

А. П. Кашкаров

500 схем

для радиолюбителей

ЭЛЕКТРОННЫЕ ДАТЧИКИ

Отличная подборка схемных решений.

Применение и доработка датчиков промышленного производства. Электронные датчики в радиолюбительской практике. Системы сигнализации и обеспечения безопасности. Реальные конструкции. Современная элементная база.

Гранко
Чебанец

НиТ
Издательство

А.П. Кашкаров

**500 схем для
радиолюбителей**

Электронные датчики

**Наука и Техника
Санкт-Петербург
2007**

Кашкаров А.П.

500 схем для радиолюбителей. Электронные датчики. — СПб.: Наука и техника, 2007. — 208 с.: ил.

ISBN 5-94387-359-7

Серия «Радиолюбитель»

Книга продолжает ряд тематических изданий в серии «Радиолюбитель». Названия этих книг начинаются словами «500 схем...» с уточняющими названиями «Приемники», «Источники питания», «Радиостанции и трансиверы», «Дистанционное управление моделями». В них собраны наиболее интересные схемы полезных устройств, дается возможность каждому радиолюбителю выбрать то, что ему необходимо из великого множества схем и конструкций, проверенных и испытанных на практике.

В данной книге представлены схемные решения ЭЛЕКТРОННЫХ ДАТЧИКОВ, т.е. описаны конструкции устройств, позволяющих организовать охрану комнаты и автомобиля, защитить помещение от пожара, выявить наличие жучков. Приводимого краткого описания вполне достаточно для самостоятельного изготовления понравившейся конструкции или применения соответствующего датчика промышленного изготовления. Книга рассчитана как для начинающих, так и на «продвинутых» радиолюбителей, увлекающихся практической радиоэлектроникой.

9795943 873590
ISBN 5-94387-359-7

Автор и издательство не несут ответственности за возможный ущерб, причиненный в результате использования материалов данной книги.

Контактные телефоны издательства
(812) 567-70-25, 567-70-26
(044) 516-38-66

Официальный сайт: www.nit.com.ru

© Кашкаров А. П.

© Наука и Техника (оригинал-макет), 2007

ООО «Наука и Техника».
198097, г. Санкт-Петербург, ул. Маршала Говорова, д. 29.

Подписано в печать 07.12.06. Формат 60×88 ¹/₁₆.
Бумага газетная. Печать офсетная. Объем 13 п. л.
Тираж 3000 экз. Заказ № 859.

Отпечатано с готовых диапозитивов в ОАО «Техническая книга»
190005, Санкт-Петербург, Измайловский пр., 29

Содержание

От автора	5
Глава 1. Промышленные датчики: применение и доработка	7
1.1. Датчик табачного дыма	8
1.2. Датчик контроля температуры фургона	14
1.3. Выключатель на основе датчика движения	18
1.4. Особенности применения датчиков движения	26
1.5. Дополнительные узлы датчика движения: фоточувствительный и таймерный	31
1.6. Датчик движения в охранной системе	36
1.7. Триггерный эффект при эксплуатации датчиков движения и способ его локализации.	40
1.8. Микроволновые датчики	43
1.9. Детекторы разрушения стекла.....	45
1.10. Шок-сенсоры	46
1.11. Датчик покачивания	47
1.12. Ртутный датчик	48
Глава 2. Электронные датчики в радиолюбительской практике	49
2.1. Датчик сотрясения	50
2.2. Емкостной датчик	56
2.3. Простой приемник инфракрасного излучения	62
2.4. Датчик инфракрасного излучения	64
2.5. Датчик присутствия	67
2.6. Пожарный датчик	71
2.7. Термодатчик	76
2.8. Оригинальный сенсорный датчик	80
2.9. Сенсорный датчик с триггером	82
2.10. «Звуковое сопровождение» датчиков	86
2.11. Фоточувствительный датчик.....	90
2.12. Датчик-излучения радиоволн (детектор «жучков»).....	95

2.13. Гирокопический датчик	98
2.14. Ртутный датчик положения	102
2.15. Датчик затопления	107
2.16. Датчик влажности почвы	109
2.17. Датчик изменения сопротивления — индикатор состояния здоровья человека.	114
2.18. Индикатор напряжения	117
2.19. Детектор скрытой проводки	120
2.20. Чувствительный акустический датчик.	125
2.21. Устройство управления несколькими датчиками	129
2.22. Датчик контроля работы передающего тракта радиостанции	133
Глава 3. Избранные конструкции	137
3.1. Использование стационарного и мобильного телефонов в системах охранной сигнализации	138
3.1.1. Оповещение с помощью АОНа	139
3.1.2. Оповещение с помощью мобильного телефона.	146
3.2. Управление электронными устройствами по телефону.	151
3.3. Датчик влажности на микросхеме K561ТЛ1	158
3.4. Сенсорный датчик повышенной надежности.	163
Глава 4. Обзор ресурсов сети Интернет	165
4.1. Специализированные сайты.	167
4.2. Сайты-справочники по электронным компонентам	173
4.3. Многопрофильные сайты	178
Список использованной литературы.	184

От автора

Электронные датчики используются практически во всех сферах деятельности человека, без них не обходится ни одна современная конструкция от стиральной машинки до космического корабля. **Что же такое датчик?** Это устройство, преобразующее измеряемую величину (давление, температуру, напряжение...) или воздействие на контролируемый им объект (разбитие стекла, излучение радиомикрофона-«жучка»), в сигнал для последующей передачи, регистрации и т. п.

В книге рассмотрены принципы работы основных видов датчиков промышленного и бытового назначения, их достоинства и недостатки, особенности применения и ремонта. Наряду с конструкциями датчиков, приведены схемы и подробные описания устройств регистрации, обработки и индикации получаемого от них сигнала. На простых и понятных примерах автор стремится показать читателям, что главное — четко поставить инженерную задачу, а затем добиваться ее решения, используя не просто конкретный датчик, регистратор или извещатель, но комплекс мероприятий различного характера — например в целях обеспечения охраны автомобиля не следует надеяться лишь на сигнализацию.

Достаточно добавить к сигнализации устройство автономного питания стоимостью 150 рублей — и уровень безопасности возрастет на порядок, т. к. злоумышленникам не поможет замыкание аккумулятора (кстати, метод весьма распространенный), а элементарная перестановка автомобиля из темного двора на обочину освещенной дороги без затрат снизит вероятность кражи колес...

Книга рассчитана на широкий круг читателей. Тем, кто решил приобрести готовое устройство (например охранно-пожарную

сигнализацию), будет полезна информация по выбору и правильному размещению датчиков движения и температуры. Автолюбителем наверняка заинтересует устройство «Антисон», а также датчики, применяемые в противоугонных системах, средствах сигнализации. Опытные радиолюбители смогут повторить приводимые конструкции, самостоятельно изготовив датчики и блоки регистрации; начинающим будут особенно полезны приводимые рисунки и рекомендации по наладке устройств.

Материал книги включает четыре главы, скомпонованные по тематическому принципу так, чтобы обеспечить быстрый доступ к необходимой информации:

- ♦ **в первой главе** рассмотрены основные типы промышленных датчиков;
- ♦ **вторая глава** посвящена изготовлению и использованию датчиков в радиолюбительской практике;
- ♦ **третья глава** посвящена избранным авторским конструкциям;
- ♦ **четвертая глава** — путеводитель по ресурсам сети Интернет, ведь ни одна книга не в состоянии предоставить читателю всю информацию о датчиках.

Каждая глава снабжена многочисленными иллюстрациями и содержит уникальную информацию, в том числе категории «ноу-хау».

Автор искренне надеется, что следование приведенному материалу позволит читателям решить некоторые бытовые проблемы, предотвратить возникновение непредвиденных ситуаций и, возможно, обрести увлекательное хобби.

Удачи Вам!

ГЛАВА 1

ПРОМЫШЛЕННЫЕ ДАТЧИКИ: ПРИМЕНЕНИЕ И ДОРАБОТКА

*В этой главе рассмотрены принципы
функционирования и особенности эксплуатации
серийно выпускаемых датчиков.
Также приведены схемы приборов,
построенных с использованием промышленных датчиков.*

1.1. Датчик табачного дыма

Из многочисленных портативных электронных устройств зарубежного производства, которые свободно можно приобрести в торговых точках (на территории стран СНГ и за рубежом) выделяются датчики дыма и газа. Они имеют примерно однотипную конструкцию и внешний вид (рис. 1.1), принцип работы этих электронных узлов также схож.

Рис. 1.1. Фото (внешний вид) корпуса датчика задымленности

NFPA — национальное агентство пожарной защиты (Германия), к рекомендациям которого прислушиваются в других странах мира, предлагает в качестве датчика-сигнализатора задымленности помещений микросхему-преобразователь фирмы «Motorola» MC145017P Rauchesensor (соответствует стандартам Ion NFPA-72 ANSA-53). Стоимость микросхемы у отечественных поставщиков колеблется в пределах 56—83 руб. за один корпус (приблизительно 1/6 стоимости готового прибора). **Что же такое датчик задымленности?**

Схемы для датчиков дыма, в основном, используются в системах пожарной безопасности. Они составляют целое семейство ИС и отличаются типом входного датчика, первичным источником питания и эксплуатационными качествами (рис. 1.2).

Рис. 1.2. Назначение микросхем серии MC14501

Принцип работы датчика задымленности (в основе микросхема MC145017Р) — ионный, но выпускаются также датчики с использованием ИК-пары: светодиод/фотодиод. Эти приборы бесконтактного контроля и информации получили название транскодеров. Некоторые данные о популярных микросхемах-преобразователях сведены в табл. 1.1.

Конструктивная схема включения датчиков-преобразователей на основе рассматриваемых микросхем показана на рис. 1.3. Для ионных датчиков дыма принцип действия аналогичен. В литературе [94] подробно описаны характеристики ионных датчиков дыма.

Ниже рассмотрено устройства датчика задымления и, в частности, курения (фирма «Kidde Finland», модель 0914N). Полное название устройства «Smoke and fire alarm users guide». В паспортных данных указано, что микросхема формирует прерывистый

*Некоторые микросхемы-преобразователи
сигнала серии MC14501*

Таблица 1.1

Тип	Рабочее напряжение, В	Источник питания, ток	Корпус	Тип датчика
MC145010DW	6—12	Постоянный	DIP/SOIC	фото
MC145010DWR2	6—12	Постоянный	DIP/SOIC	фото
MC145010P	6—12	Постоянный	DIP/SOIC	фото
MC145012DW	6—12	Постоянный	DIP/SOIC	фото
MC145012DWR2	6—12	Постоянный	DIP/SOIC	фото
MC145012P	6—12	Постоянный	DIP/SOIC	фото
MC145017P	6—12	Постоянный	DIP	ионный
MC145018P	6—12	Переменный	DIP	ионный

Рис. 1.3. Конструктивная схема включения инфракрасных датчиков-преобразователей сигнала

звуковой сигнал (с помощью внешнего пьезоизлучателя) при появлении дыма во временном интервале более одной минуты.

Источник питания $U_n = 6\text{--}12 \text{ В}$, $I_{\text{пот}} = 8 \text{ мА}$ (в режиме ожидания и покоя при $U_n = 9 \text{ В}$), при включении сигнализации ток потребления возрастает до 35 мА (при $U_n = 9 \text{ В}$). Корпус микросхемы DIP-16.

Автор провел работу по тестированию, а также скопировал электрическую схему прибора. В ходе экспериментов (см. ниже) выявлено некоторое отклонение параметров устройства от заявленных производителем.

При тестировании ионного датчика задымленности на основе микросхемы-преобразователя MC145017P выявлялась реакция

устройства на табачный дым (источник дыма находился на расстоянии 5—6 м от датчика). Эксперимент проводился в проветренном замкнутом помещении — на кухне (площадь помещения 10 м²), в светлое время суток, при напряжении в осветительной сети 224 В, при температуре воздуха +22 °С.

Объем кухни на время эксперимента замкнут и изолирован от других воздушных потоков (сквозняков с улицы и конвекционных потоков внутри квартиры).

Датчик смонтирован на стене в вертикальном (штатном) положении согласно фирменной инструкции по установке: не ближе 60 см к углам комнаты и не ниже 1,5 м от уровня пола. Допускается (и как вариант указана в рекомендации производителя) установка таких датчиков на потолок. Кроме того, производитель рекомендует устанавливать в охраняемом помещении несколько датчиков.

Прерывистая звуковая сигнализация активировалась по прошествии 3 с после начала курения на указанном расстоянии от датчика. Звучание имеет импульсный характер: пауза 0,5—0,7 с, время звучания 1—1,2 с, частота звукового сигнала примерно 1 кГц, громкость 60—70 дБ (достаточная для слышимости даже на лоджии при закрытых дверях комнат). После подачи четырех сигналов наступает двухсекундная пауза, затем серия повторяется. Устройство имеет и визуальную сигнализацию: на передней части корпуса (хорошо видно на рис. 1.1) установлен светодиод красного цвета (на электрической схеме обозначен HL1). При активации звуковой сигнализации светодиод вспыхивает с частотой примерно 0,5 Гц.

В одном из экспериментов на расстоянии 80 см от места установки (на стене) датчика был зажжен газ (бытовая газовая плита). Никакой реакции на теплый воздух и продукты сгорания прибор не продемонстрировал.

Затем (при аналогичных условиях — замкнутости и предварительного проветривания помещения кухни) на датчик было оказано воздействие паром от закипевшего чайника. Несмотря на продолжительный характер воздействия (в течение 5 мин), датчик также не сработал.

Дым от подгоревшего мяса на сковороде привел датчик в действие — включилась звуковая сигнализация только по прошествии 3 (трех!) минут от начала воздействия. Когда вся кухня уже наполнилась запахом гари.

Автор повторил эксперимент, поджарив сухие апельсиновые корки (некоторые хозяйки используют их для нейтрализации неприятных запахов) — эффект оказался удивительным: датчик сработал почти мгновенно (так же как от сигаретного дыма) на расстоянии 4,5 м от источника дыма и запаха. Вероятно, основное влияние на чувствительный элемент оказывает присутствие в воздухе смол (табачный деготь, ароматические вещества, содержащиеся в апельсиновых корках).

Во всех приведенных экспериментах отмечается инерционность работы датчика, который фиксировал задымленность помещения в течение 3—4 мин после устранения очага дымового воздействия, затем прибор переходил в режим ожидания (охраны).

Благодаря небольшим габаритам и автономному питанию следующий эксперимент был проведен на улице. Температура окружающего воздуха — 4,6 °С, без осадков, безветрие.

Звуковая сигнализация включилась через полминуты после того, как на расстоянии 2 м от датчика закурил человек, и инерционно продолжала работать еще минуту после того, как курение завершилось.

Проведенные эксперименты дают основание полагать, что рассмотренный прибор может быть эффективно использован, в том числе в условиях незамкнутых (проветриваемых) помещений большой площади с интенсивной циркуляцией воздуха, в качестве средства сигнализации о табакокурении и других источниках запаха (вспомните эксперимент с апельсиновыми корками).

Гарантированного срабатывания при появлении дыма иного происхождения не зафиксировано. То есть применять прибор как пожарный датчик нецелесообразно, что подтверждается наличием в широком спектре моделей подобных датчиков-преобразователей специальных устройств. Таким образом, действие каждого из датчиков на микросхемах серии MC14501 узко специализировано.

Питание осуществляется от элемента 6F22 типа «Крона» с напряжением 9 В. Однако по паспортным данным микросхемы напряжение питания возможно в пределах 6—12 В. Для стационарного использования желательно применить стабилизированный источник питания с высоким коэффициентом фильтрации выходного напряжения.

На рис. 1.4 представлена электрическая схема рассмотренного датчика. Элементы (диоды, транзистор, светодиод) — отечественного производства, аналогичные примененным в оригинальной конструкции.

Рис. 1.4. Электрическая схема прибора 0914N

1.2. Датчик контроля температуры фургона

Устройства контроля температуры многократно описаны в литературе для радиолюбителей, однако более простой «механический» вариант, чем предлагается ниже, пожалуй, трудно представить. Основным элементом устройства служит промышленный контроллер температуры для кунга (кузова) грузовых автомобилей, железнодорожных вагонов (и рефрижераторов) на основе датчика с проволочной спиралью. Спираль реагирует на изменение температуры, а биметаллическая пластина, находящаяся внутри корпуса датчика, замыкает (либо размыкает) коммутирующие контакты.

Порог переключения биметаллической пластины (коммутирующих контактов) можно корректировать с помощью специального винта. Чувствительность датчика такова, что он реагирует на изменение температуры в пределах 0,5—0,7 °С. Такие предпосылки позволили создать на основе промышленного датчика электронное устройство, сигнализирующее о выходе значения температуры окружающей (датчик) среды за установленные пределы.

На рис. 1.5 показана схема подключения устройства звуковой и т. п. сигнализации к датчику температуры. Она состоит всего из нескольких деталей.

Рис. 1.5. Электрическая схема подключения внешних устройств

Провода питания от стандартного адаптера радиоприемника с выходным постоянным напряжением 12 В и током 0,3 А могут соединяться с коммутирующими контактами внутри корпуса температурного датчика методом пайки или через разъем (контакты XP1—XP3), например DIN-5, РШ-2Нб, РП-10-5 и т. п.

Внимание!

В случае использования датчика в области низких температур рекомендуется производить пайку специальными припоями, не содержащими олова.

Источник питания может быть любой нестабилизированный с выходным напряжением 7—15 В и током не менее 30 мА. Если использовать источник питания с напряжением 5 В, пьезоэлектрический капсюль НА1 желательно заменить на 1205FXP, FMQ-2015B или аналогичный (иначе уровень громкости значительно снизится). В налаживании узел не нуждается.

Порог срабатывания (замыкания/размыкания коммутирующих контактов XP1—XP3) устанавливается плавным вращением регулировочного винта (для этого открывают верхнюю крышку прибора). На рис. 1.6 представлено фото внешнего вида датчика температуры.

В непосредственной близости от места подключения провода питания к корпусу закреплен звуковой излучатель — маломощ-

Рис. 1.6. Внешний вид датчика температуры

ный пьезоэлектрический капсюль со встроенным генератором ЗЧ — КР1-4332-12, обеспечивающий уровень громкости прерывистого звучания, достаточный для квартиры, состоящей из двух-трех комнат. С противоположной стороны на **рис. 1.6** видна спираль, которая является чувствительным элементом.

Вместо указанного на схеме НА1 можно применять любой подходящий звуковой излучатель или генератор-усилитель сигнала ЗЧ совместно с динамической головкой — на усмотрение радиолюбителя-конструктора. При использовании в качестве НА1 капсюля 1212FXP (или аналогичного) звук будет однотонным, что нежелательно для сигнала «тревога», причем стоимость этого излучателя соразмерна цене прерывистого звукового индикатора, первоначально указанного на схеме.

Температурный датчик можно применять и в других устройствах (поскольку гальванической связи между самим датчиком — проволочной спиралью — и коммутирующими контактами нет: диапазон весьма широк). Так, оправдано использование датчика:

- для контроля работы холодильного оборудования (внутри камер бытовых холодильников);
- для контроля температуры водной среды — акватории домашнего аквариума (для этого три-четыре витка спирали разматываются и конец проволоки помещается в воду, а сам корпус прибора жестко крепится на пластмассовой крышке аквариума);
- для бесконтактного контроля температуры вокруг нагревательных элементов повышенной опасности (электро- и естественных каминов, нагревательных элементов с открытой спиралью);
- для контроля температуры вокруг газовой (электрической) плиты на кухне;
- для управления охлаждающим вентилятором в летний период времени.

Автором проверен вариант управления вентилятором вытяжки на кухне с помощью рассматриваемого устройства. Высокая чувствительность прибора позволяет использовать его в перспективе в сельском и приусадебном (дачном) хозяйстве,

например в основе устройства портативного инкубатора, где требования к стабильности температуры очень существенны.

Для каждого конкретного случая надо лишь выбрать соответствующие коммутационные контакты XP1—XP3 (на замыкание или размыкание) с тем, чтобы соответственным образом включать или отключать устройства сигнализации или узлы нагрузки. Важно определиться и с самой нагрузкой — будет ли это звуковой сигнализатор или, например охлаждающий вентилятор бытового назначения.

При коммутации других контактов (относительно показанных на электрической схеме) узел может реагировать на увеличение температуры сверх установленного порога или на уменьшение ее (соответственно коммутация контактов XP3, XP2).

Мощность (подтверждено шильдом на корпусе прибора) коммутирующих контактов такова, что они выдерживают ток коммутации до 5—6 А при напряжении 24 В, при напряжении 220 В этот ток может быть до 1 А.

Самая сложная задача, которую придется решать радиолюбителю, — где отыскать такой датчик (если, конечно, радиолюбитель не работает в непосредственном контакте в сфере обслуживания грузовых автомобилей и железнодорожных рефрижераторов): очевидно, что на дороге он не валяется. К счастью, возможны варианты: кроме рассмотренного датчика «Falco» MR-001(3.4), широко распространены приборы, аналогичные по принципу действия, например фирмы «Roger Electronic». Найти и приобрести аналоги (практически за бесценок) можно на территории любой из многочисленных (в крупных городах) «разборок» грузового автотранспорта или на автомобильных рынках (в секторе б/у запчастей). В литературе [36], [48], [54], [80], [81], [96] описаны разные варианты приобретения и самостоятельного изготовления этого датчика.

Вдохнув новую жизнь в спящий за ненадобностью прибор, радиолюбитель-конструктор получит устройство, не уступающее по эффективности сложным узлам электронной техники, схемы и описания которых могут занимать не одну страницу, а сборка — не один час драгоценного времени.

1.3. Выключатель на основе датчика движения

В приборах охраны нередко можно встретить бесконтактные датчики, реагирующие на тепловое излучение. Внешне они представляют собой пластиковые коробочки с выпуклой вставкой из матового стекла, обращенной к зоне охраны. «Матовое стекло» не однородно, а разделено на секторы с разным углом наклона и плотностью относительно поверхности — это линзы Френеля.

Примечание.

Французский изобретатель знаменит еще и тем, что в начале XX века предложил и воплотил в реальность проект оборудования маяков выпуклыми стеклами неоднородного состава. Свет, пропущенный через такие линзы, проникает сквозь туман на многие мили.

В зависимости от типа применяемой линзы, можно получать различные диаграммы направленности (и, соответственно, охраны) датчика:

- вертикальную типа «занавес»;
- широкую по глубине;
- сфокусированную;
- размытую.

Когда в зоне контроля появляется источник тепла — человек или животное, изменение интенсивности теплового излучения в инфракрасном спектре улавливается датчиком, усиливается и поступает на схему управления оконечным силовым каскадом. Последнее устройство — реле (тиристор) — может коммутировать (включать или выключать) любую нагрузку, например сирену или лампу. Таким образом, удалось создать **автоматический выключатель освещения**, который приводится в активное состояние появлением человека в охранной зоне датчика.

Пироэлектрический детектор — основа прибора, состоит из чувствительных керамических поверхностей, закрытых кварцевым окном, пропускающим только ИК-лучи. В корпусе типа ТО-5 реализован полевой транзистор, который обеспечивает усиление электрического сигнала, возникающего на чувствительной поверхности под воздействием инфракрасного излучения.

Подробнее о самом пироэлектрическом детекторе и принципе его работы можно узнать из литературы [11], [28], [32], [33], [95].

Детектор реагирует на изменение ИК-фона, поэтому недвижимый объект (даже излучающий тепло) не вызывает изменения состояния датчика. В связи с этим в схему введен узел задержки выключения для того, чтобы эффективно использовать прибор для автоматического включения освещения, например в прихожей.

Чувствительность прибора регулируется двумя способами:

- ◆ механическим — изменением угла наклона и приближения к линзе самого датчика;
- ◆ электронным — регулировкой усиления первого каскада схемы.

В схемах охраны такие датчики получили названия **инфракрасных датчиков движения** или просто **датчиков движения**. На рис. 1.7 показана электрическая схема устройства.

Детектор **состоит из**:

- ◆ инфракрасного датчика PR11;
- ◆ двухкаскадного усилителя;
- ◆ схемы задержки выключения.

Кроме того, на одном элементе D1.3 собрано **фотореле**, реагирующее на общую освещенность площади перекрытия. Регулируемая задержка необходима для плавного выключения освещения, чтобы человеку не пришлось нащупывать дверную ручку в темноте. Фотореле включает свет только в темное время суток, а не каждый раз, когда входит человек.

Оба второстепенных устройства можно без последствий из схемы исключить. Если оставить только датчик движения, элементы DA1.1, DA1.4, R18, R19, R20, фотодиод PR1 и R6, R7, R8, R1, R3, R9, R12, R21, C8 из схемы нужно исключить; между

Рис. 1.7. Электрическая схема промышленного датчика движения

выводами 1 и 3 DA1.3 включить компенсационную цепь обратной связи, аналогичную C5R14 в первом каскаде. Ограничительный резистор R22 в таком варианте подключать к точке соединения катодов VD1, VD2.

Датчик (в авторском варианте) без сбоев работает на кухне в круглосуточном режиме уже более года, обеспечивая управление освещением. Самая дорогостоящая деталь схемы — собственно датчик (пироэлектрический детектор марки RE46), взятый из готового охранного устройства. В настоящее время их стоимость невелика вследствие массовости производства, а эффективность предлагаемой схемы превосходит распространенные среди радиолюбителей устройства — емкостные, индуктивные и инфракрасные.

Схема работает следующим образом. Быстрое изменение теплового фона в зоне активности датчика приводит к небольшим (до 50 мВ) скачкам напряжения на выходе детектора. Этот сигнал усиливается первым каскадом на полосовом усилителе DA1.2. Сигнал подается на неинвертирующий вход элемента ОУ DA1.2 с той же полярностью. В составе микросхемы DA1 KP1401УД2А четыре независимых однотипных операционных усилителя, объединенных по питанию и реализованных на полевых транзисторах технологии КМОП.

Следующий усилительный каскад собран на втором ОУ. Конденсатор C1 ослабляет помехи, вызываемые искусственным освещением, когда свет уже зажжен. Если увеличить его емкость, усилятся помехоподавление, но снизится чувствительность — медленные во времени перемещения останутся без реакции прибора, что недопустимо.

Чувствительность датчика можно незначительно изменить резисторами R5, R4 и конденсатором C2. Делитель напряжения R10-R15-R17 задает смещение ОУ около 8 В ($2/3U_{\text{п}}$). На компараторе DA1.1 собрано по базовой схеме фотореле, порог срабатывания которого регулируется подстроечным резистором R7. Фоторезистор должен быть закреплен на оконной раме и обращен чувствительной поверхностью на улицу. В затемненном состоянии фоторезистора R2 (СФ3-1) на выходе ОУ DA1.1 при-

существует положительный потенциал, корректирующий режим усиления второго каскада.

Конденсатор С4 не пропускает постоянную составляющую двух каскадов усиления, а конденсатор С3 стабилизирует напряжение смещения DA1.2. Коэффициент усиления первых двух ОУ регулируется резистором R16. На элементе DA1.4 реализовано реле времени, запускаемое выпрямленным диодами VD1, VD2 положительным сигналом, приходящим с выхода DA1.3.

Время задержки выключения зависит от номиналов элементов С8-R18-R19 и может достигать десятков минут. Чем больше время задержки, тем меньше точность временного интервала.

Цепь R18-R19 при нахождении оптимальной задержки разумно заменить одним постоянным резистором. С выхода DA1.4 импульс включения поступает на транзисторный ключ, который коммутирует реле K1. Реле своими контактами на замыкание включает лампу освещения кухни. Электромагнитное реле K1 — любое маломощное, напряжением срабатывания 10—12 В и коммутируемым током до 2 А, например автомобильное (12 В) реле, позиция 3747.06., в каталоге ВАЗ 2106.

Схема источника питания показана на **рис. 1.8.**

Рис. 1.8. Электрическая схема источника питания

Все постоянные резисторы — типа МЛТ-0,125. Оксидные конденсаторы — К50-12. Остальные конденсаторы — типа КМ, Н70. Переменные резисторы — СП5-1ВБ.

Устройство не нуждается в частой регулировке, поэтому соответствующие элементы «прячутся» на монтажной плате. Транзистор VT1 можно заменить на KT815 с индексами (А-Г), KT817 с индексами (А-Б), KT940А—KT940Б.

Реле K1 можно заменить на РЭС-10, РЭС-15, РЭС-48А, а также на реле зарубежного производства, например типа BV2091-112DM фирмы «Pasi». Понижающий трансформатор T1 в блоке питания может быть любым с выходным переменным напряжением на вторичной обмотке 13—16 В.

При использовании указанного на схеме трансформатора необходимо соединить перемычками обмотки 4-5, 11-12, 13-14. Выпрямительный диодный мост КЦ405, КЦ402 с любым буквенным индексом. Устройство не критично к напряжению питания и стабильно работает в интервале 10—16 В. В качестве источника также можно использовать бесстрансформаторный блок питания, электрическая схема которого представлена на **рис. 1.9**.

Рис. 1.9. Электрическая схема бесстрансформаторного блока питания для датчика движения

Здесь с успехом можно применить и другие источники питания, например описанные в литературе [69]. Максимальный выходной ток этого устройства составляет 100 мА.

Примечание.

Можно пойти другим путем: использовать 12-вольтовые галогенные светильники, комплектуемые импульсным блоком питания, к которому (после выпрямления и слаживания) напрямую подключается схема, а сама лампа — через контактную группу реле.

На **рис. 1.10** представлена электрическая схема датчика движения на базе пироэлектрического датчика-детектора RE46, а также показана его цоколевка.

Эта схема с использованием операционного усилителя позволяет применять датчик как составную часть более сложных конструкций, например охранных систем.

Рис. 1.10. Электрическая схема усилителя сигналов к датчику движения и цоколевка пироэлектрического датчика RE46

Элементы крепятся на монтажной плате и устанавливаются в пластмассовый корпус.

Внимание!

При монтаже необходимо быть осторожным. Паять датчик BL1 нужно аккуратно, желательно с антистатическим заземленным браслетом, не перегревая выводов датчика — пайка каждого вывода не более 1 с. Перегрев может вывести прибор из строя или ухудшить чувствительные характеристики.

Линза Френеля СЕ12 заимствована из охранной системы, так как дает наибольший эффект, изготовить ее самостоятельно не удалось.

Датчик BL1 чувствительной стороной обращен к контролируемой зоне на расстоянии 1,7—2,5 см от поверхности линзы Френеля. Это расстояние (фокус), соответствующее оптимальной чувствительности, находится опытным путем. Линза Френеля аккуратно приклеивается к корпусу. Клей не должен попадать на защитное кварцевое окно датчика.

Линза типа СЕ12 создает 24 сектора (зоны контроля) и обеспечивает стабильную реакцию на движущийся источник тепла в зоне 1,5—5 м от датчика. Края линзы перед установкой в пластмассовый корпус необходимо проложить демптирующей прокладкой, например кусочком кабельного пластика.

При отсутствии промышленной линзы можно использовать обычное плоское матовое оргстекло размерами 40 × 60 мм — чув-

ствительность заметно ухудшится, но датчик обеспечит зону контроля до 0,5—1,5 м. Проверять работоспособность устройства можно и без линз и стекол, проводя перед чувствительной поверхностью датчика BL1 рукой.

Датчики движения редко дают сбои, связанные с ложными срабатываниями. Однако совсем исключить их нельзя. Чаще всего причиной ложных срабатываний являются насекомые, в частности пауки, плетущие паутину под потолком помещения в углах — местах расположения пироэлектрических детекторов. Выхода из положения два:

- ◆ скомбинировать датчик движения с другим, например емкостным датчиком (см. литературу [45], [50], [53]);
- ◆ использовать для монтажа датчиков стойки из каштанового дерева (пауки избегают его), а также распылять при необходимости инсектициды вокруг корпусов пироэлектрических детекторов.

Внимание!

Нежелательно размещать датчики движения вблизи нагревательных приборов (камин, вентилятор, кондиционер и другие сами по себе являются источниками излучения тепловых сигналов ИК-спектра). В комнате необходимы шторы, прикрывающие рабочую поверхность датчика от попадания прямых солнечных лучей от окна по причине, рассмотренной выше. Совершенно недопустимо фотографировать в анфас датчик BL1 — от фотоспышки он выходит из строя.

Устройство не требует **настройки**. Перед первым включением установите движки подстроеких резисторов в среднее положение. Включение/отключение реле контролируется на слух.

1.4. Особенности применения датчиков движения

В качестве сигнализаторов и датчиков — устройств измерения определенных параметров — люди используют самые разные, порой необычные приборы. Сегодня в быту наиболее популярны автоматические выключатели освещения на основе датчиков движения (пироэлектрических датчиков движения).

Они позволяют упростить управление осветительными приборами, автоматизировать их работу, экономить электроэнергию и, в целом, добавляют в дом рачительного хозяина больше комфорта, нежели забот. То есть делают дом «умным», управляемым и безопасным. Пример бытового электрического выключателя на основе датчика движения доступен практически везде. Небольшая «коробочка», устанавливаемая на стене (потолке), управляет освещением, включая его при приближении человека. Приобрести такой выключатель может любой желающий. Однако, наряду с очевидными достоинствами прибора, выявлены и некоторые недостатки, носящие, к сожалению, системный характер.

Конечно, никто не предлагает отказываться от использования датчиков движения, тем более, они прочно вошли в наш быт и порой незаменимы, но, как говорится, «предупрежден — значит вооружен», и лучше знать недостатки приборов, чтобы успешно с ними бороться. Рекомендации основаны на авторском исследовании, призваны помочь различным охранным структурам, применяющим датчики движения для охраны помещений, в оптимальном их использовании.

Датчики движения реагируют на изменение инфракрасного излучения и имеют в основе пироэлектрический датчик типа (IRA-E410,

IRA-E700QW1, IRA-E900ST1, IRA-E940ST1QW1, IMD-B101-01, IMD-B102-01 и их модификации).

Их **предназначение**: детекторы пламени, наличия людей, автоматы включения освещения при движении людей в зоне контроля. Датчики отличает высокая чувствительность и избирательность, компактное исполнение, низкое (не более 50 мА при наличии исполнительного реле потребление тока). Одна из причин ложного включения датчиков — реакция на работающую невдалеке радиостанцию КВ-УКВ диапазона.

Установив несколько радиопередающих устройств в разных помещениях, легко зафиксировать их взаимодействие с устройствами бытовых выключателей освещения на основе датчиков движения.

В случае гальванической развязки по питанию (датчики движения включены через отдельные трансформаторные преобразователи, понижающие напряжение осветительной сети 220 В), наблюдаются интересные эффекты: при включении в режим «передача» маломощных (до 1 Вт) Си-Би радиостанций типа «Пилот», «Гродно-Р», «Урал-Р», настроенных на частоты 27 МГц, находящихся на расстоянии 10 м, датчики движения не срабатывают. Если же включить в режим «передача» более мощный источник радиосигнала, например радиостанцию «Лен-В» (выходная мощность 15 Вт, рабочая частота 36—42 МГц), произойдет ложное срабатывание выключателя, расположенного в соседнем помещении на том же удалении от антенны радиостанции. Эффект будет таким, как если бы в зоне действия датчика движения появился человек.

Радиостанции типа «Лен» выпускались в трехчастотном исполнении, соответственно для радиосвязи на частотах 33,0—39,0 МГц, 39,025—48,5 МГц, 57,0—57,5 МГц с разносом (шагом) по частоте между соседними каналами 25 кГц. Наиболее популярными моделями являются «Лен-В» 1Р21В-3, 1Р21С-4, 1Р21С-5, соответственно переносимая (возимая), стационарная (сетевая) и центральная диспетчерская сетевая станция с аварийным питанием.

Возимую радиостанцию от стационарной отличает возможность работы последней на несколько каналов и комплектация

базовым источником питания напряжением 13,5 В с выходным током до 7 А. Для всех станций предусмотрен режим работы симплексной частотной модуляции, то есть с принудительным переключением «прием/передача».

Наиболее современные станции аналогичного класса (например «Гранит-М») без дополнительного оборудования или переделок заменяются такими моделями как «Лен-В» (50РТМ-А2-ЧМ, 65РТС-А2-ЧМ, 67РТМ-А2-ЧМ, 1Р21С-4, 51РТС-А2-ЧМ). Мощность передатчиков данных радиостанций с настроенной антенной может достигать 15 Вт. В литературе [90], [135] подробно описаны свойства радиостанций типа «Лен». Фото радиостанции «Лен» представлено на **рис. 1.11**.

Очевидно, что ложные срабатывания датчиков движения могут провоцировать и другие (в т. ч. портативные, носимые) радиостанции, настроенные для работы на рабочую частоту, сходную с частотой радиостанции «Лен-В». А сегодня таких радиостанций много.

При проведении эксперимента использовались датчики движения типов 43801, 43802, 43811, 43812 (производства Германии), LX02, LX03, LX04 (с автоматическим распознаванием дня и ночи и ручной регулировкой чувствительности), «Pyronix Colt XS» (производства Великобритании) для охранных систем (класс защиты IP X4). Указанные приборы имеют схожее предназначе-

Рис. 1.11. Фото (внешний вид) радиостанции Лен-В с частотой передатчика 39,565 МГц

ние и стандартно реагируют на возникающую активность радиопередатчика — включают исполнительное реле, управляющее приборами освещения или излучателями в охранной сигнализации. Для иллюстрации на **рис. 1.12, 1.13 и 1.14** показаны фотографии разных датчиков движения.

