第6章 图

计算机工程与科学学院 封卫兵

平面图与平面嵌入 平面图的面及其次数 极大平面图 欧拉公式 库拉图斯基定理 平面图的对偶图 着色与四色定理

平面图与非平面图

定义6.22 如果能将图 G 除顶点外边不相交地画在平面上,则称 G 是平面图 . 这个画出的无边相交的图称作 G 的平面嵌入. 没有平面嵌入的图称作非平面图.

例: 下图中_(1),(2),(3),(4)_ 是平面图, (2)_ 是 (1)_ 的平面嵌入, (4)_ 是 (3)_ 的平面嵌入. (5)_ 是非平面图.

平面图中的术语 (设 G 是一个平面嵌入)

G的面:由 G的边将平面划分成的每一个区域;

无限面(外部面): 面积无限的面, 用 R_0 表示;

有限面(内部面): 面积有限的面, $用R_1, R_2, ..., R_k$ 表示;

面 R, 的边界:包围 R, 的所有边构成的回路组;

面 R_i 的次数: R_i 边界的长度,用 $\deg(R_i)$ 表示.

注: 构成一个面的边界的回路组可能是初级回路, 简单回路,

也可能是复杂回路, 甚至还可能是非连通的回路之并.

例: 右图有 4 个面

 R_1 的边界: a, 初级回路

 R_2 的边界: bce, 初级回路

 R_3 的边界: fg, 初级回路

 R_0 的边界: abcdde, fg, 复杂回路, 非连通

$$\deg(R_1) = 1$$

$$\deg(R_3) = 2$$

$$\deg(R_2) = 3$$

$$\deg(R_0) = 8$$

例: 右边 2 个图是同一平面图 的平面嵌入.

 R_1 在(1)中是外部面,

在(2)中是内部面;

 R_2 在(1)中是内部面,在(2)中是外部面.

注:

- 1) 一个平面图可以有多个不同形式的平面嵌入,它们都同构;
- 2) 可以通过变换 (测地投影法) 把平面图的任何一面作为外部面.

平面图的面次和

定理6.15 平面图各面的次数之和等于边数的 2 倍,即

$$\sum_{i=1}^{r} \deg(R_i) = 2m$$

其中,r为G的面数,m为边数.

证明: 一条边或者是 2 个面的公共边界,或者在一个面的边界中

出现 2 次. 在计算各面的次数之和时, 每条边恰好被计算 2 次.

例: 求图示非连通的平面图各面的次数,并验证各面次数之和 等于边数的 2 倍。

A4:
$$\deg(R_1) = 1$$
, $\deg(R_2) = 3$, $\deg(R_3) = 6$, $\deg(R_4) = 2$, $\deg(R_5) = 3$, $\deg(R_0) = 13$,

图中边数 m = 14,

$$\sum_{i=0}^{5} \deg(R_i) = 28 = 2 \times 14$$

注: 桥在计算它所在的面的次数时都提供2次.

极大平面图

定义6.24 若 G 是简单平面图,且在任意两个不相邻的顶点之间 加一条新边所得图为非平面图,则称G为极大平面图.

例: K_1 , K_2 , K_3 , K_4 都是极大平面图?

图(1)是 K_5 删去一条边,是极大平面图?

图(2)是极大平面图? 💢

图(3)是极大平面图? 💢

极大平面图的性质

- 1) 极大平面图是连通的(?)
- 2) 设 G 为 n ($n \ge 3$) 阶简单图,G 为极大平面图的充分必要条件是,G 每个面的次数均为 3.

例:

极大平面图

外部面的次数为 4 非极大平面图

欧拉公式

定理6.16 设 G 为 n 阶 m 条边 r 个面的<mark>连通平面</mark>图,则

$$n-m+r=2$$
.

证明:对边数 m 做归纳证明.

- 1) m=0, G 为平凡图, 结论成立;
- 2) 设 $m = k (k \ge 0)$ 时结论成立,即n 阶 k 条边r 个面的连通平面图,有n k + r = 2;

欧拉公式 (续)

3) 对 m = k + 1,若 G 中无圈,则 G 必有一个度数为 1 的顶点 ν ,删除 ν 及关联的边,记作 G',则

G' 连通, 有 n-1 个顶点, k 条边和 r 个面.

由归纳假设, (n-1)-k+r=2, 即 n-(k+1)+r=2, 得证.

否则,删除一个圈上的一条边,记作G',则

G'连通,有n个顶点,k条边和r-1个面.

再由归纳假设, n-k+(r-1)=2, 即 n-(k+1)+r=2. 证毕.

欧拉公式 (续)

推论 设平面图 G 有 p ($p \ge 2$) 个连通分支,则

$$n-m+r=p+1.$$

其中n, m, r分别是G的阶数、边数和面数.

证明: 设第i个连通分支有 n_i 个顶点, m_i 条边和 r_i 个面.

