Семинар 17.

Семинары: Погорелова П.В.

1. Докажите теорему о LATE.

Решение:

См. учебник J.D. Angrist (2008). Mostly Harmless Econometrics: An Empiricistís Companion., стр. 112–115.

2. Докажите, что оценка LATE может быть получена в результате оценивания регрессии на бинарную эндогенную переменную воздействия D с помощью двух-шагового МНК. В качестве иснтрументальной переменной рассматривается экзогенная бинарная переменная Z (в примере с повестками D — служба в армии, а Z — это факт получения повестки).

Решение:

Рассмотрим регрессию

$$Y_i = \beta_1 + \beta_2 D_i + \varepsilon_i,$$

в которой коэффициент при бинарной переменной D_i оценивается при помощи 2MHK с бинарной переменной Z_i в качестве инструмента.

Наблюдения можно представить в виде таблицы:

	$D_i = 0$	$D_i = 1$
	Число наблюдений = а	Число наблюдений $= b$
$Z_i = 0$	Сумма соответствующих значений	Сумма соответствующих значений
	зависимой переменной $\sum_a Y_i$	зависимой переменной $\sum_b Y_i$
	Число наблюдений $=c$	Число наблюдений $=d$
$Z_i = 0$	Сумма соответствующих значений	Сумма соответствующих значений
	зависимой переменной $\sum_c Y_i$	зависимой переменной $\sum_d Y_i$

Посчитаем следующие выражения:

$$\begin{split} \overline{ZY} - \bar{Z} \cdot \bar{Y} &= \frac{\sum_{c} Y_{i} + \sum_{d} Y_{i}}{a + b + c + d} - \frac{(c + d) \left(\sum_{a} Y_{i} + \sum_{b} Y_{i} + \sum_{c} Y_{i} + \sum_{d} Y_{i}\right)}{(a + b + c + d)^{2}} = \\ &= \frac{(a + b) \left(\sum_{c} Y_{i} + \sum_{d} Y_{i}\right) - (c + d) \left(\sum_{a} Y_{i} + \sum_{b} Y_{i}\right)}{(a + b + c + d)^{2}}; \\ \overline{DZ} - \bar{D} \cdot \bar{Z} &= \frac{d}{a + b + c + d} - \frac{(c + d)(b + d)}{(a + b + c + d)^{2}} = \\ &= \frac{ad + bd + cd + d^{2}}{(a + b + c + d)^{2}} - \frac{bc + cd + bd + d^{2}}{(a + b + c + d)^{2}} = \frac{ad - bc}{(a + b + c + d)^{2}}. \end{split}$$

В этом случае оценка коэффициента при переменной равна:

$$\hat{\beta}_2 = \frac{\overline{ZY} - \bar{Z} \cdot \bar{Y}}{\overline{DZ} - \bar{D} \cdot \bar{Z}} = \frac{(a+b)\left(\sum_c Y_i + \sum_d Y_i\right) - (c+d)\left(\sum_a Y_i + \sum_b Y_i\right)}{ad - bc}$$

C другой стороны, оценка LATE составляет:

$$\widehat{LATE} = \frac{\bar{Y}_1 - \bar{Y}_0}{\bar{D}_1 - \bar{D}_0}$$

где \bar{Y}_1 — среднее значение зависимой переменной для индивидов, которые получили предписание; \bar{Y}_0 — среднее значение зависимой переменной для индивидов, которые не получили предписание; \bar{D}_1 — доля тех, кто подвергся воздействию, среди тех, кто получил предписание. В нашем примере это доля победителей лотереи, которые пошли служить; \bar{D}_0 — доля тех, кто подвергся воздействию, среди тех, кто не получил предписание;

$$\bar{D}_{1} - \bar{D}_{0} = \frac{d}{c+d} - \frac{b}{a+b} = \frac{ad-bc}{(a+b)(c+d)}$$

$$\overline{Y}_{1} - \bar{Y}_{0} = \frac{\sum_{c} Y_{i} + \sum_{d} Y_{i}}{c+d} - \frac{\sum_{a} Y_{i} + \sum_{b} Y_{i}}{a+b} =$$

$$= \frac{(a+b)\left(\sum_{c} Y_{i} + \sum_{d} Y_{i}\right) - (c+d)\sum_{a} Y_{i} + \sum_{b} Y_{i}}{(a+b)(c+d)}$$

$$\widehat{LATE} = \frac{\bar{Y}_{1} - \bar{Y}_{0}}{\bar{D}_{1} - \bar{D}_{0}} = \frac{(a+b)\left(\sum_{c} Y_{i} + \sum_{d} Y_{i}\right) - (c+d)\sum_{a} Y_{i} + \sum_{b} Y_{i}}{ad-bc} = \hat{\beta}_{2}.$$

Что и требовалось доказать.

Список использованных источников

(a) Картаев Ф.С. Введение в эконометрику : Учебник / Ф.С. Картаев — Москва : МГУ, 2019. — 472 с. — ISBN 978-5-906932-22-8.