OzonMasters-NLA Course

Рандомизированное SVD разложение и его приложения

Салахов Дамир, Шубочкин Евгений

Москва - 2021

- Наивное описание метода
- 2 Мотивация
- 3 Результаты статьи и наши надежды
- 4 Наши результаты имплементации

Простыми словами о сложном

Пусть мы имеем матрицу A размера $m \times n$.

Выберем целевой ранг k такой, что $k < \min(m,n)$.

Тогда для реализации RSVD нужно будет:

- 1) сгенерировать гауссовскую случайную матрицу Ω размером n imes k;
- 2) вычислить новую матрицу Y размером $m \times k$;
- 3) применить QR-разложение к матрице Y.

Простыми словами о сложном

- 4) получить матрицу B размером $k \times n$ путем умножения транспонированной матрицы Q на матрицу A;
- 5) вычислить SVD для матрицы B.

Здесь, вместо вычисления SVD исходной матрицы A, нужно вычислять SVD B, которая представляет собой меньшую матрицу, что дает преимущества асимптотически.

Почему нас это заинтересовало?

Замечание:

- ① Поскольку сингулярные значения (т.е. Σ) и правые сингулярные векторы (т.е. V) матрицы B также "являются"сингулярными значениями и правыми сингулярными векторами исходной матрицы A, поэтому мы должны сохранить сингулярные значения и правые сингулярные векторы матрицы B.
- Матрицу U, если необходимо, можно получить, как произведение матриц Q и U^\sim .

Наивная оценка сложности:

- **1** Для вычисления SVD матрицы размера $m \times n$ необходимо время, асимптотически равное $O(m^2n)$;
- ullet для вычисления Randomized SVD матрицы размера $m \times n$ необходимо время, асимптотически равное O(mnk).

Рекомендательные системы и с чем их едят

Определение: Рекомендательные системы — программы, которые пытаются предсказать, какие объекты будут интересны пользователю, имея определенную информацию о его профиле.

Проблемы:

- матрица предпочтений огромна;
- матрица предпочтений очень разрежена.

Подход из статьи

Пусть X матрица размера $m \times n \quad (m \leqslant n)$; $\mu-$ вектор размерности m в пространстве векторов-столбцов X. Хотим получить приближение ранга k сингулярного разложения матрицы $X^{'} = X - \mu I^{T}$ без явного формирования $X^{'}$. Различия между расширенным алгоритмом и исходным находятся в строках 6, 9, 10 и 12, если кратко.

```
Algorithm 1 The rank-k singular value decomposition of the m \times n matrix X - \mu \mathbf{1}^T = U \Sigma V^T
with (m \le n) using the sampling parameter K (k < K \ll m) and q \in \{0, 1, 2, ...\}.
 1: procedure SHIFTED-RANDOMIZED-SVD(X, \mu, k, K, q)
        Draw an n \times K standard Gaussian matrix \Omega
        Form the sample matrix X_1 \leftarrow X\Omega
        Compute the QR factorization X_1 = Q_1 R_1
        if \mu \neq 0 then
            Compute QR = Q_1R_1 - \mu \mathbf{1}^T using the QR-update algorithm
        end if
        for i = 1, 2, ..., q do
            Compute the QR-factorization Q'R' = X^TQ - \mathbf{1}(\mu^TQ)
            Compute the QR-factorization QR = XQ' - \mu(\mathbf{1}^TQ')
10:
11:
        end for
        Form Y \leftarrow Q^T X - (Q^T \mu) \mathbf{1}^T
        Compute the singular value decomposition of Y = U_1 \Sigma V^T
14:
        U \leftarrow QU_1
        return (U, \Sigma, V)
16: end procedure
```

Подход из статьи

Алгоритм SHIFTED-RANDOMIZED-SVD состоит из трех этапов:

- ullet оценить QR матрицы для X';
- $oldsymbol{\circ}$ спроецировать X' на пространство базисной матрицы Q;
- вычислить SVD полученной проекции.

