# **Loan Eligibility Analysis and Prediction**

| Index | Title                                    |
|-------|------------------------------------------|
| 1     | Importing required libraries and dataset |
| 2     | Data Analysis and Cleaning               |
| 3     | Data Visualization                       |
| 4     | Getting dataset ready for Training       |
| 5     | Predictive Model                         |
| 6     | Model Training                           |
| 7     | Model Testing and Evaluation             |

# 1. Loading required libraries and dataset

(a) Importing libraries such as pandas and matplotlib to manipulate and visualize dataset and its features.

```
In [1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

(b) Reading dataset from directory

```
In [3]: loan_train = pd.read_csv('dataset/loan-train.csv')
loan_test = pd.read_csv('dataset/loan-test.csv')
```

# **Dataset Description**

|     | Loan_ID  | Gender | Married | Dependents | Education       | Self_Employed | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term | Credit_Histor |
|-----|----------|--------|---------|------------|-----------------|---------------|-----------------|-------------------|------------|------------------|---------------|
| C   | LP001002 | Male   | No      | 0          | Graduate        | No            | 5849            | 0.0               | NaN        | 360.0            | 1             |
| 1   | LP001003 | Male   | Yes     | 1          | Graduate        | No            | 4583            | 1508.0            | 128.0      | 360.0            | 1             |
| 2   | LP001005 | Male   | Yes     | 0          | Graduate        | Yes           | 3000            | 0.0               | 66.0       | 360.0            | 1             |
| 3   | LP001006 | Male   | Yes     | 0          | Not<br>Graduate | No            | 2583            | 2358.0            | 120.0      | 360.0            | 1             |
| 4   | LP001008 | Male   | No      | 0          | Graduate        | No            | 6000            | 0.0               | 141.0      | 360.0            |               |
|     |          |        |         |            |                 |               |                 |                   |            |                  |               |
| 609 | LP002978 | Female | No      | 0          | Graduate        | No            | 2900            | 0.0               | 71.0       | 360.0            |               |
| 610 | LP002979 | Male   | Yes     | 3+         | Graduate        | No            | 4106            | 0.0               | 40.0       | 180.0            |               |
| 611 | LP002983 | Male   | Yes     | 1          | Graduate        | No            | 8072            | 240.0             | 253.0      | 360.0            |               |
| 612 | LP002984 | Male   | Yes     | 2          | Graduate        | No            | 7583            | 0.0               | 187.0      | 360.0            |               |
| 613 | LP002990 | Female | No      | 0          | Graduate        | Yes           | 4583            | 0.0               | 133.0      | 360.0            | (             |

Attributes and their description:

| Index | Attribute / Column | Description                                    |
|-------|--------------------|------------------------------------------------|
| 1.    | Loan_ID            | Unique Loan ID                                 |
| 2     | Gender             | Male/ Female                                   |
| 3.    | Married            | Applicant married (Y/N)                        |
| 4.    | Dependents         | Number of dependents the applicant has         |
| 5.    | Education          | Applicant Education (Graduate/ Under Graduate) |
| 6.    | Self_Employed      | Is the applicant self-employed (Y/N)           |
| 7.    | ApplicantIncome    | Applicant income                               |
| 8.    | CoapplicantIncome  | Co-applicant income                            |
| 9.    | LoanAmount         | Loan amount in thousands                       |
| 10.   | Loan_Amount_Term   | Term of a loan in months                       |
| 11.   | Credit_History     | credit history meets guidelines (0/1)          |
| 12.   | Property_Area      | Urban/ Semi-Urban/ Rural                       |
| 13.   | Loan_Status        | Loan approved (Y/N) (Target variable)          |

```
In [5]: print("Rows: ", len(loan_train))
    print("Columns: ", len(loan_train.columns))
    print("Shape : ", loan_train.shape)
         Rows: 614
         Columns: 13
Shape: (614, 13)
In [6]: loan_train.describe()
Out[6]:
                 ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History
          count
                     614.000000 614.000000
                                                     592.000000
                                                                         600.00000
                                                                                      564.000000
                     5403.459283
                                       1621.245798
                                                     146.412162
                                                                         342.00000
                                                                                        0.842199
          mean
                    6109.041673
                                      2926.248369
                                                     85.587325
                                                                                        0.364878
                      150.000000
                                          0.000000
                                                       9.000000
                                                                          12.00000
                                                                                        0.000000
                                      0.000000 100.000000
                    2877.500000
           25%
                                                                         360.00000
                                                                                        1.000000
            50%
                                       1188.500000 128.000000
                                                                                        1.000000
                     3812.500000
                                                                         360.00000
           75%
                   5795.000000 2297.250000 168.000000
                                                                         360.00000
                                                                                        1.000000
                   81000.000000
                                      41667.000000 700.000000
                                                                         480.00000
                                                                                        1.000000
```

# 2. Data Analysis and Cleaning

(a) Analyzing each column for unique values

