Table 1: Average runtime, Pearson's correlation coefficient and Fowlkes-Mallows index for k=4 and k=8 and the neighbor-joining algorithm. The 'reference' method calculates distances from the original sequences. We show only assembly algorithms that gave the highest and the lowest correlation. From d-type measures, the one with the highest correlation is selected.

Dataset	method	finished	$\frac{\mathrm{assem.}}{\mathrm{ms}}$	$\frac{\text{distances}}{\text{ms}}$	corr.	B_4	B_8	FM/upgmak4	FM/upgmak8
Influenza	reference	112/112	0	4,129	1	1	1	1	1
	$\max(R_A , R_B)$	112/112	0	343	.801	.66	.32	0.67	0.32
	$Dist_{MESSG}(R_A, R_B)$	101/112	0	983,094	.981	1	.99	0.99	1
	$Dist_{MESSGq}(R_A, R_B)$	$\frac{112}{112}$	0	63,425 $17,469$.98	1	.99 .8	$\frac{1}{0.98}$	$0.99 \\ 0.87$
	$Dist_C(C_A,C_B) \; ABySS \ Dist_C(C_A,C_B) \; Edena \ $	87/112 $72/112$	$21,628 \\ 285$	18,483	.951 .96	.98 1	.85	0.98	0.88
	$Dist_C(C_A,C_B)$ Edena $Dist_C(C_A,C_B)$ SSAKE	$\frac{72}{112}$ $\frac{68}{112}$	2,079	17,735	.944	.97	.84	0.97	0.87
	$Dist_C(C_A,C_B)$ Velvet	110/112	385	23,567	.958	.99	.91	0.99	0.91
	$Dist_C(C_A,C_B)$ SPAdes	43/112	13,529	22,661	.973	.99	.93	0.99	0.95
	$Dist(RC_A, RC_B) \; ABySS$	112/112	4,067	826,926	.976	1	.99	1	1
	$Dist(RC_A, RC_B)$ Edena	112/112	156	732,929	.978	1	.99	1	1
	$Dist(RC_A, RC_B) \; SSAKE$	111/112	$1,\!562$	$872,\!481$.978	1	.99	1	1
	$Dist(RC_A, RC_B)$ Velvet	107/112	239	903,229	.967	1	.98	1	0.99
	$Dist(RC_A, RC_B)$ SPAdes	111/112	11,550	935,862	.982	1	.99	1	1
	$\operatorname{Dist}_q(RC_A, RC_B) \operatorname{ABySS}$	112/112	4,067	24,660	.965	.99	.92	1	0.94
	$Dist_q(RC_A, RC_B)$ Edena $Dist_q(RC_A, RC_B)$ SSAKE	$\frac{112/112}{112/112}$	$156 \\ 1,557$	$16,\!540 \\ 28,\!155$.968 .969	.99 1	.95 .96	$1 \\ 1$	$0.96 \\ 0.98$
	$Dist_q(RC_A, RC_B)$ SSARE $Dist_q(RC_A, RC_B)$ Velvet	$\frac{112}{112}$ $\frac{112}{112}$	$\frac{1,357}{245}$	22,581	.969 .955	1	.96 .98	1	0.98
	$Dist_q(RC_A, RC_B)$ SPAdes	112/112 $112/112$	11,494	28,409	.972	1	.95	1	0.98
	Mash	84/112	0	187	.906	.48	.72	0.51	0.73
	d_2	109/112	0	379	.709	.43	.99	0.3	0.67
	d_2^*	107/112	0	379	.837	.4	.9	0.38	0.71
	d_2^{q*}	109/112	0	365	.631	.32	.27	0.37	0.11
	D_2	110/112	0	374	.443	.32	$1.31 \cdot 10^{-3}$	0.68	0.32
	D_2^*	110/112	0	376	102	.44	$2.24 \cdot 10^{-3}$	0.5	$3.99 \cdot 10^{-3}$
	D_2^{q*}	111/112	0	370	0	.32	.27	0.37	0.12
	$d_2^q \\ D_2^q$	112/112	0	371	0.631	.32	.27	0.37	0.11
	D_2 longest contig ABySS	$\frac{112}{112}$ $87/112$	$0 \\ 4,150$	$364 \\ 2,675$.668	.32 $.62$.27 .43	$0.37 \\ 0.63$	$0.12 \\ 0.43$
	longest contig Edena	$\frac{37}{112}$	186	2,866	.673	.63	.47	0.64	0.48
	longest contig SSAKE	65/112	1,876	2,504	.66	.59	.37	0.61	0.35
	longest contig Velvet	110/112	245	222	.567	.47	.22	0.45	0.23
	longest contig SPAdes	43/112	12,970	4,157	.75	.71	.55	0.74	0.56
