STAT 345/445 Lecture 2

Section 1.2: Basics of Probability Theory

Subsections 1.2.1 and 1.2.2

... and some considerations about proofs

What probability is used for

- Experiments have uncertain (unpredictable) outcomes
- But, for repeated experiments we may expect a pattern

Experiment	Sample Space
Soccer game	$S = \{ win, loose, draw \}$
Roll a die	$S = \{1, 2, 3, 4, 5, 6\}$
Sum of two dice	$S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
	Likely

We use probability distributions to describe the long term behavior of repeated experiments

Probability - mathematically

- Want a rule that can assign a number between 0 and 1 to any event E in a sample space S.
- Easy for finite and countable sample spaces can enumerate all possible subsets of S.
- Technical problem: If S is an uncountable sample space, "every subspace" is too many to handle.
- Need the concept of σ -algebras.

Sigma-algebra

Definition: σ -algebra

A collection of subsets of S is called a σ -algebra on S (or Borel field) \mathcal{B} if the following holds:

- (i) $\emptyset \in \mathcal{B}$
- (ii) If $A \in \mathcal{B}$ then $A^c \in \mathcal{B}$ $\bigcirc \{0 \leq c \}$ condex $\bigcirc \{0 \leq c \}$
- (iii) If $A_1,A_2,A_3,\ldots\in\mathcal{B}$ then $\bigcup_{i=1}^{\infty}A_i\in\mathcal{B}$ then $\bigcup_{i=1}^{\infty}A_i\in\mathcal{B}$ then $\bigcup_{i=1}^{\infty}A_i\in\mathcal{B}$ then

Mathematicians and Statisticians tend to be minimalist in definitions...

σ -algebra - theorem

Theorem

If \mathcal{B} is a σ -algebra then

- (a) $S \in \mathcal{B}$
- (b) If $A_1, A_2, A_3, \ldots \in \mathcal{B}$ then $\bigcap A_i \in \mathcal{B}$

Proof:

- (a) $\emptyset \in \mathcal{B}$ (i) $\Rightarrow \emptyset^c \in \mathcal{B}$ (ii). Since $\emptyset^c = S$ we have that $S \in \mathcal{B}$
- (b) Let $A_1, A_2, A_3, \ldots \in \mathcal{B}$. Then $A_1^c, A_2^c, A_3^c, \ldots \in \mathcal{B}$ by (ii). Therefore

$$\bigcup_{i=1}^{\infty} A_i^c \in \mathcal{B} \Rightarrow \left(\bigcup_{i=1}^{\infty} A_i^c\right)^c \in \mathcal{B} \qquad \text{by (iii) and (ii)}$$
$$\Rightarrow \bigcap_{i=1}^{\infty} \left(A_i^c\right)^c = \bigcap_{i=1}^{\infty} A_i \in \mathcal{B} \qquad \text{by DeMorgan and compl.}$$

Theoretical Statistics I Lecture 2 5/15

Exmples of σ -algebras

- The trivial σ -algebra: $\mathcal{B} = \{\emptyset, S\}$
- If S is finite:

$$\mathcal{B} = \{ \text{all subsets of } S, \text{ including } S \text{ and } \emptyset \}$$

- If $S = \{1, 2, 3, ..., n\}$, how many subsets are there?
- If $S = \mathbb{R}$ the most common σ -algebra is the collection of all open and closed intervals, and their unions

 $\mathcal{B} = \text{all sets that can be written as a union of intervals}$ $[a, b], [a, b), (a, b], \text{ or } (a, b) \text{ where } a, b \in \mathbb{R}, a < b$

STAT 345/445 Theoretical Statistics I Lecture 2

Probability function

Definition: Probability fuction

Let S be a sample space and let B be an associated σ -algebra.

A probability function is a function
$$P(\cdot)$$
 with domain \mathcal{B}_{t} that satisfies the Kolmogorov axioms: $P(\cdot) = P(\cdot)$ (or fully $P(\cdot) = P(\cdot)$)

All probability theory is based on these Kolmogorov axioms

STAT 345/445 Theoretical Statistics I Lecture 2

Kolmogovon Ar (156):

Probability model

• The triple (S, \mathcal{B}, P) is called a probability model

Creating a probability model

- Say $S = \{s_1, s_2, \dots, s_n\}$
- Let B be the collection of every subset of S
- Probability function?

Quen P(VA) = EPAis

Calculus of Probabilities

loday 9/3 - law of

In the following: Let (S, \mathcal{B}, P) be a probability model

Bool/Bouferran

Theorem 1

Let $A \in \mathcal{B}$. Then

- (a) $P(A^c) = 1 P(A)$
- (b) $P(\emptyset) = 0$
- (c) $P(A) \le 1$

Proof:

- (a) A and A^c are disjoint. \Rightarrow by axiom (iii): $P(A \cup A^c) = P(A) + P(A^c)$. $A \cup A^c = S$ so by axiom (ii): $P(A \cup A^c) = 1$. $\Rightarrow P(A^c) = 1 P(A)$
- (b) $P(\emptyset) = P(S^c) = 1 P(S)$ by part (a). $\Rightarrow P(\emptyset) = 1 1$ by axiom (ii)
- (c) $1 = P(S) = P(A \cup A^c) = P(A) + P(A^c)$ by axioms (ii) and (iii). Since $P(A^c) \ge 0$ (axiom (i)) we have $1 \ge P(A)$.

