

Logică Matematică și Computațională

Anul I, Semestrul I 2021/2022

Laurențiu Leuștean

Pagina web: http://cs.unibuc.ro/~lleustean/

PRELIMINARII

Operații cu mulțimi

Fie A, B, T mulțimi a.î. $A, B \subseteq T$.

$$A \cup B = \{x \in T \mid x \in A \text{ sau } x \in B\}$$

$$A \cap B = \{x \in T \mid x \in A \text{ si } x \in B\}$$

$$A \setminus B = \{x \in T \mid x \in A \text{ si } x \notin B\}$$

$$C_T A = T \setminus A = \{x \in T \mid x \notin A\}$$

Notații: $\mathbb{N} = \{0,1,2,\ldots\}$ este mulțimea numerelor naturale; $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$; \mathbb{Z} este mulțimea numerelor întregi; \mathbb{R} este mulțimea numerelor reale; \mathbb{Q} este mulțimea numerelor raționale.

Mulţimea părţilor lui T se notează 2^T sau $\mathcal{P}(T)$. Aşadar, $2^T = \mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Operații cu mulțimi

Notăm cu (a, b) perechea ordonată formată din a și b (care sunt componentele lui (a, b)).

Observații: dacă $a \neq b$, atunci $(a, b) \neq (b, a)$; $(a, b) \neq \{a, b\}$; (7,7) este o pereche ordonată validă; două perechi ordonate (a, b) și (c, d) sunt egale ddacă a = c și b = d.

Definiție

Produsul cartezian a două mulțimi A și B este definit astfel:

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}$$

Exercițiu.

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Fie A și B mulțimi și $f:A\to B$ o funcție.

Spunem că $f: A \to B$ este definită pe A cu valori în B, A se numește domeniul de definiție al funcției f și B se numește domeniul valorilor sau codomeniul lui f.

Fie $X \subseteq A$ și $Y \subseteq B$.

- ▶ $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f; f(A) este imaginea lui f.
- ▶ $f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.
- ▶ Fie $f|_X: X \to B$, $f|_X(x) = f(x)$ pentru orice $x \in X$. Funcția $f|_X$ este restricția lui f la X.

Mulţimea funcţiilor de la A la B se notează Fun(A, B) sau B^A .

Funcții

Fie $f: A \rightarrow B$ o funcție.

- ▶ f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- ▶ f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- ► f este bijectivă dacă f este injectivă și surjectivă.

Funcția identică a lui A: $1_A: A \to A$, $1_A(x) = x$.

Fie $f:A\to B$ și $g:B\to C$ două funcții. Compunerea lor $g\circ f$ este definită astfel:

 $g \circ f : A \to C$, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

Funcții

 $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

f este bijectivă ddacă f este inversabilă.

Observație

- (i) Pentru orice mulțime A, $Fun(\emptyset, A)$ are un singur element, funcția vidă.
- (ii) Pentru orice mulţime nevidă A, $Fun(A, \emptyset) = \emptyset$.

Definiția 1.1

Fie A, T mulțimi $a.\hat{i}. A \subseteq T$. Funcția caracteristică a lui A în raport cu T este definită astfel:

Echipotență

Definiția 1.2

Spunem că A este echipotentă cu B dacă există o bijecție $f: A \rightarrow B$. Notație: $A \sim B$.

Propoziția 1.3

Pentru orice mulțimi A, B, C, avem

- (i) $A \sim A$;
- (ii) Dacă $A \sim B$, atunci $B \sim A$.
- (iii) Dacă $A \sim B$ și $B \sim C$, atunci $A \sim C$.

Dem.: Exercițiu.

Observație

Prin urmare, A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A și B sunt echipotente.

Următorul rezultat este fundamental.

Teorema 1.4 (Teorema Cantor-Schröder-Bernstein)

Fie A şi B două mulțimi astfel încât există $f:A\to B$ şi $g:B\to A$ funcții injective. Atunci $A\sim B$.

Dem.: Exercițiu suplimentar.

Definiția 1.5

O mulțime A se numește finită dacă $A = \emptyset$ sau dacă există $n \in \mathbb{N}^*$ a.î. A este echipotentă cu $\{1, \ldots, n\}$.

Numărul elementelor unei mulțimi finite A se notează |A| și se mai numește și cardinalul lui A.

Definiția 1.6

O mulțime care nu este finită se numește infinită.

•

Mulțimi (cel mult) numărabile

Definiția 1.7

O mulțime A este numărabilă dacă este echipotentă cu ℕ. O mulțime finită sau numărabilă se numește cel mult numărabilă.

Exemple de mulțimi numărabile: \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, \mathbb{Q} .

Teorema Cantor

 \mathbb{R} , $2^{\mathbb{N}}$ nu sunt mulțimi numărabile.

Se poate demonstra că

Propoziția 1.8

 \mathbb{R} este echipotentă cu $2^{\mathbb{N}}$.

4

Mulțimi (cel mult) numărabile

Propoziția 1.9

- (i) Orice mulțime infinită are o submulțime numărabilă.
- (ii) Orice submulțime a unei mulțimi numărabile este cel mult numărabilă.
- (iii) O mulțime A este cel mult numărabilă ddacă există o funcție injectivă de la A la o mulțime numărabilă.
- (iv) Produsul cartezian a două mulțimi cel mult numărabile este cel mult numărabil.
- (v) Reuniunea a două mulțimi cel mult numărabile este cel mult numărabilă.

Dem.: Exercițiu.

Corolar 1.10

Fie A o mulțime numărabilă și B o mulțime nevidă cel mult numărabilă. Atunci $A \times B$ și $A \cup B$ sunt numărabile.

Cardinale

Numerele cardinale sau cardinalele sunt o generalizare a numerelor naturale, ele fiind folosite pentru a măsura dimensiunea unei mulțimi; au fost introduse de Cantor.

Pentru orice mulțime A, cardinalul lui A (sau numărul cardinal al lui A) este un obiect |A| asociat lui A a.î. sunt satisfăcute următoarele:

- ightharpoonup |A| este unic determinat de A.
- ▶ pentru orice mulțimi A, B, avem că |A| = |B| ddacă $A \sim B$.

Această definiție nu specifică natura obiectului |A| asociat unei multimi A.

Prin urmare, este naturală întrebarea dacă există cardinale.

10

Cardinale

Un posibil răspuns este:

definim |A| ca fiind clasa tuturor mulțimilor echipotente cu A.

Un alt răspuns este definiția lui von Neumann din teoria axiomatică a multimilor. Conform acestei definiții, pentru orice multime A, |A| este tot o multime.

- ► Cardinalul unei mulțimi finite este numărul său de elemente. Cardinalele transfinite sunt cardinalele multimilor infinite.
- $|\mathbb{N}|$ se notează \aleph_0 (se citește alef zero).
- $ightharpoonup |\mathbb{R}|$ se notează \mathfrak{c} și se mai numește și puterea continuumului.
- ▶ O mulţime A este numărabilă ddacă $|A| = \aleph_0$.
- \triangleright $|2^{\mathbb{N}}| \neq \aleph_0$.
- ▶ $|2^{\mathbb{N}}| = \mathfrak{c}$.

Familii de mulțimi

Fie I o multime nevidă.

Definiția 1.11

Fie A o mulțime. O familie de elemente din A indexată de I este o funcție $f: I \to A$. Notăm cu $(a_i)_{i \in I}$ familia $f: I \to A$, $f(i) = a_i$ pentru orice $i \in I$. Vom scrie și $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$

Fie $(A_i)_{i \in I}$ o familie de submulțimi ale unei mulțimi T. Reuniunea și intersecția familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

Familii de mulțimi

Fie I o mulțime nevidă și $(A_i)_{i \in I}$ o familie de mulțimi.

Definitia 1.12

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Fie *n* număr natural, n > 1, $I = \{1, ..., n\}$ și $A_1, ..., A_n \subset T$.

- $(x_i)_{i\in I}=(x_1,\ldots,x_n)$, un *n*-tuplu (ordonat)
- $\bigcup_{i \in I} A_i = \bigcup_{i=1} A_i \text{ si } \bigcap_{i \in I} A_i = \bigcap_{i=1} A_i$
- $\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A}_{n}$

Familii de mulțimi

Propozitia 1.13

- (i) Reuniunea unei familii cel mult numărabile de mulțimi cel mult numărabile este mulțime cel mult numărabilă.
- (ii) Reuniunea unui număr finit (≥ 2) de mulțimi numărabile este numărabilă.
- (iii) Produsul cartezian al unui număr finit (≥ 2) de mulțimi numărabile este numărabil.

Dem.: Exercițiu.

Definiția 1.14

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^n A_i$.

O relație n-ară pe A este o submulțime a lui A^n . Dacă R este relație n-ară, spunem că n este aritatea lui R.

Definiția 1.15

O relație binară între A și B este o submulțime a produsului cartezian $A \times B$.

O relație binară pe A este o submulțime a lui $A^2 = A \times A$.

Exemple

► relația de divizibilitate pe N:

$$|=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } mk=n\}$$

ightharpoonup relația de ordine strictă pe \mathbb{N} :

$$<=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } m\neq 0 \text{ și } m+k=n\}$$

Relații binare

Fie A o mulțime nevidă și R o relație binară pe A. Notație: Scriem xRy în loc de $(x,y) \in R$ și $\neg(xRy)$ în loc de $(x,y) \notin R$.

Definiția 1.16

- ightharpoonup R este reflexivă dacă xRx pentru orice $x \in A$.
- ▶ R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- ▶ R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- ► R este antisimetrică dacă pentru orice $x, y \in A$, xRy și yRx implică x = y.
- ► R este tranzitivă dacă pentru orice $x, y, z \in A$, xRy și yRz implică xRz.
- ▶ R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

Relații binare

Fie A o mulțime nevidă și R o relație binară pe A.

Definiția 1.17

R este relație de echivalență dacă este reflexivă, simetrică și tranzitivă.

Definiția 1.18

R este relație de

- ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- ordine strictă dacă este ireflexivă și tranzitivă.
- ordine totală dacă este antisimetrică, tranzitivă și totală.

Notații: Vom nota relațiile de ordine parțială și totală cu \leq , iar relațiile de ordine strictă cu <.

LOGICA PROPOZIŢIONALĂ

10

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative, despre care se poate argumenta în principiu că sunt adevărate sau false.

Propoziții declarative

- ► Suma numerelor 2 și 4 este 6.
- Mihai Eminescu a fost un scriitor român.
- Maria a reacționat violent la acuzațiile lui Ion.
- ▶ Orice număr natural par > 2 este suma a două numere prime. (Conjectura lui Goldbach).
- Andrei este deștept.
- ► Marţienilor le place pizza.

Propoziții care nu sunt declarative

- ▶ Poţi să îmi dai, te rog, pâinea?
- ► Pleacă!

21

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Azi este miercuri, deci avem curs de logică.

Considerăm propozițiile atomice

p=Azi este miercuri. q=Avem curs de logică.

Atunci $\varphi = p \rightarrow q$. Cine este $\neg \varphi$?

 $\neg \varphi = p \land (\neg q) = Azi$ este miercuri și nu avem curs de logică.

Logica propozițională - informal

Considerăm anumite propoziții ca find $\frac{1}{2}$ atomice și le notăm

 p, q, r, \dots sau p_1, p_2, p_3, \dots

Exemple: p=Numărul 2 este par. q=Mâine plouă. <math>r=Sunt obosit.

Pornind de la propozițiile atomice, putem crea propoziții complexe (notate φ , ψ , χ , \cdots) folosind conectorii logici \neg (negația), \rightarrow (implicația), \lor (disjuncția), \land (conjuncția), \leftrightarrow (echivalența).

Exemple:

 $\neg p$ = Numărul 2 nu este par.

 $p \lor q$ = Numărul 2 este par sau mâine plouă.

 $p \wedge q$ = Numărul 2 este par și mâine plouă.

 $p \rightarrow q$ = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$ = Numărul 2 este par dacă și numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (,).

Exemplu:
$$\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$$

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Dacă trenul întârzie și nu sunt taxiuri la gară, atunci lon întârzie la întâlnire.

Considerăm propozițiile atomice

p = Trenul întârzie.

q = Sunt taxiuri la gară.

r = lon întârzie la întâlnire.

Atunci $\varphi = (p \land (\neg q)) \rightarrow r$.

Presupunem că φ , p sunt adevărate și r este falsă (deci $\neg r$ este adevărată). Ce putem spune despre q? q este adevărată.

Logica propozițională LP - Limbajul

Definiția 2.1

Limbajul logicii propoziționale LP este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ▶ conectori logici: ¬ (se citește non), \rightarrow (se citește implică)
- paranteze: (,).
- Mulţimea Sim a simbolurilor lui LP este

$$Sim := V \cup \{\neg, \rightarrow, (,)\}.$$

• Notăm variabilele cu $v, u, w, v_0, v_1, v_2, \dots$

Logica propozițională LP - Limbajul

Definiția 2.2

Mulțimea Expr a expresiilor lui LP este mulțimea tuturor șirurilor finite de simboluri ale lui LP.

- \triangleright Expresia vidă se notează λ .
- Lungimea unei expresii θ este numărul simbolurilor din θ . Sim^n este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- ▶ Prin convenţie, $Sim^0 = \{\lambda\}$. Atunci $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$.

Exemple:

$$((((v_7, v_1 \neg \rightarrow (v_2), \neg v_1 v_2, ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2)).$$

Logica propozițională LP - Limbajul

Operația de bază pentru expresii este concatenarea: dacă $\varphi = \varphi_0 \dots \varphi_{k-1}$ și $\psi = \psi_0 \dots \psi_{l-1}$ sunt expresii, atunci concatenarea lor, notată $\varphi \psi$, este expresia $\varphi_0 \dots \varphi_{k-1} \psi_0 \dots \psi_{l-1}$.

Definitia 2.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui LP, unde $\theta_i \in Sim$ pentru orice $i \in \{0, 1, \dots, k-1\}$.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ_i ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ .

Formule

Definiția formulelor este un exemplu de definiție inductivă.

Definiția 2.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci ($\varphi \to \psi$) este formulă.
- (F3) Numai expresiile obținute aplicând regulile (F0), (F1), (F2) sunt formule.

Notații: Mulțimea formulelor se notează *Form.* Notăm formulele cu $\varphi, \psi, \chi, \ldots$

- ▶ Orice formulă se obţine aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- ▶ $Form \subseteq Expr$. Formulele sunt expresiile "bine formate".

Exemple:

- $ightharpoonup v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$ nu sunt formule.
- \blacktriangleright $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$ sunt formule.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $ightharpoonup \varphi = v$, unde $v \in V$;
- $ightharpoonup \varphi = (\neg \psi)$, unde ψ este formulă;
- $ightharpoonup \varphi = (\psi \to \chi)$, unde ψ, χ sunt formule.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Propoziția 2.5

Mulţimea Form a formulelor lui LP este numărabilă.

Dem.: Exercițiu.

Principiul inducției pe formule

Pasul inițial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ și, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducție. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \leq n+1$. Avem trei cazuri:

- $ightharpoonup \varphi = v \in V$. Atunci φ are proprietatea P, conform (0).
- $\varphi = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ are proprietatea \boldsymbol{P} . Aplicînd ipoteza (1), rezultă că φ are proprietatea \boldsymbol{P} .
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ și χ au proprietatea P. Rezultă din (2) că φ are proprietatea P.

Aşadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă φ există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea \boldsymbol{P} .

Principiul inducției pe formule

Propoziția 2.6 (Principiul inducției pe formule)

Fie **P** o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea **P**.
- (1) Pentru orice formulă φ , dacă φ are proprietatea \mathbf{P} , atunci și $(\neg \varphi)$ are proprietatea \mathbf{P} .
- (2) Pentru orice formule φ, ψ , dacă φ și ψ au proprietatea \boldsymbol{P} , atunci $(\varphi \to \psi)$ are proprietatea \boldsymbol{P} .

Atunci orice formulă φ are proprietatea P.

Dem.: Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ . Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \leq n$ are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

Principiul inducției pe formule

Propoziția 2.7 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- V ⊆ Γ;
- ▶ Γ este închisă la ¬, adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- ▶ Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ , φ are proprietatea P ddacă $\varphi \in \Gamma$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 2.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea \boldsymbol{P} , deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

Definiția 2.8

Fie φ o formulă a lui LP. O subformulă a lui φ este orice formulă ψ care apare în φ .

Notație: Mulțimea subformulelor lui φ se notează SubForm (φ) .

Exemplu:

Fie
$$\varphi = ((v_1 \rightarrow v_2) \rightarrow (\neg v_1))$$
. Atunci

$$SubForm(\varphi) = \{v_1, v_2, (v_1 \rightarrow v_2), (\neg v_1), \varphi\}.$$

Formule

Conectorii derivați \lor (se citește sau), \land (se citește și), \leftrightarrow (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$

$$(\varphi \wedge \psi) := (\neg(\varphi \rightarrow (\neg \psi)))$$

$$(\varphi \leftrightarrow \psi) := ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)).$$

Convenții

- ▶ În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.
- ▶ Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ¬ are precedenţa mai mare decât ceilalţi conectori;
 - \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

Principiul recursiei pe formule

Propoziția 2.9 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0: V \to A$$
, $G_{\neg}: A \to A$, $G_{\rightarrow}: A \times A \to A$.

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

- (R0) $F(v) = G_0(v)$ pentru orice variabilă $v \in V$.
- (R1) $F(\neg \varphi) = G_{\neg}(F(\varphi))$ pentru orice formulă φ .
- (R2) $F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$ pentru orice formule φ, ψ .

Principiul recursiei pe formule

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu:

Fie $c: \mathit{Form} \to \mathbb{N}$ definită astfel: pentru orice formulă φ ,

 $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$c(v) = 0$$
 pentru orice variabilă v

$$c(\neg \varphi) = c(\varphi) + 1$$
 pentru orice formulă φ

$$c(\varphi \to \psi) = c(\varphi) + c(\psi) + 1$$
 pentru orice formule φ, ψ .

În acest caz,
$$A = \mathbb{N}$$
, $G_0 : V \to A$, $G_0(v) = 0$,

$$G_{\neg}: \mathbb{N} \to \mathbb{N}, \qquad G_{\neg}(n) = n+1,$$

$$G_{\rightarrow}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad G_{\rightarrow}(m, n) = m + n + 1.$$

Notație:

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație

Mulţimea $Var(\varphi)$ poate fi definită și recursiv.

Dem.: Exercițiu.

SEMANTICA LP

Tabele de adevăr

Valori de adevăr

Folosim următoarele notații pentru cele două valori de adevăr: 1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este $\{0,1\}$.

Definim următoarele operații pe $\{0,1\}$ folosind tabelele de adevăr.

$$abla : \{0,1\} o \{0,1\}, \qquad \begin{array}{c|c}
p & \neg p \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Se observă că $\neg p = 1 \iff p = 0$.

Se observă că $p \rightarrow q = 1 \Longleftrightarrow p \leq q$.

Tabele de adevăr

Operațiile V : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, $\Lambda : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ și \leftrightarrow : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ se definesc astfel:

p	q	$p \lor q$	p	q	$p \wedge q$	p	q	$p \leftrightarrow q$
0	0	0	0	0	0	0	0	1
0	1	1	0	1	0	0	1	0
1	0	1	1	0	0	1	0	0
1	1	0 1 1 1	1	0 1 0 1	1	1	1	1 0 0 1

Observație

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg (p \to \neg q)$ $\Rightarrow p \leftrightarrow q = (p \to q) \land (q \to p)$.

Dem.: Exerciţiu.

Definiția 2.10

O evaluare (sau interpretare) este o funcție $e: V \rightarrow \{0,1\}$.

Teorema 2.11

Pentru orice evaluare e : $V \rightarrow \{0,1\}$ există o unică funcție

$$e^+:\textit{Form} \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $ightharpoonup e^+(v) = e(v)$ pentru orice orice $v \in V$.
- $ightharpoonup e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice $\varphi, \psi \in Form$.

Dem.: Aplicăm Principiul recursiei pe formule (Propoziția 2.9) cu $A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \rightarrow \{0,1\}, G_{\neg}(p) = \neg p \text{ și } G_{\rightarrow} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, G_{\rightarrow}(p,q) = p \rightarrow q.$

Evaluare (Interpretare)

Propoziția 2.12

Dacă $e: V \rightarrow \{0,1\}$ este o evaluare, atunci pentru orice formule φ, ψ ,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$

$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Dem.: Exercițiu.

Evaluare (Interpretare)

Propoziția 2.13

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: Definim următoarea proprietate ${\bf \it P}$: pentru orice formulă φ ,

$$arphi$$
 are proprietatea $m{P}$ ddacă pentru orice evaluări $e_1,e_2:V o \{0,1\},\ arphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

•
$$\varphi = v$$
. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

Evaluare (Interpretare)

Propoziția 2.13

Pentru orice formulă arphi și orice evaluări $e_1,e_2:V o \{0,1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

 $oldsymbol{arphi} = \neg \psi$ și ψ satisface $oldsymbol{P}$. Fie $e_1, e_2: V
ightarrow \{0,1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\varphi) = Var(\psi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$. Așadar, aplicând $oldsymbol{P}$ pentru ψ , obținem că $e_1^+(\psi) = e_2^+(\psi)$. Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Evaluare (Interpretare)

Propoziția 2.13

Pentru orice formulă φ și orice evaluări $e_1,e_2:V\to\{0,1\}$,

$$(*) \quad e_1(v) = e_2(v)$$
 pentru orice $v \in \mathit{Var}(arphi) \implies e_1^+(arphi) = e_2^+(arphi).$

Dem.: (continuare)

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Modele. Satisfiabilitate. Tautologii

Fie φ o formulă.

Definiția 2.14

- O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- $\triangleright \varphi$ este satisfiabilă dacă admite un model.
- Dacă φ nu este satisfiabilă, spunem și că φ este nesatisfiabilă sau contradictorie.
- φ este tautologie dacă orice evaluare este model al lui φ . Notație: $\models \varphi$.

Notație: Mulțimea tuturor modelelor lui φ se notează $Mod(\varphi)$.

Propoziția 2.15

- (i) φ este tautologie ddacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă ddacă $\neg \varphi$ este tautologie.

Dem.: Exercitiu.

Metoda tabelului

Fie φ o formulă arbitrară și $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$. Pentru orice evaluare $e: V \to \{0, 1\}, e^+(\varphi)$ depinde doar de $e(x_1), \dots, e(x_k)$, conform Propoziției 2.13.

