

Data
Preprocessing
For Machine
learning

About

Ayham Ramadan

Machine Learning Engineer

+201229492980

Mail: ay_ramadan@hotmai.com

Work Experience

DevisionX , CairoComputer Vision Engineer

Oct 2021 - Present

Vodafone UK VIS , Cairo Aug 2017 - Sep 2018

Crisis Management Team Leader

NCCI - for Insurance , Riyadh Jun 2015 - Sep 2015 Oracle Developer Information Technology Institute - MCIT , Alexandria Branch Apr 2021 – Jan 2021

AI – PRO EPITA Certified

International School of Scandinavia, Copenhagen Dec 2019 – Present

Project Management and Supply Chain optimization

Alexandria University of Engineering Jan 2013 - Jan 2017

BSc in Computer and Communication

Agenda For Today

O1 Pandas
What is Pandas and Why is it used?

DataframeHow do we apply changes and Preprocessing on Dataframes?

103 Loading Datasets (Practical)

How to load different Datasets and How to use the

How to load different Datasets and How to use the documentation?

Q4 Basic Preprocessing Applying what was learned today?

Data Pipeline

Raw Data

Data Processing

At this session

What is Pandas?

- Pandas is a Python library used for working with data sets.
- It has functions for analyzing, cleaning, exploring, and manipulating data.
- The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis".
- Why Use Pandas?
 Pandas allows us to analyze big data and make conclusions based on statistical theories.
- Pandas can clean messy datasets and make them readable and relevant.
- Relevant data is very important in data science.

Install it using this command:

```
1 !pip install pandas
```

Checking Pandas Version

The version string is stored under **version** attribute.

```
import pandas as pd
print(pd.__version__)
```


1.1.5

Pandas Series

İ

A Pandas Series is like a column in a table. It is a one-dimensional array holding data of any type.

1. Creating a series from array

1. Accessing element of Series

There are two ways through which we can access element of series, they are:

- Accessing Element from Series with Position
- Accessing Element Using Label (index)

2.1 Accessing Element from Series with Position: In order to access the series element refers to the index number. Use the index operator [] to access an element in a series. The index must be an integer. In order to access multiple elements from a series, we use Slice operation.

Accessing first 5 elements of Series

```
# import pandas and numpy
  import pandas as pd
   import numpy as np
   # creating simple array
                                                                               dtype: object
 6 data = np.array(['g','e','e','k','s','f', 'o','r','g','e','e','k','s'])
   ser = pd.Series(data)
 8 #retrieve the first 5 elements
  print("\n",ser[:5])
10 print("\n", ser[[0,1,2,4]])
11 #retrieve element
                                                                               dtype: object
12 print("\n- 5th ele. is ",ser[5])
13
                                                                               - 5th ele. is f
```


2.2 Accessing Element Using Label (index):

In order to access an element from series, we have to set values by index label. A Series is like a fixed-size dictionary in that you can get and set values by index label.

```
1 # import pandas and numpy
 2 import pandas as pd
    import numpy as np
   # creating simple array
 6 data = np.array(['g','e','e','k','s','f', 'o','r','g','e','e','k','s'])
    ser = pd.Series(data,index=["10","11","12","13","14","15","16","17","18","19","20","21","22"])
 8
    # accessing a element using label "index"
10 print(ser["16"])
11 print(ser[["16","15"]])
0
16
15
dtype: object
```



```
# Create a simple Pandas Series from a dictionary:

import pandas as pd

calories = {"day1": [420,50], "day2": [380,34], "day3": [390,43]}

myvar = pd.Series(calories)

print(myvar)
print("\nDay1 data = ",myvar["day1"])
day1 [420, 50]

day2 [380, 34]
day3 [390, 43]
dtype: object

Day1 data = [420, 50]
```


Binary operation methods on series:

FUNCTION	DESCRIPTION
<u>add()</u>	Method is used to add series or list like objects with same length to the caller series
<u>sub()</u>	Method is used to subtract series or list like objects with same length from the caller series
<u>mul()</u>	Method is used to multiply series or list like objects with same length with the caller series
<u>div()</u>	Method is used to divide series or list like objects with same length by the caller series
<u>sum()</u>	Returns the sum of the values for the requested axis
prod()	Returns the product of the values for the requested axis
mean()	Returns the mean of the values for the requested axis
pow()	Method is used to put each element of passed series as exponential power of caller series and returned the results
abs()	Method is used to get the absolute numeric value of each element in Series/DataFrame
cov()	Method is used to find covariance of two series

