) {
           stk.push(atoi(token.c_str())); // string 转 int
        } else {
           int right = stk.top();
           stk.pop();
           int left = stk.top();
           stk.pop();
            switch (token[0]) {
               case '+':
                   stk.push(left + right);
                   break;
               case '-':
                   stk.push(left - right);
                   break;
               case '*':
                   stk.push(left * right);
                   break;
               case '/':
                   stk.push(left / right);
                   break:
           }
       }
   }
   return stk.top();
}
```

1.11.3 多数元素

给定一个大小为 $\mathbf n$ 的数组 $\mathbf n$ ums ,返回其中的多数元素。多数元素是指在数组中出现次数大于 $\square \mathbf n/2 \square$ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在多数元素。

```
int majorityElement(vector<int>& nums) {
    // 因为题目说了大于半数,所以排序后肯定会占据一半一上的区间,
    // 所以中间的数肯定是它
    sort(nums.begin(), nums.end());
    return nums[nums.size() / 2];
}
```

1.11.4 任务调度器

给你一个用字符数组 tasks 表示的 CPU 需要执行的任务列表。其中每个字母表示一种不同种类的任务。任务可以以任意顺序执行,并且每个任务都可以在1 个单位时间内执行完。在任何一个单位时间,CPU 可以完成一个任务,或者处于待命状态。

然而,两个相同种类的任务之间必须有长度为整数 n 的冷却时间,因此至少有连续 n 个单位时间内 CPU 在执行不同的任务,或者在待命状态。你需要计算完成所有任务所需要的最短时间。


```
int leastInterval(vector<char>& tasks, int n) {
   unordered_map<char, int> freq; // 记录每一种任务的个数
   for (auto& i: tasks) {
       ++freq[i];
   }
   // stl 的 max_element
   // 获取所有任务中最多的次数
   int max_exec = max_element(freq.begin(), freq.end(),
       [] (const auto& a, const auto& b) {
           return a.second < b.second;</pre>
       })->second:
   // <1> [var] 表示值传递方式捕捉变量 var
   // <2> [=] 表示值传递方式捕捉所有父作用域的变量(包括 this 指针)
   // <3> [&var] 表示引用传递捕捉变量 var
   // <4> [6] 表示引用传递捕捉所有父作用域的变量(包括 this 指针)
   // <5> [this] 表示值传递方式捕捉当前的 this 指针
   //<6> [=, &a, &b] 表示以引用传递的方式捕捉变量 a 和 b, 而以值传递方式捕捉其他所有的变量
   // <7> [\mathfrak{G}, a, this] 表示以值传递的方式捕捉 a 和 this, 而以引用传递方式捕捉其他所有变量
   // 计算总共有多少个任务出现了 max_exec 次
   int max_cnt = accumulate(freq.begin(), freq.end(), 0,
```

```
[=](int acc, const auto& u){
               return acc + (u.second == max exec);
           });
       // 对于 max_exec 个任务 a 来讲,每执行一次后面要 n 个空位,
       // 所以要 (max \ exec \ -1) * (n+1) + 1, 最后这个 +1 是最后一个 a 任务, 因为它执行完就行了
       // 而总共有 max cnt 个 a 任务,如果 max cnt <= n+1,那么可以塞进去
       // 就有 max_exec - 1) * (n + 1) + max_cnt 了
       // 填后面任务按这个方法:
       // 我们从倒数第二行开始,按照反向列优先的顺序(即先放入靠左侧的列,同一列中先放入下方的行),
       // 依次放入每一种任务,并且同一种任务需要连续地填入。
       // 如果 max_cnt > n+1, 那排完 n+1 后还要再排 k 列,然后才是其他任务,
       // 这个时候就不需要再这么按顺序了,因为任意两个任务间肯定大于 n, 所以总时间就是 |tasks|
       // xx.size() 需要强转成 int, 因为原来是 size_t
       return max((max_exec - 1) * (n + 1) + max_cnt, static_cast<int>(tasks.size()));
   }
1.12 其他
1.12.1 auc 计算
自己写的, 假设 m 正例, n 负例,
方法一: 先按 score 排序,然后看 1 后面多少个 0,就是分对了多少个 pair 对,加起来就是分子,分母是 mxn
方法二: 先按 score 排序,然后倒着看每个对应的真实 label,如果是 0 那就 a+1,如果是 1,那就 res+a,res 就是分子,分母还是 mxn
方法三:包括了 rank 的那个公式
def calc_auc2(labels, scores):
   """xx"""
   pos_cnt = 0
   neg_cnt = 0
   for i in labels:
       if i == 0:
           neg_cnt +=1
       elif i == 1:
           pos_cnt += 1
   if pos cnt == 0 or neg cnt == 0:
       return -1
   sorted_scores = sorted(scores, reverse=True)
   xdic = {}
   for i in range(0, len(scores)):
       xdic[scores[i]] = i
   a = 0
   xres = 0
   idx = len(scores) - 1
   while idx >= 0:
       label = labels[xdic[sorted_scores[idx]]]
       if label == 0:
           a += 1
       if label == 1:
           xres += a
       idx -= 1
   return xres / (pos_cnt * neg_cnt)
```

```
def calc_auc(labels, scores):
    """calc_auc"""
   pos_cnt = 0
   neg_cnt = 0
   for i in labels:
       if i == 0:
           neg_cnt +=1
        elif i == 1:
            pos_cnt += 1
   if pos_cnt == 0 or neg_cnt == 0:
       return -1
   sorted_scores = sorted(scores, reverse=True)
   xdic = \{\}
   for i in range(0, len(scores)):
       xdic[scores[i]] = i
   auc = 0
   xpos_cnt = 0
   for idx in range(0, len(sorted_scores)):
       label = labels[xdic[sorted_scores[idx]]]
        if label == 1:
            for j in range(idx + 1, len(sorted_scores)):
                xlabel = labels[xdic[sorted_scores[j]]]
                if xlabel == 0:
                    xpos_cnt += 1
   return xpos_cnt / (pos_cnt * neg_cnt)
if __name__ == "__main__":
   labels = [1,0,0,1]
   scores = [0.2, 0.3, 0.2, 0.8]
    #print calc_auc(labels, scores)
   print calc_auc2(labels, scores)
```

但上面这些对于相同预估值的情况会有问题,看下标准答案。。https://zhuanlan.zhihu.com/p/411010918