

# Al & Security Project

Using adversarial attacks to cause misclassification

Group 1

#### Project overview

- Project 2.2
  - Part 1: Adversarial Attacks on Image Classification Models
    - Investigate the vulnerability of image classification models to adversarial attacks
    - Use pre-trained image classifiers
    - Explore adversarial attack methods
  - Part 2: Defense Mechanisms against Adversarial Attacks
    - Explore and investigate defense techniques that enhance robustness



### Implementation

- Part 1: Attack
  - Dataset: TinyImageNet, Pretrained patches
  - Attacks:
    - Method 1: Adversarial attacks (FGSM, PGD, C&W)
    - Method 2: Adversarial patches (SGD)
  - Pre-trained models:
    - Method 1: ResNet18, ResNet50, ResNet152, VGG16, VGG19
    - Method 2: ResNet34, DensNet12
- Part 2: Defense
  - Mechanism: Adversarial training



#### Evaluation order

- 1) baseline performance (without attack)
- 2) attack performance (with all attacks)
- 3) defense performance (with defense against all attacks)

#### Metrics

- Top-1 error: the number of times the correct class was not the predicted class
- Top-5 error: the number of times the correct class was not in the top 5 predicted classes by certainty



Terminology: Adversarial patches are small, specially made images or patterns designed to trick AI models into making incorrect predictions.

- Here we have 5 pretrained patches so that we can fool the network into the desired label.
- The pretrained patches include toaster, goldfish, school bus, lipstick, pineapple
- We have for each patches 32 pixels, 48 pixels, 64 pixels.



Accuracy: Top-1, Top-5

| show_table(top_1=True) |                  |                  |                  |  |  |  |
|------------------------|------------------|------------------|------------------|--|--|--|
| Class name             | Patch size 32x32 | Patch size 48x48 | Patch size 64x64 |  |  |  |
| toaster                | 48.89%           | 90.48%           | 98.58%           |  |  |  |
| goldfish               | 69.53%           | 93.53%           | 98.34%           |  |  |  |
| school bus             | 78.79%           | 93.95%           | 98.22%           |  |  |  |
| lipstick               | 43.36%           | 86.05%           | 96.41%           |  |  |  |
| pineapple              | 79.74%           | 94.48%           | 98.72%           |  |  |  |

| show_table(top_1=False) |                  |                  |                  |  |  |  |  |
|-------------------------|------------------|------------------|------------------|--|--|--|--|
| Class name              | Patch size 32x32 | Patch size 48x48 | Patch size 64x64 |  |  |  |  |
| toaster                 | 72.02%           | 98.12%           | 99.93%           |  |  |  |  |
| goldfish                | 86.31%           | 99.07%           | 99.95%           |  |  |  |  |
| school bus              | 91.64%           | 99.15%           | 99.89%           |  |  |  |  |
| lipstick                | 70.10%           | 96.86%           | 99.73%           |  |  |  |  |
| pineapple               | 92.23%           | 99.26%           | 99.96%           |  |  |  |  |















#### **Transferability**

```
transfer model = torchvision.models.densenet121(weights='IMAGENET1K V1')
   transfer model = transfer model.to(device)
   # No gradients needed for the network
   transfer model.eval()
   for p in transfer model.parameters():
       p.requires grad = False
   class name = 'pineapple'
   patch size = 64
   print(f"Testing patch \"{class name}\" of size {patch size}x{patch size}")
   results = eval patch(transfer model,
                       patch dict[class name][patch size]["patch"],
                        data loader,
                        target class=label names.index(class name))
   print(f"Top-1 fool accuracy: {(results[0] * 100.0):4.2f}%")
   print(f"Top-5 fool accuracy: {(results[1] * 100.0):4.2f}%")
Testing patch "pineapple" of size 64x64
Validating...: 0%
                             | 0/157 [00:00<?, ?it/s]
Top-1 fool accuracy: 64.89%
Top-5 fool accuracy: 82.21%
```

- Attacking the models decreases model confidence, and increases likelihood of spreading predictions across multiple classes instead of just picking 1 class
- The bigger the epsilon, the bigger the error
- PGD was the most effective attack method (up to 500% increase in Top-1 error rate)
  - Adversarial training against PGD did not seem to improve the model's performance as much
- For ResNet18 and ResNet50, adversarial training made the model perform better after it had been attack, than the baseline performance
- Adversarial training did not seem to have an impact on VGG16 nor VGG19





#### **Attacked with FGSM**



- Attacking the models decreases model confidence, and increases likelihood of spreading predictions across multiple classes instead of just picking 1 class
- The bigger the epsilon, the bigger the error
- PGD was the most effective attack method (up to 500% increase in Top-1 error rate)
  - Adversarial training against PGD did not seem to improve the model's performance as much
- For ResNet18 and ResNet50, adversarial training made the model perform better after it had been attack, than the baseline performance
- Adversarial training did not seem to have an impact on VGG16 nor VGG19



