Multimedia Computing

Image Compression:

Part 2

Topics

- Lossless image compression
- Lossy image compression
 - Distortion and Quantization
 - Transform based coding
 - Wavelet based coding
- JPEG Standard

Wavelet-Based Coding

- The objective of the wavelet transform (WT) is to decompose the input signal into components that are easier to deal with, or can be thresholded away, for compression purposes.
- We want to be able to at least approximately reconstruct the original signal given these components.
- The basis functions of DCT are cosine wave, which is a long wave and localized in frequency domain. The basis functions of the wavelet transform are localized in both time and frequency.

Suppose we are given the following input sequence

$${x_{n,i}} = {10, 13, 25, 26, 29, 21, 7, 15}$$

where i=0,1,2,...

Consider the transform that replaces the original sequence with its pairwise <u>average</u> x_{n-1,i} and <u>difference</u> d_{n-1,i} defined as follows:

$$x_{n-1,i} = \frac{x_{n,2i} + x_{n,2i+1}}{2}$$
$$d_{n-1,i} = \frac{x_{n,2i} - x_{n,2i+1}}{2}$$

- Suppose the length of original signal is even, the number of elements in each set $\{x_{n-1,i}\}$ and $\{d_{n-1,i}\}$ is exactly half of the number of elements in the original sequence.
- By concatenating the two sequences, the resulting sequence has the same length with the original sequence:

$${x_{n-1,i}, d_{n-1,i}} = {11.5, 25.5, 25, 11, -1.5, -0.5, 4, -4}$$

Since the first half of the above sequence contain averages from the original sequence, we can view it as a coarser approximation to the original signal. The second half of this sequence can be viewed as the details or approximation errors of the first half.

• We can further apply the same transform to $\{x_{n-1,i}\}$, and can obtain the second level approximation $x_{n-2,i}$ and $d_{n-2,i}$

$$\{x_{n-2,i}, d_{n-2,i}, d_{n-1,i}\} = \{18.5, 18, -7, 7, -1.5, -0.5, 4, -4\}$$

- This is the essential idea of multiresolution (multiscale) analysis.
- For this eight element sequence, we can make a 3 (because 8=2³) scale decomposition:

$$\{x_{n-3,i}, d_{n-3,i}, d_{n-2,i}, d_{n-1,i}\}=\{18.25,0.25,-7,7,-1.5,-0.5,4,-4\}$$

It is easily verified that the original sequence can be reconstructed from the transformed sequence using the relations

$$x_{n,2i} = x_{n-1,i} + d_{n-1,i}$$

$$x_{n,2i+1} = x_{n-1,i} - d_{n-1,i}$$

This transform is actually the discrete Haar wavelet transform

Haar Transform: (a) scaling function, (b) wavelet function.

Haar wavelet transform: reconstruction

We are given:

$$\{x_{n-3,i}, d_{n-3,i}, d_{n-2,i}, d_{n-1,i}\}=\{18.25, 0.25, -7, 7, -1.5, -0.5, 4, -4\}$$

