- (a) Show that for each function $f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ there exists a function $g: \mathbb{Q} \to \mathbb{R}$ such that $f(x,y) \leq g(x) + g(y)$ for all $x,y \in \mathbb{Q}$.
- $f(x,y) \leq g(x) + g(y)$ for all $x,y \in \mathbb{Q}$. (b) Find a function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ for which there is no function $g: \mathbb{R} \to \mathbb{R}$ such that $f(x,y) \leq g(x)$

q(x) + q(y) for all $x, y \in \mathbb{R}$.