Problem Set 6

Due: Wednesday, February 22 at the beginning of class

Problem 1. Find the rational canonical forms of the following matrices over \mathbb{Q} :

$$\begin{bmatrix} 0 & -1 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} c & 0 & -1 \\ 0 & c & 1 \\ -1 & 1 & c \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Problem 2. Determine representatives for the conjugacy classes for $GL_3(\mathbb{F}_2)$.

Problem 3. Prove that two 3×3 matrices over a field F are similar if and only if they have the same characteristic and same minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.

Problem 4. Find all similarity classes of 3×3 matrices A over \mathbb{F}_2 satisfying $A^6 = I$.

Problem 5. Determine up to similarity all 2×2 rational matrices A (i.e., $A \in M_2(\mathbb{Q})$) such that $A^4 = I$ and $A^k \neq I$ for k < 4. Do the same if the matrix has entries from \mathbb{C} .

Problem 6. Prove that if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of the $n \times n$ matrix A then $\lambda_1^k, \ldots, \lambda_n^k$ are the eigenvalues of A^k for any $k \ge 0$.

Problem 7. Prove that any matrix A is similar to its transpose A^T .

Problem 8. Prove that an $n \times n$ matrix A with entries from \mathbb{C} satisfying $A^3 = A$ can be diagonalized. Is the same statement true over any field F?

Problem 9. Prove that there are no 3×3 matrices A over \mathbb{Q} with $A^8 = I$ but $A^4 \neq I$.

Problem 10. Show that the following matrices are similar in $M_p(\mathbb{F}_p)$:

$$\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

1