# Multi and Single Image Approaches for Latent Image Recovery in Handheld Cameras

Nimisha T M EE13D037

under the supervision of Prof. A N Rajagopalan and Prof. R Aravind

Image Processing and Computer Vision Lab
IIT Madras



# Main Issues Addressed



1 Video Mode







2 Burst Mode



1 Video Mode



2 Burst Mode



3 Image Mode



1 Video Mode



2 Burst Mode



3 Image Mode



Increasing difficulty in restoration problems

1 Video Mode



2 Burst Mode



3 Image Mode



Increasing difficulty in restoration problems

#### Problems Addressed:

Video deblurring for panning-shots

1 Video Mode



2 Burst Mode



3 Image Mode



Increasing difficulty in restoration problems

#### Problems Addressed:

Video deblurring for panning-shots

Joint deblurring and Super-resolution (SR) from multiple frames

1 Video Mode



2 Burst Mode



3 Image Mode



Increasing difficulty in restoration problems

#### Problems Addressed:

Video deblurring for panning-shots

Joint deblurring and Super-resolution (SR) from multiple frames

Single image deblurring

**Problem statement:** Given motion blurred videos generate panning-shots

# Panning-shots

What are panning-shots?



- Moving object is sharp
- Background is blurred

# How to Capture?

## What are panning-shots?



- Moving object is sharp
- Background is blurred

## How to capture:

- Perfect shutter speed and exposure settings
- Prior information about object motion to pan
- o Follow the object in sync

# Motivation

## What are panning-shots?



- Moving object is sharp
- Background is blurred

#### **Motivation:**

- Getting a perfect shot is difficult
- The event might get over by the time settings are made
- o A video based method can resolve this

# **Scenarios Considered**



# **Scenarios Considered**



Moderately high shutter speed and frame rate but object velocity is higher: Foreground is blurred while background is clean.

# **Scenarios Considered**



Lower shutter speed/ higher object velocity: Both background and foreground are blurred.

## **Dynamic Video Deblurring**

Kim and Mu CVPR 2015: Uses inter-intra frame motion dependency

Hyun Kim, T. and K. Mu Lee, Generalized video deblurring for dynamic scenes. CVPR 2015

## **Dynamic Video Deblurring**

Kim and Mu CVPR 2015: Uses inter-intra frame motion dependency

Not true for general camera motion

Hyun Kim, T. and K. Mu Lee, Generalized video deblurring for dynamic scenes. CVPR 2015

## **Dynamic Video Deblurring**

Kim and Mu CVPR 2015: Uses inter-intra frame motion dependency

Not true for general camera motion

Ma et al. CVPR 2015: Assumption of clean pixels in few frames

Hyun Kim, T. and K. Mu Lee, Generalized video deblurring for dynamic scenes. CVPR 2015 Ma, Z., R. Liao, X. Tao, L. Xu, J. Jia, and E. Wu, Handling motion blur in multi-frame super-resolution. CVPR 2015

## **Dynamic Video Deblurring**

Kim and Mu CVPR 2015: Uses inter-intra frame motion dependency

Not true for general camera motion

Ma et al. CVPR 2015: Assumption of clean pixels in few frames

All pixels can be blurred

Hyun Kim, T. and K. Mu Lee, Generalized video deblurring for dynamic scenes. CVPR 2015 Ma, Z., R. Liao, X. Tao, L. Xu, J. Jia, and E. Wu, Handling motion blur in multi-frame super-resolution. CVPR 2015

## **Dynamic Video Deblurring**

Kim and Mu CVPR 2015: Uses inter-intra frame motion dependency

Not true for general camera motion

Ma et al. CVPR 2015: Assumption of clean pixels in few frames

All pixels can be blurred

Nah et al. 2017, Kim et al. 2017: Deep learning based

Nah, S., T. H. Kim, and K. M. Lee, Deep multi-scale convolutional neural network for dynamic scene deblurring. CVPR 2017 Kim, T. H., K. M. Lee, B. Schölkopf, and M. Hirsch, Online video deblurring via dynamic temporal blending network. ICCV 2017

## **Dynamic Video Deblurring**

Kim and Mu CVPR 2015: Uses inter-intra frame motion dependency

Not true for general camera motion

Ma et al. CVPR 2015: Assumption of clean pixels in few frames

All pixels can be blurred

Nah et al. 2017, Kim et al. 2017: Deep learning based

## Panning-shot generation

Liu et al. TOG 2014

- For track shot generation
- User intervention for segmentation
- Does not consider the cases with motion blurred frames

Liu, S., J. Wang, S. Cho, and P. Tan. Trackcam: 3d-aware tracking shots from consumer video. ACM TOG 2014

