Representation Theory

$$GL(V) = Aut_{gp}(V) \cong GL_n(C)$$
 if dim $V = n$, $V = v \cdot s \cdot c \cdot c$.

Defu: Linear representation of G in V is a je hom p: G - GL(V).

eg
$$V=C$$
, $P_{3}=1$ $\forall g$. (traval rep).

eg:
$$G = S_3$$
, $V = \mathbb{C}^3$, permute coords.

wt
$$p:G \longrightarrow GL(V)$$
 be a repn. $W \subseteq V$ is invariant under G if $f_g(w) \subseteq W$ $\forall g \in G$.

$$\rho: G \rightarrow GL(v), \quad g(x) = f_g(w) + f_g(w').$$

if w, w' invariant under 6 thm V= WOW' as representations.

Lemme: p: G→GL(V) a vepin, W⊆V su bspace invariant under G, then ∃W° ⊆ V s.t. V= W⊕W°

Thm: Every repin is a direct sum of irreducible repins.

El use lemn & indust on dim V=n.

Eg:
$$G = S_3$$
. 1) Trivial sepin $(V = C)$ — irreducible 2) $V = C$, alternating repin — irreducible

 $\rho_{\mathbf{C}}(\mathbf{v}) = \operatorname{sign}(\mathbf{o}) \cdot \mathbf{v}$ for $\mathbf{v} \in \mathbb{C}$.

Span(1]1)
$$\cong$$
 trivial repin $=: T$

Complementary:
$$U = \{(\overline{z}_1, \overline{z}_2, \overline{z}_3) : \overline{z}_1 + \overline{z}_2 + \overline{z}_3 = 0\}$$
 invariant and $S_2 \subset U$ is invariant!

Gröbner Bases in ne Weyl Algebra with Applications to ODE.