Universidad Nacional de Colombia Curso de Líneas y Antenas, Grupo 1 Primer examen

Bogotá, D.C., Martes 8 de Marzo de 2011

Yo,	, identificadx con CC/TI
-	durante el desarrollo este examen he utilizado solamente los medios permitidos y me he comunicado con el profesor de la asignatura.
	 Firma
1 30%	
material con	a lámina infinita de conductor eléctrico perfecto (PEC) ubicada en el plano $z=-t$ recubierta con un $\mu_r=1.0,\ \epsilon_r=3.1,\ \tan\delta=0.15$ y espesor t . Para $z<-t$ y $z>0$ se tiene espacio libre $(\epsilon_0,\ \mu_0)$. a relación E_r/E_i considerando una onda plana incidente en dirección $-\hat{z}$ para $t=0.1\lambda_0$.
$E_r/E_i =$	
2 40%	
salida $R_g =$	ito en la figura se tiene un generador senoidal con amplitud pico $V_g = 10V$, $f = 2.45 \mathrm{GHz}$ y resistencia de 75Ω conectado a una carga $Rl = 100\Omega$, $Cl = 10\mathrm{pF}$ a través de una línea de transmisión con impedancia a aproximadamente real $Z_0 = 75\Omega$, constante de atenuación $\alpha = 0.15 \mathrm{dB}/\lambda$ y longitud $l = 3.33\lambda$.
1. Poteno	ia entregada por el generador (incluida la disipada en su resistencia de salida).
2. Poteno	ia perdida en la línea.
3. Poteno	ia entregada a la carga.
4. Eficien	cia energética.
$P_g = $	$P_{lin} = \dots \qquad P_{carga} = \dots \qquad \eta = \dots$
	Vg TL1 RI CI

3 30%

Para el problema anterior, calcular una red de acople que realice máxima transferencia de potencia a la carga usando elementos concentrados (inductancias y capacitores) y la carta de Smith. Consigne los valores y tipos de los elementos calculados en los espacios abajo, donde el elemento a la izquierda es el más cercano a la carga (p.ej. $C_s=15 \mathrm{pF}$, $L_p=20 \mathrm{nH}$ para un acople que aplica un condensador en serie con la carga seguido de una inductancia en paralelo).

_____ , ____ = ______