## **Dynamic Video Deblurring**

Kim and Mu CVPR 2015: Uses inter-intra frame motion dependency

Not true for general camera motion

Ma et al. CVPR 2015: Assumption of clean pixels in few frames

All pixels can be blurred

Nah et al. 2017, Kim et al. 2017: Deep learning based

### **Panning-shot generation**

Liu et al. TOG 2014

- For track shot generation
- User intervention for segmentation
- Does not consider the cases with motion blurred frames

Our Method: Panning shot from videos with general camera motion

### Contributions:

Multi frame background (BG) deblurring

- Multi frame background (BG) deblurring
- Non-blind deblurring of the foreground (FG)

- Multi frame background (BG) deblurring
- Non-blind deblurring of the foreground (FG)
- Fully automated method for panning-shot generation from videos

- Multi frame background (BG) deblurring
- Non-blind deblurring of the foreground (FG)
- Fully automated method for panning-shot generation from videos
- Identify the case using a gradient approach

- Multi frame background (BG) deblurring
- Non-blind deblurring of the foreground (FG)
- Fully automated method for panning-shot generation from videos
- Identify the case using a gradient approach
- Deal with all the three cases

#### Contributions:

- Multi frame background (BG) deblurring
- Non-blind deblurring of the foreground (FG)
- Fully automated method for panning-shot generation from videos
- o Identify the case using a gradient approach
- Deal with all the three cases

## • Assumptions:

- Bilayered scene
- Object moving parallel to camera plane
- Camera motion –
   in plane rotation and translations



Aim : To synthesize panning-shots from blurred video frames  $\{\mathbf{B}^k\}_{k=1}^N$ 

Aim : To synthesize panning-shots from blurred video frames  $\{\mathbf{B}^k\}_{k=1}^N$ 

BG registration, FG motion (v) and relative depth  $(\gamma)$  estimation

 $\label{eq:almost_almost} \mbox{Aim}: \mbox{To synthesize panning-shots from blurred video frames} \{ \mathbf{B}^k \}_{k=1}^N$ 

BG registration, FG motion (v) and relative depth  $(\gamma)$  estimation

BG blur model:

$$\mathbf{b} = \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f}$$

Aim : To synthesize panning-shots from blurred video frames  $\{\mathbf{B}^k\}_{k=1}^N$ 

BG registration, FG motion (v) and relative depth  $(\gamma)$  estimation

BG blur model:

$$\mathbf{b} = \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f}$$

Multi-frame BG deblurring

Estimate  $(oldsymbol{\omega})$  and clean BG

Aim : To synthesize panning-shots from blurred video frames  $\{\mathbf{B}^k\}_{k=1}^N$ 

BG registration, FG motion (v) and relative depth  $(\gamma)$  estimation

BG blur model:

$$\mathbf{b} = \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f}$$

Multi-frame BG deblurring

Estimate  $(oldsymbol{\omega})$  and clean BG

Estimate FG blur from BG blur and object motion

Aim : To synthesize panning-shots from blurred video frames  $\{\mathbf{B}^k\}_{k=1}^N$ 

BG registration, FG motion (v) and relative depth  $(\gamma)$  estimation

#### BG blur model:

$$\mathbf{b} = \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f}$$

Multi-frame BG deblurring

Estimate  $(oldsymbol{\omega})$  and clean BG

Estimate FG blur from BG blur and object motion

### FG blur model:

$$\mathbf{b}_{\mathrm{FG}} = \sum_{\mathbf{m}_p \in \mathcal{M}} w_{\mathbf{m}_p} \mathbf{H}_{\mathbf{m}_p} \mathbf{f}_{\mathrm{FG}}$$

$$\omega_{\mathbf{c}_1} \qquad \omega_{\mathbf{c}_2}$$

$$+ \cdots = \mathsf{Blurred} \; \mathsf{BG}$$

$$\frac{\omega_{\mathbf{c}_1}}{3} \qquad \frac{\omega_{\mathbf{c}_2}}{4}$$

Non-blind FG deblurring

# Proposed Approach- Flow chart



# Proposed Approach- Flow chart



### Proposed Approach- Flow chart



#### PSNR/SSIM

| Methods | Kim & Mu 2015 | Ma et al. 2015 | Nah et al. 2017 | Ours |
|---------|---------------|----------------|-----------------|------|
| FG      | 26.14/0.8252  |                |                 |      |
| BG      | 25.77/0.8762  |                |                 |      |





PSNR: Peak Signal to Noise Ratio SSIM: Structural SImilarity Index

GT





| Methods | Kim & Mu 2015 | Ma et al. 2015 | Nah et al. 2017 | Ours |
|---------|---------------|----------------|-----------------|------|
| FG      | 26.14/0.8252  | 24.756/0.8036  |                 |      |
| BG      | 25.77/0.8762  | 24.11/0.8407   |                 |      |













