Lecture 5 Pólya's Theory of Counting

- How many ways can John, Ken, Jim, Jack, and Rick be seated at a round table?
- How many different necklaces with n beads can be formed using m different kinds of beads?

- How many ways can John, Ken, Jim, Jack, and Rick be seated at a round table?
- When the second is a second in the second is a second in the second i

Preliminary remarks

▶ Both questions ask for the number of combinations in the presence of symmetries.

- How many ways can John, Ken, Jim, Jack, and Rick be seated at a round table?
- Output
 When the second is a second in the second is a second in the second i

Preliminary remarks

- ▶ Both questions ask for the number of combinations in the presence of symmetries.
 - There is no distinguished position at a round table ⇒ all configurations obtained by changing seats in clockwise order are undistinguishable,

- How many ways can John, Ken, Jim, Jack, and Rick be seated at a round table?
- Output
 When the second is a second in the second is a second in the second i

Preliminary remarks

- ▶ Both questions ask for the number of combinations in the presence of symmetries.
 - There is no distinguished position at a round table ⇒ all configurations obtained by changing seats in clockwise order are undistinguishable,
 - Similarly, two necklaces should be considered identical if we can transform one into the other by rotating the necklace or by turning it over.

- How many ways can John, Ken, Jim, Jack, and Rick be seated at a round table?
- Output
 When the second is a second in the second is a second in the second i

Preliminary remarks

- ▶ Both questions ask for the number of combinations in the presence of symmetries.
 - There is no distinguished position at a round table ⇒ all configurations obtained by changing seats in clockwise order are undistinguishable,
 - Similarly, two necklaces should be considered identical if we can transform one into the other by rotating the necklace or by turning it over.
- We can rephrase these problems in the language of group theory.

Examples of symmetries

Necklace with 5 beads

Symmetries Preliminary remarks

Symmetries Preliminary remarks

 A symmetry is a permutation of elements which produces the same object (necklace);

- A symmetry is a permutation of elements which produces the same object (necklace);
- Symmetries are permutations (bijective functions) which can be composed:

Example:
$$\underbrace{(1,2,3,4,5)}_{\text{rotate with }2\pi/5} \circ \underbrace{(1,2,3,4,5)}_{\text{rotate with }2\pi/5} = \underbrace{(1,3,5,2,4)}_{\text{rotate with }4\pi/5}$$

- A symmetry is a permutation of elements which produces the same object (necklace);
- Symmetries are permutations (bijective functions) which can be composed:

Example:
$$\underbrace{(1,2,3,4,5)}_{\text{rotate with }2\pi/5} \circ \underbrace{(1,2,3,4,5)}_{\text{rotate with }2\pi/5} = \underbrace{(1,3,5,2,4)}_{\text{rotate with }4\pi/5}$$

 The composition of 2 symmetries is a symmetry (i.e., a permutation which produces the same object).

- A symmetry is a permutation of elements which produces the same object (necklace);
- Symmetries are permutations (bijective functions) which can be composed:

Example:
$$\underbrace{(1,2,3,4,5)}_{\text{rotate with }2\pi/5} \circ \underbrace{(1,2,3,4,5)}_{\text{rotate with }2\pi/5} = \underbrace{(1,3,5,2,4)}_{\text{rotate with }4\pi/5}$$

- The composition of 2 symmetries is a symmetry (i.e., a permutation which produces the same object).
- The simplest symmetry is the identity function: it does not permute any element.

For the 5-bead necklace, the itentity function is the permutation with the cyclic structure (1)(2)(3)(4)(5).

- A symmetry is a permutation of elements which produces the same object (necklace);
- Symmetries are permutations (bijective functions) which can be composed:

Example:
$$\underbrace{(1,2,3,4,5)}_{\text{rotate with }2\pi/5} \circ \underbrace{(1,2,3,4,5)}_{\text{rotate with }2\pi/5} = \underbrace{(1,3,5,2,4)}_{\text{rotate with }4\pi/5}$$

- The composition of 2 symmetries is a symmetry (i.e., a permutation which produces the same object).
- The simplest symmetry is the identity function: it does not permute any element.
 - For the 5-bead necklace, the itentity function is the permutation with the cyclic structure (1)(2)(3)(4)(5).
- Pólya noticed that the symmetries of an object form a group.

