Factor Theory

- Factors
 - Market, interest rate, investing styles (value/growth, low volatility, momentum)
 - o Fundamental: macroeconomic factors: inflation, economic growth
- Factor risk
 - Exposures to bad times, and must be compensated for with risk premium
- Principles
 - o **Factors** are important, not assets
 - Assets represent bundles of factors
 - Equity and government bonds can be factors
 - Corporate, private equity, hedge funds contain many factors
 - Investors have differing optimal risk exposures
 - Volatility, economic growth
- CAPM
 - Covariance with market portfolio, beta = cov(x,M) / Var(M)
 - Hold the factor, not individual asset
 - Mean-variance efficient portfolio, efficient frontier
 - Capital allocation line (CAL)
 - Mean-variance efficient (MVE) market portfolio, Sharpe ratio
 - Investors have their own optimal factor risk exposures
 - Along CAL, a combination of MVE and risk-free
 - Average investor is fully invested in the market
 - 100% hold MVE
 - Exposure to factor risk must be rewarded
 - When all investors invest in the same MVE, CAL -> capital market line (CML)
 - $E(R_M) R_F = \gamma \times \sigma_M^2$
 - $E(R_M) R_F$ is market risk premium
 - γ is sthe risk aversion
 - Risk is measured as beta exposure
 - SMI
 - $E(R_i) R_F = \beta_i \times (E(R_M) R_F) = \gamma \times cov(R_i, R_M)$
 - Higher beta -> lower diversification benefits
 - Valuable assets have low risk premium
 - Losses during low market returns -> high beta and should have high risk premiums
 - Positive payoff when market performs poorly, valuable -> low beta -> lower expected return
- CAMP limitations
 - o Break in illiquid, inefficient markets
 - o Investors only have financial wealth
 - Income and liability
 - Investors have mean-variance utility (symmetric)
 - Asymmetric view of risk, disliking losses
 - Investors have a single period investment horizon
 - Optimal is rebalance, multi-period strategy

- o Investors have homogeneous (identical) expectations
 - Have heterogeneous
- Markets are frictionless (no taxes or transaction costs)
 - Illiquid, cost is high
- All investors are price takers
 - Investors are price setters, large trade on special knowledge and move the market
- o Information is free and available to everyone
- Multifactor models
 - Arbitrage pricing theory (APT)
- Pricing kernels
 - o Bad times over multiple factors using a pricing kernel, SDF
 - o Index of bad times
 - $\mathbf{m} = \mathbf{a} + \mathbf{b} \times \mathbf{R}_{\mathbf{M}}$
 - predict asset price
 - $P_i = E[m \times payof f_i]$
 - Marginal utility
- EMH
 - o APT
 - Systematic factors cannot be removed, and should be compensated
 - Market near-efficient and information is costless
 - Active managers search for inefficiency in illiquid market -> make it more efficient
 - Circular argument: free -> no need to collect -> not fully reflected in price
 - Market efficiency
 - Beat market by saving txn costs
 - Identify areas of inefficiency
 - Vs CAMP
 - imperfect information, various costs, behavioural biases
 - o Behavioural
 - Rational: losses during bad times -> high return
 - Not bad for all (short)
 - Behavioural
 - Agents' reaction (under/over) -> high return
 - Barriers to the entry of capital make it difficult
 - Structural barriers (investors cannot, persist for long)
 - Regulatory barriers (minimum credit rating)

Factors

- Compensate losses in bad times
- Economy-side
 - Inflation, volatility, productivity, economic growth, demographics
- Tradable investment style
 - Value investing, small size investing, momentum
- Value-growth
 - Book-to-market (B/P, net asset/shares, price per share)

- Long value short growth
- Macro-Economic
 - Not the level of factors but the shocks
 - Growth, inflation, volatility
 - Growth
 - Business cycle (expansion), High real GDP and high consumption
 - recession
 - Equity -> worse, bonds -> well
 - Can weather a downturn -> buy equity -> good in long term
 - Cannot bear losses -> buy bond -> worse in the long
 - Expansion
 - Equity (small > big) > bond
 - High-yield bond (indifferent, slighter higher)
 - Inflation
 - Bad for stock and bond
 - Inflation lowers real bond return
 - Volatility
 - Inverse
 - Leverage effect
 - Increased volatility increase leverage because
 - Equity market value fall, debt stays approx. the same
 - Leverage increase, equity risker and volatility increase
 - Two paths to lower return for high volatility
 - leverage effect -> negative relationship
 - CAPM: volatility -> discount increase -> stock price decline -> future return higher (compensate)
 - Other
 - Productivity shocks: positive correlation
 - DSGE: investment, preferences, inflation, monetary, spending, labor supply
 - Demographics: a shock to labor output
 - OLG: overlapping generation.
 - Risk aversion increases with age, average age increase, equity risk premium increase
 - Political risk: once thought in emerging market. But affected both developed and undeveloped countries
- Volatility risk
 - Invest in less volatile asset link bond
 - o Buy put options: out-of-money put
- Volatility premium
 - Asset have positive premium -> long it
 - Volatility have negative premium -> short out-of-money put
 - But it can have massive loss in crisis
 - Only who can withstand massive losses should sell
- Dynamic risk factors
 - Macro factors (except volatility) are **not** tradeable
 - o Tradeable mode Fama and French model

