Faculty Development Program on

Machine Learning and Image Processing

Convolutional Neural Network

Introduction

- Specialized neural network for processing data that has grid like topology
 - Time series data (one dimensional)
 - Image (two dimensional)
- Found to be reasonably suitable for certain class of problems eg. computer vision
- Instead of matrix multiplication, it uses convolution in at least one of the layers

- Consider the scenario of locating a spaceship with a laser sensor
- Suppose, the sensor is noisy
 - Accurate estimation is not possible
- Weighted average of location can provide a good estimate $s(t) = \int x(a)w(t-a)da$
 - x(a) Location at age a by the sensor, t current time, w weight
 - This is known as convolution
 - Usually denoted as s(t) = (x * w)(t)
- In neural network terminology x is input, w is kernel and output is referred as feature map

Grid size: 7×7

Grid size: 7×7

Filter size: 3×3

Stride: 1

Grid size: 7×7

Filter size: 3×3

Stride: 1

Grid size: 7×7

Filter size: 3×3

Stride: 1

Grid size: 7×7

Filter size: 3×3

Stride: 1

Grid size: 7×7

Filter size: 3×3

Stride: 1

Grid size: 7×7

Filter size: 3×3

Stride: 1

Output size: 5×5

Grid size: 7×7

Grid size: 7×7

Filter size: 3×3

Stride: 2

Grid size: 7×7

Filter size: 3×3

Stride: 2

Grid size: 7×7

Filter size: 3×3

Stride: 2

Grid size: 7×7

Filter size: 3×3

Stride: 2

Output size: 3×3

Grid size: 7×7

Filter size: 3×3

Stride: 2

Output size: 3×3

Output size: (N - F)/S + 1N - input size, F - Filter size,

S - Stride

Filters are specified as 5×5 . Channel depth is implicit.

Filters are specified as 5×5 . Channel depth is implicit.

Filters are specified as 5×5 . Channel depth is implicit.

No. of paramters 75 excluding bias. Computation (multiplication) - 28 \times 28 \times 5 \times 5 \times 3

Filters are specified as 5×5 . Channel depth is implicit.

No. of paramters 75 excluding bias. Computation (multiplication) - 28 \times 28 \times 5 \times 5 \times 3

Convolution example

Edge detection using naive filter

• Filter [-1 1]

Image source: Deep Learning Book

Advantages

- Convolution can exploit the following properties
 - Sparse interaction (Also known as sparse connectivity or sparse weights)
 - Parameter sharing
 - Equivariant representation

Sparse interaction

- Traditional neural network layers use matrix multiplication to describe how outputs and inputs are related
- Convolution uses a smaller kernel
 - Significant reduction in number of parameters
 - Computing output require few comparison
- For example, if there is m inputs and n outputs, traditional neural network will require $m \times n$ parameters
- If each of the output is connected to at most k units, the number of parameters will be $k \times n$

Receptive field

Receptive field

Parameter sharing

- Same parameters are used for more than one function model
- In tradition neural network, weight is used only once
- Each member of kernel is used at every position of the inputs
- As $k \ll m$, the number of parameters will reduced significantly
- Also, require less memory

Equivariance

- If the input changes, the output changes in the same way
- Specifically, a function f(x) is equivariant to function g if f(g(x)) = g(f(x))
 - Example, g is a linear translation
 - Let B be a function giving image brightness at some integer coordinates and g be a function mapping from one image to another image function such that l' = g(l) with l'(x, y) = l(x 1, y)
- There are cases sharing of parameters across the entire image is not a good idea

Pooling

- Typical convolutional network has three stages
 - Convolution several convolution to produce linear activation
 - Detector stage linear activation runs through the non-linear unit such as ReLU
 - Pooling Output is updated with a summary of statistics of nearby inputs
 - Maxpooling reports the maximum output within a rectangular neighbourhood
 - Average of rectangular neighbourhood
 - Weighted average using central pixel
- Pooling helps to make representation invariant to small translation
 - Feature is more important than where it is present
- Pooling helps in case of variable size of inputs

Typical CNN

О	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

0	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

О	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

0	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

9	
8	5

0	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

9	8
8	5

0	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

9	8
8	5

No. of Parameters: 0

0	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

9	8
8	5

No. of Parameters: 0

Gradient computation?

Invariance of maxpooling

Learned invariances

Image source: Deep Learning Book

Pooling with downsampling

Strided convolution

Strided convolution (contd)

Zero padding

AlexNet

AlexNet

Architecture

- INPUT 227 × 227 × 3
- CONV1 96 11 × 11 filters at stride 4, pad 0,
 Output: 55 × 55 × 96
- MAX POOL1 3×3 filter, stride 2 Output: $27 \times 27 \times 96$
- **NORM1 Output:** 27 × 27 × 96
- CONV2 256 5 × 5 filters at stride 1, pad 2, Output: 27 × 27 × 256
- MAX POOL2 3×3 filter, stride 2 Output: $13 \times 13 \times 256$
- NORM2 $O 13 \times 13 \times 256$

- CONV3 384 3×3 filter, stride 1, pad 1, Output: $13 \times 13 \times 384$
- CONV4 384 3 × 3 filter, stride 1, pad 1, Output: 13 × 13 × 384
- CONV5 256 3 × 3 filter, stride 1, pad 1, Output: O 13 × 13 × 256
- MAX POOL3 3×3 filter, stride 2, Output: $6 \times 6 \times 256$
- FC6 4096 Neurons
- FC7 4096 Neurons
- FC8 1000 Neurons

Image source: https://worksheets.codalab.org

VggNet

Image source: internet

GoogleNet

Image source: http://joelouismarino.github.io

Naive inception

Inception

ResNet

Image source: internet

Comparison of CNN architecture

Model	Size (M)	Top-1/top-5 error (%)	# layers	Model description
AlexNet	238	41.00/18.00	8	5 conv + 3 fc layers
VGG-16	540	28.07/9.33	16	13 conv + 3 fc layers
VGG-19	560	27.30/9.00	19	16 conv + 3 fc layers
GoogleNet	40	29.81/10.04	22	21 conv + 1 fc layers
ResNet-50	100	22.85/6.71	50	49 $conv + 1$ fc layers
ResNet-152	235	21.43/3.57	152	151 conv + 1 fc layers

Covnet demo resource

• URL: https://cs.stanford.edu/people/karpathy/convnetjs/