Résolution de Problèmes Introduction

Marie Pelleau

marie.pelleau@univ-cotedazur.fr

Master 1 - Semestre 1

Marie Pelleau Introduction 2020-2021 1/2

Plan du cours

Cours magistraux

- Algorithmes Gloutons
- Recherche Locale
- Programmation Par Contraintes

Contrôle des connaissances

- Contrôle continu
- Contrôle terminal

Remerciements

- Wikipedia
- Jean-Charles Régin
- Olivier Bournez, LIX
- Christine Solnon, Université Lyon
- Anne Benoit, ENS Lyon
- Roman Barták, Charles University

Marie Pelleau Introduction 2020-2021 2 / 29

Références

- T. Cormen, C. Leiserson, R. Rivest, Introduction à l'algorithmique, Dunod
- D. Knuth, The Art of Computer Programming
- M. Gondran et M. Minoux, Graphes et Algorithmes
- Autres livres selon votre goût : ne pas hésiter à en consulter plusieurs

Marie Pelleau Introduction 2020-2021 3/29 Marie Pelleau Introduction 2020-2021 4/

Problème

- C'est une question générale : plus court chemin entre deux points, emploi du temps
- Décrit par les données et une question
- Répondre à cette question c'est résoudre le problème
- En informatique, on veut une réponse générale à ce problème, autrement dit un algorithme qui marche dans tous les cas
- Instance : un jeu de données particulier. Par exemple plus court chemin entre Nice et Nantes

Marie Pelleau Introduction 2020-2021 5 /

TSP

Traveling Salesman Problem (TSP)

Description

- Données : une liste de villes et leurs distances deux à deux
- Question : trouver le plus petit tour qui visite chaque ville exactement une fois

Formulation mathématique

Étant donné un graphe complet pondéré, trouver un cycle hamiltonien de poids minimum

Problème

- Certains problèmes sont faciles : Trier des nombres, Inverser une chaîne
- D'autres sont difficiles : le TSP

Marie Pelleau Introduction 2020-2021 6 / 29

TSI

TSP

Marie Pelleau Introduction 2020-2021 7/29 Marie Pelleau Introduction 2020-2021 8/

2020-2021

Т

TSP

TSP

TSP

TSP

Description

- Certains problèmes sont équivalent au problème du TSP
 - problème d'ordonnancement : trouver l'ordre dans lequel on doit construire des objets
- La version "pure" du TSP n'est pas fréquente en pratique, on a souvent des problèmes qui sont
 - Non euclidiens
 - Asymétriques
- Ces variations ne rendent pas le problème plus facile
- Problème assez commun
 - Vehicle routing (time windows, pickup and delivery...)

Marie Pelleau Introduction 2020-2021 9 / 29

TSF

TSP

Allemagne 15 112 villes, résolu en 2001

Réseau de 110 processeurs (550 Mhz) à Rice university et Princeton

Temps total d'utilisation des ordinateurs a été de 22.6 années

Marie Pelleau Introduction 2020-2021 11/2

TSP

Suède 24 978 villes, résolu en 2004

2020-2021

TSP

- Il existe plusieurs solveurs
- Le plus connu est Concorde de William Cook (gratuit)
- Les solveurs de TSP sont généralement dédiées à la résolution du problème pur
- Il est presque impossible de les utiliser si on change un tout petit peu le problème (asymétrique, contraintes annexes, ...)

TSP

Complexité

Algorithmes

Marie Pellea

- Tous les algorithmes ne sont pas équivalents, on les différencie selon 2 critères
 - Temps de calcul : lents vs rapides
 - Mémoire utilisée : peu vs beaucoup
- On parle de complexité en temps (vitesse) ou en espace (mémoire utilisée)

2020-2021

2020-2021

Algorithme

Complexité

Algorithm

Algorithmes Complexité

Complexité des algorithmes

But

- Avoir une idée de la difficulté des problèmes
- Donner une idée du temps de calcul ou de l'espace nécessaire pour résoudre un problème
- Cela va permettre de comparer les algorithmes
- Exprimée en fonction du nombre de données et de leur taille
- À défaut de pouvoir faire mieux :
 - On considère que les opérations sont toutes équivalentes
 - Seul l'ordre de grandeur nous intéresse
 - On considère uniquement le pire des cas
- Pour n données on aura : O(n) linéaire, $O(n^2)$ quadratique, $O(n \log(n))$ linéarithmique

Marie Pelleau

ntroductio

20-2021

21

/ 29

Igorithmes

Complexité

NP-Complétude

Pour certains problèmes, on ne sait pas s'il existe un algorithme rapide. On connaît des algorithmes exponentiels en temps : 2^n

21 problèmes NP-complets de Karp

- Hitting-set : Recouvrement (Set cover)
- Sac à dos (Knapsack)
- Somme (Subset sum)
- Rangement (Bin packing)
- Coloriage (Graph coloring)
- Clique maximale

Remarque

Les problèmes NP-Complets sont tous équivalents ! Ils se ressemblent tous. On passe de l'un à l'autre

