Probabilistic Knowledge Structures II

Jürgen Heller & Florian Wickelmaier

University of Tübingen

November 2016

Outline

Introduction

Identifiability

BLIM Results

CBLIM Results

Example

R

2 | J. Heller / F. Wickelmaier

Conclusions

BLIM Results

CBLIM Results

ts Example

C

R

Introduction

- ▶ Interpreting parameter estimates in a model requires that there is a unique set of parameters for any observed data set
- Models with this property are called identifiable
- ► There are some results on the identifiability of the most prominent probabilistic knowledge structure, which is known as the basic local independence model (BLIM)
 - Heller (2016); Spoto, Stefanutti, & Vidotto (2012); Stefanutti, Heller, Anselmi, & Robusto (2012)
- ► These results can be extended to a competence-based extension of the basic local independence model (CBLIM) and transfer to important types of Cognitive Diagnostic Models
 - Heller, J., Stefanutti, L., Anselmi, P., & Robusto, E. (2015). On the link between cognitive diagnostic models and knowledge space theory. *Psychometrika*, 80, 995-1019.

Parametric Model

Definition (Bamber & van Santen, 1985, 2000)

A (parametric) model consists of

Introduction

- ightharpoonup parameter space $\Theta \subseteq \mathbb{R}^n$
- ▶ outcome space $\Phi \subseteq \mathbb{R}^m$
- ▶ prediction function $f: \Theta \to \Phi$

parameter space Θ

outcome space Φ

Definition

A model is identifiable if its prediction function f defined on the parameter space is a one-to-one function

Local Identifiability

Definition

A model is locally identifiable at a point θ of the parameter space if there is an open neighborhood U of θ such that f|U (i.e., f restricted to the neighborhood U) is one-to-one

Local Identifiability

▶ Linear approximation of the predictor function in a neighborhood of the point θ^0 (unidimensional case)

▶ Multidimensional case $f: \Theta \rightarrow \Phi$

$$I(\theta) = J_f(\theta^0) \cdot (\theta - \theta^0) + f(\theta^0)$$

with

$$J_f(\theta) = \left(\frac{\partial f_k(\theta)}{\partial \theta_i}\right)_{k=1, \dots, m: i=1, \dots, n}$$

the Jacobian matrix of partial derivatives of f

Basic Local Independence Model

- \triangleright Knowledge structure \mathcal{K} on a (finite) knowledge domain Q (i.e., a collection $\mathcal{K} \subseteq 2^Q$ with $\emptyset, Q \in \mathcal{K}$)
- ▶ Probability distribution $(\pi_K)_{K \in \mathcal{K}}$ over all knowledge states
- \blacktriangleright Given the knowledge state $K \in \mathcal{K}$, the response to each item q only depends on the probabilities β_a of a careless error

of a lucky guess

► Local stochastic independence: Conditional probability of response pattern $R \in \mathcal{R} = 2^Q$ given knowledge state $K \in \mathcal{K}$

$$P(R \mid K) = \left(\prod_{q \in K \setminus R} \beta_q\right) \cdot \left(\prod_{q \in K \cap R} (1 - \beta_q)\right) \cdot \left(\prod_{q \in R \setminus K} \eta_q\right) \cdot \left(\prod_{q \in \bar{R} \cap \bar{K}} (1 - \eta_q)\right)$$

Basic Local Independence Model

Predicted probability distribution over responses $R \in \mathcal{R} = 2^Q$

$$P(R) = \sum_{K \in \mathcal{K}} P(R \mid K) \cdot \pi_K$$

Conclusions

Parameter Space

The parameter space $\Theta_{\mathcal{K}}$ is defined to consist of all vectors

$$\theta_{\mathcal{K}} = (\beta, \eta, \pi),$$

with

$$\beta = (\beta_q)_{q \in Q}, \quad \eta = (\eta_q)_{q \in Q}, \quad \pi = (\pi_K)_{K \in \mathcal{K}^*}$$

