Reconocimiento de imagenes.

Introducción.

Las imágenes son otra manera por la cual nos podemos comunicar, por ejemplo, pueden representar señalamientos en una carretera para evitar accidentes e indicios sobre el paso del tiempo como huellas y jeroglíficos de la misma manera pueden contribuir a una mejor vida como lo es la aplicación para dar acceso a algún lugar, detectar algún vehículo robado entre otras o diagnosticar alguna enfermedad.

Por lo que se puede sacar gran provecho del análisis de imágenes, es ahí donde nos toca intervenir en el desarrollo y mejoramiento de algoritmos.

En esta ocasión abordaremos el reconocimiento de dígitos (0-9) utilizando Maquinas de Soporte Vectorial desarrollado en Python.

Datos.

El set de Datos consta de 1797 imágenes con un tamaño de 8x8 pixeles.

Las etiquetas corresponden a un digito que va desde el 0 al 9.

Se dividió el set de datos en 80% para entrenamiento y 20% para prueba.

Imagen 1. Muestreo de datos.

Resultados.

Se obtuvo una exactitud del 0.9777 para el algoritmo.

Para cada digito se obtuvieron:

DIGITO	PRECISIÓN	EXHAUSTIVIDAD	TOTALES
0	1.00	1.00	33
1	0.97	0.98	28
2	1.00	1.00	33
3	0.97	0.96	34
4	0.98	0.98	46
5	0.96	0.98	47
6	1.00	1.00	35
7	0.97	0.97	34
8	1.00	0.98	30
9	0.95	0.94	40

Tabla 1. Validación de algoritmo.

Esto quiere decir que es muy buen algoritmo tanto para decir que valor le corresponde a una imagen como para decir cuales imágenes corresponde a un valor.

En el siguiente grafico muestra una relación entre la realidad y lo predicho.

(Por ejemplo, para el "1" se predijo que era "4", para el "9" se predijo que era "3")

Gráfico 1. Matriz de confusión.

Imagen 2. Validación de datos predichos.

❖ Conclusión.

Se obtuvieron buenos resultados para esta implementación.

Note que el digito que mas dificultad tuvo para predecir fue el 9.

Datos por resaltar son los valores de precisión y de exhaustividad.

Que más se puede implementar, saber el valor de una única imagen, saber cuáles imágenes corresponden a un determinado digito.

Observaciones. (Cosas por mejorar).