Analiza 1

Vid Drobnič

Kazalo

1	Števila		
	1.1	Naravna števila	2
	1.2	Cela števila	3
	1.3	Racionalna števila	3
	1 4	Dedekindov aksiom in Realna števila	10

1 Števila

1.1 Naravna števila

- Z njimi štejemo: 1, 2, 3
- Množico naravnih števil označimo z N

$$\mathbb{N} = \{1, 2, 3, ...\}$$

 $\bullet\,$ Vsako naravno število nima naslednika $n^+~(n^+=n+1)$

Peanovi aksiomi:

 \mathbb{N} je množica skupaj s pravilom, ki vsakemu naravnemu številu n dodeli njegovega naslednika $n^+ \in \mathbb{N}$ in velja:

- 1. za vse $m, n \in \mathbb{N}$ če $m^+ = n^+$, potem m = n
- 2. obstaja $1\in\mathbb{N},$ ki ni naslednik nobenega naravnega števila
- 3. Če je $A\subset \mathbb{N}$ in če je $1\in A^{-1}$ in če velja: če $n\in A,$ potem $n^+\in A^{-2},$ potem $A=\mathbb{N}$

Aksiom (3) se imenuje aksiom popolne indukcije.

- Naravna števila lahko **seštevamo**, **množimo**.
- N so urejena po velikosti 1, 2, 3, 4, 5, ...

$$\{3,5,6,10\} \subset \mathbb{N}$$

$$\{3, 5, 7, 16, 23, \ldots\} \subset \mathbb{N}$$

- Vsaka neprazna podmnožica N ima najmanjši element.
- \bullet V splošnem ne velja³, da ima vsaka neprazna podmnožica $\mathbb N$ največji element.

¹indukcijska baza

²indukcijski korak

³ne velja za vse (množice)

1.2 Cela števila

Označimo jih z Z

$$\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$$

- \bullet Seštevanje in množenje se iz $\mathbb N$ razširita na $\mathbb Z$.
- Poleg tega je definirano **odštevanje**.
- Množico celih števil uredimo na običajen način.
- Ni res, da bi imela vsaka neprazna podmnožica Z najmanjši element.
- V splošnem deljenje ni definirano $(\frac{3}{2})$

1.3 Racionalna števila

Racionalna števila so kvocienti celih števil. Bolj natančno: kvoceinti celih in naravnih števil.

Dva ulomka $\frac{m}{n},\frac{k}{l}$ predstavljata isto racionalno število če: ml=nklahko naredimo:

$$\mathbb{Z} \times \mathbb{N} = \{(m, n), m \in \mathbb{Z}, n \in \mathbb{N}\}\$$

Množico $\mathbb{Z} \times \mathbb{N}$ razdelimo na razrede: urejena para (m, n) in (k, l) sta v istem razredu, če velja ml = nk.

Racionalno število je razred urejenih parov in ga označimo z $\frac{m}{n}.$

$$\mathbb{Q} = \{ \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N} \}$$

Seštevanje v \mathbb{Q} :

$$\frac{m}{n} + \frac{k}{l} = \frac{ml + kn}{nl}, m, k \in \mathbb{Z}, n, l \in \mathbb{N}$$

Seštevanje ulomkov je dobro definirano:

če je:
$$\frac{m'}{n'} = \frac{m}{n}, \frac{k'}{l'} = \frac{k}{l}$$

potem je: $\frac{m'}{n'} + \frac{k'}{l'} = \frac{m}{n} + \frac{k}{l}$

vemo: m'n = mn' in k'l = kl'

Dokaz:

$$\frac{m'}{n'} + \frac{k'}{l'} = ^{(def)} \frac{m'l' + n'k'}{n'l'} \cdot \frac{mk}{mk} =$$

$$= \frac{m'l'mk + n'k'mk}{n'ml'k} =$$

$$= \frac{m'mk'l + m'nk'k}{m'nk'l} = \frac{ml + nk}{nl} = ^{(def)} = \frac{m}{n} + \frac{k}{l}$$

Množenje v Q:

$$\frac{m}{n} \cdot \frac{k}{l} = \frac{mk}{nl}, m, k \in \mathbb{Z}, n, l, \in, \mathbb{N}$$

Množenje je dobro definirano (izpeljava doma).

Deljenje v \mathbb{Q} :

$$\frac{m}{n}: \frac{k}{l} = \frac{ml}{nk}, m, k \in \mathbb{Z}, n, l \in \mathbb{N}, k \neq 0$$

Lastnosti seštevanja

Naj bo A (številska) množica z operacijama + in \cdot .

Osnovne lastnosti računskih operacij bomo imenovali **aksiomi**. Druge lastnosti izpeljemo iz aksiomov.

