미니 프로젝트

4교시: 우리나라 인구 소멸 위기 지역 분석

학습목표

● 한국 인구, 머지않아 자연 소멸된다?

1. 데이터 획득 및 준비

데이터 획득

- 국가 통계 포털에서 인구정보를 다운로드
- https://kosis.kr/index/index.do

1. 데이터 획득 및 준비

환경 준비

● 한글 처리

파일	소스코드
	Tf38_cpu pip install statsmodels
실습환경	import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font.family'] = 'Malgun Gothic' # Windows # matplotlib.rcParams['font.family'] = 'AppleGothic' # Mac matplotlib.rcParams['font.size'] = 15 # 글자 크기 matplotlib.rcParams['axes.unicode_minus'] = False # 한글 폰트 사용 시, 마이너스 글자가 깨지는 현상을 해결
소스코드	
결과값1	
결과값2	
ពាភ	

1. 데이터 획득 및 준비

데이터 로드

● 판다스 활용

파일	소스코드
실습환경	Tf38_cpu
소스코드	import pandas as pd import numpy as np import platform %matplotlib inline
	path = 'data/population_raw_data.xlsx' data = pd.read_excel(path, header=1) data.head(3)
결과값1	행정구역(동읍면)별(1) 행정구역(동읍면)별(2) 항목 계 20-24세 25-29세 30-34세 35-39세 65-69세 70-74세 75-79세 80-84세 85-89세 90-94세 95-99세 100+ 0 전국 소계 총인구수(명) 51696216.0 3541061.0 3217367.0 3517868 4016272.0 2237345.0 1781229.0 1457890 909130.0 416164.0 141488.0 34844 17562.0 1 NaN NaN 남자인구수(명) 25827594.0 1877127.0 1682988.0 1806754 2045265.0 1072395.0 806680.0 600607 319391.0 113221.0 32695.0 7658 4137.0 2 NaN NaN 여자인구수(명) 25868622.0 1663934.0 1534379.0 1711114 1971007.0 1164950.0 974549.0 857283 589739.0 302943.0 108793.0 27186 13425.0
비고	

1. 우리나라 인구 데이터

● 데이터 전처리

파일	소스코드
실습환경	Tf ₃ 8_cpu
소스코드	data.fillna(method='pad', inplace=True) data.rename(columns={'행정구역(동읍면)별(1)':'광역시도', '행정구역(동읍면)별(2)':'시도', '계':'인구수'}, inplace=True) data=data[data['시도']!='소계'] data.head(3)
결과값1	광역시도 시도 항목 인구수 20-24세 25-29세 30-34세 35-39세 65-69세 70-74세 75-79세 80-84세 85-89세 90-94세 95-99세 100+ 6 서울특별시 종로구 총인구수(명) 152737.0 11379.0 11891.0 10684 10379.0 7411.0 6636.0 5263 3104.0 1480.0 602.0 234 220.0 7 서울특별시 종로구 남자인구수(명) 75201.0 5620.0 6181.0 5387 5034.0 3411.0 3009.0 2311 1289.0 506.0 207.0 89 73.0 8 서울특별시 종로구 여자인구수(명) 77536.0 5759.0 5710.0 5297 5345.0 4000.0 3627.0 2952 1815.0 974.0 395.0 145 147.0
비고	

1. 우리나라 인구 데이터전처리

● 데이터 전처리

파일	소스코드
실습환경	Tf38_cpu
소스코드	data.is_copy = False data.rename(columns={'항목':'구분'}, inplace=True) data.loc[data['구분'] == '총인구수 (명)', '구분'] = '합계' data.loc[data['구분'] == '남자인구수 (명)', '구분'] = '남자' data.loc[data['구분'] == '여자인구수 (명)', '구분'] = '여자' data.head(3)
결과값1	광역시도 시도 구분 인구수 20-24세 25-29세 30-34세 35-39세 65-69세 70-74세 75-79세 80-84세 85-89세 90-94세 95-99세 100+ 6 서울특별시 종로구 합계 152737.0 11379.0 11891.0 10684 10379.0 7411.0 6636.0 5263 3104.0 1480.0 602.0 234 220.0 7 서울특별시 종로구 남자 75201.0 5620.0 6181.0 5387 5034.0 3411.0 3009.0 2311 1289.0 506.0 207.0 89 73.0 8 서울특별시 종로구 여자 77536.0 5759.0 5710.0 5297 5345.0 4000.0 3627.0 2952 1815.0 974.0 395.0 145 147.0
비고	

