GenBank/RefSeQ Taxonomic Sequence Partitioning

Alexis Alvarez, Austin Torrence, Brandon Horner, Chance Nelson, Tyler Malmon

GenBank

- International
 Nucleotide Sequence
 Database
 Collaboration
- GenBank accession numbers never include an underscore
- NIH genetic sequence database

- Use FASTA
- Sequence databases

files

RefSeq

- IRefSeq records
 consistently use official
 nomenclature for the
 gene feature, when
 available.
- RefSeq collection aims to provide, a complete set of non-redundant, extensively cross-linked, and richly annotated nucleic acid and protein records.

GenBank/RefSeQ Taxonomic Sequence Partitioning

- Use of graph analysis
 - Common ancestry
 - Determining phylum
 - Common characteristics

Figure o: common ancestry

FASTA

- The universal format standard in the field of bioinformatics
- FASTA stores a variable number of sequence records

Description line

>qi|532319|pir|TVFV2E|TVFV2E envelope protein

ELRLRYCAPAGFALLKCNDADYDGFKTNCSNVSVVHCTNLMNTTVTTGLLLNGSYSENRT QIWQKHRTSNDSALILLNKHYNLTVTCKRPGNKTVLPVTIMAGLVFHSQKYNLRLRQAWC HFPSNWKGAWKEVKEEIVNLPKERYRGTNDPKRIFFQRQWGDPETANLWFNCHGEFFYCK MDWFLNYLNNLTVDADHNECKNTSGTKSGNKRAPGPCVQRTYVACHIRSVIIWLETISKK TYAPPREGHLECTSTVTGMTVELNYIPKNRTNVTLSPQIESIWAAELDRYKLVEITPIGF APTEVRRYTGGHERQKRVPFVXXXXXXXXXXXXXXXXXXXXXXXXXVQSQHLLAGILQQQKNL LAAVEAQQQMLKLTIWGVK

Sequence

Figure 1: FASTA Format

Type \$	Format(s)	Example(s) \$				
2 22 2 2 2	lcl integer	lc1 123				
local (i.e. no database reference)	lcl string	lcl hmm271				
GenInfo backbone seqid	bbs integer	bbs 123				
GenInfo backbone moltype	bbm integer	bbm 123				
GenInfo import ID	gim integer	gim 123				
GenBank _₺	gb accession locus	gb M73307 AGMA13GT				
EMBL&	emb accession Locus	emb CAM43271.1				
PIR₽	pir accession name	pir G36364				
SWISS-PROT₽	sp accession name	sp P01013 OVAX_CHICK				
patent	pat country patent sequence-number	pat US RE33188 1				
pre-grant patent	pgp country application-number sequence-number	pgp EP 0238993 7				
RefSeqr	ref accession name	ref NM_010450.1				
general database reference	gnl database integer	gnl taxon 9606				
(a reference to a database that's not in this list)	gnl database string	gnl PID e1632				
GenInfo integrated database	gi integer	gi 21434723				
DDBJ <i>교</i>	dbj accession locus	dbj BAC85684.1				
PRF₽	prf accession name	prf 0806162C				
PDB&	pdb entry chain	pdb 1I4L D				
third-party GenBank彪	tpg accession name	tpg BK003456				
third-party EMBL⊮	tpe accession name	tpe BN000123				
third-party DDBJਔ	tpd accession name	tpd FAA00017				

Figure 3: database identifiers table

NCBI Identifiers

NCBI FASTA defined format for sequence identifiers

Nucleic Acid Code +	Meaning ♦	Mnemonic ♦
Α	A	Adenine
С	С	Cytosine
G	G	Guanine
Т	Т	Thymine
U	U	Uracil
R	A or G	puRine
Υ	C, T or U	pYrimidines
К	G, T or U	bases which are Ketones
М	A or C	bases with aMino groups
S	C or G	Strong interaction
W	A, T or U	Weak interaction
В	not A (i.e. C, G, T or U)	B comes after A
D	not C (i.e. A, G, T or U)	D comes after C
Н	not G (i.e., A, C, T or U)	H comes after G
V	neither T nor U (i.e. A, C or G)	V comes after U
N	ACGTU	Nucleic acid
-	gap of indeterminate length	

Figure 4: Sequences table

Sequence Representation

Sequences may be protein sequences or nucleic acid sequences, and they can contain gaps or alignment characters

Taxonomy

How Are Organisms Classified?

Figure 5: Modern Taxonomic Hierarchy

What are taxa?

