

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers

AD8661/AD8662/AD8664

FEATURES

Low offset voltage: 100 μ V maximum @ $V_s = 5$ V

Low input bias current: 1 pA maximum Single-supply operation: 5 V to 16 V

Low noise: 10 nV/√Hz Wide bandwidth: 4 MHz **Unity-gain stable** Small package options 3 mm × 3 mm 8-lead LFCSP 8-lead MSOP and narrow SOIC 14-lead TSSOP and narrow SOIC

APPLICATIONS

Sensors **Medical equipment Consumer audio Photodiode amplification ADC drivers**

PIN CONFIGURATIONS

Figure 1. AD8661, 8-Lead SOIC_N (R-8)

Figure 2. AD8661, 8-Lead LFCSP VD (CP-8-2)

Figure 3. AD8662, 8-Lead SOIC_N (R-8)

Figure 4. AD8662, 8-Lead MSOP (RM-8)

Figure 5. AD8664, 14-Lead SOIC_N

Figure 6. AD8664, 14-Lead TSSOP (RU-14)

GENERAL DESCRIPTION

The AD8661/AD8662/AD8664 are rail-to-rail output, singlesupply amplifiers that use the Analog Devices, Inc., patented DigiTrim[®] trimming technique to achieve low offset voltage. The AD866x series features extended operating ranges, with supply voltages up to 16 V. It also features low input bias current, wide signal bandwidth, and low input voltage and current noise.

The combination of low offset, very low input bias current, and a wide supply range makes these amplifiers useful in a wide variety of applications usually associated with higher priced JFET amplifiers. Systems using high impedance sensors, such as photodiodes, benefit from the combination of low input bias current, low noise, low offset, and wide bandwidth. The wide operating voltage range meets the demands of high performance ADCs and DACs. Audio applications and medical

monitoring equipment can take advantage of the high input impedance, low voltage and current noise, and wide bandwidth.

The single AD8661 is available in a narrow 8-lead SOIC package and a very thin, dual lead, 8-lead LFCSP. The AD8661 SOIC_N package is specified over the extended industrial temperature range of -40°C to +125°C. The AD8661 LFCSP_VD is specified over the industrial temperature range of -40°C to +85°C. The AD8662 is available in a narrow 8-lead SOIC package and an 8-lead MSOP, both specified over the extended industrial temperature range of -40°C to +125°C. The AD8664 is available in a narrow 14-lead SOIC package and a 14-lead TSSOP, both with an extended industrial temperature range of -40°C to +125°C.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

©2006 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features	AD8661 Electrical Characteristics—LFCSP_VD Only5
Applications1	AD8661 Electrical Characteristics—LFCSP_VD Only6
Pin Configurations	Absolute Maximum Ratings7
General Description	Thermal Resistance
Revision History	ESD Caution
Specifications	Typical Performance Characteristics8
AD8661/AD8662/AD8664 Electrical Characteristics— SOIC_N, MSOP, and TSSOP	Outline Dimensions
REVISION HISTORY 7/06—Rev. C to Rev. D	Changes to Table 1
Added AD8664Universal	Changes to Table 1
Added 14-Lead SOIC_N and 14-Lead TSSOPUniversal	Changes to Table 2
Changes to Features	Changes to Table 46
Changes to Table 1	Changes to Table 57
Changes to Table 2	Updated Outline Dimensions
Changes to Table 3	Changes to Ordering Guide
Changes to Table 4	
Changes to Table 5 and Table 6	1/06—Rev. 0 to Rev. A
Changes to Figure 2911	Added LFCSP_VD
Updated Outline Dimensions	Changes to Table 2
Changes to Ordering Guide	Changes to Ordonia Cuido
5/06—Rev. B to Rev. C	Changes to Ordering Guide
Changes to Ordering Guide	
3/06—Rev. A to Rev. B Added AD8662	