```
In [8]: def dataset_value_counts():
    for column in loan_train.columns:
        if loan_train[column].dtype == 'object':
            print('Unique values in {column} and their counts are: \n'.format(column = column), loan_train[column].value_counts()
            print('\n')
```

This function will iterate through each categorical feature and print all the unique values in that column along with its value count.

# (b) Checking for Null values

|     | Loan_ID  | Gender | Married | Dependents | Education       | Self_Employed | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term | Credit_Histor |
|-----|----------|--------|---------|------------|-----------------|---------------|-----------------|-------------------|------------|------------------|---------------|
| 0   | LP001002 | Male   | No      | 0          | Graduate        | No            | 5849            | 0.0               | NaN        | 360.0            | 1.            |
| 11  | LP001027 | Male   | Yes     | 2          | Graduate        | NaN           | 2500            | 1840.0            | 109.0      | 360.0            | 1.            |
| 16  | LP001034 | Male   | No      | 1          | Not<br>Graduate | No            | 3596            | 0.0               | 100.0      | 240.0            | Na            |
| 19  | LP001041 | Male   | Yes     | 0          | Graduate        | NaN           | 2600            | 3500.0            | 115.0      | NaN              | 1.            |
| 23  | LP001050 | NaN    | Yes     | 2          | Not<br>Graduate | No            | 3365            | 1917.0            | 112.0      | 360.0            | 0.            |
|     |          |        |         |            |                 |               | ***             | ***               |            |                  |               |
| 592 | LP002933 | NaN    | No      | 3+         | Graduate        | Yes           | 9357            | 0.0               | 292.0      | 360.0            | 1             |
| 597 | LP002943 | Male   | No      | NaN        | Graduate        | No            | 2987            | 0.0               | 88.0       | 360.0            | 0             |
| 600 | LP002949 | Female | No      | 3+         | Graduate        | NaN           | 416             | 41667.0           | 350.0      | 180.0            | Na            |
| 601 | LP002950 | Male   | Yes     | 0          | Not<br>Graduate | NaN           | 2894            | 2792.0            | 155.0      | 360.0            | 1.            |
| 605 | LP002960 | Male   | Yes     | 0          | Not<br>Graduate | No            | 2400            | 3800.0            | NaN        | 180.0            | 1             |

There are 134 rows with at least one nan (null) value.

```
In [14]: loan_train.isna().sum()
Out[14]: Loan_ID
Gender
                               13
          Married
                               3
          Dependents
                               15
         Education
Self_Employed
                               0
                               32
          ApplicantIncome
                               0
          CoapplicantIncome
                               0
          LoanAmount
                               22
          Loan_Amount_Term
                               14
          Credit_History
                               50
          Property_Area
                               0
          Loan_Status
          dtype: int64
```

13 rows in Gender column have nan and so on.

#### (c) Dealing with null columns

# Categorical Columns with null:

- 1. Gender
- 2. Married
- 3. Dependents
- 4. Education
- 5. Self Employed
- 6. Credit History

Null values in categorical (non – quantitative) columns can be replaced with the most frequently occurring value of that particular column.

This has decreased the rows with nan to 36.

#### Quantitative Columns with null:

- 1. Loan Amount
- 2. Loan Amount Term

Null values in quantitative columns can be replaced with the most mean occurring value of that particular column.

```
In [6]: loan_train['LoanAmount'] = loan_train['LoanAmount'].fillna(loan_train['LoanAmount'].mean())
loan_test['LoanAmount'] = loan_test['LoanAmount'].fillna(loan_train['LoanAmount'].mean())
loan_train['Loan_Amount_Term'] = loan_train['Loan_Amount_Term'].fillna(loan_train['Loan_Amount_Term'].mean())
loan_test['Loan_Amount_Term'] = loan_test['Loan_Amount_Term'].fillna(loan_train['Loan_Amount_Term'].mean())

In [7]: loan_train[loan_train.isna().any(axis = 1)]|

Out[7]: Loan_ID Gender Married Dependents Education Self_Employed Applicantincome Coapplicantincome LoanAmount_Term Credit_History Practical Coapplicantincome LoanAmou
```

All nan rows has been filled with relevant values.

#### 3. Data Visualization

(a) Distribution of gender in dataset.

