STA261: Probability and Statistics II

Shahriar Shams

Week 1 (Introduction and Review of STA257)

Winter 2020

Acknowledgement

I am grateful to these people who helped me create the content of this course...

- Dr. Mahinda Samarakoon, Associate Professor, Department of Computer and Mathematical Sciences, University of Toronto Scarborough.
- Dr. Jabed Tomal, Assistant Professor, Department of Computer and Mathematical Sciences, University of Toronto Scarborough.
- Dr. Jamie Stafford, Professor, Department of Statistical Sciences, University of Toronto.
- **Alex Stringer**, PhD student, Department of Statistical Sciences, University of Toronto.

Review: Probability

- The **probability measure** P for each event A defined on sample space Ω satisfies the following properties:
 - P(A) is non-negative and $0 \le P(A) \le 1$
 - P(A) = 0 when A is empty
 - P(A) = 1 when A is the entire sample space Ω
 - \bullet P is (countably) additive.

X is the outcome of rolling a fair dice. What is the probability that it's an even number?

$$\Omega = \{1,2,3,4,5,6\}, A = \{2,4,6\}$$

 $\implies P(A) = 3/6 = 1/2$

Review: Expectation

- Expected value/ mean/ average of random variable (X) is defined as
 - $E[X] = \int_{-\infty}^{\infty} x f(x) dx$ when X is continuous or
 - $E[X] = \sum_{i} x_i P[X = x_i]$ when X is discrete

X is the outcome of rolling a fair dice. What is the expected value of X?

$$E[X] = 1 * \frac{1}{6} + 2 * \frac{1}{6} + 3 * \frac{1}{6} + 4 * \frac{1}{6} + 5 * \frac{1}{6} + 6 * \frac{1}{6} = \frac{1+2+\ldots+6}{6} = 3.5$$

- Expectation is a linear operator
 - Let X and Y are two random variables and a, b and c are few constants. Then
 - $\bullet \ E[aX+bY+c]=aE[X]+bE[Y]+c$

Indicator Function

• If A is any event, we can define the indicator function of A, written I_A , to be the random variable for all $s \in \Omega$

$$I_A(s) = \begin{cases} 1, & \text{if } s \in A \\ 0, & \text{if } s \notin A \end{cases}$$

Probability expressed as the expectation of Indicator function

Using the same example as before: We are rolling a dice and $A = \{2, 4, 6\}$

Random variable X	1	2	3	4	5	6
I_A	0	1	0	1	0	1

$$E[I_A] = \frac{1}{6}(0+1+0+1+0+1) = \frac{3}{6} = \frac{1}{2} = P[A]$$

Review: LLN

- Law of Large Number (LLN)
 - Let $X_1, X_2, ..., X_i$ be a sequence of independent random variables with $E[X_i] = \mu$.
 - Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
 - Then $\bar{X_n} \xrightarrow{P} \mu$ as $n \to \infty$
 - In naive words: sample mean approaches the population mean as the sample size increases.

We are rolling a fair dice repeatedly and calculating the mean

Sample size (n)	Observations	Sample mean (\bar{X}_n)
3	3,4,1	8/3=2.67
5	3,4,1,6,5	19/5 = 3.8
•••		
800	3,4,1,,2,5	3.49

NOTE: population average = 3.5

LLN in graph

Figure: Trace of sample mean from repeatedly rolling a fair dice

Review: Central Limit Theorem (CLT)

- Suppose $X_1, X_2, ...$ is an i.i.d. sequence of random variables each having finite mean μ and finite variance σ^2
- Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ i.e. sample mean
- Then according to the Central Limit Theorem as $n \to \infty$,

$$\bar{X}_n \xrightarrow{D} N(\mu, \frac{\sigma^2}{n})$$

or

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{D} N(0,1)$$

• In naive words: A random variable (X) can follow some distribution with mean μ and variance σ^2 . If we pick a fixed number of samples (n) and calculate the sample mean repeatedly, then those sample means will have a Normal distribution with mean μ and variance σ^2/n

Review: Linear Combination of Normal variables

- Let $X_i \sim N(\mu_i, \sigma_i^2)$ where i = 1, 2, ...n
- Let Y be a linear combination of all the X_i 's with

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n + b = \sum_{i=1}^{n} a_i X_i + b$$

where $a_1, a_2, ..., a_n, b$ are constants

• Then,

$$Y \sim N\left(\sum_{i=1}^{n} a_{i}\mu_{i} + b, \sum_{i=1}^{n} a_{i}^{2}\sigma_{i}^{2}\right)$$

Example

Let, $X_1 \sim N(10,2)$ and $X_2 \sim N(20,3)$ and $Y = 0.4X_1 + 0.6X_2$ Then $Y \sim N(\ ,\)$ with mean=0.4*10+0.6*20=16 and variance = $(0.4)^2*2+(0.6^2)*3=1.4$

Review: Z and χ^2 distribution

- ullet Standard Normal/ N(0,1) / Z distribution
 - If $X \sim N(\mu, \sigma^2)$ then $\frac{X-\mu}{\sigma} \sim N(0, 1)$
 - $Z = \frac{X-\mu}{\sigma}$
- χ^2 distribution
 - Let $U = Z^2$ where Z is a Standard Normal variable
 - $U \sim \chi^2$ distribution with 1 degrees of freedom. (written as $\chi^2_{(1)}$)
 - Additive property: If $X \sim \chi^2_{(m)}$ and $Y \sim \chi^2_{(n)}$ then $X + Y \sim \chi^2_{(m+n)}$
 - If $X \sim \chi^2_{(m)}$ then E[X] = m

Review: t and F distribution

• t distribution

- \bullet Let Z and U are two independent variables
- where $Z \sim N(0,1)$ and $U \sim \chi^2_{(m)}$
- $\frac{Z}{\sqrt{U/m}} \sim t$ -distribution with m degrees of freedom. (written as $t_{(m)}$)

• F distribution

- Let X and Y are two independent variables
- where $X \sim \chi^2_{(m)}$ and $Y \sim \chi^2_{(n)}$
- Then $\frac{X/m}{Y/n} \sim F$ distribution with degrees of freedom (m,n)

Homework (Non-credit)

Evans and Rosenthal

Exercise: 3.4.21, 3.4.23, 4.6.1 - 4.6.10

Rice

Chapter 6, Exercise: 3, 5, 6