PROBLEMS SUBMIT CODE

HOME TOP CONTESTS GYM PROBLEMSET GROUPS RATING API HELP KOTLIN HEROES Z DASHA CALENDAR

MY SUBMISSIONS

G. Path Queries

STATUS HACKS STANDINGS CUSTOM INVOCATION

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input output: standard output

You are given a weighted tree consisting of n vertices. Recall that a tree is a connected graph without cycles. Vertices u_i and v_i are connected by an edge with weight w_i .

You are given m queries. The i-th query is given as an integer q_i . In this query you need to calculate the number of pairs of vertices (u,v) (u < v) such that the maximum weight of an edge on a simple path between u and v doesn't exceed q_i .

Input

The first line of the input contains two integers n and m ($1 \le n, m \le 2 \cdot 10^5$) — the number of vertices in the tree and the number of queries.

Each of the next n-1 lines describes an edge of the tree. Edge i is denoted by three integers u_i, v_i and w_i — the labels of vertices it connects ($1 \le u_i, v_i \le n, u_i \ne v_i$) and the weight of the edge ($1 \le w_i \le 2 \cdot 10^5$). It is guaranteed that the given edges form a tree.

The last line of the input contains m integers q_1, q_2, \ldots, q_m ($1 \le q_i \le 2 \cdot 10^5$), where q_i is the maximum weight of an edge in the i-th query.

Output

Print m integers — the answers to the queries. The i-th value should be equal to the number of pairs of vertices (u,v) (u < v) such that the maximum weight of an edge on a simple path between u and v doesn't exceed q_i .

Queries are numbered from 1 to m in the order of the input.

Examples

input	Сору
1 2 1 2	
output	Сору
0 0	

input	Сору
3 3 1 2 1 2 3 2 1 3 2	
output	Сору
1 3 3	

Note

The picture shows the tree from the first example:

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you - solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Practice

You are registered for practice. You can solve problems unofficially. Results can be found in the contest status and in the bottom of standings.

→ Clone Contest to Mashup

You can clone this contest to a mashup.

Clone Contest

→ Contest materials	
Announcement #1 (ru)	×
Announcement #2 (en)	×
• Tutorial #1 (en)	×
Tutorial #2 (ru)	×

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform
Server time: Sep/12/2019 11:14:36^{UTC+8} (e1).
Desktop version, switch to mobile version.
Privacy Policy

Supported by

