How unique am I?

Differential privacy and robust statistics

Marco Avella-Medina (2021)

The story - Latanya Sweeney

- computer scientist and privacy expert
- anonymous medical records
- re-identify the governor of Massachusetts

Presented by Tengyu Song

Identify from database

- Link attack
- ZIP code and birthdate
- 2010 census data

Public datasets and model training

- More and more machine learning models are trained on shared data.
- 1. Model may accidentally memorize private information.
- 2. It's easy to be attacked by corrupted data. (mislabeling, backdoor, etc.)

Pricacy \iff **Robustness**

What about only disclosing the mean?

•
$$D = \{X_1, \dots, X_n\}$$

ullet $X_1,\ldots,X_n\in\mathbb{R}^d$ are iid.

$$ar{X} = rac{X_1 + \cdots + X_n}{n}$$
 $Q_i = ar{X} \cdot X_i$

Q-values by Study Indicator

Statistical database

X: set of all possible entries/rows

 $x: ext{our database}, x \in \mathbb{N}^{[X]}$

X:

Name	Vape	Age	Income
John	Yes	18	\$1000
Kate	No	22	\$2000
•••	•••	•••	•••

x:

Name	Vape	Age	Income
John	Yes	18	\$1000
Kate	No	22	\$2000
David	Yes	21	\$5000

Goal:

- ullet We want to compute on x (statistics, algorithm, fit model, share the data)
- Our computation should mask **small changes** in x.
- Adversory who know all of the entries X: can't infer whether it's in our database x or not.

Small changes

- Require identical results for x and x' that differ in only one entry. (Add one row, delete one row or change one row).
- Hamming distance: $d(x,x^\prime)=1$

Definition: Differential privacy

A randomized algorithm A is (ϵ, δ) -differentially private if

for all $x,x'\in X$ such that d(x,x')=1 and all $S\subseteq range(A)$, we have

$$\mathbb{P}(A(x) \in S) \leq e^{\epsilon} \mathbb{P}(A(x') \in S) + \delta$$

 $\epsilon \geq 0$ and $\delta \geq 0$ are parameters that control the trade-off between privacy and utility.

Think of it as distribution

- A(x) is a random variable.
- The disributions of A(x) from two adjacent databases x and x^\prime need to be close enough.

Properties

- Composition: If A_1, \ldots, A_k are $(\epsilon_1, \delta_1), \ldots, (\epsilon_k, \delta_k)$ -differentially private, then A_1, \ldots, A_k is $(\sum_{i=1}^k \epsilon_i, \sum_{i=1}^k \delta_i)$ -differentially private.
- Post-processing: If A is (ϵ, δ) -differentially private and f is an arbitrary function, then f(A) is also (ϵ, δ) -differentially private.

Differential Privacy

Noise addition

• Typically, we add noise to the output of a deterministic algorithm to make it differentially private.

Example: Laplace mechanism

Let's say we want to compute the mean of x. And we want to make it differentially private.

Assume x is 1-D and has n observations and is binary $x_i \in \{0,1\}.$

$$A(x) = ar{x} + rac{1}{narepsilon}Z$$

where $Z \sim Laplace(1)$.

 $\Rightarrow A(x)$ is $(\varepsilon,0)$ -differentially private.

ullet pdf for $Laplace(\lambda)$: $f(z,\lambda)=rac{1}{2\lambda}e^{-rac{|z|}{\lambda}}$

Simple proof

$$d(x,x')=1\Rightarrow |ar{x}-ar{x}'|=rac{1}{n}$$

then using the triangle inequality

$$rac{f_{A(x)}(z)}{f_{A(x')}(z)} = rac{rac{arepsilon n}{2}e^{-arepsilon n|z-ar{x}|}}{rac{arepsilon n}{2}e^{-arepsilon n|z-ar{x}'|}} = e^{arepsilon n(|z-ar{x}'|-|z-ar{x}|)} \leq e^{arepsilon}$$

Differential Privacy

Accuracy - Privacy Trade-off

• The more noise we add, the more private the algorithm is, the less accurate the algorithm is.

