WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07C 251/58, C07D 295/08 C07C 295/12, 249/12 A61K 31/15

(11) International Publication Number:

WO 90/04584

(43) International Publication Date:

3 May 1990 (03.05.90)

(21) International Application Number:

PCT/HU89/00048

A1

(22) International Filing Date:

19 October 1989 (19.10.89)

(30) Priority data: 5405/88

20 October 1988 (20.10.88)

(71) Applicant (for all designated States except US): BIOREX KUTATO FEJLESZTŐ KFT. [HU/HU]; Medve u. 25-29, H-1027 Budapest (HU).

(72) Inventors; and
(75) Inventors/Applicants (for US only): LITERATI NAGY, Péter [HU/HU]; VII. u. 38, H-1172 Budapest (HU). BALAZS, Béla [HU/HU]; Kaptárkő u. 2, H-1118 Budapest (HU). BOROSS, Mária [HU/HU]; Pauler u. 4, H-1013 Budapest (HU). SZILBEREKY, Jenő [HU/HU]; Szamos u. 7, H-1122 Budapest (HU). ZSILA, Gizella [HU/HU]; Jász u. 94, H-1131 Budapest (HU). ÅBRAHÁM, Lajos [HU/HU]; Vécsei u. 4, H-1054 Budapest (HU). BLASKÓ, György [HU/HU]; Zöldlomb u. 32, H-1025 Budapest (HU). GACHÁLYI, Béla [HU/HU]; (72) Inventors; and

Damjanich u. 26, H-1071 Budapest (HU). ALMASI, Attila [HU/HU]; Izabella u. 48, H-1064 Budapest (HU). NEMETH, Gábor [HU/HU]; Zsókavár út 48, H-1157 Budapest (HU).

(74) Agent: S.B.G. & K.; Dalszinház u. 10, H-1061 Budapest

(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent) tent), NL (European patent), NO, SE (European patent), SU, US.

Published

With international search report.

(54) Title: NOVEL O-(3-AMINO-2-HYDROXYPROPYL)-HYDROXIMIC ACID HALIDES AND PROCESS FOR PRE-PARING THE SAME

(57) Abstract

The present invention relates to novel hydroximic acid halides, the preparation of the same, pharmaceutical compositions containing the above novel compounds as active ingredients as well as the use of the said compounds in the therapy of diabetic angiopathy. The novel hydroximic acid derivatives are illustrated by the general formula (I), wherein X is halo, such as fluoro, chloro, bromo and iodo; R1 is hydrogen or C1.5alkyl; R2 is C1.5alkyl, C5.7cycloalkyl or phenyl optionally substituted with hydroxy, or R1 and R2, when taken together with the adjacent nitrogen, form a 5 to 8 membered ring optionally containing additional nitrogen and/or oxygen atom, which ring may also be condensed with a benzene ring; R3 is hydrogen, phenyl, naphthyl or piridyl optionally substituted with one or more halo or alkoxy; R4 is hydrogen or phenyl; R5 is hydrogen or phenyl; m is 0, 1 or 2 and n is 0, 1 or 2.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		•			
ΑT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MR	Mauritania
BE	Belgium	GA	Cabon	MW	Malawi
BF	Burkina Fasso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
BJ	Benin	T	Italy	RO	Romania
BR	Brazil	JР	Japan	SD	Sudan
CA	Canada	KP	Democratic People's Republic	SE	Sweden
CF	Central African Republic		of Korea	SN	Senegal
CG	Congo	KR	Republic of Korea	SU	Soviet Union
CH	Switzerland	Ц	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanks	TG	Togo
DE	Germany, Federal Republic of	w	Luxembourg	US	United States of Ame
DK	Denmark	MC	Monaco		

Novel 0-(3-amino-2-hydroxypropyl)-hydroximic acid halides and process for preparing the same.

Technical field

The present invention relates to novel hydroximic acid halides, the preparation of the same, pharmaceutical compositions containing the above novel compounds as active ingredient as well as the use of the said compounds in the therapy of diabetic angiopathy.

Background art

10 One of the most frequent metabolism diseases is diabetes mellitus, the main symptom of which is the disturbance of the balance of carbohydrate metabolism in the organism. Diabetes mellitus is often accompanied by pathological vascular deformations, e.g. vasoconstrictions in the limbs, pathological 15 deformation of the eyeground vessels, etc. Though, in addition to insulin a large number of effective drugs are known, in the field of the treatment of diabetic angiopathy associated with the basic disease, results provided by the commercially available compositions are quite poor. This situation 20 is caused by the phenomenon that diabetes mellitus results in changes of the vascular adrenerg receptors, and consequently, medical treatment with the commercially available drugs results in adrenery reaction different from those taking place in the blood vessels of non-diabetic patients. (Nature

5

New Biology, 243, No. 130, 276 /1973/; Szemészet, 111, 23 /1974/; Endocrinology, 93, 752 /1973/). The adrenerg receptors of blood vessels in diabetic patients undergo a transformation into beta receptors due to the quantitative increase of the metabolism. For the receptor transformation, the release of a modulator is responsible (Amer.J.Physiol., 218, 869 /1970/). After addition of the modulator to the alpha organ the alpha agonists will not be active any more as the receptor is transformed into beta.

The original alpha sensibility may be recovered by adding a special beta blocking agent into the organism.

In case of qualitative alteration of the metabolism in model or human in vivo diabetes the alpha agonists, e.g. noradrenalin, remain effective, this effect, however, may be compensated by

- the addition of beta blocking agents. This is the first functional change which is detectable in diabetes, e.g. by addition of Alloxane (Hexahydropirimidin-tetraon), 24 hours after the administration. In case of diabetes an imperfect alpha-beta receptor transformation possibly due to the
- 20 formation of an alternative, so-called "Falsch" modulator serves as starting point of the pathological changes.

