Отчет по архитектуре и системному дизайну Проект: GeoCLIP FastAPI Service

Команда: Панасюк Михаил Михайлович

Май 2025

Аннотация

В данном отчете представлено проектирование системы GeoCLIP FastAPI Service, предназначенной для решения задачи геолокации по изображениям и поиска близлежащих достопримечательностей. Рассмотрены архитектура, оценка данных, выбор модели, системный дизайн, методы оценки качества сгенерированных предсказаний, а также этические и социальные аспекты проекта.

Содержание

1	Вве	едение 3					
	1.1	Цель проекта					
	1.2	Проблема и ценность					
2	Про	Проектирование системы 3					
	2.1	Обзор архитектуры					
	2.2	Взаимодействие компонентов					
	2.3	Используемые технологии					
3	Оце	енка данных					
	3.1	Источники данных					
	3.2	Качество и объем данных					
4	Выбор модели						
	4.1	Описание модели GeoCLIP					
	4.2	Альтернативные модели					
	4.3	Обоснование выбора GeoCLIP					
5	Сис	стемный дизайн					
	5.1	Пайплайн проекта					
	5.2	Инструменты и технологии по этапам					
	5.3	Масштабируемость и производительность					
6	Оце	енка качества					
	6.1	Метрики качества предсказаний					
	6.2	Метрики качества поиска					
	6.3	Процедура оценки					

7	Эти	ческие и социальные вопросы	ные вопросы	
	7.1	Приватность и персональные данные	S	
	7.2	Смещение и дискриминация	Ć	
	7.3	Этические риски использования	Ć	

1 Введение

1.1 Цель проекта

Цель проекта GeoCLIP FastAPI Service — создать прототип AI-системы, способной по загруженному изображению определить предполагаемые GPS-координаты места и найти ближайшие достопримечательности из заранее подготовленной базы данных. Решение использует мультимодальную модель GeoCLIP, дообученную для задачи геолокации, а также веб-сервис на FastAPI и интерактивный интерфейс на Streamlit+Folium.

1.2 Проблема и ценность

Проблема: пользователь загружает случайное фото местности или достопримечательности, но не знает точного географического положения кадра. Ручной поиск по карте и описаниям занимает много времени и не всегда дает точный результат.

Ценность:

- Для туристов: быстро определить, где сделано фото, и получить информацию о близлежащих объектах.
- Для маркетинга и недвижимости: анализ геолокаций популярных объектов на основе фото, планирование рекламных кампаний.
- Для образовательных проектов: демонстрация возможностей мультимодальных моделей (CV+геоданные).

2 Проектирование системы

2.1 Обзор архитектуры

В системе выделены следующие основные компоненты:

- **Клиентский интерфейс:** веб-приложение на Streamlit. Пользователь загружает изображение или задает координаты вручную, получает результаты.
- API-сервис: FastAPI, exposes три эндпоинта:
 - GET /health проверка работоспособности;
 - POST /predict/coords предсказание координат по изображению;
 - POST /search/nearby поиск ближайших достопримечательностей по изображению;
 - GET /examples/nearby поиск ближайших по введенным координатам.
- **Модель GeoCLIP:** РуТогсһ-модель, дообученная на паре {изображение, GPS}. Загрузка модели происходит при старте API, инференс происходит в памяти.
- База данных PostgreSQL: таблица images со столбцами id, name, lat, lon, url. Инициализируется скриптом docker/db/init.sql при старте контейнера.
- Пакет для работы с БД: SQLAlchemy ORM (файл арр/db.py), функции доступа к данным (app/database.py), включая функцию поиска ближайших объектов по формуле Haversine.

• Docker Compose: поднимает три сервиса: db (PostgreSQL), api (FastAPI+Uvicorn), frontend (Streamlit).

Рис. 1: Упрощенная схема архитектуры системы

2.2 Взаимодействие компонентов

- 1. Пользователь обращается к фронтенду (Streamlit).
- 2. Frontend отправляет запрос в API (/predict/coords или /search/nearby или /examples/nearby
- 3. FastAPI контроллер сохраняет загруженное изображение во временный файл, вызывает функцию инференса predict_topk(model, image_path, top_k).
- 4. Модель GeoCLIP (PyTorch) возвращает список координат с вероятностями.
- 5. В случае predict/coords этот список возвращается клиенту.
- 6. В случае search/nearby, первые координаты (центр) подаются в функцию search_nearby(cent radius_km, db), использующую Haversine для поиска строк таблицы images в указанном радиусе.
- 7. API возвращает JSON с center и списком matches (id, name, lat, lon, url, distance_km).
- 8. Frontend получает ответ, строит таблицу и интерактивную карту (Folium).

