Autour du théorème de Polya

 $\operatorname{MAT451}$ - Mostafa Adnane, Ayman Jemel, Ismail Lemhadri $22~\mathrm{mars}~2016$

Abstract

On souhaite dénombrer les coloriages d'un ensemble fini X sur lequel agit un groupe fini G. On considère que deux coloriages sont identiques si l'un se déduit de l'autre sous l'action de G.

Par exemple, combien y a-t-il de manières de colorier un collier à 11 perles en ayant 3 perles rouges, 4 perles noires et 4 perles blanches ?

Un autre exemple est celui des coloriages des faces d'un dodécaèdre.

Pour répondre à ces questions, nous utilisons le théorème de Polya. C'est un outil de combinatoire découvert en 1937 par G. Polya, et il l'a appliqué notamment à la chimie pour compter les isomères d'une molécule donnée.

On expose une preuve de ce théorème basée sur la théorie des groupes et on examine ses conséquences sur des applications.

Notations

Soit $C=\{1,...,n\}$ un emsemble de couleurs. Un <u>coloriage</u> de X est un élément f de C^X . G est un sous-groupe du groupe des permutations de X et on cherche à déterminer le nombre d'orbites de l'action des $\sigma \in G$ sur C^X : $\sigma.c=\sigma \circ c$.

Rappel: le lemme de Burnside

Rappelons la formule de Burnside, vue dans l'exercice 8 de la PC1. Le nombre d'orbites sous l'action de G vaut

$$|O_G(X) = \frac{1}{|G|} \Sigma_{\sigma \in G} |X^{\sigma}|$$

où
$$X^{\sigma} = \{x \in X, \sigma.x = x\}.$$

Le théorème de Polya

On appelle polynôme indicateur de cycles du groupe G le polynôme

$$Z_G = \frac{1}{|G|} \sum_{\sigma \in G} \prod_{1 \le j \le N} X_j^{n_{\sigma}(j)} \in \mathbb{Z}[X_1, ..., X_n]$$

où $n_{\sigma}(j)$ est le nombre d'orbites de longueur j sous l'action de σ .

Soient $W: C^X \to \mathbb{Z}[X_1,...,X_n]$ qui à f associe $\prod_{1 \leq i \leq n} X_{f(i)}$ et $W_G = \sum_{f \in \mathcal{R}^X|_{\sim}} W(f)$.

Si $f \sim g$ alors W(f) = W(g), donc W_G est bien définie.

On remarque que le nombre de classes de coloriages total est $W_G(1,...,1)$. Le théorème de Polya affirme que

$$W_G = Z_G(X_1 + ... + X_n, X_1^2 + ... + X_n^2, ..., X_1^N + ... X_n^N)$$

où chaque X_i est une variable qui représente la couleur i.

Lemme:

Soit $\mathcal{F} \subset \mathcal{R}^G$ tel que $\forall f \in \mathcal{F}, \forall \sigma \in G, \sigma.f \in \mathcal{F}$. On pose $W_{G,\mathcal{F}} = \Sigma_{f \in \mathcal{F}|\sim} W(f)$. On a $W_{G,\mathcal{F}} = \frac{1}{|G|} \Sigma_{\sigma \in G} \Sigma_{f \in \mathcal{F}, \sigma.f = f} W(f)$.

Preuve du lemme:

Pour tout A dans l'image de W, on note $X_A = \{f \in \mathcal{F}, W(f) = A\}$. Il n'est pas difficile de voir que G opère sur X_A par $\sigma.f = f \circ \sigma$ et que les orbites de X_A sous cette action sont exactement les classes d'éléments f de $\mathcal{R}^X | \sim$ qui sont telles que W(f) = A.

Ainsi

$$W_G = \sum_{A} |O_G(X_A)| A$$

$$= \sum_{A} \frac{1}{|G|} \Sigma_{\sigma \in G} |\{f \in X_A, \sigma. f = f\}| A$$

$$= \frac{1}{|G|} \sum_{\sigma \in G} \Sigma_A |\{f \in X_A, \sigma. f = f\}| A$$

$$= \frac{1}{|G|} \sum_{\sigma \in G} \sum_{f \in \mathcal{F}} W(f)$$

$$\sigma. f = f$$

Preuve du théorème :

On prend $\mathcal{F} = \mathcal{R}^X$.

