# COMP9321 Web Application Engineering 12s1

Helen Hye-young Paik

Service Oriented Computing Group, CSE, UNSW

Week 1

Topic: Web Essentials - Clients, Servers and Communication References used for the Lecture:

• Web Application Architecture - Shklar and Rosen

# Basic Web Architecture: Universal Readership ...



## Web Essentials - Clients, Servers and Communication

#### Essential elements?

- Web browsers to surf the Web
- The server systems to supply information to the browsers
- The computer networks supporting browser-server communication

the start of the Internet backbone:-



## Web Essentials - Clients, Servers and Communication

- 1990 NSFNET (National Science Foundation USA) collection of computer networks connected via the public backbone and communicating across networks using TCP/IP.
- But the NSFNET terms of usage required purely commercial traffic was not allowed over the backbone. The purpose of the Internet was still to support research and education
- Restriction on commercial traffic was revoked in 1991 laying the foundation of the Internet we see today
- NSF left the role of the Internet backbone operator, and private telco firms took over in 1995
- These firms have direct access to the backbone, and paid by Internet Service Providers (ISPs), who in turn are paid by their subscribers.

H. Paik (CSE, UNSW) COMP9321, 12s2 Week 1

## Web Essentials - Basic Internet Protocols: TCP/IP



IP (Internet Protocol)

- Each device on the Internet is associated with an IP address (e.g., 192.0.34.16)
- When an application on a computer (source) wants to send data to another computer (destination), IP software creates a packet (header+data) and send it via the network.
- If destination is on another network, the IP software sends the packet to a gateway which selects a computer on one of the other networks and sends the packet to that computer - this is repeated until the packet reaches its destination
- IP software on the destination will receive the packet and pass its data up to an application that is waiting for the data

H. Paik (CSE, UNSW) COMP9321, 12s2 Week 1 5 / 31

## Web Essentials - Basic Internet Protocols: TCP/IP

### TCP (Transmission Control Protocol)

- TCP works with IP to add 'reliability' as IP-only communication can lose packets
- TCP adds the concept of 'connection' between a sender and a receiver
- a connection must be established before a packet can be sent



## Web Essentials - Basic Internet Protocols: TCP/IP

### TCP (Transmission Control Protocol)

- An important feature that TCP adds to IP is the concept of 'port'
- Having ports allows TCP to be used to communicate with many different applications (e.g., mail server, file server, web server, remote login server. etc.)
- port numbers 0-1023 are reserved for a user with administration permissions, 1024-65535 can generally be used by the first application on a system that requests the port



## Web Essentials - Basic Internet Protocols: Domain Names

Domain Name Service (DNS): DNS provides a way to map back and forth IP addresses and host names (e.g., 129.94.242.51 - www.cse.unsw.edu.au)



The first two lines - DNS detail

## Web Essentials - Higher-Level Protocols

- TCP/IP and DNS enable the computers to communicate back and forth. The question is "what are you going to with it"?
- A variety of high level protocols are used to communicate once a TCP connection is established: SMTP, FTP and Telnet are good examples of widely used higher-level protocols.
- The most prevalent high-level protocol has to be HTTP (Hypertext Transport Protocol). The primary TCP-based protocol used for communication between Web servers and Web browsers.



# Building Blocks of the Web (Shklar and Rosen, pg. 31)

Three basic components devised by Tim Berners-Lee:

- A Uniform Notation Scheme for addressing resources (URL)
- A protocol for transporting messages (HTTP)
- A markup language for formatting hypertext documents (HTML)

General notation associated with a URL
scheme://host[:port]/path/.../[;url-params][?query-string]
[#anchor]

- scheme underlying protocol to be used
- host[:port] hostname or IP address of the web server. For HTTP, the default port is 80.
- path Path to the resource from the root directory of the web server.
- url-params Optional name=value pairs used mainly for JSESSIONID
- query-string string of name=value pairs separated by ampersand
   (&) or semi-colons
- anchor reference to a position marker in the requested document

# An http-scheme URL

http://www.example.org:56789/a/b/c.txt?t=win&s=chess#para5 authority part:

- after 'http://' through to the next slash www.example.org:56789
- It consists of either a domain name or an IP address
- optionally followed by a port number (if omitted, port 80 is implied)

#### path part:

- after the authority through to question mark (?)
- /a/b/c.txt (/ is part of the path, ? is not)
- much like a file path in file system ...

