INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4018B MSI

Presettable divide-by-N counter

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4018B MSI

PRESETTABLE DIVIDE-BY-N COUNTER

The HEF4018B is a 5-stage Johnson counter with a clock input (CP), a data input (D), an asynchronous parallel load input (PL), five parallel inputs (\overline{O}_0 to \overline{O}_4), five active LOW buffered outputs (\overline{O}_0 to \overline{O}_4), and an overriding asynchronous master reset input (MR).

Information on P_0 to P_4 is asynchronously loaded into the counter while PL is HIGH, independent of CP and D inputs. When P_L is LOW, the counter advances on the LOW to HIGH transition of CP. By connecting \overline{O}_0 to \overline{O}_4 to D, the counter operates as a divide-by-n counter (n = 2 to 10; see also function selection below). Each register stage is a D-type master-slave flip-flop with a set-direct/clear-direct input. An internal code correction circuit provides automatic code correction of the counter. From any illegal code the counter is in a proper counting mode within 11 clock pulses.

A HIGH on MR resets the counter (\overline{O}_0 to \overline{O}_4 = HIGH) independent of all other inputs.

Fig. 1 Functional diagram.

FUNCTION SELECTION

counter mode; divide by	connect D input to	remarks
10 8 6 4 2	04 03 02 01 00	no external components needed
9 7 5 3	03·04 02·03 01·02 00·01	AND gate needed; counter skips all HIGH states

HEF4018BP(N): 16-lead DIL; plastic

(SOT38-1) HEF4018BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74) HEF4018BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

PL parallel load input
P0 to P4 parallel inputs
D data input

CP clock input (LOW to HIGH edge triggered)

MR master reset input

 \overline{O}_0 to \overline{O}_4 buffered output (active LOW)

APPLICATION INFORMATION

Some examples of applications for the HEF4018B are:

- Programmable divide-by-n counter
- Programmable frequency division
- Timers

FAMILY DATA

see Family Specifications

IDD LIMITS category MSI

Presettable divide-by-N counter

HEF4018B MSI

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	typical formula for P (μW)	where $f_i = \text{input freq. (MHz)}$		
Dynamic power dissipation per package (P)	5 10 15	700 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ 3450 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ 10 300 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$	f_0 = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_0C_L)$ = sum of outputs V_{DD} = supply voltage (V)		

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ °C}$; $C_L = 50 \text{ pF}$; input transition times $\leq 20 \text{ ns}$

	V _{DD} V	symbol	min.	typ.	max.		typical extrapolation formula
Propagation delays							
CP → Ō	5			185	370	ns	158 ns + (0,55 ns/pF) C _I
HIGH to LOW	10	^t PHL		65	135	ns	54 ns + (0,23 ns/pF) C
	15			50	95	ns	42 ns + (0,16 ns/pF) CL
	5			145	295	ns	118 ns + (0,55 ns/pF) C _I
LOW to HIGH	10	tPLH		55	110	ns	44 ns + (0,23 ns/pF) C
	15			40	85	ns	32 ns + (0,16 ns/pF) CL
PL → Ō	5			205	415	ns	178 ns + (0,55 ns/pF) C ₁
HIGH to LOW	10	^t PHL		70	140	ns	59 ns + (0,23 ns/pF) C
	15			50	105	ns	42 ns + (0,16 ns/pF) CL
	5	:		175	350	ns	148 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	^t PLH		65	125	ns	54 ns + (0,23 ns/pF) C
	15			50	95	ns	42 ns + (0,16 ns/pF) CL
MR → Ō	5			140	280	ns	113 ns + (0,55 ns/pF) C _I
LOW to HIGH	10	^t PLH		55	105	ns	44 ns + (0,23 ns/pF) C
	15			40	80	ns	32 ns + (0,16 ns/pF) C
Output transition							
times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	tTHL		30	60	ns	9 ns + (0,42 ns/pF) \bar{C}_{L}
	15			20	40	ns	6 ns + (0,28 ns/pF) C
	5			60	120	ns	10 ns + (1,0 ns/pF) Cլ
LOW to HIGH	10	tTLH		30	60	ns	9 ns + (0,42 ns/pF) CL
	15	·		20	40	ns	6 ns + (0,28 ns/pF) C

Presettable divide-by-N counter

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	symbol	min.	typ.	max.	t	ypical extrapolation formula
Set-up time D → CP	5 10 15	t _{su}	130 40 30	65 20 15	ns ns ns		
Hold time D → CP	5 10 15	^t hold	20 5 5	-45 -15 -10	ns ns ns		
Minimum clock pulse width; LOW	5 10 15	^t WCPL	140 50 40	70 25 20	ns ns ns		
Minimum MR pulse width; HIGH	5 10 15	twmRH	100 35 25	50 20 15	ns ns ns	1 -	see also waveforms Figs 4, 5 and 6
Minimum PL pulse width; HIGH	5 10 15	twPLH	145 50 35	75 25 20	ns ns ns		
Recovery time for MR	5 10 15	t _{RMR}	135 40 25	70 20 15	ns ns ns		
Recovery time for PL	5 10 15	tRPL	170 55 40	85 30 20	ns ns ns		
Maximum clock pulse frequency	5 10 15	f _{max}	2 6 8	4 11 16	MI MI	Ηz	

Fig. 4 Waveforms showing minimum MR pulse width and MR recovery time.

Presettable divide-by-N counter

HEF4018B MSI

Fig. 5 Waveforms showing minimum clock pulse width, set-up time and hold time for CP and D.

Fig. 6 Waveforms showing minimum PL pulse width, recovery time for PL, and set-up and hold times for P_n to PL. Set-up and hold times are shown as positive values but may be specified as negative values.

Fig. 7 Timing diagram.

D input connected to \overline{O}_4 for decade counter configuration.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.