Proph Let (\mathcal{F}_n) be a filtration Let $A_n \in \mathcal{F}_n$ for each n. Perme $N: \Omega \longrightarrow Co, \infty J$ by $N(\omega) = \inf\{n: \omega \in A_n J\}$ Then N is a stopping time.

PF $N(\omega) \le n$ iff for some $m \in n$, $\omega \in A_m$. Thus $\{N \le n\} = \bigcup_{m=0}^{n} A_m$. For each m = n, $A_m \in \mathcal{H}_m \subseteq \mathcal{H}_n$, $So A_m \in \mathcal{H}_n$. Thus $\{N \le n\} \in \mathcal{H}_n$.

eg Jet (Sn) be a sequence of RVs in a mble space (E, E). Suppose (Sn) is adapted to a filtration (\mathcal{F}_{ln})

(This means that for each n, S_n is $\mathcal{F}_n/_{E}$ -mble)

Let $A \in E$. Let $N = \inf \{n: S_n \in A\}$.

Then N is a stopping time

et cetera...

Wald's First Equation

Let (Sn) be a RW in R wrt a filtration (Fn).

assume $E[S_i] < \infty$ (i.e. assume (Sn) has integrable in crements). Let N be a Stopping time with $E(N) < \infty$. Then $E(S_N) = E(S_i) \cdot E(N)$ $(E(X_i + \dots + X_N) = E(N) \cdot E(X_i))$. If of Course $X_n = S_n - S_{n-1}$ for $n \ge 1$, and $S_0 = 0$. X1, X2, X3,... are iid, adapted to (Fn), and for each n, In and o (Xn+1, Xn+2, ...) are independent. Case 1 Suppose each $X_n \ge 0$. (Then we don't care whether In is integrable, and we don't core whether E(N)<00, or even whether $P(N < \infty) = 1$.) Then $S_N = \chi_1 + \dots + \chi_N$. = \(\times_{n=1} \) \(\times_{n=N} \) $S_0 E(S_n) = \sum_{n \geq 1} E(X_n |_{E_n \leq N_3})$ $= \sum_{n \gg 1} E(X_n 1_{\underbrace{\sum_{N \leq n-1} j^c}})$ $\mathcal{T}_{n-1} = \sum_{n \gg 1} E(X_n 1_{\underbrace{\sum_{N \leq n-1} j^c}})$ so where of X_n

 $= \sum_{n \gg 1} \{(X_n) P(n \leq N)\}$

$$= E(S_i) \sum_{n \ge 1} P(n \le N)$$

$$= E(S_i) \sum_{n \ge 1} n P(N = n)$$

$$= E(S_i) \cdot E(N)$$

Case 2 The General Case.

$$S_{N} = \chi_{1} + \dots + \chi_{N}$$

$$= (\chi_{1}^{+} + \dots + \chi_{N}^{+}) - (\chi_{1}^{-} + \dots + \chi_{N}^{-}).$$

For each n, χ_{1}^{+} , ..., χ_{n}^{+} are H_{n} -measurable, and χ_{n+1}^{+} , χ_{n+2}^{+} , ... one $\sigma(\chi_{n+1}, \chi_{n+2}, ...)$ -measurable, So H_{n} and $\sigma(\chi_{n+1}^{+}, \chi_{n+2}^{+}, ...)$ are independent.

So $E(X_1^+ + \dots + X_N^+) = E(X_1^+) E(N)$ by case 1.

Similarly, $E(X_i + \cdots + X_N) = E(X_i) E(N)$ also by case 1.

So, assuming that $E[X_i] < \infty$ and $E[N] < \infty$, we have $E(X_i^*) < \infty$ and $E(X_i^*) < \infty$ and $P(N < \infty) = 1$. So

$$E(S_n) = E(x_i^+) E(N) - E(x_i^-) E(N).$$

$$= E(S_i) \cdot E(N).$$

 \Box

It N be a stopping time with $E(N) < \infty$.

Then $E(S_N) = 0$.

 $\left[\underset{\sim}{\mathbb{P}} E(S_N) = E(S_1) \cdot E(N) = 0 \cdot E(N) = 0 \right].$

eg fet (S_n) be a Symultric Simple RW on Z. Let $a,b\in \mathbb{Z}$ with a < o < b. Let $N=\inf\{n:n\neq(a,b)\}$.

Since (S_n) is nondegenerate, $E(N) < \infty$, so $P(N < \infty) = 1$. For each ω , if $N(\omega) < \infty$, then $S_N(\omega) \in \{a,b\}$, because $S_{N-1}(\omega) \in (a,b)$, and $S_N(\omega) \notin (a,b)$, and $S_N(\omega) = 1$.

By Wald's first equation, $E(S_N) = 0$ because $E(S_i) = 0$. But since $P(S_n \text{ is a } \sim b) = 1$, $E(S_n) = \alpha P(S_n = \alpha) + b P(S_n = b)$.

Page 5

Let
$$\alpha = P(S_n = \alpha), \beta = P(S_n = b)$$
.

Then
$$\alpha + \beta = 1$$
 and $\alpha \alpha + b \beta = 0$.

So
$$\beta = 1 - \kappa$$
, $\alpha \alpha + b(1 - \alpha) = 0$.

So
$$(\alpha - b) \alpha + b = 0$$
, so $\alpha = \frac{b}{b-a}$.

So
$$\beta = \frac{\alpha}{a - b}$$
.

Let
$$T = \inf \{ n : S_n = b \}$$
.

Then
$$P(T<\infty) > P(N<\infty \text{ and } S_n=b)$$

$$= P(5_n = b) = \beta = \frac{a}{a-b} \longrightarrow 1 \text{ as } a \longrightarrow -\infty.$$

Since a was orbitrary here, this means $P(T < \infty) = 1$.

For each ω , if $T(\omega) < \infty$, Then $S_7(\omega) = 6$.

Hence $E(T) = \infty$ because if $E(T) < \infty$, then

Wald's First Equation says

$$E(S_T) = E(S_i)E(T) = 0 \neq b,$$

which is contradictory.