### **Hochschule Esslingen – University of Applied Sciences**

| Sommersemester 2011 |                                                           | Zahl der Seiten: 13; Seite 1 |            |
|---------------------|-----------------------------------------------------------|------------------------------|------------|
| Fakultät:           | Informationstechnik                                       | Semester:                    | IT3A       |
| Prüfungsfach:       | Betriebssysteme (1) KTB/TIB/SWB 3071 (2) KTB/TIB/SWB 3072 |                              |            |
| Dozent:             | Seiffert                                                  | Fachnummer:                  |            |
| Hilfsmittel:        | keine                                                     | Zeit:                        | 90 Minuten |
| Name:               |                                                           | Matrikelnummer:              |            |

**Vorbemerkung:** der freigelassene Platz sollte in der Regel zur Beantwortung der Fragen ausreichen und ist vorrangig zu nutzen. Bei Bedarf verwenden Sie bitte die Rückseiten und vermerken Sie dies auf der Vorderseite. Bitte tragen Sie auf jeder Seite Ihre Matrikelnummer ein und benutzen Sie keine roten Farbstifte!

Viel Erfolg!

| Sommersemester 2011 |                         | Zahl der Seiten: 13; Seite 2 |  |
|---------------------|-------------------------|------------------------------|--|
| Prüfungsfach:       | Betriebssysteme<br>IT3A | Matrikelnummer:              |  |

## Aufgabe 1 Grundlagen

(15 Punkte)

(a) Was sind die zentralen Aufgaben eines Betriebssystems? Nennen Sie diese drei Aufgabenbereiche und geben Sie je ein Beispiel, was das Betriebssystem in diesem Bereich leistet

| Abstraktion der Hardware  • Lies einen Block von Floppy  • Darstellung eines Geräts als "special file" | 2 |
|--------------------------------------------------------------------------------------------------------|---|
| Verwaltung der Betriebsmittel                                                                          |   |
| Betriebssystemdienste / Services                                                                       | 2 |

(b) Nennen Sie drei zentrale Abstraktionen, die ein Betriebssystem dem Programmierer zur Verfügung stellt:

| Prozesse                          |   |  |
|-----------------------------------|---|--|
| Adressräume / Virtueller Speicher | 3 |  |
| Dateien / Dateisysteme            |   |  |

(c) Charakterisieren Sie (in Stichworten) die folgenden Betriebsarten eines Rechners:

| Stapelver-<br>arbeitung<br>(Batch)  | Benutzer schicken Jobs an den Rechner<br>Nachträglich keine Änderungen mehr möglich<br>BS entscheidet über die Abarbeitung der Jobs                         | 2 |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Interaktiver<br>Betrieb<br>(Dialog) | System (scheinbar) ständig vom Benutzer<br>beeinflussbar - "interaktiv"<br>BS verteilt die Ressourcen unter den<br>angemeldeten Benutzern                   | 2 |
| Echtzeit-<br>betrieb                | Für die Abarbeitung eines Programms – bzw für die Reaktion auf ein (externes) Ereignis – gibt es harte Grenzwerte, deren Einhaltung das BS garantieren muss | 2 |

| Sommersemester 2011 |                         | Zahl der Seiten: 13; Seite 3 |  |
|---------------------|-------------------------|------------------------------|--|
| Prüfungsfach:       | Betriebssysteme<br>IT3A | Matrikelnummer:              |  |

#### Aufgabe 2 Linux benutzen

(10 Punkte)

In einem Linux-System wurde ein Standardbenutzer (user1) eingerichtet und ein Systemadministrator (admin). Der Standardbenutzer ist angemeldet. Betrachten Sie folgenden Dialog mit dem System:

```
user1(601)> uname -a
Linux BL3B3849 2.6.31-21-generic #59-Ubuntu SMP Wed Mar 24 07:28:56 UTC
2010 i686 GNU/Linux
user1(601)> cat /etc/passwd | grep $(whoami)
user1:x:601:100:Standardbenutzer1,,,:/home/user1:/bin/bash
user1(601)> cat /etc/passwd | grep admin:
admin:x:50:4:Administrator,,,:/home/admin:/bin/bash
```

(d) Welche Version des Linux-Kernels läuft auf dem System?