2. 인구 소멸 위기 지역을 계산해보기

- 인구소멸 위기란?
- 65세 이상 노인인구와 20~39세 여성 인구를 비교하여 여성인구가 노인 인구 의 절반에 미달할 경우
- 20~30대 인구와 65세 이상인구수 나타내기

파일	소스코드
실습환경	Tf38_cpu
소스코드	data['20-39세'] = data['20 - 24세']+ data['25 - 29세'] + data['30 - 34세'] + data['35 - 39세'] data['65세이상'] = data['65 - 69세']+ data['70 - 74세'] + data['75 - 79세'] + data['80 - 84세']\ + data['85 - 89세'] + data['90 - 94세'] + data['95 - 99세'] + data['100+'] data.head(3)
결과값1	광역시도 시도 구분 인구수 20-24세 25-29세 30-34세 35-39세 65-69세 70-74세 75-79세 80-84세 85-89세 90-94세 95-99세 100+ 20-39세 65세이상 6 서울특별시 종로구 합계 152737.0 11379.0 11891.0 10684 10379.0 7411.0 6636.0 5263 3104.0 1480.0 602.0 234 220.0 44333.0 24950.0 7 서울특별시 종로구 남자 75201.0 5620.0 6181.0 5387 5034.0 3411.0 3009.0 2311 1289.0 506.0 207.0 89 73.0 22222.0 10895.0 8 서울특별시 종로구 여자 77536.0 5759.0 5710.0 5297 5345.0 4000.0 3627.0 2952 1815.0 974.0 395.0 145 147.0 22111.0 14055.0
비고	

2. 인구 소멸 위기 지역을 계산해보기

● 인구소멸 위기란?

파일	소스코드
실습환경	Tf ₃ 8_cpu
소스코드	pop = pd.pivot_table(data, index=['광역시도', '시도'], columns=['구분'], values=['인구수', '20-39세', '65세이상']) pop.head(3)
결과값1	20-39세 65세이상 인구수 구분 남자 여자 합계 남자 여자 합계 남자 여자 합계 광역시도 시도 강원도 강릉시 26286.0 23098.0 49384.0 15767.0 21912.0 37679.0 106231.0 107615.0 213846.0 고성군 4494.0 2529.0 7023.0 2900.0 4251.0 7151.0 15899.0 14215.0 30114.0 동해시 11511.0 9753.0 21264.0 6392.0 8732.0 15124.0 47166.0 46131.0 93297.0
비고	

2. 인구 소멸 위기 지역을 계산해보기

- 인구 소멸비율: 20-30대 여자 / (65세 이상/2)
- 소멸위기지역: 소멸비율 < 1.0
- multiple columns에서 값 뽑기: df.index.get_level_values(1)을 이용하여, 소멸 위기지역인 곳을 뽑아 낼 수 있다

파일	소스코드 소스코드
실습환경	Tf38_cpu
소스코드	pop['소멸비율'] = pop['20-39세', '여자'] / (pop['65세이상', '합계']/2) pop['소멸위기지역'] = pop['소멸비율'] <1.0 # pop['소멸비율'] < 1.0 하면, 값이 True/False로 나오게 된다. pop[pop['소멸위기지역']==True].index.get_level_values(1)
결과값1	Index(['고성군', '삼척시', '양양군', '영월군', '정선군', '평창군', '홍천군', '횡성군', '가평군', '양평군', '연천군', '가창군', '고성군', '남해군', '일양시', '산청군', '의령군', '하동군', '함안군', '합천군', '고영군', '문경시', '봉화군', '상주시', '성주군', '영덕군', '영양군', '영주시', '영천시', '예천군', '울릉군', '울진군', '청동군', '청송군', '동구', '영도구', '영천시', '예천군', '울릉군', '울진군', '의성군', '청송군', '청송군', '영광군', '강화군', '옹진군', '강진군', '고흥군', '구례군', '다양군', '보성군', '신안군', '영광군', '영암군', '완도군', '장성군', '장성군', '장성군', '장성군', '장성군', '장성군', '장성군', '구대군', '학순군', '고창군', '김제시', '무주군', '부안군', '순창군', '임실군', '장수군', '정읍시', '진안군', '공주시', '금산군', '보은간', '영동군', '서천군', '예산군', '청양군', '태안군', '홍성군', '괴산군', '단양군', '보은군', '영동군', '옥
비고	

2. 인구 소멸 위기 지역을 계산해보기

● 인구 소멸비율: 20-30대 여자 / (65세 이상/2)

