CS302 – Analysis and Design of Algorithms

Algorithm Analysis

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω –Notations

Comparing Functions

Exercises

Introduction

- Algorithm analysis: predicting the resources that the algorithm requires.
- Resources can be:
 - Computational time \rightarrow most common and important
 - Memory
 - Communication bandwidth
 - Energy consumption
- Computational model:
 - Random Access Machine (RAM) with one processor
 - Execute one operation at time; no concurrent operations
 - Each instruction or data access takes a constant amount of time

Introduction

- Our RAM model have the following instructions:
 - Arithmetic: +, -, %, *, /, floor, ceiling
 - Data movement: load, store, copy
 - Control: conditional and unconditional branch, call, return
 - Bitwise: AND, OR, NOT, XOR, shifting
- RAM model has the following data types:
 - Float, int, char
- RAM model doesn't have instructions for:
 - Sorting, exponentiation, summation

Introduction

- We cannot compute the running time of an algorithm by implementing it on a programming language and compute the execution time.
 - It depends on the programming language.
 - It depends on the compiler used to compile the program
 - It depends on the libraries used in the program
 - It depends on the architecture and the specifications of your machine
 - It depends on how the user inputs the data

Content

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω -Notations

Comparing Functions

Exercises

- The running time depends on the input size.
 - Larger arrays take longer than smaller arrays.
- Insertion sort depends on the size of the array and how sorted it is.
- The input size has the greatest effect on the performance of the algorithm.
 - Hence, we will describe the running time as a function of the size of its input.
 - To do so, we need to define the terms running time and input size carefully.

