НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Факультет физики

Лабораторная работа

«Вводная лабораторная работа»

Работу выполнил студент 2 курса Захаров Сергей Дмитриевич

Москва 2019

Содержание

1.	Цели работы	2
2.	Оборудование	2
3.	Описание метода выполнения работы	2
	3.1. Определение индуктивности катушки	2
	3.2. Определение емкости конденсатора	
4.	Выполнение работы	3
	4.1. Определение индуктивности катушки	3
	4.2. Определение емкости конденсатора	
	4.3. Построение ВАХ диода	3

1. Цели работы

Перед началом выполнения работы были поставлены следующие цели:

- 1) Определить индуктивность исследуемой катушки.
- 2) Определить емкость исследуемого конденсатора.
- 3) Получить ВАХ (вольт-амперную характеристику) диода.

2. Оборудование

- Цифровой осциллограф со встроенным генератором различных форм напряжения и два щупа для него
- Мультиметр и щупы для него
- Переменное сопротивление
- Катушка неизвестной индуктивности
- Конденсатор неизвестной емкости
- Макетная плата и соединительные провода

3. Описание метода выполнения работы

3.1. Определение индуктивности катушки

Чтобы определить индуктивность катушки можно воспользоваться довольно простым методом, основанным на фактом из векторных диаграмм, а именно следующим:

$$tg \, \Delta \varphi = \frac{\omega L}{R} \tag{1}$$

Здесь R — активное сопротивление цепи, L — искомая индуктивность катушки, ω — частота колебаний в контуре, $\Delta \varphi$ — разность фаз напряжений на катушке индуктивности и активном сопротивлении.

Таким образом мы получаем простую формулу для расчета:

$$L = \frac{R \cdot \operatorname{tg} \Delta \varphi}{\omega} \tag{2}$$

3.2. Определение емкости конденсатора

Для определения емкости конденсатора, в целом, можно было также воспользоваться способом, указанным выше, однако было решено разнообразить процесс и воспользоваться иным методом. Для этого была собрана схема, представленная на рисунке. После этого с генератора осциллографа подавался сигнал в форме меандра (прямоугольный сигнал).

Получим формулу для емкости конденсатора. С одной стороны, ток в цепи можно выразить с помощью емкости конденсатора и напряжения на нем, с другой — с помощью закона Ома для резистора (рассматриваем только тот участок времени, где конденсатор заряжается). Запишем:

$$I = -C\frac{dU_c}{dt} = \frac{U - U_c}{R} \tag{3}$$

Решив это дифференциальное уравнение, получим:

$$U = U \cdot (1 - e^{-t/(RC)}) \tag{4}$$

Чтобы теперь найти емкость конденсатора, достаточно посмотреть, за какое время t_0 он зарядится до напряжения $U_c = U \cdot (1 - 1/e)$. В таком случае емкость выразится следующим образом:

$$\frac{t}{RC} = 1 \quad \Rightarrow \quad C = \frac{t}{R} \tag{5}$$

4. Выполнение работы

4.1. Определение индуктивности катушки

На основании формулы 2 мы можем с легкостью посчитать индуктивность катушки, приняв активное сопротивление цепи равным сопротивлению резистора R=4 кОм. Данные представлены в форме графика на рисунке 1.

Взяв среднюю индуктивность, получим, что она равна $L=0.00417~\Gamma \text{H}=4.17~\text{м}\Gamma \text{H}$.

4.2. Определение емкости конденсатора

С помощью схемы, указанной на были получены данные, представленные на рисунке 2. При анализе данных получаем, что искомая доля напряжения накапливается за время t=22.5 hc. Основываясь на полученной ранее формуле (5), получаем, что искомая емкость конденсатора равна t=0.36 h приняв, что активное сопротивление цепи равно сопротивлению резистора t=62.5 Om.

4.3. Построение ВАХ диода

BAX диода была получена переводом осциллографа в режим XY и представлена на рисунке 3.

Рис. 1. Зависимость индуктивности катушки от частоты колебаний в контуре

Рис. 2. Зависимость напряжения на конденсаторе от времени

Рис. 3. Вольт-амперная характеристика диода