Computability and Randomness

Andre Nies

March 22, 2022

Contents

1	The	complexity of sets	1
	1.1	The basic concepts	1
		1.1.1 Partial computable functions	1
		1.1.2 Computably enumerable sets	2
		1.1.3 Indices and approximations	3
	1.2	Relative computational complexity of sets	4
	1.3	Descriptive complexity of sets	8

1 The complexity of sets

1.1 The basic concepts

1.1.1 Partial computable functions

Given expression α , β ,

$$\alpha \simeq \beta$$

means that either both expressions are undefined, or they are defined with the same value

The function $\Xi(e,x)\simeq \Phi_e(x).$ A Turing program computing Ξ is called a ${\bf universal~Turing~program}$

Theorem 1.1 (Parameter Theorem). For each partial computable function Θ in two variables there is a computable strictly increasing function q s.t.

$$\forall e \forall x \Phi_{q(e)}(x) \simeq \Theta(e,x)$$

An index for q can be obtained effectively from an index for Θ

Lemma 1.2 (Padding Lemma). For each e and each m, one may effectively obtain e'>m s.t. the Turing program $P_{e'}$ behaves exactly like P_e

Theorem 1.3 (Recursion Theorem). Let $g : \mathbb{N} \to \mathbb{N}$ be computable. Then there is an e s.t. $\Phi_{q(e)} = \Phi_e$. We say that e is a **fixed point** for g

Proof. There is q s.t. $\Phi_{q(e)}(x)\simeq \Phi_{g(\Phi_e(e))}(x)$ for all e,x. Choose an i s.t. $q=\Phi_{i}$, then

$$\Phi_{q(i)}=\Phi_{\Phi_i(i)}=\Phi_{g(\Phi_i(i))}$$

Theorem 1.4 (Recursion Theorem with Parameters). Let $g: \mathbb{N}^2 \to \mathbb{N}$ be computable. Then there is a computable function f, which can be obtained effectively from g, s.t. $\Phi_{q(f(n),n)} = \Phi_{f(n)}$ for each n

Proof. There is g_n s.t. $g_n(f(n))=g(f(n),n).$ Then let f(n) be the fixed point of $\Phi_{g'(x)}$

Exercise 1.1.1. Extend the Recursion Theorem by showing that computable function g has infinitely many fixed points. Conclude that the function f in Theorem 1.4 can be chosen one-one

Proof. There is infinite many i s.t. $q = \Phi_i$

1.1.2 Computably enumerable sets

Definition 1.5. $A \subseteq \mathbb{N}$ is **computably enumerable** (c.e.) if A is the domain of some partial computable function

Let

$$W_e = \mathrm{dom}(\Phi_e)$$

Then $(W_e)_{e\in\mathbb{N}}$ is an effective listing of all c.e. sets. A sequence of sets $(S_e)_{e\in\mathbb{N}}$ s.t. $\{\langle e,x\rangle:x\in S_e\}$ is c.e. is called **uniformly computably enumerable**

A is called **computable** if its characteristic function is computable; otherwise A is called **incomputable**

Proposition 1.6. A is computable \Leftrightarrow A and $\mathbb{N}-A$ are c.e.

We may obtain a c.e. incomputable set denoted \emptyset' by a direct diagonalization. We define \emptyset' in such a way that $\mathbb{N} - \emptyset'$ differs from W_e at e: let

$$\emptyset' = \{e : e \in W_e\}$$

The set \emptyset' is called the **halting problem**, since $e \in \emptyset'$ iff program P_e^1 halts on input e

Proposition 1.7. *The set* \emptyset' *is c.e. but not computable*

Proof. \emptyset' is c.e. since $\emptyset' = \operatorname{dom}(J)$, where J is the partial computable function given by $J(e) \simeq \Phi_e(e)$. If \emptyset' is computable then there is e s.t. $\mathbb{N} - \emptyset' = W_e$. Then $e \in \emptyset' \leftrightarrow e \in W_e \leftrightarrow e \in \emptyset'$, a contradiction

The sequence $(W_e)_{e\in\mathbb{N}}$ is universal for uniformly c.e. sequences

Corollary 1.8. For each uniformly c.e. sequence $(A_e)_{e\in\mathbb{N}}$ there is a computable function q s.t. $A_e=W_{q(e)}$ for each e

Proof. Define the partial computable function Θ by $\Theta(e,x) \simeq 0$ iff $x \in A_e$, and $\Theta(e,x)$ is undefined otherwise. Then the function q obtained by the Parameter Theorem is as required. \square

Exercise 1.1.2. Suppose $(\hat{W}_e)_{e\in\mathbb{N}}$ is a further universal uniformly c.e. sequence. Assume that $(\hat{W}_e)_{e\in\mathbb{N}}$ also has the padding property, one may effectively obtain e'>m s.t. $\hat{W}'_e=\hat{W}_e$. Show that there is a computable permutation π of \mathbb{N} s.t. $\hat{W}_e=W_{\pi(e)}$ for each e

Proof. there is q s.t. $W_{q(e)} = \hat{W}_e$, there is p s.t. $\hat{W}_{p(e)} = W_e$ Find

- 1. q'(e) > e
- 2. q' is 1-1
- 3. $W_{q'(e)} = \hat{W}_e$

padding $\pi(m,e)>m.$ $W_{\pi(e,q(e))}=W_{q(e)}$ similar to cantor-bernstein or back-and-forth

1.1.3 Indices and approximations

Definition 1.9. We write

$$\Phi_{es}(x) = y$$

if e,x,y< s and the computation of program P_e on input x yields y in at most s computation steps. Let $W_{e,s}={\rm dom}(\Phi_{e,s})$

At stage s we have complete information about $\Phi_{e,s}$ and $W_{e,s}$. To state this more formally, we need to specify an effective listing D_0, D_1, \ldots of the finite subsets of $\mathbb N$

Definition 1.10. Let $D_0=\emptyset$. If n>0 has the form $2^{x_1}+\cdots+2^{x_r}$, where $x_1<\cdots< x_r$, then let $D_n=\{x_1,\ldots,x_r\}$. We say that n is a **strong index** for D_n . For instance, $D_5=\{0,2\}$

There is a computable function f s.t. f(e,s) is a strong index for $W_{e,s}$. We think of a computable enumeration of a set A as an effective listing a_0, a_1, \ldots of the elements of A in some order. To include the case that A is finite, we formalize this via an effective union of finite sets (A_s) . We view A_s as the set of elements enumerated by the end of stage s. At certain stages we may decide not to enumerate any element

Definition 1.11. A computable enumeration of a set A is an effective sequence $(A_s)_{s\in\mathbb{N}}$ of (strong indices for) finite sets s.t. $A_s\subseteq A_{s+1}$ for each s and $A=\bigcup_s A_s$

Each c.e. set W_e has the computable enumeration $(W_{e,s})_{s\in\mathbb{N}}$. Conversely, if A has a computable enumeration then A is c.e., for $A=\operatorname{dom}(\Phi)$ where Φ is the partial computable function given by the following procedure: at stage s we let $\Phi(x)=0$ if $x\in A_s$. An **index for a c.e. set** A is a number e s.t. $A=W_e$

Proposition 1.12. *For each computable function* Φ *,* ran(Φ) *is c.e.*

Proof. Suppose $\Phi = \Phi_e$ and we enumerate $A = \operatorname{ran}(\Phi)$. Since we have complete information about Φ_s at stage s, we can compute from s a strong index for $A_s = \operatorname{ran}(\Phi_s)$. Then $(A_s)_{s \in \mathbb{N}}$ is the required computable enumeration of A

Exercise 1.1.3.

Exercise 1.1.4.

Proof. find a subsequence with increasing required steps

1.2 Relative computational complexity of sets

Definition 1.13. X is **many-one reducible** to Y, denoted $X \leq_m Y$, if there is a computable function f s.t. $n \in X \leftrightarrow f(n) \in Y$ for all n

If X is computable, $Y \neq \emptyset$, and $Y \neq \mathbb{N}$, then $X \leq_m Y$: choose $y_0 \in Y$ and $y_1 \notin Y$. Let $f(n) = y_0$ if $n \in X$ and $f(n) = y_1$ otherwise. Then $X \leq_m Y$ via f.

