Extra Opgaven over Hoofdstuk 9 en 10

9.1.	Van twee stochast	ten X en Y is gegeven	$\det \operatorname{Var}(X) = 3 \text{ er}$	$\operatorname{Var}(Y) = 5.$	Verder is gegeven	dat
	Var(X+Y)=6.	Bereken de covarianti	ie $Cov(X,Y)$ van X	en Y .		

- 9.2. Stel X is exponentieel verdeeld met parameter 2, en Y is, onafhankelijk van X, exponentieel verdeeld met parameter 3. Bereken Var(X + Y).
- 9.3. Laat X en Y twee Bernoulli verdeelde discrete stochasten zijn, en laat verder gegeven zijn dat $P(X = 0, Y = 0) = \frac{4}{11}, P(X = 0, Y = 1) = 0, \text{ en } P(X = 1, Y = 0) = \frac{2}{11}.$ Welke van de volgende uitspraken is juist?
 - a. X en Y zijn ongecorreleerd, maar afhankelijk.
 - \mathbf{b} . X en Y zijn ongecorreleerd, en onafhankelijk.
 - **c.** X en Y zijn niet ongecorreleerd, maar wel onafhankelijk.
 - \mathbf{d} . X en Y zijn positief gecorreleerd en niet onafhankelijk.
 - **e.** X en Y zijn negatief gecorreleerd en niet onafhankelijk.
 - f. er zijn niet genoeg gegevens om deze opgave op te kunnen oplossen.
- 9.4. Laat gegeven zijn dat X en Y twee onafhankelijke stochasten zijn, die allebei uniform verdeeld zijn op [0,1]. Bereken dan de (voorwaardelijke) kans dat X > Y als gegeven is dat $X + Y \le 1$.
- 9.5. Stel X en Y zijn twee negatief gecorreleerde stochasten. Bekijk de volgende twee beweringen
 - (A) $\operatorname{Cov}(X, X + Y) < \operatorname{Cov}(X, Y)$
 - (B) $\operatorname{Var}(X + Y) < \operatorname{Var}(X) + \operatorname{Var}(Y)$
 - a. (A) en (B) zijn allebei waar
- **b.** (A) is waar en (B) is onwaar
- c. (A) is onwaar en (B) is waar
- d. (A) en (B) zijn allebei onwaar
- 9.6. Iemand gooit met een dobbelsteen net zolang totdat hij zes gooit; het aantal worpen noemen we X_1 . Daarna gooit hij weer net zolang totdat hij een zes gooit; dit aantal worpen noemen we X_2 . Het totale aantal worpen noemen we X_3 , dus $X_3 = X_1 + X_2$. Welke van de drie stochasten heeft een geometrische verdeling?
 - a. alle drie

- **b.** alleen X_1
- **c.** alleen X_1 en X_3
- d. alleen X_1 en X_2 e. alleen X_3

- f. geen van de drie
- 9.7. Vervolg vorige vraag: Welke van de volgende uitspraken is waar?
 - **a.** X_1 en X_3 zijn onafhankelijk
- **b.** X_1 en X_2 zijn negatief gecorreleerd
- a. X_1 en X_3 zijn onafhankelijk c. X_1 en X_2 zijn positief gecorreleerd e. X_2 en X_3 zijn onafhankelijk
- $\mathbf{d}.\ X_1$ en X_3 zijn negatief gecorreleerd
- **f.** X_2 en X_3 zijn positief gecorreleerd
- 9.8. De correlatie tussen de twee stochasten X en Y is gelijk aan -0.5. Verder geldt dat Var(X) = 1en Var(Y) = 4. Wat is de variantie van X + Y?
- 9.9. Laat X uniform over [0,1] verdeeld zijn, en laat $Y=X^2$. Bereken $\operatorname{Cov}(X,Y)$. Deze is gelijk
 - **a.** $-\frac{1}{4}$ **b.** $\frac{3}{16}$ **c.** $\frac{3}{8}$ **d.** $\frac{2}{9}$ **e.** $\frac{1}{12}$ **f.** $\frac{1}{4}$

- 9.10. Stel U_1 en U_2 zijn onafhankelijke stochasten elk met een U(0,1)-verdeling. Dan is de variantie van $2 + 3U_1 - U_2$ is gelijk aan