# 2.6.31-21 (Ubuntu Distribution)

1

(e) Welche User IDs (UIDs) gehören zu den Benutzernamen user1 und admin?

| user1: 601 | , admin: 50 |  |  |
|------------|-------------|--|--|
|------------|-------------|--|--|

(f) Welche primären group ID haben die Benutzer jeweils?

| user1: 100, admin: 4 | 1 |
|----------------------|---|
|----------------------|---|

(g) In welcher Systemdatei finden Sie die Definition der Benutzer? In welcher Datei werden die Passörter gespeichert?

| /etc/passwd | 2 |
|-------------|---|
| /etc/shadow |   |

(h) Der Benutzer user1 ist ein Linux-Neuling. Erklären Sie kurz diese ganz elementaren Kommandos:

| cd    | Wechseln des Arbeitsverzeichnises | 1 |
|-------|-----------------------------------|---|
| mkdir | Anlegen eines neuen Verzeichnises | 1 |
| ср    | Kopieren einer Datei              | 1 |
| rm    | Löschen einer Datei               | 1 |

(i) Betrachten Sie die Ausgabe des folgenden ls Kommandos. Welchem Benutzer gehört test? Welcher Gruppe?

> ls -al test

-rwxr-xr-- 1 verwalter admin 119 2010-06-04 14:25 test

| Eigentümer: verwalter<br>Gruppe: admin | 1 |
|----------------------------------------|---|
|----------------------------------------|---|

| Sommersemester 2011 |                         | Zahl der Seiten: 13; Seite 4 |  |
|---------------------|-------------------------|------------------------------|--|
| Prüfungsfach:       | Betriebssysteme<br>IT3A | Matrikelnummer:              |  |

## Aufgabe 3 Prozesse

(15 Punkte)

(a) Erklären Sie die folgenden Begriffe in Stichworten:

| Prozess               | Ein Prozess ist ein in der Ausführung<br>befindliches Programm                                                                                                                                                                                  | 2 |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Context               | Die Ausführungsumgebung ("context") eines Prozesses, z.B.: o Zustandsinformation benutzter Betriebsmittel (Offene Dateien, Positionszeiger, Signale,) o Information über aktuellen Ausführungszustand (Register, Program Counter, Stackpointer) | 2 |
| Multi-<br>Programming | Mehrere Anwendungen/Prozesse laufen (scheinbar) gleichzeitig, d.h. die Prozesse werden abwechselnd von der CPU bearbeitet                                                                                                                       | 2 |

(b) Im Win32 API werden neue Prozesse mit **CreateProcess** erzeugt: "The **CreateProcess** function creates a new process and its primary thread. The new process executes the specified executable file." In UNIX benötigt man zwei Systemaufrufe. Welche? Was machen die beiden Systemaufrufe jeweils?

| fork() - erzeugt einen neuen Prozess, als identische Kopie des aufrufenden Prozesses | 1 |
|--------------------------------------------------------------------------------------|---|
| exec() - lädt ein Programm in den laufenden Prozess beginnt dessen Ausführung        | 1 |

(c) Mit welchem Systemaufruf können Sie einen Prozess beenden?

| exit() |
|--------|
|--------|

| Sommersemest  | er 2011                 | Zahl de         | r Seiten: 13; Seite 5 |
|---------------|-------------------------|-----------------|-----------------------|
| Prüfungsfach: | Betriebssysteme<br>IT3A | Matrikelnummer: |                       |

(d) Zur Verwaltung von Prozessen betrachtet das Betriebssystem verschiedene Zustände, in denen sich ein Prozess jeweils befinden kann. Die Graphik stellt die drei zentralen Prozesszustände (A,B,C) und die möglichen Zustandsübergänge (1,2,3,4) dar.



