Álgebra Linear e Geometria Analítica

Matrizes e Sistemas de Equações Lineares

Departamento de Matemática Universidade de Aveiro

ALGA 💾

Vetores em \mathbb{R}^n

Matrizes

Matrizes especiais
Operações com matrizes

Sistemas de equações lineares

Matriz escalonada e matriz escalonada reduzida Método de eliminação de Gauss e método de eliminação de Gauss-Jordan Característica e classificação de sistemas Posição relativa de retas e planos

Matrizes invertíveis

Inversa de uma matriz quadrada Cálculo da inversa através do método de eliminação de Gauss-Jordan Existência de inversa

Vetores em \mathbb{R}^n

Os vetores em \mathbb{R}^n são usualmente representados por

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{ou} \quad X = (x_1, \dots, x_n).$$

Os números reais x_1, x_2, \dots, x_n designam-se por componentes do vetor X.

Por exemplo, $\begin{bmatrix} -2\\1\\0\\35 \end{bmatrix}$ e (-2,1,0,35) representam o mesmo vetor de \mathbb{R}^4 .

Vetores em \mathbb{R}^n

Operações em \mathbb{R}^n (definidas de forma análoga às operações em \mathbb{R}^2 e \mathbb{R}^3):

• Adição:
$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$
• Multiplicação por um escalar:
$$\alpha \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

Estas operações podem ser combinadas no que designamos por combinação linear de vetores. O vetor $u \in \mathbb{R}^n$ é uma combinação linear dos vetores $v_1, \ldots, v_k \in \mathbb{R}^n$ se

$$u = \alpha_1 v_1 + \cdots + \alpha_k v_k, \quad \alpha_1, \dots, \alpha_k \in \mathbb{R}.$$

Matrizes em $\mathbb{R}^{m \times n}$

Os vetores em \mathbb{R}^n generalizam-se a vetores em $\mathbb{R}^{m \times n}$ que designamos por **MATRIZES**.

Sendo a_{ij} números reais (para todos os indices $i \in \{1, \dots, m\}$ e $j \in \{1, \dots, n\}$) considere

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

dizemos que A é uma matriz com m linhas e n colunas. Em alternativa, também dizemos que

- ightharpoonup A é uma matriz $m \times n$,
- ightharpoonup A é uma matriz de ordem $m \times n$,
- ightharpoonup A é uma matriz de dimensão $m \times n$.

Matriz $m \times n$

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix} \leftarrow \text{linha } i$$

$$coluna j$$

 a_{ij} é o elemento ou entrada (i,j) da matriz A

Notação abreviada:

$$A = [a_{ij}]_{m \times n}$$
 ou $A = [a_{ij}], i = 1, ..., m, j = 1, ..., n$

Igualdade

A igualdade de matrizes define-se de modo análogo à igualdade de vetores.

Sejam $A = [a_{ij}]$ e $B = [b_{ij}]$, matrizes de dimensão $m \times n$.

A e B dizem-se iguais, escrevendo-se A=B, se todos os elementos de A forem iguais aos correspondentes elementos de B, ou seja, se

$$a_{ij} = b_{ij}, \qquad i = 1, \ldots, m, j = 1, \ldots, n.$$

Matriz quadrada, matriz linha e matriz coluna

Seja $A = [a_{ij}]$ uma matriz de ordem $m \times n$.

A diz-se uma matriz quadrada de ordem n se tem n linhas e n colunas. Os elementos a_{ii} , $i=1,\cdots,n$, formam a diagonal principal (ou diagonal) da matriz A.

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}.$$

- ▶ A diz-se uma matriz linha se m = 1, ou seja, $A = [a_{11} \cdots a_{1j} \cdots a_{1n}]$.
- A diz-se uma matriz coluna se n = 1, ou seja, $A = \begin{bmatrix} a_{11} \\ \vdots \\ a_{i1} \\ \vdots \end{bmatrix}$.

Matriz triangular e matriz diagonal

Uma matriz quadrada $A = [a_{ij}]$ diz-se

▶ triangular superior se $a_{ij} = 0$, para i > j:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix};$$

- ▶ triangular inferior se $a_{ij} = 0$, para i < j; por exemplo, $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 4 & 3 \end{bmatrix}$;
- triangular se é triangular inferior ou triangular superior;
- ▶ diagonal; se $a_{ij} = 0$, $i \neq j$, ou seja, se A é uma matriz triangular inferior e triangular superior; por exemplo, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.

