Example 4.1: Six-bar truss (p. 226)

All members have the same cross-sectional area and are of the same material, $E = 200\,\text{GPa}$ and $A = 0.001\,\text{m}^2$. The load $P = 20\,\text{kN}$ and acts at an angle $\theta = 30\,^\circ$. The dimensions in meters are shown in the figure.

For numerical calculations the N-mm units are convenient. The displacements will be in mm and the stresses in MPa. The complete computations are as follows.

Specified nodal loads

Node	dof	Value
2	$egin{array}{c} \mathbf{u_2} \\ \mathbf{v_2} \end{array}$	10000. 17320.5

Global equations at start of the element assembly process

Equations for element 1

$$E = 200000$$
 $A = 1000$.

Substituting into the truss element equations we get

$$\left(\begin{array}{ccccc} 50000. & 0. & -50000. & 0. \\ 0. & 0. & 0. & 0. \\ -50000. & 0. & 50000. & 0. \\ 0. & 0. & 0. & 0. & 0. \end{array}\right) \!\!\! \left(\begin{array}{c} u_1 \\ v_1 \\ u_2 \\ v_2 \end{array}\right) = \left(\begin{array}{c} 0. \\ 0. \\ 0. \\ 0. \\ 0. \end{array}\right)$$

The element contributes to {1, 2, 3, 4} global degrees of freedom.

Locations for element contributions to a global vector: $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$

and to a global matrix:
$$\begin{bmatrix} [1,\,1] & [1,\,2] & [1,\,3] & [1,\,4] \\ [2,\,1] & [2,\,2] & [2,\,3] & [2,\,4] \\ [3,\,1] & [3,\,2] & [3,\,3] & [3,\,4] \\ [4,\,1] & [4,\,2] & [4,\,3] & [4,\,4] \end{bmatrix}$$

Equations for element 2

$$E = 200000$$
 $A = 1000$.

Substituting into the truss element equations we get

$$\begin{pmatrix} 35355.3 & -35355.3 & -35355.3 & 35355.3 \\ -35355.3 & 35355.3 & 35355.3 & -35355.3 \\ -35355.3 & 35355.3 & 35355.3 & -35355.3 \\ 35355.3 & -35355.3 & -35355.3 & 35355.3 \end{pmatrix} \begin{pmatrix} \mathbf{u}_2 \\ \mathbf{v}_2 \\ \mathbf{u}_5 \\ \mathbf{v}_5 \end{pmatrix} = \begin{pmatrix} \mathbf{0}. \\ \mathbf{0}. \\ \mathbf{0}. \\ \mathbf{0}. \\ \mathbf{0}. \end{pmatrix}$$

The element contributes to {3, 4, 9, 10} global degrees of freedom.

Locations for element contributions to a global vector: $\begin{bmatrix} 3 \\ 4 \\ 9 \\ 10 \end{bmatrix}$

Equations for element 3

$$E = 200000$$
 $A = 1000$.

Element node Global node number
$$x$$
 y
$$1 \qquad 5 \qquad 2000. \qquad 2000.$$

$$2 \qquad 3 \qquad 0 \qquad 3000.$$

$$x_1 = 2000. \qquad y_1 = 2000. \qquad x_2 = 0 \qquad y_2 = 3000.$$

$$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 2236.07$$
 Direction cosines: $\ell_s = \frac{x_2 - x_1}{L} = -0.894427$
$$m_s = \frac{y_2 - y_1}{L} = 0.447214$$

Substituting into the truss element equations we get

$$\begin{pmatrix} 71554.2 & -35777.1 & -71554.2 & 35777.1 \\ -35777.1 & 17888.5 & 35777.1 & -17888.5 \\ -71554.2 & 35777.1 & 71554.2 & -35777.1 \\ 35777.1 & -17888.5 & -35777.1 & 17888.5 \end{pmatrix} \begin{pmatrix} u_5 \\ v_5 \\ u_3 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0. \\ 0. \\ 0. \\ 0. \\ 0. \end{pmatrix}$$

The element contributes to {9, 10, 5, 6} global degrees of freedom.

Locations for element contributions to a global vector:
$$\begin{bmatrix} 9\\10\\5\\6 \end{bmatrix}$$

Equations for element 4

$$E = 200000$$
 $A = 1000$.

