L'escalier glissant du diable

Présenté par: Houssein MANSOUR

Encadrant: Laurent REGNIER

Faculté des sciences, AMU Master 1, Mathematiques et applications, TER

21 juillet 2024

Table de matière

- Introduction
- Practions continues
- La fonction? de Minkowski
- Forme directe de la fonction ?
- Dérivabilité de la fonction ?
- 6 References

Introduction

La fonction **point d'interrogation de Minkowski** est représentée dans la figure suivante :

FIGURE 1 – Fonction ?(x)

Introduction

- Bijection (homéomorphisme) entre les nombres rationnels de l'intervalle]0,1[et les fractions dyadiques de cet intervalle.
- La fonction est continue, strictement croissante sur [0,1].
- Si la dérivée de cette fonction existe, alors elle est soit nulle, soit infinie.

Fractions continues

Tout nombre réel positif *b* a une écriture unique comme fraction continue :

$$b = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}} = [a_0, a_1, a_2, a_3, \dots].$$

L'écriture est finie si et seulement si le nombre est rationnel.

Exemple : $\frac{31}{13}$

$$(31,13) \xrightarrow{2} (13,5)$$

$$\xrightarrow{2} (5,3)$$

$$\xrightarrow{1} (3,2)$$

$$\xrightarrow{1} (2,1)$$

$$\xrightarrow{2} (1,0)$$

$$\frac{31}{13} = 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}} = [2, 2, 1, 1, 2]$$

Exemple : $\frac{31}{13}$

$$(31,13) \xrightarrow{2} (13,5)$$

$$\xrightarrow{2} (5,3)$$

$$\xrightarrow{1} (3,2)$$

$$\xrightarrow{1} (2,1)$$

$$\xrightarrow{2} (1,0)$$

$$\frac{31}{13} = 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}} = [2, 2, 1, 1, 2]$$

Les réduites d'un nombre b dont l'écriture en fraction continue est

$$b = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

sont de la forme $\frac{\rho_n}{a_n} = [a_0, a_1, \dots, a_n]$ où $n \ge 1$, avec :

$$\begin{cases} p_n &= a_n p_{n-1} + p_{n-2}, \\ q_n &= a_n q_{n-1} + q_{n-2}, \end{cases}$$

sous les conditions initiales :

$$\begin{cases} p_0 = a_0, \\ q_0 = 1. \end{cases}$$

L'arbre Dyadique

La Figure 2 représente l'arbre dyadique.

FIGURE 2 - L'arbre Dyadic

L'arbre dyadique est l'arbre binaire complet étiqueté par les fractions dyadiques de la forme $\frac{a}{2n}$, où $n \in \mathbb{N}$ et $0 < a < 2^n$.

• La fonction $L_{dya}(\frac{a}{2^n})$ représente la fille gauche de $\frac{a}{2^n}$, où

$$L_{dya}\left(\frac{a}{2^n}\right) = \frac{2a-1}{2^{n+1}}.$$

• La fonction $R_{dva}(\frac{a}{2^n})$ représente la fille droite de $\frac{a}{2^n}$, où

$$R_{dya}\left(\frac{a}{2^n}\right) = \frac{2a+1}{2^{n+1}}.$$

• Si N est impair :

$$\frac{a}{2^n} = \underbrace{0.00...0\underbrace{11...1}_{a_1}\underbrace{00...0}_{a_3}...\underbrace{00...0}_{a_N}1$$

$$\xrightarrow{L_{dya}} \underbrace{00...0\underbrace{11...1}_{a_2}\underbrace{00...0}_{a_3}...\underbrace{00...0}_{a_N}1...\underbrace{00...0}_{a_N+1}1.$$

Si N est pair :

$$\frac{a}{2^{n}} = \underbrace{0.00...0\underbrace{11...100...0}_{a_{1}}...\underbrace{11...1}_{a_{N}}1$$

$$\xrightarrow{L_{dya}} \underbrace{00...0\underbrace{11...1}_{a_{N}}\underbrace{00...0}_{a_{2}}...\underbrace{11...1}_{a_{N}}01$$

• Si N est impair :

$$\frac{a}{2^{n}} = \underbrace{0.00...0}_{a_{1}}\underbrace{11...1}_{a_{2}}\underbrace{00...0}_{a_{3}}...\underbrace{00...0}_{a_{N}}1$$

$$\xrightarrow{L_{dya}}\underbrace{00...0}_{a_{1}}\underbrace{11...1}_{a_{2}}\underbrace{00...0}_{a_{3}}...\underbrace{00...0}_{a_{N}+1}1.$$

