Supporting energy-awareness for Cloud users

David GUYON
University of Rennes 1
david.guyon@irisa.fr

Anne-Cécile ORGERIE CNRS

Christine MORIN INRIA

May 26th, 2016

Summary

- General Context and Motivation
- Thesis Subject
- Contributions
- 4 Conclusion

Summary – General Context and Motivation

- General Context and Motivation
- 2 Thesis Subject
- Contributions
- 4 Conclusion

General Context

Cloud Computing

- ► Software-as-a-Service
- ► Platform-as-a-Service
- ► Infrastructure-as-a-Service

Motivation

The Cloud consumes an enormous amount of Energy

- ► The Cloud consumes around 2% of the worldwide total energy
- Quadruple by 2020 if the demand continues to go on

Summary – Thesis Subject

- General Context and Motivation
- Thesis Subject
- Contributions
- 4 Conclusion

Thesis Subject

Supporting energy-awareness for Cloud users Rendre les nuages plus verts grâce aux utilisateurs

Software-as-a-Service

Gestion des requêtes interaction avec l'app.

Platform-as-a-Service

Gestion des applications interaction avec les VMs

Infrastructure-as-a-Service

Gestion des ressources physiques et des VMs

Server 1

Server 2

Server 3

Thesis Objective

Software-as-a-Service

Platform-as-a-Service

Infrastructure-as-a-Service

Server 1

Server 2

Server 3

Thesis Objective

Thesis Objective

Problematic

Summary – Contributions

- General Context and Motivation
- 2 Thesis Subject
- 3 Contributions
 - First Contribution
 - Second Contribution
- 4 Conclusion

First Contribution Objective

- ► Existing solutions use consolidation
- ► Turning off as many hosts as possible
 - ▶ Do not take the user into consideration
 - Complex to configure

To reduce the electrical consumption of the Cloud by including the user in the optimization system

First Contribution Objective

- ► Existing solutions use consolidation
- ► Turning off as many hosts as possible
 - ► Do not take the user into consideration
 - Complex to configure

To reduce the electrical consumption of the Cloud by including the user in the optimization system

- 1. Easy-to-use interface to involve the user
 - ► Choice between *energy efficiency* and *performance*
 - lackbox Less performance o fewer resources o better consolidation
- 2. Algo to select VM size depending on chosen execution mode
- Algo for the VMs placement on the servers
- 4. Prototype for the evaluation of the benefits of our approach

- 1. Easy-to-use interface to involve the user
 - ► Choice between *energy efficiency* and *performance*
 - lackbox Less performance o fewer resources o better consolidation
- 2. Algo to select VM size depending on chosen execution mode
- 3. Algo for the VMs placement on the servers
- 4. Prototype for the evaluation of the benefits of our approach

- 1. Easy-to-use interface to involve the user
 - ► Choice between *energy efficiency* and *performance*
 - lackbox Less performance o fewer resources o better consolidation
- 2. Algo to select VM size depending on chosen execution mode
- 3. Algo for the VMs placement on the servers
- 4. Prototype for the evaluation of the benefits of our approach

- 1. Easy-to-use interface to involve the user
 - ► Choice between *energy efficiency* and *performance*
 - lacktriangle Less performance o fewer resources o better consolidation
- 2. Algo to select VM size depending on chosen execution mode
- 3. Algo for the VMs placement on the servers
- 4. Prototype for the evaluation of the benefits of our approach

Average values after 5 experiments on each execution mode

Average values after 5 experiments on each execution mode

Average values after 5 experiments on each execution mode

Publication

Objective of the 2nd Contribution

To know at which percent of *green* users energy-aware Cloud systems start to save in energy

Experimental Setup

Cloud simulator architecture

Average of 10 simulations of an infrastructure with 330 hosts used during 24h

Big	Medium	Little	Energy (KWh)	Hosts used	Percent
100	0	0	632.489	282	100.000
100	0	0	292.941	292	46.316
0	100	0	234.122	168	37.016
0	0	100	231.921	143	36.668
80	0	20	273.205	236	43.195
60		40	269.969	208	42.684
40		60	258.138	190	40.813
20	20	60	246.590	167	38.987
20	60	20	242.464	171	38.335

Average of 10 simulations of an infrastructure with 330 hosts used during 24h

Big	Medium	Little	Energy (KWh)	Hosts used	Percent
100	0	0	632.489	282	100.000
100	0	0	292.941	292	46.316
0	100	0	234.122	168	37.016
0	0	100	231.921	143	36.668
80	0	20	273.205	236	43.195
60	0	40	269.969	208	42.684
40	0	60	258.138	190	40.813
20	20	60	246.590	167	38.987
20	60	20	242.464	171	38.335

Average of 10 simulations of an infrastructure with 330 hosts used during 24h

Big	Medium	Little	Energy (KWh)	Hosts used	Percent
100	0	0	632.489	282	100.000
100	0	0	292.941	292	46.316
0	100	0	234.122	168	37.016
0	0	100	231.921	143	36.668
80	0	20	273.205	236	43.195
60	0	40	269.969	208	42.684
40	0	60	258.138	190	40.813
20	20	60	246.590	167	38.987
20	60	20	242.464	171	38.335

Summary - Conclusion

- General Context and Motivation
- 2 Thesis Subject
- Contributions
- 4 Conclusion

Conclusion

- ► First contribution published at the GreenCom conference
- Second contribution ready to be sent to the IGSC conference
- ▶ Ongoing work on an incentive system to motivate users to turn green

Conclusion

- ► First contribution published at the GreenCom conference
- Second contribution ready to be sent to the IGSC conference
- ▶ Ongoing work on an incentive system to motivate users to turn green

