Lecture 13b: Decision Tree Learning

CSCI 360 Introduction to Artificial Intelligence USC

Here is where we are...

	3/1		Project 2 Out						
9	3/4	3/5	Quantifying Uncertainty	[Ch 13.1-13.6]					
	3/6	3/7	Bayesian Networks	[Ch 14.1-14.2]					
10	3/11	3/12	(spring break, no class)						
	3/13	3/14	(spring break, no class)						
11	3/18	3/19	Inference in Bayesian Networks	[Ch 14.3-14.4]					
	3/20	3/21	Decision Theory	[Ch 16.1-16.3 and 16.5]					
	3/23		Project 2 Due						
12	3/25	3/26	Advanced topics (Chao traveling to National Science Foundation						
	3/27	3/28	Advanced topics (Chao traveling to Na	tional Science Foundation)					
	3/29		Homework 2 Out						
13	4/1	4/2	Markov Decision Processes	[Ch 17 1-17 2]					
	4/3	4/4	Decision Tree Learning	[Ch 18.1-18.3]					
	4/5		Homework 2 Due						
	4/5		Project 3 Out						
14	4/8	4/9	Perceptron Learning	[Ch 18.7.1-18.7.2]					
	4/10	4/11	Neural Network Learning	[Ch 18.7.3-18.7.4]					
15	4/15	4/16	Statistical Learning	[Ch 20.2.1-20.2.2]					
	4/17	4/18	Reinforcement Learning	[Ch 21.1-21.2]					
16	4/22	4/23	Artificial Intelligence Ethics						
	4/24	4/25	Wrap-Up and Final Review						
	4/26		Project 3 Due						
	5/3	5/2	Final Exam (2pm-4pm)						

Outline

- What is Al?
- Part I: Search
- Part II: Logical reasoning
- Part III: Probabilistic reasoning
- Part IV: Machine learning

- Decision Tree Learning
- Perceptron Learning
- Neural Network Learning
- Statistical Learning
- Reinforcement Learning

Outline of today's lecture

- Forms of Learning
- Supervised Learning
- Learning a Decision Tree
 - Entropy (a related topic)

Forms of learning

- Which component is to be improved
- What prior knowledge the agent already has
- What representation is used for the data/component
- What feedback is available to learn from

Prior knowledge

Inductive learning

 Learning a general function, or a general rule, from specific inputoutput pairs

$$\mathcal{D} = \left\{ \mathbf{x}(n), y(n) \right\}_{n=1...N} \Longrightarrow \left(A \Longrightarrow C \right)$$

Deductive learning

 Going from a known general rule to a new rule that is logically entailed, but is useful because it allows more efficient processing

$$(A \Rightarrow B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

Feedback to learn from

- Unsupervised learning
 - Learn "patterns in the input" without explicit feedback
- Supervised learning
 - Given example input-output pairs, learn an input-output function
- Reinforcement learning
 - Learn from reinforcements (rewards or punishments)

Feedback to learn from

Unsupervised learning

- Learn "patterns in the input" without explicit feedback
- Clustering
- Supervised learning
 - Given example input-output pairs, learn an input-output function
 - Classification / regression
- Reinforcement learning
 - Learn from reinforcements (rewards or punishments)
 - Game-playing
 - +2 points for winning a chess game, to indicates the agent did something right;
 - up to the agent to decide which actions to take prior to receiving the feedback

Feedback to learn from

- Unsupervised learning
 - Learn "patterns in the input" without explicit feedback
 - Clustering
- Supervised learning
 - Given example input-output pairs, learn an input-output function
 - Classification / regression
- Reinforcement learning
 - Learn from reinforcements (rewards or punishments)
 - Game-playing
 - +2 points for winning a chess game, to indicates the agent did something right;
 - up to the agent to decide which actions to take prior to receiving the feedback

Outline of today's lecture

- Forms of Learning
- Supervised Learning
- Learning a Decision Tree

Supervised learning

Training set

- An example is a pair (x, f(x))
- -x is input, f(x) is output, f is the target function

Hypothesis

- A function h such that h(x) = f(x) on data in the training set
- Hopefully, h(x) predicts well on data in the test set

