

Pre-conference Workshop: Introduction to Causal Inference for Epidemiologists (II). XXXVII-SEE, Oviedo, Spain 2019

Miguel Angel Luque Fernandez

https://maluque.netlify.com/
https://ccci.netlify.com/

PART II: ESTIMATION and INFERENCE

ESTIMANDS, ESTIMATORS, and STATISTICAL INFERENCE

Most common ESTIMANDS

https://migariane.github.io/DeltaMethodEpi.nb.html

Most common ESTIMANDS

https://migariane.github.io/DeltaMethodEpi.nb.html

Estimands in Causal Inference

• RD = EY(1) - EY(0)

Most common ESTIMANDS

https://migariane.github.io/DeltaMethodEpi.nb.html

Estimands in Causal Inference

- RD = EY(1) EY(0)
- RR = EY(1) / EY(0)

Most common ESTIMANDS

https://migariane.github.io/DeltaMethodEpi.nb.html

Estimands in Causal Inference

- RD = EY(1) EY(0)
- RR = EY(1) / EY(0)
- MOR = EY(1)x E(1 Y(0)) / EY(0)xE(1-Y(1))

Most common ESTIMANDS

https://migariane.github.io/DeltaMethodEpi.nb.html

Estimands in Causal Inference

- RD = EY(1) EY(0)
- RR = EY(1) / EY(0)
- MOR = EY(1)x E(1 Y(0)) / EY(0)xE(1-Y(1))

G-Formula for the identification of the ATE with observational data

$$E(Y^{a}) = \sum_{y} E(Y^{a} \mid W = w)P(W = w)$$

$$= \sum_{y} E(Y^{a} \mid A = a, W = w)P(W = w) \text{ by consistency}$$

$$= \sum_{y} E(Y = y \mid A = a, W = w)P(W = w) \text{ by ignorability}$$

The **ATE**=

$$\sum_{w} \left[\sum_{y} P(Y=y \mid A=1, W=w) \right. \\ \left. - \sum_{y} P(Y=y \mid A=0, W=w) \right] P(W=w)$$

$$P(W = w) = \sum_{y,a} P(W = w, A = a, Y = y)$$

G-Formula for the identification of the ATE with observational data

The ATE=

$$\sum_{\boldsymbol{w}} \left[\sum_{\boldsymbol{y}} \, \boldsymbol{P}(\boldsymbol{Y} = \boldsymbol{y} \mid \boldsymbol{A} = \boldsymbol{1}, \boldsymbol{W} = \boldsymbol{w}) \, - \, \sum_{\boldsymbol{y}} \, \boldsymbol{P}(\boldsymbol{Y} = \boldsymbol{y} \mid \boldsymbol{A} = \boldsymbol{0}, \boldsymbol{W} = \boldsymbol{w}) \right] \boldsymbol{P}(\boldsymbol{W} = \boldsymbol{w})$$

$$P(W = w) = \sum_{y,a} P(W = w, A = a, Y = y)$$

G-Formula

- The sums is generic notation. In reality, likely involves sums and integrals (we are just integrating out the W's).
- The g-formula is a generalization of standardization and allow to estimate unbiased treatment effect estimates.

G-Formula for the identification of the ATE (Estimand) with observational data

The ATE=

$$\sum_{w} \left[\sum_{y} P(Y = y \mid A = 1, W = w) - \sum_{y} P(Y = y \mid A = 0, W = w) \right] P(W = w)$$

$$P(W = w) = \sum_{y,a} P(W = w, A = a, Y = y)$$

G-Formula

- The sums is generic notation. In reality, likely involves sums and integrals (we are just integrating out the W's).
- The **g-formula** is a non-parametric **generalization of standardization** and allow to estimate unbiased treatment effect estimates.

