

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

Question Number		Scheme					
1.	H ₀ : μ =	$=30$ $H_{1:}\mu < 30$	B1				
	$z = \frac{2!}{!}$	$z = \frac{29.5 - 30}{\frac{2.5}{\sqrt{80}}}$					
	z = -1	7888 awrt–1.79	A1				
	-1.7888 < -1.6449						
	Reject H ₀ or significant result or in the critical region						
	There	There is evidence to support the <u>manager's</u> claim.					
		Notes					
	B1	Both hypotheses correct in terms of μ					
	M1	for attempting test statistic, allow \pm , Condone $\sqrt{\frac{2.5}{80}}$					
	A1	awrt −1.79 allow $ z = 1.7888$ Allow p value of 0.0367 or awrt 0.0368 or CR \leq 29.54					
	B1	B1 CV =1.6449 or better (Ignore any comparisons) Allow CR \leq 29.54 SC If p value of 0.0367 or awrt 0.0368 award B1 if 2^{nd} A1 is awarded					
	A1	For correct conclusion. Allow the manager's claim in words if it includes screws and less (oe)					

Question Number	Scheme								
2	H ₀ : Potassium has no effect on the quality of apple H ₁ : Potassium has an effect on the quality of apple								
	Grade Expected values	A B C D E d 9.6 67.2 124.8 24.0 14.4	M1A1						
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(9-"9.6")^{2}}{"9.6"} + + \frac{(3-"14.4")^{2}}{"14.4"} \text{ or}$ $\chi^{2} = \sum \frac{O^{2}}{E} - N = \frac{9^{2}}{"9.6"} + + \frac{3^{2}}{"14.4"} - 240$								
	= 10.0	= 10.657 awrt 10.7							
	Degrees of freedom = 4								
	$\chi^2_{4,0.05} = 9.488$								
	[Reject H ₀] Data suggests that potassium may affect the distribution of the grades of apples or there is evidence that Andy's belief is incorrect								
			(8) Total 8						
	Notes B1 Both hypotheses in context. May use other wording eg The grading of apples remains								
	M1								
	A1	At least 3 expected values correct							
	M1	A correct method using their expected values to calculate χ^2 At least one correct, ft t expected values with an intention to add							
	A1	awrt 10.7							
	B 1	Degrees of freedom = 4 (may by be implied by 9.488)							
	B1ft	9.488 ft their DoF. If no DoF stated then this must be correct for their working.							
	A1ft ft their χ^2 value provided the 2 nd M1 is awarded and CV. If no hypotheses or hypotheses or hypotheses or hypotheses or 's belief' on the same of the sa								

Question Number	Scheme							Marks		
3(a)	jam Pric Taste		C D 4 5 8 9	E 3 4	<i>F</i> 6 3	<i>G</i> 7 6	<i>H</i> 8 5	<i>I</i> 9 7		M1
	$\sum d^2 = [0+0+]16+16+1+9+1+9+4[=56]$							M1A1		
	$r_s = 1 - \frac{60}{90}$	$(\frac{56}{80})$; $=\frac{8}{15}$ $=0.5333$							awrt 0.533	dM1A1
(1)	11 . /	и и								(5)
(b)	$H_0: \rho = 0$ Critical V	$H_1: \rho \neq 0$								B1 B1
		o evidence of a rel	ationship be	tween pri	ce and t	aste of s	trawbe	rrv iam		B1ft
			and the second	<u> </u>	<u> </u>	<u> </u>		iry juiir		(3)
(c)	$r = \frac{1}{\sqrt{2.0}}$	16.4943 455×243.5556								M1
	= 0.7389)							awrt 0.739	A1 (2)
(d)	H · a = (H : a > 0								(2) B1
(u)	$H_0: \rho = 0, H_1: \rho > 0$ $CV = 0.5822$							В1		
		vidence of a positi	ve correlation	n between	n price a	and taste	of stra	wberry	jam	B1ft
		•			•			, , , , , , , , , , , , , , , , , , ,	,	(3)
(e)	Spearman		1 .11		1:					B1
		ikely that a joint n ks are a judgemen				noful so	rale			
	or the man	ns are a juagemen	or the man	as are not	u meam	iigiai se				(1)
					Notes					Total 14
(a)	M1	Attempt to rank e	-	_			_			
	M1	For an attempt at	d^2 row for	their rank	s (may l	oe impli	ed by	$\sum d^2 = 5$	56)	
	A1	$\sum d^2 = 56$								
	dM1 Dependent on the previous M being awarded. Using $1 - \frac{6\sum d^2}{9(80)}$									
	A1	$\frac{8}{15}$ or awrt 0.533								
(b)	Both hypotheses stated in terms of ρ . Must be two-tail.									
	B1 0.7 for CV. Allow 0.6 if a one tail test is used									
	B1ft	For a correct conf				_				
(-)	N/I	Follow through the		their 0.7 (provide	d their	$ r_s < 1$	1)		
(c)	M1 A1	Correct method u awrt 0.739	seu							
(d)		Both hypotheses	stated in ter	ms of ρ .	Must be	e one-tai	il. If B0	awarde	ed in part (b) the	n allow any
	B1	letter instead of	that is con	nsistent wi	th part	(b)				-
	B1	0.5822 Allow 0.6								
	B1ft Correct conclusion in context which has positive correlation (this may be implied by a correct description of positive correlation), price and taste. Follow through their 0.5822 and 0.739					0.739				
(e)	B1	Selecting Spearm reason	an's with a	suitable re	ason. D	o not al	low 'be	cause it	is ranked' as a	suitable