For each set Y the class $\{X: X \leq_m Y\}$ is countable. In particular, there is no greatest many-one degree

Proposition 1.14. A is c.e. $\Leftrightarrow A \leq_m \emptyset'$

An index for the many-one reduction as a computable function can be obtained effectively from a c.e. index for A, and conversely

Proof. \Rightarrow : We claim that there is a computable function *g* s.t.

$$W_{g(e,n)} = \begin{cases} \{e\} & n \in A \\ \emptyset & \end{cases}$$

For let $\Theta(e,n,x)$ converge if x=e and $n\in A$. Then there is a computable function g s.t. $\forall e,n,x[\Theta(e,n,x)\simeq \Phi_{g(e,n)}(x)]$. By Theorem 1.4, there is a computable function h s.t. $W_{g(h(n),n)}=W_{h(n)}$ for each n. Then

$$\begin{split} n \in A \Rightarrow W_{h(n)} &= \{h(n)\} \Rightarrow h(n) \in \emptyset' \\ n \not\in A \Rightarrow W_{h(n)} &= \emptyset \Rightarrow h(n) \not\in \emptyset \end{split}$$

 $\Leftarrow: \text{If } A \leq_m \emptyset' \text{ via } h \text{, then } A = \text{dom}(\Psi) \text{ where } \Psi(x) \simeq J(h(x)) \text{ (recall that } J(e) \simeq \Phi_e(e)) \qquad \qquad \Box$

Definition 1.15. A c.e. set C is called r-complete if $A \leq_r C$ for each c.e. set A

we say that $X \leq_1 Y$ if $X \leq_m Y$ via a one-one function f

Exercise 1.2.1. The set \emptyset' is 1-complete

Exercise 1.2.2. $X \equiv_1 Y \Leftrightarrow$ there is a computable permutation p of $\mathbb N$ s.t. Y = p(X)

Our intuitive understanding of "Y is at least as complex as X" is: X can be computed with the help of Y. To formalize more general ways of relative computation, we extend the machine model by a one-way infinite "oracle" tape which holds all the answers to oracle questions of the form "is k in Y".

We write $\Phi_e^Y(n)\downarrow$ if the program P_e halts when the oracle is Y and the input is n; we write $\Phi_e(Y;n)$ or $\Phi_e^Y(n)$ for this output. The Φ_e are called **Turing functionals**. And we let $W_e^Y=\mathrm{dom}(\Phi_e^Y)$. W_e is a **c.e. operator**

Definition 1.16. A total function $f: \mathbb{N} \to \mathbb{N}$ is called **Turing reducible** to Y, or **computable relative to** Y, or **computable in** Y, if there is an e s.t. $f = \Phi_e^Y$. We denote this by $f \leq_T Y$. We also say that Y **computes** f. For a set A, we write $A \leq_T Y$ if the characteristic function of A is Turing reducible to Y

For a total functions g, $f \leq_T g$ means that f is Turing reducible to the **graph** of g, that is, to $\{\langle n, g(n) \rangle : n \in \mathbb{N}\}$

Exercise 1.2.3. \leq_m and \leq_T are preorderings of the subsets of $\mathbb N$

A set A is c.e. relative to Y if $A = W_e^Y$ for some e. We view Φ_e as Φ_e^\emptyset

Proposition 1.17. A is computable in $Y \Leftrightarrow A$ and $\mathbb{N} - A$ are c.e. in Y

Definition 1.18. We write $J^Y(e) \simeq \Phi_e^Y(e)$. The set $Y' = \text{dom}(J^Y)$ is the **Turing jump** of Y. The map $Y \to Y'$ is called the **jump operator**

Theorem 1.19. For each computable binary function g there is a computable function f s.t. $\Phi_{g(f(n),n)}^Y = \Phi_{f(n)}^Y$

Proposition 1.20. A is c.e. in Y iff $A \leq_m Y'$

Proposition 1.21. For each Y, the set Y' is c.e. relative to Y. Also, $Y \leq_m Y'$ and $Y' \not\leq_T Y$, and therefore $Y <_T Y'$

Proof. Y' is c.e. in Y since $Y' = \text{dom}(J^Y)$. As Y is c.e. relative to itself, by Proposition 1.20 $Y \leq_m Y'$. If $Y' \leq_T T$ then there is e s.t. $\mathbb{N} - Y' = W_e^Y$. Then $e \in Y' \leftrightarrow e \in W_e^Y \leftrightarrow e \notin Y'$

Definition 1.22. We define $Y^{(n)}$ inductively by $Y^{(0)} = Y$ and $Y^{(n+1)} = (Y^{(n)})'$.

