Géométrie Différentielle — Travail Personnel

Robin Petit

13 novembre 2017

1 Fibré tangent

Considérons M une variété lisse, TM, son fibré tangent, $\mathcal{A} \coloneqq \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ un atlas de M, et $\forall \alpha \in A : \widetilde{U}_{\alpha}, \widetilde{\varphi}_{\alpha}$ comme dans l'énoncé.

Question 1

(i)

Montrons que pour $\alpha \in A$, $(\widetilde{U}_{\alpha}, \widetilde{\varphi}_{\alpha})$ est une carte de TM. Pour cela, montrons que \widetilde{U}_{α} est un ouvert de TM et que $\widetilde{\varphi}_{\alpha}$ est une bijection entre \widetilde{U}_{α} et un ouvert de \mathbb{R}^{2m} .

Puisque $\pi:TM\to M$ est une projection elle est continue, donc $\widetilde{U}_\alpha=\pi^{-1}(U_\alpha)$ est la préimage d'un ouvert de M par une fonction continue, i.e. un ouvert de TM.

De plus:

$$\widetilde{\varphi}_{\alpha}: \widetilde{U}_{\alpha} \to \mathbb{R}^{2m}: (x, v_x) \mapsto \left(\varphi_{\alpha}(x), \left(v^j\right)_{1 \le j \le m}\right)$$

peut se séparer en deux applications $x \mapsto \varphi_{\alpha}(x)$ et $v_x \mapsto (v^j)_{1 \le j \le m}$.

La première est une bijection par hypothèse car $\mathcal A$ est un atlas de M. La seconde est également bijective car elle représente l'application coordonnées d'un espace vectoriel réel sur une base. De plus, $\varphi_{\alpha}(U_{\alpha})$ est un ouvert de $\mathbb R^m$ car $(U_{\alpha},\varphi_{\alpha})$ est une carte de M, donc $\widetilde{\varphi}_{\alpha}(\widetilde{U}_{\alpha})=\varphi_{\alpha}(U_{\alpha})\times\mathbb R^m$ est un ouvert de $\mathbb R^{2m}$.

On en déduit que $(\widetilde{U}_{\alpha},\widetilde{\varphi}_{\alpha})$ est une carte de TM.

(ii)

Montrons que $\widetilde{\mathcal{A}}\coloneqq\{(\widetilde{U}_{\alpha},\widetilde{\varphi}_{\alpha})\}_{\alpha\in A}$ est un atlas de TM.

1. On sait que $\bigcup_{\alpha \in A} \widetilde{U}_{\alpha} \subseteq TM$ car $\forall \alpha \in A : \widetilde{U}_{\alpha} \subseteq TM$. De plus, pour $(x, v_x) \in TM$, on sait qu'il existe $\alpha \in A$ tel que $x \in U_{\alpha}$ car A est un atlas de M. Puisque $v_x \in T_xM$ et $\widetilde{U}_{\alpha} = \pi^{-1}(U_{\alpha}) = \bigsqcup_{y \in U_{\alpha}} \{y\} \times T_yM^1$, on trouve que $(x, v_x) \in \widetilde{U}_{\alpha}$.

On en déduit que $\bigcup_{\alpha \in A} \widetilde{U}_{\alpha} = TM$.

 $^{^{1}}$ Où \sqcup est équivalent à \cup mais met l'emphase sur le fait que dans $A \sqcup B$, $A \cap B = \emptyset$.

2. Soient $\alpha, \beta \in A$. Pour montrer que $\widetilde{\varphi}_{\alpha}(\widetilde{U}_{\alpha} \cap \widetilde{U}_{\beta})$ est un ouvert de \mathbb{R}^{2m} , il suffit d'observer que :

$$\widetilde{\varphi}_{\alpha}(\widetilde{U}_{\alpha} \cap \widetilde{U}_{\beta}) = \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{m},$$

qui est un produit de deux ouverts de \mathbb{R}^m (car $(U_\alpha, \varphi_\alpha)$ et (U_β, φ_β) sont des cartes de l'atlas \mathcal{A}), et est donc un ouvert de \mathbb{R}^{2m} .

