$$\lambda_i = u \cdot \sum_{j \in AG} C_{i,j,t} \cdot (Ip_{j,t} + Ic_{j,t} + f \cdot Is_{j,t}) / N_j$$

$$n_{S_{i,t} \to E_{i,t}} \sim Bin(S_{i,t}, 1 - e^{-\lambda_{i,t} \cdot \delta t})$$

An agent-based modeller looks at an epidemiologist's model

Christopher J. Watts

Social Simulation Week 2020 Wednesday, 10am CET, 16th September

The February Question

- It's February 2020
 - You have a little empirical data about a novel SARS-causing virus
 - How many people will become ill? Need hospital? Die?
 - How soon will the hospitals be full?
 - What can we do and when must we do it?
 - Decisions include to shut schools, shops and workplaces
- In three weeks you must advise the UK Government's Scientific Advisory Committee (SAGE)
- Which modelling tools do you reach for?

The answer was *not* Agent-Based Modelling. What was the answer? What did it offer?

How agent-based modellers might see things

- Heterogeneous, Adaptive Agents
 - Perform routine activities
 - In locations (Home, School, Work, Etc.)
 - According to personal schedules (based on survey data?)
 - Interventions (e.g. schools closure) force agents to seek other activities
- Infection occurs between agents in same location at same time
 - A bi-modal, bi-partite transmission network
- Inspiration:
 - Joshua Epstein's keynote at SSC 2019
 - Simulating innovation, organisational learning (routine practices)
 - The team at Hohenheim Uni came up with same ideas

Nigel's question: Why listen to us?

March-April, a team of ABMers forms:

- Christopher Watts, independent, Cambridgeshire, UK
- Nigel Gilbert, University of Surrey
- Duncan Robertson, Loughborough University & St. Catherine's College, Oxford
- Daniel Ladley, University of Leicester
- Edmund Chattoe-Brown, University of Leicester
- Anonymous Student, University of Leicester

Nigel's question:

"We're not Epidemiologists. Why should anyone listen to us?"

Nigel's solution (1): Find some experts with a serious model...

Modellers	Language	Thoughts	
Imperial College: Neil Ferguson et al.	С	Too big	
London School of <i>Hygiene</i> & Tropical Medicine (LSHTM), CMMID: Nick Davies, W. John Edmunds, Adam Kucharski, et al.	R, C++	Feasible?:Download from githubWell-documented(ish)Runs in "hours" on a laptop	Th
UCL: Dynamic Causal Modelling Karl Friston	Matlab / Octave	Too novel	

The "Hygiene Model"

Davies et al. (2020) "Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study". The Lancet Public Health. Published online June 2, 2020 https://doi.org/10.1016/S2468-2667(20)30133-X

Steps 2,3,4: Dock with the experts' model... then gradually add ABM features

- 2) NetLogo replication of Hygiene model, using POLYMOD contact matrices
- 3) Replication model, but using our *own* contact matrices generated from survey data and simulated locations
- 4) Replication model, but no contact matrices. Contacts based on activity schedules from survey data, locations, adaptive behaviour

Do the results change?

Is the policy advice sensitive to its non-ABM assumptions?

A brief introduction to

THE HYGIENE MODEL OF DAVIES ET AL. (2020)

Compartmental models: Quick-and-dirty solutions since 1927 (or the late 1970s)

- Susceptible-Infectious-Removed (SIR), SI, SEIR, SEIRD, etc.
 - Kermack & McKendrick (1927) SIR model
 - Popular among Epidemiologists since late 1970s (Anderson & May)
 - Drag-and-drop creation in SD software (e.g. Vensim)
 - Solve them in Excel
 - E.g. https://github.com/innovative-simulator/PopScaleCompartmentModels/blob/master/xlsx/SEIR.xlsx

The force of infection, λ

The rate at which infection events occur for a Susceptible person is a linear function of the Infectious

proportion of the (sub-)Population

 $\lambda_i = u \cdot \sum_{i,j,t} \left(Ip_{j,t} + Ic_{j,t} + f \cdot Is_{j,t} \right) / N_j$

age group j) who are currently infectious

The weighted proportion of the entire population (in

N = S + E + Ip + Ic + Is + RNB: R includes the recovered, the isolating, and the dead!

 λ_i = The rate over time of infection events for a Susceptible in Age Group i

> Contacts per time step between people in age groups i and j

Contact matrices:

- Age Group i to Age Group i
- Home + School + Work + "Other"
- Empirical: E.g. the POLYMOD data
- Modify matrices to simulate interventions (e.g. School Closure)

Non-adaptive behaviour:

- Contact rates do not vary with disease state
- No re-allocation of contact time

The Universal Mixing Assumption:

I have $C_{i,i}$ contacts per day with people from group j and they may be anyone in that group, irrespective of their:

- Spatial distance
- Social network (Family? Friends? Coworkers?)
- Our disease states, e.g. whether or not they are dead

The Hygiene Model addresses the criticisms of the differential equation models

System Dynamics model / Differential Equations (SIR)	Individual-based dynamic stochastic model (Hygiene Model)	
Deterministic; Variance around norm not represented	Stochastic flows between compartments $n_{S_{i,t} \to E_{i,t}} \sim Bin(S_{i,t}, 1 - e^{-\lambda_{i,t} \cdot \delta t})$	
Homogenous population	Age-group sub-compartments	
Universal mixing	Simulate counties, then sum to UK. Age-group-based contact matrices	
No adaptive behaviour	Interventions simulated as time- based changes to contact matrices	

The Hygiene Model addresses the criticisms of other stochastic / microsimulation models

	Individual-based dynamic stochastic model (Hygiene Model)
State transition times are	Sample next transition time (from a
Exponentially distributed = High	Gamma distribution) for each
variance	individual entering state

But this means a simulation of UK (Pop=66.4 million) needs hundreds of millions of random numbers per run

The county-level simulations need seed infections

County/Region-based model	Hygiene Model
No cross-border contacts;	Seed infections for each county
Counties simulations run	
independent of each other	

This raises a few problems... (See later, and RofASSS article)

WHAT WE LEARNED FROM REPLICATING THE HYGIENE MODEL

Hygiene Model *splits* models for Health Burden and Deaths from Transmission model!

