PATENT ABSTRACTS OF JAPAN

(11)Publication number :

08-245905

(43) Date of publication of application: 24.09.1996

(51)Int.Cl.

CO9D 5/14 BO5D 5/00 BO5D 7/14 CO9D161/32 CO9D167/02 CO9D183/04

(21)Application number: 07-049456

(71)Applicant: KANSAI PAINT CO LTD

(22)Date of filing:

09.03.1995

(72)Inventor: TANAKA SHOICHI

NAKANO TAKASHI

(54) COATING COMPOSITION CAPABLE OF FORMING COATING FILM HAVING EXCELLENT STAIN-RESISTANCE

(57)Abstract:

PURPOSE: To provide a coating composition giving a coating film having excellent impact

resistance and high stain-resistance.

CONSTITUTION: This coating composition contains (A) 30-90 pts.wt. of a hydroxyl-containing polyester resin, (B) 10-70 pts.wt. of a melamine resin curing agent consisting of a mixture of a methyl-etherified melamine resin and a butyl- etherified melamine resin (the sum of A and B is 100 pts.wt.), (C) 0.2-3.0 pts.wt. (in terms of sulfonic acid compound) of a curing catalyst consisting of a sulfonic acid compound neutralized with an amine and (D) 1-20 pts.wt. of a silicone compound containing at least one kind of functional group selected from hydroxyl group, carboxyl group, epoxy group and mercapto group and composed mainly of a polydimethylsiloxane chain.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-245905

(43)公開日 平成8年(1996)9月24日

(51) Int.Cl.		識別記号	庁内整理番号	FI					技術表示箇所		
C09D	5/14	PQM		CO	9 D	5/14		PQM			
B05D	5/00			B 0	5 D	5/00		H			
	7/14					7/14		Z			
C 0 9 D	161/32	PHK		CO	9 D 1	161/32		PHK			
	167/02	PLB			1	167/02		PLB			
			審查請求	未請求	旅館	項の数9	OL	(全 10 頁)	最終頁に続く		
(21)出願番号		特顯平7-49456		(71)	出題人	000001	409				
						関西ペ	イント	株式会社			
(22) 出廣日		平成7年(1995)3			兵庫県	尼崎市	神崎町33番1	号			
			(72)	発明和	中田	田中 正一					
						神奈川	県平塚	市東八幡 4丁	目17番1号 関		
						西ペイ	ント株	式会社内			
				(72)	発明者	理中 智	多佳士				
						神奈川	県平塚	市東八幡 4丁	目17番1号 関		
						西ペイ	ント株	式会社内			
				1							

(54) 【発明の名称】 耐汚染性に優れた強膜を形成できる強料組成物

(57)【要約】

【目的】 耐衝撃性および高度の耐汚染性に優れた塗膜を形成できる塗料を得る。

【構成】 (A) 水酸基含有ポリエステル樹脂30~90重量部と、(B) メチルエーテル化メラミン樹脂とブチルエーテル化メラミン樹脂との混合物であるメラミン樹脂硬化剤10~70重量部、とからなる樹脂組成物100重量部に対して、(C) 硬化触媒として、スルホン酸化合物のアミン中和物を、該スルホン酸化合物の量に換算した値で0.2~3.0重量部及び(D) 官能基として、水酸基、カルボキシル基、エポキシ基及びメルカプト基から選ばれる少なくとも1種を有し、ポリジメチルシロキサン鎖を主体とするシリコン化合物1~20重量部を含有することを特徴とする塗料組成物。

【特許請求の範囲】

(A) 水酸基含有ポリエステル樹脂30 【請求項1】 ~90重量部と、

1

(B) メチルエーテル化メラミン樹脂とブチルエーテル 化メラミン樹脂との混合物であるメラミン樹脂硬化剤1 0~70重量部、とからなる樹脂組成物100重量部に 対して、

$$X^{1} - S = 0$$

$$\begin{bmatrix} C + S \\ | \\ C + S \end{bmatrix}$$

$$C + S = 0$$

$$\begin{bmatrix} C + S \\ | \\ C + S \end{bmatrix}$$

$$C + S = 0$$

$$\begin{bmatrix} C + S \\ | \\ C + S \end{bmatrix}$$

$$C + S = 0$$

$$\begin{bmatrix} C + S \\ | \\ C + S \end{bmatrix}$$

$$M = 0$$

〔式中、X¹、X²及びX³は、水酸基、カルボキシル 基、エポキシ基及びメルカプト基から選ばれる少なくと も1種の官能基を有する炭素原子数1~8の有機基、又 はメチル基を表し、X'、X'及びX'のうちの少なく とも1種が、水酸基、カルボキシル基、エポキシ基及び メルカプト基から選ばれる少なくとも1種の官能基を有 ~300の整数、nは、0~290の整数を表し、mと nとの合計は10~300であり、繰り返し単位

【化2】
$$CH_3$$
 CH_3 CH_3

との配列順序は、ランダムであってもブロックであって 30 メラミン樹脂硬化剤(B)におけるメチルエーテル化メ もよい。〕

【請求項2】 ポリエステル樹脂(A)が、数平均分子 量1,000~35,000、ガラス転移温度-10℃ ~80℃、水酸基価3~160mgKOH/g を有する樹脂で ある請求項1記載の塗料組成物。

【請求項3】 メラミン樹脂硬化剤(B)におけるメチ ルエーテル化メラミン樹脂が、トリアジン核1個当りメ チルエーテル化されたメチロール基を平均3個以上有 し、且つ数平均分子量が1,000以下であるメチルエ ーテル化メラミン樹脂であることを特徴とする請求項1 又は2記載の塗料組成物。

