

Document History

Ver. Rel. No.	Release Date	Prepared. By	Reviewed By	Approved By	Remarks/Revision Details
1	18/09/2020	V.S.SHANDHIYA- 99002477	99002475, 99002476	Pagala Prithvi Shekhar and Srinivas K	
2	19/09/2020	V.S.SHANDHIYA- 99002477	99002475, 99002476	Pagala Prithvi Shekhar and Srinivas K	
3	28/09/2020	V.S.SHANDHIYA- 99002477	99002473, 99002474	Pagala Prithvi Shekhar and Srinivas K	

Table of Contents

ACTIVITY 1- SYSTEM/SOFTWARE DEVELOPMENT	6
INTRODUCTION	F
REQUIREMENTS	
SWOT ANALYSIS	
BEHAVIOURAL DIAGRAMS:	
STRUCTURAL DIAGRAMS	
TEST PLAN:	
COST FOR DETECTION:	15
REFERENCES	16
ACTIVITY-2-AGILE METHODOLOGY	18
THEME:	18
EPIC AND USER STORY:	
ACTIVITY 3- GITHUB	20
INTRODUCTION	20
REQUIREMENTS	
SWOT ANALYSIS:	21
BEHAVIORAL DIAGRAM	23
STRUCTURAL DIAGRAM	23
TEST PLAN:	24
SNAP SHOTS:	25
CONCLUSION:	27
REFERENCES:	28
APPENDIX	30

TABLE OF FIGURES:

Figure 1- FINDING THE LEAKAGE	8
Figure 2- LEAKAGE DUE TO HOLES	8
Figure 3- LEAKAGE DUE TO RUST	
Figure 4- SIGNAL PROVIDED BY INSPECTION	9
Figure 5- PROCESS OF DETECTION	
Figure 6- WORKING OF HALL EFFECT SENSOR	
Figure 7- STRUCTURAL UML	
Figure 8- COST COMPARISON	
Figure 9- COST VS AGE	
Figure 10- LOW LEVEL REQUIREMENTS	22
Figure 11- HIGH LEVEL REQUIREMENTS	22
Figure 12- BEHAVIOURAL DIAGRAM	23
Figure 13- STRUCTURAL DIAGRAM	24
Figure 14- CODE QUALITY	25
Figure 15- COMMITS	26
Figure 16- CPP-CHECK	26
Figure 17- ISSUE	27
TABLE OF TABLES:	
Table 1-REQUIREMENTS	
Table 2- LOW LEVEL TEST PLAN	
Table 3- HIGH LEVEL TEST PLAN	14
Table 4- EPIC AND USER STORY	
Table 5- REQUIREMENT ANALYSIS	20

Table 6-TEST PLAN......24

Activity 1– System/Software Development

ACTIVITY 1- SYSTEM/SOFTWARE DEVELOPMENT

TOPIC- MAGNETIC LEAKAGE DETECTOR

INTRODUCTION

The transportation of natural resources to different places is the major problem. The pipelines are generally used to transport the resources like oil, gas etc. The pipelines are mostly affected by the external environment. So, it is necessary to detect the integrity of the pipelines. The loss in material integrity leads to failure of the pipelines. Sometimes the defects in the tubes used in the chemical industry leads hazard to plant personnel. The manufacturing voids are also leading to loss in material integrity which cause catastrophic failure due to ageing effects. To maintain the safe operation, the certain maintenance methods are used. The cost for the replacement of the pipelines is too high, so the maintenance techniques are adopted to find the defect in prior.

REQUIREMENTS

Table 1-REQUIREMENTS

ID	DESCRIPTION
H01	The basic idea of magnetic flux leakage inspection is that the ferromagnetic material is magnetized close to saturation under the applied magnetic field.
H02	If there is no defect in the material, most magnetic flux lines will pass through the inside of the ferromagnetic material; if not, because the magnetic permeability of the defect site is much smaller than that of the ferromagnetic material itself, magnetic resistance will increase in the defect area, so the magnetic field in the region is distorted.
Н03	Magnetic flux lines will be bent, some will leak out of the material surface, and a magnetic leakage field will form at the defect area. By using magnetic sensitive sensors to detect the

	magnetic leakage field, the corresponding electrical signals can be obtained. Then the detected signals are analysed so that the status of the defect can be determined
H04_L01	Defects caused by corrosion can appear in the interior and exterior surfaces of the pipeline, and magnetic flux leakage pipeline detection can detect them, but it cannot distinguish between internal and external defects. Therefore, a classification approach based on support vector machines (SVM) is presented to achieve defect discrimination
H05_L02	Past method which is available for the detection of leakages in the industrial pipelines are Ultrasonic Leakage Detector, where the whole system needs to shut down. But in this project, need not need any shut down.

