

Au menu...

- D'où je parle
- La couleur, avec ou sans R
 - ...est un concept
 - rappel pour les débutants ?
 - du côté de la physique : R peut-il être « physico-réaliste » ?
- La couleur pour utilisateurs pressés : les catalogues
- La couleur pour bricoleurs : les grammaires
- Quelques applications spéciales : plongée dans la boite à outils R
 - émuler, capturer, échanger, customiser

Institut Mines-Télécom

Quelques références

D'où je parle : ingénierie d'aspect

D'où je parle : positionnement thématique

- Cartographie d'espaces "conceptuels"
 - analyse multivariée / multitableaux
 - "space embedding" / "mapping" / "alignement"
 - analyse morphologique
 - analyse de trajectoires
 - analyse sémantique
- Ingénierie des représentations visuelles
- Contributeur (modeste) à plotrix

Institut Mines-Télécom

Package de "GPS couleur" en préparation

La couleur, avec ou sans R, c'est...

- Le résultat d'un processus physique et psycho-physique
- Un sous-espace conceptuel (cognitif mais aussi industriel, normatif...)
- Un outil de communication visuelle, verbale et symbolique
 - Pour le marquage (identifier, grouper)

- Pour la quantification (échelles d'intensité)
- Pour la représentation fidèle (physico-réalisme)
- Pour l'amplification (animer, décorer)... à déconseiller ici (anti-Tufte!)
- Mais pour R?

Mais la couleur, pour R ce n'est "que "

- supportés par des vecteurs ou des fonctions
- "workhorses": grDevices, colors() et colorRamp()
- détails: http://www.uv.es/conesa/CursoR/material/UsingColorInR.pdf

6ème Rencontres R – Anglet, 28-30 juin 2017

Pour les débutants : vecteurs et rampes

Vecteurs:

à valeurs[i] correspond vecteurDeNomsCouleurs[i]

Rampes:

à valeurs[i] correspond FonctionCouleur(valeurs[i])

Pour les débutants : vecteurs et rampes

Vecteurs: donc sensibles à l'ordre

Rampes: donc insensibles à l'ordre

8

Pour les physiciens :

R peut-il être physico-réaliste...

Physico-réalisme : pour en faire quoi ?

Physico-réalisme : pour en faire quoi ?

MDBA126FB / MDBA130FB / MDBA.142FB / MDBA.143FB (D65_10, ill. level = 500)

11

Physico-réalisme : pour en faire quoi ?

Physico-réalisme : pour en faire quoi* ?

* voir aussi CRAN Task View: Psychometrics

Journal of Vision (2003) 3, 573-585 http://journalofvision.org/3/8/5/ Maximum likelihood difference scaling Department of Psychology and Center for Neural Science, Laurence T. Maloney New York University, New York, NY, USA **Joong Nam Yang** NASA Ames Research Center, Moffett Field, CA, USA \bowtie We present a stochastic model of suprathreshold perceptual differences based on difference measurement. We develop a maximum likelihood difference scaling (MLDS) method for estimating its parameters and evaluate the reliability and distributional robustness of the fitting method. We also describe a method for testing whether the difference measurement model is appropriate as a description of human judgment of perceptual differences in any specific experimental context. Keywords: sensory magnitude, proximity, similarity, difference scaling, salience

« Quelle paire est la plus différente ? » Épreuve dite « 2AFC » (choix forcé à 2 alternatives)

Physico-réalisme à la sauce colorimétrique

$$\{X,Y,Z\} = k \int_{400}^{700} S(\lambda)R(\lambda)\{x,y,z\}(\lambda)$$
 $X Y Z$
objectif 29.38 24.54 14.25
réalisation 29.36 24.51 14.20

6ème Rencontres R – Anglet, 28-30 juin 2017

- R peut-il reproduire ce système ab initio?
- oui... et pour cela le « meilleur » package est colorSpec
- autres candidats : colorscience, pavo... mais attention

La logique de colorSpec

1 – Décrire un couple source / récepteur (comportant éventuellement des filtres, etc...)

2 – spécifier un matériau qui servira d'étalon (ici, cas particulier d'un réflecteur parfait)

PRD <- neutralMaterial(1, wavelength(D65.eye))

3 - Calibrer le récepteur pour qu'il fournisse des coordonnées standard (penser au facteur k...)

