

- Учебная дисциплина
- Вычислительные средства
- АСОИУ
- (5 семестр)

#### Основная учебная литература

- В.Л. Бройдо, О.П. Ильина. Архитектура
   ЭВМ и систем. Учебник для ВУЗов. СПб.:
   Питер, 2005. 718 с.
- Э. Танненбаум. Архитектура компьютера. 4-е издание. — СПб.: Питер, 2006. — 699 с

### Основная учебная литература

К. Хамакер, Э. Вранешич, С. Заки.
 Организация ЭВМ. 5-е издание. – СПб.:
Питер; Киев: Издательская группа ВНV,
2003. – 848 с.

#### Дополнительная учебная литература

- М. Гук, Аппаратные интерфейсы ПК.
   Энциклопедия. Питер 2003. 523 с.
- Новожилов О.П., Архитектура ЭВМ и систем: учеб. Пособие для бакалавров / Новожилов О.П., М.: Юрайт, 2012. – 527 с.

#### Дополнительная учебная литература

- Столингс. Структурная организация и архитектура компьютерных систем. 5-е В издание. – СПб.: Питер, 2002. – 896 с.
- Б.Ф. Томпсон, Р.Б. Томпсон. Железо ПК: Энциклопедия. 3-е издание. – СПб.: Питер, 2004. – 960 с.

- 1. Вся информация в системе представляется и обрабатывается в двоичной системе счисления и разделяется на слова.
- Все типы слов (данные, адреса, команды) кодируются одинаково.

- 3. Слова размещаются в ячейках
- памяти и идентифицируются номерами (адресами ячеек памяти).
- 4. Алгоритм решения задачи записывается в виде последовательности управляющих слов. Управляющее слово указывает на тип операции и операнды.

• Управляющее слово называется машинной командой. Последовательность управляющих слов называется машинной программой.

• 5. Выполнение вычислений в ЭВМ сводится к последовательному выполнению машинных команд в порядке, определяемом машинной программой.

### Структура машины Фон-Неймана

- Операционная устройство
- Устройство управления
- Запоминающее устройство
- Устройство ввода-вывода



## Структурная организация современных ЭВМ

- ЭВМ- инженерная система для выполнения вычислений по алгоритмам.
- ЭВМ характеризуется составом и структурой.
- Состав набор устройств.
- Структура устройства и связи между ними.

# Структурная организация современных ЭВМ

- Совокупность связей двух взаимодействующих устройств по электрическим цепям называют интерфейсом.
- Основными характеристиками интерфейса являются: скорость надёжность, стоимость.

## Типы интерфейсов

- Последовательный
- Параллельный
- Паралллельно-последовательный
- Типовой шинный интерфейс:
- ШУ-шина управления;
- ША-шина адреса;
- ШД-шина данных

## Построение ЭВМ на основе единого интерфейса



- 1. Операционные ресурсы:
- Способы представления данных; способы адресации; система машинных команд; средства контроля и диагностики; режимы работы ЭВМ (пакетный, запрос-ответ, разделение времени).

• 2. Ёмкость памяти и организация памяти.

- 3. Быстродействие.
- Основная характеристика быстродействия: V [оп/сек];
- Длительность операции: Топ=1/V [сек]

- 4. Производительность.
- Характеризует время решения задачи в однопрограммном режиме:
- Тзадачи=Q\* Топ.среднее
- При мультипрограммном режиме: Т=
- Т задачи +Т ожидания ресурса

- Т задачи в мультипрограммном режиме определяется:
- - номинальным быстродействием;
- - классом решаемых задач;
- - организацией выполнения вычислительного процесса

- 5. Надёжность.
- Надёжность характеризуется средним временем наработки на отказ и зависит от элементной базы и конструкции ЭВМ.
- Формула Тср и Лямда

- 6. Стоимость.
- На стоимость влияют:
- - элементная база;
- - операционные ресурсы;
- - быстродействие;
- - производительность;
- - надёжность.

#### • 1. Типы данных.



• 2. Целые двоичные числа

- Диапазон представления:
- от –(2 в степ. n-1) до +(2 в степ n-1)

• 3. Двоичные числа с фиксированной запятой.

Знак Правильная дробь (целое)

- Особенности выполнения арифметических операций:
- А) сложение и вычитание:
- А плюс-минус В по модулю <1.
- Б) умножение: отображается n младших разрядов и округляется.

- В). Деление. A/B<1.
- Диапазон представления чисел:
- -(1-2 в степени –n) до +(1-2 в степени +n)

• 4. Числа с плавающей запятой.

| Знак     | Мантисса (дв. число с фикс. | Знак    | порядок |
|----------|-----------------------------|---------|---------|
| мантиссы | запятой)                    | порядка |         |

- Структура числа:
- Число с плавающей запятой состоит из:
- Знака мантиссы (указывающего на отрицательность или положительность числа)
- Мантиссы (выражающей значение числа без учёта <u>порядка</u>)
- Знака порядка
- Порядка (выражающего степень основания числа, на которое умножается мантисса)

- Нормальная форма и нормализованная форма
- Нормальной формой числа с плавающей запятой называется такая форма, в которой мантисса (без учёта знака) находится на полуинтервале [0; 1) ().

 Такая форма записи имеет недостаток: некоторые числа записываются неоднозначно (например, 0,0001 можно записать в 4 формах — 0,0001·100, 0,001·10-1, 0,01·10-2, 0,1·10-3)

• Нормализованная форма, в которой мантисса десятичного числа принимает значения от 1 (включительно) до 10 (не включительно), а мантисса двоичного числа принимает значения от 1 (включительно) до 2 (не включительно) (). В такой форме любое число (кроме 0) записывается единственным образом.