• We first reconstruct $x_{n-2,i}$ from $x_{n-3,i}$ and $d_{n-3,i}$

$$x_{n-2,2i} = x_{n-3,i} + d_{n-3,i} = 18.5$$

$$x_{n-2,2i+1} = x_{n-3,i} - d_{n-3,i} = 18$$

Now the sequence is

$${x_{n-2,i}, d_{n-2,i}, d_{n-1,i}} = {18.5,18,-7,7,-1.5,-0.5,4,-4}$$

Haar wavelet transform: reconstruction

$${x_{n-2,i}, d_{n-2,i}, d_{n-1,i}} = {18.5,18,-7,7,-1.5,-0.5,4,-4}$$

• We then reconstruct $x_{n-1,i}$ from $x_{n-2,i}$ and $d_{n-2,i}$

$$X_{n-1,2i}(1) = X_{n-2,i}(1) + d_{n-2,i}(1) = 18.5 + (-7) = 11.5$$

$$X_{n-1,2i+1}(1) = X_{n-2,i}(1) - d_{n-2,i}(1) = 18.5 - (-7) = 25.5$$

$$X_{n-1,2i}(2) = X_{n-2,i}(2) + d_{n-2,i}(2) = 18 + 7 = 25$$

$$X_{n-1,2i+1}(2) = X_{n-2,i}(2) - d_{n-2,i}(2) = 18-7=11$$

Now the sequence is

$$\{x_{n-1,i}, d_{n-1,i}\}=\{11.5,25.5, 25,11,-1.5,-0.5,4,-4\}$$

 Finally, we can reconstruct the whole original sequence as

$${x_{n,i}} = {10, 13, 25, 26, 29, 21, 7, 15}$$

2D Haar WT

- Extending the 1D Haar discrete WT (DWT) to 2D case is very simple:
 - We first apply the 1D transform to each row of the original image;
 - 2. We then apply 1D transform to each column of the row-transformed image;
 - 3. Such a procedure can be iteratively implemented for multi-scale 2D Haar DWT.

2D Haar WT: example

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	63	127	127	63	0	0
0	0	127	255	255	127	0	0
0	0	127	255	255	127	0	0
0	0	63	127	127	63	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

The pixel values

Shown as an 8×8 image

2D Haar WT: example

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	95	95	0	0	-32	32	0
0	191	191	0	0	-64	64	0
0	191	191	0	0	-64	64	0
0	95	95	0	0	-32	32	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Intermediate output: 1st level, step 1 -- row transform

2D Haar WT: example

0	0	0	0	0	0	0	0
0	143	143	0	0	-48	48	0
0	143	143	0	0	-48	48	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0 -48	0 -48	0	0	0 16	0 -16	0
\vdash							

Intermediate output: 1st level, step 2 -- column transform

2D Haar WT: a simple graphical illustration

One level decomposition of a white square in grey background

2D Haar WT: Lena

Two-level Haar WT decomposition of the image Lena

1D discrete wavelet transform (DWT) (optional)

In orthogonal DWT, analysis filters h₀ and h₁ are identical to synthesis filters.

Orthogonal wavelet filters (optional)

Wavelet	Num.	Start	Coefficients
	Taps	Index	
Haar	2	0	[0.707, 0.707]
Daubechies 4	4	0	[0.483, 0.837, 0.224, -0.129]
Daubechies 6	6	0	[0.332, 0.807, 0.460, -0.135,
			-0.085, 0.0352]
Daubechies 8	8	0	[0.230, 0.715, 0.631, -0.028,
			-0.187, 0.031, 0.033, -0.011]

Bi-orthogonal wavelets (optional)

- For orthogonal wavelets, the forward transform and its inverse are transposes of each other and the analysis filters are identical to the synthesis filters.
- Without orthogonality, the wavelets for analysis and synthesis are called "bi-orthogonal". The synthesis filters are not identical to the analysis filters. To guarantee the perfect reconstruction, we require

$$h_1[n] = (-1)^n \tilde{h}_0[1-n]$$

$$\tilde{h}_1[n] = (-1)^n h_0[1-n]$$

Bi-orthogonal wavelet filters (optional)

Wavelet	Filter	Num.	Start	Coefficients
		Taps	Index	
Antonini 9/7	$h_0[n]$	9	-4	[0.038, -0.024, -0.111, 0.377, 0.853,
				0.377, -0.111, -0.024, 0.038]
	$\tilde{h}_{O}[n]$	7	-3	[-0.065, -0.041, 0.418, 0.788, 0.418, -0.041, -0.065]
Villa 10/18	$h_0[n]$	10	-4	[0.029, 0.0000824, -0.158, 0.077, 0.759,
				0.759, 0.077, -0.158, 0.0000824, 0.029]
	$\tilde{h}_{0}[n]$	18	-8	[0.000954, -0.00000273, -0.009, -0.003,
				0.031, -0.014, -0.086, 0.163, 0.623,
				0.623, 0.163, -0.086, -0.014, 0.031,
				-0.003, -0.009, -0.00000273, 0.000954]
Brislawn	$h_0[n]$	10	-4	[0.027, -0.032, -0.241, 0.054, 0.900,
				0.900, 0.054, -0.241, -0.032, 0.027]
	$\tilde{h}_{O}[n]$	10	-4	[0.020, 0.024, -0.023, 0.146, 0.541,
				0.541, 0.146, -0.023, 0.024, 0.020]