Aşadar, $e^+(\varphi)$ depinde doar de restricția lui e la $\{x_1, x_2, \dots, x_k\}$:

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt 2^k astfel de funcții posibile $e'_1, e'_2, \dots, e'_{2^k}$. Asociem fiecăreia o linie într-un tabel:

x_1	<i>x</i> ₂		x_k	\dots subformule ale lui $arphi$ \dots	arphi
$e_1'(x_1)$	$e_1'(x_2)$		$e_1'(x_k)$		$e_1^{\prime+}(arphi)$
$e_2'(x_1)$	$e_2'(x_2)$		$e_2'(x_k)$		$e_2^{\prime+}(\varphi)$
:	÷	٠	:	·	:
$e_{2^k}'(x_1)$	$e_{2^k}'(x_2)$		$e_{2^k}'(x_k)$		${e_{2^k}^{\prime}}^+(\varphi)$

Pentru orice i, $e_i^{\prime +}(\varphi)$ se definește similar cu Teorema 2.11.

 φ este tautologie ddacă $e_i^{\prime +}(\varphi) = 1$ pentru orice $i \in \{1, \dots, 2^k\}$.

Metoda tabelului

Exemplu:

Fie

$$\varphi = v_1 \rightarrow (v_2 \rightarrow (v_1 \wedge v_2)).$$

Vrem să demonstrăm că $\models \varphi$.

$$Var(\varphi) = \{v_1, v_2\}.$$

v_1	<i>V</i> 2	$v_1 \wedge v_2$	$v_2 ightharpoonup (v_1 \wedge v_2)$	φ
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

Tautologii

Definiția 2.16

Fie φ, ψ două formule. Spunem că

- φ este consecință semantică a lui ψ dacă $Mod(\psi) \subseteq Mod(\varphi)$. Notație: $\psi \models \varphi$.
- φ și ψ sunt (logic) echivalente dacă $Mod(\psi) = Mod(\varphi)$. Notație: $\varphi \sim \psi$.

Observație

Relația \sim este o relație de echivalență pe mulțimea *Form* a formulelor lui LP.

Propoziția 2.17

Fie φ, ψ formule. Atunci

- (i) $\psi \vDash \varphi$ ddacă $\vDash \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ ddacă $(\psi \models \varphi \text{ si } \varphi \models \psi)$ ddacă $\models \psi \leftrightarrow \varphi$.

Dem.: Exercițiu.

4

Tautologii, consecințe semantice și echivalențe

Propoziția 2.18

Pentru orice formule φ, ψ, χ ,

terțul exclus
$$\models \varphi \lor \neg \varphi$$
 (1)

modus ponens
$$\varphi \wedge (\varphi \rightarrow \psi) \vDash \psi$$
 (2)

afirmarea concluziei
$$\psi \models \varphi \rightarrow \psi$$
 (3)

contradicția
$$\models \neg(\varphi \land \neg \varphi)$$
 (4)

dubla negație
$$\varphi \sim \neg \neg \varphi$$
 (5)

contrapoziția
$$\varphi \to \psi \sim \neg \psi \to \neg \varphi$$
 (6)

negarea premizei
$$\neg \varphi \models \varphi \rightarrow \psi$$
 (7)

modus tollens
$$\neg \psi \land (\varphi \rightarrow \psi) \vDash \neg \varphi$$
 (8)

tranzitivitatea implicației
$$(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$$
 (9)

Tautologii, consecințe semantice și echivalențe

legile lui de Morgan
$$\varphi \lor \psi \sim \neg(\neg \varphi \land \neg \psi)$$
 (10)

$$\varphi \wedge \psi \sim \neg(\neg \varphi \vee \neg \psi) \tag{11}$$

exportarea și importarea
$$\varphi \to (\psi \to \chi) \sim \varphi \land \psi \to \chi$$
 (12)

idempotența
$$\varphi \sim \varphi \wedge \varphi \sim \varphi \vee \varphi$$
 (13)

slăbirea
$$\models \varphi \land \psi \rightarrow \varphi \qquad \models \varphi \rightarrow \varphi \lor \psi$$
 (14)

comutativitatea
$$\varphi \wedge \psi \sim \psi \wedge \varphi$$
 $\varphi \vee \psi \sim \psi \vee \varphi$ (15)

asociativitatea
$$\varphi \wedge (\psi \wedge \chi) \sim (\varphi \wedge \psi) \wedge \chi$$
 (16)

$$\varphi \lor (\psi \lor \chi) \sim (\varphi \lor \psi) \lor \chi$$
 (17)

absorbţia
$$\varphi \lor (\varphi \land \psi) \sim \varphi$$
 (18)

$$\varphi \wedge (\varphi \vee \psi) \sim \varphi$$
 (19)

distributivitatea
$$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$
 (20)

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi)$$
 (21)

Tautologii, consecințe semantice și echivalențe

$$\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi)$$
 (22)

$$\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi)$$
 (23)

$$\varphi \wedge \psi \to \chi \sim (\varphi \to \chi) \vee (\psi \to \chi)$$
 (24)

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi)$$
 (25)

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi)$$
 (26)

$$\neg \varphi \sim \varphi \to \neg \varphi \sim (\varphi \to \psi) \land (\varphi \to \neg \psi) \tag{27}$$

$$\varphi \to \psi \sim \neg \varphi \lor \psi \sim \neg (\varphi \land \neg \psi)$$
 (28)

$$\varphi \lor \psi \sim \varphi \lor (\neg \varphi \land \psi) \sim (\varphi \to \psi) \to \psi$$
 (29)

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi$$
 (30)

$$\vDash (\varphi \to \psi) \lor (\neg \varphi \to \psi) \tag{31}$$

$$(\varphi \wedge \varphi) \vee (\varphi \wedge \varphi)$$
 (31)

$$\vDash (\varphi \to \psi) \lor (\varphi \to \neg \psi) \qquad (32)$$

$$\vDash \neg \varphi \to (\neg \psi \leftrightarrow (\psi \to \varphi)) \quad (33)$$

$$\vDash (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi) \tag{34}$$

Dem.: Exercițiu.

Exemplu de demonstrație

Demonstrăm (1): $\vDash \varphi \lor \neg \varphi$.

Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să arătăm că $e^+(\varphi \vee \neg \varphi)=1$. Observăm că $e^+(\varphi \vee \neg \varphi)=e^+(\varphi) \vee \neg e^+(\varphi)$. Putem demonstra că $e^+(\varphi) \vee \neg e^+(\varphi)=1$ în două moduri.

I. Folosim tabelele de adevăr.

$e^+(arphi)$	$\neg e^+(arphi)$	$e^+(\varphi) \lor \neg e^+(\varphi)$
0	1	1
1	0	1

II. Raţionăm direct.

Avem două cazuri:

- $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.
- $e^+(\varphi) = 0$. Atunci $\neg e^+(\varphi) = 1$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

⊤ și ⊥

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

Observație

 $v_0 \rightarrow v_0$ este tautologie și $\neg (v_0 \rightarrow v_0)$ este nesatisfiabilă.

Dem.: Exercițiu.

Notatii

Notăm $v_0 \to v_0$ cu \top și o numim adevărul. Notăm $\neg (v_0 \to v_0)$ cu \bot și o numim falsul.

- $\triangleright \varphi$ este tautologie ddacă $\varphi \sim \top$.
- $ightharpoonup \varphi$ este nesatisfiabilă ddacă $\varphi \sim \bot$.

Substituția

Definiția 2.19

Pentru orice formule φ, χ, χ' , definim

 $\varphi_{\chi}(\chi')$:= expresia obținută din φ prin înlocuirea tuturor aparițiilor lui χ cu χ' .

 $\varphi_\chi(\chi')$ se numește substituția lui χ cu χ' în φ . Spunem și că $\varphi_\chi(\chi')$ este o instanță de substituție a lui φ .

- $ightharpoonup \varphi_{\chi}(\chi')$ este de asemenea formulă.
- ▶ Dacă χ nu este subformulă a lui φ , atunci $\varphi_{\chi}(\chi') = \varphi$.

Exemple:

Fie $\varphi = (v_1 \rightarrow v_2) \rightarrow \neg (v_1 \rightarrow v_2)$.

- $ightharpoonup \chi = v_1 \rightarrow v_2, \ \chi' = v_4. \quad \varphi_{\chi}(\chi') = v_4 \rightarrow \neg v_4$
- \blacktriangleright $\chi = v_1, \ \chi' = \neg \neg v_2. \ \varphi_{\chi}(\chi') = (\neg \neg v_2 \rightarrow v_2) \rightarrow \neg(\neg \neg v_2 \rightarrow v_2)$
- $\lambda = v_1 \rightarrow v_2, \ \chi' = v_4 \lor v_1. \quad \varphi_{\chi}(\chi') = (v_4 \lor v_1) \rightarrow \neg(v_4 \lor v_1)$

Substituția

Propoziția 2.20

Pentru orice formule φ, χ, χ' ,

$$\chi \sim \chi'$$
 implică $\varphi \sim \varphi_{\chi}(\chi')$.

Propoziția 2.21

Pentru orice formule φ, ψ, χ și orice variabilă $v \in V$,

- $\blacktriangleright \varphi \sim \psi$ implică $\varphi_{\mathbf{v}}(\chi) \sim \psi_{\mathbf{v}}(\chi)$.
- Dacă φ este tautologie atunci și $\varphi_v(\chi)$ este tautologie.
- Dacă φ este nesatisfiabilă, atunci şi $\varphi_{v}(\chi)$ este nesatisfiabilă.

Conjuncții și disjuncții finite

Notații

Scriem $\varphi \wedge \psi \wedge \chi$ în loc de $(\varphi \wedge \psi) \wedge \chi$. Similar, scriem $\varphi \vee \psi \vee \chi$ în loc de $(\varphi \vee \psi) \vee \chi$.

Fie $\varphi_1, \varphi_2, \dots, \varphi_n$ formule. Pentru $n \geq 3$, notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots(\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$

$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots(\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n.$$

- $ightharpoonup \varphi_1 \wedge \ldots \wedge \varphi_n$ se mai scrie și $\bigwedge_{i=1}^n \varphi_i$ sau $\bigwedge_{i=1}^n \varphi_i$.
- $ightharpoonup \varphi_1 \vee \ldots \vee \varphi_n$ se mai scrie și $\bigvee_{i=1}^n \varphi_i$ sau $\bigvee_{i=1}^n \varphi_i$.

4

Conjuncții și disjuncții finite

Propoziția 2.22

Pentru orice evaluare $e: V \rightarrow \{0,1\}$,

- $e^+(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru orice $i \in \{1, \ldots, n\}$.
- $e^+(\varphi_1 \vee \ldots \vee \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru un $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Propoziția 2.23

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg\varphi_1 \wedge \ldots \wedge \neg\varphi_n$$

$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg\varphi_1 \vee \ldots \vee \neg\varphi_n$$

Dem.: Exercițiu.

Mulțimi de formule

Fie Γ o mulțime de formule.

Definiția 2.24

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă este model al fiecărei formule din Γ (adică $e \vDash \gamma$ pentru orice $\gamma \in \Gamma$). Notație: $e \vDash \Gamma$.
- Γ este satisfiabilă dacă are un model.
- Γ este finit satisfiabilă dacă orice submulțime finită a sa este satisfiabilă.
- Dacă Γ nu este satisfiabilă, spunem și că Γ este nesatisfiabilă sau contradictorie.

Notații: Mulțimea tuturor modelelor lui Γ se notează $Mod(\Gamma)$. Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

▶ $Mod(\Gamma) = \bigcap_{\varphi \in \Gamma} Mod(\varphi)$.

Mulțimi de formule

Fie Γ , Δ mulțimi de formule.

Definiția 2.25

O formulă φ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\varphi)$. Notație: $\Gamma \vDash \varphi$.

Dacă φ nu este consecință semantică a lui Γ , scriem $\Gamma \not\models \varphi$.

Notăm cu $Cn(\Gamma)$ mulțimea consecințelor semantice ale lui Γ . Așadar,

$$Cn(\Gamma) = \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Definiția 2.26

- ▶ Δ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\Delta)$. Notație: $\Gamma \models \Delta$.
- ▶ Γ şi Δ sunt (logic) echivalente dacă $Mod(\Gamma) = Mod(\Delta)$. Notație: $\Gamma \sim \Delta$.

Proprietăți

Următoarele rezultate colectează diverse proprietăți utile.

Observație

- $\psi \vDash \varphi$ ddacă $\{\psi\} \vDash \varphi$ ddacă $\{\psi\} \vDash \{\varphi\}$.
- $\blacktriangleright \ \psi \sim \varphi \ \text{ddacă} \ \{\psi\} \sim \{\varphi\}.$

Propoziția 2.27

- ▶ $Mod(\emptyset) = \{0,1\}^V$, adică orice evaluare $e: V \to \{0,1\}$ este model al mulțimii vide. În particular, mulțimea vidă este satisfiabilă.
- ► $Cn(\emptyset)$ este mulțimea tuturor tautologiilor, adică φ este tautologie ddacă $\emptyset \vDash \varphi$.

Dem.: Exercițiu ușor.

Proprietăți

Propoziția 2.28

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$.

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \models \psi \; ddac\, \Gamma \models \varphi \rightarrow \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ ddacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

Dem.: Exercițiu.

Propoziția 2.29

Fie Γ o mulțime de formule. Următoarele afirmații sunt echivalente:

- (i) Γ este nesatisfiabilă.
- (ii) $\Gamma \vDash \varphi$ pentru orice formulă φ .
- (iii) $\Gamma \vDash \varphi$ pentru orice formulă nesatisfiabilă φ .
- (iv) $\Gamma \vDash \bot$.

Dem.: Exercițiu ușor.

Proprietăți

Propoziția 2.30

Fie Γ o mulțime de formule.

- (i) $\Gamma \vDash \varphi$ ddacă $\Gamma \cup \{\neg \varphi\}$ este nesatisfiabilă.
- (ii) $\Gamma \vDash \neg \varphi$ ddacă $\Gamma \cup \{\varphi\}$ este nesatisfiabilă.
- (iii) Dacă Γ este satisfiabilă, atunci cel puțin una dintre $\Gamma \cup \{\varphi\}$ și $\Gamma \cup \{\neg \varphi\}$ este satisfiabilă.

Dem.:

- (i) Avem că $\Gamma \not\models \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e \not\models \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e \models \neg \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma \cup \{\neg \varphi\} \iff \Gamma \cup \{\neg \varphi\}$ este satisfiabilă.
- (ii) Similar.
- (iii) Fie e un model al lui Γ . Dacă $e \vDash \varphi$, atunci e este model al lui $\Gamma \cup \{\varphi\}$. Dacă $e \nvDash \varphi$, deci $e \vDash \neg \varphi$, atunci e este model al lui $\Gamma \cup \{\neg \varphi\}$.

Proprietăți

Propoziția 2.31

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule.

- (i) $\Gamma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}.$
- (ii) $\Gamma \vDash \psi$ ddacă $\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$.
- (iii) Γ este nesatisfiabilă ddacă $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_n$ este tautologie.
- (iv) Dacă $\Delta = \{\psi_1, \dots, \psi_k\}$ este o altă mulțime finită de formule, atunci următoarele afirmații sunt echivalente:
 - (a) $\Gamma \sim \Delta$.
 - (b) $\varphi_1 \wedge \ldots \wedge \varphi_n \sim \psi_1 \wedge \ldots \wedge \psi_k$.

Dem.: Exercițiu.

Teorema de compacitate

Teorema de compacitate - versiunea 1

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Teorema de compacitate - versiunea 2

Pentru orice mulțime Γ de formule, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.

Teorema de compacitate - versiunea 3

Pentru orice mulțime Γ de formule și pentru orice formulă φ , $\Gamma \vDash \varphi$ ddacă există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

Propoziția 2.32

Cele trei versiuni sunt echivalente.

Dem.: Exercițiu.

Teorema de compacitate

Theorem 2.34 (Teorema de compacitate)

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Dem.: (continuare)

Aplicând proprietatea P_k , obținem un model e al lui φ a.î.

 $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots k\}$.

Atunci $\overline{e}(v) = e(v)$ pentru orice variabilă $v \in Var(\varphi)$. Din

Propoziția 2.13 rezultă că $\overline{e}^+(\varphi) = e^+(\varphi) = 1$, deci $\overline{e} \models \varphi$.

Prin urmare, \overline{e} este model al lui Γ , deci Γ este satisfiabilă.

"⇒" Evident.

Teorema de compacitate

Lema 2.33

Fie Γ finit satisfiabilă. Atunci există un şir $(\varepsilon_n)_{n\in\mathbb{N}}$ în $\{0,1\}$ care satisface, pentru orice $n\in\mathbb{N}$:

P_n Orice submulțime finită Δ a lui Γ are un model $e: V \to \{0,1\}$ cu proprietatea că $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0,1,\ldots n\}$.

Dem.: Exercițiu suplimentar.

Teorema 2.34 (Teorema de compacitate)

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Dem.: "←" Presupunem că Γ este finit satisfiabilă. Definim

$$\overline{e}: V \to \{0,1\}, \quad \overline{e}(v_n) = \varepsilon_n$$

unde (ε_n) este șirul construit în Lema 2.33. Demonstrăm că \overline{e} este model al lui Γ . Fie $\varphi \in \Gamma$ arbitrară și fie $k \in \mathbb{N}$ a.î.

 $Var(\varphi) \subseteq \{v_0, v_1, \dots, v_k\}$. Avem că $\{\varphi\} \subseteq \Gamma$ este o submulțime finită a lui Γ .

SINTAXA LP

Sistemul deductiv

Folosim un sistem deductiv de tip Hilbert pentru LP.

Axiomele logice

Mulțimea Axm a axiomelor lui LP constă din toate formulele de forma:

(A1)
$$\varphi \rightarrow (\psi \rightarrow \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
,

unde φ , ψ și χ sunt formule.

Regula de deducție

Pentru orice formule φ, ψ ,

din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

Γ-teoreme

Fie Γ o mulțime de formule. Definiția Γ -teoremelor este un nou exemplu de definiție inductivă.

Definitia 2.35

T-teoremele sunt formulele lui LP definite astfel:

- (T0) Orice axiomă este Γ-teoremă.
- (T1) Orice formulă din Γ este Γ-teoremă.
- (T2) Dacă φ și $\varphi \to \psi$ sunt Γ -teoreme, atunci ψ este Γ -teoremă.
- (T3) Numai formulele obținute aplicând regulile (T0), (T1), (T2) sunt Γ -teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Γ-teoreme

Notații

 $\begin{array}{llll} \hline \textit{Thm}(\Gamma) & := & \text{mulţimea} \ \Gamma\text{-teoremelor} & \hline \textit{Thm} & := & Thm(\emptyset) \\ \hline \Gamma \vdash \varphi & :\Leftrightarrow & \varphi \ \text{este} \ \Gamma\text{-teoremă} & \vdash \varphi & :\Leftrightarrow & \emptyset \vdash \varphi \\ \hline \Gamma \vdash \Delta & :\Leftrightarrow & \Gamma \vdash \varphi \ \text{pentru orice} \ \varphi \in \Delta. \end{array}$

Definitia 2.36

O formulă φ se numește teoremă a lui LP dacă $\vdash \varphi$.

Reformulând condițiile (T0), (T1), (T2) folosind notația \vdash , obținem

Propoziția 2.37

- (i) dacă φ este axiomă, atunci Γ \vdash φ ;
- (ii) dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash \varphi$;
- (iii) dacă $\Gamma \vdash \varphi$ și $\Gamma \vdash \varphi \rightarrow \psi$, atunci $\Gamma \vdash \psi$.

Γ-teoreme

Definiția Γ-teoremelor dă naștere la metoda de demonstrație prin inducție după Γ-teoreme.

Versiunea 1

Fie P o proprietate a formulelor. Demonstrăm că orice Γ -teoremă satisface P astfel:

- (i) Demonstrăm că orice axiomă are proprietatea **P**.
- (ii) Demonstrăm că orice formulă din Γ are proprietatea P.
- (iii) Demonstrăm că dacă φ și $\varphi \to \psi$ au proprietatea ${\bf P}$, atunci ψ are proprietatea ${\bf P}$.

Versiunea 2

Fie Σ o mulțime de formule. Demonstrăm că $Thm(\Gamma) \subseteq \Sigma$ astfel:

- (i) Demonstrăm că orice axiomă este în Σ .
- (ii) Demonstrăm că orice formulă din Γ este în Σ .
- (iii) Demonstrăm că dacă $\varphi \in \Sigma$ și $\varphi \to \psi \in \Sigma$, atunci $\psi \in \Sigma$.

Γ-teoreme

Propoziția 2.38

Fie Γ, Δ mulțimi de formule.

(i) Dacă $\Gamma \subseteq \Delta$, atunci $Thm(\Gamma) \subseteq Thm(\Delta)$, adică, pentru orice formulă φ ,

 $\Gamma \vdash \varphi \text{ implică } \Delta \vdash \varphi.$

- (ii) $Thm \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ , $\vdash \varphi$ implică $\Gamma \vdash \varphi$.
- (iii) Dacă $\Gamma \vdash \Delta$, atunci $Thm(\Delta) \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ ,

 $\Delta \vdash \varphi \text{ implică } \Gamma \vdash \varphi.$

(iv) $Thm(Thm(\Gamma)) = Thm(\Gamma)$, adică, pentru orice formulă φ , $Thm(\Gamma) \vdash \varphi$ ddacă $\Gamma \vdash \varphi$.

Dem.: Exercițiu ușor.

Γ-demonstrații

Definiția 2.39

O Γ -demonstrație (demonstrație din ipotezele Γ) este o secvență de formule $\theta_1, \ldots, \theta_n$ a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i a.î. $\theta_k = \theta_i \rightarrow \theta_i$.
- O ∅-demonstrație se va numi simplu demonstrație.

Lema 2.40

Dacă θ_1 , ..., θ_n este o Γ-demonstrație, atunci

 $\Gamma \vdash \theta_i$ pentru orice $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Γ-demonstrații

Definitia 2.41

Fie φ o formulă. O Γ -demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ -demonstrație $\theta_1, \ldots, \theta_n$ a.î. $\theta_n = \varphi$. În acest caz, n se numește lungimea Γ -demonstrației.

Propoziția 2.42

Fie Γ o mulțime de formule și φ o formulă. Atunci $\Gamma \vdash \varphi$ ddacă există o Γ -demonstrație a lui φ .

