IsoNN: Isomorphic Neural Network for Graph Representation Learning and Classification

NIPS 2019

Limitation and Motivation

• An artificial and random node-order in adjacent matrix would causes the performance of deep models extremely erratic and not robust.

To eliminate the unnecessary node-order constraint.

challenges in the graph classification problem

- Automatic pattern extraction
- Graph representation learning.
- Node-order elimination.

Isomorphic Neural Network (ISONN)

- 1. Learning the graph representation by extracting its isomorphic features via the graph matching between input graph and templates.
- 2. Two main components:

Graph isomorphic feature extraction component

Classification component

 graph isomorphic feature extraction component and the classification component respectively

• the detailed architecture of the proposed framework.

Graph Isomorphic Layer

- 图同构层是深度学习中第一个有效层,处理图表示中节点有序性限制。假设有图G = (V, E)及其邻接矩阵 $A \in R^{|v| \times |v|}$ 。为了在输入图中找到特定子图模版的存在,IsoNN以一组子图模版匹配输入图。IsoNN不手动定义这些子图模版,而是自动学习。每一个模版被表示为一个核变量 $K_i \in R^{k \times k}$, $\forall i \in \{1,2,...,c\}$ 。在此,k表示子图中的节点数量,c是通道数量(模版数量)。
- 同时,为了在输入图(A的子矩阵)中的某个区域中匹配一个模版,使用了排列矩阵,其中有效地将核矩阵的行和列映射到子图上。排列矩阵表示为 $P \in \{0,1\}^{k \times k}$ 与核矩阵共享空间。之后,给定一个核矩阵 K_i 和A的子矩阵 $M_{(s,t)} \in R^{k \times k}$ (即输入图G中的一个区域,s, $t \in \{1,2,...,(|V|-k+1)\}$ 表示A中一个起始索引对)。

• 存在k!个不同的排列矩阵。最优解是能够最小化一下式的矩阵P*:

$$\mathbf{P}^* = rg\min_{\mathbf{P} \in \mathcal{P}} \left\| \mathbf{P} \mathbf{K}_i \mathbf{P}^ op - \mathbf{M}_{(s,t)}
ight\|_F^2,$$

• 基于核 K_i 提取的A子图 $M_{(s,t)}$ 同构特征可以被表示为:

$$z_{i,(s,t)} = \|\mathbf{P}^* \mathbf{K}_i (\mathbf{P}^*)^\top - \mathbf{M}_{(s,t)}\|_F^2 = \min\{\|\mathbf{P} \mathbf{K}_i \mathbf{P}^\top - \mathbf{M}_{(s,t)}\|_F^2\}_{\mathbf{P} \in \mathcal{P}}$$
$$= \min(\bar{\mathbf{z}}_{i,(s,t)}(1:k!)),$$

• 其中向量 $\bar{z}_{i,(s,t)} \in R^{k!}$ 包含的元素 $\bar{z}_{i,(s,t)}(j) = \|P_j K_i P_j^T - M_{(s,t)}\|_F^2$ $\forall j \in \{1,2,\dots,k!\}$

表示第j个排列矩阵计算出的同构特征

- ISONN 通过核 K_i 最优的排列矩阵计算最终的同构特征的过程为两步:
- 1.在图同构层通过不同的排列矩阵计算所有可能的同构特征
- 2.通过第一池化层和第二池化层指定最优特征。

• 通过在区域子矩阵中平移核矩阵 K_i , ISONN抽取矩阵A中的同构特征,表示为三维张量 $Z_i \in R^{k! \times (|V|-k+1) \times (|V|-k+1)}$,其中

$$\mathcal{Z}_i(1:k!,s,t) = \bar{\mathbf{z}}_{i,(s,t)}(1:k!).$$

相似的,可以使用其他核矩阵计算同构特征张量。

Min-pooling Layer 1

- 给定由 K_i 计算的张量 Z_i ,ISONN通过最小池化层1识别最优的排列 矩阵。可以通过矩阵 \mathbf{Z}_i 表达最优的排列矩阵
- $\mathbf{Z}_{i}(s,t) = \min\{Z_{i}(1:k!,s,t)\}$
- 最小池化层学到最优矩阵Z_i可以有效识别出由最优排列矩阵生成的同构特征。对于其他核矩阵,也可通过相似步骤学到最优矩阵。

Min-pooling Layer 2

对于输入图中不同的区域,使用不同的子图模版。ISONN使用最小池化层2,模型以此找到该区域的最佳匹配核。对于输入 $\{Z_1,Z_2,...,Z_c\}$,最小池化层2的输出为:

$$\mathbf{Q}(s,t) = \min\{\mathbf{Z}_1(s,t), \mathbf{Z}_2(s,t), \cdots, \mathbf{Z}_c(s,t)\}.$$

Q(s,t)表示A中区域 $M_{(s,t)}$ 的最佳子图模版K*计算出来的同构特征。

Classification Component

• 得到矩阵Q后将其展平为q,放入三个全链接层做分类。

Table 1: Classification Results of the Comparison Methods.

		Methods								
Dataset	Metric	Freq	Conf	Ratio	Gtest	HSIC	AE	CNN	SDBN	IsoNN
HIV-fMRI-77	Accuracy	54.3	58.6	54.3	50.0	58.7	46.9	59.3	66.5	73.7
	F1	58.2	64.2	62.0	52.5	59.5	35.5	66.3	66.7	69.2
HIV-DTI-77	Accuracy	64.6	52.4	59.3	59.3	49.8	62.4	54.3	65.9	72.8
	F1	63.9	46.1	57.9	58.5	58.3	0.0	55.7	65.6	66.7
BP-fMRI-97	Accuracy	56.8	50.8	54.2	55.2	54.9	53.6	54.6	64.8	68.0
	F1	57.6	49.1	53.7	53.9	55.8	69.5	52.8	63.7	71.2