- 1. Say $S \subseteq \mathbb{R}$ is a set of real numbers, with the property that $\forall s \in S, \exists t \in S, s < t$. Can S be bounded above?
- 2. Say $S \subseteq \mathbb{R}$ is a set of real numbers, with the property that $\forall n \in \mathbb{N}, \exists t \in S, n < t$. Can S be bounded above?
- (a) Let $A, B \subset \mathbb{R}$ be subsets of \mathbb{R} which are bounded above. Assume:

$$\forall a \in A, \exists b \in B \text{ such that } a < b.$$

Prove $\sup A \leq \sup B$.

- (b) Let $A, B \subset \mathbb{R}$ be subsets of \mathbb{R} which are bounded above. Prove that if $A \subseteq B \subset \mathbb{R}$ then $\sup A \leq \sup B$.
- (c) Let $A, B \subset \mathbb{R}$ be subsets of \mathbb{R} which are bounded below. Assume:

$$\forall a \in A, \exists b \in B \text{ such that } a \geq b.$$

Prove $\inf A \ge \inf B$.

- (d) Let $A, B \subset \mathbb{R}$ be subsets of \mathbb{R} which are bounded below. Prove that if $A \subseteq B \subset \mathbb{R}$ then inf $A \ge \inf B$.
- 4. Say we have a sequence of real numbers a_1, a_2, a_3, \ldots Assume:

$$\exists M \in \mathbb{R} \text{ such that } \forall n \in \mathbb{N} : a_n < M$$

$$\exists m \in \mathbb{R} \text{ such that } \forall N \in \mathbb{N}, \exists n > N : m < a_n$$

Now let's define some sets S_1, S_2, S_3, \ldots by

$$S_n = \{ a_{n+1}, a_{n+2}, a_{n+3} \dots \}.$$

- (a) Prove that for all $n \geq 1$, there exists some $b_n \in \mathbb{R}$ such that $b_n = \sup(S_n)$.
- (b) Prove there exists some $l \in \mathbb{R}$ such that $l = \inf \{ b_1, b_2, b_3, \dots \}$. Such l is called the limpsup of the sequence $(a_1, a_2, a_3, ...)$
- (c) Find the limsup of the following sequence and prove your findings.
 - i. $1, 1, 1, \ldots$
 - ii. $0, 1, 0, 1, 0, 1, \dots$

iii.
$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

iv. $-\frac{1}{1}, -\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, \dots$

(d) Prove:

$$\inf \{ a_1, a_2, a_3, \dots \} \le \limsup(a_1, a_2, a_3, \dots) \le \sup \{ a_1, a_2, a_3, \dots \}.$$

- (e) Let $X = \mathbb{Q} \cap (0,1)$ and let $f : \mathbb{N} \to X$ be a bijection. For every $i \in \mathbb{N}$, let $a_i = f(i)$. Prove $\limsup(a_1, a_2, a_3, \dots) = 1$.
- (f) If you like, then guess the definition of *liminf* and compute it for the examples above.

Which of these sequences converges? (we will see a rigorous definition of this notion next week, but perhaps you know what it means).

Can you tell just from looking at the limsup and liminf?

¹Hint for (d): To prove $b_n = 1$, show that for every c < 1, $X \cap (c, 1)$ is infinite, therefore $S_n \cap (c, 1)$ is infinite.