Hanfeng Zhai*

September 22, 2021

This problem is about the simple shear deformation in class notes.

1a. Find **C** for simple shear and find the eigenvalues, you need to simplify, e.g. the largest eigenvalue of **C** is $\lambda_1 = (\sec \beta + \tan \beta)^2$, where $\tan \beta = \frac{1}{2} \tan \lambda$.

Solution: Based on the definition of simple shear:

$$\begin{cases} x_1 = X_1 + X_2 \tan \gamma \\ x_2 = X_2 \\ x_3 = X_3 \end{cases}$$

Therefore we can write the deformation gradient tensor:

$$\mathbf{F} = \begin{bmatrix} 1 & \tan \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

We can therefore write **C**:

$$\mathbf{C} = \begin{bmatrix} 1 & \tan \gamma & 0 \\ \tan \gamma & \tan^2 \gamma + 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

We compute the eigenvalues of \mathbf{C} via det $|\mathbf{C} - \lambda \cdot \mathbf{I}| = 0$, obtains that the three eigenvalues are

$$[\lambda_1, \lambda_2, \lambda_3] = \left[\frac{\tan \gamma \sqrt{\tan^2 \gamma + 4}}{2} + \frac{\tan^2 \gamma}{2} + 1, \ \frac{\tan^2 \gamma}{2} - \frac{\tan \gamma \sqrt{\tan^2 \gamma + 4}}{2} + 1, \ 1 \right]$$

Substituting the condition $\tan \beta = \frac{1}{2} \tan \gamma$ we get:

$$[\lambda_1, \lambda_2, \lambda_3] = [(\tan \beta + \sec \beta)^2, (\tan \beta - \sec \beta)^2, 1]$$

Therefore, the largest eigenvalue of C is $\lambda = (\tan \beta + \sec \beta)^2$.

1b. Find the normalized eigenvectors for \mathbf{C} – again, you need to simplify, all your answer should be expressed in term of the parameter β .

Solution: Computing the eigenvectors of **C**, and write them up into a whole matrix we have:

$$\begin{aligned} \mathbf{V} &= [\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3] \\ &= \begin{bmatrix} \frac{1}{\tan \gamma} \left(\frac{\tan \gamma + \tan \gamma \sqrt{\tan^2 \gamma + 4}}{2} - \tan^2 \gamma + 2 \right) & \frac{1}{\tan \gamma} \left(\frac{\tan \gamma - \tan \gamma \sqrt{\tan^2 \gamma + 4}}{2} - \tan^2 \gamma + 2 \right) & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Substituting the given relations $\tan \beta = \frac{1}{2} \tan \gamma$ we further write the eigenvectors' matrix:

$$\mathbf{V} = \begin{bmatrix} \tan \beta + \sec \beta & \tan \beta - \sec \beta & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

By normalizing this matrix we have the eigenvectors' matrix:

$$\mathcal{E} = \frac{\mathbf{V}}{||\mathbf{V}||} = \begin{bmatrix} \sqrt{\frac{1-\sin\beta}{2}} & -\sqrt{\frac{1+\sin\beta}{2}} & 0\\ \sqrt{\frac{1+\sin\beta}{2}} & \sqrt{\frac{1-\sin\beta}{2}} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

1c. Find the matrices representing \mathbf{R} and \mathbf{U} in the polar decomposition with respect to the original basis. Interpret \mathbf{R} geometrically.

Solution: According to course note, the polar decomposition takes the form:

$$\mathbf{F} = \begin{bmatrix} 1 & \tan \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2\tan \beta & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{RU}$$

We also know that **U** is the right stretch tensor, writes $U^2 = C$.

From 1a we already compute the eigenvalues of C, we can hence say that C can be rewritten into the form as follows in principal direction:

$$\mathbf{C} = \begin{bmatrix} (\tan \beta + \sec \beta)^2 & 0 & 0 \\ 0 & (\tan \beta - \sec \beta)^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Therefore we derive the tensor U:

$$\mathbf{U} = \sqrt{\mathbf{C}} = \begin{bmatrix} \sec \beta + \tan \beta & 0 & 0 \\ 0 & \sec \beta - \tan \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that this **U** is in the prime basis, for calculation of **R**, we need to transfer this **U** back to the original basis, called \mathcal{U} :

$$\mathcal{U} = \mathcal{E}\mathbf{U}\mathcal{E}^T$$

$$= \begin{bmatrix} \sqrt{\frac{1-\sin\beta}{2}} & \sqrt{\frac{1+\sin\beta}{2}} & 0 \\ -\sqrt{\frac{1+\sin\beta}{2}} & \sqrt{\frac{1-\sin\beta}{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sec\beta + \tan\beta 0 & 0 & 0 \\ 0 & \sec\beta - \tan\beta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{\frac{1-\sin\beta}{2}} & -\sqrt{\frac{1+\sin\beta}{2}} & 0 \\ \sqrt{\frac{1+\sin\beta}{2}} & \sqrt{\frac{1-\sin\beta}{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos\beta & \sin\beta & 0 \\ \sin\beta & \frac{1+\sin^2\beta}{\cos\beta} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Therefore we can compute \mathbf{R} on the original basis:

$$\mathbf{R} = \mathbf{F} \mathcal{U}^{-1} = \begin{bmatrix} 1 & 2\tan\beta & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sin^2\beta + 1}{\cos\beta} & -\sin\beta & 0 \\ -\sin\beta & \cos\beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos\beta & \sin\beta & 0 \\ -\sin\beta & \cos\beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

We can therefore geometrically interpret **R** as the rotational transformation with the angle β .

1d. What are \mathbf{R} and \mathbf{U} for small shear deformations?

Solution: According to the lecture notes, for small shear deformations, one has to follow the *small strain theory*, which is:

$$\mathbf{E} = \frac{1}{2}(\mathbf{C} - \mathbf{I}) \approx \epsilon$$

We can therefore compute **E**:

$$\mathbf{E} \stackrel{\text{small shear strain}}{\approx} \epsilon = \begin{bmatrix} 0 & \tan \beta & 0 \\ \tan \beta & 2 \tan^2 \beta & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Also, with small strain theory, we know that $\mathbf{F} \approx \mathbf{I} + \omega + \epsilon$. We therefore know ω : $\omega = \mathbf{F} - \mathbf{I} - \epsilon$.

For small deformation, $\beta \approx 0 \to \sin \beta \approx \beta, \tan \beta \approx \beta, \cos \beta \approx 1$, then we have

$$\mathcal{U} = \begin{bmatrix} 1 & \beta & 0 \\ \beta & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \mathbf{R} = \begin{bmatrix} 1 & \beta & 0 \\ -\beta & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$