BEE (Formulas)

Chapter 2

2–1	$Q = \frac{\text{number of electrons}}{6.25 \times 10^{18} \text{electrons/C}}$	Charge
2–2	$V = \frac{W}{Q}$	Voltage equals energy divided by charge
2–3	$I = \frac{Q}{t}$	Current equals charge divided by time.
2–4	$G = \frac{1}{R}$	Conductance is the reciprocal of resistance.
2-5	$A = d^2$	Cross-sectional area equals the diameter squared
2–6	$R = \frac{\rho l}{A}$	Resistance is resistivity times length divided by cross-sectional area.

Ch 3

	**	
3–1	$I = \frac{V}{R}$	Form of Ohm's law for calculating current
3–2	V = IR	Form of Ohm's law for calculating voltage
3–3	$R = \frac{V}{I}$	Form of Ohm's law for calculating resistance

Ch 4

4–1	$P = \frac{W}{t}$	Power equals energy divided by time.
4-2	$P = I^2 R$	Power equals current squared times resistance.
4-3	P = VI	Power equals voltage times current.
4–4	$P = \frac{V^2}{R}$	Power equals voltage squared divided by resistance
4–5	Efficiency = $\frac{P_{\text{OUT}}}{P_{\text{IN}}}$	Power supply efficiency
4-6	$P_{\text{OUT}} = P_{\text{IN}} - P_{\text{LOSS}}$	Output power is input power less power loss.

Ch 5

FORMULAS 5-1 $R_T = R_1 + R_2 + R_3 + \cdots + R_n$ Total resistance of n resistors in series 5-2 $R_T = nR$ Total resistance of n equal-value resistors in series 5-3 $V_S = V_1 + V_2 + V_3 + \cdots + V_n$ Kirchhoff's voltage law 5-4 $V_S - V_1 - V_2 - V_3 - \cdots - V_n = 0$ Kirchhoff's voltage law stated another way 5-5 $V_x = \left(\frac{R_x}{R_T}\right)V_S$ Voltage-divider formula 5-6 $P_T = P_1 + P_2 + P_3 + \cdots + P_n$ Total power

Ch 6

6–1	$I_{\text{IN}(1)} + I_{\text{IN}(2)} + \cdots + I_{\text{IN}(n)}$ = $I_{\text{OUT}(1)} + I_{\text{OUT}(2)} + \cdots + I_{\text{OUT}(m)}$	Kirchhoff's current law
6–2	$R_{\mathrm{T}} = \frac{1}{\left(\frac{1}{R_{1}}\right) + \left(\frac{1}{R_{2}}\right) + \left(\frac{1}{R_{3}}\right) + \cdots + \dots}$	$\left(\frac{1}{R_n}\right)$ Total parallel resistance
6–3	$R_{\mathrm{T}} = \frac{R_1 R_2}{R_1 + R_2}$	Special case for two resistors in parallel
6–4	$R_{\rm T} = \frac{R}{n}$	Special case for n equal-value resistors in parallel
6–5	$R_x = \frac{R_A R_{\rm T}}{R_A - R_{\rm T}}$	Unknown parallel resistor
6–6	$I_x = \left(\frac{R_{\rm T}}{R_x}\right) I_{\rm T}$	General current-divider formula
6–7	$I_1 = \left(\frac{R_2}{R_1 + R_2}\right) I_{\mathrm{T}}$	Two-branch current-divider formula
6-8	$I_2 = \left(\frac{R_1}{R_1 + R_2}\right) I_T$	Two-branch current-divider formula
6–9		Total power
6–10	$R_{\rm open} = \frac{1}{G_{T(\rm calc)} - G_{T(\rm meas)}}$	Open branch resistance

Ch 7

7–1	$I_{\rm BLEEDER} = I_{\rm T} - I_{RL1} - I_{RL2}$	Bleeder current
7–2	$R_X = R_V \left(\frac{R_2}{R_4} \right)$	Unknown resistance in a Wheatstone bridge
7–3	$\Delta V_{\rm OUT} = \Delta R_{\rm therm} \left(\frac{V_{\rm S}}{4R} \right)$	Thermistor bridge output

Ch 8

FORMULAS

Δ-to-Y Conversions

8-1
$$R_1 = \frac{R_A R_C}{R_A + R_B + R_C}$$

$$8-2 R_2 = \frac{R_B R_C}{R_A + R_B + R_C}$$

8-2
$$R_{2} = \frac{R_{B}R_{C}}{R_{A} + R_{B} + R_{C}}$$
8-3
$$R_{3} = \frac{R_{A}R_{B}}{R_{A} + R_{B} + R_{C}}$$

Y-to-∆ Conversions

$$8-4 R_A = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_2}$$

$$8-5 R_B = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_1}$$

$$8-6 R_C = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_3}$$