Pandas series method

FUNCTION	DESCRIPTION
Series()	A pandas Series can be created with the Series() constructor method. This constructor method accepts a variety of inputs
combine_first()	Method is used to combine two series into one
count()	Returns number of non-NA/null observations in the Series
size()	Returns the number of elements in the underlying data
name()	Method allows to give a name to a Series object, i.e. to the column
is_unique()	Method returns boolean if values in the object are unique
idxmax()	Method to extract the index positions of the highest values in a Series
idxmin()	Method to extract the index positions of the lowest values in a Series
sort_values()	Method is called on a Series to sort the values in ascending or descending order
sort_index()	Method is called on a pandas Series to sort it by the index instead of its values
head()	Method is used to return a specified number of rows from the beginning of a Series. The method returns a brand new Series
tail()	Method is used to return a specified number of rows from the end of a Series. The method returns a brand new Series
<u>le()</u>	Used to compare every element of Caller series with passed series. It returns True for every element which is Less than or Equal to the element in passed series
<u>ne()</u>	Used to compare every element of Caller series with passed series. It returns True for every element which is Not Equal to the element in passed series
<u>ge()</u>	Used to compare every element of Caller series with passed series. It returns True for every element which is Greater than or
	Equal to the element in passed series
<u>eq()</u>	Used to compare every element of Caller series with passed series. It returns True for every element which is Equal to the element in passed series

Pandas series method (Continue)

<u>lt()</u>	Used to compare two series and return Boolean value for every respective element
clip()	Used to clip value below and above to passed Least and Max value
clip_lower()	Used to clip values below a passed least value
clip_upper()	Used to clip values above a passed maximum value
astype()	Method is used to change data type of a series
tolist()	Method is used to convert a series to list
get()	Method is called on a Series to extract values from a Series. This is alternative syntax to the traditional bracket syntax
<u>unique()</u>	Pandas unique() is used to see the unique values in a particular column
nunique()	Pandas nunique() is used to get a count of unique values
value_counts()	Method to count the number of the times each unique value occurs in a Series
factorize()	Method helps to get the numeric representation of an array by identifying distinct values
<u>map()</u>	Method to tie together the values from one object to another
between()	Pandas between() method is used on series to check which values lie between first and second argument
apply()	Method is called and feeded a Python function as an argument to use the function on every Series value. This method is helpful for executing custom operations that are not included in pandas or numpy

☐ Pandas DataFrame

Pandas DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. It is generally the most commonly used pandas object.

Pandas DataFrame can be created in multiple ways. Let's discuss different ways to create a DataFrame one by one.

Method #1: Creating Pandas DataFrame from lists of lists.

```
# Import pandas library
import pandas as pd

# initialize list of lists
data = [['tom', 10], ['nick', 15], ['juli', 14]]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Age'])
# print dataframe.
df

df
```

	Name	Age
0	tom	10
1	nick	15
2	juli	14

Method #2: Creating DataFrame from dict of narray/lists

To create DataFrame from dict of narray/list, all the narray must be of same length. If index is passed then the length index should be equal to the length of arrays. If no index is passed, then by default, index will be range(n) where n is the array length.

	Name	Age
0	Tom	20
1	nick	21
2	krish	19
3	jack	18


```
# Python code demonstrate creating
# pandas DataFrame with indexed by

# DataFrame using arrays.

import pandas as pd

# initialise data of lists.

data = {'Name':['Tom', 'Jack', 'nick', 'juli'],'marks':[99, 98, 95, 90]}

# Creates pandas DataFrame.

df = pd.DataFrame(data, index =['rank1', 'rank2','rank3','rank4'])

# print the data

df

df
```

	Name	marks
rank1	Tom	99
rank2	Jack	98
rank3	nick	95
rank4	juli	90

Method #4: Creating Dataframe from list of dicts

Pandas DataFrame can be created by passing lists of dictionaries as a input data. By default dictionary keys taken as columns.

```
# Python code demonstrate how to create
# Pandas DataFrame by lists of dicts.
import pandas as pd
# Initialise data to lists.
data = [{'a': 1, 'b': 2, 'c': 3},
{'a':10, 'b': 20, 'c': 30}]
# Creates DataFrame.
df = pd.DataFrame(data)
# Print the data
df

df
```

	a	b	C
0	1	2	3
1	10	20	30

Method #5: Creating DataFrame using zip() function.

