Recap: Multivariate Gaussian

- > 3 Equivalent definitions of a Multivariate Gaussian.
- Affine transformations preserve Gaussainity.
- Gaussian vectors are closed under marginalization.
- Gaussian vectors are closed under conditioning.

Markov Chains

Introduction to Stochastic processes

- Stochastic process $\{X(t), t \in T\}$ is a collection of random variables defined such that for every $t \in T$ we have $X(t): \Omega \to \mathcal{S}$.
- ► These random variables could be dependent and need not have identical distribution.
- ightharpoonup T is the parameter space (often resembles time) and $\mathcal S$ is the state space.
- ▶ When *T* is countable, we have a discrete time process.
- ▶ If T is a subset of real line, we have a continuous time process.
- State space could be integers or real numbers

Examples of Stochastic Processes

- ightharpoonup Sequence $\{X_i\}$ of i.i.d random variables.
- ▶ General random walk: If $X_1, X_2, ...$ is a sequence i.i.d of random variables, then $S_n = \sum_{i=1}^n X_i$ is a random walk.
- ▶ 1D Random walks can have positive, negative or no drift depending on the sign of E[X].
- A trajectory of 2D random walk

https://upload.wikimedia.org/wikipedia/commons/f/f3/Random_walk_

2500 animated syg

Examples of Stochastic Processes

- ▶ Weiner process: $\{X(t), t \ge 0\}$ is a Weiner process if
 - 1. for every t > 0, $X(t) \sim \mathcal{N}(0, t)$.
 - 2. Often called as Brownian Motion as it was used by Robert Brown to describe motion of particle suspended in liquid.
 - 3. It is a scaling limit of a random walk (zoomed out BM).
 - 4. Trajectories are continuous but not differntiable (Financial modeling)
 - 5. Limit of Functional CLT (CLT for Stochastic processes)

Examples of Stochastic Processes

Gaussian Process: A continuous time stochastic process $\{X_t, t \in T\}$ is a gaussian process if and only if for any finite set of indices t_1, \ldots, t_k , $[X_{t_1}, \ldots, X_{t_k}]$ is a multivariate Gaussian vector.

 $\{X_n, n \geq 0\}$ is a martingale if $E[X_{n+1}|X_1, \dots, X_n)] = X_n$. (Applications in Finance, Optimal Stopping, pricing)

Discrete time Markov Chains (DTMC)

A stochastic process $\{X_n, n \in \mathbb{Z}_+\}$ is a discrete time Markov chain if for any $n_1 < n_2 < \ldots < n_k < n$,

$$P(X_n = j | X_{n_1} = x_1, ..., X_{n_k} = i) = P(X_n = j | X_{n_k} = i)$$

- ► This is called as the Markov property.
- ightharpoonup P(next state|past states, present state) = P(next state| present state)
- ➤ Why Chain? You can view the successive random variables as a chain of states being visited in a sequence and where the next state visited depends only on the current state.
- ightharpoonup We will throughout assume that the state space $\mathcal S$ is countable.

Running example: Coin with memory!

- In a Markovian coin with memory, the outcome of the next toss depends on the current toss.
- $ightharpoonup X_n = 1$ for heads and $X_n = -1$ otherwise. $S = \{+1, -1\}$.
- Sticky coin : $P(X_{n+1} = 1 | X_n = 1) = 0.9$ and $P(X_{n+1} = -1 | X_n = -1) = 0.8$ for all n.
- ► Flippy Coin: $P(X_{n+1} = 1 | X_n = 1) = 0.1$ while $P(X_{n+1} = -1 | X_n = -1) = 0.3$ for all n.
- ► This can be represented by a transition diagram (see board)
- The transition probability matrix P for the two cases is $P_s = \begin{bmatrix} 0.9 & .1 \\ 0.2 & 0.8 \end{bmatrix}$ and $P_f = \begin{bmatrix} 0.1 & 0.9 \\ 0.7 & 0.3 \end{bmatrix}$
- The row corresponds to present state and the column corresponds to next state.