Projeto de Métodos Numéricos - Parte 1

Autor: Filipe Barbosa Lima - fbl@cin.ufpe.br

Monitor chefe: Victor Crisóstomo Mellia - vcm@cin.ufpe.br

Professor: Ricardo Martins de Abreu Silva - rmas@cin.ufpe.br

Site da disciplina: https://sites.google.com/a/cin.ufpe.br/if816ec/home

ver. 2.01.2019.1 - 26/02/2019 ver. 1.01.2018.2 - 19/08/2018

Centro de Informática - UFPE www.cin.ufpe.br

Objetivo

Implementar um programa que receba um arquivo de entrada, calcule os métodos especificados nele e gere um arquivo de saída com as respectivas respostas.

Funcionalidades

Seu programa deve calcular os seguintes métodos:

- Euler
- Euler Inverso
- Euler Aprimorado
- Runge-Kutta
- Adam-Bashforth
- Adam-Multon
- Fórmula Inversa

Euler

Recebe como entrada os valores y(0),t(0), h, quantidade de passos, a função. E calcula cada passo do método.

Bônus: gere o gráfico

Euler Inverso

Recebe como entrada os valores y(0),t(0), h, quantidade de passos, a função. E calcule cada passo do método.

Dica: use o método de previsão a partir do método de euler.

Bônus: resolva sem usar o método de previsão

Bônus: gere o gráfico

Euler Aprimorado (Euler Modificado)

Recebe como entrada os valores y(0),t(0), h, quantidade de passos, a função. E calcule cada passo do método.

Dica: use o método de previsão a partir do método de euler.

Bônus: resolva sem usar o método de previsão

Bônus: gere o gráfico

Runge-Kutta

Recebe como entrada os valores y(0),t(0), h, quantidade de passos, a função. E calcule cada passo do método. Utilize Runge-Kutta de quarta ordem.

Bônus: faça runge-kutta para ordens mais altas.

Bônus: gere o gráfico

Adam-Bashforth

• Adam-Bashforth por lista de valores iniciais

Recebe como entrada a lista de valores de y,t(0), h, quantidade de passos, a função, a ordem (de 2 a 8). E calcule cada passo do método.

• Adam-Bashforth obtendo os valores iniciais por métodos anteriores

Recebe como entrada o tipo de método anterior, t(0), h, quantidade de passos, a função, a ordem (de 2 a 8). E calcule cada passo do método.

Dica: consulte o material de apoio para saber os coeficientes de cada ordem

Dica: em alguns materiais o conceito de ordem vária, utilize o conceito dado em sala

Dica: a quantidade de y iniciais necessários é igual a ordem -1

Bônus: resolva sem usar o método de previsão

Bônus: calcule para ordem n

Bônus: gere o gráfico

Adam-Multon

Adam-Multon por lista de valores iniciais

Recebe como entrada a lista de valores de y,t(0), h, quantidade de passos, a função, a ordem (de 2 a 8). E calcule cada passo do método.

Adam-Multon obtendo os valores iniciais por métodos anteriores

Recebe como entrada o tipo de método anterior, t(0), h, quantidade de passos, a função, a ordem (de 2 a 8). E calcule cada passo do método.

Dica: consulte o material de apoio para saber os coeficientes de cada ordem

Dica: em alguns materiais o conceito de ordem vária, utilize o conceito dado em sala

Dica: a quantidade de y iniciais necessários é igual a ordem -1

Dica: use o método de previsão a partir do método de bashforth.

Bônus: utilize o método de previsão a partir de outros métodos além de bashforth

Bônus: resolva sem usar o método de previsão

Bônus: calcule para ordem n

Bônus: gere o gráfico

Fórmula Inversa

Fórmula Inversa por lista de valores iniciais

Recebe como entrada a lista de valores de y,t(0), h, quantidade de passos, a função, a ordem (de 2 a 6). E calcule cada passo do método.

Fórmula Inversa obtendo os valores iniciais por métodos anteriores

Recebe como entrada o tipo de método anterior, t(0), h, quantidade de passos, a função, a ordem (de 2 a 6). E calcule cada passo do método.

