THE UNIVERSITY OF MELBOURNE MATHEMATICAL PHYSICS SEMINAR

CATEGORICAL SYMMETRIES IN PHYSICS: Group Cohomology, Projective Representations and Central Extensions

Lecture Notes

Adam Monteleone July 22, 2022

1 Group Cohomology

Suppose G is a group and M is an abelian group.

Definition 1.1. Let n be a positive integer a n-cochain of G in M is a set map $f: G^n \to M$. We define $C^n(G; M)$ to be the abelian group of all n-cochains of G in M where

• Group multiplication is pointwise multiplication of functions

$$f_1 f_2 : (g_1, ..., g_n) \mapsto f_1(g_1, ..., g_n) f_2(g_1, ..., g_n) \quad \forall f, g \in C^n(G; M)$$

- The Identity function sends all group elements to the identity in M that is $1:(g_1,..,g_n)\mapsto 1_M$
- Inverses are given by applying the inversion map to the image of f. $f^{-1}:(g_1,...,g_n)\mapsto (f(g_1,...,g_n))^{-1}$

A 0-cochain is defined to be an element in M.

Remark. The group $C^n(G; M)$ is abelian follows from the group M being abelian.

Definition 1.2. The coboundary of a n-cochain f is the n+1-cochain $\delta^n f$ defined by

$$(\delta^n f)(g_1, ..., g_{n+1}) = f(g_2, ..., g_{n+1}) \left[\prod_{i=1}^n f(g_1, ..., g_i g_{i+1} ..., g_{n+1})^{(-1)^i} \right] f(g_1, ..., g_n)^{(-1)^{n+1}}$$

for all $(g_1, ..., g_{n+1}) \in G^{n+1}$

Some quick computations show:

- For n = 0 we have $(\delta^0 f)(g_1) = f(g_1)$
- For n = 1 we have $(\delta f)(g_1, g_2) = \frac{f(g_2)f(g_1)}{f(g_1g_2)}$
- For n=2 we have $(\delta^2 f)(g_1,g_2,g_3) = \frac{f(g_2,g_3)f(g_1,g_2g_3)}{f(g_1g_2,g_3)f(g_1,g_2)}$

Lemma 1.1. For all n-cochains f and g, we have:

- 1. δ factorises as $\delta^n(fg) = (\delta^n f)(\delta^n g)$
- 2. The coboundary of the coboundary is the identity. $\delta^{n+1}(\delta^n f) = 1$

Proof. Showing (1) is a straightforward computation from the definition of the operator. For any $f \in C^n(G; M)$ we define the map $\hat{f}: G^{n+1} \to M$ by setting¹

$$\hat{f}(g_1,..g_{n+1}) := f(g_1^{-1}g_2,...,g_n^{-1}g_{n+1}) \quad \forall (g_1,..,g_{n+1}) \in G^{n+1}$$

Notice that \hat{f} is scale invariant and so satisfies

$$\hat{f}(gg_1,...,gg_{n+1}) = g\hat{f}(g_1,...,g_{n+1})$$

For any $\omega \in C^{n+1}(G; M)$ define the n+2-cochain $\partial^n \omega : G^{n+2} \to M$ by setting

$$\partial^{n}(g_{1},...g_{n+2}) = \prod_{i=1}^{n+2} \omega(g_{1},...,\hat{g}_{i},...g_{n+2})^{(-1)^{i+1}}$$

where \hat{g}_i means the variable g_i has been omitted. We cite the following result from section 2 of [2] that

$$\delta^n f = \partial^n \hat{f}(1, x_1, x_1 x_2, ..., x_1 ... x_n)$$

So we can directly compute $\partial^{n+1}\partial^n \hat{f} = 1$.

From the above lemma it follows that the coboundary map δ is a homomorphism.

Definition 1.3. Let n be a positive integer. Then we define the set of n-cocycles as $Z^n(G; M) := \ker(\delta^n)$ and the set of n-coboundaries as $B^n(G; M) := \operatorname{Im}(\delta^{n-1})$.