【請求項4】 メラミン樹脂硬化剤(B)におけるメチ ルエーテル化メラミン樹脂とプチルエーテル化メラミン 樹脂との配合比率が、メチルエーテル化メラミン樹脂/ ブチルエーテル化メラミン樹脂の固形分重量比で95/ 5~25/75であることを特徴とする請求項1~3の いずれか一項に記載の塗料組成物。

【請求項5】 硬化触媒 (C) が、pートルエンスルホ ン酸のアミン中和物及びドデシルベンゼンスルホン酸の

* (C) 硬化触媒として、スルホン酸化合物のアミン中和 物を、該スルホン酸化合物の量に換算した値で0.2~ 3. 0重量部及び

(D) 下記一般式[1] で示されるシリコン化合物1~ 20重量部

を含有することを特徴とする塗料組成物。

[化1]

$$CH_3$$

 $-O$
 $Si-X^3$ [1]
 CH_3

1~4のいずれか一項に記載の塗料組成物。

【請求項6】 一般式〔1〕で示されるシリコン化合物 (D) におけるX¹、X² 及びX³ が、水酸基もしくは カルボキシル基を有する炭素原子数1~8の炭化水素 基、又はメチル基を表し、X'、X'及びX'のうちの 少なくとも1種が、水酸基又はカルボキシル基を有する する炭素原子数1~8の有機基であり、且つmは、10 20 炭素原子数1~8の炭化水素基であることを特徴とする 請求項1~5のいずれか一項に記載の塗料組成物。

> 【請求項7】 シリコン化合物(D)における官能基の 当量が、300~5,000であることを特徴とする請 求項1~6のいずれか一項に記載の塗料組成物。

【請求項8】 水酸基含有ポリエステル樹脂(A)が、 数平均分子量4,000~30,000、ガラス転移温 度-5℃~35℃、水酸基価3~25mgKOH/g を有する 樹脂であり、該水酸基含有ポリエステル樹脂(A)60 ~85重量部及び、

ラミン樹脂とブチルエーテル化メラミン樹脂との配合比 率が、メチルエーテル化メラミン樹脂/ブチルエーテル 化メラミン樹脂の固形分重量比で85/15~30/7 0であり、該メラミン樹脂硬化剤(B) 15~40重量 部、からなる樹脂組成物100重量部に対して、

硬化触媒(C)として、p-トルエンスルホン酸のアミ ン中和物及びドデシルベンゼンスルホン酸のアミン中和 物から選ばれる少なくとも1種を、スルホン酸の量に換 算した値で0.3~2.0重量部、及びシリコン化合物 (D) 1~20重量部を含有することを特徴とする請求 項3に記載の塗料組成物。

【請求項9】 金属板上に、下塗塗膜を介して、又は介 さずに、請求項1又は8に記載の塗料組成物の硬化塗膜 が形成されてなることを特徴とする耐汚染性に優れた塗 装金属板。

【発明の詳細な説明】

[0001]

40

【産業上の利用分野】本発明は、耐衝撃性に優れ、耐汚 染性、特に油性インキ、蒸発して付着した油などを拭き アミン中和物から選ばれる少なくとも1種である請求項 50 取りによって容易に除去できる高度の耐汚染性に優れた

塗膜を形成でき、かつ塗装性の良好な塗料組成物に関し、特に器物加工用の塗装鋼板に適した塗料組成物に関する。

[0002]

【従来の技術およびその課題】従来、冷蔵庫や、レンジフード、換気扇、ガステーブルなどの厨房用品などの器物に加工される塗装鋼板用の上塗塗料としては、ポリエステル樹脂を基体樹脂とし、メラミン樹脂又はイソシアネート化合物を硬化剤とした組成物を樹脂成分とする有機溶剤型塗料や粉体塗料が知られており、なかでもポリエステル樹脂とメラミン樹脂、特にメチルエーテル化メチロールメラミン樹脂との混合物に硬化触媒を配合した塗料が多く用いられている。

【0003】従来、レンジフード、ガステーブルなどの 台所の厨房用品においては、蒸発し付着した油汚染物を 除去するのに大きな労力を要していた。近年、この労力 を低減するために、付着した油汚染物をティッシュペー パーなどで容易に拭き取り除去できる厨房用品が要求さ れてきている。

【0004】本発明者らは、特開平4-370172号 20 公報において、耐汚染性を向上させる上塗塗料として、 特定のポリエステル樹脂と大過剰のメラミン樹脂との樹 脂系において、硬化触媒を大量に使用した塗料を提案し た。しかしながら、この塗料から得られる塗膜は、付着 した油性インクや油汚染物を、エタノールなどの溶剤を*

【0008】〔式中、X¹、X²及びX³は、水酸基、カルボキシル基、エポキシ基及びメルカプト基から選ばれる少なくとも1種の官能基を有する炭素原子数1~8の有機基、又はメチル基を表し、X¹、X²及びX³のうちの少なくとも1種が、水酸基、カルボキシル基、エポキシ基及びメルカプト基から選ばれる少なくとも1種の官能基を有する炭素原子数1~8の有機基であり、且つmは、10~300の整数、nは、0~290の整数を表し、mとnとの合計は10~300であり、繰り返40し単位

