Evolution of Cooperation (Section 2)

6 February 2017

- ► Two strategies and two players. The players **simultaneously** decide which strategy to select.
- ► The **best response** is the strategy which produces the most favorable outcome for a player, *taking the other player's* strategy as given.
- A set of (pure) strategies (A_1, A_2) is a **Nash Equilibrium** if player 1 is playing a best response against player 2, and player 2 is playing a best response against player 1!
- $U_1(A_1, A_2) > U_1(B_1, A_2)$ and $U_2(A_1, A_2) > U_2(A_1, B_2)$
- ▶ In a NE, neither player has an incentive to switch strategies!

Social Dilemma

Player 2 Cooperate Defect

Player 1 ct Cooperate		2		4
cool	2		1	
Play Ct		1		3
P Defect	4		3	

Coordination

Player 2 Cooperate Defect

Anti-coordination

Player 2 Cooperate Defect

	Cooperate	Defect
Player 1 ct Cooperate	3	4
5 C S	3	2
Play Defect	2	1
Δ	4	1

Player 1's best responses to Player 2's strategies (vertical arrows):

Social Dilemma

Anti-coordination

Coordination

Player 2's best responses to Player 1's strategies (horizontal arrows):

Social Dilemma

Anti-coordination

Coordination

NE: P1 and P2 play their best responses. We are stuck here!

Social Dilemma

Anti-coordination

Coordination

Social Preferences

- "Homo-economicus": players are "selfish" and predicted behavior simply a function of individual payoffs.
- ▶ But even in one-shot prisoner's dilemmas, rate of cooperation is typically 40-60%.
- Why? If players have social preferences, behavior also depends on what happens to others and why these things happen.
- Can be "other-regarding"—my evaluation of some state depends on how you are doing.
- Can be "process-regarding"—my evaluation of some state depends on how it came about.
- Examples: altruism, fairness, reciprocity and inequity averson.

Social Dilemma

Let b=2, c=1, $\kappa\in(0,1)$ "altruism" parameter.

	Selfish person	Altruistic person
$\overline{U(C,C)}$	b - c = 1	$b-c+\kappa(b-c)=1+\kappa$
U(D,C)	b = 2	$b - \kappa c = 2 - \kappa$
U(C,D)	-c = -1	$-c + \kappa b = 2\kappa - 1$
U(D,D)	0	0

Cooperative NE?

$$1 + \kappa > 2 - \kappa \implies \kappa > 1/2$$

Let b=2, c=1. Suppose $\kappa=3/4$ (high altruism):

	Selfish person	Altruistic person
U(C,C)	b - c = 1	$b-c+\kappa(b-c)=1+\kappa=1.75$
U(D,C)	b = 2	$b - \kappa c = 2 - \kappa = 1.25$
U(C,D)	-c = -1	$-c + \kappa b = 2\kappa - 1 = 0.5$
U(D, D)	0	0

Let b = 2, c = 1. Suppose $\kappa = 3/4$ (high altruism):

Social Dilemma?

Social Dilemma?

		Соор	Play erate		fect
	rate		1		2
Player 1	Cooperate	1		– 1	
Play	#		-1		0
	Defect	2		0	

		Соор	Play erate		Defect
	rate		1.75		1.25
Player 1	Cooperate	1.75		-1	
Play	#		-1		0
	Defect	1.25		0	

Let b=2, c=1. Suppose $\kappa=3/4$ (high altruism):

Social Dilemma?

Social Dilemma?

Let b=2, c=1. Suppose $\kappa=3/4$ (high altruism):

Social Dilemma?

Social Dilemma?

Let b=2, c=1. Suppose $\kappa=3/4$ (high altruism):

Social dilemma :-(

Coordination game!

- ▶ P1's utility: $U_1 = \pi_1 \delta_1 \max(\pi_2 \pi_1, 0) \alpha_1 \max(\pi_1 \pi_2, 0)$
- ▶ δ_1 : how much P1 dislikes disadvantageous $(\pi_2 \pi_1 > 0)$ differences.
- ▶ $\alpha_1 \in (0,1)$: how much P1 dislikes advantageous $(\pi_1 \pi_2 > 0)$ differences.
- ▶ If $\alpha_1 = 1$ then P1 cares only about P2's payoffs if they fall short of her own.
- ▶ If $\delta_1 > 1$, P1 is very adverse to disadvantageous differences.
- ▶ P2's utility: $U_2 = \pi_2 \delta_2 \max(\pi_1 \pi_2, 0) \alpha_2 \max(\pi_2 \pi_1, 0)$
- ▶ When $\delta_1 \neq \delta_2$ and/or $\alpha_1 \neq \alpha_2$, things get more complicated.

