Your Presentation

You 韩喆

Where You're From

Date of Presentation

Introduction

- ▶ Your introduction goes here! 是韩喆
- ▶ Use itemize to organize your main points.

Examples

Some examples of commonly used commands and features are included, to help you get started.

Tables and Figures

- 1. Use tabular for basic tables see Table 3, for example.
- 2. You can upload a figure (JPEG, PNG or PDF) using the files menu.
- To include it in your document, use the includegraphics command (see the comment below in the source code).

Readable Mathematics

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $\mathsf{E}[X_i] = \mu$ and $\mathsf{Var}[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.

Goal

Main goal that we want to prove.

Goal

Main goal that we want to prove.

► Something.

Goal

Main goal that we want to prove.

- ► Something.
- ► Something more.

Goal

Main goal that we want to prove.

- ► Something.
- ► Something more.
- ▶ and more!.

Goal

Main goal that we want to prove.

- ► Something.
- ► Something more.
- ▶ and more!.

Relaxed Goal

relaxation

using Long Code Reduction

using Long Code Reduction

$$A_u: (\mathbb{F}_2)^{\mathbb{F}_2^{3r}} \to \mathbb{F}_2$$

using Long Code Reduction

$$A_u: (\mathbb{F}_2)^{\mathbb{F}_2^{3r}} \to \mathbb{F}_2$$

Query

- 1. $A_u(e)$, $A_u(e + f \circ \pi + 1 + \eta)$
- 2. $A_w(e')$, $A_w(e' + f \circ \pi' + \eta')$
- ▶ Where
 - 1. $e, e' : \mathbb{F}_2^{3r} \to \{0, 1\}, f : \mathbb{F}_2^r \to \{0, 1\}$
 - 2. η , η' from noise distribution.

using Long Code Reduction

$$A_u: (\mathbb{F}_2)^{\mathbb{F}_2^{3r}} \to \mathbb{F}_2$$

- Query
 - 1. $A_u(e)$, $A_u(e + f \circ \pi + 1 + \eta)$
 - 2. $A_w(e'), A_w(e' + f \circ \pi' + \eta')$
- Where
 - 1. $e, e' : \mathbb{F}_2^{3r} \to \{0, 1\}, f : \mathbb{F}_2^r \to \{0, 1\}$
 - 2. η , η' from noise distribution.
- ► Correct proofs are Long Code encodings of labels to *U* given by

$$A_u = (f(a))_{f \in (\mathbb{F}_2)^{\mathbb{F}_2^{3r}}}$$

using Long Code Reduction

$$A_u: (\mathbb{F}_2)^{\mathbb{F}_2^{3r}} \to \mathbb{F}_2$$

Query

1.
$$A_u(e)$$
, $A_u(e + f \circ \pi + 1 + \eta)$

2.
$$A_w(e'), A_w(e' + f \circ \pi' + \eta')$$

▶ Where

1.
$$e, e' : \mathbb{F}_2^{3r} \to \{0, 1\}, f : \mathbb{F}_2^r \to \{0, 1\}$$

2. η , η' from noise distribution.

► Correct proofs are Long Code encodings of labels to *U* given by

$$A_u = (f(a))_{f \in (\mathbb{F}_2)^{\mathbb{F}_2^{3r}}}$$

Bottleneck!: Proof size is $2^{2^{3r}}n^r$. Cannot go beyond $r = O(\log \log n)$.