Banco de Dados

Cálculo Relacional de Tuplas

João Eduardo Ferreira Osvaldo Kotaro Takai

Introdução

- O Cálculo Relacional de Tuplas (CRT) é uma alternativa à Álgebra Relacional (AR).
- A AR é procedimental, o CRT é declarativa:
 - O CRT permite descrever um conjunto de respostas sem explicitar como elas serão computadas.
- O CRT influenciou fortemente as linguagens de consulta comerciais, tais como a SQL.
- Uma linguagem de consulta L é considerada relacionalmente completa se L expressar qualquer consulta que possa ser realizada em CRT.

Introdução

A consulta em CRT tem a forma:

- { t | P(t) } representa o conjunto de todas as tuplas t, tal que o predicado P é verdadeiro para t.
- t é uma variável de tuplas.
- P é uma expressão condicional.
- t.A ou t[A] denota o valor do atributo A da tupla t.

Exemplo

- Exemplo de uma consulta em CRT:
 - Obter todos os empregados cujo salário é acima de 50 mil:
 - { t | EMPREGADO(t) AND t.SALARIO > 5000 }
 - EMPREGADO(t) é o mesmo que t ∈ EMPREGADO.
 - A consulta acima resulta em uma relação que contém todas tuplas t da relação EMPREGADO, que satisfaça a condição t.SALARIO > 5000.

Exemplo

Para recuperar apenas os atributos PNOME e
 SNOME dos empregados cujo salário é acima de
 50 mil, escrevemos:

```
{ t.PNOME, t.SNOME | EMPREGADO(t) AND t.SALARIO > 5000 }
```

- No CRT especificamos primeiro os atributos desejados (t.pnome e t.snome), da tupla selecionada t.
- Depois, estabelecemos a condição para selecionar uma tupla após a barra (|).

Expressões e Fórmulas

Uma expressão geral do CRT é da forma:

{
$$t_1.A_j$$
, t_2,A_k , ..., $t_n.A_m$ | $P(t_1, t_2, ..., t_n, t_{n+1}, t_{n+2}, ..., t_{n+m})$ }

- Onde:
 - t₁, t₂, ..., t_n, t_{n+1}, t_{n+2}, ..., t_{n+m} são variáveis de tuplas.
 - A_i é um atributo correspondente à tupla associada.
 - P refere-se a uma condição ou fórmula.

Expressões e Fórmulas

- Uma fórmula é feita de átomos que podem ser:
 - R(t_i), onde R é a relação e t_i é uma variável de tupla.
 - t_i .A op t_i .B, onde op $\in \{=, <, \le, >, \ge, \ne \}$
 - t_i.A **op** c ou c **op** t_j.B, onde c é um valor constante.

Expressões e Fórmulas

- Cada átomo resulta em valor TRUE ou FALSE.
- Para átomos da forma R(t), se t ∈ R, então é TRUE, senão é FALSO.
- Uma fórmula pode ser composta por um ou mais átomos conectados pelos operadores lógicos AND, OR e NOT.
- □ A implicação também pode ser usada (⇒):
 - $X \Rightarrow Y ≡ (NOT X) OR Y$
- □ A dupla implicação também pode ser usada (⇔):
 - $X \Leftrightarrow Y \equiv (X \Rightarrow Y) \text{ AND } (Y \Rightarrow X)$

Quantificadores Universais e Existenciais

- Uma fórmula pode possuir quantificadores:
 - ∀ Quantificador Universal
 - Para todo
 - Qualquer que seja
 - ∃ Quantificador Existencial
 - Existe ao menos um.
- t₁ e t₂, nas cláusulas ∀t₁ ou ∃t₂, são variáveis de tupla vinculadas.
- Se t não for vinculada, então será livre.

Definição Geral e Recursiva de Expressões e Fórmulas

- Todo átomo é uma fórmula.
- □ Se F₁ e F₂ são fórmulas, então
 - \blacksquare F₁ AND F₂, F₁ OR F₂, NOT(F₁) e NOT(F₂) são fórmulas.
- Se F é fórmula, então (∃t)(F(t)), também será.
 - (∃t)(F(t)) será TRUE se F for TRUE para pelo menos uma tupla t.
- Se F é fórmula, então (∀t)(F(t)), também será.
 - (∀t)(F(t)) será TRUE se F for TRUE para todas as tuplas t no universo.