G-Formula for the identification of the ATE (Estimand) with observational data

The ATE=

$$\sum_{\mathbf{w}} \left[\sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = \mathbf{1}, \mathbf{W} = \mathbf{w}) \right. \\ \left. - \sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = \mathbf{0}, \mathbf{W} = \mathbf{w}) \right] \mathbf{P}(\mathbf{W} = \mathbf{w})$$

$$P(W = w) = \sum_{y,a} P(W = w, A = a, Y = y)$$

G-Formula

- In the presence of treatment or exposure effect heterogeneity (i.e. effect modification) simple conditional estimate is biased.
- The g-formula allows to estimate the marginal average treatment effect (i.e., effect for the population averaged across the different level of covariates) allowing to estimate unbiased treatment effect estimates.

Treatment heterogeneity

Simulation treatment heterogeneity and estimation using OR and MOR, n = 1,000.

Luque-Fernandez et al.(2019) Effect modification and collapsibility when estimating the effect of public health interventions: A Monte Carlo simulation comparing classical multivariable regression adjustment versus the G-Formula, based on a cancer epidemiology illustration. AJPH https://maluque.netlify.com/project/hetmor/

COR

$$COR = \frac{\frac{P(Y=1|A=1,W)}{(1-P(Y=1|A=1,W))}}{\frac{P(Y=1|A=0,W)}{(1-P(Y=1|A=0,W))}}$$

MOR

$$\text{MOR (G-Formula)} = \frac{\sum_{w} P(Y=1|A=1,W=w) \text{ P(W=w)}}{\frac{(1-\sum_{w} P(Y=1|A=1,W=w) \text{ P(W=w)})}{\sum_{w} P(Y=1|A=0,W=w) \text{ P(W=w)}}}{\frac{\sum_{w} P(Y=1|A=0,W=w) \text{ P(W=w)}}{(1-\sum_{w} P(Y=1|A=0,W=w) \text{ P(W=w)})}}$$

Treatment heterogeneity: simulations

Simulation treatment heterogeneity and estimation using OR and MOR, n = 1,000.

Luque-Fernandez et al.(2019) Effect modification and collapsibility when estimating the effect of public health interventions: A Monte Carlo simulation comparing classical multivariable regression adjustment versus the G-Formula, based on a cancer epidemiology illustration. AJPH https://maluque.netlify.com/project/hetmor/

ESTIMATION

Non-parametric G-Formula.

- Non-parametric G-Formula.
- Modelling the Outcome (Y):

- Non-parametric G-Formula.
- Modelling the Outcome (Y):
 - Parametric (maximum likelihood substitution) G-computation.

- Non-parametric G-Formula.
- Modelling the Outcome (Y):
 - Parametric (maximum likelihood substitution) G-computation.
- Modelling the treatment (A):

- Non-parametric G-Formula.
- Modelling the Outcome (Y):
 - Parametric (maximum likelihood substitution) G-computation.
- Modelling the treatment (A):
 - Propensity score (adjusting for) or matching.

- Non-parametric G-Formula.
- Modelling the Outcome (Y):
 - Parametric (maximum likelihood substitution) G-computation.
- Modelling the treatment (A):
 - Propensity score (adjusting for) or matching.
 - Inverse probability of treatment weights (IPTWs).

- Non-parametric G-Formula.
- Modelling the Outcome (Y):
 - Parametric (maximum likelihood substitution) G-computation.
- Modelling the treatment (A):
 - Propensity score (adjusting for) or matching.
 - Inverse probability of treatment weights (IPTWs).
- Modelling Both (A) and (Y): Parametric and semi-parametric Double Robust Estimators.

- Non-parametric G-Formula.
- Modelling the Outcome (Y):
 - Parametric (maximum likelihood substitution) G-computation.
- Modelling the treatment (A):
 - Propensity score (adjusting for) or matching.
 - Inverse probability of treatment weights (IPTWs).
- Modelling Both (A) and (Y): Parametric and semi-parametric Double Robust Estimators.
 - RA-IPTW

- Non-parametric G-Formula.
- Modelling the Outcome (Y):
 - Parametric (maximum likelihood substitution) G-computation.
- Modelling the treatment (A):
 - Propensity score (adjusting for) or matching.
 - Inverse probability of treatment weights (IPTWs).
- Modelling Both (A) and (Y): Parametric and semi-parametric Double Robust Estimators.
 - RA-IPTW
 - AIPTW

- Non-parametric G-Formula.
- Modelling the Outcome (Y):
 - Parametric (maximum likelihood substitution) G-computation.
- Modelling the treatment (A):
 - Propensity score (adjusting for) or matching.
 - Inverse probability of treatment weights (IPTWs).
- Modelling Both (A) and (Y): Parametric and semi-parametric Double Robust Estimators.
 - RA-IPTW
 - AIPTW
- Ensemble Learning: Targeted Maximum Likelihood Estimation.

