Beschreibende Statistik

Absolute Häufigkeiten

Relative Häufigkeiten

$$H=\sum_{1}^{n}h_{i}$$

$$F = \sum_{1}^{m} f_i$$
, $F(x) = \frac{H(x)}{n}$

Kennwerte (Lagemasse)

Quantil

$$i = [n \cdot q], \ Q = x_i = x_{[n \cdot q]}$$

Interquartilsabstand

$$IQR = Q_3 - Q_1$$

Modus

$$x_{mod}$$
 = Häufigste Wert

Arithmetisches Mittel

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \sum_{i=1}^{m} a_i \cdot f_i$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \sum_{i=1}^{m} a_i \cdot f_i$$

$$\begin{cases} x_{\left[\frac{n+1}{2}\right]} & n \text{ ungerade} \\ 0.5 \cdot \left(x_{\left[\frac{n}{2}\right]} + x_{\left[\frac{n}{2}+1\right]}\right) & n \text{ gerade} \end{cases}$$

Stichprobenvarianz s² (Streumasse)

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \overline{x^2} - \bar{x}^2, \qquad (s_{kor})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$(s_{kor})^2 = \frac{n}{n-1} \cdot s^2$$

Standardabweichung s (Streumasse)

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \sqrt{\bar{x}^2 - \bar{x}^2}, \qquad s_{kor} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Begriffe

- $\Omega = Grundgesamtheit$
- n = Anzahl Objekte
- X = Stichprobenwerte
- a = Ausprägungen
- h = Absolute Häufigkeit
- f = Relative Häufigkeit
- H = Kumulative Absolute Häufigkeit
- F =Kumulative Relative Häufigkeit

Boxplot

- $Q_1, Q_2 = x_{med}, Q_3$
- $IOR = O_3 O_1$
- Untere Antenne x_u : $u = \min[Q_1 1.5 \cdot IQR, Q_1]$
- Obere Antenne x_0 : $o = \max[Q_3 + 1.5 \cdot IQR, Q_3]$
- Ausreisser: $x_i < x_u \lor x_i > x_0$

Quantitativ / Metrisch

Ausmass angegeben mit Zahlen

Stetia

PMF + CDF

PDF + CDF

Qualitativ / Kategoriell

Kein Ausmass, nur endlich viele Ausprägungen

Ordinal

Nominal

Merkmalstvp

Diskret

Nicht klassierte Daten (PMF und CDF)

Die *absolute Häufigkeit* kann als Funktion $h: \mathbb{R} \to \mathbb{R}$ bezeichnet werden.

 h_i

Die *relative Häufigkeit* kann als Funktion $f: \mathbb{R} \to \mathbb{R}$ bezeichnet werden.

$$f_i = \frac{h_i}{n}$$

Klassenbildung (Faustregeln)

- Die Klassen sollten gleich breit gewählt werden
- Die Anzahl der Klassen sollte zwischen 5 und 20 liegen, jedoch \sqrt{n} nicht überschreiben.

Beispiel:

a_i	397	398	399	400	Total
h_i	1	3	7	5	16
f_i	1	3	7	5	1
	16	16	$\overline{16}$	$\overline{16}$	
$\boldsymbol{H_i}$	1	4	11	16	
$\boldsymbol{F_i}$	1	4	11	16	
•	16	$\overline{16}$	16	16	

Klassierte Daten (PDF und CDF)

Die absolute Häufigkeitsdichtefunktion erhält man, indem der Wert der absoluten Häufigkeit h_i , durch die Klassenbreite (Säulenbreite) d_i geteilt wird.

$$h(x) = \frac{h_i}{d_i}$$

Die *relative Häufigkeitsdichtefunktion* (PDF) $f: \mathbb{R} \to [0,1]$ erhält man aus der absoluten Häufigkeitsdichtefunktion, indem man den Wert durch die Stichprobengrösse n teilt.

$$PDF = f(x) = \frac{h(x)}{n}$$

Beispiel:

Klassen	100 - 200	200 - 500	500 - 800	800 - 1000	Total
h_i	35	182	317	84	618
f_i	35 618	182	317	84 618	Area = 1
	618	618	618	618	
d_i	100	300	300	200	
h(x)	35	182	317	84	
	100	300	300	$\frac{84}{200}$	
f(x)	35	182	317	84	
	100 · 618	300 · 618	300 · 618	200 · 618	

Deskriptive Statistik

Varianz s_x^2 , s_y^2

$$(s_x)^2 = \overline{x^2} - \overline{x}^2, \qquad (s_y)^2 = \overline{y^2} - \overline{y}^2$$

Kovarianz s_{xy}

$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}), \qquad s_{xy} = \overline{xy} - \bar{x} \cdot \bar{y}$$

Abkürzungen

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\bar{x}\bar{y} = \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i$$

Varianz (Ränge) $\left(s_{rg(x)}\right)^2$, $\left(s_{rg(y)}\right)^2$

$$(s_{rg(x)})^2 = \overline{rg(x)^2} - (\overline{rg(x)})^2, \qquad (s_{rg(y)})^2 = \overline{rg(y)^2} - (\overline{rg(y)})^2$$

Kovarianz (Ränge) $s_{rg(xy)}$

$$s_{rg(xy)} = \overline{rg(xy)} - \overline{rg(x)} \cdot \overline{rg(y)} = \overline{rg(xy)} - \frac{(n+1)^2}{4}$$

Der Korrelationskoeffizient (Pearson) r_{xy}

$$r_{xy} = \frac{s_{xy}}{s_x \cdot s_y} = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{\overline{x^2} - \overline{x}^2} \cdot \sqrt{\overline{y^2} - \overline{y}^2}}$$

Ist der Korrelationskoeffizient r_{xy}

- $r_{xy} \approx 1 \rightarrow$ starker positiver linearer Zusammenhang
- $r_{xy} \approx -1 \rightarrow$ starker negativer linearer Zusammenhang
- $r_{xy} \approx 0 \rightarrow$ Keine lineare Korrelation

Korrelationskoeffizient (Spearman) r_{sp}

$$r_{Sp} = \frac{S_{rg(xy)}}{S_{rg(x)} \cdot S_{rg(y)}} = \frac{\overline{rg(xy)} - \overline{rg(x)} \cdot \overline{rg(y)}}{\sqrt{\overline{rg(x)^2} - (\overline{rg(x)})^2} \cdot \sqrt{\overline{rg(y)^2} - (\overline{rg(y)})^2}}$$

Vereinfachte Formel, sofern alle Ränge unterschiedlich sind

$$r_{sp} = 1 - \frac{6 \cdot \sum_{i=1}^{n} d_i^2}{n \cdot (n^2 - 1)}, \quad mit \ d_i = rg(x_i) - rg(y_i)$$

Bemerkungen

Auch wenn zwischen zwei Grössen eine Korrelation besteht, so muss das noch lange nicht einen *kausalen Zusammenhang* bedeuten. Man spricht von *Scheinkorrelation*.

Ränge

Der $Rang\ rg(x_i)$ des Stichprobenwertes x_i ist definiert als der Index von x_i in der nach der Grösse geordneten Stichprobe.

i	1	2	3	4	5	6
x_i	23	27	35	35	42	59
$rg(x_i)$	1	2	3.5	3.5	5	6

Graphische Darstellung

Form linear / gekrümmt

Richtung positiver / negativer Zusammenhang

• Stärke starke / schwache Streuung

Bivariate Daten (Merkmale)

• 2x kategoriell

Kontingenztabelle + Mosaikplot

• 1x kategoriell + 1x metrisch

Boxplot oder Striptchart

2x metrisch

Streudiagramm

Kombinatorik

Fakultät

$$n! = 1 \cdot 2 \cdot \dots \cdot n = \prod_{k=1}^{n} k$$

Binomialkoeffizient

Wie viele Möglichkeiten gibt es k Objekte aus einer Gesamtheit von n Objekten auszuwählen.

