

Table des matières

1	Var	iétés algébriques	7
	1.1	Nullstellensatz	7
	1.2	Espace projectif	9
	1.3	foncions régulières	9
	1.4	Morphismes d'ensembles algébriques	10
	1.5	Espaces annelés	10
	1.6	Recollements	12
	1.7	Sous-variétés	12
	1.8	Variétés projectives	12
2	Din	nension	13

TABLE DES MATIÈRES

Introduction

On est censés prouver Riemann-Roch.

TABLE DES MATIÈRES

Chapitre 1

Variétés algébriques

1.1 Nullstellensatz

Pas oublier de rechopper mon carnet. Y'a les preuves complètes.

Théoreme 1.1.1. Y'a une correspondance entre points fermés de $\mathbb{A}^n(k)$ et idéaux maximaux dans $Spm(k[T_1,\ldots,T_n])$.

Corollaire 1.1.2. Si A est une k-algèbre de t.f. et \mathfrak{m} un idéal maximal alors A/\mathfrak{m} est une extension finie de k.

Lemme 1.1.3. Si A est une k-algèbre de t.f. alors $\sqrt{I} = \bigcap_{\mathfrak{m} \in Spm(A), I \subset \mathfrak{m}} \mathfrak{m}$

Lemme 1.1.4. Si k est algébriquement clos, c'est un homéomorphisme (entre $\mathbb{A}^n(k)$ et $Spm(k[T_1, \ldots, T_n])$.

Démonstration. On prends le morphisme quotient, c'est l'évaluation et le noyau est de la forme $(T_i - t_i)_i$.

Théoreme 1.1.5 (Nullstellensatz). Si $k = \bar{k}$ alors $I(Z(J)) = \sqrt{J}$.

Démonstration. On a

$$I(Z(J)) = I(\bigcup_{x \in Z(J)} x)$$

$$= \bigcap_{x \in Z(J)} I(\{x\})$$

$$= \bigcap_{x \in Z(J)} \mathfrak{m}_x$$

$$= \bigcap_{\mathfrak{m} \in Spm(A), J \subset M} \mathfrak{m}$$

et la dernière est \sqrt{J} par le lemme. (omg, revoir la preuve dans Atiyaah) \square

Remarque 1 (!). L'endroit où on utilise le weak nullstellensatz on a besoin de k algébriquement clos. La dernière qui vient du lemme y'a pas besoin. Autrement dit, on peut utiliser Spm pour faire de la géométrie algébrique sur un corps non algébriquement clos.

Définition 1.1.6. $A(Z) = k[T_1, ..., T_n]/I(Z)$

Pour $f \in A(z)$ et \tilde{f} t.q $p(\tilde{f}) = f$ pour $p: k[T_1, \dots, T_n] \to A(Z)$. Pour $z \in k^n$ on peut toujours déf $f(z) := \tilde{f}(z)$. En particulier, on peut déf

Définition 1.1.7. $D(f) = \{s \in Z : f(z) \neq 0\} = D(\tilde{f}) \cap Z$. Avec $D(\tilde{f}) = \mathbb{A}^n(k) - Z(\tilde{f})$.

Remarque 2. Comme d'hab juste il définit pour des fonctions a priori par déf sur $\mathbb{A}^n(k)$.

Remarque 3 (C'est super chiant). Faut faire gaffe ducoup en fonction de la fonction que j'utilise ou de son lift pour les inclusions.

Corollaire 1.1.8. Si $f, g \in A(Z)$ et $Z \subset \mathbb{A}^n(k)$. On a

- Pour $J_1, J_2 \leq A(Z) : Z(J_1) \subset Z(J_2) \leftrightarrow J_2 \subset \sqrt{J_1}$.
- $\bullet \ D(f) \subset D(g) \leftrightarrow \exists h \in \mathbb{A}(Z) \ t.q. \ f^n = gh.$
- Les ouverts principaux forment une base de la topologie.

