PROCESS AND DEVICE FOR DETERMINING THE THICKNESS OF AN **ELECTRICALLY CONDUCTIVE LAYER**

elso ded

Patent number:

WO9723762

Publication date:

1997-07-03

Inventor:

BECKER ERICH (DE)

Applicant:

SIEMENS AG (DE); BECKER ERICH (DE)

Classification:

- international:

G01B7/06; G01B101/00

- european:

G01B7/10C

Application number:

WO1996DE02383 19961210

Priority number(s):

DE19951048508 19951222

Also published as:

WO9723762 (A3) EP0868646 (A3) EP0868646 (A2) US6040694 (A1) EP0868646 (B1)

more >>

Cited documents:

US5430376 FR2534015

Report a data error here

XP000675998 XP000301850 XP000456854

Abstract of WO9723762

The invention relates to a process on the eddycurrent test principle and a device for determining the thickness (dr) of an electrically conductive protective layer (1) applied to an electrically conductive substrate (2). The electrical conductivities of the layer (1) and the substrate (2) differ. An exciting coil (3) through which a high-frequency electric current is passing is brought close to the layer (1) and especially brought into mechanical contact therewith so that an electric eddy current is generated in the layer (1) and the underlying substrate (2). A parameter allocated to the impedance of a test coil (9) is determined and used as the basis for determining the thickness (dr) of the layer (1), e.g. by comparison with known reference values. The frequency (f) of the high-frequency electric current is such that the thickness (dr) of the layer (1) can be clearly determined at an electrical conductivity ratio between 0.7 and 1.5.

Data supplied from the esp@cenet database - Worldwide

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

DAID

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

G01B 7/06 // 101:00

(11) Internationale Veröffentlichungsnummer:

LU, MC, NL, PT, SE).

WO 97/23762

A2 (43) Internationales

Veröffentlichungsdatum:

3. Juli 1997 (03.07.97)

(21) Internationales Aktenzeichen:

PCT/DE96/02383

(22) Internationales Anmeldedatum:

10. December 1996

(10.12.96)

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu

Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,

(81) Bestimmungsstaaten: CZ, JP, KR, RU, UA, US, europäisches

veröffentlichen nach Erhalt des Berichts.

(30) Prioritätsdaten:

195 48 508.4

22. December 1995 (22.12.95) DI

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, D-80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BECKER, Erich [DE/DE]; Zur Höhe 13, D-45772 Marl (DE).

(54) Title: PROCESS AND DEVICE FOR DETERMINING THE THICKNESS OF AN ELECTRICALLY CONDUCTIVE LAYER

(54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR BESTIMMUNG DER DICKE EINER ELEKTRISCH LEITFÄHIGEN SCHICHT

(57) Abstract

The invention relates to a process on the eddy-current test principle and a device for determining the thickness (d_r) of an electrically conductive protective layer (1) applied to an electrically conductive substrate (2). The electrical conductivities of the layer (1) and the substrate (2) differ. An exciting coil (3) through which a high-frequency electric current is passing is brought close to the layer (1) and especially brought into mechanical contact therewith so that an electric eddy current is generated in the layer (1) and the underlying substrate (2). A parameter allocated to the impedance of a test coil (9) is determined and used as the basis for determining the thickness (d_r) of the layer (1). e.g. by comparison with known reference values. The frequency (f) of the high-frequency electric current is such that the thickness (de) of the layer (1) can be clearly determined at an electrical conductivity ratio between 0.7 and 1.5.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren nach dem Wirbelstromprüfprinzip sowie eine Vorrichtung zur Bestimmung der Dicke (d_r) einer elektrisch leitfähigen Schutzschicht (1), die auf einem elektrisch leitfähigen Grundwerkstoff (2) aufgebracht ist. Die elektrischen Leitfähigkeiten der Schicht (1) und des Grundwerkstoffes (2) sind voneinander verschieden. Eine von einem hochfrequenten elektrischen Strom durchflossene Erregerspule (3) wird der Schicht (1) angenähert, insbesondere mit dieser in mechanischen Kontakt gebracht, so daß in der Schicht (1) und dem darunterliegenden Grundwerkstoff (2) ein elektrischer Wirbelstrom erzeugt wird. Eine der Impedanz einer Prüfspule (9) zugeordnete Größe wird bestimmt und dient als Grundlage für die Bestimmung der Dicke (d_r) der Schicht (1), beispielsweise durch Vergleich mit bekannten Referenzwerten. Die Frequenz (f) des hochfrequenten elektrischen Stroms ist so gewählt, daß eine eindeutige Bestimmung der Dicke (d_r) der Schicht (1) bei einem Verhältnis der elektrischen Leitfähigkeiten zwischen 0.7 und 1.5 erfolgt.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn .	NZ	Neuseeland
BF	Burkina Faso	IB	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumanien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SB	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	Li	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tachechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	11	Trinidad und Tobago
DK	Dânemark	MD	Republik Moldau	UA	Ukraine
EE	Hatland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Maii	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

PCT/DE96/02383 WO 97/23762

1

Beschreibung

Verfahren und Vorrichtung zur Bestimmung der Dicke einer elektrisch leitfähigen Schicht

5

10

35

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Bestimmung der Dicke einer elektrisch leitfähigen Schutzschicht eines Bauteils einer Turbinenanlage, die eine elektrische Leitfähigkeit κ_1 hat und auf einem Grundwerkstoff mit der elektrischen Leitfähigkeit κ_2 aufgebracht ist, wobei die elektrischen Leitfähigkeiten voneinander verschieden sind.

