Módulo 7: Algoritmos de optimización con Restricciones

Departamento MACC Matemáticas Aplicadas y Ciencias de la Computación Universidad del Rosario

Segundo Semestre de 2021

Agenda

- Métodos primales
 - Método de direcciones factibles
 - Método de conjuntos activos
 - Método del gradiente proyectado

Métodos primales

- Cada punto generado en el método es factible
- Si genera una secuencia convergente, el limite de la secuencia debe ser un mínimo local
- No dependen de estructuras definidas para el problema

Direcciones factibles

Secuencia de puntos factibles

$$x_{k+1} = x_k + \alpha_k d_k$$

donde d_k es una dirección factible en x_k .

Teorema

Sea $\{x_k\}$ una sucesión generada por el método de direcciones factibles $x_{k+1} = x_k + \alpha_k d_k$, tal que la sucesión de direcciones $\{d_k\}_{k \in K}$ verifica:

Direcciones factibles - Algoritmo

Caso: de restricciones lineales:

Dado f, x_0 punto inicial factible, $\epsilon > 0$

Paso 1: Dirección factible y de descenso $d_k = (\overline{x} - x_k)$, donde

$$\min \nabla f(x_k)'(\overline{x} - x_k)$$

s.a. $\overline{x} \in \Omega$

if
$$\|\nabla f(x_k)'d\| \leq \epsilon$$
 then Stop

else

Paso 2: Actualizar
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k d_k$$
, donde α_k min $f(\mathbf{x}_k + \alpha_k d_k)$ s.a. $g(\mathbf{x}_k + \alpha_k d_k) \leq 0$ $0 < \alpha_k \leq 1$

end if

$$\begin{aligned} & \min \ x_1^2 + x_2^2 - 4x_1 - 4x_2 + 8 \\ & \text{s.a.} \ x_1 + 2x_2 - 4 \leq 0 \\ & x_1, x_2 \geq 0 \end{aligned}$$

Punto inicial:

$$\bullet \ x_0 = \begin{bmatrix} 4/3 \\ 4/3 \end{bmatrix}$$

•
$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Ejemplo (Cont.)

$$x^0 = \begin{bmatrix} 4/3 \\ 4/3 \end{bmatrix}$$
, $\overline{x} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$, $d^0 = \begin{bmatrix} 8/3 \\ -4/3 \end{bmatrix}$, $\alpha = 1/10$

(Universidad del Rosario)

Interpretación geométrica)

min
$$f(x)$$
)
s.a. $Ax \le b$
 $Qx = q$

Lema

Sea x una solución factible, y suponga que $A_1x=b_1$ and $A_2x< b_2$, donde A' se descompone en (A'_1,A'_2) y b' se descompone en (b'_1,b'_2) . Entonces, un vector d no nulo es un dirección factible en x si y solo si $A_1d \leq 0$ y Qd=0. Si $\nabla f(x)'d<0$ es una dirección de descenso.

min
$$(x_1 - 6)^2 + (x_2 - 2)^2$$

s.a. $-x_1 + 2x_2 - 4 \le 0$
 $3x_1 + 2x_2 \le 12$
 $x_1, x_2 \ge 0$

Punto inicial:

•
$$x_0 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Direcciones factibles - Algoritmo

Caso: de restricciones no lineales (desigualdad):

• Considere el problema min f(x) s.a. $g_i(x) \le 0$ para i = 1, ..., m. Donde $g_i \in C^1$. Si $\nabla f(x)'d < 0$ y $\nabla g_i(x)'d < 0$, entonces d es una dirección de descenso

Sea x una solución factible, y sea $I = \{i : g_i(x) = 0\}$, entonces:

min z
s.a.
$$\nabla f(x_k)'d - z \le 0$$

 $\nabla g_i(x_k)'d - z \le 0, i \in I$
 $-1 < d < 1, j = 1,...,n$

Caso: de restricciones no lineales (desigualdad):

```
Dado f, x_0 punto inicial factible
Paso 1: Sea I = \{i : g_i(x) = 0\}, y (z_k, d_k) la solución de
                       \min z
                       s.a. \nabla f(x_k)'d-z\leq 0
                            \nabla g_i(x_k)'d-z<0,\ i\in I
                             -1 < d < 1, j = 1, ..., n
if z_k = 0 then
  Stop
else
  Paso 2
end if
```

Direcciones factibles - Algoritmo

Caso: de restricciones no lineales (desigualdad):

Paso 2: Actualizar
$$\mathbf{x}_{k+1} = x_k + \alpha_k d_k$$
, donde α_k min $f(x_k + \alpha_k d_k)$ s.a. $g(x_k + \alpha_k d_k) \leq 0$ $0 < \alpha_k \leq 1$

Ir a paso 1

$$\begin{aligned} & \text{min } 2x_1^2 + 2x_2^2 - 2x_1x_2 - 4x_1 - 6x_2 \\ & \text{s.a. } x_1 + 5x_2 - 5 \leq 0 \\ & 2x_1^2 - x_2 \leq 0 \\ & - x_1 \leq 0 \\ & - x_2 \leq 0 \end{aligned}$$

Punto inicial:

$$\bullet \ x^0 = \begin{bmatrix} 0 \\ 3/4 \end{bmatrix}$$

Ejemplo 2 (Cont.)

$$x^0 = \begin{bmatrix} 0 \\ 3/4 \end{bmatrix}$$
, $x^1 = \begin{bmatrix} 0,208 \\ 0,514 \end{bmatrix}$

Conjuntos activos

min
$$f(x)$$

s.a. $g(x) \le 0$

Dado el conjuntos de restricciones activas, espacio de trabajo W,

min
$$f(x)$$

s.a. $g(x) = 0$ $i \in W$

condiciones necesarias,

$$\nabla f(x_W) + \sum_{i \in W} \mu_i \nabla g_i(x_W) = 0$$

Conjuntos activos

Espacio de trabajo W.

