

Website Phishing Detection

Andy Alvarez 6140523 CNT 6150

Introduction

Main Goal: Predict the legitimacy status of a website.

What is Phishing?

- An attacker impersonates a well-known entity to extract sensitive information through forms of communication often with malicious links and attachments
- o Phishing "accounts for 90% of all data breaches," (Cisco Umbrella, 2021).

Why make this prediction?

- Prevent users and businesses from losing millions of dollars
- o Prevent users from having personal information leaked
- Prevent corporations from having proprietary information leaked
- Worst case scenario: Prevent attacks looking to collapse the economy

Objectives:

- ☐ Build predictive machine learning models.
- ☐ Build and optimize various predictive multi-layer perceptron models
- ☐ Assess and compare the performance of the models

Dataset

	Features									Target
	SFH	popUpWidnow	SSLfinal_State	Request_URL	URL_of_Anchor	web_traffic	URL_Length	age_of_domain	having_IP_Address	Result
0	1	-1	1	-1	-1	1	1	1	0	0
1	-1	-1	-1	-1	-1	0	1	1	1	1
2	1	-1	0	0	-1	0	-1	1	0	1
3	1	0	1	-1	-1	0	1	1	0	0
4	-1	-1	1	-1	0	0	-1	1	0	1
1348	-1	-1	-1	-1	-1	-1	0	1	0	1
1349	-1	0	1	0	-1	0	0	1	0	-1
1350	-1	0	-1	-1	-1	0	-1	-1	0	1
1351	0	0	1	0	0	0	-1	1	0	1
1352	1	0	1	1	1	0	-1	-1	0	-1

Classification Problem:

- 1: Legitimate0: Suspicious-1: Phishy

Dataset

How was the data found?

- A PHP web script was plugged to a browser
- Legitimate website were found on Yahoo
- Phishy websites were found on Phishtank

Pre-Processing

Classical Machine Learning Algorithms

➤ Random Forest Classifier

> The data can be fed directly as there are no NaN or Null values

Checking for NaN	Values:
SFH	False
popUpWidnow	False
SSLfinal_State	False
Request_URL	False
URL_of_Anchor	False
web_traffic	False
URL_Length	False
age_of_domain	False
having_IP_Address	False
Result	False
dtype: bool	

Checking for Null	Values:
SFH	False
popUpWidnow	False
SSLfinal_State	False
Request_URL	False
URL_of_Anchor	False
web_traffic	False
URL_Length	False
age_of_domain	False
having_IP_Address	False
Result	False
dtype: bool	

Pre-Processing

Deep Learning Algorithms

- ➤ Multi-Layer Perceptron
- > Different architectures were tested to increase accuracy
 - > Data needed to be **One-Hot Encoded**
 - > Get dummies from pandas was used

	SFH1	SFH_0	SFH_1	popUpWidnow1	popUpWidnow_0	popUpWidnow_1	SSLfinal_State1	SSLfinal_State_	0 SSLfinal_State_1	1 Request_URL_	-1 web_traffic_	-1 web_traffic	_0 web_traffic	1 URL_Length1	URL_Length_0	URL_Length_1	age_of_domain1
866					0	() 1		0 (0				1 0			
976					0				0 (0				0 1			0
738					0	1	1 1		0 (0				0 0			0
1235									0	1				0 0			
246					0	() 1		0 (0				0 1			0
898					0	1	1 0		0	1				0 0			0
78									0	1				0 1			0
404					0	() 1		0 (0				1 0			0
600									0	1				1 1			0
1060					0		0		0	1				0 0			
1014 ro	ws × 25	colum	ns														

	-1	0	1
866	0	0	1
976	0	0	1
738	1	0	0
1235	1	0	0
246	0	0	1
898	1	0	0
78	1	0	0
404	0	0	1
600	1	0	0
1060	0	0	1

Random Forest Classifier

o Classification reports for different values of n-estimators were tested

Objectives:

- ➤ While there were some differences in some precisions, recalls, and f1-scores, their averages were virtually identical
- > Accuracy was the same for all variations of n-estimators
- ➤ 90% accuracy was achieved with Random Forest Classifier

MLP 1:

- o 2 Dense Layers with hidden units set at 64
- o 1 Dense Layer with hidden units set at 3
- o 2 Dropout Layers of 0.2
- o Activation Function: --
- o Batch Size: 32
- o Optimizer: RMS Prop
- o Learning Rate: 0.0005
- o Epochs: 20

Layer (type)	Output Shape	Param #
dense_42 (Dense)	(None, 64)	1664
dropout_30 (Dropout)	(None, 64)	0
dense_43 (Dense)	(None, 64)	4160
dropout_31 (Dropout)	(None, 64)	0
dense_44 (Dense)	(None, 3)	195
Trainable params: 6,019		
Non-trainable params: 0		

Activation Function	Accuracy
ReLu	88.8%
Sigmoid	85%
Tanh	87.6%

- ✓ ReLu was the best performing activation function
- ✓ Did not outperform Random Forest Classifier

MLP 2:

- o 2 Dense Layers with hidden units set at 100
- o 1 Dense Layer with hidden units set at 3
- o 2 Dropout Layers of 0.2
- o Activation Function: ReLu
- o Batch Size: 50
- o Optimizer: RMS Prop
- o Learning Rate: 0.0005
- o Epochs: 20

Output Shape	Param #
(None, 100)	2600
(None, 100)	0
(None, 100)	10100
(None, 100)	0
(None, 3)	303
	=======
Accuracy:	89.1%
	(None, 100) (None, 100) (None, 100) (None, 100) (None, 3)

MLP Architecture	Accuracy
MLP 1	88.8%
MLP 2	89.1%

- ✓ MLP 2 outperformed MLP 1
- ✓ Increasing the units for the dense layer improved performance
- ✓ MLP 2 did not outperform Random Forest Classifier

