

ARMAZENAMENTO

ADMINISTRAÇÃO DE SISTEMAS
2021/2022
ROLANDO MARTINS

Referências dos slides

- O conteúdo destes slides é baseado no livro da disciplina: "Unix and Linux System Administration Handbook (4ªEd)" por Evi Nemeth, Garth Snyder, Trent R. Hein e Ben Whaley, Prentice Hall, ISBN: 0-13-148005-7
- As imagens usadas têm a atribuição aos autores ou são de uso livre.

Discos

- Discos Duros (Hard Disk HD)
 - Latência de procura + latência de rotação
 - o Bom leitura sequencial
 - Leitura zonas aleatórias pior
- Discos de Estado Sólido (Solid State Drive SSD)
 - Melhor tempos de leitura/escrita
 - o Limite no nº de escritas
 - o Apagar pode ser demorado e ter influência na escrita
- Híbridos

Anand Shimpi, AnandTech, understanding SSDs, 2009

Discos

• Dados de 2010 (livro)

Characteristic	HD	SSD
Size	Terabytes	Gigabytes
Random access time	8 ms	0.25 ms
Sequential read	100 MB/s	250 MB/s
Random read	2 MB/s	250 MB/s
Cost	\$0.10/GB	\$3/GB
Reliability	Moderate	Unknown
Limited writes	No	Yes

• Dados de 2017/18

Characteristic	HD	SSD	
Size	2 TB to 4 TB	500 GB to 2 TB	
Random access time	8 ms	0.25 ms	
Sequential read	100 MB/s	250 MB/s	
Random read	2 MB/s	250 MB/s	
Cost	\$0.04/GB	\$0.25/GB	
Reliability	Moderate	Unknown	
Limited writes	No	Yes	

For consumer systems

HDD vs SD

De <u>SSD vs HDD Tested: What's the Difference and Which Is</u> <u>Better? By Sean Webster, Tom's Hardware</u>

- WD Black HDD 6TB, WD6003FZBX, 256MB cache
- Crucial MX500 1 TB, SATA
- WD Black SN750 1 TB, NVMe PCie

U. PORTO

HDD vs SD

De <u>SSD vs HDD Tested: What's the Difference and Which Is</u> Better? By Sean Webster, Tom's Hardware

- WD Black HDD 6TB, WD6003FZBX, 256MB cache
- Crucial MX500 1 TB, SATA
- WD Black SN750 1 TB, NVMe PCie

HDD vs SD

De <u>SSD vs HDD Tested: What's the Difference and Which Is</u> <u>Better? By Sean Webster, Tom's Hardware</u>

- WD Black HDD 6TB, WD6003FZBX, 256MB cache
- Crucial MX500 1 TB, SATA
- WD Black SN750 1 TB, NVMe PCie

U. PORTO

Outras referências:

- HDD vs SSD: What Does the Future for Storage Hold? (parte 1 e parte 2), Roderick Bauer, BlackBlaze
- Hard Disk Drive (HDD) vs Solid State Drive (SSD): What's the Diff?, Roderick Bauer, BlackBlaze
- What Is an M.2 SSD? A Basic Definition, by Scharon Harding Tom's Hardware
- Data in a Flash, Part I: the Evolution of Disk Storage and an <u>Introduction to NVMe</u>, by Petros Koutoupis Linux Journal

Nomenclatura

- Mean Time Before Failure (MBTF) média do tempo até à primeira falha
 - o 1.2 milhões de horas para um disco enterprise
 - o Característica a desaparecer e ser substituída pela seguinte
- Average anual Failure Rate nº médio de falhas num ano
 - o Teste da Google Labs em 2007, 6% para discos com mais de 2 anos (HDDs)
 - o Teste da <u>BlackBlaze nas 108 461 drives</u> que têm, 1.80% de AFR.
- Bad blocks: nos HDDs podem aparecer defeitos físicos nos "pratos"
 - o São marcados como não utilizáveis pelo software de correção/verificação

