		_4		h
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes ∨
>40	low	yes	excellent	no
3140	low	yes	excellent	yes ✓
<=30	medium	no	fair	no
<=30	low	yes	fair	yes √
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 $| \times |$ nown Information : age > 40 , in come = | low .

Asted:
$$P(Buy ? | age > 40, income = high)$$

$$Sol 4.$$

Fixed: T (buy . [See 2]) =
$$\frac{9}{19}$$

P(C;) = P(buy computer = "yes") = $\frac{9}{19}$

P(buy computer = "no") = $\frac{5}{19}$

*
$$P(X \mid G)$$

P(age > 40 | buy = yer) = $\frac{3}{9}$

P(age > 40 | buy = n0) = $\frac{2}{5}$

P(low | buy = yer) = $\frac{3}{9}$

P(low | buy = n0) = $\frac{1}{5}$

$$P(X | \text{lany} = \text{yes}) = \frac{3}{9} \cdot \frac{3}{9} = \frac{9}{8!} = \frac{1}{9}$$

$$P(X | \text{lany} = \text{ND}) = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{25}$$

$$P(X | C_i) * P(C_i) = P(X | \text{lany} = \text{yes}) * P(\text{lany} = \text{yes})$$

$$= \frac{1}{9} \cdot \frac{9}{14} = \frac{1}{14}$$

$$P(X | C_i) * P(C_i) = P(X | \text{lany} = \text{no}) * P(\text{lany} = \text{no})$$

$$= \frac{2}{25} \cdot \frac{5}{14} = \frac{2}{70} \cdot \frac{1}{35}$$