CS 65500 Advanced Cryptography

Lecture 22: MPC from Homomorphic Encryption

Instructor: Aarushi Goel

Spring 2025

Agenda

- → Public Key Encryption
- → Decisional Diffie-Hellman Assumption
- → El Gamal Encuption
- → Threshold Encryption
- → Homomorphic Encryption
- -> MPC from homomorphic encyption.

Public-Key Encryption

Syntax:

*
$$Gen(1^{\lambda}) \rightarrow SK, pK$$

* Enc
$$(pK, m; h) \rightarrow c$$

Correctness:

Let
$$(SK, pK) \leftarrow Gen(I^{\lambda})$$
, $\forall m, n, lt holds that:$
 $Pr[Dec(SK, Enc(pK, m; n)) = m] \ge 1 - negl(\lambda)$

(All of these are

PPT algorithms

Security:

Indistinguishability based = semantic security

(IND-CPA)

+ correctness

Defining IND-CPA Security
indistinguishability chosen plaintext attack.

<u>Definition</u>: A public Key encuption scheme (Gen, Enc, Dec) is IND-CPA secure if \forall n.u. PPT adversaries A, there exists a negligible function $negl(\cdot)$, S.t.,

Pr $A(pK, Enc(pK, m_b; \Lambda)) = b$ $A \leftarrow \begin{cases} (pK, SK) \leftarrow G(en(1^{\lambda}), \\ A \leftarrow \begin{cases} so, 13 \end{cases}^*, \\ (m_o, m_i) \leftarrow A(pK, 1^{\lambda}), \end{cases}$ $\begin{cases} \frac{1}{2} + negl(\Lambda) \\ b \leftarrow \begin{cases} so, 13 \end{cases} \end{cases}$

* One message security implies multi-messge security for public key enc

Decisional Diffic-Hellman Assumption

→ Given gx, gy for random x, y, gxy should be *hidden*
ie., could still be used as a pseudorandom element

 $\Rightarrow (g^{x}, g^{y}, g^{xy}) \approx_{c} (g^{x}, g^{y}, g^{x})$

(ie p=2q+1 for some large prime q)

Definition: Let (G,.) be a cyclic group of order p (where p is a safe prime) with generator g, then the following two distributions are computationally indistinguishable:

* {x,y + {0, --, p-13: (6, p, g, gx, gy, gxy)}

Diffie-Heuman Key-Exchange

$$X = g^{\kappa}$$

$$\xrightarrow{\mathsf{X}}$$

* The final key $Y^{x} = X^{y} = g^{xy}$ remains hidden from an everdropper if the DDH assumption holds.

El Gamal Encryption

* Enc $(pK, m) \rightarrow Pause pK = (G_1, g, Y)$ Sample $x \leftarrow \frac{\$}{2} \{0, \dots, p^{-1}\}$ $C = (R = g^{*}, X = g^{m} Y^{*})$

* $Dec(sK, c) \rightarrow Parse \quad sK = (G, g, y) , \quad c = (R, X)$ $M = \quad X \cdot R^{-y} , \quad for \quad all \quad possible \quad messages , \quad check$ $if \quad g^m = M. \quad Output \quad the \quad wresponding \quad m.$ $* \quad decryption \quad is \quad efficient \quad only \quad for \quad small \quad message \quad domains.$

Security of El Gamal

* El Gamal encryption is seuve if DDH holds.

Proof by Reduction:

Threshold El Gamal (Semi-Honest Seune)

* Goal: Enable n-parties to generate a PK for El Gamal in such a way that sk is sevet shared among them. Decryption of a ciphutent should only be possible if all nearlies come together. For now we only four on semi-honest corruption.

* Distributed Key Generation:

- 1. Party 1 samples (G,g). Let G be of order p.
- 2. Each party i samples a random yi and sends Y=gyi to all parties.
- 3. All parties compute Y= TTY: PK= (G,g,Y)
- 4. Implicit SK = (G, g, Zyi).
- * Encryption: Exactly as in El Gamal.
- * Distributed <u>Decryption</u>: Given a ciphertext (R, X), each party i, publishes $K_i^{-1} = R^{-y_i}$. All parties compute $K^{-1} = 71 K_i^{-1}$ $M = X \cdot K^{-1}$.

Homomorphic Encryption

- * Group Homomorphism: Two groups G and G' are homomorphic if there exists a function (homomorphism) $f: G \rightarrow G'$, such that $\forall x, y \in G$, $f(x) +_{G'} f(y) = f(x +_{G} y)$
- * Homomorphic Encryption: An IND-CPA secure public-Key encryption is said to be homomorphic for any ciphertexts C.D., it holds that:

Pr [Dec (c) t_{M} , Dec (d) = Dec((t_{c} , D)] > 1-negl(λ)
addition over msg domain add over ciphertext space.

→ Interesting when to does not require search key

eg El Gamae: (g', g'', y') x (g', g'', y') = (g', g'', g'', y')

MPC from Homomorphic Encuption

- → Recall in the GMW protocol, parties collectively evaluate the circuit on secret shared values using pair-wise OTs.
- → An alternate approach (avoids pairwise communication): each wire value is kept encrypted (publicly) and the secret key is kept secret shared.
- * Input Sharing Phase: All parties encrypt their inputs and publish
- * Circuit Evaluation Phase: Each gate in the circuit is evaluated over encrypted values using homomorphism How??
- * Output Reconstruction Phase: Parties de crypt the output wires using threshold decryption.
- → Proposed by Ronald Cramer, Ivan Damgard & Jesper Nielson un 2001

Circuit Evaluation Phase

Circuit Evaluation Phase

Austributed Keygen

Let's use [m] to denote Enc(px,m)

- 1. Each party i picks a random xi, yi
 - and publishes [xi], [yi], [xi.b], [yi.a].
- 2. Au parties compute [x+a], [y+b], [ay], [bx] [e]
 - where x= 2xi, y= 2yi
- 3. Each party publishes [xi·y] = xi·[y].
- 4. All parties compute [xy]
- 5. Parties threshold decrypt (x+a), (y+b).
 - and compute z=(x+a)(y+b)
- 6. All parties compute [a:b] = [z] [ay] [bx] [xy] = [e]

$$[f] = [c] + [d]$$

[c][d]

[g]

[a][b]

+ Easy to compute