данные

описательные статистики

анализ данны

типология

одновыборочны

доверительный :

t-retr

биномиальный тест

двухвыборочны

typer

Манн—Уитни,

Уилкоксон

критерий Мак Немај

ыбор теста

послеслови

Описательная и классическая статистика в R

Г. Мороз

lанные

данные

количественные

 $a < -\sin(1:100)$

- непрерывные
- дискретные
- номинативные / категориальные

Бывает, имеет смысл перевести количественные данные в категориальные, т. е. составить группы, в которые будут попадать те или иные значения. Как обосновать те или иные границы — дело исследователя. Зная границы, легко узнать, сколько наблюдений в каждой из групп:

```
b < -c(-1, -0.5, 0, 0.5, 1)
table(cut(a, breaks = b))
 (-1,-0.5] (-0.5,0]
                       (0,0.5]
                                 (0.5.11)
                            16
                                      34
```

table(cut(a, breaks = b), right = F)
$$[-1, -0.5)$$
 $[-0.5, 0)$ $[0.0.5)$ $[0.0.5]$

переворачивает границы

создадим вектор

зададим границы

[-1,-0.5) [-0.5,0) [0,0.5)34

Описательные статистики

```
описательны
статистики
```

разведочный анализ данны

типологи

```
олновыбо
```

доверительный инt-тест

критерий Уилкоксон: биномиальный тест

биномиальный тест

двухвыоороче t-тест

Манн—Уитни,

критерий Мак Немара

выбор теста

послеслови

```
средние
```

- mean(x) # среднее арифметическоеmean(x, trim = 0.05) # среднее усеченное
- mean(x, trim = 0.05)weighted.mean(x)# среднее арифметическое взвешенное
- weighted.mean(x) # среднее арифметическое взвешенное
 1/mean(1/x) # среднее гармоническое
- o prod(x)**(1/length(x)) # среднее геометрическое
 - о подробнее о разнице смотрите stackexchange
- o median(x) # медиана
- range(x), min(x), max(x)
- o sd(x) # среднеквадратическое отклонение
- quantile(x, 0.25) # квантильIQR(x) # IQR
 - library/"moments"

library("moments")

o skewness(x) # коэффициент асимметрии

kurtosis(x) # коэффициент эксцесса

презентация доступна: http://goo.gl/kCpxyr # коэффициент эксцесса

Описательная статистика

данные

описательные статистики

анализ данных

типология

доверительный ин

критерий Уилкоксог

биномиальный тест

двухвыборочні

t-recr

Уилкоксон критерий у²

критерий Мак Нем multiple testing effe

выбор тест

послеслови

```
 \begin{array}{l} v <- c('m', \, 'f', \, 'm', \, 'm', \, 'f', \, 'f', \, 'f', \, 'f') \\ df <- \, data.frame(sex = c('m', \, 'f', \, 'm', \, 'm', \, 'f', \, 'f', \, 'f', \, 'f'), \\ hand = c('lf', \, 'rh', \, 'rh', \, 'rh', \, 'rh', \, 'lf', \, 'am', \, 'rh')) \end{array}
```

• table(v) # частотное распределение

o table(df) # таблицы сопряженности

o prop.table(table(v)), prop.table(table(df)) # доля

o prop.table(table(v))*100, prop.table(table(df))*100 # проценты

NA в выборке

статистики

Все функции описательных статистик болезненно относятся к наличию значений NA, поэтому они содержат аргумент na.rm, позволяющий игнорировать NA при значении TRUE.

```
x < -c(NA, 4, 2, 3, 2, 9, NA, 9, 4, 5, 2, 4, 7)
mean(x, na.rm = T)
> 4.636364
```

Достаточно легко проверить, есть ли в нашей выборке значения NA при помощи функции is.na():

```
x < -c(NA, 4, 2, 3, 2, 9, NA, 9, 4, 5, 2, 4, 7)
sum(is.na(x))
                                                            # почему сумма?
> 2
```

Кроме того, в R есть функция complete.cases(), которая позволяет брать только те данные, которые NA не содержат:

```
x < -c(NA, 4, 2, 3, 2, 9, NA, 9, 4, 5, 2, 4, 7)
 complete.cases(x)
 > [1] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
 > [13] TRUE
презентация доступна: http://goo.gl/kCpxyr
```

Как будут проходить наши занятия? Увы...

данные

описательные статистики

разведочный анализ даннь

типологи

одновыборочн

t-тест критерий Уилкоксона

биномиальный тест

двухвыооро

Манн—Уитн Уилкоксон

критерий χ^2 критерий Мак Не

multiple testing ef

выбор тест

послеслови

"All I'm saying is we plug these into Excel, let it do its thing, and then we can all play until lunch!"

Как выглядит распределение?

описательные

разведочный анализ данных

типология

одновыоорочн доверительный инт. t-тест

критерий Уилкоксон биномиальный тест

двухвыборочны

t-recr

критерий χ^2 критерий Мак Нема

выбор теста

послесловие

Распределения с разными коэффициентом эксцесса, но одинаковыми стандартным отклонением и средними. Картинка из Википедии:

Как выглядит распределение?

Коэффициенты эксцесса и асимметрии сильно зависят от размера выборки и дают сбои, если выборка не унимодальна. Визуальную оценку типа распределения можно сделать по следующим графикам:

Рис.: library("fitdistrplus")

статистики

Как сравнивать два распределения?

описательные статистики

разведочный анализ данных

типология

доверительный инт.

