1. Zahlensysteme:

(2)

131	1072	65536	32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
2 ¹⁷		2 ¹⁶	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

(16)

16 ⁵	16 ⁴	16 ³	16 ²	16 ¹	16 ⁰

Größter und Kleinster Wert einer vorzeichenbehafteten Dualzahl mit n-Bits:

$$Z_{max} = 2^{n-1} - 1$$

MSB für Vorzeichen deshalb n - 1

$$Z_{min} = -2^{n-1}$$

Addition im positiven Zahlenraum: einfach Rechnen, 0 + 0 = 0, 1 + 0 = 1, 1 + 1 = 0 1 gemerkt, 1 + 1 + 1 = 1 1 gemerkt

Subtraktion: $(a - b = ?) \rightarrow b$ in ZK umformen $\rightarrow (a + (ZKb))$ rechnen \rightarrow Ergebnis auf Gültigkeit prüfen (ü Regel unten)

Multiplikation: 1) Vorzeichen ermitteln: linkeste Bit → 1 Negativ, 0 Positiv

2) Stellen Multiplikator (n) + Stellen Multiplikator (m) = (n + m) Stellen Produkt

3) Negativ mit 1sen auffüllen auf (n + m) insgesamt, Positiv mit 0len auffüllen auf (n + m) insgesamt

4) Bei negativen Ergebnis ZK bilden um Betrag herauszufinden (für negative Darstellung nicht nötig)

Allgemein: $\ddot{u}_{n+1} = \ddot{u}_n \rightarrow \text{Korrektes Ergebnis}$

 $\ddot{u}_{n+1} \neq \ddot{u}_n \rightarrow$ Ergebnis im x-Bit-Rahmen ungültig/ Überlauf, Erweiterung erforderlich, Übertrag weg!!!

Dezimal	Binär	Gray-Code	BCD-Code
0	0000	0000	0000
1	0001	0001	0001
2	0010	0011	0010
3	0011	0010	0011
4	0100	0110	0100
5	0101	0111	0101
6	0110	0101	0110
7	0111	0100	0111
8	1000	1100	1000
9	1001	1101	1001
10	1010	1111	0000
11	1011	1110	0001
12	1100	1010	0010
13	1101	1011	0011
14	1110	1001	0100
15	1111	1000	0101

