Využitie vektorového a skalárneho súčinu

VETA o využití skalárneho súčinu (o uhle vektorov):

Pre veľkosť uhla φ nenulových vektorov **u** a **v** platí : $\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot |\mathbf{v}|}$

Dôsledok : nenulové vektory u a v sú na seba kolmé práve vtedy, keď u.v = 0.

Z definície skalárneho súčinu a z vlastností funkcie kosínus vyplýva:

- u.v > 0 práve vtedy, ak uhol vektorov u a v je **ostrý.**
- u.v = 0 práve vtedy, ak uhol vektorov u a v je **pravý.**
- u.v < 0 práve vtedy, ak uhol vektorov u a v je **tupý.**

VETA o využití vektorového súčinu (obsah trojuholníka):

V priestore je daný trojuholník ABC. Nech $\mathbf{b} = AC$ a $\mathbf{c} = AB$.

Potom

$$S_{\Delta ABC} = \frac{1}{2} |b \times c|$$

Dôkaz : $S_{\Delta ABC} = \frac{1}{2} \cdot \mathbf{c} \cdot \mathbf{v}_c$, $\mathbf{v}_c = \mathbf{b} \cdot \sin \alpha$, $\mathbf{b} = |\mathbf{b}|$, $\mathbf{c} = |\mathbf{c}|$ Po dosadení : $S_{\Delta ABC} = \frac{1}{2} \cdot |\mathbf{b}| \cdot |\mathbf{c}| \cdot \sin \alpha = \frac{1}{2} \cdot |\mathbf{b}| \cdot |\mathbf{c}|$ podľa definície vektorového súčinu

<u>Poznámka</u>: Z každej úlohy v rovine môžeme urobiť úlohu v priestore tak, že za tretiu súradnicu bodov (vektorov) dosadíme nulu.

VETA o využití zmiešaného súčinu(objem rovnobežnostena):

Rovnobežnosten je štvorboký hranol, ktorého protiľahlé steny sú rovnobežné. Pre objem rovnobežnostena ABCDEFGH, v ktorom $\mathbf{u} = AB$, $\mathbf{v} = AD$ a $\mathbf{w} = AE$ platí :

$$\mathbf{V} = |(\mathbf{u} \times \mathbf{v}).\mathbf{w}|$$

Poznámka: Súčin (u x v).w sa nazýva zmiešaný súčin vektorov.

Autor : **Beata Hegerová**, Gymnázium Nováky

Použitá literatúra:

Šedivý a kolektív: Matematika pre 3.ročník gymnázia