CONVEXIFICATION AND GLOBAL OPTIMIZATION

Nick Sahinidis

University of Illinois at Urbana-Champaign

Chemical and Biomolecular Engineering

MIXED-INTEGER NONLINEAR PROGRAMMING

(P)
$$\min \ f(x,y)$$
 s.t. $g(x,y) \leq 0$ $x \in \mathbb{R}^n$ $y \in \mathbb{Z}^p$

Objective Function
Constraints
Continuous Variables
Integrality Restrictions

Challenges:

• Multimodal Objective

Integrality

Nonconvex Constraints

MINLP ALGORITHMS

Branch-and-Bound

- Bound problem over successively refined partitions
 - » Falk and Soland, 1969
 - » McCormick, 1976

Convexification

- Outer-approximate with increasingly tighter convex programs
- Tuy, 1964
- Sherali and Adams, 1994

Decomposition

- Project out some variables by solving subproblem
 - » Duran and Grossmann, 1986
 - » Visweswaran and Floudas, 1990

Our approach

- Branch-and-Reduce
 - » Ryoo and Sahinidis, 1995, 1996
 - » Shectman and Sahinidis, 1998
- Constraint Propagation & Duality-Based Reduction
 - » Ryoo and Sahinidis, 1995, 1996
 - » Tawarmalani and Sahinidis, 2002
- Convexification
 - » Tawarmalani and Sahinidis, 2001, 2002
- Tawarmalani, M. and N. V. Sahinidis, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming, Kluwer Academic Publishers, Nov. 2002.

BRANCH-AND-BOUND

a. Lower Bounding

b. Upper Bounding

c. Domain Subdivision

d. Search Tree

FACTORABLE FUNCTIONS

(McCormick, 1976)

Definition: Factorable functions are recursive compositions of sums and products of functions of single variables.

Example:
$$f(x, y, z, w) = \sqrt{\exp(xy + z \ln w)z^3}$$

$$x_1 = xy$$
 $x_2 = \ln(w)$
 $x_3 = zx_2$
 $x_4 = x_1 + x_3$
 $x_5 = \exp(x_4)$
 $x_6 = z^3$
 $x_7 = x_5x_6$
 $f = \sqrt{x_7}$

RATIO: THE FACTORABLE RELAXATION

$$z \geq x/y$$
 $y^L \leq y \leq y^U$ $x^L \leq x \leq x^U$

 $egin{aligned} oldsymbol{zy} &\geq x \ y^L \leq y \leq y^U \ x^L/y^U \leq z \leq x^U/y^L \ x^L \leq x \leq x^U \end{aligned}$

Relaxing

$$egin{aligned} z & \geq (xy^U - yx^L + x^L y^U)/y^{U^2} \ z & \geq (xy^L - yx^U + x^U y^L)/y^{L^2} \ y^L & \leq y \leq y^U \ x^L & \leq x \leq x^U \end{aligned}$$

Simplifying

$$egin{split} & zy - (z - x^L/y^U)(y - y^U) \geq x \ & zy - (z - x^U/y^L)(y - y^L) \geq x \ & y^L \leq y \leq y^U \ & x^L \leq x \leq x^U \end{split}$$

TIGHT RELAXATIONS

Convex/concave envelopes often finitely generated

CONVEX EXTENSIONS OF L.S.C. FUNCTIONS

Definition: A function f(x) is a convex extension of $g(x):C\mapsto R$ restricted to $X\subseteq C$ if

- f(x) is convex on conv (X),
- f(x) = g(x) for all $x \in X$.

Example: The Univariate Case

- f(x) is a convex extension of g(x) restricted
 to {I, n, o, q}
- Convex extension of g(x) restricted to {I, m,
 n, o, p, q} cannot be constructed

THE GENERATING SET OF A FUNCTION

Definition: The generating set of the epigraph of a function g(x) over a compact convex set C is defined as

$$G_C^{ ext{epi}}(g) = igg\{ x \ igg| \ (x,y) \in \mathsf{vert}igg(ext{epi conv}\left(g(x)
ight)igg) igg\},$$

where $vert(\cdot)$ is the set of extreme points of (\cdot) .

