Four-Cycle Free Graphs and Entropy Minimality

Nishant Chandgotia

University of British Columbia

December, 2014

Outline

- Entropy Minimality and Hom Shifts
- Mixing Conditions and Entropy Minimality
- The Space of 3-Colourings
- Four-cycle free graphs

Given a finite undirected graph \mathcal{H} without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Given a finite undirected graph \mathcal{H} without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Here every direction has the same constraint.

Given a finite undirected graph \mathcal{H} without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Here every direction has the same constraint.

Examples:

Given a finite undirected graph \mathcal{H} without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Here every direction has the same constraint.

Examples:(Hard Square model)

Graph H

A Pattern

Given a finite undirected graph ${\cal H}$ without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Here every direction has the same constraint.

Examples:(3-colourings)

A Pattern

The language $\mathcal{B}(X)$ of a shift space is the set of patterns appearing in elements of X.

The language $\mathcal{B}(X)$ of a shift space is the set of patterns appearing in elements of X.

The topological entropy of X is defined as

The language $\mathcal{B}(X)$ of a shift space is the set of patterns appearing in elements of X.

The topological entropy of X is defined as

$$h_{top}(X) := \lim_{n \longrightarrow \infty} \frac{\log |\mathcal{B}(X) \cap \mathfrak{A}^{\{1,2,\dots,n\}^d}|}{n^d}.$$

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$,

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$,

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$, that is, if we forbid any pattern from the language $\mathcal{B}(X)$ the entropy will drop.

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$, that is, if we forbid any pattern from the language $\mathcal{B}(X)$ the entropy will drop.

If $h_{top}(X) = 0$ then X is entropy minimal if and only if it is topologically minimal.

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$, that is, if we forbid any pattern from the language $\mathcal{B}(X)$ the entropy will drop.

If $h_{top}(X) = 0$ then X is entropy minimal if and only if it is topologically minimal.

Theorem

A shift of finite type is entropy minimal if and only if every measure of maximal entropy is fully supported.

Theorem (Chandgotia, Meyerovitch '13)

Let C_n be an n-cycle for some integer $n \neq 4$. Then X_{C_n} is entropy minimal.

Theorem (Chandgotia, Meyerovitch '13)

Let C_n be an n-cycle for some integer $n \neq 4$. Then X_{C_n} is entropy minimal.

A connected, finite graph \mathcal{H} is called four-cycle free if it has no self-loops and C_4 is not a subgraph of \mathcal{H} .

Theorem (Chandgotia, Meyerovitch '13)

Let C_n be an n-cycle for some integer $n \neq 4$. Then X_{C_n} is entropy minimal.

A connected, finite graph \mathcal{H} is called four-cycle free if it has no self-loops and C_4 is not a subgraph of \mathcal{H} .

Theorem (Chandgotia '14)

If \mathcal{H} is a four-cycle free graph then $X_{\mathcal{H}}$ is entropy minimal.

Mixing Conditions and Entropy Minimality

A height function is an element of $X_{\mathbb{Z}}$, that is, a function $h: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ such that

$$|h(v) - h(w)| = 1$$

for all adjacent vertices v and w.

A height function is an element of $X_{\mathbb{Z}}$, that is, a function $h: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ such that

$$|h(v) - h(w)| = 1$$

for all adjacent vertices v and w.

If h is a height function then $h \mod 3$ is an element of X_{C_3} . Conversely, given a configuration in X_{C_3} there exists a unique (up to an additive constant) height function corresponding to it.

A height function is an element of $X_{\mathbb{Z}}$, that is, a function $h: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ such that

$$|h(v) - h(w)| = 1$$

for all adjacent vertices v and w.

If h is a height function then $h \mod 3$ is an element of X_{C_3} . Conversely, given a configuration in X_{C_3} there exists a unique (up to an additive constant) height function corresponding to it.

Height Function

A height function is an element of $X_{\mathbb{Z}}$, that is, a function $h: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ such that

$$|h(v) - h(w)| = 1$$

for all adjacent vertices v and w.

If h is a height function then $h \mod 3$ is an element of X_{C_3} . Conversely, given a configuration in X_{C_3} there exists a unique (up to an additive constant) height function corresponding to it.

Height Function

Pattern in X_{C₂}

Given a height function h the slope in the direction e_i is given by

$$sl_{e_i}(h) := \lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

Given a height function h the slope in the direction e_i is given by

$$sl_{e_i}(h) := \lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

It follows that $|sl_{e_i}(h)| \leq 1$ whenever it exists.

