

Nombre:			Nota
Curso:	2º Bachillerato	Examen IV	
Fecha:	29 de Noviembre de 2015	La mala o nula explicación de cada ejercicio implica una penalización de hasta el 25% de la nota.	

1.- La línea recta que pasa por los puntos (0,-6) y (1,0) es la gráfica de la función derivada segunda f'' de una cierta función f. Se sabe que el origen pertenece a la curva y=f(x) y que en ese punto la recta tangente tiene pendiente igual a 3. Determina la función f. (2,5 puntos)

2.- (1p+1p+0.5p)

- **a)** Halla las asíntotas de la gráfica de la función definida para x > 0 por: $f(x) = \frac{1+x^2}{x}$
- **b)** Halla las regiones de crecimiento y de decrecimiento de f indicando sus máximos y mínimos locales y globales, si los hay.
- c) Esboza la gráfica de f.
- **3.-** Determina a, b y c para que la curva $y = \frac{a}{x^2 + bx + c}$ verifique las siguientes condiciones: (2,5 puntos)
 - **a)** Presenta una asíntota horizontal en y=0.
 - **b)** x=-3 y x=1 son asíntotas verticales suyas.
 - c) Tiene un máximo en el punto (-1,-2)

A elegir uno

4.-

- a) Enunciar el teorema de Rolle. (0,5 puntos)
- **b)** Determinar a, b, c para que la función f, definida por:

$$f(x) = \begin{cases} a \cdot senx + b \cdot \cos x + c & \text{si} \quad x < \frac{\pi}{2} \\ sen^2 x - a \cos x & \text{si} \quad x \ge \frac{\pi}{2} \end{cases}$$

Satisfaga la hipótesis del teorema de Rolle en el intervalo $[0,\pi]$ (2 puntos)

5.- Recortando convenientemente en cada esquina de una lámina de cartón de dimensiones 80 cm x 50 cm un cuadrado de lado x y doblando convenientemente se construye una caja (abierta). Calcular x para que volumen de dicha caja sea máximo.

Solución Examen IV

1.- La línea recta que pasa por los puntos (0,-6) y (1,0) es la gráfica de la función derivada segunda f" de una cierta función f. Se sabe que el origen pertenece a la curva y=f(x) y que en ese punto la recta tangente tiene pendiente igual a 3. Determina una expresión de la función f. (2,5 puntos)

Sol:
$$f(x) = x^3 - 3x^2 + 3x$$

Si la segunda derivada es una línea recta, quiere decir que la función, es una función polinómica de grado 3, luego f será de la forma $f(x) = ax^3 + bx^2 + cx + d$, además con los datos del problema sabemos que: f''(0) = -6, f''(1) = 0 porque la segunda derivada pasa por esos puntos, además si la función pasa por el origen, tenemos que f(0) = 0, y si además en ese punto la recta tangente tiene pendiente igual a 3, tenemos que f'(0) = 3.

Si calculamos la primera y la segunda derivada, con estos datos podemos escribir un sistema de ecuaciones:

$$\begin{cases}
f(x) = ax^3 + bx^2 + cx + d \\
f'(x) = 3ax^2 + 2bx + c \\
f''(x) = 6ax + 2b
\end{cases}$$

$$\Rightarrow \begin{cases}
f(0) = 0 & \leftrightarrow d = 0 \\
f'(0) = 3 & \leftrightarrow c = 3 \\
f''(0) = -6 & \leftrightarrow 2b = -6 & \leftrightarrow b = -3 \\
f''(1) = 0 & \leftrightarrow 6a + 2b = 0 & \leftrightarrow 6a = 6 & \leftrightarrow a = 1
\end{cases}$$

Cuya solución es d=0; c=3; b=-3 y a=1,

Y por tanto la función *f* buscada es:

$$f(x) = x^3 - 3x^2 + 3x$$

2.-
$$(1p+1p+0.5p)$$

- **a)** Halla las asíntotas de la gráfica de la función definida para x > 0 por: $f(x) = \frac{1+x^2}{x}$
- **b)** Halla las regiones de crecimiento y de decrecimiento de f indicando sus máximos y mínimos locales y globales, si los hay.
- **c)** Esboza la gráfica de f.
 - **a)** f presenta una asíntota vertical en un punto de abscisa x=a si ocurre que $\lim_{x\to a}f(x)=\pm\infty$, por tanto:

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1 + x^2}{x} = \frac{1}{0^+} = +\infty$$

La función f tiene una asíntota vertical en cero por la derecha.

f presenta una asíntota horizontal en y=k, si ocurre que $\lim_{x\to +\infty} f(x) = K$, por tanto:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1 + x^2}{x} = +\infty$$

La función no tiene asíntota horizontal.