Examples:

$$g(x) = -x^2$$

$$G_{[0,6]}^{\mathrm{epi}}(g) = \{0\} \cup \{6\}$$

$$g(x) = xy$$

$$G^{\mathsf{epi}}_{[1,4]^2}(g) = \{1,1\} \cup \{1,4\} \cup \{4,1\} \cup \{4,4\}$$

TWO-STEP CONVEX ENVELOPE CONSTRUCTION

1. Identify generating set

- Key result: A point in set X is not in the generating set if it is not in the generating set over a neighborhood of X that contains it
- 2. Use disjunctive programming techniques to construct epigraph over the generating set
 - Rockafellar (1970)
 - Balas (1974)

IDENTIFYING THE GENERATING SET

Characterization: $x_0 \not\in G_C^{\operatorname{epi}}(g)$ if and only if there exists $X\subseteq C$ and $x_0\not\in G_X^{\operatorname{epi}}(g)$.

Example I: X is linear joining (x^L, y^0) and (x^U, y^0)

Example II: X is ϵ neighborhood of (x^0, y^0)

CONVEX ENVELOPE OF x/y

Second Order Cone Representation:

$$egin{aligned} \left\|inom{2(1-\lambda)\sqrt{x^L}}{z_p-y_p}
ight\} &\leq z_p+y_p \ \left\|inom{2\lambda\sqrt{x^U}}{z-z_p-y+y_p}
ight\} &\leq z-z_p+y-y_p \ \left\|y_p \geq y^L(1-\lambda), y_p \geq y-y^U\lambda \ y_p \leq y^U(1-\lambda), y_p \leq y-y^L\lambda \ x=(1-\lambda)x^L+\lambda x^U \ z_p, u,v \geq 0, z_c-z_p \geq 0 \ 0 \leq \lambda \leq 1 \end{aligned}$$

Comparison of Tightness:

Maximum Gap: Envelope and Factorable Relaxation:

$$\begin{array}{ll} \text{Point:} & \left(x^U, y^L + \frac{y^L (y^U - y^L) (x^U y^U - x^L y^L)}{x^U y^{U^2} - x^L y^{L^2}} \right) \\ \\ \text{Gap:} & \frac{x^U (y^U - y^L)^2 (x^U y^U - x^L y^L)^2}{y^L y^U (2x^U y^U - x^L y^L - x^U y^L) (x^U y^{U^2} - x^L y^{L^2})} \end{array}$$

ENVELOPES OF MULTILINEAR FUNCTIONS

Multilinear function over a box

$$M(x_1,...,x_n) = \sum_{t} a_t \prod_{i=1}^{p_t} x_i, -\infty < L_i \le x_i \le U_i < +\infty, i = 1,...,n$$

Generating set

$$\operatorname{vert}\left(\prod_{i=1}^{n}[L_{i},U_{i}]\right)$$

 Polyhedral convex encloser follows trivially from polyhedral representation theorems

FURTHER APPLICATIONS

$$M(x_1,x_2,\cdots x_n)/(y_1^{a_1}y_2^{a_2}\dots y_m^{a_m})$$

where

 $M(\cdot)$ is a multilinear expression

$$y_1,\ldots,y_m\neq 0$$

$$a_1,\ldots,a_m\geq 0$$

Example: $(x_1x_2 + x_3x_2)/(y_1y_2y_3)$

$$f(x)\sum_{i=1}^n\sum_{j=-p}^k a_{ij}y_i^j$$

where

f is concave

$$a_{ij} \geq \mathbf{0}$$
 for $i=1,\ldots,n;\ j=-p,\ldots,k$ $y_i > \mathbf{0}$

