

元器件质量与可靠性保证

主讲教师: 付桂翠

Email: fuguicui@buaa.edu.cn

2023年03月14日

本章内容 ONTENTS

第四章: 微电子器件的封装技术

- 一、微电子封装概述
- 二、微电子封装工艺
- 三、封装的分类及其特点
- 四、先进封装技术

□ 封装的作用

电源与信号的分配

使芯片与电路流通电流

散热通道

硅芯片面积小,但发热量大 封装可增大芯片的表面积

机械支撑

固定芯片 连接引线

环境保护

隔绝灰尘和空气中的腐蚀性物质 防止芯片上细小的电路被划断

□ 封装发展历程

第一阶段 20世纪70年代前

- 以插装型封装为主
- PDIP性能优良、成本低廉又能批量生产
- 但密度、频率难以提高

- 以表面安装类型的四边引线封装为主
- PQFP成为主导产品
- 但封装密度、I/0数以及电路频率方面 难以满足微处理器发展的需要。

第二阶段 20世纪80年代后

第三阶段 20世纪90年代后

- 以面阵列封装形式为主
- 球栅阵列封装BGA、芯片尺寸封装CSP

- 多芯片组件MCM
- 3D(Dimension) 封装和系统封装(SiP)

第四阶段

□ 封装发展历程

结构方面

 $TO \rightarrow DIP \rightarrow LCC \rightarrow QFP \rightarrow BG$ $A \rightarrow CSP$

材料方面

金属→陶瓷→塑料

引脚形状

引线直插→短引线或无 引线贴装→球状凸点

装配方式

通孔插装→表面安装→ 直接安装

□ 封装材料

▶金属

- ❖采用金属作为壳体或底座,芯片安装在外壳或底座上;
- ◆散热能力和电磁场屏蔽性良好;
- ❖常用于高可靠要求和定制的专用气密封

▶陶瓷

- ❖价格低于金属封装;
- ◆采用多层布线,具有的布线密度很高;
- **❖**导热率高,适合于散热能力强的器件;
- ❖航空航天、军事及许多大型计算机方面有广泛应用;

▶塑料

- ❖重量轻、尺寸小, 重量约为陶瓷封装的1/2, 适合于薄型封装;
- ❖成本低,约为陶瓷封装的55%;
- ❖存在一些可靠性的问题,需要干燥包装、增加防静电包装。

本 T ONTENTS

- 一、微电子封装概述
- 二、微电子封装工艺
- 三、封装的分类及其特点
- 四、先进封装技术

□ 微电子封装工艺

▶ 微电子的封装属于半导体制造中的后工艺, 一般包括:晶片减薄和划片、芯片贴装、引 线键合或互连、封装、打标、检查测试等多 道工序。

半导体封装测试

□ 典型微电子封装工艺流程

晶片减薄和划片

从晶片背面进 行研磨,将其 减薄到适合封 装的程度。

芯片贴装

将切割下来的 芯片贴装到框 架的中间焊盘 上。

引线键合

将芯片上的键 合区和引线框 架相连接,实 现芯片与外引 引脚间的互连。

塑封成型

包括转移成型技术、喷射成型技术、预成型技术等,最主要的成型技术是转移成型技术。

打标

在封装模块的 顶表面印上去 不掉的、字迹 清楚的字母和 标识。

晶片切筋打弯

切除框架外引脚 之间的堤坝以及 在框架带上连在 一起的地方,并 引脚弯成一定 的形状,定 装配的需要。

□ 芯片互连技术

芯片互连技术是实现<mark>芯片与芯片、芯片与基板、器件与系统</mark>等之间的互连,实现信号的传递和分配的技术。

□ 引线键合

- ❖ 金属表面紧紧接触,控制时间、温度、压力;
- ❖ 表面粗糙、有氧化层形成、有化学沾污、吸潮等会影响 到键合效果,降低键合强度;
- ❖ 温度在300°C到400°C。

热压键合

- (a)劈刀下降,焊球被锁定在端部中央;
- ❖(c)劈刀上升到弧形最高度:
- ❖ (e) 在压力、超声、温度的作用下形成第二个连接;
- ❖ (g) 引燃电弧,形成焊球,进入下一个循环。