In dem Artikel "Non-distructive Testing of Corrosion Effect on High-temperature Protective Coatings" in VGB-Kraftwerkstechnik 70 (1990), Nr. 9, S. 645 bis 651, von G. Dibelius, 15 H.J. Krichel und U. Reimann, sind verschiedene Verfahren zur Bestimmung der Schichtdicke einer Korrosionsschutzschicht für eine Gasturbinenschaufel beschrieben. Eines der beschriebenen Verfahren ist das sogenannte "Wirbelstrom-Meßverfahren", bei 20 dem die unterschiedlichen elektrischen Leitfähigkeit der Schutzschicht und des Grundwerkstoffes ausgenutzt werden. Über eine flache spiralförmige Sonde aus Kupfer, welche auf einem biegsamen Träger, beispielsweise als gedruckte Leiterbahn aufgebracht ist, wird ein Wirbelstrom in der Gasturbi-25 nenschaufel induziert. Hierzu wird die Sonde mit einem hochfrequenten elektrischen Wechselstrom beaufschlagt und die Impedanz der Sonde aufgezeichnet. Bei einer festen Frequenz des elektrischen Wechselstroms ergibt sich in Abhängigkeit der Dicke der Schicht, des Materials der Schicht und des Materials des Grundwerkstoffs ein charakteristischer Wert der Impe-30 danz. In dem Artikel sind Schichtdicken für eine Schutzschicht aus einer Platin-Aluminium-Legierungen auf einem Grundwerkstoff, einem rostfreiem Stahl IN 738 LC, in Abhāngigkeit der Impedanz untersucht worden. Es wurden bei einer Frequenz von 200 kHz sowie 500 kHz die Impedanz von Schichtdicken bis zu 1 mm ausgemessen. Der Artikel enthält allerdings weder eine Angabe über die Werte oder des Verhältnis

2

der elektrischen Leitfähigkeiten noch über die Genauigkeit und Reproduzierbarkeit der Messung an Gasturbinenschaufeln mit einer unbekannten, zu bestimmenden Dicke der Schicht.

In der DE 33 35 080 A1 ist ein Verfahren zur Bestimmung der 5 Dicke einer Zirkonbeschichtung an der Innenseite eines Zirkoniumlegierungsrohres für Kernreaktor-Brennstoffelemente beschrieben. Das Bestimmungsverfahren greift auf das Wirbelstromprüfprinzip zurück, in dem die Impedanzänderung eine 10 Aufnahmespule durch ein in der Zirkonbeschichtung hervorgerufenes hochfrequentes Wirbelstromfeld ausgewertet wird. Die Frequenz für das hochfrequente Wirbelstromfeld wird derart ausgewählt, daß eine auf das sogenannte Abheben der Erregerspule zurückzuführende Impedanzänderung von einer Impedanzän-15 derung aufgrund der Schichtdicke deutlich unterscheidbar ist. Hierzu geeignete Frequenzen liegen in einem Bereich oberhalb von 6 Mhz bis 20 Mhz. Die Dicke der Zirkoniumschicht reicht von einigen 10 µm bis etwa 100 µm und der spezifische Widerstand der Zirkoniumschicht liegt bei ca. 40 * $10^{-8} \Omega$ /m sowie 20 der spezifische Widerstand des Grundmetalls, der Zirkonlegierung, bei ca. 74 * $10^{-8} \Omega/m$. Die Leitfähigkeit der Zirkoniumschicht ist mithin etwa doppelt so groß wie die Leitfähigkeit des Grundmetalls. Mit dem beschriebenen Wirbelstrom-Prüfverfahren für Anwendungen auf dem Gebiet der Kerntechnik soll 25 eine Bestimmung der Zirkonschichtdicke mit einer Abweichung von etwa 5 um Genauigkeit durchführbar sein.

Aufgabe der Erfindung ist es, ein Verfahren zur Bestimmung der Schichtdicke einer elektrisch leitfähigen Schicht, die eine elektrische Leitfähigkeit κ_1 hat und auf einem Grundwerkstoff mit der elektrischen Leitfähigkeit κ_2 aufgebracht ist, wobei die elektrischen Leitfähigkeiten κ_1 und κ_2 voneinander verschieden sind, anzugeben, bei dem selbst bei annähernd gleichen elektrischen Leitfähigkeiten eine sichere Bestimmung der Schichtdicke gewährleistet ist. Eine weitere Aufgabe der Erfindung ist es, eine Vorrichtung zur Durchführung eines solchen Verfahrens anzugeben.

30

35

Die auf ein Verfahren gerichtete Aufgabe wird dadurch gelöst, daß eine von einem hochfrequenten elektrischen Strom durchflossene Erregerspule der Schicht angenähert wird, so daß in der Schicht und dem darunterliegenden Grundwerkstoff ein elektrischer Wirbelstrom erzeugt wird, wobei die Frequenz des hochfrequenten elektrischen Stroms so gewählt wird, daß eine der Impedanz einer Prüfspule zugeordnete Größe bestimmt wird, welche Größe nach dem Wirbelstromprüfprinzip als Grundlage für die Bestimmung der Dicke der Schicht dient und die Frequenz so gewählt wird, daß gemäß dem Wirbelstromprüfprinzip eine eindeutige Bestimmung der Dicke der Schutzschicht bei einem Verhältnis der elektrischen Leitfähigkeiten zwischen 0.7 und 1.5 erfolgt.

