Prova Segurança da Informação

Aluno(a).:	GABARITO P1	27/04/2023
		-

Professor.: Ronilson R. Pinho

- Enumere as funções do Departamento de segurança de Informação de uma Empresa criação, implementação, controle e monitoramento de políticas que almejam assegurar os ativos de informação
- Conforme descrição feita pela ISO/IEC 17799, a proteção da Informação é vital, sendo caracterizada pela Trilogia CID. Descreva sucintamente a CID e os itens acrescentados pela Sêmola em 2003.

Confidencialidade

Garante que somente pessoas autorizadas poderão acessar as informações. Trata-se da não permissão da divulgação de uma informação sem prévia autorização.

• Disponibilidade

Garante acesso a uma informação no momento desejado. Isso implica no perfeito funcionamento da rede e do sistema. Imagine você necessitando de umas informações para concluir um relatório e o sistema não está funcionando!

• Integridade

Garante que a exatidão e completeza das informações não sejam alteradas ou violadas. Um exemplo, vamos supor que um gerente de uma empresa determina aumento de salário de 2% aos funcionários, para isso, utilizou seu e-mail para o departamento financeiro. Alguém interceptou e alterou de 2% para 20% o aumento

Legalidade: Garantia de que a informação foi produzida em conformidade com a lei; **Autenticidade:** garantia de que num processo de comunicação os remetentes sejam exatamente o que dizem ser e que a mensagem ou informação não foi alterada após o seu envio ou validação.

- 3) As vulnerabilidades estão presentes no dia a dia das empresas e se apresentam nas mais diversas áreas de uma organização, a todo instante os negócios, seus processos e ativos físicos, tecnológicos e humanos são alvos de investidas de ameaças de toda ordem. Qual das opções abaixo descreve o melhor conceito de Vulnerabilidade na ótica da Segurança da Informação?
- () Fragilidade presente ou associada a ativos que exploram ou processam informações.
- () Impacto presente ou associada a ativos que manipulam ou processam informações.
- () Fragilidade presente ou associada a ameaças que manipulam ou processam informações .
- () Ameaça presente ou associada a ativos que manipulam ou processam informações.
- (X) Fragilidade presente ou associada a ativos que manipulam ou processam informações.
- 4) Corrigir pontos vulneráveis ou pontos fracos que circulam em um setor que trabalha com a informação, não acabará, mas reduzirá em muito os riscos em que ela estará envolvida. Logo estará evitando como também prevenindo a concretização de possíveis ameaças. Baseado neste fato podemos denominar como Vulnerabilidade Física:
- () Problemas nos equipamentos de apoio (acúmulo de poeira, aumento de umidade e de temperatura).

() Acessos não autorizados ou perda de comunicação e a ausência de sistemas de criptografia nas comunicações. () Terrorismo ou vandalismo (ameaça de bomba, sabotagem, distúrbios civis, greves, roubo, furto, assalto, destruição de propriedades ou de dados, invasões, guerras, etc.). (X) Instalações prediais fora dos padrões de engenharia e salas de servidores mal planejadas. () Possibilidade de desastres naturais (incêndios, enchentes, terremotos, tempestades, falta de energia). 5) "Neste algoritmo, os dados são codificados em blocos de 64 bits usando uma chave de 56 bits. O algoritmo transforma a entrada de 64 bits em uma série de etapas em uma saída de 64 bits. As mesmas etapas, com a mesma chave, são empregadas para reverter a criptografia. Uma de suas desvantagens é que pode ser decifrado com a técnica de força bruta." As informações se referem ao seguinte tipo algoritmo de criptografia: (X) DES () AES () RSA () IDEA () CAMELLIA 6) Computadores e redes de computadores sempre foram alvos de ataques, tais como os vírus, worms, entre outros, que tinham a finalidade de causar danos nas máquinas, ou para causar prejuízos ou apenas como diversão. Mas esse conceito tem mudado, a internet está sendo cada vez mais usada para fins lucrativos e maliciosos, como roubo de senhas, números de contas bancárias e de cartões de crédito, o que a torna bastante perigosa. Com relação aos tipos de afirmações ataques, julgue as abaixo: I. Um ataque DoS (Denial-of-Service) torna uma rede, hospedeiro ou outra parte da infraestrutura inutilizável por usuários verdadeiros. A maioria dos ataques DoS na Internet pode ser dividida em três categorias: Ataque de vulnerabilidade, Inundação na largura de banda e Inundação na conexão. II. Um ataque de Sniffing, ou ataque de Sniffer, são caracterizados pelo uso de ferramentas que rodam em Background e em modo promiscuo, ou seja, analisam todos os pacotes que estão trafegando pela rede no momento. III. Os ataques do tipo man-in-the-middle (MITM) também são usados em sistemas de segurança baseados em token. Consistem em interceptar o tráfego entre dois computadores, e, para ambos, continuar parecendo que a comunicação é direta. Contudo, a entidade que intercepta o tráfego também o altera, de forma que a requisição de rede pareça original e autêntica. É correto o que consta: () na afirmativa I, apenas. () na afirmativa II, apenas. () na afirmativa III, apenas. () nas afirmativas I e III, apenas.

(X) nas afirmativas I, II e III.

7) Diferencie Criptografia Simétrica da Assimétrica

Criptografia Simétrica	Criptografia assimétrica		
Utiliza uma única chave para criptografar e descriptografar informações	Utiliza duas chaves diferentes para criptografar e descriptografar informações		
Processo de criptografia mais rápido	Processo de criptografia mais lento		
Chaves de 128 a 256 bits	Chaves de 2048 bits ou mais		
Não utiliza muitos recursos	Utiliza mais recursos		
O texto cifrado é menor ou do mesmo tamanho que o texto simples original	O texto cifrado é maior ou do mesmo tamanho que o texto cifrado original		
Oferece autenticidade	Oferece autenticidade e irretratabilidade		
Exemplo de algoritmos incluem AES, DES, 3DES, IDEA e Blowfish	Exemplo de algoritmos incluem RSA, ECC, DSA e El Gamal		
Melhor para lidar com grandes quantidades de dados	Melhor para lidar com quantidades menores de dados		
A chave pode ser roubada se não for armazenada de forma segura	A chave privada não pode ser recuperada se for perdida		

8)	Para verificar a autenticidade e a integridade de um certificado digital são usados
	os campos de Alternativas

(X)	identificação e	e a assinatura	digital da	entidade	(AC) que o	emitiu.
-----	-----------------	----------------	------------	----------	------------	---------

- () chave pública e chave privada do certificado.
- () assinatura do emissor e do receptor do certificado.
- () chave privada e hash do certificado.
- () assinatura, período de validade e número de série do certificado.