SWOT ANALYSIS

STRENGTH:

The main strength of this product is it can be used in all type of industries where both liquids and gases are transferred. In industries where high level hazardous liquids or gases are transferred this product plays an important role as the power shut down of the whole system is not required.

WEAKNESS:

For detection in minute bends and joints it cannot move on its own so it requires an external supervisor to manage it. Issues arises during detection of leakage in underground pipes.

OPPORTUNITY:

This product helps us to provide great opportunity in reducing the burden of the human.

THREATS:

User acceptance. Still most operators in industries are not well known to operate the technologically improved products.

DESIGN MODELS

BEHAVIOURAL DIAGRAMS:

UML- Behavioural-1

1. Finding the leakage:

Figure 1- FINDING THE LEAKAGE

UML-Behavioural-2

2. Leakage due to holes:

Figure 2- LEAKAGE DUE TO HOLES

UML-Behavioural-3

3. Signals provided by inspection:

Figure 3- SIGNAL PROVIDED BY INSPECTION

HIGH LEVEL:

UML-Behavioural-4

4. Leakage due to Rust:

L&T Technology Services

STRUCTURAL DIAGRAMS:

LOW LEVEL:

UML-Structural-1

1. Process of detection:

Figure 3- PROCESS OF DETECTION

UML-Structural-2

2. Working of Hall Effect Sensor:

Figure 4- WORKING OF HALL EFFECT SENSOR

HIGH LEVEL:

3. UML-Structural-3

Figure 5- STRUCTURAL UML

TEST PLAN:

Test survey has been taken to show the uniqueness of my project.

1. In traditional old model-Ultrasonic Leakage Detector [LOW LEVEL]

Table 2- LOW LEVEL TEST PLAN

ID	Description	Pre-condition	Expected-	Expected-	Actual output
			input	output	
1	Power shut down	No shut down	Operate while	The inspection	The system fails
	Problem during	of system	inspecting	is done while	to operate
	inspection	during running		liquids are	
		of project		flowing	

2	Problem arises due to the	The inspection	Can flow in	The inspection	The system fails
	size of the pipe	had to be done	any size of	kit inspects in	to operate
		whatever the	pipe	all size of the	
		size of the pipe		pipe	
3	Pipe wall's material effect	The inspection	Any pipe	The inspection	No, the system
		should be done	material like	can be done in	fails
		for any	PVC, Plastic,	all kind of	
		material of	Ferromagnetic	material	
		pipe	pipes		

2. By implementing our project-Magnetic Leakage Detector [HIGH LEVEL]

Table 3- HIGH LEVEL TEST PLAN

ID	Description	Pre- condition	Expected-input	Expected-output	Actual output
1	Power shut down Problem during inspection	No shut down of system during running of project	Operate while inspecting	The inspection is done while liquids are flowing	The system works
2	Problem arises due to the size of the pipe	The inspection had to be done whatever the size of the pipe	Can flow in any size of pipe	The inspection kit inspects in all size of the pipe	As the system travels above the pipeline it is very easy to inspect the whole system
3	Pipe wall's material effect	The inspection should be done for any material of pipe	Any pipe material like PVC, Plastic, Ferromagnetic pipes	The inspection can be done in all kind of material	The system inspects all kind of pipe as magnetic flux passes through all material of pipes

COST FOR DETECTION:

