Unit 5 Part 2 Critical Path Method Charts

Planning and Scheduling the Activities

Once we have a project plan (or, project schedule),
 we need to schedule the activities in a project taking
 into account the resource constraints

Scheduling Techniques

- Simple sequencing
 - Suitable for small projects
- Critical Path Method (CPM)
 - Suitable for large software projects
 - The most commonly used "networking" technique

Simple sequencing

- A simple sequencing of the tasks and the responsible personnel taken into account of the resources
- Easily presented in a simple bar chart
- Suitable for allocating individuals to particular tasks at an early stage

Figure 6.6 A project plan as a bar chart.

Critical Path Method

- O Definition: In CPM activities are shown as a network of precedence relationships using activity-on-node network construction
 - Single estimate of activity time
 - O Deterministic activity times

O Critical Path:

- O Is that the sequence of activities and events where there is no "slack" i.e.. Zero slack
- Longest path through a network
- o minimum project completion time

Activity on Node

Earliest start	Duration	Earliest finish		
Activity label, activity description				
Latest start	Float/slack	Latest finish		

Example to construct a CPM

Id.	Activity Name	Duration (weeks)	Precedents
Α	Hardware selection	7	
В	Software design	4	
С	Hardware Installation	6	Α
D	Coding	4	В
Е	Data Preparation	5	В
F	User Documentation	9	
G	User Training	5	E,F
Н	System Installation	3	C,D

6.10 The forward Pass

6.11 The backward Pass

Software Project Management

Forward pass calculations

A,B,D,E and Z forms the critical path

Activity	Duration (Days)	Immediate Predecessor Activities
А	3	-
В	6	А
С	7	А
D	5	А
E	13	B & C
F	8	C & D
G	11	D & F
Н	6	G & E

• CRITICAL PATH IS:

• A,C, F, G, H

6.16 Activity-on-arrow network

Rules:

- A Project network should have only one start node
- A Project network should have only one end node
- A node has no duration
- Links have duration
- Precedents are the immediate preceding activities
- Time moves from left to right
- A network may not contain loops
- A network should not contain dangles

An example project specification with estimated activity durations and precedence requirements

Acı	tivity	Duration (weeks)	Precedents
Ā	Hardware selection	6	
В	Software design	4	
C	Install hardware	3	A
D	Code & test software	4	В
E	File take-on	3	В
F	Write user manuals	10	
G	User training	3	E, F
Н	Install & test system	2	C, D

CPM Convention (AOA)

FIND CRITICAL PATH

TASK	DURATION	PRECEDENTS
Α	1	
В	2	
С	3	
D	4	Α
E	5	В
F	4	В
G	6	С
Н	6	D,E
I	2	G
J	3	F,H,I

Critical Path Method (CPM)

- **CPM** is a network diagramming technique used to predict total project duration
 - A **critical path** for a project is the series of activities that determines the *earliest time* by which the project can be completed
 - Slack/float

Determining the Critical Path

Note: Assume all durations are in days.

Path 1: A-D-H-J Length = 1+4+6+3 = 14 days Path 2: B-E-H-J Length = 2+5+6+3 = 16 days Path 3: B-F-J Length = 2+4+3 = 9 days Length = 3+6+2+3 = 14 days C-G-I-J Path 4:

Since the critical path is the longest path through the network diagram, Path 2, B-E-H-J, is the critical path for Project X.

Critical Path

- Any delay in critical path delays the project
- Slack= difference between earliest and latest dates
- Any event with slack 0 is critical.
 - Path joining these events is critical path
- Activity float
 - Float=difference in earliest finish and it's latest start

Adding the time dimension

- Critical path approach is concerned with:
 - Project completed as quickly as possible
 - Identifying activities leads to delay project or later activities start date, if delayed.
- Forward pass
 - Earliest dates of activities
- Backward pass
 - Latest start dates and the critical path

Activity Float

- Time allowed for an activity to delay
- 3 different types:
 - Total float (no delay in project end date)
 - = |latest start date earliest start date |
 - Free float (delay without affecting subsequent activity)
 - = |earliest completion date of activity earliest start date of succeeding activity|
 - Interfering float = |total float free float|