# Project 1

#### Data Analysis of Monte Carlo Simulation of InGAs Semiconductor Device

Michael Brunetti

EECE 5090 – Linear Systems Analysis UMass Lowell

May 28, 2019

# Strategy

- Visual analysis
- Noise reduction fourth-order Butterworth filter with  $f_{3dB} = 500 \text{ GHz}$
- ► Least squares fit, model function:

$$I = I_{ss} + Ae^{-t/ au}cos\left(2\pi ft + \phi\right)$$

▶ Analyze voltage vs steady-state current  $(I_{ss})$ 

## Device 1 – Visual Analysis



- ▶ 0 V, AWGN noise, mean =  $0\frac{A}{m}$ ,  $\sigma = 4.72\frac{A}{m}$
- ► Response looks second order
- Steady-state value with decaying oscillations
- Steady-state saturation at V ≥ 1 V

#### Device 1 – Visual Analysis



### Device 1 – Visual Analysis



# Device 1 – Least Squares Fit

| Potential (V) | $I_{ss}\left(\frac{A}{m}\right)$ | $A\left(\frac{A}{m}\right)$ | au(fs)    | f(GHz) | $\phi$  |
|---------------|----------------------------------|-----------------------------|-----------|--------|---------|
| 0.0V          | 0.019                            | 2.535                       | 21485.326 | 23.79e | 0.090   |
| 0.1V          | 77.114                           | 150.177                     | 1445.860  | 28.13e | 14.427  |
| 0.5V          | 290.489                          | 121.998                     | 1381.979  | 161.2  | -27.486 |
| 1.0V          | 362.484                          | 69.103                      | 4599.648  | 146.7  | -38.298 |
| 1.5V          | 378.867                          | 47.094                      | 4530.814  | 152.5e | -31.200 |
| 2.0V          | 386.603                          | -50.277                     | 3147.451  | 168.9  | -27.532 |
| 3.0V          | 396.042                          | -109.606                    | 3960.664  | 167.6  | -21.091 |
| 4.0V          | 402.939                          | 101.358                     | 4759.568  | 163.8  | 0.906   |
| 5.0V          | 408.584                          | -83.844                     | 6970.881  | 162.7  | -21.166 |
| 6.0V          | 413.809                          | 61.526                      | 11258.244 | 162.8  | 5.544   |
| 7.0V          | 417.989                          | -68.995                     | 10213.410 | 155.8  | 3.838   |
| 8.0V          | 422.669                          | 67.139                      | 7408.109  | 141.7  | 5.441   |
| 9.0V          | 427.040                          | 60.321                      | 5789.370  | 140.9  | 1.054   |
| 10.0V         | 430.729                          | -50.401                     | 9899.451  | 138.0  | -27.394 |

### Device 1 – Least Squares Fit



# Device 1 – Channel Voltage vs Steady-State Current



### Device 2 – Visual Analysis



- ▶ 0 V, AWGN noise, mean =  $0\frac{A}{m}$ ,  $\sigma = 6.95\frac{A}{m}$
- Response looks second order
- Steady-state value with decaying oscillations for V < 8 V</li>
- Sustained oscillations for V > 9 V
- Steady-state saturation at V ≥ 1 V

#### Device 2 – Visual Analysis



### Device 2 – Visual Analysis



# Device 2 – Least Squares Fit



## Device 2 - Channel Voltage vs Steady-State Current



### Device 3 – Visual Analysis



- ▶ 0 V, AWGN noise, mean =  $0\frac{A}{m}$ ,  $\sigma = 7.77\frac{A}{m}$
- Response looks second order
- Steady-state value with decaying oscillations for V ≤ 1.5 V
- Sustained oscillations for V > 2 V
- Steady-state saturation at V ≥ 1 V

### Device 3 – Visual Analysis



### Device 3 – Visual Analysis



## Device 3 – Least Squares Fit



# Device 3 – Channel Voltage vs Steady-State Current



#### Future Work

- ▶ Model steady state current vs channel voltage curve  $(I_{ss} \text{ vs } V)$
- ► Analyze other fit parameters dependence on channel voltage
- Oscillations are not perfectly sinusoidal, analyze power spectrum and model with Fourier series?