3.5 [RV73, page 22] Running average of a convex function. Suppose $f : \mathbf{R} \to \mathbf{R}$ is convex, with $\mathbf{R}_+ \subseteq \operatorname{dom} f$. Show that its running average F, defined as

$$F(x) = \frac{1}{x} \int_0^x f(t) dt, \quad \text{dom } F = \mathbf{R}_{++},$$

is convex. You can assume f is differentiable.

Solution. F is differentiable with

$$F'(x) = -(1/x^2) \int_0^x f(t) dt + f(x)/x$$

$$F''(x) = (2/x^3) \int_0^x f(t) dt - 2f(x)/x^2 + f'(x)/x$$

$$= (2/x^3) \int_0^x (f(t) - f(x) - f'(x)(t - x)) dt.$$

Convexity now follows from the fact that

$$f(t) \ge f(x) + f'(x)(t - x)$$

for all $x, t \in \operatorname{dom} f$, which implies $F''(x) \geq 0$.

3.8 Second-order condition for convexity. Prove that a twice differentiable function f is convex if and only if its domain is convex and $\nabla^2 f(x) \succeq 0$ for all $x \in \operatorname{dom} f$. Hint. First consider the case $f : \mathbf{R} \to \mathbf{R}$. You can use the first-order condition for convexity (which was proved on page 70).

Solution. We first assume n = 1. Suppose $f : \mathbf{R} \to \mathbf{R}$ is convex. Let $x, y \in \operatorname{dom} f$ with y > x. By the first-order condition,

$$f'(x)(y-x) < f(y) - f(x) < f'(y)(y-x).$$

Subtracting the righthand side from the lefthand side and dividing by $(y-x)^2$ gives

$$\frac{f'(y) - f'(x)}{y - x} \ge 0.$$

Taking the limit for $y \to x$ yields $f''(x) \ge 0$.

Conversely, suppose $f''(z) \geq 0$ for all $z \in \operatorname{dom} f$. Consider two arbitrary points $x, y \in \operatorname{dom} f$ with x < y. We have

$$0 \leq \int_{x}^{y} f''(z)(y-z) dz$$

$$= (f'(z)(y-z))\Big|_{z=x}^{z=y} + \int_{x}^{y} f'(z) dz$$

$$= -f'(x)(y-x) + f(y) - f(x),$$

i.e., $f(y) \ge f(x) + f'(x)(y-x)$. This shows that f is convex.

To generalize to n > 1, we note that a function is convex if and only if it is convex on all lines, *i.e.*, the function $g(t) = f(x_0 + tv)$ is convex in t for all $x_0 \in \operatorname{dom} f$ and all v. Therefore f is convex if and only if

$$g''(t) = v^T \nabla^2 f(x_0 + tv)v \ge 0$$

for all $x_0 \in \operatorname{dom} f$, $v \in \mathbf{R}^n$, and t satisfying $x_0 + tv \in \operatorname{dom} f$. In other words it is necessary and sufficient that $\nabla^2 f(x) \succeq 0$ for all $x \in \operatorname{dom} f$.

- 3.16 For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.
 - (a) $f(x) = e^x 1$ on **R**.

Solution. Strictly convex, and therefore quasiconvex. Also quasiconcave but not concave.

(b) $f(x_1, x_2) = x_1 x_2$ on \mathbf{R}_{++}^2 .

Solution. The Hessian of f is

$$\nabla^2 f(x) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right],$$

which is neither positive semidefinite nor negative semidefinite. Therefore, f is neither convex nor concave. It is quasiconcave, since its superlevel sets

$$\{(x_1, x_2) \in \mathbf{R}_{++}^2 \mid x_1 x_2 \ge \alpha\}$$

are convex. It is not quasiconvex.

(c) $f(x_1, x_2) = 1/(x_1x_2)$ on \mathbb{R}^2_{++}

Solution. The Hessian of f is

$$abla^2 f(x) = rac{1}{x_1 x_2} \left[egin{array}{cc} 2/(x_1^2) & 1/(x_1 x_2) \\ 1/(x_1 x_2) & 2/x_2^2 \end{array}
ight] \succeq 0$$

Therefore, f is convex and quasiconvex. It is not quasiconcave or concave.

(d) $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .

Solution. The Hessian of f is

$$\nabla^2 f(x) = \begin{bmatrix} 0 & -1/x_2^2 \\ -1/x_2^2 & 2x_1/x_2^3 \end{bmatrix}$$

which is not positive or negative semidefinite. Therefore, f is not convex or concave. It is quasiconvex and quasiconcave (*i.e.*, quasilinear), since the sublevel and superlevel sets are halfspaces.

(e) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbf{R} \times \mathbf{R}_{++}$.