Различие между указанными типами датчиков движения в данном случае несущественно: часть из них, например приборы LX02, 43811, обладает встроенным светочувствительным элементом, не позволяющим включать нагрузку (освещение) в свет-

Рис. 1.12.
Пироэлектрический датчик
движения 43811

Рис. 1.13. Пироэлектрический датчик
движения LX-04

Рис. 1.14. Пироэлектрический датчик движения «Pyronix Colt XS»

лое время суток, и также возможностью регулировки задержки выключения. Эти сервисные функции, безусловно, удобны для пользователя приборов, но в данном эксперименте принципиальной роли не играют.

Важно, что датчики движения (на основе приведенных выше пироэлектрических детекторов) реагируют на электромагнитные поля с диапазоном частот 250—320 МГц, 510—710 МГц и 750—1000 МГц при напряженности поля 10—15 В/м (данные взяты из инструкции по установке датчиков движения 43801—43812 и справочных данных пироэлектрических датчиков и модулей ИК-излучения фирмы «Симметрон» за 2005 год).

Этим объясняется срабатывание датчиков движения при переходе близко расположенной радиостанции в режим «передача». Напряженность поля измерить достаточно сложно, и только методом подбора удалось определить «безопасное» расстояние от датчика до антенны радиостанции.

В данном случае это расстояние составило более 50 м. На практике для ложного срабатывания бытового датчика движения (что подтверждено описываемым экспериментом) достаточно электромагнитного излучателя частотой 27—42 МГц (не указано в регламентирующих и справочных документах).

Внимание!

Электромагнитное поле может создаваться не только передатчиком радиостанции, но и другими приборами. Вывести из строя — «ослепить» подключенный датчик движения — можно и обычновенной фотографической вспышкой, если применить ее на близком (до 1 м) расстоянии.

Это следует учитывать при установке и эксплуатации датчиков движения в бытовых условиях и, более всего, в устройствах охранной сигнализации.

Внимание!

Автор книги рекомендует устанавливать бытовые и охранные устройства на основе пироэлектрических датчиков движения вдали от источников электромагнитных полей, а если данное условие невыполнимо — производить магнитное экранирование при помощи кожуха, изготовленного из пермаллоя.

1.5. Дополнительные узлы датчика движения: фоточувствительный и таймерный

Датчики движения прочно вошли в наш быт несколько лет назад. Сегодня они работают практически во всех сферах, связанных с автоматикой управления процессами, — от охранных систем до бытовых выключателей освещения. Большинство последних снабжено фотореле — электронным узлом, реагирующим на освещенность внешней (контролируемой) среды.

Поскольку принцип действия датчиков движения многократно описан в литературе, разница между ними несущественна и касается в основном сервисных функций и питания. Так, одни датчики движения адаптированы к питанию непосредственно от напряжения осветительной сети 220 В, другие требуют внешний стабилизированный источник постоянного напряжения 9—15 В.

Некоторые датчики снабжены регулировкой чувствительности (зоны покрытия) и таймером задержки выключения освещения. От наличия или отсутствия сервисных функций и назначения датчиков движения зависит их цена в торговых точках.

Пример.

Можно приобрести датчик движения с полным сервисным набором (заплатив более 700 рублей), установить его дома и «забыть» — он будет стablyно работать годами. А можно пойти другим путем: приобрести датчик движения для охранных систем (рассчитанный на автономный, отдельный источник питания), реагирующий только на движение в области контролируемой зоны, и самостоятельно добавить к нему фоточувствительный узел и устройство задержки выключения исполнительного устройства.

Многочисленное семейство «охраных» датчиков движения будет работать в качестве бытовых выключателей освещения не хуже специально приспособленных бытовых выключателей. Таков, например датчик движения для охранных систем «Pyronix Colt XS» производства Великобритании с розничной ценой около 300 рублей. Внешний вид датчика показан на **рис. 1.14**.

Разберем подробнее этот «черный ящик» с учетом того, что большинство датчиков для охранных систем устроено и функционирует аналогично. **Их отличительная особенность** — необходимость внешнего источника питания и отсутствие сервисных функций, о которых было сказано выше.

Датчик, в соответствии с паспортными данными, потребляет ток 12 мА (при максимальном напряжении питания 15 В). Он **предназначен** для контроля зоны до 15 м и фиксирует (реагирует) перемещения живых существ (источников ИК-излучения) со скоростью 0,3—3 м/с. Регулировка быстроты реакции предусмотрена конструктивно и зависит от положения перемычки внутри корпуса прибора. Требования к установке в помещениях такие: на расстоянии не менее 1,8 м и не более 2,4 м от пола, не ближе 0,5 м от потолка и не ближе 1,5 м от противоположной стены. Очевидно, что при соблюдении данных рекомендаций фирмы-производителя такой охранный датчик наиболее эффективен.

В нормальном состоянии, когда перемещений в зоне контроля датчика нет, контакты *N* и *C* нормально замкнуты. Еще одна особенность данного датчика в том, что, как и многие охранные системы, установленные в доступных местах, он контролирует и сам себя. То есть если попытаться вскрыть корпус прибора, сработает сигнализация (разомкнуться нормально замкнутые контакты *TT*). Внешнее питание подается соответственно к контактам «+» и «-». Все контакты, включая разъем питания, выведены на плату с помощью клеммника внутри корпуса прибора и закрыты крышкой.

Чтобы превратить охранный датчик в бытовой прибор, потребуется собрать простую электрическую схему, представленную на **рис. 1.15**.

Рис. 1.15. Электрическая схема дополнения к охранному датчику движения

Схема выполнена всего на трех элементах популярной микросхемы K561ЛЕ5 (ИЛИ с инверсией). Ключевой каскад на транзисторе VT1 включен как усилитель тока и управляет исполнительным реле K1, рассчитанным на напряжение срабатывания 7—12 В и ток до 100 мА. Реле своими коммутирующими контактами K1.1 управляет устройством нагрузки, в данном случае включает/выключает осветительную лампу накаливания EL1 в цепи 220 В.

Информацию, поступающую от датчиков в виде электрических сигналов, анализирует логический элемент DD1.1. Чтобы на его выходе (вывод 3) возник высокий уровень напряжения, разрешающий работу последующей схемы, необходимо присутствие низкого логического уровня на обоих входах данного элемента. Фоторезистор PR1 составлен из двух параллельно включенных однотипных фоторезисторов СФ3-4 (для повышения чувствительности узла). Он определяет внешнюю освещенность; по его состоянию микросхема логики выдает управляющий импульс на включение освещения (если в помещении или на улице темно) или соответственно запрещает включение света, если освещенность объекта достаточна.

Сопротивление фоторезистора PR1 изменяется пропорционально освещенности. Его темновой ток очень мал (единицы

микроампер), что является дополнительным достоинством и предпосылкой применения данного типа фоторезисторов в схеме.

Подстроечным резистором R2 устанавливают чувствительность и порог срабатывания схемы при соответствующей освещенности. Если величина последней достаточна (дневной свет), то на выводе 1 микросхемы DD1 присутствует высокий уровень напряжения. А ночью и при затемнении снижается до уровня, при котором элемент DD1.1 воспринимает его как логический ноль. Если от датчика движения, когда он срабатывает, размыкая цепь контактов X1, также поступает на вывод 2 элемента DD1.1 логический ноль, на выходе элемента DD1.1 возникает необходимая для управления исполнительным каскадом логическая единица.

Этот высокий уровень напряжения через диод VD2 (препятствующий току разряда оксидного конденсатора C2) и ограничительный резистор R3 быстро заряжает C2. Таким образом, на входе элемента DD1.2 возникает напряжение высокого логического уровня, а на выходе данного элемента — низкого. Конденсатор C2 нужен для задержки выключения узла — это таймер на 2–3 мин, без которого исполнительное реле срабатывало бы только в момент движения в области контроля промышленного датчика. Емкость оксидного конденсатора C2 можно увеличить до 50 мкФ с тем, чтобы выдержка времени (задержка выключения) возросла до 8–10 мин.

Напряжение с выхода элемента DD1.2 инвертируется логическим элементом DD1.3, на выводе 10 DD1.3 оказывается высокий уровень напряжения, который открывает транзистор VT1 и включает реле K1. Пока движений в зоне контроля датчика нет или освещенность в той же зоне достаточна, на выводе 10 элемента DD1.3 присутствует низкий уровень напряжения, запирающий токовый ключ на транзисторе VT1. При этом реле K1 выключено, лампа накаливания EL1 погашена.

О деталях: подстроечный резистор R2, регулирующий чувствительность узла, может быть любым, например СП3-16Б. Конденсатор C1 — типа КМ-6Б или аналогичный. Он сглаживает высокочастотные помехи на входе элемента DD1.1.

Диоды VD1—VD3 любые из серии КД521Б, КД522Б, КД104 с любым буквенным индексом. Оксидный конденсатор С2 типа К50-29. Постоянные резисторы типа МЛТ-0,25. Фоторезисторы можно заменить на однотипные и аналогичные по электрическим характеристикам, например

СФ3-1, СФ3-9 с любым буквенным индексом. При монтаже фотодатчиков желательно, чтобы соединительный провод (гибкая витая пара из провода МГТФ-0,8) — не обязательно экранированный — имел минимальную длину не более 50 см.

Транзистор VT1 типа КТ815, КТ604, КТ817 с любым буквенным индексом. Исполнительное реле — слаботочное электромагнитное на напряжение 9—12 В и ток срабатывания до 50 мА, например G2R-112P-V фирмы «Omron», рассчитанное на коммутацию нагрузки в цепях до 250 В и ток до 6 А.

Диод VD3 препятствует броскам обратного тока через реле. Лампа накаливания EL1 — любая лампа освещения на 220 В и соответствующую случаю мощность. Вместо нее устройство может управлять любой активной нагрузкой с соответствующими электрическими параметрами, определяемыми параметрами исполнительного реле K1.

Для питания приставки необходим стабилизированный источник питания с напряжением 10—15 В с током, отдаваемым в нагрузку, не менее 150 мА (определяется параметрами исполнительного реле). От этого же источника питается и промышленный датчик движения.

Рассмотренную приставку удобно использовать совместно с другими датчиками движения для охранных систем, увеличив их эффективность для бытовых нужд с небольшими финансовыми затратами, а также в любых других сходных случаях, когда требуется контролировать одновременно два параметра — освещенность и, например, состояние открытой/закрытой входной двери или влажность почвы. Для конкретных случаев используют соответствующие датчики — микро- и концевые выключатели (либо герконы) на двери и датчик влажности. В литературе [53] рассмотрены варианты совмещения охранного датчика с другими электронными системами.

1.6. Датчик движения в охранной системе

Датчики движения, на базе которых выполнены популярные сегодня автоматические выключатели освещения, можно эффективно применять не только по прямому назначению.

Что представляет собой этот **автоматический выключатель освещения?**

Его основа, как было рассмотрено выше, — миниатюрный пироэлектрический детектор, реагирующий на изменение теплового фона, подключенный к автоматическому устройству, преобразующему кратковременные электрические импульсы в сигнал управления электромагнитным реле. Реле, в свою очередь, включает/выключает освещение (коммутирует нагрузку до 1200 Вт). В дополнение к основным функциям, датчики движения имеют ряд сопутствующих функций, таких как регулировки таймера (задержки включения нагрузки при отсутствии новых импульсов движения в зоне сканирования датчика) и освещенности (при которой прибор будет включать освещение). Последний режим удобен в быту — благодаря ему освещение не зажигается днем.

Одним из альтернативных вариантов применения таких датчиков-выключателей является узел охранной сигнализации, в который можно легко преобразовать купленный в магазине автоматический выключатель. Для этого к контактам «нагрузка» (к которым в обычном варианте подключается лампа накаливания) подсоединяют схему звуковой (или иной) сигнализации. Автоматический выключатель устанавливают таким образом, чтобы рабочая зона прибора покрывала максимальный участок периметра охраняемого помещения:

- ♦ т.е. датчики периметра помещения(входные двери, окна);
- ♦ т.е. датчики, обеспечивающие защиту наиболее уязвимого места (балкон, лоджия, некапитальная стена и т.п. в дополн-

нение к датчикам первого рубежа), либо конкретные ценности (компьютер, мини-сейф).

В случае больших (особенно многоэтажных) помещений (либо помещений с большим числом комнат) во второй рубеж включают датчики открывания межкомнатных дверей (т.н. ловушки, которые позволят обнаружить нарушителя, притаившегося в укромном месте перед сдачей объекта под сигнализацию).

Не следует увлекаться количеством приборов — охранять весь объем квартиры нет необходимости!

Примечание.

Для охраны квартиры достаточно принять следующие меры:

- 1) оклеить внутренние окна по периметру самоклеющейся фольгой — недорогая, но эффективная защита «на разбитие»: фольга продается в магазинах, торгующих средствами сигнализации. Можно воспользоваться и тонким (0,12—0,17 мм) медным одножильным проводом, наклеивая последний по периметру окна смолой БМК, разведенной в ацетоне;
- 2) установить на открывающиеся элементы оконных рам (форточки, фрамуги, балконные двери и т. п.) и входную дверь (двери) датчики типа СМК (пары «магнит-геркон») — защита «на открывание»;
- 3) деревянную входную дверь дополнительно следует обить изнутри проводом НВ либо другим тонким одножильным проводом — защита «на взлом»: провод укладывают зигзагом, расстояние между соседними участками проводки и между проводом и дверной коробкой не должно превышать 150 мм;
- 4) все датчики и охранная проводка соединяются последовательно, образуя шлейф первого рубежа;
- 5) сложные датчики (точнее их нормально замкнутые контактные группы) — движения, емкостные и т. п. — соединяются последовательно, образуя шлейф второго рубежа;
- 6) оба шлейфа последовательно выводят на контрольное устройство, в роли которого может выступать специальный прибор (например УОТС) либо ...датчик движения, обладающий функцией контроля внешнего шлейфа. Также подойдет датчик, имеющий самозащиту, — небольшой магнит в крышке корпуса и геркон (нормальнозамкнутый) на плате: в этом случае шлейф припаивается вместо геркона. Разумеется, можно подключать шлейфы раздельно — на различные контрольные приборы либо на один, поддерживающий несколько шлейфов;
- 7) шлейфы (или выходы контрольных приборов) можно подключить к системам дистанционного оповещения — эффективность охранной системы при этом возрастет в сотни раз: сигнал тревоги поступит на мобильный телефон хозяина охраняемого объекта, где бы тот ни находился! Подобные системы можно приобрести в специализированных магазинах (в т. ч. Интернет-магазинах) или изготовить самостоятельно, руководствуясь материалами главы 3 настоящей книги.

Вернемся к датчику движения: вариантов применения ему найдется множество, например на даче — для контроля местности перед домом (когда гость подходит к дому, зажигается свет — электронное устройство информирует хозяев о визите), а также для оповещения о незванных гостях на огороде...

Параметры порога освещенности и времени таймера устанавливаются опытным путем. Для того чтобы солнечный свет не слепил датчик (тем самым делая его неэффективным), на линзу Френеля надевают небольшой козырек (тубус) из черной фотографической бумаги или другого подходящего материала. Высоту установки датчика выбирают не менее 1,5 м от пола лоджии.

Опытная эксплуатации показала, что прибор не реагирует на домашних животных (кошку, собаку), но реагирует на пролетающую в зоне сканирования птицу или близко от линзы Френеля пролетающее насекомое (муху, стрекозу). Из этого можно сделать вывод, что датчик фиксирует быстро перемещающиеся источники независимо от их массы и практически не реагирует на медленные перемещения. Необходимо помнить, что у прибора могут быть различные диаграммы направленности, а также «мертвые зоны»: например кошка, проходящая по кромке лоджии, фиксируется сразу, а собака, бегающая на полу лоджии, остается «невидимой».

Внимание!

При покупке датчиков обращайте внимание на рекомендованные режимы эксплуатации. Например далеко не каждый датчик способен работать при отрицательных температурах и в условиях повышенной влажности, т. е. вне помещений!

Если совместить датчик движения — выключатель с небольшим прожектором (**рис. 1.16**), получится еще более эффективное устройство — при появлении нарушителя в зоне действия датчика включится и звуковая сигнализация, и мощный прожектор.

На **рис. 1.17** представлен датчик движения, адаптированный для жилых помещений. Принцип его действия аналогичен описанному выше.

Рис. 1.16. Датчик движения, совмещенный с прожектором, установленный на лоджии жилого дома

Рис. 1.17. Датчик движения, адаптированный для жилых помещений

При выборе соответствующей диаграммы направленности (кронштейн датчика имеет поворотный механизм) удается эффективно контролировать зону и за пределами лоджии. Если обеспечить узел сильной звуковой сигнализацией, то удается отпугнуть от нижних этажей собирающиеся под окнами антисоциальные элементы. Еще один вариант для применения промышленного выключателя датчика движения — скрытая установка его перед входом в квартиру и подключение сигнализации аналогично вышеприведенным примерам. Такая сигнализация заранее оповестит о приближении к квартире (или о вхождении на лестничную клетку многоквартирного дома) посетителя.

1.7. Триггерный эффект при эксплуатации датчиков движения и способ его локализации

Пироэлектрические датчики движения становятся все более популярными, производятся во многих странах (Финляндия, Германия, Великобритания и т. д.), имеют различное конструктивное исполнение и элементную базу. Есть экземпляры собранные как на дискретных элементах, так и на микросхемах, в т. ч. на элементах для поверхностного монтажа (SMD).

Мощность коммутируемой нагрузки обычно не превышает 1200 Вт, а напряжение питания 150—245 В. Внутри прибора установлен бестрансформаторный источник питания (благо, ток потребления электронной схемы минимизирован до 10—12 мА без учета тока потребления реле), что превращает датчик в самодостаточное устройство.

Автоматические выключатели имеют **функциональные различия**. В большинстве моделей предусмотрены дополнительные опции — регулировка внешней освещенности, при которой свет включаться не будет, и времени, на которое включается свет при однократном воздействии на пироэлектрический детектор (таймер).

Как правило, в обычной ситуации, когда электроэнергии хватает всем, и с наступлением холода ежегодно не происходят массовые и внезапные отключения напряжения осветительной сети, такие выключатели функционируют стablyно. Однако нередко происходит обратное: напряжение пропадает внезапно и так же внезапно включается. Пауза составляет от долей секунды до 20—30 минут.

Наиболее опасны, как показала практика, микропаузы — мгновенные сбои в снабжении электроэнергией. Они способны

вывести из строя электронные блоки бытовой техники, компьютерные системы и т. д. Не исключение и автоматические устройства на основе пироэлектрических детекторов. При отсутствии электроснабжения в течение несколько миллисекунд обозначенные выше модели автоматических выключателей временно приходили в негодность, чем доставляли отрицательные эмоции владельцам.

Наблюдался так называемый **триггерный эффект**, когда при первом сбое выключатель устанавливался в положение «включено» и больше уже ни на что не реагировал. При втором аналогичном сбое (несколько миллисекунд и десятков миллисекунд) выключатель по прошествии задержки времени, заданной таймером, устанавливается в исходное состояние готовности (выключал свет) к приему новых импульсов от датчика. Время, прошедшее между сбоями, никак не влияет на работу выключателя. Может пройти один час, а может и несколько суток до второго сбоя в электроснабжении. Попытки выйти из положения банальным отключением на некоторое время электроснабжения квартиры не приносили успеха. Поскольку подобная проблема обнаружилась у многих автоматических выключателей (в том числе разных производителей), потребовалось вскрытие корпуса прибора, которое показало, что исполнительное реле исправно. В такой ситуации требовалось разобраться, как обезопасить датчик и, соответственно, свой быт от неожиданностей.

Действенный способ — установить параллельно фильтрующей емкости бестрансформаторного источника питания (470 мкФ) оксидный конденсатор емкостью 1000—3000 мкФ на рабочее напряжение не менее 50 В. Оптимально подходит продукт фирмы «Hitano» радиального исполнения серий ELP, ESX, EBR, EHR, ECR, ELR, EHL, EXR. Разумеется, подойдут и другие конденсаторы, аналогичные по электрическим характеристикам.

Эти оксидные конденсаторы имеют малый импеданс и большой срок службы (надежны). Эффективно работают в импульсных источниках питания различного назначения и в цепях фильтрации пульсаций. Согласно справочным данным фирмы «Hitano» они выдерживают токи пульсации до 2 А (экземпляры

рассчитанные на рабочее напряжение 50 В и емкость 3300 мкФ). Малая стоимость (20—30 руб.) делает их доступными для радиолюбителей. Для оптимального подбора элементов к данной электронной схеме автор рекомендует использовать литературу, например [32].

Кроме того, параллельно выводам питания микросхем (как правило, их две — логика и ОУ) устанавливают неполярные конденсаторы 0,1—0,22 мкФ (КМ6Б или аналогичные).

Вышеприведенным методом удалось вернуть к жизни более десятка автоматических выключателей света на основе пироэлектрических детекторов.

1.8. Микроволновые датчики

Среди датчиков для автомобиля, выпускаемых промышленностью, по своим характерным особенностям выделяются микроволновые датчики, идеальные для использования в транспортных средствах с открытым или закрытым верхом или оборудованных люком. Микроволновый датчик (по определению) работает в микроволновом участке радиоволн и обеспечивает двухзонную защиту охраняемого объекта.

Пока все в порядке, сирена молчит. Кратковременное включение происходит при нарушении внешней зоны по периметру автомобиля, срабатывает сигнализация при нарушении внутренней зоны (попытке проникновения в автомобиль).

Датчики семейства SLI-259-SLI359 универсальны и могут использоваться со всеми типами охранных сигнализаций как в автомобилях, так и в помещениях. Датчики имеют разъем для подключения к сигнализации АМАХ. Отдельная настройка для внешней и внутренней зоны способствует их наилучшему разделению и предотвращению ложных срабатываний. В корпусе

Рис. 1.18. Датчик SLI-259 и SLI-259A

Рис. 1.19. Датчик SLI-359

датчика имеется светодиод, сигнализирующий о срабатываниях в пределах внутренней и внешней зон. На **рис. 1.18 и 1.19** представлен внешний вид микроволновых датчиков.

Конструктивное различие между моделями SLI-259 и SLI-359 состоит в том, что внешняя зона (во втором варианте) программируется на два кратковременных звуковых сигнала («чириканья») для сигнализаций с двухзонным входом, либо (SLI-259 и SLI-259A) устанавливается длительность сигнала на 3 с для подключения к реле или сирене. Системы SLI259 и SLI259A идентичны.

1.9. Детекторы разрушения стекла

Для сигнализации о разбивании стекла или ударе по нему служат детекторы разрушения стекол SS-051M и SS-051ME. Они сигнализируют о несанкционированном проникновении в автомобиль путем разбивания стекла или выбивания замков.

Оба датчика имеют двухуровневый детектор разрушения стекла. Кроме того, SS-051ME имеет в комплекте внешний микрофон с 3-футовым (около 1 м) кабелем для удобства скрытого монтажа в салоне автомобиля. SS-051M имеет встроенный микрофон (для удаленного контроля салона в случае сработки), а также внутренний фильтр, предотвращающий ложные срабатывания сигнализации. Запатентованная система «Turbulence» позволяет точно установить уровень предупреждения, если внешние шумы слишком велики.

Устройства укомплектованы (каждое) двумя регуляторами для независимой настройки уровней и разъемами для быстрой установки. Внешний вид детекторов представлен на **рис. 1.20**.

Рис. 1.20. Детектор разрушения стекла

1.10. Шок-сенсоры

Двухуровневый электромагнитный шок-сенсор SS-052BA зарекомендовал себя как эффективный датчик сотрясений, применяемый в автомобильных и стационарных охранных системах.

Сирена однократно подаст короткий звуковой сигнал («чирикнет»), если будет зафиксирован легкий удар. При взломе или акте вандализма включится сигнализация. Датчик снабжен регуляторами независимой настройки порога срабатывания и разъемом для быстрой установки. На рис. 1.21 представлен внешний вид датчика.

Одноуровневый электромагнитный шок-сенсор SS-052PBE срабатывает в случае взлома (несанкционированного вторжения) или акта вандализма. Внешний вид прибора представлен на рис. 1.22.

Запатентованная электромагнитная технология предотвращает ложные срабатывания сигнализации, обеспечивает защиту во всех направлениях. Датчик защищен от электромагнитных помех, что исключает ложные сигналы при использовании пейджеров, сотовых телефонов, радио и других электронных устройств. Корпус имеет запатентованный пластиковый установочный кронштейн. Датчик устанавливается в отделении двигателя или на рулевой колонке.

Рис. 1.21. Шок-сенсор SS-052BA

Рис. 1.22. Шок-сенсор SS-052PBE

1.11. Датчик покачивания

Датчик покачивания SS-057, как и вышерассмотренные датчики, разработан для автомобиля. Он фиксирует вибрацию или сильные удары, поднятие домкратом, буксировку автомобиля. Датчик универсален: его легко подключить к управляющим устройствам звуковой сигнализации и блокировки автомобиля. Он использует любую (разомкнутую или замкнутую) группу контактов, выходной импульс управления отрицательной или положительной полярности (в зависимости от подключения к соответствующим выходным контактам).

Запатентованный самоблокирующийся держатель винта регулирования чувствительности позволяет произвести максимально точную регулировку. Датчик имеет фирменный установочный кронштейн, обеспечивающий защиту во всех направлениях. Контакты позолоченные, стойкие к коррозии. Внешний вид датчика покачивания представлен на **рис. 1.23**.

Рис. 1.23. Датчик покачивания SS-057

1.12. Ртутный датчик

Защищает капот, багажник и другие открывающиеся части автомобиля там, где концевые выключатели трудно или невозможно установить. Он уверенно срабатывает при наклоне 15°, имеет компактный размер и снабжен кабелем для быстрой установки. В случае управления другими устройствами максимальный ток коммутации контактов не должен превышать 1 А.

В корпусе, внешний вид которого представлен на **рис. 1.24**, закреплена стеклянная колба датчика. Аналогичным образом устроены датчики наклона, описанные в литературе [124] (в указанной статье можно получить также сведения о других популярных ртутных датчиках и вариантах их применения в радиолюбительских электронных конструкциях).

Рис. 1.24. Ртутный датчик наклона SS-053

ГЛАВА 2

ЭЛЕКТРОННЫЕ ДАТЧИКИ В РАДИОЛЮБИТЕЛЬСКОЙ ПРАКТИКЕ

Глава посвящена вопросам самостоятельного изготавления датчиков и устройств регистрации, обработки, индикации. Особое внимание уделяется устройствам пожарной и охранной сигнализации, как наиболее востребованным; принципам создания охранных систем.

Внимание!

В отдельных конструкциях используются опасные для жизни напряжения. При работе со схемами, приведенными в настоящей книге, будьте предельно внимательны и осторожны. Начинающим радиолюбителям следует производить проверку и первое включение собранной конструкции под руководством специалиста. Берегите себя и своих близких!

2.1. Датчик сотрясения

Среди многочисленных датчиков состояния встречаются всевозможные приборы, поражающие радиолюбителей своими конструктивными особенностями. Однако при разработке устройств учитываются, как правило, более прозаические **параметры**:

- ◆ компактность;
- ◆ высокая чувствительность;
- ◆ надежность (высокий коэффициент наработки на отказ);
- ◆ минимальное наличие механических частей;
- ◆ универсальность в применении;
- ◆ работа в широкой области температур и напряжений питания;
- ◆ отсутствие помех другим узлам устройства;
- ◆ минимальное потребление тока и т. п.

Еще одна **электрическая схема** из серии датчиков воздействия — **устройство датчика сотрясения** — представлена на **рис. 2.1**.

Рис. 2.1. Электрическая схема датчика сотрясения

Ее особенность в необычном включении микросхемы-компаратора DA1 во взаимодействии с индуктивным датчиком L1. Катушка L1 намотана на круглом пластмассовом каркасе диаметром 8 мм (от резонансных катушек радиоприемника ВЭФ-202 и аналогичных) проводом ПЭЛ-1 диаметром 0,6 мм вnaval и содержит 150 витков. Ферритовый сердечник из каркаса не вынимается и перед первым включением схемы располагается по середине свободного хода внутри каркаса.

Напротив катушки L1 на расстоянии 1—2 мм располагают кусочек феррита круглой или прямоугольной формы размерами 4 × 9 мм на специальных подвесках из эластичной резины так, чтобы феррит при сотрясении вибрировал на свободном расстоянии до каркаса катушки L1.

Переменный резистор R1, включенный как регулятор-ограничитель тока, позволяет регулировать чувствительность датчика. При верхнем (по схеме) положении движка переменного резистора R1 чувствительность узла максимальная.

При отсутствии механических воздействий на датчик магнитное поле не изменяется, и ток, протекающий через катушку L1, носит постоянный характер и составляет доли мкА. Оксидный конденсатор C1 не пропускает постоянную составляющую напряжения на вход компаратора (вывод 2 DA1).

Баланс напряжений между инвертированным и неинвертированным входами компаратора (выводы 1 и 2 DA1) не нарушается, поэтому на выходе компаратора (вывод 7 DA1) присутствует низкий уровень напряжения. Индикатор состояния узла — светодиод HL1 — не светится, а уровня напряжения на базе транзистора VT1 недостаточно для его открывания. Между общим проводом и выходом ($U_{\text{вых}}$) присутствует разность потенциалов (напряжение), близкая к напряжению источника питания.

Здесь уместно заметить, что выходное напряжение для управления устройствами нагрузки (исполнительными элементами и последующими электронными узлами) можно снимать также, используя $+U_{\text{n}}$ и $U_{\text{вых}}$. Тогда в дежурном режиме датчика напряжение на выходе узла будет стремиться к нулю, а при механическом воздействии принимать значение, близкие по напряжению к напряжению источника питания (12 В).

Метод подключения выходных контактов выбирается самостоятельно в каждом конкретном случае. Если в дополнительных исполнительных узлах необходимости нет, резистор R10 в цепи коллектора транзистора VT1 заменяют на электромагнитное реле напряжением 8—12 В и током срабатывания не более 100 мА. При токе срабатывания реле более 100 мА, учитывая (возможный) длительный характер работы реле во включенном состоянии, потребуется заменить транзистор VT1, играющий роль усилителя тока, более мощным, например любым из серии KT815.

При незначительном сотрясении датчика (ферритового сердечника) вблизи катушки L1 в ней кратковременно возникает ЭДС в несколько десятков мкВ, вызывающая импульс напряжения, который беспрепятственно (минуя оксидный конденсатор C1 и ограничительный резистор R2) попадает на вход компаратора DA1.

Компенсационные цепочки в разных плечах компаратора (состоящие из элементов VD1, R5, R6 и VD4, R12) настроены таким образом, что даже такого минимального сигнала, вносящего дисбаланс напряжения на входах микросхемы, оказывается достаточно для срабатывания внутренней схемы сравне-

ния напряжений и появления на выходе компаратора высокого уровня. Напряжение высокого уровня на выводе 7 DA1 включает светодиод HL1, сигнализирующий о воздействии на датчик, проходит через ограничительный резистор R8, детектируется диодом VD3 и через ограничительный резистор R9 поступает на базу транзистора VT1. В момент появления напряжения на выводе 7 микросхемы DA1 заряжается оксидный конденсатор C4. Он включен в схему для того, чтобы обеспечить плавную задержку выключения узла (на 2—3 с), иначе включение нагрузки будет напоминать дребезг контактов и носить хаотичный характер. Благодаря наличию оксидного конденсатора C4, транзистор VT1, открывшись от импульса напряжения, закроется только через 2—3 с после окончания управляющего импульса. Если емкость данного конденсатора увеличить до 50 мкФ, задержка выключения узла может составить единицы минут, что может оказаться полезным; например, такая задержка будет уместна, если реле, включенное вместо резистора R10, в свою очередь будет включать охранную сирену.

Поступившее на базу транзистора VT1 напряжение высокого уровня открывает последний и изменяет состояние выхода узла: между положительным выводом источника питания и контактом $U_{\text{вых}}$ теперь присутствует напряжение источника питания, а напряжение между общим проводом и точкой $U_{\text{вых}}$ соответственно равно нулю.

Выпрямительный диод VD2 и ограничительный резистор R7 защищают микросхему от перенапряжения источника питания и случайной подачи $U_{\text{пит}}$ обратной полярности. Оксидный конденсатор C3 слаживает пульсации напряжения. При заведомо исправном и стабилизированном источнике питания, а также при питании данного электронного узла от батарей (аккумуляторов) элементы C3, R7, VD2 можно из схемы исключить, так как устройство работоспособно в диапазоне напряжения питания +7—+16 В. Ток потребления в режиме покоя не превышает 5 мА. Однако при использовании устройства в автомобиле и в сочетании с нестабилизированными источниками питания данные элементы выполняют защитную роль и позволяют применять

устройство как элемент охраны — датчик сотрясения (удара) в автомобилях. Устройство не нуждается в налаживании.

Элементы устройства компактно монтируются в пластмассовом корпусе и жестко прикрепляются к контролируемой поверхности. Удобно воспользоваться быстросохнущим клеем.

Кажущаяся сложность в изготовлении датчика и катушки L1 не более чем миф. Практика испытаний устройства показала, что даже при удалении феррита от каркаса L1 на расстояние до 5 мм датчик уверенно срабатывает от малейших смещений феррита. Это достигается высокой чувствительностью компаратора на микросхеме LM358N. Кроме указанной на схеме микросхемы можно применить ее полные аналоги LM358, C358C, HA17358.

Отечественные микросхемы аналоги компаратора К1401УД5А—К1401УД5Б, К544УД8А—К544УД8Б, КР1040УД1А, КФ1053УД2(А). В случае применения микросхемы К544УД8А—К544УД8Б чувствительность узла несколько снизится и придется изменить подключение выводов микросхемы. Кроме того, в качестве феррита (прямоугольной формы) можно использовать кусочек постоянного магнита.

Транзистор VT1 — любой из серии КТ503 и аналогичный. Выпрямительный диод VD2 заменяют на КД213, КД105, Д202 с любым буквенным индексом и аналогичные по электрическим характеристикам. Остальные диоды типа КД521, КД522, Д311, Д220 с любым буквенным индексом. Переменный резистор R1 типа СПО-1, СП3-30В, СП3-12В или подстроечный, типа СП5-28В, СП3-1ВБ (оба многооборотные). Главное при выборе типа этих резисторов то, чтобы они имели линейную характеристику изменения сопротивления.

При необходимости достижения узлом максимальной и нере-гулируемой чувствительности данный резистор из схемы просто исключают, а средний вывод, показанный на схеме, соединяют с верхним (по схеме) выводом катушки L1. Ограничительный резистор R7 типа МЛТ-0,5. Все остальные постоянные резисторы типа МЛТ-0,25. Оксидные конденсаторы фирмы «Hitano», ESP, их аналоги или отечественные типа К50-29, К50-35. Индикаторный светодиод типа L63SRC, КИПД14А, КИПД-36, L1503SRC-C,

КИПД41Б1-М или другие аналогичные с током до 10 мА. Выбор элементов для этой и всех, представленных в книге, схем удобно производить по материалам [32], [138—147] в списке литературы.

В случае замены резистора R10 на слаботочное электромагнитное реле, рекомендации к выбору последнего такие: FRS10C-03, TRU-12VDC-SB-SL, TTI TRD-9VDC-FB-CL, Relpol RM85-2011-35-1012, РЭС-22 (исполнение РФ.4.523.023-01) или аналогичное. При выборе реле следует учитывать ток и напряжение коммутации. Все указанные здесь типы реле коммутируют ток до 3 А при напряжении до 250 В.

2.2. Емкостной датчик

Сегодня никого не удивишь различными по назначению и эффективности электронными устройствами превентивного предупреждения, которые оповещают людей или включают охранную сигнализацию задолго до непосредственного контакта нежелательного гостя с охраняемым рубежом (территорией). Многие из таких узлов, описанных в литературе, например в [48], по мнению автора, интересны, но усложнены.

В противовес им разработана простая электронная схема бесконтактного емкостного датчика (рис. 2.2), собрать которую по силам даже начинающему радиолюбителю. Устройство имеет высокую чувствительность по входу, что позволяет использовать его для предупреждения о приближении человека к сенсору E1.

Принцип действия устройства основан на изменении емкости между сенсором-антенной E1 и «землей» (общим проводом: всем тем, что соотносится к заземляющему контуру, — в данном случае это пол и стены помещения). При приближении человека эта емкость существенно изменяется, что оказывается достаточным для срабатывания микросхемы K561ТЛ1.

Рис. 2.2. Электрическая схема бесконтактного емкостного датчика

В основе конструкции — два элемента микросхемы K561ТЛ1 (DD1), включенные как инверторы. Эта микросхема имеет в своем составе четыре однотипных элемента с функцией 2И-НЕ с триггерами Шмита с гистерезисом (задержкой) на входе и инверсией по выходу.

Применение микросхемы K561ТЛ1 обусловлено малым потреблением тока, высокой помехозащищенностью (до 45 % от уровня напряжения питания), работой в широком диапазоне питающего напряжения (в диапазоне 3—15 В), защищенностью по входу от статического электричества и кратковременного превышения входных уровней, и многими другими достоинствами, которые позволяют широко использовать микросхему в радиолюбительских конструкциях, не требуя каких-либо особых мер предосторожности и защиты.

Кроме того, микросхема K561ТЛ1 позволяет включать свои независимые логические элементы параллельно, в качестве буферных элементов, вследствие чего мощность выходного сигнала пропорционально увеличивается. Триггеры Шмита — bistабильные схемы, способные работать с медленно возрастающими входными сигналами, в том числе с примесью помех. При этом обеспечивающие по выходу крутые фронты импульсов можно передавать в последующие узлы схемы длястыковки с другими ключевыми элементами и микросхемами. Микросхема K561ТЛ1 (как, впрочем, и K561ТЛ2) могут выделять управляющий сигнал (в том числе цифровой) для других устройств из аналогового или нечеткого входного импульса.