A1 asociativnost seštevanja

Za vse
$$a, b, c \in A$$
 velja $(a + b) + c = a + (b + c)$

A2 komutativnost seštevanja

Za vse $a, b \in A$ velja da a + b = b + a

A3 obstoj enote za seštevanje

Obstaja za element $0 \in A$ za katerega velja da: 0 + a = a za vse $a \in A$

A4 obstoj nasprotnega števila (elementa)

Za vsak $a \in A$ obstaja nasprotno število $-a \in A$ za katerega velja: (-a) + a = 0

 $\underline{\text{Opomba:}}$ Množica Aza operacijo +, ki ustreza aksiomom od A1 do A4 je $\overline{\textbf{Abelova}}$ grupa za +.

<u>Trditev:</u> Naj (A, +) ustreza aksiomom od A1 do A4.

- (1) $\forall a \in A \text{ ima eno samo nasproton število}$
- (2) **Pravilo krajšanja:** za vse $a, x, y \in A$ velja: $a + x = a + y \Rightarrow x = y$
- (3) -0 = 0

Dokaz:

(1) izberemo poljubno število $a \in A$. Dokazujemo da ima a natanko 1 nasprotni element.

Po A4 nasprotno število obstaja. Denimo, da sta $b,c\in A$ nasprotni števili od a.

$$b + a = 0 \text{ in } c + a = 0$$

$$(a + b) + c \stackrel{\text{A2}}{=} (b + a) + c \stackrel{\text{predp.}}{=} 0 + c \stackrel{\text{A2}}{=} c$$

$$(a + b) + c \stackrel{\text{A2}}{=} (b + a) + c \stackrel{\text{A1}}{=} b + (a + c) \stackrel{\text{A2}}{=} b + (c + a) \stackrel{\text{predp.}}{=} b + 0 \stackrel{\text{A2}}{=} 0 + b \stackrel{\text{A3}}{=} b$$

(2)
$$a + x = a + y \stackrel{A4}{\Rightarrow}$$
$$\Rightarrow (-a) + (a + x) = (-a) + (a + y) \stackrel{A1}{\Rightarrow}$$
$$\Rightarrow ((-a) + a) + x = ((-a) + a) + y \stackrel{A4}{\Rightarrow}$$
$$\Rightarrow 0 + x = 0 + y \stackrel{A3}{\Rightarrow}$$
$$\Rightarrow x = y$$

(3)
$$-0 = 0$$

$$0 \stackrel{\text{A4}}{=} (-0) + 0 \stackrel{\text{A2}}{=} 0 + (-0) \stackrel{\text{A3}}{=} -0$$

Odštevanje v A: razlika števil a in b je vsota a in nasprotnega elementa od b.

$$a - b := a + (-b)$$

b-a je rešitev enačbe a+x=b

Pozor: odštevanje ne ustreza aksiomom od A1 do A4.

Lastnosti množenja

A5 asociativnost množenja

Za vse $a, b, c \in A$ velja: (ab)c = a(bc)

A6 komutativnost množenja

Za vse $a, b, c \in A$ velja: ab = ba

A7 obstoj enote za množenje

 $\exists 1 \in A : 1 \cdot a = a, \text{ za } \forall a \in A$

A8 obstoj obratnega števila (elementa)

Vsak $a \in A, a \neq 0$, ima obratni element, tj.: $a^{-1} \in A : a^{-1} \cdot a = 1$

Množici A z operacijo +, ki ustreza A1-A4, rečemo **grupa za seštevanje** (Abelova grupa).

Množica $A \setminus \{0\}$ z operacijo ·, ki ustreza A5-A8 je **grupa za množenje.**

Podobno kot za seštevanje lahko izpeljemo:

<u>Trditev:</u> veljajo:

- (1) Vsak $a \in A \setminus \{0\}$ ima eno samo obratno število
- (2) (pravilo krajšanja za množenje)

Za vsak $a, x, y \in A$ velja: $ax = ay \Rightarrow x = y$

 $(3) 1^{-1} = 1$

A9 Števili 0 in 1 sta različni $0 \neq 1$

A10 Distributivnost

Za vsake $a, b, c \in A$ velja:

$$(a+b)c = ac + bc$$

<u>Def:</u> Množico A z operacijama + in ·, ki ustreza aksiomom A1-A10, imenujemo **komutativen**⁴ **obseg** ali **polje**.

Primer: $(\mathbb{Q}, +, \cdot)$ so polje.

V A vpeljemo urejenost z dvema aksiomoma:

A11: Za vsak $a \in A \setminus \{0\}$ velja, da je natanko eno od števil a, -a pozitivno. Število 0 ni niti pozitivno niti negativno. (Število a je negativno, če je število -a pozitivno).

A12: Za vsaka $a, b \in A$ velja: če sta a in b pozitivni števili, potem sta tudi a + b in $a \cdot b$ pozitivni števili.

<u>Def:</u> Če ima obseg $(A, +, \cdot)$ urejenost, ki izpolnjuje A11 in A12, A imenujemo **urejen obseg** (urejeno polje).