Substituting into the truss element equations we get

$$\begin{pmatrix} 0. & 0. & 0. & 0. \\ 0. & 66666.7 & 0. & -66666.7 \\ 0. & 0. & 0. & 0. \\ 0. & -66666.7 & 0. & 66666.7 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} 0. \\ 0. \\ 0. \\ 0. \\ 0. \end{pmatrix}$$

The element contributes to {3, 4, 7, 8} global degrees of freedom.

Locations for element contributions to a global vector: $\begin{bmatrix} 3\\4\\7\\8 \end{bmatrix}$

and to a global matrix:
$$\begin{bmatrix} [3, \ 3] & [3, \ 4] & [3, \ 7] & [3, \ 8] \\ [4, \ 3] & [4, \ 4] & [4, \ 7] & [4, \ 8] \\ [7, \ 3] & [7, \ 4] & [7, \ 7] & [7, \ 8] \\ [8, \ 3] & [8, \ 4] & [8, \ 7] & [8, \ 8] \\ \end{bmatrix}$$

$$\begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \\ u_5 \\ v_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 10000. \\ 17320.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Equations for element 5

$$E = 200000 \qquad A = 1000.$$

$$Element \ node \qquad Global \ node \ number \qquad x \qquad y \\ 1 \qquad \qquad 1 \qquad \qquad 0 \qquad 0 \\ 2 \qquad \qquad 5 \qquad \qquad 2000. \qquad 2000.$$

$$x_1 = 0 \qquad y_1 = 0 \qquad x_2 = 2000. \qquad y_2 = 2000.$$

$$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 2828.43$$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 0.707107$$
 $m_s = \frac{y_2 - y_1}{L} = 0.707107$

Substituting into the truss element equations we get

$$\begin{pmatrix} 35355.3 & 35355.3 & -35355.3 & -35355.3 \\ 35355.3 & 35355.3 & -35355.3 & -35355.3 \\ -35355.3 & -35355.3 & 35355.3 & 35355.3 \\ -35355.3 & -35355.3 & 35355.3 & 35355.3 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ u_5 \\ v_5 \end{pmatrix} = \begin{pmatrix} 0. \\ 0. \\ 0. \\ 0. \end{pmatrix}$$

The element contributes to {1, 2, 9, 10} global degrees of freedom.

Locations for element contributions to a global vector:
$$\begin{bmatrix} 1 \\ 2 \\ 9 \\ 10 \end{bmatrix}$$

and to a global matrix:
$$\begin{bmatrix} [1,\,1] & [1,\,2] & [1,\,9] & [1,\,10] \\ [2,\,1] & [2,\,2] & [2,\,9] & [2,\,10] \\ [9,\,1] & [9,\,2] & [9,\,9] & [9,\,10] \\ [10,\,1] & [10,\,2] & [10,\,9] & [10,\,10] \\ \end{bmatrix}$$

Adding element equations into appropriate locations we have

$$\begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \\ u_5 \\ v_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 10000. \\ 17320.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Equations for element 6

$$\begin{split} E &= 200000 \qquad A = 1000. \\ Element node \qquad Global node number \qquad x \qquad y \\ 1 \qquad \qquad 5 \qquad \qquad 2000. \qquad 2000. \\ 2 \qquad \qquad 4 \qquad \qquad 4000. \qquad 3000. \\ x_1 &= 2000. \qquad y_1 &= 2000. \qquad x_2 &= 4000. \qquad y_2 &= 3000. \\ L &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 2236.07 \\ Direction cosines: \ell_s &= \frac{x_2 - x_1}{L} = 0.894427 \qquad m_s &= \frac{y_2 - y_1}{L} = 0.447214 \end{split}$$

Substituting into the truss element equations we get

The element contributes to {9, 10, 7, 8} global degrees of freedom.

Locations for element contributions to a global vector:
$$\begin{bmatrix} 9\\10\\7\\8 \end{bmatrix}$$

$$\text{and to a global matrix:} \left(\begin{array}{ccccc} [9,\,9] & [9,\,10] & [9,\,7] & [9,\,8] \\ [10,\,9] & [10,\,10] & [10,\,7] & [10,\,8] \\ [7,\,9] & [7,\,10] & [7,\,7] & [7,\,8] \\ [8,\,9] & [8,\,10] & [8,\,7] & [8,\,8] \end{array} \right)$$

