1. Rappels sur les fonctions affines

1.1 Expression

Définition 1.3

Les fonctions f, définies sur \mathbb{R} , dont l'expression peut se mettre sous la forme _____, où m et p sont des réels, sont appelées fonctions affines.

Remarques.

- 1. **Si** m = 0 alors f(x) = p est dite _____;
- 2. $\operatorname{si} p = 0$ alors f(x) = mx est dite _____.

1.2 Représentation graphique

Le plan est muni d'un repère.

Théorème 1.3. Toute fonction affine f définie sur \mathbb{R} par f(x) = mx + p est représentée par **une droite** \mathcal{D} non parallèle à l'axe des ordonnées qui aura pour équation y = mx + p. Réciproquement, toute expression de la forme y = mx + p est celle d'une fonction affine. Par ailleurs :

- 1. p s'appelle ordonnée à l'origine : la droite \mathcal{D} passe par le point de coordonnées (0; p).
- 2. m s'appelle le coefficient directeur ou pente de la droite \mathscr{D} , et le taux d'accroissement de f:

Si A $(x_A; y_A)$ et B $(x_B; y_B)$ sont deux points de \mathscr{D} tels que $x_A \neq x_B$ alors :

$$m = \frac{f(x_{\rm B}) - f(x_{\rm A})}{x_{\rm B} - x_{\rm A}} = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x}$$

Illustration.

PAPPLICATION 1.3. Soit la fonction f définie sur \mathbb{R} par f(x) = -3(x-1) + 7(x-3). Démontrer que la fonction f est une fonction affine.

2. Variations d'une fonction affine

Théorème 2.3. Soit $f: x \mapsto mx + p$ une fonction affine.

Pour deux réels u et v: si u < v alors f(u) < f(v).

On dit que f conserve l'ordre dans \mathbb{R} ou encore que f est strictement croissante sur \mathbb{R} :

m < 0

Pour deux réels u et v: si u < v alors f(u) > f(v).

On dit que f ne conserve pas l'ordre dans \mathbb{R} ou encore que f est strictement décroissante sur \mathbb{R} :

Exemples.

- 1. Pour $f: x \longmapsto 2, 4x$: comme m=2, 4>0, si u < v alors,, c'est-à-dire
- 2. Pour $g: x \longmapsto -1, 6x :$ comme m = -1, 6 < 0, si u < v alors, > , c'est-à-dire

Remarque. À partir des variations d'une fonction, on peut élaborer son **tableau de variations** : c'est un tableau synthétique regroupant les informations concernant les variations de cette fonction.

À retenir.

1. Cas m < 0

x	$-\infty$	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$		

2. Cas m = 0

x	$-\infty$	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$		

3. Cas m > 0

x	$-\infty$	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$		

P Application 2.3.

Dresser le tableau de variation de la fonction f définie sur \mathbb{R} par f(x) = -4x + 2.

3. Signe d'une fonction affine

- Définition 2.3 ---

Soit f une fonction affine définie sur \mathbb{R} par f(x) = mx + p avec $m \neq 0$.

- 1. On appelle **racine** de f le réel x_0 tel que $f(x_0) = 0$.
- 2. Le point de coordonnées $(x_0; 0)$ est le point d'intersection de la courbe représentative de f avec l'axe des abscisses.

Théorème 3.3. Soit $f: x \mapsto mx + p$ une fonction affine avec $m \neq 0$ admettant pour racine x_0 . Le signe de f(x) selon les valeurs de x est donné par le tableau suivant :

 \square Si m>0

x	$-\infty$	x_0	$+\infty$
signe de $f(x)$		0	

 \square Si m < 0

x	$-\infty$	x_0	$+\infty$
signe de $f(x)$		0	

PAPPLICATION 3.3. Faire le tableau de signes des fonctions f et g définies sur \mathbb{R} respectivement par :

$$f(x) = -9x + 13$$
 et $g(x) = 5x + 23$.

	0 ()	
 	·	