(Re-)Imag(in)ing Price Trends

Working paper
Jingwen Jiang; Bryan Kelly; Dacheng Xiu

Presented by: Long Zhen

Contents

- Introduction
 - Background
 - Motivation
 - Research problem
 - Contribution
- Research Design
 - Data
 - Method
- Empirical Results
- Conclusion

Introduction – Backgrounds

- A large literature investigates the ability of past prices to forecast future returns, producing a handful of famous and robust predictors including price momentum and reversal.
- But it is difficult to see a theoretically motivated specific alternative hypothesis

Introduction – Motivation

 We reconsider the problem, and emphasize that there is potentially much to learn about the behavior of price-based predictive patterns.

- → machine learning perspective
 - Represent historical prices as an image
 - Convolutional neural network (CNN)

Why CNN?

- automatically extract predictive signals from images.
- transform pixel values to predictor values.
- Why image?
 - To enjoy the CNN's benefits of automated signal generation
 - Focus on relational attributes of the data just like human
 - Converts all assets' data histories to a comparable scale.

Introduction – Research Problem

 Can we predict equity prices based on historical data images?

 Can we transfer the model to other scales or markets?

How to interpret the outperformance?

Introduction — Contribution

 Contribute to the technical analysis literature from a different perspective.

Research Design

- → Train CNN model to predict the direction (up/down) of future stock returns.
- Input: images depicting price and value (daily open, close, high and low prices, daily trading volume and moving average price) over the past 5, 20, and 60 days
- Output: a set of stock-level estimates for the probability of a positive subsequent return over 5, 20, and 60 days.

Research Design

- How to "imaging" market data?
- CNN methodology

Tesla, Inc. (TSLA) 🌣 **1,894.31** +58.67 (+3.20%) NasdagGS - NasdagGS Real Time Price. Currency in USD As of 12:09PM EDT. Market open. Mid Term Long Term Support - Resistance Stop loss Premium 🔒 Short Term All 16 Events 231.13 887.74 Bullish 👔 Bullish 👔 Bullish 👔 **Technical Events** Comparison Interval 1D ~ Events P 2Y 5Y Max TSLA 516.24 MA (20,C,MA,0) × **Down OHLC Up OHLC** 1,750.00 **High Price High Price 1,535.19 Open Price** Close Price 1,250.00 Close Price **Open Price** 1,000.00 Low Price Low Price 750.00 500.00 10.80M Feb 14 14 14 Jun Jul 14 Mar Apr May 14 Aug

Figure 1: Tesla OHLC Chart from Yahoo! Finance

Note: OHLC chart for Tesla stock with 20-day moving average price line and daily volume bars. Daily data from January 1, 2020 to August 18, 2020.

- One day occupies an 3 pixels wide
- Once days are concatenated, we impose a constant height for all images and scale the vertical axis so that the maximum and minimum of the OHLC path coincides with the top and bottom of the image.
- use a moving average line with a window length equal to the number of days in the image
- volume is shown in the bottom one-fifth of the image

Figure 4: Generated OHLC Images with Volume Bar and Moving Average Line

CNN model construction:

- Filter size: 5x3 Since our images are largely sparse in the vertical dimension
- Stride: 1 step horizontally, 3 steps vertically
- Max-pooling filter: 2x1
- The output from the last building block is flattened into a vector and each element is treated as a feature in a standard, fully connected feed-forward layer for the final prediction step. The final prediction is a linear combination of the vectorized image features, which is fed through a softmax (i.e., logistic) function to generate a probability of whether the future price will rise.

Figure 7: Diagram of CNN Models

- Data:
 - 1993~2019 CRSP
- Image labels take a value of 0/1 for +/- returns over the 20 or 60 days subsequent to the image.
- Image width(5/20/60) * return horizon(20/60)
 - → 6 separately estimated models
- train and validate each model only once using data from 1993 to 2000, in which 70% of the sample are randomly selected for training and 30% for validation. The trained CNN is held fixed for the entire 2001 to 2019 test sample.