GT





| Methods | Kim & Mu 2015 | Ma et al. 2015 | Nah et al. 2017 | Ours |
|---------|---------------|----------------|-----------------|------|
| FG      | 26.14/0.8252  | 24.756/0.8036  | 27.12/0.8617    |      |
| BG      | 25.77/0.8762  | 24.11/0.8407   | 25.05/0.8127    |      |













GT





| Methods | Kim & Mu 2015 | Ma et al. 2015 | Nah et al. 2017 | Ours         |
|---------|---------------|----------------|-----------------|--------------|
| FG      | 26.14/0.8252  | 24.756/0.8036  | 27.12/0.8617    | 27.35/0.8668 |
| BG      | 25.77/0.8762  | 24.11/0.8407   | 25.05/0.8127    | 25.86/0.7979 |

GT





















Input frame







Input frame

Kim & Mu CVPR 2015













Input frame



Our Deblurred Output



Generated Panning-shot





T. M. Nimisha, A. N. Rajagopalan, and R. Aravind, "Generating High Quality Pan-Shots from Motion Blurred Videos," Elsevier Journal: Computer Vision and Image Understanding (CVIU), vol. 171, pp. 20-33, June 2018.

# (2) Multi-Shot Blind Super-resolution

**Problem Statement:** Joint deblurring and SR of 3D scenes from multiple motion blurred frames

#### **Related Works**

#### (1) SR from motion blur

Sroubek et al. TIP 2007: Planar scene and Convolutional blur Ma et al. CVPR 2015: Planar scene and Space-varying blur

Assumes availability of clean pixels in frames

#### **Related Works**

#### (1) SR from motion blur

Sroubek et al. TIP 2007: Planar scene and Convolutional blur

Ma et al. CVPR 2015 : Planar scene and Space-varying blur

Assumes availability of clean pixels in frames

#### (2) 3D SR

Mudenagudi et al. 2007, Bhavsar and Rajagopalan 2010: Estimates depth and SR image from clean frames

#### **Related Works**

#### (1) SR from motion blur

Sroubek et al. TIP 2007 : Planar scene and Convolutional blur

Ma et al. CVPR 2015 : Planar scene and Space-varying blur

Assumes availability of clean pixels in frames

#### (2) 3D SR

Mudenagudi et al. 2007, Bhavsar and Rajagopalan 2010: Estimates depth and SR image from clean frames

Our Method: Joint deblurring and SR for space-variant blurred 3D scenes

#### Multi-Shot Blind Super-resolution

#### **Contributions:**

- Joint framework
  - Estimate latent High Resolution (HR) image
  - Depth map of a 3D scene
  - o Camera motion from non-uniformly blurred Low Resolution (LR )observations
- Elegant patch-based approach to compute the global HR camera motion

### Multi-Shot Blind Super-resolution

#### Contributions

- Joint framework
  - Estimate latent High Resolution (HR) image
  - Depth map of a 3D scene
  - Camera motion from non-uniformly blurred Low Resolution (LR )observations
- · Elegant patch-based approach to compute the global HR camera motion

#### **Assumptions:**

- Layered scene
- Camera motion- in plane translations and rotations
- Two frames with major translational motion
- No dynamic objects

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\{{\bf g}^k\}_{k=1}^K$ 

Planar Scene LR: 
$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f} \right)$$

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\,\{{\bf g}^k\}_{k=1}^K\,$ 

Planar Scene LR: 
$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f} \right)$$

3D Scene LR:

$$\mathbf{f} = \sum_{r=1}^{R} \mathbf{f}_r$$

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\, \{ {f g}^k \}_{k=1}^K \,$ 

Planar Scene LR: 
$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f} \right)$$

3D Scene LR:

$$\mathbf{f} = \sum_{r=1}^{R} \mathbf{f}_r$$

$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \left( \sum_{r=1}^R \mathbf{H}_{(\delta_r, \mathbf{c}_l)} \mathbf{f}_r \right) \right)$$

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\, \{ {f g}^k \}_{k=1}^K \,$ 

Planar Scene LR: 
$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f} \right)$$

3D Scene LR:

$$\mathbf{f} = \sum_{r=1}^{R} \mathbf{f}_r$$

$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \left( \sum_{r=1}^R \mathbf{H}_{(\delta_r, \mathbf{c}_l)} \mathbf{f}_r \right) \right)$$
 Unknowns :

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\,\{{\bf g}^k\}_{k=1}^K$ 

Planar Scene LR: 
$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f} \right)$$

3D Scene LR:

$$\mathbf{f} = \sum_{r=1}^R \mathbf{f}_r$$

$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \left( \sum_{r=1}^R \mathbf{H}_{(\delta_r, \mathbf{c}_l)} \mathbf{f}_r \right) \right)$$
Unknowns:

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\, \{ {f g}^k \}_{k=1}^K \,$ 

