

ESTIMATING BIOPHYSICAL MODEL PARAMETERS OF WHITE MATTER WITH DEEP NEURAL NETWORKS

Yujian Diao^{1,2} and Ileana Jelescu³

- 1 Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
- 2 CIBM Center for Biomedical Imaging, EPFL, Lausanne, Switzerland
- 3 Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland

STUDY

- Purpose: to establish a DL-based estimator
 - Applicable to various data without retraining, regardless of acquisition protocol or noise level
 - For White Matter Tract Integrity (WMTI)-Watson model^{3,4}
 - Estimating model parameters from the diffusion and kurtosis tensors (DKI)⁴
 - clinically feasible and easily estimated from signal

f : is axonal volume fraction.

 $D_a \left[\mu m^2/ms\right]$: intra-axonal diffusivity.

 $D_{e,\parallel}$, $D_{e,\perp}$ [$\mu m^2/ms$]: extra-axonal diffusivities.

 $c_2 = \langle \cos(\Psi)^2 \rangle, \Psi$: orientation dispersion

METHODS – RNN SOLVER

- Encoder-decoder RNN
 - Encoder & Decoder
 - Input sequence (DKI):MD, AD, RD, MK, AK, RK
 - Output sequence (WMTI): f, D_a , $D_{e,\parallel}$, $D_{e,\perp}$, c_2

CIBM.CH

METHODS - DL SOLVER

Synthetic training data generation

Distribution matching

- DL assumption:
 Test data & training data: same probability distribution
- Distribution varies across experimental datasets
- Performance degraded substantially
- Match the distribution in new data to the training distribution through embedding

CIBM.CH

© CIBM | Center for Biomedical Imaging

RESULTS

Evaluation on synthetic test data

Estimation time

Method	Data size	Fitting time [s]	Resource	
NLLS	4 x 10 ⁵	3.83 x 10 ⁴	MATLAB, 32-core Intel Xeon 2.1 GHz CPU with 126 GB memory	
RNN		8	Pytorch, 1 NVIDIA GeForce RTX 2080Ti graphic card with 11 GB memory	

CIBM.CH

RESULTS

Evaluation on *in vivo* data

Rat

Method	Agreement with NLLS (%)					Relative	Filtering
	f	D_a	$oldsymbol{D_{e,\parallel}}$	$oldsymbol{D_{e,\perp}}$	<i>c</i> ₂	size (%)	
RNN	72.5	75.3	79.9	78.5	80.4	100	NO
RNN	92.6	94.2	95.2	95.1	95.9	75.9	Based on DL estimation
RNN	95.9	97.6	98.1	98.2	99.8	72.6	Based on NLLS estimation

Embedding ratio = 10, test batch size = 2048

Human

Method	Agreement with NLLS (%)					Relative	Filtering
	f	D_a	$oldsymbol{D_{e,\parallel}}$	$D_{e,\perp}$	c ₂	size (%)	
RNN	80.9	82.5	86.3	84.2	85.8	100	NO
RNN	94.9	96.2	96.3	96.3	97.3	83.7	Based on DL estimation
RNN	97.8	99.2	99.0	99.1	99.8	80.8	Based on NLLS estimation

Embedding ratio = 10, test batch size = 2048

Parametric maps

 $\mathsf{C} \mathsf{I} \mathsf{B} \mathsf{M} \mathsf{.} \mathsf{C} \mathsf{H}$

MORE...

Yujian Diao and Ileana O Jelescu, 2022. Parameter estimation for WMTI-Watson model of white matter using encoder-decoder recurrent neural network. arXiv:2203.00595[physics]. (https://arxiv.org/abs/2203.00595)

Code: https://github.com/Mic-map/WMTI-Watson_DL

THANK YOU FOR YOUR ATTENTION

CIBM.CH