AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

Claim 1. (Previously Amended) A method for treatment of urinary incontinence by administering compounds, having the formula:

or their salts, where:

 $A = R(COX)_t$ wherein t is an integer 0 or 1;

X = O, NH, NR_{1C} wherein R_{1C} is a linear or branched alkyl having from 1 to 10 C atoms;

R is chosen from the following groups:

Group I A), where t = 1,

where:

 R_{II5} is H, a linear $C_1\text{-}C_3$ alkyl, or a branched $C_1\text{-}C_3$ alkyl;

 R_{II6} has the same structure as R_{II5} ,

 R_{II1} , R_{II2} and R_{II3} are each hydrogen, linear C_1 - C_6 alkyl, branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 , C_1 , or C_2

 $R_{\rm II4}$ has the same structure as $R_{\rm II1}$ or is bromine;

Group II A) chosen from the following:

where, when t = 1, R is

where R_{2a} and R_{3a} are H, a linear C_1 - C_{12} alkyl, a branched C_1 - C_{12} alkyl, or allyl, with the proviso that when one of the two is allyl the other is H;

 R_{1a} is chosen from the subgroup II Aa) consisting of

, and

wherein:

in the residue of formula (IV):

 R_{III1} is H or SR_{III3} where R_{III3} contains from 1 to 4 linear or branched C atoms; and R_{III2} is H or hydroxy;

in the residue of formula (XXI):

 R_{xxio} is H, a linear alkyl having 1-6 carbon atoms, a branched alkyl having from 1 to 6 carbon atoms, a C_1 - C_6 alkoxy-carbonyl bound to a C_1 - C_6 carboxyalkyl, or a C_1 - C_6 alkanoyl, optionally substituted with halogen, benzyl or halobenzyl, benzoyl or halobenzoyl;

 R_{xxi} is H, halogen, hydroxy, CN, a C_1 - C_6 alkyl optionally containing OH groups, a C_1 - C_6 alkoxy, acetyl, benzyloxy, SR_{xxi2} where R_{xxi2} is a C_1 - C_6 alkyl; a perfluoroalkyl having a 1-3 C atoms, a C_1 - C_6 carboxyalkyl optionally containing OH groups, NO_2 , sulphamoyl, dialkyl sulphamoyl with the alkyl having from 1 to 6 C atoms, or difluoroalkylsulphonyl with the alkyl having from 1 to 3 C atoms;

 R_{xxil} is halogen, CN, a C_1 - C_6 alkyl optionally containing one or more OH groups, a C_1 - C_6 alkoxy, acetyl, acetamido, or benzyloxy,

SR_{III3} is as above defined, a perfluoroalkyl having from 1 to 3 C atoms, hydroxy, a carboxyalkyl having from 1 to 6 C atoms, hydroxy, a carboxyalkyl having from 1 to 6 C atoms, NO₂, amino, mono- or dialkylamino having from 1 to 6 C atoms, sulphamoyl, a

TECH/191722.1

dialkyl sulphamoyl having from 1 to 6 C atoms, difluoroalkylsulphamoyl; or R_{xxi} together with R_{xxil} is an alkylene dioxy having from 1 to 6 C atoms;

In the residue of formula (XXXV):

Ar is phenyl, hydroxyphenyl optionally mono- or polysubstituted with halogen, an alkanoyl or alkoxy having from 1 to 6 C atoms, a trialalkyl having from 1-6 C atoms, yclopentyl o-hexyl o-heptyl, thienyl, furyl, furyl containing OH, or pyridyl;

Subgroup II Ab) consisting of:

TECH/191722.1

HAT I

(XXXXI)

Hom

(XXXVII)

wherein:

when IIIa) contains -CH(CH₃)-COOH it is known as pranoprofen: α -methyl-5H-(1) benzopyran (2,3-b) pyridine-7-acetic acid;

when residue (XXX) contains -CH(CH₃) -COOH it is known as bermoprofen: dibenz (b,f) oxepin-2-acetic acid;

residue (XXXI) is known as CS-670: 2-(4-2(2-oxo-1-cyclohexylidenemethyl) phenyl) propionic acid, when the radical is -CH(CH₃) -COOH;

when residue (XXXII) contains group -CH₂COOH it is known as pemedolac;

when residue (XXXIII) is saturated with -CH₂COOH it is known as pyrazolac: 4-(4-chlorophenyl)-1-(4-fluorophenyl) 3-pyrazolyl acid derivatives;

when residue (XXXVI) is saturated with -CH(CH₃)-COO- it is known as zaltoprofen;

when residue (XXXVII) is CH₂-COOH it derives from the known mofezolac: 3,4-di p-methoxyphenyl) isoxazol-5-acetic acid;

