CSE/ISyE 6740 Computational Data Analysis

Gaussian Mixture Models (GMMs)

09/03/2025

Kai Wang, Assistant Professor in Computational Science and Engineering kwang692@gatech.edu

Outline

- Unsupervised Learning
 - Density estimation
 - Gaussian mixture models (GMMs)
 - Probability density function of mixture of Gaussians
 - Expectation-Maximization (EM) algorithm
 - Mathematical meaning of the EM algorithm

Gaussian Mixture Models

Density Estimation Revisited

Can we have a more flexible model than Gaussian, but less parameter than KDE?

Demo: test_wine.py

Gaussian Mixture Model

• A density model p(X) may be multi-modal: model it as a mixture of uni-modal distributions (e.g., Gaussians)

$$\mathcal{N}(X|\mu_k, \Sigma_k) \coloneqq \frac{1}{|\Sigma_k|^{\frac{1}{2}} (2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}(X - \mu_k)^{\mathsf{T}} \Sigma^{-1} (X - \mu_k)\right)$$

Consider a mixture of K Gaussians

•
$$p(X) := \sum_{k=1}^{K} \pi_k \mathcal{N}(X|\mu_k, \Sigma_k)$$

Mixing proportion

Mixing components

Question: parametric or nonparametric?

A Generative Process for Data Points

- Given $p(X) := \sum_{k=1}^{K} \pi_k \mathcal{N}(X|\mu_k, \Sigma_k)$, how to generate a data point $x^i \sim p$?
 - Randomly choose a mixture component, $z^i \in \{1,2,...,K\}$, with probability π_{z^i}
 - Sample x^i from the corresponding Gaussian distribution $\mathcal{N}(X|\mu_{z^i},\Sigma_{z^i})$
- Joint distribution p(x, z) over x and z:

$$p(x,z) = \pi_z \mathcal{N}(X|\mu_z, \Sigma_z)$$

• Marginal distribution p(x)

$$p(x) = \sum_{z=1}^{K} p(x, z) = \sum_{z=1}^{K} p(x|z)p(z)$$

Learning the Parameters

- We know how to sample. But how to learn the parameters?
- Maximum likelihood estimation (MLE) by letting $\theta = (\pi_k, \mu_k, \Sigma_k)_{k=1,2,...,K}$:

$$\theta^* = argmax_\theta \ l(\theta; D) := \log P(D|\theta)$$

Use our generative process

$$l(\theta; D) = \log \prod_{i=1}^{n} p(x^{i}|\theta)$$

$$= \log \prod_{i=1}^{n} \left(\sum_{Z^{i}=1}^{K} p(x^{i}, z^{i}|\theta) \right)$$

$$= \log \prod_{i=1}^{n} \left(\sum_{Z^{i}=1}^{K} p(x|\mu_{Z^{i}}, \Sigma_{Z^{i}}) p(z^{i}|\pi) \right)$$

Why is Learning Hard?

• With latent variables z, likelihood of the data becomes:

$$l(\theta; D) = \log \prod_{i=1}^{n} \left(\sum_{z^{i}=1}^{K} p(x|\mu_{z^{i}}, \Sigma_{z^{i}}) p(z^{i}|\pi) \right)$$

When the Latent Variable z^i is Given

• For the case $z^i = k$ is given, we can simplify the log-likelihood by:

$$\log p(x^i, z^i = k | \theta) = \log (p(x | \mu_k, \Sigma_k) p(z^i = k | \pi)) \longleftarrow \text{Because } z^i = k \text{ is known}$$

$$= \log(\mathcal{N}(x|\mu_k, \Sigma_k)\pi_k)$$

$$= \sum_{k=1}^K \tau_k^i \log(\mathcal{N}(x|\mu_k, \Sigma_k)\pi_k) \qquad \longleftarrow \text{Simplify the expression by using}$$

$$= \sum_{k=1}^K \tau_k^i \left[\log \pi_k - \frac{1}{2} \left(x^i - \mu_k\right)^\mathsf{T} \Sigma_k \left(x^i - \mu_k\right) - \frac{1}{2} \log|\Sigma_k| - c\right]$$

When the Latent Variable z^i is Given

• Introduce a binary variable $\tau_k^i \in \{0,1\}$ to denote $z^i = k$ as the **Gaussian assignment**

$$l(\theta; D, \tau) = \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{k}^{i} \left[\log \pi_{k} - \frac{1}{2} (x^{i} - \mu_{k})^{\mathsf{T}} \Sigma_{k}^{-1} (x^{i} - \mu_{k}) - \frac{1}{2} \log |\Sigma_{k}| - c \right]$$

