A Proofs of Lemmas and Theorems

This section provides detailed proofs for the lemmas and theorems stated in the main paper. For clarity, some of the definitions, lemmas, and theorems are restated as needed.

Theorem 4.1. (*Equivalence between Field and Variable Pointers under Object-Sensitive Analysis*). Under k-object-sensitive pointer analysis, a field f of a heap object h and a local variable v in a method m invoked on h exhibit structural equivalence in their context-sensitive representations.

PROOF. Let us assume a k-object-sensitive pointer analysis.

Context Representation for Field Pointers. For a heap object h allocated under context $[o_1, \ldots, o_l]$, where $l \le k - 1$, the field pointer h. f is represented by as:

$$([o_1, ..., o_l], h.f)$$

This indicates that the access to the field f of object h is resolved under the context in which h was created, and the pointer name is tied to the field label f and the base object h.

Context Representation for Local Variables. Suppose the method m is invoked on the receiver object h allocated under context $[o_1, \ldots, o_l]$, where $l \le k-1$. Then, under object-sensitive analysis, the context of method m becomes:

$$c_m = [o_1, \ldots, o_{k-1}, h]$$

Let v be a local variable within m. Its context-sensitive representation is then:

$$([o_1,\ldots,o_{k-1},h],v)$$

Structural Equivalence. Now, consider rewriting the field pointer representation. Note that the context-sensitive representation of h.f can be rewritten by pushing the object h into the context and separating the field label:

$$([o_1, \dots, o_{k-1}], h.f) \equiv ([o_1, \dots, o_{k-1}, h], f)$$

This reinterpretation is valid because object-sensitive pointer analysis uses abstract heap objects to construct contexts. Here, we merely shift the object h from being the "base" of a field label to being part of the context sequence, while preserving the essential identity of the field.

Conclusion. Since both representations are of the same structural form, we conclude that *field* pointers and local variables are structurally equivalent in their contextual representation under k-object-sensitive analysis.

THEOREM 4.2. The ground truth of selective context-sensitive objects must be precision-relevant: Precision \uparrow (h) \implies PR(h, k-1), where k-1 is the length limit of object contexts.

To facilitate the proof of Theorem 4.2, we first introduce the following lemma, whose proof is given afterwards to maintain the coherence of presentation.

LEMMA A.1. Given the context-sensitive PFG $G_{\mathbb{O}}$, and a field f of object h, the following formula always holds:

$$\neg PARTIAL(h, f) \implies \forall x \in PRE(h, f), \forall y \in SUC(h, f) : x \bowtie y$$

We now present the proof for Theorem 4.2 below.

PROOF FOR THEOREM 4.2. We prove by contraposition. That is, we assume $\neg PR(h, k-1)$ and show that this implies $\neg Precision \uparrow (h)$, i.e., h cannot contribute to precision improvement under context sensitivity.

From Definition 4.6, an object h is *not* precision-relevant if for each field f of h, one of the two cases below is satisfied: it is not partial or its corresponding flows are not distinguishable. We examine each case separately:

• **Not Partial:** If each field *f* of *h* is not partial, it is formalized as

$$\forall f \in \mathbb{F} \text{ of } h : \neg PARTIAL(h, f)$$

By Lemma A.1, we have:

$$\neg PARTIAL(h, f) \implies \forall x \in PRE(h, f), \forall y \in SUC(h, f) : x \bowtie y$$

By the nature of pointer analysis, we have in PFG $G_{\mathbb{O}\backslash\{h\}}$, for field f of h, there is only one field pointer $(\emptyset,h.f)$, since all the contexts of h are removed in $G_{\mathbb{O}\backslash\{h\}}$, hence we have $\forall x\in \mathrm{Pre}(h,f), \forall y\in \mathrm{Suc}(h,f):x\bowtie y$ satisfied in $G_{\mathbb{O}\backslash\{h\}}$. This implies that $\forall x\in \mathrm{Pre}(h,f), \forall y\in \mathrm{Suc}(h,f):x\bowtie z$ holds in both $G_{\mathbb{O}}$ and $G_{\mathbb{O}\backslash\{h\}}$. Consequently, the reachability related to the flows through h.f remain the same in $G_{\mathbb{O}}$ and $G_{\mathbb{O}\backslash\{h\}}$, thus we have:

$$\forall v \in \mathbb{V}, \forall o \in \{o \mid o \leadsto_{G_{\mathbb{O} \setminus \{h\}}} v\} : o \leadsto_{G_{\mathbb{O}}} v$$

Therefore, we conclude \neg Precision \uparrow (h).

• Flow Not Distinguishable:

If the corresponding flows of each field f of h are not distinguishable, it is formalized as:

$$\forall f \in \mathbb{F} \text{ of } h : \neg \mathsf{DistObj}(h, f) \land \\ (\forall y \in \mathsf{Pre}(h, f), \forall o \in pt(y) : \neg \mathsf{PR}(o, l') \lor \neg \mathsf{DistCtx}(o, h, f) \lor l' \le 0)$$

We discuss every condition below:

- (1) By Definition 4.4, we have:

$$\neg \mathsf{DISTOBJ}(h,f) := \forall y \not \sim h.f, y' \in \mathsf{Pre}(h,f), \forall c_y, c_y' \in \mathbb{C} : pt(c_y,y) = pt(c_y',y')$$

which means all the predecessors have the same objects, making the contexts of h redundant for distinguishing these objects.

- (2) By Definition 4.5, we have:

$$\neg \text{DistCtx}(o,h,f) := \forall y \not \sim h.f, y' \in \text{Pre}(h,f), \forall c_o, c_y, c_y' \in \mathbb{C}:$$

$$(c_o,o) \in \hat{pt}(c_y,y) \land (c_o,o) \in \hat{pt}(c_y',y')$$

which means all the predecessors have the identical contextual objects, making the contexts of h redundant for distinguishing these contextual objects as well.

- (3) By $l' \le 0$, we have that the context length limit of o is exceeded and the contexts of h are invisible to o, making contexts of h redundant for distinguishing the contextual objects of o.
- (4) By $\neg PR(o, l')$, we have the object o is not *Precision-Relevant*, which leads to a recursive situation:
 - * **Base:** o is not *Precision-Relevant* due to $\neg DistObj \land (\neg DistCtx \lor l' \le 0)$. In such scenarios, we have already shown that the contexts of o are redundant for distinguishing pointer flows, implying that there is no need to differentiate the contextual replicas of o.
 - * **Recursive:** *o* is not *Precision-Relevant* due to ¬DISTOBJ ∧ ¬PR. This results in a recursive situation. However, by unrolling this recursion, we eventually reach one of the previously analyzed cases, which all establish that the contexts of *o* are redundant for distinguishing pointer flows.

By the contradiction of all the conditions above, we have the contexts of h redundant for distinguishing the pointer flows through its field pointers, thus, we have:

$$\forall x \in \text{Pre}(h, f), \forall y \in \{y | x \leadsto_{G_{\mathbb{Q}} \setminus \{h\}} y\} : x \leadsto_{G_{\mathbb{Q}}} y$$

further we have:

$$\forall v \in \mathbb{V}, \forall o \in \{o \mid o \leadsto_{G_{\mathbb{O}} \setminus \{b\}} v\} : o \leadsto_{G_{\mathbb{O}}} v$$

Therefore, we conclude \neg Precision \uparrow (h).

