II. Magnetostatika

4.1. Amperova sila med ravnima tokovnima vodnikoma

Med tokovnima vodnikoma deluje sila

$$\vec{F} = \frac{\mu_0}{2\pi} \frac{I_1 I_2 L}{|\vec{\rho}_2 - \vec{\rho}_1|} \frac{\vec{\rho}_2 - \vec{\rho}_1}{|\vec{\rho}_2 - \vec{\rho}_1|}$$

kjer je L dolžina žice in sta ρ radij vektorja [Glej sliko]. Sila je za istosmerna tokova privlačna, za nasprotno usmerjena tokova pa odbojna. Sila je magnetni analog Coulombove sile med dvema točkastima nabojema.

4.2. Amperova sila med poljubnima vodnikoma

Gledamo dva splošna vodnika [Glej sliko]. Vzamemo ločna elementa žice, ki kažeta v smeri žice. Kje na žici smo pa merita parametra l_1 in l_2 . Tako je sila na odsek žice

$$d^{2}\vec{F} = \frac{\mu_{0}}{4\pi} \frac{\left(I_{1}\vec{dl_{1}}\right)\left(I_{2}\vec{dl_{2}}\right)}{|\vec{r}(l_{2}) - \vec{r}(l_{1})|^{2}} \frac{\vec{r}(l_{2}) - \vec{r}(l_{1})}{|\vec{r}(l_{2}) - \vec{r}(l_{1})|}$$

Ta formula je rezultat meritev (posplošitev formule za ravna vodnika). Smer $d\vec{l}_1$ in $d\vec{l}_2$ je določena s smerjo toka v vsaki žici. Celotna sila na prvo žico je potem

$$\vec{F} = \frac{\mu_0 I_1 I_2}{4\pi} \int \frac{d\vec{l}_1 d\vec{l}_2}{|\vec{r}(l_2) - \vec{r}(l_1)|^2} \frac{\left(\vec{r}(l_2) - \vec{r}(l_1)\right)}{|\vec{r}(l_2) - \vec{r}(l_1)|}$$

To lahko prepišemo v

$$\vec{F} = -\frac{\mu_0 I_1 I_2}{4\pi} \int_{(1)} \int_{(2)} \frac{d\vec{l_1} \times \left(d\vec{l_2} \times \left(\vec{r}(l_2) - \vec{r}(l_1) \right) \right)}{|\vec{r}(l_2) - \vec{r}(l_1)|^3}$$

4.3. in 4.4. Električni tok in velikost

Električni tok je gibanje nabitih delcev po vodniku. Je skalarna količina.

$$I = \frac{de}{dt}$$

V magnetostatiki je tok konstanten (gibanje nabojev je v stacionarnem stanju).

Tok skozi kanalček v celični membrani	1 – 10 pA
Tok živčnega impulza	1 μΑ
Gospodinjski tok	1 A
Tok skozi superprevodne magnete	12000 A
Tok pri blisku	$(1-20)\cdot 10^6 \text{ A}$
Tok v Zemljinem jedru	10 ⁹ A

4.5 in 4.6 Gostota magnetnega polja in velikosti

Podobno kot v elektrostatiki lahko delovanje sile med vodniki opišemo z uvedbo magnetnega polja. Silo prepišemo v

$$\vec{F} = \int_{C1} I_1 d\vec{l}_1 \times \left(\frac{\mu_0 I_2}{4\pi} \int_{C2} \frac{d\vec{l}_2 (\vec{r}(l_2) - \vec{r}(l_1))}{|\vec{r}(l_2) - \vec{r}(l_1)|^3} \right)$$

Zadnji člen uvedemo kot magnetno polje. Dobili smo Biot-Savartov zakon

$$\vec{B}(\vec{r}(l_1)) = \frac{\mu_0 I_2}{4\pi} \int_{C2} \frac{d\vec{l}_2(\vec{r}(l_2) - \vec{r}(l_1))}{|\vec{r}(l_2) - \vec{r}(l_1)|^3}$$