• Недостаток заключается в том, что в таком виде невозможно представить 0, поэтому представление чисел в информатике предусматривает специальный признак (бит) для числа 0.

• Так как старший разряд (целая часть числа) мантиссы двоичного числа (кроме 0) в нормализованном виде равен «1», то при записи мантиссы числа в эвм старший разряд можно не записывать, что и используется в стандарте IEEE 754.

- Z=плюс-минус M\*d в степени плюс-минус П. где d-основание числа с плав. Запятой. D=2 в степени r,
- Где r=1,2,3...
- Число нормализовано, если r старших разрядов мантисс не равны 0.

- Из-за ограничений на разрядность мантиссы и порядка возможны ситуации:
- - потеря значимости: M=0, П не =0 машинный ноль;
- -исчезновение порядка П< -2 в степ.(2в степ n-1)
- -деление на 0

- 5. Десятичные целые числа.
- Числа обрабатываются
   последовательно разряд за разрядом
   начиная с разрядов младшей тетрады.

Двоичная тетрада Двоичная тетрада Двоичная тетрада Двоичная тетрада Двоичная тетрада

Бит знака

#### Представление данных в ЭВМ

• 6. Строки символов.

1или 2 байта на символ 1или 2 байта на символ

1или 2 байта на символ

#### Представление данных в ЭВМ

- 7. Логические значения.
- 10000110100011
- 1110001100100

#### Машинные операции

- 1. Свойства машинных операций:
- Машинная операция это действие, инициированное машинной командой и реализованное оборудованием ЭВМ.
- Множеству машинных операций соответствует множество машинных команд. Машинная команда инициирует определённую машинную операцию.

#### Машинные операции

- Набор машинных операций характеризуется двумя свойствами:
- а) функциональной полнотой (лог. Функции, арифм. действия и т.д.)
- б) эффективность, которая определяется затратами на оборудования для достижения требуемой производительности.

#### Машинные операции

- 2. Классификация машинных операций.
- a) арифметические и логические операции : +,-,\*, /, извл. корня, ... И,Или,Не....;
- б) посылочные: обмен между ОП-ЦП;
- в) операции прерывания;
- г) ввод-вывод;
- д) системные

#### Система команд ЭВМ

- По функциональному назначению в системе команд ЭВМ различают следующие группы:
- команды передачи данных (обмен входами между регистрами процессора, процессора и оперативной памятью, процессора и периферийными установками).

#### Система команд ЭВМ

- *Команды обработки данных* (команды сложения, умножения, сдвига, сравнения).
- Команды передачи управления (команды безусловного и условного перехода).

#### Система команд ЭВМ

• *Команды дополнительные* (типа RESET, TEST,-).

- Способ адресации это правило определения адреса и операнда на основе информации в адресной части команды.
- Эффективность способа адресации влияет на временные затраты и затраты на определённый необходимый состав оборудования.

- Способы формирования адресов ячеек памяти можно разделить на <u>абсолютные и</u> <u>относительные</u>.
- Абсолютные способы формирования предполагают, что двоичный код адреса ячейки памяти может быть целиком извлечен либо из адресного поля команды, либо из какой-нибудь другой ячейки в случае косвенной адресации.

- Относительные способы формирования предполагают, что двоичный код адресной ячейки памяти образуется из нескольких составляющих:
- Б v код базы,
   И v код индекса,
   С v код смещения.
- Эти составляющие используются в различных сочетаниях.

- Относительная адресация
- При относительной адресации применяется способ вычисления адреса путем суммирования кодов, составляющих адрес.
- A = 5 + U + C A = 5 + CA = U + C

- 1. Прямая адресация.
- адресная часть команды содержит непосредственный (прямой) адрес
- операнда в памяти.



- 2. Непосредственная адресация
- Целочисленное значение операнда записывается в поле команды.

команда

КОП

1010

Операнд: константа 10 в двоичном коде

- 3. Косвенная адресация.
- Адресная часть команды содержит косвенный адрес;
- Адресный код команды в этом случае указывает адрес ячейки памяти, в которой находится адрес операнда или команды. Косвенная адресация широко используется в малых и микроЭВМ, имеющих короткое машинное слово, для преодоления ограничений короткого формата команды (совместно используются регистровая и косвенная адресация).

 Пояснение косвенной адресации.



- 4. Регистровая адресация.
- Применяется, когда промежуточные результаты хранятся в одном из рабочих регистров центрального процессора (регистрах общего назначения (РОН)). Поскольку регистров значительно меньше чем ячеек памяти, то небольшого адресного поля может хватить для адресации.

 Пояснение регистровой адресации.



- 5. Адресация с модификацией адресов.
- Для реализуемых на ЭВМ методов решения математических задач и обработки данных характерна цикличность вычислительных процессов, когда одни и те же процедуры выполняются над различными операндами, упорядоченно расположенными в памяти.

- Программирование циклов существенно упрощается, если после каждого выполнения цикла обеспечено автоматическое изменение в соответствующих командах их адресных частей согласно расположению в памяти обрабатываемых операндов.
- Такой процесс называется модификацией команд, и основан на возможности выполнения над кодами команд арифметических и логических операций.

- Индексная адресация
- Для работы программ с массивами, требующими однотипных операций над элементами массива, удобно использовать индексную адресацию.

#### Индексная адресация



#### Индексная адресация

- Адрес *i*-того операнда в массиве определяется как сумма начального адреса массива операнда, задаваемого смещением *S*, и индекса *I*, записанного в одном из регистров регистровой памяти, называемым *индексным регистром*.
- Адрес индексного регистра задается в команде полем адреса индекса *Au*.
- В каждом *i*-том цикле содержимое индексного регистра изменяется на постоянную величину, как правило, это 1.