Theorem 2

Let $A, B \in \mathcal{B}$. Then

(a)
$$P(A) = P(A \cap B) + P(A \cap B^c)$$

(b)
$$P(A \setminus B) = P(A) - P(A \cap B)$$

(c)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(d) If
$$A \subseteq B$$
 then $P(A) \le P(B)$

Proof: Homework 1

Theorem 3: Law of total probability

Let $A \in \mathcal{B}$ and let $C_1, C_2, \ldots \in \mathcal{B}$ be a partition of S. Then

$$P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$$

proof...

Theorem 4: Boole's Inequality

Let $A_1, A_2, A_3, \ldots \in \mathcal{B}$. Then

(a)
$$P\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} P(A_i)$$
, for $n = 1, 2, 3, ...$

(b)
$$P\left(\bigcup_{i=1}^{\infty}A_i\right)\leq \sum_{i=1}^{\infty}P(A_i)$$

Upper hound for U sets.

Proof:

- (1) Follows from (b) but we can also use induction ...
- (STAT 445: Read proof in book

Proof by induction for (a) for mulay.

- U
- Want to show that some property Q(n) holds for all n = 1, 2, 3, ...
 - Checking Q(n) for all n will literally take forever!

Strategy:

- 1. Prove that Q(1) holds
 - Sometimes it is easier to also prove Q(2)
- 2. For an arbitrary integer k assume that Q(k) holds. Then prove that Q(k+1) holds.

STAT 345/445 Theoretical Statistics I Lecture 2 13/15

Bool's imeguality: (Din: n=1: Show that Pan) = PCAn) True Sasince PCAn)=Pan) Ocz.: Chow there PCAIVAL) & PCAI) + PCAL) PCAIDAI) = PCAI) + PCAI) - PCAI MA,) : PCAINAN ZO = PCA1)+PCA1)-PCA1AA2) = PCA1)+PCA2) Q(R) => Q(R+1) Assume PC in Ai) < 5 PCAi) and Charle P() Ai) < & P(Ai)

$$PC \stackrel{\text{p+}}{\downarrow} A_{i}) = P(A_{i} + IU \stackrel{R}{\downarrow} A_{i})$$

$$= P(A_{i+1}) + P(\stackrel{R}{\downarrow} A_{i}) - P(A_{i+1} \land \stackrel{R}{\downarrow} A_{i})$$

$$= S_{in} P(A_{i+1}) + P(\stackrel{R}{\downarrow} A_{i})$$

$$\leq P(A_{i-1}) + P(\stackrel{R}{\downarrow} A_{i})$$

$$\leq P(A_{i-1}) + \sum_{i=1}^{k} P(A_{i}) = \sum_{i=1}^{k+1} P(A_{i})$$

Theorem 5: Bonferroni Inequality

Let $A_1, A_2, A_3, \dots A_n \in \mathcal{B}$. Then

(a)
$$P\left(\bigcap_{i=1}^{n}A_{i}\right)\geq\sum_{i=1}^{n}P(A_{i})-(n-1)$$

(b)
$$P\left(\bigcap_{i=1}^{n} A_i\right) \geq 1 - \sum_{i=1}^{n} P(A_i^c)$$

STAT 345/445 Theoretical Statistics I Lecture 2 14/15

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= > 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}) \cdot 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c})$$

$$= 1 - P((\bigcup_{i=1}^{n} A_{iv})^{c}$$

know from Bool that $P(\mathcal{Q}A;) \leq \sum_{i=1}^{n} P(A;)$

$$P(\bigcup_{i=1}^{n} A_{i}^{i}) \leq \sum_{i=1}^{n} P(A_{i}^{i})$$

$$= 1 - P(\bigcap_{i=1}^{n} A_{i}) \leq \sum_{i=1}^{n} P(A_{i}^{i}) \text{ by DeMovgen}$$

=> 1- Span = PCA An)

Proof of (a): Brow from (b):

$$P(\bigcap_{i=1}^{n} A_i) \ge 1 - \sum_{i=1}^{n} P(A_i^c) = 1 - \sum_{i=1}^{n} (1 - P(A_{ii}))$$

$$= 1 - \sum_{i=1}^{n} 1 + \sum_{i=1}^{n} P(A_i)$$

$$= \sum_{i=1}^{n} P(A_i) - (n-1)$$

(a) Proven.

Use of Bonferroni

- Want $P(A \cap B)$.
 - Know that $P(A) = p_1$ and $P(B) = p_2$

A lower bound on $P(A \cap B)$:

$$P(A \cap B) \ge 1 - ((1 - p_1) + (1 - p_2))$$

- Example: Confidence intervals familywize confidence level
 - Say we have 95% confidence intervals based on the following probability statements

$$P(\overline{X}_1 - z_{\alpha/2}\sigma_1 \le \mu_1 \le \overline{X}_1 + z_{\alpha/2}\sigma_1) = 1 - \alpha$$

$$P(\overline{X}_2 - z_{\alpha/2}\sigma_2 \le \mu_2 \le \overline{X}_2 + z_{\alpha/2}\sigma_2) = 1 - \alpha$$

Then both (i.e. intersection) probability statements hold with probability at least $1-2\alpha$