Outline

Functional schemes

Scrambling

- Alarms and alarm states
- Physical interfaces and line systems
 - Regenerator
- Line Terminal Multiplexer and Add Drop Multiplexer
- Digital Cross Connect
- Radio relay equipment

SDH Equipment

What is Scrambling?

- equalization of statistics, on moments of both 1° and 2° order
- ensure the same probability of "1" and "0" in the transmitted signal (equalize the average)
- diminish the probability of long sequences of consecutive identical digits (CID) "11111111111..." and "0000000000..." in the transmitted signal (whitening the autocorrelation and the power spectral density)
 - two types of scramblers
- basic self-synchronizing scrambler
- additive scrambler

SDH Equipment

Why Scrambling?

- unequipped tributaries: P(0) = 1
 - alarmed tributaries: P(0) = 0
- clock recovery circuits would work in very different conditions, should they do directly on these signals (e.g., NRZ coding in optical systems)

SDH Equipment

Basic Self-Synchronizing Scrambler

 basic self-synchronizing scrambler 1 adder mod 2 (XOR) M delay elements of order M

ž

exchanging the input with the output • M binary multipliers $c_m(c_M = 1)$ the basic self-synchronizing descrambler is obtained by

 $x^M + C_{M+1}x^{M+1} + C_{M+2}x^{M+2} + \dots + C_1x + 1$ characteristic polynomial defined by the

SDH Equipment

Additive Scrambler

- scrambler as pseudo-random binary uses the basic self-synchronizing sequence (PABS) generator
- * the additive descrambler is the same as the scrambler
 - adding twice the same binary sequence yields the original sedneuce

හ

- this scrambler is not self-synchronizing!
- $x^{M} + c_{M+1}x^{M+1} + c_{M+2}x^{M+2} + ... + c_1x + 1$ characteristic polynomial defined by the

SDH Equipment

CM=1

Stafoao Bragai

Scrambling in SDH Systems

- to avoid transmission of long sequences of consecutive identical digits (CID)
 - NRZ coding is used in SDH optical systems
- signal is scrambled (first row of RSOH excluded) before line coding in the RST block, after having added the RSOH, the STM-Noutput * additive scrambler with characteristic polynomial $x^7 + x^6 + 1$
 - reset to the "111111" status each STM-N frame on the first bit of the first byte after the first row of RSOH
 - the first row of RSOH is not scrambled to allow the descrambler to synchronize....

· ...and therefore should not include long CID sequences in J0 and X

SDH Equipment

Reti di Trasmissione Prof. Stefano Bregni

Prova finale – 7 luglio 2005

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 2

(svolgere su questo foglio) (6 punti)

- a) Si disegni lo schema di uno scrambler autosincronizzante avente polinomio caratteristico $1+x+x^3$. Si indichi la sequenza binaria in ingresso con $\{I_k\}$ e la sequenza binaria in uscita con $\{U_k\}$.
- b) Lo si inizializzi con tutti "0" negli elementi di ritardo D_i e lo si alimenti con una sequenza dati composta da tutti "1" in ingresso. Ricavare la sequenza restituita all'uscita, evidenziando la sua periodicità.
- c) Lo si inizializzi con la sequenza "100" negli elementi di ritardo, si scambi l'ingresso con l'uscita e lo si alimenti con la sequenza risultato della domanda precedente. Ricavare la sequenza restituita all'uscita.

	bons K	IK	MK	1 N2K	1 n _{3K}	VK	
•	0	1	0	0	0	1	100.5
	1.	1	1	0	0	0	12000
	2	1	0	1	0	1	2-1=7
	}	1	1	0	1	1	
	4	1	1	1	0	9	
	Ş	1	0	1	1	0	
	6	1	0	٥	1	0	*
	, t	17	0	9	0	1	
	•	i e	1	;	1	1	

Ponok	IK	Mik	D _{UK}	1 D3K	1 Ux	•
0 1 2	1 0 1	1 1 0	0 1 1	0 0 1	0 1 0	- 1 3 fit Necessari Melà il
3 4 5 6 7	1 0 0 0 1	1 1000	0 1 1 0 0	1 0 1 1 0	1 1 1 1	si ont opin homis
1	!	;	;	3	,	

Reti di Trasmissione

Prof. Stefano Bregni

II Appello d'Esame – 5 settembre 2005

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 2

(svolgere su questo foglio e sul retro) (5 punti)

- a) Si disegni lo schema di uno scrambler additivo avente polinomio caratteristico $1+x+x^4$. Si indichi la sequenza binaria in ingresso con $\{I_k\}$, la sequenza binaria in uscita con $\{U_k\}$, la sequenza binaria pseudocasuale con $\{R_k\}$.
- b) Lo si inizializzi con "1" nel primo elemento di ritardo (D_1) e con "0" in tutti gli altri $(D_i, i>1)$ e lo si alimenti con una sequenza dati composta da tutti "0" in ingresso. Ricavare la sequenza restituita all'uscita, evidenziando la sua periodicità.
- c) Disegnare lo schema del descrambler corrispondente. Si consideri questo descrambler nello stato "11" in D_1,D_2 e "0" in D_i (i>2). Dire sotto quale condizione questo descrambler riproduce la sequenza originale in ingresso allo scrambler.

P=15

							-
bons K	IK) 1K	1)2k	1)3K	13 _{4 k}	Rk	U K
0	0	1	0	0	0	1	21
1 2	0	1	1	0	၁	1	ise) Rx
2	0	1	1	1	ø	1	
3	9	1	1	1	1	٥	
4	0	0	1	1	1	1	*
5	0	1	0	1	1	0	
6	0	0	11	0	1	1	•
1	0	1	0	1	0	1	-
P	0	1	11	Q	1	0	
9	0	0	1	1	0	0	
10	0	0	0	1	1	1	
17	0	1	0	0	1	0	
12	0	0	11	0	0	0	
13	0	0	0	1	O	0	
14	0	0	0	0	1	1	
15	0	11	0	0	0	1	
1	1		1		1	1	

Domanda 3 (svolgere su questo foglio) (6 punti)

- a) Si disegni lo schema di uno scrambler additivo avente polinomio caratteristico $1+x^2+x^3$.
- b) Lo si inizializzi con tutti "1" negli elementi di ritardo e lo si alimenti con una sequenza dati composta da tutti "1" in ingresso. Qual è la sequenza pseudo-casuale di bit che è sommata alla sequenza di dati? Qual è la sequenza di bit restituita all'uscita? Qual è il periodo delle due sequenze?

(+) (+) (+) (-1 I	Pont K	Ik	DIK	1)2k	D3K	RK	UK
	0	1	1	1	1	0	1
I Da	1	1	0	1	1	0	1
	2	1	0	0	1	1	O
	ડ્રે	1	1	0	0	0	7
	4	1	0	1	0	1	0
	5	1	1	0	1	1	0
$[D_3]$	6	1	1	1	0	1	D
	7	1	1	1	1	0	1
	8	1		•		1	
	4	1	,	>	` ` `	\	

Ok: repense finnie ell'useite

Rk! repense PRBS

Perioda: 23-1-7