	$egin{array}{c} ext{reference} \ ext{max}(R_A , R_B) \end{array}$	$\frac{9}{9}$	0 0	$1,748,984 \\ 29,340$	1 .181	$\frac{1}{.72}$	1 .83	$1\\0.55$	0.37
	$Dist_{MESSG}(R_A, R_B)$	$\frac{9/9}{9/9}$	0	42,332,682	.965	1	.9	0.99	0.95
Hepatitis	$Dist_{MESSGqlpha}(R_A,R_B)$	9/9	0	1,118,585	.905 .897	1	.9 .94	0.99 0.91	$0.93 \\ 0.94$
	$Dist_C(C_A,C_B) \; ABySS$	9/9	35,145	48,256,963	.949	1	.91	0.95	0.94
	$Dist_C(C_A,C_B)$ Edena	9/9	7,038	44,548,818	.892	1	.84	0.95	0.91
	$Dist_C(C_A,C_B)\ \mathrm{SSAKE}$	5/9	$69,\!156$	55,880,178	.901	1	.95	0.98	0.95
	$Dist_C(C_A,C_B)$ Velvet	4/9	11,090	59,898,794	.98	1	.99	1	0.97
	$Dist_C(C_A,C_B) \; SPAdes$	2/9	$76,\!514$	$31,\!517,\!537$.869	1	.89	0.87	0.93
	$Dist(RC_A, RC_B) \; ABySS$	0/9	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	$Dist(RC_A, RC_B)$ Edena	$\frac{2}{9}$	2,326	255,000,727	.995	1	.91	1	0.95
	$Dist(RC_A, RC_B) \; SSAKE$	0/9	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	$Dist(RC_A, RC_B)$ Velvet	$0/9 \\ 0/9$	$_{ m NaN}$	$_{ m NaN}$	$_{ m NaN}$	$_{ m NaN}$	$_{ m NaN}$	NaN NaN	NaN NaN
	$Dist(RC_A, RC_B) \; SPAdes$ $Dist_{q\alpha}(RC_A, RC_B) \; ABySS$	$\frac{0}{9}$	40,453	530,594	.849	1	.86	0.89	0.93
	$Dist_{q\alpha}(RC_A, RC_B)$ Edena	9/9	9,462	531,265	.894	1	.91	0.87	0.86
	$Dist_{q\alpha}(RC_A, RC_B)$ SSAKE	9/9	78,036	550,453	.881	1	.89	0.92	0.93
	$Dist_{q\alpha}(RC_A, RC_B)$ Velvet	9/9	21,409	430,359	.976	1	.96	0.95	0.92
	$Dist_{q\alpha}(RC_A, RC_B)$ SPAdes	9/9	6,012	343,114	.982	1	.98	0.98	0.95
	Mash	9/9	0	$2,\!350$.967	1	.92	0.96	0.97
	d_2	7/9	0	27,145	.973	1	.86	0.98	0.96
	d_2^*	7/9	0	28,189	.972	1	.9	0.89	0.97
	d_2^{q*}	9/9	0	29,296	.972	1	.9	0.89	0.97
	D_2	8/9	0	30,458	181	.93	.43	0.66	0.54
	D_2^*	$\frac{7}{9}$	0	27,718	783	.93	.41	0.66	0.54
	D_2^{q*}	9/9	$0 \\ 0$	27,151	782 .973	.92	.4 .87	0.66	0.54
	$d_2^q \\ D_2^q$	$\frac{9}{9}$	0	27,885 $31,481$.973 187	1 .93	.87 .41	$0.98 \\ 0.66$	$0.96 \\ 0.54$
	D_2 longest contig ABySS	7/9 9/9	35,145	2,493,455	187 .53	.93 .95	.41 .69	0.65	$0.54 \\ 0.69$
	longest contig Edena	$9/9 \\ 9/9$	7,038	1,581,613	.53 .515	.92	.76	0.03	0.89
	longest contig SSAKE	$\frac{5}{5}$	69,156	764,321	.334	.86	.62	0.71	0.66
	longest contig Velvet	$\frac{3}{4}$	11,090	515	.296	.92	.47	0.64	0.58
	iongest contrig vervet	1,0							

Figure 1: Plot of Fowlkes-Mallows index B_k versus k on influenza dataset. The index compares trees generated by the neighbor-joining algorithm. The tree is compared with the tree generated from the original sequences. If all values are equal to 1, the structures of the trees are the same.

Figure 2: Plot of Fowlkes-Mallows index B_k versus k on hepatitis dataset. The index compares trees generated by the neighbor-joining algorithm.

Figure 3: Plot of average Pearson's correlation coefficient for several choices of coverage values.

Figure 4: Plot of average Pearson's correlation coefficient for several choices of read length.