Disclosure of the invention

It has been found that the novel compounds of the formula (I) wherein

25 X is halo, such as fluoro, chloro, bromo and iodo.

R¹ is hydrogen or C_{1-5} alkyl,

 \mathbb{R}^2 is \mathbb{C}_{1-5} alkyl, \mathbb{C}_{5-7} cycloalkyl or phenyl each optionally being substituted with hydroxy, and

R¹ and R², when taken together with the adjacent nitrogen atom, form a 5-8 membered ring optionally containing additional nitrogen and/or oxygen atom, which ring may also be condensed with a benzene ring, R³ is hydrogen, phenyl, naphtyl or piridyl optionally substituted with one or more

R4 is hydrogen or phenyl,

10 Rs is hydrogen or phenyl,

halo or alkoxy,

m is the integer of 0, 1 or 2 and

n is the integer of 0, 1 or 2,

essentially do not influence, or only slightly, the adrenerg reactions of the healthy blood vessels, but show a strong

- 15 effect on the adrenerg receptors deformed by the diabetes mellitus. This effect appears in the first line as a selective beta-blocking effect, consequently, the compounds of the general formula (I) are useful in medical influencing of diabetic angiopathy.
- The common beta-blocking agents <Inderal, 1-(methyl-ethyl-amino)-3-(1-naphtalenyloxy)-2-propanol, Visken,

 4,5-dihydro-2-(5-methyl-2-/1-methyl-ethyl-phenoxy/-methyl)-1H-imidazol> are contraindicated in the therapy of diabetic angiopathy.
- Diabetes selective adrenerg receptor blocking compounds are described in Hungarian Patent No. 177,578, "Process for preparing novel OF-(3-amino-2-hydroxypropyl)-amidoxim derivatives".

 An other object of the invention is the process for prepar-

5

ing the compounds of the general formula (I) and the salts thereof. According to the process

- a) an aldoxim of the general formula (III) wherein R^3 , R^4 , R^5 , m and n are as defined above, is reacted in the presence of a base with an amine of the general formula (IV/A) and (IV/B), resp., wherein R^2 and R^2 are as defined above and X is halo, or
- b) an aldoxim of the general formula (III), wherein R², R²
 R³, m and n are as specified above, is reacted with epichlo10 rohydrine and the aldoxim derivative of the general formula
 (VI) thus obtained is reacted with an amine of the general
 formula (V), wherein R² and R² are as specified above, to
 obtain the aldoxim derivatives of the general formula (VII),
 and
- the compounds of the general formula (VII) according to the above processes a) or b) are reacted with inorganic acid halides, or other halogenating agents, e.g. POX₃, SOX₃, PX₅ wherein X is halo to obtain the halo derivatives of the general formula (VIII), and by replacing the halo atom on the aliphatic chain thereof with hydroxy, the compounds of the general formula (I) are obtained, or
 - c) an amidoxim derivative of the general formula (II) is diazotized in the presence of NaNO $_{\rm Z}$ and HX wherein X is halo and subjected to "boiling away" reaction.
- If desired, the free bases of the general formula (I) may be transformed to acid addition salts by reacting with organic or inorganic acids, or the compounds obtained as salts may be transformed into the free bases.

 SUBSTITUTE SHEET

According to a preferred embodiment of the process a) the reaction is carried out in aqueous medium, in an aqueous organic solvent, such as aqueous alcohol or in organic solvents, preferably at a temperature of 0 to 140°C.

According to an other embodiment of the process variant a) the salts of the aldoximes of the general formula (III) are formed in dry alcoholic medium with alkali alcoholates, and subsequently the solutions of the amines of the general formulae (IV/A) and (IV/B), resp., in alcohol are added thereto. The reaction is preferably carried out at a temperature of 0 to 100°C under stirring.

According to a still another embodiment of the process variant a) the salts of the aldoximes of the general formula (III) are formed in a solvent non-miscible with water, such as benzene, toluene, xylene, with alkali hydroxides, preferably sodium or potassium hydroxide. The salt forming is carried out at the boiling temperature of the solvent, and the water forming during the reaction is continuously removed by azeotropic distillation, followed by the addition of the solution of the compounds of the general formulae (IV/A) and (IV/B), resp.

According to an other embodiment of the process variant a) the reaction is carried out in aqueous medium, by adding to the compounds (IV/A) or (IV/B) the aqueous-alkaline solution or suspension of the aldoximes under stirring.

The reaction is carried out preferably at a temperature of 0 to 60°C and the aldoxim is added to the reaction mixture in

SUBSTITUTE SHEET

the form of a solution or suspension of a temperature of 5 to 20°C in aqueous alkali solution. The reaction may also be carried out in a mixture of water and an organic solvent, wherein to the solution of the compound of the 5 general formula (IV/A) or (IV/B) in alcohol or dioxane the aqueous-alkaline solution or suspension of the aldoxim is added dropwise. The addition may also be accomplished in reversed order, i.e to the aqueous-alkaline solution or suspension of the aldoxim is added the other reaction partner. 10 According to process variant b) the aldoxim of the general formula (III) is reacted with epichlorohydrine in the presence of a base. If desired, the epoxy compound obtained during the reaction may be isolated, it is preferred, however, to carry out the reaction in one synthesis step, without 15 isolating the intermediate, in aqueous medium or in an organic solvent, aqueous organic solvent, or in a two-phase system, at a temperature of -10 to + 60°C, by adding the reagent in one or two portions or dropwise. The order of addition may be reversed, i.e. either the alkaline solution or suspension 20 of the aldoxim is added to the epichlorohydrine, or the aldoxim is added to the mixture of the epichlorohydrine and base. If desired, the intermediate of the formula (VI) may be separated by extracting with a solvent non-miscible with water. It is more preferred, however, to react the compound 25 of the general formula (VI) without isolation with the corresponding amine.

The process variant b) may also be carried out in dry sol-

vents, preferably dry alcohols. In this case the alkali metal salt of the aldoxim is formed, suitably by dissolving the aldoxim in a solution of alkali alcoholate in alcohol. Following the addition of the epichlorohydrine, the reaction mixture is allowed to stand for 1 to 5 days at a temperature of 0 to 20°C and subsequently the reaction is carried on by the addition of the corresponding amine, at ambient temperature or by heating the mixture. Besides the alcohol, as dry solvent also other organic solvents, e.g. aceton, dimethyl sulfoxide, dimethyl formamide, etc. or the mixtures thereof may be used.

The compounds of the general formula (VII) obtained according to the processes a) or b) can be isolated by methods known per se. If aqueous medium is used, the isolation is generally accomplished by extraction, followed by drying and evaporating the solvent. Subsequently the aldoxim derivative of the formula (VII) is boiled with the inorganic acid halides, such as PCl₅, SOCl₂, POCl₃ for 1 to 5 hours in the presence or absence of a solvent, preferably halogenated solvents, such as CHCl₃. The compounds of the general formula (VII) thus obtained can be isolated by making the mixture alkaline with aqueous alkali, followed by extraction.

