Передача двумерных массивов в функцию

В функцию можно передавать двумерный массив в качестве параметра, если размер этого массива фиксирован и объявлен в описании функции. То есть если заранее известен размер массива, то можно определить функцию, получающую в качестве параметра двумерный массив такого размера:

```
void f (int A[10][10])
{
    ...
}
int main()
{
    int B[10][10];
    f(B);
}
```

Проблема заключается в том, что в этом случае нельзя использовать массивы произвольного размера.

Чтобы использовать массивы произвольного размера, нам на помощь прийдут указатели. Для начала разберемся, как представлять двумерный массив в виде указателей.

Одномерный массив int A[n] это почти то же самое, что указатель на переменную типа int: int * A.

Тогда двумерный массив - это массив, каждый из элементов которого является одномерным массивом, то есть указателем на какой-то адрес целого числа в памяти. То есть двумерный массив - это массив элементов типа int * или же это указатель на переменную типа int *, то есть это переменная типа int **.

Итак, двойной указатель можно объявить так:

```
int ** A;
```

Теперь выделим память для массива A. Если мы хотим, чтобы в массиве A было n элементов, каждый из которых является указателем на тип int, то сделаем это при помощи операции new:

```
A = \text{new int * [n]};
```

Теперь A указывает на область памяти, содержащей n элементов, каждый из которых имеет тип int * u указывает на некоторую область памяти, пока еще не выделенную. Выделим эту память - сделаем все A[i] указателями на область памяти из m элементов типа int:

```
for (int i = 0; i < n; ++i)
{
    A[i] = new int [m];
}</pre>
```

Функцию, получающую в качестве параметра двумерный массив, можно объявлять так:

```
void f (int ** A, int n, int m)
```

Как и в случае с одномерным массивом, передаваемым как указатель, нам нужно одновременно передавать размеры массива - количество строк n и количество столбцов m.

При таком способе объявления массива и выделения памяти можно сделать так, чтобы в разных строчках массива было различное число элементов.

Общие требования к оформлению программ.

Считывание данных осуществляется функцией int ** Read (int & n, int & m). Эта функция считывает размер массива в переменные n и m, передаваемые по ссылке, выделять память под хранение массива, возвращать адрес выделенной памяти.

Решение задачи осуществляется функцией, получающей в качестве параметра массив (типа int **), его размеры, дополнительные параметры при необходимости.

Вывод массива на экран осуществляется отдельной функцией Print, получающей в качестве параметров массив и его размеры.

Типичный вид программы:

```
void Read (int **& A, int & n)
{
    ...
}

void Fill (int ** A, int n)
{
    ...
}

void Print (int ** A, int n)
{
    ...
}

int main()
{
    int n;
    int ** A;
    Read(A, n);
    Fill(A, n);
    Print(A, n);
    return 0;
}
```

Внимание! Начиная с этого листка я требую от ваших дальнейших программ подобного разбиения на функции.

Плохо структурированные программы приниматься не будут

В. Поменять две диагонали

Дан квадратный массив. Поменяйте местами элементы, стоящие на главной и побочной диагонали, при этом каждый элемент должен остаться в том же столбце (то есть в каждом столбце нужно поменять местами элемент на главной диагонали и на побочной диагонали).

Решение оформите в виде функции void SwapDiagonals (int ** Src, int n).

В	Ввод			ЫΒ	од
3			7	2	9
1	2	3	4	5	6
4	5	6	1	8	3
7	8	9			

С. Заполнение змейкой

По данным числам n и m заполните двумерный массив размером $n \times m$ числами от 1 до $n \times m$ "змейкой", как показано в примере. Выведите полученный массив, отводя на вывод каждого элемента ровно 4 символа.

Вв	од	Вывод					
3	5	1	2	3	4	5	
		10	9	8	7	6	
		11	12	13	14	15	

D. Заполнение диагоналями

По данным числам n и m заполните двумерный массив размером $n \times m$ числами от 1 до $n \times m$ "диагоналями", как показано в примере. Выведите полученный массив, отводя на вывод каждого элемента ровно 4 символа.

