Sales Forecasting Across Multiple Retail Stores

In this project, I developed a sales forecasting model for multiple retail stores. I began by cleaning the dataset, which contained over 1 million records, addressing missing values, removing duplicates, and handling outliers. This preparation enabled me to analyze sales trends over time.

For exploratory data analysis (EDA), I uncovered insights about customer behaviour & sales performance, & engineered features related to dates, promotions, and competition.

In the machine learning (ML) part, I built the forecasting model using Sklearn pipelines with the Random Forest Regressor.

In the deep learning (DL) part, I conducted the ADF test to assess the stationarity of the time series data. Then Built the LSTM model using TensorFlow Keras with MLflow autologging. Created a Python file for a Streamlit dashboard that allows users to upload CSV or Excel files, displaying the last available date, a data preview, & generating six-week sales predictions along with a prediction & feature importance graph.

This project integrated data cleaning, EDA, ML & DL model building, and an interactive dashboard to provide a practical solution for sales forecasting.

Contributions of Key Libraries & Modules to the Project

NumPy, Pandas:

I used NumPy for efficient numerical operations & Pandas for data manipulation, which made handling large datasets straightforward.

Matplotlib, Seaborn:

I leveraged Matplotlib and Seaborn to create insightful visualizations, helping me uncover patterns in sales data during my exploratory analysis.

Logging, OS Module:

The Logging module helped me track the project's progress and debug issues, while the OS module managed file paths for data handling.

Sklearn Sklearn

SciPy

Sklearn, Scipy:

Sklearn provided tools for preprocessing and model evaluation, and Scipy offered essential statistical functions, which were vital for model development.

Statsmodels, Pickle:

I used Statsmodels for statistical analysis of sales data and Pickle to save my models, making it easy to load them later.

TensorFlow, Keras:

TensorFlow and Keras were crucial for building and training my LSTM model, allowing me to implement complex neural network architectures.

MLflow:

MLflow helped me track experiments and manage the machine learning lifecycle, ensuring reproducibility in my model evaluations.

Streamlit:

I used Streamlit to create an interactive web app for visualizing predictions, making it easy for stakeholders to explore the results.

```
# Check for missing values and duplicates before handling them

print("Missing Values Count in Train Data:")

print(train_data.isnull().sum())

print("\nMissing Values Count in Test Data:")

print(test_data.isnull().sum())

# Check for duplicates

train_duplicates = train_data.duplicated().sum()

test_duplicates = test_data.duplicated().sum()

print(f"\nNumber of Duplicates in Train Data: {train_duplicates}")

print(f"Number of Duplicates in Test Data: {test_duplicates}")
```

```
Missing Values Count in Train Data:
Store
DayOfWeek
Date
Sales
Customers
Open
Promo
StateHoliday
SchoolHoliday
StoreType
Assortment
                                2642
CompetitionDistance
                              323348
CompetitionOpenSinceMonth
CompetitionOpenSinceYear
                              323348
                              508031
Promo2SinceWeek
Promo2SinceYear
                              508031
                              508031
PromoInterval
dtype: int64
```

Missing Values Count in Test Data:

Id 0
Store 0
DayOfWeek 0
Date 0
Open 11
Promo 0
StateHoliday 0
SchoolHoliday 0
dtype: int64

Data Exploration, Cleaning, Processing Steps

1 Logging Configuration

I configured logging using Python's logging module to track the project's progress and errors, ensuring all important events were logged to a file for easy debugging.

Merging Train & Store Data

I merged the training dataset with store data during my exploratory data analysis (EDA) to better understand the relationships and patterns in the data.

Data Cleaning and Preprocessing

I focused on data cleaning and preprocessing to handle missing values, remove duplicates & standardize formats, ensuring the dataset was ready for analysis & modeling.

Feature Engineering

I performed feature engineering to create new variables from the existing data, which helped enhance the analysis during my exploratory data analysis (EDA).

5 Exploratory Data Analysis Visualizations

I plotted promo distribution, total sales by season, and sales distribution by promo etc. These visuals helped me identify key patterns during my EDA.

6 Dropping Feature Engineering Columns

I dropped the feature engineering columns from the DataFrame to revert Train Data to its default state, ensuring a clean dataset for further analysis and modeling.

