MUTATION IDENTIFICATION IN GENOMICS

Karthigayini Sivaprakasam May 2019

SECTIONS

- Introduction to genetics
- Sequencing
- Workflows
- Variant callers
- Algorithms
- Annotation
- Astrocyte

GENOME AND GENETIC DISEASES

What Is A Genome?

- DNA tells cells/tissues/organs/systems how to operate
- 3.2 B letters Human
- 10 million letters vary between individuals

What is a genetic disease?

Abnormality caused in the genome

 Can be as small as a single base or involve addition or deletion of whole copies of chromosome.

Types of Genetic Disorders

- Single gene mutations Sickle cell anemia
- Chromosomal disorders Downs syndrome
- Complex disorders Cancers
- Inherited or Acquired.

Autosomal Dominant Disorders

Autosomal dominant inheritance where one parent has the condition

Recessive Disorders

X-linked Disorders

Mitochondrial Disorders

SEQUENCING

Why do Genome Sequencing in Cancer?

- Complex disease predisposition and environmental factors
- Identification of "known" variants to aid in patient treatment
 - Clin Cancer Res. 2012 Aug 15;18(16):4257-65, Advances in pharmacology (San Diego, Calif.) 01/2012; 65:399-435.
- Identification of new variants (SNPs, Indels, SVs) associated with cancer to drive basic research and identify new drug targets
 - Nature, 474,609-615 (30 June 2011), Nature, 487, 330-337 (19 July 2012)

Genome, Exome, Gene Panel

Pros and Cons

WGS

- Can predict large structural differences including CNV
- ~1300\$ for 30-40x coverage
- More storage space and time to analysis.

TARGETED PANEL

- Can predict lower AF SNVs with precision.
- \sim 500\$ for 100x Coverage
- Lesser storage space and less time for analysis.

Sequence Coverage & Depth

- Base depth is the number of reads that cover a particular base
- Coverage is "how much" of your target did you cover
- Depth of Coverage is how deep was that coverage?

https://www.r-bloggers.com/visualize-coverage-for-targeted-ngs-exome-experiments/

Types of Variation

SNV

CATCATCATCATCAT His His His His His His Substitution of a single nucleotide CATCATCATCCTCATCAT His His Pro His His Single amino acid change may produce a non-functioning protein

INDEL

Structural Variation

GWAS

- Genome Wide Association studies examines associations between single-nucleotide polymorphisms (SNPs) and traits using statistical methods like Fisher Exact Test
- Often these associations have varying contributions to the trait (effect size).

PheWAS

- Phenome-wide association studies (PheWAS) is a quantitative method to determine disease associations can we make with a given gene?
- This is in contrast to GWAS which aims to identify associations, PheWAS aims to explain the cause and effect.
- For example, given a single nucleotide polymorphism (SNP) identified by GWAS (SNP: rs17234657) and association with infection, one may conclude that the SNP increases susceptibility of the host.
- In contrast, with PheWAS new putative associations may be identified through interrogation of phenomic markers within the EHR. Hence, an alternative mechanism is identified, where rs17234657 is found to be associated with an increase in autoimmune disease and the treatment used (immunosuppressive medication) is the cause of the infection.

Large Reference Populations

HapMap

• The International HapMap Project was an organization that aimed to develop a haplotype map (HapMap) of the human genome using SNP genotyping arrays

• 1000G

 The 1000 Genomes project aimed to sequence using NGS > 1000 genomes in "pure" and "ad-mixture" human populations to identify human variation across the genome

ExAC

• ExAC collected the SNP and Indel calls in ~ 26K genomes/exomes to accumulation prevelence in the population studied in many genomes projects

• gnomAD

• The Genome Aggregation Database (gnomAD) is a resource of aggregate genomes and aimed to harmonize both exome and genome sequencing data from over 120K exomes and 15K genomes.

