

ADSP-2106x SHARC® DSP Microcomputer Family

ADSP-21060/ADSP-21060L

SUMMARY

High Performance Signal Processor for Communications, Graphics, and Imaging Applications

Super Harvard Architecture

Four Independent Buses for Dual Data Fetch, Instruction Fetch, and Nonintrusive I/O

32-Bit IEEE Floating-Point Computation Units— Multiplier, ALU, and Shifter

Dual-Ported On-Chip SRAM and Integrated I/O Peripherals—A Complete System-On-A-Chip Integrated Multiprocessing Features

KEY FEATURES

40 MIPS, 25 ns Instruction Rate, Single-Cycle Instruction Execution

120 MFLOPS Peak, 80 MFLOPS Sustained Performance Dual Data Address Generators with Modulo and Bit-Reverse Addressing

Efficient Program Sequencing with Zero-Overhead Looping: Single-Cycle Loop Setup IEEE J TAG Standard 1149.1 Test Access Port and On-Chip Emulation

240-Lead Thermally Enhanced PQFP Package
32-Bit Single-Precision and 40-Bit Extended-Precision
IEEE Floating-Point Data Formats or 32-Bit FixedPoint Data Format

Parallel Computations

Single-Cycle Multiply and ALU Operations in Parallel with Dual Memory Read/Writes and Instruction Fetch Multiply with Add and Subtract for Accelerated FFT Butterfly Computation

4 Mbit On-Chip SRAM

Dual-Ported for Independent Access by Core Processor and **DMA**

Off-Chip Memory Interfacing

4 Gigawords Addressable

Programmable Wait State Generation, Page-Mode DRAM Support

Figure 1. Block Diagram

SHARC is a registered trademark of Analog D evices, Inc.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

DMA Controller

10 DMA Channels for Transfers Between ADSP-2106x Internal Memory and External Memory, External Peripherals, Host Processor, Serial Ports, or Link Ports

Background DMA Transfers at 40 MHz, in Parallel with Full-Speed Processor Execution

Host Processor Interface to 16- and 32-Bit Microprocessors
Host Can Directly Read/Write ADSP-2106x Internal
Memory

Multiprocessing

Glueless Connection for Scalable DSP Multiprocessing Architecture

Distributed On-Chip Bus Arbitration for Parallel Bus Connect of Up to Six ADSP-2106xs Plus Host

Six Link Ports for Point-to-Point Connectivity and Array Multiprocessing

240 Mbytes/s Transfer Rate Over Parallel Bus 240 Mbytes/s Transfer Rate Over Link Ports

Serial Ports

Two 40 Mbit/s Synchronous Serial Ports with Companding Hardware Independent Transmit and Receive Functions

TABLE OF CONTENTS	Figure 11. Timer	17
GENERAL DESCRIPTION 3	Figure 12. Flags	17
ADSP-21000 FAMILY CORE ARCHITECTURE 4	Figure 13. Memory Read—Bus Master	18
ADSP-21060/ADSP-21060L FEATURES 4	Figure 14. M emory Write—Bus M aster	
DEVELOPMENT TOOLS 7	Figure 15. Synchronous Read/Write—Bus Master 2	
PIN DESCRIPTIONS 8	Figure 16. Synchronous Read/Write—Bus Slave	
TARGET BOARD CONNECTOR FOR EZ-ICE	Figure 17. Multiprocessor Bus Request and Host Bus	
PROBE 11	R equest	25
RECOMMENDED OPERATING CONDITIONS 13	Figure 18a. Synchronous REDY Timing	26
ELECTRICAL CHARACTERISTICS	Figure 18b. Asynchronous Read/Write—Host to	
TIMING SPECIFICATIONS 15	ADSP-2106x	27
M emory Read—Bus M aster	Figure 19. Three-State Timing	29
M emory W rite— B us M aster	Figure 20. DMA Handshake Timing 3	
Synchronous Read/Write—Bus Master	Figure 21. Link Ports	
Synchronous Read/Write—Bus Slave	Figure 22. External Late Frame Sync	
Multiprocessor Bus Request & Host Bus Request 24	Figure 23. Serial Ports	
Asynchronous Read/Write—Host to ADSP-2106x 26	Figure 24. IEEE 11499.1 JT AG T est Access Port 3	38
Three-State Timing—Bus Master, Bus Slave,	Figure 25. AD SP-2106x Typical Drive Currents 3	39
<u>HBR</u> , <u>SBTS</u> 28	Figure 26. Output Enable/Disable	40
DMAH andshake	Figure 27. Equivalent D evice Loading for AC M easurements	
Link Ports: $1 \times CLK$ Speed Operation	(Includes All Fixtures)	40
Link Ports: 2 × CLK Speed Operation	Figure 28. Voltage Reference Levels for AC Measurements	
Serial Ports	(Except Output Enable/Disable)	40
JTAG Test Access Port and Emulation 38	Figure 29. ADSP-2106x Typical Drive Currents	
OUTPUT DRIVE CURRENTS 39	$(V_{DD} = 5 V)$	1
POWER DISSIPATION	Figure 30. Typical Output Rise Time (10%–90% V _{DD})	
TEST CONDITIONS	vs. Load C apacitance (V _{DD} = 5 V)	1
ENVIRONMENTAL CONDITIONS 42	Figure 31. Typical Output Rise Time (0.8 V –2.0 V)	
240-LEAD METRIC PQFP PIN CONFIGURATIONS 43	vs. Load Capacitance ($V_{DD} = 5 V$)	1
PACKAGE DIMENSIONS 44	Figure 32. Typical Output Delay or Hold vs. Load Capaci-	
ORDERING GUIDE	tance (at M aximum C ase T emperature) $(V_{DD} = 5 V) \dots 4$	1
	Figure 33. AD SP-2106x Typical Drive Currents	
Figures	$(V_{DD} = 3.3 V) \dots 4$	1
Figure 1. ADSP-21060/ADSP-21060L Block Diagram 1	Figure 34. Typical Output Rise Time (10%–90% V _{DD})	
Figure 2. ADSP-2106x System 4	vs. Load C apacitance (V _{DD} = 3.3 V)	1
Figure 3. Shared M emory M ultiprocessing System 6	Figure 35. Typical Output Rise Time (0.8 V -2.0 V) vs. Load	
Figure 4. ADSP-21060/ADSP-21060L M emory M ap 7	Capacitance ($V_{DD} = 3.3 \text{ V}$)	
Figure 5. Target Board Connector For ADSP-2106x	Figure 36. Typical Output Delay or Hold vs. Load Capacitance	
EZ-ICE Emulator (Jumpers in Place)	(at M aximum C ase T emperature) $(V_{DD} = 3.3 \text{ V}) \dots 4$	1
Figure 6. JTAG Scan Path Connections for Multiple		
ADSP-2106x Systems		
Figure 7. JT AG Clocktree for Multiple AD SP-2106x		
Systems		
Figure 8. Clock Input		
Figure 9. Reset		
Figure 10. Interrupts		

-2- REV. 0

GENERAL DESCRIPTION

The ADSP-21060 SHARC—Super Harvard Architecture Computer—is a signal processing microcomputer that offers new capabilities and levels of performance. The ADSP-2106x SHARCs are 32-bit processors optimized for high performance DSP applications. The ADSP-2106x builds on the ADSP-21000 DSP core to form a complete system-on-a-chip, adding a dual-ported on-chip SRAM and integrated I/O peripherals supported by a dedicated I/O bus.

F abricated in a high speed, low power CMOS process, the ADSP-2106x has a 25 ns instruction cycle time and operates at 40 MIPS. With its on-chip instruction cache, the processor can execute every instruction in a single cycle. Table I shows performance benchmarks for the ADSP-2106x.

The ADSP-2106x SHARC represents a new standard of integration for signal computers, combining a high performance floating-point DSP core with integrated, on-chip system features including a 4 M bit SRAM memory host processor interface, DMA controller, serial ports, and link port and parallel bus connectivity for glueless DSP multiprocessing.

Figure 1 shows a block diagram of the ADSP-2106x, illustrating the following architectural features:

Computation Units (ALU, Multiplier and Shifter) with a Shared D ata Register File

Data Address Generators (DAG1, DAG2)

Program Sequencer with Instruction Cache

Interval Timer

On-Chip SRAM

External Port for Interfacing to Off-Chip M emory and Peripherals

Host Port and Multiprocessor Interface

DMA Controller

Serial Ports and Link Ports

IT AG Test Access Port

Figure 2 shows a typical single-processor system. A multi-processing system is shown in Figure 3.

Table I. ADSP-21060/ADSP-21060L Benchmarks (@ 40 MHz)

0.46 ms	18,221 cycles
25 ns	1 cycle
100 ns	4 cycles
150 ns	6 cycles
225 ns	9 cycles
240 M bytes/s	_
	25 ns 100 ns 150 ns 225 ns

REV. 0 -3-

ADSP-21000 FAMILY CORE ARCHITECTURE

The ADSP-2106x includes the following architectural features of the ADSP-21000 family core. The ADSP-21060 is code- and function-compatible with the ADSP-21061 and ADSP-21062.

Independent, Parallel Computation Units

The arithmetic/logic unit (ALU), multiplier and shifter all perform single-cycle instructions. The three units are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. These computation units support IEEE 32-bit single-precision floating-point, extended precision 40-bit floating-point, and 32-bit fixed-point data formats.

Figure 2. ADSP-2106x System

Data Register File

A general purpose data register file is used for transferring data between the computation units and the data buses, and for storing intermediate results. This 10-port, 32-register (16 primary, 16 secondary) register file, combined with the ADSP-21000 H arvard architecture, allows unconstrained data flow between computation units and internal memory.

Single-Cycle Fetch of Instruction and Two Operands

The ADSP-2106x features an enhanced H arvard architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data (see Figure 1). With its separate program and data memory buses and on-chip instruction cache, the processor can simultaneously fetch two operands and an instruction (from the cache), all in a single cycle.

Instruction Cache

The ADSP-2106x includes an on-chip instruction cache that enables three-bus operation for fetching an instruction and two data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This allows full-speed execution of core, looped operations such as digital filter multiply-accumulates and FFT butterfly processing.

Data Address Generators with Hardware Circular Buffers

The ADSP-2106x's two data address generators (DAGs) implement circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The two DAGs of the ADSP-2106x contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reducing overhead, increasing performance, and simplifying implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set

The 48-bit instruction word accommodates a variety of parallel operations, for concise programming. For example, the AD SP-2106x can conditionally execute a multiply, an add, a subtract and a branch, all in a single instruction.

ADSP-21060/ADSP-21060L FEATURES

Augmenting the ADSP-21000 family core, the ADSP-21060 adds the following architectural features:

Dual-Ported On-Chip Memory

The ADSP-21060 contains four megabits of on-chip SRAM, organized as two blocks of 2 M bits each, which can be configured for different combinations of code and data storage. Each memory block is dual-ported for single-cycle, independent accesses by the core processor and I/O processor or DMA controller. The dual-ported memory and separate on-chip buses allow two data transfers from the core and one from I/O, all in a single cycle.

On the ADSP-21060, the memory can be configured as a maximum of 128K words of 32-bit data, 256K words of 16-bit data, 80K words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to four megabits. All of the memory can be accessed as 16-bit, 32-bit, or 48-bit words.

A 16-bit floating-point storage format is supported that effectively doubles the amount of data that may be stored on-chip. C onversion between the 32-bit floating-point and 16-bit floating-point formats is done in a single instruction.

While each memory block can store combinations of code and data, accesses are most efficient when one block stores data, using the DM bus for transfers, and the other block stores instructions and data, using the PM bus for transfers. Using the DM bus and PM bus in this way, with one dedicated to each memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache. Single-cycle execution is also maintained when one of the data operands is transferred to or from off-chip, via the ADSP-2106x's external port.

-4- REV. 0

Off-Chip Memory and Peripherals Interface

The ADSP-2106x's external port provides the processor's interface to off-chip memory and peripherals. The 4-gigaword off-chip address space is included in the ADSP-2106x's unified address space. The separate on-chip buses—for PM addresses, PM data, DM addresses, DM data, I/O addresses, and I/O data—are multiplexed at the external port to create an external system bus with a single 32-bit address bus and a single 48-bit (or 32-bit) data bus.

Addressing of external memory devices is facilitated by on-chip decoding of high-order address lines to generate memory bank select signals. Separate control lines are also generated for simplified addressing of page-mode DRAM . The ADSP-2106x provides programmable memory wait states and external memory acknowledge controls to allow interfacing to DRAM and peripherals with variable access, hold, and disable time requirements.

Host Processor Interface

The ADSP-2106x's host interface allows easy connection to standard microprocessor buses, both 16-bit and 32-bit, with little additional hardware required. Asynchronous transfers at speeds up to the full clock rate of the processor are supported. The host interface is accessed through the ADSP-2106x's external port and is memory-mapped into the unified address space. Four channels of DMA are available for the host interface; code and data transfers are accomplished with low software overhead.

The host processor requests the ADSP-2106x's external bus with the host bus request (\overline{HBR}), host bus grant (\overline{HBG}), and ready (REDY) signals. The host can directly read and write the internal memory of the ADSP-2106x, and can access the DMA channel setup and mailbox registers. Vector interrupt support is provided for efficient execution of host commands.

DMA Controller

The ADSP-2106x's on-chip DMA controller allows zerooverhead data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions.

DMA transfers can occur between the ADSP-2106x's internal memory and either external memory, external peripherals or a host processor. DMA transfers can also occur between the ADSP-2106x's internal memory and its serial ports or link ports. DMA transfers between external memory and external peripheral devices are another option. External bus packing to 16-, 32-, or 48-bit words is performed during DMA transfers.

