$\lim_{t \to \infty} \mathbb{E} \{ \mathbf{x}_t^{\mathsf{T}} \mathbf{Q}_0 \mathbf{x}_t \} = \mathrm{Tr}(\mathbf{Q}_0 (\mathbf{\Sigma} + \mathbf{F})),$ $\lim_{t \to \infty} \mathbb{E} \{ \mathbf{u}_t^{\mathsf{T}} \mathbf{R}_0 \mathbf{u}_t \} = \mathrm{Tr}(\mathbf{S} \mathbf{B}^* \mathbf{R}^{-1} \mathbf{R}_0 \mathbf{R}^{-1} \mathbf{B} \mathbf{S} \mathbf{F}),$

Lemma. The metrics P_{track} and P_{effort} can be written as

where Σ solves the Riccati equation for estimation, F solves the Lyapunov equation $(A - BK) F + F(A - BK)^* + LVL^* = 0,$

S solves the Riccati equation for control, and $\mathbf{L} = \Sigma \mathbf{C}^* \mathbf{V}^{-1}$ is the Kalman gain.