TER INDIVIDUEL DISTRIBUTION D'UN CALCUL COMBINATOIRE EDGAR FOURNIVAL

PARTIE I CONTEXTE

LRI

- Laboratoire de Recherche en Informatique
- Campus d'Orsay en face de l'IUT et du PUIO
- UMR impliquant l'Université Paris-Sud et le CNRS
- Bâtiment 650 Ada Lovelace

ÉQUIPE GALAC

- Graphes, Algorithmes et Combinatoire
- Dirigé par Johanne Cohen
- Calcul algébrique, études d'algorithmes, théorie des graphes, spécification théorique de systèmes en réseau
- Projet européen Horizon 2020 :
 OpenDreamKit, Sage

MISSION

Distribuer un problème combinatoire

Exploration de l'arbre des semigroupes numériques

$$S_E = \{0, 3, 6, 7, 9, 10\} \cup \{x \in \mathbb{N}, x \geqslant 12\}$$

Objectif : lancer le calcul à une profondeur jamais calculée auparavant

Problème : l'arbre est fortement déséquilibré

PARTIE II

PROBLÈME POSÉ ET SOLUTION EXISTANTE

 $S_8 = \{0, \mathbf{6}, \mathbf{7}, \mathbf{10}, 12, 13, 14, \mathbf{15}, 16\} \cup [17; +\infty[$

Ensemble d'entiers $\in \mathbb{N}$ stable par l'addition, complémentaire fini

Trou : élément du complémentaire

Genre: nombre de trous

Générateur: nombre qu'on ne peut pas obtenir comme somme d'autres nombres

Problème : compter le nombre de semigroupes numériques de genre 70

$S_9 = \{0, m{6}, m{7}, m{10}, 12, 13, 14, 16\} \cup [17; +\infty[$ noté $ra{6}, m{7}, m{10} angle$

ALGORITHME UTILISÉ

DFS en premier lieu par Bras-Amorós en $O(g^2)$ pour calculer les fils à partir d'un noeud

Amélioré par Florent Hivert et Jean Fromentin

BFS, complexité O(g) mais surtout petite constante car utilisation des instructions SIMD

Vol de tâches pour la parallélisation

PARTIE III DISTRIBUTION

IDÉE GÉNÉRALE

Profondeur: MAX_GENUS

 $\begin{array}{l} \mathtt{STACK_BOUND} \\ \mathrm{appels} \ \grave{a} \ \mathtt{walk_children_stack()} \end{array}$

Profondeur: MAX_GENUS - STACK_BOUND

Cilk, appels récursifs à walk_children()

Profondeur: 0

TECHNOLOGIES UTILISÉES

BUG GCC N°80038

```
#include <vector>
#include <cilk/cilk.h>
void walk(std::vector v, unsigned size) {
  if (v.size() < size)</pre>
    for (int i=0; i<8; i++) {
      std::vector<int> vnew(v);
      vnew.push back(i);
      cilk spawn walk (vnew, size);
int main(int argc, char **argv) {
  std::vector<int> v{};
 walk(v, 5);
```

RÉSULTATS?

MERCIPOUR VOTRE ATTENTION