

10th International Satisfiability Modulo Theories Competition

SMT-COMP 2015

Sylvain Conchon

David Déharbe

Tjark Weber

Introduction

The SMT problem

Satisfiability

$$\varphi$$
: $a + b = 3$
 $\land 2 \times a - 3 \times b = -1.5$
 $\land (f(a) - f(b) < 0 \lor f(b) - f(a) < 0)$

Introduction

The SMT problem

Satisfiability Modulo Theories

$$arphi$$
 : $a+b=3$
 $\land 2 \times a - 3 \times b = -1.5$
 $\land (f(a) - f(b) < 0 \lor f(b) - f(a) < 0)$
Reals : $-1.5, 0, 2, 3, +, -\times, <$

Introduction

The SMT problem

Satisfiability Modulo Theories

The SMT-LIB initiative

- SMT-LIB standard
 - several theories
 - several sub-logics: theory combination / restrictions / extensions
 - language to formulate problems
 - ► command language: batch \rightsquigarrow interactive
- SMT-LIB repository
- ► SMT-COMP

Solvers involved

Solvers

competing AProVe, Boolector, CVC3, CVC4, openSMT, raSAT, SMTInterpol, SMT-RAT, STP-MiniSat, STP-CryptoMiniSat, veriT, Yices2

demonstration MathSat, Z3

Tracks

main batch mode, one check-sat command application interactive mode, multiple check-sat commands

- Divisions
 - ▶ one per logic
 - at least two competing solvers from different teams

The Numbers

- 11 teams participated
- Solvers:

Logics:

► Benchmarks:

Record numbers of solvers, logics, and benchmarks!

Infrastructure

All job pairs executed on StarExec (starexec.org)

- ▶ Dual quad-core Intel Xeon CPU E5-2609 @ 2.4 GHz, 10 MB cache
- ► RHEL 6.3, kernel 2.6.32-431, gcc 4.4.6, glibc 2.12
- ▶ 60GB RAM, 2400s timeout
- Over 9,000 job pairs/hour completed
- $ho \sim 20$ feature requests and (minor) bug reports; quickly handled to the StarExec developers

File repository on SourceForge

- Tools to prepare jobs and to process results
- Web site with detailed results

Job Pairs

- ▶ 1,028,615 job pairs executed (+ some repeats)
- $ightharpoonup \sim 5 ext{ days} imes 150 ext{ nodes} imes 2 ext{ processors/node of compute time}$

More than 3 times as many job pairs as in 2014!

Scoring Raw Scores

A solver's raw score for each benchmark is $\langle e, n, wall, cpu \rangle$, with

- $e \in \{0,1\}$, the number of erroneous results
- ▶ $0 \le n \le N$, the number of correct results (N is the number of check-sat commands in the benchmark)
- wall is the wall-clock (or real) time
- cpu is the CPU time
 - ightarrow For programs running in parallel, $\it cpu$ is the sum of CPU times devoted to each task

Scoring Track Scoring

Main track

- ▶ Timeouts, aborts (no answer), unknown: (0, 0, wall, cpu)
- ▶ *Incorrect* answers: $\langle 1, 0, wall, cpu \rangle$
- Correct answers: $\langle 0, 1, wall, cpu \rangle$

Application track (multiple checksat per benchmark)

- Any incorrect result : $\langle 1, 0, wall, cpu \rangle$
- ▶ Otherwise : $\langle 0, n, wall, cpu \rangle$

Scoring Sequential Performances

Given a wall-clock time limit T and a raw score $\langle e, n, wall, cpu \rangle$, we derive a sequential score to evaluate sequential performances:

- If cpu > T then $\langle 0, 0, T \rangle$
- ▶ Otherwise $\langle e, n, cpu \rangle$

Scoring Division Scoring

For each division, scores are summed component-wise:

- Sequential performances = sum all sequential scores
- ► Parallel performances = sum all raw scores

We compute:

- ► Sequential and parallel performances for main track divisions
- Only parallel performances for application track divisions

Division scores are compared lexicographically:

Fewer errors takes precedence over more correct solutions, which takes precedence over less wall-clock time taken, which takes precedence over less CPU time taken

Scoring Competition Wide Scoring

We define the competition wide score of each solver for the main track, separately for sequential and parallel performances

For each *competitive* division i, let N_i be the total number of benchmarks in that division and $\langle e_i, n_i, ... \rangle$ the raw (resp. sequential) score of the solver for i

The competition-wide score of a solver is :

$$\sum_{i} (\text{if } e_i = 0 \text{ then } (n_i/N_i)^2 \text{ else } -e_i) \times log N_i$$

Results

Main Track

40 divisions but only 28 declared as competitive

Sequential performances (parallel perfs. are identical)

Solver	# Divisions won	Divisions
CVC4 (2 versions)	12	ALIA, AUFLIA, AUFLIRA, LIA, LRA QF_AUFBV, QF_LIA, QF_LRA, QF_NIRA UF, UFIDL, UFLIA
Yices (2 versions)	11	QF_ALIA, QF_AUFLIA, QF_AX, QF_IDL QF_LIRA, QF_NRA, QF_RDL, QF_UF QF_UFIDL, QF_UFLIA, QF_UFLRA
Boolector (2 versions)	3	QF_ABV, QF_BV, QF_UFBV
AProVE	1	QF_NIA
CVC3	1	UFLRA

Results Application Track

14 divisions but only 7 declared as competitive

Solver	# Divisions won	Divisions
Yices	6	QF_ALIA, QF_AUFLIA, QF_BF, QF_LIA QF_LRA, QF_UFLRA
CVC4	1	QF_UFLIA

Results Competition-Wide Scoring

Main Track:

Rank	Solver	Seq. Score	Paral. Score
-	[Z3]	159.36	159.36
1	CVC4	144.67	144.74
2	CVC4 (exp)	140.47	140.51
3	Yices	101.91	101.91
-	[MathSat]	79.77	79.77
4	veriT	70.68	70.68

Other recognitions

Open Source Solvers:

- ▶ In all divisions, except QF_NIA, winners are all open source
- ▶ In QF_NIA, the first open source solvers is raSAT 0.2

Industrial performances:

- ▶ Makes no difference, except for QF_LIA and UFLRA
- ➤ Yices2 is best performing on industrial benchs for QF_LIA
- veriT is best performing on industrial benchmarks for UFLRA

New Entrant:

- ► Two new entrants in 2015
- ▶ SMT-RAT 2.0 obtained the best scores

Breadth of logics:

CVC4 covers the most theories and logics

Questions