A group is a set G together with a binary operator \circ defined on G which satisfies 4 properties:

Closure: $a \circ b \in G$ for all $a, b \in G$.

Associativity: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$

Identity: There exists $e \in G$ such that $e \circ a = a \circ e = a$ for all $a \in G$. The element e is called the identity or neutral

element of *G*.

Inverses: For every $a \in G$ there exists $b \in G$ such that

 $a \circ b = b \circ a = e$. The element b is called the inverse of a.

A group is a set G together with a binary operator \circ defined on G which satisfies 4 properties:

Closure: $a \circ b \in G$ for all $a, b \in G$.

Associativity: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$

Identity: There exists $e \in G$ such that $e \circ a = a \circ e = a$ for all $a \in G$. The element e is called the identity or neutral element of G.

Inverses: For every $a \in G$ there exists $b \in G$ such that

 $a \circ b = b \circ a = e$. The element b is called the inverse of a.

A group is a set G together with a binary operator \circ defined on G which satisfies 4 properties:

Closure: $a \circ b \in G$ for all $a, b \in G$.

Associativity: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$

Identity: There exists $e \in G$ such that $e \circ a = a \circ e = a$ for all $a \in G$. The element e is called the identity or neutral element of G.

Inverses: For every $a \in G$ there exists $b \in G$ such that

 $a \circ b = b \circ a = e$. The element b is called the inverse of a.

- **①** The set \mathbb{R} of reals with addition (+) is a group:
 - The neutral element is 0, the reverse of $r \in \mathbb{R}$ is -r.

A group is a set G together with a binary operator \circ defined on G which satisfies 4 properties:

Closure: $a \circ b \in G$ for all $a, b \in G$.

Associativity: $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$

Identity: There exists $e \in G$ such that $e \circ a = a \circ e = a$ for all $a \in G$. The element e is called the identity or neutral element of G.

Inverses: For every $a \in G$ there exists $b \in G$ such that $a \circ b = b \circ a = e$. The element b is called the inverse of a.

- **1** The set \mathbb{R} of reals with addition (+) is a group:
 - The neutral element is 0, the reverse of $r \in \mathbb{R}$ is -r.
- ② The set S_n of all permutations $\langle a_1, \ldots, a_n \rangle$ of $\{1, \ldots, n\}$ with function composition \circ is a group.

Subgroups. Permutation groups

- A subgroup of a group (G, \circ) with neutral element e is a subset H of G such that
 - $a \circ b \in H$ for all $a, b \in H$ (closure)
 - $e \in H$, and
 - For all $a \in H$ there is $b \in H$ such that $a \circ b = b \circ a = e$.
- A permutation group is a subgroup of the set S_n of the permutations of $\{1, \ldots, n\}$.
- For a permutation $\pi \in S_n$ we define the powers
 - $\pi^0 = \langle 1, 2.3, \ldots, n \rangle = (1)(2)(3) \ldots (n),$
 - $\pi^1 = \pi$, and
 - $\pi^n = \pi \circ \pi^{n-1}$ if n > 1.

If
$$\pi = (2,3)(1,4,5,6)$$
 then

$$\Rightarrow \pi^0 = (1)(2)(3)(4)(5)(6), \ \pi^1 = \pi = (2,3)(1,4,5,6),$$

$$\Rightarrow \pi^2 = \pi \circ \pi = (1,5)(2)(3)(4,6), \ \pi^3 = \pi \circ \pi^2 = (1,6,5,4)(2,3),$$

$$\Rightarrow \pi^4 = \pi \circ \pi^3 = (1)(2)(3)(4)(5)(6) = \pi^0.$$

Ciclic groups of permutations. Reflections

For a permutation $\pi \in S_n$, we define the set $\langle \pi \rangle = \{\pi^m \mid m \geq 0\}$. Note that $\langle \pi \rangle$ is a subgroup of S_n . $\langle \pi \rangle$ is the cyclic subgroup generated by π in S_n .