Example: $x/y + 3x + 4xy + 2xy^2$

PRODUCT DISAGGREGATION

Consider the function:

$$\phi(x; y_1, \dots, y_n) = a_0 + \sum_{k=1}^n a_k y_k + x b_0 + x \sum_{k=1}^n b_k y_k$$

Let

$$H = [x^{L}, x^{U}] \times \prod_{k=1}^{n} [y_{k}^{L}, y_{k}^{U}]$$

Then

$$convenv_{H} \phi = a_{0} + \sum_{k=1}^{n} a_{k} y_{k} + x b_{0} +$$

$$\sum_{k=1}^{n} convenv_{[y_{k}^{L}, y_{k}^{U}] \times [x^{L}, x^{U}]} (b_{k} y_{k} x)$$

Disaggregated formulations are tighter

POOLING: p FORMULATION

min
$$\overbrace{6x_{11}+16x_{21}+10x_{12}}^{\text{cost}} - \overbrace{9(y_{11}+y_{21})}^{\text{Y-revenue}} - \overbrace{15(y_{12}+y_{22})}^{\text{Y-revenue}}$$
s.t. $q = \frac{3x_{11}+x_{21}}{y_{11}+y_{12}}$ Sulfur Mass Balance
$$x_{11}+x_{21}=y_{11}+y_{12}\\x_{12}=y_{21}+y_{22}$$
 Mass balance
$$\frac{qy_{11}+2y_{21}}{y_{11}+y_{21}} \leq 2.5\\ \frac{qy_{12}+2y_{22}}{y_{12}+y_{22}} \leq 1.5$$
 Quality Requirements
$$y_{11}+y_{21} \leq 100\\y_{12}+y_{22} \leq 200$$
 Demands

POOLING: q FORMULATION

min
$$\overbrace{6(y_{11}q_{11}+y_{12}q_{11})+16(y_{11}q_{21}+y_{12}q_{21})+10(z_{31}+z_{32})}^{X-\text{revenue}}$$
 $\underbrace{Y-\text{revenue}}_{-9(y_{11}+y_{21})-15(x_{12}+x_{22})}^{X-\text{revenue}}$ S.t. $q_{11}+q_{21}=1$ Mass Balance $-0.5z_{31}+3y_{11}q_{11}+y_{11}q_{21}\leq 2.5y_{11} \ 0.5z_{32}+3y_{12}q_{11}+y_{12}q_{21}\leq 1.5y_{12}$ Quality Requirements $y_{11}+z_{31}\leq 100 \ y_{12}+z_{32}\leq 200$ Demands

POOLING: pq FORMULATION

PROOF VIA CONVEX EXTENSIONS

With Convexification Constraints, the convex envelope of

$$\sum_{i=1}^{I} C_{ik} q_{il} y_{lj}$$

over

$$egin{aligned} \sum_{i=1}^{I} q_{il} &= 1 \ q_{il} &\in [0,1] \ y_{lj} &\in [y_{lj}^{L}, y_{lj}^{U}] \end{aligned}$$

is included. In the example, the convex envelopes of

$$3q_{11}y_{11} + q_{21}y_{11}$$
 and $3q_{11}y_{12} + q_{21}y_{12}$

over

$$q_{11}+q_{12}=1$$
 $q_{11},q_{12}\in [0,1]$ $y_{11}\in [0,100], y_{12}\in [0,200]$

are generated in this way.

OUTER APPROXIMATION

Motivation:

- Convex NLP solvers are not as robust as LP solvers
- Linear programs can be solved efficiently

Outer-Approximation:

Convex Functions are underestimated by tangent lines

THE SANDWICH ALGORITHM

An adaptive strategy

- Assume an initial outer-approximation
- Find point maximizing an error measure
- Construct underestimator at located point

TANGENT LOCATION RULES

Interval bisection

Slope Bisection

Maximum error rule

Chord rule

Angle bisection

Maximum projective error

QUADRATIC CONVERGENCE OF PROJECTIVE ERROR RULE

Theorem:

