Assignment 2 Q1

Ian Murphy 2019-09-18

Assignment 2 - Question 1

1.1

Let's import the gapminder dataset, dplyr, and tidyverse.

```
library(gapminder)
library(tidyverse)
suppressPackageStartupMessages(library(tidyverse))
```

Let's use the filter() function to extract 3 countries in the 1970s. The three countries I will use are Canada, France, and Germany.

```
## # A tibble: 6 x 6
##
     country continent year lifeExp
                                          pop gdpPercap
##
     <fct>
            <fct>
                       <int>
                               <dbl>
                                                  <dbl>
                                        <int>
## 1 Canada Americas
                       1972
                                72.9 22284500
                                                 18971.
## 2 Canada Americas
                                74.2 23796400
                                                 22091.
                        1977
## 3 France Europe
                        1972
                                72.4 51732000
                                                 16107.
## 4 France Europe
                        1977
                                73.8 53165019
                                                 18293.
## 5 Germany Europe
                        1972
                                71
                                     78717088
                                                 18016.
## 6 Germany Europe
                        1977
                                72.5 78160773
                                                 20513.
```

As you can see, we've extracted 3 countries during the 1970s, called "reduced_gap".

1.2

Let's use pipe operator to select country and gdpPercap from the "reduced_gap" in 1.1.

```
new_gap %>%
select(country, gdpPercap)
## # A tibble: 6 x 2
```

```
## country gdpPercap
## <fct> <dbl>
## 1 Canada 18971.
## 2 Canada 22091.
## 3 France 16107.
```

```
## 4 France 18293.
## 5 Germany 18016.
## 6 Germany 20513.
```

1.3

Now we will filter gapminder to all entries that have experienced a drop in life expectancy, between 2007 and 1952.

```
gapminder %>%
  select(country, year, lifeExp) %>%
  group_by(country) %>%
  mutate(lagged_lifeExp = lag(lifeExp, 11)) %>%
  mutate(change_in_LE = lifeExp - lagged_lifeExp) %>%
  filter(change_in_LE < 0)</pre>
## # A tibble: 2 x 5
## # Groups:
               country [2]
     country
                year lifeExp lagged_lifeExp change_in_LE
##
     <fct>
                <int>
                        <dbl>
                                        <dbl>
                                                     <dbl>
## 1 Swaziland 2007
                         39.6
                                         41.4
                                                     -1.79
## 2 Zimbabwe
                2007
                                         48.5
                                                     -4.96
                         43.5
```

After running all of this code, we have discovered that Swaziland and Zimbabwe have experienced an overall life expectancy decrease from 1952 to 2007.

1.4

We will filter gapminder so that it only shows the max GDP Per Capita of each country. We will group_by country, then we will make use of the slice() function, which will only keep the max value.

```
gapminder %>%
  select(country, gdpPercap) %>%
  group_by(country) %>%
  slice(which.max(gdpPercap))
```

```
## # A tibble: 142 x 2
## # Groups:
               country [142]
##
      country
                  gdpPercap
      <fct>
##
                       <dbl>
##
    1 Afghanistan
                        978.
##
   2 Albania
                      5937.
  3 Algeria
                      6223.
   4 Angola
                      5523.
##
   5 Argentina
                      12779.
##
  6 Australia
                      34435.
   7 Austria
                      36126.
                      29796.
##
  8 Bahrain
## 9 Bangladesh
                      1391.
## 10 Belgium
                      33693.
## # ... with 132 more rows
```

This produces the correct table.

1.5

Produce a scatterplot of Canada's life expectancy vs. GDP per Cap, using ggplot2. That is to say, gdpPercap is on x axis, and lifeExp is on y axis. This shows us that as gdpPercap increases, so does Canadian lifeExp.