критерий Уилкоксон

биномиальный тест

двухвыоороч

t-recr

Манн—Уитни,

критерий х²

выбор тест

Как сравнивать два распределения?

описательные статистики

разведочный анализ данных

типологи

доверительный инт

критерий Уилкоксона

двухвыборочнь

....

Манн—Уитни,

критерий х²

. . .

послеслови

презентация доступна: http://goo.gl/kCpxyr

данные

описательные статистики

разведочный анализ данных

типологи

одновыборочнь

доверительный :

критерий Уилкоксон

биномиальный тест

двухвыоорочнь

t-roce

Манн—Уитні Уилкоксон

критерий х²

критерий Мак Немар multiple testing effect

выбор теста

- Данные получить легко.
- Скормить полученное компьютеру тоже легко.

данные

описательные статистики

разведочный анализ данных

типологи

одновыборочн

доверительный и

критерий Уилкоксон

лвухвыборочнь

71.0

t-recr

Уилкоксон

критерий Мак Немар multiple testing effect

выбор теста

- Данные получить легко.
- о Скормить полученное компьютеру тоже легко.

данные

описательные статистики

разведочный анализ данных

типологи

доверительный инт

критерий Уилкоксона

двухвыборочны

Манн—Уитни Уилкоксон

критерий χ^2 критерий Мак Немар multiple testing effect

выбор теста

- Данные получить легко.
- Скормить полученное компьютеру тоже легко.
 - Тяжело помнить, как тот или иной метод работает и какие требования предъявляет к анализируемым данным.
- ⇒ Следует проводить разведочный анализ данных.

данные

описательные статистики

разведочный анализ данных

типологи

доверительный инт t-тест

критерий Уилкоксона биномиальный тест

оиномиальный тест

t-recr

Уилкоксон критерий х²

критерий Мак Немар multiple testing effect

выбор теста

послеслови

- Данные получить легко.
- Скормить полученное компьютеру тоже легко.
- **Тяжело** помнить, как тот или иной метод работает и какие требования предъявляет к анализируемым данным.
- ⇒ Следует проводить разведочный анализ данных.
 - визуализация
 - формальные статистические тесты

В некоторых работах по статистике можно встретить предостережения относительно некоторых тестов на нормальность и аргументы в пользу графических методов.

о Данные получить **легко.**

• Скормить полученное компьютеру тоже легко.

Тяжело помнить, как тот или иной метод работает и какие требования предъявляет к анализируемым данным.

- ⇒ Следует проводить разведочный анализ данных.
 - визуализация
 - формальные статистические тесты

В некоторых работах по статистике можно встретить предостережения относительно некоторых тестов на нормальность и аргументы в пользу графических методов.

В работе [Zuur et al. 2010] разработан протокол разведочного анализа данных.

- разведочный
- разведочный анализ данных

типология

доверительный инт

критерий Уилкоксона биномиальный тест

двухвыборочн

t-recr

критерий χ^2 критерий Мак Немар

выбор теста

Разведочный анализ данных [Zuur et al. 2010]

Outliers

boxplot and Cleveland dotplot

Homogeneity

conditional boxplot

Normality

histogram or QQ-plot frequency plot or corrgram

Zeros in data

VIF and scatterplots correlation and PCA

Collinearity

riables multi-panel scatterplots,

Relationships between variables

conditional boxplots

Interactions

coplots

Independence

ACF and varlogram, plot versus time/space

выбор тест

разведочный

анализ данных

послеслові

данные

описательные статистики

разведочный анализ данны:

типология

одновыборочн доверительный инт

критерий Уилкоксон биномиальный тест

t-recr

критерий х²
критерий Мак Нема
multiple testing effect

выбор теста

послеслови

Statistics are used much like a drunk uses a lamppost: for support, not illumination.

A.E. Housman (commonly attributed to Andrew Lang)

частотная vs. байесовская статистики

A frequentist uses impeccable logic to answer the wrong question, while a Bayesean answers the right question by making assumptions that nobody can fully believe in.

P. G. Hammer

(все так пишут, сам я первоисточника не нашел...)

параметрические vs. непараметрические

одновыборочные vs. двухвыборочные vs. многовыборочные тесты

парные vs. непарные тесты

односторонние vs. двусторонние

презентация доступна: http://goo.gl/kCpxyr

Одновыборочные тесты (one-sample tests)

одновыборочные

Задача 1: доверительный интервал

У носителей деревни диалектные формы распределены по-разному, у некоторых — много, у некоторых — мало или вообще отсутствуют. Из индивидуальных интервью с n носителей из середины были взяты по 30 минут и измерялось количество диалектных форм. В среднем в интервью встречается g диалектных черт со стандартным отклонением s. Что мы можем сказать о средней у всех носителей деревни?

данные

описательные статистики

разведочный анализ данных

типолог

доверительный инт.

критерий Уилкоксон биномиальный тест

двухвыборочн

t-тест Манн—Уитни.

критерий χ^2 критерий Мак Нема multiple testing effec

выбор тест

Задача 1: доверительный интервал

У носителей деревни диалектные формы распределены по-разному, у некоторых — много, у некоторых — мало или вообще отсутствуют. Из индивидуальных интервью с n носителей из середины были взяты по 30 минут и измерялось количество диалектных форм. В среднем в интервью встречается g диалектных черт со стандартным отклонением s. Что мы можем сказать о средней у всех носителей деревни?

