Week 11 Lecture 1

Jared Brannan

November 10, 2021

1 Administrative drivel

- Exam on friday!
 - covers through today's lecture
 - lecture images are up
 - study guide has more in it than the exam will cover, but will be updated today to contain just the relevant info

2 Diseases

- clicker q: What would happen if a virus infected and disables your APCs? T-cells would no longer be able to recognize antigens
 - This is not a common occurance!
 - This is one of the major problems with HIV
 - has anyone done this through Gain of function?
- Infectious disease is:
 - Transimittable
 - communicable
 - contagious
 - you can catch it from someone else
- Non-infectious diseases don't have the above properties
 - E.g. lung cancer can't be transmitted to others (aside from through second hand smoke I suppose)
- COVID is highly infectious
- the most important factor in spreading rate is the number of susceptible infectees
- probably know which diseases are infectious and not infectious out of the study guide list
- Types of infectioous diseases:
 - Viruses
 - bacteria
 - fungi
 - micro-organisms
 - parasites

- Example non-infectious diseases:
 - Cancer (usually)
 - kidney disease
 - liver cirrhosis
 - dietary difficiencies
 - genetic disorders
- Viruses:
 - parts:
 - * spikes
 - * envelope
 - * capsid
 - * nucleic acid (RNA or DNA)
 - * some have head, sheath, tail fibers
 - * all but nucleic acids are made of protiens
 - they can only reproduce by taking over the transcription mechanism of a cell
 - some viruses (bacteriaphages) kill bacteria
 - no metabolism
 - Non-living organisms
 - NOT made of cells
 - * just a protein coat with DNA or RNA inside
 - DO NOT acquire and use energy
 - CAN NOT reproduce without a host cell
 - there are other non-living things that cause disease
 - * e.g. mad cow disease is just a self replicating protien
- Steps of viral infection:
 - The surface has protiens that allow it to bind to cells
 - * they must be the right shape for the host cell
 - * so, who the virus attacks is fairly specific
 - They trick the cell into bringing the virus in
 - Take over the host cell machinery to produce the protiens that their nucleic acids code for
 - * Reverse transcription is hijacked if RNA to turn it into DNA, transcription is hijacted if DNA
 - * makes copies of itself
 - Viral copies break off of the host, allowing them to spread
- Viral diseases:
 - Rabies
 - * no good treatments, deadly
 - flu
 - cold
 - measles
 - * You've been vaccinated for, yay

- polio
 - * Jonas Salk gave us a vaccine in 1950s
 - * muscle wasting illness (yikes)
- zika
 - * newer!
 - * suddenly became common, and made it to florida
- HIV
 - * Taken out millions WW, 100ks in US in 80s, 90s
- smallpox
 - * Edward Jenner did the thing to vaccinate, but we have a real one now.
 - * Only disease that we've eliminated from the wild! :D
 - killed out by vaccinating almost everyone
 - · trying to do the same with polio, but wars are making it hard, along with cultures with stigmas against vaccines or outsiders
 - * 2 places in the world have the virus in test tubes
- hepatitis
 - * A,B,C,E, C most common, degenerates liver and can kill you
- Ebola
- Ebola scary symptoms
 - doesn't tend to reside in humans (but wild life can transmit to humans)
 - sudden fever
 - intense weakness
 - muscle pain and headache
 - vomiting
 - diarrhea
 - impaired kidney and liver function
 - internal and external bleeding
 - usually results in death in a matter of days
 - doesn't spread easily between humans, but is more common in cultures where people are in close contact with the dead bodies of infected
 - HIGH mortality about 50% by as high as 90
 - 2014-16 outbreak
 - * began in W. Africa
 - * more than 28,000 cases (+4 in US)
 - * more than 11k deaths (+1 in US)
 - Low infectiousness
 - * ONLY via direct contact with infected body fluids (of which there can be a lot)
 - Tracking epidemics (who.int has system of reporting cases)
 - Subsequent smaller scale outbreaks are still happening
- Influenza and colds
 - Highly contagious
 - * person-to-person

- * airborne
- Flu has low martality rate
 - * usually less than 5 in 100k
 - $\ast\,$ up to 100 in 100k during pandemics
 - * but high infectiousness == 20-30k+ deaths per year in the US, 291K-646K worldwide
 - \cdot Almost all of these are elderly, the immune-compromised, or the residents of the poorest countries
- the flu will be with us forever...
- "Common Cold" is caused by several different viruses
- Seasonal influenza
 - severall types
 - Type A:
 - * H1N1 (1918 spanish flu, 2009 swine flu)
 - Type B:
 - Type C: