

Általános tudnivalók

Bevezet

Kombinatorika

Alkalmazott statisztika

1. Előadás

Dr. Barta Attila¹, Dr. Pecsora Sándor²

PTI BSc

PTI BSc August, 2024

Presentation Overview

Revezetá

Kombinatorika

Általános tudnivalók

Bevezető

Kombinatorika

Általános tudnivalók

tudnivalók

Kombinatorika

A vizsgával, a gyakorlati órákkal, az előadásokkal, a jelenléttel és az elvárt normákkal normákkal kapcsolatos minden fontos információ megtalálható a kurzus tantervében.

PTI BSc August, 2024

Bevezető

Bevezető

Valószínűségelmélet *vagy* Statisztika Valószínűségelmélet és statisztika

Valószínűségelmélet $\mathit{V/S}$ Statisztika

A valószínűségelmélet a jövőbeli események valószínűségének előrejelzésével foglalkozik, míg a *statisztika* a *múltbeli események* gyakoriságának elemzését foglalja magában. A statisztika a gyakorlatban a valószínűségelmélet eredményei által létrehozott alapokra épül.

PTI BSc August, 2024

Permutáció

tudnivaló

Bevezet

Kombinatorika

Definíció (Permutáció)

Az n megkülönböztethető elemek rendezett sorozatát n-permutációnak nevezzük.

PTI BSc August, 2024

Permutáció

Kombinatorika

Definíció (Permutáció)

Az n megkülönböztethető elemek rendezett sorozatát n-permutációnak nevezzük.

Tétel

Az n-permutációk száma n faktoriális, ami

$$P_n = n! = n \cdot (n-1) \cdot \cdot \cdot 2 \cdot 1$$

Meg jegyzés:

$$0! = 1$$

Mivel az üreshalmaz egyféleképpen rendezhető.

Ismétléses permutáció

tudnivaló

Bevezet

Kombinatorika

Definíció (Ismétléses permutáció)

Egy n elemű rendezett sorozat, ahol m különböző típusú elemek vannak, ahol az első típusnak k_1 eleme van, a második típusnak k_2 eleme van, ..., az m-edik típusnak k_m eleme van, n permutációnak nevezzük, amelynek k_1, k_2, \ldots, k_m ismétlődései vannak.

PTI BSc August, 2024

Ismétléses permutáció

Kombinatorika

Definíció (Ismétléses permutáció)

Egy n elemű rendezett sorozat, ahol m különböző típusú elemek vannak, ahol az első típusnak k_1 eleme van, a második típusnak k_2 eleme van, . . . , az m-edik típusnak k_m eleme van. n permutációnak nevezzük, amelynek k_1, k_2, \ldots, k_m ismétlődései vannak.

Theorem

Az ismétléses *n*-permutációk száma $k_1, k_2, ..., k_m$ ismétlésekkel

$$P_n^{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}$$

August, 2024

Bevezeta

Kombinatorika

Előadás kérdés

Keresse meg a 8 bástya lehetséges elrendezéseinek számát a sakktáblán úgy, hogy hogy ne üssék egymást!

PTI BSc August, 2024

Kombinatorika

Előadás kérdés

Keresse meg a 8 bástya lehetséges elrendezéseinek számát a sakktáblán úgy, hogy hogy ne üssék egymást!

$$P_8 = 8!$$

Bevezeto

Kombinatorika

Előadás kérdés

Keresse meg a 8 bástya lehetséges elrendezéseinek számát a sakktáblán úgy, hogy hogy ne üssék egymást!

$$P_8 = 8!$$

Mi az eredmény, ha a bábuk megkülönböztethetőek?

Kombinatorika

Előadás kérdés

Keresse meg a 8 bástya lehetséges elrendezéseinek számát a sakktáblán úgy, hogy hogy ne üssék egymást!

$$P_8 = 8!$$

Mi az eredmény, ha a bábuk megkülönböztethetőek?

$$P_8 \cdot P_8$$

Bevezető

Kombinatorika

Előadás kérdés

Adott 3 alma, 2 körte, 2 barack. Hányféleképpen rendezhetem őket egy sorba az asztalon, ha az azonos gyümölcsfajtákon belül nem teszünk különbséget?

PTI BSc August, 2024

Kombinatorika

Előadás kérdés

Adott 3 alma, 2 körte, 2 barack. Hányféleképpen rendezhetem őket egy sorba az asztalon, ha az azonos gyümölcsfajtákon belül nem teszünk különbséget?

$$P_7^{3,2,2} = \frac{7!}{3! \cdot 2! \cdot 2!}$$

Variáció

Bevezető

Kombinatorika

Definíció (Variáció)

Adott n elem k elemű részhalmazának rendezése, $n \in \mathbb{N}, k \le n$.

PTI BSc August, 2024

Variáció

tudnivaló

Devezet

Kombinatorika

Definíció (Variáció)

Adott n elem k elemű részhalmazának rendezése, $n \in \mathbb{N}, k \le n$.

Tétel

Az ismélés nélküli variációk száma

$$V_n^k = n \cdot (n-1) \cdot (n-2) \cdots k = \frac{n!}{n-k!}$$

Ismétléses variáció

Povozatá

Kombinatorika

Definíció (Ismétléses variáció)

Válasszuk ki k elemet az n megkülönböztethető elemek közül úgy, hogy minden egyes elem többször is választható legyen. Az elemek sorrendje számít.