15

10

Hierbei können, wie beispielsweise in dem Buch "Schichtdikkenmessung" von D. Herrmann, R. Oldenbourg Verlag, München, 1993, Abschnitt 3.6, Seiten 121 bis 159, oder dem Buch "Zerstörungsfreie Werkstück- und Werkstoffprüfung" von 20 S. Steeb, expert verlag, Ehningen, 2. Auflage, 1993, Kapitel 8, Seiten 334 bis 370, beschrieben, die Erregerspule mit der Prüfspule zusammenfallen oder zwei unterschiedliche Spulen verwendet werden. Den obigen zwei Büchern ist auch entnehmbar, welche der Impedanz zugeordnete Größen bei Wirbelstrom-25 prüfverfahren verwendet werden, z.B. unmittelbar die Impedanz der Erregerspule oder deren Phasenwinkel, die Induktionsspannung einer Prüfspule sowie ein Differenzsignal zweier entgegengesetzt geschalteter Prüfspulen. Die Spulen können als planare Spulen oder als entlang einer Achse gewundene Spulen 30 verwendet werden. Letztere eignen sich besonders, um ein relativ starkes Magnetfeld zu erzeugen und aufgrund ihres kleinen Querschnittes zur Abtastung gekrümmter Oberflächen. Prüfund Erregerspule können ineinander verwunden sein sowie als voneinander beabstandete Transformatorspulen angeordnet sein. Hinsichtlich des Aufbaus und der Anordnung der Spulen sowie 35 der generellen Durchführung des Wirbelstromprüfverfahrens

4

wird vollinhaltlich auf die beiden obigen Bücher Bezug genommen.

Die Eindringtiefe des Wirbelstroms in die Schicht und den darunterliegenden Grundwerkstoff liegt im Bereich der maximal zu erwartenden Dicke der Schicht. Durch eine Frequenz des hochfrequenten elektrischen Stroms, bei der die Eindringtiefe des Wirbelstroms im Bereich der maximal zu erwartende Dicke der Schicht liegt, tritt der Einfluß der Schicht besonders deutlich hervor, so daß das Verfahren selbst bei nur gering-10 fügig sich unterscheidenden elektrischen Leitfähigkeiten mit hoher Genauigkeit eine Bestimmung der Schichtdicke gewährleistet. Die Auswahl erfolgt unter Berücksichtigung der elektrischen Leitfähigkeiten. Hierbei wird berücksichtigt, daß bei 15 einer Frequenz, welche eine Eindringtiefe kleiner als die Dicke der Schicht bewirkt, ein Wert der Impedanz zugeordneten Größe erzeugt wird, welcher fast ausschließlich durch die elektrische Leitfähigkeit der Schicht geprägt ist. Im Folgenden wird zur Vereinfachung als Größe direkt die Impedanz selbst genannt, wobei aber jede mögliche Größe selbst ver-20 ständlich anstelle der Impedanz gewählt werden kann. Ist die Frequenz so gewählt, daß die Eindringtiefe des erzeugten Wirbelstroms deutlich größer als die Dicke der Schicht ist, so kann der Einfluß der elektrischen Leitfähigkeit des Grund-25 werkstoffs auf die Impedanz zunehmen, wenn nicht sogar vollständig dominieren. Vor allem bei nur geringfügig voneinander verschiedenen elektrischen Leitfähigkeiten der Schicht und des Grundwerkstoffes ist eine Abhängigkeit der Impedanz von der Schichtdicke im Rahmen der Fehlergenauigkeit von Messun-30 gen unter Umständen in den beiden obigen Fällen kaum nachweisbar. Bei einer Frequenz, welche einen Wirbelstrom mit einer Eindringtiefe im Bereich der Dicke der Schicht hervorruft, ist hingegen eine signifikante, deutlich von eventuellen Meßfehlern unterscheidbare Abhängigkeit des Meßsignals, z.B. der Impedanz, von der tatsächlichen Schichtdicke gegeben. Versuche zeigten überraschenderweise, daß die hierdurch erhaltenen Meßsignale um einen Faktor von etwa 1000 höher

liegen, als bei Verwendung der bisher bekannten festen Frequenzen. Das Verfahren eignet sich daher zur Bestimmung der Dicke einer Schicht bei nahezu beliebiger Geometrie, insbesondere Krümmung und Rauhigkeit der Schicht, weil die erhaltbaren Signale auch deutlich von Geometrie-Effekten unterscheidbar sind. Die elektrischen Leitfähigkeiten können sich nur geringfügig, z.B. im Bereich von etwa 10 % bis etwa 15 %, unterscheiden.

Vorzugsweise ist die Frequenz so gewählt, daß die Eindring-10 tiefe größer als die maximal zu erwartende Dicke ist, insbesondere bis etwa dem vierfachen der maximal zu erwartenden Dicke, beträgt. Da in der Regel bereits durch das Herstellungsverfahren der Schicht, z.B. Tauchen, Spritzen, elektrolytisches Abscheiden, etc. durch die Prozeßparameter eine ma-15 ximal zu erwartende Schichtdicke bekannt ist, ist eine Auswahl der Frequenz im Hinblick auf die so zu erwartende Schichtdicke einfach möglich. Hierzu ist es nicht notwendigerweise erforderlich, durch eine oder mehrere Testmessungen mit unterschiedlichen Frequenzen eine bevorzugte, der zu er-20 wartenden Schichtdicke angepaßte, Frequenz auszuwählen. Mit der Anpassung der Frequenz an eine zu erwartenden Schichtdicke wird zudem auch für den Fall, daß über einen Zeitraum hinweg eine Abtragung der Schicht stattgefunden hat, ein hohes eindeutig unterscheidbares und auswertbares Meßsignal ge-25 währleistet. Dies ist besonders bei thermisch belasteten und der Korrosion ausgesetzten Bauteilen, wie Gasturbinenschaufeln, von Vorteil.