The compound of the general formula (VIII) is a hydroximic acid halogenated in the chain. It has been found that the halo moiety thereof will not enter into nucleophylic substitution reaction under the reaction conditions, and accordingly, the formation of the OH group will be accomplished selec-

tively, in one step by aqueous-alkaline hydrolysis at a temperature of O to 100°C, using preferably alkali hydroxides or other metal hydroxides, e.g. silver hydroxide, or in two steps, first forming an ester moiety suitably with the alkali salts of lower carboxylic acids followed by the hydrolysis to obtain the compounds of the general formula (I).

The reaction conditions of process variant c) are selected so that the temperature is maintained between -5 and +10°C and thus, also the "boiling away" reaction takes place.

- Preferably the reaction is carried out in water, and the intermediate diazonium salt is not isolated but also the "boiling away" reaction is carried out by selecting suitable reaction conditions thus obtaining the compounds of the general formula (I).
- The reaction products can be separated from the reaction mixture by methods known per se, e.g by crystallisation and extraction, when using water as reaction medium. When organic solvents are used, crystallisation or evaporation followed by washing with water and extraction is applied. The products

 20 may be isolated in the form of salts thereof, or from the isolated bases salts may be formed by using molar equivalent of mineral or organic acids, preferably pharmaceutically acceptable acids, or, if desired, from the salts the free bases can be obtained.
 - The general beta-blocking effect of the compounds of the general formula (I) was studied on anaesthetised cats. In these tests besides registering the blood pressure and pulse

rate, also the effect of the test materials on the left ventricular contractility was studied. As reference material Inderal <1-isopropylamino-3-(naphtyloxy)-propan-2-ol> was used.

The beta-blocking effect of the compounds according to the present invention was tested on rat aorta spiral and/or ring preparate (J.Pharmacol.Exp.Therap. 158, 531 (1967)). The experimental diabetes was induced with Streptosotocin (2-(3-nitroso-3-methylureido)-2-deoxy-D-glucose). The reaction was evaluated as positive when the alpha stimulating effect of the noradrenalin on the control preparate, i.e. that having not been treated with Streptosotocin, was not influenced, but protected on the diabetic aorta. In the tests carried out with the compounds according to the present invention a general selective effect occurred, manifesting in case of diabetic tests in a strong, in case of normal tests in the absence of or in the presence of only a slight betablocking effect.

Experiments were carried out to study whether on the aorta spiral preparates of diabetic animals treated with Streptosotocin the Inderal protects the contractions induced by noradrealin. As control, animals previously not treated with Streptosotocin were used. The results obtained essentially conformed to those known from the literature (Amer.J.Physiol., 218, 869 (1970)), i.e. the alpha stimulating effect of noradrenalin was protected by the Inderal in diabetic tests, but not in the normal tests. (Endocrinology, Vol. 93, No.

3, Sept. 1973).

It has been found that the compounds of the general formula

(I) showed a slight general beta-blocking effect. Compared

with the control beta-blocking Inderal the com-

pounds tested showed an effect of two orders of magnitude less in the inhibition of the beta-blocking D,L-1-(3,4-dihydroxy-phenyl)-2-isopropylamino-ethanol.

At the same time the compounds of the general formula (I) produced a significant parallel shift to the right of the noradrenalin dose-response curve in diabetic rat aorta ring (and/or spiral) in the order of magnitude of the effect of Inderal. The dose of Inderal was 0.5 micrograms/ml, while the dose of the compounds of the general formula (I) was 1.0 microgram/ml.

- Accordingly, the O-(3-amino-2-hydroxypropyl)-hydroximic acid halides of the general formula (I) may preferably be used in the therapy of any kind of diabetic micro- and macroangiopathy, especially of diabetic retinopathy and diabetic nephropathy in case of diabetes mellitus. The above compounds can be used per se or in the form of pharmaceutical preparations. The above treatment and pharmaceutical compositions also form the object of the present application. The pharmaceutical compositions of the present invention can be used for prevention, for treatment in the active phase of the disease as well as in acute cases.
 - The hydroximic acid halides of the general formula (I) are effective exclusively on patients in the stadium of formation

of diabetes, and are ineffective on non-diabetic persons.

Best mode of carrying out the invention

wherein X is chloro, m and n are each 0, R³ is 3,4-dimethoxybenzyl, piridyl, napthyl or indolyl and R² is and R² is isopropyl, 2-hydroxyethyl or t-butyl, or R² and R² together form pentamethylene. Especially preferred active compounds are those mentioned in the following examples.

Preferred are those compounds of the general formula (I)

The invention is further illustrated in the following exam
10 ples. It is to be understood, however, that the scope of protection is not limited to the matter disclosed in the examples any way.

Example 1.

2.3 g of sodium were dissolved in 200 ml of abs. ethanol and then 12.1 g of benzaldoxim were added. At boiling temperature the solution of 3-piperidino-2-hydroxy-1-chloropropane prepared from 9.3 g epichlorohydrine and 8.5 g of piperidine in 50 ml of abs. ethanol by methods known per se was added dropwise. The reaction mixture was boiled for 8 hours under reflux, the precipitated salt was filtered at room temperature and the solvent was distilled off in vacuo. To the residue 100 ml of 5% sodium hydroxide were added and the oily product was extracted with benzene. After drying and evaporating the benzene extract 8.2 g of O-(3-piperidino-2-hy-

droxy-1-propyl)-benzaldoxim was obtained. The hydrochloride of the product was separated from the isopropanol solution thereof by introducing gaseous hydrochloric acid into or adding hydrochloric acid in ethanol to the solution. Mp.

5 137°C (from isopropanol).

Analysis based on $C_{15}H_{25}C1N_2O_2$: Mw. 298,81 Calculated: C 60,29, H 7,76, N 9,37, Cl 11,86;

2.98 g of O-(3-piperidino-2-hydroxy-1-propyl)-benzaldoxim

were boiled in 20 ml of thionyl chloride for 3 hours. The O(3-piperidino-2-chloro-1-propyl)-benzhydroximic acid chloride

was separated by adding about 100 ml of 20 % aqueous base

until pH = 11 followed by extraction with chloroform. The

chloroform extract was dried over sodium sulfate and evapo
15 rated. The oil-like product can be transformed into the

compound of the general formula by different ways:

C 60,35, H 8,00, N 9,25, Cl 11,90%.

