

Circuits and Systems for Embodied Al Exploring Multi-Modal Perception for Nano-UAVs ... and beyond

Luca Benini

Ibenini@iis.ee.ethz.ch Iuca.benini@unibo.it

youtube.com/pulp platform

PULP Platform

Open Source Hardware, the way it should be!

Embodied AI

Path Towards Full Autonomy

[SCR23] 2010 - 2018

2019 - 2025

2025...

Embodied Al

Efficient

On-car Computing P_{MAX} < 1.5 kW

Model complexity 10× every ~2.5 years

[Al Index Report 24]

Embodied Al

On-car Computing P_{MAX} < 1.5 kW

Model complexity
10× every ~2.5 years
Moore's Law
10x every 12 years!

[AMD HotChips24]

Autonomous Nano-Drones

Advanced autonomous drone

A. Bachrach, "Skydio autonomy engine: Enabling the next generation of autonomous flight," IEEE Hot Chips 33 Symposium (HCS), 2021

- 3D Mapping & Motion Planning
- Object recognition & Avoidance
- 0.06m² & **800g of weight**
- Battery Capacity 5410 mAh

27 g (30× lighter) Weight:

Battery capacity: 250 mAh (20× smaller)

https://www.bitcraze.io/products/crazvflie-2-1

Intelligence in a 30× smaller payload, 20× lower energy budget?

Achieving True Autonomy on Nano-UAVs

Multiple,
complex,
heterogeneous

tasks at high speed and robustness fully on board

Multi-GOPS workload at extreme efficiency \rightarrow P_{max} 100mW

Efficiency through Heterogeneity: Multi-Specialization

Brain-inspired: Multiple areas, different structure different function!

Coordination of movement

Balance

Posture

Written and spoken

language understanding

Kraken: 22nm SoC, Multiple Heterogeneous Accelerators

The *Kraken*: an "Extreme Edge" Brain

- RISC-V Cluster
 8 Compute cores +1 DMA core
- CUTIE
 Dense ternary-neural-network

 accelerator
- SNE
 Energy-proportional spiking-neural-network accelerator

Technology	22 nm FDSOI
Chip Area	9 mm ²
SRAM SoC	1 MiB
SRAM Cluster	128 KiB
VDD range	0.55 V - 0.8 V
Cluster Freq	~370 MHz
SNE Freq	~250 MHz
CUTIE Freq	~140 MHz

CUTIE: Perception from Frame Sensors

Output channel compute unit (OCU)

- Completely Unrolled Ternary Neural Inference Engine: K × K window, all input channels, cycle-by-cycle sliding
- One Output Compute Unit (OCU) computes one output activation per cycle!
- Zeros in weights and activations, spatial smoothness of activations reduce switching activity

Aggressive quantization and full specialization

Kraken's CUTIE Implementation

Data in 1.6 bits (Ternary value) with
 On-the-fly Compression/Decompression

- Configuration in Kraken
 - 96 channels (Output compute units)
 - 3 × 3 kernels
 - 64 × 64 pixels feature maps (158 KiB)
 - 9 layers of weights (117 KiB)
- Lots of TMAC/cycle
 - 96 OCUs, 96 Input channels, 3 × 3 kernels:
 - $96 \times 96 \times 3 \times 3 = 82'944$ Ternary-MAC/cycle

SNE: Perception on Event Sensors

Event Sensors – DVS camera

Ultra-low latency

Energy- proportional interface

Spiking Neural Engine (SNE)

[Di Mauro et al. DATE22]

SNE works seamlessly with DVS (event-based) sensors

How does a convolution work in SNNs?

Perform operations only if a spike is present

Event consumption, and output spikes generation

A more complex dynamic than conventional DNNs neurons:

- Membrane Potential Accumulation/Activation 1× SynAcc = 1× 4b-ADD + 1× 8b-COMPARE
- Membrane Potential decay 1× SynDec = (1× 8b-MUL) + (1× 8b-MUL + 1× 8b-ADD)

Single SNE Engine Architecture

Spike event out

Each PE filters only the events in its spatial region of interest

Patch Patch 1

Tiled execution on an input patch

Neuron State State State State Sequencer Spike event in State State State State Event Dispatcher State Weight Memory 256 slots of 9 State 4bits State Engine

Achieves true energy-proportionality: 1 neuron update per cycle

General Purpose: Domain-Specialized RV32 Core (PE)

RISC-V° Instruction set: open and extensible by construction (great!)