In all possible cases where $\neg PR(h, k-1)$, we conclude that $\neg Precision \uparrow (h)$. Hence, the contrapositive $\neg PR(h, k-1) \implies \neg Precision \uparrow (h)$ holds, and so does the original implication $Precision \uparrow (h) \implies PR(h, k-1)$.

In the following, we present the proof of Lemma A.1.

PROOF FOR LEMMA A.1. By Definition 4.3, we have:

$$\neg PARTIAL(h, f) \iff \forall x \in PRE(h, f), \forall y \in SUC(h, f) : x \bowtie h. f \lor h. f \bowtie y.$$

We aim to prove:

$$x \bowtie h.f \lor h.f \bowtie y \implies x \bowtie y$$

We consider the two disjunctive cases separately.

Case 1: $x \bowtie h.f$. By Definition 4.2, this means:

$$\forall c_x, c_h \in \mathbb{C} : (c_x, x) \to (c_h, h.f).$$

Furthermore, by Definition 4.1, for any $y \in Suc(h, f)$, we have:

$$\forall c_y \in \mathbb{C}, \exists c_h \in \mathbb{C} : (c_h, h.f) \to (c_y, y).$$

By composing these two reachability relations, we derive:

$$\forall c_x, c_y \in \mathbb{C} : (c_x, x) \leadsto (c_y, y),$$

which is the definition of $x \bowtie y$.

Case 2: $h.f \bowtie y$. This is symmetric to Case 1. We have:

$$\forall c_h, c_y \in \mathbb{C} : (c_h, h.f) \to (c_y, y),$$

and by Definition 4.1, for any $x \in PRE(h, f)$, we have:

$$\forall c_x \in \mathbb{C}, \exists c_h \in \mathbb{C} : (c_x, x) \to (c_h, h.f).$$

Therefore, composing again yields:

$$\forall c_x, c_y \in \mathbb{C} : (c_x, x) \leadsto (c_y, y),$$

which again implies $x \bowtie y$.

THEOREM 4.3. A *Precision-Relevant* object must be an *Applied Precision-Relevant* object: $PR(h, k-1) \implies \overline{PR}(h, k-1)$, where k is the context length of methods, k-1 is the context length of objects.

To facilitate the proof of Theorem 4.3, we first introduce the following lemmas, whose proofs are given afterwards to maintain the coherence of presentation.

Lemma 4.1. Given a field load statement y = x.f, the following formula holds under context-sensitive analysis:

$$\hat{pt}(c_1, y) \neq \hat{pt}(c_2, y) \implies \hat{pt}(c_1, x) \neq \hat{pt}(c_2, x)$$

where $c_1, c_2 \in \mathbb{C}$.

LEMMA 4.2. Under object-sensitive analysis, if a variable y in method m have different points-to sets under different contexts, we have $\overline{\text{DistObj2}}$ in $\overline{\text{PR}}$ satisfied on VFG \mathcal{G} :

$$\exists c_1, c_2 \in \mathbb{C} : pt(c_1, y) \neq pt(c_2, y) \implies \hat{pt}(c_1, y) \neq \hat{pt}(c_2, y) \implies this_m \sim_{\mathcal{G}} y \vee (\exists o \in \mathbb{O} : o \sim_{\mathcal{G}} y)$$

LEMMA 4.3. Given a field f of h, if Partial(h, f) is satisfied on $G_{\mathbb{O}}$, we have $\overline{\text{Partial}}$ satisfied on VFG G:

$$PARTIAL(h, f) \implies \overline{PARTIAL}$$

We now present the proof for Theorem 4.3.

PROOF FOR THEOREM 4.3. Both PR and \overline{PR} defined in Definitions 4.6 and 4.8 rely on several atomic properties. Therefore, it suffices to prove each of the following atomic properties individually.

- (1) Partial $(h, f) \implies \overline{\text{Partial}}$
- (2) DISTOBJ $(h, f) \lor (\exists y \in PRE(h, f), \exists o \in pt(y) : PR(o, l') \land DISTCTX(o, h, f) \land l' > 0) \implies \overline{DISTOBJ1} \lor \overline{DISTOBJ2} \lor \overline{DISTCTX}$

By Lemma 4.3, we have (1) proven, thus we only need to prove (2), and we prove the two implications:

$$DistObj(h, f) \implies \overline{DistObj1} \vee \overline{DistObj2}$$
 (3)

(1) Implication (3): By Definition 4.4, we have:

$$\mathsf{DistObj}(h,f) \coloneqq \exists y \not \sim h.f, y' \in \mathsf{Pre}(h,f), c_y, c_y' \in \mathbb{C} : pt(c_y,y) \neq pt(c_y',y')$$

When y and y' are different variables and they have different points-to sets, i.e., $\overline{\text{DistObj1}}$, thus we have:

$$DistObj(h, f) \implies \overline{DistObj1}$$

When y and y' are the same variable, which means the variable have different points-to sets under different contexts, by Lemma 4.2, we have:

$$D$$
іsт O вј $(h, f) \implies \overline{D$ іsт O вј 2

Thus, we have implication 3 satisfied.

(2) Implication (4), where the recursion on both sides can be unrolled within same steps: By Definition 4.5, we have:

$$\text{DistCtx}(o,h,f) := \begin{array}{c} \exists y \not \sim h.f, y' \in \text{Pre}(h,f), \exists c_o, c_y, c_y' \in \mathbb{C}: \\ (c_o,o) \in \hat{pt}(c_y,y) \land (c_o,o) \notin \hat{pt}(c_y',y') \end{array}$$

According to Definition 4.5, a difference between the contextual points-to sets of (c_y, y) and (c_y', y') is required. This discrepancy implies either the predicate $\overline{\text{DistObj1}}$ holds directly, or it can be over-approximated via the reachability criteria defined by $\overline{\text{DistObj2}}$ or by the context-sensitive distinction $\overline{\text{DistCtx}}$, as established in Lemma 4.2. Thus we have:

$$\exists y \in \Pr(h,f), \exists o \in pt(y): \\ \Pr(o,l') \land \mathsf{DistCtx}(o,h,f) \land l' > 0 \implies \overline{\mathsf{DistObj1}} \lor \overline{\mathsf{DistObj2}} \lor \overline{\mathsf{DistCtx}}$$

In the following, we present our proof for Lemma 4.1.

PROOF FOR LEMMA 4.1. We proceed by contraposition. Suppose that:

$$\hat{pt}(c_1, x) = \hat{pt}(c_2, x) = P$$

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 333. Publication date: October 2025.

where *P* is the contextual points-to set pointed to by *x* in both contexts c_1 and c_2 .

By the [**Field-Load**] rule defined in Figure 3, for each contextual object $(c', h) \in P$, the following holds:

$$(c', h.f) \rightarrow (c_1, y)$$
 and $(c', h.f) \rightarrow (c_2, y)$

Since the same contextual points-to set P is accessed under both c_1 and c_2 , and each (c', h.f) points to both (c_1, y) and (c_2, y) identically, it follows that the resulting contextual points-to sets for y are also equal:

$$\hat{pt}(c_1, y) = \hat{pt}(c_2, y)$$

This contradicts the assumption that $\hat{pt}(c_1, y) \neq \hat{pt}(c_2, y)$. Hence, by contraposition:

$$\hat{pt}(c_1, y) \neq \hat{pt}(c_2, y) \implies \hat{pt}(c_1, x) \neq \hat{pt}(c_2, x)$$

Before presenting the proof of Lemma 4.2, we first introduce the following lemmas, whose proofs are given afterwards.

