1、物理接□和通信方式

1.1 物理接□

物理接口应采用串行通信口,采用标准的RS232方式,信息传输方式为异步方式,起始位1位,数据位8位,停止位1位,无校验位。数据传输速率为9600bps。

1.2 通信方式

通信方式采用主从应答模式,PC 端软件或监控设备作为主机发起通信命令,BMS 作为从机返回响应信息。主机下发通讯命令,若在 500mS 内收不到从机的响应信息或接收响应信息错误,则认为本次通信过程失败。

2、协议的基本格式

2.1 帧结构的基本格式

表A.1 帧结构

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	CID1	CID2	LENGTH	INFO	CHKSUM	EOI

2.2 基本格式的解释

表A.2 基本格式

序号	符号	表示意义	备注
1	SOI	起始位标志 (START OF INFORMATION)	(7EH)
2	VER	通信协议版本号 (V2.5)	(25H)
3	ADR	对同类型设备的不同地址描述 (0-15)	
4	CID1	设备标识码(设备类型描述)	
5	CID2	命令信息:控制标识码(数据或动作类型描述)	
		响应信息:返回码 RTN	
6	LENGTH	INFO 字节长度(包括 LENID 和 LCHKSUM)	
7	INFO	命令信息:控制数据信息 COMMAND_INFO	
		应答信息:应答数据信息 DATA_INFO	
8	CHKSUM	校验和码	
9	EOI	结束码 (END OF INFORMATION)	CR (ODH)

备注: VER-表示通信协议版本, 固定使用 V2.5, 即 25H。

ADR-表示电池 PACK 地址,BMS 使用四位拨码开关进行地址设置,地址范围为 0^{-15} 。

2.3 数据格式

2.3.1 基本数据格式

除 SOI 和 EOI 是以 16 进制解释 16 进制传输外,其余各项都是以 16 进制解释,以 16 进制-ASCII 码方式传输,每个字节用两个 ASCII 码表示,如当 CID2 = 4BH 时,传输时传送 34H('4'的 ASCII 码),和 42H('B'的 ASCII 码)两个字节。

2.3.2 LENGTH数据格式

表A.3 LENGTH 的数据格式

高字节										1	氐字节			
	校验码 LCHKSUM LENID (i					表示 II	NFO 的作	专送中,	ASC ∏ Ā	3字节数	汝)			
D15 D14 D13 D12 D11 D10 D9 D8				D7	D6	D5	D4	D3	D2	D1	DO			

2.3.3 LEDID

LENID 表示 INFO 项的 ASCII 码字节数,当 LENID=0 时,INFO 为空,即无该项。由于 LENID 只有 12Bit,所以,要求数据包最大不能超过 4095 个字节。

LENGTH 传输中先传高字节,再传低字节,分四个 ASCII 码传送。

2. 3. 4 LCHKSUM

校验码 LCHKSUM 的计算: D11D10D9D8+D7D6D5D4+D3D2D1D0

求和后模 16 余数取反加 1。

例如:

INFO 中 ASCII 码字节数为 18, 即 LENID=0000 0001 0010B。

D11D10D9D8+D7D6D5D4+D3D2D1D0 = 0000B + 0001B + 0010B = 0011B,模 16 余数为 0011B,0011B 取反加 1 为 1101B,则 LCHKSUM 为 1101B。

可得: LENGTH 为 1101 0000 0001 0010B, 即 D012H。

2.4 CHKSUM数据格式

CHKSUM 的计算是除 S0I、E0I 和 CHKSUM 外,其他字符按 ASCII 码值累加求和,所得结果模 65536 余数取反加 1。例如:

收到或发送的字符序列是:

"~1203400356ABCEFEFC72\R" ("~"为SOI, "CR"为EOI),

则最后 5 个字符 "FC72\R"中的 FC72 是 CHKSUM,

计算方法是:

'1' + '2' + '0' + ···+ 'F' + 'E' = 31H + 32H + 30H + ··· + 46H + 45H = 038EH

038EH 模 65536 余数是 038EH, 038EH 取反加 1 就是 FC72H。

2.5 DATA_INFO数据格式

模拟量数据的传送采用定点数和浮点数两种形式,可任选一种。本协议统一采用定点数传输数据。

1) 整型数格式 (INTEGER, 2字节)

有符号整型数 -32768-+32767

无符号整型数 0-+65535

传送顺序为先高字节后低字节。

2) 无符号字符型 (CHAR, 1字节, 0-255)