- The definition of "input size" depends on the application.
 - For sorting an array, the input size means the number of elements in the array.
 - For multiplying two integers, the input size refers to the bit size of the number.
 - For graph-based algorithms, the input size can be the number of edges and vertices.
- The running time is the number of instructions and data accesses executed.
 - Should be independent of any particular computer, but within the framework of the RAM model.
 - We assume that each line in our pseudocode, takes a constant amount of time, c_k , where k is the line number.

```
INSERTION-SORT (A, n)
                                                             times
                                                       cost
   for i = 2 to n
       key = A[i]
       // Insert A[i] into the sorted subarray A[1:i-1].
      j = i - 1
       while j > 0 and A[j] > key
           A[j+1] = A[j]
6
           j = j - 1
       A[i+1] = key
```

```
INSERTION-SORT (A, n)
                                                             times
                                                       cost
   for i = 2 to n
                                                       c_1
                                                             n
       key = A[i]
       // Insert A[i] into the sorted subarray A[1:i-1].
      j = i - 1
       while j > 0 and A[j] > key
           A[j+1] = A[j]
6
           j = j - 1
       A[i+1] = key
```

```
INSERTION-SORT (A, n)
                            Note that the loop condition is
                                                                       times
                                                                cost
                            executed one time more than the loop body -
   for i = 2 to n
                            that is when the condition is false
                                                                C_1
                                                                       n
                                                                c_2 \qquad n-1
        key = A[i]
        // Insert A[i] into the sorted subarray A[1:i-1].
        i = i - 1
        while j > 0 and A[j] > key
             A[j+1] = A[j]
6
             j = j - 1
        A[i+1] = key
```

```
INSERTION-SORT (A, n)
                                                             times
                                                       cost
   for i = 2 to n
                                                       C_1
                                                            n
                                                      c_2 \qquad n-1
      key = A[i]
       // Insert A[i] into the sorted subarray A[1:i-1].
                                                         n-1
      j = i - 1
       while j > 0 and A[j] > key
           A[j+1] = A[j]
6
           j = j - 1
       A[i+1] = key
```

```
INSERTION-SORT (A, n)
                                                            times
                                                      cost
   for i = 2 to n
                                                      C_1
                                                            n
                                                      c_2 \qquad n-1
      key = A[i]
                                                      0 	 n-1
       // Insert A[i] into the sorted subarray A[1:i-1].
                                                      c_4 n-1
      j = i - 1
       while j > 0 and A[j] > key
           A[j+1] = A[j]
6
           j = j - 1
       A[i+1] = key
```

```
INSERTION-SORT (A, n)
                                                              times
                                                        cost
   for i = 2 to n
                                                        C_1
                                                              n
       key = A[i]
                                                            n-1
                                                        C_2
                                                        0
       // Insert A[i] into the sorted subarray A[1:i-1].
                                                          n-1
                                                        c_4 n-1
      j = i - 1
                                                        c_5 \qquad \sum_{i=2}^n t_i
       while j > 0 and A[j] > key
           A[j+1] = A[j]
6
           j = j - 1
       A[i+1] = key
```

```
INSERTION-SORT (A, n)
                                                                      times
                                                               cost
   for i = 2 to n
                                                               C_1
                                                                     n
                                                               c_2 \qquad n-1
       key = A[i]
                                                               0
        // Insert A[i] into the sorted subarray A[1:i-1].
                                                                   n-1
                                                               c_4 \qquad n-1
       j = i - 1
                                                               c_5 \qquad \sum_{i=2}^n t_i
        while j > 0 and A[j] > key
                                                               c_6 \qquad \sum_{i=2}^{n} (t_i - 1)
            A[j+1] = A[j]
6
            j = j - 1
        A[i+1] = key
```

```
INSERTION-SORT (A, n)
                                                                      times
                                                               cost
   for i = 2 to n
                                                               C_1
                                                                      n
                                                               c_2 \qquad n-1
       key = A[i]
                                                               0
        // Insert A[i] into the sorted subarray A[1:i-1].
                                                                     n-1
                                                               c_4 n-1
       j = i - 1
                                                               c_5 \qquad \sum_{i=2}^n t_i
        while j > 0 and A[j] > key
                                                               c_6 \qquad \sum_{i=2}^n (t_i - 1)
             A[j+1] = A[j]
6
                                                                    \sum_{i=2}^{n} (t_i - 1)
             j = j - 1
        A[i+1] = key
```

```
INSERTION-SORT (A, n)
                                                                      times
                                                                cost
   for i = 2 to n
                                                                C_1
                                                                      n
                                                               c_2 \qquad n-1
       key = A[i]
                                                               0
        // Insert A[i] into the sorted subarray A[1:i-1].
                                                                     n-1
                                                               c_4 n-1
       j = i - 1
                                                               c_5 \qquad \sum_{i=2}^n t_i
        while j > 0 and A[j] > key
                                                               c_6 \qquad \sum_{i=2}^n (t_i - 1)
             A[j+1] = A[j]
6
                                                               c_7 \qquad \sum_{i=2}^{n} (t_i - 1)
             j = j - 1
        A[i+1] = key
                                                                     n-1
```

• The running time of the algorithm, T(n) is

```
INSERTION-SORT (A, n)
                                                                  times
   for i = 2 to n
                                                                  n
                                                            C_1
      key = A[i]
                                                                  n-1
     // Insert A[i] into the sorted subarray A[1:i-1].
                                                                  n-1
      i = i - 1
                                                               n-1
                                                            c_5 \qquad \sum_{i=2}^n t_i
      while j > 0 and A[j] > key
                                                           c_6 \qquad \sum_{i=2}^{n} (t_i - 1)
       A[j+1] = A[j]
                                                           c_7 \qquad \sum_{i=2}^{n} (t_i - 1)
        j = j - 1
       A[j+1] = key
                                                                  n-1
```

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1).$$

 Even for two arrays of the same size, the running time depends on how sorted the array is.