1.) Boolsche Algebra

Bezeichnung	Funktion	Schaltzeichen	#	Name	UND-Operator	ODER-Operator
Leistungsstufe, Buffer,	Q = A	A	1	Identität	$a \cdot 1 = a$	a + 0 = a
Treiber		[2	Elimination	$a \cdot 0 = 0$	a + 1 = 1
Inverter, NICHT, NOT	$Q = \overline{A}$	A 1 PQ	3	Idempotenz	$a \cdot a = a$	a + a = a
Inverter mit Negation	Q = A	A 1 -	4	Involution	<u>a</u> =	= a
am Eingang			5	Komplement	$a \cdot \overline{a} = 0$	$a + \overline{a} = 1$
UND AND	$Q = A \wedge B$	A & Q	6	Kommutativität	$a \cdot b = b \cdot a$	a+b=b+a
	$Q = A \cdot B = AB$		7	Assoziativitāt	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$	(a+b)+c=a+(b+c)
NAND	$Q = \overline{A \wedge B}$ $Q = \overline{A \cdot B} = \overline{AB}$	A & 00	8	Distributivität	$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$	$a + (b \cdot c) = (a+b) \cdot (a+c)$
ODED OD	<u> </u>	Α	9	Vereinigung	$(a+b)\cdot \left(a+\overline{b}\right)=a$	$(a \cdot b) + \left(a \cdot \overline{b}\right) = a$
ODER OR	$Q = A \lor B$ $Q = A + B$	<u>1</u> ≥ 1 Q	10	Absorption (1)	$a \cdot (a+b) = a$	$a + (a \cdot b) = a$
NOR	$Q = \overline{A \vee B}$	A ≥ 1 PQ	11	Absorption (2)	$\left(a\cdot\overline{b}\right)+b=a+b$	$(a+\overline{b})\cdot b=a\cdot b$
	$Q = \overline{A + B}$	B C Q	11	Absorption (2.1)	$(a \cdot b) + \overline{b} = a + \overline{b}$	$(a+b)\cdot \overline{b} = a\cdot \overline{b}$
Exklusives ODER XOR, EXOR	$Q = \bar{A}B \vee A\bar{B}$ $Q = \bar{A}B + A\bar{B}$	A = 1 Q	12	Faktorisierung	$(a+b)\cdot(\overline{a}+c)$ $=(a\cdot c)+(\overline{a}\cdot b)$	$(a \cdot b) + (\overline{a} \cdot c)$ $= (a + c) \cdot (\overline{a} + b)$
EX-NOR XNOR	$Q = \overline{\overline{AB} \vee A\overline{B}}$ $Q = \overline{\overline{AB} + A\overline{B}}$	A = 1 0 Q	13	Konsens	$(a+b)\cdot(b+c)\cdot(\overline{a}+c)$ $=(a+b)\cdot(\overline{a}+c)$	$(a \cdot b) + (b \cdot c) + (\overline{a} \cdot c)$ $= (a \cdot b) + (\overline{a} \cdot c)$
2.) KV-Diagramm		AC 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1	14	De Morgans Gestz	$\overline{a \cdot b \cdot} = \overline{a} + \overline{b} + \cdots$	$\overline{a+b+\cdots} = \overline{a}\cdot \overline{b}\cdot \ldots$

2.) KV-Diagramm

- (1) Boolsche Funktion in DNF überführen
- (2) KV-Diagramm konstruieren \rightarrow 2ⁿ = Felder für n-Variablen \rightarrow bei Skalierung darf nur immer eine var sich ändern

Negations-

(3) In allen Feldern die den Mintermen entsprechen eine 1, beim Rest 0 Spezialfall: man trägt Maxterme ein → 0-len eintragen → später verunden → Negationsumkehr → KNF

1000

- (4) Möglichst große mit 1 besetzten Rechtecken suchen → über Diagramm hinausdenken, Überlappung erlaubt
- (5) Jedes Rechteck ist eine Und-Funktion, der Variablen die konstant bleiben, diese bei DNF verodern
- (6) Ab 5 Variablen müssen die Blöcke Faltsymmetrisch liegen

3.) Quine-Mc-Cluskey-Verfahren

- (1) Boolsche Funktion in DNF überführen, Alternativ Wahrheitstabelle → Minterme
- (2) Sortieren der Minterme nach Gruppen → Kriterium Negationsstriche
- (3) Vereinfachungsprinzip benachbarte Gruppen vergleichen
- (4) Vereinfacht: Abhacken, Nicht Vereinfacht: Primterm
- (5) Primterme entscheiden wenn Spalte fertig ist
- (6) Bis man nur noch 2er verknüpfungen hat
- (7) Primterm-Minterm-Tabelle \rightarrow Zeilen: Minterme, Spalten:Primterme
- (8) Eintragen der Touchpoints
- (9) Zeilenweise schauen: Wo sind die Kreuze allein
- (10) Welche Primterme brauchen wir um alle Minterme abzudecken
- (11)Die resultierenden Primterme verodern z.B Z = P1 + P2 + P3 + P4

Gruppe	Minterme		1. Vereinfachung		2. Vereinfactung	П
0	A B C D	V	7 8 Z	ľ	ĀB	62
1	ABZD	V	Z Z D	64	Ā Ē	1
	ABLD	V	BGD ABD	1	BD	P3
	ĀBZD	V	ĀRC	1	BO	1,7
	ABCD	1	8 CD A 80	V	BC	or.
2	ABCD	V	BCD	1	Вc	14
	ABCD	V	ABC	V	AC	٥٥
3	ABCD	V	ACD	1	AC	123
	ABCD	1	ACD	1		
4	ABCD	V	A BC	V		

