# 从零制作自主空中机器人

本文档是视频教程<u>从零制作自主空中机器人</u>的配套文档,四旋翼无人机具有一定的安全风险,请同学们 严格遵守安全规范,对自己的安全负责。

第一章:课程介绍 第二章:动力套焊接

第三章: 飞控的安装与接线 第四章: 飞控设置与试飞

第五章: 机载电脑与传感器的安装 第六章: Ubuntu20.04的安装 第七章: 机载电脑的环境配置

第八章: 常用实验与调试软件的安装与使用 第九章: Ego-Planner代码框架与参数介绍 第十章: VINS的参数设置与外参标定 第十一章: Ego-Planner的实验

## 第一章: 课程介绍

本次课程是一套面向对自主空中机器人感兴趣的学生、爱好者、相关从业人员的免费课程,包含了从硬件组装、机载电脑环境设置、代码部署、实机实验等全套详细流程,带你从0开始,组装属于自己的自主无人机,并让它可以在未知的环境中自由避障穿行。本次课程所涉及的所有代码、硬件设计全部开源,严禁商用与转载,版权与最终解释权由浙江大学FASTLAB实验室所有。

本次课程的重心主要落在自主空中机器人的搭建、代码部署及调试上,关于自主空中机器人的一些理论基础,例如动力学模型,路径搜索,轨迹规划,地图构建等内容,高飞老师在深蓝学院有非常详尽而深入浅出的课程,本次课程就不再赘述。

#### 第二章: 动力套焊接

机器人本体相关配件及焊接用工具详见<u>purchase\_list.xlsx</u>,对硬件选型有相关疑问请看 番外一:硬件选型

# 第三章: 飞控的安装与接线



- 飞控箭头与机头同向为正向,任意方向旋转90°的倍数也可以,后续可以在飞控设置内调整,推荐和视频内相同朝向摆放。
- 强烈推荐使用硅胶杜邦线,常规杜邦线线材过硬,容易出现接触不良。
- 5V稳压模块注意贴黑胶带绝缘,周围注意贴一圈厚的海绵胶带来防止飞机降落时损坏5V模块,也可以考虑把5V模块用扎带扎在机臂旁边

### 第四章: 飞控设置与试飞

- 请烧录本git项目下的 / firmware/px4\_fmu-v5\_default.px4 固件,这个固件是官方1.11.0版本固件编译而来,如有需要可以自行编译。实测1.13版本固件存在BUG,不建议使用,更老的固件版本未经测试。
- 在飞控的sd卡的根目录下创建 /etc/extras.txt , 写入

```
mavlink stream -d /dev/ttyACMO -s ATTITUDE_QUATERNION -r 200 mavlink stream -d /dev/ttyACMO -s HIGHRES_IMU -r 200
```

#### 以提高imu发布频率

- 修改机架类型为 Generic 250 Racer,代指250mm轴距机型。如果是其他尺寸的机架,请根据实际轴距选择机架类型
- 修改 dshot\_config 为dshot600
- 修改 CBRK\_SUPPLY\_CHK 为894281
- 修改 CBRK\_USB\_CHK 为197848
- 修改 CBRK\_IO\_SAFETY 为22027
- 修改 SER\_TEL1\_BAUD 为921600
- 修改 SYS\_USE\_IO 为0 (搜索不到则不用管)
- 检测电机转向前确保没有安装螺旋桨!!!!
- 修改电机转向:进入mavlink控制台

```
dshot reverse -m 1
dshot save -m 1
```

修改1为需要反向的电机序号

• 第一次试飞请务必找有自稳模式下飞行经验的飞手协助,只飞过大疆无人机的飞手99%无法飞好!

# 第五章: 机载电脑与传感器的安装

- 碳板已经预留了拆壳NUC的安装空位。如果想拆壳安装NUC,需要额外购买USB网卡,或者拆下自 带的网卡天线找地方固定住,并且由于碳纤维板导电,请务必用尼龙柱把NUC支起来,相关资料请 自行查阅。
- 机载电脑使用4S航模电池直接供电,正常情况下没有问题。但理论上最好接一个稳压模块,否则在无人机炸机/电池几乎耗尽时会出现机载电脑关机的情况。但由于符合NUC功率的稳压模块比较大,请同学们酌情选用。

#### 第六章: Ubuntu20.04的安装

- 镜像站地址: http://mirrors.aliyun.com/ubuntu-releases/20.04/ 下载 ubuntu-20.04.4-desktop-amd64.iso
- 烧录软件UltralSO官网: https://cn.ultraiso.net/

- 分区设置:
  - o EFI系统分区 (主分区) 512M
  - 。 交换空间 (逻辑分区) 16000M (内存大小的两倍)
  - 挂载点 / (主分区) 剩余所有容量
  - 笔记本上也需要安装ubuntu,推荐装20.04版本。虚拟机或双系统都可以,如果有长期学习打算推荐双系统

