

- ★ 100% EAS Guaranteed
- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Description

The XR 30K03D is the high cell density trenched P-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR 30K03D meet the RoHS and Gree Product requirement 100% EAS guaranteed with full function reliability approved.

Product Summary

BVDSS	RDSON	ID
-30V	18mΩ	-30A

PDFN3333-8L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	-30	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	-30	Α	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	-15.8	Α	
I _{DM}	Pulsed Drain Current ²	-100	Α	
EAS	Single Pulse Avalanche Energy ³	26.5	mJ	
las	Avalanche Current	-23	Α	
P _D @T _C =25°C	Total Power Dissipation ⁴	22	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹		79	°C/W
Rejc	Thermal Resistance Junction-Case ¹		5.7	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30			V	
⊿BV _{DSS} /⊿T _J	BV _{DSS} Temperature Coefficient Reference to 25 °C , I _D =-1mA					V/°C	
В	Otatia Dania Carras On Daniatana 2	V _{GS} =-10V , I _D =-12A		18	23	0	
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =-4.5V , I _D =-8A		24.5	31	mΩ	
V _{GS(th)}	Gate Threshold Voltage	\\ -\\ - 250\	-1	-1.5	-2.5	V	
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=-250uA$				mV/°C	
	Desir Course Looke as Course	V _{DS} =-30V , V _{GS} =0V , T _J =25°C			-1		
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-30, V _{GS} =0V , T _J =100°C			-5	uA	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA	
gfs	Forward Transconductance V _{DS} =-5V , I _D =-10A			23.5		S	
R_g	Gate Resistance V _{DS} =0V , V _{GS} =0V , f=1MHz					Ω	
Qg	Total Gate Charge			20			
Q _{gs}	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-10V , I _D =-10A		3		nC	
Q_{gd}	Gate-Drain Charge			5.5			
T _{d(on)}	Turn-On Delay Time			7.5			
Tr	Rise Time			16			
T _{d(off)}	Turn-Off Delay Time	ID= -10A, R _{GEN} =2.5Ω		49		ns	
T _f	Fall Time			32			
C _{iss}	Input Capacitance			980			
C _{oss}	Output Capacitance V _{DS} =-15V , V _{GS} =0V , f=1MHz			137		pF	
C _{rss}	Reverse Transfer Capacitance			113			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			-30	А
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =-30A , T _J =250			-1.2	V
t _{rr}	Reverse Recovery Time	IF=-10A ,di/dt=100A /		21		nS
Q _{rr}	Reverse Recovery Charge µs , T _J = 2 5 0			12.5		nC

Notes

- 1. Repetitive rating, pulse width limited by junction temperature $T_{\text{J(MAX)}}$ =150°C
- 2. The EAS data shows Max. rating . The test condition is DD=-15V, VG=-10V, RG=25ohm, L=0.1mH $\,$
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7. Capacitance Characteristics

Figure 9. Power Dissipation

Figure 8. Gate Charge Characteristics

Figure 10. Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Dual PDFN3333-8L Package Outline Data

0	Dimensions (unit: mm)			
Symbol	Min	Тур	Max	
Α	0.70	0.75	0.80	
b	0.25	0.30	0.35	
С	0.10	0.15	0.25	
D	3.25	3.35	3.45	
D1	3.00	3.10	3.20	
D2	1.78	1.88	1.98	
D3		0.13		
Е	3.20	3.30	3.40	
E1	3.00	3.15	3.20	
E2	2.39	2.49	2.59	
е	(0.65 BSC	,	
Н	0.30	0.39	0.50	
L	0.30	0.40	0.50	
L1		0.13		
K	0.30			
θ		10°	12°	
М	*	*	0.15	
* Not Specified				

Notes:

- 1. Refer to JEDEC MO-240 variation CA.
- 2. Dimensions "D1" and "E1" do NOT include mold flash protrusions or gate burrs
- 3. Dimensions "D1" and "E1" include interterminal flash or protrusion.