```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.multioutput import MultiOutputRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

# Load the Food Sold dataset
raw = pd.read_csv('Food Sold everyday.csv')
raw.head
```

Out[27]:			Frame.head	of		Dat	e Day	of the	week	Day	Month	Year	r T
	_	Tenders	_										
	0	3/1/2017	Wedne	-		3	2017		8	11			
	1	3/2/2017		sday	2	3	2017		.1	27			
	2	3/3/2017		iday	3	3	2017		9	26	12		
	3	3/4/2017	Satu	ırday	4	3	2017		9	17	11		
	4	3/5/2017	Su	ınday	5	3	2017		7	3	8		
	• • •								•		• • •		
	2725	8/16/2024	Fr	iday	16	8	2024		7	41	14		
	2726	8/17/2024	Satu	ırday	17	8	2024		5	28	8		
	2727	8/18/2024	Su	ınday	18	8	2024		5	10	4		
	2728	8/19/2024	Mo	nday	19	8	2024		6	24	11		
	2729	8/20/2024	Tue	sday	20	8	2024		6	1	9		
		_											
	_		Crispitos		Ques	adilla	Is Ho	-			FriedSna		\
	0	1	21	• • •		8		False		26		39	
	1	5	12	• • •		1		False		51		45	
	2	6	13	• • •		9		False		17		44	
	3	4	19	• • •		8		False		37		25	
	4	1	15	• • •		2		False	1	.8		18	
	• • •	• • •	• • •	• • •		• • •		• • •	• •			• • •	
	2725	5	21	• • •		5		False		52		48	
	2726	1	5	• • •		6		False		1		23	
	2727	4	16	• • •		4		False		.9		21	
	2728	3	19	• • •		3		False		1		36	
	2729	3	16	• • •		1		False	1	.6		45	
		FriedBurri	tos Otherf	ood	Price	_Chicke	n Pri	ice Fri	.edSnack	(S	\		
	0		65	31		4.9			1.7		`		
	1		63	40		4.9			1.7				
	2		47	65		4.9			1.7				
	3		65	47		4.9			1.7				
	4		43	27		4.9			1.7				
	• • •		•••	•••		• •			••				
	2725		60	52		7.9			2.4				
	2726		38	36		7.9			2.4				
	2727		39	24		7.9			2.4				
	2728		56	26		7.9			2.4				
	2729		59	35		7.9			2.4				
							_		_,				
		Price_Frie		Price	e_Othe	r_Food							
	0		2.29			2.48							
	1		2.29			2.48							
	2		2.29			2.48							
	3		2.29			2.48							
	4		2.29			2.48							
	• • •		•••			• • •							
	2725		2.99			3.49							
	2726		2.99			3.49							
	2727		2.99			3.49							
	2728		2.99			3.49							
	2729		2.99			3.49							

[2730 rows x 32 columns]>

```
In [28]: columns = ['Date','Chicken','FriedSnacks','FriedBurritos','Otherfood','Is Holiday',
                     'Price_FriedSnacks', 'Price_FriedBurritos', 'Price_Other_Food']
         df = raw[columns]
         df
```

Out[28]:

	Date	Chicken	FriedSnacks	FriedBurritos	Otherfood	Is Holiday	Price_Chicken	F
0	3/1/2017	26	39	65	31	False	4.99	
1	3/2/2017	51	45	63	40	False	4.99	
2	3/3/2017	47	44	47	65	False	4.99	
3	3/4/2017	37	25	65	47	False	4.99	
4	3/5/2017	18	18	43	27	False	4.99	
•••								
2725	8/16/2024	62	48	60	52	False	7.99	
2726	8/17/2024	41	23	38	36	False	7.99	
2727	8/18/2024	19	21	39	24	False	7.99	
2728	8/19/2024	41	36	56	26	False	7.99	
2729	8/20/2024	16	45	59	35	False	7.99	

2730 rows × 10 columns

```
In [29]: # 1. Convert the 'Date' column to datetime
         df['Date'] = pd.to_datetime(df['Date'])
```