Proprietăți sintactice

Propoziția 2.43

Pentru orice mulțime de formule Γ și orice formulă φ ,

 $\Gamma \vdash \varphi$ ddacă există o submulțime finită Σ a lui Γ a.î. $\Sigma \vdash \varphi$.

Dem.: " \Leftarrow " Fie $\Sigma \subseteq \Gamma$, Σ finită a.î. $\Sigma \vdash \varphi$. Aplicând Propoziția 2.38.(i) obținem că $\Gamma \vdash \varphi$.

"⇒" Presupunem că $\Gamma \vdash \varphi$. Conform Propoziției 2.42, φ are o Γ -demonstrație $\theta_1, \ldots, \theta_n = \varphi$. Fie

$$\Sigma := \Gamma \cap \{\theta_1, \dots, \theta_n\}.$$

Atunci Σ este finită, $\Sigma \subseteq \Gamma$ și $\theta_1, \ldots, \theta_n = \varphi$ este o Σ -demonstrație a lui φ , deci $\Sigma \vdash \varphi$.

Pentru orice formulă φ , $\vdash \varphi \rightarrow \varphi$.

Dem.:

- (1) $\vdash (\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$ (A2) (cu φ , $\psi := \varphi \to \varphi$, $\chi := \varphi$) și Propoziția 2.37.(i)
- (2) $\vdash \varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$ (A1) (cu $\varphi, \ \psi := \varphi \rightarrow \varphi$) și Propoziția 2.37.(i)
- (3) $\vdash (\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)$ (1), (2) și Propoziția 2.37.(iii). Scriem de obicei (MP): (1), (2)
- (4) $\vdash \varphi \rightarrow (\varphi \rightarrow \varphi)$ (A1) (cu φ , $\psi := \varphi$) și Propoziția 2.37.(i)
- (5) $\vdash \varphi \rightarrow \varphi$ (MP): (3), (4)

Teorema deducției

Teorema 2.45 (Teorema deducției)

Fie $\Gamma \subseteq Form \ si \ \varphi, \psi \in Form. \ Atunci$

$$\Gamma \cup \{\varphi\} \vdash \psi \; ddac \check{a} \; \Gamma \vdash \varphi \rightarrow \psi.$$

Dem.: Exercițiu suplimentar.

Teorema deducției este un instrument foarte util pentru a arăta că o formulă e teoremă.

Câteva consecințe

Propoziția 2.46

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$
 (35)

Dem.: Folosind teorema deducției observăm că

$$\vdash \frac{(\varphi \to \psi)}{} \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\updownarrow$$

$$\{\varphi \to \psi\} \vdash \frac{(\psi \to \chi)}{} \to (\varphi \to \chi)$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi\} \vdash \frac{\varphi}{} \to \chi$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

Câteva consecințe

În acest fel am reformulat ceea ce aveam de demonstrat. A demonstra teorema inițială este echivalent cu a demonstra

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ Propoziția 2.37.(ii)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ Propoziția 2.37.(ii)
- (3) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$ (MP): (1), (2)
- (4) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi$ Propoziția 2.37.(ii)
- (5) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$ (MP): (3), (4).

70

Pentru orice mulțime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \vdash \varphi \rightarrow \psi \quad \text{si} \quad \Gamma \vdash \psi \rightarrow \chi \quad \Rightarrow \quad \Gamma \vdash \varphi \rightarrow \chi.$$

Dem.:

(1) $\Gamma \vdash \varphi \rightarrow \psi$

ipoteză

(2) $\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$

P.2.46 și P.2.38.(ii)

(3) $\Gamma \vdash (\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)$

(MP): (1), (2)

(4) $\Gamma \vdash \psi \rightarrow \chi$

ipoteză

(5) $\Gamma \vdash \varphi \rightarrow \chi$

(MP): (3), (4).

Câteva consecințe

Propoziția 2.48

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi)) \tag{36}$$

Dem.: Exercițiu.

Propoziția 2.49

Pentru orice mulțime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \Rightarrow \Gamma \vdash \psi.$$

Dem.: Exercițiu.

Câteva consecințe

Propoziția 2.50

Pentru orice formule φ, ψ ,

$$\{\psi, \neg \psi\} \vdash \varphi \tag{37}$$

$$\vdash \neg \psi \to (\psi \to \varphi) \tag{38}$$

$$\vdash \quad \psi \to (\neg \psi \to \varphi) \tag{39}$$

$$\vdash \neg \neg \varphi \to \varphi \tag{40}$$

$$\vdash \varphi \to \neg \neg \varphi \tag{41}$$

$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi) \tag{42}$$

$$\{\psi, \neg \varphi\} \vdash \neg(\psi \to \varphi)$$
 (43)

$$\vdash (\varphi \to \neg \varphi) \to \neg \varphi \tag{44}$$

$$\vdash (\neg \varphi \to \varphi) \to \varphi \tag{45}$$

Dem.: Exercițiu.

Câteva consecințe

Propoziția 2.51

Pentru orice multime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \quad \textit{si} \quad \Gamma \cup \{\neg\psi\} \vdash \varphi \quad \Rightarrow \quad \Gamma \vdash \varphi.$$

Dem.:

(1) $\Gamma \cup \{\psi\} \vdash \varphi$

(4) $\Gamma \vdash \neg \psi \rightarrow \varphi$

ipoteză

ipoteză

(2) $\Gamma \vdash \psi \rightarrow \varphi$

Teorema deducției

(3) $\Gamma \cup \{\neg \psi\} \vdash \varphi$

Teorema deducției

(5) $\Gamma \vdash (\psi \rightarrow \varphi) \rightarrow (\neg \varphi \rightarrow \neg \psi)$ (42) și P.2.38.(ii)

(6) $\Gamma \vdash \neg \varphi \rightarrow \neg \psi$ (7) $\Gamma \vdash \neg \varphi \rightarrow \varphi$

(MP): (2), (5) (6), (4) și P. 2.47

(8) $\Gamma \vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$

(45) și P.2.38.(ii)

(9) $\Gamma \vdash \varphi$

(MP): (7), (8).

Pentru orice formule φ, ψ ,

$$\{\varphi \wedge \psi\} \vdash \varphi$$
 (46)

$$\{\varphi \wedge \psi\} \vdash \psi$$
 (47)

$$\{\varphi \wedge \psi\} \qquad \vdash \qquad \psi \qquad (47)$$

$$\{\varphi, \psi\} \qquad \vdash \qquad \varphi \wedge \psi \qquad (48)$$

$$\{\varphi,\psi\} \vdash \chi \quad ddac\check{a} \quad \{\varphi \land \psi\} \vdash \chi$$
 (49)

$$\vdash \qquad \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi \tag{50}$$

Dem.: Exercițiu.

SINTAXA și SEMANTICA

Teorema 2.53 (Teorema de corectitudine (Soundness Theorem))

Orice Γ-teoremă este consecință semantică a lui Γ, adică,

$$\Gamma \vdash \varphi \quad \Rightarrow \quad \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form \ \text{$\it si} \ \Gamma \subseteq Form.$

Dem.: Fie

$$\Sigma := \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. O facem prin inducție după Γ-teoreme.

- \blacktriangleright Axiomele sunt în Σ (exercițiu).
- Evident, Γ ⊂ Σ.
- \triangleright Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\varphi, \varphi \to \psi \in \Sigma$, adică, $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \to \psi$. Conform Propoziției 2.28.(i), obținem că $\Gamma \vDash \psi$, adică, $\psi \in \Sigma$.

Sintaxă și semantică

Fie $e: V \to \{0,1\}$ o evaluare și $v \in V$ o variabilă.

Definim

$$\mathbf{v}^{\mathbf{e}} = egin{cases} \mathbf{v} & \mathsf{dac} \check{\mathbf{a}} \; e(\mathbf{v}) = 1 \\ \neg \mathbf{v} & \mathsf{dac} \check{\mathbf{a}} \; e(\mathbf{v}) = 0. \end{cases}$$

Aşadar, $e^+(v^e) = 1$.

Pentru orice mulțime $W = \{x_1, \dots, x_k\}$ de variabile, notăm

$$W^e = \{v^e \mid v \in W\} = \{x_1^e, x_2^e, \dots, x_k^e\}.$$

Pentru orice $a \in \{0,1\}$, definim evaluarea $e_{v \leftarrow a}: V \rightarrow \{0,1\}$ prin

$$e_{v \leftarrow a}(x) = egin{cases} e(x) & ext{daca } x
eq v \ a & ext{daca } x = v. \end{cases}$$

Fie e : $V \rightarrow \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

Dem.: Prin inducție după formule. Avem următoarele cazuri:

- ▶ $\varphi = v$. Atunci $Var(\varphi)^e = \{v^e\}$ și $e^+(v) = e(v)$. Dacă e(v) = 1, atunci $v^e = v$, deci, $\{v^e\} \vdash v$. Dacă e(v) = 0, atunci $v^e = \neg v$, deci, $\{v^e\} \vdash \neg v$.
- ▶ $\varphi = \neg \psi$. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$. Dacă $e^+(\varphi) = 1$, atunci $e^+(\psi) = 0$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \neg \psi$, adică, $Var(\varphi)^e \vdash \varphi$. Dacă $e^+(\varphi) = 0$, atunci $e^+(\psi) = 1$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \psi$, adică, $Var(\varphi)^e \vdash \psi$. Deoarece $\vdash \psi \rightarrow \neg \neg \psi$ ((41) din Propoziția 2.50), putem aplica (MP) pentru a obține $Var(\varphi)^e \vdash \neg \neg \psi = \neg \varphi$.

Sintaxă și semantică

• $\varphi = \psi \to \chi$. Atunci $Var(\varphi) = Var(\psi) \cup Var(\chi)$, deci $Var(\psi)^e$, $Var(\chi)^e \subseteq Var(\varphi)^e$.

Dacă
$$e^+(\psi \to \chi) = 0$$
, atunci $e^+(\psi) = 1$ și $e^+(\chi) = 0$. Avem

$$Var(\psi)^e \vdash \psi$$
 ipoteza de inducție pentru ψ

$$Var(\chi)^e \vdash \neg \chi$$
 ipoteza de inducție pentru χ

$$Var(\varphi)^e \vdash \{\psi, \neg \chi\}$$
 $Var(\psi)^e, Var(\chi)^e \subseteq Var(\varphi)^e$ și P. 2.38.(i)

$$\{\psi, \neg \chi\} \vdash \neg(\psi \rightarrow \chi)$$
 (43) din Propoziția 2.50

$$Var(\varphi)^e \vdash \neg(\psi \rightarrow \chi)$$
 Propoziția 2.38.(iv).

Sintaxă și semantică

Dacă $e^+(\psi \to \chi) = 1$, atunci $e^+(\psi) = 0$ sau $e^+(\chi) = 1$.

În primul caz, obținem

$$Var(\psi)^e \vdash \neg \psi$$
 ipoteza de inducție pentru ψ

$$Var(\psi)^e \vdash \neg \psi \rightarrow (\psi \rightarrow \chi)$$
 (38) din P. 2.50 și P. 2.38.(ii)

$$Var(\psi)^e \vdash \psi \to \chi$$
 (MP)

$$Var(\varphi)^e \vdash \psi \rightarrow \chi$$
 $Var(\psi)^e \subseteq Var(\varphi)^e$ și P. 2.38.(i).

În al doilea caz, obținem

$$Var(\chi)^e \vdash \chi$$
 ipoteza de inducție pentru χ

$$Var(\chi)^e \vdash \chi \rightarrow (\psi \rightarrow \chi)$$
 (A1) și Propoziția 2.37.(i)

$$Var(\chi)^e \vdash \psi \to \chi$$
 (MP)

$$Var(\varphi)^e \vdash \psi \rightarrow \chi$$
 $Var(\chi)^e \subseteq Var(\varphi)^e$ și P. 2.38.(i).

Demonstrația propoziției anterioare ne dă o construcție efectivă a unei demonstrații a lui φ sau $\neg \varphi$ din premizele $Var(\varphi)^e$.

Teorema de completitudine

Teorema 2.55 (Teorema de completitudine)

Pentru orice formulă φ ,

$$\vdash \varphi \quad ddac\check{a} \quad \models \varphi.$$

Dem.: " \Rightarrow " Se aplică Teorema de corectitudine 2.53 pentru $\Gamma = \emptyset$. " \Leftarrow " Fie φ o tautologie și $Var(\varphi) = \{x_1, \dots, x_n\}$. Demonstrăm prin inducție după k următoarea proprietate:

(*) pentru orice
$$k \le n$$
, pentru orice $e: V \to \{0, 1\}$, $\{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$.

Pentru k = n, (*) ne dă $\vdash \varphi$.

k=0. Fie $e:V\to\{0,1\}$. Deoarece φ este tautologie, $e^+(\varphi)=1$. Aplicând Propoziția 2.54, obținem că

$$Var(\varphi)^e = \{x_1^e, \dots, x_n^e\} \vdash \varphi.$$

 $k\Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e:V\to\{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$. Considerăm evaluarea $e':=e_{x_{n-k}\leftarrow \neg e(x_{n-k})}$. Așadar, e'(v)=e(v) pentru orice $v\neq x_{n-k}$ și

$$e'(x_{n-k})=egin{cases} 0 & \operatorname{dacreve{a}} e(x_{n-k})=1 \ 1 & \operatorname{dacreve{a}} e(x_{n-k})=0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{1, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru $e ext{ și } e'$, obținem

$$\{x_1^e, \dots, x_{n-k-1}^e, x_{n-k}\} \vdash \varphi \text{ si } \{x_1^e, \dots, x_{n-k-1}^e, \neg x_{n-k}\} \vdash \varphi.$$

Aplicăm acum Propoziția 2.51 cu $\Gamma := \{x_1^e, \dots, x_{n-k-1}^e\}$ și $\psi := x_{n-k}$ pentru a conclude că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$.

Consecință utilă

Propoziția 2.56

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq$ Form. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Dem.: Observăm că

$$\begin{array}{cccc} \varphi \sim \psi & \iff & \models \varphi \rightarrow \psi \text{ și } \vDash \psi \rightarrow \varphi \\ & & \text{Propoziția 2.17} \\ & \iff & \vdash \varphi \rightarrow \psi \text{ și } \vdash \psi \rightarrow \varphi \\ & & \text{Teorema de completitudine.} \end{array}$$

"⇒" Presupunem că $\Gamma \vdash \varphi$. Deoarece $\vdash \varphi \to \psi$, rezultă din Propoziția 2.38.(ii) că $\Gamma \vdash \varphi \to \psi$. Aplicăm acum (MP) pentru a obține că $\Gamma \vdash \psi$.

Notații

Fie Γ o mulțime de formule și φ o formulă.

Notații

$$\Gamma \not\vdash \varphi$$
 : $\Leftrightarrow \varphi$ nu este Γ -teoremă $\not\vdash \varphi$: $\Leftrightarrow \varphi$ nu este teoremă

$$\Gamma \not\models \varphi : \Leftrightarrow \varphi$$
 nu este consecință semantică a lui Γ

$$\not\vdash \varphi$$
 : $\Leftrightarrow \varphi$ nu este tautologie.

Mulțimi consistente

Definiția 2.57

Fie Γ o mulțime de formule.

- ightharpoonup Γ este consistentă dacă există o formulă φ astfel încât Γ $\not\vdash \varphi$.
- ▶ Γ este inconsistentă dacă nu este consistentă, adică, Γ $\vdash \varphi$ pentru orice formulă φ .

Observatie

Fie Γ , Δ multimi de formule a.î. $\Gamma \subset \Delta$.

- ightharpoonup Dacă Δ este consistentă, atunci și Γ este consistentă.
- ightharpoonup Dacă Γ este inconsistentă, atunci și Δ este inconsistentă.

Mulțimi consistente

Propoziția 2.58

- (i) ∅ este consistentă.
- (ii) Mulțimea teoremelor este consistentă.

Dem.:

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine 2.53, ar rezulta că ⊨ ⊥, o contradicție. Așadar ⊬ ⊥, deci Ø este consistentă.
- (ii) Aplicând Propoziția 2.38.(iv) pentru $\Gamma = \emptyset$, obținem că Thm = Thm(Thm), adică, pentru orice φ , $\vdash \varphi$ ddacă $Thm \vdash \varphi$.

Din (i) rezultă că Thm este consistentă.

Mulțimi consistente

Propoziția 2.59

Pentru o mulțime de formule Γ sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ a.î. $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iv) $\Gamma \vdash \bot$.

Dem.: $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$ sunt evidente.

 $(iii) \Rightarrow (i)$ Fie φ o formulă. Conform (38) din Propoziția 2.50,

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi).$$

Aplicând (iii) și de două ori modus ponens, rezultă că $\Gamma \vdash \varphi$. (iv) \Rightarrow (iii). Presupunem că $\Gamma \vdash \bot$. Avem că $\bot = \neg \top$. Deoarece \top este tautologie, aplicăm Teorema de completitudine pentru a conclude că $\vdash \top$, deci și $\Gamma \vdash \top$.

Mulțimi consistente

Propoziția 2.60

Fie Γ o mulțime de formule și φ o formulă.

- (i) $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ este inconsistentă.
- (ii) $\Gamma \vdash \neg \varphi \iff \Gamma \cup \{\varphi\}$ este inconsistentă.

Dem.:

(i) Avem

(ii) Similar.

Mulțimi consistente

Propoziția 2.61

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule.

- (i) Pentru orice formulă ψ , $\Gamma \vdash \psi$ ddacă $\vdash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$ ddacă $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \psi$.
- (ii) Γ este consistentă ddacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă.

Dem.: Exercițiu.

Fie Γ o mulțime de formule. Γ este inconsistentă ddacă Γ are o submulțime finită inconsistentă.

Dem.: "←" este evidentă.

"⇒" Presupunem că Γ este inconsistentă. Atunci, conform Propoziției 2.59.(iv), $\Gamma \vdash \bot$. Aplicând Propoziția 2.43, obținem o submulțime finită $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ a lui Γ a.î. $\Sigma \vdash \bot$. Prin urmare, Σ este inconsistentă.

Un rezultat echivalent:

Propoziția 2.63

Fie Γ o mulțime de formule. Γ este consistentă ddacă orice submulțime finită a lui Γ este consistentă.

Consecință a Teoremei de completitudine

Teorema 2.64

Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Dem.: Avem

$$\{\varphi\} \text{ este inconsistentă} \iff \vdash \neg \varphi \\ \text{Propoziția 2.60.(ii)} \\ \iff \vdash \neg \varphi \\ \text{Teorema de completitudine} \\ \iff \{\varphi\} \text{ este nesatisfiabilă} \\ \text{Propoziția 2.30.(ii)}.$$

Aşadar, $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

101

Teorema de completitudine tare

Teorema 2.65 (Teorema de completitudine tare - versiunea 1)

Pentru orice mulțime de formule Γ ,

 Γ este consistentă \iff Γ este satisfiabilă.

Dem.: " \Leftarrow " Presupunem că Γ este satisfiabilă, deci are un model $e:V\to\{0,1\}$. Presupunem că Γ nu este consistentă. Atunci Γ $\vdash \bot$ și, aplicând Teorema de corectitudine 2.53, rezultă că Γ $\vDash \bot$. Ca urmare, $e\vDash \bot$, ceea ce este o contradicție. " \Rightarrow " Presupunem că Γ este consistentă. Demonstrăm că Γ este finit satisfiabilă și aplicăm apoi Teorema de compacitate 2.34 pentru a conclude că Γ este satisfiabilă. Fie $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ o submulțime finită a lui Γ. Atunci Σ este consistentă, conform Propoziției 2.63. Din Propoziția 2.61.(ii), rezultă că $\{\varphi_1 \land \ldots \land \varphi_n\}$ este consistentă. Aplicând acum Teorema 2.64 obținem că $\{\varphi_1 \land \ldots \land \varphi_n\}$ este satisfiabilă. Deoarece, conform Propoziției 2.31.(i), $\Sigma \sim \{\varphi_1 \land \ldots \land \varphi_n\}$, avem că Σ este satisfiabilă.

Teorema de completitudine tare

Teorema 2.66 (Teorema de completitudine tare - versiunea 2)

Pentru orice mulțime de formule Γ și orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

Dem.:

Observație

Am demonstrat Teorema de completitudine tare - versiunea 2 folosind Teorema de completitudine tare - versiunea 1. Se poate arăta că cele două versiuni sunt echivalente (exercițiu).

10.

na

FORMA NORMALĂ CONJUNCTIVĂ / DISJUNCTIVĂ

105

Forma normală conjunctivă / disjunctivă

Definiția 2.69

O formulă φ este în formă normală conjunctivă (FNC) dacă φ este o conjuncție de disjuncții de literali.

Aşadar, φ este în FNC ddacă $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$, unde fiecare $L_{i,j}$ este literal.

Exemple

- \triangleright $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$ este în FND
- \triangleright $v_1 \land \neg v_5 \land v_4$ este atât în FND cât și în FNC
- $ightharpoonup \neg v_{10} \lor v_{20} \lor v_4$ este atât în FND cât și în FNC
- $(v_1 \lor v_2) \land ((v_1 \land v_3) \lor (v_4 \land v_5))$ nu este nici în FND, nici în FNC

Forma normală conjunctivă / disjunctivă

Definiția 2.67

Un literal este o

- variabilă (în care caz spunem că este literal pozitiv) sau
- negația unei variabile (în care caz spunem că este literal negativ).

Exemple: v_1, v_2, v_{10} literali pozitivi; $\neg v_0, \neg v_{100}$ literali negativi

Convenție: $\bigvee_{i=1}^1 \varphi_i = \varphi_1$ și $\bigwedge_{i=1}^1 \varphi_i = \varphi_1$.

Definiția 2.68

O formulă φ este în formă normală disjunctivă (FND) dacă φ este o disjuncție de conjuncții de literali.

Aşadar, φ este în FND ddacă $\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$, unde fiecare $L_{i,j}$ este literal.

Forma normală conjunctivă / disjunctivă

Notație: Dacă L este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 2.70

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Dem.: Exercițiu.

