- 1. Highlight the flow of data in the MIPS data path for the instructions:
 - a) add \$s1, \$s2, \$s3
 - b) lw \$t3, 4(\$t4)

2. Consider the following sequence of simplified instructions:

Instruction Address:	Instruction:
100	ADD
104	BEQ + 200
108	ADD
112	ADD
308	ADD

Assume the following:

- There are 5 pipeline stages IF (Instruction Fetch), ID (Instruction Decode), EX (Execution), MEM (Memory Access), WB (Write Back).
- The second instruction, "BEQ +200", takes the branch and jumps to the instruction at the address 308.
- A branch instruction can determine the next PC only at the EX stage.
- The CPU always speculates that it will execute the instruction at (PC + 4) next.
- If a branch or jump needs to be taken, all instructions in the pipeline are killed.

Complete the time table below with the correct stages at each cycle for all instructions. Use *** for pipeline bubbles.

Instruction Address	Instruction		Time:							
		tO	t1	t2	t3	t4	t5	t6	t7	t8
100	ADD									
104	BEQ + 200									
108	ADD									
112	ADD									
308	ADD									

3. In the following instruction sequence for a MIPS 5-stage pipelined datapath, list the data hazards:

```
lw $s2, 0($s1)
lw $s1, 40($s6)
sub $s6, $s1, $s2
add $s6, $s2, $s2
or $s3, $s6, $zero
sw $s6, 50($s1)
```

4. Consider the following instruction sequence.

add r5,r2,r1 lw r3,4(r5) lw r2,0(r2) or r3,r5,r3

sw r3,0(r5)

a) Show the pipeline diagram after inserting NOPs to overcome data dependencies

Instruction:	T0	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10	T11	T12	T13	T14

b) Show the pipeline diagram after inserting Data Forwarding Unit to overcome data dependencies

Instruction:	Т0	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Т9	T10	T11	T12	T13	T14

c) Compare performance of (a) vs (b)

- 5. Assume the time for stages is
 - 100ps for register read or write
 - 200ps for other stages

Compare pipelined datapath with single-cycle datapath for the following instruction sequence:

lw \$1,100(\$0)

lw \$2,200(\$0)

lw \$3,300(\$0)

The following table provides how much time is spent in each stage by a specific instruction:

Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time
lw	200ps	100 ps	200ps	200ps	100 ps	800ps
sw	200ps	100 ps	200ps	200ps		700ps
R-format	200ps	100 ps	200ps		100 ps	600ps
beq	200ps	100 ps	200ps			500ps

6. Consider the following instructions. Assume that the initial values for R1, R2, **R3, R4 and R5** are all 0:

loop: ADDI R2, R1, -2

BNE R5, R2, target1

ADDI R3, R3, 1

target1: ADDI R1, R1, 1

ADDI R4, R1, -3 BNE R5, R4, loop

Assume that we have a 1-bit branch predictor that stores the result of the last branch and makes the prediction based on the result. Show the results of all predictions throughout the execution. (Use T/N to represent Taken/ Not Taken)

Branch	Predictor (T/N)	Actual Result (T/N)
1st BNE (target1)	N	Т