Notes of "Definitions and Examples"

Jinxin Wang

1 Overview

- Definitions related to vector spaces
 - Def: (Left) group action
 - Def: Vector space (linear space)
 - Def: 实向量空间和复向量空间
- Properties of operations in a vector space
 - Prop: Properties of operations in a vector space
- Examples of vector spaces
 - Eg: Zero vector space
 - Eg: Vector spaces of numbers, vectors, or matrices
 - * Eg: 父域向量空间
 - * Eg: Coordinate space
 - * Eg: $M_{m,n}(K) \not \equiv M_n(K)$
 - Eg: Vector spaces of mappings
 - * Eg: $\{(a_i)_{i\in\mathbb{N}} \mid a_i \in \mathbb{R}\}$
 - * Eg: $\{(a_i)_{i\in\mathbb{N}} \mid a_i \in \mathbb{R}, a_i = a_{i-1} + a_{i-2}, i \ge 2\}$
 - * Eg: 集合 X 到向量空间 U 的映射空间 U^X
 - * Eg: The set of real-valued functions defined on \mathbb{R}
 - * Eg: The set of real-valued continuous functions C(X) defined on a subset $X \subset \mathbb{R}$
 - Eg: Vector spaces of polynomials
 - * Eg: m 元多项式环 $K[x_1, x_2, \ldots, x_m]$ where K is a field
 - * Eg: m 元多项式环 $K[x_1, x_2, \ldots, x_m]$ 中次数为 n 的齐次多项式全体加上零多项式
 - * Eg: m 元多项式环 $K[x_1, x_2, \ldots, x_m]$ 中次数不超过 n 的多项式全体
- Linear subspaces
 - Def: A linear (or vector) subspace of a vector space
 - * Rmk: Two trivial subspaces of every vector space

- Examples of linear subspaces
 - * Eg: Any line passing through the origin in \mathbb{E}^2
 - * Eg: All vectors parallel to a vector in \mathbb{E}^3 forms a subspace of \mathbb{E}^3
 - * Eg: The set of solution of the linear system Ax = 0 where $A \in M_{m,n}(K)$ forms a subspace of K^n
 - * Eg: \mathbb{R} 的子集 X 上的全体可微函数 $C^1(X)$ 是 C(X) 的一个子空间
 - * Eg: 实数域上定义的偶函数全体,周期函数全体,形如 $ae^x + be^-x, a, b \in \mathbb{R}$ 的函数全体都是实数域上的实函数空间的子空间
- Prop: The intersection of any collection of subspaces of a space is a subspace of it

2 Definitions related to vector spaces

3 Properties of operations in a vector space

Proposition 1. Let -v denote the inverse element of v.

P1 0v = 0

P2 a0 = 0

P3 (-1)v = -v

P4 a(-v) = -av

P5 a(u-v) = au - av

P6 (a - b)v = av - bv

P7 $av = 0 \Rightarrow a = 0 \text{ or } v = 0$

证明. Just prove a few of them:

P1

P3

P7

4 Examples of vector spaces

Example 1 (Coordinate space). All row vectors $(a_1, a_2, ..., a_n)$ of length n whose elements are in the field K.

Same as all column vectors $[a_1, a_2, \ldots, a_n]$ of length n whose elements are in the field K.

5 LINEAR SUBSPACES 3

Example 2 (Zero vector space). The trivial abel group: $\{0\}$, with the scalar multiplication with the field K defined as: a0 = 0 for each $a \in K$.

It is clear that the zero vector space is a vector space on any field.

Example 3 (The vector space of real-valued functions). Let E be a set. The set of all real-valued functions defined on E is a vector space on \mathbb{R} with the following addition and scalar multiplication operations:

$$(f+g)(x) = f(x) + g(x)$$
$$(af)(x) = a(f(x))$$

for each $x \in E$ and $a \in \mathbb{R}$.

Example 4 (The vector space of mappings to a vector space). Let U be a vector space on the field K. The set of all mappings from a set X to U is a vector space on K, denoted U^X . The addition and scalar multiplication are defined as:

$$(f+g)(x) = f(x) + g(x)$$
$$(af)(x) = a(f(x))$$

Since $f(x), g(x) \in U$ and $a \in K$, it holds that $f(x) + g(x) \in U$ and $a(f(x)) \in U$ given that U is a vector space on K. Therefore, U^X is a vector space on K is guaranteed by that U is a vector space on K.

Especially, K^X is a vector space on K. The above example, which is the vector space of all real-valued functions defined on a set E, is actually \mathbb{R}^E . Hence, U^X is a generalization of the vector space of real-valued functions.

Example 5.

5 Linear subspaces

Definition 1 (A linear (or vector) subspace of a vector space). Let U be a subset of a vector space V on a field K. U is a linear subspace of V if it is an addition subgroup of V, and $\forall k \in K$ and $\forall u \in U$ it holds that $ku \in U$.