Matriz identidade e matriz nula

Uma matriz $A = [a_{ij}]$ designa-se por

matriz identidade de ordem n, e denota-se por I (ou I_n), se A é uma matriz diagonal de ordem n com as entradas da diagonal iguais a 1, ou seja,

$$a_{11}=\cdots=a_{nn}=1.$$

▶ matriz nula $m \times n$, e denota-se por O (ou $O_{m \times n}$), se A é uma matriz $m \times n$ com as entradas iguais a O:

$$a_{ij}=0, \ 1\leq i\leq m, 1\leq j\leq n.$$

Matriz identidade de ordem 3 e matriz nula 2×3 :

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 e $O_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Transposta de uma matriz. Matriz simétrica.

A transposta da matriz $m \times n$ $A = [a_{ij}]$ é a matriz $n \times m$

$$A^T = [a_{ii}]$$

obtida por troca da posição relativa das linhas pelas colunas da matriz A. Por exemplo,

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \quad \mathbf{e} \quad A^{\mathsf{T}} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$$

Propriedade: $(A^T)^T = A$.

▶ Uma matriz A de ordem n diz-se simétrica se $A = A^T$, ou seja, se

$$a_{ij} = a_{ji}$$
, para $1 \le i, j \le n$.

Por exemplo,

$$C = \begin{bmatrix} -2 & -1 & 3 \\ -1 & 1 & 0 \\ 3 & 0 & -5 \end{bmatrix} = C^{T}.$$

- Nota: Todas as matrizes simétricas são matrizes quadradas.
 - Todas as matrizes diagonais são matrizes simétricas.

Adição e multiplicação por escalar

Sejam
$$A = [a_{ij}], B = [b_{ij}]$$
 matrizes $m \times n$ e $\alpha \in \mathbb{R}$.

A soma de A e B é a matriz $m \times n$ $A + B = C = [c_{ij}]$ tal que

$$c_{ij} = a_{ij} + b_{ij}, \qquad i = 1, \ldots, m, \ j = 1, \ldots, n.$$

O produto de A pelo escalar α é a matriz $m \times n$ $\alpha A = D = [d_{ij}]$ tal que

$$d_{ij} = \alpha a_{ij}, \qquad i = 1, \ldots, m, \ j = 1, \ldots, n.$$

A matriz $m \times n$ A é uma combinação linear das matrizes A_1, \ldots, A_k $m \times n$ se

$$A = \alpha_1 A_1 + \cdots + \alpha_k A_k, \quad \alpha_1, \ldots, \alpha_k \in \mathbb{R}$$

Exemplo 1

Consideremos uma fábrica onde são produzidos os produtos A e B a partir de três recursos, R_1 , R_2 e R_3 . Para produzir 1 unidade do produto:

- A são necessárias 2 unidades de R_1 , 1 unidade de R_2 e 0 unidades de R_3 ; informação que vamos guardar no vetor $u = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$;
- B são necessárias 1 unidade de R_1 , 3 unidades de R_2 e 2 unidades de R_3 ; dados que vamos guardar no vetor $v = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$.
- ▶ O vetor que resulta da multiplicação escalar $3u = 3\begin{bmatrix} 2\\1\\0 \end{bmatrix} = \begin{bmatrix} 6\\3\\0 \end{bmatrix}$ dá-nos as quantidades de cada recurso necessárias para produzir 3 unidades do produto A;
- o vetor que resulta da combinação linear

$$2u + 4v = 2\begin{bmatrix} 2\\1\\0 \end{bmatrix} + 4\begin{bmatrix} 1\\3\\2 \end{bmatrix} = \begin{bmatrix} 4\\2\\0 \end{bmatrix} + \begin{bmatrix} 4\\12\\8 \end{bmatrix} = \begin{bmatrix} 8\\14\\8 \end{bmatrix}$$

indica as quantidades de cada recurso que são necessárias para produzir 2 unidades do produto A e 4 unidades do produto B.

Propriedades da adição e da multiplicação por escalar

Propriedades da adição de matrizes

- ightharpoonup comutativa: A + B = B + A,
- ▶ associativa: (A + B) + C = A + (B + C),
- ightharpoonup admite elemento neutro: A + O = O + A = A,
- A possui simétrico aditivo: A + (-A) = (-A) + A = 0,
- $(A+B)^T = A^T + B^T$,

para quaisquer matrizes $m \times n A, B, C$.