Prediction accuracy

Table 2: Out-of-Sample Classification Accuracy

		Return	horizon	
	20-0	day	60-0	day
Image size	Acc.	Corr.	Acc.	Corr.
5-day	52.5%	3.1%	53.6%	2.3%
20-day	53.3%	3.4%	53.2%	2.4%
60-day	53.6%	2.9%	52.9%	3.1%
MOM	52.1%	1.8%	52.1%	1.5%
STR	50.4%	1.4%	49.8%	1.2%
WSTR	51.0%	2.8%	50.4%	2.6%

[&]quot;up" prediction if it exceeds the crosssectional median value of the signal

 MOM, STR and WSTR are statistically significant improvements over random guessing, and both are less accurate than the best CNN at each horizon

Figure 9: Prediction Accuracy By Decile

Table 3: Performance of Equal Weight Portfolios

	I5/R	220	I20/I	R20	I60/I	R20	MON	I/R20	STR/	R20	WSTR	/R20
	Ret	\overline{SR}	Ret	\overline{SR}	Ret	SR	Ret	SR	Ret	SR	Ret	SR
Low	-0.00	-0.03	-0.02	-0.12	-0.02	-0.07	0.07	0.20	0.05	0.23	0.01	0.03
High	0.21	1.09	0.18	1.04	0.14	0.99	0.14	0.74	0.16	0.51	0.19	0.66
H-L	0.22***	2.35	0.21***	2.16	0.16***	1.29	0.07	0.25	0.11**	0.55	0.18***	1.23
Turnover	175°	%	173°	%	155°	%	63	8%	168	%	167%	%
	I5/R	60	I20/F	R60	I60/F	R60	MOM	I/R60	STR/	R60	WSTR	R60
	Ret	\overline{SR}	Ret	SR	Ret	SR	Ret	\overline{SR}	Ret	SR	Ret	SR
Low	0.07	0.31	0.08	0.32	0.08	0.27	0.11	0.25	0.07	0.27	0.06	0.22
High	0.16	0.77	0.13	0.74	0.15	0.88	0.13	0.57	0.14	0.40	0.16	0.48
H-L	0.09***	1.30	0.05	0.37	0.07*	0.43	0.02	0.06	0.07	0.34	0.10***	0.65
11-1	0.00	1.00										

Table 5: Exposure to Technical Analysis Factors

	Equal	Weight	Value	Weight
	20-day	60-day	20-day	60-day
Mean Ret	1.73%	1.33%	0.45%	0.17%
t-stat	9.4	5.6	2.1	0.7
Alpha	1.86%	1.31%	0.82%	0.27%
t-stat	10.7	5.6	3.9	1.1
Mkt-Rf	-0.32	-0.29	-0.21	-0.16
t-stat	-7.3	-5.0	-4.0	-2.6
Momentum	0.01	0.16	0.04	0.11
t-stat	0.3	3.0	0.9	1.9
STR	-0.07	0.05	-0.09	-0.01
t-stat	-1.3	0.7	-1.4	-0.1
WSTR	0.37	0.60	-0.92	-0.10
t-stat	1.2	1.4	-2.5	-0.2
R^2	26.8%	20.7%	21.6%	9.2%

(taking the equal weighted average of all models with the same supervision window)

Table 6: Short-horizon (One Week) Portfolio Performance

]	Equal W	eight					
	I5/R5	5	I20/I	R5	I60/I	₹5	MON	I/R5	STR/	m R5	WSTR	m L/R5
	Ret	\overline{SR}	Ret	\overline{SR}	Ret	\overline{SR}	Ret	\overline{SR}	Ret	\overline{SR}	Ret	\overline{SR}
Low	-0.28	-1.92	-0.32	-1.94	-0.21	-1.10	0.15	0.44	-0.01	-0.03	-0.08	-0.34
High	0.54	2.89	0.52	2.76	0.33	1.85	0.16	0.78	0.38	1.19	0.46	1.56
H-L	0.83***	7.15	0.84***	6.75	0.54***	4.89	0.02	0.07	0.39***	1.76	0.53***	2.84
Turnover	862%		834	%	774	%	15	4%	426	%	825	%
						Value W	eight					
	I5/R5		I20/I	R5	I60/1	R5	MON	M/R5	STR	R_5	WSTI	R/R5
	Ret	SR	Ret	SR	Ret	\overline{SR}	Ret	SR	Ret	\overline{SR}	Ret	SR
Low	-0.03 -	-0.19	-0.03	-0.16	-0.02	-0.12	0.03	0.06	0.04	0.16	-0.02	-0.09
High	0.20	0.91	0.20	0.99	0.14	0.77	0.14	0.63	0.16	0.46	0.18	0.59
$\mathrm{H}\text{-}\mathrm{L}$	0.23***	1.49	0.22***	1.74	0.16***	1.44	0.12	0.33	0.13*	0.44	0.21***	0.77
Turnover	947%		9100	%	8399	%	20	4%	5419	%	917	%

