Assignment 2

Deadline: 8 October 2020, 7pm Total marks: 20

1 Convergence of Chebyshev interpolation [6 marks]

Match the below functions to the below Chebyshev interpolation convergence plots. Motivate your answers by listing the relevant properties of f(x). [1 mark each]

Functions:

(a)
$$f(x) = |x|^3$$

(a)
$$f(x) = |x|^3$$
 (c) $f(x) = |1 - x^3/4|^{-1}$ (e) $f(x) = |1 - x^3|$ (b) $f(x) = |1 - 2|x|^3|^3$ (d) $f(x) = |1 - x^3/2|^{-1}$ (f) $f(x) = |1 - 2x^3|$

(e)
$$f(x) = |1 - x^3|$$

(b)
$$f(x) = |1 - 2|x|^3|^3$$

(d)
$$f(x) = |1 - x^3/2|^{-1}$$

(f)
$$f(x) = |1 - 2x^3|$$

Convergence plots:

The y-axis in these plots shows $\operatorname{error}(n) = \|f - p_n\|_{[-1,1]}$ where $p_n \in \mathcal{P}_{n-1}$ denotes the n-point Chebyshev interpolant to f(x).

2 Hermite interpolation [5 marks]

Piecewise Hermite interpolation is popular in computer graphics because it is fairly intuitive to work with and leads to functions $p \in P_m \mathcal{P}_n$ which look smooth to the human eye. This assignment illustrates this point by considering the following interpolation problem.

Problem: Given values $f \in \mathbb{R}^4$, determine $p \in \mathcal{P}_3$ such that

$$p(0) = f_1,$$

$$p'(0) = f_2,$$

$$p(1) = f_3$$

$$p(0) = f_1,$$
 $p'(0) = f_2,$ $p(1) = f_3,$ $p'(1) = f_4.$

¹ More precisely, it is the Bézier curves which are popular in computer graphics. Bézier curves are closely related to but different from Hermite interpolation, see https://en.wikipedia.org/wiki/Bezier_curve.

Tasks:

1. [2 marks] Determine polynomials $\ell_1, \ell_3 \in \mathcal{P}_3$ such that

$$\ell_1(0) = 1, \quad \ell_1'(0) = \ell_1(1) = \ell_1'(1) = 0 \qquad \text{and} \qquad \ell_3(1) = 1, \quad \ell_3(0) = \ell_3'(0) = \ell_3'(1) = 0.$$

2. [2 marks] Show that the above interpolation problem has a unique solution for any $f \in \mathbb{R}^4$. *Hint.* The polynomials $\ell_2, \ell_4 \in \mathcal{P}_3$ such that

$$\ell_2'(0) = 1$$
, $\ell_2(0) = \ell_2(1) = \ell_2'(1) = 0$ and $\ell_4'(1) = 1$, $\ell_4'(0) = \ell_4'(0) = \ell_4(1) = 0$

are given by

$$\ell_2(x) = x (1-x)^2$$
 and $\ell_4(x) = (1-x) x^2$.

- 3. [1 mark] Complete the function hermite_interpolate(f,x).
- 4. [unmarked] Run draw_heart(). If your implementation of hermite_interpolate(f,x) is correct, then this function will draw a familiar shape. Study the code of draw_heart() and see if you can figure out the meaning of the parameters in the matrix f.

3 Composite Gauss quadrature [3 marks]

1. [3 marks] Complete the function composite_gauss(f,a,b,m,n) such that it approximates $\int_a^b f(x) dx$ using composite Gauss quadrature with m intervals and n quadrature points in each interval.

Hint. You may compute the Gauss quadrature rule $(x_k, w_k)_{k=1}^n$ for the interval [-1, 1] using the function x, w = gausslegendre(n) provided by the FastGaussQuadrature.jl package. You will then have to map this quadrature rule to $[y_k, y_{k+1}]$ using the integration by substitution formula

$$\int_{\phi(-1)}^{\phi(1)} f(x) \, dx = \int_{-1}^{1} f(\phi(\hat{x})) \, \phi'(\hat{x}) \, d\hat{x}.$$

2. [unmarked] Check your answer to Task 1 using composite_gauss_convergence().

4 Equioscillation theorem and Newton's method for computing 1/d [6 marks]

This assignment illustrates how we can use polynomial approximation and root-finding to compute a floating-point representation of $\frac{1}{d}$ using only addition and multiplication.

To this end, recall that the floating-point representation of a real numbers $d \in \mathbb{R}$ is given by $d = s \times m \times 2^e$ where $s \in \{\pm 1\}$, $m \in [1, 2)$ and $e \in \mathbb{N}$. We therefore have

$$\frac{1}{d} = (s \times m \times 2^e)^{-1} = s \times m^{-1} \times 2^{-e},$$

and conclude that the only challenge is to compute m^{-1} for $m \in [1,2)$.

1. [1 mark] Show that Newton's iteration applied to the function f(x) = mx - 1 is given by

$$x_{k+1} = \frac{1}{m}.$$

While convergent in a single step, this iteration cannot be evaluated without computing $\frac{1}{m}$ by other means and is therefore not useful for our purposes.

2. [1 mark] Show that Newton's iteration applied to the function $f(x) = \frac{1}{x} - m$ is given by

$$x_{k+1} = x_k + x_k (1 - m x_k).$$

This iteration requires only addition and multiplication and is therefore a good algorithm for computing $\frac{1}{m}$.

3. [1 mark] Show that the Newton iteration introduced in Task 2 satisfies the recurrence relation

$$x_{k+1} - \frac{1}{m} = -m\left(x_k - \frac{1}{m}\right)^2. \tag{1}$$

Multiplying both sides of (1) by m, we obtain

$$mx_{k+1} - 1 = -(mx_k - 1)^2$$
.

This shows that the Newton iteration from Task 2 leads to the same reduction in the relative error

$$\frac{x_k - \frac{1}{m}}{\frac{1}{m}} = mx_k - 1$$

for all values of m. It therefore remains to determine a starting value x_0 which makes the initial error as small as possible throught [1,2]. You will do so in the next task using best linear approximation.

4. [2 marks] Determine $p \in \mathcal{P}_1$ such that e(m) = m p(m) - 1 equioscillates in three points in [1, 2].

Using a result analogous to the equioscillation theorems presented in Lecture 4, one can show that this p minimises $||e(m)||_{[1,2]}$ (you do not have to show this part).

5. [1 mark] Determine the smallest integer K such that for all $m \in [1,2)$ we have

$$|mx_K - 1| \le 10^{-16}$$
 where $x_0 = p(m)$ and $x_{k+1} = x_k + x_k (1 - m x_k)$.