- **a.** $\frac{2}{12}$ **b.** $\frac{4}{12}$ **c.** $\frac{8}{12}$ **d.** $\frac{10}{12}$ **e.** $\frac{26}{12}$
- **f.** 6

Extra opgaven over Hoofdstuk 11

- 11.1. X heeft een (normale) $\mathcal{N}(1,5)$ verdeling; Y is onafhankelijk van X en heeft een $\mathcal{N}(2,4)$ verdeling. Bereken P ($X + Y \le 7.5$). **a.** 0.76 **b.** 0.82 **c.** 0.85 **d.** 0.91 **e.** 0.93 **f.** 0.9711.2. Als X en Y onafhankelijk van elkaar zijn en ieder Poisson verdeeld met verwachting gelijk aan 1, dan is P (X + Y = 2) gelijk aan **a.** $2e^{-1}$ **b.** e^{-1} **c.** e^{-2} **d.** $4e^{-2}$ **e.** $e^{-2} + e^{-1}$ **f.** $2e^{-2}$
- 11.3. Stel X en Y zijn onafhankelijke stochasten met kansverdelingen gegeven door

$$\mathrm{P}\left(X=0\right)=\mathrm{P}\left(X=1\right)=\frac{1}{2}\qquad\mathrm{P}\left(Y=0\right)=\frac{1}{3},\quad\mathrm{P}\left(Y=1\right)=\frac{2}{3}.$$

- a. Bereken de kansmassafunctie van Z = X + Y.
- **b.** Bereken Cov(2X, Z).
- 11.4. Gegeven de volgende beweringen, waarbij X en Y steeds onafhankelijk verondersteld worden.
 - A Als $X \sim \text{Bin}(n, p_1)$ en $Y \sim \text{Bin}(n, p_2)$, dan $X + Y \sim \text{Bin}(n, p_1 + p_2)$.
 - B Als $X \sim \mathrm{U}(0,1)$ en $Y \sim \mathrm{U}(0,1)$, dan $X + Y \sim \mathrm{U}(0,2)$.
 - C Als $X \sim \text{Bin}(n_1, p)$ en $Y \sim \text{Bin}(n_2, p)$, dan $X + Y \sim \text{Bin}(n_1 + n_2, p)$.

Welke beweringen zijn waar?

a. alleen A b. B en C c. alleen B d. A en C e. alleen C f. A en B

Extra Opgaven over Hoofdstuk 12

- 12.1. Bij een server komen berichten binnen volgens een Poisson proces. De intensiteit van dit Poisson proces is 2 berichten per 3 minuten. Wat is de kans dat we na ontvangst van een bericht langer dan 20 seconden op een volgend bericht moeten wachten (afgerond op 2 decimalen)?
 - **a.** 0.13
- **b.** 0.22
- **c.** 0.37
- **d.** 0.61
- **e.** 0.80
- **f.** 0.87
- 12.2. Gedurende een periode van 8 uur arriveren klanten bij een loket volgens een Poisson proces met intensiteit $\lambda=2$ per uur. Noem X_1 het aantal klanten dat aankomt in het eerste uur, X_2 het aantal in het tweede uur, enzovoort. De stochast N telt hoeveel van de stochasten X_1, X_2, \ldots, X_8 de uitkomst nul hebben, dat wil zeggen hoeveel van de klokuren "leeg" waren. Dan heeft N een
 - a. Poisson verdeling met $\mu = 8$.
 - **b.** Poisson verdeling met $\mu = 16$.
 - c. Exponentiële verdeling met $\lambda = 1$.
 - **d.** Exponentiële verdeling met $\lambda = 2$.
 - **e.** Binomiale verdeling met n = 8 en $p = 1/e^2$.
 - **f.** Binomiale verdeling met n = 16 en p = 1/e.
- 12.3. Bij een server komen berichten binnen volgens een Poisson proces. De intensiteit van dit Poisson proces is 3 berichten per 2 minuten. Wat is de kans dat gedurende een halve minuut precies 1 bericht binnenkomt (afgerond op 2 decimalen)?
 - **a.** 0.35
- **b.** 0.83
- **c.** 0.33
- **d.** 0.34
- **e.** 0.75
- **f.** 0.78

