### Aprendizaje no supervisado

VC02: Agrupamiento por particiones: K-means

Félix José Fuentes Hurtado felixjose.fuentes@campusviu.es

Universidad Internacional de Valencia



#### Definiciór

#### Definición





#### Definiciór

- Vectores descriptores de los ejemplos
- Conjunto de datos
- ▶ No existe ninguna variable "especial" respuesta
- ► Formar grupos:
  - \* No se conoce el número de grupos
  - \* No se conocen las pertenencias de ejemplos a grupos



Dos instrucciones:

#### Definiciór

- Dispersión intraclúster
- Dispersión interclúster



#### Dos instrucciones:

#### Definición





#### Objetivo

Encontrar un agrupamiento que maximice la dispersión interclúster y minimice la dispersión intraclúster:

► Dispersión intraclúster

$$I(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{i: C(x_i) = k} \sum_{i': C(x_{i'}) = k} d(x_i, x_{i'})$$

▶ Dispersión interclúster

$$O(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{i: C(x_i) = k} \sum_{i': C(x_{i'}) \neq k} d(x_i, x_{i'})$$

### Objetivo

Encontrar un agrupamiento que maximice la dispersión interclúster y minimice la dispersión intraclúster:

¡Ambos objetivos son equivalentes!



### Objetivo

Encontrar un agrupamiento que maximice la dispersión interclúster y minimice la dispersión intraclúster:

$$T = \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} d(x_i, x_{i'})$$

### Objetivo

Encontrar un agrupamiento que maximice la dispersión interclúster y minimice la dispersión intraclúster:

$$T = \frac{1}{2} \sum_{k=1}^{K} \sum_{i:C(x_i)=k} \left( \sum_{i':C(x_{i'})=k} d(x_i, x_{i'}) + \sum_{i':C(x_{i'})\neq k} d(x_i, x_{i'}) \right)$$

### Objetivo

Encontrar un agrupamiento que maximice la dispersión interclúster y minimice la dispersión intraclúster:

$$T = I(C) + O(C)$$
 
$$\arg\min_{C} I(C) = \arg\min_{C} T - O(C) = \arg\max_{C} O(C)$$

El objetivo es buscar el mejor agrupamiento C que maximiza (minimiza) la dispersión intraclúster (interclúster)

$$\arg \min_{C} I(C) = \arg \min_{C} T - O(C) = \arg \max_{C} O(C)$$

El objetivo es buscar el mejor agrupamiento C que maximiza (minimiza) la dispersión intraclúster (interclúster)

$$\arg \min_{C} \mathit{I}(C) = \arg \min_{C} \mathit{T} - \mathit{O}(C) = \arg \max_{C} \mathit{O}(C)$$

### ¡Número inabarcable de posibles combinaciones!

$$S(n,K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} {K \choose k} k^{n}$$

El objetivo es buscar el mejor agrupamiento C que maximiza (minimiza) la dispersión intraclúster (interclúster)

$$\arg\min_{C}\mathit{I}(C) = \arg\min_{C}\mathit{T} - \mathit{O}(C) = \arg\max_{C}\mathit{O}(C)$$

### ¡Número inabarcable de posibles combinaciones! Núm. asignaciones (logaritmo base 10) 0 0 20 40 100 Núm. clústeres (K) Núm. ejemplos de entrenamiento (n)



¡Necesario recurrir a heurísticas de búsqueda!



### ¡Necesario recurrir a heurísticas de búsqueda!

#### Heurística

En informática, se trata de técnicas diseñadas para resolver un problema de manera rápida cuando la aproximación exhaustiva es muy lenta y/o para encontrar una solución aproximada cuando encontrar la solución exacta es muy difícil o imposible.

Se puede expresar como un *trade-off* (balance) entre velocidad y optimalidad-completitud.



### Heurísticas de búsqueda del mejor agrupamiento

- 1. Encontrar un agrupamiento válido
- 2. Plantear diferentes alternativas a ese agrupamiento
- 3. Escoger la mejor alternativa
- 4. Volver al paso 2





### Tipos de algoritmos de agrupamiento

- ► Basados en particiones
- Jerárquicos
- Espectrales
- ► Basados en densidad
- ► Probabilísticos



#### Búsqueda de la mejor partición de los datos

Se particiona el dataset según criterios basados en distancia

- \*\* Uso de centro(ide)s
- \*\* ¿Fijar el número de clústeres (K)?



#### Búsqueda de la mejor partición de los datos

Se particiona el dataset según criterios basados en distancia

- \*\* Uso de centro(ide)s
- \*\* ¿Fijar el número de clústeres (K)?