表A.4 定点数数据类型

序号	遥测内容	数据类型	传送单位
1	电池单体电压	无符号整型	mV

2			O. 1K
			温度的计算如下:
	温度	无符号整型	在响应信息中的温度数据的单位为0.1K,
			如: 25.5 °C = $25.5 * 10 + 2730 = 2985$ (0.1K)
			-12.4°C = $-12.4 * 10 + 2730 = 2606 (0.1K)$
3	电池组总电压	无符号整型	mV
4	电池组充、放电电流	有符号整型	10mA (充电为正,放电为负,补码表示)
5	电池组容量	无符号整型	10mAH (包含剩余容量、满充容量、设计容量)
5		1313 3	

2.6 日期时间

DATA_TIME 和 COMMAND_TIME 格式见下表:

表A.5 日期时间格式

名称	取值范围	数据类型	备注
年	(0-99)	CHAR	(字符型1字节,十进制)
月	(1-12)	CHAR	(字符型1字节,十进制)
	(1-31)	CHAR	(字符型1字节,十进制)
町	(0-23)	CHAR	(字符型1字节,十进制)
	(0-59)	CHAR	(字符型1字节,十进制)
秒	(0-59)	CHAR	(字符型1字节,十进制)

注: 年份按字符型格式传送, 实际值=传送值 + 2000。年份范围为 2000-2099。

3、编码分配

CID1、CID2 编码分配表如下:

3.1 设备类型编码分配表 (CID1)

CID1 编码分配表见下表:

表A.6 CID1 编码分配表

序号	内容	CID1	备注
1	铁锂电池	46H	(适用三元锂)

3.2 命令信息编码分配表 (CID2)

CID2 编码分配表见下表:

表A.7 CID2 编码分配表

序号	内容	CID2	备注
1	获取 PACK 数量	90Н	
2	获取 PACK 模拟量	42H	

3	获取 PACK 告警量	44H	
4	控制命令	99Н	
5	获取软件版本信息	C1H	自定义
6	获取产品信息	С2Н	自定义
7	充电 MOSFET 控制	9АН	自定义
8	放电 MOSFET 控制	9BH	自定义
9	获取 BMS 时间日期	B1H	自定义
10	设置 BMS 时间日期	В2Н	自定义
11	获取 PACK 容量信息	АбН	自定义

表A.8 CID2 响应编码表 (RTN)

序号	意义	RTN	备注
1	正常	00Н	
2	预留	01H	
3	CHKSUM 错误	02Н	
4	LCHKSUM 错误	03Н	
5	CID2 无效	04Н	
6	预留	05Н	
7	预留	06Н	
8	操作或写入错误	09Н	自定义

4、命令说明

4.1 获取PACK数量

表A. 9 获取 PACK 数量命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	90H	LENGTH		CHKSUM	EOI

注: LENID = 00H。

如 BMS 地址设置不等于 1 时,PACK 数量响应固定为 1。如 BMS 地址设置为 1 时,结合 RS485 主从模式,PACK 数量依据实际电池组个数决定。

表A. 10 获取 PACK 数量响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: LENID = 02H, DATAINFO 即为 PACK 数量。

4.2 获取PACK模拟量

表A. 11 获取 PACK 模拟量命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	42H	LENGTH		CHKSUM	EOI

注: LENID = 02H。

INFO 为一个字节, 即 COMMAND:

COMMAND = FFH, 获取所有 PACK 模拟量。

COMMAND = 01H, 获取 PACK1 模拟量。

• • • • •

COMMAND = 0FH, 获取 PACK15 模拟量。

说明:适用 BMS 地址设置为 1 的 RS232 接口,结合 RS485 采用主从结构,即可获取多个 PACK 数据;如 BMS 地址不等于 1 或者 RS485 为非主从结构时,只能获取到本 PACK 的模拟量,可设置 COMMAND 为 01H 或 FFH。

表A. 12 获取 PACK 模拟量响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: DATAINFO 由 INFOFLAG 和 DATAI 组成, DATAI 详见表 A. 13。

INFOFLAG为00H或01H。

表A. 13 模拟量响应 DATAI 数据传输顺序

序号	 内容	DATAI 字节数	 备注
1	* PACK 数量 M / COMMAND 值	1	
2	 PACK 1 电池数据		见表 A. 14
3			
M + 1	PACK M 电池数据		见表 A. 14