3. Prenons à nouveau $\alpha, \beta \in A$. Afin que \widetilde{A} soit un atlas lisse, il faut encore uniquement que

$$\widetilde{\varphi}_{\beta} \circ \widetilde{\varphi}_{\alpha}^{-1} \in \mathcal{C}^{\infty} \left(\widetilde{\varphi}_{\alpha} (\widetilde{U}_{\alpha} \cap \widetilde{U}_{\beta}) \subset \mathbb{R}^{2m}, \widetilde{\varphi}_{\beta} (\widetilde{U}_{\alpha} \cap \widetilde{U}_{\beta}) \subset \mathbb{R}^{2m} \right).$$

Pour cela, observons que $\exists B \in \mathrm{GL}(m,\mathbb{R})$ telle que :

$$\forall (\tilde{x}^1, \dots, \tilde{x}^m, \tilde{v}^1, \dots, \tilde{v}^m) \in \widetilde{\varphi}_{\alpha}(\widetilde{U}_{\alpha} \cap \widetilde{U}_{\beta}) : (\widetilde{\varphi}_{\beta} \circ \widetilde{\varphi}_{\alpha}^{-1})(\tilde{x}^1, \dots, \tilde{x}^m, \tilde{v}^1, \dots, \tilde{v}^m) = \left((\varphi_{\beta} \circ \varphi_{\alpha}^{-1})(\tilde{x}), B\tilde{v}\right),$$

pour $\tilde{x}=(\tilde{x}^1,\ldots,\tilde{v}^1,\ldots,\tilde{v}^m)$ et $\tilde{x}=(\tilde{x}^1,\ldots,\tilde{x}^m)$. Notons que B n'est autre qu'une matrice de changement de base (et l'identité I_m pour être précis). On sait que $\varphi_\beta\circ\varphi_\alpha^{-1}\in\mathcal{C}^\infty(\varphi_\alpha(U_\alpha\cap U_\beta),\varphi_\beta(U_\alpha\cap U_\beta))$ car \mathcal{A} est un atlas lisse.

Puisque B est une matrice de changement de base, on sait que l'application induite $v \mapsto Bv$ est linéaire, et donc de classe \mathcal{C}^{∞} sur \mathbb{R}^m .

De ces 3 points, on conclut que $\widetilde{\mathcal{A}}$ est un atlas lisse pour TM.

(iii)

TM peut être muni d'un atlas lisse $\widetilde{\mathcal{A}}$ de dimension 2m. Par la relation d'équivalence usuelle sur les atlas (i.e. deux atlas lisses \mathcal{A} et \mathcal{B} de dimension m sur une variété lisse M sont en relation ssi $\mathcal{A} \cup \mathcal{B}$ est un atlas lisse de dimension m sur M), $\widetilde{\mathcal{A}}$ fait partie d'une classe d'équivalence $[\widetilde{\mathcal{A}}]$ d'atlas lisses de dimension 2m sur TM. Dès lors, $[\widetilde{\mathcal{A}}]$ est une structure différentiable sur TM.

Question 2

La projection canonique $\pi:TM\to M:(x,v_x)\mapsto x$ est trivialement surjective car $TM=\bigsqcup_{x\in M}\{x\}\times T_xM$, ce qui implique que $\forall x\in M:\exists v_x\in T_xM$ t.q. $(x,v_x)\in TM$ et $\pi(x,v_x)=x$.

Afin de montrer que π est une submersion, il faut montrer que sa différentielle est surjective en tout point $(x, v_x) \in TM$.