- a) 3,4 g of oily product were hydrolized with 20 ml of 20% NaOH at 55 to 60°C for 2 hours under stirring, extracted with benzene, the benzene solution was dried with solid drying
- 20 agent and subsequently evaporated. To the residue 50 ml of hydrochloric acid in ethyl acetate was added. Under stirring the hydrochloride of the O-(3-piperidino-2-hydroxy-1-propyl)-benzhydroximic acid chloride precipitated.

Yield: 2,1 g. NMR (base, CDCl₃): 7,4-8,0 m (5H); 3,9-4,4 m 25 (3H); 2,2-2,8 m (6H); 1,3-1,8 m (6H); 3,5 s (OH).

Mp. 140-142°C (from isopropanol)

Analysis: based on C₁₅H₂₂Cl₂N₂O₂:

Calculated: C 54,22, H 6,37, N 8,43, Cl 21,14;

Found: C 53,12, H 6,26, N 8,19, Cl 20,84%.

b) 0.81 g (4.74 mmoles) of AgNOs were dissolved in 4 ml of water and under stirring 0.19 g of NaOH (4.74 mmoles) in 3 ml of water was added thereto dropwise. The aqueous suspension of the AgOH precipitate was stirred with 1.5 g (4.74 mmoles) of O-(3-piperidino-2-chloro-1-propyl)-benzhydroximic acid chloride at 50°C for 3 hours. Then the suspension was extracted with benzene, the benzene layer was dried with sodium sulfate, filtered, evaporated and subjected to the salt forming step described in process a). Yield 95%. The physical data of the end product are identical with those in process a).

c) 3.0 g (9.49 mmoles) of

O-(3-piperidino-2-chloro-1-propyl)-benzhydroximic acid chloride were dissolved in 10 ml of ethanol, under stirring 0.86 g (1.05.10-2 moles) of sodium acetate in 15 ml of water were added and the mixture was stirred for 3 hours at 50°C. The reaction mixture was evaporated in vacuo and the residue was extracted with benzene. The benzene extract was dried over sodium sulfate and evaporated, thus providing 2.12 g of oily O-(3-piperidino-2-acetoxy-1-propyl)-benzhydroximic acid chloride. The ester thus obtained was dissolved in 20 ml of ethanol followed by the addition of 20 ml of water. O.25 g of NaOH in 20 ml of water were added to the mixture and stirred at 40°C for one hour, extracted with benzene, the benzene extract was dried with sodium sulfate and evaporated. From

the residue salt was formed according to the method in process a). Yield 90%. The quality of the product was identical with that of process a).

Example 2.

- Following the process as described in Example 1 but starting from 3-piridyl-aldoxim and 3-piperidino-2-hydroxy-1-chloro-propane the O-(3-piperidino-2-hydroxy-1-propyl)-3-piridyl-aldoxim was prepared, which was reacted with thionyl chloride according to Example 1. After removing the thionyl chloride
- by evaporation, isopropanol was added to the residue thus crystallising the O-(3-piperidino-2-chloro-1-propyl)-3-piri-dyl-hydroximic acid chloride in the form of the dihydrochloride. Mp. 142°C (from isopropanol). Yield 85 %.

 Analysis based on C₁₄H₂₁Cl₄N₃O: Mw = 389,15
- 15 Calculated: C 43,21, H 5,44, N 10,79, Cl 36,44;
 Found: C 42,97, H 5,62, N 10,59, Cl 36,80%.

According to another mode of preparation the O-(-3-piperidino-2-chloro-1-propyl)-3-piridyl-hydroximic acid chloride dihydrochloride obtained as above was not isolated,

instead, to the evaporation residue 10 % NaOH was added until a pH of 11 in accordance with Example 1 and the mixture thus obtained was extracted with chloroform. The chloroform layer was dried, evaporated and subsequently hydrolized by using any of the processes a), b) and c) of Example 1. The hydrolysis mixture was extracted with benzene, dried with sodium

sulfate and evaporated. The residue was dissolved in aceton

followed by the addition of maleic acid and isolating the O-(3-piperidino-2-hydroxy-1-propyl)-3-piridyl-hydroximic acid chloride maleate thus obtained by filtering.

NMR (base, CDC1₃): 9.03, 8.59, 8.00, 7.1-7.4, 3.84 s (3H),

5 1,1-1,8 (6H), 5,28 s (OH).

Mp. 125°C (from aceton). Yield 65 %.

Analysis based on $C_{1e}H_{24}ClN_{9}O_{6}$: Mw. = 413,79

Calculated: C 52,24, H 5,84, N 10,15, Cl 8,55;

Found: C 52,26, H 5,99, N 9,87, Cl 8,46%.

10 Example 3

To 3.5 g (10 mmoles) of O-(3-piperidino-2-hydroxy-1-propyl)--benzamidoxim dihydrochloride 40 mmoles of hydrogen chloride (in 37 % form) was added at 5°C under vigorous stirring. After the addition of 5 ml of dioxane the mixture was cooled 15 to OoC by using salt-ice. At the same temperature a solution of 1,38 g (20 mmoles) of NaNO2 in 6 ml water was added dropwise during a period of 1,5 hours followed by intensive stirring for 4 hours at ambient temperature. The acidic reaction mixture was made alkaline by the addition of 10 % 20 sodium hydroxide until a pH of 11 and then extracted with 80 to 100 ml of benzene. The benzene layer was dried over sodium sulfate and evaporated. From the residue the hydrochloride of the O-(3-piperidino-2-hydroxy-1-propyl)-benzhydroximic acid chloride was formed by the addition of a saturated solution 25 of hydrochloric acid in ethyl acetate and isolated by filtering. Mp. 139-141°C.