- o MKT, SMB, HTML
 - MKT -> average around one, SMB&HML: average around zero
- SMB (disappear reasons)
 - Data mining
 - Investor actions
 - Bid up prices of small-cap stocks
 - o Maybe illiquid
- Value investing (HML, value-growth)
 - Value premium explanation
 - Rational
 - Beta increase during bad times
 - Value: old firms, most in fixed asset
 - High and asymmetric adjustment cost
 - Behaviour
 - Overextrapolation and overreaction
 - Overextrapolation: past growth will continue
 - Expect high -> bid up prices
 - once fail to meet, prices drop -> lower return
 - Loss aversion and mental accounting
 - More like gains over losses
 - Consider case-by-case rather on portfolio
 - Strategy
 - Riding the yield curve
 - Roll return
 - Carry in exchange
- Momentum/trend Investing
 - o WML, UMD
 - Negative feedback: value investing
 - Positive feedback: momentum
 - o Risk
 - Destabilizing, can lead to crash
 - Monetary and government risk
 - Macro factors
 - Explanation
 - Overreaction to good news
 - Overconfidence -> overreact -> push up prices
 - Underreaction to good new

Alpha

• Excess return/active return

$$\circ R_t^{ex} = R_t - R_t^b$$

Alpha

$$\circ \quad \sigma = \frac{1}{T} \sum R_t^{ex}$$

Tracking error (std of excess return)

$$\circ \quad \sigma = STD(R^{ex})$$

Information Ratio

$$\circ$$
 IR = $\frac{\alpha}{\sigma}$

- When benchmark is risk-free
 - $\circ \quad \sigma = R R_F$
- benchmark
 - well-defined
 - no ambiguity, verifiable
 - o tradable
 - o replicable
 - o adjusted-for-risk
- fundamental law of active management
 - \circ IR \cong IC $\times \sqrt{BR}$
 - o IC: correlation between predicted and actual value
 - o Breadth: number of investments
 - Not a tool for searching high IR
 - o Either play smarter or play often
 - o Ignore downside risk and assume independent
 - o AUM increase, IC decrease

Regression

- o CAMP
 - $R_i = \alpha + R_f + \beta \times (R_m R_f)$
 - $R_i = \alpha + (1 \beta) \times R_f + \beta \times R_m$
- Fama-French -factor regression
 - $R_i = \alpha + (1 \beta) \times R_f + \beta \times R_m + \beta_{smb} \times (SMB) + \beta_{HML} \times (HML)$
 - $\beta_{smb} > 0$: small else big
 - $\beta_{hml} > 0$ value else growth
- o Not tradable: No way to trade SMG and HML stocks
- o Factors are static

Style analysis

- Benchmark factor exposure over time
- Use tradeable indexes
- This process uses estimates that incorporate information up to time t. Every new month (t + 1) requires a new **regression** to adjust the factor loadings.
 This means that the beta factors will change over time to reflect changes in the real world.

• Nonlinear Alpha

- Alpha appear exists but not true
- Distribution is not normal, negative skew
- This will increase loss potential in the left-hand tail and make the middle of the distribution appear thicker. Skewness is not factored into the calculation of alpha, which is an issue for nonlinear payoff strategies.

Volatility Anomy

- Standard deviation increase -> average return decrease and Sharpe ratio decrease
- The low-risk anomaly violates the CAPM and suggests that low-beta stocks will outperform high-beta stocks.
- Beta anomy (Sharpe Ratio)

- High beta -> high standard deviation -> Sharpe ratio decrease
- Does not suggest that stocks with higher betas have low return

• Risk Anomy Explanation

- Data mining -> not supported
- o **leverage** constrained investors
 - cannot borrow money, invest in leverage built-in in the form of high beta,
 - more people but implicit-leverage4, bid up the price
- Institutional managers also have constraints
 - Against short selling
 - Have tracking error constraint
 - Cannot capture positive alpha
- o preference 单一商品,一致性减少回报
 - for high-volatility and high-beta stocks
 - more people buy increase price and decrease return
- o **heterogeneous** preferences 不一致,增加 inverse
 - heterogeneous preferences (disagreeing on investment potential) and having investment constraints could explain a portion of the risk anomaly.
 - when disagreement is low and investors are long-only constrained, then the CAPM holds the best.
 - When disagreement is high, some investments become overpriced and future returns are decreased.
 - Significant disagreement can lead to an inverse relationship between beta and returns.