Propriedades da multiplicação por escalar de matrizes

- ightharpoonup associativa: $\alpha(\beta A) = (\alpha \beta) A$,
- distributiva: $(\alpha + \beta) A = \alpha A + \beta A$,
- distributiva: $\alpha(A+B) = \alpha A + \alpha B$,
- \triangleright $(\alpha A)^T = \alpha A^T$.

para quaisquer matrizes $m \times n$ A, B, e $\alpha, \beta \in \mathbb{R}$.

Multiplicação de matrizes

Caso: multiplicação de uma matriz linha A, $1 \times n$, por uma matriz coluna B, $n \times 1$, sendo

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$
 e $B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$.

O produto de A por B é obtido por

$$AB = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i.$$

Observação: esta operação está bem definida se A e B possuem igual número de elementos!

Exemplo:
$$\begin{bmatrix} -2 & 1 & 4 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ -1 \\ 1 \end{bmatrix} = (-2) \times 3 + 1 \times 5 + 4 \times (-1) + 2 \times 1 = -3.$$

Multiplicação de matrizes

Caso geral: multiplicação de uma matriz A, $m \times n$, por uma matriz B, $n \times p$, sendo

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix} e B = \begin{bmatrix} b_{11} & \dots & b_{1j} & \dots & b_{1p} \\ \vdots & & \vdots & & \vdots \\ b_{i1} & \dots & b_{ij} & \dots & b_{ip} \\ \vdots & & \vdots & & \vdots \\ b_{n1} & \dots & b_{nj} & \dots & b_{np} \end{bmatrix}$$

.

O produto de A por B é a matriz C = AB, de dimensão $m \times p$, com $C = [c_{ij}]$, cuja entrada c_{ij} resulta da multiplicação da linha i de A pela coluna j de B:

$$c_{ij} = a_{i1}b_{1j} + \cdots + a_{in}b_{nj}, \qquad i = 1, \dots, m, \ j = 1, \dots, p.$$

Exemplos

Consideremos, novamente, o Exemplo 1 (slide 13).

Seja
$$A$$
 a matriz que tem nas suas colunas os vetores u e v , $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 0 & 2 \end{bmatrix}$, e seja $w = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

A combinação linear 2u + 4v coincide com a multiplicação da matriz A pelo vetor w:

$$Aw = \begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \times 2 + 1 \times 4 \\ 1 \times 2 + 3 \times 4 \\ 0 \times 2 + 2 \times 4 \end{bmatrix} = \begin{bmatrix} 8 \\ 14 \\ 8 \end{bmatrix}.$$

Outro exemplo: multiplicação de uma matriz 3×2 por uma matriz 2×2

$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 2 \times 2 + 1 \times 4 & 2 \times 5 + 1 \times (-1) \\ 1 \times 2 + 3 \times 4 & 1 \times 5 + 3 \times (-1) \\ 0 \times 2 + 2 \times 4 & 0 \times 5 + 2 \times (-1) \end{bmatrix} = \begin{bmatrix} 8 & 9 \\ 14 & 2 \\ 8 & -2 \end{bmatrix}.$$

Propriedades da multiplicação de matrizes

- ightharpoonup associativa: (AB)C = A(BC),
- distributiva à esquerda e à direita, em relação à adição:

$$(A + \widetilde{A})B = AB + \widetilde{A}B$$
 e $A(B + \widetilde{B}) = AB + A\widetilde{B}$,

- ▶ admite elemento neutro à esquerda e à direita: $I_m A = A = AI_n$,
- $(\alpha A)B = \alpha (AB) = A(\alpha B),$
- $(AB)^T = B^T A^T,$

para quaisquer matrizes $A, \widetilde{A} \ m \times n$, $B, \widetilde{B} \ n \times p$, $C \ p \times q \ e \ \alpha \in \mathbb{R}$.

Nota importante: A multiplicação de matrizes não é comutativa!

Observação: Se A é uma matriz de ordem n e $p \in \mathbb{N}$,

$$A^{p} = A A^{p-1} = A^{p-1} A$$
.

Por convenção, $A^0 = I_n$.