SPECIFICATIONS

AD8661/AD8662/AD8664 ELECTRICAL CHARACTERISTICS—SOIC_N, MSOP, AND TSSOP

 V_S = 5.0 V, V_{CM} = $V_S/2$, T_A = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min Typ Max		Unit	
INPUT CHARACTERISTICS						
Offset Voltage	V_{OS}	$V_{CM} = V_S/2$		30	100	μV
AD8661		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			1000	μV
AD8661		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$			1400	μV
AD8662		-40°C < T _A < +125°C			1000	μV
AD8664		-40°C < T _A < +125°C			1200	μV
Input Bias Current	I _B			0.3	1	рА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			50	рА
		-40°C < T _A < +125°C			300	рА
Input Offset Current	los			0.2	0.5	pА
		-40°C < T _A < +85°C			20	pА
		-40°C < T _A < +125°C			75	pА
Input Voltage Range			-0.1		+3.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1 \text{ V to } +3.0 \text{ V}$	85	100		dB
		-40°C < T _A < +125°C	80	100		dB
Large Signal Voltage Gain	Avo	$R_L = 2 k\Omega$, $V_O = 0.5 V$ to 4.5 V	100	220		V/mV
Offset Voltage Drift	TCVos					
AD8661		-40°C < T _A < +125°C		3	10	μV/°C
AD8662, AD8664		-40°C < T _A < +125°C		2	9	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	4.85	4.93		V
		-40°C < T _A < +125°C	4.80			V
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		50	100	mV
		-40°C < T _A < +125°C			110	mV
Short-Circuit Current	I _{sc}			±19		mA
Closed-Loop Output Impedance	Z _{оит}	$f = 1 \text{ MHz}, A_V = 1$		50		Ω
POWER SUPPLY						
Supply Current per Amplifier	I _{SY}	$V_0 = V_s/2$		1.15	1.40	mA
,		-40°C < T _A < +125°C			2.0	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		3.5		V/µs
Gain Bandwidth Product	GBP			4		MHz
Phase Margin	Φο			65		Degrees
NOISE PERFORMANCE	-					
Peak-to-Peak Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.5		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		12		nV/√Hz
· · · · · · · · · · · · · · · · · ·		f = 10 kHz		10		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.1		pA/√Hz

AD8661/AD8662/AD8664 ELECTRICAL CHARACTERISTICS—SOIC_N, MSOP, AND TSSOP

 V_S = 16.0 V, V_{CM} = $V_S/2$, T_A = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = V_S/2$		50	160	μV
AD8661		-40°C < T _A < +85°C			1000	μV
AD8661		-40°C < T _A < +125°C			1400	μV
AD8662		-40°C < T _A < +125°C			1000	μV
AD8664		-40°C < T _A < +125°C			1200	μV
Input Bias Current	I _B			0.3	1	pA
		-40°C < T _A < +85°C			50	pA
		-40°C < T _A < +125°C			300	pA
Input Offset Current	los			0.2	0.5	pА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			20	pA
		-40°C < T _A < +125°C			75	pА
Input Voltage Range			-0.1		+14.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1 \text{ V to } +14.0 \text{ V}$	90	110		dB
		-40°C < T _A < +125°C	90	110		dB
Large Signal Voltage Gain	Avo	$R_L = 2 \text{ k}\Omega$, $V_O = 0.5 \text{ V to } 15.5 \text{ V}$	200	360		V/mV
Offset Voltage Drift	TCVos					
AD8661		-40°C < T _A < +125°C		3	10	μV/°C
AD8662, AD8664		-40°C < T _A < +125°C		2	9	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	15.93	15.97		V
. 5		I _L = 10 mA	15.60	15.70		V
		-40°C < T _A < +125°C	15.50			V
Output Voltage Low	V _{OL}	I _L = 1 mA		24	50	mV
		I _L = 10 mA		190	300	mV
		-40°C < T _A < +125°C			350	mV
Short-Circuit Current	Isc			±140		mA
Closed-Loop Output Impedance	Z _{OUT}	$f = 1 \text{ MHz}, A_V = 1$		45		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{S} = 5 \text{ V to } 16 \text{ V}$	95	110		dB
,		-40°C < T _A < +125°C	95	115		dB
Supply Current per Amplifier	I _{SY}	$V_O = V_S/2$		1.25	1.55	mA
		-40°C < T _A < +125°C			2.1	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		3.5		V/µs
Gain Bandwidth Product	GBP			4		MHz
Phase Margin	Фо			65		Degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.5		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		12		nV/√Hz
3,		f = 10 kHz		10		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.1		pA/√Hz

AD8661 ELECTRICAL CHARACTERISTICS—LFCSP_VD ONLY

 V_S = 5.0 V, V_{CM} = $V_S/2$, T_A = 25°C, unless otherwise noted.

Table 3.

