RAON Control-Document Series Revision: v0.1, Release: 2015.11.2

KT Underground Laboratory Environment Monitoring System

Seung Hee Nam*
Control Group
Rare Isotope Science Project
Institute for Basic Science
Daejeon, South Korea

November 2, 2015

1 라즈베리파이 셋업

KT 지하 실험실에 온습도 센서를 설치하기 전에 라즈베리 파이에 사용 할 수 있는 이미지를 생성하였다.

Figure 1 RaspberryPi B+

^{*}namsh@ibs.re.kr

Download raspbian image from

```
$ wget --content-disposition http://downloads.raspberrypi.org/raspbian_latest
$ unzip *raspbian*.zip
```

라즈비안을 다운받은후 압축을 풀어준다.

Copy Image to SD Card

```
$ sudo dd bs=4M if=downloaded_image.img of=/dev/sdX
$ sync
$ umount /dev/sdX
```

dd를 이용해서 압축을 풀어준 라즈비안 이미지를 sd카드로 옮겨준다. bs는 속도(4Mbyte)를 의미하고 if는 쓸 이미지 of는 쓰일위치이다. 쓰일 위치는 간단하게 df를 이용해서 확인할수있다.

```
namsh@namsh:~/Downloads/icabu.2015.shn$ df -1
                                                    Size Used Avail Use% Mounted on
Filesystem
rootfs
                                                    184G 19G 156G 11% /
                                                              10M
                                                                     0% /dev
                                                    10M
                                                           0
                                                    1.6G 800K 1.6G 1% /run
tmpfs
/dev/disk/by-uuid/f4c99593-1541-478c-85df-8a2979a32cbc
                                                   184G 19G 156G 11% /
tmpfs
                                                    5.0M
                                                           0 5.OM
                                                                     0% /run/lock
                                                    9.5G 185M 9.3G 2% /run/shm
tmpfs
/dev/sda1
                                                    487M 128K 486M 1% /boot/efi
/dev/sda4
                                                    1.6T
                                                         97G 1.5T 6% /home
```

Insert SD Card to RaspberryPi and Expand User Partition

PI 환경설정으로 아래와 같이 들어간후

```
$ sudo rpi-config
```

1.Expand Filesystem을 해준뒤 리부팅 해준다.

\$ sudo reboot

Network Configuration

editor에는 자신이쓰는 에디터를 넣고 interfaces를 열어준다. (ex. nano, vi, emacs)

\$ sudo editor /etc/network/interfaces

쓸 ip address, netmask, gateway, dns-nameservers를 넣고 저장한다.

```
iface eth0 inet static
address 10.1.4.206
netmask 255.255.255.0
gateway 10.1.4.254
dns-nameservers 10.1.2.240
```

무선 네트워크 설정은 다음과 같다.

```
allow-hotplug wlan0 iface wlan0 inet static address 10.1.4.?? netmask 255.255.255.0 gateway 10.1.4.254 dns-nameservers 10.1.2.240 wpa-scan-ssid 1
```

```
wpa-ap-ssid 1
wpa-key-mgmt WPA-PSK
wpa-proto RSN WPA
wpa-pairwise CCMP TKIP
wpa-group CCMP TKIP
wpa-ssid "scwook"
wpa-psk "PASSWORD"
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp
```

pi 리부팅을 하거나 네트워크 리부팅을 해준다.

\$ sudo reboot

\$ sudo service network restart

Package & Firmware Upgrade

아래와같이 패키지와 펌웨어 업데이트를 해준다.

```
$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo rpi-update
```

Setup GPIO

라즈베리파이의 gpio를 사용하기위해서 wiringPi를 설치 해준다.

```
$ git clone git://git.drogon.net/wiringPi
$ cd wiringPi
$ sudo ./build
```

Download and Install EPICS

EPICS를 다운받을 위치로 이동 후 EPICS 스크립트를 다운받고 루트계정으로 접속한다.

```
$ git clone https://github.com/jeonghanlee/scripts_for_epics.git
$ ~$ cd scripts_for_epics/
$ ~/scripts_for_epics$ sudo su
Password:
```

Pi에 EPICS를 설치하기위해서는 lsb_release가 필요하므로 설치해준다.

\$ root@:{HOME}/scripts_for_epics# aptitude install lsb_release

require_package 부터 설치한뒤 EPICS를 설치해준다. 설치가 끝나면 epics/R3.14.12.5/에 들어가 . setEpicsEnv를 해준다.

```
$ root@:{HOME}/scripts_for_epics# bash require_packages.sh all
$ root@:{HOME}/scripts_for_epics# exit
$ ~/scripts_for_epics$ bash epics_default_installation.sh
$ ~/scripts_for_epics$ cd ../epics/R3.14.12.5/
$ ~/epics/R3.14.12.5$ ls
base extensions setEpicsEnv.sh
$ ~/epics/R3.14.12.5$ . setEpicsEnv.sh
```

Download siteApp and siteLib

아래와 같은 스크립트를 실행시켜 필요 앱과 라이브러리를 다운받는다.

\$ ~/scripts_for_epics\$ bash raon_cloning.sh

Build an image of configured rPi and copy it to new SD casd

dd를 이용하여 SD카드에 설치한 라즈비안과 이외의 패키지를 이미지화 시킨다.

```
$ sudo dd bs=4M if=name_of_new_image.img if=/dev/sd?
$ sync
```

차후 이렇게 만든 이미지 파일은 새로운 파이를 만들때 따로 설정할 필요없이 이미지만 dd를 이용해서 옮김으로 편리하게 새로운 Pi를 만들수 있는 강점이 있다.

\$ sudo dd bs=4M if=/dev/sd? of=name_of_new_image.img

아래와같이 새로운 SD카드에 이미지를 쓰면 이전과 똑같은 Pi가 만들어진다.

```
$ sudo dd bs=4M if=name_of_new_image.img if=/dev/sd?
$ sync
```

Auto reconnection wireless LAN

무선인터넷 사용중 무선인터넷에 끊김이 발생할때 파이는 자동으로 무선인터넷을 잡아주지 않기 때문에 다시 접속하여 사용해야한다. 이런 불편을 없애려면 아래와 같은 코드를 추가해 주어야한다.

```
$ cd /etc/ifplugd/action.d/
$ sudo mv ifupdown ifupdown.original
$ sudo cp /etc/wpa_supplicant/ifupdown.sh ./ifupdown
```

\$ sudo reboot

2 모니터링 파이용 케이스 디자인

모니터링 파이용 케이스를 만들기 위해서 스케치업 3D 툴을 이용하였고 Archiver Appliance를 이용해 온도와 습도 값을 저장하였다 그리고 통계프로그램인 R을 이용해서 온도의 오차나 경향성을 확인하고 분석했다.

2.1 스케치업을 이용한 케이스 디자인

스케치업을 통해서 디자인한 케이스는 Version1 8까지 7번의 디자인 변경이 있었고 version8은 version7 케이스의 테스트가 끝난뒤 디자인되어 현재 적용된 케이스는 version7 케이스이다.

Figure 2 Pi Case Version1 and Version2

Figure 3 Pi Case Version3 and Version4

Figure 4 Pi Case Version5 and Version6

 ${\bf Figure~5}~{\rm Pi~Case~Version7~and~Version8}$