Assignment 3 Documentation

Kavyasri

700728990

1. Titanic dataset

- ✓ Read train and test dataset using pandas.
- ✓ Check head to see columns and type of data.
- ✓ Check for data imbalance using value_counts on y variable.
- ✓ Plot histogram for survived vs age.

- ✓ Drop unnecessary columns and separate y variable. Out: X_train, Y_train, X_test
- ✓ Check for null values and fill them with mean or median accordingly.
- ✓ Convert categorical columns to numerical with label encoding.
- ✓ Sample data after preprocessing is as below.

	Pclass	Sex	Age	Fare	Embarked
0	3	male	34.5	7.8292	Q
1	3	female	47.0	7.0000	S
2	2	male	62.0	9.6875	Q
3	3	male	27.0	8.6625	S
4	3	female	22.0	12.2875	S

✓ Fit 4 naïve bayes models(gaussian, multinomial, Bernoulli, complement) on X_train and Y_train. Use scikit-learn for the same.

- ✓ Predict on X_test.
- ✓ Since X_test original labels are not available we calculate accuracy on train data itself.
- ✓ Find classification_report, confusion_matrix, accuracy_score for each of the 4 models using scikit-learn
- ✓ Gaussian:

•	Gaussiaii.				
	precision	recall	f1-score	support	
	0 1		2 0.81 0 0.72		549 342
	accuracy macro avg weighted avg		6 0.77 8 0.78		891 891 891
√	[[445 104] [95 247]] accuracy is (Multinomial:).77665544	332211		
	precision	recall f	1-score s	upport	
	0 1		2 0.83 4 0.48		549 342
	accuracy macro avg weighted avg		8 0.65 9 0.70		891 891 891
,	[[457 92] [179 163]] accuracy is ().69584736	25140292		
•	Bernoulli: precision	recall f	1-score s	upport	
	0 1	0.8	1 0.85 4 0.68		549 342
	accuracy macro avg weighted avg	0.7 0.7	8 0.77 8 0.79		
	[[468 81] [109 233]] accuracy is ().78675645	34231201		
✓	<pre>Complement: precision</pre>	recall f	1-score s	upport	
	0	0.7			549 342
	accuracy	0 6	0 0 66	0.70	891

macro avg 0.68 0.66 weighted avg 0.69 0.70

0.66

0.69

891

891

```
[[455 94]
[177 165]]
accuracy is 0.6958473625140292
```

✓ Best fit model is Bernoulli naïve as it works well on binary dataset.

2. Glass dataset

- ✓ Read glass dataset using pandas.
- ✓ Check head to see columns and type of data.

RI	Na	Mg	Al	Si	K	Ca	Ba	Fe	Type		
0	1.5210	1	13.64	4.49	1.10	71.78	0.06	8.75	0.0	0.0	1
1	1.5176	1	13.89	3.60	1.36	72.73	0.48	7.83	0.0	0.0	1
2	1.51618	8	13.53	3.55	1.54	72.99	0.39	7.78	0.0	0.0	1
3	1.51766	6	13.21	3.69	1.29	72.61	0.57	8.22	0.0	0.0	1
4	1.51742	2	13.27	3.62	1.24	73.08	0.55	8.07	0.0	0.0	1

- ✓ Check for data imbalance using value_counts on y variable. This dataset is highly **imbalanced**.
- ✓ Plot histogram for Type vs Na and Type vs Si to observe the relation of dependant variables with independent variable.

- ✓ Separate X and Y data.
- ✓ Split data for train and test with 20% test using train_test_split. Set random_set to get same split on repetition. Out: X_train, Y_train, X_test, Y_test.
- ✓ Fit 4 naïve bayes models(gaussian, multinomial, Bernoulli, complement), SVC and Linear SVC on X_train and Y_train. Use scikit-learn for the same.
- ✓ Predict on X_test.
- ✓ Calculate accuracy on test data with Y_test and Y_pred_test.
- ✓ Find classification_report, confusion_matrix, accuracy_score for each of the 4 models using scikit-learn.
- ✓ Gaussian:

precision	red	call f1-sc	ore supp	ort	
	1	0.19	0.44	0.27	9
	2	0.33	0.16	0.21	19
	3	0.33	0.20	0.25	5