- 16 -

Analysis based on $C_{15}H_{22}Cl_2N_2O_2$: Mw = 333,25 Calculated: C 54,22, H 6,37, N 8,43, Cl 21,14;

C 54,62, H 6,16, N 8,09, Cl 20,71%. Found:

Example 4

- The process described in Example 3 was followed but instead 5 of hydrochloric acid, hydrogen bromide was used as hydrogen halide, thus obtaining the O-(3-piperidino-2-hydroxy-1-propy1)-benzhydroxímic acid bromide hydrochloride. Yield 27 %. Mp. 138°C (from isopropanol)
- 10 Analysis based on $C_{15}H_{22}BrClN_2O_2$: Mw = 377,71 Calculated: C 47,63, H 5,87, N 7,41; C 47,60, H 6,19, N 7,50%. Found:

Example 5

Following the process as described in Example 3 0-(3-15 piperidino-2-hydroxy-1-propyl)-nicotinic acid amidoxim dihydrochloride was diazotized, by using hydrochloric acid as hydrogen halide. Following the diazotizing and "boiling away" reaction from the O-(3-piperidino-2-hydroxy-propyl)-3-piridyl-hydroximic acid chloride the maleate was formed in dry 20 organic solvent by adding molar equivalent of maleic acid, and then separated. Mp. 125°C (from aceton). Yield 58 %. Analysis based on CleH24ClN3O6: Mw = 413.79Calculated: C 52,24, H 5,84, N 10,15, Cl 8,55; Found: C 52,26, H 5,99, N 9,87, Cl 8,46%.

LDso: 110 mg/kg iv. on Wistar rats.

Example 6

Following the process as described in Example 5 but using hydrogen bromide instead of the hydrochloric acid as hydrogen halide, the O-(3-piperidino-2-chloro-1-propyl)-3-piridyl-hydroximic acid bromide maleate was obtained. Yield: 58 %.

Mp. 117°C (from aceton)

Analysis based on $C_{10}H_{24}BrN_{3}O_{6}$: Mw = 457,25Calculated: C 47,36, H 5,21, N 9,16, Br 17,13;

10 Found: C 47,67, H 5,31, N 8,80, Br 16,78%.

Example 7

Following the process as described in Example 3 but using O-(3-piperidino-2-hydroxy-1-propyl)-3,3-diphenyl-propionic acid hydroximic acid dihydrochloride as amidoxim component in the diazotizing reaction, the O-(3-piperidino-2-hydroxy-1-propyl)-3,3-diphenyl-propionic acid hydroximic acid dihydrochloride was obtained.

Yield: 30 %. Mp. 149-152°C (from isopropanol).

NMR (base, DMSOds): 7,1-7,6 m (10H), 4,5 t (14), 3,34 d (2H),

20 J = 7.5 Hz, 3.9 br s (3H), 2.3-3.0 m (6H), 1.3-1.9 m (6H), OH shaded.

Analysis based on $C_{23}H_{30}Cl_2N_2O_22$: Mw = 437,40 Calculated: C 63,15, H 6,51, N 6,40, Cl 16,21; Found: C 63,50, H 6,79, N 6,31, Cl 16,47%.

Example 8

Following the process as described in Example 3 but using O-(3-diethylamino-2-hydroxy-1-propyl)-3,3-diphenyl-propionic acid amidoxim dihydrochloride as starting amidoxim component,

the O-(3-diethylamino-2-hydroxy-1-propyl)-3,3-diphenyl-propionic acid hydroximic acid chloride dihydrochloride was obtained. Yield: 32 %. Mp. 155°C (from isopropanol).

Analysis based on $C_{22}H_{30}Cl_2N_2O_2$: Mw = 425,40

Calculated: C 62,11, H 7,10, N 7,52, Cl 16,66;

10 Found: C 62,10, H 6,98, N 7,45, Cl 17,00%.

Example 9

Following the process as described in Example 3 but using O-(3-isopropylamino-2-hydroxy-1-propyl)-benzamidoxim dihydro-chloride as starting amidoxim component, the O-(3-

isopropylamino-2-hydroxy-1-propyl)-benzhydroximic acid hydro-chloride was prepared. Yield 12 %. Mp. 122°C (from isopropanol).

Analysis based on $C_{13}H_{20}Cl_2N_2O_2$: Mw = 307,22

Calculated: C 50,82, H 6,56, N 9,11, Cl 23,08;

20 Found: C 51,12, H 6,58, N 9,05, Cl 22,89%.

Claims

- 1. Hydroximic acid derivatives of the general formula (I) and the salts thereof wherein
- X is halo, such as fluoro, chloro, bromo and iodo,
- 5 R1 is hydrogen or C1-5 alkyl,
 - R^2 is C_{1-5} alkyl, C_{5-7} cycloalkyl or phenyl optionally substituted with hydroxy, or
- R¹ and R², when taken together with the adjacent nitrogen, form a 5 to 8 membered ring optionally containing additional
- 10 nitrogen and/or oxygen atom, which ring may also be condensed with a benzene ring,
 - R³ is hydrogen, phenyl, naphtyl or piridyl optionally substituted with one or more halo or alkoxy,
 - R4 is hydrogen or phenyl,
- 15 R⁵ is hydrogen or phenyl,
 - m is 0, 1 or 2 and
 - n is 0, 1 or 2.

20 characterized in that

- 2. Process for preparing the hydroximic acid derivatives of the formula (I) and the salts thereof defined in claim 1
- a) an aldoxim of the general formula (\mathbb{N}) wherein \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , m and n are as defined in claim 1, is reacted in the presence of a base with an amine of the formula (\mathbb{IV}/\mathbb{A}) or (\mathbb{IV}/\mathbb{B}), wherein \mathbb{R}^1 and \mathbb{R}^2 are as defined in claim 1 and X is halo, or

WO 90/04584 PCT/HU89/00048

b) an aldoxim of the general formula (III) wherein R^3 , R^4 , R^5 , m and n are as defined in claim 1, is reacted with epichlorohydrine and the aldoxim of the general formula (VI) thus obtained is reacted with an amine of the general formula (V) wherein R^2 and R^2 are as defined above.

5

the aldoxim derivatives of the general formula (VII) obtained according to any of the processes a) or b) wherein R³,
R⁴, R⁵, m and n are as defined above, after or without isolating, are reacted with inorganic acid chlorides or other

10 halogenating agents and the hydroximic acid halides of the
general formula (VIII) thus obtained are hydrolized in an
aqueous-alkaline medium, directly or through the ester derivatives, or

c) an aldoxim derivative of the general formula (II) wherein the substituents are defined as above, is diazotized in the presence of NaNO₂ and HX wherein X is as defined above and the diazonium salt thus obtained, without or after isolation, is subjected to "boiling away" reaction.

and, if desired, the free bases obtained during the reaction

20 are transformed to the acid addition salt by reacting with

organic or inorganic acids, or from the compounds obtained in

the form of their salts the free bases are formed.