S tako uvedenim \vec{B} se sila prepiše v

$$\vec{F} = \int Id\vec{l} \times \vec{B}$$

Možganska aktivnost	1 fT
Medgalaktična magnetna polja	1 − 10 pT
Srčna aktivnost	100 pT
Zemeljsko magnetno polje	20 – 70 μT
Železni magneti	100 mT
Sončne pege	1 T
Pospeševalniki	10 T
Nevtronske zvezde	$10^6 - 10^{11} \mathrm{T}$
Atomska jedra	1 TT

4.7. Magnetne silnice

Uvedemo jih kot

$$\vec{r}(l) = \frac{\vec{B}(\vec{r}(l))}{|\vec{B}(\vec{r}(l))|}$$

Silnice magnetnega polja so vedno sklenjene.

4.8. Magnetna cirkulacija

Uvedemo jo kot integral po zanki

$$\Gamma_m = \int_C \vec{B} \cdot d\vec{r} \neq 0$$

Ker ni tako kot v elektrostatiki to konstantno 0 za magnetno polje ne moremo trditi, da je brezvrtinčno.

$$0 \neq \int_{C} \vec{B} \cdot d\vec{r} = \int_{S} \nabla \times \vec{B} d\vec{S}$$

4.9. Magnetni pretok

Uvedemo ga kot

$$\phi_m = \int_{S} \vec{B} \cdot d\vec{S}$$

po poljubni ploskvi. Velja pa

$$\oint \vec{B} \cdot d\vec{S} = 0$$

Magnetni pretok skozi vsako zaključeno ploskev je enak 0. To je analogno temu da ni magnetnih monopolov oz. da so silnice magnetnega polja vedno sklenjene. V diferencialni obliki

$$0 = \oint \vec{B} \cdot d\vec{S} = \int \nabla \cdot \vec{B} \, dV \Rightarrow \nabla \cdot \vec{B} = 0$$

4.10. Gostota električnega toka

Električni tok, ki je vezan na žice, posplošimo na gostoto električnega toka.

$$I = \int \vec{J} \cdot d\vec{S}$$

Opazimo da \vec{j} nosi informacijo tako o velikosti kkot tudi smeri gibanja nabojev in da ni omejen na žice.

4.11 Primeri gostote toka

Zvezna porazdelitev naboja

$$\vec{j} \cdot d\vec{S} = dI = d\left(\frac{de}{dt}\right) = d\left(\frac{\rho dV}{dt}\right) = \rho dS \cdot \frac{v_n dt}{dt}$$

Tako dobimo »mikroskopsko sliko į«

$$\vec{j}(\vec{r},t) = \rho(\vec{r})\vec{v}$$

Linearni vodnik (v izhodišče)

$$\vec{l} = I\delta^2(\vec{r})\hat{e}_z$$

Premikajoči točkasti naboj

$$\vec{j} = e\delta^3\big(\vec{r} - \vec{r}(t)\big)\vec{v}$$

Površinska gostota toka

$$\vec{l} = \sigma \delta(z - z_0) \vec{v}; \quad \vec{l}_s = \sigma \vec{v}$$

kjer je σ površinska gostota naboja in z_0 označuje kje je površina.

4.13 Amperov izrek [Glej sliko]

Zanima nas obnašanje \vec{B} oz. $\nabla \times \vec{B}$ vzdolž/po zanki C (in **ne** C). Izračunajmo cirkulacijo

$$\Gamma_{M} = \oint_{C} \vec{B} \cdot d\vec{l} = \oint_{C} \left[-\frac{\mu_{0}I}{4\pi} \oint_{C'} d\vec{l}' \times \left(\frac{1}{|\vec{r}(l) - \vec{r}(l')||} \right) \right] \cdot d\vec{l} =$$

Prepoznamo mešani produkt, kar pomeni, da lahko ciklično permutiramo. Velja $d\vec{S}=d\vec{l}\times d\vec{l}'$.

$$=\oint_{C}\oint_{C'}-\frac{\mu_{0}I}{4\pi}\left(d\vec{l}\times d\vec{l}'\right)\cdot\nabla\left(\frac{1}{|\vec{r}(l)-\vec{r}(l')|}\right)=-\frac{\mu_{0}I}{4\pi}\oint\frac{-dS\cdot\cos\theta}{|\vec{r}(l)-\vec{r}(l')|}=-\frac{\mu_{0}I}{4\pi}\oint-d\Omega$$