Benennen und erläutern (Stichworte) Sie die drei Zustände:

| A | rechnend (running) – der Prozess wird im Moment auf der physischen CPU ausgeführt                                                 | 2 |
|---|-----------------------------------------------------------------------------------------------------------------------------------|---|
| В | rechenbereit (ready) – der Prozess könnte rechnen,<br>wurde aber gestoppt, um einem anderen Prozess die<br>physische CPU zu geben | 2 |
| С | blockiert (blocked) – der Prozess ist nicht ablauffähig bis<br>ein bestimmtes externes Ereignis eintritt, z.B. eine<br>Eingabe    | 2 |

| Sommersemest  | er 2011                 | Zahl de         | er Seiten: 13; Seite 6 |
|---------------|-------------------------|-----------------|------------------------|
| Prüfungsfach: | Betriebssysteme<br>IT3A | Matrikelnummer: |                        |

# Aufgabe 4 Interprozesskommunikation (11 Punkte)

(a) Was versteht man unter einer kritischen Region (critical region)?

Wenn ein Prozess auf eine gemeinsam mit anderen Prozessen genutzte Ressource, z.B. einen Datenpuffer, zugreift, befindet er sich in der kritischen Region

2

(b) Mit Schlossvariablen (locks) kann man verhindern, dass mehrere Prozesse sich gleichzeitig in einer kritischen Region befinden. Erläutern Sie die Grundidee in Stichworten:

Idee: Kritische Region ist hinter einer Tür mit Schloss...

Vor Eintritt in die kritische Region: Ist die Tür aufgeschlossen?

o Prüfen, ob die Schloss-Variable "0" ist
Bei Eintritt: Tür hinter sich verschließen

o Schloss-Variable auf "1" setzen, um anderen Prozessen zu signalisieren, dass die kritische Region "belegt" ist
Bei Austritt: Tür wieder aufschließen

o Schloss-Variable auf "0" setzen

(c) Einfache Locks führen oft zu Problemen, z.B. durch "busy waiting". Man hat das Konzept daher erweitert auf sogenannte Semaphore. Was ist ein Semaphor?

Ein Semaphor S ist eine (systemweite) Datenstruktur, die aus einer Ganzzahl und den Nutzungsoperationen "Reservieren" und "Freigeben" besteht. Sie dient der Verwaltung beschränkter (zählbarer) Ressourcen, auf die mehrere Prozesse oder Threads zugreifen können. (S>0 bedeutet Verfügbarkeit der Ressource)

(d) Nennen Sie die beiden elementare Operationen für Semaphore und beschreiben Sie ihre Funktion stichwortartig:

| down(S) – falls S>0, dekrementiere Semaphor S, falls S=0 blockiere (warte bis wieder S>0)    | 2 |  |
|----------------------------------------------------------------------------------------------|---|--|
| up(S) – inkrementiere S; falls Prozesse auf diesen<br>Semaphor warten, wecke einen davon auf | 2 |  |

| Sommersemest  | er 2011                 | Zahl de         | r Seiten: 13; Seite 7 |
|---------------|-------------------------|-----------------|-----------------------|
| Prüfungsfach: | Betriebssysteme<br>IT3A | Matrikelnummer: |                       |

## Aufgabe 5 Speicherverwaltung

(14 Punkte)

Virtueller Speicher bedeutet, dass das Betriebssystem dem Prozess einen großen (31/32-Bit, 64- Bit), linearen Adressraum zur Verfügung stellt und transparent für den Programmierer dafür sorgt, dass die jeweils aktuell benötigten Teile des Adressraums auch im physischen Speicher geladen sind .

