Structural Model Validation in Measurement Error Models

Naomi Giertych

Joint work with: Jonathan Williams and Sujit Ghosh

08/07/23

Motivation

- Astronomers interested in answering questions about exoplanet formation and structure
- Build models where mass and radius are used as inputs
- For instance, Dorn et al. (2018) characterize the interiors of the planets in the TRAPPIST-1 system using mass, radius and stellar irradiation
- Challenge: mass measurements are significantly more difficult to obtain (Ma & Ghosh, 2019; Weiss & Marcy, 2014; Wolfgang et al., 2016)
- Solution: predict mass from observed radius
- But

Challenges in Modeling the M-R Relationship

- Piecewise-linear on log-base-10-scale
- Measurement errors in mass and radius with
 - unknown, heteroskedastic variance
 - unknown distribution

Model and Statistical Problem

Measurement error model with intrinsic scatter:

$$y_i = \beta_0 + \beta_1 x_i + v_i$$

$$d_i = y_i + w_i$$

$$z_i = x_i + q_i$$
(1)

where

$$E(v_i) = 0$$
 $E(w_i) = 0$ $E(q_i) = 0$ $V(v_i) = \sigma^2$ $V(w_i) = \sigma_{w_i}^2$ $V(q_i) = \sigma_{q_i}^2$ $I_{w_i} < \sigma_{w_i}^2 < u_{w_i}$ $I_{q_i} < \sigma_{q_i}^2 < u_{q_i}$

 $(v_1, w_1, q_1), \ldots, (v_n, w_n, q_n)$ mutually independent from some elliptical distribution and $\{l_{w_i}, u_{w_i}, l_{q_i}, u_{q_i}\}_{i=1}^n$ are known.

Goal: Determine fit of model (1)

Proposed Method

- Use new tools from conformal prediction to construct a measure of discrepancy between data and assumed model which
 - accounts for heteroscedastic measurement errors
 - is robust to misspecification of error distribution
- Calculate the measure of discrepancy on two subsets of the data
- Perform a formal goodness-of-fit test using the Anderson-Darling two-sample test

Conformal Prediction

- Transformation that measures how different one observation is from the others (Shafer & Vovk, 2008)
- Can be used to construct prediction intervals with exact Type I error coverage if non-conformity scores i.i.d (Shafer & Vovk, 2008)
- Re-write equation (2) as:

$$d_i = \beta_0 + \beta_1 z_i + e_i$$

where
$$e_i = v_i + w_i - \beta_1 q_i$$
, $E(e_i) = 0$, $V(e_i) = \eta_i = (\sigma^2 + \sigma_{w_i}^2 + \beta_1^2 \sigma_{q_i}^2)$

• Our non-conformity scores: $(d_i - \beta_0 - \beta_1 z_i)^2 / \eta_i$

Proposed Method

Parameter estimation

2 Goodness-of-fit test

Parameter Estimation: FGLS for ME Models

Initialize variance estimates at mid-point of bounds

 Use any parameter estimation method that accounts for known measurement error variances

• Using parameter estimate, estimate variances

Iterate until convergence

Moment-Corrected Estimator

Buonaccorsi (2010) defines moment-corrected estimators:

$$\hat{\beta}_{0} = \bar{d} - \hat{\beta}_{1}\bar{z}
\hat{\beta}_{1} = \frac{S_{ZD}}{S_{ZZ} - \sigma_{q}^{2}}
\hat{\sigma}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (d_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}z_{i})^{2} - \sigma_{w}^{2} - \hat{\beta}_{1}^{2}\sigma_{q}^{2}$$

where

$$\sigma_w^2 = \sum_{i=1}^n \sigma_{w_i}^2 / n$$
 $\sigma_q^2 = \sum_{i=1}^n \sigma_{q_i}^2 / n$ $\bar{d} = \sum_{i=1}^n d_i / n$ $\bar{z} = \sum_{i=1}^n z_i / n$

$$S_{ZD} = \frac{\sum_{i=1}^{n} (z_i - \bar{z})(d_i - \bar{d})}{n-1}$$
 $S_{ZZ} = \frac{\sum_{i=1}^{n} (z_i - \bar{z})^2}{n-1}$

Least Squares Variance Component Estimation

Suppose

$$E(y) = X\beta$$
 $V(y) = \sum_{k=1}^{n} s_k Q_k$

Let

- B be a basis matrix for null(X')
- $y_{vh} = \text{vech}(B'yy'B)$
- $X_{vh} = [\operatorname{vech}(B'Q_1B) \cdot \cdot \cdot \cdot \operatorname{vech}(B'Q_nB)]$

Then $\hat{s} = (X'_{vh}X_{vh})^{-1}X'_{vh}y_{vh}$ and $E(\hat{s}) = s$ (Teunissen & Amiri-Simkooei, 2008)

