CURRICULUM VITAE

Filip Miljković, MPharm, PhD

Gothenburg, Sweden

Tel: +46 (0) 736859184, E-mail: filipm90@yahoo.com, Website: filipm90.github.io

<u>LinkedIn</u> <u>ORCID</u> <u>ResearchGate</u>

Work Experience

July 2022 - Present

Senior Scientist Computational Chemistry

Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism (CVRM),

AstraZeneca R&D, Gothenburg, Sweden

January 2021 - Present

Affiliate Scientist

Department of Life Science Informatics, b-it, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

February 2020 – June 2022

Senior Data Scientist

Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, AstraZeneca R&D, Gothenburg, Sweden

Education

June 2016 – *December* 2019

PhD (Dr. rer. nat.) in Computational Life Sciences

Department of Life Science Informatics, b-it, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

Grade: 0.7 (Magna cum laude)

Thesis: Chemoinformatics-Driven Approaches for Kinase Drug Discovery

Supervisor: Prof. Jürgen Bajorath

October 2009 - September 2014

Master's degree in Pharmacy (MPharm, Integrated studies)

Department of Pharmacy, Faculty of Medicine, University of Niš, Serbia

Grade: 9.58/10.00

Thesis: An Overview of Dipeptidyl Peptidase-IV Inhibitors

Supervisor: Prof. Andrija Šmelcerović

International Research Visits July 2013 - August 2013

IPSF Student Exchange Program

Department of Analytical Chemistry, Medical University of Gdańsk, Poland

Description: Quality consistency evaluation of Melissa officinalis L.

samples using HPLC fingerprints

Supervisor: Agnieszka Viapiana (née Arceusz), PhD

Technical Skills

Data extraction/curation (KNIME, RDKit, and OpenEye Chemistry Toolkit), SAR analysis, Network analysis (Cytoscape, Gephi, NetworkX Python package), 2D/3D ligand similarity (descriptor-/fingerprint-based, ROCS), Structure and ligand-based virtual screening, Molecular modeling suites (MOE, Schrödinger), Molecular docking (MOE Dock, Maestro AutoDock, PLANTS, DockTite for covalent docking), Protein-ligand interaction fingerprints, Machine learning (SVM, RF, KNN, XGB, DNN, GCNN; scikit-learn, TensorFlow)

Medicinal Chemistry/Chemical Biology Skills

Computational chemistry design in several ongoing drug projects, Chemical library enumeration, *In vitro/In vivo* assay knowledge and translation, Multi-parameter drug optimization, ADME/PK, Chemical toxicology/Safety sciences, Basic synthetic chemistry understanding

Computer Skills

Python (advanced knowledge), Bash (basic knowledge), R (basic knowledge), SQL (basic knowledge), ChemOffice, Biovia, KNIME/Pipeline Pilot, Office suite, Windows/Linux

Languages

Serbian (native)

English (fluent): TOEFL (109/120)

Swedish (good) German (good)

Teaching Experience

Master's Program in Pharmacy at the Medical faculty, University of Niš, Serbia

- "General Chemistry with Stoichiometry", October 2010 January 2011.
- "Organic Chemistry", March 2011 June 2011.

Master's Program in Life Science Informatics at the University of Bonn, Germany

- "Introduction to Chemistry", September 2016 October 2016.
- "Structural Bioinformatics", October 2016 January 2018.
- "Molecular Modeling and Drug Design", April 2017 February 2019.
- "Programming Lab I" (Python), April 2019 June 2019.
- "Introduction to Machine Learning Tutorial", April 2019 June 2019.

Visiting Students Coming from Collaborative Projects between University of Bonn, Germany and Kyoto University, Japan or Waseda University, Japan

 "Structural Bioinformatics and Molecular Modeling", October 2017 – December 2019.

