

Al-Driven Strategies for Optimal EV Charging Station Deployment

Aytac Aydin Bugra Berk Karaduman Ageng Cahyadi Ali Kaan Buyukakar

Introduction

- Situations
- EVs as a solution for reducing greenhouse gas emission
- Increasing the usage of EVs and the growth in the sales market
- Challenges in deploying Charging infrastructure

- 2. Al-driven approach
- Optimizing strategies for the deployment of EV charging stations
- Pave the way to the integration with renewable energy sources

Challenges and Goals

- 1. Objectives
- Explore AI methods for planning charging station deployment
- Identifying key influencing factor

- 2. Challanges
 - Limited Parking availability
 - Variety of traffic flow patterns
 - Energy distribution (various energy or electricity capacity)

Exploring Standards, Metrics and Case Studies

Key Questions:

- What is utilization rate and why is it important?
- What is efficiency score?
- Why the standards are important?
- How and where did we collect the data?

Charger Utilization Metrics

Utilization = Active time / Total available time

- High utilization rates: suggests adding more chargers
- Low utilization rates: Over-provisioning or poor placement

Efficiency score: Measures the ratio of energy delivered to vehicles versus the maximum capacity of the charger during a given period.

- Low efficiency scores Suggest operational inefficiencies or underused stations
- High efficiency scores Indicate effective energy delivery and charger utilization

ISO 15118: Communication Standards

Communication protocols: EVCC
 ← SECC via cable or Wi-Fi.

ISO 15118

How and where did we collect the data?

- Berlin Open Data
- To display geospatial data as map layers directly from a server

Elektro	o-Ladesäulen und Ladepunkte - [WMS]
und öffen	und flächenbezogene Informationen zu Elektro-Ladesäulen im öffentlichen tlich zugänglichen Raum auf privatem Grund, zu Ladepunkten im en und Details →
Geographi	e und Stadtplanung
Lizenz:	Stand:
dl-de-by-2.	0 24.01.2025
Formate:	
WMS (u	nbekannt) HTML

Methodology - Al Methods

There are 2 main types for our purposes:

Supervised Learning - Regression

- Labelled data
- Multivariable linear equation

Cons:

- Needs large amounts of labeled data
- Otherwise overfits

Unsupervised Learning - Clustering

- Unlabelled data
- Find patterns in the data
- Putting similar data into clusters

Cons:

- Not decisive
- The patterns are not guaranteed to be meaningful

Methodology - Neural Networks

Grid Partition Method

The process of dividing a geographical area into smaller areas

Working With Open Data

EV charger utilization data is not publicly available

Two options:

Generating the utilization data

Variable	Units	Lower a	Best a	Upper a
Traffic, a_1	$Events/10^3 \cdot ADT$	17	35	53
Population, a_2	Events/kPop	-23	8	39
Competition, a_3	Events/Comp	-152	-77	-2
InterProv, a_4	Events/InterProv	980	1335	1690

Jayanath et al.'s regression coefficients

Niranjan Jayanath, Nathaniel S. Pearre, and Lukas G. Swan. "Geographic factors impacting the demand for public EV charging: an observational study". In: World Electric Vehicle Journal 15.10 (Sept. 2024), p. 445. url: https://doi.org/10.3390/wevj15100445.

Using unsupervised learning(with clustering)

Visualization

Visualization using a map

Created with JavaScript and Leaflet

aytacaydin.com/evtech

Using Jayanath et al.'s Regression Model

Unsupervised Learning

Conclusion

- Al-based strategies ensure optimal positioning of EV charging stations.
- Data-driven models identify the best points, taking into account critical variables such as traffic, environmental factors and energy distribution

Main Challenges:

- Data gaps Limited availability of real-time charging usage data
- Environmental adaptability The need to account for weather conditions and long-term demand changes.
- Scalability Expanding infrastructure efficiently in both urban and rural areas.

Future Research:

- Integration of renewable energy to support sustainability.
- Demand forecasting models for better infrastructure planning.
- Enhanced data sharing to improve AI model accuracy.

