Lecture 16 - Stability of Householder Triangularization

OBJECTIVE:

To see backward error analysis in action! In particular, we observe backward stability of Householder triangularization via a Matlab experiment. This step can then be combined with other backward stable pieces to obtain a backward stable algorithm for solving $\mathbf{A}\mathbf{x} = \mathbf{b}$.

♦ EXPERIMENT

Householder factorization is a backward stable algorithm for computing QR factorizations.

We can illustrate this with the following Matlab experiment (in double precision; $\epsilon_{\rm machine} = 1.11 \times 10^{-16}$).

ightarrow We can now compare ${f A}={f Q}{f R}$ to $ilde{{f A}}={f Q}_2{f R}_2.$

$\mathbf{Q}_2, \mathbf{R}_2$ are far from exact!

These errors are huge! (Of course, do not take them literally - only order of magnitude is sensible.)

 \rightarrow Our calculations have been done with 16 digits of accuracy, yet the final result are only accurate to 2 or 3 digits.

i.e., rounding errors have been amplified by $\sim 10^{13}!$

Note 1. You may need to renormalize the columns of \mathbf{Q} and rows of \mathbf{R} by ± 1 if \mathbf{Q}_2 differs a lot from \mathbf{Q} because of incompatible signs.

Although we seem to have lost about 12 digits of accuracy in the individual components, an astonishing thing happens when we multiply these inaccurate matrices.

```
norm(A-Q2*R2)/norm(A) % How accurate is Q2R2? ans = 1.432e-15
```

So the product $\mathbf{Q}_2\mathbf{R}_2$ is accurate to a full 15 digits! \rightarrow the errors in \mathbf{Q}_2 and \mathbf{R}_2 must be *diabolically correlated* (as Wilkinson used to say).

To emphasize this, consider two other matrices \mathbf{Q}_3 , \mathbf{R}_3 that are about as accurate as \mathbf{Q}_2 , \mathbf{R}_2 (or even a little more!)

```
Q3=Q+1e-4*randn(50); % Set Q3 to a perturbation of Q
% Note that Q3 is closer to Q than Q2 is!
R3=R+1e-4*randn(50); % Set R3 to a perturbation of R
% Again, R3 is closer to R than R2 is!
norm(A-Q3*R3)/norm(A) % How accurate is Q3R3?
ans = 0.00088
```

Now the error in Q_3R_3 is huge!

Note 2. We did not make \mathbb{R}_3 upper triangular or \mathbb{Q}_3 orthogonal; but this would not have materially affected the result.

The errors in \mathbf{Q}_2 and \mathbf{R}_2 are forward errors.

Large forward errors usually happen because a problem is ill-conditioned, or the solution algorithm is unstable (here we have a ill-conditioned problem; recall Gram-Schmidt).

The error in $\mathbf{Q}_2\mathbf{R}_2$ is the *backward error* or *residual*. Because this is small, we expect Householder triangularization to be backward stable.

♦ THEORETICAL RESULT

Householder triangularization is backward stable for all matrices **A**:

$$\tilde{\mathbf{Q}}\tilde{\mathbf{R}} = \mathbf{A} + \delta\mathbf{A}$$

where $\delta \mathbf{A}$ is "small".

i.e., $\tilde{\mathbf{Q}}\tilde{\mathbf{R}}$ is the <u>exact</u> $\mathbf{Q}\mathbf{R}$ factorization of a matrix that is "close" to the one whose $\mathbf{Q}\mathbf{R}$ factorization we want.

 ${\bf R}$ is an upper-triangular matrix constructed by Householder triangularization but $\tilde{\bf Q}$ is an exactly orthogonal matrix.

Recall

$$\mathbf{Q} = \mathbf{Q}_1 \mathbf{Q}_2 \dots \mathbf{Q}_n,$$

where \mathbf{Q}_k is defined by the vector \mathbf{v}_k in the k^{th} step of Algorithm 10.1.

In the actual computation, we obtain a sequence of floating-point vectors $\tilde{\mathbf{v}}_k$.