[0009]

$$\begin{bmatrix}
CH_3 \\
| \\
Si-0 \\
| \\
CH_3
\end{bmatrix}$$

$$\begin{bmatrix}
CH_3 \\
| \\
Si-0 \\
| \\
X^2
\end{bmatrix}$$

【0010】との配列順序は、ランダムであってもブロ 50

* 付けた布でこすることによって除去することができるが、ティッシュペーパーでこすることによって容易に除去できるまでには至らないものであった。

【0005】そこで本発明者らは、付着した油性インクや油汚染物をティッシュペーパーなどで容易に拭き取り除去できる塗膜を形成できる塗料を得るべく鋭意研究を行った結果、水酸基含有ポリエステル樹脂と特定のメラミン樹脂との樹脂系において、特定量の硬化触媒及び特定のシリコン化合物を配合してなる塗料によって上記目的が達成できることを見出し、本発明を完成するに至った。

[0006]

【課題を解決するための手段】すなわち本発明は、

1. (A) 水酸基含有ポリエステル樹脂30~90重量 部と、(B) メチルエーテル化メラミン樹脂とブチルエーテル化メラミン樹脂との混合物であるメラミン樹脂硬化剤10~70重量部、とからなる樹脂組成物100重量部に対して、(C) 硬化触媒として、スルホン酸化合物のアミン中和物を、該スルホン酸化合物の量に換算した値で0.2~3.0重量部及び(D)下記一般式

[1] で示されるシリコン化合物 1~20重量部を含有することを特徴とする塗料組成物を提供するものである。

[0007]
[(比3]
$$CH_3$$
 $O \longrightarrow Si - X^3$
[1]
 CH_3

ックであってもよい。

また本発明は、2. メラミン樹脂硬化剤(B)における メチルエーテル化メラミン樹脂が、トリアジン核1個当 りメチルエーテル化されたメチロール基を平均3個以上 有し、且つ数平均分子量が1,000以下であるメチル エーテル化メラミン樹脂であることを特徴とする上記項 1記載の途料組成物。

【0011】さらに本発明は、3. 水酸基含有ポリエステル樹脂(A)が、数平均分子量4,000~30,00、ガラス転移温度-5℃~35℃、水酸基価3~25mgKOH/gを有する樹脂であり、該水酸基含有ポリエステル樹脂(A)60~85重量部及び、メラミン樹脂を化剤(B)におけるメチルエーテル化メラミン樹脂との配合比率が、メチルエーテル化メラミン樹脂/ブチルエーテル化メラミン樹脂/ブチルエーテル化メラミン樹脂がチルエーテル化メラミン樹脂がチルエーテル化メラミン樹脂がチルエーテル化メラミン樹脂がチルエーテル化メラミン樹脂がチルエーテル化メラミン樹脂がチャンであり、該メラミン樹脂硬化剤(B)15~40重量部、からなる樹脂組成物100重量部に対して、硬化触媒(C)として、pートルエンスルホン酸のアミン中和物及びドデシ

ルベンゼンスルホン酸のアミン中和物から選ばれる少なくとも1種を、スルホン酸の量に換算した値で0.3~2.0重量部、及びシリコン化合物(D)1~20重量部を含有することを特徴とする上記項2に記載の塗料組成物を提供するものである。

【0012】また本発明は、4.金属板上に、下塗塗膜を介して、又は介さずに、上記項1又は3に記載の塗料組成物の塗膜を形成してなることを特徴とする耐汚染性に優れた塗装金属板を提供するものである。

[0013]

【作用】本発明組成物において、(A)成分であるポリエステル樹脂は、水酸基を含有するポリエステル樹脂であり、オイルフリーポリエステル樹脂、油変性アルキド樹脂、また、これらの樹脂の変性物、例えばウレタン変性ポリエステル樹脂、ウレタン変性アルキド樹脂などのいずれであってもよい。

【0014】上記ポリエステル樹脂は、得られる塗膜の加工性、塗膜硬度、耐溶剤性、耐汚染性、及び樹脂の取扱い易さなどの観点から、数平均分子量1,000~35,000、ガラス転移温度-10°~80°、水酸基価3~160mgKOH/gを有することが好ましく、数平均分子量4,000~30,000、ガラス転移温度-5°~35°、水酸基価3~25mgKOH/gを有することがさらに好ましい。本発明において、ガラス転移温度(Tg)は、示差熱分析(DSC)によるものであり、また数平均分子量はゲル浸透クロマトグラフィ(GPC)によって、標準ポリスチレンの検量線を用いて測定したものである。

【0015】ポリエステル樹脂のガラス転移温度は、加工性に重点を置く場合は、30℃以下であることがより好ましく、硬度に重点を置く場合は、15℃以上であることがより好ましい。

【0016】上記オイルフリーポリエステル樹脂は主に 多塩基酸と多価アルコールとのエステル化物であって、 多塩基酸としては無水フタル酸、イソフタル酸、テレフ タル酸、コハク酸、アジピン酸、フマル酸、無水マレイ ン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フ タル酸などから選ばれた1種以上の二塩基酸およびこれ らの酸の低級アルキルエステル化物が主に用いられ、必 要に応じて安息香酸、クロトン酸、p-tertーブチル安 40 息香酸などの一塩基酸、無水トリメリット酸、メチルシ クロヘキセントリカルボン酸、無水ピロメリット酸など の3価以上の多塩基酸などが用いられ、多価アルコール としてはエチレングリコール、プロピレングリコール、 ジエチレングリコール、ブタンジオール、ネオペンチル グリコール、3ーメチルペンタンジオール、1,4-へ キサンジオール、1,6-ヘキサンジオールなどの二価 アルコールが主に用いられ、さらに必要に応じてグリセ リン、トリメチロールエタン、トリメチロールプロパ ン、ペンタエリスリトールなどの3価以上の多価アルコ 50