- ❖ 用20~60 KHz的超声振动提供焊接所需的能量:
- ❖ 可避免高温;
- ❖ 焊点之间的间距小于120微米。

超声键合

- ❖ (b) 在压力、超声、温度的作用下形成连接;
- ❖ (d) 高速运动到第二个键合点, 形成弧形;
- ❖(f)之后劈刀上升至一定位置,拉断尾丝;

超声球键合

□ 倒装焊

在裸芯片电极上形成连接 用的凸点,再与基版相连

优点

- ❖ 引线电感变小、串扰变弱、信号传输时间缩短,从而提高电性能;
- ❖大幅缩小封装的尺寸,提高了组装的密度;
- ❖ FCB使球栅阵列 (BGA) 封装、芯片尺寸封装 (CSP) 技术得以快速发展。

□ 倒装焊的工艺步骤

凸点制作

光刻结合电镀 其他金属薄膜技术

倒装装配

热压焊 键合凸点的芯片和基板上对应 部分

片间注入

在键合好的芯片和基板之间注 入树脂 以增强焊点的可靠性

□ 倒装芯片的可靠性问题

硅片和基座之间热膨 胀系数(CTE)失配

产生焊点裂缝 引起早期失效

流动环氧树脂填充术

环氧树脂固化

倒装芯片不能被取下 难以返工

在芯片与基座间添加介质以消除CTE应力

需要清洗芯片底部

流体有离子沾污

□ 硅通孔技术

硅通孔技术(Through Silicon Via, TSV)

在晶圆间制作垂直通道,在孔中淀积通孔材料(铜、钨、多晶硅等导电物质)

实现不同芯片层间电气互连

优点

- >实现芯片与芯片间垂直叠层互连, 无需引线键合
- >有效缩短互连线长度,减少信号传输延迟和损失
- ▶提高信号速度和带宽,降低功耗和封装体积。

本节内容 ONTENTS

- 一、微电子封装概述
- 二、微电子封装工艺
- 三、封装的分类及其特点
- 四、先进封装技术

□ 插装型封装

- ❖ 是20世纪60年代, 最具代表性的IC芯片封装结构
- ❖ 70年代大量应用于中、小规模IC芯片的主导封装产品
- ❖ 陶瓷全密封型、塑封型、窄节距型等;

- ❖ 其引脚数一般不超过100个;
- ❖ 安装:插入到芯片插座上。

□ 表面安装型封装

▶ 表面安装型封装分类

□ 表面安装型封装

- ▶四边引线扁平封装(QFP)
 - ❖按照材料可分为PQFP和CQFP;
 - ❖CQFP气密性好和价格较高,主要用于可靠 性要求较高的电子设备中;

引脚中心距小于0.65mm 时,引脚容易弯曲。

□ 表面安装型封装

➤ 球栅阵列封装(BGA)

基板下面按阵列方式引出球形引脚的方式

- > 按照基板的种类分为
 - ❖ 塑封PBGA
 - ❖陶瓷封装CBGA
- ▶ 优点:
 - ❖ I/0引脚数增多,提高了封装密度;
 - ❖引脚之间距离远大于QFP封装方式,提高了成品率;
 - ❖引脚牢固,不会像QFP那样存在引脚易变形的问题;
 - ❖引脚短,信号路径短,减小了引脚电感和电容,改善了电性能。

□ 表面安装型封装

▶ 芯片尺寸封装 (CSP)

封装后的IC尺寸边长不大于芯片的1.2倍,面积只比晶片大不超过1.4倍。

▶ 优点:

- ❖ 无引线框架和焊丝等,体积特别小;
- ❖面积小;
- ❖容纳引脚多;
- ❖布线长度短,寄生电容很小,信号传输延迟时间短;
- ❖大多数CSP都将芯片面朝下安装,能从芯片背面散 热,且效果良好。

□ 多芯片组件 (MCM)

