$\langle 0, 2 \rangle \in \mathbb{N} \times \mathbb{N}$ 但 $\langle 0, 2 \rangle \notin \operatorname{ran} f$,所以 f 不是满射,从而也不是双射。 $f \upharpoonright \{0, 1, 2\} = \{ \langle 0, \langle 0, 1 \rangle \rangle, \langle 1, \langle 1, 2 \rangle \rangle, \langle 2, \langle 2, 3 \rangle \rangle \}.$

3.

证明:记 $\kappa = \operatorname{card} B, \mu = \operatorname{card} (A - B),$ 由于 $B \cap (A - B) = \emptyset$,所以由基数加法的定义知, $\kappa + \mu = \operatorname{card} (B \cup (A - B)) = \operatorname{card} A = \lambda$ 。

另一方面,由于 $\kappa \geq \aleph_0$,由教材定理 5.24 知, $\lambda = \kappa + \mu = \max\{\kappa, \mu\}$ (教材定理 5.24 要求"其中较大的为无穷基数",本题已知 κ 为无穷基数,若 $\mu \leq \kappa$,则 κ 就是"较大的""无穷基数",若 $\mu > \kappa$,则 μ 就是"较大的""无穷基数",从而定理的前提总成立)。由于已知 $\kappa < \lambda$,从 而 $\kappa \neq \max\{\kappa, \mu\} = \lambda$,所以必有 $\operatorname{card}(A - B) = \mu = \max\{\kappa, \mu\} = \lambda$ 。

4. |x| = 3.

证明: 首先,由于y是二阶元,所以有 $y^{-1}=y$ 。同时:

$$yxy^{-1} = x^2$$

$$\iff yx = x^2y \tag{5.5}$$

$$\iff x = y^{-1}x^2y \tag{Exp } y^{-1}$$

$$\Longrightarrow x^2 = (y^{-1}x^2y)(y^{-1}x^2y) \tag{两边取平方}$$

$$\iff x^2 = y^{-1}x^4y \tag{yy^{-1} = e}$$

$$\iff x^2 = yx^4y^{-1} \tag{y = y^{-1}}$$

从而有 $yx^4y^{-1}=x^2=yxy^{-1}$ 。由消去律知 $x^3=e$ 。从而 $|x|\mid 3$ 。因为 x 不是单位元,所以 $|x|\neq 1$,因此只能有 |x|=3。