30 Vorzugsweise liegt die Frequenz des elektrischen Stromes zwischen 1,5 MHz und 3,5 MHz, insbesondere zwischen 2 MHz und 3 MHz. Dieser Frequenzbereich ist für eine Schichtdickenbestimmung mit einer Schichtdicke von bis zu 500 µm von besonderem Vorteil. Dies trifft vor allem für eine Schicht zu, die als Korrosionsschutzschicht einer Gasturbinenschaufel dient und beispielsweise eine Nickel-Chrom-Aluminium-Legierung mit

Zusatz von Yttrium aufweist. Typische Schichtdicken können im Bereich zwischen 200 µm und 400 µm liegen.

Vorzugsweise dient als Grundlage für die Bestimmung der Dicke der Schicht der Wert der Impedanz, welcher bei einem mechanischen Kontakt der Erregerspule mit der Schicht erfolgt, wobei die Erregerspule gegenüber der Schicht elektrisch isoliert ist. Die Erregerspule wie die Prüfspule sind vorzugsweise als längs einer Achse ausgedehnte Taststifte ausgeführt. Sie können jeweils einen Querscnitt von etwa 3 mm aufweisen und etwa 4 mm voneinander beabstandet sein. Gegebenenfalls sind die Spulen planar, beispielsweise als Kupfer-Leiterbahn auf einem flexiblen und deformierbaren Tragkörper aufgebracht sein. Der mechanische Kontakt zwischen Spule und Schicht kann unter Umständen dadurch verbessert werden, daß die Spule beispielsweise durch Druckluft an die Schicht angepreßt wird.

Die Auswahl der Frequenz des hochfrequenten elektrischen Stromes kann wie oben bereits ausgeführt anhand des Herstellungsprozesses sowie der äußeren Bedingungen, welcher die Schicht ausgesetzt war, bestimmt werden. Es ist ebenfalls möglich, mit einer Testmessung mit einer Testfrequenz eine grobe Bestimmung der Dicke der Schicht durchzuführen und daraus eine Frequenz zu ermitteln, die besonders hohe Meßsignale für die Impedanz gewährleistet. Auch können mehrere Testmessungen mit unterschiedlichen Testfrequenzen durchgeführt werden, wobei unter Verwendung von Optimierungs- oder Interpolationsverfahren, eine zur Durchführung des Verfahrens besonders geeignete Frequenz ermittelt werden kann.

Eine weitere bevorzugte Methode zur Bestimmung einer geeigneten Frequenz besteht darin, daß ein Satz von Probekörpern bereitgestellt wird, wobei jeder Probekörper jeweils aus einem Grundwerkstoff und einer Schicht mit jeweiliger Dicke besteht und der Probekörper vorzugsweise hinsichtlich Herstellung und Geometrie dem zu prüfenden Bauteil entspricht. Die Probekörper können hierbei Teile eines für einen Einsatz in eine

7

Gasturbinenanlage bestimmten Bauteils, insbesondere einer Gasturbinenverdichterschaufel, sein. Es wird eine Mehrzahl von Näherungswerten für die Frequenz ausgewählt und mit diesen Näherungswerten, jeweils gegebenenfalls mehrfach bis zu zehn Mal, das Wirbelstromprüfverfahren an jedem Probenkörper durchgeführt. Aus diesen Näherungsfrequenzen wird eine besonders geeignete Näherungsfrequenz für die Anwendung des Verfahrens an ein konkretes Bauteil ausgewählt, wobei diese Näherungsfrequenz zu einer besonders hohen Auflösung bei der Ermittlung der Schichtdicke sowie zu einer besonders hohen Linearität in Abhängigkeit der Schichtdicke führt. Die Mehrzahl der Näherungsfrequenzen kann ihrerseits durch eine Auswahl aus einer Vielzahl von Testfrequenzen erfolgen, wobei mit diesen Testfrequenzen Vorprobekörper, insbesondere speziell hergestellte geometrisch einfache Körper, die mit der Schicht versehen sind, benutzt werden. Durch eine solche sukzessive Auswahl einer besonders geeigneten Frequenz unmittelbar an einem im wesentlichen zu dem zu prüfenden Bauteil äquivalenten Bauteil ist auch bei geringen Unterschieden der Leitfähigkeiten zwischen Schicht und Grundwerkstoff eine genaue Ermittlung der Schichtdicke gewährleistet.

Die in dem Verfahren ermittelte Impedanz einer Spule wird vorzugsweise mit Referenzwerten verglichen und daraus die Dicke der Schicht bestimmt. Die Referenzwerte können anhand von Referenzbeschichtungen mit einem exakten Nachweis der Dicke der Schicht, beispielsweise durch Aufschneiden der Schicht oder ähnlichem, durchgeführt werden. Anhand einiger weniger oder einer Vielzahl von Referenzwerten der Impedanz für eine Schicht aus einem bekannten Material, die auf einen bekannten Grundwerkstoff aufgebracht ist, kann mittels Interpolationsverfahren eine Schar von Referenzwerten der Impedanz mit einer jeweils eindeutig zugeordneten Dicke der Schicht ermittelt werden.

