Deploying Machine Learning Solutions

UNDERSTANDING FACTORS THAT IMPACT DEPLOYED MODELS

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Recent challenge posed by underperformance of deployed models

Several possible causes

Overfitting, training-serving skew

Concept drift, concerted adversaries

Need for monitoring and retraining of deployed models

Model development does not end with deployment

Prerequisites and Course Outline

Prerequisites

Basic Python programming

Basic knowledge of machine learning

Basic understanding of cloud computing

Course Outline

Understanding factors that impact model deployment

Deploying to Flask

Deploying to serverless cloud environments

Deploying to Google Cloud AI Platform

Deploying to AWS SageMaker

The Classic Machine Learning Workflow

Models are performing worse in production than in development, and the classic ML workflow is proving inadequate

Basic Machine Learning Workflow

What Data Do You Have to Work With?

Load and Store Data

Data Preprocessing

Decision Trees, Support Vector Machines?

Training to Find Model Parameters

Evaluate the Model

Score the Model

Different Algorithm, More Data, More Training?

Iterate Till Model Finalized

Model Used for Predictions

Retrained Using New Data

Basic Machine Learning Workflow

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Rule-based Binary Classifier

ML-based Binary Classifier

ML-based Binary Classifier

ML-based Binary Classifier

New Realities of Deployed Models

Models degrade in accuracy as soon as they are deployed in the real world

Degrading Models

A model is at its best just before being deployed to production

Rookie assumption: deployed models work as well as they did in testing

Static machine learning models become less useful over time

Software Development

Software which has been around for a while is more robust

More bug fixes, all code paths tested, usability fixes applied

External changes rarely affect regular software

Can have steady, periodic release cycles

Model Development != Software Development

Model development is not exactly the same as software development

A constant stream of new data is needed to keep models working well

Models need to adjust for shifting realities in the real world

Deploying models is just the beginning

Critical Step: Retraining Models

Retraining Models

Based on what the model is used for

Preferences, news, weather, buying behavior, security threats

Constantly need to train models on new data

May need to localize models to take into account geographical differences

Models are performing worse in production than in development, and the solutions need to be sought in deployment

Problems Afflicting Al-based Solutions

Overfitting

Training-serving Skew

Concept Drift

Concerted Adversaries

Problems Afflicting Al-based Solutions

Overfitting Training-serving Skew

Concept Drift Concerted Adversaries

Connecting the Dots

Challenge: Fit the "best" curve through these points

Good Fit?

A curve has a "good fit" if the distances of points from the curve are small

We could draw a pretty complex curve

We can even make it pass through every single point

But given a new set of points, this curve might perform quite poorly

The original points were "training data", the new points are "test data"

Overfitting

Great performance in training, poor performance in real usage

A simple straight line performs worse in training, but better with test data

Overfitting

Model has memorized the training data
Low training error
Does not work well in the real world
High test error

Overfitting

Model has not extracted general patterns that exist in the data

The model's ability to adapt to new unseen data is poor

Preventing Overfitting

Regularization - Penalize complex models

Cross-validation - Distinct training and validation phases

Dropout (NNs only) - Intentionally turn off some neurons during training

Ensemble learning - aggregate predictions from individual learners

Problems Afflicting Al-based Solutions

Overfitting

Training-serving Skew

Concept Drift

Concerted Adversaries

Training-Serving Skew

Models are performing well in backtests
But performing poorly in production
Training-serving skew is a big, but
neglected cause

Training-Serving Skew

Training data is sourced from batch pipelines

Processed meticulously well

Prediction data is sourced from streaming pipelines

Processed in an ad-hoc manner with many short cuts

Batch and streaming data should be processed in the same manner, using the same pipeline

Lambda or Kappa

Lambda and Kappa architectures both combine batch and stream data

They do so in different ways

Lambda couples them less tightly

But is more robust

Hybrid approach to batch and near real-time processing

The basic architecture contains these 3 layers - batch is often the source of truth

Streaming code may also be stored in the batch layer

Different code to be maintained to process batch and streaming

Kappa Architecture

Original idea proposed by Jay Kreps

Stream is the source of truth

Use technology which retains a log of all data

Always process from the stream

Use a single processing framework

Simple Kappa Architecture

Process batch and streaming data using the same code

Simple Kappa Architecture

Maintain one codebase for simplicity and robustness

Simple Kappa Architecture

Complex Kappa Architecture

Training and prediction data ought to follow identical code paths

Complete Big Data Pipeline

Problems Afflicting Al-based Solutions

Overfitting

Training-serving Skew

Concept Drift

Concerted Adversaries

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Whales: Fish or Mammals?

ML-based Classifier

Training

Feed in a large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

ML-based Binary Classifier

$$y = f(x)$$

Supervised Machine Learning

Most machine learning algorithms seek to "learn" the function f that links the features and the labels

Concept Drift

The relationship between features (X-variables) and labels (Y-variables) changes over time; ML models fail to keep up, and consequently their performance suffers

Concept Drift

Concept drift happens because the world changes

Relationships are dynamic, not static

Same reason why rule-based systems degrade faster than ML-based

Concept Drift

Related to "regime changes" or "structural breaks" in statistics

Solution #1: Keep monitoring and retraining deployed models

Solution #2: Re-develop models from scratch (if re-training won't suffice)

Classify reviews as negative or positive

Original decision boundary based on training and test data available at model deployment

New points available as model used for prediction

Decision boundary has changed - model needs to be updated on the new data

Concept Drift

The data itself has changed

Our interpretation of the data has changed

Concept Drift can be mitigated by constantly monitoring and retraining deployed models

Problems Afflicting Al-based Solutions

Overfitting

Training-serving Skew

Concept Drift

Concerted Adversaries

Concerted Adversaries

Consider common Al use-cases

- Fraud detection
- Fake news detection
- Quantitative trading

Concerted adversaries try to confuse, mislead models

Concerted Adversaries

Human minders for models becoming more important

Human minders learn from cases where models got it wrong

Back to the future: From machine learning to manual learning

Thwarting concerted adversaries requires continuous **manual learning** to complement machine learning

Problems Afflicting Al-based Solutions

Overfitting

Training-serving Skew

Concept Drift

Concerted Adversaries

Deploying Models for Prediction

Deploying Models for Prediction

Deploying Models for Prediction HTTP Endpoint Web Hosting Frameworks Flask Django

Deploying Models for Prediction HTTP Endpoint Serverless Compute AWS Google Cloud Azure Lambda **Functions Functions**

Deploying Models for Prediction HTTP Endpoint Cloud platform specific frameworks Azure Machine AWS SageMaker Learning Service Google Al Platform

Summary

Recent challenge posed by underperformance of deployed models

Several possible causes

Overfitting, training-serving skew

Concept drift, concerted adversaries

Need for monitoring and retraining of deployed models

Model development does not end with deployment