▶ 多芯片组件(MCM)把多个<mark>高集成度、高性能、高可靠性</mark>的芯片,在高密度多层互 联基板上用SMT技术组成多种多样的电子模块系统。

▶ 优点

- ❖可以使内部封装的晶片之间更快的传递信息;
- ❖减小芯片的体积和重量;
- ◆ 使芯片具有更高的稳定性。

▶缺点

- ❖MCM的设计和研发的工序比较复杂;
- ❖成本也相对较高。

本 T ONTENTS

- 一、微电子封装概述
- 二、微电子封装工艺
- 三、封装的分类及其特点
- 四、先进封装技术

□ 晶圆级封装

▶ 晶圆级封装是对整片晶圆进行封装测试后再切割得到单个成品 芯片的技术,封装后芯片尺寸可以做到与裸片一致。

▶ 晶圆级封装优点:

- ❖将芯片的I/0接口分布在整个IC芯片的表面,使芯片的尺寸 最小化;
- ❖晶圆级封装直接在晶圆片上就能对芯片进行封装、老化及测试,能够简化工艺流程,提高封装效率。

□ 晶圆级封装

- ▶ 晶圆级封装主要分为扇入(Fan-in)和扇出(Fan-out)两种形式:
 - ❖扇入型封装:

先封装后切割,裸片封装后与裸片本身的尺寸相同。

❖扇出型封装:

通过重布线层(RDL)技术将芯片I/O端口扇出、增加I/O端口数量,进行重新排布。

扇入型封装

传统扇出型封装

基于多芯片的扇出封装

▶晶圆级封装的关键技术即重布线层技术 (Redistribution Layer, RDL) 和凸焊点制作技术。

■ 3D封装

▶三维(3D)封装技术又称<mark>立体封装技术</mark>,在3D封装中,多个芯片垂直或水平(x轴,y轴) 地叠层在一起,这样可以在第三个方向(z轴)上进行电互连。

▶ 优点:

封装密度高、减小了各个芯片之间互连线的长度,从而提高了器件的运行速度。

▶ 3D封装三个主要的类别:

叠层芯片、叠层封装以及折叠封装。

芯片 柔性基板 数结剂

叠层封装

折叠封装

□ 系统级封装

▶ 系统级封装SiP, 即通过将多个不同的工艺和功能芯片和元件封装在单一封装体, 在一块多功能电路基板上可集成微波电路、低频控制电路、数字电路和电源等的子系统来实现整机系统的功能。

▶ 优点:

系统级封装SiP为整机系统的功能多样化和小型化提供 多种可能的实现。

□ 微组装技术

▶ 微组装技术(MPT)综合应用了高密度互连基板技术、多芯片组件技术、系统/子系统组装技术、3D 组装技术等关键工艺技术,把构成电子电路的各种微型元器件(集成电路芯片和片式元器件)组装 起来,形成3D结构的高密度、高性能、高可靠、微小型和模块化电路产品的先进电子装联技术。

□ 先进封装技术的发展

更高的速度、集成度、可靠性以及更低的成本是集成电路封装追求目标,引线键合技术已证明了其具有低成本和高可靠等优势,但远远不能满足需求。现代封装的目标是通过增加芯 片密度来减少内部互连数。

□ 我国微电子封装行业现状与机遇

我国微电子封装行业发展现状

起步早

发展快

以传统封装为主

国内封装 技术

FOWLP技术 2.5D封装 VS

可集成种类和数量 bumping密度 产品频宽、性能、功耗 国际领先 技术

3D异质集成 技术

我国微电子封装行业发展机遇

长期持续国产替代的趋势

产业增速放缓

注重内部创新

健全国产自主供应链

以重大项目引进带动产业链集聚

我国微电子封装行 业快速健康发展

作业

- 1. 微电子封装的作用有哪些?
- 2. 金属封装、陶瓷封装和塑料封装各自的特点是什么?主要应用于哪些领域?
- 3. 简述微电子封装的分类及特点?
- 4. 选择某种先进的封装形式,查阅资料,进行详细的介绍。
- 5. 识别下列封装的类型。

一个芯片从生产到应用

优酷

How We Make Our Products

A Behind the Scenes Look

Lex:ar

When Memory Matters™