Démonstration. Pour le premier point si $Z(J_1) \subset Z(J_2)$ alors faut lift dans $k[T_1, \ldots, T_n]$ avant d'appliquer le nullstellensatz. Pour le deuxième, c'est clair. Pour le troisième, sur $\mathbb{A}^n(k)$ on prend $f \in I(Z)$, où $U = \mathbb{A}^n(k) - Z$, t.q $f(x) \neq 0$ (possible car $x \notin Z$.

Proposition 1.1.9. Soit Z un ensemble algébrique affine. Alors Z est irréductible ssi I(Z) est premier. Si $k = \bar{k}$, $I \leq K[T_1, \ldots, T_n]$ alors Z(J) est irréductible ssi \sqrt{J} est premier.

Démonstration. Avec les nouvelles notations c'est direct, avec les anciennes si Z(J) est irreductible $Z(f) \cup Z(g) = Z(J)$ implique $Z(J) \subset Z(f)$ ou $Z(J) \subset Z(g)$.

Lemme 1.1.10. Soit A un anneau noetherien, alors les idéaux radicaux sont des intersections finies d'idéaux premiers.

Démonstration. On regarde l'ensemble des idéaux qui sont pas des intersections d'idéaux premiers. Comme A est noethérien y'a un élement maximal I qui n'est pas premier. Soit $a,b \in A-I$ t.q. $ab \in I$. On considère $I_a\sqrt{I+aA}$ et $I_b = \sqrt{I+bA}$. Ils sont plus gros que I donc intersections d'idéaux premiers. En particulier on prouve facilement que $I = I_a \cap I_b$ (I est radical).

Proposition 1.1.11. Si $k = \bar{k}$, on a une décomposition unique des ensembles algébriques en variétés irréductibles non contenues les unes dans les autres.

Démonstration. $I(Z) = \bigcap_{i=1}^m \mathfrak{b}_i$. On retire les \mathfrak{b}_i contenus dans les autres. \square

1.2 Espace projectif

On considère $k[T_0, \ldots, T_n] = \bigoplus_{d \geq 0} S_d$.

Lemme 1.2.1. Sur les corps infinis, $f \in S_d$ ssi $\lambda^d f(x_i, i) = f(\lambda x_i, i)$.

Définition 1.2.2. Un idéal est homogène ssi dès que $f = f_1 + \ldots + f_n \in I$ alors $f_i \in I$. C'est équivalent à être généré par des éléments homogènes, i.e. $I = \bigoplus S_d \cap I$.

Remarque 4. Comme en géo diff regarder ce qu'il se passe quand on regarde des polynômes homogènes dans \mathbb{A}^{n+1} et qu'on les pousse (homéo?).

Définition 1.2.3. Pour I un idéal homogène de $k[T_0, \ldots, T_n]$, on définit $Z_+(I) = \{P \in \mathbb{P}^n(k) : f(P) = 0 \ \forall f \in I \ \text{f homogène} \}$ où autrement on lift P et on prends f quelconque. Si k est infini et $Z \subset \mathbb{P}^n(k)$, on définit $I_+(Z) = I(\pi^{-1}(Z))$.

Théoreme 1.2.4 (Nullsellensatz projectif). On suppose $k=\bar{k}$ et J homogène. On a

- $Z_+(J) = \emptyset$ ssi $(T_0, \dots, T_n) \subset J$.
- Si $Z_+(J) \neq \emptyset$ alors $I_+(J_+(J)) = \sqrt{J}$.

Démonstration. Si $Z_+(J) = \emptyset$ on lift à $\mathbb{A}^{n+1} - 0$ pour voir que $Z(J) \subset \{0\} = (T_0, \dots, T_n)$. Sinon $I_+(Z_+(J)) = I(\pi^{-1}(Z_+(J))) = I(\pi^{-1}(Z_+(J)) \cup \{0\}) = \sqrt{J}$.