Illiquid Asset

- Illiquid Characteristics
 - Most asset classes are illiquid
 - Trade infrequently, in small amounts, low turnover
 - Markets for illiquid assets are large
 - Investor holdings of illiquid assets
 - Home
 - Liquidity can dry up

Market Imperfections

- o Market participation costs 参与成本
 - Time, money, energy
 - Experience, capital, expertise
 - Clientele effect: only a few investors have expertise, capital, experience
- o Transaction costs 交易成本
 - Tax, commissions
 - Due diligence
- o Difficulties finding a **counterparty** (search frictions) 交易对手
- o Asymmetric information 信息不对称
 - Less willing to trade
 - Look for no-predatory counterparty

- o Price impacts
 - Large trade move markets
- Funding constraints
 - Financed largely with debt

Return Biases

- o Survivorship bias 高估回报
 - Reporting biases
 - Not report because not high, or stop reporting
 - Survivorship biases
 - Leave out funds that no longer exists
 - **High** Return 高估回报
- o Sample selection bias 高估回报和 alpha,低估 beta 和风险
 - Report return when they are high
 - High return, High alpha
 - lower beta, low variance
- o Infrequent trading 低估风险
 - Underestimate risk
 - Returns are smoothed, volatility is low
 - Lower beta, volatility, correlation
 - De-smooth using filtering algorithms
 - Add noise back to return

• Risk premium

- Across asset classes
 - Rely on manager skills
 - No index, no way to earn index return
 - No way to separate factor risk from fund managers
 - No way to separate passive return from alpha
- Within asset class
 - Illiquid asset has higher return
 - Overpay for illiquid assets (chase illusion of high return)
- Effects in Treasury markets
 - On-the-run liquid than off-the-run T-bills
- Effects in corporate bond markets
 - Large bid-ask spread and infrequent trading
- o Illiquidity effects in equity markets
- Harvest illiquid premium
 - Passive allocation to illiquid asset classes
 - o Choose more **illiquid** assets within an asset class: liquidity security **selection**
 - Acting as a market maker
 - o Dynamic factor strategies at the aggregate portfolio level
 - Long illiquid and short liquid
 - Easy to implement
- Portfolio allocation
 - Large transaction costs
 - Long time horizon between trades infrequent trading
 - Reduce optimal holdings
 - Rebalance illiquid assets

- No illiquidity arbitrages
 - Arbitrage requires continuously traded
- Must consume less, cannot hedge against declining values when cannot be traded
- Conclusions
 - Illiquid assets do not deliver high risk-adjusted returns
 - o Subject to agency problems, difficult to monitor managers
 - Illiquid assets are managed separately
 - Face high idiosyncratic risks

Portfolio Construction

- Input
 - Current portfolio, alpha, covariance, transaction cost
 - o active risk aversion: strength of preference for lower volatility
- refine alpha
 - o mean-variance with constraints are complex
 - o refine alpha in unconstrainted mean-variance
 - o constraints: investor or manager
 - scaling
 - $\alpha = \text{(volatility)} \times \text{(information coefficient)} \times N(0,1) \sim N(0,volatility \times IC)$
 - volatility is residual risk, IC: linear between forecasted alphas and actual returns
 - trimming
 - remove too large: 3 times,
 - large alpha: if questionable, set to zero; otherwise, reduce to maximum value
- Neutralization
 - o Remove bias and undesirable bet from alpha
 - Benchmark beta
 - Match the beta (benchmark and active portfolio).
 - Alpha of active portfolio is zero
 - $\alpha' = \alpha \alpha_b \times \beta$, use benchmark α
 - Beta of risk factor match beta of the risk factor in benchmark
 - Risk-factor
 - Weight of each industry to those of benchmark
 - $\alpha' = \alpha \bar{\alpha}$, average alpha of firms in the industry
 - Cash
 - No active cash position
 - Cash and benchmark can exist
- Transaction cost
 - Trading commission and spreads
 - o Point in time, benefits are over time.
- Active risk aversion
 - $\circ \quad risk \ aversion = \frac{IR}{2 \times active \ risk}$
- aversion to specific factor risk

- Potential large losses
- High risk aversion for specific factor will reduce dispersion
- High risk aversion increases similarity of client portfolios
- alpha coverage
 - stocks not in the benchmark
 - set benchmark weight =0 不在 benchmark 里的权值是 0
 - active weight can be assigned to create active alpha
 - stock in benchmark without forecast -> set alpha=0
 - o rest alpha $\alpha' = \alpha \sum_i w_i \times \alpha_i / \sum_i w_i$
- rebalance
 - o frequent trading and short time -> alpha uncertainty
 - o MC to value added = alpha IR \times MC to active risk of asset
 - o no-trade region
 - selling cost < MC to value added < cost of purchase
 - IR \times MC selling cost < alpha < IR \times MC + cost of purchase
- Portfolio construction
 - o Goal: high alpha, low active risk, low txn cost
 - $\alpha \gamma \times \text{active risk}^2 transaction cost$
 - o screen
 - allow some through but not the rest
 - use alpha to select, the top
 - use alpha to assign buy, hold, or sell.
 - Then purchase buy list , sell the sell list
 - Stratification
 - Divide into mutually exclusive categories prior to screening
 - Percentage weight of each category match benchmark
 - Risk control.
 - Reduce the bias across categories
 - Linear programming
 - Use more risk characteristics: size, sector, beta, volatility
 - No need mutually exclusive
 - Category weight match benchmark
 - Quadratic programming
 - Alpha, risks, txn costs, and constraints.
 - Estimation error: n^2 volatility and covariance
 - Portfolio return dispersion
 - Variability of return across client portfolios
 - Reduce differences in holding and beta
 - Transaction cost
 - High cost -> higher dispersion
 - Higher dispersion
 - More portfolios, high active risk, high cost

