SVM Soft Margin Classification

Nipun Batra

IIT Gandhinagar

July 30, 2025

"SLIGHTLY" NON - SEPARABLE DATE

In Dual:

$$\operatorname{minimize} \sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

s.t.

$$0 \le \alpha_i \le C \quad \& \quad \sum_{i=1}^n \alpha_i y_i = 0$$

BIAS - VARIANCE TRADE-OFT

TRADE-OFF BIAS- VARIANCE

H197

H 16 h

B1 AS

BIAS- VARIANCE TRADE-OFF

LOW PENALTY FOR VIOLATION
HIGH TRAIN ERROR
HIGH BIAS
BIG MARGIN

HIGH PENALTY HIGH VARIANCE SMALL MARGIN

Regularisation

$$\text{bw} \cdot \mathbf{x}_i + b)$$

$$\text{minimize } \sum_{i=1}^{N} \max \left[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \right] + \underbrace{\frac{1}{2C} \|\mathbf{w}\|^2}_{\text{Pacularisation}}$$

Loss

HINGE LOSS

Loss function is $\sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$

• Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$

Loss function is $\sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$

- Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$
- Case II $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 1$ $Loss_i = 0$

Loss function is $\sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$

- Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$
- Case II $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 1$ $Loss_i = 0$

Loss function is
$$\sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$$

- Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$
- Case II $y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) > 1$ $Loss_i = 0$
- Case III $y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) < 1$ $Loss_i \neq 0$

Hinge Loss Continued

Q) Is hinge loss convex and differentiable?

Convex: ✓

Differentiable: X

Subgradient: ✓

SVM Loss is Convex

Hinge Loss $\sum (\max[0, (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))]$ is convex

Penalty $\frac{1}{2} \|\mathbf{w}\|^2$ is convex

.: SVM loss is convex