

Server-side Sparse Matrix Multiply in the Accumulo Database

Dylan Hutchison^{12*} Vijay Gadepally^{1*} Jeremy Kepner^{1*} Adam Fuchs³

¹MIT Lincoln Laboratory ²University of Washington ³Sqrrl Inc.

2015 September

This work is NOT Creating the best system for a particular task (matrix multiply)

This work is NOT

Creating the best system for a particular task (matrix multiply)

This work IS

Adding graph analytic capabilities (matrix multiply) to an all-around good system used in practice today (Accumulo)

Outline

- Intro to Graphulo
 - Intro to Matrix Multiply
 - Intro to Accumulo
 - Matrix Multiply pre-Graphulo
 - Inner Product
 - Outer Product
 - Accumulo Implementation
 - Performance
 - Conclusions

Real Graph Analytics used in Accumulo

ISR

Make

- Graphs represent entities and relationships detected through multi-INT sources
- 1,000s 1,000,000s tracks and locations
- GOAL: Identify anomalous patterns of life

Social

- Graphs represent relationships between individuals or documents
- 10,000s 10,000,000s individual and interactions
- GOAL: Identify hidden social networks

Cyber

- Graphs represent communication patterns of computers on a network
- 1,000,000s 1,000,000,000s network events
- GOAL: Detect cyber attacks or malicious software

Many groups store graph data in Accumulo

→ Need tools for graph analysis in Accumulo

Why Accumulo?

Accumulo ingest performance is 100x greater than competing technologies

Graphulo Overview

- Primary Goal
 - Open source Apache Accumulo Java library that enables many graph algorithms in Accumulo
- Core primitives: GraphBLAS
- 3 Graph Schemas
 - Adjacency, Incidence, Single-Table
- 4 Demonstration Graph Algorithms
 - Degree-filtered Breadth First Search, Jaccard coefficients,
 k-Truss subgraph, Non-negative Matrix Factorization
- Focus on Interactive Computing
 - "Queued" / Localized analytics within a neighborhood, as opposed to whole table analytics
 - Low latency more important than high throughput
 - Progress monitoring for user sanity
 - Is the library working or stuck?

GraphBLAS initial function list

Function	Parameters	Returns	Math Notation
SpGEMM	sparse matrices A and Bunary functors (op)	sparse matrix	$\mathbf{C} = op(\mathbf{A}) * op(\mathbf{B})$
SpM{Sp}V (Sp: sparse)	sparse matrix Asparse/dense vector x	sparse/dense vector	y = A * x
SpEWiseX	sparse matrices or vectorsbinary functor and predicate	in place or sparse matrix/vector	C = A .* B
Reduce	- sparse matrix A and functors	dense vector	y = sum(A, op)
SpRef	- sparse matrix A - index vectors p and q	sparse matrix	B = A(p,q)
SpAsgn	sparse matrices A and Bindex vectors p and q	none	A(p,q) = B
Scale	sparse matrix Adense matrix or vector X	none	check manual
Apply	any matrix or vector Xunary functor (op)	none	op(X)

Graphulo-TableMult-8

Outline

- Intro to Graphulo
- Intro to Matrix Multiply
 - Intro to Accumulo
 - Matrix Multiply pre-Graphulo
 - Inner Product
 - Outer Product
 - Accumulo Implementation
 - Performance
 - Conclusions

Traditional Matrix Multiply: AB = C

$$\begin{bmatrix} 6 & 5 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 3 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 23 \\ 0 & 12 \end{bmatrix}$$

Traditional Matrix Multiply: AB = C

$$\begin{bmatrix} 6 & 5 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 3 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 23 \\ 0 & 12 \end{bmatrix}$$

Row & Column Labels

Traditional Matrix Multiply: AB = C

$$\begin{bmatrix} 6 & 5 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 3 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 23 \\ 0 & 12 \end{bmatrix}$$

- Row & Column Labels
- Sparse

Traditional Matrix Multiply: AB = C

$$\begin{bmatrix} 6 & 5 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 3 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 23 \\ 0 & 12 \end{bmatrix}$$