Table 7: Other Holding Periods Sharpe ratios

		Holding Period									
	E	Equal Weig	ght		V	Value Weig	ght				
Model	5 days	20 days	60 days		5 days	20 days	60 days				
I5/R5	7.15	2.77	1.40		1.49	0.77	0.46				
I5/R20	5.53	2.35	1.36		1.26	0.45	0.31				
I5/R60	4.32	2.05	1.30		0.74	0.32	0.47				
I20/R5	6.75	3.17	1.59		1.74	0.73	0.37				
I20/R20	3.87	2.16	1.05		0.89	0.49	0.44				
I20/R60	0.97	0.45	0.37		0.01	0.26	0.32				
I60/R5	4.89	2.33	1.08		1.44	0.55	0.35				
I60/R20	2.19	1.29	0.60		0.99	0.17	0.13				
I60/R60	1.00	0.75	0.43		0.36	0.38	0.23				

• there is no single image length, and no single supervision window, that is dominant in terms of portfolio performance across investment horizons.

corresponding Sharpe ratios for CNN equal weight 600 600 600 500 Frequency 6 6 Frequency 000 000 005 Frequency 400 200 200 200 100 -0.50.0 -1.00.5 1.0 Annualized Sharpe Ratio Annualized Sharpe Ratio Annualized Sharpe Ratio 400 value weight 400 500 Frequency 5000 400 Frequency 000 Frequency 300 200 100 100 100 -1.0 -0.5 0.0-0.5 0.0 -1.0-0.5 0.5 1.0 -1.00.5 0.0 0.5 1.0 Annualized Sharpe Ratio Annualized Sharpe Ratio Annualized Sharpe Ratio

Figure 11: Comparison With Traditional Technical Indicators

month

quarter

rebalance by week

Transfer Learning

• Time scale transfer

Table 8: Time Scale Transfer I5/R5 to I20/R20

			Pane	l A: Equa	l Weight Porti	folios		
	Basel	ine	Re-tr	ain	Trans	fer	Baseline+	Transfer
	Ret	\overline{SR}	Ret	\overline{SR}	Ret	SR	Ret	SR
Low	-0.02	-0.12	-0.02	-0.10	-0.01	-0.07	-0.04	-0.19
2	0.05	0.28	0.05	0.26	0.04	0.25	0.04	0.20
3	0.07	0.39	0.07	0.37	0.07	0.40	0.06	0.35
4	0.09	0.49	0.09	0.49	0.08	0.43	0.08	0.44
5	0.11	0.59	0.10	0.56	0.09	0.50	0.09	0.52
6	0.11	0.59	0.11	0.61	0.10	0.53	0.11	0.64
7	0.13	0.74	0.12	0.65	0.11	0.59	0.13	0.70
8	0.14	0.81	0.14	0.79	0.14	0.70	0.15	0.80
9	0.15	0.87	0.15	0.82	0.17	0.84	0.17	0.89
High	0.18	1.04	0.20	1.15	0.24	1.14	0.23	1.17
H-L	0.21***	2.16	0.22***	2.21	0.25***	2.14	0.26***	2.46
Turnover	173°	%	177	%	176%	%	175	%

2021/7/17

Table 9: Time Scale Transfer I5/R5 to I60/R60 $\,$

			Pa	nel A: Ed	qual Weight Po	ortfolios			
	Base	line	Re-t	rain	Trans	fer	Baseline+	Transfer	
	Ret	\overline{SR}	Ret	\overline{SR}	Ret	\overline{SR}	Ret	SR	
Low	0.08	0.27	0.08	0.30	0.06	0.31	0.06	0.22	
2	0.09	0.37	0.08	0.34	0.08	0.41	0.09	0.35	
3	0.11	0.46	0.10	0.43	0.10	0.50	0.11	0.46	
4	0.12	0.52	0.12	0.53	0.11	0.54	0.11	0.51	
5	0.12	0.55	0.12	0.55	0.11	0.54	0.12	0.55	
6	0.12	0.57	0.12	0.57	0.13	0.61	0.12	0.61	
7	0.14	0.68	0.13	0.64	0.12	0.55	0.14	0.67	
8	0.14	0.72	0.13	0.64	0.14	0.60	0.14	0.69	
9	0.14	0.75	0.13	0.72	0.14	0.59	0.15	0.78	
High	0.15	0.88	0.14	0.88	0.17	0.69	0.16	0.93	
H-L	0.07*	0.43	0.06	0.37	0.10***	0.90	0.10***	0.81	
Turnover	58°	%	59	%	59%	,)	58%	58%	

