

Procesamiento del Lenguaje Natural

Dr. John Atkinson

Procesamiento de Lenguaje Natural

Objetivos del Curso

- ✓ Entender los fundamentos y aplicaciones del Procesamiento del Lenguaje Natural (NLP).
- ✓ Introducir los principales problemas del NLP, soluciones y problemas.
- ✓ Comprender los métodos utilizados para desarrollar algunas aplicaciones sencillas de NLP.

Bibliografía

Material Clave:

- ✓ D. Jurafsky, J. Martin. "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", 2nd edition, Prentice Hall, 2008.
- ✓ S. Bird, E. Klein, E Loper. "Natural Language Processing with Python", O'Reilly, 2009.

El lenguaje ...

Por si le interesa a alguien: Tengo una amiga que hace dos semanas se compró un iPhone 8 (le costó \$749,000 mil pesos) y por un descuido su hijo le rompió la pantalla, entonces después de ver lo que cuesta arreglarlo, lo está regalando. Si alguien lo quiere avísenme por favor. El pequeño tiene 8 años, es gordito, está en 3ero básico, come lo que sea, si lo sientas con video juegos no da mucho trabajo... si saben de alguien que lo quiera, me avisan...

El lenguaje ...

¿Qué mecanismos utilizamos para comprender el lenguaje escrito?

"El ministro del Interior reconoció que una de esas personas es el economista DC y ex ministro del Trabajo René Cortázar, aunque recalcó que es la Presidenta Michelle Bachelet quien deberá tomar una decisión final. Lo mismo ocurrirá respecto a un eventual cambio de gabinete.

Asimismo, Belisario Velasco explicó que parte de las fallas en los recorridos de los buses se debe a la falta del software que aún no es entregado por el proveedor".

Lucas y el Lenguaje ...

Muchos beneficios...

Muchos beneficios...

Procesamiento del Lenguaje Natural

Objetivo: lograr que los computadores utilicen *lenguaje natural* como entrada y/o salida para comprenderlo ó producirlo.

Especificamente...

- Hacer que los computadores realicen tareas útiles a partir del lenguaje humano para:
 - Posibilitar la comunicación humano-computador
 - Mejorar la comunicación humano-computador
 - Hacer cosas con los objetos del lenguaje
- Aplicaciones:
 - Categorización de documentos
 - Traducción automática
 - Reconocimiento del habla (ASR)
 - Agentes conversacionales
 - Sistemas de Pregunta-Respuesta (QA)
 - Analítica textual
 - Análisis de sentimientos en redes sociales
 - Muchos más...

Origen:

El Lenguaje en la Comunicación

Canal con ruido

¿Porqué NLP es dificil?

- ✓ Se deben abordar muchos problemas:
 - Ej: Ambigüedad (ej. acústica, morfológica, sintáctica, semántica, discursiva, etc)
- ✓ La tarea parece difícil, entonces ¿Qué recursos necesitamos?
 - Conocimiento acerca del lenguaje
 - Conocimiento acerca del dominio (el "mundo")
- ✓ Dos tendencias actuales para combatir el cuello de botella de la adquisición de conocimiento:
 - Dirigido por expertos y codificados manualmente.
 - Dirigido por los datos y automatizado.

Algunos Problemas ...

Ambigüedad es un problema que se produce cuando existen múltiples caminos posibles para resolver un problema en un gran espacio de búsqueda:

- Ambigüedad léxica: múltiples usos de palabras.
- Ambigüedad sintáctica: múltiples estructuras sintácticas para una misma oración
- Ambigüedad semántica: múltiples sentidos para una misma estructura sintáctica de una oración.
- Ambigüedad de Referencia (Discurso): múltiples formas de "referenciar" (invocar) a una entidad.

Ambigüedad Léxica

Banco

Ambigüedad Sintáctica

Trae el gato con los guantes

Ambigüedad Semántica

Pedro regaló un pastel a los niños

¿Uno para todos? ¿Uno a cada uno? A lo mejor depende del tamaño (del pastel, no de Pedro ni de los niños)

Referencia (en el Discurso)

Ella le dijo que lo ordenara.

¿Quién dijo? ¿A quién? ¿Cuándo? ¿Qué ordenara qué?

Drivers de NLP

✓ La necesidad de interfaces inteligentes:

- Aplicaciones de voz, telefonía, etc.
- Nadie desea un teclado en su micro-ondas inteligente!!
- No hay suficientes humanos para responder a usuarios/clientes.

✓ El problema de la sobrecarga de información:

- Existe demasiada información en medios electrónicos.
- Nadie tiene tiempo para leer los documentos, emails, etc.
- Necesitamos tomar decisiones desde los documentos

¿Qué tipo de Conocimiento Requeriría una Máquina?

¿Qué requiere HAL?

