Intégration - Exercices

 $T^{\text{ale}}S$

Exercice 1 Calculer les intégrales suivantes : $I = \int_0^1 x \, dx$, $J = \int_1^3 (2t+1) \, dt$, et $K = \int_2^3 |x| \, dx$.

Exercice 2 Calculer l'intégrale $I = \int_{0}^{4} E(x) dx$, où E(x) désigne la partie entière de x.

Exercice 3 Soit f la fonction définie sur \mathbb{R} par l'expression f(x) = 4x - 3. Déterminer de façon explicite, pour tout réel $t \ge 1$, la fonction $F(t) = \int_1^x f(x) dx$.

Exercice 4

- a) Démontrer que pour tout réel t de [0; 1], on a $\frac{t}{1+t^2} \le t$.
- b) En déduire que $\int_0^1 \frac{t}{1+t^2} dt \le \frac{1}{2}$.

Exercice 5 f est la fonction définie sur [1;2] par $f(x) = \frac{e^x}{r^2}$.

- a) Etudier les variations de f sur [1; 2].
- b) Démontrer que pour tout x de [1;2], $\frac{e^2}{4} \leqslant \frac{e^x}{r^2} \leqslant e$.
- c) En déduire un encadrement de $\int_{1}^{2} \frac{e^{x}}{r^{2}} dx$.

Exercice 6 Soit f définie sur [-3; 3] par $f(x) = E(x^2)$ où E désigne la fonction partie entière.

- 1. Montrer que f est une fonction paire, et tracer sa représentation graphique sur l'intervalle [0;3].
- 2. Calculer $\int_0^3 f(x) dx$. En déduire $\int_0^3 f(x) dx$.

Exercice 7 Déterminer une primitive des fonctions suivantes : • $f(x) = 3x^2 + x - 6$ • $g(x) = \frac{1}{x^2}$ • $h(x) = \frac{2x}{(x^2 + 1)^2}$ • $k(x) = 2x + \sin(x)$

Exercice 8 Soit f la fonction définie sur $I = [0; +\infty[$ par $f(x) = \frac{3x^2 + 6x + 4}{(x+1)^2}.$

- 1. Vérifier que la fonction F définie sur I par $F(x) = \frac{3x^2 + 4x}{x + 1}$ est une primitive de f sur I.
- 2. La fonction G définie sur I par $G(x) = \frac{3x^2 x 5}{x + 1}$ est-elle une autre primitive de f sur I?

Exercice 9 Déterminer la primitive F de $f: x \mapsto x^2 - 4x + 2$ telle que F(1) = 0.

Exercice 10 Déterminer la primitive G de $g: x \mapsto 12x^5 - 9x^2 + 6x - 3$ telle que G(0) = 4.

Exercice 11 Déterminer la primitive H de $h: x \mapsto \frac{4}{(2x+1)^2}$ telle que $H\left(\frac{1}{2}\right) = 2$.

Exercice 12 Soit F la fonction définie par $F(x) = \int_0^x \frac{1}{1+t^2} dt$. Déterminer le sens de variation de F.

Exercice 13 Déterminer les primitives des fonctions suivantes :

a)
$$f(x) = x^4 - 4x^3 - 5x^2 + \frac{7}{3}x + 2$$
 b) $f(x) = -\sin(x) + 2\cos(x)$ c) $f(x) = 2x - 4 + \frac{3}{x^2}$

Exercice 14 Déterminer les intégrales suivantes : a) $I = \int_0^1 x^2 (x^3 - 1)^5 dx$

b)
$$J = \int_0^1 \frac{x}{(x^2 - 4)^2} dx$$
 c) $K = \int_0^{\frac{1}{2}} \frac{3x}{\sqrt{x^2 - 1}}$ d) $L_n = \int_1^n \frac{1}{x^2} e^{\frac{1}{x}} dx$ puis $\lim_{n \to +\infty} L_n$

Exercice 15

Dans un repère orthonormé, on considère le domaine $\mathcal D$ compris entre les courbes d'équations $y=\sqrt{x}$ et $y=x^2$.