Der Adressraum wird dazu in Seiten (pages) aufgeteilt, der physische Hauptspeicher in Seitenrahmen (page frames). Das Betriebssystem sorgt mit spezieller Hardwareunterstützung (MMU) für eine passende Umrechnung jeder Adresse, auf die zugegriffen wird. Die Abbildung erfolgt über eine vom BS verwaltete Seitentabelle.

Gegeben sei ein System mit 16-bit virtuellen Adressen und 32 KB physischem Hauptspeicher. Die Seitengröße wurde mit 4 KB gewählt. Ein Prozess p besitzt die hier dargestellte Pagetable:

# Pagetable

| 010 |
|-----|
| -   |
| 101 |
| -   |
| -   |
| 001 |
| 000 |
| 011 |
| _   |
| -   |
| _   |
| -   |
| -   |
| _   |
| _   |
| 100 |
|     |

### physische Speicheradresse

| 0 | 1 ( | 0 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
|---|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|
|---|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|

### virtuelle Speicheradresse

| (a) | ) Erklären Sie, wie die Umsetzung von virtuellen Adressen auf physische <i>F</i> | Adressen |
|-----|----------------------------------------------------------------------------------|----------|
|     | funktioniert. Stichworte und ggf. Skizze in obiger Abbildung                     |          |

| 3 |
|---|
|   |

| Sommersemest                                                                                  | er 2011                                                                                       | Zahl de                                                                                                                                           | r Seiten: 13; Se               | ite 8 |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------|
| Prüfungsfach:                                                                                 | Betriebssysteme<br>IT3A                                                                       | Matrikelnummer:                                                                                                                                   |                                |       |
|                                                                                               | ische Speicheradresse e<br>sse 0101 1001 0001                                                 | rgibt sich für die in der A<br>1111?                                                                                                              | bbillung gezeig                | ite   |
| 001 1001 00                                                                                   | 001 1111                                                                                      |                                                                                                                                                   |                                | 1     |
| • •                                                                                           | die Adresse 1100 0011                                                                         | igen Pagetable? Was pa<br>0110  1000 zugreifen v                                                                                                  |                                |       |
| physischen<br>Es ergibt sic<br>Das Betrieb<br>finden, in die<br>laden, die S<br>aktualisierer | Hauptspeicher gelach ein page fault – ssystem muss eine esen die passende eitentabelle mit de | nende Seite nicht in<br>aden ist<br>ein Seitenzugriffsfe<br>en freien Seitenrah<br>e Seite vom paging<br>r Seitenrahmennur<br>efehl, der den page | ehler<br>men<br>device<br>mmer | 3     |
| d) Wie viele Ein<br>Seiten?                                                                   | träge hat eine Pagetable                                                                      | für 32-bit virtuelle Adres                                                                                                                        | sen und 4 KB                   |       |
| 2^20 (~1M)                                                                                    |                                                                                               |                                                                                                                                                   |                                | 1     |
| Betriebssyste                                                                                 | em weitere Information pr<br>Sie 3 Beispiele und erlä                                         | ng des virtuellen Speiche<br>ro Seite, die in der Paget<br>utern Sie in Stichworten,                                                              | able gespeiche                 |       |
|                                                                                               |                                                                                               |                                                                                                                                                   |                                | 2     |
|                                                                                               |                                                                                               |                                                                                                                                                   |                                | 2     |
|                                                                                               |                                                                                               |                                                                                                                                                   |                                | 2     |

| Sommersemester 2011 |                         | Zahl der Seiten: 13; Seite |  |
|---------------------|-------------------------|----------------------------|--|
| Prüfungsfach:       | Betriebssysteme<br>IT3A | Matrikelnummer:            |  |

## Aufgabe 6 Dateien und Dateisysteme (14 Punkte)

(a) Gegeben ist das Programm dup mit dem abgebildeten Quelltext dup. c

```
#include <stdio.h>
main()
  char ch;
  ch=getchar();
  while ( ch > 0 ) {
  putchar(ch);
  putchar(ch);
  ch=getchar();
}
```