6ème Rencontres R – Anglet, 28-30 juin 2017

La logique de colorSpec (suite)

4 – Calculer XYZ (avec product) puis transformer en RGB (avec RGBfromXYZ)

```
colorSpec.XYZ.RAL <- product( colorSpec.RAL, D65.eye, wave='auto' )</pre>
colorSpec.RGB.RAL<- RGBfromXYZ(colorSpec.XYZ.RAL, 'sRGB')</pre>
```

Institut Mines-Télécom

5 – Adapter à la représentation écran (avec DisplayRGBfromLinearRGB par exemple)

DisplayCoords<-DisplayRGBfromLinearRGB(colorSpec.RGB.RAL[c("RAL1000", "RAL1004", "RAL6000", "RAL6017"),], gamma='sRGB')

Pour l'utilisateur pressé : couleurs sur catalogue

L'offre de base : grDevices

palettes

rainbow(72)

colorRampPalette(

terrain.colors(72)

c("red", "orange", "blue"), space = "rgb")(72)

topo.colors(72)

cm.colors(72)

gray.colors(72)

(JND)

rampes [0,1]

colorRamp(c("red","orange","blue")) (0:72/72)

gray(0:72/72)

RColorBrewer: "data driven"

- introduit l'approche "sémantique" : qualitative / séquentielle / divergente
- copyright (2002 C. Brewer, M. Harrower, The Pennsylvania State University)
- http://colorbrewer2.org
- palettes courtes, n<13

Institut Mines-Télécom

accès au catalogue au moyen d'une seule fonction : brewer.pal(n, name)

19

RColorBrewer: "data driven"

qualitatives

découpage discret

10/05/2017

- sans ordre intrinsèque
- catégorielles (facteurs)

séquentielles

- valeurs de "basses" à "hautes"
- valeurs de "inintéressantes" à "intéressantes"
- combiner faibles variations de teinte et fortes variations de clarté ou de saturation

6ème Rencontres R – Anglet, 28-30 juin 2017

divergentes

- Intérêt pour tout l'intervalle de variation
- point-milieu bien défini à valoriser
- Résidus, corrélations, probabilités

colormap : la liste colormaps

6ème Rencontres R – Anglet, 28-30 juin 2017

collection orientée océanographie : oce::oce.colors...

...Turbidity

...Velocity

...Phase

...Salinity

Institut Mines-Télécom

...Temperature

Momocs::col

colorRamps

plus une forme grammaticale spéciale (qu'on verra plus loin)

n > 21

25

Maximiser les différences perçues : BacArena

COlpal1 : 269 couleurs "les plus distinctes de toutes les précédentes"

colpal2: 20 couleurs "optimalement distinctes"

colpal3: 22 couleurs "avec contraste maximum" (Kelly, Color Eng. 1965)

colpal4: 26 couleurs (Zeileis 2009, "Escaping RGBland")

COlpal5: 64 couleurs selon un contributeur de stackoverflow (une coquille pour i=47 dans l'actuelle version la rend inopérante)

6ème Rencontres R – Anglet, 28-30 juin 2017

colpal6: 64 autres couleurs distinctes

Maximiser les différences perçues : Polychrome

Kelly.Colors: 22 couleurs à comparer à BacArena::colpal3 (Kelly, Color Eng. 1965)

glasbey.colors: 32 couleurs "bien séparées" (Glasbey et al., Color Research and Application, 32, 304-9)

green.armytage.colors: 26 couleurs "pour un alphabet" (Green-Armytage, Colour: Design and Creativity, 2010; 10:1–23)

palette36.colors: 36 couleurs avec $\Delta E_{L^*u^*v^*} \sim 40$ (Carter & Carter, Applied Optics, 1982; 21(16):2936–9)

alphabet.colors: 26 couleurs mêlant les approches de Carter et Green-Armytage

+ un ensemble de fonctions pour tester les palettes

rancurves(alphabet)
ranpoints(alphabet)
uvscatter(alphabet)
luminance(alphabet)
plothc(alphabet)
p3d(alphabet)

Encore de fortes différences perçues : broman

Echelles perceptuelles linéaires : hexbin

LinGray (20, beg=1, end=92)

BTC (20, beg=1, end=92)

LinOCS (20, beg=1, end=92)

heat.ob (20, beg=1, end=92)

magent (20, beg=1, end=92)

plinrain (20, beg=1, end=92)

