Sankalp Gambhir

Email: sgambhir@iitb.ac.in sankalp.gambhir42@gmail.com

Web: https://sankalpgambhir.github.io/ Phone: +91 9654 438 430

I am a senior undergraduate student at IIT Bombay, graduating in May 2022, looking for a summer internship researching automated reasoning and program analysis. I will be beginning my PhD in Computer Science in Fall 2022.

My research interests revolve around automata theory, formal methods, and program analysis. I have 3 years of experience researching temporal logics and verification of probabilistic and concurrent systems, and a strong background in abstract math and formal methods in CS.

education

Year	Program	CPI/%	Institute
(ongoing) 2022	B.Tech. Engineering Physics,	9.20	Indian Institute of Technology, Bombay (IITB)
	Minor in Computer Science,		
	Minor in Mathematics		
2018	Intermediate/+2	96.4%	Central Board of Secondary Education, India

research projects

Non-Markovian Inverse Reinforcement Learning

2022, Under Review

Mohammad Afzal, Sankalp Gambhir, Ashutosh Gupta, Krishna Shankaranarayanan, Ashutosh Trivedi, Alvaro Velasquez

- ₹ Formulated novel learning formalism for Non-Markovian reward function inference.
- ★ Adapted LTL learning techniques to Inverse Reinforcement Learning (IRL) to utilize logical specifications as reward functions.
- ★ Demonstrated capabilities of the technique to learn previously unexplored Non-Markovian properties in reward functions for an agent exploring grid worlds.

Quantitatively Learning LTL Specification

2019-2021

Mohammad Afzal, Sankalp Gambhir, Ashutosh Gupta, Krishna Shankaranarayanan

Preprint: arXiv:2110.13616 | Tool: https://github.com/sankalpgambhir/quantlearn

- Developed a system to rank and learn LTL formulae for a set of input traces with high resilience to noise and low input size requirement compared to state-of-the-art systems presented in literature.
- \checkmark Studied structure of ω -regular languages to improve algorithmic efficiency for inference.

Information Theoretic Bounds on NISQ Learning Systems

2021-Ongoing

Advisor: Prof. Sai Vinjanampathy, Department of Physics, IIT Bombay

Bachelor's Thesis | working copy

- ❖ Proposed error bounds on Variational Quantum Algorithms (VQAs) arising from information-theoretic channel limits in classical control systems.
- ₹ Established an uncertainty bound on VQA optimization for problem-specific ansatzes.
- Studying extension to generalisation error bounds in Quantum Support Vector Machines.

key projects

Ardio - Model for realtime audio processing on low power embedded systems

Fall 2020

Advisor: Prof. Pradeep Sarin, Department of Physics, IIT Bombay

Course Project, https://github.com/sankalpgambhir/ardio

- ★ Worked in a team of two to develop an optimized Fourier Transform algorithm capable of working on low power devices such as an Arduino whilst retaining reasonable accuracy.
- Demonstrated frequency finding on live audio samples in near real-time on an Arduino Uno with less than 2KB RAM.

Petris - An FPGA based Tetris clone

Spring 2020

Advisor: Prof. Pradeep Sarin, Department of Physics, IIT Bombay

Course Project, https://github.com/sankalpgambhir/petris

- ★ Worked in a team of two to design and simulate the game of Tetris on an FPGA simulator. Used Verilog to make a state machine and created a C++ wrapper using SDL and OpenGL to handle display and I/O.
- ❖ Developed a VGA simulator using SDL2 to write the serial 'electronic' VGA output from the FPGA simulations into a low-level frame buffer.
- ★ Developed an interface to pass keyboard presses on the computer to the FPGA via simulated electronic connections to allow for real-time input.

Logarithmic Order Long Binary Multiplication on TTL circuits

Spring 2019

Advisor: Prof. Mahesh B. Patil, Department of Electrical Engineering, IIT Bombay

Course Project

- * Led a team of three to devise a shift-and-add cascade for efficient digital multiplication on TTL circuits.
- Utilised asynchronous modules to achieve logarithmic time performance and achieved a scalable plug and play design to extend to larger systems.

teaching experience

* Awarded Excellence in CSE Teaching Assistantship Award for 'CS228M' by the CSE Department.

