The Big Picture of Design of Experiments

How, why and what for?

- You can find this presentation and all others at the following link: https://github.com/Mollinetti/Experiment-Design-R
- Any questions, send an e-mail to mmollinetti@gmail.com

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
- Point Estimators
- Normality
- Statistical Models
- Post-hoc Analysis
- Final Remarks
- Workshop

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
- Point Estimators
- Normality
- Statistical Models
- Post-hoc Analysis
- Final Remarks
- Workshop

What is Experiment Design?

- "Design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation"
- Validity, Reliability and Replicability (when applicable)
- From devising the research question to the analysis of the statistical test and verification of Hypothesis
- A good design prevents wrong conclusions
- How many times have you read scientific papers with dubious results because the design was not well explained?

What is Experiment Design?

- The three basic principles (3+1):
 - Randomization
 - Replication
 - Blocking
 - Factorial principle

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
- Point Estimators
- Normality
- Statistical Models
- Post-hoc Analysis
- Final Remarks
- Workshop

The Basic Steps for conducting an experiment

- 1. Define your research question
- 2. Selection of response variable
- 3. List and classification of every variable that will be measured in the experiment as well as their levels and their nature
- 4. Determination of sample size, and desired confidence and power
- 5. Choose of experimental design based on the variables and research question
- 6. Performing the experiment
- 7. Statistical Analysis of the data
- 8. Conclusions and recommendations based on the results of the test and assumptions

The Basic Steps for conducting an experiment

Don't forget to keep these points in mind [Montgomery, 2012]:

- 1. Use your nonstatistical knowledge of the problem
- 2. Keep the design and analysis as simple as possible
- Recognize the difference between practical and statistical significance
- 4. Experiments are usually iterative

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
 - Research question
 - Factors and Levels
 - Qualitative and Quantitative variables
 - Dependent and Independent variables
 - Confidence and Power
 - Data Cleaning and Outliers
- Point Estimators
- Normality
- Statistical Models
- Post-hoc Analysis
- Final Remarks
- Workshop

Research Question

- The main goal of the experiment that will be conducted
- A bad research question may invalidate the entire experiment
- The experiment answers the research question, not the opposite
- Before taking any step, always ask yourself: "What is the research question?"

• Examples:

- 1. Is there a significant difference in the white blood cell levels between group A that took the medicine and group B that took a placebo?
- 2. Based on the measurements of a patient that shows the signs of either Disease 1 or 2, which is the most probable disease that the patient has contracted?

Factors and levels

- It is crucial to decide the factors and levels of the experiment
- Factor: Variable measured
- Level: Degree of variation of the factor
- Example:
 - Sex (factor): Male/Female (Levels)
 - Chest pain (factor): None/ Mild/acute (Levels)

17 1	D :	
(0)	Design	matrix

Factor

Qualitative and Quantitative Variables

- Qualitative variables (numerical): a numerical continuous variable bounded within a range
- Quantitative variables (categorical): Attributes pertaining to a data point
- Levels of a qualitative variable are explicit, while levels of quantitative variables are implicit (usually requires binning)

Dependent and Independent variables

- Dependent variables (Response): Variable being tested and measured in a scientific experiment
 - Example: amount of Leucocytes/ brain wave activity
- Independent variables (Predictors): Variable that is changed or controlled in a scientific experiment
 - Example: Sleep phase/ treatment group/ Rh factor
- Some independent variables are difficult to control, hence the need of blocking

Confidence and power

Confidence

- Represented by α
- Confidence level of any test is $100(1 \alpha)$ %
- Associated to Type-I errors (False negative)
- Easily controllable

Power

- Represented by β
- Power of any test is $100(1 \beta)$ %
- Associated to Type-II errors (false positive)
- Hard to control

Data cleaning and outliers

- Errors in measurements, null values or values too abnormal for a given variable
- Most of the tests are sensitive to outliers
- Always check the consistency of the data before going further
- Check the leverage of the outliers
- Determine whether the outlier should be kept or eliminated

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
- Point Estimators
 - Sample and Population estimators
 - Biased and Unbiased estimators
- Normality
- Statistical Models
- Post-hoc Analysis
- Final Remarks
- Workshop

Point Estimators

- Estimated value of maximum plausibility for a given population parameter θ
- A function $\hat{\theta} = h(x)$ is called a point estimator of parameter θ and a value returned by this function is a point estimate
- Examples:
 - Mean
 - Standard Deviation
 - Variance
 - Standard Error

Sample and Population estimators

- Obtaining the true estimate of a population is almost impossible
 - What is the mean of the population of all the people that has a given disease?
- Therefore, a sample estimator is obtained by the point estimator of a given sample of population
- Sample mean ≠ Population mean