35

5

10

15

20

25

30

Vorzugsweise eignet sich das Verfahren zur Bestimmung der Dicke einer Schutzschicht auf einem Bauteil einer Gasturbi-

8

nenanlage, insbesondere bei einer Gasturbinenschaufel oder einer Verdichterschaufel. Dies vor allem, da selbst die komplexe Geometrie des Bauteiles, gegebenenfalls vorhandene Bohrungen unter der Oberfläche der Schicht sowie Schwankungen in der Dicke der Schicht und der Dicke des Grundwerkstoffs allenfalls einen geringen Einfluß besitzen.

5

10

15

20

25

Die Schutzschicht kann aus einer Legierung der Art MCrAlY bestehen, worin M für eines der Metalle Eisen, Nickel und/oder Kobald oder einer Legierung daraus, Cr für Chrom, Al für Aluminium und Y für Yttrium, Hafnium oder einem ähnlichen Metall steht. Die Schutzschicht kann weitere Elemente wie Rhenium oder Gallium enthalten. Beispielsweise weist die Legierung in Gewichtsprozent folgende Komponenten auf: 30% - 32% Co, 30% Ni, 28% - 30% Cr, 7% - 9% Al, 0,5% Y sowie ca. 0,7% Si.

Das Verfahren liefert gegenüber Verfahren mit unveränderlicher Frequenz im Bereich von 200 KHz bis 500 KHz auch eindeutige und genaue Ergebnisse für die Dicke der Schutzschicht, wenn das Verhältnis der Leitfähigkeit des Grundwerkstoffes zu der Leitfähigkeit der Schicht zwischen 0.3 und 3.0, insbesondere zwischen 0.7 und 1.0, liegt. Solche Verhältnisse nahe 1 liegen beispielsweise bei einer obengenannten Schutzschicht und einem rostfreiem Stahl, beispielsweise IN 738 LC vor. Das Verhältnis der Leitfähigkeiten beträgt in diesem Fall ungefähr 0,79. Die Dicke der Schutzschicht liegt bei einer neubeschichteten Gasturbinenschaufel in einem Bereich von bis zu etwa 400 µm.

Die auf eine Vorrichtung zur Durchführung des Verfahrens gerichtete Aufgabe wird durch eine Vorrichtung gelöst, welche
eine Erregerspule, die mit einer Wechselstromquelle verbunden
ist, und eine Prüfspule aufweist, die wiederum mit einer Meßeinheit zur Impedanzbestimmung und einer Auswerteeinheit zur
35 Bestimmung der Dicke der Schicht verbunden ist. In der Auswerteeinheit erfolgt vorzugsweise ein Vergleich der ermittelten Impedanz mit einem Satz von Referenzwerten. Die Referenz-

9

werte sind für eine Schicht mit der identischen Zusammensetzung wie die zu untersuchende Schicht sowie mit dem ebenfalls identischen Grundwerkstoff vorab ermittelt und in der Auswerteeinheit gespeichert worden. Die Auswerteeinheit kann über geeignete Mittel zur Darstellung der Ergebnisse des Verfahrens verfügen, wie beispielsweise einen Bildschirm, einen Drucker, einen Meßschreiber oder einen Plotter. Durch den in der Auswerteeinheit durchgeführten Vergleich erfolgt eine Bestimmung der Dicke der zu untersuchenden Schicht.

10

15

20

25

30

35

Die Erregerspule sowie die Prüfspule sind vorzugsweise so ausgestaltet, daß sie insbesondere flexibel der Kontur und Oberfläche der Schicht anpaßbar ist. Sie sind vorzugsweise voneinander getrennt und galvanisch gekoppelt. Jede Spule ist vorzugsweise entlang einer Achse schraubenförmig gewickelt. Eine die Erregerspule und die Prüfspule umfassende Sonde ist insbesondere in bezug auf ihre Fläche und ihre Abschirmung an das zu prüfende Bauteil angepaßt. Sie ist so ausgestaltet, daß das von der Sonde erzeugte elektrische Feld auf einen engen Bereich, an dem die Messung durchgeführt wird, konzentriert ist. Die Vorrichtung wird vorzugsweise nach einer Resonanzmethode betrieben. Hierbei wird ausgenutzt, daß sich der Imaginärteil und der Realteil der Impedanz ändern, wenn die Prüfspule aus einer Position, in der sie sich unmittelbar mit dem Grundwerkstoff in Kontakt befindet, in eine Position mit unmittelbarem Kontakt mit der Schicht bewegt wird. Ist die Leitfähigkeit der Schicht größer als die Leitfähigkeit des Grundwerkstoffs, so wird bei einer solchen Positionsänderung der Realteil der Impedanz größer und der Imaginärteil nimmt ab. Wird die Prüfspule, welche eine Induktivität darstellt, mit einem insbesondere verlustarmen Kondensator zu einem Resonanzschwingkreis verbunden, so wird der Kondensator so gewählt, daß bei mechanischem Kontakt der Erregerspule mit der Schicht ein möglichst großes Signal erzielt wird. Durch die Vergrößerung des Realteils der Impedanz nimmt das Maximum in der Resonanzkurve deutlich ab, und aufgrund des kleineren Imaginärteils der Impedanz wird das Maximum zu höheren Fre-

10

quenzen verschoben. Durch entsprechende Auslegung des Schwingkreises kann etwa eine Verdoppelung des Meßsignals für die Bestimmung der Dicke der Schicht erzielt werden.