Parameter	Symbol Conditions		Min	Тур	Max	Unit	
INPUT CHARACTERISTICS							
Offset Voltage	Vos	$V_{CM} = V_S/2$		50	300	μV	
		-40°C < T _A < +85°C			2000	μV	
Input Bias Current	I _B			0.3	1	pА	
		-40 °C < T_A < $+85$ °C			50	pА	
Input Offset Current	los			0.2	0.5	pА	
		-40 °C < T_A < $+85$ °C			20	pА	
Input Voltage Range			-0.1		+3.0	V	
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1 \text{ V to } +3.0 \text{ V}$	85	100		dB	
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$	80	100		dB	
Large Signal Voltage Gain	A _{VO}	$R_L = 2 k\Omega$, $V_O = 0.5 V$ to $4.5 V$	100	240		V/mV	
Offset Voltage Drift	TCVos	-40 °C < T_A < $+85$ °C		4	17	μV/°C	
OUTPUT CHARACTERISTICS							
Output Voltage High	Vон	I∟ = 1 mA	4.85	4.93		V	
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$	4.80			V	
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		50	100	mV	
		-40 °C < T_A < $+85$ °C			120	mV	
Short-Circuit Current	I _{sc}			±19		mA	
Closed-Loop Output Impedance	Z _{оит}	$f = 1 \text{ MHz, } A_V = 1$		65		Ω	
POWER SUPPLY							
Supply Current per Amplifier	I _{SY}	$V_O = V_S/2$		1.15	1.40	mA	
		-40°C < T _A < +85°C			1.8	mA	
DYNAMIC PERFORMANCE							
Slew Rate	SR	$R_L = 2 k\Omega$		3.5		V/µs	
Gain Bandwidth Product	GBP			4		MHz	
Phase Margin	Фо			65		Degrees	
NOISE PERFORMANCE							
Peak-to-Peak Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.5		μV p-p	
Voltage Noise Density	en	f = 1 kHz		12		nV/√Hz	
		f = 10 kHz		10		nV/√Hz	
Current Noise Density	in	f = 1 kHz		0.1		pA/√Hz	

AD8661 ELECTRICAL CHARACTERISTICS—LFCSP_VD ONLY

 V_S = 16.0 V, V_{CM} = $V_S/2$, T_A = 25°C, unless otherwise noted.

Table 4.

Parameter	Symbol	Conditions	Min Typ Max			Unit	
INPUT CHARACTERISTICS							
Offset Voltage	Vos	$V_{CM} = V_S/2$		50	300	μV	
		-40°C < T _A < +85°C			2000	μV	
Input Bias Current	l _Β			0.3	1	рА	
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			50	pА	
Input Offset Current	los			0.2	0.5	рА	
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			20	pА	
Input Voltage Range			-0.1		+14.0	V	
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1 \text{ V to } +14.0 \text{ V}$	90	110		dB	
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	90	110		dB	
Large Signal Voltage Gain	A _{vo}	$R_L = 2 \text{ k}\Omega$, $V_O = 0.5 \text{ V to } 15.5 \text{ V}$	200	420		V/mV	
Offset Voltage Drift	TCVos	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$		4	17	μV/°C	
OUTPUT CHARACTERISTICS							
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	15.95	15.97		V	
		I _L = 10 mA	15.60	15.70		V	
		-40°C < T _A < +85°C	15.50			V	
Output Voltage Low	Vol	I _L = 1 mA		24	50	mV	
		I _L = 10 mA		210	350	mV	
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			400	mV	
Short-Circuit Current	Isc			±140		mA	
Closed-Loop Output Impedance	Zout	$f = 1 \text{ MHz}, A_V = 1$		45		Ω	
POWER SUPPLY							
Power Supply Rejection Ratio	PSRR	$V_S = 5 V \text{ to } 16 V$	95	110		dB	
		-40°C < T _A < +85°C	95	115		dB	
Supply Current per Amplifier	Isy	$V_O = V_S/2$		1.25	1.55	mA	
		-40 °C < T_A < $+85$ °C			1.9	mA	
DYNAMIC PERFORMANCE							
Slew Rate	SR	$R_L = 2 k\Omega$		3.5		V/µs	
Gain Bandwidth Product	GBP			4		MHz	
Phase Margin	Фо			65		Degrees	
NOISE PERFORMANCE							
Peak-to-Peak Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.5		μV p-p	
Voltage Noise Density	e _n	f = 1 kHz		12		nV/√Hz	
- ,		f = 10 kHz		10		nV/√Hz	
Current Noise Density	in	f = 1 kHz		0.1		pA/√Hz	

ABSOLUTE MAXIMUM RATINGS

Table 5.

