# **Test Report Template**

Based on ISO/IEC/IEEE 29119, IEC 60068, ISO/IEC 17025 Delta Laboratory



### 1. Test Plan Summary

| Document ID | Version | Date                  | Prepared By | Approved By | Observations |
|-------------|---------|-----------------------|-------------|-------------|--------------|
| TEST-000    | 1.0     | September<br>25, 2025 | Alice       | Bob         | None         |

### 2. Purpose and Scope

Explain why the test is being performed and what it consists of, including:

- Main objective of the test: Describe the purpose, such as functional verification, performance evaluation, or compliance validation.
- Limits of the test: Specify which subsystems are included or excluded from the scope.
- **Key focus areas:** Indicate any special aspects to be checked, for example environmental resistance, calibration traceability, or safety features).

#### 3. References

List all documents, standards, and procedures used to design or execute the test.

- · Standards:
  - [1] Iso/iec/ieee 29119: Software testing, 1st edition, ISO/IEC/IEEE, 2013.
  - [2] lec 60068: Environmental testing, 1st edition, IEC, 2013.
  - [3] Iso/iec 17025: General requirements for the competence of testing and calibration laboratories, 3rd edition, ISO/IEC, 2017.
- **Design Documents:** Engineering drawings, schematics, datasheets.
- Internal Procedures: Company testing protocols, safety guidelines.

#### 4. Definitions and Abbreviations

Avoid confusion by clarifying technical terms and acronyms.

- **DUT:** Device Under Test The hardware being tested.
- EUT: Equipment Under Test Same as DUT, used in some standards.
- RBF: Remove-Before-Flight safety pin.

#### 5. Test Item Identification

| Name / Idem                          | Serial Number /                             | Manufacturer         | Configuration                         | Photographs /                                                        |
|--------------------------------------|---------------------------------------------|----------------------|---------------------------------------|----------------------------------------------------------------------|
| Number                               | Revision                                    |                      | (HW/SW)                               | Diagrams                                                             |
| Enter the official idem name or code | Enter serial<br>number and<br>revision code | Manufacturer<br>name | Hardware and software version details | Include reference to images or diagrams showing identification marks |

### 6. Test Environment and Equipment

#### 6.1 Environmental Conditions

Document the physical conditions during the test.

- Ambient temperature (°C)
- Humidity (%)
- Pressure (if relevant and applicable)
- EMC/EMI background (if relevant and applicable)

#### 6.2 Test Equipment

| No. | Equipment<br>Name | Model/Type    | Manufacturer | Calibration<br>Date | Serial No. | Notes              |          |
|-----|-------------------|---------------|--------------|---------------------|------------|--------------------|----------|
| 1   | Equipment name    | Type or Model | Manufacturer | Calibration<br>Date | Serial No. | Notes              |          |
| 2   | Oscilloscope      | MSO-X 3054A   | Keysight     | 2024-11-15          | ABC456     | 500 M<br>bandwidth | 1Hz<br>า |

### 7. Test Inputs, Outputs, and Acceptance Criteria

#### 7.1 Test Inputs

List all inputs applied to the DUT (voltages, loads, software commands).

#### 7.2 Expected Outputs

Describe measurable responses (voltage, signal shape, movement, LED indicators, etc.).

#### 7.3 Acceptance Criteria

Set the pass/fail limits:

- Tolerances (± values)
- · Minimum performance thresholds
- · Safety constraints

#### 8. Test Procedure

Provide a clear, step-by-step process so the test can be repeated exactly.

- 1. Setup: Prepare the DUT, connect equipment, configure environment.
- 2. Action: Apply stimulus or command.
- 3. Measurement: Record DUT response.
- 4. Verification: Compare with acceptance criteria.

| Step | Input Condition | Expected Output | Actual Output | Pass/Fail |
|------|-----------------|-----------------|---------------|-----------|
| 1    |                 |                 |               |           |
| 2    |                 |                 |               |           |
| 3    |                 |                 |               |           |

#### 9. Results

#### 9.1 Raw Data

Attach logs, oscilloscope screenshots, photos, or measurement sheets.

#### 9.2 Analysis

Highlight anomalies, trends, and deviations from expected performance.

#### 10. Conclusion

- Overall Result: Indicate if the DUT passed or failed the tests.
- Key Observations: Summarize important findings, anomalies, or deviations from expected behavior.

#### 11. Signatures

| Name | Role     | Date               | Signature |
|------|----------|--------------------|-----------|
| Bob  | Approver | September 25, 2025 |           |

#### 12. Annexes

#### Include:

- · Test circuit diagrams.
- · Environmental chamber profiles.
- · Calibration certificates.

## **IMPORTANT:**

This template is a guide, not a pre-filled report. All instructions and example text must be replaced with the actual test information, ensuring accuracy, completeness, and compliance with international laboratory standards. Text written in dark cyan is a visual reminder that it must be replaced with the real test data.