Séance d'AP 5 : Etude de fonctions affines

Soient f et g deux fonctions affines définies sur \mathbb{R} par f(x) = -1, 5x + 6 et $g(x) = \frac{3x + 6}{2}$

1) Tracer chacune des fonctions dans un repère orthonormé avec la méthode de votre choix.

2) Déterminer le sens de variation des fonctions f et g sur \mathbb{R} , en justifiant votre réponse.

Sens de variation de la fonction f:

Le coefficient directeur de la fonction f est $m=-1,5,\,m<0$. Par conséquent, on peut conclure que la fonction f est décroissante sur \mathbb{R} .

Sens de variation de la fonction g:

Le coefficient directeur de la fonction g est $m = \frac{3}{2}, m > 0$. Par conséquent, on peut conclure que la fonction g est croissante sur \mathbb{R} .

3) Construire le tableau de variation des fonctions f et g.

Tableau de variation de la fonction f:

x	$-\infty$	$+\infty$
f		
,		
		~

Tableau de variation de la fonction g:

	Tabica	u uc va
\boldsymbol{x}	$-\infty$	$+\infty$
g	/	1

4) Construire le tableau de signe des fonctions f et g.

Tableau de signe de la fonction f:

On cherche le réel x qui a pour image 0 par f.

Pour cela on résout l'équation $-1, 5x + 6 = 0 \Leftrightarrow x = 4$

On sait que m = -1, 5 < 0, donc la fonction f est décroissante.

On en déduit le tableau de signes de f:

x	$-\infty$		4		$+\infty$
Signe de $f(x)$		+	0	_	

Tableau de signe de la fonction g:

On cherche le réel x qui a pour image 0 par g.

Pour cela on résout l'équation
$$\frac{3x+6}{2} = 0 \Leftrightarrow 3x+6 = 0 \Leftrightarrow x = -2$$

On sait que $m = \frac{3}{2} > 0$, donc la fonction g est croissante.

On en déduit le tableau de signes de g:

x	$-\infty$		-2		$+\infty$
Signe de $g(x)$		_	0	+	

5) (a) Graphiquement, déterminer le plus précisément possible l'ensemble solution de l'équation f(x) = g(x).

Graphiquement, on estime que la solution de l'équation f(x) = g(x) est x = 1.

(b) Déterminter maintenant par le calcul l'ensemble solution de l'équation f(x) = g(x).

Résolvons l'équation
$$f(x) = g(x)$$
 avec $f(x) = -1, 5x + 6$ et $g(x) = \frac{3x + 6}{2}$

$$\Leftrightarrow -1, 5x + 6 = \frac{3x + 6}{2}$$

$$\Leftrightarrow (-1, 5x + 6) \times 2 = 3x + 6$$

$$\Leftrightarrow -3x + 12 = 3x + 6$$

$$\Leftrightarrow -6x = -6$$

$$\Leftrightarrow x = 1$$

6) Résoudre graphiquement f(x) > 0 et $g(x) \ge 0$.

Résolution de f(x) > 0:

Graphiquement, on regarde à partir de quelle valeur de x la fonction f est strictement positive (0 est exclu).

L'ensemble solution est le suivant : $S =]-\infty; 4[$.

Résolution de q(x) > 0:

Graphiquement, on regarde à partir de quelle valeur de x la fonction g est positive ou nulle (0 est inclu).

L'ensemble solution est le suivant : $S = [-2; +\infty[$.