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

Systematik

- k Anzahl Stellen
- n Anzahl Optionen pro Stelle

Variation (mit	t Reihenfolge)	Kombination (ohne Reihenfolge)		
Mit Wiederholung	Ohne Wiederholung	Mit Wiederholung	Ohne Wiederholung	
n^k	$\frac{n!}{(n-k)!}$	$\binom{n+k-1}{k}$	$\binom{n}{k}$	
Zahlenschloss	Schwimmwettkampf	Zahnarzt	Lotto	

Variation mit Wiederholung (Zahlenschloss)

Wie viele Möglichkeiten gibt es bei einem Zahlenschloss (0-9) mit 6 Zahlenkränzen?

$$n = 10, k = 6$$

 $n^k = 10^6$

Variation ohne Wiederholung (Schimmwettkampf)

Bei einem Schwimmwettkampf starten 10 Teilnehmer. Wie viele mögliche Platzierungen der ersten drei Plätze (Podest) gibt es?

$$n = 10, k = 3$$

$$\frac{n!}{(n-k)!} = \frac{10!}{(10-3)!} = \frac{10!}{(7)!}$$

Kombination mit Wiederholung (Zahnarzt)

3 Spielzeuge werden aus 5 Töpfen gezogen. Jeder Topf ist mit einer (unterschiedlichen) Art von Spielzeug befüllt.

Wie viele Möglichkeiten hat das Kind?

$$\binom{n+k-1}{k} = \binom{5+3-1}{3} = \binom{7}{3}$$

n = 5, k = 3

Kombination ohne Wiederholung (Lotto)

Wie gross sind die Chancen beim Lotto 6 aus 49 Zahlen richtig zu ziehen?

Jede Zahl ist nur einmal vorhanden und die Zahlen werden nicht zurückgelegt. Die Reihenfolge in der gezogen wird spielt keine Rolle.

$$n = 49, \qquad k = 6$$
$$\binom{n}{k} = \binom{49}{6}$$

Ideen

- Berechnung durch Aufteilung in mehrere Kombinationen
- Berechnung über Inverse
- Prozente = Wahrscheinlichkeit / Gesamt-Wahrscheinlichkeit

Wahrscheinlichkeit, dass ein Ereignis x-Mal Auftritt

Beim Rommé spielt man mit 110 Karten: sechs davon sind Joker. Zu Beginn eines Spiels erhält jeder Spieler genau 12 Karten.

In wieviel Prozent aller möglichen Fälle sind darunter genau zwei Joker?

$$\frac{\binom{6}{2} \cdot \binom{104}{10}}{\binom{110}{12}}$$

In wieviel Prozent aller möglichen Fälle ist darunter mindestens ein Joker?

$$1 - \frac{\binom{104}{12}}{\binom{110}{12}}$$

Von 100 Glühbirnen sind genau drei defekt. Es werden nun 6 Glühbirnen zufällig ausgewählt.

Wie viele Möglichkeiten gibt es, wenn sich *mindestens eine defekte* Glühbirne in der Auswahl befinden soll?

$$\binom{100}{6} - \binom{97}{6} = 203'880'032$$

Mit wie viel Prozent Chancen ist bei einer Auswahl von 6 Glühbirnen keine defekt?

$$\frac{\binom{97}{6}}{\binom{100}{6}}$$

Sind in mehr als 60% aller Fälle von vier (nicht gleichaltrigen) Geschwistern mindestens zwei im gleichen Monat geboren?

$$1 - \frac{12 \cdot 11 \cdot 10 \cdot 9}{12^4}$$

Auf wie viele Arten lassen sich 10 Bücher in ein Regal reihen?

$$n = 10, \qquad k = 10$$

$$\frac{n!}{(n-k)!} = 10!$$

Aufteilung in mehrere Kombinationen

Wie viele Worte lassen sich aus den Buchstaben des Wortes ABRAKADABRA bilden? (Nur Worte in denen alle Buchstaben vorkommen!)

$$A = 5x$$
, $B = 2x$, $R = 2x$, $D = 1x$, $K = 1x$
$$\binom{11}{5} \cdot \binom{6}{2} \cdot \binom{4}{2} \cdot \binom{2}{1} \cdot \binom{1}{1} = 83160$$

Elementare Wahrscheinlichkeitsrechnung

<u>Ergebnisraum</u> Ω : Menge aller möglichen Ergebnisse des *Zufallsexperiments*. <u>Zähldichte</u> $\rho: \Omega \to [0,1]$, die jedem Ereignis seine Wahrscheinlichkeit zuordnet.