Utilization function

- utilization function
 - o active return $-\gamma \times Variance$, γ is the risk aversion
 - $\circ \quad f(\vec{w}) = \vec{w} \times \vec{\alpha} \gamma \times \vec{w} \times \Sigma \times \vec{w}$
- First order derivative

$$\begin{array}{ll}
\circ & \frac{\Delta f}{\Delta \vec{w}} = \vec{\alpha} - 2 \times \gamma \times \Sigma \times \vec{w} = 0 \\
\circ & \gamma = \frac{\alpha_1}{2 \times cov(1,P)} = \frac{\frac{\alpha_1}{\sigma}}{2 \times cov(1,P)/\sigma}
\end{array}$$

Two assets

$$\begin{array}{l} \circ \quad \frac{\Delta f}{\Delta w_1} = w_1 \times \alpha_1 + w_2 \times \alpha_2 - \gamma \times (w_1^2 \sigma_1^2 + 2 \times \rho \times w_1 \times \sigma_1 \times w_2 \times \sigma_2 + w_2^2 \sigma_2^2) \\ \circ \quad \frac{\Delta f}{\Delta w_1} = \alpha_1 - 2\gamma \times (w_1 \sigma_1^2 + \rho \times \sigma_1 \times w_2 \times \sigma_2) = 0 \\ \circ \quad \gamma = \frac{1}{2} \times \frac{\alpha_1}{w_1 \sigma_1^2 + \rho \times \sigma_1 \times w_2 \times \sigma_2} \\ \circ \quad \gamma = \frac{\alpha_1}{2w_1 \sigma_1^2} = \frac{\frac{\alpha_1}{\sigma_1}}{2\sigma_1} = \frac{IR}{2 \times active \ risk} \ \text{(assume r is zero)} \\ \circ \quad \end{array}$$

• Simple

Portfolio risk: analytical methods

- Diversified portfolio VaR
 - $\circ VaR = P \times Z \times \sigma_p$
- Individual VaR

$$\circ \quad VaR_i = |P_i| \times Z \times \sigma_p$$

- $\bullet \quad VaR = \sqrt{VaR_1^2 + 2 \times \rho \times VaR_1 \times VaR_2 + VaR_2^2}$
- Independent VaR

$$\circ VaR = \sqrt{VaR_1^2 + VaR_2^2}$$

• Undiversified VaR

$$\circ VaR = VaR_1 + VaR_2$$

• Equal weight

$$\circ \quad \sigma_p = \sigma \sqrt{\frac{1}{n} + \left(1 - \frac{1}{n}\right) \times \rho}$$

- Marginal VaR
 - $\circ MVaR_i = Z \times \frac{cov(i,p)}{\sigma_p} = Z \times \frac{1}{\sigma_p} \times (\Sigma \times \overrightarrow{w})_i$
 - o $MVaR_i = Z \times \sigma_p \times \beta_i$ (beta to the portfolio)
 - $\circ MVaR_i = Z \times \sigma_i \times \rho_i$
- Marginal VaR vector

- Incremental VaR
 - Full revaluation: time consuming
 - o approximation
 - risk factor of new position w
 - vector of factor margin VaR
 - cross product
 - o per collar covariance
 - $\Sigma \times \overrightarrow{w} \times P$
- Component VaR
 - o The amount of contribution of a position
 - o $CVaR_i = P_i \times MVaR_i = VaR_p \times w_i \times \beta_i = VaR_i \times \rho_i$

- $\quad \text{o} \quad \text{Contribution:} \ \frac{\text{CVaR}_{\text{i}}}{\text{VaR}_{\text{p}}} = \text{w}_{\text{i}} \times \beta_{i} = \rho_{i}$
- o Non-elliptical distribution
- Portfolio Risk Management MVP (minimize variance)
 - Minimize risk: $MVaR_i = MVaR_i$
 - Allocate more to lowest MVaR, lower allocation to highest MVaR
- Portfolio Management optimal
 - O Maximize $\frac{R_i R_f}{MVaR_i} = \frac{R_j R_f}{MVaR_j}$ (covariance contribution \Sigma*W vector is constant)
 - $\bigcirc \quad \text{Maximize } \frac{R_i R_f}{\beta_i} = \frac{R_j R_f}{\beta_j} \text{ (for elliptical)}$
 - o More to higher