Primer: $(\mathbb{Q}, +, \cdot)$ z običajno urejenostjo je urejen obseg.

 $\frac{m}{n}$ je pozitiven, če $m \cdot n > 0$

<u>Def.</u> Naj bo A urejen obseg. Za poljubna $a, b \in A$ definiramo:

Pišemo a > b natanko tedaj, kadar je a - b pozitivno število.

V tem primeru pišemo tudi b < a

V posebnem primeru pišemo a > 0, kadar je a pozitivno število.

<u>Def:</u> Naj bo A urejen obseg. Za poljubna $a, b \in A$

 $a \leq b$ natanko takrat, kadar a < b ali a = b

Trditev: V urejenem obsegu A velja:

(1) Za poljubni števili $a, b \in A$ velja natanko ena od možnosti:

$$a < b, a = b, a > b$$

Sledi iz A11 uporabljen za a - b.

⁴komutativnost se nanaša na komutativnost množenja

- (2) Za poljubne $a,b,c\in A$ velja: če je $a>b\wedge b>c$, potem a>c (tranzitivnost)
- (3) Za poljubne $a, b, c \in A$ velja: če je a > b, potem a + c > b + c
- (4) Za poljubne $a, b, c, \in A, c > 0$: če je a > b, potem je ac > bc
 - 5 Za poljubne $a,b,c,d,\in A$: če je a>b>0 in c>d>0, potem je ac>bd

Dokaz:

(2) $a > b \land b > c \Rightarrow a > c$ Po definiciji: a - b > 0 in b - c > 0Zato po A12:

$$(a-b) + (b-c) > 0$$

 $a + (-b) + b + (-c) > 0$
 $a + 0 + (-c) > 0$
 $a - c > 0$

zato a > c

(3) denimo, da je a > b dokazujemo, da je a + b > b + c, tj: (a + c) - (b + c) > 0

$$(a+c) - (b+c) = a + c + (-(b+c)) =$$

$$a + c + (-b) + (-c) =$$

$$(a + (-b)) + (c + (-c)) =$$

$$a + (-b) = a - b$$

Dokaz da -(b+c) = (-b) + (-c):

-(b+c) je nasprotni element od b+c, kar pomeni da je njuna vsota enaka 0. Če velja -(b+c)=(-b)+(-c), mora biti tudi b+c+(-b)+(-c)=0:

$$b+c+(-b)+(-c) \stackrel{A2,A1}{=} (b+(-b))+(c+(-c)) \stackrel{A4}{=} 0+0 \stackrel{A3}{=} 0$$

Če a > b je a - b > 0, zato je (a+c) - (b+c) > 0, kar pomni a+c > b+c.

(5) a > b > 0 in c > d > 0

Dokazujemo ac > bd:

$$a > b \stackrel{4}{\Rightarrow} ac > bc \ (c > 0)$$

$$c > d \stackrel{4}{\Rightarrow} bc > bd \ (b > 0)$$

Z upoštevanjem tranzitivnosti (2) dobimo: $ac > bd\square$

Racionalna števila predstavimo na številski premici.

Racionalna števila so na številski premici **povsod gosta** tj: na vsakem nepraznem odprtem intervalu leži racionalno število.

Racionalna števila ne pokrijejo številske premice

<u>Trditev:</u> rešitev enačbe $x^2=2, x>0$ ni racionalno število. $(\sqrt{2}\notin\mathbb{Q})$ Dokaz: Dokazujemo da x ni ulomek.

Dokazujemo s protislovjem.

- \bullet privzamemo, da tisto kar dokazujemo ni res. (predpostavimo, da x je ulomek)
- sklepamo
- skepi nas privedejo v protislovje s predpostavko

$$x = \frac{m}{n}, m, n \in \mathbb{N}$$

Če je x ulomek, ga lahko zapišemo kot okrajšan ulomek, zato sta m in n tuji

si števili.

$$x^{2} = 2 \Rightarrow \left(\frac{m}{n}\right)^{2} = 2$$

$$\frac{m^{2}}{n^{2}} = 2$$

$$m^{2} = 2n^{2}$$

$$2|m^{2} \Rightarrow 2|m$$

$$\exists l \in \mathbb{N} : m = 2l$$

$$4l^{2} = 2n^{2}$$

$$2l^{2} = n^{2}$$

$$2|n^{2} \Rightarrow 2|n$$

$$\rightarrow \leftarrow$$

Dokaz da $2|m^2\Rightarrow 2|m$: Če je m liho, potem $k\in\mathbb{N}_0$

$$m = 2k + 1$$

$$m^2 = 4k^2 + 4k + 1$$

$$m^2 \text{ je lih}$$

1.4 Dedekindov aksiom in Realna števila

Radi bi skonstruirali številsko množico, ki bo vsaj urejen obseg in, ki zapolni številsko premico.

Dedekindov pristop