How much noise to add?

What kind of noise to add?

Sensitivity

- The noise is calibrated to the sensitivity of the algorithm.
- The sensitivity of an algorithm is the maximum change in its output when we change one entry in the database.

$$\Delta(f) = \max_{x,x' \in X, d(x,x') = 1} \left\| f(x) - f\left(x'
ight)
ight\|$$

The higher the sensitivity, the more noise we need to add to the output.

Laplace and Gaussian mechanism

• We can add Lap(b) noise where $b=\Delta(f)/\varepsilon$ to make f ε -differentially private.

Note: b Laplace $(1) \sim \text{Laplace } (b)$

• Or we can add Gaussian noise $\mathcal{N}(0, \sigma^2)$ to achieve (ε, δ) -differential privacy

$$\sigma \geq rac{\Delta_2(f) \cdot \sqrt{2 \ln rac{2}{\delta}}}{arepsilon}$$

Vector query

If we have a vector query $f: x \to \mathbb{R}^p$. By the property of composition, we can add noise to each entry of the output. We show the Laplace mechanism here.

$$A(x) = f(x) + rac{p\Delta_f}{arepsilon} Z$$

where $Z \sim \operatorname{Laplace}(1)$, and Δ_f is the sensitivity of each component.

Not always we need to times p.

Global sensitivity (Nissim, 2011)

$$GS(f) = \max_{x,y:d(x,y)=1} \|f(x) - f(y)\|$$

Limitation of Global Sensitivity

- Depends on algorithm f, doesn't depend on the data x.
- Worst-case measure
- Add more noise than necessary in some cases.

Local Sensitivity

Definition: The local sensitivity of the function f for dataset x is

$$LS(f,x) = \max_{y:d(x,y)=1} \|f(x) - f(y)\|$$

- Obviously $LS(f,x) \leq GS(f)$.
- Now it is getting close to robust statistics.

Recap of Robust Statistics

Assuming $T(F) = \theta_0$

ullet M-estimator: $T\left(F_n
ight) = rg\min_{ heta} \sum_{i=1}^n
ho(x_i, T\left(F_n
ight))$

where ρ is a loss function. Or we can take the derivative

$$\sum_{i=1}^{n}\Psi\left(x_{i},T\left(F_{n}
ight)
ight)=0$$

where $\Psi=
ho'$.

Robust Statistics

Asymptotic normality:

$$\sqrt{n}\left(T\left(F_{n}\right)-\theta_{0}\right)
ightarrow_{d}N(0,V(T,F))$$

Influence function

$$ext{IF}(x;T,F) = \lim_{t o 0} rac{T\left((1-t)F + \Delta_x
ight) - T(F)}{t}$$

For M-estimators we have

$$\operatorname{IF}(x;T,F) = (M(T,F))^{-1}\Psi(x,T(F))$$

Robust Statistics

Gross Error Sensitivity (GES)

$$\mathbf{GES}(T,F) = \sup_{x \in \mathcal{X}} |\mathbf{IF}(x,T,F)|$$

Fixed scale Influcence Function

$$\mathbf{IF}_{
ho}(x,T,F) := rac{T\left((1-
ho)F +
ho\delta_x
ight) - T(F)}{
ho}$$

Fixed scale GES

$$\mathbf{GES}_
ho(T,F) := \sup_{x \in \mathcal{X}} |\mathbf{IF}_
ho(x,T,F)|$$

Private noisy gradient descent

Another way to make M-estimators private is to use private stochastic gradient descent, where we add noise to the gradient in each iteration.

$$\mu^{(k)} = \mu^{(k-1)} - \eta rac{1}{n} \sum_{i=1}^n
ho' \left(x_i - \mu^{(k)}
ight) + rac{\eta BT}{arepsilon n} Z_k$$

where η is the step-size parameter, $B = \sup |\rho'(t)|$ and $\{Z_k\}$ is a sequence of i.i.d. standard Laplace random variables.