✓ Reconocimiento y Síntesis de Voz

- Diccionarios (¿Cómo se pronuncian las palabras?)
- Fonética (¿Cómo reconocer/producir cada sonido del lenguaje?)

Comprensión del Lenguaje

- Conocimiento de las palabras del lenguaje
 - ¿Qué significan?
 - ¿Cómo se combinan? (¿Qué es un "compartimiento"?)
- Conocimiento de la relaciones entre palabras

¿Qué requiere HAL?

✓ Diálogo y Pragmática

- Necesita entender que "abre la puerta" es un REQUERIMIENTO (opuesto a una pregunta por información).
- Es bueno responder, incluso si se planifica matar a alguien ©.
- Es bueno pretender desear ser cooperativo ("me temo, no puedo...")
- ¿Qué es `eso' en `No puedo hacer eso'?

¿Como se ve esto actualmente?

- ✓ Sistema de reservas para pasajes aéreos.
- ✓ Atención automatizada de clientes.
- ✓ Comprensión de quejas de clientes y extracción de información clave.
- Entender las emociones de los clientes en redes sociales.
- ✓ Muchas más...

Interacciones con limitaciones...

```
Chatbot: Bienvenido a "PepitoPagaDoble Comunicaciones", ¿En qué lo puedo ayudar?

Cliente: Tengo un problema con BLA BLA Internet BLA BLA Chatbot: Veo que su problema es Internet, ¿Necesita (a)..(b)...ó (c)...?

Cliente: no, es lo primero que le escribí, mire le explico.....

Chatbot: ok. ¿Qué necesita específicamente?

Cliente: sus canales se ven pixelados y no se porqué. ¿Qué hora es?.

Chatbot: ...
```

Recordemos...todo esto no es nuevo...

Historia: 1940s-1950s

✓ Autómatas:

- *Turing* (1936)
- McCulloch-Pitts neuron (1943)
- Kleene (1951/1956)
- Shannon (1948) conecta autómatas y modelos de Markov
- Chomsky (1956)/Backus (1959)/Naur(1960): gramáticas formales para lenguajes (CFG)

✓ Modelos probabilísticos y teoría de información:

- Shannon (1948)
- Reconocimiento de voz en AT&T Bell Labs, USA (1952)

Historia: 1957-1970

✓ Enfoque Simbólico

- Primer analizador sintáctico (Parser) de Zellig Harris (1958).
 - Transductores de estados-finitos.
- Teorías de adquisición de lenguaje (Chomsky)
- Workshop de Al en Dartmouth College (McCarthy, Minsky, Shannon, Rochester, etc)
- Demostración de teoremas (Logic Theorist, General Problem Solver) de Newell y Simon.

✓ Enfoque Estadístico

- Reconocimiento de Caracteres Ópticos (OCR) basados en inferencia Bayesiana (1959).
- Combinación de Gramáticas y probabilidad acústicas para Reconocimiento de Voz (Denes, 1959):

Cuatro paradigmas: 1970-1983

✓ Estocástico

Modelos Ocultos de Markov ó HMM (1972).

✓ Basado en Lógica

- Q-Systems de Colmerauer (1970,1975).
- Definite Clause Grammars (Pereira and Warren 1980).
- Gramáticas funcionales (Kay, 1979), Unificación (Bresnan y Kaplan, 1982).

✓ Comprensión de Lenguaje Natural

- SHRDLU de Winograd (1972).
- Scripts y Comprensión de historias de Schank y Abelson (1977).
- Representación de roles-casos de Fillmore (1968) y Simmons (1973).

✓ Modelamiento del Discurso

- Estructura y foco del discurso de Grosz.
- Modelo de "creencias" (BDI) de Perrault y Allen (1980).

Empirismo y Reaparecimiento de Estados Finitos: 1983-1993

✓ Modelos de Estados Finitos

- Kaplan and Kay (1981): Fonología/Morfología
- Church (1980): Sintaxis

✓ Retorno de Modelos Probabilísticos:

- Corpus creados para tareas de análisis de lenguaje
- Primeras versiones estadísticas de aplicaciones de NLP (ej. parsing, tagging, traducción)
- Se incrementa foco en el rigor metodológico y muestreo.

Primeros pasos: ELIZA

- Creado por J. Weizenbaum (MIT, 1966).
- Primer sistema práctico de conversación humanocomputador utilizando técnicas de 'pattern matching' para simular un psico-terapeuta.
- *ELIZA* era capaz de mantener una conversación con un paciente.
- En algunos casos, *ELIZA* era casi capaz de 'engañar' al paciente haciéndole creer que no era una máquina.