- 6. Прямая адресация с модификацией.
- В полях команды содержится Рон, в котором текущий индекс, а во втором поле команды базовый (начальный) адрес.

- 7. Регистровая адресация с модификацией.
- Поля команды содержать два значения РОН: в первом значение индекса, второй содержит значение базового адреса.

• <u>8. Страничная</u> <u>адресация</u>.

**КОП**Адрес Адрес страницы слова

- 9. Стековая адресация
- Стековая память широко используется в современных ЭВМ. Хотя адрес обращения в стек отсутствует в команде, он формируется схемой управления:

#### • 9.Стековая адресация



#### 9.Стековая адресация

- Для чтения записи доступен только один регистр v вершина стека. Этот способ адресации используется, в частности, системой прерывания программ при вложенных вызовах подпрограмм.
- Стековая память реализуется на основе обычной памяти с использованием указателя стека и автоиндексной адресации.
- Запись в стек производится с использованием автодекрементной адресации, а чтение - с использованием автоинкрементной адресации.

- F множество операций,
- D множество входных данных,
- R множество выходных данных, результатов вычислений,
- ограничения на время выполнения операции.

- Задача проектирования- создание ОУ минимальной размерности и сложности.
- Для проектирования ОУ все операции описываются в виде наборов микропрограмм.

- Формализованная микропрограмма
- (ФМП) описывает работу ОУ безотносительно к его структуре на основе математических методов прикладной математики.

- Язык формализованного описания микропрограмм (ЯФМП) применяется для описания слов, микроопераций
- (МО)и логических условий (ЛУ).
- Как правило удобнее использовать инженерную версию ЯФМП.

#### ПМФК

- ЯФМП состоит из описательной части (описание слов, МО и ЛУ) и содержательной части графа ФМП.
- Описательный уровень позволяет описать работу
   ОУ на регистровом уровне.
- Содержательный уровень отслеживает выполнение переходов по логическим условиям.

#### ПМФК

#### • <u>1. Описание слов:</u>

- c (n1:n2), где:
- С идентификатор (присвоенное имя), n1старший разряд слова,
- n2-младший разряд слова.
- Каждое слово связано со своим регистром, либо другим устройством.

#### ПМФК

Например, запись СчК(3:0) обозначает
четырёхразрядный счётчик с присвоенным ему
идентификатором СчК, ниже изображён регистр
результата PrREZ(n1:n2)



- <u>2. Описание массивов:</u>
- M[m2:m1](n2:n1) где:
- m2 и m1 –указатели номеров старшей и младшей ячейки массива;
- n2 и n1 разряды слова внутри массива.
- Например: [255:0](n2:n1)

- <u>3. Поля</u>
- Например: Pr A(31:0); Pr A(15:0)
- Adp $(15:0) = PrA(15:0) KO\Pi(15:0) = PrA(31:16)$
- Полям можно присваивать собственные имена.



- <u>4. Типы слов.</u>
- Каждое слово характеризуется определённым типом.
- Нашли применения следующие типы слов:
- - входные (I);
- -внутренние (L);
- - вспомогательные (A)(промежуточные) (действуют на 1 такт);
- выходные (О).

## ЯФМП. 4. Типы слов.



#### ЯФМП. 4. Типы слов.

• Все слова, используемые в микропрограмме должны быть описаны в следующей таблице:

| Наименование и<br>формат<br>слова | Поля        | Соответствующий<br>регистр |
|-----------------------------------|-------------|----------------------------|
| A(7:0)                            | Знак=А(0:0) | РгА                        |
| B(7:0)                            | Знак=В(0:0) | РгВ                        |
| R(7:0)                            | Знак=R(0:0) | PrR                        |
| Сч(3:0)                           |             | РгСч                       |
| C(7:0)                            | Знак=С(0:0) | PrC                        |

- 5. Двоичные выражения.
- Описывают преобразования, выполняемые микрооперациями.
- Двоичные выражения (ДВ) состоят из элементарных ДВ, соединённых знаками двоичных операций.

#### 5. Двоичные выражения.

- В качестве ДВ используют:
- 1. Константы (двоичные, восьмеричные, шестнадцатеричные);
- 2. Слова, используемые только со своими идентификаторами;
- 3. Поля;
- 4. Элементы массивов М[31:0](15:0)

- 6. Двоичные операции.
- Инверсия старшинство: 1
- Конкатенация старшинство: 2
- Конъюнкция старшинство: 3
- Дизъюнкция старшинство: 4
- Сложение по mod 2 старш: 4
- Арифм. сложение старш: 5
- Циклич. Сложение старш: 5
- Вычитание старшинство: 5

- Синтаксис записи микрооперации:
- <A>:=<B> оператор присваивания.
- А м.быть словом, полем, элементом массива.
- В двоичное выражение.
- Микрооперация (МО) выполняется за один такт. В начале такта вычисляется двоичное выражение, в конце такта выполняется присваивание.

- Типовые микрооперации. Классификация.
- 1. Установка значения A:=const
- 2. Инвертирование А:=!А
- 3. Передача А:= В
- Микрооперация передаёт информацию из одного регистра в другой.

- Оператор присваивания в синтаксической записи:
- <левая часть>:=<двоичное выражение>
- Вся микрооперация выполняется за один машинный такт.

- 4. Сдвиговые микрооперации.
- При сдвиге указывается направление сдвига, на сколько разрядов осуществляется сдвиг и какими значениями заполняются освободившиеся разряды.

- Синтаксис записи МО сдвига:
- RK сдвиг на к разрядов вправо;
- LK сдвиг на к разрядов влево.
- Например: A:=R1(1.A), A:=L1(A.O)
- В первом случае заполнение единицами, во втором нулями.

- Типы сдвигов:
- - логический;
- - циклический;
- - арифметический.

