Performance-based assessments for DC circuit competencies

This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public.

The purpose of these assessments is for instructors to accurately measure the learning of their electronics students, in a way that melds theoretical knowledge with hands-on application. In each assessment, students are asked to predict the behavior of a circuit from a schematic diagram and component values, then they build that circuit and measure its real behavior. If the behavior matches the predictions, the student then simulates the circuit on computer and presents the three sets of values to the instructor. If not, then the student then must correct the error(s) and once again compare measurements to predictions. Grades are based on the number of attempts required before all predictions match their respective measurements.

You will notice that no component values are given in this worksheet. The *instructor* chooses component values suitable for the students' parts collections, and ideally chooses different values for each student so that no two students are analyzing and building the exact same circuit. These component values may be hand-written on the assessment sheet, printed on a separate page, or incorporated into the document by editing the graphic image.

This is the procedure I envision for managing such assessments:

- 1. The instructor hands out individualized assessment sheets to each student.
- 2. Each student predicts their circuit's behavior at their desks using pencil, paper, and calculator (if appropriate).
- 3. Each student builds their circuit at their desk, under such conditions that it is impossible for them to verify their predictions using test equipment. Usually this will mean the use of a multimeter only (for measuring component values), but in some cases even the use of a multimeter would not be appropriate.
- 4. When ready, each student brings their predictions and completed circuit up to the instructor's desk, where any necessary test equipment is already set up to operate and test the circuit. There, the student sets up their circuit and takes measurements to compare with predictions.
- 5. If any measurement fails to match its corresponding prediction, the student goes back to their own desk with their circuit and their predictions in hand. There, the student tries to figure out where the error is and how to correct it.
- 6. Students repeat these steps as many times as necessary to achieve correlation between all predictions and measurements. The instructor's task is to count the number of attempts necessary to achieve this, which will become the basis for a percentage grade.
- 7. (OPTIONAL) As a final verification, each student simulates the same circuit on computer, using circuit simulation software (Spice, Multisim, etc.) and presenting the results to the instructor as a final pass/fail check.

These assessments more closely mimic real-world work conditions than traditional written exams:

- Students cannot pass such assessments only knowing circuit theory or only having hands-on construction and testing skills they must be proficient at both.
- Students do not receive the "authoritative answers" from the instructor. Rather, they learn to validate their answers through real circuit measurements.
- Just as on the job, the work isn't complete until all errors are corrected.
- Students must recognize and correct their own errors, rather than having someone else do it for them.
- Students must be fully prepared on exam days, bringing not only their calculator and notes, but also their tools, breadboard, and circuit components.

Instructors may elect to reveal the assessments before test day, and even use them as preparatory labwork and/or discussion questions. Remember that there is absolutely nothing wrong with "teaching to

the test" so long as the test is valid. Normally, it is bad to reveal test material in detail prior to test day, lest students merely memorize responses in advance. With performance-based assessments, however, there is no way to pass without truly understanding the subject(s).

Competency: Volta	age divider ci	rcuit Version:
Schematic		
	V _{supply}	R_1 R_2 V_{out} V Voltmeter
Given conditions		
$V_{\text{supply}} =$	V	_{out} =
Parameters		
Predicted	Measured	Predicted Measured
I_{supply}		I_{R1}
V _{R1}		I_{R2}
V _{R2}		
$\frac{V_{\text{out}}}{V_{\text{supply}}}$ (Ratio)	Predicted	Calculated (from measurements)
Fault analysis		open other
Suppose compone	ent fa	
What will happen	in the circuit?	Shorted

<u>file 03176</u>

Competency: Current divider c	ircuit	Version:		
Schematic				
I _{supply}	$R_1 \gtrsim I_{out} $ A	$R_2 $		
Given conditions				
$I_{\text{supply}} =$	$ m I_{out}$ $=$			
Parameters				
Predicted Measured	\neg	Predicted Measured		
V _{supply}	V_{R1}			
I _{R1}	V_{R2}			
I_{R2}				
$\frac{I_{\text{out}}}{I_{\text{supply}}} \text{ (Ratio)}$	Calculated	(from measurements)		
Fault analysis	open	other		
Suppose component shorted				
What will happen in the circuit?		cu		

 $\underline{\mathrm{file}\ 03177}$

Competency: Series-parallel DC resistor circuit Version:
Schematic
$V_{\text{supply}} = R_1 $ $R_2 $ R_3
Given conditions
$V_{supply} = R_1 = R_2 = R_3 =$
Parameters
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Suppose component fails open other What will happen in the circuit?