Figure 6- COST COMPARISON

Figure 7- COST VS AGE

REFERENCES

- [1] Hui Min Kim, Yong Woo Rho, Hui RyongYoo, Sung Ho Cho, Dong Kyu Kim, Sung Ja Koo, Gwan Soo Park (2012), "A study on the measurement of axial cracks in the magnetic flux leakage NDT system" 8th IEEE International Conference on Automation Science and Engineering, Seoul, Korea, pp. 624–629.
- [2] R. Wagner, O. Goncalves, A. Demma, M. Lowe (2013), "Guided wave testing performance studies: comparison with ultrasonic and magnetic flux leakage pigs" Insight Non-Destructive Testing and Condition Monitoring, vol. 55, no. 4, pp. 187-196.
- [3] P. Karuppasamy, A. Abudhahir, M. Prabhakaran, S. Thirunavukkarasu, B. P. C. Rao, T. Jayakumar (2016), "Model-Based Optimization of MFL Testing of Ferromagnetic Steam Generator Tubes" Journal of Nondestructive Evaluation, vol. 35, no. 5.
- [4] V.E. Loskutov, A.F. Matvienko, B.V. Patramanskii, V.E. Shcherbinin (2006), "The magnetic method for in-tube non-destructive testing of gas and oil pipelines: The past and the present" Russian Journal of Non-destructive Testing, vol. 42, no. 8, pp. 493-504.
- [5] J. Chen, Q.S. Feng, F.X. Wang, H.L. Zhang, Song, H.C (2012), "Research on burst tests of pipeline with spiral weld defects" In Proceedings of the 9th International Pipeline Conference, Calgary, AL, Canada, pp. 53–60.
- [6] Y.L. Ma, L. Li (2014), "Research on internal and external defect identification of drill pipe based on weak magnetic Inspection" Insight Non-Destructive Testing and Condition Monitoring, vol. 56, pp. 31–34.

ACTIVITY-2

AGILE METHODOLOGY

ACTIVITY-2-AGILE METHODOLOGY

Theme:

Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. This project introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed.

Epic and User Story:

Table 4- EPIC AND USER STORY

USER TYPE	EPIC	USER STORY	
		As the tester, I need to test for all size of pipes	
Industrial user	Size of the pipe	As the user, I will be going on testing all bends and turning	
		As a user, I need to be in one place and verify any leakage is there	
Supervisor	Material of pipe	As the tester, I need to test for all size of pipes As the user, I will be going on testing all bends and turning As a user, I need to be in one place and verify any leakage is there As the supervisor, I need to inspect any material of pipeline I should reduce the burden of the co-workers As my responsibility is to manage the whole process it need not to shut down while inspecting As the manager, I need to improve the product manufacturing rather than waiting for the result of inspection I need to inspect accordingly not my other works	
		I should reduce the burden of the co-workers	
		As my responsibility is to manage the whole process it need not to shut down while inspecting	
Manager	Power shut down	As the manager, I need to improve the product manufacturing rather than waiting for the result of inspection	
		I need to inspect accordingly not my other works are being stopped	

ACTIVITY-3 GITHUB

ACTIVITY 3- GITHUB

TOPIC = Automatic Bus Ticket Booking System

INTRODUCTION

This is the project on the online ticketing system of express bus company, which in most cases; the company has problems with their ticketing and scheduling process. This project intends to computerize its semi computerized ticketing system to provide better customer service. Because of that, the company can provide the easier way of travelling to the customer or passenger. Electronic tickets, or e-tickets, give evidence that their holders have permission to enter a place of entertainment, use a means of transportation, or have access to some Internet services. Bus Ticket Reservation System enables the bus company's customer to buy bus ticket online. E-ticket is the easier and quickest way to take bus. The online system is a new system because it havens exists in bus company and even in Malaysia. Currently, staff at the bus ticket counter is using an internal system to sell ticket at the counter. Customer is unable to buy bus ticket online at this moment and must go to the counter to buy bus ticket. Sometimes, customer needs to queue up a long queue to buy bus ticket and ask for information. Besides that, customer also not allows buying bus ticket through telephone and Transnational's telephone line is always busy.

REQUIREMENTS

Table 5- REQUIREMENT ANALYSIS

Users	Туре	Description
Admin	Admin-level-1	Admin totally control the proposed system they can action view and every work including checking ticket are displayed to the passengers, and every counter transaction status.
Operator	Operator(level-2)	Operator can view the seats distribution. If a visitor or user request for a new ticket with fully follows their instruction and the operator confirm his ticket and send the confirmation by phone.

Visitor/Registered user	Basic level-3	The user can request only new ticket
		from to destination place.

SWOT ANALYSIS:

STRENGTH:

The main strength of this project is it is user friendly and can easily handle by the android mobile user. The accuracy level is higher.

WEAKNESS:

Tickets become a barer bond commodity type of asset the second they are printed, resulting in potential theft, loss and counterfeit to the patron, and lost income, information and theft for the event sponsor.

OPPORTUNITY:

This product helps us to provide great opportunity in reducing the burden of the human. This project will reduce the risk of travelling and booking the travels and we can do anything in the remote location.

THREATS:

To control illegal ticket trading activities by ticket brokers and all the ticket scalpers, law enforcement agencies are being challenged. The server can become problem and the same seats might happen.