- Правила выполнения сдвигов:
- 1. При **логическом** сдвиге освобождаемые разряды заполняются нулями.
- 2. При **циклическом** сдвиге освобождённые разряды заполняются выдвигаемыми разрядами.

- При арифметическом сдвиге выполняются следующие правила:
- - при сдвиге влево освобождаемые разряды заполняются нулями;
- - при сдвиге вправо освобождаемые разряды заполняются значением бита знака;
- - разряд знака **не сдвигается**, сдвигается только числовая часть числа.

- 5. Микрооперации счёта.
- Используются в том числе и для описания работы счётчиков.
- A:=A+1 инкремент;
- A:=A-1 декремент
- Микрооперации арифметического сложения и вычитания.
- При сложении операнды выравниваются по младшим разрядам с заполнением нулями старших лишних разрядов.

- Совместимость микроопераций.
- Совместимыми называются микрооперации, которые выполняются в одном такте.
- Один машинный такт может содержать несколько микроопераций.
- Совместимые МО подразделяются на:
- А) функциональные;
- Б) структурные.

- Функциональная совместимость определяется алгоритмом. Две МО будут такими, если они присваивают значения разным словам.
- A:=A+B и A:= C-D не совместимые операции

- Структурная совместимость ограничивается аппаратурно.
- Две МО считаются структурно совместимыми, если они выполняются на разных аппаратных средствах.

- Логические условия.
- Логические условия представляют из себя булеву функцию. В качестве первичных булевых функций выступают одноразрядные слова, поля, отношения.
- Отношение конструкция вида:
- C1\*C2, где \*- операция отношения: больше, меньше, не равно.

 Для записи графа используются 4 типа вершин и дуги, связывающие эти вершины.
 С их помощью описывается микропрограмма.

- Типы вершин графа.
- <u>1. Вершина «начало».</u> Определяет начало микропрограммы, не имеет входов, и имеет единственный выход.



- 2. Функциональная вершина.
- Используется для указания совместных МО, имеет произвольное количество входов и один выход.



- 3. Условная вершина.
- Используется для описания разветвлений в МК, может иметь произвольное число входов и один единственный выход.



- 4. Конечная вершина.
- Может иметь произвольное число входов и не иметь выхода.



- Граф должен быть корректным, то есть не должен допускать зависание микропрограммы.
- Правила построения графа микропрограммы.
- 1. Граф должен иметь только одну начальную и одну конечную вершину.

- 2. В каждую вершину, кроме начальной, должна входить хотя бы одна дуга.
- 3. Из каждого выхода каждой вершины должна исходить одна и только одна дуга.
- 4. При любом наборе исходных данных должен существовать путь из начальной вершины в конечную.

- Рассмотрим данные этапы на примере операции умножения.
- Исходные данные:
- 1. умножение производится над операндами одинаковой длины, целые числа со знаками;
- 2. умножение осуществляется в прямых кодах над модулями аргументов операции;

- 3. Произведение занимает двойную дину слова аргументов.
- 4. Знак результата умножения определяется как арифметическая сумма битов знаков (сложение по модулю 2).
- 5. Пример умножения в столбик:

• 1011

• \*<u>1101</u>

• 1011

• 1011

• <u>1011</u>

• 10001111

- Словесное описание алгоритма умножения.
- 1. Обнулить регистр С (хранит промежуточные суммы и и будет содержать старшие разряды результата).

- 2. Множимое располагается в
- регистре А. Множитель в регистре В. Знаковые разряды устанавливаются в нулевые значения. (умножение производится над модулями сомножителей).
- 3. Если младший разряд множителя (B(0)) равен 1, то производится сложение множимого и содержимого регистра С, при нулевом значении сложение не производится.

- 4. Производится сдвиг вправо регистров С и В, при этом сдвигаемый младший разряд регистра С переносится в старший освобождаемый разряд регистра В.
- Повторяются п.3 и п.4. столько раз, сколько разрядов содержит множитель.
- 5. Знак результата определяется как сумма по модулю 2 старших знаковых разрядов аргументов А и В и записывается в старший разряд регистра С.

#### • Описание слов.

| • | Тип слова | Формат | Поля      | Примечание |
|---|-----------|--------|-----------|------------|
| • | 1         | A(4:0) | 3нА=(4)   | множи-     |
| • |           |        | MA=A(3:0) | мое        |
| • |           |        |           |            |
| • | 1         | B(4:0) | 3нВ=(4)   | множи-     |
| • |           |        | мB=B(3:0) | тель       |
| • |           |        |           |            |

#### • Описание слов.

| • | Тип слова | Формат  | Поля        | <u>Примечание</u> |
|---|-----------|---------|-------------|-------------------|
| • | 0         | C(4:0)  | 3нС=(4)     | старшая           |
| • |           |         | MC = C(3:0) | часть рез.        |
| • |           |         |             |                   |
| • | L         | Сч(2:0) |             | счётчик           |
| • |           |         |             |                   |

# Логическое проектирование операционного автомата (ОА)

- Структурный базис ОА
- Структурный базис ОА это набор элементов, из которых построен ОА:
- а) триггеры, регистры, счётчики, и др.,
- б) комбинационные схемы;
- в) шины.

#### Шины. Архитектуры шин.

- УГО шины.
- Каждая шина должна иметь свой A(0)собственный Вх. шины 5 уникальный Вых. шины 2 A(1) идентификатор, а 6 3 признак также входные и 7 выходные цепи с собственными идентификатора-ми.

#### Шины. Архитектуры шин.

- Шины могут изгибаться, разветвляться, пересекаться.
- По шинам можно передавать информацию от одного источника к нескольким приёмникам. (управляемое демультиплексирование).

#### Шины. Архитектуры шин.

• По шинам можно передавать информацию от многих источников к одному приёмнику. (управляемое мультиплексирование).