1.3 foncions régulières

Revoir que la topologie de Zariski c'est la plus petite topologie que rend continue les polynômes.

Définition 1.3.1 (Fonction régulière). On décrit pour $Z \subset \mathbb{A}^n(k)$ l'anneau $\mathcal{O}_Z(U)$. On prend les fonctions qui sont localement des fractions rationnelles.

Note 1. Trouver exactement où on peut écrire des polynômes, les ouverts sont quasi-compacts(!).

Lemme 1.3.2. \mathcal{O}_Z est un faisceau pour les restrictions naturelles.

Démonstration. C'est évident avec la déf mdr.

Proposition 1.3.3. *Soit* $Z \subset \mathbb{A}^n(k)$.

- Les fonctions régulières sont continues.
- Pour tout $f \in \mathbb{A}(Z)$, la flèche $\mathbb{A}(Z) \to \mathcal{O}_Z(D(f))$ passe au quotient en un isom $\mathbb{A}(Z)_f \simeq \mathcal{O}_Z(D(f))$.
- $\mathbb{A}(Z) \simeq \mathcal{O}_Z(Z)$.

Démonstration. Pour le premier point l'idée c'est que localement on peut se mettre sur un ouvert tel que $f|_U(U) = \{pt\}$. Le deuxième point c'est la surjectivité qu'y faut voir. Le troisième point c'est le plus cool, c'est l'idée que on commence par décomposer Z en une union finie $\bigcup_i D(f_i)$ où on est une fraction rationnelle. Ensuite, on obtient $(gf_i - h_i)|_{D(f_i)} = 0$, faut relever puis dérouler avec le fait que $1 \in (f_i, i)$ quelque part.

Remarque 5. Si on prend $\mathbb{A}^2 \setminus (0,0)$, il a les mêmes sections globales que \mathbb{A}^2 . Ca prouve que cet ouvert est pas affine.

1.4 Morphismes d'ensembles algébriques

Dans les ensembles algébriques on peut directement prendre des fonctions polynomiales! C'est la preuve d'avant.

Théoreme 1.4.1. On a une équivalence de catégories entre les k-algèbres de type finies réduites et la k-variétés.

Note 2. Revoir vite fait la construction.

1.5 Espaces annelés

Définition 1.5.1. Un espace annelé est un espace topologique X muni d'un faisceau de k-algèbre pour nous.

Définition 1.5.2. Un morphisme d'espaces annelés

$$(|X|, \mathcal{O}_X) \to (|Y|, \mathcal{O}_Y)$$

est un couple ($|f|, f^{\#}$). Où |f| est un morphisme d'espaces topologiques et $f^{\#}: O_Y \to |f|_* \mathcal{O}_X$ un morphisme tels que les flèches induites sur les fibres sont des morphismes d'anneaux locaux.

Note 3. Le faisceau $|f|_*\mathcal{O}_X$ est le pullback classique. Si y = |f|(x), comme d'habitude on a

$$f^{\#}\colon O_{Y,y}\to (|f|_*\mathcal{O}_X)_y\to \mathcal{O}_{X,x}$$

Enfin en fait comme c'est localement annelé apparemment on peut montrer que $f^{\#}$ c'est automatiquement le pullback de fonctions.

Théoreme 1.5.3. Le couple (Z, \mathcal{O}_Z) est un espace annelé.

Démonstration. Les fibres
$$\mathcal{O}_{Z,z}$$
 sont les $\mathbb{A}(Z)_{\mathfrak{m}_z}$.

de notre équivalence de base

 $\{\text{ensembles algébriques affines}\} \rightarrow \{k\text{-algèbre réduite de type fini}\}$

on plonge les ensembles algébriques dans les espaces localements annelés. En fait c'est pleinement fidèle, on a pas un nouvel objet.

