Adopted Levels

				History				
		Type		Author Citation Literature Cutoff Date				
		Update	J. H. Kelley, J.	L. Godwin, C. G. Sheu ENSDF 31-Mar-2004				
$Q(\beta^-)=10663.88\ 10$; $S(n)=2535\ 8$; $S(p)=2.48\times10^4\ syst$ 2012Wa38 Note: Current evaluation has used the following Q record 10651. 7 2574 18 2003Au02.								
Note. Current e	varuatio	ii iias useu uie i	ollowing Q lec	ord 10651. 7 2574 18 2003Au02.				
⁸ He Levels								
Cross Reference (XREF) Flags								
			A	1 H(8 He, 8 He) F 10 Be(12 C, 14 O)				
			В	$^{9}\text{Be}(\pi^{-},p)$ G $^{11}\text{B}(\pi^{-},pd)$				
			C D	⁹ Be(⁷ Li, ⁸ B) H ¹¹ B(⁷ Li, ¹⁰ C) ⁹ Be(⁹ Be, ¹⁰ C) I ¹² C(⁸ He, ⁶ He ² n)				
			E	⁹ Be(¹³ C, ¹⁴ O)				
E(level)	$_{ m I}\pi$	T _{1/2}	XREF	Comments				
0.0	0+	119.1 ms <i>12</i>	ABCDEFGH	$\%\beta^-=100; \%\beta^-$ n=16 <i>I</i>				
				T=2				
				$T_{1/2}$: from weighted average of $T_{1/2}$ =117.5 ms $I5$ (1981Bj03), and $T_{1/2}$ =122 ms $I5$ (1965Po06). These values are averaged to obtain $I5$ (1981Bj01) and $I5$ (1981Bj01) and $I5$ (2004Ti06,2003Au02). Other values are $I5$ (1960Ja12), $I5$ (1960Ja12), $I5$ (1960Ja12), $I5$ (1960Ja12), $I5$ (1960Ja12) and $I5$ (1960Ja12) and $I5$ (1960Ja12) are $I5$ (1960Ja12) and $I5$ (19				
				ms 6 (1971Wi05). % β -n: From (1981Bj01), other value % β -n=12 1 (1965Po06). 32 3% of				
				β^{-} n neutrons populate ${}^{7}\text{Li*}(478)$ (1981Bj01).				
$3.1 \times 10^3 5$	2+	0.6 MeV 2	A CDEF HI	% β^{-3} H=0.9 <i>I</i> (2003Au02, 1986Bo41). %n≈100; % α ≤5				
				T=2 E(level): values in the literature are discrepant. Five independent values are E=3.55 MeV 15 ¹ H(⁸ He, ⁸ He) (1995Ko27), 2.80 MeV 20 ⁹ Be(⁷ Li, ⁸ B) (1985Al29), 2.70 MeV 30 ⁹ Be(⁹ Be, ¹⁰ C) and ¹¹ B(⁷ Li, ¹⁰ C) (1988Be34), 3.59 MeV ⁹ Be(¹³ C, ¹⁴ O) (1995Vo05), 2.90MeV 20 ¹² C(⁸ He,6he2n) (2001Ma05). The value E=3.1 MeV is obtained from the average of the measured values. The uncertainty is assigned by the evaluator. Γ: The Γ is obtained from the weighted average of Γ=0.50 MeV 35 ¹ H(⁸ He, ⁸ He) (1995Ko27), 0.5 MeV 3 ⁹ Be(⁹ Be, ¹⁰ C) (1988Be34), 0.8 MeV (3) ⁹ Be(¹³ C, ¹⁴ O) (1995Vo05), 1.0 MeV 5 ¹¹ B(⁷ Li, ¹⁰ C) (1988BeYJ), 0.3 MeV 3 ¹² C(⁸ He,6he2n) (2001Ma05).				
4.36×10 ³ 20	(1-)	1.3 MeV 5	B D FGHI	%n≈100 E(level): independent values in the literature are E=4.40 MeV 20^{9} Be(π^{-} ,p) (1998Go30), 4.00 MeV 30^{9} Be(9 Be, 10 C) and 11 B(7 Li, 10 C) (1988Be34),				
				4.54 MeV 15^{-10} Be(12 C, 14 O) (1999Bo26), 4.40 MeV 40^{-11} B(π^- ,p+D) (1998Go30), 4.15 MeV 20^{-12} C(8 He,6he2n) (2001Ma05). The energy is obtained from the weighted average of these values. However, the uncertainty is obtained by doubling the value obtained in the weighting formula.				
				This state may represent a group of levels. A broad resonance is observed at 4.4 MeV in ${}^9\mathrm{Be}(\pi^-,\mathrm{p})$, ${}^{11}\mathrm{B}(\pi^-\mathrm{p})$ and ${}^{12}\mathrm{C}({}^8\mathrm{He,6he2n})$; a narrow resonance is observed at 4 MeV in ${}^9\mathrm{Be}({}^9\mathrm{Be,}{}^{10}\mathrm{C})$ and ${}^{11}\mathrm{B}({}^7\mathrm{Li,}{}^{10}\mathrm{C})$ and a narrow resonance is observed at 4.54 MeV in ${}^{10}\mathrm{Be}({}^{12}\mathrm{C},{}^{14}\mathrm{O})$. Γ : The Γ is obtained from the weighted average of Γ =1.8 MeV 2 ${}^9\mathrm{Be}(\pi^-,\mathrm{p})$ (1998Go30), 0.5 MeV 3 ${}^9\mathrm{Be}({}^9\mathrm{Be,}{}^{10}\mathrm{C})$ and ${}^{11}\mathrm{B}({}^7\mathrm{Li,}{}^{10}\mathrm{C})$				
				· · · · · · · · · · · · · · · · · · ·				

