Multidimensional Databases

Microsoft SQL Server and MDX Peter Scheuermann

MS SQL Server 2008

- Microsoft's RDBMS
 - Runs on Windows OS only
- Nice features built-in
 - Analysis Services
 - Integration Services
 - Reporting Services
- Easy to use
 - Graphical "Management Studio" and "BI Developer Studio"

MS Analysis Services

- Cheap, easy to use, good, and widely used
- Supports ROLAP, MOLAP, HOLAP technology
- Intelligent pre-aggregation (for improving query performance)
- Programming: MS OLE DB for OLAP interface
- Uses the query language MDX (*M*ulti*D*imensional e*X*pressions)

SQL Server Data types

- Character data
 - CHAR, VARCHAR,
- Binary data
 - BINARY, VARBINARY,
- Date and time data
 - DATETIME, SMALLDATETIME
 - DATEADD(SS,dwml.dbo.[sales].[date],'19700101') converts
 UNIX time
- Numeric data
 - INT, FLOAT,
- Keys: IDENTITY property generates unique integer keys
 - Useful for generating DW (surrogate) keys during ETL

SSAS(SQL Server Analysis Service) - Data Cubes

SSAS - Dimension

Hierarchy, Level

Hierarchy Geography on Dimension Customer

- One dimension can have multiple hierarchies
- Hierarchies consist of levels
- Levels are in a linear order

Member

Hierarchy Geography on Dimension Customer

ALL	Country	State-Province	City	Postal code	Customer
	Members Australia Canada France Germany United Kingdom United States	Members New South Wales Queensland South Australia Tasmania Victoria Alberta British Columbia Brunswick Manitoba Ontario Quebec Charente-Maritime	Alexandria	П	rs Members Adriana Smith Aimee Guo Allison R. Young Ann A. Sara Antonio G. Patterson Ariana Stewart Arthur Kapoor Barbara W. Lal Bobby D. Saunders Brianna J. Johnson Bruce G. Madan Bryant L. Perez Carla D. Madan
		 Essonne Garonne (Haute) Gers Hauts de Seine 	 Rhodes Silverwater Springwood St. Leonards Sydney 	2136 2264 2777 2065 1002	 Carlos Edwards Carly Anand Cedric Liu Clarence Xu Colin Chavez

Sample Star Schema of Sales Cube

Dimension tables:

```
[Gender].[Gender Members]
[Product].[Product Name]
[Marital Status].[All Maritaal status]
[Promotions].[All Promotions],
[Store].[All Stores],
[Store Size in SQFT].[All],
[Store Type].[All],
[Yearly Income].[All Yearly Income]
[Time].[Year]
```

Fact table:

```
[Measures].[Unit Sales],
[Measures].[Store Cost],
[Measures].[Store Sales],
[Measures].[Sales Count],
[Measures].[Store Sales Net]
```

Children, Parent

Hierarchy Geography on Dimension Customer

MDX

- Multidimensional Expressions (MDX) is a query language for cubes
 - Supported by many data warehousing systems
 - MS SQL Server, SAS OLAP Server, drivers for MDX for Oracle OLAP, ...
 - Works on cubes
 - Part of XMLA (XML for Analysis)

http://xmla.org

MDX query structure:

The basic MDX query has the following structure:

```
SELECT axis_{A1,.....} axis_{An} ON COLUMNS, axis_{B1,.....} axis_{Bn} ON ROWS FROM cube
```

Let's compare that to the similar SQL statement:
 SELECT column₁, column₂, ..., column_n
 FROM table

Cube Example

Every MDX query generates a cube!

```
SELECT Measures.[Internet Sales Amount]
```

on COLUMNS,

{[Customer].[Country].[France], [Customer].[Country].[Germany], [Customer].[Country].[United Kingdom]}

on ROWS

FROM [Adventure Works]

MDX: Axis

Axis:

Columns	Axis(0)
Rows	Axis(1)
Pages	Axis(2)
Chapters	Axis(3)
Sections	Axis(4)

SELECT Statement and Axis Specification

Country	Internet Sales Amount
France	120,000
Germany	999,999
United Kingdom	55,000

- Axis specification: selection of members
 - In principle:

```
[Dimension].[Hierarchy].[Level].[member]
```

- Parts can be omitted if no ambiguity
 - [Customer].[Customer Geography].[Coffs Harbour]
 - → [Coffs Harbour]
- Square brackets [] only needed when the name contains a space

- Axis specification: selection of members
 - If member is missing: members of the level
 - If level and member missing: DefaultMember
 - MEMBERS: all members of the level/hierarchy
 - CHILDREN: all children of a member

 Caveat! Attributes have an attribute hierarchy, including ALL and its values

Country attribute of Customer

Part of hierarchy [Customer Geography]

[Country]

[Country].[Country]

[Customer Geography].[Country]

WHERE Clause and Slicer Specification

SELECT Measures.[Sales] on COLUMS

FROM [Adventure Works]

WHERE ([Product].[Color].[Silver]) //slicer

Example: MDX Specification

select

[Measures].[Customer Count] on columns, [Customer].[Education].members on rows

from [Adventure Works]

where [Customer].