- 3. The process according to claim 2 characterized in that the reaction is carried out in a solvent.
- 25 4. The process according to claim 3 characterized in that as

solvent water, a mixture of water and an organic solvent or a mixture containing an aqueous and an organic solvent phase is used.

- 5. The process according to any of claims 2 to 4 characterized in that the reaction is carried out at a temperature of
 -10 to +140°C.
 - 6. The compounds of the general formula (VIII) wherein R^1 , R^2 , R^3 , R^4 , R^5 , X, m and n are as defined in claim 1.
- 7. Pharmaceutical compositions preferably having special

 10 beta-blocking effect in case of diabetes, characterized by

 containing as active ingredient one or more of the compounds

 of the general formula (I).
 - 8. The use of the compounds of the general formula (I) in the therapy of diabetes.

70 90/04584 PCT/7

$$R^{4} R^{5} - (CH)_{m} - (CH)_{n} - C - X$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$R^{5} - (CH)_{m} - (CH)_{n} - C - NH_{2}$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$R^{4} R^{5} - (CH)_{m} - (CH)_{n} - C - NH_{2}$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N - O - CH_{2} - CH_{2} - N$$

$$N - O - CH_{2} - CH - CH_{2} - N$$

$$N -$$

$$X-CH_2-CH-CH_2-N \xrightarrow{R^4} (IVA)$$

$$CH-CH-CH_2-N \xrightarrow{R^1} (IVB)$$

$$HN \stackrel{R^{1}}{\searrow}$$
 (V)

$$R^{3}-(CH)_{m}-(CH)_{n}-C-NH_{2}$$
 $N-O-CH_{2}-CH-CH_{2}$
 O

$$R^{3} - (CH)_{m} - (CH)_{n} - C - H$$
 $N - O - CH_{2} - CH - CH_{2} - N$
 R^{2}
 OH
 (VII)

$$R^{3} - (CH)_{m} - (CH)_{n} - C - X$$
 $N - O - CH_{2} - CH - CH_{2} - N$
 X
 $(VIII)$

INTERNATIONAL SEARCH REPORT

International Application No PCT/HU 89/00048

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols coply, indicate all) 6							
According to Interpretional Patent Classification (IPC) or to both National Classification and IPC							
IPC ⁵ : C 07 C 251/58, C 07 D 295/08,295/12, C 07 C 249/12							
·							
II. FIELDS SEARCHED Minimum Documentation Searched [†]							
Classificati		Classification Symbols					
Int.			C 07 D 295/00				
	Documentation Searched other to the Extent that such Documents	nen Minimum Documentation are included in the Fields Searched ⁶					
	AT						
	MENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of Document, 11 with Indication, where appr	oprists, of the relevant passages 12	Relevant to Claim No. 13				
A	US, A, 4 308 399 (KALMAN TA 29 December 1981 (29.12.81) 1-4.	(1-8)					
	A AT, B, 355 554 (CHINOIN GYOGYSZER) 10 March 1980 (10.03.80), see claims 1-3; page 2, lines 1-45.						
•		•					
	<u>{</u>						
	()))))))))))))))))))						
	!						
	İ						
_		•					
	1						
"A" de	ial categories of cited documents: ** cument defining the general state of the art which is not	"T" later document published after or priority date and not in conf cited to understand the princip					
l co	neidered to be of particular relevance riler document but published on or after the international	Invention					
i fii	ing date	"X" document or particular reverse, the considered to cannot be considered novel or cannot be considered to involve an inventive step					
1	ocument which may throw doubts on priority claim(s) or nich is cited to establish the publication date of enother	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the					
-0- d	lation or other special reason (as specified) ocument referring to an oral disclosure, use, exhibition or	cannot be considered to involve at many other such docu- document is combined with one or more other such docu- ments, such combination being obvious to a person skilled					
l 01	her meens	in the art.					
"P" de	ocument published prior to the international filing date but ter than the priority date claimed	"4" document member of the same patent family					
	TIFICATION		least Based				
Date of	the Actual Completion of the International Search	Date of Mailing of this International S					
02	January 1990 (02.01.90)	02 January 1990	(02.01.90)				
	onal Searching Authority	Signature of Authorized Officer	·				
ATT	STRIAN PATENT OFFICE	Missell					

Anhang zum internationalen Recherchenbericht über die internationale Patentanmeldung

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Annex to the International Search Report on International Patent Application No. PCT/HU 89/00048

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned International search report. The Austrian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Annexe au rapport de recherche internationale relatif à la demande de brevet international

La présente annexe indique les membres de la famille de brevets relatifs aux documents de brevets cités dans le rapport de recherche internationale visé ci-dessus. Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office autrichien des brevets.

Im Recherchenbericht
angeführtes Patentdokument
Patent document cited
in search report
Document de brevet cité
dans le rapport
de recherche

Datum der
Veröffentlichung
Publication
date
Date de
publication

Mitglied(er) der
Patentfamilie
Patent family
member(s)
Membre(s) de la
famille de
brevets

Datum der
Veröffentlichung
Publication
date
Date de
publication

None US-A - 4308399 29-12-81 15-08-80 8741/78 AT-A 10-03-80 AT-B -355554 AT-B -361457 10-03-81 -08-6054/77 AT-A 521432 01-04 AU--B2--12 BE-A1-858134 -A1-13-05 -80 1077506 630344 -06-82 CH-A 204008 -03 -81 204009 - C-2738589 3797/77 02-03: 28-02-150196 150196 -01 DK-B DK-C 06-07-87 ES-A5-462346 30-05 -06 -A1-16 772551 28-02 31-05 85 -B 68396 10-09-85 68396 -Ā1-2362845 -03 2362845 09-01-81 FR-B1-1582029 GB-A -<u>6</u>3623 GR-- P~ 177578 28-11: 31-10-77 52804 -AO-52804 29-06-81 -A1-08-05-78 -A2-53050131 -B4-62016942 28-02· -78 03-08-81 NO-B NO-C 11-11-81 31-12-29-02 28-02 -09 -84 В 435280 20-12-84 SE-C -04-80 -12-83 D-730296

