Análisis y Diseño de Algoritmos

Miguel Ángel Romero González Jueves 18 de Octubre de 2018

Pontificia Universidad Javeriana de Cali Ingeniería de Sistemas y Computación

NP-complete problems [1]

Class P

$$P = \{L \subseteq \{0,1\}^* : \text{ there exists an algorithm } A \text{ that decides } L \text{ in polynomial time} \}.$$

In fact, P is also the class of languages that can be accepted in polynomial time.

 $P = \{L : L \text{ is accepted by a polynomial-time algorithm}\}$.

Class NP

$$L = \{x \in \{0,1\}^*: \text{ there exists a certificate } y \text{ with} \ |y| = O(|x|^c) \text{ such that } A(x,y) = 1\}.$$

We say that algorithm *A* **verifies** language *L* in **polynomial time**.

Class co-NP

We can define the complexity class co-NP as the set of languages L such that $\bar{L} \in NP$.

Reducibility

A language L_1 is **polynomial-time reducible** to a language L_2 , written $L_1 \leq_P L_2$, if there exists a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for all $x \in \{0,1\}^*$, $x \in L_1$ if and only if $f(x) \in L_2$.

We call the function f the **reduction function**, and a polynomial-time algorithm F that computes f is called a **reduction algorithm**.

Reducibility

If $L_1, L_2 \subseteq \{0, 1\}^*$ are languages such that $L_1 \leq_P L_2$, then $L_2 \in P$ implies $L_1 \in P$.

That is, if $L_1 \leq_P L_2$, then L_1 is not more than a polynomial factor harder than L_2 .

NP-complete

A language $L \subseteq \{0,1\}^*$ is **NP-complete** if

- 1. $L \in NP$, and
- 2. $L' \leq_P L$ for every $L' \in NP$.

If a language L satisfies property 2, but not necessarily property 1, we say that L is $\ensuremath{\mathsf{NP}\text{-}\mathsf{hard}}$.

The problem of determining whether a boolean formula is satisfiable has the historical honor of being the first problem ever shown to be NP-complete.

We formulate the **(formula)** satisfiability problem in terms of the language SAT as follows. An instance of SAT is a boolean formula ϕ composed of

- 1. *n* boolean variables: x_1, x_2, \ldots, x_n ;
- 2. *m* boolean connectives: AND, OR, NOT, implication, if and only if; and
- 3. parentheses.

A **truth assignment** for a boolean formula ϕ is a set of values for the variables of ϕ , and a **satisfying assignment** is a truth assignment that causes it to evaluate to 1. A formula with a satisfying assignment is a **satisfiable** formula.

The satisfiability problem asks whether a given boolean formula is satisfiable; in formal-language terms,

$$SAT = \{ \langle \phi \rangle : \phi \text{ is a satisfiable boolean formula} \}.$$

3-CNF-SAT problem

We define 3-CNF satisfiability using the following terms. A **literal** in a boolean formula is an occurrence of a variable or its negation. A boolean formula is in **conjunctive normal form**, or **CNF**, if it is expressed as an AND of **clauses**, each of which is the OR of one or more literals. A boolean formula is in **3-conjunctive normal form**, or **3-CNF**, if each clause has exactly three distinct literals.

$$(x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$$

3-CNF-SAT problem

In 3-CNF-SAT, we are asked whether a given boolean formula ϕ in 3-CNF is satisfiable.

Supposed: Satisfiability of boolean formulas in 3-conjunctive normal form is NP-complete.

A **clique** in an undirected graph G = (V, E) is a subset $V' \subseteq V$ of vertices, each pair of which is connected by an edge in E. In other words, a clique is a complete subgraph of G. The **size** of a clique is the number of vertices it contains.

The **clique problem** is the optimization problem of finding a clique of maximum size in a graph. As a decision problem, we ask simply whether a clique of a given size k exists in the graph. The formal definition is

CLIQUE = $\{\langle G, k \rangle : G \text{ is a graph with a clique of size } k\}$.

A naive algorithm for determining whether a graph G = (V, E) with |V| vertices has a clique of size k is to list all k-subsets of V, and check each one to see whether it forms a clique.

As one might suspect, an efficient algorithm for the clique problem is unlikely to exist.

Theorem

The clique problem is NP-complete.

Proof

To show that CLIQUE \in NP, for a given graph G = (V, E), we use the set $V' \subseteq V$ of vertices in the clique as a certificate for G. Checking whether V' is a clique can be accomplished in polynomial time by checking whether, for each pair $u, v \in V'$, the edge (u, v) belongs to E.

Proof

We next prove that 3-CNF-SAT \leq_P CLIQUE, which shows that the clique problem is NP-hard.

Proof

The reduction algorithm begins with an instance of 3-CNF-SAT. Let $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$ be a boolean formula in 3-CNF with k clauses.

For r = 1, 2, ..., k, each clause C_r has exactly three distinct literals I_1^r , I_2^r , and I_3^r .

We shall construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k.

Proof

For each clause $C_r = (l_1^r \wedge l_2^r \wedge l_3^r)$ in ϕ , we place a triple of vertices v_1^r , v_2^r , and v_3^r into V. We put an edge between two vertices v_i^r and v_i^s if both of the following hold:

- ullet v_i^r and v_j^s are in different triples, that is, r
 eq s, and
- their corresponding literals are **consistent**, that is, l_i^r is not the negation of l_j^s .

¿Preguntas?

Bibliografía

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.

McGraw-Hill Higher Education, 2nd edition, 2001.

¡Gracias!