[Customer Geography].

[Coffs Harbour]

	Customer Count
All Customers	106
Bachelors	52
Graduate Degree	→ 6
High School	13
Partial College	25
Partial High School	10

select

```
[Customer Count] on columns,
[Education].[Education].members on rows
from [Adventure Works]
where [Coffs Harbour]
```

	Customer Count
Bachelors	52
Graduate Degree	6
High School	13
Partial College	25
Partial High School	10

MDX : Slicer

- If no measure on columns or rows: slicer must include measure!
- Built in the same way as the axis specification >
 list of members

Slicer building

Specify list of members

```
[Customer].[Gender].members on columns,
  ( { [France], [Germany] }, education.members ) on rows
from [Adventure Works]

where ( [Customer Count],
  {[Commute Distance].[0-1 Miles],
  [Commute Distance].[1-2 Miles]} )
```

Cross Tabulation

```
select
  [Customer].[Gender].members on columns,
  ( { [France], [Germany] }, education.members ) on rows
from [Adventure Works]
where [Customer Count]
```

Note: Customer count is actually a slicer

,			All Customers	Female	Male
4	France	All Customers	1,810	893	917
	France	Bachelors	336	156	180
j	France	Graduate Degree	160	83	77
	France	High School	502	256	246
j	France	Partial College	566	277	289
	France	Partial High School	246	121	125
	Germany	All Customers	1.780	874	906
	Germany	Bachelors	430	222	208
	Germany	Graduate Degree	172	85	87
j	Germany	High School	314	137	177
	Germany	Partial College	642	320	322
	Germany	Partial High School	222	110	112

Example: Result

		All Customers	Female	Male
France	All Customers	1,161	573	588
France	Bachelors	282	132	150
France	Graduate Degree	160	83	77
France	High School	199	108	91
France	Partial College	329	158	171
France	Partial High School	191	92	99
Germany	All Customers	1,225	592	633
Germany	Bachelors	343	175	168
Germany	Graduate Degree	168	82	86
Germany	High School	153	64	89
Germany	Partial College	383	185	198
Germany	Partial High School	178	86	92

Example on Drill-down

MDX

```
SELECT [SALES].[AMOUNT] ON COLUMNS,
```

```
[time].[2003].[Q4].[Dec].[31],
[time].[2003].[Q4].[Dec].[30],...,
```

[time].[2003].[Q4].[Dec].[2],

[time].[2003].[Q4].[Dec].[1] ON ROWS FROM SALES

compare with SQL

```
select sum(amount), the_date from SALES where (the_date='2003-Dec-31') or (the_date='2003-Dec-30') or... or (the_date='2003-Dec-2') or (the_date='2003-Dec-1') group by the_date
```

Graphical Description of Drill-down Example

Displaying results from multiple axes

SELECT [Measures].[Store Sales]

```
on COLUMNS,
```

[Year].Members on ROWS

[Products].[Soda].Members on PAGES

FROM [Sales]

Generates 3-D cube, very hard to display

CrossJoin

 Displaying multiple dimension members on a single axis

```
[Measures].[Store Sales]

on COLUMNS,

{Crossjoin({[Year].Members},

{[Products].[Soda].Members})

on ROWS

FROM [Sales]
```

		Sales
1997	Coke	100
1998	Coke	200

Generates 2-D cube

CrossJoin -revisited

Problem with previous query: many members in the ROW axis are empty.

Need a FILTERING mechanism

```
SELECT

{[Measures].[Store Sales]}

on COLUMNS,

NonEmpty (

(Crossjoin({[Year].Members},

[Products].[Soda].Members})

on ROWS
```

		Sales
1997	Coke	100
1998	Coke	200

Generates 2-D cube

FROM [Sales]

Filtering a set based on a particular condition

SELECT

```
{[Measures]. [Unit Sales]} ON COLUMNS,

{Filter({[Product]. [Product Name},

([Gender]. [All Gender].[F],[Measures].[Unit Sales]) > 10000)} ON

ROWS
```

FROM [Sales]

Filter function

 The filter function produces a set of product departments meeting the filter criteria:

The set returned on the row axis consists of product departments for which unit sales to females are greater then \$10,000