A note on domain and range of functions and solutions

We take a brief moment to review what functions we are interested in this course and to recall their domains.

Note, however, that the domain of a function is not necessarily the domain of the solution of a DE!!

Below is a table with some common functions we will encounter and their domains.

Polynomials $(x^2, x^3, 1, 2+3x^5,$ etc.)	$(-\infty,\infty)$
$\frac{1}{x-c}$, $\frac{1}{(x-c)^2}$, etc. (c a constant)	$(-\infty,c)\cup(c,\infty)$, i.e., all numbers
	but $oldsymbol{c}$
$\sqrt{x}, \sqrt[4]{x}, \sqrt[6]{x}$, etc. (even roots)	$[0,\infty)$
$\ln(x)$	$(0,\infty)$
e^x	$(-\infty,\infty)$
$\sin(x),\cos(x)$	$(-\infty,\infty)$
$\tan(x)$	All $oldsymbol{x}$ except $oldsymbol{x} = rac{\pi}{2} oldsymbol{k}$ for integers $oldsymbol{k}$
$\sec(x)$	All $oldsymbol{x}$ except $oldsymbol{x} = rac{\pi}{2} oldsymbol{k}$ for integers $oldsymbol{k}$
$\csc(x)$	All $oldsymbol{x}$ except $oldsymbol{x} = \pi oldsymbol{k}$ for integers $oldsymbol{k}$
$\cot(x)$	All $oldsymbol{x}$ except $oldsymbol{x} = \pi oldsymbol{k}$ for integers $oldsymbol{k}$

Being able to extend these properties will also be crucial. For example, using the fourth line of the table to deduce the domain of $\ln(x+5)$ is $(-5,\infty)$.

While the domain of a solution to a DE may be different that the domain of the underlying function, it can only be more restrictive. That is, to determine the domain of a solution, we can first consider the domain of the underlying function, and then possibly remove points.

WeBWorK module 02 exercises:

Problems 4,5

Relevant Wikipedia articles:

• Domain of a function (https://en.wikipedia.org/wiki/Domain of a function#Natural domain)