Mentorship Experience

- Supervision of two Master theses at Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
- Individual development plan/Career development discussion (longterm) with two graduate scientists from Data Science & AI Graduate Program, AstraZeneca R&D, Sweden

Publications

- **37. Miljković**, **F.***; Medina-Franco, J. L. Artificial Intelligence-Open Science Symbiosis in Chemoinformatics. *Artif. Intell. Life Sci.* **2023**, *5*, 100096.
- **36.** Chen, Y.; Seidel, T.; Jacob, R. A.; Hirte, S.; Mazzolari, A.; Pedretti, A.; Vistoli, G.; Langer, T.; **Miljković**, **F.**; Kirchmair, J. Active Learning Approach for Guiding Site-of-Metabolism Measurement and Annotation. *J. Chem. Inf. Model.* **2024**, *64*, 348–358.
- **35.** Bajorath, J.; Gardner, S.; Grisoni, F.; Horta Andrade, C.; Kirchmair, J.; Landon, M.; Medina-Franco, J.-L.; **Miljković**, **F.**; Montanari, F.; Rodríguez-Pérez, R. First-generation Themed Article Collections. *Artif. Intell. Life Sci.* **2023**, *4*, 100088.
- **34.** Xerxa, E.; **Miljković.**; Bajorath, J. Data-Driven Global Assessment of Protein Kinase Inhibitors with Emphasis on Covalent Compounds. *J. Med. Chem.* **2023**, *66*, 7657-7665.
- **33.** Bai, P.; **Miljković**, **F.**; John, B.; Lu, H. Interpretable Bilinear Attention Network with Domain Adaptation Improves Drug–Target Prediction. *Nat. Mach. Intell.* **2023**, *5*, 126-136.
- **32.** Gill, G.; Moullet, M.; Martinsson, A.; **Miljković**, **F.**; Williamson, B.; Arends, R. H.; Pilla Reddy, V. Evaluating the Performance of Machine-Learning Regression Models for Pharmacokinetic Drug–Drug Interactions. *CPT: Pharmacomet. Syst. Pharmacol.* **2023**, *1*, 122-134.
- **31.** Gill, G.; Moullet, M.; Martinsson, A.; **Miljković**, **F.**; Williamson, B.; Arends, R. H.; Pilla Reddy, V. Comparing the Applications of Machine Learning, PBPK, and Population Pharmacokinetic Models in Pharmacokinetic Drug–Drug Interaction Prediction. *CPT: Pharmacomet. Syst. Pharmacol.* **2022**, *11*, 1560-1568.
- **30.** Martínez Mora, A.; Mogemark, M.; Subramanian, V.; **Miljković**, **F.*** Interpretation of Multi-Task Clearance Models from Molecular Images Supported by Experimental Design. *Artif. Intell. Life Sci.* **2022**, *2*, 100048.
- **29.** Trapotsi, M.-A.; Mouchet, E.; Williams, G.; Monteverde, T.; Juhani, K.; Turkki, R.; **Miljković**, **F.**; Martinsson, A.; Mervin, L; Pryde, K. R.; Müllers, E.; Barrett, I.; Engkvist, O.; Bender, A; Moreau, K. Cell Morphological Profiling Enables High-Throughput Screening for PROteolysis TArgeting Chimera (PROTAC) Phenotypic Signature. *ACS Chem. Biol.* **2022**, *17*, 1733-1744.
- **28.** Martínez Mora, A.; Subramanian, V.; **Miljković**, F.* Multi-Task Convolutional Neural Networks for Predicting *In Vitro* Clearance Endpoints from Molecular Images. *J. Comput. Aided Mol. Des.* **2022**, *36*, 443-457.
- **27.** Obrezanova, O.; Martinsson, A.; Whitehead, T.; Mahmoud, S.; Bender, A.; **Miljković**, **F.**; Grabowski, P.; Irwin, B.; Oprisiu, I.; Conduit, G.; Segall, M.; Smith, G. F.; Williamson, B.; Winiwarter, S.; Greene, N. Prediction of *In Vivo* Pharmacokinetic Parameters and Time-Exposure Curves in Rats Using Machine Learning from the Chemical Structure. *Mol. Pharmaceutics* **2022**, *19*, 1488-1504.
- **26.** Rodríguez-Pérez, R.; **Miljković**, **F.**; Bajorath, J. Machine Learning in Chemoinformatics and Medicinal Chemistry. *Ann. Rev. Biomed. Data Sci.* **2022**, *5*, 43-65.
- **25.** Laufkötter, O.; Hu, H.; **Miljković**, **F.**; Bajorath, J. Structure- and Similarity-Based Survey of Allosteric Kinase Inhibitors, Activators, and Closely Related Compounds. *J. Med. Chem.* **2022**, *65*, 922-934.
- **24.** Yoshimori, A.; **Miljković**, **F.**; Bajorath, J. Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling. *Molecules* **2022**, *27*, e570.