BTY (20, beg=1, end=92)

(chaque pas est une JND)

Colorblind safe: la palette viridis

- n couleurs régulièrement espacées
- basée sur Matplotlib (python)
- dite "parfaitement uniforme" perceptuellement :
 - sous sa forme initiale
 - une fois convertie en niveaux de gris ("publication ready")
 - pour la plupart des types de DVC

- où la trouver?
 - pals::viridis(n,...)
 - colormap::colormap(colormaps\$viridis,nshades,...)
 - viridis::viridis_pal(...)(n) et viridisLite::viridis(n,...)
 - parfois palette par défaut (heatmaply, dendextend, pdp, oce, IMIFA...)

Colorblind safe: la palette viridis

pals::pal.safe(pals::viridis(12))

Colorblind safe: morgenstemning

Colorblind safe: biovizBase

"dichromat et RColorBrewer couplés"!

colorBlindSafePal()

Institut Mines-Télécom

33

Quelques autres curiosités ...pas toujours fiables

■ colorr : palettes courtes (n ≤ 6) maillots et écussons de sport (anglo-saxons)

echogram : palette adaptée pour dB

gapminder: palette géopolitique (une teinte par continent, gradient pour les états)

Redmonder: palettes Microsoft (avec une sémantique imitée de ColorBrewer)

Pour les bricoleurs.

les générateurs de palettes

Les grammaires classiques

colorspace

- espace HCL (hue / chroma / luminance)
- approche « Kansei » (dynamique / harmonique / froid / chaud)

berryFunctions

- pas de fonction pour les palettes qualitatives
- dépasser la limitation du nombre dans ColorBrewer?
- ambiance par défaut « jaune / rouge / bleu / brun »

colorspace

"qualitatives"

rainbow_hcl(n, c = 50, l = 70, start = 0, end = 360*(n-1)/n, gamma = NULL,...)

h=seg(start,end,length.out=n) # voir [Zeileis 2009] pour usage

"séquentielles"

sequential_hcl(n, h = 260, c. = c(80, 0), I = c(30, 90), power = 1.5, gamma = NULL,...)

c. pour distinguer de c(...,...)

"divergentes"

diverge_hcl(n, h = c(260, 0), c = 80, l = c(30, 90), power = 1.5, gamma = NULL,...)

length(h) = 2# existe aussi en version hsv

berryFunctions

"qualitatives"

pas implémentées, même si techniquement :

"séquentielles"

"divergentes"

colors : NULL ou vecteur comme dans colorRampPalette() ou brewer.pal()

Les alternatives - Géométriques / Circulaires

analogues adjacent("red") adjacent("orange")

triadic(gplots::col2hex("orange")) tetradic(gplots::col2hex(« orange"))

tetradic(gplots::col2hex("red"))

Les alternatives - colorRamps

Objectif : créer une palette par "mélange" de 3 "primaires"

rgb.tables(n, red = c(mid, sill, base), green = c(m_a, s_a, b_a), blue = c(m_b, s_b, b_b)))

red =
$$c(0.25, 0.1, 0.2)$$

green = $c(0.50, 0.1, 0.2)$
blue = $c(0.75, 0.1, 0.2)$)

red =
$$c(0.85, 0.33, 1)$$
,
green = $c(0.50, 0.5, 1)$,
blue = $c(0.15, 0.33, 1)$

40

Les alternatives - RPMG::Gcols

Les alternatives - DescTools

Objectif: "mixer" deux couleurs en proportions variables

MixColor(col1="red", col2="yellow", amount1 = 0.5)

MixColor(col1="red", col2="yellow", amount1 = seq(1,0,by=-0.1))

MixColor(col1="darkgoldenrod", col2="cadetblue", amount1 = seq(1,0,by=-0.1))

Les alternatives - DescTools

Intéressant à associer aux fonctions du package colorpatch

 $\# \operatorname{length}(X) = 101$

FindUniformSequence(colorspace::hex2RGB(X),n.out=15,delta=5,col.dist.fun=DistColorFun("LAB"))

FindUniformSequence(colorspace::hex2RGB(X),n.out=8,**delta=10**,col.dist.fun=DistColorFun("LAB"))