2D WT implementation (optional)

- For an N by N input image, the two-dimensional DWT proceeds as follows:
 - Convolve each row of the image with h₀[n] and h₁[n], discard the odd numbered columns of the resulting arrays, and concatenate them to form a transformed row.
 - After all rows have been transformed, convolve each column of the result with h₀[n] and h₁[n]. Again discard the odd numbered rows and concatenate the result.
- After the above two steps, one stage of the DWT is complete. The transformed image now contains four subbands LL, HL, LH, and HH, standing for low-low, high-low, etc.
- The LL subband can be further decomposed to yield yet another level of decomposition. This process can be continued until the desired number of decomposition levels is reached.

2D DWT (optional)

LL	HL
LH	НН

LL2	HL2	HL1
LH2	HH2	
Li	H1	HH1

One level 2D DWT

Two level 2D DWT

Input 16×16 image

Γ	158	170	97	104	123	130	133	125	132	127	112	158	159	144	116	91	
l	164	153	91	99	124	152	131	160	189	116	106	145	140	143	227	53	
l	116	149	90	101	118	118	131	152	202	211	84	154	127	146	58	58	ı
l	95	145	88	105	188	123	117	182	185	204	203	154	153	229	46	147	ı
l	101	156	89	100	165	113	148	170	163	186	144	194	208	39	113	159	ĺ
l	103	153	94	103	203	136	146	92	66	192	188	103	178	47	167	159	ı
l	102	146	106	99			39										
l	99	146	95	97	144	61	103	107	108	111	192	62	65	128	153	154	ĺ
ĺ	99	140	103	109	103	124	54	81	172	137	178	54	43	159	149	174	ĺ
l	84	133	107	84	149	43	158	95	151	120	183	46	30	147	142	201	ĺ
١	58	153	110	41			71										ĺ
l	56	141	108	58		51		61	88	166	58	103	146	150	116	211	
l		115		47		104		67						134		95	ı
l	35		151	67		88								128			ı
ĺ	89	98	97	51		101								43		76	
	44	105	69	69	68	53	110	127	134	146	159	184	109	121	72	113	
_																_	j

The Antonini 9/7 filter set is used. We have

Antonini 9/7		[0.038, -0.024, -0.111, 0.377, 0.853, 0.377, -0.111, -0.024, 0.038]
	$\tilde{h}_0[n]$	[-0.065, -0.041, 0.418, 0.788, 0.418, -0.041, -0.065]

```
h_1[n] = [-0.065, 0.041, 0.418, -0.788, 0.418, 0.041, -0.065]

\tilde{h}_1[n] = [-0.038, -0.024, 0.111, 0.377, -0.853, 0.377,

0.111, -0.024, -0.038]
```

Convolve the first row with both h₀[n] and h₁[n] and discarding the values with odd-numbered index. The results of these two operations are:

$$(I_{00}(:,0)*h_0[n])\downarrow 2 = [245,156,171,183,184,173,228;160],$$

 $(I_{00}(:,0)*h_1[n])\downarrow 2 = [-30,3,0,7,-5,-16,-3,16].$

 Form the transformed output row by concatenating the resulting coefficients. The first row of the transformed image is then:

$$[245, 156, 171, 183, 184, 173, 228, 160, -30, 3, 0, 7, -5, -16, -3, 16]$$

Continue the same process for the remaining rows.

The result after all rows have been processed

$$I_{10}(x, y) =$$

```
245 156 171 183 184 173 228 160 -30
                                                       -27
239 141 181 197 242 158 202 229 -17
                                         -20
                                                                 141
                                                  -50
195 147 163 177 288 173 209
                                              19
   139 226 177 274 267 247 163 -45
                                          24 - 29
                                                           -101
    145 197 198 247 230 239 143 -49
                                                   -26
                                                             101
192 145 237 184 135 253 169 192 -47
                                          36
                                                  -58
   159 156
            77 204 232
                         51 196
                                          -48
                                               30
                                                    11
                                                    33
                                                        51
                                                            -23
179 148 162 129 146 213
                         92 217 -39 18
                                           50 -10
                                                             -56
            97 204 202
                         85 234 -29
                                               23
                                                    37
155 153 149 159 176
                         65 236 -32
                                           85
                                                    38
                                                            -54 -31
                    204
145 148 158 148 164 157 188 215 -55
                                                    26
                                         -110
                                                             -1 -64
134 152 102
             70 153 126 199 207 -47
                                           13
                                              10 - 76
                                                              -7 - 76
127 203 130
             94 171 218 171
                             228
                                          -27
                                              15
                                                       76
70 188
         63 144 191 257 215 232
                                         -28 -9 19 -46
                                                                 91
         87 96 177 236 162 77 -2 20
85 142 188 234 184 132 -37 0
                                         -48
                                                   17 -56
129 124
        87
                                                              30 - 24
                                         27
```