Für jedes Ereignis aus Ω gleichwahrschenlich ist, wird (Ω, P) Laplace-Raum genannt.

$$P(M) = \frac{|M|}{|\Omega|}$$

Zwei Ereignisse A und B heissen **stochastisch unabhängig**, falls

$$P(A \cap B) = P(A) \cdot P(B)$$

Zwei Zufallsvariablen $X: \Omega \to \mathbb{R}$ und $Y: \Omega \to \mathbb{R}$ heissen **stochastisch abhängig**, falls

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y),$$
 für alle $x, y \in \mathbb{R}$

Für **stochastisch unabhängige** Zufallsvariablen X und Y gilt

$$E(X \cdot Y) = E(X) \cdot E(Y), \qquad V(X + Y) = V(X) + V(Y)$$

Wahrscheinlichkeit eines Ereignisses B mit Vorbedingung A

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

Multiplikationssatz

$$P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

Satz von der Totalen Wahrscheinlichkeit

$$P(B) = P(A) \cdot P(B|A) + P(\bar{A}) \cdot P(B|\bar{A})$$

Satz von *Bayes*

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)}$$

	A	\overline{A}	Σ
В	$P(A \cap B)$	$P(\overline{A} \cap B)$	P(B)
\overline{B}	$P(A \cap \overline{B})$	$P(\overline{A} \cap \overline{B})$	$P(\overline{B})$
Σ	P(A)	$P(\overline{A})$	$P(\Omega)$

Kenngrössen (Varianz und Erwartungswert)

$$E(X + Y) = E(X) + E(Y), \qquad E(\alpha X) = \alpha E(X)$$

$$V(X) = E(X^{2}) - E(X)^{2} = \left[\sum_{x \in \mathbb{R}} P(X = x) \cdot x^{2}\right] - E(X)^{2}$$

$$V(\alpha X + \beta) = \alpha^2 \cdot V(X), \qquad S(X) = \sqrt{V(X)}$$

Spezielle Verteilung (Summary)

Diskret

$$E(X) = \sum_{x \in \mathbb{R}} f(x) \cdot x$$

$$V(X) = \sum_{x \in \mathbb{D}} f(x) \cdot (x - E(X))^{2}$$

Stetig

$$E(X) = \int_{-\infty}^{\infty} f(x) \cdot x \ dx$$

$$V(X) = \int_{-\infty}^{\infty} f(x) \cdot (x - E(X))^{2}$$

Spezielle Verteilungen

Bernoulliverteilung (Einmaliges zurücklegen)

Bernoulli-Experimente sind Zufallsexperimente mit nur zwei möglichen Ergebnissen. Wir bezeichnen diese Ergebnisse mit 1 und 0.

$$P(X = 1) = p,$$
 $P(X = 0) = 1 - p = q$

1.
$$E(X) = E(X^2) = p$$

2.
$$V(X) = p \cdot (1 - p)$$

Eine *Hypergeometrische* Verteilung kann durch eine *Binomialverteilung* angenähert werden, wenn $n \leq \frac{N}{20}$

$$H(N,M,N) \approx B(n,\frac{M}{N})$$

Approximation durch die Normalverteilung

• Binomialverteilung: $\mu = np$, $\sigma^2 = npq$

• Poissonverteilung: $\mu = \lambda$, $\sigma^2 = \lambda$

$$P(a \le X \le b) = \sum_{x=a}^{b} P(X=x) \approx \phi_{\mu,\sigma} \left(b + \frac{1}{2} \right) - \phi_{\mu,\sigma} \left(a - \frac{1}{2} \right)$$