- The best case happens when the array is already sorted.
- In this case, the while loop at line 5 and its body will not execute.
 - The loop header will be executed as condition only so it is counted as a statement with cost $c_5(n-1)$

```
INSERTION-SORT (A, n)
                                                               cost
                                                                      times
   for i = 2 to n
        key = A[i]
                                                                     n-1
        // Insert A[i] into the sorted subarray A[1:i-1].
                                                                     n-1
        j = i - 1
                                                               c_4 \qquad n-1
                                                                      \sum_{i=2}^{n} t_i
        while j > 0 and A[j] > key c_5(n-1)
                                                                    \sum_{i=2}^{n} {i \choose i} - \frac{1}{1}
          -Aj
                                                                \sum_{t=2}^{n} \frac{t}{t} - \frac{1}{2}
        A[j+1] = key
                                                                   n-1
```

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

```
INSERTION-SORT (A, n)
                                                                times
   for i = 2 to n
       key = A[i]
                                                               n-1
       // Insert A[i] into the sorted subarray A[1:i-1].
                                                              n-1
       j = i - 1
                                                             n-1
                                                                \sum_{i=2}^{n} t_i
       while j > 0 and A[j] > key c_5(n-1)
                                                              \sum_{i=2}^{n} \binom{i}{i} - \frac{1}{1}
         \sum_{t=2}^{n} \frac{t}{t} - \frac{1}{t}
          A[j+1] = key
                                                             n-1
```

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8).$$

$$C$$

```
INSERTION-SORT (A, n)
                                                                   times
   for i = 2 to n
       key = A[i]
                                                                  n-1
        // Insert A[i] into the sorted subarray A[1:i-1].
                                                                 n-1
       j = i - 1
                                                            c_4 \qquad n-1
                                                                   \sum_{i=2}^{n} \iota_i
       while j > 0 and A[j] > key c_5(n-1)
                                                            \sum_{i=2}^{n} {i \choose i} - \frac{1}{1}
          -4j
                                                             \sum_{i=1}^{n} \left( t - \frac{1}{i} \right)
           A[j+1] = key
                                                                n-1
```

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

The running time is thus a linear function of n. an + b

(

b

- The worst case arises when the array is in reverse sorted order.
 - That is, it starts out in decreasing order.
- The procedure must compare each element A[i] with each element in the entire sorted subarray.
 - The procedure finds that A[i] > key every time in line 5, and the while loop exits only when j reaches 0.
- So, we get the running time expressed as (the same first equation)

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1).$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + \left(c_5 \sum_{i=2}^n t_i\right) + \left(c_6 \sum_{i=2}^n (t_i - 1)\right) + \left(c_7 \sum_{i=2}^n (t_i - 1)\right) + c_8 (n-1).$$

$$\sum_{i=2}^{n} i = \left(\sum_{i=1}^{n} i\right) - 1 = \frac{n(n+1)}{2} - 1$$

$$\sum_{i=2}^{n} (i-1) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

So, the worst-case running time is

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8) .$$

Thus, the running time is a quadratic function

$$an^2 + bn + c$$

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω -Notations

Comparing Functions

Exercises

Worst-case and Average-case Analysis

- When analyzing an algorithm, we focus on the worst-case running time. Why?
 - 1. It gives an upper bound on the running time for any input.
 - If you know it, then you have a guarantee that the algorithm never takes any longer.
 - 2. For some algorithms, the worst case occurs fairly often.
 - In searching a database, the searching algorithm's worst case often occurs when the information is not present in the database.
 - 3. The "average case" is often roughly as bad as the worst case.

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω -Notations

Comparing Functions

Exercises

Order of growth

- Order of growth: how the number of computational steps is increasing as the input size n grows.
- To get the order of growth, we ignore constants and low-order terms.
 - For the insertion sort algorithm, the order of growth is n^2 .

Order of growth

- For example, suppose that an algorithm implemented on a particular machine takes $n^2/100 + 100n + 17$ microseconds on an input of size n.
 - If you consider some small values for n=5,10,90, you find that the 1/100 coefficient of n^2 is less significant than the 100 coefficient of n.
 - But, when you consider large values for n=200, you will find that n^2 dominates the n.
 - Large data size is what reflects real-life problems.

Order of growth

• When we consider only the dominant variable of high-order of a function, e.g., n^2 , we are studying **asymptotic** efficiency.

• **Asymptotic analysis** is a method used to describe the behavior of algorithms or functions as their input size grows towards infinity.