WORKFLOWS

Illumina Workflow

https://www.google.com/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjbhdz5ru7hAhUSeawKHR3wC6YQjRx6BAgBEAU&url=https%3A%2F%2Fwww.slideshare.net%2FLutzFr%2Fbioinformatics-workshop-sept-2014&psig=AOvVaw37T4HhhNDYyCx7-s1Xmis2&ust=1556388549295992

Computer Analysis

Why Worry About Sequence Duplication?

- DNA is sequenced, PCR is used to amplify sequence library to ensure that the DNA with a "known adapter" is sequenced.
- Since PCR has a small error rate, "early errors" can be amplified and could skew the results.

Accurate SNP discovery depends deeply on good base quality and coverage

Why Base Recalibration?

 Base recalibration detects systematic errors made by the sequencer when it estimates the quality score of each base call

Reported Quality vs. Empirical Quality

VARIANT CALLING

SNV

CNV

https://github.com/karthigayini/tCoNuT/blob/master/plotting/SAMPLE.cnaBAF.png

SV

https://software.broadinstitute.org/software/igv/interpreting insert size

Germline Workflow

Differences in Results between Callers?

	Amino Acid	Variant														
Gene	Change	Туре	ExpectedAF	CHROM	START	END	Freebay es	Hotspot	LoFreq	Platy pus	GATK	Strelka2	Vscan	Samtools	Scapel	Pindel
NRAS	Q61L	SNP	10	chr1	114713907	114713908	9.1%	8.4%	9.0%	9.2%						
DNMT3A	R882C	SNP	5	chr2	25234373	25234374	4.4%	4.3%	4.4%							
SF3B1	G740E	SNP	5	chr2	197401988	197401989	4.9%	4.7%	5.0%							
IDH1	R132C	SNP	5	chr2	208248388	208248389	3.2%	3.1%	3.2%							
GATA2	G200fs*18	DEL	35	chr3	128485998	128486000	32.8%			28.0%	34.2%	34.2%	32.22%			
TET2	R1261H	SNP	5	chr4	105243756	105243757	4.3%	4.1%	4.4%							
NPM1	W288f s*12	INS	5	chr5	148817378	148817379	2.7%	1.8%							4.6%	
EZH2	R418Q	SNP	5	chr7	148817378	148817379	3.6%	3.3%	3.6%							
JAK2	F537- K539>L	DEL	5	chr9	5070020	5070028	2.3%								3.3%	
JAK2	V617F	SNP	5	chr9	5073769	5073770	3.4%	3.3%	3.4%							
ABL1	T315I	SNP	5	chr9	130872895	130872896	4.0%	3.8%	3.9%							
CBL	S403F	SNP	5	chr11	119278277	119278278	4.3%	4.3%	4.3%							
KRAS	G13D	SNP	40	chr12	25245346	25245347	32.7%	32.0%	32.8%	32.8%	32.9%	32.8%	31.29%	31.3%		
FLT3	D835Y	SNP	5	chr13	28018504	28018505	3.7%	3.6%	3.8%							
IDH2	R172K	SNP	5	chr15	90088605	90088606	4.5%	4.4%	4.5%							
TP53	S241F	SNP	5	chr17	7674240	7674241	5.3%	5.3%	5.4%							
ASXL1	G646fs*12	INS	40	chr20	32434637	32434638	31.5%			31.1%	37.2%	39.2%	32.02%			
ASXL1	W796C	SNP	5	chr20	32435099	32435100	4.9%	4.8%	5.1%							
RUNX1	M267I	SNP	35	chr21	34834413	34834414	33.5%	32.7%	33.4%	33.0%	33.0%	33.2%	32.34%	32.4%		
BCOR	Q1174fs*8	INS	70	chrX	40063831	40063833	63.4%			52.4%	65.1%	67.2%	56.47%		47.1%	
GATA1	Q119*	SNP	10	chrX	48791977	48791978	9.1%		9.1%	9.0%	9.5%					
FLT3	ITD300	300bp INS	5													1.3%