Apply the filters to the columns of the resulting image. Apply both h₀[n] and h₁[n] to each column and discard the odd indexed results:

```
(I_{11}(0,:)*h_0[n])\downarrow 2 = [353, 280, 269, 256, 240, 206, 160, 153]^T

(I_{11}(0,:)*h_1[n])\downarrow 2 = [-12, 10, -7, -4, 2, -1, 43, 16]^T
```

 Concatenate the above results into a single column and apply the same procedure to each of the remaining columns.

$$I_{11}(x, y) =$$

```
120
353 212 251 272
                 281
                      234
                          308 289 -33
                                             -15
                      269
                                              -2
                                                          -26
    203
        254
             250
                 402
                          297
                               207 - 45
                                         11
                                                               -74
                                                                     23
        312
             280
                 316
                      353
                          337 227 -70
                                         43
                                              56
                                                 -23
                                                                    -81
                      328
                                                  23
        247 155
                 236
                          114
                               283 - 52
                                             -14
                                                                     12
        226
            172
                 264
                      294
                          113 330 -41
                                              31
                                                   23
                                                       57
                                                           60 - 78
                                                                     -3
                 230
                      219
                          232 300 -76
                                         67
                                             -53
                                                  40
                                                           46 - 18
206
         201
            192
                                                                   -107
                 244 294
        150 135
                          267
                               331
                                             -17
                                                   10 - 24
                                                                     89
    189 113 173
                 260 342
                          256 176 -20
                                         18
                                             -38
                                                       24
153
                                                                     -5
                                                   6 -38
         -9 - 13
                      11
                           12 - 69
                                  -10
                                       -1
                                              14
-12
                  -6
                                                                    -99
      3 - 31
             16
                  -1 -51 -10 -30
                                     2 - 12
                                                  24 - 32 - 45
                                             0
                                                               109
                                                                     42
        -44 - 35
                  67 -10 -17 -15
                                     3 - 15
                                             -28
                                                          -30
                                                   0
                                                                    -19
                                       -12
         -1 -37
                  41
                        6 - 33
                                 2
                                             -67
                                                   31
                                                                      0
                               -8 -11
                  2 –25
                          60
                                        -4 - 123
                                                 -12
                                                                    -12
                      48 -11
                  10
                                20
                                   19
                                        32
                                             -59
                                                                     73
                                                       70
                                                                16
                 -13 -23 -37 -61
                                        22
                                               2
                                                   13 - 12
                                                                    -45
                        5 -13 -50
                                    24 7
                                             -61
                                                       11 - 33
```

We can perform another stage of the DWT by applying the same transform procedure illustrated above to the upper left 8×8 DC image of $I_{12}(x,y)$. The resulting two-stage transformed image is