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω -Notations

Comparing Functions

Exercises

Asymptotic Notations

Asymptotic Notations - O

- *O*-notation characterizes an **upper bound** on the asymptotic behavior of a function.
 - A function grows no faster than a certain rate, based on the highest-order term.
- For example, the function $7n^3 + 100n^2 20n + 6$.
 - Its highest-order term is $7n^3$
 - So, we say that this function's rate of growth is n^3
 - Since the function grows no faster than n^3 , we say it is $O(n^3)$
- Can we say it is $O(n^4)$?

Asymptotic Notations - O

- *O*-notation characterizes an **upper bound** on the asymptotic behavior of a function.
 - A function grows no faster than a certain rate, based on the highest-order term.
- For example, the function $7n^3 + 100n^2 20n + 6$.
 - Its highest-order term is $7n^3$
 - So, we say that this function's rate of growth is n^3
 - Since the function grows no faster than n^3 , we say it is $O(n^3)$
- Can we say it is $O(n^4)$?
 - Yes, because the function still grows no faster than n^4 .
 - It is also $O(n^5)$, $O(n^6)$, ...
 - Generally, it's $O(n^c)$ for $c \ge 3$

Asymptotic Notations - Ω

- Ω -notation characterizes a **lower bound** on the asymptotic behavior of a function.
 - A function grows at least as fast as a certain rate, based on the highest-order term.
- The function $7n^3 + 100n^2 20n + 6$.
 - It grows at least as fast as $\Omega(n^3)$.
 - It is also $\Omega(n^2)$, $\Omega(n)$, ...
 - Generally, it is $\Omega(n^c)$ for $c \leq 3$

- Θ-notation characterizes a tight bound on the asymptotic behavior of a function.
 - A function grows precisely at a certain rate, based on the highest-order term.
- It characterizes the rate of growth of the function to within a constant factor from above and to within a constant factor from below.
 - These two constant factors need not be equal.
- If you show that a function is $O\big(f(n)\big)$ and $\Omega\big(f(n)\big)$, then you have shown it is $\Theta\big(f(n)\big)$
- The function $7n^3 + 100n^2 20n + 6$ is $\Theta(n^3)$

• Analyzing insertion sort running time without evaluating summations.

```
INSERTION-SORT (A, n)
   for i = 2 to n
      key = A[i]
       // Insert A[i] into the sorted subarray A[1:i-1].
      j = i - 1
       while j > 0 and A[j] > key
           A[j+1] = A[j]
          j = j - 1
       A[j+1] = key
```

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2  key = A[i]

3  // Insert A[i] into the sorted subarray A[1:i-1].

4  j = i - 1

5  while j > 0 and A[j] > key

6  A[j+1] = A[j]

7  j = j - 1

8  A[j+1] = key
```

- The procedure has 2 loops:
 - The outer loop runs n-1 times, regardless of the values being sorted.
 - The inner loop depends on the values being sorted.
 - The while loop variable j starts at i-1 and decreases by 1 until it either reaches 0 or A[j] > key.
 - The while loop might iterate 0 times, i-1 times, or anywhere in between.
 - So, the outer loop runs n-1 times, the second loop runs at most i-1 times, and because i is at most n. Hence, it is $(n-1)(n-1)=O(n^2)$

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

• So, $O(n^2)$ describes an <u>upper-bound</u> for <u>any case</u> of insertion sort.

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

• The <u>lower-bound</u> of the <u>worst-case</u> running time is $\Omega(n^2)$.

• WHY?

• Assume that we have an array A of size n (multiple of 3), and the n/3 largest values are on the positions A[1:n/3]

A[1:n/3]	A[n/3 + 1:2n/3]	A[2n/3+1:n]
each of the n/3 largest values moves	through each of these n/3 positions	to somewhere in these n/3 positions

- To sort the array, we will need to move each of the A[1:n/3] to positions A[2n/3+1:n].
 - Thus, the values will pass through the middle A[n/3 + 1:2n/3] positions.
- Hence, the worst-case lower-bound is $(n/3)(n/3) = \Omega(n^2)$

• Because we have shown that insertion sort runs in $O(n^2)$ time in all cases.

• And that there is an input that makes it take $\Omega(n^2)$ time.

• We can conclude that the worst-case running time of insertion sort is $\Theta(n^2)$.

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω -Notations

Comparing Functions

Exercises

- *O*-notation describes an asymptotic upper bound on a function, to within a constant factor.
- For a given function g(n), we denote by O(g(n)) the set of functions:

```
O(g(n)) = \{f(n): there \ exist \ positive \ constants \ c \ and \ n_0 \ such that \ 0 \le f(n) \le cg(n) \ for \ all \ n \ge n_0\}
```


- The definition of $O\!\left(g(n)\right)$ requires that every function f(n) in the set be asymptotically nonnegative
- Consequently, the function g(n) itself must be asymptotically nonnegative, or else the set $O\big(g(n)\big)$ is empty.
- Since f(n) is a function that belongs to the set O(g(n)), we should have written it like $f(n) \in O(g(n))$
- But we will adopt the f(n) = O(g(n)) notation to indicate the same thing.

• Example: show that $4n^2 + 100n + 500 = O(n^2)$.

- To do that, we have to find some positive c and n_0 to make $4n^2+100n+500 \leq cn^2$
- Divide both sides by n^2 , we get $4 + 100/n + 500/n^2 \le c$
- This equation can be satisfied for many choices:
 - $n_0 = 1$ and c = 604
 - $n_0 = 10$ and c = 19

• Example: show that $n^3 - 100n^2$ does not belong to the set $O(n^2)$.

• We express it as $n^3 - 100n^2 \le cn^2$.

• Divide both sides by n^2 , we get $n-100 \le c$.

• Regardless of what value we choose for the constant c, this inequality does not hold for any value of n.

- Ω -notation provides an asymptotic lower bound.
- For a given function g(n), we denote by $\Omega(g(n))$ the set of functions:

 $\Omega(g(n)) = \{f(n): there \ exist \ positive \ constants \ c \ and \ n_0 \ such \ that \ 0 \le cg(n) \le f(n) \ for \ all \ n \ge n_0 \}$

- Example: show that $4n^2 + 100n + 500 = \Omega(n^2)$
- We need to find positive constants c and n_0 such that $4n^2+100n+500 \ge cn^2$ for all $n\ge n_0$
- Divide both sides by n^2 , we get $4 + 100/n + 500/n^2 \ge c$.

• The inequality holds for any positive integer n_0 and c=4.

- Θ-notation provides an asymptotic tight bounds.
- For a given function g(n), we denote by $\Theta(g(n))$ the set of functions:

 $\Theta(g(n)) = \{f(n): there \ exist \ positive \ constants \ c_1, c_2 \ and \ n_0 \ such \ that \ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ for \ all \ n \ge n_0 \}$

• Based on the definition of O-, $\Omega-$, and $\Theta-$ notations, we get the following theorem:

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω -Notations

Comparing Functions

Exercises

• The asymptotic notation we use should be as precise as possible without overstating which running time it applies to.

- Example: for the insertion sort algorithm,
 - We can correctly say that the worst-case running time is $O(n^2)$, $\Omega(n^2)$, and $\Theta(n^2)$
 - The $\Theta(n^2)$ is the most precise one.
 - We can correctly say that the best-case running time is O(n), $\Omega(n)$, and $\Theta(n)$
 - The $\Theta(n)$ is the most precise one.
 - We cannot say that the running time is $\Theta(n^2)$
 - By omitting "worst-case" we are referring to all the cases, which is not valid.
 - ullet We can correctly say that the running time is $O(n^2)$
 - Because $O(n^2)$ is an upper bound; in all the cases the running time grows no faster than n^2 .
 - Likewise, we cannot say that the running time $\Theta(n)$
 - But we can say that its running time is $\Omega(n)$

• Example: for the merge sort algorithm, it runs in $\Theta(n \lg n)$ time in all cases.