파일	소스코드
실습환경	Tf38_cpu
소스코드	pop.reset_index(inplace=True) pop.head(3)
결과값1	광역시도 시도 20-39세 65세이상 인구수 소멸비율 소멸위기지역 구분 남자 여자 합계 남자 여자 합계 남자 여자 합계 0 강원도 강릉시 26286.0 23098.0 49384.0 15767.0 21912.0 37679.0 106231.0 107615.0 213846.0 1.226041 False 1 강원도 고성군 4494.0 2529.0 7023.0 2900.0 4251.0 7151.0 15899.0 14215.0 30114.0 0.707314 True 2 강원도 동해시 11511.0 9753.0 21264.0 6392.0 8732.0 15124.0 47166.0 46131.0 93297.0 1.289738 False
비고	

2. 인구 소멸 위기 지역을 계산해보기

● 인구 소멸비율: 20-30대 여자 / (65세 이상/2)

파일	소스코드 소스코드
실습환경	Tf38_cpu
소스코드	<pre>pop.columns = [pop.columns.get_level_values(0)[n] + pop.columns.get_level_values(1)[n] for n in range(0, len(pop.columns.get_level_values(0)))] pop.head(3)</pre>
결과값1	광역시도 시도 20-39세남자 20-39세여자 20-39세합계 65세이상남자 65세이상여자 65세이상합계 인구수남자 인구수여자 인구수합계 소멸비율 소멸위기지역 0 강원도 강릉시 26286.0 23098.0 49384.0 15767.0 21912.0 37679.0 106231.0 107615.0 213846.0 1.226041 False 1 강원도 고성군 4494.0 2529.0 7023.0 2900.0 4251.0 7151.0 15899.0 14215.0 30114.0 0.707314 True 2 강원도 동해시 11511.0 9753.0 21264.0 6392.0 8732.0 15124.0 47166.0 46131.0 93297.0 1.289738 False
비고	

2. 인구 소멸 위기 지역을 계산해보기

● 데이터 정보 조회

파일	- 소스코드
실습환경	Tf ₃ 8_cpu
소스코드	pop.info()
결과값1	<class 'pandas.core.frame.dataframe'=""> RangeIndex: 264 entries, 0 to 263 Data columns (total 13 columns): # Column Non-Null Count Dtype </class>
비고	

2. 인구 소멸 위기 지역을 계산해보기

● 데이터 정보 조회

파일	소스코드
실습환경	Tf38_cpu
소스코드	pop['시도'].unique()
결과값1	array(['강륭시', '고성교', '동해시', '삼최시', '속초시', '양구교', '양원교', '양원교', '원주시', '인제교', '정선교', '출원신', '태원시', '태원시', '대원신', '기흥교', '고양시', '대원시', '생정시', '대원시', '대양구', '동투구시', '당원구', '생정시', '소사구', '수원시', '수지구', '시흥시', '안난시', '안양시', '양주시', '양평교', '여주시', '연청구', '수지구', '시흥시, '안난시', '안성시', '안양시', '양주시', '양평교', '여주시', '연천군', '영동구', '오산기', '오정구', '동원구', '처인구', '배외기', '양청시', '양정시', '하당시', '양상기', '양상기', '양상기', '양상기', '양생기', '

- 시와 구로 나누어 dictionary에 저장하기
- ~광역시가 아니면서 구를 가지고 있는 시와 행정구를 dict에 저장한다.

파일	소스코드 소스코드
실습환경	Tf38_cpu
소스코드	si = [None]*len(pop) tmp_gu_dict = {'수원':['장안구', '권선구', '팔달구', '영통구'],
결과값1	
비고	

- 시와 구로 나누어 dictionary에 저장하기
- ~광역시가 아니면서 구를 가지고 있는 시와 행정구를 dict에 저장한다.

```
파일
                            소스코드
실습환경
                             Tf38 cpu
                             for n in pop.index:
                               # [-3:] 끝 3글자
                               if pop['광역시도'][n][-3:] not in ['광역시', '특별시', '자치시']:
                                 # [:-1] 끝 1글자 빼고 나머지
                                 if pop['시도'][n][:-1] =='고성' and pop['광역시도'][n] =='강원도':
                                  si[n] = '고성(강원)'
                                 elif pop['시도'][n][:-1]=='고성' and pop['광역시도'][n] =='경상남도':
                                  si[n] = '고성(경남)'
                                 else:
                                  try:
                                    si[n] = pop['시도'][n][:-1]
                                   except:
                                    pass
                                 for keys, values in tmp_gu_dict.items():
                                  if pop['시도'][n] in values:
소스코드
                                    if len(pop['시도'][n])==2:
                                      si[n] = keys + ' '+pop['시도'][n]
                                    elif pop['시도'][n] in ['마산합포구', '마산회원구']:
                                      si[n] = keys + ' '+pop['시도'][n][2:-1]
                                    else:
                                      si[n] = kevs + '' + pop[' \land | \Sigma'][n][:-1]
                               elif pop['광역시도'][n] == '세종특별자치시':
                                 si[n]= '세종'
                               else:
                                 if len(pop['시도'][n]) == 2:
                                   si[n] = pop['광역시도'][n][:2]+''+pop['시도'][n]
                                   # '시도'가 3글자 이상이면 보통 뒤에 구, 군, 시 등이 붙으므로 2글자로 맞춰줌
                                   si[n] = pop['광역시도'][n][:2]+''+ pop['시도'][n][:-1]
                             si
```