Adding element equations into appropriate locations we have

85355.3	35355.3	-50000.	0	0	0	0	0	-35355.3	-35355
35355.3	35355.3	0	0	0	0	0	0	-35355.3	-35355
-50000.	0	85355.3	-35355.3	0	0	0	0	-35355.3	35355
0	0	-35355.3	102022.	0	0	0	-66666.7	35355.3	-35355
0	0	0	0	71554.2	-35777.1	0	0	-71554.2	35777
0	0	0	0	-35777.1	17888.5	0	0	35777.1	-17888
0	0	0	0	0	0	71554.2	35777.1	-71554.2	-35777
0	0	0	-66666.7	0	0	35777.1	84555.2	-35777.1	-17888
-35355.3	-35355.3	-35355.3	35355.3	-71554.2	35777.1	-71554.2	-35777.1	213819.	0
-35355.3	-35355.3	35355.3	-35355.3	35777.1	-17888.5	-35777.1	-17888.5	0	106488

Essential boundary conditions

Node	dof	Valu
1	$\begin{matrix} u_1 \\ v_1 \end{matrix}$	0 0
3	$\mathbf{u_3}\\\mathbf{v_3}$	0 0
4	$\mathbf{u_4}$ $\mathbf{v_4}$	0 0

Remove {1, 2, 5, 6, 7, 8} rows and columns.

After adjusting for essential boundary conditions we have

$$\begin{pmatrix} 85355.3 & -35355.3 & -35355.3 & 35355.3 \\ -35355.3 & 102022. & 35355.3 & -35355.3 \\ -35355.3 & 35355.3 & 213819. & 0 \\ 35355.3 & -35355.3 & 0 & 106488. \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ u_5 \\ v_5 \end{pmatrix} = \begin{pmatrix} 10000. \\ 17320.5 \\ 0 \\ 0 \end{pmatrix}$$

Solving the final system of global equations we get

$$\{u_2=0.213105,\ v_2=0.249979,\ u_5=-0.00609705,\ v_5=0.0122424\}$$

Complete table of nodal values

	u	\mathbf{v}
1	0	0
2	0.213105	0.249979
3	0	0
4	0	0
5	-0.00609705	0.0122424

Computation of reactions

Equation numbers of dof with specified values: {1, 2, 5, 6, 7, 8}

Extracting equations {1, 2, 5, 6, 7, 8} from the global system we have

$$\begin{pmatrix} 85355.3 & 35355.3 & -50000. & 0 & 0 & 0 & 0 & 0 & -35355.3 & -35355.3 \\ 35355.3 & 35355.3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -35355.3 & -35355.3 \\ 0 & 0 & 0 & 0 & 71554.2 & -35777.1 & 0 & 0 & -71554.2 & 35777.1 \\ 0 & 0 & 0 & 0 & -35777.1 & 17888.5 & 0 & 0 & 35777.1 & -17888.5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 71554.2 & 35777.1 & -71554.2 & -35777.1 \\ 0 & 0 & 0 & -66666.7 & 0 & 0 & 35777.1 & 84555.2 & -35777.1 & -17888.5 \end{pmatrix}$$

$$\begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \\ v_5 \\ v_5 \end{pmatrix} = \begin{pmatrix} R_1 + 0. \\ R_2 + 0. \\ R_3 + 0. \\ R_4 + 0. \\ R_5 + 0. \\ R_6 + 0. \end{pmatrix}$$

Substituting the nodal values and re-arranging

$$\begin{pmatrix} R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{6} \end{pmatrix} =$$

$$\begin{pmatrix} 85355.3 & 35355.3 & -50000. & 0 & 0 & 0 & 0 & 0 & -35355.3 & -35355.3 \\ 35355.3 & 35355.3 & 0 & 0 & 0 & 0 & 0 & 0 & -35355.3 & -35355.3 \\ 0 & 0 & 0 & 0 & 71554.2 & -35777.1 & 0 & 0 & -71554.2 & 35777.1 \\ 0 & 0 & 0 & 0 & -35777.1 & 17888.5 & 0 & 0 & 35777.1 & -17888.5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 71554.2 & 35777.1 & -71554.2 & -35777.1 \\ 0 & 0 & 0 & -66666.7 & 0 & 0 & 35777.1 & 84555.2 & -35777.1 & -17888.5 \end{pmatrix}$$

$$\begin{pmatrix} 0\\ 0\\ 0.213105\\ 0.249979\\ 0\\ 0\\ 0\\ -0.00609705\\ 0.0122424\\ \end{pmatrix}$$

Carrying out computations, the reactions are as follows.