Solution. f is convex, as mentioned on page 72. (See also figure 3.3). This is easily verified by working out the Hessian:

$$\nabla^2 f(x) = \begin{bmatrix} 2/x_2 & -2x_1/x_2^2 \\ -2x_1/x_2^2 & 2x_1^2/x_2^3 \end{bmatrix} = (2/x_2) \begin{bmatrix} 1 \\ -2x_1/x_2 \end{bmatrix} \begin{bmatrix} 1 & -2x_1/x_2 \end{bmatrix} \succeq 0.$$

Therefore, f is convex and quasiconvex. It is not concave or quasiconcave (see the figure).

(f) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$, on \mathbb{R}^2_{++} .

Solution. Concave and quasiconcave. The Hessian is

$$\nabla^{2} f(x) = \begin{bmatrix} \alpha(\alpha - 1)x_{1}^{\alpha - 2}x_{2}^{1 - \alpha} & \alpha(1 - \alpha)x_{1}^{\alpha - 1}x_{2}^{-\alpha} \\ \alpha(1 - \alpha)x_{1}^{\alpha - 1}x_{2}^{-\alpha} & (1 - \alpha)(-\alpha)x_{1}^{\alpha}x_{2}^{-\alpha - 1} \end{bmatrix}$$
$$= \alpha(1 - \alpha)x_{1}^{\alpha}x_{2}^{1 - \alpha} \begin{bmatrix} -1/x_{1}^{2} & 1/x_{1}x_{2} \\ 1/x_{1}x_{2} & -1/x_{2}^{2} \end{bmatrix} \leq 0.$$

f is not convex or quasiconvex.

- **3.18** Adapt the proof of concavity of the log-determinant function in §3.1.5 to show the following.
 - (a) $f(X) = \operatorname{tr}(X^{-1})$ is convex on $\operatorname{dom} f = \mathbf{S}_{++}^n$.
 - (b) $f(X) = (\det X)^{1/n}$ is concave on $\operatorname{dom} f = \mathbf{S}_{++}^n$.

Solution. Define g(t) = f(Z + tV), where Z > 0 and $V \in \mathbf{S}^n$.

$$\begin{split} g(t) &= & \operatorname{tr}((Z+tV)^{-1}) \\ &= & \operatorname{tr}\left(Z^{-1}(I+tZ^{-1/2}VZ^{-1/2})^{-1}\right) \\ &= & \operatorname{tr}\left(Z^{-1}Q(I+t\Lambda)^{-1}Q^{T}\right) \\ &= & \operatorname{tr}\left(Q^{T}Z^{-1}Q(I+t\Lambda)^{-1}\right) \\ &= & \sum_{i=1}^{n}(Q^{T}Z^{-1}Q)_{ii}(1+t\lambda_{i})^{-1}, \end{split}$$

where we used the eigenvalue decomposition $Z^{-1/2}VZ^{-1/2}=Q\Lambda Q^T$. In the last equality we express g as a positive weighted sum of convex functions $1/(1+t\lambda_i)$, hence it is convex. Second part is similar.

- **3.20** Composition with an affine function. Show that the following functions $f: \mathbb{R}^n \to \mathbb{R}$ are convex.
 - (a) f(x) = ||Ax b||, where $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$, and $|| \cdot ||$ is a norm on \mathbf{R}^m . Solution. f is the composition of a norm, which is convex, and an affine function.
 - (b) $f(x) = -(\det(A_0 + x_1A_1 + \dots + x_nA_n))^{1/m}$, on $\{x \mid A_0 + x_1A_1 + \dots + x_nA_n > 0\}$, where $A_i \in \mathbf{S}^m$.

Solution. f is the composition of the convex function $h(X) = -(\det X)^{1/m}$ and an affine transformation, To see that h is convex on \mathbf{S}_{++}^m , we restrict h to a line and prove that $g(t) = -\det(Z + tV)^{1/m}$ is convex:

$$g(t) = -(\det(Z + tV))^{1/m}$$

$$= -(\det Z)^{1/m} (\det(I + tZ^{-1/2}VZ^{-1/2}))^{1/m}$$

$$= -(\det Z)^{1/m} (\prod_{i=1}^{m} (1 + t\lambda_i))^{1/m}$$

where $\lambda_1, \ldots, \lambda_m$ denote the eigenvalues of $Z^{-1/2}VZ^{-1/2}$. We have expressed g as the product of a negative constant and the geometric mean of $1 + t\lambda_i$, $i = 1, \ldots, m$. Therefore g is convex.

(c) $f(X) = \operatorname{tr}(A_0 + x_1 A_1 + \dots + x_n A_n)^{-1}$, on $\{x \mid A_0 + x_1 A_1 + \dots + x_n A_n \succ 0\}$, where $A_i \in \mathbf{S}^m$. (Use the fact that $\operatorname{tr}(X^{-1})$ is convex on \mathbf{S}^m_{++} ; see exercise 3.18.)

Solution. f is the composition of $\operatorname{tr} X^{-1}$ and an affine transformation

$$x \mapsto A_0 + x_1 A_1 + \cdots + x_n A_n$$
.

