Generating Random Logic Programs Using Constraint Programming

Paulius Dilkas Vaishak Belle

AIAI Seminar

How Many Programs Are Used to Test Algorithms?

Anytime Inference in Probabilistic Logic Programs with T_P -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Aye ka Kimmig, Wannes Meert, Luc De Raedt
Department of ear uputer Science
KU Leuven Belgium
firstname.lastname@es.kuleuven.be

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Angelka Kimmig, Wannes Meert, Luc De Raedt firstname.lastname@cs.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestiinenlaan 200A, 3001 Heverlee, Belgium (c-mail: FirstName.LastName@cs.kuleuven.be)

Anytime Inference in Probabilistic Logic Programs with To-Compilation

Jonas Vlasselaer, Guy Van den Broeck, Angelka Kimmig, Wannes Meert, Luc De Raedt

firstname.lastname@cs.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestiinenlaan 200A, 3001 Heverlee, Belgium (c-mail: FirstName.LastName@cs.kuleuven.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Aye ka Kimmig, Wannes Meert, Luc De Raedt Department of examputer Science KU Leuven, Belgium firstname.lastname@ses.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENAD GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstName.LastName@cs.kuleuven.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

On the Efficient Execution of ProbLog Programs

Angelika Kimmig¹, Vítor Santos Cost ², Ricardo Rocha², Bart Demoen¹, and Luc De Raedt¹

Anytime Inference in Probabilistic Logic Programs with To-Compilation

Jonas Vlasselaer, Guy Van den Broeck, Ange ka Kimmig, Wannes Meert, Luc De Raedt Department of en apputer Science KU Leuven, Belgium firstname.lastname@cs.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstName.LastName@cs.kuleuven.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

On the Efficient Execution of ProbLog Programs

Angelika Kimmig¹, Vítor Santos Cost², Ricardo Rocha², Bart Demoen¹, and Luc De Raedt¹

On the Implementation of the Probabilistic Logic Programming Language ProbLog

Angelika Kimmig, Bart Demoen and Luc De Raedt Departement Computerwe inschappen, K.U. Leuven Celestijnenlaan 200A - bus 24 2, B-3001 Heverlee, Belgium (e-mail: {Angelika.Kimmig,Bart.Deceap,Luc.DeRaedt}@cs.kuleuven.be)

Vítor Santos Costa and Ricardo Rocha

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal (e-mail: {vsc,ricroc}@dcc.fc.up.pt)

Anytime Inference in Probabilistic Logic Programs with Tp-Compilation

Jonas Vlasselaer, Guy Van den Broeck, Ange ka Kimmig, Wannes Meert, Luc De Raedt
Department of en mouter Science
KU Leuwen, Belgium
firstname, lastname@cs.kuleuwen.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENND GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstNane, LastNane@cs, kuleuven, be)

k-Optimal: a novel approximate inference algorithm for ProbLog ◀

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

On the Efficient Execution of ProbLog Programs

Angelika Kimmig 1, Vítor Santos Cost 2 , Ricardo Rocha 2, Bart Demoen 1, and Luc De Raedt 1

On the Implementation of the Probabilistic Logic Programming Language ProbLog

Angelika Kimmig, Bart Damoen and Luc De Raedt

Departement Computerwe ruschoppen, K.U. Leuven

Celestijnenlaan 200A - bus 24 2, B-3001 Heverlee, Belgium

(e-mail: {Ragelika.Kimnig,Bart.Demiss,Luc.DeRaedt]@cs.kuleuven.be)

Vítor Santos Costa and Ricardo Rocha

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal (e-mail: {vsc.ricroc}@dcc.fc.up.pt)

ProbLog Technology for Inference in a Probabilistic First Order Logic

Maurice Bruynooghe and Theofrastos Mantadia and Angelika Kimmig and Bernd Gutmann and Joost Vennekens and Gerda Janssens and Luc De Raedt¹

The Constraint Model

Example Programs

Experimental Results

Conclusions

Probabilistic Logic Programs (PROBLOG)

"Smokers" (Domingos et al. 2008; Fierens et al. 2015)

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P): - cancer\_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

Applications

Moldovan et al. 2012

```
is_malignant(Case):-
    biopsyProcedure(Case, usCore),
    changes_Sizeinc(Case, missing),
    feature_shape(Case).

is_malignant(Case):-
    assoFinding(Case, asymmetry),
    breastDensity(Case, scatteredFDensities),
    vacuumAssisted(Case, yes).

is_malignant(Case):-
    needleGauge(Case,9),
    offset(Case,14),
    vacuumAssisted(Case,yes).
```

Côrte-Real, Dutra, and Rocha 2017

Q1: In a group of 10 people, 60 percent have brown eyes. Two people are to be selected at random from the group. What is the probability that neither person selected will have brown eyes?

Q2: Mike has a bag of marbles with 4 white, 8 blue, and 6 red marbles. He pulls out one marble from the bag and it is red. What is the probability that the second marble he pulls out of the bag is white?

Dries et al. 2017

De Maeyer et al. 2013

```
Let a \oplus b := a + b - ab. Then
Pr[cancer(michelle)] = Pr[cancer_spont(michelle)]
                     ⊕ Pr[smokes(michelle)]
                     × Pr[cancer_smoke(michelle)]
```

```
cancer(P):-cancer\_spont(P).
cancer(P): - smokes(P), cancer\_smoke(P).
```

Let
$$a \oplus b := a + b - ab$$
. Then $Pr[cancer(michelle)] = 0.1 \oplus 0.3 \times Pr[smokes(michelle)]$

```
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
```

```
Let a \oplus b := a + b - ab. Then
Pr[cancer(michelle)] = 0.1 \oplus 0.3 \times Pr[smokes(michelle)]
Pr[smokes(michelle)] = Pr[stress(michelle)]
                       \oplus \Pr[smokes(timothy)]
                       × Pr[influences(timothy, michelle)]
```

```
smokes(X):-stress(X).
smokes(X):-smokes(Y), influences(Y, X).
```

```
Let a \oplus b := a + b - ab. Then
Pr[cancer(michelle)] = 0.1 \oplus 0.3 \times Pr[smokes(michelle)]
Pr[smokes(michelle)] = 0.2 \oplus 0.3 \times Pr[smokes(timothy)]
```

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
```

```
Let a \oplus b := a + b - ab. Then
Pr[cancer(michelle)] = 0.1 \oplus 0.3 \times Pr[smokes(michelle)]
Pr[smokes(michelle)] = 0.2 \oplus 0.3 \times Pr[smokes(timothy)]
Pr[smokes(timothy)] = Pr[stress(timothy)] = 0.2
```

```
0.2::stress(P):-person(P).
    smokes(X):-stress(X).
```

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P):-cancer_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

```
cancer(michelle) = T
     Pr(world) = 0.2 \times (1 - 0.3) \times 0.1 \times 0.3
0.2: stress(P):-person(P).
0.3::influences(P_1, P_2):=friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
     person(michelle).
     person(timothy).
     friend(timothy, michelle).
```

000000

```
cancer(michelle) = T
     Pr(world) = 0.2 \times 0.3 \times 0.1 \times (1 - 0.3)
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P):=smokes(P), cancer\_smoke(P).
     person(michelle).
     person(timothy).
     friend(timothy, michelle).
```

```
cancer(michelle) = \top
  Pr(world) = (1 - 0.2) \times (1 - 0.3) \times 0.1 \times 0.3
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P):=smokes(P), cancer\_smoke(P).
     person(michelle).
     person(timothy).
     friend(timothy, michelle).
```

```
cancer(michelle) = \bot
Pr(world) = (1 - 0.2) \times (1 - 0.3) \times (1 - 0.1) \times (1 - 0.3)
   0.2::stress(P):-person(P).
   0.3::influences(P_1, P_2):-friend(P_1, P_2).
   0.1::cancer_spont(P):-person(P).
   0.3::cancer_smoke(P):-person(P).
        smokes(X):-stress(X).
        smokes(X):-smokes(Y), influences(Y, X).
        cancer(P):-cancer_spont(P).
        cancer(P):=smokes(P), cancer\_smoke(P).
        person(michelle).
        person(timothy).
        friend(timothy, michelle).
```

```
NNF negation normal form
```

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs
- d-DNNF deterministic decomposable negation normal form

```
NNF negation normal form
```

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs
- d-DNNF deterministic decomposable negation normal form
 - for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
 - for every pair $\alpha \wedge \beta$, no atoms are shared between α and β

```
NNF negation normal form
```

000000

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$

```
NNF negation normal form
```

BDD binary decision diagrams

SDD sentential decision diagrams

k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$

```
NNF negation normal form
```

000000

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$

```
NNF negation normal form
```

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$\begin{array}{c} XX & (A \lor C) \land (A \lor \neg B) \\ C \land (A \lor \neg B) \end{array}$$

```
NNF negation normal form
```

000000

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$

 $(A \lor C) \land (A \lor \neg B)$

```
NNF negation normal form
```

BDD binary decision diagrams

SDD sentential decision diagrams

k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$
 $(A \lor A) \lor (A \lor \neg B)$

```
NNF negation normal form
```

000000

BDD binary decision diagrams

SDD sentential decision diagrams

k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$
 $(A \lor A) \lor (A \lor \neg B)$
 $(A \lor A) \lor (A \lor \neg B)$
 $(A \lor A) \lor (A \lor \neg B)$

```
NNF negation normal form
```

000000

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$
 $(A \lor A) \lor (A \lor \neg B)$

$$\checkmark B \land C \land [(B \land A) \lor \neg B]$$

```
NNF negation normal form
```

000000

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$

$$X \sim C \wedge (A \vee \neg B)$$

$$\checkmark$$
 $\land B \land C \land [(B \land A) \lor \neg B]$

```
NNF negation normal form
```

Probabilistic Logic Programming

000000

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$

 $(A \lor C) \land (A \lor \neg B)$

$$\checkmark \times B \land C \land [(B \land A) \lor \neg B]$$

 $C \land [(B \land A) \lor \neg B]$

```
NNF negation normal form
```

Probabilistic Logic Programming

000000

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$

$$X \land C \land (A \lor \neg B)$$

$$\checkmark \times B \land C \land [(B \land A) \lor \neg B]$$

$$\checkmark$$
 $C \wedge [(B \wedge A) \vee \neg B]$

```
NNF negation normal form
```

Probabilistic Logic Programming

000000

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$
 $(A \lor C) \land (A \lor \neg B)$
 $(A \lor A) \lor \neg B$

Example Diagrams for $C \wedge (A \vee \neg B)$

Figure: BDD

Figure: d-DNNF

Figure: vtree

```
0.2::stress(P):-person(P).
0.3: influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X) : - stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P):-cancer_spont(P).
    cancer(P) : -smokes(P), cancer_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

```
0.2:stress(P):-person(P).
0.3: :influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer\_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

predicates, arities

```
0.2::stress(P):-person(P).
0.3: influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer\_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

- predicates, arities
- variables

```
0.2::stress(P):-person(P).
0.3: influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer\_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P):-cancer_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

- predicates, arities
- variables
- constants

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P): - cancer\_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

- predicates, arities
- variables
- constants
- probabilities

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
     friend(timothy, michelle).
```

- predicates, arities
- variables
- constants
- probabilities
- length

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P):=smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
     friend(timothy, michelle).
```

- predicates, arities
- variables
- constants
- probabilities
- length
- complexity

$$\neg p(X) \lor (q(X) \land r(X))$$

 $\neg p(X) \lor (q(X) \land r(X))$

S: **V**:

0	0	0	1	2	2	6
V	٦	\wedge	p(X)	q(X)	r(X)	Т

$$\neg p(X) \lor (q(X) \land r(X))$$

0 0 6 S: q(X)r(X)

• s is a forest with T=2 trees

$$\neg p(X) \lor (q(X) \land r(X))$$

• s is a forest with T = 2 trees

$$\neg p(X) \lor (q(X) \land r(X))$$

• s is a forest with T = 2 trees

- s is sorted
- $s_i \neq i \implies v_i \neq \top$

$$\neg p(X) \lor (q(X) \land r(X))$$

- s is a forest with T=2 trees
- length <u>L</u> = 7
- number of nodes N := L T + 1 = 6
- for i = 1, ..., L 1,
 - if i < N, then $s_i < i$
 - else $s_i = i$ and $v_i = T$

- s is sorted
- $s_i \neq i \implies v_i \neq \top$

$$\neg p(X) \lor (q(X) \land r(X))$$

S:	0	0	0	1	2	2	6
V :	V	Г	\wedge	p(X)	q(X)	r(X)	Т
C:	2	1	2	0	0	0	0

- s is a forest with T=2 trees
- length L = 7
- number of nodes N := L T + 1 = 6
- for i = 1, ..., L 1,
 - if i < N, then $s_i < i$
 - else $s_i = i$ and $v_i = \top$
- $c_i = 0 \iff v_i = T$ or is a predicate
- $c_i = 1 \iff v_i = \neg$
- $c_i > 1 \iff v_i \in \{\land, \lor\}$

- s is sorted
- $s_i \neq i \implies v_i \neq \top$

Variable Symmetry Breaking

```
The Problem
Let \{W, X, Y\} be the set of variables. Then
          smokes(X):-smokes(Y), influences(Y, X)
is equivalent to
          smokes(Y):-smokes(X), influences(X, Y)
and to
         smokes(W):-smokes(X), influences(X, W)
```


Occurrences (channeling)

 $\begin{array}{c} \mathsf{W} \mapsto \emptyset \\ \mathsf{X} \mapsto \{0,3\} \end{array}$

 $Y \mapsto \{1,2\}$

Introductions

 $1 + \min occurrences(v) \text{ or } 0$

 $W \mapsto 0$

 $X \mapsto 1$

 $Y \mapsto 2$

sorted!

Occurrences (channeling)

 $W \mapsto \emptyset$ $X \mapsto \{1, 2\}$ $Y \mapsto \{0, 3\}$

Introductions $1 + \min \operatorname{occurrences}(v)$ or 0

 $W \mapsto 0$

 $X \mapsto 2$

 $\mathsf{Y} \mapsto \mathsf{1}$

not sorted!

Occurrences (channeling)

$$\begin{array}{c} \mathsf{W} \mapsto \{0,3\} \\ \mathsf{X} \mapsto \{1,2\} \end{array}$$

 $Y \mapsto \emptyset$

Introductions $1 + \min \operatorname{occurrences}(v)$ or 0

$$W \mapsto 1$$
$$X \mapsto 2$$
$$Y \mapsto 0$$

not sorted!

Predicate Dependency Graph

Stratification and Negative Cycles

0.1::friend(X, Y):-\+smokes(Y).

Stratification and Negative Cycles

0.1::friend(X, Y):-\+smokes(Y).

Stratification and Negative Cycles

One-Liners

Setup

- predicate p/1
- variable X
- no constants
- 1 clause
- 4 nodes
- no negative cycles

(All) Programs

Example Programs 0000

- p(X).
- 0.7::p(X):-p(X).
- 0.8::p(X):-p(X);p(X).
- 0.7::p(X):-p(X),p(X).
- 0.1::p(X):-p(X);p(X);p(X).
- 0.8::p(X):-p(X),p(X),p(X).

Symmetry Breaking in Action

Setup

- predicate p/3
- variables: X, Y, Z
- no constants
- 1 clause
- 1 node
- no cycles at all

(All) Programs

• 0.8::p(Z,Z,Z).

Example Programs 0000

- p(Y, Y, Z).
- p(Y, Z, Y).
- p(Y, Z, Z).
- 0.1::p(X,Y,Z).

A Larger Example

Setup

- predicates: p/1, q/2, r/3
- variables: X, Y, Z
- constants: a, b, c
- 5 clauses
- 5 nodes
- no negative cycles

A Random Program

r(Y, b, Z).

Example Programs 0000

$$p(b):- +(q(a,b), q(X,Y), q(Z,X)).$$

 $0.4::q(X,X):- +r(Y,Z,a).$
 $q(X,a):-r(Y,Y,Z).$
 $q(X,a):-r(Y,b,Z).$

Examples of Predicate Independence

Setup

- predicates: p/1, q/1, r/1
- no variables
- constant a
- 3 clauses
- 3 nodes
- no negative cycles
- p ⊥ q

A Few Random Programs

- 0.5::p(a):-p(a);p(a). 0.2::q(a):-q(a),q(a).
 - 0.4: :r(a): + q(a).
- p(a) : -p(a).
 - 0.5::q(a):-r(a);q(a).
 - r(a) : -r(a) : r(a).
- p(a) : p(a); p(a).
 - 0.6::q(a):-q(a).
 - 0.7: :r(a): + q(a).

Scalability

Variable

- The number of predicates
- Maximum arity
- The number of variables
- The number of constants
- The number of additional clauses
- The maximum number of nodes

How Predicate Independence Affects Search Complexity

What Programs Should We Generate?

- each program is divided into:
 - rules
 - e.g., 0.2::stress(P):-person(P).
 - facts
 - e.g., friend(timothy, michelle).
- predicates, variables, nodes: 2, 4, 8
- maximum arity: 1, 2, 3
- all possible numbers of pairs of independent predicates
- 10 programs per configuration
 - fully restarting the constraint solver
- probabilities sampled from $\{0.1, 0.2, \dots, 0.9\}$
- query: random unlisted fact

```
0.2::stress(P):-person(P).
```

- no constants, no empty bodies
- one rule per predicate
- all rules are probabilistic

Facts

friend(timothy, michelle).

- proportion probabilistic: 25%, 50%, 75%
- constants: 100, 200, 400
- number of facts: 10³, 10⁴, 10⁵
 - but only up to 75% of all possible facts

Properties of Programs vs. Inference Algorithms

Properties of Programs vs. Inference Algorithms

The Ratio of Listed Facts to Possible Facts

- The model can generate (approximately) realistic instances of reasonable size
- The main performance bottleneck can be addressed by generating programs with a simpler structure
- Open guestions and future work
 - Can the model be used to ensure uniform sampling?
 - What is the reason behind all algorithms behaving similarly?
 - Why does independence have no effect on inference time?
 - Can random program generation be useful in learning?

The implementation of the model is available at

https://github.com/dilkas/random-logic-programs