Planar Scene LR: 
$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \mathbf{H}_{\mathbf{c}_l} \mathbf{f} \right)$$

3D Scene LR:

$$\mathbf{f} = \sum_{r=1}^R \mathbf{f}_r$$

$$\mathbf{g} = \mathbf{D}_{\epsilon} \left( \sum_{\mathbf{c}_l \in \mathcal{C}} \omega_{\mathbf{c}_l} \left( \sum_{r=1}^R \mathbf{H}_{(\delta_r, \mathbf{c}_l)} \mathbf{f}_r \right) \right)$$
 Unknowns:

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\,\{{\bf g}^k\}_{k=1}^K\,$ 

☐ Camera motion estimation

Initial depth map

- ☐ HR frame estimation
- □ Depth map refinement

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\,\{{\bf g}^k\}_{k=1}^K\,$ 

- ☐ Camera motion estimation
  - Initial depth map
- ☐ HR frame estimation
- **□** Depth map refinement

Estimate initial depth with optical flow

- ☐ Camera motion estimation
  - Initial depth map
- ☐ HR frame estimation
- **□** Depth map refinement

Estimate initial depth with optical flow

Camera motion w.r.t ref depth from LR patches

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\,\{{\bf g}^k\}_{k=1}^K\,$ 

- ☐ Camera motion estimation
  - Initial depth map
- ☐ HR frame estimation
- □ Depth map refinement



Alternate minimization

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\, \{ {f g}^k \}_{k=1}^K \,$ 

#### **Camera motion estimation**

- Initial Depth using Optical flow
  - Estimate optical flow between LR frames and choose the flow corresponding to least rotation
  - This flow magnitude is taken as initial depth
- Pick a depth layer
- Estimate HR PSF's at the picked layer using Sroubek et al. TIP 2007
- From HR PSF estimate HR global camera motion w.r.t the layer selected

# Initial depth map

LR frames







GT depth map







# Initial depth map



LR frames

# Initial depth map



Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\,\{{\bf g}^k\}_{k=1}^K\,$ 

#### ☐ HR frame estimation



Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\{{\bf g}^k\}_{k=1}^K$ 

#### ☐ HR frame estimation

$$E(\mathbf{f}) = \sum_{k=1}^{K} ||\mathbf{W}^k(\mathbf{D}_{\epsilon} \mathbf{\mathcal{H}}^k \mathbf{f} - \mathbf{g}^k)||_2^2 + \lambda \mathbf{f}^T \mathbf{L} \mathbf{f}$$
Formed from camera motion and initial depth map

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\{{\bf g}^k\}_{k=1}^K$ 

#### ☐ HR frame estimation

$$E(\mathbf{f}) = \sum_{k=1}^{K} ||\mathbf{W}^{k}(\mathbf{D}_{\epsilon} \mathcal{H}^{k} \mathbf{f} - \mathbf{g}^{k})||_{2}^{2} + \lambda \mathbf{f}^{T} \mathbf{L} \mathbf{f}$$
Prior on image gradient

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\{{\bf g}^k\}_{k=1}^K$ 

#### ☐ HR frame estimation

$$E(\mathbf{f}) = \sum_{k=1}^{K} ||\mathbf{W}^k(\mathbf{D}_{\epsilon} \mathcal{H}^k \mathbf{f} - \mathbf{g}^k)||_2^2 + \lambda \mathbf{f}^T \mathbf{L} \mathbf{f}$$
Prior on image gradient

Solved using conjugate gradient method

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\{{\bf g}^k\}_{k=1}^K$ 

#### **□** Depth map refinement

$$E(\delta_{r_{\mathbf{y}}}) = \sum_{k=1}^{K} \left( \mathbf{g}^{k}(\mathbf{x}) - \mathbf{g}^{k}(\mathbf{x}) \right)$$
LR pixel location

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\,\{{\bf g}^k\}_{k=1}^K\,$ 

#### **□** Depth map refinement

$$E(\delta_{r_{\mathbf{y}}}) = \sum_{k=1}^{K} \left( \mathbf{g}^{k}(\mathbf{x}) - \mathbf{g}^{k}(\mathbf{x}) \right)$$
LR pixel location



Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\, \{ {f g}^k \}_{k=1}^K \,$ 

#### ☐ Depth map refinement

$$E(\delta_{r_{\mathbf{y}}}) = \sum_{k=1}^{K} \left( \mathbf{g}^{k}(\mathbf{x}) - \mathbf{D}_{\epsilon} \left( \left( \sum_{\mathbf{c}_{l} \in \mathcal{C}} \omega_{\mathbf{c}_{l}}^{k} \mathbf{H}_{(\delta_{r_{\mathbf{y}}}, \mathbf{c}_{l})}^{k} \mathbf{f}^{t} \right) (\mathbf{y}) \right)$$

