Punto 2.4

0,7071067812 0,5
0,3535533906
0,2357022604
0,1622214211
0,1313064329
0,1010152545
0,07955572842
0,07106690545
0,02237186851
0,01291209668
0,01000100015
0,007071421392
0,003162309283
0,002672631509

N	а	a-EE	a+EE	EE
2	0,123456789	0,03615965631	0,03615965631	0,7071067812
3	0,123456789	0,0617283945	0,0617283945	0,5
5	0,123456789	0,07980822266	0,07980822266	0,3535533906
10	0,123456789	0,09435774477	0,09435774477	0,2357022604
20	0,123456789	0,1034294532	0,1034294532	0,1622214211
30	0,123456789	0,1072461184	0,1072461184	0,1313064329
50	0,123456789	0,11098577	0,11098577	0,1010152545
80	0,123456789	0,1136350942	0,1136350942	0,07955572842
100	0,123456789	0,114683097	0,114683097	0,07106690545
1000	0,123456789	0,12069483	0,12069483	0,02237186851
3000	0,123456789	0,121862703	0,121862703	0,01291209668
5000	0,123456789	0,1222220976	0,1222220976	0,01000100015
10000	0,123456789	0,122583774	0,122583774	0,007071421392
50000	0,123456789	0,1230663805	0,1230663805	0,003162309283
70000	0,123456789	0,1231268345	0,1231268345	0,002672631509

Para el primer caso se requiere un N del orden de 10000 para tener la segunda cifra significativa. Para el segundo caso se requiere un N del orden de 50000 para obtener las tres cifras significativas.

Punto 3.2

(i)
$$\int_{-\infty}^{\infty} P_U(x, \bar{x}, a) dx = \int_{\bar{x} - \frac{a}{2}}^{\bar{x} + \frac{a}{2}} \frac{1}{a} dx = \frac{1}{a} \left(\bar{x} + \frac{a}{2} - \bar{x} + \frac{a}{2} \right) = 1$$

(ii)
$$\mu = \frac{1}{a} \int_{\bar{x}-a/2}^{\bar{x}+a/2} x dx = \frac{1}{2a} \left(\left(\bar{x} + \frac{a}{2} \right)^2 - \left(\bar{x} - \frac{a}{2} \right)^2 \right) = \frac{1}{2a} \left(\bar{x}^2 + \bar{x}a + \frac{a^2}{4} - \bar{x}^2 + \bar{x}a - \frac{a^2}{4} \right) = \frac{1}{2a} (2\bar{x}a) = \bar{x}$$

(iii)
$$\sigma^2 = (\overline{x^2} - \bar{x}^2)$$

Pero sabemos que
$$(\overline{x^2} - \overline{x}^2) = \overline{x^2} - 2\overline{x}^2 + \overline{x}^2 = \overline{x^2} - \overline{2x}\overline{x} + \overline{x}^2 = \overline{(x - \overline{x})^2}$$

Luego, usando un cambio de variable $u=x-ar{x}$ y hallamos el valor esperado de σ^2

$$\sigma^2 = \frac{1}{a} \int_{-a/2}^{a/2} u^2 du = \frac{1}{3a} \left(\left(\frac{a}{2} \right)^3 - - \left(\frac{a}{2} \right)^3 \right) = \frac{1}{3a} \frac{2a^3}{8} = \frac{a^2}{12}$$

