Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z=1-(i\sqrt{2})^2=1-2i^2=1-2(-1)=$	3 p
	=1+2=3, care este număr natural	2 p
2.	f(x)+f(1-x)=3x+a+3(1-x)+a=2a+3, pentru orice număr real x	3 p
	$2a+3=7 \Rightarrow a=2$	2 p
3.	$5^{x} + 5^{-x} - 2 = 0 \Leftrightarrow (5^{x} - 1)^{2} = 0$	3p
	$5^{x} = 1$, deci $x = 0$	2p
4.	Numărul submulțimilor cu trei elemente ale lui A , care îl conțin pe 1, este egal cu numărul submulțimilor cu două elemente ale mulțimii $\{2,3,4,5\}$, deci este egal cu C_4^2 =	3p
	$=\frac{4!}{2!(4-2)!}=6$	2 p
5.	$m_{OM} = -1$ şi, cum $m_{OM} \cdot m_d = -1$, obţinem $m_d = 1$	2 p
	Ecuația dreptei d este $y - y_M = m_d (x - x_M)$, deci $y = x + 8$	3 p
6.	$\sin B = \frac{AC}{BC}$	2p
	$\cos B = \frac{AB}{BC} \Rightarrow AB = AC$, deci triunghiul ABC este isoscel	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$	
	$A(0) = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 4 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 4 \end{vmatrix} =$	2p
	$\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$	
	=0+4+3-4-0-4=-1	3 p
b)	$\det(A(a)) = -(a^2 - a + 1)$, pentru orice număr real a	3 p
	$a^2 - a + 1 \neq 0$, pentru orice număr real $a \Rightarrow \det(A(a)) \neq 0$, deci matricea $A(a)$ este	2 p
	inversabilă, pentru orice număr real <i>a</i>	
c)	Cum $a \in \mathbb{Z}$, inversa matricei $A(a)$ are toate elementele numere întregi dacă $\det(A(a))$ este	
	divizor al lui 1 și, cum $\det(A(a)) < 0$, pentru orice număr real a , obținem că $\det(A(a)) = -1$	3 p
	a=0 sau $a=1$, care convin	2p
2.a)	$1*2020 = \frac{1}{2}\sqrt[3]{1^3 \cdot 2020^3 - 1^3 - 2020^3 + 9} =$	3 p
	$= \frac{1}{2}\sqrt[3]{-1+9} = \frac{1}{2}\sqrt[3]{8} = 1$	2p

b)	$x * y = \frac{1}{2} \sqrt[3]{x^3 y^3 - x^3 - y^3 + 1 + 8} = \frac{1}{2} \sqrt[3]{x^3 (y^3 - 1) - (y^3 - 1) + 8} =$	3p
	$= \sqrt[3]{\frac{1}{8}(x^3 - 1)(y^3 - 1) + \frac{1}{8} \cdot 8} = \sqrt[3]{\frac{1}{8}(x^3 - 1)(y^3 - 1) + 1}, \text{ pentru orice } x, y \in A$	2p
c)	$x * x = \sqrt[3]{\frac{1}{8}(x^3 - 1)^2 + 1}$, pentru orice $x \in A$, deci $\frac{1}{8}(x^3 - 1)^2 + 1 = x^3$	2p
	$(x^3 - 1)^2 = 8(x^3 - 1)$, deci $x^3 - 1 = 0$ sau $x^3 - 1 = 8$, de unde $x = 1$ sau $x = \sqrt[3]{9}$, care convin	3 p

SUBIECTUL al III-lea

(30 de puncte)

		1
1.a)	$f'(x) = \frac{-1}{(x-2)^2} + \frac{x}{x-1} \cdot \frac{x - (x-1)}{x^2} = \frac{-x(x-1) + (x-2)^2}{x(x-1)(x-2)^2} = \frac{-x(x-1) + (x-2)^2}{x(x-1)(x-1)^2} = \frac{-x(x-1) + (x-2)^2}{x(x-1)^2} = \frac{-x(x-1)^2}{x(x-1)^2} = \frac{-x(x-1) + (x-1)^2}{x(x-1)^2} = \frac{-x(x-1)^2}{x(x-1)^2} = -x(x$	3 p
	$= \frac{-x^2 + x + x^2 - 4x + 4}{x(x-1)(x-2)^2} = \frac{-3x + 4}{x(x-1)(x-2)^2}, \ x \in (2, +\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{x-2} + \ln \frac{x-1}{x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x-2} + \ln \left(1 - \frac{1}{x} \right) \right) = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$x \in (2,+\infty) \Rightarrow f'(x) < 0$, deci f strict descrescătoare pe $(2,+\infty)$ și, cum $\lim_{x \to +\infty} f(x) = 0$, obținem că $f(x) > 0$, pentru orice $x \in (2,+\infty)$	3p
	$\frac{1}{x-2} + \ln \frac{x-1}{x} > 0, \text{ deci } \frac{1}{x-2} > -\ln \frac{x-1}{x}, \text{ de unde obținem că } \frac{1}{x-2} > \ln \frac{x}{x-1}, \text{ pentru orice } x \in (2,+\infty)$	2p
2.a)	$\int_{0}^{1} (x^{3} + 1) f^{2}(x) dx = \int_{0}^{1} (x^{3} + 1) \left(\frac{x}{\sqrt{x^{3} + 1}} \right)^{2} dx = \int_{0}^{1} x^{2} dx =$	3p
	$=\frac{x^3}{3}\Big _0^1 = \frac{1}{3}$	2 p
b)	$\int_{0}^{1} f^{2}(x) dx = \int_{0}^{1} \frac{x^{2}}{x^{3} + 1} dx = \frac{1}{3} \int_{0}^{1} \frac{\left(x^{3} + 1\right)'}{x^{3} + 1} dx =$	3p
	$= \frac{1}{3} \ln \left(x^3 + 1 \right) \Big _0^1 = \frac{1}{3} \ln 2$	2 p
c)	$I_n = \int_0^1 f\left(x^n\right) dx = \int_0^1 \frac{x^n}{\sqrt{x^{3n} + 1}} dx \text{ si, cum } 0 \le \frac{x^n}{\sqrt{x^{3n} + 1}} \le x^n \text{, pentru } x \in [0, 1] \text{ si, pentru fiecare}$ $\text{număr natural nenul } n, \text{ obținem că } 0 \le I_n \le \int_0^1 x^n dx$	3 p
	0	
	$0 \le I_n \le \frac{1}{n+1}$, pentru fiecare număr natural nenul n și, cum $\lim_{n \to +\infty} \frac{1}{n+1} = 0$, obținem $\lim_{n \to +\infty} I_n = 0$	2p