Size does not matter (usually)

- A compartmental model produces Peak or Total Cases of X% of N people
 - Same X%, whatever the N
- So small models ok. E.g. model 1000 agents. Then multiply by 66,400 to forecast the UK
- But population size does affect the time to peak cases and time to all ICU beds full
- Need to re-scale seed infections to Y% of N
- Very small models still a problem. 1 seed infectious person might remove too quick to spark epidemic

How to seed infections?

See https://rofasss.org/2020/08/14/role-population-scale/

Hygiene model:

- Same seed schedule used for every county: 2 per day for 28 days
- Time to peak (and critical levels of hospital beds) tends to linear function of Log(Population Size / Number of Seeds)
- So smallest county (population=2200) peaks earlier than biggest (2.9 million)
- Why is this a problem?
 - Timing is important to the interventions' impact
 - UK aggregate of out-of-sync county peaks will be smaller
- Hard problem to solve:
 - Re-scale seeding for county size? But small seeding might not generate an epidemic. Biggest county get 1300x seeding of smallest.
 - Model UK directly? But universal mixing absurd
 - Model UK social network? But you don't yet know what this looks like!

Lack of justification

- Although the Hygiene model can be fit to empirical data (using MCMC)...
 - E.g. posteriors for rate parameters , R0 / Susceptibility
- It makes lots of under-justified assumptions
 - Seed infections schedule
 - Interventions altering the contact matrices
- There is very little sensitivity testing (No time?)
 - R0
 - Intervention launch delays
 - But not the age-based rates for symptomatic rate, hospitalisation, fatality, etc.

Replication revealed a bug in their model!

- We found a bug in the LSHTM model!
 - Intervention scenarios were being run with the default seeding (=1 person on day 1)
 - Not the seeding schedule used for Base scenario (=2 per day for 28 days)
- The Lancet paper will have to be corrected!
 - (When Davies et al. have time...)
 - They massively overestimated the impact of interventions
 - Apparently this affects the paper, but not their advice to UK government. (Well, that's their story...)

Were the complications worth the effort?

Complications

- UK-size population (66.4 million)
- UK = Sum of Counties
- Age-group sub-compartments + parameters
- Stochastic flows
- Individual-based (i.e. sampled maturity times)

Results

- Too much code to check adequately
- Longer to run experiments (hours to days)
- Verification and validation focus on UK aggregate level, not county-level runs
- Modelling at county level led to seeding scale problem, and helped hide a bad bug
- More reliable policy modelling?
 - Not if you have to retract the paper!

Conclusions

- Advantage of "individual-based, dynamic stochastic model" over quick-and-dirty differential equations / SD is not clear. Advantage over ABM??
- Advantage of county-level runs is not obvious: it still involves Universal Mixing
- AB modellers note: Small models good; Complexity must be easy to check

Nigel's strategy: Progress so far

16/09/2020 SSW 2020

cjwatts1007@gmail.com

DiseaseDecisions.nlogo

- Replicates Hygiene Model
- Can replace contact matrices with agents' activity schedules and locations
- Uses discrete-event simulation

Not universal mixing, but...

IS THE FUTURE NETWORKS OR REAL CONTACT DATA?

NetworksAndUniMix.nlogo

- Compare Universal Mixing versus using same contact rate within a fixed Social Network
- Download from github today:
 https://github.com/innovative-simulator/NetworksAndUniMix

Universal mixing compares badly with network structure... ...but none of them look like **real contact data**!

Realistic contact data from Stephen Kissler (BBC Pandemic project, 2018)

- 3 days of contact data from small town (Haslemere) using mobile apps
- Filtered to distances <= 2m
- 392 nodes, largest component 381 nodes, Network Density = 1.4%

What capabilities do the modelling approaches offer?

Requirement / Feature	System Dynamics / Differential Equations (SIR)	Individual-based Dynamic Stochastic Model (Hygiene Model)	Agent-Based Model (Your model here?)
Computation	Very Easy	Hours – Days for UK	Forget about the UK!
Heterogeneous Agents (Age, Location, Timing, Contact Rate)	Only with sub-compartments: e.g. Young-Old, City-Rural, etc.		Easy
Time to state transitions	Fixed	Exponential distribution, or Any if individual-based	Sample from any distribution
Contact Neighbours	Universal Mixing	Universal Mixing	Social Networks
Adaptive Agent Behaviour / Learning	No	No	Quite Easy
Fit to data	MCMC	MCMC	No likelihood! Anyone used ABC??
Estimating Risks	Averages only	Stochastic variation	Complexity

16/09/2020 SSW 2020 cjwatts1007@gmail.com 25

References

- The Hygiene Model
 - Davies et al. (2020) "Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study". The Lancet Public Health. Published online June 2, 2020 https://doi.org/10.1016/S2468-2667(20)30133-X
 - https://github.com/cmmid/covid-UK
- RofASSS article
 - https://rofasss.org/2020/08/14/role-population-scale/
- NetworksAndUniMix.nlogo (and these slides)
 - https://github.com/innovative-simulator/NetworksAndUniMix
- Kissler's contact data
 - https://github.com/skissler/haslemere
- Email: cjwatts1007@gmail.com