RGB Image Depth Estimation

Mentor: Nikola Velickovic

Done by: Mihailo Grbic Branko Grbic

Introduction

Fundamental task in computer vision

Mostly based on CNN

Self-supervised methods appearing

Related work

- Towards Good Practice for CNN-Based Monocular Depth Estimation
 - Different components/factors for monocular depth prediction
 - Analyzing the errors made by different models
 - State-of-the-art results on NYU Depth v2 and competitive results on KITTI dataset

- Estimating Monocular depth using cycle GAN and segmentation
 - (Our starting goal)

Data Preprocessing

- 1449 images and depths
- Train / Val / Test split (80%/10%/10%)
- Normalization using training dataset statistics
- Rescaling and cropping (both train & test)
- Extending Dataset
 - Random horizontal/vertical flip (train only)
 - Random rotation (train only)
 - Random crop (train only) / Center crop

 - Blending

Model

- VGG-16 with BN (Encoder)
- DispNet (Decoder)
- NYUv2 (Dataset)
- Epochs: ~230
- Learning Rate: 0.001
- Batch Size: 32
- Loss: L1Smooth
- Image size: 256x352
- Optimizer: AdamW
- Activation: LReLU

Results (loss function)

Results (Training)

Photometric loss: 0.1231

Smooth loss: 0.0636

Overall loss: 0.1231

Mean absolute error: 0.1231

Standard Deviation: 0.1072

Mean Square Error: 0.3263

Standard deviation: 0.1305

Training dataset

Results (Validation)

Photometric loss: 0.4389

• Smooth loss: 0.0604

Overall loss: 0.4389

Mean absolute error: 0.4389

Standard Deviation: 0.3115

Mean Square Error: 0.6578

Standard deviation: 0.3218

Validation dataset

Ground truth depth

Ground truth depth

Ground truth depth

Prediction depth

Prediction depth

Prediction depth

Original image

Original image

Original image

Results (Test)

Photometric loss: 0.4423

Smooth loss: 0.0603

Overall loss: 0.4424

Mean absolute error: 0.4423

Standard Deviation: 0.3160

Mean Square Error: 0.6752

Standard deviation: 0.3480

Test dataset

Results (Best training sample)

Best sample in training dataset (loss = 0.0118)

Ground truth depth

Prediction depth

Original image

Ground truth depth

Prediction depth

Original image

Results (Worst training sample)

Worst sample in training dataset (loss = 0.7317)

Ground truth depth

Prediction depth

Results (Best validation sample)

Best sample in validation dataset (loss = 0.0419)

Ground truth depth

Prediction depth

Original image

Ground truth depth

Prediction depth

Original image

Results (Worst validation sample)

Worst sample in validation dataset (loss = 1.5702)

Ground truth depth

Prediction depth

Original image

Ground truth depth

Prediction depth

Original image

Results (Best test sample)

Best sample in test dataset (loss = 0.0387)

Ground truth depth

Prediction depth

Original image

Ground truth depth

Prediction depth

Original image

Results (Worst test sample)

Worst sample in test dataset (loss = 1.7274)

Ground truth depth

Prediction depth

Original image

Ground truth depth

Prediction depth

Original image

What didn't work?

- Freezed encoder
- LR scheduler
- L2 and Behru loss
- MixUp
- Blending
- Smaller images (?)

MixUp augmentation technique

What's next?

Bigger dataset

Experimenting with alternative model architectures

Tweaking parameters

Sample image

Depth prediction

Original image

Thank you!

Useful links:

Towards Good Practice for CNN-Based Monocular Depth Estimation

(https://openaccess.thecvf.com/content_WACV_2020/papers/Fang_Towards_Good_Practice_for_CNN-Based_Monocular_Depth_Estimation_WACV_2020_paper.pdf)

NYUv2 Depth V2 Dataset

(https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html)

Our github repository with implementation and results

(https://github.com/m-grbic/psiml7)

Depth estimation using cycle GAN

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249099/)