Perlombongan Data Jujukan

```
data(mvad)
str(mvad)
```

```
712 obs. of 86 variables:
   'data.frame':
               : int 1 2 3 4 5 6 7 8 9 10 ...
    $ weight
               : num 0.33 0.57 1.59 1.59 0.57 1.59 0.57 2.75 2 3.6 ...
               : Factor w/ 2 levels "no", "yes": 1 1 2 1 2 2 2 2 1 1 ...
    $ catholic : Factor w/ 2 levels "no", "yes": 1 1 2 1 1 2 2 2 1 1 ...
##
               : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
    $ Belfast
   $ N.Eastern: Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 1 ...
##
   $ Southern : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 1 ...
    $ S.Eastern: Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 2 2 ...
##
    $ Western : Factor w/ 2 levels "no", "yes": 2 2 2 2 2 2 2 1 1 ...
##
##
              : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 2 1 1 ...
    $ Grammar
               : Factor w/ 2 levels "no", "yes": 1 1 1 1 2 1 1 1 1 1 ...
##
    $ funemp
              : Factor w/ 2 levels "no", "yes": 1 2 1 1 1 1 1 1 1 1 ...
##
    $ gcse5eq
               : Factor w/ 2 levels "no", "yes": 2 1 1 1 1 1 2 1 1 ...
##
    $ fmpr
##
    $ livboth : Factor w/ 2 levels "no", "yes": 2 2 2 2 2 1 1 2 1 2 ...
##
    $ Jul.93
               : Factor w/ 6 levels "school", "FE", ...: 4 5 5 4 5 5 5 3 5 3 ....
##
    $ Aug.93
               : Factor w/ 6 levels "school", "FE", ...: 4 5 5 4 5 5 5 3 5 3 ....
##
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 5 2 2 4 1 ...
    $ Sep.93
##
    $ Oct.93
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
##
    $ Nov.93
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
    $ Dec.93
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
##
               : Factor w/ 6 levels "school", "FE", ...: 4 2 4 4 2 4 2 2 4 1 ...
##
   $ Jan.94
##
   $ Feb.94
               : Factor w/ 6 levels "school", "FE", ...: 4 2 4 4 2 4 2 2 4 1 ...
##
    $ Mar.94
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
##
    $ Apr.94
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
##
    $ May.94
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
   $ Jun.94
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 5 ...
##
    $ Jul.94
##
    $ Aug.94
               : Factor w/ 6 levels "school", "FE",..: 3 2 4 4 2 4 2 2 4 5 ...
##
   $ Sep.94
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
    $ Oct.94
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
    $ Nov.94
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
##
    $ Dec.94
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
   $ Jan.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
   $ Feb.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
    $ Mar.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
    $ Apr.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
   $ May.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 3 3 ...
##
   $ Jun.95
##
    $ Jul.95
               : Factor w/ 6 levels "school", "FE",..: 3 2 4 4 2 4 2 3 3 3 ...
##
   $ Aug.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 3 3 3 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 2 4 2 3 3 3 ...
##
    $ Sep.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 2 3 3 3 ...
##
    $ Oct.95
```

```
$ Nov.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 2 3 3 3 ...
##
##
    $ Dec.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 2 3 3 3 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 2 3 3 3 ...
##
    $ Jan.96
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 2 3 3 3 ...
##
    $ Feb.96
##
    $ Mar.96
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 3 3 3 3 ...
##
    $ Apr.96
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 3 3 3 3 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 3 3 3 3 ...
##
    $ May.96
                : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 3 3 3 3 ...
##
    $ Jun.96
##
    $ Jul.96
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 3 3 3 3 3 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 3 3 3 3 3 ...
##
    $ Aug.96
               : Factor w/ 6 levels "school",
"FE",...: 3 6 2 4 6 3 3 3 3 ...
##
    $ Sep.96
    $ Oct.96
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
##
    $ Nov.96
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ Dec.96
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ Jan.97
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ Feb.97
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
    $ Mar.97
##
    $ Apr.97
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ May.97
##
    $ Jun.97
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ Jul.97
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
               : Factor w/ 6 levels "school", "FE",..: 3 6 2 3 6 3 3 3 3 ...
    $ Aug.97
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
    $ Sep.97
##
    $ Oct.97
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
    $ Nov.97
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 ...
##
    $ Dec.97
##
    $ Jan.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
               : Factor w/ 6 levels "school",
"FE",...: 3 6 2 3 6 3 3 3 3 ...
##
    $ Feb.98
##
    $ Mar.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
    $ Apr.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
    $ May.98
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
    $ Jun.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
    $ Jul.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 3 6 3 3 3 5 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 3 6 3 3 3 5 ...
##
    $ Aug.98
##
    $ Sep.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 3 6 3 3 3 5 ...
##
    $ Oct.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 5 ...
##
   $ Nov.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 5 ...
##
    $ Dec.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 3 5 ....
                : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 5 ...
    $ Jan.99
##
##
    $ Feb.99
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 5 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 5 ...
##
    $ Mar.99
    $ Apr.99
                : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 3 5 ...
##
##
    $ May.99
                : Factor w/ 6 levels "school", "FE", ...: 3 6 5 5 6 3 3 3 3 5 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 6 5 5 6 3 3 3 3 5 ...
##
    $ Jun.99
```

