

VAST Challenge 2020 Mini-Challenge 1: Graph Analysis Summary and Data Understanding

Supervisor: Prof. Dr.-Ing. Bernhard Preim Dr.-Ing. Monique Meuschke M.Sc. Uli Niemann

Presenter: Seyed Behnam Beladi Atrayee Neog Xiongjun Wang

Agenda

- Problem Overview
- Mini-Challenge 1
- Exploring the data
- Question 1 overview
- Question 2 overview

Problem Overview

- Numerous "white hat" hacker organizations protected the Internet
- One anonymous hacker organization, accidentally launched a cyber event that took down the global Internet.
- The group has to be found
- Center for Global Cyber Strategy(CGCS) is the key
- CGCS maintains offline databases (donated for research) of anonymized data including the responsible group
- Goal is to identify candidate groups that authorities could approach for assistance in restoring the internet.

Mini-Challenge 1 (Overview)

- One profile has been identified by CGCS as most likely to resemble the structure of the group responsible for internet outage
- Our task is to identify the groups who resemble the identified profiles

Mini-Challenge 1 (Data overview)

- A subgraph Template representing the structure of the group identified by CGCS
- 5 candidate subgraphs
- A very large graph
- A list of 3 **Seeds**, or IDs that can provide starting points for exploring the large graph.

Exploring the data (Overview 1)

- All graph files contain the following columns:
 - Source: an integer Id of the source of the communication (could have different meanings based on the eType column)
 - eType (edge type): a number between 0 and 6 (inclusive)
 - **Target**: an integer Id of the source of the communication (could have different meanings based on the eType column)
 - **Time**: Time is in <u>seconds</u> from 12:00 AM Jan. 1, 2025, time span related to the cyber event are exactly <u>one year</u>

Exploring the data (Overview 2)

- Channels are defined based on the eType column.
- Many of the channels also include:
 - Weight: float values with different meaning based on the channel
 - **SourceLocation**: integer values between 0 and 5 representing countries
 - TargetLocation: integer values between 0 and 5 representing countries
 - SourceLatitude: latitude locations within the country
 - SourceLongitude: longitude locations within the country
 - TargetLatitude: latitude locations within the country
 - TargetLongitude: longitude locations within the country

Exploring the data (Overview 3)

• Data types for each column when loading the file:

 Source 	int64
eType	int64
 Target 	int64

• Time int64

• Weight float64

SourceLocation float64

TargetLocation float64

SourceLatitude float64

SourceLongitude float64

TargetLatitude float64

TargetLongitude float64

Exploring the data (Channels)

- The data can be classified into 6 different channels
- Each channel represents a different kind of transaction between two nodes.
- These are the channels:
 - Communication
 - Email
 - Phone
 - Procurement
 - Co-Authorship
 - Demographic
 - Travel

Exploring the data (Channels)

Channel Name	еТуре	Representation	Location	Weight	Source	Target	Notable points
Communications (phone and email)	0 & 1	Direct connections between two persons	Some	Always 1	person	Person	Phone and email channels not clear
Procurement	2 & 3	Buying and selling an item	no	Value of the item	person	ltem	For each sell row exists: a buy row
Co-authorship	4	publication of scientific or technical articles	no	Fraction of the authors	Person (author)	Publication	Date must be ignored (not relevant)
Demographics	5	spending characteristics of a person	no	Money spent	person / category	person / category	29 categories
Travel	6	Connecting people by location	yes	Length of trip(days)	person	location	Some weights are negative

Exploring the data (Node)

- Each Source and Target Id represents a node
- There are 5 Node type:
 - 1. Person
 - used in all channels(all eTypes), only nodes with a spatial location
 - 2. Product category
 - for the procurement channel, eType = 2, 3
 - 3. Document
 - from the co-authorship channel, eType = 4
 - 4. Financial category
 - from financial demographics channel, eType = 5
 - 5. Country
 - from the travel channel, eType = 6