T en channels of D M A are available on the ADSP-2106x—two via the link ports, four via the serial ports, and four via the processor's external port (for either host processor, other ADSP-2106xs, memory or I/O transfers). Four additional link port D M A channels are shared with serial port 1 and the external port. Programs can be downloaded to the ADSP-2106x using D M A transfers. Asynchronous off-chip peripherals can control two D M A channels using D M A Request/G rant lines (DMAR $\overline{1-2}$, $\overline{DMAG1-2}$). Other D M A features include interrupt generation upon completion of D M A transfers and D M A chaining for automatic linked D M A transfers.

Serial Ports

The ADSP-2106x features two synchronous serial ports that provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices. The serial ports can operate at the full clock rate of the processor, providing each with a maximum data rate of 40 M bit/s. Independent transmit and receive functions provide greater flexibility for serial communications. Serial port data can be automatically transferred to and from on-chip memory via DMA. Each of the serial ports offers TDM multichannel mode.

The serial ports can operate with little-endian or big-endian transmission formats, with word lengths selectable from 3 bits to 32 bits. They offer selectable synchronization and transmit modes as well as optional $\mu\text{-law}$ or A-law companding. Serial port clocks and frame syncs can be internally or externally generated.

Multiprocessing

The ADSP-2106x offers powerful features tailored to multiprocessing DSP systems. The unified address space (see Figure 4) allows direct interprocessor accesses of each ADSP-2106x's internal memory. Distributed bus arbitration logic is included on-chip for simple, glueless connection of systems containing up to six ADSP-2106xs and a host processor. Master processor changeover incurs only one cycle of overhead. Bus arbitration is selectable as either fixed or rotating priority. Bus lock allows indivisible read-modify-write sequences for semaphores. A vector interrupt is provided for interprocessor commands. Maximum throughput for interprocessor data transfer is 240 M bytes/s over the link ports or external port. B roadcast writes allow simultaneous transmission of data to all ADSP-2106xs and can be used to implement reflective semaphores.

Link Ports

The ADSP-2106x features six 4-bit link ports that provide additional I/O capabilities. The link ports can be clocked twice per cycle, allowing each to transfer eight bits per cycle. Link port I/O is especially useful for point-to-point interprocessor communication in multiprocessing systems.

The link ports can operate independently and simultaneously, with a maximum data throughput of 240 M bytes/s. Link port data is packed into 32- or 48-bit words, and can be directly read by the core processor or D M A-transferred to on-chip memory.

Each link port has its own double-buffered input and output registers. Clock/acknowledge handshaking controls link port transfers. Transfers are programmable as either transmit or receive.

Program Booting

The internal memory of the ADSP-2106x can be booted at system power-up from either an 8-bit EPROM , a host processor, or through one of the link ports. Selection of the boot source is controlled by the \overline{BMS} (Boot M emory Select), EBOOT (EPROM Boot), and LBOOT (Link/Host Boot) pins. 32-bit and 16-bit host processors can be used for booting.

REV. 0 -5-

Figure 3. Shared Memory Multiprocessing System

-6- REV. 0

Figure 4. ADSP-21060/ADSP-21060L Memory Map

DEVELOPMENT TOOLS

The ADSP-21060 is supported with a complete set of software and hardware development tools, including an EZ-ICE $^{\otimes}$ In-Circuit E mulator, EZ-K it, and development software. The SHARC EZ-K it is a complete low cost package for DSP evaluation and prototyping. The EZ-K it contains a PC plug-in card (EZ-LAB $^{\otimes}$), an ADSP-21062 (5 V) processor and provides a serial connection to your PC. The EZ-K it also includes an optimizing compiler, assembler, instruction level simulator, runtime libraries, diagnostic utilities and a complete set of example programs.

The same EZ-ICE hardware can be used for the ADSP-21061/ ADSP-21062, to fully emulate the ADSP-21060, with the exception of displaying and modifying the two new SPORTS registers. The emulator will not display these two registers, but your code can use them.

Analog D evices ADSP-21000 Family D evelopment Software includes an easy to use Assembler based on an algebraic syntax, Assembly Library/Librarian, Linker, instruction-level Simulator, an ANSI C optimizing Compiler, the CBug™ C Source—Level D ebugger and a C Runtime Library including DSP and mathematical functions. The Optimizing Compiler includes N umerical C extensions based on the work of the ANSI N umerical C Extensions G roup. N umerical C provides extensions to the C language for array selections, vector math operations, complex data types, circular pointers and variably dimensioned arrays.

CBUG and SHARCPAC are trademarks of Analog Devices, Inc. EZ-ICE and EZ-LAB are registered trademarks of Analog Devices, Inc.

The ADSP-21000 Family D evelopment Software is available for both the PC and Sun platforms.

The ADSP-21061 EZ-ICE Emulator uses the IEEE 1149.1 JTAG test access port of the ADSP-21061 processor to monitor and control the target board processor during emulation. The EZ-ICE provides full-speed emulation, allowing inspection and modification of memory, registers, and processor stacks. Nonintrusive in-circuit emulation is assured by the use of the processor's JTAG interface—the emulator does not affect target system loading or timing.

Further details and ordering information are available in the ADSP-21000 Family Hardware and Software Development Tools data sheet (ADDS-210xx-TOOLS). This data sheet can be requested from any Analog Devices sales office or distributor.

In addition to the software and hardware development tools available from Analog D evices, third parties provide a wide range of tools supporting the SHARC processor family. Hardware tools include SHARC PC plug-in cards multiprocessor SHARC VM E boards, and daughter and modules with multiple SHARCs' and additional memory. These modules are based on the SHARCPAC module specification. Third Party software tools include an Ada compiler, DSP libraries, operating systems and block diagram design tools.

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-21060 architecture and functionality. For detailed information on the ADSP-21000 Family core architecture and instruction set, refer to the ADSP-2106x SHARC User's Manual, Second Edition.

PIN FUNCTION DESCRIPTIONS

ADSP-21060 pin definitions are listed below. All pins are identical on the ADSP-21060 and ADSP-21060L. Inputs identified as synchronous (S) must meet timing requirements with respect to CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as asynchronous (A) can be asserted asynchronously to CLKIN (or to TCK for \overline{TRST}).

U nused inputs should be tied or pulled to VDD or GND, except for ADDR $_{31-0}$, DATA $_{47-0}$, FLAG $_{3-0}$, \overline{SW} , and inputs that have internal pull-up or pull-down resistors (\overline{CPA} , ACK, DTx,

DRx, TCLKx, RCLKx, LxDAT3-0, LxCLK, LxACK, TMS and TDI)—these pins can be left floating. These pins have a logic-level hold circuit that prevents the input from floating internally.

A = A synchronous G = G round I = I nput

O = Output P = Power Supply S = Synchronous

 $(A/D) = Active Drive \qquad (O/D) = Open Drain$

T = T hree-State (when \overline{SBTS} is asserted, or when the

ADSP-2106x is a bus slave)

Pin	Туре	Function
AD D R ₃₁₋₀	Ι/Ο/Τ	External Bus Address. The ADSP-2106x outputs addresses for external memory and peripherals on these pins. In a multiprocessor system the bus master outputs addresses for read/writes of the internal memory or IOP registers of other ADSP-2106xs. The ADSP-2106x inputs addresses when a host processor or multiprocessing bus master is reading or writing its internal memory or IOP registers.
DATA ₄₇₋₀	I/O/T	External Bus Data. The ADSP-2106x inputs and outputs data and instructions on these pins. 32-bit single-precision floating-point data and 32-bit fixed-point data is transferred over bits 47-16 of the bus. 40-bit extended-precision floating-point data is transferred over bits 47-8 of the bus. 16-bit short word data is transferred over bits 31-16 of the bus. In PROM boot mode, 8-bit data is transferred over bits 23-16. Pull-up resistors on unused DATA pins are not necessary.
<u>MS</u> ₃₋₀	ОЛ	Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks of external memory. M emory bank size must be defined in the ADSP-2106x's system control register (SYSCON). The \overline{MS}_{3-0} lines are decoded memory address lines that change at the same time as the other address lines. When no external memory access is occurring the \overline{MS}_{3-0} lines are inactive; they are active however when a conditional memory access instruction is executed, whether or not the condition is true. \overline{MS}_0 can be used with the PAGE signal to implement a bank of DRAM memory (Bank 0). In a multiprocessing system the \overline{MS}_{3-0} lines are output by the bus master.
RD	Ι/Ο/Τ	Memory Read Strobe. This pin is asserted (low) when the ADSP-2106x reads from external memory devices or from the internal memory of other ADSP-2106xs. External devices (including other ADSP-2106xs) must assert $\overline{\mathrm{RD}}$ to read from the ADSP-2106x's internal memory. In a multiprocessing system $\overline{\mathrm{RD}}$ is output by the bus master and is input by all other ADSP-2106xs.
WR	Ι/Ο/Τ	Memory Write Strobe. This pin is asserted (low) when the ADSP-2106x writes to external memory devices or to the internal memory of other ADSP-2106xs. External devices must assert \overline{WR} to write to the ADSP-2106x's internal memory. In a multiprocessing system \overline{WR} is output by the bus master and is input by all other ADSP-2106xs.
PAGE	О/Т	DRAM Page Boundary . The ADSP-2106x asserts this pin to signal that an external DRAM page boundary has been crossed. DRAM page size must be defined in the ADSP-2106x's memory control register (WAIT). DRAM can only be implemented in external memory Bank 0; the PAGE signal can only be activated for Bank 0 accesses. In a multiprocessing system PAGE is output by the bus master.
ADRCLK	о/т	Clock Output Reference. In a multiprocessing system ADRCLK is output by the bus master.
<u>sw</u>	Ι/Ο/Τ	Synchronous Write Select. This signal is used to interface the ADSP-2106x to synchronous memory devices (including other ADSP-2106xs). The ADSP-2106x asserts \overline{SW} (low) to provide an early indication of an impending write cycle, which can be aborted if \overline{WR} is not later asserted (e.g., in a conditional write instruction). In a multiprocessing system, \overline{SW} is output by the bus master and is input by all other ADSP-2106xs to determine if the multiprocessor memory access is a read or write. \overline{SW} is asserted at the same time as the address output. A host processor using synchronous writes must assert this pin when writing to the ADSP-2106x(s).
ACK	1/0/5	Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external memory access. ACK is used by I/O devices, memory controllers, or other peripherals to hold off completion of an external memory access. The ADSP-2106x deasserts ACK as an output to add wait states to a synchronous access of its internal memory. In a multiprocessing system, a slave ADSP-2106x deasserts the bus master's ACK input to add wait state(s) to an access of its internal memory. The bus master has a keeper latch on its ACK pin that maintains the input at the level it was last driven to.

-8- REV. 0

Pin	Туре	Function
SBTS	I/S	Suspend Bus Three-State. External devices can assert $\overline{\rm SBTS}$ (low) to place the external bus address, data, selects and strobes in a high impedance state for the following cycle. If the ADSP-2106x attempts to access external memory while $\overline{\rm SBTS}$ is asserted, the processor will halt and the memory access will not be completed until $\overline{\rm SBTS}$ is deasserted. $\overline{\rm SBTS}$ should only be used to recover from host processor/ADSP-2106x deadlock, or used with a DRAM controller.
\overline{IRQ}_{2-0}	I/A	Interrupt Request Lines. May be either edge-triggered or level-sensitive.
FLAG ₃₋₀	I/O/A	Flag Pins. Each is configured via control bits as either an input or output. As an input, it can be tested as a condition. As an output, it can be used to signal external peripherals.
TIMEXP	0	Timer Expired . Asserted for four cycles when the timer is enabled and TCOUNT decrements to zero.
HBR	I/A	Host Bus Request M ust be asserted by a host processor to request control of the ADSP-2106x's external bus. When \overline{HBR} is asserted in a multiprocessing system, the ADSP-2106x that is bus master will relinquish the bus and assert \overline{HBG} . To relinquish the bus, the ADSP-2106x places the address, data, select and strobe lines in a high impedance state. \overline{HBR} has priority over all ADSP-2106x bus requests (\overline{BR}_{6-1}) in a multiprocessing system.
HBG	1/0	Host Bus Grant . Acknowledges an \overline{HBR} bus request, indicating that the host processor may take control of the external bus. \overline{HBG} is asserted (held low) by the ADSP-2106x until \overline{HBR} is released. In a multiprocessing system, \overline{HBG} is output by the ADSP-2106x bus master and is monitored by all others.
$\overline{\text{CS}}$	I/A	Chip Select. Asserted by host processor to select the ADSP-2106x.
REDY (O/D)	0	Host Bus Acknowledge. The ADSP-2106x deasserts REDY (low) to add wait states to an asynchronous access of its internal memory or IOP registers by a host. Open drain output (O/D) by default; can be programmed in ADREDY bit of SYSCON register to be active drive (A/D). REDY will only be output if the $\overline{\text{CS}}$ and $\overline{\text{HBR}}$ inputs are asserted.
DMAR1	I/A	DMA Request 1 (DMA Channel 7).
DMAR2	I/A	DMA Request 2 (DMA Channel 8).
DMAG1	о/т	DMA Grant 1 (DM A Channel 7).
DMAG2	0/Т	DMA Grant 2 (DM A Channel 8).
BR ₆₋₁	I/O/S	Multiprocessing Bus Requests. U sed by multiprocessing ADSP-2106xs to arbitrate for bus mastership. An ADSP-2106x only drives its own $\overline{BR}x$ line (corresponding to the value of its ID $_{2\cdot0}$ inputs) and monitors all others. In a multiprocessor system with less than six ADSP-2106xs, the unused $\overline{BR}x$ pins should be pulled high; the processor's own $\overline{BR}x$ line must not be pulled high or low because it is an output.
ID ₂₋₀	I	Multiprocessing ID . D etermines which multiprocessing bus request $(\overline{BR1} - \overline{BR6})$ is used by ADSP-2106x. ID = 001 corresponds to $\overline{BR1}$, ID = 010 corresponds to $\overline{BR2}$, etc. ID = 000 in single-processor systems. These lines are a system configuration selection which should be hardwired or only changed at reset.
RPBA	I/S	Rotating Priority Bus Arbitration Select When RPBA is high, rotating priority for multiprocessor bus arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system configuration selection which must be set to the same value on every ADSP-2106x. If the value of RPBA is changed during system operation, it must be changed in the same CLKIN cycle on every ADSP-2106x.
CPA (O/D)	I/O	Core Priority Access. Asserting its \overline{CPA} pin allows the core processor of an ADSP-2106x bus slave to interrupt background DMA transfers and gain access to the external bus. \overline{CPA} is an open drain output that is connected to all ADSP-2106xs in the system. The \overline{CPA} pin has an internal 5 k Ω pull-up resistor. If core access priority is not required in a system, the \overline{CPA} pin should be left unconnected.
DTx	О	Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 $k\Omega$ internal pull-up resistor.
DRx	1	Data Receive (Serial Ports 0, 1). Each DR pin has a 50 k Ω internal pull-up resistor.
TCLKx	1/0	Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 $k\Omega$ internal pull-up resistor.
RCLKx	1/0	Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 k Ω internal pull-up resistor.