<u>file 01633</u>

Competency: Series-parallel DC resistor circuit Version:					
Schematic					
$V_{\text{supply}} = \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array}$					
Given conditions					
$V_{\text{supply}} = R_1 = R_2 = R_3 =$					
Parameters					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Suppose componentfails open other What will happen in the circuit?					

<u>file 01631</u>

Competency: Series-parallel DC resistor circuit Version:				
Schematic V _{supply}				
' supply				
$R_1 \geqslant \qquad \geqslant R_2 \qquad \qquad \geqslant R_3$				
·				
Given conditions				
V – D – D –				
$V_{ ext{supply}} = R_1 = R_2 = R_3 =$				
Parameters				
Predicted Measured Predicted Measured				
$I_{ m supply}$ $I_{ m R1}$				
V_{R1} I_{R2}				
V_{R2} I_{R3}				
V_{R3}				
' R3				
Fault analysis				
Suppose component fails shorted				
snorted				
What will happen in the circuit?				

<u>file 01632</u>

Competency: Series-parallel DC resistor circuit Version:					
Schematic					
$V_{\text{supply}} = R_1$					
Given conditions					
$V_{\text{supply}} = R_1 = R_2 = R_3 =$					
Parameters					
Predicted Measured Predicted Measured					
$I_{ ext{supply}}$					
V_{R1} I_{R2}					
V_{R2} I_{R3}					
V_{R3}					
Fault analysis open other					
Suppose component fails -					
What will happen in the circuit?					
Trial Viii Happeri III die enealt.					

<u>file 01630</u>

Competency: Ser	ies-parallel D	C resistor cir	cuit Ve	ersion:
Schematic V _s	supply = R	R_2	R_3	
Given conditions				
$V_{supply} =$	$R_1 =$	$R_2 =$	$R_3 =$	$R_4 =$
Parameters				
$ \begin{array}{c c} & \text{Predicted} \\ I_{\text{supply}} \\ V_{R1} \\ V_{R2} \\ V_{R3} \\ V_{R4} \\ \end{array} $	Measured	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Predicted	Measured
Fault analysis Suppose compo What will happer		ails open shorte	other .	

file 01606

Competency: Series-parallel DC resistor circuit Version:					
	parallel DC resisto	or circuit ve	rsion:		
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$					
Given conditions					
$V_{\text{supply}} = R_1$	$=$ $R_2 =$	$R_3 =$	$R_4 =$		
Parameters					
$ \begin{array}{c c} & \text{Predicted} & \textbf{N} \\ I_{\text{supply}} & & & \\ \hline V_{R1} & & & \\ \hline V_{R2} & & & \\ \hline V_{R3} & & & \\ \hline V_{R4} & & & \\ \hline \end{array} $	Measured	$\begin{array}{c c} & \text{Predicted} \\ I_{R1} & & & \\ I_{R2} & & & \\ I_{R3} & & & \\ I_{R4} & & & \\ \end{array}$	Measured		
Fault analysis Suppose component What will happen in the	tfails;	open			

<u>file 01607</u>

	Competency: Series-parallel DC resistor circuit Version:				
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $					
Given conditions					
$V_{ m supply} =$	$R_1 =$	$R_2 =$	$R_3 =$	$R_4 =$	
Parameters					
Predicted I _{supply} V _{R1} V _{R2} V _{R3} V _{R4}	Measured	$egin{array}{cccc} & & & & & & & & & & & & & & & & & $	Predicted	Measured	
Suppose component open other shorted What will happen in the circuit?					

file 01608

Competency: Custom rheostat ran	ge Version:
Schematic	
R_1 R_{pot}	R_2
Given conditions	
$egin{aligned} R_{ ext{total}} & ext{(minimum)} = \ & R_{ ext{pot}} = \end{aligned}$	R _{total} (maximum) =
- Pot	
Parameters	
Ideal Attained	
	Resistors R_1 and R_2 may need to be series-parallel networks in order to achieve the necessary values.
Measured	
R _{total} (minimum)	
R _{total} (maximum)	
Fault analysis	open other
Suppose component fails What will happen in the circuit?	open other shorted

