Lygiagretaus programavimo laboratorinių darbų analizė

Pijus Petkevičius

October 23, 2022

Contents

	boratorinis darbas
1.1.	Aprašymas
	1.1.1. Įžanga
	1.1.2. Užduotis
1.2.	Kompiuterinės įrangos ir parametrų pasirinkimas
1.3.	Teoriniai įverčiai
1.4.	Pure random search (PRS)
1.5.	Atstumų matricos skaičiavimas
1.6.	Atstumu matricos ir PRS daliu lygiagretinimo rezultatai

1. 1 laboratorinis darbas

1.1. Aprašymas

1.1.1. Įžanga

Aibę A sudaro geografiniai taškai, nurodant platumos ir ilgumos koordinates. Iš šios aibės reikia parinkti taškų aibę X tokią, kad atstumų nuo kiekvieno aibės A taško iki jam artimiausio aibės X taško suma būtų minimali $X \subset A$.

Faile lab_data.dat pateikti 50000 geografinių taškų, kur viena eilutė aprašo vieno geografinio taško koordinates.

Faile lab_01_2_algorithm.cpp pateikta programa, kuri randa nurodyto n taškų aibę X, atitinkančią uždavinio sąlygą, naudojant paprastosios atsitiktinės paieškos (angl. Pure Random Search, PRS) algoritma.

Pagrindiniai algoritmo parametrai (globalūs kintamieji):

- num points: duomenų aibės A dydis (max 50000)
- \bullet num variables: ieškomos taškų aibės X dydis
- num_iterations: sprendinio paieškai skirtų iteracijų skaičius (kuo daugiau, tuo didesnė tikimybė rasti geresnį sprendinį).

Algoritmų vykdymo pradžioje sudaroma atstumų matrica, kurioje saugomi atstumai kilometrais tarp taškų, suskaičiuoti pagal Haversino formulę. Atsižvelgiant į tai, kad atstumas nuo taško a iki taško b yra lygus atstumui nuo taško b iki taško a, yra užpildoma tik pusė matricos. Šioje matricoje saugomi atstumai yra naudojami vykdant aibės X taškų paiešką.

1.1.2. Užduotis

- 1. Pasirinkti duomenų aibės dydį ir algoritmo iteracijų skaičių, kad atstumų matricos skaičiavimas užtruktų ne mažiau 10 sekundžių, o sprendinio paieškos laikas būtų nemažesnis nei 20 sekundžių.
- 2. Duomenų įkėlimą ir atstumų matricos skaičiavimą laikyti nuosekliąja algoritmo dalimi, o sprendinio paiešką lygiagretinama dalimi, įvertinti teorinius galimus algoritmo pagreitėjimus naudojant 2 ir 4 procesorius, bei didžiausią galimą pagreitėjimą.
- 3. Duomenų įkėlimą ir atstumų matricos skaičiavimą laikyti nuosekliąja algoritmo dalimi, sudarykite lygiagretųjį bendros atminties algoritmą ir eksperimentiniu būdu ištirkite jo pagreitėjimą naudodami 2 ir 4 procesorius.
- 4. Sudarykite lygiagretų bendros atminties algoritmą atstumų matricos skaičiavimui ir eksperimentiniu būdu ištirkite jo pagreitėjimą naudodami 2 ir 4 procesorius.
- 5. Ištirti algoritmo pagreitėjimo priklausomybes nuo procesorių skaičiaus, kai matricos skaičiavimas ir sprendinio paieška išlygiagretinti.

1.2. Kompiuterinės įrangos ir parametrų pasirinkimas

Algoritmo analizei buvo naudojama **Apple Mac Mini Desktop Computer, 3.2GHz 6-Core Intel Core i7** kompiuteris, kurio dėka, buvo galima paleisti ant 2, 4 ir 6 procesorių. Kad įgyvendinti **1** nurodymą, buvo pasirinkta:

• num points = 12000

• num_iterations = 30000

Duomenų nuskaitymas (s)	Atstumų matricos skaičiavimas (s)	PRS skaičiavimas (s)
0.003	10.312	19.955
0.004	10.315	19.993
0.003	10.321	19.967

Lentelė 1: Algoritmo skaičiavimo dalių rezultatai, naudojant Mac Mini kompiuterį

1.3. Teoriniai įverčiai

Paleidus programą 3 kartus, gauti skaičiavimo dalių rezultatai:

Duomenų nuskaitymas (s)	Atstumų matricos skaičiavimas (s)	PRS skaičiavimas (s)
0.004	10.316	19.972

Lentelė 2: Nuoseklaus algoritmo skačiavimo dalių rezultatai

Pagal 2 nurodymą, nuosekliąja dalimi (α) laikoma duomenų nuskaitymas ir atstumų matricos skaičiavimas, o lygiagrečiąja (β)- PRS skaičiavimas.

$$\alpha = \frac{\text{nuoseklioji dalis}}{\text{visas laikas}}$$

$$\beta = \frac{\text{lygiagrečioji dalis}}{\text{visas laikas}}$$

Gauname kad:

$$\alpha = 0.341$$

$$\beta = 0.659$$

Teorinis pagreitėjimas naudojant p procesorių:

$$S_p = \frac{1}{\alpha + \frac{\beta}{p}}$$

$$S_2 = \frac{1}{0.341 + \frac{0.659}{2}} = 1.492$$

$$S_4 = \frac{1}{0.341 + \frac{0.659}{4}} = 1.978$$

Teorinis maksimumas pagal Andalo Dėsnį:

$$S_{max} = \lim_{p \to \infty} \frac{1}{\alpha + \frac{\beta}{p}} = \frac{1}{\alpha} = \frac{1}{0.341} = 2.935$$

1.4. Pure random search (PRS)

Bandymas išlygiagretinti PRS algoritmą, buvo atliktas 2 būdais.

1 algoritme buvo pasitelkta **Dynamic** scheduling strategija, ir reduction min: f_best_solution. Kievieną karta, kai randamas geresnė sprendinio reikšmė, ji priskiriama f_best_solution kintamajam(jis automatiškai pasiima tik mažesnę reikšmę). Vėliau viskas geriausio sprendinio reikšmės buvo išsaugojamos naudojant critical žymę:

Pseudokodas 1: PRS pirmas algoritmas

2 antrajame algoritme veikimo principas gana panašus, tik ciklas paskirstomas keliems branduoliams, randamas lokali geriausia f_best_solution_tmp reikšmė ir po ciklo ji priskiriama f_best_solution ir išsaugojamos geriausio sprendinio reikšmės:

```
double f_best_solution;
int *best_solution;
#pragma omp parallel reduction(min: f_best_solution)
{
    int *best_solution_tmp;
    double f_solution, f_best_solution_tmp;
    #pragma omp for schedule(dynamic)
    for (int i=0; i<num_iterations; i++) {</pre>
        // random find and evaluate solution
        f_solution = evaluate_solution(solution);
        if (f_solution < f_best_solution_tmp) {</pre>
            f_best_solution_tmp = f_solution;
           // copy solution values to the best_solution_tmp array
        }
    f_best_solution = f_best_solution_tmp;
    #pragma omp barrier
    if(f_best_solution == f_best_solution_tmp){
        // copy best_solution_tmp values to the best_solution array
    }
}
```

Pseudokodas 2: PRS antras algoritmas

Abu algoritmai buvo ištestuoti su 2, 4 ir 6 branduoliais ir rezultatai matomi ${\bf 1}$ diagramoje:

Diagrama 1: PRS algoritmo lygiagretinimo diagrama

Pastebime, kad 1 ir 2 algoritmai su 2 ir 4 branduoliais turėjo ganėtinai panašų efektyvumą:

Branduolių skaicius	1 algoritmas	2 algoritmas
2	1.471	1.457
4	1.918	1.922
6	2.111	2.014

Lentelė 3: Algoritmų efektuvumo priklausomybė nuo branduolių skaičiaus

Tačiau, kai branduolių skaičius pasiekia 6, 2-sis algoritmas nusileidžia efektyvumu 1-jam. **1-jį** algoritmą naudosime tolimesniuose 1 užduoties eksperimentuose.

1.5. Atstumų matricos skaičiavimas

```
#pragma omp parallel for schedule(dynamic)
for (int i=0; i<num_points; i++) {
    ...
    for (int j=0; j<=i; j++) {
        distance_matrix[i][j] = Haversine_distance(...);
    }
}</pre>
```

Pseudokodas 3: Atstumų matricos skaičiavimas

3 algoritmas, eksperimentiniu būdu buvo išbandytos įvairios lygiagretinimo strategijos (**Dynamic,Guided**, **Static**). Gauti rezultatai matomi 2 diagramoje:

Diagrama 2: Įvairių strategijų efektyvumo diagrama

Pastebime, jog **Dynamic** yra kur kas efektyvesnis, lyginant su **Static** ir **Guided** lygiagretinimo strategijomis ir kur kas labiau priartėja prie teorinio pagreitėjimo.

Dynamic direktyvą naudosime tolimesniuose 1 užduoties eksperimentuose.

1.6. Atstumų matricos ir PRS dalių lygiagretinimo rezultatai

Iš ankstesnių eksperimentų radome, jog 1 PRS algoritmas ir **Dynamic** direktyva atstumų matricai skaičiuoti buvo efektyviausi sprendimo būdai. Eksperimentiniu būdu ištestavus progamą, buvo gauti tokie rezultatai:

Diagrama 3: Efektyvumo diagrama, kai PRS ir matricos skaičiavimas lygiagretinami