homework 2, version 3

Homework 2 - convolutions

```
18.S191, Fall 2023
```

This notebook contains *built-in*, *live answer checks*! In some exercises you will see a coloured box, which runs a test case on your code, and provides feedback based on the result. Simply edit the code, run it, and the check runs again.

Feel free to ask questions!

Initializing packages

When running this notebook for the first time, this could take up to 15 minutes. Hang in there!

```
begin
using Images, ImageIO, FileIO
using PlutoUI
using HypertextLiteral: @htl, @htl_str
using OffsetArrays
end
```

Exercise 1 - Convolutions in 1D

As we have seen in the lectures, we can produce cool effects using the mathematical technique of **convolutions**. We input one image M and get a new image M' back.

Conceptually we think of M as a matrix. In practice, in Julia it will be a Matrix of color objects, and we may need to take that into account. Ideally, however, we should write a **generic** function that will work for any type of data contained in the matrix.

A convolution works on a small **window** of an image, i.e. a region centered around a given point (i, j). We will suppose that the window is a square region with odd side length $2\ell + 1$, running from $-\ell, \ldots, 0, \ldots, \ell$.

The result of the convolution over a given window, centred at the point (i, j) is a single number; this number is the value that we will use for $M'_{i,j}$. (Note that neighbouring windows overlap.)

To get started, in Exercise 1 we'll restrict ourselves to convolutions in 1D. So a window is just a 1D region from $-\ell$ to ℓ .

Exercise 1.1

Let's create a vector v of random numbers of length n=100.

```
n = 100

1 n = 100

1 v = rand(\underline{n})[1:50]
```

Feel free to experiment with different values!

Let's use the function colored_line to view this 1D number array as a 1D image.

```
1 colored_line(v)
```

colored_line (generic function with 2 methods)

Try changing n and v around. Notice that you can run the cell v = rand(n) again to regenerate new random values.

Exercise 1.2

We need to decide how to handle the **boundary conditions**, i.e. what happens if we try to access a position in the vector \mathbf{v} beyond 1:n. The simplest solution is to assume that v_i is 0 outside the original vector; however, this may lead to strange boundary effects.

A better solution is to use the *closest* value that is inside the vector. Effectively we are extending the vector and copying the extreme values into the extended positions. (Indeed, this is one way we could implement this; these extra positions are called **ghost cells**.)

Write a function extend(v, i) that checks whether the position i is inside 1:n. If so, return the ith component of v; otherwise, return the nearest end value.

extend (generic function with 2 methods)

```
function extend(v::AbstractVector, i)

if (0<i) && (i<size(v)[1])

return v[i]

elseif i<1

return v[1]

else

return v[size(v)[1]]

end

end</pre>
```

Some test cases:

```
5
1 extend([5,6,7], 1)

5
1 extend([5,6,7], -8)

7
1 extend([5,6,7], 10)
```

Got it!

You got the right answer!

```
example_vector = [0.8, 0.2, 0.1, 0.7, 0.6, 0.4]
1 example_vector = [0.8, 0.2, 0.1, 0.7, 0.6, 0.4]
```


- 1 colored_line(example_vector)
 - Extended with o:

```
1 colored_line([0, 0, example_vector..., 0, 0])
```

• Extended with your extend function:

Exercise 1.3

```
mean (generic function with 1 method)
```

```
1 function mean(v)
2
3    return sum(n)/size(v)[1]
4 end
```

Write a function box_blur(v, 1) that blurs a vector v with a window of length 1 by averaging the elements within a window from $-\ell$ to ℓ . This is called a **box blur**. Use your function extend to handle the boundaries correctly.

Return a vector of the same size as v.

box_blur (generic function with 1 method)

```
1 function box_blur(v::AbstractArray, l)
 2
       new_v=zeros(size(v)[1])
 3
       window_sum=0
 4
 5
       for i in 1:size(v)[1]
           for j in i-l:i+l
 7
                window_sum += extend(v,l)
 8
           end
 9
           new_v[i]=window_sum/2*l+1
10
       end
11
       return new_v
12 end
```

```
1 colored_line(box_blur(example_vector, 1))
```

Exercise 1.4

Apply the box blur to your vector v. Show the original and the new vector by creating two cells that call colored_line. Make the parameter ℓ interactive, and call it l_box instead of l to avoid a naming conflict.

```
1 colored_line(box_blur(v,l))
```

```
Hint
```

Exercise 1.5

The box blur is a simple example of a **convolution**, i.e. a linear function of a window around each point, given by

$$v_i' = \sum_m v_{i-m} \, k_m,$$

where k is a vector called a **kernel**.

Again, we need to take care about what happens if v_{i-m} falls off the end of the vector.

Write a function convolve(v, k) that performs this convolution. You need to think of the vector k as being *centred* on the position i. So m in the above formula runs between $-\ell$ and ℓ , where $2\ell+1$ is the length of the vector k.

