Evaluation Metrics for ML Performance

Guowei Wei Department of Mathematics Michigan State University

References:
Duc D. Nguyen's lecture notes
Wikipedia

Introduction

- Use statistical values to evaluate the performance of a ML algorithm
- Compare the predictive power between different ML predictors
- We need to analyze two types of predictors, regressors and classifiers.

Evaluation Metrics for Regressors

- Root mean square error (RMSE)
- Pearson correlation (R_p)
- Spearman correlation (R_s)
- Kendall Tau (τ)

RMSE

Assume we have M true labels

$$y_1, y_2, \ldots, y_M$$

Our predictor gives M predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

(To avoid heavy notation we set

$$y_i \equiv y^{(i)}$$
 and $\hat{y}_i \equiv \hat{y}^{(i)}$ in this lecture)

RMSE will measure the root mean square errors between predicted labels and the exact labels

$$RMSE = \sqrt{\frac{\sum_{i=1}^{M} (\hat{y}_i - y_i)^2}{M}}$$

The smaller RMSE means the better predictive power

RMSE: Example

Our true labels

$$y_1 = 3, y_2 = -0.5, y_3 = 2, y_4 = 7$$

Predictor A gives the predicted labels:

$$\hat{y}_1 = 2.5, \hat{y}_2 = 0, \hat{y}_3 = 2, \hat{y}_4 = 8$$

RMSE for predictor RMSE_A =
$$\sqrt{\frac{\sum_{i=1}^{4}(\hat{y}_i - y_i)^2}{4}} = 0.612$$

Predictor B gives the predicted labels:

$$\tilde{y}_1 = 1.5, \tilde{y}_2 = 1.0, \tilde{y}_3 = 2, \tilde{y}_4 = 4$$

RMSE for predictor RMSE_B =
$$\sqrt{\frac{\sum_{i=1}^{4}(\tilde{y}_i - y_i)^2}{4}} = 1.837$$

Predictor A is better than predictor B.

Pearson Correlation

Assume we have M true labels

$$y_1, y_2, \ldots, y_M$$

Our predictor gives M predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

Pearson correlation measures the linear correlation between two vectors $(y_1, y_2, ..., y_M)$ and $(\hat{y}_1, \hat{y}_2, ..., \hat{y}_M)$

Interpretation

Formulation

Assume we have M true labels

$$y_1, y_2, \dots, y_M$$

Our predictor gives M predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

$$R_{p} = \frac{\sum_{i=1}^{M} (\hat{y}_{i} - \hat{\mu})(y_{i} - \mu)}{\sqrt{\sum_{i=1}^{M} (\hat{y}_{i} - \hat{\mu})^{2}} \sqrt{\sum_{i=1}^{M} (y_{i} - \mu)^{2}}}$$

where

$$\hat{\mu} = \frac{1}{M} \sum_{i=1}^{M} \hat{y}_i, \qquad \mu = \frac{1}{M} \sum_{i=1}^{M} y_i$$

Range

- $-1 \le R_p \le 1$
- $R_p > 0$: positive correlation
- $R_p < 0$: negative correlation
- $R_p = 0$: no correlation

Example

Our true labels

$$y_1 = 3, y_2 = -0.5, y_3 = 2, y_4 = 7$$

Predictor A gives the predicted labels

$$\hat{y}_1 = 2.5, \hat{y}_2 = 0, \hat{y}_3 = 2, \hat{y}_4 = 8$$

Pearson correlation of the Predictor A

$$R_{p}(A) = 0.985$$

Predictor B gives the predicted labels

$$\tilde{y}_1 = 1.5, \tilde{y}_2 = 1.0, \tilde{y}_3 = 2, \tilde{y}_4 = 4$$

Pearson correlation of the Predictor B

$$R_p(B) = 0.940$$

Predictor A is better than predictor B

Spearman Correlation

Spearman correlation measures monotonic relationship

While Pearson correlation measures the linear relationship

Spearman Correlation

Spearman Correlation

Formulation

- Spearman correlation is considered as the Pearson correlation of the rank values of variables
- Assume we have M true labels

$$y_1, y_2, \dots, y_M$$

Our predictor gives M predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

And their ranks are

 r_1, r_2, \dots, r_M and $\hat{r}_1, \hat{r}_2, \dots, \hat{r}_M$, respectively.

$$R_{s} = \frac{\sum_{i=1}^{M} (\hat{r}_{i} - \hat{\mu})(r_{i} - \mu)}{\sqrt{\sum_{i=1}^{M} (\hat{r}_{i} - \hat{\mu})^{2}} \sqrt{\sum_{i=1}^{M} (r_{i} - \mu)^{2}}}$$

■ Range: $-1 \le R_s \le 1$

Example

Our true labels

$$y_1 = 3, y_2 = -0.5, y_3 = 2, y_4 = 7$$

Predictor A gives the predicted labels

$$\hat{y}_1 = 2.5, \hat{y}_2 = 0, \hat{y}_3 = 2, \hat{y}_4 = 2$$

Get rank of values

$$y_{4} > y_{1} > y_{3} > y_{2}$$

$$rank(y_{1}) = 2, rank(y_{2}) = 4, rank(y_{3}) = 3, rank(y_{4}) = 1$$

$$\hat{y}_{1} > \hat{y}_{3} = \hat{y}_{4} > \hat{y}_{2}$$

$$rank(\hat{y}_{1}) = 1, rank(\hat{y}_{2}) = 4, rank(\hat{y}_{3}) = 2.5, rank(\hat{y}_{4})$$

$$= 2.5$$

 Spearman correlation = Pearson correlation of [2,4,3,1] and [1,4,2.5,2.5]

$$R_s = 0.632$$

When all ranks are distinct integers

$$R_S = 1 - \frac{6\sum_{i=1}^{M} (\hat{r}_i - r_i)^2}{M(M^2 - 1)}$$

 If we compare performance of two predictors, the higher is the better

Kendall Tau Correlation

- Kendall Tau is denoted by τ
- It measures relationship based on the rank of variables as in Spearman rank but Kendall Tau considers the

directional agreement instead of the difference

Formulation

Assume we have M true labels

$$y_1, y_2, \ldots, y_M$$

Our predictor gives M predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

- Any observation pairs (y_i, \hat{y}_i) and (y_j, \hat{y}_j) , $i \neq j$ are said to be
 - concordant: if both $y_i > y_j$ and $\hat{y}_i > \hat{y}_j$ or both $y_i < y_i$ and $\hat{y}_i < \hat{y}_i$
 - discordant: if both $y_i > y_j$ and $\hat{y}_i < \hat{y}_j$ or both $y_i < y_j$ and $\hat{y}_i > \hat{y}_j$
 - neither concordant or discordant: if $y_i = y_j$ or $\hat{y}_i = \hat{y}_i$

Formulation

- P = # of concordant pairs,
- Q = # of discordant pairs
- Kendall Tau τ is defined as

$$\tau = \frac{P - Q}{M(M - 1)/2}$$

• Kendall Tau accounting for ties, called Tau-b (τ_b)

$$\tau_b = \frac{P - Q}{\sqrt{P + Q + Y_0}\sqrt{P + Q + \hat{Y}_0}}$$

where Y_0 : # of ties only in y variables

 \hat{Y}_0 : # of ties only in \hat{y} variables.

We do not count the ties in both y and \hat{y} variables

Example

Our true labels

$$y_1 = 2, y_2 = -1, y_3 = 1, y_4 = 4$$

Predictor A gives the predicted labels

$$\hat{y}_1 = 1, \hat{y}_2 = 0, \hat{y}_3 = 2, \hat{y}_4 = 2$$

of concordant pairs = 4

of discordant pairs = 1;

of ties in y variables =0;

of ties in \hat{y} variables =1;

$$M=4$$

$$\tau = \frac{4-1}{4\times 3/2} = 0.5, \tau_b = \frac{4-1}{\sqrt{4+1+0}\times\sqrt{4+1+1}} \sim 0.548$$

Evaluations for Classifiers

Example

Our true labels

Predicted labels

Accuracy:

Count how many correctly predicted labels

$$Accuracy = \frac{7}{10} = 0.7$$

Confusion Matrix

 Confusion matrix is a table represents the details about the performance of algorithm on each label

Our true labels

Predicted labels

N=10	Predicted as 0	Predicted as 1
True label :0	2	2
True label: 1	1	5

True/False Positive/Negative

N=10	Predicted as 1	
True label :0	2 (True Negative (TN))	2 (False Positive (FP))
True label: 1	1 (False Negative (FN))	5 (True Positive (TP))

N=10	Predicted as 0	Predicted as 1
True label :0	TNR=TN/(TN+FP)	FPR=FP/(TN+FP)
True label: 1	FNR=FN/(FN+TP)	TPR=TP/(FN+TP)

True/False Positive/Negative

N=10	Predicted as 1		
True label :0	2 (True Negative (TN))	N)) 2 (False Positive (FP))	
True label: 1	1 (False Negative (FN))	5 (True Positive (TP))	

N=10	Predicted as 0 Predicted as 1		
True label :0	TNR=0.5	FPR=0.5	
True label: 1	FNR=0.167	TPR=0.833	

Due to the meaningful of each label, we may wish to reduce **FPR** or **FNR**

Receiver Operating Characteristic (ROC) Curve

In logistic regression, we choose threshold z = 0.5

$$p_{\mathbf{c}}(\mathbf{x}) \ge 0.5$$
: label of \mathbf{x} is 1 $p_{\mathbf{c}}(\mathbf{x}) < 0.5$: label of \mathbf{x} is 0

- If we increase value of threshold z
 - TPR? FPR? TNR? FNR?
- If we decrease value of threshold z
 - TPR? FPR? TNR? FNR?
- When we vary $0 \le z \le 1$, we get different pairs (TPR, FPR).

The plot of (TPR, FPR) gives us ROC curve.

ROC and **AUC**

Threshold	FPR	TPR
0.693	0.0	0.033
0.493	0.0	0.4
0.482	0.05	0.4
••••	•••	•••
0.311	0.3	0.833
•••		
0.024	1.0	1.0

ROC and **AUC**

AUC = area under the curve

Precision and Recall

- Used when we want to evaluate the performance of predictor on a specific label
- Assume our data has 12 dogs and some cats
- Our predictor identifies 8 dogs, however among these 8 dogs, only 5 ones are true dogs and the rest (3) is cat.

Precision of our predictor=
$$\frac{5}{8}$$

Recall (sensitivity) of our predictor=
$$\frac{5}{12}$$

Precision and Recall

actually positive actually negative

Precision =
$$\frac{TP}{TP+FP} = \frac{1}{100}$$

$$Recall = \frac{TP}{TP + FN} = \frac{1}{100}$$

classified (or found) as positive

Precision and Recall

- $0 \le \text{Precision} \le 1, 0 \le \text{Recall} \le 1$
- Precision = 1 or Recall = 1 does not indicate we have a good predictor
- Precision or Recall does not help us compare the performance between different predictors
- A good predictor needs to achieve high values for both Precision and Recall

Precision-Recall Curve and Average Precision (AP)

- For a predefined threshold we have a pair value (Precision, Recall).
- Plot of all pairs (Precision, Recall) = Precision-Recall curve
- AUC of Precision-Recall curve = Average Precision (AP)
- Consider N different thresholds, we obtain N pairs (P_i, R_i) , $1 \le i \le N$

$$AP = \sum_{i=1}^{N-1} (R_{i+1} - R_i) P_i$$

Precision-Recall Curve and Average Precision (AP)

F₁ Score

 F₁ score measures the harmonic mean of precision and recall

$$\frac{2}{F_1} = \frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}$$

or

$$F_1 = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

• $0 \le F_1 \le 1$. Higher F_1 value, better predictor

F₁ Score

Precision	Recall	F_1
1	1	1
0.1	0.1	0.1
0.5	0.5	0.5
1	0.1	0.182
0.3	0.8	0.36

F_{β} Score

- A generalized form of F_1 is F_{β} $F_{\beta} = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}}$
- When $\beta = 1$ we get F_1 score
- When $\beta > 1$ we emphasize precision
- When β < 1 we emphasize recall

How to Evaluate Predictor on Multilabels datasets

Example: our true labels[1,0,1,1,2,2,1,2,0,1]

Our predicted labels

N=10	Predicted as 0	Predicted as 1	Predicted as 2
True label :0	1	1	0
True label: 1	0	3	2
True label: 2	1	0	2

Accuracy =
$$\frac{1+3+2}{10}$$
 = 0.6

Micro-Average Precision and Micro-Average Recall

- Total $TP = TP^0 + TP^1 + TP^2$
- Total $FP = FP^0 + FP^1 + FP^2$
- Total $FN = FN^0 + FN^1 + FN^2$

$$Micro - average Precision = \frac{Total TP}{Total TP + Total FP}$$

$$Micro - average Recall = \frac{Total TP}{Total TP + Total FN}$$

Macro-Average Precision and Macro-Average Recall

Macro – Average Precision =
$$\frac{P^{0} + P^{1} + P^{2}}{3}$$
Macro – Average Recall =
$$\frac{R^{0} + R^{1} + R^{2}}{3}$$

Where Pⁱ and Rⁱ are the precision and recall for each label, respectively.