$$I_{22}(x, y) =$$

```
532
                             26
                                          25 - 33
                                                          -15
                                                                                        120
                                                                  9 -31
                 566
                        66
                             68 - 43
                                         68 - 45
                                                                           -26
           627
                                                                                         23
           478
                416
                       14
                            84
                                 -97 -229 -70
                                                            56
                                                               -23
                                                                                        -81
     335
                 553
                      -88
                                                          -14
                                                                 23
           477
                                                                                         12
       33 - 56
                  42
                           -43 - 36
                                                     14
                                                            31
                                                                  23
                                                                             60 - 78
 14
                       12 - 21
-13
            54
                  52
                                   51
                                         70 - 76
                                                    67
                                                          -53
                                                                 40
                                                                             46 - 18
                                                                                      -107
                             35 -56
                                        -55
                                                     90
                                                          -17
                                                                 10 -24
                             26
                                        -74 - 20
                                                          -38
                             11
                                   12
                                        -69 - 10
                                                    -1
                                                            14
                                                                                        -99
    3 -31 10 -1

5 -44 -35 67 -10 -17

9 -1 -37 41 6 -33

-3 9 -25 2 -25 60

22 32 46 10 48 -11

-18 32 -40 -13 -23 -37

2 -6 -32 -7 5 -13
                  16
                       -1 -51 -10
                                        -30
                                                2 - 12
                                                                  24 -32 -45
                                                           0
                                                                                 109
                                                                                         42
                                                3 - 15
                                        -15
                                                          -28
                                                                  0
                                                                           -30
                                                                                        -19
                                              9 -12
                                                          -67
                                                                  31
                                       -8 -11
                                                   -4 - 123
                                                                -12
                                      20 19 32
-61 8 22
                                                          -59
                                                                      70
                                                                            50
                                                                                  16
                                                                                         73
                                                                 13 - 12
                                                                                        -45
                                        -50 24
                                                          -61
                                                                       11 - 33
```

Embedded Zerotree of Wavelet Coefficients

- The embedded zerotree wavelet (EZW) algorithm is effective and computationally efficient for image coding.
- The EZW algorithm addresses two problems:
 - 1. Obtaining the best image quality for a given bit-rate, and
 - 2. Accomplishing this task in an embedded fashion.
- Using an embedded code allows the encoder to terminate the encoding at any point. Hence, the encoder is able to meet any target bit-rate exactly.
- Similarly, a decoder can cease to decode at any point and can produce reconstructions corresponding to all lower-rate encodings.

Parent child relationship in a zerotree

EZW scanning order

The Zerotree Data Structure

- The EZW algorithm efficiently codes the "significance map" which indicates the locations of nonzero quantized wavelet coefficients.
- This is achieved using a new data structure called the zerotree.
- Using the hierarchical wavelet decomposition presented earlier, we can relate every coefficient at a given scale to a set of coefficients at the next finer scale of similar orientation.
- The coefficient at the coarse scale is called the "parent" while all corresponding coefficients at the next finer scale of the same spatial location and similar orientation are called "children".

The Zerotree Data Structure

- Given a threshold T, a coefficient x is an element of the zerotree if it is insignificant and all of its descendants are insignificant as well.
- The significance map is coded using the zerotree with a four symbol alphabet:
 - The zerotree root: The root of the zerotree is encoded with a special symbol indicating that the insignificance of the coefficients at finer scales is completely predictable.
 - Isolated zero: The coefficient is insignificant but has some significant descendants.
 - Positive significance: The coefficient is significant with a positive value.
 - Negative significance: The coefficient is significant with a negative value.

Topics

- Lossless image compression
- Lossy image compression
 - Distortion and Quantization
 - Transform based coding
 - Wavelet based coding
- JPEG Standard

The JPEG Standard

- JPEG is an image compression standard that was developed by the "Joint Photographic Experts Group". It was formally accepted as an international standard in 1992.
- JPEG is a lossy image compression method. It employs a transform coding method using the DCT (Discrete Cosine Transform).
- An image is a function of i and j (or conventionally x and y) in the spatial domain.
- The 2D DCT is used in JPEG in order to yield a frequency response which is a function F(u, v) in the frequency domain, indexed by two integers u and v.

Observations for JPEG Compression

- The effectiveness of the DCT transform coding method in JPEG relies on 3 major observations.
- Observation 1: Useful image contents change relatively slowly across the image, i.e., it is unusual for intensity values to vary widely several times in a small area, for example, within an 8×8 image block.
 - much of the information in an image is repeated, hence "spatial redundancy".

Observations for JPEG Compression

- Observation 2: Psychophysical experiments suggest that humans are much less likely to notice the loss of very high spatial frequency components than the loss of lower frequency components.
 - the spatial redundancy can be reduced by largely reducing the high spatial frequency contents.
- Observation 3: Visual acuity (accuracy in distinguishing closely spaced lines) is much greater for gray than for color.
 - chroma subsampling (4:2:0) is used in JPEG.