Sistema de *m* equações lineares com *n* incógnitas

$$\begin{cases} a_{11} x_1 + \dots + a_{1n} x_n = b_1 \\ \vdots \\ a_{m1} x_1 + \dots + a_{mn} x_n = b_m \end{cases}$$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \qquad X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \qquad B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$
matrix dos

$$a_{m1} \cdots a_{mn}$$
 matriz dos coeficientes

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

coluna dos termos independentes

*

Forma matricial de um sistema linear

$$\begin{cases}
a_{11} x_1 + \dots + a_{1n} x_n = b_1 \\
\vdots & \Leftrightarrow AX = B, \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m
\end{cases}$$

em que A é a matriz $(m \times n)$ dos coeficientes do sistema, X é a coluna $(n \times 1)$ das incógnitas,

B é a coluna $(m \times 1)$ dos termos independentes e

$$M = [A | B] = \begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{bmatrix}$$

é uma matriz $m \times (n+1)$ designada por matriz ampliada, matriz aumentada ou matriz completa do sistema.

Matriz escalonada

A primeira entrada não nula de cada linha é designada por pivô.

$$\begin{bmatrix} 0 & \dots & a_1 & * & \dots & * & * & * & \dots & * \\ 0 & \dots & 0 & 0 & \dots & a_2 & * & * & \dots & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & a_3 & \dots & * \\ \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}, a_1, a_2, a_3, \dots \neq 0$$

- Abaixo de cada pivô só ocorrem zeros,
- Dadas duas linhas não nulas consecutivas, o pivô da linha i + 1 está numa coluna à direita da coluna que contém o pivô da linha i,

ALGA 🖽

As linhas nulas, caso existam, ocorrem só na parte inferior da matriz.

Exemplos:
$$A = \begin{bmatrix} 0 & 2 & 3 & -2 & 0 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 $e \quad B = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

Matriz escalonada reduzida

$$\begin{bmatrix} 0 & \dots & \mathbf{1} & * & \dots & 0 & * & 0 & \dots & * \\ 0 & \dots & 0 & 0 & \dots & \mathbf{1} & * & 0 & \dots & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \mathbf{1} & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

- ► A matriz está na forma escalonada,
- Os pivôs são todos iguais a 1,
- Acima de cada pivô só ocorrem zeros.

Exemplo:
$$B = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Sistemas com matrizes [A|B] escalonadas

[A|B] matriz escalonada \longrightarrow resolução do sistema AX = B por substituição ascendente das incógnitas.

VANTAGEM:

menos substituições de incógnitas e menos operações aritméticas, comparando com a aplicação do método de substituição a sistemas com matrizes [A|B] não escalonadas.

Exemplo:

$$\left\{ \begin{array}{cccc} x & +y & -2z & = 4 \\ & 2y & +3z & = 6 \\ & -z & = 2 \end{array} \right. \longrightarrow \begin{bmatrix} A|B \end{bmatrix} = \left[\begin{array}{cccc} 1 & 1 & -2 & | & 4 \\ 0 & 2 & 3 & | & 6 \\ 0 & 0 & -1 & | & 2 \end{array} \right] \text{ \'e uma matriz escalonada}$$

$$\begin{cases} x + y -2z = 4 \\ 2y +3z = 6 \\ -z = 2 \end{cases} \Leftrightarrow \begin{cases} x = 4 - y + 2z \\ y = \frac{1}{2}(6 - 3z) \\ z = -2 \end{cases} \Leftrightarrow \begin{cases} x = -6 \\ y = 6 \\ z = -2 \end{cases}$$

Conjunto de soluções: $\{(-6, 6, -2)\}$.

Sistemas de equações lineares equivalentes

Dois sistemas de equações lineares dizem-se equivalentes se têm o mesmo conjunto de soluções.

Questão:

Dado um sistema AX = B é possível transformá-lo num sistema equivalente CX = D, com uma matriz ampliada [C|D] escalonada?

Operações elementares

Operações elementares nas linhas de uma matriz

1. Troca da posição relativa de duas linhas, L_i e L_j :

 $L_i \leftrightarrow L_j$

2. Multiplicação de uma linha, L_i , por um escalar $\alpha \neq 0$:

- $L_i := \frac{\alpha}{\alpha} L_i$
- 3. Substituição de uma linha, L_i , pela que dela se obtém adicionando-lhe outra linha, L_j , multiplicada por um escalar $\beta \in \mathbb{R}$: $L_i := L_i + \beta L_j$

Matrizes equivalentes por linhas

Duas matrizes A e C são equivalentes por linhas e escreve-se

$A \sim C$

se C resulta de A por aplicação de uma sequência finita de operações elementares nas linhas de A.

