1

GATE - EC 27

EE23BTECH11215 - Penmetsa Srikar Varma

QUESTION

Q27) Let m(t) be a strictly band-limited signal with bandwidth B and energy E. Assuming $\omega_0 = 10$ B, the energy in the signal m(t) cos (ω_0 t)

- (A) $\frac{E}{4}$
- (B) $\frac{E}{2}$
- (C) E
- (D) 2E

(GATE EC 2023)

SOLUTION

Variables	Conditions
A	amplitude of M(f)
$f_0 = \frac{10}{2\pi} B$	band-width frequency
y(t)	$y(t)=m(t)\cos(2\pi f_0 t)$
M(f)	fourier transform of m(t)
Y(f)	fourier transform of y(t)
E ₁	energy of y(t)

Table of Parameters

Energy (E) of the signal m(t) is given by,

$$E = \int_{-\infty}^{\infty} |m(t)|^2 dt$$
 (1)

According to Parseval's theorem,

$$E = \int_{-\infty}^{\infty} |m(t)|^2 dt = \int_{-\infty}^{\infty} |M(f)|^2 df \propto A^2$$
 (2)

Fourier transform of y(t) is given by,

$$Y(f) = \int_{-\infty}^{\infty} m(t) \cos(2\pi f_0 t) e^{j2\pi f t} dt$$
 (3)

$$Y(f) = \frac{1}{2} \int_{-\infty}^{\infty} m(t) \left(e^{j2\pi f_0 t} + e^{-j2\pi f_0 t} \right) e^{j2\pi f t} dt$$
 (4)

$$Y(f) = \frac{1}{2} \int_{-\infty}^{\infty} m(t) \left(e^{j(2\pi f + 2\pi f_0)t} + e^{j(2\pi f - 2\pi f_0)t} \right) dt$$
 (5)

We have $f_0 = \frac{10}{2\pi}B$,

$$Y(f) = \frac{1}{2} (M(2\pi f + 2\pi f_0) + M(2\pi f - 2\pi f_0))$$
 (6)

Energy (E_1) of the signal y(t) is given by sum of Energies of individual bandwidth signals,

$$E_1 \propto \left(\frac{A}{2}\right)^2 + \left(\frac{A}{2}\right)^2 = \frac{A^2}{2}$$

from (2),

$$E_1 = \frac{E}{2}$$

So, option B is correct