Differentiable Functions

Exercise 1: Determine the n-th derivative of the following functions:

- a) $f:(-1,\infty)\to\mathbb{R}$ defined by $f(x)=(1+x)^r$, where $r\in\mathbb{R}$;
- b) $f:(-1,\infty)\to\mathbb{R}$ defined by $f(x)=x\cdot\ln(1+x)$;
- c) $f:(-\infty,-1)\to\mathbb{R}$ defined by $f(x)=x\cdot\ln(1-x)$;
- d) $f:(-1,1)\to\mathbb{R}$ defined by $f(x)=\sqrt{3x+4}$;
- e) $f:(-\frac{1}{2},\infty)\to\mathbb{R}$ defined by $f(x)=\frac{1}{\sqrt{2x+1}}$.

Exercise 2: Determine the n-th derivative of the following functions:

- a) $f: \mathbb{R} \setminus \{-\frac{b}{a}\} \to \mathbb{R}$ defined by $f(x) = \frac{1}{ax+b}$;
- b) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin(ax + b)$;
- c) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \cos(ax + b)$;
- d) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^{ax+b}$.

Exercise 3: Compute the derivatives of the following functions

- a) $f:(0,\infty)\to\mathbb{R}$ defined by $f(x)=x^x$;
- b) $f:(0,\infty)\to\mathbb{R}$ defined by $f(x)=x^{\frac{1}{x}}$;
- c) $f:(0,\pi)\to\mathbb{R}$ defined by $f(x)=\sin x^x$;
- d) $f:(0,\infty)\to\mathbb{R}$ defined by $f(x)=x^{\sin x}$;

Exercise 4: Prove that $\frac{1}{x+1} < \ln(x+1) - \ln x < \frac{1}{x}$ for all x > 0.

Exercise 5:

a) Prove that for all $n \in \mathbb{N}$ if holds

$$na^{n-1} < \frac{b^n - a^n}{b - a} < nb^{n-1}$$

for all $a, b \in (0, +\infty)$ with a < b.

Excercise 6:

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = x + |x - 1|$$

for all $x \in \mathbb{R}$.

- a) Prove that f has side derivatives at $x_0 = 1$;
- b) Compute the side derivates of f at $x_0 = 1$;
- c) Is f differentiable on the left at $x_0 = 1$? What about on the right?
- d) Does f have a derivative at $x_0 = 1$?
- e) Is f differentiable at $x_0 = 1$?