Lemma A.2. Under object-sensitive analysis, for any method m and its associated receiver variable this_m, if method m has two distinct contexts $c_1, c_2 \in \mathbb{C}$, then the context-sensitive points-to sets of this_m are distinct, i.e., $\hat{pt}(c_1, this_m) \neq \hat{pt}(c_2, this_m)$.

LEMMA A.3. Under object-sensitive analysis, given a variable y in method m, the following formula holds:

$$\exists c_1, c_2 \in \mathbb{C} : \hat{pt}(c_1, y) \neq \hat{pt}(c_2, y) \implies \exists c_{n1}, c_{n2} \in \mathbb{C}, \exists n \in \mathcal{N} : \hat{pt}(c_1, n) \neq \hat{pt}(c_2, n) \land n \rightsquigarrow_G y$$

PROOF FOR LEMMA 4.2. **Step 1.** We prove the implication:

$$\exists c_1, c_2 \in \mathbb{C} : pt(c_1, y) \neq pt(c_2, y) \implies \hat{pt}(c_1, y) \neq \hat{pt}(c_2, y)$$

By the definitions of pt and \hat{pt} , we have:

$$pt(c_i, y) := \{ o \mid (c, o) \in \hat{pt}(c_i, y) \text{ for some } c \in \mathbb{C} \}$$

Thus, the implication is naturally satisfied.

Step 2. We prove the implication:

$$\exists c_1, c_2 \in \mathbb{C} : \hat{pt}(c_1, y) \neq \hat{pt}(c_2, y) \implies this_m \leadsto_{\mathcal{G}} y \lor (\exists o \in \mathbb{O} : o \leadsto_{\mathcal{G}} y)$$

By Lemma A.3, we have:

$$\hat{pt}(c_1, y) \neq \hat{pt}(c_2, y) \implies \exists n \in \mathcal{N} : \hat{pt}(c_1, n) \neq \hat{pt}(c_2, n) \land n \leadsto_{\mathcal{G}} y$$

And the only root sources of pointer flow in G are:

- "this" variable $this_m$,
- some allocated heap objects $o \in \mathbb{O}$.

By Lemma A.2, $this_m$ carries distinct contextual points-to sets across different calling contexts, and so do the allocated heap objects due to the setting of context-sensitive objects. Hence, there must exist a path from either $this_m$ or some heap object o to y, i.e.,

$$this_m \rightsquigarrow_G y \lor \exists o \in \mathbb{O} : o \rightsquigarrow_G y$$

We now present the proofs for Lemmas A.2 and A.3.

PROOF FOR LEMMA A.2. Let m be a method. Under object-sensitive analysis, the context $c \in \mathbb{C}$ for a call to m is constructed from a contextual receiver object (c', o), where $o \in \mathbb{O}$ and $c' \in \mathbb{C}$, by a function cons illustrated in the rule [Method-Call] in Figure 3:

$$cons(c, o) = [c :: o]_k$$

П

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 333. Publication date: October 2025.

Also, by rule [Method-Call], we have:

$$(c', o) \rightarrow (c, this_m)$$

which implies:

$$(c', o) \in \hat{pt}(c, this_m)$$

Now suppose $c_1 \neq c_2$ are two distinct contexts for m, and both were generated by cons from pairs (c'_1, o_1) and (c'_2, o_2) , respectively:

$$c_1 = \cos(c'_1, o_1), \quad c_2 = \cos(c'_2, o_2)$$

We show that $c_1 \neq c_2$ implies $(c'_1, o_1) \neq (c'_2, o_2)$. Suppose for contradiction that $(c'_1, o_1) = (c'_2, o_2)$. Then by definition of cons, we would have:

$$c_1 = \text{cons}(c'_1, o_1) = \text{cons}(c'_2, o_2) = c_2$$

which contradicts $c_1 \neq c_2$. Hence, it must be the case that:

$$(c_1', o_1) \neq (c_2', o_2)$$

Now using the [Method-Call] rule again:

$$(c'_1, o_1) \in \hat{pt}(c_1, this_m), \quad (c'_2, o_2) \in \hat{pt}(c_2, this_m)$$

Since $(c'_1, o_1) \neq (c'_2, o_2)$, we conclude:

$$\hat{pt}(c_1, this_m) \neq \hat{pt}(c_2, this_m)$$

PROOF FOR LEMMA A.3. Assume $\hat{pt}(c_1, y) \neq \hat{pt}(c_2, y)$. We begin by analyzing the possible derivation rules by which an edge $n \to_{\mathcal{G}} y$ could have been constructed in the VFG \mathcal{G} . We consider all VFG construction rules from Figure 6.

(a) [Assign]_G: Suppose $n \to_G y$ is constructed due to an assignment y = n. Since assignment statements directly propagate pointer flows under different contexts, it follows that:

$$\hat{pt}(c_1, y) \neq \hat{pt}(c_2, y) \implies \hat{pt}(c_1, n) \neq \hat{pt}(c_2, n)$$

- (b) [Field-Load]_G:
 - (1) Suppose the edge arises from a field load y = n.f. By Lemma 4.1, if $\hat{pt}(c_1, y) \neq \hat{pt}(c_2, y)$, then:

$$\hat{pt}(c_1,n) \neq \hat{pt}(c_2,n)$$

- (2) Suppose the edge arises from n = y.f, this does not affect the points-to set of y.
- (c) [Field-Store]_{\mathcal{G}}: Edges from statements of the form n.f = y do not affect the points-to set of y.
- (d) [Method-Call] $_{\mathcal{G}}$: Suppose the edge $n \to_{\mathcal{G}} y$ is constructed when y receives a return value from a callee called on n. By Theorem 4.1, the same reasoning as in case (b) applies, and we obtain:

$$\hat{pt}(c_1, n) \neq \hat{pt}(c_2, n)$$

When the the edge $n \to_{\mathcal{G}} y$ is constructed when n is an argument passed into a callee called on y, then same reasoning as in case (c) applies.

(e) $[New]_{\mathcal{G}}$: Suppose the edge $n \to_{\mathcal{G}} y$ is constructed due to an allocation statement. Since allocation statements directly propagate pointer flows under different contexts, we have:

$$\hat{pt}(c_1,y) \neq \hat{pt}(c_2,y) \implies \hat{pt}(\lceil c_1 \rceil_{k-1},n) \neq \hat{pt}(\lceil c_2 \rceil_{k-1},n)$$

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 333. Publication date: October 2025.

In all relevant cases, we have shown that $\hat{pt}(c_1, y) \neq \hat{pt}(c_2, y)$ implies the existence of a predecessor node $n \in \mathcal{N}$ such that:

$$\exists c_{n1}, c_{n2} \in \mathbb{C}, \hat{pt}(c_{n1}, n) \neq \hat{pt}(c_{n2}, n) \text{ and } n \rightarrow_{G} y$$

We now apply this reasoning recursively: for such an n, if it is not a source node in \mathcal{G} , then it must itself have a predecessor under one of the VFG rules, and the same argument can be applied again, which completes the proof.

