Announcements

- >HW 3 is out, due 12/06 Tue, 2pm
- ➤ No class next week
- > Project presentation in two weeks, the Thursday lecture
 - Please let me know your preferences if any
- ➤ Next lecture (Nov 29) is virtual (Haifeng will be attending NeurIPS)

CMSC 35401:The Interplay of Learning and Game Theory (Autumn 2022)

How Can Classifiers Induce Right Efforts?

Instructor: Haifeng Xu

Outline

> Introduction

> The Model and Results

Often today, ML is used to assist decisions about human beings

> Education

Often today, ML is used to assist decisions about human beings

- > Education
- ➤ When a measure becomes a target, gaming behaviors happen (Goodhart's Law)

Often today, ML is used to assist decisions about human beings

- > Education
- ➤ When a measure becomes a target, gaming behaviors happen (Goodhart's Law)
- ➤ Many other applications: recommender systems, hiring, finance...
 - E.g., restaurants can game Yelp's ranking metric by "pay" for positive reviews or checkins

Often today, ML is used to assist decisions about human beings

- > Education
- ➤ When a measure becomes a target, gaming behaviors happen (Goodhart's Law)
- ➤ Many other applications: recommender systems, hiring, finance...
 - E.g., restaurants can game Yelp's ranking metric by "pay" for positive reviews or checkins
- > Particularly an issue when transparency is required

Strategic Behaviors

Desirable behavior

Goal/score (determined by some measure)

Goal/score (determined by some measure)

>Some strategic behaviors are desirable, and some are not

I think it's best to. . . distinguish between seven different types of test preparation: Working more effectively; Teaching more; Working harder; Reallocation; Alignment; Coaching; Cheating. The first three are what proponents of high-stakes testing want to see

-- Daniel M. Koretz, *Measuring up*

➤ Some strategic behaviors are desirable, and some are not

The Main Question

How to design decision rules to induce desirable strategic behaviors?

- ➤ Usually not possible to keep the rule confidential
- >Should not simply use a rule that cannot be affected at all
- ➤ So, this requires careful design

The Mathematical Model

- >m available actions (e.g., study hard, cheating)
- > n different features (e.g., HW grade, midterm grade)
- Fach unit effort on action j results in $\alpha_{ji} (\geq 0)$ increase in feature i

 \triangleright Agent's action: allocation (x_1, \dots, x_m) of 1 unit of effort to actions

- \triangleright Agent's action: allocation (x_1, \dots, x_m) of 1 unit of effort to actions
 - Effort profile x(>0) decides feature values

$$F_i = f_i(\sum_j x_j \alpha_{ji})$$
 (an increasing concave fnc)

- \triangleright Principal's action: design the evaluation rule $H(F_1, \dots, F_n)$
 - H is increasing in every feature

- \triangleright Agent's action: allocation (x_1, \dots, x_m) of 1 unit of effort to actions
 - Effort profile x(>0) decides feature values $F_i = f_i(\sum_i x_i \alpha_{ii})$ (an increasing concave fnc)
- \triangleright Principal's action: design the evaluation rule $H(F_1, \dots, F_n)$
 - *H* is increasing in every feature, and publicly known (e.g., a grading rule)

- \triangleright Agent's action: allocation (x_1, \dots, x_m) of 1 unit of effort to actions
 - Effort profile x(>0) decides feature values $F_i = f_i(\sum_i x_i \alpha_{ii})$ (an increasing concave fnc)
- \triangleright Principal's action: design the evaluation rule $H(F_1, \dots, F_n)$
 - *H* is increasing in every feature, and publicly known (e.g., a grading rule)
- > Principal has a desirable effort profile x^* (e.g., $x^* =$ "work hard")
- ➤ Agent goal: choose *x* to maximize *H*

Q: Can the principal design H to induce her desirable x^* ?

Relation to problems we studied before

- ➤ This is a Stackelberg game
 - First, principal announces the evaluation rule *H*
 - Second, agent best responds to H by picking effort profile x
- > This is a mechanism design problem
 - Want to design evaluation rule H to induce desirable response x^*
- **Q**: Can the principal design H to induce her desirable x^* ?
 - Rich literature in economics, explosive recent interest in EconCS

m

Outline

> Introduction

> Examples and Results

Q: Can the principal induce the desirable $x^* = (0,1,0)$?

≻Ans: Yes

 For any unit of effort on cheating or copying, agent would rather spend it on studying

Q: What about this setting?