Зарубежный аналог K561ТЛ1 — CD4093В.

Схема включения инверторов — классическая, она описана в справочных изданиях. Особенность представленной разработки в конструктивных нюансах. После включения питания на входе элемента DD1.1 присутствует неопределенное состояние, близкое к низкому логическому уровню. На выходе DD1.1 — высокий уровень, на выходе DD1.2 — опять низкий. Транзистор VT1 закрыт. Пьезоэлектрический капсюль HA1 (с внутренним генератором ЗЧ) не активен.

К сенсору Е1 подключена антенна — подойдет автомобильная телескопическая. При нахождении человека рядом с антен-

ной изменяется емкость между штырем антенны и полом. От этого переключаются элементы DD1.1, DD1.2 в противоположное состояние. Для переключения узла человек среднего роста должен находится (проходить) рядом с антенной длиной 35 см на расстоянии до 1,5 м. На выводе 4 микросхемы появляется высокий уровень напряжения, вследствие этого транзистор VT1 открывается и звучит капсюль HA1.

Подбором емкости конденсатора C1 можно изменить режим работы элементов микросхемы. Так, при уменьшении емкости C1 до 82—120 пФ узел работает иначе. Теперь звуковой сигнал звучит только, пока на вход DD1.1 воздействует наводки переменного напряжения — прикосновение человека.

Электрическую схему (**рис. 2.2**) можно использовать и как основу для триггерного сенсорного датчика. Для этого исключают постоянный резистор R1, экранированный провод, а сенсором являются контакты микросхемы 1 и 2.

Последовательно с R1 подключают экранированный провод (кабель РК-50, РК-75, экранированный провод для сигналов ЗЧ — подходят все типы) длиной 1—1,5 м, экран соединяется с общим проводом, центральная жила на конце соединяется со штырем антенны.

При соблюдении указанных рекомендаций и применении указанных в схеме типов и номиналов элементов, узел генерирует звуковой сигнал частотой около 1 кГц (зависит от типа капсюля HA1) при приближении человека к штырю антенны на расстояние 1,5—1 м. Триггерный эффект отсутствует. Как только объект удаляется от антенны, датчик переходит в режим охраны (ожидания).

Эксперимент проводился также с животными — кошкой и собакой: на их приближение к сенсору-антенне узел не реагирует.

Возможности устройства трудно переоценить. В авторском варианте оно смонтировано рядом с дверной коробкой; входная дверь — металлическая.

Громкость сигнала ЗЧ, излучаемого капсюлем, HA1 достаточно для того, чтобы услышать его на закрытой лоджии (она сопоставима с громкостью квартирного звонка).

Источник питания — стабилизированный с напряжением 9—15 В, с хорошей фильтрацией напряжения пульсаций по выходу. Ток потребления ничтожно мал в режиме ожидания (несколько микроампер) и увеличивается до 22—28 мА при активной работе излучателя НА1. Бестрансформаторный источник применять нельзя из-за вероятности поражения электрическим током. Оксидный конденсатор С2 действует как дополнительный фильтр по питанию, его тип К50-35 или аналогичный, на рабочее напряжение не ниже напряжения источника питания.

При эксплуатации узла выявлены интересные особенности. Напряжение питания узла влияет на его работу: при увеличении напряжения питания до 15 В в качестве сенсора-антенны используется только обыкновенный многожильный неэкранированный электрический медный провод сечением 1—2 мм длиной 1 м; никакого экрана и резистора R1 в таком случае не надо, электрический медный провод подсоединяется непосредственно к выводам 1 и 2 элемента DD1.1. Эффект аналогичен. При изменении фазировки сетевой вилки источника питания узел катастрофически теряет чувствительность и способен работать только как сенсор (реагирует на прикосновение к Е1). Это актуально при любом значении напряжения источника питания в диапазоне 9—15 В. Очевидно, что второе назначение данной схемы — обычный сенсор (или сенсор-триггер).

Эти нюансы следует учитывать при повторении устройства. Однако в случае правильного подключения, описанного здесь, получается важная составляющая охранной сигнализации, обеспечивающей безопасность жилища, предупреждающей хозяев еще до возникновения нештатной ситуации.

Монтаж элементов осуществляется компактно на плате из стеклотекстолита. Корпус для устройства любой из диэлектрического (непроводящего) материала. Для контроля включения питания устройство может быть снабжено индикаторным свето-диодом, подключенным параллельно источнику питания.

Фото готового устройства показано на **рис. 2.3**.

Налаживание при точном соблюдении рекомендаций не требуется. Если экспериментировать с длиной экранирующего кабеля,

Рис. 2.3. Емкостной датчик

длиной и площадью сенсора-антенны E1 и изменением напряжения питания, возможно потребуется скорректировать сопротивление резистора R1 в широких пределах — от 0,1 до 100 МОм. Для уменьшения чувствительности увеличивают емкость конденсатора C1. Если это не приносит результатов, параллельно C1 включают постоянный резистор сопротивлением 5—10 МОм.

Неполярный конденсатор C1 типа КМ6. Постоянный резистор R2 — МЛТ-0,25. Резистор R1 типа ВС-0,5, ВС-1. Транзистор VT1 необходим для усиления сигнала с выхода элемента DD1.2. Без этого транзистора капсюль НА1 звучит негромко. Транзистор VT1 можно заменить на KT503, KT940, KT603, KT801 с любым буквенным индексом.

Капсюль-излучатель НА1 может быть заменен на аналогичный с встроенным генератором ЗЧ и рабочим током не более 50 мА, например FMQ-2015В, KPX-1212В и аналогичными.

Благодаря применению капсюля с встроенным генератором узел проявляет интересный эффект: при близком приближении человека к сенсору-антенне E1 звук капсюля монотонный, а при удалении (или приближении человека, начиная с расстояния 1,5 м до E1) — капсюль издает стабильный по характеру прерывистый звук в соответствии с изменением уровня потенциала на

выходе элемента DD1.2. (Подобный эффект лег в основу первого электронного музыкального инструмента — «Терменвокса»).

Для более полного представления о свойствах емкостного датчика автор рекомендует ознакомиться с материалом [53].

Если в качестве НА1 применить капсиоль со встроенным генератором ЗЧ, например КР1-4332-12, то при сравнительно большом удалении человека от сенсора-антенны звук будет напоминать сирену, а при максимальном приближении — прерывистый сигнал.

Некоторым минусом устройства можно считать отсутствие избирательности (системы распознавания «свой/чужой»), так узел будет сигнализировать о приближении к Е1 любого лица, в том числе вышедшего «за хлебом» хозяина квартиры. Основа работы устройства — электрические наводки и изменение емкости максимально полезны при эксплуатации в больших жилых массивах с развитой сетью электрических коммуникаций; очевидно, прибор будет бесполезен в лесу, в поле и везде, где нет электрических коммуникаций.

2.3. Простой приемник инфракрасного излучения

Представленное на рис. 2.4 устройство датчика инфракрасного (ИК) сигнала позволяет принимать амплитудно-модулированные сигналы ИК-спектра излучения и преобразовывать их в электрический ток.

Схема построена с использованием одного операционного усилителя К140УД6, включенного по классической схеме с положительной обратной связью. Переменный резистор R4 позволяет регулировать амплитуду выходного сигнала. Для развязки каскадов схемы на выходе узла необходимо поставить оксидный конденсатор емкостью 3,3—10 мкФ, положительной обкладкой к выходу микросхемы.

Чувствительность устройства зависит от параметров фототранзистора VT1 и некоторым образом — от сопротивления резистора R1. Обратная связь, обеспечиваемая резистором R3, устраняет искажения входного сигнала при его усиливании. Оксидный конденсатор C2 отфильтровывает пульсации напряжения источника питания. Вместо указанного на схеме фототран-

Рис. 2.4. Электрическая схема приемника ИК-сигнала

зистора допустимо применять ФТ-2К, L14-G2 и аналогичные по электрическим характеристикам.

Напряжение питания узла устанавливают в диапазоне 9—15 В. Фототранзистор VT1 при установке в корпус, должен быть экранирован от воздействия фоновой засветки (солнечных лучей). Для этого его рабочую поверхность закрывают кусочком засвеченной и проявленной фотопленки.

Схема удачно вписывается как составная часть устройства, реагирующего на ИК-излучение, и составляет конкуренцию описанному далее варианту. Кроме того, подробную информацию об альтернативном (относительно данного описания) применении датчиков ИК-излучения можно получить, ознакомившись со статьей [63].

2.4. Датчик инфракрасного излучения

Для контроля работоспособности пультов дистанционного управления, передающих импульсы инфракрасного излучения, а также для настройки промышленных и самодельных электронных приборов, в основе которых используются сигналы ИК-спектра излучения, служит простой датчик, электрическая схема которого показана на **рис. 2.5**.

Простая схема датчика реализована методом последовательного усиления сигнала, поступающего с VD1.

Транзисторы включены с общим эмиттером по схеме усилителя тока. Когда на диод VD1 воздействует ИК-излучение, сопротивление его перехода уменьшается, и изменяется смещение в базе транзистора VT1. Положительный потенциал поступает на усилитель тока на транзисторах VT1—VT3, нагрузкой которого служит светодиод HL1. Его свечение свидетельствует об исправности проверяемого устройства.

Рис. 2.5. Электрическая схема датчика ИК-излучения

На практике при проверке исправности элементов питания и общей работоспособности ИК-пультов ДУ для современной аудио- и видеотехники индикатор HL1 мерцает с частотой следования

ИК-импульсов управления (десятки Гц — единицы кГц), при проверке других систем светодиод может мигать с другой частотой либо светиться постоянно. По характеру свечения светодиода HL1

можно судить об исправности и параметрах ИК-импульсов передающего устройства.

Прибор стablyно работает в диапазоне питающего напряжения постоянного тока 5—12 В. В случае стационарного источника питания желательно, чтобы он был стабилизированным. Чувствительность прибора регулируется подбором номинала резистора R1 (при увеличении сопротивления чувствительность прибора повышается).

Для приведенной схемы, если она смонтирована без ошибок и с применением исправных радиоэлементов, нет необходимости в какой-либо настройке. При «свежих» элементах питания в пультах ДУ предлагаемый датчик срабатывает с расстояния 5—6 м. Увеличивать чувствительность прибора нерационально, так как VD1 реагирует на солнечное и электрическое освещение (любое излучение, в спектре которого присутствует ИК).

Идеальный датчик должен воспринимать только заведомо направленное на него световое излучение ИК-спектра и не реагировать на другие источники. Для лучшей помехозащищенности этого устройства следует применять простой фильтр из негорючей цветной фотопленки. Он основан на проведенных научных экспериментах, опубликованных журналом «Everyday Practical Elektronics» (№ 6, 2001). При засветке цветной негативной фотопленки «Kodacolor 100 ASA» люминесцентной лампой (дневного света) в течение 5 с и последующей проявкой, обнаружены оригинальные свойства светочувствительного материала. При прохождении света через засвеченный и впоследствии проявленный участок фотопленки (в один слой), выявлено резкое возрастание коэффициента пропускания электромагнитного излучения дли-

Рис. 2.6. График зависимости прохождения ИК-излучения с разной длиной волны через участок фотопленки

ной волны 880 ± 20 нм. Результаты исследования представлены на **рис. 2.6**.

Данный фильтр идеально подходит для многих ИК-светодиодов и датчиков, реагирующих на ИК-излучение, отсекая помехи в виде близкорасположенных электрических ламп, а также солнечных лучей.

Все постоянные резисторы в схеме типа МЛТ-0,125, светодиод HL1 — любой, транзисторы КТ315 можно заменить аналогичными: КТ3102, КТ503, КТ373, КТ342 с любым буквенным индексом. Корпус прибора — любой компактный. В литературе [11], [36] подробно рассмотрены электрические характеристики и оптические свойства рассмотренных датчиков.

2.5. Датчик присутствия

Изображенная на рис. 2.7 электрическая схема представляет собой чувствительную автономную сигнальную систему. Устройство реагирует в случае приближения человека (или любого другого объекта соответствующих габаритов) к антенне «А» на небольшое расстояние (0,5 м). Разумеется, датчик будет срабатывать (включать нагрузку в анодной цепи тиристора) и при непосредственном контакте с антенной.

Чувствительность схемы обеспечена применением во входном каскаде полевого транзистора КП305 (в небольших пределах чувствительность можно регулировать, изменения режим работы полевого транзистора путем корректировки сопротивления резистора R3).

Датчик устройства используется для охраны входной двери. Напряжение питания — 4,5 В (три пальчиковых аккумулятора AAA), однако схема сохраняет работоспособность при падении напряжения до 2,7 В и увеличении напряжения до 5 В.

Не рекомендую читателям питать схему от стационарного, даже очень стабильного источника напряжения, так как она работо-

Рис. 2.7. Электрическая схема датчика присутствия

способна только при автономном режиме питания. Необходимо уделить внимание подбору соответствующего реле K1 для того, чтобы устройство надежно срабатывало и при понижении напряжения. Ток, потребляемый схемой в ждущем режиме, крайне незначителен, составляет 5—8 мА, что обеспечит (установлено практикой) десятисуточный режим беспрерывной работы в режиме ожидания.

Датчик реагирует, когда кто-либо подходит слишком близко к антенне, касается дверной ручки или пытается открыть дверь ключом. Чувствительность настолько высока, что сигнализация сработает, даже если взломщик орудует в кожаных или резиновых перчатках. Реле будет включено до тех пор, пока кратковременным размыканием S1 не будет обесточена вся схема.

Компактно смонтированное устройство нужно подвесить на внутреннюю сторону двери ближе к дверной ручке или замку (защелке). Элементы схемы монтируются на небольшой монтажной или печатной плате: необходимо следить за тем, чтобы длина проводников и выводов элементов была минимальной (для уменьшения помех, приводящих к возможностям ложного срабатывания), а также обеспечить меры безопасности для полевого транзистора, исключив воздействие на него статического электричества.

Для этого следует заземлить жало маломощного паяльника, не будет лишним и применение антистатического заземленного браслета. Вместо K1 можно использовать зуммер от будильника типа «Слава» или аналогичного ему. В качестве T1 применяется согласующий трансформатор СТ-1А, которым оснащались транзисторные портативные радиоприемники.

Устройство компактно в изготовлении, помещается в небольшой диэлектрический неэкранированный корпус размерами с мыльницу, за пределы корпуса выводится лишь антенна «A». В корпус размещены: монтажная плата, зуммер (реле), выключатель S1 и элементы питания. Антenna изготавливается из крепкой медной проволоки, которую, просунув в торце корпуса, припаивают к точке «A». Она представляет собой изогнутый в виде вопросительного знака (петли) кусок провода общей дли-

ной 60—90 см. Конденсатор С2, при необходимости нужно более точно подобрать для лучшего согласования с длиной и расположением антенны.

Практикой установлено, что система надежно работает в сочетании с деревянными дверьми и установленными на них металлическими токопроводящими замками и защелками. К сожалению, металлические двери экранируют и перегружают маломощный генератор, что исключает их оснащение датчиками присутствия. В качестве транзистора VT2 можно использовать любой мало-мощный транзистор п-р-п структуры.

Реле K1 на напряжение срабатывания, соответствующее напряжению питания схемы, например герконовое реле РЭС-55, обеспечивает стабильную коммутацию исполнительного устройства при относительно низких напряжениях. Исполнительное устройство (на которое подается питание с помощью контактов реле K1) на схеме не показано, однако подразумевается, что в его качестве радиолюбитель применит подходящую звуковую схему.

На полевом транзисторе VT1 собран высокочастотный генератор, частота которого будет изменяться в случае приближения к точке «А» любого крупного предмета, поглощающего ВЧ-излучение. Резистор R3 подключен параллельно обмотке обратной связи и регулирует чувствительность.

Как действует электрическая схема: в охранном (ждущем) режиме при подаче питания полевой транзистор в сочетании с возбуждающейся обмоткой T1 генерирует ВЧ-колебания. Со вторичной обмотки T1 (правая по схеме) колебания выпрямляются диодом VD1, и этот положительный потенциал удерживает транзистор VT2 постоянно открытым. Напряжение «коллектор-эмиттер» транзистора практически равно нулю. А это, в свою очередь, обеспечивает постоянно закрытое состояние тиристора VS1.

Антенна в виде металлической петли нагружает (в случае приближении объекта к антенне) высокочастотный генератор, его генерация срывается, в результате прекращается подача положительного открывающего напряжения на базу VT2, он закрывается, а тиристор, наоборот, открывается и включает реле (зум-

мер). Так как тиристор запитан от источника постоянного тока, он останется в открытом состоянии до тех пор, пока не разорвут питающую его цепь или не обесточат схему полностью.

Этот простой датчик отличают следующие достоинства: портативность, автономность, гальваническая развязка с сетью переменного тока, небольшие затраты на сборку и установку. Между тем польза от его применения очевидна, особенно в тех случаях, когда необходимо быстро и незаметно установить систему сигнализации.

2.6. Пожарный датчик

В радиолюбительской практике популярны простые и надежные устройства пожарной сигнализации. Многие из них описаны в популярной литературе для радиолюбителей, например в [66]. Одним из таких устройств является приведенная на рис. 2.8 схема, реагирующая на повышение температуры окружающей среды. Датчиком изменения температуры здесь служит терморезистор R7 (MMT-4).

Момент переключения компаратора, собранного на транзисторе VT1, фиксируется светодиодом VD1, который также играет роль индикатора при настройке схемы. Эта схема используется автором как датчик возгорания на даче, в отдельном помещении деревянной бани, в котором установлен электрический нагреватель (ТЭН). При повышении температуры воздуха выше некоторого значения (задаваемого переменным резистором R6) устройство включает звуковую сигнализацию (на схеме она не показана, предполагается, что радиолюбитель самостоятельно

VD2, VD3 – КД503Б, КД522А-Б
VT1 – КТ3107Е, Ж, И

Рис. 2.8. Электрическая схема датчика пожара

соберет этот узел). Контакты реле K1 также можно использовать и для коммутации другой маломощной нагрузки. Терморезистор на выносных проводах (длиной не более 3 м) помещается непосредственно под потолком деревенской бани (сауны), а сама схема с узлом коммутации — в предбаннике.

Отличительные особенности датчика — высокая надежность работы, простота конструкции, недорогие комплектующие.

При температуре среды $+18\dots+20\text{ }^{\circ}\text{C}$ активное сопротивление термодатчика около 100 кОм. Терморезистор R7 вместе с переменным резистором R6 и резистором R2 образуют делитель напряжения. Напряжение смещения подается на базу транзистора VT1, который используется как компаратор (пороговый выключатель). Пороговое напряжение переключения компаратора равно сумме напряжения смещения светодиода VD1 и напряжения перехода «база-эмиттер» транзистора VT1.

Относительно положительного полюса источника питания порог переключения компаратора примерно равен 2 В. До тех пор, пока разность потенциалов на выводах терморезистора не станет ниже 10 В, транзистор VT1 будет закрыт. Следовательно, ток в цепи «эмиттер-коллектор» VT1 отсутствует, светодиод VD1 не горит, напряжение на выводах резистора R1 близко к 0, транзисторы VT2, VT3 закрыты, реле K1 обесточено, нагрузка отключена.

Резистор R3 ограничивает ток базы транзистора VT1 и с указанным сопротивлением почти не влияет на порог срабатывания компаратора. Регулировка переменным резистором R6 (чувствительность компаратора) позволяет повысить напряжение на базе VT1 так, чтобы транзистор был все еще закрыт, но находился на грани включения (светодиод очень слабо светится). При повышении температуры вокруг терморезистора (более $+50\text{ }^{\circ}\text{C}$) сопротивление R7 лавинообразно уменьшается.

Напряжение на базе транзистора VT1 относительно «минуса» питания падает, и он открывается. Ток через открытый переход «коллектор-эмиттер» транзистора VT1 и светодиод VD1 обуславливает падение напряжения на резисторе R1. Через ограничивающий резистор R4 и детектор на диоде VD2 конденсатор C1 быстро заряжается. Диод VD2 выполняет и другую функцию:

препятствует быстрому разряду конденсатора С1 через резистор R4 при возврате транзистора VT1 в закрытое состояние.

Это приводит к задержке выключения сигнала тревоги, делая схему несколько инерционной в режиме выключения, но в итоге такое схемное решение идет только на пользу. Задержка возникает благодаря очень малому току потребления ключа на транзисторах VT2, VT3, включенных по схеме с общим коллектором. Поэтому резистор R5 может иметь очень большое сопротивление, а оксидный конденсатор С1 подходит любой марки на рабочее напряжение не менее 12 В.

Начиная с момента заряда конденсатора С1 напряжение с диода VD2 подается на оконечные транзисторы, которые открываются и включают реле. Диод VD3 препятствует обратному току через реле K1 и предотвращает дребезг контактов. Пока светодиод VD1 горит, заряд конденсатора С1 поддерживается открытым транзистором VT1, находящимся в режиме насыщения. И наоборот — когда индикатор VD1 гаснет, конденсатор С1 разряжается, удерживая еще некоторое время составной транзистор в открытом состоянии.

Когда напряжение на обкладках конденсатора С1 близко к 0 (режим разряда), тока базы транзистора VT2 оказывается недостаточно для удержания составного транзистора в открытом состоянии, и реле отключается.

Схема не содержит дефицитных деталей. Транзистор VT1 необходимо применить с коэффициентом усиления h_{213} более 60.

Транзисторы VT2 можно заменить маломощными кремниевыми приборами типа КТ315, КТ312, КТ503 с любым буквенным индексом. В качестве реле K1 применяется маломощное реле,

уверенно срабатывающее при напряжении 7—10 В. Это могут быть приборы РЭС15, РЭС10 (паспорт РС4.524.302), РЭС48А (паспорт РС45.902.16). Переменный резистор R6 — многооборотный типа СП5-2БВ, СП5-3 или аналогичный. Остальные резисторы — типа МЛТ-0,25. Схема устойчиво работает при напряжении питания 9—14 В от стабилизированного источника. Потребляемый ток составляет 5 и 30 мА при нормальной и повышенной температуре соответственно, он обусловлен в основном током потребления реле K1.

Элементов схемы так мало, что автор не разрабатывал печатную плату, а смонтировал устройство на монтажной. Настройка пожарного датчика сводится к точной регулировке чувствительности компаратора переменным резистором R6 таким образом, чтобы светодиодный индикатор VD2 не светился при самой высокой естественной температуре окружающей среды вашей климатической зоны. Калибровку следует производить с обычным термометром в руках.

Сначала необходимо отрегулировать сопротивление R7 так, чтобы загорелся светодиод, при этом реле включится (раздастся характерный щелчок); затем, вращая движок R7 в обратную сторону, добиться выключения реле и погасания светодиода. Реле должно оставаться во включенном состоянии еще 2–3 мин. после того, как погаснет светодиодный индикатор.

При необходимости можно сократить или увеличить время задержки выключения, соответственно уменьшив или увеличив емкость конденсатора C1. Отметив порог переключения компаратора, нагрейте датчик до температуры +80—+90 °C, приблизив к открытому пламени зажигалки, — металлический корпус терморезистора позволяет проводить такие опыты: светодиод должен вновь загореться, а реле включиться. Далее с помощью термометра (желательно поверенного) добиваются более точной регулировки порога срабатывания схемы, нагревая помещение бани-сауны ТЭНом и следя за температурой.

Терморезистор ММТ-4 помещается в алюминиевую трубочку внутренним диаметром 5 мм и длиной 50 мм. К стенкам трубочки терморезистор приклеивают несколькими каплями клея типа «Супер-момент-гель», предварительно изолировав выводы «термоусадкой». Соединительные провода от термодатчика удобно монтировать с помощью гибкого алюминиевого металлорукава или шланга от душа (пропустив провода внутрь). Экранировать проводку не обязательно. Собранный таким образом датчик крепят к потолку помещения бани-сауны, куда естественным образом поднимается разогретый воздух. Место закрепления термодатчика желательно выбрать над ТЭНом.

При отсутствии терморезистора ММТ-4, можно применить в качестве R7 термодатчик закипания воды в радиаторе, например используемый в автомобиле ВАЗ 21061. Кроме рекомендуемых здесь вариантов применения устройства, можно воспользоваться материалом из [36] в списке литературы, чтобы получить справочные электрические характеристики и наиболее полное представление о датчиках пожара, срабатывающих на увеличение температуры в контролируемой зоне.

Разумеется, датчик пожара можно использовать и в жилом помещении.

Несколько рекомендаций по монтажу пожарной сигнализации:

- 1) все пожарные датчики следует подключать к отдельному шлейфу, свободному от датчиков другого назначения (например охранных); «пожарный» шлейф подключается к отдельному прибору, т. к. пожарная сигнализация должна работать круглосуточно вне зависимости от присутствия людей и домашних животных;
- 2) по возможности устанавливаются «дымовые» датчики, реагирующие на задымление;
- 3) каждое помещение (исключая санузлы) оборудуется как минимум 2 датчиками;
- 4) в случае, если потолок помещения разделен строительными конструкциями (ригель, балка и т. п.) высотой (от потолка вниз) более 400 мм на несколько частей, то каждая часть оборудуется парой датчиков;
- 5) при использовании подвесного (фальш-) потолка высотой более 400 мм, датчики устанавливают и на капитальный, и на подвесной потолки; в настоящее время появились двунаправленные дымовые датчики, устанавливаемые только на подвесной потолок, но при этом контролирующие объем по обе стороны (выше и ниже) последнего;
- 6) при монтаже сигнализации необходимо соблюдать правила устройства электроустановок (ПУЭ) и техники безопасности (ПТБ), а также задумываться над возможными последствиями тех или иных действий, чтобы причиной пожара не явилась ...пожарная сигнализация.

2.7. Термодатчик

В сельской бане или в сауне приятно париться после рабочего дня. Сауна — нерусское изобретение, этот вид отдыха и лечения впервые появился в Финляндии в позапрошлом веке. В сауне греются сухим воздухом, в отличие от русской традиционной бани, где поддерживается высокая влажность. В современных саунах работает мощный электрический обогреватель — ТЭН.

Оптимальная температура в сауне от +80 до +110 °C (на любителя). Те, кто хоть раз бывал в сауне, поймут и оценят разработку, описанную ниже и иллюстрирующую преобразование тепловой энергии в электрическую. Различные устройства подобного назначения описаны в литературе для радиолюбителей, например в [20], [51], [58], однако предлагаемая ниже конструкция превосходит их по простоте и функциональности. На рис. 2.9 представлена электрическая схема термодатчика со звуковой индикацией. Устройство выполняет функцию преобразователя «сопротивление-напряжение».

Рис. 2.9. Электрическая схема термодатчика со звуковой индикацией

Повышение температуры воздуха в сауне воздействует на терморезистор. Терморезистор ММТ-1 (с отрицательным температурным коэффициентом сопротивления) при нагреве уменьшает свое сопротивление. Маркировка таких терморезисторов предполагает, что указанное на его корпусе значение сопротивления справедливо при температуре окружающей среды +25 °С. График изменения относительного сопротивления терморезисторов типа ММТ-1 показан на **рис. 2.10**.

Электронный блок подключается через трансформаторный стабилизированный источник питания (на схеме не показан, можно использовать источник питания, описанный в [55]) параллельно нагревательному элементу — ТЭНу. Пока ТЭН нагревается, сопротивление термистора велико, чувствительный транзисторный каскад на VT1 и VT2 находится в закрытом состоянии. На вход управления микросхемы DA1 через ограничительный резистор R3 поступает почти полное напряжение источника питания.

Рис. 2.10. График изменения сопротивления терморезисторов ММТ-1

Внутренний узел управления включает генераторы микросхемы. На выходе микросхемы (вывод 8) вырабатываются импульсы двухтонального сигнала звуковой частоты (на слух такая последовательность звуков воспринимается как «вау-вау»). Пьезоэлектрический излучатель В1 воспроизводит этот сигнал. В тakt работе первого генератора вспыхивает светодиод HL1. Выход R1 микросхемы DA1 не обладает достаточной мощностью для непосредственного подключения светодиода, и поэтому последний включается через транзисторный усилитель.

Когда температура в сауне достигнет +80 °С, сопротивление терморезистора уменьшится, и ток в цепи базы транзистора VT1 возрастет настолько, что окажется достаточным для его открывания. Такое включение транзисторов (как показано на схеме) обеспечивает большую чувствительность устройства.

Транзисторы открываются, и тогда на выводе 2 микросхемы напряжение стремится к нулю. В таком состоянии входа BC микросхемы DA1 внутренний узел микросхемы запрещает работу генераторов, и пьезоизлучатель замолкает. Одновременно светодиод HL1 перестает мигать. Теперь можно заходить в нагретое помещение и с удовольствием принимать процедуры.

При падении температуры в сауне вновь раздается звуковой сигнал. При выключении ТЭНа узел звуковой сигнализации не подает сигналов, т. к. обесточен.

Терморезистор ММТ-1 имеет металлокерамический корпус и на практике выдерживает даже кратковременное воздействие открытого огня. Поэтому его применение в данной конструкции оправдано. Терморезистор крепится в самом дальнем верхнем углу помещения сауны (или сельской бани) относительно места расположения нагревательного ТЭНа. ТЭН располагают в дальнем нижнем углу (относительно входной двери в сауну), т. к. по законам физики теплый воздух поднимается вверх.

Налаживание устройства заключается в установке переменным резистором R2 («чувствительность») порога открывания транзисторов — значения окружающей температуры, при преодолении которого в сторону уменьшения открываются транзисторы VT1, VT2 и выключается генерация импульсов микросхемы

DA1. В качестве резистора R2 необходимо применить многооборотный переменный резистор типа СП5-1ВБ (или аналогичный) с линейной характеристикой для точности настройки. Все постоянные резисторы — типа МЛТ-0,25. Пьезоизлучатель В1 можно использовать любой из ряда ЗП. Все элементы узла монтируются методом пайки на перфорированную плату, которая помещается в герметичный пластмассовый корпус. Между крышкой корпуса и его стенками следует проложить слой автомобильного герметика. Длина соединительных проводов от терморезистора до элементов схемы и источника питания должна быть минимальна. Вместо указанных на схеме транзисторов VT1—VT3 можно применить приборы КТ315Б, КТ503А—КТ503В. Для точности порога включения сигнализатора необходима хорошая стабилизация напряжения и помехозащищенность источника питания. Оксидный конденсатор C1 (К50-20) сглаживает низкочастотные помехи. C2 (КМ-5) сглаживает помехи по высокой частоте.

Напряжение источника питания находится в пределах 12—29 В. Всю электронику, кроме датчика, желательно монтировать в соседнем с сауной помещении.

2.8. Оригинальный сенсорный датчик

На рис. 2.11 представлена схема сочетания двух простых сенсоров. Оригинальность устройства состоит в подключении сенсоров. Сенсор E1 представляет собой металлический штырь длиной 3—5 см, припаянный к тонкому проводу. Штырь вставлен в цветочный горшок с землей, в котором растет любой (желательно вьющийся вверх) цветок. Штырь аналогичного сенсора E2 воткнут таким же образом в другой цветочный горшок.

На стене в гостиной висят два цветка в горшках, с листвой, спускающейся вниз. Лампочка HL1 в светильнике (бра) висит на стене между цветками. Все провода проложены по стене под обоими так, чтобы были совсем незаметны.

Принцип действия устройства прост. Вы заходите в гостиную, подходите к первому цветку, слегка касаетесь рукой (чувствительность сенсора такова, что прикосновение будет воспринято и через одежду) и ... вдруг зажигается лампа. Касаетесь другого цветка, и лампа гаснет. Чудеса, да и только, но электроника может все!

Датчики, благодаря схемному решению, очень чувствительны. При прикосновении к первому цветку (E1) наводка от тела человека усиливается каскадом на транзисторах VT1.VT2, выпрямляется диодом VD1 и через ключ VT3 включает параллельно соединенные реле K1, K2 (РЭС15, паспорт РС4.591.003, на напряжение срабатывания 8—9 В). В данном случае, если использовать подходящее реле с несколькими группами контактов, можно будет обойтись одним реле вместо двух.

Сработав, реле контактами K1.1 блокируют VT3, обеспечивая для реле постоянное включенное состояние. Контакты K2 при этом замыкают цепь нагрузки [например включают лампу HL1 (рис. 2.11, а)]. Мощная нагрузка может включаться и через

Рис. 2.11. Электрическая схема сенсорного датчика:
а) вариант первый; б) вариант второй

дополнительное реле (рис. 2.11, б). Экранировать провода сенсоров не нужно. При прикосновении к другому цветку (сенсор E2) срабатывает реле K3, которое контактом K3.1 выключает реле K1, K2, и соответственно выключает нагрузку.

Схема долговечна и надежна. При исправных элементах и правильном монтаже начинает работать сразу. Необходимо лишь подобрать величину подстроек резисторов R1, R4 для стабильного включения сенсора. Обычно их сопротивление составляет 80—90 кОм.

Автор не рекомендует выбирать длину проводов от контактов сенсоров до схемы более 50—60 см во избежание наводок и ложных срабатываний. Источник питания для устройства стабилизированный, напряжением 9—15 В, например из [51]. В ждущем режиме устройство потребляет ток 20 мА.

Дополнительную информацию по простым сенсорным устройствам можно почерпнуть в [7], [25], [50], [97].

2.9. Сенсорный датчик с триггером

Сенсорные датчики надежны и неприхотливы, что позволяет применять их в различных радиолюбительских устройствах. Ограничение на использование сенсоров только одно: датчики данного типа бесполезны вдали от электрических коммуникаций (в лесах, парках и т. п.), иногда ненадежно работают в сельской местности, в домах с земляным полом. Сенсор улавливает наведенное в теле человека переменное напряжение 0,05—0,5 В от находящихся рядом проводов электросетей. Если заземлить человека (намеренно или случайно) одновременно с касанием сенсорного контакта, эффекта от электрических наводок также не будет, все они уйдут «в землю». Далее рассмотрим два разных схемных решения, объединенных использованием сенсора в качестве чувствительного элемента.

На **рис. 2.12** представлена электрическая схема сенсорного триггера с двумя сенсорами. Рассмотрим работу схемы на примере блока 1 (блок 2 аналогичен блоку 1).

С помощью коаксиального кабеля (РК-75) от телевизионной антенны конденсатор С1 подключается к небольшой токопроводящей площадке с максимальными размерами 60×60 мм. Длина коаксиального соединения может достигать 1 м. Экран кабеля подключается к общему проводу. Конденсатор С1 пропускает сетевые наводки от тела человека с частотой 50 Гц.

Диоды VD1, VD2 выпрямляют переменное напряжение наводок, и оно через ограничивающий резистор R1 поступает на вход первого инвертора. Полевые транзисторы на входе логического элемента обладают высокой чувствительностью и, кроме инверсии сигнала, еще и усиливают его.

Рис. 2.12. Электрическая схема триггера с двумя сенсорами

Резистор R2 необходим для нейтрализации ложных срабатываний от помех из-за колебания входных токов элемента D1.1. На выходе элемента импульсный сигнал свободно проходит через конденсатор C2 (гальваническую развязку) и уже имеет форму меандра сетевой частоты, она детектируется диодами VD3, VD4 и сглаживается конденсатором C3.

Далее положительный фронт импульса (при касании сенсора) усиливается и дважды инвертируется логическими элементами D1.2, D1.3. С вывода 8 микросхемы K561ЛА7 положительный фронт импульса проходит через диод развязки VD6 и управляет триггером Шмита на элементе D2.1. Элемент D2.1 находится в состоянии ожидания и удерживается делителем напряжения R4R5. Низкий логический уровень, поданный на вход D2.1, через диод VD7 от блока 2 переключит элемент (на его выходе появится и будет удерживаться состояние высокого логического уровня) — транзисторный ключ откроется, включит реле. Оно своими контактами коммутирует маломощную нагрузку. Высокий логический уровень, поступивший на вход триггера Шмита через диод VD6 от блока 1, перебросит триггер в другое

устойчивое состояние, транзисторный ключ на VT1 закроется, и реле отключит нагрузку.

Диод VD5 препятствует броскам обратного напряжения при коммутации реле, защищая транзистор. Напряжение питания схемы может варьироваться от +5 до +15 В. При максимальных значениях напряжения питания чувствительность сенсорного устройства уменьшается, оказывается необходимым точнее подобрать значения элементов R1, R2, R3 и конденсаторов C1, C2. Наилучшие результаты получены при питании схемы стабилизированным напряжением 5–8 В. Разумеется, исполнительное реле следует подбирать исходя из напряжения питания.

На рис. 2.13 представлена другая очень чувствительная схема, реагирующая на прикосновение человека к сенсорной пластине E1 даже через одежду.

В схеме предусмотрены регулировки чувствительности (подстроечный резистор R4) и задержки срабатывания (подстроечный резистор R1). Популярная микросхема DA1 KP1006ВИ1 (зарубежный аналог — NE555) включена по стандартной схеме. Через 2–10 с после воздействия на сенсор (задержка определяется значениями элементов времязадающей цепи R1R2C1) на выводе 3 появляется исходный (низкий) уровень напряжения.

Транзистор VT1 закрывается, но не выключает реле, так как используется тиристор VS1 в ключевом режиме. Реле находится во включенном состоянии до тех пор, пока не будет (хотя бы кратковременно) нарушена цепь питания схемы переключателем S1. Контакты реле K1 коммутируют цепь маломощной нагрузки.

Рис. 2.13. Очень чувствительная схема сенсорного датчика

Данный электронный узел можно использовать универсально, как сигнальное устройство или устройство управления любой маломощной активной нагрузкой.