Geben Sie zu den Eingaben in der linken Spalte jeweils die zu erwartende Ausgabe (des letzten Kommandos) nach Drücken von <ENTER> an:

| > dup<br>abcd                    | aabbccdd     | 1 |
|----------------------------------|--------------|---|
| > cat > xyz<br>abc<br>> cat xyz  | abc          | 1 |
| > cat >> xyz<br>abc<br>> cat xyz | abcabc       | 1 |
| > cat xyz   dup                  | aabbccaabbcc | 1 |

- (b) Eine der Aufgaben eines Dateisystems ist die Zuordnung von Dateinamen zu den Dateiinhalten und deren Speicherung in Plattenblöcken. In UNIX/Linux verwendete Dateisysteme, z.B. ext2, basieren in der Regel auf der Verwendung von inodes. Die nachstehende Graphik zeigt die wichtigsten Datenstrukturen hierfür. Wir ignorieren hier die Tatsache, dass das Verzeichnis selbst eine Datei ist (und entsprechend repräsentiert sein müsste) und weitere Details (wie z.B. die Verzeichniseinträge . und ..). Ergänzen Sie nun die Graphik durch Eintrag der Information für die folgenden Teilaufgaben:
  - (1) Es existiert eine Datei mit Namen dateil und die Daten liegen in den Plattenblöcken 4,7 und 11.
  - (2) In der bash wird folgendes Kommando ausgeführt:

```
$ cat > datei2
abcdef
$
```

(3) In der bash wird folgendes Kommando ausgeführt:

```
$ cp datei1 datei3
```

\$

| Sommersemest                                                                  | Sommersemester 2011 Zahl der Seiten: 13; |                                                | eite 10                                    |                                                                                                                                     |      |
|-------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| Prüfungsfach:                                                                 | Betriebssyste                            | eme                                            | Matrikelnummer:                            |                                                                                                                                     |      |
| \$ 1n da<br>\$<br>(5) In der bas                                              | tei2 datei                               | des Kommando a                                 |                                            |                                                                                                                                     |      |
| Verzeichnis                                                                   |                                          | inodes                                         | Pla                                        | attenblöcke                                                                                                                         |      |
| 0                                                                             |                                          | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |                                            | 0<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>7<br>3<br>9<br>0<br>1<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>9 |      |
|                                                                               |                                          |                                                | adaten) zu den Dat<br>d erläutern Sie kurz |                                                                                                                                     |      |
| Attribut                                                                      |                                          | Bedeutung                                      |                                            |                                                                                                                                     |      |
|                                                                               |                                          |                                                |                                            |                                                                                                                                     | 1    |
|                                                                               |                                          |                                                |                                            |                                                                                                                                     | 1    |
|                                                                               |                                          |                                                |                                            |                                                                                                                                     | 1    |
| (d) Wo werden in einem inode-basierten Dateisystem diese Attribute gespeicher |                                          |                                                |                                            |                                                                                                                                     | ert? |
| in dem inod                                                                   | le der Dat                               | ei                                             |                                            |                                                                                                                                     | 1    |
| (e) Wo werden die Attribute in einem FAT Dateisystem gespeichert?             |                                          |                                                |                                            |                                                                                                                                     |      |
| im Verzeichniseintrag der Datei                                               |                                          |                                                |                                            | 1                                                                                                                                   |      |

| Sommersemester 2011 |                         | Zahl der        | Seiten: 13; Seite 11 |
|---------------------|-------------------------|-----------------|----------------------|
| Prüfungsfach:       | Betriebssysteme<br>IT3A | Matrikelnummer: |                      |

# Aufgabe 7 Informationssicherheit (11 Punkte)

Beim Thema Informationssicherheit geht es um die Eigenschaften von informationsverarbeitenden und -lagernden Systemen, welche die Schutzziele ZIEL1, ZIEL2 und ZIEL3 sicherstellen.

