Recovery of signal distorted by nonlinearity in optical communications using deep learning

Coherent communications

Fiber chromatic dispersion → pulse broadening

Kerr nonlinearity $(n = n_0 + \alpha |E|^2) \rightarrow \text{phase distortion} \Rightarrow \text{errors after decoding.}$

Nonlinearity is limiting system performance:

higher bit-rate or longer transmission distance

- 1. higher bit-rate: $\mathcal{E} \approx |E|^2 \tau_0 \approx |E|^2 / BR \ge \mathcal{E}_{cr} \Longrightarrow |E|^2 \ge \mathcal{E}_{cr} BR$
- 2. Length of nonlinearity: $z_{nl} \approx (\alpha |E|^2)^{-1}$. Nonlinearity becoming noticeable when $L \sim z_{nl}$

Waveform change during propagation

Direct decoding. Ideal case

Renormalization of NLS

Nonlinear Schrödinger equation:

$$iE_z + dE_{tt} + \alpha |E|^2 E = 0 \tag{1}$$

Rescaling:

$$E = E_0 U; \quad \tau = \frac{t}{\tau_0}; \quad y = \frac{z}{z_0};$$
 (2)

$$iU_{y} + d\frac{z_{0}}{\tau_{0}^{2}}U_{\tau\tau} + \alpha E_{0}^{2} |U|^{2} U = 0 \qquad ($$

Dispersion and nonlinearity length:

$$z_d = \frac{\tau_0^2}{d}; \quad z_{nl} = \frac{1}{\alpha E_0^2}$$
 (4)

Let it be:

$$\frac{z_0}{z_d} = \frac{1}{2}; \quad \varepsilon = \frac{z_d}{2z_{nl}} \tag{5}$$

Finally, dimensionless NLS:

$$iU_{y} + \frac{1}{2}U_{\tau\tau} + \varepsilon |U|^{2} U = 0$$
 (6)

Modeling equation

(9)

Dimensionless NLS:

$$iE_z + \frac{1}{2}E_{tt} + \varepsilon |E|^2 E = 0 \tag{7}$$

Bit-sequence launched at the front end of the system is represented by periodic train of **gaussian pulses** with Differential Phase Shift Keying (DPSK)

$$E(t,0) = \sum_{k=1}^{N} a_k \pi^{-1/4} \exp\left[-\frac{1}{2}(t - kT^2)\right]$$
 (8)

$$a_k = 1$$
 with probability $p_1 = 1/2$
 $a_k = -1$ with probability $p_2 = 1/2$

Mamyshev effect

For wave interaction is a mechanism that create **energy redistribution** along bit pattern which lead to **amplitude jitter** of the output signal – Mamyshev effect

- Has the Gaussian shape
- Collects energy from the triplet surrounding pulses

Mamyshev effect: experiment

Rene Essiambre, Lucent: 40Gbit/s, 80km, and 100% dispersion compensation

Mamyshev effect: modeling

Output intensity (before decoding)

Here we can see amplitude jitter – the result of Mamyshev effect

Direct decoding. Modeling case

Encoded sequence: 0 0 0 1

$$L = 20$$

DNN based DBP

Digital back propagation

12

Data preparation

Literature

- Nonlinear optics: Agrawal, G. P. (2000). Nonlinear fiber optics.
- Coherent communications: https://www.osapublishing.org/jlt/abstract.cfm?URI=jlt-34-1-157
- DNN based DBP: https://www.nature.com/articles/s41467-020-17516-7

Another Textbooks for Additional Reading:

- B E A Saleh, M C Teich, "Fundamentals of Photonics", ISBN 978 0 471 35832 9 2007
- G P Agrawal, "Fiber optic communication systems", ISBN 0 471 21571 6 John Wiley Sons Inc New York, 2002
- Ivan P Kaminow Tingye Li, Alan E Willner "Optical Fiber Telecommunications Systems and Networks", SIXTH EDITION, ISBN 978 0 12 396960 6