Ciclic groups of permutations. Reflections

For a permutation $\pi \in S_n$, we define the set $\langle \pi \rangle = \{\pi^m \mid m \geq 0\}$. Note that $\langle \pi \rangle$ is a subgroup of S_n . $\langle \pi \rangle$ is the cyclic subgroup generated by π in S_n .

Example

 $C_n = \langle (1, 2, \dots, n) \rangle$ is the cyclic group generated by the cycle $(1, 2, \dots, n) \in S_n$. C_n consists of n elements:

$$(1, 2, ..., n)^{0} = \langle 1, 2, ..., n \rangle = (1)(2)...(n)$$

$$(1, 2, ..., n)^{1} = \langle 2, 3, ..., n, 1 \rangle$$

$$(1, 2, ..., n)^{2} = \langle 3, 4, ..., 1, 2 \rangle$$
...
$$(1, 2, ..., n)^{n-1} = \langle n, 1, ..., n - 1 \rangle$$

$$(1, 2, ..., n)^{n} = \langle 1, 2, ..., n \rangle$$

The reflection of a permutation $\langle a_1, a_2, \ldots, a_n \rangle$ is the permutation $\langle a_n, \ldots, a_2, a_1 \rangle$.

Cyclic groups

 C_n is the group of rotational symmetries of a regular polygon with n vertices.

Example

 $C_4 = \{(1)(2)(3)(4), (1,2,3,4), (1,3)(2,4), (1,4,3,2)\}$ corresponds to the permutation group of the nodes from the figure below, produced by rotations with 90° , 180° , or 270° .

Figure: C_4 as a group of rotations of a square.

Dihedral group

• The dihedral group D_n consists of the elements of C_n and their reflections. For instance:

$$\begin{split} D_4 = & \{ \langle 1, 2, 3, 4 \rangle, \langle 2, 3, 4, 1 \rangle, \langle 3, 4, 1, 2 \rangle, \langle 4, 1, 2, 3 \rangle \} \cup \\ & \{ \langle 4, 3, 2, 1 \rangle, \langle 1, 4, 3, 2 \rangle, \langle 2, 1, 4, 3 \rangle, \langle 3, 2, 1, 4 \rangle \} \\ = & \{ (1)(2)(3)(4), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2) \} \cup \\ & \{ (1, 4)(2, 3), (1)(2, 4)(3), (1, 2)(3, 4), (1, 3)(2)(4) \}. \end{split}$$

- D_n has $2 \cdot n$ elements.
- D_n can be identified with the group of rotational symmetries and reflections of a regular polygon with n elements.

$\overline{D_4}$ as group of symmetries of a square

Alternating group

Preliminary remarks

- A transposition is a cycle of length 2.
- Every cycle $(a_1, a_2, ..., a_p)$ of an *n*-permutation can be written as a composition of transpositions: $(a_1, a_2, ..., a_p) = (a_1, a_2)(a_2, a_3) ... (a_{p-1}, a_p)$.
- Every *n*-permutation is a composition of cycles (cf. Lecture 4) \Rightarrow every *n*-permutation is a composition of transpositions.
- An n-permutation is even if it is the composition of an even number of transpositions, and odd otherwise.
- It can be shown that an *n*-permutation can not be simultaneously even and odd.

The alternating group A_n consists of the even permutations of S_n .

Colorings

A coloring of n objects $\{1, 2, ..., n\}$ is a map $c : \{1, 2, ..., n\} \rightarrow K$ where $K = \{k_1, ..., k_m\}$ contains m colors.

- Every coloring c can be represented as a permutation with repetition $\langle c(1), \ldots, c(n) \rangle$.
- There are m^n possible colorings.

