IPv6 - Dynamic Address Assignment

Dynamic Address Assignment

- O Dynamic IPv6 address allocation provides a method for devices to create or obtain their global unicast addresses and other addressing information.
- O IPv4 DHCP
- © IPv6 SLAAC, DHCPv6

DHCPv4

IPv6 - Dynamic Address Assignment

- The three methods for dynamic IPv6 addressing:
 - Stateless Address Autoconfiguration (SLAAC)
 - SLAAC and a stateless DHCPv6 server
 - Stateful DHCPv6 server

IPv6 - Dynamic Address Assignment

- Makes use of ICMPv6 messages
 - Router Solicitation
 - Router Advertisement
- © **Recall : ICMPv6 NDP messages** such as Router Solicitation and Router Advertisement messages are ICMPv6 messages **encapsulated in IPv6.**

IPv6 Header ICMPv6: RS or RA Message

Router Solicitation Message

- A host sends a Router Solicitation message when it needs to know how to dynamically obtain its addressing information.
 - During startup and is the default on most host operating systems.

Router Solicitation

R1(config)# ipv6 unicast-routing

Destination IPv6 Address: ff02::2 (All IPv6 Routers)

Router Advertisement Message

- The **RA message is a suggestion** to devices on the link about how to obtain their addressing information dynamically.
- The RA message includes **prefix**, **default router**, **and other configuration information**.
- The RA message (Unsolicited) is sent to the all-IPv6 devices multicast address, ff02::1.
- The RA message can be unicast if it is a response to RS.

Router Advertisement Message

Router can be configured to send RA message as unicast in response to RS message.

Router Advertisement Flags

- M : Managed Address Configuration
 - M=1 Do the Stateful Configuration. Contact DHCPv6.
 - o M= 0 Default Value.
- O: Other Configuration flag
 - O=1 Get additional information (like DNS details) from DHCPv6
 - o O=0 Default Value.
- If neither M nor O flags are set, this indicates
 that no information is available via DHCPv6.

Router Advertisement Flags

- Address Autoconfiguration flag (A flag):
 - A=1, Use SLAAC to create GUA.
- Prf : Default Router Preference flag (is also defined now)
 - Prf=00 Default value indicates Medium
 - o Prf=01 High
 - o Prf=11 Low
 - Prf=10 Reserved
- There are flags to support address assignment in mobility as well.

RS and **RA** Messages:

Flags for different methods:

RA Address Allocation Method			
	A Flag (SLAAC)	O Flag (Stateless DHCPv6)	M Flag (Stateful DHCPv6)
Method 1: SLAAC (default)	1 (on)	0 (off)	0 (off)
Method 2: SLAAC and stateless DHCPv6	1 (on)	1 (on)	0 (off)
Method 3: Stateful DHCPv6	0 (off)	N/A	1 (on)

Method 1: SLAAC

Method 1: SLAAC

R1(config)# ipv6 unicast-routing

Note: DAD will be performed after GUA has been assigned

- O Devices set to obtain their IPv6 address dynamically:
 - They use the prefix in the RA message to generate a global unicast address.
 - They use other information in the RA message, such as prefix length and link MTU.
 - The RA message does not include the domain name and DNS address by default.
 - They use the source IPv6 address of the packet, a link-local unicast address, as the default gateway address.
 - There is no other information needed from a stateless or stateful DHCPv6 server.

Method 2: SLAAC and Stateless DHCPv6

Example:

DHCPv6

may not

be in the

Server

same

subnet.

- Devices set to obtain their IPv6 address dynamically do the following:
 - They use the prefix in the RA message to generate a global unicast address.
 - They use other information in the RA message, such as prefix length and link MTU.
 - They use the source IPv6 address of the packet, a link-local unicast address, as the default gateway address.
 - They contact a stateless DHCPv6 server for additional information, such as domain name and DNS server addresses. The RA message does not specify what information can be obtained from the stateless DHCPv6 server.

Method 3: Stateful DHCPv6

Example:

- Devices set to obtain their IPv6 address dynamically do the following:
 - They use the source IPv6 address of the packet, a link-local unicast address, of the RA message as the default gateway address.
 - They contact a stateful DHCPv6 server for a global unicast address and all other information, such as domain name and DNS server addresses.

DHCPv6 Communication

Refer: Chapter 8: Basics of Dynamic Addressing in IPv6,Cisco IPv6 Fundamental - 2nd Edition, Rick Graziani

REFERENCES

- 1. Cisco IPv6 Fundamental 2nd Edition, Rick Graziani
- 2. Internet Protocol, Version 6 (IPv6) Specification RFC 8200
- 3. IPv6 Stateless Address Autoconfiguration RFC 4862
- 4. Neighbor Discovery for IP version 6 (IPv6) RFC 4861