>Ans: No

- Spending 1 unit studying → H = 1
- Spending 1 unit on cheating \rightarrow H = 1.2
- Problem: weight of exam is to large

Q: What about changing *H* to our class's rule?

➤ Ans: Yes

- Spending 1 unit studying → H = 1
- Shifting any amount of effort to copying or cheating only decreases H
- Whether we can induce x^* does depends on our design of H

Q: What about these effort transition values?

- ➤ Ans: No, regardless of what *H* you choose
 - For whatever (x_1, x_2, x_3) , $(x_1 + \frac{x_2}{2}, 0, x_3 + \frac{x_2}{2})$ is better for agent
 - There are cases where x^* just cannot be induced regardless of H

Q: In general, when would it be impossible to induce x^* ?

- ► With B=1 effort on studying, we get $(F_T, F_W)=(\alpha_{2T}, \alpha_{2W})$
- ► If \exists (x_1, x_2, x_3) such that: (1) $x_1 + x_2 + x_3 < 1$; but (2) $x_1\alpha_{1T} + x_2\alpha_{2T} \ge \alpha_{2T}$ and $x_2\alpha_{2W} + x_3\alpha_{3W} \ge \alpha_{2W}$, then cannot induce effort on studying
 - This condition does not depend on H

- Let's focus on the special case $x^* = e_{i^*}$ for some j^*
- > Previous argument shows a necessary condition

There is no $(x_1, \dots, x_m) \ge 0$ such that:

- 1. $\sum_{j} x_{j} < 1$ 2. $x \cdot \alpha \ge \alpha(j^{*}, \cdot)$ (entry-wise larger)

Note: *x* here is a row vector

- ► Let's focus on the special case $x^* = e_{j^*}$ for some j^*
- > Previous argument shows a necessary condition

Define
$$\kappa_{j^*} \coloneqq \min_{x} \sum_{j} x_j$$
 subject to (1) $x \cdot \alpha \ge \alpha(j^*, \cdot)$; (2) $x \ge 0$.

A necessary condition is $\kappa_{i^*} \geq 1$.

There is no $(x_1, \dots, x_m) \ge 0$ such that:

- 1. $\sum_{i} x_i < 1$
- 2. $x \cdot \alpha \ge \alpha(j^*, \cdot)$ (entry-wise larger)

Note: *x* here is a row vector

- ► Let's focus on the special case $x^* = e_{j^*}$ for some j^*
- > Previous argument shows a necessary condition

Define $\kappa_{j^*} := \min_{x} \sum_{j} x_j$ subject to (1) $x \cdot \alpha \ge \alpha(j^*, \cdot)$; (2) $x \ge 0$.

A necessary condition is $\kappa_{i^*} \geq 1$.

Note: $\kappa_{j^*} \leq 1$ always because $x = e_{j^*}$ is feasible

- ► Let's focus on the special case $x^* = e_{j^*}$ for some j^*
- > Previous argument shows a necessary condition

Define $\kappa_{j^*} := \min_{x} \sum_{j} x_j$ subject to (1) $x \cdot \alpha \ge \alpha(j^*, \cdot)$; (2) $x \ge 0$.

A necessary condition is $\kappa_{i^*} = 1$.

Note: $\kappa_{j^*} \leq 1$ always because $x = e_{j^*}$ is feasible

- ► Let's focus on the special case $x^* = e_{j^*}$ for some j^*
- > Previous argument shows a necessary condition

Define
$$\kappa_{j^*} := \min_{x} \sum_{j} x_j$$
 subject to (1) $x \cdot \alpha \ge \alpha(j^*, \cdot)$; (2) $x \ge 0$.

A necessary condition is $\kappa_{i^*} = 1$.

Theorem: (1) There is a way to incentivize e_{j^*} if and only if $\kappa_{j^*} = 1$. (2) Whenever e_{j^*} can be incentivized, there is a linear H of form $H = \sum_i \beta_i F_i$ that incentivizes e_{j^*} .