It follows from the previous lemma that $\operatorname{Im}(\delta^{n-1}) \subseteq \ker(\delta^n)$ and therefore $B^n(G;M)$ is a subgroup of $Z^n(G;M)$

¹Whilst obtaining this result by direct computation is possible we choose a less masochistic approach.

Definition 1.4. Let n be a non-negative integer then the n-th cohomology group is defined to be the quotient group

$$H^{n}(G; M) = \frac{Z^{n}(G; M)}{B^{n}(G; M)}$$

where the elements of $H^n(G; M)$ are called cohomology classes. If we have two cocycles in the same cohomology class they are said to be **cohomologous**.

Example 1.1. We have an element ω is in $Z^2(G; M)$ if and only if $\delta \omega = 1$. Therefore we have that ω is a 2-cocycle if and only if

$$\frac{\omega(g_2, g_3)\omega(g_1, g_2g_3)}{\omega(g_1g_2, g_3)\omega(g_1, g_2)} = 1$$

Suppose $\omega \in B^2(G;M) \subseteq Z^2(G;M)$ then there exists a 1-cochain $f:G \to M$ such that $\omega(g_1,g_2) = \delta f$

$$\omega(g_1, g_2) = \frac{f(g_2)f(g_1)}{f(g_1g_2)}$$

Therefore two 2-cocycles ω and ω' are cohomologous if and only there is a 1-cochain f such that 2

$$\omega(g_1, g_2)' = \frac{f(g_2)f(g_1)}{f(g_1g_2)}\omega(g_1, g_2)$$

As we can see in table 1 the group cohomology can be determined for a range of groups. Section 4 will focus on the explicit computation of $H^2(G; M)$ utilizing the unique central extensions of a projective representation. For the reader interested in computing these groups in full generality they are referred to chapter 6 of Weibel [3].

Group Cohomology $(G; M)$	$H^0(G;M)$	$H^1(G;M)$	$H^2(G;M)$	$H^3(G;M)$
$(\mathbb{Z}/n\mathbb{Z};\mathbb{Z})$	\mathbb{Z}	1	$\mathbb{Z}/n\mathbb{Z}$	1
$(\mathbb{Z}/n\mathbb{Z};U(1))$	U(1)	$\mathbb{Z}/n\mathbb{Z}$	1	$\mathbb{Z}/n\mathbb{Z}$
$(\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z};\mathbb{Z})$	\mathbb{Z}	1	$\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$	1
$(\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z};U(1))$	U(1)	$\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$	$\mathbb{Z}/\gcd(m,n)\mathbb{Z}$	$\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/\gcd(m,n)\mathbb{Z}$
$(S_3;U(1))$	U(1)	$\mathbb{Z}/2\mathbb{Z}$	1	$\mathbb{Z}/6\mathbb{Z}$
$(U(1);\mathbb{Z})$	\mathbb{Z}	1	\mathbb{Z}	1
(U(1);U(1))	U(1)	1	\mathbb{Z}	1
$(SU(2); \mathbb{Z})$	\mathbb{Z}	1	1	1
(SU(2);U(1))	\mathbb{Z}	1	1	\mathbb{Z}
$(SO(3); \mathbb{Z})$	\mathbb{Z}	1	1	$\mathbb{Z}/2\mathbb{Z}$

Table 1: The group cohomology of G for $n \leq 3$ of physically relevant groups as described in Chen et al [1]

²Two forms are cohomologous if and only if they differ by an exact form. In De-Rham cohomology this is stated as $\omega - \omega' = df$

2 Projective Representations

Definition 2.1. A projective representation of a group G is the pair $(\tilde{\rho}, V)$ where $\tilde{\rho}$ is a group homomorphism from G to the projective linear group³ $PGL(V) = GL(V)/F^*$ and V is a \mathbb{K} -vector space. That is

$$\tilde{\rho}: G \to \mathrm{PGL}(V)$$
 such that $\tilde{\rho}(g)\tilde{\rho}(h) = \tilde{\rho(gh)}$

Notice that we could have defined equivalently defined a projective representation $\tilde{\rho}$ to be a collection of (linear) group representations $\rho: G \to \mathrm{GL}(V)$ that satisfy

$$\rho(g)\rho(h) = c(g,h)\rho(gh)$$
 with $c(g,h) \in \mathbb{F}^{\times}$

The constant c(g,h) is known as the Schur multiplier. In performing the above we have reduced the study of projective representations back to linear transformations by introducing a gauge freedom. Therefore it makes sense to talk about ρ as being a c-representation.

