Лабораторная работа 5.4.2 Исследование энергетического спектра β-частиц и определение их максимальной энергии при помощи магнитного спектрометра

Иван Сладков

19 февраля 2022 г.

1 Аннотация

В данной работе проводится исследование энергетического спектра β -частиц при распаде ядер $^{137}\mathrm{Cs}$ и определяется их максимальная энергия. Калибровка спектрометра осуществляется по энергии электронов внутренней конверсии $^{137}\mathrm{Cs}$.

2 Теоретические сведения

Бета-распадом называется самопроизвольное превращение ядер, при котором их массовое число нс изменяется, а заряд увеличивается или уменьшается на единицу. В данной работе мы будем иметь дело с электронным β -распадом:

$$_{Z}^{A}X \leftarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu},$$

при котором кроме электрона испускается антинейтрино.

Выясним вид энергетического спектра β -частиц. Во-первых, учтём ЗСЭ:

$$E_e - E - ck = 0, (1)$$

где ck — энергия нейтрино, E_e — максимальная энергия электрона, E — кинетическая энергия электрона, а связь между его энергией и импульсом даётся соотношением:

Рис. 1: Форма спектра β -частиц при разрешённых переходах

$$E = c\sqrt{p^2 + m^2c^2} - mc^2. (2)$$

Условие (1) можно учесть, введя δ -функцию вида

$$F = \delta(E_e - E - ck),$$

которая по определению не равна нулю только если (1) выполнено. Тогда записать вероятность, что электрон после распада имеет импульс d^3p , а нейтрино — d^3k , можно следующим образом:

$$dw = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\widetilde{\nu}},$$
(3)

где D — коэффициент пропорциональности, который в этом опыте можно считать константой, $d\Omega_e$ и $d\Omega_{\widetilde{\nu}}$ — элементы телесных углов вылета электрона и нейтрино.

Вероятность искомого события имеет связь со спектром, так как

$$dN = N_0 dw. (4)$$

Тогда интегрируем (3) и учитываем (4):

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp.$$

Рис. 2: Схема магнитной линзы

Рис. 3: Блок-схема экспериментальной установки

Дифференцируя (2), найдём

$$dE = \frac{c^2 p}{E + mc^2} dp.$$

Тогда окончательно

$$\frac{dN}{dE} = N_0 B \sqrt{E \left(E + 2mc^2\right)} \left(E_e - E\right)^2 \left(E + mc^2\right),\tag{5}$$

что в нерелятивистском приближении упрощается до

$$\frac{dN}{dE} \approx \sqrt{E} \left(E_e - E \right)^2. \tag{6}$$

Дочерние ядра, возникающие в результате β-распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ-квант, либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными. Соответствующий спектр отображён на рис. 1.

3 Оборудование и инструментальные погрешности

Схема экспериментальной установки отображена на рис. 2 и 3. При заданной силе тока на входное окно счетчика фокусируются электроны с определенным импульсом. Электроны, обладающие другими значениями импульса, при этом не сфокусированы и в основном проходят мимо окна. При изменении тока в катушке на счетчик последовательно фокусируются электроны с разными импульсами, то есть

$$p_e = kI$$
,

где I – ток катушки. Для числа электронов, имеющих импульс $p_e + \Delta p_e$, можно получить

$$N(p_e) = CW(p_e)p_e,$$

где $C = \text{const}, W(p_e) = dw/dp_e$ находится из формулы (6).

Рис. 4: График зависимости числа частиц от тока J

В работе используются:

- β -источник
- Форвакуумный насос
- Вакуумметр (фигура номинальная)
- Магнитная линза со свинцовым фильтром и диафрагмой
- Сцинтилляционный счётчик
- Источники питания: $\Delta = \pm 0,02 \; {\rm A}$
- Компьютер

4 Результаты измерений и обработка данных

Проведём подробное измерение β -спектра, особенно в области конверсионного пика (энергия электронов внутренней конверсии 137 Cs равна 634 кэВ). Кроме того, измерим фон.

На месте проведём предварительную обработку результатов эксперимента: учтём фон, прокалибруем спектрометр по конверсионному пику. Кроме того, построим график Ферми-Кюри. Полученные данные, с учётом погрешностей (об их оценке в 4.1) находятся в табл. 1.

Построим два графика: N = F(J) на рис. 4 и $\sqrt{N - N_{\Phi}}/p^{\frac{3}{2}}$ [мк Φ ерми] = F(T) на рис.

Из первого графика видно, что пик имеет место практически точно при $J=3,25~\mathrm{A},$ значит, калибровка, проведённая на месте и данные таблицы 1 заслуживают дальнейшего излучения.