• Si N est pair :

$$\frac{a}{2^{n}} = \underbrace{0.00...0\underbrace{11...1}_{a_{1}}\underbrace{00...0}_{a_{3}}...\underbrace{11...1}_{a_{N}}1$$

$$\xrightarrow{L_{dya}} \underbrace{00...0\underbrace{11...1}_{a_{2}}\underbrace{00...0}_{a_{3}}...\underbrace{11...1}_{a_{N}}01$$

$$\mathbb{Q}_2 = \left\{ \frac{m}{2^n} \mid n \in \mathbb{N}, 0 \le m < 2^n \right\}$$

L'arbre de Farey

La **Figure 3** représente **l'arbre de Farey**, où les fractions de Farey sont positionnées aux nœuds.

FIGURE 3 – L'arbre de Farey

La médiane de deux fractions $\frac{a}{b}$ et $\frac{a'}{b'}$ est définie comme $\frac{a+a'}{b+b'}$.

- Pour les fractions $\frac{0}{1}$ et $\frac{1}{1}$, on a $1 \cdot 1 1 \cdot 0 = 1$.
- Supposons que pour 2 fractions voisines $\frac{a}{b}$ et $\frac{a'}{b'}$, on a a'b-ab'=1.

Alors, pour les fractions $\frac{a}{b}$ et $\frac{a+a}{b+b'}$, on a (a+a')b-a(b+b')=1. Ainsi, par récurrence, on a la propriété que pour chaque paire de fractions voisines, $\frac{a}{b}$ et $\frac{a'}{b'}$, a'b-ab'=1.

On peut conclure donc que

- Les fractions sont irréductibles (par le théorème de Bezout).

- Pour les fractions $\frac{0}{1}$ et $\frac{1}{1}$, on a $1 \cdot 1 1 \cdot 0 = 1$.
- Supposons que pour 2 fractions voisines $\frac{a}{b}$ et $\frac{a'}{b'}$, on a a'b-ab'=1. Alors, pour les fractions $\frac{a}{b}$ et $\frac{a+a'}{b+b'}$, on a (a+a')b-a(b+b')=1.

Ainsi, par récurrence, on a la propriété que pour chaque paire de fractions voisines, $\frac{a}{b}$ et $\frac{a'}{b'}$, a'b-ab'=1.

On peut conclure donc que

- Les fractions sont irréductibles (par le théorème de Bezout).
- $\bullet \ \frac{a}{b} < \frac{(a+a')}{(b+b')} < \frac{a'}{b'}.$

- Pour les fractions $\frac{0}{1}$ et $\frac{1}{1}$, on a $1 \cdot 1 1 \cdot 0 = 1$.
- Supposons que pour 2 fractions voisines ^a/_b et ^d/_{b'}, on a a'b ab' = 1.
 Alors, pour les fractions ^a/_b et ^{a+a'}/_{b+b'}, on a (a+a')b a(b+b') = 1.
 Ainsi, par récurrence, on a la propriété que pour chaque paire de fractions voisines, ^a/_b et ^{d'}/_{b'}, a'b ab' = 1.

On peut conclure donc que:

Les fractions sont irréductibles (par le théorème de Bezout).

$$\bullet \ \frac{a}{b} < \frac{(a+a')}{(b+b')} < \frac{a'}{b'}.$$

- Pour les fractions $\frac{0}{1}$ et $\frac{1}{1}$, on a $1 \cdot 1 1 \cdot 0 = 1$.
- Supposons que pour 2 fractions voisines ^a/_b et ^d/_{b'}, on a a'b ab' = 1.
 Alors, pour les fractions ^a/_b et ^{a+a'}/_{b+b'}, on a (a+a')b a(b+b') = 1.
 Ainsi, par récurrence, on a la propriété que pour chaque paire de fractions voisines, ^a/_b et ^{d'}/_{b'}, a'b ab' = 1.