			5 6 7	0.	00 67 00	0.0 1.0 1.0	0 (C	0.00	2 2 6
	iccu icro ited	av	g		42 40	0.4		C).37).42).36	43 43 43
[0	1 2 0 0 eacy		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2325	581395 core	supp	ort		
1			1		28	0.8			.42	9

precision	recal	l f1-sco	re supp	ort	
	1	0.28	0.89	0.42	9
	2	0.40	0.11	0.17	19
	3	0.00	0.00	0.00	5
	5	0.00	0.00	0.00	2
	6	0.00	0.00	0.00	2
	7	0.67	1.00	0.80	6
accurac	СУ			0.37	43
macro av	7g	0.22	0.33	0.23	43
weighted av	rg	0.33	0.37	0.27	43
[[8 1 0		0]			
[16 2 0	0 0	1]			
[5 0 0	0 0	0]			
0 0 0]	0 0	2]			
[0 2 0	0 0	0]			
0 0 0	0 0	6]]			
accuracy is	0.3720	930232558	1395		

✓ Bernoulli:

precision	recall	f1-score	support		
1 2 3 5 6 7	0 0 0	.29 .00 .00	0.89 0.11 0.00 0.00 0.00 0.00	0.41 0.15 0.00 0.00 0.00 0.83	9 19 5 2 2 6
accuracy macro avg weighted avg			0.30 0.35	0.23	43 43 43

[[8 1 0 0 0 0]

```
[16 2 0 0 0 1]

[5 0 0 0 0 0 0]

[0 2 0 0 0 0]

[0 2 0 0 0 0]

[1 0 0 0 0 5]]

accuracy is 0.3488372093023256
```

✓ Complement:

precision	reca	all f1-scc	re supp	ort	
	1 2 3 5 6 7	0.28 0.00 0.00 1.00 0.50 0.75	1.00 0.00 0.00 0.50 0.50	0.44 0.00 0.00 0.67 0.50 0.86	9 19 5 2 2 6
accura macro a weighted a	ıvg	0.42 0.23	0.50	0.40 0.41 0.27	43 43 43
[[9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 1 0 0 0 1 0 0 0	0] 1] 0] 1] 0] 6]] 53488372093	023		

✓ SVC:

precision		recall	f1-sc	core	support		
	1 2 3 5 6 7	0 0 0 0	0.21	1.0 0.0 0.0 0.0 0.0	00 00 00	0.35 0.00 0.00 0.00 0.00	9 19 5 2 2 6
accura macro a weighted a	avg		0.03	0.1	.7	0.21 0.06 0.07	43 43 43
[19 0 ([5 0 ([2 0 (0 0 0 0 0 0 0 0 0 0 0 0	0 0] 0 0] 0 0] 0 0]]	39536			

✓ Linear SVC(max_iter=1000):

```
precision
           recall f1-score support
          1
                  0.31
                           1.00
                                     0.47
                                                 9
          2
                  1.00
                           0.11
                                     0.19
                                                19
          3
                                                 5
                  0.00
                           0.00
                                     0.00
          5
                  0.50
                           0.50
                                     0.50
                                                 2
          6
                                                 2
                 0.50
                           1.00
                                     0.67
                 1.00
                                                 6
                           1.00
                                     1.00
                                     0.47
                                                43
   accuracy
  macro avg
                  0.55
                           0.60
                                     0.47
                                                43
                0.69
                           0.47
                                     0.38
                                                43
weighted avg
[[ 9 0
        0 0 0 0]
 [15
     2
       0 1 1
                 0]
 [ 5
     0 0 0 0
                 0]
 [ 0
     0 0 1
              1
                 0]
 [ 0
     0 0 0 2
                 0]
 0 0 0 0 0
                 6]]
accuracy is 0.46511627906976744
```

✓ Complement naïve bayes works well for imbalanced dataset. Overall Linear SVC has better accuracy because data may be linearly related.