## JUNE 2018 ALGEBRA PRELIM SOLUTIONS

## MICHAEL MORROW

FOREWORD. The following solutions are not necessarily guaranteed to be correct. Please let me know via email if you find any errors, or have any suggestions. Last revised: May 16, 2020.

- (1) Let V be a finite dimensional vector space over a field F and let  $T: V \to V$  be a linear transformation. Assume that  $T^2 = T$ . Prove the following statements.
  - a)  $im(T) \cap ker(T) = (0)$ .
  - b)  $V = \operatorname{im}(T) \bigoplus \ker(T)$ .
  - c) There exists a basis  $\beta$  of V such that the matrix of T with respect to  $\beta$  is a diagonal matrix where each diagonal entry lies in  $\{0,1\}$ .

Solution for a. Let  $x \in \text{im}(T) \cap \text{ker}(T)$ . So T(x) = 0 and x = T(y) for some  $y \in V$ . We have  $x = T(y) = T^2(y) = T(x) = 0$ , so  $\text{im}(T) \cap \text{ker}(T) = (0)$ .

Solution for b. By part (a), it suffices to show  $V = \operatorname{im}(T) + \ker(T)$ . Inclusion in one direction is obvious. For the other direction, let  $v \in V$ . So T(v) = w for some  $w \in V$ . By the Fiber Lemma,  $T^{-1}(w) = v + \ker(T)$ . Since  $T^2 = T$ , we have  $w = T(v) = T^2(v) = T(w)$ , so  $w \in T^{-1}(w)$ . Therefore w = v + x for some  $x \in \ker(T)$ . So  $v = w - x = T(w) + (-x) \in \operatorname{im}(T) + \ker(T)$ . Hence  $V = \operatorname{im}(T) \oplus \ker(T)$ .

Solution for c. Let  $A = \{a_1, \ldots, a_n\}$  be a basis for im (T), and let  $B = \{b_1, \ldots, b_m\}$  be a basis for  $\ker(T)$ . Then by parts (a) and (b),  $\beta = A \cup B = \{a_1, \ldots, a_n, b_1, \ldots, b_m\}$  forms a basis for V. Then each  $T(a_i) = a_i$  (since  $a_i \in \operatorname{im}(T)$ ), and each  $T(b_i) = 0$  (since  $b_i \in \ker(T)$ ). So the matrix of T w.r.t.  $\beta$  will be a diagonal matrix with each diagonal entry lying in  $\{0, 1\}$ .

- (2) Let  $V \subset \mathbb{R}[x]$  be a vector space of dimension k. We say that a polynomial f vanishes to order n at  $a \in \mathbb{R}$  if f(a) = 0 and n is the smallest positive integer such that  $f^{(n)}(a) \neq 0$ .
  - a) Show that  $V_n = \{ f \in V \mid f \text{ vanishes to order } \geq n \text{ at } a \}$  is a subspace of V.
  - b) Let  $a \in \mathbb{R}$ . Show that  $\dim(V_n) \dim(V_{n+1})$  is either 0 or 1.
  - c) Conclude that there are precisely k integers n such that there exists a nonzero  $f \in V$  that vanishes to order n at a.

Solution for a. Let  $a \in \mathbb{R}$ . Clearly  $(x-a)^n$  vanishes to order n at a, so  $V_n \neq \emptyset$ . Now let  $f, g \in V_n$ , and let  $\lambda, \mu \in \mathbb{R}$ . So f(a) = 0 and  $i \geq n$  is minimal such that  $f^{(i)}(a) \neq 0$ . Similarly, g(a) = 0 and  $j \geq n$  is minimal such that  $g^{(j)}(a) \neq 0$ . Without loss of generality, assume  $i \leq j$ . Now  $\lambda f(a) + \mu g(a) = 0$ , and we have

$$\frac{d^{i}}{dx^{i}}(\lambda f + \mu g)(a) = \lambda f^{(i)}(a) + \mu g^{(i)}(a) = \lambda f^{(i)}(a) \neq 0.$$

Clearly i is minimal, so  $\lambda f + \mu g \in V_n$ . Hence  $V_n$  is a subspace of V.

Solution for b. Let  $\varphi: V_n \to \mathbb{R}$  be the linear functional defined by  $\varphi(f) = f^{(n)}(a)$ . Note that

$$V_n = \{ f \in V \mid f(a) = f'(a) = \dots = f^{(n-1)}(a) = 0 \}.$$

Also, we have

$$\ker \varphi = \{ f \in V_n \mid f^{(n)}(a) = 0 \} = \{ f \in V \mid f(a) = f'(a) = \dots = f^{(n)}(a) = 0 \} = V_{n+1}.$$

By Rank-Nullity,

$$\dim \operatorname{im} \varphi + \dim V_{n+1} = \dim V_n.$$

Since  $\operatorname{im} \varphi \subset \mathbb{R}$ , either  $\dim \operatorname{im} \varphi = 1$  or  $\dim \operatorname{im} \varphi = 0$ . If  $\dim \operatorname{im} \varphi = 0$ , then  $\dim V_n - \dim V_{n+1} = 0$ . On the other hand, if  $\dim \operatorname{im} \varphi = 1$ , then  $\dim V_n - \dim V_{n+1} = 1$ .