^{*} 当命令中 COMMAND 为 FFH 时,响应信息为 PACK 数量;如为其他值时,响应信息为 COMMAND 的数值。

表A.14 单组电池模拟量内容及传输顺序

序号	内容	DATAI 字节数	备注
1	│ │电池单体个数 M	1	
2	电池单体电压 1	2	
3	电池单体电压 2	2	
4			

M + 1	电池单体电压 M	2	
M + 2	监测温度个数 N	1	
M + 3	温度 1	2	
M + 4	温度 2	2	
M + 5			
M + N + 2	温度 N	2	
M + N + 3	PACK 电流	2	充电为正,放电为负, 单位: 10mA,补码表示
M + N + 4	PACK 总电压	2	
M + N + 5	PACK 剩余容量	2	单位: 10mAH
M + N + 6	用户自定义个数 P = 3	1	
M + N + 7	PACK 满充容量	2	单位: 10mAH
M + N + 8	充放电循环次数	2	
M + N + 9	PACK 设计容量	2	单位: 10mAH

4.3 获取PACK告警量

表A. 15 获取 PACK 告警量命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	44H	LENGTH		CHKSUM	EOI

注: LENID = 02H。

INFO 为一个字节, 即 COMMAND:

COMMAND = FFH, 获取所有 PACK 告警量。

COMMAND = 01H, 获取 PACK1 告警量。

....

COMMAND = 0FH, 获取 PACK15 告警量。

说明:适用 BMS 地址设置为 1 的 RS232 接口,结合 RS485 采用主从结构,即可获取多个 PACK 数据;如 BMS 地址不等于 1 或者 RS485 为非主从结构时,只能获取到本 PACK 的告警量,可设置 COMMAND 为 01H 或 FFH。

表A. 16 获取 PACK 告警量响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: DATAINFO 由 INFOFLAG 和 WARNSTATE 组成, WARNSTATE 详见表 A. 17。

INFOFLAG为00H或01H。

表A. 17 模拟量响应 DATAI 数据传输顺序

序号	内容	 DATAI 字节数	备注
1	 * PACK 数量 M / COMMAND 值	1	
2	PACK 1 告警量信息		见表 A. 18
3			
M + 1	PACK M 告警量信息		见表 A. 18

^{*} 当命令中 COMMAND 为 FFH 时,响应信息为 PACK 数量;如为其他值时,响应信息为 COMMAND 的数值。

表A.18 单组电池告警量内容及传输顺序

序号	内容	DATAI 字节数	备注
1	电池单体个数 M	1	
2	电池单体电压 1 告警	1	
3	电池单体电压 2 告警	1	
4			
M + 1	 电池单体电压 M 告警	1	
M + 2	 监测温度个数 N	1	
M + 3	温度1告警	1	
M + 4	温度 2 告警	1	
M + 5			
M + N + 2	温度№告警	1	
M + N + 3	PACK 充电电流告警	1	
M + N + 4	PACK 总电压告警	1	
M + N + 5	PACK 放电电流告警	1	
M + N + 6	 保护状态 1	1	 详见表 A. 19
M + N + 7	 保护状态 2	1	详见表 A. 20
M + N + 8	 指示状态	1	详见表 A. 21
M + N + 9	 控制状态	1	详见表 A. 22
M + N + 10	故障状态	1	详见表 A. 23
M + N + 11	均衡状态 1	1	1-8 串均衡状态
M + N + 12	均衡状态 2	1	9-16 串均衡状态
M + N + 13	告警状态 1	1	详见表 A. 24
M + N + 14	告警状态 2	1	详见表 A. 25

告警字节描述:

── 00H: 正常;

—— 01H: 低于下限;

—— 02H: 高于上限;

—— 80H—EFH: 用户自定义;

—— FOH: 其他故障。

表A.19 保护状态 1 解释

BIT	内容	备注	
7	 预留		
6	短路	1: 短路保护	0: 无
5	放电过流保护	1: 放电过流保护	0: 无
4	充电过流保护	1: 充电过流保护	0: 无
3	总压过放保护	1: 总压过放保护	0: 无
2	总压过压保护	1: 总压过压保护	0: 无
1	单体过放保护	1: 单体过放保护	0: 无
0	单体过压保护	1: 单体过压保护	0: 无

