# Exponentialfunktionen

$$f(x) = a \cdot b^x = a \cdot e^{\ln(b)x}$$

a Startwert

b > 1 Wachstumsfaktor  $(\ln(b) > 0)$ 

 $e \approx 2,7183$ 

0 < b < 1 Abnahmefaktor ( $\ln(b) < 0$ )

### Eigenschaften der e-Funktion

Für 
$$f(x) = e^{k \cdot x}, k \ge 1$$
 gilt:



- f(0) = 1
- f(x)>0 für alle  $x\in\mathbb{R}$
- ullet f wächst steng monoton
- $f(x) \to \infty$  für  $x \to \infty$
- $f(x) \to 0$  für  $x \to -\infty$

Für 
$$f(x) = e^{k \cdot x}, k < -1$$
 gilt:



- f(0) = 1
- f(x) > 0 für alle  $x \in \mathbb{R}$
- ullet fällt steng monoton
- $f(x) \to 0$  für  $x \to \infty$
- $f(x) \to -\infty$  für  $x \to -\infty$

### Kombinationen der e-Funktion

$$f(x) = k \cdot e^x$$

• 
$$f(0) = k$$

$$f(x) = x^k \cdot e^x$$
,  $k$  gerade

- Hochpunkt bei x = -k
- Tiefpunkt bei  $(0 \, | \, 0)$  für k=2
- Sattelpunkt bei  $(0 \mid 0)$  für k > 2

$$f(x) = x^k \cdot e^x$$
,  $k$  ungerade

- f(0) = 0
- $\bullet \ \ {\rm Tiefpunkt\ bei}\ x=-k$
- Sattelpunkt bei  $(0 \, | \, 0)$

$$f(x) = k \cdot e^x + k \cdot e^{-x}$$

- f(0) = 2k
- Tief- (k > 0) / Hochpunkt (k < 0) bei  $(0 \mid 2k)$
- Achsensymmetrisch f(x) = f(-x)



- f(0) = 0
- Punktsymmetrisch -f(x) = f(-x)
- Streng monoton wachsend (k > 0)/fallend (k < 0)











#### Arbeitsblatt Nr. 4

## Produkt aus e-Funktion und Polynomen

$$f(x) = g(x) \cdot e^x$$

 $g_n(x)$  Ganzrationale Funktion (Polynom) vom Grad n.

h(x) e-Funktion ( $h(x) = e^{mx+b}$ )

• Ableitung mit Produktregel

$$f'(x) = g'_n(x) \cdot h(x) + g(x) \cdot h'(x)$$

• Nullstellen:

$$f(x) = 0 \Leftrightarrow g_n(x) = 0$$
, da  $h(x) > 0$  für alle  $x$ 

• Verlauf im Unendlichen:

Die e-Funktion wächst stärker als jede ganzrationale Funktion! Das Verhalten für  $x\to\infty$  bzw,  $x\to-\infty$  wird also von h(x) bestimmt:

- 
$$f(x) \to \infty \Leftrightarrow h(x) \to \infty$$

- 
$$f(x) \to -\infty \Leftrightarrow h(x) \to -\infty$$

- 
$$f(x) \to 0 \Leftrightarrow h(x) \to 0$$

