

Meng Jiang

CSE 40647/60647 Data Science Fall 2017 Introduction to Data Mining

Pattern Discovery: Definition

- What are patterns?
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data
- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Frequent Patterns (Itemsets)

- Itemset: A set of one or more items
- k-itemset: $X = \{x_1, ..., x_k\}$
- (absolute) support (count) of X: Frequency or the number of occurrences of an itemset X
- (relative) support, s: The fraction of transactions that contains X (i.e., the probability that a transaction L contains X)
- An itemset X is frequent if the support of X is no less than a minsup threshold

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Let minsup = 50%

Freq. 1-itemsets:

Beer: 3 (60%); Nuts: 3 (60%)

Diaper: 4 (80%); Eggs: 3 (60%)

Freq. 2-itemsets:

{Beer, Diaper}: 3 (60%)

From Frequent Itemsets to Association Rules

- Association rules: $X \rightarrow Y$ (s, c)
 - Support, s: The probability that a transaction contains X ∪ Y
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - $-c = \sup(X \cup Y) / \sup(X)$
- Association rule mining: Find all of the rules, X → Y, with minimum support and confidence
- Frequent itemsets: Let *minsup* = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3,
 Diaper: 4, Eggs: 3
 - Freq. 2-itemsets: {Beer, Diaper}: 3
- Association rules: Let minconf = 50%
 - − Beer → Diaper (60%, 100%)
 - Diaper → Beer (60%, 75%)

Tid	ltems bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Note: Itemset: $X \cup Y$, a subtle notation!

Challenge: There Are Too Many Frequent Patterns!

- A long pattern contains a combinatorial number of sub-patterns
- How many frequent itemsets does the following TDB₁ contain?

```
- TDB_1: T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}
```

- Assuming (absolute) minsup = 1
- Let's have a try

```
1-itemsets: \{a_1\}: 2, \{a_2\}: 2, ..., \{a_{50}\}: 2, \{a_{51}\}: 1, ..., \{a_{100}\}: 1, 2-itemsets: \{a_1, a_2\}: 2, ..., \{a_1, a_{50}\}: 2, \{a_1, a_{51}\}: 1 ..., ..., \{a_{99}, a_{100}\}: 1, ... 99-itemsets: \{a_1, a_2, ..., a_{99}\}: 1, ..., \{a_2, a_3, ..., a_{100}\}: 1 100-itemset: \{a_1, a_2, ..., a_{100}\}: 1 - In total: \binom{100}{1} + \binom{100}{2} + ... + \binom{100}{100} = 2^{100} - 1 sub-patterns!
```

A too huge set for any computer to compute or store!

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y > X, with the same support as X
 - Let Transaction DBTDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - Two: P₁: "{a₁, ..., a₅₀}: 2"; P₂: "{a₁, ..., a₁₀₀}: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X, with the same support as X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know {a₁, ..., a₄₀} is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}, ...,$ any more!
- Thus in many applications, mining closed-patterns is more desirable than mining max-patterns

The Downward Closure Property of Frequent Patterns: Apriori

- Observation: From TDB₁: T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - We get a frequent itemset: {a₁, ..., a₅₀}
 - Also, its subsets are all frequent: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, ..., a_{49}\}$, ...
 - There must be some hidden relationships among frequent patterns!
- The downward closure (also called "Apriori") property of frequent patterns
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology
 - If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!?