• International Transfer

Table 10: International Transfer and H-L Decile Portfolio Sharpe Ratios (I20/R20)

			Equal Wei	ght		Value Weig	ght
	Stock Count	Re-train	Direct Transfer	Transfer—Re-train	Re-train	Direct Transfer	Transfer—Re-train
Global	17206	-0.07	0.21	0.29	0.64	-0.25	-0.90
Japan	3056	0.61	0.99	0.37*	0.24	0.12	-0.12
Canada	2924	0.04	-0.07	-0.11	0.52	0.77	0.24
India	1861	0.99	0.66	-0.33	0.94	0.11	-0.83
UnitedKingdom	1783	0.19	-0.03	-0.21	0.66	0.32	-0.34
France	955	-0.36	0.81	1.17***	-0.42	0.30	0.72***
SouthKorea	911	0.89	0.59	-0.30	-0.26	0.75	1.01***
Australia	886	1.97	2.20	0.22	-0.22	0.61	0.83***
Germany	868	-0.26	0.08	0.34*	0.24	0.40	0.16
China	662	0.82	0.06	-0.77	0.39	0.07	-0.33
HongKong	543	1.63	1.48	-0.15	0.51	1.12	0.62***
Singapore	284	0.36	2.20	1.83***	0.24	0.98	0.74***
Sweden	260	0.30	1.43	1.13***	0.61	0.71	0.10
Italy	241	0.63	1.71	1.08***	-0.05	0.65	0.69***

Table 11: International Transfer and H-L Decile Portfolio Sharpe Ratios (I5/R5)

			Equal Wei	ght		Value Wei	ght
	Stock Count	Re-train	Direct Transfer	Transfer—Re-train	Re-train	Direct Transfer	Transfer—Re-train
Global	17206	0.18	5.20	5.03***	0.46	-3.05	-3.50
Japan	3056	3.56	5.68	2.12***	0.96	1.23	0.27
Canada	2924	9.01	12.12	3.11***	2.98	5.34	2.36***
India	1861	2.52	-1.46	-3.98	0.67	-1.08	-1.75
United K ingdom	1783	0.03	-0.23	-0.26	1.04	0.98	-0.06
France	955	2.47	4.09	1.63***	1.12	2.10	0.98***
SouthKorea	911	3.64	1.66	-1.97	1.74	2.39	0.65***
Australia	886	8.28	11.37	3.09***	2.78	3.48	0.70***
Germany	868	-0.29	2.43	2.72***	-0.01	2.93	2.94***
China	662	2.26	-2.19	-4.45	0.66	-0.95	-1.62
HongKong	543	1.97	5.35	3.37***	0.72	2.08	1.36***
Singapore	284	6.98	6.79	-0.20	2.48	3.94	1.46***
Sweden	260	5.43	6.99	1.56***	0.83	2.37	1.54***
Italy	241	2.14	3.55	1.40***	0.76	1.60	0.84***
Switzerland	240	0.48	0.67	0.19	1.30	2.62	1.33***

What dose the CNN learn?

Association with related predictors

Table 13: CNN Predictions and Standard Stock Characteristics panel logistic regressions of CNN model forecasts on stock characteristics.

parter logistic regression.			
cross-sectional ranks	I5/R20	I20/R20	I60/R20
MOM	-0.05***	0.07***	0.41***
STR	-0.04***	0.42***	0.47***
Lag Weekly Return	-0.77***	-0.80***	-0.48***
Beta	0.12***	0.08***	0.10***
Volatility	-0.08***	-0.22***	-0.29***
52WH	0.04***	0.05***	0.05***
Bid-Ask	0.05***	0.05***	0.20***
Dollar Volume	0.05	-0.15***	-1.86***
Zero Trade	-0.02	0.18***	0.42***
Price Delay	-0.01	-0.02**	-0.01
Size	0.11***	0.59***	0.96***
Illiquidity	-0.25***	-0.35***	-2.10***
McFadden \mathbb{R}^2	4.61	7.03	11.92