Por lo tanto
$$\sigma = \sqrt{\frac{a^2}{12}}$$

Punto 3.7

1 2 3 5 6 7 8 9 10 11 12	1 2 3 6 9 11 8 8 8	9 30 54 77 64 72	0,00534358699- 0,01925533934 0,04625707957 0,1201281506 0,144291859 0,148556643 0,1338290448 0,1071657868	
3 5 6 7 8 9 10 11	3 6 9 11 8 8	9 30 54 77 64 72	0,04625707957 0,1201281506 0,144291859 0,148556643 0,1338290448	
5 6 7 8 9 10 11 12	6 9 11 8 8	30 54 77 64 72	0,1201281506 0,144291859 0,148556643 0,1338290448	
6 7 8 9 10 11 12	9 11 8 8	54 77 64 72	0,144291859 0,148556643 0,1338290448	
7 8 9 10 11 12	11 8 8 8	77 64 72	0,148556643 0,1338290448	
8 9 10 11 12	8 8 6	64 72	0,1338290448	
9 10 11 12	8	72	-,	
10 11 12	6		0,1071657868	
11		60		
12	2		0,07723327396	
	_	22	0,05060111052	
12	1	12	0,03038974741	
13	1	13	0,0168473666	
TOTAL				
	58	418		
Mean count				
7,206896552				
Probabilidad para	el número espe	rado de occurren	cuas de 5 cuenta	s o menos:
0,1909841565				
Número de ocurre	encias esperada	s para 5 cuentas	o menos:	
11,07708108				
Probabilidad para	el número espe	rado de occurren	cuas de 19 cuent	as o menos:
0,8998989886				
Probabilidad para	el número espe	rado de occurren	cuas de 20 cuent	as o más:
0,1001010114				
Número de ocurre	encias esperada	s para 20 cuentas	o más:	
5,805858659				

Punto 4.2

$$A = 12.3 \pm 0.4$$

$$B = 5.6 \pm 0.8$$

$$C = 89.0 \pm 0.2$$

En general se tiene que

$$\sigma = \sqrt{\left(\frac{\partial Z}{\partial A}\sigma_A\right)^2 + \left(\frac{\partial Z}{\partial B}\sigma_B\right)^2 + \left(\frac{\partial Z}{\partial C}\sigma_C\right)^2}$$

Luego, para la suma y la resta

$$\sigma = \sqrt{(1*0.4)^2 + (1*0.8)^2} = 0.89$$

Para la división entre la resta y la suma

$$\sigma = \sqrt{\left(\frac{[(17.9) - (6.7)]}{(17.9)^2} * 0.4\right)^2 + \left(\frac{[-(17.9) - (6.7)]}{(17.9)^2} * 0.8\right)^2} = \sqrt{\left(\frac{4.48}{320.41}\right)^2 + \left(\frac{19.68}{320.41}\right)^2}$$
$$= 0.0629$$

Para la división entre la multiplicación y C

$$\sigma = \sqrt{\left(\frac{B}{C} * 0.4\right)^2 + \left(\frac{A}{C} * 0.8\right)^2 + \left(\frac{AB}{C^2} * 0.2\right)^2} = 0.1134$$

Para el arcsin

$$\sigma = \sqrt{\left(\frac{1}{C\sqrt{1 - (B/C)^2}} * 0.8\right)^2 + \left(\frac{1}{C^2\sqrt{1 - (B/C)^2}} * 0.2\right)^2} = 0.00901$$

Para la multiplicación con potencias

$$\sigma = \sqrt{(B^2C^3 * 0.4)^2 + (2ABC^3 * 0.8)^2 + (3AB^2C^2 * 0.2)^2} = 0.7822 * 10^8$$

Para el logaritmo natural

$$\sigma = \sqrt{\left(\frac{BC}{ABC} * 0.4\right)^2 + \left(\frac{AC}{ABC} * 0.8\right)^2 + \left(\frac{AB}{ABC} * 0.2\right)^2} = 0.147$$

Para el exponencial

$$\sigma = \sqrt{(BC \exp(ABC) * 0.4)^2 + (AC \exp(ABC) * 0.8)^2 + (AB \exp(ABC) * 0.2)^2}$$

Dado que los productos y las exponenciales en este caso son muy grandes, se usa el ln(Z) para poder obtener una expresión, de este modo

$$\sigma = \sqrt{(BC * 0.4)^2 + (AC * 0.8)^2 + (AB * 0.2)^2} = 898.27$$

Para el numeral ix

$$\sigma = \sqrt{(1*0.4)^2 + \left(\frac{sec^2(B/C)}{C} * 0.8\right)^2 + \left(\frac{-Bsec^2(B/C)}{C^2} * 0.2\right)^2} = 0.4001$$

