[Paper review 25]

Non-linear Independent Components Estimation (NICE)

(Laurent Dinh, et al, 2014)

[Contents]

- 1. Abstract
- 2. Introduction
 - 1. Variable transformation
 - 2. Key Point
- 3. Learning Bijective Transformations of Continuous Probabilites
- 4. Architecture
 - 1. Triangular structure
 - 2. Coupling layer
 - 3. Allowing rescaling
 - 4. Prior distributions

1. Abstract

propose NICE

- for modeling complex high-dimensional densities
- based on the idea that "good representation = distribution that is easy to model"

Key point

- 1) computing the determinant of Jacobian & inverse Jacobian is trivial
- 2) still learn complex non-linear transformations (with composition of simple blocks)

2. Introduction

2.1 Variable transformation

$$p_X(x) = p_H(f(x)) \left| \det rac{\partial f(x)}{\partial x}
ight|$$

ullet $rac{\partial f(x)}{\partial x}$: Jacobian matrix of function f at x

- 1) easy determinant of Jacobian
- 2) easy inverse

2.2 Key point

```
split x into 2 blocks (x_1,x_2)
```

$$egin{aligned} y_1 &= x_1 \ y_2 &= x_2 + m\left(x_1
ight) \end{aligned}$$

• m: arbitrarily complex function

inverse:

$$x_1 = y_1$$
$$x_2 = y_2 - m(y_1)$$

3. Learning Bijective Transformations of Continuous Probabilities

$$\log(p_X(x)) = \log(p_H(f(x))) + \log\Bigl(\left|\det\Bigl(rac{\partial f(x)}{\partial x}\Bigr)
ight|\Bigr)$$

• $p_H(h)$: prior distribution (ex. isotropic Gaussian) (does not need to be constant, could also be learned)

if prior is factorial.... we obtain the following "NICE criterion"

$$\log(p_X(x)) = \sum_{d=1}^D \log(p_{H_d}\left(f_d(x)
ight)) + \log\Bigl(\left|\det\Bigl(rac{\partial f(x)}{\partial x}\Bigr)
ight|\Bigr)$$
 , where $f(x) = (f_d(x))_{d \leq D}$

Auto-encoders

- f: encoder
- ullet f^{-1} : decoder

4. Architecture

4.1 Triangular Structure

obtain a family of bijections

- 1) whose Jacobian determinant is tractable
- 2) whose computation is straight forward

$$f=f_L\circ\ldots\circ f_2\circ f_1$$

affine transformations

• inverse & determinant when using diagonal matrices

M = LU

 $\bullet \quad M$: square matrices

• L, U: upper and lower triangular matrices

HOW?

- method 1) build a NN with traingular weights..
 - \rightarrow constrained.....
- method 2) consider a family of functions with "triangular Jacobians"

4.2 Coupling Layer

- (1) bijective transformation
- (2) triangular Jacobian
- (1)+(2) = "tractable Jacobian determinant"

General Coupling layer

Figure 2: Computational graph of a coupling layer

$$egin{aligned} y_{I_1} &= x_{I_1} \ y_{I_2} &= g\left(x_{I_2}; m\left(x_{I_1}
ight)
ight) \ \end{aligned}$$
 thus, $rac{\partial y}{\partial x} = egin{bmatrix} I_d & 0 \ rac{\partial y_{I_2}}{\partial x_{I_1}} & rac{\partial y_{I_2}}{\partial x_{I_2}} \end{bmatrix}$, and $\det rac{\partial y}{\partial x} = \det rac{\partial y_{I_2}}{\partial x_{I_2}}$

inverse

$$egin{aligned} x_{I_1} &= y_{I_1} \ x_{I_2} &= g^{-1}\left(y_{I_2}; m\left(y_{I_1}
ight)
ight) \end{aligned}$$

Additive Coupling Layer

$$g\left(x_{I_{2}};m\left(x_{I_{1}}
ight)
ight)=x_{I_{2}}+m\left(x_{I_{1}}
ight)$$

That is...

$$egin{aligned} y_{I_2} &= x_{I_2} + m\left(x_{I_1}
ight) \ x_{I_2} &= y_{I_2} - m\left(y_{I_1}
ight) \ \end{aligned}$$
 thus, $rac{\partial y}{\partial x} = egin{bmatrix} I_d & 0 \ rac{\partial y_{I_2}}{\partial x_{I_1}} & rac{\partial y_{I_2}}{\partial x_{I_2}} \end{bmatrix}$, and $\det rac{\partial y}{\partial x} = \det rac{\partial y_{I_2}}{\partial x_{I_2}} = 1$

Combining Coupling Layers

4.3 Allowing Rescaling

each additive coupling layers has unit Jacobian determinant (= volume preserving)

ightarrow lets include "diagonal scaling matrix S"

allows the learner to give more weight on some dimension!

(low S_{ii} , less important latent variable z_i)

Then, NICE criterion:

•
$$\log(p_X(x)) = \sum_{i=1}^{D} \left[\log(p_{H_i}\left(f_i(x)
ight)) + \log(|S_{ii}|)
ight]$$

4.4 Prior distributions

factorized distributions : $p_{H}(h) = \prod_{d=1}^{D} p_{H_{d}}\left(h_{d}\right)$

• Gaussian:

$$\log(p_{H_d}) = -rac{1}{2}ig(h_d^2 + \log(2\pi)ig)$$

• Logistic:

$$\log(p_{H_d}) = -\log(1+\exp(h_d)) - \log(1+\exp(-h_d))$$