Se é a função que contém os pontos distintos, com Lembremos que a derivada de no ponto é definida por:

A diferença dividida de primeira ordem em é definida por:

Tomando, temos:

Generalizando:

A diferença de ordem *n* é definida por:

Com

Exemplo:

0	0,0	1,008		
1	0,2	1,064		
2	0,3	1,125		
3	0,5	1,343		
4	0,6	1,512		

0	0,0	1,008	0,280	1,100	1,000	0,000
1	0,2	1,064	0,610	1,600	1,000	
2	0,3	1,125	1,090	2,000		
3	0,5	1,343	1,690			
4	0,6	1,512				

Exercício: Construa a tabela de diferenças divididas.

0	1	2,75			
1	3	8,3			
2	6	15,6			
3	7	17,9			
4	9	22,4			
5	11	26,8			

0	1	2,75	2,775	- 0,0683	<i>0,005 8</i>	-0,0004	<i>0,000 02</i>
1	3	8,3	2,4333	- 0,0333	<i>0,002 8</i>	-0,0002	
2	6	15,6	2,3000	- 0,0167	<i>0,000 8</i>		
3	7	17,9	2,2500	- 0,0125			
4	9	22,4	2,2000				
5	11	26,8					

Forma de Newton para interpolação com diferenças divididas

A forma de Newton para o polinômio interpolador para os pontos é:

Note que fazendo, temos:

Fazendo, temos:

De forma análoga,

Forma de Newton para interpolação com diferenças divididas

Temos então:

ou

Exercício: Obter o polinômio na forma de Newton para os pontos dados nas tabelas anteriores.

Diferenças finitas

Em muitas situações os valores de são igualmente espaçados, isto é:

Para todo

Neste caso, fazendo, temos

. . .

Diferenças finitas

Substituindo isso na Forma de Newton, temos:

Definindo as diferenças finitas :

- Ordem zero:
- Primeira ordem:
- Segunda ordem:
- •
- Ordem n

Diferenças finitas

Observe que:

de onde segue

E como consequência, temos a Fórmula de Gregory-Newton para interpolação com diferenças finitas:

onde .

Comparação entre métodos: (nº de operações)

Nº de operaçõ es	adições	multiplicaç ões	divisõe s	total
Lagrange				
Newton				
Gregory- Newton				

Erros de truncamento

Quando um polinômio interpolador de grau *n* é usado para aproximar os valores de uma função qualquer, devemos observar que foram utilizados apenas (n+1)pontos desta função. Nos pontos utilizados, o polinômio coincide com a função. Para as demais posições, teremos uma aproximação da função pelo polinômio. O erro de truncamento dessa aproximação pode ser estimado pela relação:

Onde é tal que

Exercícios:

Livro: Barroso, L. C. Cálculo numérico com aplicações. 2º ed. São Paulo: Harbra, 1987.

Pág. 188 e 189, nº: 4.6.6.1, 4.6.6.2 e 4.6.6.3.

Pág. 197, nº: 4.7.4.1, 4.7.4.2, 4.7.4.3 , 4.7.4.4 e 4.7.4.5.