Statistics 135

Chapter 2 - Linear Algebra

Chris Drake

Department of Statistics University of California, Davis

Vectors

1 definition of vector, multiplication by a constant and addition of two vectors

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad c\mathbf{x} = \begin{pmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \quad \mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

2 length or norm of a vector

$$L_x = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = ||\mathbf{x}|| \quad L_{cx} = c \times L_x = |c| \cdot ||\mathbf{x}||$$

- 3 unit vector: $L_x = ||\mathbf{x}|| = 1$
- 4 inner product of two vectors $\mathbf{x}'\mathbf{y} = \sum_{i=1}^{n} x_i y_i$
- 5 angle θ between **x** and **y** is given by

$$cos(\theta) = \left[\mathbf{x}'\mathbf{y}\right] / \sqrt{\mathbf{x}'\mathbf{x} \cdot \mathbf{y}'\mathbf{y}}$$

- def: a set of m-tuples (vectors) and all other vectors that can obtained as as linear combinations of the form $\mathbf{x} = \sum_{i=1}^{k} a_i \mathbf{x_k}$ is called a vector space
- 7 def: the linear span of a set of vectors $\mathbf{x_i}, ..., \mathbf{x_k}$ is the set of all linear combinations $\mathbf{x} = \sum_{i=1}^{k} a_i \mathbf{x_k}$
- 8 def: a set of vectors is linearly independent if $\mathbf{x} = \sum_{i=1}^{k} a_i \mathbf{x_k} = 0$ implies $a_1, ..., a_k = 0$
- 9 def: a set of m linearly independent m-tuples (vectors) is called a basis for the space of m-tuples.
- 10 fact: any vector can be expressed uniquely in terms of a given basis
- 11 fact: \mathbf{x} and \mathbf{y} are orthogonal (perpendicular) if $\mathbf{x}'\mathbf{y} = 0$
- 12 fact: the projection of \mathbf{x} on \mathbf{y} is

$$P_{\mathbf{y}} = \frac{\mathbf{x}'\mathbf{y}}{||\mathbf{y}||^2}\mathbf{y}$$

Matrices

A matrix A is an array of real numbers with n rows and p columns. Its transpose A' is the array with rows and columns exchanged.

$$\mathbf{A} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} \quad and \quad \mathbf{A}' = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{p1} & x_{p2} & \dots & x_{np} \end{pmatrix}$$

- 1 the multiplication of a matrix by a constant is the element by element multiplication by this constant, similar to a vector multiplication by a constant.
- 2 two matrices of the same dimension (n rows, p columns) are added by summing element by element; $(a + b)_{ij} = a_{ij} + b_{ij}$.
- 3 the product of two matrices $\mathbf{A} \cdot \mathbf{B}$ is defined if the number of columns of \mathbf{A} equals the number of rows of \mathbf{B} ; then $(ab)_{ij} = \sum_{l=1}^{k} a_{il}b_{lj}$ and $\mathbf{A} \cdot \mathbf{B}$ has r_A rows and c_B columns.

- 4 def: a square matrix has the same number of rows and columns; a symmetric matrix is a square matrix that equals its transpose.
- 5 fact: if A and B are square matrices then $A \cdot B$ and $B \cdot A$ are both defined but need not be equal; matrix multiplication is not commutative in general.
- 6 def: an inverse **B** for a square matrix **A** is defined by that fact that $\mathbf{B} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{B} = \mathbf{I}$.
- 7 fact: a square matrix **A** has an inverse if the columns (rows) are linearly independent.
- 8 def: a square matrix **Q** is called orthogonal if $\mathbf{Q} \cdot \mathbf{Q}' = \mathbf{Q}' \cdot \mathbf{Q} = \mathbf{I}$.
- def: an eigenvalue of a square matrix \mathbf{A} is denoted by λ the solution to the following equation: $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$. The vector \mathbf{x} is called an eigenvector. The number of nonzero eigenvalues equals the number of linearly independent columns (rows); eigenvectors belonging to two different eigenvalues are orthogonal; if a matrix has an eigenvalue of multiplicity > 1 the associated eigenvectors are orthogonal but not unique.

- def: a square $n \times n$ matrix **A** is called of full rank if it has n linearly independent columns (rows); the number of independent columns (rows) is called the rank of **A**; row and column rank of a matrix are always equal.
- def: the spectral decomposition of a square matrix \mathbf{A} is given by the following $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}'$ where \mathbf{P} is orthogonal and $\mathbf{\Lambda}$ is a diagonal matrix with

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

The number of nonzero eigenvalues equals the rank of **A**.

def: an equation $\mathbf{x}'\mathbf{A}\mathbf{x}$ with \mathbf{A} an $n \times n$ square matrix and \mathbf{x} a vector (n-tuple) is called a quadratic form (note that this form is an equation with only quadratic terms in the x_i and second order terms $x_i x_j$.