Label	dof	Reaction
R_1	$\mathbf{u_1}$	-10872.5
R_2	\mathbf{v}_1	-217.271
R_3	\mathbf{u}_3	874.267
R_4	\mathbf{v}_3	-437.133
R_5	u_4	-1.72786
R_e	$\mathbf{V}_{\mathbf{A}}$	-16666.1

Sum of Reactions

Solution for element 1

Nodal coordinates

Element node	Global node numb	er x	y
1	1	0	0
2	2	4000.	0
$x_1 = 0$	$y_1 = 0$ $x_2 = 4000$	$y_2 = 0$	

$$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 4000.$$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 1$$
. $m_s = \frac{y_2 - y_1}{L} = 0$

Global to local transformation matrix, $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Element nodal displacements in global coordinates, $\boldsymbol{d} = \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0.213105 \\ 0.249979 \end{pmatrix}$

Element nodal displacements in local coordinates, $d_{\ell} = T d = \begin{pmatrix} 0. \\ 0.213105 \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0$. $d_2 = 0.213105$

$$E = 200000$$
 $A = 1000$.

Axial strain, $\epsilon = (d_2 - d_1)/L = 0.0000532763$

Axial stress, $\sigma = \text{E}\epsilon = 10.6553$ Axial force = $\sigma A = 10655.3$

Solution for element 2

Nodal coordinates

Global to local transformation matrix,
$$T = \begin{pmatrix} -0.707107 & 0.707107 & 0 & 0 \\ 0 & 0 & -0.707107 & 0.707107 \end{pmatrix}$$

Element nodal displacements in global coordinates,
$$\boldsymbol{d} = \begin{pmatrix} u_2 \\ v_2 \\ u_5 \\ v_5 \end{pmatrix} = \begin{pmatrix} 0.213105 \\ 0.249979 \\ -0.00609705 \\ 0.0122424 \end{pmatrix}$$

Element nodal displacements in local coordinates,
$$d_{\ell} = T d = \begin{pmatrix} 0.0260733 \\ 0.0129679 \end{pmatrix}$$

Axial displacements at element ends, $d_1 = 0.0260733$ $d_2 = 0.0129679$

$$E = 200000$$
 $A = 1000$.

Axial strain,
$$\epsilon = (d_2 - d_1)/L = -4.63345 \times 10^{-6}$$

Axial stress,
$$\sigma = \text{E}\epsilon = -0.926689$$
 Axial force = $\sigma A = -926.689$

Solution for element 3

Nodal coordinates

Element node	Global node nu	ımber	X	y
1	5		2000.	2000.
2	3		0	3000.
$x_1 = 2000.$	$y_1 = 2000.$	$x_2 = 0$	y ₂ =	3000.
$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 2236.07$				

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = -0.894427$$
 $m_s = \frac{y_2 - y_1}{L} = 0.447214$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = -0.894427$$
 $m_s = \frac{y_2 - y_1}{L} = 0.447214$ Global to local transformation matrix, $\textbf{\textit{T}} = \begin{pmatrix} -0.894427 & 0.447214 & 0 & 0 \\ 0 & 0 & -0.894427 & 0.447214 \end{pmatrix}$

Element nodal displacements in global coordinates,
$$\mathbf{d} = \begin{pmatrix} \mathbf{u}_5 \\ \mathbf{v}_5 \\ \mathbf{u}_3 \\ \mathbf{v}_3 \end{pmatrix} = \begin{pmatrix} -0.00609705 \\ 0.0122424 \\ 0 \\ 0 \end{pmatrix}$$

Element nodal displacements in local coordinates, $d_{\ell} = T d = \begin{pmatrix} 0.0109283 \\ 0. \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0.0109283$ $d_2 = 0$.

$$E = 200000$$
 $A = 1000$.

Axial strain,
$$\epsilon = (d_2 - d_1)/L = -4.8873 \times 10^{-6}$$

Axial stress,
$$\sigma = \text{E}\epsilon = -0.97746$$

Axial force =
$$\sigma A = -977.46$$

Solution for element 4

Nodal coordinates

$$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 3000.$$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 0.$$
 $m_s = \frac{y_2 - y_1}{L} = 1.$

Global to local transformation matrix, $T = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Element nodal displacements in global coordinates, $\mathbf{d} = \begin{pmatrix} u_2 \\ v_2 \\ u_4 \end{pmatrix} = \begin{pmatrix} 0.213105 \\ 0.249979 \\ 0 \end{pmatrix}$

Element nodal displacements in local coordinates, $d_{\ell} = T d = \begin{pmatrix} 0.249979 \\ 0 \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0.249979$ $d_2 = 0$.

$$E = 200000$$
 $A = 1000$.