Torej tako je Amperov izrek

$$\Gamma_M = \mu_0 I$$

Torej je cirkulacija magnetnega polja po navidezni zanki, ki zaobjema tokovno zanko po kateri teče tok I enaka $\mu_0 I$. Diferencialno

$$\oint \vec{B} \cdot d\vec{l} = \int_{S} \nabla \times \vec{B} d\vec{S} = \mu_{0} I = \mu_{0} \int_{S} \vec{J} \cdot d\vec{S} \quad \Rightarrow \nabla \times \vec{B} = \mu_{0} \vec{J}$$

4.14. Magnetni (vektorski) potencial

Ker je magnetno polje vrtinčno ga ne moremo opisati s skalarnim potencialom. Vemo pa, da so silnice magnetnega polja sklenjene, torej vedno velja.

$$\nabla \cdot (\nabla \times \vec{A}) = 0$$

Zato uvedemo vektorski magnetni potencial \vec{A} kot:

$$\vec{B} = \nabla \times \vec{A}$$

Magnetni pretok skozi poljubno ploskev je enak cirkulaciji magnetnega potenciala po robu te ploskve.

$$\phi_m = \int_{\mathcal{S}} \vec{B} \cdot d\vec{S} = \int_{\mathcal{S}} \nabla \times \vec{A} \cdot d\vec{S} = \int_{\partial \mathcal{S}} \vec{A} \cdot d\vec{r}$$

4.15. Vektorski magnetni potencial tuljave

Obravnavamo dolgo tuljavo z radijem a, kjer imamo polje:

$$\vec{B} = \begin{cases} \vec{B}_0; & \text{znotraj} \\ 0; & \text{zunaj} \end{cases}$$

Znotraj tuljave

Polje ima obliko $\vec{B} = (0,0,B_0)$. Torej more biti \vec{A} oblike $\vec{A} = \frac{1}{2}\vec{B}_0 \times \vec{r}$.

Zunaj tuljave

Pričakovali bi, da ker je $\vec{B}=0$, je posledično tudi $\vec{A}=0$ ali pa neka konstanta. Temu ni tako. Naredimo zanko ob zunanjem robu tuljave, ki je malce večja od tuljave.

$$\phi_M = \int \vec{B} \cdot d\vec{S} = B_0 \pi a^2 = \int_{\partial S} \vec{A} \cdot d\vec{r} \neq 0$$

Poskusimo uganiti obliko potenciala z zahtevo, da imamo zveznost na robu. Vzamemo nastavek

$$\vec{A} = C\vec{B}_0 \times \frac{\vec{r}}{r^2}$$

Izračunamo

$$\int \vec{A} \cdot d\vec{r} = \int_{\partial S} C\left(\vec{B}_0 \times \frac{\vec{r}}{r^2}\right) \cdot d\vec{r} = \dots = 2\pi C B_0$$

To je pa od prej tudi enako $B_0\pi a$. Torej dobimo konstanto $C=a^2/2$. Torej je vektorski magnetni potencial zunaj tuljave

$$\vec{A} = \frac{a^2}{2} \vec{B}_0 \times \frac{\vec{r}}{r^2}$$

Umeritev

Uvedemo lahko nov magnetni potencial

$$\vec{A}' = \vec{A} + \nabla \xi(\vec{r}); \quad \vec{B} = \nabla \times \vec{A}' = \nabla \times \vec{A}$$

Oba potenciala ustrezata isti gostoti magnetnega polja, ker vedno velja $\nabla \times (\nabla \xi) = 0$. Konkretno za dolgo tuljavo lahko dodamo

$$\xi(\vec{r}) = -\frac{B_0 a^2}{2} \arctan \frac{y}{x}$$

S tem smo spremenili \vec{A} brez da bi spremenili \vec{B} . Sedaj imamo $\vec{A} \neq 0$ samo na vzdolž osi -y.