- Row & Column Labels
- Sparse
- → Associative Array Mathematics¹

Application: Multi-Source Breadth-First Search

- Sparse array representation => space efficient
- Sparse matrix-matrix multiplication => work efficient
- Three possible levels of parallelism: searches, vertices, edges
- Basis for a wide range of graph algorithms

Application: Multi-Source Breadth-First Search

- Sparse array representation => space efficient
- Sparse matrix-matrix multiplication => work efficient
- Three possible levels of parallelism: searches, vertices, edges
- Basis for a wide range of graph algorithms

Outline

- Intro to Graphulo
- Intro to Matrix Multiply

- Intro to Accumulo
- Matrix Multiply pre-Graphulo
- Inner Product
- Outer Product
- Accumulo Implementation
- Performance
- Conclusions

Background on Accumulo

Key					
Row ID	Column		Timestama	Value	
	Family	Qualifier	Visibility	Timestamp	

Best for:

- Large, de-normalized tables (NoSQL)
- Hadoop HDFS / Java ecosystem
- Huge data volume TBs to PBs
- Cell-level visibility
- Robust horizontal scaling
- Row store by default
 - Scan over rows for O(log n) lookup & sorted order
 - Log-structured Merge Tree design
- Iterator processing framework

Background on Accumulo

Key					
Row ID	Column		Timestemn	Value	
	Family	Qualifier	Visibility	Timestamp	

Best for:

- Large, de-normalized tables (NoSQL)
- Hadoop HDFS / Java ecosystem
- Huge data volume TBs to PBs
- Cell-level visibility
- Robust horizontal scaling

Use Transpose Tables see D4M Schema¹

- Row store by default
 - Scan over rows for O(log n) lookup & sorted order
 - Log-structured Merge Tree design
- Iterator processing framework

Outline

- Intro to Graphulo
- Intro to Matrix Multiply
- Intro to Accumulo

- Matrix Multiply pre-Graphulo
- Inner Product
- Outer Product
- Accumulo Implementation
- Performance
- Conclusions

*Blocked algorithms exist for large tables at reduced efficiency

Old: DB = Indexed Storage

*Blocked algorithms exist for large tables at reduced efficiency

Old: DB = Indexed Storage

New: DB = Indexed Storage + Computation Engine

*Blocked algorithms exist for large tables at reduced efficiency

Outline

- Intro to Graphulo
- Intro to Matrix Multiply
- Intro to Accumulo
- Matrix Multiply pre-Graphulo

- Inner Product
- Outer Product
- Accumulo Implementation
- Performance
- Conclusions

$$\begin{array}{l} \textbf{for } i = 1 \colon N = 2 \\ | \textbf{for } j = 1 \colon L = 2 \\ | \textbf{for } k = 1 \colon M = 4 \\ | \textbf{C}(i,j) \oplus = \textbf{A}(i,k) \otimes \textbf{B}(k,j) \end{array} \\ \textbf{C}(i,j) = \bigoplus_{k=1}^{M} \textbf{A}(i,k) \otimes \textbf{B}(k,j)$$

for
$$i=1:N=2$$

for $j=1:L=2$
for $k=1:M=4$
 $\mathbf{C}(i,j) \oplus = \mathbf{A}(i,k) \otimes \mathbf{B}(k,j)$

$$\mathbf{C}(i,j) = \bigoplus_{k=1}^{M} \mathbf{A}(i,k) \otimes \mathbf{B}(k,j)$$

$$\begin{array}{l} \text{for } i=1:N=2 \\ \begin{vmatrix} & \text{for } j=1:L=2 \\ & | & \text{for } k=1:M=4 \\ & | & \mathbf{C}(i,j) \oplus = \mathbf{A}(i,k) \otimes \mathbf{B}(k,j) \\ \end{array} \\ \end{array} \mathbf{C}(i,j) = \bigoplus_{k=1}^{M} \mathbf{A}(i,k) \otimes \mathbf{B}(k,j)$$