Anhand der Ausführungsbeispiele der Zeichnung werden das Verfahren sowie die Vorrichtung zur Bestimmung der Dicke einer auf einem Grundwerkstoff aufgebrachten Schicht näher erläutert. Es zeigen in schematischer nicht maßstäblicher Darstellung:

10

15

- FIG 1 eine Vorrichtung zur Durchführung des Verfahrens sowie ein Bauteil mit einem Grundwerkstoff und einer darauf aufgebrachten Schicht,
- FIG 2 eine Darstellung der Impedanz in der komplexen Ebene für verschiedene Werkstoffe und
- FIG 3 eine Darstellung der Impedanz in der komplexen Ebene für eine Mehrzahl von Schutzschichten unterschiedlicher Dicke einer Gasturbinenschaufel.

FIG 1 zeigt einen Ausschnitt eines Bauteils 8 in einem Längs-20 schnitt sowie schematisch und nicht maßstäblich hierzu eine Vorrichtung 4 zur Bestimmung der Dicke einer Schicht 1 des Bauteils 8. Die Schicht 1 ist auf einen Grundwerkstoff 2 des Bauteils 8 aufgebracht und hat eine Dicke dr. Die Schicht 1 25 besteht aus einem elektrisch leitfähigen Material, beispielsweise einer Korrosionsschutzschicht einer Gasturbinenverdichterschaufel. Der Grundwerkstoff 2 ist ebenfalls elektrisch leitfähig und besteht beispielsweise aus einem rostfreiem Stahl, wie IN 738 LC. Die Vorrichtung 4 weist eine im wesent-30 lichen entlang einer Achse 11 schraubenförmig gewundene Erregerspule 3 auf. Die Erregerspule 3 ist mit einer Wechselstromquelle 5 verbunden, so daß durch die Erregerspule 3 ein hochfrequenter elektrischer Wechselstrom mit einer Frequenz f einspeisbar ist. Die Erregerspule 3 ist galvanisch mit einer 35 ebenfalls entlang der Achse 11 gewundenen Prüfspule 9 gekoppelt. Die Prüfspule 9 ist mit einer Meßeinheit 6 zur Bestimmung der Impedanz oder einer der Impedanz zugeordneten Größe,

wie Induktionsspannung oder Phasenwinkel, der Errgerspule 3 bzw. der Prüfspule 9 verbunden. Die Meßeinheit 6 ist mit einer Auswerteeinheit 7 zur Bestimmung der Dicke dr verbunden. In der Meßeinheit 6 wird ein der Impedanz der Erregerspule 3 eindeutig zugeordnetes Meßsignal bzw. die Impedanz selbst aufgenommen. Die der Impedanz zugeordnete Größe wird in der Auswerteeinheit 7 mit darin gespeicherten Referenzwerten verglichen. Diese Referenzwerte sind bei gleicher Materialkombination zwischen Schicht und Grundwerkstoff für Schichten wohldefinierter Dicke ermittelt worden. Da die Referenzwerte 10 eindeutig einer Dicke einer äquivalenten Schicht zugeordnet sind, folgt durch den Vergleich eine genaue Bestimmung der Dicke dr der Schicht 1. Bei einer Materialkombination derart, daß die Schicht 1 eine Korrosionsschicht für eine Gasturbinenschaufel und der Grundwerkstoff 2 ein rostfreier Stahl 15 IN 738 LC ist, erfolgt bei einer zu erwartenden Schichtdicke zwischen 200 µm und 500 µm eine Beaufschlagung der Erregerspule mit einem elektrischen Wechselstrom in einem Frequenzbereich zwischen 2 MHz und 2,5 MHz. Bei Durchführung des Ver-20 fahrens wird die von dem hochfrequenten Wechselstrom durchflossene Erregerspule 3 der Schicht 1 angenähert und mit dieser in mechanischen Kontakt gebracht sowie durch die Meßeinheit 6 ein entsprechendes der Impedanz eindeutig zugeordnetes Meßsignal aufgenommen und in der Auswerteeinheit 7 zur Bestimmung der Dicke d_r der Schicht 1 weiter verarbeitet. Durch 25 den hochfrequenten Wechselstrom der Erregerspule 3 wird in dem Bauteil 8 ein Wirbelstrom erzeugt, welcher von der Oberfläche 10 der Schicht 1 in das Bauteil 8 hinein abnimmt. Die Eindringtiefe d des Wirbelstroms ist vorzugsweise geringfügig 30 größer eine zu erwartende Schichtdicke d_e , von etwa 500 μm oder weniger. Hierdurch ist der Einfluß des Sprungs der elektrischen Leitfähigkeit zwischen Schicht 1 und Grundwerkstoff 2 an der Grenzfläche zwischen der Schicht 1 und dem Grundwerkstoff 2 von besonderer Bedeutung für das in der Meßein-35 heit 6 aufgenommene Meßsignal. Durch den großen Einfluß des Sprunges zwischen der elektrischen Leitfähigkeit (K1, K2) zwischen Schicht 1 (κ_1) und Grundwerkstoff 2 (κ_2) auf das Meß-

12

signal kann auch bei sich nur geringfügig unterscheidenden elektrischen Leitfähigkeiten eine eindeutige Zuordnung und Bestimmung der Dicke d_r der Schicht 1 erfolgen. Je nach Anwendungsfall, insbesondere Kombination der Materialien für die Schicht 1 und den Grundwerkstoff 2 sowie der zu erwartenden Dicke der Schicht 1 kann eine jeweils entsprechende Frequenz f für den hochfrequenten elektrischen Wechselstrom der Erregerspule 3 bestimmt werden.

