JITRI Beamer Template

Creating Presentations

Author

author@xxx.xxx.xx

Institute of Deep Perception Technology Jiangsu Industrial Technology Research Institute

August 25, 2021

Table of Contents

- 1 Introduction
- 2 Literature Review
 - Usage
- 3 Methodology
 - Blocks

- Alorgithms
- Equations
- Figures
- Videos
- Tables
- Multi-columns

■ This is a latex slide template created by Yi Zhou for JITRI

Introduction

- This is a latex slide template created by Yi Zhou for JITRI
- GitHub link

https:

Introduction

//github.com/ZHOUYI1023/JITRI-Latex-Beamer-Template

Usage

- Beamer is a powerful and flexible LATEX class to create great looking presentations.
 - https://www.overleaf.com/learn/latex/Beamer
- Modify from XJTLU Beamer template [1]

Literature Review

Blocks

Block I

Text

Block II

Text

Block III

Text

Success box

Alert box

Simple box

Algorithms (pseudocode)

```
input :x: float, y: float
  output:r: float
1 while True do
2
     r = x + y;
     if r \ge 30 then
3
         "O valor de r é maior ou iqual a 10.";
4
         break:
5
     else
6
         "O valor de r = ". r:
7
     end
8
9 end
```

Algorithm 1: Algorithm Example

Algorithms

```
def main():
      print("Hello World!")
3
     __name__ == '__main__':
      main()
5
```

code/main.py

Equation

Equation without numbers

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[G_t] = \sum_{s \in \mathcal{S}} d^{\pi}(s) V^{\pi}(s) = \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) Q^{\pi}(s,a)$$

Equation with numbers

$$A = \lim_{n \to \infty} \Delta x \left(a^2 + \left(a^2 + 2a\Delta x + (\Delta x)^2 \right) + \left(a^2 + 2 \cdot 2a\Delta x + 2^2 (\Delta x)^2 \right) + \left(a^2 + 2 \cdot 3a\Delta x + 3^2 (\Delta x)^2 \right) + \dots + \left(a^2 + 2 \cdot (n-1)a\Delta x + (n-1)^2 (\Delta x)^2 \right) \right)$$

$$= \frac{1}{3} \left(b^3 - a^3 \right) \quad (1)$$

Methodology 000000000

Figures

Figure: Logo of JITRI

Videos

Author JITRI

Tables

Tables can be automatically generated from https://www.tablesgenerator.com/ Use adjustbox package to shirnk the table.

Dataset	Sensors	Feature	Tasks
nuScenes	Radar+Lidar+Camera +Map+GPS/IMU	Large	Detection+Tracking
Oxford RobotCar	Scanning Radar+Lidar +Camera+GPS/IMU	Large	Odometry
RADIATE	Scanning Radar +Lidar+Camera	Adverse Weather	Detection+Tracking +Odometry
MulRan	Scanning Radar+Lidar	Multiple Revisits of The Same Place	Place Recognition
Astyx HiRes	Radar +Lidar+Camera	4D Imaging Radar	3D Detection
Zendar	SAR+Lidar +Camera+GPS/IMU	SAR Imaging Radar	Detection+Tracking
CARRADA	Radar+Camera	Range-Azimuth-Doppler Annotation	Detection+Tracking
Radar Scenes	Radar+Camera	Radar Point Annotation	Radar Detection +Radar Tracking
DENSE	Radar+Lidar +StereoCamera+GatedCamera	Adverse Weather	3D Detection+Tracking
CRUW	Radar+Camera	Range-Azimuth Annotation	Detection+Tracking
RaDICal	Radar+RGBD Camera+IMU	Raw Radar ADC Meaurements	3D Detection+Tracking

Table: Radar Datasets

Multi-columns

We present a radar-centric automotive dataset based on radar, lidar and camera data for the purpose of 3D object detection.

We present a radar-centric automotive dataset based on radar, lidar and camera data for the purpose of 3D object detection.

Reference I

Shanliang Yao. XJTLU Beamer Template. 2021. URL: https://github.com/yaoshanliang/XJTLU-Beamer-Template.

Thank You!