• It is correct to say that its running time is $\Theta(n \lg n)$ without specifying "worst-case", "best-case", or any other case.

- We typically use asymptotic notation to provide the simplest and most precise bounds possible.
- For example, if an algorithm has a running time of $3n^2+20n$ in all cases, we use asymptotic notation to write that its running time is $\Theta(n^2)$
- It is correct to say its running time is $O(n^3)$ or $\Theta(3n^2 + 20n)$.
 - Neither of these expressions is useful as $\Theta(n^2)$.
 - $O(n^3)$ is less precise.
 - $\Theta(3n^2 + 20n)$ introduces complexity that obscures the order of growth.

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω -Notations

Comparing Functions

Exercises

Asymptotic Notation in Equations and Inequalities

• Although we formally define asymptotic notation in terms of sets, we use the = instead of \in within formulas.

- For example, we wrote that $4n^2 + 100n + 500 = O(n^2)$.
- We might also write $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$.

How do we interpret such formulas?

Asymptotic Notation in Equations and Inequalities

- When the asymptotic notation stands alone on the right-hand side of an equation (or inequality), the equal sign means set membership:
 - $4n^2 + 100n + 500 = O(n^2) \rightarrow 4n^2 + 100n + 500 \in O(n^2)$.

- When asymptotic notation appears in a formula, we interpret it as standing for some anonymous function that we do not care to name.
 - $2n^2 + 3n + 1 = 2n^2 + \Theta(n) \rightarrow 2n^2 + 3n + 1 = 2n^2 + f(n)$ such that $f(n) \in \Theta(n)$
 - For instance, f(n) = 3n + 1, which belongs to $\Theta(n)$

Asymptotic Notation in Equations and Inequalities

• We can chain together a number of such relationships, as in $2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω –Notations

Comparing Functions

Exercises

o, ω -notations

- The asymptotic upper bound provided by O-notation may or may not be asymptotically tight.
 - The bound $2n^2 = O(n^2)$ is asymptotically tight.
 - But the bound $2n = O(n^2)$ is not tight.
- We use o-notation to denote an upper bound that is not asymptotically tight.
 - $o(g(n)) = \{f(n): \text{there exist positive constants } c \text{ and } n_0 \}$ such that $0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$
- For example, $2n = o(n^2)$ but $2n^2 \neq o(n^2)$

o, ω -notations

• Intuitively, in o-notation, the function f(n) becomes insignificant relative to g(n) as n gets large:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

o, ω -notations

- The ω -notation denotes a lower bound that is not asymptotically tight. $\omega(g(n)) = \{f(n): there \ exist \ positive \ constants \ c \ and \ n_0 \ such \ that \ 0 \le cg(n) < f(n) \ for \ all \ n \ge n_0 \ \}$
- The relation $f(n) = \omega(n)$ implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$
- Note that: $f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$.
 - For example: $n^2/2 = \omega(n)$ but $n^2/2 \neq \omega(n^2)$

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω -Notations

Exercises

- Asymptotic notations has properties.
- Assume that f(n) and g(n) are asymptotically positive.

Transitivity:

