Numérique et Sciences Informatiques Chapitre VIII - Gestion des processus et des ressources par un système d'exploitation

I. Définition d'un processus

Définition

Un **processus** (process en anglais) un programme en cours d'exécution : il est composé d'une suite d'instructions à exécuter.

II. Ordonnancement de plusieurs processus

Exécuter l'ensemble des instructions d'un processus prend du temps. Plusieurs types d'exécutions sont possibles :

- l'excution séquentielle : les processus s'exécutent les uns après les autres. Dans la pratique, il faudrait attendre longtemps avant de pouvoir exécuter un programme. De plus certains processus ne s'arrêtent jamais.
- l'exécution parallèle : les processus s'exécutent en même temps. dans la pratique, il faudrait autant de processeurs que de processus pour que cela soit possible.
- l'exécution entrelacée : des morceaux de processus différents sont exécutés en alternance.

Deux processus	
Exécution séquentielle	
Exécutions parallèles (deux processeurs)	_
Exécutions entrelacées	
Autre entrelacement	

Il faut donc que le système d'exploitation désigne quel processus s'exécute et pendant combien de temps. C'est l'**ordonnanceur** qui choisit l'ordre d'exécution des processus.

Chaque processus peut donc se trouver dans plusieurs états possibles selon s'il s'exécute ou non.

III. Etats d'un processus

Un processus est identifié par un numéro unique : le PID (Process IDentification).

Un processus est toujours créé par un processus. Donc chaque processus possède un unique **processus père**. Donc à chaque processus, on peut attribuer un numéro de processus père qui sera unique le **PPID** (Parent Process IDentification).

Seul le processus de PID=0 n'a pas de père. Il s'exécute à l'allumage de l'ordinateur.

Ce premier processus exécutera le processus init , qui , quant à lui, créera d'autres processus. Donc init a un PID=1 et un PPID=0.

Voici les différents états d'un processus :

- Initialisation (ou *Création*) : état dans lequel se trouve le processus à sa création. Il attend de l'ordonnaceur de se placer à l'état *Prêt*.
- **Prêt** (ou *En attente*) : dans cet état, le processus attend de l'ordonnanceur de pouvoir s'exécuter. Les processus dans cet état sont dans une File et attendent que l'ordonnanceur leur permette de passer à l'état *Elu*.
- Elu (ou Exécution) : le processus est en cours d'exécution par le processeur.
- **Bloqué** (ou *Endormi*) : le processus a été interrompu ou attend un événement, comme des données par exemple.
- **Terminé** (ou *Terminaison*) : Le processus est terminé. Le résultat est connu ou le programme a été forcé de s'arrêter.

Un processus qui consomme trop de temps sur le processeur pourra être **préempté** et donc repasser à l'état *Prêt*. L'opération qui fait passer un procéssus de l'état *Prêt* à l'état *Elu* s'appelle l'**élection**.

L'opération qui fait passer un procéssus de l'état Elu à l'état Prêt s'appelle la **préemption**.

Quand un processus est dans l'état Prêt ou Elu, on dit qu'il est actif.

FIGURE 1 – Schéma récapitulatif des états d'un processus

IV. Interblocage (deadlock)

Un **interblocage** (ou deadlock) est un phénomène qui se produit lorsque des processus s'attendent mutuellement. Certains processus nécessitent un ensemble de ressources pour s'exécuter. L'utilisation d'une ressource passe par trois étapes :

- la demande de la ressource : si la demande n'est pas satisfaite, il faut attendre (état Bloqué).
- l'utilisation de la ressource : le processus peut utiliser la ressource (état Elu).
- la libération de la ressource : le processus libère la ressource demandée (état Elu).

Imaginons maintenant deux processus P1 et P2 ayant besoin de deux ressources R1 et R2 pour s'exécuter.

- P1 demande dans un premier temps la ressource R1, puis ensuite la ressource R2.
- P2 demande dans un premier temps la ressource R2, puis ensuite la ressource R1.

Que se passe-t-il?

Processus	Etat	Commentaire
P1	Prêt	-
P2	Prêt	-
P1	Elu	demande $R1$
P1	Bloqué	en attente de $R1$
P2	Elu	demande $R2$
P2	Bloqué	en attente de $R2$
P1	Bloqué	R1 lui est alloué
P2	Bloqué	R2 lui est alloué
P1	Elu	demande $R2$
P1	Bloqué	en attente de $R2$
P2	Elu	demande $R1$
P2	Bloqué	en attente de $R1$

A la fin, les processus P1 et P2 sont bloqué et en attente respectivement des ressources R2 et R1 utilisées respectivement par P2 et P1. Il y a interblocage.