WHAT IS CLAIMED IS:

1	1. A method of depositing a silica glass insulating film over a		
2	substrate, the method comprising:		
3	exposing the substrate to a silicon-containing reactant introduced into a		
4	chamber in which the substrate is disposed such that one or more layers of the silicon-		
5	containing reactant are adsorbed onto the substrate;		
6	purging or evacuating the chamber of the silicon-containing reactant;		
7	converting the silicon-containing reactant into a silica glass insulating		
8	compound by exposing the substrate to oxygen radicals formed from a second reactant		
9	while biasing the substrate to promote a sputtering effect; and		
10	repeating the exposing, purging/evacuating and exposing sequence a		
11	plurality of times.		
1	2. The method of claim 1 wherein an average atomic mass of all		
2	atomic constituents in the second reactant is less than or equal to an average atomic		
3	mass of oxygen.		
1	3. The method of claim 1 wherein the silicon-containing reactant is		
2	a silane family member having a formula of Si_nH_{2n+2} .		
1	4. The method of claim 3 wherein the second reactant consists of		
2			
2	molecular oxygen (O ₂).		
1	5. The method of claim 1 wherein the second reactant consists of		
2	molecular oxygen (O2) and a sputtering agent.		
1	6. The method of claim 5 wherein the sputtering agent consists of		
2	molecular hydrogen (H ₂).		
2	inolecular frydrogen (112).		
1	7. The method of claim 5 wherein the light weight sputtering agent		
2	comprises molecular hydrogen (H ₂) and/or helium.		
1	8. The method of claim 1 wherein the oxygen radicals are generated		
1			
2	by forming a plasma within the chamber.		

1	9.	The method of claim 1 wherein the oxygen radicals are generated	
2	by forming a plasma in a remote plasma chamber.		
1	10.	The method of claim 1 wherein the chamber is evacuated of the	
2	silicon-containing re	eactant prior to exposing the substrate to oxygen radicals.	
1	11.	The method of claim 1 wherein the chamber is purged of the	
2	silicon-containing re	eactant by flowing a gas that is chemically inert to silica glass into	
3	the chamber.		
1	12.	The method of claim 1 wherein the chamber is purged of the	
2	silicon-containing reactant by flowing an oxygen source into the chamber.		
1	13.	The method of claim 8 wherein energy is applied to the chamber	
2	to form a plasma fro	m the second reactant while biasing the substrate and wherein no	
3	plasma is formed while the substrate is exposed to the silicon-containing reactant.		
1	14.	The method of claim 1 further comprising doping the silica glass	
2	film with a dopant.		
1	15.	A method of depositing a silica glass insulating film over a	
2	substrate having a g	ap formed between two adjacent raised features, the gap having a	
3	bottom surface and a sidewall surface, the method comprising:		
4	expo	sing the substrate to a silicon-containing reactant introduced into a	
5	chamber in which the substrate is disposed such that one or more layers of the		
6	silicon-containing reactant are adsorbed onto the substrate;		
7	purging or evacuating the chamber of the silicon-containing reactant;		
8	conv	erting the silicon-containing reactant into a silica glass insulating	
9	compound by exposing the substrate to a plasma formed from a second reactant		
0	comprising oxygen atoms while biasing the substrate to promote a sputtering effect,		
.1	wherein an average atomic mass of all atomic constituents in the second reactant is less		
2	than or equal to an average atomic mass of oxygen; and		
3	repea	ting the exposing, purging/evacuating and exposing sequence a	
4	plurality of times;		

wherein the substrate is maintained at a temperature between 300-800°C during growth of the silica glass film and wherein the silica glass film grows up from the bottom surface of the gap at a rate greater than it grows inward on the sidewall surface of the gap.