

Экономико-математические модели (ЭММ) задач планирования и управления

Принципы построения экономикоматематических моделей (ЭММ)

- 1) Любая ЭММ рассматривает экономическую систему, состоящую из **множества** подсистем
- 2) Каждый экономический объект функционирует по своим собственным законам
- **3)** Глобальные ограничения соотношения, описывающие совместное функционирование всех экономических объектов, входящих в систему
- **4) Целевая функция** или **критерий эффективности** количественная мера, описывающая качество функционирования системы

Задача планирования в ЭММ

Определение для всех **объектов системы** всех **материальных потоков**, включая взаимные полуфабрикаты и конечную продукцию

Балансовая модель производства

Предположения

- 1) Функционирование каждого из объектов определяется скалярной величиной, то есть только одним показателем
- **2)** Предположение **комплектности**: считается известным, сколько каждому экономическому объекту необходимо получить продукции от всех остальных, чтобы самому выпустить единицу продукции
- **3)** Линейность: для увеличения своего выпуска в \underline{k} раз каждому объекту требуется ровно в \underline{k} раз увеличить комплект поступления требуемых продуктов от других объектов
- 4) Часть продукции передается во внешнюю среду конечный продукт

Формальное изложение балансовой модели

Управляющий орган (УО)

 $m{P_1, P_2, ..., P_n}$ - объекты $m{X_i}$ - вся продукция i-го объекта (полный выпуск)

 y_i - конечный продукт x_{ii} - продукт от j-го объекта к i-му

Виды задач

Целевая функция УО - обеспечить строго требуемое количество конечного продукта всей системы.

$$Y = \left(y_1; y_2; ...; y_n\right)$$
 - вектор конечного продукта всей системы.

Задача планирования:

По величинам y_1 ; y_2 ; ...; y_n определить величины x_{11} , ..., x_{nn} такие, что при рассчитанных взаимных потоках продукции вся система будет производить заданный объем конечного продукта.

Виды ограничений

Локальные ограничения

По X_i можно узнать требуемое количество продуктов от всех других объектов.

 a_{ij} - количество продуктов которые необходимо получить j-му объекту от i-го для того, чтобы выпустить единицу продукции.

А – матрица прямых затрат

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; a_{ij} \geq 0$$

Виды ограничений

Локальные ограничения

По x_i можно узнать требуемое количество продуктов от всех других объектов. Каждому объекту ставится в соответствие вектор коэффициентов $a_{1i},\ a_{2i},\ ...,\ a_{ni}$ -технологических коэффициентов, или коэффициентов прямых затрат.

 a_{ji} - количество продуктов которые необходимо получить i-му объекту от j-го для того, чтобы выпустить единицу продукции. Тогда:

$$x_{1i} = a_{1i}x_i$$

$$x_{ni} = a_{ni}x_i$$

Затраты - выпуск

Данные представляются в виде специальной таблицы «Затраты-Выпуск», общий вид которой приведен ниже. Символом "^" обозначаются величины, относящиеся к предыдущему периоду.

	P ₁	P ₂		Pi		P_n	Конечный продукт	Полный выпуск
P ₁	x ₁₁	x ₁₂		x_{1i}		x_{1n}	<i>y</i> ₁	$X_1 = \widehat{y_1} + \sum_{k=1}^n x_{1k}$
P ₂	<i>x</i> ₂₁	x ₂₂		x_{2i}		x_{2n}	<i>y</i> ₂	$X_2 = \widehat{y_2} + \sum_{k=1}^n x_{2k}$
:	:	:	:	:	:	:	:	i
P_n	<i>x</i> _{n1}	<i>x</i> _{n2}		x_{ni}		x_{nn}	\mathcal{Y}_n	$X_n = \widehat{y_n} + \sum_{k=1}^n x_{nk}$

Затраты - выпуск

Известны матрица коэффициентов прямых затрат A и вектор конечной продукции Y, коэффициенты X_{ii} , можно определить из системы локальных ограничений.

Требуется определить вектор полного выпуска Х.