(Axoup IIIA), where t = 1,

R_{IV} - C -

wherein:

at least one of R_{lvd} and R_{lvd1} is H and the other a linear or branched C_1 - C_6 alkyl, or difluoroalkyl with the alkyl having from 1-6 C atoms, or R_{lvd} and R_{lvd} jointly form a methylene group;

R_{IV} has the following structure:

(四)

HIT

where:

in the residue of formula (II):

R_{IV-II} is selected from the group consisting of an alkyl having from 1 to 6 C atoms, a cycloalkyl having from 3 to 7 C atoms, an alkoxymethyl having from 1 to 7 C atoms, a trifluoroalkyl having from 1 to 3 C atoms, vinyl, ethynyl, halogen, an alkoxy having from 1 to 6 C atoms, a difluroalkoxy with the alkyl having from 1 to 7 C atoms, an alkoxymethyloxy having from 1 to 7 C atoms, an alkylmethylthio with the alkyl having from 1 to 7 C atoms, cyano, difluoromethylthio, a substituted phenyl-, and phenylalkyl with the alkyl having from 1 to 8 C atoms;

 $R_{\text{IV-III}}$ is a C_2 - C_5 alkyl, a C_2 or C_3 alkyloxy, allyloxy, phenoxy, phenylthio, a cycloalkyl having from 5 to 7 C atoms, optionally substituted at position 1 by a C_1 - C_2 alkyl; Group IV A)

where A = RCOO, t = 1,

Group V A) chosen from the following:

Subgroup V Aa) residues chosen from the following, where t = 1

(V Aa1)

(V Aa2)

(V Aa3)

(V Aa4)

subgroup V Ab), residue, where t = 1:

(V Ab1)

subgroup V Ac), residue, where t = 0 and R is as follows:

(V Ac1)

the second

(V Ac3)

(V Ac4)

subgroup V Ad) residues, where t = 1 and R is as follows:

(V Adl)

(▼ Ad2)

Som

subgroup Ae) residues, where t = 1 and R is as follows:

(V Ae3)

(V Ae4)

(V Ae5)

(V Ae6)

John John

wherein:

in compounds (V Ac1) Rvac1 attached to the oxygen atom in position 2 of the benzene ring of the N - (4-nitro-phenyl)methansulphonamide can be phenyl or cyclohexane, when Rvac1 is phenyl the residue is that of nimesulfide;

in compounds (V Ac2) the residue of 3-formylamino-7-methylsulfonylamino-6phenoxy-4H-1-bezopyran-4-one has been shown;

in compounds (V Ac3) the atom X_4 that links the radical 2,4-difluorothiophenyl to position 6 of the indanone ring of the residue 5-methanesulfonamido-1-indanone can be valifur or oxygen;

X₁ in formula A-X₁-NO₂ is a bivalent connecting bridge chosen from the following:

- YO

where Y is a linear or branched C_1 - C_{20} alkylene, or an optionally substituted cycloalkylene having from 5 to 7 carbon atoms;

where n₃ is an integer from 0 to 3;

TECH/191722.1

where nf is an integer from 1 to 6;

where R_{1f} = H or CH_3 and nf is an integer from 1 to 6.

Claim 2. (Previously Amended)

chosen from groups IV A) and V A).

The method according to Claim 1, in which R is

Claim 3. (Withdrawn)

ໆ Claim 4. (Withdrawn)

Claim 5. (Cancel)

Claim 6. (Withdrawn)

Claim 7. (Re-presented as claim 9)

Claim 8. (Re-presented as claim 10)

Claim 9. (Previously Re-presented - formerly claim 7) A compound having the following formula:

Claim 10. (Previously Re-presented - formerly claim 8) A method for treating urinary incontinence comprising administering to a patient in need thereof a therapeutically effective amount of the compound of claim 7 or a pharmaceutically acceptable salt thereof.

Claim 11. (Withdrawn)

Claim 12. (Withdrawn)

Claim 13. (Withdrawn)

Claim 14. (Withdrawn)

Claim 15. (Withdrawn)

Claim 16. (Withdrawn)

Claim 17. (Withdrawn)

Claim 18. (Withdrawn)

Claim 19. (Withdrawn)

Claim 20. (Withdrawn)