Now we derive a surprising result connecting the theory of projective representations with the second group cohomology group.

Let $\tilde{\rho}$ be a projective representation with corresponding ω -representation $\rho: G \to \mathrm{GL}(V)$.

$$\omega(g_1g_2, g_3)\rho(g_1g_2g_3) = \rho(g_1g_2)\rho(g_3)$$

$$\omega(g_1, g_2)\omega(g_1g_2, g_3)\rho(g_1g_2g_3) = \omega(g_1, g_2)\rho(g_1g_2)\rho(g_3)$$

$$= \rho(g_1)\rho(g_2)\rho(g_3)$$

$$= \omega(g_2, g_3)\rho(g_1)\rho(g_2g_3)$$

$$= \omega(g_1, g_2g_3)\omega(g_2, g_3)\rho(g_1g_2g_3) \quad \forall g_1, g_2, g_3$$

Equating coefficients and moving everything to one side we obtain

$$\frac{\omega(g_2, g_3)\omega(g_1, g_2g_3)}{\omega(g_1g_2, g_3)\omega(g_1, g_2)} = 1$$

Therefore we conclude the Schur multiplier ω is a 2-cocycle, that is $\omega \in Z^2(G, \mathbb{K}^{\times})$. Now let ρ and ρ' be an ω -representation and ω' -representation respectively for a projective representation $\tilde{\rho}$ such that they are both sections of $\tilde{\rho}$ meaning $\pi(\rho(g)) = \pi(\rho'(g))$ for all $g \in G$.

Then for each $g \in G$ there is an $f(g) \in \mathbb{K}^{\times}$ such that $\rho'(g) = f(g)\rho(g)$ but for all $g_1, g_2 \in G$ we have

$$\omega'(g_1, g_2) f(g_1 g_2) \rho(g_1 g_2) = \omega'(g_1, g_2) \rho'(g_1 g_2)$$

$$= \rho'(g_1) \rho'(g_2)$$

$$= f(g_1) f(g_2) \rho(g_1) \rho(g_2)$$

$$= f(g_1) f(g_2) \omega(g_1, g_2) \rho(g_1 g_2)$$

Therefore we that the two Schur multiplier satisfy

$$\omega'(g_1, g_2) = \frac{f(g_1)f(g_2)}{f(g_1g_2)}\omega(g_1g_2)$$

and hence ω and ω' are cohomologous 2- cocyles. Therefore we have shown that the cohomology classes $[\omega]$ of ω is independent of your choice of linear representations ρ .

 $^{{}^3}PGL(V)$ is not a matrix group. Whereas GL(V) the group of invertible linear transformations of V over $\mathbb F$ and $\mathbb F^*$ is the normal subgroup of non-zero scalar multiples of the identity transformation.

3 Central Extensions

Definition 3.1. An exact sequence of groups is a sequence of groups with group homomorphisms (G_i, f_i)

$$1 \to G_1 \xrightarrow{f_1} G_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} G_n \to 1$$

such that $\operatorname{Im}(f_{i-1}) = \ker(f_i)$ for i = 1, ..., n.

When n=2 the above is called a short exact sequence.

Definition 3.2. An extension of a group Q^4 by a group N is a short exact sequence

$$1 \to N \xrightarrow{i} G \to Q \xrightarrow{\pi} 1$$

If G is a finite group this is called a finite extension of the group Q. Moreover if $i(N) \subset Z(G)$ then we say that the sequence is a central extension of Q by N.