Solution for c. Let  $M \ge k-1$  be the highest degree of any polynomial in V. We can do this because V is finite dimensional. Note  $V = V_0$ , and consider the sequence of subspaces

$$V = V_0 \supset V_1 \supset V_2 \supset \cdots \supset V_{M+1}$$
.

Since M was chosen to be maximal, the highest possible vanishing order of any nonzero element in V is M. Thus  $V_{M+1} = \{0\}$ . Taking dimensions, we have

$$k = \dim V \ge \dim V_1 \ge \dim V_2 \ge \cdots \ge 0.$$

By part (b), any strict inequality above drops the dimension by 1. So we must have exactly k nonnegative distinct integers  $0 \le n_1, \ldots, n_k \le M$  such that  $\dim V_{n_{i+1}} + 1 = \dim V_{n_i}$ . Finally, suppose  $0 \ne f \in V$  vanishes to order n. Then  $f \in V_n \setminus V_{n+1}$ , and since  $V_{n+1} \subset V_n$ , this implies  $\dim V_n > \dim V_{n+1}$ . By our work above, this happens for precisely k such n.

- (3) See my Jan 2017 Algebra Prelim Solutions for how to do this. It's a repeat problem.
- (4) Let G be a finite group that acts transitively on a set X with |X| > 1. Show that G contains at least one element with no fixed points.

Solution. Define  $X/G = \{ \operatorname{Orb}(x) \mid x \in X \}$ . Since G acts transitively on |X|, we have |X/G| = 1. By Burnside's Lemma,

$$|G| = |X/G||G| = \sum_{g \in G} |X^g|$$
 (1)

where  $X^g$  is the set of points in X fixed by g. Since e fixes all of X,  $|X^e| = |X| \ge 2$ . Now assume for sake of contradiction that  $|X^g| \ge 1$  for each  $e \ne g \in G$ . Then equation (1) says |G| > |G| which is absurd. Hence there must be at least one element of G with no fixed points.

- (5) Let G be a finite group with identity element e, and let H, K be cyclic, normal subgroups of G such that  $H \cap K = \{e\}$  and |G| = |H||K|. Prove the following statements.
  - a) hk = kh for all  $h \in H$  and  $k \in K$ .
  - b) If |H| and |K| are relatively prime, then G is cyclic.

Solution for a. Let  $h \in H$  and  $k \in K$ . Since  $h^{-1} \in H$ , we have  $h(kh^{-1}k^{-1}) \in H$  by normality. Similarly,  $(hkh^{-1})k^{-1} \in K$ . Thus  $hkh^{-1}k^{-1} \in H \cap K$ , so  $hkh^{-1}k^{-1} = e$ . Hence hk = kh.

Solution for b. Let h and k be generators for H and K respectively. Let |H| = m and |K| = n. We will show ord(hk) = mn. By part (a), we have

$$(hk)^{mn} = h^{mn}k^{mn} = e.$$

Now suppose  $(hk)^r = e$  for some arbitrary  $r \in \mathbb{N}$ . Then

$$e = (hk)^{rm} = h^{rm}k^{rm} = k^{rm}.$$

So  $n \mid rm$  and hence  $n \mid r$  (since (m, n) = 1). Similarly  $m \mid r$ , and since (m, n) = 1, we have  $mn \mid r$ . Therefore

$$\operatorname{ord}(hk) = mn = |H||K| = |G|,$$

so G is cyclic.

- (6) Let R be a commutative ring with 1. Let I and J be two ideals in R. Use the First Isomorphism Theorem (FIT) to prove the following statements.
  - a)  $(I+J)/J \cong I/(I \cap J)$ .
  - b) If  $I \subset J$  then  $(R/I)/(J/I) \cong R/J$ .

Solution for a. Define the map

$$\gamma: I \longrightarrow (I+J)/J$$
  
 $x \longmapsto x+J.$ 

Let  $a, b \in I$ . Then

$$\gamma(a+b) = (a+b) + J = (a+J) + (b+J) = \gamma(a) + \gamma(b).$$

Furthermore,

$$\gamma(ab) = ab + J = (a+J)(b+J) = \gamma(a)\gamma(b).$$

Now let  $(i+j) + J \in (I+J)/J$ . Then

$$(i+j) + J = (i+J) + (j+J) = i+J+0+J = i+j,$$

so  $\gamma$  is surjective. Let  $z \in \ker \gamma$ . Then  $z \in I$  and z + J = J, so  $z \in J$ . Hence  $z \in I \cap J$ . I  $z \in I \cap J$ , then z + J = J, so  $z \in \ker \gamma$ . Hence  $\ker \gamma = I \cap J$ , so we're done by the FIT.

Solution for b. Define the map

$$\eta: R/I \longrightarrow R/J$$
  
 $r+I \longmapsto r+J.$ 

Let  $a+I, b+I \in R/I$ . Then

$$\eta(a+I+b+I) = \eta((a+b)+I)$$
=  $(a+b)+J$ 
=  $a+J+b+J$ 
=  $\eta(a+I) + \eta(b+I)$ .