表A. 20 保护状态 2 解释

BIT	内容	备注	
7	Fully (充满)	1: Fully (充满)	0: 无
6	环境低温保护	1:环境低温保护	0: 无
5	环境高温保护	1:环境高温保护	0: 无
4	MOS高温保护	1: MOS高温保护	0: 无
3	放电低温保护 (电芯)	1: 放电低温保护	0: 无
2	充电低温保护(电芯)	1: 充电低温保护	0: 无
1	放电高温保护(电芯)	1: 放电高温保护	0: 无
0	充电高温保护 (电芯)	1: 充电高温保护	0: 无

表A.21 指示状态解释

BIT	内 容	备注	
7	加热膜指示	1: ON	0: OFF
6	预留		
5	ACin	1: 有	0: 无
4	充电器反接指示	1: 反接	0: 无
3	使用Pack供电指示	1: Pack供电	0: 未使用
2	DFET指示	1: ON	0: OFF
1	* CFET指示	1: ON	0: OFF

0	0	限流指示	1: ON	0: OFF
---	---	------	-------	--------

^{*} 充电 MOS 和限流回路任一为开启状态,显示为 0N; 都为关闭状态,显示为 0FF。

表A. 22 控制状态解释

BIT	内 容	 备注	
7	预留		
6	预留		
5	LED告警功能	1: 屏蔽	0: 使能
4	充电限流功能	1: 屏蔽	0: 使能
3	限流档位	1: 低档位	0: 高档位
2	预留		
1	预留		
0	蜂鸣器告警功能	1: 使能	0: 屏蔽

表A.23 故障状态解释

BIT	内 容	备注	
7	· 预留		
6	 预留		
5	采样故障	1: 故障	0: 正常
4	电芯故障	1: 故障	0: 正常
3	 预留		
2	温度传感器故障 (NTC)	1: 故障	0: 正常
1	放电MOS故障	1: 故障	0: 正常
0	充电MOS故障	1: 故障	0: 正常

表A. 24 告警状态 1 解释

BIT	内容	备注	
7	预 留		
6	预留		
5	放电过流告警	1: 告警	0: 正常
4	充电过流告警	1: 告警	0: 正常
3	总压低压告警	1: 告警	0: 正常
2	总压过压告警	1: 告警	0: 正常
1	单体低压告警	1: 告警	0: 正常
0	单体过压告警	1: 告警	0: 正常

表A. 25 告警状态 2 解释

BIT	内容	备注	
7	低电量告警	1: 告警	0: 正常
6	MOS高温告警	1: 告警	0: 正常
5	环境低温告警	1: 告警	0: 正常
4	环境高温告警	1: 告警	0: 正常
3	放电低温告警(电芯)	1: 告警	0: 正常
2	充电低温告警 (电芯)	1: 告警	0: 正常
1	放电高温告警 (电芯)	1: 告警	0: 正常
0	充电高温告警 (电芯)	1: 告警	0: 正常

4.4 控制命令

表A. 26 控制命令命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	99Н	LENGTH		CHKSUM	EOI

注: LENID = 02H。

INFO 为一个字节, 即 COMMAND:

COMMAND = 06H, 使能 LED 告警功能。

COMMAND = 07H, 屏蔽 LED 告警功能。

COMMAND = 08H, 选择限流高档位。

COMMAND = 09H, 选择限流低档位。

COMMAND = OAH, 使能限流功能。

COMMAND = OBH, 屏蔽限流功能。

COMMAND = OCH, 屏蔽蜂鸣器告警功能。

COMMAND = ODH, 使能蜂鸣器告警功能。

如无某项功能时,操作提示失败。

表A. 27 控制命令响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: LENID = 04H。

DATAINFO 即为 COMMAND 和控制状态,控制状态详见表 A. 22。

4.5 获取软件版本信息

表A. 28 获取软件版本信息命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	C1H	LENGTH		CHKSUM	EOI

注: LENID = 00H。

表A. 29 获取软件版本信息响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: LENID = 28H。

DATAINFO 即为软件版本信息, 20 个字符, 不足 20 个字符补空格。

4.6 获取产品信息

表A.30 获取产品信息命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	С2Н	LENGTH		CHKSUM	EOI

注: LENID = 00H。

表A.31 获取产品信息响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: LENID = 50H 或 28H。