C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\3330707552.py:2: SettingWithCopyWa rning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u ser_guide/indexing.html#returning-a-view-versus-a-copy df['Date'] = pd.to_datetime(df['Date'])

```
In [30]: # 2. Set the date as the index (optional but helpful for time series)
         df.set_index('Date', inplace=True)
```

In [31]: df

Out[31]:

,		Chicken	FriedSnacks	FriedBurritos	Otherfood	Holiday	Price_Chicken	Price_FriedS
	Date							
	2017- 03-01	26	39	65	31	False	4.99	
	2017- 03-02	51	45	63	40	False	4.99	
	2017- 03-03	47	44	47	65	False	4.99	
	2017- 03-04	37	25	65	47	False	4.99	
	2017- 03-05	18	18	43	27	False	4.99	
	•••							
	2024- 08-16	62	48	60	52	False	7.99	
	2024- 08-17	41	23	38	36	False	7.99	
	2024- 08-18	19	21	39	24	False	7.99	
	2024- 08-19	41	36	56	26	False	7.99	
	2024- 08-20	16	45	59	35	False	7.99	

ls .

2730 rows × 9 columns

```
→
```

In [32]: # 3. Handle missing data (for simplicity, filling missing values with median)
df.fillna(df.median(), inplace=True)

 $\label{local-temp-ipykernel_20232} C: \label{local-temp-ipykernel_20232} O90981337.py: 2: Setting \label{local-temp-ipykernel_20232} Setting \label{local-temp-ipykernel_20232} In the proposition of the$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copydf.fillna(df.median(), inplace=True)

```
In [33]: # 4. Create additional time-related features
df['Day_of_Week'] = df.index.dayofweek # Monday = 0, Sunday = 6
df['Month'] = df.index.month # Month as an integer
df['Weekday'] = np.where(df['Day_of_Week'] < 5, 1, 0) # Weekday vs Weekend</pre>
```

```
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\969340903.py:2: SettingWithCopyWar
        ning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser_guide/indexing.html#returning-a-view-versus-a-copy
          df['Day_of_Week'] = df.index.dayofweek # Monday = 0, Sunday = 6
        C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\969340903.py:3: SettingWithCopyWar
        ning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser_guide/indexing.html#returning-a-view-versus-a-copy
          df['Month'] = df.index.month # Month as an integer
        C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\969340903.py:4: SettingWithCopyWar
        ning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser_guide/indexing.html#returning-a-view-versus-a-copy
          df['Weekday'] = np.where(df['Day_of_Week'] < 5, 1, 0) # Weekday vs Weekend</pre>
        C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\969340903.py:5: SettingWithCopyWar
        ning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser_guide/indexing.html#returning-a-view-versus-a-copy
          df['Is_Holiday'] = df['Is Holiday'] # Assuming you already have a holiday flag
        C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\969340903.py:6: SettingWithCopyWar
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser guide/indexing.html#returning-a-view-versus-a-copy
          df['Is_Weekend'] = np.where(df['Day_of_Week'] >= 5, 1, 0) # Weekend indicator
In [34]: # 5. Lag features (Previous week's sales)
         df['Lag_Chicken_Wings'] = df['Chicken'].shift(7) # 7-day Lag
         df['Lag_Breakfast'] = df['FriedSnacks'].shift(7) # 7-day Lag
         df['Lag_Fried_Burritos'] = df['FriedBurritos'].shift(7) # 7-day Lag
         df['Lag_Other_Food'] = df['Otherfood'].shift(7) # 7-day Lag
```

