0711518 陳傑中 HW4

Definition of modularity:

$$Q = \sum_{s=1}^{N_M} \left[\frac{l_s}{L} - \left(\frac{d_s}{2L} \right)^2 \right]$$

 N_M : number of modules

 $\it l_s$: number of intra-modular links in module s

 $d_{\scriptscriptstyle S}$: sum of the degrees of the nodes in module s

L: total number of links in the network

	N_M = 1
	l ₁ = 7
	<i>d</i> ₁ = 14
	L = 7
***************************************	Q= 0
	$N_M = 6$
	$l_{1\sim 6}$ = 0
	$d_{1\sim 4}$ = 2, $d_{5\sim 6}$ = 3
	L = 7
	Q= -0.173
S45***	$N_M = 2$
	$l_1 = 3, l_2 = 1$
	d_1 = 9, d_2 = 5
	L = 7
	Q= 0.031
\$1	$N_M = 2$
1 52	$l_1 = 4, l_2 = 1$
	d_1 = 10, d_2 = 4
	L=7
C C C	Q = 0.122
.51	$N_M = 2$
	$l_1 = 2, l_2 = 0$
	d_1 = 9, d_2 = 5
	L=7
*********	<i>Q</i> = -0.255

S ₁	$N_{M}=2$ $l_{1}=3, \ l_{2}=0$ $d_{1}=10, \ d_{2}=4$ $L=7$ $Q=-0.163$
S ₁	$N_{M} = 2$ $l_{1} = 1, l_{2} = 3$ $d_{1} = 5, d_{2} = 9$ $L = 7$ $Q = 0.031$
Say 52	$N_{M} = 2$ $l_{1} = 2, l_{2} = 1$ $d_{1} = 8, d_{2} = 6$ $L = 7$ $Q = -0.082$