Furthermore,

$$\eta((a+I)(b+I)) = \eta(ab+I)$$

$$= ab+J$$

$$= (a+J)(b+J)$$

$$= \eta(a+I)\eta(b+I).$$

Clearly  $\eta$  is surjective. Now let  $z+I \in \ker \eta$ . Then  $\eta(z)=z+J=J$ , so  $z \in J$ , hence  $z+I \in J/I$ . On the other hand, if  $z+I \in J/I$ , then  $\eta(z)=z+J=J$ , so  $z+I \in \ker \eta$ . Hence  $\ker \eta=J/I$ , so we're done by the FIT.

(7) Let R be a commutative ring with 1. Prove that R[x] is a PID if and only if R is a field.

Solution. For the forward direction, assume R[x] is a PID. Note that the ideal  $(x) \subset R[x]$  is prime, since if the product of two polynomials in R[x] is divisible by x, at least one of the factors must also be divisible by x. Since R[x] is a PID, (x) is a maximal ideal. Then the quotient  $R[x]/(x) \cong R$  is a field. For the reverse direction, assume R is a field, and let  $I \subset R[x]$  be a nonzero ideal. Pick a nonzero polynomial  $g \in I$  with minimal degree. Let  $f \in I$  be any polynomial, and use the Division Algorithm (we can do this since we are over a field) to write

$$f = gq + r$$

for some  $q, r \in R[x]$  with either r = 0 or  $\deg r < \deg g$ . Note that r = f - gq, so  $r \in I$ . Since  $\deg r < \deg g$  contradicts the minimality of g, we must have r = 0. Thus f = gq, so I = (g).

(8) Let  $p \neq 2, 3$  be a prime. Prove that the splitting field of  $x^{12} - 1$  over  $\mathbb{F}_p$  is of degree 1 or 2. Give a rule to determine when the degree is 1 or 2.

Solution. Let L be the splitting field of  $f(x) = x^{12} - 1$  over  $\mathbb{F}_p$ , and let  $k = [L : \mathbb{F}_p]$ . So  $|L| = p^k$ , thus  $|L^{\times}| = p^k - 1$ . The roots of f(x) form a cyclic group of order 12, and since L is a finite field,  $L^{\times}$  is a cyclic group. So  $L^{\times}$  contains the group of roots of f(x) if and only if  $12 \mid p^k - 1$ . Since L is the splitting field of f(x), k is the smallest integer such that  $12 \mid p^k - 1$ . To find k, note that if  $12 \mid p - 1$ , then k = 1. Otherwise, observe  $p^2 - 1 = (p - 1)(p + 1)$ . Since p is odd, each factor is even, so the product is divisible by 4. One of p - 1, p, p + 1 must be divisible by 3, but since  $p \neq 3$  is prime, it must be one of p - 1 or p + 1. Thus  $12 \mid p^2 - 1$ , so k = 2 as desired. The "rule" here is that k = 1 if p is one more than a multiple of 12, and k = 2 otherwise.

- (9) Let  $K \in \mathbb{C}$  be the splitting field of  $x^{28} 1$  over  $\mathbb{Q}$ .
  - a) Find the Galois group of K over  $\mathbb{Q}$ .
  - b) Find the lattice of all subfields of K.

Solution for a. The Galois group of  $x^{28}-1$  over  $\mathbb{Q}$  is  $\mathbb{Z}/28\mathbb{Z}^{\times}$ . By the Chinese Remainder Theorem,

$$\mathbb{Z}/28\mathbb{Z}^{\times} \cong (\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z})^{\times} \cong C_2 \times C_6.$$

So the Galois group of  $x^{28} - 1$  is actually  $C_2 \times C_6$ .

Solution for b. By part (a), the hint, and the Fundamental Theorem of Galois Theory, it suffices to find the lattice of subgroups for  $C_2 \times C_6$  (then you can just re-label it to get the subfields). First of all, let's figure out the subgroups of  $C_2 \times C_6$ . Denote  $C_2 = \{e, g\}$  and  $C_6 = \{e, h, \ldots, h^5\}$ . Then the 10 subgroups are

$$\{(e,e)\},\\ \{(e,e),(g,e)\},\quad \{(e,e),(e,h^3)\},\quad \{(e,e),(g,h^3)\},\\ \{(e,e),(e,h^2),(e,h^4)\},\quad \{(e,e),(e,h^3),(g,e),(g,h^3)\},\\ \{(e,e),(e,h),(e,h^2),(e,h^3),(e,h^4),(e,h^5)\},\\ \{(e,e),(e,h^2),(e,h^4),(g,e),(g,h^2),(g,h^4)\},\\ \{(e,e),(g,h^5),(e,h^4),(g,h^3),(e,h^2),(g,h)\},\\ C_2\times C_6.$$

Drawing the diagram, we have



I'll leave it as a simple exercise to the reader to fill in the corresponding group indexes, and therefore the subfield degrees (I'm not that good at TikZ yet).