Lab 1 Report

Isaac Hartung and Sam Warnick

February 3, 2010

Equations and Variables

L = packet size

R = bandwidth

Dtrans = L/R

Delay = Dtrans + Dprop + Dq

Dtrans = L bits / Rate of transfer

Dprop is given

Dq = Dtrans * number of packets that were queued before this one

Note: if there the first packet in queue arrived before the packet in question then we subtract Dtrans * (1 - difference in arrival time).

1 Two Node Networks

 $\begin{array}{c} n1 \ n2 \\ n2 \ n1 \end{array}$

. _

Scenario One

L = 8,000 bits

R = 1 Mbps

Simulation Output

Dprop	Dtrans	Dq	Delay
1 s	$.008 \mathrm{\ s}$	$0 \mathrm{s}$	$1.008 \; s$

Calculated Delays

Dtrans = 8,000 bits/1,000,000 bps = .008 s

Dprop = 1 s

Dq = 0 s (only packet in queue)

Delay = .008 s + 1 s + 0 s = 1.008 s

Scenario Two

L = 8,000 bits

R = 100 bps

$Simulation\ Output$

Dprop	Dtrans	Dq	Delay
.01 s	80 s	$0 \mathrm{s}$	$80.01 \; s$

Calculated Delays

Dtrans = 8,000 bits/100 bps

Dprop = 10 ms

Dq = 0 s (only packet in queue)

Delay = 80 s + 10 ms + 0 s = 80.01 s

Scenario Three

L = 8,000 bits

R = 1 Mbps

Simulation Output

Packet	Dprop	Dtrans	Dq	Delay
1	.01 s	$.008 \mathrm{\ s}$	0 s	.018 s
2	.01 s	$.008 \mathrm{\ s}$	$.008 \mathrm{\ s}$	$.026 \mathrm{\ s}$
3	.01 s	.008 s	$.016 { m \ s}$	$.034 \mathrm{\ s}$
4	.01 s	.008 s	0 s	.018 s

Calculated Delays

Dtrans = 8,000 bits/1,000,000 bps

Dprop = 3 * 10 ms

Dq1 = 0 s

Dq2 = .008 s

Dq3 = .016 s

Dq4 = 0 s (queue is empty after two seconds—the three previous packets transmit in less than a second—leaving this packet alone)

Delay1 = .008 s + .01 s + 0 s = .018 s

Delay2 = .008 s + .01 s + .008 s = .026 s

Delay3 = .008 s + .01 s + .016 s = .034 s

Delay4 = .008 s + .01 s + 0 s = .018 s

2 Three Node Network

n1 — n2 — n3 # n1 n2

 $\rm n2\ n1\ n3$

n3 n2

Scenario One

L = 1,000 bits

R1 = 1 Mbps

R2 = 1 Mbps

Simulation Output

Packet	Dprop	Dtrans	Dq	Delay
95	.2 s	.016 s	6.2E-15 s	$.216 \mathrm{\ s}$
96	.2 s	.016 s	6.2E-15 s	.216 s
97	.2 s	.016 s	6.2E-15 s	.216 s
98	.2 s	.016 s	6.2E-15 s	.216 s
99	.2 s	.016 s	6.2E-15 s	.216 s

$Calculated\ Delays$

Dtrans = 8,000 bits/1,000,000 bps * 2 links * 1,000 packets = 16 s

Dprop = .1 s * 2 links * 1,000 packets = 200 s

Dq = 0

Delay = 216 s

Scenario Two

L = 1,000 bits

R1 = 1 Gbps

R2 = 1 Gbps

Simulation Output

Packet	Dprop	Dtrans	Dq	Delay
95	.2 s	$0.000128 \mathrm{\ s}$	0.05572 s	$0.255848 \mathrm{\ s}$
96	.2 s	$0.000128 \mathrm{\ s}$	0.055776 s	0.255904 s
97	.2 s	$0.000128 \mathrm{\ s}$	0.055832 s	0.25596 s
98	.2 s	$0.000128 \mathrm{\ s}$	$0.055888 \mathrm{\ s}$	0.256016 s
99	.2 s	$0.000128 \mathrm{\ s}$	$0.055944 \mathrm{\ s}$	0.256072 s

Calculated/Experimental Delays

Dtrans = 8,000 bits/1,000,000,000 bps * 2 links * 1,000 packets = .000128 s

 $\mathrm{Dprop} = .1~\mathrm{s} * 2~\mathrm{links} * 1{,}000~\mathrm{packets} = 200~\mathrm{s}$

Dq = 27.972 s

 $Delay = 228.1 \ s$

Scenario Three

L = 1,000 bits

R1 = 1 Mbps

R2 = 256 Kbps

 $Simulation\ Output$

Packet	Dprop	Dtrans	Dq	Delay
95	.2 s	.314 s	240.79 s	249.264 s
96	.2 s	.314 s	241.032 s	249.514 s
97	.2 s	.314 s	241.274 s	249.764 s
98	.2 s	.314 s	241.516 s	250.014 s
99	.2 s	.314 s	241.758 s	250.264 s

Calculated Delays

```
\begin{array}{l} {\rm Dtrans} = 8{,}000 \ {\rm bits}/1{,}000{,}000 \ {\rm bps} \ ^* \ 1{,}000 \ {\rm packets} + 8{,}000 \ {\rm bits}/ \ 256{,}000 \ {\rm bps} \ ^* \ 1{,}000 \ {\rm packets} = 39.25 \ {\rm s} \\ {\rm Dprop} = .1 \ {\rm s} \ ^* \ 2 \ {\rm links} \ ^* \ 1{,}000 \ {\rm packets} = 200 \ {\rm s} \\ {\rm Dq} = 120879 \ {\rm s} \\ {\rm Delay} = 121393 \ {\rm s} \end{array}
```

3 Queueing Theory

For this final part of the lab we tested the simple network described above with 11 different loads: 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 98 percent. When we graphed our data, it was slightly less than the theoretical values, but was otherwise faithful to the near constant rate below 80 percent, the inflection point a little above 80 percent, the subsequent exponential increase, and the vertical asymptote. Given this close relationship to the theoretical curve, we are confident that our network was setup correctly and our tests were well-designed and effective.