#### Порядок проектирования ОА

- 1. <u>Описание ОА.</u>
- В общем случае ОА может выполнять несколько ФМП(МП)

#### Порядок проектирования ОА

| • | МП     | слова   | MO     | ЛУ  |
|---|--------|---------|--------|-----|
| • | МП1    | A(15.0) | A:=B   | A=0 |
| • |        | B(15.0) | A:=A+B |     |
| • |        |         |        |     |
| • | МПЭ    | A(7:0)  | A:=B   | B=1 |
|   | IVIIIZ | A(7.0)  | AD     | D-1 |
| • | IVIIIZ | B(7:0)  | A:=A-B | D-1 |

#### Порядок проектирования ОА

| • | МП слова    | MO     | ЛУ  |
|---|-------------|--------|-----|
| • | MΠ3 A(15.0) | A:=B   | A=0 |
| • | B(15.0)     | A:=A+B | B=1 |
| • |             | A:=A-B | D=1 |

#### Методика синтеза канонической структуры ОА

- Исходные данные:
- S; Y; X; структурный базис.
- 1) Выделение регистров под входные слова и определение разрядов и регистра под выходное слово.

#### Методика синтеза канонической структуры ОА

• 2) Каждой микрооперации вида:

$$S_{\alpha} := \varphi_m(S_1, \dots, S_k)$$



#### Методика синтеза канонической структуры ОА

• 3). Каждому логическому условию (ЛУ) вида:

$$X_l = \varphi_l(S_1, ..., S_k)$$



#### Синтез ОА для блока умножения

• Составление алгоритма умножения

#### Синтез ОА для блока умножения

- Описание блока умножения:
- Составление таблицы:

• Слово МО Ү ЛУ Х

# Синтез канонической структуры блока умножения

• Рисунок структуры блока

#### Порядок работы ОА

- В ОА в каждом машинном такте выполняется одна или несколько МО, причём сама МО с синтаксической точки зрения представляет собой оператор присваивания:
- <адрес>:=<двоичное выражение>

#### Порядок работы ОА

- ОА работает по тактам. В такте происходит:
- 1) формирование управляющих сигналов Y1,,,,,Yn;
- 2) вычисление значения двоичного выражения (МО);
- 3) сохраняется результат в регистре;
- 4) вычисляются логические условия и определяются значения условных переменных X1, X2,.....Xn.

#### Порядок работы ОА

- Длительность машинного такта:
- Тмт>ty+tmo+tлу
- В конце такта запись в регистр производится по синхроимпульсу тактового генератора.

#### Характеристики ОА

- 1. Производительность (количество МО за такт).
- 2. Быстродействие (длительность такта).
- 3. Затраты оборудования.

- Классификация структур автоматов:
- 1.I автоматы. Их производительность такая же как и у автоматов с канонической структурой. Особенностью является отсутствие избыточности и как следствие меньшие аппаратурные затраты.

- 2. М –автоматы: в каждом машинном такте может выполняться только одна МО, следовательно производительность = 1 (очень мала), но минимальны аппаратурные затраты.
- 3. IM автоматы с промежуточными характеристиками: производительность >1, но имеются структурные ограничения на совместимость МО.

- 4. S автоматы: используются, когда надо обрабатывать большое количество слов. (например, каналы ввода/вывода).
- В этом случае для хранения используются не регистры, а память.



#### Построение ОЭ на основе регистра

- Возможные операции на регистре:
- 1). C:= A
- 2). C:=0
- 3). C: = R1(1.C)
- 4). C: = R1(0.C)
- 5). C: = L1(C.0)

#### Построение ОЭ на основе регистра

• Берём за основу универсальный регистр



#### Таблица функций регистра

| Режимы      | S0 | S1 | R | С | Микроопе-   |
|-------------|----|----|---|---|-------------|
|             |    |    |   |   | рация       |
| Хранение    | 0  | 0  | 0 | * | F:=F        |
| Сдв. Влево  | 0  | 1  | 0 | 1 | F:=L1(F.DL) |
| Сдв. вправо | 1  | 0  | 0 | 1 | F:=R1(DR.F) |
| Запись      | 1  | 1  | 0 | 1 | F:=D        |
| Сброс       | *  | *  | 1 | * | F:=0        |
|             |    |    |   |   |             |

#### Таблица описания работы ОЭ

| Υ  | MO           | S0 | S1 | R | DL | DR |
|----|--------------|----|----|---|----|----|
|    |              |    |    |   |    |    |
| Y1 | C: = A       | 1  | 1  | 0 | *  | *  |
| Y2 | C: = 0       | *  | *  | 1 | *  | *  |
| Y3 | C: = R1(1.C) | 1  | 0  | 0 | *  | 1  |
| Y4 | C: = R1(0.C) | 1  | 0  | 0 | *  | 0  |
| Y5 | C: = L1(C.0) | 0  | 1  | 0 | 0  | *  |

# Синтезируем комбинационную схему

- S0=y1+y3+y4
- S1= y1+y5
- R=y2
- DL=0
- DR=y3

#### Синтезированная структура ОЭ



## Синтез операционного элемента на основе счётчика

#### • Режимы счётчика

| Режимы    | S0 | S1 | R | С | Микроопе- |
|-----------|----|----|---|---|-----------|
|           |    |    |   |   | рация     |
| Запись    | 1  | 1  | 0 | 1 | F:=D      |
| Сложение  | 1  | 0  | 0 | 1 | F:=F+1    |
| Вычитание | 0  | 1  | 0 | 1 | F:=F-1    |
| Хранение  | 0  | 0  | 0 | * | F:=F      |
| Сброс     | *  | *  | 1 | * | F:=0      |