VaR and Risk Budgeting in Investment Management

- Risk budgeting
 - o Top-down process

Figure 1: Sell Side and Buy Side Characteristics

Characteristic	Sell Side	Buy Side
Horizon	Short-term (days)	Long-term (month or more)
Turnover	Fast	Slow
Leverage	High	Low
Risk measures	VaR Stress tests	Asset allocation Tracking error
Risk controls	Position limits VaR limits Stop-loss rules	Diversification Benchmarking Investment guidelines

- Investment process
 - Step 1: long-term strategic asset allocation
 - Goal: MVP (balance return and risk)
 - Step 2: choose manager who passively or actively manage
 - Skill: tracking error
 - Globalization, complexity, dynamic
- Hedge fund
 - Leverage -> similar to seller side
 - o Liquidity:
 - lower correlation
 - Lower level of Transparency
- Absolute risk and relative risk
- Policy mix and active risk
 - Return = policy mix return + active risk return
 - VaR != policy mix VaR + active risk VaR (some correlation)
- Funding risk

_

- Surplus relative to asset (growth: expected and worst case)
 - SaR = VaR u = z $\times \alpha -$ u
- Surplus deficit: ending surplus
- Plan sponsor risk
 - o Economic risk
 - Cash-flow risk
- Monitor
 - o Taking more risk
 - o The same style
 - o Market more volatile
- Global custodian
 - Consolidated picture
 - o Less custodians but more features
 - Use VaR in the system
- Applications
 - Investment guidelines
 - Investment process
 - Asset allocation
 - Trading level: not standalone VaR, but marginal VaR
 - Choose the lower MVaR between a few positions
 - Look for the highest return-to-MVaR
- Risk budgeting
 - Determine the total amount of risk
 - Optimal allocation of assets
- Risk Allocation
 - $\circ \quad \mathbf{u_p} = \sum_i w_i imes u_i$ (portfolio return), u_i is excessive return
 - o $\sigma_{\rm p}^2 = \sum_i w_i \times \sigma_i^2$ (portfolio variance assume independence)
 - σ_i is std of $(u_i \bar{u})$
 - $\circ \quad \mathsf{Maximize} \ \mathsf{IR}_{\mathsf{p}} = \frac{u_{\mathsf{p}}}{\sigma_{\mathsf{p}}}$
 - First order Derivative
 - $\bullet \quad \frac{\partial IR_{p}}{\partial w_{i}} = \frac{u'_{p}\sigma_{p} \mu_{p}\sigma'_{p}}{\sigma_{p}^{2}} = \frac{u_{i} \times \sigma_{p} \mu_{p} \times w_{i}\sigma_{i}^{2}/\sigma_{p}}{\sigma_{p}^{2}} = 0$

 - $\bullet \quad \to \mathbf{w_i} = \frac{u_i/\sigma_i^2}{u_p/\sigma_p^2} = \frac{\mathrm{IR_i}/\sigma_i}{\mathrm{IR_p}/\sigma_p}$
 - Weight do not sum to 1, the rest is allocated to the benchmark

Risk Monitoring and performance measurement

- Risk measures
 - VaR and TEV
- Risk planning
 - Expected return and volatility
 - o Quantitative measure of success or failure
 - ROE or RORC
 - Risk capital

- Minimum acceptable RORC
- sensitivity analysis
- simulating portfolio
- Events cause ordinary damage vs serious damage
- Mission critical resources
- Risk Budgeting
 - Quantifies the plan
 - Minimum RORC and ROE
 - Mean-variance to determine weights
- Risk monitoring
 - Check variance deviation from budget
- Sources of Risk consciousness
 - o Banks
 - o Boards of investment clients, senior management, plan sponsors
 - o Investors become knowledgeable about choices
- RMU
 - Gather data
 - Monitor trends
 - Promote discussion
- Monitoring
 - o TEV consistent with target?
 - o Risk capital allocated to expected areas?
 - Break down -> style drift
- Liquidity considerations
 - o Liquidity duration

$$\circ \quad LD = \frac{Q}{0.1 \times V} = 10 \times \frac{Q}{V}$$

- Q: total shares
- V: daily volume
- Performance measures
 - Compare with benchmark and peer group
 - o Green zone, yellow zone, red zone
 - o Return attribution
 - Factors. Variance analysis
 - Sharpe and IR
 - o Compare with benchmark and peer groups
 - Linear regression of excessive return to excessive return to benchmark -> alpha (skill) and beta (leverage)
 - Peer group

Portfolio Performance evaluation

- Dollar-weighted return (IRR)
- Time-weighted return (compound growth)
 - o Geometric mean
 - Not affected by cash flow
- Risk-adjusted performance measure
 - Universe comparisons