Dica: consulte o material de apoio para saber os coeficientes de cada ordem

Dica: em alguns materiais o conceito de ordem vária, utilize o conceito dado em sala

Dica: a quantidade de y iniciais necessários é igual a ordem -1

Dica: use o método de previsão a partir do método de bashforth.

Bônus: resolva sem usar o método de previsão

Bônus: calcule para ordem n

Bônus: gere o gráfico

Bônus

Implementem uma função que calcula para todos os métodos.

Implementem uma função que compara todos os métodos e com os valores exatos.

Linguagem

Preferencialmente deverá ser implementado em Python ou Julia. Confirme com o professor para outras linguagem.

Sugestão: utilize a biblioteca **sympy** para ler as funções e expressões matemáticas.

Sugestão: se for usar Python, utilizem python3

Sugestão: utilizem o ambiente linux

Sugestão de Instalação

- Pré-Requisitos:
 - 1. um terminal capaz de executar shell scripts
 - 2. python versão 3.5 ou superior instalado e atendendo por "python3"
 - 3. virtualenv instalado e capaz de criar ambientes para python3

- Para rodar o projeto:
 - 1. coloque no mesmo diretório os arquivos: requirements.txt e RUNME
 - 2. navegue pelo terminal até o diretório onde o projeto estiver.
 - 3. comando no terminal: "source RUNME" (instala a biblioteca necessária para interpretar as strings funções)
 - 4. comando no terminal: "python metodos.py" // ou "python nome_do_projeto.py"

Sugestão: caso necessário, edite o arquivo requirements.txt para adicionar uma biblioteca de plotar gráficos

Links

requirements.txt

https://drive.google.com/file/d/1wbVrx8G-0yfpeJLV2Y3oxeCRsQHNZ--d/view?usp=s haring

RUNME

https://drive.google.com/file/d/1pgDz84WIA6JOAQFQYRqEPF-fN2LOuYhr/view?usp =sharinq

Material de Apoio

Coefficients and error constants for Adams–Bashforth methods

k	β_1	β_2	β_3	eta_4	eta_5	eta_6	β_7	β_8	C
1	1								$-\frac{1}{2}$
2	$\frac{3}{2}$	$-\frac{1}{2}$							$-\frac{2}{2}$ $\frac{5}{12}$
3	$\frac{23}{12}$	$-\frac{2}{3}$	$\frac{5}{12}$						$-\frac{3}{8}$
4	$\frac{55}{24}$	$-\frac{59}{24}$	$\frac{37}{24}$	$-\frac{3}{8}$					$\frac{251}{720}$
5	$\frac{1901}{720}$	$-\frac{1387}{360}$	$\frac{109}{30}$	$-\frac{637}{360}$	$\frac{251}{720}$				$-\frac{95}{288}$
6	$\frac{4277}{1440}$	$-\frac{2641}{480}$	$\frac{4991}{720}$	$-\frac{3649}{720}$	$\frac{959}{480}$	$-\frac{95}{288}$			$\frac{19087}{60480}$
7	$\frac{198721}{60480}$	$-\frac{18637}{2520}$	235183	-10754	135713	_ 5603	19087		5257
8	$\frac{16083}{4480}$ -	$-\frac{1152169}{120960}$	$\frac{20160}{242653} \\ 13440$	$-\frac{945}{296053}$ 13440	$\begin{array}{c} 20160 \\ \underline{2102243} \\ 120960 \end{array}$	$-\frac{2520}{135747}$	$\frac{60480}{32863}$ $\frac{32863}{13440}$	$-\frac{5257}{17280}$	$\frac{17280}{1070017}$ $\frac{3628800}{3628800}$

