	检验法	条件	原假 设 H ₀	备择 假设 <i>H</i> ₁	检验统计量	拒绝域
单个正态总	u 检验	σ 已知	μ≤μ ₀ μ≥μ ₀ μ=μ ₀	μ>μ ₀ μ<μ ₀ μ≠μ ₀	$u = \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}}$	$W = \{u \ge u_{\alpha}\}$ $W = \{u \le -u_{\alpha}\}$ $W = \{ u \ge u_{\alpha/2}\}$
	t 检验	σ未知	μ≤μ ₀ μ≥μ ₀ μ=μ ₀	μ>μ ₀ μ<μ ₀ μ≠μ ₀	$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$	$W = \{t \ge t_{\alpha}(n-1)\}$ $W = \{t \le -t_{\alpha}(n-1)\}$ $W = \{ t \ge t_{\alpha/2}(n-1)\}$
体		μ 未知	$ \sigma^2 \leq \sigma_0^2 \sigma^2 \geq \sigma_0^2 \sigma^2 = \sigma_0^2 $	$\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$ $\sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$W = \{ \chi^2 \ge \chi_{\alpha}^2 (n-1) \}$ $W = \{ \chi^2 \le \chi_{1-\alpha}^2 (n-1) \}$ $W = \{ \chi^2 \ge \chi_{\alpha/2}^2 (n-1) \} \cup \{ \chi^2 \le \chi_{1-\alpha/2}^2 (n-1) \}$

	检验法	条件	原假 设 H ₀	备择 假设 <i>H</i> ₁	检验统计量	拒绝域
两个正态总体	u 检 验	ஏ.,ஒ已 知	$\mu_1-\mu_2 \le \delta$ $\mu_1-\mu_2 \ge \delta$ $\mu_1-\mu_2 = \delta$	δ	$u = \frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$W = \{u \ge u_{\alpha}\}$ $W = \{u \le -u_{\alpha}\}$ $W = \{ u \ge u_{\alpha/2}\}$
	u 检 验	σι,σ:未 知, n 很大	$\mu_{1}-\mu_{2} \leq \delta$ $\mu_{1}-\mu_{2} \geq \delta$ $\mu_{1}-\mu_{2} = \delta$	$\delta \\ \mu_1 - \mu_2 < \\ \delta$	$u = \frac{\overline{x} - \overline{y} - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$W = \{u \ge u_{\alpha}\}$ $W = \{u \le -u_{\alpha}\}$ $W = \{ u \ge u_{\alpha/2}\}$
		σ ₁ =σ ₂ = σ未知	$\mu_{1}-\mu_{2} \leq \delta$ $\mu_{1}-\mu_{2} \geq \delta$ $\mu_{1}-\mu_{2} = \delta$	$\delta \\ \mu_1 - \mu_2 < \\ \delta$	V12	$W = \{t \ge t_{\alpha}(n_1 + n_2 - 2)\}$ $W = \{t \le -t_{\alpha}(n_1 + n_2 - 2)\}$ $W = \{ t \ge t_{\alpha/2}(n_1 + n_2 - 2)\}$
	t 检验	成对数 据	μ _d ≤0 μ _d ≥0 μ _d =0	$\mu_d > 0$ $\mu_d < 0$ $\mu_d \neq 0$	$t = \frac{\overline{d} - 0}{s_d / \sqrt{n}}$ $\overline{d} = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i),$ $s_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - y_i - \overline{d})^2$	$W = \{t \ge t_{\alpha}(n-1)\}$ $W = \{t \le -t_{\alpha}(n-1)\}$ $W = \{ t \ge t_{\alpha/2}(n-1)\}$
	F 检验	μ1, μ2 未知	$\sigma^2 \leq \sigma_0^2$ $\sigma^2 \geq \sigma_0^2$ $\sigma^2 = \sigma_0^2$		$F = \frac{s_1^2}{s_2^2}$	$W = \{F \ge F_{\alpha}(n_1 - 1, n_2 - 1)\}$ $W = \{F \le F_{1-\alpha}(n_1 - 1, n_2 - 1)\}$ $W = \{F \ge F_{\alpha/2}(n_1 - 1, n_2 - 1)\}$ $\bigcup \{F \le F_{1-\alpha/2}(n_1 - 1, n_2 - 1)\}$