CSI4101 Compiler Design 2nd Semester, 2019

Homework 2

This homework has been provided for your self-study. There is nothing to hand in with this homework. The solution to the example in Section 3 will be provided ahead of the exam.

1 Algorithm to Compute First Sets

To initialize, set $FIRST(X) = \{\}$ for each terminal and non-terminal symbol X in grammar G. The algorithm then proceeds according to the following three steps; the third step is repeated until no more changes to the FIRST sets occur, i.e., until a fixed-point is reached¹.

- 1. If $X \in V_t$ then $FIRST(X) = \{X\}$
- 2. If $X := \epsilon$ then add ϵ to FIRST(X)
- 3. If $X ::= Y_1 Y_2 \dots Y_k$:
 - (a) Put $FIRST(Y_1) \{\epsilon\}$ in FIRST(X)
 - (b) $\forall i : 1 < i \le k$, if $\epsilon \in \text{FIRST}(Y_1) \cap \cdots \cap \text{FIRST}(Y_{i-1})$ (i.e., $Y_1 \dots Y_{i-1} \to^* \epsilon$) then put $\text{FIRST}(Y_i) - \{\epsilon\}$ in FIRST(X)
 - (c) if $\epsilon \in \text{FIRST}(Y_1) \cap \cdots \cap \text{FIRST}(Y_k)$ then put ϵ in FIRST(X)

Repeat Step 3 until no more additions can be made.

1.1 Example

Consider the following context-free grammar. The FIRST-sets for the terminals V_t (Rule 1 above) are given in Table I. Table II shows the FIRST-sets of the non-terminals after initialization and application of Rule 2.

S'	::= S
S	::= AB
S	::= C
A	:= ef
A	$::=\epsilon$
В	::= hg
\mathbf{C}	::= DD
\mathbf{C}	::= fi
D	··- a

FIRST
{e}
{f}
{g}
{h}
{i}

Table I

Non-Terminal	FIRST
S'	{}
S	{}
A	$\{\epsilon\}$
В	{}
С	{}
D	{}

Table II

¹The abbreviation "i.e." stands for the Latin "it est", meaning "that is". Please note the use of a comma before and after "i.e.". In particular, no blank is used between a word and a following comma.

We go through one iteration of Rule 3 to modify the FIRST-sets as follows:

- (1) S' ::= S: Put $\{\}$ in FIRST(S'), no addition.
- (2) $S ::= AB: Put \{\} in FIRST(S), no addition.$
- (3) $S := C: Put \{\}$ in FIRST(S), no addition.
- (4) A ::= ef: Put $\{e\}$ in FIRST(A).
- (5) A ::= ϵ : Put $\{\epsilon\}$ in FIRST(A), no addition.
- (6) B ::= hg: Put $\{h\}$ in FIRST(B).
- (7) C := DD: Put $\{\}$ in FIRST(C), no addition.
- (8) C := fi: Put $\{f\}$ in FIRST(C).
- (9) D ::= g: Put $\{g\}$ in FIRST(D).

Non-Terminal	FIRST
S'	{}
S	{}
A	$\{e, \epsilon\}$
В	{h}
С	{f}
D	{g}

Because the previous step resulted in additions (changes) to the FIRST-sets, we iterate once more:

- (1) S' ::= S: Put $\{\}$ in FIRST(S'), no addition.
- (2) $S := AB: Put \{e, h\} in FIRST(S)$.
- (3) S := C: Put $\{f\}$ in FIRST(S).
- (4) A ::= ef: Put $\{e\}$ in FIRST(A), no addition.
- (5) A ::= ϵ : Put $\{\epsilon\}$ in FIRST(A), no addition.
- (6) B ::= hg: Put $\{h\}$ in FIRST(B), no addition.
- (7) C := DD: Put $\{g\}$ in FIRST(C).
- (8) C := fi: Put $\{f\}$ in FIRST(C), no addition.
- (9) D ::= g: Put $\{g\}$ in FIRST(D), no addition.

Non-Terminal	FIRST
S'	{}
S	$\{e, f, h\}$
A	$\{e, \epsilon\}$
В	{h}
С	$\{f,g\}$
D	{g}

Because the previous step resulted in further additions, we iterate once more:

- (1) S' ::= S: Put $\{e, f, h\}$ in FIRST(S').
- (2) S ::= AB: Put $\{e, h\}$ in FIRST(S), no addition.
- (3) S := C: Put $\{f, g\}$ in FIRST(S).
- (4) A ::= ef: Put $\{e\}$ in FIRST(A), no addition.
- (5) A ::= ϵ : Put $\{\epsilon\}$ in FIRST(A), no addition.
- (6) B ::= hg: Put $\{h\}$ in FIRST(B), no addition.
- (7) C ::= DD: Put $\{g\}$ in FIRST(C), no addition.
- (8) C ::= fi: Put $\{f\}$ in FIRST(C), no addition.
- (9) D ::= g: Put $\{g\}$ in FIRST(D), no addition.

