

SEQUENCE LISTING

<110> Ni, Jian
Gentz, Reiner
Rosen, Craig A.
Human Genome Sciences, Inc.

<120> Galectin 11

<130> PF354P1

<140> Unassigned
<141> 1998-07-06

<150> 90/010,146
<151> 1998-01-21

<150> 60/034,205
<151> 1997-01-21

<150> 60/034,204
<151> 1997-01-21

<160> 12

<170> PatentIn Ver. 2.0

<210> 1

<211> 865

<212> DNA

<213> Homo sapiens

<400> 1

tttgtggagg gcagcagaga gtacccagct ggacatcatt tcctgctgat gagccccagg 60
ctggaggtgc cctgctcaca tgcttccc cagggctct cgcctggca ggtcatcata 120
gtacggggac tggcttgca agagccgaag cattttactg tgagcctgag ggaccaggct 180
gcccatgctc ctgtgacact cagggcctcc ttgcagaca gaactctggc ctgatctcc 240
cgctgggggc agaagaaact gatctcagcc cccttcctct tttacccca gagattcttt 300
gaggtgctgc tcctgtcca ggagggaggg ctgaagctgg cgctcaatgg gcaggggctg 360
ggggccacca gcatgaacca gcaggccctg gagcagctgc gggagctccg gatcagtgg 420
agtgtccagc tctactgtgt ccactcctga aggatggtc cagggaaatac cgccaaaaac 480
aagagtccagc cactccccag ggccccactc tcctcccctc attaaaccat ccacctgaac 540
accacgcacat cagggcctgg ttcacctctg gggtcacgag actgagctta cagggcttt 600
gggcctgagg gaaggcacaag gagtgc当地 gttcctcgaa ctctgcaccc tcctccacca 660
ggagcctggg atatggctcc atctgccttc agggcctgga ctgcactcac agaggcaagt 720
gtttagact aacaaagata ctccaaaata caatggctt aagaatgtgg tcatttattc 780
tttatttattt atttatttgt ggtcaaataa ataaataagg ttatttattt aaaaaaaaaa 840
aaaaaaaaaa aaaaaaaaaa aaaaa 865

<210> 2
<211> 133
<212> PRT
<213> Homo sapiens

<400> 2

Met	Ser	Pro	Arg	Leu	Glu	Val	Pro	Cys	Ser	His	Ala	Leu	Pro	Gln	Gly
1				5					10					15	
Leu	Ser	Pro	Gly	Gln	Val	Ile	Ile	Val	Arg	Gly	Leu	Val	Leu	Gln	Glu
	20						25						30		
Pro	Lys	His	Phe	Thr	Val	Ser	Leu	Arg	Asp	Gln	Ala	Ala	His	Ala	Pro
	35					40							45		
Val	Thr	Leu	Arg	Ala	Ser	Phe	Ala	Asp	Arg	Thr	Leu	Ala	Trp	Ile	Ser
	50					55					60				
Arg	Trp	Gly	Gln	Lys	Lys	Leu	Ile	Ser	Ala	Pro	Phe	Leu	Phe	Tyr	Pro
	65				70					75				80	
Gln	Arg	Phe	Phe	Glu	Val	Leu	Leu	Leu	Phe	Gln	Glu	Gly	Gly	Leu	Lys
				85				90					95		
Leu	Ala	Leu	Asn	Gly	Gln	Gly	Leu	Gly	Ala	Thr	Ser	Met	Asn	Gln	Gln
			100				105					110			
Ala	Leu	Glu	Gln	Leu	Arg	Glu	Leu	Arg	Ile	Ser	Gly	Ser	Val	Gln	Leu
		115				120					125				
Tyr	Cys	Val	His	Ser											
	130														

<210> 3
<211> 145
<212> PRT
<213> Rattus norvegicus

<400> 3

Met	Ser	Ser	Phe	Ser	Thr	Gln	Thr	Pro	Tyr	Pro	Asn	Leu	Ala	Val	Pro
1				5					10				15		
Phe	Phe	Thr	Ser	Ile	Pro	Asn	Gly	Leu	Tyr	Pro	Ser	Lys	Ser	Ile	Val
		20					25					30			
Ile	Ser	Gly	Val	Val	Leu	Ser	Asp	Ala	Lys	Arg	Phe	Gln	Ile	Asn	Leu