Backblaze Q2 2019 Hard Drive Failure Rates

Reporting period April 1, 2019 - June 30, 2019 inclusive

MFG	Model	Drive Size	Drive Count	Drive Days	Drive Failures	Annualized Failure Rate
Toshiba	MG07ACA14TA	14TB	1,220	111,020	0	0.00%
HGST	HUH721212ALE600	12TB	520	47,320	1	0.77%
HGST	HUH721212ALN604	12TB	9,609	645,966	5	0.28%
Seagate	ST12000NM0007	12TB	34,710	3,158,082	247	2.85%
Seagate	ST10000NM0086	10TB	1,200	109,222	2	0.67%
HGST	HUH728080ALE600	8TB	1,001	90,691	2	0.80%
Seagate	ST8000DM002	8TB	9,875	898,837	25	1.02%
Seagate	ST8000NM0055	8TB	14,380	1,307,819	64	1.79%
Seagate	ST6000DX000	6TB	886	81,039	4	1.80%
HGST	HMS5C4040ALE640	4TB	2,639	235,280	5	0.78%
HGST	HMS5C4040BLE640	4TB	12,752	1,160,287	15	0.47%
Seagate	ST4000DM000	4TB	19,570	1,781,822	104	2.13%
Toshiba	MD04ABA400V	4TB	99	9,009	0	0.00%
		Totals	108,461	9,636,394	474	1.80%

BLACKBLAZE TEST

De <u>Hard Drive Stats for Q2 2019</u>

$$MTBF = \frac{nr \ drive \ days}{drive \ failures}$$

$$AFR = \frac{days \ in \ a \ year}{MTBF}$$

Interfaces de acesso aos discos

- ATA Advanced Technology Attachment
 - Previamente IDE Integrated Drive Electronics
 - o PATA Parallel ATA interface (conectores de 40 ou 80 pinos)
 - o 133 Mbps
- SATA Serial ATA
 - o Permite hot-swap

- Débitos de transf. mais elevados que ATA (SATA 3.2 → 16 Gbps)
- o eSata para external SATA

Images from Wikipedia: <u>SATA</u> and <u>PATA</u>

Interfaces de acesso aos discos (II)

- SCSI Small Computer System Interface
 - Suporta vários discos num BUS
 - o Débitos altos de transferência
 - o Comandos definidos no standard são utilizados noutros protocolos
 - o SCSI Parallel Interface (SPI), versão 5 com 640 Mbps
 - o Evolução para Serial Attached SCSI (SAS v4 (2017) →22.5 Gbps)
- Non-Volatile Memory Express (NVMe)
 - o Desenvolvido para discos SSD que têm reduzida latência e paralelismo
 - Utiliza PCIe Peripheral Component Interconnect express
 - NVMe usando PCIe 3.0 com 4 links → 32 Gbps

Interfaces de acesso aos discos (III)

Fibre Channel

- o Interface série em fibra ótica
- o Elevados débitos de transferência (FC over Ethernet com 100 Gbps)
- Suporta a ligação de vários dispositivos
- Pode transportar comandos SCSI
- USB Universal Serial Bus
 - Vários débitos (USB 3.0 → 5 Gbps, 3.2 → 20 Gbps)
 - Discos externos (fácil hot swap)
- Firewire (IEEE 1394)
 - Débitos mais elevados que USB, com hotswap (3.2 Gbps)
 - o Permite ligação entre dispositivos ao BUS
 - Último draft não foi continuado (IEEE 1394d)

<u>Ver Interfaces e Bit rates para</u> <u>armazenamento</u> da Wikipedia

periféricos

[dcc]

SOFTWARE

Camadas de software para gestão

15

Exemplo de partição em Linux

Representação em Linux

- Disco: /dev/sd?o ex: /dev/sda
- Partição: /dev/sd??#
 - o ex:/dev/sda1
- Pode mudar no arranque
- Linux usa UUIDs
 - o Ver /dev/disk
 - Ver /etc/fstab

hdparm

- Ferramenta Linux para configurar e ver os parâmetros dos discos
 - Não instalada por defeito em Fedora

Opção	Função
-I	Dumps lots of identifying and status information
-M <value></value>	Sets acoustic management options
-S <value></value>	Sets time delay for automatic standby (spin-down)
	mode
- y	Puts drive into standby mode immediately
-C	Queries the drive's current power management state
-T	Quick-tests interface bandwidth (no actual disk reads)
-t	Quick-tests overall platter-to-host sequential reads

S.M.A.R.T.

