Agrupamento espectral e Isomap

Piero Conti Kauffmann

IME-USP

26 de Junho de 2019

Grafos valorados

Seja G = (V, E, W) um grafo valorado com vértices $V = \{v_1, ..., v_n\}$

- Definimos os elementos w_{ij} da matriz de adjâcencia ponderada do grafo $W_{n\times n}$ como
 - $w_{ij} = 0$ se não existir uma arresta $v_i v_j$
 - $w_{ij} > 0$ caso contrário
- Definimos a matriz de grau do grafo G como $D_{n \times n} = diag(d_1, ..., d_n)$. Onde $d_i = \sum_{j=1}^n w_{ij}$

Para o grafo da figura, assumindo $w_{ij} \in \{0,1\}$ e $w_{ii} = 0$

$$W = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} e D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Grafos de similaridades e dissimilaridades

O peso w_{ij} é utilizado para representar algum tipo de relação entre os vértices v_i e v_j

- Grafos de similaridade
 - w_{ij} representa a similaridade entre os dois vértices
- Grafos de dissimilaridades (ou grafos de distância)
 - ullet w_{ij} representa a dissimilaridade (ou distância) entre os dois vértices

Os dois modelos que iremos ver utilizam desses dois conceitos para agrupar pontos no espaço

Construção de um grafo de similaridades a partir de pontos no \mathbb{R}^p

Método da ϵ -vizinhança

 \bullet Todos os pares de pontos no conjunto de dados cujas distâncias sejam menores que ϵ são conectados

Método dos k-vizinhos mais próximos

 Cada ponto no conjunto de dados é conectado aos seus k vizinhos mais próximos

Método da função de similaridade

- Todos os pontos são conectados entre si, mas as similaridades entre cada par de pontos w_{ij} é obtida segundo uma função *Kernel* de similaridade $s: \mathbb{R}^p \times \mathbb{R}^p \to [0,1]$
 - Exemplo: $s(x_i, x_j) = exp(- || x_i x_j ||^2 / (2\sigma^2))$

Método da ϵ -vizinhança - Iris

Laplaciano de um grafo

O Laplaciano de um grafo (L) é uma matriz definida em termos de W e D que carrega propriedades importantes sobre o grafo.

As definições de Laplacianos mais utilizadas são:

- Não normalizado: L = D W
- Normalizado: $L_n = D^{-1/2} L D^{-1/2}$
- Random-walk: $L_{rw} = I D^{-1}W = I P$
 - Nesta definição, assume-se que $w_{ii}=1$, para i=1,...,n
 - A matriz $P = D^{-1}W$ pode ser vista como a matriz de transição de um passeio aleatório no grafo G, onde $p_{ij} = \frac{w_{ij}}{d}$.

Propriedades principais do Laplaciano L_{rw}

- *L_{rw}* é simétrica e semi positiva definida
- O número de autovalores iguais a zero de L_{rw} é igual ao número de conjuntos de vertices disjuntos não conexos.

Figura: $\lambda_1 = \lambda_2 = 0$

- Se u é um autovetor da matriz de transição P do passeio aleatório ⇔ u é autovetor de L_{rw}
 - Isso nos permite interpretar os autovetores de L_{rw} em termos de distribuições

Problema de agrupamento em termos de um passeio aleatório no grafo para

Sejam $A_1,...,A_k \subset V$ conjuntos disjuntos de vértices do grafo G.

Definimos distribuição π^A como

$$\pi_i^A = \begin{cases} 1/|A|, & \text{se } i \in A \\ 0, & \text{caso contrário} \end{cases}$$

Procuramos π^A que minimize a probabilidade do passeio aleatório sair ou entrar no conjunto A , $C_A = P(A|A^C) + P(A^C|A)$

Pode ser provado que os k-primeiros autovetores de L_{rw} são uma solução aproximada para o problema, relaxando-se algumas suposições sobre π^A

Algoritmo de agrupamento espectral

Algoritmo de agrupamento espectral para pontos no \mathbb{R}^p

- Oriar um grafo de similaridades entre os pontos do conjunto de dados
 - Usando o métodos da ϵ -vizinhança, por exemplo
- ② Calcular o Laplaciano $L_{rw} = I D^{-1}W = I P$
- **3** Extrair os k-primeiros autovetores de L_{rw} , excluindo-se o primeiro autovetor
- Aplicar o método das K-médias na matriz de dados dos k-autovetores extraidos

Exemplos

① Do conjunto de dados de 373 pontos no \mathbb{R}^2 , utilizando o método da ϵ -vizinhança, obtemos um grafo de similaridades

② Obtemos os 2 primeiros autovetores de L_{rw} . Após descartar o primeiro autovetor, ficamos com o segundo autovetor

3 Aplicamos o método das K-médias (com K=2) nos valores do segundo autovetor

ISOMAP

 Alguns métodos alternativos exploram o conceito de grafos de dissimilaridade (distâncias)

- O algoritmo ISOMAP, assim como o modelo de agrupamento espectral, cria um grafo a partir de pontos espalhados no R^p (usando algum dos três métodos que vimos acima).
- A diferença é que os pesos das arestas w_{ij} são definidos como a distância euclidiana entre os dois pontos x_i, x_j. Isto é,

$$w_{ij} = \parallel x_i - x_j \parallel^2$$

Distância geodésica em um grafo

Caminho possíveis entre dois vértices

Seja C_{ij} o conjunto de caminhos possíveis no grafo partindo-se do vértice v_i ao vértice v_j .

A distância geodésica entre dois vértices v_i e v_j é definida como a distância percorrida do menor caminho possível unindo v_i e v_j , isto é

$$d(i,j) = min_{K \in C_{ij}} \left(\sum_{(k_1 - k_2) \in K} w_{k_1 k_2} \right)$$

ISOMAP

Algoritmo

- Criar um grafo de distâncias entre os pontos do conjunto de dados
 - Usando o métodos da ϵ -vizinhança, por exemplo
 - Os pesos w_{ij} dos vértices que foram conectados assumem o valor da distância euclidiana entre estes dois pontos, $d(x_i, x_i)$
- ② Obter a matriz de distâncias geodésicas $D_{n\times n}$
- **3** Extrair coordenadas principais de $D_{n\times n}$ usando Escalonamento Multidimensional
- Aplicar o método das K-médias nos pontos projetados nas coordenadas principais

Exemplo

A distância geodésica entre os vértices 1 e 4 é

$$w_{12} + w_{23} + w_{34} = d(x_1, x_2) + d(x_2, x_3) + d(x_3, x_4)$$

Exemplo

Referências

1 Luxburg, U. (2007), A Tutorial on Spectral Clustering

2 Lovàsz, L. (1993). Random walks on graphs: A Survey

Tenenbaum, J. (2000). A Global Geometric Framework for Nonlinear Dimensionality Reduction