Soit $(x, v_x) \in TM$. La différentielle de π en (x, v_x) est définie par :

$$\pi_{*_{(x,v_x)}}:T_{(x,v_x)}TM\to T_{\pi(x,v_x)}M=T_xM:X_{(x,v_x)}\mapsto \pi_{*_{(x,v_x)}}(X_{(x,v_x)}),$$

avec:

$$\forall ((x,v_x),f) \in TM \times \mathcal{C}^{\infty}(M,\mathbb{R}) : \pi_{*_{(x,v_x)}}(X_{(x,v_x)})(f) = X_{(x,v_x)}(f \circ \pi) \in \mathbb{R}.$$

Fixons $(x,v_x)\in TM$. Pour montrer que $\pi_{*(x,v_x)}$ est surjective, montrons qu'elle contient une base de T_xM dans son image. Puisque $\pi_{*(x,v_x)}$ est linéaire, elle est un morphisme d'espaces vectoriels, et donc :

$$\forall I \subset \operatorname{Im} \pi_{*_{(x,v_x)}} : \langle I \rangle \subset \operatorname{Im} \pi_{*_{(x,v_x)}}$$

Dès lors, si on montre qu'une base de T_xM est dans l'image de $\pi_{*(x,v_x)}$, alors l'espace engendré par cette base (donc T_xM) est dans l'image. Or l'image est contenue dans T_xM par définition de l'application. On en déduira alors $\operatorname{Im} \pi_{*(x,v_x)} = T_xM$, et donc la surjectivité de la différentielle.

Prenons $\alpha \in A$ tel que $(U_{\alpha}, \varphi_{\alpha})$ est une carte de M en x, et $(\widetilde{U}_{\alpha}, \widetilde{\varphi}_{\alpha})$ est une carte de TM en (x, v_x) .

On cherche une préimage de $\frac{\partial}{\partial x^{\ell}}\Big|_{x}$ pour $1 \leq \ell \leq m$ par $\pi_{*(x,v_x)}$.

On observe que pour $\left\{ \frac{\partial}{\partial (x,v)^\ell} \left|_{(x,v_x)} \right. \right\}_{1 \le \ell \le 2m}$, une base de $T_{(x,v_x)}TM$, à $1 \le \ell \le 2m$ fixé :

$$\forall f \in \mathcal{C}^{\infty}(M,\mathbb{R}): \pi_{*_{(x,v_x)}}\left(\frac{\partial}{\partial (x,v)^{\ell}}\left|_{(x,v_x)}\right)(f) = \frac{\partial}{\partial (x,v)^{\ell}}\left|_{(x,v)}(f\circ\pi) = \frac{\partial (f\circ\pi\circ\widetilde{\varphi}_{\alpha}^{-1})(\tilde{x},\tilde{v})}{\partial (\tilde{x},\tilde{v})^{\ell}}\right|_{(\widetilde{\varphi}_{\alpha}(x,v))}.$$

Or $f\circ\pi\circ\widetilde{\varphi}_{\alpha}^{-1}$ est défini comme :

$$f \circ \pi \circ \widetilde{\varphi}_{\alpha}^{-1} : \widetilde{\varphi}_{\alpha}(\widetilde{U}_{\alpha}) \subset \mathbb{R}^{2m} \to \mathbb{R} : (\widetilde{x}^{1}, \dots, \widetilde{x}^{m}, \widetilde{v}^{1}, \dots, \widetilde{v}^{m}) \mapsto \left(f \circ \varphi_{\alpha}^{-1}\right)(\widetilde{x}^{1}, \dots, \widetilde{x}^{m}),$$

 $\operatorname{car} \pi \circ \widetilde{\varphi}_{\alpha}^{-1} : (\tilde{x}, \tilde{v}) \mapsto \varphi_{\alpha}^{-1}(\tilde{x}).$

On en déduit que pour $m < \ell \le 2m$, on a :

$$\pi_{*_{(x,v_x)}}\left(\frac{\partial}{\partial (x,v)^{\ell}}\left|_{(x,v_x)}\right)(f) = \frac{\partial}{\partial (x,v)^{\ell}}\left|_{(x,v)}(f\circ\pi) = 0,\right.$$

la fonction identiquement nulle, et pour $1 \le \ell \le m$:

$$\pi_{*_{(x,v_x)}}\left(\frac{\partial}{\partial (x,v)^{\ell}}\left|_{(x,v_x)}\right)(f) = \frac{\partial}{\partial (x,v)^{\ell}}\left|_{(x,v)}(f\circ\pi) = \frac{\partial}{\partial x^{\ell}}\right|_x f.$$

Dès lors, $\left\{ \frac{\partial}{\partial (x,v)^\ell} \, \Big|_{(x,v)} \right\}_{1 \leq \ell \leq m}$ est préimage de la base $\left\{ \frac{\partial}{\partial x^\ell} \, \Big|_x \right\}_{1 \leq \ell \leq m}$.