Резистор R4 исключать из схемы нельзя, так как без него устройство работает ненадежно. Как видно из рисунка, R4 задает смещение тиристору и тем регулирует его порог срабатывания. Если все элементы схемы правее (по схеме) точки А исключить, то получится надежный сенсорный узел, где выход DA1 (вывод 3) будет способен управлять любыми электронными устройствами. Амплитуда управляющего напряжения в этом случае составит 2/3 напряжения питания.

2.10. «Звуковое сопровождение» датчиков

С появлением мигающих светодиодов в радиотехнике произошла настоящая революция. Такие приборы (по внешнему виду они ничем не отличаются от классического АЛ307 в пластмассовом корпусе) можно применять не только по прямому назначению (в виде светового индикатора — маячка), но и в качестве датчика-прерывателя сигналов звуковой частоты. В устройствах световой и звуковой индикации однотонный звук часто утомляет. Между тем, изменить ситуацию к лучшему несложно и под силу даже начинающему радиолюбителю, который, в данном случае, становится «дирижером» звуковой сигнализации.

Если подключить мигающий светодиод L-816BRCS-B, как показано на **рис. 2.140**, последовательно с пьезоэлектрическим излучателем FMQ-2015B (HA1 — **рис. 2.14**, **рис. 2.15**) через ограничивающий резистор R1 с сопротивлением постоянному току 10—20 кОм, получится совершенно другой звуковой эффект, чем в случае подачи питания 5—12 В непосредственно на капсюль HA1 (**рис. 2.16**).

Рис. 2.14. Первый вариант включения пьезоэлектрических капсюлей и светодиодов

Рис. 2.15. Второй вариант включения пьезоэлектрических капсюлей и светодиодов

Рис. 2.16. Третий вариант включения пьезоэлектрических капсюлей и светодиодов

В каждой схеме (**рис. 2.14, 2.15**) в качестве датчика применен мигающий светодиод. В классическом (**рис. 2.16**) включении капсюль генерирует и излучает однотональный звуковой сигнал частотой 1600 Гц. Если использовать схему, показанную на **рис. 2.14**, то звуковой сигнал будет напоминать сирену с чередованием базовой звуковой частоты (1600 Гц) и частоты 1100 Гц. Период изменения частоты соответствует вспышкам светодиода HL1 и составляет при напряжении питания 12 В примерно 1,2 с.

При понижении стабилизированного напряжения питания до 5 В период переключений частоты изменяется до 1,8 с, а сами границы частоты также изменяются: нижний предел — 800—850 Гц, верхний — 1—1,05 кГц. В этом варианте включения светодиод HL1 слабо вспыхивает. Тональность (частота) излучаемого звукового сигнала изменяется и в зависимости от сопротивления ограничивающего резистора R1.

Так, при сопротивлении ограничивающего резистора более 33 кОм звуковой эффект меняется — получается прерывистый звуковой сигнал частотой примерно 1500 Гц. Этот эффект поможет наиболее ярко привлечь внимание звуком в случае необходимости, например выходе за определенные штатные рамки контролируемых электрических параметров любой сложности.

Второй вариант подключения мигающего светодиода показан на **рис. 2.15**. Это параллельное включение светодиода относительно звукового пьезоэлектрического капсюля HA1. Сопротивление ограничительного резистора R1 в пределах 0,62—10 кОм при напряжении питания 5 В. Звуковой эффект в эксперименте представляет собой периодическое изменение

частоты от 1,6 кГц до 1,1 кГц, с периодом изменения, равным 1 с. Светодиод почти не светится. Звуковой эффект напоминает пожарную сирену со звуками «вау-вау».

Затраты на повторение схем невелики и, в основном, определяются стоимостью звукового капсюля, ограничительного резистора и светодиода (они в сумме составляют не более 30 руб.). Кроме указанного на схеме пьезоэлектрического капсюля НА1, можно применять любой другой с аналогичными электрическими параметрами для работы от источника постоянного напряжения 2–30 В (например FMQ2715, FMQ2724).

Необходимо лишь соблюдать полярность включения капсюля (как правило, положительный вывод на корпусе капсюля обозначен знаком «+») и различать между собой пьезоэлектрические «активные» капсюли-генераторы колебаний звуковой частоты и «пассивные» пьезоэлектрические капсюли (например ЗП-33-3), к которым необходимо отдельное устройство — генератор колебаний.

Внешне их легко отличить друг от друга по второстепенному признаку — для «пассивного капсюля» нет необходимости в правильном полярном включении (не показаны полюса на корпусе). По электрическим характеристикам «активные» капсюли отличаются друг от друга напряжением питания, током потребления, резонансной частотой пьезоэлектрического излучателя, что определяет его громкость. Незначительные отличия между «активными» капсюлями имеются и по ширине диапазона воспроизводимых частот.

Отличить пассивные капсюли от активных можно и визуально. Последние содержат в себе внутренний генератор, поэтому их корпус в современном исполнении заметно толще, чем у пассивных излучателей, которые обладают плоскими (высота 1—3 мм) внешними параметрами. В случае выбора конкретного прибора для своих разработок рекомендуются обращать внимание на маркировку: она нанесена вдоль корпуса. За максимально допустимое напряжение, на которое рассчитан капсюль, отвечают последние две цифры маркировки. Так, например в вышеприведенных примерах видно, что капсюль 1212FXP рас-

считан на напряжение до 12 В включительно, а капсиоль с маркировкой 1205FXP предполагается использовать только до 5 В. Соответственно приборы FMQ2715, FMQ2015B, FMQ2724 рассчитаны на максимальное напряжение 15 В и 24 В. Все указанные примеры активных капсюлей рассчитаны на использование в цепях только постоянного тока.

Звуковой эффект рекомендуемой приставки выгодно отличается от стандартного монотонного, что открывает простор для творчества: при использовании различных капсюлей и подборе номиналов ограничительных резисторов нетрудно получить сигнал любого вида — от прерывистого до «плавающей» частоты.

Громкость звукового сигнала определяется параметрами капсюля HA1 и его резонансной частотой.

О деталях. Резистор R1 — любой постоянный, например типа ОМЛТ-0,25 (импортный аналог MF-25). Источник питания должен обеспечивать стабилизированное напряжение с коэффициентом стабилизации не менее 100.

Кроме указанного типа светодиода, в данном эксперименте принимали участия аналогичные по электрическим характеристикам приборы L-36B, L-56B, L458B, L-769BGR, L-56DGD, TLBR5410, L-36BSRD, L-297-F, L517hD-F. В качестве излучающих звук пьезоэлектрических элементов участвовали (кроме указанных на схеме) приборы 1205-FXP, FMQ-2724.

2.11. Фоточувствительный датчик

Фотодатчики и реализованные на их основе электронные устройства, управляющие различными бытовыми приборами, пользуются популярностью у радиолюбителей [36]. Казалось бы, невозможно найти новое схемотехническое решение для таких устройств... Тем не менее, рассмотрим три схемы фоточувствительных датчиков, отличающихся простотой и высокой чувствительностью, не уступающих приведенным в [91].

Простое и надежное устройство охранной сигнализации с самоблокировкой представлено на принципиальной схеме (рис. 2.17).

Фотодатчик здесь применяется в качестве детектора освещения, светодиод HL1 загорается, если на фотодатчик — фоторезистор PR1 — не попадает солнечный или электрический свет. Этот узел поможет при ограждении зоны безопасности. Пока фоторезистор PR1 освещен, он оказывает малое сопротивление постоянному электрическому току, и падения напряжения на нем не достаточно для отпирания тиристора VS1.

Рис. 2.17. Электрическая схема устройства охранной сигнализации с фоточувствительным датчиком

Если поток света, действующий на фотодатчик прерывается, сопротивление PR1 увеличивается до 15 МОм, и конденсатор C1 начинает заряжаться от источника питания. Это приводит к отпиранию тиристора VS1 и включению светодиода HL1. Кнопка S1 предназначена для возврата узла в исходное состояние. Вместо светодиода HL1 и включенного последовательно с ним ограничивающего ток резистора R2 можно использовать маломощное электромагнитное реле типа РЭС 10 (паспорт PC4.524.302, PC4.524.303), РЭС 15 (паспорт PC4.591.003) или аналогичное с током срабатывания 10—20 мА. При выборе реле следует иметь в виду, что повышение напряжения источника питания ведет к повышению тока срабатывания реле.

В схеме вместо тиристора КУ101А допустимо применить любые приборы серии КУ101. Фотодатчик PR1 — два параллельно соединенных (для лучшей чувствительности — нет необходимости в дополнительном усилителе сигналов) фоторезистора СФ3-1. Конденсатор C1 — типа МБМ, КМ или аналогичный. Светодиод любой. Все постоянные резисторы — типа МЛТ-0,25. Кнопка S1 может быть любой, например МТС-1, МПЗ-1.

На рис. 2.18 изображена схема датчика освещенности с усилителем на базе микросхемы K140УД6.

Этот электронный узел имеет склонность к самовозбуждению. Резистор положительной обратной связи R4 вводит в схему петлю гистерезиса с целью предотвращения паразитных колебаний. Без положительной обратной связи, при эксплуатации узла

Рис. 2.18. Схема датчика освещенности

с источником питания с напряжением более 11 В, в такой схеме возникают паразитные колебания (усилитель самовозбуждается и генерирует ложные срабатывания реле). Значение сопротивление резистора R4 установлено для напряжения источника питания 12 В. При увеличении $U_{\text{пит}}$ номинал резистора R4 необходимо подобрать точнее. Чувствительность узла регулируется переменным резистором R3.

Операционный усилитель DA1 включен по классической схеме. Диод VD1 защищает транзистор VT1 от бросков обратного напряжения при срабатывании реле. Вместо К140УД6 можно без изменений схемы применять однотипные операционные усилители К140УД608, К140УД7. Конденсатор C1 служит в схеме для фильтрации высокочастотных помех по напряжению источника питания. Транзистор VT1 можно заменить на КТ315 с индексами (А—В), КТ312 с индексами (А—В). Переменный резистор R3 типа СП3-1ВБ. Типы конденсаторов и постоянных резисторов аналогичны используемым в схеме [рис. 2.17](#).

На [рис. 2.19](#) показана схема фотодатчика с универсальным таймером KP1006ВИ1.

Этот простой автомат для включения ночного освещения можно эффективно применять как в городских условиях, так в сельской местности. Если на фоторезистор (два параллельно подключенных для лучшей чувствительности фоторезистора СФ3-1) попадает хотя бы слабый дневной свет, транзистор VT1 закрывается, так как сопротивление между его базой и эмитте-

Рис. 2.19. Фотодатчик, совмещенный с таймером

ром значительно меньше, чем сопротивление между его базой и положительным выводом источника питания.

При уменьшении освещенности рабочей поверхности фоторезисторов сопротивление между базой и эмиттером транзистора VT1 возрастает — становится больше 100 кОм. Когда сопротивление между базой VT1 и положительным выводом источника питания оказывается низким, транзистор VT1 открывается. Реле K1 срабатывает и подключает вывод анода тиристора VS1 к «+» источника питания. После этого включается универсальный таймер D1 KP1006ВИ1, и на ее выходе (вывод 3) устанавливается напряжение 10,5 В.

Выход этой микросхемы достаточно мощный — позволяет управлять устройствами нагрузки, потребляющими ток до 200 мА, поэтому к выходу D1 можно подключать маломощные реле без ключевого транзисторного каскада. Реле K1 срабатывает и удерживает во включенном состоянии лампу освещения L1. Вместо лампы L1 возможно применение другой активной нагрузки с потребляемым током не более 0,2 А (этот параметр обусловлен характеристиками рекомендованного маломощного реле).

Таким образом, нагрузка (электрическая лампа освещения) оказывается включенной всегда, пока на фотодатчик не воздействует минимальный световой поток. Устройство выдержало испытания и работает надежно, оно применяется в авторском варианте для включения лампы освещения при наступлении ночи (фотодатчик обращен к естественному свету). Благодаря высокой чувствительности прибора лампа освещения L1 выключается при восходе солнца.

Тиристор VS1 — КУ101 с индексами (А—Г), КУ221 с любым буквенным индексом. Транзистор VT1 можно заменить на КТ312 с индексами (А—Б), КТ3102 с индексами (А—Ж), КТ342 с индексами (А—Б). Коэффициент усиления этого транзистора по току h_{213} должен обязательно быть не менее 40. Реле — любое маломощное, с током срабатывания 10—30 мА при напряжении 12 В. Все постоянные резисторы — типа МЛТ-0.125. Конденсатор C1 — типа КМ. Оксидный конденсатор C2 — типа К50-20 на рабочее напряжение от 16 В. Диоды VD1, VD2 защищают соот-

ветственно переход транзистора VT1 и выход микросхемы D1 от бросков переменного тока и препятствуют дребезгу контактов соответствующих реле K1, K2 при их срабатывании. Такие диоды можно заменить на КД522.

Все три схемы не притягательны к питающему напряжению, и при использовании в качестве узлов коммутации маломощных реле стабильно работают с бестрансформаторными и трансформаторными стабилизованными источниками питания с выходным напряжением 10—18 В (способными отдать полезный ток не менее 70 мА).

Внимание!

Предлагаемые схемы являются, по сути, универсальными параметрическими сигнализаторами. Поэтому в качестве датчиков, вместо фоторезисторов, можно применять другие датчики со схожими электрическими параметрами (min/max сопротивления), например терморезисторы.

2.12. Датчик-излучения радиоволн (детектор «жучков»)

Для контроля работы радиопередающих устройств, а также поиска несанкционированно установленных передатчиков-шпионов («жучков») придумано множество электронных схем. Однако предлагаемая ниже разработка максимально упрощена, обладая при этом высокой чувствительностью и надежностью. В качестве датчика в этой схеме используется штыревая антenna длиной 30—50 см. Устройство позволяет обнаружить источник радиоизлучения частотой 100 кГц—500 МГц на расстоянии 5—20 см, при этом капсюль подаст звуковой сигнал. Принципиальная схема устройства показана на рис. 2.20.

В датчике-антенне наводится напряжение высокой частоты, которое беспрепятственно минует конденсатор C1 и далее поступает на диодный детектор VD1 и фильтр высокой частоты на дросселе L1.

После детектирования низкочастотная составляющая входного сигнала поступает в базу транзистора VT1, и усиленный им сигнал управляет транзистором VT2. Нагрузкой транзистора VT2 является капсюль HA1 со встроенным генератором звуковой частоты. Он преобразует электрический ток в звуковой сигнал. Пока

Рис. 2.20. Электрическая схема датчика излучения радиоволн

излучения радиоволн вблизи антенны WA1 нет, транзистор VT2 закрыт. Благодаря применению такого капсюля схема упрощается, и отпадает необходимость в дополнительном генераторе ЗЧ.

Налаживание устройства (при необходимости) включает в себя два момента: рабочий режим транзистора VT1 по постоянному току зависит от сопротивления резистора R1. Его сопротивление подбирают таким, чтобы на коллекторе VT1 напряжение в режиме покоя (нет входного сигнала) составляло примерно 8 В (относительно минуса источника питания). Если нет измерительных приборов, устройство можно настроить экспериментально. Для этого рядом с антенной WA1 помещают включенный радиопередатчик (например автомобильный трансивер) и изменением сопротивления R1 добиваются максимального удаления антенны радиопередатчика от WA1, при котором капсюль НА1 еще будет сигнализировать звуком. При выключении радиопередатчика звуковой сигнал должен прекратиться.

Второй момент связан с фильтрацией входного сигнала ВЧ. Чтобы детектор не реагировал на более широкий спектр излучения (например на работу СВЧ-печи и других устройств, использующих высокую частоту), между базой транзистора VT1 и отрицательным полюсом источника питания включают неполярный конденсатор емкостью 1 нФ.

Источник питания — батарея напряжением 9 В («Кrona», «Корунд» или аналогичная). Допустимые колебания напряжения источника питания для данной схемы — 6—10 В. Ток потребления устройства с указанными на схеме элементами не превышает 12 мА. Элементы устройства монтируются компактно на макетной плате размерами 20 × 40 мм.

Для экономии батареи в устройство вводят выключатель. Все постоянные резисторы — МЛТ-0,25. Конденсатор C1 любой трубчатый или дисковый. Высокочастотный диод VD1 можно заменить на Д9 с любым буквенным индексом. Дроссель L1 — любой с индуктивностью 1—4 мГн, например ДПМ2-2,4. Его можно изготовить самостоятельно, намотав 180 витков провода ПЭЛШО-0,1 на ферритовом кольце от импульсного трансформатора ТИ-18.

Антенна WA1 — телескопическая от любого радиоприемника или пассивная комнатная от телевизора. Транзистор VT1 допустимо заменить KT368, KT3102 с любым буквенным индексом, VT2 — KT3107, KT361, KT502 с любым буквенным индексом или аналогичным. Излучатель HA1 может быть любой со встроенным генератором ЗЧ и силой тока до 50 мА. В случае использования излучателя KPI-4332-12, звуковой сигнал будет прерывистым.

2.13. Гироскопический датчик

Электронные гироскопы — преобразователи наклона и угловой скорости в электрический ток. Так же как и механические (ротационные), пьезокерамические электронные гироскопы служат для контроля положения и угловых скоростей с малым временем отклика (до 50 Гц). Электронные датчики-гироскопы марки ENC-03J и ENC-03M появились в розничной торговой сети совсем недавно. Они предназначены для работы в качестве датчиков изменения наклона, а также компенсации дрожания руки (штатива) в видеокамерах и высокотехнологичных фотоаппаратах.

Что и говорить, в современных промышленных устройствах профессионального и бытового назначения электронные датчики-гироскопы архиважны. **Отличием** электронных гироскопов от механических собратьев является компактность и малый вес (размер 12 × 8 мм, масса в зависимости от модели 1—20 г), отсутствие изнашивающихся элементов, высокая скорость отклика (минимум инерции), низкое напряжение питания (2,7—5,5 В), малый ток потребления (0,5—15 мА). Диапазон рабочих температур ($-5\dots+75$ °C) позволяет производить контроль параметров в широком спектре климатических условий и географических поясов.

Кроме того, электронные гироскопы выпускаются также и в ЧИП-исполнении, что позволяет использовать их для поверхностного монтажа.

На основе такого электронного датчика создано простое устройство, которое посредством светоизлучающего светодиода сигнализирует об изменении своего, ориентированного на горизонтальную поверхность, положения. Схема прибора показана на **рис. 2.21**.

Рис. 2.21. Электрическая схема гироскопа

Основу устройства составляет пьезокерамический гироскоп ENC-03J производства фирмы «Murata» (Япония). При горизонтальном положении прибора постоянное напряжение на выводе 4 датчика U1 составляет 1,3—1,4 В при $U_{\text{п}} = 5$ В. Коэффициент усиления операционного усилителя DA1 приблизительно равен единице. На вывод 3 датчика U1 поступает напряжение сравнения через низкочастотный фильтр R3C3, который одновременно играет роль обратной связи операционного усилителя.

При изменении горизонтального положения датчика (отклонения от 0 °) напряжение на выходе U1 (вывод 4) изменяется в соответствии с коэффициентом преобразования (0,67 мВ/° отклонения в секунду). Частота опроса состояния составляет около 50 Гц. Максимальная угловая скорость относительно строго горизонтального положения (уровень 0) составляет ± 300 °/с. Разделительный конденсатор C1 (образующий совместно с резистором R1 частотный фильтр с полосой среза около 0,3 Гц), не пропускает постоянную составляющую напряжения на вход операционного усилителя DA1. При изменении горизонтального положения датчика на выходе DA1 (вывод 6) присутствует напряжение высокого уровня, которое открывает ключевой транзистор VT1, вследствие чего зажигается светодиод HL1.

Все постоянные резисторы — типа МЛТ-0,25 или MF-25. Конденсатор C1 — неполярный типа К10-17, C2 — оксидный полупроводниковый tantalовый, типа К52-х или К53-х, C3 — типа КМ-6Б.

Оксидный конденсатор С4 типа К50-20 сглаживает пульсации источника питания. Если применяется автономный источник питания — батарея или аккумулятор, данный конденсатор из схемы исключается. Светодиод HL1 — любой типа АЛ307Б или аналогичный. Для лучшего визуального контроля можно использовать светодиод с эффектом мигания. Вместо операционного усилителя КР140УД1208 можно применять КР140УД12, КР140УД20 с любым буквенным индексом. Транзистор VT1 — любой кремниевый п-р-п типа с коэффициентом усиления более 40.

Устройство в налаживании не нуждается. В связи с высокой чувствительностью пьезокерамического датчика U1 необходимо жестко крепить его к корпусу устройства, который, в свою очередь, должен иметь максимально ровную горизонтальную поверхность. При монтаже элементов устройства не перегревайте выводы датчика жалом разогретого паяльника (время пайки не более 1 с).

Пользоваться датчиком просто — достаточно установить его на контролируемой поверхности (если предполагается контроль наклона и стабилизации) или поместить в другую (не жидкую!) контролируемую среду для контроля вибрации.

Источник питания для устройства — стабилизированный с постоянным напряжением 3—5 В. Ток потребления всего узла с датчиком ENC-03J не превышает 5 мА.

При использовании в качестве вибродатчика аналогичного прибора ENV-05F-03 параметры устройства улучшаются (повышается точность показаний — чувствительность). Отрицательным моментом такой замены может показаться параметр максимальной угловой скорости — у этого прибора он меньше:

Рис. 2.22. Схема включения датчика ENV-05F-03

$\pm 80^\circ$. Однако применение датчика ENV-05F-03 позволяет избавиться от операционного усилителя (схема включения показана на **рис. 2.22**).

На кремниевых диодах собран преобразователь напряжения «переменный/постоянный» ток, выход которого можно подключить к управляющему узлу, например к точке А (**рис. 2.21**).

Дополнительную информацию по датчику-гироскопу можно почерпнуть на сайте изготовителя — www.murata.com.

2.14. Ртутный датчик положения

Ртутный датчик положения (РДП) применяется в устройствах контроля положения кузова автомобиля, а также в системах охранной сигнализации. Недавно в широкой продаже появилось устройство «Антисон», индицирующее «будящий» звуковой сигнал, когда водитель наклоняет голову к рулю («Антисон» крепится у уха водителя и реагирует на наклон головы; устройство имеет автономное питание). Особенности применения, перспективы использования датчиков РДП в доступной форме изложены ниже.

Среди датчиков положения (наклона) различают шариковые и ртутные. На основе РДП отечественная промышленность выпускает микроблоки (с встроенным узлом сравнения и определенным уровнем напряжения на выходе — для установки в различные устройства), например ДПА-М18-76У-1110-Н, ДПА-Ф60-40У-2110-Н и другие аналогичные. По уровню напряжения на выходе, характеристикам сравнения и преобразования сигнала такие датчики разделяют на цифровые и аналоговые. Не вдаваясь в подробности технологии производства электронных компонентов, коснемся практической стороны применения датчиков положения (наклона) в радиолюбительской практике.

Ртутные датчики положения (наклона), далее РДП, представляют собой стеклянный корпус, сравнимый по размерам с небольшой неоновой лампой (12×5 мм), с двумя выводами-контактами и капелькой (шариком) ртути внутри стеклянного корпуса, запаянного под вакуумом. РДП типа 8610 имеет известный в среде специалистов по установке автомобильных сигнализаций аналог SS-053 и широко используется в автомобилях и мотоциклах (в том числе зарубежного производства), например для контроля угла наклона подвески, открывания капота, багажника (в

Рис. 2.23. Внешний вид ртутного датчика положения

некоторых моделях автомобилей). Очевидно, такой датчик будет полезен и радиолюбителям. Внешний вид датчика показан на **рис. 2.23**.

Недостатки: проблематично (без специального оборудования) точно установить угол наклона, при котором РДП будет стablyно срабатывать, токсичность ртути (в случае повреждении датчика), инерционность, обусловленная конструктивными особенностями датчика (подвижность капли ртути ограничивается не только силой тяжести, но и силами поверхностного натяжения).

Если с инерционностью срабатывания датчика в простых радиолюбительских конструкциях (к которым не предъявляют завышенные требования профессиональных устройств) можно смириться почти всегда (инерционность срабатывания составляет десятые доли секунды), то неточность срабатывания датчика в зависимости от угла и скорости наклона представляет собой более серьезную проблему.

Однако, несмотря на это, для простых конструкции данный датчик отлично подходит без каких-либо дополнительных доработок. Управление устройствами нагрузки осуществляют с помощью двух контактов РДП 8610 (нормально разомкнутых). Предельно допустимый ток коммутации составляет 2 А.

Возможности РДП реализованы в небольшом и полезном устройстве, которое недавно появилось в серийном производстве

Рис. 2.24. Внешний вид готового устройства «Антисон»

в Санкт-Петербурге под названием «Антисон», внешний вид которого показан на фото **рис. 2.24**.

Внутри «черного ящика» установлены три элемента питания типа СЦ-21 (напряжением 1,5 В каждый, соединенные последовательно, суммарным напряжением батареи 4,5 В), выключатель, замыкающий электрическую цепь, непосредственно РДП в стеклянном вакуумном исполнении и пьезоэлектрический капсюль со встроенным генератором ЗЧ (звуковой частоты) типа 1205FXP. При замкнутых контактах выключателя питания, и, соответственно, при замкнутых контактах РДП, что происходит при наклоне корпуса прибора, раздается звуковой сигнал.

Практическое применение этого устройства очевидно: прибор надевается на ухо (для чего предусмотрена специальная конструкция корпуса) (**рис. 2.24**); при вертикальном положении головы водителя звуковой капсюль неактивен, но при наклоне головы (засыпая, водитель наклоняет голову вперед, к рулевому колесу автомобиля) сразу раздается сигнал тревоги.

Разумеется, замыкание контактов РДП происходит не только при превышении угла наклона более чем на 20° в вертикальной плоскости, но и в аналогичных условиях наклона по горизонтали, что расширяет возможности применения датчика.

Рис. 2.25. Электрическая схема включения РДП 8610

На рис. 2.25. представлена электрическая схема подключения РДП с отображением источника питания и устройств управления (нагрузки, периферии).

РДП своими контактами замыкает электрическую цепь управления устройством нагрузки. Таким устройством может быть звуковой пьезоэлектрический капсюль, световой индикатор (например ультраяркий светодиод), СЭМР (слаботочное электромагнитное реле на соответствующее напряжение и ток срабатывания), вход оптоэлектронного реле или токовый ключ (на транзисторе, тиристоре), управляющий силовым узлом, потребляющим большой ток от источника питания. Напряжение питания элемента GB1 в данном случае непринципиально и зависит только от электрических параметров нагрузки.

Сегодня РДП можно без труда приобрести практически в любом магазине радиотоваров (или в интернет-магазинах), его стоимость не превышает 100 рублей (РФ).

При закреплении датчика в корпусе устройства его надежно фиксируют расплавленным парафином или моментальным клеем. Таким образом удается обеспечить максимальную стабильность функционирования РДП.

По особенностям своей конструкции (вакуум внутри стеклянного корпуса) РДП 8610 практически не допускает ложных срабатываний. Диапазон рабочих температур от -30 до $+45$ °C. При соответствующей защите от внешних воздействий РДП эффективно работает в жидких, влажных средах и в условиях повышенной вибрации, что делает его практически незаменимым в ряде нестандартных ситуаций.

Практическое применение РДП (кроме рассмотренного выше варианта) может быть разнообразным: например датчик положения головы (при установке РДП в шлемофоны мотоциклов или в гарнитуры для компьютерных игр); датчик измерителя наклона (ветронагрузки) вертикальных строительных конструкций (РДП пригодились бы и на Пизанской башне для постоянного контроля изменения угла наклона исторического памятника). Так же оправдано использование РДП для контроля положения вертикальной антенны (мачты) радиопередающего устройства.

Очевидно, что вариантов применения РДП столь же много, как и альтернативных решений электрической схемы контрольно-исполнительного устройства.

2.15. Датчик затопления

Эта простая схема своевременно оповестит, а значит, поможет предотвратить затопление загородного дома или защитить электрооборудование от избыточной влажности.

В качестве датчика применяется контактная площадка от плоской клавиатуры. Подойдет старый калькулятор: кнопки клавиатуры аккуратно удаляются, из платы клавиатуры вырезается контактная площадка (или несколько, включенных параллельно) — ее контакты будут являться датчиком влажности. Датчик Z1 устанавливается в погребе или доме на пол или другую поверхность (на окно). Электрическая схема устройства показана на рис. 2.26.

При затоплении или дожде (если Z1 установлен снаружи на оконной раме) капли влаги замкнут контакты датчика, транзистор VT1 откроется, и через нагрузку потечет ток. В качестве нагрузки предусмотрено реле, своими контактами включающее насос откачки воды или сигнальное устройство. Можно вместо реле включать зуммер на соответствующее напряжение питания или другую логическую схему.

Ток перехода «коллектор — эмиттер» транзисторного ключа ограничен значением 40 мА. В качестве реле подойдет маломощ-

Рис. 2.26. Электрическая схема датчика воды

ное РЭС15 на напряжение срабатывания 7—8 В. Переменный резистор R1 регулирует чувствительность устройства — в нижнем (по схеме) положении движка R1 прибор не будет реагировать на изменение сопротивление датчика. В верхнем положении (чувствительность схемы максимальная) транзистор реагирует даже на слабый ток, проходящий через датчик, то есть нагрузка включится даже от утренней росы.

Замыкать контакты датчика Z1 нельзя — произойдет необратимый пробой транзистора. Напряжение питания схемы можно варьировать в широких пределах от +4 до 10 В, в зависимости от применяемой схемы нагрузки. Питание схемы постоянное стабилизированное напряжение, полученное от трансформаторного источника.

Датчик Z1 соединяется с электрической схемой проводами длиной до 2 м (длиннее нежелательно, так как наведенное в проводах переменное электричество может отрицательно влиять на работу транзисторного ключа). Кроме описанного устройства, автор рекомендует изучить статью из списка литературы [132] для рассмотрения и возможного усовершенствования предложенной схемы с другим датчиком.

2.16. Датчик влажности почвы

Описанные в литературе датчики дождя и влажности, как правило, основаны на измерении сопротивления между контактами-щупами, помещаемыми в контролируемую среду (например в почву). В предлагаемой схеме управление нагрузкой осуществляется с помощью генератора частоты звукового диапазона, катушка которого (L1) зарывается в почву. Прибор реагирует на распространение звуковых волн во влажной и сухой среде.

Влажная почва сделает работу генератора невозможной — произойдет уменьшение амплитуды и срыв колебаний. По величине поглощения энергии в катушке определяется степень влажности почвы. Индуктивный контроль состояния почвы по сравнению с емкостным методом и методом измерения электрического сопротивления позволяет оперативно реагировать на изменение влажности вокруг катушки L1. Сопротивление почвы постоянному току между двумя щупами- датчиками изменяется постепенно.

Емкостной метод измерения на дачном участке не эффективен вследствие перемещения по территории людей и животных, являющихся источниками ложных срабатываний. У индуктивного метода также есть свои недостатки.

На практике установлено, что, кроме влажности, на колебания генератора с помещенной в почву катушкой L1 оказывают влияние частота генератора, глубина, на которой находится катушка, и температура почвы. Длина соединительных проводов от катушки к схеме не должна превышать 1 м. В весенне-летний сезон прибор работает стабильно в режиме 24 часа в сутки.

Метод был предложен в 2001 г журналом «Popular Electronics», однако электрическая схема, приведенная там, при повторении

Рис. 2.27. Электрическая схема датчика влажности почвы на автогенераторе

оказалась неработоспособной. Добавив один транзистор и самодельную катушку, удалось реализовать корректно работающий прибор (схема на рис. 2.27).

Размеры катушки позволяют применять прибор на приусадебном участке с любым составом почв в любом климатическом поясе. А вот для контроля влажности земли, например в цветочном горшке, если только цветок — не пальма, устройство неэффективно, т. к. оптимальная глубина погружения катушки L1 составляет 45—55 см; цветочный горшок такой глубины оказывается под рукой не всегда. Устройство надежно работает, контролируя влажность почвы, скажем, в теплице.

Транзистор VT2, катушка индуктивности L1 и конденсаторы C2, C3 образуют автогенератор. Колебания возбуждаются на частоте около 16 кГц. При сухой почве или размещении катушки L1 вне влажной среды генерация происходит нормально — амплитуда импульсов на коллекторе транзистора VT2 составляет около 3 В. Резистор R4 вместе с конденсатором C4 пропускают импульсы автогенератора на частоте резонанса. Без него чувствительность прибора недостаточна.

Транзистор VT1, включенный по схеме эмиттерного повторителя, уменьшает влияние нагрузочных цепей на работу генератора. Диоды VD1, VD2 преобразуют импульсы автогенератора в постоянный ток. Последний задает смещение на базе ключевого транзистора VT3. Усиленные транзистором VT2 импульсы автогенератора проходят через разделительный конденсатор C5 (он не пропускает постоянную составляющую напряжения), выпрямляются диодами VD1, VD2 и открывают транзистор VT3 — в результате сработает реле и зазвучит сирена. Устройство сирены на схеме не показано.

Транзистор VT3 включит реле K1, как только выходное напряжение генератора окажется достаточным для открывания этого транзистора. Если амплитуда импульсов автогенератора на коллекторе транзистора VT2 мала (менее 1 В, что свидетельствует о влажной среде вокруг L1), транзистор VT1 не открывается полностью и напряжения смещения на базе VT3 не достаточно для его открытия. Реле обесточено.

В качестве нагрузки прибора рачительный дачник может использовать любую схему звуковой сигнализации или водяной насос с питанием от сети 220 В. В этом случае контакты реле K1 должны коммутировать мощное реле на соответствующее напряжение, например МКУ-48С, а оно своими контактами будет подавать напряжение на насос. Диод VD3 препятствует броскам обратного тока через переход «эмиттер-коллектор» VT3 в моменты включения или выключения реле. Чувствительность генератора к изменению влажности почвы устанавливается переменным резистором R3 (типа СП5-3).

Катушка L1 намотана на пластмассовом каркасе длиной 30 см с внешним диаметром 100 мм и содержит 250 витков провода марки ПЭЛ или ПЭВ диаметром 1 мм, намотанного виток к витку.

Сверху намотка закрепляется двойным слоем изоляционной ленты.

Элементы устройства закрепляют на монтажную плату длиной 50 × 70 мм. «Начинка» монтируется в любом подходящем металлическом корпусе. Движок переменного резистора через

отверстие в корпусе должен быть доступен для корректирующей регулировки извне. Внутри корпуса размещается источник питания с понижающим трансформатором и стабилизатором КР142ЕН8Б с выходным напряжением 12 В, само устройство и дополнительная схема звуковой сигнализации. Светодиод HL1 индицирует режим «включено». Тумблер S1 подает питание на схему. Корпус прибора должен быть влагонепроницаемым. На торцевой стенке монтируется разъем РП10-11, который соединяет элементы схемы с питающим сетевым напряжением 220 В, проводами катушки L1 и устройством звукового сигнализатора.

Все постоянные резисторы — типа МЛТ-0,25. Оксидные конденсаторы C8, C9, сглаживающие пульсации напряжения — типа К50-20. Конденсаторы C1—C7 — типа КМ-6. Реле K1, кроме указанного на схеме, может быть типа РЭС10 (исполнение РС4.524.314), РЭС15 (ХП4.591.010) или аналогичное слаботочное на напряжение срабатывания 8—10 В. Диодный мост VD4—VD7 любой маломощный из серий КЦ402, КЦ405. Вместо транзисторов серии КТ3102 можно применить приборы КТ315Б. Переменный резистор можно заменить на СП5-1ВБ. Стабилизатор D1 устанавливать на радиатор не нужно, поскольку ток, потребляемый схемой, очень мал — 20 (50) мА при выключенном (включенном) реле K1. HL1 — любой светодиод. Трансформатор T1 — типа ТПП277-127/220-50 (необходимо соединить перемычками обмотки 3—7 и 12—13) или любой другой с напряжением на вторичной обмотке 13—17 В.

При исправных деталях устройство начинает работать сразу после сборки. Работу генератора проверяют на рабочем столе, подключая шуп осциллографа к коллектору транзистора VT2. Регулировка прибора сводится к установке порога, при котором срывается генерация автогенератора посредством изменения величины сопротивления R3 («чувствительность»). Делают это при той же температуре среды, при которой прибор будет осуществлять контроль влажности.

Для этого индуктивную катушку L1 помещают в сухую почву (например в глубокий цветочный горшок) на глубину 20—30 см, подают питание на схему прибора с подключенным устройством

звуковой сигнализации, изменением сопротивления переменного резистора R3 добиваются включения реле K1 по срабатыванию сирены. Оптимальное положение движка R3 такое, когда устройство будет работать стабильно (реле K1 включаться) при серии из нескольких переключений тумблера SA1.

После установки порога чувствительности переходят ко второму этапу регулировки — увлажняют почву в месте зондирования катушки L1. Принудительное увлажнение сводится к выливанию на испытуемый участок земли 2—3 л воды. Через минуту звуковая индикация прибора должна прекратиться. Регулировка может иметь отличие от указанной методики в зависимости от состава почвы и ее температуры.

2.17. Датчик изменения сопротивления — индикатор состояния здоровья человека

На рис. 2.28 представлена схема простого чувствительного датчика, реагирующего на изменение сопротивления кожного покрова человека.

Как известно, электрическое сопротивление организма конкретного человека может быть от 100 Ом до сотен кОм и даже МОм. Такие данные получены в ходе медицинских исследований и объясняются строением тела, состоянием психики, образом жизни, половыми различиями и также другими составляющими. Известно, что при изменении в психофизическом состоянии человека (недомогании, алкогольном и наркотическом опьянении, в период похмельного синдрома, при стрессах) электрическое сопротивление организма ощутимо снижается даже у здоровых людей.