- **3.26** More functions of eigenvalues. Let $\lambda_1(X) \ge \lambda_2(X) \ge \cdots \ge \lambda_n(X)$ denote the eigenvalues of a matrix $X \in \mathbf{S}^n$. We have already seen several functions of the eigenvalues that are convex or concave functions of X.
 - The maximum eigenvalue $\lambda_1(X)$ is convex (example 3.10). The minimum eigenvalue $\lambda_n(X)$ is concave.

- The sum of the eigenvalues (or trace), $\operatorname{tr} X = \lambda_1(X) + \cdots + \lambda_n(X)$, is linear.
- The sum of the inverses of the eigenvalues (or trace of the inverse), $\operatorname{tr}(X^{-1}) = \sum_{i=1}^{n} 1/\lambda_i(X)$, is convex on \mathbf{S}_{++}^n (exercise 3.18).
- The geometric mean of the eigenvalues, $(\det X)^{1/n} = (\prod_{i=1}^n \lambda_i(X))^{1/n}$, and the logarithm of the product of the eigenvalues, $\log \det X = \sum_{i=1}^n \log \lambda_i(X)$, are concave on $X \in \mathbf{S}_{++}^n$ (exercise 3.18 and page 74).

In this problem we explore some more functions of eigenvalues, by exploiting variational characterizations.

(a) Sum of k largest eigenvalues. Show that $\sum_{i=1}^{k} \lambda_i(X)$ is convex on \mathbf{S}^n . Hint. [HJ85, page 191] Use the variational characterization

$$\sum_{i=1}^{k} \lambda_i(X) = \sup \{ \operatorname{tr}(V^T X V) \mid V \in \mathbf{R}^{n \times k}, \ V^T V = I \}.$$

Solution. The variational characterization shows that f is the pointwise supremum of a family of linear functions $tr(V^TXV)$.

(b) Geometric mean of k smallest eigenvalues. Show that $(\prod_{i=n-k+1}^n \lambda_i(X))^{1/k}$ is concave on \mathbf{S}_{++}^n . Hint. [MO79, page 513] For $X \succ 0$, we have

$$\left(\prod_{i=n-k+1}^{n} \lambda_i(X)\right)^{1/k} = \frac{1}{k} \inf\{\operatorname{tr}(V^T X V) \mid V \in \mathbf{R}^{n \times k}, \ \det V^T V = 1\}.$$

Solution. f is the pointwise infimum of a family of linear functions $tr(V^TXV)$.

(c) Log of product of k smallest eigenvalues. Show that $\sum_{i=n-k+1}^{n} \log \lambda_i(X)$ is concave on \mathbf{S}_{++}^n . Hint. [MO79, page 513] For $X \succ 0$,

$$\prod_{i=n-k+1}^n \lambda_i(X) = \inf \left\{ \left. \prod_{i=1}^n (\boldsymbol{V}^T \boldsymbol{X} \boldsymbol{V})_{ii} \; \right| \; \boldsymbol{V} \in \mathbf{R}^{n \times k}, \; \boldsymbol{V}^T \boldsymbol{V} = \boldsymbol{I} \right\}.$$

Solution. f is the pointwise infimum of a family of concave functions $\log \prod_i (V^T X V)_{ii}$.

3.43 First-order condition for quasiconvexity. Prove the first-order condition for quasiconvexity given in §3.4.3: A differentiable function $f: \mathbf{R}^n \to \mathbf{R}$, with $\operatorname{\mathbf{dom}} f$ convex, is quasiconvex if and only if for all $x, y \in \operatorname{\mathbf{dom}} f$,

$$f(y) \le f(x) \Longrightarrow \nabla f(x)^T (y - x) \le 0.$$

Hint. It suffices to prove the result for a function on \mathbf{R} ; the general result follows by restriction to an arbitrary line.

Solution. First suppose f is a differentiable function on $\mathbf R$ and satisfies

$$f(y) \le f(x) \Longrightarrow f'(x)(y-x) \le 0.$$
 (3.43.A)

Suppose $f(x_1) \ge f(x_2)$ where $x_1 \ne x_2$. We assume $x_2 > x_1$ (the other case can be handled similarly), and show that $f(z) \le f(x_1)$ for $z \in [x_1, x_2]$. Suppose this is false, *i.e.*, there exists a $z \in [x_1, x_2]$ with $f(z) > f(x_1)$. Since f is differentiable, we can choose a z that also satisfies f'(z) < 0. By (3.43.A), however, $f(x_1) < f(z)$ implies $f'(z)(x_1 - z) \le 0$, which contradicts f'(z) < 0.

To prove sufficiency, assume f is quasiconvex. Suppose $f(x) \ge f(y)$. By the definition of quasiconvexity $f(x+t(y-x)) \le f(x)$ for $0 < t \le 1$. Dividing both sides by t, and taking the limit for $t \to 0$, we obtain

$$\lim_{t \to 0} \frac{f(x + t(y - x)) - f(x)}{t} = f'(x)(y - x) \le 0,$$

which proves (3.43.A).