<u>file 01754</u>

Competency: Potentiometer as voltage divider Version: Description You must set the potentiometer to the correct position to achieve \boldsymbol{V}_{out} given \boldsymbol{V}_{supply} before it is connected to V_{supply} for testing. Schematic Given conditions $V_{\text{supply}} =$ $V_{out} =$ **Parameters** Measured V_{out} $V_{\text{out(actual)}} - V_{\text{out(ideal)}} \times 100\%$ Calculated Error (%)

 $\underline{\mathrm{file}\ 01925}$

Competency: Kirchhoff's Voltage Law	Version:
Schematic	
V _{supply} = R ₄	R_2 R_3 D
Given conditions	
	only divisible by 4
$V_{\text{supply}} = Any \text{ whole-number value even}$	erily divisible by 4
$R_1 = R_2 = R_3 = R_4 =$	
Parameters	
Predicted Measured	Predicted Measured
V _{R1}	V_{R3}
V_{R2}	V _{R4}
$V_{ m BD}$	V_{DA}
V _{BE}	V _{DC}
V _{AC}	V _{CE}
Note: "V _{BD} " means voltage n lead touching B and the l	

<u>file 03294</u>

Competency: Kirchhoff's Current Law Version: Schematic $R_1 \longrightarrow R_2 \longrightarrow R_3 \longrightarrow R_4 \longrightarrow C$ $R_2 \longrightarrow R_4 \longrightarrow C$ $R_5 \longrightarrow D$

Given conditions

 $I_{\text{supply}} = \mbox{Any}$ whole-number milliamp value evenly divisible by 4

$$R_1 = R_2 = R_3 = R_4 = R_5 =$$

Parameters

	Predicted	Measured		Predicted	Measured
I _{R1}			I_{R3}		
I _{R2}			I_{R4}		

Sketch directions and magnitudes of currents at these nodes:

file 03593

Competency: Loaded voltage divider	Version:		
Schematic			
$V_{\text{supply}} = R_{1} $ $R_{2} $ $R_{3} $ $R_{3} $	R_{load1} R_{load2}		
Given conditions			
$V_{\text{supply}} = R_1 = R_2 = R_3$	$=$ $R_{load1} = R_{load2} =$		
Parameters			
Predicted Measured	Predicted Measured		
I _{supply}	load1		
V_{A}	load2		
V _B	pleed		
Fault analysis open other			
Suppose component Ifails 🗀			
What will happen in the circuit?			

<u>file 01609</u>

 $\underline{\mathrm{file}\ 01642}$

Competency: Potentiometer as loaded voltage divider Version:

Description

You must set the potentiometer to the correct position to achieve V_{out} given $V_{supply}\ \textit{before}$ it is connected to V_{supply} for testing.

Schematic

Given conditions

$$V_{\text{supply}} = V_{\text{out}} =$$

$$R_{pot} = R_{load} =$$

Parameters

$\begin{array}{c|c} & \text{Measured} \\ V_{\text{out}} & \hline \end{array}$

Error (%)
$$\begin{array}{|c|c|} \hline \text{Calculated} & V_{out(actual)} - V_{out(ideal)} \\ \hline V_{out(ideal)} \times 100\% \\ \hline \end{array}$$

 $\underline{\mathrm{file}\ 01926}$

Competency: W	heatstone brid	ge	Version:
Schematic			
	V _{supply} =	R_1 G R_2 R_2	R_{pot}
Given conditions	3		
$V_{\text{supply}} =$	$R_1 =$	$R_2 =$	$R_3 =$
Parameters			
$R_{ m pot}$ (balance) $\left[I_{ m supply} ight]$	Predicted I	Measured	
Fault analysis Suppose comp What will happe	oonentf en in the circuit?	fails	other

file 01618

Competency: Bridge resistance measurement Version:
Schematic
$V_{\text{supply}} = \begin{bmatrix} R_1 & R_2 & \text{(unknown value)} \\ R_2 & R_{\text{pot}} \end{bmatrix}$
Given conditions
$V_{\text{supply}} = R_1 = R_2 =$
R_{pot} = Decade resistance box
Parameters
Measured by bridge by ohmmeter R _x
Calculations

<u>file 01643</u>

Competency: DC voltmeter circuit	Version:
Schematic	
Meter movement	
Test lead Tes	t lead
Given conditions	
$I_{F.S.} = R_{movement} =$	Full-scale range =
Parameters	
Predicte R _{range} Predicte Predicte Meter indication with full-scale voltage applied	
Calculations	