8-bit Convolution Vanilla a0,a0,1 addi **RISC-V** t1,t1,1 t3,t3,1 core addi t4,t4,1 a7,-1(a0) lbu a6,-1(t4) a5,-1(t3) lbu t5,-1(t1) lbu s1,a7,a6 mul mul a7,a7,a5 add s0,s0,s1 mul a6,a6,t5 t0,t0,a7 add a5,a5,t5 mul t2,t2,a6 t6,t6,a5 add

Specialized for AI \rightarrow Mixed precision SIMD (16-2bit)

```
Init NN-RF (outside of the loop)
lp.setup
pv.nnsdotup.h s0,ax1,9
pv.nnsdotsp.b s1, aw2, 0
pv.nnsdotsp.b s2, aw4, 2
pv.nnsdotsp.b s3, aw3, 4
pv.nnsdotsp.b s4, ax1, 14
```


15x less instructions than Vanilla 90%+ ALU Utilization

Specialization Cost: Power, Area: $1.5 \times \uparrow$ Time $15 \times \downarrow \rightarrow$ E = PT $10 \times \downarrow$

s5,a0,1c000bc

PULP Paradigm: A PE cluster accelerates a host system

Advancing the SOA on all tasks

RISC-V Cluster

- Comparable 32bits-8bits SOA Energy efficiency to other PULPs
- The highest energy efficiency on subbyte SIMD operations (4b-2b)

SNE

1.7× higher than SOA energy/efficiency

CUTIE

 2× higher energy efficiency improvement over SOA

CUTIE, SNE work concurrently → SNN+TNN "fused" inference

- L. Deng et al., "Tianjic," JSSC 2020
- B. Moons et al., "Binareye," CICC, 2018
- D. Rossi et al., "Vega," JSSC 2022.

Kraken Shield and System Architecture

PU

- 7g payload
- DVS and frame-based cameras → real-time multi-modal perception.
- Designed for integration into nano-UAV platforms

Spiking Neural Networks for Depth Estimation

 $SNN \rightarrow SCNNs$ for depth estimation.

Depth Estimation

1.02k inferences/s

Energy Efficiency

18 µJ per inference

Low Power

98mW @ (220MHz, 0.8V)

Ternary Neural Networks for Object Classification

CUTIE \rightarrow TNN for object classification.

Object Classification

10k inferences/s

Energy Efficiency

6 μJ per inference

Low Power

110mW @ (330MHz, 0.8V)

Kraken Power Consumption (all Included)

Combined power consumption of SNE, CUTIE, PULP cluster

Model	Inference/s	µJ/inf	Power (mW)	
SNE	1.02k	18	98	
CUTIE	10k	6	110	
PULP	221	750	165	

Kraken power waveform executing Tiny-PULP-Dronet at FC@280 MHz, CL@300 MHz, Vdd@0.8 V

P=373mW, representing just 5% of the UAV's power budget

How to deploy applications to PULP/Kraken?

Heterogeneous, Multiscale Accelerated Computing

Host, L2, L3 IOs

Multiple Scales of acceleration

Extensions to processor cores

- **Explore new extensions**
- Efficient implementations

Shared-memory Accelerators

- Domain specific
- Local memory

Multiple Decoupled Accelerators

- Communication
- Synchronization

High-speed on-chip interconnect (NoC, AXI, other..)

Computing cluster with tightly coupled accelerators

RISC-V is a key enabler \rightarrow max agility, enabling SW build-up, without vendor lock-in

accelerators

Tightly-coupled Accelerators

HWPE: Reconfigurable Binary Engine

$$\mathbf{y}(k_{out}) = \mathbf{quant}\left(\sum_{i=0..M}\sum_{j=0..N}\sum_{k_{in}} 2^{i}2^{j}\left(\mathbf{W_{bin}}(k_{out},k_{in})\otimes\mathbf{x_{bin}}(k_{in})\right)\right)$$

Energy efficiency 10-20× (0.1pJ/OP) w.r.t. SW on cluster @same accuracy

Siracusa: Higher performance cluster with N-Eureka

MRAM
_{256b}
Cooperative At-MRAM
Neural Processing Unit

288b

High-Bandwidth
Shared L1 Memory

256b

Flexible RISC-V
Compute Cluster

- Tight coupling between all units at high bandwidth and low latency
- Seamless cooperation between hardwareaccelerated and softwaredefined functions