#### 第七章: 机载电脑的环境配置

- ROS安装
  - o sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu \$(lsb\_release -sc)
    main" > /etc/apt/sources.list.d/ros-latest.list'
  - o sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654'
  - o sudo apt update
  - o sudo apt install ros-noetic-desktop-full
  - echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc
  - 。 建议没有ROS基础的同学先去B站学习古月老师的ROS入门教程
- 测试ROS
  - 打开三个终端,分别输入
  - o roscore
  - o rosrun turtlesim turtlesim\_node
  - rosrun turtlesim turtle\_teleop\_key
- realsense驱动安装
  - o sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-key

    F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE || sudo apt-key adv --keyserver

    hkp://keyserver.ubuntu.com:80 --recv-key

    F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE
  - o sudo add-apt-repository "deb https://librealsense.intel.com/Debian/apt-repo
    \$(lsb\_release -cs) main" -u
  - o sudo apt-get install librealsense2-dkms
  - o sudo apt-get install librealsense2-utils
  - o sudo apt-get install librealsense2-dev
  - o sudo apt-get install librealsense2-dbg
  - 测试: realsense-viewer
  - 注意测试时左上角显示的USB必须是3.x,如果是2.x,可能是USB线是2.0的,或者插在了2.0 的USB口上 (3.0的线和口都是蓝色的)
- 安装mavros
  - sudo apt-get install ros-noetic-mavros
  - o cd /opt/ros/noetic/lib/mavros
  - sudo ./install\_geographiclib\_datasets.sh
- 安装ceres与glog与ddyanmic-reconfigure
  - o 解压 3rd\_party.zip 压缩包
  - o 进入glog文件夹打开终端
  - ./autogen.sh && ./configure && make && sudo make install
  - sudo apt-get install liblapack-dev libsuitesparse-dev libcxsparse3.1.2
     libgflags-dev libgoogle-glog-dev libgtest-dev
  - 。 进入ceres文件夹打开终端
  - o mkdir build

- o cd build
- o cmake ..
- o sudo make -j4
- o sudo make install
- sudo apt-get install ros-noetic-ddynamic-reconfigure
- 下载ego-planner源码并编译
  - o git clone https://github.com/ZJU-FAST-Lab/Fast-Drone-250
  - o cd Fast-Drone-250
  - o catkin\_make
  - o source devel/setup.bash
  - o roslaunch ego\_planner sing\_run\_in\_sim.launch
  - o 在Rviz内按下键盘G键,再单击鼠标左键以点选无人机目标点

### 第八章: 常用实验与调试软件的安装与使用

- VScode: sudo dpkg --i \*\*\*.deb
- Terminator: sudo apt install terminator
- Plotjuggler:
  - o sudo apt install ros-noetic-plotjuggler
  - sudo apt install ros-noetic-plotjuggler-ros
  - o rosrun plotjuggler plotjugller
- Net-tools:
  - o sudo apt install net-tools
  - ifconfig
- ssh:
  - o sudo apt install openssh-server
  - 在笔记本上: ping 192.168.\*\*.\*\*
  - o sudo gedit /etc/hosts
  - 加上一行: 192.168.\*\*.\*\* fast-drone
  - o ping fast-drone
  - o ssh fast-drone@fast-drone(ssh 用户名@别名)

# 第九章: Ego-Planner代码框架与参数介绍

- [src/planner/plan\_manage/launch/single\_run\_in\_exp.launch下的:
  - o map\_size: 当你的地图大小较大时需要修改,注意目标点不要超过map\_size/2
  - fx/fy/cx/cy: 修改为你的深度相机的实际内参(下一课有讲怎么看)
  - o max\_vel/max\_acc: 修改以调整最大速度、加速度。速度建议先用0.5试飞,最大不要超过2.5,加速度不要超过6
  - o flight\_type: 1代表rviz选点模式,2代表waypoints跟踪模式
- src/planner/plan\_manage/launch/advanced\_param\_exp.xml下的:
  - o resolution: 代表栅格地图格点的分辨率,单位为米。越小则地图越精细,但越占内存。最小不要低于0.1
  - o obstacles\_inflation: 代表障碍物膨胀大小,单位为米。建议至少设置为飞机半径(包括螺旋桨、桨保)的1.5倍以上,但不要超过 resolution的4倍。如果飞机轴距较大,请相应改大 resolution
- [src/realflight\_modules/px4ctrl/config/ctrl\_param\_fpv.yaml下的:
  - o mass:修改为无人机的实际重量

- o hover\_percent:修改为无人机的悬停油门,可以通过px4log查看,具体可以参考文档如果你的无人机是和课程的一模一样的话,这项保持为0.3即可。如果更改了动力配置,或重量发生变化,或轴距发生变化,都请调整此项,否则自动起飞时会发生无法起飞或者超调严重的情况。
- o gain/кр,кv: 即PID中的PI项,一般不用太大改动。如果发生超调,请适当调小。如果无人机响应较慢,请适当调大。

