Dominik Szot

Laboratorium 3

Interpolacja

Zadanie 1.

Tabela 1. Populacja Stanów zjednoczonych na przestrzeni lat

Rok	Populacja
1900	76212168
1910	92228496
1920	106021537
1930	123202624
1940	132164569
1950	151325798
1960	179323175
1970	203302031
1980	226542199

Zbiór funkcji bazowych $\phi_j(t)$, j = 1,...,9:

$$\phi_j(t) = t^{j-1} \tag{1}$$

$$\phi_j(t) = (t - 1900)^{j-1}$$
 (2)

$$\phi_j(t) = (t - 1940)^{j-1} \tag{3}$$

$$\phi_i(t) = ((t - 1940)/40)^{j-1} \tag{4}$$

Macierz Vadermonde'a jest macierzą postaci

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}$$

Macierz Vandermonde'a dla każdego z czterech funkcji bazowych będzie miała postać

$$\begin{bmatrix} \phi_1(t_1) & \phi_2(t_1) & \phi_3(t_1) & \dots & \phi_n(t_1) \\ \phi_1(t_2) & \phi_2(t_2) & \phi_3(t_2) & \dots & \phi_n(t_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_1(t_n) & \phi_2(t_n) & \phi_3(t_n) & \dots & \phi_n(t_n) \end{bmatrix}$$

Używając funkcji *numpy.linalg.cond.* jesteśmy w stanie wyznaczyć współczynnik uwarunkowania każdej macierzy

Tabela 2. Wartości liczbowe współczynników uwarunkowania dla danych funkcji bazowych

Funkcja Bazowa	Współczynnik uwarunkowania
1.	607494478008413.4
2.	3895611479.9585776
3.	2095697677.8416743
4.	1605.4437004786996

Bazą najlepiej uwarukowaną okazała się baza z funkcja (4)

$$\phi_i(t) = ((t - 1940)/40)^{j-1}$$

Współczynniki wielomianu interpolacyjnego c_1, \dots, c_n znajdziemy rozwiązując równanie

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} c_1 \\ c_1 \\ \vdots \\ c_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_2 \end{bmatrix}$$

Gdzie $(x_1, y_1), ..., (x_n, y_n)$ są punktami interpolacji wielomianu. Korzystając z algorytmu Hornera do wyliczania wartości wielomianu dla konkretnego x

$$W(x) = (...(a_nx + a_{n-1})x + ... + a_1)x + a_0$$

Jesteśmy w stanie obliczyć wartości wielomianu w odstępach jednorocznych na przedziale [1900, 1990]

Tabela 3. Porównanie wartości ekstrapolacji dla roku 1990

Wartość oczekiwana	Wartość ekstrapolowana	Błąd względny
248709873	82749141	165960732

Wielomian Lagrange'a jest wielomianem postaci

$$w_{j}(x) = \frac{\prod_{k=1, k \neq j}^{n} (x - x_{k})}{\prod_{k=1, k \neq j}^{n} (x_{j} - x_{k})} \quad j = 1, ..., n$$

$$w_{j}(x_{i}) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \quad i, j =, ..., n$$

$$p_{n-1}(x) = y_{1}w_{1}(x) + y_{2}w_{2}(x) + \dots + y_{n}w_{n}(x)$$

Algorytm obliczający wartość wielomianu Lagrange'a

```
def lagrange_interpolation(x_values, y_values, x):
    result = 0
    for j in range(len(x_values)):
        coefficient = 1
        for k in range(len(y_values)):
            if j != k:
                 coefficient *= (x-x_values[k])/(x_values[j] - x_values[k])
        result += coefficient * y_values[j]
return result
```

Wykres 2. Populacja w zależności od roku - wielomian interpolacyjny Lagrange'a

Wielomian Newtona'a jest wielomianem postaci

$$\pi_j(x) = \prod_{k=1}^{j-1} (x - x_k) j = 1, ..., n$$

$$\pi_j(x_i) = 0, i < j$$

$$p_{n-1}(x) = f[x_1]\pi_1(x) + f[x_1, x_2]\pi_2(x) + \dots + [x_1, x_2, ..., x_n]\pi_n(x)$$

```
newton_basis = np.zeros((len(points), len(points)))
for i in range(len(newton_basis)):
    newton_basis[i][0] = 1

for i in range(1, len(newton_basis)):
    for j in range(1, i+1):
        coeff = years[i] - years[j-1]
        newton_basis[i][j] = coeff * newton_basis[i][j-1]

coefficient_newton = np.dot(np.linalg.inv(newton_basis), points)

for n in range(len(new_y_values)):
    acutal = 1
    result = coefficient_newton[0]
    for j in range(1, len(points)):
        acutal *= (new_x_values[n] - years[j-1])
        result += coefficient_newton[j] * acutal
    new_y_values[n] = result
```

Wykres 3. Populacja w zależności od roku - wielomian interpolacyjny Newtona'a

Tabela 4. Zaokraglone dane do jednego miliona.

Rok	Populacja
1900	76000000
1910	92000000
1920	106000000
1930	123000000
1940	132000000
1950	151000000
1960	179000000
1970	203000000
1980	227000000

Wykres 4. Porównanie wielomianów interpolacyjnych

Współczynniki wielomianów interpolacyjnych różnią się nieznacznie dla danych wejściowych oraz danych zaokrąglonych do miliona. Węzły interpolacji obu zestawów danych są różne, stąd wielomiany są różne.

Bibliografia

• Katarzyna Rycerz: Wykład z przedmiotu Metody Obliczeniowe w Nauce i Technice