Question Number	Scheme						
4(a)	Label the houses in area A 1- 41, area B 1 – 164, area C 1 – 123 and area D 1 - 82						
	Use random numbers to select a						
	Simple rand	lom sample of	2 <u>0</u> area <u>A</u> , <u>80</u> area <u>B</u> , <u>60</u> area <u>C</u> and <u>40</u> area <u>D</u>	A1			
(b)	(b) $\frac{357 \times 260}{595}$ or $\frac{238 \times 260}{595}$						
	156 and 10)4		A1			
				(2)			
(c)		T					
	Observed	Expected	$\frac{\left(O-E\right)^2}{E}$				
	162	"156"	$\frac{\left(162 - "156"\right)^2}{"156"} = \frac{3}{13} = 0.2307$	M1			
	98	"104"	$\frac{(O-E)^2}{E}$ $\frac{(162 - "156")^2}{"156"} = \frac{3}{13} = 0.2307$ $\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$				
	$\chi^2 = 4.657 + "0.2307" + "0.346"$						
	= 5.234 awrt 5.23						
	v = (2-1)(3-1) = 2						
	$\chi_2^2(0.05) = 5.991 \Rightarrow \text{CR}: \ \chi^2 > 5.991$						
			aggest that there is an association between age and listening to LSB	B1ft dA1			
	THEIR IS HE	evidence to su	and there is an association occurred age and associated to 252	(6)			
			Notes	Total 11			
(a)	M1 For suitable labelling of all four areas. E.g. for area A: 1 – 41 or 0 - 40						
	M1]						
	A1 For 20 A, 80B, 60C and 40 D (dependent on 2 nd M1 only) NB A simple random sample of 20 A, 80B, 60C and 40 D scores M0M1A1. Allow M1: allocate random numbers to each house						
	M1 : arrange the numbers in order						
			: select the 1 st 20 for area \underline{A} , $\underline{80}$ for area \underline{B} , $\underline{60}$ for area \underline{C} and $\underline{40}$ for a	area <u>D</u>			
			cored then award B1 for $\underline{20}$ area \underline{A} , $\underline{80}$ area \underline{B} , $\underline{60}$ area \underline{C} and $\underline{40}$ area \underline{I}	<u>)</u>			
(b)			nod for finding one expected value.				
(c)			r for both values				
(-)	M1 A correct method for finding both contributions to the χ^2 value						
	M1 Adding the two values to 4.657 (may be implied by a full χ^2 calculation, do not ISV						
	A1 awrt 5.23						
	B1 2 B1ft 5.991 or better ft their DoF						
	A correct contextual conclusion, which has the words age and listening dependent of						
	marks being awarded.						
			e a p value of 0.0730 rather than the CV they can get M1M1B1B0 μ	A1			

Question Number	Scheme				
5(a)	2.977 ± 2	$2.5758 \times \frac{0.015}{3}$	M1,B1		
	= (2.9641	, 2.9898) awrt (2.964, 2.990)	A1		
			(3)		
(b)	The CI do	bes not contain the stated weight.	B1		
		5	(1)		
(c)	$2.995 - 1.96 \times \frac{0.015}{\sqrt{n}} < 2.991$				
	$\sqrt{n} < \frac{1.9}{2.9}$	96×0.015 $995 - 2.991$	M1d		
	\sqrt{n} < awi		A1		
	n = 54		A1cao		
			(4)		
()		Notes	Total 8		
(a)	M1	$2.977 \pm (z \text{ value}) \times \frac{0.015}{3}$			
	B1	awrt 2.5758			
	A1	awrt (2.964, 2.990 (condone 2.99))			
(b)	B1	cao this must be consistent with their confidence interval			
(c)	M1 Setting up an inequality using z value > 1.5 Condone =				
	M1d	Dep on previous M mark. Correct rearranging to get $\sqrt{n} < \dots$ or $n < \dots$ Condone =	or >		
	A1	awrt 7.35 may be implied by awrt 54			
	A1cao	54			

