Computergrafik SS 2014 Oliver Vornberger

Vorlesung vom 27.05.2014

Kapitel 13: 3D-Transformationen

Einsatzgebiet

- Platzierung von Objekten in der Szene
- Berechnung der Projektion

Translation

$$(x', y', z') := (x + t_x, y + t_y, z + t_z)$$

$$T(t_x, t_y, t_z) = \left(egin{array}{cccc} 1 & 0 & 0 & t_x \ 0 & 1 & 0 & t_y \ 0 & 0 & 1 & t_z \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Skalierung

Fixpunkt im Ursprung:

$$(x', y', z') := (x \cdot s_x, y \cdot s_y, z \cdot s_z)$$

$$S(s_x, s_y, s_z) = \left(egin{array}{cccc} s_x & 0 & 0 & 0 \ 0 & s_y & 0 & 0 \ 0 & 0 & s_z & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Fixpunkt bei Z_x , Z_y , Z_z :

$$T(Z_x, Z_y, Z_z) \cdot S(s_x, s_y, s_z) \cdot T(-Z_x, -Z_y, -Z_z)$$

Rotation

- um z-Achse
- um x-Achse
- um y-Achse
- um beliebige Achse

Rotation um z-Achse

$$x' := x \cdot \cos(\delta) - y \cdot \sin(\delta)$$

$$y' := x \cdot \sin(\delta) + y \cdot \cos(\delta)$$

$$z' := z$$

$$R_z(\delta) = \left(egin{array}{cccc} \cos(\delta) & -\sin(\delta) & 0 & 0 \\ \sin(\delta) & \cos(\delta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}
ight)$$

Rotation um x-Achse

$$x' := x$$

$$y' := y \cdot \cos(\delta) - z \cdot \sin(\delta)$$

$$z' := y \cdot \sin(\delta) + z \cdot \cos(\delta)$$

$$R_x(\delta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\delta) & -\sin(\delta) & 0 \\ 0 & \sin(\delta) & \cos(\delta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation um y-Achse

$$x' := z \cdot \sin(\delta) + x \cdot \cos(\delta)$$

$$y' := y$$

$$z' := z \cdot \cos(\delta) - x \cdot \sin(\delta)$$

$$R_y(\delta) = \left(egin{array}{cccc} \cos(\delta) & 0 & \sin(\delta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\delta) & 0 & \cos(\delta) & 0 \\ 0 & 0 & 0 & 1 \end{array}
ight)$$

Rotation um beliebige Achse

Punkt P Drehwinkel δ Drehachse P_2 - P_1

- 1. Translation in den Ursprung
- 2. Rotation um die x-Achse in die xz-Ebene
- 3. Rotation um die y-Achse in die z-Achse
- 4. Rotation um die z-Achse mit Winkel δ
- 5. Inversion von Schritt 3
- 6. Inversion von Schritt 2
- 7. Inversion von Schritt 1

Drehachse

$$\vec{v} = P_2 - P_1 = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

$$|\vec{v}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$\vec{u} = \frac{\vec{v}}{|\vec{v}|} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \quad |\vec{u}| = 1$$

$$a = \frac{x_2 - x_1}{|\vec{v}|} \quad b = \frac{y_2 - y_1}{|\vec{v}|} \quad c = \frac{z_2 - z_1}{|\vec{v}|}$$

1.) Translation in den Ursprung

$$T(-x_1, -y_1, -z_1)$$

2.) Rotation um x-Achse in xz-Ebene

$$cos(\alpha) = c/d$$

$$sin(\alpha) = b/d$$

$$R_x(lpha) = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & c/d & -b/d & 0 \ 0 & b/d & c/d & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

3.) Rotation um y-Achse in z-Achse

$$\Rightarrow \cos(\beta) = \cos(360^{\circ} - \beta) = d$$

$$\Rightarrow \sin(\beta) = -\sin(360^{\circ} - \beta) = -a$$

4.) Rotation um die z-Achse

$$R_z(\delta) = \begin{pmatrix} \cos(\delta) & -\sin(\delta) & 0 & 0\\ \sin(\delta) & \cos(\delta) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

1. - 7.) Gesamttransformation

$$R(\vec{v}, \delta) = T(-P_1)$$
 $R_x(\alpha) \cdot R_y(\beta) \cdot R_y(\beta) \cdot R_z(\delta) \cdot R_y^{-1}(\beta) \cdot R_x^{-1}(\alpha) \cdot T(P_1) \cdot T(P_$

Transformation einer Normalen

Umformungen

$$\vec{n}^T \cdot r = 0$$

$$\vec{n}^T \cdot M^{-1} \cdot M \cdot r = 0$$

$$((M^{-1})^T \cdot \vec{n})^T \cdot M \cdot r = 0$$

$$\vec{r}' \qquad \vec{n}'^T \cdot \vec{r}' = 0$$

$$((M^{-1})^T \cdot \vec{n})^T = \vec{n}'^T$$

$$((M^{-1})^T \cdot \vec{n}) = \vec{n}'$$

⇒ transformiere den Normalenvektor mit der transponierten Inversen!