#### query string part:

- ullet after the path up to a number sign #
- contains a set of name-value pairs, separated by & (e.g., t=win&s=chess)

#### fragment identifier part:

after the number sign #, not including #

## Web Essentials - HTTP

- The basic structure of HTTP communication follows a "request-response" model.
- An HTTP interaction is initiated by a client sending a request message to the server; the server is then expected to generate a response message.
- The format of request and response messages is dictated by HTTP.
- HTTP is stateless each request-response pair is a separate interaction
- There's no way to batch related requests

## Web Essentials - HTTP



## HTTP Request (from browser to server):

It is composed of Request Line + Header + (additional data)

Syntax for the Request Line:

Request-Method sp Request-URI sp HTTP-version CRLF

eg, GET http://www.smh.com.au/index.html HTTP/1.1

- There must be a newline (CRLF) between the header and the additional data part.
- Common Request methods: GET, POST, HEAD ...
- Request header: User-Agent, Referer, Authorization.
- Additional data (body): parameters (POST), block of data

H. Paik (CSE, UNSW) COMP9321, 12s2 Week 1 15 / 31

```
POST /servlet/EchoHttpRequest HTTP/1.1
host: www.example.org:8080
user-agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.4)
   Gecko/20030624
accept: text/xml, application/xml, application/xhtml+xml,
   image/png, image/jpeg, image/gif;q=0.2, */*;q=0.1
accept-language: en-us, en:q=0.5
accept-encoding: gzip, deflate
accept-character: ISO-8859-1, utf-8;q=0.7
connection: keep-alive
keep-alive: 300
content-type: application/x-www-form-urlencoded
content-length: 13
request body starts ...
```

# HTTP Request Methods (version 1.1)

| Method  | Description                                                                                                                                                                          |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GET     | It the simplest, most used. It simply retrieves the data identified by the URL. If the URL refers to a script (CGI, servlet, and so on), it returns the data produced by the script. |  |
| HEAD    | It only returns HTTP headers without the document body.                                                                                                                              |  |
| POST    | It is like GET. Typically, POST is used in HTML forms. POST is used to transfer a block of data to the server.                                                                       |  |
| OPTIONS | It is used to query a server about the capabilities it provides.  Queries can be general or specific to a particular resource.                                                       |  |
| PUT     | It stores the body at the location specified by the URI. It is similar to the PUT function in FTP.                                                                                   |  |
| DELETE  | It is used to delete a document from the server. The document to be deleted is indicated in the URI section of the request.                                                          |  |
| TRACE   | It is used to tract the path of a request through firewall and multiple proxy servers. TRACE is useful for debugging complex network problems and is similar to the traceroute tool. |  |

# HTTP/1.1 Status Code Classes and common codes<sup>1</sup>

| Digit | Class         | Standard Use                                        |
|-------|---------------|-----------------------------------------------------|
| 1     | Informational | Provides information to client before request       |
|       |               | processing has been completed                       |
| 2     | Success       | Request has been successfully processed             |
| 3     | Redirection   | Client needs to use a different resource to fulfill |
|       |               | request                                             |
| 4     | Client Error  | Client's request is not valid                       |
| 5     | Server Error  | An error occurred during server processing          |

| Code | Reason Phrase         | Usual Meaning                                      |
|------|-----------------------|----------------------------------------------------|
| 200  | OK                    | Request processed normally                         |
| 301  | Moved Permanently     | URI for the requested resource has changed         |
| 401  | Unauthorised          | The resource is password protected, and the user   |
|      |                       | has not yet supplied a valid password              |
| 403  | Forbidden             | The resource is present on the server, but is read |
|      |                       | protected                                          |
| 404  | Not Found             | No resource corresponding the URI was found        |
| 500  | Internal Server Error | Server software detected an internal failure       |

p.19 in (WebTech)
H. Paik (CSE, UNSW)