35

40

45

Arg Cys Gly Gly Asp Ile Ala Phe His Leu Asn Pro Arg Phe Asp Glu
50 55 60

Asn Ala Val Val Arg Asn Thr Gln Ile Asn Asn Ser Trp Gly Pro Glu
65 70 75 80

Glu Arg Ser Leu Pro Gly Ser Met Pro Phe Ser Arg Gly Gln Arg Phe
85 90 95

Ser Val Trp Ile Leu Cys Glu Gly His Cys Phe Lys Val Ala Val Asp
100 105 110

Gly Gln His Ile Cys Glu Tyr Ser His Arg Leu Met Asn Leu Pro Asp
115 120 125

Ile Asn Thr Leu Glu Val Ala Gly Asp Ile Gln Leu Thr His Val Glu
130 135 140

Thr

145

<210> 4

<211> 318

<212> PRT

<213> Homo sapiens

<400> 4

Met Met Leu Ser Leu Asn Asn Leu Gln Asn Ile Ile Tyr Asn Pro Val
1 5 10 15

Ile Pro Phe Val Gly Thr Ile Pro Asp Gln Leu Asp Pro Gly Thr Leu
20 25 30

Ile Val Ile Arg Gly His Val Pro Ser Asp Ala Asp Arg Phe Gln Val
35 40 45

Asp Leu Gln Asn Gly Ser Ser Met Lys Pro Arg Ala Asp Val Ala Phe
50 55 60

His Phe Asn Pro Arg Phe Lys Arg Ala Gly Cys Ile Val Cys Asn Thr
65 70 75 80

Leu Ile Asn Glu Lys Trp Gly Arg Glu Glu Ile Thr Tyr Asp Thr Pro
85 90 95

Phe Gln Lys Glu Lys Lys Ser Phe Glu Ile Val Ile Met Val Leu Lys
100 105 110

Ala Lys Phe Gln Val Ala Val Asn Gly Lys His Thr Leu Leu Tyr Gly
115 120 125

His Arg Ile Gly Pro Glu Lys Ile Asp Thr Leu Gly Ile Tyr Gly Lys
130 135 140

Val Asn Ile His Ser Ile Gly Phe Ser Phe Ser Asp Leu Gln Ser
145 150 155 160

Thr Gln Ala Ser Ser Leu Glu Leu Thr Glu Ile Ser Arg Glu Asn Val
165 170 175

Pro Lys Ser Gly Thr Pro Gln Leu Arg Leu Pro Phe Ala Ala Arg Leu
180 185 190

Asn Thr Pro Met Gly Pro Gly Arg Thr Val Val Val Lys Gly Glu Val
195 200 205

Asn Ala Asn Ala Lys Ser Phe Asn Val Asp Leu Leu Ala Gly Lys Ser
210 215 220

Lys Asp Ile Ala Leu His Leu Asn Pro Arg Leu Asn Ile Lys Ala Phe
225 230 235 240

Val Arg Asn Ser Phe Leu Gln Glu Ser Trp Gly Glu Glu Glu Arg Asn
245 250 255

Ile Thr Ser Phe Pro Phe Ser Pro Gly Met Tyr Phe Glu Met Ile Ile
260 265 270

Tyr Cys Asp Val Arg Glu Phe Lys Val Ala Val Asn Gly Val His Ser
275 280 285

Leu Glu Tyr Lys His Arg Phe Lys Glu Leu Ser Ser Ile Asp Thr Leu
290 295 300

Glu Ile Asn Gly Asp Ile His Leu Leu Glu Val Arg Ser Trp
305 310 315

<210> 5
<211> 30
<212> DNA
<213> Homo sapiens

<400> 5
cgccccatgga tgagcccccag gctggagggtg 30

<210> 6
<211> 28
<212> DNA
<213> Homo sapiens

<400> 6
cgcaagcttt caggagtgga cacagtag 28

<210> 7
<211> 32
<212> DNA
<213> Homo sapiens

<400> 7
cgccccgggg cctatgagcc ccaggctgga gg 32

<210> 8
<211> 28
<212> DNA
<213> Homo sapiens

<400> 8
cgcggtaacct caggagtgga cacagtag 28

<210> 9
<211> 44
<212> DNA
<213> Homo sapiens

<400> 9
cgccccgggg ccatcatggc ctatcatgag ccccaggctg gagg 44

<210> 10
<211> 23
<212> DNA
<213> Homo sapiens

<400> 10
cgccgccacc atgagcccca ggc 23

<210> 11
<211> 22
<212> DNA
<213> Homo sapiens

<400> 11
ggaatctaga tcaggagtgg ac 22

<210> 12
<211> 865
<212> DNA
<213> Homo sapiens

<220>
<221> source
<222> Complement((1)..(865))
<223> Reversed Complementary

<400> 12
ttttttttt tttttttttt ttttttaata aataaccta tttatattt 60
tgaccacaaa taaataaaata ataaagaata aatgaccaca ttcttaagc cattgtattt 120
tggagtatct ttgttagtct acaacacttgc cctctgtgag tgcagtcag gccctgaagg 180
cagatggagc catatcccag gtcctggtg gaggaaggtg cagagttcgaa ggaaccttgc 240
cactcttgc cctccctca ggcccaaagc tcctgttagac tcagtctcgat gaccccgag 300
gtgaaccagg ccctgatgtg ctggatgtca ggtggatggt ttaatgaggg gaggagatg 360
ggccctggg gagttggctga ctcttgc tgcggattt tcctgaaacc atccttcagg 420
agtggacaca gttagactgg acacttccac tgatccggag ctcccgagc tgctccaggg 480
cctgctgggtt catgctggtg gccccagcc cctgcccatt gagcggcagc ttcatggcc 540
cctcctggaa caggagcagc acctcaaaga atctctgggg gtaaaagagg aagggggctg 600
agatcagttt ctctgcccc cagcgggaga tccaggccag agttctgtct gcgaaggagg 660
ccctgatgtt cacaggagca tggcagcct ggtccctcag gtcacagta aaatgcttcg 720
gctcttgcaa gaccagtccc cgtagatga tgacctgccc aggcgagaga ccctggggaa 780
gagcatgtga gcaggccacc tccagctgg ggctcatcag cagggaaagga tgtccagctg 840
ggtactctt gtcggcc 865