- + Write locality (sorted)
- + Pre-sum partial products (3 entries written)
- N scans over table B

for
$$i = 1: N = 2$$

for
$$j = 1: L = 2$$

$$\begin{vmatrix} \mathbf{for} \ j = 1: L = 2 \\ \mathbf{for} \ k = 1: M = 4 \\ \mathbf{C}(i, j) \oplus = \mathbf{A}(i, k) \otimes \mathbf{B}(k, j) \end{vmatrix}$$

2nd Scan

$$\mathbf{C}(i,j) = \bigoplus_{k=1}^{M} \mathbf{A}(i,k) \otimes \mathbf{B}(k,j)$$

Outline

- Intro to Graphulo
- Intro to Matrix Multiply
- Intro to Accumulo
- Matrix Multiply pre-Graphulo
- Inner Product

- Outer Product
- Accumulo Implementation
- Performance
- Conclusions

Now explicitly showing A^T
$$\frac{\frac{9}{9}}{50} \frac{\frac{1}{90}}{\frac{1}{90}} \frac{\frac{1}{90}}{\frac{1}{90}}$$

for
$$k = 1: M = 4$$

for $i = 1: N = 2$
for $j = 1: L = 2$
 $\mathbf{C}(i, j) \oplus = \mathbf{A}(i, k) \otimes \mathbf{B}(k, j)$
 $\mathbf{C} = \bigoplus_{k=1}^{M} \mathbf{A}(:, k) \mathbf{B}(k, j)$

1. Align Rows

for
$$k = 1: M = 4$$

for $i = 1: N = 2$
for $j = 1: L = 2$
C(i, j) \oplus = $\mathbf{A}(i, k) \otimes \mathbf{B}(k, j)$
 $\mathbf{C} = \bigoplus_{k=1}^{M} \mathbf{A}(:, k) \mathbf{B}(k, j)$

1. Align Rows

2. Cartesian Product

for
$$k = 1: M = 4$$

for $i = 1: N = 2$
for $j = 1: L = 2$
C(i, j) \oplus = $\mathbf{A}(i, k) \otimes \mathbf{B}(k, j)$

$$\mathbf{C} = \bigoplus_{k=1}^{M} \mathbf{A}(:,k) \mathbf{B}(k,:)$$

2. Cartesian Product

for
$$k = 1: M = 4$$

for $i = 1: N = 2$
for $j = 1: L = 2$
 $\mathbf{C}(i, j) \oplus = \mathbf{A}(i, k) \otimes \mathbf{B}(k, j)$
 $\mathbf{C} = \bigoplus_{k=1}^{M} \mathbf{A}(:, k) \mathbf{B}(k, j)$

1. Align Rows

for
$$k = 1: M = 4$$

for $i = 1: N = 2$
for $j = 1: L = 2$
 $\mathbf{C}(i, j) \oplus = \mathbf{A}(i, k) \otimes \mathbf{B}(k, j)$

$$\mathbf{C} = \bigoplus_{k=1}^{M} \mathbf{A}(:,k) \mathbf{B}(k,:)$$

1. Align Rows

$$\frac{99}{500} = \frac{10}{5} = \frac{10}{5}$$

$$\frac{10}{5} = \frac{10}{5}$$

$$\frac{10}{5} = \frac{15}{12}$$

$$\frac{10}{2} = \frac{15}{12}$$

$$\frac{10}{2} = \frac{15}{12}$$

$$\frac{10}{2} = \frac{15}{12}$$

$$\frac{10}{2} = \frac{15}{12}$$

for
$$k = 1: M = 4$$

for $i = 1: N = 2$
for $j = 1: L = 2$
 $\mathbf{C}(i, j) \oplus = \mathbf{A}(i, k) \otimes \mathbf{B}(k, j)$

$$\mathbf{C} = \bigoplus_{k=1}^{M} \mathbf{A}(:,k) \mathbf{B}(k,:)$$

2. Cartesian Product

for
$$k = 1: M = 4$$

for $i = 1: N = 2$
for $j = 1: L = 2$
C(i, j) \oplus = A(i, k) \otimes B(k, j)