Tuble 31	
Parameter	Rating
Supply Voltage	18 V
Input Voltage	-0.1 V to V _S
Differential Input Voltage	18 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	−60°C to +150°C
Operating Temperature Range	
R-8, RM-8, R-14, and RU-14	-40°C to +125°C
CP-8-2	−40°C to +85°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature, Soldering (60 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 6. Thermal Resistance

Package Type	θ _{ЈА}	θ _{JC}	Unit
8-Lead SOIC_N	121	43	°C/W
8-Lead LFCSP_VD	75 ¹	18 ¹	°C/W
8-Lead MSOP	142	44	°C/W
14-Lead SOIC_N	88.2	56.3	°C/W
14-Lead TSSOP	114	23.3	°C/W

¹ Exposed pad soldered to application board.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Input Offset Voltage Distribution

Figure 8. Offset Voltage Drift Distribution

Figure 9. Input Offset Voltage vs. Common-Mode Voltage

Figure 10. Input Bias Current vs. Temperature

Figure 11. Output Swing Saturation Voltage vs. Load Current

Figure 12. Output Swing Saturation Voltage vs. Temperature, $I_L = 1 \text{ mA}$

Figure 13. Output Swing Saturation Voltage vs. Temperature, $I_L = 10 \text{ mA}$

Figure 14. Open-Loop Gain and Phase Shift vs. Frequency

Figure 15. Closed-Loop Output Impedance vs. Frequency

Figure 16. CMRR vs. Frequency

Figure 17. PSRR vs. Frequency

Figure 18. Small Signal Overshoot vs. Load Capacitance

Figure 19. Supply Current vs. Temperature

Figure 20. Supply Current vs. Supply Voltage (Dual-Supply Configuration), $T_A = 25^{\circ}C$

Figure 21. 0.1 Hz to 10 Hz Input Voltage Noise

Figure 22. Small Signal Transient Response

Figure 23. Large Signal Transient Response

Figure 24. Positive Overload Recovery

Figure 25. Negative Overload Recovery

Figure 26. Voltage Noise Density vs. Frequency

Figure 27. Input Offset Voltage Distribution

Figure 28. Offset Voltage Drift Distribution

Figure 29. Input Offset Voltage vs. Common-Mode Voltage

Figure 30. Output Swing Saturation Voltage vs. Load Current

Figure 31. Closed-Loop Output Impedance vs. Frequency

Figure 32. Large Signal Transient Response

Figure 33. No Phase Reversal

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 34. 8-Lead Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

Figure 35. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 3 mm x 3 mm Body, Very Thin, Dual Lead (CP-8-2) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 36. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AB

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 37. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches)

5.10 5.00 4.90 $\frac{4.50}{4.40}$ 6.40 BSC 4.30 1.05 1.00 0.15 0.30 SEATING 0.20 0.80 **⊶** 0.60 0.45 0.05 0.19 COPLANARITY

COMPLIANT TO JEDEC STANDARDS MO-153-AB-1

Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8661ARZ ¹	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8661ARZ-REEL ¹	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8661ARZ-REEL71	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8661ACPZ-R2 ¹	-40°C to +85°C	8-Lead LFCSP_VD	CP-8-2	AOM
AD8661ACPZ-REEL ¹	-40°C to +85°C	8-Lead LFCSP_VD	CP-8-2	AOM
AD8661ACPZ-REEL7 ¹	-40°C to +85°C	8-Lead LFCSP_VD	CP-8-2	AOM
AD8662ARZ ¹	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8662ARZ-REEL ¹	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8662ARZ-REEL7 ¹	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8662ARMZ-R2 ¹	−40°C to +125°C	8-Lead MSOP	RM-8	A10
AD8662ARMZ-REEL ¹	−40°C to +125°C	8-Lead MSOP	RM-8	A10
AD8664ARZ ¹	−40°C to +125°C	14-Lead SOIC_N	R-14	
AD8664ARZ-REEL ¹	−40°C to +125°C	14-Lead SOIC_N	R-14	
AD8664ARZ-REEL7 ¹	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8664ARUZ ¹	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8664ARUZ-REEL ¹	−40°C to +125°C	14-Lead TSSOP	RU-14	

¹ Z = Pb-free part.

ΛГ	100	201	/ / N I	٥ د	CCO	/ N	n o	664
ΑL	เกเ	ו מכ	I/AI	JŌ	nnz	/ A	มด	nn4

NOTES

