EX.NO: 10

DATE: 20-10-2022

K-MEANS ALGORITHM

Aim:

To implement k-means Algorithm using R programming.

Description:

ALGORITHM:

Step 1: Choose groups in the feature plan randomly

Step 2: Minimize the distance between the cluster center and the different observations (centroid). It results in groups with observations

Step 3: Shift the initial centroid to the mean of the coordinates within a group.

Step 4: Minimize the distance according to the new centroids. New boundaries are created. Thus, observations will move from one group to another

Step 5:Repeat until no observation changes groups

K-means usually takes the Euclidean distance between the feature and feature:

$$distance(x, y) = \sum_{i}^{n} (x_i - y_i)^2$$

PROGRAM:

library(ClusterR)
library(cluster)
iris_1 <- iris[,-5]
View(iris_1)</pre>

_	Sepal.Length [‡]	Sepal.Width [‡]	Petal.Length [‡]	Petal.Width [‡]
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4
7	4.6	3.4	1.4	0.3
8	5.0	3.4	1.5	0.2
9	4.4	2.9	1.4	0.2
10	4.9	3.1	1.5	0.1

```
set.seed(240)
kmeans.re <- kmeans(iris_1, centers = 3, nstart = 20)</pre>
kmeans.re
Available components:
[1] "cluster"
                                                 "withinss"
                   "centers"
                                  "totss"
                                                                "tot.withinss"
[6] "betweenss"
                   "size"
                                  "iter"
                                                 "ifault"
plot(iris_1[c("Sepal.Length", "Sepal.Width")],
     col = kmeans.re$cluster,
     main = "K-means with 3 clusters")
```

K-means with 3 clusters

K-means with 3 clusters

Cluster iris

RESULT:

Thus, successfully completed K-means algorithm using r programming