МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский национальный исследовательский университет ИТМО

Мегафакультет трансляционных информационных технологий

Факультет информационных технологий и программирования

Исследование работы ЭВМ при выполнении линейных программ.

По дисциплине «Аппаратное обеспечение вычислительных систем» Вариант №4

> Выполнил студент группы №М3119 Самигуллин Руслан Рустамович

Проверил Прядкин Александр Олегович

Санкт-Петербург 2024

Порядок выполнения работ:

Написать комплекс программ, обеспечивающий обмен данными с ВУ в режиме прерывания программы. Основная программа должна наращивать на 1 (начиная с 0) содержимое (обозначим его буквой X) какой-либо ячейки памяти. Цикл для наращивания X не должен содержать более трех команд. Вывод всегда осуществляется на ВУ-3 в асинхронном режиме. Выводится только восемь младших разрядов результата. Составить методику проверки правильности выполнения разработанного комплекса на базовой ЭВМ, т.е. напишите последовательность действий оператора (пользователя) базовой ЭВМ, которые необходимо выполнить, чтобы проверить все возможные режимы работы комплекса программ (при появлении запроса прерывания от любого ВУ) и получить заданное количество результатов.

1. Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии
000			
001			
002			
003			
010			
010	0000	ISZ 000	Ячейка для хранения
020	F200	CLA	 0 -> A
020	4010	ADD 010	(A) + (010) -> A
022	FA00	EI	Разрешение прерывания
023	F800	INC	$A + (1) \rightarrow A$
024	3010	MOV 010	A -> 010
025	C023	BR 023	023 -> CK
•••			
030	3002	MOV 002	
031	F600	ROL	Сохранение значения А и регистра
032	3003	MOV 003	переноса в буф.ячейках
033	E103	TSF 003	IF $(BY-1) = 1$, TO $(CK) + 1 -> CK$
034	C050	BR 050	050 -> СК (переход к проверке
			By-2)
035	E003	CLF 003	0 -> BУ-1
036	F200	CLA	0 -> A
037	6010	SUB 010	
038	6010	SUB 010	
039	F800	INC	Получение значение -(x+1)/4
03A	F800	INC	в аккумуляторе
03B	F800	INC	
03C	F800	INC	
03D	F800	INC	
03E	2060	JSR 060	(CK) -> 060, 060 + 1-> (CK)
03E	C050	BR 050	050 -> СК (переход к проверке ВУ-2)
			obo err (neperiog k npobelike 20°2)
050	E101	TSF 001	IF (ВУ-2) = 1, то (СК) + 1 -> СК
051	C070	BR 070	070 -> CK (переход к окончанию
031	2070	DR 070	подпрограммы обработчика
			прерываний)
052	E002	CLF 002	0 -> BY-2
053	F200	CLA	0 -> A
054	4010	ADD 010	7.72
055	4010	ADD 010	1
056	4010	ADD 010	Получение значение (2X+3)/2
030	4010	ADD 010	TIOHY TORRIC SHAPEHRE (2A + 3)/2

057	F700	ROR	
058	F700	ROR	
059	2060	JSR 060	CK -> 060, (060) + 1 -> CK
			(запуск подпрограммы для вывода
			значения аккумулятора на ВУ-2)
05A	C070	BR 070	070 -> CK
		•••	
060	0000	ISZ 000	Ячейка для хранения адреса
			возврата
061	E102	TSF 002	IF $(BY-2) = 1$, To $CK + 1 -> CK$
062	C061	BR 061	061 -> CK
063	E002	CLF 002	0 -> BY-2
064	E302	OUT 302	(A) -> ВУ-2
065	C860	BR 060	060 - CK
•••	•••		
070	F200	CLA	
071	F300	CLC	
072	4003	ADD 003	Восстановление значений
073	F700	ROR	аккумулятора и регистра переноса
074	F200	CLA	из буферных ячеек
075	4002	ADD 002	V 1 1
076	FA00	EI	Разрешение прерывания

2. Описанине программы

Пока значения всех ВУ равны 0, программа увеличивает значение в ячейке 010 на 1. Если любое из значений ВУ не равно 0, управление передается обработчику прерываний. Обработчик запускает соответствующую подпрограмму, в которой сохраняются значения регистров А и С, и проверяются состояния ВУ-1 и ВУ-2. В зависимости от их готовности происходит обработка значения в ячейке 010 и выводится обработанное значение ВУ-1 или ВУ-2. После вывода значения регистры А и С восстанавливаются.

3. Методика

- 1. Загрузить комплекс подпрограмм в память ЭВМ.
- 2. С адреса 020 запустить основную программу в автоматическом режиме.
- 3. Перевести ЭВМ в покомандный режим работы.
- 4. Установить готовность ВУ-1 или готовность ВУ-2
- 5. После сброса готовности ВУ-1 (получение значения (-2x+5) в аккумуляторе) или готовности ВУ-2 (получение значения (3x/4) в аккумуляторе) установить готовность ВУ-2 для вывода обработанного результата на ВУ-2.
 - 6. Перевести ЭВМ в автоматический режим работы.
 - 7. Повторить 2 раза действия (3-6).