Logika i teoria mnogości

Ćwiczenia 13

Relacje równoważności

Definicja. Relację $R \subset A^2$ nazywamy relacją równoważności na zbiorze A, jeżeli relacja R jest zwrotna (na zbiorze A), symetryczna i przechodnia.

zwrotna na $A: \forall_{x \in A}(xRx)$ symetryczna: $\forall_{x,y}(xRy \Rightarrow yRx)$ przechodnia: $\forall_{x,y,z}(xRy \land yRz \Rightarrow xRz)$

Definicja. Niech R będzie relacją równoważności na zbiorze A.

Dla elementu $x \in A$ określamy zbiór:

 $[x]_R = \{y : xRy\}$ (równoważnie: $[x]_R = \{y \in A : xRy\}$

Zbiór $[x]_R$ nazywamy klasą abstrakcji relacji równoważności R wyznaczoną przez element x, zwany reprezentantem tej klasy.

Przykłady.

- (1) Niech $R = I_A$. Dla $x \in A$ $[x]_R = \{x\}$.
- (2) Niech $R \subset \mathbb{R} \times \mathbb{R}$ będzie określona następująco: $xRy \Leftrightarrow |x| = |y|$ dla $x,y \in \mathbb{R}$.

Wtedy
$$[0]_R = \{0\}$$
 oraz dla $x \neq 0$ $[x]_R = \{x, -x\}.$

(3) Niech R będzie relacją równoważności na zbiorze wszystkich ludzi określoną tak: xRy wtw, gdy x i y są tej samej płci.

Wtedy dla dowolnej kobiety x, $[x]_R$ jest zbiorem wszystkich kobiet, a dla dowolnego mężczyzny x, $[x]_R$ jest zbiorem wszystkich mężczyzn.

Zadanie 1. Dany jest zbiór $X = \{a, b, c, d\}$ i relacja $R \subset X \times X$. Sprawdzić, czy jest to relacja równoważności, a jeśli tak, to wyznaczyć klasy abstrakcji tej relacji.

- (a) $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, a \rangle\}$
- (b) $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle c, a \rangle, \langle c, d \rangle, \langle d, a \rangle, \langle d, c \rangle\}$
- (c) $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle c, d \rangle, \langle d, c \rangle\}$

Zadanie 2. Zbadać, czy podane relacje są relacjami równoważności:

- (a) relacja podzielności na zbiorze liczb naturalnych bez zera,
- (b) relacja na zbiorze liczb naturalnych większych od 1 określona następująco:

$$mRn \Leftrightarrow nwd(m,n) > 1$$

Zadanie 3. Wyznaczyć relacje równoważności:

- (a) na zbiorze 2-elementowym,
- (b) na zbiorze 3-elementowym,
- (c) na zbiorze 4-elementowym.