- Non-parametric G-Formula.
- Modelling the Outcome (Y):
 - Parametric (maximum likelihood substitution) G-computation.
- Modelling the treatment (A):
 - Propensity score (adjusting for) or matching.
 - Inverse probability of treatment weights (IPTWs).
- Modelling Both (A) and (Y): Parametric and semi-parametric Double Robust Estimators.
 - RA-IPTW
 - AIPTW
- Ensemble Learning: Targeted Maximum Likelihood Estimation.

G-Computation: Regression Adjustment

RA: Regression-adjustment

$$\widehat{ATE}_{RA} = N^{-1} \sum_{i=1}^{N} [E(Y_i \mid A = 1, W_i) - E(Y_i \mid A = 0, W_i)]$$

$$m_A(w_i) = E(Y_i \mid A_i = A, W_i)$$

$$\widehat{ATE}_{RA} = N^{-1} \sum_{i=1}^{N} [\hat{m}_1(w_i) - \hat{m}_0(w_i)]$$

IPTW (Inverse probability treatment weighting)

Survey theory (Horvitz-Thompson)

$$\hat{P}_i = E(A_i \mid W_i)$$
; So, $\frac{1}{\hat{p}_i}$, if A = 1 and, $\frac{1}{(1 - \hat{p}_i)}$, if A = 0

Average over the total number of individuals

$$\widehat{ATE}_{IPTW} = N^{-1} \sum_{i=1}^{N} \frac{A_i Y_i}{\hat{p}_i} - N^{-1} \sum_{i=1}^{N} \frac{(1 - A_i) Y_i}{(1 - \hat{p}_i)}$$

AIPTW

AIPTW (Augmented Inverse probability treatment weighting)

Solving Estimating Equations

$$\widehat{ATE}_{AIPTW} = N^{-1} \sum_{i=1}^{N} \left[(Y(1) \mid A_i = 1, W_i) - (Y(0) \mid A_i = 0, W_i) \right] + N^{-1} \sum_{i=1}^{N} \left(\frac{(A_i = 1)}{P(A_i = 1 \mid W_i)} - \frac{(A_i = 0)}{P(A_i = 0 \mid W_i)} \right) \left[Y_i - E(Y \mid A_i, W_i) \right]$$

ATE estimators: drawbacks

Nonparametric

Course of dimensionality (sparsity: zero empty cell)

Parametric

- Parametric models are misspecified (all models are wrong but some are useful, Box, 1976), and break down for high-dimensional data.
- (RA) Issue: extrapolation and biased if misspecification, no information about treatment mechanism.
- (IPTW) Issue: sensitive to course of dimensionality, inefficient in case of extreme weights and biased if misspecification. Non information about the outcome.

Double-robust (DR) estimators

Prons: Semi-parametric Double-Robust Methods

- DR methods give two chances at consistency if any of two nuisance parameters is consistently estimated.
- DR methods are less sensitive to course of dimensionality.

Cons: Semi-parametric Double-Robust Methods

- DR methods are unstable and inefficient if the propensity score (PS) is small (violation of positivity assumption) (vand der Laan, 2007).
- AIPTW and IPTW-RA do not respect the limits of the boundary space of Y.
- Poor performance if dual misspecification (Benkeser, 2016).

Targeted Maximum Likelihood Estimation (TMLE)

Pros: TMLE

- (TMLE) is a general algorithm for the construction of double-robust, semiparametric MLE, efficient substitution estimator (Van der Laan, 2011)
- Better performance than competitors has been largely documented (Porter, et. al.,2011).
- (TMLE) Respect bounds on Y, less sensitive to misspecification and to near-positivity violations (Benkeser, 2016).
- (TMLE) Reduces bias through ensemble learning if misspecification, even dual misspecification.
- For the ATE, Inference is based on the Efficient Influence Curve.
 Hence, the CLT applies, making inference easier.

