Chain Rule Derivation

Let γ be a curve in \mathbb{R}^n given by the differentiable vector-valued function $\mathbf{v}(t)$ where \mathbf{v} has n components v^{μ} , each a differentiable function of t. Let $f(\mathbf{x})$ be a differentiable scalar function on \mathbb{R}^n , and let $f(\mathbf{v}(t))$ be the composition of functions $f(\mathbf{x})$ and $\mathbf{v}(t)$, *i.e.* f evaluated on γ . We want to find the derivative of f as we move along γ :

$$\frac{\mathrm{d}f}{\mathrm{d}t} := \lim_{\Delta t \to 0} \frac{f(\mathbf{v}(t_0 + \Delta t)) - f(\mathbf{v}_0)}{\Delta t}$$

where $\mathbf{v}_0 \coloneqq \mathbf{v}(t_0)$.

Let's begin by defining the vector $\Delta \mathbf{v} := \mathbf{v}(t_0 + \Delta t) - \mathbf{v}_0 \equiv \Delta v^{\mu} \hat{x}_{\mu}$. Now let's imagine the graph of f fully represented in \mathbb{R}^{n+1} . We can imagine the tangent space to this graph at any given point \mathbf{x}_0 as a hyperplane defined by the graph of

$$g_{\mathbf{x}_0}(\mathbf{x}) \coloneqq \frac{\partial f}{\partial x^{\mu}} (x^{\mu} - x_0^{\mu}) + f(\mathbf{x}_0)$$

Another way to say this is that f can be linearly approximated by the first two terms of its Taylor expansion (which is all that g is). Let's now define $\Delta f := f(\mathbf{v}(t_0 + \Delta t)) - f(\mathbf{v}_0)$. Δf can be linearly approximated using $g_{\mathbf{v}_0}$:

$$\Delta f \approx g_{\mathbf{v}_0}(\mathbf{v}(t_0 + \Delta t)) - g_{\mathbf{v}_0}(\mathbf{v}_0)$$

$$\approx \frac{\partial f}{\partial x^{\mu}}(v^{\mu}(t_0 + \Delta t) - v_0^{\mu}) + f(\mathbf{v}_0) - f(\mathbf{v}_0)$$

$$\approx \frac{\partial f}{\partial x^{\mu}} \Delta v^{\mu}$$

We can turn this approximation into an exact equality simply by introducing some additional functions:

$$\Delta f = \frac{\partial f}{\partial x^{\mu}} \Delta v^{\mu} + \epsilon_{\mu} \Delta v^{\mu}$$

where each ϵ is some corrective function that approaches zero as Δv^{μ} approaches zero. This should make intuitive sense because as Δv^{μ} approaches zero, the relevant patch of the graph of f is increasingly better approximated by the tangent hyperplane. Let us now divide this equation by Δt :

$$\frac{\Delta f}{\Delta t} = \frac{\partial f}{\partial x^{\mu}} \frac{\Delta v^{\mu}}{\Delta t} + \epsilon_{\mu} \frac{\Delta v^{\mu}}{\Delta t}$$

With how we defined Δf , it should be clear that taking the limit here as $\Delta t \to 0$ yields the derivative we were looking for. It should also be noted that as $\Delta t \to 0$, $\Delta v^{\mu} \to 0$ as well, which means that the ϵ_{μ} functions vanish. So we are left with

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x^{\mu}} \frac{\mathrm{d}v^{\mu}}{\mathrm{d}t}$$