Statistical Data Analysis

Dr. Jana de Wiljes

04.01.2022

Universität Potsdam

Clustering

K-means clustering

Input:

- Number of Clusters K
- ullet Set of points $\{x_1,\ldots,x_M\}$ in vector space that need to be classified

Output:

- ullet Sets \mathcal{M}_k of the clusters
- 1. Initialize the centre of the cluster $heta_1,\ldots, heta_K\in\mathbb{R}^n$ randomly
- 3. return $\theta_1, \ldots, \theta_K$

Initialisation

- Random Partition Method
- Forgy Initialization
- kmeans++
 - 1. choose θ_1 uniformly at random from set of points
 - 2. Choose new center θ_i with probability

$$\frac{D(x_m)^2}{\sum_{x_l} D(x_l)^2} \tag{1}$$

where $D(x_m)$ denotes the shortest distance from data point x_m to the closest center we have already chosen

3. Repeat Step 2 until we have all K centers

K-means clustering

Disadvantages

- true number of clusters K unknow (requires tuning)
- K-means algorithm dependents on the chosen initial values
- Clustering data of varying sizes and density
- Centroids can be dragged by outliers

Algorithm:

- 1. Initialize the centre of the cluster $\theta_1,\ldots,\theta_K\in\mathbb{R}^n$ randomly
- 2. Set lower bounds to $I(x_m, \theta_i) = 0$ for all θ_i and x_m
- 3. Assign each x_m to its closest initial center $\theta(x_m) = \arg\min_h ||\theta_h x_m||_2^2$ (avoid redundant calculations using Lemma 1)
- 4. Each time $||\theta_h x_m||_2^2$ is computed, set $I(x_m, \theta_h) = ||\theta_h x_m||_2^2$
- 5. Assign upper bounds $u(x_m) = \min_i ||\theta_i x_m||_2^2$
- 6. Repeat till a stopping criterion is fulfilled {
 - 6.1 **for all** θ_i and θ_j , compute $||\theta_i \theta_j||_2^2$. **For all** centers θ_i , compute $s(\theta_i) = \frac{1}{2} \min_i ||\theta_i \theta_j||_2^2$
 - 6.2 Identify all points x_m such that $u(x_m) \leq s(\theta(x_m))$.
 - 6.3 for all centers θ_i for all remaining points x_m check
 - $\theta_i \neq \theta(x_m)$ and
 - $u(x_m) > l(x_m, \theta_i)$ and
 - $u(x_m) > \frac{1}{2} ||\theta(x_m) \theta_i||_2^2$

If conditions $r(x_m)=$ true are true compute $\|x_m-\theta(x_m)\|$ and assign $r(x_m)=$ false. Otherwise $\|x_m-\theta(x_m)\|_2^2=u(x_m)$.

- 6.4 if $\|x_m \theta(x_m)\|_2^2 > l(x_m, \theta_l)$ or $\|x_m \theta(x_m)\|_2^2 > \frac{1}{2} \|\theta(x_m) \theta_l\|_2^2$ then • compute $\|(x_m - \theta_l)\|_2^2$
 - if $\|(x_m \theta_i)\|_2^2 < \|(x_m \theta(x_m))\|_2^2$ then assign $\theta(x_m) = \theta_i$
- 7. for all centers θ_i , let $m(\theta_i)$ be the mean of the points assigned to θ_i
- 8. for all points x_m and for all centers θ_i assign $I(x_m, \theta_i) = \max\{I(x_m, \theta_i) \|\theta_i m(\theta_i)\|_2^2, 0\}$
- 9. for all points x_m , assign $u(x_m) = u(x_m) + ||m(\theta(x_m)) \theta(x_m)||$ and $r(x_m) = \text{true}$
- 10. replace each center θ_i with $m(\theta_i)$
- 11. return $\theta_1, \ldots, \theta_K$

Example: pattern recognition for atmospheric circulation regimes

Regime

Time persistency constraint

$$\sum_{t=1}^{T-1} |\gamma_k(t+1) - \gamma_k(t)| \le N_C \quad \forall k$$

k-means clustering for different domains

k-means clustering for different domains

Optimisation problem

$$\mathbf{L}(\Theta, \Gamma) = \sum_{t=0}^{T} \sum_{n=1}^{N} \sum_{i=1}^{k} \gamma_{i}(t, n) \|x_{t,n} - \theta_{i}\|^{2}$$

with

$$\sum_{i=1}^k \gamma_i(t,n) = 1, \qquad \forall t \in [0,T], \quad \forall n \in [1,N].$$

and

$$\sum_{i=1}^{k} \sum_{n_1,n_2} |\gamma_i(t,n_1) - \gamma_i(t,n_2)| \le \phi \cdot C_{eq}, \qquad \forall t \in [0,T],$$

Ensemble persistency constraint

Ensemble persistency constraint

Occurrence rates

Optimal ϕ

K-Means vs Spectral Clustering

Eigenvalues and Eigenvectors

Definition

Let V be a K-Vector space, $f \colon V \to V$ an Endomorphismus, $\lambda \in K$. The scalar λ is called **Eigenvalue** of f, if there is a vector $v \in V, v \neq 0$, so that

$$f(v) = \lambda \cdot v$$
.

The vector v is called **Eigenvector** of f an Eigenvalue λ .

Note: An Eigenvalue λ can be $0 \in K$, but an Eigenvector is always $\neq 0$.

Theorem

Theorem

Let V be a K-vector space, $n=\dim V<\infty$ and $f\colon V\to V$ an Endomorphismus. The following two are equivalent:

- 1. V has a basis of Eigenvectors of f.
- 2. There is a Basis \mathcal{B} of V, so that

$$M_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \text{ with } \lambda_i \in K.$$

Characteristic Polynom

Definition

Let $A \in K^{n \times n}$ and $\lambda \in K$ abitrary. Then

$$\mathsf{Eig}(A,\lambda) := \{ v \in K^n \mid Av = \lambda v \}$$

is called the **Eigenspace** of A with respect to λ .

$$\chi_A(t) := \det(A - tE) \in K[t]$$

is called the **charakteristisches Polynom** of *A*.

Remark: For a matrix $A \in K^{n \times n}$ the following holds:

$$\lambda \in K$$
 is an Eigenvalue of $A \Leftrightarrow \text{Eig}(A, \lambda) \neq 0$.

Theorem

Let $A \in K^{n \times n}$ and $\lambda \in K$. Then:

 λ is an Eigenvalue of $A \Leftrightarrow \lambda$ is a root of $\chi_A(t)$.

Multiplicity

Definition

Let $P(t) \in K[t]$ be a Polynom. P(t) can be decomposed over K in **Linear factors** if and only if there are $\lambda_1, \ldots, \lambda_n \in K, c \in K$, so that

$$P(t) = c \cdot (t - \lambda_1) \cdot \cdot \cdot (t - \lambda_n) = c \cdot \prod_{j=1}^{r} (t - \lambda'_j)^{m_j},$$

where $m_j \in \mathbb{N}$ and $\lambda_1', \dots, \lambda_r' \in \{\lambda_1, \dots, \lambda_n\}$ are pairwise different. m_j is called the **Multiplicity** of the root λ_j' . It holds that

$$\sum_{j=1}^r m_j = n.$$

Example

Example

Example