The bigger the epsilon, the bigger the error finding precise number is not always easy

```
Evaluating ResNet18 (FGSM) with epsilon 0.01:
        Top-1 error: 79.18%
       Top-5 error: 58.74%
Evaluating ResNet18 (FGSM) with epsilon 0.02:
       Top-1 error: 82.66%
        Top-5 error: 62.82%
Evaluating ResNet18 (FGSM) with epsilon 0.03:
        Top-1 error: 84.86%
       Top-5 error: 66.16%
Evaluating ResNet18 (FGSM) with epsilon 0.05:
        Top-1 error: 88.04%
       Top-5 error: 71.52%
Evaluating ResNet18 (FGSM) with epsilon 0.1:
        Top-1 error: 91.22%
        Top-5 error: 78.86%
```

- Attacking the models decreases model confidence, and increases likelihood of spreading predictions across multiple classes instead of just picking 1 class
- The bigger the epsilon, the bigger the error
- PGD was the most effective attack method
  - Adversarial training against PGD did not seem to improve the model's performance as much
- For ResNet18 and ResNet50, adversarial training made the model perform better after it had been attack, than the baseline performance
- Adversarial training did not seem to have an impact on VGG16 nor VGG19



| Top-1 (No Attack) -    | 24.00    | 13.24    | 8.34      | 21.92 | 21.18 |
|------------------------|----------|----------|-----------|-------|-------|
| Top-5 (No Attack) -    | 6.76     | 1.96     | 0.64      | 5.62  | 5.14  |
| 0 -                    |          |          |           |       |       |
| Top-1 (FGSM Attack) -  | 84.86    | 44.30    | 34.34     | 89.22 | 87.58 |
| Top-5 (FGSM Attack) -  | 66.16    | 21.46    | 12.48     | 73.60 | 71.42 |
| Top-1 (PGD Attack) -   | 99.82    | 94.66    | 89.12     | 99.80 |       |
| Top-5 (PGD Attack) -   | 97.74    | 90.00    | 75.84     | 98.44 |       |
| Top-1 (CW Attack) -    | 88.96    | 70.00    | 51.00     | 91.32 |       |
| Top-5 (CW Attack) -    | 56.12    | 22.90    | 12.58     | 64.28 |       |
| 0 -                    |          |          |           |       |       |
| Top-1 (Defense FGSM) - | 8.14     | 4.54     | 2.88      | 99.90 | 99.90 |
| Top-5 (Defense FGSM) - | 2.14     | 1.08     | 0.14      | 99.50 | 99.50 |
| Top-1 (Defense PGD) -  | 43.68    | 79.14    |           | 99.90 |       |
| Top-5 (Defense PGD) -  | 20.32    | 45.32    |           | 99.50 |       |
| Top-1 (Defense CW) -   | 4.56     | 8.50     |           | 99.90 |       |
| Top-5 (Defense CW) -   | 0.80     | 1.12     |           | 99.50 |       |
|                        | ResNet18 | ResNet50 | ResNet152 | VGG16 | VGG19 |



| Top-1 (No Attack) –    | 24.00    | 13.24    | 8.34      | 21.92 | 21.18 |
|------------------------|----------|----------|-----------|-------|-------|
| Top-5 (No Attack) -    | 6.76     | 1.96     | 0.64      | 5.62  | 5.14  |
| 0 -                    |          |          |           |       |       |
| Top-1 (FGSM Attack) -  | 84.86    | 44.30    | 34.34     | 89.22 | 87.58 |
| Top-5 (FGSM Attack) -  | 66.16    | 21.46    | 12.48     | 73.60 | 71.42 |
| Top-1 (PGD Attack) -   | 99.82    | 94.66    | 89.12     | 99.80 |       |
| Top-5 (PGD Attack) -   | 97.74    | 90.00    | 75.84     | 98.44 |       |
| Top-1 (CW Attack) -    | 88.96    | 70.00    | 51.00     | 91.32 |       |
| Top-5 (CW Attack) –    | 56.12    | 22.90    | 12.58     | 64.28 |       |
| 0 -                    |          |          |           |       |       |
| Top-1 (Defense FGSM) - | 8.14     | 4.54     | 2.88      | 99.90 | 99.90 |
| Top-5 (Defense FGSM) - | 2.14     | 1.08     | 0.14      | 99.50 | 99.50 |
| Top-1 (Defense PGD) -  | 43.68    | 79.14    |           | 99.90 |       |
| Top-5 (Defense PGD) -  | 20.32    | 45.32    |           | 99.50 |       |
| Top-1 (Defense CW) -   | 4.56     | 8.50     |           | 99.90 |       |
| Top-5 (Defense CW) -   | 0.80     | 1.12     |           | 99.50 |       |
|                        | ResNet18 | ResNet50 | ResNet152 | VGG16 | VGG19 |



