Nome: Kauã dos Santos Oliveira

GU3046672

Prova 2

 (2,0) Um sensor digital coleta dados em intervalos regulares de tempo, gerando a seguinte tabela de valores:

Tempo (ms)	1,0	2,0	3,0	4,0	5,0
Amplitude	0,0	2,3	4,1	5,7	6,9

- a) Use o Método de Newton-Gregory e construa o polinômio interpolador de 4º grau $P_4(t)$ que aproxima o sinal nos pontos dados.
- b) Estimar o valor da amplitude no instante t = 2,5 ms

A) Primeiro colocamos no excel para definir os coeficientes

х	у	Ordem 1	Ordem 2	Ordem 3	Ordem 4
1	0				
		2,3			
2	2,3		-0,25		
		1,8		0,05	
3	4,1		-0,1		-0.02083333
		1,6		-0.03333333	
4	5,7		-0,2		
		1,2			
5	6,9				

Em seguida, aplicamos os valores no geoGebra

- X0 = 1
- x1 = 2
- 0 x2 = 3
- x4 = 5,

A função ficou assim:

$$p(x) = 2.3(x-1) - 0.25(x-1)(x-2) + 0.05(x-1)(x-2)(x-3) - 0.02(x-1)(x-2)(x-3)(x-4)$$

Simplificando a função:

$$f(x) = \frac{20833 x^3 - 237497 x^2 + 1041658 x - 3599992}{10000000}$$

E o gráfico ficou assim:

()v

2) (2,0) Um sensor de temperatura instalado em um processador coleta os seguintes dados ao longo do tempo:

- a) Determine o Polinômio Interpolador de Lagrange de grau 3.
- b) Estime a temperatura do processador em t = 3,5 horas.

A)

Definindo os pontos

- 0 = 0x
- 0 x2 = 5
- 0 x3 = 8
- √0 = 45
- v1 = 68
- y2 = 82
- $0.\sqrt{3} = 71$

Aplicando o interpolador de lagrange temos:

$$L1(x) = \frac{(x) (x-5) (x-8)}{(2) (2-5) (2-8)}$$

$$L3(x) = \frac{(x) (x-2) (x-5)}{(8) (8-2) (5-5)}$$

$$L2(x) = \frac{(x) (x-2) (x-8)}{(5) (5-2) (5-8)}$$

$$L0(x) = \frac{(x-2) (x-5) (x-8)}{(0-2) (0-5) (0-8)}$$

$$p(x) = 45 \cdot \frac{(x-2)(x-5)(x-8)}{(0-2)(0-5)(0-8)} + 68 \cdot \frac{(x)(x-5)(x-8)}{(2)(2-5)(2-8)} + 82 \cdot \frac{(x)(x-2)(x-8)}{(5)(5-2)(5-8)} + 71 \cdot \frac{(x)(x-2)(x-5)}{(8)(8-2)(5-5)}$$

B) temperatura em T = 3,5 é

78,1

 (2,0) Um circuito digital apresenta uma variação de consumo de energia ao longo do tempo dada pela função

$$P(t) = 5 + 3 \operatorname{sen} \frac{\pi t}{12}$$

onde t está em horas, $0 \le t \le 24$ e P(t) em Watts. Utilizando métodos de integração numérica (Regra dos Trapézios e Regra 1/3 de Simpson), estime o consumo total de energia (em watt-horas) do circuito durante um dia (24 horas), considerando as seguintes condições:

- · Divida o intervalo de 0 a 24 horas em 8 subintervalos iguais.
- Calcule a integral numérica de P(t) nesse intervalo para obter a energia total consumida.

Calculando o passe que dá:

$$h = \frac{24 - 0}{8} = 3$$

Aplicando, temos

		Trapézio		1/3 Simpson	
х	у	С	CΧ	С	CX
0	5	1	5	1	5
3	7,1213	2	14,2426	4	28,48528137
6	8	2	16	2	16
9	7,1213	2	14,2426	4	28,48528137
12	5	2	10	2	10
15	2,8786	2	5,7572	4	11,51471863
18	2	2	4	2	4
21	2,8786	2	5,7572	4	11,51471863
24	5	1	5	1	5
soma	I			Soma	l
80	40			120	40

Dividindo o intervalo de 0 a 24 em 8 subintervalos obtivernos 40 W

4) (2,0) Um sistema computacional realiza uma tarefa cuja taxa de processamento varia ao longo do tempo segundo a função:

$$R(t) = 100 + 50 e^{-0.1t}$$

onde t está em segundos, no intervalo de $0 \le t \le 10$ e R(t) em unidades processadas por segundo. Calcule o total de unidades processadas durante os primeiros 10 segundos usando integração numérica para a função R(t). Utilize os seguintes métodos

- a) Regra 1/3 de Simpson com 4 subintervalos.
- b) Regra 3/8 de Simpson com 6 subintervalos.

A) Calculando o passo temos:

$$h = \frac{10 - 0}{4} = 2,5$$

Aplicando a regra do 1/3 Simpson com 4 subintervalos, temos:

passo=	2,5		
X	У	С	су
0	150	1	150
2,5	138,940039	4	555,760156
5	130,326533	2	260,653066
7,5	123,618328	4	494,473312
10	118,393972	1	118,393972
soma			
1579,280506	526,426835		

Durante 10 segundos o processo é 528,426835 unidades

B) Calculando o passo temos:

$$h = \frac{10 - 0}{6} = 1,66666667$$

Aplicando a regra do 3/8 Simpson com 4 subintervalos, temos:

passo=	1,66666667		
X	У	С	¢λ
0	150	1	150
1,66666667	142,324086	3	426,972258
3,33333334	135,826566	3	407,479698
5,00000001	130,326533	2	260,653066
6,6666668	125,670856	3	377,012568
8,33333335	121,72991	3	365,18973
10	118,393972	1	118,393972
soma			
1622,11759	789,637985		