

电子材料与电子元器件腐蚀

蒋益明

材料二楼301 ymjiang@fudan.edu.cn 65643648

主要内容

• 电子材料与器件的可靠性

• 电子材料与器件的失效分析

• 电子材料与器件的腐蚀形态

• 应用举例

电子材料与电子元器件

• IT产品: 3C---计算机(Computer)

通信(Communication)

家用电器(Consumer electronics)

- 基板及元器件和连接部分"堆垛"而成
- 最基本单元:材料+元器件
- 电子材料:发挥其物理化学特性用于IT工业的材料
 - 性能: 声光电力热磁
 - 一分类: 半导体材料、介电材料、压电及铁电材料、磁性材料、 某些金属材料、高分子材料
- 电子元器件:电子材料经特殊工艺,在IT产品中起各种作用的电子部件
 - 集成电路器件 显示器件 传感器件 电池

电子元器件的可靠性

- 可靠性:产品在*规定的条件*下和*规定的时间*内, 完成*规定功能*的能力
- 规定条件:环境条件(温度、湿度、气压、盐雾、辐射、振动、冲击、碰撞、跌落等)、负荷条件(电、热、力等应力)和工作方式(连续或间断)
- 规定时间: 可靠性是时间的函数

电子元器件的失效规律

- 早期失效:失效率高,实效率随时间增加而下降,由特定的普遍性原因造成
- 偶然失效:失效率低,良好使用阶段,失效是由不太严重的偶然因素引起
- 损耗失效:失效率明显上升,大部分器件相继失效,失效是由 带全局性的原因引起(老化、磨损、耗损、疲劳等)造成

器件的设计、制造应使其尽快进入偶然失效期,推迟损耗 失效期的到来

电子元器件的失效分析

器件失效后,通过对其结构、使用和技术文件的系统研究,鉴别失效模式、确定失效原因、机理和失效演变的过程

失效分析研究的内容

What Failed?

器件失效(氧化层 击穿,管脚蚀断等)

How did it Failed?

特定条件下,性能 变化的特定规律

Why did it Failed?

为什么

判定退化机制及其对器件性能的影响

器件失效分析的研究内容

失效分析的基本内容

失效情况调查

失效模式鉴别

失效特征描述

假设失效机理

证实失效机理

新的失效因素考虑
是出纠正措施

失效模式 (形式)

开路

无功能

重测合格

短路

功能退化

结构不好

最常见的有: 烧毁、管壳漏气、管腿蚀断、芯片粘合不良、 表面腐蚀、漏电、击穿等

主要失效机理

• 器件失效的实质原因:引起器件失效的物理或化学过程

设计问题引起的缺陷

工艺方案

电路和结构

体内退化 机理

氧化层 缺陷

金属化系统 退化

封装退化 机理

版图

- 二次击穿
- 重金属污染
- 材料缺陷
- 针孔
- 厚度不均
- 介质击穿
- ・扩散

- 电迁移
- 铝腐蚀
- 过电应力
 - 蚀断

- ・管腿腐蚀
- 管腿损伤
- ・漏气
- ・封装开裂
- ・外来物

电子器件的失效分析

半导体物理学

半导体工艺学 材料学

化学

冶金学

电子学

环境工程学

系统工程学

失效发生期与失效机理的关系

- 早期失效
 - 设计失误、工艺缺陷、材料缺陷、筛选不充分
- 随机失效
 - -静电损伤、过电损伤
 - 有明显的突发性
- 损耗失效
 - 元器件老化

材料或器件失效

- 疲劳断裂
- 磨损
- 腐蚀
- 扩散
- 熔断

电子材料与器件的腐蚀

- 电子器件的腐蚀主要是大气腐蚀
- 腐蚀形式
 - 均匀腐蚀
 - 点腐蚀
 - 电偶腐蚀
 - 晶间腐蚀
 - 应力作用下的腐蚀
 - 缝隙腐蚀
 - 微生物腐蚀

电子器件与环境

分类	失效原因	失效模式	环境条件	材料
水气吸附吸收	扩散 水解 微细爆裂	膨胀、绝缘 性差、潮解 化学变化 湿气渗透、 绝缘性差	湿度 湿度+温度 湿度+冲击	封装、覆 盖式件 聚苯二 聚苯二二酯
腐蚀	电池腐蚀 电解腐蚀 裂隙腐蚀 应力腐蚀	颜色变化 阻抗增加 开路 破坏	湿度+金属 湿度+电场 湿度 氨、氨化物 酸浴	电阻 封装集成 电路的树 脂、合金
迁移	离子迁移	短路 绝缘性变差	湿度+直流 电场	金属离子