Lajur 1-14 adalah maklumat demografi, bukan data jujukan.

Data jujukan bermula lajur 15-86.

Takrifkan label dan kod bagi setiap keadaan.

```
mvad.labels = c('employment','further education','higher education','joblessness','school','training')
mvad.scode = c('EM','FE','HE','JL','SC','TR')
```

Bina data kelas jujukan

```
mvad.seq = seqdef(mvad, 15:86, states=mvad.scode, labels = mvad.labels,
                  xtstep=6)
##
   [>] state coding:
##
          [alphabet]
                     [label]
                               [long label]
        1 employment EM
##
                                employment
        2 FE
                       FΕ
                                further education
##
        3 HE
                       ΗE
                                higher education
##
        4 joblessness JL
##
                                joblessness
##
        5 school
                       SC
                                school
##
        6 training
                       TR
                                training
    [>] 712 sequences in the data set
    [>] min/max sequence length: 72/72
head(mvad.seq,10)
```

```
## [1] "stslist" "data.frame"
```

class(mvad.seq)

Penunjuk ringkasan statistik

1. Min (purata) masa proses berada dalam setiap keadaan.

```
## Mean
## EM 32.2
## FE 11.7
## HE 8.4
## JL 6.2
## SC 6.1
## TR 7.4
```

 $2.\ \mathrm{Min}\ \mathrm{(purata)}$ masa proses berada dalam setiap keadaan bagi kumpulan tertentu.

Bagi kumpulan Jantina

```
by(mvad.seq,mvad$male,seqmeant)
```

```
## mvad$male: no
     Mean
## EM 29.2
## FE 12.7
## HE 10.1
## JL 7.1
## SC 7.3
## TR 5.5
## mvad$male: yes
     Mean
## EM 35.0
## FE 10.8
## HE 6.8
## JL 5.4
## SC 5.0
## TR 9.1
seqmtplot(mvad.seq, group = mvad$male, main='Lelaki')
```


by(mvad.seq,mvad\$funemp,seqmeant)

```
## mvad$funemp: no
##
      Mean
## EM 32.3
## FE 12.0
## HE
      9.2
## JL
       5.1
## SC
       6.4
## TR 6.9
## mvad$funemp: yes
##
      Mean
## EM 31.7
## FE 10.2
## HE 4.3
## JL 11.4
## SC 4.5
## TR 10.0
```

Pengvisualan

```
seqmtplot(mvad.seq, group = mvad$funemp, main='Father Unemployment Status')
```


