Math H185 Lecture 3

Keshav Balwant Deoskar

March 2, 2024

These are notes taken from lectures on Complex Analysis delivered by Professor Tony Feng for UC Berekley's Math $\rm H185$ class in the Sprng 2024 semester.

Contents

1	Jan	January 22 - Holomorphic functions			
	1.1	Sequences and Series	2		
		Complex Dfferentiability			
		Stability Properties			

1 January 22 - Holomorphic functions

1.1 Sequences and Series

Recall that a sequence of complex numbers $\{z_n \in \mathbb{C}\}$ is said to *converge* to $z \in \mathbb{C}$ if for all $\epsilon > 0$ there exists a natural number $N \geq 1$ such that

$$|z_n - z| < \epsilon$$

for all $n \geq N$. Equivalently,

$$\lim_{n \to N} |z_n - z| = 0$$

In HW1, we show that if $z_n = x_n + iy_n$ and z = x + iy where $x, y, x_n, y_n \in \mathbb{R}$ then

$$\lim_{n \to \infty} |z_n - z| = 0 \iff \begin{cases} \lim_{n \to \infty} |x_n - x| = 0\\ \lim_{n \to \infty} |y_n - y| = 0 \end{cases}$$

1.2 Complex Dfferentiability

Let $f: U \subseteq_{\text{open}} \mathbb{C} \to \mathbb{C}$.

Holomorphic Functions

We say f is Holomorphic at $z_0 \in U$ if

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists in \mathbb{C} . If so, its value is denoted as $f'(z_0)$.

Note: Keep in mind that h is a complex number.

• This means that for any sequence $h_n \to 0$ or $\forall \epsilon > 0 \; \exists \delta > 0$ such that

$$|h| < \delta \implies \left| \frac{f(z_0 + h) - f(z_0)}{h} - f'(z_0) \right| < \epsilon$$

• This is the most important definition of the course.

Remark: Although \mathbb{C} is the same as \mathbb{R}^2 as a metric space, Holomorphicity is much stronger than differentiability of a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ because the limits along every path to a point are required to be equal. In contrast to this, differentiability in \mathbb{R}^2 requires that a limit exists along each path, but not that all limits are equal.

Example: Consider the function $f(z) = \overline{z}$.

We observe that

$$\frac{f(z+h) - f(z)}{h} = \frac{\overline{z+h} - \overline{z}}{h}$$
$$= \frac{\overline{h}}{h}$$

Now, if we take the limit as $h \to 0$ along the real line, we get $\frac{\overline{h}}{h} = \frac{h}{h} = 1$, however if we take the limit along the imaginary line we get $\frac{\overline{h}}{h} = \frac{-h}{h} = -1$

On the other hand if we consider the counterpart of this function in \mathbb{R}^2 as f(x,y)=(x,-y), this function is *smooth everywhere*. In contrast to this, the complex function $f(z)=\overline{z}$ is *not holomorphic* at any $z_0 \in \mathbb{C}$.

We will see that holomorphic functions have strong <u>rigidity</u> properties not shared by real differentiable functions. For instance,

- If f, g are holomorphic on a connected open set $U \subseteq \mathbb{C}$ and f = g on a line segment in U, then in fact they agree at all points in U: $f(z) = g(z) \forall z \in U$. This is the **Principle of Analytic Continuation.**
- Another example of surprising rigidity is that if f is holomorphic on U i.e. it is one differentiable on U, then in fact it is *infinitely* differentiable on U.

Examples:

1. $f(z) = z^n$

Calculate:

$$\frac{f(z+h)-f(z)}{h} = \frac{(z+h)^n - z^n}{h}$$

$$=_{\text{binom thm.}} \left[\frac{1}{h} \left(z^n + nz^{n-1}h + \dots + nzh^{n-1} + h^n \right) - z^n \right]$$

$$= nz^{n-1} + h(\dots)$$

So, just like in Real Analysis, we have

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = nz^{n-1}$$

1.3 Stability Properties

While holomorphicity is different from real differentiability, there are a number of properties which are justified by the same $\epsilon - \delta$ proofs as those from \mathbb{R}^2 analysis.

- If $f, g: U \to \mathbb{C}$ are holomorphic at $z_0 \in U$ then
 - -(f+g) is holomorphic at z_0 and

$$(f+g)'(z_0) = f'(z_0) + g'(z_0)$$

- fg is holomorphic at z_0 and

$$(fg)'(z_0) = f'g(z_0)g(z_0) + f(z_0)g'(z_0)$$

- Chain Rule: $(f \circ g)$ is holomorphic at z_0 and

$$(f \circ g)'(z_0) = f'(g(z_0)) \cdot g'(z_0)$$

- Division: (f/g) is holomorphic at z_0 if $g(z_0) \neq 0$ and

$$\left(\frac{f}{g}\right) = \frac{f'(z_0)g(z_0) + f(z_0)g(z_0)}{g(z_0)^2}$$

Polynomials: Finite sum of monomials.

$$f(z) = a_n z^n + \dots + a_0$$

By linearity (Stability property 1), all Polynomials are holomorphic on C.

Rational Functions: Ratios of Polynomials.

$$h(z) = \frac{f(z)}{g(z)}$$

By Stability property 3, all rational functions are holomorphic on $\{z \in \mathbb{C} : g(z) \neq 0\} \subseteq_{\text{open}} \mathbb{C}$.

Warm-down examples: Where are the following functions holomorphic, and what are their derivatives in those regions?

- 1. $f(z) = \frac{1}{z}$
- 2. $f(z) = z^2 + 3z + \frac{1}{2}$
- 3. $f(z) = \operatorname{Re}(z)$
- 4. $f(z) = i \cdot \operatorname{Im}(z)$
- 5. $f(z) = \operatorname{Re}(z) + i \cdot \operatorname{Im}(z)$

Answers:

1. Holomorphic on $\mathbb{C} \setminus \{0\}$, and derivative in the region is

$$\frac{-1}{z^2}$$

2. Holomorphic on \mathbb{C} , and derivative in the region is

$$2z + 3$$

- 3. Not holomorphic *anywhere*, snice limit vertically is always zero but limit horizontally will be non-zero.
- 4. Not holomorphic *anywhere*, snice limit horizontally is always zero but limit vertically will be non-zero.
- 5. Holomorphic on \mathbb{C} , and derivative in the region is 1 (f(z) = z), so f'(z) = 1 at all points).