Funcția asociată unei formule

Exemplu: Arătați că $\vDash v_1 \rightarrow (v_2 \rightarrow v_1 \land v_2)$.

v_1	<i>v</i> ₂	$v_1 \rightarrow (v_2 \rightarrow v_1 \wedge v_2)$
0	0	1
0	1	1
1	0	1
1	1	1

Acest tabel defineste o funcție $F: \{0,1\}^2 \rightarrow \{0,1\}$

$arepsilon_1$	ε_2	$F(\varepsilon_1, \varepsilon_2)$
0	0	1
0	1	1
1	0	1
1	1	1

109

Funcția asociată unei formule

Propoziția 2.72

- (i) Fie φ o formulă. Atunci
 - (a) $\models \varphi$ ddacă F_{φ} este funcția constantă 1.
 - (b) φ este nesatisfiabilă ddacă F_{φ} este funcția constantă 0.
- (ii) Fie φ, ψ două formule astfel încât $Var(\varphi) = Var(\psi)$. Atunci
 - (a) $\varphi \vDash \psi$ ddacă $F_{\omega} \leq F_{\psi}$.
 - (b) $\varphi \sim \psi$ ddacă $F_{\varphi} = F_{\psi}$.
- (iii) Există formule diferite φ, ψ a.î. $F_{\varphi} = F_{\psi}$.

Funcția asociată unei formule

Fie φ o formulă și $Var(\varphi) = \{v_{i_1}, v_{i_2} \dots, v_{i_n}\}$, unde $n \ge 1$ și $0 \le i_1 < i_2 < \dots < i_n$.

Fie $(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n$. Definim $e_{\varepsilon_1, \dots, \varepsilon_n} : Var(\varphi) \to \{0, 1\}$ astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}(v_{i_k})=\varepsilon_k$$
 pentru orice $k\in\{1,\ldots,n\}$.

Definim $e_{\varepsilon_1,\dots,\varepsilon_n}^+(\varphi) \in \{0,1\}$ astfel:

$$e_{\varepsilon_1}^+$$
 $\varepsilon_{\varepsilon}(\varphi) := e^+(\varphi),$

unde $e: V \to \{0,1\}$ este orice evaluare care extinde $e_{\varepsilon_1,\dots,\varepsilon_n}$, adică $e(v_{i_k}) = e_{\varepsilon_1,\dots,\varepsilon_n}(v_{i_k}) = \varepsilon_k$ pentru orice $k \in \{1,\dots,n\}$. Conform Propoziției 2.13, definiția nu este ambiguă.

Definitia 2.71

Funcția asociată lui φ este $F_{\varphi}: \{0,1\}^n \to \{0,1\}$, definită astfel: $F_{\varphi}(\varepsilon_1,\ldots,\varepsilon_n) = e_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi)$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n) \in \{0,1\}^n$.

Aşadar, F_{φ} este funcția definită de tabela de adevăr pentru φ .

Caracterizarea funcțiilor booleene

Definiția 2.73

O funcție booleană este o funcție $F: \{0,1\}^n \to \{0,1\}$, unde $n \ge 1$. Spunem că n este numărul variabilelor lui F.

Exemplu: Pentru orice formulă φ , F_{φ} este funcție Booleană cu n variabile, unde $n = |Var(\varphi)|$.

Teorema 2.74

Fie $n \geq 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă φ în FND a.î. $H=F_{\varphi}$.

Dem.: Dacă $H(\varepsilon_1,\ldots,\varepsilon_n)=0$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$,

luăm $\varphi := \bigvee_{i=1}^{n} (v_i \wedge \neg v_i)$. Avem că $Var(\varphi) = \{v_1, \ldots, v_n\}$, așadar,

 $F_{\varphi}:\{0,1\}^n \to \{0,1\}$. Cum $v_i \land \neg v_i$ este nesatisfiabilă pentru orice i, rezultă că φ este de asemenea nesatisfiabilă. Deci, F_{φ} este funcția constantă 0.

Caracterizarea funcțiilor booleene

Altcumva, mulțimea

$$T := H^{-1}(1) = \{(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n \mid H(\varepsilon_1, \dots, \varepsilon_n) = 1\}$$

este nevidă.

Considerăm formula

$$arphi := igvee_{(arepsilon_1,...,arepsilon_n) \in \mathcal{T}} \left(igwedge_{arepsilon_i = 1} v_i \wedge igwedge_{arepsilon_i = 0}
eg v_i
ight).$$

Deoarece $Var(\varphi) = \{v_1, \dots, v_n\}$, avem că $F_{\varphi} : \{0, 1\}^n \to \{0, 1\}$.

Se demonstrează că $H = F_{\varphi}$ (exercițiu suplimentar).

113

4

Caracterizarea funcțiilor Booleene

Exemplu: Fie $H: \{0,1\}^3 \rightarrow \{0,1\}$ descrisă prin tabelul:

$ \varepsilon_1 $	ε_2	ε_3	$H(\varepsilon_1, \varepsilon_2, \varepsilon_3)$	
0	0	0	0	$D_1 = v_1 \vee v_2 \vee v_3$
0	0	1	0	$D_2 = v_1 \vee v_2 \vee \neg v_3$
0	1	0	1	$C_1 = \neg v_1 \wedge v_2 \wedge \neg v_3$
0	1	1	0	$D_3 = v_1 \vee \neg v_2 \vee \neg v_3$
1	0	0	1	$C_2 = v_1 \wedge \neg v_2 \wedge \neg v_3$
1	0	1	1	$C_3 = v_1 \wedge \neg v_2 \wedge v_3$
1	1	0	1	$C_4 = v_1 \wedge v_2 \wedge \neg v_3$
1	1	1	1	$C_5 = v_1 \wedge v_2 \wedge v_3$

$$arphi = C_1 \lor C_2 \lor C_3 \lor C_4 \lor C_5$$
 în FND a.î. $H = F_{arphi}.$ $\psi = D_1 \land D_2 \land D_3$ în FNC a.î. $H = F_{\psi}.$

Caracterizarea funcțiilor booleene

Teorema 2.75

Fie $n \ge 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă ψ în FNC a.î. $H=F_{\psi}$.

Dem.: Dacă $H(\varepsilon_1,\ldots,\varepsilon_n)=1$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$, atunci luăm

$$\psi := \bigwedge_{i=1}^n (v_i \vee \neg v_i).$$

Altcumva, mulțimea

$$F := H^{-1}(0) = \{(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n \mid H(\varepsilon_1, \dots, \varepsilon_n) = 0\}$$

este nevidă.

Considerăm formula $\psi:=igwedge_{(arepsilon_1,...,arepsilon_n)\in F}\left(igvee_{arepsilon_i=1}
egv_i\lor\bigvee_{arepsilon_i=0}v_i
ight).$

Se demonstrează că $H = F_{\psi}$ (exercițiu suplimentar)

Forma normală conjunctivă / disjunctivă

Teorema 2.76

Orice formulă φ este echivalentă cu o formulă φ^{FND} în FND și cu o formulă φ^{FNC} în FNC.

Dem.:

Fie $Var(\varphi) = \{x_1, \dots, x_n\}$ și $F_{\varphi} : \{0,1\}^n \to \{0,1\}$ funcția booleană asociată. Aplicând Teorema 2.74 cu $H := F_{\varphi}$, obținem o formulă φ^{FND} în FND a.î. $F_{\varphi} = F_{\varphi^{FND}}$. Așadar, conform Propoziției 2.72.(ii), $\varphi \sim \varphi^{FND}$.

Similar, aplicând Teorema 2.75 cu
$$H:=F_{\varphi}$$
, obținem o formulă φ^{FNC} în FNC a.î. $F_{\varphi}=F_{\varphi^{FNC}}$. Prin urmare, $\varphi\sim\varphi^{FNC}$.

Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 și $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi)$$
 cu $\neg\varphi \land \neg\psi$ și $\neg(\varphi \land \psi)$ cu $\neg\varphi \lor \neg\psi$.

Pasul 3. Pentru FNC, se aplică distributivitatea lui ∨ fața de ∧, pentru a înlocui

$$\varphi \lor (\psi \land \chi)$$
 cu $(\varphi \lor \psi) \land (\varphi \lor \chi)$ și $(\psi \land \chi) \lor \varphi$ cu $(\psi \lor \varphi) \land (\chi \lor \varphi)$.

Pentru FND, se aplică distributivitatea lui \land fața de \lor , pentru a înlocui

$$\varphi \wedge (\psi \vee \chi) \operatorname{cu} (\varphi \wedge \psi) \vee (\varphi \wedge \chi) \quad \text{si} \quad (\psi \vee \chi) \wedge \varphi \operatorname{cu} (\psi \wedge \varphi) \vee (\chi \wedge \varphi).$$

17

Forma normală conjunctivă / disjunctivă

Exemplu

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

Avem

$$\varphi \sim \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 1}$$

$$\sim \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}$$

Putem lua
$$\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$$
.

Pentru a obține FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2) \\ \sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

Putem lua $\varphi^{FNC} := (\neg v_0 \lor \neg v_0 \lor v_2) \land (v_2 \lor \neg v_0 \lor v_2)$. Se observă, folosind idempotența și comutativitatea lui \lor , că $\varphi^{FNC} \sim \neg v_0 \lor v_2$.

•

CLAUZE ȘI REZOLUȚIE

Clauze

Definiția 2.77

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obținem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiția 2.78

Fie C o clauză și $e: V \to \{0,1\}$. Spunem că e este model al lui C sau că e satisface C și scriem $e \models C$ dacă există $L \in C$ a.î. $e \models L$.

Definiția 2.79

O clauză C se numeste

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare e : $V \rightarrow \{0,1\}$ este model al lui C.

Definiția 2.80

O clauză C este trivială dacă există un literal L a.î. $L \in C$ și $L^c \in C$.

Propoziția 2.81

- (i) Orice clauză nevidă este satisfiabilă.
- (ii) Clauza vidă □ este nesatisfiabilă.
- (iii) O clauză este validă ddacă este trivială.

Dem.: Exercițiu.

•

Clauze

 $S = \{C_1, \dots, C_m\}$ este o mulțime de clauze. Dacă m = 0, obținem mulțimea vidă de clauze \emptyset .

 ${\cal S}$ este considerată implicit ca o formulă în FNC: conjuncție de disjuncții ale literalilor din fiecare clauză.

Definiția 2.82

Fie $e: V \to \{0,1\}$. Spunem că e este model al lui S sau că e satisface S și scriem $e \models S$ dacă $e \models C_i$ pentru orice $i \in \{1, ..., m\}$.

Definiția 2.83

 ${\cal S}$ se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare e : $V \rightarrow \{0,1\}$ este model al lui \mathcal{S} .

21

Clauze

Propoziția 2.84

- ▶ Dacă S conține clauza vidă \Box , atunci S nu este satisfiabilă.
- Ø este validă.

Dem.: Exercițiu.

Exemplu

 $\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\} \text{ este satisfiabilă}.$

Dem.: Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu

 $S = \{ \{ \neg v_1, v_2 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1 \}, \{ v_3 \} \}$ nu este satisfiabilă.

Dem.: Presupunem că S are un model e. Atunci $e(v_1) = e(v_3) = 1$ și, deoarece $e \models \{\neg v_3, \neg v_2\}$, trebuie să avem $e(v_2) = 0$. Rezultă că $e(v_2) = e^+(\neg v_1) = 0$, deci e nu satisface $\{\neg v_1, v_2\}$. Am obținut o contradicție.

Clauze și FNC

Unei formule φ în FNC îi asociem o mulțime de clauze \mathcal{S}_{φ} astfel:

Fie

$$\varphi := \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right),$$

unde fiecare $L_{i,j}$ este literal. Pentru orice i, fie C_i clauza obținută considerând toți literalii $L_{i,j}, j \in \{1,\ldots,k_i\}$ distincți. Fie \mathcal{S}_{φ} mulțimea tuturor clauzelor $C_i, i \in \{1,\ldots,n\}$ distincte.

 S_{φ} se mai numește și forma clauzală a lui φ .

Propoziția 2.85

Pentru orice evaluare $e: V \to \{0,1\}, e \vDash \varphi ddacă e \vDash S_{\varphi}.$

Clauze și FNC

Unei mulțimi de clauze $\mathcal S$ îi asociem o formulă $\varphi_{\mathcal S}$ în FNC astfel:

- $C = \{L_1, \ldots, L_n\}, n \ge 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \ldots \vee L_n.$
- $\triangleright \square \longmapsto \varphi_{\square} := v_0 \land \neg v_0.$

Fie $S = \{C_1, \dots, C_m\}$ o mulțime nevidă de clauze. Formula asociată lui S este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^{m} \varphi_{C_i}.$$

Formula asociată mulțimii vide de clauze este $\varphi_\emptyset := v_0 \vee \neg v_0$. Formula $\varphi_{\mathcal{S}}$ nu este unic determinată, depinde de ordinea în care se scriu elementele în clauze și în \mathcal{S} , dar se observă imediat că: $\mathcal{S} = \mathcal{S}'$ implică $\varphi_{\mathcal{S}} \sim \varphi_{\mathcal{S}'}$.

Propoziția 2.86

Pentru orice evaluare $e: V \to \{0,1\}, e \models S$ ddacă $e \models \varphi_S$.

Rezoluția

Definiția 2.87

Fie C_1 , C_2 două clauze. O clauză R se numește rezolvent al clauzelor C_1 , C_2 dacă există un literal L a.î. $L \in C_1$, $L^c \in C_2$ și

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\}).$$

Regula Rezoluției

Rez
$$\frac{C_1,\,C_2}{(C_1\setminus\{L\})\cup(C_2\setminus\{L^c\})},\quad L\in C_1,L^c\in C_2$$

Notăm cu $Res(C_1, C_2)$ mulțimea rezolvenților clauzelor C_1, C_2 .

- ► Rezoluția a fost introdusă de Blake (1937) și dezvoltată de Davis, Putnam (1960) și Robinson (1965).
- Multe demonstratoare automate de teoreme folosesc rezoluţia. Limbajul PROLOG este bazat pe rezoluţie.

Rezoluția

Exemplu

 $C_1 = \{v_1, v_2, \neg v_5\}, C_2 = \{v_1, \neg v_2, v_{100}, v_5\}.$

- ▶ Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- ▶ Dacă luăm $L' := v_2$, atunci $L' \in C_1$ și $L'^c = \neg v_2 \in C_2$. Prin urmare, $R' = \{v_1, \neg v_5, v_{100}, v_5\}$ este rezolvent al clauzelor C_1, C_2 .

Exemplu

 $C_1 = \{v_7\}$, $C_2 = \{\neg v_7\}$. Atunci clauza vidă \square este rezolvent al clauzelor C_1 , C_2 .

Rezoluția

Fie $\mathcal S$ o mulțime de clauze.

Definiția 2.88

O derivare prin rezoluție din S sau o S-derivare prin rezoluție este o secvență C_1, C_2, \ldots, C_n de clauze a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) C_i este o clauză din S;
- (ii) există j, k < i a.î. C_i este rezolvent al clauzelor C_j, C_k .

Definiția 2.89

Fie C o clauză. O derivare prin rezoluție a lui C din S este o S-derivare prin rezoluție C_1, C_2, \ldots, C_n a.î. $C_n = C$.

Rezoluția

Exemplu

Fie

$$S = \{ \{\neg v_1, v_2\}, \{\neg v_2, \neg v_3, v_4\}, \{v_1\}, \{v_3\}, \{\neg v_4\} \}.$$

O derivare prin rezoluție a clauzei vide \square din $\mathcal S$ este următoarea:

$$C_1 = \{\neg v_4\} \qquad C_1 \in \mathcal{S}$$

$$C_2 = \{\neg v_2, \neg v_3, v_4\} \qquad C_2 \in \mathcal{S}$$

$$C_3 = \{ \neg v_2, \neg v_3 \}$$
 C_3 rezolvent al clauzelor C_1, C_2

$$C_4 = \{v_3\}$$
 $C_4 \in \mathcal{S}$

$$C_5 = \{ \neg v_2 \}$$
 C_5 rezolvent al clauzelor C_3, C_4

$$C_6 = \{\neg v_1, v_2\} \qquad C_6 \in \mathcal{S}$$

$$C_7 = \{\neg v_1\}$$
 C_7 rezolvent al clauzelor C_5, C_6

$$C_8 = \{v_1\}$$
 $C_8 \in \mathcal{S}$

$$C_9 = \square$$
 C_9 rezolvent al clauzelor C_7, C_8 .

4

Rezoluția

Pentru orice mulțime de clauze \mathcal{S} , notăm cu

$$Res(S) := \bigcup_{C_1, C_2 \in S} Res(C_1, C_2).$$

Propoziția 2.90

Pentru orice mulțime de clauze S și orice evaluare $e: V \to \{0,1\}$,

$$e \vDash S \Rightarrow e \vDash Res(S)$$
.

Dem.: Dacă $Res(S) = \emptyset$, atunci este validă, deci $e \models Res(S)$. Presupunem că Res(S) este nevidă și fie $R \in Res(S)$. Atunci există clauze $C_1, C_2 \in S$ și un literal L a.î. $L \in C_1, L^c \in C_2$ și $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})$. Avem două cazuri:

- ▶ $e \vDash L$. Atunci $e \not\vDash L^c$. Deoarece $e \vDash C_2$, există $U \in C_2$, $U \ne L^c$ a.î. $e \vDash U$. Deoarece $U \in R$, obţinem că $e \vDash R$.
- ▶ $e \not\models L$. Deoarece $e \models C_1$, există $U \in C_1$, $U \not\models L$ a.î. $e \models U$. Deoarece $U \in R$, obţinem că $e \models R$.

Rezoluția

Teorema 2.91 (Teorema de corectitudine a rezoluției)

Fie S o mulțime de clauze. Dacă \square se derivează prin rezoluție din S, atunci S este nesatisfiabilă.

Dem.: Fie $C_1, C_2, \ldots, C_n = \square$ o \mathcal{S} -derivare prin rezoluție a lui \square . Presupunem că \mathcal{S} este satisfiabilă și fie $e \models \mathcal{S}$.

Demonstrăm prin inducție după i că:

pentru orice
$$1 \le i \le n$$
, $e \models C_i$.

Pentru i=n, obținem că $e \vDash \square$, ceea ce este o contradicție.

Cazul i=1 este evident, deoarece $\mathcal{C}_1 \in \mathcal{S}$.

Presupunem că $e \models C_j$ pentru orice j < i. Avem două cazuri:

- ▶ $C_i \in S$. Atunci $e \models C_i$.
- ▶ există j, k < i a.î. $C_i \in Res(C_j, C_k)$. Deoarece, conform ipotezei de inducție, $e \models \{C_j, C_k\}$ aplicăm Propoziția 2.90 pentru a conclude că $e \models C_i$.

Algoritmul Davis-Putnam (DP)

Intrare: S mulțime nevidă de clauze netriviale.

$$i := 1$$
, $S_1 := S$.

Pi.1 Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{ C \in \mathcal{S}_i \mid x_i \in C \}, \quad \mathcal{T}_i^0 := \{ C \in \mathcal{S}_i \mid \neg x_i \in C \}.$$

Pi.2 if $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$ then

$$\mathcal{U}_i := \{(C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\}.$$

else $\mathcal{U}_i := \emptyset$.

Pi.3 Definim

$$\begin{array}{lll} \mathcal{S}'_{i+1} &:= & \left(\mathcal{S}_i \setminus (\mathcal{T}_i^0 \cup \mathcal{T}_i^1)\right) \cup \mathcal{U}_i; \\ \mathcal{S}_{i+1} &:= & \mathcal{S}'_{i+1} \setminus \{C \in \mathcal{S}'_{i+1} \mid C \text{ trivial} \breve{a}\}. \end{array}$$

Pi.4 if
$$S_{i+1} = \emptyset$$
 then S este satisfiabilă.
else if $\square \in S_{i+1}$ then S este nesatisfiabilă.
else $\{i := i+1; \text{ go to Pi.1}\}.$

Algoritmul Davis-Putnam (DP)

$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}. \ i := 1, S_1 := S.$$

P1.1
$$x_1 := v_3$$
; $\mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}$; $\mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}$.

P1.2
$$\mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$$

P1.3
$$S'_2 := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; S_2 := \{\{v_2, v_1\}\}.$$

P1.4
$$i := 2$$
 and go to P2.1.

P2.1
$$x_2 := v_2$$
; $\mathcal{T}_2^1 := \{\{v_2, v_1\}\}$; $\mathcal{T}_2^0 := \emptyset$.

P2.2
$$\mathcal{U}_2 := \emptyset$$
.

P2.3
$$S_3 := \emptyset$$
.

P2.4
$$S$$
 este satisfiabilă.

Algoritmul Davis-Putnam (DP)

$$S = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}.$$

$$i := 1, S_1 := S.$$

P1.1
$$x_1 := v_1; \mathcal{T}_1^1 := \{\{v_1, v_3\}, \{v_1\}\}; \mathcal{T}_1^0 := \{\{\neg v_1, v_2, \neg v_4\}\}.$$

P1.2
$$U_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$$

P1.3
$$S_2 := \{ \{ \neg v_3, \neg v_2 \}, \{ v_3 \}, \{ v_4 \}, \{ v_3, v_2, \neg v_4 \}, \{ v_2, \neg v_4 \} \}.$$

P1.4
$$i := 2$$
 and go to P2.1.

P2.1.
$$x_2 := v_2$$
; $\mathcal{T}_2^1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}; \mathcal{T}_2^0 := \{\{\neg v_3, \neg v_2\}\}.$

P2.2
$$U_2 := \{\{v_3, \neg v_4, \neg v_3\}, \{\neg v_4, \neg v_3\}\}.$$

P2.3
$$S_3 := \{\{v_3\}, \{v_4\}, \{\neg v_4, \neg v_3\}\}.$$

P2.4
$$i := 3$$
 and go to P3.1.

P3.1
$$x_3 := v_3$$
; $\mathcal{T}_3^1 := \{\{v_3\}\}; \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}.$

P3.2.
$$U_3 := \{ \{ \neg v_4 \} \}.$$
 P3.3 $S_4 := \{ \{ v_4 \}, \{ \neg v_4 \} \}.$

P3.4
$$i := 4$$
 and go to P4.1.

P4.1
$$x_4 := v_4$$
; $\mathcal{T}_4^1 := \{\{v_4\}\}$; $\mathcal{T}_4^0 := \{\{\neg v_4\}\}$.

P4.2
$$\mathcal{U}_4 := \{ \Box \}.$$
 P4.3 $\mathcal{S}_5 := \{ \Box \}.$

P4.4
$$\mathcal{S}$$
 nu este satisfiabilă.

4

Algoritmul DP - terminare

Notăm:

$$Var(C) := \{x \in V \mid x \in C \text{ sau } \neg x \in C\}, \quad Var(S) := \bigcup_{C \in S} Var(C).$$

Aşadar,
$$Var(C) = \emptyset$$
 ddacă $C = \square$ şi $Var(S) = \emptyset$ ddacă $S = \emptyset$ sau $S = \{\square\}$.