- Self-Monitoring, Analysis, and Reporting Technology
- Permite monitorizar e configurar a "vigilância" pelo próprio Sistema do disco.
 - Atributos definidos para "questionar" o disco
 - Auto-testes
- smartmontools
 - O Usam o daemon smartd e o utilitário smartctl

[dcc]

PARTIÇÕES

Informações gerais

- Ter uma partição para boot alternativa
 - o Mesmo que seja no mesmo disco
- /tmp numa partição separada
 - o Limita o "encher" do /
 - Em geral o /tmp utiliza tmpfs
 - Geralmente usando um sist. ficheiros em memória
- /var numa partição separada
 - Os logs estão em /var/log
 - Limitar o "Encher" / de novo

U. PORTO

Informações gerais (cont.)

- /home separada
 - o Backup
 - Pode sobreviver a erros no /
- Espaço de swap em discos diferentes
 - Pode aumentar a performance
- Pensar em backup e ter partições para dados que mudam "muito"

Master Boot Code 1st Partition Table Partition-Master Disk -Entry table boot 2nd Partition Table record Entry 3rd Partition Table Entry 4th Partition Table Entry 0×55 AA Boot Sector Primary partition -Data one Primary Boot Sector partition -Data two Primary Boot Sector partition -Data three Extended Extended-Partition -Logical boot Table Extended_ volume record partition 0x55AA **Boot Sector** Data Extended Extended-Partition -Logical boot Table volume record 0×55 AA **Boot Sector** Data

Admin. Sistemas 20/21 - rmartins - Armazenamento

PARTICIONAR - MBR

Master Boot Record

4 partições apenas(necessita da estendida)2 TB

Imagem de MBR, Microsoft techNet

- GUID Partition Tables (globally unique ID – GUID)
 - o Apenas 1 tipo de partição
 - Existe uma MBR protetora para compatibilidade
 - o Parte do standard UEFI
- Suportada na maioria dos sistemas
 - o Windows FAQ GPT

GUID Partition Table Scheme

[dcc]

RAID

Redundant Array of Inexpensive/Independent Disks

Objetivos

- Distribuição ou replicação de dados em vários discos
- Performance
- Redundância
- Não substitui backup
 - o Ficheiros apagados, antigos, incêndios, hackers, etc.

- Implementado
 - Software
 - Hardware

Software vs. hardware

• "We recently experienced a **disk controller failure** on an important production server. Although the data was replicated across several physical drives, a faulty hardware RAID controller destroyed the data on all disks. A lengthy and ugly tape restore process ensued, and it was more than two months before the server had completely recovered. The rebuilt server now relies on the kernel's **software to** manage its RAID environment, removing the possibility of another RAID controller failure."

dos autores do livro

Software vs. hardware

HARDWARE

- não depende do OS;
- Pode ter bateria para escrita após falhas de energia;
- Não causa impacto de performance no sistema;
- Funciona durante o arranque

SOFTWARE

- Em geral OpenSource, sem "vendor-lockin";
- Mais flexível, configurável;
- Menor custo;
- Menor restrição nos discos a usar.

Níveis de RAID

- JBOD (just a bunch of disks) apenas agregar os discos, aparecendo como um grande disco
- RAID 0
- RAID 1
- RAID 5
- RAID 6
- RAID 2,3,4

29

JBOD

• Discos vistos como um único, sendo escritos sequencialmente

Disco Lógico

TI PORTO

Imagem da <u>Wikimedia</u>

- Escrita alternada no discos
- Sem redundância
- Leitura/escrita pode ser feita simultaneamente
 - Melhoria de performance
- Aumenta ou diminui a AFR?

Imagem da Wikimedia

- Espelho (mirroring)
- Leitura simultânea de dados distintos
- Suporta perda de 1 disco

Imagem da <u>Wikimedia</u>

- Uso de paridade de bloco para recuperação de 1 disco
 - Distribuída pelos vários discos
 - Suporta a falha de 1 disco
- Stripping