- 13 def: a quadratic form and matrix **A** are called positive definite if $\mathbf{x}'\mathbf{A}\mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.
- def: if $\mathbf{x}'\mathbf{A}\mathbf{x} \geq 0$ then **A** and the quadratic form are called nonnegative definite.
- 15 def: the square root of a matrix **A** is given by $\mathbf{A}^{1/2} = \mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{P}'$ where

$$\mathbf{\Lambda}^{1/2} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_n} \end{pmatrix}$$

16 fact:

$$\mathbf{A}^{1/2}$$
 is symmetric $\mathbf{A}^{1/2}\mathbf{A}^{1/2}=\mathbf{A}$ $\mathbf{A}^{-(1/2)}=\mathbf{P}\boldsymbol{\Lambda}^{-(1/2)}\mathbf{P}'$

17 a full rank square matrix \mathbf{A} has inverse $\mathbf{A}^{-1} = \mathbf{P} \mathbf{\Lambda}^{-1} \mathbf{P}'$ where $\mathbf{\Lambda}^{-1}$ has i^{th} diagonal element λ_i^{-1} .

Random Vectors and Matrices

 $\mathbf{X} = (X_1, ..., X_n)'$ is a vector of random variables. Similarly, a random matrix is a $(n \times p)$ array of random variables. The mean of a random vector and matrix are obtained by taking expectation for each element.

$$E(\mathbf{X}) = \begin{pmatrix} E(X_{11}) & E(X_{12}) & \dots & E(X_{1p}) \\ E(X_{21}) & E(X_{22}) & \dots & E(X_{2p}) \\ \vdots & \vdots & \ddots & \vdots \\ E(X_{n1}) & E(X_{n2}) & \dots & E(X_{np}) \end{pmatrix}$$

- 1 fact: $E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})$
- 2 fact: $E(\mathbf{AXB}) = \mathbf{A}E(\mathbf{X})\mathbf{B}$ for \mathbf{A} , \mathbf{B} constant matrices and \mathbf{X} a random matrix.
- 3 fact: the behavior of random vectors and matrices is generally described by their probability distribution; generally, the variables are not independent.

- 4 fact: if **X** is a p-variate random vector with density $f(x_1, x_2, ..., x_p)$ then $(X_1, ..., X_p)$ independent if and only if $f(x_1, x_2, ..., x_p) = f(x_1) \times ... \times f(x_p)$. Independence implies zero correlation but the converse is not true.
- 5 variance of a random vector

$$Var(\mathbf{X}) = \mathbf{\Sigma} = E(\mathbf{X} \times \mathbf{X}') - E(\mathbf{X}) \times E(\mathbf{X})'$$

note that the $(i, j)^{th}$ element of the first matrix is $E(X_i \times X_j)$ and of the second matrix it is $E(X_i) \times E(X_j) = \mu_i \times \mu_j$

- 6 the off-diagonal elements of the variance-covariance matrix are denoted by σ_{ij} and the diagonal elements by σ_{ii} .
- 7 the $(i,j)^{th}$ correlation is given by $\rho_{ij} = \sigma_{ij}/\sqrt{\sigma_{ii} \times \sigma_{jj}}$
- 8 if $\mathbf{V}^{1/2}$ denotes the diagonal matrix with $\sqrt{\sigma_{ii}}$ on the diagonal and \mathbf{R} the correlation matrix, then $\mathbf{\Sigma} = \mathbf{V}^{1/2} \mathbf{R} \mathbf{V}^{1/2}$

9 $\mathbf{X} = (\mathbf{X_1}, \mathbf{X_2})$ is a partition of \mathbf{X} ; the mean vector is partitioned accordingly into $\mu = (\mu_1, \mu_2)$ and the variance-covariance matrix is partitioned into

$$oldsymbol{\Sigma} = egin{pmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Note, $\Sigma_{12} = \Sigma'_{21}$

- linear combinations of random variables (vector notation); \mathbf{X} a random vector (p-tuple); \mathbf{c} a vector of length p of constants then $\mathbf{c}'\mathbf{X}$ is a linear combination of the X's with mean $\mathbf{c}'\mu$ and variance $\mathbf{c}'\mathbf{\Sigma}\mathbf{c}$.
- extended Cauchy-Schwarz inequality: **b**, **d** are $p \times 1$ vectors and **B** a positive definite matrix; then

$$(\mathbf{b}'\mathbf{d})^2 \le (\mathbf{b}'\mathbf{B}\mathbf{b})(\mathbf{d}'\mathbf{B}^{-1}\mathbf{d}')$$

For $\mathbf{B} = \mathbf{I}$ we get the usual Cauchy-Schwarz inequality.

12 maximization lemma: $\mathbf{B}_{\mathbf{p}\times\mathbf{p}}$ positive definite and $\mathbf{d}_{\mathbf{p}\times\mathbf{1}}$ a vector; then for an arbitrary nonzero vector \mathbf{x} we have

$$\frac{max}{\mathbf{x} \neq 0} \quad \frac{(\mathbf{x}'\mathbf{d})^2}{\mathbf{x}'\mathbf{B} \mathbf{x}} = \mathbf{d}'\mathbf{B} \mathbf{d}$$

for $\mathbf{B}_{p \times p}$ positive definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$ we get

The maximum is achieved when \mathbf{x} equals \mathbf{e}_1 the eigenvector associated with λ_1 ; similarly for the minimum.