```
In [9]: gender_data = loan_train.Gender.value_counts()
    fig, ax = plt.subplots()
    ax.pie(gender_data , autopct='%1.1f%%')
    plt.title('Gender Distribution')
    plt.legend(['Male', 'Female'])
    plt.show()
    plt.close()
Gender Distribution
```



Over 80% of loan submissions were from males.

(b) Does a higher education correlate with higher mean income?



A graduate on average has higher income than a non-graduate.

Lets check median.

```
In [24]: sns.barplot(data = Educationincomemedian, x = 'Education', y = 'ApplicantIncome', hue="Education")
plt.show()
plt.close()

4000

3500

3000

4000

Graduate

Not Graduate

Education Not Graduate
```

The median is much closer suggesting some outliers increasing the graduate-income mean.



# (c) Plotting applicant income and loan amount

These are two quantitative variables and can be plotted through a scatter plot.

```
In [16]: plt.scatter(x = loan_train.ApplicantIncome, y = loan_train.LoanAmount)
plt.ylabel('Applicants Income')
plt.ylabel('Requested Loan Amount')
plt.grid()
plt.schow()
plt.close()|

700
600
100
200
100
2000 30000 40000 50000 60000 70000 80000
Applicants Income
```

The plot shows a slight positive relation.

Pearson relation can be used to show correlation between two quantitative variables.

# 4. Preprocessing

```
In [34]: loan_train.Loan_Status = loan_train.Loan_Status.replace({"Y": 1, "N" : 0})
loan_train.Gender = loan_train.Gender.replace({"Male": 1, "Female" : 0})
loan_test.Gender = loan_test.Gender.replace({"Male": 1, "Female" : 0})
loan_train.Married = loan_train.Married.replace({"Yes": 1, "No" : 0})
loan_test.Married = loan_test.Married.replace({"Yes": 1, "No" : 0})
loan_test.Married = loan_train.Self_Employed.replace({"Yes": 1, "No" : 0})
loan_train.Self_Employed = loan_train.Self_Employed.replace({"Yes": 1, "No" : 0})
loan_test.Self_Employed = loan_test.Self_Employed.replace({"Yes": 1, "No" : 0})
loan_train.Education = loan_train.Education.replace({'Graduate': 1, 'Not Graduate' : 0})
loan_train.Dependents = loan_train.Dependents.replace({'3+' : 4})
loan_test.Dependents = loan_test.Dependents.replace({'3+' : 4})
```

Replacing categorical values with relevant numerical values.

#### One Hot Encoding

One-hot encoding is a technique used in machine learning and data processing to convert categorical variables into a numerical format that can be more easily processed by algorithms.

```
In [24]: train_dataset = pd.get_dummies(train_dataset, columns = ['Property_Area'])
    train_dataset = train_dataset.replace({True: 1, False: 0})
In [26]: test_dataset = pd.get_dummies(test_dataset, columns = ['Property_Area'])
test_dataset = test_dataset.replace({True: 1, False: 0})
```

### 5. Creating Model

Since the target variable is a binary classification, logistic regression is suitable.

```
In [28]: from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score
In [29]: logistic_model = LogisticRegression()
```

# 6. Training the Model

Features are chosen that will be used to train the model.

Features are stored as a numpy array x\_train. The target variable is stored as another numpy array y train.

```
In [45]: train_features = ['Gender', 'Married', 'Dependents', 'Education', 'Self_Employed', 'ApplicantIncome', 'CoapplicantIncome', 'LoanAm
    x_train = train_dataset[train_features].values
    y_train = train_dataset['Loan_Status'].values.astype('int')
    x_test = test_dataset[train_features].values
```

Scaling the data to reduce the effect of outliers.

```
In [37]: x_train_scaled = MinMaxScaler().fit_transform(x_train)
    x_test_scaled = MinMaxScaler().fit_transform(x_test)
```

Fitting the logistic regression model.

#### 7. Model Testing and Evaluation

```
In [31]: predicted = logistic_model.predict(x_test_scaled)|
In [32]: score = logistic_model.score(x_train_scaled, y_train)
    print('accuracy_score overall :', score)
    print('accuracy_score percent :', round(score*100,2))
    accuracy_score overall : 0.8094462540716613
    accuracy_score percent : 80.94
```