Знакозмінні ряди

доц. І.В. Орловський

1. Основні поняття

Означення 1

Числовий ряд

$$\sum_{n=1}^{\infty} a_n$$

який містить нескінченну кількість як додатних, так і від'ємних членів називають знакозмінним рядом.

Наприклад, ряди

$$\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^2} = \frac{\sin \alpha}{1} + \frac{\sin 2\alpha}{2^2} + \dots (\alpha = const),$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

є знакозмінними рядами.

Теорема 1

Нехай дано знакозмінний ряд $\sum\limits_{n=1}^{\infty} a_n$. Якщо збігається ряд $\sum\limits_{n=1}^{\infty} |a_n|$, який складається з абсолютних величин членів даного ряду, тоді збігається і сам ряд $\sum\limits_{n=1}^{\infty} a_n$.

Доведення

Нехай ряд $\sum\limits_{n=1}^{\infty}\,|a_n|$ збігається. Розглянемо допоміжний ряд

$$\sum_{n=1}^{\infty} (a_n + |a_n|) = (a_1 + |a_1|) + (a_2 + |a_2|) + \ldots + (a_n + |a_n|) + \ldots,$$

який має невід'ємні члени, що задовольняють нерівності

$$0 \le a_n + |a_n| \le 2|a_n|, \ n \in \mathbb{N}.$$

Оскільки ряд $\sum_{n=1}^{\infty} 2|a_n|$ збігається, то за 1-ю ознакою порівняння збігається й допоміжний ряд. Тоді, збігається й різниця рядів

$$\sum_{n=1}^{\infty} (a_n + |a_n|) - \sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n.$$

Означення 2

• Знакозмінний числовий ряд $\sum\limits_{n=1}^{\infty}\,a_n$ називають абсолютно збіжним, якщо збігається

ряд
$$\sum\limits_{n=1}^{\infty}\,|a_n|.$$

• Якщо ряд $\sum\limits_{n=1}^{\infty} a_n$ збігається, а ряд $\sum\limits_{n=1}^{\infty} |a_n|$ розбігається, то ряд $\sum\limits_{n=1}^{\infty} a_n$ називають умовно збіжним.

2. Знакопочережні ряди. Ознака Лейбніца

Розглянемо частковий випадок знакозмінних рядів.

Означення 3

Знакозмінний ряд вигляду

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n-1} a_n + \dots,$$

де $a_n>0,\;n\in\mathbb{N}$, називають знакопочережним (знакочергувальним) рядом.

Теорема 2 (Ознака Лейбніца)

Знакопочережний ряд $\sum\limits_{n=1}^{\infty}{(-1)^{n-1}a_n},\;a_n>0,\;n\in\mathbb{N}$, збігається, якщо:

- lacktriangle числова послідовність $\{a_n\}$ не зростає: $a_1 \geq a_2 \geq a_3 \geq \ldots$;
- $\lim_{n\to\infty}a_n=0.$

При цьому сума S ряду $\sum\limits_{n=1}^{\infty}{(-1)^{n-1}a_n}$ задовольня ϵ нерівності

Оцінка залишку ряду Лейбніца

Як відомо, похибкою наближеного обчислення суми збіжного ряду ε n-й залишок ряду:

$$R_n = S - S_n.$$

Тому оцінка залишку ряду має велике значення. Задача полягає в наступному: за заданим $\varepsilon > 0$ знайти таке (найменше) n, щоб виконувалась нерівність

$$|R_n| < \varepsilon$$
.

Для рядів Лейбніца має місце проста та зручна оцінка залишку ряду.

Теорема З

Залишок ряду Лейбніца має знак першого з відкинутих членів ряду та не перевищує його за модулем:

$$|R_n| \le a_{n+1}. (1)$$

3. Властивості абсолютно збіжних знакозмінних рядів

Якщо ряд $\sum\limits_{n=1}^{\infty}a_n$ збігається абсолютно $\left(\sum\limits_{n=1}^{\infty}a_n=S\right)$, то ряд $\sum\limits_{n=1}^{\infty}ca_n$ також збігається абсолютно, причому

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n = cS.$$

Нехай $\sum\limits_{n=1}^\infty a_n$ та $\sum\limits_{n=1}^\infty b_n$ – абсолютно збіжні ряди, причому $\sum\limits_{n=1}^\infty a_n=S_a$ та $\sum\limits_{n=1}^\infty b_n=S_a$. Тоді ряди $\sum\limits_{n=1}^\infty (a_n\pm b_n)$ також є абсолютно збіжними, причому їх суми

$$\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n = S_a \pm S_b.$$

Означення 4

Добутком (за Коші) двох рядів $\sum\limits_{n=1}^{\infty}\,a_n\,$ та $\sum\limits_{n=1}^{\infty}\,b_n\,$ називають ряд $\sum\limits_{n=1}^{\infty}\,c_n$, де

$$c_n = a_1b_n + a_2b_{n-1} + \ldots + a_nb_1 = \sum_{k=1}^n a_kb_{n-k+1}.$$

Якщо $\sum\limits_{n=1}^\infty \,a_n$ та $\sum\limits_{n=1}^\infty \,b_n$ – абсолютно збіжні ряди, причому $\sum\limits_{n=1}^\infty \,a_n=S_a$ та $\sum\limits_{n=1}^\infty \,b_n=S_a$

 S_b , тоді добуток цих двох рядів $\sum\limits_{n=1}^{\infty} c_n$ (за Коші), також є абсолютно збіжним, причому його сума дорівнює $S_a \cdot S_b$.

IV

Якщо ряд $\sum_{n=1}^{\infty} a_n$ збігається умовно, тоді два ряди, які складаються тільки з додатних та тільки з від'ємних членів даного ряду є розбіжними.

V (Теорема Діріхле)

Нехай ряд $\sum\limits_{n=1}^{\infty}\,a_n$ збігається абсолютно і його сума дорівнює S. Тоді ряд, який отримано з нього довільною перестановкою його членів буде також абсолютно збіжним і матиме ту ж саму суму S.

VI (Теорема Рімана)

Якщо ряд $\sum\limits_{n=1}^{\infty}a_n$ збігається умовно, то для довільного наперед заданого числа $S\in$

n=1 $\mathbb{R}\cup\{-\infty,\,+\infty\}$ існує така перестановка натуральних чисел $\{n_k,k\geq 1\}$, що ряд $\sum\limits_{k=1}^\infty\,a_{n_k}$ буде збіжним і матиме суму S.

Література

- [1] Ряди. Функції комплексної змінної. Операційне числення. Конспект лекцій / Уклад.: В.О. Гайдей, Л.Б. Федорова, І.В. Алєксєєва, О.О. Диховичний. К: НТУУ «КПІ», 2013. 108 с.
- [2] Дубовик В.П., Юрик І.І. *Вища математика*, К.: Вища школа, 1998.
- [3] Письменный Д.Т. Конспект лекций по высшей математике, 2 часть. М.: Рольф, 2000.