- 시와 구로 나누어 dictionary에 저장하기
- ~광역시가 아니면서 구를 가지고 있는 시와 행정구를 dict에 저장한다.

파일 소스코드
실습환경 Tf38_cpu
소스코드
['강릉', '고성(강원)',
'동해', '삼척', '속초',
'양구', 결과값1 '양양',
'영월', '원주', '인제',
'정선',

- 시와 구로 나누어 dictionary에 저장하기
- ~광역시가 아니면서 구를 가지고 있는 시와 행정구를 dict에 저장한다.

파일	소스코드 소스코드
실습환경	Tf38_cpu
소스코드	pop['ID'] = si pop.head(3)
결과값1	광역시도 시도 20-39세남자 20-39세여자 20-39세합계 65세이상남자 65세이상여자 65세이상합계 인구수남자 인구수여자 인구수합계 소멸비율 소멸위기지역 ID 0 강원도 강릉시 26286.0 23098.0 49384.0 15767.0 21912.0 37679.0 106231.0 107615.0 213846.0 1.226041 False 강릉 1 강원도 고성군 4494.0 2529.0 7023.0 2900.0 4251.0 7151.0 15899.0 14215.0 30114.0 0.707314 True 고성(강원) 2 강원도 동해시 11511.0 9753.0 21264.0 6392.0 8732.0 15124.0 47166.0 46131.0 93297.0 1.289738 False 동해
비고	

- 필요없는 데이터 columns들을 지워주자
- 저장

파일	소스코드
실습환경	Tf38_cpu
소스코드	del pop['20-39세남자'] del pop['65세이상남자'] del pop['65세이상여자'] pop.head(3) pop.to_excel('data/draw_korea_raw.xlsx', index=False)
결과값1	광역시도 시도 20-39세여자 20-39세합계 65세이상합계 인구수남자 인구수여자 인구수합계 소멸비율 소멸위기지역 ID 0 강원도 강릉시 23098.0 49384.0 37679.0 106231.0 107615.0 213846.0 1.226041 False 강릉 1 강원도 고성군 2529.0 7023.0 7151.0 15899.0 14215.0 30114.0 0.707314 True 고성(강원) 2 강원도 동해시 9753.0 21264.0 15124.0 47166.0 46131.0 93297.0 1.289738 False 동해
비고	

- 3. 위기 지역을 지도로 보여주기
 - ID로 나눈, excel파일 모습

2								철원	화천	양구	고성(강원)			
3				양주	동두 천	연천	포천	의점 부	인제	춘천	속초			
4				고양	고양 일산	서울 도봉	서울 노원	남양 주	홍천	휭성	양양			
			파주	고양	김포	서울 강북	서울	가평	구리	하남	정선	강릉		
5			부천	안양	광명	서울	서울	선물	서울	양	태백	동해		-
5		인천	소사 부천	만안 안양	서울	서대 서울	종로 서울	동대 서울	중랑 서울	평여	원주	삼척		-
7		강화 인천	원미 부천	동안	은평 서울	마포 서울	중구 서울	성동 서울	강동 서울	주이				
8		서구	오정	시흥	강서	동작	용산	광진	송파	전	평창	울진		
9		인천 동구	인천 계양	안산 상록	서울 양천	서울 관악	서울 서초	성남 중원	과천	광주	영월	영덕		
			인천 부평	안산 단원	서울 영등	서울 금천	서울 강남	성남 분당	성남 수정	용인	문경	봉화		울릉
0		인천	인천	화성	서울	급신 군포	의왕	수원	용인	용	안동	영양		
1	인천	중구 인천	남구 인천		구로	수원	수원	영통	기흥	인영			포항	
2	용진	연수	남동	오산	안성	권선	장만	제천	예천	영주기	구미	청송	북구	
3	태안	아산	천안 동남	천안 서북	평택	음성	수원 팔달	단양	상주	김	군위	의성	포항 남구	
4		당진	홍성	예산	공주	진천	충주	청주 흥덕	괴산	칠곡	영천	경산	경주	
5		서산	보령	청양	세종	대전 대덕	증평	청주 청원	보은	고령	청도	성주	울산 북구	
			부여	논산	계룡	대전	청주	청주	댓국	대	대구	울산	물산	
6			서천	금산	대전	동구대전	상당 옥천	서원 영동	북구 대구	구대	수성 대구	울주 울산	동구 울산	
7	13				유성 대전	중구			서구 대구	구대	동구 부산	중구 부산	남구 부산	
8			군산	익산	서구	무주	거창	합천	달서	7	금정	동래	기장	
9			부안	김제	완주	장수	함양	창녕	밀양	부산	부산 부산	부산 연제	부산 해문	
10		고창	정읍	전주 덕진	진안	남원	진주	의렴	부산 강서	부산	부산 동구	부산 중구		
		영광	장성	전주	임실	산청	함안	양산	창원	부	부산	부산		
1		함평	담양	완산 순창	구례	하동	창원	창원	합포 창원	산김	사하 부산	남구 부산		
2	AIOL	무안	광주			0.5	의창	성산 창원	진해	해	영도	수영		
3	신안		광산 광주	곡성 광주	화순	광양	사천	회원	통영	_				
14	목포	나주	서구	북구	순천	고흥	남해	경남)	거제					
25	해남	영암	광주 남구	광주 동구	여수									
6	진도	강진	장흥	보성										
			완도			제추								
7		- 1				서귀	_			-		_		