ALGORITHMS

SNV algorithm

Variant caller	Type of variant	Single-sample mode	Type of core algorithm
BAYSIC [48]	SNV	No	Machine learning (ensemble caller)
CaVEMan [34]	SNV	No	Joint genotype analysis
deepSNV [38]	SNV	No	Allele frequency analysis
EBCall [37]	SNV, indel	No	Allele frequency analysis
FaSD-somatic [31]	SNV	Yes	Joint genotype analysis
FreeBayes[44]	SNV, indel	Yes	Haplotype analysis
НарМиС <u>[42]</u>	SNV, indel	Yes	Haplotype analysis
JointSNVMix 2 [30]	SNV	No	Joint genotype analysis
LocHap <u>[43]</u>	SNV, indel	No	Haplotype analysis
LoFreq [36]	SNV, indel	Yes	Allele frequency analysis
LoLoPicker [39]	SNV	No	Allele frequency analysis
MutationSeq [45]	SNV	No	Machine learning
MuSE [40]	SNV	No	Markov chain model
MuTect [35]	SNV	Yes	Allele frequency analysis
SAMtools [8]	SNV, indel	Yes	Joint genotype analysis
Platypus [41]	SNV, indel, SV	Yes	Haplotype analysis
qSNP [24]	SNV	No	Heuristic threshold
RADIA [26]	SNV	No	Heuristic threshold
Seurat [33]	SNV, indel, SV	No	Joint genoty pe analysis
Shimmer[25]	SNV, indel	No	Heuristic threshold
SNooPer[47]	SNV, indel	Yes	Machine learning
SNVSniffer[32]	SNV, indel	Yes	Joint genoty pe analysis
SOAPsnv [27]	SNV	No	Heuristic threshold
SomaticSeq[46]	SNV	No	Machine learning (ensemble caller)
SomaticSniper [28]	SNV	No	Joint genoty pe analysis
Strelka [17]	SNV, indel	No	Allele frequency analysis
TVC [97]	SNV, indel, SV	Yes	Ion Torrent specific
VarDict [18]	SNV, indel, SV	Yes	Heuristic threshold
VarScan2 [9]	SNV, indel	Yes	Heuristic threshold
Virmid [29]	SNV	No	Joint genotype analysis

Xu C. A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data. *Comput Struct Biotechnol J.* 2018;16:15–24. Published 2018 Feb 6. doi:10.1016/j.csbj.2018.01.003

CNV workflow

Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. *BMC Bioinformatics*. 2013;14 Suppl 11(Suppl 11):S1. doi:10.1186/1471-2105-14-S11-S1

SV working

Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. *Bioinformatics*. 2012;28(18):i333–i339. doi:10.1093/bioinformatics/bts378

Recommended Filtering

Germline

- Depth > 10
- LOF or Misssense (Coding Changes)
- Alt Read Ct > 3
- Mutation Allele Frequency (MAF) > 0.15
- If novel: Called by 2+ callers

Somatic Workflows

Recommended Filtering

- Depth < 20
- LOF or Misssense
- MAF (Normal) * 10.
 MAF (Tumor)
- In COSMIC > 5 Subject
 - Tumor: Alt Read Ct < 3
 - Tumor: MAF < 0.01
- Others
 - Tumor: Alt Read CT < 8
 - Tumor: MAF < 0.05</p>
 - Tumor: Called by 2+ callers

ANNOTATION

Annotation

- snpEff
 - Changes affecting genes
 - Changes affecting regulatory regions
 - ENCODE
 - Epigenome Roadmap
 - NextProt: proteomic annotations
 - Motifs
- VEP
 - Changes affecting genes
 - Changes affecting regulatory regions
 - Integrated with downstream tools like cBioporal and GenVisR

Variant Functional Classification

- Pathogenic previously reported and is a recognized cause of the disorder.
- Likely Pathogenic previously unreported and is of the type which is expected to cause the disorder.
- VUS (Variant of Unknown Significance) previously unreported and is of the type which may or may not be causative of the disorder.
- Likely Benign previously unreported and is probably not causative of disease.
- Benign a sequence variant is previously reported and is a recognized neutral variant.