Test set

- Example pairs (x, f(x)) outside of the training set

Consistency + Generalization

- Consistent
 - Hypothesis agrees with all the data in the training set
- Generalization
 - Hypothesis agrees also with the data in the test set

It is hard to achieve both, but that's the objective of a learning algorithm

- Construct/adjust h to agree with f on training set
 - (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
 - (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
 - (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
 - (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
 - (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

Ockham's razor: prefer the simplest hypothesis

- Construct/adjust h to agree with f on training set
 - (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

The conjecture: the simpler hypothesis is often more probable

Prior probability of a hypothesis

- Let P(h) be the unconditional (prior) probability of a hypothesis (h), then
 - P(h) is high for a degree-1 polynomial
 - **–** ...
 - P(h) is lower for a degree-7 polynomial
- By Bayes' rule, this is equivalent to

Learning to classify

- In many problems we want to learn how to classify data into one of several possible categories
 - e.g., face recognition, etc.
 - Here, earthquake vs nuclear explosion

Learning to classify

- In many problems we want to learn how to classify data into one of several possible categories
 - e.g., face recognition, etc.
 - Here, earthquake vs nuclear explosion (with more data points)

Outline of today's lecture

- Forms of Learning
- Supervised Learning
- Learning a Decision Tree

Example problem

Problem: to decide whether to wait for a table at a restaurant, based on the following attributes:

- 1. Alternate: is there an alternative restaurant nearby?
- **2. Bar**: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- **6. Price**: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- **8. Reservation**: have we made a reservation?
- **9. Type:** kind of restaurant (French, Italian, Thai, Burger)
- 10. *WaitEstimate*: estimated waiting time (0-10, 10-30, 30-60, >60)

Attribute-based representations

- Examples described by attribute values (Boolean, discrete, continuous)
 - E.g., situations where I will/won't wait for a table:

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1		_	_	_	-		_				Т
X_2											F
X_3											Т
X_4											Т
X_5											F
X_6											Т
X_7											F
X_8											Т
X_9											F
X_{10}											F
X_{11}											F
X_{12}		I	I			<u>. </u>	<u>I</u>		J		Т

Classification of examples is positive (T) or negative (F)

Attribute-based representations

- Examples described by attribute values (Boolean, discrete, continuous)
 - E.g., situations where I will/won't wait for a table:

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Τ	Т	Full	\$	F	F	Burger	30–60	Т

Classification of examples is positive (T) or negative (F)

Decision trees

- One possible representation for hypotheses
 - E.g., designed manually by thinking about all cases for deciding whether to wait:

Could we learn this tree from examples instead of designing it by hand?

Inductive learning of decision tree

- Simplest: Construct a decision tree with one leaf for every example
 - Memory based learning
 - Consistent, but not very good generalization.

Inductive learning of decision tree

- Simplest: Construct a decision tree with one leaf for every example
 - Memory based learning
 - Consistent, but not very good generalization.
- Advanced: Split on each variable so that the purity of each split increases
 - Purity: either only "yes" or only "no"

Expressiveness

- Decision trees can express any function of the input attributes.
 - e.g., for Boolean functions, truth table row → path to leaf:

- In general, if there is a path to leaf for each example in the training set, it probably won't generalize well to new examples
- Prefer to find more compact decision trees

Hypothesis spaces

Question: How many distinct decision trees with *n* Boolean attributes?

- = number of Boolean functions
- = number of distinct truth tables with 2ⁿ rows
- $=2^{2^{n}}$

Example:

With 6 Boolean attributes, there are

18,446,744,073,709,551,616 possible trees

Hypothesis spaces

Question: How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)?

