Ensemble Learning

Making a whole greater than any one of its parts

Ensemble Learning

Making a whole greater than any one of its parts

(where each part is a supervised learner)

Ensemble Learning

Making a whole greater than any one of its parts

(where each part is a supervised learner)

(and so is the whole)

The supervised learning 'black box':

The supervised learning 'black box':

Let's say we use a decision tree...

The supervised learning 'black box':

Let's say we use a decision tree...

Advantages: Very fast. Intuitive results.

The supervised learning 'black box':

Let's say we use a decision tree...

Advantages: Very fast. Intuitive results.

Problem: Too quickly shifts from underfit to overfit

The supervised learning 'black box':

Let's say we use a decision tree...

Advantages: Very fast. Intuitive results.

Problem: Too quickly shifts from underfit to overfit

Possible solution: Train a few of them!

Ensemble Learning Strategies

- Bagging
- Boosting
- Bayes Optimal Classifier
- Stacking

• ...

Ensemble Learning Strategies

- Bagging
- Boosting
- Bayes Optimal Classifier
- Stacking

• ...

And then, to random forests!

Bootstrap Aggregating

"Bootstrap" means to sample with replacement

Bootstrap Aggregating

Usually abbreviated to "Bagging"

Boosting

Current performance not good enough?

Boosting

(and only train it on the hard samples)

Adaptive Boosting

Current performance not good enough?

Add another weak learner!

Adaptive Boosting

- Called "AdaBoost"
- Instead of dropping samples, weight them less
- Each iteration updates weights and trains a new classifier

Stacking

Bayesian Model Averageing

- Ensemble of hypotheses
- Each hypothesis is given a weighted vote
- Weighting = p(data|hypothesis)
- Usually computationally infeasable
- Bayesian Model Averaging:
 - Selects hypothesis from sample of hypotheses, rather than full set
- Bayesian Model Combination
 - Same, but selecst the most likely set of hypotheses

... and more

Back To Python!

- Digits dataset
- Decision Trees
- Random Forests
 - Feature sampling
 - Sample sampling
 - Stumping
 - Random learners
 - and on...