Question Number		Scheme	Marks			
6(a)	$\overline{h} = 65.4$					
	$s^2 = \frac{214}{1}$	4676 – 50×("65.4") ² 49	M1			
	=16.6		A1			
			(3)			
(b)	$H_0:\mu_{do} =$	$\mu_{ m do\ not}\ m H_1$: $\mu_{ m do}<\mu_{ m do\ not}$	B1			
	$z = \pm \frac{"65.4" - 70.8}{\sqrt{\frac{"16.693"}{50} + \frac{29.6}{40}}}$					
	$= \pm 5.2$	1 awrt 5.21	A1			
	CV 1.644	49	B1			
	Amala's belief is supported					
(c)		bles you to assume that (the sampling distribution of the sample mean of) resting e is normally distributed for both groups	B1			
			B1 (1)			
(d)	Each population/sample is independent or each male is independent of the other males.					
	Assume the $\sigma_{do}^2 = s_{do}^2$ and $\sigma_{do \text{ not}}^2 = s_{do \text{ not}}^2$					
		Notes	Total 12			
(a)	B1	65.4 only				
	M1	Correct method to find s^2 using their \overline{h}				
	A1 awrt 16.7					
(b)	B1 Both hypotheses correct - must be clear which is exercise and which is not					
	M1 For the denominator. Ft their 16.693					
	M1 Correct ft their 65.4 and 16.693					
	A1 awrt 5.21 allow $ z = 5.21$					
	B1	CV = 1.6449 or better	.: i			
	A1	ft their z value and CV if the hypotheses are the correct way round. Correct conclus need belief. May be in words with heart and exercise e.g. resting heart rate is lower exercise regularly				
(c)	B 1	For the idea both groups normally distributed				
(d)	B1	For identifying the need for the groups or males to be independent.				
	B1	Realising the $\sigma^2 = s^2$ Allow sample sizes big enough for CLT to hold				

Question Number		Scheme	Marks			
7(a)	$\mathrm{E}\left(B_{1}-B_{2}\right)=0$					
	$Var(B_1 - B_2) = 0.006$					
	$P(B_1 - B_2 > 0.1) = 2P(B_1 - B_2 > 0.1)$					
		= $2 \times P\left(Z > \frac{0.1}{\sqrt{0.006}}\right) \left[= 2 \times P\left(Z > 1.2909\right)\right]$	M1			
		= 0.1967 awrt 0.197	A1 (5)			
(b)	$\overline{B} \sim N$	$\left(1.96, \frac{0.003}{n}\right)$	B1			
	$P(\overline{B} >$	$ \frac{\left(1.96, \frac{0.003}{n}\right)}{2\right) = P\left(Z > \frac{2 - 1.96}{\sqrt{0.003/n}}\right) [< 0.01] $	M1			
	$\sqrt{\frac{0.003}{n}}$	$\frac{6}{3} > 2.3263$	B1 dM1			
	n = 11		A1 (5)			
(c)	$\mu_M = 2$	$21.8 + 500 \times 1.96 = 1001.8$; $\sigma_M^2 = 0.6 + 500 \times 0.003 = 2.1$	M1; M1			
	Let $X = 4T - 3M$					
	$\mu_X = 4$	$\times 774 - 3 \times "1001.8" [= 90.6] ; \sigma_X^2 = 16 \times 1.8 + 9 \times "2.1" [= 47.7]$	M1; M1			
	P(4T -	$-3M > 100 = P\left(Z > \frac{100 - 90.6}{\sqrt{47.7}}\right) \left[=P(Z > 1.361)\right]$	M1			
		= 0.0869 (table) or 0.08675 (calc)	A1			
			(7)			
(a)	B1	For expected value being 0 symitten on year	Total 17			
(u)	B1	For expected value being 0 written or used For 0.006 being written or used for Variance				
	M1	Realising they need to consider both				
	M1	Correct standardisation using their 0.1 and 0.006 If the expected value and/or standard	rd deviation			
		not stated then they must be correct				
(b)	A1 B1	awrt 0.197 The correct distribution written or used				
(0)	M1	Correct standardisation. Allow using their distribution if stated but must contain \sqrt{n}	for ad			
	B1	Using awrt 2.3263	101 SU			
	dM1	Dep on previous M being awarded using a z value, $2 < z < 3$				
	A1	11				
(c)	M1	Correct method for finding the mean of M				
	M1 M1	Correct method for finding the var of M Realising the need to find $4T - 3M$ or $4T - 3M - 100$ or $100 + 3M - 4T$				
	M1	Correct method for finding the mean of X (using $4T - 3M - 100 = -9.4$ or $100 + 3M = 41$	(I - 4T = 9.4)			
	M1	Correct method for finding the var of X				
	M1	Correct standardisation using their mean of X and their standard deviation of X If the stated then they must be correct	se are not			
	A1	awrt 0.0869 or 0.0868				