On peut conclure donc que:

- Les fractions sont irréductibles (par le théorème de Bezout).
- $\bullet \ \frac{a}{b} < \frac{(a+a')}{(b+b')} < \frac{a'}{b'}.$

On peut définir sur l'arbre de Farey une autre fois les deux mouvements gauche et droite comme deux fonctions L_{Farey} et R_{Farey} par :

• Si n est impair :

$$L_{Farey}([0, a_1, \dots, a_n]) = [0, a_1, \dots, a_{n-1}, a_n + 1],$$

 $R_{Farey}([0, a_1, \dots, a_n]) = [0, a_1, \dots, a_{n-1}, a_n - 1, 2].$

• Si n est pair :

$$L_{Farey}([0, a_1, \dots, a_n]) = [0, a_1, \dots, a_{n-1}, a_n - 1, 2],$$
 $R_{Farey}([0, a_1, \dots, a_n]) = [0, a_1, \dots, a_{n-1}, a_n + 1].$

La fonction ? par les arbres

Definition 3

En associant l'arbre de Farey et l'arbre dyadique, on obtient la fonction point d'interrogation de Minkowski notée par ?(x).

$$?\left(\frac{a+a'}{b+b'}\right) = \frac{1}{2}\left(?\left(\frac{a}{b}\right) + ?\left(\frac{a'}{b'}\right)\right)$$

- $\bullet \ ?:]0,1[_{\mathbb{Q}}\rightarrow]0,1[_{\mathbb{Q}_{2}}.$
- Si $x, y \in]0,1[_{\mathbb{Q}}, x < y \iff ?(x) < ?(y).$

Par conséquent, la fonction ? est strictement croissante. Notons que :

-]0,1[_ℚ est dense dans]0,1[.
- $]0,1[_{\mathbb{Q}_2}$ est dense dans]0,1[

La fonction? est continue.

Démonstration.

Soit $x_0 \in]0,1[_{\mathbb{Q}}$ il faut montrer que :

$$\forall \varepsilon > 0$$
, il existe $\delta > 0$, $\forall x \in]0,1[_{\mathbb{Q}}$ si $|x-x_0| < \delta$ alors $|?(x)-?(x_0)| < \varepsilon$.

Soit $y_0 = ?(x_0)$

 $\exists y_1 \text{ et } y_2 \in]0,1[_{\mathbb{Q}_2} \text{ de telle sorte que} :$

$$0 < y_0 - y_1 < \varepsilon, 0 < y_2 - y_0 < \varepsilon$$

 $\exists x_1 \text{ et } x_2 \in]0,1[_{\mathbb{Q}} \text{ telle que}:$

$$x_1 = ?^{-1}(y_1), x_2 = ?^{-1}(y_2).$$

on a : $y_1 < y_0 < y_2$

donc: $x_1 < x_0 < x_2$.

Si $x \in [x_1, x_2]$ alors $?(x) \in [y_1, y_2]$.

Démonstration.

Soit $x_0 \in]0,1[_{\mathbb{Q}}$ il faut montrer que :

$$\forall \varepsilon > 0$$
, il existe $\delta > 0$, $\forall x \in]0,1[_{\mathbb{Q}}$ si $|x - x_0| < \delta$ alors $|?(x) - ?(x_0)| < \varepsilon$.

Soit
$$y_0 = ?(x_0)$$

 $\exists y_1 \text{ et } y_2 \in]0,1[_{\mathbb{Q}_2} \text{ de telle sorte que} :$

$$0 < y_0 - y_1 < \varepsilon, 0 < y_2 - y_0 < \varepsilon.$$

 $\exists x_1 \text{ et } x_2 \in]0,1[_{\mathbb{Q}} \text{ telle que} :$

$$x_1 = ?^{-1}(y_1), x_2 = ?^{-1}(y_2).$$

on a : $y_1 < y_0 < y_2$

donc: $x_1 < x_0 < x_2$.

Si $x \in [x_1, x_2]$ alors $?(x) \in [y_1, y_2]$.

La fonction? est continue.

Démonstration.

Soit $x_0 \in]0,1[_{\mathbb{Q}}$ il faut montrer que :

$$\forall \varepsilon > 0$$
, il existe $\delta > 0$, $\forall x \in]0,1[_{\mathbb{Q}}$ si $|x - x_0| < \delta$ alors $|?(x) - ?(x_0)| < \varepsilon$. Soit $y_0 = ?(x_0)$

 $\exists y_1 \text{ et } y_2 \in]0,1[_{\mathbb{Q}_2} \text{ de telle sorte que :}$

$$0 < y_0 - y_1 < \varepsilon, 0 < y_2 - y_0 < \varepsilon.$$

 $\exists x_1 \text{ et } x_2 \in]0,1[_{\mathbb{Q}} \text{ telle que}:$

$$x_1 = ?^{-1}(y_1), x_2 = ?^{-1}(y_2).$$

on a : $y_1 < y_0 < y_2$

donc: $x_1 < x_0 < x_2$

Si $x \in [x_1, x_2]$ alors $?(x) \in [y_1, y_2]$.

