Lecture 38

Statistical Classification

STAT 8020 Statistical Methods II December 2, 2019

An Overview of Multivariate Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression

Whitney Huang Clemson University

Agenda

Statistical Classification

An Overview of Multivariate Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression

- An Overview of Multivariate Analysis
- **2** Classification Problems

An Overview of Multivariate Analysis

- Classification

 CLEMS IT Y
 - An Overview of Multivariate Analysis
 - Classification
 - Linear Discriminant Analysis & Logistic Regression

- In many studies, observations are collected on several variables on each experimental/observational unit
- Multivariate analysis is a collection of statistical methods for analyzing these multivariate data sets
- Common Objectives
 - Dimensionality reduction
 - Classification
 - Grouping (Clustering)

Multivariate Data

We display a multivariate data that contains n units on p variables using a matrix

$$\boldsymbol{X} = \begin{pmatrix} X_{1,1} & X_{2,1} & \cdots & X_{p,1} \\ X_{1,2} & X_{2,2} & \cdots & X_{p,2} \\ \vdots & \cdots & \ddots & \vdots \\ X_{1,n} & X_{2,n} & \cdots & X_{p,n} \end{pmatrix}$$

Summary Statistics

- Mean Vector: $\bar{\boldsymbol{X}} = (\bar{X}_1, \bar{X}_2, \cdots, \bar{X}_p)^T$
- Variance-Covariance Matrix: $\Sigma = \{\sigma_{ij}\}_{i,j=1}^p$, where $\sigma_{ii} = \operatorname{Var}(X_i), \quad i = 1, \cdots, p \text{ and } \sigma_{ij} = \operatorname{Cov}(X_i, X_j), i \neq j$

An Overview of Multivariate Analysis

Classification and Discriminant Analysis

Data:

$$\{\boldsymbol{X}_i, Y_i\}_{i=1}^n,$$

where Y_i is the class information for the i_{th} observation $\Rightarrow Y$ is a qualitative variable

 Classification aims to classify a new observation (or several new observations) into one of those classes

Quantity of interest: $P(Y = k_{th} \text{ category} | X = x)$

In this lecture we will focus on binary linear classification

An Overview of Multivariate Analysis

Classification Problems

Illustrating Example

Wish to classify a new observation z(*) into one of the two groups (class 1 or class 2)

An Overview of Multivariate Analysis

Classification

Illustrating Example Cont'd

We could compute the distances from this new observation $z = (z_1, z_2)$ to the groups, for example,

$$d_1 = \sqrt{(z_1 - \mu_{11})^2 + (z_2 - \mu_{12})^2}, d_2 = \sqrt{(z_1 - \mu_{21})^2 + (z_2 - \mu_{22})^2}.$$

We could assign \boldsymbol{z} to the group with the smallest distance

Multivariate Analysis

lassification roblems

Variance Corrected Distance

In this one-dimensional example, $d_1 = |z - \mu_1| > |z - \mu_2|$. Does that mean z is "closer" to group 2 (red) than group 1 (blue)?

We should take the "spread" of each group into account.

$$\tilde{d}_1 = |z - \mu_1|/\sigma_1 < \tilde{d}_2 = |z - \mu_2|/\sigma_2$$

An Overview of Multivariate Analysis

Classification Problems

General Covariance Adjusted Distance: Mahalanobis Distance

An Overview of

Classification Problems

Linear Discriminant Analysis & Logistic Regression

The Mahalanobis distance is a measure of the distance between a point z and a distribution F:

$$D_M(z) = \sqrt{(z-\mu)^T \Sigma(z-\mu)},$$

where μ is the mean vector and Σ is the variance-covariance matrix of F

Binary Classification

Assume $X_1 \sim \text{MVN}(\mu_1, \Sigma)$, $X_2 \sim \text{MVN}(\mu_2, \Sigma)$, that is, $\Sigma_1 = \Sigma_2 = \Sigma$

• Maximum Likelihood of group membership:

Group 1 if
$$\ell(\boldsymbol{z}, \boldsymbol{\mu}_1, \Sigma) > \ell(\boldsymbol{z}, \boldsymbol{\mu}_2, \Sigma)$$

Linear Discriminant Function:

Group 1 if
$$(\mu_1 - \mu_2)^T \Sigma^{-1} z - \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) > 0$$

Minimize Mahalanobis distance:

Group 1 if
$$(z - \mu_1)^T \Sigma^{-1} (z - \mu_1) < (z - \mu_2)^T \Sigma^{-1} (z - \mu_2)$$

All the classification methods above are equivalent

Multivariate Analysis

roblems

Example: Fisher's Iris Data

4 variables (sepal length and width and petal length and width),

3 species (setosa, versicolor, and virginica)

An Overview of Multivariate Analysis

Classification Problems

Fisher's Iris Data Cont'd

Let's focus on the latter two classes (versicolor, and virginica)

Multivariate Analysis

Classification Problems

Fisher's iris Data Cont'd

To further simplify the matter, let's focus on the first two PCs of \boldsymbol{X}

Multivariate Analysis

lassification roblems

Screen Plot

Multivariate Analysis

Classification Problems

Linear Discriminant Analysis

Main idea: Use Bayes rule to compute

$$\begin{split} & P(Y=k|\boldsymbol{X}=\boldsymbol{x}) = \frac{P(Y=k)P(\boldsymbol{X}=\boldsymbol{x}|Y=k)}{P(\boldsymbol{X}=\boldsymbol{x})} = \frac{\pi_k f_k(\boldsymbol{x})}{\sum_{k=1}^K \pi_k f_k(\boldsymbol{x})}. \text{ Assuming} \\ & f_k(\boldsymbol{x}) \sim \text{MVN}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}), \quad k=1,\cdots,K. \text{ Use } \hat{\pi}_k = \frac{n_k}{n} \Rightarrow \text{it turns out the resulting classifier is linear in } \boldsymbol{X} \end{split}$$

Multivariate Analysis

Linear Discriminant Analysis & Logistic

Classification Performance Evaluation

fit.LDA
versicolor virginica
versicolor 47 3
virginica 1 49

An Overview of Multivariate Analysis

lassification roblems

Logistic Regression Classifier

Main idea: Model the logit $\log\left(\frac{\mathrm{P}(Y=1)}{1-\mathrm{P}(Y=1)}\right)$ as a linear function in X

Multivariate Analysis

Linear Discriminant Analysis & Logistic

Logistic Regression Classifier Cont'd

logisticPred
versicolor virginica
versicolor 48 2
virginica 1 49

An Overview of Multivariate Analysis

lassification roblems

Quadratic Discriminant Analysis

In Linear Discriminant Analysis, we **assume** $\{f_k(x)\}_{k=1}^K$ are normal densities and $\Sigma_1 = \Sigma_2$, therefore we obtain a linear classifier. What if $\Sigma_1 \neq \Sigma_2 \Rightarrow$ we get quadratic discriminant analysis

Figure: Figure courtesy of An Introduction of Statistical Learning by G. James et al. pp. 150

An Overview of Multivariate Analysis

Classification Problems

Linear Discriminant Analysis Versus Logistic Regression

For a binary classification problem, one can show that both Linear Discriminant Analysis (LDA) and Logistic Regression are linear classifiers. The difference is in how the parameters are estimated:

- Logistic regression uses the conditional likelihood based on P(Y|X = x)
- LDA uses the full likelihood based on multivariate normal assumption on X
- Despite these differences, in practice the results are often very similar