#### Algoritmos:

- ► K-means
- ► K-medoids



# Agrupamiento basado en particiones K-means

#### Intuiciór

Los clústeres homogéneos se agrupan alrededor de un centro. Por lo tanto, se puede calcular:

- 1. **Centro**: El centro de un clúster es la medio de los elementos que pertenecen al él
- 2. **Pertenencia**: Un ejemplo pertenece al clúster cuyo centro le es más cercano
- \*\* La combinación de ambos conceptos permite construir el agrupamiento



### Dispersión intraclúster

$$I(C) = \sum_{k=1}^{K} N_k \cdot \sum_{x_i: C(x_i) = k} ||x_i - \bar{x}_k||^2$$

Objetivo a minimizar

$$\arg\min_{C:(\bar{x}_1,\dots,\bar{x}_K)}I(C)$$

# Agrupamiento basado en particiones K-means

#### Heurística

Partiendo de un conjunto de centros aleatorio, buscar la pertenencia más probable de los ejemplos a los clústeres y obtener un nuevo conjunto de centros (agrupamiento)

¡Naturaleza iterativa!



#### K-means

#### K-means

Recibe: Conjunto de entrenamiento,  $\{x_1, ..., x_n\}$ ; número de clústeres, K

- 1. Elección (aleatoria) de K puntos del conjunto de entrenamiento como centros,  $\{\overline{x}_1, ..., \overline{x}_K\}$ .
- 2. Asignar cada ejemplo  $x_i$  al clúster del centro más cercano:  $C(x_i) = \operatorname{argmin}_{k \in \{1, \dots, K\}} ||x_i \overline{x}_k||^2$
- 3. Para cada clúster k, recalcular su centro:  $\bar{x}_k = \operatorname{argmin}_x \sum_{x_i:C(x_i)=k} ||x_i x||^2$
- 4. Los pasos 2 y 3 se iteran hasta que los centros no cambian.

Devuelve: Conjunto de centros,  $\{\overline{x}_1, ..., \overline{x}_K\}$ ; Asignación, C





















### Ventajas

- ► Intuitivo
- ► Rápido
- Sencillo
- ► Mejorable

¡Algoritmo de clustering más popular!



# Agrupamiento basado en particiones K-means

#### Desventajas

- ► El número de clústeres es un parámetro (K)
- Dependencia de la inicialización
- Dependencia de los outliers
- Funciona con variables descriptivas continuas
- Dificultades cuando los clústeres son de diferente tamaño y/o densidad, o no son convexos



# Agrupamiento basado en particiones K-means

#### Desventajas

- ► El número de clústeres es un parámetro (K)

  Validación cruzada
- ► Dependencia de la inicialización *Múltiples ejecuciones del algoritmo, K-means++*
- ► Dependencia de los *outliers Preproceso*
- Funciona con variables descriptivas continuas K-medoids
- Dificultades cuando los clústeres son de diferente tamaño y/o densidad, o no son convexos



K-medoids





K-medoids





# Agrupamiento basado en particiones K-medoids

#### Intuición

La idea iterativa de K-means

Se cambia el centro por el centriode:

Los centros son, en todo momento, ejemplos del conjunto de entrenamiento

#### K-medoids

#### K-means

Recibe: Conjunto de entrenamiento,  $\{x_1, ..., x_n\}$ ; número de clústeres, K

- 1. Elección (aleatoria) de K puntos del conjunto de entrenamiento como centros,  $\{\overline{x}_1, ..., \overline{x}_K\}$ .
- 2. Asignar cada ejemplo  $x_i$  al clúster del centro más cercano:  $C(x_i) = \operatorname{argmin}_{k \in \{1, \dots, K\}} ||x_i \overline{x}_k||^2$
- 3. Para cada clúster k, recalcular su centro:  $\overline{x}_k = \operatorname{argmin}_x \sum_{x_i : C(x_i) = k} ||x_i x||^2$
- 4. Los pasos 2 y 3 se iteran hasta que los centros no cambian.

Devuelve: Conjunto de centros,  $\{\overline{x}_1, ..., \overline{x}_K\}$ ; Asignación, C

#### K-medoids

#### K-medoids

Recibe: Conjunto de entrenamiento,  $\{x_1, ..., x_n\}$ ; número de clústeres, K

- 1. Elección (aleatoria) de K puntos del conjunto de entrenamiento como medoides,  $\{\bar{x}_1, \dots, \bar{x}_K\}$ .
- 2. Asignar cada ejemplo  $x_i$  al clúster del medoide más cercano:  $C(x_i) = \operatorname{argmin}_{k \in \{1, \dots, K\}} d(x_i, \bar{x}_k)$
- 3. Para cada clúster k, recalcular su medoide:  $\breve{x}_k = \operatorname{argmin}_{x:\mathcal{C}(x)=k} \sum_{x_i:\mathcal{C}(x_i)=k} d(x_i,x)$
- 4. Los pasos 2 y 3 se iteran hasta que los centros no cambian.

Devuelve: Conjunto de centros,  $\{\bar{x}_1, ..., \bar{x}_K\}$ ; Asignación, C

Elegir el número de clústeres (K)





Elegir el número de clústeres (K)



Elegir el número de clústeres (K)

#### Ideas

- ► La dispersión intraclúster siempre se reduce
- ► Elegir el punto donde el cambio de tendencia es más pronunciado

### Aprendizaje no supervisado

VC02: Agrupamiento por particiones: K-means

Félix José Fuentes Hurtado felixjose.fuentes@campusviu.es

Universidad Internacional de Valencia

