Norges teknisk-naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap

EKSAMENSOPPGAVE I FAG TDT4160 – DATAMASKINER GRUNNKURS

Faglig kontakt under eksamen: Gunnar Tufte

Tlf.: 93440

Eksamensdato: 11. august 2006

Eksamenstid: 09.00 – 13.00

Tillatte hjelpemiddel: D: Ingen trykte eller håndskrevne hjelpemiddel tillatt. Bestemt, enkel

kalkulator tillatt.

Språkform: Bokmål

Oppgave 1 – Lager – 25 % (5 % på a, b og c; 10 % på d)

- a) Forklar forskjellen mellom little endian og big endian.
 Hvorfor kan det være viktig å vite hvilken endian en prosessor bruker?
- b) Minnebrikker bruker gjerne D-flip-flops til å lagre data. Hver D-flip-flop har 4 innganger/utganger: D (data inn), Q (data ut), CK (klokke), CLR (nullstill). Forklar hvordan en 4-Mbit minnebrikke kan være organisert slik at den slipper å ha 16 millioner (4*4M) pinner.
- c) Forklar forskjellen mellom RAID 4 og RAID 5.
- d) Forklar fordeler og ulemper ved direkte avbildning (direct mapping) versus fullt assosiativ avbildning. Hvorfor er sett-assosiativ avbildning et godt kompromiss?

Oppgave 2 – Dataoverføring – 10 %

- a) Hva gjør en DMA-kontroller? Hvilke fordeler oppnås ved å bruke en slik?
- b) PCI Express overfører data over serielle forbindelser (lanes). Enheter som trenger å overføre store mengder data, kan bruke flere slike forbindelser i parallell. Forklar hvordan denne parallelliteten skiller seg fra parallell overføring i tradisjonelle busser som for eksempel PCI.

Oppgave 3 – Mikroarkitektur – 35 % (5 % på a, 10 % på b, 20 % på c)

- a) Forklar forskjellen mellom statisk og dynamisk forgreningspredikering. Gi ett eksempel på teknikker for hver av disse to kategoriene.
- b) Lag mikroinstruksjon(er) for følgende IJVM-operasjon (se bort fra Addr og JAM): SP = TOS + OPC
 Se vedlegget for oversikt over utførende enhet, funksjonstabell for ALU og formatet på mikroinstruksjoner.
- c) Figuren under viser et scoreboard for en superskalar prosessor som bruker i-rekkefølgetildeling og i-rekkefølge-fullføring (in-order issue, in-order completion). Hvordan vil scoreboardet se ut for klokkesyklus 5 og 6? Anta følgende:
 - Instruksjon 5 er R7 = R1*R2
 - Instruksjon 6 er R1 = R0-R2
 - Addisjon og subtraksjon tar 2 klokkesykler
 - Multiplikasjon tar 3 klokkesykler
 - Det er alltid en passende funksjonell enhet ledig
 - Maksimalt 2 instruksjoner kan dekodes / starte utføring (issue) hver klokkesyklus

					Registers being read				Registers being written											
Су	#	Decoded	Iss	Ret	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
1	1	R3=R0*R1	1		1	1										1				
	2	R4=R0+R2	2		2	1	1									1	1			
2	3	R5=R0+R1	3		3	2	1									1	1	1		
	4	R6=R1+R4	_		3	2	1									1	1	1		
3					3	2	1									1	1	1		
4				1	2	1	1										1	1		
				2	1	1												1		
				3																

Figur 1: Scoreboard

Oppgave 4 – Instruksjonssettarkitektur – 10 %

- a) Forklar hvordan registeradressering fungerer. Hvorfor er dette et populært adresseringsmodus?
- b) Hva brukes templatefeltet i instruksjonsformatet til IA-64 til?

Oppgave 5 – Diverse – 20 % (5 % på a, 15 % på b)

- a) Forklar forskjellen mellom tolking (interpreting) og oversetting (compiling / translation). Gi ett eksempel på fornuftig bruk av hver av disse.
- b) Beskriv kort de viktigste forskjellene mellom Pentium 4 og UltraSPARC III på ISA-nivået. Gjør deretter det samme for mikroarkitektur-nivået.

Vedlegg

Figur 2: Utførende enhet (IJVM)

F _o	F ₁	ENA	ENB	INVA	INC	Function
0	1	1	0	0	0	Α
0	1	0	1	0	0	В
0	1	1	0	1	0	Ā
1	0	1	1	0	0	B
1	1	1	1	0	0	A + B
1	1	1	1	0	1	A + B + 1
1	1	1	0	0	1	A + 1
1	1	0	1	0	1	B + 1
1	1	1	1	1	1	B – A
1	1	0	1	1	0	B – 1
1	1	1	0	1	1	-A
0	0	1	1	0	0	A AND B
0	1	1	1	0	0	A OR B
0	1	0	0	0	0	0
1	1	0	0	0	1	1
1	1	0	0	1	0	-1

Figur 3: Funksjonstabell for ALU (IJVM)

Figur 4: Mikroinstruksjonsformat (IJVM)