Exercise # 1. Numerical methods for ODES.

Alexandre Rodrigues (2039952)

November 11, 2021

\mathbf{Intro}

Methods

Answers

Question 1

Figure 1: Absolute error in function of time using Forward Euler method to compute y(1)

We got a maximum error of $4.2916 \times 10^{10}...$

Figure 2: Absolute error in function of time using RK4 method to compute y(1) We got a maximum error of $4.3146 \times 10^{10}...$

Comment the different behavior observed by the numerical method.

Question 2

Figure 3: LogLog plot of the error as a function of the number of steps.

h	error
3.125000×10^{-2}	25.7142859434702
1.562500×10^{-2}	25.7142857321434
7.812500×10^{-3}	25.7142857154459
3.906250×10^{-3}	25.7142857143588
1.953125×10^{-3}	25.7142857142903
9.765625×10^{-4}	25.7142857142860

The error reduces with the increase in the number of steps due to the decrease of h as expected in theory. . . .

Question 3

Question 4

Question 5

Figure 4: Evolution of the number of preys and predators.

Results

Outputs