2023-April Session-08-04-2023-shift-1-16-30

1

EE24BTECH11033 - KOLLURU SURAJ

1)	The	number	of ways,	in whi	ch 5	girls	and	7	boys	can	be	seated	at a	a round	table	so
	that no two girls sit together, is										(April-2023					

- a) $7(720)^2$ b) 720 c) $7(360)^2$ d) $126(5!)^2$
- 2) Let $f(x) = \frac{\sin x + \cos x \sqrt{2}}{\sin x \cos x}$, $x \in [0, \pi] \left\{\frac{\pi}{4}\right\}$. Then $f\left(\frac{7\pi}{12}\right)f''\left(\frac{7\pi}{12}\right)$ is equal to (April-2023)
 - a) $\frac{-2}{3}$ b) $\frac{2}{9}$ c) $\frac{-1}{3\sqrt{3}}$ d) $\frac{2}{3\sqrt{3}}$
- 3) If the equation of the plane containing the line x + 2y + 3z 4 = 0, 2x + y z + 5 = 0 and perpendicular to the plane $\mathbf{r} = (\hat{i} \hat{j}) + \lambda(\hat{i} + \mathbf{j} + \mathbf{k}) + \mu(\hat{i} 2\hat{j} + 3\hat{k})$ is ax + by + cz = 4, then (a b + c) is equal to (April-2023)
 - a) 22 b) 24 c) 20 d) 18
- 4) Let $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$. If $|adj|adj|adj|2A||= (16)^n$, then n is equal to (April-2023)
 - a) 8 b) 9 c) 12 d) 10
- 5) Let $I(x) = \int \frac{(x+1)}{x(1+xe^x)^2} dx$, x > 0. If $\lim_{x \to \infty} I(x) = 0$, then I(1) is equal to (April-2023)
 - a) $\frac{e+1}{e+2} \log_e(e+1)$ b) $\frac{e+2}{e+1} + \log_e(e+1)$ c) $\frac{e+2}{e+1} - \log_e(e+1)$ d) $\frac{e+2}{e+1} + \log_e(e+1)$
- 6) Let A = [0, 3, 4, 6, 7, 8, 9, 10] and R be the relation defined on A such that $R = \{(x, y) \in A \times A : x y \text{ is an odd positive integer or } x y = 2\}$. The minimum number of elements that must be added to the relation R so that it is a symmetric relation is equal to

 (April-2023)
- 7) Let [t] denote the greatest integer $\leq t$. If the constant term in the expansion of $\left(3x^2 \frac{1}{2x^3}\right)^7$ is α , then $[\alpha]$ is equal to (April-2023)
- 8) Let λ_1, λ_2 be the values of λ for which the points $\left(\frac{5}{2}, -1, \lambda\right)$ and (-2, 0, 1) are at equal distance from the plane 2x + 3y 6z + 7 = 0. If $\lambda_1 > \lambda_2$, then the distance of the point $(\lambda_1 \lambda_2, \lambda_2, \lambda_1)$ from the line $\frac{x-5}{1} = \frac{y-1}{2} = \frac{z+7}{2}$ (April-2023)

- 9) If the solution curve of the differential equation $(y 2\log_e x) dx + (x\log_e x^2) dy = 0$, x > 1 passes through the points $\left(e, \frac{4}{3}\right)$ and $\left(e^4, \alpha\right)$, then α is equal to (April-2023)
- 10) Let $\mathbf{a} = 6\hat{i} + 9\hat{j} + 12\hat{k}$, $\mathbf{b} = \alpha\hat{i} + 11\hat{j} 2\hat{k}$ and \hat{c} be vectors such that $\mathbf{a} \times \mathbf{c} = -\mathbf{a} \times \mathbf{b}$. If $\mathbf{a} \cdot \mathbf{c} = -12$, $\mathbf{c} \cdot (\hat{i} - 2\hat{j} + \hat{k}) = 5$, then $\mathbf{c} \cdot (\hat{i} + \hat{j} + \hat{k})$ is equal to (April-2023)
- 11) The largest natural number n such that 3^n divides 66! is (April-2023)
- 12) If a_a is the greatest term in the sequence $a_n = \frac{n^3}{n^4 + 147}$, n = 1, 2, 3,... then a is equal to (April-2023)
- 13) Let the mean and variance of 8 numbers x, y, 10, 12, 6, 12, 4, 8 be 9 and 9.25 respectively. If x > y, then 3x 2y is equal to (April-2023)
- 14) Consider a circle $C_1: x^2 + y^2 4x 2y = \alpha 5$. Let its mirror image in the line y = 2x + 1 be another circle $C_2: 5x^2 + 5y^2 10fx 10gy + 36 = 0$.Let r be the radius of C_2 . Then $\alpha + r$ is equal to (April-2023)
- 15) Let [t] denote the greatest integer $\leq t$. Then $\frac{2}{\pi} \int_{\pi/6}^{5\pi/6} (8 [\csc x] 5 [\cot x]) dx$ is equal to (April-2023)