ELIZA en acción...

```
Human: Well, my boyfriend made me come here.

ELIZA: Your boyfriend made you come here?

Human: He says I'm depressed much of the time.

ELIZA: I am sorry to hear you are depressed.

Human: It's true. I'm unhappy.

ELIZA: Do you think coming here will help you not to be unhappy?

...
```

Primeros pasos: SHRDLU

- Creado por T. Winograd (Stanford, 1968).
- Sistema que permite la interacción entre un humano y ambiente simulado de interacción para un robot (mundo de los bloques).
- A diferencia de ELIZA, SHRDLU puede:
 - Entender lenguaje natural en las instrucciones dadas a un robot.
 - Resolver problemas de ambigüuedad.
 - Actuar y razonar lógicamente.
 - Responder preguntas.

SHRDLU en acción..

Person: PICK UP A BIG RED BLOCK.

Computer: OK. (does it)

Person: GRASP THE PYRAMID.

Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT INTO THE BOX.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING.

• Computer: OK. (does it)

Person: WHAT DOES THE BOX CONTAIN?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: WHAT IS THE PYRAMID SUPPORTED BY?

Computer: THE BOX.

Algunas tecnologías modernas

Human: I really want to talk about chatbots and language learning.
ALICE: Sure, chatbots and language learning sounds like a good topic.
Human: Great.

ALICE: I'm glad you liked it judge.

Human: So what is the future of chatbots in language learning?

ALICE: You are talking to her.

Human: It looks like it's going to be a pretty surreal future.

ALICE: Interesting comparsion.

Artificial Linguistic Internet Computer Entity

Algunas tecnologías modernas

Algunas tecnologías modernas

Autotutor

Uno de los sistemas tutoriales inteligentes más avanzados del mundo

Pero...a veces pasan cosas indeseadas..

Modelos y Algoritmos

- ✓ Modelos: formalismos utilizados para capturar diferentes tipos de estructura lingüística.
 - Máquinas de estados (ej. Autómatas, modelos de Markov)
 - Sistemas formales de reglas (ej. Gramáticas, feature systems)
 - Lógica (ej. cálculo de predicados, inferencia)
 - · Versiones probabilísticas de las anteriores más otros.
- ✓ Algoritmos utilizados para manejar representaciones que crean alguna estructura.
 - Búsqueda (ej. heurística, programación dinámica, etc)
 - Métodos estocásticos, aprendizaje automático, etc

- ✓ Reconocimiento de fonemas en el audio y los límites de las palabras para identificar secuencias de palabras.
- ✓ Se debe diseñar un modelo del lenguaje para predecir en caso de "ambigüedad"

- ✓ Determinar la forma de una palabra y si ésta es válida en un lenguaje.
- ✓ Problemas en ambigüedad léxica, por lo que convierte en un problema de búsqueda.

- ✓ Análisis (parsing) e identificación de la estructura sintáctica de el lenguaje de entrada (ambigüedad)
- ✓ Una gramática describe posibles estructuras sintácticas válidas.
- ✓ Para grandes volúmenes de datos, a veces las reglas gramaticales no son robustas: utilizar métodos de aprendizaje estadístico.

- ✓ Análisis semántico (contexto) intenta formalmente determinar una interpretación semántica no ambigua de la entrada.
- ✓ Problemas: ambigüedad, referencias, etc
- ✓ Resolver "referencias" involucra conocimiento en varios niveles.
- ✓ Interpretación semántica implica también considerar el contexto y conocimiento de palabras.

- ✓ Análisis del Dominio (pragmático) involucra reconocer los actos de habla del usuario de modo de realizar la interpretación correcta.
- Existe más significado que las palabras mismas (intenciones, objetivos, etc).
- ✓ Reconocimiento del plan del hablante, muchos implícitos.

Ciclo Completo en NLP

Resúmen de Niveles

✓ Fonética/Fonología/Morfología:

¿Qué palabras estamos escuchando/tratando?

✓ Sintaxis

¿Qué frases estamos tratando?

¿Qué palabras modifican las otras?

✓ Semántica

¿Cuál es el significado literal?

✓ Pragmática:

¿Qué deberíamos inferior del hecho que yo dije algo?

¿Cómo deberíamos reaccionar?

Ejercicio

¿Qué tipo de problemas de lenguaje tienen las siguientes oraciones?

- 1. El cliente no está no satisfeco con la seggurida del banko.
- 2. El clientes está satisfecho no con la banco del seguridad.
- 3. El cliente no está satisfecho con el continente.
- 4. El cliente no está satisfecho con el banco. Sus molestia es comprensible.

Resumen

- ✓ NLP se compone de modelos y métodos que permiten que un computador comprenda y/o produza lenguaje para diversas aplicaciones y tareas.
- ✓ El lenguaje natural es inherentemente ambigüo, por lo que todas los problemas de NLP son del tipo NP-hard.
- ✓ Las aplicaciones de NLP son transversales en cualquier área comercial/industrial donde se posea problemas con el tratamiento del lenguaje.