Transformações

```
    F<sub>1</sub> ⇒ F<sub>2</sub> ≡ NOT F<sub>1</sub> OR F<sub>2</sub>
    F<sub>1</sub> AND F<sub>2</sub> ≡ NOT(NOT F<sub>1</sub> OR NOT F<sub>2</sub>)
    (∀ t) (F(t)) ≡ NOT (∃ t) (NOT F(t))
    (∃ t) (F(t)) ≡ NOT (∀ t) (NOT F(t))
```

- 5. $(\forall t) (F_1(t) AND F_2(t)) \equiv NOT (\exists t) (NOT (F_1(t)) OR NOT (F_2(t)))$
- 6. $(\forall t) (F_1(t) OR F_2(t)) \equiv NOT (\exists t) (NOT (F_1(t)) AND NOT (F_2(t)))$
- 7. $(\exists t) (F_1(t) AND F_2(t)) \equiv NOT (\forall t) (NOT (F_1(t)) OR NOT (F_2(t)))$
- 8. $(\exists t) (F_1(t)) \cap F_2(t)) \equiv \text{NOT}(\forall t) (\text{NOT}(F_1(t))) \text{ AND NOT}(F_2(t)))$
- 9. $(\forall t) (F(t)) \Rightarrow (\exists t) (F(t))$
- 10. NOT $(\exists t) (F(t)) \Rightarrow NOT (\forall t) (F(t))$

Ver página 253 do livro de Elmasri & Navathe Terceira Ed.

Exemplo de Projeção

- Recupere o nome e o endereço de todos os empregados.
 - Em Álgebra Relacional:
 - **π** _{SNOME, PNOME, SALÁRIO} (EMPREGADO)
 - Em CRT:
 - □ { t.PNOME, t.SNOME, t.ENDERECO | EMPREGADO(t) }

Exemplo de Seleção

- Recupere todos os empregados do sexo feminino.
 - Em Álgebra Relacional:
 - **O** _{sexo='F'} (EMPREGADO)
 - Em CRT:

Exemplo de Join

- Recupere o nome e o endereço de todos os empregados que trabalham para o departamento 'Pesquisa'.
 - Em Álgebra Relacional

```
    DEP ← O DNOME = 'Pesquisa' (DEPARTAMENTO)
    EMPDEP←(DEP ▷
    DNÚMERO = NDEP EMPREGADO)
```

- RESULT $\leftarrow \pi_{\text{PNOME, SNOME, ENDEREÇO}}$ (EMPDEP)
- Em CRT

Exemplo de Duplo Join

Para todos os projetos localizado em Houston, liste o número do projeto, o número do departamento que o controla e o nome do seu gerente:

Exemplo de Duplo Join

- Se exemplo anterior, trocarmos p.DNUM por d.DNUMERO na saída da consulta, podemos eliminar o quantificador existencial:

Outro Exemplo de Duplo Join

Liste o nome dos empregados que trabalham em algum projeto controlado pelo departamento 5:

Exemplo de União

Listar os nomes de projetos em que o empregado de sobrenome Smith trabalhe ou que sejam controlados por algum departamento gerenciado pelo empregado de sobrenome Smith:

Exemplo de Join de uma Relação com ela mesma

Listar o nome de cada empregado e o nome do seu supervisor imediato:

Exemplo de Divisão

- Liste o nome de todos os empregados que trabalham em todos os projetos:
 - Em Álgebra Relacional
 - PROJNSS(PNRO, NSS) $\leftarrow \pi_{\text{PNRO, NSSEMP}}$ (TRABALHA_EM)
 - □ PROJS(PNO) $\leftarrow \pi$ PNUMERO (PROJETO)
 - EMP ← PROJNSS ÷ PROJS
 - RESULTADO $\leftarrow \pi_{PNOME}$ (EMP * EMPREGADO)
 - Em CRT