Proposition 1.23. For each Y, Z we have $Y \leq_T Z \Leftrightarrow Y' \leq_m Z'$

Proof. \Rightarrow : Y' is c.e. in Y and hence c.e. in Z. Therefore $Y' \leq_m Z'$ by Proposition 1.20

 \Leftarrow :By Proposition 1.17, Y and $\mathbb{N}-Y$ are c.e. in Y. So Y, $\mathbb{N}-Y \leq_m Y' \leq_m Z'$, whence both Y and $\mathbb{N}-Y$ are c.e. in Z. Hence $Y \leq_T Z$

Fact 1.24. From a Turing functional $\Phi = \Phi_e$ one can effectively obtain a computable strictly increasing function p, called a **reduction function** for Φ , s.t. $\forall Y \forall x \Phi^Y(x) \simeq J^Y(p(x))$

Proof. Let $\Theta^Y(x,y)\simeq \Phi^Y(x)$, by the oracle version of the Parameter Theorem there is a computable strictly increasing function p s.t. $\forall Y\forall y\Phi^Y_{p(x)}(y)\simeq \Theta^Y(x,y)\simeq \Phi^Y(x)$. Letting y=p(x) we obtain $J^Y(p(x))=\Phi^Y_{p(x)}(p(x))=\Phi^Y(x)$

We identify $\sigma \in \{0,1\}^*$ with $n \in \mathbb{N}$ s.t. the binary representation of n+1 is 1σ . For instance, 000 is 7

Definition 1.25. We write $\Phi_{e,s}^Y(x) = y$ if e,x,y < s and the computation of program P_e on input x yields y in at most s computation steps, with all oracle queries less than s.

The **use principle** is the fact that a terminating oracle computation only asks finitely many oracle questions. Hence $(\Phi_{e,s}^Y)_{s\in\mathbb{N}}$ approximates Φ_e^Y

Definition 1.26. The **use** of $\Phi_e^Y(x)$, denoted use $\Phi_e^Y(x)$, is defined if $\Phi_e^Y(x) \downarrow$, where its value is 1+the largest oracle query asked during this computation.

We write

$$\Phi_e^{\sigma}(x) = y$$

if $\Phi_e^F(x)$ yields the output y, where $F=\{i<|\sigma|:\sigma(i)=1\}$, and the use is at most $|\sigma|$. Then for each set Y

$$\Phi_e^Y(x) = y \leftrightarrow \Phi_e^{Y \upharpoonright u}(x) = y$$

where $u = \text{use } \Phi_e^Y(x)$

If a Turing functional Φ_e is given then λYx . use Φ_e^Y is also a Turing functional (namely there is i s.t. $\Phi_i^Y(x) \simeq \text{use}\,\Phi_e^Y(x)$ for each Y and x). Thus if Y is an oracle s.t. $f = \Phi_e^Y$ is total, the function use Φ_e^Y is computable in Y.

Definition 1.27. A function $f:\mathbb{N}\to\mathbb{N}$ is **weak truth-table** reducible to Y, denoted $f\leq_{wtt}Y$, if there is a Turing functional Φ_e and a computable bound r s.t. $f=\Phi_e^Y$ and $\forall n$ use $\Phi_e^Y(n)\leq r(n)$.

Definition 1.28. A function $f:\mathbb{N}\to\mathbb{N}$ is **truth-table** reducible to Y, denoted $f\leq_{tt}Y$, if there is a Turing functional Φ_e and a computable bound r s.t. $f=\Phi_e^Y$ $f=\Phi_e^Y$ and Φ_e^Z is total for each oracle Z (we call such a Φ_e a truth table reduction).

Proposition 1.29. 1. $X \leq_{tt} Y \Leftrightarrow there is a computable function <math>g$ s.t. for each n,

$$n \in X \Leftrightarrow \bigvee_{\sigma \in D_{g(n)}} [\sigma \preceq Y]$$

2. $X \leq_{tt} Y$ implies $X \leq_{wtt} Y$

Proof. 1. \Rightarrow : Suppose $X \leq_{tt} Y$ via a truth-table reduction $\Phi = \Phi_e$. The tree $T_n = \{\sigma: \Phi^{\sigma}_{|\sigma|}(n) \uparrow \}$ is finite for each n, for otherwise it has an infinite path Z by Kőnig's Lemma and $\Phi^{Z}(n) \uparrow$. Given n one can compute a strong index $\tilde{g}(n)$ for the finite set of minimal string σ s.t. $\Phi^{\sigma}_{|\sigma|}(n) \downarrow$. Hence one can compute a strong index g(n) for the set of all minimal strings σ s.t. $\Phi^{\sigma}_{|\sigma|}(n) \downarrow = 1$. Then $D_{g(n)}$ is as required