Effect	Impact	initiator_codon_variant	L
3_prime_UTR_truncation +exon_loss	M	intergenic_region	NC
3_prime_UTR_variant	NC	intragenic_variant	NC
5_prime_UTR_premature start_codon_gain_variant	L	intron_variant	NC
5_prime_UTR_truncation + exon_loss_variant	М	inversion	Н
5_prime_UTR_variant	NC	inversion	Н
bidirectional_gene_fusion	Н	inversion	Н
chromosome	Н	miRNA	NC
coding_sequence_variant	NC	missense_variant	М
coding_sequence_variant	LOW	protein_protein_contact	Н
conserved_intergenic_variant	NC	rare_amino_acid_variant	Н
conserved_intron_variant	NC	rearranged_at_DNA_level	Н
disruptive_inframe_deletion	М	regulatory_region_variant	NC
disruptive_inframe_insertion	М	sequence_feature + exon_loss_variant	NC
downstream_gene_variant	NC	splice_acceptor_variant	Н
duplication	Н	splice_donor_variant	Н
duplication	Н	splice_region_variant	1
duplication	Н	splice_region_variant	ı
duplication	M	splice_region_variant	М
exon_loss_variant	Н	start_lost	H
exon_loss_variant	Н		11
exon_variant	NC	start_retained	11
feature_ablation	Н	stop_gained	Н
feature_ablation	Н	stop_lost	H
frameshift_variant	Н	stop_retained_variant	L
gene_fusion	Н	stop_retained_variant	L
gene_fusion	Н	structural_interaction_variant	Н
gene_variant	NC	synonymous_variant	L
inframe_deletion	M	transcript_variant	NC
inframe_insertion	М	upstream_gene_variant	NC

Disease Studies

ClinVar

 ClinVar is a freely accessible, public archive of reports of the relationships among human variations and phenotypes, with supporting evidence

GWAS Catalog

– The Catalog is a quality controlled, manually curated, literature-derived collection of all published genome-wide association studies assaying at least 100,000 SNPs and all SNP-trait associations with p-values < 1.0 x 10-5

Decipher

 The DECIPHER database contains data from 20305 patients who have given consent for broad data-sharing; DECIPHER also supports more limited sharing via consortia.

Cancer Datasets and Annotation

- Clinical Interpretation of Variants in Cancer (CIVIC)
- Catalog of Somatic Mutation in Cancer (COSMIC)
 - Gene Fusions
 - Gene Census
 - Curated Genes
 - Drug Resistance (so far 9 genes)
 - Genome Wide Screens
- The Cancer Genome Atlas (TCGA)
 - Tons of Data, RNASeq, CNV, WES, WGS, etc

Annotating Genomic Variation

- Gene Annotation (Genes, Regulation and TFBS)
- dbSNP, ExAC, gnomAD
- clinvar, gwas catalog
- cosmic
- dbNSFP
 - SIFT, Polyphen2, LRT, MutationTaster, MutationAssessor, FATHMM, VEST3, CADD, MetaLR, MetaSVM, PROVEAN, DANN, fathmm-MKL, fitCons
 - PhyloP x 2, phastCons x 2, GERP++ and SiPhy
 - Allele frequencies in 1000 Genomes Project phase 3 data, UK10K cohorts data, ExAC consortium data and the NHLBI Exome Sequencing Project ESP6500 data
- genesets (MSigDB)
- CIVIC
- BROAD Target

Variant Visualization Tools

- IGV
- http://bam.iobio.io/
- https://vcf.iobio.io

Is there an easy way to run all those command line programs?