Question 3

 2O ù:

Pour $(x,y) \in \mathbb{S}^1$, l'application constante $(-y,x) \in T_{(x,y)}\mathbb{S}^1$ est un vecteur tangent à \mathbb{S}^1 en (x,y). Puisque $T_{(x,y)}\mathbb{S}^1$ est un espace vectoriel réel de dimension 1, $\{\lambda \cdot (-y,x)\}_{\lambda \in \mathbb{R}} = T_{(x,y)}\mathbb{S}^1$ car (-y,x) est un vecteur de base de $T_{(x,y)}\mathbb{S}^1$. On peut alors établir l'application :

$$\alpha: \mathbb{S}^1 \times \mathbb{R} \to T\mathbb{S}^1: ((x,y),\lambda) \mapsto ((x,y),(-\lambda y,\lambda x)).$$

 α est bijective par la remarque ci-dessus, trivialement lisse. De plus, son inverse peut s'écrire explicitement :

$$\alpha^{-1}:T\mathbb{S}^1\to\mathbb{S}^1\times\mathbb{R}:((x,y),(v^1,v^2))\mapsto((x,y),v^2/x),$$

qui est également trivialement lisse.

On a alors le difféomorphisme canonique $\beta: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^3: ((x,y),z) \mapsto (x,y,z)$ tel que :

$$\beta \bigg|_{\mathbb{S}^1 \times \mathbb{R}} (\mathbb{S}^1 \times \mathbb{R}) = \Big\{ (x, y, z) \in \mathbb{R}^3 \text{ t.q. } (x, y) \in \mathbb{S}^1 \Big\} = C.$$

$$(x, v)^{\ell} = \begin{cases} x^{\ell} & \text{si } 1 \leq \ell \leq m \\ v^{\ell - m} & \text{si } m < \ell \leq 2m \end{cases}.$$

2 Sous-variétés et sous-variétés plongées

Question 4

(a)

Pour une sous-variété lisse $[(N,\iota)]$ de M, on prend un représentant (N,ι) de la sous-variété. On veut montrer qu'il existe une immersion injective $\tilde{\iota}:TN\to TM$ tel que $[(TN,\tilde{\iota})]$ est une sous-variété de TM. Notons que l'on réserve ici la lettre y aux éléments de N et x aux éléments de M. On définit alors :

$$\tilde{\iota}: TN \to TM: \left(y, v_y = \sum_{j=1}^n v_y^j \frac{\partial}{\partial y^j} \bigg|_y \right) \mapsto \left(x = \iota(y), v_x = \sum_{j=1}^n v_y^j \frac{\partial}{\partial x^j} \bigg|_x \right).$$

 $\tilde{\iota}$ est trivialement injective par injection de ι et par injection de $v_y^j \frac{\partial}{\partial y^j} \Big|_y \mapsto v_y^j \frac{\partial}{\partial x^j} \Big|_{\iota(x)}$ pour $1 \le j \le n$.

Montrons que sa différentielle $\tilde{\iota}_{*(y,v_y)} = T_{(y,v_y)}TN \to T_{(x,v_x)}TM$ est injective en tout $(y,v_y) \in TN$. Fixons alors $(y,v_y) \in TN$. Fixons également $\ell \in \{1,\ldots,m\}$, prenons $f \in \mathcal{C}^{\infty}(TM,\mathbb{R})$. Soit $(\widetilde{U}_{\alpha},\widetilde{\varphi}_{\alpha})$ une carte de TM en $\widetilde{\iota}(y,v_y)$ et $(\widetilde{V}_{\beta},\widetilde{\psi}_{\beta})$ une carte de TN en (y,v_y) et observons :