• It is now "easy" to show that (by using Lagrangian multiplier and setting $\frac{\partial l(\theta;D,\tau)}{\partial \theta}=0$), the maximum likelihood estimation of the parameters are:

$$\pi_k = \frac{\sum_i \tau_k^i}{n}, \qquad \mu_k = \frac{\sum_i \tau_k^i x^i}{\sum_i \tau_k^i}$$

$$\Sigma_k = \frac{\sum_i \tau_k^i (x^i - \mu_k) (x^i - \mu_k)^\top}{\sum_i \tau_k^i}$$

Please work this out yourself!

When z is NOT Given

• We don't know τ_k^i , but we can guess which Gaussian x^i comes from by computing the posterior probability

$$p(z^{i} = k \mid x^{i}, \mu, \Sigma) = \frac{\pi_{k} \mathcal{N}(x^{i} \mid \mu_{k}, \Sigma_{k})}{\sum_{k'=1}^{K} \pi_{k'} \mathcal{N}(x^{i} \mid \mu_{k'}, \Sigma_{k'})} \qquad \forall k, i$$

Bayes rule

Posterior
$$P(z|x) = \frac{P(x|z)P(z)}{P(x)} = \frac{P(x,z)}{\sum_{z'} P(x,z')}$$
Posterior

Prior: $p(z) = \pi_z$ Likelihood: $p(x|z) = \mathcal{N}(x|\mu_z, \Sigma_z)$

When z is NOT Given

• We don't know τ_k^i , but we can guess which Gaussian x^i comes from by computing the posterior probability

$$p(z^{i} = k \mid x^{i}, \mu, \Sigma) = \frac{\pi_{k} \mathcal{N}(x^{i} \mid \mu_{k}, \Sigma_{k})}{\sum_{k'=1}^{K} \pi_{k'} \mathcal{N}(x^{i} \mid \mu_{k'}, \Sigma_{k'})} \qquad \forall k, k$$

- Now we pretend $p(z^i = k \mid D, \mu, \Sigma)$ as our unknown **Gaussian assignment** τ_k^i , but now is regarded as a "soft" assignment:
 - Probability of assigning x^i to k-th component (Gaussian)

EM (Expectation-Maximization) Algorithm

- Associate each data and each component with a au_k^i
- Initialized $(\pi_k, \mu_k, \Sigma_k), k = 1, 2, ..., K$
- Iterate the following two steps until convergence:
 - Expectation step (E-step, Gaussian assignment): update τ_k^i given the current (π_k, μ_k, Σ_k)

$$\tau_k^i = p(z^i = k \mid D, \mu, \Sigma) = \frac{\pi_k \, \mathcal{N}(x \mid \mu_k, \Sigma_k)}{\sum_{k'=1}^K \pi_{k'} \, \mathcal{N}(x \mid \mu_{k'}, \Sigma_{k'})}, \qquad \forall k \in \{1, 2, \dots, K\}; i \in \{1, 2, \dots, n\}$$

• Maximization step (M-step, Gaussian adjustment): update (π_k, μ_k, Σ_k) given τ_k^i

$$\pi_k = \frac{\sum_i \tau_k^i}{n}, \qquad \mu_k = \frac{\sum_i \tau_k^i x^i}{\sum_i \tau_k^i}$$

$$\Sigma_k = \frac{\sum_i \tau_k^i (x^i - \mu_k) (x^i - \mu_k)^\top}{\sum_i \tau_k^i}, \qquad \forall k \in \{1, 2, \dots, K\}$$

Details of EM

We intend to learn the parameters that maximizes the log-likelihood of the data

$$l(\theta; D) = \log \prod_{i=1}^{n} \left(\sum_{z^{i}=1}^{K} p(x^{i}, z^{i} | \theta) \right)$$

- **Expectation step (E-step)**: set $\tau_k^i = p(z^i = k \mid D, \mu, \Sigma)$
 - What does this step mean?

