EDUCACIÓN PÚBLICA, SIEMPRE C.E.C.E.N.A FRANJA MORADA TABLAS DE DERIVADAS (de usos más Frecuentes)

FUNCIONES.	DERIVADAS	FUNCIONES	DERIVADAS
y= c ·	y'= 0	y= u	- y'= u'
y= x	y'= 1	y= c . u	y'= c . u'
$y=x^n$, $n \in R$	$y' = n \cdot x^{n-1}$	y= u ⁿ •	$y' = n \cdot u^{n-1} \cdot u'$
$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$	$y=\sqrt{u}$	$y' = \frac{1}{2\sqrt{u}} \cdot u'$
$y = \sqrt[n]{x}$	$y' = \frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$	$V = \sqrt[n]{u}$	$y' = \frac{1}{n^n \sqrt{u^{n-1}}} \cdot u'$
$y = \ln x$	$y' = \frac{1}{r}$	y= ln u	$y' = \frac{1}{u} \cdot u'$
$y = \log_a x$	$y' = \frac{1}{x} \log_a e$	$y = \log_a u$	$y' = \frac{1}{u} \cdot u' \log_a e$
y= e ^x	y'= e ^x	y= e ¹¹ (9-144-124)	$y'=e^u.u'$
y= a ^x	$y'=a^{\alpha}$, $\ln a$	y= a ^u	$y' = a^u \cdot \ln a \cdot u'$
y= sen x	$y' = \cos x$	y= sen u	y= cos u . u'
y= cos x	$y' = - \sin x$	y= cos u	$y' = - \sin u \cdot u'$
y= tan x	$y' = \frac{1}{\cos^2 x} = \sec^2 x$	y= tan u	$y' = \frac{1}{\cos^2 u} \cdot u' = \sec^2 u \cdot u'$
y= sec x	$y' = \sec x \cdot \tan x$	y= sec u	$y' = \sec u \cdot \tan u \cdot u'$
y= cosec x	$y' = -\csc x \cdot \cot x$	y= cosec u	$y' = - \csc u \cdot \cot g u \cdot u'$
y= cotg x	$y' = \frac{-1}{\sin^2 x} = -\cos^2 x$	y= cotg u	$y' = \frac{-u'}{\sin^2 u} = -\cos ec^2 u \cdot u'$
y = arc sen x	$y' = \frac{1}{\sqrt{1 - x^2}}$	y= arc sen u	$y' = \frac{1}{\sqrt{1 - x^2}} \cdot u'$
$y = arc \cos x$	$y' = \frac{-1}{\sqrt{3 - x^2}}$	$y = arc \cos u$	$y' = \frac{-1}{\sqrt{1-u^2}} \cdot u'$
$y = arc \tan x$	$y' = \frac{1}{1 + x^2}$	y= arc tan u	$y' = \frac{1}{1 + u^2}, u'$
y= arc sec x	$y' = \frac{1}{x \cdot \sqrt{x^2 - 1}}$	y= arc sec u	$y' = \frac{1}{u \sqrt{u^2 - 1}} \cdot u'$
y= arc cosec x	$y' = \frac{-1}{x \cdot \sqrt{x^2 - 1}}$	y= arc cosec u	
$y = arc \cot g x$	$y = \frac{-1}{1 + x^2}$	$y = arc \cot g u$	$y' = \frac{1}{1+u^2} \cdot u'$
y=u+v	y'=u'+v'	y= u ^ν	$y' = u^v \cdot v' \cdot \ln u + u' \cdot v \cdot u^{v-1}$
y= ii . v	$y' = u' \cdot v + u \cdot v'$	$y = \frac{u}{v}$	$y' = \frac{u'.v - u.v'}{v^2}$

Referencias: x es la variable independiente; c es una constante; u y v son funciones continuas y derivables de x

Derivadas parciales: Siendo z una función de (x; y) $\frac{\partial z}{\partial x}$ Es la **derivada parcial** de la función Z con respecto a la variable x; $\frac{\partial z}{\partial y}$ Es la **derivada parcial** de la función Z con respecto a la variable y.