Example

The colouring $c:\{1,2,3,4\}$ which maps $1\mapsto r,2\mapsto g,3\mapsto r,4\mapsto r$ is represented by $\langle r,g,r,r\rangle$.

• Let C be the set of all colourings $c:\{1,\ldots,n\}\to K$. If π is a permutation and $c=\langle c(1),\ldots,c(n)\rangle$ is a colouring, we define the map $\pi^*:C\to C$ as follows: $\pi^*(\langle c(1),\ldots,c(n)\rangle):=\langle c(\pi(1)),\ldots,c(\pi(n))\rangle$.

If
$$\pi = (1, 2, 3, 4)$$
, then $\pi^*(\langle r, g, r, r \rangle) = \langle g, r, r, r \rangle$.

G: group of *n*-permutations $c_1, c_2 : \{1, 2, ..., n\} \rightarrow K$ colourings

• c_1 and c_2 are equivalent with respect to G, and we write $c_1 \sim_G c_2$ if there is $\pi \in G$ such that $c_2 = \pi^*(c_1)$.

$$G = C_4$$
, $c = \langle g, g, g, r \rangle$

- $C_4 = \langle \pi \rangle = \{ \pi^n \mid n \ge 0 \}$ where $\pi = (1, 2, 3, 4)$.
- $C_4 = \{\langle 1, 2, 3, 4 \rangle, \langle 2, 3, 4, 1 \rangle, \langle 3, 4, 1, 2 \rangle, \langle 4, 1, 2, 3 \rangle\}$
- \Rightarrow the colourings equivalent with c are:

$$\langle c(1), c(2), c(3), c(4) \rangle = \langle g, g, g, r \rangle$$

$$\langle c(2), c(3), c(4), c(1) \rangle = \langle g, g, r, g \rangle$$

$$\langle c(3), c(4), c(1), c(2) \rangle = \langle g, r, g, g \rangle$$

$$\langle c(4), c(1), c(2), c(3) \rangle = \langle r, g, g, g \rangle$$

G: group of *n*-permutations

C: set of colourings $c:\{1,2,\ldots,n\}\to\{k_1,\ldots,k_m\}$ such that $\pi^*(c)\in C$ for every colouring $c\in C$ REMARKS:

 \circ \circ \circ is an equivalence relation (reflexive/symmetric/transitive) \Rightarrow \circ can be partitioned in equivalence classes

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

G: group of *n*-permutations

C: set of colourings $c:\{1,2,\ldots,n\}\to\{k_1,\ldots,k_m\}$ such that $\pi^*(c)\in C$ for every colouring $c\in C$ REMARKS:

 \bullet \sim_G is an equivalence relation (reflexive/symmetric/transitive) \Rightarrow C can be partitioned in equivalence classes

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

② \bar{c} is the equivalence class of the colouring c w.r.t. the equivalence relation \sim_G . \bar{c} is also called the orbit of c under the action of group G.

G: group of *n*-permutations

C: set of colourings $c:\{1,2,\ldots,n\}\to\{k_1,\ldots,k_m\}$ such that $\pi^*(c)\in C$ for every colouring $c\in C$ REMARKS:

 \bullet \sim_G is an equivalence relation (reflexive/symmetric/transitive) \Rightarrow C can be partitioned in equivalence classes

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

- ② \bar{c} is the equivalence class of the colouring c w.r.t. the equivalence relation \sim_G .
 - \bar{c} is also called the orbit of c under the action of group G.
- **3** The number $|\bar{c}|$ of elements of the set \bar{c} represents the number of colourings equivalent with c with respect to G.