Non-Terminal	FIRST
S'	$\{e, f, h\}$
S	$\{e, f, g, h\}$
A	$\{e,\epsilon\}$
В	{h}
С	$\{f,g\}$
D	{g}

Because of the further additions, we iterate once more:

- (1) $S' ::= S: Put \{e, f, g, h\} in FIRST(S').$
- (2) S := AB: Put $\{e, h\}$ in FIRST(S), no addition.
- (3) S := C: Put $\{f, g\}$ in FIRST(S), no addition.
- (4) A ::= ef: Put {e} in FIRST(A), no addition.
- (5) A ::= ϵ : Put $\{\epsilon\}$ in FIRST(A), no addition.
- (6) B ::= hg: Put $\{h\}$ in FIRST(B), no addition.
- (7) C ::= DD: Put $\{g\}$ in FIRST(C), no addition.
- (8) C := fi: Put $\{f\}$ in FIRST(C), no addition.
- (9) D ::= g: Put $\{g\}$ in FIRST(D), no addition.

Further iterations do not yield additional changes.

Non-Terminal	FIRST
S'	$\{e, f, g, h\}$
S	$\{e, f, g, h\}$
A	$\{e, \epsilon\}$
В	{h}
С	$\{f,g\}$
D	{g}

2 Algorithm to Compute Follow Sets

To initialize, set $FOLLOW(X) = \{\}$ for all non-terminals X in grammar G. The algorithm then proceeds according to the below two steps; the second step is repeated until no more changes to the FOLLOW sets occur (i.e., until a fixed-point is reached).

- Note 1: α and β represent arbitrary strings consisting of terminals and nonterminals, including ϵ . But B represents a single non-terminal. We introduced this notation on page 74 of the lecture slides on "Syntax Analysis".
- Note 2: In Rule 2 $(A := \alpha B\beta)$, think of B as the non-terminal on which we "anchor" the " $\alpha B\beta$ " pattern in the right-hand side of a production. This is explained in detail on pages 87–88 of the lecture slides on "Syntax Analysis".
- Note 3: With Rule 2, keep in mind that β in FIRST(β) may denote an entire string of terminals and non-terminals.
- 1. Put \$ in FOLLOW(S).
- 2. If $A := \alpha B \beta$:
 - (a) Put FIRST(β) $\{\epsilon\}$ in FOLLOW(B)
 - (b) if $\beta = \epsilon$ (i.e., $A := \alpha B$) or $\epsilon \in \text{FIRST}(\beta)$ (i.e., $\beta \to^* \epsilon$) then put FOLLOW(A) in FOLLOW(B)

Repeat Step 2 until no more additions can be made.

2.1 Example

We consider again the context-free grammar from Section 1. The FIRST-sets for the noterminals of this grammar are given in the following table.

S	::= S
S	$::= \mathrm{AB}$
S	::= C
A	::= ef
A	$::=\epsilon$
В	::= hg
\mathbf{C}	$::=\mathrm{DD}$
\mathbf{C}	::= fi
D	:= g

Non-Terminal	FIRST
S'	$\{e, f, g, h\}$
S	$\{e, f, g, h\}$
A	$\{\mathrm{e},\epsilon\}$
В	{h}
C	$\{f,g\}$
D	{g}

We then initialize the FOLLOW-sets and proceed according to Steps 1 and 2 stated above.

(1)		Put	\$ in FOLLOW(S')	
/ - \	 	_		

(2)	S' ::= S:	Put FOLLOW	(S'), i.e.,	{\$}	in F	OLLOW(S).
-----	-----------	------------	-------------	------	------	--------	---	----

(3)	S ::= AB:	Put $FIRST(B)$, i.e., $\{h\}$ in $FOLLOW(A)$.
		Put $FOLLOW(S)$, i.e., $\{\$\}$, in $FOLLOW(B)$.

			(-)) -)	(,)	()
(4)	S ::= C:	Put FOLL	OW(S), i.e.,	$\{\$\}$, in	FOLLOW(C).

(5) A := ef: no addition.

(6) $A := \epsilon$: no addition.

(7) B := hg: no addition.

(8) C := DD: Put FIRST(D), i.e., $\{g\}$, in FOLLOW(D).

Put FOLLOW(C), i.e., $\{\$\}$, in FOLLOW(D).

Non-

Terminal

S

Α

В

 $\overline{\mathbf{C}}$

D

FOLLOW

{\$}

{\$}

{h}

{\$}

{\$}

 $\{g,\$$

(9)	C ::= fi:	no addition.
(10)	D ::= g:	no addition.

Further iterations do not yield additional changes.

3 Homework Example

Compute the FIRST- and FOLLOW-sets for the following grammar.

S ::= aABbCD

 $S ::= \epsilon$

A::=ASd

 $A ::= \epsilon$

B ::= SAc

B := eC

 $\mathbf{B} ::= \epsilon$

C::=Sf

C::=Cg

 $C ::= \epsilon$

D ::= aBD

 $\mathbf{D} ::= \epsilon$