Automatic Polytime Reductions of NP Problems into a Fragment of STRIPS

Aldo Porco Alejandro Machado Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

ICAPS 2011 - Freiburg, June 2011

Motivation

- for using planners, one needs to come up with sound PDDLs
- even if you know well the problem, it may not be easy to translate it into PDDL
- it would be nice to automatically translate problems described in high-level declarative language into PDDL

Our Contribution

- tool that automatically translates NP problems into PDDL
- problems specified using logic in declarative manner
- translation runs in polytime
- existence of plans for generated PDDLs can be decided in NP
- tool fully characterized by its formal properties

This Talk

- Descriptive Complexity Theory
- Tool
- Translations
- Experiments
- Discussion

Descriptive Complexity Theory

Branch of Complexity Theory that uses logic instead of TMs to characterize complexity classes

In Descriptive Complexity Theory (DCT):

- problem corresponds to collection of finite structures
- collection is the set of finite models for a logic formula
- complexity class (class of problems) corresponds to a fragment of logic

For example, NP equals all problems definable in the existential fragment of second-order logic ($SO\exists$)

Main results of DCT:

- P equals SO-Horn
- NP equals SO∃ and coNP equals SO∀
- Polynomial-time hierarchy (PH) equals SO
- PSPACE equals SO + Transitive Closure (SO+TC)

E.g., PH = PSPACE iff TC does not add expressivity to SO

$$\mathsf{CNF}\ \varphi = \underbrace{(x_0 \vee \neg x_1 \vee x_2)}_{\mathsf{clause}\ 0} \land \underbrace{(\neg x_0 \vee \neg x_2)}_{\mathsf{clause}\ 1} \land \underbrace{(\neg x_0 \vee x_1)}_{\mathsf{clause}\ 2}$$

$$\mathsf{CNF}\ \varphi = \underbrace{(x_0 \vee \neg x_1 \vee x_2)}_{\mathsf{clause}\ 0} \land \underbrace{(\neg x_0 \vee \neg x_2)}_{\mathsf{clause}\ 1} \land \underbrace{(\neg x_0 \vee x_1)}_{\mathsf{clause}\ 2}$$

Encoded with relations P(x,y) and N(x,y) interpreted as:

- ullet P(x,y) iff variable x appears positive in clause y
- $\bullet \ N(x,y)$ iff variable x appears $\ensuremath{\mathsf{negative}}$ in clause y

$$\mathsf{CNF}\ \varphi = \underbrace{(x_0 \vee \neg x_1 \vee x_2)}_{\mathsf{clause}\ 0} \ \land \underbrace{(\neg x_0 \vee \neg x_2)}_{\mathsf{clause}\ 1} \ \land \underbrace{(\neg x_0 \vee x_1)}_{\mathsf{clause}\ 2}$$

E.g., φ encoded with structure $\mathcal{A}=\langle|\mathcal{A}|,P^{\mathcal{A}},N^{\mathcal{A}}\rangle$ where

- ullet universe is $|\mathcal{A}|=\{0,1,2\}$
- interpretation of P is $P^{\mathcal{A}} = \{(0,0),(2,0),(1,2)\}$
- \bullet interpretation of N is $N^{\mathcal{A}} = \{(1,0), (0,1), (2,1), (0,2)\}$

$$\mathsf{CNF}\ \varphi = \underbrace{(x_0 \vee \neg x_1 \vee x_2)}_{\mathsf{clause}\ 0} \ \land \underbrace{(\neg x_0 \vee \neg x_2)}_{\mathsf{clause}\ 1} \ \land \underbrace{(\neg x_0 \vee x_1)}_{\mathsf{clause}\ 2}$$

Model: $\{x_0, x_1, \neg x_2\}$ encoded with unary relation T(x) such that

- \bullet $T(x_0)$
- \bullet $T(x_1)$
- \bullet $\neg T(x_2)$

I.e., T has interpretation $\{0,1\}$

$$\mathsf{CNF}\ \varphi = \underbrace{(x_0 \vee \neg x_1 \vee x_2)}_{\mathsf{clause}\ 0} \wedge \underbrace{(\neg x_0 \vee \neg x_2)}_{\mathsf{clause}\ 1} \wedge \underbrace{(\neg x_0 \vee x_1)}_{\mathsf{clause}\ 2}$$

