PCTO in Coding & Data Science

Modulo 2

Liceo Morgagni, Roma, 02/02/2022

Dati, dati, dati!

Regione	AGGIORNAMENTO 03/04/2020 ORE 17.00								
	POSITIVI AL nCoV								
	Ricoverati con sintomi	Terapia intensiva	Isolamento domiciliare	Totale attualmente positivi	DIMESSI/ GUARITI	DECEDUTI	CASI TOTALI	TAMPONI	
Lombardia	11.802	1.381	13.006	26.189	13.020	8.311	47.520	135.051	
Emilia Romagna	3915	364	7899	12.178	1.852	1.902	15.932	63.682	
Piemonte	3.300	452	5.378	9.130	723	1.043	10.896	34.281	
Veneto	1714	335	6812	8.861	1.031	572	10.464	126.490	
Toscana	1.149	288	3.472	4.909	300	290	5.499	44.460	
Marche	982	158	2491	3.631	42	557	4.230	13.678	
Liguria	1147	173	1426	2.746	700	519	3.965	12.934	
Lazio	1194	188	1627	3.009	392	199	3.600	43.776	
Campania	532	115	1705	2.352	144	181	2.677	19.237	
Trento	343	80	1.236	1.659	246	204	2.109	8.993	
Puglia	648	123	1178	1.949	69	164	2.182	17.924	
Friuli V.G.	201	61	1.062	1.324	419	136	1.879	19.985	
Sicilia	535	73	1.056	1.664	94	101	1.859	18.686	
Abruzzo	361	76	864	1.301	116	146	1.563	11.890	
Bolzano	291	60	858	1.209	211	139	1.559	13.976	
Umbria	165	48	707	920	220	39	1.179	10.614	
Sardegna	122	24	598	744	40	41	825	6.478	
Calabria	183	17	462	662	26	45	733	11.608	
Valle d'Aosta	85	25	450	560	89	70	719	2.106	
Basilicata	41	19	187	247	3	11	261	2.622	
Molise	31	8	105	144	21	11	176	1.378	
TOTALE	28.741	4.068	52,579	85.388	19.758	14.681	119.827	619.849	

I dati grezzi sono difficili da trasformare in informazione utile.

La nostra attenzione e capacità di comprendere è limitata: cerchiamo quindi forme di aggregazioni che:

- Riducano la complessità
- Facciano emergere l'informazione che ci interessa.

ATTUALMENTE POSITIVI 85.388
TOTALE GUARITI 19.758
TOTALE DECEDUTI 14.681
CASI TOTALI 119.827

Il **totale** è una quantità aggregata che ci dà una informazione sul fenomeno globale

La media

MEDIA

$$ar{x}=rac{x_1+x_2+x_3+\cdots+x_N}{N}=rac{\sum_1^n x_i}{N}$$

età = [10, 14, 17, 19, 21, 16, 18]

Media = 16.42 anni

La media

$$ar{x} = rac{\sum_1^N x_i}{N}$$

La media vuole essere il valore più rappresentativo di un insieme di osservazioni, il "valore tipico".

Media

16 18 21

14 17 19

10

Questo valore è rappresentativo?

La mediana

La mediana è un valore tale per cui al più metà degli elementi stanno al di sopra e al più metà stanno al di sotto di esso.

10, 14, 16, **17**, 18, 19, 21

La mediana

17 19

La mediana "ignora" il valore effettivo degli elementi; non ci importa di quanto stanno sopra o sotto, ma solo separarli in due parti uguali: non siamo sensibili a valori molto grandi o piccoli, che sposterebbero la media.

Un valore può arrivare da popolazioni molto diverse

età = [50, 56, 45, 61, 35, 43, 44, 51] <- Media: 48.1, mediana: 47.5

età = [1, 2, 9, 17, 88, 75, 99, 96] <- Media: 48.4, mediana: 46

Un valore può arrivare da popolazioni molto diverse

```
età = [50, 56, 45, 61, 35, 43, 44, 51] ← Media: 48.1, mediana: 47.5
```

età = [1, 2, 9, 17, 88, 75, 99, 96] ← Media: 48.4, mediana: 46

Abbiamo preso un insieme di 8 osservazioni, e abbiamo "compresso" la loro informazione in un unico numero.

Questa misura ci ha fatto perdere delle informazioni importanti!

Vorremmo sapere ad esempio come i valori si discostano da questi aggregatori. Ad esempio quanto sono spostati rispetto alla media.

Deviazione standard

Quanto si discostano i valori dalla media? Quanto variano rispetto alla media?

$$\sigma^2 = rac{\sum_1^N (x_i - ar{x})^2}{N{-}1}$$
 età = [50, 56, 45, 61, 35, 43, 44, 51] media(età) = 47.5

$$\sigma = \sqrt{\sigma^2}$$

 $\sigma = \frac{(50-47.5)^2 + (56-47.5)^2 + \dots + (51-47.5)^2}{7} = 7.6$

Nel caso precedente....

età = [50, 56, 45, 61, 35, 43, 44, 51] <- Media: 48.1, mediana: 47.5, σ =7.6 età = [1, 2, 9, 17, 88, 75, 99, 96] <- Media: 48.4, mediana: 46, σ =41.9

Deviazione standard

$$\sigma = 7.6$$
 E' tanto? E' poco?