Propoziția 2.92

Fie n := |Var(S)|. Atunci algoritmul DP se termină după cel mult n pași.

Dem.: Se observă imediat că pentru orice *i*,

$$Var(S_{i+1}) \subseteq Var(S_i) \setminus \{x_i\} \subseteq Var(S_i)$$
.

Prin urmare,
$$n = |Var(S_1)| > |Var(S_2)| > |Var(S_3)| > \ldots \ge 0$$
.

Fie $N \leq n$ numărul de pași după care se termină DP. Atunci $\mathcal{S}_{N+1} = \emptyset$ sau $\square \in \mathcal{S}_{N+1}$.

Algoritmul DP - corectitudine și completitudine

Propoziția 2.93

Pentru orice $i \leq N$,

 S_{i+1} este satisfiabilă $\iff S_i$ este satisfiabilă.

Dem.: Exercițiu suplimentar.

Teorema 2.94

Algoritmul DP este corect și complet, adică,

$$S$$
 este nesatisfiabilă ddacă $\square \in S_{N+1}$.

Dem.: Aplicăm Propoziția 2.93. Obținem că $S = S_1$ este nesatisfiabilă ddacă S_{N+1} este nesatisfiabilă ddacă $\square \in S_{N+1}$.

125

LOGICA DE ORDINUL ÎNTÂI

De

Limbaje de ordinul întâi

Definiția 3.1

Un limbaj \mathcal{L} de ordinul întâi este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectorii \neg și \rightarrow ;
- parantezele (,);
- ► simbolul de egalitate =;
- ► cuantificatorul universal ∀;
- o mulţime R de simboluri de relaţii;
- ▶ o mulțime F de simboluri de funcții;
- ▶ o mulțime C de simboluri de constante;
- ightharpoonup o funcție aritate ari : $\mathcal{F} \cup \mathcal{R} \to \mathbb{N}^*$.
- $ightharpoonup \mathcal{L}$ este unic determinat de cvadruplul $\tau := (\mathcal{R}, \mathcal{F}, \mathcal{C}, \operatorname{ari})$.
- ightharpoonup au se numește signatura lui $\mathcal L$ sau tipul de similaritate al lui $\mathcal L$

Limbaje de ordinul întâi

Fie \mathcal{L} un limbaj de ordinul întâi.

• Mulțimea $Sim_{\mathcal{L}}$ a simbolurilor lui \mathcal{L} este

$$Sim_{\mathcal{L}} := V \cup \{\neg, \rightarrow, (,), =, \forall\} \cup \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$$

- Elementele lui $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ se numesc simboluri non-logice.
- Elementele lui $V \cup \{\neg, \rightarrow, (,), =, \forall\}$ se numesc simboluri logice.
- Notăm variabilele cu x, y, z, v, \ldots , simbolurile de relații cu $P, Q, R \ldots$, simbolurile de funcții cu f, g, h, \ldots și simbolurile de constante cu c, d, e, \ldots
- Pentru orice $m \in \mathbb{N}^*$ notăm:

 \mathcal{F}_m := mulțimea simbolurilor de funcții de aritate m;

 $\mathcal{R}_m := \text{mulțimea simbolurilor de relații de aritate } m.$

Limbaje de ordinul întâi

Definiția 3.2

Mulţimea $\mathsf{Expr}_\mathcal{L}$ a $\mathsf{expresiilor}$ lui \mathcal{L} este mulţimea tuturor şirurilor finite de simboluri ale lui \mathcal{L} .

Expresia vidă se notează λ . O expresie nevidă este de forma $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$, unde $k \geq 1$ și $\theta_i \in Sim_{\mathcal{L}}$ pentru orice $i = 0, \dots, k-1$.

Fie
$$\theta = \theta_0 \theta_1 \dots \theta_{k-1}$$
 și $\sigma = \sigma_0 \sigma_1 \dots \sigma_{l-1}$ două expresii ale lui \mathcal{L} . $\theta = \sigma$ ddacă $k = l$ și $\theta_i = \sigma_i$ pentru orice $i = 0, \dots, k-1$.

Definiția 3.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui \mathcal{L} . Spunem că o expresie σ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. $\sigma = \theta_i \dots \theta_j$. Notăm cu $Var(\theta)$ mulțimea variabilelor care apar în θ .

Definiția 3.4

Termenii lui \mathcal{L} sunt expresiile definite astfel:

- (T0) Orice variabilă este termen.
- (T1) Orice simbol de constantă este termen.
- (T2) Dacă $m \ge 1$, $f \in \mathcal{F}_m$ și t_1, \ldots, t_m sunt termeni, atunci $ft_1 \ldots t_m$ este termen.
- (T3) Numai expresiile obținute aplicând regulile (T0), (T1), (T2) sunt termeni.

Notații:

- ► Mulţimea termenilor se notează *Term*_C.
- ightharpoonup Termenii se notează $t, s, t_1, t_2, s_1, s_2, \ldots$

Definiția 3.5

Un termen t se numește închis dacă $Var(t) = \emptyset$.

Termeni

Propoziția 3.6 (Inducția pe termeni)

Fie Γ o mulțime de expresii care are următoarele proprietăți:

- **Γ** conține variabilele și simbolurile de constante.
- ▶ Dacă $m \ge 1$, $f \in \mathcal{F}_m$ și $t_1, \ldots, t_m \in \Gamma$, atunci $ft_1 \ldots t_m \in \Gamma$.

Atunci Term_C $\subseteq \Gamma$.

Este folosită pentru a demonstra că toți termenii au o proprietate \mathcal{P} : definim Γ ca fiind mulțimea tuturor expresiilor care satisfac \mathcal{P} și aplicăm inducția pe termeni pentru a obține că $\mathit{Term}_{\mathcal{L}} \subset \Gamma$.

141

Termeni

Propoziția 3.7 (Citire unică (Unique readability))

Dacă t este un termen, atunci exact una din următoarele alternative are loc:

- ightharpoonup t = x, unde $x \in V$;
- ightharpoonup t = c, unde $c \in C$;
- $ightharpoonup t=ft_1\dots t_m$, unde $f\in \mathcal{F}_m\ (m\geq 1)$ și t_1,\dots,t_m sunt termeni.

Mai mult, scrierea lui t sub una din aceste forme este unică.

Formule

Definiția 3.8

Formulele atomice ale lui \mathcal{L} sunt expresiile de forma:

- \triangleright (s = t), unde s, t sunt termeni;
- $ightharpoonup (Rt_1 \dots t_m)$, unde $R \in \mathcal{R}_m \ (m \ge 1)$ și t_1, \dots, t_m sunt termeni.

Definiția 3.9

Formulele lui \mathcal{L} sunt expresiile definite astfel:

- (F0) Orice formulă atomică este formulă.
- (F1) Dacă φ este formulă, atunci atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci $(\varphi \to \psi)$ este formulă.
- (F3) Dacă φ este formulă, atunci $(\forall x \varphi)$ este formulă pentru orice variabilă x.
- (F4) Numai expresiile obținute aplicând regulile (F0), (F1), (F2), (F3) sunt formule.

Notații

- ► Mulţimea formulelor se notează Form_C.
- Formulele se notează $\varphi, \psi, \chi, \ldots$

Propoziția 3.10 (Inducția pe formule)

Fie Γ o mulțime de expresii care are următoarele proprietăți:

- **Γ** conţine toate formulele atomice.
- ▶ Γ este închisă la \neg , \rightarrow și $\forall x$ (pentru orice variabilă x), adică: dacă $\varphi, \psi \in \Gamma$, atunci $(\neg \varphi), (\varphi \rightarrow \psi), (\forall x \varphi) \in \Gamma$.

Atunci Form $_{\mathcal{L}} \subseteq \Gamma$.

Este folosită pentru a demonstra că toate formulele satisfac o proprietate \mathcal{P} : definim Γ ca fiind mulțimea tuturor formulelor care satisfac \mathcal{P} și aplicăm inducția pe formule pentru a obține că $Form_{\mathcal{L}} \subseteq \Gamma$.

Formule

Propoziția 3.11 (Citire unică (Unique readability))

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $\triangleright \varphi = (s = t)$, unde s, t sunt termeni;
- $\varphi = (Rt_1 \dots t_m)$, unde $R \in \mathcal{R}_m \ (m \ge 1)$ și t_1, \dots, t_m sunt termeni:
- $ightharpoonup \varphi = (\neg \psi)$, unde ψ este formulă;
- $ightharpoonup \varphi = (\psi \to \chi)$, unde ψ, χ sunt formule;
- $ightharpoonup \varphi = (\forall x \psi)$, unde x este variabilă și ψ este formulă.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Formule

Conectori derivați

Conectorii \lor , \land , \leftrightarrow şi cuantificatorul existențial \exists sunt introduși prin următoarele abrevieri:

$$\varphi \lor \psi := (\neg \varphi) \to \psi
\varphi \land \psi := \neg(\varphi \to (\neg \psi))
\varphi \leftrightarrow \psi := (\varphi \to \psi) \land (\psi \to \varphi)
\exists x \varphi := \neg \forall x \neg \varphi.$$

Formule

În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $s=t, Rt_1 \dots t_m, \forall x \varphi, \neg \varphi, \varphi \rightarrow \psi$. Pe de altă parte, scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.

Pentru a reduce din folosirea parantezelor, presupunem următoarele:

- ▶ Cuantificatorii \forall , \exists au precedență mai mare decât ceilalți conectori. Așadar, $\forall x\varphi \rightarrow \psi$ este $(\forall x\varphi) \rightarrow \psi$ și nu $\forall x(\varphi \rightarrow \psi)$.
- ightharpoonup ¬ are precedență mai mare decât \rightarrow , \land , \lor , \leftrightarrow .
- \triangleright \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

- Scriem uneori $f(t_1, \ldots, t_m)$ în loc de $ft_1 \ldots t_m$ și $R(t_1, \ldots, t_m)$ în loc de $Rt_1 \ldots t_m$.
- ▶ Simbolurile de funcții sau relații de aritate 1 se numesc unare.
- ▶ Simbolurile de funcții sau relații de aritate 2 se numesc binare.
- ▶ Dacă f este un simbol de funcție binară scriem t_1ft_2 în loc de ft_1t_2 .
- Analog, dacă R este un simbol de relație binară, scriem t_1Rt_2 în loc de Rt_1t_2 .

Vom identifica un limbaj \mathcal{L} cu mulțimea simbolurilor sale non-logice și vom scrie $\mathcal{L} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$.

149

Definiția 3.12

O L-structură este un cvadruplu

$$\mathcal{A} = (A, \mathcal{F}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{C}^{\mathcal{A}})$$

unde

- ► A este o multime nevidă;
- ▶ $\mathcal{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathcal{F} \}$ este o mulțime de operații pe A; dacă f are aritatea m, atunci $f^{\mathcal{A}} : A^m \to A$;
- ▶ $\mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$ este o mulțime de relații pe A; dacă R are aritatea m, atunci $R^{\mathcal{A}} \subseteq A^m$;
- ightharpoonup A se numește universul structurii A. Notație: A = |A|
- $f^{\mathcal{A}}$ (respectiv $R^{\mathcal{A}}$, $c^{\mathcal{A}}$) se numește denotația sau interpretarea lui f (respectiv R, c) în \mathcal{A} .

150

Exemple - Limbajul egalității $\mathcal{L}_{=}$

$$\mathcal{L}_{=}=(\mathcal{R},\mathcal{F},\mathcal{C})$$
, unde

- $ightharpoonup \mathcal{R} = \mathcal{F} = \mathcal{C} = \emptyset$
- acest limbaj este potrivit doar pentru a exprima proprietăți ale egalității
- \triangleright $\mathcal{L}_{=}$ -structurile sunt mulțimile nevide

Exemple de formule:

• egalitatea este simetrică:

$$\forall x \forall y (x = y \rightarrow y = x)$$

• universul are cel puţin trei elemente:

$$\exists x \exists y \exists z (\neg(x = y) \land \neg(y = z) \land \neg(z = x))$$

Exemple - Limbajul aritmeticii $\mathcal{L}_{\mathsf{ar}}$

 $\mathcal{L}_{\textit{ar}} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $ightharpoonup \mathcal{R} = \{\dot{<}\}; \dot{<} \text{ este simbol de relație binară;}$
- $\mathcal{F} = \{\dot{+}, \dot{\times}, \dot{S}\}; \dot{+}, \dot{\times}$ sunt simboluri de funcții binare și \dot{S} este simbol de funcție unară;
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{ar} = (\dot{\langle}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ sau $\mathcal{L}_{ar} = (\dot{\langle}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$.

Exemplul natural de \mathcal{L}_{ar} -structură:

$$\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0),$$

unde $S: \mathbb{N} \to \mathbb{N}, S(m) = m+1$ este funcția succesor. Prin urmare,

$$\dot{<}^{\mathcal{N}} = <, \dot{+}^{\mathcal{N}} = +, \dot{\times}^{\mathcal{N}} = \cdot, \dot{S}^{\mathcal{N}} = S, \dot{O}^{\mathcal{N}} = 0.$$

• Alt exemplu de \mathcal{L}_{ar} -structură: $\mathcal{A} = (\{0,1\},<,\mathsf{V},\mathsf{\Lambda},\neg,1)$.

Exemplu - Limbajul cu un simbol de relație binar

 $\mathcal{L}_R = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

 $ightharpoonup \mathcal{R} = \{R\}; R \text{ simbol de relație binară}$

 $\mathcal{F} = \mathcal{C} = \emptyset$

► £-structurile sunt mulțimile nevide împreună cu o relație binară

▶ Dacă suntem interesați de mulțimi parțial ordonate (A, \leq) , folosim simbolul \leq în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.

▶ Dacă suntem interesați de mulțimi strict ordonate (A, <), folosim simbolul $\dot{<}$ în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.

▶ Dacă suntem interesați de grafuri G = (V, E), folosim simbolul \dot{E} în loc de R și notăm limbajul cu \mathcal{L}_{Graf} .

▶ Dacă suntem interesați de structuri (A, \in) , folosim simbolul \in în loc de R și notăm limbajul cu \mathcal{L}_{\in} .

Exemple - Limbajul grupurilor \mathcal{L}_{Gr}

 $\mathcal{L}_{\mathit{Gr}} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde $\mathcal{R} = \emptyset$ și

 $\mathcal{F} = \{\dot{*},\dot{^{-1}}\}; \dot{*}$ simbol de funcție binară, $\dot{^{-1}}$ simbol de funcție unară

 $ightharpoonup \mathcal{C} = \{\dot{e}\}.$

Scriem $\mathcal{L}_{Gr} = (\emptyset; \dot{*}, \dot{-1}; \dot{e})$ sau $\mathcal{L}_{Gr} = (\dot{*}, \dot{-1}, \dot{e})$.

Exemple naturale de \mathcal{L}_{Gr} -structuri sunt grupurile: $\mathcal{G} = (G, \cdot, ^{-1}, e)$. Prin urmare, $\dot{*}^{\mathcal{G}} = \cdot, \dot{^{-1}}^{\mathcal{G}} = ^{-1}, \dot{e}^{\mathcal{G}} = e$.

Pentru a discuta despre grupuri abeliene (comutative), este tradițional să se folosească limbajul $\mathcal{L}_{AbGr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

 $\triangleright \mathcal{R} = \emptyset$:

 $\mathcal{F} = \{\dot{+}, \dot{-}\}; \dot{+} \text{ simbol binar, } \dot{-} \text{ simbol unar;}$

 $\triangleright \mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{AbGr} = (\dot{+}, \dot{-}, \dot{0}).$

SEMANTICA

Interpretare (evaluare)

Fie \mathcal{L} un limbaj de ordinul întâi și \mathcal{A} o \mathcal{L} -structură.

Definiția 3.13

O interpretare sau evaluare a (variabilelor) lui $\mathcal L$ în $\mathcal A$ este o funcție $e:V\to A$.

În continuare, e:V o A este o interpretare a lui $\mathcal L$ in $\mathcal A$.

Definiția 3.14 (Interpretarea termenilor)

Prin inducție pe termeni se definește interpretarea $t^{\mathcal{A}}(e) \in A$ a termenului t sub evaluarea e:

ightharpoonup dacă $t = x \in V$, atunci $t^{\mathcal{A}}(e) := e(x)$;

ightharpoonup dacă $t=c\in\mathcal{C}$, atunci $t^{\mathcal{A}}(e):=c^{\mathcal{A}}$;

lacktriangledown dacă $t=ft_1\ldots t_m$, atunci $t^{\mathcal{A}}(e):=f^{\mathcal{A}}(t_1^{\mathcal{A}}(e),\ldots,t_m^{\mathcal{A}}(e)).$

Interpretarea formulelor

Prin inducție pe formule se definește interpretarea

$$\varphi^{\mathcal{A}}(e) \in \{0,1\}$$

a formulei φ sub evaluarea e.

$$(s=t)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dacreve{a}} s^{\mathcal{A}}(e) = t^{\mathcal{A}}(e) \\ 0 & \operatorname{altfel.} \end{array}
ight. \ (Rt_1 \ldots t_m)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dacreve{a}} R^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \ldots, t_m^{\mathcal{A}}(e)) \\ 0 & \operatorname{altfel.} \end{array}
ight.$$

Interpretarea formulelor

Negația și implicația

- $(\neg \varphi)^{\mathcal{A}}(e) = 1 \varphi^{\mathcal{A}}(e);$
- $\blacktriangleright (\varphi \to \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e)$, unde,

Prin urmare,

- $(\neg \varphi)^{\mathcal{A}}(e) = 1 \iff \varphi^{\mathcal{A}}(e) = 0.$
- $lackbox{}(\varphi
 ightarrow \psi)^{\mathcal{A}}(e) = 1 \iff (\varphi^{\mathcal{A}}(e) = 0 \text{ sau } \psi^{\mathcal{A}}(e) = 1).$

Interpretarea formulelor

Notație

Pentru orice variabilă $x \in V$ și orice $a \in A$, definim o nouă interpretare $e_{x \leftarrow a} : V \rightarrow A$ prin

$$e_{x \leftarrow a}(v) = \left\{ egin{array}{ll} e(v) & ext{dacă } v
eq x \ a & ext{dacă } v = x. \end{array}
ight.$$

Interpretarea formulelor

$$(\forall x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \mathsf{dac}\check{a} \ \varphi^{\mathcal{A}}(e_{\mathsf{x}\leftarrow \mathsf{a}}) = 1 \ \mathsf{pentru\ orice}\ a \in A \\ 0 & \mathsf{altfel}. \end{cases}$$

Relația de satisfacere

Fie $\mathcal A$ o $\mathcal L$ -structură și e:V o A o interpretare a lui $\mathcal L$ în $\mathcal A$.

Definiția 3.15

Fie φ o formulă. Spunem că:

- e satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 1$. Notație: $\mathcal{A} \models \varphi[e]$.
- e nu satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 0$. Notație: $\mathcal{A} \not\models \varphi[e]$.

Corolar 3.16

Pentru orice formule φ, ψ și orice variabilă x,

(i)
$$\mathcal{A} \vDash \neg \varphi[e] \iff \mathcal{A} \not\vDash \varphi[e].$$

(ii)
$$A \vDash (\varphi \to \psi)[e] \iff A \vDash \varphi[e] \text{ implică } A \vDash \psi[e] \iff A \nvDash \varphi[e] \text{ sau } A \vDash \psi[e].$$

(iii)
$$A \models (\forall x \varphi)[e] \iff pentru \ orice \ a \in A, \ A \models \varphi[e_{x \leftarrow a}].$$

Dem.: Exercițiu ușor.

Relația de satisfacere

Fie φ, ψ formule și x o variabilă.

Propoziția 3.17

- (i) $(\varphi \vee \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \vee \psi^{\mathcal{A}}(e);$
- (ii) $(\varphi \wedge \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e)$;
- (iii) $(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e);$
- $(iv) \ (\exists x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \textit{dacă există } a \in A \ \textit{a.î.} \ \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1 \\ 0 & \textit{altfel.} \end{cases}$

Dem.: Exercițiu ușor. Arătăm, de exemplu, (iv).

$$(\exists x\varphi)^{\mathcal{A}}(e) = 1 \iff (\neg \forall x \neg \varphi)^{\mathcal{A}}(e) = 1 \iff (\forall x \neg \varphi)^{\mathcal{A}}(e) = 0$$

$$\iff \text{există } a \in A \text{ a.î. } (\neg \varphi)^{\mathcal{A}}(e_{x \leftarrow a}) = 0$$

$$\iff \text{există } a \in A \text{ a.î. } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1.$$

Relația de satisfacere

Corolar 3.18

- (i) $A \vDash (\varphi \land \psi)[e] \iff A \vDash \varphi[e] \text{ si } A \vDash \psi[e].$
- (ii) $A \vDash (\varphi \lor \psi)[e] \iff A \vDash \varphi[e] \text{ sau } A \vDash \psi[e].$
- (iii) $A \vDash (\varphi \leftrightarrow \psi)[e] \iff A \vDash \varphi[e]$ ddacă $A \vDash \psi[e]$.
- (iv) $A \models (\exists x \varphi)[e] \iff \text{există } a \in A \text{ a.î. } A \models \varphi[e_{x \leftarrow a}].$

Semantică

Fie φ formulă a lui \mathcal{L} .

Definiția 3.19

Spunem că φ este satisfiabilă dacă există o \mathcal{L} -structură \mathcal{A} și o evaluare e : $V \to A$ a.î.

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că (A, e) este un model al lui φ .

Atenție! Este posibil ca atât φ cât și $\neg \varphi$ să fie satisfiabile. Exemplu: $\varphi := x = y$ în $\mathcal{L}_=$.

Semantică

Fie φ formulă a lui \mathcal{L} .

Definiția 3.20

Spunem că φ este adevărată într-o \mathcal{L} -structură \mathcal{A} dacă pentru orice evaluare $e:V\to A$,

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că $\mathcal A$ satisface φ sau că $\mathcal A$ este un model al lui φ .

Notație: $A \models \varphi$

Definiția 3.21

Spunem că φ este formulă universal adevărată sau (logic) validă dacă pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \vDash \varphi$$
.

Notație:
$$\models \varphi$$

Semantică

Fie φ, ψ formule ale lui \mathcal{L} .

