Subsets

Subsets

```
Office Hours (unusual schedule)
```

- · M 4:45 ~ 6:15
- · T 9:00 ~ 10:30

Subsets

Notes.

Definition 1 (Subsets)

Let A and B be sets.

- To say that A is a subset of B (denoted $A \subseteq B$) means that for each x, if $x \in A$, then $x \in B$.
- To say that A is a proper subset of B (denoted $A \subseteq B$) means that $A \subseteq B$ and $A \neq B$.

E.g.
$$A = \{1, 2, 3\}$$
, $B = \{1, 2, 3, 4, 5\}$: $K = B$ and A is also a proper Subset of B .

- The relation ⊆ is called *set inclusion*.
- The notation $B\supseteq A$ means the same as $A\subseteq B$ and is read "B is a superset of A."

Set Inclusion

- <u>Defin</u> A≤B ⇔ (∀1)[1∈A ⇒ 1∈B]
 - (∀A,B) (∀x)(z∈A⇔z∈B) ⇔ A=B

Proposition 1 (Set Inclusion as Relation)

- Set inclusion is reflexive, antisymmetric, and transitive. In other words
- lacktriangle For each set A, we have $A \subseteq A$. (Reflexivity.) **2** For all sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B. (Antisymmetry.)
- **3** For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. (Transitivity.)
- Proof O Let A be a set. Let & be an element. Suppose & EA.
 - Then obviously XEA. Hence, we have shown that for each 1, if LEA, then dEA. Thus ASA.
 - (3) Let A and B be sets. Suppose $A \subseteq B$ and $B \subseteq A$.

(Wis that A=B.) Let & be an element. Suppose LEA,

Then LEB, because A ⊆ B. Conversely, Suppose X ∈ B.

Then $\pm \in A$, because $B \subseteq A$. So we have shown that for each ± 1 , $\pm \in A$ off $\pm \in B$.

In other words, we have shown that A = B.

③ NTS: (∀A,B,C)[ASB \ BSC ⇒ ASC]

Let A, B, and C be sets. Suppose A = B and B = C.

(WTS: A = C.) Let & be arbitrary. Suppose & A.

Then LEB, because ASB. But then thEC, because BSC.

We have shown that

for each &, if LEA, then LEC.

In other words, we have shown that A EC.

Empty Set

Proposition 2

For each set A, we have $\emptyset \subseteq A$.

- The proof involves a vacuously true statement.
- Conversely, if a set is a subset of any set, then it must be the empty set. In other words.

(S10E05) Let A be a set such that for each set B, we have $A \subseteq B$. Then

$$A=\varnothing$$
.

 $A = \varnothing.$ Let A be a set. We wish to show that $\text{for each } \ \pounds, \ \text{if } \ \pounds \in \varnothing \ , \ \text{then } \ \pounds \in A \ .$

Let χ be arbitrary. Note that the antecedent $\chi \in \emptyset$ of the conditional Sentence is false. Hence the conditional sentence is (Vacnously) true.

Exercise 1 (Subsets)

Answer the following questions.

- **1** Is $\{3,5\}$ a subset of $\{2,3,5\}$?
- Is $\{2, \{3, 5\}\}\$ a subset of $\{2, 3, 5\}$? No, because $\{3, 5\} \in A$ but $\{3, 5\} \notin B$
- **3** Write down all subsets of $\{1, 2, 3\}$.

(3)
$$propure \begin{cases} p \\ 114, 424, 434, \\ 11, 24, \\ 11, 34, \\ 12, 37 \end{cases}$$

Exercise 2 (\in vs. \subseteq)

Find two sets A and B such that:

- $\mathbf{2} \ A \in B \text{ and } A \nsubseteq B.$