$$\vec{A} = \frac{a^2}{2}\vec{B}_0 \times \frac{\vec{r}}{r^2} - \nabla \left(\frac{B_0 a^2}{2} \arctan \frac{y}{x}\right) = \frac{B_0 a^2}{2} \frac{2\pi}{a} \delta(\phi - \pi) \hat{e}_{\phi}$$

4.17. Magnetna sila

Magnetna sila na vodnik se zapiše kot

$$\vec{F} = \int Id\vec{l} \times \vec{B}$$

Za poljubno gostoto toka ko lahko zapišemo kot volumski integral po prostoru, kjer je $\vec{j} \neq 0$.

$$\vec{F} = \int_{V} \vec{J} \times \vec{B} \ d^{3}\vec{r}$$

Primer: Sila na gibajoč točkasti naboj

$$\vec{j} = e\delta^3(\vec{r} - \vec{r}(t))\vec{v}$$

$$\vec{F} = \int_{V} e\delta^{3} (\vec{r} - \vec{r}(t)) \vec{v} \times \vec{B} d^{3} \vec{r} = e\vec{v} \times \vec{B}$$

4.19. Kirchhoffova enačba

Zanima nas čemu zadošča vektorsko magnetni potencial. Uporabimo Amperov zakon in definicijo magnetnega potenciala.

$$\mu_0 \vec{l} = \nabla \times \vec{B} = \nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$$

Tu sedaj uporabimo Helmholtzov izrek, ki pravi, da lahko vsako vektorsko polje zapišemo kot

$$\vec{A} = \vec{A}_1 + \vec{A}_2$$

kjer je $\nabla \cdot \vec{A}_1 = 0$ in $\nabla \times \vec{A}_2 = 0$. Torej lahko vsako vektorsko polje razdelimo na del, ki je brezvrtinčen in na del, ki je brezizviren. Lahko uporabimo umeritev $\vec{A}_2 = 0$, ker je njegov rotor 0 in bi lahko tu pravzaprav vzeli karkoli. Zato potem velja

$$\nabla \cdot \vec{A} = \nabla \cdot (\vec{A}_1 + \vec{A}_2) = \nabla \cdot \vec{A}_1 = 0$$

Tako smo dobili **Kirchhoffovo enačbo**, ki je osnovna enačba za izračun \vec{A} .

$$\nabla^2 \vec{A} = -\mu_0 \vec{J}$$

Enačba je podobna Poissonovi zato lahko sklepamo o njeni splošni rešitvi. Skuhamo volumski integral, kjer je $\vec{j} \neq 0$

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int_{V} \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r}'$$

Od tod sledi oz. je usklajen Biot-Savartov zakon

$$\vec{B} = \nabla \times \vec{A} = \nabla \times \left(\frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r}'\right) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} d^3 \vec{r}'$$

4.21.1 Magnetna energija

4.21.1 Magnetna energija v zunanjem polju

Vpeljemo jo v stacionarni aproksimaciji. Ta pomeni, da so tokovi od nič različni, ampak se s časom ne spreminjajo. Poglejmo silo na zanko C, kjer z \vec{t} opišemo lokalno smer zanke

$$\vec{F} = I \oint_C d\vec{l} \times \vec{B} = I \oint (\vec{t} \times \vec{B}) dl$$

Če zanko premaknemo za $d\vec{r}$ opravimo delo

$$dA = -\vec{F} \cdot d\vec{r}$$

Tu zamenjamo vrstni red v mešanem produktu in velja $dl(d\vec{r} \times \vec{t}) = d\vec{S}$.

$$\Rightarrow dA = -I \oint (\vec{t} \times \vec{B}) dl \cdot d\vec{r} = -I \oint (d\vec{r} \times \vec{t}) \cdot \vec{B} dl = I\vec{B} \cdot d\vec{S}$$

To pointegriramo za cello spremembo

$$A = -I \int_{S} \vec{B} \cdot d\vec{S} = -I \phi_{m}$$

Energija z uporabo vektorskega magnetnega potenciala [Glej sliko]

$$A = -I \int \vec{B} \cdot d\vec{S} = -I \int_{S} (\nabla \times \vec{A}) \cdot d\vec{S} = -I \int_{C2} \vec{A} \cdot d\vec{r} + I \int_{C1} \vec{A} \cdot d\vec{r} =$$

