Solutions: Homework 3

Problem 1. Show that if $u_n: G \to \mathbb{R}$ are subharmonic/superharmonic converging locally uniformly to $u: G \to \mathbb{R}$, then u is also subharmonic/superharmonic.

Proof. We prove the statement for subharmonic functions. The same proof works for superharmonic functions, with just the opoosite inequality.

Note first that u is continuous, since continuity is a local property, and $u_n \to u$ locally uniformly.

Let $\overline{\Delta}(a;r) \subset G$. Since the u_n 's are subharmonic, we have

$$u_n(a) \le \frac{1}{2\pi} \int_0^{2\pi} u_n(a + re^{i\theta}) d\theta.$$

Since the u_n 's coverge locally uniformly to u, and $\partial \Delta(a;r)$ is a compact set, it follows that u_n converges to u uniformly on $\partial \Delta(a;r)$. So, we have

$$\frac{1}{2\pi} \int_{0}^{2\pi} u_n(a + re^{i\theta}) d\theta \to \frac{1}{2\pi} \int_{0}^{2\pi} u(a + re^{i\theta}) d\theta$$

as $n \to \infty$. Since $u_n(a) \to u(a)$ as $n \to \infty$, we have

$$u(a) \le \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) d\theta$$

and hence u is subharmonic.

Problem 2. Let $\phi: G \to \mathbb{R}$ be subharmonic, and let $\overline{\Delta} \subset G$ be a closed disc in G. Consider the Poisson modification $\widetilde{\phi}: G \to \mathbb{R}$ of ϕ along Δ . Show that $\widetilde{\phi}$ is also subharmonic.

Proof. Let $a \in G$. If $a \in G \setminus \Delta$, let R be chosen so that $\overline{\Delta}(a,R) \subset G$ and furthermore the mean value inequality is satisfied for ϕ in $\overline{\Delta}(a,R)$. Then, for all $0 \le r < R$, we have

$$\widetilde{\phi}(a) = \phi(a) \le \frac{1}{2\pi} \int_0^{2\pi} \phi(a + re^{it}) dt \le \frac{1}{2\pi} \int_0^{2\pi} \widetilde{\phi}(a + re^{it}) dt$$

using that $\phi \leq \widetilde{\phi}$.

For $a \in \Delta$, let $\overline{\Delta}(a, R) \subset \Delta$. For r < R, we have

$$\widetilde{\phi}(a) = h(a) = \frac{1}{2\pi} \int_0^{2\pi} h(a + re^{it}) dt = \frac{1}{2\pi} \int_0^{2\pi} \widetilde{\phi}(a + re^{it}) dt$$

where h is the harmonic function solving Dirichlet Problem, so that $\phi = h$ in Δ .

The analysis above shows that $\widetilde{\phi}$ satisfies the mean value inequality in sufficiently small discs, so $\widetilde{\phi}$ is subharmonic.

Problem 3. Show that the Dirichlet Problem cannot be solved in the punctured disc $G = \Delta(0,1) \setminus \{0\}$.

Exhibit a continuous function $f: \partial G \to \mathbb{R}$ which cannot be obtained as the boundary value of a harmonic function in G, continuous in \overline{G} .

Proof. Note that $\partial G = \partial \Delta \cap \{0\}$. Define $f : \partial G \to \mathbb{R}$ setting

$$f(0) = 1$$
, $f(z) = 0$ for $z \in \partial \Delta$.

Assume that the Dirichlet problem can be solved for (G, f), and let u be the solution. Then u is continuous at 0, so by Problem Set 2, Problem 2, we conclude that u extends to a harmonic function across 0. Thus u is harmonic in Δ . We can then apply the mean value property conclude

$$u(0) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{it}) dt$$

for all r < 1. Since u is continuous in \overline{G} , it is uniformly continuous there and thus $u(re^{it}) \to u(e^{it})$ uniformly as $r \to 1$. (This can be seen from the definition. Fix $\epsilon > 0$. We can find δ such that $|x - y| < \delta$ implies $|u(x) - u(y)| < \epsilon$. Use this for $x = re^{it}$, $y = e^{it}$.) Making $r \to 1$ in the above, we obtain

$$u(0) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{it}) \, dt = 0.$$

This contradicts u(0) = 1. Thus the Dirichlet problem cannot be solved for (G, f).