5

10 FIG 2 zeigt eine Darstellung der Impedanz der Erregerspule 3 in der imaginären Ebene mit dem Realteil entlang der Abszisse und dem Imaginärteil entlang der Ordinate aufgetragen. Die dargestellte Kurve beginnt in dem mit "A" gekennzeicheten Punkt und verläuft bis zu einem mit "S" gekennzeichneten 15 Punkt. Im Punkt A ist die Impedanz für einen offenen Stromkreis, d.h. im wesentlichen der Wert der Impedanz bei einer Messung in Luft dargestellt. Der Wert im Punkte S entspricht einem idealen kurzgeschlossenen Stromkreis. Die dazwischenliegenden Werte entsprechen der jeweiligen Impedanz, die bei 20 einem Kontakt der Erregerspule 3 mit einem durchgehend aus einem einzigen Material, insbesondere Metall, bestehenden Grundwerkstoff vorliegt. Hervorgehoben sind durch jeweilige Punkte die Werte für den rostfreien Stahl IN 738 LC und einer Platin-Aluminium-Legierung. Diese beiden Punkte sind durch eine weitere Linie verbunden, welche den Übergang von einem 25 einkomponentigen Material aus IN 738 LC auf ein zweikomponentiges Material mit einer Schicht der Platin-Aluminium-Legierung aufgetragen auf dem rostfreien Stahl angibt. Die Dicke der Schicht steigt in Pfeilrichtung an, wobei die angegebenen 30 Zahlen den Wert der Schicht in Millimeter darstellen. Ab einer gewissen Schichtdicke, die über 1 mm liegt, wird ein Wert der Impedanz erreicht, der den Wert eines einkomponentigen Materials aus der Platin-Aluminium-Legierung entspricht. Die Impedanzwerte wurden bei einer Frequenz von 200 KHz gemessen 35 und sind dem Artikel "Non-distructive Testing of Corrosion Effect on High-temperature Protective Coatings" in VGB-Kraftwerkstechnik 70 (1990), Nr. 9, Seiten 645 bis 651, von G. Dibelius, H.J. Krichel und U. Reimann, entnommen.

FIG 3 zeigt schematisch den Verlauf der Impedanz, ebenfalls in der komplexen Ebene. Die Darstellung erfolgt hier so, daß 5 der Wert der Impedanz bei einem offenen Stromkreis deutlich im ersten Ouadranten, d.h. bei positivem Imaginär- und Realteil, liegt. Die Werte wurden ermittelt an einer Korrosionsschutzschicht mit 30% - 32% Co, 30% Ni, 28% - 30% Cr, 7% - 9% Al, 0,5% Y sowie ca. 0,7% Si (Angaben in Gewichtspro-10 zent), welche auf den rostfreien Stahl IN 738 LC aufgetragen wurde. Die durchgezogene Linie stellt die Werte der Impedanz bei Kontakt der Erregerspule 3 mit der Oberfläche 10 der Schicht 1 dar. Die angegebenen Zahlenwerte stellen die mittels des Verfahrens bestimmte Dicke der Schicht in Mikrome-15 tern (µm) dar. Die Schichtdicken konnten hierbei bis auf einen maximalen Fehler von 30 um bestimmt werden. Mit den gestrichelten Linien ist für jede Schichtdicke der Wert der Impedanz bei Annäherung der Errgerspule 3 an die Schicht 1 dargestellt. Selbst diese Linien sind so deutlich voneinander zu 20 unterscheiden, daß auch ohne direkten Kontakt der Erregerspule 3 mit der Schicht 1 bei Kenntnis des Abstandes der Erregerspule 3 von der Schicht 1 eine eindeutige Zuordnung der ermittelten Impedanzwerte zu der Dicke d, der Schicht 1 möglich ist. Dies ist umso bemerkenswerter, da daß Verhältnis 25 der elektrischen Leitfähigkeiten zwischen dem Grundwerkstoff 2 und der Schicht 1 nahe 1.0, insbesondere bei 0.75, liegt. Eine Bestimmung der Schichtdicke bei kaum voneinander verschiedenen Werte der elektrischen Leitfähigkeiten sind mit Frequenzen von 500 KHz oder darunter nicht mehr möglich, da 30 die Meßsignale in dem Fehlerrauschen verschwinden.

Die Erfindung zeichnet sich durch ein Verfahren zur Bestimmung der Dicke einer elektrisch leitfähigen Schicht aus, wobei das zerstörungsfreie Wirbelstromprüfverfahren unter Auswahl einer besonders günstigen Frequenz durchgeführt wird.

Die Auswahl der Frequenz zur Induzierung des Wirbelstroms in

14

dem Bauteil, welches die Schicht enthält, erfolgt beispielsweise so, daß die Eindringtiefe des Wirbelstroms vorzugsweise
geringfügig größer als die Dicke der Schicht ist. Hierdurch
hat der Sprung der elektrischen Leitfähigkeit zwischen der
Schicht und dem darunterliegenden Grundwerkstoff einen maßgeblichen Einfluß auf die Impedanz der Erregerspule, durch
welche der Wirbelstrom in dem Bauteil erzeugt wird. Die zu
erwartende Schichtdicke ist beispielsweise unmittelbar aus
dem Herstellungsprozeß des Bauteils entnehmbar oder durch
eine Testmessung mit gegebenenfalls unterschiedlichen Frequenzen bestimmbar. Vorzugsweise ist das Verfahren zur Kontrolle der Schichtdicke einer neu oder erneut beschichteten
Gasturbinenschaufel, insbesondere einer Gasturbinenverdichterschaufel, geeignet.