Extended structure $\langle |\mathcal{A}|, P^{\mathcal{A}}, N^{\mathcal{A}}, T \rangle$ is model of

$$(\forall c)(\exists x)[(P(x,c) \land T(x)) \lor (N(x,c) \land \neg T(x))]$$

iff T encodes a model of φ

$$\mathsf{CNF}\ \varphi = \underbrace{(x_0 \vee \neg x_1 \vee x_2)}_{\mathsf{clause}\ 0} \wedge \underbrace{(\neg x_0 \vee \neg x_2)}_{\mathsf{clause}\ 1} \wedge \underbrace{(\neg x_0 \vee x_1)}_{\mathsf{clause}\ 2}$$

Extended structure $\langle |\mathcal{A}|, P^{\mathcal{A}}, N^{\mathcal{A}}, T \rangle$ is model of

$$(\forall c)(\exists x)[(P(x,c) \land T(x)) \lor (N(x,c) \land \neg T(x))]$$

iff T encodes a model of φ

Hence, φ is SATISFIABLE iff $\mathcal A$ is model of

$$\Phi = \underbrace{(\exists T)}_{\mathsf{s.o.}\exists} (\forall c) (\exists x) [(P(x,c) \land T(x)) \lor (N(x,c) \land \neg T(x))]$$

$$\mathsf{CNF}\ \varphi = \underbrace{(x_0 \vee \neg x_1 \vee x_2)}_{\mathsf{clause}\ 0} \wedge \underbrace{(\neg x_0 \vee \neg x_2)}_{\mathsf{clause}\ 1} \wedge \underbrace{(\neg x_0 \vee x_1)}_{\mathsf{clause}\ 2}$$

Indeed, $SAT = MOD[\Phi]$

$$\mathsf{CNF}\ \varphi = \underbrace{(x_0 \vee \neg x_1 \vee x_2)}_{\mathsf{clause}\ 0} \wedge \underbrace{(\neg x_0 \vee \neg x_2)}_{\mathsf{clause}\ 1} \wedge \underbrace{(\neg x_0 \vee x_1)}_{\mathsf{clause}\ 2}$$

Indeed, $SAT = MOD[\Phi]$

Meaning:

- ullet for every satisfiable formula arphi, its encoding $\mathcal{A}_{arphi} \in \mathsf{MOD}[\Phi]$
- ullet for every $\mathcal{A}\in\mathsf{MOD}[\Phi]$, \mathcal{A} encodes a satisfiable formula $arphi_{\mathcal{A}}$

Example: 3-Colorability

Signature

ullet E(x,y): undirected edge linking nodes x and y in the graph

Formula

Every node must be colored with single color; if two nodes are connected, their colors must be different

$$\begin{split} (\exists R^1, G^1, B^1)(\forall x, y)[\\ (R(x) \lor G(x) \lor B(x)) \land \\ R(x) &\rightarrow \neg (G(x) \lor B(x)) \land \\ G(x) &\rightarrow \neg (R(x) \lor B(x)) \land \\ B(x) &\rightarrow \neg (R(x) \lor G(x)) \land \\ E(x, y) &\rightarrow \neg [(R(x) \land R(y)) \lor (G(x) \land G(y)) \lor (B(x) \land B(y))]] \end{split}$$

Example: Directed Hamiltonian Path

Signature

 \bullet E(x,y): directed edge linking nodes x and y in the graph

Formula

A DHP is a sequence vertices such that there is directed edge from a_i to a_{i+1} for every vertex $a_i < max$. It can be seen as injective function $F::[0...n] \longrightarrow |\mathcal{A}|$

$$(\exists F \in \mathsf{Inj})(\forall x)[x < \max \to (\exists x'yz)(E(y,z) \land F(x,y) \land \mathsf{SUC}(x,x') \land F(x',z))]$$

The Tool

Input:

- ullet signature σ that contains relational symbols
- SO \exists formula Φ that encodes NP problem
- finite structure A that encodes instance

Output:

PDDLs for a fragment of STRIPS that is decidable in NP

Guarantees:

- ullet runs in polytime for fixed Φ
- output is no harder that input (complexity wise)