Printern	PA	PZ	f3	P4	P5
- Minterm	ĀĀD	ĀB	BD	ु ८	AC
T B T D	×	X	X		
ĀBZD		×			
ABLD		X	X	X	
ĀBZD	X				
ABCD			X		
ABCD		X		X	
ABCD			X	X	X
ABCD				X	X
ABOD					Х
ABCD					X

 $\overline{f(x_1,x_2,\ldots,x_n,0,1,\cdot,+)}=f(\overline{x_1},\,\overline{x_2},\ldots,1,0,+,\cdot)$

disjunktive Normalform (DNF): $Z = (Minterm1 \ mit \ Wert1) + (Minterm2 \ mit \ Wert1) + ...$

konjunktive Normalform (KNF): $Z = (Maxterm1 \ mit \ Wert0) \cdot (Maxterm2 \ mit \ Wert0) \cdot ...$

Vollkonjunktion-Minterm: Und-Verknüpfung (Konjunktion)

Volldisjunktion-Maxterm: Oder-Verknüpfung (Disjunktion)

Sämtliche Variablen nur 1x bejaht, 1x beneint. Bei n vorkommenden Variablen: Anzahl = 2ⁿ

Disjunktive Minimalform, Konjunktive Minimalform = Ergebnis nach der Vereinfachung mit den Methoden.

Umrechnung DNF/KNF: $F(A, B, C) = \sum m(1, 2, 3, ...) = \prod M(1, 2, 3, ...)$

Kanonische Normalform – Ringsummennormalform (RNF):

- Zeichen:
 → XOR, exklusives ODER →
- Keine negierten Variablen

A	B	Z
0	0	0
1	0	1
0	1	1
1	1	0

1.) Methode RNF zu bestimmen:

- (1) Voraussetzung: boolscher Ausdruck in DNF
- (2) Tabelle aufzeichen → Wahrheitstabelle mit allen Möglichen Variationen → Minterme der DNF → 1
- (3) Spaltenbeschriftung nach Schema unten machen:

Anzahl Variablen	n = 0	n = 1	n = 2	n = 3	n = 4
$F(x_1x_n) =$	a_0				
		$\bigoplus a_1x_1$	$\bigoplus a_2x_2$	$\bigoplus a_3x_3$	$\bigoplus a_4x_4$
			$\oplus a_{12}x_1x_2$	$ \bigoplus a_{13}x_1x_3 \bigoplus a_{23}x_2x_3 $	$ \begin{array}{c} \oplus a_{14}x_1x_4 \\ \oplus a_{24}x_2x_4 \\ \oplus a_{34}x_3x_4 \end{array} $
				$\bigoplus a_{123}x_1x_2x_3$	$ \begin{array}{c} \oplus a_{124}x_1x_2x_4 \\ \oplus a_{134}x_1x_3x_4 \\ \oplus a_{234}x_2x_3x_4 \end{array} $
					$\bigoplus a_{1234}x_1x_2x_3x_4$

Kommutativität						
	$x \oplus y = y \oplus x$					
Assoziativität						
	$x \oplus (y \oplus z) = (x \oplus y) \oplus z$					
Distributivität bzgl. Ke	onjunktion					
	$x (y \oplus z) = x y \oplus x z$					
:	$x + y = x \oplus y \oplus xy = x \oplus \overline{x}y = y \oplus \overline{y}x$					
	$x \oplus 1 = \overline{x}, x \oplus 0 = x$					
	$x \oplus x = 0, x \oplus \overline{x} = 1$					
0 ⊕ 0 ⊕⊕ 0 = 0						
	$1_{(1)} \oplus 1_{(2)} \oplus \ldots \oplus 1_{(n)} = \begin{cases} 1 \text{ falls n ungerade} \\ 0 \text{ falls n gerade} \end{cases}$					

