Introduction to Algorithms

Linear-Time Sorting Algorithms

- Insertion sort:
 - Easy to code
 - Fast on small inputs (less than ~50 elements)
 - Fast on nearly-sorted inputs
 - \blacksquare O(n²) worst case
 - lacktriangle O(n²) average (equally-likely inputs) case
 - $O(n^2)$ reverse-sorted case

- Merge sort:
 - Divide-and-conquer:
 - Split array in half
 - Recursively sort subarrays
 - ◆ Linear-time merge step
 - O(n lg n) worst case
 - Doesn't sort in place

- Heap sort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - ◆ Heap property: parent key > children's keys
 - O(n lg n) worst case
 - Sorts in place
 - Fair amount of shuffling memory around

- Quick sort:
 - Divide-and-conquer:
 - Partition array into two subarrays, recursively sort
 - ◆ All of first subarray < all of second subarray
 - ◆ No merge step needed!
 - O(n lg n) average case
 - Fast in practice
 - \blacksquare O(n²) worst case
 - ◆ Naïve implementation: worst case on sorted input
 - Address this with randomized quicksort

How Fast Can We Sort?

- We will provide a lower bound, then beat it
 - *How do you suppose we'll beat it?*
- First, an observation: all of the sorting algorithms so far are *comparison sorts*
 - The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
 - Theorem: all comparison sorts are $\Omega(n \lg n)$
 - ◆ A comparison sort must do O(n) comparisons (*why?*)
 - ◆ What about the gap between O(n) and O(n lg n)

Decision Trees

- Decision trees provide an abstraction of comparison sorts
 - A decision tree represents the comparisons made by a comparison sort. Every thing else ignored
 - (Draw examples on board)
- What do the leaves represent?
- How many leaves must there be?

Decision Trees

- Decision trees can model comparison sorts.
 For a given algorithm:
 - One tree for each *n*
 - Tree paths are all possible execution traces
 - What's the longest path in a decision tree for insertion sort? For merge sort?
- What is the asymptotic height of any decision tree for sorting n elements?
- Answer: $\Omega(n \lg n)$ (now let's prove it...)

Lower Bound For Comparison Sorting

- Thm: Any decision tree that sorts n elements has height $\Omega(n \lg n)$
- What's the minimum # of leaves?
- What's the maximum # of leaves of a binary tree of height h?
- Clearly the minimum # of leaves is less than or equal to the maximum # of leaves

Lower Bound For Comparison Sorting

So we have...

$$n! \leq 2^h$$

• Taking logarithms:

$$\lg (n!) \le h$$

Stirling's approximation tells us:

$$n! > \left(\frac{n}{e}\right)^n$$
• Thus: $h \ge \lg\left(\frac{n}{e}\right)^n$

Lower Bound For Comparison Sorting

So we have

$$h \ge \lg \left(\frac{n}{e}\right)^n$$

$$= n \lg n - n \lg e$$

$$= \Omega(n \lg n)$$

• Thus the minimum height of a decision tree is $\Omega(n \lg n)$

Lower Bound For Comparison Sorts

- Thus the time to comparison sort n elements is $\Omega(n \lg n)$
- Corollary: Heapsort and Mergesort are asymptotically optimal comparison sorts
- But the name of this lecture is "Sorting in linear time"!
 - How can we do better than $\Omega(n \lg n)$?

Sorting In Linear Time

- Counting sort
 - No comparisons between elements!
 - *But*...depends on assumption about the numbers being sorted
 - \bullet We assume numbers are in the range 1.. k
 - The algorithm:
 - Input: A[1..n], where A[j] \in {1, 2, 3, ..., k}
 - ◆ Output: B[1..*n*], sorted (notice: not sorting in place)
 - ◆ Also: Array C[1..*k*] for auxiliary storage

```
1
      CountingSort(A, B, k)
2
             for i=1 to k
3
                   C[i] = 0;
             for j=1 to n
4
5
                   C[A[j]] += 1;
             for i=2 to k
6
7
                   C[i] = C[i] + C[i-1];
8
             for j=n downto 1
9
                   B[C[A[j]]] = A[j];
10
                   C[A[j]] -= 1;
```

Work through example: $A = \{4 \ 1 \ 3 \ 4 \ 3\}, k = 4$

```
CountingSort(A, B, k)
2
             for i=1 to k
                                       Takes time O(k)
                    C[i] = 0;
3
             for j=1 to n
5
                    C[A[j]] += 1;
             for i=2 to k
6
                    C[i] = C[i] + C[i-1];
                                                 Takes time O(n)
8
             for j=n downto 1
9
                    B[C[A[j]]] = A[j];
10
                    C[A[j]] -= 1;
```

What will be the running time?

- Total time: O(n + k)
 - Usually, k = O(n)
 - Thus counting sort runs in O(n) time
- But sorting is $\Omega(n \lg n)!$
 - No contradiction--this is not a comparison sort (in fact, there are *no* comparisons at all!)
 - Notice that this algorithm is *stable*

- Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large $(2^{32} = 4,294,967,296)$

- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- Problem: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort the least significant digit first RadixSort(A, d) for i=1 to d StableSort(A) on digit i

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
 - Assume lower-order digits {j: j<i} are sorted
 - Show that sorting next digit i leaves array correctly sorted
 - If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - ◆ If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
 - Sort *n* numbers on digits that range from 1..*k*
 - Time: O(n + k)
- Each pass over n numbers with d digits takes time O(n+k), so total time O(dn+dk)
 - When d is constant and k=O(n), takes O(n) time

- Problem: sort 1 million 64-bit numbers
 - Treat as four-digit radix 2¹⁶ numbers
 - Can sort in just four passes with radix sort!
- Compares well with typical O(n lg n)
 comparison sort
 - Requires approx $\lg n = 20$ operations per number being sorted
- So why would we ever use anything but radix sort?

- In general, radix sort based on counting sort is
 - Fast
 - \blacksquare Asymptotically fast (i.e., O(n))
 - Simple to code
 - A good choice

Summary: Radix Sort

- Radix sort:
 - \blacksquare Assumption: input has d digits ranging from 0 to k
 - Basic idea:
 - Sort elements by digit starting with *least* significant
 - Use a stable sort (like counting sort) for each stage
 - Each pass over n numbers with d digits takes time O(n+k), so total time O(dn+dk)
 - When d is constant and k=O(n), takes O(n) time
 - Fast! Stable! Simple!

Bucket Sort

- Bucket sort
 - \blacksquare Assumption: input is *n* reals from [0, 1)
 - Basic idea:
 - ◆ Create *n* linked lists (*buckets*) to divide interval [0,1) into subintervals of size 1/*n*
 - Add each input element to appropriate bucket and sort buckets with insertion sort
 - Uniform input distribution \rightarrow O(1) bucket size
 - ◆ Therefore the expected total time is O(n)
 - These ideas will return when we study *hash tables*

Order Statistics

- The *i*-th *order statistic* in a set of *n* elements is the *i*-th smallest element
- The *minimum* is thus the 1-st order statistic
- The *maximum* is (duh) the *n*-th order statistic
- The *median* is the n/2 order statistic
 - \blacksquare If *n* is even, there are 2 medians
- How can we calculate order statistics?
- What is the running time?

Order Statistics

- How many comparisons are needed to find the minimum element in a set? The maximum?
- Can we find the minimum and maximum with less than twice the cost?
- Yes:
 - Walk through elements by pairs
 - Compare each element in pair to the other
 - Compare the largest to maximum, smallest to minimum
 - Total cost: 3 comparisons per 2 elements = O(3n/2)

Finding Order Statistics: The Selection Problem

- A more interesting problem is *selection*: finding the *i*-th smallest element of a set
- We will show:
 - A practical randomized algorithm with O(n) expected running time
 - A cool algorithm of theoretical interest only with O(n) worst-case running time

- Key idea: use partition() from quicksort
 - But, only need to examine one subarray
 - \blacksquare This savings shows up in running time: O(n)
- We will again use a slightly different partition than the book:

q = RandomizedPartition(A, p, r)


```
RandomizedSelect(A, p, r, i)
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q]; // not in book
    if (i < k) then
        return RandomizedSelect(A, p, q-1, i);
    else
        return RandomizedSelect(A, q+1, r, i-k);
            \leq A[q]
                                      \geq A[q]
   p
```

```
RandomizedSelect(A, p, r, i)
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q]; // not in book
    if (i < k) then
        return RandomizedSelect(A, p, q-1, i);
    else
        return RandomizedSelect(A, q+1, r, i-k);
            \leq A[q]
                                      \geq A[q]
   p
```

- Average case
 - For upper bound, assume *i*-th element always falls in larger side of partition:

$$T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max(k, n-k-1)) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$
 What happened here?

■ Let's show that T(n) = O(n) by substitution

• Assume $T(n) \le cn$ for sufficiently large c:

$$T(n) \leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=n/2}^{n-1} ck + \Theta(n)$$

$$= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k \right) + \Theta(n)$$

$$= \frac{2c}{n} \left(\frac{1}{2} (n-1)n - \frac{1}{2} \left(\frac{n}{2} - 1 \right) + \Theta(n) \right)$$
"Split" the recurrence

$$= c(n-1) - \frac{c}{2} \left(\frac{n}{2} - 1 \right) + \Theta(n)$$
Multiply it out

• Assume $T(n) \le cn$ for sufficiently large c:

$$T(n) \leq c(n-1) - \frac{c}{2} \left(\frac{n}{2} - 1\right) + \Theta(n) \qquad \text{The recurrence so far}$$

$$= cn - c - \frac{cn}{4} + \frac{c}{2} + \Theta(n) \qquad \text{Multiply it out}$$

$$= cn - \frac{cn}{4} - \frac{c}{2} + \Theta(n) \qquad \text{Subtract c/2}$$

$$= cn - \left(\frac{cn}{4} + \frac{c}{2} - \Theta(n)\right) \qquad \text{Rearrange the arithmetic}$$

$$\leq cn \quad \text{(if c is big enough)} \qquad \text{What we set out to prove}$$

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
 - Generate a good partitioning element
 - Call this element x

• The algorithm in words:

- 1. Divide *n* elements into groups of 5
- 2. Find median of each group (*How? How long?*)
- 3. Use Select() recursively to find median x of the $\lfloor n/5 \rfloor$ medians
- 4. Partition the *n* elements around *x*. Let k = rank(x)
- 5. **if** (i == k) **then** return x
 - if (i < k) then use Select() recursively to find *i*th smallest element in first partition
 - else (i > k) use Select() recursively to find (i-k)th smallest element in last partition

- (Sketch situation on the board)
- How many of the 5-element medians are $\leq x$?
 - At least 1/2 of the medians = $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$
- How many elements are $\leq x$?
 - At least 3 \[\ln/10 \] elements
- For large n, $3 \lfloor n/10 \rfloor \ge n/4$ (How large?)
- So at least n/4 elements $\leq x$
- Similarly: at least n/4 elements $\geq x$

- Thus after partitioning around x, step 5 will call Select() on at most 3n/4 elements
- The recurrence is therefore:

$$T(n) \le T(\lfloor n/5 \rfloor) + T(3n/4) + \Theta(n)$$

 $\le T(n/5) + T(3n/4) + \Theta(n)$ $\lfloor n/5 \rfloor \le n/5$
 $\le cn/5 + 3cn/4 + \Theta(n)$ Substitute $T(n) = cn$
 $= 19cn/20 + \Theta(n)$ Combine fractions
 $= cn - (cn/20 - \Theta(n))$ Express in desired form
 $\le cn$ if c is big enough What we set out to prove

- Intuitively:
 - Work at each level is a constant fraction (19/20) smaller
 - Geometric progression!
 - \blacksquare Thus the O(n) work at the root dominates

Linear-Time Median Selection

- Given a "black box" O(n) median algorithm, what can we do?
 - ith order statistic:
 - \bullet Find median x
 - ◆ Partition input around *x*
 - if $(i \le (n+1)/2)$ recursively find ith element of first half
 - else find (i (n+1)/2)th element in second half
 - T(n) = T(n/2) + O(n) = O(n)
 - Can you think of an application to sorting?

Linear-Time Median Selection

- Worst-case O(n lg n) quicksort
 - Find median x and partition around it
 - Recursively quicksort two halves
 - $T(n) = 2T(n/2) + O(n) = O(n \lg n)$