and $\mathcal{K}^* = \mathcal{K} \setminus \{Q\}$, such that

▶
$$\theta \in (0,1)^n$$
 with $n = 2|Q| + |\mathcal{K}| - 1$

$$\blacktriangleright \sum_{L \in \mathcal{K}^*} \pi_L < 1$$

▶
$$\beta_q + \eta_q < 1$$
 for all $q \in Q$

This implies that $\Theta_{\mathcal{K}}$ is an open convex set

Assumptions

- ▶ $\theta \in (0,1)^n$ with $n = 2|Q| + |\mathcal{K}| 1$
 - ▶ Interpretation: All probabilities are nonzero, however small they are (probabilities that are known to be zero a priori, are not part of the parameter space)
- $\triangleright \sum_{L \in \mathcal{K}^*} \pi_L < 1$
 - Interpretation: π is a probability distribution on \mathcal{K}
- $\triangleright \beta_q + \eta_q < 1$ for all $q \in Q$
 - ▶ Interpretation: A correct response is more likely if the item is mastered than if it is not mastered

$$\eta_q < 1 - \beta_q,$$

and an incorrect response is more likely if the item is not mastered than if it is mastered

$$\beta_q < 1 - \eta_q$$

Parameter Space

Implications

- ▶ The inequality $\beta_q + \eta_q < 1$ for all $q \in Q$ needs to be strict
- ► Otherwise the prediction function of a probabilistic knowledge structure is not one-to-one
- ▶ Consider the case $\beta_q = \eta_q = 0.5$ for all $q \in Q$
- Then we have

$$P(R) = \sum_{K \in \mathcal{K}} P(R \mid K, \beta, \eta) \cdot \pi_K = \sum_{K \in \mathcal{K}} 0.5^{|Q|} \cdot \pi_K$$
$$= 0.5^{|Q|} \sum_{K \in \mathcal{K}} \pi_K = 0.5^{|Q|}$$

▶ This means that the prediction function is independent of the distribution π_K over the knowledge states $K \in \mathcal{K}$

The outcome space Φ is the set of all probability distributions on $\mathcal{R}=2^Q$

$$\Phi = \left\{ (\phi_R)_{R \in \mathcal{R}^*} \in [0, 1]^m \colon \sum_{R \in \mathcal{R}^*} \phi_R \le 1 \right\},\,$$

with
$$\mathcal{R}^* = \mathcal{R} \setminus \{Q\}$$
 and $m = |\mathcal{R}^*| = 2^{|Q|} - 1$

The prediction function is defined on Θ and given by

$$f(\theta) = (f_R(\theta))_{R \in \mathcal{R}^*} = (P(R \mid \theta))_{R \in \mathcal{R}^*}$$

Jacobian Matrix

The Jacobian matrix of f at $\theta \in \Theta$ is the matrix of partial derivatives

$$J_f(\theta) = \left(\frac{\partial f_R(\theta)}{\partial \theta_j}\right)_{R \in \mathcal{R}^*, \ j=1,\dots,n}$$

$$\frac{\partial f_{R}(\theta)}{\partial \pi_{K}} = P(R \mid K) - P(R \mid Q)$$

$$\frac{\partial f_{R}(\theta)}{\partial \beta_{q}} = \rho_{q}^{R} \cdot \left(\sum_{K \in \mathcal{K}_{q}^{*}} P(R \mid K) \cdot \pi_{K} + P(R \mid Q) \cdot (1 - \sum_{L \in \mathcal{K}^{*}} \pi_{L}) \right)$$

$$\frac{\partial f_{R}(\theta)}{\partial \eta_{q}} = \sigma_{q}^{R} \cdot \sum_{K \in \mathcal{K}_{q}^{*}} P(R \mid K) \cdot \pi_{K}$$

$$\rho_q^R = \left\{ \begin{array}{cc} -1/(1-\beta_q) & \text{if } q \in R \\ 1/\beta_q & \text{if } q \not \in R \end{array} \right. \text{ and } \sigma_q^R = \left\{ \begin{array}{cc} 1/\eta_q & \text{if } q \in R \\ -1/(1-\eta_q) & \text{if } q \not \in R \end{array} \right.$$