REV. 0 -9-

Pin	Туре	Function		
TFSx	1/0	Transmit Frame Sync (Serial Ports 0, 1).		
RFSx	1/0	Receive Frame Sync (Serial Ports 0, 1).		
L xD T A ₃₋₀	I/O	Link Port Data (Link Ports 0–5). Each LxCLK pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.		
LxCLK	I/O	Link Port Clock (Link Ports 0–5). Each LxCLK pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.		
LxACK	I/O	Link Port Acknowledge (Link Ports 0–5). Each LxACK pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.		
EBOOT	ı	EPROM Boot Select. When EBOOT is high, the ADSP-2106x is configured for booting from an 8-bit EPROM. When EBOOT is low, the LBOOT and \overline{BMS} inputs determine booting mode. See table below. This signal is a system configuration selection that should be hardwired.		
LBOOT	ı	Link Boot . When LBOOT is high, the ADSP-2106x is configured for link port booting. When LBOOT is low, the ADSP-2106x is configured for host processor booting or no booting. See table below. This signal is a system configuration selection that should be hardwired.		
BMS	Ι/Ο/Τ*	Boot Memory Select Output: U sed as chip select for boot EPROM devices (when EBOOT = 1, LBOOT = 0). In a multiprocessor system, \overline{BMS} is output by the bus master. Input: When low, indicates that no booting will occur and that ADSP-2106x will begin executing instructions from external memory. See table below. This input is a system configuration selection that should be hardwired.		
		*T hree-statable only in EPROM boot mode (when $\overline{ m BMS}$ is an output).		
		EBOOT LBOOT \overline{BMS} Booting M ode		
		1 0 Output EPROM (Connect BMS to EPROM chip select.) 0 0 1 (Input) H ost Processor 0 1 1 (Input) L ink Port 0 0 0 (Input) N o Booting. Processor executes from external memory. 0 1 0 (Input) R eserved 1 1 x (Input) R eserved		
CLKIN	ı	Clock In. External clock input to the ADSP-2106x. The instruction cycle rate is equal to CLKIN. CLKIN may not be halted, changed, or operated below the minimum specified frequency.		
RESET	I/A	Processor Reset Resets the ADSP-2106x to a known state and begins execution at the program memory location specified by the hardware reset vector address. This input must be asserted (low) at power-up.		
TCK	1	Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.		
TMS	I/S	Test Mode Select (JTAG) . U sed to control the test state machine. T M S has a 20 $k\Omega$ internal pull-up resistor.		
TDI	I/S	Test Data Input (JTAG) . Provides serial data for the boundary scan logic. TDI has a 20 k Ω internal pull-up resistor.		
TDO	0	Test Data Output (JTAG). Serial scan output of the boundary scan path.		
TRST	I/A	Test Reset (JTAG) . Resets the test state machine. \overline{TRST} must be asserted (pulsed low) after power-up or held low for proper operation of the ADSP-2106x. \overline{TRST} has a 20 k Ω internal pull-up resistor.		
$\overline{\mathrm{EMU}}$	0	Emulation Status. M ust be connected to the ADSP-2106x EZ-ICE target board connector only.		
ICSA	0	Reserved, leave unconnected.		
VDD	Р	Power Supply ; nominally +5.0 V dc for 5 V devices or +3.3 V dc for 3.3 V devices. (30 pins).		
GND	G	Power Supply Return. (30 pins).		
NC		Do Not Connect . Reserved pins which must be left open and unconnected.		

-10- REV. 0

TARGET BOARD CONNECTOR FOR EZ-ICE PROBE

The ADSP-2106x EZ-ICE Emulator uses the IEEE 1149.1 JTAG test access port of the ADSP-2106x to monitor and control the target board processor during emulation. The EZ-ICE probe requires the ADSP-2106x's CLKIN (optional), TMS, TCK, \overline{TRST} , TDI, TDO, \overline{EMU} , and GND signals be made accessible on the target system via a 14-pin connector (a pin strip header) such as that shown in Figure 5. The EZ-ICE probe plugs directly onto this connector for chip-on-board emulation. You must add this connector to your target board design if you intend to use the ADSP-2106x EZ-ICE. The length of the traces between the connector and the ADSP-2106x's JTAG pins should be as short as possible.

Figure 5. Target Board Connector For ADSP-2106x EZ-ICE Emulator (J umpers in Place)

The 14-pin, 2-row pin strip header is keyed at the Pin 3 location — Pin 3 must be remove from the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin spacing should be 0.1×0.1 inches. Pin strip headers are available from vendors such as 3M , M cK enzie, and Samtec.

The BTMS, BTCK, \overline{BTRST} , and BTDI signals are provided so that the test access port can also be used for board-level testing. When the connector is not being used for emulation, place

jumpers between the BXXX pins and the XXX pins as shown in Figure 5. If you are not going to use the test access port for board testing, tie \overline{BTRST} to GND and tie or pull up BTCK to VDD. The \overline{TRST} pin must be asserted after power-up (through \overline{BTRST} on the connector) or held low for proper operation of the ADSP-2106x. None of the BXXX pins (Pins 5, 7, 9, 11) are connected on the EZ-ICE probe.

The ITAG signals are terminated on the EZ-ICE probe as follows:

Signal	Termination
TMS	Driven through 82 Ω Resistor (16 mA/-3.2 mA Driver)
TCK	D riven at 10 M H z through 82Ω Resistor ($16 \text{ mA/-} 3.2 \text{ mA}$ D river)
TRST*	D riven through 82 Ω Resistor (16 mA/-3.2 mA D river) (Pulled U p by On-C hip 20 k Ω Resistor)
TDI	D riven by 82 Ω Resistor (16 mA/-3.2 mA D river)
TDO	One TTL Load, 92 Ω Thevenin Termination (160/220)
CLKIN	One TTL Load, 92 Ω Thevenin Termination (160/220)
EMU	4.7 k Ω Pull-U p Resistor, One TTL Load (Open-Drain Output from the DSP)

 $^{*\}overline{TRST}$ is driven low until the EZ-ICE probe is turned on by the EZ-ICE software (after the invocation command).

Figure 6 shows JT AG scan path connections for systems that contain multiple AD SP-2106x processors.

Figure 6. J TAG Scan Path Connections for Multiple ADSP-2106x Systems

REV. 0 -11-

Connecting CLKIN to Pin 4 of the EZ-ICE $^{\otimes}$ header is optional. The emulator only uses CLKIN when directed to perform

operations such as starting, stopping, and single-stepping multiple AD SP-2106xs in a synchronous manner. If you do not need these operations to occur synchronously on the multiple processors, simply tie Pin 4 of the EZ-ICE® header to ground.

If synchronous multiprocessor operations are needed and CLKIN is connected, clock skew between the multiple ADSP-2106x processors and the CLKIN pin on the EZ-ICE $^{\otimes}$ header must be minimal. If the skew is too large, synchronous operations may be off by one cycle between processors. For synchronous

multiprocessor operation TCK, TMS, CLKIN and \overline{EMU} should be treated as critical signals in terms of skew, and should be laid out as short as possible on your board. If TCK, TMS, and CLKIN are driving a large number of ADSP-2106xs (more than eight) in your system, then treat them as a "clock tree" using multiple drivers to minimize skew. (See Figure 7 "JTAG Clock Tree" and "Clock Distribution" in the "High Frequency D esign Considerations" section of the ADSP-2106x U ser's M anual.)

If synchronous multiprocessor operations are not needed (i.e., CLKIN is not connected), just use appropriate parallel termination on TCK and TMS. TDI, TDO, \overline{EMU} and \overline{TRST} are not critical signals in terms of skew.

Figure 7. J TAG Clocktree for Multiple ADSP-2106x Systems

-12- REV. 0

ADSP-21060- SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

		K Grade		
Parameter		Min	Max	Units
V _{DD} T _{CASE}	Supply Voltage C ase Operating T emperature	4.75 0	5.25 +85	°C °C

See Environmental Conditions section for information on thermal specifications.

ELECTRICAL CHARACTERISTICS (5 V Supply)

Paramete	r	Test Conditions	Min	Max	Units
V _{IH1}	High Level Input Voltage ¹	@ V _{DD} = max	2.0	$V_{DD} + 0.5$	٧
V _{IH 2}	High Level Input Voltage ²	$@V_{DD} = max$	2.2	$V_{DD} + 0.5$	
V _{IL}	Low Level Input Voltage ^{1, 2}	$@V_{DD} = min$	-0.5	0.8	V
V _{OH}	High Level Output Voltage ³	@ $V_{DD} = min, I_{OH} = -2.0 \text{ mA}^4$	4.1		V
VoL	Low Level Output Voltage ³	@ $V_{DD} = \min_{A} I_{OL} = 4.0 \text{ mA}^4$		0.4	V
I _{IH}	High Level Input Current ^{5, 6}	$@V_{DD} = max, V_{IN} = V_{DD} max$		10	μΑ
I _{IL}	Low Level Input Current ⁵	$@V_{DD} = max, V_{IN} = 0 V$		10	μA
I _{ILP}	Low Level Input Current ⁶	$@V_{DD} = max, V_{IN} = 0 V$		150	μ Α
I_{OZH}	Three-State Leakage Current ^{7, 8, 9, 10}	\bigcirc $V_{DD} = max, V_{IN} = V_{DD} max$		10	μA
I _{OZL}	Three-State Leakage Current ^{7, 11}	$@V_{DD} = max, V_{IN} = 0 V$		10	μA
IOZHP	Three-State Leakage Current ¹¹	$\textcircled{0} V_{DD} = \text{max}, V_{IN} = V_{DD} \text{max}$		350	μA
I _{OZLC}	T hree-State L eakage C urrent ⁹	$@V_{DD} = max, V_{IN} = 0 V$		1.5	mA
I _{OZLA}	Three-State Leakage Current ¹⁰	$@V_{DD} = max, V_{IN} = 0 V$		4.2	mΑ
IOZLAR	Three-State Leakage Current ¹²	$@V_{DD} = max, V_{IN} = 1.5 V$		350	μΑ
lozus	T hree-State L eakage C urrent ⁸	$@V_{DD} = max, V_{IN} = 0 V$		150	μA
I _{DDIN1}	Supply Current (Internal) ¹³	$t_{CK} = 25 \text{ ns}, V_{DD} = \text{max}$		850	mΑ
I _{DDIN2}	Supply Current (Internal) ¹⁴	$t_{CK} = 25 \text{ ns, } V_{DD} = \text{max}$		650	mA
IDDIDLE	Supply Current (Idle) ¹⁵	$V_{DD} = max$		280	mΑ
CIN	Input Capacitance ^{16, 17}	$f_{IN} = 1 \text{ M H z}, T_{CASE} = 25^{\circ}\text{C}, V_{IN} = 2.5 \text{ V}$		4.7	pF

NOTES

REV. 0 -13-

¹Applies to input and bidirectional pins: DATA ₄₇₋₀, ADDR ₃₁₋₀, RD, WR, SW, ACK, SBTS, IRQ₂₋₀, FLAG ₃₋₀, HBG, CS, DMARI, DMARZ, BR₆₋₁, ID ₂₋₀, RPBA, CPA, TFS0, TFS1, RFS0, RFS1, LxDAT ₃₋₀, LxCLK, LxACK, EBOOT, LBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1.

 $^{^2} Applies$ to input pins: CLKIN, $\overline{RESET},$ $\overline{TRST}.$

³Applies to output and bidirectional pins: DATA₄₇₋₀, ADDR₃₁₋₀, \overline{MS}_{3-0} , \overline{RD} , \overline{WR} , PAGE, ADRCLK, \overline{SW} , ACK, FLAG₃₋₀, TIMEXP, \overline{HBG} , REDY, \overline{DMAGI} , \overline{DMAGI} , \overline{DMAGI} , \overline{DMAGI} , \overline{CPA} , DT0, DT1, TCLK0, TCLK1, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT₃₋₀, LxCLK, LxACK, \overline{BMS} , TD0, \overline{EMU} , ICSA.

