

HEC-2 Water Surface Profiles Program

Technical Paper No. 140

August 1992

Approved for Public Release. Distribution Unlimited.

19950511 053

Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution within the Corps of Engineers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Accesion For						
NTIS CRA&I DTIC TAB Unannounced Justification						
By Distrib	By					
А	Availability Codes					
Dist	Avail .a Spe					
A-1						

HEC-2 Water Surface Profiles Program

Vernon Bonner¹

Abstract

The Hydrologic Engineering Center (HEC) has been developing generalized computer programs since 1964. The first HEC-2 Water Surface Profiles program was released in 1969. The program was developed by Bill S. Eichert, based on his earlier program Backwater Computations - Any Cross Section. The capabilities of HEC-2, and other HEC programs, have evolved; primarily driven by project and application needs. This incremental program development has continued up to the 1990 release of HEC-2 with Federal Highway culvert capability. While incremental program development will continue at a modest pace, HEC has also embarked on an effort to design and develop the next generation of programs. The current HEC-2 package and the next generation goals are presented.

Basic Capability

The program was developed to compute steady, gradually-varied flow profiles based on the Standard-step procedure (USACE, 1959). The program can compute one to fifteen water surface profiles for either subcritical or supercritical flow regime. Tributary profiles can also be computed, based on computed mainstem water surface elevation. Either SI or Foot-pound data units can be used. The program remains batch processing, with fixed-format input and output files. PC utilities have been developed to provide interactive graphical and tabular output (Bonner, 1990a).

Presented 4 August 1992 at the ASCE Water Forum '92, Baltimore, MD.

¹Chief, Training Division, Hydrologic Engineering Center, 609 Second Street, Davis, CA 95616.

Profile Calculations

Starting water-surface elevation can be based on a given water surface elevation, rating curve, estimated energy slope, or critical depth.

Cross sections are defined in X-Y coordinates, and are separated by three reach lengths for the left and right overbanks, and channel flow paths. A cross section can be repeated, can be vertically adjusted by an incremental elevation change, and horizontally adjusted by a constant ratio. Options can be used to limit the effective flow area in the cross section.

Manning's "n" values can be defined for three flow elements, or "n" can vary by stationing across the section, or vary with depth in the channel. Alternatively, relative roughness coefficients "k" can be defined. Given "k", the program will compute an equivalent "n" value based on the hydraulic radius for the water surface elevation (HEC,1990a, Eq 14).

Average friction slope is estimated using the Average Conveyance for the two sections in a step. Optionally, Average Friction Slope, Geometric Mean Friction Slope, or Harmonic Mean Friction Slope can be used. The program also has a program-determined averaging option that is based on the "profile type" (HEC, 1990a, p 22). Friction loss is computed using a flow-weighted reach length times the average friction slope. Additionally, form losses are computed based on the change in velocity head, if optional Contraction and Expansion Coefficients are defined.

Composite "n" values are computed for the channel (Chow, 1959, Eq 6-17) when the "n" value in the channel changes horizontally and the equivalent side slope of the channel subsection is steeper the 5H to 1V (Davidian, 1984, p 21). Optional input can change the slope criterion, or over-ride the program feature.

Input requirements were modified to eliminate mandatory three title records for each profile and blank records to end the run. Blank lines can be in the input file and "*" Remark records can be used to annotate the input file.

Output for flow distribution was modified to include average depth in each overbank element, as shown below:

		*******************************		***************	
	UTION FOR SECNO=				

	······································		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ · · · · · · · · · · · · · · · · · · ·	7
	. 130. 240			1	1/
	· · · · · · · · · · · · · · · · · · ·			~ · · · · · · · · · · · · · · · · · · ·	·
	6.5 18.7				
	325 1 766 8				
·····VEL=					
****************************	<u></u> <u>.</u>				
	4.4 7.0				
· · · · · · · · · · · · · · · · · · ·					
			 		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, • · · · · · · · · · · • • · · · · · ·			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					
· • • • • • • • • • • • • • • • • • • •	······································				
	. • • • • • • • • • • • • • • • • • • •				

Output summary tables can be developed with interactive PC program SUMPO and simple cross-section, profile, and rating curve plots can be developed with PC program PLOT2 (Bonner, 1990a).

Bridge & Culverts

When bridge crossings obstruct the overbank flow area, the transition of flow from overbank area to open channel area, and back to overbank flow, is modelled by the definition of cross-section effective flow area. The difference among the HEC-2 bridge and culvert options is in the method used to compute the bridge structure loss.

Normal Bridge provides a conveyance-based treatment of bridge crossings. Cross sections in the bridge are defined by adding bridge geometric data to eliminate the cross-sectional area blocked by the bridge. Conveyance calculations consider the added wetted perimeter and the obstructed area caused by the bridge.

Special Bridge provides hydraulic equations for low, pressure, road overflow, and flow combinations. Low-flow losses are based on impact loss due to bridge piers. Pressure flow uses a form of the orifice equation, and bridge over-flow is modelled with the weir equation. The bridge routine can handle combinations of pressure and weir, or low-flow and weir-flow.

Special Culvert provides the hydraulic equations from the Federal Highway Administration procedures (FHWA, 1985). All combinations of flow, considering both inlet and outlet control, can be computed for circular and box culverts. Multiple identical culverts are analyzed assuming flow is equally distributed among the culverts. The input for the culvert routine mimics that for the Special Bridge.

Federal Highway Bridge Hydraulics "WSPRO" (Sherman, et.al, 1986) have been added to HEC-2 in a test application. The present configuration is literally a "splice," with the input read, bridge loss calculations, and bridge output all performed within WSPRO code. The solution then returns to HEC-2 profile computations with the bridge result.

Program Options

Channel Modification - One to three channel templates can be defined at a cross section. Input options support the computation of a base profile for existing conditions and additional profiles with cross sections modified based on the defined templates. With multiple templates, the modified channel can be a compound cut (e.g., low-flow and flood flow templates) or different template scales and locations can be evaluated in a single multiple profile computer run. Both channel reach length and Manning's "n" value can be changed for the modified channel.

Floodway Routines - Six methods are provided to define a floodway within the floodplain cross sections (Bonner, 1988). Several methods were developed to estimate the floodway limits based on FEMA criteria and a "target" increase in water surface elevation (FEMA, 1985). Special output tables are provided to support the reporting requirements for a FEMA flood insurance study.

Split-flow Routine - Lateral overflows can be modelled using a weir equation, normal depth, or a rating curve. Up to 100 overflow reaches can be defined. The flow lost at each overflow is computed, the channel flow is adjusted, and the computed profile is based on the remaining flow in the channel. All or a proportion of the lost flow can be returned at a downstream location. The routine can be used to model diversions, side-overflow weirs, levee overflow, or flow lost over a drainage divide (Montalvo, 1982).

Ice Option - A layer of floating ice can be defined by ice thickness, "n" value, and specific gravity. The cross-section conveyance calculations consider loss of flow area, added wetted perimeter, and computed composite "n" value. In addition to the hydraulic calculations, the potential for ice jams is determined using Pariset's ice stability function (HEC, 1990a, p 25).

Storage-outflow Data - The program computes the cumulative volume of water, under the water surface profile, in a river reach. Storage-outflow data can be provided, in HEC-1 Flood Hydrograph input format (HEC, 1990b), based on multiple water surface profiles. By computing profiles for a range of discharges, and specifying the cross-sections at the ends of the routing reach(s), storage-routing data can be provided in HEC-1 format, including record identifiers (Bonner, 1990b).

Modified Cross-Section Input File - This option provides an input data file, in basic X-Y coordinates (GR records), that incorporates cross-section changes made within HEC-2 with the application of section modification options. This option is useful when additional modeling, beyond the capabilities of the program options, is required. For example, you can obtain a data set created with the Channel Modification routine to perform analysis of a new bridge crossing or additional reach modifications.

Next Generation HEC-2

While maintenance and minor modifications continue with HEC-2 and other programs, HEC started a new software development project last fiscal year. The NexGen (*Next Generation*) project is a five-year effort, under the Corps' R&D Program, to develop the replacement software operating and utilizing the full capabilities of the Engineering Workstation.

During last fiscal year, preliminary requirements documents were developed for catchment, river, reservoir, and flood-damage analysis. The river analysis system is envisioned to provide one-dimensional computations for steady and unsteady flow, plus sediment transport. These computational capabilities will

operate from a common geometric database for a river reach, or system. This will allow the modeler to move from steady to unsteady flow without having to reformulate the river-reach data. Also, graphics and output tables can be provided to support all 1-D modeling activities. The requirements document also proposed the development of a simple standard-step model as a prototype for the system.

During this fiscal year, the catchment model prototype is under development on a Unix workstation. This effort will address issues concerning graphical user interface, data flow and interaction, and general system architecture. The standard-step model prototype is under development in a DOS Windows environment. Using Windows allows us to design a user interface and develop the computational modules without dealing with multi-processing workstation issues.

While HEC-2 capabilities are the bases for the new model development, some of the basic building blocks are being developed "from scratch". The goal is to have computational modules that can support several purposes and allow user controlled interactive computations, when possible. The existing code for water surface profiles is too entangled with other program options. Once the basic standard-step program is functional, bridges and culverts will be added. Much of the bridge and culvert code will be salvaged from the present HEC-2. The intermediate product may be a Windows-based interactive steady flow model.

Input options will include existing HEC-2 data files, XYZ data from terrain models, and screen-menu entry. Easy graphical displays of input will include graphical editing of geometric data and some input parameters. When appropriate, computations can proceed one section at a time, or multiple profile batch processing like the present model. Graphical and tabular output will be provided.

Closely following the steady-flow model, an unsteady flow capability will be developed using the same basic geometric data. HEC is presently working with UNET, an unsteady-flow network model (Barkau, 1991). The program utilizes HEC-2 input to define the geometric data, making it easier for modelers familiar with HEC-2 to develop an unsteady flow model. Time-series data (hydrographs) are read from a random access datafile, HEC-DSS (HEC, 1990c). HEC-DSS is also used to store model results. Graphical and tabular displays of DSS data are provided with program DSPLAY.

The NexGen is an ambitious project for a small office to undertake. As with most software development, the delivery dates are in the future (vapor-ware) and the forecasts tend to be overly optimistic. However, we believe that it is time to build the models for the future. We hope that the combination of maintaining and modestly improving existing software, plus providing intermediate "prototype" programs, will keep the engineering community with sufficient computational capability to meet many of their hydrologic modeling needs.

References

- Barkau, R.L., (1991). "UNET One-Dimensional Unsteady Flow Through a Full Network of Open Channels," Draft User's Manual, Hydrologic Engineering Center, Davis, CA.
- Bonner, V.R. (1988). "Floodway Determination Using Computer Program HEC-2,"Training Document No. 5, Hydrologic Engineering Center, Davis, CA.
- Bonner, V.R. (1990a). "Computing Water Surface Profiles with HEC-2 on a Personal Computer," Training Document No. 26, Hydrologic Engineering Center, Davis, CA.
- Bonner, V.R. (1990b). "River Routing with HEC-1 and HEC-2," Training Document No. 30, Hydrologic Engineering Center, Davis, CA.
- Chow, V.T. (1959). Open Channel Hydraulics. McGraw-Hill, New York, NY.
- Davidian, J. (1984). "Computation of Water-Surface Profiles in Open Channels," Techniques of Water-Resources Investigations, United States Geological Survey, Book 3, Chapter A15, Washington, DC.
- FEMA, (1985). "Flood Insurance Study Guidelines and Specifications for Study Contractors," Federal Emergency Management Agency, Washington, DC.
- FHWA, (1985). "Hydraulic Design of Highway Culverts," Hydraulic Design Series No. 5, US Department of Transportation, Washington, DC.
- HEC, (1990a). "HEC-2 Water Surface Profiles," User's Manual, Hydrologic Engineering Center, Davis, CA.
- HEC, (1990b). "HEC-1 Flood Hydrograph Package," User's Manual, Hydrologic Engineering Center, Davis, CA.
- HEC, (1990c). "HEC-DSS User's Guide and Utility Program Manuals," Hydrologic Engineering Center, Davis, CA.
- Montalvo, A.E. (1982). "Application of the HEC-2 Split Flow Option," Training Document No. 5, Hydrologic Engineering Center, Davis, CA.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., (1986). "Bridge Waterways Analysis Model," Research Report No. FHWA/RD-86/108, U.S. Geological Survey, WRD, Reston, VA.
- USACE, (1959). "Backwater Curves in River Channels," US Army Corps of Engineers, EM 1110-2-1409, Washington, DC.