Taxon (Rank)	Chimpanzee	Humans	Asian Elephant	Drosophila
Kingdom	Animalia	Animalia	Animalia	Animalia
Phylum	Chordata	Chordata	Chordata	Arthropoda
Subphylum	Vertebrata		Vertebrata	
Class	Mammalia	Mammalia	Mammalia	Insecta
Order	Primates	Primates	Proboscidea	Diptera
Superfamily			Elephantoidea	
Family	Hominides	Hominidae	Elephantidae	Drosophilidae
Subfamily		Homininae		Drosophilinae
Genus	Pan	Homo	Elephas	Drosophila
Species	Simia troglodytes	Sapiens	Elephas maximus	Drosophila melanogaster

Figure 5: Taxonomy table

Taxa

Figure 6: Darwin's finches by John Gould

Taxonomic Sequence

- Graph complex networks of organisms
 - Nodes are organisms
 - Links are similarities between organisms
- Taxonomic sequences are better recognized as a phylogenetic trees.

Trees

- Fundamental Data Structure
 - Root Node
- Directed Graph
 - Single parent
 - Arbitrary amount of children

• Good for <u>Hierarchical Organization</u>

Figure 2: Example Tree

Phylogenetic trees

Phylogenetic trees are usually based on morphological or genetic homology

Figure 7: Phylogenetic tree of life

Development

Plan and Current Status

'GenBank/RefSeQ Taxonomic Sequence Partitioning' - ???

Retrieve NCBI Taxonomy Data

Parse Taxa into Tree

Make observations (...profit!)

2 2	131567 superkingdo	om		0	0	11	0	0	8	3	0	0	
3 6	335928 genus		0	1	11	1	0	1	8	3	0	- 1	
4 7	6 species AC	0	1 1	1	1	1	0	1	1	0			
5 9	32199 species	BA	0	1	11	1 1	1 0	1		1	0	- 1	
6 10	1706371 qenus		0	1	11	1	0	1	8	3	0	1	
7 11	1707 species	CG	0	1	11	1	0	1			0	1	
8 13	203488 genus	i	0	1	11	1	1 0	1	8	3	0	į	
9 14	13 species DT	0	1 1	1	1	1	0	1	1	0	1		
10 16	32011 genus		0	1	11	1 1	1 0	1	8	3	0		
11 17	16 species MM	1 0	1	1		1	0	1	1	0	1		
12 18	213421 genus		ø I	1	11	1 1	1 0	1	8		0	1	
13 19	18 species PC	1 0	1	1	1	1	0	1	1	Ø	1	1	
14 20	76892 genus	1	ø I	1	11	1 1	1 0	1	8	3	0	1	
15 21	20 species PI	1 0	1 1	1		1	0	1	1	Ø	1		
16 22	267890 genus		0	1	11	1 1	1 0	1 1	8		0	1	
17 23	22 species SC	1 0	1	1	1	1	0	1	1	ø	1	1	
18 24	22 species SP	0	1	1	1	1	0	1	1	0	j	j	
19 25	22 species SH	0	1	1 1	1	1	0	1	1	0	İ	İ	
20 27	49928 species	HE	0	1	11	1 1	1 0	1 1			ø l	1	
21 28	49928 species	HE	0	1	11	1	1 0	1	j 3		øj	i	
22 29	28221 order	i	0	1	11	1	į ø	1	j 8	a j	0	į	
23 31	80811 family	i	0	1	11	1	1 0	1	0	3	0	İ	
24 32	31 qenus	1 0	1 1	1	1	1	0	1	0	0			
25 33	32 species MF	1 0	1	1	1	1	0	1	1	0	İ	i	
26 34	32 species MX	1 0	1	1	1	1	0	1	1	0	j	j	
27 35	32 species MM	1 0	1	1	1	1	0	1	1	0	İ	i	
28 38	47 species AD	1 0	1	1	1	1	0	1	1	0	j	j	
29 39	80811 family	1	0	1	11	1	1 0	1	8	3	0	· 1	
30 40	39 qenus	1 0	1 1	1	1	1	0	1	0	0			
31 41	40 species SA	1 0	1	1		1	0	1	1	0	İ	i	
32 42	39 genus	1 0	1	1		1	0	1	0	0	j	j	
33 43	42 species CF	1 0	1		1	1	0	1	1	0	İ	i	
34 44	39 genus	i ø	1		1	1	ø i	1	0	0	j	j	
35 45	44 species ML	į ø	1		1	1	øi	1	1	0			
36 47	39 genus	į ø	1		1	1	øi	1	0	0	j	j	
37 48	47 species AG		1		1	1	øi	1	1	0	i	i L	
	,	10		10							i.	*	1 1

Retrieve NCBI Data

- URLLIB + TQDM
- Caching
 - MD5

```
(env) [chance@yotsugi Taxa]$ python main.py
Checking for cached taxa data... Not found
Downloading and Preparing data...
taxdmp.zip: 64%| | 31.0M/48.1M [00:20<00:18, 906kBytes/s]
```