$$\tilde{\iota}_{*_{(y,v_y)}}\left(\frac{\partial}{\partial y^\ell}\left|_{(y,v_y)}\right)(f) = \frac{\partial}{\partial y^\ell}\left|_{(y,v_y)}(f\circ \tilde{\iota}) = \frac{\partial(f\circ \tilde{\iota}\circ \widetilde{\psi}_\beta^{-1})}{\partial(\tilde{y},\tilde{v})^\ell}\left|_{\widetilde{\psi}_\beta(y,v_y)} = \frac{\partial(f\circ \widetilde{\varphi}_\alpha^{-1}\circ \widetilde{\varphi}_\alpha\circ \tilde{\iota}\circ \widetilde{\psi}_\beta^{-1})}{\partial(\tilde{y},\tilde{v})^\ell}\left|_{\widetilde{\psi}_\beta(y,v_y)}\right.$$

Or, par dérivation en chaîne, on trouve :

$$\tilde{\iota}_{*_{(y,v_y)}}\left(\frac{\partial}{\partial (y,v_y)^{\ell}}\left|_{(y,v_y)}\right)(f) = \sum_{j=1}^{2m} \frac{\partial (f\circ\widetilde{\varphi}_{\alpha}^{-1})}{\partial (\tilde{x},\tilde{v})^j}\left|_{\widetilde{\varphi}_{\alpha}(\tilde{\iota}(y,v_y))} \frac{\partial (\widetilde{\varphi}_{\alpha}\circ\tilde{\iota}\circ\widetilde{\psi}_{\beta}^{-1})^j}{\partial (\tilde{y},\tilde{v})^{\ell}}\right|_{\widetilde{\psi}_{\beta}(y,v_y)}.$$

On y reconnait alors $\frac{\partial}{\partial (x,v)^j}\Big|_{\tilde{\iota}(y,v_y)} f$ dans le premier facteur, et on observe que pour $v_y = \sum_{k=1}^n v_y^k \frac{\partial}{\partial (y,v)^k}\Big|_{(y,v_y)} \in TN$:

$$(\widetilde{\varphi}_{\alpha} \circ \widetilde{\iota} \circ \widetilde{\psi}_{\beta}^{-1})(y, v_{y}^{1}, \dots, v_{y}^{n}) = \widetilde{\varphi}_{\alpha} \left(\widetilde{\iota} \left(\psi_{\beta}^{-1}(y), v_{y} \right) \right) = \widetilde{\varphi}_{\alpha} \left(\iota(\psi_{\beta}^{-1}(y)), \sum_{k=1}^{n} v_{y}^{k} \frac{\partial}{\partial x^{k}} \Big|_{\iota(\psi_{\beta}^{-1}(y))} \right)$$
$$= \left(\underbrace{(\varphi_{\alpha} \circ \iota \circ \psi_{\beta}^{-1})(y)}_{\in \mathbb{R}^{m}}, v_{y}^{1}, \dots, v_{y}^{n}, \underbrace{0, \dots, 0}_{m-n} \right).$$

De là, il est possible de déduire que $\left\{ \tilde{\iota}_{*_{(y,v_y)}} \left(\frac{\partial}{\partial (y,v)^\ell} \, \Big|_{(y,v_y)} \right) \right\}_{1 \leq \ell \leq 2n}$ est une famille libre et de cardinalité 2n car ι est une immersion et :

$$\forall 1 \leq j \leq 2m : \frac{\partial (\widetilde{\varphi}_{\alpha} \circ \widetilde{\iota} \circ \widetilde{\psi}_{\beta}^{-1})^{j}}{\partial (\widetilde{y}, \widetilde{v})^{\ell}} \bigg|_{\widetilde{\psi}_{\beta}(y, v_{y})} = \begin{cases} \frac{\partial (\varphi_{\alpha} \circ \iota \circ \psi_{\beta}^{-1})^{j}}{\partial \widetilde{y}^{\ell}} \bigg|_{\psi_{\beta}(y)} & \text{si } 1 \leq j \leq m, 1 \leq \ell \leq n \\ 0 & \text{si } 1 \leq j \leq m, n < \ell \leq 2n \text{ ou } m < j \leq 2m, 1 \leq \ell \leq n \\ 0 & \text{si } m < j \leq 2m, n < \ell \leq 2n, j - m \neq \ell - n \\ 1 & \text{sinon.} \end{cases}$$

Cela implique que $\tilde{\iota}$ est une immersion, et donc que $[(TN, \tilde{\iota})]$, la classe d'équivalence de $(TN, \tilde{\iota})$ selon la relation d'équivalence pour les sous-variétés exposée au cours, est une sous-variété de TM.