(Local) Identifiablity of BLIMs

▶ For identifiability the number of free parameters *n* must not exceed the number of independent observations m, implying the restriction

$$2^{|Q|} \ge 2 \cdot |Q| + |\mathcal{K}|$$

- ▶ If this inequality holds and the Jacobian matrix of the prediction function f has full rank at some point $\theta_0 \in \Theta_K$ then the BLIM is locally identifiable at that point
- ▶ The prediction function of a BLIM is analytic, which implies that its Jacobian matrix has full rank almost everywhere in $\Theta_{\mathcal{K}}$ and is rank deficient almost nowhere

(Local) Identifiablity of BLIMs

- ▶ The inequality $2^{|Q|} \ge 2 \cdot |Q| + |\mathcal{K}|$ implies that for a BLIM to be identifiable we need $|Q| \ge 3$
- ▶ In the sequel we consider the collection of all knowledge structures on the domain $Q = \{a, b, c\}$
- The following catalogue provides an overview over all equivalence classes of knowledge structures that are identical up to relabeling of the items
- ► For these knowledge structures the following situations are considered
 - Case I does not allow for guessing by defining $\eta_q = 0$ for all $q \in Q$;
 - Case II assumes that the error probabilities β_q and η_q are nonzero but constant over all the items $q \in Q$;
 - Case III combines the two previous cases by assuming that the β_q are nonzero and constant over all the items $q \in Q$, while $\eta_q = 0$ for all $q \in Q$.

Catalogue of Knowledge Structures on $Q = \{a, b, c\}$

€00 Q 0	€ 01 Q	€ ⁰² Q ab	K ⁰³ Q ab ab ab	\mathcal{K}^{04} Q $ab \longrightarrow c$
κ ⁰⁵ Q Q φ b	K ⁰⁶ Q ab √ ac	€ ⁰⁷ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	€ 08 Q ab ab a b b	€09 Q ac ab b
\mathcal{K}^{10} Q A	K ¹¹ Q bc	\mathcal{K}^{12} $ab \triangleleft ac \rightarrow bc$	K13 Q ab book	K14 Q ab ab b
K15 Q bc a bc	K16 Q ab ac bc	K ¹⁷ Q bc ab bc	K ¹⁸ Q bc bc	k 19 Q bc ab bc ab bc Q

Summary of Results

			BLIM			Case I			Case II			Case III	
						$\eta_q = 0$		$\beta_q = \beta^0$, $\eta_q = \eta^0$			$\beta_q = \beta^0, \eta_q = 0$		
no.	size	n	$rk(J_f)$		n	$rk(J_f)$		n	$rk(J_f)$		n	$rk(J_f)$	
00	1	7	7	*	4	4	*	3	3	*	2	2	*
01	3	8	7		5	5	*	4	4	*	3	3	*
02	3	8	7		5	4		4	4	*	3	3	*
03	6	9	7		6	5		5	5	*	4	4	*
04	3	9	7		6	5		5	5	*	4	4	*
05	3	9	7		6	6	*	5	5	*	4	4	*
06	3	9	7		6	5		5	5	*	4	4	*
07	1	10	7		7	7	*	6	6	*	5	5	*
08	3	10	7		7	6		6	6	*	5	5	*
09	6	10	7		7	6		6	6	*	5	5	*
10	3	10	7		7	5		6	6	*	5	5	*
11	6	10	7		7	6		6	6	*	5	5	*
12	1	10	7		7	7	*	6	6	*	5	5	*
13	3	11	7		8	7		7	7	*	6	6	*
14	6	11	7		8	6		7	7	*	6	6	*
15	3	11	7		8	7		7	7	*	6	6	*
16	3	11	7		8	7		7	7	*	6	6	*
17	3	12	7		9	7		8	7		7	7	*
18	3	12	7		9	7		8	7		7	7	*
19	1	13	7		10	7		9	7		8	7	

$$\mathcal{K}^{02}=\{\emptyset,\{a,b\},Q\}$$
 on $Q=\{a,b,c\}$ with parameter vector $\theta'=\left(eta_a,eta_b,eta_c,\pi_\emptyset,\pi_{ab}
ight)$ (no guessing!)