3. 위기 지역을 지도로 보여주기

파일	소스코드
실습환경	Tf ₃ 8_cpu
소스코드	draw_korea_raw = pd.read_excel('./data/draw_korea_raw.xlsx') draw_korea_raw.head(3)
결과값1	0 1 2 3 4 5 6 7 8 9 10 11 12 13 o NaN NaN NaN NaN NaN NaN NaN ÞaÐ 화천 양구 고성(강원) NaN NaN NaN 1 NaN NaN NaN 양주 동두천 연천 포천 의정부 인제 춘천 속초 NaN NaN NaN 2 NaN NaN NaN 고양덕양 고양일산동 서울도봉 서울노원 남양주 홍천 횡성 양양 NaN NaN NaN
비고	

3. 위기 지역을 지도로 보여주기

파일	소스코드 소스코드
실습환경	Tf38_cpu
소스코드	<pre>draw_korea_raw_starcked = pd.DataFrame(draw_korea_raw.stack()) draw_korea_raw_starcked.reset_index(inplace=True) draw_korea_raw_starcked.rename(columns={'level_o':'y', 'level_1':'x', o:'ID'}, inplace=True) draw_korea_raw_starcked.head() draw_korea = draw_korea_raw_starcked</pre>
결과값1	y x ID 0 0 7 철원 1 0 8 화천 2 0 9 양구 3 0 10 고성(강원) 4 1 3 양주
비고	

3. 위기 지역을 지도로 보여주기

TI OI	
파일	소스코드
실습환경	Tf38_cpu
소스코드	BORDER_LINES = [[(5, 1), (5, 2), (7, 2), (7, 3), (11,3), (11, 0)], [(5, 4), (5, 5), (2, 5), (2, 7), (4, 7), (4, 9), (7, 9), (7, 7), (9, 7), (9, 5), (10, 5), (10, 4), (5, 4)], [(1, 7), (1, 8), (3, 8), (3, 10), (10, 10), (10, 7), (12, 7), (12, 6), (11, 6), (11, 5), (12, 5), (12, 4), (11, 4), (11, 3)], [(8, 10), (8, 11), (6, 11), (6, 12)], [(12, 5), (13, 5), (13, 4), (14, 4), (14, 5), (15, 5), (15, 4), (16, 4), (16, 2)], [(16, 4), (17, 4), (17, 5), (16, 5), (16, 6), (19, 6), (19, 5), (20, 5), (20, 4), (21, 4), (21, 3), (19, 3), (19, 1)], [(13, 5), (13, 6), (16, 6)], [(13, 5), (14, 5)], [(21, 2), (21, 3), (22, 3), (22, 4), (24, 4), (24, 2), (21, 2)], [(20, 5), (21, 5), (21, 6), (23, 6)], [(10, 8), (12, 8), (12, 9), (14, 9), (14, 8), (16, 8), (16, 6)], [(14, 9), (14, 11), (14, 12), (13, 12), (13, 13)], [(15, 8), (17, 8), (17, 10), (16, 10), (16, 11), (14, 11)], [(17, 9), (18, 9), (18, 8), (19, 8), (19, 9), (20, 9), (20, 10), (21, 10)], [(16, 11), (16, 13)], [(27, 5), (27, 6), (25, 6)],]
결과값1	
비고	