Before presenting the proof of Lemma 4.3, we first introduce the following lemma, whose proof is given afterwards.

Lemma A.4. Given a field store statement x.f = y, the following formula holds under context-sensitive analysis:

$$\exists c_o, c_1, c_2 \in \mathbb{C}, o \in \mathbb{O}, (c_h, h) \in \hat{pt}(c_1, x), (c_h', h') \in \hat{pt}(c_2, x) :$$

$$(c_o, o) \in \hat{pt}(c_1, y) \land (c_o, o) \notin \hat{pt}(c_2, y) \land (c_o, o) \in \hat{pt}(c_h, h.f) \land (c_o, o) \notin \hat{pt}(c_h', h'.f)$$

$$\Longrightarrow$$

$$(c_h, h) \in \hat{pt}(c_1, x) \land (c_h', h') \notin \hat{pt}(c_1, x)$$

Now we present the proof of Lemma 4.3.

PROOF FOR LEMMA 4.3. By Definition 4.8, we have:

$$\overline{\text{PARTIAL}} := h \leadsto_G this_m \lor \exists x \in \text{BASE}(h, f) : h \leadsto_G x$$

We prove the lemma by establishing the following two implications:

$$\operatorname{Partial}(h,f) \implies \exists x \in \operatorname{Base}(h,f), \exists c_h, c_x \in \mathbb{C} : (c_h,h) \notin \hat{pt}(c_x,x)$$

 $\exists x \in \text{BASE}(h, f), \exists c_h, c_x \in \mathbb{C} : (c_h, h) \notin \hat{pt}(c_x, x) \implies h \leadsto_{\mathcal{G}} this_m \lor \exists x \in \text{BASE}(h, f) : h \leadsto_{\mathcal{G}} x$ **Step 1:** We prove the implication by contradiction:

Partial
$$(h, f) \implies \exists x \in \text{Base}(h, f), \exists c_h, c_x \in \mathbb{C} : (c_h, h) \notin \hat{pt}(c_x, x)$$

Suppose that:

Partial
$$(h, f)$$
 and $\forall x \in \text{Base}(h, f), \forall c_x, c_h \in \mathbb{C} : (c_h, h) \in \hat{pt}(c_x, x)$

By Definition 4.3, Partial (h, f) is defined as:

$$\exists p \in PRE(h, f), \exists s \in SUC(h, f) : p \not\sim h.f \land h.f \not\sim s$$

We first consider the reachability regarding the predecessors, which is built by the rule [**Field-Store**] for statement x.f = y in Figure 3, we have:

$$(c, y) \rightarrow (c_h, h.f) \iff (c_h, h) \in \hat{pt}(c, x)$$

From our assumption, we have:

$$\forall x \in \text{BASE}(h, f), \forall c_x, c_h : (c_h, h) \in \hat{pt}(c_x, x)$$

This implies that for every field store x.f = y and every c, we always have $(c, y) \to (c_h, h.f)$ in the PFG and no partial reachability can occur. The same rationale applies for the successors of field load statements as well. Thus, this contradicts the assumption, and we conclude:

$$\exists x \in \text{Base}(h, f), \exists c_x, c_h : (c_h, h) \notin \hat{pt}(c_x, x)$$

Step 2: We prove the implication:

$$\exists x \in \mathsf{BASE}(h,f), \exists c_h, c_x \in \mathbb{C} : (c_h,h) \notin \hat{pt}(c_x,x) \implies h \leadsto_{\mathcal{G}} this_m \lor \exists x \in \mathsf{BASE}(h,f) : h \leadsto_{\mathcal{G}} x$$

We assume $\exists x \in \text{BASE}(h,f), \exists c_h, c_x \in \mathbb{C}: (c_h,h) \notin \hat{pt}(c_x,x)$, which means the distinction between contextual replicas of h is preserved until reaching variable x. Thus, we can derive that such distinction at least is preserved within the method m where h is allocated. Since such distinction is naturally satisfied from the allocation site of h (guaranteed by the [New] rule defined in Figure 3), thus, we only need such distinction either preserved at a base variable within method m, or at the exit of m, i.e., this variable. We then prove such distinction can be preserved along a VFG path starting from h.

The direct successor of h (say s) must be built by $[\mathbf{New}]_{\mathcal{G}}$, since this rule propagates objects within same contexts, thus we naturally have $\exists c_h, c'_h, c_s \in \mathbb{C} : (c_h, h) \in \hat{pt}(c_s, s) \land (c'_h, h) \notin \hat{pt}(c_s, s)$. We proceed by analyzing the possible derivation rules by which the path $h \to_{\mathcal{G}} s \to_{\mathcal{G}} x$ could have been constructed in the VFG \mathcal{G} . We consider all VFG construction rules from Figure 6.

(a) [Assign]_G: Suppose $s \to_G x$ is constructed due to an assignment x = s. Since assignments in VFG directly propagate pointer flows, it follows that:

$$\exists c_h, c_h', c_s \in \mathbb{C} : (c_h, h) \in \hat{pt}(c_s, s) \land (c_h', h) \notin \hat{pt}(c_s, s)$$

- **(b)** [Field-Load]_{\mathcal{G}}: Suppose the edge $s \to_{\mathcal{G}} x$ arises from a field load s = x.f or x = s.f, both cases do not affect the points-to set of s.
- (c) [Field-Store]_G: Suppose the edge $s \to_G x$ arises from a field store statement of the form x.f = s, by Lemma A.4, we have the following condition must be satisfied:

$$\exists c_1, c_2 \in \mathbb{C} : \hat{pt}(c_1, x) \neq \hat{pt}(c_2, x)$$

(d) [Method-Call] $_{\mathcal{G}}$: Suppose the edge $s \to_{\mathcal{G}} x$ is constructed when x receives a return value from a callee called on s. By Theorem 4.1, the same reasoning as in case (b) applies. Similarly, when the edge $s \to_{\mathcal{G}} x$ is constructed when s is an argument passed into a callee called on x, then same reasoning as in case (c) applies.

We now apply this reasoning recursively and the same argument can be applied again, and we have the distinction preserved:

- naturally, if the VFG path contains only case (a).
- conditionally, if the VFG path contains cases (c) or (d), and the end node x of VFG path must satisfy:

$$\exists c_1, c_2 \in \mathbb{C} : \hat{pt}(c_1, x) \neq \hat{pt}(c_2, x)$$

By Lemma A.2, *this* variable must have different contextual points-to sets under different contexts, thus we have either the contextual replicas of *h* can reach any base variable like *x* by assignment statements, or it must has a VFG path ending at *this* variable to reach out of the current method, which is:

$$h \rightsquigarrow_{\mathcal{G}} this_m \vee \exists x \in BASE(h, f) : h \rightsquigarrow_{\mathcal{G}} x$$

And we present the proof of Lemma A.4.

