STOR 565 Homework

1. Consider a classification problem in which the predictor X is uniformly distributed on the unit interval [0,1] and the response $Y \in \{0,1\}$ as usual. For $x \in [0,1]$ let $\eta(x) = \mathbb{P}(Y = 1 \mid X = x)$. Specify the Bayes rule ϕ^* and the Bayes risk R^* in each of the following cases.

a.
$$\eta(x) = 1/2$$
 for all x

b.
$$\eta(x) = 1/3$$
 for all x

c.
$$\eta(x) = x$$

d.
$$\eta(x) \in \{0,1\}$$
 for all x

In each of the cases above, find the prior probability $\pi_1 = \mathbb{P}(Y = 1)$, or indicate why this is not possible without more information.

- 2. Let $(X,Y) \in \mathbb{R} \times \{-1,+1\}$ be a random predictor-response pair. Suppose that Y has prior probabilities $\pi_1 = \mathbb{P}(Y=1)$ and $\pi_0 = \mathbb{P}(Y=0)$, and that X is continuous with marginal density f and class conditional densities f_0 and f_1 .
 - a. Derive an expression for the Bayes rule $\phi^*(x)$ in terms of the logarithm of the ratio $\pi_1 f_1(x)/\pi_0 f_0(x)$.

Suppose that f_1 is $\mathcal{N}(\mu_1, \sigma^2)$ and that f_0 is $\mathcal{N}(\mu_0, \sigma^2)$ where $\mu_1 > \mu_0$.

- b. Using the result of part (a), find an expression for the Bayes rule $\phi^*(x)$ in terms of the parameters π_0 , π_1 , μ_0 , μ_1 , and σ^2 .
- c. What is the form of the rule in part (b) when $\pi_1 = 1/2$? Explain why this makes intuitive sense.
- d. Suppose for simplicity that $\mu_1 = u$ and $\mu_0 = -u$ for some u > 0. What form does the Bayes rule take when u increases (tends to infinity), and in particular, how does the rule depend on π_1 versus π_0 ? A informal but clear answer is fine.
- 3. Find the gradient and Hessian of the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x) = x_1^2 x_2 + 3x_1 - 5x_2 + 1$$

1

- 4. Use Jensen's inequality to find relations among the following. Explain your reasoning.
 - a. $\mathbb{E}(1/X)$ and $1/\mathbb{E}X$ for X > 0.
 - b. $\mathbb{E}(X^{1/3})$ and $(\mathbb{E}X)^{1/3}$ for $X \geq 0$.
- 5. Consider the labeled data set $(-2,1), (-1,1), (0,0), (1,1), (2,0) \in \mathbb{R} \times \{0,1\}.$
 - a. Sketch the 1-nearest neighbor rule for this dataset by drawing a line and indicating which points are assigned to zero and which are assigned to one.
 - b. Sketch the 3-nearest neighbor rule for this dataset by drawing a line and indicating which points are assigned to zero and which are assigned to one.
- 6. Let X have a $\mathcal{N}(\mu, \sigma^2)$ distribution. Find the expected value of X.
- 7. Let $Z \sim \mathcal{N}(0,1)$. Use the CDF method to find the density X = aZ + b.
- 8. Let $X \in \mathbb{R}^k$ be a random vector and $A \in \mathbb{R}^{r \times k}$. Establish the following.
 - a. $\mathbb{E}(AX) = A \mathbb{E}X$
 - b. $Var(X)_{ij} = Cov(X_i, X_j)$
 - c. Var(X) is symmetric and non-negative definite
 - d. $Var(AX) = A Var(X)A^t$
- 9. Let X and Y be two jointly distributed random variables. Suppose that we wish to predict the value of Y based on the value of X via a function $g(\cdot)$. Suppose that we judge the quality of the prediction g(X) by the expected squared error $\mathbb{E}(Y g(X))^2$. Then it turns out that the best estimate of Y given X is the conditional expectation E(Y | X).
 - a. Let $g(\cdot)$ be a function. Show that $\mathbb{E}[(Y \mathbb{E}[Y|X]) (\mathbb{E}[Y|X] g(X)) | X] = 0$. (Hint: expand the product and use basic properties of conditional expectations.)
 - b. Note that $(Y g(X))^2 = (Y E(Y | X) + E(Y | X) g(X))^2$. Show by expanding the square and using the result from (a) that

$$\mathbb{E}[(Y - g(X))^2 | X] \ = \ \mathbb{E}[(Y - E[Y|X])^2 | X] \ + \ \mathbb{E}[(\mathbb{E}[Y|X] - g(X))^2 | X]$$

- c. Deduce from (b) that $\mathbb{E}[(Y-g(X))^2] \, \geq \, \mathbb{E}[(Y-\mathbb{E}[Y\,|\,X])^2]$
- 10. Let $(X,Y) \in \mathbb{R}^2 \times \{-1,+1\}$ be a random predictor-response pair. Suppose that the predictor X is a pair (X_1,X_2) where $X_1,X_2 \in [0,1]$ are independent, X_1 is uniform on [0,1], and X_2 has density $g(x_2) = 3x_2^2$ for $0 \le x_2 \le 1$. Suppose that $\eta(x_1,x_2) = (x_1 + x_2)/2$.
 - a. Find the Bayes rule ϕ^* for this problem and identify its decision boundary.
 - b. Find the unconditional density of X
 - c. Find the Bayes risk associated with (X, Y)
 - d. Find the prior probability that Y = +1.
 - e. Find the class-conditional density of X given Y = 1.