<u>file 01649</u>

Competency: Voltmeter loading	Version:			
Schematic				
$V_{\text{supply}} {=} R_1 $ $R_2 $	+			
Given conditions				
$V_{supply} = R_1 =$	$R_2 =$			
Explanation				
Due to the effects of the voltmeter "loading" the voltage divider circuit, there will be a significant difference between $V_{\rm R2}$ predicted and $V_{\rm R2}$ measured.				
Parameters				
$V_{R2} \begin{tabular}{ c c c c c } \hline Predicted \\ V_{R2} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	n no meter connected)			
	surement with voltmeter)			
Calculated Advertise R _{input} (Meter)	d			

<u>file 01694</u>

Competency: Self-induction	Version:
Schematic	
Pushbutton switch	
V _{supply} =	Neon lamp
Given conditions	
$V_{ m supply} =$	
Parameters	
Yes/no answers only	
Lamp across L ₁ Predicted Tested Lamp flashes?	
Lamp across switch Lamp flashes?	
Lamp across battery Lamp flashes?	

<u>file 01646</u>

Competency: Series inductances	Version:		
Schematic			
$ L_1$ L_2 L_3 $ L_3$ $-$			
—m—m——			
Given conditions			
$L_1 = L_2 = L_3 =$			
Parameters			
Predicted Measured			
$\mathcal{L}_{ ext{total}}$			
Analysis Equation used to calculate L_{total} :			
ı totalı			

<u>file 01650</u>

Compostor our Devellal in director and	Marajan
Competency: Parallel inductances	Version:
Schematic	
$\begin{array}{c c} L_1 \\ \hline L_2 \\ \hline L_3 \\ \hline \end{array}$	
Given conditions	
$L_1 = L_2 = L_3$	=
Parameters	
Predicted Measured L _{total}	
$\begin{tabular}{lll} \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	

<u>file 01651</u>

Competency: Series coupled inductors	Version:
Schematic	
L_{total} or	L_1 L_2
Given conditions	
$L_1 = L_2 =$	
Parameters	
Predicted Measured L _{total}	
Analysis Equation used to calculate	e L _{total} :

 $\underline{\mathrm{file}\ 01989}$

Competency: Series capacitances	Version:
Schematic Schematic	version.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Given conditions	
$C_1 = C_2 = C_3 =$	
Parameters	
Predicted Measured C _{total}	
Analysis Equation used to calculate C_{total} :	

 $\underline{\mathrm{file}\ 01652}$

Competency: Parallel capacitances	Version:
Schematic	
Given conditions	
$C_1 = C_2 =$	$C_3 =$
D	
Parameters	
Predicted Measured C _{total}	
Analysis Equation used to	calculate C_{total} :

 $\underline{\mathrm{file}\ 01653}$

Competency: RC dis	scharge circu	it		Version:
Schematic V _{supply}	Pushbutton s	switch	R_1	V Meter
Given conditions				
$V_{ ext{suppl}}$	$_{ \mathbf{y}} =$	$C_1 =$		$\mathbf{R}_1 =$
,	$\mathbf{t}_1 =$	$t_2 =$		$t_3 =$
Parameters Predicted V _{t1} V _{t2} V _{t3} Calculations	Measured			

file 01648

Competency: Time-delay relay	Version:
Schematic	
V _{supply} = C ₁	
Given conditions	
$V_{\text{supply}} = C_1 = R_{\text{coil}} =$	$V_{ m dropout}$ =
Parameters	
Predicted Measured t _{delay}	
Calculations	

 $\underline{\mathrm{file}\ 01647}$

Competency	: RC charge/disc	harge circuit	Version:	
Schematic		go oou.t		
Conomiano	V _{supply} =	Switch R ₁	+ Meter	
Given conditi	ons			
	$V_{supply} =$	$C_1 =$	$R_1 =$	
	$t_1 =$	$t_2 =$	$t_3 =$	
Parameters				
Charg	ing from 0 volts	Dis	charging from V _{supply}	
V _{t1}	licted Measure	$\begin{array}{c c} d & Pro \\ \hline & V_{t1} \\ \hline & V_{t2} \\ \hline & V_{t3} \\ \hline \end{array}$	edicted Measure	d
Calculations				

 $\underline{\mathrm{file}\ 01657}$

 $\underline{\mathrm{file}\ 03178}$

(Template)

Competency:	Version:
Schematic	
Given conditions	
Parameters	
Predicted Measured	

 $\underline{\mathrm{file}\ 01602}$

Answers

Answer 1

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 2

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 3

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 4

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 5

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 6

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 7

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 8

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 9

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 10

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 11

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 12

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 13

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 14

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 15

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 16

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 17

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 18

The ohmmeter's indication is the "final word" on resistance.