- Investment style and then rank return
- Sharpe ratio
 - Use the total risk
- o Treynor
 - Use the beta (systematic risk)
- Portfolio
 - Well-diversified-> S and T are the same
 - Not-diversified -> S < T
- o Jensen's alpha
 - Alpha = real return CAPM return
- o Information ratio
 - Benchmark not risk-free
 - Surplus return and its std
- o M^2
 - Compare return with benchmark and adjust variance

$$M^2 = R_F + \frac{R_p - R_f}{\sigma_p} \times \sigma_m - R_m$$

- Rank
 - M^2 = Sharpe
 - Alpha = Trey
- Statistical significance of alpha

$$t = \frac{\alpha}{\sigma/\sqrt{N}} = \frac{\alpha}{\sigma} \times \sqrt{N} = IR \times \sqrt{N}$$

- Measuring Hedge fund
 - o Complicated
 - Nonlinear, data smoothing (illiquid),
- Dynamic risk levels
- Marketing timing
 - With regression
 - Call option
- Style analysis
 - o Regression with portfolio return against mutually set of asset classes
 - Weight non-negative and summing to 1
 - o Performance attribution

Allocation: R^2Selection: 1-R^2

Contribution of Selection to Performance
(7.5%-6%)×0.75 = 1.125%

Contribution of Asset
Allocation to
Performance
(0.75-0.5)×6%=1.5%

0.5 0.75 Weight

Hedge fund

•

- Compare with Mutual fund
 - o Private, less regulated and structured, highly leveraged (short and long)
 - Take larger bets
 - Privacy, little transparency
- Evolution
 - Selection bias/ self-reporting bias
 - o 2001: dot-come bubble
 - 20% net asset inflow, more institutional investors
 - o 1997-2007 shift
 - Private wealth -> institutions
 - Bearing credit and emerging market
- Alpha-beta
 - o **Distinguishing** alpha and beta
 - How much from active management
 - How much from risk (beta)
 - Separating alpha and beta
 - Pursuit alpha while keeping a target beta
 - Use derivative to limit beta
 - Strategy
 - Managed future (timing, lookback straddle)
 - Market timing funds, switch between stocks and treasuries
 - Both long and short
 - Payoff function: lookback straddle, lookback call and put
 - High leverage because of futures
 - No net long or net short bias
 - Global macro fund (betting, directional)
 - Directional movement in IR, FX, stock
 - Dynamic asset allocation, betting on risk factor over time
 - Managed future and global macro
 - Trending following (directional styles)
 - Asset allocation: make bets in different markets
 - Low return correlation to equities
 - Merge/risk arbitrage
 - Risk: deal risk (fail to close)
 - Distressed
 - In the middle of bankruptcy
 - Long bias (long to low credit rating)
 - Tail risk: big move in short-term rates
 - Similar to high-yield bonds
 - Merge/risk arbitrage and distressed
 - Event-driven, nonlinear return, tail risk
 - Hurt by extreme market movements
 - Fixed income arbitrage

- Exploit inefficiencies and price anomalies
- Swap spread trade
 - o Bet on fixed spread side > floating spread
- Yield-curve spread
 - o Price deviate in short time
 - o **Revert** to normal spreads over time
- Mortgage spread
 - Prepayment rate
- Fixed income volatility trades
 - o **Implied** volatility of interest rate > realized volatility
- Capital structure or credit arbitrage trades
 - Capitalize on mispricing different type of securities
- Convertible arbitrage
 - Long convertible securities, short common stock
 - Return: liquidity premium paid to convertible bonds
- Long/short equity
 - Directional exposure
 - Long small-cap, short large-cap
- Dedicated short
 - Net short in equities
 - Selling forward
 - Take offsetting long and stop-loss position
 - Negatively correlated to equities
- Emerging markets
 - Long bias, more difficult to short
- Equity market neutral
- o Performance
 - Still deliver alpha relative to equities
- Convergence of risk factors
 - Converge to risk factors
 - Market-wide funding crisis, difficult to spread among funds
 - Credit-driven tail risk
 - Can use managed futures
- Risk sharing asymmetry
 - Principal/agent conflict
 - Close
 - Harm track record
 - Reputational
 - solution
 - Manager invest a good portion of his own
- o Impact of institutional investors
 - Greater demands for operational integrity and governance
 - Differentiate themselves
 - Some for absolute performance, other for alternative sources of returns beyond equities

- Past fund failures
 - Poor decisions
 - Fraud
 - Extreme events
 - Excess leverage
 - Lack of liquidity
 - Poor controls
 - Insufficient questioning
 - Insufficient attention to returns
- DD
 - Manager evaluation
 - Investment process and controls
 - Operations and business models
- Manage evaluation
 - Strategy
 - Ownership
 - o Track record
 - Investment management
 - Background check
 - Reference check
- Risk Management Evaluation
 - o Risk
 - Security valuation
 - Portfolio leverage and liquidity
 - Exposure to tail risk
 - Risk reports
 - Consistency of fund terms with investment strategy
- Operational due diligence
 - Internal control assessment
 - Documents and disclosure
 - Service provider evaluation
- Business model and fraud risk
 - o Business model risk
 - Cash and working capital, succession plan,
- Fraud risk
- DD questionnaire

