

Data visualisation and graphics

Noémie Becker & Benedikt Holtmann

Winter Semester 16/17

Course outline

Review – Rearranging and manipulating data

Graphics with base R

- Histograms
- Scatterplots
- Boxplots

Saving plots

Graphics with ggplot2

Reshaping data

Review – Rearranging and manipulating data

Combining data sets

Functions to combine data sets in dplyr			
left_join(a, b, by = "x1")	Joins matching rows from b to a		
right_join(a, b, by = "x1")	Joins matching rows from a to b		
inner_join(a, b, by = "x1")	Returns all rows from a where there are matching values in b		
full_join(a, b, by = "x1")	Joins data and returns all rows and columns		

Fish survey	Water characteristics	GPS
Site	Site	Site
Month	Month	Transect
Transect	Water temp.	Latitude
Species	O ₂ - content	Longitude

Adding new variables

Three ways adding a new variable (log of FID)

```
Using $
Bird_Behaviour$log_FID <- log(Bird_Behaviour$FID)

Using [] - operator
Bird_Behaviour[, "log_FID"] <- log(Bird_Behaviour$FID)

Using mutate() from dplyr package
```

Bird_Behaviour <- mutate(Bird_Behaviour, log_FID = log(FID))

X1

Α

B

Α

В

X2

1_1

1_2

2_1

2_2

Adding new variables

Split one column into two using **separate()** from **dplyr** package

Combine two columns using unite() from tidyr package

separate()

 X1
 X2.1
 X2.2

 A
 1
 1

 B
 1
 2

 A
 2
 1

 B
 2
 2

unite()

X1	X2
Α	1_1
В	1_2
Α	2_1
В	2_2

Review – Rearranging and manipulating data

Subsetting data

Subsetting data

- Using [] operator
- Using subset()

subset(Bird_Behaviour, FID < 10)</pre>

selects all rows with FID smaller than 10m

subset(Bird_Behaviour, FID < 10 & Sex == "male")</pre>

selects all rows for males with FID smaller than 10m

Operator	Description
>	greater than
>=	greater than or equal to
<	less than
<=	less than or equal to
==	equal to
! =	not equal to
x & y	x and y
x y	x or y

subset(Bird_Behaviour, FID > 10 | FID < 15, select = c(Ind, Sex, Year))</pre>

selects all rows that have a value of FID greater than 10 or less than 15. We keep only the IND, Sex and Year column

Course outline

Review – Rearranging and manipulating data

Graphics with base R

- Histograms
- Scatterplots
- Boxplots

Saving plots

Graphics with ggplot2

Simple graphics using plotting functions in the graphics package

- Base R, installed by default
- Easy and quick to type
- Wide variety of functions

Simple graphics using plotting functions in the graphics package

- Base R, installed by default
- Easy and quick to type
- Wide variety of functions

Function	Description
hist()	Histograms
plot()	Scatterplots, etc.
boxplot()	Box- and whisker plots
barplot()	Bar- and column charts
dotchart()	Cleveland dot plots
contour	Contour of a surface (2D)
pie()	Circular pie chart
•••	

Creating a histogram with hist()

Histogram of Sparrows\$Tarsus

Example 1:

hist(Sparrows\$Tarsus)

Creating a histogram with hist()

Example 2: Alter colour and the number of bins

hist(Sparrows\$Tarsus, col = "grey", breaks = 50)

Histogram of Sparrows\$Tarsus

Creating a histogram with hist()

Example 3: Add density curve

hist(Sparrows\$Tarsus, col="grey", breaks = 50,freq = FALSE)

Histogram of Sparrows\$Tarsus

Creating a histogram with hist()

Example 3: Add **density curve**

hist(Sparrows\$Tarsus, col="grey", breaks = 50,**freq** = FALSE)

lines(density(Sparrows\$Tarsus), col = "blue", lwd = 2)

Histogram of Sparrows\$Tarsus

Creating a histogram with hist()

Example 4: Plot only males

hist(Sparrows[Sparrows\$Sex == "Male",]\$Tarsus, col = "grey", breaks = 50)

Histogram of Sparrows[Sparrows\$Sex == "Male",]\$Tarsus

Creating a scatterplot with plot()

Example 1:

plot(Sparrows\$Wing, Sparrows\$Tarsus)

Relationship between two continuous variables

Creating a scatterplot with plot()

Example 2: Alter **axis limits** and **shape** of symbols

plot(Sparrows\$Tarsus, Sparrows\$Wing,
 xlim = c(50, 70),
 pch = 15,
 col = "blue")

O 1	△2	+3	\times 4	\sqrt{5}
⊘ 6	⊠ 7	* 8	⊕ 9	⊕10
\$____\11	⊞12	⊠13	∑ 14	■ 15
●16	1 7	♦ 18	●19	●20
<u></u> 21	□22	⊘ 23	△24	\ 25

Creating a scatterplot with plot()

Example 2:

plot(Sparrows\$Tarsus, Sparrows\$Wing, xlim = c(50, 70), pch = 15,

col = "blue")

Creating a scatterplot with plot()

Example 3: Alter the size of plotting symbols

plot(Sparrows\$Wing, Sparrows\$Tarsus, xlim = c(50,70), cex = 1.5)

Creating a line graphs with plot()

Example 1:

plot(pressure\$temperature, pressure\$pressure)

plot(pressure\$temperature, pressure\$pressure, type = "I")

Use the **type** argument to specify the type of plot

Possible types			
"p"	points		
" "	lines		
"b"	points connected by lines		
"o"	points overlaid by lines		
"h"	vertical lines from points to the zero axis		
"s"	steps		
"n"	nothing, only the axes		