Related Work

- DATALOG-like specification of NP problems into SAT (Cadoli & Schaerf, 2005)
 - we are targetting STRIPS
 - we would like to go beyond NP
- Framework for describing problems based on the Model Extension (MX) (Mitchell & Ternovska, 2005)
 - translated problems are solvable using planning technology

Translation

Two Steps

Translation divided in two steps:

- generation of PDDL domain
- generation of PDDL problem instance

Can be thought as two functions:

 $\mathfrak{D}: \mathsf{Signatures} \times \mathsf{SO} \exists \to \mathsf{PDDL} \ \mathsf{Domains}$

 $\mathfrak{I}: \mathsf{Signatures} \times \mathsf{SO} \exists \times \mathsf{STRUC} \to \mathsf{PDDL} \ \mathsf{Instances}$

Different Translations

Translations that aim different planners:

- for sequential planners
- for parallel planners
- for optimal sequential planners

Translation Used in Experiments

Domain $\mathfrak{D}(\sigma, \Phi)$:

- ullet Φ assumed to have negations only at literal level
- ullet two predicates for each relational symbol P
 - -P(?x)
 - not-P(?x)
- operators that add positive fluents for quantified relations
- ullet for each FO subformula heta of Φ , except literals, there are
 - fluent that denote the validity of heta wrt extended ${\cal A}$
 - operators that add the fluent

Translation Used in Experiments

Instance $\Im(\sigma, \Phi, \mathcal{A})$:

- ullet objects for each element in universe $|\mathcal{A}|$
- initial situation:
 - fluents for interpretations in ${\cal A}$
 - all 'not-' fluents for quantified relations (SO)

$$\underbrace{(\exists T)}(\forall c)(\exists x)[(P(x,c) \wedge T(x)) \ \lor \ (N(x,c) \wedge \neg T(x))]$$

• (T ?x) (not-T ?x)

$$(\exists T)(\forall c)(\exists x)[(\underbrace{P(x,c)} \land T(x)) \ \lor \ (N(x,c) \land \neg T(x))]$$

- (T ?x) (not-T ?x)
- (P ?x ?c)

$$(\exists T)(\forall c)(\exists x)[(P(x,c) \land T(x)) \ \lor \ (\underbrace{N(x,c)} \land \neg T(x))]$$

- (T ?x) (not-T ?x)
- (P ?x ?c)
- (N ?x ?c)

$$(\exists T)(\forall c)(\exists x)[(P(x,c) \land T(x)) \ \lor \ \underbrace{(N(x,c) \land \neg T(x))}]$$

- (T ?x) (not-T ?x)
- (P ?x ?c)
- (N ?x ?c)
- (holds_and_6 ?x ?c)

$$(\exists T)(\forall c)\underbrace{(\exists x)[(P(x,c) \wedge T(x)) \ \lor \ (N(x,c) \wedge \neg T(x))]}$$

- (T ?x) (not-T ?x)
- (P ?x ?c)
- (N ?x ?c)
- (holds_and_6 ?x ?c)
- (holds_exists_8 ?c)

```
(\exists T)(\forall c)(\exists x)[(P(x,c) \land T(x)) \lor (N(x,c) \land \neg T(x))]
```

```
(:action set_true_11
  :parameters (?x0)
  :precondition (and (guess) (not_T ?x0))
  :effect (and (T ?x0) (not (not_T ?x0)))
)
```

```
(\exists T)(\forall c)(\exists x)[(P(x,c) \land T(x)) \ \lor \ \underbrace{(N(x,c) \land \neg T(x))}]
```

```
(:action establish_and_6
  :parameters (?x ?c)
  :precondition (and (proof) (N ?x ?c) (not_T ?x))
  :effect (holds_and_6 ?x ?c)
)
```

```
(\exists T)(\forall c)\underbrace{(\exists x)[(P(x,c) \land T(x)) \lor (N(x,c) \land \neg T(x))]}_{}
```

```
(\exists T) \underbrace{(\forall c)(\exists x)[(P(x,c) \land T(x)) \lor (N(x,c) \land \neg T(x))]}
```

Formal Properties

Let $\mathfrak{G}(dom, ins)$ be PDDL grounding function (generates STRIPS)