You will either need to do the necessary manipulation of indices by hand, or use the OffsetArrays.jl package.

convolve (generic function with 2 methods)

```
1 function convolve(v::AbstractVector, k)
       n_v, n_k = length(v), length(k)
 2
 3
       new_v = zeros(Float64, n_v)
       offset = n_k \div 2
 4
 5
       for i in 1:n_v
 6
           window_sum = 0.0
 7
 8
            for j in 1:n_k
                v_{index} = i - offset + j - 1
 9
                window_sum += extend(v, v_index) * k[j]
10
11
            end
           new_v[i] = window_sum
12
13
       end
14
       return new_v
15 end
```

```
Hint
```

```
test_convolution = [2.0, 11.0, 110.0, 1100.0, 11000.0]
```

```
1 test_convolution = let
2     v = [1, 10, 100, 10000, 10000]
3     k = [1, 1, 0]
4     convolve(v, k)
5 end
```

Edit the cell above, or create a new cell with your own test cases!

```
Got it!
```

Awesome!

Exercise 1.6

Define a function box_blur_kernel(l) which returns a *kernel* (i.e. a vector) which, when used as the kernel in convolve, will reproduce a box blur of length 1.

box_blur_kernel (generic function with 1 method)

```
1 function box_blur_kernel(l)
2
3    return ones(l)
4 end
```



```
box_blur_kernel_test = [1.0, 1.0, 1.0]
1 box_blur_kernel_test = box_blur_kernel(box_kernel_l)
```

Let's apply your kernel to our test vector v (first cell), and compare the result to our previous box blur function (second cell). The two should be identical.

```
1 let
2    result = convolve(v, box_blur_kernel_test)
3    colored_line(result)
4 end
```

```
1 let
2    result = box_blur(v, box_kernel_l)
3    colored_line(result)
4 end
```

```
Hint
```

Exercise 1.7

The definition of a Gaussian in 1D is

$$G(x) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}\left(rac{-x^2}{2\sigma^2}
ight),$$

or as a Julia function:

Write a function gauss that takes σ as a keyword argument and implements this function.

```
gauss (generic function with 1 method)

1 gauss(x::Real; \sigma=1) = 1 / sqrt(2\pi * \sigma^2) * exp(-x^2 / (2 * \sigma^2))
```

We need to **sample** (i.e. evaluate) this at each pixel in an interval of length 2n + 1, and then **normalize** so that the sum of the resulting kernel is 1.

gaussian_kernel_1D (generic function with 1 method)

```
1 function gaussian_kernel_1D(n; σ = 1)
       sum_gauss=0
       for i in -n:n
 4
           sum_gauss += gauss(i,σ)
 5
       end
 6
       new_vec= ones(2n+1)
 7
       for i in -n:n
           new_vec[i+n+1]=gauss(i,σ)/sum_gauss
 9
       end
10
11
12
13
       return new_vec
14 end
```

```
Got it!
```

Yay ♥

```
1 colored_line(gaussian_kernel_1D(4; σ=1))
```

You can edit the cell above to test your kernel function!

Let's try applying it in a convolution.

```
1 @bind gaussian_kernel_size_1D Slider(0:6)
```

create_bar (generic function with 1 method)

Exercise 2 - Convolutions in 2D

Now let's move to 2D images. The convolution is then given by a **kernel matrix** K:

$$M'_{i,j} = \sum_{k.l} \, M_{i-k,j-l} \, K_{k,l},$$

where the sum is over the possible values of k and l in the window. Again we think of the window as being *centered* at (i, j).

A common notation for this operation is \star :

$$M' = M \star K$$

Exercise 2.1

→ Write a new method for extend that takes a matrix M and indices i and j, and returns the closest element of the matrix.

extend (generic function with 2 methods)

```
function extend(M::AbstractMatrix, i, j)

clamped_i=clamp(i,1,size(M)[1])
clamped_j=clamp(j,1,size(M)[2])
return M[clamped_i,clamped_j]

end
```

Hint

Let's test it!


```
1 small_image = Gray.(rand(5,5))
```

• Extended with 0:

• Extended with your extend function:

Got it!

Good job!

Extending Philip

```
url =
"https://user-images.githubusercontent.com/6933510/107239146-dcc3fd00-6a28-11eb-8c7b-41aaf6
 1 url = "https://user-images.githubusercontent.com/6933510/107239146-dcc3fd00-6a28-11eb-
   8c7b-41aaf6618935.png"
philip_filename = "C:\\Users\\Dell\\AppData\\Local\\Temp\\jl_EtM7exqDmZ"
 1 philip_filename = download(url) # download to a local file. The filename is returned
 1 philip = load(philip_filename);
```

1 philip_head = philip[470:800, 140:410];


```
1 [
      extend(philip_head, i, j) for
2
3
          i in -50:size(philip_head,1)+51,
          j in -50:size(philip_head,2)+51
5]
```

Exercise 2.2

Implement a new method convolve (M, K) that applies a convolution to a 2D array M, using a 2D kernel K. Use your new method extend from the last exercise.