Faustregel

Die Approximation (Binomialverteilung) kann verwendet werden, wenn npq>9

Für grosses $n\ (n\geq 50)$ und kleiner $p\ (p\leq 0.1)$ kann *Binomial*- durch die *Poisson*-Verteilung approximiert werden

$$B(n,p) \approx Poi(n \cdot p)$$

Hypergeometrische Verteilung (Ohne zurücklegen)	Binomialverteilung (Mit zurücklegen)	Poisson Verteilung	
 N = Objekte gesamthaft M = Objekte einer bestimmten Sorte n = Stichprobengrösse x = Merkmalsträger 	$ \begin{array}{ll} \bullet & n = \text{Anzahl Wiederholungen} \\ \bullet & p = \text{Wahrscheinlichkeit für ein Ergebnis 1} \\ \bullet & q = 1-p \end{array} $	• $\lambda = Rate$	
$P(X = x) = \frac{\binom{M}{x} \cdot \binom{N-M}{n-x}}{\binom{N}{n}}$	$P(X = x) = \binom{n}{x} \cdot p^x \cdot q^{n-x}$	$P(X = x) = \frac{\lambda^x}{x!} \cdot e^{-\lambda}, \lambda > 0$	
Schreibweise: $X \sim H(N, M, n)$	Schreibweise: $X \sim B(n; p)$	Schreibweise $X \sim Poi(\lambda)$	
$1. \mu = E(X) = n \cdot \frac{M}{N}$	$1. \mu = E(X) = np$	1. $\mu = E(X) = \lambda$	
2. $\sigma^2 = V(X) = n \cdot \frac{M}{n} \cdot \left(1 - \frac{M}{N}\right) \cdot \frac{N-n}{N-1}$	$2. \sigma^2 = V(X) = npq$	$2. \sigma^2 = V(X) = \lambda$	
$3. \sigma = S(X) = \sqrt{V(X)}$	3. $\sigma = S(X) = \sqrt{npq}$	3. $\sigma = S(X) = \sqrt{\lambda}$	

Spezielle Verteilungen

Bei einer stetigen Zufallsvariable X lässt sich die Verteilungsfunktion als Integral einer Funktion f darstellen

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) \cdot du$$

Liegt eine beliebige Normalverteilung $N(\mu, \sigma)$ vor, muss *standardisiert* werden. Statt ursprünglichen Zufallsvariablen X betrachtet man die Zufallsvariable

$$U = \frac{X - \mu}{\sigma}$$

Gauss-Verteilung oder Normalverteilung

Die stetige Zufallsvariable X folgt der *Normalverteilung* mit den Parametern, $\mu, \sigma \in \mathbb{R}, \sigma > 0$, wenn sie folgende Dichtefunktion hat:

$$\varphi_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)}$$

Schreibweise: $X \sim N(\mu; \sigma)$

Ist $\mu=0$ und $\sigma=1$, so spricht man von der *Standardnormalverteilung*. Ihre Dichtefunktion wird einfach mit φ bezeichnet; sie ist gegeben durch

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}x^2}$$

Die Verteilungsfunktion der Normalverteilung

Die kumulative Verteilungsfunktion (CDF) von $\varphi_{\mu,\sigma}(x)$ wird mit $\phi_{\mu,\sigma}(x)$ bezeichnet. Sie ist definiert durch

$$\phi_{\mu,\sigma}(x) = P(X \le x) = \int_{-\infty}^{x} \varphi_{\mu,\sigma}(t) dt = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \int_{-\infty}^{x} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)} dt$$

Erwartungswert und Varianz der Normalverteilung

Für eine Zufallsvariable $X \sim N(\mu; \sigma)$ gilt

$$E(X) = \mu$$
, $V(X) = \sigma^2$

Zentraler Grenzwertsatz

Für eine Folge $X_1, X_2, ..., X_n$ von Zufallsvariablen definieren wird die n-te Summe S_n und das arithmetische Mittel \overline{X}_n .

