Katedra Przetwarzania Sygnałów i Inżynierii Multimedialnej

dr hab. inż. Krzysztof Okarma, prof. ZUT

Systemy wizyjne w automatyce i robotyce

Zestaw zadań nr 6

Analiza cech tekstur

- Napisać funkcję służącą do wyznaczenia macierzy koindydencji (współwystępowania) dla obrazów przekonwertowanych do skali szarości (GLCM – Gray Level Co-occurrence Matrix).
- 2. Wyznaczyć macierze GLCM dla kilkunastu obrazów wybranych z bazy Amsterdam Library of Textures (ALOT).
- 3. Dla tych samych obrazów wyznaczyć podstawowe cechy Haralicka i wykonać wykresy wartości tych cech pozwalające na dokonanie klasyfikacji różnych tekstur za ich pomocą.

Energia (Drugi moment kątowy) Angular second moment	$AngScMom = \sum_{a,b} (C_{a,b})^2$	
Kontrast Contrast (Inertia)	$Contrast = \sum_{a,b} ((a-b)^2 \cdot C_{a,b})$	
Korelacja Correlation	Correlat = $-\sum_{a,b} \frac{(a-\mu)\cdot(b-\mu)}{\sigma^2} \cdot C_{a,b}$	
Wariancja (Suma kwadratów) Sum of squares; Variance	$SumOfSqs = \sum_{a,b} (a - \mu)^2 \cdot C_{a,b}$	$P_{m,n}(k) = \sum_{k} C_{n,k}$
Jednorodność (Odwrotny moment róznicowy) Inverse difference moment; Homogenity:	$InvDfMom = \sum_{a,b} \frac{C_{a,b}}{1 + (a-b)^2}$	$P_{x+y}(k) = \sum_{a,b a+b=k} C_{a,b}$
Sumaryczna srednia Sum average:	$SumAverg = \sum_{k=2}^{2 \cdot Lg} k \cdot P_{x+y}(k)$	$P_{x-y}(k) = \sum_{a,b a-b=k} C_{a,b}$
Sumaryczna wariancja Sum variance:	$SumVar = \sum_{k=2}^{2 \cdot Lg} (k - SumAverg)^{2} \cdot P_{x+y}(k)$	
Sumaryczna entropia Sum entropy:	$SumEntrp = -\sum_{k=2}^{2 \cdot Lg} P_{x+y}(k) \cdot \log(P_{x+y}(k))$	_
Entropia Entropy:	$Entropy = -\sum_{a,b} C_{a,b} \cdot \log(C_{a,b})$	
Wariancja różnicowa Difference variance:	$DifVarnc = \sum_{k=0}^{Lg-1} k^2 \cdot P_{x-y}(k)$	
Entropia różnicowa Difference entropy:	$DifEntrp = -\sum_{k=0}^{Lg-1} P_{x-y}(k) \cdot \log(P_{x-y}(k))$	