Region Proposal Network and Faster R-CNN

Presenter: Minoo Jafarlou Spring 2023 MLBBQ

Outline

Fundamentals

- Computer vision tasks
- Localization + Regression
- Intersection Over Union

R-CNNs family's

- R-CNN
- Fast R-CNN
- Faster R-CNN

Introduction Computer Vision Tasks

Classification + Localization: Task

Classification: C classes

Input: Image

Output: Class label

Evaluation metric: Accuracy

→ CAT

Localization:

Input: Image

Output: Box in the image (x, y, w, h)

Evaluation metric: Intersection over Union

Classification + Localization: Do both

Accuracy of the predicted bounding boxes with **Intersection Over Union** (IoU)

Outline

Introduction

- Computer vision tasks
- Classification + Localization

R-CNNs

- R-CNN
- Fast R-CNN
- Faster R-CNN

Conclusion

R-CNN

Selective search:

R-CNN architecture

Fast R-CNN architecture

Architecture comparison between R-CNN and Fast R-CNN

Faster R-CNN

Faster R-CNN=PRN+Fast R-CNN

Anchor boxes

13 Anchor Boxes Example

Loss function

$$L(\ p_i\ ,t_i\) = \underbrace{\frac{1}{N_{cls}}\sum_i L_{cls}(p_i,p_i^*)}_{\text{object/not object}} + \underbrace{\lambda \frac{1}{N_{reg}}\sum_i p_i^* L_{reg}(t_i,t_i^*)}_{\text{box regressor}}$$

Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Object detection results on the PASCAL VOC 2007 test set using the Faster R-CNN system

 Selected examples of object detection results on the PASCAL VOC 2007 test set using the Faster R-CNN system. The model is VGG-16.

Object detection results on the MS COCO test-dev set using the Faster R-CNN

 Selected examples of object detection results on the MS COCO test-dev set using the Faster R-CNN system. The model is VGG-16 and the training data is COCO trainval.

References:

- 1. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.
- 2. Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).
- 3. http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf