多元回归分析中多重共线性的处理

天津医科大学卫生统计教研室 孟庆和

多元回归分析是一种应用广泛的多变量分析方法。在应用时,其假设各自变量之间不存在直线相关关系,即多重共线性。如果该假设不满足,则很难得到正确的分析结果^[1]。关于多重共线性的诊断,在许多的统计分析软件包中都有相应的分析方法^[2]。但是,如何对多重共线的问题进行处理呢?常规的方法是将存在共线性的指标剔除,然后再进行回归分析,将所得到的回归方程进行比较,选择一个最佳的回归方程。此时,虽然消除了多重共线性的影响,但其可导致回归参数真值的估计产生严重的偏差。

假设反映自变量和因变量之间真实关系的 多元回归模型为:

$$Y = X \beta + \epsilon = (X_1 X_2) (\beta_2^{\beta_1}) + \epsilon$$
$$= X_1 \beta_1 + X_2 \beta_2 + \epsilon$$
(1)

其中矩阵 X_2 由可能引起共线性的变量构成。当 X_2 从模型中被剔除以后, 实际使用的模型为:

$$Y = X {}_{1}\beta_{1} + \epsilon$$
 (2)

应用最小二乘法,估计回归参数向量 β 的值为:

$$eta_1 = (X_{-1}X_{-1})^{-1}X_{-1}Y$$

由于公式(1) 为真实模型, 有:
 $E(\hat{eta}_1) = E((X_{-1}X_{-1})^{-1}X_{-1}Y)$
 $= (X_{-1}X_{-1})^{-1}X_{-1}E(Y)$
 $= (X_{-1}X_{-1})^{-1}X_{-1}(X_{-1}\beta_1 + X_2\beta_2)$
 $= \beta_1 + A\beta_2$

其中 $A = (X_1X_1)^{-1}X_1X_2$ 为偏误矩阵。 由此可见,从回归模型中剔除引起共线性的自变量,可引起回归参数的错误估计。 因此,在采用此方法时,应综合各方面的因素来分析,如果引起多重共线性的变量在专业上属于不重要的指标,则可将其剔除,否则,应将其留在模型中,应用其他的方法处理多重共线性问题,

在进行回归分析时,分析的变量往往是时间序列数据,由此可产生严重的多重共线性问题。本文下面介绍一种处理时间序列数据多重共线性的方法。

方 法

1. 收集具有共线性指标的横断面数据,即同一时点,不同地区的该指标资料和其相应的因变量资料,按最小二乘法估计该指标(自变量, $\chi_{,l}$)单独对因变量的回归方程,其回归系数用 β_{l} 表示,将其代入回归方程得:

$$Y_{t} = \beta_{0} + \beta_{1}X_{t1} + \beta_{2}X_{t2} + ... + \beta_{i}X_{ti} + \epsilon$$
 (3)

$$Y_{t} - \beta_{1}X_{t1} = \beta_{0} + \beta_{2}X_{t2} + ... + \beta_{i}X_{ti} + \epsilon$$

$$\diamondsuit: Y_t^* = Y_{t^-} \hat{\beta}_1 X_{t1}$$
 (4)

则:
$$Y_t^* = \beta_0 + \beta_2 X_{i2} + ... + \beta_i X_{ii} + \epsilon$$
 (5)

2. 用具有时间序列数据其他自变量估计对 *yi* 的回归方程, 得:

$$Y_{t}^{*} = \beta_{0} + \beta_{2}X_{t2} + ... + \beta_{i}X_{ti}$$
 (6)

利用上述方法求出 β_{λ} β_{λ} ..., β_{i} 以后, 即可得到共线性减弱了的回归方程。

实例分析

分析某地区经济收入、卫生状况与某病发病率的关系、数据见表 1。

表 1 某地区 1985~ 1994 年某病发病率 经济收入、卫生状况

年份	某病发 病率(‰)	经济收入 (元/月)	卫生状况 (综合评分)
	(Y_t)	(X_1)	(X ₂)
1985	35.4	351	8.5
1986	42. 5	326	7.4
1987	39. 2	309	6.2
1988	36.7	348	8.3
1989	39.8	312	6.0
1990	42.6	328	7.1
1991	51.7	286	5.9
1992	48. 5	291	6. 1
1993	38.8	342	8.2
1994	37.4	349	8.4

应用 SA S 软件包进行多元回归分析, 结果 见表 2。

表 2 多元回归分析结果

变量	回归系数	标准误	_t 值	P 值
X 1	- 0.4346	0.0911	- 4.77	< 0.01
X 2	5. 6173	2.0023	2.81	< 0.05

从模型的结果看,两个变量在回归分析中均有较显著的意义。但是,卫生状况对该病发病率的作用恰好相反,很显然不合理。因此,考虑是否存在共线性,对其进行共线性诊断,结果见表3。

表 3 对 X 1, X 2 的 共线性诊断结果

序号	特征值	条件数	方刻	隻比
<u> </u>	付加阻	赤什奴	X 1	X 2
1	1.9530	1.0000	0.0235	0. 0235
2	0.0470	6. 4490	0. 9765	0.9765

从表 3 可见, 两者存在着共线关系。为了减弱经济收入和卫生状况的共线性, 可进行如下分析:

(1) 收集 X_2 的横断面数据, 也就是同一时间, 不同地区的该病发病率和卫生状况资料, 并计算两者的回归系数, 结果见表 4。

表 4 不同地区发病率和卫生状况

地区	某病发病率(‰)	卫生状况(综合评分)
1	35.4	8.4
2	36.2	8.3
3	34.8	8.6
4	33.9	8.9
5	35.8	8.3
6	36.0	8.1

其回归系数为: - 2.9492。然后,按公式 (4) 计算 y_{\star}^{*} 。

(2) 用时间序列数据 X_1 (经济收入) 估计对 Y_i^* 的回归方程, 得到回归方程为:

 $Y_t^* = 123.3619 - 0.3188X_1$

估计出 $\beta \setminus \beta$ 以后,即得到了共线性减弱的回归方程。

 $Y_t = 123.3619 - 0.3188X_1 - 2.9492X_2$

参考文献

- 1. 李严洁 多元回归中的多重共线性及其存在的后果 中国卫 生统计 1992; 9(1): 24
- 柳丽 回归分析中的多重共线性的诊断与处理 中国卫生统计 1994; 11(1): 5
- 3. J. Tobin A Statistical Demand Function for food in the U. S. A., Journal of Royal Statistical society, Ser. A, 113- 141