Creating a boxplot with boxplot()

Example 1:

boxplot(Wing ~ Sex, data = Sparrows)

 Relationship between continuous and categorical variables

Creating a boxplot with boxplot()

Example 1:

boxplot(Wing ~ Sex, data = Sparrows)

- median
- 25th and 75th percentiles
- maximum and minimum values
- outliers

Creating a boxplot with boxplot()

Example 2:

```
boxplot(Wing ~ Sex, data = Sparrows,
    xlab = 'Sex',
                                      # Adds label to x-axis
    ylab = 'Wing length (mm)',
                                      # Adds label to y-axis
    col=c("red", "blue"),
                                      # Adds colour
    ylim = c(50,70),
                                      # Changes axis limits
    main = "Boxplot"))
                                      # Adds title
```

Creating a boxplot with boxplot()

Example 2:

Boxplot

Creating a boxplot with boxplot()

Example 3: Multiple grouping variables

```
boxplot(Wing ~ Sex + Species, data = Sparrows,
    xlab = 'Species and Sex',
    ylab = 'Wing length (mm)',
    col=c("red", "blue"),
    ylim = c(50,70),
    main = "Boxplot"))
```

Creating a boxplot with boxplot()

Example 3:

Quickly exploring data

	Common parameters in graphics	
main	title of the plot	
xlab	label of x-axis	
ylab	label of y-axis	
xlim	range/limits of x-axis	
ylim	range/limits of y-axis	
col	colour of the points, bars, etc. can be character string or hexadecimal colour (e.g. #RRGGBB)	
breaks	number of bins	
pch	shape of symbol	
cex	size of symbols	
Ity	line type	
lwd	line width	

Multiple plots on one page

The par() function

- comes with an extensive list of graphical parameters you can change (see ?par)
- Some options are helpful; others you may never use

To plot multiple charts within the same window, you can use the **mfcol** or **mfrow** parameter

For example, par(mfrow=c(2, 2) divides the graphic window into four panels (two rows and two columns)

Density

Data visualisation and graphics

Multiple plots on one page

par(mfrow = c(2,2))

par(mfcol = c(2,2))

Boxplot

19 20 21 22 23 24 25

Sparrows\$Tarsus

There are several possibilities saving a plot

1. dev.print()

Example:

```
plot(x, y, ....) # Make a plot
```

After you are finished with the plot use:

dev.print(device = pdf, file = "filename.pdf")

Important:

When you are done, you have to close the printing device! dev.off() # shuts down current device

There are several possibilities saving a plot

2. savePlot()

Example:

```
plot(x, y, ....) # Make a plot
savePlot(filename = "Figure1.pdf", type = "pdf")
```

Important:

It is possible that it does not work for your system! (uses X11 device, most Unix systems)

Data visualisation and graphics

Saving plots

There are several possibilities saving a plot

3. Plot directly into a file

Example:

```
pdf("Figure2.pdf", width= 4, height = 4) # width and height are in inches
```

```
hist(x) # You can execute multiple graphing commands plot(x, y, ....) # The result of each will go into the pdf file
```

dev.off()

But file is not printed on screen!

There are several possibilities saving a plot

3. Plot directly into a file

Functions to save plots			
pdf()	Opens a pdf-file as device		
postscript()	Opens a postscript-file as device		
png()	Opens a png-file as device		
jpeg()	Opens a jpeg-file as device		
tiff()	Opens a tiff-file as device		
bmp()	Opens a bmp-file as device		

Why use ggplot2?

- Many users, a lot of support
- Check out the ggplot2 documentation at http://docs.ggplot2.org/
- Very flexible and powerful
- Sophisticated plots for publication

To create a plot you use the ggplot() function

Basic structure:

```
ggplot(data,  # data frame with variables to plot
  aes(x variable, y variable)) + # specifies which variables to plot
  geom_object()  # specifies the geometric objects
```

Commonly used geometric objects:

Histogram: + geom_histogram()

Scatterplot: + geom_point()

Boxplot: + geom_boxplot()

Creating a histogram with ggplot()

Example 1:

ggplot(Sparrows, aes(Tarsus)) +
geom_histogram(col = "grey", binwidth = 0.1) +
xlab("Tarsus length (mm)") +

ylab("Frequency")

Creating a scatterplot with ggplot()

Example 1:

```
ggplot(Sparrows,
     aes(x = Wing,
          y = Tarsus)) +
     geom_point()
```


Creating a scatterplot with ggplot()

Example 2: Avoid overplotting of symbols

```
ggplot(Sparrows,
      aes(x = Wing, y = Tarsus))+
      geom_point(position=position_jitter(width=0.5, height=0))
```


Creating a scatterplot with ggplot()

Example 2: Avoid overplotting of symbols

Creating a scatterplot with ggplot()

Example 3: Alter **colour**, **shape**, and **size** of symbols

```
ggplot(Sparrows,
       aes(x = Wing, y = Tarsus, colour = Sex, shape = Species)) +
       geom point(size = 2)
```

Data visualisation and graphics

R

Graphics with ggplot2

Creating a scatterplot with ggplot()

Example 3:

Creating a boxplot with ggplot()

Example 1:

ggplot(Sparrows, aes(Sex, Wing, fill=Sex)) +

geom_boxplot()

Preparing plots for publication

- Title and axis labels
- Range of axes
- Colours
- Overall appearance (themes)
- Text size
- Legend

Preparing plots for publication

- Title and axis labels
- Range of axes
- Colours
- Overall appearance (themes)
- Text size
- Legend

Data visualisation and graphics

Further reading

Books Internet

http://docs.ggplot2.org/

http://www.cookbook-r.com/