Example I

Prediction function of \mathcal{K}^{02}

$$f^{02}(\theta) =$$

$$\begin{pmatrix} \phi_{\emptyset}(\theta) \\ \phi_{a}(\theta) \\ \phi_{b}(\theta) \\ \phi_{c}(\theta) \\ \phi_{ab}(\theta) \\ \phi_{ac}(\theta) \\ \phi_{bc}(\theta) \end{pmatrix} = \begin{pmatrix} \pi_{\emptyset} + \beta_{a}\beta_{b}\beta_{c}(1 - \pi_{\emptyset} - \pi_{ab}) + \beta_{a}\beta_{b}\pi_{ab} \\ (1 - \beta_{a})\beta_{b}\beta_{c}(1 - \pi_{\emptyset} - \pi_{ab}) + (1 - \beta_{a})\beta_{b}\pi_{ab} \\ \beta_{a}(1 - \beta_{b})\beta_{c}(1 - \pi_{\emptyset} - \pi_{ab}) + \beta_{a}(1 - \beta_{b})\pi_{ab} \\ \beta_{a}\beta_{b}(1 - \beta_{c})(1 - \pi_{\emptyset} - \pi_{ab}) \\ (1 - \beta_{a})(1 - \beta_{b})\beta_{c}(1 - \pi_{\emptyset} - \pi_{ab}) + (1 - \beta_{a})(1 - \beta_{b})\pi_{ab} \\ (1 - \beta_{a})\beta_{b}(1 - \beta_{c})(1 - \pi_{\emptyset} - \pi_{ab}) \\ \beta_{a}(1 - \beta_{b})(1 - \beta_{c})(1 - \pi_{\emptyset} - \pi_{ab}) \end{pmatrix}$$

Example I

Local identifiability of \mathcal{K}^{02}

- ▶ Max. rank of Jacobian matrix $rk(J_{\ell}^{02}(\theta)) = 4 (n = 5)$
- The vector

$$\nu'(\theta) = (0, 0, -\frac{1 - \beta_c}{1 - \pi_{\emptyset} - \pi_{ab}}, 0, 1)$$

generates the null space of the Jacobian matrix

- $\triangleright \nu(\theta)$ characterizes the trade-off between parameter values
 - ▶ There is a trade-off between parameters β_c and π_{ab}
 - ► Zero entries indicate identifiability of the corresponding parameter
- $\triangleright \nu(\theta)$ defines a vector field through the differential equation

$$\frac{d\theta(t)}{dt} = \nu(\theta)$$

Its solutions specify the curves, along which predictions are identical

EBERHARD KARLS

Parameter trade-off in \mathcal{K}^{02}

Results I

EBERHARD KARLS

Proposition

Assume that for $q \in Q$ we have $\mathcal{K}_q = \{Q\}$ and $K = Q \setminus \{q\} \in \mathcal{K}$. Then

$$(1 - \beta_{q} - \eta_{q}) \cdot \frac{\partial f_{R}(\theta)}{\partial \beta_{q}} = (1 - \sum_{L \in \mathcal{K}^{*}} \pi_{L}) \cdot \frac{\partial f_{R}(\theta)}{\partial \pi_{K}}$$

for all $R \in \mathcal{R}^*$.