G: group of *n*-permutations

C: set of colourings $c:\{1,2,\ldots,n\}\to\{k_1,\ldots,k_m\}$ such that $\pi^*(c)\in C$ for every colouring $c\in C$ REMARKS:

• \sim_G is an equivalence relation (reflexive/symmetric/transitive) $\Rightarrow C$ can be partitioned in equivalence classes

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

- ② \bar{c} is the equivalence class of the colouring c w.r.t. the equivalence relation \sim_G .
 - \bar{c} is also called the orbit of c under the action of group G.
- **3** The number $|\bar{c}|$ of elements of the set \bar{c} represents the number of colourings equivalent with c with respect to G.
- We want to count how many non-equivalent colourings exist, that is

G: group of *n*-permutations

C: set of colourings $c:\{1,2,\ldots,n\}\to\{k_1,\ldots,k_m\}$ such that $\pi^*(c)\in C$ for every colouring $c\in C$ REMARKS:

ullet \sim_G is an equivalence relation (reflexive/symmetric/transitive) $\Rightarrow C$ can be partitioned in equivalence classes

$$\bar{c} = \{c' \in C \mid c' \sim_G c\} = \{\pi^*(c) \mid \pi \in G\}$$

- ② \bar{c} is the equivalence class of the colouring c w.r.t. the equivalence relation \sim_G .
 - \bar{c} is also called the orbit of c under the action of group G.
- **3** The number $|\bar{c}|$ of elements of the set \bar{c} represents the number of colourings equivalent with c with respect to G.
- We want to count how many non-equivalent colourings exist, that is

How many equivalence classes has C?

Counting non-equivalent colourings Concrete example

Example (Square colourings with 2 colors)

 $S = \{1, 2, 3, 4\}$ is the set of nodes of a square, and C the set of all possible colourings of the nodes with red (r) and green (g):

$$C = \{ \langle g, g, g, g \rangle, \langle g, g, g, r \rangle, \langle g, g, r, g \rangle, \langle g, g, r, r \rangle, \\ \langle g, r, g, g \rangle, \langle g, r, g, r \rangle, \langle g, r, r, g \rangle, \langle g, r, r, r \rangle, \\ \langle r, g, g, g \rangle, \langle r, g, g, r \rangle, \langle r, g, r, g \rangle, \langle r, g, r, r \rangle, \\ \langle r, r, g, g \rangle, \langle r, r, g, r \rangle, \langle r, r, r, g \rangle, \langle r, r, r, r \rangle \}$$

Two colourings are considered equivalent if one can be obtained from the other by rotating the square \Rightarrow we consider $G = C_4 \Rightarrow 6$ equivalence classes of C:

Counting in the presence of symmetries Similar problems

- The round table problem: S is the set of n places at the table, G is C_n , and C is the collection of n! seating assignments.
- The necklace problem: S is the set of n bead positions, G is D_n , and C is the collection of the m^n possible arrangements of the m kinds of beads on the necklace.

Counting in the presence of symmetries Similar problems

- The round table problem: S is the set of n places at the table, G is C_n , and C is the collection of n! seating assignments.
- The necklace problem: S is the set of n bead positions, G is D_n, and C is the collection of the mⁿ possible arrangements of the m kinds of beads on the necklace.
- We want a general method to solve problems like these.

Counting in the presence of symmetries Useful notions

G: group of permtuations

C: set of colourings $c:\{1,2,\ldots,n\} \to \{k_1,\ldots,k_m\}$ such that $\pi^*(c) \in C$ for all $\pi \in G$

• The invariant set of a permutation $\pi \in Gi$ in C is

$$C_{\pi} = \{c \in C \mid \pi^*(c) = c\}.$$

• The stabilizer of a coloring $c \in C$ is the set of permutations

$$G_c = \{\pi \in G \mid \pi^*(c) = c\}.$$

 G_c is always a subgroup of G.

 The set of colorings in C that are equivalent to c under the action of the group G is

$$\overline{c} = \{\pi^*(c) \mid \pi \in G\}.$$

Thus \overline{c} is the equivalence class of c under the relation \sim . \overline{c} is also called the orbit of c under the action of G.

