Predicting Home Values with Linear Regression

Contents of the Jupyter Notebook:

- 1. Methodology
- 2. Exploring the Data
- 3. Splitting, Selecting, and Scaling Data
- 4. Linear Regression
- 5. Takeaways

price	1	0.31	0.53	0.7	0.09	0.26	0.26	0.036	0.67	0.61	0.32	0.054	-0.053	0.31	0.022	0.59	0.083
bedrooms	0.31	1		0.58						0.48			-0.15			0.39	0.031
bathrooms				0.76				-0.13	0.67	0.69			-0.2				0.088
sqft_living		0.58	0.76						0.76	0.88	0.43		-0.2			0.76	0.18
sqft_lot													-0.13				0.72
floors				0.35	-0.0048			-0.26	0.46		-0.24	0.49					-0.011
waterfront							1	0.017									0.031
condition			-0.13			-0.26		1	-0.15	-0.16		-0.36			-0.11	-0.093	-0.0031
grade	0.67		0.67	0.76		0.46		-0.15		0.76		0.45	-0.19			0.71	0.12
sqft_above	0.61	0.48	0.69	0.88				-0.16	0.76	1	-0.051	0.42	-0.26			0.73	0.2
sqft_basement				0.43		-0.24				-0.051		-0.13			-0.14		0.016
yr_built						0.49		-0.36	0.45	0.42	-0.13	1	-0.35	-0.15	0.41		0.071
zipcode		-0.15	-0.2	-0.2	-0.13				-0.19	-0.26		-0.35			-0.56	-0.28	-0.15
lat												-0.15		1	-0.14		-0.086
long								-0.11			-0.14		-0.56	-0.14			0.26
sqft_living15		0.39		0.76				-0.093	0.71	0.73			-0.28				0.18
sqft_lot15					0.72								-0.15	-0.086		0.18	1
	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	condition	grade	sqft_above	sqft_basement	yr_built	zpcode	lat	bud	sqft_living15	sqft_lot15

- 0.8

- 0.4

- 0.0

- -0.4

- -0.8

Creating dummy variables:

```
# Create dummy variables
from sklearn import preprocessing
from sklearn.preprocessing import KBinsDiscretizer

waterfront_dummies = pd.get_dummies(df['waterfront'], prefix='wf', drop_first=True)
condition_dummies = pd.get_dummies(df['condition'], prefix='cond', drop_first=True)
```

Binning continuous values:

```
disc_5k = KBinsDiscretizer(encode='onehot-dense', strategy='kmeans')
disc_5 = KBinsDiscretizer(encode='onehot-dense')
disc_3 = KBinsDiscretizer(encode='onehot-dense')

bedrooms_bin = disc_5k.fit_transform(df[['bedrooms']])
bathrooms_bin = disc_3.fit_transform(df[['bathrooms']])
```

Scaling factors:

Dep. Variable:	price	R-squared:	0.787
Model:	OLS	Adj. R-squared:	0.787
Method:	Least Squares	F-statistic:	2231.
Date:	Wed, 08 May 2019	Prob (F-statistic):	0.00
Time:	10:50:44	Log-Likelihood:	130.69
No. Observations:	12068	AIC:	-219.4
Df Residuals:	12047	BIC:	-64.02
Df Model:	20		
Covariance Type:	nonrobust		

```
mymean = np.full((len(y_test), ), np.mean(y_train))
print("MSE: ",metrics.mean_squared_error(y_test, mymean))
print("RMSE: ",np.sqrt(metrics.mean_squared_error(y_test, mymean)))
rmse = np.sqrt(metrics.mean_squared_error(y_test, mymean))
```

MSE: 0.2660806452187228 RMSE: 0.5158300545903881 **■■ README.rst**

Sklearn-pandas

2 PASSED

This module provides a bridge between Scikit-Learn's machine learning methods and pandas-style Data Frames.

In particular, it provides:

- 1. A way to map DataFrame columns to transformations, which are later recombined into features.
- 2. A compatibility shim for old scikit-learn versions to cross-validate a pipeline that takes a pandas DataFrame as input. This is only needed for scikit-learn<0.16.0 (see #11 for details). It is deprecated and will likely be dropped in skearn-pandas==2.0.
- 3. A couple of special transformers that work well with pandas inputs: CategoricalImputer and FunctionTransformer.

Installation

You can install sklearn-pandas with pip:

pip install sklearn-pandas

Tests

The examples in this file double as basic sanity tests. To run them, use doctest, which is included with python:

python -m doctest README.rst

Lloomo

Takeaways

- + My models were able to predict the price of a house with an adjusted R-squared of 0.79 and a MSE of 0.27.
- In this dataset, sqft_living and grade are the variables most highly correlated with price.
- R-squared and MSE/RMSE can diverge sharply, and multiple metrics of accuracy must be taken into account.
- The choice of which variables to keep and which to eliminate for multicollinearity has significant impacts on the accuracy of the final model.
- Data exploration and cleaning take up more time than running the actual regressions, but are crucial precursors to manipulating and processing the information.
- Pandas and scikitlearn contain many powerful tools with extensive documentation to aid in statistical analysis of data, but these libraries present a surprising number of incompatibilities that must be resolved via ad-hoc methods (or discovery of additional libraries like sklearn-pandas).