PTI BSc August, 2024

Ismétléses variáció

Kombinatorika

Definíció (Ismétléses variáció)

Válasszuk ki k elemet az n megkülönböztethető elemek közül úgy, hogy minden egyes elem többször is választható legyen. Az elemek sorrendje számít.

Tétel

Az ismétléses variációk száma

$$V_n^{k,r} = \underbrace{n \cdot n \cdots n}_{k \text{ darab}} = n^k$$

Kombinatorika

Előadás kérdés

Hány valós négyjegyű szám (nem kezdődhetnek nullával) képezhető a következő 0, 1, 2, 3, 4, 5, 6 számjegyekből, ha legfeljebb egyszer használhatunk fel egy számjegyet?

August, 2024

Kombinatorika

Előadás kérdés

Hány valós négyjegyű szám (nem kezdődhetnek nullával) képezhető a következő 0, 1, 2, 3, 4, 5, 6 számjegyekből, ha legfeljebb egyszer használhatunk fel egy számjegyet?

$$V_7^4 - V_6^3$$

Bevezető

Kombinatorika

Előadás kérdés

Három postásnak hat levelet kell kézbesítenie. Adja meg a levelek lehetséges kikézbesítéseinek számát.

PTI BSc August, 2024

Kombinatorika

Előadás kérdés

Három postásnak hat levelet kell kézbesítenie. Adja meg a levelek lehetséges kikézbesítéseinek számát.

D ...

Kombinatorika

Definíció (Kombináció)

Legyen n megkülönböztethető elemünk, k elemet választunk úgy, hogy minden egyes elem pontosan egyszer választható, $n \in \mathbb{N}, k \le n$.

PTI BSc August, 2024

Kombinatorika

Definíció (Kombináció)

Legyen n megkülönböztethető elemünk, k elemet választunk úgy, hogy minden egyes elem pontosan egyszer választható, $n \in \mathbb{N}, k \leq n$.

Tétel

Az n megkülönböztethető elemek közül k elem kiválasztásának száma úgy, hogy minden egyes elemet legfeljebb egyszer lehet választani, a következő

$$C_n^k = \binom{n}{k} = \frac{n!}{(n-k)!}$$

PTI BSc August, 2024

_

Kombinatorika

Definíció (Kombináció)

Legyen n megkülönböztethető elemünk, k elemet választunk úgy, hogy minden egyes elem többször is választható legyen, $n \in \mathbb{N}, k \le n$.

PTI BSc August, 2024

Kombinatorika

Definíció (Kombináció)

Legyen n megkülönböztethető elemünk, k elemet választunk úgy, hogy minden egyes elem többször is választható legyen, $n \in \mathbb{N}, k \leq n$.

Tétel

Az n megkülönböztethető elemek közül k elem kiválasztásának módjainak száma úgy, hogy minden egyes elemet többször is ki lehet választani, a következő

$$C_n^{k,r} = \binom{n+k-1}{k}$$

PTI BSc August, 2024

Bevezető

Kombinatorika

Előadás feladat

Hány féleképpen tölthetünk ki egy ötöslottó szelvényt?

PTI BSc August, 2024

Kombinatorika

Előadás feladat

Hány féleképpen tölthetünk ki egy ötöslottó szelvényt?

$$C_{90}^5 = \frac{90!}{5! \cdot (90 - 5)!}$$

Davisanská

Kombinatorika

Előadás feladat

Hányféleképpen oszthatunk szét 7 almát és 9 barackot 4 gyerek között.

PTI BSc August, 2024

Bevezeta

Kombinatorika

Előadás feladat

Hányféleképpen oszthatunk szét 7 almát és 9 barackot 4 gyerek között.

$$C_4^{7,r}\cdot C_4^{9,r}$$

_ _

Kombinatorika

Előadás feladat

8 hallgató jelentkezett a valószínűségelméleti szóbeli vizsgára. Hány különböző sorrendben vizsgázhatnak le, ha a hallgatók egyenként felelnek?

- 64
- 16
- 40320
- 34862

Davisant

Kombinatorika

Előadás feladat

8 hallgató jelentkezett a valószínűségelméleti szóbeli vizsgára. Hány különböző sorrendben vizsgázhatnak le, ha a hallgatók egyenként felelnek?

- 64
- 16
- 40320
- 34862

_

Kombinatorika

Előadás feladat

DNS szekvenciák lehetséges alkotóelemei: A, C, G, T.

Hány féle 3 hosszú szekvencia létezik?

- 12
- 24
- 64
- 81

Altalános tudnivalól

Bevezet

Kombinatorika

Előadás feladat

DNS szekvenciák lehetséges alkotóelemei: A, C, G, T.

Hány féle 3 hosszú szekvencia létezik?

- 12
- 24
- 64
- 81

Kombinatorika

Előadás feladat

Az államvizsgán 20 kérdés szerepel. Hányféle választási lehetőség van, ha a tanulóknak 2 kérdést kell választaniuk?

- 190
- 256
- 39
- 380

tudnivaló

Bevezet

Kombinatorika

Előadás feladat

Az államvizsgán 20 kérdés szerepel. Hányféle választási lehetőség van, ha a tanulóknak 2 kérdést kell választaniuk?

- **190**
- 256
- 39
- 380

 $\begin{array}{c|c} 20 & 1 \\ \hline \end{array}$

Fontos a sorrend???