• Find the best lower bound
$$l(\theta; D, q)$$
 to estimate the expectation $l(\theta; D)$
$$l(\theta; D) \geq l(\theta; D, q) \coloneqq \mathbb{E}_{\mathbf{Z^1, Z^2, ..., Z^n} \sim q} \left[\log \prod_{i=1}^n p(x^i, z^i | \theta) \right] + H(q)$$

Maximization step (M-step)

E-step: What is $\tau(z^1, z^2, ..., z^n)$

• $q(z^1, z^2, ..., z^n)$: any distribution of the latent variables

$$q(z^1, z^2, \dots, z^n) = \prod_{i=1} prob(z^i | x^i, \theta)$$

• Specifically, we choose $q(z^i) = \tau_k^i$ with

$$p(z^{i} = 1, x^{i}) = 0.2$$
 $p(z^{i} = 3, x^{i}) = 0.1$

Therefore, we can find

 0.5

$$\tau_{k=1}^i = \frac{0.5}{0.5 + 0.2 + 0.1}$$

$$\tau_{k}^{i} = p(z^{i} = k | x^{i}) = \frac{p(z^{i} = k, x^{i})}{\sum_{k'=1,2,\dots,K} p(z^{i} = k', x^{i})} = \frac{\pi_{k} \mathcal{N}(x | \mu_{k}, \Sigma_{k})}{\sum_{k'=1}^{K} \pi_{k'} \mathcal{N}(x | \mu_{k'}, \Sigma_{k'})}$$

Conditioned on seeing x^i , what is the probability that x^i is sampled from $z^i = k$ -th Gaussian distribution? Can also be interpreted as a "soft" assignment

E-step: Compute the Expectation

$$l(\theta; D, q) = \mathbb{E}_{\mathbf{z}^{1}, \mathbf{z}^{2}, \dots, \mathbf{z}^{n} \sim q} \left[\log \prod_{i=1}^{n} p(x^{i}, z^{i} | \theta) \right] + H(q)$$

$$= \mathbb{E}_{\mathbf{z}^{1}, \mathbf{z}^{2}, \dots, \mathbf{z}^{n} \sim q} \left[\sum_{i=1}^{n} \left[\log p(x^{i}, z^{i} | \theta) \right] \right] + H(q)$$

$$= \mathbb{E}_{\mathbf{z}^{i} \sim p(\mathbf{z}^{i} | x^{i}) \ \forall i} \sum_{i=1}^{n} \left[\log p(x^{i}, z^{i} | \theta) \right] + H(q)$$

$$= \sum_{i=1}^{n} \mathbb{E}_{\mathbf{z}^{i} \sim p(\mathbf{z}^{i} | x^{i})} \left[\log \left(\pi_{\mathbf{z}^{i}} \mathcal{N}(x | \mu_{\mathbf{z}^{i}}, \Sigma_{\mathbf{z}^{i}}) \right) \right] + H(q)$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{k}^{i} \log \left(\pi_{k} \mathcal{N}(x | \mu_{k}, \Sigma_{k}) \right) + H(q)$$

• Expand log of Gaussian $\log \mathcal{N}(x|\mu_{z^i}, \Sigma_{z^i})$

$$l(\theta; D, \tau) = \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{k}^{i} \left[\log \pi_{k} - \frac{1}{2} (x^{i} - \mu_{k})^{\mathsf{T}} \Sigma_{k}^{-1} (x^{i} - \mu_{k}) - \frac{1}{2} \log |\Sigma_{k}| - c \right] + H(q)$$

Details of EM

We intend to learn the parameters that maximizes the log-likelihood of the data

$$l(\theta; D) = \log \prod_{i=1}^{n} \left(\sum_{z^{i}=1}^{K} p(x^{i}, z^{i} | \theta) \right)$$

- Expectation step (E-step): set $\tau_k^i = p(z^i = k \mid D, \mu, \Sigma)$
 - What does this step mean?

• Find the best lower bound
$$l(\theta; D, q)$$
 to estimate the expectation $l(\theta; D)$
$$l(\theta; D) \geq l(\theta; D, q) \coloneqq \mathbb{E}_{\mathbf{Z^1, Z^2, ..., Z^n} \sim q} \left[\log \prod_{i=1}^n p \big(x^i, z^i | \theta \big) \right] + H(q)$$

• Maximization step (M-step): how to maximize $l(\theta; D, q)$? $\theta^{t+1} = argmax_{\theta}l(\theta; D, q)$

M-step: Maximize $l(\theta; D, q)$

•
$$l(\theta; D, q) = \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{k}^{i} \left[\log \pi_{k} - \frac{1}{2} (x^{i} - \mu_{k})^{\mathsf{T}} \Sigma_{k}^{-1} (x^{i} - \mu_{k}) - \frac{1}{2} \log |\Sigma_{k}| - c \right] + H(q)$$

