Prova Totale di **Ottimizzazione Combinatoria** 15 Luglio 2013

Cognome	
Nome	
Matricola	

Esercizio 1

- 1. Dare la definizione di matroide.
- 2. Fornire l'esempio di una coppia (U, \mathfrak{I}) che soddisfi la proprietà di scambio ma non soddisfi la proprietà di subclusione (spiegando opportunamente perché una proprietà è o meno soddisfatta).

Esercizio 2

- 1. Disegnare un grafo connesso con *n* nodi tale che
 - n sia pari e n > 6
 - $\rho > \alpha$
 - $\mu = 4$
- 2. Quanto valgono α e ρ ?

Indicare esplicitamente sul grafo disegnato gli archi che compongono il massimo matching ed il minimo edge cover ed i nodi che compongono il massimo insieme stabile e il minimo trasversale.

Esercizio 3

Dato il seguente problema di Knapsack 0-1

max
$$3x_1 + 10x_2 - 4x_3 + 13x_4$$

 $2x_1 + 3x_2 - 2x_3 + 3x_4 \le 5$
 $x \in \{0, 1\}^4$

- 1. Applicare l'algoritmo di Programmazione Dinamica per determinare la soluzione ottima e il valore ottimo del problema.
- 2. Scrivere la formula generale di programmazione dinamica per il problema di Knapsack 0-1.

Esercizio 4

Dire se la seguente matrice è totalmente unimodulare motivando la risposta:

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Prova Totale di **Ottimizzazione Combinatoria** 15 Luglio 2013

Cognome	
Nome	
Matricola	

Esercizio 5

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	A	В	C	D	E	F	G	H
A	-	7	11	16	6	18	16	20
В	7	_	5	10	12	24	10	14
C	11	5	_	6	16	28	6	10
D	16	10	6	-	21	33	11	15
E	6	12	16	21	-	13	33	25
F	18	24	28	33	13	-	33	37
G	16	10	6	11	33	33	-	5
Н	20	14	10	15	25	37	5	-

Calcolare

- 2. Il valore del rilassamento che si ottiene determinando l'1-albero di costo minimo.
- 3. Una soluzione euristica *S* ottenuta tramite l'algoritmo di Christofides.

Domanda

Enunciare e dimostrare il teorema di Konig.