The New Era of Expected Credit Loss Provisioning

- ECL (expected credit loss)
- Forward-looking provisions
 - At the same time as loan origination
- Procyclicality
- IASB and FASB
 - PD point in time (not economic cycle)
 - o LGD and EAD (neutral)

- o IASB
 - ECL: three stages
 - Accrued interest on delinquent loans
- o **FASB**
 - ECL: right from start
 - Cash basis, cost recovery (payments applied to principle, then excess is interest)
- ECL IASB
 - o Performing, underperforming, impaired
 - Stage 1 12-month
 - 12-month ECL is computed
 - Interests original loan
 - Stage 2 life time
 - 30 days past due
 - Interest the same
 - o Stage 3
 - Credit impaired
- FASB
 - o ECL recorded as provision from the outset
 - Earlier and large recognition of losses
- Implementation
 - o EDTF
 - 20% in average
 - Problems
 - Low quality data to compute lifetime default probabilities
 - Insufficient tech resources
- Impact IASB
 - o Impact stage 2 most
 - o More losses in economic downturn
 - No impact for large banks with large capital buffer
 - Smoothing the issuance of loans

Big Data: New ticks for econometrics

- Overfitting
 - Less complex model
 - o Break into small samples to test and validate
- Regression analysis
 - Loss function with out-of-samples
- Active variable selection
 - Help to decrease overfitting
- Classification
 - Logit regression
 - o CART
- Cross-validation
 - K-fold cross validation
 - 1 fold for Testing and k-1 fold training set
 - o Rotate which fold is the testing

- o Averaged, out-of-sample
- Prune the tree
- Conditional inference tree (ctree)
 - Only one tree, no pruning with tuning parameters
 - Test if any independent variables are correlated with the dependent and choose the variable with strongest correlation
 - Split variable into two data subsets
 - Until correlation fall below a threshold
 - Isolate predictors into most specific terms
 - o Help to understand if a relationship truly exist

Random forest

- Bootstrap, tree growth without pruning,
- o majority vote
- Penalized regression
 - o Lasso
 - Limit number of parameters
- Collaboration
 - o Better explore blurred lines between correlation and causation
 - o Better understand time series data (traditional only on cross-sectional)
- Bayesian Structural time series
- Cause inference
- A/B test
 - Lost revenue in control region
 - Contrast could be from external factor
 - Random control group

Machine Learning: A Revolution in Risk Management and Compliance?

- Big data
 - Low-quality, unstructured data
- Machine learning
 - Supervisory approaches are difficult to apply
- Supervised machine learning
- Unsupervised machine learning
- Regression
 - o Quantitative, continuous
 - Linear and nonlinear
- Classification
 - Discrete, dependent variables
 - o email span, blood type, SVM
- Clustering
 - Anti-money laundering (AML)
- Prediction
 - o Out-of-sample
 - o Good predictive: no need to good at explaining or inferring
- Overfitting
 - Nonparametric, nonlinear tend to complex

- o Fit in specific, not perform well in out-of-sample
- o Model random error rather than underlying relationship in data
- Bootstring
 - Overweight instances to train model to easily detect them
- Bagging
 - o Run more models on different subsects
- + ensemble
 - o Improve out-of-sample predictive
- Machine learning
 - High quality, structured
- Deep learning
 - Mimic human brain
 - Each focus on feature (representation)
 - o Layers of representations to use a wide range of inputs
 - Low quality, unstructured
 - Learned from data
 - o Face, NLP
- Credit risk and revenue modelling
 - Overly complex and sensitive to overfitting data
 - o Too complex for regularly purpose
 - o Used in optimizing existing models with regulatory functions
- Fraud (false positive, data sharing, define, feedback, insufficient history data)
 - o Credit card fraud
 - o Anti-money laundering or financing of terrorism
 - Clustering, detect anomalies and reduce false positives
 - Traditional
 - More false positive, human involvement to filter
 - Challenge
 - Data sharing/usage, entrenched regulatory frameworks hinder the success of machine learning
 - Money laundering is difficult to define
 - Banks do not receive adequate feedbacks from law enforcement agencies on which txns are truly fraudulent,
 - hard to use history data to train.
- Surveillance of conduct and market abuse in trading
 - Rogue/insider trading
 - Early monitoring
 - Trading behaviour, single trade
 - Machine learning
 - Portfolios, connect to other activities (emails/phones)
 - Detect any deviation from normal
 - Challenge
 - Legal complexities of sharing past breach info
 - Must be auditable, difficult to explain
 - Solution
 - Combine with human decisions
 - Less complex and suitable for audit and regulatory