### HTTP Response (from server to browser):

- Composed of Status Line + Header + Body
- Status line: 200 OK, 404 Not Found, etc.
- Header:
  - Content-Type, Content-Language, Content-Length, Cache-control, etc.
- Body:
  - Body contains the requested data
  - Body is in specific MIME format (eg., text/HTML)
  - MIME (Multipurpose Internet Mail Extension): text (plain, HTML), multimedia data, applications such as PDF, PowerPoint, etc.



## Improving Performance using HTTP features

HTTP 1.1 includes several methods for optimising delivery of Web content.

Includes information about the following:

- Connection management
- Caching Support
- Content negotiation

Using these features, you can tune your application to use caching effectively and tune your server for scalability and performance.

# Moving Web Site to Web Applications

#### Typical HTML Interactions



- The responses are generated dynamically depending on your input.
- The response also include 'hooks' for further interactions

# Common Gateway Interface (CGI)

- A Web server accepts certain kinds of URLs as a request for the execution of a specific program
- Basically, the CGI technology allows a browser to initiate a request to run a program. In turn, the Web server:
  - Identifies the program (a Web application) to be run,
  - Pass the user input to the program,
  - Executes the program
  - Pass the generated output (an HTML document) to the browser



# CGI is replaced by other 'better' technologies

CGI was not a scalable solution for big applications (eg., e-commerce).

- each client request makes the Web server spawn a new process of the requested CGI program
- creating a new process is expensive
  - consumes a lot of CPU cycles, memory, etc.

Gradually, new and better technologies emerged:

- PHP: An open-source technology. It comes with rich built-in functionality, such as file upload. It is becoming more and more popular.
- Servlet and Java Server Pages (JSP): Introduced by Sun Microsystems in 1996. Java's answer to a better CGI technology.
- Active Server Pages (ASP) and ASP.NET:. MS's answer to a better CGI technology. It is part of Microsoft .NET initiative.

Collectively these (and a lot more others) are called 'Web application frameworks'.

H. Paik (CSE, UNSW) COMP9321, 12s2 Week 1 24 / 31

## n-Tier applications

**Tier** - A layer in your application through which the client request has to pass to be resolved. E.g. A 3-tier application consists of the interface (JSP) , business logic (servlets) and database (RDBMS). Applications can have many tiers (*n*-tier).

## How many tiers should your application contain?

#### **Benefits**

- Applications are modular and can re-use components reduces development time and minimises errors (if designed right)
- Distributed processing Components can run on multiple machines
- Overloaded components can be isolated for replication

#### Disadvantages

- Message passing among components brings overheads
- Increased complexity of development
- Synchronization of distributed components

H. Paik (CSE, UNSW) COMP9321, 12s2 Week 1 25 / 31

## Different Layers in an Application

#### Different solutions for each layer

- Presentation Tier
  - Exposes Functionality to the Users, Communicates their commands to the lower tiers
- Business logic Tier
  - Processes user input,
     Performs logical evaluations & calculations, and Decides
     which view to expose to users
- Data Access Tier
  - Interfaces with the database, stores, updates and maintains persistence within the application



## Web Essential - Web servers

#### Server features<sup>2</sup>:

- The server calls on TCP software and waits for connection requests to one or more ports
- When a connection request is received, the server dedicates a "subtask" to handling this connection
- The subtask establishes the TCP connection and receives an HTTP request
- The subtask examines the Host header field of the request to determine which "virtual host" should receive this request and invokes software for this host.
- The virtual host software maps the Request-URI field of the HTTP request start line to a resource on the server

<sup>&</sup>lt;sup>2</sup>page 30 in (WebTech)