Given a height function h the slope in the direction e_i is given by

$$sl_{e_i}(h) := \lim_{n \longrightarrow \infty} \frac{h(ne_i) - h(0)}{n}.$$

It follows that $|sl_{e_i}(h)| \leq 1$ whenever it exists.

Given a \mathbb{Z}^d -ergodic measure μ on X_{C_3} , the ergodic theorem implies that in every direction the slope exists and is a constant μ -almost everywhere.

Given a height function h the slope in the direction e_i is given by

$$sl_{e_i}(h) := \lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

It follows that $|sl_{e_i}(h)| \leq 1$ whenever it exists.

Given a \mathbb{Z}^d -ergodic measure μ on X_{C_3} , the ergodic theorem implies that in every direction the slope exists and is a constant μ -almost everywhere.

The slope may be different in different directions.

Steep Slopes and 'Rigidity'

Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)|=1$ almost everywhere.

Steep Slopes and 'Rigidity'

Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)|=1$ almost everywhere. Then

$$|h(j + ne_i) - h(j)| = n$$

almost everywhere for all $j \in \mathbb{Z}^d$.

Steep Slopes and 'Rigidity'

Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)|=1$ almost everywhere. Then

$$|h(j + ne_i) - h(j)| = n$$

almost everywhere for all $j \in \mathbb{Z}^d$.

Thus for a height function h in the support of the measure, $h(j + ne_i)$ and h(j) determine the values $h(j + te_1)$ for all $1 \le t \le n - 1$.

Steep Slopes and 'Rigidity'

Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)|=1$ almost everywhere. Then

$$|h(j + ne_i) - h(j)| = n$$

almost everywhere for all $j \in \mathbb{Z}^d$.

Thus for a height function h in the support of the measure, $h(j+ne_i)$ and h(j) determine the values $h(j+te_1)$ for all $1 \le t \le n-1$.

Let $X_{frozen} \subset X_{C_3}$ be the space of such configurations. Then $h_{top}(X_{frozen}) = 0$.

Steep Slopes and 'Rigidity'

Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)|=1$ almost everywhere. Then

$$|h(j + ne_i) - h(j)| = n$$

almost everywhere for all $j \in \mathbb{Z}^d$.

Thus for a height function h in the support of the measure, $h(j+ne_i)$ and h(j) determine the values $h(j+te_1)$ for all $1 \le t \le n-1$.

Let $X_{frozen} \subset X_{C_3}$ be the space of such configurations. Then $h_{top}(X_{frozen}) = 0$. Thus slope 1 or -1 is 'improbable'.

Given any height function h_1 on a ball D_n in \mathbb{Z}^d

Given any height function h_1 on a ball D_n in \mathbb{Z}^d and a height function h_2 on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions

Given any height function h_1 on a ball D_n in \mathbb{Z}^d and a height function h_2 on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions we can choose an $N_n^s \in \mathbb{N}$ and a height function h

Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.

Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.

For such 'gentle' slopes we just proved that these measures are fully supported.

Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.

For such 'gentle' slopes we just proved that these measures are fully supported.

A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported.

Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.

For such 'gentle' slopes we just proved that these measures are fully supported.

A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported. Therefore X_{C_3} is entropy minimal.

Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.

For such 'gentle' slopes we just proved that these measures are fully supported.

A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported. Therefore X_{C_3} is entropy minimal.

What if C_3 is replaced by some other four-cycle free graph \mathcal{H} ?

Let \mathcal{H} be a graph without self-loops. A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.

Let \mathcal{H} be a graph without self-loops. A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.

Choose a vertex $u \in \mathcal{H}$. Denoted by $E_{\mathcal{H}}$, the universal cover of \mathcal{H} is a tree where the vertex set is the set of all non-backtracking walks on \mathcal{H} starting with u; two such walks are adjacent if one extends the other by a single step.

Let \mathcal{H} be a graph without self-loops. A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.

Choose a vertex $u \in \mathcal{H}$. Denoted by $E_{\mathcal{H}}$, the universal cover of \mathcal{H} is a tree where the vertex set is the set of all non-backtracking walks on \mathcal{H} starting with u; two such walks are adjacent if one extends the other by a single step.

The universal cover of C_3 is \mathbb{Z} (segments of the walks $1, 2, 3, 1, 2, 3, \ldots$ and $1, 3, 2, 1, 3, 2, \ldots$).

A Part of $E_{\mathcal{H}}$

A Part of $E_{\mathcal{H}}$

There is a natural graph homomorphism $\pi: E_{\mathcal{H}} \longrightarrow \mathcal{H}$ which takes non-backtracking walks to their terminal vertex.

There is a natural graph homomorphism $\pi: E_{\mathcal{H}} \longrightarrow \mathcal{H}$ which takes non-backtracking walks to their terminal vertex.

