Analysis 1 Übungsblatt 2

Jarne, Lars

Aufgabe 1 Zeigen Sie: Für alle $n \in \mathbb{N}$ gilt

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$$

Induktionsanfang Für n = 1 gilt:

$$\sum_{k=1}^{1} k^3 = 1^3 = 1 \quad \text{und} \quad \left(\sum_{k=1}^{1} k\right)^2 = (1)^2 = 1$$

Damit ist der Induktionsanfang bewiesen.

Induktionsvoraussetzung Angenommen, die Aussage gilt für ein beliebiges, aber festes $n \in \mathbb{N}$, also:

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$$

Induktionsschritt Wir zeigen nun, dass die Aussage auch für n+1 gilt:

Proof.

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3$$

$$\stackrel{\text{IV}}{=} \left(\sum_{k=1}^{n} k\right)^2 + (n+1)^3$$

Aus der Vorlesung wissen wir:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Also gilt:

$$\left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + \frac{4(n+1)^3}{4}$$

$$= \frac{(n+1)^2(n^2 + 4(n+1))}{4}$$

$$= \frac{(n+1)^2(n+2)^2}{4}$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^2$$

Damit haben wir gezeigt:

$$\sum_{k=1}^{n+1} k^3 = \left(\sum_{k=1}^{n+1} k\right)^2$$

Die Aussage gilt also auch für n+1. Damit ist der Induktionsschritt abgeschlossen.

Aufgabe 2 Geben Sie je ein Beispiel für eine Abbildung von $\mathbb{R} \to \mathbb{R}$, welche

a) injektiv und surjektiv ist

 $x \mapsto x$

Diese Abbildung beschreibt die Identität von \mathbb{R} , und bildet jedes Element $x \in \mathbb{R}$ auf sich selbst ab. Jedes x wird auf genau ein Element, nämlich sich selbst, abgebildet. Demnach ist die Abbildung sowohl injektiv, als auch surjektiv, also bijektiv.

b) injektiv, aber nicht surjektiv ist

$$x \mapsto e^x$$

Diese Abbildung, auch bekannt als Exponentialfunktion, ist nicht surjektiv, da sie nur positive Werte annimmt, also f(x) > 0 für alle $x \in \mathbb{R}$. Dies zeigt bspw. die Ableitung:

$$\frac{d}{dx}e^x = e^x$$

Da alle Terme dieser Reihe für alle reellen x positiv sind (außer für x = 0, wo $e^0 = 1$ gilt), folgt, dass e^x für jeden reellen Wert von x positiv ist.

Oberhalb der x-Achse ist sie bijektiv, da eine Umkehrfunktion, in diesem Fall der natürliche Logarithmus, existiert, der nur für x > 0 definiert ist.

c) surjektiv, aber nicht injektiv ist

$$x \mapsto x^3 - 3x$$

Bei dieser Abbildung handelt es sich um eine kubische Polynomfunktion. Diese sind per Def. stetig auf ganz \mathbb{R} .

$$\lim_{x \to \infty} (x^3 - 3x) = +\infty$$

$$\lim_{x \to -\infty} (x^3 - 3x) = -\infty$$

Der Limes verrät, dass die Funktion jeden Wert in \mathbb{R} annimmt, was sie surjektiv macht. Da bspw. $f(\sqrt{3}) = f(-\sqrt{3}) = f(0) = 0$, ist die Abbildung nicht injektiv, da verschiedene x-Werte auf die gleichen y-Werte abbilden.

2

d) weder injektiv noch surjektiv ist

$$x \mapsto x^2$$

Die Abbildung $x \mapsto x^2$ ist von $\mathbb{R} \to \mathbb{R}$ weder surjektiv, noch injektiv. f(-2) = f(2) = 4 widerlegt die Injektivität, da mehrere x-Werte auf den gleichen y-Wert abgebildet werden. Da x^2 keine negativen Werte annehmen kann, ist auch die Surjektivität widerlegt.

Aufgabe 3 Sei $(K, +, \cdot, \leq)$ angeordneter Körper und $A \subseteq K$ eine nach oben beschränkte Teilmenge.

Sei im folgenden $T := (\forall t \in K \mid \forall a \in A : a \leq t)$

(a) Satz: Besitzt A ein Supremum s, so ist s eindeutig bestimmt.

Proof. Sei $A \subseteq K$ eine nichtleere, nach oben beschränkte Menge mit $sup(A) = s_1, s_2 \in K$. Wir zeigen, dass daraus $s_1 = s_2$ folgt.

Def. Supremum:

s = sup(A), wenn:

- 1. $s \in K$
- 2. $(\forall a \in A : a \leq s)$
- 3. $(\forall t \in T \mid s < t)$

Annahme:

$$s_1, s_2 = \sup(A) \text{ mit } s_1 \neq s_2$$

$$\Rightarrow s_1, s_2 \in T \overset{\text{Def. Supremum}}{\Rightarrow} (s_1 \leq s_2) \land (s_2 \leq s_1) \overset{\text{Bem. 2.2.4}}{\Rightarrow} s_1 = s_2$$

Widerspruch zur Annahme, dass $s_1 \neq s_2$. Daraus folgt die Eindeutigkeit des Supremums, was zu zeigen war.

(b) Besitzt A ein Maximum m, so ist m eindeutig bestimmt.

Proof. Sei $A \subseteq K$ eine nichtleere, nach oben beschränkte Menge mit $max(A) = m_1, m_2 \in A$. Wir zeigen, dass daraus $m_1 = m_2$ folgt.