ς	F	CI	IR	ΙT	Ÿ	\overline{c}	Δ	??	IF	ī	Δ	TIC	<u> N</u>	7)F	THIS	P	$\overline{\Delta G}$

		F	REPORT D	OCUMENTATIO	N PAGE Form Approved OMB No. 0704-0188				
1a. REPORT SEC		SIFICATIO	ON		1b. RESTRICTIVE	MARKINGS			
UNCLASS 2a. SECURITY CI		N AUTH	HORITY		3. DISTRIBUTIO	N/AVAILABILITY O	REPORT		
2b. DECLASSIFIC	ATION / DOV	VNGRAD	ING SCHEDU	LE	1				
4. PERFORMING	ORGANIZAT	TION REF	PORT NUMBE	R(S)	5. MONITORING	ORGANIZATION R	EPORT N	JMBER(S)	
TECHNICA	AL PAPER	NO. 1	40 (TP-14	0)					
•	GIC ENGI	NEERII	NG CENTER	6b. OFFICE SYMBOL (If applicable) CEWRC-HEC	7a. NAME OF MONITORING ORGANIZATION WATER RESOURCES SUPPORT CENTER				
6c. ADDRESS (Ci	-		ode)			ity, State, and ZIP (Code)		
	OND STRE A 95616		,		1 ' '	GRAPH ROAD A, VA 22310	-3868		
8a. NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL (If applicable)					9. PROCUREMEN	IT INSTRUMENT IDE	NTIFICAT	TION NUMBER	
8c. ADDRESS (Cit	ty, State, and	ZIP Coc	de)		10. SOURCE OF	FUNDING NUMBER	S		
					PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.	
11. TITLE (Includ	le Security C	lassificat	tion)						
HEC-2 W	ATER SUR	FACE	PROFILES	PROGRAM					
12. PERSONAL A	UTHOR(S)						-		
Vernon I	R. Bonne		13b. TIME CO	VERED	14 DATE OF REPO	ORT (Year, Month, I	Day) 15	. PAGE COUNT	
Technica	al Paper		FROM	то	AUGUST 199		,,,	12	
16. SUPPLEMENT Presente			E Water F	orum '92, 2-6 <i>F</i>	lugust 1992,	Baltimore, i	MD.		
17.	COSATI	CODES		18. SUBJECT TERMS (Continue on rever	se if necessary and	identify	by block number)	
FIELD	GROUP	SUB	-GROUP	Water surface	profiles, H	EC-2 compute	r prog	ram, microcomputer	
The first he HEC-2, and needs. The with Federa at a modest	HEC-2 Wa other Hi is incre al Highwa t pace, I	ter Si EC pro menta ay cu HEC ha	urface Pr ograms, h l program lvert cap as also e	nd identify by block notices program ave evolved; produced; produced; produced by the bability. While mbarked on an expectage are	was release imarily dri is continued incrementa effort to de	ven by projed up to the 19 I program dev sign and deve	ct and 990 re velopme elop t	application lease of HEC-2 ent will continue he next genera-	
20. DISTRIBUTIO	N/AVAII ARI	LITY OF	ABSTRACT		21 ARSTRACT SE	CURITY CLASSIFICA	TION		
☑ UNCLASSIFI	IED/UNLIMITI	ED 🗆	SAME AS RE	PT. DTIC USERS					
22a. NAME OF R VERNON R.			- · · -	ng Division	22b. TELEPHONE (916) 756-	(Include Area Code) 1104		FICE SYMBOL RC-HEC-T	