Como no tiene asíntota horizontal, estudiamos el límite $\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} \frac{1+x^2}{x^2} = 1$ y vemos que es finito y distinto de cero, así que estudiamos otro límite, el límite:

$$\lim_{x\to +\infty} \left[f(x) - mx \right] = \lim_{x\to +\infty} \frac{1+x^2}{x} - 1 \cdot x = \lim_{x\to +\infty} \frac{1+x^2}{x} - \frac{x^2}{x} = \lim_{x\to +\infty} \frac{1}{x} = 0$$

Por tanto, la recta y = x es una asíntota oblicua de la función f(x).

Así que la función
$$f(x)$$
 presenta:
$$\begin{cases} Asíntota \ Vertical \ en \ x=0 \\ Asíntota \ Oblícua \ en \ la \ dirección \ y=x \end{cases}$$

b) Para trabajar la monotonía de la función, nos ayudamos de su derivada:

$$f'(x) = \frac{2x \cdot x - (1 + x^2) \cdot 1}{x^2} = \frac{2x^2 - x^2 - 1}{x^2} = \frac{x^2 - 1}{x^2}$$

Que igualando a cero nos da dos soluciones:

$$f'(x) = 0$$
 \leftrightarrow $\frac{x^2 - 1}{x^2} = 0$ \leftrightarrow $x^2 - 1 = 0$ \leftrightarrow $x = \pm 1$

Como la función está definida en $(0,+\infty)$, la solución x=-1 quedaría descartada.

Si nos ayudamos de la tabla:

Х	0	+1	+∞	
f'(x)	-		+	
f(x)	7	Mín	7	

Vemos que la función es **decreciente en** el intervalo (0,1) y **creciente en** el intervalo $(1,+\infty)$, y en el punto (1,2) la función presenta un **mínimo absoluto**, puesto que los límites en el 0 y en el $+\infty$ de la función son $+\infty$.

c) Con los datos obtenidos, el boceto de nuestra gráfica sería:

3.- Determina a, b y c para que la curva $y = \frac{a}{x^2 + bx + c}$ verifique las siguientes condiciones:

- **a)** Presenta una asíntota horizontal en y=0.
- **b)** x=-3 y x=1 son asíntotas verticales suyas.
- **c)** Tiene un máximo en el punto (-1,-2)

Si x=-3 y x=1 son asíntotas verticales de la función, son puntos que no pertenecen al dominio y puntos que son raíz del polinomio de segundo grado del denominador, por tanto, el denominador sería:

$$(x+3)\cdot(x-1) = x^2 + 2x - 3$$

Por tanto, si lo comparamos con x^2+bx+c , tenemos que b=2 y c=-3

Solo nos faltaría encontrar el valor de a, y para ello utilizamos que la función pasa por el punto (-1,-2):

$$f(-1) = \frac{a}{(-1)^2 + 2(-1) - 3} = \frac{a}{1 - 2 - 3} = \frac{a}{-4} = -2$$

Por tanto:

(2,5 puntos)

Matemáticas

Solución Examen IV

Y la función pedida es:

$$y = \frac{8}{x^2 + 2x - 3}$$

4.-

- a) Enunciar el teorema de Rolle. (0,5 puntos)
- **b)** Determinar a, b, c para que la función f, definida por:

$$f(x) = \begin{cases} a \cdot senx + b \cdot cos x + c & si \quad x < \frac{\pi}{2} \\ sen^2 x - a \cos x & si \quad x \ge \frac{\pi}{2} \end{cases}$$

satisfaga la hipótesis del teorema de Rolle en el intervalo $\left[0,\pi\right]$ (2 puntos)

