単元別演習 数列①

漸化式(基本)

例題 1

 $a_1=5,\ a_{n+1}=rac{2}{3}a_n+1$ で定まる数列 $\{a_n\}$ の一般項を求めよ.

#Point.

特殊解型「 $a_{n+1}=pa_n+q$ 」は、特性方程式 x=px+q の解 α を使って $a_{n+1}-\alpha=p(a_n-\alpha)$ と変形する.

₩ 解答

特性方程式 $\alpha=\frac{2}{3}\alpha+1$ を解くと、 $\alpha=3$ である. よって、与えられた漸化式は

$$a_{n+1} - 3 = \frac{2}{3}(a_n - 3)$$

と変形できる.これより,数列 $\{a_n-3\}$ は初項 $a_1-3=2$,公比 $\frac{2}{3}$ の等比数列であるから,

$$a_n - 3 = 2 \cdot \left(\frac{2}{3}\right)^{n-1} \iff a_n = 2 \cdot \left(\frac{2}{3}\right)^{n-1} + 3$$

❷問 1

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 1$$
, $a_{n+1} = \frac{1}{3}a_n + 3$

(2)
$$a_1 = \frac{3}{2}$$
, $2a_{n+1} = 5a_n + 3$

例題 2

 $a_1=5,\ a_{n+1}=2a_n+3^n$ で定まる数列 $\{a_n\}$ の一般項を求めよ.

MPoint.

指数関数型「 $a_{n+1}=pa_n+q^n$ 」は、両辺を q^{n+1} で割って特殊解型に帰着させる.

₩ 解答

両辺を 3^{n+1} で割ると,

$$\frac{a_{n+1}}{3^{n+1}} = \frac{2}{3} \cdot \frac{a_n}{3^n} + \frac{1}{3}$$

であるから, $b_n=\frac{a_n}{3^n}$ とおくと,数列 $\{b_n\}$ は $b_1=\frac{5}{3}$, $b_{n+1}=\frac{2}{3}b_n+\frac{1}{3}$ で定まる数列である.例 題 1 と同じようにして解くと, $b_n=\left(\frac{2}{3}\right)^n+1$ なので,

$$a_n = 3^n b_n = 2^n + 3^n$$

1

₽問2

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 2$$
, $a_{n+1} = 3a_n + 2^n$

(2)
$$a_1 = 5$$
, $a_{n+1} = 3a_n + 5 \cdot 3^n$

 $a_1=0,\ a_2=1,\ a_{n+2}=a_{n+1}+6a_n$ で定まる数列 $\{a_n\}$ の一般項を求めよ.

// Point.

隣接 3 項間漸化式「 $a_{n+2}=pa_{n+1}+qa_n$ 」は、特性方程式 $x^2=px+q$ の解 α,β を用いて

$$a_{n+2} - \alpha a_{n+1} = \beta (a_{n+1} - \alpha a_n)$$

に変形する*1.

√ 解答

特性方程式 $x^2 = x + 6$ の解は x = 3, -2 であるから,

$$a_{n+2} - (-2)a_{n+1} = 3(a_{n+1} - (-2)a_n)$$

つまり,

$$a_{n+2} + 2a_{n+1} = 3(a_{n+1} + 2a_n)$$

と変形できる. これより, 数列 $\{a_{n+1}+2a_n\}$ は初項 1, 公比 3 の等比数列なので, $a_{n+1}+2a_n=3^{n-1}$ である. これは指数関数型の漸化式なので、例題2と同じようにして解くと、

$$a_n = \frac{1}{5} \left(3^{n-1} - (-2)^{n-1} \right)$$

₽問3

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 2$$
, $a_2 = 1$, $a_{n+2} = a_{n+1} + 2a_n$

(1)
$$a_1 = 2$$
, $a_2 = 1$, $a_{n+2} = a_{n+1} + 2a_n$ (2) $a_1 = 0$, $a_2 = 2$, $a_{n+2} = 4a_{n+1} - 4a_n$

$$a_{n+2} - \alpha a_{n+1} = \beta (a_{n+1} - \alpha a_n)$$

 $a_{n+2} - \beta a_{n+1} = \alpha (a_{n+1} - \beta a_n)$

と 2 通りの変形をし, $\{a_{n+1}-\alpha a_n\}$, $\{a_{n+1}-\beta a_n\}$ を求めることで解く方法もある.今回扱う方法は,特性方程式 が重解を持つ場合でも使える汎用的な方法である.

^{*1}特性方程式が 2 つの異なる解を持つときは、

復習用問題

❷問4

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 6$$
, $a_{n+1} = 3a_n - 8$

(2)
$$a_1 = 2$$
, $a_{n+1} = 6a_n - 15$

❷問 5

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 2$$
, $a_{n+1} = 3a_n + 2^n$

(2)
$$a_1 = -10$$
, $a_{n+1} = a_n + \frac{4}{3^n}$

₽ 問 6

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 1$$
, $a_2 = 2$, $a_{n+2} = a_{n+1} + 6a_n$ (2) $a_1 = 1$, $a_2 = 1$, $a_{n+2} = a_{n+1} + a_n$

(2)
$$a_1 = 1$$
, $a_2 = 1$, $a_{n+2} = a_{n+1} + a_n$