Harsh kumar singh SOC 2025

# <u>Photo-Realistic Single Image Super-Resolution Using a Generative</u> Adversarial Network

### Introduction~

This research explains that **super-resolution (SR)** aims to recover high-resolution (HR) images from low-resolution (LR) ones, which is a very **challenging and ill-posed problem**, especially at large upscaling levels (e.g., 4×). Traditional methods often use **mean squared error (MSE)** as the loss function because it boosts **PSNR**, a popular metric. However, MSE and PSNR fail to preserve **fine texture details** and do not reflect how humans perceive image quality. To overcome this, the authors propose **SRGAN**, a **Generative Adversarial Network** that uses a **deep ResNet with skip connections** and a **perceptual loss**.

This section explains why traditional **pixel-wise loss functions like MSE** are not ideal for super-resolution. MSE tends to **average out all possible high-detail variations**, resulting in **blurry and smooth images** that lack realistic textures. That's because it treats every pixel equally and doesn't account for **how humans perceive image quality**. To fix this, researchers started using **GANs (Generative Adversarial Networks)**, which can generate images that lie closer to the **natural image distribution**, making them look more realistic.Instead of just comparing raw pixels, newer methods use **feature-based losses** especially from deep networks like **VGG19** which focus on **high-level image features**. This allows the model to better preserve **textures and structures** 

### Method~

To recover a high-resolution (HR) image I{SR} from a given low-resolution I{LR}

I{LR} has shape:

#### **W×H×C**

where:

- W,H width and Height of the LR image
- C: Number of color channels (e.g., 3 for RGB)

I{HR} and I{SR} have shape:

#### rW×rH×C

because they are upscaled by a factor r.

### **►** Optimization Formula:

$$\hat{ heta}_{G} = rg \min_{ heta_{G}} rac{1}{N} \sum_{n=1}^{N} \ell_{SR}(G_{ heta_{G}}(I_{LR}^{(n)}), I_{HR}^{(n)})$$

- The model is trained by minimizing the average loss between the predicted super-resolved image G(I{LR}) and the true high-resolution image I{HR}, across all N training samples.
- argmin means we are looking for the best set of parameters  $\theta\{G\}$  that minimizes this average loss.

**Goal of Generator G**: Generate super-resolved images from low-resolution inputs that **fool the discriminator**.

**Goal of Discriminator D**: Accurately classify real high-resolution images  $I\{HR\}$  as real, and generated ones  $G(I\{LR\})$  as fake.

$$\min_{\theta_G} \max_{\theta_D} \mathbb{E}_{I^{HR} \sim p_{\text{train}}(I^{HR})} [\log D_{\theta_D}(I^{HR})] + \\ \mathbb{E}_{I^{LR} \sim p_G(I^{LR})} [\log (1 - D_{\theta_D}(G_{\theta_G}(I^{LR}))]$$

## **Generator Architecture (SRGAN Generator)**

Uses a deep CNN with B residual blocks, each made of:

- Two 3×3 convolutional layers
- 64 feature maps
- Batch normalization
- Parametric ReLU (PReLU) activations

**Upsampling** is done via **two sub-pixel convolution layers** [48], which efficiently increase image size without interpolation

Discriminator Architecture:

Discriminator is designed following **DCGAN-style guidelines** [44]:

- Uses **Leaky ReLU** activation ( $\alpha = 0.2$ )
- Avoids max pooling

- Has **8 convolutional layers** with 3×33 \times 33×3 filters
- Number of filters increases from 64 to 512 (doubles every few layers)
- Uses strided convolutions to downsample instead of pooling

#### Final part:

- Outputs 512 features
- Passes through 2 dense (fully connected) layers
- Ends with a sigmoid activation, giving a probability (real vs fake)



## **Perceptual Loss**

Instead of using just MSE (which looks at raw pixel differences), the authors create a **better loss function** made of two parts:

$$\ell_{SR} = \underbrace{\ell_{SR}^X}_{ ext{Content Loss}} + 10^{-3} \cdot \underbrace{\ell_{SR}^{Gen}}_{ ext{Adversarial Loss}}$$

## **Content Loss &SRX**

- 1. Measures how **similar the generated image is to the real image** in terms of meaningful features (like texture or structure).
- 2. Often computed using features from a **VGG network** (a deep CNN trained for image classification).

- 3. This is more aligned with **how humans judge image quality**, unlike MSE which looks only at per-pixel differences.
- 4.

$$l_{MSE}^{SR} = \frac{1}{r^2 W H} \sum_{x=1}^{rW} \sum_{y=1}^{rH} (I_{x,y}^{HR} - G_{\theta_G}(I^{LR})_{x,y})^2$$

$$l_{VGG/i,j}^{SR} = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^{HR})_{x,y} - \phi_{i,j}(G_{\theta_G}(I^{LR}))_{x,y})^2$$
(5)

Here  $W_{i,j}$  and  $H_{i,j}$  describe the dimensions of the spective feature maps within the VGG network.

