	Assignment 1 19UCS122
91.	What are the examples of Security Attacks?
>	
	The Open Systems Interconnection (OSI) security
	architecture
	provides a systematic fram ework for defining
	security attacks,
	mechanisms, and services.
	◆ Security attacks are classified as either passive
	attacks,
	which include the unauthorized reading of a message
	of file and traffic analysis or active attacks, such as
	of file and traffic analysis or active attacks, such as modification of messages or files, and denial of
	service.
	◆ A security mechanism is any process (or a device
	incorporating such a process) that is designed to
	detect, prevent, or recover from a security attack.
	Examples of mechanisms are encryption algorithms,
1.2	digital signatures, and authentication protocols.
	◆ Security services include authentication, access
	control, data confidentiality, data integrity,
	nonrepudiation, and availability

19UCS122 92. Explain x-800 Security Services 1.X. 800 de fines it in 5 major categories 2. Authentication - assurance that the communicating entity is the one claimed 3. Access Control-prevention of the unauthorized use of a resource 4. Data Confidentiality-protection of data from unauthorized disclosure 5. Data Integrity - assurance that data received is as sent by an authorized entity 6. Non-Repudiation-protection against denial by one of the parties in a communication Security Mechanisms (X. 800) Cont Divided into 1. specific security mechanisms: 2. pervasive security mechanisms

19UCS122

Q3	2. May be incorporated into the appropriate protocol	
	layer in order to provide some of the OSI security	
	services.	
	3. encipherment, digital signatures, access controls,	
data integrity, authentication exchange, traffic padding, routing control, notarization		
	5. Mechanisms that are not specific to any particular	
	OSIsecurity service or protocol layer.	
	6. trusted functionality, security labels, event	
	detection, security audit trails, security recovery	
MEL PER	X. 800 distinguishes between	
	reversible encipherment mechanisms and	
	irreversible encipherment mechanisms.	
	Areversible encipherment mechanism is	
	simply an eneryption algorithm that allows data to	
	be encrypted and subsequently decrypted.	
ta g		

9.5	What is the difference	12 740
<u>arka</u> In i	asymmetric Cryptogr	aphic system?
A A.	Symmetric Cryptography	Asymmetric Czyptography
	Same Key is used for encryption & decryption.	one key is used for encry- ption & another key is used for decryption.
L		Service Specialists
	very fast speed of encryption decryption.	or decryption.
	Size of resulting encry- Pted text is usually Same as or less than the original Plaintext Size.	Size of resulting encrypted text is more than the Original Plaintext Size.
	Both Parties Should Known the Key is Symmetric Key Encryption	One of the keys is known by the two parties in public key encryption.
	Usage - Confidentiality	Confidentiality, Digital Signature

1011/0100

	19UCS122
0 /	2
94.	Explain model for Network Security
->	<u> </u>
	Model for Network Security Cont. All the
	Model for Network Security Cont. All the techniques for providing security have two
	components:
	1 A security-related transformation on the
	information to be sent. Examples include the
	encryption of the message and the addition of a code
	to verify the identity of the sender
	2. Some secret information shared by the two
	principals and, it is hoped, unknown to the opponent.
	An example is an encryption key used
	using this model requires us to:
	1 design a suitable algorithm for the security
	transform ation
	2 generate the secret information (keys) used by the
	algorithm
	3. develop methods to distribute and sharethe secret
	information