BIOHPC ASTROCYTE

Point and Click Analysis Tools from the BioHPC and BICF

Astrocyte – BioHPC Workflow Platform

Allows groups to give easy-access to their analysis pipelines via the web

Standardized Workflows

Simple Web Forms

Online documentation & results visualization*

Workflows run on HPC cluster without developer or user needing cluster knowledge

Bioinformatics Core Facility (BICF)

BICF provides bioinformatics, statistics and data management support for researchers on campus.

BICF functions as the conduit between bioinformatics research programs and the clinical- and basic-science research community at UTSW.

Please email bicf@utsouthwestern.edu with questions or comments about these workflows.

	01 ID		
BICF	ChiP-sea	Analysis	Workflow

This is a workflow package for the BioHPC/BICF ChIP-seq workflow system. It implements a simple ChIP-seq analysis workflow using deepTools, Diffbind, ChipSeeker and MEME-ChIP, visualization application.

Current Version: chipseq_analysis_bicf - 0.0.12

Author: Beibei Chen

Contact: biohpc-help@utsouthwestern.edu

▶ Run Workflow☐ Documentation② View Versions

BICF RNASeq Analysis Workflow

This is a workflow package for the BioHPC/BICF RNASeq workflow system. It implements differential expression analysis, gene set enrichment analysis, gene fusion analysis and variant identification using RNASeq data.

Current Version: rnaseq_bicf - 0.3.3

Author: Brandi Cantarel

Contact: biohpc-help@utsouthwestern.edu

► Run Workflow

□ Documentation

• View Versions

BICF RNASeq Variant Analysis Workflow

THIS WORKFLOW IS OBSOLETE! The Main BICF workflow includes variant analysis and differential expression analysis as one easy to use workflow.

Current Version: rnaseq_variant_bicf - 0.0.11

Author: Brandi Cantarel

Contact: biohpc-help@utsouthwestern.edu

BICF Somatic Mutation Calling

using SNPEFF and SnpSift.

This is a workflow package for the BioHPC/BICF Somatic Mutation workflow system. It implements a simple Somatic Mutation analysis workflow.

Current Version: somatic_bicf - 0.0.3

Author: Brandi Cantarel

Contact: biohpc-help@utsouthwestern.edu

BICF Germline Variant Analysis Workflow

This is a workflow package for the BioHPC/BICF Germline Variant workflow system. It implements a simple germline variant analysis workflow using TrimGalore, BWA, Speedseq, GATK, Samtools and Platypus. SNPs and Indels are integrated using BAYSIC; then annotated

Current Version: germline_bicf - 0.0.10

Author: Brandi Cantarel

Contact: biohpc-help@utsouthwestern.edu

▶ Run Workflow▶ Documentation♥ View Versions

Create a new project

My Projects

In Astrocyte **projects** are used to organize your work. You upload **input data** into a project, and can then run **workflows** against this input data. Try to separate your work into natural projects, so that you can easily share them with other users if required.

ID	Name	Created	Workflows Run	Input Files	Size	Actions
PRJ21	RNAseq_test	Aug. 23, 2016, 3:03 p.m.	0	0	0 bytes	â

ID	Name	Created	Workflows Run	Input Files	Size	Actions
PRJ10	test	June 1, 2016, 5:02 p.m. by Brandi Cantarel	4	10	218.5 GB	â

Add Data To Your Project

Add Data To Your Project

Upload files from the web						
You can upload any size of file via your browser, but large files may take a long time to complete. Do not navigate away from this page before an upload is complete.						
Select file to upload	● Select file to upload					
Upload Progress						
	Select a file to upload					
Import from incoming directory						
Copy your files into /project/app	s/astrocyte/astrocyte_incoming/bchen4 on BioHPC to import them into your	project directly.				
	Finished importing files	+ +b:a:a:a:a:a:a:a:a:a				
	For NGS experimer	t, this is recommended.				
		Search:				
19	File	It Size It				
0	K03_R2.fastq	4.4 GB				
₫	WT1_R1.fastq	4.0 GB				
₫	WT2_R1.fastq	4.1 GB				
0	KO4_R2.fastq	4.5 GB				
0	KO2_R1.fastq	4.0 GB				
0	WT2_R2.fastq	4.1 GB				
0	K02_R2.fastq	4.0 GB				
0	KO4_R1.fastq	4.5 GB				
0	WT1_R2.fastq	4.0 GB				
0	KO3_R1.fastq	4.4 GB				
Showing 1 to 10 of 10 entries 2	rows selected					
		Previous 1 Next				

