Geometric Series

For $a \neq 0$, the series

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$

is called a geometric series, where a and r are fixed numbers,

a is called the first term and r is the (common) ratio

Geometric Series

For this series, the *n*-th partial sum s_n is given by

$$s_n = a + \alpha r + \alpha r^2 + \dots + \alpha r^{n-1}$$

$$rs_n = \alpha r + \alpha r^2 + \alpha r^3 + \dots + \alpha r^{n-1} + \alpha r^n.$$

$$s_n - rs_n = a - ar^n$$

$$S_n = a \frac{1 - r^n}{1 - r}$$

$$r \neq 1$$

$$a + ar + ar^2 + \cdots + ar^{n-1} + \cdots$$

(i)
$$r=1$$
 $a+a+a+a+\cdots$

Then
$$s_n = na \rightarrow \infty \text{ if } a > 0 \text{ (or } -\infty \text{ if } a < 0)$$

Thus, the series is *divergent*.

(ii)
$$r = -1$$
 $a - a + a - a + \cdots$

Then
$$\{s_n\}$$
 is $a, 0, a, 0, \cdots$

Thus, the series is divergent.

$$s_n = a \frac{1 + r^n}{1 - r}$$

(iii) If |r| < 1, then $r^n \to 0$.

Thus,
$$s_n \to \frac{a}{1-r}$$
.

Hence, the sum of the series is $\frac{a}{1-r}$.

(iv) If |r| > 1, then $r^n \to \infty$ (or $-\infty$), and the series diverges.

Convergence of Geometric Series

The geometric series

$$a+ar+ar^2+\cdots+ar^{n-1}+\cdots$$

with $a \neq 0$ converges to the sum

$$\frac{a}{1-r}$$
 if $|r| < 1$

and

it diverges if $|r| \ge 1$.

Example

(i)
$$\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \cdots$$
 is a geometric series

first term
$$a = \frac{1}{9}$$
 and common ratio $r = \frac{1}{3}$.

It converges to
$$\frac{a}{1-r} = \frac{\frac{1}{9}}{1-\frac{1}{3}}$$
$$= \frac{1}{6}.$$

Example

(ii)
$$4-2+1-\frac{1}{2}+\frac{1}{4}-\cdots$$

first term a = 4 and common ratio $r = -\frac{1}{2}$.

$$4+4\left(-\frac{1}{2}\right)+4\left(-\frac{1}{2}\right)^{2}+\dots = \frac{a}{1-r}$$

$$=\frac{4}{1-\left(-\frac{1}{2}\right)}$$

$$=\frac{8}{3}$$

Some Rules on Series

If
$$\sum a_n = A$$
, and $\sum b_n = B$, then

- (1) Sum rule: $\sum (a_n + b_n) = A + B.$
- (2) Difference rule: $\sum (a_n b_n) = A B$.
- (3) Constant multiple rule: $\sum (ka_n) = kA$.

Question

Infinite Series:
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

How to check a given infinite series is convergent ???

Question

Infinite Series:
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

How to check a given infinite series is convergent ???

Consider the *partial sum*
$$s_n = a_1 + a_2 + \cdots + a_n$$
.

If
$$\lim_{n\to\infty} s_n = L$$
, then we have
$$a_1 + a_2 + \dots + a_n + \dots = L$$

$$\sum_{n=1}^{\infty} a_n = L$$

Ratio Test

Let $\sum a_n$ be a series, and let

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\mathbf{r}.$$

Then

- (1) the series converges if r < 1.
- (2) the series diverges if r > 1.
- (3) no conclusion if r = 1.

(i)
$$\sum a_n$$
 where $a_1 = 1$ and $a_{n+1} = \frac{n}{2n+1}a_n$

To find a_2 , put n = 1

$$a_{1+1} = \frac{1}{2(1)+1}a_1$$
$$a_2 = \frac{1}{3}$$

To find a_3 , put n = 2

$$a_{2+1} = \frac{2}{2(2)+1}a_2$$
$$a_3 = \frac{2}{5} \cdot \frac{1}{3}$$

The series is

$$\sum a_n = 1 + \frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \cdots$$

(i)
$$\sum a_n$$
 where $a_1 = 1$ and $a_{n+1} = \frac{n}{2n+1}a_n$

The series is

$$\sum a_n = 1 + \frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \cdots$$

From
$$a_{n+1} = \frac{n}{2n+1} a_n$$
, we have $\frac{a_{n+1}}{a_n} = \frac{n}{2n+1}$