Let $ilde{\mathbf{Q}}_k$ denote the *exactly orthogonal* matrix defined by $ilde{\mathbf{v}}_k$ and define

$$ilde{\mathbf{Q}} = ilde{\mathbf{Q}}_1 ilde{\mathbf{Q}}_2 \dots ilde{\mathbf{Q}}_n$$

This exactly orthogonal matrix will be our "computed ${f Q}$ ".

It makes sense to do this because in practice ${f Q}$ is never computed anyway

ightarrow only the $ilde{\mathbf{v}}_k$ are.

Here is the formal statement of the theorem that explains what we saw in our Matlab experiment.

Theorem 1. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have the factorization $\mathbf{A} = \mathbf{Q}\mathbf{R}$ computed by Householder triangularization. Let $\tilde{\mathbf{Q}}, \tilde{\mathbf{R}}$ be the computed factors as described above. Then

$$\tilde{\mathbf{Q}}\tilde{\mathbf{R}} = \mathbf{A} + \delta\mathbf{A},$$

where

$$\frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} = \mathcal{O}(\epsilon_{\text{machine}})$$

for some $\delta \mathbf{A} \in \mathbb{R}^{m \times n}$.

Recall: This holds uniformly for all matrices ${\bf A}$ as $\epsilon_{\rm machine} \to 0$ for any fixed dimensions m and n. It cannot be viewed as being true as a function of m and n.

\diamondsuit ANALYSIS OF AN ALGORITHM TO SOLVE $\mathbf{A}\mathbf{x} = \mathbf{b}$

Householder triangularization is backward stable but not always forward accurate (it turns out this is true of most matrix factorizations in numerical linear algebra).

Now, **QR** is usually not an end in itself.

Often we use $\mathbf{Q}\mathbf{R}$ along the way to solve other problems such as linear systems, least-squares, or eigenvalue problems.

Happily, the accuracy of the product $\mathbf{Q}\mathbf{R}$ (i.e., the backward stability property) is usually enough for practical purposes

 \rightarrow the lack of accuracy of the individual ${\bf Q}$ and ${\bf R}$ matrices is not problematic.

Consider solving a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ by means of a $\mathbf{Q}\mathbf{R}$ factorization via Householder triangularization (this idea was first introduced in Lecture 7).

ALGORITHM 16.1: HOUSEHOLDER QR FACTORIZATION

 $\mathbf{Q}\mathbf{R} = \mathbf{A}$ Factor \mathbf{A} into $\mathbf{Q}\mathbf{R}$ by Algorithm 10.1, with \mathbf{Q} represented as the product of reflectors $\mathbf{y} = \mathbf{Q}^T \mathbf{b}$ Construct $\mathbf{Q}^T \mathbf{b}$ by Algorithm 10.2 $\mathbf{x} = \mathbf{R}^{-1} \mathbf{y}$ Solve the upper triangular system $\mathbf{R}\mathbf{x} = \mathbf{y}$ by back substitution (Algorithm 17.1)

This algorithm is backward stable, and this is easy to prove if we assume the three steps are themselves backward stable.

- 1. We have already argued that the computation of the $\mathbf{Q}\mathbf{R}$ factorization of a matrix is backward stable (see Theorem 16.1).
- 2. It can be shown that this step is also backward stable; i.e., the computed $\tilde{\mathbf{y}}$ satisfies

$$(\tilde{\mathbf{Q}} + \delta \mathbf{Q})\tilde{\mathbf{y}} = \mathbf{b}$$

for some $\delta \mathbf{Q}$ satisfying

$$\|\delta \mathbf{Q}\| = \mathcal{O}(\epsilon_{\text{machine}}).$$

3. We will show in the next lecture (Theorem 17.1) that this step is backward stable; i.e., the computed \tilde{x} satisfies

$$(\tilde{\mathbf{R}} + \delta \mathbf{R})\tilde{\mathbf{x}} = \tilde{\mathbf{y}}$$

for some $\delta {f R}$ satisfying

$$\frac{\|\delta\mathbf{R}\|}{\|\mathbf{R}\|} = \mathcal{O}(\epsilon_{\text{machine}})$$

