数值代数第2次上机作业报告

陈润璘 2200010848

问题描述

在使用计算机求解一个线性方程组时,由于计算机的精度限制和实际问题中的扰动,求得的解与精确解之间可能存在误差,有时误差已经严重影响到了计算结果的可靠性。因此,我们需要对误差进行估计,以便评价计算结果的可靠性。

数值方法

为了估计线性方程组 Ax = b 的解 \hat{x} 的相对误差,我们可以采用如下的估计:

设 $r=b-A\hat{x}=A(x-\hat{x})$ 则 $\|x-\hat{x}\|=\|A^{-1}r\|\leq \|A^{-1}\|\|r\|$ 。由 $\|b\|\leq \|A\|\|x\|$,从而有:

$$rac{\|x - \hat{x}\|}{\|x\|} \le \|A\| \|A^{-1}\| rac{\|r\|}{\|b\|}$$

为此,我们需要计算矩阵 A 的条件数。

由于直接计算 $\kappa(A)$ 需要计算 A 的逆,因此我们可以采用"盲人爬山法"对其进行估计,这一算法在已知 A 的 LU 分解时仅需 $O(n^2)$ 的计算量。

在本次作业中,我们首先估计 Hilbert 矩阵的条件数,由此可以看出以 Hilbert 矩阵为系数矩阵的线性方程组的数值解的可靠性。然后,我们估计方程 $A_nx=b$ 的解的相对误差,其中

$$A_n = egin{pmatrix} 1 & 0 & 0 & \cdots & 1 \ -1 & 1 & 0 & \cdots & 1 \ -1 & -1 & 1 & \cdots & 1 \ dots & dots & dots & \ddots & dots \ -1 & -1 & -1 & \cdots & 1 \end{pmatrix}$$

算法实现

由于在求解线性方程组时,我们需要计算矩阵的 LU 分解,因此我们可以直接使用这一分解结果计算条件数。

在计算 A^{-T} 的 1-范数时,需要计算 $w=A^{-T}x$ 和 $z=A^{-1}v$,我们可以通过求解 $A^Tw=x$ 和 Az=v 来计算,这只需要 $O(n^2)$ 的计算量。

数值结果

对于 5-20 阶 Hilbert 矩阵, 估计的条件数结果如下:

n	Condition Number
5	9.437e+05
6	2.907e+07
7	9.852e+08
8	3.387e+10
9	1.100e+12
10	3.421e+13
11	1.235e+15
12	4.255e+16
13	7.782e+17
14	1.149e+18
15	1.042e+18
16	1.008e+19
17	2.645e+18
18	7.590e+18
19	1.694e+19
20	1.972e+19

可以看出,Hilbert 矩阵的条件数随着阶数的增加而迅速增大,这意味着 Hilbert 矩阵的数值解的可靠性随着阶数的增加而迅速下降。

对于方程 $A_n x = b$, 我们估计其解的相对误差如下:

n	Error Estimate
5	1.600e-15
6	1.672e-15
7	6.476e-15
8	2.185e-14
9	4.932e-14
10	5.840e-14
11	1.739e-13
12	1.001e-13
13	1.042e-13
14	5.732e-13
15	7.949e-13
16	1.612e-12
17	4.742e-12
18	4.145e-12
19	1.034e-11
20	5.998e-12
21	2.527e-11
22	2.189e-11
23	5.294e-11
24	2.791e-10
25	4.681e-10

n	Error Estimate
26	3.359e-10
27	1.050e-09
28	5.515e-10
29	2.870e-09
30	2.117e-09

可以看出,这个方程的数值稳定性较好,其解的精确度可以满足大多数实际问题的需要。