2.3 Используемые технологии

• **Язык**: Python 3.10

• Web-фреймворк: FastAPI + Uvicorn

• Модель: PyTorch + библиотека geoclip

• ORM: SQLAlchemy, psycopg2-binary

• **База** данных: PostgreSQL 15

• Маппинг на клиенте: Streamlit + Folium + streamlit-folium

• Контейнеризация: Docker, Docker Compose

3 Оценка данных

3.1 Источники данных

- Набор данных для дообучения GeoCLIP (готовый вес модели), содержащий пары {изображение, GPS-координаты}. Обычно публичные датасеты: YFCC100M, IM2GPS, Google Landmarks Dataset, но в нашем прототипе используем предобученную модель GeoCLIP без дополнительного обучения.
- Встроенная база тестовых точек (METADATA в app/database.py и в PostgreSQL) 23 известных достопримечательностей (Эйфелева башня, Биг-Бен, Храм Христа Спасителя, Эрмитаж и т.д.).

3.2 Качество и объем данных

- **Модельные данные:** GeoCLIP была дообучена на тысячах изображений с точными метками GPS.
- База тестовых точек: всего 23 строки (объем малый, но достаточный для демо).

• Проблемы:

- 1. **Недостаток разнообразия**: лишь крупные популярные достопримечательности, смещены в сторону Европы и Азии.
- 2. **Смещения (bias)**: ориентация модели под туристические фото, затруднения с малоизвестными или сельскими местами.
- 3. Пропуски: отсутствуют мелкие объекты, улицы, здания менее известные.
- 4. **Разрешение изображений**: модели CV чувствительны к низкому качеству возможны ошибки при плохой освещенности или плохом разрешении.

• Решения:

- Расширить базу точек путем добавления тысяч дополнительных достопримечательностей (например, из OpenStreetMap, Wikidata).
- Аугментация изображений: добавить шум, поворот, изменение яркости, чтобы модель была более устойчива.
- Нормализация координат: агрегация близких точек в кластеры для снижения шума.
- Проверка валидных URL: все ссылки на изображения хранятся в формате raw.githubusero
 надежны и доступны без авторизации.

4 Выбор модели

4.1 Описание модели GeoCLIP

- GeoCLIP основана на архитектуре CLIP (Contrastive Language-Image Pre-training), дообученной для задачи геолокации.
- Принимает на вход RGB-изображение, обрабатывает его через CNN-энкодер (ResNet-50 или ViT), получая вектор признаков.
- Вектор сравнивается с векторами GPS-координат (обычно через специальный геокодер/проекцию).
- Выдает топ-К ближайших координат с вероятностями (confidence scores).

4.2 Альтернативные модели

- PlaNet (Google): также предсказывает координаты по изображениям, но закрыт.
- **IM2GPS:** классический подход (2021) с использованием кластера визуальных признаков.
- $\mathbf{ResNet} + \mathbf{kNN}$: простой вариант: извлекаем эмбеддинги через \mathbf{ResNet} , ищем ближайшие картинки в датасете с метками \mathbf{GPS} .

• Vision Transformer (ViT) + FAISS: более современный энкодер, хранит индексы через FAISS.

4.3 Обоснование выбора GeoCLIP

- Высокое качество предсказаний: GeoCLIP обучалась на большом количестве изображений с метками GPS, демонстрирует высокую точность.
- Простота интеграции: доступна через PyPI, легко загружается и вызывает метод model.predict(image, top_k).
- Наличие вероятностных оценок (confidence scores).
- **Альтернатива ResNet**+**kNN**: требует собрать большие датасеты изображений и строить базы кластера или индексы FAISS. GeoCLIP уже содержит проекцию в пространстве координат.

5 Системный дизайн

5.1 Пайплайн проекта

- 1. Сбор данных / Загрузка модели:
 - При запуске API сервис загружает веса GeoCLIP (пакет geoclip) и переводит модель в режим eval().
 - PostgreSQL инициализируется скриптом init.sql (23 тестовые записи).

2. Предобработка запроса:

- Клиент (Streamlit) отправляет изображение через multipart/form-data.
- API сохраняет в NamedTemporaryFile(.jpg), затем вызывает predict_topk(model, path, top_k).

3. Инференс модели:

- GeoCLIP читает файл, автоматически применяет нормализацию, ресайз, транформация, пропускает через энкодер → получает топ-К координат с вероятностями.
- В случае /predict/coords API возвращает JSON с массивом [(lat, lon, prob)...].

4. Поиск ближайших точек (для /search/nearby и /examples/nearby):

- Берется одна координата (центр), передается в функцию search_nearby(center, radius_km, db).
- В database.py реализована функция Haversine для вычисления расстояния *в километрах* между двумя точками, фильтрация по радиусу, сортировка по возрастанию расстояния.
- Возвращается список словарей {id, name, lat, lon, url, distance_km}.

5. Формирование ответа и отображение:

- API возвращает JSON: {"center": {lat, lon}, "matches": [...]}.
- Frontend: строит таблицу через pandas.DataFrame, отображает интерактивную карту Folium с маркерами.
- Tooltip для центра показывает загруженное изображение (base64), для остальных картинку из поля url.

6. Развертывание (Docker Compose):

- Сервис разбит на три контейнера: db (Postgres), api (FastAPI+Uvicorn), frontend (Streamlit).
- Переменная окружения DATABASE_URL задается в docker-compose.yml.
- Образы собираются из одного Dockerfile, в котором прописаны зависимости (FastAPI, SQLAlchemy, streamlit, folium и пр.).