Haben alle Zufallsvariablen denselben Erwartungswert $E(X_i) = \mu$ und dieselbe Varianz $V(X_i) = \sigma^2$ so folgt

$$E(S_n) = n \cdot \mu, \qquad V(S_n) = n \cdot \sigma^2, \qquad E(\bar{X}_n) = \mu, \qquad V(\bar{X}_n) = \frac{\sigma^2}{n} = \frac{1}{n^2} \cdot V(S_n)$$

Sind die Zufallsvariablen alle identisch $N(\mu, \sigma)$ verteilt, so sind die Summe S_n und das arithmetische Mittel \bar{X}_n wieder normalverteilt mit...

- S_n : $N(n \cdot \mu, \sqrt{n} \cdot \sigma)$
- \bar{X}_n : $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

Verteilungsfunktion $F_n(u)$ der dazugehörigen standardisierten Zufallsvariable

$$U_n = \frac{\left((X_1 + X_2 + \dots + X_n) - n\mu \right)}{\sqrt{n} \cdot \sigma} = \frac{(\bar{X} - \mu)}{\frac{\sigma}{\sqrt{n}}}$$

Konvergiert für $n \to \infty$ gegen die Verteilungsfunktion $\phi(u)$ der Standardnormalverteilung:

$$\lim_{n \to \infty} F_n(u) = \phi(u) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{u} e^{-\frac{1}{2}t^2} dt$$

Methode der kleinsten Quadrate

Lineare Regression

Gegeben sind Datenpunkte $(x_i; y_i)$ mit $1 \le i \le n$. Die Residuen / Fehler $\epsilon_i = g(x_i) - y_i$ dieser Datenpunkte sind Abstände in y —Richtung zwischen y_i und der Geraden g. Die Ausgleichs- oder Regressiongerade, sei diejenige Gerade für die, die Summe der quadrierten Residuen $\sum_{i=1}^n \epsilon_i^2$ am kleinsten ist.

Regressionsgerade

Die Regressionsgerade g(x)=mx+d mit den Parametern m und d ist die Gerade, für welche die Residualvarianz s_{ε}^2 minimal ist.

Steigung:
$$m = \frac{s_{xy}}{s_x^2}$$
, $y - Achsenabschnitt: $d = \bar{y} - m\bar{x}$, $s_{\epsilon}^2 = s_y^2 - \frac{s_{xy}^2}{s_x^2}$$

Bestimmtheitsmass

Die Totale Varianz setzt sich zusammen aus der Residualvarianz und der Varianz der prognostizierten Werte

- s_{ν}^2 Totale Varianz
- $s_{\hat{v}}^2$ prognostizierte (erklärte) Varianz
- s_{ϵ}^2 Residualvarianz

$$s_{\nu}^2 = s_{\epsilon}^2 + s_{\hat{\nu}}^2$$

Das Bestimmheitsmass R^2 beurteilt die globale Anpassungsgüte einer Regression über den Anteil der prognostizierten Varianz $s_{\hat{y}}^2$ an der totalen Varianz $s_{\hat{y}}^2$

$$R^2 = \frac{s_{\hat{y}}^2}{s_{y}^2}$$

Das Bestimmheitsmass \mathbb{R}^2 entspricht dem Quadrat des Korrelationskoeffizienten

$$R^{2} = \frac{s_{xy}^{2}}{s_{x}^{2} \cdot s_{y}^{2}} = (r_{xy})^{2}$$

Residuenquadrate

- y_i : beobachtete y Werte
- \hat{y}_i : prognostizierte bzw. erklärte y Werte
- ϵ : Residuen (oder auch Fehler)

$$\sum_{i=1}^{n} \left(\underbrace{y_i - g(x_i)}_{\epsilon_i} \right)^2 = \sum_{i=1}^{n} \left(\underbrace{y_i - \hat{y}_i}_{\epsilon_i} \right)^2$$

Kleinste Quadrate (KQM)