ールを併用することもできる。両成分のエステル化又は エステル交換反応は公知の方法で行なえる。酸成分とし ては、テレフタル酸、イソフタル酸、およびこれらの酸 の低級アルキルエステル化物が特に好ましい。アルキド 樹脂は上記オイルフリーポリエステル樹脂の酸成分およ びアルコール成分に加えて、油脂肪酸を公知の方法で反 応せしめたものであって、油脂肪酸としては例えばヤシ 油脂肪酸、大豆油脂肪酸、アマニ油脂肪酸、サフラワー 油脂肪酸、トール油脂肪酸、脱水ヒマシ油脂肪酸、キリ 油脂肪酸などがあげられる。アルキド樹脂の油長は30 %以下が好ましい。

【0017】ウレタン変性ポリエステル樹脂は、上記オ イルフリーポリエステル樹脂、又は上記オイルフリーポ リエステルの製造の際の、酸成分およびアルコール成分 を反応させて得られる低分子量のオイルフリーポリエス テル樹脂を、ポリイソシアネート化合物と公知の方法で 反応せしめたものである。またウレタン変性アルキド樹 脂は、上記アルキド樹脂、又は上記アルキド樹脂製造の 際の各成分を反応させて得られる低分子量のアルキド樹 脂を、ポリイソシアネート化合物と公知の方法で反応せ しめたものである。ウレタン変性ポリエステル樹脂、ウ レタン変性アルキド樹脂を製造する際に使用するポリイ ソシアネート化合物としては、ヘキサメチレンジイソシ アネート、イソホロンジイソシアネート、キシリレンジ イソシアネート、トリレンジイソシアネート、4,4~ ージフェニルメタンジイソシアネート、4,4´ーメチ レンビス(シクロヘキシルイソシアネート)、2,4, 6-トリイソシアナトトルエンなどが挙げられる。

【0018】本発明組成物における(B)成分であるメラミン樹脂硬化剤は、メチルエーテル化メラミン樹脂とブチルエーテル化メラミン樹脂との混合物である。

【0019】上記メチルエーテル化メラミン樹脂は、メラミンとホルムアルデヒドとの付加反応生成物(1量体又は多量体)であるメチロール化メラミン樹脂中のメチロール基の一部又は全部をメタノールでのみエーテル化したメチル化メラミン樹脂、及びメチロール化メラミン樹脂中のメチロール基の一部又は全部をメタノールと他の炭素数2~4のアルコール、例えばエタノール、イソプロパノール、ローブタノール、イソブタノールなどとの混合アルコールによって混合エーテル化したメラミン樹脂の両者を包含する。

【0020】上記メチルエーテル化メラミン樹脂としては、メチルエーテル化されたメチロール基の数がトリアジン核1個当り平均で3.0個以上、数平均分子量が1,000以下であるものが、ポリエステル樹脂(A)との相溶性、得られる塗膜の耐汚染性、加工性などの点から好ましい。

【0021】上記好ましいメチルエーテル化メラミン樹脂の市販品としては、例えば、サイメル303、同32 5、同327、同350、同730、同736、同73 8 [いずれも三井サイテック(株)製]、メラン522、同523 [いずれも日立化成(株)製]、ニカラックMS001、同MX650 [三和ケミカル(株)製]、スミマールM-55 [住友化学(株)製]、レジミン740、同747 [いずれもモンサント社製]などのメチル化メラミン樹脂;サイメル232、同266、同XV-514 [いずれも三井サイテック(株)製]、ニカラックMX500、同MX600、同MS95 [いずれも三和ケミカル(株)製]、レジミン753、同755 [いずれもモンサント社製]などのメチルエーテルとプチルエーテルとの混合エーテル化メラミン樹脂などを挙げることができる。

7

【0022】上記メチルエーテル化メラミン樹脂と混合して使用するブチルエーテル化メラミン樹脂は、メラミンとホルムアルデヒドとの付加反応生成物(1量体又は多量体)であるメチロール化メラミン樹脂中のメチロール基の一部又は全部をnーブチルアルコール又はイソブチルアルコールでエーテル化したものであり、得られる塗料の塗料安定性、得られる塗膜の耐汚染性などの点から数平均分子量が800~8,000の範囲であることがすましく、1,000~3,000の範囲にあることがさらに好ましい。

【0023】上記好ましいブチルエーテル化メラミン樹脂の市販品としては、例えば、ユーバン20SE、同28SE (いずれも大日本インキ化学工業(株)製]、スーパーベッカミンJ-820-60、同L-117-60、同L-109-65、同G-821-60、同47-508-60、同L-118-60 (いずれも三井東圧(株)製)などを挙げることができる。

【0024】メチルエーテル化メラミン樹脂にブチルエーテル化メラミン樹脂を併用することにより、ポリエステル樹脂との相溶性の劣るブチルエーテル化メラミン樹脂が塗膜表面に移行し、この硬化膜が耐汚染性に優れた効果を発揮するとともに、塗膜硬度にも有利である。塗膜内部の架橋は、主としてメチルエーテル化メラミン樹脂によって行うことができることから加工性の点でも有利である。

【0025】本発明組成物において、(C)成分である 硬化触媒は、スルホン酸化合物のアミン中和物であり、 前記ポリエステル樹脂(A)と上記メラミン樹脂硬化剤 (B)との硬化反応を促進するための触媒である。

【0026】スルホン酸化合物としては、pートルエンスルホン酸、ドデシルベンゼンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸などの強度の酸であるスルホン酸化合物を挙げることができる。これらのスルホン酸化合物のうち、pートルエンスルホン酸及び/又はドデシルベンゼンスルホン酸が好ましい。