Déterminer l'aire du domaine \mathcal{D} .

(On pourra se rappeler que $\sqrt{x} = x^{1/2}$)

Exercice 16 Calculer la valeur moyenne de chaque fonction sur l'intervalle donné :

a)
$$f(x) = (2-x)(x-1)$$
 sur $I = [-1; 0]$ b) $g(x) = e^{-3x+1}$ sur $I = [-1; 1]$.

Exercice 17 Vrai-Faux Pour chaque affirmation proposée, dire si elle est vraie ou fausse. Justifier. Soit f une fonction continue et positive sur $[0; +\infty[$, et soit F et G les fonctions définies $[0; +\infty[$ par $F(x) = \int_1^x f(t) dt$ et $G(x) = x \int_1^x f(t) dt$. Soit de plus Γ la courbe représentative de f dans un repère.

- 1. G(0) = G(1)
- 2. G est dérivable sur $[0; +\infty[$, et pour tout $x \in [0; +\infty[$, G'(x) = F(x) + xf(x).
- 3. On ne peut pas prévoir le sens de variation de G avec les seules informations de l'énoncé.
- 4. L'aire de la surface délimitée par les droites d'équations x=0, x=2, y=0 et la courbe Γ se calcule par F(2)+F(0).

Exercice 18 D'après Bac

Partie A - ROC On supposera connus les résultats suivants : u et v sont deux fonctions continues sur un intervalle [a;b] avec a < b.

- Si $u \ge 0$ sur [a; b], alors $\int_a^b u(x) dx \ge 0$.
- Pour tous nombres α et β , $\int_a^b (\alpha u(x) + \beta v(x)) dx = \alpha \int_a^b u(x) dx + \beta \int_a^b v(x) dx$.

Démontrer que si f et g sont deux fonctions continues sur un intervalle [a;b] avec a < b et si, pour tout nombre réel $x \in [a;b]$, $f(x) \leqslant g(x)$, alors $\int_a^b f(x) \, dx \leqslant \int_a^b g(x)$.

Partie B - Etude d'une suite On considère la fonction f définie sur [0;1] par $f(x) = e^{-x^2}$ et on définit la suite (u_n) par :

$$u_0 = \int_0^1 f(x) dx$$
 et, pour tout entier $n \ge 1$, $u_n = \int_0^1 x^n f(x) dx$

- 1. a) Démontrer que, pour tout réel x de l'intervalle $[0;1], \frac{1}{e} \leqslant f(x) \leqslant 1$.
 - b) En déduire que $\frac{1}{e} \leqslant u_0 \leqslant 1$.

- 2. Calculer u_1 .
- 3. a) Démontrer que, pour tout entier naturel n, $0 \le u_n$.
 - b) Etudier les variations de la suite (u_n) . En déduire que la suite (u_n) est convergente.
- 4. a) Démontrer que, pour tout entier naturel n, $u_n \leqslant \frac{1}{n+1}$.
 - b) En déduire la limite de la suite (u_n) .

Exercice 19 D'après Bac

On considère la suite numérique (J_n) définie, pour tout entier naturel n non nul, par :

$$J_n = \int_1^n e^{-t} \sqrt{1+t} \, dt \, .$$

- 1. Démontrer que la suite (J_n) est croissante.
- 2. Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

On définit la suite (I_n) , pour tout entier naturel n non nul, par : $I_n = \int_1^n (t+1) e^{-t} dt$.

- a) Justifier que, pour tout $t \ge 1$, on a $\sqrt{t+1} \le t+1$.
- b) En déduire que $J_n \leq I_n$.
- c) Déterminer deux réels a et b tels que la fonction $t\mapsto (at+b)e^{-t}$ soit une primitive de la fonction $t\mapsto (t+1)e^{-t}$.

Exprimer alors I_n en fonction de n.

- d) En déduire que la suite (J_n) est majorée par un nombre réel.
- e) Que peut-on en conclure pour la suite (J_n) ?