Рис. 2.28. Электрическая схема датчик
а изменения сопротивления кожи человека

Очень простой прибор, доступный в сборке любому радиолюбителю, позволит контролировать изменение сопротивления организма при различных воздействиях на человека и, соответственно, различном психофизическом состоянии. Еще один интересный факт: сопротивление тела человека меняется в незначительных пределах и при потоотделении, а также при внутреннем волнении, дискомфорте. То есть диапазон возможного применения устройства весьма широк — от сфер психологических исследований до «детекторов лжи». Для последнего случая схему нужно незначительно доработать. Рассмотрим принцип действия схемы.

На транзисторах VT1, VT2 собран усилитель по току со смещением. Все транзисторы (кремниевые) — широко распространенные типа КТ3102, КТ3107. Именно они имеют очень большой коэффициент усиления по току $h_{21\alpha}$, и это позволяет обойтись в данной схеме без каких либо дополнительных усилителей и микросборок. Применять аналоги вместо показанных на схеме транзисторов в данном варианте нежелательно (в крайнем случае можно применить КТ342В и КТ373А—КТ373Б).

Стрелочный миллиамперметр с током полного отклонения 0,01—0,1 мА можно использовать имеющийся в наличии, например от авометра Ц20, корректировка его показаний осуществляется резистором R6. Перед установкой в схему миллиамперметр с последовательно соединенным переменным резистором (с линейной характеристикой) сопротивлением 10—22 кОм подключают (соблюдая полярность) к источнику питания данной схемы.

Источник может быть с выходным напряжением 6—12 В, обязательно стабилизированный, так как от этого будет зависеть и точность считываемых показаний прибора. Изменением сопротивления переменного резистора нужно добиться того, чтобы стрелка прибора отклонилась чуть больше максимальной отградуированной риски, но не зашкаливала совсем, упираясь в ограничитель стрелки миллиамперметра. После этого схему обесточить, сопротивление переменного резистора замерить и заменить потенциометр постоянным резистором R6 соответствующего сопротивления.

Контакты X1, X2 представляют собой два одинаковых браслета из токопроводящего материала (меди), одеваемые на запястья соответственно левой и правой рук. Вместо браслетов можно использовать кольца, одеваемые на пальцы. Соединительные провода необходимы одинаковой длины и состава, удобно для этой цели использовать монтажный провод типа МГТФ-1 диаметром 0,8—1,0 мм.

Для обеспечения точности показаний длина проводов к датчикам не должна превышать 1,2 м каждый. Главное, чтобы был хороший контакт с кожей человека и движения исследуемого не имели влияния на контактные датчики. В этом смысле применение в качестве датчиков плоских предметов или штырей будет неэффективно, так как сжиманием пальцами руки датчиков человек может даже непроизвольно вносить погрешность в показания прибора.

Резистор R2 регулирует смещение напряжения на базу транзистора VT1, то есть чувствительность схемы. Как показала практика, чувствительность лучше устанавливать максимальную. Перед использованием прибор необходимо отградуировать (нанести на шкалу соответствующие значения). Для этого нужно иметь рядом проверенный высокоточный омметр.

Поочередно подключая к датчикам X1, X2 и щупам проверенного омметра разные сопротивления от 50 Ом до единиц МОм, замеряя сопротивления, наносят риски на шкалу миллиамперметра. Соответственно чем ниже сопротивление тела человека, тем более отклонится стрелка в стрелочном приборе. «Выход» — контакт X3 — позволяет расширить и дополнить базовую схему, например подключив ее на вход цифрового анализатора с индикаторами в виде «лайнеки» светодиодов. В этом случае цепочка R6P1 исключается, и вместо нее устанавливается постоянный резистор 10 кОм.

2.18. Индикатор напряжения

Очередная схема из разряда «электрических фокусов». В ее основе лежит принцип чувствительности полевых транзисторов к статическому электричеству и сетевым наводкам. За основу схемного решения взята простая разработка детектора скрытой проводки на полевом транзисторе. Проведя ряд экспериментов, удалось получить автономный и надежный прибор, реагирующий на изменение электрического поля.

Электрическая схема датчика фазы представлена на рис. 2.29.

К контактам исполнительного реле подключается нагрузка. Антенна представляет собой отрезок металлической спицы для вязания или аналогичной токопроводящей проволоки общей длиной до 20 см, загнутый «вопросительным знаком», как показано на **рис. 2.29**.

Когда в поле чувствительного приема антенны нет электрических сетевых наводок, полевой транзистор VT1 КП103Д (именно с ним удаются хорошие результаты) открыт и шунтирует остаточную часть схемы, не давая достаточного потенциала на базу VT2. Диоды VD1—VD3 выпрямляют переменные наводки, не пропуская к электронному ключу на транзисторах VT2, VT3 положительный потенциал. Реле K1 обесточено.

Рис. 2.29. Электрическая схема датчика фазы

При воздействии электрического поля на затвор полевого транзистора он закрывается, управляющий потенциал, выпрямленный диодной цепочкой и отфильтрованный С1, поступает на базу VT2, открывает электронный ключ, включает реле и устройство нагрузки. Резистор R2 следует подобрать опытным путем для стабильного открывания оконечного транзисторного каскада. Как показали опыты, номинал резистора R1 может находиться в пределах 0,1—5 МОм. Диоды VD1—VD3 обязательно германиевые, возможно точечные типа Д2, Д9.

Оксидный конденсатор С1 типа К50-6, емкостью 50—200 мкФ. Резистор R3 ограничивает ток в базе транзистора VT2. Вместо транзисторов КТ312Б можно использовать их аналоги КТ315 с любым буквенным индексом. Диод VD4 исключает дребезг контактов реле и сглаживает броски обратного тока через K1. Если дребезг контактов до конца устранить не удается, необходимо подключить параллельно реле K1 оксидный конденсатор емкостью не более 50 мкФ в соответствующей полярности.

Налаживание устройства включает в себя подбор свободного расстояния между антенной устройства и фазовым проводом (производится опытным путем) и величины резистора R2 в указанных пределах. При настройке его нужно заменить подстроечным резистором номиналом 2,2 МОм с последовательно подключенным постоянным резистором на 100 кОм.

Общий провод устройства заземлять не нужно. При эксплуатации следует соблюдать технику безопасности (при монтаже и подключении фазового провода), а также принять меры по защите полевого транзистора от статического электричества [производить его монтаж и настройку схемы следует заземленным маломощным (не более 25 Вт) паяльником и надев на руку антистатический заземленный браслет].

Схема работает при напряжении питания 9—12 В. Исполнительное реле следует подобрать исходя из этих параметров.

Иногда бывает весьма удобно автоматизировать быт до такой степени, что все световые, нагревательные, охлаждающие, ионизирующие и другие приборы включаются автоматически, без воздействия привычных и неоригинальных электрических выключ-

чателей. Представьте, вы приходите домой после непростого дня: хочется отдохнуть — вы неспеша подходите к дивану или креслу, садитесь, и — о, чудо — тут же мягким светом загорается бра. Осталось только взять в руки книжку, включить телевизор или просто закрыть глаза. Пример воплощения фантазий при помощи устройства на основе датчика фазы представлен на **рис. 2.30**.

Когда кто-либо садится (опирается, ложится) на диван, наведенное в теле электрическое поле приближается к датчику-антенне, улавливается им и передается на схему, в результате включается исполнительное устройство. При прекращении воздействия на ложе (сидение) антенна оказывается вне зоны воздействия электрического поля, реле отключается, отключается и бра.

Хорошие результаты достигаются при использовании датчика на полевом транзисторе в качестве устройства поиска неисправностей в высоковольтных цепях автомобилей (дополнив первый каскад мультивибратором и светодиодом, нетрудно изготовить прибор для поиска неисправностей в системах зажигания).

Схему также можно применять в качестве бесконтактных датчиков (например в виде сигнализаторов открывания двери — разрывается контакт фазы и антенны устройства) или в качестве своеобразного ключевого устройства распознавания и доступа (использующего описанный принцип работы): в тонкую ячейку между замаскированным источником наводок и антенной устройства вставляют магнитную или металлическую карточку. В последнем случае принцип действия электроники должен быть изменен на обратный.

Рис. 2.30. Иллюстрация применения датчика фазы в быту

2.19. Детектор скрытой проводки

Кроме часто встречающихся в радиолюбительской практике датчиков, существуют и более редкие, но, тем не менее, эффективные приборы и устройства. Об одном из них — датчике от танкового шлемофона — рассказано ниже.

Все известные схемы искателей скрытой проводки можно условно разделить на детекторы (сигнализаторы) наличия переменного напряжения и сигнализаторы магнитного и электрического поля. В качестве датчиков к таким устройствам с разной эффективностью служат в основном пассивные индуктивные элементы (кроме пассивных элементов в устройствах контроля и сигнализации электрического поля широко используются полевые транзисторы).

Это катушки реле с большим количеством витков на стальном (типа РКН и аналогичные) или ферритовом сердечниках, катушки от высокоомных телефонов (типа ТОН-1, ТОН-2 и аналогичные с сопротивлением 1600 Ом), динамические микрофоны типа МД200, МД201 и аналогичные, звукозаписывающие (воспроизводящие, универсальные) головки от магнитофонов. Наилучший результат удалось получить, используя универсальную головку от катушечного магнитофона «Яуза» и даже такие «неформальные» элементы, как датчик от ларингофона танков Т-60—Т-80 (см. **рис. 2.31**).

На рисунке показан один и тот же ларингофонный датчик ТЛГ-1А в разном исполнении (изолированном и неизолированном корпусе). Выход ларингофонного датчика имеет три контакта: корпус датчика (экран) и два контакта (+) и (-). Датчик подключается к усилителю строго с соблюдением полярности.

Танковые шлемофоны используются в народном хозяйстве еще с начала 1970 годов в качестве элементов переговорного

Рис. 2.31. Фото ларингофонного датчика шлемофона Т-72

устройства вездеходов и тягачей (в географических условиях непроходимой местности, тайге, на севере), поэтому не представляют на сегодняшний день никакого секрета. Однако если исследовать ларингофон глубже, обнаружатся его высокоэффективные (по чувствительности к слабым сигналам) качества.

Как известно, ларингофон реагирует не столько на уровень громкости звука [об этом можно судить по закрытому (запаянному) корпусу], сколько на слабую детонацию, вибрацию и изменения магнитного поля. Датчик ТЛГ-1А отрицательным выводом подключается к общему проводу усилителя, а «плюсовым» выводом — к отрицательной обкладке оксидного конденсатора С1. Корпус датчика остается неподключенным.

Диаграмма направленности рекомендуемого устройства широка, что позволяет применять его при поиске скрытой проводки в небольших сетях коммуникаций (в квартирах, частных домах). В производственных помещениях, где электрическими кабелями «окутаны» все стены, прибор будет малоэффективен. Зато там, где спрятанная электрическая проводка редка и глубоко запрятана в бетон, находится под толстым слоем штукатурки, устройство обнаруживает ее на расстоянии до 80 см (в зависимости от материала стен). По нарастающей (максимальной) громкости звука в телефоне определяют точное местонахождение проводки. Для нормальной работы устройства, естественно, по

искомым проводам должен протекать переменный (или импульсный) ток. Чем больше сила тока, тем с большего расстояния и с большей точностью устройство с ларингофонным датчиком обнаруживает местонахождение проводки.

Поскольку чувствительность датчика высока, можно использовать усилитель звуковой частоты упрощенной конструкции, например на основе микросхемы К140УД33. Рекомендуемый усилитель обладает функцией регулировки усиления входного сигнала.

Электрическая схема усилителя с подключенным ларингофоном ТЛГ-1А представлена на **рис. 2.32**.

В качестве телефона используется хорошо знакомый радиолюбителям телефонный капсюль ДЭМШ-4М, обеспечивающий достаточную громкость звука.

Источник питания устройства — стабилизированный источник питания 5 В постоянного тока. Ток потребления усилителя при максимальном усилении составляет 10—12 мА. На частотах 1000—5000 Гц коэффициент усиления ОУ DA1 максимальный, около 100.

Рис. 2.32. Электрическая схема усилителя с ларингофоном ТЛГ-1А

На элементах R4, VD1, C3, C4 собран стабилизатор напряжения. Оксидный конденсатор C4 фильтрует низкочастотные помехи по питанию. Конденсатор C3 фильтрует помехи по высокой частоте.

Резистор R4 (ОМЛТ-0,5) ограничивает ток так, чтобы стабилитрон VD1 находился в рабочем режиме — ток стабилизации 1—10 мА, $U_{ct} = 3,3$ В. Этот ограничивающий резистор рассеивает небольшое количество тепла — его мощность (0,5 Вт) выбрана с запасом. Можно питать узел от двух элементов А316, тогда R4, VD1, C3, C4 не нужны. В таком варианте элементы питания подключаются соответственно к общему проводу и к точке А (положительный полюс).

Напряжение питания усилителя может находится в диапазоне от 1,4 до 5 В, однако при напряжении питания более 3,5 В усилитель возбуждается и уровень шумов возрастает. При напряжении питания 3 В (оптимальное напряжение питания) величина входного шумового напряжения составляет 440—500 нВ/Гц — это типовое значение для самого ОУ.

Вследствие небольшого уровня опорного напряжения на инвертирующем входе З микросхемы DA1 среднеквадратичное значение шума в результате сигнале сохраняется на низком уровне. Местный акустический эффект из-за близости расположения BM1 и HA1 (который появляется при повышении напряжения питания до 5 В) можно свести на нет корректировкой сопротивления резистора R9. Следует учитывать, что при этом уменьшится и общий коэффициент усиления узла.

Максимальное усиление фиксируется на нагрузке сопротивлением 500 Ом. Однако такой звуковой капсюль найти трудно. При возможной замене HA1 следует учитывать это обстоятельство. Усиление входного сигнала регулируется переменным резистором R5 (СПО-1).

Устройство в налаживании не нуждается. Если узел собран без ошибок с исправными элементами, он начинает работать сразу. Отдельного выключателя питания нет, так как оно поступает на устройство через разъем РП10-5. Можно применить разъем другого типа.

Все постоянные резисторы, кроме R4 — типа МЛТ-0,25. Оксидные конденсаторы — типа К50-6. Остальные — типа КМ-6Б. В качестве ларингофонного датчика ВМ1 можно применить любой динамический капсюль с сопротивлением 180—250 Ом, например ДЭМШ-1А. НА1 можно заменить на ТМ-4, ВП-1.

Если ларингофон располагается в одном корпусе с усилителем, то экранировать провода не надо. Корпус для устройства — любой: например хорошо подходит пластмассовый, от портативного электрического фонаря, фото которого показано на рис. 2.33.

Рис. 2.33. Фото корпуса из портативного электрического фонаря

Для изготовления корпусов предлагаемых в книге электронных конструкций можно воспользоваться авторскими рекомендациями, например в [59].

Кроме описанного предназначения, устройство усилителя с ларингофонным датчиком может применяться для контроля сейсмического фона, а также в устройствах контроля детонации механических приборов. В налаживании устройство не нуждается.

2.20. Чувствительный акустический датчик

Электронное устройство, схема которого показана на рис. 2.34, представляет собой усилитель ЗЧ на транзисторах с большим статическим коэффициентом передачи тока. Собственно датчиком служит капсюль-пьезоизлучатель BM1. Он преобразует звуковой сигнал в электрические колебания.

Усилитель на транзисторах VT1 и VT2 построен по принципу усиления постоянного тока. Резкий шум, тряска, хлопок, воздействуя на капсюль BM1, немедленно откликаются изменением напряжения в базе транзистора VT2 на 1—1,2 В. Чувствительность узла такова, что устройство реагирует на резкий звук (например хлопок) с расстояния 4—5 м.

Второй каскад на транзисторе VT2 усиливает сигнал до уровня открывания транзистора VT3. Постоянные резисторы R3 и R4 ограничивают соответственно коллекторный ток VT2 и ток базы VT3, предохраняя эти транзисторы от выхода из строя.

Рис. 2.34. Электрическая схема датчика

Конденсатор С1 обеспечивает положительную обратную связь между входом и выходом усилителя. Конденсатор С2 сглаживает пульсации напряжения источника питания.

При воздействии звукового сигнала на капсиюль ВМ1 выходной электрический сигнал поступает на усилитель тока (транзистор VT3) и открывает его. Через обмотку реле K1 протекает ток, вследствие чего оно замыкает группу контактов К1.1 в цепи нагрузки. Устройство нагрузки включается на 1—2 с. Для того, чтобы продлить время включения нагрузки, в устройство вводят оксидный конденсатор С3 (показан на рисунке пунктиром).

В моменты акустического шума конденсатор С3 заряжается. В последующее затем время спокойного акустического фона отдает энергию. Через ограничивающий резистор R4 ток течет в базу ключевого транзистора VT4 и держит его открытым, даже при отсутствии воздействия звуковых сигналов на датчик ВМ1, пока разница потенциалов на обкладках С3 не станет меньшей порога открывания транзистора VT3. После разряда конденсатора через базу VT3 и резистор R3 транзистор VT3 закроется, и реле обесточится.

Как показала практика, увеличение емкости конденсатора С3 выше 10 мкФ неэффективно, так как теряется стабильность работы всего узла — раз от раза колеблется точность задержки выключения реле, заметно теряется общая чувствительность к акустическим воздействиям (требуется время на зарядку С3).

При новом звуковом воздействии на датчик процесс повторится сначала.

Параллельно реле K1 (см. рис. 2.34) включена индикаторная цепь, состоящая из светодиода HL1 и ограничительного резистора R5. Эта цепь выполняет двоякую роль — по состоянию индикаторного светодиода удобно следить за функцией реле (так как никаких других индикаторов питания в схеме нет), а кроме того, данная электрическая цепь препятствует броскам обратного тока через реле K1. При необходимости цепь R5HL1 из схемы исключают.

Устройство может управлять любой соответствующей нагрузкой, электрические и мощностные характеристики которой

зависят от типа применяемого электромагнитного реле K1. Смонтированное без ошибок с исправными деталями устройство надежно работает в круглосуточном режиме.

Печатная плата не разрабатывалась. Устройство не нуждается в налаживании и стablyно работает при напряжениях питания 4—10 В. Источник питания должен быть стабилизованным. Естественно, что при напряжении питания ниже 7,5 В установленное реле K1 (TRD-9VDC-FB-CL) не будет срабатывать, и его придется заменить на другой соответствующий напряжению питания узла тип слаботочного электромагнитного реле (например TRU-5VDC-SB-SL) или применить электронное реле, например из серий K449 (KP449).

При эксплуатации устройства замечено, что чувствительность узла (при прочих равных условиях) увеличивается с уменьшением напряжения питания. А при увеличении напряжения питания свыше 11 В устройство переходит в режим самовозбуждения, включая реле с равными промежутками времени.

Ток, потребляемый в режиме ожидания, составляет 3—5 мА. При срабатывании реле K1 ток потребления увеличивается до 40 мА. Все постоянные резисторы — типа МЛТ-0,25. Конденсатор C1 — типа КМ-6, группы ТКЕ Н70 или аналогичный. Оксидные конденсаторы — К50-20.

Времязадающий конденсатор C3 (если есть необходимость его установки в схему) выбирают с малым током утечки (К53-4, К52-18). Пьезокапсюль BM1 (ЗП-22) можно заменить на ЗП-1, ЗП-18, ЗП-3 или другой аналогичный. Для этой цели хорошо подходит пьезокапсюль излучатель из электронных часов в корпусе типа «пейджер». Внешний вид собранного устройства иллюстрирует фото на **рис. 2.35**.

Кремниевые транзисторы VT1, VT2 могут быть любыми из серии KT3107, KT502, C557 (заменять их германиевыми нежелательно из-за большого тока покоя последних). Транзистор VT3 можно заменить на KT815A—KT815Г, реле — на RM85-2011-35-1012, BV2091 SRUH-SH-112DM, TRU-9VDC-SB-SL или аналогичные. Все указанные типы реле рассчитаны на работу в цепи коммутации нагрузки до 250 В и током до 3 А. В качестве реле можно

Рис. 2.35. Фото (внешний вид) платы с готовым устройством акустического датчика

применить отечественные элементы, например РЭС10, РЭС15 и аналогичные, однако они рассчитаны на работу в цепях коммутации напряжением не более 150 В, а кроме того, отечественные реле по сравнению с зарубежными обходятся дороже на один-два порядка.

В авторском варианте устройство используется в качестве составной части охранного сигнализационного комплекса, однако оно эффективно и как отдельный электронный узел — чувствительный датчик. Управляющее напряжение для других сопряженных устройств снимают с точки «А». В этом случае усилитель тока на транзисторе VT3 и реле исключают.

2.21. Устройство управления несколькими датчиками

В радиолюбительской практике и, в частности, в устройствах охраны и контроля необходимо опрашивать состояние нескольких датчиков, и, в зависимости от изменения их состояния, включать или отключать какие-либо устройства сигнализации. Особенность предлагаемого устройства (по сравнению с опубликованными схемами аналогичного назначения) заключается в способности запоминать состояние входных датчиков. Это достигается благодаря применению в устройстве популярной микросхемы-регистра K561ИР9. Рассмотрим электрическую схему на рис. 2.36.

Датчики F1—F4 могут быть в произвольной комбинации, замкнуты и разомкнуты, — это не сказывается на работоспособности устройства. Выходные сигналы изменятся при соответственном изменении состояния датчиков и будут зафиксированы (запомнены) регистром. Для сброса состояния регистра предусмотрена кнопка SB1.

Выходные сигналы присутствуют на соответствующих выходах логической микросхемы K561ЛП2 (DD1), которые подключаются к оконечным узлам управления нагрузкой. Это могут быть электромагнитные и оптоэлектронные реле, транзисторные и тиристорные каскады. Выходные сигналы также можно подключать к другой электронной схеме обработки и управления. Электронный узел сканирования датчиков собран на двух микросхемах K561.

Микросхема K561ИР9 (аналог CD4035B) представляет собой четырехразрядный последовательно-параллельный регистр, имеющий два входа J и K. Если эти входы соединить вместе, как

Рис. 2.36. Электрическая схема устройства сканирования с запоминанием состояния

показано на схеме **рис. 2.36**, то получится регистр, построенный на D-триггерах. Триггеры регистра соединяются последовательно внутренними ключами коммутации микросхемы, если на вход переключения P/S (параллельно/последовательно) подать напряжения низкого уровня.

Когда на этом входе (вывод 7 микросхемы DD2) присутствует напряжение высокого логического уровня, ключи коммутации размыкают последовательную связь внутренних триггеров, и к D-входам подключаются линии параллельной загрузки регистра D0—D3.

В обоих случаях (параллельной и последовательной) загрузки информации передвигается по регистру согласно с положительным перепадом на входе С (вывод 6 DD2).

Регистр имеет асинхронный вход T/C, логическими сигналами на котором переключается выходной код на выходах Q0—Q3.

Здесь может присутствовать (в зависимости от состояния на входе Т/С) прямой или дополнительный код. При низком уровне на входе Т/С на выходы устройства передается дополнительный код (связанный с сигналом на тактовом входе С) по отношению к хранящемуся в каждый момент времени коду в D-триггерах регистра. Длительность тактового импульса, время установления сигналов по входам и длительность импульса сброса для стабильной работы регистра K561ИР9 должны быть не менее 250 нс.

Источник питания для устройства любой стабилизированный, напряжением 9—15 В. Ток потребления не превышает 10 мА. Начальная установка в момент подачи питания обеспечивается элементами С2R1. Оксидный конденсатор С1 сглаживает помехи по питанию. Его тип К50-24 или аналогичный. Неполярный конденсатор С2 — типа КМ-6 или аналогичный. Постоянные резисторы МЛТ-0,25. Диоды развязки VD1—VD4 — типа КД521Б КД522, Д311 и аналогичные.

Устройство в налаживании не нуждается и при исправных элементах начинает работать сразу. Печатная плата не разрабатывалась ввиду минимального количества элементов.

Микросхемы монтируются на любой плате. Вместо указанных на схеме микросхем можно применить их зарубежные аналоги (для K561ИР9—CD4035B, для K561ЛП2—CD4030B) или аналогичные микросхемы серии K564.

В качестве датчиков F1—F4 применяются герконы, например КЭМ1—КЭМ6. Эти герконы надежны, не боятся сотрясений и влагоустойчивы. Устройство конструктивно собрано как универсальный портативный блок. Датчики подключаются к нему, и выходная цепь устройства подключается к схеме управления через малогабаритные разъемы типа РП10-5, РШ-2Н и аналогичные.

Безусловно, варианты использования рассмотренной схемы многочисленны и не ограничиваются контролем четырех охранных датчиков, расположенных в разных местах. Для увеличения количества контролируемых линий (датчиков), например до восьми, в электрическую схему (рис. 2.36) добавляют соответственно еще один последовательно-параллельный регистр и микросхему логики K561ЛП2. Устройство настолько универ-

сально в применении, что при творческом подходе радиолюбителя способно принести пользу практически в любой сфере. При необходимости можно контролировать «сухость» почвы в цветочных горшках, изменение (выход за установленные пределы) уровня электрических параметров того или иного устройства (напряжения, сопротивления, тока) и многое другое.

В авторском варианте устройство находит применение в качестве составной части устройства сигнализации и оповещения по мобильному телефону о срабатывания шлейфа охраны в городской квартире. При этом в качестве датчиков шлейфа охраны используются два геркона (установленные на входной и балконной двери соответственно), датчик пожара и датчик движения, установленные в комнате.

2.22. Датчик контроля работы передающего тракта радиостанции

При включении радиопередатчика в режим «передача» вокруг его антенны образуется электромагнитное поле. Об этой проблеме также описывалось в материалах [124], [125].

Чем мощнее сигнал с передатчика, тем большее значение будет иметь напряженность поля. Если есть подозрения в том, что одна из радиостанций комплекта, настроенных на одну длину волн (частоту), неисправна в режиме «передача», то не обязательно вскрывать ее корпус и затем скальпелем препарировать печатную плату в поисках неисправного элемента. Удостовериться в работоспособности передающего узла (в режиме амплитудной модуляции) можно более простым способом, который рекомендуется далее.

Вместо усложненных конструкций (многократно описанных в литературе) рекомендуется применить близкорасположенный к антенне передатчика обычновенный тестер. Тестер находится в режиме измерения постоянного либо переменного напряжения с пределом 10 В. Причем в качестве индикатора состояния применяют как стрелочные, так и «цифровые» вольтметры, которые сегодня можно без труда приобрести в магазинах радио- и электротоваров. Это подразумевает не совсем обычное использование измерительных приборов для грубого контроля работы передающего узла радиостанции. Но оно же является выгодным отличием от более сложных приборов и устройств индикаторов ВЧ- и НЧ-напряжений, многократно описанных в радиолюбительской литературе (часто в конструкциях основным чувствительным элементом, реагирующим на напряженность электромагнитного поля, служит полевой транзистор с отрезком провода в качестве антенны).

Чувствительными элементами (датчиками) в рекомендуемой мною конструкции служат штатные «измерительные» провода из комплекта тестера (как правило, состоящие из гибких многожильных электрических проводов длиной до 0,5 м).

Перед включением радиостанции в режим передачи вывод «—» тестера (как правило, общий — «корпус») отводится в сторону от «+» на максимально возможное расстояние, при этом первому желательно придать направление сверху вниз (он как бы свисает с рабочего стола к полу, образуя противовес антенны). Выводу «+» тестера задают такое направление, чтобы он находился с антенной передатчика в параллельной плоскости.

Ввиду высокой чувствительности индикатор используется для дистанционного контроля работы трансивера в режиме амплитудной модуляции (АМ) и позволяет по степени отклонения стрелки тестера (или показаниям напряжения цифрового прибора) сделать выводы и добиться (дополнительной регулировкой и настройкой передатчика) максимальной выходной мощности без применения специальных приборов. Со штатными проводами стрелочный тестер Ц4317 реагирует на излучение передатчика (трансивера Alan87 с заявленной в паспортных данных выходной мощностью в режиме АМ 4 — Вт и антенной SB-Line) следующим образом: при расстоянии между антенной и «+» измерительным проводом тестера до 0,5 м фиксируют «зашкаливание» стрелки на пределе 10 В (режим измерения постоянного напряжения); при удалении более чем на 1 м показания стрелки скромнее — всего 1—1,5 В. При контроле работы передающего устройства касаться руками проводов (антенн) тестера не надо (резко падает чувствительность из-за шунтирования антенн).

Если тестер использовать без измерительных проводов (отключив их), получают удобный переносной портативный контрольный прибор: его корпус можно просто приближать и удалять от антенны, при этом в разных точках тестер будет фиксировать разные показания в зависимости от напряженности поля.

На расстоянии до 1 м прибор уверенно работает при исправном передающем устройстве, позволяя сделать простой вывод

об исправности или неисправности передающего устройства трансивера.

Вместо того чтобы разрабатывать новые устройства и усложнять старые конструкции, подчас неоправданно нагружая их дискретными элементами, автор пошел по другому пути и провел ряд экспериментов с разными тестерами.

Так, при работе в режиме «передача» портативной радиостанции «Гродно-Р» с мощностью 0,5 Вт, расположенной в 20 см от съемной антенны передатчика, тестер зафиксировал напряжение 0,4 В. С присоединением к тестеру проводов, так как было описано выше, показания прибора увеличились до 2 В. Это трудно не заметить.

Для тех радиолюбителей, которые предпочитают тестеры с цифровым индикатором, зафиксировать нормальную работу передающего устройства также не составит труда — цифры на индикаторе тестера М830-В постоянно изменяются между значением 2—3 В; при выключении передатчика прибор показывает 0.

Таким простым методом автором проверены передающие узлы десятка радиостанций малой и средней мощности. Простота метода позволяет «взять его на вооружение» тем радиолюбителям, у которых нет специальных приборов для контроля и настройки радиопередающих устройств, а также позволяет проверять напряженность поля в других ситуациях.

Кроме того, индикаторами электрического и даже магнитного поля в большинстве случаев в быту служат распространенные сегодня автоматические выключатели освещения и охранные устройства на основе пироэлектрических датчиков движения.

Так, в авторском варианте установленный на лоджии пироэлектрический детектор — датчик движения (выполняющий охранные функции, сигнализируя о несанкционированном проникновении в жилое помещения со стороны лоджии) на расстоянии 2 м от антенны радиостанции Лен-В (ЧМ) периодически срабатывает во время переключения радиостанции в режим передачи. Если в доме по непонятным причинам срабатывают автоматические устройства и приборы с дистанционным управ-

лением, то есть повод задуматься, а не провоцируют ли такие срабатывания реально действующие мощные приборы-генераторы электрического и магнитного поля, возможно установленные в соседнем от вас помещении.

Данные рекомендации созданы на основе эксперимента с авометрами Ц4317, Ц20, М830-В, Dahua MF-110A. Последний предназначен для отыскания простых неисправностей в электропроводке и предпочтителен в силу миниатюрности и дешевизны (вследствие невысокой точности показаний).

Аналогичный эффект можно получить, используя любой стрелочный прибор с электромагнитной отклоняющей системой; наиболее доступный вариант — индикатор «напряжение батареи/уровень записи» от старых кассетных магнитофонов (индикаторы уже не выпускаются, но у запасливого радиолюбителя наверняка окажутся в наличии). Автор использовал М2236 (от магнитофона «Романтик 202» и аналогичных).

Дополнив этот индикатор элементом питания (батарейкой) напряжением 1,5 В (сообразно полярности, через ограничительный резистор), удастся реализовать еще более чувствительную конструкцию. Настройка такого прибора заключается в подборе сопротивления ограничительного резистора — оно должно быть таким, чтобы при отсутствии электромагнитного поля вблизи индикатора он показывал 0, а при наличии поля стрелка отклонялась от нулевой отметки. Благодаря такому прибору можно контролировать сигнал радиопередающего устройства на расстоянии от антенны большем, чем 1 м.

Предостережение: при описанных экспериментах не стоит располагать тестер непосредственно у самой антенны радиопередатчика, особенно если тот имеет выходную мощность более 1 Вт, так как сильное электрическое поле способно вывести из строя измерительный прибор.

ГЛАВА 3

ИЗБРАННЫЕ КОНСТРУКЦИИ

*Специально для читателей этой книги
автор разработал ряд полезных в быту конструкций,
среди которых: устройства оповещения о срабатывании
охранной сигнализации при помощи проводной, либо мобильной
телефонной связи, дистанционное управление электронными
устройствами по телефону, различные датчики.*

3.1. Использование стационарного и мобильного телефонов в системах охранной сигнализации

Проблема охраны имущества в частных квартирах сегодня стоит не менее остро, чем, скажем, пять лет назад. Если раньше (кроме желания клиента) все «упиралось» в возможности внеевропейской охраны (одно из подразделений МВД), монополизировавшей функции охраны государственного и частного имущества и диктовавшей свои условия при заключении договора, то сейчас — другое дело. Вокруг много частных охранных предприятий, присутствует конкуренция.

С развитием мобильной связи оказалось возможным передавать тревожные сигналы беспроводным способом, а группы быстрого реагирования прибывают к объекту за считанные минуты. Кроме того, благодаря массовой доступности для населения мобильной связи (мобильные телефоны покупают даже детям), свой сегмент охранного рынка завоевала электроника.

Теперь, потратив несколько тысяч рублей, каждый может приобрести в магазине устройство-приставку, которое по ранее запрограммированному телефонному номеру (городскому или мобильному) передаст сигнал тревоги хозяину в случае нарушения шлейфа охраны. Причем шлейфов может быть несколько — это и двери, и окна, и, например датчик пожарной или газовой сигнализации — на усмотрение пользователя.

Очевидным достоинством такой системы является отсутствие какой-либо абонентской платы, а недостатком — необходимость самостоятельного вызова милиции в случае срабатывания сигнализации (придется проявить изобретательность, убеждая дежурного выслать опергруппу; автор книги рекомендует заранее узнать телефонные номера ближайшего отделения милиции!).

Разумеется, в случае кражи (если таковая все же состоялась) вы не получите страховку.

Многочисленные устройства сигнализации используют один из двух способов оповещения: по телефонной линии при помощи многофункциональных телефонов с автоматическим определителем номера (АОН) или по каналу сотовой связи.

3.1.1. Оповещение с помощью АОН

Первый вариант близок радиолюбителю по нескольким причинам: собрать АОН может практически каждый (в продаже имеются уже готовые, смонтированные блоки и платы — достаточно правильно соединить их и смонтировать в корпус), стоимость деталей и работ минимальна, собранное своими руками устройство нетрудно модернизировать. В конце концов, можно просто купить готовое изделие.

Семейство многофункциональных (интеллектуальных) телефонов с автоматическим определителем номера АОН многочисленно и разнообразно. Однако не все телефонные аппараты можно приспособить для охраны помещений, а только те, в которых эта функция (среди прочих) предусмотрена программно («защита» в ПЗУ). Таким аппаратом является, например версия «Русь-27-С» модификации «Pro Vega 2003». Среди многочисленных сервисных функций, о которых можно получить информацию из специальной брошюры — руководства по применению телефонного аппарата, есть функция охраны «уведомление на сотовый телефон».

Этот режим специально предназначен для дистанционного информирования о событиях, происходящих в месте установки АОН, на мобильный телефон: владелец «мобильного» получает возможность оперативно среагировать на сигнал тревоги.

Внимание!

Необходимо учитывать, что вне зоны действия сети либо при перегрузке последней, охранный система окажется неэффективной: автор книги настоятельно рекомендует выбирать модели сигнализации, позволяющие осуществлять звонок по двум и более телефонным номерам (оптимально — мобильному и городскому).

Функциональный режим телефона с АОН позволяет настроить события, при которых произойдет оповещение на мобильный телефон. Вход в настройку режима производится последовательным нажатием клавиш «MODE», «1», «*», «*», «*». При этом на индикаторе телефона появляется сообщение «С.CALL.- OFF», надпись «OFF» мигает. Режим активируется нажатием клавиши «1», при этом на индикаторе появляется «ON». Для обратного выключения режима в этом месте нажимают клавишу «0», и на индикаторе снова загорается «OFF».

Теперь для ввода в память номера мобильного телефона на аппарате с АОН нажимают клавишу «*» — показания на индикаторе: «С.С.». В этом месте вводят последовательность цифр мобильного номера абонента, причем федеральные номера, начинающиеся с цифры «8», вводятся так же, как и «прямые» — аппарат самостоятельно распознает «8» и делает после нее запрограммированную паузу (для гудка). Ввод номера завершают нажатием клавиши «*». По окончанию ввода на индикаторе появляется строка «E.oo_____».

Символы «о» в соответствующем разряде индикатора обозначают событие, на которое будет реагировать аппарат (уведомлять мобильного пользователя). Знак «о» свидетельствует о включенной реакции на событие, символ «_» — соответственно об отключенной. Признак события изменяют нажатием цифровой клавиши, соответствующей позиции признака на индикаторе АОНа: одно нажатие клавиши включает реакцию на событие, другое соответственно выключает.

Для использования АОНа данной версии в качестве узла оповещения, совмещенного с узлом охраны, включают символ «о» клавишей «8». Таким образом, сообщение на индикаторе имеет вид: «E._----- о». При окончании настройки и для перехода основное состояние нажимают клавишу «#».

Событие возникает в случае срабатывания датчика охраны (разомкнулись контакты шлейфа). Таким датчиком может быть любое устройство (или отдельный выключатель с соответствующей группой контактов), размыкающее электрическую цепь

Рис. 3.1. Участок печатной платы в месте присоединения проводников

между «выводами датчика охраны» (см. **рис. 3.1** контакты 5 и 6 по порядку, считая от угла платы).

