Hierarchical Clustering On Mall Customers data

Importing the libraries

Importing the dataset

Out[3]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
5	6	Female	22	17	76
6	7	Female	35	18	6
7	8	Female	23	18	94
8	9	Male	64	19	3
9	10	Female	30	19	72

In [5]: 1 dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Genre	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

```
1 dataset.isnull().sum()
In [6]:
Out[6]: CustomerID
                                  0
        Genre
                                  0
        Age
        Annual Income (k$)
        Spending Score (1-100)
        dtype: int64
In [7]:
          1 dataset.describe()
Out[7]:
```

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

EDA

```
In [8]:
          1 # df_num = train[['Age', 'SibSp', 'Parch', 'Fare']]
          2 for i in dataset.columns:
                 plt.hist(dataset[i])
                 plt.title(i)
          4
                 plt.show()
          5
                               CustomerID
          20.0
         17.5
         15.0
         12.5
          10.0
          7.5
          5.0
          2.5
          0.0
                    25
                         50
                              75
                                  100
                                       125
                                            150 175
                                 Genre
          dataset[['Genre', 'Age']].groupby(['Genre'], as_index=False).mean().sort_values(by='Age', ascending=False)
In [9]:
```

Out[9]:

	Genre	Age
1	Male	30 806818

0 Female 38.098214

Out[10]: <AxesSubplot:xlabel='Genre', ylabel='Age'>

Out[11]:

	Genre	Annual Income (K\$)
1	Male	62.227273
0	Female	59.250000

Out[12]: <AxesSubplot:xlabel='Genre', ylabel='Annual Income (k\$)'>


```
In [13]: 1 dataset[['Genre', 'Spending Score (1-100)']].groupby(['Genre'], as_index=False).mean().sort_values(by='Spending S
```

Out[13]:

	Genre	Spending Score (1-100)
0	Female	51.526786
1	Male	48.511364

Out[14]: <AxesSubplot:xlabel='Genre', ylabel='Spending Score (1-100)'>

dataset[['Age', 'Annual Income (k\$)']].groupby(['Age'], as_index=False).mean().sort_values(by='Annual Income (k\$) In [15]: Out[15]: Age Annual Income (k\$) 23 41 101.000000 32 87.181818 14 10 28 85.250000 36 81.000000 18 33 80.333333 15 56 79.000000 38 34 16 79.000000 12 30 76.142857 26 44 75.500000 20 38 74.500000

39

21

72.666667

Out[16]: <AxesSubplot:xlabel='Age', ylabel='Annual Income (k\$)'>

dataset[['Age', 'Spending Score (1-100)']].groupby(['Age'], as_index=False).mean().sort_values(by='Spending Score In [18]: Out[18]: Age Spending Score (1-100) 21 39 84.666667 12 30 80.285714 11 29 76.600000 24 71.500000 6 22 70.000000 4 28 70.000000 10 21 3 66.800000 14 32 66.000000 35 17 63.888889 31 13 63.875000

23

5

63.333333

Out[19]: <AxesSubplot:xlabel='Age', ylabel='Spending Score (1-100)'>


```
In [20]: 1 dataset.plot(kind="scatter", x="Age", y="Spending Score (1-100)")
2 plt.show()
```


Out[21]: <AxesSubplot:xlabel='Annual Income (k\$)', ylabel='Spending Score (1-100)'>


```
In [22]: 1 dataset.plot(kind="scatter", x="Annual Income (k$)", y="Spending Score (1-100)")
2 plt.show()
```



```
In [4]:
         1 # X = dataset.iloc[:, [3, 4]]
         2 # X.head()
         3 X = dataset.iloc[:, [3, 4]].values
         4 X
Out[4]: array([[ 15, 39],
              [ 15, 81],
              [ 16, 6],
              [ 16, 77],
              [ 17, 40],
              [ 17, 76],
              [ 18, 6],
              [ 18, 94],
              [ 19,
                    3],
              [ 19, 72],
              [ 19, 14],
              [ 19, 99],
              [ 20, 15],
              [ 20, 77],
              [ 20, 13],
              [ 20, 79],
              [ 21, 35],
              [ 21, 66],
              [ 23, 29],
```

Using the dendrogram to find the optimal number of clusters

Out[25]: <matplotlib.lines.Line2D at 0x24e024f3640>

Training the Hierarchical Clustering model on the dataset

Visualising the clusters

```
In [28]: 1 plt.scatter(X[y_hc == 0, 0], X[y_hc == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
2 plt.scatter(X[y_hc == 1, 0], X[y_hc == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
3 plt.scatter(X[y_hc == 2, 0], X[y_hc == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
4 plt.scatter(X[y_hc == 3, 0], X[y_hc == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
5 plt.scatter(X[y_hc == 4, 0], X[y_hc == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
6 plt.title('Clusters of customers')
7 plt.xlabel('Annual Income (k$)')
9 plt.legend()
10 plt.show()
```



```
In [ ]: | 1
```