Coefficients and error constants for Adams-Moulton methods

k	β_0	eta_1	β_2	eta_3	eta_4	β_5	eta_6	β_7	C
0	1								$\frac{1}{2}$
1	$\frac{1}{2}$	$\frac{1}{2}$							$-\frac{1}{12}$
2	$\begin{array}{c} \frac{1}{2} \\ \frac{5}{12} \end{array}$	$\frac{\frac{1}{2}}{\frac{2}{3}}$	$-\frac{1}{12}$						$\frac{1}{24}$
3	$\frac{3}{8}$	$\frac{19}{24}$	$-\frac{5}{24}$	$\frac{1}{24}$					$-\frac{19}{720}$
4	$\frac{251}{720}$	$\frac{323}{360}$	$-\frac{11}{30}$	$\frac{53}{360}$	$-\frac{19}{720}$				$\frac{3}{160}$
5	$\frac{95}{288}$	$\frac{1427}{1440}$	$-\frac{133}{240}$	$\frac{241}{720}$	$-\frac{173}{1440}$	$\frac{3}{160}$			$-\frac{863}{60480}$
6	$\frac{19087}{60480}$	$\frac{2713}{2520}$	$-\frac{15487}{20160}$	$\frac{586}{945}$	$-\frac{6737}{20160}$	$\frac{263}{2520}$	$-\frac{863}{60480}$		$\frac{275}{24192}$
7	5257	139849	_ 4511	123133	88547	1537	_ 11351	275	33953_
951	17280	120960	4480	120960	120960	4480	120960	24192	3628800

Atenção: O conceito de ordem pode variar, utilizem o conceito de ordem dada pelo professor.

Order	Formula	LTE
1	$y_{n+1} = y_n + h f_{n+1}$	$-rac{h^2}{2}m{y}''(\eta)$
2	$m{y}_{n+2} - rac{4}{3}m{y}_{n+1} + rac{1}{3}m{y}_n = rac{2h}{3}m{f}_{n+2}$	$-rac{2h^3}{9}m{y}^{\prime\prime\prime}(\eta)$
3	$y_{n+3} - \frac{18}{11}y_{n+2} + \frac{9}{11}y_{n+1} - \frac{2}{11}y_n = \frac{6h}{11}f_{n+3}$	$-rac{3h^4}{22}m{y}^{(4)}(\eta)$
4	$y_{n+4} - \frac{48}{25}y_{n+3} + \frac{36}{25}y_{n+2} - \frac{16}{25}y_{n+1} + \frac{3}{25}y_n = \frac{12h}{25}f_{n+4}$	$-rac{12h^5}{125}m{y}^{(5)}(\eta)$
5	$y_{n+5} - \frac{300}{137}y_{n+4} + \frac{300}{137}y_{n+3} - \frac{200}{137}y_{n+2} + \frac{75}{137}y_{n+1} - \frac{12}{137}y_n = \frac{60h}{137}f_{n+5}$	$-\frac{10h^6}{137} \boldsymbol{y}^{(6)}(\eta)$
6	$m{y}_{n+6} - rac{360}{147} m{y}_{n+5} + rac{450}{147} m{y}_{n+4} - rac{400}{147} m{y}_{n+3} + rac{225}{147} m{y}_{n+2} - rac{72}{147} m{y}_{n+1} + rac{10}{147} m{y}_n = rac{60h}{147} m{f}_{n+6}$	$-rac{20h^7}{343}m{y}^{(7)}(\eta)$

Atenção

- O uso da biblioteca sympy é restrita para computar as funções de entrada e para resolver os métodos implicitamente sem usar fator de correção (a parte bônus). Não utilize sympy para implementar os métodos.
- Para os métodos implícitos, implemente o método com o fator de correção (vocês estarão estudando para a prova), não será aceito apenas implementar implicitamente com o sympy.
- O formato do arquivo gerado poderá ter algumas diferenças (a correção não será feito um merge de arquivos, por exemplo em algoritmos). Mas siga o modelo e adapte caso realize funções bônus.
- Os valores calculados poderão ter pequenas diferenças, principalmente quando o método utilizar fatores de correção. Não necessariamente os valores serão

exatamente iguais ao exemplo. Mas verifique que seu código está consistente e que não tenha resultados discrepantes.

Formato de Arquivos

Entrada

Nome: "entrada.txt"

Cada linha do arquivo terá um método a ser calculado e suas respectivas entradas. Seu programa deverá ler e executar todos os métodos citados no arquivo.