DESIGN

Low level:

Figure 8- LOW LEVEL REQUIREMENTS

High LEVEL:

Figure 9- HIGH LEVEL REQUIREMENTS

BEHAVIORAL DIAGRAM

Figure 10- BEHAVIOURAL DIAGRAM

STRUCTURAL DIAGRAM

Figure 11- STRUCTURAL DIAGRAM

TEST PLAN:

Table 6-TEST PLAN

ID	Description	Pre-condition	Expected-input	Expected- output	Actual output
1	Problem arises in	When 2	The two peoples	The person	The system
	booking	peoples	need same seat.	who fills first	operates
		booking same			
		seat		the same seat	
				and the other	
				person should	
				occupy the	
				other seat	
2	Problem arises due to	While entering	The person needs	The reminder	The system
	the size of the bus	through the	more seats than	or an alert	operates
		booking site	available	should be	successfully.
		the number of		given to help	
		seats available		the customer.	
		should be			
		shown			
3	Age of the person	The age which	Ages of the person	It should	It will run.
		is below the		sportify it.	
		limit			

SNAP SHOTS:

1. Code Quality

Figure 12- CODE QUALITY

2.Commits:

Figure 13- COMMITS

3.CPP-Check

Figure 14- CPP-CHECK

4.Issue:

Figure 15-ISSUE

GitHub link: https://github.com/99002477/busticket

CONCLUSION:

It can be observed that computer applications are very important in every field of human endeavor. Here all the information about customer that made reservation can be gotten just by clicking a button with this new system, some of the difficulties encountered with the manual system are overcome. It will also reduce the workload of the staff, reduce the time used for making reservation at the bus terminal and increase efficiency. The application also can update records in various files automatically thereby relieving the company's staff the stress of working from file security of data.

REFERENCES:

- [1] 4 october 2017. [Online]. Available: http://www.securionpay.com.
- [2] RACHNA and P. SINGH, "Issues and Challenges of Electronic Payment Systems," International Journal for Research in Management and Pharmacy, 9, December 2013.
- [3] Princewill Aigbe and Jackson Akpojaro, "Analysis of Security Issues in Electronic Payment Systems," International Journal of Computer Applications (0975 8887), 10, December 2014.
- [4] S. Sumanjeet, "Emergence of Payment Systems in the age of Electronic Commerce: The State of Art," Asia Pacific Journal of Finance and Banking Research.
- [5] D. U. P. S. B. V. Goyal, "Mobile Banking in India: Practices, Challenges and Security Issues," International Journal of Advanced Trends in Computer Science and Engineering, 2012.
 - [6] A. Y. A. M. S. Uddin, "E-Wallet System for Bangladesh an Electronic Payment System".

APPENDIX

APPENDIX

CI FRAMEWORK FLOW:

