Tutorial 1:

- 1.) Solution: The proof does not assure that all the identity elements poirs of type (a,a) are present in R.
- 3.) Solution: Considering all the diagonal relations we will have 2 replexive relations.

eg: $A = \{a,b,c\}$ (a,a) (a,b) (a,c) (b,a) (b,b) (b,c)(c,a) (c,b) (c,c)

Now, by pairing symmetrical sets i.e (a,b) & (b,a) we will have $2^{\frac{n(n-1)}{2}}$ symmetrical and reflexive relations.

6.) For a Portiol order set, It should sotisfy the conditions of reflexivity, somme on ti-symmetric and transitive.

The set A = [0,2) of real numbers on operation \leq is.

- O Reflexive: Since every element is equal to itself i.e 0 ≤0, 0.1 ≤0.1.
- (2) Anti-Symmetric: Symmetric elements are not present. i.f. (0.1 ± 0.2) , then (0.2 ± 0.1) will not be in the set.

3) transitive: if a < b & b < c then a < c

Hence, the set A = [0,2) of real numbers with the operator \leq is a poset or partial order.

Also, every pair of elements will have a meet ond join hance the poset is a lattice.

(... A poset is a lattice if every pair of elements have a meet and a join.)

Q.2:- Proof by Induction:

Basic Step :- R' = R is symmetric which is true.

Inductive Step: - Assume that R' is symmetric.

To prove: $R^{(n+1)}$ is symmetric. $R^{(n+1)}$ is symmetric if for all $(x_1y) \in R^{(n+1)}$.

We have $(y,x) \in R^{(n+1)}$ as well.

= Assume that $(x,y) \in R^{(n+1)}$, Now, $R^{n+1} = R^n \circ R = R \circ R^n$.

We know that if $(x_{iy}) \in RoR^n$, then by the definition of composition there exists a $Z \in A$ such that $s \in RZ$ and $ZR^n y$ i.e $(x, Z) \in R$ and $(Z, y) \in R^n$. And we also know that R and R^n are symmetric, which implies that $(Z, x) \in R$ and also $(y, Z) \in R^n$. Therefore, by definition of composition $(y, x) \in RoR^n$ i.e $(Y, x) \in R^{n+1}$. Hence Proved.

Scanned by CamScanner

maximal: 25, 20, 12
minimal: 2,5

(2)
$$(7.)$$
 $(p,q) R(Y.4)$ iff $p-\beta = q-8$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

Teal for Symmetric:

$$\frac{\text{metric}}{(P_1 a) R(8 1 a)} \rightarrow (8,8) R(P_2 a).$$

$$p - 8 = 9$$
 $8 - 9 = 8 - 9$
 $8 - 9 = 8 - 9$

option (c).