CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Cache Organization

Lecture No.- 02

Recap of Previous Lecture

Topic

Associative Memory

Topic

Locality of Reference

Topic

Cache Memory

Topics to be Covered

tie.
$$t_{avg} = H * t_{cm} + (I-H)(t_{cm} + t_{mm})$$

$$= t_{cm} + (I-H)t_{mm}$$

Topic: When to Use Which Formula

#Q. Assume that for a certain processor, a read request takes 200 nanoseconds on a cache miss and 25 nanoseconds on a cache hit. Suppose while running a program, it was observed that 60% of the processor's read requests result in a cache hit. The average read access time in nanoseconds is______?

Use general formula:

tang = 0.6 *25 + 0.4 *200= 95 ns

mem which is closer to OPU =) Cache

#Q. In a two-level hierarchy, if the top level has an access time of 8 ns and the bottom level has an access time of 60 ns, what is the hit rate on the top level required to give an average access time of 10ns?

Hierarchical access

$$10 = 8 + (1-H) 60$$

 $H = 0.967 = 0.97$

#Q. In previous question if hit rate of the top-level memory is 100%, then the access time of bottom level memory will be 60 ns?

main mem.

$$t_{cm} = 8ns$$
 $t_{mm} = 60ns$
 $H = 100%$

Ques)

tcm = 15 ns

tmm = 200 ns

tierarchical access

Tang = 12 ns

H = ---- {

tang < tim > not possible

- cerong question

tang > tcm

#Q. A computer system contains a cache. Uncached memory access takes 7 times longer than access to cache. If cache has a hit ratio 0.9. The ratio of cached memory access time to uncached memory access time is?

uncached mem. => mem. system without cache => Main memory cached mem. => ___ 11 ___ with _11_ => Cache, main memory both

=
$$\frac{\text{Cached mem. access time }}{\text{uncached mem. access time}} = \frac{0.9 * x + 0.1 * 7x}{7x}$$

= $\frac{1.6}{7} = 0.228 = 0.23$

tha Consider a system which has a main memory with access time of 200 ns. The system later on had a cache with hit rate of 90% and access time of 30 ns. What is the speed up of the system with using cache over without cache ?

Ans:

$$\frac{1}{501^{n}} = \frac{\text{mem. access time with cache}}{\text{mem. access time with cache}} = \frac{200}{0.9 * 30 + 0.1 * 200} = \frac{200}{47}$$

= 4.255

Topic: Tavg When Locality of Reference is Used


```
simultaneous access:
           tang = H*tim + (1-H) tht
 rierarchical access:-
             tang = H*tcm + (1-H)(tcm+tbt)
                   = tcm + (1-H) tbt
tot = block transfer time from m.m. to cache
```


#Q. In a two-level hierarchy, the top level has an access time of 10 ns and hit rate of 90%. If the block transfer from main memory to cache takes 500ns in case of miss then average memory access time is <u>60</u>?

$$t_{cm} = 1000$$

 $H = 90\%$
 $t_{bt} = 50000$
 $t_{cm} = 10 + (0.1) * 50000$
 $t_{om} = 6000$

#Q. 1 byte transfer from mm to cm takes 50ns.

Block size = 16 bytes.

Block transfer time = $\frac{800}{}$ nanoseconds?

#Q. 1 byte transfer from mm to cm takes 50ns.

Block size =
$$8 \text{ words.} = 8 \text{ #4} = 32 \text{ bytes}$$

1 word size = 4 bytes

Block transfer time = 1600 nanoseconds?

#Q. Block size = 128 bytes

First byte transfer from mm to cm = 10ns

Remaining each byte from mm to cm transfer takes = 2ns

Block transfer time = 269 nanoseconds?

$$t_{bt} = 10ns + (124) * 2ns$$

$$= 264ns$$

GATE-PYQ

#Q. A direct mapped cache memory of 1 MB has a block size of 256 bytes. The cache has an access time of 3 ns and a hit rate of 94%. During a cache miss, it takes 20ns to bring the first word of a block from the main memory, while each subsequent word takes 5 ns. The word size is 64 bits. The average memory access time in ns (round off to 1 decimal place) is 13.3?

Good = 64 bits = 8 bytes

$$13.5$$

$$13.5$$

$$13.5$$

$$13.5$$

$$13.5$$

$$13.5$$

$$13.5$$

13.5

Tot = 20 + 31 *5 hs = 175 hsSimultaneous:-Tang = 0.94 *3 + 0.06 * 175 = 13.3 hs

Mierarchical

Tang = 0.94 *3 + 0.06 * (3+175) = 13.5 ns

2 mins Summary

Topic

Cache Memory

Topic

Average Memory Access Time

Topic

Cache Write

Happy Learning THANK - YOU