Tu uporabimo še posplošitev na gostoto toka. \vec{j}_2 označuje gostot toka po premiku in \vec{j}_1 označuje gostoto toka pred premikom.

$$A = -\int_{V_2} \vec{j}_2 \cdot \vec{A} d^3 \vec{r} + \int_{V_1} \vec{j}_1 \cdot \vec{A} d^3 \vec{r}$$

Torej **je energija gostote toka v zunanjem polju** volumski integral, kjer je $\vec{j} \neq 0$.

$$W = -\int_{V} \vec{j} \cdot \vec{A} d^{3} \vec{r}$$

Gostota energije pa je

$$w = -\vec{j} \cdot \vec{A}$$

4.21.2 Magnetna energija polja kot funkcional toka

Iz Kirchhoffove enačbe imamo:

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{j}'(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r}'$$

 \vec{j}' ustvarja \vec{A} (in je drugi kot \vec{j}). Tako dobimo energijo tokov \vec{j} v polju, ki ga ustvarjajo tokovi \vec{j}'

$$W = \frac{\mu_0}{4\pi} \int_{V'} \int_{V} \frac{\vec{j}(\vec{r})\vec{j}'(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r} \ d^3 \vec{r}'$$

4.21.3 Celotna magnetna energija

Zanima nas celotna magnetna energija polja \vec{A} , ki ga ustvarja gostota tokov \vec{j} . Uporabimo analogijo iz elektrostatike. Uvedemo spet nek parameter $\alpha \in [0,1]$, ki postopoma vključi tok iz 0 do \vec{j} . Če smo pri nekem α (ki mu ustreza potencial \hat{A}) in mu dodamo nekaj toka $d\vec{j} = \vec{j} d\alpha$. Uporabimo linearnost Kirchhoffove enačbe in dobimo

$$dW = -\int_{(V)} d\vec{j} \cdot \hat{\vec{A}} d^3 \vec{r} = -\int_{(V)} \vec{j} d\alpha \ \alpha \vec{A} \ d^3 \vec{r} = -\int_0^1 \alpha d\alpha \int \vec{j} \cdot \vec{A} \ d^3 \vec{r}$$

In tako dobimo celotno energijo kot

$$W = -\frac{1}{2} \int \vec{J} \cdot \vec{A} d^3 \vec{r}$$

AMPAK: Ta izraz ne upošteva, da je za vzpostavitev toka potrebna energija

To je drugače kot v elektrostatiki, kjer je naboj stalen. Torej za vzpostavitev toka je potrebna energija

$$P = -UI = -I \int_C \vec{E} \cdot d\vec{r} =$$

kjer je C zanka po kateri teče tok. Sedaj malo preskočimo statiko in uporabimo Maxwellovo enačbo $\oint \vec{E} d\vec{r} = -\frac{d}{dt} \int \vec{B} d\vec{S}$

$$= I \frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{S} = \frac{\partial W}{\partial t}$$

To integriramo, da dobimo energijo za vzpostavitev toka

$$W = I \int \vec{B} \cdot d\vec{S} = I \int \nabla \times \vec{A} d\vec{S} = I \oint \vec{A} d\vec{r} = \int \vec{J} \cdot \vec{A} d^3 \vec{r}$$

Celotna energija polja je vsota tega in tako dobimo

$$W = \frac{1}{2} \int_{V} \vec{J} \cdot \vec{A} d^{3} \vec{r}$$

To je energija celotnega polja \vec{A} , ki ga ustvarijo gostota tokov \vec{j} , kjer upoštevamo tudi to, da je potrebno ta \vec{j} vzpostaviti.