Плоский кабель из пяти проводников, показанный на **рис. 3.1**, подключен для общих сервисных функций. Использовать такой кабель необходимо, если применяются резервный и внешний источники питания, в противном случае можно ограничиться подключением всего двух проводников к площадкам 5 и 6 платы, считая от ее угла, — это контакты для шлейфа охраны. Если рассматривать печатную плату на участке припаянных проводников (площадок), то первый и второй по счету с угла платы — это провода подключения резервного питания (идут к отсеку батарей): соответственно первый — «+», второй — общий провод. 3-й и 7-й по порядку от угла платы — соответственно «+» источника питания 5 В. 4-й проводник (номер площадки) — снова общий провод. 5-й и 6-й контакты — искомый шлейф охраны.

В обычном (разомкнутом) состоянии на 5-м контакте потенциал близок к низкому логическому уровню, на 6-м контакте присутствует высокий уровень. Шлейф охраны подсоединяют к аппарату с помощью любого подходящего разъема, например DIN-5. Контакты датчика охраны в режиме ожидания должны

быть постоянно замкнутыми, при нарушении шлейфа контакты размыкаются.

Схема сравнения сигнала АОНа снабжена входным узлом с гистерезисом, поэтому внутренние узлы телефона не воспринимают дребезг контактов шлейфа (выключателя), и система работает стабильно. В качестве контактов шлейфа используют установленный на входной двери прототип концевого выключателя либо пару «геркон (герметичный контакт) — постоянный магнит». Во избежание ложных срабатываний и нестабильной работы телефонного аппарата сопротивление шлейфа должно быть минимальным, как и длина провода от телефона к контактам шлейфа (не более 50 см). Если этих условий выполнить нельзя, непосредственно рядом с аппаратом устанавливают слаботочное электромагнитное реле, которое управляется внешней электронной схемой, датчиком к которой служат контакты шлейфа охраны.

Шлейф охраны представляет собой замкнутую петлю провода общим сопротивлением не более 1 кОм, подключенную к входу логики АОНа. Он накоротко замыкает вход шлейфа АОНа и общий провод. Даже кратковременного однократного нарушения целостности шлейфа достаточно для перехода АОН в режим активной сигнализации. Схемотехнику телефонных аппаратов с АОН нет необходимости описывать подробно, так как она уже многократно рассмотрена в литературе и многие радиолюбители собирали АОНы самостоятельно.

Автор данной книги рекомендует: для эффективной охраны помещения необходимо оборудовать датчиками не только входную дверь, но и другие пути возможного проникновения нарушителя (окна, вторую входную дверь, дверь балкона, различные охранные датчики перед входной дверью, акустический, инфракрасный, тепловой, емкостной датчики охраны). То есть разделить шлейф на несколько частей с одинаковой эффективностью и быстродействием. Для этого разработан и прошел успешные испытания электронный узел — разветвитель шлейфа; его схема представлена на **рис. 3.2**.

Рис. 3.2. Электрическая схема разветвителя шлейфа охраны

Данное устройство обеспечивает запоминание входного состояния, реализованное на D-триггерах. Схема содержит две КМОП-микросхемы 561 (564, 1564) серии и питается от внутреннего (пятивольтового) источника АОНа. Количество входных шлейфов-каналов можно легко расширить путем добавления аналогичной микросхемы K561ТМ3.

Схема работает следующим образом: на четырех объектах установлены нормально замкнутые охранные шлейфы Ш1—Ш4. При обрыве шлейфа или кратковременном нарушении контакта на соответствующем входе D появляется логическая «1». Автогенератор на логических элементах DD1.1, DD1.2 работает на частоте 1 кГц (корректируется элементами RC-цепи) и подает импульсы на тактовый вход «С» триггера (микросхема DD2).

По положительному фронту тактового импульса на соответствующем выходе Q1—Q4 появляется высокий логический уровень, и загорается (для индикации состояния) соответствующий светодиод. Логический вход АОН настроен на восприятие высокого логического уровня в качестве сигнала обрыва шлейфа, и этот импульс подается с инвертора элемента DD1.3. Вместо микросхемы K561ЛЕ6 можно применить другую логику (K176ЛП11) или набор дискретных диодов.

К каждому выходу Q микросхемы DD2 подключен индикаторный светодиод с ограничительным резистором. Эта часть не является обязательной и на схеме не показана. Положительный полюс источника питания АОН подключается к выводам 14 микросхем DD1, DD3 и выводу 16 микросхемы DD2. Общий провод — соответственно к выводам 7 DD1, DD3 и выводу 8 микросхемы DD2.

Микросхема K561TM3 содержит четыре D-триггера. Тактовый вход «С» общий, как и вход переключения полярности «Р» (вывод 6). Если на входе «Р» высокий уровень, данные передаются при положительном фронте сигнала на тактовом входе, при низком уровне на входе переключения полярности все происходит с точностью до наоборот.

Далее несколько рекомендаций: для лучшей помехозащищенности входов триггера (при удалении шлейфа от основной схемы более чем на 10 метров, что актуально в нежилых производственных помещениях), по пути от датчиков шлейфа к входам триггера необходимо поставить МОП-элементы буферных усилителей без инверсии. Такими элементами могут быть, например элементы микросхемы (К176) K561ПУ3, K561ПУ4 или сборки по два последовательно соединенных инвертора K561ЛН2 на канал.

Элементы устройства удобно монтировать в корпусе самого АОНа. Параллельно выводам питания микросхем следует установить оксидный конденсатор емкостью 10—50 мкФ. Проводники к удаленным датчикам шлейфа подключаются к телефону через разъем. Такое «разветвленное» устройство исправно обеспечивает охрану объектов. В авторском исполнении в качестве шлейфов используются: Ш1 — геркон на входной двери, Ш2 — датчики удара на стеклах в комнате и включенный параллельно им на стекле балконной двери, Ш3 — емкостной датчик в другой комнате, Ш4 —инфракрасный барьер на кухне. Однако совершенно не обязательно таким образом усложнять схему и дублировать шлейфы, радиолюбителю для охраны квартиры может быть достаточно двух шлейфов. Тогда свободные входы D-триггера замыкаются на общий провод.

В офисах коммерческих предприятий количество шлейфов может быть, наоборот, увеличено. При включении режима охраны

шлейфа в АОНе предусмотрена подпрограмма задержки времени взятия под контроль помещений в 1,5—2 мин для того, чтобы хозяин квартиры (офиса) мог покинуть помещение, разблокировав входную дверь, не беспокоясь о ложном срабатывании системы.

Внимание!

В различных версиях аппаратов режим задержки может программироваться по-разному.

Включают режим охраны при закрытой двери (дверях) и замкнутых контактах шлейфа охраны. При наступлении тревожного события (размыкания контактов шлейфа) АОН автоматически набирает запрограммированный мобильный номер и после соединения выдает в линию голосом фразу «ДЛЯ АБОНЕНТА- 8» — по номеру события.

Другие события имеют следующие номера

1. При поступлении входящего звонка АОН дозванивается на мобильный номер и сообщает номер звонившего абонента в следующей форме: «НОМЕР xxxxxxx», где xxxxxxx — номер позвонившего абонента. Данная функция активируется при определении номера.
2. После совершения исходящего звонка с АОНом, аппарат, после того как разговор окончен, автоматически дозванивается на мобильный номер и сообщает в аналогичной форме номер, на который осуществлен звонок. Данное событие включено «по умолчанию» и автоматически срабатывает при длине номера свыше трех символов.
3. Событие возникает автоматически при пропадании сетевого питания 220 В и перехода на резервное питание (если установлены элементы питания в отсек для батареек внизу корпуса аппарата).

Внимание!

Резервное питание существенно повышает надежность системы.

Если элементы питания не установлены, аппарат перезвонит на мобильный номер сразу после восстановления сетевого питания с сообщением «ДЛЯ АБОНЕНТА-3».

4. Событие возникает после того, как обратный таймер окончил отсчет заданного промежутка времени. Информация на мобильный телефон поступит в формате «ДЛЯ АБОНЕНТА-4».
5. Событие возникает после попытки АОН дозвониться в режиме «ДЕТСКИЙ ЗВОНОК». Информация поступит в формате «ДЛЯ АБОНЕНТА-5».
6. Событие возникает, если позвонивший абонент оставил сообщение на встроенный цифровой автоответчик (если его нет, функция не работает). Информация в формате «ДЛЯ АБОНЕНТА-6».
7. Событие возникает, если произошла любая ошибка при вводе пароля (если пароль был установлен). Информация «ДЛЯ АБОНЕНТА-7».
8. См. выше: «режим охраны — сработал шлейф».

Включение/выключение (активация) происходит после нажатия в режиме настройки соответствующей клавиши «1—8». Допустимо включение нескольких режимов одновременно.

В связи с тем, что разные производители даже однотипных версий АОНов могут использовать различные печатные платы (с разными элементами, дискретными, SMD, процессорами типа Z80 и другими), в конкретной версии аппарата возможно изменение подключения контактов «шлейф охраны». Для точного определения, если печатная плата не похожа на представленную (рис. 3.1), места подключения шлейфа охраны следует использовать электрическую схему конкретного аппарата с АОН или следовать инструкции-руководству.

3.1.2. Оповещение с помощью мобильного телефона

В случае использования мобильного телефона стандарта GSM, например старую неиспользуемую по прямому назначению модель, автор рекомендует применить простой телефонный адаптер, описанный ниже.

Сегодня большинство телефонных операторов в разных регионах, предоставляющих населению услуги мобильной связи, сделали свои тарифы доступными для потребителей. Нет проблем и с приобретением недорогих моделей телефонов — как новых, так и бывших в употреблении.

Учитывая доступность, большую площадь покрытия и относительно невысокую стоимость мобильных телефонов, радиолюбителям и всем, кто знаком с основами электротехники, предоставляется уникальная возможность: превратить мобильный телефон в сторожевое устройство, которое будет оповещать владельца о случаях посягательства на охраняемый объект (квартиру, загородный дом, сейф, автомобиль или доступ к персональному компьютеру). Теперь сотовый телефон, соединенный по рекомендуемому ниже способу с датчиком, автоматически оповестит хозяина о состоянии охраняемого имущества, где бы тот ни находился.

Подобные системы знакомы радиолюбителям со стажем [22, 47, 67, 72, 75, 112], но, будучи прогрессивными 15—20 лет назад (обычно использовался диапазон 27 МГц), потеряли актуальность: носить с собой радиостанцию крайне неудобно.

В каждом мобильном телефоне используется функция экстренного вызова абонента одной кнопкой.

Вся дополнительная работа, касающаяся сотового телефона, сводится к четырем шагам.

Шаг 1. Войти в меню телефона и занести в память быстрого вызова номер сотового и стационарного телефона, куда надо будет сообщить об изменении состоянии контролируемого объекта (абонента, которому надо послать сигнал тревоги).

Шаг 2. Аккуратно вскрыть верхнюю панель сотового телефона (где плоская клавиатура) и миниатюрным паяльником с мощностью до 25 Вт (напряжением 6—12 В) припаять два проводника тонкого монтажного провода типа МГТФ-0,3 к контактам клавиши (кнопки «1»). Кнопка может использоваться и другая, а также несколько кнопок для оповещения, например разных абонентов в различных, отличных друг от друга ситуациях.

Шаг 3. Проводники должны иметь минимальную длину (не более 1 м) и на другом конце соединяться с миниатюрным разъемом, например РШ-2Н. Еще лучше, если проводники будут помещены в экран, который соединяется с массой (минусом источника питания).

Шаг 4. Собрать и подключить согласно электрической схеме (представленной на рис. 3.3.) простое устройство — адаптер, которое получает сигнал от датчиков, установленных на охраняемом объекте.

Рис. 3.3. Адаптер для сотового телефона

Устройство собрано на популярной микросхеме K561KT3. В точку U_{bx} приложено управляющее напряжение от любого из датчиков, например геркона, установленного на открывание входной двери. Принцип подключения геркона иллюстрирует выключатель S1, подключаемый в виде примера к источнику питания пунктирной линией. Датчики могут быть различными, в том числе выдающие пачки импульсов.

Входной сигнал проходит через ограничительный резистор R1 и поступает на оксидный конденсатор C1 (не пропускающий постоянную составляющую напряжения). Таким образом, даже при длительном воздействии (например при замыкании S1) на управляющий вход коммутатора поступит только одиночный импульс. Стабилитрон VD1 защищает управляющий вход канала от скачка напряжения, а резистор R2 шунтирует вход (вывод 13 микросхемы), купируя возможные электрические помехи, приводящие к ложным срабатываниям коммутатора, — на входе каждого канала присутствуют полевые транзисторы, обеспечивающие высокую чувствительность микросхемы.

Постоянные резисторы — типа МЛТ-0,25, MF-25 или аналогичные. Оксидный конденсатор С1 — типа К50-29 или аналогичный. Стабилитрон может быть заменен KC156A, BZX55 или аналогичными. Источник питания для данного устройства, связанного с сотовым телефоном, стабилизированный, обязательно с понижающим трансформатором.

После подключения к сотовому телефону роль кнопки выполняет электронный ключ — бесшумно и визуально неприметно. Остается только периодически следить за состоянием батареи сотового телефона.

Для тех радиолюбителей, кто захочет использовать контроль нескольких датчиков с оповещением по нескольким номерам мобильных телефонов, на **рис. 3.4** представлена общая схема подключений и цоколевка микросхем-коммутаторов K561KT3, K564KT3, K1561KT3, K176KT1 (все они взаимозаменяемы, но особенность микросхемы K176KT1 — напряжение питания 9 В).

Микросхемы K561KT3 и аналоги представляют собой четырехканальные коммутаторы с одинаковой схемой и цоколевкой. Эквивалентная схема коммутатора (электронного ключа) однополюсная, это значит, что он работает только на замыкание элек-

Рис. 3.4. Общая схема и цоколевка микросхем коммутаторов серий K561, K564, K176 (KT3)

тронного контакта на выходе (например выводы 1 и 2, 3 и 4 и так далее) при управляющем сигнале на входе.

Управляющий сигнал (импульс) постоянного тока напряжением 2—10 В (для микросхем К176 серии до 9 В). Таким образом, для замыкания выходов активный уровень на входе должен быть высоким логическим уровнем, принятым для КМОП-микросхем. Сопротивление канала в открытом состоянии 80 Ом (и около 500 Ом для К176КТ1). Из этого параметра, по закону Ома, зная приложенное напряжение, можно вычислить коммутирующий ток. Каналы независимы. Каждый канал может коммутировать цифровые уровни до напряжения U_n или аналоговые уровни (еще одна приятная особенность данного типа микросхем) от пика до пика $U_n/2$.

При нагрузке 10 кОм на частоте 10 кГц отношение сигналов на выходе канала в замкнутом и разомкнутом состояниях не хуже 65 дБ. Степень изоляции управляющей цепи от канала соответствует сопротивлению 10 Г(тига!) Ом. Прохождение сигнала с частотой 900 кГц на нагрузку 1 кОм из канала в канал оценивается на -50 дБ. Время задержки распространения сигнала в канале 10—25 нс.

Коммутаторы данного типа можно применять во многих случаях, именно поэтому они универсальны и весьма популярны в следующих узлах: переключатели-мультиплексоры, ключи выборки сигнала, прерыватели-модуляторы для операционных усилителей, коммутационные ключи, модуляторы-демодуляторы. Можно делать коммутаторы для нестандартных ЦАП (цифроанalogовых преобразователей) и АЦП (алфавитно-цифровых преобразователей), а также узлы цифрового управления частотой, фазой, коэффициентом усиления сигнала. Удобно делать «врезки» и микшировать одни виды сигналов с другими.

Отметим, что микросхема К561КТ3 применяется по своему прямому назначению — для коммутации клавиатуры сотового телефона, построение которых друг от друга практически не отличается.

3.2. Управление электронными устройствами по телефону

Телефонная сеть обладает рядом преимуществ, которые можно эффективно использовать:

редкие районы сегодня телефонизированы с помощью ручных коммутаторов, где за пультом сидит «барышня-телефонистка». Вероятно, таких мест нет вообще — телефонная связь обеспечивается с помощью автоматических телефонных станций (АТС).

Схема телефонной приставки, которую автор рекомендует ниже, окажет несомненную пользу радиолюбителю, который хочет управлять (включать/выключать) электронными устройствами (находящимися вблизи от его телефонной линии) удаленно, используя набор телефонного номера.

Очевидно, что связаться по телефону можно из любой точки мира (международная связь), другого города в составе одной страны (междугородная связь), а также практически из любого места (обладая мобильным сотовым телефоном). Область применения предлагаемого устройства широка до бесконечности и ограничивается только фантазией радиолюбителя и особенностями нагрузки — электронных устройств, которыми управляет телефонная приставка.

Не будем забывать также про сервис, предлагаемый городской телефонной сетью (ГТС) в крупных городах. Так, например в Санкт-Петербурге можно в любой момент и на любое число месяца заказать услугу «будильник» для своего номера. В означенный день и час вам позвонят по телефону и скажут: «Доброе утро!». Звонить будут долго, пока не снимите трубку. Стоимость услуги составляет 10 рублей в месяц.

Например уезжая надолго из квартиры, предусмотрительно подключив в качестве нагрузки таймер с лампой освещения, уда-

ется вводить в заблуждение потенциальных воров, для которых включенный в квартире свет — это признак присутствия хозяев.

Другой вариант: использование в качестве «нагрузки» прибора, автоматически подсыпающего рыбкам в аквариум сухой корм. Его мощность при активном состоянии составляет 40 Вт (максимально допустимая мощность нагрузки определяется параметрами реле K1).

Устройство начинает реагировать на телефонные звонки не сразу после подачи вызывных посылок (звонков), а после проишествия их определенного количества. Это количество устанавливается каждым пользователем индивидуально. Благодаря применению в устройстве популярной микросхемы K561ИЕ8, есть возможность установить режим включения приставки после того, как она пропустит от 1 до 9 звонков. Это позволит не реагировать на случайные звонки, так как обычнозывающий абонент посыпает сигнал вызова, состоящий из 4—5 звонков, и затем отключается. Отличительная черта приставки — возможность использования одновременно с другими телефонными аппаратами, подключенными в линию параллельно (главное условие надежной работы состоит в том, чтобы среди параллельных аппаратов не было АОНа).

Электрическая схема телефонной приставки представлена на **рис. 3.5**.

Переменное напряжение, возникающее в линии при вызове, беспрепятственно проходит через конденсатор C1 и выпрямляется диодным мостом VD1. Частота вызывного сигнала примерно равна $32 \pm 10\%$ Гц. Для сглаживания этих пульсаций предусмотрен оксидный конденсатор C3, благодаря которому форма сигнала на входе оптронного ключа DA1 близка к прямой линии. Оптоэлектронный ключ открывается, и напряжение высокого уровня поступает на тактовый вход С счетчика DD1.

Если на входе ЕС (вывод 13 DD1) низкий уровень, то счетчик переключается положительным перепадом напряжения на тактовом входе С. Изменение состояния выходов счетчика происходит после первого сигнала вызова (звонка). Изначально на первом выходе счетчика (вывод 2 DD1) устанавливается напряжение

Рис. 3.5. Электрическая схема телефонной приставки

высокого уровня (на остальных — логический «0»). С каждым новым звонком высокий уровень напряжения будет поочередно присутствовать на каждом последующем выходе счетчика DD1.

Таким образом, девятый вызов-сигнал определит высокий уровень напряжения на выводе 11 микросхемы DD1. Одновременно этот уровень окажется на выводе 13 микросхемы. Теперь новые импульсы на тактовом входе «C» уже не смогут изменять состояние счетчика. Высокий уровень через ограничительный резистор R4 достигнет транзистора VT1. Транзистор откроется и замкнет цепь питания реле K1. Своими контактами K1.1 реле коммутирует устройства нагрузки.

При высоком уровне напряжения на входе ЕС действие тактового входа запрещается, и счет останавливается. При высоком уровне на входе сброса R (вывод 15 DD1) счетчик очищается до исходного состояния. Исходное состояние счетчика такое, когда уровень на всех его выходах равен нулю. Сброс счетчика в нулевое

вое состояние происходит при каждом новом включении питания узла. Тогда при подаче питания конденсатор С2 заряжается от источника питания через резистор R2. По окончании зарядки (через 2—4 с) на выводе 15 DD1 устанавливается низкий уровень напряжения, и счетчик снова готов к работе.

Цепь С4R5 нейтрализует паразитные помехи, присутствующие в линии и даже заметные на экране осциллографа при вызывном сигнале телефонной линии. Аналогичный узел собран на микросхеме DD2. После того, как реле К1 включилось, его контакты второй группы К1.2 переключают оптоэлектронный ключ на вход второго счетчика. После того, как вторая пачка вызывных посылок, состоящая из 9 вызов-сигналов, поступит на вход приставки, на выводе 11 DD2 установится высокий уровень, который появится и на выводе сброса первого счетчика.

Таким образом, микросхемы DD1 и DD2 «обнуляются», транзистор VT1 закроется, реле обесточится, в устройство нагрузки перестанет поступать ток, контакты К1.2 переключат оптронный ключ DA1 на тактовый вход первого счетчика и цикл повторится сначала.

Электронные компоненты, задействованные в схеме, широко распространены и популярны среди радиолюбителей. Диодный мост можно заменить на КЦ402, КЦ405 с любым буквенным индексом. Конденсатор С1 — типа МБМ, МБГО, К73-3 на рабочее напряжение не ниже 100 В. Оксидный конденсатор С3 — типа К50-6, К50-12 на рабочее напряжение не ниже 50 В. С2 — типа К50-24 на напряжение 16 В. Все постоянные резисторы — типа МЛТ-0,5. Реле К1 выбирают так, чтобы оно уверенно срабатывало при напряжении на обмотке 10 В. Оптоэлектронный ключ DA1 можно заменить на КР293КП4В. Транзистор VT1 типа КТ603, КТ608 с любым буквенным индексом. Диод VD2 препятствует броскам обратного тока через реле К1. Этот диод можно заменить на КД102, КД105, КД212 с любым буквенным индексом.

Налаживание устройства сводится к подбору оптимального значение емкости конденсатора С3. Если емкость конденсатора увеличить, то он не успеет разрядиться в интервале между вызывными посылками АТС, тогда оптронный ключ DA1 окажется

замкнутым дольше, чем длится вызывная посылка, и счетчик DD1 воспримет несколько вызывных посылок как одну, и весь алгоритм работы устройства теряет смысл. Если емкость конденсатора С3 уменьшить, это приведет к тому, что недостаточно слаженные замыкания телефонной линии с частотой 32 Гц во время вызывной посылки станут помехой для счетчика DD1.

Элементы устройства монтируются на плату из одностороннего фольгированного стеклотекстолита (например марки СФ-1), которая закрепляется в пластмассовом корпусе 50 × 60 мм. Проводящая поверхность (фольга) аккуратно разрезается на сектора, к которым методом пайки крепятся выводы электронных элементов. В корпусе прибора устанавливается разъем типа МРН-14-1 (или аналогичный), благодаря которому устройство легко отключить и перенести в желаемое место.

Потребляемый ток устройства в режиме ожидания не более 8 мА. Напряжение питания может находиться в пределах 5—15 В. Изменение напряжения питания (относительно рекомендуемого на схеме) повлечет за собой замену реле К1. Исполнительное реле должно четко срабатывать при напряжении на обмотке на 2—2,5 В меньшем, чем напряжение источника питания. Источник питания для данного узла — стабилизированный, с понижающим трансформатором. Такой подход (в отличие от бестрансформаторной схемы источника питания) обеспечивает необходимую безопасную развязку сетевого напряжения и телефонной линии.

Помех для нормальной работы телефонного аппарата ТА в связи с параллельным включением данного устройства не обнаружено. Замыкание исполнительных контактов реле К1.1 происходит во время действия вызывных посылок с АТС, начиная с 9-го вызова (определяется подключением к соответствующему выходу счетчика DD1) и прекращается с 9-м вызов-посылкой АТС следующего звонка. Включенное состояние устройства нагрузки может иметь место сколь угодно долго, пока не поступит второй длительной серии звонков.

При появлении случайных (чужих) звонков-вызовов, которых в силу своей непредсказуемости точно запланировать нельзя, приставка может давать ложные срабатывания. Это, в первую

очередь, связано с тем, что два или несколько «случайных» звонков на данный телефонный номер (в кратковременный период один за другим) с общей суммой вызов-посылок 9 и более приведут к несанкционированному включению исполнительного реле. Во-вторых, при вызовах с мобильного телефона на городской номер, где будет установлена приставка, АТС пропускает не более 8 вызов-посылок, оставленных без ответа (реакции включения в разговор), а затем отключается.

Указанных недостатков лишена приставка, электрическая схема которой представлена на **рис. 3.6**.

На микросхеме DD2 собран счетчикИК-импульсов. Он обеспечивает временную задержку между поступлением первой вызов-посылки и началом формирования ответных сигналов. Задержка необходима для исключения ложных срабатываний устройства и подключения к телефонной линии в случае коротких (менее пяти) вызов-посылок (дозвонов).

При поступлении сигналов вызовов от телефонной линии переменный ток беспрепятственно течет через неполярный конденсатор C1, выпрямляется диодным выпрямителем VD1 и сглажи-

Рис. 3.6. Электрическая схема второго варианта приставки к телефону (Принцип действия обеих приставок аналогичен; отличие в нескольких функциональных моментах).

вается оксидным конденсатором С2. Начинает заряжаться оксидный конденсатор С3, шунтированный резистором R2. В течении доли секунды открывается транзистор VT1 и включается реле K2. Контакты реле K2 замкнут цепь питания электронного узла на микросхемах DD1, DD2. Одновременно с этим счетчик DD2 начнет отсчет вызов-посылок, каждая из которых сопровождается включением реле K1 и замыканием контактов K1.1. Досчитав до пяти, на выходе микросхемы счетчика DD2 (вывод 1) окажется высокий уровень напряжения, который включит (откроет) транзистор VT2.

Транзистор VT1 будет открыт до тех пор, пока идут из телефонной линии вызов-посылки (1—5). На этом транзисторе вместе с элементами С3 и R2 собрано простое реле времени, которое выключит узел по истечении выдержки 40—50 с и разомкнет линию в исходное положение.

На элементах DD1.1, DD1.2 собран одновибратор, исключающий «дребезг контактов». Без него устройство работает ненадежно. После прихода пятой вызов-посылки на выводе 1 счетчика установится высокий логический уровень. Этот сигнал откроет токовый ключ на транзисторе VT2 и одновременно запретит дальнейший счет микросхеме DD2. После того, как транзистор VT2 откроется, включится электромагнитное реле K3, контакты которого (K3.1) подключат телефонный аппарат (ТА) к телефонной линии.

ТА может быть любой модели, адаптированный к местным линиям связи. При этом трубка в ТА должна быть снята, а ее микрофон обращен к звуковому излучателю НА1. В свою очередь капсюль НА1 (со встроенным генератором ЗЧ) включается при замыкании контактов X1 (срабатывании датчиков в шлейфе).

Если «тревожного» случая не произошло, то звуковой капсюль неактивен и в подключенном к телефонной линии ТА будет слышна тишина, а не звуковые колебания излучателя.

Таким образом, происходит эффективная проверка состояния охранного шлейфа с удаленного ТА.

Устройство в налаживании не нуждается. Электромагнитные реле K1, K2 — типа РП-7 на ток срабатывания 12 мА. Реле K3 — типа РЭС-15 (исполнения РС4.521.003). Остальные элементы подбирают по аналогии с предыдущим описанием.

3.3. Датчик влажности на микросхеме K561ТЛ1

Микросхема K561ТЛ1 (зарубежный аналог CD4093В) — одна из самых популярных цифровых микросхем серии K561. Она содержит четыре элемента 2И-НЕ с передаточной характеристикой триггера Шмита (гистерезисом). Ниже рассказано о двух вариантах ее эффективного использования в радиолюбительских конструкциях.

Каждая из этих конструкций найдет полезное применение в быту радиолюбителя и способна подать творческий импульс для дополнения приведенных схем или увлечь на другие эксперименты с микросхемой. Отличительная особенность рассмотренных ниже схем в их максимальной простоте без потери функциональности. Они собраны по принципу генераторов импульсов, имеют на выходе звуковые сигнализаторы с капсиюлем FMQ2715, а их отличие друг от друга — в практическом назначении.

Особенности микросхемы K561ТЛ1 (малый ток потребления, выходной каскад, позволяющий включать нагрузку до 50 мА, и др.) подробно описаны в литературе, в том числе в справочных пособиях по цифровым микросхемам серии K561, например [32, 33, 144].

Рис. 3.7. Электрическая схема сигнализатора влажности

Одним из характерных примеров использования микросхемы K561ТЛ1 совместно с датчиком влажности является устройство, рассмотренное ниже. На рис. 3.7 представлена электрическая схема сигнализатора влажности.

Этот сигнализатор находит практическое применение в быту. Опробованы два варианта.

- **Вариант 1:** устройство звукового сигнализатора эффективно работает в домах, где в непогоду протекает крыша на верхних этажах;
- **Вариант 2:** также данное устройство сигнализирует о «заливании» квартиры соседями сверху.

Особенность узла в его высокой чувствительности благодаря свойствам микросхемы K561ТЛ1 и применению в качестве датчика подстроичного конденсатора С1. Как видно из схемы, на ней не присутствует ни одного постоянного резистора, которые, казалось бы, необходимы в подобных схемах совместно с конденсаторами — условие возникновения электрических колебаний генератора.

Такое замечание было бы справедливо, если бы использовалась иная микросхема, но как было замечено выше, K561ТЛ1 имеет передаточную характеристику триггеров Шмита и для возникновения колебаний в классической схеме построения генератора на ее базе не нужна времязадающая RC-цепь.

Конденсатор С1 (марки 1КЛВМ-1 с воздушным диэлектриком) выбран в качестве датчика влажности по своим конструктивным особенностям — обычно сопротивление между его пластины достигает более 10 ГОм, а уже при небольшой влажности это сопротивление уменьшается. По сути, подстроичный конденсатор С1 представляет собой высокоомный резистор с изменяющимся в зависимости от внешних условий абсорбированной атмосферной влажности сопротивлением.

Этот факт, наряду с высоким входным сопротивлением элемента микросхемы K561ТЛ1, позволяет использовать узел как устройство с очень высокой чувствительностью. При сухом климате сопротивление датчика С1 велико, и на выходе элемента

DD1.2 присутствует низкий уровень напряжения. Капсюль НА1 неактивен (молчит).

При слабой влажности сопротивление датчика уменьшается, возникает генерация импульсов — капсюль издает звуковые сигналы, похожие на щелчки. Такая тенденция сохраняется при увеличении атмосферной влажности — частота щелчков увеличивается. Когда сопротивление датчика С1 уменьшится до значения примерно 0,1—0,3 ГОм, на выводе 4 элемента микросхемы DD1.2 будет присутствовать сигнал высокого уровня. Капсюль НА1 издаст звук частотой около 1 кГц (обусловлено особенностями капсюля). При увеличении сопротивления датчика С1 произойдет обратный процесс, и капсюль-излучатель, в конце концов, снова затихнет.

Конденсатор С2 — любой трубчатый или, например группы ТКЕ М47. Он исключает в данной схеме ложные срабатывания. Вместо капсюля-излучателя НА1 допустимо применить любой аналогичный с встроенным генератором ЗЧ, с током до 50 мА, а если использовать излучатель марки КР1-4332-12 (или аналогичный), тогда звук будет прерывистым. Оксидный конденсатор слаживает пульсации напряжения и способствует более мягкому звуковому эффекту. Источник питания любой трансформаторный стабилизированный с напряжением питания 5—15 В.

Вместо датчика С1 можно использовать и другие оригинальные датчики, принцип работы которых — изменение сопротивления и с исходным состоянием «высокое сопротивление» (не менее 1 МОм).

Так, например в данном случае можно применять самодельный элемент, изготовленный из постоянного резистора ВС-1 (ВС-0,5, ВС-2) с высоким сопротивлением (не менее 1 МОм), состоящий из основы с подтертым мелкой наждачной бумагой графитовым слоем. При увеличении влажности сопротивление этого резистора уменьшится.

Самодельный резистор аналогичного принципа действия — изменения сопротивления в зависимости от влажности можно изготовить в домашних условиях. Для этого на обыкновенную спичку с обоих концов наматывают по 3 витка трансформатор-

ного лакированного провода ПЭЛ-1 диаметром 0,5—0,8 мм (концы-контакты следует облудить). При увеличении влажности в районе монтажа такого резистора его сопротивление также уменьшится на несколько десятков и сотен кОм.

Вместо датчика С1 (как вариант) можно использовать и полностью разомкнутые контакты, расположенные друг от друга на расстоянии 1—10 мм. В этом случае схема будет реагировать не только на изменение влажности, но также и на открытый огонь или (при дополнительной регулировке чувствительности) изменение климата вблизи датчика. Так, при возникновении открытого огня пламя замыкает электрическую цепь, вследствие чего происходит срабатывания триггеров Шмита — включается звуковая (или иная) сигнализация.

Особенности эксплуатации: элементы из-за своей малочисленности монтируются на экспериментальной макетной плате, источник питания и датчик С1 подключаются через два разных разъема РШ-2Н (чтобы уменьшить влияние источника питания на чувствительность узел). Компактный корпус устройства из пластмассы помещают в район предполагаемого изменения влажности, например на самый стык стены комнаты и крыши. Датчик С1 выносят на проводах марки МГТФ-0,8 (длиной не более 10—15 см) и закрепляют непосредственно на стыке, стене или потолке. Экранировать провода не нужно. Инерционность срабатывания практически незаметна. Провода к источнику питания могут иметь длину до 3 м.

Чувствительность устройства такова, что узел реагирует даже на небольшую испарину (конденсат), который может иметь место при внезапной разнице температур в помещении (например при включении отопления или других испарений). По этой причине устройство нежелательно располагать на стене или стыке непосредственно над газовой или электрической кухонной плитой.

Устройство сигнализации от «пролива» соседями также будет малоэффективно в ванной комнате, где влажность повышается при длительном включении воды.

Для принудительного уменьшения чувствительности надо увеличить емкость конденсатора С2.

Применение может быть не ограничено рассматриваемыми вариантами, а дополнено, например вариантом сигнализатора влажности в погребе или кладовке, в местах хранения грибов, сухофруктов, скоропортящихся продуктов и в ряде аналогичных случаев.

3.4. Сенсорный датчик повышенной надежности

При протекании электрического тока через проводник вокруг последнего возникает электромагнитное поле. Физическая природа явления рассмотрена в [25].

Как известно, городские квартиры и производственные помещения «окутаны» проводами разного сечения и назначения, что приводит к появлению «наводок», в том числе и в теле человека.

Сенсорные электронные узлы с элементами, имеющими высокое входное сопротивление (например КМОП-элементы, полевые транзисторы и т. д.), чувствительны даже к небольшому напряжению, наведенному в теле человека, и на этом принципе построены многие датчики с эффектом сенсорного управления.

На рис. 3.8. представлено аналогичное по принципу действия устройство стабильного сенсора.

На схеме представлен узел, срабатывающий (включающий устройство нагрузки) при прикосновении человека или животного к контакту E1. Наведенное в теле напряжение оказывается достаточным для импульсного управления элементом микросхемы DD1.1.

Рис. 3.8. Электрическая схема сенсора

Естественно, устройство будет полезно только вблизи электрической проводки; на открытых пространствах (например в лесу, в поле) оно не работоспособно.

Чувствительность узла очень велика, что позволяет реагировать на прикосновение человека даже в матерчатых перчатках. Особенность узла в том, что элемент микросхемы DD1.1 изменяет свое логическое состояние (перебрасывается) каждый раз при каждом новом прикосновении и переходит в другое устойчивое состояние, то есть он играет роль триггера:

- **первое прикосновение** (к контакту E1) — капсюль НА1 издает звук (продолжительность не ограничена);
- **второе прикосновение** — звук прекращается.

Конденсатор С1 защищает узел от ложных срабатываний. Применение С1 особенно актуально, если длина проводника от контакта Е1 ко входу элемента микросхемы DD1.1 более 10 см — для улучшения качества работы устройства надо стремиться к минимальной длине этого проводника. В качестве сенсора Е1 используется любой токопроводящий предмет, например металлическая дверная ручка.

Один из вариантов применения узла в быту — звуковое сигнализирование при прикосновении кого-либо к ручке входной двери квартиры или другого охраняемого объекта.

Конструктивные особенности монтажа, выбора корпуса, электрических характеристик элементов и возможных замен аналогичны предыдущему описанию.

На основе такого сенсорного датчика можно самостоятельно разработать и реализовать множество самых разнообразных электронных устройств, управляющих (при помощи соответствующей логической схемы) любой электронной нагрузкой.

ГЛАВА 4

ОБЗОР РЕСУРСОВ СЕТИ ИНТЕРНЕТ

*Всемирная сеть Интернет — кладезь полезной
для радиолюбителей информации.*

*Приводимые в данной главе ссылки помогут читателям
сэкономить время и деньги при поиске ответов на вопросы,
возникающие при изготовлении и эксплуатации датчиков
и устройств регистрации.*

От автора

Всемирная сеть Интернет предоставляет радиолюбителям безграничные возможности по поиску информации. Достаточно задать ключевое слово (запрос) поисковой системе (Google, Rambler, Yandex и т. п.), и к вашим услугам: электронные библиотеки, схемы, актуальные справочные данные по современным радиоэлементам, которые охватывают практически весь спектр электронных приборов — от постоянных резисторов до программируемых микроконтроллеров, от светодиодов до ионисторов (оксидных конденсаторов сверхбольшой емкости)...

Кроме того, Интернет позволяет приобрести любые комплектующие, используя он-лайн-магазины.

