Friis Transmission Equation

Group Meeting 10/10/13

Friis Equation Origins

- Derived in 1945 by Bell Labs worker Harald T.
 Friss
- Gives the amount of power an antenna received under ideal conditions from another antenna
 - Antennas must be in far field
 - Antennas are in unobstructed free space
 - Bandwidth is narrow enough that a single wavelength can be assumed
 - Antennas are correctly aligned and polarized

Simple Form of Friis Equation

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2$$

- P_r: Power at the receiving antenna
- P_i: output power of transmitting antenna
- G_t, G_r: gain of the transmitting and receiving antenna, respectively
- λ: wavelength
- R: distance between the antenna

Derivation of equation

- Power from isotropic antenna falls off as r²
- Power density (p) would be:

$$p = \frac{P_t}{4\pi R^2}$$

Derivation of equation

Multiplying by gain of the transmitting antenna gives a real antenna pattern

$$p = \frac{P_t}{4\pi R^2} G_t$$

 If receiving antenna has an effective aperture of A_{eff} the power received by this antenna (P_r) is

$$P_r = p A_{eff}$$

thus:

$$P_r = \frac{P_t}{4\pi R^2} G_t A_{eff}$$

The effective aperture of an antenna can be written as

$$A_e = \frac{\lambda^2}{4\pi} G$$

plugging in:

$$P_r = P_t G_t G_r \left(\frac{\lambda}{4 \pi R}\right)^2$$

Modifications to Friis equation (Complicated Form)

$$\frac{P_r}{P_t} = G_t(\theta_t, \varphi_t) G_r(\theta_r, \varphi_r) \left(\frac{\lambda}{4\pi R}\right)^2 (1 - |\Gamma_t|^2) (1 - |\Gamma_r|^2) |a_t \cdot a_r^*|^2 e^{-\alpha R}$$

- G_t, G_r: modifications to gain of antennas in which the antennas "see" each other.
- Γ_{t} and Γ_{t} are the reflection coefficients of the antennas
- a_t and a_r are the polarization vectors of the antennas
- α is the absorption coefficient of the medium