5.2 Инструменты и технологии по этапам

Этап	Инструмент / Тех- нология	Описание
Сбор данных / Загрузка модели	PyTorch, библиотека geoclip	Получение предобучен- ных весов GeoCLIP
База данных (иници- ализация)	PostgreSQL, SQLAlchemy, docker-entrypoint-i	Coxpaнeние и чтение метаданных (id, name, lat, lon, nind).d
АРІ-сервис	FastAPI, Uvicorn, Pydantic	Обработка HTTP- запросов, валидация, генерация ответов в формате JSON
Логика поиска	Python, функция Haversine	Калькуляция расстояний и фильтрация по радиусу
Frontend	Streamlit, Folium, streamlit-folium, Pandas	Интерактивная визуализация результатов, карты, таблицы, предпросмотр изображений
Контейнеризация	Docker, Docker Compose	Разделение сервисов (DB, API, Frontend), упрощенное развертывание
Мониторинг и логирование	Возможное расши- рение: Prometheus, Grafana, ELK	(В MVP не реализова- но, но запланировано для продакшен-версии)

5.3 Масштабируемость и производительность

• Загрузка модели: при старте API модель загружается в память (один экземпляр). Чтобы горизонтально масштабировать, можно запустить несколько реплик FastAPI за балансировщиком (NGINX, Traefik).

- **Инференс:** GeoCLIP inference может занимать 50–200 мс на CPU, 20–50 мс на GPU. При возрастающем числе запросов:
 - Горизонтальное масштабирование (несколько pod/контейнеров).
 - Использование очередей (RabbitMQ, Redis) для разгрузки синхронных запросов.
 - Кэширование популярных результатов (Redis).

• Поиск в БД:

- Текущая реализация: линейный перебор всех записей (23). При росте базы до тысяч/миллионов точек потребуется индексирование:
 - * Пространственные индексы PostGIS + ST_DWithin для быстрого поиска по радиусу.
 - * Использовать cube или earthdistance в PostgreSQL.
 - * Или хранить точки в ElasticSearch с гео-запросами.
- Frontend: Folium рендерит карту на стороне клиента, загружает HTML/JavaScript. При большом количестве маркеров (>1000) производительность падает. Решения:
 - Кластеризация маркеров (Leaflet MarkerCluster).
 - Lazy loading: загружать только область в видимой области карты.

6 Оценка качества

6.1 Метрики качества предсказаний

- Mean Distance Error (MDE): среднее расстояние (в км) между предсказанной и истинной координатой для тестовых изображений.
- Precision@K (P@K): доля случаев, когда одна из топ-К предсказанных координат попадает в радиус r км от истинной точки.
- Recall@K (R@K): для каждого изображения насколько часто истинная метка входит в топ-К.
- Coverage: процент изображений, для которых модель вернула координаты (без ошибок)

6.2 Метрики качества поиска

- Hit Rate: доля случаев, когда в базе найдены объекты в заданном радиусе.
- Average Distance to Nearest: среднее расстояние от предсказанной точки до ближайшей найденной достопримечательности.
- Response Time: среднее время отклика (latency) API для эндпоинта /search/nearby.

6.3 Процедура оценки

- 1. Сбор тестового набора: набор фотографий с известными координатами (не из базы обучения).
- 2. Проводим inference: получаем топ-К координат, вычисляем MDE и P@K.
- 3. Оценка поиска: для каждого изображения ищем ближайшие объекты из тестовой БД, считаем Hit Rate при разных r (1 км, 5 км, 10 км).
- 4. **Нагрузочное тестирование:** с помощью locust или k6 тестируем /search/nearby и /predict/coords, измеряем 95-й перцентиль latency.

7 Этические и социальные вопросы

7.1 Приватность и персональные данные

- Фото пользователя: пользователь загружает своё изображение. Возможные риски: непреднамеренное раскрытие личных данных (лица людей, номера автомобилей, знаковые места).
- **Хранение загруженных фото:** в текущей реализации фото не сохраняются на сервере, а обрабатываются во временном файле и немедленно удаляются после инференса.

• Рекомендация:

- Информировать пользователя о политике конфиденциальности.
- Обеспечить SSL/TLS соединение (HTTPS) для защиты данных в пути.
- Не хранить загрузки дольше, чем нужно для инференса.

7.2 Смещение и дискриминация

• Смещение модели: GeoCLIP обучена преимущественно на туристических фото популярных мест. Риск: плохое качество предсказаний для регионов, мало представленных в обучающей выборке (сельские местности, неанглоязычные регионы).

• Решения:

- Расширить тренировочные данные, добавить больше фото из разных частей мира.
- Проводить мониторинг ошибок модели в разных регионах.

7.3 Этические риски использования

- Неправомерное использование: геолокация по фото может быть использована для отслеживания людей без их согласия.
- Риск ошибочной информации: предсказание координат с погрешностью может привести пользователя в неверное место.

• Решения:

- В интерфейсе указывать диапазон неточности (например, \pm 10 км).
- Дать возможность пользователю вручную скорректировать координаты.
- Включить disclaimer: «результаты носят справочный характер и могут содержать погрешности».