⁴See "Output Drive Currents" for typical drive current capabilities.
⁵Applies to input pins: ACK SBTS, IRQ₂₋₀, HBR, CS, DMARI, DMAR2, ID₂₋₀, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK.

⁶Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.

 $^{^{7}}$ Applies to three-statable pins: DATA_{47.0}, ADDR_{31.0}, $\overline{MS}_{3.0}$, \overline{RD} , \overline{WR} , PAGE, ADRCLK, \overline{SW} , ACK, FLAG_{3.0}, REDY, \overline{HBG} , $\overline{DMAG1}$, $\overline{DMAG2}$, \overline{BMS} , \overline{BR}_{6-1} , TFS_X, RFS_X, TDO, \overline{EMU} . (Note that ACK is pulled up internally with 2 kΩ during reset in a multiprocessor system, when ID ₂₋₀ = 001 and another ADSP-2106x is not requesting bus mastership.)

⁸Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.

⁹Applies to CPA pin.

 $^{^{10}}$ Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kΩ during reset in a multiprocessor system, when ID $_{2-0}$ = 001 and another ADSP-2106x is not requesting bus mastership).

¹¹Applies to three-statable pins with internal pull-downs: LxDAT ₃₋₀, LxCLK , LxACK .

¹²Applies to ACK pin when keeper latch enabled.

¹³Applies to V_{DD} pins. See Power Dissipation section for calculation of external supply current and total supply current. Conditions of operation: Executing radix-2 FFT butterfly with instruction in cache, one data operand accessed from each internal memory block, and one DMA transfer occurring from/to internal memory at each cycle t_{CK} = 25 ns. At t_{CK} = 30 ns, I_{DDIN1} = 750 mA max.

¹⁴Applies to V_{DD} pins. See Power Dissipation section for calculation of external supply current and total supply current. Conditions of operations: Executing radix-2 FFT butterfly with instruction in cache, one data operand accessed from each internal memory block, memory at t_{CK} = 25 ns. At t_{CK} = 30 ns I_{DDIN2} = 540 mA max. ¹⁵Applies to V_{DD} pins. Idle denotes AD SP-2106x state during execution of IDLE instruction.

¹⁶Applies to all signal pins.

¹⁷Guaranteed but not tested.

Specifications subject to change without notice.

ADSP-21060/ADSP-21060L ADSP-21060L- SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Parameter			Grade Max	Units
V _{DD}	Supply Voltage	3.15	3.6	°C
T _{CASE}	C ase O perating T emperature	0	+85	

See Environmental Conditions section for information on thermal specifications.

ELECTRICAL CHARACTERISTICS (3.3 V Supply)

Parameter		Test Conditions	Min	Max	Units
$\overline{V_{IH1}}$	High Level Input Voltage ¹	@ V _{DD} = max	2.0	V _{DD} + 0.5	V
V _{IH 2}	High Level Input Voltage ²	$@V_{DD} = max$	2.2	$V_{DD} + 0.5$	
V _{IL}	Low Level Input Voltage ^{1, 2}	⊚ V _{DD} = min	-0.5	0.8	V
V _{OH}	High Level Output Voltage ³	@ $V_{DD} = min, I_{OH} = -2.0 \text{ mA}^4$	2.4		V
VoL	Low Level Output Voltage ³	@ $V_{DD} = \min_{A} I_{OL} = 4.0 \text{ mA}^4$		0.4	V
I _{IH}	High Level Input Current ^{5, 6}	$@V_{DD} = max, V_{IN} = V_{DD} max$		10	μA
$I_{\rm H}$	Low Level Input Current ⁵	@ $V_{DD} = \text{max}, V_{IN} = 0 \text{ V}$		10	μA
I _{ILP}	Low Level Input Current ⁶	@ $V_{DD} = \text{max}, V_{IN} = 0 \text{ V}$		150	μA
I _{ozh}	Three-State Leakage Current ^{7, 8, 9, 10}	$@V_{DD} = max, V_{IN} = V_{DD} max$		10	μA
lozL	Three-State Leakage Current ^{7, 11}	$@V_{DD} = max, V_{IN} = 0 V$		10	μA
IOZHP	Three-State Leakage Current ¹¹	$@V_{DD} = max, V_{IN} = V_{DD} max$		350	μA
I_{OZLC}	T hree-State L eakage C urrent ⁹	$@V_{DD} = max, V_{IN} = 0 V$		1.5	mA
I_{OZLA}	T hree-State L eakage C urrent ¹⁰	$@V_{DD} = max, V_{IN} = 0 V$		4.2	mA
I _{OZLAR}	T hree-State L eakage C urrent ¹²	$@V_{DD} = max, V_{IN} = 1.5 V$		350	μΑ
lozus	T hree-State L eakage C urrent ⁸	$@V_{DD} = max, V_{IN} = 0 V$		150	μA
I_{DDIN1}	Supply Current (Internal) ¹³	$t_{CK} = 25 \text{ ns, } V_{DD} = \text{max}$		550	mA
I_{DDIN2}	Supply Current (Internal) ¹⁴	$t_{CK} = 25 \text{ ns, } V_{DD} = \text{max}$		450	mA
IDDIDLE	Supply Current (Idle) ¹⁵	$V_{DD} = max$		190	mA
CIN	Input Capacitance16, 17	$f_{\text{IN}}=1$ M H z, $T_{\text{CASE}}=25^{\circ}\text{C}$, $V_{\text{IN}}=2.5$ V		4.7	pF

NOTES

-14- REV. 0

¹Applies to input and bidirectional pins: DATA ₄₇₋₀, ADDR ₃₁₋₀, \overline{RD} , \overline{WR} , \overline{SW} , ACK, \overline{SBTS} , \overline{IRQ}_{2-0} , FLAG ₃₋₀, \overline{HBG} , \overline{CS} , \overline{DMARI} , $\overline{DMAR2}$, \overline{BR} ₆₋₁, ID ₂₋₀, RPBA, \overline{CPA} , TFS0, TFS1, RFS0, RFS1, LxDAT ₃₋₀, LxCLK, LxACK, EBOOT, LBOOT, \overline{BMS} , TMS, TDI, TCK, \overline{HBR} , DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1.

²Applies to input pins: CLKIN, RESET, TRST.

³Applies to output and bidirectional pins: DATA₄₇₋₀, ADDR₃₁₋₀, \overline{MS}_{3-0} , \overline{RD} , \overline{WR} , PAGE, ADRCLK, \overline{SW} , ACK, FLAG₃₋₀, TIMEXP, \overline{HBG} , REDY, \overline{DMAGI} , \overline{DMAGI} , $\overline{DMAG2}$, \overline{BR}_{6-1} , \overline{CPA} , DT 0, DT 1, T CLK 0, T CLK 1, R CLK 0, R CLK 1, T F S0, T F S1, R F S0, R F S1, L X D AT 3-0, L X CLK, L X A CK, \overline{BMS} , T D O, \overline{EMU} , I C SA. ⁴See "Output D rive C urrents" for typical drive current capabilities.

⁵Applies to input pins: ACK SBTS, IRQ_{2.0}, HBR, CS, DMART, DMAR2, ID_{2.0}, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK.

⁶Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.

[^]Applies to three-statable pins: DATA $_{47-0}$, ADDR $_{31-0}$, \overline{MS}_{3-0} , \overline{RD} , \overline{WR} , PAGE, ADRCLK, \overline{SW} , ACK, FLAG $_{3-0}$, REDY, \overline{HBG} , $\overline{DMAG1}$, $\overline{DMAG2}$, \overline{BMS} , \overline{BR}_{6-1} , TFS_X, RFS_X, TDO, \overline{EMU} . (Note that ACK is pulled up internally with 2 kΩ during reset in a multiprocessor system, when ID $_{2-0}$ = 001 and another ADSP-2106x is not requesting bus mastership.)

⁸Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.

 $^{{}^{9}}$ Applies to \overline{CPA} pin.

¹⁰Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kΩ during reset in a multiprocessor system, when ID ₂₋₀ = 001 and another AD SP-2106x is not requesting bus mastership).

¹¹Applies to three-statable pins with internal pull-downs: LxDAT ₃₋₀, LxCLK, LxACK.

¹²Applies to ACK pin when keeper latch enabled.

¹³Applies to V_{DD} pins. See Power Dissipation section for calculation of external supply current and total supply current. Conditions of operation: Executing radix-2 FFT butterfly with instruction in cache, one data operand accessed from each internal memory block, and one DMA transfer occurring from/to internal memory at each cycle t_{CK} = 25 ns. At t_{CK} = 30 ns, I_{DDIN1} = 440 mA max.

 $^{^{14}}$ Applies to V_{DD} pins. See Power Dissipation section for calculation of external supply current and total supply current. Conditions of operations: Executing radix-2 FFT butterfly with instruction in cache, one data operand accessed from each internal memory block, memory at $t_{CK} = 25$ ns. At $t_{CK} = 30$ ns $I_{DDIN2} = 380$ mA max. 15 Applies to V_{DD} pins. Idle denotes ADSP-2106x state during execution of IDLE instruction.

¹⁶Applies to all signal pins.

¹⁷Guaranteed but not tested.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS (5 V)*

Supply Voltage0.3 V to +7 V
Input Voltage0.5 V to V _{DD} + 0.5 V
Output Voltage Swing0.5 V to V_{DD} + 0.5 V
Load Capacitance 200 pF
Junction Temperature Under Bias 130°C
Storage T emperature Range65°C to +150°C
Lead Temperature (5 seconds) +280°C

^{*}Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ABSOLUTE MAXIMUM RATINGS (3.3 V)*

Supply Voltage0.3	V to +4.6 V
Input Voltage0.3 V to	$V_{DD} + 0.5 V$
Output Voltage Swing0.3 V to	$V_{DD} + 0.5 V$
Load Capacitance	200 pF
Junction T emperature U nder Bias	130°C
Storage T emperature Range65°	C to +150°C
Lead Temperature (5 seconds)	+280°C

^{*}Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD SENSITIVITY

The ADSP-2106x processors are ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur to devices subjected to high energy electrostatic discharges.

The ADSP-2106x processors include proprietary ESD protection circuitry to dissipate high energy discharges. Per method 3015 of MIL-STD-883, the ADSP-2106x processors have been classified as a Class 2 device.

Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. U nused devices must be stored in conductive foam or shunts, and the foam should be discharged to the destination socket before devices are removed.

TIMING SPECIFICATIONS

T wo speed grades of the ADSP-21060 are offered, 40 M Hz and 33.3 M Hz. The specifications shown are based on a CLKIN frequency of 40 M Hz ($t_{CK} = 25$ ns). The DT derating allows specifications at other CLKIN frequencies (within the min–max range of the t_{CK} specification; see Clock Input below). DT is the difference between the actual CLKIN period and a CLKIN period of 25 ns:

$$DT = t_{CK} - 25 \text{ ns}$$

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.

See Figure 28 under T est C onditions for voltage reference levels.

Switching Characteristics specify how the processor changes its signals. You have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing R equirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

(O/D) = Open Drain

(A/D) = Active Drive

REV. 0 -15-

			ADSP-	21060		ADSP-21060L				
		40 M	1Hz	33 N	ИHz	40 M	Hz	33 M	lHz	
Parameter		Min	Max	Min	Max	Min	Max	Min	Max	Units
Clock Input										
Timing Require	ments:									
t _{cK}	CLKIN Period	25	100	30	100	25	100	30	100	ns
t _{CKL}	CLKIN Width Low	7		7		8.75		8.75		ns
t _{CKH}	CLKIN Width High	5		5		5		5		ns
t _{CKRF}	CLKIN Rise/Fall (0.4 V-2.0 V)		3		3		3		3	ns

Figure 8. Clock Input

		ADSP-	21060	ADSP-21060L			
Paramete	r	Min	Max	Min	Max	Units	
Reset							
Timing Requ	uirements:						
t _{wrst} .	RESET Pulse Width Low ¹	4t _{CK}		4t _{CK}		ns	
t_{SRST}	RESET Setup Before CLKIN High ²	14 + DT/2	t_{CK}	14 + DT/2	t_{CK}	ns	

NOTES

²Only required if multiple AD SP-2106xs must come out of reset synchronous to CLKIN with program counters (PC) equal (i.e., for a SIMD system). Not required for multiple AD SP-2106xs communicating over the shared bus (through the external port), because the bus arbitration logic synchronizes itself automatically after reset.

Figure 9. Reset

		ADSP-2	1060	ADSP	-21060L	
Parameter		Min	Max	Min	Max	Units
Interrupts						
Timing Requirem	nents:					
t _{SIR}	IRQ2-0 Setup Before CLKIN High ¹	18 + 3DT/4		18 + 3DT	/4	ns
t _{HIR}	IRQ2-0 Hold Before CLKIN High ¹		12 + 3DT/4		12 + 3DT/4	ns
t _{IPW}	IRQ2-0 Pulse Width ²	2 + t _{c K}		2 + t _{c K}		ns

NOTES

 $^{^2}$ Applies only if t_{SIR} and t_{HIR} requirements are not met.

Figure 10. Interrupts

-16-

REV. 0

¹Applies after the power-up sequence is complete. At power-up, the processor's internal phase-locked loop requires no more than 2000 CLKIN cycles while RESET is low, assuming stable V_{DD} and CLKIN (not including start-up time of external clock oscillator).