Central Clearing and risk transformation

- Impact
 - Solvency and liquidity
 - Enhance financial stability and reduce systematic risk, eliminated counterparty risk
 - Not completely eliminate systemic risk
- Counterparty risk to liquidity risk
 - Cash flow
 - Initial margin
 - MTM P&L settled daily
 - Clearing member be required to contribute more (right of access)
 - Balance sheet and solvency
 - Initial margin: transfer of assets, no impact on solvency
 - Variation margin: liquid to illiquid
 - Default contribution: 2% capital charge (impact most)
 - Liquidity
 - Initial and variation margins: deposited as liquid assets
 - So reduction in liquidity
 - Overall
 - No solvency impact
 - Liquidity impact: Reclassification of assets between liquid and nonliquid
- CCP liquidity resources
 - Hold liquid and low-risk assets
 - Short-term liabilities
 - Losses due to default of a clearing member: CCP need to pay defaulted counterparties
 - o Insolvency risk and capital sufficiency are far less relevant
- Loss sequence
 - Initial margin
 - By each clearing members
 - Default contribution of defaulting member
 - Mutualisation of large losses
 - CCP cover some maximum contribution first (skin in the gam)
 - Other members' default contributions
 - Recovery
 - When the entire default fund insufficient to cover
 - Right of assessment from non-defaulting members
 - Limited to the initial margin
 - Variation margin haircutting (VMGH)
 - Variation margin with negative balance
 - o Failure resolution
- Margin and liquidation costs
 - o Market risk: ignore spread, market depth
 - Liquidation costs: high for large positions or concentrated positions
 - Nonlinear to its size

- o Liquidation horizon
- o Default fund: include liquidity costs
- Proportional to gross not net
- CCP methods for **recovering** capital
 - Default fund assessment
 - Wrong-way risk
 - VMGH
 - The difference held by CCP to enhance liquidity

The Bank/Capital Markets Nexus Goes Global

- Banks and Capital Markets
 - o Link between banks and capital markets are global
 - Hair cut 2% -> leverage ½%=50

0

- Forward deleveraging and covered interest parity
- Forced deleveraging
 - o Reduction in leverage
 - o Haircut
- VIX as gauge of leverage
 - Low VIX, high leverage
 - Changed
 - Monetary easing
 - Regulation
 - Capitalization
- Covered interest parity (CIP)
 - CIP may oversimplify
 - o Insufficient capital
- US dollar as gauge of leverage
 - Weak dollar -> risk appetite is strong
 - o strong dollar, risk appetite is weak
- dollar strengthening
 - o balance sheet
 - weak dollar -> benefit liability, reduce tail risk
 - borrow more in capital market
 - domestic asset and dollar liabilities benefit most
 - strong dollar -> increase liability and tail risk
 - lending market
 - o export
 - o foreign currency appreciation (domestic currency depreciation)
 - positive for export
 - negative for borrowing
- international dollar lending
 - dollar appreciation
 - lending decline, increase cost of hedge
 - o look at bank lenders in all markets
 - o banks magnify shocks rather than absorb them

Fintech

- supply reasons
 - o automation in loan grating process
 - o non-traditional data
 - o timely decisions
 - o smaller upfront costs, high level of standardization
 - o reduce regulation costs
- demand
 - Borrowers
 - Loss of trust in traditional lenders
 - Interest savvy
 - investors
 - investing higher return and lower risk
- possible impediments
 - o use banking online banking
 - o economic downturn: uncertainty
 - regulatory
 - o reputational
- platforms
 - o traditional
 - borrowers and lenders interact directly
 - contract between borrower and lender
 - platform
 - fee: loan setup or loan repayment
 - credit rating
 - automated selection to diversify
 - similar to securitization
 - interest rate
 - **lender** make interest rate bids
 - platform provide rate
 - **borrowers** are given a rate
 - delinquent
 - insurance or guarantee/provision funds
 - pay expected default rate for covered loans
 - exit
 - pay fee, no exit guarantee
 - notary model
 - Germany, Korea, US
 - Fronting bank: provide the loan
 - Germany
 - Only authorized institutions can provide loan
 - Korea
 - No lending
 - Banks: set up loans, platform: transfer funds to banks as collateral
 - US

- Regulatory restriction, work with lending institution
- Guaranteed Return
 - Platform: guarantee the principle and/or interest
 - China and Sweden
 - Prohibit in the future
- o Balance sheet mode
 - Australia, Canada, US
 - China and US: combined with traditional and BS
 - Wealth mgt, trading, insurance
- Invoice trading model
 - Firms: make credit sales and record receivable
 - Sell for discount
 - Non-Recourse: high discount, transfer the risk
 - Recourse: lower discount, keep the risk
- Lenders
 - Individual and institutional investors
 - US and Canada
- Borrowers
- Micro financial benefits
 - More diversified groups
 - o Lower interest rate