Les alternatives - dimRed::mixColornRamps

Objectif : représenter 1 à 3 dimensions de variation par un mélange de rampes

1D

cols <- list(seq(0, 1, length.out = 8))
mixed <- dimRed::mixColor1Ramps(cols)</pre>

pal(mixed)

plot(unlist(cols), col = mixed, pch = 15, cex=2)

10/05/2017

2D

pal(mixed)

plot(cols\$x, cols\$y, col = mixed, pch = 15,cex=2)

3D

pal(mixed)

rgl::plot3d(cols\$x, cols\$y, cols\$z, col = mixed, type="s", radius=0.05)

Passer de palettes quelconques aux rampes

```
[1] "#9E0142" "#D53E4F<sup>"</sup> "#F46D43"
            Une palette
                                                   [,1] [,2] [,3] [,4]
  DescTools::HexToRgb(...)
                                           [1,] 0.6196078 0.003921569 0.2588235
                                           [2,] 0.8352941 0.243137255 0.3098039
             t(...) / 255
                                           [3,] 0.9568627 0.427450980 0.2627451
                                           [4,] 0.9921569 0.682352941 0.3803922
                                           Γ5.1 0.9960784 0.878431373 0.5450980
     colorspace::sRGB(...)
     class(…) ← "sRGB "
                                              function (value)
colorpatch::ColorRgbFun(...,
                                                 yy <- apply()
                                                 return(coerce.fun(colorspace::sRGB(R = yy$R$y,
xmin = ..., xmax = ...,
                                                 G = yySGSy, B = yySBSy)))
coerce.fun = colorspace::hex)
                                              <br/>
<br/>
de: 0x0000000539f4f90>
```


<environment: 0x000000004f86f810>

Usages spéciaux enfouis dans le meccano R

Cornelia Parker, Cold Dark Matter: An Exploded View (1991)

46

Émulation de chartes - logiciels ou sites web

ggthemes

- LibreOffice
- Excel
- Stata
- Highcharts
- GoogleDocs
- Pander
- Tableau (pas montré)

- **GSIF**: palettes du SIG SAGA
- émulation matlab :
 - dans matlab : jet.colors() et multiline.plot.colors()
 - dans colorRamps : matlab.like() et matlab.like2()
 - dans squash : jet()
- oaColors : palettes tirées du site Open Analytics (www.openanalytics.eu)

Emulation de chartes - journaux et cartoons

ggthemes

Wall Street Journal

ggsci

- D3js.org
- Science
- Journal of Clinical Oncology
- The Lancet
- Nature Reviews
- **UCSC Genome Browser**
- GenePattern
- The Simpsons
- **Futurama**
- Rick and Morty

Extraire des couleurs - rPlotter

Maximiser la distance perceptuelle

interpolate_colours(inp_col=...,n_col=30)

num_col=15

extract_colours("http://www.letudiant.fr/static/uploads/mediatheque/ETU_ETU/7/1/182371-uppa-pau-patio-866x495.jpg",num_col=...)

Extraire des couleurs – earthtones

Résultat : list [[" pal "]] chr [number_of_color] [[" map "]] chr [1:1280, 1:1280]

Extraire des couleurs – RImagePalette

img

image_palette(img, n=10)[order(...)]

image_palette(img, n=25))[order(...)]

Utilisation de l'algorithme de « median cut »

Et les échanger – RimagePalette

switch_colors(target_image=img, source_image=img2,source_colors=10,smoothness=100)

Palettes orientées Sciences de la Terre

- NOAA (https://www.ngdc.noaa.gov/mgg/global/global.html)
 - marmap::etopo.colors()

aqp : quantitative pedology (Munsell)

53

Customisation maximale en cartographie

marmap::palette.bathy()

Institut Mines-Télécom

oce::colormap()

Customisation maximale généraliste

squash::makecmap()

x : vecteur des valeurs à "coloriser" # n : nombre de couleurs (approx.)

breaks : les breaks ou une fonction les générant

symm : booléen, symétrie autour de 0 ?

base : pour une échelle log, la base; NA pour échelle linéaire

colFn: la fonction générant la palette

col.na: la couleur codant NA.

right : booléen; intervalles fermés à droite ?

include.lowest : booléen, ajouter une valeur égale à la limite

inf. (ou sup. si right = FALSE)?