- Let $\phi(x_j)$ be a convex function over $[x_j^l, x_j^u]$ and ϵ_p the desired projective approximation error
- Outer-approximate $\phi(x_j)$ at the end-points
- At every iteration of the Sandwich Algorithm construct an underestimator at the point that maximizes the projective error of function with current outer-approximation.
- Let $k=(x_j^u-x_j^l)(x_j^{u*}-x_j^{l*})/\epsilon_p$
- Then, the algorithm needs at most

$$N(k) = \left\{ egin{array}{ll} 0 & k \leq 4 \ \lceil \sqrt{k} - 2
ceil, & k > 4 \end{array}
ight.$$

iterations.

Branch-and-REDUCE

Branch-And-Reduce Optimization Navigator

Components

- Modeling language
- Preprocessor
- Data organizer
- I/O handler
- Range reduction
- Solver links
- Interval arithmetic
- Sparse matrix routines
- Automatic differentiator
- IEEE exception handler
- Debugging facilities

Capabilities

- Core module
 - Application-independent
 - Expandable
- Fully automated MINLP solver
- Application modules
 - Multiplicative programs
 - Indefinite QPs
 - Fixed-charge programs
 - Mixed-integer SDPs
 - **–** ...
- Solve relaxations using
 - CPLEX, MINOS, SNOPT, OSL, SDPA, ...
- First on the Internet in March 1995
- On-line solver between October 1999 and May 2003
 - Solved eight problems a day
- Available under GAMS

BARON MODELING LANGUAGE

```
// INTEGER VARIABLE y1;
POSITIVE VARIABLES x1, x2, x4;
VARIABLE x3;
LOWER BOUNDS { x2:14.7; x3:-459.67; }
UPPER BOUNDS {
x1: 15.1; x2: 94.2;
x3: 80.0; x4: 5371.0;
}
EQUATIONS e1, e2;
e1: x4*x1 - 144*(80-x3) >= 0;
e2: x2-exp(-3950/(x3+460)+11.86) == 0;
OBJ: minimize 400*x1^{0.9} + 1000
    + 22*(x2-14.7)^1.2+x4;
```

POOLING PROBLEMS

Algorithm	Foul	ds '92	Ben-T	al '94	GOI	° '96	BAR	ON '99	BARC	ON '01	
Computer*	CDC 4340				HP9000/730		RS60	RS6000/43P		RS6000/43P	
Linpack	>	3.5			4	19	į	59.9	59	9.9	
Tolerance*					k	**	1	0^{-6}	10)-6	
Problem	N_{tot}	T_{tot}	N_{tot}	T_{tot}	N_{tot}	T_{tot}	N_{tot}	T_{tot}	N_{tot}	$T_{ m tot}$	
Haverly 1	5	0.7	3	-	12	0.22	3	0.09	1	0.09	
Haverly 2			3	-	12	0.21	9	0.09	1	0.13	
Haverly 3			3	-	14	0.26	5	0.13	1	0.07	
Foulds 2	9	3.0					1	0.10	1	0.04	
Foulds 3	1	10.5					1	2.33	1	1.70	
Foulds 4	25	125.0					1	2.59	1	0.38	
Foulds 5	125	163.6					1	0.86	1	0.10	
Ben-Tal 4			25	-	7	0.95	3	0.11	1	0.13	
Ben-Tal 5			283	-	41	5.80	1	1.12	1	1.22	
Adhya 1							6174	425	15	4.00	
Adhya 2							10743	1115	19	4.48	
Adhya 3							79944	19314	5	3.16	
Adhya 4							1980	182	1	0.97	