Die Parameter m und q werden mit der Matrix A berechnet

$$A = \begin{pmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}, \qquad A^T \cdot A \cdot \begin{pmatrix} m \\ q \end{pmatrix} = A^T \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Linearisierungsfunktionen

Ausgangsfunktion	Transformation
$y = q \cdot x^m$	$\log(y) = \log(q) + m \cdot \log(x)$
$y = q \cdot m^x$	$\log(y) = \log(q) + \log(m) \cdot x$
$y = q \cdot e^{m \cdot x}$	$\ln(y) = \ln(q) + m \cdot x$
$y = \frac{1}{q + m \cdot x}$	$V = q + m \cdot x; \ V = \frac{1}{y}$
$y = q + m \cdot \ln(x)$	$y = q + m \cdot U$; $u = \ln(x)$
$y = \frac{1}{q \cdot m^x}$	$\log\left(\frac{1}{y}\right) = \log(q) + \log(m) \cdot x$

Schliessende Statistik

Erwartungstreue Schätzfunktion

Eine Schätzfunktion Θ eines Parameters θ heisst erwartungstreu, wenn

$$E(\Theta) = \theta$$

Effizienz Schätzfunktion

Gegeben sind zwei *erwartungstreue* Schätzfunktionen Θ_1 und Θ_2 desselben Parameters θ . Man nennt Θ_1 *effizienter als* Θ_2 , falls

$$V(\Theta_1) < V(\Theta_2)$$

Konsistenz Schätzfunktion

Eine Schätzfunktion Θ heisst *konsistent*, wenn

$$E(\Theta) \to \theta$$
 und $V(\Theta) \to 0$ für $n \to \infty$

Grundgesamtheit mit Erwartungswert μ , Varianz σ^2 und Zufallsstichprobe X_1, X_2, X_3 . Die folgende Schätzfunktion ist gegeben.

$$\Theta_1 = \frac{1}{3} \cdot (2X_1 + X_2)$$

Ist diese Schätzfunktion *erwartungstreu* (Parameter: μ)?

$$E(\Theta_1) = E\left(\frac{1}{3} \cdot (2X_1 + X_2)\right) = \frac{1}{3} \cdot (2E(X_1) + E(X_2))$$

$$E(\Theta_1) = \frac{1}{3} \cdot (2\mu + \mu) = \frac{3\mu}{3} = \mu$$

Da $E(\Theta_1) = \mu$ ist die Funktion erwartungstreu.

Berechne die *Effizienz* der Schätzfunktion (Parameter: σ^2):

$$V(\Theta_1) = V\left(\frac{1}{3} \cdot (2X_1 + X_2)\right) = \frac{1}{9} \cdot V(2X_1 + X_2) = \frac{1}{9} \cdot \left(V(2X_1) + V(X_2)\right)$$

$$V(\Theta_1) == \frac{1}{9} \cdot \left(4 \cdot V(X_1) + V(X_2) \right) = \frac{1}{9} \cdot \left(4\sigma^2 + \sigma^2 \right) = \frac{5\sigma^2}{9}$$

Likelyhood-Funktion

Wir betrachten eine Zufallsvariable X und ihre Dichte (PDF)

$$f_{x}(x|\theta)$$

Welche von x und einem oder mehreren Parametern θ abhängig sind. Für eine Stichprobe vom Umfang n mit x_1, \ldots, x_n nennen wir die vom Parameter θ abhängige Funktion ... die Likelyhood-Funktion der Stichprobe.

$$L(\theta) = f_x(x_1|\theta) \cdot f_x(x_2|\theta) \cdot \dots \cdot f_x(x_n|\theta)$$

Vorgehen – Likelyhood Funktion

- 1. Likelyhood-Funktion bestimmen
- 2. Maximalstelle der Funktion bestimmen
 - (Partielle) Ableitung $L'(\theta) = 0$

Erwartungswert (Funktion, Wert)

$$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i, \qquad \hat{\mu} = \bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

Varianz (Funktion, Wert)

$$S^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i - \bar{X})^2$$
, $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i - \bar{X})^2$

Vertrauensintervalle

Wir legen eine grosse Wahrscheinlichkeit γ fest (z.B. $\gamma=95\%$). γ heisst statistische Sicherheit oder Vertrauensniveau. $\alpha=1-\gamma$ ist die sogenannte Irrtumswahrscheinlichkeit.