Answer 19

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 20

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 21

The neon bulb will likely give you more reliable confirmation of your predictions than simulation software.

Answer 22

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 23

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 24

Use circuit simulation software to verify your predicted and measured parameter values.

You might be surprised to find that $L_{total} \neq L_1 + L_2$. This is due to the *mutual inductance* between inductors L_1 and L_2 .

Answer 25

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 26

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 27

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 28

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 29

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 30

Use circuit simulation software to verify your predicted and measured parameter values.

Answer 31

Here, you would indicate where or how to obtain answers for the requested parameters, but not actually give the figures. My stock answer here is "use circuit simulation software" (Spice, Multisim, etc.).

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Students will have to choose resistor values appropriate to the task.

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 2

Use a variable-current, regulated power supply to supply any amount of DC current below a few milliamps. Students will have to choose resistor values appropriate to the task. I recommend low-value resistors so as to keep the voltage drop (and power dissipation!) low.

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 3

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 10k, 22k, 33k, 39k 47k, 68k, etc.).

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 4

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 10k, 22k, 33k, 39k 47k, 68k, etc.).

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 5

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 10k, 22k, 33k, 39k 47k, 68k, etc.).

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 6

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 10k, 22k, 33k, 39k 47k, 68k, etc.).

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 8k2, 10k, 22k, 33k, 39k 47k, 68k, 82k, etc.).

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 8

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 8k2, 10k, 22k, 33k, 39k 47k, 68k, 82k, etc.).

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 9

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 8k2, 10k, 22k, 33k, 39k 47k, 68k, 82k, etc.).

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 10

Be sure to remind your students that resistances R_1 and R_2 may need to be series-parallel networks in themselves, to achieve the necessary values. An alternative you may wish to permit is the use of 10-turn (precision) potentiometers connected as rheostats for R_1 and R_2 . This way the circuit's minimum and maximum values may be precisely calibrated. The main potentiometer, R_{pot1} , should be a 3/4 turn unit, to allow fast checking of minimum and maximum total resistance, and it should be some common value such as 1 k Ω or 10 k Ω .

Notes 11

Students need not measure potentiometer shaft angles in order to do this exercise. Rather, all they need to do is measure resistance between the wiper and the two outer terminals to set the potentiometer to a position where it will produce the specified division of voltage.

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 12

I recommend students use a normal regulated (voltage) power supply, adjusting the output voltage until the output current is at 4 mA. 1 k Ω resistors work well for this circuit, requiring only 6.4 volts from the power supply to achieve 4 mA total current.

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 14

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 8k2, 10k, 22k, 33k, 39k 47k, 68k, 82k, etc.).

I have used this circuit as both a "quick" lab exercise and a troubleshooting exercise, using values of $10 \text{ k}\Omega$ for R1, R2, and R3; $15 \text{ k}\Omega$ for R(load1); $22 \text{ k}\Omega$ for R(load2); and 6 volts for the power supply. Of course, these component values are not critical, but they do provide easy-to measure voltages and currents without incurring excessive impedances that would cause significant voltmeter loading problems.

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 15

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 10k, 22k, 33k, 39k 47k, 68k, etc.).

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 16

Students need not measure potentiometer shaft angles in order to do this exercise. Rather, all they need to do is measure resistance between the wiper and the two outer terminals to set the potentiometer to a position where it will produce the specified division of voltage.

 R_{pot} refers to the potentiometer's nominal full-range value (for example, 1 k Ω or 5 k Ω), and not to its particular setting. The setting is what the student must figure out to achieve V_{out} .

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 17

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Specify standard resistor values, all between 1 k Ω and 100 k Ω (1k5, 2k2, 2k7, 3k3, 4k7, 5k1, 6k8, 10k, 22k, 33k, 39k 47k, 68k, etc.), and be sure to specify a potentiometer value in excess of the amount required to balance the bridge.

Use a variable-voltage, regulated power supply to supply any amount of DC voltage below 30 volts. Use precision resistors for R_1 and R_2 , and use any standard resistor value for R_x between 1 k Ω and 100 k Ω .