A σ fixé, les fonctions f telles que $\sigma.f = f$ sont les fonctions constantes sur les orbites de X sous l'action de σ , qu'on note $O_1, ..., O_k$. On peut les écrire $f = g \circ r$

où r(x) es le numéro de l'orbite de x et $g \in C^k$. On a alors $W(f) = \prod_{i=1}^n X_{g(i)}^{|O_i|}$ et

$$\begin{split} \sum_{f/\sigma.f=f} W(f) &= \sum_{g \in C^k} \prod_{1 \le i \le k} X_{g(i)}^{|O_i|} \\ &= \prod_{1 \le i \le k} (\sum_{x \in C} X_x^{|O_i|}) \\ &= \prod_{1 \le j \le n} \prod_{i} (\sum_{x \in C} X_x^{|O_i|}) \\ &= \prod_{1 \le j \le n} (\sum_{x \in C} X_x^{|O_i|})^{n_{\sigma}(j)} \end{split}$$

D'où $W_G = \frac{1}{|G|} \Sigma_{\sigma \in G} \Pi_{1 \leq j \leq n} (\Sigma_{x \in C} X_x^{|O_i|})^{n_{\sigma}(j)} = Z_G(X_1 + ... + X_n, X_1^2 + ... + X_n^2, ..., X_1^N + ... X_n^N)$, ce qui conclut la preuve.

Applications

Exemple du collier

On s'intéresse maintenant au problème du coloriage d'un collier tel que décrit dans l'introduction. Le groupe en question est le groupe des déplacements du collier, noté D_{11} . Il est composé de :

- l'identité qui donne le terme $(\Sigma_{1 \leq i \leq 3} X_i)^{11}$, puisqu'ici n=3 car on colorie avec du blanc, noir et rouge;
- 10 rotations non triviales, qui n'ont chacune qu'un seul cycle, à 11 éléments car 11 est premier. Ceci donne $10(X_1^{11} + X_2^{11} + X_3^{11})$.
- 11 réflexions dont les axes sont respectivement les 11 axes de symétrie du collier, chacun coupant une perle en deux et laissant 5 perles entières de chaque côté. Nous obtenons le terme $11(X_1 + X_2 + X_3)(X_1^2 + X_2^2 + X_3^2)^5$.

Conclusion:
$$W = \frac{1}{22} \Big((X_1 + X_2 + X_3)^{11} + 10(X_1^{11} + X_2^{11} + X_3^{11}) + 11(X_1 + X_2 + X_3)(X_1^2 + X_2^2 + X_3^2)^5 \Big)$$

Donc pour un type de coloriage f de type $(n_1,...,n_n)$, il suffit de calculer le coefficient du monôme $X_1^{n_1}...X_n^{n_n}$ dans W. Pour notre exemple ce monôme est $X_1^3X_2^4X_3^4$ et on obtient le coefficient $\frac{1}{22}(C_3^{11}\times C_8^4+11\times C_5^1\times C_4^3)=\frac{1}{22}(11550+11\times 20)=535$, soit 535 solutions.

Exemple du dodécaèdre

Le groupe G est d'ordre $3\times 20=60$ et est composé de :

- L'identité, d'indicatrice des cycles X_1^{20} ;

- Les rotations non triviales autour d'un sommet, au nombre de $10 \times 2 = 20$ et d'indicatrice des cycles $X_1^2 X_3^6$;
- Les rotations non triviales autour d'une arête, au nombre de 15 et d'indicatrice des cycles X_2^{10} ;
- Les rotations non triviales autour d'une face, au nombre de $6\times 4=24$ et d'indicatrice des cycles X_5^4 .

Ainsi $Z_G = \frac{1}{60}(X_1^{20} + 20X_1^2X_3^6 + 15X_2^{10} + 24X_5^4)$. W_G se déduit de Z_G par le théorème de Polya et on en déduit le nombre de coloriages pour tout type $(n_1, ..., n_q)$.

Remarque:

Nous aurions pu nous contenter de la formule de Burnside pour dénombrer le nombre d'orbites distinctes pour un coloriage ξ fixé à l'avance. En effet, deux coloriages ayant même type, on peut restreindre l'action du groupe de transformations sur l'ensemble des configurations de type ξ , i.e considérer l'ensemble des classes d'équivalence de coloriages du type ξ . Toutefois, l'intérêt du théorème de Polya est qu'une fois W calculé, on en déduit ce qu'on cherche par simple lecture des coefficients du monôme correspondant, ce qui évite de tout reprendre lorsque le type de coloriage change.

References

- [1] G.Polya, R.C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds.
- [2] D. Perrin, Cours d'algèbre.
- [3] Michèle Audin, Géométrie, EDP Sciences.