 \Leftarrow :Consider the following procedure relative to an oracle Z: on input n, first compute $D_{g(n)}$. If $\sigma \leq Z$ for some $\sigma \in D_{g(n)}$, output 1, otherwise output 0

2. For each Z use $\Phi^Z_e(n)$ is bounded by $\max\{|\sigma|:\sigma\in D_{g(n)}\}$ $\hfill\Box$

Proposition 1.30. $f \leq_{tt} A \Leftrightarrow there is a Turing functional <math>\Phi$ and a computable function t s.t. $f = \Phi^A$ and the number of steps needed to compute $\Phi^A(n)$ is bounded by t(n)

Proof. \Leftarrow : Let $\tilde{\Phi}$ be the Turing functional s.t. $\tilde{\Phi}^Z(n) = \Phi^Z_{t(n)}(n)$ if the latter is defined and $\tilde{\Phi}^Z(n) = 0$ otherwise

Definition 1.31. The **effective disjoint union** of sets A and B is

$$A \oplus B = \{2n : n \in A\} \cup \{2n + 1 : n \in B\}$$

Exercise 1.2.4. 1. $A, B \leq_m A \oplus B$

2. Let \leq_r be one of the reducibilities above. Then for any set X

$$A, B \leq_r X \Leftrightarrow A \oplus B \leq_r X$$

Exercise 1.2.5. Let $C = A_0 \cup A_1$ where A_0, A_1 are c.e. and $A_0 \cap A_1 = \emptyset$. Then $C \equiv_{wtt} A_0 \oplus A_1$

Proof. Since A_0, A_1 are c.e., for each $n \in C$, we can determine if $n \in A_0 \cup A_1$ in finite steps. \Box

Exercise 1.2.6. Show that $\exists Zf \leq_{tt} Z \Leftrightarrow$ there is a computable h s.t. $\forall nf(n) \leq h(n)$

Proof. Trivial

1.3 Descriptive complexity of sets

In a computable enumeration $(Z_s)_{s\in\mathbb{N}}$ of a set Z, for each $x,Z_s(x)$ can change at most once, namely from 0 to 1. Which sets Z are described if we allow an arbitrary finite number of changes

Definition 1.32. We say that a set Z is Δ_2^0 if there is a computable sequence of strong indices $(Z_s)_{s\in\mathbb{N}}$ s.t. $Z_s\subseteq [0,s)$ and $Z(x)=\lim_s Z_s(x)$. We say that $(Z_s)_{s\in\mathbb{N}}$ is a **computable approximation** of Z

Given an expression E that is approximated during stages s,

denotes its value at the **end of** stage s. For instance, given a Δ_2^0 set Z with a computable approximation, instead of $\Phi_{e,s}^{Z_s}(x)$ we simply write $\Phi_e^Z(x)[s]$. We say that the expression E is **stable at** s if E[t] = E[s] for all $t \geq s$

Lemma 1.33 (Shoenfield Limit Lemma). Z is $\Delta_2^0 \Leftrightarrow Z \leq_T \emptyset'$. The equivalence is uniform

Proof. \Leftarrow : Fix a Turing functional Φ_e s.t. $Z = \Phi_e^{\emptyset'}$. Since \emptyset' is c.e., let $\langle \emptyset'_s \rangle_{s \in \mathbb{N}}$ be a computable enumeration of \emptyset' . Define

$$Z_s(x) = \begin{cases} 1 & \Phi_{e,s}^{\emptyset_s'\downarrow} = 1 \\ 0 & \text{otherwise} \end{cases}$$

Let $u= \text{use}\, \Phi_e^{\emptyset'}(x)$, there is s s.t. $\emptyset'_s \upharpoonright u=\emptyset' \upharpoonright u$, thus there is $s\geq t$ s.t. $Z_s(x)=Z(x)$

Then the required approximation is given by $Z_s = \{x < s : \Phi_e^{\emptyset'}(x)[s] = 1\}$