LS-VCE with QP

Re-write equation (1) as

$$d_i = \beta_0 + \beta_1 z_i + e_i \tag{2}$$

where
$$e_i = v_i + w_i - \beta_1 q_i$$
, $E(e_i) = 0$, $V(e_i) = \eta_i = (\sigma^2 + \sigma_{w_i}^2 + \beta_1^2 \sigma_{q_i}^2)$

Obtain upper and lower bounds for η_i using $\{l_{w_i}, u_{w_i}, l_{q_i}, u_{q_i}\}$ and

$$I_{\sigma^2} = \sum_{i=1}^n [(d_i - \beta_0 - \beta_1 z_i)^2 - u_{w_i} - \beta_1^2 u_{q_i}]/n$$

$$u_{\sigma^2} = \sum_{i=1}^{n} [(d_i - \beta_0 - \beta_1 z_i)^2 - I_{w_i} - \beta_1^2 I_{q_i}]/n$$

Proposed Method

Parameter estimation

@ Goodness-of-fit test

Anderson-Darling Two-Sample Goodness-of-Fit test

- Non-parametric test for equality of distributions, i.e $H_0: F_X = F_Y$
- Less sensitive to small sample sizes unlike Kolmogorov-Smirnov Test
- Goodness-of-fit test:
 - Split data into train, calibration, and test sets
 - Estimate parameters using the training data
 - Calculate non-conformity scores for calibration and test sets
 - Use non-conformity scores in Anderson-Darling Two-Sample test
 - If the two sets of non-conformity scores have the same distribution, then we fail to reject the null hypothesis and conclude that the model is correctly specified.

Simulations Setup

- Training: $x_i \stackrel{i.i.d}{\sim} Unif(0,30)$, 200 observations
- Calibration: $x_i \stackrel{i.i.d}{\sim} Unif(0,30)$, 50 observations
- Test: $x_i \stackrel{i.i.d}{\sim} Unif(30, 40)$, 50 observations
- $\beta_0 = 1$, $\beta_1 \in \{1, 3, 20\}$
- $\sigma^2 \in \{0.5, 2, 10\}$
- $I_{w_i} = I_{q_i} = 0.06x_i^2$
- $u_{w_i} = u_{q_i} = 0.07x_i^2$
- $\sigma_{w_i}^2, \sigma_{q_i}^2 = 0.3 I_{w_i} + 0.7 u_{w_i}$

Simulation: Slope Estimates

QQ Plots of Observed AD P-Values vs Theoretical U(0,1)

Power

Application to Mass-Radius Relationship

- Followed Weiss & Marcy (2014) and Wolfgang et al. (2016) and considered planets with $1.5R_{\oplus} < R^{obs} < 4R_{\oplus}$ and high SNR $(R^{obs} > 3\sigma_R^{obs},\ M^{obs} > 3\sigma_M^{obs})$
- 320 observations total
- Fit relationship on log-base-10 scale

$$\widetilde{M}_{i} = \widetilde{C} + \frac{\gamma}{\ln(10)} \widetilde{R}_{i} + \frac{v_{i}}{\ln(10)}$$

$$\widetilde{M}_{i}^{\text{obs}} = \widetilde{M}_{i} + \frac{w_{i}}{\ln(10)}$$

$$\widetilde{R}_{i}^{\text{obs}} = \widetilde{R}_{i} + \frac{q_{i}}{\ln(10)}$$
(3)

- ullet Training and calibration sets contained observations with $R^{obs} \leq 3R_{\oplus}$
- Test set contained remaining observations

Application to Mass-Radius Relationship

	ĩ	$\gamma/\mathit{In}(10)$	AD p-value
Our Analysis (Midpoint)	-0.026	2.747	< 0.001
Weiss & Marcy (2014)*	0.430	0.404	_
Wolfgang et al. (2016)*	0.431	0.565	-

Table 1: ·* Did not consider multiplicative measurement errors

Application to Mass-Radius Relationship

Thank you!

https://ngierty.github.io/

References

- Buonaccorsi, J. P. 2010, Measurement error: models, methods, and applications (Chapman and Hall/CRC)
- Dorn, C., Mosegaard, K., Grimm, S. L., & Alibert, Y. 2018, The Astrophysical Journal, 865, 20
- Ma, Q., & Ghosh, S. K. 2019, The Astronomical Journal, 158, 86
- Shafer, G., & Vovk, V. 2008, Journal of Machine Learning Research, 9
- Teunissen, P. J., & Amiri-Simkooei, A. 2008, Journal of geodesy, 82, 65
- Weiss, L. M., & Marcy, G. W. 2014, The Astrophysical Journal Letters, 783, L6
- Wolfgang, A., Rogers, L. A., & Ford, E. B. 2016, The Astrophysical Journal, 825, 19

Simulation: Intercept Estimates

Simulation: Prediction Interval Coverage