- **23. Miljković**, **F.**; Rodríguez-Pérez, R.; Bajorath, J. Impact of Artificial Intelligence on Compound Discovery, Design, and Synthesis. *ACS Omega* **2021**, *6*, 33293-33299.
- **22. Miljković**, **F.***; Martinsson, A.; Obrezanova, O.; Williamson, B.; Johnson, M.; Sykes, A.; Bender, A.; Greene, N. Machine Learning Models for Human *In Vivo* Pharmacokinetic Parameters with In-House Validation. *Mol. Pharmaceutics* **2021**, *18*, 4520-4530.
- **21**. Hu, H.; Laufkötter, O.; **Miljković**, F.; Bajorath, J. Data Set of Competitive and Allosteric Protein Kinase Inhibitors Confirmed by X-ray Crystallography. *Data in Brief* **2021**, *35*, e106816.
- **20.** Hu, H.; Laufkötter, O.; **Miljković**, **F.**; Bajorath, J. Systematic Comparison of Competitive and Allosteric Kinase Inhibitors Reveals Common Structural Characteristics. *Eur. J. Med. Chem.* **2021**, *214*, e113206.
- **19. Miljković, F.**; Chaudhari, R. Members of our Early Career Panel Highlight Key Research Articles on the Theme of Computer-Aided Drug Design. *Future Drug Discov.* **2020**, *2*, FDD52.
- **18.** Rodríguez-Pérez, R.; **Miljković**, **F.**; Bajorath, J. Assessing the Information Content of Structural and Protein–Ligand Interaction Representations for the Classification of Kinase Inhibitor Binding Modes via Machine Learning and Active Learning. *J. Cheminform.* **2020**, *12*, e36.
- **17. Miljković**, **F.**; Xiong, R.; Sivakumar, D.; Brown, C. A. Members of our Early Career Panel Highlight Key Research Articles on the Theme of Drug Repurposing. *Future Drug Discov.* **2020**, *2*, FDD39.
- **16. Miljković**, **F.**; Rodríguez-Pérez, R.; Bajorath J. Machine Learning Models for Accurate Prediction of Kinase Inhibitors with Different Binding Modes. *J. Med. Chem.* **2020**, *63*, 8738-8748.
- **15. Miljković**, **F.**; Bajorath, J. Data Structures for Computational Compound Promiscuity Analysis and Exemplary Applications to Inhibitors of the Human Kinome. *J. Comput. Aided Mol. Des.* **2020**, *34*, 1-10.
- **14.** González-Medina, M.; **Miljković**, **F.**; Haase, G. S.; Drueckes, P.; Trappe, J; Laufer, S; Bajorath, J. Promiscuity Analysis of a Kinase Panel Screen with Designated p38 alpha Inhibitors. *Eur. J. Med. Chem.* **2020**, *187*, 112004.
- **13.** Feldmann, C.; **Miljković**, **F.**; Yonchev, D.; Bajorath, J. Identifying Promiscuous Compounds with Activity Against Different Target Classes. *Molecules* **2019**, 24, e4185.
- **12. Miljković, F.**; Bajorath J. Data Structures for Compound Promiscuity Analysis: Cliffs, Pathways, and Hubs Formed by Inhibitors of the Human Kinome. *Future Sci. OA* **2019**, *5*, FSO404.
- **11. Miljković**, **F.**; Vogt, M.; Bajorath, J. Systematic Computational Identification of Promiscuity Cliff Pathways Formed by Inhibitors of the Human Kinome. *J. Comput. Aided Mol. Des.* **2019**, *33*, 559-572.
- **10.** Blaschke, T.; **Miljković**, **F.**; Bajorath, J. Prediction of Different Classes of Promiscuous and Nonpromiscuous Compounds Using Machine Learning and Nearest Neighbor Analysis. *ACS Omega* **2019**, *4*, 6883-6890.
- **9. Miljković**, F.; Bajorath, J. Computational Analysis of Kinase Inhibitors Identifies Promiscuity Cliffs across the Human Kinome. *ACS Omega* **2018**, *3*, 17295–17308.
- **8. Miljković, F.**; Bajorath, J. Data-Driven Exploration of Selectivity and Off-Target Activities of Designated Chemical Probes. *Mol.* **2018**, 23, e2434.
- **7. Miljković**, **F.**; Bajorath, J. Evaluation of Kinase Inhibitor Selectivity Using Cell-Based Profiling Data. *Mol. Inform.* **2018**, *37*, e1800024.