convolve (generic function with 2 methods)

```
1 function convolve(M::AbstractMatrix, K::AbstractMatrix)
 2
       xM_d=size(M)[1]
 3
       yM_d=size(M)[2]
 4
       xK_d=size(K)[1]
 5
       yK_d=size(K)[2]
       x_offset=xK_d÷2
 6
       y_offset=yK_d÷2
 7
 8
       new_M=similar(M,RGB{Float64})
       for i in 1:xM_d
 9
10
           for j in 1:yM_d
                window_sum=RGB(0.0,0.0,0.0)
11
12
                for k in 1:xK_d
                    for l in 1:yK_d
13
                        window_sum += extend(M,(i-x_offset+k-1),(j-y_offset+l-1))*K[k,l]
14
15
                    end
                end
16
17
                new_M[i,j]=window_sum
18
           end
19
       end
20
       return new_M
21 end
```

```
Hint
```

Let's test it out!

test_image_with_border =


```
1 test_image_with_border = [get(small_image, (i, j), Gray(0)) for (i,j) in
Iterators.product(-1:7,-1:7)]
```


1 convolve(test_image_with_border, K_test)

Edit K_test to create your own test case!

1 convolve(philip_head, K_test)

You can create all sorts of effects by choosing the kernel in a smart way. Today, we will implement two special kernels, to produce a **Gaussian blur** and a **Sobel edge detection** filter.

Make sure that you have watched the lecture about convolutions!

Exercise 2.3

The 2D Gaussian kernel will be defined using

$$G(x,y)=rac{1}{2\pi\sigma^2}{
m exp}\left(rac{-(x^2+y^2)}{2\sigma^2}
ight)$$

How can you express this mathematically using the 1D Gaussian function that we defined before?

```
gauss (generic function with 2 methods)

1 gauss(x, y; \sigma=1) = 2\pi*\sigma^2 * gauss(x; \sigma=\sigma) * gauss(y; \sigma=\sigma)
```

gaussian_2d_kernel (generic function with 1 method)

```
1 function gaussian_2d_kernel(σ,l)
2
       sum_2d_gauss=0
       for i in 1:l, j in 1:l
3
4
           sum_2d_gauss += gauss(i,j,σ=σ)
5
       end
       M=ones(l,l)
6
       for i in 1:1,j in 1:1
 7
           M[i,j]=gauss(i,j)/sum_2d_gauss
8
9
10
       return M
11 end
```

with_gaussian_blur (generic function with 1 method)

```
function with_gaussian_blur(image; σ, l)
convolve(image,gaussian_2d_kernel(σ,l))
end
```

Hint

Let's make it interactive.

1 with_gaussian_blur(gauss_camera_image; σ=face_σ, l=face_l)

1.0

1 @bind face_o Slider(0.1:0.1:10; show_value=true)

3

1 @bind face_l Slider(0:20; show_value=true)

When you set face_o to a low number (e.g. 2.0), what effect does face_l have? And vice versa?

Exercise 2.4

Create a Sobel edge detection filter.

Here, we will need to create two filters that separately detect edges in the horizontal and vertical directions, given by the following kernels:

$$G_x = egin{bmatrix} 1 & 0 & -1 \ 2 & 0 & -2 \ 1 & 0 & -1 \end{bmatrix}; \qquad G_y = egin{bmatrix} 1 & 2 & 1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}$$

We can think of these filters as derivatives in the x and y directions, as we discussed in lectures.

Then we combine them by finding the magnitude of the **gradient** (in the sense of multivariate calculus) by defining

$$G_{
m total} = \sqrt{G_x^2 + G_y^2},$$

where each operation applies *element-wise* on the matrices.

Use your previous functions, and add cells to write helper functions as needed!

```
3×3 Matrix{Int64}:
 1
    2
         1
    0
 0
         0
 -1
    -2
        -1
 1 begin
       sobel_x=[1 0 -1
 2
 3
               2 0 -2
                1 0 -1]
 4
 5
       sobel_y=[1 2 1
 6
               0 0 0
 7
               -1 -2 -1]
 8 end
```

with_sobel_edge_detect (generic function with 1 method)

```
function with_sobel_edge_detect(image)
image_x=convolve(image,sobel_x)
image_y=convolve(image,sobel_y)
image_x_gray=Gray.(image_x)
image_y_gray=Gray.(image_y)
new_image= .√((image_x_gray .^ 2) .+ (image_y_gray .^ 2))

return new_image
end
```


1 @bind sobel_raw_camera_data camera_input(;max_size=200)

1 Gray.(with_sobel_edge_detect(sobel_camera_image))

Function library

```
Just some helper functions used in the notebook.

hint (generic function with 1 method)

almost (generic function with 1 method)

still_missing (generic function with 2 methods)

keep_working (generic function with 2 methods)

yays =
    [Great!, Yay •, Great! •, Well done!, Keep it up!, Good job!, Awesome!, You got the right answ.

correct (generic function with 2 methods)

not_defined (generic function with 1 method)

camera_input (generic function with 1 method)

process_raw_camera_data (generic function with 1 method)
```