Подход из статьи

Почему вообще данные разложения работают хорошо, и, действительно, дают правильный ответ? Результат для RandomizedSVD:

Theorem 1 (Halko et al. (2011)) Let \mathbf{A} be an $m \times n$ matrix, $k \ge 1$ an integer, and choose an oversampling parameter $p \ge 4$. If $\mathbf{\Omega} \in \mathbb{R}^{n \times (k+p)}$ is a standard Gaussian random matrix and $\mathbf{QR} = \mathbf{A}\mathbf{\Omega}$ is the economized \mathbf{QR} decomposition of $\mathbf{A}\mathbf{\Omega}$, then for all $u, t \ge 1$,

$$\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^*\mathbf{A}\|_{\mathsf{F}} \le \left(1 + t\sqrt{\frac{3k}{p+1}}\right)\sqrt{\sum_{j=k+1}^n \sigma_j^2(\mathbf{A})} + ut\frac{\sqrt{k+p}}{p+1}\sigma_{k+1}(\mathbf{A}),\tag{1}$$

with failure probability at most $2t^{-p} + e^{-u^2}$.

Результат для ShiftedRandomizedSVD:

$$\mathbf{E}[\|\bar{X} - USV^T\|] \le \left[1 + 4\sqrt{\frac{2m}{k-1}}\right]^{\frac{1}{2q+1}} \sigma_{k+1}$$
 (12)

where σ_{k+1} is the (k+1)th singular value of the $m \times n$ matrix \bar{X} with $m \le n$, $2 \le k \le \frac{m}{2}$ is the decomposition rank, and $q \in \mathbb{Z}^+$ is a power value as explained in Algorithm \bar{I} .

Надежды

Для матрицы X' размера $m \times n$ вычислительная сложность исходного рандомизированного алгоритма SVD составляет: $O(\alpha k + (m+n)k^2)$, где α - стоимость умножения матрицы на вектор с входной матрицей X'.

- ullet если X' плотная матрица, то $\alpha=mn$;
- ullet если X' разреженная матрица, то lpha = T, где T- малая постоянная величина.

Надежды

Если входная матрица X является плотной, то алгоритмы отработают одинаково по сложности.

HO! если входная матрица X является разреженной, то X' является плотной для любого $\mu \neq 0$. Тогда

- сложность алгоритма SHIFTED-RANDOMIZED-SVD: $O(Tk+m^2+(m+n)k^2)$, где T это стоимость умножения разреженной матрицы на вектор, а параметр m^2 связан со сложностью этапа обновления QR;
- ② сложность RANDOMIZED-SVD: $O(mnk + (m+n)k^2)$.

Описание выбранной модели

Как я и обещал, мы сделаем систему рекомендаций. И мы сделаем совместную фильтрацию, используя технику SVD (Singular Vector Decomposition); это на ступеньку выше базовой системы рекомендаций, основанной на содержании.

Мы будем использовать знаменитый набор данных Movielens для создания нашей системы рекомендаций.

Итоги нового подхода

На данном датасете и данной задаче, выбранный метод, действительно показывает себя очень хорошо!

```
Randomized SVD: k = 60, CPU times: user 914 ms, sys: 54.1 ms, total: 968 ms, Wall time: 505 ms; error_matrix_rank.mean = 0.006463511869165603
Shifted Randomized SVD: k = 60, CPU times: user 759 ms, sys: 50.5 ms, total: 810 ms, Wall time: 421 ms; error_matrix_rank.mean = 0.006608241821229209
scipy.sparse.linalg.svds: k = 60, CPU times: user 1.85 s, sys: 17.4 ms, total: 1.86 s, Wall time: 947 ms; error_matrix_rank.mean = 0.006456533551669767
```

Валидация рекомендательной системы

Ниже приведен график зависимости mse предсказанных рейтингов фильмов в зависимости от ранга в SVD

Наивное описание метода Мотивация Результаты статьи и наши надежды Наши результаты имплементации

Спасибо за Ваше внимание!