【0027】スルホン酸化合物を中和するアミンとして フェニル、(ヒドロキシメチル)フェニルなどの水酸は、スルホン酸化合物を中和でき、加熱硬化時に揮散す 50 を有する有機基;カルボキシメチル、カルボキシエチ

るアミンであれば制限なく使用でき、1級アミン、2級アミン、3級アミンのいずれであってもよいが、1級アミンを使用すると塗膜が着色しやすく、3級アミンを使用すると塗膜表面にちぢみ(細かな凹凸模様)を発生しやすくなるため2級アミンが好ましい。

【0028】好適な2級アミンの代表例としては、ジエチルアミン、ジイソプロピルアミン、ジョープロピルアミン、ジョープロピルアミン、ジョーブチルアミン、ジョーブチルアミン、ジョーブチルアミン、ジョーブテルアミン、Nーエチルー1,2ージメチルプロピルアミン、Nーメチルへキシルアミン、ジョーオクチルアミン、ピペリジン、2ーピペコリン、4ーピペコリン、4ーピペコリン、モルホリン、2,4ールペチジン、2,6ールペチジン、3,5ールペチジン、ジメチルオキサゾリジン、コーピペリジンメタノールなどが挙げられ、これらのうち、ジメチルオキサゾリジン、モルホリン、ジアルキルアミン、特にジイソプロピルアミン、ジョープロピルアミン、ジョーブチルアミン、ジイソブチルアミンが、低臭であること、及び得られる塗膜の耐汚染性の点から好ましい。

【0029】硬化触媒におけるスルホン酸化合物のアミンによる中和当量は、スルホン酸基1当量に対して、中和するアミンの量が0.2~1.1当量の範囲内にあることが好ましく、さらには0.5~1.0当量の範囲内にあることがより好ましい。スルホン酸化合物をアミンで中和していない場合は、得られる塗膜の耐汚染性が悪く、一方、中和当量が多すぎると得られる塗膜表面にちぢみが発生しやすくなる、硬化触媒を配合して塗料を製造するに際し、硬化触媒として、前もってアミン中和したものを使用してもよいし、スルホン酸化合物とアミンとを別々に配合し、塗料中でスルホン酸化合物のアミン中和物を形成させてもよい。

【0030】本発明組成物において、(D)成分であるシリコン化合物は、得られる塗膜の耐汚染性を向上させるために配合されるものであり、前記一般式[1]で示されるものである。

【0031】前記一般式〔1〕において、X¹、X²及びX³が表す水酸基、カルボキシル基、エポキシ基及びメルカプト基から選ばれる少なくとも1種の官能基を有する炭素原子数1~8の有機基としては、これらの官能基が置換したアルキル基、シクロアルキル基、シクロアルキルアルキル基、アリール基、アラルキル基などの脂肪族、脂環式又は芳香族水素基などを例示できる。

【0032】上記官能基が置換した有機基の具体例としては、例えば、ヒドロキシメチル、ヒドロキシエチル、ヒドロキシブチル、ヒドロキシペンチル、ヒドロキシへキシへ、ヒドロキシオクチル、ヒドロキシシクロへキシル、(ヒドロキシメチル)シクロヘキシル、ヒドロキシフェニル、(ヒドロキシメチル)フェニルなどの水酸基を有する有機基・カルボキシスチル、カルボキシスチル

ル、カルボキシブチル、カルボキシペンチル、カルボキ シヘキシル、カルボキシオクチル、カルボキシシクロヘ キシル、カルボキシフェニルなどのカルボキシル基を有 する有機基;グリシジル、3,4-エポキシブチル、 3、4-エポキシシクロヘキシルなどのエポキシ基を有 する有機基:メルカプトメチル、メルカプトエチル、メ ルカプトプチル、メルカプトペンチル、メルカプトヘキ シル、メルカプトオクチルなどのメルカプト基を有する

有機基を挙げることができる。 物(D)において、mが10未満では耐汚染性が十分で なく、一方、mが300を超えるとポリエステル樹脂 (A) との相溶性が低下し、塗料の安定性が劣化する。 mとnとの合計が10未満では塗料塗装時に塗膜にハジ キなどの塗膜欠陥が発生しやすくなり、また焼付けによ って途膜を硬化させる際にシリコン化合物が揮散しやす くなり、さらに塗膜の耐汚染性が十分でなくなり、一 方、mとnとの合計が300を超えるとポリエステル樹 脂(A)との相溶性が低下し、塗料の安定性が劣化す る。

【0034】上記シリコン化合物(D)は、官能基を有 しており塗膜形成時にポリエステル樹脂(A)やメラミ ン樹脂硬化剤(B)と反応することができるので経時に おいて塗膜から消失することがなく、且つメチルポリシ ロキサン部を主体としており表面張力が低いので、長期 に亘って塗膜表面は優れた耐汚染性を発揮することがで

【0035】本発明組成物における、ポリエステル樹脂 (A)と、メラミン樹脂硬化剤(B)との配合比率は、 固形分重量比で、(A)/(B)が、30/70~90 /10の範囲であり、好ましくは60/40~85/1 5の範囲である。(A)成分と(B)成分との合計10 0 重量部中、(A) 成分が30重量部未満では塗膜の耐 衝撃性が極端に低下したり、塗膜にワレが生じ易くな り、一方、90重量部を超えると得られる塗膜の耐汚染 性、硬度、耐溶剤性などが低下する。

【0036】本発明組成物における硬化触媒(C)であ るスルホン酸化合物のアミン中和物の配合量は、ポリエ ステル樹脂(A)とメラミン樹脂硬化剤(B)との合計 100重量部に対して、スルホン酸化合物のアミン中和 物を、該スルホン酸化合物の量に換算した値で0.2~ 3. 0重量部の範囲であり、好ましくは0. 3~2. 0 重量部の範囲である。0.2重量部未満では得られる塗 膜の耐汚染性が十分でなく、一方、3.0重量部を超え ると塗膜の耐衝撃性が悪くなる。