 $^{^1\!}O$ nly required for $\overline{1RQx}$ recognition in the following cycle.

- A25	ADS	P-21060	ADS	ADSP-21060L	
Parameter	Min	Max	Min	Max	Units
Timer					
Switching Characteristic:					
t _{DTEX} CLKIN High to TIMEXP		15		15	ns

Figure 11. Timer

		ADSP-2	L060	ADSP-21	1060L		
Parameter		Min	Max	Min	Max	Units	
Flags							
Timing Requ	irements:						
t _{SFI} t _{HFI} t _{DWRFI} t _{HFIWR}	$ \begin{array}{l} {\sf FLAG3-0_{\sf IN}} \; {\sf Setup} \; {\sf Before} \; {\sf CLKIN} \; \; {\sf High^1} \\ {\sf FLAG3-0_{\sf IN}} \; {\sf Hold} \; {\sf After} \; {\sf \overline{RD}/\overline{WR}} \; {\sf Low^1} \\ {\sf FLAG3-0_{\sf IN}} \; {\sf Delay} \; {\sf After} \; {\sf \overline{RD}/\overline{WR}} \; {\sf Low^2} \\ {\sf FLAG3-0_{\sf IN}} \; {\sf Hold} \; {\sf After} \; {\sf \overline{RD}/\overline{WR}} \; {\sf Deasserted^1} \\ \end{array} $	8 + 5DT/16 0 - 5DT/16 0	5 + 7DT/16	8 + 5DT/16 0 - 5DT/16 0	5 + 7DT/16	ns ns ns ns	
Switching Ch	naracteristics:						
t _{DFO}	FLAG3-0 _{OUT} Delay After CLKIN High		16		16	ns	
t _{HFO}	FLAG3-0 _{OUT} Hold After CLKIN High	4		4		ns	
t _{DFOE}	CLKIN High to FLAG3-0 _{OUT} Enable	3		3		ns	
t _{DFOD}	CLKIN High to FLAG3-0 _{OUT} Disable		14		14	ns	

 $[\]label{eq:NOTE} \mbox{NOTE} \\ \mbox{1F lag inputs meeting these setup and hold times will affect conditional instructions in the following instruction cycle.}$

Figure 12. Flags

REV. 0 -17-

Memory Read-Bus Master

U se these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-2106x is the bus master accessing external memory space. These switching

characteristics also apply for bus master synchronous read/write timing (see Synchronous Read/Write – Bus M aster below). If these timing requirements are met, the synchronous read/write timing can be ignored (and vice versa).

		ADSP-21	.060	ADSP-210	60L	
Parame	eter	Min	Max	Min	Max	Units
Timing F	Requirements:					
t _{DAD}	Address, Selects Delay to Data Valid ^{1, 2}		18 + DT + W		18 + DT + W	ns
t_{DRLD}	$\overline{ m RD}$ Low to D ata ${\sf Valid}^1$		12 + 5DT/8 + W		12 + 5DT/8 + W	ns
t_{HDA}	Data Hold from Address, Selects ³	0.5		0.5		ns
t_{HDRH}	D ata H old from $\overline{ m RD}$ H igh ³	2.0		2.0		ns
t_{DAAK}	ACK Delay from Address, Selects ^{2, 4}		14 + 7DT/8 +W		14 + 7DT/8 +W	ns
t_{DSAK}	ACK Delay from $\overline{ m RD}$ Low ⁴		8 + DT/2 +W		8 + DT/2 +W	ns
Switchin	g Characteristics:					
t_{DRHA}	Address, Selects Hold After $\overline{ m RD}$ High	0 + H		0 + H		ns
t_{DARL}	Address, Selects to RD Low ²	2 + 3DT/8		2 + 3DT/8		ns
t_{RW}	RD Pulse Width	12.5 + 5DT/8 + W		12.5 + 5DT/8 + W		ns
t_{RWR}	\overline{RD} High to \overline{WR} , \overline{RD} , $\overline{DMAG}x$ Low	8 + 3DT/8 + HI		8 + 3DT/8 + HI		ns
t_{SADADC}						
	ADRCLK High ²	0 + DT/4		0 + DT /4		ns

W = (number of wait states specified in WAIT register) $\times t_{CK}$.

 $HI = t_{CK}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).

 $H = t_{CK}$ (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).

NOTES

¹D ata D elay/Setup: U ser must meet t_{DAD} or t_{DRLD} or synchronous spec t_{SSDATI}.

²T he falling edge of MSx, SW, BMS is referenced.

⁴ACK Delay/Setup: User must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SACKC} for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High).

Figure 13. Memory Read—Bus Master

³D ata Hold: U ser must meet t_{HDA} or t_{HDRH} or synchronous spec t_{HSDAT1}. See System Hold Time Calculation under T est Conditions for the calculation of hold times given capacitive and dc loads.

Memory Write-Bus Master

U se these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-2106x is the bus master accessing external memory space. These switching

characteristics also apply for bus master synchronous read/write timing (see Synchronous Read/Write-Bus Master). If these timing requirements are met, the synchronous read/write timing can be ignored (and vice versa).

	ADSP-21	060	ADSP-2100	5OL	
Parameter	Min	Max	Min	Max	Units
Timing R equirements:					
t _{DAAK} ACK Delay from Address, Selects ^{1, 2}		14 + 7DT/8 +W		14 + 7DT/8 +W	ns
t_{DSAK} ACK Delay from $\overline{WR} Low^1$		8 + DT/2 +W		8 + DT/2 +W	ns
Switching Characteristics:					
t_{DAWH} Address, Selects to \overline{WR} D easserted ²	17 + 15DT/16 +W		17 + 15DT/16 +W		ns
t_{DAWL} Address, Selects to \overline{WR} L ow ²	3 + 3D T /8		3 + 3DT/8		ns
t _{ww} WR Pulse Width	12 + 9DT/16 +W		12 + 9DT/16 +W		ns
t_{DDWH} D ata Setup before \overline{WR} High	7 + DT/2 +W		7 + DT/2 +W		ns
t_{DWHA} Address Hold after \overline{WR} D easserted	0.5 + DT/16 + H		0.5 + DT/16 + H		ns
t_{DATRWH} D ata D isable after \overline{WR} D easserted ³	1 + DT/16 + H	6 + DT/16 + H	1 + DT/16 + H	6 + DT/16 + H	ns
t_{WWR} \overline{WR} High to \overline{WR} , \overline{RD} , \overline{DMAG} x Low	8 + 7DT/16 + H		8 + 7DT/16 + H		ns
t_{DDWR} D ata D isable before \overline{WR} or \overline{RD} L ow	5 + 3D T /8 + I		5 + 3DT/8 + I		ns
t _{WDE} WR Low to D ata Enabled	-1 + DT/16		-1 + DT/16		ns
t _{SADADC} Address, Selects to ADRCLK High ²	0 + DT /4		0 + DT /4		ns

W = (number of wait states specified in WAIT register) \times t_{CK}.

NOTES

Figure 14. Memory Write—Bus Master

REV. 0 -19-

 $H = t_{CK}$ (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).

 $I = t_{CK}$ (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).

¹ACK D elay/Setup: User must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SACKC} for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High).

 $^{^2}$ T he falling edge of $\overline{MS}x$, \overline{SW} , \overline{BMS} is referenced.

³See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.

Synchronous Read/Write—Bus Master

Use these specifications for interfacing to external memory systems that require CLKIN—relative timing or for accessing a slave ADSP-2106x (in multiprocessor memory space). These synchronous switching characteristics are also valid during asynchronous memory reads and writes (see Memory Read—Bus Master and Memory Write—Bus Master).

When accessing a slave ADSP-2106x, these switching characteristics must meet the slave's timing requirements for synchronous read/writes (see Synchronous Read/Write—Bus Slave). The slave ADSP-2106x must also meet these (bus master) timing requirements for data and acknowledge setup and hold times.

		ADSP-2	21060		ADSP-21060L	
Parame	eter	Min	Мах	Min	Max	Units
Timing F	Requirements:					
t _{SSDATI}	Data Setup Before CLKIN	3 + DT/8		3 + DT/8		ns
thsdati	Data Hold After CLKIN	3.5 - DT/8		3.5 - DT/8		ns
t_{DAAK}	ACK Delay After Address, $\overline{\text{MS}}$ x,					
	\overline{SW} , $\overline{BMS}^{1,2}$		14 + 7 DT /8 + W		14 + 7 DT/8 + W	ns
tsackc	ACK Setup Before CLKIN ²	6.5 + DT/4		6.5 + DT/4		ns
tHACKC	ACK Hold After CLKIN	-1 - DT/4		-1 - DT/4		ns
	g Character <u>istics</u> :					
t_{DADRO}	Address, \overline{MSx} , \overline{BMS} , \overline{SW} Delay					
	After CLKIN ¹		7 - DT/8		7 - DT/8	ns
t_{HADRO}	Address, \overline{MS} x, \overline{BMS} , \overline{SW} Hold					
	After CLKIN	-1 - DT/8		-1 - DT/8		ns
t_{DPGC}	PAGE Delay After CLKIN	9 + DT/8	16 + DT/8	9 + DT/8	16 + DT/8	ns
t_{DRDO}	$\overline{\mathrm{RD}}$ H igh D elay After C L K IN	-2 - DT/8	4 - DT/8	-2 - DT/8	4 - DT/8	ns
t_{DWRO}	WR High Delay After CLKIN	-3 - 3DT/16	4 - 3DT/16	-3 - 3DT/16	4 - 3DT/16	ns
t_{DRWL}	RD/WR Low Delay After CLKIN	8 + DT/4	12.5 + DT/4	8 + DT/4	12.5 + DT/4	ns
t_{SDDATO}			19 + 5DT/16		19 + 5DT/16	ns
t_{DATTR}	Data Disable After CLKIN ³	0 - DT/8	7 - DT/8	0 - DT/8	7 – DT/8	ns
t_{DADCCK}	ADRCLK Delay After CLKIN	4 + DT/8	10 + DT/8	4 + DT/8	10 + DT/8	ns
t_{ADRCK}	ADRCLK Period	t _{CK}		t _{cK}		ns
t_{ADRCKH}	ADRCLK Width High	(t _{CK} /2 - 2)		$(t_{CK}/2 - 2)$		ns
t_{ADRCKL}	ADRCLK Width Low	(t _{cK} /2 - 2)		(t _{cK} /2 - 2)		ns

W = (number of Wait states specified in WAIT register) $\times t_{CK}$.

NOTES

-20- REV. 0

 $^{{}^{1}}T$ he falling edge of $\overline{MS}x$, \overline{SW} , \overline{BMS} is referenced.

²ACK Delay/Setup: User must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SACKC} for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High).

³See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.

Figure 15. Synchronous Read/Write—Bus Master

REV. 0 -21-

Synchronous Read/Write—Bus Slave

U se these specifications for ADSP-2106x bus master accesses of a slave's IOP registers or internal memory (in multiprocessor

memory space). The bus master must meet these (bus slave) timing requirements.

	ADSP-21	.060	ADSP-2106	50L	
Parameter	Min	Max	Min	Max	Units
Timing Requirements:					
t _{SADRI} Address, \overline{SW} Setup Before CLKIN	15 + DT/2		15 + DT/2		ns
t _{HADRI} Address, \overline{SW} Hold Before CLKIN		5 + DT/2		5 + DT/2	ns
t_{SRWLI} $\overline{RD}/\overline{WR}$ Low Setup Before CLKIN ¹	9.5 + 5DT/16		9.5 + 5DT/16		ns
t _{HRWLI} RD/WR Low Hold After CLKIN	-4 - 5DT/16	8 + 7DT/16	-4 - 5DT/16	8 + 7DT/16	ns
t _{RWHPI} RD/WR Pulse High	3		3		ns
t _{SDATWH} Data Setup Before WR High	5		5		ns
t _{HDATWH} Data Hold After WR High	1		1		ns
Switching Characteristics:					
t _{SDDATO} Data Delay After CLKIN		19 + 5DT/16		19 + 5DT/16	ns
t _{DATTR} Data Disable After CLKIN ²	0 - DT/8	7 - DT/8	0 - DT/8	7 - DT/8	ns
t _{DACKAD} ACK Delay After Address, \overline{SW}^3		9		9	ns
t _{ACKTR} ACK Disable After CLKIN ³	-1 - DT/8	6 - DT/8	-1 - DT/8	6 - DT/8	ns

NOTES

-22- REV. 0

¹t_{SRWLI} (min) = 9.5 + 5DT/16 when M ultiprocessor M emory Space Wait State (M M SWS bit in WAIT register) is disabled; when M M SWS is enabled, t_{SRWLI} (min) = 4 + DT/8.

²See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.

³t_{DACKAD} is true only if the address and \overline{SW} inputs have setup times (before CLKIN) greater than $10^{\circ}+DT/8$ and less than $19^{\circ}+3DT/4$. If the address and \overline{SW} inputs have setup times greater than $19^{\circ}+3DT/4$, then ACK is valid $14^{\circ}+DT/4$ (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK regardless of the state of M M SWS or strobes. A slave will three-state ACK every cycle with t_{ACKTR} .

Figure 16. Synchronous Read/Write—Bus Slave

REV. 0 -23-

Multiprocessor Bus Request and Host Bus Request

U se these specifications for passing of bus mastership between multiprocessing ADSP-2106xs ($\overline{BR}x$) or a host processor (\overline{HBR} , \overline{HBG}).