EBERHARD KARLS

$$\mathcal{K}^{04} = \{\emptyset, \{a, b\}, \{c\}, Q\} \text{ with parameter vector } \theta = (\beta_a, \beta_b, \beta_c, \pi_\emptyset, \pi_{ab}, \pi_c) \text{ (no guessing!)}$$

▶ Max. rank of Jacobian matrix $rk(J_f(\theta)) = 5$

Results II

EBERHARD KARLS

Forward- and backward-gradedness

▶ The relevant structural property of \mathcal{K}^{04} is the following (Spoto et al., 2012)

Definition

Let $\mathcal K$ be a knowledge structure on $\mathcal Q$. Then

- ▶ \mathcal{K} is forward-graded in $q \in Q$, i.e., $K_{+q} \subseteq \mathcal{K}$ with $\mathcal{K}_{+q} = \{K \cup \{q\} \mid K \in \mathcal{K}\}$
- $ightharpoonup \mathcal{K}$ is said to be backward-graded in $q \in Q$ if $\mathcal{K}_{-q} \subseteq \mathcal{K}$ with $\mathcal{K}_{-q} = \{K \setminus \{q\} \mid K \in \mathcal{K}\}$

Results II

EBERHARD KARLS

Backward- and forward-gradedness

Proposition (Heller, 2016)

Let $\mathcal K$ be backward-graded in $q \in Q$. Then for all $R \in \mathcal R^*$

$$(1 - \beta_q - \eta_q) \cdot \frac{\partial f_R(\theta)}{\partial \beta_q} - \sum_{K \in \mathcal{K}_{-q}} \pi_{K \cup \{q\}} \cdot \frac{\partial f_R(\theta)}{\partial \pi_K} + \sum_{K \in \mathcal{K}_q^*} \pi_K \cdot \frac{\partial f_R(\theta)}{\partial \pi_K} = 0$$

with
$$\pi_Q = 1 - \sum_{L \in \mathcal{K}^*} \pi_L$$
.

There is a dual result for parameter η_q if $\mathcal K$ is forward-graded in $q\in Q$

Results II

Non-identifiable knowledge structures due to forward- or backward-gradedness in some item

- ► Well-graded knowledge spaces (i.e., learning spaces), and thus ordinal knowledge spaces
- ▶ Knowledge spaces satisfying $\{q\}$ ∈ K for some q ∈ Q, or $q \notin B$ for all atoms B at $p \neq q$
- Quasi ordinal knowledge spaces with the corresponding quasi order having unique maximal or minimal elements

There are other sources of non-identifiability

It seems that equally informative items p and q, satisfying $p \in K$ iff $q \in K$ for all $K \in \mathcal{K}$, are never involved in trade-offs due to non-identifiability

Introduction

BLIM Results

CBLIM Results

ults Example

R

Return to Exercise I (by Pasquale) on the surmise relation

- 1. Fit the BLIM corresponding to the surmise relation provided in the solution to the five-item subset of the fraction-subtraction data
- Test whether the model is locally identifiable by computing the rank of the Jacobian matrix: qr(jacobian(model))\$rank
- 3. Characterize the possible reasons for non-identifiability. Which parameters are involved in trade-offs?
- Check forward- and backward-gradedness of the knowledge structure: is.forward.graded(), is.backward.graded()
- 5. Think of ways to remedy non-identifiability

EBERHARD KARLS

Competence-Based Basic Local Independence Model

- ▶ Skill function (Q, S, μ)
- ▶ Competence structure $\mathcal C$ on the set S of skills, i.e., a collection $\mathcal C \subseteq 2^S$ with $\emptyset, S \in \mathcal C$
- ▶ Probability distribution $(\pi_C)_{C \in \mathcal{C}}$ over all competence states
- A probability distribution on the delineated knowledge structure $\mathcal{K} = p(\mathcal{C})$ is defined by

$$\pi_{\mathcal{K}} = \sum_{\mathcal{C} \in \rho^{-1}(\{\mathcal{K}\})} \pi_{\mathcal{C}},$$

which induces a BLIM

► The above assumptions together with the induced BLIM define a competence-based basic local independence model (CBLIM)