Proof

- \triangleright Necessity of $\kappa_{j^*} = 1$ is argued above
- > To prove sufficiency, we construct a linear H that indeed induce e_{j^*} when $\kappa_{j^*}=1$

Linear H That Induces e_j

 \triangleright Consider $H = \sum_i \beta_i F_i$, agent's optimization problem

$$\max_{x \in \Delta_m} H = \sum_i \beta_i \cdot f_i(\sum_k x_k \alpha_{ki})$$

Value of feature i

Linear H That Induces e_j

 \triangleright Consider $H = \sum_i \beta_i F_i$, agent's optimization problem

$$\max_{x \in \Delta_m} H = \sum_i \beta_i \cdot f_i(\sum_k x_k \alpha_{ki})$$

- ➤ When would the optimal solution be $x^* = e_{i^*}$?
 - Ans: when $\frac{\partial H}{\partial x_{j^*}}|_{x=x^*} \ge \frac{\partial H}{\partial x_j}|_{x=x^*}$ for all j (verify it after class)
 - Spell the derivatives out:

$$\sum_{i} \beta_{i} \cdot \alpha_{i^{*}i} \cdot f_{i}'(\sum_{k} x_{k}^{*} \alpha_{ki}) \geq \sum_{i} \beta_{i} \cdot \alpha_{ii} \cdot f_{i}'(\sum_{k} x_{k}^{*} \alpha_{ki}), \quad \forall j \quad \text{Eq.}(1)$$

Q: Given $\tau_{j^*} = 1$, do there exist $\beta \neq 0$ so that Eq. (1) holds?

- \triangleright Eq (1) is also a set of linear constraints on β
- > Ans: yes, through an elegant duality argument

Choosing the β

- \succ Goal: $\sum_{i} \beta_{i} \cdot \alpha_{j^{*}i} \cdot f'_{i}(\sum_{k} x_{k}^{*} \alpha_{ki}) \ge \sum_{i} \beta_{i} \cdot \alpha_{ji} \cdot f'_{i}(\sum_{k} x_{k}^{*} \alpha_{ki}), \quad \forall j$
- ► Let $A_{j,i} = \alpha_{ji} \cdot f_i'(\sum_k x_k^* \alpha_{ki})$ which is a constant $(x^*$ is given)
 - Let $A(j,\cdot)$ denotes the j'th row
- > Need to check the linear system

$$\max_{\beta} [A(j^*,\cdot)] \cdot \beta^T$$

$$\text{s.t. } \mathbf{1} \ge A \cdot \beta^T, \forall k$$

$$\beta \ge 0$$

$$\exists \beta \ne 0 \text{ such that}$$

$$[A(j^*,\cdot)] \cdot \beta^T \ge [A(j,\cdot)] \cdot \beta^T, \forall j$$

$$\beta \ge 0$$

obtains opt ≥ 1

Choosing the β

- \gt Goal: $\sum_i \beta_i \cdot \alpha_{j^*i} \cdot f_i'(\sum_k x_k^* \alpha_{ki}) \ge \sum_i \beta_i \cdot \alpha_{ji} \cdot f_i'(\sum_k x_k^* \alpha_{ki})$, $\forall j$
- ► Let $A_{j,i} = \alpha_{ji} \cdot f_i'(\sum_k x_k^* \alpha_{ki})$ which is a constant $(x^*$ is given)
 - Let $A(j,\cdot)$ denotes the j'th row
- > Need to check the linear system

$$\max_{\beta} [A(j^*,\cdot)] \cdot \beta^T$$
s.t. $\mathbf{1} \ge A \cdot \beta^T, \forall k$

$$\beta \ge 0$$

$$\min_{y} \mathbf{1} \cdot y^{T}$$
s.t. $y \cdot A \ge A(j^{*},:)$

$$y \ge 0$$

obtains opt ≥ 1

From The constraint is
$$\sum y_i \alpha_{ii} \cdot f_i' \ge \alpha_{i^*i} \cdot f_i', \ \forall i$$

i.e.,
$$\sum y_i \alpha_{ii} \ge \alpha_{ii}$$
, $\forall i$

Primal opt = 1

 \triangleright Dual opt is exactly the def of $\kappa_{j^*} (=1)$

General x^*

- > Similar conclusion holds with similar proof
- > It turns out that the condition depends on S^* , the support of x^*

Theorem: (1) There is a way to incentivize x^* if and only if $\kappa_{S^*} = 1$ for some suitably defined κ_{S^*} . (2) Whenever x^* can be incentivized, there is a linear H that incentivizes x^* .

Optimization Version of the Problem

- \triangleright Previously, principal has a single x^* to induce
 - Some of x* can be incentivized, and some cannot
- >A natural optimization version of the problem
 - Among all incentivizable x^* , how can principal incentivize the "best" one
 - Assume a utility function g(x) over x
- \triangleright Problem: maximize g(x) subject to x is incentivizable

Theorem: The above problem is NP-hard, even when g is concave.

Open question:

- What kind of g can be optimized? Linear?
- What kind effort transition graph makes the problem more tractable?

