Task

Let f_n be the Fibonacci sequence $f_1 = 1$, $f_2 = 2$

Prove that each positive integer admits a unique representation in a form

$$a_1f_1 + a_2f_2 + \ldots + a_nf_n + \ldots$$
 such that

- · each a_i is either 0 or 1
- · there are finitely many numbers a_i equal to 1
- · no two consequent numbers a_i are equal to 1

We'll proof this statement by induction

If we can represent $1, \ldots, n$ as sum of Fibonacci numbers, we also can represent n+1 Basis:

$$1 = f_1$$

$$2 = f_2$$

$$3 = f_3$$

$$4 = f_1 + f_3$$

If n + 1 is a Fibonacci number, it is itself representation.

Suppose that n+1 isn't a Fibonacci number, then

$$\exists i \in \mathbb{Z} : F_i < n+1 < F_{i+1}$$

$$n+1-F_i=m$$

$$m < F_i$$

Then we can represent n+1 as representation of m plus F_i

Then proof the uniqueness

 $n \in \mathbb{N}$ and n has 2 representations: A_1, A_2

Let $A'_1 = A_1/A_2$, $A'_2 = A_2/A_1$, so $A'_1 \cap A'_2 = \emptyset$ and A'_1 , A'_2 represent the same number. Suppose the the largest element of A'_1 larger than the largest element of A'_2 , but it means that A'_1 represent larger number, cause sum of elements of A'_2 less then the largest element of A'_1 (else A'_2 should have this number in it's representation). It follows that there cannot be 2 different representations.