	ADSP-210)60	ADSP-210	60L	
Parameter	Min	Max	Min	Max	Units
Timing R equirements:					
$t_{HBGRCSV}\overline{HBG}Lowto\overline{RD}/\overline{WR}/\overline{CS}Valid^1$		20+ 5DT/4		20+ 5DT/4	ns
t _{SHBRI} HBR Setup Before CLKIN ²	20 + 3DT /4		20 + 3DT/4		ns
t_{HHBRI} Hold Before CLKIN ²		14 + 3DT/4		14 + 3DT/4	ns
$t_{SHBGI} = \overline{HBG}$ Setup Before CLKIN	13 + DT/2		13 + DT/2		ns
t _{HHBGI} Hold Before CLKIN High		6 + DT/2		6 + DT/2	ns
t_{SBRI} $\overline{BR}x$, \overline{CPA} Setup Before CLKIN ³	13 + DT/2		13 + DT/2		ns
t _{HBRI} BRx, CPA Hold Before CLKIN High	04 . 35 7 /4	6 + DT/2	04 . 35 7.4	6 + DT/2	ns
t _{SRPBAI} RPBA Setup Before CLKIN	21 + 3DT/4	10 · 20 T //	21 + 3DT/4	10 · 20 T //	ns
t _{HRPBAI} RPBA Hold Before CLKIN		12 + 3DT/4		12 + 3DT/4	ns
Switching Characteristics:					
t _{DHBGO} HBG D elay After CLKIN		7 - DT/8		7 - DT/8	ns
t _{HHBGO} HBG Hold After CLKIN	-2 - DT/8		-2 - DT/8		ns
t _{DBRO} BRx Delay After CLKIN		7 - DT/8		7 – DT/8	ns
$t_{HBRO} = \overline{BRx} H \text{ old After CLKIN}$	-2 - DT/8		-2 - DT/8		ns
t_{DCPAO} \overline{CPA} Low Delay After CLKIN		8 - DT/8		8 - DT/8	ns
t _{TRCPA} CPA D isable After CLKIN	-2 - DT/8	4.5 – DT/8	-2 - DT/8	4.5 - DT/8	ns
t_{DRDYCS} REDY (O/D) or (A/D) Low from \overline{CS}					
and $\overline{\mathrm{HBR}}Low^4$		8.5		9.25	ns
t_{TRDYHG} REDY (O/D) Disable or REDY (A/D)	44 . 000 = 46		44 . 000 = 46		
High from HBG ⁴	44 + 23DT/16		44 + 23DT/16		ns
t_{ARDYTR} REDY (A/D) Disable from \overline{CS} or		10		10	
HBR High⁴		10		10	ns

NOTES

-24- REV. 0

¹For first asynchronous access after \overline{HBR} and \overline{CS} asserted, ADDR₃₁₋₀ must be a non-MMS value 1/2 t_{CK} before \overline{RD} or \overline{WR} goes low or by t_{HBGRCSV} after \overline{HBG} goes low. This is easily accomplished by driving an upper address signal high when \overline{HBG} is asserted. See the "Host Processor Control of the ADSP-2106x" section in the ADSP-2106x SHARC User's Manual, Second Edition.

²Only required for recognition in the current cycle.

³CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.

 $^{^{4}(}O/D)$ = open drain, (A/D) = active drive.

Figure 17. Multiprocessor Bus Request and OHost Bus Request

REV. 0 -25-

Asynchronous Read/Write—Host to ADSP-2106x

U se these specifications for asynchronous host processor accesses of an ADSP-2106x, after the host has asserted \overline{CS} and \overline{HBR} (low). After \overline{HBG} is returned by the ADSP-2106x, the host can

drive the \overline{RD} and \overline{WR} pins to access the ADSP-2106x's internal memory or IOP registers. \overline{HBR} and \overline{HBG} are assumed low for this timing.

		ADSP-21060		ADSP-21060L		
Paramete	r	Min	Max	Min	Max	Units
Read Cycl	e			V		
Timing Req	uirements:					
tsadrdl	Address Setup/ $\overline{\text{CS}}$ Low Before $\overline{\text{RD}}$ Low ¹	0		0		ns
t _{HADRDH}	Address Hold/CS Hold Low After RD	0		0		ns
t _{wrwh}	RD/WR High Width	6		6		ns
t _{DRDHRDY}	$\overline{\mathrm{RD}}$ High Delay After REDY (O/D) Disable	0		0		ns
$t_{DRDHRDY}$	RD High Delay After REDY (A/D) Disable	0		0		ns
Switching C	haracteristics:					
t _{SDATRDY}	Data Valid Before REDY Disable from Low	2		2		ns
tDRDYRDL	REDY (O/D) or (A/D) Low Delay After \overline{RD} Low		10		10.5	ns
t _{RDYPRD}	REDY (O/D) or (A/D) Low Pulse	4E + 21D	T /1.C	45 + 2107	T /1 C	
	Width for Read	45 + 21D	-	45 + 21D1	•	ns
t _{HDARWH}	Data Disable After $\overline{\mathrm{RD}}$ High	2	8	2	8.5	ns
Write Cyc						
Timing Req		_				
t _{SCSWRL}	CS Low Setup Before WR low	0		0		ns
t _{HCSWRH}	CS Low Hold After WR high	0		0		ns
t _{sadwrh}	Address Setup Before WR High	5		5		ns
t _{HADWRH}	Address Hold After WR High	2 7		2 7		ns
t _{wwr} L	WR Low Width	6		6		ns
t _{wrwh}	RD/WR High Width WR High Delay After REDY	O		0		ns
t _{DWRHRDY}	(O/D) or (A/D) Disable	0		0		ns
t	Data Setup Before \overline{WR} High	5		5		ns
t _{sdatwh} t _{hdatwh}	Data Hold After WR High	1		1		ns
HUAIWH	Duta Hold Arter With High	1		1		''3
Switching C	haracteristics:					
t _{DRDYWRL}	REDY(O/D) or (A/D) Low Delay					
	After WR/CS Low		10		10.5	ns
t _{RDYPWR}	REDY (O/D) or (A/D) Low Pulse					
	Width for Write	15 + 7D1		15 + 7DT		ns
t _{SRDYCK}	REDY (O/D) or (A/D) D isable to CLKIN	1 + 7DT	/16 8 + 7DT/16	1 + 7DT/3	16 8 + 7DT/16	ns

NOTE

 $^{^1}$ Not required if \overline{RD} and address are valid $t_{HBGRCSV}$ after \overline{HBG} goes low. For first access after \overline{HBR} asserted, ADDR $_{31-0}$ must be a non-MMS value 1/2 t_{CLK} before \overline{RD} or \overline{WR} goes low or by $t_{HBGRCSV}$ after HBG goes low. This is easily accomplished by driving an upper address signal high when \overline{HBG} is asserted. See the "Host Processor Control of the ADSP-2106x" section in the ADSP-2106x SHARC User's Manual, Second Edition.

Figure 18a. Synchronous REDY Timing

-26- REV. 0

ADDRESS/CS tsadrdl thadrdh twrwh thornwh tho

t_{DRDYRDL}

t_{RDYPRD}

WRITE CYCLE

REDY (A/D)

Figure 18b. Asynchronous Read/Write—Host to ADSP-2106x

REV. 0 -27-

Three-State Timing—Bus Master, Bus Slave, $\overline{\mathrm{HBR}}$, $\overline{\mathrm{SBTS}}$

These specifications show how the memory interface is disabled (stops driving) or enabled (resumes driving) relative to CLKIN and the SBTS pin. This timing is applicable to bus master transition cycles (BTC) and host transition cycles (HTC) as well as the \overline{SBTS} pin.

		ADSP-21060		ADSP-2	1060L	
Paramet	er	Min	Max	Min	Max	Units
Timing Re	equirements:					
t _{STSCK}	SBTS Setup Before CLKIN	12 + DT/2		12 + DT/2		ns
t _{HTSCK}	SBTS Hold Before CLKIN		6 + DT/2		6 + DT/2	ns
Switching	Characteristics:					
t _{MIENA}	Address/Select Enable After CLKIN	-1.5 - DT/8		-1.25 - DT/8		ns
t _{MIENS}	Strobes Enable After CLK IN ¹	-1.5 - DT/8		-1.5 - DT/8		ns
t _{MIENHG}	HBG Enable After CLKIN	-1.5 - DT/8		-1.5 - DT/8		ns
t_{MITRA}	Address/Select Disable After CLKIN		0 - DT/4		0 - DT/4	ns
t _{MITRS}	Strobes Disable After CLKIN ¹		1.5 - DT/4		1.5 - DT/4	ns
t _{MITRHG}	HBG Disable After CLKIN		2.0 - DT/4		2.0 - DT/4	ns
t_{DATEN}	D ata E nable A fter C L K I N ²	9 + 5DT/16		9 + 5DT/16		ns
t_{DATTR}	D ata D isable After C L K I N ²	0 - DT/8	7 - DT/8	0 - DT/8	7 - DT/8	ns
tacken	ACK Enable After CLKIN ²	7.5 + DT/4		7.5 + DT/4		ns
t _{ACKTR}	ACK Disable After CLKIN ²	-1 - DT/8	6 - DT/8	-1 - DT/8	6 - DT/8	ns
t _{ADCEN}	ADRCLK Enable After CLKIN	-2 - DT/8		-2 - DT/8		ns
t _{ADCTR}	ADRCLK Disable After CLKIN		8 - DT/4		8 - DT/4	ns
t _{MTRHBG}	M emory Interface D isable Before					
	HBG Low ³	0 + DT/8		0 + DT /8		ns
t _{M EN HBG}	M emory Interface Enable After					
PIENTIDO	HBG High ³	19 + DT		19 + DT		ns

NOTES

REV. 0 -28-

 $^{^{1}}$ Strobes = $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{SW}}$, PAGE, $\overline{\text{DMAG}}$.

²In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write. ³M emory Interface = Address, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{MS}}$ x, $\overline{\text{SW}}$, $\overline{\text{HBG}}$, $\overline{\text{PAGE}}$, $\overline{\overline{\text{DMAG}}}$ x, $\overline{\overline{\text{BMS}}}$ (in EPROM boot mode).

Figure 19. Three-State Timing

REV. 0 -29-

DMA Handshake

T hese specifications describe the three D M A handshake modes. In all three modes D M AR is used to initiate transfers. For handshake mode, D M AG controls the latching or enabling of data externally. For external handshake mode, the data transfer is controlled by the A D D R $_{31\text{-}0}$, \overline{RD} , \overline{WR} , \overline{SW} , PAGE, $\overline{MS}_{3\text{-}0}$, AC K , and \overline{DMAG} signals. For Paced M aster mode, the data

transfer is controlled by ADDR $_{31-0}$, \overline{RD} , \overline{WR} , \overline{MS}_{3-0} , and ACK (not \overline{DMAG}). For Paced M aster mode, the M emory Read-Bus M aster, M emory Write-Bus M aster, and Synchronous Read/Write-Bus M aster timing specifications for ADDR $_{31-0}$, \overline{RD} , \overline{WR} , \overline{MS}_{3-0} , \overline{SW} , PAGE, DATA $_{47-0}$, and ACK also apply.

		ADSP-2106	0	ADSP-2106	OL	
Parameter Timing R equirements:		Min	Max	Min	Max	Units
		0,00				
t _{SDRLC}	DMARx Low Setup Before CLKIN ¹	5		5		ns
t _{SDRHC}	DMARx High Setup Before CLKIN ¹	5		5		ns
twoR	DMARx Width Low					
	(N onsynchronous)	6		6		ns
t _{SDATDGL}	Data Setup After DMAGx Low ²		10 + 5DT/8		10 + 5DT/8	ns
t _{HDATIDG}	Data Hold After DMAG x High	2		2		ns
t _{datdrh}	Data Valid After DMARx High ²		16 + 7DT/8		16 + 7DT/8	ns
t _{DMARLL}	DMARx Low Edge to Low Edge	23 + 7DT/8		23 + 7DT/8		ns
t _{DMARH}	DMARx Width High	6		6		ns
Switching	Characteristics:					
t _{DDGL}	DMAGx Low Delay After CLKIN	9 + DT/4	15 + DT/4	9 + DT/4	15 + DT/4	ns
twogh	DMAGx High Width	6 + 3DT /8		6 + 3DT/8		ns
twogL	DMAGx Low Width	12 + 5DT/8		12 + 5DT/8		ns
t_{HDGC}	DMAGx High Delay After CLKIN	-2 - DT/8	6 - DT/8	-2 - DT/8	6 - DT/8	ns
t _{VDATDGH}	Data Valid Before DMAGx High ³	8 + 9DT/16		8 + 9DT/16		ns
t _{DATRDGH}		0	7	0	7	ns
t _{DGWRL}	WR Low Before DMAGx Low	0	2	0	2	ns
t_{DGWRH}	$\overline{\mathrm{DMAG}}$ x Low Before $\overline{\mathrm{WR}}$ High	10 + 5DT/8 + W		10 + 5DT/8 + W		ns
t_{DGWRR}	$\overline{\mathrm{WR}}$ High Before $\overline{\mathrm{DMAG}}$ x High	1 + DT/16	3 + DT/16	1 + DT/16	3 + DT/16	ns
t_{DGRDL}	$\overline{\text{RD}}$ Low Before $\overline{\text{DMAG}}$ x Low	0	2	0	2	ns
t_{DRDGH}	$\overline{\text{RD}}$ Low Before $\overline{\text{DMAG}}$ x High	11 + 9DT/16 + W		11 + 9DT/16 + W		ns
t_{DGRDR}	RD High Before DMAGx High	0	3	0	3	ns
t_{DGWR}	$\overline{\mathrm{DMAG}}$ x High to $\overline{\mathrm{WR}}$, $\overline{\mathrm{RD}}$, $\overline{\mathrm{DMAG}}$ x					
	Low	5 + 3DT/8 + HI		5 + 3DT/8 + HI		ns
t_{DADGH}	Address/Select Valid to \overline{DMAGx} High	17 + DT		17 + DT		ns
t_{DDGHA}	Address/Select Hold after $\overline{\mathrm{DMAG}}$ x					
	H igh	-0.5		-0.5		ns

 $W = (number of wait states specified in WAIT register) \times t_{CK}$.