Block diagram for JPEG encoder

Note: We will discuss YIQ, YUV color models and chroma subsampling in another lecture

Main Steps in JPEG Image Compression

- Transform RGB to YIQ or YUV and subsample color.
- DCT on image blocks.
- Quantization.
- Zig-zag ordering and run-length encoding.
- Entropy coding.

DCT on image blocks

- Each image is divided into 8 × 8 blocks. The 2D DCT is applied to each block image f(i,j), with output being the DCT coefficients F(u,v) for each block.
- Using blocks, however, has the effect of isolating each block from its neighbouring context. This is why JPEG images look blocky when a high compression ratio is specified by the user.

Quantization

$$\widehat{F}(u,v) = round\left(\frac{F(u,v)}{Q(u,v)}\right)$$

- F(u,v) represents a DCT coefficient, Q(u,v) is a "quantization matrix" entry, and F(u,v) represents the quantized DCT coefficients which JPEG will use in the succeeding entropy coding.
 - The quantization step is the main source for loss in JPEG compression.
 - The entries of Q(u,v) tend to have larger values towards the lower right corner. This aims to introduce more loss at the higher spatial frequencies – a practice supported by Observations 1 and 2.

Quantization Tables Q(u,v)

The Luminance Quantization Table

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

The Chrominance Quantization Table

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

Example

An 8×8 block from the Y image of 'Lena'

```
200 202 189 188 189 175 175 175
200 203 198 188 189 182 178 175
                                    -16 3 2 0 0 -11 -2 3
203 200 200 195 200 187 185 175
                                    -12 6 11 -1 3
200 200 200 200 197 187 187 187
200 205 200 200 195 188 187 175
200 200 200 200 200 190 187 175
                                      0 -3 -1 0 4
205 200 199 200 191 187 187 175
                                      3 -2 -3 3 3 -1 -1 3
210 200 200 200 188 185 187 186
                                     -2 5 -2 4 -2
                                                    2 - 3 0
            f(i,j)
                                             F(u,v)
```

JPEG compression for a smooth image block

Example

```
32 6 -1 0 0
                                    512 66 -10 0 0 0 0 0
     -1 0 0 0 0
                                    -12 0
                                            000000
     -1 0 1 0 0 0 0 0
                                    -14 0 16 0 0 0 0 0
     -1 0 0 0 0 0 0 0
                                    -14 0 000000
     0000000
                                      0 0 0 0 0 0 0 0
     0 0
          0 0 0
                                      0 0
                                             000000
     0 0 0 0 0 0 0
                                      0 0 0 0 0 0 0 0
     0 0
          0 0 0 0 0 0
                                             000000
          \hat{F}(u,v)
                                          \tilde{F}(u, v)
199 196 191 186 182 178 177 176
201 199 196 192 188 183 180 178
                                     -1 4 2 -4 1 -1 -2 -3
                                      0 -3 -2 -5 5 -2 2 -5
203 203 202 200 195 189 183 180
202 203 204 203 198 191 183 179
                                     -2 -3 -4 -3 -1 -4 4 8
200 201 202 201 196 189 182 177
                                      0 4 -2 -1 -1 -1 5 -2
200 200 199 197 192 186 181 177
                                      0 0 1 3 8 4
204 202 199 195 190 186 183 181
                                      1 -2 0 5 1 1
                                      3 -4 0 6 -2 -2 2 2
207 204 200 194 190 187 185 184
                                      \epsilon(i,j) = f(i,j) - \tilde{f}(i,j)
           \tilde{f}(i,j)
```

 $\tilde{F}(u,v)$ is the de-quantized DCT coefficients.