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - Test the candidates against DB to find **frequent** (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm: An Example

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

1st scan

Itemset	CUD
iteiliset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

F	Itemset
1	{A}
	{B}

itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

F_{2}	Itemset	sup
_	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

Itemset	
{A, B}	
{A, C}	
{A, E}	
{B, C}	
{B, E}	
{C, E}	

3 rd	scan	F	- 3

Itemset	sup
{B, C, E}	2

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_{\nu} := \{ \text{frequent items} \}; // \text{ frequent 1-itemset } \}
While (F_k!=\emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_{k}; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at
   minsup;
  k := k + 1
return \bigcup_k F_k // return F_k generated at each level
```

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Idea: Frequent pattern growth (FPGrowth)
 - Find frequent single items and partition the database based on each such item
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called *conditional database*)
 - To facilitate efficient processing, an efficient data structure, FPtree, can be constructed
- Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path—single path will generate all the combinations of its subpaths, each of which is a frequent pattern

Example: Construct FP-tree from a Transactional DB

TID	Items in the Transaction	Ordered, frequent items
100	$\{f, a, c, d, g, i, m, p\}$	{f, c, a, m, p}
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	{b, f, h, j, o, w}	{f, b}
400	{b, c, k, s, p}	{c, b, p}
500	$\{a, f, c, e, l, p, m, n\}$	{f, c, a, m, p}

Answer: f:4, a:3, c:4, b:3, m:3, p:3; fa:3, fc:3, fm:3, ac:3, am:3, cm: 3, cp:3; fcm: 3, fam:3, cam: 3; fcam: 3.

{}

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

Sort frequent items in frequency descending order, f-list F-list = f-c-a-b-m-p

3. Scan DB again, construct FP-tree

ϵ	escend	ing		
		Heade	rTable	>f:4> C:1
	Item	Frequency	Header	
	f	4		$\begin{array}{c c} c:3 & b:1 & - > b:1 \end{array}$
	С	4		
	a	3		> a:3 p:1
	b	3		$\overline{m}.\overline{2}$
	m	3		
	р	3		> p:2

Divide and Conquer Based on Patterns and Data

- Pattern mining can be partitioned according to current patterns
 - Patterns containing p: p's conditional database: fcam:2, cb:1
 - Patterns having m but no p: m's conditional database: fca:2, fcab:1
 - **—**
- p's conditional pattern base: transformed prefix paths of item p

Conditional pattern bases

<u>item Conditional pattern base</u>	
f:3	
fc:3	
fca:1, f:1, c:1	
fca:2, fcab:1	
fcam:2, cb:1	

Mine Each Conditional Pattern-Base Recursively

Conditional pattern bases

For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

```
p-conditional PB: fcam:2, cb:1 \rightarrow c:3
```

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

 α -conditional PB: $fc:3 \rightarrow fc:3$

c-conditional PB: $f:3 \rightarrow f:3$

Mine Each Conditional Pattern-Base Recursively

Conditional pattern bases

```
{} {} {} {}

| | | | |

f:3 f:3 f:3 f:3

| | | cm-cond. cam-cond.

c:3 c:3 FP-tree FP-tree

| am-cond.
a:3 FP-tree

m-cond.
FP-tree
```

For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

p-conditional PB: fcam:2, $cb:1 \rightarrow c:3$

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

 α -conditional PB: $fc:3 \rightarrow fc:3$

c-conditional PB: $f:3 \rightarrow f:3$

mine(<f:3, c:3, a:3>|m)

 \rightarrow (am:3) + mine(<f:3, c:3>|am)

 \rightarrow (cam:3) + (fam:3) + mine (<f:3>|cam)

→ (fcam:3)

 $\rightarrow (cm:3) + mine(<f:3>|cm)$

→ (fcm:3)

→ (fm:ȝ)

17

Mine Each Conditional Pattern-Base Recursively

Conditional pattern bases

m-cond. FP-tree For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

```
p-conditional PB: fcam:2, cb:1 \rightarrow c:3
```

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

Actually, for single branch FPtree, all frequent patterns can be generated in one shot

```
m: 3
fm: 3, cm: 3, am: 3
fcm: 3, fam:3, cam: 3
fcam: 3
```

Try FP-Growth?

{B, C, E}

2

{B, C, E}

Try WikiBooks' Example

 https://en.wikibooks.org/wiki/Data_Mining_A lgorithms_In_R/Frequent_Pattern_Mining/Th e_FP-Growth_Algorithm

References

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00

References (cont.)

- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014
- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010