(b)

Soit $F:TM\to T\mathbb{R}^p:(x,v_x)\mapsto (f(x),f_{*_x}(v_x))$. Fixons $x\in N\subset M$ et $v_x\in T_xN\subset T_xM$. Montrons que $F(x,v_x)=(0,0)$.

Par linéarité de la différentielle, fixons $1 \leq j \leq \dim(N) =: n$, prenons $g \in \mathcal{C}^{\infty}(\mathbb{R}^p, \mathbb{R})$ et considérons $\frac{\partial}{\partial x^j}\Big|_x$:

$$f_{*_x}\left(\frac{\partial}{\partial x^j}\bigg|_x\right)(g) = \frac{\partial}{\partial x^j}\bigg|_x(g \circ f).$$

Soit $(U_{\alpha}, \varphi_{\alpha})$, une carte de N en x. Alors :

$$\frac{\partial}{\partial x^j} \bigg|_x (g \circ f) = \frac{\partial (g \circ f \circ \varphi_\alpha^{-1})}{\partial \tilde{x}^j} \bigg|_{\varphi_\alpha(x)}.$$

Or $g \circ f \circ \varphi_{\alpha}^{-1}$ est définie comme suit :

$$g \circ f \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^{n} \to \mathbb{R} : \tilde{x} \mapsto (g \circ f \circ \varphi_{\alpha}^{-1})(\tilde{x}) = g(f(\underbrace{\varphi_{\alpha}^{-1}(\tilde{x})}_{\in N})) = g(0).$$

Donc $g \circ f \circ \varphi_{\alpha}^{-1}$ est constante sur $\varphi_{\alpha}(U_{\alpha})$. On en conclut que :

$$\frac{\partial (g \circ f \circ \varphi_{\alpha}^{-1})}{\partial \tilde{x}^{j}} \bigg|_{\varphi_{\alpha}(x)} = 0.$$

Dès lors :

$$f_{*_x}(v_x) = \sum_{j=1}^n v_x^j f_{*_x} \left(\frac{\partial}{\partial x^j} \Big|_x \right) = 0,$$

et f(x) = 0. Donc $F(x, v_x) = (0, 0)$.

Montrons maintenant que $\forall (x,v_x) \in TN: F_{*(x,v_x)}: T_{(x,v_x)}TM \to T_0T\mathbb{R}^p$ est surjective. Fixons $(x,v_x) \in TN, 1 \leq \ell \leq 2m$, $(\widetilde{U}_\alpha,\widetilde{\varphi}_\alpha)$ carte de TM en (x,v_x) et $(\widetilde{V}_\beta,\widetilde{\psi}_\beta)$ carte de $T\mathbb{R}^p$ en $F(x,v_x)$. Observons alors que par la notation Jacobienne:

$$F_{*_{(x,v_x)}}\left(\frac{\partial}{\partial (x,v)^{\ell}}\left|_{(x,v_x)}\right) = \sum_{j=1}^{2p} \frac{\partial}{\partial y^j}\left|_{F(x,v_x)} \frac{\partial (\widetilde{\psi}_{\beta} \circ F \circ \widetilde{\varphi}_{\alpha}^{-1})^j}{\partial (\widetilde{x},\widetilde{v})^{\ell}}\right|_{\widetilde{\varphi}_{\alpha}(x,v_x)}.$$

Dès lors, il faut que la matrice jacobienne $\frac{\partial (\widetilde{\psi}_{\beta} \circ F \circ \widetilde{\varphi}_{\alpha}^{-1})^j}{\partial (\widetilde{x}, \widetilde{v})^\ell} \Big|_{\widetilde{\varphi}_{\alpha}(x, v_x)}$ soit de rang $2p = \dim(T_0 T \mathbb{R}^p) = \dim(T \mathbb{R}^p)$. De là, on pourra déduire la surjectivité de $F_{*(x, v_x)}$.