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\, \{ {f g}^k \}_{k=1}^K \,$ 

#### ☐ Depth map refinement

$$E(\delta_{r_{\mathbf{y}}}) = \sum_{k=1}^{K} \left( \mathbf{g}^{k}(\mathbf{x}) - \mathbf{D}_{\epsilon} \left( \left( \sum_{\mathbf{c}_{l} \in \mathcal{C}} \omega_{\mathbf{c}_{l}}^{k} \mathbf{H}_{(\delta_{r_{\mathbf{y}}}, \mathbf{c}_{l})}^{k} \mathbf{f}^{t} \right) (\mathbf{y}) + \sum_{\mathbf{y} \in \mathcal{N}} \left( \sum_{\mathbf{c}_{l} \in \mathcal{C}} \omega_{\mathbf{c}_{l}}^{k} \mathbf{H}_{(\delta_{r_{\underline{y}}}, \mathbf{c}_{l})}^{k} \mathbf{f}^{t} \right) (\underline{\mathbf{y}}) \right) \right)$$



HR pixel neighbourhood

Aim : Obtaining an HR frame and depth map from  $\,$  motion blurred LR observations  $\, \{ {f g}^k \}_{k=1}^K \,$ 

#### ☐ Depth map refinement

$$E(\delta_{r_{\mathbf{y}}}) = \sum_{k=1}^{K} \left( \mathbf{g}^{k}(\mathbf{x}) - \mathbf{D}_{\epsilon} \left( \left( \sum_{\mathbf{c}_{l} \in \mathcal{C}} \omega_{\mathbf{c}_{l}}^{k} \mathbf{H}_{(\delta_{r_{\mathbf{y}}}, \mathbf{c}_{l})}^{k} \mathbf{f}^{t} \right) (\mathbf{y}) + \sum_{\underline{\mathbf{y}} \in \mathcal{N}} \left( \sum_{\mathbf{c}_{l} \in \mathcal{C}} \omega_{\mathbf{c}_{l}}^{k} \mathbf{H}_{(\delta_{r_{\underline{\mathbf{y}}}}, \mathbf{c}_{l})}^{k} \mathbf{f}^{t} \right) (\underline{\mathbf{y}}) \right) \right) + \sum_{\underline{\mathbf{y}} \in \mathcal{N}} \left( \sum_{\mathbf{c}_{l} \in \mathcal{C}} \omega_{\mathbf{c}_{l}}^{k} \mathbf{H}_{(\delta_{r_{\underline{\mathbf{y}}}}, \mathbf{c}_{l})}^{k} \mathbf{f}^{t} \right) (\underline{\mathbf{y}}) \right) \right)$$

$$+ \sum_{\underline{\mathbf{y}} \in \mathcal{N}} \mu \min(|\delta_{r_{\mathbf{y}}} - \delta_{r_{\underline{\mathbf{y}}}}|, \beta)$$

Smoothness of depth map



Blurred low resolution input images





Input LR









Input LR





Sroubek et al. TIP 2007









Abhijith Punnappurath, T. M. Nimisha, and A.N. Rajagopalan "Multi-image blind super-resolution of 3D scenes," IEEE Transactions on Image Processing, vol. 26, No. 11, pp. 5337-5352, November 2017.

**Problem Statement:** Deblurring and depth estimation from a single blurred image



Pan et al. CVPR 2016



Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. CVPR 2016







Lou, Y., A. L. Bertozzi, and S. Soatto (2011). Direct sparse deblurring. Journal of Mathematical Imaging and Vision, 39(1), 1–12. Xiang, S., G. Meng, Y. Wang, C. Pan, and C. Zhang. Image deblurring with coupled dictionary learning. IJCV 2015





Chakrabarti, A., A neural approach to blind motion deblurring. ECCV 2016





Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR 2017

#### Single image deblurring + depth:

Hu et al. 2014 : Camera motion blur only

Solve for segment-wise depth with user-assisted segmentation

#### Single image deblurring + depth:

Hu et al. 2014 : Camera motion blur only

Solve for segment-wise depth with user-assisted segmentation

#### Our method:

Depth and deblurring from single blurred frame

#### Single image deblurring + depth:

Hu et al. 2014 : Camera motion blur only
Solve for segment-wise depth with user-assisted segmentation

#### Our method:

- Depth and deblurring from single blurred frame
- No user input

#### Single image deblurring + depth:

Hu et al. 2014 : Camera motion blur only
Solve for segment-wise depth with user-assisted segmentation

#### Our method:

- Depth and deblurring from single blurred frame
- No user input
- Works irrespective of the blur type (for which blur-depth assumption holds)

#### Contributions:

 First attempt in deblurring and depth estimation from space-variant blur using dictionary replacement

#### Contributions:

- First attempt in deblurring and depth estimation from space-variant blur using dictionary replacement
- Works irrespective of blur type (motion/defocus)