CBLIM Results

The parameter space $\Theta_{\mathcal{C}}$ is defined to consist of all vectors

$$\theta_{\mathcal{C}} = (\beta, \eta, \pi),$$

with

$$\beta = (\beta_q)_{q \in Q}, \quad \eta = (\eta_q)_{q \in Q}, \quad \pi = (\pi_C)_{C \in \mathcal{C}^*}$$

and $C^* = C \setminus \{S\}$, such that

▶
$$\theta \in (0,1)^k$$
 with $n = 2|Q| + |C| - 1$

$$\blacktriangleright \sum_{T \in \mathcal{C}^*} \pi_T < 1$$

$$ightharpoonup eta_q + \eta_q < 1 \text{ for all } q \in Q$$

EBERHARD KARLS

Prediction Function

The prediction function of a CBLIM is the composition

$$\Theta_{\mathcal{C}} \xrightarrow{g} \Theta_{\mathcal{K}} \xrightarrow{f} \Phi$$

of g and the prediction function f of the induced BLIM

Proposition

The following assertions are equivalent.

- 1. The function g is locally one-to-one at some point in $\Theta_{\mathcal{C}}$;
- 2. The function p is one-to-one;
- 3. The function g is one-to-one.

Results

Since g is onto, the composition $f \circ g$ is one-to-one if and only if both functions f and g are one-to-one

Proposition

A given CBLIM

- 1. is identifiable if and only if the induced BLIM is identifiable and the problem function p is one-to-one;
- 2. is locally identifiable at a point $\theta_{\mathcal{C}}$ in $\Theta_{\mathcal{C}}$ if and only if the induced BLIM is locally identifiable at the point $g(\theta_{\mathcal{C}})$ in $\Theta_{\mathcal{K}}$ and the problem function p is one-to-one.

Results

▶ In general, we cannot tell apart competence states that are mapped onto the same knowledge state, so we consider an equivalence relation \sim_p such that for all $C_1, C_2 \in \mathcal{C}$

$$C_1 \sim_p C_2$$
 if and only if $p(C_1) = p(C_2)$

▶ The resulting set of equivalence classes \mathcal{C}/\sim_p is partially ordered by

$$[C_1]_p \sqsubseteq [C_2]_p$$
 if and only if $p(C_1) \subseteq p(C_2)$

- ▶ A probabilistic framework on \mathcal{C}/\sim_p is obtained by identifying it with the induced BLIM via the order-isomorphism $p^* : \mathcal{C}/\sim_p \to \mathcal{K}$
- ▶ The probability distribution on the equivalence classes in \mathcal{C}/\sim_p then is identical to that on the delineated knowledge structure \mathcal{K}

Fraction Subtraction Data

EBERHARD KARLS

▶ Data set consists of responses of 536 middle school students to 15 fraction subtraction items and forms a subset of data originally described by K. Tatsuoka (1990)

Fraction Subtraction Data

- ▶ In an analysis by de la Torre & Douglas (2008) based on the DINA model, the following skills were assumed
 - s performing basic fraction subtraction operation
 - t simplifying/reducing
 - u separating whole number from fraction
 - v borrowing one from whole number to fraction
 - w converting whole number to fraction

Skill Function

EBERHARD KARLS

 $\mu(a) = \{\{s\}\}\$ $\mu(b) = \{\{s, t, u, v\}\}\$ $\mu(c) = \{\{s\}\}\$ $\mu(d) = \{\{s, t, u, v, w\}\}$ $\mu(e) = \{\{u\}\}\$ $\mu(f) = \{\{s, t, u, v\}\}\$ $\mu(g) = \{\{s, t, u, v\}\}$ $\mu(h) = \{\{s, t\}\}\$ $\mu(i) = \{\{s, u\}\}\$ $\mu(j) = \{\{s, u, v, w\}\}$ $\mu(k) = \{\{s, u\}\}\$ $\mu(I) = \{\{s, u, v\}\}\$ $\mu(m) = \{\{s, t, u, v\}\}\$ $\mu(n) = \{\{s, t, u, v, w\}\}$ $\mu(o) = \{\{s, t, u, v\}\}\$

