## HOMEWORK 7: DECK TRANSFORMATIONS & HOMOLOGY DUE: MONDAY, NOVEMBER 13

1) We have constructed a 'universal cover' of any path connected, locally path connected, and semilocally simply connected space X;  $p: \tilde{X} \to X$ . It is called universal because it is a covering space of every other path connected covering space of X.

We will now construct another type of universal cover. A path connected cover  $q: \hat{X} \to X$  is called *Abelian* if it is normal and has an Abelian group of deck transformations  $G(\hat{X})$ . Show that there is a universal such q. Call it  $q: X^{ab} \to X$ . Namely, that there exists such a q with the property that if  $s: \bar{X} \to X$  is an Abelian cover, then q factors as  $q = s \circ q'$ :

$$q: X^{ab} \stackrel{q'}{\to} \bar{X} \stackrel{s}{\to} X$$

Describe this cover for  $S^1 \vee S^1$ .

2) It can be shown that for every covering space  $q:Z\to Y$  and finite-sheeted covering space  $p:Y\to X$ , that  $q\circ p:Z\to X$  is a covering space. This allows us to conclude that the universal cover of K, the Klein Bottle, is  $\mathbb{R}^2$  since it has a 2-sheeted cover by  $\mathbb{T}^2=S^1\times S^1$ .

Consider the example to the right of a covering space of the shrinking wedge of circles (the bottom most cover). This cover is infinite sheeted and thus the above statement doesn't apply. Show that the composition of the 2 covering spaces is not a covering space.



- 3) Run through the computation of  $H_i^{\Delta}(K)$ , where K is the Klein Bottle. Do the same for the triangular parachute T which is obtained by taking  $\Delta^2$  (the triangle) and identifying all 3 vertices.
- 4) The analogue of real projective space for the complex numbers,  $\mathbb{CP}^n$ , is a n-dimensional 'complex manifold', or 2n-dimensional 'real manifold'. It is constructed inductively by adjoining simplices in every other dimension:  $\Delta_0, \Delta_2, \ldots, \Delta_{2n}$ . Compute  $H_i^{\Delta}(\mathbb{CP}^n)$  for every  $i \geq 0$ .