环境应力因素特点及其腐蚀效应

温度

- 温度每提高10℃化学反应速率就增加1倍
- 当环境温度上升10℃时,产品的寿命就减少一半

• 低温

- 在低温环境中低应力脆断现象引起设备失效如铜、钼、锌、钛、镁
- 低温下水汽凝结,污染物的溶解
- 低温收缩

环境应力因素特点及其腐蚀效应

• 温度循环

- 材料热胀、冷缩的程度不同,形成强大内应力,引起应力腐蚀
- 焊点的疲劳、蠕变

湿度

- 吸附在金属材料表面的水汽会加速腐蚀速率
- 吸附在材料表面的水汽会促进霉菌的生长
- 湿气加速金属离子的电迁移

环境应力因素特点及其腐蚀效应

- 引起器件中金属引线、焊料的电化学腐蚀
- 起腐蚀作用的盐主要是氯化物盐,硝酸盐,磷酸盐等,其腐蚀模型为原电池模型
 - 低电位的金属为阳极,其反应为:
 A→Aⁿ⁺ +ne⁻
 - 高电位的阴极处发生析氢反应或氧去极化反应:
 铝、铁、锌等析氢反应 2H++2e→2H→H₂↑
 铁、镍、银、铜等氧去极化反应
 O₂+4H++4e→H₂O O₂+2H₂O+4e→4OH-
 - 锡可能发生点蚀或引起接触金属的氧去极化反应

应用举例1-OLED电极引线腐蚀

- 电极引线
 - 连接电压驱动与发光器件间的电极
 - 腐蚀导致断路,器件 失效
- 结构:
 - ITO 150nm
 - Cr 300nm
 - 光刻条纹22 μm
- · Cr层的作用:
 - 提高引线电导率
 - 致密的表面氧化层

OLED电极引线腐蚀

OLED电极引线腐蚀产物

引线XPS谱(a:未腐蚀,b:腐蚀)

引线XRD谱(a:未腐蚀,b:腐蚀)

OLED电极引线腐蚀产物

腐蚀引线样品(b)局部SEM形貌

Spot	$C_N^{ m at}/\%$	C_O^{at} /%	$C_{Na}^{ ext{ at }}/\%$	C_{Mg}^{at} /%	C_{Al}^{at} /%	$C_{Si}^{ ext{ at }}$ /%	C_{Ca}^{at} /%	$C_{In}^{\rm at}$ /%	C_{Cr}^{at} /%
I	<u> </u>	53.78	7.08	2.96	1.88	31.48	2.82		_
II		52.03	8.00	3.09	1.93	32.02	2.92		
III	22.72	21.51	3.17	1.02		15.44		36.14	_
IV	18.66	30.89	0.43	0.56		1.09		3.99	44.38

腐蚀引线样品(b)不同区域的EDX结果

OLED电极引线腐蚀过程

引线样品在不同溶液中的极化曲线

- · 氯离子会导致Cr的钝化破裂
- 电极反应:
 - 阳极: Cr-3e→Cr3+
 - 阴极: O₂+2H₂O+4e→4OH-
 - Cr层腐蚀,蚀断处压差变大, 当阳极电位较高时,Cr发生过 钝化溶解,以正六价态形式溶入 溶液
- 随着电位增大,腐蚀速率提高, Cr层加速溶解,进一步增大Cr 层的电阻,增大蚀断处两端的电 压差。→正反馈

应用举例2-封装器件腐蚀

功率器件封装结构示意图

分层器件的扫描超声显微镜照片

		富锡相
	富铅相	
Acc.V Spot Magn 20.0 kV 4.0 2000x	Det WD SE 10.2	10 μm

Element	Wt%	At%
Sn	28.61	41.16
Pb	71.39	58.84

腐蚀过程分析

- 初始裂纹的产生
 - 湿热老化试验过程中,水汽从粘接面边缘侵入,在热应力及水汽压力共同作用下,EMC-铜基板粘接面发生断裂形成裂纹,水汽进一步侵入封装体内部形成连续的水膜。
- 第二阶段:铜在水汽氛围中的缝隙腐蚀
 - Cu-H₂O体系发生如下的电极反应:

阳极: 2Cu → 2Cu²⁺+4e

 $2Cu^{2+}+4OH^{-} \rightarrow Cu(OH)_{2}$

阴极: O₂+2H₂O+4e →4OH-

- 第三阶段: Cu-SnPb共晶钎料的电偶腐蚀
 - 锡铅共晶钎料中的富铅相不断被溶解,Pb²⁺在水溶液中发生 迁移,与Cu表面的OH⁻结合并在此沉积。水中溶解的微量 CO₂会使腐蚀过程加速,并与Pb(OH)₂结合形成碱式碳酸铅

电子器件防腐蚀措施

- 应用过程(尤其是安装、存储过程)
 - -器件保护
 - 不受过大的水汽、腐蚀性气体、化学试剂以及机械应力侵害
- 制造过程
 - 采取适当的工艺手段提高引线的腐蚀抗力
 - 电镀质量
 - 耐蚀涂层
 - 耐蚀材料
 - 清除污染
 - 严格检验