Assignment 8

AKKASANI YAGNESH REDDY CS21BTECH11003

June 6, 2022

Outline

Question

Solution:

Question: Show that if F(x, y, z) is a joint distribution. then for any $x_1 \le x_2, y_1 \le y_2, z_1 \le z_2$:

$$F(x_{2}, y_{2}, z_{2}) + F(x_{1}, y_{1}, z_{1}) + F(x_{1}, y_{2}, z_{1})$$

$$+F(x_{2}, y_{1}, z_{1}) - F(x_{1}, y_{2}, z_{2}) - F(x_{2}, y_{1}, z_{2})$$

$$-F(x_{2}, y_{2}, z_{1}) - F(x_{1}, y_{1}, z_{1}) \ge 0$$
(1)

Solution: We know that, Using this instead of F,

$$F(x) = \Pr\left(X \le x\right) \tag{2}$$

$$0 \le \Pr(x_1 \le x \le x_2, y_1 \le y \le y_2, z_1 \le z \le z_2)$$

$$0 \le \Pr(x \le x_2, y_1 \le y \le y_2, z_1 \le z \le z_2)$$

$$-\Pr(x \le x_1, y_1 \le y \le y_2, z_1 \le z \le z_2)$$

$$(4)$$

=
$$\Pr(x \le x_2, y \le y_2, z_1 \le z \le z_2) - \Pr(x \le x_2, y \le y_1, z_1 \le z \le z_2)$$

- $\Pr(x \le x_1, y \le y_2, z_1 \le z \le z_2) + \Pr(x \le x_1, y \le y_1, z_1 \le z \le z_2)$ (5)

$$= \Pr(x \le x_2, y \le y_2, z \le z_2) - \Pr(x \le x_2, y \le y_2, z \le z_1)$$

$$- \Pr(x \le x_2, y \le y_1, z \le z_2) + \Pr(x \le x_2, y \le y_1, z \le z_1)$$

$$- \Pr(x \le x_1, y \le y_2, z \le z_2) + \Pr(x \le x_1, y \le y_2, z \le z_1)$$

$$+ \Pr(x \le x_1, y \le y_1, z \le z_2) - \Pr(x \le x_1, y \le y_1, z \le z_1)$$
(6)

Hence proved because the above is ≥ 0 and is same as given in question that is,

$$F(x_{2}, y_{2}, z_{2}) + F(x_{1}, y_{1}, z_{1}) + F(x_{1}, y_{2}, z_{1})$$

$$+F(x_{2}, y_{1}, z_{1}) - F(x_{1}, y_{2}, z_{2}) - F(x_{2}, y_{1}, z_{2})$$

$$-F(x_{2}, y_{2}, z_{1}) - F(x_{1}, y_{1}, z_{1}) \ge 0$$
(7)