тип данных: количественный тип теста: одновыборочный, непараметрический, непарный

данные

описательные статистики

разведочный анализ данных

111102101

доверительный инт.

критерий Уилкоксон биномиальный тест

двухвыборочні

t-тест Манн—Уитни,

критерий χ^2 критерий Мак Немара

выбор теста

послесл

ланные

описательные статистики

разведочный анализ данных

типоло

доверительный инт.

t-тест

критерии уилкоксона биномиальный тест

двухвыборочны

t-recr

Уилкоксон критерий х² упитерий Мак Немар

multiple testing effect

выоор теста

послеслов

Доверительный интервал

для х > 30

среднее

- o mean(x)
- \circ sd(x)
- sd(x)/sqrt(x)
- library("plotrix"); std.error(x)
- \circ mean(x) \pm 1.96*std.error(x)
- mean(x) \pm 2.58*std.error(x)

- # стандартное отклонение
- # стандартная ошибка среднего
- # стандартная ошибка среднего
- # 95% доверительный интервал
- # 99% доверительный интервал

K. Magnusson создал визуализацию доверительных интервалов. презентация доступна: http://goo.gl/kCpxyr

Задача 2: доверительный интервал

Из статьи С. Степановой мы знаем, что носители русского языка в среднем говорят 5.31 слога в секунду со стандартным отклонением 1,93 (мужчины 5.46 слога в секунду со средним отклонением 2.02, женщины 5.23 слога в секунду со средним отклонением 1.84, дети 3.86 слога в секунду со средним отклонением 1.67). Как нам определить, количество информантов n, которых надо опросить в данной деревне, если мы хотим, чтобы 95% доверительный интервал был меньше 1?

данные

описательные статистики

разведочный анализ данны:

типолог

доверительный инт.

критерий Уилкоксон биномиальный тест

двухвыборочны

t-recr

Манн—Уитни, Уилкоксон критерий х² критерий Мак Немај

выбор тест

Задача 2: доверительный интервал

Из статьи С. Степановой мы знаем, что носители русского языка в среднем говорят 5.31 слога в секунду со стандартным отклонением 1,93 (мужчины 5.46 слога в секунду со средним отклонением 2.02, женщины 5.23 слога в секунду со средним отклонением 1.84, дети 3.86 слога в секунду со средним отклонением 1.67). Как нам определить, количество информантов n, которых надо опросить в данной деревне, если мы хотим, чтобы 95% доверительный интервал был меньше 1?

$$CI = \left(1.96 \times \frac{sd}{\sqrt{n}}\right) \times 2$$

$$n > \left(\left(\frac{1.96 \times sd}{CI}\right) \times 2\right)^2$$

n > 57.2383

данные

описательные статистики

разведочный анализ данны:

типолог

одновыоорочн доверительный инт.

критерий Уилкоксон

биномиальный тест

двухвыоорочны t-тест

Манн—Уитни, Уилкоксон

критерий χ^2 критерий Мак Немар multiple testing effect

выбор теста

Задача 2: доверительный интервал

Чем больше элементов в выборке, тем меньше доверительный интервал.

ланные

описательные

разведочный анализ ланных

типологи

одновыборочн

доверительный инт.

критерий Уилкоксона биномиальный тест

двухвыборочі

M-J-------

Манн—Уитни Уилкоксон

критерий χ^2 критерий Мак Нема

выбор теста

Как рисовать доверительные интервалы? R base

описательны

разведочный анализ ланнь

типоло

одновыборочнь

доверительный инт.

критерий Уилкоксон

биномиальный тест

t-recr

Манн—Уитни, Уилкоксон

критерий χ^2

критерии мак немар multiple testing effect

выбор теста

Как рисовать доверительные интервалы? R base

```
library("plotrix")
a <- read.csv("http://goo.gl/Vlvc5M")
                                             # качаем базу данных AfBo
result <- cbind.data.frame(
                                                 # создадим дата фрейм
aggregate(number.of.borrowed.affixes ~ Area, a, mean),
                                                            # со средним
aggregate(number.of.borrowed.affixes ~ Area, a, std.error)) # и ст. ошибк.
names(result)[c(2, 4)] <- c("mean", "std.error") # переименуем столбцы
stripchart(a$number.of.borrowed.affixes ~ a$Area,
                                                        # рисуем данные
las = 1, pch = 20, method = "jitter", vertical = T,
vlab = "number of borrowed affixes")
                                                     # переименуем ось
points(resultmean, pch = 4, cex = 2, col = "red")
                                                       # рисуем средние
# нарисуем доверительный интервал
segments(x0 = 1:6, x1 = 1:6,
y0 = result$mean-1.96*result$std.error,
v1 = result\mbox{mean} + 1.96 * result\mbox{std.error}.
lwd = 2, col = "red")
```

презентация доступна: http://goo.gl/kCpxyr

доверительный инт.

Как рисовать доверительные интервалы? ggplot2

разведочный анализ данны

типологи

одновыборочна доверительный инт.

t-тест критерий Уилкоксона

двухвыборочны

t-тест

критерий х² критерий Мак Немар

выбор теста

Как рисовать доверительные интервалы? ggplot2

```
library("plotrix")
library("ggplot2")
a <- read.csv("http://goo.gl/Vlvc5M")
                                            # качаем базу данных AfBo
result <- cbind.data.frame(
                                               # создадим дата фрейм
aggregate(number.of.borrowed.affixes ~ Area, a, mean),
                                                          # со средним
aggregate(number.of.borrowed.affixes ~ Area, a, std.error)) # и ст. ошибк.
names(result)[c(2, 4)] <- c("mean", "std.error") # переименуем столбцы
ggplot(a, aes(a$Area, a$number.of.borrowed.affixes))+
geom jitter()+
                                                    # нарисуем данные
xlab() +
ylab("number of borrowed affixes")+
                                                    # переименуем ось
theme bw()
stat summary(fun.y = mean, geom = "point",
                                                     # рисуем средние
size = 2, col = "red", shape = 4)+
stat summary(fun.data = mean cl normal,
geom = "errorbar",
                                    # рисуем доверительный интервал
width = 0.1. col = "red")
```

доверительный инт.

Задача 3: одновыборочный t-тест

Из статьи С. Степановой мы знаем, что носители русского языка в среднем говорят 5.31 слога в секунду со стандартным отклонением 1,93 (мужчины 5.46 слога в секунду со средним отклонением 2.02, женщины 5.23 слога в секунду со средним отклонением 1.84, дети 3.86 слога в секунду со средним отклонением 1.67). Мы опросили 20 носителей деревни N и выяснили, что средняя равна 4.198775, а стандартное отклонение равно 1.976299. Является ли данная разница статистически значимой?

тип данных: количественный тип теста: одновыборочный, требует нормального распределения непарный

Формулировка гипотезы

Классические статистические тесты сравнивают два или более набора данных. Чаще всего:

- \circ строится нулевая гипотеза (H_0), о том, что два набора данных могли бы происходить из одной выборки
- \circ строится альтернативная гипотеза (H_1), о том, что два набора данных не могли бы происходить из одной выборки
- устанавливается порог статистической значимости (в лингвистике принят порог 5%)
- о проводится эксперимент
- а дальше предъявляется p-value вероятность случайно получить результаты эксперимента (или отличающиеся еще больше), если мы принимаем за истину нулевую гипотезу

данные

описательные статистики

разведочный анализ данных

типология

доверительный инт. t-тест

критерий Уилкоксона биномиальный тест

двухвыборочня t-тест

Уилкоксон $\label{eq:continuous} \mbox{критерий } \chi^2 \mbox{критерий Мак Немара} \mbox{multiple testing effect}$

выбор теста

Формулировка гипотезы

"Whatever the approach to formal inference, formalization of the research question as being concerned with aspects of a specified kind of probability model is clearly of critical importance. It translates a subject-matter question into a formal statistical question and that translation must be reasonably faithful and, as far as is feasible, the consistency of the model with the data must be checked. How this translation from subject-matter problem to statistical model is done is often the most critical part of an analysis. Furthermore, all formal representations of the process of analysis and its justification are at best idealized models of an often complex chain of argument".

[Cox 2006: 197]

данные

описательные статистики

разведочный анализ данных

гипология

доверительный инт. **t-тест**критерий Уилкоксов

двухвыборочн

t-тест Манн—Уитни,

критерий х² критерий Мак Немар multiple testing effect

выбор теста

Как интерпретировать p-value?

If all else fails, use "significant at a p>0.05 level" and hope no one notices.

Комикс xkcd p-values. Объяснение. презентация доступна: http://goo.gl/kCpxyr

Задача 3: одновыборочный t-тест

Из статьи С. Степановой мы знаем, что носители русского языка в среднем говорят 5.31 слога в секунду со стандартным отклонением 1,93 (мужчины 5.46 слога в секунду со средним отклонением 2.02, женщины 5.23 слога в секунду со средним отклонением 1.84, дети 3.86 слога в секунду со средним отклонением 1.67). Мы опросили 20 носителей деревни N и выяснили, что средняя равна 4.198775, а стандартное отклонение равно 1.976299. Является ли данная разница статистически значимой?

```
t.test(a, mu = 5.31) # первое — вектор значений, второе — среднее

One Sample t-test
data: a
t = -2.5146, df = 19, p-value = 0.02108
alternative hypothesis: true mean is not equal to 5.31
95 percent confidence interval:
3.273838 5.123711 # СІ для среднего переменной a sample estimates:
mean of x
4.198775
```

данные

описательные статистики

разведочный анализ данных

типология

доверительный инт. t-тест

критерий Уилкоксона биномиальный тест

двухвыборочні t-тест

Уилкоксон критерий х² критерий Мак Немара multiple testing effect

выбор те

Задача 4: нормально ли распределение?

данные

описательны статистики

разведочный

типологи

одновыборочн

доверительный ин-

критерий Уилкоксона

двухвыбороч

двухвыооро

Манн—Уитн

критерий х²

критерий Мак Нема

выбор тест

послеслови


```
h <- hist(x, las = 1)
xfit <- seq(min(x),max(x),length=40)
yfit <- dnorm(xfit,mean=mean(x),sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue|wd=2)
презентация доступна: http://goo.gl/kCpxyr
```

записывает параметры # создает выборку # получает параметры

рисует результат

Задача 4: нормально ли распределение?

описательны статистики

разведочный анализ ланны

типологи

одновыборочні

доверительный инт

критерий Уилкоксона

двухвыбороч

M-J------

Манн—Уитни Уилиогоои

Уилкоксон

критерий Мак Немар

выбор теста

послеслови

library(sm) sm.density(x, model = "Normal col.band="yellowgreen") презентация доступна: http://goo.gl/kCpxyr

Задача 4: нормально ли распределение?