df['Is_Holiday'] = df['Is Holiday'] # Assuming you already have a holiday flag
df['Is_Weekend'] = np.where(df['Day_of_Week'] >= 5, 1, 0) # Weekend indicator

```
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\2124679577.py:2: SettingWithCopyWa
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser guide/indexing.html#returning-a-view-versus-a-copy
 df['Lag_Chicken_Wings'] = df['Chicken'].shift(7) # 7-day lag
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\2124679577.py:3: SettingWithCopyWa
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser_guide/indexing.html#returning-a-view-versus-a-copy
  df['Lag Breakfast'] = df['FriedSnacks'].shift(7) # 7-day lag
C:\Users\harsh\AppData\Local\Temp\ipykernel 20232\2124679577.py:4: SettingWithCopyWa
rning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser guide/indexing.html#returning-a-view-versus-a-copy
  df['Lag_Fried_Burritos'] = df['FriedBurritos'].shift(7) # 7-day lag
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\2124679577.py:5: SettingWithCopyWa
rning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser_guide/indexing.html#returning-a-view-versus-a-copy
 df['Lag_Other_Food'] = df['Otherfood'].shift(7) # 7-day lag
```

In [35]: df

Out[35]:

	Chicken	FriedSnacks	FriedBurritos	Otherfood	ls Holiday	Price_Chicken	Price_FriedS
Date							
2017- 03-01	26	39	65	31	False	4.99	
2017- 03-02	51	45	63	40	False	4.99	
2017- 03-03	47	44	47	65	False	4.99	
2017- 03-04	37	25	65	47	False	4.99	
2017- 03-05	18	18	43	27	False	4.99	
•••							
2024- 08-16	62	48	60	52	False	7.99	
2024- 08-17	41	23	38	36	False	7.99	
2024- 08-18	19	21	39	24	False	7.99	
2024- 08-19	41	36	56	26	False	7.99	
2024- 08-20	16	45	59	35	False	7.99	

2730 rows × 18 columns

```
In [36]: # 6. Moving average features (for smoothing the demand pattern)
    df['MA_Chicken_Wings'] = df['Chicken'].rolling(window=7).mean() # 7-day moving ave
    df['MA_Breakfast'] = df['FriedSnacks'].rolling(window=7).mean()
    df['MA_Fried_Burritos'] = df['FriedBurritos'].rolling(window=7).mean()
    df['MA_Other_Food'] = df['Otherfood'].rolling(window=7).mean()
```

```
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\2299311345.py:2: SettingWithCopyWa
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser guide/indexing.html#returning-a-view-versus-a-copy
          df['MA_Chicken_Wings'] = df['Chicken'].rolling(window=7).mean() # 7-day moving av
        erage
        C:\Users\harsh\AppData\Local\Temp\ipykernel 20232\2299311345.py:3: SettingWithCopyWa
        rning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser guide/indexing.html#returning-a-view-versus-a-copy
          df['MA Breakfast'] = df['FriedSnacks'].rolling(window=7).mean()
        C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\2299311345.py:4: SettingWithCopyWa
        rning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser_guide/indexing.html#returning-a-view-versus-a-copy
          df['MA_Fried_Burritos'] = df['FriedBurritos'].rolling(window=7).mean()
        C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\2299311345.py:5: SettingWithCopyWa
        rning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser_guide/indexing.html#returning-a-view-versus-a-copy
          df['MA_Other_Food'] = df['Otherfood'].rolling(window=7).mean()
In [37]: # 7. Drop rows with NaN values (due to shifting and rolling)
         df.dropna(inplace=True)
        C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\3566349350.py:2: SettingWithCopyWa
        rning:
        A value is trying to be set on a copy of a slice from a DataFrame
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser guide/indexing.html#returning-a-view-versus-a-copy
          df.dropna(inplace=True)
```

In [38]: df

Out[38]:

	Chicken	FriedSnacks	FriedBurritos	Otherfood	ls Holiday	Price_Chicken	Price_FriedS
Date							
2017- 03-08	28	30	55	43	False	4.99	
2017- 03-09	51	42	68	43	False	4.99	
2017- 03-10	54	41	91	46	False	4.99	
2017- 03-11	47	38	72	28	False	4.99	
2017- 03-12	23	31	32	26	False	4.99	
•••							
2024- 08-16	62	48	60	52	False	7.99	
2024- 08-17	41	23	38	36	False	7.99	
2024- 08-18	19	21	39	24	False	7.99	
2024- 08-19	41	36	56	26	False	7.99	
2024- 08-20	16	45	59	35	False	7.99	