► The induced BLIM is locally identifiable, because its Jacobian matrix has full rank

EBERHARD KARLS

Introduction

Equivalence Classes of Competence States

EBERHARD KARLS

R Package CDM

DINA parameter estimation

Introduction

```
library(CDM)
data(fraction.subtraction.data)
item.idx \leftarrow c(6, 4, 8, 7, 9:12, 14:20)
                                                  # select 15 items
dat <- fraction.subtraction.data[, item.idx]</pre>
Q <- matrix(c(</pre>
    1. 0. 0. 0. 0.
    1, 1, 1, 1, 0,
    1, 0, 0, 0, 0,
    1, 1, 1, 1, 1,
    1, 0, 1, 1, 0,
    1, 1, 1, 1, 0,
    1. 1. 1. 1. 1.
    1, 1, 1, 1, 0), nrow = 15, ncol = 5, byrow = TRUE)
```


EBERHARD KARLS

TÜBINGEN

DINA parameter estimation

```
dina <- din(dat, Q, rule = "DINA")</pre>
dina$attribute.patt
```

class.prob class.expfreq

```
00000 0.016950612
                      9.0855280
10000 0.004822363
                      2.5847866
01000 0.016950612
                      9.0855280
00100 0.007978159
                      4.2762933
00010 0.016950612
                      9.0855280
. . .
11110 0.104401479
                     55.9591927
11101 0.116538136
                     62.4644411
11011 0.005853909
                      3.1376950
10111 0.001705161
                      0.9139663
01111 0.007978159
                      4.2762933
11111 0.368634688
                    197.5881925
```


R Package CDM

DINA parameter estimation

```
map2emptyK <- c("00000", "01000", "00010", "00001",
               "01010", "01001", "00011", "01011")
dina$attribute.patt[map2emptyK, ]
     class.prob class.expfreq
00000 0.01695061
                    9.085528
01000 0.01695061
                    9.085528
00010 0.01695061
                    9.085528
00001 0.01695061
                    9.085528
01010 0.01695061
                    9.085528
01001 0.01695061
                    9.085528
00011 0.01695061
                    9.085528
01011 0.01695061
                    9.085528
```

R Package pks

EBERHARD KARLS

BLIM parameter estimation

```
library(pks)
skillfun <- read.table(header = TRUE, text = "
    item s t u v w
    a 1 0 0 0 0
    b 1 1 1 1 0
    c 1 0 0 0 0
    d 1 1 1 1 1
    e 0 0 1 0 0
    k 1 0 1 0 0
    1 1 0 1 1 0
    0 1 1 1 1 0
")
```

R Package pks

EBERHARD KARLS

BLIM parameter estimation

```
t <- delineate(skillfun)
t$K
```

```
abcdefghijklmno
00001000000000 0 0 0 0 1 0 0 0 0 0 0
10100000000000 1 0 1 0 0 0 0 0 0 0 0 0
101000010000000 1 0 1 0 0
101010011010000 1 0 1 0
101010001011000 1 0 1 0 1 0 0 0 1 0 1 1
101010001111000 1 0 1
111011111011101 1 1 1 0
111111111111111 1 1 1 1
```

t\$classes # equivalence classes of competence states

EBERHARD KARLS

BLIM parameter estimation

```
N.R <- as.pattern(dat, freq = TRUE)
blim1 <- blim(K, N.R, method = "ML")</pre>
blim1$P.K
```

```
0.135555248
              0.061339710
                           0.020318955
                                       0.023637502
101010001010000 101010011010000 101010001011000 101010001111000
   0.043298112
              0.234080988 0.007094979
                                      0.001588763
111011111011101 111111111111111
   0.104539508
              0.368546234
```

