Biomedical Data Analysis

Biomedical Data Analysis

Assume we are contacted by a bio-medical lab

- They have collected data about patients with a certain condition
- ...And they want to get a better understanding of the involved process

Our Dataset

This use case is based on a real-world example

...But for privacy and simplicity reasons we are going to use synthetic data

Out[3]:

	u0	u1	u2	u3	u4	u5	u6	u7	u8	u9	u10	u11	u12	u13	u:
0	0.0	4.052587	0.0	0.0	1.069842	-0.744702	0.984682	2.069759	-0.859787	1.615419	1.0	0.0	3.905281	1.422892	0.
1	0.0	2.520945	1.0	0.0	-1.924131	-2.340844	4.663292	-1.633941	-0.322910	0.426927	1.0	0.0	1.319270	1.771152	0.
2	0.0	1.061444	0.0	1.0	0.288059	-1.550216	2.641967	0.823806	1.408493	1.498628	1.0	0.0	-1.072016	-0.750879	0.
3	1.0	0.523647	1.0	1.0	1.824137	-3.052719	4.099077	-2.287757	0.293904	1.628930	1.0	1.0	1.299762	2.085999	1.
4	0.0	2.010178	0.0	0.0	-0.050319	-1.734852	3.162254	-0.803245	-1.318084	0.507807	0.0	0.0	0.307414	-0.884796	0.
•••		•••			•••	•••	•••	•••	•••	•••			•••	•••	
495	1.0	7.434214	1.0	1.0	-1.948899	-2.436769	2.303599	0.505025	2.199709	1.713777	1.0	0.0	5.451237	0.257810	1.
496	0.0	7.857776	1.0	0.0	0.239719	-0.604961	2.301580	-1.150514	-0.416341	2.100331	0.0	0.0	4.269326	0.760440	0.
497	1.0	3.348010	0.0	0.0	0.147685	-2.913812	2.887376	-0.372831	0.630228	0.967976	0.0	0.0	0.576445	0.450504	0.
498	1.0	2.784484	0.0	0.0	-2.082640	-1.505432	4.271790	-0.269379	0.882540	0.745919	1.0	1.0	0.424243	-1.446797	0.
499	1.0	1.808553	1.0	0.0	-2.458112	-0.539921	3.231171	-2.915948	0.373485	2.988293	1.0	1.0	-0.618186	-0.810217	1.

500 rows × 16 columns

How do we start?

Our Dataset

Let's have a first look at the dataset

In [4]:	data.	describe()								
Out[4]:		u0	u1	u2	u3	u4	u5	u6	u7	u8	
	count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500
	mean	0.396000	1.828261	0.514000	0.330000	-0.030795	-1.435561	2.995727	-0.361947	0.418395	1.08
	std	0.489554	2.112032	0.500305	0.470684	1.440194	0.964821	1.008219	1.463672	0.977034	1.30
	min	0.000000	0.055230	0.000000	0.000000	-4.699421	-4.185974	0.033381	-5.647642	-2.714647	-2.8
	25%	0.000000	0.547481	0.000000	0.000000	-1.034566	-2.131690	2.289419	-1.295046	-0.244845	0.18
	50%	0.000000	1.127278	1.000000	0.000000	0.023120	-1.446049	3.044132	-0.320448	0.376119	1.05
	75%	1.000000	2.127061	1.000000	1.000000	0.927888	-0.754598	3.714111	0.561467	1.077532	1.97
	max	1.000000	13.486418	1.000000	1.000000	3.747794	1.144399	5.906263	4.334036	3.374752	5.52

- ullet There is one target binary variable Y, representing the condition under study
- All other columns represent potentially correlate variables
- We are going to refer to them as "potential correlates"

Categorial and Numerical Variables

Some of the potential correlates are numeric, others are categorical

```
In [5]: num_cols = [c for c in data.columns[:-1] if len(data[c].unique()) > 2]
    cat_cols = [c for c in data.columns[:-1] if len(data[c].unique()) == 2]
    print(f'Numeric: {num_cols}')
    print(f'Categorical: {cat_cols}')

Numeric: ['u1', 'u4', 'u5', 'u6', 'u7', 'u8', 'u9', 'u12', 'u13']
    Categorical: ['u0', 'u2', 'u3', 'u10', 'u11', 'u14']
```

- In this synthetic dataset, all categorical variables are binary
- ...Which explains the simple filter we used to identify them

In a real world setting, you'd need to talk to a domain expert for this

Let's check the distribution of the numerical candidate correlates

```
In [6]: __, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(num_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), num_cols):
             data.hist(cname, ax=ax)
         plt.tight_layout()
                                   100
          200
          100
                   5.0 7.5 10.0 12.5
          100
                                                                                     100
                                                                                        -5.0 -2.5 0.0 2.5 5.0
```


Let's check the distribution of the numerical candidate correlates

Most of them seem to follow a Normal distribution

Let's check the distribution of the binary candidate correlates

```
In [7]: __, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), cat_cols):
              data.hist(cname, ax=ax, bins=2)
         plt.tight layout()
                                                                u2
                                              200
          200
                                                                                 200
                                              100
          100
                                                                                 100
                                          1.0
                                                       0.2
                                                             0.4
                                                                  0.6
                            u10
                                                               u11
                                                                                                   u14
          300
          200
                                              200
          100
                                              100
                               0.6
                                          1.0
                                                                                                                 1.0
```


