Project Design Phase-II Technology Stack (Architecture & Stack)

roomiology otack (raomiostalo a stack)				
Date	01 November 2023			
Team ID	Team-593005			
Project Name	Al-enabled car parking system using OpenCV			
Maximum Marks	4 Marks			

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table1 & table2

Guidelines:

- Include all the processes (As an application logic / Technology Block)
- 2. Provide infrastructural demarcation (Local / Cloud)
- 3. Indicate external interfaces (third party API's etc.)
- 4. Indicate Data Storage components / services
- 5. Indicate interface to machine learning models (if applicable)

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.	HTML, CSS, JavaScript / Angular Js / React Js etc.
2.	Application Logic-1	Logic for a process in the application	Python
3.	Database	Collect the Dataset Based on the Problem Statement	File Manager
4.	File Storage/ Data	File storage requirements for Storing the dataset	Local System, Google Drive
5.	Frame Work	Used to Create a web Application, Integrating Frontend and Back End	Python Flask
6.	Deep Learning Model	Purpose of Model	OpenCV, CNN
7.	Infrastructure	Application Deployment on Local System	Local Server

Table-2: Application Characteristics:

S.N o	Characteristics	Description	Technology
1.	Open-Source Frameworks	Python's Flask or any basic web framework	Python Flask
2.	Security Implementations	Basic encryption for data transmission, simple access controls	Basic Encryption (e.g., HTTPS), Basic Access Contro
3.	Scalable Architecture	Simple, non-distributed architectur	Single-Server Setup

S.N o	Characteristics	Description	Technology
4.	Availability	Local server setup for development and testing	Local Server
5.	Performance	Basic performance considerations for local use	Basic Caching Strategies, Local Testing