NP-Complétude

LE problème majeur de l'informatique actuelle

P vs NP

- Facile = algorithme polynomial
- Difficile = pas d'algorithme polynomial connu
- Existe-t-il toujours un algorithme polynomial? C'est LA question

 Marie Pelleau
 Introduction
 2020-2021
 17 / 29

Algorith

Complexité

Hitting-set: Recouvrement (set cover)

Description

Ampoules et Interrupteurs

- Un interrupteur est relié à certaines ampoules
- Si on appuie sur l'interrupteur alors on allume toutes les ampoules reliées
- Question : sur combien d'interrupteur au minimum doit-on appuyer pour allumer toutes les ampoules ?
- On veut une réponse générale qui marche pour toutes les instances

 Marie Pelleau
 Introduction
 2020-2021
 18 / 29
 Marie Pelleau
 Introduction
 2020-2021
 19 /

Hitting-set: Recouvrement (set cover)

Exemple

n interrupteurs, 2 choix par interrupteur $\Rightarrow 2^n$

2020-2021

Algorithmes Complexité

Hitting-set: Recouvrement (set cover)

2020-2021

n interrupteurs, 2 choix par interrupteur $\Rightarrow 2^n$

Hitting-set: Recouvrement (set cover)

n interrupteurs, 2 choix par interrupteur $\Rightarrow 2^n$

2020-2021

Hitting-set: Recouvrement (set cover)

Exemple

n interrupteurs, 2 choix par interrupteur $\Rightarrow 2^n$

Coloriage des sommets d'un graphe

Description

On colorie les sommets d'un graphe de façon à ce que 2 sommets reliés par une arête n'aient pas la même couleur

Principe de reliement-contraction

Pour colorier un graphe complet (une clique) contenant *n* sommets il faut n couleurs

- On prend 2 sommets a et b non reliés
- Soit ils ont la même couleur ⇒ Contraction
- Soit ils ont une couleur différente ⇒ Reliement
- On arrive à une clique ⇒ le nombre de sommets donne le nombre de couleurs

p arêtes potentielles, 2 choix par arêtes (même couleur ou couleurs différente) $\Rightarrow 2^p$

2020-2021

Complexité

Facile vs Difficile

- On a une matrice
- Pour chaque ligne et pour chaque colonne, on connait le nombre de 1
- Définir précisément les 0 et les 1 de cette matrice

La différence peut être subtile

• Problème pur : facile

On introduit la connexité : difficile

On introduit la convexité : difficile

• On introduit la connexité et la convexité : facile

Coloriage des sommets d'un graphe

de décision

Problème de décision

Un problème de décision est une question mathématiquement définie portant sur des paramètres donnés et demandant une réponse par oui ou non

Exemple

- Étant donné un ensemble de villes et une distance d, existe-t-il un chemin passant par toutes les villes et de longueur inférieure à d?
- Peut-on colorier un graphe avec *k* couleurs ?

d'optimisation

d'optimisation

Problème d'optimisation

- Un problème d'optimisation est le problème qui consiste à trouver la meilleure solution d'un ensemble de solutions faisables
- Un problème d'optimisation a une fonction objectif (min ou max)
- Une solution optimale est une solution faisable, telle que son coût est le minimum (resp. maximum) de toutes les solutions faisables
- Si le but est de minimiser alors c'est un problème de minimisation, sinon c'est un problème de maximisation
- En changeant le signe de la fonction il est possible de passer d'un problème de minimisation à un problème de maximisation

Exemple

- Plus court chemin passant par toutes les villes ?
- Le nombre minimum de couleurs pour colorier un graphe ?

2020-2021

Optimisation et Décision

À chaque problème d'optimisation correspond un problème de décision qui demande s'il existe une solution ayant une valeur particulière

Exemple

On trouve un plus court chemin entre s et t dont la valeur est c

- Problème de décision : Existe-t-il un chemin de coût c?
- Preuve d'optimalité : Existe-t-il un chemin de de coût < c ?

Problème d'optimisation

Il faut bien distinguer deux choses

- Une solution optimale
- La preuve qu'une solution est bien une solution optimale (preuve d'optimalité)

Attention à ne pas trop généraliser

- Trouver l'optimalité et la prouver peuvent être lent ou rapide
- L'un peut être rapide et pas l'autre

2020-2021

Optimisation et Décision

Marie Pellea

On résout souvent les problèmes d'optimisation en résolvant une suite de problèmes de décision

- On cherche une solution faisable, elle a un coût k
- On pose cherche s'il existe une solution de coût < k et on répète le processus
- À la fin, on prouve bien l'optimalité, car la dernière résolution ne trouve pas de solution

Marie Pelle 2020-2021

Problèmes Difficiles

- On ne sait pas si les problèmes difficiles peuvent être résolus rapidement
- Cela veut dire qu'actuellement, on ne sait pas les résoudre efficacement (en temps polynomial), donc on a une exponentielle qui est toujours présente

Dans ce cours : on va voir comment proposer des solutions à ces problèmes

- avec des heuristiques (inexact mais rapide)
- avec de l'énumération complète des combinaisons (exact mais lent)

Marie Pelleau Introduction 2020-2021 29 / 2