抽象代数学

1. 不可约多项式的零点

定义 没 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in F[x]$. $f(x) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \cdots + a_1 \in F[x]$, 标为 f(x) 的导函数 (derivative)

设正是fcn在F上分裂域在EQI中,

 $f(x) = C \prod_{i=1}^{\ell} (x - \mathbf{d}_i)^{k_i}, \quad C, \prec_i, \cdots, \prec_g \in \mathbb{F}_{E}, C \neq 0$ $\prec_i \neq \prec_j$

义一义,是f(x)的比重团式,人,是f(x)=0的比重根.

定理设厂是域, $f(x) \in F(x)$,则f(x) = 0有重根 ($f(x), f(x)) \neq 1$

证明: "⇒" 在 E(x)中, 波 $f(x) = (x - \lambda)^2 g(x)$, $f(x) = (x - \lambda)^2 g(x)$ + $2(x - \lambda)g(x) = (x - \lambda)[(x - \lambda)g(x) + 2g(x)] ⇒ <math>f'(\lambda) = 0$ 即 $x - \lambda | f(x)$, $x - \lambda | f(x)$ (在 E(x)中), 若 (f(x), f(x)) = 1在 F(x)中, 则存在 U(x), $V(x) \in F(x)$, U(x) f(x) + V(x) f(x) = 1 $U(x) f(x) + V(x) f(x) \in F(x) \subseteq E(x)$, 但是 它被 $x - \lambda$ 整除(矛盾) 는" 若 $(f(x), f(x)) \neq 1$, 存在 d(x) | f(x), d(x) | f(x) (在 F(x)中)

TE[X] ψ , $\exists x \in \mathbb{E}$, $x - x | d(x) \Rightarrow f(x) = f(x) = 0$ $f(x) = (x-\lambda) \mathcal{Q}(x) \Rightarrow f(x) = (x-\lambda) \mathcal{Q}'(x) + \mathcal{Q}(x) \Rightarrow \mathcal{Q}(\lambda) = 0$ $\mathbb{E} \left[(\chi - \chi) \middle| 2(\chi) \right] \Rightarrow \left(\chi - \chi \right)^2 \middle| f(\chi).$ 推论设厂是域,f(x)EF(x)不可约 (1) CharF=0, 则f(x)无重根. (2) charF=P+0,则f(x)有重根(=>) 3 g(x) E F[x],f(x)=g(x) 证明: (1) f(x() 无重根⇔(f(x), f(x())=1 若f(x)有重根,则f(x)/f(x), $degf(x) \leqslant degf(x) \Rightarrow f(x) = 0$ $\lim_{x \to \infty} f(x) = \sum_{i=0}^{n} a_i x^i \qquad f(x) = 0 \iff i a_i = 0 \quad i = 1, \dots, n$ 因为chanF=0 $iai=0 \Rightarrow ai=0$ $i=1,...,n \Rightarrow f(x)=a_0$ (2) f(x) 有重根 (2) (2) f(x) (2) f(x) (2) f(x) (2) f(x) (2) f(x) (3) (3) (3) (4) (4) (5) (5) (5) (5) (6) (6) (7) 定理设F域,f(x)←F(x),degf(x)>0, E是f(x)在F上 分裂域、则在E(x)中, $f(x) = c \prod_{i=1}^{n} (x-x_i)^k$, $x_i \neq x_j \in E$ 证明:设义,从是广心的两个不同的根,从,从至区

在 $\mathbb{E}[x]$ 中,设 $f(x)=(x-\lambda 1)^{k}g(x)$, g(x)+0, $g(x)\in\mathbb{E}[x]$ ヨのEAutFE, 6(以)=以。则有 $G(f(x)) = f(x) = (x - x_2)^k G(f(x))$

这说明 d2的重数≥K, 同理 d.的重数≥ d2的重数

- ⇒所有根的重数相同.
- 2. 可分多项式

分裂域,若far在Ear中所有因式均是一数因式 则积f(x)是下上可分多项式。否则积为不可分多项式

命题的特征一个的域上不可约多项式是可分的

(2) 有限域上不可约多项式均可分。

证明。由一中推论、以成立

(2) 设厂是有限域、f(x) E F[x] 不够为 charF=P

若存在g(x),f(x)=g(x),写g(x)=bsxs+bs-1xs+···+b,x+bo 考虑 F→F 这是一个域同构(它是域同态,且有逆、)

(或直接检查中是单射,则中满)

 $F \xrightarrow{\phi'} F$ $n = (F : \mathbb{Z}_p)$, $\forall b_i, \exists c_i \in F$, $b_i = c_i^p$