5

10

35

Patentansprüche

- 1. Verfahren zur Bestimmung der Dicke (d_r) einer Schutzschicht (1) mit einer elektrische Leitfähigkeit κ_1 eines Bauteils einer Turbinenanlage, welche Schutzschicht (1) auf einem Grundwerkstoff (2) des Bauteils mit der elektrischen Leitfähigkeit κ_2 aufgebracht ist, wobei die elektrischen Leitfähigkeiten κ_2 und κ_1 voneinander verschieden sind, bei dem
- 10 a) eine Erregerspule (3) von einem hochfrequenten elektrischen Strom durchflossen wird ,
 - b) die Erregerspule (3) der Schutzschicht (1) angenähert wird, so daß zumindest in der Schutzschicht (1) ein elektrischer Wirbelstrom erzeugt wird,
- 15 c) eine der Impedanz einer Prüfspule (9) zugeordnete Größe bestimmt wird, welche Größe nach dem Wirbelstromprüfprinzip als Grundlage für die Bestimmung der Dicke (d_r) der Schicht (1) dient und
- d) die Frequenz (f) des hochfrequenten elektrischen Stroms so gewählt wird, daß gemäß dem Wirbelstromprüfprinzip eine eindeutige Bestimmung der Dicke (d_r) bei einem Verhältnis der elektrischen Leitfähigkeiten κ_2/κ_1 zwischen 0.7 und 1.5 erfolgt.
- 25 2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n-z e i c h n e t , daß die Frequenz (f) so gewählt wird, daß die Eindringtiefe (d) des Wirbelsstroms größer als eine maximal zu erwartende Dicke (de) der Schutzschicht (1) ist, insbesondere bis etwa dem Vierfachen der maximal zu erwartende Dicke (de) beträgt.
 - 3. Verfahren nach einem der vorhergehenden Ansprüche, dad urch gekennzeichnet, daß die Frequenz (f) des elektrischen Stroms zwischen 1,5 MHz und 3,5 MHz, insbesondere zwischen 2 MHz und 3 MHz, gewählt wird.

16

- 4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die der Impedanz der Prüfspule (9) zugeordnete Größe bei einem mechanischen Kontakt der Erregerspule (3) mit der Schicht (1) bestimmt wird, wobei die Erregerspule (9) elektrisch gegenüber der Schicht (1) isoliert ist.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, da durch gekennzeichnet, daß mittels einer Testmessung mit einer vorgebbaren Testfrequenz (f_t) näherungsweise die maximal zu erwartende Dicke (d_e) bestimmt und daraus die Frequenz (f_t) unter Berücksichtigung der Leitfähigkeiten κ_2 und κ_1 abgeleitet wird.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß a) ein Satz von als Probekörpern dienenden Bauteilen mit bekannter Schichtdicke bereitgestellt wird,
- b) an jedem Probekörper mit einer Mehrzahl unterschiedlicher
 Näherungsfrequenzen (f_p) eine der Impedanz der Prüfspule (9) zugeordnete Größe bestimmt wird, und
 c) eine Näherungsfrequenz (f_{p1}) mit hinreichend hoher
 Auflösung und hoher Linearität in der der Impedanz
 zugeordneten Größe als die Frequenz (f) gewählt wird.

25

5

- 7. Verfahren nach Anspruch 6, da durch gekennzeichnet, daß zur Auswahl der Näherungsfrequenzen (f_p) mit einer Schicht (1) beschichtete Vorprobekörper, insbesondere einfacher
- 30 Geometrie, bereitgestellt werden und mit einer Vielzahl von Testfrequenzen eine der Impedanz der Prüfspule (9) zugeordnete Größe bestimmt wird und aus den Testfrequenzen diejenigen mit bester Auflösung bestimmt und als die Näherungsfrequenzen verwendet werden.

35

8. Verfahren nach einem der Ansprüche 1 bis 7, daß die er-

mittelte der Impedanz der Prüfspule (9) zugeordnete Größe mit Referenzwerten verglichen und daraus die Dicke (d_r) der Schutzschicht (1) bestimmt wird.

- 9. Anwendung des Verfahrens nach einem der vorhergehenden Ansprüche bei einer Gasturbinenschaufel, mit der Schutzschicht (1) aus einer Legierung der Art MCrAlY, worin M für eines der Metalle Eisen, Nickel und/oder Kobalt oder einer Legierung daraus, Cr für Chrom, Al für Aluminium und Y für Yttrium, Hafnium oder einem ähnlichen Metall steht.
 - 10. Vorrichtung (4) zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8, mit einer Erregerspule (3), die mit einer Wechselstromquelle (5) verbunden ist, und mit einer Prüfspule (9), die mit einer Meßeinheit (6) zur Impedanzbestimmung und einer Auswerteeinheit (7) zur Bestimmung der Dicke (dr) der Schicht (1) verbunden ist.
- 11. Vorrichtung (4) nach Anspruch 10, bei dem die Erreger20 spule (3) zur Herstellung eines guten mechanischen Kontaktes
 mit der Schicht (1) flexibel ausgestaltet ist.

FIG 3

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
Потитр.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.