2723 rows × 22 columns

In [39]: import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

8. Scale numerical features (for models like XGBoost or LSTM)
scaler = StandardScaler()

In [40]: df.columns

```
Out[40]: Index(['Chicken', 'FriedSnacks', 'FriedBurritos', 'Otherfood', 'Is Holiday',
                 'Price_Chicken', 'Price_FriedSnacks', 'Price_FriedBurritos',
                 'Price_Other_Food', 'Day_of_Week', 'Month', 'Weekday', 'Is_Holiday',
                 'Is_Weekend', 'Lag_Chicken_Wings', 'Lag_Breakfast',
                 'Lag_Fried_Burritos', 'Lag_Other_Food', 'MA_Chicken_Wings',
                 'MA_Breakfast', 'MA_Fried_Burritos', 'MA_Other_Food'],
                dtype='object')
In [41]: # Features to scale (you can adjust based on your model needs)
         columns to scale = ['Price Chicken', 'Price FriedSnacks',
                              'Price_FriedBurritos', 'Price_Other_Food', 'Lag_Chicken_Wings',
                              'Lag_Breakfast', 'Lag_Fried_Burritos', 'Lag_Other_Food', 'MA Ch
                              'MA Breakfast', 'MA_Fried_Burritos', 'MA_Other_Food']
In [42]: | df[columns_to_scale] = scaler.fit_transform(df[columns_to_scale])
        C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\2566292694.py:1: SettingWithCopyWa
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
        ser_guide/indexing.html#returning-a-view-versus-a-copy
          df[columns to scale] = scaler.fit transform(df[columns to scale])
In [43]: # 9. Split the data into training and test sets
         X = df.drop(['Chicken', 'FriedSnacks', 'FriedBurritos', 'Otherfood'], axis=1)
         y = df[['Chicken', 'FriedSnacks', 'FriedBurritos', 'Otherfood']] # Target variable
In [44]: # Train-test split (80% train, 20% test)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=Fa
In [45]: import pandas as pd
         import numpy as np
         from sklearn.model_selection import train_test_split
         from sklearn.multioutput import MultiOutputRegressor
         from sklearn.metrics import mean_squared_error, mean_absolute_error
         import xgboost as xgb
         # Multi-output XGBoost
         xgb_model = MultiOutputRegressor(xgb.XGBRegressor(
             objective='reg:squarederror',
             n_estimators=100,
             learning rate=0.1,
             max depth=6
         ))
         xgb_model.fit(X_train, y_train)
         # Predictions
         y_pred_xgb = xgb_model.predict(X_test)
         # Evaluation
         mse_xgb = mean_squared_error(y_test, y_pred_xgb, multioutput='raw_values')
```

```
mae_xgb = mean_absolute_error(y_test, y_pred_xgb)

rmse_xgb = np.sqrt(mse_xgb)

print(f"XGBoost RMSE: {rmse_xgb}, MAE: {mae_xgb}")
```

XGBoost RMSE: [11.90588538 5.89057083 9.43858935 7.22221446], MAE: 6.924496826119 3796

In [54]: y_test

Out[54]: Chicken FriedSnacks FriedBurritos Otherfood

Date				
2023-05-26	37	37	43	55
2023-05-27	13	29	53	37
2023-05-28	25	17	36	22
2023-05-29	35	32	62	47
2023-05-30	59	37	51	37
•••	•••			
2024-08-16	62	48	60	52
2024-08-17	41	23	38	36
2024-08-18	19	21	39	24
2024-08-19	41	36	56	26
2024-08-20	16	45	59	35