MLP 3:

- o 6 Dense Layers with hidden units set at 100
- o 1 Dense Layer with hidden units set at 3
- o 2 Dropout Layers of 0.2
- o Activation Function: ReLu
- o Batch Size: 32
- o Optimizer: RMS Prop
- o Learning Rate: 0.0005
- o Epochs: 20

Layer (type)	Output Shape	Param #
dense_16 (Dense)	(None, 100)	2600
dropout_12 (Dropout)	(None, 100)	0
dense_17 (Dense)	(None, 100)	10100
dropout_13 (Dropout)	(None, 100)	0
dense_18 (Dense)	(None, 100)	10100
dropout_14 (Dropout)	(None, 100)	0
dense_19 (Dense)	(None, 100)	10100
dropout_15 (Dropout)	(None, 100)	0
dense_20 (Dense)	(None, 100)	10100
dropout_16 (Dropout)	(None, 100)	0
dense_21 (Dense)	(None, 100)	10100
dropout_17 (Dropout)	(None, 100)	0
dense_22 (Dense)	(None, 3)	303
Trainable params: 53,403 Non-trainable params: 0	Accuracy:	88.8%

MLP Architecture	Accuracy
MLP 1	88.8%
MLP 2	89.1%
MLP 3	88.8%

- ✓ MLP 3 performed worse that MLP 2
- ✓ 6 was too many layers, thus data was overfitted
- ✓ MLP 2 did not outperform Random Forest Classifier

MLP 4:

o 4 Dense Layers with hidden units set at 200

o 1 Dense Layer with hidden units set at 3

o 2 Dropout Layers of 0.2

o Activation Function: ReLu

o Batch Size: 64

o Optimizer: RMS Prop

o Learning Rate: 0.0005

o Epochs: 20

Layer (type)	Output Shape	Param #
dense_11 (Dense)	(None, 200)	5200
dropout_8 (Dropout)	(None, 200)	0
dense_12 (Dense)	(None, 200)	40200
dropout_9 (Dropout)	(None, 200)	0
dense_13 (Dense)	(None, 200)	40200
dropout_10 (Dropout)	(None, 200)	0
dense_14 (Dense)	(None, 200)	40200
dropout_11 (Dropout)	(None, 200)	0
dense_15 (Dense)	(None, 3)	603
		======
Total params: 126,403 Trainable params: 126,403 Non-trainable params: 0	Accuracy: 89	. 7%

MLP Architecture	Accuracy
MLP 1	88.8%
MLP 2	89.1%
MLP 3	88.8%
MLP 4	89.7%

- ✓ MLP 4 outperformed all other MLPs
- ✓ 4 layers performed better than 2 and 6 layers
- ✓ MLP 2 did not outperform Random Forest Classifier

MLP 4:

o 4 Dense Layers with hidden units set at 200

o 1 Dense Layer with hidden units set at 3

o 2 Dropout Layers of 0.2

o Activation Function: ReLu

Batch Size: 64Optimizer: --

o Learning Rate: 0.0005

o Epochs: 20

Layer (type)	Output	Shape	Param #
dense_11 (Dense)	(None,	200)	5200
dropout_8 (Dropout)	(None,	200)	0
dense_12 (Dense)	(None,	200)	40200
dropout_9 (Dropout)	(None,	200)	0
dense_13 (Dense)	(None,	200)	40200
dropout_10 (Dropout)	(None,	200)	0
dense_14 (Dense)	(None,	200)	40200
dropout_11 (Dropout)	(None,	200)	0
dense_15 (Dense)	(None,	3)	603
=======================================	======	=======================================	========
Total params: 126,403			
Trainable params: 126,403			
Non-trainable params: 0			

Optimizer	Accuracy	
RMS Prop	89.7%	
Adam	91.4%	
SGD	91.7%	
Adagrad	90.9%	

- ✓ MLP 4 outperformed all other MLPs and Random Forest
- ✓ Optimizer 'Stochastic Gradient Descent' performed the best

Final Result

MLP 4:

o 4 Dense Layers with hidden units set at 200

o 1 Dense Layer with hidden units set at 3

o 2 Dropout Layers of 0.2

o Activation Function: ReLu

Batch Size: 64Optimizer: SGD

o Learning Rate: 0.0005

o Epochs: 20

Layer (ty	pe)	Output	Shape	Param #
dense_11	(Dense)	(None,	200)	5200
dropout_8	(Dropout)	(None,	200)	0
dense_12	(Dense)	(None,	200)	40200
dropout_9	(Dropout)	(None,	200)	0
dense_13	(Dense)	(None,	200)	40200
dropout_1	0 (Dropout)	(None,	200)	0
dense_14	(Dense)	(None,	200)	40200
dropout_1	1 (Dropout)	(None,	200)	0
dense_15	(Dense)	(None,	3)	603
		======		
	ms: 126,403 params: 126,403			
	params: 126,403 ble params: 0			

MLP Architecture	Accuracy
Random Forest	90%
MLP 1	88.8%
MLP 2	89.1%
MLP 3	88.8%
MLP 4 (RMS Prop)	89.7%
MLP 4 (Adam)	91.4%
MLP 4 (SGD)	91.7%
MLP 4 (Adagrad)	90.9%

Conclusion

- ✓ Website legitimacy statuses were able to be predicted with over 90% accuracy
- ✓ MLP (Deep Learning Algorithm) outperformed Random Forest (Classical Machine Learning Algorithm)
- ✓ Performance Boosters for this Application:
 - 5 Total Dense layers favoring higher values for hidden units (200 in this case)
 - ReLu Activation Function
 - SGD Optimizer