- 12.4. Gegeven een aankomstproces van klanten bij een loket dat gemodelleerd wordt met een 1-dimensionaal Poisson process. De intensiteit is 2 (dat wil zeggen: in een interval ter lengte Δ , verwachten we 2Δ aankomsten). Wat is de kans dat de tijd tot de eerste aankomst meer dan 2 is?
 - **a.** e^{-1}

- **b.** $2e^{-1}$ **c.** $2e^{-2}$ **d.** e^{-2} **e.** e^{-4} **f.** $e^{-2}/2$

Extra Opgaven over Hoofdstuk 6

6.1. Laat V een discrete stochast zijn onderstaande kansmassatabel.

$$\begin{array}{c|ccccc} v & -1 & 0 & 1 & 3 \\ \hline P(V=v) & 1/4 & 1/8 & 1/8 & 1/2 \end{array}$$

Beschrijf hoe V kan worden gesimuleerd met behulp van een uniform verdeelde stochast $U \sim$ U(0,1).

6.2. Gegeven is de verdelingsfunctie F(x) = 0 voor x < 0, en

$$F(x) = 1 - e^{-3x^5}$$
 voor $x \ge 0$.

Met behulp van een U(0,1) variabele U kan men een stochast Z met de bovenstaande verdelingsfunctie construeren op de volgende manier:

a.
$$Z = 1 - e^{-3U^5}$$

a.
$$Z = 1 - e^{-3U^5}$$
 b. $Z = 1 - e^{-\sqrt[5]{\frac{1}{3}U}}$ **c.** $Z = 1 - e^{-2\sqrt[5]{U}}$

c.
$$Z = 1 - e^{-2\sqrt[5]{U}}$$

d.
$$Z = -\frac{1}{5} \ln(\sqrt[3]{1 - U})$$

e.
$$Z = -\ln(\frac{1}{3}\sqrt[5]{1-U})$$

d.
$$Z = -\frac{1}{5}\ln(\sqrt[3]{1-U})$$
 e. $Z = -\ln(\frac{1}{3}\sqrt[5]{1-U})$ **f.** $Z = \sqrt[5]{-\frac{1}{3}\ln(1-U)}$

6.3. Zij $a \in (0,1)$. Definieer de verdelingsfunctie F_a als volgt:

$$F_a(x) = \begin{cases} 0 & \text{voor } x < 0 \\ x^2 & \text{voor } x \in [0, a) \\ 1 & \text{voor } x \ge a. \end{cases}$$

Geef aan hoe op basis van een uniform op (0,1) verdeelde stochastische variabele een stochastische variabele X kan worden gegenereerd met verdelingsfunctie F_1 (dus F_a met a=1).

6.4. Stel de continue stochast X heeft dichtheid f_X gegeven door

$$f_X(x) = \begin{cases} \frac{1}{2\sqrt{x}} & \text{voor } 0 \le x \le 1\\ 0 & \text{elders} \end{cases}$$

- a. Geef de verdelingsfunctie F_X van X
- **b.** Construeer X m.b.v. een uniform verdeelde stochast U op [0,1]

Antwoorden:

- **9.1.** -1
- **9.2.** $\frac{13}{36}$
- **9.3.** d.
- **9.4.** $\frac{1}{2}$
- **9.5.** c.
- **9.6.** d.
- **9.7.** f.
- **9.8.** 3.
- **9.9.** e.
- **9.10.** d.
- **11.1.** e.
- **11.2.** f.
- **11.3.a** $p_Z(0) = \frac{1}{6}, p_Z(1) = \frac{1}{2}, p_Z(2) = \frac{1}{3}.$
- 11.3.b $\frac{1}{2}$.
- **11.4.** e.
- **12.1.** e.
- **12.2.** e.
- **12.3.** a.
- **12.4.** e.
- **6.2.** f.
- **6.3.** $X \sim \sqrt{U}$, waarbij $U \sim U(0,1)$.
- **6.4.a** $F(x) = 0, x < 0; F(x) = \sqrt{x}, 0 \le x \le 1; F(x) = 1; x > 1.$
- **6.4.b** $X \sim U^2$.