Analysis and Control of Time-Delay Systems using Polynomial Optimization

Jared Miller Milan Korda Victor Magron Mario Sznaier SIAM DS: MS 14

May 14, 2023

Time-Delay Examples

Delay between state/input change and its effect on system

System	Delay
Epidemic	Incubation Period
Population	Gestation Time
Traffic	Reaction Time
Congestion	Queue Time
Fluid Flow	Moving in Pipe

Functional Differential Equation

Dynamics Model

Delay Differential Equation (DDE) for history $x_h(t)$

$$\dot{x}(t) = f(t, x(t), x(t - \tau))$$

$$x(t) = x_h(t) \qquad \forall t \in [-\tau, 0]$$

History $x_h(t)$ does not have to obey dynamics

Can be extended to multiple delays $\tau_1 \leq \tau_2 \leq \ldots \leq \tau_r$

Others: proportional $x(\kappa t)$, distributed $\int_{-\tau_r}^0 g(\tau')x(t+\tau')d\tau'$

Dependence on History

All trajectories pass through (t,x)=(0,1)Initial history determines behavior, not just initial point

Delay Bifurcation Example

Flow of Presentation

Take an ODE problem with infinite-dimensional LP

- Peak estimation
- Optimal Control Bounds

Form a DDE analogue to ODE LP

Solve using polynomial optimization (moment-SOS)

Watch out for hazards (conservatism)

Existing Methods (very brief)

Certificates of Stability

- Lyapunov-Krasovskii
- Razumikhin
- ODE-Transport PDE

Relaxed control (Warga 1974, Vinter and Rosenblueth 1991-2)

Lyapunov (Papachristodoulou, 2004) (Pap., Peet, Lall 2009)

Barrier (Papachristodoulou and Peet, 2010)

Fixed-terminal-time OCP with gridding (Barati 2012)

Riesz Operators (Magron and Prieur, 2020)

Peak Estimation (ODE)

Peak Estimation Background

Find supremal value of p(x) along ODE trajectories

$$P^* = \sup_{t, x_0 \in X_0} p(x(t \mid x_0))$$
$$\dot{x}(t) = f(t, x(t)) \qquad \forall t \in [0, T], \qquad x(0) = x_0$$

Occupation Measures

Time trajectories spend in set

Test function
$$v(t, x) \in C([0, T] \times X)$$

Single trajectory:

$$\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$$

Averaged trajectory:
$$\langle v, \mu \rangle = \int_X \left(\int_0^T v(t, x) dt \right) d\mu_0(x)$$

Connection to Measures

Measures: Initial μ_0 , Peak μ_p , Occupation μ

For all functions $v(t,x) \in C([0,T] \times X)$

$$\mu_0^*$$
: $\langle v(0,x), \mu_0^* \rangle = v(0,x_0^*)$

$$\mu_p^*$$
: $\langle v(t,x), \mu_p^* \rangle = v(t_p^*, x_p^*)$

$$\mu^*$$
: $\langle v(t,x), \mu^* \rangle = \int_0^{t_p^*} v(t,x^*(t\mid x_0^*)) dt$

Measures for Peak Estimation

Infinite dimensional linear program (Cho, Stockbridge, 2002)

$$\begin{aligned} \rho^* &= \sup \ \langle \rho(x), \mu_\rho \rangle \end{aligned} \tag{1a} \\ \langle 1, \mu_0 \rangle &= 1 \tag{1b} \\ \langle v(t, x), \mu_\rho \rangle &= \langle v(0, x), \mu_0 \rangle + \langle \mathcal{L}_f v(t, x), \mu \rangle \quad \forall v \quad \text{(1c)} \\ \mu, \mu_\rho &\in \mathcal{M}_+([0, T] \times X) \tag{1d} \\ \mu_0 &\in \mathcal{M}_+(X_0) \tag{1e} \end{aligned}$$

Test functions
$$v(t,x) \in C^1([0,T] \times X)$$

Lie derivative $\mathcal{L}_f v = \partial_t v(t,x) + f(t,x) \cdot \nabla_x v(t,x)$
 $(\mu_0^*, \mu_p^*, \mu^*)$ is feasible with $P^* = \langle p(x), \mu_p^* \rangle$

Peak Estimation Example Bounds

Converging bounds to min. $x_2 = -0.5734$ (moment-SOS) X = [-2.5, 2.5], time $t \in [0, 5]$ (Fantuzzi, Goluskin, 2020)

Peak Estimation (Delayed)