Rename 'Customers' column in Train Data to 'Id' train_data = train_data.rename(columns={'Customers': 'Id'}) # Rename Customers to Id # Create a list of columns that exist in both DataFrames common_columns = test_data.columns.intersection(train_data.columns).tolist() # Rearranging Train Data columns to match Test Data columns train_data = train_data[common_columns + [col for col in train_data.columns if col not in common_columns]] # Print columns present in Train & Test Data after rearranging: logging.info("Train columns: {}".format(train_data.columns.to_list())) logging.info("Test columns: {}".format(test_data.columns.to_list())) 2025-03-10 06:39:34,711 - INFO - Train columns: ['Id', 'Store', 'DayOfWeek', 'Date', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday', 'Sales'] 2025-03-10 06:39:34,712 - INFO - Test columns: ['Id', 'Store', 'DayOfWeek', 'Date', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday']

Visualize Distributions of Features

Boxplot Comparison of Train and Test Data Distributions: Analyzing Feature Variability and Outliers

```
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.gridspec as gridspec
# Create a figure with GridSpec
fig = plt.figure(figsize=(15, 6))
gs = gridspec.GridSpec(1, 2, width_ratios=[1, 1]) # 1 row, 2 columns
# Boxplot for Train Data
ax1 = fig.add_subplot(gs[0])
sns.boxplot(data=train data.select dtypes(include=['number']), ax=ax1)
ax1.set title("Boxplot of Train Data (Numerical Features)")
ax1.tick_params(axis='x', rotation=45)
# Boxplot for Test Data
ax2 = fig.add_subplot(gs[1])
sns.boxplot(data=test data.select dtypes(include=['number']), ax=ax2)
ax2.set title("Boxplot of Test Data (Numerical Features)")
ax2.tick params(axis='x', rotation=45)
# Adjust layout
plt.tight layout()
plt.show()
```

Data Preparation & Visualization Summary

Renamed Customer Column

Renamed the "Customer" column in the training data to "Id" to match the test data column.

Visualized Distributions of Features

Plotted distributions for various features to understand their characteristics.

Boxplot Comparison

Created boxplots to compare train and test data distributions, analyzing feature variability and outliers.

Analyzed Feature Variability

Assessed the spread of features across train and test datasets to identify differences.

Identified Outliers

Used boxplots to pinpoint outliers that may influence model performance.

Checked for Consistency

Ensured that the feature distributions were aligned between train and test datasets.

Winsorization of Sales Data

Outlier Treatment

Implemented Winsorization on the 'Sales' column to limit extreme values, enhancing data robustness.

Data Integrity Check

Verified the transformation by displaying the original & winsorized sales values side by side.

Comparative Visualization

Created boxplots to illustrate the difference in sales distribution before and after Winsorization, highlighting reduced variability.

Capping Extreme Outliers with Winsorization: Capping prevents extreme values from dominating the model

```
from scipy.stats.mstats import winsorize
    # Apply Winsorization with higher limits to handle more outliers
    train data['Sales winsorized'] = winsorize(train data['Sales'], limits=[0.05, 0.05]) # Cap 5% from both ends
    # Convert winsorized values to integers if needed
    train_data['Sales_winsorized'] = train_data['Sales_winsorized'].astype(int)
   # Display the first few entries to verify
print(train data[['Sales', 'Sales_winsorized']].head())
Sales Sales winsorized
 8314
13995
                  12668
                   4822
```

```
# Checking by plotting a boxplot:
    # Plot Before & After Winsorization
     plt.figure(figsize=(12, 5))
    # Before Winsorization
    plt.subplot(1, 2, 1)
    sns.boxplot(x=train data['Sales'])
    plt.title("Before Winsorization")
    # After Winsorization
    plt.subplot(1, 2, 2)
    sns.boxplot(x=train_data['Sales_winsorized'])
    plt.title("After Winsorization")
14
    plt.show()
```


