1. Import Libraries

```
In [1]:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

2. Import Dataset

```
In [2]: dataset=pd.read_csv("Titanic-Dataset.csv")
    dataset
```

4.011 W						Ontil						
Out[2]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
	•••			•••								
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN

891 rows × 12 columns

In [3]: dataset.shape
Out[3]: (891, 12)

In [4]: dataset.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): Non-Null Count Dtype Column ---------0 PassengerId 891 non-null int64 1 Survived 891 non-null int64 2 Pclass 891 non-null int64 3 Name 891 non-null object 4 891 non-null object Sex 5 Age 714 non-null float64 6 SibSp 891 non-null int64 7 Parch 891 non-null int64 8 Ticket 891 non-null object float64 Fare 891 non-null 10 Cabin 204 non-null object 11 Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB dataset.describe() In [5]:

Out[5]:		Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Handling Null Values

In [6]:	dataset.isnull	l().any()
Out[6]:	PassengerId	False
out[6].	Survived	False
	Pclass	False
	Name	False
	Sex	False
	Age	True
	SibSp	False
	Parch	False
	Ticket	False
	Fare	False
	Cabin	True
	Embarked	True
	dtype: bool	

```
dataset["Age"]=dataset["Age"].fillna(dataset["Age"].mean())
 In [7]:
          dataset["Cabin"]=dataset["Cabin"].fillna(method = 'pad')
 In [8]:
          dataset["Embarked"]=dataset["Embarked"].fillna(dataset["Embarked"].mode()[0])
 In [9]:
In [10]:
          dataset.isnull().any()
         PassengerId
                         False
Out[10]:
         Survived
                         False
         Pclass
                         False
         Name
                         False
         Sex
                         False
                         False
         Age
         SibSp
                         False
         Parch
                         False
                         False
         Ticket
         Fare
                         False
         Cabin
                          True
         Embarked
                         False
         dtype: bool
```

Data Visualization

```
In [11]: plt.bar("Embarked","Fare",data=dataset)
Out[11]: <BarContainer object of 891 artists>
```


In [12]: sns.displot(dataset["Survived"])

Out[12]: <seaborn.axisgrid.FacetGrid at 0x287bb3bd350>

In [13]: sns.relplot(x="Age",y="Fare",data=dataset,hue="Embarked")

Out[13]: <seaborn.axisgrid.FacetGrid at 0x287bc1bff50>


```
In [14]: fig=plt.figure()
   axes1=fig.add_axes([0.1,0.1,0.8,0.8]) #[left,bottom,width,height]
   x=dataset.groupby(["Embarked"])["Embarked"].count()
   axes1.pie(x.values,labels=["C","Q","S"],data=x)
   axes1.legend()
```

Out[14]: <matplotlib.legend.Legend at 0x1dfd4b09dd0>

In [15]: corr=dataset.corr()
corr

Out[15]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.005007	-0.035144	0.033207	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.069809	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.331339	0.083081	0.018443	-0.549500
Age	0.033207	-0.069809	-0.331339	1.000000	-0.232625	-0.179191	0.091566
SibSp	-0.057527	-0.035322	0.083081	-0.232625	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.179191	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.091566	0.159651	0.216225	1.000000

In [16]: sns.heatmap(corr,annot=True)

Out[16]: <Axes: >

Outlier Detection

In [17]: sns.boxplot(dataset.Age)

Out[17]: <Axes: >

Splitting Dependent and Independent variables

```
In [18]: x=dataset.iloc[:,[2,4,5,6,7,10]]
    y=dataset.iloc[:,1:2]
    x
```

Out[18]:		Pclass	Sex	Age	SibSp	Parch	Cabin
	0	3	male	22.000000	1	0	NaN
	1	1	female	38.000000	1	0	C85
	2	3	female	26.000000	0	0	C85
	3	1	female	35.000000	1	0	C123
	4	3	male	35.000000	0	0	C123
	•••	•••	•••	•••			
	886	2	male	27.000000	0	0	C50
	887	1	female	19.000000	0	0	B42
	888	3	female	29.699118	1	2	B42
	889	1	male	26.000000	0	0	C148
	890	3	male	32.000000	0	0	C148

891 rows × 6 columns

Encoding

```
In [19]:
         from sklearn.preprocessing import LabelEncoder
          le=LabelEncoder()
In [21]: x["Sex"]=le.fit_transform(x["Sex"])
          x["Sex"]
Out[21]:
                 0
                 0
         2
         3
                 0
                 1
         886
         887
         888
         889
                 1
         890
                 1
         Name: Sex, Length: 891, dtype: int32
         x["Cabin"]=le.fit_transform(x["Cabin"])
In [33]:
          x["Cabin"]
                 147
Out[33]:
                  81
                  81
         2
                  55
         3
         4
                  55
         886
                  70
         887
                  30
         888
                  30
         889
                  60
         890
                  60
         Name: Cabin, Length: 891, dtype: int32
```

Feature Scaling

```
In [34]: from sklearn.preprocessing import StandardScaler
sc=StandardScaler()

In [35]: x=sc.fit_transform(x)
x
```

Splitting Training and Testing Set

```
from sklearn.model selection import train test split
In [36]:
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
         x_train
In [38]:
         array([[ 0.82737724, -1.35557354, 0.
                                                     , -0.4745452 , 2.00893337,
Out[38]:
                 -0.73754933],
                [-0.36936484, 0.73769513, 0.10010856, -0.4745452, -0.47367361,
                 -0.3151067 ],
                [-0.36936484, 0.73769513, 0.10010856, 0.43279337, 0.76762988,
                 -1.41815136],
                [ 0.82737724, 0.73769513, 0.
                                                     , -0.4745452 , -0.47367361,
                  0.8818141 ],
                [0.82737724, -1.35557354, 0.48488031, 0.43279337, -0.47367361,
                  1.3511948 ],
                [-0.36936484, 0.73769513, 2.33178473, 0.43279337, 0.76762988,
                  0.76446892]])
In [39]:
         x_test
         array([[ 0.82737724, 0.73769513, 0.
                                                     , -0.4745452 , -0.47367361,
                 -0.29163766],
                [ 0.82737724, 0.73769513, 0. , -0.4745452 , -0.47367361,
                 -1.62937267],
                [ 0.82737724, 0.73769513, -1.74679586, 3.15480905, 0.76762988,
                  0.858345061,
                [-1.56610693, -1.35557354, 0.10010856, 0.43279337, -0.47367361,
                  0.62365471],
                [0.82737724, 0.73769513, -0.51552625, -0.4745452, -0.47367361,
                 -1.30080618],
                [0.82737724, 0.73769513, -0.82334365, -0.4745452, -0.47367361,
                  1.2807877 11)
```