A – 1 bloco A_p – paridade do bloco A

Imagem da Wikimedia

Paridade

$$P = A1 \oplus A2 \oplus A3$$

• Recuperação de A1

$$A1 = P \oplus A2 \oplus A3$$

• Ao mudar A3 para A3' (escrita de novos dados)

$$P' = A1 \oplus A2 \oplus A3'$$

$$= A1 \oplus A2 \oplus A3' \oplus A3 \oplus A3$$

$$= P \oplus A3' \oplus A3$$

- Dupla paridade de bloco distribuída
- Suporta a falha de 2 discos

Ver <u>How RAID-6 dual parity calculation</u> <u>works</u>, por Igor Ostrovsky para uma intro

Imagem da Wikimedia

[dcc]

Desvantagens RAID 5/6

- Escrita implica (atómico):
 - Ler bloco antigo
 - Ler paridade antiga
 - Escrever bloco novo
 - o Escrever paridade nova

- o Paridade inválida
- o "Write hole"
- Scrubbing → refazer paridade

Ver <u>RAID5 versus RAID10 (or even RAID3 or RAID4)</u>, por Art Kagel e <u>BAARF</u>

RAID 2, 3, 4

- Stripping ao nível do bit, byte ou bloco respetivamente
- Com paridade
- Não usados correntemente

RAID 3 A1 A2 **A3** $A_{p(1-3)}$ **A5** A4 A6 Ap(4-6) B1 **B3 B**p(1-3) **B4 B5** B6 $B_{p(4-6)}$ Disk 1 Disk 2 Disk 3 Disk 0

Ver RAID 2, RAID 3, RAID 4, RAID 6 Explained with Diagram, de Ramesh Natarajan, GeekStuff

Imagem da Wikimedia

37

RAID 0+1

Mirror of stripes

Imagem da <u>Wikimedia</u>

[dcc]

U. PORTO

RAID 1+0

• Stripe of mirrors

Admin. Sistemas 20/21 - rmartins - Armazenamento

U. PORTO

RAIDs

Nível	Performance	Fiabilidade	Nº discos (% útil para dados)
RAID 0	 Escritas/leituras em discos diferentes 	 Falha num disco leva a 	Pelo menos 2
	simultaneamente	erros	(100%)
I RAID I	 Leituras em discos diferentes simultaneamente 	 Pelo menos 1 disco pode 	Pelo menos 2
	 Escritas semelhantes a sem RAID 	falhar e recuperar-se	(50%)
I RAID 5	 Leitura em discos diferentes simultaneamente 	1 diago nodo folhan	Pelo menos 3
	 Escrita penalizada pela paridade 	• 1 disco pode falhar	(≥ 67%)
IRAID 6	 Leitura em discos diferentes simultaneamente 	2 diagog no dom follow	Pelo menos 4
	 Escrita penalizada pela paridade 	 2 discos podem falhar 	(≥ 50%)
RAID 1+0	Como A	Como 1	Pelo menos 4
(ou 0+1)	• Como Ø	• Como 1	(50%)

Ver também <u>Understanding BeyondRAID®</u>: <u>What does it offer against data loss?</u> UFS Explorer

[dcc]

Recuperação de falhas

- Sistema avisa aquando da falha de 1 disco
 - o Degradação de performance

Procedimento:

- XRAID 0
 - RAID 1:
 - o Cópia simples
 - RAID 5 e 6:
 - o Recuperação da paridade e de blocos
 - o Envolve mais operações para além da cópia

mdadm

- RAID por software
- Raids suportados:
 - o "RAID0 (striping), RAID1 (mirroring), RAID4, RAID5, RAID6, RAID10"
- Criar, gerir, remover, monitorizar os "arrays" de discos

Exemplo

```
• Usando 3 devices de loopback ("discos" em ficheiros)
# losetup /dev/loop0 /mnt/disk0

    repetir para os 3 discos

# mdadm --create /dev/md0 --level=5 --raid-devices=3 \
     /dev/loop{0..2}
# mdadm --detail -scan -v -v
# watch -n 1 -d cat /proc/mdstat # noutra shell
# mdadm /dev/md0 -f /dev/loop0
# mdadm /dev/md0 --add /dev/loop3
# mdadm --detail --scan
```

Outros mdadm

- mdadm --monitor
 - o Permite configurar a monitorização do raid para envio de email
 - Existe serviço mdmonitor
- mdadm.conf
 - o Permite criar configuração para ser montado logo no boot
 - o A assemblagem ou criação anterior não "sobrevive" reboot

```
mdadm --detail --scan >> /etc/mdadm.conf
```