Another example

Another 8 x 8 block from the Y image of 'Lena'

```
70 70 100 70 87 87 150 187
                             -80 -40 89 -73 44 32 53 -3
                             -135-59-26 6
85 100 96
          79 87 154 87 113
                                            14 -3-13-28
100 85 116 79 70 87 86 196
                               47-76 66 -3-108-78 33 59
136 69 87 200 79 71 117 96
                               -2 10-18 0 33 11-21
161 70 87 200 103 71 96 113
                               -1 -9-22 8
                                           32 65 - 36 - 1
161 123 147 133 113 113 85 161
                            5-20 28-46
                                            3 24-30 24
146 147 175 100 103 103 163 187
                            6-20 37-28 12-35 33 17
156 146 189 70 113 161 163 197
                               -5-23 33-30 17 -5 -4 20
                                      F(u,v)
           f(i,j)
```

JPEG compression for a textured image block

Another example

```
-5 -4 9 -5 2 1 1
                                 -80-44 90-80
                                                48 4051
   -11 -5 -2 0 1 0 0 -1
                                -132 -60 -28
                                             0
                                                26
     3 -6 4 0 -3 -1 0
                                   42 - 78 64
                                             0-120-57 0 56
       1 -1 0 1
                                    0 17-22
                                                51
                                             0
     0 0 -1 0 0 1 0 0
                                    0 0-37 0
                                                 0109 0
                                                0 0 0
     0 -1 1 -1 0 0 0 0
                                   0-35 55-64
     0 0 0 0 0 0 0
                                       0 0 0
                                                0 0 0 0
     0 0 0 0 0 0 0
                                    0 0 0 0
        \hat{F}(u,v)
                                       \tilde{F}(u,v)
70 60 106 94 62 103 146 176
                                   0 10 -6 -24 25 -16
85 101 85 75 102 127 93 144
                                   0 -1 11 4-15 27
98 99 92 102 74 98 89 167
                                   2 - 14 24 - 23 - 4 - 11 - 3 29
132 53 111 180 55 70 106 145
                                   4 16 -24 20 24 1 11 -49
173 57 114 207 111
                  89 84 90
                              -12 13 -27 -7 -8 -18 12 23
164 123 131 135 133 92 85 162
                                 -3 0 16 -2 -20 21
                                   5 - 12 6 27 - 3 2 14 - 37
141 159 169 73 106 101 149 224
150 141 195 79 107 147 210 153
                                   6 5 -6 -9 6 14 -47 44
           \tilde{f}(i,j)
                                   \epsilon(i,j) = f(i,j) - \tilde{f}(i,j)
```

Run-length Coding on AC coefficients

- RLC aims to turn the $\hat{F}(u,v)$ values into sets $\{\#\text{-}zeros\text{-}to\text{-}skip\text{ , next non-}zero\text{ value}\}.$
- To make it most likely to hit a long run of zeros: a zig-zag scan is used to turn the 8×8 matrix $\widehat{F}(u,v)$ into a 64-vector.

Zig-Zag Scan in JPEG.

DPCM on DC coefficients

- The DC coefficients are coded separately from the AC ones.
- Differential Pulse Code Modulation (DPCM) is the coding method.
- If the DC coefficients for the first 5 image blocks are 150, 155, 149, 152, 144, then the DPCM would produce 150, 5, -6, 3, -8, assuming $d_i = DC_{i+1} DC_i$ and $d_0 = DC_0$.

Entropy Coding

- The DC and AC coefficients finally undergo an entropy coding step to gain a possible further compression.
- Use DC as an example: each DPCM coded DC coefficient is represented by (SIZE, AMPLITUDE), where SIZE indicates how many bits are needed for representing the coefficient, and AMPLITUDE contains the actual bits.
- In the example we're using, codes 150, 5, −6, 3, −8 will be turned into (8, 10010110), (3, 101), (3, 001), (2, 11), (4, 0111). (Note that for negative values the "0" and "1" will be exchanged.)
- SIZE is Huffman coded since smaller SIZEs occur much more often. AMPLITUDE is not Huffman coded because its value can change widely so Huffman coding has no appreciable benefit.

Baseline entropy coding details - size category

SIZE	AMPLITUDE
1	-1, 1
2	-3, -2, 2, 3
3	-74, 47
4	-158, 815
10	-1023512, 5121023

Four Commonly Used JPEG Modes

- Sequential Mode the default JPEG mode, implicitly assumed in the discussions so far.
 Each graylevel image or color image component is encoded in a single left-to-right, top-to-bottom scan.
- Progressive Mode.
- Hierarchical Mode.
- Lossless Mode (JPEG-LS).

References

Ze-Nian Li, M. S. Drew, Fundamentals of Multimedia, Prentice Hall Inc., 2004. Chapters 8 and 9.