Cons: TMLE

• The procedure is only available in R: **tmle** package (Gruber, 2011).

Targeted learning

Springer Series in Statistics

¹ Source: Mark van der Laan and Sherri Rose. Targeted learning: causal inference for observational and experimental data. Springer Series in Statistics, 2011.

Why Targeted learning?

² Source: Mark van der Laan and Sherri Rose. Targeted learning: causal inference for observational and experimental data. Springer Series in Statistics, 2011.

TMLE ROAD MAP

MC simulations: Luque-Fernandez et al., 2017 (American Journal of Epidemiology)

	ATE		BIAS (%)		RMSE		95 %Cl coverage (%)	
	N=1,000	N=10,000	N=1,000	N=10,000	N=1,000	N=10,000	N=1,000	N=10,000
First scenario* (correctly specified models)								
True ATE	-0.1813							
Naïve	-0.2234	-0.2218	23.2	22.3	0.0575	0.0423	77	89
AIPTW	-0.1843	-0.1848	1.6	1.9	0.0534	0.0180	93	94
IPTW-RA	-0.1831	-0.1838	1.0	1.4	0.0500	0.0174	91	95
TMLE	-0.1832	-0.1821	1.0	0.4	0.0482	0.0158	95	95
Second scenario ** (misspecified models)								
True ATE	-0.1172							
Naïve	-0.0127	-0.0121	89.2	89.7	0.1470	0.1100	0	0
BFit AIPTW	-0.1155	-0.0920	1.5	11.7	0.0928	0.0773	65	65
BFit IPTW-RA	-0.1268	-0.1192	8.2	1.7	0.0442	0.0305	52	73
TMLE	-0.1181	-0.1177	0.8	0.4	0.0281	0.0107	93	95

^{*}First scenario: correctly specified models and near-positivity violation

^{**}Second scenario: misspecification, near-positivity violation and adaptive model selection

³ Data-Adaptive Estimation for Double-Robust Methods in Population-Based Cancer Epidemiology: Risk differences for lung cancer mortality by emergency presentation (2017). AJE. https://academic.oup.com/aje/article/doi/10.1093/aje/kwx317/4110407

TMLE ROAD MAP

 $^{^{\}rm 4}$ Luque-Fernandez, MA. 2017. TMLE steps adapted from van der Laan MJ, 2011.

G-computation RA: LAB 1

• It is a maximum likelihood substitution estimator of the G-Formula.

Ways to implement the G-Formula: RA

G-computation RA: LAB 1

- It is a maximum likelihood substitution estimator of the G-Formula.
 - It is equivalent to using the marginal distribution of the covariates as the standard in standardization.

Ways to implement the G-Formula: RA

G-computation RA: LAB 1

- It is a maximum likelihood substitution estimator of the G-Formula.
 - It is equivalent to using the marginal distribution of the covariates as the standard in standardization.

Ways to implement the G-Formula: IPTW

IPTW: LAB 2

 It is a maximum likelihood substitution estimator of the G-Formula using logistic regression.

Ways to implement the G-Formula: IPTW

IPTW: LAB 2

- It is a maximum likelihood substitution estimator of the G-Formula using logistic regression.
- It is equivalent to using the inverse weighting by the probability of treatment (i.e., propensity score) to estimate the parameters defined by a marginal structural model.

Ways to implement the G-Formula: IPTW

IPTW: LAB 2

- It is a maximum likelihood substitution estimator of the G-Formula using logistic regression.
- It is equivalent to using the inverse weighting by the probability of treatment (i.e., propensity score) to estimate the parameters defined by a marginal structural model.