Suppose α , δ are the same for both players. Again consider social dilemma setup with c=1,b=2.

	Selfish person	Inequity averse person
U(C,C)	b - c = 1	b-c=1
U(D,C)	b = 2	$b - \alpha[b - (-c)] = 2 - 3\alpha$
U(C,D)	-c = -1	$-c - \delta[b - (-c)] = -1 - 3\delta$
U(D,D)	0	0

-Cooperative NE?

$$1 > 2 - 3\alpha \implies \alpha > 1/3$$

Let b=2, c=1. Suppose $\alpha=3/4$, $\delta=2$:

	Selfish person	Inequity averse person
U(C,C)	b - c = 1	b-c=1
U(D,C)	b = 2	$b - \alpha[b - (-c)] = 2 - 3\alpha = -0.25$
U(C,D)	-c = -1	$-c - \delta[b - (-c)] = -1 - 3\delta = -7$
U(D, D)	0	0

Let b=2, c=1. Suppose $\alpha=3/4$, $\delta=2$:

Social dilemma :-(

Coordination game!

Evolutionary game theory

Key concepts:

- Nash Equilibrium (NE) is a static concept.
- When NE is not unique, dynamics matter!
- ► Evolutionary game theory lets *populations* evolve.
- Fraction x of the population plays "strategy 1" and fraction 1-x plays "strategy 2".
- With multiple NE (or none!), evolutionary game theory tells us how the population evolves.
- ► An Evolutionary Stable Strategy (ESS) is a strategy which, if adopted by a population, cannot be invaded by a mutant strategy that is initially rare.
- Every NE is an ESS!
- ▶ Strategy A **risk dominates** strategy B if $\pi_A > \pi_B$ at x = 1/2.

Evolutionary game theory: "dominance"

- Mutual defection is the NE. This is also the ESS.
- $\pi_C = 4x 2(1-x) = 6x 2$, $\pi_D = 6x + 0(1-x) = 6x$
- ▶ At x = 1/2, $\pi_C = 1 < \pi_D = 3$ so D is **risk dominant**
- ▶ Population will evolve to 100% defectors.

Evolutionary game theory: "co-existence"

- ▶ DH and HD are both equilibria.
- $\pi_D = 2x + (1-x) = x + 1, \ \pi_H = 3x + 0(1-x) = 3x$
- ▶ At x = 1/2, $\pi_D = 3/2 = \pi_H = 3/2$ so neither **risk dominant**!
- Population will evolve to stable mix of both types.

Evolutionary game theory: "bistability"

- ► CC and DD are both equilibria, but mixture of types unstable!
- $\pi_C = 1.75x (1-x) = 2.75x 1, \pi_D = 1.25x + 0(1-x) = 1.25x$
- ▶ At x = 1/2, $\pi_C = 1.375 > \pi_D = 0.625$ so *C* is **risk dominant**.
- ▶ Population will *most likely* evolve to 100% Cooperators.

- AB and BA are both equilibria.
- $\pi_A = 0 * x + 3(1 x) = 3 3x, \pi_B = 1x + 2(1 x) = 2 x$
- ▶ At x = 1/2, $\pi_A = 3/2 = \pi_B = 3/2$ so neither **risk dominant**.

- Suppose we start in period t with $x_t = 0.1$ percent playing A and $(1 x_t) = 0.9$ percent playing B in population.
- ▶ If $\pi_A > \pi_B$ then x_{t+1} increases by 0.1.
- ▶ If $\pi_A < \pi_B$ then x_{t+1} decreases by 0.1.
- ▶ If $\pi_A = \pi_B$ then population is at equilibrium.
- ▶ If $x_{t^*} = 0$ or $x_{t^*} = 1$ then we are also at equilibrium.

Xt	$\pi_{\mathcal{A}}$	$\pi_{\mathcal{B}}$	x_{t+1}
0.10	2.70	1.90	0.20
0.20	2.40	1.80	0.30
0.30	2.10	1.70	0.40
0.40	1.80	1.60	0.50
0.50	1.50	1.50	0.50
0.50	1.50	1.50	0.50

▶ What if we start at $x_t = 0.9$ instead?

x_t	$\pi_{\mathcal{A}}$	π_B	x_{t+1}
0.90	0.30	1.10	0.80
0.80	0.60	1.20	0.70
0.70	0.90	1.30	0.60
0.60	1.20	1.40	0.50
0.50	1.50	1.50	0.50
0.50	1.50	1.50	0.50

▶ Regardless of initial conditions, the population will end up with 50/50 mix.

