

Fakultät Informatik, Institut für Technische Informatik, Professur Rechnerarchitektur

Einführung in die Technische Informatik

Übung 1

Zellescher Weg 12

Willers-Bau A 205

Tel. +49 351 - 463 - 35450

Nöthnitzer Straße 46

Raum 1044

Tel. +49 351 - 463 - 38246

Wolfgang E. Nagel (wolfgang.nagel@tu-dresden.de)

Organisatorisches

Vorlesungs- und Übungsmaterial in OPAL

- http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/lehre/ws1314/index_html
- Bitte einschreiben

Praktikumszeiten für 1. Übung

Mittwoch: 15.01.2014, 16:40-18:10 (INF E069)

Donnerstag: 16.01.2014, 13:00-14:30 (INF E069)

Übung 1

Aufgabe 1

Für die Multiplikation zweier nxn-Matrizen soll ein möglichst effizienter Algorithmus gefunden werden. Nutzen Sie dazu den vorgegebenen Quelltext, der bereits die Basisvariante und eine Zeitmessroutine enthält. Diese Basisvariante sollen Sie optimieren – zunächst ohne zusätzliche Compiler-Flags.

Aufgabe 2

Nutzen Sie die integrierte Zeitmessroutine um ihren Fortschritt bei der Optimierung zu bewerten.

Aufgabe 3

Überprüfen Sie, welche ihrer manuell durchgeführten Optimierungen durch den Einsatz geeigneter Compiler-Flags bzw. Optimierungsstufen auch vom Compiler realisiert werden.

Übung 1

Aufgabe 4

Berechnen Sie die theoretische Floating-Point-Peak-Performance des Prozessors. Bewerten und begründen Sie die Unterschiede der Leistung ihrer Implementierung im Vergleich zur maximal erreichbaren Leistung.

Protokoll (Abgabe bis 28.01.14)

Fertigen Sie ein Praktikumsprotokoll an, welches die Ergebnisse ihrer Arbeit enthält. Das Protokoll sollte mindestens folgende Informationen enthalten:

- Name, Matrikelnummer
- Beschreibung der durchgeführten Optimierungen
- Zeitmessung bzw. Gleitkomma-Leistung der jeweiligen Optimierungen
- Antworten zu Aufgabe 3 und 4

Abgabe per E-Mail an bernd.trenkler@tu-dresden.de

Rechnen auf dem Hochleistungsrechner Atlas

Login

- Nutzername:
 - hpclab17-19 pw=HPClab-90
 - hpclab20-30pw=HPClab-12
 - hpclab41-45pw=HPClab-90
 - hpclab57-65pw=HPClab-99
 - Auswahl durch Eintragen in die Anwesenheitsliste
- Anmeldung: ssh hpclab{NR}@taurus.hrsk.tu-dresden.de
- Passwort ändern
- Ordner anlegen: mkdir Uebung1

Rechnen auf dem Hochleistungsrechner Atlas

matmul0.c vom OPAL nach taurus

- vom OPAL "Save File"
- pwd → /.../Downloads (Rechner im Kabinett)
- scp ./matmul0.c hpclab{NR}@taurus.hrsk.tu-dresden.de:/home/hpclabNR/Uebung1/

Rechnen auf dem Hochleistungsrechner Atlas

Arbeiten auf taurus

Compiler laden: module load gcc

– Übersetzen: gcc –std=c99 matmul.c –o matmul

Andere Compiler: module av → module load intel

- Ausführen interaktiv:
 - srun --reservation= zihforschung_128 --nodes=1 --tasks-pernode=1 --cpus-per-task=1 -t Zeit_in_Minuten -p sandy --pty bash
 - aus bash: ./matmul
 - Reservierung Do., 16.01., 13:00-17:00 Uhr (zihforschung_117)
- Vergleich der Messwerte für die Matrixgröße 1024