- a) El teorema de Rolle dice que: Sea f una función real de variable real que cumple las condiciones:
 - Está definida y es continua en [a,b]
 - Es derivable en (a,b)
 - f(a) = f(b)

entonces existe al menos un punto $c \in \left]a,b\right[$ tal que f(c)=0

Geométricamente, quiere decir que si se cumplen todas las condiciones del Teorema, entonces la curva de f tiene en el punto c del intervalo (a,b) una recta tangente que es paralela al eje OX.

ha de ocurrir:

b) Para que la función $f(x) = \begin{cases} a \cdot senx + b \cdot \cos x + c & si \quad x < \frac{\pi}{2} \\ sen^2 x - a \cos x & si \quad x \ge \frac{\pi}{2} \end{cases}$ satisfaga la hipótesis del dicho teorema,

 \checkmark Que la función sea continua en $[0,\pi]$, por tanto, como es una función definida a trozos compuesta por dos ramas en las que aparecen funciones circulares siempre continuas, ha de ser continua en el punto donde cambia de rama. Estudiamos los límites laterales en $x = \frac{\pi}{2}$

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} f(x) = \lim_{x \to \frac{\pi}{2}} \left(a \cdot senx + b \cdot \cos x + c \right) = a + c$$

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \frac{\pi}{2}} \left(sen^{2}x - a\cos x \right) = 1$$
Así que f será continua si $a + c = 1$

Que la función sea derivable en $(0,\pi)$, por tanto, como es derivable en todo $\mathbb R$ también lo será en el punto donde cambia de rama:

$$f'(x) = \begin{cases} a \cdot \cos x - b \cdot senx & \text{si} \quad x < \frac{\pi}{2} \\ 2 \cdot senx \cdot \cos x + asenx & \text{si} \quad x > \frac{\pi}{2} \end{cases}$$

Calculamos las derivadas laterales en $x = \frac{\pi}{2}$

$$f'\left(\frac{\pi}{2}\right)^{-} = a\cos\frac{\pi}{2} - bsen\frac{\pi}{2} = -b$$

$$f'\left(\frac{\pi}{2}\right)^{+} = 2\cdot sen\frac{\pi}{2}\cos\frac{\pi}{2} + asen\frac{\pi}{2} = a$$
 Así que f será derivable si $a = -b$

✓ Que $f(0) = f(\pi)$ implica que b + c = a

Para que la función verifique el Teorema de Rolle se deben de cumplir las tres condiciones: $\begin{cases} a+c=1\\ a=-b\\ b+c=a \end{cases}$

Así que resolviendo el sistema obtenemos:

$$a = \frac{1}{3}$$
 $b = -\frac{1}{3}$ $c = \frac{2}{3}$

Por tanto la función
$$f(x) = \begin{cases} \frac{1}{3} \cdot senx - \frac{1}{3} \cdot cos x + \frac{2}{3} & si \quad x < \frac{\pi}{2} \\ sen^2 x - \frac{1}{3} cos x & si \quad x \ge \frac{\pi}{2} \end{cases}$$

5.- Recortando convenientemente en cada esquina de una lámina de cartón de dimensiones 80 cm x 50 cm un cuadrado de lado x y doblando convenientemente, se construye una caja (abierta). Calcular x para que el volumen de dicha caja sea máximo. (2,5 puntos)

El volumen de la caja viene dado por el producto de la superficie de la base por la altura.

$$V(x) = (80 - 2x) \cdot (50 - 2x) \cdot x = 4x^3 - 260x^2 + 4000x$$

Si derivamos con respecto a x:

$$V'(x) = 12x^2 - 520x + 4000$$

E igualamos a cero, obtenemos:

$$V'(x) = 12x^2 - 520x + 4000 = 0 \qquad \Longleftrightarrow \qquad \begin{cases} x_1 = 10 \\ x_2 = \frac{100}{3} \end{cases}$$

Desechamos la segunda solución porque 50-2x es negativo

Así que x=10 cm.

Si derivamos por segunda vez, obtenemos V''(x) = 24x - 520 \leftrightarrow V''(10) = -280 < 0

Por tanto x=10 es un máximo

6 De todas las rectas que de coordenadas positivos y área.	pasan por que forma	el punto (1,; un triángulo	2) calcula aqu de área mínii	ella que corta ma. Calcula ta	con los ejes mbién dicha