Model Training With Sklearn Pipeline

```
2.2 Building models with sklearn pipelines
[ ] 1 # Import Required Libraries
       2 from sklearn.ensemble import RandomForestRegressor
       3 from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
      5 from datetime import datetime
      7 # Define features and target variable from Train Data
      8 X_train = train_data.drop(columns=['Sales', 'Sales_winsorized', 'Date']) # Drop unnecessary columns
      9 y_train = train_data['Sales_winsorized'] # Target variable
     11 # Define Test Data
      12 X_test = test_data.drop(columns=['Sales', 'Date'], errors='ignore')
[ ] 1 # Check shapes
      print("X train shape:", X train.shape)
       3 print("y_train shape:", y_train.shape)
       4 print("X test shape:", X test.shape)
→ X train shape: (844338, 7)
    y_train shape: (844338,)
    X_test shape: (41088, 7)
```

2.3 Choose & Justify Loss Function 1 # Compute Evaluation Metrics mae = mean_absolute_error(y_train, y_train_pred) mse = mean_squared_error(y_train, y_train_pred) 5 r2 = r2_score(y_train, y_train_pred) # Print Evaluation Results 8 print("Model Evaluation Metrics (on Training Data):") 9 print(f"Mean Absolute Error (MAE): {mae:.2f}") print(f"Mean Squared Error (MSE): {mse:.2f}" 11 print(f"Root Mean Squared Error (RMSE): {rmse:.2f}") 12 print(f"R2 Score: {r2*100:.2f}%") → Model Evaluation Metrics (on Training Data): Mean Absolute Error (MAE): 152.53 Mean Squared Error (MSE): 51475.51 Root Mean Squared Error (RMSE): 226.88 The chosen loss function is MAE (Mean Absolute Error) because: . MAE (152.53): The average difference between predicted and actual values is approximately 152.53 units. MSE (51475.51): The average squared difference between predicted and actual values is approximately 51475.51 units squared • RMSE (226.88): The square root of MSE, representing the average magnitude of errors, is approximately 226.88 units.

R² Score (99.22%): The model explains about 99.22% of the variance in the training data, indicating an excellent fit.
 Note: Although MSE seems suitable based on the high R² score and relatively low error values, MAE is chosen as the loss function.

- Pipeline Construction
 Built a Random Forest Regressor F
 - Built a Random Forest Regressor Pipeline to streamline the training process.
- Feature Scaling
 Implemented feature scaling to normalize the input data, enhancing model performance.
- Training Process

 Trained the pipeline on the processed data, ensuring that it learned from relevant features.
- Performance Evaluation Metrics

 Evaluated the model's performance using several metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).
- Predictive Ability

 Achieved an R² Score of 99.22, indicating a strong predictive ability and excellent fit to the training data.

Sales Prediction Steps for the Last Date

```
from datetime import timedelta
    # Step 1: Identify the last date
    last date = train data['Date'].max()
    print("Last Date in Train Data:", last_date)
    # Step 2: Filter data for the last date
    last_date_data = train_data[train_data['Date'] == last_date]
    print("Data for Last Date:")
    print(last date data)
11
    # Step 3: Prepare features (X) for prediction
12
    X last date = last date data.drop(columns=['Sales', 'Sales winsorized', 'Date'])
    print("Features for Last Date:")
    print(X last date)
16
    # Step 4: Make predictions for the last date
    y_last_date_pred = ml_pipeline.predict(X_last_date)
    print("Predicted Sales for Last Date:", y_last_date_pred)
```

Last Date in Train Data: 2015-07-31 00:00:00

```
Prediction of Sales in various stores up to 6 weeks ahead of time using ML Pipeline
```

```
from datetime import datetime, timedelta
3 # Step 5: Generate future dates (next 6 weeks)
 4 last_date = train_data['Date'].max()
    future_dates = [last_date + timedelta(weeks=i) for i in range(1, 7)]
    print("Future Dates:")
    for i, date in enumerate(future dates, start=1):
        print(f"Next Week {i} from last date: {date}")
10 # Step 6: Prepare future data for predictions
    feature_columns = X_train.columns # Get the feature column names from the training data
    unique_stores = train_data['Store'].unique() # Get all unique store IDs
    for date in future_dates:
        for store in unique stores:
            # Create a dictionary for the future data
            future_entry = {
                'Date': date,
                'Store': store
21
            # Add the feature columns with placeholder values
            for col in feature_columns:
                future_entry[col] = 0
            future_data.append(future_entry)
    future_df = pd.DataFrame(future_data)
    # Ensure the feature columns are correctly aligned
    future_df['Date'] = pd.to_datetime(future_df['Date'])
33 # Predict future sales
    y_future_pred = ml_pipeline.predict(future_df[feature_columns])
    future_df['Predicted_Sales'] = y_future_pred
37 # Print the future predictions
    print("\nFuture Predictions:")
   for i, (date, store, pred) in enumerate(zip(future_dates, future_df['Store'], y_future_pred), start=1):
        print(f"For Store: {store} - Prediction of Next Week {i}: {date} - Predicted Sales: {int(pred)}")
```