Institut Mines-Télécom

squash::mtapply()

x, y, z : vecteurs, ou une matrice # FUN: fonction à appliquer à z.

nx, ny : nombre d'intervalles sur x et y (approx.).

xlim, ylim: limites en x et y

xbreaks, ybreaks : Breaks selon x et y # right : booléen; intervalles fermés à droite ?

include.lowest : booléen, ajouter une valeur égale à la

limite inf. (ou sup. si right = FALSE)?

Tester la visibilité des structures : pals

pal.csf(oce::oce.colorsChlorophyll)

pal.csf(morgenstemning::morgenstemning)

pal.csf(parula)

pal.csf(tol.rainbow)

Gérer les déficiences visuelles

- Utiliser des palettes « colorblind safe » (déjà vues)
 - morgenstemning
 - biovizBase
- Choisir pour optimiser la perception des différences
 - qualpalr::qualpal
- Tester ses palettes
 - LSD::daltonize # retourne palettes simulée et optimisée
 - rPlotter::simulate_colours # ne retourne rien
 - pals::pal.safe # ne retourne rien

qualpair

Objectif: choisir dans une collection une palette "la mieux adaptée possible" à une anomalie de vision

- $list(h{=}c(h_{min}{,}h_{max}),\ s{=}c(s_{min}{,}s_{max}),\ l{=}c(l_{min}{,}l_{max}))$ \in [-360,360] ∈[0,1] $\in [0,1]$
- character vector ∈ {"pretty", "prettydark", "rainbow", "pastels" }
- matrice de couleurs, dans l'espace sRGB avec D65
- data.frame (coercible en matrice)

- red-blindness: protanopia ("protan", sev=1)
- red-weakness: protanomaly ("protan", 0<sev<1)
- green-blindness: deuteranopia ("deutan", sev=1)
- green-weakness: deuteranomaly ("deutan", 0<sev<1)
 - blue-blindness: tritanopia ("tritan", sev=1)
 - blue-weakness: tritanomaly ("tritan", 0<sev<1)
 - normal : sev = 0

qualpalr

Institut Mines-Télécom

Tests de palette avec rPlotter

6ème Rencontres R – Anglet, 28-30 juin 2017

Test de palette avec LSD::daltonize()

colorBlindSafePal(22)(12)

Institut Mines-Télécom

Test de palette avec pals

Institut Mines-Télécom

62

Quelques références parmi tant et tant...

Zeileis A., Hornik K., Murrell P. (2009) "Escaping RGBland: Selecting Colors for Statistical Graphics". Computational Statistics & Data Analysis, 53, pp. 3259- 3270. doi:10.1016/j.csda.2008.11.033

Griggs B. (2014) "The end of the rainbow? An exploration of color in scientific visualization". *Bachelor Thesis*, University of Oregon.

Tol P. (2012) "Colour Schemes". SRON technical note 09-002 version 2.2, 16 p.

Silva S., Sousa Santos B., Madeira J. (2011) "Using color in visualization: a survey". *Computers & Graphics*, **35**, pp. 320-333

Nelson J. (2015) "Truthful Mapping". https://www.linkedin.com/pulse/truthful-mapping-john-nelson (version révisée de l'original de 2011)

Jenny B., Vaughn Kelso N. (2007) "Color Design for the color vision impaired". Cartographic perspectives, 58, pp. 61-67. http://colororacle.org/resources/2007 JennyKelso ColorDesign hires.pdf

Wijffelaars M. (2008) "Synthesis of color palettes". Master's Thesis, Technische Universiteit Eindhoven, 91 p.

Brewer C. (1994) "Color use guidelines for mapping and visualization". Chap.7 in "Visualization in modern cartography", A.M. MacEachren & D.R. Fraser Taylor eds. Pergamon

Bernhard J. (2012) "Principles of Data Visualization". http://stat.pugetsound.edu/courses/class13/dataVisualization.pdf

Institut Mines-Télécom

Quelques sites d'exploration de palettes...

6ème Rencontres R – Anglet, 28-30 juin 2017

- ColorSchemeDesigner (http://colorschemedesigner.com/csd-3.5/)
 - grammaire « géométrique »
- Colour Lovers (http://www.colourlovers.com/)
 - orienté palettes qualitatives
 - catalogue palettes et couleurs
- Kuler (https://color.adobe.com/fr/create/color-wheel/)
 - grammaire « géométrique »
- ColorBrewer (http://colorbrewer2.org)
 - grammaire classique