【0037】本発明組成物におけるシリコン化合物 (D) の配合量は、ポリエステル樹脂(A) と、メラミ ン樹脂硬化剤(B)との合計100重量部に対して、1 ~20重量部、好ましくは2~10重量部である。シリ コン化合物(D)の配合量が1重量部未満では耐汚染性 50

が十分でなく、一方、20重量部を超えるとポリエステ ル樹脂(A)との相溶性が悪くなり塗料の安定性が低下 する。

【0038】本発明塗料組成物は、上記(A)、

(B)、(C) および(D) 成分のみからなっていても よいが、取扱い上、および塗装性の面などから通常、有 機溶剤が含有せしめられる。上記有機溶剤としては、上 記(A)、(B)、(C) および(C) の各成分を溶解 ないしは分散できるものが使用でき、具体的には例え 【0033】前記一般式[1]で示されるシリコン化合 10 ば、メチルイソブチルケトン、シクロヘキサノン、イソ ホロンなどのケトン系溶剤;トルエン、キシレン、高沸 点石油系炭化水素などの炭化水素系溶剤;エチレングリ コールモノエチルエーテル、エチレングリコールモノブ チルエーテル、ジエチレングリコールモノブチルエーテ ルなどのエーテル系溶剤;酢酸エチル、酢酸ブチル、エ チレングリコールモノエチルエーテルアセテート、ジエ チレングリコールモノエチルエーテルアセテートなどの エステル系溶剤などが挙げられ、これらは単独で、又は 2種以上混合して使用することができる。

【0039】本発明塗料組成物は、顔料を含有しないク リヤ塗料として使用することができるが、着色顔料を含 有するエナメル塗料としても使用できる。着色顔料とし ては塗料分野で使用できる着色顔料例えばシアニンブル ー、シアニングリーン、アゾ系やキナクリドン系などの 有機赤顔料などの有機着色顔料;チタン白、チタンエロ ー、ベンガラ、カーボンブラック、黄鉛、各種焼成顔料 などの無機着色顔料が使用できる。また、本発明組成物 は、必要に応じてタルク、クレー、シリカ、マイカ、ア ルミナ等の体質顔料、充填剤、添加剤、有機髙分子粉体 30 などを含有していてもよい。

【0040】本発明塗料組成物を塗装する被塗装物とし ては冷延鋼板、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼 板、合金メッキ鋼板、アルミニウム板、ステンレス鋼 板、銅板、銅メッキ鋼板、錫メッキ鋼板等の金属板又は これらの金属板にリン酸塩系やクロム酸塩系などの表面 処理を施した金属板が好適であるが、プラスチックス、 木材、セメント等にも適用可能であり、また上記塗料 は、これらの被塗物に直接に、またはプライマー塗膜を 介して塗装することができる。プライマーとしては、エ ポキシ系、ポリエステル系、アクリル系およびこれらの 変性プライマーなどが挙げられ、加工性の面からポリエ ステルプライマーが特に好適である。

【0041】本発明塗料組成物の塗装方法は、カーテン フロー塗装、ロール塗装、浸漬塗装およびスプレー塗装 などが可能であり、通常、乾燥した後の塗膜厚が5~3 0ミクロンの範囲内となるよう塗装される。また上記塗 料の硬化は塗料が硬化する、温度一焼付時間の中から適 宜設定できるがコイルコーティングなどによって塗装す るプレコート塗装分野においては、通常、素材到達最高 温度160~260℃で15~90秒の範囲、特に20 ١,

0~230℃で、30~70秒の範囲が好適である。

11

【0042】本発明塗料組成物は、耐衝撃性及び耐汚染 性に優れた塗膜を形成できるが、さらに加工性、塗膜硬 度、耐溶剤性のいずれにも優れた塗膜を形成できる塗料 であるためには、水酸基含有ポリエステル樹脂(A) が、数平均分子量4,000~30,000、ガラス転 移温度-5℃~35℃、水酸基価3~25mgKOH/g を有 する樹脂であり、該水酸基含有ポリエステル樹脂(A) 60~85重量部及び、メラミン樹脂硬化剤(B)にお けるメチルエーテル化メラミン樹脂が、トリアジン核1 個当りメチルエーテル化されたメチロール基を平均3個 以上有し、且つ数平均分子量が1,000以下であるメ チルエーテル化メアミン樹脂であり、該メチルエーテル 化メラミン樹脂とブチルエーテル化メラミン樹脂との配 合比率が、メチルエーテル化メラミン樹脂/プチルエー テル化メラミン樹脂の固形分重量比で85/15~30 / 70であり、該メラミン樹脂硬化剤(B) 15~40 重量部、からなる樹脂組成物100重量部に対して、硬 化触媒(C)として、p-トルエンスルホン酸のアミン 中和物及びドデシルベンゼンスルホン酸のアミン中和物 20 から選ばれる少なくとも1種を、スルホン酸の量に換算 した値で0.3~2.0重量部、及びシリコン化合物 (D) 1~20重量部を含有する塗料組成物であること