### Синтез операционного элемента на основе счётчика

• Таблица микроопераций

| Υ  | Микр.            | S0 | S1 | R | +1 | Sm | С |
|----|------------------|----|----|---|----|----|---|
|    | операция         |    |    |   |    |    |   |
| Y1 | F:=A             | 1  | 1  | 0 | *  | 0  | 1 |
| Y2 | F:=B             | 1  | 1  | 0 | *  | 1  | 1 |
| Y3 | C;=C+1<br>C:=C-1 | 1  | 0  | 0 | 1  | *  | 1 |
|    |                  | 0  | 1  | 0 | 1  | *  | 1 |
| Y5 | C:=0             | *  | *  | 1 | *  | *  | * |
|    |                  |    |    |   |    |    |   |

## Синтез операционного элемента на основе счётчика



## Синтез операционного элемента на основе АЛУ

• Интерфейс микросхемы АЛУ



#### Операции АЛУ

• Перечень выполняемых АЛУ операций дан в след.таблице. Для краткости двоичные числа s3s2s1s0 представлены их десятичными эквивалентами. Под утолщенными обозначениями 1 и 0 следует понимать наборы 1111 и 0000, входной перенос поступает в младший разряд слова, т. е. равен 000Сі. При арифметических операциях учитываются межразрядные переносы.

### Операции АЛУ

| S                  | Логические функции<br>(M = 1) | Арифметико-логические функции<br>(M = 0)                                                                   |
|--------------------|-------------------------------|------------------------------------------------------------------------------------------------------------|
| 0                  | Ä                             | A+C,                                                                                                       |
| 1                  | AVB                           | A\/B + C,                                                                                                  |
| 2                  | AB                            | AVB+Ci                                                                                                     |
| 3                  | 0                             | 1 + C <sub>i</sub>                                                                                         |
| 4                  | AB                            | A+AB+C,                                                                                                    |
| 5                  | В                             | A\/B+AB+C                                                                                                  |
| 6                  | A @ B                         | A + B + C <sub>i</sub>                                                                                     |
| 7                  | A8                            | AB +1+C,                                                                                                   |
| 8<br>9<br>10<br>11 | A ∨B<br>A⊕B<br>B<br>AB        | A + AB + C <sub>1</sub><br>A + B + C <sub>1</sub><br>A\/B + AB + C <sub>1</sub><br>AB + 1 + C <sub>1</sub> |
| 12                 | 1                             | A + A + C,                                                                                                 |
| 13                 | A\/B                          | AVB+A+C,                                                                                                   |
| 14                 | A\/B                          | AVB+A+C                                                                                                    |
| 15                 | A                             | A+1+C,                                                                                                     |

#### Соединение нескольких АЛУ

- При операциях над словами большой размерности АЛУ соединяются друг с другом с организацией последовательных или параллельных переносов.
- В последнем случае совместно с АЛУ
  применяют микросхемы блоки ускоренного
  переноса, получающие от отдельных АЛУ функции
  генерации и прозрачности, а также входной
  перенос и вырабатывающие сигналы переноса.

#### Соединение нескольких АЛУ



#### Синтез операционного элемента на основе АЛУ

- Перечень микроопераций:
- F=A+B
- F=A-B
- F=A+1
- F=A-1
- F=A&B
- F=A/\B

# Синтез операционного элемента на основе АЛУ

Таблица микроопераций для синтеза ОЭ

| Υ  | Микро-<br>операция | М | S0 | S1 | S2 | S3 | Ci |  |
|----|--------------------|---|----|----|----|----|----|--|
| Y1 | F=A+B              | 0 | 0  | 0  | 0  | 1  | 0  |  |
| Y2 | F=A-B              | 0 | 0  | 0  | 1  | 0  | 0  |  |
| Y3 | F=A+1              | 0 | 0  | 0  | 0  | 0  | 1  |  |
| Y4 | F=A-1              | 0 |    |    |    |    |    |  |
| Y5 | F=A&B              | 1 |    |    |    |    |    |  |
| Y6 | F=A∧B              | 1 |    |    |    |    |    |  |
|    |                    |   |    |    |    |    |    |  |

# Синтез операционного элемента на основе АЛУ



## Управляющий автомат



### Типы цифровых автоматов

- Два типа автоматов:
- А) Цифровой автомат Мили;
- Б) Цифровой автомат Мура.

### Определение автомата Мили

- Конечным детерминированным автоматом типа Мили называется совокупность пяти объектов
- ,
- где S, X и Y конечные непустые множества, а и отображения вида:
- и
- со связью элементов множеств S, X и Y в абстрактном времени T = {0, 1, 2, ...} уравнениями:

### Определение автомата Мили

- (Отображения и получили названия, соответственно функции переходов и функции выходов автомата A).
- Особенностью автомата Мили является то, что функция выходов является двухаргументной и символ в выходном канале y(t) обнаруживается только при наличии символа во входном каналеx(t). Функциональная схема не отличается от схемы абстрактного автомата.

## Цифровой автомат Мура

• Зависимость выходного сигнала *типа* остояния представлена в автоматах типа мура (англ. Moore machine). В автомате мура функция выходов определяет значение выходного символа только по одному аргументу — состоянию автомата. Эту функцию называют также функцией меток, так как она каждому состоянию автомата ставит метку на выходе.

## Цифровой автомат Мура

- Конечным детерминированным автоматом типа Мураназывается совокупность пяти объектов:
- где S, X, Y и  $\delta$  соответствуют  $A = (S, X, Y, \delta, \mu),$  определению **автомата типа Мили**, а  $\mu$  является отображением вида:  $\mu$  : S  $\rightarrow$  Y,
- с зависимостью состояний и выходных сигналов во времени уравнением:

• .

$$y(t) = \mu(s(t)), t \in T$$

## Цифровой автомат Мура

• Особенностью **автомата Мура** является то, что символ **y(t)** в выходном канале существует все время, пока автомат находится в состоянии **s(t)**.



