# ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIO DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS MICROONES, TARDOR 1999-2000

### **EXAMEN FINAL**

PROFESSORS: A. AGUASCA, A. COMERON,

I.CORBELLA, N. DUFFO

Barcelona, 19 de gener de 2000

Cal realitzar **només tres** dels quatre problemes proposats Temps: 3 hores. Comenci cada exercici en un full apart.

### PROBLEMA 1

A la figura A es representa l'esquema de línies microstrip d'una xarxa de dos accessos.

- a) Fent us de la simetria del circuit, calculeu la matriu [S] referida a  $Z_0$  (accessos 1 i 2 a la unió de les línies), per a les freqüències  $f_0$  i  $2f_0$ , sent  $f_0$  la freqüència per a la qual  $\ell=\lambda/4$ . Totes les línies tenen impedància igual a  $Z_0$ .
- b) Amb l'ajut de les matrius obtingudes, calculeu la relació P<sub>L</sub> / P<sub>avs</sub> (potència a la càrrega / potència disponible de generador) a ambdues freqüències a la situació de la figura B





ra A Figura B

# PROBLEMA 2

Un divisor de potència tipus Wilkinson té carregades les sortides 2 i 3 amb dues impedàncies genèriques  $Z_{L2}$  i  $Z_{L3}$ , mentre que a l'entrada 1 s'hi connecta un generador canònic. La impedància de referència de l'estructura és  $Z_0 = 50\Omega$ .

- a) Escriviu la matriu de paràmetres S del divisor.
- b) Determineu el coeficient de reflexió d'entrada  $\Gamma_{\scriptscriptstyle in1}$  que presenta l'accés 1 en funció dels coeficients de reflexió de càrrega  $\Gamma_{\scriptscriptstyle L2}$  i  $\Gamma_{\scriptscriptstyle L3}$  als accessos 2 i 3 respectivament.
- c) Determineu les potències dissipades a les càrregues als accessos 2 i 3 en funció de la potència  $P_1^+$  associada a l'ona  $a_1$  que incideix sobre l'accés 1.
- d) Si el generador canònic és de potència disponible  $P_{DISP}$ , determineu  $P_1^+$  i  $P_1^-$ .
- e) Si  $Z_{L2}=50+j50\Omega$  i  $Z_{L3}=25-j25\Omega$ , i  $P_{DISP}=100\,mW$ , determineu la potència dissipada a cada una de les càrregues i la potència dissipada a l'interior del divisor.

En el circuit de la figura un híbrid de  $90^{\circ}$  ideal és utilitzat com a acoblador direccional per mesurar els paràmetres S d'un quadripol, el qual se sap que és *passiu* i *simètric*. Les tensions complexes  $V_A$  i  $V_B$  definides al circuit tenen els següents valors (en Volts):

$$V_A = 1.25 \angle 48^{\circ} \ V_B = 2.12 \angle 20^{\circ}$$

i les línies se suposen totes amb dielèctric aire.

- a) Escriviu la matriu de paràmetres S de l'híbrid de  $90^{\circ}$  referits a  $50\Omega$
- b) Calculeu les ones incidents a les tres càrregues de  $50\Omega$  en funció dels paràmetres S del quadripol i de l'ona inicial del generador  $b_s$
- c) Calculeu tots els paràmetres S del quadripol, en mòdul i fase referits a  $50\Omega$ .



## PROBLEMA 4

Un transistor MESFET té els següents paràmetres referits a  $Z_0 = 50\Omega$  a la freqüència de  $6\,GHz$ 

per a un punt de polarització donat: 
$$\begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} 0,67_{\angle 180} \circ & 0,075_{\angle -55} \circ \\ 1,74_{\angle -25} \circ & 0,60_{\angle 180} \circ \end{bmatrix}, \ \Gamma_{opt} = 0,58_{\angle 180} \circ .$$

Es vol fer un disseny d'amplificador per al màxim guany compatible amb el mínim soroll:

- a) Quina impedància de font  $Z_s$  ha de presentar al transistor la xarxa d'adaptació d'entrada?
- b) Quin coeficient de reflexió de càrrega  $\Gamma_{\!\scriptscriptstyle L}$  ha de presentar al transistor la xarxa d'adaptació de sortida?
- c) Raoneu si els coeficients de reflexió presentats al transistor poden donar lloc a inestabilitats.
- d) Quin és el valor màxim guany compatible amb el mínim factor de soroll?
- e) A la xarxa d'adaptació d'entrada, determineu l en termes de longitud d'ona i  $Z'_0$ .
- f) Si el stub en circuit obert de longitud  $l_1$  i el tram de línia de longitud  $l_2$  de la xarxa d'adaptació de sortida tenen ambdós impedància característica  $Z_0=50\Omega$  i es realitzen sobre microstrip amb  ${\bf e}_{ref}=1{,}91$ , determineu  $l_1$  i  $l_2$  en termes de longitud d'ona i en mm.
- g) En la realització en microstrip, raoneu si la línia de la xarxa d'adaptació d'entrada serà més ampla o més estreta que les de la xarxa d'adaptació de sortida.



#### Notes:

$$G_{T} = \frac{\left(1 - \left|\Gamma_{s}\right|^{2}\right) \left|s_{21}\right|^{2} \left(1 - \left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1 - s_{11}\Gamma_{s}\right)\left(1 - s_{22}\Gamma_{L}\right) - s_{12}s_{21}\Gamma_{s}\Gamma_{L}\right|^{2}} =$$

$$= \frac{\left(1 - \left|\Gamma_{s}\right|^{2}\right) \left|s_{21}\right|^{2} \left(1 - \left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1 - s_{11}\Gamma_{s}\right)\right|^{2} \left|\left(1 - \Gamma_{L}\Gamma_{out}\right)\right|^{2}}$$

$$K = \frac{1 - \left|s_{11}\right|^{2} - \left|s_{22}\right|^{2} + \left|s_{11}s_{22} - s_{12}s_{21}\right|^{2}}{2\left|s_{12}s_{21}\right|}$$