La fonction? est continue.

Démonstration.

Soit $x_0 \in]0,1[_{\mathbb{Q}}$ il faut montrer que :

$$\forall \varepsilon > 0$$
, il existe $\delta > 0$, $\forall x \in]0,1[_{\mathbb{Q}}$ si $|x - x_0| < \delta$ alors $|?(x) - ?(x_0)| < \varepsilon$. Soit $y_0 = ?(x_0)$

 $\exists y_1 \text{ et } y_2 \in]0,1[_{\mathbb{Q}_2} \text{ de telle sorte que :}$

$$0 < y_0 - y_1 < \varepsilon, 0 < y_2 - y_0 < \varepsilon.$$

 $\exists x_1 \text{ et } x_2 \in]0,1[_{\mathbb{Q}} \text{ telle que}:$

$$x_1 = ?^{-1}(y_1), x_2 = ?^{-1}(y_2).$$

on a : $y_1 < y_0 < y_2$

donc: $x_1 < x_0 < x_2$

Si $x \in [x_1, x_2]$ alors $?(x) \in [y_1, y_2]$.

La fonction? est continue.

Démonstration.

Soit $x_0 \in]0,1[_{\mathbb{Q}}$ il faut montrer que :

$$\forall \varepsilon > 0$$
, il existe $\delta > 0$, $\forall x \in]0,1[_{\mathbb{Q}} \text{ si } |x-x_0| < \delta \text{ alors } |?(x)-?(x_0)| < \varepsilon$.

Soit $y_0 = ?(x_0)$

 $\exists y_1 \text{ et } y_2 \in]0,1[_{\mathbb{Q}_2} \text{ de telle sorte que :}$

$$0 < y_0 - y_1 < \varepsilon, 0 < y_2 - y_0 < \varepsilon.$$

 $\exists x_1 \text{ et } x_2 \in]0,1[_{\mathbb{Q}} \text{ telle que}:$

$$x_1 = ?^{-1}(y_1), x_2 = ?^{-1}(y_2).$$

on a : $y_1 < y_0 < y_2$ donc : $x_1 < x_0 < x_2$.

Si $x \in [x_1, x_2]$ alors $?(x) \in [y_1, y_2]$.

La fonction? est continue.

Démonstration.

Soit $x_0 \in]0,1[_{\mathbb{Q}}$ il faut montrer que :

$$\forall \varepsilon > 0$$
, il existe $\delta > 0$, $\forall x \in]0,1[_{\mathbb{Q}}$ si $|x - x_0| < \delta$ alors $|?(x) - ?(x_0)| < \varepsilon$.

Soit $y_0 = ?(x_0)$

 $\exists y_1 \text{ et } y_2 \in]0,1[_{\mathbb{Q}_2} \text{ de telle sorte que } :$

$$0 < y_0 - y_1 < \varepsilon, 0 < y_2 - y_0 < \varepsilon.$$

 $\exists x_1 \text{ et } x_2 \in]0,1[_{\mathbb{Q}} \text{ telle que}:$

$$x_1 = ?^{-1}(y_1), x_2 = ?^{-1}(y_2).$$

on a : $y_1 < y_0 < y_2$

donc: $x_1 < x_0 < x_2$.

Si $x \in [x_1, x_2]$ alors $?(x) \in [y_1, y_2]$.

La fonction? de Minkowski peut être étendue par continuité sur tout l'intervalle]0,1[.

Démonstration.

Les deux ensembles $]0,1[_{\mathbb{Q}}$ et $]0,1[_{\mathbb{Q}_2}$ sont denses dans l'intervalle]0,1[. De plus, la fonction ? est continue de $]0,1[_{\mathbb{Q}}$ dans $]0,1[_{\mathbb{Q}_2}$. Par conséquent, d'aprés la topologie générale on peut étendre cette fonction par continuité sur tout l'intervalle]0,1[.

Forme directe de la fonction?

