FLAVA: A Foundational Language And Vision Alignment Model.

Ariel Reyes Pardo¹

¹Pontificia Universidad Católica de Chile. Facultad de Matemáticas-Ingeniería.

6 de septiembre 2023

1/16

A. Reyes (UC) IIC3692 6 de septiembre 2023

- Introducción
- 2 Arquitectura del modelo
- Pretraining Tasks
- 4 Dataset
- Resultados
- 6 Conclusiones

FLAVA: A Foundational Language And Vision Alignment Model

 Presentado en 2022 en CVPR (Conference on Computer Vision and Pattern Recognition)

```
Flava: A foundational language and vision alignment model
ASingh, R.Hu, Y.Goswami... - Proceedings of the ..., 2022 - openaccess theevf.com
... We introduce FLAVA as such a model and demonstrate ... FLAVA combines dual and fusion
encoder approaches into one holistic model that can be pretrained with our novel FLAVA ...

☆ Guardar 99 Citar Citado por 244 Artículos relacionados Las 7 versiones ≫
```

3/16

Introducción

- La supervisión en lenguaje natural puede conducir hacia alta calidad en los modelos visuales. (CLIP)
- Unimodalidad
 - Visión
 - Lenguaje
- Multimodalidad
 - Visual-Language Pretraining (VLP)

- Introducción
- 2 Arquitectura del modelo
- Pretraining Tasks
- Dataset
- 6 Resultados
- 6 Conclusiones

Arquitectura

- Unimodalidad
 - Encoder imagen $h_{CLS,I}$
 - Encoder texto h_{CLS,T}

- Multimodalidad
 - Encoder fusión h_{CLS,M}

ViT encoder

- Introducción
- 2 Arquitectura del modelo
- 3 Pretraining Tasks
- Dataset
- Resultados
- 6 Conclusiones

Pretraining Tasks

- FLAVA está diseñado para ser capaz de tomar ventaja de datos unimodales en conjunto con datos pareados. Resulta un modelo que puede manejar tareas unimodales y como tareas de visión y lenguaje multimodales.
- Multimodal pretraining
 - Global contrastive (GC) loss (CLIP)
 - Masked multimodal modeling (MMM) (BEiT)
- Unimodal pretraining
 - Masked image modeling (MIM) (BEiT)
 - Masked language modeling (MLM) (BERT)

- Introducción
- 2 Arquitectura del modelo
- Pretraining Tasks
- 4 Dataset
- 6 Resultados
- 6 Conclusiones

Dataset

- Unimodal
 - ImageNet
 - CCNews
- Multimodal
 - Public Multimodal Datasets (PMD)

	#Image-Text Pairs	Avg. text length
COCO [66]	0.9M	12.4
SBU Captions [77]	1.0M	12.1
Localized Narratives [82]	1.9M	13.8
Conceptual Captions [92]	3.1M	10.3
Visual Genome [57]	5.4M	5.1
Wikipedia Image Text [99]	4.8M	12.8
Conceptual Captions 12M [14]	11.0M	17.3
Red Caps [27]	11.6M	9.5
YFCC100M [103], filtered	30.3M	12.7
Total	70M	12.1

Table 2. Public Multimodal Datasets (PMD) corpus used in FLAVA multimodal pretraining, which consists of publicly available datasets with a total size of 70M image and text pairs.

- Introducción
- 2 Arquitectura del modelo
- Pretraining Tasks
- Dataset
- Resultados
- 6 Conclusiones

Comparando con SOTA

public			Multimodal Tasks			Language Tasks							ImageNet	
	data		VQAv2	SNLI-V	E HM	CoLA	SST-2	RTE	MRPC	QQP	MNLI	QNLI	STS-B	linear eval
1	✓	BERT _{base} [28]	-	-	-	54.6	92.5	62.5	81.9/87.6	90.6/87.4	84.4	91.0	88.1	-
2	Х	CLIP-ViT-B/16 [83]	55.3	74.0	63.4	25.4	88.2	55.2	74.9/65.0	76.8/53.9	33.5	50.5	16.0	80.2
3	X	SimVLM _{base} [109]	77.9	84.2	-	46.7	90.9	63.9	75.2/84.4	90.4/87.2	83.4	88.6	-	80.6
4	✓	VisualBERT [63]	70.8	77.3†	74.1‡	38.6	89.4	56.6	71.9/82.1	89.4/86.0	81.6	87.0	81.8	-
5	✓	UNITER _{base} [16]	72.7	78.3	-	37.4	89.7	55.6	69.3/80.3	89.2/85.7	80.9	86.0	75.3	-
6	✓	VL-BERT _{base} [101]	71.2	-	-	38.7	89.8	55.7	70.6/81.8	89.0/85.4	81.2	86.3	82.9	-
7	1	Vilbert [70]	70.6	75.7†	74.1‡	36.1	90.4	53.7	69.0/79.4	88.6/85.0	79.9	83.8	77.9	-
8	✓	LXMERT [102]	72.4	_	_	39.0	90.2	57.2	69.7/80.4	75.3/75.3	80.4	84.2	75.3	_
9	1	UniT [43]	67.0	73.1	_	_	89.3	_	_	90.6/ -	81.5	88.0	_	_
10	✓	CLIP-ViT-B/16 (PMD)	59.8	73.5	56.6	11.0	83.5	53.1	63.5/68.7	75.4/43.0	32.9	49.5	13.7	73.0
11	1	FLAVA (ours)	72.8	79.0	76.7	50.7	90.9	57.8	81.4/86.9	90.4/87.2	80.3	87.3	85.7	75.5

- El mejor resultado general entre los enfoques multimodales está subrayado, mientras que la negrita significa el mejor modelo basado en datos públicos.
- FLAVA fue entrenado con 70M de datos mientras que CLIP fue entrenado con casi 6 veces más.
- SimVLM fue entrenado con 1.8B de datos.

13 / 16

- Introducción
- 2 Arquitectura del modelo
- Pretraining Tasks
- Dataset
- 6 Resultados
- **6** Conclusiones

Conclusiones

- El rendimiento de FLAVA podría mejorar si es que se entrena con mayor cantidad de datos.
- FLAVA fue entrenado en un conjunto de datos de varios órdenes de magnitud más pequeños.
- Exploración de sesgos peligrosos en el dataset de entrenamiento.
- Se señala un camino a seguir hacia modelos generalizados pero abiertos que funcionan bien en un amplia variedad de tareas multimodales.

15 / 16

Fin

Muchas gracias :)

