A Romanisation Method for the Bengali Language with Efficient Encoding Scheme

Paper ID: 263

Date: 06 September, 2023

Amrita Das Tipu

Md. Fahad

Ashis Kumar Mandal

Department of CSE
Hajee Mohammad Danesh Science & Technology University, Dinajpur-5200

Authors Information

Outline

Introduction

Transliteration

- Converts the written form of a language
- From one language to another
- Retains phonetic meaning

Table 1: Bengali to English transliteration

Original	Transliterated
শিক্ষাবিদ	shikkhabid
বাংলা	bangla
ভাষা	bhasha
আমার	amar

Problem Statement

- Lack of standardization for Bengali language
- Limited publicly available datasets
- Variations in transliteration
- Resource in traditional ML method

Table 2: Literature review

AUTHOR	CONTRIBUTION	LIMITATION	DIFFERENCE
Sarkar and Chatterjee [1]	One-hot coding for representing TU, used traditional ML model SVM and KNN	Evaluated on only 1000 NEs, private dataset	Our study uses binary coding in place of one hot coding for the TUs for cost reduction
Ekbal et al. [2]	6 n-gram based probabilistic models	Only used 6000 NEs, private dataset	Only 1 n-gram based model is used, evaluated on common words, provides algorithm for TU identification
Rathod et al. [3]	n-gram based feature selection, used SVM, for Hindi and Marathi languages	Only used NEs, private dataset	SVM and RFC is used, Bengali language, public datasets
Dasgupta et al. [4]	Joint source channel model, SMT model.	Backward transliteration approach	Forward transliteration or romanisation, TU identification algorithm

Related Work

Research Questions

How to optimize computation resource usage in traditional machine learning models?

How to increase transliteration accuracy?

Objectives

Optimize computational time

Optimize memory usage

Comparative or higher performance

Outcomes and Impacts

Expected outcome:

Correct prediction with lower cost

Possible impacts:

- Automatic, reliable system
- Unhindered cross-lingual communication

- Types of words in dataset
 - Dakshina: Dictionary, NE, Technical
 - NEWS 2018: NE
- Invalid words: Words containing null/empty, punctuations, numbers, out-of-script characters
- Sort and take unique Bengali words

Table 3: Dataset Statistics

Criteria	Dakshina	NEWS 2018
Total Words	130378	13623
Valid Words	113760	13514
Unique Words (Bengali)	25330	13214

- Transliteration Unit (TU) decompose:
 - আমার → [আ|মা|র]
 - amar → [a | ma | r]

Table 4: TU Statistics

Criteria	Dakshina	NEWS 2018
TU aligned Words	15581	7563
Average number of TU per word	3.463	3.247
Maximum number of TU per word	9	8
Minimum number of TU per word	1	1
Unique TU (Bengali)	1449	947
Unique TU (English)	1605	1166

• Encode: converts string to numerical form

Figure 2: Encoding

Context: preceding or succeeding TU

Feature selection

Preceding TU

Current TU

Succeeding TU

Figure 3: Context-based Feature Selection

Table 5: ML Models

ML Algorithms	Parameters
SVM	kernel = 'poly', degree = 2, decision_shape_function = 'ovr'
RFC	n_estimators = 200

- Accuracy
 - TU level accuracy (TUAR)
 - Word level accuracy (WAR / Top-1)
- Precision
- Recall
- F1 score
- Process Time
 - Ratio of one-hot and binary

Results

- Baseline: One-hot coding approach
- For Dakshina Dataset

Table 6: Accuracy analysis on Dakshina dataset

Model	SVM		RFC	
Encoding	One-hot	Binary	One-hot	Binary
TUAR (%)	79.5996	80.1939	78.2583	80.7770
WAR (%)	49.0020	49.9840	46.2166	51.0109

Table 7: Time analysis on Dakshina dataset

Model	Encoding	Train		Tes	t	
		Time (sec)	Ratio	Time (sec)	Ratio	
SVM	One-hot	34974.3703	340.2229	2159.3266	4.4014	
	Binary	102.7984	340.222)	490.5969	7.701 7	
RFC	One-hot	2611.1594	10 2847	39.3453	1.6193	
	Binary	253.8891	10.2847	24.2984	1.0173	

Results

- Baseline: One-hot coding approach
- For NEWS 2018 dataset

Table 8: Accuracy analysis on NEWS 2018 dataset

Model	SVM		RFC	
Encoding	One-hot	Binary	One-hot	Binary
TUAR (%)	78.4124	79.2669	78.6131	80.5596
WAR (%)	49.3456	50.2046	49.6626	52.3730

Table 9: Time analysis on NEWS 2018 dataset

Model	Encoding	Train		Test	
		Time (sec)	Ratio	Time (sec)	Ratio
SVM	One-hot	2423.8516	88.8825	129.5156	1.5000
	Binary	27.2703		82.5688	1.5686
RFC	One-hot	498.4031	0 1550	5.5922	1 2020
	Binary	61.1094	8.1559	4.6453	1.2038

