Nanyang Technological University

School of Computer Science and Engineering

CZ 2003 - Lab 3: Parametric Surfaces and Solids

Phua Jia Sheng Lab Group: SSR1

1. 3D Plane

```
Points on plane:

P1 = (0,1,2)

P2 = (1,3,4)

P3 = (1,-2,10)

P = P1+ u(P2-P1) + v(P3-P1)

=(0,1,2) + u(1,2,2) + v(1,-3,8)

x = u+v

y = 1+2u-3v

z = 2+2u+8v
```


Figure 1: A 3D plane defined parametrically. The plane does not extend infinitely as the range for u and v are set to [-10,10]. Source code: 3DPlane.wrl

2. 3D Triangle

P1	P2	P3	P4=P3
X1=-1	X2=1	X3=0	X4=0
Y1=0	Y2=0	Y3=1	Y4=1
Z1=1	Z2=0	Z3=0	Z4=0

 $x(u,v)=x1+u\cdot(x2-x1)+v\cdot(x3-x1+u\cdot(x4-x3-x2+x1))=-1+2u+v-2uv$ $y(u,v)=y1+u\cdot(y2-y1)+v\cdot(y3-y1+u\cdot(y4-y3-y2+y1))=v$ $z(u,v)=z1+u\cdot(z2-z1)+v\cdot(z3-z1+u\cdot(z4-z3-z2+z1))=1-u-v+uv$

u ε [0,1], v ε [0,1]

Figure 2: 3D Triangle defined parametrically through the use of equation for bilinear surfaces. Source code: 3DTriangle.wrl

3. Bilinear Surface

P1	P2	Р3	P4
X1=-1	X2=1	X3=0	X4=3
Y1=0	Y2=0	Y3=1	Y4=1
Z1=1	Z2=0	Z3=0	Z4=2

 $x(u,v)=x1+u\cdot(x2-x1)+v\cdot(x3-x1+u\cdot(x4-x3-x2+x1))=-1+2u+v+uv$ $y(u,v)=y1+u\cdot(y2-y1)+v\cdot(y3-y1+u\cdot(y4-y3-y2+y1))=v$ $z(u,v)=z1+u\cdot(z2-z1)+v\cdot(z3-z1+u\cdot(z4-z3-z2+z1))=1-u-v+3uv$

u ε [0,1], v ε [0,1]

Figure 3: Bilinear Surface defined parametrically. Source code: BLSurface.wrl

4. Sphere (surface)

Equations:

x = cos(u)*sin(v)
y = sin(u)
z =

u ϵ [- π /2, π /2], v ϵ [- π , π]

Figure 4: Sphere surface centered at (0,0,0) with radius 1. Source code: sphereSurface.wrl

5. Ellipsoid

Equations:

x = cos(u)*sin(v) y = 1/3*sin(u)z = 2/3*cos(u)*cos(v)

u ε [- π /2, π /2], ν ε [- π , π]

Figure 5: Ellipsoid surface. Source code: ellipsoidSurface.wrl

Cone (surface)

Equations:

x = u y = u*cos(v) z = u*sin(v)

u ϵ [0,1/ $\sqrt{2}$], v ϵ [0,2 π]

How shapes change in response to sampling resolution

6. Solid Box

Equations:

x = u

y = v

z = w

u ϵ [0,1], v ϵ [0,1], w ϵ [0,1]

Figure 6: Solid Box. Source code: solid.wrl

7. Solid Sphere

Equations:

x = w*cos(u)*sin(v)

y = w*sin(u)

z = w*cos(u)*cos(v)

u ϵ [- π /2, π /2], v ϵ [- π , π], w ϵ [0,1]

Figure 7: Solid sphere centered at (0,0,0) with radius 1. Source code: sphereSolid.wrl

8. Solid Cylinder

```
Equations:

x = u*sin(2\pi*v)

y = w*1.5

z = u*cos(2\pi*v)
```

u ϵ [0,1], v ϵ [0,1], w ϵ [0,1]

Figure 8: Cylinder with height 1.5 and radius 1, centered at (0,0,0). Source code: cylinderSolid.wrl

9. Solid Cone

Equations: $x = u^*(1-w)^*sin(2\pi^*v)$ $y = w^*1.5$ $z = u^*(1-w)^*cos(2\pi^*v)$

u ϵ [0,1], v ϵ [0,1], w ϵ [0,1]

Figure 9: Solid cone with base of radius 1, centered at (0,0,0) and height of 1.5. Source code: coneSolid.wrl

10. Conversion of closed surface to solid object

First, we start of with a cylindrical surface created by translational sweeping of a circle centered at (0,0,0) with radius 1. The translational sweeping takes place along the positive z-axis by 1.5 units.

```
x = cos(u*2\pi)

y = sin(u*2\pi)

z = 1.5*v

u \in [0,1], v \in [0,1]
```

We get the following cylindrical surface:

By multiplying a new parameter, w, to the radius of the circle before translational sweeping, we are effectively creating a circle surface made up of infinitely many cicle curves of varying radii (from 0 to the original radius, 1). Thus, when we are doing translational sweeping, we are transforming a surface into a solid, and not a curve into a surface.

```
New equations: x = w*cos(u*2\pi)y = w*sin(u*2\pi)z = 1.5*vu \in [0,1], v \in [0,1], w \in [0,1]
```

We then get the following solid cylinder:

11. Use curve y=sin(x) for making a solid by applying rotational and translational sweepings together.

We start with:

```
x = u

y = sin(u)

z = 0, u \in [0,2\pi]
```

We then perform rotational sweeping on the curve by π radians anticlockwise.

```
x = u*cos(v)

y = sin(u)

z = -sin(v)*u, u \in [0,2\pi], v \in [0, \pi]
```

Finally we perform translational sweeping on the curve by 0.5 units parallel to the negative y-axis.

```
x = u*cos(v)

y = sin(u)-0.5*w

z = -sin(v)*u, u \in [0,2\pi], v \in [0,\pi], w \in [0,1]
```

And we get this solid:

