Past Paper: Group Theory I

Midterm Exam, 2024

Rashid M. Talha

Disclaimer: Use at your own risk. Errors possible.

Question 1 (i).

Prove that the order of a cyclic group is equal to the order of its generator.

Solution. If O(a) is infinite then a^n and a^m are distinct for all $n \neq m$, because otherwise,

$$a^n = a^m \implies a^{n-m} = 1 \implies O(a) \le |n-m|$$

which is a contradiction. Now, since each a^n is different from a^{n+1} , we have infinitely many elements in the set $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. Consequently, $G = \langle a \rangle$ has infinitely many elements; i.e. |G| is also infinite.

Next, consider the case when O(a) = n is finite. By definition $\langle a \rangle = \{a^k \mid k \in \mathbb{Z}\}$. We can write k = qn + r for $q, r \in \mathbb{Z}$ and $0 \le r < n$. So, for all $k \in \mathbb{Z}$,

$$a^{k} = a^{qn+r} = a^{qn}a^{r} = (a^{n})^{q} = ea^{r} = a^{r}.$$

Therefore, $\langle a \rangle = \{a^r \mid 0 \le r < n\} = \{e, a, a^2, \dots, a^{n-1}\}$. Again, take any $a^p, a^q \in \langle a \rangle$ with $p \ne q$, then

$$a^p = a^q \implies a^{p-q} = 1 \implies O(a) \le |p-q| \le n-1$$

which is not possible because O(a) = n. Therefore, each element in this set is distinct, and we get $|G| = |\langle a \rangle| = n$.

Question 1 (ii).

Let $G = \langle a \rangle$ be a finite cyclic group of order n. Then prove that an element a^k is a generator if and only if $\gcd(n,k) = 1$.

Solution. Suppose a^k is a generator of G. Then, we can write a as a power of a^k , say $a=(a^k)^m=a^{km}$ for some $m\in\mathbb{Z}$.

Then, $a = a^{km} \implies aa^{-km} = e \implies a^{1-km} = e$. So, $n \mid 1 - km$. That is $\exists q \in \mathbb{Z}$ such that 1 - km = qn. We can re-arrange this to get qn + km = 1. From number theory (Bezout's lemma) we know that this implies $\gcd(n, k) = 1$.

Conversely, suppose gcd(n, k) = 1. Then, there exist integers x, y such that xk + yn = 1. So, $a = a^{xk + yn} \implies a = (a^k)^x (a^n)^y \implies a = (a^k)^x e^y \implies a = (a^k)^x$.

Now for all $b \in G = \langle a \rangle$, we have $b = a^r$ for some $r \in Z$. Therefore, we can write it as a power of a^k as $b = a^r = ((a^k)^x)^r = (a^k)^{xr}$. So, a^k also generates G.

Question 2 (i).

Let H be a subgroup of G. Let \sim be a relation on G defined by $a \sim b$ if and only if $a^{-1}b \in H$. Then show that \sim is an equivalence relation on G. Also prove that [a] = aH.

Solution. We check that \sim satisfies the three conditions of being an equivalence relation.

(Reflexive.) Take $a \in G$. Then, $a^{-1}a = e$ and $e \in H$ because $H \leq G$. So, $a \sim a$.

(Symmetric.) Suppose $a \sim b$. That means $a^{-1}b \in H$. As $H \leq G$, the element $(a^{-1}b)^{-1} \in H$. And $(a^{-1}b)^{-1} = b^{-1}a$. That is, $b^{-1}a \in H$. So, $b \sim a$.

(Transitive.) Suppose $a \sim b$ and $b \sim c$. That is $a^{-1}b \in H$ and $b^{-1}c \in H$. As H is a subgroup, closure and associativity gives $(a^{-1}b)(b^{-1}c) = a^{-1}c \in H$. So, $a \sim c$.

Next, $[a] = \{b \in G \mid b \sim a\} = \{b \in G \mid a \sim b\} = \{b \in G \mid a^{-1}b \in H\}$. And, $a^{-1}b \in H$ means $a^{-1}b = h$ for some $h \in H$. As a result, b = ah and we can write

$$[a] = \{b \in G \mid a^{-1}b \in H\} = \{ah \in G \mid h \in H\} = aH.$$

Question 2 (ii).

Let G be a group and H be a subgroup of G. If $a, b \in G$, then prove that aH = bH if and only if $a^{-1}b \in H$.

Solution. Suppose aH = bH. As $H \leq G$, we have $e \in H$. So, $b = be \in bH = aH$. Thus, we can write b = ah for some $h \in H$. Consequently, $a^{-1}b = h \in H$.

Conversely, let $a^{-1}b \in H$. This means $a^{-1}b = h$ for some $h \in H$. As a result, b = ah. Therefore,

$$bH = \{bk \mid k \in H\} = \{(ah)k \mid k \in H\} = \{ah' \mid h' \in H\} = aH.$$

Here we used the associativity and closure property because $H \leq G$.