Adversarial Loss & SRGen

- Comes from the **discriminator** in the GAN setup.
- Encourages the generator to make images that look **realistic and natural**, so they can **fool the discriminator**.
- It's multiplied by a small factor (0.001) to keep it from overpowering the content loss

is defined based on the probabilities of the discriminator  $D_{\theta_D}(G_{\theta_G}(I^{LR}))$  over all training samples as:

$$l_{Gen}^{SR} = \sum_{n=1}^{N} -\log D_{\theta_D}(G_{\theta_G}(I^{LR}))$$
 (6)

Here,  $D_{\theta_D}(G_{\theta_G}(I^{LR}))$  is the probability that the reconstructed image  $G_{\theta_G}(I^{LR})$  is a natural HR image. For better gradient behavior we minimize  $-\log D_{\theta_D}(G_{\theta_G}(I^{LR}))$  instead of  $\log[1-D_{\theta_D}(G_{\theta_G}(I^{LR}))]$  [22].

## Model testing and results

**Metrics:** 

- **PSNR (Peak Signal-to-Noise Ratio):** Measures pixel-wise accuracy. **Higher is better**, but not always aligned with visual quality.
- SSIM (Structural Similarity Index): Measures perceptual similarity (structure, contrast). Higher is better.
- MOS (Mean Opinion Score): Human-rated visual quality. Scores range from 1 (bad) to 5 (excellent). Higher is better and reflects true perceptual quality.
  - **SRResNet** is **technically most accurate** (best PSNR/SSIM) but visually looks smooth/blurry (lower MOS).
  - SRGAN generates images that look far better to humans, scoring much higher in MOS, despite lower PSNR.
  - So, **SRGAN** > **SRResNet** for *realistic and perceptual quality*, even though it sacrifices some numerical precision.



Figure 6: **SRResNet** (left: a,b), SRGAN-MSE (middle left: c,d), SRGAN-VGG2.2 (middle: e,f) and **SR** (middle right: g,h) reconstruction results and corresponding reference HR image (right: i,j). [4× upscaling]

Table 2: Comparison of NN, bicubic, SRCNN [9], SelfExSR [31], DRCN [34], ESPCN [48], **SRResNet**, **SR** and the original HR on benchmark data. Highest measures (PSNR [dB], SSIM, MOS) in bold. [4× upscaling

| Set5   | nearest | bicubic | <b>SRCNN</b> | SelfExSR | DRCN   | <b>ESPCN</b> | SRResNet | <b>SRGAN</b> | HR       |
|--------|---------|---------|--------------|----------|--------|--------------|----------|--------------|----------|
| PSNR   | 26.26   | 28.43   | 30.07        | 30.33    | 31.52  | 30.76        | 32.05    | 29.40        | $\infty$ |
| SSIM   | 0.7552  | 0.8211  | 0.8627       | 0.872    | 0.8938 | 0.8784       | 0.9019   | 0.8472       | 1        |
| MOS    | 1.28    | 1.97    | 2.57         | 2.65     | 3.26   | 2.89         | 3.37     | 3.58         | 4.3      |
| Set14  |         |         |              |          |        |              |          |              |          |
| PSNR   | 24.64   | 25.99   | 27.18        | 27.45    | 28.02  | 27.66        | 28.49    | 26.02        | $\infty$ |
| SSIM   | 0.7100  | 0.7486  | 0.7861       | 0.7972   | 0.8074 | 0.8004       | 0.8184   | 0.7397       | 1        |
| MOS    | 1.20    | 1.80    | 2.26         | 2.34     | 2.84   | 2.52         | 2.98     | 3.72         | 4.3      |
| BSD100 |         |         |              |          |        |              |          |              |          |
| PSNR   | 25.02   | 25.94   | 26.68        | 26.83    | 27.21  | 27.02        | 27.58    | 25.16        | $\infty$ |
| SSIM   | 0.6606  | 0.6935  | 0.7291       | 0.7387   | 0.7493 | 0.7442       | 0.7620   | 0.6688       | 1        |
| MOS    | 1.11    | 1.47    | 1.87         | 1.89     | 2.12   | 2.01         | 2.29     | 3.56         | 4.4      |
|        |         |         |              |          |        |              |          |              |          |

- Shows zoomed-in image patches from different models.
- SRResNet looks smooth and lacks texture.
- SRGAN-VGG54 (final version of SRGAN) produces sharp and detailed textures, much closer to the original HR image.
- SRGAN-MSE is closer to SRResNet and looks blurrier than VGG-based SRGANs.
- SRGAN-VGG22 is intermediate—better than MSE, but not as good as VGG54.

The best visual result is clearly from **SRGAN-VGG54**, capturing sharp edges and textures that mimic the HR image, while SRResNet and MSE-based outputs are visually smoother and less realistic.