PROOF FOR LEMMA A.4. By the **[Field-Store]** rule defined in Figure 3, for the field store statement x.f = y, we have a PFG edge $(c, y) \rightarrow (c', h.f)$ if and only if $(c', h) \in \hat{pt}(c, x)$. Since we already have:

$$(c_o, o) \in \hat{pt}(c_1, y) \land (c_o, o) \notin \hat{pt}(c_2, y) \land (c_o, o) \in \hat{pt}(c_h, h.f) \land (c_o, o) \notin \hat{pt}(c_h', h'.f)$$

we naturally have:

$$(c_h, h) \in \hat{pt}(c_1, x) \land (c'_h, h') \notin \hat{pt}(c_1, x)$$

B Detailed Comparison of Entire Analysis Time under 2-object-sensitive and 3-object-sensitive analysis

Table 5 and Table 6 provide the detailed analysis results for the entire analysis (including all three stages) under 2-object-sensitivity and 3-object-sensitivity, respectively, corresponding to the speedup comparisons presented in Figure 11a and Figure 11b in the main text.

Table 5. Precision and Efficiency results of entire analysis (including all three stages) of Cut-Shortcut, Zipper, Conch, DebloaterX and Moon, whereas Cl and 20BJ are presented as baselines.

California Cal	Program	Analysis	Т	s	#MFC	#PCS	#RM	#CE	Program	Analysis	T	S	#MFC	#PCS	#RM #CE	Program	Analysis	T	S	#MFC	#PCS	#RM	#CE
Col.		2obj	26.5	-	510	1631	7806	51264		2obj	18.8	-	568	933	10940 48361	ĺ	2obj	810.7	-	2142	4956	20254	107822
Column C	Ì	ci	4.8	5.5X	1124	1976	8190	57341	i i	ci	5.5	3.4X	1188	1372	11373 55476	İ	ci	13.3	61.0X	3403	5810	20994	127604
C-20 13.5 1.0 15.1 1.0 15.1 1.0 15.1 1.0	antlr	CSC		4.6X			8153	54460	avrora						11282 52535	batik	CSC	18.6					121105
																							107892
N=200 10.0 25																							107822
20by 13.5 34.8 543 744 34002																							107824
Care 4.5 S. AN 1946 728, 7910 44678 728				-					ll l										-				100280
CSC 7.6 4.0 4.0 5.0 5.0 4.0 5.0 5.0 4.0 5.0 5.0 5.0 4.0 5.0				3.0X								64 5X				1		1	316.6X				110795
Z-20b 16. 10X 449 876 7487 3447 220b 291.4 12X 1309 1507 901 50754 140	biojava								bloat							bytecode-							106506
D-206 12-9 10 10 10 10 10 10 10 1		Z-2obj	13.6	1.0X	449	876	7487	34947	Dioat	Z-2obj	291.4	1.2X	1309	1597	9061 56784	viewer	Z-2obj	2146.0	1.4X	4080	4644	14246	100443
M-20b 18.1 15.5 18.6 843 746 34802 M-20b 20.4 17.3 17.3 17.5 18																							100280
20b 100.2 1337 2027 15149 726.90 20.5																							100280 100283
Chart Char												17.3A	1203	1300	9019 30377	1					1117	9393	
Carlo Carl	ļ				1007							-	-	-		!							44257
									check-							classy-					1682 1400		56231 48577
C-20b 76.5 14N 137 207 15149 72650 C-20b 18.2 2141 2070 6670 C-20b 18.2 2141 2070 6670 C-20b 18.3 2141 2107 6670 C-20b 18.3 2141 2141 2147 2147 2141 2147 2	chart				1				style							shark					1124		44332
M-20b 265 - 8.8K 337 2027 1519 72658 M-20b 249 > 24.0 × 16.6 X 110 2216 1207 09700 M-20b 22.1 18.8 × 2877.X 590 1			70.5		1337								1109					19.2		564	1117	9393	44257
20bj 374.1 2225 4417 2031 100557 20bj 10.9 367 815 6840 32248 20bj 20bj 20bj 20cj 2																					1117	9393	44257
dever				3.8X								>216.8X					, ,		1.8X	564	1117	9393	44257
Cever CSC 15.2 24.6 X 2917 4932 29958 108001 ddijav CSC 48 2.3 X 518 1093 7205 55797 cellipse CSC 207 3-26.1 AV 282.1 C-20.1 26.1 1.5 X 227 442 50532 100594 C-20.1 8.9 1.2 X 367 815 6840 32248 C-20.1 1.0 X 20.1 20.1 1.0 X 20.1	ļ	2obj	374.1	-	2225	4417	20531	100557		2obj	10.9	-	367	815	6840 32248	eclipse	2obj	Оом	-	<u> </u>	-	-	-
Czobj 92.5 19.5 29.6									1														182975
C-20bj 2412 17.8 2217 4412 50252 100698 C-20bj 39.6 240.8 C-20bj 59.6 240.9 240.9	dcevm								ddjava										>261.4X	4282	10250	22977	172521
D-20b 2142 1.7X 2251 4431 20532 100608 D-20b 10.9 1.0X 367 815 6840 32248 M-20b 59.8 6, > 9.0X 3012 21.4 1.73X 3505 10629 35.7 22.7 2017 3511 10628 87388 D-20b 35.0 1.7 10.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0																			-3 5Y	3612	9703	22627	162654
Coling Still Coli																							162654
Ci		M-2obj	92.8	4.0X	2241					M-2obj		1.3X		815							9703		162659
Findburge CSC 11.6 70.0X 2766 4212 16705 96294 CSC 4.5 22X 653 1121 7944 37562 hz CSC 5.2 3.3X 687 27.2 20b 161.4 40X 2044 3512 1276 87858 C-2obj 52.0 13.1 3.0 3.0 3.0 2.0 4.0 2.0 3.5 2.2 3.0		2obj	811.2	-	2013	3508	16264	87808		2obj	10.2	-	395	830	7591 34364		2obj	17.0	-	398	911	7559	36261
CSC 11.6 70.0K 2766 4212 16705 96.294 1	findbugs	ci	9.7	83.7X	3448	4435	16774	105576	i i	ci	4.0	2.5X	911	1210	7997 40423		ci	4.6	3.7X	943	1274	7959	42799
C-2obj 164.4 4 VN 2044 3512 16276 87855 C-2obj 13.1 0.8X 3417 852 7621 34496 C-2obj 14.7 1.2X 423 398 D-2obj 60.1 13.5X 2014 3508 16264 87808 D-2obj 11.8 395 830 7591 34364 D-2obj 8.9 1.9X 398 398 395 393 393 393 393 393 393 393 394 D-2obj 18.9 1.9X 398 398 398 393			11.6	70.0X	2766				fop	CSC	4.5	2.2X		1121	7944 37562	h2	CSC	5.2	3.3X		1194		40294
D-2obj 60.1 15.5X 2014 3508 16246 87808 D-2obj 11.9 0.0X 395 830 7591 34364 D-2obj 15.5 13X 398 398 398 307 3991 34364 D-2obj 15.5 13X 398 398 308 3991 34854 D-2obj 15.5 13X 398 398 3991																					929	7591	36379
M-2obj 35,7 27,7 2017 3511 16268 87838 M-2obj 8.2 1.2X 395 830 7591 34364 M-2obj 8.9 1.9X 398 398 398 39591 34364 M-2obj 8.9 1.9X 398																					911 911	7559 7559	36261 36261
Registration Process																					911	7559	36261
Registremetry CSC 4.4 2.7X 922 1202 7364 41755 jd CSC 10.0 5.8X 2714 3750 17878 95602 CSC 11.4 5.7X 1790 CSC 11.4 5.7X									ll l		<u> </u>										4237		
Regide CSC S.0 2.3% 6.57 119 7331 38607 jd CSC 11.8 4.9% 2.127 3278 17354 87467 JPC CSC 11.4 5.7% 1799 C.20bj 9.4 1.3% 407 847 6981 34881 C.20bj 62.0	i			2 7X		1202						5.8X				JPC			6.3X			16138	