비고

2. 데이터 탐색 및 가공

3. 위기 지역을 지도로 보여주기

```
파일
                      소스코드
실습환경
                      Tf38_cpu
                      plt.figure(figsize=(8, 11))
                      for idx, row in draw korea.iterrows():
                        if len(row['ID'].split())==2:
                          dispname = '{} \n{}'.format(row['ID'].split()[o], row['ID'].split()[1])
                        elif row['ID'][:2] =='고성':
                          dispname = '고성'
                        else:
                          dispname = row['ID']
                        if len(dispname.splitlines()[-1]) >= 3:
                          fontsize, linespacing = 9.5, 1.5
                        else:
소스코드
                          fontsize, linespacing = 11, 1.2
                        plt.annotate(dispname, (row['x']+0.5, row['y']+0.5), weight='bold', fontsize= fontsize, ha='center',
                      va='center', linespacing=linespacing)
                      for path in BORDER LINES:
                        ys, xs = zip(*path)
                        plt.plot(xs, ys, c='black', lw=1.5)
                      plt.gca().invert_yaxis()
                      plt.axis('off')
                      plt.tight layout()
                      plt.show()
결과값1
```


비고

2. 데이터 탐색 및 가공

3. 위기 지역을 지도로 보여주기

_	, , ,	
파일	소스코드	
실습환경	Tf38_cpu	
소스코드		
결과값1		

- draw_korea와 pop을 합쳐보자
- pop['ID']에서 우리가 만든 draw_korea['ID']에 없는 내용은 뺀다.

파일	A CARLO CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT
실습환경	Tf38_cpu
소스코드	tmp_list = list(set(pop['ID'].unique()) - set(draw_korea['ID'].unique())) for tmp in tmp_list: pop = pop.drop(pop[pop['ID']==tmp].index) tmp_list
결과값1	성남', '포항', '수원', '청주', '안산', '용인', '부천', '창원', '천안', '안양', '고양', '전주']
비고	

- draw_korea와 pop을 합쳐보자
- pop에 있는 데이터들 + drwa_korea에 있던 좌표까지 입력

파일	소스코드 소스코드
실습환경	Tf38_cpu
소스코드	<pre>pop = pd.merge(pop, draw_korea, how='left', on=['ID']) pop.head()</pre>
결과값1	광역시도 시도 20-39세여자 20-39세합계 65세이상합계 인구수남자 인구수여자 인구수합계 소멸비율 소멸위기지역 ID y x 0 강원도 강릉시 23098.0 49384.0 37679.0 106231.0 107615.0 213846.0 1.226041 False 강릉 3 11 1 강원도 고성군 2529.0 7023.0 7151.0 15899.0 14215.0 30114.0 0.707314 True 고성(강원) 0 10 2 강원도 동해시 9753.0 21264.0 15124.0 47166.0 46131.0 93297.0 1.289738 False 동해 4 11 3 강원도 삼척시 7115.0 15823.0 14610.0 35253.0 34346.0 69599.0 0.973990 True 삼척 5 11 4 강원도 속초시 8752.0 18708.0 12752.0 40288.0 41505.0 81793.0 1.372647 False 속초 1 10
нг	

비고

2. 데이터 탐색 및 가공

3. 위기 지역을 지도로 보여주기

● 정보 그리기 함수

파일 **소시코드** Tf38_cpu 실습환경 $def\,draw Korea (target Data, blocked Map, cmap name):\\$ gamma = .75 whitelabelmin = (max(blockedMap[targetData]) - min(blockedMap[targetData]))*0.25 + min(blockedMap[targetData]) datalabel = targetData vmin = min(blockedMap[targetData]) vmax = max(blockedMap[targetData]) mapdata = blockedMap.pivot_table(index='y', columns = 'x', values = targetData) masked_mapdata = np.ma.masked_where(np.isnan(mapdata), mapdata) plt.figure(figsize = (6, 8)) plt.pcolor(masked_mapdata, vmin=vmin, vmax=vmax, cmap=cmapname, edgecolor='#aaaaaaa', linewidth=0.5) for idx, row in blockedMap.iterrows(): if len(row['ID'].split())==2: elif row['ID'][:2] =='고성': dispname = '고성' else: 소스코드 dispname = row['ID'] if len(dispname.splitlines()[-1]) >= 3: fontsize, linespacing = 8, 1.1 else: fontsize, linespacing = 9, 0.9 annocolor = 'white' if row[targetData] > whitelabelmin else 'black' plt.annotate(dispname, (row['x']+0.5, row['y']+0.5), weight='bold', fontsize= fontsize, ha='center', va='center', linespacing=linespacing) for path in BORDER_LINES: ys, xs = zip(*path)plt.plot(xs, ys, c='black', lw=2) plt.gca().invert_yaxis() plt.axis('off') cb =plt.colorbar(shrink=.1, aspect=10) cb.set_label(datalabel) plt.tight_layout() plt.show() 결과값1