Example 3.1. Let V be a \mathbb{K} -vector space. Then the exact sequence below is an example of a central extension.

$$1 \to \mathbb{K}^{\times} \xrightarrow{i} \mathrm{GL}(V) \xrightarrow{\pi} \mathrm{PGL}(V) \to 1$$

Definition 3.3. Let $1 \to N \xrightarrow{i_1} G_1 \xrightarrow{p_1} Q \to 1$ and $1 \to N \xrightarrow{i_2} G_2 \xrightarrow{p_2} Q \to 1$ be extensions of the group Q by N. We say that the extensions (G_1, p_1) and (G_2, p_2) are equivalent if there exists a morphism of extensions (id_N, β, id_Q) of exact sequences

$$1 \longrightarrow N \xrightarrow{i_1} G_1 \xrightarrow{p_1} Q \longrightarrow 1$$

$$\downarrow \beta \qquad \qquad \downarrow \beta \qquad \qquad \downarrow$$

$$1 \longrightarrow N' \xrightarrow{i_2} G_2 \xrightarrow{p_2} Q \longrightarrow 1$$

Remark: By the five lemma the above homomorphism $\beta: G_1 \to G_2$ is an isomorphism.

Theorem 3.1. Two central extensions (G_1, p_1) and (G_2, p_2) of the group Q by an abelian group N are equivalent if and only if, there associated cohomology classes $\omega_{G_1, p_1}, \omega_{(G_2, p_2)} \in H^2(Q; N)$ are equal.

Remark. Let $\text{CExt}(Q, N)/\sim$ be the set of all equivalence classes of central extensions of Q by an abelian group N. We have the following bijection Φ between unique central extensions of Q by N and cohomologous classes of Schur multipliers within $H^2(Q; N)$.

$$\Phi: \mathrm{CExt}(Q,N)/\sim \ \to H^2(Q;N)$$

 $^{^4}Q$ is used here since the group is typically a quotient group.

4 Computing $H^2(G; M)$

To rigorously compute the *n*-the group cohomology group $H^n(G; M)$ for an arbitrary group G with coefficients in M we would ordinarily use methods of homological algebra. However such methods require a lot of pre-requisite knowledge and take a lot of effort to develop. Therefore we will here instead take a more informal approach using the above correspondence to determine the the group structure of $H^2(G; M)$ via its equivalence classes.

Proposition 4.1. $H^2(\mathbb{Z}/n\mathbb{Z}; U(1)) \cong 1$.

Consider the the following presentation of the cyclic group

$$\mathbb{Z}/n\mathbb{Z} = \langle g|g^n = 1\rangle$$

where we have two arbitrary elements of the form $g^s \in \mathbb{Z}/n\mathbb{Z}$ and $g^t \in \mathbb{Z}/n\mathbb{Z}$ where $s, t \in \{0, ..., n-1\}$

$$\rho(g^s)\rho(g^t) = \omega\rho(g^{s+t})$$

Now when s=t=0 we have $\rho(1)\rho(1)=\omega(g^s,g^t)\rho(1)$ which gives us $\rho(1)=\omega(g^s,g^t)$. Here we use the gauge freedom to set $\rho(1):=1$.

Now suppose s + t = N = 0 then

$$1 = \rho(1) = \rho(g^{N}) = \rho(g \cdot g^{n-1}) = \prod_{j=2}^{n-1} \left[\frac{1}{\omega(g, g_{j})} \right] \rho(g)^{n}$$

where we have made use of the following $\rho(g)\rho(g)=\omega(1,1)\rho(g^2)$. As a multiplication of phases is a phase by the closure of U(1) we have for some ϕ that $\rho(g)^n=e^{i\phi}\in U(1)$. Now we can define the projective representation as $\tilde{\rho}(g):=e^{\frac{-i\phi}{n}}\rho(g)$ which we see produces the desired relation.

$$(\tilde{\rho}(g))^n = (e^{-\frac{i\phi}{n}})^n (\rho(g))^n = (e^{-\frac{i\phi}{n}})^{-n} (e^{\frac{i\phi}{n}})^n = 1.$$

Therefore all representations here are equivalent up to a phase and so we have a single unique extension. Note: In the following we omit the ρ for notational convenience.