[dcc]

LOGICAL VOLUME MANAGEMENT

Gestão de volumes

- Mover volumes lógicos entre dispositivos físicos diferentes;
- Aumentar e diminuir o tamanho de volumes lógicos;
- Fazer "snapshots" (copy-on-write) de volumes lógicos;
- Substituir dispositivos (discos) sem interromper o serviço;
- Introduzir espelho (mirror) ou *listagem* (striping) nos volumes lógicos

Modelo LVM

Elementos

- Vol. Físicos (Physical Volume (PV)): representam a partição, disco, RAID, dispositivo onde os blocos serão escritos.
- Vol. de grupo (volume group (VG)): agrupa vol. físicos, dando uma visão virtual de um único disco.
- Vol. Lógico (logical volume (LV)): a "partição" virtual que assenta em espaço do volume de grupo.

Elementos (II)

- Extensão Física (Physical Extent (PE)): extensão que representa um bloco de dados no vol. físico. **Mapeia-se diretamente num dispositivo físico.**
- Extensão lógica (Logic Extent (LE)): bloco de dados do vol. lógico.
 Mapeia-se numa extensão física

LE e PEs

- Ext. Lógica → Extensão Física (LE → PE)
- Tamanho LE = PE
- Escolhido para performance, escalabilidade e disponibilidade

Comandos LVM

	Operação	Linux
	Criar	pvcreate
ol. ico	Inspecionar	pvdisplay
Vol. Físico	Modificar	pvchange
	Verificar	pvck
<u>S.</u>	Criar	vgcreate
[0 ₀	Modificar	vgchange
Grupo de Vols	Estender	vgextend
0	Inspecionar	vgdisplay
L di	Verificar	vgck
5	Ativar	vgscan
	Criar	lvcreate
ol. gica	Modificar	lvchange
VC Sóg	Redimensionar	lvresize
	Inspecionar	lvdisplay

Fases para LVM

- Definir os volumes físicos
- Adicionar vol. físicos aos volume de grupo
- Criar volumes lógicos no volume de grupo

Um disco, o meu reino por um disco

- Criar sistema com LVM
- \$ sudo pvcreate /dev/md0 # Prepare for use w/LVM
- \$ sudo vgcreate testVG /dev/md0 # volume group
- \$ sudo lvcreate -L 100M -n testLV testVG
- \$ sudo mkfs -t ext4 /dev/testVG/testLV
- \$ sudo mkdir testMNT
- \$ mount /dev/testVG/testLV testMNT
- \$ sudo vi /etc/fstab # Set mount opts, mntpoint

snapshots

https://www.clevernetsystems.com/lvm-snapshotsexplained/

- Utiliza o COW (Copy On Write)
 - o Apenas copia o original quando este é alterado
- sudo lvcreate -L 100M (s) -n testVG/testLV_snap(testLV

A snapshot pode ser montada

LV a fazer o snapshot

- Mantem a visão à altura da criação
- Note-se que no LV criado para a snapshot são guardadas as mudanças no sistema original
 - o Tamanho alocado deve ser suficiente para todas as mudanças (seguro: igual ao tamanho do s.f. original)

Backup com Snapshots

- Parar serviços
- Criar snapshot (processo rápido)
- Reiniciar serviços
- Fazer backup da *snapshot*
- Remover *snapshot*
- Vantagens:
 - o Backup é feito sobre o estado na altura da criação do *snapshot*
 - Não há alterações durante o backup (ao que se faz backup)
 - Espaço para snapshot mínimo, apenas mudanças feitas durante o backup no sistema ativo

Ver Backup using Snapshots, de TLDP

"Cenas" de RAID

- Stripping
- # lvcreate -i2 -L 150M -n testLV_strip testVG
 - o pôr 2 discos
 - o É necessários existirem pelo menos 2 PV para ter -i2 no VG
- Mirroring
- # lvcreate -m1 -L 150M -n testLV_mir testVG
 - o para 1 dispositivo
 - o Também é necessários mais do que um PV

[dcc]

