ML.exer.chap6

samiramoradzade77

21 azar

1 Exercise 6.2:

Give some finite domain set, χ , and a umber $\kappa \leq |\chi|$, figure out the VC-dimansion of each of the following classes (and prove your claims):

1. $H_{=\kappa}^{\chi} = \{h \in \{0,1\} : |\{x : h(x) = 1\}| = \kappa\}$. that is, the set of all functions that assign the value 1 to exactly elements of χ .

we claim $VC-dimansion = min \{\kappa, |\chi| - \kappa\}$ then we show that $VCdim(H_{=\kappa}) \leq \kappa$ for that we define set $C \subseteq \chi$ with size $\kappa+1$ and we show that it does not exist $h \in H_{=\kappa}$ with labeling 1 to the all $\kappa+1$ elements $x \in C$ because $|\{x: h(x) = 1\}| = k$.

also we show $VC - dimansion(H_{=k}) = \le |x| - k$ therefore we define set $C \subseteq \chi$ with size $|\chi| - \kappa + 1$ we should show that there is not $h \in H$ that labeling 0 to the all elements $(x \in C)$ because we have $|\{x : h(x) = 0\}| = |\chi| - \kappa$.

2. $H_{at-most-k} = \{h \in \{0,1\}^X : |\{x : h(x) = 1\}| \le \kappa \text{ or } |\{x : h(x) = 0\}| \le \kappa\}$ proof: we claims $VCdim(H) = \kappa$. then first, we show $VCdim(H) \le \kappa$ we define the set $C = \{x_1, ..., x_{k+1}\} \subseteq \chi$ we know that there is not $h \in H$ s.t. labeling all the elements with 1. because we have k or less elements with 1 labelin in H. on the other side we show that $VCdim(H) \ge \kappa$

let $(y_1, ..., y_m) \in \{0, 1\}^X$ be a vector of labels with the size $m \le \kappa$ this labeling makes by the $h \in H$ s.t $h(x_i) = y_i$ for every $x_i \in C$ and h(x) = 0 for every other $x \in \chi \setminus C$ and we know C shattered by H.

Therefore $VCdim(H) = \kappa$.

2 Exercise 6.4:

we prove sauer's lemma by proving that for every class H of finite VCdimension d, and every subset A of the domain,

 $|H_A| \le |\{B \subseteq A : HshattersB\}| \le \sum_{i=0}^d {|A| \choose i}.$

solution: Let $X = \mathbb{R}^2$ We will demonstrate all the 4 combinations using hypothesis classes defined over $X \times \{0,1\}$ and named $\delta = \sum_{i=0}^{2} \binom{|A|}{i}$

$$(=,=): C = \{x_1 = (0,1), x_2 = (1,1)\}\$$

 $|H_A| = |\{(0,0), (1,1), (1,0), (0,1)\}| = 4$

$$\begin{split} |\{\varnothing, \{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}, \{x_3, x_2\}\}| &= 7 \\ \delta &= 4 \\ &(<, =) : C = \{(0, 1), (1, 0), (1, 1)\} \\ |H_A| &= |\{(0, 0, 0), (1, 1, 1), (1, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 0)\}| &= 6 \\ |\{\varnothing, \{x_2\}\}| &= 2 \\ \delta &= 7 \\ &(=, <) : C = \{x_1 = (0, 0), x_2 = (0, 1)\} \\ |H_A| &= |\{(1, 0), (1, 1)\}| &= 2 \ |\{\varnothing, \{x_2\}\}\}| &= 2 \\ \delta &= 4 \\ &(<, <) : C = \{x_1 = (1, 1), x_2 = (2, 2)\} \\ |H_A| &= |\{(0, 0), (1, 1)\}| &= 2 \\ |\{\varnothing, \{x_1\}, \{x_2\}\}| &= 3 \\ \delta &= 4 \end{split}$$

3 Exercise 6.9:

Let H be class of signed intervals, that is, $H = \{h_{a,b,s} : a \leq b, s \in \{0,1\}\}$ where

$$h_{a,b,s}(x) = \begin{cases} s & if x \in [a,b] \\ -s & if x \notin [a,b] \end{cases}$$

Calculate VCdim(H).

proof: first Let $C = \{c_1 = 1, c_2 = 2, c_3 = 3\}$ then we see that this C shattered by H.

a	b	c_1	c_2	c_3
0	4	+	+	+
0	2.5	+	+	-
1.5	2.5	+	-	+
1.5	4	-	+	+
0	1.5	+	-	-
1.5	2.5	-	+	-
2.5	4	-	-	+
4	5	-	-	-

therefore $VCdim(H) \geq 3$ now we define C by 4 points $C = \{c_1, c_2, c_3, c_4\}$ then we see the labeling (+, -, +, -) does not obtained. Therefore $VCdim(H) \leq 3$ we showed that VCdim(H) = 3.