Ввод	Вывод					
3 5	1	2	4	7	10	
	3	5	8	11	13	
	6	9	12	14	15	

Е. Поворот прямоугольного массива

Дан прямоугольный массив размером n×m. Поверните его на 90 градусов по часовой стрелке, записав результат в новый массив размером m×n.

Выведите получившийся массив. Числа при выводе разделяйте одним пробелом.

Ввод				В	ыво	Д
3 4	4		31	21	11	
11	12	13	14	32	22	12
21	22	23	24	33	23	13
31	31 32 33 34				24	14

F. Поворот квадратного массива

Дан квадратный массив. Поверните его на 90 градусов по часовой стрелке. Результат запишите в этот же массив, вспомогательный массив использовать нельзя.

Выведите результат на экран, разделяя числа одним пробелом.

В	Ввод		Bŧ	ЫΒ	од
3			7	4	1
1	2	3	8	5	2
4	5	6	9	6	3
7	8	9			

G. Седловые элементы

В двумерном массиве n×m, все элементы которого различный, найдите такие элементы, которые одновременно являются минимальными в своей строке и максимальными в своем столбце. Такие элементы называются "седловыми"

Выведите индексы искомых элементов, в одной строке выводите два числа: номер строки и номер столбца, в котором располагается седловой элемент.

Если в массиве нет седловых элементов, выведите одно число 0.

Ввод	Вывод
3 4 1 2 3 4 5 6 7 8 9 10 11 12	2 0
2 2 3 1 2 4	0

Н. Сапер

На поле для игры в сапер клеточки с минами обозначаются символом "*", а в каждой пустой клеточке записано число от 0 до 8, равное количеству мин в 8 клетках, соседних с данной.

Дан список мин на поле. Постройте по данному списку изображение поля.

Программа получает на вход числа N и M - количество строк и столбцов на поле, а также количество мин на поле K. Далее идет K пар чисел - координат мин. Первое число - номер строки, второе число - номер столбца.

Выведите изображение поля на экран, клетки при выводе разделяйте одним пробелом.

В	Ввод		Bı	ывод
3 1 2	2 1 2	2	* 2 1	2 * 1
2	2	0	0	0

І. Заполнение в шахматном порядке

Даны числа n и m. Заполните массив размером n×m в шахматном порядке: клетки одного цвета заполнены нулями, а другого цвета - заполнены числами натурального ряда сверху вниз, слева направо. В левом верхнем углу записано число 1.

Выведите полученный массив на экран, отводя на вывод каждого элемента ровно 4 символа.

Ввод	Вывод					
3 5	1 0	0 4	2	0 5	3	
	6	0	7	0	8	

J. Заполнение спиралью

По данным числам n и m заполните двумерный массив размером n×m числами от 1 до n×m по спирали, выходящей из левого верхнего угла и закрученной по часовой стрелке, как показано в примере. Выведите полученный массив, отводя на вывод каждого элемента ровно 4 символа.

Тесты к этой задаче закрытые.

Ввод	Вывод						
4 5	1	2	3	4	5		
	14	15	16	17	6		
	13	20	19	18	7		
	12	11	10	9	8		

К. Треугольник Паскаля - 2

Треугольник Паскаля состоит из чисел, где каждое число равно двум числам, стоящим над ним. Если перенумеровать строки треугольника Паскаля с нуля, то i-я строка содержит i+1 число, которые равны C_{ji} , где j \in [0,i].

По данному числу n создайте в динамической памяти двумерный массив int ** A, выделяя для строки і памяти под хранение i+1 элемента i-й строки треугольника Паскаля, то есть

```
A[0] = new int[1];
A[1] = new int[2];
A[2] = new int[3];
```

Далее заполните этот массив числами треугольника Паскаля. Выведите результат на экран отводя на вывод одного числа ровно 6 символов.

Ввод		Вывод					
5	1 1 1 1	1 2 3 4	1 3 6	1 4	1		