^{*} Blank indicates problem not reported or not solved

^{**} 0.05% for Haverly 1, 2, 3, 0.05% for Ben-Tal 4 and 1% for Ben-Tal 5

LOCAL vs. GLOBAL SEARCH

GUPTA-RAVINDRAN MINLPs

Problem	Obj.	T_{tot}	N_{tot}	N_{mem}
1	12.47	0.11	22	4
2	* 5.96	0.03	7	4
3	16.00	0.03	3	2
4	0.72	0.01	1	1
5	5.47	4.48	232	22
6	1.77	0.06	11	5
7	4.00	0.03	3	2
8	23.45	0.40	7	2
9	-43.13	0.58	37	7
10	-310.80	0.06	12	4
11	-431.00	0.12	34	8
12	-481.20	0.29	67	12

Problem		Obj.	T_{tot}	N_{tot}	N_{mem}
13		-585.20	1.13	197	28
14	*	-40358.20	0.05	7	4
15		1.00	0.05	11	3
16		0.70	0.05	23	12
17		-1100.40	42.2	3489	399
18		-778.40	8.85	993	121
19		-1098.40	133	6814	833
20	*	230.92	6.58	143	18
21	*	-5.68	0.21	54	5
22		6.06	2.36	171	39
23		-1125.20	1152	39918	4678
24		-1033.20	4404	124282	15652

^{*} Indicates that a better solution was found than reported in Gupta and Ravindran, Man. Sci., 1985.

MOLECULAR DESIGN

AUTOMOTIVE REFRIGERANT DESIGN (Joback and Stephanopoulos, 1990)

- Higher enthalpy of vaporization (ΔH_{ve}) reduces the amount of refrigerant
- Lower liquid heat capacity (C_{pla}) reduces amount of vapor generated in expansion valve
- Maximize ∆H_{ve}/ C_{pla}, subject to: ∆H_{ve} ≥ 18.4, C_{pla} ≤ 32.2

FUNCTIONAL GROUPS CONSIDERED

Acyclic Groups	Cyclic Groups	Halogen Groups	Oxygen Groups	Nitrogen Groups	Sulfur Groups
−CH ₃	r — CH ₂ — r	– F	– OH	- NH ₂	– SH
- CH ₂ -	; > CH- '	– CI	- 0-	> NH	- S-
> CH-	r > CH- r	– Br	r - 0- r	$_{\mathrm{r}}^{\mathrm{r}}>NH$	r — S— r
> C <	$_{r}^{r}>C<_{r}^{r}$	-	> CO	> N-	
$= CH_2$	$_{\rm r}>{\sf C}<^{\rm r}_{\rm r}$		r > CO	= N-	
= CH-	> C < r		– CHO	$^{\rm r}$ = N $ ^{\rm r}$	
= C <	' = CH- '		– СООН	– CN	
= C =	$^{r} = C < ^{r}_{r}$		- COO-	$-NO_2$	
≡ CH	$^{r} = C < _{r}$		= 0		
≡ C−	$= C < r \atop r$				

Number of Groups = 44

Maximum Selection Size = 15

Candidates = 39, 895, 566, 894, 524

PROPERTY PREDICTION

$$\begin{split} T_b &= 198.2 + \sum_{i=1}^{N} n_i T_{bi} \\ T_c &= \frac{T_b}{0.584 + 0.965 \sum_{i=1}^{N} n_i T_{ci} - (\sum_{i=1}^{N} n_i T_{ci})^2} \\ P_c &= \frac{1}{(0.113 + 0.0032 \sum_{i=1}^{N} n_i a_i - \sum_{i=1}^{N} n_i P_{ci})^2} \\ C_{p0a} &= \sum_{i=1}^{N} n_i C_{p0ai} - 37.93 + \left(\sum_{i=1}^{N} n_i C_{p0bi} + 0.21\right) T_{\text{avg}} \\ &+ \left(\sum_{i=1}^{N} n_i C_{p0ci} - 3.91 \times 10^{-4}\right) T_{\text{avg}}^2 \\ &+ \left(\sum_{i=1}^{N} n_i C_{p0di} + 2.06 \times 10^{-7}\right) T_{\text{avg}}^3 \\ T_{\text{br}} &= \frac{T_b}{T_c} \\ T_{\text{cutr}} &= \frac{T_{\text{cutr}}}{T_c} \\ T_{\text{cutr}} &= \frac{T_{\text{cutr}}}{T_c} \\ &= -5.97214 - \ln\left(\frac{P_c}{1.013}\right) + \frac{6.09648}{T_{\text{br}}} + 1.28862\ln(T_{\text{br}}) \\ &- 0.169347 T_{\text{br}}^6 \end{split}$$