Predictions From The Last Date To The Next 6 Weeks

Last Date Analysis

The last training date is July 31, 2015, with significant sales variability across stores, indicating diverse consumer preferences.

Sales Variability

Sales ranged from 4,822 to 27,508, highlighting the impact of location and store strategies.

Future Predictions

Store 0's future sales are consistently predicted at 3,174 for the next 6 weeks, suggesting a stable baseline.

2.4 Post Prediction Analysis - Feature Importance

```
# Extract feature importance from the trained Random Forest model
feature_importances = ml_pipeline.named_steps['model'].feature_importances_

# Create DataFrame for visualization
feature_importance_df = pd.DataFrame({'Feature': X_train.columns, 'Importance': feature_importances})
feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=False)

# Plot Feature Importance
plt.figure(figsize=(10, 5))
sns.barplot(x=feature_importance_df['Importance'], y=feature_importance_df['Feature'])
plt.title("Feature Importance in Random Forest Model")
plt.xlabel("Importance Score")
plt.ylabel("Feature Name")
plt.show()
```

2.4 Post Prediction Analysis - Confidence Interval Estimation

```
# Generate predictions using multiple trees in the Random Forest
      all_predictions = np.array([tree.predict(X_test) for tree in ml_pipeline.named_steps['model'].estimators_])
      # Compute confidence intervals (5th and 95th percentile)
      lower_bound = np.percentile(all_predictions, 5, axis=0)
      upper bound = np.percentile(all predictions, 95, axis=0)
      # Store confidence intervals in test data
      test data['Predicted Sales'] = ml_pipeline.predict(X_test)
      test data['Lower Bound'] = lower bound
      test_data['Upper_Bound'] = upper_bound
      # Save predictions with confidence intervals
      test_data[['Predicted_Sales', 'Lower_Bound', 'Upper_Bound']].to_csv('predicted_sales_with_ci.csv', index=False)
             ----- Print Output to Verify ------
  17 print("Sample Predictions with Confidence Intervals:")
  18 print(test_data[['Predicted_Sales', 'Lower_Bound', 'Upper_Bound']].head())
Sample Predictions with Confidence Intervals:
   Predicted Sales Lower Bound Upper Bound
            3174.0
```


3174.0

3174.0

12668.6

2.5 Serialize the Model: Save Trained Model as .pkl File with Timestamp

```
import pickle
from datetime import datetime

# Save Trained Model as `.pkl` File with Timestamp
model_filename = f"rf_model_{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}.pkl"
pickle.dump(ml_pipeline, open(model_filename, 'wb'))

print(f"Model saved as {model_filename}")
```

Dropping Additional Columns Created and Retaining Original Columns to Save Train and Test Data for Future Reference

→ Model saved as rf_model_2025-03-10-06-41-47.pkl

```
# Drop 'Sales_log' from train_data before saving
train_data = train_data.drop(columns=['Sales', 'Sales_log'], errors='ignore')

# Drop 'Predicted_Sales', 'Lower_Bound', 'Upper_Bound' from test_data before saving
test_data = test_data.drop(columns=['Predicted_Sales', 'Lower_Bound', 'Upper_Bound'], errors='ignore')

# Print columns of Train & Test Datasets
print("Train File\n", train_data.columns.to_list())
print("Test File\n", test_data.columns.to_list())

Train File
['Id', 'Store', 'DayOfWeek', 'Date', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday', 'Sales_winsorized']
Test File
['Id', 'Store', 'DayOfWeek', 'Date', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday']
```

Post-Prediction Analysis & Confidence Intervals

Feature Importance Analysis

Identified key predictors, with Store, Promo, and DayOfWeek having the highest impact on sales.

