A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 4ED

Bookmark

Show all steps: ON

ON

Problem

Let G be a group. By an *automorphism* of G we mean an isomorphism $f: G \to G$.

Let I(G) designate the set of all the inner automorphisms of G. That is, $I(G) = \{\phi_a : a \in G\}$. Use part 3 to prove that I(G) is a subgroup of Aut(G). Explain why I(G) is a group.

Step-by-step solution

Step 1 of 3

Suppose that $I(G) = \{\phi_a : a \in G\}$ is the set of all the inner automorphisms of G.

Objective is to prove that I(G) is a subgroup of Aut(G).

Consider following properties of inner automorphism of group G:

For arbitrary $a, b \in G$,

$$\phi_a \quad \phi_b = \phi_{ab}$$

$$(\phi_a)^{-1} = \phi_{a^{-1}}.$$

One step test: If H is a nonempty subset of group G, then H will be subgroup of G if and only if for all $a, b \in H$

$$ab^{-1} \in H$$

Comment

Step 2 of 3

Since every inner automorphism of G is an automorphism of G. Also, identity $\phi_e \in I(G)$.

Therefore, I(G) is a nonempty subset of Aut(G).

Let $\phi_a,\phi_b\in I(G)$ such that $a,b\in G$. Consider the composition ϕ_a $(\phi_b)^{-1}$ and use the properties defined above as :

$$\begin{split} \phi_a \quad \left(\phi_b\right)^{-1} &= \phi_a \quad \phi_{b^{-1}} \\ &= \phi_{ab^{-1}} \,. \end{split}$$

Since $a,b\in G$, so $ab^{-1}\in G$ as G is a group. This implies that $\phi_{ab^{-1}}\in I(G).$

Comment

Step 3 of 3

Hence, by one step test of subgroup it implies that I(G) is a subgroup of Aut(G).

Note that, identity ϕ_e and inverse of each nonzero element $(\phi_a)^{-1} = \phi_{a^{-1}}$ exists in I(G). Also composition of functions is closed as well as associative. Therefore, I(G) forms a group.

Comment