Dann bestimmen wir zwei Zufallsvariablen Θ_u und Θ_o so, dass sie den wahren Parameterwert Θ mit der Wahrscheinlichkeit γ einschliessen:

$$P(\Theta_u \leq \Theta \leq \Theta_u) = \gamma$$

Spezialfall: Anteilswert *p* **einer Bernoulli-Verteilung** (Funktion, Wert)

$$\overline{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$$
, $\hat{p} = \overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$

Intervallschätzung

Geben Sie das Vertrauensintervall für μ an (σ^2 unbekannt). Gegeben sind...

$$n = 10$$
, $\bar{x} = 102$, $s^2 = 16$, $\gamma = 0.99$

1. Verteilungstyp bestimmen

Verteilungstyp mit Param μ und σ^2 unbekannt \rightarrow *T-Verteilung*

2. Verteilung und Quantile berechnen

$$f = n - 1 = 9$$
, $p = \frac{1 + \gamma}{2} = 0.995$, $c = t_{(p;f)} = t_{(0.995;9)} = 3.25$

3. Vertrauensintervall bestimmen

$$e = c \cdot \frac{S}{\sqrt{n}} = 4.111$$
, $\Theta_{\rm u} = \bar{X} - e = 97.89$, $\Theta_{\rm o} = \bar{X} + e = 106.11$

	Verteilung der Grundgesamtheit	Param	Schätzfunktionen	Standardisierte Zufallsvariable	Verteilung / Quantile	Intervallgrenzen
1	Normalverteilung (Varianz σ^2 bekannt)	μ	$ar{X}$	$U = \frac{(\bar{X} - \mu)}{\sigma / \sqrt{n}}$	Standardnormalverteilung $c=u_p,\;p=rac{1+\gamma}{2}$	$e = c \cdot \frac{\sigma}{\sqrt{n}}$ $\Theta_{u} = \overline{X} - e, \qquad \Theta_{o} = \overline{X} + e$
2	Normalverteilung (Varianz σ^2 unbekannt und $n \leq 30$; sonst Fall 1 mit s als Schätzwert für σ)	μ	\bar{X} , S^2	$T = \frac{(\bar{X} - \mu)}{S/\sqrt{n}}$	t-Verteilung $c = t_{(p;f=n-1)}, \ p = \frac{1+\gamma}{2}$	$e = c \cdot \frac{S}{\sqrt{n}}$ $\Theta_{\mathbf{u}} = \bar{X} - e, \Theta_{\mathbf{o}} = \bar{X} + e$
3	Normalverteilung	σ^2	$ar{X}$, S^2	$Z=(n-1)\frac{s^2}{\sigma^2}$	Chi-Quadrat-Verteilung $c_1 = z_{(p_1;f=n-1)}, \; p_1 = \frac{1-\gamma}{2}$ $c_2 = z_{(p_2;f=n-1)}, \; p_2 = \frac{1+\gamma}{2}$	$e = (n-1) \cdot S^{2}$ $\Theta_{u} = \frac{e}{c_{2}}, \qquad \Theta_{o} = \frac{e}{c_{1}}$
4	Bernoulli-Verteilung mit $n\hat{p}(1-p) > 9$	p	$P(X_i = 1) = p$	$U = \frac{\bar{X} - p}{\sqrt{p(1 - p)/n}}$	Standardnormalverteilung näherungsweise $c=u_q, \ q=\frac{1+\gamma}{2}$	$e = c \cdot \sqrt{\frac{\overline{X} \cdot (1 - \overline{X})}{n}}$ $\Theta_u = \overline{X} - e, \qquad \Theta_o = \overline{X} + e$
5	Beliebig mit $n > 30$					