Introduction to Probability Quiz 4 (Open-book, In-Class Exercise)

December 16, 2022, 9:10 p.m. - 10:100 p.m.

1. Given that the joint PDF $f_{X,Y}(x,y)$ of two continuous random variables X and Y is $\sqrt{\text{constant (uniform)}}$ in the triangle of the figure shown on the right.

(ii) Find the PDF $f_Y(y)$ of Y. (10%)

(iii) Use the "derived-distributions" method to find the PDF $f_W(w)$ of the random variable W which is expressed by W = X + Y. (10%)

2. Given that X is a continuous random variable with PDF $f_X(x)$ and Y = aX + b. Show that the PDF (probability density

function) of random variable Y can be expressed as: $f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$. (20%)

- 3. We are told that X, Y, Z are three independent random variables. All of them are uniformly distributed in the interval [0, 1]. (20%)
 - (i) Use the "derived-distributions" method to find the PDF $f_W(w)$ of W = X + 2Y.

(ii) Find the PDF of $W = \max(X, Y, Z)$.

4. Suppose that in Taiwan, the number of summer typhoons in a good year is a Poisson random variable with mean 2, whereas the number of typhoons in a bad year is a Poisson random variable with mean 6. If next year will be a good year with probability 0.3 or a bad year with probability 0.7, find the expected value (i.e., mean) and variance of the number of typhoons that will occur in next year. (20%)

Hint: The number of summer typhoons can be modeled as a random variable. You may use "Law of Iterated Expectations" to

E[X] (Hint: E[X] = E[E[X|Y]]), and use "Law of Total Variance" to calculate var(X) (Hint: var(X) = E[var(X|Y)] + var(E[X|Y]))

5. Given that X and Y are two independent random variables, each of which has mean equal to 3 and variance 2, respectively. Let U = 2X + 3Y And V = 3X - 2Y. Find var(U) and cov(U, V). Hint: cov(X, Y) = E[(X - E[X])(Y - E[Y])] (20%)

6. Let X be a discrete random variable with a transform (moment generating function) $M_X(s)$ such that $M_X(s) = a + be^{3s} + ce^{6s}$,

E[X] = 2 and $var(X) = \frac{9}{2}$. Find a, b, c and the PMF of X. (20%) Hint: For a discrete random variable X, $M_X(s) = \sum_{x} e^{sx} P_X(x)$.

- 7. Given that X is an exponential random variable with its pdf expressed by $f_X(x) = \lambda e^{-\lambda x}$, $x \ge 0$
 - (i) Show that the transform of X (Hint: $M_X(s) = \mathbb{E}[e^{sX}] = \int_0^\infty e^{sx} f_X(x) dx$) can be expressed as: $M_X(s) = \frac{\lambda}{\lambda s}$. (10%)

(ii) Using $M_X(s)$ to show that $E[X] = \frac{1}{\lambda}$ and $var(X) = \frac{1}{\lambda^2}$ (10%)

 $\sqrt{\text{iii}}$) Given that random variable Y can be expressed as Y = 3X + 2. Find the transform of Y. (10%)

(ix) Given that Z is also an exponential random variable with parameter η , and X and Z are independent of each other. Find the transform of random variable Y = X + Z. (10%)

8. A biased coin (with probability 0.4 being head) is flipped independently until the first head is obtained. For each flip of the coin, a value of an exponential random variable (with its parameter $\lambda = 2$) is generated. Let the random variable Y be defined as the sum of all the value obtained before the first head. Find the mean, variance and transform of Y. (20%)

Transform of Random variables:

 $\mathbf{Uniform}(a, b)$

$$f_X(x) = \frac{1}{b-a}$$
, $a \le x \le b$, $M_X(s) = \frac{1}{b-a} \frac{e^{sb} - e^{sa}}{s}$.

Geometric(p)

$$p_X(k) = p(1-p)^{k-1}, \quad k = 1, 2, \dots$$
 $M_X(s) = \frac{pc^s}{1 - (1-p)c^s}$

Geometric with Parameter μ (Describes the number of trials until the first success, in a sequence of independent Bernoulli trials.)

$$p_X(k) = (1-p)^{k-1}p,$$
 $k = 1, 2, ...,$
$$\mathbf{E}[X] = \frac{1}{p}, \qquad \text{var}(X) = \frac{1-p}{p^2}.$$

Properties of Sums of a Random Number of Independent Random Variables

Let X_1, X_2, \ldots be random variables with common mean μ and common variance σ^2 . Let N be a random variable that takes nonnegative integer values. We assume that all of these random variables are independent, and consider

$$Y = X_1 + \cdots + X_N$$
.

Then,

- $\mathbf{E}[Y] = \mu \mathbf{E}[N]$.
- $\operatorname{var}(Y) = \sigma^2 \mathbf{E}[N] + \mu^2 \operatorname{var}(N)$.
- The transform $M_Y(s)$ is found by starting with the transform $M_X(s)$ and replacing each occurrence of ϵ^s with $M_X(s)$.

Poisson with Parameter λ :

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \qquad k = 0, 1, \dots$$

 $\mathbf{E}[X] = \lambda, \qquad \text{var}(X) = \lambda.$