4.22 Gostota magnetne energije

Celotno energijo želimo prepisati v odvisnosti od \vec{B} . Uporabimo identiteto $\nabla \cdot (\vec{B} \times \vec{A}) = (\nabla \times \vec{B}) \cdot \vec{A} - (\nabla \times \vec{A}) \cdot \vec{B}$. Pretvorimo

$$W = \frac{1}{2} \int_{V} \vec{J} \cdot \vec{A} d^{3} \vec{r} = \frac{1}{2\mu_{0}} \int_{V} (\nabla \times \vec{B}) \cdot \vec{A} d^{3} \vec{r} = \frac{1}{2\mu_{0}} \int_{V} B^{2} d^{3} \vec{r} + \frac{1}{2\mu_{0}} \int_{V} \nabla \cdot (\vec{B} \times \vec{A}) d^{3} \vec{r} =$$

$$= \frac{1}{2\mu_{0}} \int_{V} B^{2} d^{3} \vec{r} + \frac{1}{2\mu_{0}} \int_{\partial V} (\vec{B} \times \vec{A}) d\vec{S}$$

Tu spet naredimo **približek,** kjer smatramo da imamo sorazmernosti $\vec{B} \propto 1/r$, $\vec{A} \propto 1/r^2$ in $d\vec{S} \propto r^2$. Tako dobimo v celoti sorazmernost 1/r, kar pa gre proti 0 za neskončno velik volumen. <u>Ta približek ne moremo nujno vedno narediti!</u> Tako dobimo **magnetno energijo**

$$W = \frac{1}{2\mu_0} \int B^2 d^3 \vec{r}$$

in gostoto enegije

$$w = \frac{1}{2\mu_0}B^2$$

4.24. Sila kot funkcional magnetnega polja

Zanima nas kakšna sila deluje na delec z gostoto toka \vec{j} , ki se nahaja v magnetnem polju. Hočemo zapisati kot integral po pvršini delca, pri čemer rabimo poznati samo \vec{B} . Vemo, da lahko silo zapišemo kot volumski integral (kjer je $\vec{j} \neq 0$)

$$\vec{F} = \int_{V} \vec{J} \times \vec{B} d^{3} \vec{r} = \frac{1}{\mu_{0}} \int_{V} (\nabla \times \vec{B}) \times \vec{B} d^{3} \vec{r} =$$

Tu uporabimo identiteto $\vec{B} \times (\nabla \times \vec{B}) = \frac{1}{2} \nabla B^2 - \nabla \cdot (\vec{B} \otimes \vec{B}) + \vec{B} (\nabla \cdot \vec{B})$, ker je zanji člen 0 zaradi sklenjenosti silnic magnetnega polja. Dobimo

$$= \frac{1}{\mu_0} \int_V \left[\nabla \cdot \left(\vec{B} \otimes \vec{B} \right) - \frac{1}{2} \nabla B^2 \right] d^3 \vec{r}$$

Sedaj pa lahko uporabimo Gaussov zakon (ki velja tudi za tenzorje) in dobimo silo kot

$$\vec{F} = \frac{1}{\mu_0} \oint_{\partial V} \left[\left(\vec{B} \otimes \vec{B} \right) - \frac{1}{2} B^2 \underline{I} \right] d\vec{S}$$

Integral poteka po površini »delca« na katerega računamo silo. Tu imamo v izrazu **celoten** \vec{B} , ki je vosta zunanjega polja in polja, ki ga ustvarja \vec{i} .

4.25. Tenzor napetosti magnetnega polja

Uvedemo tenzor napetosti magnetnega polja kot

$$F_i = \int_{\partial V} T_{ik} n_k dS$$

kjer je n_k normal in je

$$T_{ik} = \frac{1}{\mu_0} \left(B_i B_k - \frac{1}{2} B^2 \delta_{ik} \right)$$

Spet je divergence tega tenzorja enaka volumski gostoti sile.

$$f_i = \frac{\partial T_{ik}}{\partial x_k}$$

4.27. Multipolni razvoj magnetnega polja

Zanima nas magnetni potencial \vec{A} daleč stran od njegovega izvira. Vemo da velja

$$\vec{A} = -\frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r}'$$

kar razvijemo za $|\vec{r}| \gg |\vec{r}'|$. Dobimo

$$\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{|\vec{r}|} - (\vec{r}' \cdot \nabla) \left(\frac{1}{r}\right) + \dots = \frac{1}{3} + \frac{\vec{r}' \cdot \vec{r}}{r^3} + \dots$$

Magnetni potencial se torej do drugega reda zapiše kot:

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \vec{J}(\vec{r}') d^3 \vec{r}' + \frac{\mu_0}{4\pi r^3} \int \vec{J}(\vec{r}') (\vec{r}' \cdot \vec{r}) d^3 \vec{r} + \cdots$$

V primerjavi z elektrostatiko je monopolni člen vektor, dipolni člen pa je že tenzor.

