## Pátá samostatná práce

Jakub Adamec B4B01JAG

2. prosince 2024

**Příklad 8.7.** K automatu M zkonstruujte gramatiku typu 3, která generuje jazyk L(M), kde M je dán tabulkou

|                     | a         | b       |
|---------------------|-----------|---------|
| $\rightarrow A$     | $\{A,B\}$ | $\{C\}$ |
| B                   | $\{B\}$   | $\{C\}$ |
| $\leftrightarrow C$ | Ø         | $\{D\}$ |
| $\leftarrow D$      | $\{B\}$   | $\{D\}$ |

Protože automat M má dva počátčení stavy, vytvoříme nový automat M' takto:

|                 | ε         | a         | b       |
|-----------------|-----------|-----------|---------|
| $\rightarrow S$ | $\{A,C\}$ | Ø         | Ø       |
| A               | Ø         | $\{A,B\}$ | $\{C\}$ |
| B               | Ø         | $\{B\}$   | $\{C\}$ |
| $\leftarrow C$  | Ø         | Ø         | $\{D\}$ |
| $\leftarrow D$  | Ø         | $\{B\}$   | $\{D\}$ |

Nyní hledaná gramatika je  $\mathcal{G} = (N, \Sigma, S, P)$ , kde  $N = \{S, A, B, C, D\}$ ,  $\Sigma = \{a, b\}$  a

$$\begin{split} P: S &\rightarrow A \mid C \\ A &\rightarrow aA \mid aB \mid bC \\ B &\rightarrow aB \mid bC \\ C &\rightarrow bD \mid \varepsilon \\ D &\rightarrow aB \mid bD \mid \varepsilon \end{split}$$



**Příklad 8.8.** Navrhněte bezkontextovou gramatiku  $\mathcal{G}$ , která generuje jazyk  $L = \{0^i 1^j; 0 \le i \le j\}$ . Zdůvodněte, proč gramatika  $\mathcal{G}$  jazyk L generuje.

Hledaná gramatika  $\mathcal{G} = (N, \Sigma, S, P)$ , kde  $N = \{S\}$ ,  $\Sigma = \{0, 1\}$  a  $S \to 0S1 \mid S1 \mid \varepsilon$ .

zdůvodnění:

1.  $L \subseteq L(\mathcal{G})$ , tj. každé slovo  $0^i 1^j$ ,  $0 \le i \le j$ , gramatika  $\mathcal{G}$  vygeneruje.  $S \xrightarrow{S \to 0S1}^{(i)} 0^i S1^i \xrightarrow{S \to S1}^{(j-i)} 0^i S1^{j-i} 1^i \xrightarrow{S \to \varepsilon} 0^i 1^j.$ 

2.  $L(\mathcal{G}) \subseteq L$ , tj.  $\mathcal{G}$  nevygeneruje nic navíc.

Uvažujme derivaci  $S \Rightarrow^* u$ . Pak poslední použité pravidlo musí být  $S \to \varepsilon$ . Indukcí podle počtu kroků dokážeme, že  $S \Rightarrow^{(n)} 0^i Sq^j$ , kde  $i \leq j$ .

*Základní krok.*  $n=1, S \Rightarrow 0S1$  nebo  $S \Rightarrow S1$  a  $S1=0^0S1^1$ , kde  $i \leq j$ .

Indukční krok. předpokládejme, že každá derivace o n krocích vygeneruje  $S \Rightarrow^{(n)} 0^i S1^j, i \leq j$ .

Pak derivace o n+1 krocích je  $\begin{cases} S \Rightarrow^{(n)} 0^{i}S1^{j} \xrightarrow{S \to 0S1} 0^{i+1}S1^{j+1} \text{ a } i+1 \leq j+1. \\ S \Rightarrow^{(n)} 0^{i}S1^{j} \xrightarrow{S \to S1} 0^{i}S1^{j+1} \text{ a } i \leq j+1. \end{cases}$ 

 $\text{Tedy z } S \text{ je možn\'e vygenerovat pouze } 0^i S 1^j, 0 \leq i \leq j, \text{a tedy S} \Rightarrow^\star 0^i S 1^j \xrightarrow{S \to \varepsilon} 0^i 1^j, 0 \leq i \leq j.$