1. GIT

2. BUILD

3. MAKE

README.md

STEPin MiniProject_Template Sample

Fig:20

4. CODE QUALITY

CODE:


```
printf("\t\tEnter Password: ");
/*while(i<10){
pword[i]=getch();
c=pword[i];
if(c==13)//enter key
break;
else
printf("*");
i++;
pword[i]='\0';
i=0;*/
scanf("%s",pword);
if(strcmp(uname, "user") == 0 && strcmp(pword, "pass") == 0){
printf("\n\nWELCOME TO THE BOOKING SYSTEM. LOGIN SUCCESSFUL\n");
printf("\n\t\tPress enter to continue.....");
scanf("%c%c",&r,&r);
break;
}
else{
printf("\n\nLOGIN UNSUCCESSFUL....");
a++;
}
}
while(a<2);</pre>
if(a>1){
printf("\nSorry you entered an incorrect password 3 times. Press Enter to
continue");
scanf("%c%c",&r,&r);
}
system("clear");
struct book{
char code[20];
char name[20];
char date[20];
int cost;
}b;
int seat=80;
void insert_details();
void view All();
```



```
void find();
void book_ticket();
void old records();
void main(){
login();
int ch;
while(1){
printf("\n\t Book Movie Ticket \n");
printf("\nEnter >1< To Insert A Movie\nEnter >2< To View All Movies\nEnter >3<</pre>
To Find A Movie\nEnter >4< To Book A Ticket(s)\nEnter >5< To View All Recent
Transactions\nEnter >0< To Exit \nEnter your Choice :");</pre>
scanf("%d",&ch);
system("clear");
switch (ch){
case 1: insert_details();
break;
case 2: view_All();
break;
case 3: find();
break;
case 4: book_ticket();
break;
case 5: old_records();
break;
case 0: exit(0);
default: printf("Enter a valid option.");
}
void insert_details(){
FILE *fp;
struct book b;
printf("Enter movie code :- ");
scanf("%s",b.code);
printf("Enter name :- ");
scanf("%s",b.name);
printf("Enter Release Date:- ");
scanf("%s",b.date);
printf("Enetr Ticket Price:- ");
```



```
scanf("%d",&b.cost);
fp=fopen("data.txt","a");
if(fp == NULL)
printf("FIle not Found");
else{
fprintf(fp,"%s %s %s %d \n",b.code,b.name,b.date,b.cost);
printf("Recorded Successfully\n");
fclose(fp);
system("clear");
void find(){
struct book b;
FILE *fp;
char ch[20];
printf("Enter movie code :");
scanf("%s",ch);
fp = fopen("data.txt","r");
if(fp == NULL){
printf("File Not Found");
exit(0);
}
else{
while(getc(fp) != EOF){
fscanf(fp, "%s %s %s %d", b.code, b.name, b.date, &b.cost);
if(strcmp(b.code,ch) == 0){
printf("\n Record Found\n");
printf("\n\t\tCode :%s",b.code);
printf("\n\t\tMovie Name :%s",b.name);
printf("\n\t\tMovie Date :%s",b.date);
printf("\n\t\tPrice of Ticket :%d",b.cost);
}
}
}
fclose(fp);
printf("\n\t\tPress enter to continue.....");
scanf("%c%c",&r,&r);
system("clear");
void view_All(){
char ch;
```



```
FILE *fp;
fp = fopen("data.txt","r");
if(fp == NULL){
printf("File Not Found");
exit(0);
}
else{
system("clear");
while((ch=fgetc(fp))!=EOF)
printf("%c",ch);
printf("\n\t\tPress enter to continue.....");
scanf("%c%c",&r,&r);
system("clear");
fclose(fp);
}
void book_ticket(){
struct book b;
FILE *fp;
FILE *ufp;
int total_seat,mobile,total_amount;
char name[20];
char ch;
char movie_code[20];
fp = fopen("data.txt","r");
if(fp == NULL){
printf("file not found !");
exit(1);
}
else{
system("clear");
while( ( ch = fgetc(fp) ) != EOF )
printf("%c",ch);
}
fclose(fp);
printf("\n For Book ticket Choice Movie(Enter Movie Code First Latter Of
Movie)\n");
printf("\n Enter movie code :");
scanf("%s",movie_code);
fp = fopen("data.txt","r");
if(fp == NULL){
```



```
printf("file not found !");
exit(1);
}
else{
while(getc(fp) != EOF){
fscanf(fp, "%s %s %s %d", b.code, b.name, b.date, &b.cost);
if(strcmp(b.code, movie code) == 0){
printf("\n Record Found\n");
printf("\n\t\tCode :%s",b.code);
printf("\n\t\tMovie name :%s",b.name);
printf("\n\t\tdate name :%s",b.date);
printf("\n\t\tPrice of ticket:%d",b.cost);
}
}
}
printf("\n* Fill Your Details *");
printf("\n Your Name :");
scanf("%s",name);
printf("\n Mobile Number :");
scanf("%d",&mobile);
printf("\n Total number of tickets :");
scanf("%d",&total seat);
total_amount = b.cost * total_seat;
printf("\n ENJOY YOUR MOVIE \n");
printf("\n\t\tName : %s",name);
printf("\n\t\tMobile Number : %d", mobile);
printf("\n\t\tMovie name : %s",b.name);
printf("\n\t\tTotal seats : %d",total_seat);
printf("\n\t\tCost per ticket : %d",b.cost);
printf("\n\t\tTotal Amount : %d",total amount);
ufp=fopen("oldTransection.txt","a");
if(ufp == NULL){
printf("File not Found");
}
else{
fprintf(ufp, "%s %d %d %d %s %d
\n",name,mobile,total seat,total amount,b.name,b.cost);
printf("\n Record insert Sucessfull to the old record file");
printf("\n");
printf("\n\t\tPress enter to continue.....");
```



```
scanf("%c%c",&r,&r);
fclose(ufp);
fclose(fp);
void old_records(){
char ch;
FILE *fp;
fp = fopen("oldTransection.txt","r");
if(fp == NULL){
printf("file not found !");
exit(1);
}
else{
system("clear");
while((ch=fgetc(fp))!=EOF)
printf("%c",ch);
}
printf("\n\t\tPress enter to continue.....");
scanf("%c%c",&r,&r);
fclose(fp);
}
```