#### Contributions:

- First attempt in deblurring and depth estimation from space-variant blur using dictionary replacement
- Works irrespective of blur type (motion/defocus)
- Depth varying cases also handled

#### Contributions

- First attempt in deblurring and depth estimation from space-variant blur using dictionary replacement
- Works irrespective of blur type (motion/defocus)
- Depth varying cases also handled

• **Assumptions**: Camera motion-- in plane translations
Blur-depth relation holds

# Blur-Invariant Representation



 $\mathbf{F}=\mathbf{D}\circ\Lambda$ 

# Blur-Invariant Representation



Space-invariant blur

$$\mathbf{B}=\mathbf{h}\otimes\mathbf{F}$$

$$\mathbf{F} = \mathbf{D} \circ \Lambda$$

# Blur-Invariant Representation



Space-invariant blur

$$\mathbf{B} = \mathbf{h} \otimes \mathbf{F} = \mathbf{D}_b \circ \Lambda$$

$$\mathbf{F} = \mathbf{D} \circ \Lambda$$

 $\mbox{Aim: Given a single blurred image } \mbox{\bf B estimate latent image } \mbox{\bf F} \mbox{ and depth map}$   $\mbox{Blur at different depths are scaled versions of each other}$ 

Estimate blur  $\mathbf{h}^{init}$  at a layer



Input blurred frame

Aim : Given a single blurred image  ${f B}$  estimate latent image  ${f F}$  and depth map



Aim : Given a single blurred image  ${f B}$  estimate latent image  ${f F}$  and depth map



Aim : Given a single blurred image  $\, {f B} \,$  estimate latent image  $\, {f F} \,$  and depth map



Deblurred output at two scales

Aim : Given a single blurred image  ${\bf B}$  estimate latent image  ${\bf F}$  and depth map









Deblurred output

## Input







Input







Xu et al. CVPR 2013







Xu, L., S. Zheng, and J. Jia, Unnatural I0 sparse representation for natural image deblurring. CVPR 2013

#### Results



T.M Nimisha, M. Arun, and A.N. Rajagopalan, "Dictionary Replacement for Single Image Restoration of 3D Scenes," in British Machine Vision Conference (BMVC), York, UK. September 2016.

**Problem Statement:** End-to-end learning for deblurring for general camera motion

Problem Statement: End-to-end learning for deblurring for general camera motion

#### Contributions:

• End-to-end network, skips need for kernel estimation and prior weight selection

**Problem Statement:** End-to-end learning for deblurring for general camera motion

#### Contributions:

- End-to-end network, skips need for kernel estimation and prior weight selection
- New architecture with Autoencoders (AE) and Generative Adversarial Networks (GAN)

**Problem Statement:** End-to-end learning for deblurring for general camera motion

#### Contributions:

- End-to-end network, skips need for kernel estimation and prior weight selection
- New architecture with Autoencoders (AE) and Generative Adversarial Networks (GAN)
- Can handle both space-varying and invariant blur scenarios

**Problem Statement:** End-to-end learning for deblurring for general camera motion

#### Contributions:

- End-to-end network, skips need for kernel estimation and prior weight selection
- New architecture with Autoencoders (AE) and Generative Adversarial Networks (GAN)
- Can handle both space-varying and invariant blur scenarios
- Works in dynamic blur cases as well

**Problem Statement:** End-to-end learning for deblurring for general camera motion

- Contributions:
  - End-to-end network, skips need for kernel estimation and prior weight selection
  - New architecture with Autoencoders (AE) and Generative Adversarial Networks (GAN)
  - Can handle both space-varying and invariant blur scenarios
  - Works in dynamic blur cases as well

Approach: Learn clean feature domain and map blurred images to clean features
 Two stage network

**Problem Statement:** End-to-end learning for deblurring for general camera motion

- Contributions:
  - End-to-end network, skips need for kernel estimation and prior weight selection
  - New architecture with Autoencoders (AE) and Generative Adversarial Networks (GAN)
  - Can handle both space-varying and invariant blur scenarios
  - Works in dynamic blur cases as well

Approach: Learn clean feature domain and map blurred images to clean features
 Two stage network

Stage I: Learns clean image feature representation using AE Stage II: Map blurred images to clean representations using GAN

