Exercise 4.4

a) Plot the i_A vs. v_A characteristics for the nonlinear network shown in Figure 4.3. Assume the diode is ideal.

Figure 4.3:

b) The nonlinear network from part (a) is connected as shown in Figure 4.4. Draw the load line on your i-v characteristic from part (a), and find i_T .

Figure 4.4:

Solution:

Figure 4.5:

a)
$$v_A > 1$$
: Diode on

$$i_A = \frac{v_A}{1000 \mid\mid 1000}$$

$$v_A < 1$$
: Diode off

$$i_A = \frac{v_A}{1000}$$

b) Load line:

KVL:

$$3.5V - i_T (1000) - v_T = 0$$
$$i_T = \frac{3.5 - v_T}{1000}$$

Operating point occurs at intersection, and we find that

$$i_T = 2mA$$

ANS:: (b)
$$i_T = 2mA$$

Exercise 4.6 For the circuit in Figure 4.7, find the input characteristic, i versus v, and the transfer characteristic i_2 versus v. I is fixed and positive. Express your results in graphs, labeling all slopes, intercepts, and coordinates of any break points.

Figure 4.7:

Solution)

When diode is on,

$$i_2 = \frac{\mathbf{v}}{R_2}$$

$$i = \frac{V(R_1 + R_2)}{R_1 R_2}$$

Problem 4.11 This problem concerns the circuit illustrated in Figure 4.29:

Figure 4.29:

$$R_1=1.0k\Omega\quad R_2=1.0k\Omega\quad R_3=0.5k\Omega\quad R_4=1k\Omega$$
 For $D_1:i_D=I_S(e^{v_D/V_{TH}}-1)$ with $I_S=1\times 10^{-9}A$ and $V_{TH}=25\text{mV}$.

- a) Find the Thévenin equivalent circuit for the circuit connected to the diode.
- b) Assume that for bias point determination the diode can be modeled by an ideal diode and a 0.6 volt battery. What are v_D and i_D when $v_1 = 4$ volts?
- c) Find a linear equivalent model for this diode valid for small signal incremental operation about the bias point determined from part b.
- d) Use your model of part c) to find $v_d(t)$ if $v_I = 4 + 0.004 \cos \omega t$ volts.

Solution:

a)
$$R_{TH} = 0.5 \text{ k}\Omega V_{OC} = \frac{1}{4}v_I$$

b)
$$v_D = 0.6 \text{V}, i_D = 0.8 \text{mA}$$

c)
$$r_d = \frac{V_{TH}}{I_S} \exp(\frac{-V_D}{V_{TH}}) = 9.44 \times 10^{-4} \Omega$$

d)
$$v_d=1.88\times 10^{-9}\cos\omega t$$

Problem 4.12 Consider the circuit in Figure 4.30. The voltage source and the current source are the sum of a dc-level and an ac-perturbation:

$$v = V + \Delta v$$

 $i = I + \Delta i$

such that V=30V (dc), I=10A (dc), $\Delta v=100mV$ (ac), $\Delta i=50mA$ (ac).

Figure 4.30:

The resistors have the following values: $R_1=R_2=1/2$ ohm. The nonlinear element Z_0 has the characteristic:

$$i_0 = v_0 + v_0^2$$

Find, by incremental analysis, the DC and AC components of the output voltage v_0 .

Remark: You can assume in your analysis that the nonlinear element is behaving as a passive element, i.e., is consuming power.

Solution: DC component: 5V

AC component from current source: 0.002VAC component from voltage source: 0.008V

ANS:: DC:5V, AC from current:0.002V, AC from voltage: 0.008V