CENTER FOR ECONOMIC BEHAVIOR & INEQUALITY

Solving an OLG Model

NumEcon

Jeppe Druedahl

2020

Introduction

Introduction

- Subject: Solve an OLG model numerically (using Python)
- NumEcon module
 - 1. Link to code
 - 2. Link to notebooks
- Today:
 - 1. Code: macro\OLG.py
 - 2. Notebook: macro\OLG.ipynb

Plan

- 1. Introduction
- 2. Model
- 3. Solution algorithm
- 4. Example
- 5. Extensions

Model

Model

- Households: L_t born each each period, life-span of 2 periods
 Own capital (as old), supply labor (as young) and consume
- Firms: Rent capital and hire labor to produce
- Variables:
 - 1. Capital: K_t
 - 2. Labor supply: Lt
 - 3. Output: Y_t
 - 4. Consumption: C_t
- Per worker: $k_t \equiv K_t/L_t$, $y_t \equiv Y_t/L_t$ and $c_t \equiv C_t/L_t$
- Prices are taken as given by households and firms
 - 1. r_t , rental rate on capital
 - 2. w_t, wage rate
- Net return factor on capital: $R_t \equiv 1 + r_t \delta$ where $\delta \in [0, 1]$ is the depreciation rate

Households I

$$\max_{c_{1t},c_{2t+1}} u(c_{1t}) + \beta u(c_{2t+1})$$

under the constraint

$$c_{1t} + R_{t+1}^{-1}c_{2t+1} = w_t$$

where u'>0, u''<0, $\lim_{c\to 0}u'=\infty$ and $\lim_{c\to \infty}u'=0$ and $u(x)=u(y)\Leftrightarrow u(\lambda x)=u(\lambda y), \forall \lambda>0$ (homotheticity)

Households II

- Optimal behavior
 - 1. Euler-equation: $\frac{u'(c_{1t})}{u'(c_{2t+1})} = \beta R_{t+1}$
 - 2. Saving function: $s(w_t, R_{t+1}) = s(1, R_{t+1})w_t$
- CRRA utility: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}, \sigma > 0$
 - 1. Euler-equation

$$c_{2t+1} = (\beta R_{t+1})^{1/\sigma} c_{1t}$$

2. Saving function

$$s(w_t, r_{t+1}) = \left(1 - \frac{1}{1 + R_{t+1}^{\frac{1-\sigma}{\sigma}}\beta^{\frac{1}{\sigma}}}\right)w_t$$

Firms

- Production function: $Y_t = F(K_t, L_t) = f(k_t)L_t$ where F is neoclassical
- Maximize profits

$$\max_{K_t, L_t} f(k_t) L_t - r_t K_t - w_t L_t =$$

The first order conditions imply

$$r(k_t) \equiv f'(k_t) = r_t \Rightarrow R(k_t) = 1 + r(k_t) - \delta$$

 $w(k_t) \equiv f(k_t) - f'(k_t)k_t = w_t$

Low-of-motion

Only the young save ⇒

$$K_{t+1} = s(w_t, R_{t+1})L_t \Leftrightarrow k_{t+1} = \frac{s(w_t, R_{t+1})}{1+n}$$

• The **law-of-motion**, $k_{t+1} = \Gamma(k_t)$, is given as the solution to

$$\Gamma(k_t) = \frac{s(w(k_t), R(\Gamma(k_t)))}{1+n}$$

• For logarithmic utility we have

$$k_{t+1} = \Gamma(k_t) = \frac{1}{(1+\beta^{-1})(1+n)} w(k_t)$$

Nowhere flat

• Derivatives of the saving function:

$$s_w = s_w(w_t, R_{t+1})$$
 and $s_R = s_R(w_t, R_{t+1})$

• Total differentiation give us

$$dk_{t+1} = \frac{1}{1+n} [s_w w'(k_t) dk_t + s_r R'(k_{t+1}) dk_{t+1}] \Leftrightarrow$$

$$(1+n-s_R R'(k_{t+1})) \frac{dk_{t+1}}{dk_t} = s_w w'(k_t) dk_t \Leftrightarrow$$

$$\frac{dk_{t+1}}{dk_t} = \frac{s_w w'(k_t) dk_t}{1+n-s_R R'(k_{t+1})} \neq 0$$

• Implication: The transition curve is nowhere flat

Solution algorithm

Find steady state

- In steady state:
 - 1. capital, k^* , solves

$$k^* = \frac{s(w(k^*), R(k^*))}{1+n}$$

2. consumption, for the young, c_1^* , and old, c_2^* , then equals

$$c_1^* = w(k^*) - s(w(k^*), R(k^*))$$

 $c_2^* = R(k^*)$

Logarithmic utlity and Cobb-Douglas implies

$$k^* = \left(\frac{1-\alpha}{(1+\beta^{-1})(1+n)}\right)^{\frac{1}{1-\alpha}}$$

Find transition curve

- 1. Choose a **grid** $\mathcal{G} \equiv \{k^0, k^1, \dots, k^\#\}$
- 2. For each $k_+^j \in \mathcal{G} \equiv \{k^0, k^1, \dots, k^\#\}$ solve for k^j

$$k_{+}^{j} = \frac{s(w(k^{j}), R(k_{+}^{j}))}{1+n}$$

3. The **transition curve** is given by $\{(k^0, k_+^0), (k^1, k_+^1), \dots, (k^\#, k_+^\#)\}$

Why not fix k and solve for k_+ ?

Because there might be multiple solutions.

Simulate

- 1. Choose initial capital k_0
- 2. For each **time step** $t \in \{1, 2, ..., T\}$ do:
 - 2.1 Construct the set $\mathcal{J}(k_{t-1}) = \{j \in \{2, \dots \#\} \mid k_{t-1} \in \{k^{j-1}, k^j\}\}$
 - 2.2 Choose a random $j \in \mathcal{J}(k_{t-1})$
 - 2.3 Set $k_t = k_+^{j-1} + \frac{k_+^{j} k_-^{j-1}}{k^j k^j 1} [k_{t-1} k^{j-1}]$ (linear interpolation)

Example

Calibration

1.
$$f(k_t) = A(\alpha k_t^{\rho} + (1 - \alpha))^{\frac{1}{\rho}}, \ A > 0, \alpha \in (0, 1), \rho < 1 \text{ (CES)}$$

- 2. A = 7
- 3. n = 0.20
- 4. $\beta = \frac{1}{1+0.40}$
- 5. $\sigma = 8$
- 6. $\alpha = 1/3$
- 7. $\rho \in [-4.00, -2.00, -1.00, -0.5, -0.25, 0.00]$
- 8. $\delta = 0.60$

Transition curves

Interest rate function, $R(k_t)$

Saving rate function, $s(1, R_{t+1})$

Note: $\sigma > 1$ is important for the slope

Backward bending transition curve for low ρ (and high σ)

- 1. $k_{t+1} \uparrow \Rightarrow R_{t+1} \downarrow \text{ (due to falling marginal product)}$
- 2. $R_{t+1} \downarrow \Rightarrow s_t \uparrow \text{ (due to dominating income effect, } \sigma > 1) \Rightarrow k_{t+1} \uparrow$
- 3. $\rho \downarrow$ strengthens the *first* effect
- 4. $\sigma \uparrow$ strengthens the *second* effect

Extensions

Potential extensions

- 1. Government (taxes, pensions, and spending)
- 2. Endogenous labor supply
- 3. Multiple periods