описательны статистики

разведочный

типологи

OTHOREIGODOUNE

доверительный ин

t-тест

критерий Уилкоксона биномиальный тест

двухвыборочі

t-recr

Манн—Уитни, Уилкоксон

уилкоксон критерий у²

критерий Мак Немар

выбор теста

послеслови

qqplot(x) qqline(x)

Задача 4: нормально ли распределение?

данные

описательные статистики

разведочныи анализ данны

типология

доверительный инт

доверительный инт

критерий Уилкоксон биномиальный тест

двухвыборочн

t-тест

критерий χ^2 критерий Мак Немар

выбор теста

послесл

Критерий Шапиро-Уилка:

если наблюдений < 60

H₀: данные распределены нормально H₁: данные не распределены нормально

shapiro.test(x)

Shapiro-Wilk normality test

data: x

W = 0.9718, p-value = 0.7923

Одновыборочный критерий Колмогорова-Смирнова:

ks.test(x, "pnorm")

One-sample Kolmogorov-Smirnov test

data: x

D = 0.12647, p-value = 0.0816 alternative hypothesis: two-sided

презентация доступна: http://goo.gl/kCpxyr

> 60

Гомоскедастичность (гомогенность) дисперсии

80 -

Heteroscedasticity

данные

описательные статистики

100

разведочный анализ данных

типологи

одновыборочн доверительный инт. t-тест

критерий Уилкоксон: биномиальный тест

двухвыборочны

t-recr

Уилкоксон критерий χ^2 критерий Мак Нема

multiple testing ef

выбор теста

послеслови

Гомоскедастичность можно проверить тестом Бартлетта:

bartlett.test(m, n)

Bartlett test of homogeneity of variances

Homoscedasticity

data: m, n

Bartlett's K-squared = 2.0949, df = 1, p-value = 0.1478

Задача 5: сколько нужно наблюдений?

Из статьи С. Степановой мы знаем, что носители русского языка в среднем говорят 5.31 слога в секунду со стандартным отклонением 1,93 (мужчины 5.46 слога в секунду со средним отклонением 2.02, женщины 5.23 слога в секунду со средним отклонением 1.84, дети 3.86 слога в секунду со средним отклонением 1.67). Как нам определить, количество информантов n, которых надо опросить в данной деревне, если мы хотим, чтобы мы могли наблюдать разницу в 1 слог с вероятностью совершить ошибку первого рода α 0.05 и мощностью теста 0.8?

данные

описательные статистики

разведочный анализ данных

типология

одновыбороч: доверительный инт

критерий Уилкоксон биномиальный тест

двухвыборочны t-тест

Манн—Уитни, Уилкоксон критерий х²

критерий Мак Нем multiple testing effe

выбор теста

послеслови

Задача 5: сколько нужно наблюдений?

Из статьи С. Степановой мы знаем, что носители русского языка в среднем говорят 5.31 слога в секунду со стандартным отклонением 1,93 (мужчины 5.46 слога в секунду со средним отклонением 2.02, женщины 5.23 слога в секунду со средним отклонением 1.84, дети 3.86 слога в секунду со средним отклонением 1.67). Как нам определить, количество информантов n, которых надо опросить в данной деревне, если мы хотим, чтобы мы могли наблюдать разницу в 1 слог с вероятностью совершить ошибку первого рода α 0.05 и мощностью теста 0.8?

```
power.t.test(sig.level = 0.05,
power = 0.8,
delta = 1,
sd = 1.93,
type = "one.sample",
alternative = "one.sided")
One-sample t test power calculation
n = 24.44055
```

α # мощность теста # наблюдаемая разница # стандартное отклонение

презентация доступна: http://goo.gl/kCpxyr

Задача 6: выборка не распределена нормально?

критерий Уилкоксона

wilcox.test(x, mu = 5,31)

Wilcoxon rank sum test data: x and 31

W = 0, p-value = 0.04878

alternative hypothesis: true location shift is not equal to 5

тип данных: количественный тип теста: одновыборочный, непараметрический, непарный

Задача 7: биномиальный тест

В частотном словаре [Ляшевская, Шаров 2009], созданном на корпусе объемом 92 млн. словоупотреблений, существительное κ енгуру имеет абсолютную частотность 0.0000021, а предлог κ о.005389 (его алломорф ко в расчет не берется). В некотором тексте, имеющем 61981 слов существительное кенгуру встречается 58 раз, а предлог κ — 254. Каковы вероятности получить такие результаты?

биномиальный тест

Задача 7: биномиальный тест

В частотном словаре [Ляшевская, Шаров 2009], созданном на корпусе объемом 92 млн. словоупотреблений, существительное *кенгуру* имеет абсолютную частотность 0.000021, а предлог κ — 0.005389 (его алломорф κo в расчет не берется). В некотором тексте, имеющем 61981 слов существительное *кенгуру* встречается 58 раз, а предлог κ — 254. Каковы вероятности получить такие результаты?

```
binom.test(x = 58, n = 61981, p = 0.0000021) # про \kappaенгуру binom.test(58, 61981, 0.0000021) # про \kappaенгуру binom.test(254, 61981, 0.005389) # про \kappa
```

binom.test(254, 61981, 0.005389) # про к
тип данных: категориальный

тип данных: категориальный тип теста: одновыборочный, непараметрический, непарный

данные

описательные статистики

разведочный анализ данных

гипология

доверительный инт. t-тест критерий Уилкоксон:

биномиальный тест

t-recr

уилкоксон критерий χ^2 критерий Мак Нема

multiple testing eff

выбор т

презентация доступна: http://goo.gl/kCpxyr

Двухвыборочные тесты (two-sample tests)

двухвыборочные

Задача 8: двухвыборочный t-тест

Из статьи С. Степановой мы знаем, что носители русского языка в среднем говорят 5.31 слога в секунду со стандартным отклонением 1,93 (мужчины 5.46 слога в секунду со средним отклонением 2.02, женщины 5.23 слога в секунду со средним отклонением 1.84, дети 3.86 слога в секунду со средним отклонением 1.67). Является ли данная разница между мужчинами и женщинами статиститчески значимой?