Biased and Unbiased estimators

- Unbiased estimator:
 - Lie close to the true estimator of the population
 - Minimum variance theorem
 - Example: mean, variance
- Biased Estimator:
 - Introduce some bias related to the true estimator of the population
 - Example: standard deviation

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
- Point Estimators
- Normality
 - Sampling Distributions
 - Gaussian Distribution
 - Non-Normal Data
- Statistical Models
- Post-hoc Analysis
- Power Analysis
- Final Remarks
- Workshop

Sampling Distributions

- Most of the methods studied assume that random samples are used
- The probability distribution of a statistic is called sampling distribution
- Useful distributions
 - Normal distribution
 - Chi-squared distribution
 - T-Distribution
 - F-distribution

Normality

- The great majority of the statistical tests in our classes require for the data to be normal
- What does that mean? The data has been sampled from a gaussian distribution with unknown mean and variable
- Verifying normality is a must for these tests (although most of the times it is overlooked)

Gaussian Distribution

- Parameters: mean μ and standard deviation σ^2
- The most natural random distribution
- Majority of tests in the field of statistics assume that variables assume distribution similar to the gaussian
- Bell-shaped curve
- Central Limit Theorem

Non-normal data

- What to do when your data does not comply to the assumption of normality?
 - Reduce/ Expand the number of samples
 - Transform the data (log, root, etc)
 - Use non-parametric tests

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
- Point Estimators
- Normality
- Statistical Models
 - Hypothesis testing
 - Pick your statistical test
 - Assumptions of tests
- Post-hoc Analysis
- Final Remarks
- Workshop

Statistical Tests

- After deciding on the design of the experiment, a statistical test must be done in order to answer the research question
- Choice of test depends on many things:
 - Number of variables (dependent and independent)
 - Sample size
 - Normality of data
 - Research question

Hypothesis Testing

- Many problems require to decide whether to accept or reject a statement about some parameter
- There are always two hypothesis:
 - H_0 : Null Hypothesis, the baseline
 - H_1 : Alternative Hypothesis, what is trying to be shown
- If the associated p-value is smaller than the cutoff (0.05 for 95% confidence) then H_0 is rejected
- Otherwise, we fail to reject H_0

Pick your test

- One dependent variable, One independent variable (2 groups)
 - T-test
 - Paired T-test
- One dependent variable, One independent variable (2+ groups)
 - ANOVA (one or two-way)
 - ANCOVA
- <u>2+ dependent variables, 2+ independent variables</u>
 - MANOVA
 - MANCOVA

- One response, 2+ predictors (numerical)
 - Linear regression
 - Polynomial regression
 - Generalized Additive model (GAM)
 - Ridge Regression
 - LASSO
- One response, 2+ predictors (categorical)
 - Logistic Regression
 - Linear Discriminant Analysis (LDA)
 - Quadratic Discriminant Analysis (QDA)

Assumptions

- After choosing the most applicable statistical test, it is necessary to verify whether the data and the results are compliant to the test assumptions
- Each test has its own set of assumptions
- The most overlooked detail when doing analysis of the results
- Examples:
 - Normality
 - Heteroscedascity
 - Multicollinearity

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
- Point Estimators
- Normality
- Statistical Models
- Post-hoc Analysis
 - Checking differences
 - Power and sample size analysis
- Final Remarks
- Workshop

Post-hoc Analysis

- Analysis done after conducting the statistical analysis of your experiment
- Purposes:
 - further analyze any intra or inter group relations and differences
 - Calculate the power
 - Define ideal sample size

Checking differences

- For some statistical models, like the MANOVA, MANCOVA and linear regression, further analysis of the differences can be done
- Examples of tests for checking differences:
 - Repeated one-way ANOVA
 - Repeated fitting linear models
 - Repeated t-tests
 - Tukey HSD test

Power and sample size analysis

- By defining the power of your test, it is possible to calculate the ideal sample size for a desired power
- Some statistical tests allow for direct power analysis by hypothesis testing:
 - Fligner-Killen test for t-tests
 - Power test for One-way ANOVA
- Other tests require repeated randomized sampling:
 - Bootstrapping
 - Monte Carlo simulations

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
- Point Estimators
- Normality
- Statistical Models
- Post-hoc Analysis
- Final Remarks
- Workshop

Final Remarks

- First and foremost: Remember your research question
- P-values are not the final answer of anything
- Do not answer your experiment with a research question
- Always be sure to verify the assumptions of the statistical test
- An unfavorable outcome might as well be a counter-example
- Remember: Experiment design is iterative and incremental!

- What is Experiment Design?
- The Basic steps of Conducting an Experiment
- Foundation
- Point Estimators
- Normality
- Statistical Models
- Post-hoc Analysis
- Final Remarks
- Workshop

Workshop

- With this, our classes are over
- Bring your questions and data so they can be answered
- If there are no questions, I will show an example of real experiment data analysis using the R statistical language