Or:

$$\forall (\tilde{x},\tilde{v}) \in TM: (\widetilde{\psi}_{\beta} \circ F \circ \widetilde{\varphi}_{\alpha}^{-1})(\tilde{x},\tilde{v}) = ((\psi_{\beta} \circ f \circ \varphi_{\alpha}^{-1})(\tilde{x}), A\tilde{v}),$$

pour A une matrice à p lignes et m colonnes. Donc :

$$J_{F_{*_{(x,v_x)}}} = \left[\frac{\partial (\widetilde{\psi}_{\beta} \circ F \circ \widetilde{\varphi}_{\alpha}^{-1})^{j}}{\partial (\widetilde{x},\widetilde{v})^{\ell}} \bigg|_{\widetilde{\varphi}_{\alpha}(x,v_x)}\right]_{1 \leq j \leq 2p, 1 \leq \ell \leq 2m} = \begin{bmatrix}J_{f_{*_x}} = \frac{\partial (\psi_{\beta} \circ f \circ \varphi_{\alpha}^{-1})^{j}}{\partial \widetilde{x}^{\ell}} \bigg|_{\varphi_{\alpha}(x)} & 0\\ 0 & A\end{bmatrix}.$$

où A et $J_{f_{*x}}$ sont de rang p par surjectivité de f_{*x} . On déduit alors que $F_{*(x,v_x)}$ est surjective en tout $(v,v_x)\in TN$. Dès lors, TN a bien une structure de sous-variété lisse de TM pour l'inclusion.

(c)

Ø

(d)

Posons $f: \mathbb{R}^3 \to \mathbb{R}: (x,y,z) \mapsto x^2 + y^2 - z^2 = 1$. On observe alors que $N = f^{-1}(\{1\})$. De plus, observons que $\forall (x,y,z) \in N: x=0 \Rightarrow y \neq 0$. Montrons alors que la différentielle de f est surjective en tout point de N

Fixons $(x, y, z) \in N$ tel que $x \neq 0$. Alors :

$$f_{*_{(x,y,z)}}: T_{(x,y,z)}\mathbb{R}^3 \to T_1\mathbb{R}: X \mapsto f_{*_{(x,y,z)}}(X)$$

Prenons $v = v^1 \frac{\mathrm{d}}{\mathrm{d}x} \Big|_1 \in T_1 \mathbb{R}$. Calculons alors :

$$f_{*(x,y,z)}\left(\frac{v^1}{2x}\frac{\partial}{\partial \tilde{x}}\bigg|_{(x,y,z)}\right) = \frac{v^1}{2x}\frac{\partial}{\partial \tilde{x}}\bigg|_{(x,y,z)}(\cdot \circ f) = \frac{v^1}{2x}\frac{\mathrm{d}}{\mathrm{d}\tilde{x}}\bigg|_1\frac{\partial f}{\partial \tilde{x}}\bigg|_{(x,y,z)} = \frac{v^1}{2x}2x\frac{\mathrm{d}}{\mathrm{d}\tilde{x}}\bigg|_1 = v.$$

Notons que si on prend $(x, y, z) \in N$ tel que x = 0, alors $y \neq 0$, et par le même raisonnement :

$$f_{*_{(x,y,z)}}\left(v^1\left(\frac{\partial f}{\partial \tilde{y}}\left|_{(x,y,z)}\right)^{-1}\frac{\partial}{\partial \tilde{y}}\left|_{(x,y,z)}\right)=v^1\frac{\mathrm{d}}{\mathrm{d}\tilde{x}}\left|_1=v.\right.$$

On en déduit la surjectivité de $f_{*(x,y,z)}$ en tout point $(x,y,z) \in N$. Par le fait que N admet une structure de sous-variété plongée de \mathbb{R}^3 et par le point **(b)** ci-dessus, on sait que TN admet une structure de sous-variété plongée de $T\mathbb{R}^3 \simeq \mathbb{R}^6$.