2

Analysis & Confidence Intervals

Estimated confidence intervals (5th & 95th percentile) for predictions, providing uncertainty estimates.

Model Serialization

Saved the trained model as a timestamped .pkl file for future deployment. "rf model 2025-03-10-06-41-47.pkl".

4

Dropping Additional Columns

Dropped Unwanted Columns: Predicted_Sales (irrelevant for raw test data), Lower & Upper Bound (confidence interval bounds not needed for predictions).

5

Renaming "Sales_winsorized"

The column 'Sales_winsorized' in train_data has been renamed to 'Sales'.

6

Generated Files

train_file.csv (Processed Training Data)
test_file.csv (Processed Test Data)

Time Series Analysis

Sales Trend

Clear seasonal patterns with periodic peaks and drops.

Stationary Data

ADF test confirms sales data is stationary (p-value: 0.0001).

ACF/PACF

Strong weekly seasonality (lags of 7, 14, 21, 28).

Residual Analysis

Examined residuals for heteroscedasticity and autocorrelation.

Decomposition

Identified trend, seasonal, and residual components.

30-Day Sliding Window Forecast

Different sequences overlap, reflecting diverse sales patterns across various periods.

Aggregate sales by date for time series analysis Autocorrelation (ACF) & Partial Autocorrelation (PACF) Analysis

```
### Step 3: Aggregate sales by date for time series analysis

import matplotlib.pyplot as plt

# Aggregate sales by date for time series analysis
sales_trend = train_df.groupby("Date")["Sales"].sum()

plt.figure(figsize=(12,5))
plt.plot(sales_trend, label='Sales Trend')
plt.xlabel("Date")
plt.ylabel("Sales")
plt.title("Sales Trend Over Time")
plt.legend()
plt.show()
```

```
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# Plot ACF
plt.figure(figsize=(12, 6))
plot_acf(sales_trend, lags=30, ax=plt.gca())
plt.title('Autocorrelation Function (ACF)')

# Plot PACF
plt.figure(figsize=(12, 6))
plot_pacf(sales_trend, lags=30, ax=plt.gca())
plot_pacf(sales_trend, lags=30, ax=plt.gca())
plt.title('Partial Autocorrelation Function (PACF)')
```

```
### Step 4: Perform ADF Test for Stationarity
from statsmodels.tsa.stattools import adfuller

# Perform the ADF test on the sales trend data
adf_result = adfuller(sales_trend)

# Output the ADF statistic and p-value
print(f"ADF Statistic: {adf_result[0]}")
print(f"p-value: {adf_result[1]}")

# Interpret the result
if adf_result[1] < 0.05:
print("Time series is stationary.")

4 else:
print("Time series is not stationary, differencing may be required.")

ADF Statistic: -4.6062197626111505
p-value: 0.00012580255594144246
Time series is stationary.
```

Create 30-Day Sliding Window Forecast

```
import numpy as np
     import matplotlib.pyplot as plt
     # Function to create sliding window data for visualization
     def create_sliding_window_forecast(df, seq_length=30, sample_size=5):
         indices = np.linspace(0, len(df) - seq_length - 1, sample_size, dtype=int) # Pick evenly spaced sequences
             forecast_data.append(df[['Sales']].iloc[i:i + seq_length].values)
11
         return np.array(forecast data)
    # Get sample sliding window sequences
     X_sliding_sample = create_sliding_window_forecast(train_df, sample_size=5) # Only visualize 5 sequences
     plt.figure(figsize=(12, 6))
     for i, sequence in enumerate(X sliding sample):
         plt.plot(sequence, label=f'Sequence {i+1}')
     plt.title("Visualization of 30-Day Sliding Window Forecast")
     plt.ylabel("Sales")
     plt.legend()
26 plt.show()
```

Building the LSTM Model for Time Series Forecasting

Data Preparation

Converted 'Date' to numerical format

(days since the first date).

Selected key features for LSTM

training.