Obtenção de uma matriz escalonada - Exemplo 2

Teorema

Toda a matriz $m \times n$ é equivalente por linhas a uma matriz escalonada (reduzida) com a mesma dimensão.

Exemplo 2:

Obter uma matriz escalonada e uma matriz escalonada reduzida equivalentes por linhas à matriz

$$M = \begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 2 & 2 & -5 & 2 & 4 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$

Passo 1: Encontrar na $1.\frac{a}{2}$ coluna não nula de M, o 1^{o} elemento não nulo (pivô).

Obtenção de uma matriz escalonada

Passo 2: Trocar linhas para colocar o pivô como 1.º elemento da coluna.

$$\begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 2 & 2 & -5 & 2 & 4 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$

Passo 3: Operar com as linhas para obter zeros abaixo do pivô.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & -2 & -1 & 7 & 3 \end{bmatrix}$$

$$L_4 := L_4 - L_1$$

Obtenção de uma matriz escalonada

Passo 4: Considerar a submatriz que se obtém eliminando a 1.ª linha e aplicar os passos 1 a 4 a esta submatriz. Repetir este procedimento até esgotar as linhas.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & -2 & -1 & 7 & 3 \end{bmatrix}$$

:

Fim do Passo 4: Obtém-se uma matriz escalonada equivalente por linhas a M.

$$N = \left[\begin{array}{ccccc} \mathbf{2} & 2 & -5 & 2 & 4 \\ 0 & \mathbf{2} & 3 & -4 & 1 \\ 0 & 0 & \mathbf{2} & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

Obtenção de uma matriz escalonada reduzida

Continuando a aplicar operações elementares nas linhas obtém-se uma matriz escalonada reduzida.

Passo 5: Multiplicar as linhas não nulas pelos inversos dos pivôs de modo a obter pivôs iguais a 1.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L_1 := \frac{1}{2}L_1$$

$$L_2 := \frac{1}{2}L_2$$

$$L_3 := \frac{1}{2}L_3$$

Obtenção de uma matriz escalonada reduzida

Passo 6: Operar com as linhas de modo a obter zeros acima dos pivôs.

$$\begin{bmatrix} \mathbf{1} & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & \mathbf{1} & \frac{3}{2} & -2 & \frac{1}{2} \\ 0 & 0 & \mathbf{1} & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} \mathbf{1} & 1 & 0 & \frac{19}{4} & 7 \\ 0 & \mathbf{1} & 0 & -\frac{17}{4} & -\frac{5}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim L_{2} := L_{2} - \frac{3}{2}L_{3} \qquad L_{1} := L_{1} - L_{2}$$

$$L_{1} := L_{1} + \frac{5}{2}L_{3}$$

$$\sim R = \begin{bmatrix} \mathbf{1} & 0 & 0 & 9 & \frac{19}{2} \\ 0 & \mathbf{1} & 0 & -\frac{17}{4} & -\frac{5}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Obtém-se uma matriz escalonada reduzida equivalente por linhas a M.

Observação: As matrizes obtidas nos vários passos são matrizes equivalentes por linhas, em particular,

$$M \sim N \sim R$$
.

Aplicação à resolução de sistemas

Teorema

Sejam AX = B e CX = D sistemas com matrizes ampliadas $[A \mid B]$ e $[C \mid D]$, respectivamente. Se

$$[A|B] \sim [C|D],$$

então os dois sistemas são equivalentes, ou seja, têm o mesmo conjunto de soluções.

Observação:

Se B=D=0, basta que $A\sim C$ para que os sistemas possuam o mesmo conjunto de soluções.

Note-se que uma coluna de zeros não é alterada por aplicação de operações elementares.

Método de eliminação de Gauss

Método de eliminação de Gauss

- 1. Dado o sistema AX = B, formar a sua matriz ampliada $[A \mid B]$.
- 2. Transformar $[A \mid B]$ numa forma escalonada $[C \mid D]$.
- 3. Escrever o sistema CX = D, ignorando as linhas nulas, e resolver por substituição ascendente.