Skalierung einer Normalen

Rotation einer Normalen

0.8 drehe um 25° 0.6 0.0 0.4714753 0.8818793 M 0.000000 0.9063078 - 0.42261830.0 Länge: 1.0 0.4226183 0.9063078 0.0 0.000000 0.000000 1.0

M⁻¹
0.9063078 0.4226183 0.0
-0.4226183 0.9063078 0.0
0.0000000 0.0000000 1.0

(M⁻¹)^T 0.9063078 -0.4226183 0.0 0.4226183 0.9063078 0.0

0.000000

0.000000

1.0

Translation einer Normalen

Computergrafik SS 2014 Oliver Vornberger

Kapitel 14: Projektion

Projektion

Projektionsarten

Zentralprojektion:
 Augenpunkt im endlichen Abstand

Parallelprojektion:
 Augenpunkt im Unendlichen

1 Fluchtpunkt

2 Fluchtpunkte

Bildebene schneidet zwei Koordinatenachsen

3 Fluchtpunkte

Quiz

3 Fluchtpunkte sind üblich ...

- A ... bei Froschperspektive und bei Vogelperspektive 0,0 %
- B ... nicht bei Froschperspektive, aber bei Vogelperspektive | 0,0 %
- C ... bei Froschperspektive aber nicht bei Vogelperspektive | 0,0 %
- ... weder bei Froschperspektive noch bei Vogelperspektive| 0,0 %

AAbstinderußgirländen:.0

Aufgabenstellung

(im linkshändigen Koordiantensystem)

- Bildebene sei in xy-Ebene
- Augenpunkt sei auf negativer z-Achse bei -a
- Gegeben Punkt P

• Finde Schnittpunkt P'

Blick von oben

Blick von der Seite

Ergebnis

$$x'=rac{x}{1+z/a}$$
 $y'=rac{y}{1+z/a}$ z merken $x'=rac{x}{w}$ $y'=rac{y}{w}$ $w=1+z/a$ $P'=(rac{x}{w},rac{y}{w},0,1)=(x,\ y,\ 0,\ 1+z/a)$

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1/a & 1
\end{array}\right) \cdot \left(\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right) = \left(\begin{array}{c} x \\ y \\ 0 \\ 1+z/a \end{array}\right)$$

Parallelprojektion

Normalprojektion

Bilde (x,y,z,1) auf (x,y,0,1) ab:

$$P_{ortho_{xy}} = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Schiefe Projektion

Schiefe Projektion

...Verkürzung in z-Richtung ... Anstellwinkel

Schiefe Projektion

$$x' = x - L \cdot \cos(\alpha)$$

$$y' = y + L \cdot \sin(\alpha)$$

$$z'=0$$

$$x' = x - z \cdot (\cos \alpha) / \tan(\beta)$$

$$y' = y + z \cdot (\sin \alpha) / \tan(\beta)$$

 α = Anstellwinkel

 β = Verkürzungsfaktor

schiefe Transformationsmatrix

$$x' = x - z \cdot \frac{\cos(\alpha)}{\tan(\beta)}$$
 $y' = y + z \cdot \frac{\sin(\alpha)}{\tan(\beta)}$
 $z' = 0$
 $w' = 1$

$$P_{schief_{xy}}(\alpha, \beta) = \begin{pmatrix} 1 & 0 & -\frac{\cos(\alpha)}{\tan(\beta)} & 0\\ 0 & 1 & \frac{\sin(\alpha)}{\tan(\beta)} & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

x-Ausdehnung zu z-Ausdehnung

$$|x_1' - x_2'| = |(z_1 - z_2) \cdot \cos(\alpha) / \tan(\beta)|$$
$$|y_1' - y_2'| = |(z_1 - z_2) \cdot \sin(\alpha) / \tan(\beta)|$$

Verkürzungsfaktor

$$|P'_{1} - P'_{2}| = \sqrt{|x'_{1} - x'_{2}|^{2} + |y'_{1} - y'_{2}|^{2}}$$

$$|P'_{1} - P'_{2}| = \sqrt{\frac{(z_{1} - z_{2})^{2}}{\tan^{2}(\beta)} \cdot (\cos^{2}(\alpha) + \sin^{2}(\alpha))}$$

$$\cos^{2}(\alpha) + \sin^{2}(\alpha) = 1$$

$$= \frac{z_{1} - z_{2}}{\tan(\beta)}$$

$$d = \frac{1}{\tan(\beta)}$$

$$\beta = 45^{\circ} \Rightarrow d = 1$$

$$\beta = 63.43^{\circ} \Rightarrow d = 0.5$$

Beispiele für schiefe Projektion

$$\beta$$
=63.43° \Rightarrow d=0.5 α =50°

Kabinettprojektion