Soit $x = [0, a_1, a_2, ..., a_N - 1, 1]$, alors:

$$?(x) = 2\sum_{k=1}^{N} (-1)^{k+1} 2^{-(a_1 + a_2 + \dots + a_k)}$$

• N est impair:

$$?(x) = 0.\underbrace{00...0}_{a_1-1}\underbrace{11...1}_{a_2}\underbrace{00...0}_{a_3}...\underbrace{00...0}_{a_N-1}1.$$

N est pair :

$$?(x) = 0.\underbrace{00...0}_{a_1-1}\underbrace{11...1}_{a_2}\underbrace{00...0}_{a_3}...\underbrace{11...1}_{a_{N}-1}1.$$

La définition de la fonction point d'interrogation de Minkowski par les arbres et la définition directe sont **équivalentes**.

Preuve:

L'idée est de vérifier que si $x = [0, a_1, a_2, ..., a_n]$, alors :

$$L_{dya}(?(x)) = ?(L_{Farey}(x)).$$

La définition de la fonction point d'interrogation de Minkowski par les arbres et la définition directe sont **équivalentes**.

Preuve:

L'idée est de vérifier que si $x = [0, a_1, a_2, ..., a_n]$, alors :

$$L_{dya}(?(x)) = ?(L_{Farey}(x)).$$

Preuve:

• Le cas où n est impair : Dans ce cas, on a $?([0, a_1, a_2, ..., a_n])$ égal à $?([0, a_1, a_2, ..., a_n - 1, 1])$ qui est égal à :

$$?(x) = 0.\underbrace{00...0}_{a_1-1}\underbrace{11...1}_{a_2}\underbrace{00...0}_{a_3}...\underbrace{00...0}_{a_n-1}\underbrace{1}_{1}.$$

Donc, $L_{dya}(?(x))$ sera égal à :

$$L_{dya}(?([0,a_1,a_2,\ldots,a_n])) = 0.\underbrace{00\ldots 0}_{a_1-1}\underbrace{11\ldots 1}_{a_2}\underbrace{00\ldots 0}_{a_3}\ldots\underbrace{00\ldots 0}_{a_n}\underbrace{1}_{1}.$$

$$?(L_{Farey}([0, a_1, a_2, ..., a_n])) = ?([0, a_1, a_2, ..., a_n, 1])$$

$$= 0.\underbrace{00...0}_{a_1-1}\underbrace{1...1}_{a_2}\underbrace{00...0}_{a_3}...\underbrace{00...0}_{a_n}\underbrace{1}_{1}.$$

• Le cas où n est pair : Dans ce cas, on a $?([0, a_1, a_2, ..., a_n - 1, 1])$ égal à :

$$?(x) = 0.\underbrace{00...011...1}_{a_1-1}\underbrace{00...0}_{a_3}...\underbrace{11...1}_{a_n-1}1.$$

$$L_{dya}(?(x)) = 0.\underbrace{00\ldots 0}_{a_1-1}\underbrace{11\ldots 1}_{a_2}\underbrace{00\ldots 0}_{a_3}\ldots\underbrace{11\ldots 1}_{a_n-1}\underbrace{0}_{1}\underbrace{1}_{1}.$$

$$?(L_{Farey}(x)) = ?([0, a_1, a_2, ..., a_n - 1, 1, 1])$$

$$= 0.\underbrace{00...0}_{a_1-1}\underbrace{11...1}_{a_2}\underbrace{00...0}_{a_3}...\underbrace{11...1}_{a_n-1}\underbrace{0}_{1}...$$

Dérivabilité de la fonction ?

Theorem 7

Soit $S = \{x \mid x = [0, a_1, a_2, \dots, a_n, \dots] \text{ avec } \limsup_{n \to \infty} a_n = \infty\}$ Soit $x \in S$, si la dérivée de la fonction ? existe et est finie en x, alors ?'(x) = 0.

Étape 1:

Soit la réduite de $x = [0, a_1, a_2, ...] \in S$ représentée par :

$$r_n = \frac{p_n}{q_n} = [0, a_1, a_2, \dots, a_n].$$

- Soit $\phi_n = ?(r_n)$ et y = ?(x). $\frac{1}{2^{S_{n+1}}} < |y - \phi_n| < \frac{1}{2^{S_{n+1}-1}}$.