Método de eliminação de Gauss-Jordan

Consiste na aplicação do método de eliminação de Gauss obtendo, no passo 2., uma matriz ampliada $[C \mid D]$ numa forma escalonada reduzida.

Matrizes e Sistemas de Equações Lineares ALGA 🛱 32/48

Exemplo 3

Resolução de um sistema com o método de eliminação de Gauss:

$$\begin{cases} 2y +3z -4w = 1\\ 2z +3w = 4\\ 2x +2y -5z +2w = 4\\ 2x -6z +9w = 7 \end{cases} \longrightarrow [A|B] = \begin{bmatrix} 0 & 2 & 3 & -4 & 1\\ 0 & 0 & 2 & 3 & 4\\ 2 & 2 & -5 & 2 & 4\\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$

[A|B] é a matriz M do Exemplo 2 (rever slides 26-30) que foi transformada na matriz escalonada

$$N = [C|D] = \begin{bmatrix} 2 & 2 & -5 & 2 & | & 4 \\ 0 & 2 & 3 & -4 & | & 1 \\ 0 & 0 & 2 & 3 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}, \text{ com } N = [C|D] \sim M = [A|B].$$

$$\begin{cases} 2x & +2y & -5z & +2w & = 4 \\ & 2y & +3z & -4w & = 1 \\ & & 2z & +3w & = 4 \\ & & 0 & = 0 \end{cases} \Leftrightarrow \cdots \text{(subs. ascendente)}... \Leftrightarrow \begin{cases} x & = \frac{19}{2} - 9w \\ y & = -\frac{5}{2} + \frac{17}{4}w \\ z & = 2 - \frac{3}{2}w \\ w \in \mathbb{R} \end{cases}$$

Conjunto de soluções:
$$\left\{\left(\frac{19}{2} - 9w, -\frac{5}{2} + \frac{17}{4}w, 2 - \frac{3}{2}w, w\right): w \in \mathbb{R}\right\}$$

Exemplo 3 (cont.)

Resolução do sistema com o método de eliminação de Gauss-Jordan:

O sistema anterior pode ser resolvido, de modo análogo, com o método de eliminação de Gauss-Jordan. Neste caso, recorremos à matriz escalonada reduzida R que foi obtida no Exemplo 2:

$$R = \begin{bmatrix} 1 & 0 & 0 & 9 & \frac{19}{2} \\ 0 & 1 & 0 & -\frac{17}{4} & -\frac{5}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

com
$$R = [E|F] \sim M = [A|B]$$
.

Para obter o conjunto de soluções do sistema AX = B resolvemos o sistema EX = F por substituição ascendente.

Classificação de sistemas

Um sistema linear representado matricialmente por AX = B, tal que

$$[A|B] \sim [C|D],$$

com a matriz $[C \mid D]$ escalonada, classifica-se em

- ▶ impossível se não possui solução (a coluna D tem um pivô);
- ▶ possível e determinado se possui uma única solução (a coluna D não tem um pivô e todas as colunas de C têm pivô);
- ▶ possível e indeterminado se possui uma infinidade de soluções (a coluna D não tem um pivô e existem colunas de C que não têm pivô).
 - O grau de indeterminação do sistema é o $n.^{Q}$ de incógnitas livres, ou seja, o $n.^{Q}$ de colunas de C sem pivô.

O sistema do Exemplo 3 (slide 33) é possível e indeterminado com grau de indeterminação 1, porque a coluna D não tem pivô e a matriz C tem uma coluna $(4,\frac{a}{2})$ coluna) sem pivô.

Característica e classificação de sistemas

A característica da matriz A, car(A), é o número de pivôs de uma matriz escalonada C equivalente por linhas a A.

O sistema linear $AX = B \operatorname{com} A m \times n \operatorname{e} B m \times 1 \operatorname{e}$

1. impossível
$$\Leftrightarrow$$
 $car(A) < car([A|B]);$

2. possível e determinado
$$\Leftrightarrow$$
 $car(A) = car([A|B]) = n;$

3. possível e indeterminado com grau de indet.
$$n - car(A)$$
 \Leftrightarrow $car(A) = car([A|B]) < n$.

No sistema do Exemplo 3 (slide 33), o n.º de colunas de A (ou n.º de incógnitas) é n=4 e as matrizes C e [C|D] têm ambas 3 pivôs. Então

$$car(A) = car([A|B] = 3 < n = 4,$$

confirmando-se que o sistema é possível e indeterminado com grau de indeterminação n - car(A) = 1.