NOTES

-30- REV. 0

 $HI = t_{CK}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).

¹Only required for recognition in the current cycle.

²t_{SDATOGL} is the data setup requirement if \overline{DMAR} x is not being used to hold off completion of a write. Otherwise, if \overline{DMAR} x low holds off completion of the write, the data can be driven t_{DATDRH} after \overline{DMAR} x is brought high.

 $^{^3}$ t_{VDATDGH} is valid if $\overline{\mathrm{DMAR}}$ x is not being used to hold off completion of a read. If $\overline{\mathrm{DMAR}}$ x is used to prolong the read, then t_{VDATDGH} = 8 + 9DT/16 + (n × t_{CK}) where n equals the number of extra cycles that the access is prolonged.

 $^{^4}$ See System Hold Time Calculation under T est Conditions for calculation of hold times given capacitive and dc loads.

^{*} MEMORY READ – BUS MASTER, MEMORY WRITE – BUS MASTER, AND SYNCHRONOUS READ/WRITE – BUS MASTER TIMING SPECIFICATIONS FOR ADDR $_{31-0}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{SW}}$, $\overline{\text{MS}}_{3-0}$ AND ACK ALSO APPLY HERE.

Figure 20. DMA Handshake Timing

REV. 0 -31-

Link Ports: $1 \times CLK$ Speed Operation

		ADSP-2	21060	ADSP-2		
Paramete	r	Min	Max	Min	Max	Units
Receive Timing R eq tsldcl thldcl tlclkiw tlclkrwh Switching C	uirements: Data Setup Before LCLK Low Data Hold After LCLK Low LCLK Period (1 × Operation) LCLK Width Low LCLK Width High Characteristics:	3.5 3 t _{CK} 6 5		3 3 t _{CK} 6 5		ns ns ns ns
t _{DLAHC} t _{DLALC} t _{ENDLK} t _{TDLK}	LACK High Delay After CLKIN High LACK Low Delay After LCLK High ¹ LACK Enable from CLKIN LACK Disable from CLKIN	18 + DT/2 -3 5 + DT/2	28.5 + DT/2 13 20 + DT/2	18 + DT/2 -3 5 + DT/2	28.5 + DT/2 13 20 + DT/2	ns ns ns ns
Transmit Timing Req t _{SLACH} t _{HLACH}		18 -7		20 -7		ns ns
Switching C t _{DLCLK} t _{DLDCH} tHLDCH t _{LCLKTWL} t _{LCLKTWH} t _{DLACLK} t _{ENDLK} t _{TDLK}	Characteristics: LCLK Delay After CLKIN (1 × operation) Data Delay After LCLK High Data Hold After LCLK High LCLK Width Low LCLK Width High LCLK Low Delay After LACK High LDAT, LCLK Disable After CLKIN	-3 $(t_{CK}/2) - 2$ $(t_{CK}/2) - 2$ $(t_{CK}/2) + 8.5$ $5 + DT/2$	15.5 3 $(t_{CK}/2) + 2$ $(t_{CK}/2) + 2$ $(3 \times t_{CK}/2) + 17$ 20 + DT/2	-3 $(t_{CK}/2) - 1$ $(t_{CK}/2) - 1.25$ $(t_{CK}/2) + 8.0$ $5 + DT/2$	16.5 2.5 $(t_{CK}/2) + 1.25$ $(t_{CK}/2) + 1.0$ $(3 \times t_{CK}/2) + 17.5$ 20 + DT/2	ns ns ns ns ns ns ns
	Service Request Interrupts: 1× and Operations uirements: LACK/LCLK Setup Before CLKIN Low ² LACK/LCLK Hold After CLKIN Low ²	10 2		10 2		ns ns

REV. 0 -32-

NOTES

1-LACK will go low with t_{DLALC} relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver's link buffer is not about to fill.

2-Only required for interrupt recognition in the current cycle.

Link Ports: 2× CLK Speed Operation

Calculation of link receiver data setup and hold relative to link clock is required to determine the maximum allowable skew that can be introduced in the transmission path between LDATA and LCLK. Setup skew is the maximum delay that can be introduced in LDATA relative to LCLK, (setup skew = $t_{LCLKTWH}$ min - t_{DLDCH} - t_{SLDCL}). Hold skew is the maximum delay that can be introduced in LCLK relative to LDATA, (hold skew = $t_{LCLKTWL}$ min - t_{HLDCH} - t_{HLDCL}). Calculations made directly from 2 × speed specifications will result in unrealistically small skew times because they include multiple tester guardbands. The setup and hold skew times shown below are calculated to include only one tester guardband.

AD SP-21060 Setup Skew = 1.93 ns max AD SP-21060 H old Skew = 2.95 ns max AD SP-21060L Setup Skew = 1.87 ns max AD SP-21060L H old Skew = 1.69 ns max

		ADSP-	-21060	ADSP-2	1060L	
Parameter		Min	Max	Min	Max	Units
Receive						
Timing Rec	uirements:					
$t_{\sf SLDCL}$	Data Setup Before LCLK Low	2.5		2.25		ns
t _{HLDCL}	Data Hold After LCLK Low	2.25		2.25		ns
t _{LCLKIW}	LCLK Period ($2 \times Operation$)	t _{cK} /2		t _{cK} /2		ns
$t_{LCLKRWL}$	LCLK Width Low	4.5		5.0		ns
t _{LCLKRWH}	LCLK Width High	4.25		4.0		ns
Switching C	Characteristics:					
tDLAHC	LACK High Delay After CLKIN High	18 + DT/2	28.5 + DT/2	18 + DT/2	29.5 + DT/2	ns
t_{DLALC}	LACK Low Delay After LCLK High ¹	6	16	6	18	ns
Transmit						
Timing Rea	juirements:					
t _{SLACH}	LACK Setup Before LCLK High	19		19		ns
t _{HLACH}	LACK Hold After LCLK High	-6.75		-6.5		ns
Switching C	Characteristics:					
t _{DLCLK}	LCLK Delay After CLKIN		8		8	ns
t _{DLDCH}	Data Delay After LCLK High		2.5		2.25	ns
t _{HLDCH}	Data Hold After LCLK High	-2.0		-2.0		ns
t _{LCLKTWL}	LCLK Width Low	(t _{CK} /4) - 1	$(t_{CK}/4) + 1$	$(t_{CK}/4) - 0.75$	5 (t _{CK} /4) + 1.5	ns
t _{LCLKTWH}	LCLK Width High	$(t_{CK}/4) - 1$	$(t_{CK}/4) + 1$	$(t_{CK}/4) - 1.5$		ns
t _{DLACLK}	LCLK Low Delay After LACK High	$(t_{CK}/4) + 9$	$(3 * t_{CK}/4) + 16.5$		$(3 * t_{CK}/4) + 16.5$	ns

NOTE

REV. 0 -33-

 $^{^{1}}LACK$ will go low with t_{DLALC} relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver's link buffer is not about to fill.

RECEIVE

LINK PORT ENABLE/THREE-STATE DELAY FROM INSTRUCTION

LINK PORT INTERRUPT SETUP TIME

Figure 21. Link Ports

-34- REV. 0

Serial Ports

Parameter	ADSP- Min	21060 Max	ADSP- Min	21060L Max	Units
External Clock					
$\begin{array}{ll} \text{Timing Requirements:} \\ t_{\text{SFSE}} & \text{TFS/RFS Setup Before TCLK/RCLK}^1 \\ t_{\text{HFSE}} & \text{TFS/RFS Hold After TCLK/RCLK}^2 \\ t_{\text{SDRE}} & \text{Receive D ata Setup Before RCLK}^1 \\ t_{\text{HDRE}} & \text{Receive D ata Hold After RCLK}^1 \\ t_{\text{SCLKW}} & \text{TCLK/RCLK Width} \\ t_{\text{SCLK}} & \text{TCLK/RCLK Period} \end{array}$	3.5 4 1.5 4 9.5 t _{CK}		3.5 4 1.5 4 9.0 t _{CK}		ns ns ns ns ns
Internal Clock					
Timing Requirements: t _{SFSI} TFS Setup Before TCLK ¹ ; RFS Setup Before RCLK ¹ t _{HFSI} TFS/RFS Hold After TCLK/RCLK ^{1, 2} t _{SDRI} Receive D ata Setup Before RCLK ¹ t _{HDRI} Receive D ata Hold After RCLK ¹	8 1 3 3		8 1 3 3		ns ns ns
External or Internal Clock Switching Characteristics:					
t _{DFSE} RFS D elay After RCLK (Internally Generated RFS) ³ t _{HOFSE} RFS Hold After RCLK (Internally Generated RFS) ³	3	13	3	13	ns ns
External Clock	3		3		115
Switching Characteristics: t _{DFSE} TFS D elay After TCLK (Internally					
Generated TFS) ³ t _{HOFSE} TFS Hold After TCLK (Internally Generated TFS) ³	3	13	3	13	ns ns
t _{DDTE} Transmit D ata D elay After T C L K ³ t _{HODTE} Transmit D ata H old After T C L K ³	5	16	5	16	ns ns
Internal Clock Switching Characteristics:					
TFS D elay After TCLK (Internally Generated TFS) ³		4.5		4.5	ns
t _{HOFSI} TFS Hold After TCLK (Internally Generated TFS) ³ Transmit D ata D elay After TCLK ³	-1.5	7.5	-1.5	7.5	ns ns
t _{HDT1} Transmit D ata H old After T C L K ³ T C L K / R C L K Width	0 (t _{SCLK} /2) - 2	$(t_{SCLK}/2) + 2$	0 (t _{SCLK} /2) - 2.5	$(t_{SCLK}/2) + 2.5$	ns ns
Enable and Three-State Switching Characteristics:					
t _{DDTEN} Data Enable from External TCLK ³ Data Disable from External TCLK ³ Data Disable from Internal TCLK ³ t _{DDTIN} Data Enable from Internal TCLK ³ Data Disable from Internal TCLK ³ TCLK/RCLK Delay from CLKIN t _{DPTR} SPORT Disable After CLKIN	3.5	10.5 3 22 + 3D T /8 17	4.0	10.5 3 22 + 3DT/8 17	ns ns ns ns ns
Gated SCLK with External TFS					
(Mesh Multiprocessing) ⁴ Timing Requirements:					
t _{STFSCK} TFS Setup Before CLKIN t _{HTFSCK} TFS Hold After CLKIN	5 t _{CK} /2		5 t _{CK} /2		ns ns
External Late Frame Sync					
Switching Characteristics: $t_{DDTLFSE}$ Data D elay from L ate External TFS or External RFS with M CE = 1, M FD = 0^5		12		12.8	ns
$t_{DDTENFS}$ D ata Enable from late FS or M CE = 1, M FD = 0^5	3		3.5		ns

To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay & frame sync setup and hold, 2) data delay & data setup and hold, and 3) SCLK width.

NOTES

¹Referenced to sample edge.

 $^{^{5}}$ M C E = 1, TFS enable and TFS valid follow $t_{DDTLFSE}$ and $t_{DDTENFS}$.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

DATA TRANSMIT- INTERNAL CLOCK

TCLK DRIVE EDGE tsclkiw thorsi thorsi thorsi thorsi thorsi thorsi thorsi thorsi thorsi

DATA TRANSMIT- EXTERNAL CLOCK

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

Figure 22. Serial Ports

²RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.

³Referenced to drive edge.

⁴Applies only to gated serial clock mode used for serial port system I/O in mesh multiprocessing systems.