453 rows × 4 columns

```
# Scale features and targets (for LSTM, scaling is necessary)
scaler_X = MinMaxScaler()
scaler y = MinMaxScaler()
X_scaled = scaler_X.fit_transform(X)
y_scaled = scaler_y.fit_transform(y)
# Create sequences for LSTM (assuming sequence length = 7)
def create sequences(data X, data y, sequence length):
    X_{seq}, y_{seq} = [], []
    for i in range(len(data_X) - sequence_length):
        X_seq.append(data_X[i:i + sequence_length])
        y_seq.append(data_y[i + sequence_length])
    return np.array(X_seq), np.array(y_seq)
sequence length = 7
X_seq, y_seq = create_sequences(X_scaled, y_scaled, sequence_length)
# Train-test split
split_index = int(X_seq.shape[0] * 0.8)
X_train, X_test = X_seq[:split_index], X_seq[split_index:]
y_train, y_test = y_seq[:split_index], y_seq[split_index:]
# Build LSTM Model
lstm model = Sequential([
    LSTM(50, activation='relu', input shape=(sequence length, X train.shape[2])),
    Dense(4) # Output layer for 4 targets (multi-output)
])
lstm_model.compile(optimizer='adam', loss='mse')
lstm model.fit(X train, y train, epochs=20, batch size=16, validation data=(X test,
# Predictions
y pred lstm = lstm model.predict(X test)
y_pred_lstm = scaler_y.inverse_transform(y_pred_lstm)
# Evaluation
mse lstm = mean squared error(scaler y.inverse transform(y test), y pred lstm, mult
mae_lstm = mean_absolute_error(scaler_y.inverse_transform(y_test), y_pred_lstm)
rmse_lstm = np.sqrt(mse_lstm)
print(f"LSTM RMSE: {rmse_lstm}, MAE: {mae_lstm}")
```

Epoch 1/20

```
C:\Users\harsh\anaconda3\Lib\site-packages\keras\src\layers\rnn\rnn.py:200: UserWarn
ing: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequen
tial models, prefer using an `Input(shape)` object as the first layer in the model i
nstead.
    super().__init__(**kwargs)
```

```
136/136 -
                                    - 3s 6ms/step - loss: 0.0668 - val_loss: 0.0172
        Epoch 2/20
        136/136
                                    - 1s 4ms/step - loss: 0.0179 - val_loss: 0.0173
        Epoch 3/20
                                     • 1s 4ms/step - loss: 0.0174 - val_loss: 0.0185
        136/136 •
        Epoch 4/20
        136/136 •
                                     • 1s 4ms/step - loss: 0.0169 - val_loss: 0.0159
        Epoch 5/20
                                      1s 4ms/step - loss: 0.0166 - val loss: 0.0155
        136/136 -
        Epoch 6/20
                                     • 1s 4ms/step - loss: 0.0156 - val_loss: 0.0148
        136/136 -
        Epoch 7/20
                                    - 1s 4ms/step - loss: 0.0154 - val_loss: 0.0138
        136/136 -
        Epoch 8/20
                                      1s 4ms/step - loss: 0.0151 - val_loss: 0.0139
        136/136 •
        Epoch 9/20
                                     • 1s 4ms/step - loss: 0.0140 - val_loss: 0.0133
        136/136 -
        Epoch 10/20
                                     • 1s 4ms/step - loss: 0.0135 - val loss: 0.0134
        136/136 -
        Epoch 11/20
                                     • 1s 4ms/step - loss: 0.0136 - val_loss: 0.0133
        136/136 -
        Epoch 12/20
        136/136 -
                                     - 1s 5ms/step - loss: 0.0126 - val_loss: 0.0140
        Epoch 13/20
                                     • 1s 6ms/step - loss: 0.0132 - val_loss: 0.0133
        136/136 -
        Epoch 14/20
        136/136 •
                                      1s 6ms/step - loss: 0.0134 - val_loss: 0.0133
        Epoch 15/20
                                     • 1s 8ms/step - loss: 0.0135 - val_loss: 0.0134
        136/136 -
        Epoch 16/20
                                     - 1s 8ms/step - loss: 0.0131 - val_loss: 0.0136
        136/136 -
        Epoch 17/20
                                      1s 8ms/step - loss: 0.0130 - val_loss: 0.0134
        136/136 -
        Epoch 18/20
                                     - 1s 6ms/step - loss: 0.0127 - val_loss: 0.0135
        136/136 -
        Epoch 19/20
        136/136 •
                                     • 1s 6ms/step - loss: 0.0132 - val_loss: 0.0130
        Epoch 20/20
                                     • 1s 6ms/step - loss: 0.0126 - val_loss: 0.0136
        136/136 -
        17/17 -
                                   • 0s 4ms/step
                                  6.82773713 10.47337949 7.968758 ], MAE: 7.572232513743288
        LSTM RMSE: [12.3740534
In [57]: y_pred_lstm
Out[57]: array([[44.290054, 40.622616, 69.972984, 42.343548],
                 [37.140255, 33.115105, 57.296883, 35.239563],
                 [27.20823 , 23.149181, 40.25482 , 25.886114],
                 [26.931171, 25.351841, 41.385143, 26.70866],
                 [38.375603, 34.91643, 58.977848, 37.033215],
                 [37.893948, 34.46697, 59.840946, 36.709084]], dtype=float32)
In [58]:
         y_test
```

Out[58]: Chicken FriedSnacks FriedBurritos Otherfood

Date				
2023-05-26	37	37	43	55
2023-05-27	13	29	53	37
2023-05-28	25	17	36	22
2023-05-29	35	32	62	47
2023-05-30	59	37	51	37
•••	•••			
2024-08-16	62	48	60	52
2024-08-17	41	23	38	36
2024-08-18	19	21	39	24
2024-08-19	41	36	56	26
2024-08-20	16	45	59	35

453 rows × 4 columns

```
In [47]: print("Model Comparison:")
    print(f"XGBoost RMSE (per target): {rmse_xgb}")
    print(f"LSTM RMSE (per target): {rmse_lstm}")

# Best model based on average RMSE across targets
    avg_rmse_xgb = np.mean(rmse_xgb)
    avg_rmse_lstm = np.mean(rmse_lstm)

if avg_rmse_xgb < avg_rmse_lstm:
    print("XGBoost is the best model.")
else:
    print("LSTM is the best model.")</pre>
```

Model Comparison:

XGBoost RMSE (per target): [11.90588538 5.89057083 9.43858935 7.22221446] LSTM RMSE (per target): [12.3740534 6.82773713 10.47337949 7.968758] XGBoost is the best model.

```
In []:
In []:
In [59]: # Slice predictions to match y_test length
    y_pred_xgb = y_pred_xgb[:len(y_test)]
    y_pred_lstm = y_pred_lstm[:len(y_test)]

def mean_absolute_percentage_error(y_true, y_pred):
    y_true, y_pred = np.array(y_true), np.array(y_pred)
```

```
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

# Calculate MAPE for XGBoost and LSTM
mape_xgb = mean_absolute_percentage_error(y_test, y_pred_xgb)
mape_lstm = mean_absolute_percentage_error(y_test, y_pred_lstm)

print(f"XGBoost MAPE: {mape_xgb}%")
print(f"LSTM MAPE: {mape_lstm}%")
```

XGBoost MAPE: 30.37483736866819% LSTM MAPE: 22.286891169408364%

```
In [ ]:
```

```
import matplotlib.pyplot as plt

# Residuals for XGBoost and LSTM
residuals_xgb = y_test - y_pred_xgb
residuals_lstm = y_test - y_pred_lstm

# Plot residuals
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.scatter(y_pred_xgb, residuals_xgb)
plt.axhline(y=0, color='r', linestyle='--')
plt.title('XGBoost Residuals')

plt.subplot(1, 2, 2)
plt.scatter(y_pred_lstm, residuals_lstm)
plt.axhline(y=0, color='r', linestyle='--')
plt.title('LSTM Residuals')

plt.show()
```