тип данных: количественный тип теста: двухвыборочный, требует нормального распределения и гомоскедастичности непарный

описательные статистики

разведочный анализ данных

гипология

доверительный инт. t-тест

биномиальный тест

двухвыборочн

Манн—Уитня Уилиогори

критерий χ^2 критерий Мак Немара

выбор теста

послесл

Задача 8: двухвыборочный t-тест

Из статьи С. Степановой мы знаем, что носители русского языка в среднем говорят 5.31 слога в секунду со стандартным отклонением 1,93 (мужчины 5.46 слога в секунду со средним отклонением 2.02, женщины 5.23 слога в секунду со средним отклонением 1.84, дети 3.86 слога в секунду со средним отклонением 1.67). Является ли данная разница между мужчинами и женщинами статиститчески значимой?

t.test(a, b)

первое и второе — векторы значений

Welch Two Sample t-test data: a and b

t = 0.38408, df = 37.919, p-value = 0.7031

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.9984148 1.4659358

СІ для величины эффекта

sample estimates:

mean of x mean of y

5.465256 5.231496

презентация доступна: http://goo.gl/kCpxyr

Задача 9: парный t-тест

Влияет ли ударение на длительность гласных? В группе слов [а] и [i] встречается как под ударением, так и без (10 слов с ударным [а], 10 слов с ударным [i], 10 слов с безударным [а], 10 слов с безударным [i]). 20 носителей читают все слова, а исследовали для каждого носителя посчитали среднюю длинну ударных и безударных [а] и [i]. Есть ли статистически значимая разница между ударными и безударными гласными?

тип данных: количественный тип теста: двухвыборочный, требует нормального распределения и гомоскедастичности парный

описательные статистики

разведочный анализ данных

гипология

доверительный инт. t-тест критерий Уилкоксон

биномиальный тест

двухвыоорочн t-тест

критерий х² критерий Мак Немара

multiple testing effect

выбор теста

послесл

Задача 9: парный t-тест

Влияет ли ударение на длительность гласных? В группе слов [а] и [i] встречается как под ударением, так и без (10 слов с ударным [а], 10 слов с ударным [i], 10 слов с безударным [a], 10 слов с безударным [i]). 20 носителей читают все слова, а исследовали для каждого носителя посчитали среднюю длинну ударных и безударных [а] и [і]. Есть ли статистически значимая разница между ударными и безударными гласными?

t.test(m, f, paired = T)

Paired t-test data: str and unstr

t = 5.9903, df = 19, p-value = 9.165e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

18.03107 37.39799 sample estimates:

mean of the differences

27.71453

презентация доступна: http://goo.gl/kCpxyr

СІ для величины эффекта

Парные тесты

данные

описательные статистики

разведочный анализ данных

типология

доверительный ин

критерий Уилкоксон

_

t moon

Манн—Уитн

критерий χ^2 критерий Мак Нема

выбор теста

послеслови

Парные тесты применяют, если исследуют:

- наблюдения до/после (измерения скорости речи при первом рассказе и при пересказе)
- наблюдения одного и того же объекта, полученные разными методами (например, кроссвалидация разметки)

Задача 9: выборки не распределена нормально?

данные

описательны статистики

разведочный анализ данных

гипология

одновыборо

t-тест критерий Уилкоксон:

биномиальный тест

двухвыборочнь

t-тест Манн—Уитни,

критерий χ^2 критерий Мак Нема

выбор теста

послесл

Уилкоксон

wilcox.test(a, b)

критерий Манна—Уитни

Wilcoxon rank sum test

data: a and b

W = 243, p-value = 0.2534 alternative hypothesis: true location shift is not equal to 0

wilcox.test(c,d, paired = T)

критерий Уилкоксона

Wilcoxon signed rank test

data: c and d

V = 80, p-value = 0.3683

alternative hypothesis: true location shift is not equal to 0

Если добавить аргумент conf.int = T, то отобразится еще и 95% доверительный интервал, в котором находится величина эффекта.

тип данных: количественный

тип теста: двухвыборочный, непараметрический,

птнепарный,парный http://goo.gl/kCpxyr

Задача 10: χ^2 (с поправкой Йейтса)

Из интервью с носителями одной деревни произвольным образом выбрали по пол часа и посчитали кол-во реализаций диалектных форм vs. недиалектных. В результате получилось что у женщин было 107 диалектных форм vs. 93 недиалектные, а у мужчин — 74 vs. 45.