# Структурная организация управляющих автоматов.

 Построение цифрового автомата по схеме Мура.



# Построение цифрового автомата по схеме Мура.

- КС1 управляет памятью;
- КС2 формирует набор выходных сигналов;
- V-сигнал возбуждения, управляющий памятью.

# Построение цифрового автомата по схеме Мура.

- Исходные данные для автомата Мура:
- ФМП хранит всю информацию.

$$Y = \{y1, y2, .....yn\}$$

$$X = \{x1, x2, .....xn\}$$

$$A = \{a1, a2, .....a_{n-1}\}$$

# Построение цифрового автомата по схеме Мура

- Формализуем МП с помощью закодированного графа, в котором каждая микрооперация (МО) заполняется соответственно Y,
- логические условия -осведомительным сигналом X.

#### Переход от содержательного графа к закодированному графу



#### Этапы синтеза УА

- 1. Построение таблицы микроопераций и логических условий.
- 2. Построение закодированного графа ФМП путём замены каждой МО управляющим сигналом Y, каждого ЛУ осведомительным сигналом X.
- 3. На закодированном графе пометить вершины индексами a0,a1...an-1.

#### Этапы синтеза УА

- 4. Построение графа автомата МУРА:
- Каждому состоянию поставить в соответствие вершину графа;
- Каждому переходу поставить в соответствие дугу графа.

#### Этапы синтеза УА

- 5. Построение списка переходов в табличной форме. В таблице каждая дуга соответствует строке таблицы с указанием условия, Y, и состояния
- (а нач. и а конеч.)

#### Организация памяти цифрового автомата

• Память ЦА строится на основе регистра. Разрядность регистра определяется формулой, где Р-количество состояний ЦА (количество вершин графа):

$$N = ]log P[$$

• Пример синтеза УА для умножения





| Nº | Исх.<br>состояние | Код<br>исходного<br>состояния | следующее<br>состояние | Код след.<br>состояния | X   | Y  | Сигнал<br>возбужде-<br>ния |
|----|-------------------|-------------------------------|------------------------|------------------------|-----|----|----------------------------|
| 1  | a0                | 00000                         | a0                     | 00000                  | !x1 | -  | -                          |
| 2  | a0                | 00000                         | a1                     | 00001                  | x1  | -  | D0                         |
| 3  | a1                | 00001                         | a1                     | 00001                  | !x2 | Y1 | D0                         |
| 4  | a1                | 00001                         | a2                     | 00010                  | x2  | Y1 | D1                         |
| 5  | a2                | 00010                         | а3                     | 00011                  | !x3 | Y1 | D1,D0                      |
| 6  | a2                | 00010                         | a8                     | 01000                  | х3  | Y1 | D3                         |
| 7  | а3                | 00011                         | a3                     | 00011                  | !x4 | Y3 | D2,D1                      |
| 8  | аЗ                | 00011                         | a4                     | 00100                  | x4  | Y3 | D2                         |

| Nº | Исх.<br>состояние | Код<br>исходного<br>состояния | следующее<br>состояние | Код след.<br>состояния | X   | Y               | Сигнал<br>возбужде-<br>ния |
|----|-------------------|-------------------------------|------------------------|------------------------|-----|-----------------|----------------------------|
| 9  | a4                | 00100                         | a5                     | 00101                  | !x5 | y4              | D2,D0                      |
| 10 | a4                | 00100                         | a9                     | 01001                  | x5  | y4              | D3,D0                      |
| 11 | a5                | 00101                         | a6                     | 00110                  | -   | Y5,y6<br>,y7,y8 | D2,D1                      |
| 12 | a6                | 00110                         | a7                     | 00111                  | _   | у9              | D2,D1,D0                   |
| 13 | a8                | 01000                         | a9                     | 01001                  | -   | y10             | D3,D0                      |
| 14 | a7                | 00111                         | a10                    | 01010                  | х6  | y10             | D3,D1                      |
| 15 | a7                | 00111                         | a11                    | 01011                  | !x6 | y10             | D3,D1,D0                   |
| 16 | a9                | 01001                         | a14                    | 01111                  | -   | у5              | D3,D2,D1,<br>D0            |

| Nº | Исх.<br>состояние | Код<br>исходного<br>состояния | следующее<br>состояние | Код след.<br>состояния | X           | Υ           | Сигнал<br>возбуждения |
|----|-------------------|-------------------------------|------------------------|------------------------|-------------|-------------|-----------------------|
| 17 | a10               | 01010                         | a11                    | 01011                  | -           | y11         | D3,D1,D0              |
| 18 | a11               | 01011                         | a12                    | 01100                  | -           | y12         | D3,D2                 |
| 19 | a12               | 01100                         | a13                    | 01101                  | x7          | Y13,<br>y14 | D3,D2,D0              |
| 20 | a12               | 01100                         | a10                    | 01010                  | !x7,<br>x6  | Y13,<br>y14 | D3,D1                 |
| 21 | a12               | 01100                         | a11                    | 01011                  | !x7,<br>!x6 | Y13,<br>y14 | D3,D1,D0              |
| 22 | a13               | 01001                         | a14                    | 01110                  | -           | y15         | D3,D2,D1              |
| 23 | a14               | 01111                         | a14                    | 01110                  | !x8         | Y16,<br>y17 | D3,D2,D1              |
| 24 | a14               | 01111                         | a15                    | 01111                  | x8          | Y16,<br>y17 | D3,D2,D1,D0           |

| Nº | Исх.<br>состояние | Код<br>исходного<br>состояния | следующее<br>состояние | Код след.<br>состояния | X   | Y           | Сигнал<br>возбужде-<br>ния |
|----|-------------------|-------------------------------|------------------------|------------------------|-----|-------------|----------------------------|
| 25 | a15               | 01111                         | a15                    | 01111                  | !x8 | Y16,<br>y17 | D3,D2,D1<br>,D0            |
| 26 | a15               | 01111                         | a16                    | 10000                  | x8  | Y16,<br>y17 | D4                         |
| 27 | a16               | 10000                         | a0                     | 00000                  | -   | y18         | -                          |
|    |                   |                               |                        |                        |     |             |                            |
|    |                   |                               |                        |                        |     |             |                            |
|    |                   |                               |                        |                        |     |             |                            |
|    |                   |                               |                        |                        |     |             |                            |
|    |                   |                               |                        |                        |     |             |                            |