EXTERNAL RFS with MCE = 1, MFD = 0

LATE EXTERNAL TFS

Figure 23. External Late Frame Sync

REV. 0 -37-

JTAG Test Access Port and Emulation

Parameter		ADSP Min	P-21060 Max	ADSP Min	-21060L Max	Units
Timing Requ	irements:					
t _{TCK}	TCK Period	t _{cK}		t _{CK}		ns
t _{STAP}	TDI, TMS Setup Before TCK High	5		5		ns
t _{HTAP}	TDI, TMS Hold After TCK High	6		6		ns
t _{ssys}	System Inputs Setup Before T C K Low ¹	7		7		ns
t _{HSYS}	System Inputs Hold After TCK Low ¹	18		18.5		ns
t _{TRSTW}	TRST Pulsewidth	4t _{CK}		4t _{CK}		ns
Switching Cl	haracteristics:					
t _{DTDO}	TDO Delay from TCK Low		13		13	ns
t _{DSYS}	System Outputs Delay After TCK Low ²		18.5		18.5	ns

NOTES

 $[\]begin{array}{l} ^{1}\text{System Inputs} = \text{DATA}_{47\text{-}0}, \text{ADDR}_{31\text{-}0}, \overline{\text{RD}}, \overline{\text{WR}}, \text{ACK}, \overline{\text{SBTS}}, \overline{\text{SW}}, \overline{\text{HBR}}, \overline{\text{HBG}}, \overline{\text{CS}}, \overline{\text{DMARI}}, \overline{\text{DMAR2}}, \overline{\text{BR}}_{6\text{-}1}, \text{ID}_{2\text{-}0}, \text{RPBA}, \overline{\text{IRQ}}_{2\text{-}0}, \text{FLAG}_{3\text{-}0}, \text{DR0}, \text{DR1}, \\ \text{TCLK0}, \text{TCLK1}, \text{RCLK0}, \text{RCLK1}, \text{TFS0}, \text{TFS1}, \text{RFS0}, \text{RFS1}, \text{LxDAT}_{3\text{-}0}, \text{LxCLK}, \text{LxACK}, \text{EBOOT}, \text{LBOOT}, \overline{\text{BMS}}, \text{CLKIN}, \overline{\text{RESET}}. \\ \text{2System Outputs} = \text{DATA}_{47\text{-}0}, \text{ADDR}_{31\text{-}0}, \overline{\text{MS}}_{3\text{-}0}, \overline{\text{RD}}, \overline{\text{WR}}, \text{ACK}, \text{PAGE}, \text{ADRCLK}, \overline{\text{SW}}, \overline{\text{HBG}}, \text{REDY}, \overline{\text{DMAG1}}, \overline{\text{DMAG2}}, \overline{\text{BR}}_{6\text{-}1}, \overline{\text{CPA}}, \text{FLAG}_{3\text{-}0}, \text{TIMEXP}, \text{DT0}, \\ \text{DT1}, \text{TCLK0}, \text{TCLK1}, \text{RCLK0}, \text{RCLK1}, \text{TFS0}, \text{TFS1}, \text{RFS0}, \text{RFS1}, \text{LxDAT}_{3\text{-}0}, \text{LxCLK}, \text{LxACK}, \overline{\text{BMS}}. \\ \end{array}$

Figure 24. IEEE 11499.1 J TAG Test Access Port

-38- REV. 0

OUTPUT DRIVE CURRENTS

Figure 28 shows typical I-V characteristics for the output drivers of the ADSP-2106x. The curves represent the current drive capability of the output drivers as a function of output voltage.

POWER DISSIPATION

Total power dissipation has two components, one due to internal circuitry and one due to the switching of external output drivers. Internal power dissipation is dependent on the instruction execution sequence and the data operands involved. Internal power dissipation is calculated in the following way:

$$P_{INT} = I_{DDIN} \times V_{DD}$$

The external component of total power dissipation is caused by the switching of output pins. Its magnitude depends on:

- the number of output pins that switch during each cycle (O)
- the maximum frequency at which they can switch (f)
- their load capacitance (C)
- their voltage swing (V_{DD})

and is calculated by:

$$P_{EXT} = 0 \times C \times V_{DD}^2 \times f$$

The load capacitance should include the processor's package capacitance (C_{IN}). The switching frequency includes driving the load high and then back low. Address and data pins can drive high and low at a maximum rate of $1/(2t_{CK})$. The write strobe can switch every cycle at a frequency of $1/t_{CK}$. Select pins switch at $1/(2t_{CK})$, but selects can switch on each cycle.

Example:

Estimate P_{EXT} with the following assumptions:

- -A system with one bank of external data memory RAM (32-bit)
- -Four 128K $\times 8$ RAM chips are used, each with a load of 10 pF
- -External data memory writes occur every other cycle, a rate of $1/(4t_{CK})$, with 50% of the pins switching
- -The instruction cycle rate is 40 M Hz ($t_{CK} = 25$ ns).

The P_{EXT} equation is calculated for each class of pins that can drive:

Table II. External Power Calculations (5 V Device)

Pin Type	# of Pins	% Switching	× C	× f	× V _{DD} ²	= P _{EXT}
Address	15	50		× 10 M H z		= 0.084 W
$\overline{\text{WS0}}$	1	0 -		× 10 M H z × 20 M H z		= 0.000 W = 0.022 W
D ata	32	50		×10 MHz		= 0.059 W
ADDRCLK	1	-	× 4.7 pF	× 20 M H z	× 25 V	= 0.002 W

 $P_{EXT} = 0.167 \text{ W}$

Table III. External Power Calculations (3.3 V Device)

Pin Type	# of Pins	% Switching	× C	× f	× V _{DD} ²	= P _{EXT}
Address	15	50		×10 M Hz		
MS0	1	0		×10 M Hz		
\overline{WR}	1	-		× 20 M H z	ı	
D ata	32	50	\times 14.7 pF	×10 MHz	×10.9 V	= 0.026 W
ADDRCLK	1	-	\times 4.7 pF	× 20 M H z	×10.9 V	= 0.001 W

 $P_{FXT} = 0.074 \text{ W}$

A typical power consumption can now be calculated for these conditions by adding a typical internal power dissipation:

$$P_{TOTAL} = P_{EXT} + (I_{DDIN2} \times 5.0 \text{ V})$$

N ote that the conditions causing a worst-case P_{EXT} are different from those causing a worst-case P_{INT} . M aximum P_{INT} cannot occur while 100% of the output pins are switching from all ones to all zeros. N ote also that it is not common for an application to have 100% or even 50% of the outputs switching simultaneously.

TEST CONDITIONS Output Disable Time

Output pins are considered to be disabled when they stop driving, go into a high impedance state, and start to decay from their output high or low voltage. The time for the voltage on the bus to decay by ΔV is dependent on the capacitive load, C_L and the load current, I_L . This decay time can be approximated by the following equation:

$$t_{DECAY} = \frac{C_L \Delta V}{I_I}$$

The output disable time $t_{D\,IS}$ is the difference between $t_{M\,EASU\,RED}$ and $t_{D\,EC\,AY}$ as shown in Figure 25. The time $t_{M\,EASU\,RED}$ is the interval from when the reference signal switches to when the output voltage decays ΔV from the measured output high or output low voltage. $t_{D\,EC\,AY}$ is calculated with test loads C_L and I_L , and with ΔV equal to 0.5 V.

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high impedance state to when they start driving. The output enable time t_{ENA} is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in the Output Enable/D isable diagram (Figure 25). If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

REV. 0 -39-

Example System Hold Time Calculation

To determine the data output hold time in a particular system, first calculate t_{DECAY} using the equation given above. C hoose ΔV to be the difference between the ADSP-2106x's output voltage and the input threshold for the device requiring the hold time. A typical ΔV will be 0.4 V. C_L is the total bus capacitance (per data line), and I_L is the total leakage or three-state current (per data line). The hold time will be t_{DECAY} plus the minimum disable time (i.e., t_{DATRWH} for the write cycle).

Figure 25. Output Enable/Disable

Figure 26. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

Capacitive Loading

Output delays and holds are based on standard capacitive loads: 50 pF on all pins (see Figure 26). The delay and hold specifications given should be derated by a factor of 1.5 ns/50 pF for loads other than the nominal value of 50 pF. Figures 29–30, 33–34 show how output rise time varies with capacitance. Figures 31, 35 show graphically how output delays and holds vary with load capacitance. (Note that this graph or derating does not apply to output disable delays; see the previous section Output Disable Time under Test Conditions.) The graphs of Figures 29, 30 and 31 may not be linear outside the ranges shown.

Figure 27. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

-40- REV. 0

Figure 28. ADSP-2106x Typical Drive Currents ($V_{DD} = 5 V$)

Figure 31. Typical Output Delay or Hold vs. Load Capacitance (at Maximum Case Temperature) ($V_{DD} = 5 \text{ V}$)

Figure 29. Typical Output Rise Time (10%–90% V_{DD}) vs. Load Capacitance (V_{DD} = 5 V)

Figure 32. ADSP-2106x Typical Drive Currents ($V_{DD} = 3.3 V$)

Figure 30. Typical Output Rise Time (0.8 V -2.0 V) vs. Load Capacitance ($V_{DD} = 5 V$)

Figure 33. Typical Output Rise Time (10%–90% V_{DD}) vs. Load Capacitance (V_{DD} = 3.3 V)

REV. 0 -41-

Figure 34. Typical Output Rise Time (0.8 V -2.0 V) vs. Load Capacitance ($V_{DD} = 3.3 \text{ V}$)

ENVIRONMENTAL CONDITIONS Thermal Characteristics

The ADSP-2106x is packaged in a 240-lead thermally enhanced PQFP. The top surface of the package contains a copper slug from which most of the die heat is dissipated. The slug is flush with the top surface of the package. Note that the copper slug is internally connected to GND through the device substrate. The ADSP-2106x is specified for a case temperature (T_{CASE}). To ensure that the T_{CASE} data sheet specification is not exceeded, a heatsink and/or an air flow source may be used. A heatsink should be attached with a thermal adhesive.

$$T_{CASE} = T_{AMB} + (PD \times \theta_{CA})$$

T_{CASE} = Case temperature (measured on top surface of package)
PD = Power dissipation in W (this value depends upon the specific application; a method for calculating PD is shown under Power Dissipation).

 θ_{CA} = Value from table below.

Figure 35. Typical Output Delay or Hold vs. Load Capacitance (at Maximum Case Temperature) $(V_{DD} = 3.3 \text{ V})$

Airflow (Linear Ft./Min.)	0	100	200	400	600
θ _{CA} (°C/W)	10	9	8	7	6

NOTES

T his represents thermal resistance at total power of 5 W . With air flow, no variance is seen in θ_{CA} with power. θ_{CA} at 0 L F M varies with power: At 2W , θ_{CA} = 14°C/W , at 3 W θ_{CA} = 11°C/W . θ_{JC} = 0.3°C/W .

-42- REV. 0

240-LEAD METRIC PQFP PIN CONFIGURATIONS

THE 240-LEAD PACKAGE CONTAINS A COPPER HEAT SLUG FLUSH WITH ITS TOP SURFACE. THE SLUG IS INTERNALLY CONNECTED TO GROUND.

Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin
No.	Name	No.	Name	No.	Name	No.	Name	No.	Name	No.	Name
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 36 37 38 37 38 37 38 37 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38	TDI TRST VDD TDO TIMEXP EMU ICSA FLAG3 FLAG2 FLAG1 FLAG0 GND ADDR1 VDD ADDR2 ADDR3 ADDR4 GND ADDR5 ADDR5 ADDR6 ADDR7 VDD ADDR1 ADDR10 ADDR11 ADDR11 ADDR11 ADDR12 ADDR11 ADDR11 ADDR11 ADDR11 ADDR11 ADDR15 GND ADDR11 ADDR15 GND ADDR16 ADDR17 ADDR17 ADDR17 ADDR18 VDD ADDR18 VDD ADDR19 ADDR19	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 61 62 63 64 65 66 67 77 77 78 78 78 78 78 78 78 78 78 78 78	ADDR20 ADDR21 GND ADDR22 ADDR23 ADDR24 VDD GND VDD ADDR25 ADDR26 ADDR27 GND MS3 MS2 MS1 MS0 SW BMS ADDR28 GND VDD ADDR29 ADDR30 ADDR30 ADDR31 GND SBTS DMAR2 DMAR1 HBR DT1 TCLK1 TFS1 DR1 RCLK1 RFS1 GND CPA DT0	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 119 119 119 119 119 119 119 119	TCLKO TFSO DRO RCLKO RFSO VDD GND GND ADRCLK REDY HBG CS RD WR GND VDD GND CLKIN ACK DMAG2 DMAG1 PAGE VDD BR6 BR5 BR4 BR3 BR2 BR1 GND VDD GND CND CND CND CND CND CND CND CND CND C	121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160	DATA41 DATA40 DATA39 VDD DATA38 DATA36 GND NC DATA35 DATA33 VDD VDD GND DATA33 VDD VDD GND DATA32 DATA31 DATA30 GND DATA29 DATA28 DATA27 VDD VDD DATA29 DATA27 VDD VDD DATA29 DATA28 DATA21 VDD DATA22 DATA21 VDD DATA22 DATA21 VDD DATA23 DATA21 VDD DATA21 VDD DATA21 VDD DATA19 DATA18 GND DATA15 VDD	161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200	DATA14 DATA13 DATA12 GND DATA11 DATA10 DATA9 VDD DATA8 DATA7 DATA6 GND DATA5 DATA4 DATA3 VDD DATA2 DATA1 DATA0 GND COND COND COND COND COND COND COND CO	201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 242 253 263 274 275 276 277 288 299 290 290 290 290 290 290 290 290 290	L2DATO L2CLK L2ACK NC VDD L3DAT3 L3DAT2 L3DAT1 L3DAT0 L3CLK L3ACK GND L4DAT3 L4DAT2 L4DAT1 L4DAT0 L4CLK L4ACK VDD GND VDD L5DAT3 L5DAT1 L5DAT0 L5CLK L5ACK GND ID2 ID1 ID0 LBOOT RPBA RESET EBOOT IRQ2 IRQ1 IRQ0 TCK

REV. 0 -43-

PACKAGE DIMENSIONS

Dimensions shown in inches and (mm).

240-Lead Metric PQFP

ORDERING GUIDE

Part Number	Case Temperature Range	Instruction Rate	On-Chip SRAM	Operating Voltage
AD SP-21060K S-133	0°C to +85°C	33 M H z	4 M bit	5 V
AD SP-21060K S-160	0°C to +85°C	40 M H z	4 M bit	5 V
AD SP-21060L K S-133	0°C to +85°C	33 M H z	4 M bit	3.3 V
ADSP-21060LKS-160	0°C to +85°C	40 M H z	4 M bit	3.3 V

-44-

NOTES

- 1. These parts are packaged in a 240-lead, thermally enhanced Plastic Quad Flatpack (PQFP).
- 2. Parts for the industrial and military temperature ranges will be available in 1998.

REV. 0