Theorem 2. Algorithm 16.1 is backward stable

i.e.,

$$(\mathbf{A} + \Delta \mathbf{A})\tilde{\mathbf{x}} = \mathbf{b}$$

for some $\Delta \mathbf{A}$ satisfying

$$\frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|} = \mathcal{O}(\epsilon_{\text{machine}})$$

Proof:

$$\mathbf{b} = (\tilde{\mathbf{Q}} + \delta \mathbf{Q})(\tilde{\mathbf{R}} + \delta \mathbf{R})\tilde{\mathbf{x}}$$

$$= [\tilde{\mathbf{Q}}\tilde{\mathbf{R}} + (\delta \mathbf{Q})\tilde{\mathbf{R}} + \tilde{\mathbf{Q}}(\delta \mathbf{R}) + (\delta \mathbf{Q})(\delta \mathbf{R})]\tilde{\mathbf{x}}$$

$$= [(\mathbf{A} + \delta \mathbf{A}) + (\delta \mathbf{Q})\tilde{\mathbf{R}} + \tilde{\mathbf{Q}}(\delta \mathbf{R}) + (\delta \mathbf{Q})(\delta \mathbf{R})]\tilde{\mathbf{x}}$$

$$= [\mathbf{A} + \Delta \mathbf{A}]\tilde{\mathbf{x}}$$

where

$$\Delta \mathbf{A} = \delta \mathbf{A} + (\delta \mathbf{Q})\tilde{\mathbf{R}} + \tilde{\mathbf{Q}}(\delta \mathbf{R}) + (\delta \mathbf{Q})(\delta \mathbf{R})$$

Now, we simply show that $\|\Delta \mathbf{A}\|$ is small.

First,

$$\frac{\|\tilde{\mathbf{R}}\|}{\|\mathbf{A}\|} = \frac{\|\tilde{\mathbf{Q}}^{T}(\mathbf{A} + \delta \mathbf{A})\|}{\|\mathbf{A}\|}$$

$$\leq \|\tilde{\mathbf{Q}}^{T}\| \frac{\|\mathbf{A} + \delta \mathbf{A}\|}{\|\mathbf{A}\|}$$

$$= \mathcal{O}(1)$$

Thus,

$$\frac{\|(\delta \mathbf{Q})\tilde{\mathbf{R}}\|}{\|\mathbf{A}\|} \leq \|\delta \mathbf{Q}\| \frac{\|\tilde{\mathbf{R}}\|}{\|\mathbf{A}\|}$$
$$= \mathcal{O}(\epsilon_{\text{machine}})$$

Similarly,

$$\frac{\|\tilde{\mathbf{Q}}(\delta\mathbf{R})\|}{\|\mathbf{A}\|} \leq \|\tilde{\mathbf{Q}}\| \frac{\|\delta\mathbf{R}\|}{\|\tilde{\mathbf{R}}\|} \frac{\|\tilde{\mathbf{R}}\|}{\|\mathbf{A}\|}$$
$$= \mathcal{O}(\epsilon_{\text{machine}})$$

Finally,

$$\frac{\|(\delta \mathbf{Q})(\delta \mathbf{R})\|}{\|\mathbf{A}\|} \leq \|\delta \mathbf{Q}\| \frac{\|\delta \mathbf{R}\|}{\|\mathbf{A}\|}$$
$$= \mathcal{O}(\epsilon_{\text{machine}}^2)$$

$$\therefore \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|} \leq \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} + \frac{\|(\delta \mathbf{Q})\tilde{\mathbf{R}}\|}{\|\mathbf{A}\|} + \frac{\|\tilde{\mathbf{Q}}(\delta \mathbf{R})\|}{\|\mathbf{A}\|} + \frac{\|(\delta \mathbf{Q})(\delta \mathbf{R})\|}{\|\mathbf{A}\|}$$

$$= \mathcal{O}(\epsilon_{\text{machine}}), \quad \text{as required.}$$

Combining Theorems 12.2, 15.1, and 16.2 finally yields

Theorem 3. The solution $\tilde{\mathbf{x}}$ computed by Algorithm 16.1 to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ satisfies

$$\frac{\|\tilde{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|} = \mathcal{O}(\kappa(\mathbf{A})\epsilon_{\text{machine}}).$$