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{2n+1}$$

$$= \frac{\frac{n}{n}}{\frac{2n}{n} + \frac{1}{n}}$$
By ratio test, the given series is
$$\frac{1}{n} \to 0 \text{ as } n \to \infty.$$

$$\frac{1}{n} \to 0 \text{ as } n \to \infty.$$

By ratio test, the given series is convergent.

$$\frac{1}{n} \to 0$$
 as $n \to \infty$

Note

The factorial of a non - negative integer n, denoted by n!, is given by

$$n! = 1 \times 2 \times 3 \times \cdots \times n$$

$$5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$$

Note that:

$$(n+1)!=1\times 2\times 3\times \cdots \times n\times (n+1)=n!\times (n+1)$$

Thus, we have
$$\frac{(n+1)!}{n!} = \frac{n! \times (n+1)}{n!} = n+1$$
.

(ii) Determine if $\sum \frac{(n!)^2}{(2n)!}$ is convergent.

$$a_n = \frac{(n!)^2}{(2n)!} = \frac{n!n!}{(2n)!}$$
 Replace *n* by $n+1$

$$a_{n+1} = \frac{(n+1)!(n+1)!}{(2n+2)!}$$

$$\frac{a_n}{a_{n+1}} = \frac{(n+1)!(n+1)!}{(2n+2)!} \frac{(2n)!}{n!n!}$$

$$= \frac{(n+1) \cdot n! (n+1) \cdot n!}{(2n+2)(2n+1) \cdot (2n)!} \frac{(2n)!}{n!n!}$$

$$= \frac{(n+1)(n+1)}{(2n+2)(2n+1)}$$

Note that: $(2n+2)! = (2n+2)(2n+1) \cdot (2n)!$

$$= \frac{n+1}{2(2n+1)} = \frac{1+\frac{1}{n}}{2(2+\frac{1}{n})} \rightarrow \frac{1}{2(2)} = \frac{1}{4}.$$

By ratio test, the given series is convergent.

(iii) Determine if
$$\sum \frac{3^n}{2^n + 5}$$
 is convergent.

$$a_n = \frac{3^n}{2^n + 5}$$
 Replace *n* by $n + 1$

$$a_{n+1} = \frac{3^{n+1}}{2^{n+1} + 5}$$

$$\frac{a_{n+1}}{a_n} = \frac{3^{n+1}}{2^{n+1} + 5} \cdot \frac{2^n + 5}{3^n}$$

$$= 3 \frac{2^n + 5}{2^{n+1} + 5}$$

$$=3\cdot\frac{1+\frac{5}{2^n}}{2+\frac{5}{2^n}}\to\frac{3}{2}$$

Divide by 2^n

$$\frac{5}{2^n} \to 0 \text{ as } n \to \infty$$

By ratio test, the given series is divergent.

(iv) Determine if the Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent.

$$a_n = \frac{1}{n}$$

 $a_n = \frac{1}{n}$ Replace n by n+1 $a_{n+1} = \frac{1}{n+1}$

$$a_{n+1} = \frac{1}{n+1}$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1}$$

$$= \frac{1}{1 + \frac{1}{n}} \to 1.$$

We cannot draw conclusion from ratio test.

(v) Determine if $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

$$a_n = \frac{1}{n^2}$$

 $a_n = \frac{1}{n^2}$ Replace n by n+1

$$a_{n+1} = \frac{1}{\left(n+1\right)^2}$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{n^2}{(n+1)^2}$$
$$= \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1.$$

We cannot draw conclusion from ratio test.

(iv) Determine if $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent.

(v) Determine if $\sum \frac{1}{n^2}$ is convergent.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1}$$

$$= \frac{1}{1+\frac{1}{n}} \to 1.$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{n^2}{(n+1)^2}$$
$$= \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1.$$

We cannot draw conclusion from ratio test.

It can be shown that

$$\sum \frac{1}{n}$$
 is divergent.

It can be shown that $\sum \frac{1}{n^2}$ is convergent.

To show the Harmonic series is divergent.

$$\sum \frac{1}{n} = 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots$$

$$>1+\left(\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\cdots$$

$$>1+\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)+\cdots$$

Thus, the Harmonic series is divergent.

p-series

The *p* - series is the series

$$\sum \frac{1}{n^p}$$

for any non-negative real number p.

(i) It diverges if $0 \le p \le 1$.

(ii) It converges if p > 1.

