Bio393: Genetic Analysis

Screens, selections, mutants, dosage

Where do all those mutant strains come from?

Natural

- Made by random errors of DNA repair, replication, transcription, recombination, etc.
- Made by natural mutagens (UV, etc.)
- Variants present in a population
- Rare or common

Induced

Made by mutagens (EMS, ENU, X-ray irradiation, etc.)

Where do all those mutant strains come from?

Natural

- Made by random errors of DNA repair, replication, transcription, recombination, etc.
- Made by natural mutagens (UV, etc.)
- Variants present in a population
- Rare or common

Induced

Made by mutagens (EMS, ENU, X-ray irradiation, etc.)

Genomes are full of mutations

D. melanogaster

D. melanogaster

A B C D E F G H chromosome

Every balancer chromosome:

1. has many inversions to eliminate recombination

Every balancer chromosome:

1. has many inversions to eliminate recombination

- 1. has many inversions to eliminate recombination
- 2. confers an easily scored dominant phenotype

- 1. has many inversions to eliminate recombination
- 2. confers an easily scored dominant phenotype

- 1. has many inversions to eliminate recombination
- 2. confers an easily scored dominant phenotype
- 3. is recessive lethal

<u>Sp</u> CyO

EMS
$$\pm \sigma \sigma x \frac{Sp}{CyO} \circlearrowleft$$

Screen: $\frac{\pm}{+}$ $\frac{d}{d}$ \mathbf{x} $\frac{Sp}{CyO}$ $\mathbf{\nabla}$ C_{yO}^{\pm} OR C_{yO}^{m} O' X_{CyO}^{∞} Single-pair crosses

Screen: $\frac{\pm}{+}$ $\frac{d}{d}$ \mathbf{x} $\frac{Sp}{CyO}$ $\mathbf{\nabla}$ C_{yO}^{\pm} OR C_{yO}^{m} O' X_{CyO}^{∞} Single-pair crosses C_{VO} \mathbf{X} C_{VO} $\mathbf{\hat{Q}}$

Screen: **EMS** $\frac{\pm}{+}$ $\frac{d}{d}$ \mathbf{x} $\frac{Sp}{CyO}$ $\mathbf{\nabla}$ C_{yO}^{\pm} OR C_{yO}^{m} O' X_{CyO}^{∞} C_{yO}^{∞} Single-pair crosses C_{yO}^{m} C_{yO}^{m} C_{yO}^{m} dead **Mutant?** Curly wings

How would you screen or select for mutants that cause a dominant or recessive phenotype in yeast, *C. elegans*, *Drosophila*, and mice?

What does a mutation do to gene function?

Loss of gene function (LoF)

Reduction of gene function (RoF)

Gain of gene function (GoF)

Altered function

Dominant or recessive correlates with mutation type most times

Hermann Muller

Muller's morphs - gene dosage tests

Loss of gene function (LoF)	amorph, nullomorph
Reduction of gene function (RoF)	hypomorph
Gain of gene function (GoF)	hypermorph
Altered function	neomorph, antimorph

```
m = mutation of gene
```

```
\triangle = deletion of gene
```

+ = normal copy of gene

```
= Phenotype is equivalent
```

```
> = Phenotype is more mutant than
```

< = Phenotype is less mutant than</pre>