WHAT IS CLAIMED IS:

1 2

	WHAT IS CLAIMED IS.				
1	1. A process for forming a film of material from a substrate, said				
2	process comprising steps of:				
3	introducing particles through a surface of a substrate to a selected				
4	depth underneath said surface, said particles being at a concentration at said selected				
5	depth to define a substrate material to be removed above said selected depth; and				
6	providing energy to a selected region of said substrate to initiate a				
7	controlled cleaving action at said selected depth in said substrate, whereupon said				
8	cleaving action is made using a propagating cleave front to free a portion of said				
9	material to be removed from said substrate.				
1	2. The process of claim 1 wherein said particles are derived from				
2	a source selected from the group consisting of hydrogen gas, helium gas, water				
3	vapor, methane, hydrogen compounds, and other light atomic mass particles.				
1	3. The process of claim 1 wherein said particles are selected from				
2	the group consisting of neutral molecules, neutral atoms, charged molecules, charged				
3	atoms, and electrons.				
1	4. The process of claim 1 wherein said particles are energetic.				
1	5. The process of claim 4 wherein said energetic particles have				
2	sufficient kinetic energy to penetrate through said surface to said selected depth				
3	underneath said surface.				
1	6. The process of claim 1 wherein said step of providing energy				
2	sustains said controlled cleaving action to remove said material from said substrate to				
3	provide a film of material.				

increases a controlled stress in said material and sustains said controlled cleaving

The process of claim 1 wherein said step of providing energy

3	action to remove sa	id material from said substrate to provide a film of material.			
1	8.	The process of claim 1 wherein said introducing step forms			
2	damage selected from the group consisting of atomic bond damage, bond substitution,				
3	weakening, and brea	aking bonds of said substrate at said selected depth.			
1	9.	The process of claim 8 wherein said damage creates stress in			
2	said substrate material.				
1	10.	The process of claim 8 wherein said damage reduces an ability			
2	of said substrate material to withstand stress without a possibility of a cleaving of said				
3	substrate material.				
1	11.	The process of claim 1 wherein said propagating cleave front			
2	comprises a plurality				
1	12.	The process of claim 1 wherein said introducing step causes			
2		al region at said selected depth by a presence of said particles at			
3	said selected depth.	g armores at			
1	13.	The process of claim 1 wherein said energy is selected from the			
2					
3	group consisting of a thermal source, a thermal sink, a mechanical source, a chemical source, and an electrical source.				
1	14.	The process of claim 13 wherein said chemical source is			
2	provided by particles.				
1	15.	The process of claim 13 wherein said chemical source includes			
2	a chemical reaction.				
1	16.	The process of claim 13 wherein said chemical source is			

- 2 selected from the group consisting of a flood source, a time-varying source, a 3 spatially varying source, and a continuous source. 1 17. The process of claim 13 wherein said mechanical source is 2 selected from the group consisting of a rotational source, a translational source, a 3 compressional source, an expansional source, and an ultrasonic source. 1 18. The process of claim 13 wherein said mechanical source is 2 selected from the group consisting of a flood source, a time-varying source, a 3 spatially varying source, and a continuous source. 1 19. The process of claim 13 wherein electrical source is selected 2 from the group consisting of an applied voltage source and an applied electro-3 magnetic means. 1 20. The process of claim 13 wherein said electrical source is 2 selected from the group consisting of a flood source, a time-varying source, a 3 spatially varying source, and a continuous source. 1 21. The process of claim 13 wherein said thermal source or said 2 thermal sink provides energy by radiation, convection, or conduction. 22. 1 The process of claim 21 wherein said thermal source is selected 2 from the group consisting of a photon beam, a liquid jet, a gas jet, an electron beam, 3 a thermo-electric heater, an oven, and a furnace. 1 23. The process of claim 21 wherein said thermal sink is selected 2 from the group consisting of a liquid jet, a gas jet, a cryogenic fluid, a super-cooled
 - 24. The process of claim 23 wherein said thermal source is selected

liquid, a thermo-electric cooling means, and a super-cooled gas.