AT-B-355	554	10-03-80	776665336800088428777004333355577006533667373000088377004333365617223736564737303977700433335556722323232323855865617223336564737364684777700433335556722332385586561726668457726668455556728666845772666845555672866684577266684555567286668457726668457726666845772666845555672866684577266684555567286668457726668457726666845772666684555567286668457726666845772666684577266668455556728666845772666684555567286668457726666845555672866684577266668455556728666845772666684555567286668455556728666845555672866684577286668457728666845772866684555567286668457728666645772866664577286666457728666645772866664577286666457728666645772866664577286666457728666645772866665665667728666665666666666666666	0117-88 -778 -778 -778 -778 -778 -778 -77
en e	,		NO-B - 150082 NO-C - 150082 PL- O- 208772 PL-B1- 117328 PL-B1- 117334 PL-B1- 117404 PT-A - 68365 US-A - 7804323	07-05-84 15-08-84 04-06-79 31-07-81 31-07-81 31-08-81 01-07-78 06-04-82 25-07-79

DIALOG(R) File 351: Derwent WPI (c) 2004 Thomson Derwent. All rts. reserv.

008276990

WPI Acc No: 1990-163991 /199021

XRAM Acc No: C94-103345

New O-3-amino-2-hydroxypropyl hydroxamic acid halide derivs. - used for treating diabetic angiopathy, with selective action on altered beta receptors

Patent Assignee: BIOREX KUTATO FEJLESZTO KFT (BIOR-N); BIOPHARM KUTATO & FEJLESZTOE KFT (BIOP-N); BIOREX KUTATO FEJLESZTOE KFT (BIOR-N); BIOREX KUTATO-FEJLESZTO KFT (BIOR-N); NAGY P L (NAGY-I); BIOREX KUTATO FEILESTE KFT (BIOR-N)

Inventor: ABRAHAM L; ALMASY A; BALAZS B; BLASKO G; BOROSS M; GACHALYI B;
NAGY P L; NEMETH G; SZILBEREKY J; ZSILA G; ALMASI A; LITERATI NAGY P;
NEMET G; SZILA G; LITERATI N P; BACHALYT B; BLASEO G; ZSILLA G; BALAAZS B
Number of Countries: 027 Number of Patents: 026

ivu			D. 027 110		r or raccince				
	tent Family								
	tent No	Kind		Apı	plicat No	Kind	Date	Week	
	9004584	A	19900503					199021	В
	92041	Α	19900430					199022	
	2000830	Α	19900420					199023	
	8944186	Α	19900514					199031	
	9003075	Α	19900619					199040	
	9002703	Α	19900903					199041	
DK	9001497	Α	19900619					199042	
HU	54110	T	19910128					199109	
ΕP	417210	A	19910320		89911590	Α	19891019	199112	
ES	2020030	Α	19910716	ES	893542	Α	19891020	199133	
JP	3502931	W	19910704	JΡ	89510821	A	19891019	199133	
US	5147879	Α	19920915	WO	89HU48	Α	19891019	199240	
				US	90499318.	Α	19900628		
HU	207988	В	19930728	ΗU	885405	Α	19881020	199336	
ΕP	417210	В1	19940309	ΕP	89911590	Α	19891019	199410	
				WO	89HU48	A	19891019		
US	5296606	Α	19940322	WO	89HU48	A	19891019	199411	N
				US	90499318	A	19900628		
				US	92906402	A	19920701		
DE	68913737	E	19940414	DE	613737	A	19891019	199416	
				ΕP	89911590	Α	19891019		
				WO	89HU48	A	19891019		
ΙL	92000	Α	19940624	IL	92000	Α	19891016	199427	
US	5328906	Α	19940712	US	90499318	A	19900628	199427	
				US	92906402	Α	19920701		
				US	9372765	A	19930607		
FI	93214	В	19941130	WO	89HU48	Α	19891019	199502	
				FI	903075	Α	19900619		٠.
ΙE	65113	В	19951004	ΙE	893364	Α	19891019	199547	
NO	178148	В	19951023	WO	89HU48	Α	19891019	199547	
					902703	Α	19900618		
JР	96019078	B2	19960228	JΡ	89510821	Α	19891019	199613	
				WO	89HU48	Α	19891019		
CA	2000830	С	19970916	CA	2000830	Α	19891017	199750	
RU	2093508	C1	19971020	SU	4830570	Α	19891019	199824	
					89HU48	A	19891019		
PH	28843	Α	19950405		39379	Α	19891018	199844	
	154117	В1	19981201		89HU48	Α	19891019	200031	

. KR 90701346 A 19900619

Priority Applications (No Type Date): HU 885405 A 19881020; WO 89HU48 A 19891019; JP 89510821 A 19891019; US 92906402 A 19920701 Cited Patents: AT 355554; US 4308399 Patent Details: Patent No Kind Lan Pg Filing Notes Main IPC WO 9004584 Designated States (National): AU DK FI JP KR NO SU US Designated States (Regional): AT BE CH DE FR GB IT LU NL SE EP 417210 Designated States (Regional): AT BE CH DE FR GB IT LI LU NL SE 6 A61K-031/445 Based on patent WO 9004584 US 5147879 Α C07C-259/02 Previous Publ. patent HU 54110 HU 207988 В Based on patent WO 9004584 B1 E 20 C07C-251/58 EP 417210 Designated States (Regional): AT BE CH DE FR GB IT LI LU NL SE Div ex application WO 89HU48 US 5296606 9 CO7D-211/04 Α Div ex application US 90499318 Div ex patent US 5147879 DE 68913737 C07C-251/58 Based on patent EP 417210 Based on patent WO 9004584 C07C-259/02 IL 92000 Α Div ex application US 90499318 US 5328906 11 A61K-031/47 CIP of application US 92906402 Div ex patent US 5147879 CIP of patent US 5296606 Previous Publ. patent FI 9003075 FI 93214 В C07D-295/088 IE 65113 В C07C-249/12 NO 178148 C07D-295/088 Previous Publ. patent NO 9002703 В JP 96019078 10 C07C-259/02 Based on patent JP 3502931 B2 Based on patent WO 9004584 CA 2000830 С C07C-257/02 C1 11 C07C-251/58 RU 2093508 PH 28843 Α CO7D-295/14 KR 154117 B1 C07C-251/58

Abstract (Basic): WO 9004584 A

Hydroxamic acid halides of formula (I) and their salts are new: In (I), X = F, Cl, Br or iodo; R1 = H or 1-5C alkyl; R2 = 1-5C alkyl, 5-7C cycloalkyl or phenyl (opt. substd. by OH), or NR1R2 is a 5-8 membered ring, opt. contg. an additional N and/or O atom and opt. fused to a benzene ring; R3 = H, phenyl, naphthyl or pyridyl, opt. substd. by 1 or more halo or alkoxy; R4 and R5 = H or phenyl; m and n = 0-2.