Def. Maximum:

m = max(A), wenn:

- 1. $m \in A$
- 2. $(\forall a \in A : a \leq m)$
- 3. $(\forall t \in T \mid m \leq t)$

Annahme:

$$m_1, m_2 = max(A) \text{ mit } m_1 \neq m_2$$

$$\Rightarrow m_1, m_2 \in T \overset{\mathrm{Def.\ Maximum}}{\Rightarrow} \left(m_1 \leq m_2 \right) \wedge \left(m_2 \leq m_1 \right) \overset{\mathrm{Bem.\ 2.2.4}}{\Rightarrow} m_1 = m_2$$

Widerspruch zur Annahme, dass $m_1 \neq m_2$. Daraus folgt die Eindeutigkeit des Maximums, was zu zeigen war.

Aufgabe 4 Seien $A := [0,1), B := (-\infty,0)$ und $M := (-\infty,0) \cup (0,\infty)$ Teilmengen von $(\mathbb{R},+,\cdot,\leq)$.

(a) Es gilt $sup(A) = 1 \in \mathbb{R}$.

Proof. Wir zeigen, dass sup(A) = 1.

$$[0,1) \stackrel{\mathrm{Def}}{\Rightarrow} (\forall a \in A \mid a < 1).$$

Falls
$$sup(A) \neq 1 \Rightarrow (\exists s \in \mathbb{R} \mid \forall a \in A : a \leq s) \Leftrightarrow s = sup(A)$$

Annahme: $(\nexists t \in \mathbb{R} \mid s < t < 1)$.

Aus
$$A \subset \mathbb{R} \Rightarrow t = \frac{s+1}{2} \in A$$
 mit $s < t < 1$.

Also können wir unser t immer so konstruieren, dass $(\forall s \in A \mid s < t < 1)$. Widerspruch zur Annahme. Damit liegt das sup(A) bei 1.

(b) Es gilt $sup(B) = 0 \in \mathbb{R}$.

Proof. Wir zeigen, dass sup(B) = 0.

$$(-\infty, 0) \stackrel{\text{Def}}{\Rightarrow} (\forall b \in B \mid b < 0).$$

Falls
$$sup(B) \neq 0 \Rightarrow (\exists s \in \mathbb{R} \mid \forall b \in B : b \leq s) \Leftrightarrow s = sup(B)$$
.

Annahme: $(\nexists t \in \mathbb{R} \mid s < t < 0)$.

Aus
$$B \subset \mathbb{R} \Rightarrow t = \frac{s+0}{2} \in B$$
 mit $s < t < 0$.

Also können wir unser t immer so konstruieren, dass $(\forall s \in B \mid s < t < 0)$. Widerspruch zur Annahme. Damit liegt das sup(B) bei 0.

(c) Die Ordnung \leq auf \mathbb{R} induziert eine Ordnung \leq_M auf M.

Betrachten wir $M = (-\infty, 0) \cup (0, \infty) = \mathbb{R} \setminus \{0\}$. Da $M \subset \mathbb{R}$ definieren wir die induzierte Ordnung \leq_M auf M wie folgt:.

- 1. $(\forall x, y \in M \mid (x \leq y) \lor (y \leq x))$ In M verhält sich dies genauso wie in \mathbb{R} , da selbst wenn $x \in (-\infty, 0)$ und $z \in (0, \infty)$, negative und positive Zahlen weiterhin vergleichbar bleiben.
- 2. $(\forall x, y \in M \mid (x \leq y) \land (y \leq x) \Rightarrow x = y)$ Da $x, y \in M$ und \leq_M die eingeschränkte Ordnung von \mathbb{R} gilt weiterhin x = y.
- 3. $(\forall x, y, z \in M \mid (x \leq y) \land (y \leq z) \Rightarrow (x \leq z))$ Auch hier überträgt sich die Transitivität von \mathbb{R} direkt auf M, da selbst wenn $x \in (-\infty, 0)$ und $z \in (0, \infty)$, nach Def. negative Zahlen kleiner als positive sind.
- (d) Fasst man B als Teilmenge von (M, \leq_M) auf, so besitzt B kein Supremum (in M). *Proof.*

Annahme: $(\exists s \in M \mid (s < 0) \land (\forall b \in B : b \le s))$

Analog zu (a) und (b) lässt sich wieder ein t konstruieren, sodass $(s < t < 0) \ \forall s \in M$. Daher existiert kein sup(B) in M.

(d) Fasst man B als Teilmenge von (M, \leq_M) auf, so besitzt B kein Supremum (in M). Proof. Wir zeigen, dass B in M kein Supremum besitzt.

Aus (b) folgt, dass sup(B) = 0. Da $M \Leftrightarrow \mathbb{R} \setminus \{0\} \Rightarrow sup(B) \neq 0$ (in M).

Annahme: Es gibt ein Supremum $s \in M$ für B.

Dann muss gelten: $(\forall b \in B : b \leq s)$.

Da $B \subset (-\infty, 0)$, muss s eine obere Schranke von B in M sein.

Falls $s \in (0, \infty)$ liegt, existiert ein $t = \frac{s}{2} \in (0, \infty)$, sodass 0 < t < s.

Falls $s \in (-\infty, 0)$ liegt, existiert ein $t = \frac{s+1}{2} \in (-\infty, 0, \text{ sodass } s < t < 0.$

In beiden Fällen lässt sich immer wieder ein t konstruieren, sodass $s < t \in (-\infty, 0)$, oder $t < s \in (0, \infty)$.

Widerspruch zur Annahme, dass es ein Supremum gibt. Also besitzt B kein Supremum in M.