A "classic" PULP cluster with 8 RV32IMCFXpulpnn cores

- private multi-precision FPUs
- hierarchical instruction cache
 (4 KiB + 512B per core)
- Xpulpnn extensions for integer mixed-precision DSP + DNNs
- 256 KiB of Tightly-Coupled Data Memory (TCDM) divided in 16 word-interleaved SRAM banks
- L1 Logarithmic Xbar for single-cycle, high concurrency access

Boost memory energy efficiency

A large power-optimized on-chip memory for network weights \rightarrow cluster-level weight stationarity

4x 1MiB SRAM banks (64b-wide)

4x 1MiB MRAM banks (64b-wide)

Paging support for transparent network reconfiguration with negligible increase in overall circuit area.

1 Core = receptive field of 1×1 pixel in/output across 32 out-channels

Output stationary, Input quasi-stationary
Parametric number of Cores (N×M out-pixel)
8b activations, 2-8b weights

Siracusa: 16nm SoC, Tightly Coupled at MRAM Accelerator

	Vega [1]	Diana [2]	Marsellus [3]	[4]	[5]	Siracusa
Technology	22nm FDX	22nm FDX	22nm FDX	40nm	22nm	16nm FinFET
Area	10mm²	10.24mm ²	8.7mm ²	25mm²	8.76mm ²	16mm²
On-chip mem	1728 KB SRAM 4 MB MRAM (L3)	896 KB SRAM	1152 KB SRAM	768 KB	1428 KB	6400 KB SRAM 4 MB MRAM (L1)
Peak Perf 8b	32.2 GOPS	140 GOPS	90 GOPS	N/A	146 GOPS	698 GOPS
Peak Eff 8b	1.3 TOPS/W	2.07 TOPS/W	1.8 TOPS/W	0.94 TOPS/W	0.7 TOPS/W	2.68 TOPS/W
Peak Eff (WxAb)	1.3 TOPS/W	4.1TOPS/W (2x2b) 600 TOPS/W (analog)	12.4 TOPS/W (2x2b)	60.6 TOPS/W (1x1b)	0.7 TOPS/W	8.84 TOPS/W (2x8b)
Area Eff	3.2 GOPS/mm ²	21.2 GOPS/mm ²	47.4 GOPS/mm ²	N/A	58.3 GOPS/mm ²	65.2 GOPS/mm ²

[1] D. Rossi et al., JSSC'21

[2] P. Houshmand et al., JSSC'23

[3] F. Conti et al., JSSC'23

[4] M. Chang et al., ISSCC'22

[5] Q. Zhang et al., VLSI Symposium'22

Balance efficiency, peak performance, area efficiency without compromises in precision

N-EUREKA 36-cores configuration

[A. Prasad et al., "Siracusa: a 16nm Heterogeneous RISC-V SoC for Extended Reality with At-MRAM Neural Engine," IEEE Journal of Solid-State Circuits]

Specialization in perspective

Using 22FDX tech, NT@0.6V, High utilization, minimal IO & overhead

Energy-Efficient RV Core → 20pJ (8bit)

ISA-based 10-20x \rightarrow 1-5pJ (8bit)

XPULP

Configurable DP 10-20x \rightarrow 20-100fJ (4bit)

RBE, NEUREKA

Highly specialized DP 10-20x \rightarrow 1-5fJ (ternary)

CUTIE, SNN

From Drones to Cars: Stepping up

Microcontroller class of devices

- Infineon AURIX Family MCUs
- Control tasks, low-power sensor acquisition & data processing
 Features: lockstepped 32-b HP TriCore CPU , HW I/O monitor,
 dedicated accelerators

Powerful real-time architectures

- ST Stellar G Series (based on ARM Cortex-R cores)
- Domain controllers and zone-oriented ECUs
- Features: HW-based virtualization, Multi-core Cortex-R52 (+NEON) cluster in split-lock, vast I/Os connectivity

Application class processors

- NXP i.MX 8 Family
- ADAS, Infotainment
- Features: Cortex-A53, Cortex-A72, HW Virtualization, GPUs

2023 processors for active safety and ADAS

(Source: Computing and Al for Automotive 2023, Yole Intelligence, February 2023)

Real-time

Safe

Carfield: 16nm SoC - Safety, Security, RT-Predictability

Main Computing and I/O System

Accelerators Domain

How Do We Handle Safety-Critical and Real-Time Tasks?

