ACTION OPERADS

DANIEL GRAVES

1. The hyperoctahedral groups do not form an action operad

This counterexample is due to Zhang (Example 2.28 of Group operads and homotopy theory).

Let $H_n=C_2\wr \Sigma_n=C_2^N\rtimes z\Sigma_n$ be the n^{th} hyperoctahedral group. In particular $H_1=C_2$.

We can think of elements of the hyperoctahdral group as a permutation graph on the set $\{1, \ldots, n\}$ with labels from the group C_2 on the edges.

In order to define an action operad we need structure maps of the form

$$\gamma \colon H_1 \times H_k \to H_k.$$

Let τ be the generator of $H_1 = C_2$. Let e_k denote the identity element of H_k . Let r_k be the element of H_k given by the order-reversing permutation with every edge labelled by τ .

Let $a \in H_k$.

If we want to detect the order-reversing structure in the hyperoctahedral group, we have two options for the map γ .

- We could define $\gamma(\tau; a) = r_k \circ a$ or
- we could define $\gamma(\tau, a) = a \circ r_k$.

In other words, we either post-compose or pre-compose with the order-reversing permutation with all edges labelled by τ .

These are not equal in general (for any $k \ge 3$ almost any choice of a should yield an example of this. I've scribbled this out for $a = (\tau, e_1, e_1, \tau; (13))$ for example).

Now, in H_1 we have $\tau \circ e_1 = e_1 \circ \tau$ and in H_k we have $a \circ e_k = e_k \circ a$. Therefore we should have $\gamma(\tau; a) = \gamma(\tau \circ e_1; a \circ e_k) = \gamma(\tau \circ e_1; e_k \circ a) = \gamma(e_1 \circ \tau; a \circ e_k) = \gamma(e_1 \circ \tau; e_k \circ a)$.

The structure map γ needs to be a crossed homomorphism, so we have a formula as part of the definition of action operad which tells us what each of these should be.

However, because we can commute τ and e_1 , the definition of crossed homomorphism means that for some of these maps we are post-composing with r_k and for others we are pre-composing, so the four maps are not equal in general, regardless of which convention we choose for γ . (As before, almost any choice for $k \geq 3$ should give an explicit counterexample.)