Saída

```
Nome: "saida.txt"

Para cada método calculado, deverá ter:

Nome do Método

y( valor_do_t(0) ) = valor_do_y(0)

h = valor_do_h

numero_do_passo_0 valor_y_0

numero_do_passo_1 valor_y_1

numero_do_passo_2 valor_y_2
```

Pule uma linha entre cada método

Códigos

- o euler
- euler_inverso
- o euler aprimorado
- o runge kutta
- o adam_bashforth
- adam bashforth by euler
- o adam bashforth by euler inverso
- adam_bashforth_by_euler_aprimorado
- adam_bashforth_by_runge_kutta
- o adam multon
- adam_multon_by_euler
- adam_multon_by_euler_inverso
- adam_multon_by_euler_aprimorado
- adam_multon_by_runge_kutta
- o formula inversa
- o formula_inversa_by_euler
- o formula inversa by euler inverso
- formula_inversa_by_euler_aprimorado
- formula_inversa_by_runge_kutta
- Exemplo de Arquivo de Entrada: "entrada.txt"
 ///
 euler 0 0 20 1-t+4*y
 euler_inverso 0 0 0.1 20 1-t+4*y

```
euler aprimorado 0 0 0.1 20 1-t+4*y
runge_kutta 0 0 0.1 20 1-t+4*y
adam bashforth 0.0 0.1 0.23 0.402 0.6328 0 0.1 20 1-t+4*y 5
adam_bashforth_by_euler 0 0 0.1 20 1-t+4*y 6
adam_bashforth_by_euler_inverso 0 0 0.1 20 1-t+4*y 6
adam_bashforth_by_euler_aprimorado 0 0 0.1 20 1-t+4*y 6
adam_bashforth_by_runge_kutta 0 0 0.1 20 1-t+4*y 6
adam multon 0.0 0.1 0.23 0.402 0.6328 0 0.1 20 1-t+4*y 6
adam_multon_by_euler 0 0 0.1 20 1-t+4*y 6
adam_multon_by_euler_inverso 0 0 0.1 20 1-t+4*y 6
adam multon by euler aprimorado 0 0 0.1 20 1-t+4*y 6
adam multon by runge kutta 0 0 0.1 20 1-t+4*y 6
formula_inversa 0.0 0.1 0.23 0.402 0.6328 0 0.1 20 1-t+4*y 6
formula inversa by euler 0 0 0.1 20 1-t+4*y 6
formula inversa by euler inverso 0 0 0.1 20 1-t+4*y 6
formula_inversa_by_euler_aprimorado 0 0 0.1 20 1-t+4*y 6
formula inversa by runge kutta 0 0 0.1 20 1-t+4*y 6
///
```

Exemplo de Arquivo de Saída: "saida.txt"