PREDICTABLE AXI INTERCONNECT

Safety Island

- Safety-critical applications running on a RTOS
- Three CV32E40 cores physically isolated operating in lockstep (single HART) and fast HW/SW recovery from faults
- ECC protected scratchpad memories for instructions and data
- Fast and Flexible Interrupts Handling through RISC-V compliant CLIC controller
- AXI-4 port for in/out communication

Predictable On-Chip Communication (AXI RT)

- AXI4 inherently unpredictable
- Minimally Intrusive Solution
 - No huge buffering, limited additional logic
 - Verified in systematic worst-case real-time analysis
- AXI Burst Splitter
 - Equalizes length of transactions to avoid unfair BW distribution in round-robin scheme
- AXI Cut & Forward
 - Configurable chunking unit to avoid long transaction delays influencing access time to the XBAR
- AXI Bandwidth Reservation Unit
 - Predictably enforces a given max nr of transactions per time period (to each master)
 - Per-address-range credit-based mechanism
 - Periodically refreshed (or by user)

Carfield SoC Flooplan – Tested in August 2024

Host

• Dual-Core 64-bit RISC-V processor; **2.45 mm**²; 600 MHz;

Security Island

Low-power secure monitor; 1.94 mm²; 100 MHz;

Safety Island

• 0.42 mm²; 500 MHz

Re-configurable L2 Memory Subsystem

• 1MB; 2.33 mm²; 500 MHz

HMR Integer Cluster

• **1.17 mm²**; 500 MHz;

RVV FP Cluster

• 1.14 mm²; 600 MHz;

Hyperbus

• 2 PHY, 2 Chips; 200 MHz; Max BW 400 MB/s

• пуреі

4 mm²
Modules marked with (*) are not in scale

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

 4 mm^2

Generative AI: The era of Foundation Models

Versatility and Multi-modality

 Natural language processing, computer vision, robotics, biology, ...

Self-supervision, Fine-tuning

- Self-supervised training on large-scale unlabeled dataset
- Fine-tune (few layers) on specific tasks with smaller labeled datasets.

Zero-shot specialization

Prompt engineering for new tasks

Transformer Baseline

- Many variations
- Ultra-fast evolution

Bommasani, Rishi, et al. "On the Opportunities and Risks of Foundation Models." Center for Research on Foundation Models (CRFM), Stanford Institute for Human-Centered Artificial Intelligence (HAI).

Challenges in *Attention*

- Attention matrix is a square matrix of order input length
 - Computational complexity
 - Memory requirements
- MatMul & Softmax dominate

Softmax(
$$\mathbf{x}$$
)_i = $\frac{e^{x_i - \max(\mathbf{x})}}{\sum_{j=1}^{n} e^{x_j - \max(\mathbf{x})}}$

Matmul Benefits from Large Shared-L1 clusters

- Why?
 - Better global latency tolerance if L1_{size} > 2× L2_{latency} × L2_{bandwidth} (Little's law + double buffer)
 - Smaller data partitioning overhead
 - Larger Compute/Boundary bandwidth ratio: N³/N² for MMUL grows linearly with N!
- A large "MemPool": 256+ cores and 1+ MiB of shared L1 data memory

MemPool Cluster

MemPool: A physical-aware design

- A Scalable Manycore Architecture with Low-Latency Shared L1 Memory
 - 256+ cores
 - 1+ MiB of shared L1 data memory
 - ≤ 8 cycle latency (Snitch can handle it)
- Hierarchical design
- **Implemented in GF22**
 - Targeting 500 MHz (SS/0.72V/125°C)
 - Reaching 600 MHz (TT/0.80V/25°C)
 - Targeting iso-frequency with PULP
- Cluster area of 13 mm²
 - 5 mm diagonal
 - Round trip in 5 cycles

MemPool Cluster

MemPool + Integer Transformer Accelerator (ITA)

Executing Transformer Networks

- Attention operation dominated by MatMul
- Flexible programmable accelerated architecture
 - 192 Snitch cores split into 48 tiles
 - 4 ITA cores to accelerate 8-bit attention operation
 - Automatic mapping of attention operation to ITA in Deeploy

