```
comm duplicate_files duplicate_sample -2 -3 | tee /dev/stderr |
xargs rm
echo Removed duplicates files successfully.
```

3 Run it as

\$./remove duplicates.sh

How it works...

The preceding commands will find the copies of the same file in a directory and remove all except one copy of the file. Let us go through the code and see how it works.

ls -1s will list the details of the files sorted by file size in the current directory. --time-style=long-iso tells ls to print dates in the ISO format. awk will read the output of ls -1s and perform comparisons on columns and rows of the input text to find out the duplicate files.

The logic behind the code is as follows:

- ▶ We list the files sorted by size so that the similarly sized files will be grouped together. The files having the same file size are identified as a first step to finding files that are the same. Next, we calculate the checksum of the files. If the checksums match, the files are duplicates and one set of the duplicates are removed.
- ► The BEGIN{} block of awk is executed first before the lines are read from the file.

 Reading lines takes place in the {} block and after the end of reading and processing all lines, the END{} block statements are executed. The output of 1s -1s is:

```
total 16
-rw-r--r-- 1 slynux slynux 5 2010-06-29 11:50 other
-rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test
-rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test_copy1
-rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test copy2
```

The output of the first line tells us the total number of files, which in this case is not useful. We use getline to read the first line and then dump it. We need to compare each of the lines and the next line for sizes. For that, we read the first line explicitly using getline and store the name and size (which are the eighth and fifth columns). Hence, a line is read ahead using getline. Now, when awk enters the {} block (in which the rest of the lines are read), that block is executed for every read of a line. It compares the size obtained from the current line and the previously stored size kept in the size variable. If they are equal, it means two files are duplicates by size. Hence, they are to be further checked by md5sum.

We have played some tricks on the way to the solution.

The external command output can be read inside awk as:

```
"cmd" | getline
```

Then, we receive the output in line \$0 and each column output can be received in \$1, \$2, ..., \$n, and so on. Here, we read the md5sum checksum of files in the csum1 and csum2 variables. Variables name1 and name2 are used to store consecutive filenames. If the checksums of two files are the same, they are confirmed to be duplicates and are printed.

We need to find a file from each group of duplicates so that we can remove all other duplicates. We calculate the md5sum value of the duplicates and print one file from each group of duplicates by finding unique lines, comparing md5sum only from each line using -w 32 (the first 32 characters in the md5sum output; usually, the md5sum output consists of a 32-character hash followed by the filename). Therefore, one sample from each group of duplicates is written in duplicate sample.

Now, we need to remove all the files listed in duplicate_files, excluding the files listed in duplicate_sample. The comm command prints files in duplicate_files but not in duplicate sample.

For that, we use a set difference operation (refer to the recipes on intersection, difference, and set difference).

comm always accepts files that are sorted. Therefore, sort -u is used as a filter before redirecting to duplicate files and duplicate sample.

Here the tee command is used to perform a trick so that it can pass filenames to the rm command as well as print. The tee command writes lines that appear as stdin to a file and sends them to stdout. We can also print text to the terminal by redirecting to stderr. /dev/stderr is the device corresponding to stderr (standard error). By redirecting to a stderr device file, text that appears through stdin will be printed in the terminal as standard error.

Working with file permissions, ownership, and the sticky bit

File permissions and ownership are one of the distinguishing features of the Unix/Linux filesystems such as **extfs** (**extended FS**). In many circumstances while working on Unix/Linux platforms, we come across issues related to permissions and ownership. This recipe is a walk through the different use cases of these.

In Linux systems, each file is associated with many types of permissions. Out of these permissions, three sets of permissions (user, group, and others) are commonly manipulated.