Define
$$f_{\sigma,\Phi}:\mathsf{STRUC}[\sigma]\to\mathsf{STRIPS}$$
 as

$$f_{\sigma,\Phi}(\mathcal{A}) = \mathfrak{G}(\underbrace{\mathfrak{D}(\sigma,\Phi)}_{\text{domain}},\underbrace{\mathfrak{I}(\sigma,\Phi,\mathcal{A})}_{\text{instance}})$$

Formal Properties

Let $\mathfrak{G}(dom, ins)$ be PDDL grounding function (generates STRIPS)

Define $f_{\sigma,\Phi}:\mathsf{STRUC}[\sigma]\to\mathsf{STRIPS}$ as

$$f_{\sigma,\Phi}(\mathcal{A}) = \mathfrak{G}(\underbrace{\mathfrak{D}(\sigma,\Phi)}_{\text{domain}},\underbrace{\mathfrak{I}(\sigma,\Phi,\mathcal{A})}_{\text{instance}})$$

Thm: $f_{\sigma,\Phi}$ is a polytime reduction from MOD[Φ] into a fragment of STRIPS that is decidable in NP

Formal Properties

Let $\mathfrak{G}(dom, ins)$ be PDDL grounding function (generates STRIPS)

Define $f_{\sigma,\Phi}:\mathsf{STRUC}[\sigma] \to \mathsf{STRIPS}$ as

$$f_{\sigma,\Phi}(\mathcal{A}) = \mathfrak{G}(\underbrace{\mathfrak{D}(\sigma,\Phi)}_{\text{domain}},\underbrace{\mathfrak{I}(\sigma,\Phi,\mathcal{A})}_{\text{instance}})$$

Thm: $f_{\sigma,\Phi}$ is a polytime reduction from MOD[Φ] into a fragment of STRIPS that is decidable in NP

Thm: if $f_{\sigma,\Phi}(\mathcal{A})$ has plan, it has one with parallel makespan at most $\mathsf{MkSp}_\Phi(\mathcal{A}) = \mathcal{O}(\|\mathcal{A}\|\cdot\|\Phi\|)$ (i.e. linear in $\|\mathcal{A}\|$ for fixed Φ)

Experiments

Performed in Xeon 1.86GHz CPUs with 2GB of RAM

Jussi Rintanen's M planner (SAT-based planner)

Domains (all NP-Complete):

- SAT
- Clique
- Directed Hamiltonian Paths
- 3-Dimensional Matching
- 3-Colorability
- k-Colorability
- Chromatic Number (beyond NP)

Instances:

- SAT: from SATLIB w/ satisfiable and unsatisfiable instances
- others: randomly generated w/ positive and negative instances

Summary of Results

- total of 1,920 problem instances
- total of 1,614 solved instances
 - 706 on positive side (input structure satisfies formula)
 - 908 on negative side (input structure doesn't satisfy formula)
- M solved 84.06% of the benchmark

Domains

	N^*/N	#pos.	#neg.	avg. time	
SAT					
uuf50	40/40	0	40	548.5	
uuf75	1/40	0	1	1,746.4	
Clique					
25-3	40/40	30	10	111.9	
25-4	40/40	18	22	231.0	
25-5	39/40	10	29	387.5	
25-6	36/40	8	28	394.1	
Hamilton	ian Path				
30	22/40	20	2	629.1	
3-dimens	ional Mato	hing			
20	13/40	13	0	1,191.0	
25	0/40	0	0	_	
3-colorab	ility				
50	40/40	1	39	196.7	

Chromatic Number

		k-colorability								
instance	χ	1	2	3	4	5	6	7		
10-0.75-1	5	2	2	6	101	3				
10-0.75-2	5	1	2	2	6	4				
10-0.85	7	2	2	3	6	4	1,265	4		
15-0.25	2	27	62							
15-0.60	5	27	29	54	118	72				
15-0.70	6	28	28	33	47	329	67			
20-0.10	3	214	350	705						
20-0.25	4	211	272	1,261	837					

Discussion

- tool produces PDDLs from declarative descriptions
- can be thought as automatic generation of reductions
- different translations available, only one implemented
- different applications for the tool
- not every NP problem has a nice formula!

Future:

- improve tool by incorporating types, other translations, . . .
- aim at other complexity classes (fragments of logic)

Thanks!