Conclusions

R Package pks

BLIM local identifiability

```
J <- jacobian(blim1)
```

```
dim(J)
32767 39
```

TUBINGEN

```
qr(J)$rank
```

R Package pks

Compare BLIM to DINA

```
logLik(dina)
-3463.212
```

EBERHARD KARLS

```
logLik(blim)
-3463.195
```

```
sum(dina$attribute.patt[map2emptyK, "class.prob"])
0.1356049
```

```
blim1$P.K["00000000000000"]
0.1355552
```


BLIM Results

CBLIM Results

ts Example

R

Conclusions

- ▶ There are two sources of non-identifiability of a CBLIM defined by a skill function (Q, S, μ) and a competence structure C
 - ightharpoonup The corresponding problem function p is not one-to-one
 - ▶ The induced BLIM on the delineated knowledge structure K = p(C) is not identifiable
- ► There is a close correspondence between probabilistic knowlegde structures and cognitive diagnostic models
 - ► The CBLIM is equivalent to the Multiple Strategy DINA
- (Local) identifiability matters as long as we want to interpret the parameters (as in probabilistic assessments based on knowledge structures)
- ► (Local) identifiability does not matter whenever we are interested in the global fit of a particular BLIM/CBLIM to given data only

BLIM Results

CBLIM Results

Its Example

R

Exercise in R

Return to Exercise 4 (by Pasquale) on the skill function

- Fit the CBLIM defined by the skill function provided in the exercise to the probability data
 - Determine the delineated knowledge structure
 - ► Fit the induced BLIM
- Test the identifiability of the CBLIM
 - Does the Jacobian matrix of the BLIM have full rank?
 - Is the problem function one-to-one?
- 3. Fit the CBLIM defined by the refined skill function provided in the solution to Exercise 4
- 4. Test the identifiability of the CBLIM

BLIM Results

CBLIM Results

ts Example

R

References

EBERHARD KARLS

- Bamber, D., & van Santen, J.P.H. (1985). How many parameters can a model have and still be testable? *Journal of Mathematical Psychology*, 29, 443-473.
- Bamber, D., & van Santen, J.P.H. (2000). How to assess a model's testability and identifiability. *Journal of Mathematical Psychology*, 44, 20-40.
- Heller, J. (2016). Identifiability in probabilistic knowledge structures. *Journal of Mathematical Psychology*. doi: 10.1016/j.jmp.2016.07.008
- Heller, J., Stefanutti, L., Anselmi, P., & Robusto, E. (2015). On the link between cognitive diagnostic models and knowledge space theory. *Psychometrika*, 80, 995-1019.
- Heller, J., Stefanutti, L., Anselmi, P., & Robusto, E. (2016). Erratum to: On the Link between Cognitive Diagnostic Models and Knowledge Space Theory. Psychometrika, 81, 250-251. Spoto, A., Stefanutti, L., & Vidotto, G. (2012). On the unidentifiability of a certain class of skill multi map based probabilistic knowledge structures. Journal of Mathematical Psychology, 56, 248-255.
- Stefanutti, L., Heller, J., Anselmi, P., & Robusto, E. (2012). Assessing the local identifiability of probabilistic knowledge structures. *Behavior Research Methods*, 44, 1197-1211.

Example

Chess problems (Held, Schrepp, and Fries, 1995)

- $Q = \{s, gs, egs, egs, cs, gcs, ts, ges, f, gf, gff, ggff, ggf, ff, tf, tff\}$
 - Motives
 - ▶ g (guidance), f (fork), e (elimination), c (clearing), s (stalement), t (promotion)

Example

Chess problems (Held, Schrepp, and Fries, 1995)

▶ Precedence relation of knowledge space DST₁ (75 states)

- ▶ 106 parameters, $rk(J_f) = 101$
- ▶ forward-graded in f backward-graded in gs, ggff, ggf, gcs