Deviazione standard

Confrontando due diverse varianze, è facile capire quale insieme di osservazioni è più variabile.

Ma in senso assoluto?

Per avere una misura, possiamo calcolare il rapporto tra media e varianza:

il Coefficiente di variazione:

età = [50, 56, 45, 61, 35, 43, 44, 51]
$$CV = \frac{\sigma}{\bar{x}}$$
 or = 7.6
$$\bar{x} = 48.1$$
 CV = 0.2

Media e varianza sono nella unità di misura del dominio.

Ad esempio, l'età media è di 33.5 **anni**. Se avessimo convertito tutti i valori in mesi, avremmo ottenuto un'età media di 402 mesi (33.5x12).

Leggere questi valori richiede di avere un'idea di "tanto" o "poco" nel dominio di studio.

Il coefficiente di variazione è un valore senza unità di misura (**adimensionale**). Questo permette di farsi un'idea senza preoccuparsi del contesto. Viene spesso espresso come percentuale

Nel caso precedente....

età = [50, 56, 45, 61, 35, 43, 44, 51] <- Media: 48.1, mediana: 47.5, σ: 7.6, CV=0.2

età = [1, 2, 9, 17, 88, 75, 99, 96] <- Media: 48.4, mediana: 46, σ: 41.9 **CV=0.9**

Come possiamo "sintetizzare" un insieme di dati? Un altro modo per trasformare un insieme di dati in informazione 'comprensibile" è quello di visualizzarli

Perché visualizzare i dati?

Mantenimento delle informazioni

Dopo 3 giorni:

- solo testo: 10% info

- Testo + visualizzazione: 65% info

[Fonte: Madina, Brain Rules, 2008]

Perché visualizzare i dati?

- Mantenimento delle informazioni
- Densità delle informazioni

Perché visualizzare i dati?

- Mantenimento delle informazioni
- Densità delle informazioni
- Confronto tra valori e contesto

Scatter Plot

Scatterplot

Uno scatterplot

- rappresentata ogni
 osservazione con un punto
- ha per assi due variabili del dataset (conto, mancia)
- è utile per rappresentare la relazione tra queste variabili
 - in questo caso, a conti più alti corrispondono in genere mance più alte
- Può rappresentare altre variabili (per esempio il sesso), col colore o la forma dei punti.

Scatter Plot

Istogrammi

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

L'istogramma viene generalmente usato per rappresentare una sola variabile

- Per variabili numeriche (per esempio il valore del conto), serve a capire come è distribuito questo valore
 - Dividiamo tutti i valori in N intervalli (x)
 - Sulla y, segnamo quante volte una osservazione in tale intervallo è osservata nel nostro dataset
- Per variabili categoriche (per esempio fumatore / non fumatore), facciamo un confronto del numero di elementi in ogni categoria

Pie Chart

The most successful types of pie charts

Un pie chart (diagramma a torta) viene utilizzato per rappresentare una variabile in relazione al totale.

100 Most Active Tweeters ■ download11 ■ suhd iggym paviles Systim silverfighter saurabhshah = giographix = DianaKhalil = dotnetshoutout ights in the second in the sec inkhead alexpuig phpcamp MSExpression hashajax marxwang del_javascript james_novak mmarkov katriendg engineerfinder ch9 flashbrasil irhetoric JungchanHsieh niceoutput ijross BrianBBrian ■ Tunis = pl_shar = skro = Cr

Line plot

Line plot

Line plot

Più di 2 variabili?

Visualizzare più di due variabili per volta può essere molto difficile, ed è oggetto di studio!

I colori aiutano a percepire altre dimensioni

COME NON VISUALIZZARE I DATI

https://www.reddit.com/r/dataisugly/

AR WAR AND A TROOP WITHDRAWAL AT THE EI NAS FUT 2,292.5

CD: 50/50
CODING DIVERSITY

IMDb

TOP 10 MOVIES OF 2021

1@	Dune	★8.2
2 🚱	The Suicide Squad	★ 7.3
3 🐌	Eternals	★ 6.8
4 🕼	Mortal Kombat	★ 6.1
5 🜘	Zack Snyder's Justice League	★ 8.1
6	Godzilla vs. Kong	★ 6.4
7 🛞	Black Widow	★ 6.7
8	Army of the Dead	★ 5.8
9 🐌	Cruella	★ 7.4
	Shang-Chi and the Legend of the Ten Rings	★ 7.6

Percent change in college costs and earnings for young workers

Source: Georgetown University

Covid-19 cases compared by region

Number of cases per day, seven-day rolling average