が好ましい。 【0043】

【発明の効果】水酸基含有ポリエステル樹脂と、メチル エーテル化メラミン樹脂とブチルエーテル化メラミン樹 脂との混合物であるメラミン樹脂硬化剤との樹脂系にお いて、スルホン酸化合物のアミン中和物を硬化触媒とし て多く使用することによって、得られる塗膜は塗膜内部 30 が密に架橋された塗膜を形成でき、塗膜内部に汚染物、 例えば油性インクや油汚染物が浸透することがなく汚染 物による跡が残らない塗膜を形成できる。また特定のシ リコン化合物を配合することによって塗膜表面の表面張 力が低くなり汚染物、例えば油汚染物や、より除去が困 難な油性インクがはじかれて付着した汚染物をティッシ ュペーパーなどで容易に拭き取り除去できる。得られる **途膜の耐汚染性が優れる理由の一つとして、加熱硬化時** に硬化触媒中のアミンの脱離、塗膜表面への移動によっ て耐汚染性の良好なメラミン樹脂硬化剤やシリコン化合 40 物の塗膜表面への配向が促進されることが考えられる。 また使用するシリコン化合物は官能基を有しており、他 の樹脂成分と反応するので塗膜から消失することがな く、長期に亘って優れた耐汚染性を発揮できる。

【0044】本発明組成物は、耐衝撃性に優れ、かつ極めて耐汚染性に優れた塗膜を形成できるので特に耐汚染

性を要求されるレンジフード、換気扇、ガステーブルなどの器物加工用の塗装鋼板用上塗塗料として好適である。

12

【0045】また本発明組成物は、各成分の種類、量を 適宜選択することによって耐衝撃性、耐汚染性の他に、 さらに加工性、塗膜硬度、耐溶剤性のいずれにも優れた 塗膜を形成できる塗料とすることができる。

[0046]

【実施例】以下、実施例により本発明をさらに具体的に 説明する。なお、以下、「部」及び「%」はいずれも重 量基準によるものとする。

【0047】<u>水酸基含有ポリエステル樹脂の製造</u> 製造例1

イソフタル酸 0. 40モル、フタル酸 0. 30モル、アジピン酸 0. 22モル、ネオペンチルグリコール 0. 66モル、トリメチロールプロパン 0. 24モル、やし油脂肪酸 0. 05モル、1,6ーヘキサンジオール 0. 10モル及び重縮合触媒を仕込み、約220℃で5時間エステル化反応を行い、数平均分子量 2,500、水酸基価89mgKOH/g、Tg点-5℃のポリエステル樹脂 A-1を得た。

【0048】実施例1~9および比較例1~4

後記表 1 に示す組成配合にて、塗料化を行ない各上塗り 塗料を得た。厚さ 0. 5 m/m のリン酸亜鉛処理電気亜鉛 メッキ鋼板上に関西ペイント社製 K P カラー 8 6 2 0 プライマー(プレコート鋼板用ポリエステル系プライマー)を乾燥膜厚が 5 μ m となるよう塗装し、素材到達温度 2 2 0 $\mathbb C$ となるよう 4 5 秒間焼付け、プライマー塗装鋼板を得た。このプライマー塗装鋼板上に上記のように して得た各上塗塗料をバーコータにて乾燥膜厚が約 1 8 μ m となるよう塗装し、素材到達最高温度が 2 2 0 $\mathbb C$ と なるよう 6 0 秒間焼付けて各上塗塗装鋼板を得た。得られた塗装鋼板について各種試験を行なった。

【0049】その試験結果を表 2に示す。なお表 1におけるポリエステル樹脂およびメラミン樹脂の量は、固形分重量による表示であり、硬化触媒の量は、それぞれのスルホン酸化合物の量に換算して重量表示した。なお、実施例および比較例の塗料化に際しては、チタン白顔料の分散を行ない、また、シクロへキサノン/スワゾール 1500 (コスモ石油(株)製、芳香族石油系高沸点溶剤)=60/40 (重量比)の混合溶剤を粘度調整などのために使用した。塗装に際しては、塗料粘度をフォードカップ 4で約 100 秒 (25 ∞) に調整した。

[0050]

【表1】

表1

						₹ 4									
	-		夹		施			[9]			比 較 例				
			1	2	3	4	5	6	7	8	9	1	2	3	4
ポリエステル	バイロンKS-1640V バイロンZ80 バイロンGK-250 バイロンKS-1860V バイロンKS-1730V ポリエステル樹脂A-1	(*1) (*2) (*3) (*4) (*5)	80	65	50	80	70	75	80	70	80	80	80	92	20
メ ラ ミ樹 ン脂	サイメル303 スーパーベッカミンJ-820-50 スーパーベッカミンG-821-60		15 5	30 5	40 10	10 10	20 10	25	15 5	15 15	15 5	15 5	15 5	8	70 10
シリコンと物	X-22-3710 X-22-173B	(*9) (*10) (*11) (*12) (*13)	3	4	3	3	10	5	3	3	3		0.5	3	4
硬触 化媒	1	(*14) (*15)	0.8	1.0	1.4	0.5	1.2	1.0	0.4	0.8	0.5	0.8	0.8	0.5	1.4
麒料	チタン白		90	90	90	90	90	90	90	90	90	90	90	90	90

[0051]

* *【表2】 表2

				実			施	商 例				比較例				
			1	2	3	4	5	6	7	8	6	1	2	3	4	
	Edireth M.	テストー1	0.8	0.5	0.9	0.4	0.7	0.5	0.3	0.3	0.5	D. 9	1.2	2.0	1.0	
試	耐污染性	テストー2	0	0	0	0	0	0	0	0	0	×	×	×	0	
験	油性インク	のはじき性	0	0	0	0	0	0	0	0	0	×	Δ	0	0	
結	耐衝擊	性	0	0	0	0	0	0	0	0	0	0	0	0	×	
果	鉛筆硬	度	н	Н	F	2H	H	2H	2H	Н	H	H	Н	2H	F	
	n I	性	2T	3T	1 T	7T	3T	5T	6T	2T	2T	4T	4T	<i>7</i> T	8T	
	耐溶剤	性	50<	50<	50<	50<	50<	50<	50≺	50<	50<	50<	50<	40	20	