Exploring the data (Edge)

- Each row is an edge between two nodes
- At least one person is connected to each node
- 7 Edge type (eType):
 - 1. Email
 - 2. Phone
 - 3. Sell (procurement)
 - 4. Buy (procurement)
 - 5. Author-of
 - 6. Financial (income or expenditure, depending on direction)
 - 7. Travels-to

Connection between nodes and edges:

Exploring the data (Template)

- Edge list graph with the same format as the large graph data (.csv)
- Was built by CGCS to represent suspicious activity associated with the hack
- It is a reference pattern for looking for the suspicious activities
- Details:
 - File name: CGCS-Template.csv
 - 1325 rows
 - 301 have location data, none have longitude and latitude
 - The co-authorship channel is replaced by -99

Question 1

Using visual analytics, compare the template subgraph with the potential matches provided. Show where the two graphs agree and disagree. Use your tool to answer the following questions:

- a) Compare the five candidate subgraphs to the provided template. Show where the two graphs agree and disagree. Which subgraph matches the template the best?
- b) Which key parts of the best match help discriminate it from the other potential matches?

Question 1 files

- 5 Candidate Subgraphs:
- The subgraphs are the same format as the Template with some differences:

File name	#rows	#unique Nodes	#location Info	#longitude, Latitude
Q1-Graph1.csv	1216	93	168	168
Q1-Graph2.csv	1300	87	201	201
Q1-Graph3.csv	729	79	88	88
Q1-Graph4.csv	732	87	176	176
Q1-Graph5.csv	395	86	124	124
CGCS-Template.csv	1325	88	301	0

Question 1 files comparison based on data distribution on eType

Name	#rows	#eT0	#eT1	#eT2	#eT3	#eT4	#eT5	#eT6
Graph 1	1216	187	131	7	7	1	846	37
Graph 2	1300	258	177	7	7	4	823	24
Graph 3	729	109	51	6	6	1	519	37
Graph 4	732	45	61	5	12	0	494	115
Graph 5	395	17	14	11	40	0	203	110
Template	1325	314	249	9	9	1	691	52

Question 2

 CGCS has a set of "seed" IDs that may be members of other potential networks that could have been involved. Take a look at the very large graph. Can you determine if those IDs lead to other networks that matches the template?

Seeds

- They will act as a starting point for finding hacker groups
 - They only have one line
 - No location information
- Members of our potential groups in the large dataset(availability checked)
- These are the values of the 3 seed files

File name	Source	еТуре	Target	Time	Weight
Q2-Seed1.csv	600971	4	579269	-685755382	0.166667
Q2-Seed2.csv	538771	4	473043	-623491200	0.0909091
Q2-Seed3.csv	574136	2	657187	1991785	633

Very large Graph (1)

- Filename: CGCS-GraphData.csv
- Containing the data of all the hacker groups
- Connection between different groups are not clear
- Around 124 million rows(edges) and 200860 unique Ids(nodes)
- Around 70 million rows have location information

Very large Graph (2)

• Number of rows based on eType:

еТуре	Number of Rows	Unique Source Rows	Unique Target Rows	
0	48662103	100000	100000	
1	70661593			
2	389211	3814	2721	
3	389211			
4	259304	66173	33570	
5	2041841	100003	100027	
6	1491998	50189		
Total	123895261	164537	136324	

Very large Graph (3)

Very large Graph (4) Co-Authorship

Scatter plot Co-authorship in the big graph

Similarity Measures

- Connection Analysis:
 - Group Analysis: Cluster Coefficient (Transitivity)
 - Network Analysis: Density, Average Path Length, Degree Distribution
- Positional Analysis:
 - Degree : In Degree, Out Degree, All
 - Closeness Centrality
 - Betweenness Centrality
 - Eigen Vector Centrality

Connection Analysis

Density

Actual Connections/Potential Connections

Template	G1	G2	G3	G4	G5
0.1730669	0.1421225	0.1737503	0.1183057	0.0978348	0.05403557

• Similarity: Graph2 > Graph1 > Graph3 > Graph4 > Graph5

Connection Analysis

Average Path Length

Mean Shortest Path between all nodes.