$$\begin{split} \beta &= 15.2518 - \frac{15.6875}{T_{\rm br}} - 13.4721 \ln(T_{\rm br}) + 0.43577 T_{\rm br}^6 \\ \omega &= \frac{\alpha}{\beta} \\ C_{\rm pla} &= \frac{1}{4.1868} \left\{ C_{\rm p0a} + 8.314 \left[1.45 + \frac{0.45}{1 - T_{\rm avgr}} + 0.25\omega \right. \right. \\ &\left. \left. \left(17.11 + 25.2 \frac{(1 - T_{\rm avgr})^{1/3}}{T_{\rm avgr}} + \frac{1.742}{1 - T_{avgr}} \right) \right] \right\} \\ \Delta H_{\rm vb} &= 15.3 + \sum_{i=1}^{N} n_i \Delta H_{\rm vbi} \\ \Delta H_{\rm ve} &= \Delta H_{\rm vb} \left(\frac{1 - T_{\rm evp}/T_c}{1 - T_b/T_c} \right)^{0.38} \\ \Delta H_{\rm ve} &= \frac{T_{br} \ln(P_c/1.013)}{1 - T_{br}} \\ G &= 0.4835 + 0.4605h \\ k &= \frac{h/G - (1 + T_{br})}{(3 + T_{br})(1 - T_{br})^2} \\ \ln P_{\rm vpcr} &= \frac{-G}{T_{\rm cndr}} \left[1 - T_{\rm cndr}^2 + k(3 + T_{\rm cndr})(1 - T_{\rm cndr})^3 \right] \\ \ln P_{\rm vper} &= \frac{-G}{T_{\rm cvpr}} \left[1 - T_{\rm evpr}^2 + k(3 + T_{\rm evpr})(1 - T_{\rm evpr})^3 \right] \\ n_i &\text{integer} \end{split}$$

MOLECULAR STRUCTURES

	Molecular Structure	$\frac{\Delta H_{ve}}{C_{pla}}$
FNO	F - N = O	1.2880
FSH	F – SH	1.1697
CH₃Cl	CH₃ − CI	1.1219
CIFO	(CI-)(-O-)(-F)	0.9822
C ₂ HClO ₂	O = C < (-CH = O)(-CI)	1.1207
C ₃ H ₄ 0	$CH_3 - CH = C = O$	0.9619
C ₃ H ₄	$CH_3-C\equivCH$	0.9278
C_2F_2	$F-C\equivC-F$	0.9229
CH ₂ CIF	F – CH2 – CI	0.9202
C ₂ HO ₂ F	F-O-CH=C=O	0.8705
C ₃ H ₄	$CH_2 = C = CH_2$	0.8656
C_2H_6	CH₃ − CH₃	0.8632
C ₃ H ₃ FO	(F-)(CH3-) > C = C = O	0.8531
NHF ₂	F — NH — F	0.8468
C ₂ HOF	$CH \equiv C - O - F$	0.8263

