Function Sequences

Sriram Vadlamani

August 1, 2020

Contents

1	Definition	3
2	Convergence	3
	2.1 Point Wise Convergence	3
	2.2 Uniform Convergence	4

Definition 1

We call a sequence of functions from $I \to R$ defined by $(f_n)_{n \in N} \in (R^I)^N$ Below we can see an example of what a sequence of functions looks like. The function defined is $f_n(x) = \frac{\sin(n \cdot x)}{x}$ We can see the sine wave vary from each n value.

2 Convergence

Point Wise Convergence

We say that a sequence (f_n) is pointwise convergent if:

we say that a seque
$$\lim_{n \to +\infty} f_n(x) = f(x)$$

This goes to say that the sequence has to converge to a function f from the same input set I.

Example:
$$f_n: \left\{ \begin{array}{l} [0,1] \longmapsto R \\ x \longmapsto x^n \end{array} \right.$$
 setting $x=0$ or $x=\frac{1}{2}$ we get $\lim_{n \to +\infty} f_n(x)=0$
But if x is 1, then the limit is 1 and it converges to that function.

Basically, for any given value of x we check the limit when n reaches infinity,

and if it's zero, it's pointwise convergent.

2.2 Uniform Convergence

Definition let f_n and $f \in R^I$ be the function sequence and the limit respectively. We say that f_n is uniformly convergent, if for any given value of n, the supremum $|f_n(x) - f(x)|$ exists and the supremum (which is a numerical sequence) has to tend to zero around positive infinity. **Example**