$$\mathbf{C} = \bigoplus_{k=1}^{M} \mathbf{A}(:,k) \mathbf{B}(k,:)$$

2. Cartesian Product

Accumulo stores both 15 and 8 until next scan or compaction

for
$$k = 1: M = 4$$

for $i = 1: N = 2$

for $j = 1: L = 2$

C(i, j) \oplus = $\mathbf{A}(i, k) \otimes \mathbf{B}(k, j)$

$$\mathbf{C} = \bigoplus_{k=1}^{M} \mathbf{A}(:,k) \mathbf{B}(k,:)$$

*Lazy ⊕:

- No write locality; unsorted writes
- Hard to pre-sum partial products (4 entries written)
- + Single scan over table B

word|desert

tod|1400

tod|0500

tod|0800

tod|0800 tod|0900 tod|1400 |

word|dew word|hot

3

*Lazy ⊕:

Accumulo stores both 15 and 8 until next scan or compaction

$$= \frac{\text{word|coffee}}{\text{word|desert}} \begin{bmatrix} \mathbf{6} & \mathbf{23} \\ \mathbf{12} \end{bmatrix}^{4}$$

$$\begin{array}{c|c} \textbf{for } k = 1 \colon M = 4 \\ & \textbf{for } i = 1 \colon N = 2 \\ & | \textbf{for } j = 1 \colon L = 2 \\ & | \textbf{C}(i,j) \oplus = \textbf{A}(i,k) \otimes \textbf{B}(k,j) \end{array}$$

$$\mathbf{C} = \bigoplus_{k=1}^{M} \mathbf{A}(:,k) \mathbf{B}(k,:)$$

Inner vs. Outer Product

- Outer product best for Accumulo
 - Single pass over table B = single disk read
 - BatchWriter ingest handles unsorted writes
 - Combiners handle ⊕
 - Less extra partial products written for sparse data
- Inner product still has merit
 - Better for dense data
 - Hybrid 2D-like algorithm possible

Шт

Outline

- Intro to Graphulo
- Intro to Matrix Multiply
- Intro to Accumulo
- Matrix Multiply pre-Graphulo
- Inner Product
- Outer Product
- Accumulo Implementation
- Performance
- Conclusions

Outer Product in Graphulo Iterators

Accumulo Distributes Graphulo Iterators

IMM: In-Memory Map RFILE: Hadoop File

- Tablets can be hosted on any tablet server
 - Accumulo load balances tablet allocation
- Matrix multiply iterators run on B's tablets in parallel
 - Scan from A's tablets in parallel
 - BatchWrite to C's tablets in parallel

Graphulo-TableMult-46

Outline

- Intro to Graphulo
- Intro to Matrix Multiply
- Intro to Accumulo
- Matrix Multiply pre-Graphulo
- Inner Product
- Outer Product
- Accumulo Implementation

- Performance
- Conclusions

Performance Experiment

- Compare to pre-Graphulo alternative:
 - D4M Matlab client as Middleman
- Scaled / Weak scaling study:
 - How multiply rate varies with increasing problem size at fixed resources
 - Ideal: constant multiply rate
- Fixed / Strong scaling study:
 - How multiply rate varies with increasing resources at fixed problem size
 - Ideal: multiply rate scales linearly with increasing resources
- Environment:
 - Laptop, 16GB RAM, 2 Dual-core i7 processors, Accumulo 1.6.1
- Vary problem size between SCALE 10 and 18
 - Unpermuted Power law graph generator
 - # of nodes in each input table is 2^{SCALE}. Used 16 edges/node
- Vary resources with # Accumulo Tablets (Varies # Threads)

Performance Experiment

Outline

- Intro to Graphulo
- Intro to Matrix Multiply
- Intro to Accumulo
- Matrix Multiply pre-Graphulo
- Inner Product
- Outer Product
- Accumulo Implementation
- Performance