TECHNICAL PAPER SERIES

TP-1	Use of Interrelated Records to Simulate Streamflow	TP-38 TP-39	Water Quality Evaluation of Aquatic Systems A Method for Analyzing Effects of Dam Failures in Design Studies
TP-2	Optimization Techniques for Hydrologic Engineering Methods of Determination of Safe Yield and	TP-40	Storm Drainage and Urban Region Flood Control Planning
TP-3	Compensation Water from Storage Reservoirs Functional Evaluation of a Water Resources	TP-41	HEC-5C, A Simulation Model for System Formulation and Evaluation
TP-5	System Streamflow Synthesis for Ungaged Rivers	TP-42 TP-43	Optimal Sizing of Urban Flood Control Systems Hydrologic and Economic Simulation of Flood
TP-6	Simulation of Daily Streamflow		Control Aspects of Water Resources Systems
TP-7	Pilot Study for Storage Requirements for Low Flow Augmentation	TP-44	Sizing Flood Control Reservoir Systems by Systems Analysis
TP-8	Worth of Streamflow Data for Project Design - A Pilot Study	TP-45	Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River
TP-9	Economic Evaluation of Reservoir System	TP-46	Basin Spatial Data Analysis of Nonstructural
TP-10	Accomplishments Hydrologic Simulation in Water-Yield	17-40	Measures
TO 44	Analysis	TP-47	Comprehensive Flood Plain Studies Using Spatial Data Management Techniques
TP-11	Survey of Programs for Water Surface Profiles	TP-48	Direct Runoff Hydrograph Parameters Versus
TP-12	Hypothetical Flood Computation for a	TD /O	Urbanization
TP-13	Stream System Maximum Utilization of Scarce Data in	TP-49	Experience of HEC in Disseminating Information on Hydrological Models
	Hydrologic Design	TP-50	Effects of Dam Removal: An Approach to
TP-14	Techniques for Evaluating Long-Term Reservoir Yields	TP-51	Sedimentation Design of Flood Control Improvements by
TP-15	Hydrostatistics - Principles of		Systems Analysis: A Case Study
TP-16	Application A Hydrologic Water Resource System	TP-52	Potential Use of Digital Computer Ground Water Models
., 10	Modeling Techniques	TP-53	Development of Generalized Free Surface Flow
TP-17	Hydrologic Engineering Techniques for Regional Water Resources Planning	TP-54	Models Using Finite Element Techniques Adjustment of Peak Discharge Rates for
TP-18	Estimating Monthly Streamflows Within a		Urbanization
TP-19	Region Suspended Sediment Discharge in Streams	TP-55	The Development and Servicing of Spatial Data Management Techniques in the Corps of
TP-20	Computer Determination of Flow Through		Engineers
TD. 21	Bridges	TP-56	Experiences of the Hydrologic Engineering Center in Maintaining Widely Used Hydrologic
TP-21	An Approach to Reservoir Temperature Analysis		and Water Resource Computer Models
TP-22	A Finite Difference Method for Analyzing	TP-57	Flood Damage Assessments Using Spatial Data
	Liquid Flow in Variably Saturated Porous Media	TP-58	Management Techniques A Model for Evaluating Runoff-Quality in
TP-23	Uses of Simulation in River Basin Planning		Metropolitan Master Planning
TP-24	Hydroelectric Power Analysis in Reservoir Systems	TP-59	Testing of Several Runoff Models on an Urban Watershed
TP-25	Status of Water Resource Systems Analysis	TP-60	Operational Simulation of a Reservoir System
TP-26	System Relationships for Panama Canal Water Supply	TP-61	with Pumped Storage Technical Factors in Small Hydropower Planning
TP-27	System Analysis of the Panama Canal Water	TP-62	Flood Hydrograph and Peak Flow Frequency
TP-28	Supply Digital Simulation of an Existing Water	TP-63	Analysis HEC Contribution to Reservoir System Operation
1F-20	Resources System	TP-64	Determining Peak-Discharge Frequencies in an
TP-29	Computer Applications in Continuing	TD-45	Urbanizing Watershed: A Case Study Feasibility Analysis in Small Hydropower
TP-30	Education Drought Severity and Water Supply	TP-65	Planning
TD . 71	Dependability	TP-66	Reservoir Storage Determination by Computer
TP-31	Development of System Operation Rules for an Existing System by Simulation		Simulation of Flood Control and Conservation Systems
TP-32	Alternative Approaches to Water Resource	TP-67	Hydrologic Land Use Classification Using
TP-33	System Simulation System Simulation for Integrated Use of	TP-68	LANDSAT Interactive Nonstructural Flood-Control
	Hydroelectric and Thermal Power Generation		Planning
TP-34	Optimizing Flood Control Allocation for a Multipurpose Reservoir	TP-69	Critical Water Surface by Minimum Specific Energy Using the Parabolic Method
TP-35	Computer Models for Rainfall-Runoff and	TP-70	Corps of Engineers Experience with Automatic
TP-36	River Hydraulic Analysis Evaluation of Drought Effects at Lake	TP-71	Calibration of a Precipitation-Runoff Model Determination of Land Use from Satellite
11 30	Atitlan	17-/1	Imagery for Input to Hydrologic Models
TP-37	Downstream Effects of the Levee	TP-72	Application of the Finite Element Method to
	Overtopping at Wilkes-Barre, PA, During		Vertically Stratified Hydrodynamic Flow and