Two lists can be merged by using list(zip()) function. Now, create the pandas DataFrame by calling pd.DataFrame() function

```
1 # Python program to demonstrate creating
   # pandas Datadaframe from lists using zip.
   import pandas as pd
 5 # List1
 6 Name = ['tom', 'krish', 'nick', 'juli']
   # List2
 8 Age = [25, 30, 26, 22]
 9 # get the list of tuples from two lists.
10 # and merge them by using zip().
11 list of tuples = list(zip(Name, Age))
12 # Assign data to tuples.
13 list of tuples
14 # Converting lists of tuples into
15 # pandas Dataframe.
16 df = pd.DataFrame(list_of_tuples,
17 columns = ['Name', 'Age'])
18 # Print data.
19 df
20
```

	Name	Age
0	tom	25
1	krish	30
2	nick	26
3	juli	22

```
[('tom', 25), ('krish', 30), ('nick', 26), ('juli', 22)]
```


To create DataFrame from Dicts of series, dictionary can be passed to form a DataFrame. The resultant index is the union of all the series of passed indexed.

```
# Python code demonstrate creating
# Pandas Dataframe from Dicts of series.

import pandas as pd

finitialise data to Dicts of series.

d = {'one' : pd.Series([10, 20, 30, 40], index =['a', 'b', 'c', 'd'])}

# creates Dataframe.

df = pd.DataFrame(d)

print the data.

df

# Python code demonstrate creating
# Pandas Dataframe from Dicts of series.

# Initialise data to Dicts of series.

# Cone' : pd.Series([10, 20, 30, 40], index =['a', 'b', 'c', 'd'])}

# print the data.

# print the data.

# df
```

	one	two
a	10	10
b	20	20
С	30	30
d	40	40

☐ Read and write data to and from files by a Pandas Dataframe

•pandas provides the <u>read csv()</u> function to read data stored as a csv file into a pandas DataFrame. pandas supports many different file formats or data sources out of the box (csv, excel, sql, json, parquet, ...), each of them with the prefix read *.

https://pandas.pydata.org/docs/reference/io.html

1. Pandas Read CSV

A simple way to store big data sets is to use CSV files (comma separated files). CSV files contains plain text and is a well know format that can be read by everyone including Pandas.

https://pandas.pydata.org/docs/reference/api/pandas.read csv.html

```
#Load the CSV into a DataFrame:
 2 import pandas as pd
    df = pd.read_csv('dataset/data.csv')
 4 print(df)
     Duration Pulse Maxpulse Calories
                                   409.1
           60
                 110
                           130
0
           60
                 117
                           145
                                   479.0
                                   340.0
           60
                 103
                           135
           45
                           175
                                   282.4
                 109
           45
                 117
                           148
                                   406.0
          . . .
                                    . . .
164
                                   290.8
                 105
                           140
165
                 110
                           145
                                   300.0
166
           60
                 115
                           145
                                   310.2
167
                                   320.4
                 120
                           150
168
                 125
                           150
                                   330.4
[169 rows x 4 columns]
```


Make sure to always have a check on the data after reading in the data. When displaying a DataFrame, the first and last rows will be shown by default

- df.head(): by default, display first 5 rows from data.
- df.tail(): by default, display last 5 rows from data.