SISTEMAS DE FICHEIROS

Revisita (rápida)

ext

- Ext2: dos mais utilizados, nas versões mais atuais
- Ext3: adiciona journalling
 - o Log para auxiliar a recuperação/reconstrução do sistema de ficheiros
 - Pode ser montado como ext2
- Ext4: melhora performance, uso de extents, limites de tamanho
 - o Pode montar ext2 e ext3 como ext4
 - Pode ser montado como ext3
- Pode ser adicionado journalling a ext2

```
# tune2fs -j
```


ZFS

- Desenvolvido inicialmente pela SUN Microsystems (agora Oracle)
- Introduzido em OpenSolaris
- Inclui:
 - o LVM
 - o Controlador RAID
 - Sistema de ficheiros

ZFS arquitetura

• ZFS pool ≈ LVM volume group

https://www.freebsd.org/doc/handbook/zfs.html

- RAID-Z ≈ RAID 5
 - Com Copy-on-Write(CoW)
 - Stripping de blocos lógicos e não de tamanho fixo.

ZFS: componentes

- Integridade: checksums para os dados, verificação/recuperação em contínuo
- Pool de armazenamento: possibilidade de adicionar mais armazenamento a todo o sistema
- Performance: utilização de sistemas de cache em memória para melhorar o acesso (ARC – Adaptive Replacement Cache, L2ARC) com pedidos de escrita síncrona para o disco físico também suportados (ZIL)
 - o Utilização possível de SSDs (no L2ARC e ZIL)

Refs para ZFS

- An Introduction to the Z File System (ZFS) for Linux, How-To Geek
- Chapter 19. The Z File System (ZFS)
 - o Tom Rhodes, Allan Jude, Benedict Reuschling and Warren Block (FreeBSD)
- Oracle Solaris ZFS Administration Guide

- Não disponível por defeito em todos os sistemas linux
 - o Ver <u>OpenZFS</u> e <u>ZFS on Linux</u>.
- Ver também o <u>sistema de ficheiros BTRFS</u>

[dcc]

ARMAZENAMENTO VIA REDE

Armazenamento por Rede

- SAN: Storage Area Network
 - o Permitem aceder por rede a blocos
 - Nível mais baixo
 - o Precisam de ter sist, ficheiros no cliente
 - Não suportam necessariamente múltiplos clientes
- NAS: Network Attached Storage
 - NFS (Network File System) e CIFS (Common Internet File System)/SMB (Server Message Block) são exemplos
 - o Permitem aceder por rede a ficheiros
 - o Leitura, escrita, gestão

Armazenamento por Rede

• SAN

Benefícios

- Centralização do armazenamento
- Otimização, tolerância a falhas, recuperação de desastre num só local.
- Flexibilidade e facilidade de configuração
- (SAN) Facilidade de adequação do espaço necessário
- (SAN) Deteção de duplicação de blocos permite otimização de espaço
- Estratégia de backup

Ter em conta a latência e ocupação da rede

Redes

Ethernet

- 10 Gb/s (e já 100 Gb/s)
- Sistemas diretamente em Ethernet
- Outros protolocos por "cima":
 IP, TCP/UDP

Fibre Channel

- 2 a 16 Gb/s
- Especifica FCP (Fibre Channel Protocol)
 - Transporte de outros dados,
 nomeadamente comandos SCSI
 - Pode ser usado sobre Ethernet
- Dispendiosa

Protocolos SAN na Ethernet

- iSCSI (internet SCSI)
- Comandos SCSI
- Encapsulado em TCP/IP
 - Pode ser usado na internet (mas raro)
- RFC 7143

- ATA over Ethernet (AoE)
- Comandos ATA
- Direto sobre Ethernet
 Limitado à rede local
- Definido por empresa, mas disponível de modo aberto
- AoE is 2x to 4x more than with equivalent iSCSI

Protocolos NAS

- NFS (Network File System)
- SMB (Server Message Block)/CIFS (Common Internet File System), sistemas Microsoft para Windows, mas com implementações em Linux

Vários - Listagem de dispositivos

- lsblk Listagem de dispositivos de blocos
- lspci Listagem de periféricos no BUS PCI
- 1susb Listagem dos dispositivos USB ligados

Resumo

- Tipos de discos
- Interface aos discos
- Software para gestão de discos
- Partições
- RAID
- LVM
- Sistema de ficheiros (ZFS)
- Armazenamento via rede

[dcc]

QUESTÕES/ COMENTÁRIOS