Étape 2:

Soit $\delta_n = \left| \frac{y - \phi_n}{x - r_n} \right|$.

$$\frac{a_{n+1}q_n^2}{2^{S_{n+1}}} < \delta_n < \frac{2(a_{n+1}+2)q_n^2}{2^{S_{n+1}}}$$

Mais $x \in S$, où $\limsup_{n \to \infty} a_n = \infty$.

$$\frac{\delta_{n_k-1}}{\delta_{n_k-2}} < C \frac{a_{n_k}^2}{2^{a_{n_k}}}.$$

où C est une constante absolue.

$$\frac{\delta_{n_k-1}}{\delta_{n_k-2}} \xrightarrow{k \to \infty} 0.$$

Étape 2:

Soit
$$\delta_n = \left| \frac{y - \phi_n}{x - r_n} \right|$$
.

$$\frac{a_{n+1}q_n^2}{2^{S_{n+1}}} < \delta_n < \frac{2(a_{n+1}+2)q_n^2}{2^{S_{n+1}}}.$$

Mais $x \in S$, où $\limsup_{n \to \infty} a_n = \infty$.

$$\frac{\delta_{n_k-1}}{\delta_{n_k-2}} < C \frac{a_{n_k}^2}{2^{a_{n_k}}}.$$

où C est une constante absolue.

$$\frac{\delta_{n_k-1}}{\delta_{n_k-2}} \xrightarrow{k \to \infty} 0.$$

Étape 2 :

Soit
$$\delta_n = \left| \frac{y - \phi_n}{x - r_n} \right|$$
.

$$\frac{a_{n+1}q_n^2}{2^{S_{n+1}}} < \delta_n < \frac{2(a_{n+1}+2)q_n^2}{2^{S_{n+1}}}.$$

Mais $x \in S$, où $\limsup_{n \to \infty} a_n = \infty$.

$$rac{\delta_{n_k-1}}{\delta_{n_k-2}} < C rac{a_{n_k}^2}{2^{a_{n_k}}}.$$

où C est une constante absolue.

$$\frac{\delta_{n_k-1}}{\delta_{n_k-2}} \xrightarrow{k \to \infty} 0$$

Étape 2:

Soit
$$\delta_n = \left| \frac{y - \phi_n}{x - r_n} \right|$$
.

$$\frac{a_{n+1}q_n^2}{2^{S_{n+1}}} < \delta_n < \frac{2(a_{n+1}+2)q_n^2}{2^{S_{n+1}}}.$$

Mais $x \in S$, où $\limsup_{n \to \infty} a_n = \infty$.

$$rac{\delta_{n_k-1}}{\delta_{n_k-2}} < C rac{a_{n_k}^2}{2^{a_{n_k}}}.$$

où C est une constante absolue.

$$\frac{\delta_{n_k-1}}{\delta_{n_k-2}} \xrightarrow{k\to\infty} 0.$$

Étape 2 :

Soit
$$\delta_n = \left| \frac{y - \phi_n}{x - r_n} \right|$$
.

$$\frac{a_{n+1}q_n^2}{2^{S_{n+1}}} < \delta_n < \frac{2(a_{n+1}+2)q_n^2}{2^{S_{n+1}}}.$$

Mais $x \in S$, où $\limsup_{n \to \infty} a_n = \infty$.

$$rac{\delta_{n_k-1}}{\delta_{n_k-2}} < C rac{a_{n_k}^2}{2^{a_{n_k}}}.$$

où C est une constante absolue.

$$\frac{\delta_{n_k-1}}{\delta_{n_k-2}} \xrightarrow{k\to\infty} 0.$$

Reste un mystère : existe-t-il des réels où la fonction point d'interrogation de Minkowski est dérivable? Réponse : oui, presque partout, mais c'est un autre TER ...

Références

ref1: De Koninck, Jean-Marie et Armel Mercier, *Introduction à la théorie des nombres*, Mont-Royal (Québec), Modulo, 1994, 254 p. ref2: Linas Vespas, The Minkowski Question Mark, GL(2,Z) and the

Modular Group. Self-published on personal website, 2004 (updated 22 August 2014).

ref3 : Laurent Regnier, Notes de cours Laurent Regnier.

ref4: J. Paradis and P. Viader. The Derivative of Minkowski's ?(x) Function. Published on Journal of Mathematical Analysis and Applications 253, 107-125(2001).

ref5: A. Khintchine, "Continued Fractions", Noordhoff, Groningen, 1963.

Merci pour votre attention!