Borel Algebra 的平移不变性和伸缩不变性

May 5, 2020

Definition 0.1 (W. Rudin, Real and Complex Analysis, p.12). 设 (X, τ) 是拓扑空间. 称包含 τ 的最小 σ -algebra 为X 中的Borel algebra. 称Borel algebra 中的元素为Borel set.

Lemma 0.2. 设 \mathfrak{M} 是 \mathbb{R}^n 中的 σ -algebra. 则

- (i) 对 $\forall r \in \mathbb{R}^n$, $\mathfrak{M} + r$ 是 σ -algebra;
- (ii) 对 $\forall t \in \mathbb{R} \setminus \{0\}, t\mathfrak{M}$ 是 σ -algebra.

Proof. \mathfrak{M} 是 \mathbb{R}^n 中的 σ -algebra, 因此

- (i) $\mathbb{R}^n \in \mathfrak{M}$, $\mathbb{R}^n = \mathbb{R}^n + r \in \mathfrak{M} + r$;
- (ii) 对 $\forall A \in \mathfrak{M} + r$, 有 $A r \in \mathfrak{M}$, 故 $A^c r = (A r)^c \in \mathfrak{M}$, 从而 $A^c \in \mathfrak{M} + r$;
- (iii) 若 $\{A_n\}_{n\in\mathbb{N}}\subset\mathfrak{M}+r$, 则 $\{A_n-r\}_{n\in\mathbb{N}}\subset\mathfrak{M}$, 故

$$\left(\bigcup_{n\in\mathbb{N}}A_n\right)-r=\bigcup_{n\in\mathbb{N}}(A_n-r)\in\mathfrak{M},$$

从而 $\cup_{n\in\mathbb{N}}A_n\in\mathfrak{M}+r$.

综上, $\mathfrak{M} + r$ 也是σ-algebra, (i) 得证. (ii) 类似可证.

Lemma 0.3. 设 \mathcal{U} 是 \mathbb{R}^n 中全体开集构成的集合. 则

- (i) $\forall r \in \mathbb{R}^n, \mathcal{U} + r = \mathcal{U};$
- (ii) $\forall t \in \mathbb{R} \setminus \{0\}, t\mathcal{U} = \mathcal{U}.$

Proof. 断言: 対 $\forall A \in \mathcal{U}$, $\forall r \in \mathbb{R}^n$, $A+r \in \mathcal{U}$. 事实上, 対 $\forall x \in A+r$, 有 $x-r \in A$, 因为A 是开集, 存在 $\delta \in (0,\infty)$ 使得 $B(x-r,\delta) \subset A$, 从而 $B(x,\delta) \subset A+r$, 故A+r 是开集, 断言成立. 由断言易证 $\mathcal{U}+r=\mathcal{U}$, (i) 得证. (ii) 类似可证.

Theorem 0.4. 设 \mathscr{B} 是 \mathbb{R}^n 中的 $Borel\ algebra$.

(i) $\forall r \in \mathbb{R}^n, \, \mathscr{B} + r = \mathscr{B};$

(ii) $\forall t \in \mathbb{R} \setminus \{0\}, t\mathscr{B} = \mathscr{B}.$

Proof. 对 $\forall r \in \mathbb{R}^n$, 由Lemma 0.2 和Lemma 0.3 知, $\mathcal{B} + r$ 是 σ -algebra 且包含 \mathbb{R}^n 中的所有开集. 由此及Borel algebra 定义知, $\mathcal{B} \subset \mathcal{B} + r$. 取r := -r 得 $\mathcal{B} \subset \mathcal{B} - r$, 因此 $\mathcal{B} + r \subset \mathcal{B}$. 综上, $\mathcal{B} + r = \mathcal{B}$, (i) 得证. (ii) 类似可证.

Theorem 0.5. 一般拓扑空间的*Borel algebra* 没有上述性质. 就算是 \mathbb{R}^n 也不一定.

Proof. 一般拓扑空间可能没有加法和数乘.

设 $\tau:=\{\emptyset,B(0,1),B(0,1)^c,\mathbb{R}^n\},$ 则(\mathbb{R}^n,τ) 是个拓扑空间. 此时 \mathbb{R}^n 中的Borel algebra $\mathscr{B}=\tau$ 不满足

 $\mathscr{B} + r = \mathscr{B}$ and $t\mathscr{B} = \mathscr{B}$.