EE315 - Electronics Laboratory Experiment - 4 Simulation BJT Small Signal Analysis

Name: Emre Nedim Hepsağ Number: 250206012

Submission Date: 30/11/2020

Preliminary Work

İYTE - Department of Electrical and Electronics Engineering

Results

- 1. Build the circuit given in Figure 1 and select BC547B as the transistor model. Set the *value* of the voltage source ν_S to obtain 1 kHz sine wave, with 2 Vp-p amplitude. Select a 4.7 μ F Al electrolytic capacitor model (right-click on the capacitor figure and click on "Select Capacitor"). Note the polarity of the capacitors on the circuit diagram.
- 1.a) Measure the voltage gain, Av.

$$V_{Sp-p} = 1.998015V$$
 $V_{Op-p} = 4.5129207V$ $A_v = -2.2587$

1.b) Determine the current gain, A_i , by measuring the current through R_S and R_L .

$$I_{Sp-p} = 84.643559 \mu A I_{Lp-p} = 375.94006 \mu A A_i = -4.4414$$

1.c) Disconnect R_L and measure the input resistance, R_{in} .

$$V_{Sp-p} = 1.9981866V$$
 $I_{Sp-p} = 84.626074 \mu A R_{in} = 23.611 k$

1.d) Measure peak-to-peak output voltage while R_L is disconnected. Connect R_L and change its value to obtain half the output voltage measured without any load that will give the R_{out} of the amplifier.

$$V_{Op-p(NoLoad)} = 5.8658202V(Half)$$
 R_{out} = 3.6k

1.e) Find the maximum peak v_s amplitudes before the transistor goes into cut-off or saturation. Compare the results with your calculations in the preliminary work.

$$V_{\text{Speak(cut-off)}} = 2.65V$$
 $V_{\text{Speak(sat)}} = 1.4V$

1.f) Connect a **4.7** μ F capacitor in parallel to R_E. Make sure that the polarity of the capacitor matches the DC voltage polarity on R_E. Measure the voltage gain, A_v, again as described in step **1.a**.

$$V_{Sp-p} = 1.9930987V$$
 $V_{Op-p} = 10.803381V$ $A_v = 5.420394384$

1.g) Draw the small signal model of the common-emitter amplifier with the capacitor in parallel to R_E , and calculate the voltage gain, A_v , based on your model.

 $A_{v} = -221.14439$

2. Build the emitter-follower circuit given in Figure 2. Verify that the voltage source output is set to 1 Vp-p, 1 kHz, and repeat the steps 1.a, 1.b, and 1.c for this circuit 2.a) Measure the voltage gain, A_V.

$$V_{Sp-p} = 998.18426 \text{mV}$$
 $V_{Op-p} = 869.33985 \text{mV}$ $A_{V} = -0.87$

2.b) Determine the current gain, Ai.

$$I_{Sp-p} = 42.151482\mu A$$
 $I_{Lp-p} = 8.6903228mA$ $A_i = -206.1689$

2.c) Disconnect R_L and measure the input resistance, R_{in} .

$$V_{Sp-p} = 998.22767 \text{mV}$$
 $I_{Sp-p} = 10.777318 \mu\text{A}$ $R_{in} = 92.623 \text{k}$

2.d) Increase v_S amplitude to **2.0 Vp-p** and observe v_O waveform. How do you explain the distortion in the v_O waveform?

>>When we have approximately under -0.8V $\nu_{\rm S}$, behavior of cut off region is observed which is the situation that when the V_{BE} value is less than it has to be which is 0.7 volt. As we can see in the graph below which is **4.0 Vp-p** to observe more clearly, when $\nu_{\rm S}$, goes under -0.8V, le current is exactly zero. Which means that transistor is not conducting anymore.

2.e) Find a way to restore the v_0 waveform while keeping v_s amplitude at 2.0 Vp-p, and $R_L = 100 \ \Omega$. Explain how you can restore the v_0 waveform.

>>We can decrease R_E lower than 1kohm, which will restore ν_0 waveform while keeping ν_S amplitude same as before. Because when R_E is decreased, the Ic current becomes greater due to the equation of C-E loop which is

 $Vcc - R_1*I_b - V_{BE} - R_E*(beta+1)*I_b = 0$. Thus, lower R_E , compensates lack of Vcc.

Also, If we decrease R1, again we are able to restore the ν_0 waveform. Because, lower R1 results in greater Ib due to the equation of B-E loop which is $Vcc - R_1*I_b - V_{BE} - R_E*(beta+1)*I_b = 0$. Thus, lower R1, compensates lack of Vcc. Lastly, we can simply increase Vcc amplitude value.

2.f) Measure the output resistance, R_{out} using the method described in step **1.d**. Make sure that the output waveform is not distorted while you measure R_{out} .

$$V_{Op-p(NoLoad)} = 991.67044mV$$
 R_{out} = 28

Conclusion

>>In this experiment, we dived in small signal analysis of BJT amplifiers, especially common-emitter and common collector amplifiers.

In the first experiment, we analyzed the npn type common emitter amplifier. We figured out that how to measure the A_{ν} A_{i} R_{in} R_{out} values in simulation. I observed similar results with my preliminary work. Then, we observed when the transistor got into saturation or cut off region on changing ν_{S} amplitude. In 1.f, we see that when we add 4.7 μF capacitor in parallel to R_{E} , we observed greater A_{ν} . Because, that capacitor cancels R_{E} in DC analysis which results in greater voltage gain. In the last part, small signal model of the last circuit with LTspice.

In the last experiment, we analyzed the npn type common collector amplifier. Again, we measured the A_{ν} A_{i} R_{in} R_{out} values in simulation. In **2.d**, we observed the saturation of the circuit while changing ν_{s} amplitude and find out the reason of the distortion. In **2.f**, we figured out what to do to restore the ν_{o} waveform.