1 df.head()						
	Duration	Pulse	Maxpulse	Calories		
0	60	110	130	409.1		
1	60	117	145	479.0		
2	60	103	135	340.0		
3	45	109	175	282.4		
4	45	117	148	406.0		
	JE 1.:					

	Duration	Pulse	Maxpulse	Calories
164	60	105	140	290.8
165	60	110	145	300.0
166	60	115	145	310.2
167	75	120	150	320.4
168	75	125	150	330.4

1	df.hea	d(10)			1	df.tail((10)		
	Duration	Pulse	Maxpulse	Calories		Duration	Pulse	Maxpulse	Ca
0	60	110	130	409.1	159	30	80	120	
1	60	117	145	479.0	160	30	85	120	
2	60	103	135	340.0	161	45	90	130	:
3	45	109	175	282.4	162	45	95	130	:
4	45	117	148	406.0	163	45	100	140	2
5	60	102	127	300.0	164	60	105	140	2
6	60	110	136	374.0	165	60	110	145	3
7	45	104	134	253.3	166	60	115	145	3
8	30	109	133	195.1	167	75	120	150	3
9	60	98	124	269.0	168	75	125	150	3

Reading in files with encoding problems

Most files you'll encounter will probably be encoded with UTF-8. This is what Python expects by default, so most of the time you won't run into problems. However, sometimes you'll get an error like this:

```
# modules we'll use
 2 import numpy as np
 3 # helpful character encoding module
 4 import chardet
  police killings =pd.read csv("PoliceKillingsUS.csv")
                    TI SETI - ITI SC CHUNK
pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader.read()
pandas\_libs\parsers.pyx in pandas. libs.parsers.TextReader. read low memory()
pandas\_libs\parsers.pyx in pandas. libs.parsers.TextReader. read rows()
pandas\_libs\parsers.pyx in pandas. libs.parsers.TextReader. convert column data()
pandas\_libs\parsers.pyx in pandas. libs.parsers.TextReader. convert tokens()
pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._convert_with_dtype()
pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._string_convert()
pandas\_libs\parsers.pyx in pandas._libs.parsers._string box_utf8()
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x96 in position 2: invalid start byte
```


chardet.detect()

The detect function takes one argument, a non-Unicode string. It returns a dictionary containing the auto-detected character encoding and a confidence level from 0 to 1

```
with open("PoliceKillingsUS.csv", 'rb') as rawdata:
    result = chardet.detect(rawdata.read(100000))

# check what the character encoding might be
print(result)

{'encoding': 'Windows-1252', 'confidence': 0.73, 'language': ''}
```

encoding attribute: https://docs.python.org/3/library/codecs.html#standard-encodings

		_killings _killings		ad_csv("Policek	Killings	US.cs	v",enco	ding=	:'Windows-1	.252')				
	id	name	date	manner_of_death	armed	age	gender	race	city	state	signs_of_mental_illness	threat_level	flee	body_camer
0	3	Tim Elliot	02/01/15	shot	gun	53.0	М	Α	Shelton	WA	True	attack	Not fleeing	Fals
1	4	Lewis Lee Lembke	02/01/15	shot	gun	47.0	М	W	Aloha	OR	False	attack	Not fleeing	Fals
2	5	John Paul Quintero	03/01/15	shot and Tasered	unarmed	23.0	М	Н	Wichita	KS	False	other	Not fleeing	Fals

Save the DataFrame to csv file

DataFrame.to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression='infer', quoting=None, quotechar='"', line_terminator=None, chunksize=None, date_format=None, doublequote=True, escapechar=None, decimal='.', errors='strict', storage_options=None)

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to csv.html#pandas.DataFrame.to csv

```
: 1 police_killings.to_csv("encoded_PK.csv")
```

: 1 data=pd.read_csv("encoded_PK.csv")
2 data

	id	name	date	manner_of_death	armed	age	gender	race	city	state	signs_of_mental_illness	threat_level	flee	body_camera
0	3	Tim Elliot	02/01/15	shot	gun	53.0	М	Α	Shelton	WA	True	attack	Not fleeing	False
1	4	Lewis Lee Lembke	02/01/15	shot	gun	47.0	М	W	Aloha	OR	False	attack	Not fleeing	False
2	5	John Paul Quintero	03/01/15	shot and Tasered	unarmed	23.0	М	Н	Wichita	KS	False	other	Not fleeing	False
3	8	Matthew Hoffman	04/01/15	shot	toy weapon	32.0	М	W	San Francisco	CA	True	attack	Not fleeing	False
4	9	Michael Rodriguez	04/01/15	shot	nail gun	39.0	М	Н	Evans	СО	False	attack	Not fleeing	False