Для упрощения поиска справочных материалов ниже рассматриваются наиболее (на взгляд автора) познавательные и проверенные ресурсы, содержащие много полезной информации, касающейся датчиков различного назначения. Описания сайтов (как правило) сопровождаются экранными копиями («скриншотами») — автор надеется, что подобная наглядность позволит читателю выбрать необходимый ресурс, сэкономив время (и деньги) при поиске информации.

4.1. Специализированные сайты

<http://anker50.narod.ru> — крупнейший русскоязычный ресурс по металлоискателям; на сайте рассмотрены промышленные модели металлоискателей, используемых в различных сферах деятельности, а также радиолюбительские конструкции, незаменимые для кладоискателей. Рассматриваются конструкции различного уровня сложности: от элементарных до уникальных устройств, реагирующих на мелкие (размером с пятикопеечную монету СССР) металлические предметы с расстояния 1,5 м.

Рис. 4.1. Сайт anker50.narod.ru

Особый интерес представляет форум: обмен мнениями не ограничивается обсуждением параметров и электрических характеристик металлоискателей, а выходит за эти узкие рамки, предлагая пользователям информацию о поиске кладов и наследии минувших войн...

http://radioam.nm.ru — замечательный ресурс с удобной навигацией и множеством практических электронных схем. Устройства сигнализаторов и электронные узлы, где в качестве чувствительного элемента применяются датчики, расположены под значком «Схемы».

Рис. 4.2. Сайт radioam.nm.ru

www.symmetron.ru — русскоязычный портал фирмы «Симметрон», выпускающей датчики различного назначения (пироэлектрические, магниторезистивные, пьезоэлектрические и т. п.). «Симметрон» периодически выпускает каталоги новых электронных компонентов и дублирует эту информацию на печатном носителе. Заказать каталоги можно на сайте.

Рис. 4.3. Сайт компании «Симметрон»

www.a-e.ru — содержимое этого сайта — не реклама, а скорее справочник, предоставляющий электрические, оптические и другие характеристики разнообразных датчиков. Здесь в качестве производителя и продавца выступает компания «Альбатрос Электроникс» — партнер фирмы «Murata». Для открытия окна с параметрами датчиков необходимо выбрать «Продукция» и далее «Прочее».

http://www.elbase.ru — изделия электронной техники — импортные компоненты. Каталог 2006. Компания «Электронная база» расширяется с каждым днем; имеет представительства в нескольких регионах России и планирует открыть сеть розничных магазинов. Компания занимается разработкой, производством и продажей (в том числе по бонусным программам) электронных компонентов, среди которых — различные промышленные датчики. «Электронная база» является партнером нескольких зарубежных фирм-производителей, таких как «Nec», «Motorola» и других, поэтому в ее арсенале можно любые устройства, например редкие (в розничной продаже) датчики, реагирующие на пары алкоголя или сероводород.

Рис. 4.4. Сайт компании «Альбатрос Электроникс»

Рис. 4.5. Сайт компании «База электроники»

www.bloknotik.ru — уменьшительно-ласкательное название данного сайта совершенно не гармонирует с его познавательным назначением и насыщенностью серьезной, полезной для радиолюбителей информацией. Это радиотехнический портал, где глубоко рассматриваются вопросы связи и охранно-пожарных сигнализаций. Приводятся принципиальные электрические схемы некоторых моделей. Сайт насыщен многочисленными анонсами и ссылками на ресурсы Интернета аналогичной направленности. На сайте удобная навигация, публикуются вызывающие огромный интерес (на взгляд автора) материалы, например статья о «глушителе» сотовых телефонов (как известно, культура части населения в сфере разговоров по «мобильному» пока несовершенна, а в некоторых местах, таких как части МВД и МО, самолеты и даже маршрутные такси, уже вывешиваются объявления типа: «разговоры по мобильному телефону запрещены». Оставим правоведам оценку подобных объявлений, однако очевидно, что в некоторых местах и ситуациях внезапно зазвонивший сотовый телефон может привести к нежелательным и опасным для людей последствиям.

Рис. 4.6. Сайт *bloknotik.ru*

<http://schematic.by.ru/> — электроника для дома и автомобиля, промышленная аппаратура, средства защиты, источники питания, измерительная техника. Удобная навигация. Много практических, легко повторяемых схем, реализованных на доступной элементной базе. В представленных электрических схемах задействованы различные электронные датчики, в том числе датчики дыма и датчики пожарной сигнализации, реагирующие на тепло.

Рис. 4.7. Увлекательный сайт *schematic.by.ru*

4.2. Сайты-справочники по электронным компонентам

Как только речь заходит о новой разработке, самодельной конструкции или ремонте электронной техники, не обойтись без справочной литературы. В наше время Интернет уже занял прочные позиции, его популярность достигла планки необратимости, а ресурс далеко не исчерпан. Благодаря справочным данным радиолюбителю и специалисту-электронщику удается с успехом «плавать» в огромном океане различных электронных компонентов. Такие сайты весьма популярны для всех, кто так или иначе занимается самостоятельным техническим творчеством, ведь даже при повторении электронной разработки подчас требуется заглянуть в справочник — для замены той или иной, не оказавшейся рядом детали. Ниже рассмотрим несколько справочных сайтов.

<http://www.ntpo.com/electronics> — большой справочник для электронщика.

Рис. 4.8. Сайт ptpo

Рис. 4.9. Сайт qrx.narod.ru

Рис. 4.10. Сайт-справочник [http://www\(chipinfo.ru/](http://www(chipinfo.ru/)

http://qrx.narod.ru/spravka/pr_om.htm — сайт содержит много рекомендательной информации по разработке, настройке и ремонту электронных схем. Почти половину его полезного ресурса составляют справочные данные.

<http://www.chipinfo.ru/> — CHIPINFO — электронные компоненты и электроника (каталоги и справочники)

<http://www.inp.nsk.su/~kozak/hbks.htm> — каталоги и справочники.

На сайте представлены справочные материалы по полупроводниковым приборам, цифровым микросхемам и их аналогам

www.platan.ru — очень популярный справочный ресурс. Представлены практически все отечественные и зарубежные электронные компоненты и, что немаловажно, их параметры (в т. ч. размеры), а также электрические характеристики. Есть форма заказа и система бонусов.

Рис. 4.11. Сайт фирмы «Платан»

Рис. 4.12. Сайт «Новэл»

www.nowel.ru — отечественные и импортные радиокомпоненты. Удобная навигация. Большая и современная элементная база.

www.chip-dip.ru — справочная информация и прайс-лист на элементы.

www.microchip.ru — сайт ООО «Микро-чип». Справочник по микроконтроллерам (PICxxx, 24Cxxx и др.). Приводятся схемы практического применения таких микросхем с полным описанием (включая программы).

4.3. Многопрофильные сайты

Одним из многопрофильных сайтов является сайт издательства «Наука и Техника». Это издательство выпускает поистине многопрофильную литературу (достаточно взглянуть на окно сайта). Марка издательства «Наука и Техника» широко известна в России и за рубежом. На сайте работает Интернет-магазин.

<http://www.aradio.cz> — сайт чешского журнала изобилует многочисленными практическими схемами и описаниями электронных устройств.

<http://skrivenko.by.ru> — сайт Сергея Кривенко, отличающийся удобной навигацией и насыщенностью ресурса.

<http://www.hot.ee/zps/> — ZPS-electronics: коллекция электронных схем на самые разные темы и различной сложности, технологические советы, справочник по интегральным стабилизаторам напряжения и аналогам микросхем КМОП, ЭСЛ и ТТЛ.

Рис. 4.13. Портал издательства «Наука и Техника»

Рис. 4.14. Сайт aradio.cz

Рис. 4.15. Сайт Сергея Кривенко

<http://anklab.pirit.sibtel.ru/> — AK Laboratory Homepage. Попытка представления архива журналов по радиоэлектронике. Коллекция ссылок. Оригинально оформлена первая страница сайта.

Рис. 4.16. Сайт ZPS-electronics

<http://www.knn.cjb.net/> — схемы отечественной бытовой аппаратуры (в формате DjVu).

<http://pblock.narod.ru/> — блок питания. Радиоэлектроника, компьютеры (схемы и ремонт).

<http://www.tacxema.narod.ru/> — телефония — огромный архив практических принципиальных схем. На странице собраны практически все электрические схемы выпускавшихся до 2006 года телефонных аппаратов и устройств сопутствующего назначения.

<http://www.telemaster.ru/> — Теле-Видео-Service (Все о ремонте телевизоров и видеотехники).

www.funkamateur.de — журнал «Funkamateur», Германия.

www.radiohobby.com — журнал для аудиофилов и пользователей ПК «Радиохобби», Украина.

Рис. 4.17. Сайт «Блок питания»

Рис. 4.18. Сайт «Телефония—архив схем»

Рис. 4.19. Сайт «Все о ремонте теле- и Видеотехники».

www.sea.com.ua/ra — «Радиоаматор», периодический журнал для радиолюбителей, Украина.

www.radio.ru — «Радио», журнал.

www.elektrorevue.cz/clanky — «Электроревю», чешский радиотехнический журнал.

www.chipnews.gaw.ru — электронная версия научно-технического журнала «Chip News».

www.remserv.ru — «Ремонт и Сервис», журнал для ремонтников и радиолюбителей.

www.alekssam.chat.ru — «Ремонт электронной техники», журнал.

www.orc.ru — Интернет-журнал для схемотехника.

www.shema.ru — схемы электронных устройств на любой вкус.

www.3ggi.qrz.ru/file.shtml — странички российских радиолюбителей. Бесплатные программы по электронике. Конструирование схем, разводка печатных плат, приборы-помощники. Сайт для радиолюбителей.

www.izone.com.ua — электронный журнал о компьютерах и высоких технологиях. Сделан в виде архивных файлов, которые можно скачать и читать в автономном режиме.

www.catalog.press.net.ru — журналы в Интернете. Более 2500 наименований периодических русскоязычных журналов с адресами и координатами.

www.electronicsforu.com — радиоэлектроника и радиотехнические программы. Сайт журнала «Electronics for you».

www.radioland.fatal.ru — схемы цифровой электроники.

http://www.amt.ural.ru — ресурс уральских радиолюбителей насыщен схемами и описаниями электронных устройств. Представлены программы для электронщиков, ссылки на ресурсы сети Интернет, информация о доработке компьютерного «железа». Удобная навигация.

http://avbelov.chat.ru — на сайте выложено несколько интересных схем с описаниями конструкций на основе микропроцессоров (в основном AT89C2051). Например схема устройства автоматического позиционирования спутниковой антенны на 99 каналов.

http://ampp.narod.ru/index.htm — сайт «Мастерская электронной техники». Обмен опытом в области электронного приборостроения, измерительной техники.

Список использованной литературы

1. *В.И. Иванов, А.И. Аксенов, А.М. Юшин.* Полупроводниковые оптоэлектронные приборы // Справочник. — М: Энергоатомиздат. — 1989.
2. *А.М. Юшин.* Оптоэлектронные приборы и их зарубежные аналоги. Справочник. — М.: РадиоСофт. — 2003 (в 5-ти томах).
3. Микросхема IR2101.— Радиомир, № 10. — 2004. — С. 1.
4. *И.В. Баулан.* За барьером слышимости. — М.: Энергоатомиздат. — 1971.
5. *И.Г. Хорбенко.* Звук, ультразвук, инфразвук. — М: Радио и связь. — 1986.
6. *Б.А. Агранат* и др. Основы физики и техники ультразвука. — М.: Энергия. — 1987.
7. *А.П. Кашиков.* Сенсорный звуковой сигнал в автомобиле. — Электрик, № 8. — 2004. — С. 11.
8. *А.П. Кашиков.* Подбор диодов для пар. — Радиомир, № 10. — 2004. — С. 18.
9. *А.П. Кашиков.* Что могут старые стабилитроны? — Радиомир, № 9. — 2004. — С. 36.
10. *А.П. Кашиков.* Регулятор яркости подсветки шкалы. — Радио, № 9. — 2004. — С. 3.
11. *А.П. Кашиков.* ИК автомат управления освещением.— Радио № 7. — 2004. — С. 0.
12. *А.П. Кашиков.* Управление бытовым прибором с помощью радиозвонка. — Радио, № 2. — 2005. — С. 12.
13. *А.П. Кашиков.* Коммутатор дополнительных фонарей стоп-сигнала. — Радио, № 8. — 2004. — С. 8.
14. *А.П. Кашиков.* Регулятор яркости шкалы. — Радио, № 9. — 2004. — С. 8.
15. *А.П. Кашиков.* КР1006ВИ1 в режиме прерывистой генерации. — Радио, № 2. — 2005. — С. 55.

16. А.П. Кашикаров. Кратковременный сигнализатор включения устройств. — Радиоаматор, № 11. — 2004. — С. 25.
17. А.П. Кашикаров. Бегущие огни + цветомузыка. — Радиомир, № 11. — 2004. — С. 38.
18. А.П. Кашикаров. «Музыкальные» программы. — Радиомир, Ваш компьютер, № 11. — 2004. — С. 2.
19. А.П. Кашикаров. Защита телефона от пиратов. — Радиомир, № 12. — 2004. — С. 9.
20. А.П. Кашикаров. Термосигнализатор для сауны. — Радиомир, № 12. — 2004. — С. 28.
21. А.П. Кашикаров. Кратковременное включение нагрузки. — Радиомир, № 12. — 2004. — С. 32.
22. А.П. Кашикаров. Охрана по радиоканалу. — Радиомир, № 1. — 2005. — С. 21.
23. А.П. Кашикаров. Управление бытовыми приборами с помощью радиозвонка. — Радио, № 2. — 2005. — С. 12.
24. А.П. Кашикаров. Наступил...зажегся свет. — Радиолюбитель, № 11, 1999. — С. 9.
25. А.П. Кашикаров. «Магический» цветок. — Радиолюбитель, № 1, 2000. — С. 9.
26. А.П. Кашикаров. Да будет рыбам свет! — Радиолюбитель № 1. — 2001. — С. 36.
27. А.П. Кашикаров. Освещение включает ПДУ. — Радиомир, № 6. — 2001. — С. 17.
28. А.П. Кашикаров. Еще один вариант охранного устройства. — Радиомир, № 9. — 2001. — С. 38.
29. А.П. Кашикаров. Замедленное выключение света в салоне. Вторая жизнь центрального замка. — Радиомир, № 2. — 2002. — С. 22.
30. А.П. Кашикаров. Звуковые автомобильные сигнализаторы. — Радиомир, № 6, 2000. — С. 21.
31. А.П. Кашикаров. Цифровой таймер. — Радиомир, № 7. — 2002. — С. 21.
32. А.П. Кашикаров. Некоторые отечественные аналоги популярных зарубежных радиоэлементов. — Радиохобби, № 2. — 2003. — С. 31.

33. А.П. Кашикаров. Бесконтактный датчик присутствия. — Радиомир, № 5. — 2003. — С. 38.
34. А.П. Кашикаров. Охрана входной двери. — Радиомир, № 4. — 2003. — С. 38.
35. А.П. Кашикаров. Радиолюбителям: Схемы для быта и отдыха. — М.: ИП РадиоСофт, 2003 (Книжная полка радиолюбителя. Вып. 3).
36. А.П. Кашикаров. Фото- и термодатчики в электронных схемах. — М.: Альтекс, 2004.
37. А.П. Кашикаров. Автомат для клавиатуры АОН. — Радиоаматор, № 9. — 2003. — С. 56.
38. А.П. Кашикаров. Радиолюбителям: Электронные помощники. — М.: ИП РадиоСофт, 2004 (Книжная полка радиолюбителя. Вып.7).
39. А.П. Кашикаров. Радиолюбителям: Электронные узлы. — М.: РадиоСофт, 2006 (Книжная полка радиолюбителя. Вып.10).
40. А.П. Кашикаров, А.Л. Бутов. Радиолюбителям: Схемы для дома — М.: Горячая линия-Телеком, 2006 (Массовая радиобиблиотека, вып.1275).
41. В помощь радиолюбителю. Выпуск 1. Информационный обзор для радиолюбителей. — М.: NT Press. — 2005. — С. 32,54 / Кашикаров А.П./ (Электроника своими руками).
42. А.П. Кашикаров. Новаторские решения в электронике. — М.:NT Press, 2006.
43. А.П. Кашикаров. А.Л. Бутов. Оригинальные конструкции для радиолюбителей. — М.: Альтекс, 2006.
44. А.П. Кашикаров. Пороговый переключатель. — Радиомир, № 6. — 2003. — С. 20.
45. А.П. Кашикаров. Сигнализация с емкостным датчиком. — Радиомир, № 9. — 2002. — С. 17.
46. А.П. Кашикаров. Автоматический сетевой выключатель. — Радиомир, № 1. — 2003. — С. 18.
47. А.П. Кашикаров. Охрана входной двери. — Радиомир, № 4. — 2003. — С. 38.
48. А.П. Кашикаров. Бесконтактный датчик присутствия. — Радиомир, № 5. — 2003. — С. 38.

49. А.П. Кашиков. Сетевой фильтр не только для ПК. — Радиомир, № 7. — 2003. — С. 17.
50. А.П. Кашиков. Сенсор + триггер включают бра. — Радиомир, № 7. — 2003. — С. 22.
51. А.П. Кашиков. Термометр на KP572ПВ. — Радиомир, № 7. — 2003. — С. 35.
52. А.П. Кашиков. Реализация нестандартных звуков. — Радиомир, № 8. — 2003. — С. 38.
53. А.П. Кашиков. Датчик присутствия. — Радиомир, № 9. — 2003. — С. 0.
54. А.П. Кашиков. Автомат периодического включения нагрузки. — Радиомир, № 10. — 2003. — С. 16.
55. А.П. Кашиков. Блок питания с автоматической зарядкой для мобильного телефона. — Радиоаматор, № 2. — 2005. — С. 51.
56. А.П. Кашиков. Автоматические зарядные устройства. — Радиоаматор, № 4. — 2005. — С. 55.
57. А.П. Кашиков. Квартирный звонок «Соловей». — Радиомир, № 2. — 2005. — С. 0.
58. А.П. Кашиков. Термореле. — Радиомир, № 3. — 2005. — С. 38
59. А.П. Кашиков. Универсальный корпус. — Радиомир, № 3. — 2005. — С. 21.
60. А.П. Кашиков. Коммутатор нагрузки. — Радиомир, № 6. — 2005. — С. 36.
61. А.П. Кашиков. «Полевой» кипятильник. — Радиомир, № 6. — 2005. — С. 19.
62. А.П. Кашиков. «Переговорник» для мотоцикла. — Радиомир, № 3. — 2005. — С. 6.
63. А.П. Кашиков. ИК- шлейф в сторожевом устройстве. — Радио, № 4. — 2005. — С. 0.
64. А.П. Кашиков. Варианты включения пьезоэлектрических излучателей и мигающего светодиода. — Радио, № 8. — 2005. — С. 62.
65. А.П. Кашиков. Простой звуковой сигнализатор ИК-излучения. — Радиоаматор, № 3. — 2005. — С. 20.

66. А.П. Каширов. Датчик давления. — Радиомир, № 4. — 2005. — С. 34.
67. А.П. Каширов. «Мобильник» и конфиденциальность. — Радиомир, № 4. — 2005. — С. 12.
68. А.П. Каширов. Разговаривая с оппонентом — всегда улыбайся. — Радиомир, Ваш компьютер, № 5. — 2005. — С. 22.
69. А.П. Каширов. Бестрансформаторный стабилизированный ИП. — Радиомир, № 5. — 2005. — С. 9.
70. А.П. Каширов. Звуковой индикатор освещенности. — Радиомир, № 5. — 2005. — С. 36.
71. А.П. Каширов. На пути к вечной лампе. Еще один вариант продления срока службы электрических ламп накаливания. — Электрик, № 4. — 2005. — С. 1.
72. А.П. Каширов. Адаптер для ПК. — Радиомир, Ваш компьютер, № 6. — 2005. — С. 37.
73. А.П. Каширов. Простой генератор с мощным выходом. — Радиоаматор, № 5. — 2005. — С. 25.
74. А.П. Каширов. Тестер в качестве индикатора работы передающего тракта радиостанции. — Радиоаматор, № 11. — 2005. — С. 55.
75. А.П. Каширов. Доработка радиостанции Лен-В. — Радиоаматор, № 11. — 2005. — С. 56.
76. А.П. Каширов. Беспроводной квартирный звонок. — Радиоаматор, Электрик, № 9. — 2005. — С. 32.
77. А.П. Каширов. Электронный регулятор громкости для абонентского громкоговорителя. — Радиоаматор, № 9. — 2005. — С. 9.
78. А.П. Каширов. Два в одном: новая жизнь центрального замка. — 12 Volt, № 4. — 2003. — С. 12.
79. А.П. Каширов. Озвучивание «поворотников». — 12 Volt, № 5. — 2003. — С. 22.
80. А.П. Каширов. «Полевой» кипятильник. — Радиомир, № 6. — 2005. — С. 19.
81. А.П. Каширов. Коммутатор нагрузки. — Радиомир, № 6. — 2005. — С. 36.
82. А.П. Каширов. Охлаждение воды в аквариуме. — Радиомир, № 7. — 2005. — С. 35.

83. А.П. Каширов. Звуковой сигнализатор для автомобилистов. — Радиомир, № 8. — 2005. — С. 24.
84. А.П. Каширов. Локализация помех электретного микрофона. — Радиомир, № 8. — 2005. — С. 10.
85. А.П. Каширов. Трехвыводные проходные конденсаторы. — Радиомир, № 8. — 2005. — С. 2.
86. А.П. Каширов. Лечить или не лечить—вот в чем вопрос... Рекомендации по ремонту СВЧ-печи. — Машины и механизмы, № 1. — 2006. — С. 24—27.
87. А.П. Каширов. «Ползучая» неисправность плейера. — Радиомир, № 3. — 2006. — С. 7.
88. А.П. Каширов. «Полевые» ключи. — Радиомир, № 3. — 2006. — С. 17.
89. А.П. Каширов. О надежности автосигнализации. — Радиомир, № 3. — 2006. — С. 30.
90. А.П. Каширов. Доработка радиостанции Лен-В. — Радиомир, № 3. — 2006. — С. 3.
91. А.П. Каширов. Фотодатчик на триггере Шмита. — Радиомир, № 9, 2005 с.34.
92. А.П. Каширов. Эффективное использование многослойных керамических конденсаторов. — Радиомир, № 7. — 2005.
93. А.П. Каширов. Проверяем трансформаторы и катушки индуктивности. — Электрик, № 6. — 2005. — С. 30.
94. А.П. Каширов. Портативный датчик задымленности на MC145017P. — Радиокомпоненты, № 3. — 2005. — С. 28.
95. А.П. Каширов. Триггерный эффект при эксплуатации промышленных выключателей на основе пироэлектрических детекторов и способ его локализации. — Электрик, № 8. — 2005. — С. 28.
96. А.П. Каширов. Временное включение нагрузки. — Электрик, № 7. — 2005. — С. 32.
97. А.П. Каширов. Сенсорные переключатели. — Радиомир, № 10. — 2005. — С. 36.
98. А.П. Каширов. Стабилитрон в качестве невосстанавливющегося предохранителя. — Электрик № 10. — 2005. — С. 23.

99. *А.П. Кацкаров.* Простая направленная антенна для Си-Би диапазона. — Радиомир, № 4. — 2006. — С. 5.
100. *А.П. Кацкаров.* Громкий телефон. — Радиомир, № 4. — 2006. — С. 10.
101. *А.П. Кацкаров.* Регуляторы вращения двигателей переменного тока. — Электрик, № 10. — 2005. — С. 35.
102. *А.П. Кацкаров.* Зависимое включение отдельных электронных устройств ПК. — Радиомир, Ваш компьютер, № 10. — 2005. — С. 2.
103. *А.П. Кацкаров.* Страж с памятью. — Радиомир, № 11. — 2005. — С. 36.
104. *А.П. Кацкаров.* Реанимация «Эликона». — Радиомир № 4. — 2006. — С. 15.
105. *А.П. Кацкаров.* Электронный фумигатор, отпугивающий летающих насекомых. — Радиоаматор, Электрик, № 5, № 6. — С. 30—31.
106. *А.П. Кацкаров.* Простое автоматическое устройство включения для колонок ПК. — Радиомир, Ваш компьютер, № 11. — 2005. — С. 4.
107. *А.П. Кацкаров.* Делитель частоты на 1000. — Радиомир, № 11. — 2005. — С. 15.
108. *А.П. Кацкаров.* Чудо XX века: реальность и перспективы. — Радиомир, Ваш компьютер, № 10. — 2005. — С. 25.
109. *А.П. Кацкаров.* Использование телефона с АОН версии «Русь27С» в режиме охраны помещений. — Радиоаматор, № 12. — 2005. — С. 9.
110. *А.П. Кацкаров.* Чудо XX века: реальность и перспективы. — Радиомир, Ваш компьютер, № 11. — 2005. — С. 19, Радиомир-ВК, 12. — 2005. — С. 20.
111. *А.П. Кацкаров.* Страж с памятью. — Радиомир, № 11. — 2005. — С. 36.
112. *А.П. Кацкаров.* На пути к вечной лампе. — Радиомир, № 12. — 2005. — С. 33.
113. *А.П. Кацкаров.* Доработка автомобильной радиостанции Alan 78plusR. — Радиомир, № 12. — 2005. — С. 36.

114. *А.П. Кацкаров.* Корпус для электретного микрофона. — Радиомир, № 1. — 2006. — С. 7.
115. *А.П. Кацкаров.* Тоновый сигнал переключения режимов прием/передача. — Радиомир, № 1. — 2006. — С. 5.
116. *А.П. Кацкаров.* Индикатор подключения нагрузки. — Радиомир, № 1. — 2006. — С. 3.
117. *А.П. Кацкаров.* Громкая и дистанционная связь для домашнего телефона. — Радиоаматор, № 1. — 2006. — С. 50.
118. *А.П. Кацкаров.* Восстановление аккумуляторов радиотелефонов. — Радиоаматор № 1. — 2006. — С. 51.
119. *А.П. Кацкаров.* Автомат для фильтрации воды. — Радиомир, № 2. — 2006. — С. 2.
120. *А.П. Кацкаров.* Повторяющаяся неисправность трансивера MJ-2701 — Радиомир, № 2. — 2006. — С. 4.
121. *А.П. Кацкаров.* Регулятор мощности из блока управления электродрелью. — Электрик, № 1—2. — 2006. — С. 59.
122. *А.П. Кацкаров.* Звуковой индикатор перегорания осветительной лампы. — Электрик, № 1—2. — 2006. — С. 58.
123. *А.П. Кацкаров.* Ртутный датчик положения (наклона). — Радиокомпоненты, № 2. — 2006. — С. 1.
124. *А.П. Кацкаров.* Замена усилителя мощности в автомобильной радиостанции Alan-18. — Радиоаматор, № 4. — 2006. — С. 50.
125. *А.П. Кацкаров.* Измерение мощности передатчика. — Радиоаматор, № 4. — 2006. — С. 50.
126. *А.П. Кацкаров.* Генератор на 100 МГц. — Радиоаматор, № 4. — 2006. — С. 51.
127. *А.П. Кацкаров.* Сетевой сенсор. — Электрик, № 3—4. — 2006. — С. 7.
128. *А.П. Кацкаров.* Устранение неисправностей и простые доработки телефонных аппаратов. — Радиоаматор, № 5. — 2006. — С. 52—54.
129. *А.П. Кацкаров.* Увеличение зоны ультразвуковых отпугивателей. — Радиомир, № 5. — 2006. — С. 17.
130. *А.П. Кацкаров.* Согласование Си-Би радиостанций с антенной. — Радиомир, № 5. — 2006. — С. 4.

131. *А.П. Каикаров.* Электронный фумигатор, отпугивающий летающих насекомых ультразвуковыми колебаниями. — Электрик, № 5—6. — 2006. — С. 39.
132. *А.П. Каикаров.* Индикатор протечки с оригинальным датчиком. — Радиолюбитель № 6. — 2006. — С. 13.
133. Маркировка электронных компонентов. 9-е изд. — М.: Додэка — XXI, 2004.
134. *В.Г. Уразаев.* Повышение влагостойкости многослойных печатных плат. — Электронные компоненты № 3. — 2002. — С. 13.
135. *Р.Э. Тигранян.* Микроклимат. Электронные системы обеспечения. — М.: РадиоСофт. — 2005. (Книжная полка радиолюбителя. Вып. 9).
136. *С. Рюмик.* Все о мигающих светодиодах.— Радиохобби, № 1. — 2002. — С. 31.
137. *П. Алешин.* Звукоизлучатели фирмы Ningbo East Electronics Ltd. — Схемотехника, № 6. — 2002. — С. 57.
138. *Б.Малашевич.* Отечественные ДМОП-транзисторы.—Схемотехника, № 7. — 2002. — С. 53—54.
139. Транзисторы средней и большой мощности. — М.: Радио и связь, 1994.
140. *А.П. Каикаров.* Оптоэлектронные МОП-реле. — Радиомир, № 9. — 2005. — С. 0.
141. Тиристоры фирмы Motorola. — Схемотехника № 1.— 2002.— С. 62—63.
142. Технические условия на тиристоры КУ221. — АО. 336. 419 ТУ.
143. Операционные усилители. — Радио № 10, 1989. — С. 91.
144. *И.Н. Сидоров.* — С. В. Скорняков. Трансформаторы бытовой радиоэлектронной аппаратуры. —М.:Радио и связь, 1994.
145. *В.Л. Шило.* Популярные микросхемы КМОП. — М.: Ягуар, 1993.
146. *Ю.А. Евсеев, С. С. Крылов.* Симисторы и их применение в бытовой электроаппаратуре. — М.: Энергоатомиздат, 1990.
147. Стандартные симисторы фирмы Philips Semiconductor. — Радиоаматор — Электрик, № 9. — 2002. — С. 16—17.

Закажите лучшие книги для радиолюбителей

500 схем для радиолюбителей

2-е издание,
перераб. и доп.

ISBN: 5-94387-244-2
Формат: 140×205 мм
Объем: 416 с.
Цена: 142 руб.

Заказ _____ экз.

2-е издание,
перераб. и доп.

ISBN: 5-94387-168-3
Формат: 140×205 мм
Объем: 272 с.
Цена: 109 руб.

Заказ _____ экз.

ISBN: 5-94387-185-3
Формат: 140×205 мм
Объем: 272 с.
Цена: 120 руб.

Заказ _____ экз.

Семьян А.П.

Названия этих книг начинаются словами «500 схем...», с уточняющими названиями «Приемники», «Источники питания», «Радиостанции и трансиверы» и др. В этих книгах собраны наиболее интересные схемы полезных устройств, дается возможность каждому радиолюбителю выбрать то, что ему необходимо из великого множества схем и конструкций, проверенных и испытанных на практике.

Звуковая схемотехника для радиолюбителей

ISBN: 5-94387-082-2
Формат: 140×205 мм
Объем: 400 с.
Цена: 120 руб.

Заказ _____ экз.

Петров А.А.

В книге изложен обширный материал по вопросам, касающимся акустики, грамзаписи, магнитной звукозаписи, конструирования различных узлов звуковой аппаратуры. Приведены наиболее интересные схемотехнические решения, практические схемы различных устройств. Рассмотрены вопросы проектирования устройств электропитания бытовой РЭА (расчет трансформаторов, дросселей, стабилизаторов напряжения, теплоотводов).

ISBN: 5-94387-085-7
Формат: 140×205 мм
Объем: 144 с.
Цена: 87 руб.

Заказ _____ экз.

Радиостанция своими руками

Шмырев А.А.

Книга поможет радиолюбителю при минимальных затратах создать приемо-передающий комплекс с хорошими характеристиками. Материал изложен подробно, с полными электрическими данными, с рисунками печатных плат, с методикой настройки трансиверной приставки. Книга содержит информацию о том, как с помощью изготовленной приставки работать с цифровыми видами связи, подключить к приставке ПК. На вклейке представлены принципиальные схемы радиоприемников Р-250 и Р-250М2.

Принимаются ксерокопии.

Закажите лучшие книги для радиолюбителей

Энциклопедия радиолюбителя. Работаем с компьютером

ISBN: 5-94387-117-9
Формат: 165×235 мм
Объем: 272 с.
Цена: 87 руб.

Заказ экз.

Пестриков В.М.

Энциклопедия радиолюбителя содержит системные научно-популярные сведения по различным вопросам практической радиоэлектроники: конструированию и изготовлению устройств, использованию компьютера в радиолюбительской практике. Основная цель книги — помочь всем интересующимся радиоэлектроникой разобраться в ее азах и сделать в ней первые практические шаги.

Радиоэлектроника в конструкциях и увлечениях

ISBN: 5-94387-124-1
Формат: 165×235 мм
Объем: 240 с.
Цена: 87 руб.

Заказ экз.

Пестриков В.М.

В книге представлены различные области любительской радиоэлектроники, которые могут вызвать интерес не только у тех, кто умеет держать в руках паяльник, но и у тех, кто не умеет этого делать, но желает с интересом провести свой досуг. Уделено внимание использованию компьютера в радиолюбительской практике и работе в Интернете.

Для любителей электронной музыки даны материалы по конструированию электрогитар и устройств.

Ламповый Hi-Fi усилитель своими руками

**2-е издание,
перераб. и доп.**
ISBN: 5-94387-177-2
формат: 140×205 мм
Объем: 272 с.
Цена: 131 руб.

Заказ экз.

Торопкин М.В.

Книга адресована любителям высококачественного звукоспроизведения. Следование приведенному материалу позволит собрать свой первый Hi-Fi ламповый усилитель. Для начинающих радиолюбителей представлена глава «Основы схемотехники ламповых усилительных каскадов». Тем, кто решил приобрести готовый усилитель или сравнить характеристики моделей заводского изготовления будет интересна глава «Обзор рынка ламповых Hi-Fi усилителей».

Аудиосистема класса Hi-Fi своими руками: советы и секреты

ISBN: 5-94387-226-4
Формат: 140×205 мм
Объем: 272 с.
Цена: 131 руб.

Заказ экз.

Андреев Д. А.
Торопкин М. В.

Данная книга является находкой для желающих обзавестись высококачественной аудиосистемой. Задача авторов — помочь всем категориям читателей в выборе, а имеющим радиолюбительскую подготовку — в изготовлении компонентов аудиосистемы.

Большое значение имеют приводимые в книге технологии и советы категории «ноу-хау», без обладания которыми можно лишь повторить конструкции, но нельзя добиться подлинно высококачественного звучания.

Принимаются ксерокопии.

Закажите лучшие книги для домашних мастеров

Справочник домашнего электрика

4-е издание

ISBN: 5-94387-243-4
Формат: 165×235 мм
Объем: 400 с.
Цена: 142 руб.

Заказ _____ экз.

Корякин-Черняк С.Л. Справочник обобщает необходимые домашнему электрику сведения по основам электротехники, элементам домашней электросети и Умного Дома, электро безопасности, организации эффективного освещения, учета и экономии электроэнергии. Материал в справочнике систематизирован. Приводится много интересных примеров, полезных советов, важных предупреждений, рисунков и таблиц. Даются ссылки на наиболее интересные ресурсы Интернет.

Настольная книга домашнего электрика: люминесцентные лампы

ISBN: 5-94387-198-5
Формат: 140×205 мм
Объем: 224 с.
Цена: 109 руб.

Заказ _____ экз.

Давиденко Ю. Н. Приведена расшифровка системы обозначения ЛЛ, основные параметры, рекомендации по выбору и применению, таблицы аналогов. Вторая глава поможет спроектировать и изготовить электронный балласт, найдя здесь практические конструкции, рисунки печатных плат, информацию по элементной базе.

Краткий справочник домашнего электрика

2-е издание

ISBN: 5-94387-176-4
Формат: 140×205 мм
Объем: 272 с.
Цена: 98 руб.

Заказ _____ экз.

Корякин-Черняк С.Л.

Современный дом уже не может существовать без электроприборов и сети освещения. Электрическая сеть должна всегда работать надежно и безопасно. Эта книга поможет домашнему мастеру поддерживать в полной исправности электросеть своего дома, дачи или квартиры. Приводятся много интересных примеров, полезных советов, важных предупреждений, рисунков и таблиц.

Освещение квартиры и дома

ISBN: 5-94387-145-4
Формат: 140×205 мм
Объем: 192 с.
Цена: 87 руб.

Заказ _____ экз.

Корякин-Черняк С.Л.

Доступно рассказано об устройстве и использовании светильников с лампами накаливания, люминесцентными и галогенными лампами. Особое внимание уделено полезным в быту радиолюбительским схемам. Читатель познакомиться и с освещением «Умного дома». Приводится много интересных примеров, полезных советов, рисунков, схем и таблиц.

Принимаются ксерокопии.

Закажите лучшие книги для домашних мастеров

Домашний электрик и не только

Пестриков В.М.

Книга 1

ISBN: 5-94387-354-6
Формат: 140×205 мм
Объем: 240 с.
Цена: 89 руб.

Заказ экз.

Первая книга двухтомника посвящена полезным в городе самоделкам. В популярной и занимательной форме рассмотрен широкий аспект практических работ в городской квартире. Эти работы часто связаны не только с электричеством, но и со смежными областями знаний — радиоэлектроникой, телевидением, сотовой связью, электронными охранными системами. Читатель научится правильно устанавливать и подключать различное электротехническое оборудование в городской квартире.

Домашний электрик и не только

Пестриков В.М.

Книга 2

ISBN: 5-94387-355-4
Формат: 140×205 мм
Объем: 240 с.
Цена: 89 руб.

Заказ экз.

Вторая книга двухтомника посвящена интересным схемам для дачи, садового участка, досуга. Рассмотрено электрооборудование и интересные схемы, использующиеся на даче или садовом участке.

