ECSE 484 - Assignment 10

Oleksii Fedorenko and Cameroon Byrne April 16, 2022

Have you everl listened to a song and wondered, what ganre it is? Or have your ever though what genre of songs do you like to listen? We ary trying to create a neural network that would respond to both of those questions. We are gathering data from Spotify api about the song characteristics and then use that as training data to train a network to recognize the genre of songs that you like. The song features that we can gather from Spotify are: danceability, energy, key, loudness, mode, speechiness, acousticness, instrumentalness, liveness, valence, tempo. All of these values are floats and combined together are quite predictive of the song genre. We have already started designing a network that would be able to do the predictions for the genre.

Figure 1: Data format

					0								
	track_id	danceabil	energy	key	loudness	mode	speechine	acousticne	instrumer	liveness	valence	tempo	label
0	17i5jLpzno	0.275	0.157	7	-18.752	1	0.0636	0.89	0.842	0.186	0.304	73.289	
1	4SFBV7SR	0.221	0.126	0	-25.427	1	0.0447	0.989	0.897	0.102	0.216	133.63	
2	3zLTPuuco	0.289	0.0306	9	-30.79	0	0.0446	0.987	0.911	0.102	0.118	125.61	
3	7h6GoPv6	0.0753	0.07	2	-27.272	1	0.044	0.918	0.947	0.146	0.0625	79.801	
4	5x3TUfYzg	0.13	0.158	2	-16.132	1	0.035	0.748	0.924	0.1	0.0998	85.031	
5	1upQiytDI	0.0939	0.0336	2	-24.041	0	0.0606	0.927	0.83	0.0954	0.0516	67.359	
6	5fdp9rXfE	0.376	0.00579	5	-31.615	0	0.0576	0.996	0.944	0.0882	0.0369	71.827	
7	0jOnZhF7	0.169	0.0161	9	-31.034	0	0.0442	0.986	0.86	0.0805	0.0573	128.143	
8	1cmigB9l6	0.335	0.00501	1	-33.366	1	0.0451	0.993	0.919	0.0618	0.0383	132.085	
9	6Uk28Hs2	0.205	0.0686	4	-23.415	0	0.0462	0.873	0.402	0.0909	0.0359	90.779	
10	0dzl6bBvs	0.233	0.0252	2	-24.824	1	0.0346	0.975	0.604	0.143	0.0936	94.736	
11	0pCHzhuR	0.371	0.131	2	-23.899	1	0.0413	0.898	0.925	0.0847	0.0655	105.328	
12	0cqcRqZgl	0.0783	0.0523	5	-23.247	1	0.0471	0.896	0.945	0.0806	0.0327	82.015	
13	2kAgCRZP	0.0811	0.0122	4	-32.654	0	0.0511	0.902	0.308	0.0648	0.0384	74.554	
14	3QqPgzOc	0.353	0.254	0	-16.205	1	0.0349	0.948	0.859	0.0843	0.0986	133.808	
15	4rrrn8OLr	0.194	0.0545	4	-24.877	1	0.0366	0.983	0.945	0.0551	0.0385	140.966	
16	0k6P9cdE	0.253	0.098	11	-19.878	0	0.0437	0.93	0.862	0.122	0.062	84.865	
17	419qlOGN	0.205	0.0525	1	-23.841	1	0.0327	0.98	0.906	0.103	0.0511	88.316	
18	3DNRdud	0.184	0.00527	1	-37.264	0	0.0432	0.995	0.887	0.173	0.151	170.612	
19	04eShjKT\	0.235	0.0639	11	-24.404	0	0.049	0.962	0.603	0.466	0.0781	120.736	
20	5pjDwtMF	0.148	0.0722	4	-25.217	0	0.0427	0.944	0.148	0.115	0.0467	87.882	
21	0QTaXZRV	0.312	0.0465	9	-26.438	0	0.0378	0.981	0.9	0.0872	0.0371	130.303	
22	3GecLjGM	0.341	0.0142	2	-28.293	1	0.0388	0.993	0.921	0.113	0.0384	76.382	
23	2u9VGZm	0.279	0.0292	8	-26.804	1	0.0406	0.987	0.902	0.104	0.0338	136.732	
24	3af6PvJHF	0.113	0.161	7	-20.046	1	0.0442	0.484	0.928	0.16	0.0365	65.062	
25	0S0YKiEdF	0.0623	0.0116	2	-27.893	1	0.0567	0.991	0.445	0.0816	0.0331	65.057	
26	5xbuJuQs	0.701	0.341	1	-12.26	0	0.0418	0.499	0.903	0.359	0.163	105.513	
27	7HSs4srn1	0.21	0.101	0	-19.383	1	0.0403	0.927	0.902	0.0776	0.153	86.314	
28	2Z4aQJh0l		0.119	9	-18.055	0	0.0386	0.975	0.88	0.112	0.038	94.868	
	1CSaCKPI		0.0733	10	-24.133	0	0.0488	0.974	0.859	0.28		73.954	
	2nVt0n0a		0.106	8	-21.742	1	0.039	0.807	0.782	0.105			
	4Dcm4KM		0.246	2	-14.96	1			0.525	0.107		109.766	
	2fC30Rt5t		0.33	7	-12.967	0			0.749	0.128		118.668	
	4QfYHdV8		0.0422	8	-24.137	1			0.919	0.0896		87.855	
	21400-20		0.0176	A	26 011	_			0.027	0.0005		125 702	

Figure 2: Training set accuracy and loss

Figure 3: Testing set accuracy and loss

Model performance on test set = [0.034327857196331024, 0.991752564907074]

Figure 4: The model that we used

```
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(12, activation='relu'),
    tf.keras.layers.Dense(20, activation='relu'),
    tf.keras.layers.Dense(10, activation='relu'),
    tf.keras.layers.Dense(5, activation='relu'),
    tf.keras.layers.Dense(1, activation='linear')
])
```

But we would not stop there. There are a couple of ideas we have in mind about how we can apply this data. For examply we can get a sample of songs from your favorite artist and album and determine their genre and mood. We would also try to make the neural network that would train on the data of the songs you like and assigned score to train the network that would be able to rate the songs by how much you might like them and produce a ranking based on the predicted score for all of them.