

Exame de Recurso

Álgebra Linear e Geometria Analítica

Duração: 1/02/2012

Duração: 2h 30m

Nome:												N. <u>0</u> F	Folhas Supl.:
Nº Mec			De	claro	que d	esisto				_		Class	ificação:
Classificações I	Parciais	s:											
	1a)	1 <i>b</i>)	(2a)	2b)	3a)	3 <i>b</i>)	4	5a)	5 <i>b</i>)	6a)	6b)	6c)	

1. Considere o sistema de equações lineares, nas variáveis x, y, z,

$$\left\{ \begin{array}{l} 2x+3y+z=0\\ y-z=1\\ 2x+\alpha y-z=2. \end{array} \right.$$

com α um parâmetro real.

[15] a) Discuta, em função do parâmetro real α , as soluções deste sistema de equações.

[20] b)	Faça $\alpha=4$ e utilize a Regra de Cramer para o resolver.
2. Cons	sidere o espaço vectorial $\mathbb{R}_2[X]$ dos polinómios de grau inferior ou igual a dois.
[15] a)	Averigúe se os vectores $v_1 = 1 - 2X$, $v_2 = 2X$, $v_3 = 1 - X + X^2$,
	são linearmente independentes e geram $\mathbb{R}_2[X]$.

[15]b) Mostre que o conjunto $V = \{p(X) \in \mathbb{R}_2[X] : p''(X) = 0\}$, onde p'' designa a segunda derivada de p, é um subespaço vectorial de $\mathbb{R}_2[X]$ e indique a sua dimensão.

3. Considere a transformação linear $f:\mathbb{R}^3\to\mathbb{R}^2$ representada, em relação às bases canónicas, pela matriz $A=\begin{bmatrix}2&0&1\\2&1&0\end{bmatrix}$.

[20] a) Determine o núcleo de f e apresente uma base para este espaço.

 $[\mathbf{10}]$ b) A aplicação linear f é sobrejectiva? Porquê?

[30] 4. No espaço vectorial \mathbb{R}^3 , considere os subespaços vectoriais,

$$V = <(1,0,-2), (0,0,1)> \ \ {\rm e} \ \ W = <(1,0,1), (0,1,0)>.$$

Determine a dimensão de $V\cap W$ e a dimensão de V+W.

 ${\bf [10]}$ 5 a). Indique, justificando, os valores do parâmetro real λ que tornam a matriz

$$A = \begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & 1 \\ -\lambda & 0 & 1 \end{bmatrix} \text{ invertível.}$$

[20] b) Na matriz A considere $\lambda=2$ e calcule a sua inversa.

6. Considere no espaço euclidiano $\mathbb{R}^3,$ munido do produto interno definido por

$$\langle (x_1, y_1, z_1)/(x_2, y_2, z_2) \rangle = x_1x_2 + 2y_1y_2 + 3z_1z_2,$$

o operador linear $f:\mathbb{R}^3\to\mathbb{R}^3$ cuja representação matricial relativamente à base canónica é

$$A = \left[\begin{array}{rrr} -1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{array} \right].$$

[15] a) Indique os valores próprios de f. O operador linear f é diagonalizável? Porquê?

[15] b)	Determine os espaços próprios de f .
[15] c)	Seja E_2 o espaço próprio associado ao valor próprio 2. Determine uma base ortonormada de E_2^{\perp} , complemento ortogonal de E_2 , para o produto interno considerado.
[15] c)	Seja E_2 o espaço próprio associado ao valor próprio 2. Determine uma base ortonormada de E_2^{\perp} , complemento ortogonal de E_2 , para o produto interno considerado.
[15] c)	Seja E_2 o espaço próprio associado ao valor próprio 2. Determine uma base ortonormada de E_2^{\perp} , complemento ortogonal de E_2 , para o produto interno considerado.
[15] c)	Seja E_2 o espaço próprio associado ao valor próprio 2. Determine uma base ortonormada de E_2^{\perp} , complemento ortogonal de E_2 , para o produto interno considerado.
[15] c)	Seja E_2 o espaço próprio associado ao valor próprio 2. Determine uma base ortonormada de E_2^{\perp} , complemento ortogonal de E_2 , para o produto interno considerado.
[15] c)	Seja E_2 o espaço próprio associado ao valor próprio 2. Determine uma base ortonormada de E_2^{\perp} , complemento ortogonal de E_2 , para o produto interno considerado.
[15] c)	Seja E_2 o espaço próprio associado ao valor próprio 2. Determine uma base ortonormada de E_2^\perp , complemento ortogonal de E_2 , para o produto interno considerado.
[15] c)	Seja E_2 o espaço próprio associado ao valor próprio 2. Determine uma base ortonormada de E_2^\perp , complemento ortogonal de E_2 , para o produto interno considerado.

... Um homem tem sempre duas razões para as coisas que faz: a boa e a real...

J. P. Morgan