Selected Features

Features: ['Id', 'Store', 'DayOfWeek', 'Date', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday']

Target: ['Sales']

Key Takeaways

Date conversion is crucial for LSTM.

Diverse features enhance model performance.

Conclusion

Features: ['Id', 'Store', 'DayOfWeek', 'Date', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday']

Target: ['Sales']

Building the LSTM Model for Time Series Forecasting

```
# Prepare Data for LSTM Training
     from sklearn.preprocessing import MinMaxScaler
    import pandas as pd
    # Convert Date to datetime format
    train df['Date'] = pd.to datetime(train df['Date'])
    # Define feature and target columns
    feature columns = ['Id', 'Store', 'DayOfWeek', 'Date', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday']
    target column = 'Sales'
13 # Extract features and target variable
    X = train_df[feature_columns].copy()
15  y = train df[target column].values
17 # Diplay Max Columns
    pd.set_option('display.max_columns', None)
20 # Print the first 5 rows of X
21 print("First 5 rows of Feature Matrix X:")
22 print(X[:5])
24 # Print the first 5 values of y
25 print("\nFirst 5 values of Target Array y:")
26 print(y[:5])
```

```
First 5 rows of Feature Matrix X:

Id Store DayOfWeek Date Open Promo StateHoliday SchoolHoliday
0 555 1 5 2015-07-31 1 1 0 1
1 625 2 5 2015-07-31 1 1 0 1
2 821 3 5 2015-07-31 1 1 0 1
3 1498 4 5 2015-07-31 1 1 0 1
4 559 5 5 2015-07-31 1 1 0 1
First 5 values of Target Array y:
[ 5263 6064 8314 12668 4822]
```

Data Scaling for Better LSTM Performance

Purpose of Scaling

Scaled numerical features and target variable to a range of -1 to 1 using MinMaxScaler.

Scaling Process

Created two MinMaxScaler objects: scaler_X: For numerical features. I scaler_y: For target variable (y).

Applied Scaling to Numerical Columns

Id, Store, DayOfWeek, Open, Promo, StateHoliday, SchoolHoliday.

Excluded the Date column from scaling.

Reshaped Scaled Input Data

Reshaped scaled input data (X_scaled) to the format required by LSTM: (samples, timesteps, features)

Outcome

Numerical features and target variable successfully scaled to -1 to 1.

Input data reshaped for LSTM training.

Conclusion

Scaling improves stability and efficiency of LSTM training.

Ensures all features and target variables are on the same scale, enhancing the model's learning process.

Data Scaling for better LSTM Performance

```
1 # Scale data
2 from sklearn.preprocessing import MinMaxScaler
    # Scale numerical features (excluding Date) and target variable to range (-1, 1) for better training stability
 6 scaler_y = MinMaxScaler(feature_range=(-1, 1))
 8 # Scale all columns except 'Date'
     X scaled = X.copy()
     num_cols = ['Id', 'Store', 'DayOfWeek', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday']
 11  X_scaled[num_cols] = scaler_X.fit_transform(X[num_cols])
 12 y_scaled = scaler_y.fit_transform(y.reshape(-1, 1))
 14 # Reshape Data for LSTM (samples, timesteps, features)
 15  X_scaled = np.array(X_scaled[num_cols]).reshape((X_scaled.shape[0], 1, len(num_cols)))
 17 print("\nScaled Target Array (y_scaled) with shape:", y_scaled.shape)
 18 print(y scaled)
Scaled Target Array (y_scaled) with shape: (844338, 1)
[[-0.55993259]
  -0.39119444]
  0.08278913]
 [-0.60796292]
 [-0.72256162]
  -0.41289235]
```

Build Optimized LSTM Model

Model Framework STEP Utilized Sequential model from TensorFlow Keras. **Layer Implementation** First LSTM Layer: **Second LSTM Layer:** STEP ☐ 64 units ☐ 64 units ■ Dropout (30%) □ Dropout (30%) to mitigate overfitting. **Output Layer** 03 STEP Dense layer with linear activation for regression tasks. **Model Compilation** STEP Optimizer: Adam for efficient training. Loss Function: Mean Squared Error (MSE) for regression. **Model Summary LSTM Layer 1:** (None, 1, 64) | **Params:** 18K | **Dropout 1:** (None, 1, 64) 05 STEP LSTM Layer 2: (None, 64) | Params: 33K | Dropout 2: (None, 64) Dense Layer: (None, 1) | Params: 65 | Total Parameters: 52K

STEP 06

Conclusion

Optimized LSTM regression model designed to capture sequential patterns while minimizing overfitting.