- Liste o nome dos empregados que não tenham dependentes:
 - { e.PNOME | EMPREGADO(e) AND
 NOT (∃ d)(DEPENDENTE(d) AND e.NSS = d.ENSS) }
 - Ou NOT $(\exists t)(NOT F(t)) \equiv (\forall t)(F(t))$
 - { e.PNOME | EMPREGADO(e) AND (∀ d)(NOT (DEPENDENTE(d) AND e.NSS = d.ENSS)) }
 - Ou NOT (F1 AND F2) ≡ NOT F1 OR NOT F2
 - { e.PNOME | EMPREGADO(e) AND

 (∀ d)(NOT DEPENDENTE(d) OR e.NSS <> d.ENSS) }
 - Ou NOT F1 OR F2 \equiv F1 \Rightarrow F2
 - { e.PNOME | EMPREGADO(e) AND (∀ d)(DEPENDENTE(d) ⇒ e.NSS <> d.ENSS) }

- Para analisar o último caso:
- Suponha que EMPREGADO e DEPENDENTE fossem as seguintes relações:

EMPREGADO	Nome	NSS
	a1	b1
	a2	b2
	a3	b3
	a4	b4

DEPENDENTE	ENSS	NOME
	b1	c 1
	b3	сЗ

Sabemos que para (∀ d)(DEPENDENTE(d) ⇒ e.NSS «> d.ENSS)
seja verdade, basta que e.NSS «> d.ENSS seja
verdade, pois dependente(d) sempre será verdade
para todo d:

Esses casos nunca irão ocorrer

P DEPENDENTE(d)	q e.NSS <> d.ENSS	P ⇒ Q
V	V	V
V	F	F
F	V	V
F	F	V

- Agora, basta saber se e.Nss <> d.ENss é verdade para todo d de DEPENDENTE(d).
- Assim, vamos analisar para cada dependente d, os possíveis resultados de e.NSS <> d.ENSS:

Note que as únicas associações que valem para todos os dependentes são as tuplas de EMPREGADO apontados pelas setas amarelas:

- Portanto, o resultado da consulta:
 - { e.PNOME | EMPREGADO(e) AND $(\forall d)(DEPENDENTE(d) \Rightarrow e.NSS <> d.ENSS) }$
- Será a relação que contém os nomes das tuplas de empregados, e, os quais não possuem dependentes:

Nome

a2

a4

Um outro Exemplo de Divisão

Encontrar os nomes de empregados que trabalham em todos os projetos controlados pelo departamento 5:

□ Aqui, o lado esquerdo da implicação (⇒) restringe os projetos, x, do departamento 5.

Um outro Exemplo de Divisão

□ Assim, PROJETO(x) AND x.DNUM=5 é:

O nosso Universo

PNOME	<u>PNÚMERO</u>	PLOCALIZAÇÃO	DNUM
ProdutoX	1	Bellaire	5
ProdutoY	2	Sugarland	5
ProdutoZ	3	Houston	5
Automação	10	Stafford	4
Reorganização	20	Houston	1
Beneficiamento	30	Stafford	4

Apenas para facilitar o nosso entendimento, vamos chamar essa relação, com o universo de tuplas válidas, de PROJDEP5.

Um outro Exemplo de Divisão

Agora, o lado direito a implicação:

(∃ w) (TRABALHA-EM(w) AND w.ENSS=e.NSS AND x.PNUMERO=w.PNO)

- pode ser analisada para cada tupla x de PROJDEP5 em relação às tuplas de TRABALHA-EM e EMPREGADO.
- Novamente, para facilitar, eliminamos atributos desnecessários para a consulta.

(∃ w) (TRABALHA-EM(w) AND w.ENSS=e.NSS AND x.PNUMERO=w.PNO)

Expressões Seguras

- Uma expressão em CRT pode gerar uma infinidade de relações.
 - Por exemplo, a expressão

{t | NOT (R(t))}

pode gerar uma infinidade de tuplas que não estão em R.

- Assim, quando escrever uma consulta em CRT, verifique ela é segura.
 - Uma expressão segura no CRT é uma expressão que garante a produção de um número finito de tuplas como resultado.

Questões

- Estude os exemplos de consulta em Cálculo Relacional de Tuplas da pág. 64 da apostila.
- Refaça as consultas de álgebra relacional utilizando, agora, cálculo relacional.

Sugestão: Utilize o WinRDBI para validar as consultas (http://www.eas.asu.edu/~winrdbi/).