Para el último numeral ocurre algo similar al caso del exponencial, de modo que usamos un logaritmo en base 10 usando que

$$log_{10}Z = \frac{lnZ}{ln10}$$

De tal modo que

$$log_{10}\sigma = \frac{ln898.27}{ln10} = 390.11$$

(i)
$$Z = A + B = 17.9 \pm 0.9$$

(ii)
$$Z = A - B = 6.7 \pm 0.9$$

(iii)
$$Z = \frac{A-B}{A+B} = 0.37 \pm 0.06$$

(ii)
$$Z = A - B = 6.7 \pm 0.9$$

(iii) $Z = \frac{A - B}{A + B} = 0.37 \pm 0.06$
(iv) $Z = \frac{AB}{C} = 0.77 \pm 0.11$

(v)
$$Z = arcsin(\frac{B}{c}) = 0.063 \pm 0.009$$

(vi)
$$Z = AB^2C^3 = (2.7 \pm 0.8) \times 10^8$$

(vii)
$$Z = \ln(ABC) = 8.7 \pm 0.1$$

(viii)
$$Z = \exp(ABC) = \ln(Z) = ABC = 6130.32 \pm 898.27$$

(ix)
$$Z = A + \tan\left(\frac{B}{C}\right) = 12.4 \pm 0.4$$

(x)
$$Z = 10^{ABC} = \log_{10} Z = ABC = 6130.32 \pm 390.11$$

```
import numpy as np
import matplotlib.pyplot as plt
```

Punto 6.2

```
Hz = np.array([10,20,30,40,50,60,70,80,90,100,110])
mV = np.array([16,45,64,75,70,115,142,167,183,160,221])
E = np.array([5,5,5,5,30,5,5,5,5,30,5])
N = len(Hz)
ws = 1/(E^{**}2)
S_wx2 = np.sum(ws*Hz**2)
S_wx = np.sum(ws*Hz)
S_wy = np.sum(ws*mV)
S_wxy = np.sum(ws*Hz*mV)
S_w = np.sum(ws)
delta = S_w*S_wx2 - (S_wx**2)
m = (S_w*S_wxy - S_wx*S_wy)/delta
c = (S_wx2*S_wy - S_wx*S_wxy)/delta
a_c = np.sqrt(S_wx2/delta)
a_m = np.sqrt(S_w/delta)
print(m,c,a_m,a_c)
```

2.0284648216102745 -0.9474964662767381 0.05197830827721802 3.386858673521736

El ajuste resultante sería $F = (2.03x\pm 0.05) - (1\pm 3)$

Comparando el resultado con los valores de la tabla 6.1 b, podemos observar que coinciden.

```
F_fit = m * Hz + c
res = mV - F_fit

plt.figure(figsize=(7,5))
plt.axhline(0, color='black', linestyle='--')
plt.scatter(Hz, res, color='blue', label="Residuales")
plt.xlabel("Frecuencia(Hz)")
plt.ylabel("Residuales")
plt.title("Lag Plot")
plt.legend()
plt.grid(False)
plt.show()
```



```
D_num = np.sum((res[1:] - res[:-1])**2)
D_den = np.sum(res**2)
```

```
D = (D_num/D_den)
print(D)
```

→ 1.772945759877919

Punto 6.3

```
Hz_fit = np.linspace(min(Hz), max(Hz), 200)
mV_fit = m * Hz_fit + c

plt.figure(figsize=(7,5))
plt.errorban(Hz, mV, yerr=E, fmt='o', capsize=5, label="Error", color="blue")
plt.plot(Hz_fit, mV_fit, 'r-', label=f"Ajuste lineal: y = {m:.2f}x + {c:.2f}")
plt.xlabel("Frecuencia(Hz)")
plt.ylabel("Voltaje(mV)")
plt.title("Ajuste lineal")
plt.legend()
plt.grid(False)
plt.show()
```


Ajuste lineal: y = 2.03x + -0.95 Error 150 50 200 40 60 80 100

Frecuencia(Hz)

```
res_norm = (mV - F_fit)/E

plt.figure(figsize=(7,5))
plt.axhline(0, color='black', linestyle='--')
plt.scatter(Hz, res_norm, color='red')
plt.xlabel("Frecuencia(Hz)")
plt.ylabel("Residuales normalizados")
plt.title("Gráfico de residuales normalizados")
plt.legend()
plt.grid(False)
plt.show()
```

/tmp/ipython-input-2149316552.py:9: UserWarning: No artists with labels found to put in legend. Note that artists whose label start wit plt.legend()