Pandas - Analyzing DataFrames

access, modify, add, sort, filter, and delete data

1. Viewing and getting information about data

- 1. DataFrame.head(N=5): view the first 5 rows by default
- 2. DataFrame.tail(N=5): view the last 5 rows by default
- 3. DataFrame.info(): The DataFrames object has a method called info(), that gives you more information about the data set
- 4. DataFrame.index: to view the DataFrame indexes
- DataFrame.columns: to view the dataframe columns name

2. Access, modify

data Access

- 1. DataFrame["column name"]: access certain column from the main dataframe
- 2. DataFrame[["column names list "]]: access multiples columns from the main dataframe
- 3. DataFrame. Loc[row's name, column's name]: access data point by row and column names
- 4. DataFrame. iLoc[row's index, column's index] :access data point by row and column indexes modify
- DataFrame["column name"]= New value
- DataFrame[["column names list "]] =New value
- 3. DataFrame. Loc[row's name, column's name] = New value
- 4. DataFrame. iLoc[row's index, column's index] = New value
- 5. DataFrame.index = new index array
- 6.DataFrame.columns = new column names array

Add new column/s

DataFrame["new column name"]= value/array of values

3. Delete row/column

3	Rav	w_data.he	ad()													
	0 L	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	 BILL_AMT4	BILL_AMT5	BILL_AMT6	PAY_AMT1	PAY_AMT2	PAY
D																
1	1	20000	female	university	married	24	2	2	-1	-1	 0	0	0	0	689	
2	2	120000	female	university	single	26	-1	2	0	0	 3272	3455	3261	0	1000	
3	3	90000	female	university	single	34	0	0	0	0	 14331	14948	15549	1518	1500	
4	4	50000	female	university	married	37	0	0	0	0	 28314	28959	29547	2000	2019	
	5	50000	male	university	married	57	-1	0	-1	0	 20940	19146	19131	2000	36681	

1 Raw_data.drop(labels="0",axis=1)

LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 ... BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_

1	20000	female	university	married	24	2	2	-1	-1	-2	
2	120000	female	university	single	26	-1	2	0	0	0	
3	90000	female	university	single	34	0	0	0	0	0	

1 Raw_data.drop(columns=["0"])

LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 ... BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AM

ID															
1	20000	female	university	married	24	2	2	-1	-1	-2	0	0	0	0	Э
2	120000	female	university	single	26	-1	2	0	0	0	3272	3455	3261	0	10
3	90000	female	university	single	34	0	0	0	0	0	14331	14948	15549	1518	15
4	50000	female	university	married	37	0	0	0	0	0	28314	28959	29547	2000	20

1. Data cleaning:

H

- 1. Duplicated Data
 - I. check the existence of duplicated data using DataFrame.duplicated()
 DataFrame.duplicated(subset=None, keep='first')
 - II. then, remove it using DataFrame.drop_duplicates(inplace=True)
 DataFrame.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False)

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop_duplicates.html https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.duplicated.html

- 1. Filtration: DataFrame.filter() it is used to select subset of data https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.filter.html
- 2. missing values

Check the features datatype : DataFrame.dtypes()

```
data A filteration.dtypes
 2 ### this line represent that all dataset features saved as object
ID
LIMIT BAL
                              object
SEX
                              object
EDUCATION
                              object
MARRIAGE
                              object
AGE
                              object
PAY 0
                              object
PAY 2
                              object
                              object
PAY_3
PAY 4
                              object
PAY 5
                              object
PAY 6
                              object
                              object
BILL_AMT1
BILL AMT2
                              object
                              object
BILL AMT3
BILL AMT4
                              object
BILL_AMT5
                              object
BILL AMT6
                              object
PAY_AMT1
                              object
                              object
PAY_AMT2
PAY AMT3
                              object
PAY AMT4
                              object
PAY_AMT5
                              object
PAY AMT6
                              object
```

object

DataFrame.astype(dtype)

DataFrame[column names array].astype(dtype)

DataFrame.astype({"col1_name": "int32","column2_name":"int64"})

dtype: object

default payment next month

How to analyze, visualize and deal with categorical data?