Stage I: Learns clean image feature representation using AE



Stage I: Learns clean image feature representation using AE











| Dataset Sun et al. 2013               | Xu et al. CVPR 2013 | Pan et al. CVPR 2016 | Whyte et al. IJCV 2012 | Ours |
|---------------------------------------|---------------------|----------------------|------------------------|------|
| PSNR                                  |                     |                      |                        |      |
| MSSIM                                 |                     |                      |                        |      |
| Run time<br>Image size:<br>1024 X 700 |                     |                      |                        |      |

| Dataset Sun et al. 2013               | Xu et al. CVPR 2013     | Pan et al. CVPR 2016 | Whyte et al. IJCV 2012 | Ours |
|---------------------------------------|-------------------------|----------------------|------------------------|------|
| PSNR                                  | 28.11                   |                      |                        |      |
| MSSIM                                 | 0.9177                  |                      |                        |      |
| Run time<br>Image size:<br>1024 X 700 | (Matlab, CPU)<br>34 sec |                      |                        |      |

| Datase | et Sun et al. 2013                    | Xu et al. CVPR 2013     | Pan et al. CVPR 2016    | Whyte et al. IJCV 2012 | Ours |
|--------|---------------------------------------|-------------------------|-------------------------|------------------------|------|
|        | PSNR                                  | 28.11                   | 31.16                   |                        |      |
|        | MSSIM                                 | 0.9177                  | 0.9623                  |                        |      |
|        | Run time<br>Image size:<br>1024 X 700 | (Matlab, CPU)<br>34 sec | (Matlab, CPU)<br>40 min |                        |      |

| Dataset Sun et al. 2013               | Xu et al. CVPR 2013     | Pan et al. CVPR 2016    | Whyte et al. IJCV 2012 | Ours |
|---------------------------------------|-------------------------|-------------------------|------------------------|------|
| PSNR                                  | 28.11                   | 31.16                   | 26.335                 |      |
| MSSIM                                 | 0.9177                  | 0.9623                  | 0.8528                 |      |
| Run time<br>Image size:<br>1024 X 700 | (Matlab, CPU)<br>34 sec | (Matlab, CPU)<br>40 min | (Matlab, CPU)<br>4 min |      |

| Da | ataset Sun et al. 2013                | Xu et al. CVPR 2013     | Pan et al. CVPR 2016    | Whyte et al. IJCV 2012 | Ours                                 |
|----|---------------------------------------|-------------------------|-------------------------|------------------------|--------------------------------------|
|    | PSNR                                  | 28.11                   | 31.16                   | 26.335                 | 30.54                                |
|    | MSSIM                                 | 0.9177                  | 0.9623                  | 0.8528                 | 0.9553                               |
| _  | Run time<br>Image size:<br>1024 X 700 | (Matlab, CPU)<br>34 sec | (Matlab, CPU)<br>40 min | (Matlab, CPU)<br>4 min | (Torch,<br>GPU/CPU)<br>3.4 sec/2 min |

| Da | ataset Sun et al. 2013                | Xu et al. CVPR 2013     | Pan et al. CVPR 2016    | Whyte et al. IJCV 2012 | Ours                                 |
|----|---------------------------------------|-------------------------|-------------------------|------------------------|--------------------------------------|
| Ī  | PSNR                                  | 28.11                   | 31.16                   | 26.335                 | 30.54                                |
|    | MSSIM                                 | 0.9177                  | 0.9623                  | 0.8528                 | 0.9553                               |
| -  | Run time<br>Image size:<br>1024 X 700 | (Matlab, CPU)<br>34 sec | (Matlab, CPU)<br>40 min | (Matlab, CPU)<br>4 min | (Torch,<br>GPU/CPU)<br>3.4 sec/2 min |



Best but run time too high











Input

Xu et al. CVPR 2013













Xu et al. CVPR 2013





Pan et al. CVPR 2016



#### Dynamic Scene













Kim and Mu CVPR 2015





Ours

# (5) Unsupervised Class-Specific Single Image Deblurring

Problem Statement: End-to-end deblurring from single image without paired dataset for learning

# Need for Unsupervised Methods

#### Paired dataset

















#### Drawbacks:

- Capturing is difficult and expensive
- Problems with aligning data

# Need for Unsupervised Methods

#### Paired dataset

















#### Unpaired dataset

















#### **Related Works**



Zhu et al. [ICCV 2017]

Uses cyclic consistency loss



Liu et al. [NIPS 2017]

 Shared latent codes using weight sharing

Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. ICCV 2017 Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks NIPS 2017

#### **Related Works**





#### Drawbacks:

- Deterministic one-to-one mapping
- Sensitive to initialization and requires repeated attempts to converge to a satisfactory mapping

# Unsupervised Class-Specific Single Image Deblurring

#### • Contributions:

• First ever data-driven approach for deblurring from unpaired data

#### Unsupervised Class-Specific Single Image Deblurring

#### • Contributions:

- First ever data-driven approach for deblurring from unpaired data
- Proposed self guidance modules (reblurring and gradient) for convergence

#### Unsupervised Class-Specific Single Image Deblurring

- Contributions:
  - First ever data-driven approach for deblurring from unpaired data
  - Proposed self guidance modules (reblurring and gradient) for convergence