DATAINFO 即为产品信息,产品信息包含 BMS 生产信息 (20 个字符)和 PACK 生产信息 (20 个字符)。

如 LENID = 28H, 则无 PACK 生产信息。

4.7 充电MOSFET控制

表A. 32 充电 MOSFET 控制命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	9AH	LENGTH		CHKSUM	EOI

注: LENID = 02H。

INFO 为一个字节, 即 COMMAND:

COMMAND = 00H, 开启充电 MOSFET。

COMMAND = 01H, 关闭充电 MOSFET。

说明: 如果放电 MOSFET 为强制关闭状态或者正在放电,则无法操作关闭充电 MOSFET。

表A. 33 充电 MOSFET 控制响应信息

序号		1	2	3	4	5	6	7	8	9
字节	5数	1	1	1	1	1	2	LENID/2	2	1
格式	t	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: LENID = 02H。

DATAINFO 为一个字节, 即为指示状态, 见表 A. 21。

说明: RTN 响应为 00H 时,表示操作成功;其他表示操作失败。

4.8 放电MOSFET控制

表A. 34 放电 MOSFET 控制命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	9ВН	LENGTH		CHKSUM	EOI

注: LENID = 02H。

INFO 为一个字节, 即 COMMAND:

COMMAND = 00H, 开启放电 MOSFET。

COMMAND = 01H, 关闭放电 MOSFET。

说明: 如果充电 MOSFET 为强制关闭状态或者正在充电,则无法操作关闭放电 MOSFET。

表A.35 放电 MOSFET 控制响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: LENID = 02H。

DATAINFO 为一个字节,即为指示状态,见表 A. 21。

说明: RTN 响应为 00H 时,表示操作成功;其他表示操作失败。

4.9 获取BMS时间日期

表A. 36 获取 BMS 时间日期命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	B1H	LENGTH		CHKSUM	EOI

注: LENID = 00H。

表A. 37 获取 BMS 时间日期响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: LENID = OCH。

DATAINFO 为六个字节,即为时间日期信息,详见表 A. 38。

表A. 38 时间日期 DATAINFO 内容及传输顺序

序号	内 容	DATAI 字节数	备注
1	年	1	实际值=传送值 + 2000
2	月	1	
3		1	
4		1	
5	分	1	
6	秒	1	

4.10 设置BMS时间日期

表A. 39 设置 BMS 时间日期命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	В2Н	LENGTH		CHKSUM	EOI

注: LENID = OCH,

INFO 为六个字节, 即为时间日期信息, 详见表 A. 40。

表A. 40 时间日期 INFO 内容及传输顺序

		Ι	
序号	内容	DATAI 字节数	备注
1	年	1	 传送值=实际值 - 2000
2	月	1	
3		1	
4	 时	1	
5) 分	1	
6	秒	1	

表A. 41 设置 BMS 时间日期响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: LENID = 00H。

4.11 获取PACK容量信息

表A. 42 获取 PACK 容量信息命令信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	А6Н	LENGTH		CHKSUM	EOI

注: LENID = 00H。

表A. 43 获取 PACK 容量信息响应信息

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
格式	SOI	VER	ADR	46H	RTN	LENGTH	DATAINFO	CHKSUM	EOI

注: LENID = OCH。

DATAINFO 为六个字节, 即为 PACK 容量信息, 详见表 A. 44。

表A. 44 容量信息 DATAINFO 内容及传输顺序

序号	内容	DATAI 字节数	备注
1	 PACK 剩余容量	2	单位: 10mAH
2	PACK 满充容量	2	单位: 10mAH
3	PACK 设计容量	2	单位: 10mAH

5、示例说明

RS232 通信为一对一通信方式,实际应用时 BMS 将不对 ADR 字段做严格限制,BMS 响应信息中 ADR 字段以 BMS 实际地址上传。除 CID2 码为 42H 和 44H 外,其他的 CID2 码只对本 PACK 有效,即 RS232 通信线缆连接到的 PACK。通信示例命令如下:

获取 PACK 模拟量:

7E 32 35 30 30 34 36 34 32 45 30 30 32 30 31 46 44 33 31 0D (COMMAND = 01H)

7E 32 35 30 30 34 36 34 32 45 30 30 32 46 46 46 44 30 36 0D (COMMAND = FFH)

获取 PACK 告警量:

7E 32 35 30 30 34 36 34 34 45 30 30 32 30 31 46 44 32 46 0D (COMMAND = 01H)

