Theoretische Physik I

WiSe 2018/19

1. Übungsblatt

Ausgabe: 16.10.2018 Ute Löw

Abgabe: 24.10.2018, 12 Uhr

Aufgabe 1: Schräger Wurf

7 Punkte

Betrachten Sie den zweidimensionalen schrägen Wurf. Zum Zeitpunkt $t_0 = 0$ s befindet sich ein Teilchen in den Koordinaten $x_0 = 5$ m und $y_0 = h = 5$ m.

- a) Wie sieht die Bewegung für $v_x \neq 0$ und $v_y \neq 0$ aus? Beschreiben Sie die Bahnkurve \vec{r} des Teilchens in Abhängigkeit von x. Skizzieren Sie die beschriebene Situation.
- b) Wo befindet sich das Teilchen für $x=10~\mathrm{m}$, wenn $v_x=5~\mathrm{m\,s^{-1}}$ und $v_y=-7~\mathrm{m\,s^{-1}}$ betragen?
- c) Diskutieren Sie die Fälle:
 - (i) $v_x > 0 \text{ und } v_y > 0$
 - (ii) $v_x > 0$ und $v_y = 0$
 - (iii) $v_x = v_y = 0$

Welchen Bewegungen entsprechen die Fälle (i) - (iii)?

Aufgabe 2: Teilchen in 3D

10 Punkte

Die Trajektorie eines Teilchens mit Masse m im dreidimensionalen Raum sei in sphärischen Polarkoordinaten gegeben durch:

$$\vec{r} = \begin{pmatrix} R(t)\sin(\vartheta(t))\cos(\varphi(t)) \\ R(t)\sin(\vartheta(t))\sin(\varphi(t)) \\ R(t)\cos(\vartheta(t)) \end{pmatrix}$$
(1)

- a) Bestimmen Sie die Geschwindigkeit $\dot{\vec{r}}$ und die Beschleunigung $\ddot{\vec{r}}$ des Teilchens.
- b) Unter welcher Bedingung gilt $\vec{r} \perp \dot{\vec{r}}$?
- c) Berechnen Sie die kinetische Energie des Teilchens:

$$E = \frac{1}{2}m\dot{\vec{r}}^2 \tag{2}$$

Aufgabe 3: Elastischer Stoß

3 Punkte

Betrachten Sie einen elastischen zentralen Stoß zweier Massen m_1 und m_2 . Die Masse m_1 wird als bekannt vorausgesetzt und stellt somit die Referenzmasse dar. Vor dem Stoß bewegen sich die Massen mit der jeweiligen Geschwindigkeit v_1 und v_2 aufeinander zu. Nach dem Stoß bewegen sich die beiden Massen jeweils mit den Geschwindigkeiten v_1' und v_2' . Alle Bewegungen finden nur in x-Richtung statt.

In einem Experiment messen Sie m_1 , v_1 , v_2 , v_1' und v_2' und wollen daraus nun den Wert m_2 der zweiten Masse bestimmen. Drücken Sie also m_2 durch m_1 , v_1 , v_2 , v_1' und v_2' aus.