Axial strain, $\epsilon = (d_2 - d_1)/L = -0.0000833262$

Axial stress, $\sigma = \text{E}\epsilon = -16.6652$ Axial force = $\sigma A = -16665.2$

Solution for element 5

Nodal coordinates

Element node Global node number
$$x$$
 y
$$1 \qquad 1 \qquad 0 \qquad 0$$

$$2 \qquad 5 \qquad 2000. \qquad 2000.$$

$$x_1 = 0 \qquad y_1 = 0 \qquad x_2 = 2000. \qquad y_2 = 2000.$$

$$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 2828.43$$
 Direction assings: $\begin{pmatrix} x_2 - x_1 & 0.707107 & y_2 - y_1 & 0.707107 \end{pmatrix}$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 0.707107$$
 $m_s = \frac{y_2 - y_1}{L} = 0.707107$

Global to local transformation matrix,
$$T = \begin{pmatrix} 0.707107 & 0.707107 & 0 & 0 \\ 0 & 0 & 0.707107 & 0.707107 \end{pmatrix}$$

Element nodal displacements in global coordinates,
$$\boldsymbol{d} = \begin{pmatrix} u_1 \\ v_1 \\ u_5 \\ v_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -0.00609705 \\ 0.0122424 \end{pmatrix}$$

Element nodal displacements in local coordinates,
$$d_{\ell} = T d = \begin{pmatrix} 0.\\ 0.00434542 \end{pmatrix}$$

Axial displacements at element ends, $d_1 = 0$.

$$d_2 = 0.00434542$$

$$E = 200000$$

$$A = 1000.$$

Axial strain,
$$\epsilon = (d_2 - d_1)/L = 1.53634 \times 10^{-6}$$

Axial stress,
$$\sigma = \text{E}\epsilon = 0.307267$$

Axial force =
$$\sigma$$
A = 307.267

Solution for element 6

Nodal coordinates

Element node	Global node numb	er x	y	
1	5	2000.	2000.	
2	4	4000.	3000.	
$x_1 = 2000.$	$y_1 = 2000.$ x	$a_2 = 4000.$	$y_2 = 3000.$	
$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 2236.07$				

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 0.894427$$
 $m_s = \frac{y_2 - y_1}{L} = 0.447214$

Direction cosines:
$$\ell_s = \frac{\mathbf{x}_2 - \mathbf{x}_1}{L} = 0.894427$$
 $\mathbf{m}_s = \frac{\mathbf{y}_2 - \mathbf{y}_1}{L} = 0.447214$ Global to local transformation matrix, $\mathbf{T} = \begin{pmatrix} 0.894427 & 0.447214 & 0 & 0 \\ 0 & 0 & 0.894427 & 0.447214 \end{pmatrix}$

Element nodal displacements in global coordinates,
$$\mathbf{d} = \begin{pmatrix} u_5 \\ v_5 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} -0.00609705 \\ 0.0122424 \\ 0 \\ 0 \end{pmatrix}$$

Element nodal displacements in local coordinates,
$$d_{\ell} = T d = \begin{pmatrix} 0.0000215983 \\ 0. \end{pmatrix}$$

Axial displacements at element ends, $d_1 = 0.0000215983$ $d_2 = 0.$

$$E = 200000$$
 $A = 1000$.

Axial strain,
$$\epsilon = (d_2 - d_1)/L = -9.65904 \times 10^{-9}$$

Axial stress, $\sigma = \text{E}\epsilon = -0.00193181$

Axial force = $\sigma A = -1.93181$

Solution summary

Nodal solution

	x-coord	y-coord	u	\mathbf{v}
1	0	0	0	0
2	4000.	0	0.213105	0.249979
3	0	3000.	0	0
4	4000.	3000.	0	0
5	2000.	2000.	-0.00609705	0.0122424

Element solution

	Stress	Axial force
1	10.6553	10655.3
2	-0.926689	-926.689
3	-0.97746	-977.46
4	-16.6652	-16665.2
5	0.307267	307.267
6	-0.00193181	-1.93181

Support reactions

Node	dof	Reaction
1	$\mathbf{u_1}$	-10872.5
1	\mathbf{v}_1	-217.271
3	\mathbf{u}_3	874.267
3	\mathbf{v}_3	-437.133
4	$\mathbf{u_4}$	-1.72786
4	$\mathbf{v_4}$	-16666.1

Sum of applied loads \rightarrow (10000. 17320.5)

Sum of support reactions \rightarrow (-10000. -17320.5)