Algoritmo - Conjuntos activos

Sea x_0 inicial factible, $W(x_0)$, $d = x^* - x_k$,

1. Resolver el subproblema

$$\min \frac{1}{2}d'Qd + \nabla f(x_k)'d$$
s.a. $A_k d = 0$ $i \in W$

- 2. Si d = 0,
 - Calcular $\mu = -(A_k A_k')^{-1} A_k \nabla f(x_k)$
 - Si $\mu \geq 0$ terminar.
 - Caso contrario, definir $x_{k+1} = x_k$, $W_{k+1} = W_k \{j\}$, con j el índice de la variable dual más negativa
 - Volver a 1

Algoritmo - Conjuntos activos (Cont.)

• 3. Si $d \neq 0$, el paso máximo que se puede dar en la dirección es

$$\alpha_{\mathsf{máx}} = \min_{j \ni W(x_k), a'_j d_k > 0, \alpha \neq 0} \left\{ \frac{b_j - a'_j x_k}{a'_j d_k} \right\}$$

Luego, $\alpha_k = \min\{1, \alpha_{\mathsf{máx}}\}$

- Si $\alpha_k = 1$, definir $x_{k+1} = x_k + d_k$, $W_{k+1} = W_k$
- Si $\alpha_k < 1$, definir $x_{k+1} = x_k + \alpha_k d_k$, $W_{k+1} = W_k \cup \{j\}$, con j el índice para el cual

$$\alpha_k = \frac{b_j - a_j' x_k}{a_j' d_k} < 1$$

Volver a 1

$$\begin{aligned} &\text{min } 2x_1^2 + x_1x_2 + x_2^2 - 12x_1 - 10x_2 \\ &\text{s.a. } x_1 + x_2 - 4 \leq 0 \\ &x_1, x_2 \geq 0 \end{aligned}$$

Punto inicial:

•
$$x^0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, entonces $d_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\bullet \ \mu = -\begin{bmatrix} 12 \\ 10 \end{bmatrix}$$

Ejemplo (Cont.)

$$x^{1} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
, $x^{2} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $x^{3} = \begin{bmatrix} 8/3 \\ 4/3 \end{bmatrix}$, $x^{4} = \begin{bmatrix} 3/2 \\ 5/2 \end{bmatrix} = x^{*}$

Gradiente proyectado

Generalización del método del gradiente.

min
$$f(x)$$

s.a. $g(x) \le 0$

Dado el conjuntos de restricciones activas, espacio de trabajo W,

min
$$f(x)$$

s.a. $g(x) = 0$ $i \in W$.

Se proyecta $-\nabla f(x_k)$ sobre el núcleo de A_W , que será ortogonal al subespacio tangente donde recae la dirección d:

$$-\nabla f(x_k) = d_k + A'_k \mu_k$$

Algoritmo - Gradiente proyectado

```
Dado f, A, b, x_0 punto inicial factible
```

Paso 0: Determine W y A_w

Paso 1: Calcular
$$P = I - A'_k (A_k A'_k)^{-1} A_k$$
 y $d_k = -P \nabla f(x_k)$

Paso 2:

if
$$d_k = 0$$
 then

Calcular
$$\mu = -(A_k A'_k)^{-1} A_k \nabla f(x_k)$$

$$\mu \geq$$
 0, Stop.

 μ < 0, Sacar j de W, con j el índice de la variable dual más negativa.

else

Calcular
$$\alpha_1 = \max\{\alpha : x_k + \alpha d_k \in \Omega\}$$

Calcular
$$\alpha_2 = \min\{f(x_k + \alpha d_k) : 0 \le \alpha \le \alpha_1\}$$
 (Búsqueda de línea)

Actualizar $x_k + \alpha d_k$

end if

$$k=k+1$$

$$\begin{aligned} & \min \ x_1 - x_2 \\ & \text{s.a.} \ 1 \leq x_1 \leq 3 \\ & 1 \leq x_2 \leq 2 \end{aligned}$$

Condiciones iniciales:

•
$$x^0 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

•
$$W = \{2, 3\}$$

$$\begin{aligned} & \min \ x_1^2 + x_2^2 \\ & \text{s.a.} \ x_1 + x_2 - 2 \leq 0 \\ & x_1 + 5x_2 - 5 \leq 0 \\ & x_1, x_2 \geq 0 \end{aligned}$$

Punto inicial:

$$\bullet \ x^0 = \begin{bmatrix} 3/2 \\ 1/2 \end{bmatrix}$$

Ejemplo 2 (Cont.)

$$x^{1} = \begin{bmatrix} 1,25\\0,75 \end{bmatrix}$$
, $x^{2} = \begin{bmatrix} 0,192\\0,961 \end{bmatrix}$, $x^{3} = \begin{bmatrix} 0\\0 \end{bmatrix}$

Gradiente proyectado

Restricciones no lineales.

- Riesgo de moverse fuera de la región factible
- Volver a la restricciones activas
- Proceso de prueba y error

Gradiente proyectado

 Volver a la restricción activa es un problema no lineal que puede ser resuelto con un método iterativo

Proyección de las restricciones activas:

$$P = I - \nabla h(x_k)'(\nabla h(x_k)\nabla h(x_k)')^{-1}\nabla h(x_k)$$

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)