TP-73	Flood Mitigation Planning Using HEC-SAM
TP-74	Hydrographs by Single Linear Reservoir Model
TP-75	HEC Activities in Reservoir Analysis
TP-76	Institutional Support of Water Resource Models
TP-77	Investigation of Soil Conservation Service
TP-78	Urban Hydrology Techniques Potential for Increasing the Output of
17-70	Existing Hydroelectric Plants
TP-79	Potential Energy and Capacity Gains from Flood Control Storage Reallocation at
	Existing U. S. Hydropower Reservoirs
TP-80	Use of Non-Sequential Techniques in the
	Analysis of Power Potential at Storage Projects
TP-81	Data Management Systems for Water
TP-82	Resources Planning The New HEC-1 Flood Hydrograph Package
TP-83	River and Reservoir Systems Water Quality Modeling Capability
TP-84	Generalized Real-Time Flood Control System
TP-85	Model Operation Policy Analysis: Sam Rayburn
17-03	Reservoir
TP-86	Training the Practitioner: The Hydrologic Engineering Center Program
TP-87	Documentation Needs for Water Resources
TP-88	Models Reservoir System Regulation for Water
1F-00	Quality Control
TP-89	A Software System to Aid in Making Real-Time Water Control Decisions
TP-90	Calibration, Verification and Application
TP-91	of a Two-Dimensional Flow Model HEC Software Development and Support
TP-92	Hydrologic Engineering Center Planning
TP-93	Models Flood Routing Through a Flat, Complex
	Flood Plain Using a One-Dimensional
TP-94	Unsteady Flow Computer Program Dredged-Material Disposal Management Model
TP-95	Infiltration and Soil Moisture Redistribution in HEC-1
TP-96	The Hydrologic Engineering Center
TP-97	Experience in Nonstructural Planning Prediction of the Effects of a Flood
11 71	Control Project on a Meandering Stream
TP-98	Evolution in Computer Programs Causes Evolution in Training Needs: The
	Hydrologic Engineering Center Experience
TP-99	Reservoir System Analysis for Water Quality
TP-100	Probable Maximum Flood Estimation -
TP-101	Eastern United States Use of Computer Program HEC-5 for Water
400	Supply Analysis
	Role of Calibration in the Application of HEC-6
TP-103	Engineering and Economic Considerations in
TP-104	Formulating Modeling Water Resources Systems for Water
TD-105	Quality Use of a Two-Dimensional Flow Model to
TP-105	Quantify Aquatic Habitat
	Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity
	Expansion
TP-108	Role of Small Computers in Two-Dimensional Flow Modeling
	One-Dimensional Model For Mud Flows
	Subdivision Froude Number HEC-5Q: System Water Quality Modeling
	New Developments in HEC Programs for Flood
TP-113	Control Modeling and Managing Water Resource
	Systems for Water Quality

TP-114	Accuracy of Computed Water Surface Profiles - Executive Summary
TP-115	Application of Spatial-Data Management
TD 444	Techniques in Corps Planning The HEC's Activities in Watershed Modeling
TP-116 TP-117	HEC-1 and HEC-2 Applications on the
14-117	MicroComputer
TP-118	Real-Time Snow Simulation Model for the Monongahela River Basin
TP-119	Multi-Purpose, Multi-Reservoir Simulation on a
TP-120	Technology Transfer of Corps' Hydrologic Models
TP-121	Development, Calibration and Application of Runoff Forecasting Models for the Allegheny River Basin
TP-122	The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data
TP-123	Developing and Managing a Comprehensive Reservoir Analysis Model
TP-124	Review of the U.S. Army Corps of Engineering Involvement With Alluvial Fan Flooding Problems
TP-125	An Integrated Software Package for Flood Damage Analysis
TP-126	The Value and Depreciation of Existing Facilities: The Case of Reservoirs
TP-127	Floodplain-Management Plan Enumeration
TP-128	Two-Dimensional Floodplain Modeling
TP-129	Status and New Capabilities of Computer
	Program HEC-6: "Scour and Deposition in Rivers and Reservoirs"
TP-130	Estimating Sediment Delivery and Yield on Alluvial Fans
TP-131	Hydrologic Aspects of Flood Warning - Preparedness Programs
TP-132	Twenty-five Years of Developing, Distributing, and Supporting Hydrologic Engineering Computer Programs
TP-133	Predicting Deposition Patterns in Small Basins
TP-134	Annual Extreme Lake Elevations by Total Probability Theorem
TP-135	A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks
TP-136	Prescriptive Reservoir System Analysis Model - Missouri River System Application
TP-137	A Generalized Simulation Model for Reservoir System Analysis
TP-138	The HEC NexGen Software Development Project
TP-139	Issues for Applications Developers
TP-140	HEC-2 Water Surface Profiles Program
TP-141	out the training the lighting of the
TP-142	Systems Analysis Applications at the Hydrologic Engineering Center
TP-143	Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds
TP-144	Review of GIS Applications in Hydrologic Modeling
TP-145	Application of Rainfall-Runoff Simulation for Flood Forecasting
TP-146	Application of the HEC Prescriptive Reservoir Model in the Columbia River System