1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
72	-3	3
79	4	4
69	-6	6
79	4	4
76	1	1
=======	======	=======
$\sum x = 375$		$\sum x - \bar{x} = 18$
$\bar{x} = 75$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{18}{5}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
56	-6	36
64	2	4
64	2	4
64	2	4
=======	=======	=======
$\sum x = 248$ $\bar{x} = 62$		$\sum (x - \bar{x})^2 = 48$

We are ready for the formula.

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{48}{4 - 1}}$$
$$= \sqrt{16}$$
$$= \boxed{4}$$