- ullet The number of iterations T must be set beforehand and will obviously have an impact on the quality of the estimate.
- Under regularity conditions, T to be of the order $O(\log(1/\Delta))$ guarantees the optimization error to be $\left|\mu^{(T)}-\hat{\mu}\right|=O(\Delta)$.

Return to Local Sensitivity

Definition: The local sensitivity of the function f for dataset x is

$$LS(f,x) = \max_{y:d(x,y)=1} \|f(x) - f(y)\|$$

• Can we use it to scale the noise?

Problem with Local Sensitivity

- The local sensitivity itself can leak information about the dataset x. When the calibrated noise is added to the output, the local sensitivity can be revealed.
- We want to know how much noise to add to know the accuracy of the algorithm. However it's not private.

Smooth Sensitivity (Nissim, 2011)

To solve this problem, Nissim et al. (2011) proposed a smooth upper bound of the local sensitivity.

For $\beta > 0$, the β -smooth sensitivity of f for dataset x is

$$SS_{eta}(f,x) = \max_{x' \in X} \Big(LS_f(x') \cdot e^{-eta d(x,x')} \Big).$$

Here, $LS_f(x')$ denotes the local sensitivity of the function f at the dataset x', and d(x, x') is the distance between datasets x and x'.

Adding noise according to smooth sensitivity

1. 1-D case: The authors showed that provided $\beta = \frac{arepsilon}{2\log(1/\delta)}$

$$ilde{U} \sim \mathrm{Lap}\left(2 \cdot SS_{eta}(f,x)/arepsilon
ight)$$

 $f(x)+ ilde{U}$ is $(arepsilon,\delta)$ -differentially private.

2. And for p-D vector-valued functions, provided $\beta=rac{arepsilon}{4(p+2\log(2/\delta))}$ and

$$ilde{U} \sim \operatorname{Lap}_p\left(SS_{eta}(f,x)/arepsilon
ight)$$

then the output $f(x) + ilde{U}$ is $(arepsilon, \delta)$ -differentially private.

Connection

- However, calculating the smooth sensitivity can be expensive.
- How can robust statistics help?
- Robust statistics can be made private easier.

Upper bound of Smooth sensitivity

(Chaudhuri and Hsu, 2012) With probability at least $1-\eta$

$$ext{SS}_eta\left(T,F_n
ight) \leq ext{max}\left\{rac{2\Gamma_n}{n}, R\exp\left(-eta\left(\sqrt{rac{n\ln(2/\eta)}{2}}-1
ight)
ight)
ight\}$$

where
$$\Gamma_n := \sup \left\{ \mathbf{GES}_{1/n}(T,G) : G \in \mathcal{B}_{\mathrm{GC}}\left(F,\sqrt{rac{2\ln(2/\eta)}{n}}
ight)
ight\}$$

- \mathcal{B}_{GC} refers to the neighborhood of F according to Glivenko-Cantelli distance, which is defined as $\|F-G\|_{\infty}:=\sup_{x\in\mathcal{X}}|F(x)-G(x)|$.
- $\sqrt{\frac{2\ln(2/\eta)}{n}}$ connects to Hoeffding's inequality, which represents the bound on the deviation between the empirical distribution and its true value.

Connection

Chaudhuri, Hsu (2012)

Even for non-private estimation, the robustness of an estimator depends not just on the influence functions at the target distribution F, but also on these quantities in a local neighborhood around F (Huber, 1981, p. 72)

Connection with gross error sensitivity

(Marco Avella-Medina, 2021)

• "Gross error sensitivity should be of the same order as the smooth sensitivity"

Proposition: Under mild conditions and n large enough, we have

$$A_{T}\left(F_{n}
ight) := T\left(F_{n}
ight) + \gamma\left(T, F_{n}
ight) rac{5\sqrt{2\log(n)\log(2/\delta)}}{arepsilon n}Z$$

where Z is p-dimensional standard Gaussian distribution, is (ε, δ) -differentially private.