 \Rightarrow : We define a c.e. set C s.t. $Z \leq_T C$. This is sufficient because $C \leq_m \emptyset'$ by Proposition 1.14. The set C is called the **change set** because it records the changes of the computable approximation. If $Z_s(x) \neq Z_{s+1}(x)$ we put $\langle x, i \rangle$ into C_{s+1} , where i is the least s.t. $\langle x, i \rangle \notin C_s$. To show that $Z \leq_T C$, on input x, using the oracle C compute the least i s.t. $\langle x, i \rangle \notin C$. If i is even then $Z(y) = Z_0(y)$, otherwise $Z(y) = 1 - Z_0(y)$

We have obtained C and the Turing reduction of Z to C effectively from the computable approximation of Z. Proposition 1.14 is also effective \Box

If $Z=\Phi_e^{\emptyset'}$ we say that e is a Δ_2^0 -index for Z. A number e is a Δ_2^0 index only if $\Phi_e^{\emptyset'}$ is total

Definition 1.34. 1. We say that a set Z is ω -c.e. if there is a computable approximation $(Z_s)_{s\in\mathbb{N}}$ of Z and a computable function b s.t.

$$b(x) \ge \#\{s > x : Z_x(x) \ne Z_{s-1}(x)\}$$
 for each x

2. If $Z_s(s-1)=0$ for each s>0 and b(x) can be chosen constant of value n, then we say Z is n-c.e.

Thus Z is 1-c.e. iff Z is c.e., and Z is 2-c.e. iff Z = A - B for c.e. sets A, B

Proposition 1.35. Z is ω -c.e. $\Leftrightarrow Z \leq_{wtt} \emptyset' \Leftrightarrow Z \leq_{tt} \emptyset'$ The equivalence are effective

Corollary 1.36. A is $\Delta_2^0 \Leftrightarrow A$ is both Σ_2^0 and Π_2^0

Proof.

$$\begin{split} A \in \Delta_2^0 &\Leftrightarrow A \leq_T \emptyset' \\ &\Leftrightarrow A \text{ and } \mathbb{N} - A \text{ are c.e. in } \emptyset' \\ &\Leftrightarrow A \in \Sigma_2^0 \cap \Pi_2^0 \end{split}$$

last iff from Theorem 1.39

Definition 1.37. Let $A \subseteq \mathbb{N}$ and $n \ge 1$

1. A is Σ_n^0 if $x \in A \leftrightarrow \exists y_1 \forall y_2 \dots Qy_n R(x,y_1,\dots,y_n)$, where R is a symbol for a computable relation

- 2. $A ext{ is } \Pi_n^0 ext{ if } \mathbb{N} A ext{ is } \Sigma_n^0$
- 3. A is **arithmetical** if A is Σ_n^0 for some n

Fact 1.38. A is $\Sigma_1^0 \Leftrightarrow A$ is c.e.. The equivalence is uniform

Proof. \Rightarrow : Suppose $x \in A \leftrightarrow \exists y R(x,y)$ for computable R. Let Φ be the partial computable function given by the Turing program that on input x looks for a witness y s.t. R(x,y), and halts when such a witness is found. Then $A = \operatorname{dom}(\Phi)$

 \Leftarrow : Suppose $A=\operatorname{dom}(\Phi)$ for a partial computable function Φ . Let R be the computable relation given by $R(x,s)\leftrightarrow \Phi(x)[s]\downarrow$. Then $x\in A\leftrightarrow \exists sR(x,s)$, so A is Σ_1^0

A Σ_n^0 set C is $\Sigma_n^0\text{-complete}$ if $A\leq_m C$ for each Σ_n^0 set A

Theorem 1.39. Let $n \ge 1$

- 1. A is $\Sigma_n^0 \Leftrightarrow A$ is c.e. relative to $\emptyset^{(n-1)}$
- 2. $\emptyset^{(n)}$ is Σ_n^0 -complete

Proof. Induction on n. 1.38 and 1.14. Now let n > 1

1. First suppose A is Σ_n^0 for some computable relation R. Then the set

$$B = \{ \langle x, y_1 \rangle : \forall y_2 \dots Q y_n R(x, y_1, \dots, y_n) \}$$

is Π^0_{n-1} and A is c.e. relative to B. By (2) for n-1 we have $B\leq_m \mathbb{N}-\emptyset^{(n-1)}$. So A is c.e. relative to $\emptyset^{(n-1)}$

Now suppose A is c.e. relative to $\emptyset^{(n-1)}$. Then there is a Turing functional Φ s.t. $A=\operatorname{dom}(\Phi^{\emptyset^{(n-1)}})$. By the use principle

$$x \in A \Leftrightarrow \exists \eta, s \ulcorner \Phi_s^{\eta}(x) \downarrow \land \forall i < |\eta| \ \eta(i) = 1 \leftrightarrow i \in \emptyset^{(n-1) \urcorner}$$

The innermost part can be put into Σ_n^0 -form, so A is Σ_n^0 .