Father Unemployment Status – yes

□ employment□ higher education□ further education□ joblessness□ training

3. Bilangan transisi (peralihan)

head(seqtransn(mvad.seq),10)

```
##
       Trans.
## 1
            3
            2
## 2
            4
## 3
## 4
            2
## 5
            2
            2
## 6
            2
## 7
            2
## 8
            2
## 9
## 10
```

hist(seqtransn(mvad.seq), main = 'Bilangan Transisi')

Bilangan Transisi

4. Kadar peralihan.

```
mvad.trate = seqtrate(mvad.seq)
```

[>] computing transition probabilities for states EM/FE/HE/JL/SC/TR ...

mvad.trate

```
[-> FE]
                                        [-> HE]
                                                    [-> JL]
## [EM ->] 0.98156148 0.0051218100 0.002494099 0.006502472 0.0017369617
  [FE ->] 0.02727710 0.9525354482 0.006488825 0.008771930 0.0009613074
## [HE ->] 0.01023541 0.0001705902 0.987205732 0.001876493 0.0000000000
  [JL ->] 0.04226660 0.0278680910 0.002090107 0.903855086 0.0090571296
  [SC ->] 0.01357883 0.0115074799 0.017031070 0.005293441 0.9482163406
   [TR ->] 0.03742401 0.0039893617 0.000000000 0.013107903 0.0007598784
##
##
                [-> TR]
## [EM ->] 0.0025831737
## [FE ->] 0.0039653929
## [HE ->] 0.0005117707
## [JL ->] 0.0148629819
## [SC ->] 0.0043728423
## [TR ->] 0.9447188450
```

5. Keadaan peralihan yang bergantung terhadap masa.

```
[-> FE]
                                     [-> JL]
0.01156069
                             [-> HE]
                                                 [-> SC]
    0.982658960
                                                          0.0057
                 1.000000000
                                     0.00000000
      000000000
                                    0
                                                        0
                                                          0.000000000
    0.000000000 0.000000000
                                    0 0.00000000
                                                         0.000000000
                                                        0
    0.037837838 0.005405405
                                    0 0.92972973
                                                        0
                                                         0.027027027
    0.00000000 0.000000000
                                    0 0.00000000
                                                          0.000000000
   0.008196721 0.000000000
                                    0.00000000
                                                        0 0.991803279
Aug. 93
                            [-> HE]
0
                                    [-> JL]
0.005617978
    0.000000000
                                  0 0.00000000 0.00000000 0.00000000
                                  0 0.086206897
                                                 0.21264368 0.14942529
    0.007407407 0.12592593
                                  0 0.000000000 0.81481481 0.05185185
                                   0 0.007874016 0.01574803 0.92125984
    0.031496063 0.02362205
```

Pengvisualan

Plot indeks jujukan

20 Individu pertama

Plot indeks jujukan

pilih individu khusus (1,2,15,90,200,267,456,666,700)

Plot indeks jujukan

Plot Jujukan kekerapan

20 jujukan yang paling kerap berlaku

20 jujukan yang paling kerap berlaku

Plot taburan keadaan

corak umum keseluruhan set trajektori dalam data jujukan

```
seqdplot(mvad.seq, border=NA,
    main='plot taburan keadaan')
```


Plot keadaan modal

jujukan bagi keadaan yang paling kerap berlaku pada setiap kedudukan keadaan dominan pada setiap masa

seqmsplot(mvad.seq)

Indeks Entropi

Ukuran terhadap variasi keadaan dalam dalam data jujukan

$$h(p_1, \dots, p_a) = -\sum_{i=1}^a p_i \log(p_i)$$

dengan p_i ialah perkadaran entiti dalam keadaan-i, a ialah bilangan keadaan.