- Each attribute can be in (positive), in (negative), or out
 - ⇒ 3ⁿ distinct conjunctive hypotheses

- In general: More expressive hypothesis space
 - increases chance that target function can be expressed
 - increases number of hypotheses consistent with training set
 - ⇒ may get worse predictions

Greedy algorithm

- Top-down construction of a decision tree by recursively selecting "best attribute" to use at the current node in tree
 - Once attribute is <u>selected</u> for current node, generate child nodes: one for each possible value of selected attribute
 - Partition examples using the possible values of this attribute, and assign these subsets of the examples to the appropriate child node
 - Repeat for each child node, until all examples associated with a node are either all positive or all negative

Choosing the best attribute

- Some possibilities are:
 - Random: Select any attribute at random
 - Least-Values: Choose the attribute with the smallest number of possible values
 - Most-Values: Choose the attribute with the largest number of possible values
 - Max-Gain: Choose the attribute that has the largest expected information gain—i.e., attribute that results in smallest expected size of subtrees rooted at its children
- The "decision tree learning" algorithm uses Max-Gain to select the best attribute

Choosing an attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Choosing an attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Choosing an attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice

Entropy to formalize "attribute splitting"

Information Content (Entropy):

$$I(P(v_1), ..., P(v_n)) = \sum_{i=1}^{n} -P(v_i) \log_2 P(v_i)$$

For a training set containing p positive examples and n negative examples:

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

Information theory 101

- The seminal work of Claude E. Shannon at Bell Labs
 - A Mathematical Theory of Communication, Bell System Technical Journal, 1948.
- Information is measured in entropy, the average number of bits needed for storage or communication.

Entropy

Information conveyed by distribution (a.k.a. entropy of P):

```
I(P) = -(p_1*log(p_1) + p_2*log(p_2) + .. + p_n*log(p_n))
```

Examples:

```
- If P is (0.5, 0.5)

• I(P) = .5*1 + 0.5*1 = 1

- If P is (0.67, 0.33)

• I(P) = -(2/3*log(2/3) + 1/3*log(1/3)) = 0.92

- If P is (1, 0)

• I(P) = 1*log(1) + 0*log(0) = 0
```

- More uniform the distribution → more entropy:
 - More information is conveyed by a message telling you which event actually occurred

Information gain

Attribute A divides a set E to subsets E₁, ..., E₂ according to their values for A, where A has v distinct values.

$$remainder(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

Information Gain (IG) or reduction in entropy:

$$IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - remainder(A)$$

Choose the attribute with the largest IG

Information gain

For the training set, p = n = 6, therefore, I(6/12, 6/12) = 1 bit

Consider the attributes *Patrons* and *Type* (and others too):

$$IG(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6}, \frac{4}{6})\right] = .0541 \text{ bits}$$

$$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$

Patrons has the highest IG of all attributes and so is chosen by the algorithm as the root

Example					At	tributes	3				Target
in tearing to	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Τ	F	Τ	Some	\$\$	Τ	T	Italian	0–10	T
X_7	F	Τ	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Τ	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	Т	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Τ	T	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{6}{12} \left[-\left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) - \left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) \right] + \frac{6}{12} \left[-\left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) - \left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) \right] = 0.30$$

Entropy decrease = 0.30 - 0.30 = 0

NOTE: These examples use ln(.) and not $log_2(.)$ like previous slides decisions are the same since both logs are linearly related

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Τ	Some	\$\$\$	F	T	French	0–10	T
X_2	Τ	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	Τ	Τ	Full	\$	F	F	Thai	10-30	T
X_5	T	F	Τ	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	Τ	Τ	Thai	0–10	T
X_9	F	T	Τ	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	Τ	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Τ	Τ	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{6}{12} \left[-\left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) - \left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) \right] + \frac{6}{12} \left[-\left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) - \left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) \right] = 0.30$$

Entropy decrease = 0.30 - 0.30 = 0

Example				1	At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Τ	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Τ
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Τ	F	Τ	Some	\$\$	T	T	Italian	0–10	T
X_7	F	Τ	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	Τ	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	\$\$\$	F	T	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	Т	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{5}{12} \left[-\left(\frac{2}{5}\right) \ln\left(\frac{2}{5}\right) - \left(\frac{3}{5}\right) \ln\left(\frac{3}{5}\right) \right] + \frac{7}{12} \left[-\left(\frac{4}{7}\right) \ln\left(\frac{4}{7}\right) - \left(\frac{3}{7}\right) \ln\left(\frac{3}{7}\right) \right] = 0.29$$