Problem 4. Let G be open connected, $\zeta_0 \in \partial G$. We say G admits a barrier at ζ_0 provided there exists $\omega : G \to \mathbb{R}$ harmonic, continuous in \overline{G} , such that $\omega(\zeta_0) = 0$ and $\omega > 0$ on $\partial G \setminus \{\zeta_0\}$.

Show that if the Dirichlet Problem is solvable in G, then G admits a barrier at each $\zeta_0 \in \partial G$.

Proof. Let $f(z) = |z - \zeta_0|$. Since the Dirichlet Problem is solvable in G, we can find ω continuous in \overline{G} , harmonic in G such that

$$\omega|_{\partial G} = f.$$

In particular $\omega(\zeta_0) = f(\zeta_0) = 0$ and for $z \in \partial G \setminus \{\zeta_0\}$, we have $\omega(z) = |z - \zeta_0| > 0$.

Problem 5. Let G be a region, $\zeta_0 \in \partial G$, and let l be a half-line starting at ζ_0 that intersects \overline{G} only at ζ_0 . Let $\zeta_1 \neq \zeta_0$ be a point on the half-line ℓ . Show that ζ_0 is a barrier for ∂G .

Proof. Let

$$\ell = \{t\zeta_0 + (1-t)\zeta_1 : 0 \le t \le 1\}.$$

Then $\ell \cap \overline{G} = \{\zeta_0\}$. Let $\omega : \overline{G} \to \mathbb{R}$ be defined by

$$\omega(z) = \operatorname{Re}\left(\sqrt{\frac{z - \zeta_0}{z - \zeta_1}}\right)$$

where $\sqrt{a}=e^{\frac{1}{2}\mathrm{Log}(a)}$ for any $a\in\mathbb{C}\setminus(-\infty,0]$ and Log is the principal logarithm, and $\sqrt{0}=0$.

Note that

$$f(z) = \frac{z - \zeta_0}{z - \zeta_1}$$

is injective and $f(\ell) = (-\infty, 0]$ since

$$f(t\zeta_0 + (1-t)\zeta_1) = -\frac{1-t}{t}.$$

Therefore,

$$f(G) \subset \mathbb{C} \setminus (-\infty, 0].$$

In consequence, \sqrt{f} can be defined as a holomorphic function on G. Then $\omega = \text{Re}(\sqrt{f})$ is harmonic on G. Also, \sqrt{z} is continuous on $\mathbb{C} \setminus (-\infty, 0)$ and hence ω is continuous on \overline{G} .

Now, $\omega(\zeta_0) = 0$. Since

$$\sqrt{z}: \mathbb{C} \setminus (-\infty, 0] \to \{z : \text{Re } z > 0\}$$

is a surjective map, we have $\omega(z) > 0$ for all $z \in \partial G \setminus \{\zeta_0\}$. Hence, ω is a barrier for ∂G at ζ_0 .

Problem 6. Let \mathcal{H} be the family of harmonic functions $h: \Delta \to \mathbb{R}$ with h(0) = 1 and h(z) > 0 for $z \in \Delta$. Show that every sequence in \mathcal{H} admits a subsequence that converges locally uniformly to a function in \mathcal{H} .

Proof. Let $\{h_n\}$ be a sequence in \mathcal{H} . Write $h_n = \text{Re } f_n$. Thus $\text{Re } f_n > 0$. We know $\text{Re } f_n(0) = 1$. By possibly changing f_n by an imaginary constant, we may furthermore assume

$$f_n(0) = 1.$$

We already have seen in Math 220B, Homework 4, Problem 2 that $\{f_n\}$ is a normal family. (On the Qualifying Exam, this statement would require a proof since it is based on a homework question.) Passing to a subsequence, we may assume $f_n \to f$ with f(0) = 1. Letting h = Re f, we see

$$h_n = \text{Re } f_n \to \text{Re } f = h.$$

Furthermore, h is harmonic, h(0) = 1.

We show h(z) > 0 for $z \in \Delta$. Note that

$$h(z) = \lim h_n(z) \ge 0$$

for $z \in \Delta$. If $h(z_0) = 0$ for some $z_0 \in \Delta$, then z_0 would be a maximum for h, violating the maximum principle unless $h \equiv 0$. However, the latter situation is impossible since h(0) = 1. Thus h > 0 in Δ , proving that $h \in \mathcal{H}$.