

Phystech@DataScience Статистика

2 марта 2024 г.

Обозначение: χ^2_k — хи-квадрат с k степенями свободы

▶ Параметр k — кол-во степеней свободы;

Обозначение: χ_k^2 — хи-квадрат с k степенями свободы

- ▶ Параметр k кол-во степеней свободы;
- Плотность

$$p(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2 - 1} e^{-x/2}$$

Обозначение: χ_k^2 — хи-квадрат с k степенями свободы

- ▶ Параметр k кол-во степеней свободы;
- Плотность

$$p(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2 - 1} e^{-x/2}$$

ightharpoonup Если $\xi_1,...,\xi_k$ — независимые $\mathcal{N}(0,1)$, то $\xi_1^2+...+\xi_k^2\sim\chi_k^2$

Обозначение: χ_k^2 — хи-квадрат с k степенями свободы

- ▶ Параметр k кол-во степеней свободы;
- Плотность

$$p(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2 - 1} e^{-x/2}$$

- lacktriangle Если $\xi_1,...,\xi_k$ независимые $\mathcal{N}(0,1)$, то $\xi_1^2+...+\xi_k^2\sim\chi_k^2$
- scipy.stats.chi2(df=k)

Ô

Распределение Стьюдента

Обозначение: T_k — распределение Стьюдента с k степенями свободы

- ▶ Параметр k кол-во степеней свободы;
- $ightharpoonup T_1$ распределение Коши
- $ightharpoonup T_{\infty} = \mathcal{N}(0,1)$

Распределение Стьюдента

Обозначение: T_k — распределение Стьюдента с k степенями свободы

- ▶ Параметр k кол-во степеней свободы;
- $ightharpoonup T_1$ распределение Коши
- $T_{\infty} = \mathcal{N}(0,1)$
- Плотность

$$p(x) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{\pi k} \Gamma(k/2)} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}$$

Распределение Стьюдента

Обозначение: T_k — распределение Стьюдента с k степенями свободы

- ▶ Параметр k кол-во степеней свободы;
- $ightharpoonup T_1$ распределение Коши
- $ightharpoonup T_{\infty} = \mathcal{N}(0,1)$
- Плотность

$$p(x) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{\pi k} \Gamma(k/2)} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}$$

lacktriangle Если $\xi \sim \mathcal{N}(0,1)$ и $\eta \sim \chi_k^2$ независимы, то $\zeta = rac{\xi}{\sqrt{\eta/k}} \sim T_k$

Распределение Стьюдента

Обозначение: T_k — распределение Стьюдента с k степенями свободы

- ▶ Параметр k кол-во степеней свободы;
- $ightharpoonup T_1$ распределение Коши
- $ightharpoonup T_{\infty} = \mathcal{N}(0,1)$
- Плотность

$$p(x) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{\pi k} \Gamma(k/2)} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}$$

lacktriangle Если $\xi \sim \mathcal{N}(0,1)$ и $\eta \sim \chi_k^2$ независимы, то $\zeta = rac{\xi}{\sqrt{n/k}} \sim T_k$

scipy.stats.t(df=k)

Сравнение распределений

Некоторые свойства распределений

Распределение Стьюдента

- lacktriangle Если $\zeta \sim T_k$, lacktriangle то Е $\zeta=0$ при k>1
- lacktriangle Если $\zeta \sim T_k$, $\zeta = rac{k}{k-2}$ при k>2
- ▶ $T_{k,p} p$ -квантиль распределения T_k

Распределение хи-квадрат

- lacktriangle Если $\eta \sim \chi_k^2$, $ag{to} \ {\sf E} \eta = k, {\sf D} \eta = 2k$
- $\lambda_{k,p}^2 p$ -квантиль распределения χ_k^2

Уильям Сили Госсет

Работал на пивоваренном заводе Гиннеса в Дублине.

Чтобы предотвратить дальнейшее раскрытие конфиденциальной информации, Гиннесс запретил своим работникам публикацию любых материалов, независимо от содержавшейся в них информации.

Госсет выбрал себе псевдоним Student.

