Álgebra Linear

Imagem de Transformações Lineares Transformações injetoras e sobrejetoras

Professores: Marnei, Graciela e Katiani

Imagem de uma Transformação Linear

Definição:

Seja $T: V \to W$ uma transformação linear. Definimos o conjunto imagem de T como

$$Im(T) = \{ w \in V ; w = T(v) \text{ para algum } v \in V \}.$$

Observações:

i) A imagem de $T: V \to W$ é um subconjunto do contradomínio W, ou seja

$$Im(T) \subset W$$
.

- ii) Como $\vec{0} = T(v)$ para $v \in N(T)$ temos que $\vec{0} \in Im(T)$.
- iii) Com isso, obtemos que

$$Im(T) \neq \phi$$
.

Exemplo

- 1) Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (x,y,0). Determine o núcleo e a imagem e os interprete geometricamente.
- 2) Qual a imagem e o núcleo da transformação identidade $I: V \to V$ tal que I(v) = v?
- 3) Qual a imagem e o núcleo da transformação nula $T: V \to W$ tal que T(v) = 0?
- 4) Considere $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por T(x, y) = (3x 4y, -2x + y, x + y).
 - a) Verifique se $w_1 = (-6, -1, 5)$ e $w_2 = (-1, -1, 1)$ pertencem à Im(T).
 - b) Determine o N(T) e a Im(T).

Teorema:

Se $T: V \to W$ é uma transformação linear então Im(T) é um subespaço vetorial de W.

Justificativa:

OBS.: Como a imagem de uma transformação linear T é um subespaço vetorial, podemos obter uma base e a dimensão para Im(T).

Exemplo: 5) Determine uma base e a dimensão para a imagem dos exemplos anteriores:

a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x, y, z) = (x + 2y - 3z, 4x - 5y - 11z).

Teorema da Dimensão do Núcleo e da Imagem

Teorema:

Se $T: V \to W$ é uma transformação linear então

$$\dim(N(T)) + \dim(Im(T)) = \dim(V)$$
.

Base e dimensão para a Imagem

b) $T: M(2,2) \rightarrow P_2$ dada por

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+b-c+d) + (2a-b+3c)x + (5a+2b+3d)x^2$$

c) $T: P_2 \to \mathbb{R}^3$ dada por T(p(x)) = (5p(0), p(1), p(0) + 2p(1))

Transformações lineares injetoras, sobrejetoras e isomorfismos

Definição 1: Uma transformação linear $T: V \to W$ é injetora se, para quaisquer vetores $u, v \in V$, tais que $u \neq v$, tem-se que $T(u) \neq T(v)$.

Definição 2: Uma transformação linear $T: V \to W$ é injetora se, para quaisquer vetores $u, v \in V$, T(u) = T(v) implica que u = v.

Exemplo: (Uma transformação que é linear mas não é injetora)

$$T: P_2 \to P_2$$
 tal que $T(P(x)) = p'(x)$

Teorema:

Uma transformação linear T: $V \rightarrow W$ é injetora se, e somente se, N(T) = $\{\vec{0}\}$.

Justificativa:

Exemplo: A transformação linear $T: P_2 \to P_3$ tal que T(P(x)) = xp(x) é injetora?

Teorema:

Uma transformação linear T: $V \rightarrow W$ é sobrejetora se, e somente se, Im(T) = W, ou seja, se dimIm(T) = dim(W)

Exemplo:

- 1. Uma transformação linear $T: P_2 \to \mathbb{R}^4$ pode ser injetora? E sobrejetora?
- 2. Uma transformação linear $T: \mathbb{R}^4 \to P_2$ pode ser injetora? E sobrejetora?
- 3. Uma transformação linear $T: \mathbb{R}^3 \to P_2$ pode ser injetora? E sobrejetora?
- 4. A partir da análise dos exemplos acima, complete as afirmações a seguir:
- i) Uma transformação linear T: $V \to W$ tal que dim(V) $\leq \dim(W)$ pode ser _____ (injetora/sobrejetora), mas nunca será____ (injetora/sobrejetora).
- ii) Uma transformação linear T: $V \to W$ tal que dim $(V) \ge \dim(W)$ pode ser _____ (injetora/sobrejetora), mas nunca será_____ (injetora/sobrejetora).

Teorema:

Seja T: $V \rightarrow W$ uma transformação linear entre espaços vetoriais de dimensão finita, tais que dim(V)=dim(W). Então T é injetora se e somente se é sobrejetora.

Justificativa:

Definição: Uma transformação linear bijetora (injetora + sobrejetora) é chamada de **isomorfismo**. Dois espaços vetoriais que possuem isomorfismo entre eles serão ditos isomorfos, o que em grego, significa que possuem a mesma forma.

Os isomorfismos desempenham um papel importante na Álgebra Linear. Por exemplo, \mathbb{R}^3 e P_2 são espaços vetoriais isomorfos, pois a função T: $\mathbb{R}^3 \to P_2$ dada por $T(a,b,c)=ax^2+bx+c$ é um isomorfismo.

Exemplo: Os espaços vetoriais abaixo são isomorfos entre si:

- a. \mathbb{R}^4 = espaço de dimensão 4
- b. $M(4,1) = espaço das matrizes 4 \times 1$
- c. $M(2,2) = espaço das matrizes 2 \times 2$
- d. P_3 = espaço de todos os polinômios de grau menor ou igual a 3.
- e. $V = \{(x_1, x_2, x_3, x_4, 0); x_i \text{ \'e } um \ n^0 \ real\} \text{ (subespaço } de \ \mathbb{R}^5)$

Este exemplo nos diz que elementos nesses espaço se comportam da mesma maneira que um vetor arbitrário v = (a, b, c, d).

Exercícios:

1. Encontre uma transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^3$ cujo núcleo é gerado por (1,2,3,4) e (0,1,1,1).

Sem fazer cálculos, T é injetora? E sobrejetora?

- 2. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que projeta $u \, em \, v = (2, -1, 1)$. T é um isomorfismo?
- 3. Seja $T: \mathbb{R}^4 \to \mathbb{R}^3$ a transformação linear dada por T(v) = Av, onde

$$A = \begin{bmatrix} 1 - 210 \\ 0 & 1 & 23 \\ 0 & 0 & 01 \end{bmatrix}$$

- a) Encontre a dimensão do núcleo e da imagem.
- b) Té injetora?
- c) Té sobrejetora?
- d) Determine Posto(A) e nulidade (A). Qual a relação com a dimN(T) e dim Im(T)?