COMP 4418 – Exercise Sheet: Social Choice Theory II

Exercise I: Compute RSCFs

Compute the lottery chosen by the uniform random dictatorship, the randomized Borda rule (which randomizes proportional to the Borda scores), and a maximal lottery for the two subsequent profiles.

a)
$$R^1$$
: 2: $b \succ c \succ d \succ a$
2: $a \succ b \succ c \succ d$
2: $c \succ d \succ a \succ b$
1: $a \succ d \succ c \succ b$

b)
$$R^2$$
: 2: $a \succ b \succ c \succ d$
2: $d \succ b \succ c \succ a$
1: $c \succ a \succ b \succ d$

Exercise II: Strategyproofness for RSCFs

- a) Show that no maximal lottery rule is strategyproof.
- b) Show that the randomized Borda rule is strategyproof.
- c) Given a preference relation \succ and an alternative x, let $U(\succ,x)=\{x|\}\cup\{y\in A\colon y\succ x\}$. Show that, for all preference relations \succ and all lotteries $p,q\in\Delta(A)$, it holds that $\mathbb{E}[p(u)]\geq\mathbb{E}[q(u)]$ for all u that are consistent with \succ if and only if $\sum_{y\in U(\succ,x)}p(y)\geq\sum_{y\in U(\succ,x)}q(y)$ for all $x\in A$.

Exercise III: Computing ABC voting rules

Compute AV, PAV, CCAV, Phragmen, and MES for the subsequent profile and the target committee size k = 3.

3:
$$\{a,b\}$$
 3: $\{a,c\}$ 2: $\{a,b,d\}$ 2: $\{e\}$ 1: $\{f\}$

Exercise IV: Extended Justified Representation

- a) Show that PAV satisfies EJR.
- b) Show that MES satisfies EJR.