ID LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 ... BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2

1	20000 female	university	married	24	2	2	-1	-1	-2	0	0	0	0	689
2	120000 female	university	single	26	-1	2	0	0	0	3272	3455	3261	0	1000
3	90000 female	university	single	34	0	0	0	0	0	14331	14948	15549	1518	1500
4	50000 female	university	married	37	0	0	0	0	0	28314	28959	29547	2000	2019
5	50000 male	university	married	57	-1	0	-1	0	0	20940	19146	19131	2000	36681

5 rows × 24 columns

```
1 data A filteration["EDUCATION"].unique()
: array(['university', 'graduate school', 'others', 'high school', 0],
        dtype=object)
   1 data_A_filteration["EDUCATION"].value_counts()
university
                    13857
  graduate school
                    10513
  high school
                      4811
                      121
  others
  Name: EDUCATION, dtype: int64
   1 print("University =",(data A filteration["EDUCATION"]== 'university' ).sum())
   2 print("graduate school =",(data_A_filteration["EDUCATION"]== 'graduate school' ).sum())
   3 print("others =",(data A filteration["EDUCATION"]== 'others' ).sum())
   4 print("high school =",(data A filteration["EDUCATION"] == 'high school' ).sum())
   5 print("0 =",(data_A_filteration["EDUCATION"]== 0 ).sum())
  University = 13857
  graduate school = 10513
  others = 121
  high school = 4811
  0 = 14
```

DataFrame.unique()
DataFrame.value_counts()
DataFrame.values


```
1 # Let's see the data types and non-null values for each column
```

2 data_After_pro.info()

<class 'pandas.core.frame.DataFrame'>
Index: 29316 entries, 1 to 30000
Data columns (total 24 columns):

Data	columns (total 24 columns):		
#	Column	Non-Null Count	Dtype
0	LIMIT_BAL	29316 non-null	int64
1	SEX_male	29316 non-null	int64
2	EDUCATION_encoded	29316 non-null	int32
3	Marital_state	29316 non-null	int64
4	AGE	29316 non-null	int64
5	PAY_0	29316 non-null	int64
6	PAY_2	29316 non-null	int64
7	PAY_3	29316 non-null	int64
8	PAY_4	29316 non-null	int64
9	PAY_5	29316 non-null	int64
10	PAY_6	29316 non-null	int64
11	BILL_AMT1	29316 non-null	int64
12	BILL_AMT2	29316 non-null	int64
13	BILL_AMT3	29316 non-null	int64
14	BILL_AMT4	29316 non-null	int64
15	BILL_AMT5	29316 non-null	int64
16	BILL_AMT6	29316 non-null	int64
17	PAY_AMT1	29316 non-null	int64
18	PAY_AMT2	29316 non-null	int64
19	PAY_AMT3	29316 non-null	int64
20	PAY_AMT4	29316 non-null	int64
21	PAY_AMT5	29316 non-null	int64
22	PAY_AMT6	29316 non-null	int64
23	default payment next month	29316 non-null	int64
dtype	es: int32(1), int64(23)		
memor	ry usage: 6.7+ MB		

The first thing to do when you get a new dataset is take a look at some of it. This lets you see that it all read in correctly and gives an idea of what's going on with the data. In this case, let's see if there are any missing values, which will be represented with NaN or None.

	Date	GameID	Drive	qtr	down	time	TimeUnder	TimeSecs	PlayTimeDiff	SideofField	***	yacEPA
0	2009- 09-10	2009091000	1	1	NaN	15:00	15	3600.0	0.0	TEN	300	NaN
1	2009- 09-10	2009091000	1	1	1.0	14:53	15	3593.0	7.0	PIT	***	1.146076
2	2009- 09-10	2009091000	1	1	2.0	14:16	15	3556.0	37.0	PIT	7	NaN
3	2009- 09-10	2009091000	1	1	3.0	13:35	14	3515.0	41.0	PIT		-5.03142
4	2009- 09-10	2009091000	1	1	4.0	13:27	14	3507.0	8.0	PIT	122	NaN
4												F

How many missing data points do we have?