Collaborative Execution

- Support convolutions and "exotic" operators on cores
- MatMul and Softmax accelerated with ITA
- Cores prepare activations for the next attention head
- Final head accumulation computed in cores

MemPool + Integer Transformer Accelerator (ITA)

Integer Attention Accelerator

- 8-bit inputs, weights & outputs
- Builtin data marshaling & pipelined operation
- Streaming partial Softmax adding no additional latency
- Fused Q \times K^T, Softmax and A \times V computation
- Support for hardware-aware Softmax approximation in QuantLib

Dot Product Units	Q	K	V	Q.K ^T	A.V	Output
Softmax				DA		
					DI	

 $e^{a_i - a_{max_{n+1}}} = e^{a_i - a_{max_n}} \cdot e^{a_{max_n} - a_{max_{n+1}}}$

Offloading Attention Operation to ITA

Performance increase of 15x

Energy Efficiency increase of 36x

Area Efficiency increase of 74x

Heartstream: 12nm SoC – MemPool on Silicon

64 cores, 256kiB L1, peak 1.6MOPs @8b (TT-25°C-0.8V)

Boosting dot product, matmul + Softmax @8bit → ITA

Closing Thoughts

Embodied Gen-Al

Gen-Al products @CES24

"A more complete picture is emerging of LLMs not as a chatbot, but the kernel process of a new Operating System"

Interactive, embodied intelligence: lowlatency, edge inference

Prompted by @ashraf osman, AWS

Perception → Gen.Al → Embodied Gen.Al

GPT-Neo Megatron TNLG co:here 2021

Interactive, creative

Efficient, RT-safe, secure

Embodied Gen.AI Challenge

OpenAl'23 arXiv:2303.08774

Challenge accepted; we are already on the right path, working on next gen circuits

PEILLE Thank You!

pulp-platform.org

@pulp_platform

Customize template to your presentation

- You can change the logo under <u>View</u> → <u>Master</u>
 - Use the logo of your project
 - Leave it empty (or with Bianca) if you do not have an additional logo
- Please adapt the footer
 - Use <u>Insert</u> → <u>Header & Footer</u> to insert date and conference/presentation name
 - Page number will show up on the right
- You can slightly shift left/right the footers
 (in Master view) to adjust to logo size/shape

Default slide layouts

This is a PowerPoint template

Other tools do not support all its features

Use the standard layouts as much as possible

- There are several default page styles
 - If you copy from other presentations, in most cases it will add new styles. If possible, change it to the existing styles, which makes life easy when sharing again later on.
- To change template for a slide
 - Right click on your slide → <u>Layout</u> → Select preferred layout

Default fonts

P

Default (body) font is Calibri, size 24pt

- Do not go smaller than 18pt in the body
- You can use Calibri Light if you need some lighter writings

Default bullet point lists

- First hierarchy level is **bold** by default
- This helps making the slide more readable when there is a lot of text
- If you don't have sub-points, it is nicer to un-bold

The slide is 16:9 format and is 32cm x 18cm

- You can use shape properties (right click → <u>Size and Position...</u>)
 to enter sizes of boxes and images
- Default sizes are nice and even, to make alignment easy

28 cm

32 cm

Try to limit to palette colors

- If we make slight modifications to colors (i.e., to help color blind people) your slides will automatically get adjusted
 - This is generally good, also helps with consistency
 - Problem is when the template colors differ significantly between different presentations, then using absolute colors creates less confusion
 - I suggest sticking to the template colors
- In general, always pay attention to contrast
 - Always keep in mind your slides will show on a projector (much lower contrast than a monitor)

Our standard colors for architectural diagrams

- All are template colors
- No outlines necessary
- Standard boxes should allow you to add text
 - Default is not to autofit

Our standard colors for architectural diagrams

Useful examples

- In the following slides you can find useful examples of
 - Slides to show your code snippets
 - Highlight boxes and other useful objects compliant with the template style
 - They are for free :D Take as many as you want
 - Directly copy-paste in your presentation

Example slide for code

- Suggestion: keep the title short so that it fits in the white half of the slide
- Use the
 - lighter
 - shades
 - of the color palette
 - to highlight keywords in the code
- You can also play with the margins to make it look nicer, based on your snippet


```
module snitch (
   input logic clk_i,
   input logic rst_i,
   input logic [31:0] h_i,
   /// Interrupts
   input itrpts_t irq_i,
   /// Other I/O...
);
   // Module content
endmodule
```