3

1

2 from the group consisting of a flood source, a time-varying source, a spatially 3 varying source, or a continuous source. 1 25. The process of claim 1 wherein said substrate is maintained at a 2 temperature ranging between -200°C and 450°C during said introducing step. 1 26. The process of claim 1 wherein said step of providing said 2 energy is maintained at a temperature below 400°C. 1 27. The process of claim 1 wherein said step of providing said 2 energy is maintained at a temperature below 350°C. 1 28. The process of claim 1 wherein said step of introducing is a 2 step(s) of beam line ion implantation. 1 29. The process of claim 1 wherein said step of introducing is a 2 step(s) of plasma immersion ion implantation. 1 30. The process of claim 1 further comprising a step of joining said 2 surface of said substrate to a surface of a target substrate to form a stacked assembly. 1 31. The process of claim 30 wherein said joining step is provided 2 by applying an electrostatic pressure between said substrate and said target substrate. 32. 1 The process of claim 30 wherein said joining step is provided 2 by using an adhesive substance between said target substrate and said substrate. 1 33. The process of claim 30 wherein said joining step is provided 2 by an activated surface between said target substrate and said substrate.

The process of claim 30 wherein said joining step is provided

1

34.

2	by an interatomic bond between said target substrate and said substrate.				
1		35. TI	he process of claim 30 wherein said joining step is provided by		
2	spin-on-glass between said target substrate and said substrate.				
1		36.	The process of claim 30 wherein said joining step is provided		
2	by a polyimide between said target substrate and said substrate.				
1		37.	The process of claim 1 wherein said substrate is made of a		
2	material select	ed fron	n the group consisting of silicon, diamond, quartz, glass,		
3	sapphire, silicon carbide, dielectric, group III/V material, plastic, ceramic material,				
4	and multi-layered substrate.				
1		38.	The process of claim 1 wherein said surface is planar.		
1		39.	The process of claim 1 wherein said surface is curved or		
2	annular.				
1		40.	The process of claim 1 wherein said substrate is a silicon		
2	substrate comprising an overlying layer of dielectric material, said selected depth				
3	being undernea	ath said	dielectric material.		
1		41.	The process of claim 40 wherein said dielectric material is		
2	selected from the group consisting of an oxide material, a nitride material, or an				
3	oxide/nitride material.				
1		42.	The process of claim 1 wherein said substrate includes an		
2	overlying layer	r oi coi	nductive material.		
1		43.	The process of claim 42 wherein said conductive material is		
2	selected from the group consisting of a metal, a plurality of metal layers, aluminum,				

a

- 3 tungsten, titanium, titanium nitride, polycide, polysilicon, copper, indium tin oxide, 4 silicide, platinum, gold, silver, and amorphous silicon. 1 44. The process of claim 1 wherein said step of introducing provides a substantially uniform distribution of particles along a plane of said material 2 3 region at said selected depth. 1 45. The process of claim 44 wherein said substantially uniform 2 distribution is a uniformity of less than about 5%. 1 46. A method for forming a film of material from a single-crystal 2 silicon wafer, the method comprising steps of: 3 implanting hydrogen ions through a surface of the single-crystal silicon wafer 4 to a selected depth underneath the surface, the hydrogen ions being at a concentration at the selected depth to define a layer to be removed above the selected depth; 5 6 bonding the surface to a workpiece; and 7 providing energy to a selected region of the substrate to initiate a controlled 8 cleaving action at the selected depth in the substrate to free the layer from the 9 substrate. 1 47. A device comprising a thin film of silicon, the thin film of 2 silicon having a cleaved surface with a cleaved surface roughness less than about 60 3 nm. 1 48. The device of claim 47 wherein the thin film of silicon is less 2 than about 15 microns thick. 1 49. The device of claim 47 wherein the thin film of silicon is 2 bonded to a target wafer.
 - A method for forming a film of material from a single-crystal

1

50.

silicon wafer, the method comprising steps of:

2

1

2

implanting hydrogen ions through a surface of the single-crystal silicon wafer
to a selected depth underneath the surface, the hydrogen ions being at a concentration
at the selected depth to define a layer to be removed above the selected depth; and
directing a jet of high-pressure fluid at a selected region of the substrate to
initiate a controlled cleaving action at the selected depth in the substrate to free the
layer from the substrate.

51. The method of claim 50 wherein the jet of high-pressure fluid is heated above a wafer temperature of the single-crystal silicon wafer.