- Approach: Learn the mapping from blur to clean using Generative networks
  - Class-specific approach
  - Add additional costs to constrain the solution space









#### **Loss Functions:**

$$\mathcal{L_G} = \lambda_{adv} \mathcal{L}_{adv} + \lambda_{reblur} \mathcal{L}_{reblur} + \lambda_{grad} \mathcal{L}_{grad}$$

$$\mathcal{L}_{adv} = \min_{\theta} \frac{1}{N} \sum_{i} \log(1 - \mathcal{D}(\mathcal{G}_{\theta}(\mathbf{B}_{i})))$$

$$\mathcal{L}_{reblur} = ||\mathbf{B} - \text{CNN}(\hat{\mathbf{F}})||_{2}^{2}$$

$$\mathcal{L}_{grad} = \sum_{s \in \{1, 2, 4, 8, 16\}} \lambda_{s} |\nabla \mathbf{B}_{s\downarrow} - \nabla \hat{\mathbf{F}}_{s\downarrow}|$$



Input



Target





Target





Target



**Quantitative Evaluation:** Conventional method

#### **Face Dataset**

| Method               | PSNR  | SSIM   | KSM    |
|----------------------|-------|--------|--------|
| Pan et al. CVPR 2016 | 19.38 | 0.7764 | 0.7436 |
|                      |       |        |        |
|                      |       |        |        |
| Ours                 |       |        |        |

KSM: Kernel Similarity Measure

Input



Pan et al. CVPR 2016



**Quantitative Evaluation:** Deep learning method

#### **Face Dataset**

| Method               | PSNR  | SSIM   | KSM    |
|----------------------|-------|--------|--------|
| Pan et al. CVPR 2016 | 19.38 | 0.7764 | 0.7436 |
| Nah et al. CVPR 2017 | 24.12 | 0.8755 | 0.6229 |
|                      |       |        |        |
| Ours                 |       |        |        |

KSM: Kernel Similarity Measure

Input



Nah et al. CVPR 2017



**Quantitative Evaluation:** Unsupervised method

#### **Face Dataset**

| Method               | PSNR  | SSIM   | KSM    |
|----------------------|-------|--------|--------|
| Pan et al. CVPR 2016 | 19.38 | 0.7764 | 0.7436 |
| Nah et al. CVPR 2017 | 24.12 | 0.8755 | 0.6229 |
| Zhu et al. 2017      | 8.93  | 0.4406 | 0.2932 |
| Ours                 |       |        |        |

KSM: Kernel Similarity Measure

Input



Zhu et al. 2017



#### **Quantitative Evaluation:**

#### **Face Dataset**

| Method               | PSNR  | SSIM   | KSM    |
|----------------------|-------|--------|--------|
| Pan et al. CVPR 2016 | 19.38 | 0.7764 | 0.7436 |
| Nah et al. CVPR 2017 | 24.12 | 0.8755 | 0.6229 |
| Zhu et al. 2017      | 8.93  | 0.4406 | 0.2932 |
| Ours                 | 22.80 | 0.8631 | 0.7536 |

KSM: Kernel Similarity Measure

Input



Ours



T. M. Nimisha, Sunil Kumar, and A N Rajagopalan, "Unsupervised Class-Specific Deblurring," European Conference on Computer Vision (ECCV), Munich, Germany, September 2018.

# Comparison with Face Deblurring Work

Input





## Comparison with Face Deblurring Work



# Comparison with Face Deblurring Work



# **Human Perception Ranking**



## **Human Perception Ranking**





### **Publications Related to Thesis**

#### Journal papers:

- <u>T. M. Nimisha</u>, A. N. Rajagopalan, and R. Aravind, "Generating High Quality Pan-Shots from Motion Blurred Videos," Elsevier Journal: Computer Vision and Image Understanding (CVIU), Vol. 171, pp.20-33, June 2018.
- Abhijith Punnappurath, <u>T. M. Nimisha</u>, and A.N. Rajagopalan "Multi-image blind super-resolution of 3D scenes," IEEE Transactions on Image Processing, Vol. 26, No. 11, pp. 5337-5352, November 2017.

#### **Conference papers:**

- <u>T. M. Nimisha</u>, Sunil Kumar, and A N Rajagopalan, "Unsupervised Class-Specific Deblurring," European Conference on Computer Vision (ECCV), Munich, Germany, September 2018.
- <u>T.M Nimisha</u>, Akash Kumar Singh, and A.N.Rajagopalan, "Blur-Invariant Deep Learning for Blind Deblurring," IEEE International Conference on Computer Vision (ICCV), Venice, Italy, October 2017.
- <u>T.M Nimisha</u>, M. Arun, and A.N. Rajagopalan, "Dictionary Replacement for Single Image Restoration of 3D Scenes," in British Machine Vision Conference (BMVC), York, UK. September 2016.