Assignment 2

EE24BTECH11005 - Arjun Pavanje

A. FILL IN THE BLANKS

1) Let a, b, c be positive real numbers. Let

(1984 - 2Marks)

3) The greater of the two angles

$$A = 2 \tan^{-1} \left(2\sqrt{2} - 1 \right)$$
 and $B = 3 \sin^{-1} \left(\frac{1}{3} \right) + \sin^{-1} \left(\frac{3}{5} \right)$

is _____

(1989 - 2Marks)

C. MCQs with One Correct Answer

1) The value of $\tan \left[\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right]$ is

(1983 - 1Mark)

a) $\frac{6}{17}$

b) $\frac{7}{16}$

c) $\frac{16}{7}$

d) None

2) If we consider only the principle values of the inverse trigonometric functions then the value of

$$\tan\left(\cos^{-1}\left(\frac{1}{5\sqrt{2}}\right) - \sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\right) \tag{1994}$$

a) $\frac{\sqrt{29}}{3}$

is

b) $\frac{29}{3}$

c) $\frac{\sqrt{3}}{29}$

d) $\frac{3}{29}$

3) The number of real solutions of

$$\tan^{-1}\left(\sqrt{x(x-1)}\right) + \sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \frac{\pi}{2}$$
(1999 – 2*Marks*)

a) zero

is

b) one

2 d) infinite c) two 4) If $\sin^{-1}\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\ldots\right)+\cos^{-1}\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\ldots\right)=\frac{\pi}{2}$ for $0 < |x| < \sqrt{2}$, then x equals (2001S)a) $\frac{1}{2}$ b) 1 c) $-\frac{1}{2}$ d) -15) The value of x for which $\sin\left(\cot^{-1}\left(1+x\right)\right) = \cos\left(\tan^{-1}\left(x\right)\right)$ is (2004S)a) $\frac{1}{2}$ b) 1 c) 0 d) $-\frac{1}{2}$ 6) If 0 < x < 1, then $\sqrt{1+x^2} \left[\left\{ x \cos \left(\cot^{-1}(x) \right) + \sin \left(\cot^{-1}(x) \right) \right\}^2 - 1 \right]^{\frac{1}{2}}$ is (2008)a) $\frac{x}{\sqrt{1+r^2}}$ b) *x* c) $x \sqrt{1 + x^2}$ d) $\sqrt{1+x^2}$ 7) The value of $\cot\left(\sum_{k=1}^{23}\cot^{-1}\left(1+\sum_{k=1}^{n}2k\right)\right)$ is (JEEAdv.2013)a) $\frac{23}{25}$ b) $\frac{25}{23}$ c) $\frac{23}{24}$ d) $\frac{24}{23}$

D. MCQs with One or More than One Correct

1) The principal value of $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$ is (1986 - 2Marks)

a)
$$-\frac{2\pi}{3}$$

b) $\frac{2\pi}{3}$

c) $\frac{4\pi}{3}$ d) none

2) If $\alpha = 3 \sin^{-1} \left(\frac{6}{11}\right)$ and $\beta = 3 \cos^{-1} \left(\frac{4}{9}\right)$, where the inverse trigonometric functions take only the principal values, then the correct option(s) is(are) (*JEEAdv*.2015)

a)
$$\cos(\beta) > 0$$

b)
$$\sin(\beta) < 0$$

c)
$$\cos(\alpha + \beta) > 0$$

d)
$$\cos(\alpha) < 0$$

3) For non-negative integers n, let

$$f(n) = \frac{\sum_{k=0}^{n} \sin\left(\frac{k+1}{n+2}\pi\right) \sin\left(\frac{k+2}{n+2}\pi\right)}{\sum_{k=0}^{n} \sin^2\left(\frac{k+1}{n+2}\pi\right)}$$

Assuming $\cos^{-1}(x)$ takes values in $[0, \pi]$, which of the following options is/are correct (*JEEAdv*.2019)

- a) $\lim_{n\to\infty} f(n) = \frac{1}{2}$
- b) $f(4) = \frac{\sqrt{3}}{2}$ c) If $\alpha = \tan(\cos^{-1}(f(6)))$, then $\alpha^2 + 2\alpha 1 = 0$
- d) $\sin(7\cos^{-1}(f(5))) = 0$

E. Subjective Problems

1) Find the value of:

$$\cos\left(2\cos^{-1}(x) + \sin^{-1}(x)\right)$$

where
$$0 \le \cos^{-1}(x) \le \pi$$
 and $-\frac{\pi}{2} \le \sin^{-1}(x) \le \frac{\pi}{2}$

(1981 - 2Marks)

2) Find all the solution of

$$4\cos^2(x)\sin(x) - 2\sin^2(x) = 3\sin(x)$$

(1983 - 2Marks)