Appunti Di Analisi II

May 31, 2018

Contents

1	Formulario Analisi II	3
	1.1 Integrali	3
2	Prontuario Matematico	4
	2.1 Serie e sommatorie	4
	2.2 Trigonometria e Complessi	4

1 Formulario Analisi II

1.1 Integrali

Qui sono condensati alcuni dei più importanti risultati di un corso di Analisi II per ciò che concerne l'integrazione in più variabili con campi vettoriali (quindi flussi e circuitazioni).

Definizioni. Dato un campo vettoriale $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ la sua divergenza è data da $\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x_1} F_1 + \ldots + \frac{\partial}{\partial x_n} F_n$ mentre il rotore si indica con $\nabla \times \mathbf{F}$. Data una curva piana $\gamma = (x(t), y(t))$ si definiscono il versore tangente positivo $\mathbf{T}^+(t) = \frac{(x'(t), y'(t))}{\|\gamma'(t)\|}$ e la sua normale esterna $\mathbf{n}_{\mathbf{e}}(t) = \frac{(y'(t), -x'(t))}{\|\gamma'(t)\|}$.

Integrale curvilineo di prima specie. Data la curva γ e una funzione f con questo integrale si ottiene l'area sottostante alla funzione f dispsta secondo la curva. Utile per trovare baricentro. Se f(x) = 1 si ottiene la lunghezza della curva.

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \| \gamma'(t) \| \, dt \tag{1}$$

Integrale curvilineo di seconda specie. Dove ω è una formula differenziale e **F** un campo vettoriale.

$$\int_{\gamma} \omega = \int_{a}^{b} \mathbf{F}(\gamma(t)) \cdot \boldsymbol{\gamma}'(t) dt \tag{2}$$

Formule di Green. Utili nelle dimostrazioni con divergenza

$$\iint_{\Omega} f_x dx dy = \int_{\partial \Omega^+} f dy \tag{3}$$

$$\iint_{\Omega} f_y dx dy = -\int_{\partial \Omega^+} f dy \tag{4}$$

Divergenza nel piano. L'operatore divergenza permette di calcolare il flusso del campo vettoriale \mathbf{v} uscente dalla superficie Ω (ovvero, passante attraverso il suo bordo $\partial\Omega$) rispetto alla normale $\mathbf{n_e}$, con un integrale doppio (che può essere più semplice di quello originale).

$$\iint_{\Omega} \nabla \cdot \mathbf{v} dx dy = \int_{\partial \Omega} \mathbf{v} \cdot \mathbf{n_e} ds = \int_{\partial \Omega^+} \mathbf{v_1} dy - \mathbf{v_2} dx \tag{5}$$

Rotore nel piano. Il rotore permette di calcolare la circuitazione del campo vettoriale \mathbf{v} lungo la curva $\partial\Omega$. $\mathbf{e_3}$ è il terzo versore della base canonica (il versore delle "z" per intendersi).

$$\iint_{\Omega} \nabla \times \mathbf{v} \cdot \mathbf{e_3} dx dy = \int_{\partial \Omega} \mathbf{v} \cdot \mathbf{T}^+ ds = \int_{\partial \Omega^+} \mathbf{v_1} dx + \mathbf{v_2} dy$$
 (6)

Divergenza nello spazio. Utilizzata per calcolare il flusso di un campo vettoriale uscente da un solido, quindi passante attraverso la superficie $\partial\Omega$ (senza bordo) che lo racchiude, rispetto alla normale di quest'ultima.

$$\iiint_{\Omega} \nabla \cdot \mathbf{v} dx dy dz = \iint_{\partial \Omega} \mathbf{v} \cdot \mathbf{n_e} dS \tag{7}$$

Teorema di Stokes. In poche parole, "la circuitazione è uguale al flusso del rotore" e quindi si passa alla divergenza del rotore (nella speranza che derivando, le cose si semplifichino).

$$\int_{\gamma^{+}} (v_1 dx + v_2 dy + v_3 dz) = \iint_{\partial\Omega} (\nabla \times \mathbf{v}) \cdot \mathbf{n}^{+} dS = \iiint_{\Omega} \nabla \cdot (\nabla \times \mathbf{v}) dx dy dz$$
 (8)

2 Prontuario Matematico

2.1 Serie e sommatorie

Nelle sommatorie si assume che $\sum_{i=0}^{n} = 0 + 1 + ... + n$.

$$\sum_{i=0}^n k^i = \frac{k^{n+1}-1}{k-1}$$
 con $k \in \mathbb{R} > 0, k \neq 1$

2.2 Trigonometria e Complessi

$$e^{ax} = \sum_{k=0}^{\infty} \frac{a^k}{k!}$$
 $\sin x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} (-1)^k$ $\cos x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} (-1)^k$

Formula di Eulero:

$$e^{ix} = \cos x + i\sin x$$

Formule di prostaferesi:

$$\sin \theta \sin \phi = 1/2(\cos(\theta - \phi) - \cos(\theta + \phi))$$

$$\cos \theta \cos \phi = 1/2(\cos(\theta - \phi) - \cos(\theta + \phi))$$

$$\cos \theta \sin \phi = 1/2(\sin(\theta + \phi) - \sin(\theta - \phi))$$