Build Optimized LSTM Model

```
from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import LSTM, Dense, Dropout
    # Define LSTM model architecture
    model = Sequential([
        LSTM(64, activation='tanh', return_sequences=True, input_shape=(1, len(num_cols))),
        Dropout(0.3),
        LSTM(64, activation='tanh'),
        Dropout(0.3),
        Dense(1, activation='linear') # Linear activation for regression
10
11
12
13 # Compile the model using Adam optimizer and Mean Squared Error loss function
    model.compile(optimizer='adam', loss='mse', metrics=['mae'])
15
16 # Print confirmation message
    print("Optimized LSTM regression model with two layers has been built and compiled successfully.\n")
19 # Print Model Summary
20 model.summary()
```

 \longrightarrow Optimized LSTM regression model with two layers has been built and compiled successfully.

Model: "sequential"

Layer (type)	Output Shape	Param #
1stm (LSTM)	(None, 1, 64)	18,432
dropout (Dropout)	(None, 1, 64)	0
lstm_1 (LSTM)	(None, 64)	33,024
dropout_1 (Dropout)	(None, 64)	0
dense (Dense)	(None, 1)	65

Total params: 51,521 (201.25 KB)
Trainable params: 51,521 (201.25 KB)
Non-trainable params: 0 (0.00 B)

LSTM Model Training & MLflow Logging

Training the LSTM Model and Logging with MLflow

```
# Uninstall & Re-Install the mlflow Library
lpip uninstall mlflow
jpip install mlflow
```

```
# Train Model and Log with MLflow
     import mlflow.tensorflow
     import matplotlib.pyplot as plt
     from tensorflow.keras.callbacks import EarlyStopping
     # Prevent GPU errors in certain environments
     os.environ["CUDA VISIBLE DEVICES"] = "-1"
    # Enable automatic logging with MLflow
    mlflow.tensorflow.autolog()
13
    # Early stopping to prevent overfitting
    early_stop = EarlyStopping(monitor='loss', patience=5, restore_best_weights=True)
    # Train the model and save history
    with mlflow.start run():
         history = model.fit(X_scaled, y_scaled, epochs=100, batch_size=128, validation_split=0.2, callbacks=[early_stop])
         mlflow.tensorflow.log model(model, "lstm model")
    # Plot Training vs Validation Loss
     plt.figure(figsize=(10, 5))
     plt.plot(history.history['loss'], label='Training Loss', color='blue')
     plt.plot(history.history['val loss'], label='Validation Loss', color='orange')
     plt.title('Training vs Validation Loss')
     plt.ylabel('Loss')
     plt.xlabel('Epoch')
     plt.legend()
    plt.grid(True)
30 plt.show()
```


Model

LSTM for future sales prediction using time series data.

Tracking

Utilized MLflow autologging for performance metrics.

Key Techniques

EarlyStopping (patience = 5) to prevent overfitting.

Disabled GPU: os.environ["CUDA_VISIBLE_DEVICES"] = "-1".

Trained for 100 epochs, batch size of 128, 20% validation split.

Training Loss: Decreased steadily; final: 0.0743 (MAE: 0.2110).

Validation Loss: Stabilized after initial fluctuations; final: 0.0660 (MAE: 0.1970).

Analysis

Training Curve: Smooth decline, indicating effective learning. **Validation Curve:** Initial spikes but overall stabilization, suggesting good generalization.

06

Key Takeaways

- Effective learning with minimal overfitting.
- ✓ Minor validation fluctuations are expected but manageable.

Conclusion

LSTM model captured sequential patterns well; training logged with MLflow for reproducibility.

Determining Last Available Date & Saving the Model & Scaler

Overview

Developed an LSTM model to predict future sales based on historical data.