///

Metodo de Euler

y(0.0) = 0.0

h = 0.1

0.00

1 0.1

2 0.23

3 0.402

4 0.6328

5 0.9459200000000001

6 1.3742880000000002

7 1.9640032000000003

8 2.7796044800000006

9 3.911446272000001

10 5.486024780800001

11 7.680434693120002

12 10.742608570368002

13 15.019651998515204

14 20.99751279792129

15 29.356517917089803

16 41.04912508392572

17 57.40877511749601

18 80.30228516449442

19 112.34319923029219

20 157.19047892240906

Metodo de Euler Inverso

y(0.0) = 0.0

h = 0.1

0.00

1 0.13

2 0.31880000000000003

3 0.5993280000000001

4 1.0229516800000003

5 1.6698046208000004

6 2.6648952084480007

7 4.203236525178881

8 6.589048979279054

9 10.296916407675326

10 16.06718959597351

11 25.054815769718676

12 39.061512600761134

13 60.89795965718737

14 94.9488170652123

15 148.0541546217312

16 230.88448120990066

17 360.085790687445

18 561.6258334724142

19 876.0143002169661

20 1366.4463083384671

Metodo de Euler Aprimorado

y(0.0) = 0.0

h = 0.1

0.00

1 0.1149999999999999

2 0.2732

3 0.495336

4 0.8120972800000001

5 1.2689039744000001

6 1.9329778821120003

7 2.9038072655257605

8 4.328634752978125

9 6.425379434407626

10 9.516561562923286

11 14.079511113126465

12 20.820676447427168

13 30.78560114219221

14 45.521689690444475

15 67.31910074185782

16 99.56726909794958

17 147.28255826496536

18 217.88918623214875

19 322.37499562358016

20 477.00199352289866

Metodo de Runge-Kutta

y(0.0) = 0.0

h = 0.1

0.00

1 0.1172

2 0.27973781333333336

3 0.5099075540764445

4 0.8409660953343014

5 1.322523823280022

6 2.028586204647585

7 3.0695496610129576

8 4.610096214321729

9 6.895887526110867

10 10.293385285617118

11 15.349252610064577

12 22.87896509352033

13 34.09899486217406

14 50.82399393573378

15 75.7609392203986

16 112.94791839970927

17 168.4086814741263

18 251.12905711100336

19 374.5135054610541

20 558.5579065464365

Metodo Adan-Bashforth por Euler

y(0.0) = 0.0

h = 0.1

0.00

1 0.1

2 0.23

3 0.402

4 0.6328

5 0.9459200000000001

6 1.4503504000000005

7 2.2072179280000013

8 3.318772899904446

9 4.931521006056477

10 7.350452015794431

11 10.973404262924845

12 16.326989348813566

13 24.28362943392663

14 36.18497327461336

15 53.92464439436779

16 80.3224224273389

17 119.70045024267056

18 178.468455832467

19 266.0758803692256

20 396.69620254792426

Metodo Adan-Bashforth por Euler Inverso

y(0.0) = 0.0

h = 0.1

0.00

1 0.13

2 0.31880000000000003

3 0.5993280000000001

4 1.0229516800000003

5 1.6698046208000004

6 2.566695703722668

7 3.805477937051404

8 5.7211929638180035

9 8.584308015571505

10 12.751192709513163

11 18.969331691784014

12 28.324500507174854

13 42.21624204626003

14 62.84263142677515

15 93.67742736390062

16 139.71366685993195

17 208.2579068626411

18 310.45963784606005

19 463.0085179382395

20 690.5078275840287

Metodo Adan-Bashforth por Euler Aprimorado

y(0.0) = 0.0

h = 0.1

0.00

1 0.1149999999999999

2 0.2732

3 0.495336

4 0.8120972800000001

5 1.2689039744000001

6 1.9456653358080005

7 2.920644161652339

8 4.39066188909708

9 6.556352627519578

```
10 9.755144563025334
```

11 14.53808125656135

12 21.67150537914415

13 32.26873608511426

14 48.06073367154866

15 71.63570450622579

16 106.77652638004642

17 159.1464865088791

18 237.26778123036024

19 353.80213780930626

20 527.5725058378443

Metodo Adan-Bashforth por Runge-Kutta (ordem = 6)