7E 32 35 30 30 34 36 34 34 45 30 30 32 46 46 46 44 30 34 0D (COMMAND = FFH)

命令响应信息详细解析:

命令信息: 7E 32 35 30 30 34 36 34 32 45 30 30 32 46 46 46 44 30 36 0D

响应信息:

```
33 41 43 0D
```

响应信息详细解析:

- 7E (SOI)
- 32 35 (VER, 即版本号 25H, V2.5)
- 30 30 (ADR, 电池 PACK 地址为 0)
- 34 36 (CID1, 46H)
- 30 30 (RTN, 00H)
- 46 30 37 41 (LENGTH, F07A, 即 LENID 为 07AH, DATAINFO 长度为 122 个字节, LCHKSUM 为 FH)
- 30 30 (DATAINFO 由 INFOFLAG 和 DATAI 组成,此处为 INFOFLAG,即 00H。以下信息为 DATAI)
- 30 31 (PACK 数量, 01H)
- 31 30 (电池单体个数 M, 即 10H, 为 16 个单体电压)
- 30 44 34 32 (第1串单体电压: 0D42H, 即 3394mV)
- 30 44 31 34 (第2串单体电压: OD14H, 即 3348mV)
- 30 44 31 33 (第3 串单体电压: OD13H, 即 3347mV)
- 30 44 31 33 (第4串单体电压: OD13H, 即 3347mV)
- 30 44 31 33 (第5 串单体电压: OD13H, 即 3347mV)
- 30 44 31 33 (第6 串单体电压: OD13H, 即 3347mV)
- 30 44 31 33 (第7 串单体电压: OD13H, 即 3347mV)
- 30 44 31 33 (第8串单体电压: OD13H, 即 3347mV)
- 30 44 31 31 (第9串单体电压: OD11H, 即 3345mV)
- 30 44 31 32 (第 10 串单体电压: OD12H, 即 3346mV)
- 30 44 31 33 (第 11 串单体电压: OD13H, 即 3347mV)
- 30 44 31 31 (第 12 串单体电压: OD11H, 即 3345mV)
- 30 44 31 31 (第 13 串单体电压: 0D11H, 即 3345mV)
- 30 44 31 32 (第 14 串单体电压: OD12H, 即 3346mV)
- 30 44 31 30 (第 15 串单体电压: OD10H, 即 3344mV)
- 30 44 31 33 (第 16 串单体电压: 0D13H, 即 3347mV)
- 30 36 (监测温度个数 N, 即 06H, 为 6 个温度)
- 30 42 42 37 (第1个温度: OBB7H, 即 2999, 26.9℃)
- 30 42 42 37 (第2个温度: 0BB7H, 即2999, 26.9℃)
- 30 42 42 38 (第3个温度: 0BB8H, 即3000, 27.0℃)
- 30 42 42 36 (第 4 个温度: OBB6H, 即 2998, 26.8℃)
- 30 42 42 33 (第5个温度 (MOS温度): OBB3H, 即 2995, 26.5℃)
- 30 42 42 44 (第6个温度 (环境温度): 0BBDH, 即 2994, 27.5℃)
- 30 30 30 (PACK 电流, 0000H, 单位 10mA, 补码表示, 可表示电流范围: -327.68A-+327.67A)
- 44 31 35 35 (PACK 总电压, D155H 即 53.589V)
- 31 32 38 45 (PACK 剩余容量, 128EH 即 47.50AH)
- 30 33 (用户自定义个数 P, 03H)
- 31 33 38 38 (PACK 满充容量, 1388H 即 50.00AH)
- 30 30 30 30 (充放电循环次数, 0000H)
- 31 33 38 38 (PACK 设计容量, 1388H 即 50.00AH)
- 45 33 41 43 (CHKSUM, E3ACH)
- OD (EOI)

备注

监控设备与 BMS 的 RS232 接□进行通信调试时,需注意以下情况:

- 1、 确保 BMS 是否为工作状态,可通过观察 LED 指示灯状态来判断 (RUN 闪烁,或者 ALM 闪烁或常亮)。如果所有灯都是熄灭状态,可以通过按键 (3-6S) 激活 BMS,如果带弱电开关的,需确保为 ON 状态。
- 2、 确认监控设备的通信波特率是否与产品规格书相符。
- 3、 数据解析时,请注意区分是否为有符号数据,以及获取 PACK 模拟量和告警量响应信息中不要遗漏解析 INFOFLAG。