Let's check the distribution of the binary candidate correlates

```
In [7]: __, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), cat_cols):
              data.hist(cname, ax=ax, bins=2)
         plt.tight layout()
                                                              u2
                                             200
          200
                                                                                200
          100
                                                      0.2
                                                                 0.6
                           u10
                                                              u11
                                                                                                 u14
          300
          200
                                             200
          100
                                             100
                              0.6
                                          1.0
                                                                                                               1.0
```

Some are well balanced, othere less so

Let's check the target distribution

```
In [8]: data.hist('y', bins=2, figsize=figsize)
         plt.tight_layout()
          250
          200
          150
          100
                                   0.2
                                                      0.4
                                                                        0.6
```


Let's check the target distribution

The target distribution is quite balanced

Checking Univariate Dependencies

Let's check the fraction of Y=1 for the categorical candidates

```
In [9]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
        for ax, cname in zip(axes.ravel(), cat_cols):
             data.groupby(cname)['y'].mean().plot.bar(ax=ax)
        plt.tight layout()
          0.4
          0.2
                                                                           0.2
          0.0
                                                                           0.4
          0.4
                                                                           0.2
          0.2
                                                          u11
```


Checking Univariate Dependencies

Let's check the fraction of Y=1 for the categorical candidates

A few of them seems to have a correlation, other cases are less clear

Checking Univariate Dependencies

Let's check the fraction of y = 1 for the numerical candidates

```
In [10]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(num_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), num_cols):
             bin_size = (data[cname].max() - data[cname].min()) / 10
             data['y'].groupby(data[cname] // bin size).mean().plot.bar(ax=ax)
         plt.tight layout()
```


Checking Linear Correlations

It's worth checking how all features are correlated

One way to do it is by plotting a correlation matrix (e.g. Pearson)

```
In [11]: plt.figure(figsize=figsize)
            sn.heatmap(data.corr(method='pearson'), annot=True, vmin=-1, vmax=1, cmap='RdBu');
                                                                                                                                  1.00
                                                                                                                   -0.096
                                                                                                                                  - 0.75
                                       0.11 0.036 0.053 0.036 -0.073 -0.065 -0.023 -0.0014 -0.054 0.056
                                                                                                                   -0.091
                                            0.021 -0.032 -0.036 -0.0047 0.0065 0.033
                                                                                                                   -0.033
                                                                                                                                 - 0.50
                                                   0.036 0.094 0.023 0.054 -0.066 -0.0056 -0.019
                                                         0.089 -0.0069 -0.016 -0.0073 0.025
                                                                                                                                  - 0.25
                                                           1 -0.088 -0.033 -0.61 -0.045
               u7 - 0.042 -0.01 -0.073 -0.0047 0.023 -0.0069 -0.088
                                                                      0.023
                                                                             -0.51 -0.036
                                                                                                                                 - 0.00
                                                   -0.016 -0.033 0.023
                                                                            -0.047 0.02
                                                   -0.0073 -0.61
                                                                                                                                 - -0.25
              u10 - 0.017 -0.033 -0.0014 0.092 -0.0056 0.025 -0.045 -0.036
                                                                                          0.032 0.039
                                                                                                                                 - -0.50
              u12 --0.0098 0.53 0.056 0.069
                                            0.18
                                                   0.033 0.0012 0.03
                                                                                                       0.38
                                                                                                                   0.046
              u13 -0.00036 0.016 0.039
                                      0.036
                                            0.47
                                                                                                                    0.14
                                                                                                                                 - -0.75
                          0.02
                                      0.094 0.055
                                                                                                                   -0.074
                                      -0.033 0.12
                                                                                          0.022
                                                                                                0.046
                                                                                                       0.14 -0.074
                y - 0.05 -0.096 -0.091
                                                   0.043 -0.0005 0.028 -0.0076 0.0076
                                                                                   0.24
                                                                                                                                   -1.00
                                                                                    u10
                                                                                          u11
                                                                                                 u12
                                                                                                       u13
```


So far we have just inspected our dataset, but... what is exactly our goal?

Use Case Objective

Unlike in classical ML tasks, we don't have an estimation problem

Rather, our goal is understanding the process behind the data

- We want to identify the true correlates among our candidates
- lacktriangle We want to see how they are linked to the target y

In an ideal world, we'd like to know about causal relationships

...But in practice, we'll need to be happy with correlations

- Studying causality is indeed possible (a good start is <u>Judea Pearl's book</u>)
- ...But also very challenging, and there's no general and real-world ready tool available

So, we'll count on the domain expert to check the correlations

Use Case Objective

Our setup also explains a quirk in the dataset

All variables except the target are called U_j , for "unknown"

- This is synthetic data, so nothing is really unknown
- lacktriangleq In fact, the ground truth process linking Y to U is avaialable

However, for the sake of the lecture, such process will be hidden

- We will analyze the data pretending we have no such knowledge
- At the end of our exercise we'll check the ground truth

...And we'll see how close we got to the truth!