Peak Estimation

History $x_h(t)$ resides in a class of functions \mathcal{H}

Graph-constrained $\mathcal{H}:(t,x_h(t))$ contained in $H_0\subset [- au,0] imes X$

$$P^* = \sup_{t^*, x_h} p(x(t^*))$$

$$\dot{x} = f(t, x(t), x(t - \tau)) \qquad t \in [0, t^*]$$

$$x(t) = x_h(t) \qquad t \in [-\tau, 0]$$

$$x_h(\cdot) \in \mathcal{H}$$

Represent $x(t \mid x_h)$: $t \in [-\tau, t^*]$ as occupation measure

Time-Varying System

Order 5 bound: 0.71826

Maximize
$$x_1$$
 on $\dot{x}(t) = \begin{bmatrix} x_2(t)t - 0.1x_1(t) - x_1(t-\tau)x_2(t-\tau) \\ -x_1(t)t - x_2(t) + x_1(t)x_1(t-\tau) \end{bmatrix}$

Time-Delay Visualization

Time-Delay Embedding

Delay Embedding

Black curve: $(t, x(t), x(t-\tau))$

Measure-Valued Solution

Tuple of measures for the delayed case

History
$$\mu_h \in \mathcal{M}_+(H_0)$$
Initial $\mu_0 \in \mathcal{M}_+(X_0)$
Peak $\mu_p \in \mathcal{M}_+([0,T] \times X)$
Occupation Start $\bar{\mu}_0 \in \mathcal{M}_+([0,T-\tau] \times X^2)$
Occupation End $\bar{\mu}_1 \in \mathcal{M}_+([T-\tau,T] \times X^2)$
Time-Slack $\nu \in \mathcal{M}_+([0,T] \times X)$

Types of Constraints

History-Validity: initial conditions

Liouville: Dynamics

Consistency: Time-delay overlaps

History Validity

```
History (t,x_h(t)) defines a curve [-	au,0], point at x_h(0)
Point evaluation \langle 1,\mu_0\rangle=1
t-marginal of \mu_h should be the Lebesgue measure in [-	au,0]
```

Liouville

Sum $\bar{\mu} = \bar{\mu}_0 + \bar{\mu}_1$ is a relaxed occupation measure of the delay embedding $(t, x(t), x(t-\tau))$

For all test functions $v \in C^1([0, T] \times X)$:

$$\langle v, \mu_p \rangle = \langle v(0, x), \mu_0(x) \rangle + \langle \mathcal{L}_f v(t, x_0, x_1), [\bar{\mu}_0 + \bar{\mu}_1](t, x_0, x_1) \rangle$$

Specific realization $x_0 = x(t), x_1 = x(t - \tau)$

Consistency Issue

Consistency Fix

Early stopping in delayed time

Consistency Constraint

Inspired by changing limits of integrals

$$\left(\int_0^{t^*} + \int_{t^*}^{\min(T, t^* + \tau)} \phi(t, x(t - \tau)) dt\right)$$

$$= \left(\int_{-\tau}^0 + \int_0^{\min(T - \tau, t^*)} \phi(t' + \tau, x(t')) dt'\right)$$

Shift-push
$$S^{\tau}_{\#}$$
 with $\langle \phi, S^{\tau}_{\#} \mu \rangle = \langle S^{\tau} \phi, \mu \rangle = \langle \phi(t + \tau, x), \mu \rangle$

Consistency constraint with time-slack u

$$\pi_{\#}^{tx_1}(\bar{\mu}_0 + \bar{\mu}_1) + \nu = S_{\#}^{\tau}(\mu_h + \pi_{\#}^{tx_0}\bar{\mu}_0)$$

Measure Linear Program

Linear program for DDE peak estimation with $p^* \geq P^*$

$$p^* = \sup \langle p, \mu_p \rangle$$
 (2a)
History-Validity(μ_0, μ_h) (2b)
Liouville($\mu_0, \mu_p, \bar{\mu}_0, \bar{\mu}_1$) (2c)
Consistency($\bar{\mu}_h, \bar{\mu}_0, \bar{\mu}_1, \nu$) (2d)

Measure Definitions for
$$(\mu_h, \mu_0, \mu_p, \bar{\mu}_0, \bar{\mu}_1, \nu)$$
 (2e)

Largest PSD matrices $\binom{2n+1+d+\lfloor \deg f/2 \rfloor}{d+\lfloor \deg f/2 \rfloor}$ from $\bar{\mu}_0, \bar{\mu}_1$

Optimal Control (DDE)

Optimal Control Setup

Running cost J(t, x, u), Terminal cost $J_T(x)$

Bounded control set U, Terminal set $X_T \subseteq X$

$$P^* = \min_{u(t)} \int_{t=0}^{T} J(t, x(t), u(t)) dt + J_T(x(T))$$

$$\dot{x} = f(t, x(t), x(t-\tau), u(t)) \qquad \forall t \in [0, T]$$

$$u(t) \in U \qquad \forall t \in [0, T]$$

$$x(t) = x_h(t) \qquad \forall t \in [-\tau_r, 0]$$

$$x(T) \in X_T$$

Optimal control is (if it exists) $u^*(t)$

Measure-Valued Solution

Tuple of measures for the delayed case

Terminal	$\mu_{T} \in \mathcal{M}_+(X)$
Occupation Start	$\bar{\mu}_0 \in \mathcal{M}_+([0, T-\tau] \times X^2 \times \red{U})$
Occupation End	$\bar{\mu}_1 \in \mathcal{M}_+([T-\tau,T] \times X^2 \times U)$