Jika nilai entropi=0 menunjukkan bahawa semua entiti berada dalam keadaan yang sama (variasi adalah 0)

Entropi Rentas Lintang

seqHtplot(mvad.seq, main='Entropi Rentas Lintang')

Entropi Rentas Lintang

seqdplot(mvad.seq, border=NA, main='plot taburan keadaan')

plot taburan keadaan

Data Jujukan Peristiwa

```
mvad.seqe = seqecreate(mvad.seq)
head(mvad.seqe)
```

```
## [1] (training)-2-(training>employment)-4-(employment>training)-2-(training>employment)-64
```

Sub-jujukan

```
fsubseq = seqefsub(mvad.seqe, pmin.support=0.05)

15 subjujukan paling kerap
```

```
plot(fsubseq[1:15], col='yellow')
```

^{## [2] (}joblessness)-2-(joblessness>further education)-36-(further education>higher education)-34

^{## [3] (}joblessness)-2-(joblessness>training)-24-(training>further education)-34-(further education>emp
[4] (training)-49-(training>employment)-14-(employment>joblessness)-9

^{## [5] (}joblessness)-2-(joblessness>further education)-25-(further education>higher education)-45

^{## [6] (}joblessness)-3-(joblessness>training)-33-(training>employment)-36

Mengkategorikan corak

```
library(cluster)
submat = seqsubm(mvad.seq, method = 'TRATE')
   [>] creating substitution-cost matrix using transition rates ...
   [>] computing transition probabilities for states EM/FE/HE/JL/SC/TR ...
submat
##
            EM
                     FΕ
                              ΗE
                                       JL
## EM 0.000000 1.967601 1.987270 1.951231 1.984684 1.959993
## FE 1.967601 0.000000 1.993341 1.963360 1.987531 1.992045
## HE 1.987270 1.993341 0.000000 1.996033 1.982969 1.999488
## JL 1.951231 1.963360 1.996033 0.000000 1.985649 1.972029
## SC 1.984684 1.987531 1.982969 1.985649 0.000000 1.994867
## TR 1.959993 1.992045 1.999488 1.972029 1.994867 0.000000
dist.om = seqdist(mvad.seq, method='OM',sm=submat)
   [>] 712 sequences with 6 distinct states
   [>] checking 'sm' (size and triangle inequality)
##
   [>] 557 distinct sequences
##
   [>] min/max sequence lengths: 72/72
   [>] computing distances using the OM metric
   [>] elapsed time: 0.86 secs
##
dapatkan kelompok dalam data berdasarkan jarak optimum
clusterward = agnes(dist.om, diss=T, method='ward')
plot(clusterward);abline(h=800, lty='dotted', col='red')
```

Banner of agnes(x = dist.om, diss = T, method = "ward")

Agglomerative Coefficient = 0.99

Dendrogram of agnes(x = dist.om, diss = T, method = "ward")

dist.om Agglomerative Coefficient = 0.99

misalkan k=4 kelompok adalah signifikan

```
cl.4 = cutree(clusterward, 4)
cl4fac = factor(cl.4, labels=paste("Kumpulan", 1:4))
head(cl4fac)
```

```
## [1] Kumpulan 1 Kumpulan 2 Kumpulan 3 Kumpulan 4 Kumpulan 2 Kumpulan 4 ## Levels: Kumpulan 1 Kumpulan 2 Kumpulan 3 Kumpulan 4
```

Jalankan analisis lanjutan terhadap setiap group

setiap individu dalam kumpulan yang sama akan mempunyai ciri yang hampir sama

10 jujukan yang paling kerap berlaku - Kumpula 10 jujukan yang paling kerap berlaku - Kumpula


```
seqdplot(mvad.seq,
         group=cl4fac,
         border=NA,
         main='plot taburan keadaan')
```


seqHtplot(mvad.seq,group=cl4fac, main='Entropi Rentas Lintang')

Entropi Rentas Lintang - Kumpulan 1

Entropi Rentas Lintang – Kumpulan 2

Entropi Rentas Lintang – Kumpulan 3

Entropi Rentas Lintang - Kumpulan 4

seqmsplot(mvad.seq, group=cl4fac)

employment

■ further education □ joblessness

school

training

sub-jujukan bagi setiap group

```
disc = seqecmpgroup(fsubseq, group = cl4fac)
plot(disc[1:6])
```

higher education