Definiția 3.22

 φ și ψ sunt logic echivalente dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare e : $V \to \mathcal{A}$,

$$\mathcal{A} \vDash \varphi[e] \iff \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \bowtie \psi$

Definiția 3.23

 ψ este consecință semantică a lui φ dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare e : $V \to \mathcal{A}$,

$$\mathcal{A} \vDash \varphi[e] \quad \Rightarrow \quad \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \models \psi$

Observație

- (i) $\varphi \vDash \psi$ ddacă $\vDash \varphi \rightarrow \psi$.
- (ii) $\varphi \bowtie \psi$ ddacă $(\psi \bowtie \varphi \text{ și } \varphi \bowtie \psi)$ ddacă $\bowtie \psi \leftrightarrow \varphi$.

Echivalențe și consecințe logice

Pentru orice formule φ , ψ și orice variabile x, y,

$$\neg \exists x \varphi \quad \exists \quad \forall x \neg \varphi \tag{51}$$

$$\neg \forall x \varphi \quad \exists x \neg \varphi \tag{52}$$

$$\forall x (\varphi \wedge \psi) \quad \exists \quad \forall x \varphi \wedge \forall x \psi \tag{53}$$

$$\forall x \varphi \vee \forall x \psi \models \forall x (\varphi \vee \psi) \tag{54}$$

$$\exists x (\varphi \wedge \psi) \models \exists x \varphi \wedge \exists x \psi \tag{55}$$

$$\exists x (\varphi \lor \psi) \quad \exists x \varphi \lor \exists x \psi \tag{56}$$

$$\forall x(\varphi \to \psi) \models \forall x\varphi \to \forall x\psi \tag{57}$$

$$\forall x(\varphi \to \psi) \models \exists x\varphi \to \exists x\psi \tag{58}$$

$$\forall x \varphi \models \exists x \varphi \tag{59}$$

4

Echivalențe și consecințe logice

$$\varphi \models \exists x \varphi \tag{60}$$

$$\forall x \varphi \models \varphi \tag{61}$$

$$\forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi \tag{62}$$

$$\exists x \exists y \varphi \quad \exists \ y \exists x \varphi \tag{63}$$

$$\exists y \forall x \varphi \models \forall x \exists y \varphi. \tag{64}$$

Dem.: Exercițiu.

Propozitia 3.24

Pentru orice termeni s, t, u,

(i)
$$\models t = t$$
;

(ii)
$$\models s = t \rightarrow t = s$$
;

(iii)
$$\models s = t \land t = u \rightarrow s = u$$
.

Dem.: Exercițiu ușor.

Variabile legate și libere

Definiția 3.25

Fie $\varphi = \varphi_0 \varphi_1 \dots \varphi_{n-1}$ o formulă a lui \mathcal{L} și x o variabilă.

- ▶ Spunem că variabila x apare legată pe poziția k în φ dacă $x = \varphi_k$ și există $0 \le i \le k \le j \le n-1$ a.î. $\varphi_i \dots \varphi_j$ este de forma $\forall x \psi$.
- Spunem că x apare liberă pe poziția k în φ dacă $x = \varphi_k$, dar x nu apare legată pe poziția k în φ .
- ightharpoonup x este variabilă legată (bounded variable) a lui φ dacă există un k a.î. x apare legată pe poziția k în φ .
- ightharpoonup x este variable liberă (free variable) a lui φ dacă există un k a.î. x apare liberă pe poziția k în φ .

Exemplu

Fie $\varphi = \forall x(x = y) \rightarrow x = z$. Variabile libere: x, y, z. Variabile legate: x.

Variabile legate și libere

Notație: $FV(\varphi) := \text{mulțimea variabilelor libere ale lui } \varphi$.

Definiție alternativă

Mulțimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită și prin inducție pe formule:

$$FV(\varphi)$$
 = $Var(\varphi)$, dacă φ este formulă atomică;

$$FV(\neg \varphi) = FV(\varphi);$$

$$FV(\varphi \to \psi) = FV(\varphi) \cup FV(\psi);$$

$$FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}.$$

Notație: $\varphi(x_1,\ldots,x_n)$ dacă $FV(\varphi)\subseteq\{x_1,\ldots,x_n\}$.

Interpretarea termenilor

Propoziția 3.26

Pentru orice \mathcal{L} -structură \mathcal{A} și orice interpretări $e_1,e_2:V\to A$, pentru orice termen t,

dacă
$$e_1(v) = e_2(v)$$
 pentru orice variabilă $v \in Var(t)$, atunci $t^{\mathcal{A}}(e_1) = t^{\mathcal{A}}(e_2)$.

Dem.: Exercițiu.

Interpretarea formulelor

Propoziția 3.27

Pentru orice \mathcal{L} -structură \mathcal{A} , orice interpretări $e_1, e_2 : V \to A$, pentru orice formulă φ ,

dacă
$$e_1(v) = e_2(v)$$
 pentru orice variabilă $v \in FV(\varphi)$, atunci $\mathcal{A} \models \varphi[e_1] \iff \mathcal{A} \models \varphi[e_2].$

Dem.: Aplicăm inducția pe formule. Avem următoarele cazuri:

•
$$\varphi = t_1 = t_2$$
.

Atunci $Var(t_1) \subseteq FV(\varphi)$, $Var(t_2) \subseteq FV(\varphi)$, deci putem aplica Propoziția 3.26 pentru a obține că

$$t_1^{\mathcal{A}}(e_1) = t_1^{\mathcal{A}}(e_2)$$
 și $t_2^{\mathcal{A}}(e_1) = t_2^{\mathcal{A}}(e_2)$.

Rezultă că

$$\mathcal{A} \vDash \varphi[e_1] \iff t_1^{\mathcal{A}}(e_1) = t_2^{\mathcal{A}}(e_1) \iff t_1^{\mathcal{A}}(e_2) = t_2^{\mathcal{A}}(e_2)$$
$$\iff \mathcal{A} \vDash \varphi[e_2].$$

Interpretarea formulelor

• $\varphi = Rt_1 \dots t_m$.

Atunci $Var(t_i) \subseteq FV(\varphi)$ pentru orice i = 1, ..., m și aplicăm din nou Propoziția 3.26 pentru a obține că

$$t_i^{\mathcal{A}}(e_1) = t_i^{\mathcal{A}}(e_2)$$
 pentru orice $i = 1, \ldots, m$.

Rezultă că

$$\mathcal{A} \vDash \varphi[e_1] \iff R^{\mathcal{A}}(t_1^{\mathcal{A}}(e_1), \dots, t_m^{\mathcal{A}}(e_1)) \\ \iff R^{\mathcal{A}}(t_1^{\mathcal{A}}(e_2), \dots, t_m^{\mathcal{A}}(e_2)) \iff \mathcal{A} \vDash \varphi[e_2].$$

• $\varphi = \neg \psi$.

Deoarece $FV(\psi) = FV(\varphi)$, putem aplica ipoteza de inducție pentru a obține că

$$\mathcal{A} \vDash \psi[e_1] \iff \mathcal{A} \vDash \psi[e_2].$$

Rezultă că

$$\mathcal{A} \vDash \varphi[e_1] \iff \mathcal{A} \not\vDash \psi[e_1] \iff \mathcal{A} \not\vDash \psi[e_2] \iff \mathcal{A} \vDash \varphi[e_2].$$

•
$$\varphi = \psi \to \chi$$
.

Deoarece $FV(\psi), FV(\chi) \subseteq FV(\varphi)$, putem aplica ipoteza de inducție pentru a obține că

$$\mathcal{A} \vDash \psi[e_1] \iff \mathcal{A} \vDash \psi[e_2] \text{ si } \mathcal{A} \vDash \chi[e_1] \iff \mathcal{A} \vDash \chi[e_2].$$

Rezultă că

$$\mathcal{A} \vDash \varphi[e_1] \iff \mathcal{A} \not\vDash \psi[e_1] \text{ sau } \mathcal{A} \vDash \chi[e_1]$$
 $\iff \mathcal{A} \not\vDash \psi[e_2] \text{ sau } \mathcal{A} \vDash \chi[e_2]$
 $\iff \mathcal{A} \vDash \varphi[e_2].$

Interpretarea formulelor

$$e_1(v) = e_2(v)$$
 pentru orice $v \in FV(\varphi) = FV(\psi) \setminus \{x\}$.

Rezultă că pentru orice $a \in A$,

$$e_{1_{X\leftarrow a}}(v)=e_{2_{X\leftarrow a}}(v)$$
 pentru orice $v\in FV(\psi)$.

Prin urmare, putem aplica ipoteza de inducție pentru interpretările $e_{1\times\leftarrow a}, e_{2\times\leftarrow a}$ pentru a obține că

pentru orice
$$a \in A$$
, $A \models \psi[e_{1x \leftarrow a}] \iff A \models \psi[e_{2x \leftarrow a}]$.

Rezultă că

173

17

Echivalențe și consecințe logice

Propoziția 3.28

Pentru orice formule φ , ψ și orice variabilă $x \notin FV(\varphi)$,

$$\varphi \ \ \exists x \varphi$$
 (65)

$$\varphi \ \ \exists \ \ \forall x \varphi$$
 (66)

$$\forall x (\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \forall x \psi \tag{67}$$

$$\forall x (\varphi \lor \psi) \quad \exists \quad \varphi \lor \forall x \psi \tag{68}$$

$$\exists x (\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \exists x \psi \tag{69}$$

$$\exists x (\varphi \lor \psi) \quad \exists \quad \varphi \lor \exists x \psi \tag{70}$$

$$\forall x(\varphi \to \psi) \quad \exists \quad \varphi \to \forall x\psi \tag{71}$$

$$\exists x (\varphi \to \psi) \quad \exists \quad \varphi \to \exists x \psi$$
 (72)

$$\forall x(\psi \to \varphi) \quad \exists x\psi \to \varphi \tag{73}$$

$$\exists x(\psi \to \varphi) \quad \exists \quad \forall x\psi \to \varphi \tag{74}$$

Dem.: Exercițiu.

Enunțuri

Definiția 3.29

O formulă φ se numește enunț (sentence) dacă $FV(\varphi) = \emptyset$, adică φ nu are variabile libere.

Notație: Sent $_{\mathcal{L}}$:= mulțimea enunțurilor lui \mathcal{L} .

Propoziția 3.30

Fie φ un enunț. Pentru orice interpretări $e_1, e_2 : V \to A$,

$$\mathcal{A} \vDash \varphi[e_1] \Longleftrightarrow \mathcal{A} \vDash \varphi[e_2]$$

Dem.: Este o consecință imediată a Propoziției 3.27 și a faptului că $FV(\varphi) = \emptyset$.

Definiția 3.31

O \mathcal{L} -structură \mathcal{A} este un model al lui φ dacă $\mathcal{A} \models \varphi[e]$ pentru o (orice) evaluare $e: V \to A$. Notație: $\mathcal{A} \models \varphi$

SUBSTITUŢII

Fie x o variabilă a lui \mathcal{L} și u termen al lui \mathcal{L} .

Definiția 3.32

Pentru orice termen t al lui \mathcal{L} , definim $t_x(u) := \exp(\operatorname{sia} \operatorname{obținută} \operatorname{din} \operatorname{t} \operatorname{prin} \operatorname{\hat{n}locuirea} \operatorname{tuturor} \operatorname{aparițiilor} \operatorname{lui} x \operatorname{cu} u.$

Propoziția 3.33

Pentru orice termen t al lui \mathcal{L} , $t_x(u)$ este termen al lui \mathcal{L} .

Substituția

- Vrem să definim analog $\varphi_x(u)$ ca fiind expresia obținută din φ prin înlocuirea tuturor aparițiilor libere ale lui x cu u.
- ► De asemenea, vrem ca următoarele proprietăți naturale ale substituției să fie adevărate:

$$\vDash \forall x \varphi \to \varphi_x(u) \quad \text{si} \quad \vDash \varphi_x(u) \to \exists x \varphi.$$

Apar însă probleme.

Fie $\varphi := \exists y \neg (x = y)$ și u := y. Atunci $\varphi_x(u) = \exists y \neg (y = y)$. Avem

- ▶ Pentru orice \mathcal{L} -structură \mathcal{A} cu $|\mathcal{A}| \geq 2$, avem $\mathcal{A} \models \forall x \varphi$.
- $ightharpoonup \varphi_x(u)$ nu este satisfiabilă.

Substituția

Fie x o variabilă, u un termen și φ o formulă.

Definiția 3.34

Spunem că x este liberă pentru u în φ sau că u este substituibil pentru x în φ dacă pentru orice variabilă y care apare în u, nici o subformulă a lui φ de forma $\forall y\psi$ nu conține apariții libere ale lui x.

Observație

x este liberă pentru u în φ în oricare din următoarele situații:

- ▶ *u* nu conține variabile;
- $ightharpoonup \varphi$ nu conține variabile care apar în u;
- ightharpoonup nici o variabilă din u nu apare legată în φ ;
- \triangleright x nu apare în φ ;
- $\triangleright \varphi$ nu conține apariții libere ale lui x.

Fie x o variabilă, u termen și φ o formulă a.î. x este liberă pentru u în φ .

Definiția 3.35

 $\varphi_x(u) := \exp \operatorname{resia} \operatorname{obținută} \operatorname{din} \varphi \operatorname{prin} \operatorname{înlocuirea} \operatorname{tuturor} \operatorname{aparițiilor} \operatorname{libere} \operatorname{ale} \operatorname{lui} x \operatorname{cu} u.$

Spunem că $\varphi_x(u)$ este o substituție liberă.

Propoziția 3.36

 $\varphi_{\mathsf{x}}(\mathsf{u})$ este formulă a lui \mathcal{L} .

Noțiunea de substituție liberă evită problemele menționate anterior și se comportă cum am aștepta.

101

Substituția

Propoziția 3.37

Pentru orice termeni u_1 și u_2 și orice variabilă x,

(i) pentru orice termen t,

$$\models u_1 = u_2 \to t_x(u_1) = t_x(u_2).$$

(ii) pentru orice formulă φ a.î. x este liberă pentru u_1 și u_2 în φ ,

$$\vDash u_1 = u_2 \to (\varphi_{\mathsf{x}}(u_1) \leftrightarrow \varphi_{\mathsf{x}}(u_2)).$$

Propoziția 3.38

Fie φ o formulă și x o variabilă.

(i) Pentru orice termen u substituibil pentru x în φ ,

$$\vDash \forall x \varphi \to \varphi_{\mathsf{x}}(u), \qquad \vDash \varphi_{\mathsf{x}}(u) \to \exists x \varphi.$$

(ii)
$$\vDash \forall x \varphi \to \varphi$$
, $\vDash \varphi \to \exists x \varphi$.

(iii) Pentru orice simbol de constantă c,

$$\models \forall x \varphi \rightarrow \varphi_x(c), \qquad \models \varphi_x(c) \rightarrow \exists x \varphi.$$

182

Substituția

În general, dacă x si y sunt variabile, φ și $\varphi_x(y)$ nu sunt logic echivalente: fie \mathcal{L}_{ar} , \mathcal{N} și $e:V\to\mathbb{N}$ a.î. e(x)=3, e(y)=5, e(z)=4. Atunci

$$\mathcal{N} \vDash (x \dot{<} z)[e], \text{ dar } \mathcal{N} \not\vDash (x \dot{<} z)_x(y)[e].$$

Totuși, variabilele legate pot fi substituite, cu condiția să se evite conflicte.

Substituția

Propoziția 3.39

Pentru orice formulă φ , variabile distincte x și y a.î. $y \notin FV(\varphi)$ și y este substituibil pentru x în φ ,

$$\exists x \varphi \bowtie \exists y \varphi_x(y) \quad \text{si} \quad \forall x \varphi \bowtie \forall y \varphi_x(y).$$

Folosim Propoziția 3.39 astfel: dacă $\varphi_{x}(u)$ nu este substituție liberă (i.e. x nu este liberă pentru u în φ), atunci înlocuim φ cu o formulă φ' logic echivalentă a.î. $\varphi'_{x}(u)$ este substituție liberă.

Definiția 3.40

Pentru orice formulă φ și orice variabile y_1, \ldots, y_k , varianta y_1, \ldots, y_k -liberă φ' a lui φ este definită recursiv astfel:

- **b** dacă φ este formulă atomică, atunci φ' este φ;
- ▶ dacă φ = ¬ψ, atunci φ' este ¬ψ';
- \blacktriangleright dacă $\varphi = \psi \rightarrow \chi$, atunci φ' este $\psi' \rightarrow \chi'$;
- ightharpoonup dacă $\varphi = \forall z \psi$, atunci

$$\varphi'$$
 este
$$\begin{cases} \forall w \psi_z'(w) & \textit{dacă} \ z \in \{y_1, \dots, y_k\} \\ \forall z \psi' & \textit{altfel}; \end{cases}$$

unde w este prima variabilă din șirul $v_0, v_1, \ldots,$ care nu apare în ψ' și nu este printre y_1, \ldots, y_k .

Substituția

Definiția 3.41

 φ' este variantă a lui φ dacă este varianta y_1, \ldots, y_k -liberă a lui φ pentru anumite variabile y_1, \ldots, y_k .

Propoziția 3.42

- (i) Pentru orice formulă φ , dacă φ' este o variantă a lui φ , atunci $\varphi \bowtie \varphi'$;
- (ii) Pentru orice formulă φ și orice termen t, dacă variabilele lui t se află printre y_1, \ldots, y_k și φ' este varianta y_1, \ldots, y_k -liberă a lui φ , atunci $\varphi'_{\mathsf{v}}(t)$ este o substituție liberă.

FORME NORMALE

Forma normală prenex

Definiția 3.43

O formulă care nu conține cuantificatori se numește liberă de cuantificatori ("quantifier-free").

Definiția 3.44

O formulă φ este în formă normală prenex dacă

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \psi,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}, x_1, \ldots, x_n \text{ sunt variabile } \emptyset$ este formulă liberă de cuantificatori. Formula ψ se numește matricea lui φ și $Q_1x_1Q_2x_2...Q_nx_n$ este prefixul lui φ .

Exemple de formule în formă normală prenex:

- Formulele universale: $\varphi = \forall x_1 \forall x_2 \dots \forall x_n \psi$, unde $n \in \mathbb{N}$ și ψ este liberă de cuantificatori
- Formulele existențiale: $\varphi = \exists x_1 \exists x_2 \dots \exists x_n \psi$, unde $n \in \mathbb{N}$ și ψ este liberă de cuantificatori

Forma normală prenex

Fie φ o formulă și t_1, \ldots, t_n termeni care nu conțin variabile din φ . Notăm cu $\varphi_{x_1,\ldots,x_n}(t_1,\ldots,t_n)$ formula obținută din φ substituind toate aparițiile libere ale lui x_1,\ldots,x_n cu t_1,\ldots,t_n respectiv.

Notații: $\forall^c = \exists$, $\exists^c = \forall$.

Teorema 3.45 (Teorema de formă normală prenex)

Pentru orice formulă φ există o formulă φ^* în formă normală prenex a.î. $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Dem.: Aplicăm inducția pe formule. Avem următoarele cazuri:

- φ este formulă atomică. Atunci $\varphi^* := \varphi$.
- $\varphi = \neg \psi$ și, conform ipotezei de inducție, există o formulă $\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0$ în formă normală prenex a.î. $\psi \vDash \psi^*$ și $FV(\psi) = FV(\psi^*)$. Definim

$$\varphi^* := Q_1^c x_1 \dots Q_n^c x_n \neg \psi_0.$$

Atunci φ^* este în formă normală prenex, $\varphi^* \boxminus \neg \psi^* \boxminus \neg \psi = \varphi$ și $FV(\varphi^*) = FV(\psi^*) = FV(\psi) = FV(\varphi)$.

Forma normală prenex

• $\varphi=\psi \to \chi$ și, conform ipotezei de inducție, există formulele în formă normală prenex

$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$

a.î. $\psi \vDash \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \vDash \chi^*$ și $FV(\chi) = FV(\chi^*)$. Notăm cu V_0 mulțimea tuturor variabilelor care apar în ψ^* sau χ^* . Fie $\tilde{\psi}^*$ (resp. $\tilde{\chi}^*$) varianta V_0 -liberă a lui ψ^* (resp. χ^*). Atunci

$$\tilde{\psi}^* = Q_1 y_1 \dots Q_n y_n \tilde{\psi}_0, \quad \tilde{\chi}^* = S_1 w_1 \dots S_m w_m \tilde{\chi}_0,$$

unde $y_1,\ldots,y_n,w_1,\ldots,w_m$ sunt variabile distincte care nu apar în V_0 , $\tilde{\psi}_0=\psi_{0_{X_1,\ldots,X_n}}(y_1,\ldots,y_n)$ și $\tilde{\chi_0}=\chi_{0_{Z_1,\ldots,Z_m}}(w_1,\ldots,w_m)$. Conform Propoziției 3.42.(i), $\tilde{\psi}^* \vDash \psi^*$ și $\tilde{\chi}^* \vDash \chi^*$. De asemenea, $FV(\tilde{\psi}^*)=FV(\psi^*)$ și $FV(\tilde{\chi}^*)=FV(\chi^*)$.

Forma normală prenex

Definim

$$\varphi^* := Q_1^c y_1 \dots Q_n^c y_n S_1 w_1 \dots S_m w_m (\tilde{\psi_0} \to \tilde{\chi_0}).$$

Atunci φ^* este în formă normală prenex, $FV(\varphi^*) = FV(\varphi)$ și

$$\varphi^* \quad \exists \quad \tilde{\psi}^* \to \tilde{\chi}^*$$

$$\exists \quad \psi^* \to \chi^*$$

$$\exists \quad \psi \to \chi = \varphi.$$

• $\varphi = \forall x \psi$ și, conform ipotezei de inducție, există o formulă ψ^* în formă normală prenex a.î. $\psi \vDash \psi^*$ și $FV(\psi) = FV(\psi^*)$. Definim $\varphi^* := \forall x \psi^*$.

Forma normală prenex

Fie $\mathcal L$ un limbaj de ordinul întâi care conține

- două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
- ightharpoonup un simbol de funcție binară g;
- ightharpoonup două simboluri de constante c, d.

Exemplu

Să se găsească o formă normală prenex pentru

$$\varphi := \exists y (g(y, z) = c) \land \neg \exists x (f(x) = d)$$

Avem

$$arphi$$
 $\exists y (g(y,z) = c \land \neg \exists x (f(x) = d))$
 $\exists y (g(y,z) = c \land \forall x \neg (f(x) = d))$
 $\exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$

Prin urmare, $\varphi^* = \exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$ este o formă normală prenex pentru φ .