Sistema homogéneo e nulidade

Um sistema diz-se homogéneo se os termos independentes são todos nulos:

$$AX = 0$$
.

Todo o sistema homogéneo é possível pois possui pelo menos a solução nula, dita solução trivial. Mas se o sistema for indeterminado tem outras soluções, ditas não triviais.

A nulidade de uma matriz A $m \times n$, é denotada por nul(A), e é o número de incógnitas livres do sistema AX = 0, ou seja, é o grau de indeterminação deste sistema, isto é,

$$\operatorname{\mathsf{nul}}(A) = n - \operatorname{\mathsf{car}}(A).$$

Matrizes e Sistemas de Equações Lineares ALGA 📛 37/48

Aplicação: posição relativa de uma reta e de um plano

Seja [A|B] a matriz ampliada 3×4 do sistema constituído pelas equações cartesianas da reta \mathcal{R} e pela equação geral do plano \mathcal{P} de \mathbb{R}^3 . Existem três situações possíveis para a interseção de \mathcal{R} e \mathcal{P} .

A reta \mathcal{R} e o plano \mathcal{P} são concorrentes, isto é, intersetam-se num único ponto. Este caso ocorre quando o sistema [A|B] é possível e determinado, isto é,

$$\operatorname{car}([A|B]) = \operatorname{car}(A) = 3.$$

A reta \mathcal{R} e o plano \mathcal{P} são estritamente paralelos, isto é a sua interseção é o conjunto vazio. Este caso ocorre quando o sistema [A|B] é impossível, ou seja,

$$car([A|B]) > car(A) = 2.$$

▶ O plano plano \mathcal{P} contém a reta reta \mathcal{R} ($\mathcal{R} \subset \mathcal{P}$). Este caso ocorre quando o sistema [A|B] é possível e indeterminado, ou seja,

$$car([A|B]) = car(A) = 2.$$

Consideremos a reta r com equações cartesianas x+y-2z=4 e 2y+3z=6 e o plano S: -z=2. Verifica-se que

$$\begin{cases} x & +y & -2z & = 4 \\ 2y & +3z & = 6 \\ -z & = 2 \end{cases} \longrightarrow \begin{bmatrix} A|B \end{bmatrix} = \begin{bmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 2 & 3 & | & 6 \\ 0 & 0 & -1 & | & 2 \end{bmatrix}.$$

 $car(A) = car([A|B]) = 3 \longrightarrow a reta r e plano S são concorrentes$

Planos:
$$P: x + y + z = 3$$
, $T: 2x + 2y + 2z = -3$,

Reta: r: 3x + 2z = 9 e 3y + z = 0.

$$P \cap r: \quad [A|B] = \begin{bmatrix} 1 & 1 & 1 & | & 3 \\ 3 & 0 & 2 & | & 9 \\ 0 & 3 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 3 \\ 0 & -3 & -1 & | & 0 \\ 0 & 3 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 3 \\ 0 & -3 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$L_2 := L_2 - 3L_1 \qquad L_3 := L_3 + L_2$$

$$car(A) = car([A|B]) = 2 \longrightarrow o plano P contém a reta r$$

Exercício: recorrendo à característica, verifique que r e T são estritamente paralelos.

Aplicação: posição relativa de duas retas

Seja [A|B] a matriz ampliada 4×4 do sistema constituído pelas equações cartesianas das retas \mathcal{R} e \mathcal{R}' de \mathbb{R}^3 .

As retas \mathcal{R} e \mathcal{R}' são concorrentes, isto é, intersectam-se num único ponto. Este caso ocorre quando o sistema [A|B] é possível e determinado, ou seja, quando

$$\operatorname{car}([A|B])=\operatorname{car}(A)=3.$$

As retas \mathcal{R} e \mathcal{R}' são coincidentes. Este caso ocorre quando o sistema [A|B] é possível e indeterminado, ou seja, quando

$$car([A|B]) = car(A) = 2.$$

- As retas \mathcal{R} e \mathcal{R}' não têm pontos em comum $(\mathcal{R} \cap \mathcal{R}' = \emptyset)$. Este caso ocorre quando o sistema [A|B] é impossível. Existem duas situações possíveis:
 - As retas \mathcal{R} e \mathcal{R}' são estritamente paralelas e, portanto, são complanares. Este caso ocorre quando

$$car([A|B]) = 3 > car(A) = 2.$$

• As retas \mathcal{R} e \mathcal{R}' são enviesadas, ou seja, são <u>não</u> complanares. Este caso ocorre quando

$$car([A|B]) = 4 > car(A) = 3.$$

Retas: r: x-2y=3 e x+y+z=3, s: 2x-y+z=6 e x+y+z=-3; t: x=2 e y-z=-2.

