FRM Part 1

Book 3 - Financial Markets and Products

PROPERTIES OF STOCK OPTIONS

Learning Objectives

After completing this reading you should be able to:

- ✓ Identify the **six factors that affect an option's price** and describe how these six factors affect the price for both European and American options.
- Identify and compute upper and lower bounds for option prices on non-dividend and dividend-paying stocks.
- Explain put-call parity and apply it to the valuation of European and American stock options.
- Explain the early exercise features of American call and put options.

Six Factors Affecting Option Prices

1. Current stock price (S)

- The value of a call options increases as S increases (decreases).
- For put options, the value of a put decreases (increases) as S increases (decreases).

2. Strike price of the option (K)

- For call options, the value decreases as the strike price increases.
- For put options, the value increases as the strike price increases.

3. Time to expiration (T)

- With American style options as the time to expiration increases, the value of the option increases.
- With more time, there are higher chances of the option moving inthe-money.
 - However, the same does not apply to European-style options, precisely when the underlying has scheduled dividends.

Six Factors Affecting Option Prices

4. Short-term risk-free rate (r)

 As the risk-free rate increases, the value of a call (put) increases (decreases).

5. Dividends (D)

- As the dividend increases, the value of a call (put) decreases (increases).
- The reason behind this is that immediately after payment of a dividend, the stock price falls.
- The call option holder has no access to the dividends because they do not own the underlying stock.

Six Factors Affecting Option Prices

6. Expected volatility of stock prices (σ)

- Volatility is considered the most significant factor in the valuation of options.
- As volatility increases, the value of all options increases.
- In particular, the maximum loss on a call is limited to the premium paid.
 - ✓ Thus, as volatility increases, there are higher chances of the option expiring in-the-money.

Pricing Bounds for Options

- For the next slides, let:
 - \circ **c** = value of European call option.
 - C = value of an American call option.
 - \circ **p** = value of European put option.
 - P = value of an American put option.
 - \circ **S**_T = value of the stock at expiration.

Pricing Bounds for Options

- A call option gives the holder the right to buy the stock at a specified price.
 - The value of the call is always less than the value of the stock.

$$c \leq S_{0 \ and} \ C \leq S_{0}$$

- If the value of a call were to be higher than the value of the underlying stock, arbitrageurs would sell the call and buy the stock, earning an instant risk-free profit in the process.
- A put option gives the holder the right to sell the underlying stock at a specified price.
 - The value of a put is always less than the strike price.

$$p \leq K_{and} P \leq K$$

If the value of a put were to be higher than the strike price, everyone would move swiftly to sell the option and then invest the proceeds at the risk-free rate throughout the life of the option.

Put-Call Parity

- Put call parity states that the price of a call option implicitly informs a certain price for the corresponding put option with the same strike and expiration, and vice versa.
- Expressed mathematically,

$$c + Ke^{-rT} = S_0 + p$$

- Where:
 - o **c** = value of call option
 - **K** = strike price
 - o **p** = value of put option
 - o S_0 = initial stock price

Put-Call Parity

- On the expiration date: $S_T + p = c + K$
- Own the stock trading at \$100, own the put option with EP = \$90: At expiration,

Exp date Price	\$80	\$89	\$110	\$130
Stock	\$80	\$89	\$110	\$130
Put Option	\$10	\$1	\$0	\$0
Portfolio	\$90	\$90	\$110	\$130

 Own the call with EP = \$90, own a bond that matures for \$90. At expiration,

Exp date Price	\$80	\$89	\$110	\$130
Call Option	\$0	\$0	\$20	\$40
Bond	\$90	\$90	\$90	\$90
Portfolio	\$90	\$90	\$110	\$130

• Before the expiration date: $S_0 + p = c + Ke^{-rT}$

Put-Call Parity In European Options

Example

- A stock currently sells for \$51.
 - A 3-month call option on the stock, with a strike price of \$50, has a price of \$5.
 - The continuously compounded risk-free rate is 10%.
- Determine the price of the associated put option.

Solution

We have the formula:

$$\circ \quad c + Ke^{-rT} = p + S_0$$

Making p the subject,

$$o p = c + Ke^{-rT} - S_0$$

$$\circ = 5 + (50e^{-0.10 \times \frac{3}{12}}) - 51$$

$$\circ = 2.77$$

Put-Call Parity In European Options

- If p is greater than or less than 2.77, there will be arbitrage opportunities.
- For example, assume p = 3.50. The following arbitrage opportunities would present themselves:
 - Buy call for \$5;
 - II. Short put to realize t \$3.50;
 - III. Short the stock to realize \$51;
 - IV.Invest \$49.5 (= 51 + 3.5 5) for 3 months, making \$50.75 (= $49.5e^{10\% \times 3/12}$).
- \triangleright Let S_T be the price of the stock at expiry:
- If $S_T > 50$,
 - Receive \$50.75 from the investment
 - Exercise the call to buy the stock for \$50.
 - Net profit = \$0.75

- If $S_T < 50$,
 - Receive \$50.75 from the investment
 - Put exercised by holder:
 buy the stock for \$50.
 - Net profit = \$0.75

Put-Call Parity In European Options

- Put call parity is only valid for European options.
 - For American options with the possibility of early exercise, the relationship turns into an equality:

$$S_0 - K \leq C - P \leq S_0 - Ke^{-rT}$$

Effect of Dividends

- When a stock pays a dividend, its value must decrease by the amount of the dividend.
 - This increases the value of a put option and decreases the value of a call option.
- The payment of a dividend will reduce the lower pricing bound for a call and increase the lower pricing bound for a put.

Lower Bounds of American Options

Option	Minimum Value	Maximum Value
American call	$C \ge max(0, S_0 - Ke^{-rT})$	S _o
American put	$P \ge max(0, K-S_0)$	X

Book 3 - Financial Markets and Products

PROPERTIES OF STOCK OPTIONS

Learning Objectives Recap:

- ✓ Identify the six factors that affect an option's price and describe how these six factors affect the price for both European and American options.
- Identify and compute upper and lower bounds for option prices on nondividend and dividend-paying stocks.
- Explain put-call parity and apply it to the valuation of European and American stock options.
- Explain the early exercise features of American call and put options.

NEXT

TRADING STRATEGIES INVOLVING OPTIONS