- For instance, we want to find π_k , and $\sum_{k=1}^K \pi_k = 1$
 - Form Lagrangian

$$L = \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_k^i [\log \pi_k - \text{other terms}] + \lambda \left(1 - \sum_{i=1}^{K} \pi_k \right)$$

Take partial derivative and set to 0

$$\frac{\partial L}{\partial \pi_k} = \left(\sum_{i=1}^n \frac{\tau_k^i}{\pi_k}\right) - \lambda = 0, \qquad \Rightarrow \pi_k = \frac{1}{\lambda} \sum_{i=1}^n \tau_k^i, \qquad \Rightarrow \lambda = n$$

EM (Expectation-Maximization) Algorithm

- Associate each data and each component with a au_k^i
- Initialized $(\pi_k, \mu_k, \Sigma_k), k = 1, 2, ..., K$
- Iterate the following two steps until convergence:
 - Expectation step (E-step): update τ_k^i given the current (π_k, μ_k, Σ_k)

$$\tau_k^i = p(z^i = k \mid D, \mu, \Sigma) = \frac{\pi_k \, \mathcal{N}(x \mid \mu_k, \Sigma_k)}{\sum_{k'=1}^K \pi_{k'} \, \mathcal{N}(x \mid \mu_{k'}, \Sigma_{k'})}, \qquad \forall k \in \{1, 2, \dots, K\}; i \in \{1, 2, \dots, n\}$$

• Maximization step (M-step): update (π_k, μ_k, Σ_k) given τ_k^i

$$\pi_k = \frac{\sum_i \tau_k^i}{n}, \qquad \mu_k = \frac{\sum_i \tau_k^i x^i}{\sum_i \tau_k^i}$$

$$\Sigma_k = \frac{\sum_i \tau_k^i (x^i - \mu_k) (x^i - \mu_k)^\top}{\sum_i \tau_k^i}, \qquad \forall k \in \{1, 2, \dots, K\}$$

EM Graphically

Expectation-Maximization Iterations

- k = 1 or 2
- Use au_1^i as the proportion of red, and au_2^i as the proportion of blue
- Draw only one contour for each Gaussian component

Mixture of 3 Gaussians

- First run PCA to reduce the dimension to 2
- k = 1 or 2 or 3
- Use au_1^i as the proportion of red, au_2^i as the proportion of blue, and au_3^i as the proportion of green

EM v.s. Modified K-means

- The EM algorithm for mixture of Gaussian is like of soft clustering algorithm
- K-means:
 - "E-step": we do hard assignment
 - $z^i = argmax_k (x^i \mu_k)^T \Sigma_k^{-1} (x^i \mu_k)$

- "M-step": we update the means and covariance of cluster suing maximum likelihood estimate:
 - $\bullet \quad \mu_k = \frac{\sum_i \tau_k^i x^i}{\sum_i \tau_k^i}$
 - $\Sigma_k = \frac{\sum_i \tau_k^i (x^i \mu_k) (x^i \mu_k)^{\mathsf{T}}}{\sum_i \tau_k^i}$
 - where $\tau_k^i = 1$ if $z^i = k$; otherwise 0

General Applicability of EM Algorithm

- Applicable to other models with latent (or missing) variables
- Expectation maximization applied to a coin toss example (<u>python example</u>)
 - Assume you have a sequence of coin flip observations from two coins, but you don't know from which coin each of the observations is from
 - The EM algorithm starts by initializing a random prior
 - Then it calculates the expected log probability distribution over the observations, and based on the log probability updates the prior

Next Week (Sep 8th) Preview

We intend to learn the parameters that maximizes the log-likelihood of the data

$$l(\theta; D) = \log \prod_{i=1}^{n} \left(\sum_{z^{i}=1}^{K} p(x^{i}, z^{i} | \theta) \right)$$

Expectation step (E-step): what do we take expectation over?
$$l(\theta; D) \geq l(\theta; D, q) \coloneqq \mathbb{E}_{z^1, z^2, \dots, z^n \sim q} \left[\log \prod_{i=1}^n p(x^i, z^i | \theta) \right] + H(q)$$
 Why?

 Maximization step (M-step): how to maximize? $\theta^{t+1} = argmax_{\theta} f(\theta)$