Fall 2021

- Led a team of 10 Teaching Assistants for 'CS228M Logic in Computer Science (Minor)' to a class of 130 students, organising tutorials and course evaluations, under Prof. Krishna Shankaranarayanan. Fall 2021
- ★ Teaching Assistant for 'CS228 Logic in Computer Science' to a class of 147 students, under Prof. Krishna Shankaranarayanan and Prof. Ashutosh Gupta.

 Spring 2021
- Held basic English and computer classes for university employees, as part of the Computer Literacy Program NSS, IIT Bombay.
 Spring 2019
- Held Physics classes for the JEE for underprivileged children; prepared study material and tests for the same, as a part of the Aarohan Winter Internship Program NSS, IIT Delhi.
 Winter 2018

seminars held

Eigenfunctions of Dirichlet Laplacians and Nodal Domains over Graphs

Fall 2019

Department of Mathematics, IIT Bombay

Advisor: Prof. Gopala K Srinivasan, Department of Mathematics, IIT Bombay

- \not Discussed spectral features of the Laplacian operator and the distribution of nodes relative to the spectrum, via variational principles and via optimisation of Rayleigh quotients over H^2 space.
- → Presented new insights on the multidimensional extension of Sturm's Oscillation Theorem and its application to discretized domains using graph Laplacians.

technical skills

Languages English (native), Hindi (native)

Programming C++, C, Python, Haskell, Bash/POSIX tools, Lustre/SCADE/Heptagon, Verilog

Packages LaTeX, Z3, LLVM, Mathematica, AutoCAD, Solidworks

key courses

Computer Science Analysis of Concurrent Programs ‡*, Embedded Systems ‡*, Implementation of

Functional Programming Languages **, Operating Systems *, Complexity Theory *, Computational Ring Theory and Algebras *, Automated Reasoning *, Concepts Tools and Algorithms for Model Checking *, Logic for Computer Science, Computer

Networks

Mathematics Combinatorics ^{‡*}, Differential Geometry*, Topics in Hyperplane Arrangements

 $(Coxeter\ Theory)\ ^*, Semigroup\ Theory\ ^*, Topics\ in\ Algebra\ 2\ (Representation\ and\ Category\ Theory)\ ^*, Complex\ Analysis\ ^*, Ordinary\ Differential\ Equations\ ^*,\ Partial\ Category\ Theory)\ ^*, Complex\ Analysis\ ^*,\ Ordinary\ Differential\ Equations\ ^*,\ Partial\ ^*,\ Partia$

Differential Equations, Linear Algebra

Physics Quantum Information and Computing *, Condensed Matter Physics, Statistical

Physics, Quantum Mechanics 1 & 2, Photonics, Electromagnetism, Special Theory

of Relativity, Classical Mechanics

Others Analog Electronics, Analog Electronics Lab, Digital Circuits, Digital Electronics Lab,

Microprocessor Lab, Data Analysis and Interpretation

academic achievements

2018 Ranked in the 99.98 th percentile in IEE Main 2018 amongst over 1 million candidates.

2018 Ranked in the 99.7th percentile in JEE Advanced 2018 amongst 200,000 candidates.

2018 Awarded National Top 1% certification in National Standard Examination in Physics.

2018 Awarded *National Top 1%* certification in National Standard Examination in Chemistry

2016 Qualified for KVPY Fellowship from the Department of Science and Technology, India.

extracurricular involvement

Social Involvement

₹ Recorded audiobooks in Hindi for the visually-impaired as part of Voice of Purpose – NSS, IIT Bombay. Fall 2018

Fine Arts

- ₹ Had four pieces of digital art on display at Vision 2019 Design weekend of IIT Bombay.
- ₹ Had two pieces of digital art on display at Vision 2020 Design weekend of IIT Bombay.

[‡] To be completed by April 2022 * Graduate level course

references

Prof. Ashutosh Gupta IIT Bombay akg@cse.iitb.ac.in Prof. Krishna Shankaranarayanan IIT Bombay krishnas@cse.iitb.ac.in

Prof. Sai Vinjanampathy IIT Bombay sai@phy.iitb.ac.in