	Molecular Structure	$\frac{\DeltaH_{ve}}{C_{pla}}$
C ₃ H ₃ F	$CH \equiv C - CH_2 - F$	0.7802
CHF ₂ CI	(F-)(F-) > CH - CI	0.7770
C ₂ H ₃ OF	$CH_2 = CH - O - F$	0.7685
NF ₂ CI	(F-)(F-) > N - CI	0.7658
C ₂ H ₆ NF	(CH3-)(CH3-) > N-F	0.6817
N_2HF_3	(F-)(F-) > N - NH - F	0.6711
C ₂ H ₂ OF ₂	CH2 = C < (-O - F)(-F)	0.6705
$C_3H_2F_2$	$(F-)(F-) > CH - C \equiv CH$	0.6686
C ₂ HNF ₂	$CH \equiv C - N < (-F)(-F)$	0.6587
$C_3H_4F_2$	$(F-)(F-CH_2-)>C=CH_2$	0.6377
$C_3H_4F_2$	$(F-)(F-) > CH - CH = CH_2$	0.6263
$C_2H_3NF_2$	CH2 = CH - N < (-F)(-F)	0.6176
CH ₃ NOF ₂	$(F-)(CH_3-) > N-O-F$	0.6139
$C_3H_3F_3$	$(r > CH - r)_3(-F)_3$	0.5977

For CCl_2F_2 , $\Delta H_{ve}/C_{pla} \approx 0.57$

In 30 CPU minutes

FINDING THE K-BEST OR ALL FEASIBLE SOLUTIONS

Typically found through repetitive applications of branch-and-bound and generation of "integer cuts"

min
$$\sum_{i=1}^{4} 10^{4-i} x_i$$

s.t. $2 \le x_i \le 4$, $i = 1,...,4$
 x integer

BARON finds all solutions:

- No integer cuts
- Fathom nodes that are infeasible or points
- Single search tree
- 511 nodes; 0.56 seconds
- Applicable to discrete and continuous spaces

FINDING ALL or the K-BEST SOLUTIONS for CONTINUOUS PROBLEMS

Boon problem: 8 solutions (3.1 sec)

Robot problem: 16 solutions (0.03 sec)

BILINEAR (IN-)SEPARABILITY OF TWO SETS IN Rⁿ

Requires the solution of three nonconvex bilinear programs

WISCONSIN DIAGNOSTIC BREAST CANCER (WDBC) DATABASE

From Wolberg, Street, & Mangasarian, 1993

- 353 FNAs (Group 1)
 - 2 Classes:
 - » 188 Benign
 - » 165 Malignant
- 9 Cytological Characteristics:
 - Clump Thickness
 - Uniformity of Cell Size
 - Uniformity of Cell Shape
 - Marginal Adhesion
 - Single Epithelial Cell Size
 - Bare Nuclei
 - Bland Chromatin
 - Normal Nucleoli
 - Mitoses
- 300 FNAs (Groups 2-8)
 - Used for testing

RESULTS ON WDBC DATABASE

	Rows	Columns	Bilinear Terms	CPU sec
BLP1	706	350	165	11
BLP2	706	396	188	27
BLP3	1412	1432	1412	460

99% accuracy on testing set

- LP-based method has 95% accuracy
- Millions of women screened every year

Range Reduction

Finiteness

Convexification

BRANCH-AND-REDUCE

Engineering design

Supply chain operations

Chem-,
Bio-,
Medical
Informatics

ACKNOWLEDGEMENTS

- N. Adhya (i2)
- S. Ahmed
 - Georgia Institute of Technology
- Y. Chang
- K. Furman (ExxonMobil)
- V. Ghildyal (Sabre)
- M. L. Liu
 - National Chengchi University
- G. Nanda (Sabre)
- · L. M. Rios
- H. Ryoo
 - University of Illinois at Chicago
- J. Shectman
- M. Tawarmalani
 - Purdue University
- A. Vaia (BPAmoco)
- R. Vander Wiel (3M)
- Y. Voudouris (i2)
- M. Yu
- W. Xie

- American Chemical Society
- DuPont
- ExxonMobil Educational Foundation
- ExxonMobil Upstream Research Center
- Lucent Technologies
- Mitsubishi
- National Science Foundation
 - Bioengineering and Environmental Sciences
 - Chemical and Thermal Systems
 - Design and Manufacturing
 - Electrical and Communication Systems
 - Operations Research
- TAPPI
- University of Illinois at U-C
 - Research Board
 - Chemical Engineering
 - Mechanical and Industrial Engineering
 - Computational Science and Engineering