NOIP 2019 模拟赛 Contest 2

 ${\it diamond_duke}$

题目名称	石子	内存	子集
可执行文件名	stone	memory	subset
输入文件名	标准输入	标准输入	标准输入
输出文件名	标准输出	标准输出	标准输出
时间限制	1s	1s	2s
内存限制	512MB	512MB	512MB
子任务个数	4	3	4
题目类型	传统型	传统型	传统型

请注意: 评测时开启 02 优化和 C++11 编译选项, 栈空间限制同空间限制。

1 石子

根据期望的线性性,答案 $E(t) = P_2 + P_3 + \cdots + P_n + 1$,其中 P_i 是第 i 堆石子 在第1堆之前被取走的概率。

考虑第 i 堆,可以发现其他堆都不会影响这两堆,因此相当于只要考虑只有这两堆的情况,因此概率即为 $\frac{a_i}{a_1+a_i}$ 。 因此答案即为 $\sum_{i=2}^n \frac{a_i}{a_1+a_i}+1$,直接计算即可。 时间复杂度: $\Theta(n)$ 。

2 内存

对于每个x,考虑如果用它来压缩那么可以达到的最优解,设为F(x)。

假如给定一个 x,想要求 F(x),那么可以通过二分贪心在 $\Theta(n\log_2 n)$ 的时间内算出。

直接对于所有 x 都暴力计算即可得到 $\Theta(nm\log_2 n)$ 的复杂度,可以通过子任务 1,2。

如果我们以随机顺序遍历所有 x,则在期望情况下,新的 F(x) 比当前所有 F 的 值都要小的 x 个数的期望应该是 $\sum 1/i$,这是调和级数,为 $\Theta(\ln n)$ 。

于是我们只对于这些 x 二分即可: 我们令答案为 ans -1 并贪心,即可判断当前的 x 是否满足条件。

时间复杂度: $\Theta(nm + n \ln n \log_2 n)$ 。

3 子集

显然我们只会选择 n 的约数,因为如果选了其他的那么最小公倍数一定不是 n。 考虑对 n 进行分解,设 $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ 。那么我们要求选的数字满足:对于每个 $i\in[1,k]$,均存在一个数在 p_i 中是 0 次方,也存在一个数在 p_i 中是 α_i 次方。

直接计算并不容易,考虑容斥原理:如果只有一个 p^{α} ,那么我们用所有情况去掉不存在 0 次方的情况,再去掉不存在 α 次方的情况,然后加上都不存在的情况即可。

然后对于原问题,我们可以 $\Theta(4^k)$ 枚举每个质因数是上面四种情况中的哪一种,然后计算出这种情况下的方案数即可。时间复杂度: $\Theta(4^{\omega(n)}\omega(n))$,可以通过子任务 1,2。

考虑如何进行优化。注意到对于第一种情况,方案数为 $(\alpha_i + 1)$,第二种和第三种情况都是 α_i ,而第四种是 $(\alpha_i - 1)$ 。因此,我们可以转而枚举方案数的可能性,这只有三种,因此枚举的复杂度从 $\Theta(4^k)$ 降到了 $\Theta(3^k)$ 。

值得一提的是,这里对 n 进行分解是本题的难点: $\Theta(\sqrt{n})$ 的复杂度并不可以接受,但我们并不需要真的得到 p_1, p_2, \dots, p_k ,而是只要知道 $\alpha_1, \alpha_2, \dots, \alpha_k$ 即可。

我们考虑先分解出所有 $p_i \leq \sqrt[3]{n}$ 的 $p_i^{\alpha_i}$, 那么剩余部分只有 p, p^2, pq 三种,其中 p, q 都是质数。

那么我们先使用 Miller Rabin 算法判断 p 的情况,然后开根号后平方判断 p^2 的情况,剩余的情况就是 pq 的情况了。

时间复杂度: $\Theta(\sqrt[3]{n} + 3^{\omega(n)}\omega(n))$ 。