C-2obj 12.7 0.9X 428 868 7015 35020 C-2obj 42.0 X 1356 C-2obj 40.2 1.6X 1356 C-2obj 2.0 0.0 X 1592 2831 17000 82060 C-2obj 5.8 1.2X 1356 C-2obj 2.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1356 C-2obj 11.8 1.0X 407 847 6981 34881 C-2obj 22.0 2.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1356 C-2obj 2.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1356 C-2obj 2.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1356 C-2obj 3.0 X 1592 2831 17000 82061 C-2obj 5.8 1.2X 1356 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1360 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1360 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1360 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1360 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1360 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1360 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1360 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1360 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 5.8 1.2X 1360 C-2obj 3.0 X 1597 2832 17000 82061 C-2obj 3.1 2.0 X 1597 2832 17000 82061	hsaldh								jd								CSC						87453
D-2obj 11.8 1.0X 407 847 6981 34881 D-2obj 52.3 1.1X 1592 2832 17000 82061 D-2obj 57.8 1.1X 1356 1360	noqiao			0.9X														40.2		1382			81489
N-2obj Ro 1.4X 407 847 698 34881 N-2obj 29.4 2.0X 1597 2832 17000 82061 N-2obj 31.2 2.1X 1360 2.1X 1360 2.0bj 10.7 395 923 7019 33587 2.0bj 11.8 - 4 409 1119 7671 36464 2.0bj 9.3 - 378 3.8 2.4X 865 2.2cbj 12.1 0.9X 417 944 7048 33718 C.C. 4.8 2.5X 724 1411 8053 40001 mindustry C.C. 3.8 2.4X 865 2.2cbj 12.1 0.9X 417 944 7048 33718 C.C. 9.3 1.3 2.2 3.8 2.4 2.4 3.8 3.8 2.4 3.8 2.4 3.8 2.4 3.8 2.4 3.8 3																							81307
20bj 10.7 395 923 7019 33587 20bj 11.8 - 409 1119 7671 36464 20bj 9.3 - 378																				1			81319 81321
Reference CSC 4.5 2.4 4.5 2.5 4.5 2.4 4.5 2.5 4.5 2.5 4.5 2.5 4.5 2.5				1.47					ll l							l I					778	6497	30844
Linidex CSC 4.5 2.4% 641 1201 7357 36882 Lisearch CSC 4.8 2.5% 724 1411 8053 40001 mindustry CSC 4.3 2.2% 622 622 622 622 622 622 622 623 622 62				2 7V	0.0											mindustry					1136		36808
Z-2obj 12.1 0.9X 417 0.44 7048 33718 C-2obj 0.35 0.20 0.20 0.35 0.20 0.20 0.35 0.20 0.20 0.35 0.20 0.2	1								lusearch												1051	6862	33970
D-2obj 11.1 1.0X 395 923 7019 33588 D-2obj 12.2 0.0X 409 1119 7671 36464 D-2obj 9.8 1.0X 378 378	iunidex						7048							1143							805	6540	30984
M-2obj 7.9 1.4X 395 923 7019 33588 M-2obj 8.4 1.4X 409 1119 7671 36464 M-2obj 7.3 1.3X 378														1119							778	6497	30844
2obj 9.2 - 351 767 6303 29976 2obj 32.5 - 1398 2354 11851 59910 2obj 475.3 - 3247 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 236 2009 2009 236 2009 236 2009 2009 236 2009 2009 236 2009 2009 236 2009																					778	6497	30844
Copenite Coc 3.9 2.4X 825 1117 6713 35944 pmd Coc 6.5 5.0X 2265 2950 12365 69505 coc 20.4 23.3X 5127 coc 20.5 13.8 20.5 20.5 13.8 20.5 20																	,			t .	778	6497	30844
Part CSC 4.2 2.2% 5.81 10.35 6668 33157 2.20b 10.8 0.9% 36.5 7.89 6335 30086 C-2ob 7.9 1.2% 351 767 6303 2.9976 C-2ob 3.2 1.0X 1398 2.354 11851 5.9910 C-2ob 2.68 1.6X 3.249 1.6X	ļ															1					5701		142265
Table Tabl	open-															l .							187415
C-2obj 7.9 1.2X 351 767 6303 29976 C-2obj 32.6 1.3X 339 2354 11851 59910 C-2obj 26.6 1.6X 3249 2.5									pmd							recaf							161535
D-2obj 99 99 98 381 767 6303 29976 D-2obj 26.5 1.8X 3249 3257 325					351															3249			142326
Sqlite-jdbc GCS 4.4 2.4 2.5 3.094		D-2obj		0.9X						D-2obj				2354	11851 59910								142332
Ci Section		M-2obj	7.4	1.3X	351		6303	29976		M-2obj	16.8	1.9X		2354	11851 59910		M-2obj	161.7	2.9X	3257	5722		142365
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2obj	8.7	-	351	768	6322	30094		2obj	35.7	-	1172	1965	13313 61168		2obj	11.7	-	399	843	7743	37267
									Ī							Ī			2.5X		1291		45068
C-2obj 7.9 1.1X 551 768 6322 30094 C-2obj 32.1 1.1X 1186 1994 13346 61442 C-2obj 10.0 1.2X 399 D-2obj 9.8 0.9X 351 768 6322 30094 D-2obj 31.2 1.1X 1172 1965 13314 61173 D-2obj 12.3 1.0X 399 M-2obj 7.2 1.2X 351 768 6322 30094 M-2obj 9.1 1.2X 1172 1965 13314 61173 M-2obj 8.9 1.3X 399 Zobj 16.8 - 402 871 678 33095 Zobj 26.7 - 466 967 8021 39111 Zobj 37.2 - 592 Ci 4.0 4.1X 931 1320 7388 39513 Zobj 26.7 - 466 967 8021 39111 Zobj 37.2 - 592 Ci 4.0 4.1X 931 1320 7388 39513 Zobj 26.7 - 466 967 8021 39111 Zobj 37.2 - 592 Ci 4.0 4.1X 931 1320 7388 39513 Zobj 26.7 - 466 967 8021 39111 Zobj 37.2 - 592 Ci 4.0 4.1X 9.3 1320 7388 39513 Zobj 37.2 Zobj 37.2 Zobj 37.2 Zobj 37.2									sunflow							tesseract				1	1216		41968
D-2obj 9.8 0,9% 351 768 6322 30094 D-2obj 31.2 1.1X 1172 1965 1331.4 61173 D-2obj 12.3 1.0X 399																					867 843	7775 7743	37383 37267
M-2obj 7.2 1.2X 351 768 632 30094 M-2obj 19.1 19.X 1172 1965 1314 61173 M-2obj 8.9 1.3X 399																					843	7743	37267
ci 4.0 4.1X 931 1320 7388 39513 trade- ci 4.7 5.7X 1095 1420 8652 47885 ci 5.2 71.3X 1298 2 trade- compared to 5.2 5.2 71.3X 1298 2 compared to 5.2 5.2 5.2 5.2 4.5X 786 1314 8546 44610 compared to 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2				1.2X					İ			1.9X	1172	1965							843	7743	37267
Ci 4.0 4.1X 931 1320 7388 39513 Ci 4.7 5.7X 1095 1420 8652 47885 Ci 5.2 71.3X 1298 1280	tomcat	2obj	16.8	-	402	871	6978	33095		2obj	26.7	-	466	967	8021 39111	l	2obj	372.9	-	592	1643	9666	46782
tomcat			4.0	4.1X				39513	Ï			5.7X		1420		İ			71.3X	1298	2084		
Z-200j 13.8 1.2X 421 895 7022 33248												4.9X				xalan					1967	10034	
									beans												1665	9697	46916
		C-2obj	10.0	1.7X	402	871	6978	33095		C-2obj	14.9	1.8X	481	999	8065 39461		C-2obj	218.4	1.7X	592	1643 1643		46782 46782
																					1643		46782
The state 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1		200j	0.2	2.17	102	0,1	37,0	25075	11	200)	10.5	5.071	100	,,,	3,111	1	1.11 2005	1	20.07	3,2	10.13	7000	20702