### Функции сигналов возбуждения

- D0=a0\*x1+a1\*!x2+a2\*!x3+a4\*!x5+a4\*x5+a7\*
   !x6+a15\*!x8
- D1=
- D2= и т.д.

| X1 | X2 | Х3 | Y |
|----|----|----|---|
| 0  | 0  | 0  | 0 |
| 0  | 0  | 1  | 1 |
| 0  | 1  | 0  | 1 |
| 0  | 1  | 1  | 1 |
| 1  | 0  | 0  | 0 |
| 1  | 0  | 1  | 0 |
| 1  | 1  | 0  | 1 |
| 1  | 1  | 1  | 1 |

- Y=!x1!x2x3+(!x1x2!x3+!x1x2x3)+
- +(x1x2!x3+x1x2x3)
- Y=!x1!x2x3+!x1x2+x1x2
- $Y = \frac{1}{x^2} \times 2x^3 + x^2$

• Таблица сократ

| Г | лхпась: | x2 | x3 | Υ |
|---|---------|----|----|---|
|   | 0       | 0  | 1  | 1 |
|   |         |    |    |   |
|   | *       | 1  | *  | 1 |

• Данный подход можно распространить на систему булевых функций:

$$Y_i = f_i(x_1, x_2, .... x_5)$$
  
 $i = 1, ..., 4$ 

• Пусть заданы четыре булевых функции от 5-ти переменных.

| x1 | x2 | хЗ | x4 | x5 | Y1 | Y2 | Y3 | Y4 |
|----|----|----|----|----|----|----|----|----|
| 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 1  |
| 0  | 0  | 0  | 1  | *  | 0  | 1  | 0  | 1  |
| 0  | 0  | *  | 0  | 1  | 0  | 1  | 1  | 1  |
| 1  | *  | 1  | *  | *  | 0  | 0  | 0  | 1  |
|    |    |    |    |    |    |    |    |    |

| x1 | x2 | x3 | x4 | x5 | Z          | Y1 | Y2 | Y3 | Y4 |
|----|----|----|----|----|------------|----|----|----|----|
| 0  | 0  | 0  | 0  | 0  | <b>Z</b> 1 | 1  | 0  | 1  | 1  |
| 0  | 0  | 0  | 1  | *  | <b>Z</b> 2 | 0  | 1  | 0  | 1  |
| 0  | 0  | *  | 0  | 1  | Z3         | 0  | 1  | 1  | 1  |
| 1  | *  | 1  | *  | *  | <b>Z</b> 4 | 0  | 0  | 0  | 1  |
|    |    |    |    |    |            |    |    |    |    |
|    |    |    |    |    |            |    |    |    |    |

- Y1=Z1;
- Y2=Z2+Z3;
- Y3=Z1+Z3;
- Y4=Z1+Z2+Z3+Z4
- ПЗУ реализуют произвольную логическую функцию, заданную в виде таблицы истинности, а ПЛМ минимизированную логическую функцию

## Структура ПЛМ





### Электрическая схема ПЛМ



#### УГО ПЛМ

 Для того чтобы отличать ПЛМ от ПЗУ при изображении принципиальных электрических схем, в среднем поле условного графического обозначения пишется PLM



### Построение УА на ПЛМ



## Определение набора ПЛМ

- ПЛМ имеют 16 входов, 8 выходов и от 48 до 68 конъюнкций.
- Для определения необходимого количества (Q)
   ПЛМ, для реализации
- управляющего автомата, имеющего К разрядов регистра и т – число управляющих сигналов у, формируемых в автомате используется формула:

# Формула для определения необходимого количества ПЛМ

• Количество ПЛМ Q:

$$Q = \left| (K + m) / 8 \right|$$

# Порядок подготовки таблиц для программирования ПЛМ

• Распределить управляющие сигналы и сигналы возбуждения между всеми ПЛМ (сигналы возбуждения D1-Dn подавать на входы регистра состояний. Каждый из этих сигналов может быть закреплён только за одной ПЛМ.

## Подготовка таблиц ПЛМ

- Выполнить (виртуальное) программирование ПЛМ. Для каждой ПЛМ составить таблицу соединений.
- В каждой таблице указать входы, выходы и строки.
- На входы F1 Fk всех ПЛМ подключить выходы регистра состояний (старшие слева- младшие справа). На остальные входы ПЛМ подключить осведомительные сигналы (условий), используемые в данной ПЛМ. Неиспользуемые входы ПЛМ не указывать. Число входов не должно превышать 16. Число выходов в каждой ПЛМ не должно превышать 8.

### Подготовка таблиц ПЛМ

- В каждой строке входов прямое значение переменной кодировать единицей, инверсное нулём, а безразличное звёздочкой.
- На выходах единицей обозначать необходимость использовать данную конъюнкцию (строку) в булевской функции, описывающей соответствующую выходную переменную (управляющий сигнал Y или сигнал возбуждения D).
- Число строк в каждой матрице не должно превышать 68.