тип данных: категориальный тип теста: двухвыборочный, непараметрический, непарный

данные

описательные статистики

разведочный анализ данных

типология

доверительный инт. t-тест

критерий Уилкоксон биномиальный тест

двухвыборочны

t-тест

уилкоксон критерий х²

критерий Мак Немар multiple testing effect

выбор т

послеслови

Задача 10: χ^2 (с поправкой Йейтса)

Из интервью с носителями одной деревни произвольным образом выбрали по пол часа и посчитали кол-во реализаций диалектных форм vs. недиалектных. В результате получилось что у женщин было 107 диалектных форм vs. 93 недиалектные, а у мужчин — 74 vs. 45. Значима ли зафиксированная разница?

Сначала следует составить таблицу сопряженности:

table(dialect)

таблица сопряженности

feature +dsex 93 74 45 m

А дальше используем тест:

chisq.test(table(dialect))

Pearson's Chi-squared test with Yates' continuity correction

data: table(dialect)

X-squared = 1.9525, df = 1, p-value = 0.1623

критерий у²

Критерий Фишера, критерий Крамера

писательные

пооролониций

анализ данны

типологи

11111021011

доверительный ин

критерий Уилкоксона

биномиальный тест

t-тест Манн—Уитни,

Манн—Уитни, Уилкоксон критерий у²

критерий Мак Нем

выбор теста

послеслови

Критерий γ^2 плохо использовать:

Chi-squared approximation may be incorrect

Иногда R может сказать:

- если хотя бы в одной из клеток ожидаемое значение меньше 5 chi.t <- chisq.test(a)
 chi.t\$expected
 - → точный тест Фишера (fisher.test())
 - если между числами есть большой разрыв¹
 - → проверяем величину эффекта критерием Крамера (cramersV() в пакете lsr)
- ...вообще таблицы сопряженности бывают разные, да и тестов куда больше см. [Lydersen et al. 2009]

¹ "All differences are significant with a large enough sample size" презентация доступна: http://goo.gl/kСрхуг

Задача 11: критерий Мак Немара

Во время диалектологической экспедиции от 20 информантов (10 мужчин, 10 женщин) были записаны списки слов. Получилось, что мужчины произносят велярный фрикативный у в 13 случаях, а велярный стоп g в 43. У женщин получилось другое распределение: 19 у против 37 g. Является ли данная разница между мужчинами и женщинами статистически значимой?

тип данных: категориальный тип теста: двухвыборочный, непараметрический, парный

описательные статистики

разведочный анализ данных

типология

доверительный инт. t-тест

критерий Уилкоксон биномиальный тест

двухвыоороч t-тест

критерий χ^2 критерий Мак Немара

multiple testing effect

выбор т

послесло

Задача 11: критерий Мак Немара

Во время диалектологической экспедиции от 20 информантов (10 мужчин, 10 женщин) были записаны списки слов. Получилось, что 13 информантов использовали в речи велярный фрикативный у, а 22 — велярный стоп g. Через 5 лет работали с теми же информантами и соотношение немного поменялось: 7 у против 28 g. Является ли получившаяся разница статистически значимой? Сначала следует составить таблицу сопряженности:

table(stopfricg)

таблица сопряженности

```
feature
time fric stop
before 13 22
after 7 28
```

А дальше используем тест:

mcnemar.test(table(stopfricg))

McNemar's Chi-squared test with continuity correction data: table(stopfricg)
McNemar's chi-squared = 6.7586, df = 1, p-value = 0.00933

презентация доступна: http://goo.gl/kCpxyr

6/56

данные

описательные статистики

разведочный анализ данных

типология

одновыоорочн доверительный инт. t-тест

критерий Уилкоксон биномиальный тест

двухвыборочні t-тест

критерий χ^2 критерий Мак Немара

multiple testing effec

выоор 1

послес

ланные

описательны

разведочный анализ ланных

типологи

одновыбороч

критерий Уилкоксона

биномиальный тест

двухвыбороч

Манн—Уитн

Манн—уитн Уилкоксон

критерий Мак Немар multiple testing effect

ni ikon macma

послеслови

данные

описательны

разведочный анализ ланны

типологи

олновыборочн

доверительный ин

критерий Уилкоксона

двухвыбороч

двухвыооро

Манн—Уитни

Уилкоксон

критерий Мак Нем

multiple testing effect

TIOCHOCHODIA

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P > 0.05),

WE FOUND A

LINK BETWEEN

GREEN JELLY

BEANS AND ACNE

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO

LINK BETWEEN

TAN JELLY

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

CYAN JELLY

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN LICAC JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

PEACH JELLY

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P>0.05).

данные

описательны

разведочный

типологи

одновыборочн

доверительный и

критерий Уилкоксон

двухвыоороч

t-recr

Манн—Уит Уилуоусон

Уилкоксон

критерий Мак Немар multiple testing effect

выбор тест

послеслові

Комикс xkcd Significant. Объяснение.

Это называют: data dredging, data fishing, data snooping, equation fitting, p-hacking...