y(0.0) = 0.0

h = 0.1

0.00

1 0.1172

2 0.27973781333333336

3 0.5099075540764445

4 0.8409660953343014

5 1.322523823280022

6 2.0283613404798517

7 3.039020819458135

8 4.56861136284053

9 6.8269353219418925

10 10.155188501236871

11 15.130343809019017

12 22.560192668558326

13 33.59705591467788

14 50.03531435289132

15 74.58027063477684

16 111.17577967161537

17 165.7061352881605

18 247.04463916792673

19 368.3893689613675

20 549.3357916341132

Metodo Adan-Multon por Euler

y(0.0) = 0.0

h = 0.1

0.00

1 0.1

2 0.23

3 0.402

4 0.6328

5 0.9459200000000001

```
6 1.4750378000000004
```

7 2.2670810195598

8 3.438631555313039

9 5.200368573045594

10 7.848193604038299

11 11.8299848542377

12 17.829453387140337

13 26.874331806967994

14 40.51569568895171

15 61.096954239367825

16 92.15508561714024

17 139.0294901815327

18 209.78125959860066

19 316.5797915100637

20 477.7966798139911

Metodo Adan-Multon por Euler Inverso

y(0.0) = 0.0

h = 0.1

0.00

1 0.13

2 0.31880000000000003

3 0.5993280000000001

4 1.0229516800000003

5 1.6698046208000004

6 2.581116616843852

7 3.920908589896288

8 5.946061794985466

9 8.985528899947635

10 13.558122868563895

11 20.452239633883423

12 30.846597293284564

13 46.524832895653944

14 70.18166757321569

15 105.88270122112027

16 159.7661972888257

17 241.0994497045787

18 363.8724191038611

19 549.2052707474983

20 828.9824648890799

Metodo Adan-Multon por Euler Aprimorado

$$y(0.0) = 0.0$$

h = 0.1

0.00

1 0.1149999999999999

```
2 0.2732
```

- 3 0.495336
- 4 0.8120972800000001
- 5 1.2689039744000001
- 6 1.9675750763448892
- 7 3.0046440863266755
- 8 4.556202545156505
- 9 6.887384872499946
- 10 10.393364499671515
- 11 15.673179670181906
- 12 23.631540043279866
- 13 35.63314747054581
- 14 53.73868563021887
- 15 81.05925646166563
- 16 122.29132684247982
- 17 184.5250406475373
- 18 278.4641687013116
- 19 420.2677326883821
- 20 634.3303970317119

Metodo Adan-Multon por Runge-Kutta (ordem = 6)

y(0.0) = 0.0

h = 0.1

0.00

1 0.1172

- 2 0.27973781333333336
- 3 0.5099075540764445
- 4 0.8409660953343014
- 5 1.322523823280022
- 6 2.0495082169541137
- 7 3.127147337903094
- 8 4.741938006649038
- 9 7.1677665361907605
- 10 10.816320013366724
- 11 16.311862655734682
- 12 24.595769149278148
- 13 37.088734136117765
- 14 55.93615609611062
- 15 84.3767057549708
- 16 127.2995369680666
- 17 192.08574766213243
- 18 289.8782822894515
- 19 437.4991796432457
- 20 660.3440531769239

Metodo Formula Inversa de Diferenciacao por Euler

```
y(0.0) = 0.0
```

h = 0.1

0.00

1 0.1

2 0.23

3 0.402

4 0.6328

5 0.9459200000000001

6 1.4437388408163268

7 2.2479649747479296

8 3.4554338862398115

9 5.212067269227025

10 7.804896017282374

11 11.682418743024849

12 17.47059530486844

13 26.080385082783675

14 38.89795451071046

15 58.01391624461245

16 86.53192547437257

17 129.06212736136024

18 192.48904719320763

19 287.0996135619689

20 428.2388015587404

Metodo Formula Inversa de Diferenciacao por Euler Inverso

y(0.0) = 0.0

h = 0.1

0.00

1 0.13

2 0.31880000000000003

3 0.5993280000000001

4 1.0229516800000003

5 1.6698046208000004

6 2.620158533179211

7 3.9964780938182143

8 6.023736210040799

9 9.048861220877665

10 13.56022586470148

11 20.270274592114035

12 30.25881928973648

13 45.151823474303704

14 67.36558072307787

15 100.49171087605492

16 149.89248955501705

17 223.5782025436108

18 333.4982346326962

19 497.471299143187 20 742.0790563835598

Metodo Formula Inversa de Diferenciacao por Euler Aprimorado

y(0.0) = 0.0

h = 0.1

0.00

1 0.1149999999999999

2 0.2732

3 0.495336

4 0.8120972800000001

5 1.2689039744000001

6 1.9619185227441631

7 3.018057101661196

8 4.589349106466106

9 6.9061229704436125

10 10.34392024861073

11 15.470563989540665

12 23.11303694159662

13 34.495809303986896

14 51.45856948704324

15 76.75544326498611

16 114.48763374209419

17 170.76479762302017

18 254.70528748057745

19 379.91952486220595

20 566.7110540797345

Metodo Formula Inversa de Diferenciação por Runge-Kutta (ordem = 6)

y(0.0) = 0.0

h = 0.1

0.00

1 0.1172

2 0.27973781333333336

3 0.5099075540764445

4 0.8409660953343014

5 1.322523823280022

6 2.0490810835541944

7 3.1476001796258033

8 4.7796200954679415

9 7.190374814386867

10 10.770315722217395

11 16.1068102083762

12 24.06046846463799

13 35.908741225499604

14 53.567634770370596

15 79.90247273326928 16 119.18179032226195 17 177.76715294849487 18 265.15215214544355 19 395.5052094276906 20 589.9623529200103 ///