Let's see how many we have in each column using dataframe.isnull().sum(), dataframe.isna()

1 data.isna().	sum()	1 data.isnull().sum()
ID	0	ID	0
Name	0	Name	0
Age	0	Age	0
Photo	0	Photo	0
Nationality	0	Nationality	0
GKHandling	48	GKHandling	48
GKKicking	48	GKKicking	48
GKPositioning	48	GKPositioning	48
GKReflexes	48	GKReflexes	48
Release Clause	1564	Release Clause	1564
Length: 88, dtype	e: int64	Length: 88, dtyp	e: int64

	ID	Name	Age	Photo	Nationality	Flag	Overall	Potential	Club	Club Logo	 Composure	Marking	Standing Tackle	SlidingTackle	GKDiving	GKHar
0	False	False	False	False	False	False	False	False	False	<u> </u>	 False	False	False	False	False	
	False		False	False	False		False		False		 False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	
18202	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	
18203	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	
18204	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	
18205	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	
8206	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	
	rows×															
	ata.is)	Photo	Nationality	Flag	Overall	Potential	Club	Club Logo	 Composure	Marking	StandingTackle	SlidingTackle	GKDiving	GKI
1 da	ata.is	null())	Photo False	Nationality False	Flag False	Overall False	Potential False		Logo	Composure		Standing Tackle			
1 da	ata.is	null()	Age							Logo False	 	False		False	False	
1 da	nta.is ID False	Name False False	Age False	False	False	False	False	False	False False	False False	 False	False False	False	False False	False	:
1 da	ID False	Name False False	Age False False	False False	False False	False False	False False	False False	False False	False False False	 False False	False False False	False False	False False False	False False	!
0 1 2	ID False False False False	Name False False False False False	Age False False False	False False False	False False False False	False False False	False False False	False False False	False False False False	False False False	 False False False	False False False False	False False	False False False	False False False False	
1 da	ID False False False False	Name False False False False False	Age False False False False	False False False	False False False False	False False False False	False False False False	False False False False	False False False False	False False False False	 False False False	False False False False	False False False False	False False False False	False False False False False False	
0 1 2 3 4	ID False False False False False False	Name False False False False False False False	Age False False False False False	False False False False	False False False False False	False False False False	False False False False False	False False False False False	False False False False False	False False False False False False	 False False False False	False False False False False False	False False False False	False False False False	False False False False False False	
0 1 2 3 4	ID False False False False False False	Name False False False False False False False False	Age False False False False False False	False False False False	False False False False False	False False False False False	False False False False False False	False False False False False	False False False False False	False False False False False False False	 False False False False	False False False False False False False	False False False False	False False False False False False	False False False False False False False False	
0 1 2 3 4	ID False False False False False False False	Name False False False False False False False False False	Age False False False False False False False	False False False False False False False	False False False False False False False False	False False False False False False	False False False False False False	False False False False False False False	False False False False False False	False False False False False False False False	 False False False False False False	False False False False False False False	False False False False False False	False False False False False False	False	
0 1 2 3 4 28202	ID False False False False False False False False	Name False	Age False False False False False False False False	False False False False False False False	False	False False False False False False False False	False False False False False False False False	False False False False False False False	False False False False False False False False False	False False False False False False False False	 False False False False False False	False	False False False False False False False	False	False	

It's very important to figure out why the data is missing

Is this value missing because it wasn't recorded or because it doesn't exist?

If a value is missing because it doesn't exist (like the height of the oldest child of someone who doesn't have any children) then it doesn't make sense to try and guess what it might be. These values you probably do want to keep as NaN or change it to zero. On the other hand, if a value is missing because it wasn't recorded, then you can try to guess what it might have been based on the other values in that column and row. This is called imputation, and we'll learn how to do it next!:)

How to deal with missing values?

- 1. drop columns with missing values
- 2. drop rows with missing values
- 3. replace them with another value
- 4. imputation:
 - 1. replace them with mean, median values if you deal will numerical data or most frequent value in case of categorical data
 - 2. KNN supervised ML model
 - 3. k-mean Un-supervised ML model

1. Drop missing values:

using DataFrame.dropna()

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

- By default, drop rows with missing value. But, to drop columns set axis=1
- This function return new data after removing missing values. But, to override the old data use inplace = True
- Subset: Define in which columns to look for missing values in case of dropping rows and visa verse in case of dropping columns
- Thresh: Keep only the rows/columns with at least N non-NA values
- how: "any" >> drop if any missing value exist, "all" >> drop if all the row / column values is nan

thresh:

	name	toy	born	null
0	NaN	NaN	NaT	NaN
1	Batman	Batmobile	1940-04-25	NaN
2	Catwoman	Bullwhip	NaT	NaN