Proposition 4.2. $H^2(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}; U(1)) \cong \mathbb{Z}/n\mathbb{Z}$

Consider the the following presentation of the cyclic group

$$\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} = \langle q, h | q^n = h^n = 1 \rangle$$

Clearly $(gh)^n = 1$. Consider the following product $P := ghg^{n-1}h^{n-1}$ then we evaluate P in two ways using $gh = \omega(g,h)hg$.

$$P = qhq^{n-1}h^{n-1} = \omega(q, h)hqq^{n-1}h^{n-1} = \omega(q, h)$$

and now taking P again and repeatedly using $\omega(g,h)^{-1}gh = hg$ we obtain

$$P = qhq^{n-1}h^{n-1} = \omega(q, h)^{-(n-1)}$$

Equating both sides we have that $\omega^n = 1$. Therefore we can define $\tilde{\rho}$ in n ways as ω to be an n-th root of unity yielding n unique central extensions.

Proposition 4.3. $H^2(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}; U(1)) \cong \mathbb{Z}/\gcd(m,n)\mathbb{Z}$

Similar to the previous calculation let $P_1 = ghg^{m-1}h^{n-1}$ and use $gh = \omega(g,h)hg$ to obtain

$$P_1 = qhq^{m-1}h^{n-1} = \omega(q,h)hqq^{m-1}h^{n-1} = \omega(q,h)$$

Now evaluating P_1 using $\omega(q,h)^{-1}gh = hg$ and taking n < m without loss of generality.

$$P_1 = gh(\omega(g,h)^{-1}hg)g^{m-1}h^{n-1} = \omega(g,h)^{-1}gh(h^{n-1}g^{n-1})g^{m-n} = \omega(g,h)^{-(m-1)}gh(h^{n-1}g^{n-1})g^{m-n} = \omega(g,h)^{-(m-1)}gh(h^{n-1}g^{n-1})gh(h^{n-1}g^{n-1}g^{n-1})gh(h^{n-1}g^{n-1}g^{n-1}gh(h^{n-1}g^{n-1}gh(h^{n-1}g^{n-1}gh(h^{n-1}gh$$

Equating, we obtain $\omega(g,h)^n=1$ and thus $\omega(g,h)$ is an *n*-th root of unity. Similarly we consider the product $P_2=hgh^{n-1}g^{m-1}$ then we obtain

$$P_2 = \omega(g,h)^{-1}ghh^{n-1}g^{m-1} = \omega(g,h)^{-1}$$

and once again using $\omega(g,h)^{-1}gh = hg$, taking n < m without loss of generality

$$P_2 = hgh^{n-1}g^{m-1} = hg(\omega(g,h)^{-1}gh)h^{n-1}g^{m-1} = \omega(g,h)^{-(m-1)}hg(g^{m-1}h^{m-1})h^{n-m} = \omega(g,h)^{-(m-1)}hg(g^{m-1}h^{m-1})h^{m-m} = \omega(g,h)^{-(m-1)}hg(g^{m-1}h^{m-1}h^{m-1})h^{m-m} = \omega(g,h)^{-(m-1)}hg(g^{m-1}h^{m-1$$

Equating both sides of P_2 gives $\omega(g,h)^m = 1$. Thus for both conditions to be satisfied we conclude $\omega(g,h)$ is a d-th root of unity where $d = \gcd(m,n)$. This gives d ways of defining a projective representation up to a phase.

References

- [1] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen. Symmetry protected topological orders and the group cohomology of their symmetry group. *Phys. Rev. B*, 87:155114, Apr 2013.
- [2] Samuel Eilenberg and Saunders MacLane. Cohomology theory in abstract groups. i. Annals of Mathematics, 48(1):51-78, 1947.
- [3] C.A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1994.