(5M)

I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2019 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

(Com. to ME, AE, AME, Min E, MET)

Time: 3 hours Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) What is meant by unilateral and bilateral circuit? (2M)
 - b) What is the main necessity of using starter in the motor circuit? (2M)
 - c) What is the main purpose of conducting OC and SC tests in a transformer? (2M)
 - d) Why the synchronous motor is called as constant speed motor? (2M)
 - e) What are the losses in the induction motor? (2M)
 - f) In the full bridge diode circuit, if one diode is open what is the dc output voltage? (2M)
 - g) A transistor has a collector current of 2 mA. If the current gain is 120 what is the (2M) base current?

PART-B

2. a) Using the KCL and KVL equations, find the V_{ab} in the following circuit. (5M)

b) Find R_{AB} in the following circuit using star-delta transformation.

c) Two 6 μ F capacitors are connected in series with one having a capacitance of 12 μ F. Find the total equivalent circuit capacitance. What capacitance must be added in series to obtain a capacitance of 1.2 μ F?

_			
3. a	a)	Describe how the speed of the dc motor can be controlled above rated speed.	(7M)

- b) A dc generator has an armature e.m.f of 100 V when the useful flux per pole is 20 (7M) mWb and the speed is 800 r.p.m. Calculate the generated e.m.f (i) with the same rated flux and a speed of 1000 r.p.m (ii) with a flux per pole of 25 mWb and a speed of 900 r.p.m.
- 4. a) Explain the various losses in a transformer. Describe how each loss varies with the load current, supply voltage and frequency.
 - b) A single-phase transformer has 500 turns in the primary winding. When it is connected to a 1-φ, 120 V, 60 Hz power supply, the no-load current is 1.6A and the no-load power is 80 W. Neglect the winding resistance and leakage reactance of the winding. Calculate
 - (i) The core loss current, I_c.
 - (ii) The magnetizing current, I_m.
 - (iii) The peak value of the core flux, Φ_{max} .
 - (iv) The magnetizing impedance Z_m,
- 5. a) Give the constructional details of synchronous machine and then describe the (7M) machine principle to operate as a generator and motor.
 - b) Describe briefly torque-slip characteristics of induction motor. Based on these (7M) characteristics what are its applications?
- 6. a) Describe the operation of PN junction diode by including majority and minority (7M) carriers in your discussion.
 - b) Explain the operation of OPAMP as a non-inverting and inverting amplifier. (7M)
- 7. a) Describe the NPN transistor operation in the common base configuration. What (7M) are its operating regions?
 - b) An amplifier has mid-band voltage gain of 1000. If the cut-off frequencies are f_1 =100 Hz and f_2 =120 Hz, what does the frequency response look like? What is the voltage gain if the input frequency is 20 Hz and 300 kHz?