Forma normală prenex

■ Exemplu

Să se găsească o formă normală prenex pentru

$$\varphi := \neg \forall y (S(y) \to \exists z R(z)) \land \forall x (\forall y P(x, y) \to f(x) = d).$$

Avem că

$$\varphi \mid \exists y \neg (S(y) \rightarrow \exists z R(z)) \land \forall x (\forall y P(x, y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x (\forall y P(x, y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x,y) \rightarrow f(x) = d)$$

$$\exists y \forall z \neg (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x, y) \rightarrow f(x) = d)$$

$$\exists y \forall z (\neg (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x, y) \rightarrow f(x) = d))$$

$$\exists v \forall z \forall x (\neg (S(v) \rightarrow R(z)) \land \exists v (P(x, v) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x (\neg (S(y) \rightarrow R(z)) \land \exists v (P(x, v) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x \exists v (\neg (S(y) \rightarrow R(z)) \land (P(x, v) \rightarrow f(x) = d))$$

 $\varphi^* = \exists y \forall z \forall x \exists v (\neg(S(y) \to R(z)) \land (P(x, v) \to f(x) = d))$ este o formă normală prenex pentru φ .

Forma normală Skolem

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducerea de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

Observație

Orice formulă liberă de cuantificatori este universală.

Fie $\mathcal L$ un limbaj de ordinul întâi și φ un enunț al lui $\mathcal L$ care este în formă normală prenex:

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile distincte două câte două și θ este formulă liberă de cuantificatori.

19

Forma normală Skolem

Asociem lui φ un enunț universal φ^{Sk} într-un limbaj extins $\mathcal{L}^{Sk}(\varphi)$: Dacă φ este universal, atunci $\varphi^{Sk} = \varphi$ și $\mathcal{L}^{Sk}(\varphi) = \mathcal{L}$. Altfel, φ are una din formele:

- $\varphi = \exists x \, \psi$. Introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi_x(c), \, \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- $\varphi = \forall x_1 \dots \forall x_k \exists x \ \psi \ (k \ge 1)$. Introducem un nou simbol de funcție f de aritate k și considerăm $\varphi^1 = \forall x_1 \dots \forall x_k \ \psi_x (fx_1 \dots x_k), \ \mathcal{L}^1 = \mathcal{L} \cup \{f\}.$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ .

Dacă φ^1 este enunț universal, atunci $\varphi^{Sk}=\varphi^1$. Dacă φ^1 nu este enunț universal, atunci formăm $\varphi^2,\varphi^3,\ldots$, până ajungem la un enunț universal și acesta este φ^{Sk} .

 φ^{Sk} este o formă normală Skolem a lui φ .

Forma normală Skolem

Exemple

- Fie θ o formulă liberă de cuantificatori a.î. $FV(\theta) = \{x\}$ și $\varphi = \exists x \, \theta$. Atunci $\varphi^1 = \theta_x(c)$, unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{Sk} = \varphi^1 = \theta_x(c)$.
- Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \forall y \forall z R(x, y, z)$. Atunci

$$\varphi^1 = \forall y \forall z (R(x, y, z))_x(c) = \forall y \forall z R(c, y, z),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{Sk} = \varphi^1 = \forall y \forall z \ R(c, y, z)$.

Fie P un simbol de relație de aritate 2 și $\varphi = \forall y \exists z \, P(y,z)$. Atunci $\varphi^1 = \forall y \, (P(y,z))_z(f(y)) = \forall y \, P(y,f(y))$, unde f este un simbol nou de funcție unară. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{Sk} = \varphi^1 = \forall y \, P(y,f(y))$.

Fie \mathcal{L} un limbaj care conține un simbol de relație binară R și un simbol de funcție unară f. Fie

$$\varphi := \forall y \exists z \forall u \exists v (R(y, z) \land f(u) = v).$$

$$\varphi^{1} = \forall y \forall u \exists v (R(y,z) \land f(u) = v)_{z}(g(y))$$

$$= \forall y \forall u \exists v (R(y,g(y)) \land f(u) = v),$$
unde g este un nou simbol de functie unară

$$\varphi^2 = \forall y \forall u (R(y, g(y)) \land f(u) = v)_v (h(y, u))$$

= $\forall y \forall u (R(y, g(y)) \land f(u) = h(y, u)),$
unde h este un nou simbol de funcție binară.

TAUTOLOGII

Deoarece φ^2 este un enunţ universal, rezultă că $\varphi^{Sk} = \varphi^2 = \forall y \forall u (R(y, g(y)) \land f(u) = h(y, u)).$

Forma normală Skolem

Teorema 3.46 (Teorema de formă normală Skolem)

Fie φ un enunț în formă normală prenex și φ^{Sk} o formă normală Skolem a sa.

(i)
$$\vDash \varphi^{Sk} \to \varphi$$
, deci $\varphi^{Sk} \vDash \varphi$ în $\mathcal{L}^{Sk}(\varphi)$.

(ii) φ este satisfiabilă ddacă φ^{Sk} este satisfiabilă.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{Sk}(\varphi)$.

Tautologii

Noțiunile de tautologie și consecință semantică din logica propozițională se pot aplica și unui limbaj de ordinul întâi. Intuitiv: o tautologie este o formulă "adevărată" numai pe baza interpretărilor conectorilor \neg , \rightarrow .

Definitia 3.47

O \mathcal{L} -evaluare de adevăr este o funcție $F : Form_{\mathcal{L}} \to \{0,1\}$ cu următoarele proprietăți: pentru orice formule φ, ψ ,

$$F(\neg \varphi) = \neg F(\varphi);$$

$$ightharpoonup F(\varphi) \to F(\psi).$$

Propozitia 3.48

Pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e: V \to A$, funcția

$$V_{e,\mathcal{A}}: Form_{\mathcal{L}} \to \{0,1\}, \quad V_{e,\mathcal{A}}(\varphi) = \varphi^{\mathcal{A}}(e)$$

este o L-evaluare de adevăr.

Tautologii

Definiția 3.49

 φ este tautologie dacă $F(\varphi) = 1$ pentru orice \mathcal{L} -evaluare de adevăr F.

Exemple de tautologii: $\varphi \to (\psi \to \varphi)$, $(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$

Propoziția 3.50

Orice tautologie este validă.

Dem.: Fie \mathcal{A} o \mathcal{L} -structură și $e:V\to A$ o evaluare. Deoarece φ este tautologie și $V_{e,\mathcal{A}}$ este \mathcal{L} -evaluare de adevăr, rezultă că $\varphi^{\mathcal{A}}(e) = V_{e,\mathcal{A}}(\varphi) = 1$, adică $\mathcal{A} \models \varphi[e]$.

Exemplu

x = x este validă, dar nu este tautologie.

Tautologii

Definiția 3.51

Două formule φ și ψ sunt tautologic echivalente dacă $F(\varphi) = F(\psi)$ pentru orice \mathcal{L} -evaluare de adevăr F.

Exemplul 3.52

 $\varphi_1 \to (\varphi_2 \to \varphi_3)$ şi $\varphi_1 \land \varphi_2 \to \varphi_3$ sunt tautologic echivalente.

Definiția 3.53

O formulă φ este consecință tautologică a unei mulțimi de formule Γ dacă pentru orice \mathcal{L} -evaluare de adevăr F,

$$F(\gamma) = 1$$
 pentru orice $\gamma \in \Gamma \implies F(\varphi) = 1$.

Propoziția 3.54

Dacă φ este consecință tautologică a lui Γ , atunci $\Gamma \vDash \varphi$.

Mulțimi de enunțuri

Fie φ un enunț și Γ o mulțime de enunțuri.

Definitia 3.55

Spunem că Γ este satisfiabilă dacă există o \mathcal{L} -structură \mathcal{A} a.î.

$$A \vDash \gamma$$
 pentru orice $\gamma \in \Gamma$.

Spunem și că A este un model al lui Γ . Notație: $A \models \Gamma$

Definiția 3.56

Spunem că φ este consecință semantică a lui Γ dacă pentru orice L-structură A.

$$\mathcal{A} \models \Gamma \implies \mathcal{A} \models \varphi.$$

Notație: $\Gamma \models \varphi$

TEORII

Mulțimi de enunțuri

Notație: Pentru orice mulțime de enunțuri Γ, notăm

 $Mod(\Gamma)$:= clasa modelelor lui Γ .

Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

Lema 3.57

Pentru orice mulțimi de enunțuri Γ, Δ și orice enunț ψ ,

- (i) $\Gamma \vDash \psi \iff Mod(\Gamma) \subseteq Mod(\psi)$.
- (ii) $\Gamma \subseteq \Delta \implies Mod(\Delta) \subseteq Mod(\Gamma)$.
- (iii) Γ este satisfiabil $\check{a} \iff Mod(\Gamma) \neq \emptyset$.

Dem.: Exercițiu ușor.

Teorii

Definiția 3.58

O \mathcal{L} -teorie este o mulțime T de enunțuri ale lui \mathcal{L} care este închisă la consecința semantică, adică:

pentru orice enunț φ , $T \vDash \varphi \implies \varphi \in T$.

Definiția 3.59

Pentru orice mulțime de enunțuri Γ , teoria generată de Γ este mulțimea

$$Th(\Gamma) := \{ \varphi \mid \varphi \text{ este enunț i } \Gamma \vDash \varphi \}$$
$$= \{ \varphi \mid \varphi \text{ este enunț i } Mod(\Gamma) \subseteq Mod(\varphi) \}.$$

205

Teorii

Propoziția 3.60

Fie Γ o mulțime de enunțuri.

- (i) $Mod(\Gamma) = Mod(Th(\Gamma))$.
- (ii) $Th(\Gamma)$ este cea mai mică teorie T a.î. $\Gamma \subseteq T$.

Dem.: Exercițiu.

- ightharpoonup O teorie prezentată ca $Th(\Gamma)$ se numește teorie axiomatică sau teorie prezentată axiomatic. Γ se numește mulțime de axiome pentru $Th(\Gamma)$.
- Orice teorie poate fi prezentată axiomatic, dar suntem interesați de mulțimi de axiome care satisfac anumite condiții.

Teorii

Definiția 3.61

O teorie T este finit axiomatizabilă dacă $T = Th(\Gamma)$ pentru o mulțime de enunțuri finită Γ .

Definiția 3.62

O clasă K de L-structuri este axiomatizabilă dacă $K = Mod(\Gamma)$ pentru o mulțime de enunțuri Γ . Spunem și că Γ axiomatizează K.

Definiția 3.63

O clasă K de L-structuri este finit axiomatizabilă dacă $K = Mod(\Gamma)$ pentru o mulțime finită de enunțuri Γ .

Exemple - Teoria egalității

Pentru orice $n \ge 2$, notăm următorul enunț cu $\exists^{\ge n}$:

$$\exists x_1 \dots \exists x_n (\neg (x_1 = x_2) \land \neg (x_1 = x_3) \land \dots \land \neg (x_{n-1} = x_n)),$$

pe care îl scriem mai compact astfel:

$$\exists^{\geq n} = \exists x_1 \dots \exists x_n \left(\bigwedge_{1 \leq i < j \leq n} \neg (x_i = x_j) \right).$$

Propoziția 3.64

Pentru orice \mathcal{L} -structură \mathcal{A} și orice $n \geq 2$,

 $A \vDash \exists^{\geq n} \iff A \text{ are cel puţin } n \text{ elemente.}$

Dem.: Exercițiu ușor.

Pentru uniformitate, notăm $\exists^{\geq 1} := \exists x(x = x)$.

209

Exemple - Teoria egalității

Notații

Fie $n \ge 1$.

- ightharpoonup $\exists \leq n := \neg \exists \geq n+1$
- $\exists = n := \exists \leq n \land \exists \geq n$

Propoziția 3.65

Pentru orice \mathcal{L} -structură \mathcal{A} și orice $n \geq 1$,

$$A \vDash \exists^{\leq n} \iff A \text{ are cel mult } n \text{ elemente}$$

 $A \vDash \exists^{=n} \iff A \text{ are exact } n \text{ elemente}.$

Dem.: Exercițiu ușor.

Propoziția 3.66

Fie $T := Th(\{\exists^{\geq n} \mid n \geq 1\})$. Atunci pentru orice \mathcal{L} -structură \mathcal{A} , $\mathcal{A} \models T \iff A$ este mulțime infinită.

Dem.: Exercițiu ușor.

210

Exemple - Teoria grafurilor

Un graf este o pereche G = (V, E) de mulțimi a.î. E este o mulțime de submulțimi cu 2 elemente ale lui V. Elementele lui V se numesc vârfuri, iar elementele lui E se numesc muchii.

- \blacktriangleright $\mathcal{L}_{Graf} = (\dot{E}, \emptyset, \emptyset) = (\dot{E})$
- $ightharpoonup \mathcal{L}_{Graf}$ -structurile sunt $\mathcal{A}=(A,E)$, unde E este relație binară.

Fie
$$\Gamma := \{(IREFL), (SIM)\}$$
, unde

$$(IREFL) := \forall x \neg \dot{E}(x, x)$$

$$(SIM) := \forall x \forall y (\dot{E}(x,y) \rightarrow \dot{E}(y,x)).$$

Definiție

Teoria grafurilor este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ► modelele lui *T* sunt grafurile.
- Γ axiomatizează clasa grafurilor. Prin urmare, clasa grafurilor este finit axiomatizabilă.

-

Exemple - Teoria ordinii parțiale

- $\mathcal{L}_{\dot{<}}$ -structurile sunt $\mathcal{A}=(A,\leq)$, unde \leq este relație binară.

Fie $\Gamma := \{(REFL), (ANTISIM), (TRANZ)\}, \text{ unde}$ $(REFL) := \forall x (x \leq x)$ $(ANTISIM) := \forall x \forall y (x \leq y \land y \leq x \rightarrow x = y)$ $(TRANZ) := \forall x \forall y \forall z (x \leq y \land y \leq z \rightarrow x \leq z)$

Definitie

Teoria ordinii parțiale este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ▶ modelele lui *T* sunt mulțimile parțial ordonate.
- Γ axiomatizează clasa mulţimilor parţial ordonate. Prin urmare, clasa mulţimilor parţial ordonate este finit axiomatizabilă.

Exemple - Teoria ordinii totale

Fie
$$\Gamma := \{(ANTISIM), (TRANZ), (TOTAL)\}, \text{ unde}$$

$$(TOTAL) := \forall x \forall y (x \leq y \lor y \leq x)$$

Definiție

Teoria ordinii totale este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ▶ modelele lui *T* sunt multimile total ordonate.
- F axiomatizează clasa mulțimilor total ordonate. Prin urmare, clasa mulțimilor total ordonate este finit axiomatizabilă.

Exemple - Teoria ordinii stricte

- $\triangleright \mathcal{L}_{\dot{<}} = (\dot{<}, \emptyset, \emptyset) = (\dot{<})$
- \mathcal{L}_{\geq} -structurile sunt $\mathcal{A} = (A, <)$, unde < este relație binară.

Fie
$$\Gamma := \{(IREFL), (TRANZ)\}$$
, unde
$$(IREFL) := \forall x \neg (x \dot{<} x)$$
$$(TRANZ) := \forall x \forall y \forall z (x \dot{<} y \land y \dot{<} z \rightarrow x \dot{<} z)$$

Definiție

Teoria ordinii stricte este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ▶ modelele lui T sunt multimile strict ordonate.
- Γ axiomatizează clasa mulțimilor strict ordonate. Prin urmare, clasa multimilor strict ordonate este finit axiomatizabilă.

4

Exemple - Teoria ordinii dense

Fie
$$\Gamma := \{(IREFL), (TRANZ), (TOTAL), (DENS)\}, \text{ unde}$$

$$(TOTAL) := \forall x \forall y (x = y \lor x \dot{<} y \lor y \dot{<} x)$$

$$(DENS) := \forall x \forall y (x \dot{<} y \to \exists z (x \dot{<} z \land z \dot{<} y)).$$

Definiție

Teoria ordinii dense este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ▶ modelele lui *T* sunt mulțimile dens ordonate.
- ► Γ axiomatizează clasa mulțimilor dens ordonate. Prin urmare, clasa mulțimilor dens ordonate este finit axiomatizabilă.

Exemple - Teoria relațiilor de echivalență

- $ightharpoonup \mathcal{L}_{\doteq} = (\dot{\equiv}, \emptyset, \emptyset) = (\dot{\equiv})$
- $ightharpoonup \mathcal{L}_{\stackrel{.}{\equiv}}$ -structurile sunt $\mathcal{A}=(A,\equiv)$, unde \equiv este relație binară.

Fie
$$\Gamma := \{(REFL), (SIM), (TRANZ)\}$$
, unde
$$(REFL) := \forall x (x \stackrel{.}{=} x)$$
$$(SIM) := \forall x \forall y (x \stackrel{.}{=} y \rightarrow y \stackrel{.}{=} x)$$
$$(TRANZ) := \forall x \forall y \forall z (x \stackrel{.}{=} y \wedge y \stackrel{.}{=} z \rightarrow x \stackrel{.}{=} z)$$

Definiție

Teoria relațiilor de echivalență este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- Fie $\mathcal K$ clasa structurilor (A,\equiv) , unde \equiv este relație de echivalență pe A. Avem că $\mathcal K = Mod(\Gamma)$, așadar Γ axiomatizează $\mathcal K$. Prin urmare, $\mathcal K$ este finit axiomatizabilă.

Exemple - Teoria relațiilor de echivalență

•

• Dacă adăugăm axioma:

$$\forall x \exists y (\neg (x = y) \land x \stackrel{.}{=} y \land \forall z (z \stackrel{.}{=} x \rightarrow (z = x \lor z = y))),$$

obținem teoria relațiilor de echivalență cu proprietatea că orice clasă de echivalență are exact două elemente.

TEOREMA DE COMPACITATE

217

Teorema de compacitate

Teorema 3.67 (Teorema de compacitate)

O mulțime de enunțuri Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

▶ unul din rezultatele centrale ale logicii de ordinul întâi

Teorema de compacitate - aplicații

Fie $\mathcal L$ un limbaj de ordinul întâi.

Propoziția 3.68

Clasa \mathcal{L} -structurilor finite nu este axiomatizabilă, adică nu există o mulțime de enunțuri Γ astfel încât

(*) pentru orice \mathcal{L} -structură \mathcal{A} , $\mathcal{A} \models \Gamma \iff \mathcal{A}$ este finită.

Dem.: Presupunem prin reducere la absurd că există $\Gamma \subseteq Sen_{\mathcal{L}}$ a.î. (*) are loc. Fie

$$\Delta := \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie \mathcal{A} o \mathcal{L} -structură finită a.î. $|A| \geq \max\{n_1, \ldots, n_k\}$. Atunci $\mathcal{A} \models \exists^{\geq n_i}$ pentru orice $i = 1, \ldots, k$ și $\mathcal{A} \models \Gamma$ deoarece \mathcal{A} este finită.

Teorema de compacitate - aplicații

Prin urmare, $A \models \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$, de unde rezultă că $A \models \Delta_0$. Aşadar, Δ_0 este satisfiabilă.

Aplicând Teorema de compacitate, rezultă că

$$\Delta = \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

are un model \mathcal{B} .

Deoarece $\mathcal{B} \models \Gamma$, \mathcal{B} este finită.

Deoarece $\mathcal{B} \models \{\exists^{\geq n} \mid n \geq 1\}$, rezultă că \mathcal{B} este infinită.

Am obținut o contradicție.

Clasa mulțimilor nevide finite nu este axiomatizabilă în $\mathcal{L}_{=}$.

Propoziția 3.70

Clasa L-structurilor infinite este axiomatizabilă, dar nu este finit axiomatizabilă.

Dem.: Notăm cu \mathcal{K}_{Inf} clasa \mathcal{L} -structurilor infinite. Conform Propoziției 3.66, pentru orice \mathcal{L} -structură \mathcal{A} ,

$$A \in \mathcal{K}_{Inf} \iff A \text{ este infinit} \iff A \models \{\exists^{\geq n} \mid n \geq 1\}.$$

Prin urmare.

$$\mathcal{K}_{Inf} = Mod(\{\exists^{\geq n} \mid n \geq 1\})$$

deci e axiomatizabilă.

21

Teorema de compacitate - aplicații

Presupunem că \mathcal{K}_{Inf} este finit axiomatizabilă, deci există

$$\Gamma := \{\varphi_1, \dots, \varphi_n\} \subseteq Sen_{\mathcal{L}} \text{ a.i. } \mathcal{K}_{Inf} = Mod(\Gamma).$$

Fie $\varphi := \varphi_1 \wedge \ldots \wedge \varphi_n$. Atunci $\mathcal{K}_{Inf} = Mod(\varphi)$. Rezultă că pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A}$$
 este finită $\iff \mathcal{A} \notin \mathcal{K}_{Inf} \iff \mathcal{A} \not\models \varphi \iff \mathcal{A} \models \neg \varphi$.

Așadar, clasa \mathcal{L} -structurilor finite este axiomatizabilă, ceea ce contrazice Propoziția 3.68.

Corolar 3.71

Clasa mulțimilor infinite nu este finit axiomatizabilă în $\mathcal{L}_{=}$.

Teorema de compacitate - aplicații

Propoziția 3.72

Fie Γ o mulțime de enunțuri ale lui $\mathcal L$ cu proprietatea (*) pentru orice $m \in \mathbb N$, Γ are un model finit de cardinal $\geq m$. Atunci Γ are un model infinit.

Dem.: Fie

$$\Delta := \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie $m:=\max\{n_1,\ldots,n_k\}$. Conform (*), Γ are un model finit \mathcal{A} a.î. $|\mathcal{A}|\geq m$. Atunci $\mathcal{A}\vDash\exists^{\geq n_i}$ pentru orice $i=1,\ldots,k$, deci $\mathcal{A}\vDash\Delta_0$.

Aplicând Teorema de compacitate, rezultă că Δ are un model \mathcal{B} . Prin urmare. \mathcal{B} este un model infinit al lui Γ .

 \Box .

Teorema de compacitate - aplicații

Propoziția 3.73

Dacă un enunț φ este adevărat în orice \mathcal{L} -structură infinită, atunci există $m \in \mathbb{N}$ cu proprietatea că φ este adevărat în orice \mathcal{L} -structură finită de cardinal > m.

Dem.: Presupunem că nu e adevărat. Fie $\Gamma := \{ \neg \varphi \}$. Atunci pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$. Aplicând Propoziția 3.72, rezultă că Γ are un model infinit \mathcal{A} . Prin urmare, $\mathcal{A} \not\vDash \varphi$, ceea ce contrazice ipoteza.