【0052】表1中の(註)は、それぞれ下記のとおり ※り、下記表3に示す性状値を有する。

である。

[0054]

【0053】 (*1) ~ (*5) のポリエステル樹脂

【表3】

は、いずれも東洋紡績(株)製のポリエステル樹脂であ※

表3

•	Tg (℃)	水酸基価 (mgKOH/g)	数平均分子量
パイロンKS-1640V	20	10	1, 100
パイロン280	72	5	20,000
パイロンGK-250	60	12	12,000
パイロンKS-1860V	-8	17	32,000
パイロンKS-1730V	-1	14	22,000

16

【0055】 (*6) サイメル303:三井サイアナミッド (株) 製、数平均分子量1,000以下の低分子量メチルエーテル化メラミン樹脂、ヘキサキス (メトキシメチル) メラミンの含有量が60重量%以上。

15

【0056】(*7) スーパーベッカミン J-820-60: 大日本インキ化学工業(株)製、n-ブチルエーテル化メラミン樹脂。

【0057】(*8) スーパーベッカミンG-821-60:大日本インキ化学工業(株)製、イソブチルエーテル化メラミン樹脂。

【0058】 (*9) ~ (*13) は、いずれも信越シリコーン (株) 製であって、前記一般式 [1] で表されるシリコン化合物である。

【0059】(*9) X-22-162C:式[1]において、両末端にカルボキシル基を有する有機基を有する。官能基当量は約2,300。

【0060】(*10) X-22-170B:式[1]において、片末端に水酸基を有する有機基を有する。官能基当量は約2,200。

【0061】(*11) X-22-3710:式[1] において、官能基としてカルボキシル基を有する。官能 基当量は約1,250。

【0062】 (*12) X-22-173B:式[1] の片末端にエポキシ基を有する有機基を有する。官能基 当量は約2,500。

【0063】(*13) X-22-167B:式[1] の両末端にメルカプト基を有する有機基を有する。官能 基当量は約1,700。

【0064】(*14) PTSA中和物:pートルエン スルホン酸のジェーブチルアミンによる中和物。酸のア 30 ミンによる中和当量は1.0。

【0065】(*15) DDBSA中和物:ドデシルベンゼンスルホン酸のジメチルオキサゾリジンによる中和物。酸のアミンによる中和当量は1.0。

【0066】表2中における試験は下記試験方法に従って行った。

【0067】耐汚染性テストー1:20℃の室内において、赤色の油性インク(マジックインキ大型赤、登録商標)で塗面に線を引き、1時間放置後、nーブタノールを浸み込ませたガーゼにて拭き取った。拭き取った後の 40油性インクの跡と油性インクを塗らなかった部分との色差ΔE(JIS Z8730 6.3.2によるハンターの色差式による色差)を測定した。色差ΔEの値が小さいほど良好である。

耐汚染性テスト-2:20℃の室内において、赤色の油性インク(マジックインキ大型赤、登録商標)で塗面に線を引き、20時間放置後、ティッシュペーパー(スコッティティッシュ、クレシア(株)製)にて拭き取った。拭き取った後の油性インクの跡の外観を下記基準に従って評価した。

【0068】◎:跡が認められない。

【0069】○:跡がわずかに認められる。

【0070】△:かなり跡が残る。

10 【0071】×:跡が濃く残る。

【0072】油性インクのはじき性:20℃の室内において、赤色の油性インク(マジックインキ大型赤、)で塗面に線を引いたときの、塗面上での油性インクのはじき程度を評価した。

【0073】◎:油性インクを玉のようにはじく。

【0074】○:油性インクを塗った箇所全面ではじくが、玉状にはならない。

【0075】△:部分的にはじく。

【0076】×:全くはじかない。

【0077】耐衝撃性: JIS K-5400 8. 3.2 (1990) デュポン式耐衝撃性試験に準じて、 落鍾重量500g、撃芯の尖端直径1/2インチ、落錘 高さ50cmの条件にて塗装板の塗面に衝撃を加えた。ついで衝撃を加えた部分にセロハン粘着テープを貼着し、 瞬時にテープを剥がしたときの塗膜の剥がれ程度を評価 した。

【0078】 ②: 塗面に剥がれが認められない。

【0079】×:塗面に剥がれが認められる。

【0080】鉛筆硬度: JIS K-5400 8. 4. 2に規定する鉛筆引っかき試験を行い、すり傷による評価を行った。

【0081】加工性:20℃の室内において、塗面を外側にして試験板を180度折曲げて、折曲げ部分にワレが発生しなくなるT数を表示した。T数とは、折曲げ部分の内側に何もはさまずに180度折曲げを行った場合を0T、試験板と同じ厚さの板を1枚はさんで折曲げた場合を1T、2枚の場合を2T、……8枚の場合を8Tとした。

【0082】耐溶剤性:20℃の室内において、メチルエチルケトンを浸み込ませたガーゼにて塗面に約1 Kg/cm²の荷重をかけて、約5 cmの長さの間を往復させた。プライマの塗膜が見えるまでの往復回数を記載した。50回の往復でもプライマ塗膜が見えないものは50<と表示した。

フロントページの続き

(51) Int. Cl. ⁶ 識別記号 庁内整理番号 F I 技術表示箇所

C 0 9 D 183/04 PMU C 0 9 D 183/04 PMU