Table 14: CNN, Future Returns, and Standard Stock Characteristics

		I5/R20			I20/R20			I60/R20	
CNN	0.37***	,	0.37***	0.54***	·	0.54***	0.46***		0.45***
MOM		0.17***	0.18***		0.17***	0.16***		0.17***	0.12***
STR		-0.02*	-0.01		-0.02*	-0.05***		-0.02	-0.09***
Lag Weekly Return		-0.19***	-0.07***		-0.19***	-0.05***		-0.19***	-0.13***
Beta		-0.05***	-0.05***		-0.05***	-0.05***		-0.05***	-0.05***
Volatility		-0.09***	-0.09***		-0.09***	-0.06***		-0.09***	-0.05**
52WH		-0.00	-0.01		-0.00	-0.02		-0.01	-0.03**
Bid-Ask		-0.13***	-0.13***		-0.12***	-0.14***		-0.12***	-0.17***
Dollar Volume		-0.08*	-0.09**		-0.08*	-0.09**		-0.08*	0.07*
Zero Trade		-0.02	-0.02		-0.02	-0.05**		-0.02	-0.07***
Price Delay		-0.00	-0.00		-0.00	-0.00		-0.00	-0.01
Size		0.16***	0.17***		0.17***	0.13***		0.17***	0.06
Illiquidity		-0.01	0.01		-0.01	0.02		-0.01	0.14***
McFadden \mathbb{R}^2	0.84	0.12	0.93	1.73	0.12	1.79	1.23	0.12	1.30

logistic regressions of future stock returns on image-based forecasts while simultaneously controlling for the other characteristics.

• Image-Based linear approximation

Table 15: Linear Regressions Using Market Data With Image Scaling

	CNN	N as Dep.	Var.			Positi	ive Returr	n Indicat	tor as De	p. Var.		
	5D5P	5D20P	5D60P		5D5P			5D20P			5D60P	
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
CNN				4.07*		4.28*	5.09*		6.27	6.07*		7.63*
open lag 1	-0.57*	0.01	0.29*		-0.23	-0.03		-0.07	-0.02		0.01	-0.07
open lag 2	0.27*	0.55*	0.22*		0.08	0.04*		0.12	0.02		0.05	-0.00
open lag 3	0.16*	-0.29*	-0.09*		0.05	0.01		-0.02	0.01		-0.13	-0.04
open lag 4	0.04*	-0.13*	-0.06*		0.02	0.00		-0.03	-0.00		-0.04	-0.01
open lag 5	0.10*	0.21*	0.45*		0.03	0.01		0.02	0.04		-0.04	-0.03
high lag 1	2.64*	0.99*	1.07*		0.61	0.11*		0.36	0.12		0.39*	-0.06
high lag 2	-0.27*	0.47*	0.77*		-0.07	-0.06		0.07	-0.05		0.13*	-0.18
high lag 3	-0.43*	-0.18*	-0.20*		-0.06	0.03*		-0.01	-0.00		0.07	0.05
high lag 4	-0.47*	-0.14*	-0.22*		-0.04	0.05*		0.04	0.02		0.03	0.05
high lag 5	-0.13*	0.31*	-0.38*		-0.05	0.01		0.09	0.02		0.03	-0.05
McFadden \mathbb{R}^2	35.29	33.32	21.96	1.35	0.99	1.38	0.94	0.58	0.99	1.56	0.50	1.69

- the most important explanatory variables for the CNN forecast are the first lags of closing, high, and low prices
- more than half of the variation in image-based predictions is attributable to non-linear functions of the underlying market data.

Visualizing the model

2021/7/17

(a) Images Receiving "Up" Classification

Long Zhen

32

Conclusion

- The CNN constructs image-based forecasts that in general outperform traditional price trend signals
- CNN's transferability to other time scales and international markets is robust

Data

- CRSP, price and trading volume data
- Transform data into images

Method

CNN model

• Findings:

- Image-based CNN predictions are powerful and robust predictors of future returns.
- Short-horizon predictability can translate into long range predictability via transfer learning → other market and time scales