Teorema de compacitate - aplicații

Propoziția 3.74

Fie Γ o mulțime de enunțuri cu proprietatea că

(*) pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$.

Atunci

- (i) Γ are un model infinit.
- (ii) Clasa modelelor finite ale lui Γ nu este axiomatizabilă.
- (iii) Clasa modelelor infinite ale lui Γ este axiomatizabilă, dar nu este finit axiomatizabilă.

Dem.: Exercițiu.

25

...

Modele non-standard ale aritmeticii

Considerăm limbajul $\mathcal{L}=(\dot{+},\dot{\times},\dot{S},\dot{0})$, unde $\dot{+},\dot{\times}$ sunt simboluri de operații binare, \dot{S} este simbol de operație unară și $\dot{0}$ este simbol de constantă.

Pentru orice $n \in \mathbb{N}$, definim prin inducție \mathcal{L} -termenul $\Delta(n)$ astfel:

$$\Delta(0) = \dot{0}, \quad \Delta(n+1) = \dot{S}\Delta(n).$$

Fie \mathcal{L} -structura $\mathcal{N}=(\mathbb{N},+,\cdot,S,0)$. Atunci $\Delta(n)^{\mathcal{N}}=n$ pentru orice $n\in\mathbb{N}$. Prin urmare, $\mathbb{N}=\{\Delta(n)^{\mathcal{N}}\mid n\in\mathbb{N}\}$.

Definiția 3.75

O \mathcal{L} -structură \mathcal{A} se numește non-standard dacă există $a \in A$ $a.\hat{i}$. $a \neq \Delta(n)^{\mathcal{A}}$ pentru orice $n \in \mathbb{N}$. Un astfel de element a se numește element non-standard.

Modele nonstandard ale aritmeticii

Teoria lui \mathcal{N} se definește astfel:

$$Th(\mathcal{N}) := \{ \varphi \in Sen_{\mathcal{L}} \mid \mathcal{N} \vDash \varphi \}.$$

Se poate demonstra ușor că $Th(\mathcal{N})$ este o teorie.

Teorema 3.76

Există un model non-standard al teoriei $Th(\mathcal{N})$.

Dem.: Fie c un simbol de constantă nou, $\mathcal{L}^+ = \mathcal{L} \cup \{c\}$ și

$$\Gamma = Th(\mathcal{N}) \cup \{\neg(\Delta(n) = c) \mid n \in \mathbb{N}\}.$$

Demonstrăm că Γ este satisfiabilă folosind Teorema de compacitate. Fie Γ_0 o submulțime finită a lui Γ ,

$$\Gamma_0 \subset Th(\mathcal{N}) \cup \{\neg(\Delta(n_1) = c), \dots, \neg(\Delta(n_k) = c)\}.$$

Modele nonstandard ale aritmeticii

Fie $n_0 > \max\{n_1, \dots, n_k\}$. Considerăm extensia \mathcal{N}^+ a lui \mathcal{N} la \mathcal{L}^+ definită astfel: $c^{\mathcal{N}^+} := n_0$. Atunci $\mathcal{N}^+ \models \Gamma_0$.

Aplicând Teorema de compacitate, rezultă că Γ are un model

$$\mathcal{A} = (A, +^{\mathcal{A}}, \cdot^{\mathcal{A}}, S^{\mathcal{A}}, 0^{\mathcal{A}}, c^{\mathcal{A}}).$$

Rezultă că $a:=c^{\mathcal{A}}$ este element non-standard al lui \mathcal{A} .

APLICAȚIE A TEOREMEI DE COMPACITATE LA TEORIA RAMSEY

Teoria Ramsey

Teoria Ramsey este o ramură a combinatoricii, a cărei temă principală este:

"Complete disorder is impossible." (T.S. Motzkin)

O structură mare, oricât de haotică ar fi, conține substructuri cu regularități.

Problemă tipică

O anumită structură este partiționată într-un număr finit de clase. Ce tip de substructură rămâne intactă în cel puțin una din clase?

- ► Rezultatele din teoria Ramsey sunt foarte puternice, deoarece ele sunt generale, se obțin presupunând ipoteze foarte slabe.
- ► Graham, Rothschild, Sperner, Ramsey Theory, 1990.

Teoria Ramsey

X mulțime, \mathcal{G} colecție de submulțimi bune ale lui *X*, $r \in \mathbb{N} \setminus \{0\}$.

Definiția 3.77

O r-colorare a lui X este o funcție $c: X \to \{1, 2, ..., r\}$. Pentru $x \in X$, c(x) este culoarea lui x. O submulțime $A \subseteq X$ se numește monocromatică dacă toate elementele din A au aceeași culoare.

Definiția 3.78

O familie de mulțimi C_1, \ldots, C_r se numește partiție a lui X dacă $X = \bigcup_{i=1}^r C_i$ și $C_i \cap C_j = \emptyset$ pentru orice $i \neq j \in \{1, \ldots, n\}$.

Următoarele afirmații sunt echivalente:

- ▶ Pentru orice partiție $X = \bigcup_{i=1}^r C_i$ a lui X, există $i \in \{1, \dots, r\}$ și $G \in \mathcal{G}$ a.î. $G \subset C_i$.
- Pentru orice r-colorare a lui X există o mulțime $G \in \mathcal{G}$ monocromatică.

Teorema Schur (1916)

Fie $r\in\mathbb{N}, r\geq 1$ și $\mathbb{N}=\bigcup_{i=1}^r C_i$ o partiție a lui $\mathbb{N}.$ Atunci există $i\in\{1,\ldots,r\}$ a.î.

$$\{x, y, x + y\} \subseteq C_i$$
 pentru $x, y \in \mathbb{N}$.

$$X = \mathbb{N}, \quad \mathcal{G} = \{\{x, y, x + y\} \mid x, y \in \mathbb{N}\}.$$

Versiunea cu colorări: Pentru orice r-colorare a lui $\mathbb N$ există $x,y\in\mathbb N$ a.î. mulțimea $\{x,y,x+y\}$ este monocromatică.

Teoria Ramsey

Teorema van der Waerden (1927)

Fie $r \in \mathbb{N}, r \geq 1$ și $\mathbb{N} = \bigcup_{i=1}^r C_i$ o partiție a lui \mathbb{N} . Pentru orice $k \in \mathbb{N}$ există $i \in \{1, \dots, r\}$ a.î. C_i conține progresii aritmetice de lungime k.

- rezultat central în teoria Ramsey
- ▶ una din cele trei perle în teoria numerelor Khintchin (1948)
- ▶ demonstrație combinatorială prin inducție dublă după *r* și *k*.

 $X = \mathbb{N}$, $\mathcal{G} = \text{multimea progresiilor aritmetice de lungime } k$.

Versiunea cu colorări: Orice colorare finită a lui $\mathbb N$ conține progresii aritmetice monocromatice de lungime finită arbitrară.

233

Putem să ne gândim la $[Y]^2$ ca fiind mulțimea muchiilor grafului complet peste Y.

Teorema 3.79 (Teorema Ramsey)

Teoria Ramsey

Fie Y o mulțime infinită, $k, r \in \mathbb{N} \setminus \{0\}$ și $[Y]^k = \bigcup_{i=1}^r C_i$ o partiție a lui $[Y]^k$. Atunci există $i \in \{1, ..., r\}$ și o submulțime infinită B a lui Y a.î. $[B]^k \subseteq C_i$.

- rezultat structural general, nu depinde de proprietățile aritmetice ale lui N;
- ▶ articolul lui Ramsey: On a problem of formal logic (1930);
- ▶ teorema lui Ramsey a fost popularizată de Erdös și Szekeres, care au redescoperit-o într-un articol clasic din 1935.

Teoria Ramsey

Teorema 3.80 (Teorema Ramsey - versiunea cu colorări)

Fie Y o mulțime infinită și $k, r \in \mathbb{N} \setminus \{0\}$. Pentru orice r-colorare a lui $[Y]^k$, există o submulțime infinită B a lui Y a.î. $[B]^k$ este monocromatică.

Versiune echivalentă

Teorema 3.81 (Teorema Ramsey - versiunea cu colorări)

Fie $k, r \in \mathbb{N} \setminus \{0\}$. Pentru orice r-colorare a lui $[\mathbb{N}]^k$, există o submulțime infinită B a lui \mathbb{N} a.î. $[B]^k$ este monocromatică.

Consecință: Principiul cutiei - varianta infinită (Infinite Pigeonhole Principle)

Fie Y o mulțime infinită și $r \in \mathbb{N} \setminus \{0\}$. Pentru orice r-colorare a lui Y, există o submulțime infinită monocromatică B a lui Y.

Teoria Ramsey

Notăm $[n] := \{1, ..., n\}$ și $[n]^k = \{A \subseteq [n] \mid |A| = k\}.$

Teorema 3.82 (Teorema Ramsey finitară)

Fie $k, r \in \mathbb{N} \setminus \{0\}$. Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice r-colorare a lui $[n]^k$ există o submulțime $D \subseteq [n]$ de cardinal m cu proprietatea că $[D]^k$ este monocromatică.

Generalizare a Principiului cutiei (Pigeonhole Principle): Dacă avem r cutii și r+1 obiecte, atunci cel puțin într-o cutie vor fi două obiecte. \iff Dacă colorăm r+1 obiecte cu r culori, atunci există două obiecte care au aceeași culoare.

Pentru k, r, m date, notăm cel mai mic n cu proprietatea de mai sus cu R(k, r, m). Atunci R(1, r, 2) = r + 1.

4

Teorema Ramsey finitară

Vom demonstra folosind Teorema de compacitate că Teorema Ramsey implică Teorema Ramsey finitară.

Pentru simplitate, considerăm r = 2, k = 2.

Teorema 3.83 (Teorema Ramsey finitară)

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: Presupunem prin reducere la absurd că teorema nu are loc. Atunci există $M \in \mathbb{N}$ cu următoarea proprietate:

(*) pentru orice $n \in \mathbb{N}$ există o 2-colorare a lui $[n]^2$ a.î. [n] nu are submulțimi D de cardinal M cu proprietatea că $[D]^2$ este monocromatică.

În continuare, fixăm M ca mai sus.

Teorema Ramsey finitară

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare)

Pentru orice mulțime nevidă D,

• oricărei 2-colorări c a lui $[D]^2$, îi asociem relația binară R_c pe D definită astfel:

$$R_c = \{(a, b) \in D^2 \mid c(\{a, b\}) = 1\}.$$

▶ oricărei relații binare R pe D îi asociem 2-colorarea c_R a lui $[D]^2$ definită astfel: pentru orice $\{a,b\}\subseteq D$,

$$c_R(\{a,b\})=1 \iff (a,b)\in R.$$

Teorema Ramsey finitară

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Fie \mathcal{L} limbajul de ordinul întâi care conține simbolurile de constantă $\{c_k \mid k \geq 1\}$ și un simbol U de relație binară. Pentru orice $n \geq M$, definim un enunț φ_n din \mathcal{L} cu următoarea proprietate: pentru orice $\mathcal{A} = (A, \{c_k^{\mathcal{A}} \mid k \geq 1\}, U^{\mathcal{A}})$,

$$\mathcal{A} \vDash \varphi_n \iff c_i^{\mathcal{A}} \neq c_j^{\mathcal{A}} \text{ pentru orice } i \neq j \in \{1, \dots, n\}$$

si pentru orice $D \subseteq \{c_1^{\mathcal{A}}, \dots, c_n^{\mathcal{A}}\}$ de cardinal M ,
 $[D]^2$ nu este monocromatică relativ la 2-colorarea $c_{U^{\mathcal{A}}}$.

$$\varphi_n = \bigwedge_{1 \leq i < j \leq n} \neg(c_i = c_j) \land \bigwedge_{1 \leq i_1 < i_2 < \dots < i_M \leq n} \psi_{i_1, \dots, i_M}, \text{ unde}$$

$$\psi_{i_1, \dots, i_M} = \bigvee_{\substack{1 \leq j, k, p, q \leq M, \\ i \neq k, p \neq q}} U(c_{i_j}, c_{i_k}) \land \neg U(c_{i_p}, c_{i_q}).$$

Teorema Ramsey finitară

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Evident, pentru $m \ge p$, avem că $\varphi_m \vDash \varphi_p$. Fie

$$\Gamma := \{ \varphi_n \mid n \ge M \}.$$

Demonstrăm că Γ este satisfiabilă folosind Teorema de compacitate. Fie Γ_0 o submulțime finită a lui Γ ,

$$\Gamma_0 = \{\varphi_{n_1}, \dots, \varphi_{n_k}\}, \text{ unde } n_1, \dots, n_k \geq M.$$

Fie $n_0 = \max\{n_1, \ldots, n_k\}$. Atunci orice model al lui φ_{n_0} este model al lui Γ . Aplicând (*) pentru n_0 , rezultă că există o 2-colorare c_{n_0} a lui $[n_0]^2$ a.î. $[D]^2$ nu este monocromatică pentru nicio submulțime $D \subseteq [n_0]$ de cardinal M.

Teorema Ramsey finitară

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Fie \mathcal{L} -structura \mathcal{A} definită astfel:

- ▶ $|A| = [n_0];$
- ▶ pentru orice $i = 1, ..., n_0$, $c_i^{\mathcal{A}} = i$ și $c_k^{\mathcal{A}}$ arbitrar pentru $k > n_0$;
- $ightharpoonup U^{\mathcal{A}} = R_{c_{n_0}}.$

Atunci $\mathcal{A} \models \varphi_{n_0}$.

Aplicând Teorema de compacitate, rezultă că Γ are un model

$$\mathcal{B} = (B, \{c_n^{\mathcal{B}} \mid n \geq 1\}, U^{\mathcal{B}}).$$

Teorema Ramsey finitară

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Fie

$$C = \{c_n^{\mathcal{B}} \mid n \geq 1\} \subseteq B.$$

Deoarece $\mathcal{B} \vDash \Gamma$, avem că $c_n^{\mathcal{B}} \neq c_m^{\mathcal{B}}$ pentru $n \neq m$. Prin urmare, $|C| = |\mathbb{N}| = \aleph_0$. Aplicând Teorema Ramsey 3.80 pentru mulțimea infinită C și 2-colorarea $c_{U^{\mathcal{B}}}$ a lui $[B]^2$ (deci și a lui $[C]^2$), rezultă că C are o submulțime infinită D a.î. $[D]^2$ este monocromatică. Deoarece D este infinită, există N a.î. mulțimea $D_N := D \cap \{c_1^{\mathcal{B}}, \ldots, c_N^{\mathcal{B}}\}$ are cardinal M. Cum $[D_N]^2 \subseteq [D]^2$ este monocromatică, am obținut o contradicție cu faptul că $\mathcal{B} \vDash \varphi_N$.

SINTAXA

Definiția 3.84

 $Mulțimea\ Axm_{\mathcal{L}} \subseteq Form_{\mathcal{L}}\ a\ axiomelor\ (logice)\ ale\ lui\ \mathcal{L}\ constă\ din:$

- (i) toate tautologiile.
- (ii) formulele de forma

 $t=t, \quad s=t \rightarrow t=s, \quad s=t \wedge t=u \rightarrow s=u,$ pentru orice termeni s, t, u.

(iii) formulele de forma

$$t_1 = u_1 \wedge \ldots \wedge t_m = u_m \rightarrow ft_1 \ldots t_m = fu_1 \ldots u_m,$$
 $t_1 = u_1 \wedge \ldots \wedge t_m = u_m \rightarrow (Rt_1 \ldots t_m \leftrightarrow Ru_1 \ldots u_m),$ pentru orice $m \geq 1$, $f \in \mathcal{F}_m$, $R \in \mathcal{R}_m$ și orice termeni t_i, u_i $(i = 1, \ldots, m).$

(iv) formulele de forma

$$\varphi_{\mathsf{x}}(t) \to \exists \mathsf{x} \varphi$$

unde $\varphi_x(t)$ este o substituție liberă (\exists -axiomele).

Sintaxa

Definiția 3.85

Regulile de deducție (sau inferență) sunt următoarele: pentru orice formule φ , ψ ,

(i) din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

(ii) dacă $x \notin FV(\psi)$, atunci din $\varphi \to \psi$ se inferă $\exists x \varphi \to \psi$ (\exists -introducerea):

$$\frac{\varphi \to \psi}{\exists x \varphi \to \psi}$$
 dacă $x \notin FV(\psi)$.

Sintaxa

Fie Γ o multime de formule ale lui \mathcal{L} .

Definiția 3.86

 Γ -teoremele lui \mathcal{L} sunt formulele definite astfel:

- (Γ0) Orice axiomă logică este Γ-teoremă.
- (Γ1) Orice formulă din Γ este Γ-teoremă.
- (Γ2) Dacă φ și $\varphi \to \psi$ sunt Γ-teoreme, atunci ψ este Γ-teoremă.
- (Γ 3) Dacă $\varphi \to \psi$ este Γ -teoremă și $x \notin FV(\psi)$, atunci $\exists x \varphi \to \psi$ este Γ -teoremă.
- $(\Gamma 4)$ Numai formulele obținute aplicând regulile $(\Gamma 0)$ $(\Gamma 1)$, $(\Gamma 2)$ și $(\Gamma 3)$ sunt Γ -teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Sintaxa

Notații

 $\Gamma \vdash_{\mathcal{L}} \varphi := \varphi$ este Γ -teoremă $\vdash_{\mathcal{L}} \varphi := \emptyset \vdash_{\mathcal{L}} \varphi$

Definiția 3.87

O formulă φ se numește teoremă (logică) a lui \mathcal{L} dacă $\vdash_{\mathcal{L}} \varphi$.

Reformulând condițiile din definiția Γ -teoremelor folosind notația \vdash , obținem

Pentru orice mulțime de formule Γ și orice formule φ, ψ , au loc următoarele:

- (i) Dacă φ este axiomă, atunci $\Gamma \vdash_{\mathcal{L}} \varphi$;
- (ii) Dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash_{\mathcal{L}} \varphi$;
- (iii) Dacă $\Gamma \vdash_{\mathcal{L}} \varphi$ și $\Gamma \vdash_{\mathcal{L}} \varphi \to \psi$, atunci $\Gamma \vdash_{\mathcal{L}} \psi$.
- (iv) Dacă $\Gamma \vdash_{\mathcal{L}} \varphi \to \psi$ și $x \notin FV(\psi)$, atunci $\Gamma \vdash_{\mathcal{L}} \exists x \varphi \to \psi$.

Definiția 3.88

O Γ -demonstrație (demonstrație din ipotezele Γ) a lui \mathcal{L} este o secvență de formule $\theta_1, \ldots, \theta_n$ astfel încât pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i astfel încât $\theta_k = \theta_i \rightarrow \theta_i$;
- (iv) există j < i astfel încât

$$\theta_i = \varphi \to \psi$$
 și $\theta_i = \exists x \varphi \to \psi$, unde $x \notin FV(\psi)$.

O ∅-demonstrație se va numi simplu demonstrație.

Sintaxa

Definiția 3.89

Fie φ o formulă. O Γ -demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ -demonstrație $\theta_1, \ldots, \theta_n$ astfel încât $\theta_n = \varphi$.

Propoziția 3.90

Fie Γ o mulțime de formule. Pentru orice formulă φ ,

 $\Gamma \vdash_{\mathcal{L}} \varphi$ ddacă există o Γ -demonstrație a lui φ .

Sintaxa

Fie Γ o mulțime de formule.

Teorema 3.91 (Teorema Tautologiei (Post))

Fie $\psi, \varphi_1, \dots, \varphi_n$ astfel încât

- (i) ψ este consecință tautologică a mulțimii $\{\varphi_1, \ldots, \varphi_n\}$.
- (ii) $\Gamma \vdash_{\mathcal{L}} \varphi_1$, $\Gamma \vdash_{\mathcal{L}} \varphi_2$, ..., $\Gamma \vdash_{\mathcal{L}} \varphi_n$.

Atunci $\Gamma \vdash_{\mathcal{L}} \psi$.

Teorema 3.92 (Teorema Deducției)

Fie ψ o formulă și φ un enunț. Atunci

$$\Gamma \cup \{\varphi\} \vdash_{\mathcal{L}} \psi \quad ddac\check{a} \quad \Gamma \vdash_{\mathcal{L}} \varphi \rightarrow \psi.$$

Propoziția 3.93

Pentru orice formulă φ și orice variabilă x,

$$\Gamma \vdash \varphi \iff \Gamma \vdash \forall x \varphi.$$

Sintaxa

Definiția 3.94

Fie φ o formula cu $FV(\varphi) = \{x_1, \dots, x_n\}$. Închiderea universală a lui φ este enunțul

$$\overline{\forall \varphi} := \forall x_1 \dots \forall x_n \varphi$$

Notații 3.95

 $\overline{\forall \Gamma} := \{ \overline{\forall \psi} \mid \psi \in \Gamma \}.$

Propoziția 3.96

Pentru orice formulă φ ,

$$\Gamma \vdash \varphi \quad \Longleftrightarrow \quad \Gamma \vdash \overline{\forall \varphi} \quad \Longleftrightarrow \quad \overline{\forall \Gamma} \vdash \varphi \quad \Longleftrightarrow \quad \overline{\forall \Gamma} \vdash \overline{\forall \varphi}.$$

Mulțimi consistente

Definiția 3.97

Fie Γ o mulțime de formule. Spunem că

- (i) Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash_{\mathcal{L}} \varphi$.
- (ii) Γ este inconsistentă dacă nu este consistentă, adică $\Gamma \vdash_{\mathcal{L}} \varphi$ pentru orice formulă φ .

Propoziția 3.98

Pentru orice mulțime de formule Γ , următoarele afirmații sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ astfel încât $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.

TEOREMA DE COMPLETITUDINE

253

Teorema de completitudine

Teorema de completitudine - prima versiune

Fie Γ o mulțime de enunțuri.

 Γ este consistentă \iff Γ este satisfiabilă.

Teorema de completitudine - a doua versiune

Pentru orice mulțime de enunțuri Γ și orice enunț φ ,

$$\Gamma \vdash_{\mathcal{L}} \varphi \iff \Gamma \vDash_{\mathcal{L}} \varphi.$$

- ► Teorema de completitudine a fost demonstrată de Gödel în 1929 în teza sa de doctorat.
- ► Henkin a dat în teza sa de doctorat din 1947 o demonstrație simplificată.