기 의 영상 분석 및 뇌종양 진단 학습 모델 개발

소속 정보컴퓨터공학부

분과 A

팀명 보노보노

참여학생 이섬재, 최연희, 한혜린

지도교수 감진규

과제 소개

과제 개요

- ☑ 교모세포종은 성인에게서 발생하는 원발성 악성 뇌종양 중 가장 흔하고 악성도가 높은 질환이다.
- ☑ DNA 손상을 복구하는 유전자인 O^6 methylguanine DNAmethyltransferase(MGMT) 의 프로모터에 메틸화가 되어 있는 환자가 비메틸화된 종양의 환자보다 생존율이 더욱 높다.
- ☑ 영상화를 통한 암의 유전적 특징을 예측한다.

과제 목표

- ☑ 뇌 MRI 영상 데이터를 통해 MGMT 프로모터 메틸화 여부를 예측하는 딥러닝 모델 개발하기
- ☑ 데이터 수집, 전처리, 모델 설계 및 학습, 검증 및 시각화, 결과 예측까지 **딥러닝 전체 프로세스 경험**하기

딥러닝 모델 <u>개발</u>

전처리 및 모델 학습

- ☑ MRI 영상 데이터는 Radiological Society of North America 으로부터 제 공받았으며, 총 585명의 환자 데이터를 사용하였다.
- ☑ 각 데이터는 FLAIR, T1w, T1wCE, T2w 타입으로 촬영되었다.
- ☑ 2D 모델 및 3D 모델의 전체 계층 구조는 ResNet50 모델을 사용하였다.

ResNet50 Model

2D 전처리 및 2D 모델 학습

3D 전처리 및 3D 모델 학습

- ☑ 2D dicom 파일을 읽어 크기를 축소하고 배열화 한 후 정규화하여 사용했다.
- ☑ 3D dicom 파일을 읽어 정규화하고 이미지가 촬영된 축과 방향을 읽어 2D 이미지를 3D로 쌓아 정렬한 후 축소했다. 이후 3D 이미지를 나누어 배열화하고 그 배열을 쌓아 사용했다.

교차 검증 및 시각화

- ☑ 데이터의 편중을 막기 위해 StratifiedKFold를 이용하여 교차 검증을 진행했다.
- ☑ 전체 데이터 중 학습 데이터 세트와 검증 데이터 세트를 8:2 비율로 나누고, 학습 데이터 세트를 5개의 fold 로 나누어 진행했다.
- ☑ 학습을 통한 예측 성능을 측정하여 예측 Value 와 실제 Value 를 비교하기 위해 Confusion Matrix 를 이용하여 시각화하였다.
- ☑ 교차 검증을 진행함과 동시에 각 fold 가 학습될 때마다 fold 별 Confusion Matrix를 출력했다.

과제 결과

- ☑ 2D 모델과 3D 모델 모두 MGMT 프로모터가 메틸화되었다고 예측한 비율이 높았다. (MGMT_Value = 1)
- ☑ 원본 데이터와 MGMT_Value 사이의 관계가 모호하였고, 원본 데이터가 과도 하게 압축되어 정확도가 높지 않았다.
- ☑ 데이터 전처리 과정에서 데이터의 비율 일그러짐이 학습에 미치는 영향을 분석하고, 데이터 압축 폭을 줄여 전처리를 진행한다면 더욱 향상된 결과치를 확인할수 있을 것으로 전망된다.

Model	Accuracy	Precision	Recall	F1 Score	AUC
2D Model	0.521	0.525	0.852	0.650	0.506
3D Model	0.512	0.519	0.885	0.654	0.496