Conclusions

Conclusion

- Promising performance
 - Write rates near 400k / sec, near highest single-node recorded rates
 - Experiments on a larger cluster will confirm weak & strong scaling
- Outer product better suited to Accumulo
 - Hybrid inner-outer product algorithms worth studying
- Current Graphulo research is
 - implementing remaining GraphBLAS
 - developing graph algorithms

Backup

TABLE I: Output Table C Sizes and Experiment Timings

NE	Entries in Table C		Graphulo 1 Tablet		D4M 1 Tablet		Graphulo 2 Tablets		D4M 2 Tablets	
SCALE	PartialProducts	AfterSum	Time (s)	Rate (pp/s)						
10	8.05×10^{5}	2.69×10^{5}	2.87	2.81×10^{5}	3.02	2.67×10^{5}	2.02	3.98×10^{5}	2.80	2.87×10^{5}
11	2.36×10^{6}	8.15×10^{5}	7.76	3.04×10^{5}	8.80	2.68×10^{5}	5.19	4.55×10^{5}	8.72	2.71×10^{5}
12	6.82×10^{6}	2.43×10^{6}	2.20×10^{1}	3.10×10^{5}	2.66×10^{1}	2.56×10^{5}	1.63×10^{1}	4.18×10^{5}	2.62×10^{1}	2.60×10^{5}
13	1.91×10^{7}	7.04×10^{6}	6.40×10^{1}	2.99×10^{5}	1.50×10^{2}	1.27×10^{5}	4.86×10^{1}	3.93×10^{5}	1.44×10^{2}	1.33×10^{5}
14	5.27×10^{7}	2.00×10^{7}	1.82×10^{2}	2.90×10^{5}	5.79×10^{2}	9.09×10^{4}	1.36×10^{2}	3.87×10^{5}	5.59×10^{2}	9.42×10^{4}
15	1.47×10^{8}	5.83×10^{7}	5.03×10^{2}	2.93×10^{5}	2.51×10^{3}	5.86×10^{4}	3.94×10^{2}	3.74×10^{5}	2.56×10^{3}	5.75×10^{4}
16	4.00×10^{8}	1.63×10^{8}	1.39×10^{3}	2.88×10^{5}			1.18×10^{3}	3.40×10^{5}		
17	1.09×10^{9}	4.59×10^{8}	4.06×10^{3}	2.67×10^{5}			3.70×10^{3}	2.94×10^{5}		
18	2.94×10^{9}	1.28×10^{9}	1.21×10^{4}	2.42×10^{5}			1.14×10^{4}	2.58×10^{5}		

Inner-Outer Hybrid Algorithm

$$\begin{array}{|c|c|} \textbf{for } p = 1 \colon P \\ \hline & \textbf{for } k = 1 \colon M \\ \hline & \textbf{for } i = \left(\left\lfloor \frac{(p-1)N}{P} \right\rfloor + 1 \right) \colon \left\lfloor \frac{pN}{P} \right\rfloor \\ \hline & \textbf{for } j = 1 \colon L \\ \hline & \textbf{C}(i,j) \oplus = \textbf{A}(i,k) \otimes \textbf{B}(k,j) \end{array}$$

P = N - Inner Product

P = 1 - Outer Product

D4M Schema for Sparse Arrays in Key/Value Databases (Accumulo)

Accumulo Table: Ttranspose

Input Data

Time	Col1	Col2	Col3
2001-01-01	а		а
2001-01-02	b	b	
2001-01-03		С	С

	01-01- 2001	02-01- 2001	03-01- 2001
Col1 a	1		
Col1 b		1	
Col2 b		1	
Col2 c			1
Col3 a	1		
Col3 c			1

	Col1 a	Col1 b	Col2 b	Col2 c	Col3 a	Col3 c
01-01-2001	1				1	
02-01-2001		1	1			
03-01-2001				1		1

Accumulo Table: T

- Tabular data expanded to create many type/value columns
- Transpose pairs allows quick look up of either row or column