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 19

Students may use potentiometers in their range resistance networks to achieve precise values. However, they are not allowed to adjust those potentiometers after connecting them to the meter movement – they must set their potentiometer(s) during the "prediction" step of the assessment before the circuit is completely built.

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 20

Be sure to specify resistor values for the voltage divider that will show a marked impact when measured with the type of voltmeter you expect your students to use. If you size the resistors for a modest impact measured with an analog voltmeter (20,000 Ω /Volt), your students may not see much of an impact when using a modern digital voltmeter ($Z_{in} > 10 \text{ M}\Omega$).

New students often have a difficult time grasping the main idea of this activity, due to the assumption of the voltmeter's indication always being taken as true. The purpose of this activity is to shatter that assumption: to teach students that electrical measurements are never truly passive – rather, they invariably impact the circuit being measured in some way. Usually, the impact is so small it may be safely ignored. Here, due to the large resistor values used in the divider circuit, the impact of voltmeter usage on the circuit is non-trivial.

Another aspect of this activity that escapes some students' attention is that the circuit must be analyzed twice: once with the meter connected and once without. The point here is that the meter becomes a component of the circuit when it is connected across R_2 , and thus changes all the voltages and currents.

Notes 21

Students may either use ready-made inductors for this experiment (the larger the value, the more impressive the light flash!) or inductors of their own making (using old solenoid valve coils, or hand-wound coils around steel bolts). Power transformer primary windings also work well for this.

Notes 22

You will need an inductance meter in your lab to do this exercise. If you don't have one, you should get one right away!

Notes 23

You will need an inductance meter in your lab to do this exercise. If you don't have one, you should get one right away!

In case students don't have access to a pair of inductors on a common core, they may either make their own by winding wire around a long ferromagnetic core, or use a center-tapped inductor (or transformer winding). The latter solution is probably the easiest:

Inexpensive audio output transformers (with center-tapped 1000 Ω primary windings) work very well for this. Your students' parts kits should contain at least one of these transformers anyway if they are to do audio coupling experiments later.

You will need an inductance meter in your lab to do this exercise. If you don't have one, you should get one right away!

Notes 25

Many modern digital multimeters come equipped with capacitance measurement built-in. If your students do not have these meters, you will either need to provide one for them to use, or provide an LCR meter. If you don't have either one of these instruments, you should get one right away!

Notes 26

Many modern digital multimeters come equipped with capacitance measurement built-in. If your students do not have these meters, you will either need to provide one for them to use, or provide an LCR meter. If you don't have either one of these instruments, you should get one right away!

Notes 27

I recommend choosing resistor and capacitor values that yield time constants in the range that may be accurately tracked with a stopwatch. I also recommend using resistor values significantly less than the voltmeter's input impedance, so that voltmeter loading does not significantly contribute to the decay rate.

Good time values to use (t_1, t_2, t_3) would be in the range of 5, 10, and 15 seconds, respectively.

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 28

Two very important "given" parameters are the relay coil resistance (R_{coil}) and the relay dropout voltage $(V_{dropout})$. These are best determined experimentally.

Many students fail to grasp the purpose of this exercise until it is explained. The idea here is to predict when the relay will "drop out" after the switch is opened. This means solving for t in the time-constant (decay) equation given the initial capacitor voltage, time constant (τ) , and the capacitor voltage at time t. Because this involves the use of logarithms, students may be perplexed until given assistance.

I recommend choosing resistor and capacitor values that yield time constants in the range that may be accurately tracked with a stopwatch. I also recommend using resistor values significantly less than the voltmeter's input impedance, so that voltmeter loading does not significantly contribute to the decay rate.

Good time values to use (t_1, t_2, t_3) would be in the range of 5, 10, and 15 seconds, respectively.

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 30

I recommend a supply voltage of 12 volts, a potentiometer value of 10 k Ω , a capacitor value of 0.1 μ F, and a loading resistor (R_1) of 1 M Ω . Use a DMM so as to not load the circuit any more than necessary. If you wish to choose different capacitor/resistor values, I strongly suggest choosing them such that the time constant (τ) of the circuit significantly faster than 1 second.

An extension of this exercise is to incorporate troubleshooting questions. Whether using this exercise as a performance assessment or simply as a concept-building lab, you might want to follow up your students' results by asking them to predict the consequences of certain circuit faults.

Notes 31

Any relevant notes for the assessment activity go here.