Table 6. Precision and Efficiency results of entire analysis (including all three stages) of Cut-Shortcut, Zipper, Conch, DebloaterX and Moon, whereas Cl and 3OBJ are presented as baselines.

Program	Analysis	T	s	#MFC	#PCS	#RM	#CE	Program	Analysis	Т	s	#MFC	#PCS	#RM	#CE	Program	Analysis	Т	s	#MFC	#PCS	#RM	#CE
	3obj	526.2	-	450	1624	7805	51237	İ	3obj	2592.0	-	496	929	10939	48330	İ	3obj	Оом	-	-	-	-	-
	ci	4.8	108.7X	1124	1976	8190	57341	Ī	ci	5.5	470.4X	1188	1372	11373		batik	ci	13.3	>406.3X	3403	5810	20994	127604
antlr	CSC	5.7	92.0X	812	1896	8153	54460	avrora	CSC	6.3	409.5X	882		11282			CSC	18.6	>290.2X	2846	5524	20819	121105
	Z-3obj C-3obj	235.8 127.1	2.2X 4.1X	473 450	1643 1624	7835 7805	51364 51237		Z-3obj C-3obj	890.2 587.3	2.9X 4.4X	536 496	944 929	10969 10939			Z-3obj C-3obj	Оот	-	-	-	-	-
	D-3obj	19.2	27.3X	450	1627	7805	51240		D-3obj	22.0	117.9X	496	931	10939			D-3obj	Оом	-	-		-	-
	M-3obj	11.1	47.4X	450	1626	7805	51239		M-3obj	13.0	199.2X	496	930	10939			M-3obj	777.5	>6.9X	2044	4930	20243	106779
	3obj	1053.9	-	347	837	7439	34756	İ	3obj	Оот	-	-	-	-	- 1	İ	3obj	Оот	-	i -	-	-	-
biojava	ci	4.5	232.7X	1046	1236	7910	41678	i	ci	5.5	>987.2X	2082	2249	9454	67338	İ	ci	9.4	>571.4X	4723	5616	14637	110795
	CSC	5.7	186.5X	687	1150	7853	38403	bloat	CSC	7.6	>710.5X	1594	2166	9414	63909	bytecode-	CSC	21.7	>249.0X	4366	5547	14601	106506
	Z-3obj	211.7	5.0X	369	870	7486	34901		Z-3obj	4784.5	>1.1X	1215	1583	9045	56555	viewer	Z-3obj	Оот	-	-	-	-	-
	C-3obj D-3obj	190.3 15.3	5.5X 69.0X	347 347	837 839	7439 7439	34756 34758		C-3obj D-3obj	1458.7 34.6	>3.7X >156.3X	1188 1188	1552	9003	56348 56351		C-3obj D-3obj	Оот	-	[-	-
	M-3obj	9.2	114.8X	347	838	7439	34757		M-3obj	20.4	>264.3X	1188	1554		56350		M-3obj	1858.6	>2.9X	3661	4195	14042	94460
	3obj	Оом	-	-	-	-	-		3obj	Оом	-	-	-	-	- 1		3obj	3020.7	-	484	1106	9384	44166
	ci	9.2	>587.6X	2560	2703	15923	86433	check- style	ci	8.2	>657.7X	1939	2760	12766	80169	i	ci	5.3	566.7X	1323	1682	10178	56231
chart	CSC	10.4	>519.7X	1914	2405	15545	78847		CSC	10.3	>521.7X	1503		12713		classy-	CSC	7.1	425.4X	876	1400	9489	48577
	Z-3obj	428.9	>12.6X	1280	2021	15204	72544		Z-3obj	Оот	-	-	-	-	-	shark	Z-3obj	1407.2	2.1X	512		9407	44251
	C-3obj D-3obj	Оот 183.8	- >29.4X	1230	- 2005	- 15110	72228		C-3obj D-3obj	Оот 50.1	- >107.9X	996	- 0170	12260	- ((100		C-3obj D-3obj	1058.6 21.9	2.9X 137.9X	484 484	1106 1108	9384 9384	44166 44168
	M-3obi	52.8	>29.4X >102.2X	1230		15119			M-3obi	27.9	>107.9X >193.3X	1000	2172	12260			M-3obi	13.3	226.9X	484	1108	9386	44176
	3obi	Оом	-	-		-	-	l	3obi	398.8	_	312	810	6840	32226	l	3obi	Оом	-	l -	-	-	
	ci	13.5	>399.4X	3593	5669	21503	124314	1	ci	4.1	98.0X	880	1177	7249	38462	eclipse	ci	18.8	>287.7X	5090	10672	23386	182975
dcevm	CSC	15.2	>355.0X	2917			108001	ddjava	CSC	4.8	83.4X	618	1093		35797		CSC	20.7	>261.4X	4282			172521
	Z-3obj	Оом	-	-	-	-	-	,	Z-3obj	126.2	3.2X	336	823		32290		Z-3obj	Оот	-	-	-	-	-
	C-3obj	Оот	- >4.8X	-	-	-	100083		C-3obj	119.2	3.3X 30.1X	312	810 812		32226		C-3obj	Оом	-	-	-	-	-
	D-3obj M-3obi	504.9	>4.8X >10.7X	2131			100083		D-3obj M-3obi	8.5	30.1X 46.9X	312	812		32228		D-3obj M-3obi	3739.3	>1.4X	3484	9661	22572	161716
findbugs	3obj	Оом	- 10.771	-	-	-	-	l 	3obj	363.4	-	336	824	7591	34344	h2	3obj	1942.4	- 1.11	336	907	7557	36232
	ci	9.7	>557.3X	3448	4435	16774	105576	fop	ci	4.0	91.1X	911	1210	7997	40423		ci	4.6	423.2X	943	1274	7959	42799
	CSC	11.6	>465.9X	2766			96294		CSC	4.5	80.0X	653	1121	7944	37562		CSC	5.2	376.4X	687	1194	7914	40294
	Z-3obj	Оот	-	-	-	-	-		Z-3obj	120.3	3.0X	370	846	7621	34476		Z-3obj	650.3	3.0X	373	925	7590	36354
	C-3obj	524.3	>10.3X	1632			86892		C-3obj	108.1	3.4X	336	824		34344		C-3obj	427.4	4.5X	336	907	7557	36232
	D-3obj M-3obi	64.4 37.4	>83.9X >144.3X	1652 1652		16217	86899 86915		D-3obj M-3obi	13.0	27.9X 43.2X	336 336	826 825		34346 34345		D-3obj M-3obi	17.0 10.0	114.5X 193.9X	336 336	909 908	7558 7558	36237 36236