Exercício: recorrendo à característica, verifique que as retas r e s são estritamente paralelas.

 $car(A) = car([A|B]) = 3 \longrightarrow as retas t e r são concorrentes$

Aplicação: posição relativa de dois planos

Seja [A|B] a matriz ampliada 2×4 do sistema constituído pelas equações gerais dos planos \mathcal{P} e \mathcal{P}' de \mathbb{R}^3 .

▶ os planos \mathcal{P} e \mathcal{P}' são estritamente paralelos $(\mathcal{P} \cap \mathcal{P}' = \emptyset)$ se o sistema [A|B] é impossível, ou seja, se

$$\operatorname{car}([A|B]) > \operatorname{car}(A) = 1.$$

- Se os planos planos \mathcal{P} e \mathcal{P}' têm pontos em comum, o sistema [A|B] é possível e indeterminado. Existem duas situações possíveis:
 - Os planos planos \mathcal{P} e \mathcal{P}' são coincidentes. Este caso ocorre guando

$$\operatorname{car}([A|B]) = \operatorname{car}(A) = 1.$$

• Os planos $\mathcal P$ e $\mathcal P'$ são concorrentes e a sua interseção é uma reta. Este caso ocorre quando

$$\operatorname{car}([A|B]) = \operatorname{car}(A) = 2.$$

Planos:
$$P: x + y + z = 3$$
, $Q: 2x - y + z = 6$, $T: 2x + 2y + 2z = -3$

 $car(A) = 1 < car([A|B]) = 2 \longrightarrow os planos P e T são estritamente paralelos$

$$\begin{array}{ll} P \cap Q: \ \ [A|B] = \ \left[\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 2 & -1 & 1 & 6 \end{array} \right] \ \sim \ \left[\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 0 & -3 & -1 & 0 \end{array} \right]. \\ L_2 := L_2 - 2L_1 \end{array}$$

 $car(A) = car([A|B]) = 2 \longrightarrow os planos P e Q são concorrentes$

Inversa de uma matriz quadrada

Uma matriz A $n \times n$ diz-se invertível se existe B $n \times n$ tal que

$$AB = BA = I_n. (1)$$

Teorema

Se A $n \times n$ é invertível, então existe uma única matriz B $n \times n$ que verifica a igualdade A B = B A = I_n .

- A matriz B que satisfaz as relações anteriores designa-se por inversa de A e denota-se por A^{-1} .
- Se não existe uma matriz B que satisfaça as igualdades (1), diz-se que A é uma matriz singular ou não invertível.

Teorema

Se $A \in B$ são matrizes $n \times n$ tais que $B A = I_n$, então $A B = I_n$.

Propriedades da inversa

Propriedades

Para quaisquer $A, B \ n \times n$ invertíveis e $c \in \mathbb{R} \setminus \{0\}$

- 1. $(A^{-1})^{-1} = A$;
- 2. $(AB)^{-1} = B^{-1}A^{-1}$;
- 3. $(cA)^{-1} = c^{-1}A^{-1}$;
- **4.** $(A^T)^{-1} = (A^{-1})^T$.

Método de cálculo da inversa

Método prático para determinar a inversa:

$$[A \,|\, I_n] \sim [I_n \,|\, A^{-1}]$$
 \uparrow
método de eliminação de Gauss-Jordan

Critérios de invertibilidade de uma matriz

Teorema Dada A $n \times n$, são equivalentes as afirmações

- 1. A é invertível
- 2. A é equivalente à matriz identidade I_n , isto é, $A \sim I_n$
- **3.** car(A) = n
- **4.** nul(A) = 0
- **5.** AX = 0 possui apenas a solução trivial.
- **6.** Para cada $B \ n \times 1$, o sistema AX = B tem uma única solução. Se A é invertível, a solução do sistema AX = B é $X = A^{-1}B$.