In [105... from sklearn.model_selection import TimeSeriesSplit

```
# Time Series Cross-Validation
          tscv = TimeSeriesSplit(n splits=5)
          for train_index, test_index in tscv.split(X):
              X_train, X_test = X.iloc[train_index], X.iloc[test_index]
              y_train, y_test = y.iloc[train_index], y.iloc[test_index]
              xgb_model.fit(X_train, y_train)
              y_pred = xgb_model.predict(X_test)
              print("XGBoost RMSE:", np.sqrt(mean squared error(y test, y pred)))
         XGBoost RMSE: 9.258133018697201
         XGBoost RMSE: 17.82805792887585
         XGBoost RMSE: 8.916977685163804
         XGBoost RMSE: 8.742251183329556
         XGBoost RMSE: 8.815924690153071
In [106...
          summary = {
              "Model": ["XGBoost", "LSTM"],
              "RMSE": [rmse_xgb.mean(), rmse_lstm.mean()],
              "MAE": [mae_xgb.mean(), mae_lstm.mean()],
              "MAPE": [mape_xgb, mape_lstm],
          results_df = pd.DataFrame(summary)
          print(results_df)
              Model
                         RMSE
                                    MAE
                                              MAPE
         0 XGBoost 8.614315 6.924497 30.374837
               LSTM 9.410982 7.572233 22.286891
 In [ ]:
In [94]: import pandas as pd
          import numpy as np
          import xgboost as xgb
          import matplotlib.pyplot as plt
          # Assuming you already have a trained XGBoost model (xgb_model)
          # Step 1: Preprocessing function to convert columns to correct data types
          def preprocess data(data):
              # Convert 'Is_Holiday' to boolean (True/False)
              data['Is_Holiday'] = data['Is_Holiday'].astype(bool)
              # Convert price columns to numeric (in case any were objects)
              price_columns = ['Price_Chicken', 'Price_FriedSnacks', 'Price_FriedBurritos',
              for col in price_columns:
                  data[col] = pd.to_numeric(data[col], errors='coerce')
              # Ensure all columns are of the correct type
              data = data.apply(pd.to_numeric, errors='coerce')
              # Fill any missing values that may have been caused by type conversion
              data.fillna(0, inplace=True)
              return data
```

```
# Step 2: Update Lag and moving average features after prediction
def update_lag_and_ma(data, predicted_values):
   # Update lag features with the predicted values
   data['Lag_Chicken_Wings'] = predicted_values[0]
   data['Lag_Breakfast'] = predicted_values[1]
   data['Lag_Fried_Burritos'] = predicted_values[2]
   data['Lag_Other_Food'] = predicted_values[3]
   # Update moving averages (simplified, may require a rolling window for your cas
   data['MA_Chicken_Wings'] = np.mean([data['Lag_Chicken_Wings']]) # Example, adj
   data['MA_Breakfast'] = np.mean([data['Lag_Breakfast']])
   data['MA_Fried_Burritos'] = np.mean([data['Lag_Fried_Burritos']])
   data['MA_Other_Food'] = np.mean([data['Lag_Other_Food']])
   return data
# Step 3: Initialize variables
n_days = 7 # Set the number of days you want to predict
future predictions = []
current_data = df.iloc[-1:].copy() # Start with the last row of your dataset
# Step 4: Loop to predict for the next n days
for day in range(n_days):
   # Preprocess the data for the current day to ensure correct data types
   current_data = preprocess_data(current_data)
   # Drop target columns to prepare features for prediction
   X_future = current_data.drop(['Chicken', 'FriedSnacks', 'FriedBurritos', 'Other
   # Predict next day's values
   y_future = xgb_model.predict(X_future)
   # Append predictions to the list
   future_predictions.append(y_future[0])
   # Update the features (lags, moving averages) with the predicted values
   current_data = update_lag_and_ma(current_data, y_future[0])
   # Update 'current_data' for the next day's prediction (using the new predicted
   new_row = current_data.copy()
   # Combine features and predictions to simulate the next day
   new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
   current_data = new_row
# Step 5: Convert predictions into a DataFrame
future_df = pd.DataFrame(
   future_predictions,
   columns=['Chicken', 'FriedSnacks', 'FriedBurritos', 'Otherfood']
# Step 6: Generate future dates (next n days)
future_dates = pd.date_range(start=df.index[-1] + pd.Timedelta(days=1), periods=n_d
# Add the dates to the predictions
future df['Date'] = future dates
```

```
future_df.set_index('Date', inplace=True)

# Step 7: Plot the predictions
plt.figure(figsize=(10, 6))
plt.plot(future_df.index, future_df['Chicken'], label='Chicken')