Also new are the intermediates of formula (VIII).

USE/ADVANTAGE - (I) are useful for treating diabetic angiopathy, esp. retinopathy and nephropathy. They have a selective beta-blocking action on receptors which has been altered as a result of diabetes but no significant effect on receptors in healthy blood vessels. (27pp Dwg.No.0/0)

Abstract (Equivalent): EP 417210 B

Hydroximic acid derivatives of the general formula (I) and the salts thereof, wherein X is halo, such as fluoro, chloro, bromo and iodo, R1 is hydrogen or C1-5 alkyl, R2 is C1-5 alkyl, C5-7 cycloalkyl or phenyl optionally substituted with hydroxy, or R1 and R2, when taken together with the adjacent nitrogen, form a 5 to 8 membered ring optionally containing additional nitrogen and/or oxygen atom, which ring may also be condensed with a benzene ring, R2 is hydrogen, phenyl,

naphthyl or pyridyl optionally substituted with one or more halo or alkoxy, R4 is hydrogen or phenyl, R5 is hydrogen or phenyl, m is 0, 1 or 2 and n is 0, 1 or 2.

Dwg.0/0

Abstract (Equivalent): US 5296606 A

Derivs. of O-(3-amino-2-hydroxypropyl)-hydroximic acid halides of formula (VIII) are new. In the formula, X is halo; R1 and R2 together with attached N form 5- or 8-membered satd. ring; R3 is H, Ph, naphthyl, or pyridyl opt. substd. by one or more halo or alkoxy; R4 and R5 are H or Ph; m and n are 0-2.

USE - Treatment of diabetic angiopathy., These cpds. are special selective beta blockers which convert alpha adrenoreceptors which have been modulated into beta receptors by diabetes mellitus back into normal alpha adrenoreceptors, so correcting vascular deformations. Applicable to all forms of diabetic micro- and macro-angiopathy, esp. diabetic retinopathy and nephropathy.

Dwg.0/0 US 5147879 A

Hydroxamic acid derivs of formula R3-(CHCR4))m-(CH(R5))n
-C(X)=N-OCH2-CHCOH) -CH2-NR1RR2 (I) and their salts are new, where X is
F, Cl, Br or I; R1 is H or 1-5C alkyl; R2 is 1-5C alkyl or 5-7C
cycloalkyl; or NR1R2 form a 5-8 membered satd. ring; R3 is H, phenyl,
naphthyl, or pyridyl opt. substd. by one or more halo and/or alkoxy; R4
and R5 are independently H or Ph; m and n are independently 0-2.
USE/ADVANTAGE - The cpds. do not influence (or only slightly) the
adrenergic reactions of healthy blood vessels, but show a strong effect
on the adrenergic receptors deformed by diabetes mellitus. This effect
appears as a selective beta-blocking effect, and (I) are useful for
treating diabetic angiopathy, esp. diabetic retinopathy and diabetic
nephropathy. They are ineffective on non-diabetic persons.
(Dwg. 0/0)

Title Terms: NEW; AMINO; HYDROXYPROPYL; HYDROXAMIC; ACID; HALIDE; DERIVATIVE; TREAT; DIABETES; SELECT; ACTION; ALTER; BETA; RECEPTOR Derwent Class: B03; B05

International Patent Class (Main): A61K-031/47; C07C-249/12; C07C-251/58; C07C-257/02; C07C-259/02; C07D-211/04; C07D-295/088; C07D-295/14

International Patent Class (Additional): A61K-031/13; A61K-031/135; A61K-031/15; A61K-031/21; A61K-031/395; A61K-031/405; A61K-031/435; A61K-031/44; A61K-031/445; C07C-219/06; C07C-259/04; C07C-295/12; C07D-207/00; C07D-209/04; C07D-211/00; C07D-211/60; C07D-213/04; C07D-213/44; C07D-213/54; C07D-213/78; C07D-215/00; C07D-223/00; C07D-225/00; C07D-231/00; C07D-237/00; C07D-243/00; C07D-295/00; C07D-295/12; C07D-295/12; C07D-295/15; C07D-401/12; C07D-413/12; C07D-450/00; C07D-471/06

File Segment: CPI

Manual Codes (CPI/A-N): B07-H03; B10-A18; B12-E06B; B12-G03; B12-H05; B12-L04

Chemical Fragment Codes (M2):

01 D010 D011 D012 D019 D020 D029 D040 D049 D601 D632 F010 F011 F012 F013 F014 F019 F020 F021 F431 F433 F553 F653 G001 G002 G003 G010 G011 G012 G013 G015 G019 G020 G021 G022 G029 G030 G040 G050 G100 G111 G112 G113 G221 G553 G563 H102 H103 H141 H161 H181 H201 H4 H401 H402 H441 H461 H481 H482 H521 H541 H542 H601 H602 H603 H604 H621 H641 H8 K0 K8 K840 L3 L353 L640 M121 M122 M123 M129 M132 M135 M139 M150 M210 M211 M212 M213 M214 M215 M216 M220 M221 M222 M223 M224 M225 M226 M231 M232 M233 M263 M272 M273 M280 M281 M282 M311 M312 M313 M314 M315 M321 M322 M323 M331 M332 M333 M340 M342 M343 M344

M372 M373 M383 M391 M392 M412 M413 M414 M415 M416 M510 M511 M512 M520 M521 M522 M530 M531 M532 M533 M540 M541 M620 M640 M650 M710 M903 M904 P520 P816 9427-37701-N

Generic Compound Numbers: 9427-37701-N