Question 2 (iii).

Let G be a group and $a \in G$ such that o(a) = n. If m is an integer such that $a^m = e$, then prove that n divides m.

Solution. By the division algorithm, m = qn + r for $q, r \in \mathbb{Z}$ and $0 \le r < n$. So,

$$a^{m} = a^{nq+r} = (a^{nq})(a^{r}) = (e^{q})(a^{r}) = e(a^{r}) = a^{r}.$$

Now, $a^m = e \implies a^r = e$. However, r < n and n is the least positive integer for which $a^n = e$. Therefore, r must be zero (if it was positive then it would contradict the minimality of n). Therefore, m = qn. That is $n \mid m$.

Question 3 (i).

Let $\mathbb{Z}_{12} = \{0, 1, \dots, 11\}$ be the group of integers modulo 12. Then find the order of each element of \mathbb{Z}_{12} .

Solution. The order of each element in \mathbb{Z}_{12} is

$$O(0) = 1$$
 $O(1) = 12$ $O(2) = 6$ $O(3) = 4$
 $O(4) = 3$ $O(5) = 12$ $O(6) = 2$ $O(7) = 12$
 $O(8) = 3$ $O(9) = 4$ $O(10) = 6$ $O(11) = 12$

Question 3 (ii).

Find all subgroups of the cyclic group $C_{12} = \{1, a, a^2, ..., a^{11} | a^{12} = 1\}.$

Solution. We arrange these by the GCD of n = 12 and the order of the generator.

Past Paper: Group Theory I

Question 3 (iii).

Let $G = \{\begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z} \}$ be a group under addition of matrices, and take $H = \{\begin{pmatrix} a & b \\ c & d \end{pmatrix} | a + b + c + d = 1 \in \mathbb{Z} \}$. Prove or disprove that H is a subgroup of G.

Solution. H is not a subgroup of G because it doesn't contain the identity element. That is

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \notin H$$

since $0 + 0 + 0 + 0 \neq 1$.

Question 4 (i).

Let * be a binary operation on \mathbb{Q}^+ defined by $a*b=\frac{ab}{2}$. Then show that \mathbb{Q}^+ is an Abelian group with respect to *. (\mathbb{Q}^+ denotes the set of positive rational numbers.)

Solution. We check the group axioms.

(Closure.) Take $a, b \in \mathbb{Q}^+$. Then, in particular, $a, b \in \mathbb{Q}$ and a, b > 0. So, $ab \in \mathbb{Q}$ and $\frac{ab}{2} \in \mathbb{Q}$. Moreover, ab > 0 and $\frac{ab}{2} > 0$. That means $\frac{ab}{2} \in \mathbb{Q}^+$. Therefore,

$$a * b = \frac{ab}{2} \in \mathbb{Q}^+$$

(Associativity.) Take $a, b, c \in Q^+$. Then,

$$a*(b*c) = a*\left(\frac{bc}{2}\right) = \frac{a(\frac{bc}{2})}{2} = \frac{abc}{4},$$
$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{(\frac{ab}{2})c}{2} = \frac{abc}{4}.$$

As a result, a * (b * c) = (a * b) * c.

(Identity.) The element $e = 2 \in \mathbb{Q}^+$ serves as the identity element because

$$a*2 = \frac{(a)(2)}{2} = a$$
 and $2*a = \frac{(2)(a)}{2} = a$.

(Inverse.) For $a \in \mathbb{Q}^+$ take $a^{-1} = 4/a$. Then, $a^{-1} \in \mathbb{Q}^+$ because a > 0, and

$$a * \frac{4}{a} = \frac{(a)(\frac{4}{a})}{2} = 2 = e$$
 and $\frac{4}{a} * a = \frac{(\frac{4}{a})(a)}{2} = 2 = e$.

(Commutativity.) For any $a, b \in \mathbb{Q}^+$,

$$a * b = \frac{ab}{2} = \frac{ba}{2} = b * a$$

because the usual multiplication of rational numbers is commutative, ab = ba.

Past Paper: Group Theory I

Question 4 (ii).

Find all cyclic subgroups of $D_4 = \{1, a, a^2, a^3, b, ba, ba^2, ba^3\}$ with $a^4 = b^2 = 1$, $ab = ba^3$.

Solution. The cyclic subgroups of D_4 are

$$\begin{split} \langle 1 \rangle &= \{1\}, \qquad \langle a \rangle = \langle a^3 \rangle = \{1, a, a^2, a^3\}, \qquad \langle a^2 \rangle = \{1, a^2\}, \\ \langle b \rangle &= \{1, b\}, \qquad \langle ba \rangle = \{1, ba\}, \qquad \langle ba^2 \rangle = \{1, ba^2\}, \qquad \langle ba^3 \rangle = \{1, ba^3\}. \end{split}$$