ESTIMATION

G-Computation and IPTW in STATA

Classical regression adjustment

use http://www.stata-press.com/data/r14/cattaneo2.dta reg bweight i.mbsmoke mage

Source	SS	df	MS	Number of obs	=	60 83.71
Model Residual + Total	1341718.7 456829.236	2 57	670859.348 8014.54801 30483.8633	F(2, 57) Prob > F R-squared Adj R-squared Root MSE	= = =	0.0000 0.7460 0.7371 89.524
bweight	Coef.	Std. Err.	t I	P> t [95% Co	onf.	Interval]
mbsmoke smoker mage _cons	-368.1796 15.9611 3191.268	29.8213 3.324991 73.22399	4.80	0.000 -427.895 0.000 9.3029 0.000 3044.6	92	-308.4635 22.61928 3337.897

Stata v.14 new module for Tx effects

Computing the RA by "hand"

```
reg bweight mage if mbsmoke==1
predict double ylhat

reg bweight mage if mbsmoke==0
predict double y0hat
```

mean y1hat y0hat

lincom _b[y1hat] - _b[y0hat]

Mean	ŀ	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
(1)		-375.5157	6.60	1436	-56.88	0.000	-388.7251	-362.3062

Non-parametric estimation: conditional means saturated model

Non-parametric estimation: conditional means saturated model

```
reg bweight ibn.mbsmoke ibn.mbsmoke#c.mage, noconstant vce(robust) vsquish
//ATE
margins r.mbsmoke, contrast(nowald)

Contrasts of predictive margins
Model VCE : Robust

Expression : Linear prediction, predict()

| Delta-method | Contrast Std. Err. [95% Conf. Interval]
| Desta-method | Contrast Std. Err. [95% Conf. Interval]
| Contrast Std. Err. [95% Conf. Interval]
```

Estimation of the CRR

Estimation of the IPTW

Estimation of the IPTW by hand

. clear

```
. use http://www.stata-press.com/data/r14/cattaneo2.dta
. global Y bweight // Outcome
. global A mbsmoke // Exposure or treatment
. global W mmarried prenatall fbaby medu mage foreign mrace // Confounders.
. teffects ipw ($Y) ($A $W, logit), nolog vsquish
Treatment-effects estimation
                                          Number of obs = 4.642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
                             Robust
             bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]
ATE
             mbsmoke I
(smoker vs nonsmoker) | -240.2212  24.82773  -9.68  0.000  -288.8826  -191.5597
POmean
             mbsmoke |
          nonsmoker | 3408.235 9.440857 361.01 0.000 3389.732 3426.739
```

Estimation of the IPTW by hand

```
. logit $A $W, vce(robust) nolog
. predict double ps
. generate double ipw1 = ($A==1)/ps
. regress $Y [pw=ipw1]
Linear regression
                                     Number of obs = 864
                      Robust
  bweight | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    _cons | 3168.014 23.35919 135.62 0.000 3122.167 3213.862
. generate double ipw0 = ($A==0)/(1-ps)
. regress $Y [pw=ipw0]
                                     Number of obs = 3,778
Linear regression
   | Robust
bweight | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    _cons | 3408.235 9.523029 357.89 0.000 3389.565 3426.906
```

Estimation of the IPTW by hand: bootstrapping for SE

```
. program define ATE, rclass
. capture drop y1
. capture drop y0
. regress $Y [pw=ipw1]
. matrix y1 = e(b)
. gen double y1 = y1[1,1]
. regress $Y [pw=ipw0]
. matrix y0 = e(b)
. gen double y0 = y0[1,1]
. mean y1 y0
. lincom _b[y1]-_b[y0]
. return scalar ace = 'r(estimate)'
end
```

. program drop ATE

Estimation of the IPTW by hand

bias-corrected confidence interval

```
. qui bootstrap r(ace), reps(1000): ATE
. estat boot, all
Bootstrap results
                                          Number of obs
                                                          = 4,642
                                          Replications
     command: ATE
      bs 1: r(ace)
               Observed
                            Bootstrap
                  Coef. Bias Std. Err. [95% Conf. Interval]
     bs 1 | -240.22116 .2588013 24.989583 -289.1998 -191.2425 (N)
                                             -287.8047 -192.4459 (P)
                                             -287.6467 -192.4318 (BC)
(N)
     normal confidence interval
     percentile confidence interval
(P)
```