- Attacking the models decreases model confidence, and increases likelihood of spreading predictions across multiple classes instead of just picking 1 class
- The bigger the epsilon, the bigger the error but finding percise.
- PGD was the most effective attack method (up to 500% increase in Top-1 error rate)
  - Adversarial training against PGD did not seem to improve the model's performance as much
- For ResNet18 and ResNet50, adversarial training made the model perform better after it had been attack, than the baseline performance
- Adversarial training did not seem to have an impact on VGG16 nor VGG19



| Top-1 (No Attack) -    | 24.00    | 13.24    | 8.34      | 21.92 | 21.18 |
|------------------------|----------|----------|-----------|-------|-------|
| Top-5 (No Attack) -    | 6.76     | 1.96     | 0.64      | 5.62  | 5.14  |
| 0 -                    |          |          |           |       |       |
| Top-1 (FGSM Attack) -  | 84.86    | 44.30    | 34.34     | 89.22 | 87.58 |
| Top-5 (FGSM Attack) -  | 66.16    | 21.46    | 12.48     | 73.60 | 71.42 |
| Top-1 (PGD Attack) -   | 99.82    | 94.66    | 89.12     | 99.80 |       |
| Top-5 (PGD Attack) -   | 97.74    | 90.00    | 75.84     | 98.44 |       |
| Top-1 (CW Attack) -    | 88.96    | 70.00    | 51.00     | 91.32 |       |
| Top-5 (CW Attack) -    | 56.12    | 22.90    | 12.58     | 64.28 |       |
| 0 -                    |          |          |           |       |       |
| Top-1 (Defense FGSM) - | 8.14     | 4.54     | 2.88      | 99.90 | 99.90 |
| Top-5 (Defense FGSM) - | 2.14     | 1.08     | 0.14      | 99.50 | 99.50 |
| Top-1 (Defense PGD) -  | 43.68    | 79.14    |           | 99.90 |       |
| Top-5 (Defense PGD) -  | 20.32    | 45.32    |           | 99.50 |       |
| Top-1 (Defense CW) -   | 4.56     | 8.50     |           | 99.90 |       |
| Top-5 (Defense CW) -   | 0.80     | 1.12     |           | 99.50 |       |
|                        | ResNet18 | ResNet50 | ResNet152 | VGG16 | VGG19 |

- Attacking the models decreases model confidence, and increases likelihood of spreading predictions across multiple classes instead of just picking 1 class
- The bigger the epsilon, the bigger the error but finding percise.
- PGD was the most effective attack method (up to 500% increase in Top-1 error rate)
  - Adversarial training against PGD did not seem to improve the model's performance as much
- For ResNet18 and ResNet50, adversarial training made the model perform better after it had been attack, than the baseline performance
- Adversarial training did not seem to have an impact on VGG16 nor VGG19



| Top-1 (No Attack) -    | 24.00    | 13.24    | 8.34      | 21.92 | 21.18 |
|------------------------|----------|----------|-----------|-------|-------|
| Top-5 (No Attack) -    | 6.76     | 1.96     | 0.64      | 5.62  | 5.14  |
| 0 -                    |          |          |           |       |       |
| Top-1 (FGSM Attack) -  | 84.86    | 44.30    | 34.34     | 89.22 | 87.58 |
| Top-5 (FGSM Attack) -  | 66.16    | 21.46    | 12.48     | 73.60 | 71.42 |
| Top-1 (PGD Attack) -   | 99.82    | 94.66    | 89.12     | 99.80 |       |
| Top-5 (PGD Attack) -   | 97.74    | 90.00    | 75.84     | 98.44 |       |
| Top-1 (CW Attack) -    | 88.96    | 70.00    | 51.00     | 91.32 |       |
| Top-5 (CW Attack) -    | 56.12    | 22.90    | 12.58     | 64.28 |       |
| 0 -                    |          |          |           |       |       |
| Top-1 (Defense FGSM) - | 8.14     | 4.54     | 2.88      | 99.90 | 99.90 |
| Top-5 (Defense FGSM) - | 2.14     | 1.08     | 0.14      | 99.50 | 99.50 |
| Top-1 (Defense PGD) -  | 43.68    | 79.14    |           | 99.90 |       |
| Top-5 (Defense PGD) -  | 20.32    | 45.32    |           | 99.50 |       |
| Top-1 (Defense CW) -   | 4.56     | 8.50     |           | 99.90 |       |
| Top-5 (Defense CW) -   | 0.80     | 1.12     |           | 99.50 |       |
|                        | ResNet18 | ResNet50 | ResNet152 | VGG16 | VGG19 |