Entropy decrease = 0.30 - 0.29 = 0.01

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{7}{12} \left[-\left(\frac{5}{7}\right) \ln\left(\frac{5}{7}\right) - \left(\frac{2}{7}\right) \ln\left(\frac{2}{7}\right) \right] + \frac{5}{12} \left[-\left(\frac{1}{5}\right) \ln\left(\frac{1}{5}\right) - \left(\frac{4}{5}\right) \ln\left(\frac{4}{5}\right) \right] = 0.24$$

Entropy decrease = 0.30 - 0.24 = 0.06

Example					At	tributes	8				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	Τ	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10-30	T
X_5	Τ	F	Τ	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	Τ	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	Τ	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	Τ	Τ	Τ	Full	\$\$\$	F	Τ	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{4}{12} \left[-\left(\frac{2}{4}\right) \ln\left(\frac{2}{4}\right) - \left(\frac{2}{4}\right) \ln\left(\frac{2}{4}\right) \right] + \frac{8}{12} \left[-\left(\frac{4}{8}\right) \ln\left(\frac{4}{8}\right) - \left(\frac{4}{8}\right) \ln\left(\frac{4}{8}\right) \right] = 0.30$$

Entropy decrease = 0.30 - 0.30 = 0

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	Τ	F	Τ	Τ	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Τ	Τ	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	ltalian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{5}{12} \left[-\left(\frac{3}{5}\right) \ln\left(\frac{3}{5}\right) - \left(\frac{2}{5}\right) \ln\left(\frac{2}{5}\right) \right] + \frac{7}{12} \left[-\left(\frac{3}{7}\right) \ln\left(\frac{3}{7}\right) - \left(\frac{4}{7}\right) \ln\left(\frac{4}{7}\right) \right] = 0.29$$

Entropy decrease = 0.30 - 0.29 = 0.01

Example					At	ttributes	3				Target
Laterripie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	Т	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{2}{12} \left[-\binom{0}{2} \ln \binom{0}{2} - \binom{2}{2} \ln \binom{2}{2} \right] + \frac{4}{12} \left[-\binom{4}{4} \ln \binom{4}{4} - \binom{0}{4} \ln \binom{0}{4} \right] + \frac{6}{12} \left[-\binom{2}{6} \ln \binom{2}{6} - \binom{4}{6} \ln \binom{4}{6} \right] = 0.14$$

Entropy decrease = 0.30 - 0.14 = 0.16

Example					A	ttributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	Τ	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Τ	Τ	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{6}{12} \left[-\left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) - \left(\frac{3}{6}\right) \ln\left(\frac{3}{6}\right) \right] + \frac{2}{12} \left[-\left(\frac{2}{2}\right) \ln\left(\frac{2}{2}\right) - \left(\frac{9}{2}\right) \ln\left(\frac{9}{2}\right) \right] + \frac{4}{12} \left[-\left(\frac{1}{4}\right) \ln\left(\frac{1}{4}\right) - \left(\frac{3}{4}\right) \ln\left(\frac{3}{4}\right) \right] = 0.23$$

Entropy decrease = 0.30 - 0.23 = 0.07

											- TE
Example					At	tributes	3				Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	Т	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Τ	Τ	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Τ	T	Τ	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{2}{12} \left[-\left(\frac{1}{2}\right) \ln\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \ln\left(\frac{1}{2}\right) \right] + \frac{2}{12} \left[-\left(\frac{1}{2}\right) \ln\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \ln\left(\frac{1}{2}\right) \right]$$

$$+\frac{4}{12}\left[-\binom{2}{4}\ln\binom{2}{4}-\binom{2}{4}\ln\binom{2}{4}\right]+\frac{4}{12}\left[-\binom{2}{4}\ln\binom{2}{4}-\binom{2}{4}\ln\binom{2}{4}\right]=0.30$$