Conclusion

Grapheme-based approach

Binary encoding technique

Reduces memory usage, training, and testing time

Achieves comparable performance to the one-hot coding

Future Research Direction

Dataset creation for transliteration variation

Applying Deep Learning techniques

References

- 1. Sarkar, K., Chatterjee, S.: Bengali-to-english forward and backward machine transliteration using support vector machines. In: J.K. Mandal, P. Dutta, S. Mukhopadhyay (eds.) Computational Intelligence, Communications, and Business Analytics, pp. 552–566. Springer Singapore, Singapore (2017).
- 2. Ekbal, A., Naskar, S.K., Bandyopadhyay, S.: A modified joint source-channel model for transliteration. In: Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pp. 191–198. Association for Computational Linguistics, Sydney, Australia (2006).
- 3. Rathod, P., Dhore, M., Dhore, R.: Hindi and marathi to english machine transliteration using svm. International Journal on Natural Language Computing (IJNLC) 2, 55–71 (2013).
- 4. Dasgupta, T., Sinha, M., Anupam, B.: Resource creation and development of an english-bangla back transliteration system. International Journal of Knowledge-based and Intelligent Engineering Systems 19, 35–46 (2015).
- 5. Roark, B., Wolf-Sonkin, L., Kirov, C., Mielke, S.J., Johny, C., Demirsahin, I., Hall, K.: Processing South Asian languages written in the Latin script: the Dakshina dataset. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 2413–2423. European Language Resources Association, Marseille, France (2020).
- 6. Chen, N., Banchs, R.E., Zhang, M., Duan, X., Li, H.: Report of NEWS 2018 named entity transliteration shared task. In: Proceedings of the Seventh Named Entities Workshop, pp. 55–73. Association for Computational Linguistics, Melbourne, Australia (2018).

Thank You

Contributions

- First to use binary coding for Bengali language
- Reduced computational cost for SVM and random forest
- Provides algorithm for TU identification
- Performs well for frequently used words

Algorithms for TU Decomposition

Algorithm 3 Bengali TU Decomposition (word)

```
    for ch ∈ word do
    if prev = hosonto or prev ∈ prefixes or ch ∈ matras or ch = hosonto then
    tu ← tu + ch
    else
    add tu to tulist
    tu ← ch
    end if
    prev ← ch
    end for
```

Algorithm 4 English TU Decomposition (word)

```
    for ch ∈ word do
    if prev ∈ vowels and ch ∈ consonants then
    add tu to tulist
    tu ← ch
    else
    tu ← tu + ch
    end if
    prev ← ch
    end for
```

Algorithms for Encoding

Algorithm 5 Ordinal Encoding (*tu_list*, *all_tu*)

```
    for tu ∈ tu_list do
    index ← all_tu.index(tu)
    append index to tu_arr
    end for
    return tu_arr
```

Algorithm 6 One-Hot Encoding (*tu_list*, *all_tu*)

```
    length ← len(all_tu)
    tu_arr ← np.zeros((len(tu_list), length,), dtype = int)
    for tu ∈ tu_list do
    index ← all_tu.index(tu)
    tu_arr[ind, index] = 1
    end for
    return tu_arr
```

Algorithm 7 Binary Encoding (*tu_list*, *all_tu*)

```
1: length \Leftarrow len(all\_tu) + 1
 2: total\_bits = len(bin(length)[2:])
 3: tu\_arr = np.zeros((len(tu\_list), total\_bits,), dtype = int)
 4: ind \Leftarrow 0
 5: for tu \in tu list do
        index \Leftarrow all\_tu.index(tu) + 1
       tu\_bin = bin(index)[2:]
        number \Leftarrow total\_bits - len(tu\_bin)
        if number > 0 then
 9:
            prepend number of 0 to tu_bin
10:
        end if
11:
        for (i, c) \in enumerate(tu\_bin) do
12:
            tu\_arr[ind,i] \Leftarrow int(c)
13:
        end for
14:
        ind \Leftarrow ind + 1
15:
16: end for
17: return tu_arr
```

Results

Dataset	Model	SVM	RFC	
	Encoding	One-hot Binary	One-hot Binary	
Dakshina	TUAR (%) WAR (%)	79.5996 80.1939 49.0020 49.9840	78.2583 80.7770 46.2166 51.0109	
NEWS 2018	TUAR (%) WAR (%)	78.4124 79.2669 49.3456 50.2046	78.6131 80.5596 49.6626 52.3730	
Dataset	Model	SVM	RFC	
Dataset	Encoding	One-hot Binary	One-hot Binary	
Dakshina	Precision (%) Recall (%) F1 Score (%)	77.0093 77.6260 79.5996 80.1939 77.1255 77.9520	79.1452 79.2024 78.2583 80.7770 77.8466 79.2719	
NEWS 2018	Precision (%) Recall (%) F1 Score (%)	74.7564 74.1313 78.4124 79.2669 75.1591 75.5858	78.7315 77.0546 78.6131 80.5596 77.5652 77.8996	

Results

Dataset Model	Model	Encoding	Train		Test	
			Time (sec)	Ratio	Time (sec)	Ratio
Dakshina	SVM	One-hot Binary	34974.3703 102.7984	340.2229	2159.3266 490.5969	4.4014
	RFC	One-hot Binary	2611.1594 253.8891	10.2847	39.3453 24.2984	1.6193
NEWS 2018	SVM	One-hot Binary	2423.8516 27.2703	88.8825	129.5156 82.5688	1.5686
	RFC	One-hot Binary	498.4031 61.1094	8.1559	5.5922 4.6453	1.2038