4.27.1 Monopolni člen

Tokovnice so sklenjene torej:

$$\int_{V} \vec{J}(\vec{r}')d^3\vec{r}' = 0$$

Magnetnih monopolov ni v naravi.

4.27.2 Dipolni člen

Po dolgem računu dobimo

$$\vec{A}(\vec{r}) = \frac{\mu_0 \vec{m} \times \vec{r}}{4\pi r^3}$$

kjer je $\overrightarrow{m} = \frac{1}{2} \int \overrightarrow{r}' \times \overrightarrow{J} d^3 \overrightarrow{r}'$ magnetni dipolni moment.

4.29. Amperova ekvivalenca

Izračunajmo magnetni dipolni moment krožne zanke.

$$\overrightarrow{m} = \frac{1}{2} \int \overrightarrow{r}' \times \overrightarrow{J}(\overrightarrow{r}') d^3 \overrightarrow{r}' = \frac{1}{2} a I \int \hat{e}_r \times \hat{e}_\phi dl = \frac{1}{2} \hat{e}_z a I \int dl = \pi \alpha^2 I \hat{e}_z$$

Amperova ekvivalenca: Tokovna zanka v magnetnem polju je ekvivalentna magnetnemu dipolu v zunanjem magnetnem polju.

4.30. Multipolni razvoj magnetne energije

Zanima nas energija gostote toka v zunanjem magnetnem polju.

$$W = -\int_{V} \vec{j}_0(\vec{r}) \vec{A}(\vec{r}) d^3 \vec{r}$$

Razvijemo \vec{A} okoli \vec{r}_0

$$\vec{A}(\vec{r}) = \vec{A}(\vec{r}_0) + ((\vec{r} - \vec{r}_0) \cdot \nabla_0) \vec{A}(\vec{r}_0)$$

To nam daje za energijo

$$W = -\int_{(V)} \vec{J_0}(\vec{r}) \vec{A}(\vec{r_0}) d^3 \vec{r} - \int_{(V)} \vec{J_0}(\vec{r}) [(\vec{r} - \vec{r_0}) \cdot \nabla_0] \vec{A}(\vec{r_0}) d^3 \vec{r} =$$

Monopolni člen je enak 0, naslednjem členu pa simetriziramo tenzor, kar je razloženo malo kasneje.

$$= -I \oint_C [(\vec{r} - \vec{r}_0) \cdot \nabla_0] \vec{A}(\vec{r}_0) d\vec{l} = (*)$$

Tu sedaj uporabimo identiteto:

$$(\vec{A} \times \vec{B})(\vec{C} \times \vec{D}) = (\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C})$$

da dobimo

$$[(\vec{r} - \vec{r}_0) \cdot \nabla_0] \left(d\vec{l} \cdot \vec{A}(\vec{r}_0) \right) - \left[(\vec{r} - \vec{r}_0) \cdot \vec{A}(\vec{r}_0) \right] \left(d\vec{l} \cdot \nabla_0 \right) = \left[(\vec{r} - \vec{r}_0) \times d\vec{l} \right] \left[\nabla_0 \times \vec{A}(\vec{r}_0) \right]$$

Lahko naredimo popoln diferencial katerega integral po zaključeni zanki da 0.

$$d\left(\left[(\vec{r}-\vec{r}_0)\cdot\nabla_0\right]\left(\vec{l}\cdot\vec{A}(\vec{r}_0)\right)\right) = \left(d\vec{r}\cdot\vec{A}(\vec{r}_0)\right)\left(\vec{l}\cdot\nabla_0\right) + \left((\vec{r}-\vec{r}_0)\cdot\vec{A}(\vec{r}_0)\right)\left(d\vec{l}\cdot\nabla_0\right)$$