Template	G1	G2	G3	G4	G5
1.874689	2.083075	2.085761	2.026447	2.429907	2.283071

Similarity: Graph3 > Graph1 ~ Graph2 > Graph5 > Graph4

Connection Analysis

Cluster Coefficient (Transitivity)

• Measure of the degree to which nodes tend to cluster together.

Template	G1	G2	G3	G4	G5
0.1685912	0.1130306	0.1238481	0.1151288	0.2228648	0.217119

• Similarity: Graph2 > Graph3 > Graph1 ~ Graph4 > Graph5

Degrees:

• In Degree:

Template	G1	G2	G3	G4	G 5
0-72	0-64	0-96	0-36	0-35	0-30

• Out Degree

Template	G1	G2	G3	G4	G5
0-136	0-77	0-96	0-50	0-59	0-67

All

Template	G1	G2	G3	G4	G5
1-208	1-135	1-192	1-68	1-64	1-72

• Similarity: Graph2 > Graph1 > Graph3 > Graph4 > Graph5

Closeness:

- reciprocal of the sum of the length of the shortest paths between the node and all other nodes in the graph.
- Thus, the more central a node is, the closer it is to all other nodes.

Template	G1	G2	G3	G4	G 5
0.002949853-	0.002197802-	0.003472222-	0.002624672-	0.004016064-	0.003937008-
0.007042254	0.006369427	0.007352941	0.006802721	0.007407407	0.007462687

Similarity: Graph3 > Graph1 > Graph2 > Graph4 > Graph5

Betweenness:

• The betweenness centrality for each <u>vertex</u> is the number of shortest paths that pass through the vertex.

Template	G1	G2	G3	G4	G 5
0.00-	0.00-	0.00-	0.00-	0.00-	0.00-
682.1806727	1012.780577	893.3087233	466.4803012	912.652983	912.652983

Similarity: Graph2 > Graph3 > Graph4 = Graph5 > Graph1

Eigen Vector Centrality:

- **Eigenvector centrality** (also called **eigencentrality**) is a measure of the influence of a <u>node</u> in a <u>network</u>.
- It assigns relative scores to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes

Template	G1	G2	G3	G4	G 5
2.889807e-	8.486762e-	0.000202756-	1.370524e-		0.006716513-
05-1.000000	07-1.000000	1.0000000	06-1.0000000	1.0000000	1.0000000
6 Nodes > 0.5	6 Nodes > 0.5	6 Nodes > 0.5	3 Nodes > 0.5	8 Nodes > 0.5	8 Nodes > 0.5

Similarity: Graph2 > Graph1 > Graph3 > Graph4 = Graph5

Closeness Centrality

To determine the central nodes in networks, the closeness centrality measure considers the nodes that have the smallest average path length (sequence of relationships) for the nodes that are linked to other nodes.

Closeness Centrality

Betweenness

Nodes that occur on many shortest paths between other nodes in the graph have a high betweenness centrality score.

Betweenness

Degree

Degree Centrality

Degree centrality considers the node with the highest degree (largest number of connections) as the most central node in the network. Degree centrality focuses on individual nodes—it simply counts the number of edges that a node has.

Degree Centrality

Visualisations

Degree (All)

Visualisation

Betweenness

Visualisation

Eigen Vector

Gephi is an open-source network analysis and visualization software package

Discussion

- Literature and keywords
- Questions were sent to the committee
- Time based Graph in Very large graph (<u>here</u>)
- Seeds for question 2:
 - They are most probably connected to most of the data
 - Assume they are in a hacker group or
 - Assume they are a group that could be hackers

Thank you for your time