Proposition 1.5.4. On a une bijection

$$Hom_{algSets}(X,Y) \to Hom_{LocRingedSpace}((X,\mathcal{O}_X),(Y,\mathcal{O}_Y))$$

Démonstration. Étant donné $f: X \to Y$, on définit $f^{\#}(U): \mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}U)$ par $s \mapsto s \circ f$. Et à f on associe $(f, f^{\#})$. Maintenant si on a un $(f, f^{\#})$ un morphisme d'espaces localement annelés quelconque, faut montrer que f est un morphisme d'ensemble algébriques et que $f^{\#}$ est bien le pullback habituel. Faut se rappeler que $f^{\#}(\mathfrak{m}_y) \subset \mathfrak{m}_x$ tel que f(x) = y. En particulier, le grand carré de

$$s \longmapsto f^{\#}s$$

commute, et la flèche $\mathcal{O}_Y(U) \to k$ est l'évaluation, la flèche $k \to k$ est l'identité $(1 \mapsto 1)$, i.e. $f^{\#}(s)(x) = s(f(x))$. On a montré que $f^{\#}$ est le pullback habituel. Pour montrer que c'est un morphisme, on peut regarder $\tilde{f}: X \to Y \to \mathbb{A}^n_k$. On obtient

$$\tilde{f}(\mathbb{A}^n(k)) \colon k[T_1, :, T_n] \to \mathcal{O}_X(X)$$

qui à T_1 associe f_1 . En particulier, c'est $T_1 \circ f$ par le point d'avant. De sorte que \tilde{f} est défini par des polynômes et donc un morphisme.

1.6 Recollements

1.7 Sous-variétés

On appelle variété des unions finies de variétés affines avec le faisceau structurant.

Définition 1.7.1 (Sous-variété). Pour un fermé dans $Z \subset X$ une variété algébrique. On définit,

$$\mathcal{O}_Z(V) = \{ f \colon V \to k | \forall z \in V \exists g \in \mathcal{O}_X(U), U \cap Z \subset V, g|_{U \cap Z} = f|_{U \cap Z} \}$$

autrement dit c'est juste $i^{-1}\mathcal{O}_X$ pour $i: Z \subset X$.

Lemme 1.7.2. Soit X une variété algébrique et $Z \subset X$ fermé. Alors Z est une variété algébrique. Si X est affine alors Z aussi.

Démonstration. On doit montrer que Z est un recouvers d'affine. Suffit de montrer que $Z \cap U$ est affine si U est affine. Suffit de le montrer dans $X = \mathbb{A}^n$ et là \mathcal{O}_Z c'est littéralement le faisceau de fonction régulière donc on a fini. (Il définit une variété affine comme un fermé topologique de \mathbb{A}^n plus faisceau)

1.8 Variétés projectives

Dans $\mathbb{P}^n(k)$ on définit sur $X = Z_+(I)$,

$$\mathcal{O}_X(U) = \{f : U \to k, \text{Localement une fraction homogène}\}\$$

Si on définit la localisation homogène en P homogène, avec $B = k[T_1, \ldots, T_n]/I$, via $B_{(P)}$ les fractions de degrés 0. Plus rigoureusement, via $k[T_1, \ldots, T_n]_{(P)}/I_{(P)}$ avec $I_{(P)} = \{Q/P^n | Q \in I\}$.

Proposition 1.8.1. Si $X = Z_+(I) \subset \mathbb{P}^n(k)$ et $U = X \cap D_+(p)$ $(\bar{P} = p)$. On $a B_{(p)} \simeq \mathcal{O}_X(U)$.

Proposition 1.8.2. Si P est non constant homogène alors $D_+(P)$ est une variété affine. Si $P \in \mathcal{O}_Z(Z) = B$ de degré ≥ 1 pareil.

Définition 1.8.3. Les variétés quasi-projectives sont les localement fermées dans $\mathbb{P}^n(k)$.

Chapitre 2

Dimension

Définition 2.0.1. On prend la dimension de Krull avec le sup des chaines de fermés irréductibles.