### 第十章: VINS的参数设置与外参标定

- 检查飞控mavros连接正常
  - ls /dev/tty\*, 确认飞控的串口连接正常。一般是 /dev/ttyACM0
  - sudo chmod 777 /dev/ttyACMO , 为串口附加权限
  - o roslaunch mavros px4.launch
  - o rostopic hz /mavros/imu/data\_raw , 确认飞控传输的imu频率在200hz左右
- 检查realsense驱动正常
  - o roslaunch realsense2\_camera rs\_camera.launch
  - 进入远程桌面, rqt\_image\_view
  - 。 杳

看/camera/infra1/image\_rect\_raw,/camera/infra2/image\_rect\_raw,/camera/dept h/image\_rect\_raw话题正常

- VINS参数设置
  - 进入realflight\_modules/VINS\_Fusion/config/
  - o 驱动realsense后, rostopic echo /camera/infra1/camera\_info, 把其中的K矩阵中的fx,fy,cx,cy填入left.yaml和right.yaml
  - o 在home目录创建 vins\_output 文件夹
  - o 修改 fast-drone-250.yaml 的 body\_T\_cam0 和 body\_T\_cam1 的 data 矩阵的第四列为你的无人机上的相机相对于飞控的实际外参,单位为米,顺序为x/y/z,第四项是1,不用改
- VINS外参精确自标定
  - o sh shfiles/rspx4.sh
  - o rostopic echo /vins\_fusion/imu\_propagate
  - 拿起飞机沿着场地尽量缓慢地行走,场地内光照变化不要太大,灯光不要太暗,不要使用会频闪的光源,尽量多放些杂物来增加VINS用于匹配的特征点
  - 把 vins\_output/extrinsic\_parameter.txt 里的内容替换到 fast-drone-250.yam1 的 body\_T\_cam0 和 body\_T\_cam1
  - 重复上述操作直到走几圈后VINS的里程计数据偏差收敛到满意值 (一般在0.3米内)
- 建图模块验证
  - o sh shfiles/rspx4.sh
  - roslaunch ego\_planner sing\_run\_in\_exp.launch
  - o 进入远程桌面 roslaunch ego\_planner rviz.launch

### 第十一章: Ego-Planner的实验

- 自动起飞:
  - o sh shfiles/rspx4.sh
  - o rostopic echo /vins\_fusion/imu\_propagate
  - 。 拿起飞机进行缓慢的小范围晃动, 放回原地后确认没有太大误差
  - 。 遥控器5通道拨到内侧, 六通道拨到下侧, 油门打到中位
  - o roslaunch px4ctrl run\_ctrl.launch

- o sh shfiles/takeoff.sh ,如果飞机螺旋桨开始旋转,但无法起飞,说明 hover\_percent 参数过小;如果飞机有明显飞过1米高,再下降的样子,说明 hover\_percent 参数过大
- 遥控器此时可以以类似大疆飞机的操作逻辑对无人机进行位置控制
- 降落时把油门打到最低,等无人机降到地上后,把5通道拨到中间,左手杆打到左下角上锁
- Ego-Planner实验
  - 。 自动起飞
  - o roslaunch ego-planner sing\_run\_in\_exp.launch
  - o sh shfiles/record.sh
  - 进入远程桌面 roslaunch ego\_planner rviz.launch
  - 按下G键加鼠标左键点选目标点使无人机飞行
- 如果实验中遇到意外怎么办!!!
  - case 1: VINS定位没有飘,但是规划不及时/建图不准确导致无人机规划出一条可能撞进障碍物的轨迹。如果飞手在飞机飞行过程中发现无人机可能会撞到障碍物,在撞上前把6通道拨回上侧,此时无人机会退出轨迹跟随模式,进入VINS悬停模式,在此时把无人机安全着陆即可
  - o case 2: VINS定位飘了,表现为飞机大幅度颤抖/明显没有沿着正常轨迹走/快速上升/快速下降等等,此时拨6通道已经无济于事,必须把5通道拨回中位,使无人机完全退出程序控制,回到遥控器的stablized模式来操控降落
  - o case 3: 无人机已经撞到障碍物,并且还没掉到地上。此时先拨6通道,看看飞机能不能稳住,稳不住就拨5通道手动降落
  - o case 4: 无人机撞到障碍物并且炸到地上了: 拨5通道立刻上锁, 减少财产损失
  - o case 5: **绝招** 反应不过来哪种case,或者飞机冲着非常危险的区域飞了,直接拨7通道紧急停桨。这样飞机会直接失去动力摔下来,对飞机机身破坏比较大,一般慢速情况下不建议。