По второму графику, принимая во внимание только точки в средней части и экстраполируя полученную прямую до оси абсцисс, найдём граничную энергию β -спектра:

$$E_{\beta}^{\max} = -\frac{a}{b} = 612 \pm 4$$
 кэВ.

Стоит принять во внимание, что в экстраполяции принимала участие только центральная часть графика, так как данные начальной части имеют существенные погрешности и вообще не очень точны, так как малы энергии электронов, и начинает действовать сила Кулона. Конечная часть графика не выходит

Рис. 5: График Ферми-Кюри

на прямую после конверсионного пика, так как блоки питания не могли дать достаточный ток, и крайние точки снять не удалось.

4.1 Оценка погрешностей

Точная оценка для величины N, даже из статистических соображений, невозможна, так как во-первых, для каждого опыта сделано только одно измерение, а во-вторых, неизвестна инструментальная погрешность сцинтиллятора и установки в целом. Поэтому считаем погрешность величины N равной погрешности N_{Φ} , так как только её можно выяснить достаточно достоверно.

$$\sigma_{N_{\Phi}} = 0,04 \ c^{-1}.$$

Оценка косвенных погрешностей проводится при помощи пакета Wolfram Mathematica по общей формуле:

$$\Delta_{u(x,y,z,...)}^2 = f_x'^2 \Delta_x^2 + f_y'^2 \Delta_y^2 + f_z'^2 \Delta_z^2 + \dots,$$
 (7)

Статистическая погрешность для среднего значения N_{Φ} может быть вычислена по формуле стандартной ошибки среднего

$$\sigma_{N_{\Phi}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} ((N_{\Phi})_i - N_{\Phi})^2}.$$
 (8)

Рис. 6: Спектр β -частиц (распределение по энергии)

5 Вывод

По результатам работы изучили энергетический спектр β -частиц (см. рис. 6); кроме того было получено значение максимальной энергии для электрона при β -распаде.

А Необработанные результаты опытов

«Сырые» данные, полученные по результатам опытов, представлены в табл. 1 и табл. 2.

J, A	ΔJ , A	N	Δ_N	p_e , кэ $\mathrm{B/c}$	Δp_e , кэ $\mathrm{B/c}$	Т, кэВ	ΔT , кэ B	mkFermi	$\Delta_{mkFermi}$
0,00		0	0,07	0	6	0	0	0	_
0,20		0		62		3,8	0,5	0	_
0,40		0,13		124		15	1	261,27	71,3
0,60				187		33,2	1	221,37	26,3
0,80		0,54		246		57,7	1	190,35	14,1
1,00		1,32		312		87,8	2	208,53	8,2
1,20		2,04		374		122,6	2	197,19	5,8
1,40		3,17		437		161,4	2	195,11	4,6
1,60		4,32		499		203,5	2	186,26	3,7
1,80		5,16		561		248,5	3	170,67	3,0
2,00		5,30		624		295,7	3	147,71	2,3
2,20		4,93		686		345	3	123,41	1,8
2,40	$ _{0,02}$	4,06		749		395,8	3	98,34	1,5
2,60	0,02	2,67		811		448	3	70,76	1,2
2,80		1,93		874		501,4	3	53,81	1,1
3,00		3,06		936		555,8	3	61,11	0,9
3,05		4,84		952		569,5	4	74,92	0,9
3,10		6,44		967		583,3	4	84,33	0,9
3,15		8,05		983		597,1	4	92,05	0,9
3,20		8,13		998		611	4	90,33	0,9
3,25		9,28		1014		624,9	4	94,32	0,9
3,30		8,34		1030		638,8	4	87,36	0,8
3,35		7,49		1045		652,8	4	80,97	0,8
3,40		6,19		1061		666,9	4	72,01	0,7
3,60		1,44		1123		723,4	4	31,90	0,8
3,80		0		1186		780,5	4	0	_

Таблица 1: Исходные данные (здесь $N=N-N_{\Phi}$)

$N_{ar{o}}$	1	2	3	4
$N_{\Phi}, 1/c$	0,81	0,91	0,79	0,82

Таблица 2: Измерение фона

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 5, 1989
- [2] Фаддеев М. А., Чупрунов Е. В. Лекции по атомной физике, 2008
- [3] Ципенюк Ю. М. Квантовая микро- и макрофизика, 2006
- [4] Игошин Ф. Ф., Самарский Ю. А., Ципенюк Ю. М. *ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ОБЩЕЙ ФИЗИКЕ. Квантовая физика: Учеб, пособие для вузов*; Под ред. Ципенюка Ю.М.