Med diferencialoma $d\vec{r}$ in $d\vec{l}$ ni razlike, tako da dobimo

$$\left(d\vec{r}\cdot\vec{A}(\vec{r}_0)\right)\left(\vec{l}\cdot\nabla_0\right) = -\left((\vec{r}-\vec{r}_0)\cdot\vec{A}(\vec{r}_0)\right)\left(d\vec{l}\cdot\nabla_0\right)$$

In nazadnje dobimo

$$(*) = -\left(\nabla_0 \times \vec{A}(\vec{r}_0)\right) \cdot \left[\frac{1}{2}I\oint_C \left((\vec{r} - \vec{r}_0) \times d\vec{l}\right)\right] = -\left(\nabla_0 \times \vec{A}(\vec{r}_0)\right) \cdot \left[\frac{1}{2}\int_V (\vec{r} - \vec{r}_0) \times \vec{J}_0(\vec{r}_0) d^3\vec{r}\right]$$

Prepoznamo gostoto magnetnega polja in magnetni dipolni moment in dobimo

$$W = -\vec{m} \cdot \vec{B}(\vec{r}_0)$$

4.31. Sila in navor v na dipol v zunanjem polju

Sila

Velja $\vec{F} = -\nabla W \leftrightarrow dW = -\vec{F} \cdot d\vec{r}$

$$\vec{F} = \nabla (\vec{m} \cdot \vec{B}) = m \times (\nabla \times \vec{B}) + (\vec{m} \cdot \nabla)\vec{B}$$

Prepoznamo, da je tok ki ustvarja zunanje polje je nekje daleč stran, torej ni porazdelitve toka v točki \vec{r} . Torej velja $\nabla \times \vec{B} = \mu_0 \vec{J} = 0$ in tako dobimo **silo na magnetni dipol v zunanjem magnetnem polju**

$$\vec{F} = (\vec{m} \cdot \nabla)\vec{B}$$

Navor

Velja $dW=-\vec{M}\cdot d\vec{\phi}$. Če zavrtimo dipol je sprememba $d\vec{m}=d\vec{\phi} imes \vec{m}$. Dobimo

$$dW = -d(\vec{m} \cdot \vec{B}) = -d\vec{m} \cdot \vec{B} = -(d\vec{\phi} \times \vec{m}) \cdot \vec{B} = -(\vec{m} \times \vec{B})d\vec{\phi}$$

Pointegriramo in dobimo

$$\vec{M} = \vec{m} \times \vec{B}$$

Dodatek: Simetrizacija tenzorja

Sledi iz izreka Gauss-Ostrogradskega. Tenzor lahko pretvorimo v tenzor, ki ima »preprostejšo« strukturo. Klasično je formulacija izreka za nek vektor \vec{A} je

$$\oint_{\partial V} \vec{A} \cdot d\vec{S} = \int_{V} \nabla \cdot \vec{A} \, dV$$

Uporabimo izrek sedaj za tenzor tretjega ranga $\vec{r} \otimes \vec{r} \otimes \vec{A}$

$$\oint_{\partial V} r_i r_j A_k n_k dS = \int_V \left(r_i A_j + r_j A_i + r_i r_j (\nabla \cdot \vec{A}) \right) d^3 \vec{r}$$

Če uporabimo ta izrek v kontekstu gostote toka

$$\oint_{\partial V} r_i r_j j_k n_k dS = \int_V [r_i j_j + r_j j_i + r_i r_j (\nabla \cdot \vec{j})] d^3 \vec{r}$$

Cel levi člen je enak 0 ker je $\vec{j}=0$ na robu ∂V . Na desni strani pa, ker nimamo časovne odvisnosti toka velja $\nabla \cdot \vec{j}=0$. Sledi

$$\int_{V} r_i j_j d^3 \vec{r} = -\int_{V} r_j j_i d^3 \vec{r}$$

In lahko simetrizirano zapišemo

$$\int_{V} r_{i} j_{j} d^{3} \vec{r} = \frac{1}{2} \int_{V} [r_{i} j_{j} - r_{j} j_{i}] d^{3} \vec{r}$$