2. Follows by Proposition 1.20 where $Y = \emptyset^{(n-1)}$

Proposition 1.40. Let $n \geq 1$. Then A is $\Delta_n^0 \Leftrightarrow A \leq_T \emptyset^{(n-1)}$

Proof. By Theorem 1.39, A is $\Delta_n^0 \Leftrightarrow A$ and $\mathbb{N} - A$ are c.e. in $\emptyset^{(n-1)}$. By Proposition 1.17, this condition is equivalent to $A \leq_T \emptyset^{(n-1)}$

Proposition 1.41. Z is $\Sigma_2^0 \Leftrightarrow$ there is a computable sequence of strong indices $(Z_s)_{s\in\mathbb{N}}$ s.t. $Z_s\subseteq [0,s)$ and $x\in Z\leftrightarrow \exists s \forall t\geq s\ Z_t(x)=1$. The equivalence is uniform

 $\begin{array}{l} \textit{Proof.} \ \Rightarrow : \text{By Theorem 1.39, there is a Turing functional } \Phi \text{ s.t. } Z = \text{dom}(\Phi^{\emptyset'}). \\ \text{Now let } Z_s = \{x < s : \Phi^{\emptyset'}(x)[s] \downarrow \} \\ \quad \Leftarrow : \end{array}$

Definition 1.42. The index set of a class S of c.e. sets is the set $\{i: W_i \in S\}$

Exercise 1.3.1. \emptyset' is not an index set

Proof. We can find g s.t. $W_{g(n)}=\{n\}$. Thus there is e s.t. $W_{g(e)}=W_e=\{e\}$. By padding lemma, we have $W_i=W_e$ but $i\notin\emptyset'$

Exercise 1.3.2. 1. $\{e: W_e \neq \emptyset\}$ is Σ_1^0 -complete

- 2. The set $\{e:W_e \text{ finite }\}$ is $\Sigma^0_2\text{-complete.}$
- 3. The set $\mathrm{Tot} = \{e : \mathrm{dom}(\Phi_e) = \mathbb{N}\} = \{e : W_e = \mathbb{N}\} \text{ is } \Pi^0_2\text{-complete}$
- 4. Both $\{e:W_e \text{ cofinite}\}$ and $\operatorname{Cop}=\{e:W_e \text{ computable}\}$ are Σ^0_3 -complete

 $\begin{array}{ll} \textit{Proof.} & \text{1. Given } e, \Phi_{f(n)} \text{ doesn't converge in } \mathbb{N} - \{e\}. \text{ And converges on } e \\ & \text{is } \Phi_e(e) \downarrow. \text{ Thus } \emptyset' \leq_m \{e: W_e \neq \emptyset\} \end{array}$

- 2. Let Fin = $\{e:W_e \text{ finite}\}$. Then $x\in \text{Fin}\Leftrightarrow \exists s \forall t\geq s(W_{e,s}=W_{e,t})$
- 3. $e \in \text{Tot} \Leftrightarrow \forall n \exists s \Phi_{e,s}(n) \downarrow$

For any A in $\Pi^0_2, x \in A \Leftrightarrow \forall y \exists z R(x,y,z)$

We could define

$$\Phi_{q(x)}(u) = \begin{cases} 0 & \forall y \leq u \exists z R(x,y,z) \\ \uparrow & \end{cases}$$

Then $x\in A\Leftrightarrow W_{q(x)}=\omega\Leftrightarrow q(x)\in {\rm Tot}$ $x\in \overline{A}\Leftrightarrow W_{q(x)} \ {\rm is \ finite}$

4. $e \in \mathsf{Cof} \Leftrightarrow \exists z \forall n \geq z \exists s \Phi_{e,s}(n) \downarrow$, thus $\mathsf{Cof} \in \Sigma^0_3$

Exercise 1.3.3. Let $X \subseteq \mathbb{N}$

1. Each relation $R \leq_T X$ is first-order definable in the structure $(\mathbb{N},+,\cdot,X)$

2. The index set $\{e:W_e\leq_T X\}$ is $\Sigma^0_3(X)$

Proof.