Entropy decrease = 0.30 - 0.30 = 0

Example					At	tributes	3				Target
Literijsie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Τ	Some	\$\$\$	F	Τ	French	0–10	Т
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	Τ	Some	\$\$	Τ	T	Italian	0–10	Τ
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	Τ	T	Thai	0–10	Τ
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{6}{12} \left[-\left(\frac{4}{6}\right) \ln\left(\frac{4}{6}\right) - \left(\frac{2}{6}\right) \ln\left(\frac{2}{6}\right) \right] + \frac{2}{12} \left[-\left(\frac{1}{2}\right) \ln\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \ln\left(\frac{1}{2}\right) \right]$$

$$+\frac{2}{12}\left[-\left(\frac{1}{2}\right)\ln\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\ln\left(\frac{1}{2}\right)\right]+\frac{2}{12}\left[-\left(\frac{9}{2}\right)\ln\left(\frac{9}{2}\right)-\left(\frac{2}{2}\right)\ln\left(\frac{2}{2}\right)\right]=0.24$$

Entropy decrease = 0.30 - 0.24 = 0.06

Summary

- Learning needed for unknown environments
- For supervised learning, the aim is to find a simple hypothesis approximately consistent with training examples
- Decision tree learning using information gain
- Learning performance = prediction accuracy measured on test set

Entropy (in Physics)

- The number of microstates or microscopic configurations
 - If the particles inside a system have many possible positions to move around, the system has high entropy
 - If they have to stay rigid, the system has low entropy

Entropy (Uncertainty; Lack of knowledge)

- How much information we have on the color of a ball drawn at random
 - 100% red
 - 75% certainty that the ball is red, 25% that it's green
 - 50% certainty that the ball is red, 50% that it's green

High Knowledge Low Entropy

Medium Knowledge

Medium Entropy

Low Knowledge
High Entropy

Computing the entropy (bucket 1)

 Weighted sum of (the log of) the probability of each ball being red

Entropy:
$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

$$\frac{1}{4}(-\log_2(1) - \log_2(1) - \log_2(1) - \log_2(1)) = 0$$

Entropy for Bucket 1

Computing the entropy (bucket 2)

 Weighted sum of (the log of) the probability of each ball being red

Entropy:
$$H(V) = \sum_k P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_k P(v_k) \log_2 P(v_k)$$

$$rac{1}{4}(-\log_2(0.75) - \log_2(0.75) - \log_2(0.75) - \log_2(0.25)) = 0.81125$$

Computing the entropy (bucket 3)

 Weighted sum of (the log of) the probability of each ball being red

Entropy:
$$H(V) = \sum_k P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_k P(v_k) \log_2 P(v_k)$$

$$\frac{1}{4}(-\log_2 \ 0.5 - \log_2 \ 0.5 - \log_2 \ 0.5 - \log_2 \ 0.5) = 1$$

Entropy for Bucket 3

Computing the entropy (bucket ?)

 Weighted sum of (the log of) the probability of each ball being red

Entropy:
$$H(V) = \sum_k P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_k P(v_k) \log_2 P(v_k)$$

$$ext{Entropy} = rac{-m}{m+n} ext{log}_2igg(rac{m}{m+n}igg) + rac{-n}{m+n} ext{log}_2igg(rac{n}{m+n}igg)$$

General formula for Entropy

Computing the multi-class entropy

$$\mathrm{Entropy} = -1\log_2(1) = 0$$

Entropy for Bucket 1

$$ext{Entropy} = -\sum_{i=1}^n \ p_i \ \log_2 \ p_i$$

$$Entropy = -\frac{4}{8}log_{2}\left(\frac{4}{8}\right) - \frac{2}{8}log_{2}\left(\frac{2}{8}\right) - \frac{1}{8}log_{2}\left(\frac{1}{8}\right) - \frac{1}{8}log_{2}\left(\frac{1}{8}\right) = 1.75$$

Entropy for Bucket 2

$$\text{Entropy} = -\frac{2}{8} \text{log}_2\!\left(\frac{2}{8}\right) - \frac{2}{8} \text{log}_2\!\left(\frac{2}{8}\right) - \frac{2}{8} \text{log}_2\!\left(\frac{2}{8}\right) - \frac{2}{8} \text{log}_2\!\left(\frac{2}{8}\right) \, = \, 2$$

Entropy for Bucket 3

AAAABBCD

AABBCCDD

Bucket 1

Low Entropy

Bucket 2

Medium Entropy

Bucket 3

High Entropy

Quiz 10