 $g(x^p) = c_s^p x^{ps} + \cdots + c_l^p x^p + c_o^p = (c_s x^s + \cdots + c_l x + c_o)^p$ ⇒ g(x)可约, 与 f(x)不可约矛盾, 因此, 不存在了(x)∈下(x), 则下称为完全域(Perfect field) 定理 完全域上不可约多项式是可分的. 证明、类似于以上命题。 不可分多项式的例子: 设charF=P#O, *f(x) < F(x) 不好,则f(x)不可分(=) $\exists g(x) \in \mathbb{F}[x], f(x) = g(x^p). \forall a \in \mathbb{F}$ $\chi^{P}-\alpha$ $(\chi^{-}b)^{P}$ $\alpha \in \mathbb{F}^{P}$ $\alpha = b^{P}$, $b \in \mathbb{F}$ $\chi^{P}-\alpha$ $(\chi^{P}-\alpha)^{P}$ $\alpha \in \mathbb{F}^{P}$ $\alpha \in$ ①f(x)不够, 若t=(g(t)) PEFP => h(t)=0 形值!

② f(x) 不可分, f(x) = 0

3. 可分扩张与不可分扩张。

定义设下SE代数扩张, XEE, X的极小多项式P(x) ∈ [[x], 若 p(x) 可分, 则 x是 F上 可分记. 若 ∀B ∈ E, B均 是下上可分元,则正是下的可分扩张(Separable extension) 否则,是不可分扩张 (in separable extension) 定理 有限可分扩张是单扩张 证明: 设下⊆压, 正是下的有限可分扩张.

Case-1 下是有限域,则正也是有限域,E*是循环群,生成

Case-2 厂是无限域, 需证 Va, B可分记 EE, 则存在CEE

下(x,B)=F(c) 记明类似于charF=O情形.

EFFE f(x) EF(x) degf(x)>0, EFF(x) TIFE 分裂域,树正是下的有限可分扩张《》(Audirel-[E:开] 定理设下《长是有限维扩张,令长=下(又,,又,…,公) 则K是可分扩张 (3) di, , , , dr是下上可分别 引理设上、全上工有限域扩张,[Lz:L]=n, 上至长城

L1z=L1(21, ..., 2x)

定义设厂是一个域, K, E是厂的扩域, 令 Em_F(K, E)={6: K→E域单嵌λ | 6|_F=id} 引理设长是压的代数扩域,又EK,在下上极份级式取 (a(若K=F(x))则|EmF(K,F)|=R(x)的全部容异根 个数(元件 $n_{p(x)}$). F是下的代数闭包. α 是可分元 \Rightarrow 次数与(b) 设 FCLCK, K=L(α), 则 根个数相等 $|Em_F(K,F)| = |Em_F(L,F)| \cdot n_{Par}$ 以在山上极小多域式及(x) 证明: (b) 定义尺: $Em_F(K, \overline{F}) \longrightarrow Em_F(L, \overline{F})$ 是自然限制. 给定分子Emf(L,F),因为K=L(Q),只需定义分(Q)就可 以扩展分到6:长一声,又是尼风的根,分似是6气风的 = $P(\infty)$ 的根. $P'(6') = \{6: K \to F) | 6|_{L} = 6'\} 元素个数= n_{ex}$ 命题设下CK有限域扩张,则下mr(K,下)|S[K:下] 等号成立⇔长是下的有限处可分扩张)相等→K是可分扩张 证明。(中设长是严的有限可分扩张关于[K:下]作归纳 选择又长人,中间域上,使得长二上似,下三上三长二上似 则由引理 $|Em_F(k,\overline{F})| = |Em_F(L,\overline{F})| \cdot n_{p(x)}$

(1) 若长是下的有限可分扩张,则上也是下的有限可分 丰广张. 由归纳假设 | Em_(L, F) | = [L: F] 以在山上可分(因为以在山上极小多项式整除户(x)),K=L做 => | Em F(K, F) = [L:F].[K:L] = [K:F] (2) 若长不是下上可分扩张,存在BEK, B不是下上可分 元, 若 K= F(B), 由引理(a). B的极小多项式 & (x) |EmF(K, F)| = <deggF(x) = [K=F] 若K+ $F(\beta)$,存在中间域L, $\beta \in L$,L不是下的可分放 通过归纳, [Em_(L,下)] <[L:下]. L(a)=下人. $\Rightarrow |E_{m_{\mathbb{F}}}(k,\mathbb{F})| < [L:\mathbb{F}] \cdot [k:L] = [k:\mathbb{F}]$ 定理的证明:"⇒"显然 "=" $K = F(d_1, d_2, \dots, d_r) = K_{r-1} = F(d_1, \dots, d_{r-1}) \geq \dots \geq F(d_i) = K_i$ 则Ki+1=Ki(Xi+1) Xi+1是下上可分元》是Ki上可分元. $[E_{m_{\mathbb{F}}}(K,\overline{F})] = |E_{m_{\mathbb{F}}}(K_{r-1},\overline{F})| \cdot [K_r:K_{r-1}] =$ = [K: [F]

由命题,它是可分扩张。