When $\mathcal{H}=\mathcal{C}_3$ then π is the map

 $mod 3: \mathbb{Z} \longrightarrow C_3.$

There is a natural graph homomorphism $\pi: E_{\mathcal{H}} \longrightarrow \mathcal{H}$ which takes non-backtracking walks to their terminal vertex.

When $\mathcal{H}=\mathcal{C}_3$ then π is the map

$$mod 3: \mathbb{Z} \longrightarrow C_3.$$

Fix a four-cycle free graph ${\cal H}.$ We can now use the induced map:

$$\pi: X_{E_{\mathcal{H}}} \longrightarrow X_{\mathcal{H}}.$$

There is a natural graph homomorphism $\pi: E_{\mathcal{H}} \longrightarrow \mathcal{H}$ which takes non-backtracking walks to their terminal vertex.

When $\mathcal{H}=\mathcal{C}_3$ then π is the map

$$mod 3: \mathbb{Z} \longrightarrow C_3.$$

Fix a four-cycle free graph \mathcal{H} . We can now use the induced map:

$$\pi: X_{E_{\mathcal{U}}} \longrightarrow X_{\mathcal{H}}.$$

The map is surjective. Given $x \in X_{\mathcal{H}}$, a lift of x is a configuration $\tilde{x} \in X_{E_{\mathcal{H}}}$ such that $\pi(\tilde{x}) = x$. There is a unique lift once we fix the lift at a single vertex.

Given a configuration $x \in X_{\mathcal{H}}$, we can now construct a corresponding generalised height function

$$h_{\mathsf{x}}: \mathbb{Z}^d \times \mathbb{Z}^d \longrightarrow \mathbb{Z}^+$$

given by

$$h_{x}(i,j) = \text{graph distance between } \tilde{x}_{i} \text{ and } \tilde{x}_{j}.$$

Given a configuration $x \in X_{\mathcal{H}}$, we can now construct a corresponding generalised height function

$$h_{\mathsf{x}}: \mathbb{Z}^d \times \mathbb{Z}^d \longrightarrow \mathbb{Z}^+$$

given by

$$h_x(i,j) = \text{graph distance between } \tilde{x}_i \text{ and } \tilde{x}_j.$$

It is subadditive in the sense $h_X(i,j) \le h_X(i,k) + h_X(k,j)$.

Given a configuration $x \in X_{\mathcal{H}}$, we can now construct a corresponding generalised height function

$$h_{\mathsf{x}}: \mathbb{Z}^d \times \mathbb{Z}^d \longrightarrow \mathbb{Z}^+$$

given by

$$h_x(i,j) = \text{graph distance between } \tilde{x}_i \text{ and } \tilde{x}_j.$$

It is subadditive in the sense $h_x(i,j) \le h_x(i,k) + h_x(k,j)$. Again the generalised slope can be defined as

$$sl_{e_i}(x) = \lim_{n \to \infty} \frac{1}{n} h_x(0, ne_i).$$

Given a configuration $x \in X_{\mathcal{H}}$, we can now construct a corresponding generalised height function

$$h_{\times}: \mathbb{Z}^d \times \mathbb{Z}^d \longrightarrow \mathbb{Z}^+$$

given by

$$h_x(i,j) = \text{graph distance between } \tilde{x}_i \text{ and } \tilde{x}_j.$$

It is subadditive in the sense $h_x(i,j) \le h_x(i,k) + h_x(k,j)$. Again the generalised slope can be defined as

$$sl_{e_i}(x) = \lim_{n \to \infty} \frac{1}{n} h_x(0, ne_i).$$

For any \mathbb{Z}^d -ergodic measure on $X_{\mathcal{H}}$, the subadditive ergodic theorem implies that the generalised slope exists (and is a constant) almost everywhere.

The proof for the entropy minimality of X_{C_3} can be reworked to prove that $X_{\mathcal{H}}$ is entropy minimal for all four-cycle free graphs \mathcal{H} ;

The proof for the entropy minimality of X_{C_3} can be reworked to prove that $X_{\mathcal{H}}$ is entropy minimal for all four-cycle free graphs \mathcal{H} ;

the subadditivity has to be taken into account.

A Couple of Questions

A Couple of Questions

Conjecture: If \mathcal{H} is any connected graph then $X_{\mathcal{H}}$ is entropy minimal. (d=2)

A Couple of Questions

Conjecture: If \mathcal{H} is any connected graph then $X_{\mathcal{H}}$ is entropy minimal. (d=2)

Question: What shift spaces are conjugate to $X_{\mathcal{H}}$ for some graph \mathcal{H} ?

Thank You!