Example (Coloring the nodes of a square with 2 colors)

$$C = \{ \langle g, g, g, g \rangle, \langle g, g, g, r \rangle, \langle g, g, r, g \rangle, \langle g, g, r, r \rangle, \\ \langle g, r, g, g \rangle, \langle g, r, g, r \rangle, \langle g, r, r, g \rangle, \langle g, r, r, r \rangle, \\ \langle r, g, g, g \rangle, \langle r, g, g, r \rangle, \langle r, g, r, g \rangle, \langle r, g, r, r \rangle, \\ \langle r, r, g, g \rangle, \langle r, r, g, r \rangle, \langle r, r, r, g \rangle, \langle r, r, r, r \rangle \}.$$

and the dihedral group $G = D_4$. Then

$$\overline{\langle g, g, g, r \rangle} = \{\langle g, g, g, r \rangle, \langle g, g, r, g \rangle, \langle g, r, g, g \rangle, \langle r, g, g, g \rangle\}
G_{\langle g, g, g, r \rangle} = \{(1)(2)(3)(4), (1, 3)(2)(4)\}
\overline{\langle g, r, g, r \rangle} = \{\langle g, r, g, r \rangle, \langle r, g, r, g \rangle\}
G_{\langle g, r, g, r \rangle} = \{(1)(2)(3)(4), (1, 3)(2, 4), (1, 3)(2)(4), (1)(2, 4)(3)\}$$

Observation.
$$|G_{\langle g,g,g,r\rangle}| \cdot |\overline{\langle g,g,g,r\rangle}| = 2 \cdot 4 = 8 = |G|$$
 and $|G_{\langle g,r,g,r\rangle}| \cdot |\overline{\langle g,r,g,r\rangle}| = 4 \cdot 2 = 8 = |G|$.

Invariant sets, stabilizers, and orbits Useful properties

Lemma

Suppose a group G acts on a set of colorings C. For any coloring $c \in C$ we have $|G_c| \cdot |\overline{c}| = |G|$.

Burnside's Lemma

The number N of equivalence classes of the set C in the presence of symmetries G is given by

$$N = \frac{1}{|G|} \sum_{\pi \in G} |C_{\pi}|.$$

Counting in the presence of symmetries Proof of Burnside's Lemma

$$\frac{1}{|G|} \sum_{\pi \in G} |C_{\pi}| = \frac{1}{|G|} \sum_{\pi \in G} \sum_{c \in C} [\pi^*(c) = c]$$

$$= \frac{1}{|G|} \sum_{c \in C} \sum_{\pi \in G} [\pi^*(c) = c]$$

$$= \frac{1}{|G|} \sum_{c \in C} |G_c|$$

$$= \sum_{c \in C} \frac{1}{\overline{c}}$$

$$= \sum_{\overline{c}} \sum_{c \in \overline{c}} \frac{1}{\overline{c}} = \sum_{\overline{c}} 1 = N.$$

where
$$[\pi^*(c) = c] := \begin{cases} 1 & \text{if } \pi^*(c) = c \\ 0 & \text{otherwise} \end{cases}$$

• To use Burnside's Lemma to count the number of equivalence classes of a set of colorings C, we must compute the size of the invariant set C_{π} associated with every permutation $\pi \in G$.

- How can we count the size of C_{π} ?
 - If c is invariant under the action of π then all objects permuted by the same cycle of π must have the same color.
 - ▶ If π has k disjoint cycles, the number of colorings invariant under the action of π is $|C_{\pi}| = m^k$, where m is the number of colors.

Example

If S is the set of nodes of a square and $G=D_4$ then $|C_{(1,2,3,4)}|=m,\ |C_{(1,2)(3,4)}|=m^2,\ |C_{(1,2)(2)(4)}|=m^3$, and $|C_{(1)(2)(3)(4)}|=m^4$.

References

- J. M. Harris, J. L. Hirst, M. J. Mossinghoff. Combinatorics and Graph Theory, Second Edition. Springer 2008. §2.7. Pólya's Theory of Counting.
- Q. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen, Acta Math. 68 (1937), 145–254; English transl. in G. Polýa and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (1987).