Model & Scaler Saving

- ☐ Saved LSTM model as **lstm.keras**.
- ☐ MinMaxScaler objects saved as scaler X.pkl and scaler y.pkl

Last Training Data Date

Last available date in training data is: 2015-07-31

Saving the Trained LSTM Model and Scaler

1 # Save trained model and scalers

```
import pickle
Determine the last available date in training data
                                                                        # Define filenames
                                                                        model_filename = "lstm.keras"
      1 import pandas as pd
                                                                        scaler_x_filename = "scaler_X.pkl"
                                                                        scaler_y_filename = "scaler_y.pkl"
          # Check the first few rows of the Date column
          print(train df['Date'].head())
                                                                        # Save the model and scalers
                                                                       model.save(model filename)
          # Check the data type of the Date column
                                                                       with open(scaler_x_filename, "wb") as f:
          print(train df['Date'].dtype)
                                                                            pickle.dump(scaler X, f)
                                                                       with open(scaler_y_filename, "wb") as f:
      9 # Step 2: Identify the last date
                                                                            pickle.dump(scaler_y, f)
     10 last date = train df['Date'].max()
                                                                   16 # Confirm saving with formatted strings using placeholders
     11 print("\nLast Date in Train Data:", last date)
                                                                   17 print(f"Model '{model filename}' saved successfully.")
                                                                   18 print(f"Scaler '{scaler_x_filename}' saved successfully.")
       2015-07-31
                                                                   19 print(f"Scaler '{scaler_y_filename}' saved successfully."
        2015-07-31
        2015-07-31
                                                            → Model 'lstm.keras' saved successfully.
       2015-07-31
                                                                 Scaler 'scaler_X.pkl' saved successfully.
    4 2015-07-31
                                                                 Scaler 'scaler_y.pkl' saved successfully.
    Name: Date, dtype: datetime64[ns]
    datetime64[ns]
```

Predict Next 6 Weeks Sales

Last Date in Train Data: 2015-07-31 00:00:00

```
1 from datetime import timedelta
      3 # Determine the last available date in training data
      4 last_date = train_df['Date'].max()
      6 # Generate future dates for prediction (next 6 weeks = 42 days)
      7 pred dates = [last date + timedelta(days=i) for i in range(1, 43)]
     10 y pred scaled = model.predict(X scaled)
     11 y_pred = scaler_y.inverse_transform(y_pred_scaled)
     # Print lengths for debugging
     14 print(f"Length of pred dates: {len(pred dates)}")
     15 print(f"Length of y_pred: {len(y_pred)}")
     17 # Print future dates alongside predicted values
     18 print("\nFuture Prediction Dates and Predicted Sales:")
     19 for i in range(min(len(pred_dates), len(y_pred))): # Adjusting to the minimum length
             print(f"{pred_dates[i]} - Predicted Sales: {y_pred[i]}")
→ 26386/26386
```

```
Length of pred dates: 42
Length of y_pred: 844338
```

```
Future Prediction Dates and Predicted Sales:
2015-08-01 00:00:00 - Predicted Sales: [6088.965]
2015-08-02 00:00:00 - Predicted Sales: [6720.2705]
2015-08-03 00:00:00 - Predicted Sales: [8231.525]
2015-08-04 00:00:00 - Predicted Sales: [11670.013]
2015-08-06 00:00:00 - Predicted Sales: [6401.5405
2015-09-10 00:00:00 - Predicted Sales: [5707.478]
2015-09-11 00:00:00 - Predicted Sales: [10674.02]
```


FUTURE PREDICTIONS

- Generated dates for the next 6 weeks (42 days): from 2015-08-01 to 2015-09-11.
- Predictions scaled back to original values.

PERFORMANCE METRICS

o MAE: 972.64

o MSE: 1,596,162.20

o **RMSE:** 1,263.39

o R² Score: 75.90%

KEY TAKEAWAYS

- Model explains 75.90% of variance; reasonable error margins.
- Ready for future sales forecasting.

Interactive Sales Forecasting with Streamlit and LSTM

I appreciate your time and attention.

I hope this presentation was informative and helpful.

Please don't hesitate to contact me with any questions or feedback you may have.

I am more than eager to hear your thoughts and suggestions. \bigcirc