

Introduction to Heavy Neutrinos

J. Siado, D. Claes, S. Chauhan

University of Nebraska UNL HEP Meeting

June 3, 2020

J. Siado (UNL)

1 / 12

Introduction

- Standard model unanswered questions
 - Dark Matter
 - Baryon Asymmetry
 - Smallness of neutrino masses
- A heavy neutrino could explain the latter using the see-saw mechanism
- ullet The Neutrino Minimal Standard Model (uMSM) could solve all three problems by postulating three new right-handed heavy neutrinos, RHN
 - If RHN are sterile and massive, they would be good candidates for dark matter
 - \bullet Consider neutrino oscillations during the the big bang formation of particles, Leptogenesis \to baryon asymmetry
 - Next slide

Introduction: See-saw Mechanism

 Consider the SM Lagrangian with the addition of a single new RH neutrino

$$L\supset F_{\alpha}\bar{L}_{\alpha}HN+rac{1}{2}M\bar{N}^{c}N$$

- Only one flavor of N is produced at a time for a given interaction
- After electroweak symmetry breaking the mass eigenstates are

$$M_{\nu\alpha} \sim \frac{F_{\alpha}^2 \langle H \rangle^2}{M}$$

$$M_N \sim M$$

ullet Then, if the mass of one u increases the mass of the other decreases, hence the name see-saw

J. Siado (UNL) RHN June 3, 2020 3 / 12

Introduction

- Issues with the see-saw mechanism
 - What is the scale of M_R and what determines it?
 - Is there a natural reason for the existence of the right handed neutrinos?
 - Is the see-saw mechanism by itself enough to explain all aspects of neutrino masses and mixings?

Event signature

 \bullet Event signature consist of three charged leptons (e, $\mu)$ plus missing energy

The Analysis

- ullet Consider the case where N mixes only with u_{μ}
- Production
 - From W bosons, $W^\pm o \mu^\pm N$
 - When allowed, from $B^{\pm} \to D \mu^{\pm} N$
 - N is produced in association with prompt muons and other objects
- Decay
 - ullet N could decay via off-shell W/Z bosons to SM particles
 - Leptonic $N \to \mu^{\pm} I^{\mp} \nu_I$ and $N \to \nu_{\mu} I^{+} I^{-}$, with a distinctive final state of multiple charged leptons
 - ullet Semileptonic ${\it N}
 ightarrow \mu^{\pm} q ar q$, larger backgrounds

The Analysis

- The search includes
- Displaced lepton jet
 - $M_N < M_W$
 - RN is boosted in $W^{\pm} \rightarrow \mu^{\pm} N$
 - Signature: prompt lepton + a single displaced lepton jet
- Prompt trilepton
 - For $M_W > M_N > 15 \, GeV$
 - RH is not boosted nor substancially displaced
 - $W^\pm o \mu^\pm {\sf N} o \mu^\pm \mu^\pm e^\mp
 u$, small SM background
 - Studied for $M_N \geqslant 100 Gev$

First Simulations

- Used madgraph and pythia to simulate the processes
 - Started with $Z->\mu^+\mu^-$
 - ullet pp $o w o \mu$ nr(nr $o w\mu, w o
 u_{\mu}\mu)$
 - Energy 13 TeV
 - $M_N = 30 \text{ Gev}$
 - 10k events
- Used delphes to make preliminary plots

Reconstructed Z peak

 Reconstructed the Z mass peak to test Madgraph, Delphes, and Pythia

• If things work well move to the RHN

Preliminary Plots

 P_t Distribution of all muons in the event

Missing energy distribution

Next

Next

- Reconstruct the full decay chain
- Produce MC samplels

References

- arXiv:1504.02470v2 [hep-ph]
- arXiv:1802.02965v2 [hep-ex]

References

- arXiv:1504.02470v2 [hep-ph]
- arXiv:1802.02965v2 [hep-ex]