Решение:

$$(E-A)X=Y$$

$$X = (E - A)^{-1}Y = SY$$

где Е - единичная матрица.

Теорема 1

Продуктивность матрицы A - необходимое и достаточное условие существования, единственности и не отрицательности решения системы (E-A)X=Y при любом $Y\geq 0$.

Теорема 2 - критерий продуктивности

Матрица A продуктивна тогда и только тогда, когда матрица $S = \left(E - A\right)^{-1}$ существует и неотрицательна.

Матрица S называется матрицей полных затрат.

Экономический смысл матрицы S

$$X = (E - A)^{-1}Y = SY$$

$$S^j = \left(\sigma_{1j}, \sigma_{2j}, \; ..., \sigma_{nj}
ight)$$
 - j -ый столбец матрицы S .

Tогда
$$x = \sum_{j=1}^n y_j S^j$$

Пусть
$$Y$$
 такой, что $y_j = \begin{cases} 0, & j \neq k \\ 1, & j = k \end{cases}$

В этом случае
$$X = S^k$$
 или $x_i = \sigma_{ik}, \ i = (1, ..., n)$

Таким образом, матрица S имеет следующий экономический смысл:

 σ_{ik} - количество продукции, которое должен передать P_i , чтобы P_k мог выпустить единицу конечной продукции.

Составление плана методом перезаказов

В условиях неопределенности (элементов матрицы A) для составления плана происходит организация процесса согласования планов.

Пусть система должна получить $Y^0 = (y_1^0, y_2^0, ..., y_n^0)$.

Первый шаг:

Управляющий орган в качестве плана j-му объекту задает то, что хотел бы получить, то есть $yO \to P_i \to y_i^0$. В ответ каждый объект, зная только собственные a^j и y^0 , передает свою

потребность УО в виде:
$$y_j^0 a^j = \left(a_{1j} y_j^0, a_{2j} y_j^0, \; ..., a_{nj} y_j^0 \right)$$
.

УО формирует новое задание:
$$Y^1 = \left(y_1^0, y_2^0, \ ..., y_n^0\right) = Y^0 + \sum_{j=1}^n y_j^0 a^j = Y^0 + AY^0 o$$
 сумма конечное

продукции и заказов объектов.

Составление плана методом перезаказов

Второй шаг:

$$YO \rightarrow P_j \rightarrow y_j^0$$

$$P_j \rightarrow \mathcal{Y}O \rightarrow y_j^1 a^j$$

$$Y^2 = Y^0 + AY^1 = (E + A + A^2)Y^0$$

Шаг *v*:

$$Y^{v-1} = (E + A + A^2 + \dots + A^{v-1})Y^0$$

$$Y^{v} = (E + A + A^{2} + ... + A^{v})Y^{0}$$

При $v \to \infty$:

$$Y^{v} \to (E - A)^{-1} Y^{0}$$

Учет факторов производства и поставок из других экономических систем

Пусть факторов m. Потребность в факторах на планируемый период: $Z = \left\{ z_1, ..., z_i, ..., z_m \right\}$

 z_i - потребность в i-ом факторе.

$$P_{j}$$
 характеризуется вектором $b^{j}=\left\{oldsymbol{eta}_{1j},...,oldsymbol{eta}_{ij},...,oldsymbol{eta}_{mj}
ight\}$

 $oldsymbol{eta}_{ii}$ - количество i-го фактора, необходимое P_i для производства единицы продукции

→ коэффициент прямых затрат факторов.

$$B = \begin{pmatrix} \beta_{11} & \beta_{12} & \dots & \beta_{1n} \\ \beta_{21} & \beta_{22} & \dots & \beta_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_{m1} & \beta_{m2} & \dots & \beta_{mn} \end{pmatrix}$$

j-ый столбец для объекта P_{j^*}

i-ая строка - потребность всех объектов в i-ом факторе.

Учет факторов производства и поставок из других экономических систем

Потребность всей системы в і-ом факторе:

$$z_i = \sum_{j=1}^n eta_{ij} x_j$$
, где $i=1,\ldots,m$ $Z=BX=BSY$