Modified terms (v.s. peak estimation)

Objective:
$$\langle J, \bar{\mu}_0 + \bar{\mu}_1 \rangle + \langle J_T, \mu_T \rangle$$

Controlled Liouville: $\forall v \in C^1([0, T] \times X)$:

$$\langle v(T, x), \mu_T \rangle = \langle v(0, x), \mu_0(x) \rangle + \langle \mathcal{L}_f v(t, x_0, x_1, \mathbf{u}), [\bar{\mu}_0 + \bar{\mu}_1](t, x_0, x_1, \mathbf{u}) \rangle$$

History validity: $\mu_0 = \delta_{x_h(0)}$, μ_h occupation measure of $x_h(\cdot)$

Time-slack: $\nu = 0$ due to fixed-terminal-time

Subvalue Functional Structure

Choose $v \in C^1([0,T] \times X)$, $\phi \in C([0,T] \times X)$

Define functional that stops at time T

$$V(t,z,w(\cdot)) = v(t,z) + \int_{t}^{\min(t+\tau,T)} \phi(s,w(s-\tau))ds \quad (3)$$

Endpoint-evaluation $V(T, z, w(\cdot)) = v(t, z)$

Time-derivative at $(t, z, w(\cdot), u)$

$$\dot{V} = \mathcal{L}_f v(t, z, w, u) + I_{[0, T-\tau]}(t)\phi(t+\tau, z) - \phi(t, w(-\tau))$$
(4)

Discontinuous \dot{V} at time t=T- au

Subvalue Functional LP

HJB inequalities for subvalue: $J_T \ge v(T, x), \ V + J \ge 0$

Lower bound $d^* = p^* \le P^*$ (strong duality)

$$d^* = \sup v(0, x_h(0)) + \int_0^{\tau} \phi(t, x_h(t - \tau)) dt$$
 (5a)

$$\forall x \in X_T: \quad J_T(x) - \nu(T, x) \ge 0 \tag{5b}$$

$$\forall (t, x_0, x_1, u) \in [0, T - \tau] \times X^2 \times U :$$

$$\mathcal{L}_f v + J(t, x_0, u) - \phi(t, x_1) + \phi(t + \tau, x_0) \ge 0$$
 (5c)

$$\forall (t, x_0, x_1, u) \in [T - \tau, T] \times X^2 \times U :$$

$$\mathcal{L}_f v + J(t, x_0, u) - \phi(t, x_1) \ge 0 \tag{5d}$$

$$v \in C^1([0,T] \times X), \ \phi \in C([0,T] \times X) \tag{5e}$$

Peak Estimation Functional LP

Strong duality $p^* = d^*$ with compactness, regularity

$$d^* = \inf_{\gamma \in \mathbb{R}} \gamma + \int_{-\tau}^0 \xi(t) dt$$

$$\xi(t) + \phi(t + \tau, x) \ge 0 \qquad \forall (t, x) \in H_0$$

$$\gamma \ge v(0, x) \qquad \forall x \in X_0$$

$$v(t, x) \ge p(x) \qquad \forall (t, x) \in [0, T] \times X$$

$$\phi(t, x) \le 0 \qquad \forall [0, T] \times X$$

$$\mathcal{L}_f v(t, x_0) + \phi(t, x_1) \le \phi(t + \tau, x_0) \quad \forall [0, T] \times X$$

$$\mathcal{L}_f v(t, x_0) + \phi(t, x_1) \le 0 \qquad \forall [T - \tau, T] \times X^2$$

$$\xi \in C([-\tau, 0]), \ \phi \in C([0, T] \times X)$$

$$v \in C^1([0, T] \times X)$$

Examples

Peak Estimate with Multiple Histories

Minimize x_2 on the delayed Flow system

Distance Estimate with Multiple Histories

Min $c(x; X_u) \geq 0.1820$ on the delayed Flow system

Control Example: Trajectory

$$J(t, x, u) = 0.5x^2 + 0.5Ru^2$$
 $J_T(x) = 0$

Order-5 lower bound 0.0391, executed cost 0.0394

$$u(t) \in \operatorname*{argmin}_{u \in U} \mathcal{L}_f v(t, x(t), x(t-\tau), u) + J(t, x(t), u)$$

Take-aways

Conclusion

Posed peak estimation and OCP for DDEs

Defined measure-valued solutions

Solved sequence of SDPs to get peak/OCP bounds

Future Work

- Conditions for no conservatism
- Improve scaling/computational complexity
- Better bounds and conditioning
- Interpretation of $\xi(t)$ in peak estimation LP
- Reachable set estimation

Thank you for your attention