plt.plot(future_df.index, future_df['FriedSnacks'], label='FriedSnacks')
plt.plot(future_df.index, future_df['FriedBurritos'], label='FriedBurritos')
plt.plot(future_df.index, future_df['Otherfood'], label='Otherfood')
plt.legend()
plt.title(f'{n_days}-Day Predictions')
plt.xlabel('Date')
plt.ylabel('Quantity')
plt.grid(True)
plt.show()

# Print the predictions
print(future_df)
```

```
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value 'False' has dtype incompatible with int64, please explic
itly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '1.173000521325178' has dtype incompatible with int64, p
lease explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '1.1183233945075022' has dtype incompatible with int64,
please explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '1.1296730673126847' has dtype incompatible with int64,
please explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '0.9869134765542429' has dtype incompatible with bool, p
lease explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value 'False' has dtype incompatible with float64, please expl
icitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '-0.06340976022588453' has dtype incompatible with int3
2, please explicitly cast to a compatible dtype first.
  new row.iloc[0, :] = np.append(X future.values[0], y future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '-1.241316431398077' has dtype incompatible with int32,
please explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '0.7177211857401962' has dtype incompatible with bool, p
lease explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '-0.8132033185439302' has dtype incompatible with int32,
please explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '0.5674983902312255' has dtype incompatible with float3
2, please explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
```

```
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '0.31974356152227207' has dtype incompatible with float3
2, please explicitly cast to a compatible dtype first.
 new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '-0.07029306155045145' has dtype incompatible with float
32, please explicitly cast to a compatible dtype first.
  new row.iloc[0, :] = np.append(X future.values[0], y future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '0.40772968168039486' has dtype incompatible with float3
2, please explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel 20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '0.9869134765542429' has dtype incompatible with bool, p
lease explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value 'False' has dtype incompatible with float64, please expl
icitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '-0.8132033185439302' has dtype incompatible with int32,
please explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '-0.07029306155045145' has dtype incompatible with bool,
please explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value 'False' has dtype incompatible with float64, please expl
icitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '53.64191818237305' has dtype incompatible with bool, pl
ease explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '58.8100700378418' has dtype incompatible with bool, ple
ase explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
re version of pandas. Value '51.399410247802734' has dtype incompatible with bool, p
lease explicitly cast to a compatible dtype first.
  new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])
C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S
etting an item of incompatible dtype is deprecated and will raise an error in a futu
```

re version of pandas. Value '67.51419067382812' has dtype incompatible with bool, please explicitly cast to a compatible dtype first.

new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])

C:\Users\harsh\AppData\Local\Temp\ipykernel_20232\1985423534.py:68: FutureWarning: S etting an item of incompatible dtype is deprecated and will raise an error in a futu re version of pandas. Value '50.63688278198242' has dtype incompatible with bool, pl ease explicitly cast to a compatible dtype first.

new_row.iloc[0, :] = np.append(X_future.values[0], y_future[0])

	Cnicken	FriedSnacks	FriedBurritos	Uthertood	
Date					
2024-08-21	40.107643	31.758524	53.641918	34.603230	
2024-08-22	55.000347	40.643997	58.810070	37.362503	
2024-08-23	46.179920	43.919964	51.399410	42.341339	
2024-08-24	49.757332	49.288071	67.514191	50.611992	
2024-08-25	35.226627	45.254295	50.636883	31.508507	
2024-08-26	37.161419	45.969299	51.055069	30.970245	
2024-08-27	37.161419	45.969299	51.055069	30.970245	

```
In []:

In []:

In []:

In []:
```