3. 위기 지역을 지도로 보여주기

● 정보 그리기 함수

파일	소스코드
실습환경	Tf38_cpu
소스코드	drawKorea('인구수합계', pop,
결과값1	
비고	

4. 소멸위기지역

● True, False를 1, 0으로 나타내기

파일	소스코드
실습환경	Tf38_cpu
소스코드	pop['소멸위기지역'] = [1 if con else o for con in pop['소멸위기지역']] drawKorea('소멸위기지역', pop, 'Reds')
결과값1	
비고	

5. 여성비

파일	소스코드
실습환경	Tf38_cpu
소스코드	def drawKoreas(targetData, blockedMap, cmapname): gamma = 7,5 whitelabelmin = 20. datalabel = targetData #음수가존제할수있기 때문에 절대값으로변경 tmp_max = max(inp.abs(min(blockedMap[targetData])), np.abs(max(blockedMap[targetData])))) vmin, vmax = tmax(inp.abs(min(blockedMap[targetData])), np.abs(max(blockedMap[targetData])))) vmin, vmax = tmp_max, tmp_max mapdata = blockedMap.pivot_table(index='y', columns = 'x', values = targetData) masked_mapdata = np.ma.masked_where(np.isnan(mapdata), mapdata) plt.figure(figsize = (6, 8)) plt.peolor(masked_mapdata, vmin=vmin, vmax=vmax, cmap=cmapname, edgecolor='#aaaaaa', linewidth=0.5) for idx, row in blockedMap.iterrows(): if len(row[TD'].split()]==2: dispanae = '(3)n(', format(row['ID'].split()[0], row['ID'].split()[1]) elif row[TD']!zz] == '12\dd': dispaname = '(3)n(', format(row['ID'].split()[0], row['ID'].split()[1]) if len(dispname.splitlines()[-1]) >= 3: fontsize, linespacing = 8, 1.1 else: fontsize, linespacing = 8, 1.1 else: fontsize, linespacing = 8, 1.2 else: fontsize, linespacing = 8, 1.3 else: fontsize, linespacing = 8, 1.3 else: fontsize, linespacing = 8, 1.4 else

5. 여성비

파일	소스코드
실습환경	Tf38_cpu
	pop['여성비']= (pop['인구수여자']/pop['인구수합계'] -0.5) * 100
소스코드	drawKorea2('여성비', pop, 'RdBu')
결과값1	
비고	

6. 2030여성비

파일	소년
실습환경	Tf38_cpu
소스코드	pop['2030여성비'] = (pop['20-39세여자']/pop['20-39세합계']-0.5)*100 drawKorea2('2030여성비', pop, 'RdBu')
결과값1	
비고	

Unit 2

문제

- ❖ 대화하는 프로그램 만들기
- ❖ 자동 판매기를 시뮬레이션하는 프로그램을 작성하여 보자. 사용자는 1000원짜리 지폐와 500원짜리 동전, 100원짜리 동전을 사용할 수 있다. 물건값을 입력하고 1000원권, 500원짜리 동전, 100원짜리 동전의 개수를 입력하면 거스름돈을 계산하여서 동전으로 반환한다.

물건값을 입력하시오: 750 1000원 지폐개수: 1 500원 동전개수: 0 100원 동전개수: 0 500원= 0 100원= 2 10원= 5 1원= 0

Quiz

Unit 1

답

```
itemPrice = int(input("물건값을 입력하시오: "))
note = int(input("1000원 지폐개수: "))
coin500 = int(input("500원 동전개수: "))
coin100 = int(input("100원 동전개수: "))
change = note*1000 + coin500*500 + coin100*100 - itemPrice
# 거스름돈(500원 동전 개수)을 계산한다.
nCoin500 = change//500
change = change%500
# 거스름돈(100원 동전 개수)을 계산한다.
nCoin100 = change//100
change = change%100
# 거스름돈(10원 동전 개수)을 계산한다.
nCoin10 = change//10
change = change%10
# 거스름돈(1원 동전 개수)을 계산한다.
nCoin1 = change
print("500원=", nCoin500, "100원=", nCoin100, "10원=", nCoin10, "1원=", nCoin1)
물건값을 입력하시오: 10
1000원 지폐개수: 10
500원 동전개수: 50
100원 동전개수: 10
500원= 71 100원= 4 10원= 9 1원= 0
```

문제

- ❖ 연락처 관리 프로그램
- ❖ 파이썬을 이용하여 연락처를 관리하는 프로그램을 작성하여 보자. 연락처 관리 프로그램은 다음과 같은 메뉴를 가져야 한다.