: 1 #Keep only the rows with at least 2 non-NA values. 2 df.dropna(thresh=2)

1:

	name	toy	born	null
1	Batman	Batmobile	1940-04-25	NaN
2	Catwoman	Bullwhip	NaT	NaN

|: 1 #Keep only the rows with at least 3 non-NA values. 2 df.dropna(thresh=3)

:

	name	toy	born	null	
1	Batman	Batmobile	1940-04-25	NaN	

subset:


```
#Define in which columns to look for missing values.
df.dropna(subset=['name', 'toy'])
```

	name	toy	born	null
1	Batman	Batmobile	1940-04-25	NaN
2	Catwoman	Bullwhip	NaT	NaN

1. Filling in missing values:

We can use the Panda's fillna() function to fill in missing values in a dataframe for us

DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html

□ Pandas - Data Correlations

Finding Relationships

A great aspect of the Pandas module is the corr() method.

The corr() method calculates the relationship between each column in your data set.

•Dataframe.corr()

Types of correlations:

- 1. Perfect correlation
- 2. Positive correlation
- 3. Negative correlation
- 4. Bad correlation

How to visualize the correlation between features?

- 1. sns.heatmap(correlation result data, annot=True)
- 2. sns.pairplot(dataframe)
- 3. sns.scatterplot(x=feature1, y=feature2)

Basic statistics https://pandas-docs.github.io/pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.describe.html

calculate summary statistics using **DataFrame.describe**()

ID	AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	BILL_AMT1	BILL_AMT2	BILL_AMT3	
count	29316.000000	29316.000000	29316.000000	29316.000000	29316.000000	29316.000000	29316.000000	29316.000000	29316.000000	2.931600e+04	
mean	35.426695	-0.017465	-0.131259	-0.164074	-0.219232	-0.264224	-0.288580	51042.246316	49045.626995	4.691128e+04	
std	9.497365	1.125777	1.199962	1.199591	1.171496	1.136187	1.151949	73480.513879	71051.572267	6.925505e+04	
min	21.000000	-2.000000	-2.000000	-2.000000	-2.000000	-2.000000	-2.000000	-165580.000000	-69777.000000	-1.572640e+05	
25%	28.000000	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000	3519.500000	2975.750000	2.646750e+03	
50%	34.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	22282.000000	21095.500000	2.006850e+04	
75%	41.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	66807.250000	63736.250000	5.995375e+04	
max	267.000000	8.000000	8.000000	8.000000	8.000000	8.000000	8.000000	964511.000000	983931.000000	1.664089e+06	
	× 21 columns										

Numerical data

data_A_filteration[categorical_columns].describe()

SEX EDUCATION MARRIAGE count 29316 29316 29316 5 3 unique top female university single freq 17692 13857 15797

Categorical data

Aggregating statistics

I. Numerical data

ID	AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	
count	29316.000000	29316.000000	29316.000000	29316.000000	29316.000000	29316.000000	29316.000000	
mean	35.426695	-0.017465	-0.131259	-0.164074	-0.219232	-0.264224	-0.288580	
std	9.497365	1.125777	1.199962	1.199591	1.171496	1.136187	1.151949	
min	21.000000	-2.000000	-2.000000	-2.000000	-2.000000	-2.000000	-2.000000	-1
25%	28.000000	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000	
50%	34.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
75%	41.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	(
max	267.000000	8.000000	8.000000	8.000000	8.000000	8.000000	8.000000	9

```
|: 1 data_A_filteration["AGE"].mean()
|: 35.426695319961794
|: 1 data_A_filteration["AGE"].count()
|: 29316
|: 1 data_A_filteration["AGE"].std()
|: 9.497365305617228
|: 1 data_A_filteration["AGE"].max()
|: 267
```



```
1 data_A_filteration[categorical_columns].describe()
```

ID	SEX	EDUCATION	MARRIAGE
count	29316	29316	29316
unique	2	5	3
top	female	university	single
freq	17692	13857	15797

```
1 data_A_filteration["SEX"].count()
29316

1 data_A_filteration["SEX"].value_counts().count()
2

1 data_A_filteration["SEX"].value_counts().idxmax()
'female'

1 data_A_filteration["SEX"].value_counts().max()
17692

1 data_A_filteration["SEX"].nunique()
```

2

A