Modelo de Referência OSI

Camada de Rede (Pág. 69 da Apostila)

Objetivos:

- Assegurar o transporte de unidades de dados, denominados pacotes, do sistema fonte ao sistema destinatário.
- A trajetória pode significar a passagem por diversos nós intermediários. Isto requer o conhecimento de todos os aspectos topológicos da rede, e esta informação, ser capaz de escolher o caminho a ser traçado.

Funções:

- Endereçamento
- Roteamento
- Controle de Congestionamento
 - OBS: Deve-se considerar o tráfego das mensagens, evitando-se a sobrecarga (congestionamento) de certos trechos de linhas de comunicação.

Endereçamento:

- Endereçamento Hierárquico:
 - O endereço é constituído conforme a posição de cada entidade na hierarquia da rede, sugerindo o local onde se encontra. Ex: MAN e WAN.

- Endereçamento Horizontal:
 - O endereço não tem relação com a localização da entidade na rede. Ex: LAN.

Roteamento:

- Algoritmos Estáticos:
 - Simplesmente entregam a mensagem.

- Algoritmos Adaptativos:
 - Levam em conta a situação do tráfego da rede e a topologia utilizada.

Roteamento - Algoritmos Estáticos

- Algoritmo do caminho mais curto:
 - Representa a sub-rede como um grafo. O objetivo é encontrar o caminho mais curto.
 - O conceito de caminho mais curto pode levar em consideração diferentes aspectos:
 - Número de nós
 - Distância geográfica entre pontos
 - Tempo de espera em cada nó da trajetória
 - etc...

Ex: Algoritmo do caminho mais curto

- 1.Nenhum caminho é conhecido e os nós são identificados como infinito.
- 2.O objetivo será encontrar o caminho mais curto entre A e D.
- 3.0 nó A será marcado como referência.

Ex: Algoritmo do caminho mais curto

- 1.Os nós adjacentes a "A" serão analisados.
- 2.Estes serão etiquetados com a distância que os separa de "A".
- 3. Ainda, será marcado o último nó a partir do qual foi realizado o cálculo.

Ex: Algoritmo do caminho mais curto

A seguir é apresentado a progressão do algoritmo.

Resultado: A-B-E-F-H-D

- Leva em conta a possibilidade de existência de diversos caminhos entre 2 nós.
- Cada nó mantém atualizada uma tabela com uma linha para cada destino da rede.
- Cada nó terá diferentes linhas de saída para um mesmo destino, classificadas em ordem decrescente, do melhor ao menos eficiente, com um peso relativo.

- Antes do envio de um pacote, o nó transmissor gera um número aleatório para definir o caminho, utilizando os pesos como probabilidade.
- As tabelas são criadas de maneira estática pelo administrador do sistema e carregadas em cada unidade na inicialização da rede.

Exemplo de tabela para o nó J. Gera-se um número aleatório entre 0 e 0,99 para determinar o caminho.

Α	Α	0,63	П	0,21	Пн	0,16
	_		-			
В	A	0,46	H	0,31		0,23
С	Α	0,34		0,33	Н	0,33
D	Н	0,50	Α	0,25		0,25
Е	Α	0,40		0,40	Н	0,20
F	Α	0,34	Н	0,33		0,33
G	Н	0,46	Α	0,31	K	0,23
Н	Н	0,63	K	0,21	Α	0,16
	I	0,65	Α	0,22	Н	0,13
K	K	0,67	Н	0,22	Α	0,11
L	K	0,42	Н	0,42	Α	0,16

- Vantagens sobre o algoritmo do menor caminho:
 - Definir diferentes classes de tráfego
 - Confiabilidade. Várias linhas podem ser perdidas sem que se perca sua conectividade.

Roteamento Dinâmico Distribuído

- As estações trocam informações de roteamento com seus vizinhos imediatos, contendo custos de transmissão a partir dela (gera-se uma tabela).
- Esta tabela contém, para cada destino possível, o nó preferencial de saída e o custo estimando de transmissão para este nó.
- Para decidir a rota, a estação emissora soma o custo de transmissão até o vizinho imediato com o custo estimado dali até o destino final.

Roteamento Dinâmico Distribuído

Roteamento Dinâmico Distribuído

A seguir temos um exemplo de rotina para varredura das tabelas de roteamento. Consideremos i = linhas, j = colunas e ainda uma matriz com 12 roteadores:

```
int i, j, x;
int matriz[12][12]; // esta matriz contem as tabelas recebidas
for (i=0; i<=11; i++) {
  for (j=0; j<=11; j++) {
     x = matriz[i][j] + matriz[j][9];
     if (x < matriz[i][9])
         matriz[i][9] = x;
  // onde 9 = coluna da matriz que se deseja calcular (J)
```

Histórico dos Algoritmos de Roteamento na Internet

- Um algoritmo baseado neste princípio dinâmico distribuído, denominado RIP (Routing Information Protocol) foi implementado originalmente na ARPANET e posteriormente na Internet (parte do protocolo IP até 1990).
- Após 1990 foi substituído por um protocolo denominado OSPF (Open shortest Path First).

Controle de Congestionamento

- Pré-alocação de Buffers
- Destruição de pacotes
- Controle de fluxo
- Controle Isarítmico
- Pacotes de Estrangulamento

Exemplos de tempo de resposta

- Resposta rápida (interno):
 - ping www.pb.cefetpr.br
- Resposta média (dentro do país):
 - ping terra.com.br
- Resposta lenta (exterior):
 - ping www.msi.com.tw