11. GBI-Tutorium von Tutorium Nr.31

Richard Feistenauer

23. Januar 2015

Inhaltsverzeichnis

Reguläre Ausdrücke

2 Rechtslineare Grammatiken

- sei A ein Alphabet, das kein Zeichen aus Z enthält
- sei Z das Alphabet $Z = \{|, (,), *, \emptyset\}$
- regulärer Ausdruck über A ist eine Zeichenfolge über dem Alphabet A ∪ Z, die folgenden Vorschriften genügt:

- sei A ein Alphabet, das kein Zeichen aus Z enthält
- sei Z das Alphabet $Z = \{|, (,), *, \emptyset\}$
- regulärer Ausdruck über A ist eine Zeichenfolge über dem Alphabet A ∪ Z, die folgenden Vorschriften genügt:
 - Ø ist ein regulärer Ausdruck

- sei A ein Alphabet, das kein Zeichen aus Z enthält
- sei Z das Alphabet $Z = \{|, (,), *, \emptyset\}$
- regulärer Ausdruck über A ist eine Zeichenfolge über dem Alphabet A ∪ Z, die folgenden Vorschriften genügt:
 - Ø ist ein regulärer Ausdruck
 - Für jedes $x \in A$ ist x ein regulärer Ausdruck

- sei A ein Alphabet, das kein Zeichen aus Z enthält
- sei Z das Alphabet $Z = \{|, (,), *, \emptyset\}$
- regulärer Ausdruck über A ist eine Zeichenfolge über dem Alphabet A ∪ Z, die folgenden Vorschriften genügt:
 - Ø ist ein regulärer Ausdruck
 - Für jedes $x \in A$ ist x ein regulärer Ausdruck
 - wenn R_1 und R_2 reguläre Ausdrücke, dann auch $(R_1 \mid R_2), (R_1R_2)$ und (R_1*)

- sei A ein Alphabet, das kein Zeichen aus Z enthält
- sei Z das Alphabet $Z = \{|, (,), *, \emptyset\}$
- regulärer Ausdruck über A ist eine Zeichenfolge über dem Alphabet A ∪ Z, die folgenden Vorschriften genügt:
 - Ø ist ein regulärer Ausdruck
 - Für jedes $x \in A$ ist x ein regulärer Ausdruck
 - wenn R_1 und R_2 reguläre Ausdrücke, dann auch $(R_1 \mid R_2), (R_1R_2)$ und (R_1*)
- die von einem regulären Ausdruck R beschriebene formale Sprache ist < R >

•
$$R * * = R *$$

$$\bullet$$
 $<$ R $>=$ $\{\epsilon\}$ \Rightarrow R $=$

- R * * = R *
- \bullet < R >= $\{\epsilon\}$ \Rightarrow R = $\emptyset*$
- Sei $L = \langle R \rangle$, dann gilt
 - L* =

- R * * = R *
- \bullet < R >= $\{\epsilon\}$ \Rightarrow R = $\emptyset*$
- Sei $L = \langle R \rangle$, dann gilt
 - $L^* = \langle (R)* \rangle$
 - $L^{+} =$

•
$$R * * = R *$$

$$\bullet$$
 $<$ R $>=$ $\{\epsilon\}$ \Rightarrow R $=$ $\emptyset*$

• Sei
$$L = \langle R \rangle$$
, dann gilt

•
$$L^* = \langle (R)^* \rangle$$

•
$$L^+ = \langle R(R)* \rangle$$

Gebe regulären Ausdruck an $(A = \{a, b\})$

- Alle Wörter in denen das Teilwort abb vorkommt
- Die Sprache aller Wörter, in denen mindestens drei b vorkommen
- Die Sprache aller Wörter, in denen nirgends das Teilwort ab vorkommt
- $L = \{a^n b^n \mid n \in \mathbb{N}\}$

Motivation

• Regulärer Ausdruck und endlicher Akzeptor sind äquivalent

Motivation

- Regulärer Ausdruck und endlicher Akzeptor sind äquivalent
- Kontextfreie Grammatik "kann mehr" als regulärer Ausdruck und endlicher Akzeptor

Motivation

- Regulärer Ausdruck und endlicher Akzeptor sind äquivalent
- Kontextfreie Grammatik "kann mehr" als regulärer Ausdruck und endlicher Akzeptor
- Einführung einer eingeschränkten Version der Grammatik

- G = (N, T, S, P) wie gehabt
- $\forall (w_1 \rightarrow w_2) \in P : (w_1 \in N) \land (w_2 \in \{\epsilon\} \cup T \cup TN)$

- G = (N, T, S, P) wie gehabt
- $\forall (w_1 \to w_2) \in P : (w_1 \in N) \land (w_2 \in \{\epsilon\} \cup T \cup TN)$
- Bei jeder Projektion steht rechts nur das leere Wort, ein Terminalsymbol oder ein Terminalsymbol gefolgt von einem einzigen Nichtterminalsymbol sein

Ende

Noch Fragen?

Unnützes Wissen

Architektur war von 1912 bis 1948 eine olympische Disziplin