Adopted Levels (continued)

⁸He Levels (continued) **XREF** Comments E(level) $T_{1/2}$ %n≈100 E(level): independent values in the literature are E=4.40 MeV 20 9 Be(π^{-} ,p) (1998Go30), 4.00 MeV 30 9 Be(9 Be, 10 C) and 11 B(7 Li, 10 C) (1988Be34), 4.54 MeV 15 ¹⁰Be(¹²C, ¹⁴O) (1999Bo26), 4.40 MeV 40 $^{11}B(\pi^-,p+D)$ (1998Go30), 4.15 MeV 20 $^{12}C(^8He,6he2n)$ (2001Ma05). The energy is obtained from the weighted average of these values. However, the uncertainty is obtained by doubling the value obtained in the weighting formula. This state may represent a group of levels. A broad resonance is observed at 4.4 MeV in ${}^9\mathrm{Be}(\pi^-,\mathrm{p})$, ${}^{11}\mathrm{B}(\pi^-\mathrm{p})$ and ${}^{12}\mathrm{C}({}^8\mathrm{He,6he2n})$; a narrow resonance is observed at 4 MeV in ${}^9\mathrm{Be}({}^9\mathrm{Be},{}^{10}\mathrm{C})$ and ${}^{11}\mathrm{B}({}^7\mathrm{Li},{}^{10}\mathrm{C})$ and a narrow resonance is observed at 4.54 MeV in ¹⁰Be(¹²C, ¹⁴O). Γ : The Γ is obtained from the weighted average of Γ =1.8 MeV 2 $^9{\rm Be}(\pi^-,p)$ (1998Go30), 0.5 MeV 3 $^9{\rm Be}(^9{\rm Be},^{10}{\rm C})$ and $^{11}{\rm B}(^7{\rm Li},^{10}{\rm C})$ (1988Be34), 0.70 MeV 25 ¹⁰Be(¹²C, ¹⁴O) (1999Bo26), 1.2 MeV 2 11 B(π^- ,p) (1998Go30), 0.5 MeV 3 11 B(7 Li, 10 C) (Belousov et al., Sov.Phys. Lebedev Inst. Rept. No. 9 (1987) 203) and 1.6 MeV 2 ¹²C(⁸He,6he2n) (2001Ma05). The uncertainty is estimated by the evaluator. 6.03×10³? 10 0.15 MeV 15 $7.16 \times 10^3 4$ E(level): see reactions: ⁹Be(⁹Be, ¹⁰C), ¹¹B(⁷Li, ¹⁰C) in 1988Aj01 for (3^{-}) 0.1 MeV 1 C F possible evidence of other states in ⁸He and the results of nuclear model calculations.

Adopted Levels 2004Ti06

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. L. Godwin, et al.	NP A745 155 (2004)	31-Mar-2004

 $Q(\beta^{-})=1.612\times10^{4} \ 10; \ S(n)=-1.7\times10^{2} \ 11$ 2012Wa38

Note: Current evaluation has used the following Q record 15759 71 –969 92 2003Au03,2004Ti06.

 $^{10}\mathrm{He}$ Levels

Cross Reference (XREF) Flags

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	(0^+)	300 keV 200	ABC	%n=100
				T=3
				E(level): Γ : from 10 Be(14 C, 14 O) (1994Os04).
				Decay: unstable to one and two neutron-decay.
32.4×10^{2} † 20	(2^{+})	1000 keV 300	C	T=3
				E(level): Γ : from 10 Be(14 C, 14 O) (1994Os04).
6800 [†] <i>70</i>	(3^{-})	600 keV 300	С	T=3
				E(level): Γ : from 10 Be(14 C, 14 O) (1994Os04).

 $^{^{\}dagger}$ Decay mode not specified.