hsqldb	3obi	588.8	>144.JA	355	840	6980	34854	<u> </u>	3obi	Оом	43.27	330	023	7371	34343	l	3obi	1438.2	173.77	1204	4101	15206	70620
	ci	4.4	134.7X	922	1202	7386	41755	jd	id	ci	10.0	>538.4X	2714	3750			10.3	139.5X	2252		16138	94701	
	CSC	5.0	116.8X	657	1119	7331	38607			CSC	11.8	>459.2X	2127		17354		IPC	CSC	11.4	125.9X	1790		16034
	Z-3obj	168.2	3.5X	382	861	7014	34993		Z-3obj	265.0	>20.4X	1600	2818	16979	81855	Ji C	Z-3obj 194.6	7.4X	1234	4139	15233	79803	
	C-3obj	161.6	3.6X	355	840	6980	34854			>19.2X	1491		16875			C-3obj	168.0	8.6X	1204			79633	
	D-3obj M-3obj	13.9 8.9	42.5X 65.8X	355 355	843 842	6980 6980	34857 34856		D-3obj M-3obj	99.9 39.7	>54.1X >136.2X	1491 1491	2754 2754	16875 16875			D-3obj M-3obj	67.9 25.4	21.2X 56.7X	1204 1204		15207 15209	
	3obj	376.2	05.07	341	916	7018	33560	l	3obj	582.3	~130.2A	357	1112	7670	36437	l	3obj	325.0	30.77	321	771	6495	30815
	ci	3.9	96.5X	920	1283	7409	39677	1	ci	4.2	139.6X	1032	1490		43014	mindustry	ci	3.8	85.1X	865	1136	6907	36808
luindex	CSC	4.5	82.9X	641	1201	7357	36882	lusearch	CSC	4.8	121.6X	724	1411		40001		CSC	4.3	75.2X	622	1051	6862	33970
iuniuex	Z-3obj	138.8	2.7X	364	937	7047	33691		Z-3obj	180.8	3.2X	382	1136	7699	36571		Z-3obj	111.3	2.9X	352	799	6540	30962
	C-3obj	124.5	3.0X	341	916	7018	33561		C-3obj	151.3	3.8X	357	1112		36437		C-3obj	109.1	3.0X	321	771	6495	30815
	D-3obj M-3obj	13.8 8.3	27.3X 45.3X	341 341	919 918	7018 7018	33564 33563		D-3obj M-3obj	14.5 9.6	40.2X 61.0X	357 357	1115 1114	7670 7670	36440 36439		D-3obj M-3obj	7.7	28.2X 42.4X	321 321	773 773	6495 6495	30817 30817
	3obj	325.3	43.37	296	760	6303	29955	<u> </u>	3obj	872.1	01.07	1333		11851	-	l I	3obj	Оом	42.4A	321	113	0473	30017
	ci	3.9	83.2X	825	1117	6713	35944	 	ci	6.5	133.3X	2265		12365		recaf	ci	20.4	>265.1X	5127	7402	20028	187415
open-	CSC	4.2	77.5X	581	1035	6668	33157	pmd	CSC	7.6	114.3X	1748		12273			CSC	34.0	>158.6X	4138			161535
telemetry	Z-3obj	104.9	3.1X	318	783	6335	30066	Pina	Z-3obj	287.6	3.0X	1374	2369	11882	59988	iccai	Z-3obj	Оом	-	-	-	-	-
	C-3obj	108.6	3.0X	296	760	6303	29955		C-3obj	170.7	5.1X	1333		11851			C-3obj	Оом	-	-	-	-	-
	D-3obj	11.5	28.3X	296	762	6303	29957		D-3obj	27.8	31.3X	1333		11851			D-3obj	1172.3	>4.6X	3037			140236
	M-3obj	7.7	42.4X	296	762	6303	29957	<u> </u>	M-3obj	19.5	44.6X	1333	2349	11851	59852		M-3obj	498.0	>10.8X	3038			37221
	3obj	310.9		270	761	6322	30073	1	3obj	Оом	-	-	-	-	-		3obj	755.1		1 311	836	7743	37221
sqlite-	ci CSC	3.8 4.4	81.0X 70.3X	826 581	1118 1036	6732 6687	36062 33275		ci CSC	8.2 9.0	>654.5X >600.7X	2146 1660					ci CSC	4.6 6.1	159.1X 120.0X	1013 747	1291 1216	8313 8270	45068 41968
jdbc	Z-3obj	102.4	3.0X	318	784	6354	30184	sunflow	Z-3obj	779.3	>6.9X	1116		13382		tesseract	Z-3obj	198.5	3.7X	372	861	7775	37339
	C-3obj	106.2	2.9X	296	761	6322	30073		C-3obj	606.2	>8.9X	1083	1976	13325	61154		C-3obj	185.6	4.0X	341	836	7743	37221
	D-3obj	11.2	27.7X	296	763	6322	30075		D-3obj	53.2	>101.4X	1071		13294			D-3obj	14.1	52.1X	341	838	7743	37223
tomcat	M-3obj	7.5	41.2X	296	763	6322	30075	<u> </u>	M-3obj	20.3	>266.5X	1071		13294		xalan	M-3obj	9.4	77.8X	341	838	7743	37223
	3obj	687.6	-	345	866	6977	33068	trade- beans	3obj	4379.4	-	401	962		38931		3obj	Оом	-	<u> </u>	-	-	-
	ci CSC	4.0 4.6	169.8X 149.1X	931 665	1320 1243	7388 7340	39513 37125		ci CSC	4.7 5.5	927.8X 799.2X	1095 786	1420 1314	8652 8546	47885 44610		ci CSC	5.2 6.0	>1032.5X >892.6X	1298 884		10092 10034	
	Z-3obj	167.6	4.1X	374	891	7022	33226		Z-3obj	1685.7	2.6X	448	1015		39991		Z-3obj	1545.4	>892.6X >3.5X	561	1658	9696	46887
	C-3obj	143.0	4.8X	345	866	6977	33068		C-3obj	1152.1	3.8X	417	991		39276		C-3obj	464.5	>11.6X	539	1636	9665	46753
				1		(077	33070		D-3obj	18.1	241.6X	401	964	7989	38933		D-3obj	31.7	>170.2X	539	1639	9665	46756
)	D-3obj M-3obj	13.1	52.6X 78.1X	345 345	868 868	6977 6977	33070		M-3obj	11.3	387.9X	401	963		38941		M-3obj	15.7	>343.5X	539		9665	46755