```
f(n) = \Theta(g(n)) and g(n) = \Theta(h(n)) imply f(n) = \Theta(h(n)), f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)), f(n) = \Omega(g(n)) and g(n) = \Omega(h(n)) imply f(n) = \Omega(h(n)), f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)), f(n) = \omega(g(n)) and g(n) = \omega(h(n)) imply f(n) = \omega(h(n)).
```

- Asymptotic notations has properties.
- Assume that f(n) and g(n) are asymptotically positive.

```
Reflexivity: f(n) = \Theta(f(n)), f(n) = O(f(n)), f(n) = \Omega(f(n)). Symmetry: f(n) = \Theta(g(n)) \text{ if and only if } g(n) = \Theta(f(n)).
```

Transpose symmetry: $f(n) = O(g(n)) \text{ if and only if } g(n) = \Omega(f(n)),$ $f(n) = o(g(n)) \text{ if and only if } g(n) = \omega(f(n)).$

• We can draw an analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b:

```
f(n) = O(g(n)) is like a \le b,

f(n) = \Omega(g(n)) is like a \ge b,

f(n) = \Theta(g(n)) is like a = b,

f(n) = o(g(n)) is like a < b,

f(n) = \omega(g(n)) is like a > b.
```

- f(n) is asymptotically smaller than $g(n) \rightarrow f(n) = o(g(n))$
- f(n) is asymptotically larger than g(n) if $f(n) = \omega(g(n))$

 One property of real numbers, however, does not carry over to asymptotic notation:

Trichotomy: For any two real numbers a and b, exactly one of the following must hold: a < b, a = b, or a > b.

• This means that in asymptotic notations, the <, >, and = can hold at the same time.

Content

Introduction

Analyzing Insertion Sort

Worst-case and Average-case Analysis

Order of Growth

Asymptotic Notations

Asymptotic Notations: Formal Definitions

Asymptotic Notations and Running Times

Asymptotic Notations in Equations and Inequalities

 o, ω -Notations

Comparing Functions

Exercises

3.2-1

Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that max $\{f(n), g(n)\} = \Theta(f(n) + g(n))$.

- To prove that $\max\{f(n)$, $g(n)\} = \Theta\big(f(n) + g(n)\big)$, we start by recalling the definition of Θ notation:
 - A function h(n) is in $\Theta(k(n))$ if there exist constants $c_1, c_2 > 0$ and n_0 such that $n \ge n_0, c_1 k(n) \le h(n) \le c_2 k(n)$
- Establish an upper bound:

Show that $\max\{f(n), g(n)\} \le c_2(f(n) + g(n))$ for some constant c_2 .

Thus, c_2 can be 1.

So, $\max\{f(n), g(n)\} \le 1 \cdot \left(f(n) + g(n)\right)$

Establish a lower bound:

Show that $\max\{f(n), g(n)\} \ge c_2(f(n) + g(n))$

Thus, c_2 can be 1/2

So,
$$\max\{f(n), g(n)\} \ge \frac{1}{2} (f(n) + g(n))$$

Combine the upper and lower bounds:

$$\frac{1}{2}(f(n) + g(n)) \le \max\{f(n), g(n)\} \le 1 \cdot (f(n) + g(n))$$

For sufficiently large n

• Thus, by the definition of Θ notation, we conclude that: $\max\{f(n),g(n)\}=\Theta(f(n)+g(n)).$

3.2-2

Explain why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless.

- The statement says "at least $O(n^2)$ " implies that the running time can be bounded above by a quadratic function.
- However, Big O notation doesn't inherently provide a lower bound. It's about the upper limit on the growth of the function, not the minimum.
- The correct usage is to say either:
 - "The running time of algorithm A is $O(n^2)$ " to indicate that it does not grow faster than a quadratic function.
 - If you want to express a lower bound, you should use Ω notation, e.g., "The running time of algorithm A is $\Omega(n^2)$ " to indicate it grows at least as fast as a quadratic function.

3.2-3
Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$?

• $2^{n+1} = 2 \cdot 2^n$ for all $n \ge 0$. So, $2^{n+1} = O(2^n)$, where c = 2.

• $2^{2n} = 2^n \cdot 2^n \neq O(2^n)$. There is no n_0 such that $n \geq n_0$ and there is no n_0

Task

3.2-5

Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$.

3.2-6

Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.

Task- answer

Suppose the running time is $\Theta(g(n))$. By Theorem 3.1, the running time is O(g(n)), which implies that for any input of size $n \geq n_0$ the running time is bounded above by $c_1g(n)$ for some c_1 . This includes the running time on the worst-case input. Theorem 3.1 also imlpies the running time is $\Omega(g(n))$, which implies that for any input of size $n \geq n_0$ the running time is bounded below by $c_2g(n)$ for some c_2 . This includes the running time of the best-case input.

On the other hand, the running time of any input is bounded above by the worst-case running time and bounded below by the best-case running time. If the worst-case and best-case running times are O(g(n)) and $\Omega(g(n))$ respectively, then the running time of any input of size n must be O(g(n)) and $\Omega(g(n))$. Theorem 3.1 implies that the running time is $\Theta(g(n))$.

Suppose we had some $f(n) \in o(g(n)) \cap \omega(g(n))$. Then, we have

$$0 = \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

a contradiction.