Example slide for code

 If you like it more, you can also use this green layout (in case you don't plan to use a lot of code highlighting)


```
module snitch (
  input logic clk_i,
  input logic rst i,
  input logic [31:0] h_i,
  /// Interrupts
  input itrpts t irq i,
  /// Other I/O...
  // Module content
endmodule
suggestion begin
  code highlighting not \
  really nice here
  /// Too little contrast
end
```


Callouts

This slide provides **10x** performance improvement in presentations development

Example of callout usage: can experiment with/without shadow

Another example

Highlight box to highlight e.g. your contributions

Lorem ipsum dolor sit amet consectetur adipiscir

Duis aute irure dolor in

cil um dolore eu fugiat nulla

Source: https://pulp-platform.org

References

Duranton, Marc, et al. "HiPEAC Vision 2021: high performance embedded architecture and compilation." (2021).

Larger references

Benini, Luca, et al. "A survey of design techniques for system-level dynamic power management." *IEEE transactions on very large scale integration (VLSI) systems* 8, no. 3 (2000): 299-316.

[Burrello et al. TCOMP21]

"A survey of design techniques for system-level dynamic power management." TVLSI2000.08

Benini, Luca, et al. "A survey of design techniques for system-level dynamic power management."

IEEE transactions on very large scale integration (VLSI) systems 8, no. 3 (2000): 299-316.

Example of **highlight box** and **reference box** usage

ETH zürich 📳 manssammen

Source: https://iis-nextcloud.ee.ethz.ch/example-figure-source-caption

Non-invasive references

Image source caption

SAMOS XXIII, July 6th, 2022

Links

github.com/pulp-platform/snitch

github.com/pulp-platform/snitch

Play around with size, palette colors and position to adapt to your slide

github.com/pulp-platform/snitch

iis-nextcloud.ee.ethz.ch/f/1403905
iis-digital > presentations > templates > pulp_2022.potx

github.com/pulp-platform/snitch

The PULP Story

Platforms

Single core

- PULPino, PULPissimo
- Cheshire

- OpenPULP
- ControlPULP

- Hero, Carfield, Astral
- Occamy, Mempool

IOT

Accelerators and ISA extensions

XpulpNN, XpulpTNN

ITA (Transformers)

RBE, NEUREKA (QNNs) FFT (DSP) REDMULE (FP-Tensor)

PULP Platform

Open Source Hardware, the way it should be!

Sergio Mazzola smazzola@iis.ee.ethz.ch Frank K. Gürkaynak kgf@iis.ee.ethz.ch

Institut für Integrierte Systeme – ETH Zürich

DEI – Università di Bologna

pulp-platform.org

WIP (don't use this ones)

10x Speedup w.r.t. RV32IMC (ISA does matter⊕)

~15x latency and energy reduction for a barrier

14.5x less instructions at an extra 3% area cost (~600GEs)

Better to have N× PEs running at optimum Energy than 1 PE running fast at low Energy efficiency

TinyML challenge

Al capabilities in the power envelope of an MCU: 10-mW peak (1mW avg)

CHANGELOG

- v1.0 (06.2022, smazzola)
 - First version of the new template
- v1.1 (07.2022, smazzola)
 - Fix position of logo, footer, page number
 - Change palette green (position #7) from #24AF4B to #168638
 - Add slide layouts for code snippets
 - Add pre-made objects (callouts, references, links) ready to copy-paste
 - Various improvements to template instructions
- v1.2 (03.2023, smazzola)
 - Change default body font to Calibri (in place of Calibri Light)
 - · Make level 0 of bullet point lists bold
 - Extend footer's length
 - Substitute Samuel L. Jackson default logo with Bianca
 - Enhance closing slide with author names and contact points
 - Unify all slide types (standard, code, blank) under one single Master Slide
 - Re-organize slide for default elements to copy-paste, add new callouts and links
 - Various improvements to template instructions
- v1.3 (03.2024, kgf)
 - Adapted the PULP diagram
 - Tried to adapt some of the defaults
- v1.4 (03.2024, fconti)
 - Updated UNIBO logo
- v1.5 (05.2024, fconti, kgf, lbenini)
 - Updated IP picture