Figure 9: retrieving data

Parsing into Tree

CSV Parsing

NetworkX

pyplot slow

2 2	1	131567	superki	ngdor	n				0		0		11	1	0		0		0		0		0		- 1	
3 6	1	335928	genus	Ī		1	Ø		1		11	1	1	1	Ø		1		0	1	Ø	-				
4 7		6	species	AC	1	0		1		11		1		0		1		1		Ø						
5 9	1	32199	species		BA		0		1		11	1	1	1	0		1		1		0					
6 10		1706371					0		1		11		1		0		1		0		Ø					
7 11	1	1707	species		CG	1	0		1		11		1	1	0		1	1	1		0					
8 13		203488	genus				Ø		1		11		1	1	Ø		1		Ø		Ø					
9 14	1	13	species	DT		Ø		1		11		1		Ø	1	1		1		Ø						
10 16		32011	genus			1	0		1		11		1	1	0		1		0		0					
11 17	1	16	species	MM	1	0		1	1	11		1	1	0	1	1		1		0			1			
12 18		213421	genus			1	0		1		11		1		0		1		0		Ø					
13 19	1	18	species	PC		Ø		1	1	11		1		0	. 1	1		1		Ø			1			
14 20		76892	genus			4	Ø		1		11		1		0		1		Ø		Ø					
15 21	1	20	species	ΡI		Ø		1		11	A	1		0		1		1		0						
16 22		267890	genus			1	0		1		11	_	1		0		1		0		0					
17 23	1	22	species	SC	1	0	1	1		11		1		0		1	. 1	1		0						
18 24	1	22	species	SP	1	0	1	1	1	11		1		0		1	-1	1		Ø			1			
19 25	1	22	species	SH		Ø		1		11		1		0		1		1		0						
20 27		49928	species		HE	1	0		1		11		1		0		1		1		0					
21 28	1	49928	species		HE	1	0		1		11	1	1		0	-1	1	1	1	1	0					
22 29	1	28221	order				0		1		11	1	1		0		1		0		0					
23 31	1	80811	family			1	0		1		11		1		0		1	1	0	1	Ø					
24 32		31	genus		1	Ø		1		11		1		0		1		0		Ø			- 1			
25 33	1	32	species	MF		Ø		1	1	11		1		0		1		1		0			1			
26 34		32	species	MX		Ø		1		11		1	-1	0		1		1		Ø						
27 35	1	32	species	MM	1	0		1	1	11		1		0		1		1		0						
28 38		47	species	AD		0		1		11		1		0		1		1		0			1			
29 39	1	80811	family			1	0		1		11	1	1	1	0		1	1	0	1	Ø					
30 40		39	genus			Ø		1		11		1		Ø		1		0		Ø			-			
31 41	1	40	species	SA		0		1	1	11		1		0	1	1		1		0						
32 42		39	genus			0		1		11		1		Ø		1		0		Ø			1			
33 43	1	42	species	CF	1	0		1	1	11		1		0	1	1	- 1	1		0						
34 44		39	genus			0		1		11		1		0		1		0		0						
35 45		44	species	ML		0		1	1	11		1		0		1		1		Ø						
36 47		39	genus			0		1		11		1		0		1		Ø		Ø						
37 48		47	species	AG		0		1		11		1		0		1		1		0						
																								1	, 1	Тор

Figure 10: Taxonomy nodelist

Challenges and Plans

- Slow Plot Generation
 - More Power!
 - Gephi
 - Subtrees

- Taxa IDs
 - Name Associations

- Analysis
 - PageRank
 - Node Distributions

- QOL Improvements
 - Name lookup
 - Global tree caching

Figure 11: names.dmp

Figure 12: Monsoon Logo


```
cellular organisms
                                                                                                                                                                                                                                                                                                                                                   eukaryotes
                                                                                                                                                                                                                                                                                                                                    opisthokonts
                                                                                                                                                                                                                                                                                 multicellular animals
                                                                                                                                                                                                                                                                                                                     Eumetazoa
horsesticelication discontinuo de la continuo de la
                                                                                                                                                                                                                                                                                                                                                                                                                                                              bony vertebrates
Sarcopterygii
Dipnotetrapodomorpha
                                                                                                                                                                                                                                                                                                                                                                                Theriaments Haswell 1897
unclassified Mammallagreet beria
Homo sapiens/Rattus norvegicus xenograents and rabbits
mice and others
```

GitHub

https://github.com/bioinformatics-spr19/Taxa

In conclusion

• Taxonomy is a work in progress.

Thank You