Regla de la cadena: siendo Z una función de (x; y), $x \in y$ definidas por el parámetro t es decir: Z=f(x; y); x $(t) \in y$ (t) $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}$$

 $\frac{dz}{dt}$ Es la $\frac{\mathrm{derivada\ tota!}}{\mathrm{de}}$ de la función Z con respecto a la variable x

TABLAS DE INTEGRALES (de uso más Frecuentes)

FUNCIONES	PROPIEDADES		
$\int dx = x + c$	$\int k. f(x) dx = k \int f(x) dx$		
$\int x^n \ dx = \frac{x^{n+1}}{n+1} + (n \neq -1)$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$		
$\int x^{-1} dx = \int \frac{1}{x} dx = \int \frac{dx}{x} = \ln x + c$	(integrales que contienen) $x^2 + a^2$ $x^2 - a^2$ $a^2 - x^2$		
$\int \frac{1}{x^n} dx = \int \frac{dx}{x^n} = \frac{-1}{(n-1)x^{n-1}} + c \ (n \neq 1)$	$\int \sqrt{a^2 - x^2} \cdot dx = \frac{x}{2} \cdot \sqrt{a^2 - x^2} + \frac{a^2}{2} \cdot \arcsin \frac{x}{x} + c$		
$\int e^x \cdot dx = e^x + c$	$\int \sqrt{a^2 - x^2} \cdot dx = \frac{x}{2} \cdot \sqrt{a^2 - x^2} + \frac{a^2}{2} \cdot \ln (x + \sqrt{a^2 - x^2}) + c$		
$\int e^{ax} \cdot dx = \frac{e^{ax}}{a} + c$	$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \cdot \arctan \frac{x}{a} + c$		
$\int e^{ax} \cdot dx = \frac{e^{ax}}{a} + c$ $\int a^{x} \cdot dx = \frac{a^{x}}{\ln a} + c$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \cdot \ln \left \left(\frac{x - a}{x + a} \right) \right + c$		
$\int b^{a.x} \cdot dx = \frac{b^{a.x}}{a \ln b} + c$	$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \cdot \ln \left \left(\frac{a - x}{a + x} \right) \right + c$		
$\int \ln x. dx = (x. \ln x - x) + c)$	$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln (x + \sqrt{x^2 \pm a^2}) + c$		
$\int \log x. dx = \log e(x. \ln x - x) + c$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + c$		
$\int \sqrt{x} \cdot dx = \frac{x^{3/2}}{3/2} + c = \frac{3}{2} \sqrt{x^3} + c$	Integral por Sustitución		
$\int \frac{dx}{\sqrt{x}} = 2 \cdot \sqrt{x} + c$	$\underbrace{\text{Si } \frac{du}{dt}}_{\text{c}} = g'(t) \Rightarrow du = g'(t). dt \underline{\text{Y si}} u = g'(t) \Rightarrow h(u)$		
$\int sen. dx = -cosx + c$	Entonces se tiene que:		
$\int \cos dx = \sin x + c$	$\int f(u). du = \int f[g(t)]. g'(t). dt$		
$\int \tan x. dx = -\ln (\cos x) + c$	J , (65). 666 J , [9 (7)]. 9 (8). 666		
$\int \csc x dx = \ln \csc x - \cot x + \epsilon$	Integral por Partes		
$\int \sec x. dx = \ln (\sec x + \tan x) + \cos x$	C		
$\int \cot g x. dx = \ln (senx) + c$	u.dv = uv - v.du		
$\int sen^2 x \cdot dx = \frac{1}{2}x - \frac{1}{4} \cdot sen2x + c$			
$\int \cos^2 x \cdot dx = \frac{1}{2}x - \frac{1}{4} \cdot \operatorname{sen} 2x + c$	<u>Identidades Trigonométricas</u>		
$\int \tan^2 x dx = \tan x - x + c$	$ \sin^{-1} x = arcsen x $ $ \cos^{-1} x = arccos x $ $ \tan^{-1} x = arctan x $		
$\int \csc^2 x dx = -\cot g x + c$			
$\int \sec^2 x. dx = \tan x + c$	$\frac{1}{\cos x}$ $\sec x \frac{1}{\cos x}$ $\cot x \frac{1}{\tan x}$		
$\int \cot^2 x . dx = -\cot gx - x + c$			
$\int \cot^2 x . dx = -\cot gx - x + c$ $\int \sec x . \tan x . dx = \sec x + c$	Senx cos.t tu		