De plus, on sait que $\dim(N) = \dim(\mathbb{R}^3) - \dim(\mathbb{R}) = 2$, et donc que $\dim(TN) = 4$.

Question 5

Posons $\mathrm{Skew}(2n,\mathbb{R})$ l'ensemble des matrices réelles antisymétriques de dimension $2n \times 2n$. En admettant que $\mathrm{Skew}(2n,\mathbb{R})$ est une sous-variété plongée de $\mathrm{GL}(2n,\mathbb{R})$ de dimension n(2n-1)=2n(2n-1)/2.

$$\sum_{k=1}^{2n} (k-1) = \sum_{k=1}^{2n-1} k = 2n(2n-1)/2,$$

ce qui correspond à la sous-matrice triangulaire supérieure (ou inférieure par symétrie) de taille 2n(2n+1)/2 à laquelle on retire la diagonale qui doit être nulle et qui est de taille 2n. Donc la dimension vaut n(2n+1)-2n=n(2n+1-2)=n(2n-1).

³Où la dimension est donnée par le nombre de degrés de liberté :

Posons la fonction:

$$f: \mathrm{GL}(2n,\mathbb{R}) \to \mathrm{Skew}(2n,\mathbb{R}): A \mapsto A'\Omega_0 A.$$

On voit donc que $\operatorname{Sp}(2n,\mathbb{R}) = f^{-1}(\{\Omega_0\})$, et pour $A \in \operatorname{Sp}(2n,\mathbb{R})$:

$$f_{*_A}: T_A\operatorname{GL}(2n,\mathbb{R}) \to T_{\Omega_0}\operatorname{Skew}(2n,\mathbb{R}): V = \sum_{i,j=1}^{2n} V^{ij} \frac{\partial}{\partial a^{ij}} \bigg|_A \mapsto \sum_{k=1}^{2n} \sum_{\ell=k+1}^{2n} \frac{\partial}{\partial y^{k\ell}} \bigg|_{\Omega_0} \sum_{i,j=1}^{2n} V^{ij} \frac{\partial \left(\psi \circ f \circ \varphi^{-1}\right)^{k\ell}}{\partial a^{ij}} \bigg|_A,$$

pour $\psi: \operatorname{Skew}(2n,\mathbb{R}) \to \mathbb{R}^{n(2n-1)}$ est une application de coordonnées de $\operatorname{Skew}(2n,\mathbb{R})$, et $\varphi: \operatorname{GL}(2n,\mathbb{R}) \to \mathbb{R}^{4n^2}$ est une application de coordonnées de $\operatorname{GL}(2n,\mathbb{R})$. On calcule aisément que :

$$\frac{\partial (\psi \circ f \circ \varphi^{-1})^{k\ell}}{\partial a^{ij}} \bigg|_{A} = \frac{\partial (A'\Omega_0 A)_{k\ell}}{\partial A_{ij}} = \begin{cases} \sum_{\lambda=n+1}^{2n} \left(\delta_{jk} A_{\lambda\ell} - \delta_{j\ell} A_{\lambda k} \right) & \text{si } 1 \leq \lambda \leq n \\ \sum_{\lambda=1}^{n} \left(\delta_{j\ell} A_{\lambda k} - \delta_{jk} A_{\lambda \ell} \right) & \text{si } n < \lambda \leq 2n \end{cases}$$

Dès lors, $J_{f_{*A}}$ est une matrice à $4n^2$ colonnes et $n(2n-1)=2n^2-n$ lignes contenant une grande proportion de 0 (une proportion p(n)=(n-1)/n qui donc tend vers 1 quand $n\to +\infty$) mais qui est de rang n(2n-1) car toutes les lignes sont non-nulles et linéairement indépendantes.

Dès lors, f_{*_A} est surjective. On peut alors déduire que $\mathrm{Sp}(2n,\mathbb{R})$ est un sous-variété de $\mathrm{GL}(2n,\mathbb{R})$ de dimension $4n^2-(2n^2-n)=2n^2+n$.