Deselect all

Make your design file

FamilyID

This ID will be used to call samples in batch

SampleID

This ID will be used to name all workflow produced files ie S0001 will produce S0001.bam

FullPathToFqR1

Na	FamilyID SampleID FqR1 FqR2							
140	FamilyID	SampleID	FqR1	FqR2				
Fu	F1	GM12877	GM12877.R1_001.fastq.gz	GM12877_S124_R2_001.fastq.gz				
	F1	GM12878	GM12878.R1_001.fastq.gz	GM12878_S124_R2_001.fastq.gz				
Na	F1	GM12879	GM12879.R1_001.fastq.gz	GM12879_S124_R2_001.fastq.gz				
	F2	GM12887	GM12887.R1_001.fastq.gz	GM12887.R2_001.fastq.gz				
	F2	GM12888	GM12888.R1_001.fastq.gz	GM12888.R2_001.fastq.gz				
	F2	GM12889	GM12889.R1_001.fastq.gz	GM12889.R2_001.fastq.gz				

Make your design file

- Use tab as delimiter
 - Excel save as "Text (tab delimited)"
- If no SubjectID, use same number/character for all rows
- SampleID and SampleName
- If no FqR2, leave them empty
- For all contents, no "-"
- For all contents, no spaces
- Columns names MUST be exactly the same as documented

Select your data files and set up workflow and submit

Parameters

Project is running

Run 'temp' in Project 'panel_utswv2'

Run Information

Running Workflow	BICF Germline Variant Analysis Workflow brandi.cantarel/variant_germline.git / 0.0.10
Status	RUNNING
Created	Sept. 13, 2017, 8:39 p.m. by s166458
Size	116.0 KB

Parameters

Parameter	Value
design	panel_utswv2.design.txt
genome	/project/shared/bicf_workflow_ref/GRCh38
pairs	pe
fastqs	utswv2_H2_AP14-924.R2.fastq.gz
fastqs	utswv2_H2_AP14-924.R1.fastq.gz
capture	UTSWV2.bed

Input Files

Filename	Size
panel_utswv2.design.txt	1.3 KB
utswv2_H2_AP14-924.R2.fastq.gz	1.6 GB
utswv2_H2_AP14-924.R1.fastq.gz	1.5 GB
UTSWV2.bed	486.3 KB

Timeline of the whole run

Common errors and solutions

```
Error running workflow. Diagnostic output

N E X T F L O W ~ version 0.20.1

Launching main.nf

Didn't match any input files with entries in the design file

-- Check script 'main.nf' at line: 49 or see '.nextflow.log' file for more details
```

- Make sure the delimiter is tab
- Make sure the column name are the same as mentioned in documentation
- Make sure the file names match

Common errors and solutions

- Not all files are uploaded
- It's about the proxy setting
- Use auto-detect proxy

Key Files Germline Pipeline

- VCF file SNPs/Indels for each sample
 - SampleID.annot.vcf.gz
- Coverage Histogram for each sample
 - SampleID.coverage_histogram.png
- Cumulative Distribution Plot for all samples
 - coverage_cdf.png
- QC for all samples
 - sequence.stats.txt
- Structural Variants (unfiltered)
 - SampleID.sssv.sv.vcf.gz.annot.txt

Key Files Somatic Mutation Pipeline

- VCF file SNPs/Indels for each sample
 - TumorID_NormalID.annot.vcf.gz
- Match Check File
 - TumorID_NormalID_matched.txt

IGV Viewer

Questions?