- **6. Miljković**, **F.**; Bajorath, J. Reconciling Selectivity Trends from a Comprehensive Kinase Inhibitor Profiling Campaign with Known Activity Data. *ACS Omega* **2018**, *3*, 3113–3119.
- **5. Miljković**, **F.**; Bajorath, J. Exploring Selectivity of Multikinase Inhibitors across the Human Kinome. *ACS Omega* **2018**, *3*, 1147–1153.
- **4. Miljković**, **F.**; Kunimoto, R.; Bajorath, J. Identifying Relationships between Unrelated Pharmaceutical Target Proteins on the Basis of Shared Active Compounds. *Future Sci. OA* **2017**, *3*, FSO212.
- **3.** Smelcerovic, A.; **Miljkovic, F.**; Kolarevic, A.; Lazarevic, J.; Djordjevic, A.; Kocic, G.; Anderluh, M. An Overview of Recent Dipeptidyl Peptidase-IV Inhibitors: Linking Their Structure and Physico-Chemical Properties with SAR, Pharmacokinetics and Toxicity. *Curr. Top. Med. Chem.* **2015**, *15*, 2342-2372.
- **2.** Toropov, A. A.; Veselinović, J. B.; Veselinović, A. M.; **Miljković**, **F. N.**; Toropova, A. P. QSAR Models for 1,2,4-Benzotriazines as Src Inhibitors Based on Monte Carlo Method. *Med. Chem. Res.* **2015**, *24*, 283-290.
- **1.** Toropova, A. P.; Toropov, A. A.; Veselinović, J. B.; **Miljković**, **F. N.**; Veselinović, A. M. QSAR Models for HEPT Derivates as NNRTI Inhibitors Based on Monte Carlo Method. *Eur. J. Med. Chem.* **2014**, 77, 298-305.

Selected Abstracts and Conference Publications

- **2.** "Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2021). IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2021)", December 9-12, 2021, Institute of Electrical and Electronics Engineers (IEEE), Virtual. Conference Paper: Bai, P.; **Miljković**, **F.**; Ge, Y.; Greene, N.; John B.; Lu. H. "Hierarchical Clustering Split for Low-Bias Evaluation of Drug-Target Interaction Prediction".
- **1.** "Chemoinformatics Strasbourg Summer School", June 25-29 June 2018, University of Strasbourg, Strasbourg, France. Poster: **Miljković**, **F.**; Bajorath, J. "Exploring Selectivity of Multi-kinase Inhibitors across the Human Kinome", awarded as the best poster by public choice.

Selected Oral Presentations

- **3.** ACS Fall 2023, Division of Chemical Information, Chemical Informatics (R)evolution: Towards Democratization and Open Science, August 13-17, 2023, American Chemical Society (ACS), In Person, Oral Presentation: **Miljković**, **F.** "Machine Learning Models for Predicting Human *In Vivo* PK Parameters Using Chemical Structure and Dose".
- **2.** Industry Symposium on "AI in the Life Sciences", June 26-27, 2023, Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany, In Person, Oral Presentation: **Miljković, F.** "Machine Learning Models for Predicting Human *In Vivo* PK Parameters Using Chemical Structure and Dose".
- 1. "19th International Workshop on (Q)SAR in Environmental and Health Sciences QSAR 2021 From QSAR to New Approach Methodologies (NAMs)", June 7-9, 2021, American Society for Cellular and Computational Toxicology (ASCCT), Virtual. Oral Presentation: Miljković, F.; Martinsson, A.; Obrezanova, O.; Williamson, B.; Johnson, M.; Oprisiu, I.; Bender, A.; Greene N. "Machine Learning Models for Predicting Human *In Vivo* PK Parameters Using Chemical Structure and Dose".