(a) Benennen und erläutern (Stichworte) Sie die drei primären Schutzziele ZIEL1, ZIEL2 und ZIEL3? (Tipp: *CIA*)

| ZIEL1 | Vertraulichkeit / Confidentiality Nur berechtigte Benutzer dürfen Zugriff auf die Information erhalten        | 2 |
|-------|---------------------------------------------------------------------------------------------------------------|---|
| ZIEL2 | Integrität / Integrity Die Information darf nicht unbemerkt verändert werden können                           | 2 |
| ZIEL3 | Verfügbarkeit / Availability Die Information muss für die (berechtigte) Verarbeitung jederzeit verfügbar sein | 2 |

(b) Geben Sie für jedes Ziel ein Verfahren / Mittel an, das benutzt werden könnte, um das Ziel zu erfüllen:

| ZIEL1 | Zugriffsrechte / Autorisierung<br>Verschlüsselung         | 1 |
|-------|-----------------------------------------------------------|---|
| ZIEL2 | Digitale Signaturen Read-only access (copy-if-changed)    | 1 |
| ZIEL3 | Redundanz (mehrfache Speicherung, Systeme, Zugriffswege,) | 1 |

(c) In UNIX wird die Autorisierung zum Zugriff auf Dateien durch das Zusammenspiel von Benutzerinformation (UID, GID) und zu den Dateien gehörigen Zugriffsrechten verwaltet. Welche Zugriffsrechte für Dateien kennt UNIX?

| Lesen [r] – Schreiben [w] – Ausführen [x] | 2 |
|-------------------------------------------|---|
|-------------------------------------------|---|

| Sommersemester 2011 |                         | Zahl der Seiten: 13; Seite |  |
|---------------------|-------------------------|----------------------------|--|
| Prüfungsfach:       | Betriebssysteme<br>IT3A | Matrikelnummer:            |  |

# Aufgabe 8 Shell-Programmierung (14 Punkte)

(a) Gegeben ist das folgende Shell-Skript. Was gibt es bei Ausführung aus?

done

```
|=2
|=4
|=6
|=8
|=10
```

(b) Gegeben ist das folgende Shell-Skript. Was macht es?

```
#!/bin/bash
#
ls *.html > /tmp/X
echo RESULT=
cat /tmp/X | while read F; do \
        echo $(head -1 $F); \
done;
rm /tmp/X
```

Die erste Zeile jeder Datei mit der Endung .html im Arbeitsverzeichnis wird ausgegeben

2

(c) Erklären Sie in Stichworten die folgende Zeile des obigen Skripts:

```
cat /tmp/X | while read F; do ...
```

2

(d) Geben Sie die jeweilige Ausgabe nach dem letzten Kommando in jeder Zeile an:

| Sommersemester 2011 |                         | Zahl der        | Seiten: 13; Seite 13 |
|---------------------|-------------------------|-----------------|----------------------|
| Prüfungsfach:       | Betriebssysteme<br>IT3A | Matrikelnummer: |                      |

| <pre>&gt; date=DATUM &gt; echo \${date}</pre> | DATUM                       | 1 |
|-----------------------------------------------|-----------------------------|---|
| > echo date                                   | date                        | 1 |
| > echo \$(date)                               | Sat Jan 8 13:41:28 CET 2011 | 1 |
| > DATE=\$(date)<br>> echo \$DATE              | Sat Jan 8 13:42:43 CET 2011 | 1 |
| > echo \$date                                 | DATUM                       | 1 |

(e) Die Umgebungsvariable TESTVAR sei in Ihrer bash zunächst undefiniert. Wie lauten die Ausgaben der folgednen drei Kommandos?

user1(601)> echo \${TESTVAR }

| -leer- (keine Ausgabe) | 1 |
|------------------------|---|
|------------------------|---|

user1(601)> echo \${TESTVAR:='testinhalt'}

| testinhalt | 1 |
|------------|---|
|            |   |

user1(601)> echo \${#TESTVAR}

| 10 | 1 |
|----|---|
|    |   |