При проверке каждой статистической гипотезы закладывается возможность ошибки первого рода (т. е. отклонение верной нулевой гипотезы). Чем больше гипотез мы проверяем на одних и тех же данных, тем больше будет вероятность допустить как минимум одну такую ошибку. Вероятность того, что из 21 теста (включая первый тест, без исключения цвета) не будет допущена ошибка первого рода равна

$$P = (1 - \alpha)^m = (1 - 0.05)^{21} = 0.34$$

данные

описательные статистики

разведочный анализ данных

типология

доверительный инт. t-тест критерий Уилкоксон

критерий Уилкоксон биномиальный тест

двухвыоорочны

t-recr

Уилкоксон $\mbox{критерий}\,\chi^2$ $\mbox{критерий Мак Немар}$

multiple testing effect

выоор тест

Многовыборочные тесты (multiple-sample tests)

данные

описательны

разведочный анализ ланны

типологи

одновыборочн

доверительный инт

критерий Уилкоксон: биномиальный тест

двухвыбороч

W-7------

Манн—Уитн Уилиогом

Уилкоксон инитопий и2

критерий Мак Немар multiple testing effect

послеслови

Выбор теста

выбор теста

	и распределение тип группы	
	и распределяны	количество групп
тип данный	тип группы	количестве

тест

		_	
Л.	с заданным значением	1	одновыборочный t-test
независимые		2	t-test для независимых выборок
H	зависимые	2	парный t-test
JM.	с заданным значением	1	критерий Уилкоксона
он независимые зависимые зависимые		2	критерий Манна-Уитни
		2	критерий Уилкоксона
эр.	с заданными частотами	1	биномиальный тест, χ^2
с заданными частотами независимые зависимые		2	χ^2 с поправкой Йейтса, Фишер, Крамер
ка	зависимые	2	критерий Мак-Нимара

Если количество групп превышает 2, то с используют многовыборочные тесты: ANOVA (и всякие варианты ANCOVA, MANOVA, MANCOVA), критерии Краскела-Уоллиса, критерий Фридмана, Q-критерий Кокрена и χ^2 с поправкой на правдоподобие.

Величина эффекта (effect size)

В статье [Sullivan, Feinn 2012] приводится ряд аргументов в пользу того, что следует приводить не только p-value, но и величину эффекта:

- величина эффекта основной результат квантитативного исследования, p-value лишь говорит о том, что эффект с некоторой вероятностью есть
- при работе со значительными выборками статистические тесты всегда будут давать статистическую значимость, даже если величина эффекта незначительна

Существует множество показателей, оценивающих величину эффекта, например при помощи функции cohensD пакета lsr можно посчитать Cohen's d (здесь доступна визуализация):

- о маленький эффект (0.2-0.3)
- средний эффект (около 0.5)
- о сильный эффект (>0.8)

ланные

описательные статистики

разведочный анализ данных

типология

одновыюорочі доверительный инт t-тест

критерий Уилкоксон биномиальный тест

двухвыборочны

t-тест Мани—Vитни.

критерий х²
критерий Мак Немар

выбор теста

послесловие

описательные статистики

разведочный анализ данных

типология

одновыборочн доверительный инт. t-тест

критерий Уилкоксон биномиальный тест

двухвыборочні

t-тест Манн—Уитни,

критерий х²
критерий Мак Немар

выбор теста

послесловие

p-value очень много ругают

- за то, что его очень часто понимают неправильно
 [Gigerenzer 2004], [Goodman 2008]
- о за то, что само по себе p-value < 0.05 слабый довод [Sterne, Smith 2001], [Nuzzo et al. 2014], [Wasserstein, Lazar 2016]
- *Q:* Why do so many colleges and grad schools teach p = 0.05?
- A: Because that's still what the scientific community and journal editors use.
- *Q:* Why do so many people still use p = 0.05?
- A: Because that's what they were taught in college or grad school

[Wasserstein, Lazar 2016]

В связи с этим, сейчас можно наблюдать

- о большое обсуждение p-value vs. доверительные интервалы
- о все нарастающую популярность Байесовской статистики

"Есть жизнь" и вне Пирсоновской и Байесовской статистик.

данные

описательные статистики

разведочный анализ данных

типология

одновыборочны

доверительны

критерий Уилкоксона

двухвыоорочнь

typore

Манн—Уитни, Уилиогом

Уилкоксон

критерий Мак Немај

ыбор теста

послеслови

Спасибо за внимание

Пишите письма agricolamz@gmail.com

Список литературы

данные

описательны статистики

разведочный анализ данных

гипологи

доверительный инт. t-тест критерий Уилкоксон биномиальный тест

двухвыборочны t-тест

Манн—Уитни, Уилкоксон критерий χ^2 критерий Мак Немар: multiple testing effect

выбор т

послесловие

- Cox, David Roxbee (2006). Principles of statistical inference. Cambridge University Press.
- Gigerenzer, Gerd (2004). Mindless statistics. *The Journal of Socio-Economics 33*(5), 587--606.
- Goodman, S. (2008). A dirty dozen: twelve p-value misconceptions. 45(3), 135--140.
- Lydersen, Stian, Morten W Fagerland, Petter Laake (2009). Recommended tests for association in 2 \times 2 tables. *Statistics in medicine 28*(7), 1159–1175.
- Nuzzo, Regina et al. (2014). Statistical errors. Nature 506(7487), 150--152.
- Sterne, J. A. C., G. D. Smith (2001). Sifting the evidence—what's wrong with significance tests? *Physical Therapy* 81(8), 1464–1469.
- Sullivan, G. M., R. Feinn (2012). Using effect size-or why the p value is not enough. Journal of graduate medical education 4(3), 279-282.
- Wasserstein, R., L., N. A. Lazar (2016). The asa's statement on p-values: context, process, and purpose. *The American Statistician* 70, ??--??
- Zuur, Alain F, Elena N Ieno,, Chris S Elphick (2010). A protocol for data exploration to avoid common statistical problems. *Methods in Ecology and Evolution* 1(1), 3--14.
- Ляшевская, О. Н., С. А. Шаров (2009). Частотный словарь современного русского языка (на материалах Национального корпуса русского языка). Азбуковник.