- 1. 친구 리스트 출력
 - 2. 친구추가
 - 3. 친구삭제
 - 4. 이름변경
 - 9. 종료

메뉴를 선택하시오: 2 이름을 입력하시오: 홍길동

- 1. 친구 리스트 출력
 - 2. 친구추가
 - 3. 친구삭제
 - 4. 이름변경
 - 9. 종료

메뉴를 선택하시오: 1 ['홍길동']

•••

```
menu = 0
friends = []
while menu != 9:
   print("----")
   print("1. 친구 리스트 출력")
   print("2. 친구추가")
   print("3. 친구삭제")
   print("4. 이름변경")
   print("9. 종료")
   menu = int(input("메뉴를 선택하시오: "))
   if menu == 1:
      print(friends)
   elif menu== 2:
      name = input("이름을 입력하시오: ")
      friends.append(name)
menu = O
friends = []
while menu != 9:
   print("----")
   print("1. 친구 리스트 출력")
   print("2. 친구추가")
   print("3. 친구삭제")
   print("4. 이름변경")
   print("9. 종료")
   menu = int(input("메뉴를 선택하시오: "))
   if menu == 1:
      print(friends)
   elif menu== 2:
      name = input("이름을 입력하시오: ")
      friends.append(name)
```

```
    친구 리스트 출력
    친구추가
    친구삭제
    이름변경
    종료
메뉴를 선택하시오: 1
```

문제

- ❖ 파일에서 중복되지 않은 단어의 개수
- ❖ 텍스트 파일을 읽어서 단어를 얼마나 다양하게 사용하여 문서를 작성하였는지 를 계산하는 프로그램을 작성해보자.

입력 파일 이름: proverbs.txt 사용된 단어의 개수= 18

{'travels', 'half', 'that', 'news', 'alls', 'well', 'fast', 'feather', 'flock', 'bad', 'together', 'ends', 'is', 'a', 'done', 'begun', 'birds', 'of'}

답

```
# 단어에서 구두점을 제거하고 소문자로 만든다.
def process(w):
 output =""
 for ch in w:
  if( ch.isalpha() ):
     output += ch
 return output.lower()
words = set()
# 파일을 연다.
fname = input("입력 파일 이름: ")
file = open(fname, "r")
# 파일의 모든 줄에 대하여 반복한다.
for line in file:
      lineWords = line.split()
       for word in lineWords:
          words.add(process(word)) # 단어를 세트에 추가한다.
print("사용된 단어의 개수=", len(words))
print(words)
```

문제

- ❖ 단어 카운터
- ❖ 사용자가 지정하는 파일을 읽어서 파일에 저장된 각각의 단어가 몇 번이나 나오는 는지를 계산하는 프로그램을 작성하여 보자.

```
파일 이름: proverbs.txt
```

```
{'a': 1, 'done.': 1, 'that': 1, 'well.': 1, 'ends': 1, 'Well': 1, 'flock': 1, 'feather': 1, "All's": 1, 'Birds': 1, 'together.': 1, 'of': 1, 'fast.': 1, 'begun': 1, 'half': 1, 'well': 1, 'travels': 1, 'news': 1, 'is': 1, 'Bad': 1}
```

```
fname = input("파일 이름: ")

file = open(fname, "r")

table = dict()

for line in file:
    words = line.split()
    for word in words:
        if word not in table:
            table[word] = 1
        else:
            table[word] += 1
```

문제

- ❖ 은행 계좌
- ❖ 우리는 은행 계좌에 돈을 저금할 수 있고 인출할 수도 있다. 은행 계좌를 클래스로 모델링하여 보자. 은행 계좌는 현재 잔액(balance)만을 인스턴스 변수로 가진다. 생성자와 인출 메소드 withdraw()와 저축 메소드 deposit() 만을 가정하자.

통장에서 100 가 출금되었음 통장에 10 가 입금되었음

```
class BankAccount:
   def __init__(self):
       self.__balance = 0
   def withdraw(self, amount):
       self.__balance -= amount
       print("통장에 ", amount, "가 입금되었음")
       return self.__balance
   def deposit(self, amount):
       self.__balance += amount
       print("통장에서 ", amount, "가 출금되었음")
       return self.__balance
a = BankAccount()
a.deposit(100)
a.withdraw(10)
통장에서 100 가 출금되었음
통장에 10 가 입금되었음
90
```