X ₃	X ₂	X,	Y		1		×4	λŁ	X4 X2	×3	×1 ×3	X2 X3	X ₄ X	z ×3	Bas	isterme
					a,		an	az	anz	as	Q13	લશ્ર	a	(Z3		
0	0	0	0	*	0										9	0
0	0	1	1		0		1								и	1
0	1	0	1		0			1							и	1
0	1	1	0		0	П	1	1	0						3	2
1	0	0	1		0					1					u	1
1	0	1	0		0		1			1	0				1	2
Λ	1	0	0		0			1		1		0			9	7
1	Λ	1	1		0		1	1	0	1	0	0	0		u	3

- (4) Y betrachten: Y = 0 \rightarrow gerade Anzahl der Basisterme (0,2,4,6,8,...) Y = 1 \rightarrow ungerade Anzahl der Basisterme (1,3,5,7,...)
- (5) Bei a₀ gilt der eingetragene Wert für gesamte Spalte. Im Verlauf gilt der Wert nur für Zeilen, wo Spaltenvariable Wert 1 hat
- (6) Koeffizienten an Treppe ablesen: $F_{(x_1,x_2,x_3) \text{ RNF}} = 0 \oplus 1 \ x_1 \oplus 0 \ x_2 \oplus 0 \ x_1x_2 \oplus ...$

2.) Methode RNF zu bestimmen:

- (1) Nur wenn es eine kanonische DNF oder eine ortogonale DNF ist → Prüfung ist KV-Diagramm ohne Überlappung
- (2) Regel $+ = \oplus$
- (3) Alle negierten Variablen durch XOR 1 ersetzen (z.B. $\overline{x_1} = x_1 \oplus 1$)
- (4) Ausmultiplizieren
- (5) $x \oplus x = 0$ oder $x \oplus 0 = x$ anwenden
- (6) RNF ist erzeugt

3.Shannon-Zerlegung mit ROBDD etc.

Bestimmung der Subfunktionen bzw. Kofaktoren

$$\overline{0} = 1$$

$$\overline{1} = 0$$

$$F_1 = F(x_1, x_2, x_3)|_{x_1=1} =$$

 $F_0 = F(x_1, x_2, x_3)|_{x_1=0} =$

$$F_{00} = F_0(x_2, x_3)|_{x_0=0} =$$

$$F_{01} = F_0(x_2, x_3)|_{x_3=1} =$$

$$F_{10} = F_1(x_2, x_3)|_{x=0} =$$

$$F_{11} = F_1(x_2, x_3)|_{x_3=1} =$$

$$F_{001} = F_{00}(x_3)|_{x_3=1} =$$
 $F_{010} = F_{01}(x_3)|_{x_3=0} =$
 $F_{011} = F_{01}(x_3)|_{x_3=1} =$
 $F_{100} = F_{10}(x_3)|_{x_3=0} =$
 $F_{101} = F_{10}(x_3)|_{x_3=1} =$
 $F_{110} = F_{11}(x_3)|_{x_3=0} =$
 $F_{111} = F_{11}(x_3)|_{x_3=1} =$

 $F_{000} = F_{00}(x_3)|_{x_3=0} =$

Kanonische Normalform - Binary-Decision-Diagramm (BDD)

- Ordered-Binary-decision-diagramm (OBDD) = auf jedem Pfad alle Variablen höchstens einmal
- Reduced ordered-binary-decision-diagramm (ROBDD)

1. Regel zum kürzen Deletion Rule

2. Regel zum kürzen Merging Rule

Anwendung:

- (1) Voraussetzung: DNF
- (2) Bestimmung der Sub- und Ko-funktionen → einsetzen von 1 und 0 in ausgewählter Variable
- (3) BDD zeichnen
- (4) Kürzen dann hat man ROBDD

Überführung in Schaltzeichen:

RS-Flipflop:

Besteht aus:

(Taktgesteuert) → Set oder Reset nur möglich bei High-Pegel-Takt

Set	Reset	ø	/Q	
0	0	Q _(n-1)	/Q _(n-1)	Speichern
0	1	0	1	Rücksetzen
1	0	1	0	Setzen
1	1	- (0)	- (0)	Irregulär

Tastgradformel:

$$D = \frac{Impulsdauer T_e}{Periodendauer T}$$

charakteristische Gleichung:

$$Q_{1(tn+1)} = [\overline{R}Q_1 + S]_{(tn)}$$

D-Flipflop (Delay-Flipflop)

(D ist Eingang → Info bleibt bis zum nächsten Tackt erhalten)

t _n	t _{n+1}
D	Q
1	1
0	0

Takt	D	Q	/Q		
0	0	Q _(n-1)	/Q _(n-1)	Speichern	
0	1	Q _(n-1)	/Q _(n-1)		
1	0	0	1	Rücksetzen	
1	1	1	0	Setzen	

Taktflankengesteuerte Flipflops:

Binäres Impulsglied - steigende Flanke Gibt Signal für eine Signallaufzeit, wenn Takt positive Flanke hat

Gibt Signal für eine Signallaufzeit, wenn Takt fallende Flanke hat

Einflanken gesteuertes RS-Flipflop:

Erweiterung mit Impulsglied:

Einflankengesteuertes T-Flipflop (Trigger Flipflop oder Toggle-Flipflop):

Kippt bei jeder steuernden Flanke in einen anderen Zustand:

Mit C- und T- Eingang:

<u>Einflanken gesteuertes JK-Flipflop:</u> (J = Jump also setzen, K = Kill also rücksetzen, C = Taktgeber)

Charakteristische Gleichung:

$$Q_{1(tn+1)} = [J\overline{Q}_1 + \overline{K}Q_1]_{(tn)}$$

Beide 1 = toggle Fall

Zweiflankengesteuerte Flipflops (Master Slave Flipflop):

Bei steigender Taktflanke → Signalaufnahme am Eingang → Speicherung → Bei fallender Taktflanke → Ausgangsignal

Zweiflankengesteuerte JK-Flipflops, Master-Slave:

JK-Master-Slave-Flipflop, ansteigende Flanke

JK-Master-Slave-Flipflop, abfallende Flanke

Zähler:

Dezimal-ziffer

 $\begin{array}{c|c}
2^{3} & 2^{2} \\
Q_{D} & Q_{C}
\end{array}$

0

Asynchronzähler = Flipflops werden nicht zu gleichen Zeitpunkt geschaltet (Takt), geschaltet durch Vorglied

Asynchroner Dual-Vorwärtszähler

Grenzperiodendauer: $T_G = (n+1) \cdot t_p$

Grenzfrequenz: $f_G = \frac{1}{T_G}$ Nicht schneller Takten da sonst Error

Asynchrone BCD-Zähler: mit T-Flipflop, gibt Reset bei 10

mit JK-Flipflop, schaltet auf 0000 ohne 10

Asynchrone Modulo-n-Zähler: Modulo-5-Zähler, gibt Reset bei 5

Modulo-13-Zähler, bleibt bei 12 stehen, manuel res

<u>Synchronzähler</u> = Flipflops werden zu gleichem Zeitpunkt geschaltet (Takt)

Synchroner 4-Bit-Dual-Vorwärtszähler

Synchroner 4-Bit-Rückwärtszähler

und umschaltbare Zählrichtung

Entwicklung von zyklischen Synchronzählern "Kochrezept"

- 0. Überlegen wie viele Glieder man braucht (mit wie vielen Bits kann man eine Zahl darstellen)
- 1. Aufstellen der Wahrheitstabelle des Zählers:

Zeilen sind Dezimalzahlen, Spalten sind Glieder mit Wertigkeiten 1 2 4 8, Linke Seite tn und rechte Seite tn+1

2. Aufstellen und Vereinfachen der Anwendungsgleichung des Zählers:

Für jedes Glied der rechten Seite 1sen raussuchen und Minterme der linken Seite mit KV-Diagramm vereinfachen Achtung auf dont Cares, da nicht alle Variationen links abgebildet sind evtl.

