Теорема Кэзи

- 1. Окружности $\omega_A(O_1, r_1)$ и $\omega_B(O_2, r_2)$ касаются окружности $\omega(O, R)$ в точках A и B соответственно. Если ω_A и ω_B касаются ω одинаковым (различным) образом, то через $d(\omega_A, \omega_B)$ обозначим расстояние между двумя точками касания их общей внешней (внутренней) касательной. Докажите, что если
- а) окружности ω_A и ω_B касаются внутренним образом окружности ω , то $d(\omega_A,\omega_B)=\frac{AB}{R}\sqrt{(R-r_1)(R-r_2)};$
- **b)** окружности ω_A и ω_B касаются внешним образом окружности ω , то $d(\omega_A, \omega_B) = \frac{AB}{R} \sqrt{(R+r_1)(R+r_2)};$
- c) окружность ω_A касается окружности ω внутренним образом, а окружность ω_B внешним образом, то $d(\omega_A,\omega_B)=\frac{AB}{R}\sqrt{(R-r_1)(R+r_2)}$.
- **2.** Окружности ω_A , ω_B , ω_C и ω_D касаются окружности ω соответственно в вершинах A, B, C и D выпуклого четырёхугольника ABCD. Докажите, что $d(\omega_A, \omega_B) \cdot d(\omega_C, \omega_D) + d(\omega_B, \omega_C) \cdot d(\omega_D, \omega_A) = d(\omega_A, \omega_C) \cdot d(\omega_B, \omega_D)$.
- 3. Три равные окружности касаются попарно между собой и внутренним образом некоторой окружности ω . Из произвольной точки $M \in \omega$ проведены касательные к эти трём окружностям. Докажите, что сумма двух отрезков касательных равна третьему отрезку.
- 4. Пусть Ω окружность, описанная вокруг $\triangle ABC$, а ω окружность, касающаяся Γ , а также отрезков AB и AC в точках P и Q соответственно. Докажите, что середина отрезка PQ инцентр треугольника ABC.