(BC)

Estimation of the IPTW by hand

- . // Test balance after adjustment
- . qui teffects ipw (\$Y) (\$A \$W)
- . tebalance summarize

Covariate balance summary

Number of obs	=	4,642	4,642.0
Treated obs	=	864	2,282.2
Control obs	=	3,778	2,359.8

Waighted

mmarried 5953009 020219 1.335944 1.017057 prenatall 3242695 0186635 1.496155 1.0278 fbaby 1663271 .0217106 .9430944 1.005001 medu 5474357 1156001 .7315846 .5112843 mage 300179 0740731 .8818025 .7979432 foreign 1706164 034976 .4416089 .8643349 .78643648 .786465		1	Standardized Raw	differences Weighted	Va Ra		nce ratio Weighted
MIRACE 1025446020103 1.150432 1.032110	prenatal1 fbaby medu mage		3242695 1663271 5474357 300179	0186635 .0217106 1156001 0740731	1.49615 .943094 .731584 .881802	5 4 6 5	1.0278 1.005001 .5112843 .7979432

Survival-time treatment effects example

The time to a second heart attack among women aged 45 to 55 years. The treatment, smoking, is stored in the 0, 1 indicator smoke. These data also contain each woman's age at the time of her first heart attack (age), and indices of her exercise level (exercise), diet quality (diet), and education attainment (education) prior to her first heart attack.

Survival-time treatment effects

last observed exit t = 34.17743

Survival-time treatment effects

```
*Best model for the treatment model
bfit logit smoke age exercise diet education
display "'r(bylist)'"
*I am using a double robust method to fit a IPW RA treatment effect model
with weighted adjustment for censoring
stteffects ipwra (age exercise diet education) (smoke age exercise diet education) \\\
(age exercise diet)
     failure d: fail
  analysis time t: atime
Iteration 0: EE criterion = 1.632e-16
Iteration 1: EE criterion = 9.694e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: Weibull
                        Robust
            _t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
ATE
            smoke L
POmean
           smoke |
       Nonsmoker | 4.14284 .4811052 8.61 0.000 3.199891 5.085789
```

Overlap: positivity assumption and SUTVA

Survival-time treatment effects

*IMAI AND RATKOVIC (2014): Over-identification or Test for Balance (Testing and checking conditional independence or unconfoundeness) tebalance summ

Covariate balance summary

		Raw	Weighted
Number of obs	-	2,000	2,000.0
Treated obs	=	738	994.1
Control obs	=	1,262	1,005.9

	Standardized	differences	Variance ratio		
	Raw	Weighted	Raw	Weighted	
age exercise diet education	3122094 4975269 2479756 4801442	0184574 0458412 .0021802 0216366	.8547308 .4966778 .7937645	.9370065 .8342339 1.095347 .978078	
education	1 .4001442	.0210300	.0013133	. 510010	

[.] tebalance over, nolog

Overidentification test for covariate balance

HO: Covariates are balanced:

chi2(5) = 3.28142Prob > chi2 = 0.6567

Tutorials Causal Inference

TMLE R-markdown 2019

https://migariane.github.io/TMLE.nb.html

TMLE Statistics in Medicine 2018

https://www.ncbi.nlm.nih.gov/pubmed/29687470

SIM-2018. CODE in R and STATA

https://github.com/migariane/SIM-TMLE-tutorial

LABs 1-2: G-Comp. and IPTW

Practicals

G-Comp. and IPTW using R (RStudio cloud)

LABs 1-2: G-Comp. and IPTW

Practicals

G-Comp. and IPTW using R (RStudio cloud)

RStudio Cloud link

https://rstudio.cloud/spaces/19488/project/434105

LABs 1-2: G-Comp. and IPTW

Practicals

G-Comp. and IPTW using R (RStudio cloud)

RStudio Cloud link

https://rstudio.cloud/spaces/19488/project/434105

Thank you!

Miguel Angel Luque-Fernandez

miguel.luque.easp@juntadeandalucia.es

@watzilei

Carlos III Institute of Health, Grant/Award Number: CP17/00206