- 3. Bestimmen der charakteristischen Gleichung der Flipflops: Siehe FS für spezielles Glied oder Angabe
- 4. Bestimmen der Verknüpfungsgleichung (J und K Anschlüsse herausfinden) durch Koeffizientenvergleich
- 5. Zeichnen des Schaltbildes

Frequenzteiler:

Asynchron Frequenzteiler mit festem Teilerverhältnis: (pro Bauteil geteilt durch 2)

$$f_T = rac{f_E}{2^n}$$
 mit f_T = geteilte Frequenz, f_E = Eingangsfrequenz, n = Anzahl der Flipflops

Gerades Teiler Verhältnis: (8:1)

Ungerades Teiler Verhältnis: (3:1)

einstellbarem Teiler Verhältnis:

Synchrone Frequenzteiler: Beispiel (3:1) Regeln wie bei Asynchron Frequenzteiler

Schieberegister: Ketten von Flipflops, die am Eingang angelegte Info jeden Takt um ein Flipflop weiterschieben

Paralleler Ein- und Ausgabe: (kann zusätzlich die gespeicherten Daten parallel ausgeben)

 $U = 1 \rightarrow Takt gesperrt, U = 0 \rightarrow Takt freigegeben$

taktabhängiger paralleler Dateneingabe

A → 1 → Ā ∧ B

B → 1 → Ā ∧ B

A ∧ B

& → Ü

Halbaddiererschaltung mit Grundgliedern

Halbaddiererschaltung mit NAND-Gliedern

A 0		∘ Z
В⊶—	Volladdierer	
C ~		——∘ü

Volladdierer: (3 Bits addieren)

Fall	С	В	Α	Ü	Z
1	0	0	0	0	0
2	0	0	1	0	1
2 3 4	0	1	0	0	1
4	0	1	1	1	0
5	1	0	0	0	1
5 6 7 8	1	0	1	1	0
7	1	1	0	1	0
8	1	1	1	1	1

Übertrag: Ü = $A \ B \ \overline{C} + \overline{A} \ B \ C + A \ \overline{B} \ C + A \ B \ C$

Summe: $Z = \overline{A} B \overline{C} + A \overline{B} \overline{C} + \overline{A} \overline{B} C + A B C$

Digitale Auswahl- und Verbindungsschaltungen:

Demultiplexer:

Abb. 9.54 Prinzipielle Wirkungsweise

Abb. 9.55 Schaltung eines Demultiplexers $y_0 = \overline{a}_0 \overline{a}_1 d$, $y_1 = a_0 \overline{a}_1 d$, $y_2 = \overline{a}_0 a_1 d$, $y_3 = a_0 a_1 d$

Multiplexer:

 a_0 a_1 a_1 a_1 a_2 a_3

Abb. 9.57 Prinzipielle Wirkungsweise eines Multiplexers

Abb. 9.58 Schaltung eines Multiplexers $y = \overline{a}_0 \overline{a}_1 d_0 + a_0 \overline{a}_1 d_1 + \overline{a}_0 a_1 d_2 + a_0 a_1 d_3$

CMOS Schaltung:

n-Kanal-Fets: Bei n-Kanal-Fets wird der Kanalstrom umso grösser, je weiter das Gatepotential steigt. **Leitet bei H-Pegel**

p-Kanal-Fets: Bei p-Kanal-Fets wird der Kanalstrom umso kleiner, je weiter das Gatepotential steigt.

Leitet bei L-Pegel

Anreicherungstyp: (enhancement) – selbstsperrend Bei einem Anreicherungstyp ist bei der Gatespannung von 0 V noch kein leitfähiger Kanal vorhanden; er muss erst durch die Gatespannung erzeugt werden.