Matching Local Self-Similarities across Images and Videos

Eli Shechtman & Michal Irani
The Weizmann Institute of Science
Israel

Thomas Tiel Groenestege
Jorn Engelbart

Matching Local Self-Similarities

Matching Local Self-Similarities

Matching Local Self-Similarities

GLOH

Shape Context

Template matching

- Template image F to target image G
- Not the same size
- Similarity not in appearance, but structure
- Local self-similarity

Sum of Square Differences

•
$$S_q(x,y) = \exp\left(-\frac{SSD_q(x,y)}{\max(var_{noise}, var_{auto}(q))}\right)$$

• 20 angles for 4 intervals = 80 bins

- Very local
- Takes maximal values for bins
- Accounts for small affine transformations
- Patch over pixel

Matching ensembles of descriptors

- Creating "ensembles"
- Relative positions of descriptors
- Filter out non-information

Matching ensembles of descriptors

- Similarity with sigmoid of L1 distance
- Likelihood map of the template
- Gaussian image pyramid, normalisation

Results

- 60 challenging image pairs
- Other methods failed in majority of cases
- LSS 86% correct

Other methods

Pose sketches

Video

Object classification

(a) Caltech [3]

(b) Caltech-Japan [3]

PERO)

(c) ETH [4]

(d) TUD-Brussels [5]

(e) Daimler [6]

(f) INRIA [7]

Cross-modal matching

Deep learning

Discussion

No extensive evaluation on good dataset

Questions?