Читатель сможет сделать небольшую электростанцию в загородном домике, установить и настроить обычную или спутниковую телантенну, сделать небольшой радиопередатчик или охранную сигнализацию, а также многое другое, что делает наш быт более комфортным и уютным.

Современные автосигнализации. Модели от А до Е

Корякин-Черняк С.Л.

ISBN: 5-94387-149-7
Формат: 165×235 мм
Объем: 400 с.
Цена: 158 руб.

Заказ экз.

Это справочник для тех, кто хочет самостоятельно выбрать, произвести установку, настройку, необходимый ремонт сигнализации своей машины. В нем подробно рассматриваются характеристики автосигнализаций, программируемость брелков, системы, общие параметры установки, специальные функции, отличающие одну систему от другой.

Автомобильные сигнализации. Модели от Е до З

Дворецкий М.Е.

ISBN: 5-94387-248-5
Формат: 165×235 мм
Объем: 544 с.
Цена: 175 руб.

Заказ экз.

Данная книга предназначена для широкого круга читателей, содержит обработанную и систематизированную информацию о новейших и самых ходовых моделях сигнализаций на рынке СНГ. Причем рассмотрены базовые модели, на которых построен модельный ряд. Подробно рассматриваются характеристики автосигнализаций, общие параметры установки, специальные функции, отличающие одну систему от другой.

Принимаются ксерокопии.

Закажите лучшие книги для домашних мастеров

Новейшая азбука сотового телефона

Пестриков В. М.

Полноценное и грамотное использование сотовых телефонов в повседневной жизни требует определенных знаний и навыков. В связи с этим, цель данной книги — помочь разобраться в различного рода вопросах, с которыми им приходится сталкиваться по-вседневно при эксплуатации сотового телефона. В книге рассмотрены вопросы выбора аксессуаров телефонов, установления мелодий, как с помощью оператора, так и самостоятельно с клавиатуры телефона.

3-е издание

ISBN: 5-94387-187-X
Формат: 165×235 мм
Объем: 368 с.
Цена: 142 руб.

Заказ экз.

Холодильники от А до Я

Корякин-Черняк С.Л.

В алфавитном порядке приводятся четкие описания большинства бытовых отечественных холодильников и морозильников. Рассмотрены основные узлы и схемные решения. Даются рекомендации по обслуживанию и ремонту, советы по эффективному использованию холодильников, связанные с долговечностью и экономичностью работы.

2-е издание,
перераб. и доп.

ISBN: 5-94387-072-5
Формат: 165×235 мм
Объем: 416 с.
Цена: 123 руб.

Заказ экз.

Защита автомобиля от угона

Бирюков С.В.

Книга создана для того, чтобы помочь в защите вашей движимой собственности. Книга будет полезна тем читателям, кто привык все делать своими руками. Практические советы станут гармоничным дополнением теории. Будут интересны советы о том, кому лучше доверить установку охранной системы.

ISBN: 5-94387-114-4
Формат: 140×205 мм
Объем: 176 с.
Цена: 61 руб.

Заказ экз.

Современные холодильники NORD

Ландик В.И., Горин А.Н.

Систематизированы сведения об устройстве бытовых холодильников NORD, работе составных частей. Приводятся принципиальные электрические схемы, схемы соединений, дается подробная информация об организации и методах ремонта. Рассмотрены все современные модели холодильников NORD «от А до Я».

ISBN: 5-94387-105-5
Формат: 165×235 мм
Объем: 144 с.
Цена: 72 руб.

Заказ экз.

Принимаются ксерокопии.

Закажите лучшие книги для телемастеров

1001 секрет телемастера

в трех книгах

2-е издание,
перераб. и доп.

ISBN: 5-94387-170-5
Формат: 165×235 мм
Объем: 304 с.
Цена: 153 руб.

Заказ экз.

2-е издание,
перераб. и доп.

ISBN: 5-94387-186-1
Формат: 165×235 мм
Объем: 224 с.
Цена: 153 руб.

Заказ экз.

ISBN: 5-94387-196-9
Формат: 165×235 мм
Объем: 256 с.
Цена: 153 руб.

Заказ экз.

Рязанов М.Г.

Созданию трехтомника предшествовал многотысячный поток электронных писем со всего мира на сайт автора www.telemaster.ru с просьбой дать совет по ремонту или с рассказом о том, как были решены проблемы с ремонтом зарубежных и отечественных ТВ. Работает форум телемастеров. Секреты ремонта в книгах систематизированы в алфавитном порядке. В книгах даны также фрагменты схем, описан состав шасси.

Телевизоры: ремонт, адаптация, модернизация

Саудов А.Ю.

Эта книга рассчитана на радиолюбителей с не-большим стажем, которые хотят испытать свои силы в модернизации и ремонте своего любимого телевизора. Описаны методы ремонта отечественных и зарубежных телевизоров, адаптация «европейских» телевизоров под наши стандарты.

2-е издание,
перераб. и доп.

ISBN: 5-94387-171-3
Формат: 140×205 мм
Объем: 336 с.
Цена: 125 руб.

Заказ экз.

Импульсные источники питания телевизоров

3-е издание,
перераб. и доп.

ISBN: 5-94387-353-8
Формат: 165×235 мм
Объем: 400 с.
Цена: *** в печати

Заказ экз.

Рязанов М.Г.
Янковский С.М.

В книге кратко рассмотрены принципы построения и работа источников питания ТВ. Основной упор сделан на рассмотрение конкретных схем с приведением необходимых пояснительных материалов. Схемы источников питания систематизированы по применяемой для их построения элементной базе.

Специальный раздел посвящен секретам ремонта, где рассмотрено несколько сотен реальных неисправностей.

Принимаются ксерокопии.

Закажите лучшие книги для телемастеров

Переносные телефизоры

ISBN: 5-94387-015-6
Формат: 165×235 мм
Объем: 512 с.
Цена: 142 руб.

Заказ _____ экз.

Саулов А.Ю.

Книга посвящена устройству, ремонту и регулировке отечественных и зарубежных переносных телевизоров. Приведены схемы с подробным описанием, типовые неисправности, а также рабочие режимы транзисторов и микросхем, осциллограммы в контрольных точках.

Телевизоры DAEWOO (шасси CP-375, CP-002, CP-185, CP-385, CP-785) и SAMSUNG (S15A и KS1A)

ISBN: 5-94387-113-6
Формат: 165×235 мм
Объем: 144 с. + схемы
Цена: 153 руб.

Заказ _____ экз.

Безверхний И.Б.

Настоящая книга посвящена схемотехнике современных телевизоров на примере ряда телевизоров низкой и средней ценовой категории фирм DAEWOO и SAMSUNG, выпущенных в последние семь лет. Большое внимание удалено современной элементной базе - БИС UOC (Ultimate One Chip). На шести листах вкладок представлены принципиальные схемы телевизионных приемников DAEWOO и SAMSUNG.

Телевизоры LG

(шасси: MC-51B,
MC-74A, MC-991A)

ISBN: 5-94387-071-7
Формат: 165×235 мм
Объем: 144 с. + схемы
Цена: 131 руб.

Заказ _____ экз.

Пьянов Г.И.

Все модели, вошедшие в книги данной серии, сертифицированы и производились для нашей страны в большом количестве. Рассмотрены принципы работы видеопроцессоров, микроконтроллеров. Должное внимание уделено специализированным устройствам, повышающим качество изображения. Содержит большое количество справочных данных. Прилагаются схемы электрические принципиальные телевизоров LG на шасси: MC-51B, MC-74A, MC-991A.

Видеопроцессоры семейства UOC TVAWA (шасси CP-385), LG (шасси MC-019A), SAMSUNG (шасси KS1A)

ISBN: 5-94387-101-2
Формат: 165×235 мм
Объем: 160 с. + схемы
Цена: 109 руб.

Заказ _____ экз.

Пьянов Г.И.

В новейших ТВ используется третье поколение видеопроцессоров семейства «One Chip Television». Это поколение телевизионных БИС назовано Ultimate One Chip (завершенный однокристальный). К данному поколению относится серия больших интегральных схем TDA935x/6x/8x. Практически все ведущие производители бытовой телевизионной техники представили длинные модельные ряды телевизоров с использованием какой-либо из микросхем данной серии.

Принимаются ксерокопии.

Современный четырехтомник «Телевизионные микросхемы»

Том 1. ИМС обработки телевизионных сигналов

ISBN: 5-94387-143-8
Формат: 165x235 мм
Объем: 288 с.
Цена: 142 руб.

Заказ _____ экз.

Том 2. ИМС для источников питания

ISBN: 5-94387-147-0
Формат: 165x235 мм
Объем: 192 с.
Цена: 142 руб.

Заказ _____ экз.

Том 3. ИМС обработки сигналов звукового сопровождения

ISBN: 5-94387-157-8
Формат: 165x235 мм
Объем: 240 с.
Цена: 142 руб.

Заказ _____ экз.

Том 4. ИМС для систем развертки

ISBN: 5-94387-148-9
Формат: 165x235 мм
Объем: 208 с.
Цена: 142 руб.

Заказ _____ экз.

Для рассмотрения выбраны наиболее популярные ТВ микросхемы. Они сгруппированы по томам в соответствии с функциональным назначением. В каждом томе ИМС расположены в алфавитном порядке. Для микросхем приводятся: основные функции, цоколевка, назначение выводов, структурная схема, типовая схема включения. Имеется алфавитный указатель ИМС.

Видеопроцессоры. Справочник

ISBN: 5-94387-081-4
Формат: 165x235 мм
Объем: 256 с.
Цена: 142 руб.

Заказ _____ экз.

В справочнике основное внимание уделено современным видеопроцессорам. Приводятся структурные схемы и типовые схемы включения микросхем. Описаны схемотехнические решения и принципы работы всех функциональных устройств, вошедших в состав видеопроцессоров с полным набором телевизионных функций TDA935x/6x/8x.

Телевизионные процессоры системы управления

2-е издание,
ISBN: 5-94387-047-4
Формат: 165x235 мм
Объем: 512 с.
Цена: 83 руб.

Заказ _____ экз.

Журавлев В.А.

В книге собраны материалы, касающиеся более ста наиболее распространенных семейств ТВ. В содержании книги в алфавитном порядке представлены: тип управляющего микроконтроллера, фирмы-производители, типы ТВ, в которых он применен. Такая концепция имеет своей целью облегчить поиск необходимого процессора и способа его программирования с ПДУ.

Принимаются ксерокопии.

Закажите лучшие книги для телемастеров

Все «Сервисные режимы телевизоров» в 12 томах

ISBN: 5-94387-049-0

Заказ экз.

ISBN: 5-94387-021-0

Заказ экз.

ISBN: 5-94387-048-5

Заказ экз.

ISBN: 5-94387-001-6

Заказ экз.

ISBN: 5-94387-044-X

Заказ экз.

ISBN: 5-94387-030-X

Заказ экз.

ISBN: 5-94387-031-8

Заказ экз.

ISBN: 5-94387-040-7

Заказ экз.

ISBN: 5-94387-045-8

Заказ экз.

ISBN: 5-94387-051-2

Заказ экз.

ISBN: 5-94387-052-0

Заказ экз.

ISBN: 5-94387-075-X

Заказ экз.

Книги являются справочниками по регулировке современных телевизоров с цифровым управлением в сервисном режиме, в котором основные регулировки производятся с помощью ПДУ. Авторами обработаны материалы фирменных описаний и руководств по сервисному обслуживанию, сети Интернет и отдельных публикаций, посвященных ремонту и регулировке ТВ. В каждом томе приведен алфавитный каталог моделей телевизоров, сервисные режимы которых рассмотрены в данной и предыдущих книгах. А в 12-м томе имеется полный каталог моделей всех томов. Это облегчает поиск необходимой вам модели.

Формат книг 165×235 мм, объем 208 стр., цена каждого тома 55 рублей. Цена всего комплекта — 600 рублей.

Принимаются ксерокопии.

Закажите справочники по электронным компонентам

Мощные транзисторы для телевизоров и мониторов

ISBN: 5-94387-184-5
Формат: 140×205 мм
Объем: 448 с.
Цена: 197 руб.

Заказ экз.

Справочник

Представлены данные на транзисторы, применяемые в выходных каскадах строчной развертки, в схемах видеодинамической фокусировки, в импульсных ИП. Приводятся: назначение, особенности, наименование выводов, структурная схема, вид корпуса, основные и предельно допустимые параметры. В конце книги помещена таблица возможных АНАЛОГОВ.

Интегральные усилители низкой частоты

2-е издание,
перераб. и доп.
ISBN: 5-94387-094-6
Формат: 140×205 мм
Объем: 528 с.
Цена: 175 руб.

Заказ экз.

Герасимов В.В.

Представлены практически все интегральные УНЧ, мощностью более 1 Вт, выпускаемые сегодня корпорациями SGS-THOMSON (ST-Microelectronics) и TO-SHIBA. Для каждой ИМС приводится вид корпуса и цоколевка, основные характеристики, структурная схема и схема включения, даются комментарии и графические зависимости. Для удобства пользования справочником описания микросхем систематизированы по производителям и расположены в алфавитном порядке.

Микросхемы для CD-проигрывателей. Сервисные

ISBN: 5-94387-061-X
Формат: 165×235 мм
Объем: 272 с.
Цена: 109 руб.

Заказ экз.

Справочник

Справочник составлен на основании технической документации ведущих производителей элементной базы, таких как SONY, PHILIPS, MATSUSHITA, SANYO, TOSHIBA, SAMSUNG, ROHM. Для каждой ИМС приводится вид корпуса и цоколевка, основные характеристики, структурная схема и схема включения, даются комментарии и графические зависимости. Для удобства пользования справочником описания микросхем систематизированы по производителям и расположены в алфавитном порядке.

Цифровые КМОП микросхемы

2-е издание,
перераб. и доп.
ISBN: 5-94387-002-4
Формат: 165×235 мм
Объем: 400 с.
Цена: 83 руб.

Заказ экз.

Партала О.Н.

В справочнике приводятся технические характеристики импортных цифровых КМОП микросхем серий от 4000 до 4599. Некоторые из них имеют отечественные аналоги, о чем указано в описаниях. В описании о каждой микросхеме указываются: назначение, таблица истинности, максимально допустимые параметры, электрические и временные характеристики и, при необходимости, схемы включения.

Принимаются ксерокопии.

Закажите справочники по электронным компонентам

Зарубежные микросхемы, транзисторы, тиристоры, диоды + SMD

ISBN: 5-94387-132-2
Формат: 140×205 мм
Объем: 656 с.
Цена: 241 руб.

Заказ экз.

ISBN: 5-94387-200-2
Формат: 140×205 мм
Объем: 688 с.
Цена: 241 руб.

Заказ экз.

ISBN: 5-94387-169-1
Формат: 140×205 мм
Объем: 672 с.
Цена: 241 руб.

Заказ экз.

Это трехтомное российское издание справочника, созданного на базе популярного немецкого справочника vrt 2005. Справочник предназначен, в первую очередь, для инженерно-технического персонала, занимающегося сервисным обслуживанием электронной техники и, надеемся, будет полезен радиолюбителям. Тома можно приобретать отдельно.

Активные SMD-компоненты: маркировка, характеристики, замена

ISBN: 5-94387-180-2
Формат: 165×235 мм
Объем: 544 с.
Цена: 251 руб.

Заказ экз.

Турута Е.Ф.

Справочник вышел одновременно в России и Германии. В нем приводится кодовая маркировка (SMD-коды) и характеристики 33 тысяч ИМС, транзисторов, тиристоров, диодов. SMD-коды разделены по типам корпусов и расположены в таблицах в алфавитно-цифровом порядке. Даны также цоколевки для дискретных элементов и большинства микросхем, типовые схемы включения ИМС.

Транзисторы. Справочник

в двух томах

Том 1.

ISBN: 5-94387-121-7
Формат: 165×235 мм
Объем: 544 с.
Цена: *** (в печати)

Заказ: экз.

Том 2.

ISBN: 5-94387-222-1
Формат: 165×235 мм
Объем: 544 с.
Цена: *** (в печати)

Заказ: экз.

Турута Е.Ф.

Этот двухтомный справочник одновременно вышел в России и в Германии. Он охватывает около 54 000 типов биполярных, 8 000 полевых и более 1000 типов IGBT транзисторов, которые расположены в алфавитно-цифровом порядке. Приведены основные параметры (P_C , P_D , U_{CE} , I_C , F_T и др.), рисунки корпусов, цоколевка, список фирм-производителей, SMD-коды для маркировки транзисторов в миниатюрных (SMD) корпусах, аналоги.

Принимаются ксерокопии.

Книги ПОЧТОЙ

Издательство «Наука и Техника» принимает заказы на продажу собственной печатной продукции по почте наложенным платежом. Оплата производится на почте при получении книг. Для этого Вам необходимо оформить бланк заказа и отправить его нам.

Для жителей России:

192029 Санкт-Петербург, а/я 44,
ООО «Наука и Техника»
тел/факс (812)-567-70-26, 567-70-25
E-mail: admin@nit.com.ru

Для жителей Украины:

02166 Киев-166, ул. Курчатова, 9/21,
«Наука и Техника»
тел/факс (044)-516-38-66
E-mail: nits@voliacable.com

С 1 декабря 2006 г. вы можете приобрести книгу из любой страны по предоплате. Подробности на сайте издательства:

www.nit.com.ru

Заполняйте поля аккуратно большими отдельными буквами.

Информация для приобретения книг почтой частными лицами

1. Фамилия, имя, отчество _____
2. Почтовый адрес: индекс _____ страна _____
область _____ город, поселок улица _____
дом _____ корпус _____ кв. _____
телефон (_____) _____
адрес электронной почты (если он у Вас есть) : E-mail: _____

БЛАНК ЗАКАЗА

(принимаются ксерокопии)

Автор.....	Название.....	Цена	Цена	Год	Объем	Заказ
		Россия	Украина	(руб.)	(грн.)	(экз.)

Популярная медицина и психология

Серия “Саквояж эскулапа”

Агафоничев.....	Анималотерапия. Усы, лапы, хвост - наше лекарство	65	15	2006.....	304
Бердникова.....	Мир ребенка: развитие психики, страхи, социальная адаптация, интерпретация детского рисунка	87	19	2007.....	288
Башкирова.....	Ребенок без папы: решение проблем неполной семьи	87	19	2007.....	272
Башкирова.....	Современный ребенок и его проблемы: детский сад, школа, дом, телевизор, интернет, улица	***	***	2007.....	240
Башкирова.....	9 месяцев до рождения. Настольная книга будущих мам	87.....	19.....	2006.....	384
Безрукова.....	Нос всему голова. Секреты ринологии: красота, здоровье, обоняние	65	15	2006.....	304
Болотовский.....	Как вырастить ребенка гением. 250 рецептов от педиатров, психологов, педагогов, диетологов	87	19	2006.....	416
Борисов.....	Стволевые клетки: Правда и мифы	76	17	2006.....	288
Гаврилова.....	Целлюлит: борьба яблока с апельсином (массаж, гимнастика, диеты, ароматерапия)	65	15	2006.....	304
Жирнова.....	Диеты? Диеты! (120 диет под одной обложкой)	65	15	2006.....	352
Ковпак.....	Как избавиться от тревоги и страха. Практическое руководство психотерапевта	***	***	2007.....	272

(принимаются ксерокопии)

Автор	Название	Цена Россия (руб.)	Цена Украина (грн.)	Год	Объем	Заказ (экз.)
Колисниченко	Новичок за рулем. Советы психолога, юриста, инструктора	83	19	2006	368	
Левенбаум	Надо ли худеть? Как стать красивой.	65	15	2006	320	
	Рецепты, советы, рекомендации					
Цветкова	Кладовая здоровья на вашем столе: фрукты	47	11	2006	240	
Цветкова	Кладовая здоровья на вашем столе: овощи	43	10	2006	208	

Серия "Кратко о важном"

Башкирова	Ждем ребенка. Рекомендации, подсказки, советы	22	5	2006	128	
Бердникова	Здоровый малыш (100 практических советов по уходу за ребенком)	22	5	2006	128	
Башкирова	Ваш малыш - это личность (100 практических советов по воспитанию ребенка)	22	5	2006	128	
Левенбаум	Самые популярные Диеты! За и против	22	5	2006	128	
Левенбаум	Диеты! Худеем по-вегетариански	22	5	2006	128	

Компьютерная литература**Серия: Компьютерная шпаргалка**

Егоров	МиниЖелтые страницы Интернет. Компьютерная шпаргалка	18	5	2006	80	
Егоров	Поиск в Интернет. Компьютерная шпаргалка	18	5	2006	80	
Золотарева	Электронная почта. Компьютерная шпаргалка	18	5	2006	80	
Колосков	Microsoft Windows XP. Компьютерная шпаргалка	18	5	2006	80	
Кузнецова	Microsoft Word 2003: работаем с текстом	18	5	2006	80	
Матвеев	Вычисления и расчеты в Excel 2003. Комп. шпаргалка	18	5	2006	80	
Юдин	Microsoft Excel 2003: работаем с таблицами	18	5	2006	80	

Серия: Просто о сложном

Алешков	Программы-переводчики. Осваиваем сами	54	12	2005	144	
Антоненко	Тонкий самоучитель работы на компьютере + цветные вкладки	87	19	2007	256	
Антоненко	"Толстый" самоучитель работы на компьютере, 2- е изд.	149	33	2007	544	
Бруга	Java по-быстрому. Практический экспресс-курс	164	36	2006	364	
Вольский	Turbo Pascal 7.0 для студентов и школьников	83	18	2007	224	
Воробьев	Nero Burning ROM 7. Записываем CD и DVD	65	15	2007	192	
Дмитриев	Настройки BIOS, 3-е изд., перераб. и доп.	***	***	2007	288	
Егоров	Легкий самоучитель работы в Интернете.					
	Все самое необходимое + цветные вкладки	87	19	2006	256	
Жарков	AutoCAD 2007. Эффективный самоучитель	***	***	2007	608	
Жарков	AutoCAD 2004. Эффективный самоучитель. Изд. 2-е	164	37	2005	560	
Жарков	AutoCAD 2005: Эффективный самоучитель	173	39	2005	600	
Жарков	AutoCAD 2006: официальная русская версия.					
	Эффективный самоучитель	186	42	2006	592	
Жарков	Создаем чертежи в AutoCAD 2006/2007 быстро и легко	98	22	2007	256	
Золотарева	Желтые страницы Интернет 2006: Лучшие русские ресурсы	94	20	2006	368	
Кадлец	DELPHI: Книга рецептов.					
	Практические примеры, трюки, секреты	164	36	2006	384	
Кальвик Дэвид	3Ds Max 8: осваиваем на практике					
	создание трехмерных миров + цветные вкладки	197	44	2006	368	
Колисниченко	Самоучитель PHP 5. 3-е издание	182	40	2005	576	
Колисниченко	Самоучитель LINUX. Установка, настр., использ. Изд. 4-е	175	39	2006	688	
Колисниченко	Сделай сам комп. сеть. Монтаж, настройка, обслуж.	142	29	2004	448	
Колисниченко	Англо-русский толковый словарь компьютерных терминов	83	18	2006	272	
Куприянова	Ядерные кнопки. Приемы эффективной работы					
	с использованием горячих клавиш	43	10	2007	128	

(принимаются ксерокопии)

Автор.....	Название.....	Цена	Цена	Год.....	Объем	Заказ (экз.)
		Россия (руб.)	Украина (грн.)			
Колосков	Windows XP. Популярный самоучитель. Изд. 2-е. перер. и доп.	108	24	2005	368	
Кузьмин.....	Поиск в Интернете: Как искать, чтобы найти.....	54	12	2006	160	
Кузнецова	Установка и переустановка Windows. Изд. 5-е.....	***	***	2007	128	
Кузнецова	Microsoft Windows XP. Краткое руководство	63	14	2005	256	
Куприянова	Реестр Windows XP: Трюки, настройки, секреты	65	15	2006	192	
Ложники.....	222 проблемы работы на компьютере и их решение.....	65	39	2006	224	
Марек.....	Ассемблер на примерах. Базовый курс	109	24	2005	240	
Матвеев	Самоучитель MS Windows XP. Все об использ. и настр. Изд. 2-е	160	36	2006	624	
Моркес	Microsoft Access 2003. Эффективный самоучитель.....	164	37	2006	352	
Подольский.....	Печать на ПК склемпом десятилапцевым методом. Изд. 3-е	28	6	2006	96	
Пономарев	Самоучитель работы на ПК + цветные вклейки, 2-е изд	109	24	2007	368	
Серогодский	Excel 2003 + цв.вклейки. Эффективный самоучитель. Изд. 2-е	153	34	2006	400	
Сухарев	Turbo Pascal 7.0. Теория и практика программирования, 3-е изд	164	37	2007	544	
Юдин.....	Легкий самоучитель работы на ноутбуке + цветные вклейки....	109	24	2007	256	
Юдин.....	Самоучитель работы на ноутбуке, 3 -е изд. перераб. и доп.....	***	***	2007	512	
Юдин.....	Самоучитель работы на ноутбуке. Изд. 2-е + цв.вклейки	175	39	2006	512	
	Скачиваем фильмы, музыку и программы из Интернета.					
	Пиринговые сети.....	65	15	2006	272	

Серия: Полное руководство

Бен Лонг.....	Цифровая фотография от А до Я.					
	Полное руководство с цв. вклейками +CD	285	65	2006	592	
Досталек	TCP/IP и DNS в теории и на практике. Полное руководство.....	263	58	2006	608	
Колисниченко	Linux: Полное руководство	252	54	2006	784	
Шетка.....	Microsoft Windows Server 2003: Полное руководство.....	241	53	2006	608	

Серия: Секреты мастерства

Колисниченко.....	IRC, IRC-каналы, IRC-боты: как пользоваться и как сделать самому. Избранные технологии Интернета	186	42	2006	368	
Колисниченко.....	Linux-сервер своими руками. Изд. 4-е перер. и доп.....	219	45	2005	752	
Колисниченко.....	Rootkits под Windows. Теория и практика программирования "шапок-невидимок", позволяющих скрывать от системы данные, процессы, сетевые соединения.	175	39	2006	320	
Мозговой	Классика программирования: алгоритмы, языки, автоматы, компиляторы. Практический подход	175	37	2006	320	
Мозговой	C++Мастер-класс. 85 нетривиальных проектов, решений и задач	193	43	2007	272	
Смит	Оптимизация и защита Linux-сервера своими руками	219	49	2006	576	
Сухарев	Основы Delphi. Профессиональный подход.....	184	37	2004	600	
Финков.....	Интернет. Шаг второй: от пользователей к профессиональному + CD	88	17	2002	768	
Юдин	Ноутбук: особенности использования и настройки. + цв.вклейки. 2-е изд., перераб. и доп.	186	41	2006	416	

Серии: Профи и др.

Вебер	Knowledge-технологии в консалтинге и управл. предпр.+ CD	127	18	2003	176	
Гургенидзе	Мультисервисные сети и услуги широкополосного доступа	87	18	2003	400	
Есипов	Информатика (учебник). Изд. 3-е	102	21	2003	400	
Куприянов	Техническое обеспечение цифровой обработки сигналов	66	12	2000	752	
Кучеров	Источники питания ПК и периферии. Изд. 3-е	142	32	2005	432	
Кучерявый	Пакетная сеть связи общего пользования	109	27	2004	272	
Кучерявый	Управл. трафиком и качество обслуживания сети Интернет	128	29	2004	336	
Щеглов.....	Защита комп. информации от несанкционир. доступа	164	20	2004	384	

(принимаются ксерокопии)

Автор.....	Название.....	Цена	Цена	Год.....	Объем	Заказ (экз.)
		Россия (руб.)	Украина (грн.)			
Серии: Конспект программиста и Библиотека пользователя						
Будилов.....	Практические занятия по PHP 4 + CD	33	9	2001	352	
Будилов.....	Работаем с FINALE 2001 + CD	50	10	2001	240	
Костельцев	Построение интерпретаторов и компиляторов + CD	44	9	2001	224	
Куправа.....	Самоучитель Access 97/2000 + дск	43	8	2001	144	
Николенко	MIDI — язык богов + CD	39	8	2000	144	

Радиоэлектроника, электричество и связь

Серия: Домашний мастер

Андреев	Аудиосистема класса Hi-Fi своими руками: советы и секреты	131	29	2006	208	
Балаянников	Обувь. Выбор, уход, ремонт	32	9	2003	240	
Бадын	Справочник Строителя-технолога	132	30	2005	320	
Бирюков	Защита автомобиля от угона	61	10	2003	176	
Давиденко	Настольная книга дом. электрика. Люмин. лампы	109	18	2005	224	
Дворецкий	Автомобильные сигнализации (модели Е..Z)	175	29	2006	544	
Корякин-Черняк .	Холодильники от А до Я. Изд. 2-е, перераб. и дополн.	123	20	2003	416	
Корякин-Черняк .	Освещение квартиры и дома	87	19	2005	192	
Корякин-Черняк .	Краткий справочник домашнего электрика. Изд. 2-е	98	22	2006	272	
Корякин-Черняк .	Современные автосигнализации (модели А..Е)	158	29	2006	400	
Корякин-Черняк .	Справочник домашнего электрика 5-е изд. перераб. и доп.	**	**	2007	400	
Ландик	Современные холодильники NORD	72	10	2003	144	
Пестриков	Новейшая азбука сотового телефона. Изд. 3-е	142	22	2005	352	
Пестриков	Домашний электрик и не только. Кн. 1. Изд. 5-е	98	22	2006	224	
Пестриков	Домашний электрик и не только. Кн. 2. Изд. 5-е	98	22	2006	224	
Торопкин	Ламповый Hi-Fi усилитель своими руками. Изд. 2-е	131	27	2006	272	

Серия: Радиолюбитель

Белов	Конструирование устройств на микроконтроллерах	нет	20	2005	256	
Виноградов	Микропроцессорное управление телевизорами	55	11	2003	144	
Петров	Звуковая схемотехника для радиолюбителей	нет	27	2003	400	
Саулов	Телевизоры: ремонт, адаптация, модернизация. Изд. 2-е	125	28	2005	320	
Саулов	Металлоискатели для любителей и профессионалов	109	24	2004	224	
Семьян	500 схем для радиолюб. Приемники. Изд. 2-е перер. и доп.	109	24	2005	272	
Семьян	500 схем для радиолюбителей. Источники питания. Изд. 2-е	142	25	2006	416	
Семьян	500 схем для радиолюбителей. Радиостанции и трансиверы	120	27	2006	272	
Шмырев	Радиостанция своими руками + вклейка	87	19	2004	144	

Серии: Телемастер и Энциклопедия телемастера

Безверхий	Телевизоры DAEWOO и SAMSUNG + схемы	153	17	2003	144	
Виноградов	Импульсные источники питания видеомагнитофонов	65	9	2003	160	
Корякин-Черняк .	Применение телевизионных микросхем. Т. 1	164	22	2004	320	
Корякин-Черняк .	Применение телевизионных микросхем. Т. 2	164	22	2004	304	
Корякин-Черняк .	Применение телевизионных микросхем. Т. 3	164	22	2005	320	
Пьянов	Тел. LG на шасси MC-51B, MC-74A, MC-991A + схемы	131	13	2003	144	
Пьянов	Видеопроцессоры семейства UOC + схемы	109	13	2003	160	
Рязанов.....	1001 секрет телемастера. Кн. 2. Изд. 2-е, перер. и доп.	164	34	2005	224	
Рязанов.....	1001 секрет телемастера. Книга 3	164	34	2006	256	
Рязанов М.Г.	1001 секрет телемастера. Книга 1, 3-е изд., доп. и перераб.	164	37	2007	288	
Рязанов М. Г.	Импульсные источники питания телевизоров, 3-е изд. перераб. и доп.	175	39	2006	400	
Саулов	Переносные телевизоры	142	12	2002	512	

(принимаются ксерокопии)

Автор.....	Название.....	Цена	Цена	Год.....	Объем	Заказ (экз.)
		Россия (руб.)	Украина (грн.)			

Серия: Электронные компоненты

Герасимов	Интегральные усилители низкой частоты. Изд. 2-е, перер. и доп.	175	13	2003.....	528	
Партала.....	Цифровые КМОП-микросхемы. Справочник.....	83	13	2001.....	400	
Турута.....	Активные SMD-компоненты: маркировка, характеристики, замена	251	56	2006.....	544	
Турута.....	Транзисторы. Справочник. Том 1.....	260	54	2006.....	544	
Турута.....	Транзисторы. Справочник. Том 2.....	260	54	2006.....	544	
.....	Микросхемы для CD-проигрывателей. Сервисные	109	18	2003.....	272	
.....	Видеопроцессоры. Справочник.....	142	18	2004.....	256	
.....	Зарубежные М/СХ, транзисторы, триисторы, диоды + SMD. 0...9.					
.....	Справочник, Изд. 3-е перераб. и доп.	241	54	2005.....	672	
.....	Зарубежные М/СХ, транзисторы, триисторы, диоды + SMD. A..Z.					
.....	Том 1 (A...M). Справочник, Изд. 3-е перераб. и доп.	241	54	2005.....	656	
.....	Зарубежные М/СХ, транзисторы, триисторы, диоды + SMD. A..Z.					
.....	Том 2 (N...Z). Справочник, Изд. 3-е перераб. и доп.	241	54	2005.....	688	
.....	Мощные транзисторы для телевизоров и мониторов.	197	44	2005.....	448	
.....	ТВ микросхемы. Т.1: ИМС обработки ТВ сигналов	142	18	2004.....	288	
.....	ТВ микросхемы. Т.2: ИМС источников питания	142	18	2005.....	288	
.....	ТВ микросхемы. Т.3: ИМС обработки сигн. звук. сопровожд.	142	18	2005.....	240	
.....	ТВ микросхемы. Т.4: ИМС для систем разверток	142	18	2005.....	208	

Серии: Радиомастер и др.

Авраменко	Ремонт и регулировка CD-проигрывателей + вклейки: 13 схем	58	нет.....	1999.....	160	
Брускин	Зарубежные резидентные радиотелефоны. Изд. 2-е.....	нет	7	2000.....	176	
Брускин	Схемотехника автоответчиков + вклейки: 14 схем.....	нет	7	1999.....	176	
Виноградов	Источники питания видеомагнитофонов	50	10	2001.....	256	
Виноградов	Источники питания видеомагнитофонов и видеоплейеров....	нет	6	1999.....	128	
Виноградов	Сервисные режимы телевизоров т. 1—12, цена за 1 том	55	6	2002.....	208	
Журавлев	Тел. процессоры системы управления. Изд. 2-е, дополн.	83	13	2001.....	512	
Заикин	Современные радиотелефоны (ТА от А до Я. Кн. 4).....	175	20	2004.....	352	
Корякин-Черняк	Телеф. аппараты от А до Я. Кн. 1: Абон. телеф. аппараты, Изд. 5-е..	121	18	2003.....	368	
Корякин-Черняк	АОН в телефонных аппаратах, Изд. 2-е (ТА от А до Я. Кн. 2)	109	18	2003.....	336	
Котенко	Электрон.телефон.аппараты, Изд. 3-е (ТА от А до Я. Кн. 3)	106	17	2003.....	272	
Кульский	КВ-приемник мирового уровня	40	6	2000.....	352	
Кучеров	Источники питания мониторов	нет	9	2001.....	240	
Лукин	Источники питания моноблоков и телевизоров	нет	6	1998.....	136	
Лукин	Телевизоры ближнего зарубежья	нет	6	1998.....	136	
Мухин	Энциклопедия мобильной связи	63	7	2001.....	240	
Партала.....	Видеокамеры + вклейки: 12 схем	нет	7	2000.....	192	
Пестриков	Энциклопедия радиолюбителя. Работаем с ПК	87	18	2004.....	272	
Пестриков	Радиоэлектроника в конструкциях и увлечениях	87	18	2004.....	240	
Янковский	Видеомагнит. серии ВМ. изд. 2 + вклейки: 5 схем А3.....	66	11	2000.....	272	

Цены розничные, указаны без учета почтовых расходов.

Издательство «Наука и Техника» представляет
книги по радиолюбительской схемотехнике!

Насмоловые книги для каждого радиолюбителя!

ISBN: 5-94387-102-0
Формат: 60x88/16
Объем: 408 с.: ил.

ISBN: 5-94387-1682-3
Формат: 60x88/16
Объем: 272 с.: ил.

ISBN: 5-94387-185-3
Формат: 60x88/16
Объем: 272 с.: ил.

Названия всех этих популярных книг начинаются словами «500 схем...», с расширением «Приемники», «Источники питания», «Радиостанции и трансиверы» и т.д. В них собраны наиболее интересные схемы соответствующих полезных устройств. Дается возможность каждому радиолюбителю выбрать то, что ему необходимо из великого множества схем и конструкций, проверенных и испытанных на практике.

Схемы не повторяют друг друга, содержат определенные элементы оригинальности, располагаются в очередности «От простого к сложному». Приводимого краткого описания вполне достаточно для самостоятельного изготовления понравившейся конструкции. В описании каждого устройства сделаны ссылки на первоисточники, в которых можно найти подробное описание рассмотренных в книгах устройств.

Книги рассчитаны как для начинающих, так и на продвинутых радиолюбителей, увлекающихся практической электроникой.

www.nit.com.ru

Россия: С.-Петербург, пр. Обуховской обороны, 107,
для писем: 192029 Санкт-Петербург а/я 44
(812)-567-70-25, 567-70-26, E-mail: nit@mail.wplus.net

Украина: 02166, Киев-166, ул. Курчатова, 9/21,
(044)-516-38-66, E-mail: nits@voliacable.com

500 СХЕМ
ДЛЯ РАДИОБИЛЕЙ