对各连通分支用欧拉公式,

$$n_i - m_i + r_i = 2$$
, $i = 1, 2, ..., p$

求和,由于 $r=r_1+...+r_p-p+1(?)$,外部面被重复计算

即得
$$n-m+r+p-1=2p \Rightarrow n-m+r=p+1$$
.

欧拉公式 (续)

定理6.17 设 G 为 n 阶连通平面图,有 m 条边,且每个面的次数

不小于 $l(l \ge 3)$,则

$$m \leq \frac{l}{l-2}(n-2).$$

证明: 设G有r个面,则各面次数之和不小于lr.

因为, 平面图各面的次数之和等于边数的 2 倍, 所以, $2m \ge lr$,

又因为,G为连通平面图,由欧拉公式得:n-m+r=2,

所以, $2m \ge l(2+m-n)$, 即得证.

欧拉公式 (续)

注: 这是个必要条件!

n 阶连通平面图,则 $m \le \frac{l}{l-2}(n-2)$

不满足
$$m \le \frac{l}{l-2}(n-2)$$
, 则不是 n 阶连通平面图

例:证明 K_5 和 $K_{3,3}$ 不是平面图.

证明:

$$K_5: n = 5$$
, $m = 10$, $l = 3$

$$K_{3,3}: n=6$$
 , $m=9$, $l=4$

不满足定理 6.17 的条件.

2) K_5 和 $K_{3,3}$ 是基本的非平面图,在平面图的判断上起很大作用。

例:设简单连通平面图有 $n(n \ge 3)$ 个顶点、m条边,则

$$m \leq 3n - 6$$

证明:由于至少3条边才能围成一个面,所以3阶以上的简单连通 平面图每个面的次数至少为3.

设图 G = (V, E), 其中边数 m, 结点数 n, 面数 r.

方法一: 由面次和定理: $2m = \sum_{i=1}^{r} \deg(R_i)$

因为每个面的次数均大于等于 3, 所以 $2m \ge 3r$

由欧拉定理 n - m + r = 2 有: $m \le 3n - 6$.

例:设简单连通平面图有 $n(n \ge 3)$ 个顶点、m条边,则

$$m \le 3n - 6$$

证明:由于至少3条边才能围成一个面,所以3阶以上的简单连通平面图每个面的次数至少为3.

设图 G = (V, E), 其中边数 m, 结点数 n, 面数 r.

方法二:由定理6.17有: $m \leq \frac{l}{l-2}(n-2)$,由于

$$\frac{l}{l-2} = 1 + \frac{2}{l-2}$$
 在 $l = 3$ 时达到最大值,于是
$$m \le \frac{3}{3-2}(n-2) = 3n-6$$

例:已知7阶连通平面图G有6个面,试求G的边数m.

解:由于 G 是连通平面图,所以 G 的阶数 n、边数 m、面数 r 满足欧拉公式:

$$n-m+r=2$$

已知, n = 7, r = 6, 所以, m = n + r - 2 = 7 + 6 - 2 = 11.

同胚与收缩

消去 2 度顶点 v 如图从(1)到(2);

插入 2 度顶点 v 如图从(2)到(1);

 G_1 与 G_2 同胚: G_1 与 G_2 同构, 或经过

反复插入、或消去2度顶点后同构;

收缩边e: 若删除图中边e = (u,v), 并将u与v重合,所得顶点记为u(或v),使u关联除边(u,v)外,原来u与v关联的一切边,如图从(3)到(4).

库拉图斯基(Kuratowski)定理

定理6.18 一个图是平面图<u>当且仅当</u>它既不含与 K_5 同胚的子图,也不含与 $K_{3,3}$ 同胚的子图.

定理6.19 一个图是平面图<u>当且仅当</u>它既无可收缩为 K_5 的子图,也无可收缩为 $K_{3,3}$ 的子图.

例:证明下面2个图均为非平面图.

注: 若 *G* 中有 *5* 个 以上的 4 度点,可 以尝试 *K*₅;

若有 6 个以上的 3 度点,可以尝试*K*_{3,3}.

与 *K*_{3,3} 同胚 也可收缩到 *K*_{3,3}

与 K_5 同胚 也可收缩到 K_5 也可收缩到 $K_{3,3}$

例: 画出所有非同构的 6 阶 11 条边的简单连通非平面图

解:

在 K_5 (5 阶 10 条边) 上 加一个顶点和一条边

在*K*_{3,3} (6 阶 9 条边) 上加 2 条边

对偶图

定义6.28 设平面图 $G \neq n$ 个顶点, m 条边和 r 个面,

G 的对偶图 $G^* = < V^*, E^* >$ 构造如下:

在 G 的每一个面 R_i 中任取一个点 v_i^* 作为 G^* 的顶点,

$$V^* = \{ v_i^* | i = 1, 2, ..., r \}.$$

对 G 每一条边 e_k ,若 e_k 在 G 面 R_i 与 R_j 的公共边界上,则作边 $e_k^* = (v_i^*, v_j^*)$,且与 e_k 相交,若 e_k 只在面 R_i 的边界上,则作环 $e_k^* = (v_i^*, v_i^*)$.

$$E^* = \{ e_k^* | k=1, 2, ..., m \}.$$

例:

性质

- 1) G* 是平面图,而且是平面嵌入;
- 2) G*是连通的;
- 3) 若 e 为 G 中的环,则 G^* 中 e^* 为桥,若 e 为桥,则 G^* 中 e^* 为环;
- 4) 同构的平面图的对偶图不一定同构,如(1)和(3).

对偶图 (续)

(1) (2) (3) 定理6.20 设 *G** 是连通平面图 *G* 的对偶图, *n**, *m**, *r**和 *n*, *m*, *r* 分别为 *G**和 *G* 的顶点数、边数和面数,则

- 1) $n^* = r$;
- 2) $m^* = m$;
- 3) $r^* = n$;
- 4) 设 G^* 的顶点 v_i^* 位于 G 的面 R_i 中,则 $d(v_i^*) = \deg(R_i)$;
- 5)*若 G 是具有 $k(k \ge 2)$ 个连通分支的平面图,则 $r^* = n k + 1$.

着色

点着色(简称着色):对无环无向图的每个顶点涂一种颜色,使相邻的顶点涂不同的颜色.(用尽可能少的颜色)

k-可着色的: 能用 k 种颜色着色.

注: (1) 偶圈用 2 种颜色; (2) 奇圈要 3 种颜色;

(3) 奇阶轮图要 3 种颜色; (4) 偶阶轮图要 4 种颜色.

例: 给出颜色尽可能少的着色

着色问题与哈密顿回路问题, 至今还没有有效的算法

例: 一个程序有 6 个变量 x_i , i = 1, 2, ..., 6, 其中 x_1 与 x_4 , x_1 与 x_5 , x_2 与 x_5 , x_2 与 x_6 , x_3 与 x_4 , x_3 与 x_6 , x_4 与 x_5 , x_4 与 x_6 , x_5 与 x_6 要同时使用. 给每一个变量分配一个寄存器. 要同时使用的两个变量不能分配同一个寄存器. 问: 至少要使用几个寄存器?如何分配?

解: 做无向图 $G = \langle V, E \rangle$, 其中 $V = \{x_1, x_2, x_3, x_4, x_5, x_6\}$, $E = \{(x_i, x_i) \mid x_i = x_i \neq i, i \neq j, i, j = 1, 2, ..., 6\}$

至少用 3 个寄存器 x_1 与 x_6 , x_2 与 x_4 , x_3 与 x_5 , 分配同一个 寄存器

例: 某大学计算机专业三年级有 5 门选修课,其中课程 1 与 2, 1 与 3, 1 与 4, 2 与 4, 2 与 5, 3 与 4, 3 与 5均有人同时选修,问安排这 5 门课程的考试至少需要几个时间段??

解: 做无向图 $G = \langle V, E \rangle$, 其中 $V = \{v_i | i = 1, 2, 3, 4, 5\}$, $E = \{(v_i, v_j) | v_i = v_j \}$ 有人同时选, $1 \le i < j \le 5\}$, 显然, 课程 v_i 可以同时考当且仅当没有人同时选 v_i 和 v_j ,

此时v_i与v_j可以着同一种颜色。

至少用 3 个时间段才能考完这 5 门课程。

地图着色

地图: 无桥平面图, 其对偶图是无环平面图

地图着色(面着色): 每个面着一种颜色, 相邻的面着不同的颜色

地图着色对应对偶图的点着色

四色定理

四色猜想(19世纪50年代)

—— 五色定理(希伍德, 1890年)

——四色定理(阿佩尔和黑肯, 1976年)

定理(四色定理) 任何平面图都是 4-可着色的.

例: 一个连通平面图 G 的度数列是: 2, 3, 2, 4, 1, 2, 2 试求出 G 的面数和其对偶图边数和面数.

解:由连通平面图 G 的度数列知,顶点数 n=7;

由握手定理知, 边数 m = (2+3+2+4+1+2+2)/2 = 8;

由欧拉公式:面数 r=2-n+m=3;

其对偶图边数和面数分别为8和7.

作业

• 6.47 (V2: 6.38)

- 6.55 (V2: 6.46)

- 6.56 (V2: 6.47)

研讨题

1) 证明所示图不是哈密顿图。

2) 证明: 足球是由几个五边形和六边形组成的。

(提示: 先用多面体的缺角和为720°求出顶点数。)

3) 证明: 6个结点12条边的连通简单平面图中,每个面均有3条边组成。