Løsningsforslag til utvalgte oppgaver i kapittel 4

I seksjon 4.1 gir de innledende oppgavene deg trening i å løse differensligninger, og jeg regner med at det ikke er behov for å utdype lærebokas eksempler og fasit her. Men like viktig som å kunne løse slike ligninger, er det å forstå hvordan man tenker når man skal stille opp ligningene ut ifra en oppgavetekst. Oppgave 4.1.9 og 4.1.11 gir god trening i dette. Oppgave 4.1.14 viser deg en annen anvendelse av differensligninger.

I seksjon 4.3 får du brynet deg på definisjonen av grenseverdi for følger (f.eks i oppgave 4.3.4), men du finner også enkle eksempler på hvordan man regner ut slike grenseverdier i praksis (oppgave 4.3.1 og 4.3.3). Oppgave 4.3.14 illustrerer at differensen mellom to følger som begge går mot uendelig, like gjerne kan gå mot et endelig tall som mot uendelig.

Oppgave 4.1.9

La a_n være antall sekvenser av lengde n som består av 0-er og 1-ere, der første siffer er 1, og hvor to 1-ere aldri følger etter hverandre.

Sekvensen '1' er den eneste lovlige sekvensen av lengde n=1, og sekvensen '10' er den eneste lovlige av lengde n=2. Dermed har vi initialbetingelsene $a_1=a_2=1$.

Anta nå at n > 2, og la oss se på hvilke lovlige sekvenser av lengde n som finnes. Det siste sifferet i strengen er enten 0 eller 1, og vi tar for oss de to tilfellene etter tur:

- i) Hvis siste siffer i sekvensen er 0, kan de foregående (n-1) sifrene være en hvilken som helst av de a_{n-1} lovlige sekvensene av lengde n-1.
- ii) Hvis siste siffer i sekvensen er 1, må det nest siste sifferet være 0, siden vi aldri kan ha to 1-ere etter hverandre. Vi har da bare igjen (n-2) sifre i sekvensen, og disse kan være en hvilken som helst av de a_{n-2} lovlige sekvensene av lengde n-2.

Disse to tilfellene dekker alle muligheter vi har for lovlige sekvenser av lenge n (og de er disjunkte slik at vi ikke har talt opp samme sekvens flere ganger). Dette viser at a_n er gitt ved differensligningen:

$$a_n = a_{n-1} + a_{n-2}$$

for n > 2 med initialbetingelser $a_1 = a_2 = 1$.

Vi finner først den generelle løsningen av differensligningen

$$a_n - a_{n-1} - a_{n-2} = 0$$

Den karakteristiske ligningen er $r^2 - r - 1 = 0$ som har røtter

$$r_1 = 1/2 + \sqrt{5}/2$$
 og $r_2 = 1/2 - \sqrt{5}/2$

Den generelle løsningen blir derfor:

$$a_n = A(1/2 + \sqrt{5}/2)^n + B(1/2 - \sqrt{5}/2)^n$$

Initialbetingelsene gir:

$$a_1 = A(1/2 + \sqrt{5}/2) + B(1/2 - \sqrt{5}/2) = 1$$

 $a_2 = A(1/2 + \sqrt{5}/2)^2 + B(1/2 - \sqrt{5}/2)^2 = 1$

Løser vi disse ligningene (se kommentar nedenfor), får vi $A = 1/\sqrt{5}$ og $B = -1/\sqrt{5}$. Den spesielle løsningen blir derfor:

$$a_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

(Merk at dette er den samme løsningen som i eksempel 4.1.8 fordi differensligningen vi startet med er identisk med Fibonaccis relasjon.)

Tips til utregningen:

For å få enkel regning, kan vi først samle leddene som om vi skulle løse ligningene med hensyn på "variablene" A + B og A - B:

Av den første ligningen får vi da at

$$(A+B) + \sqrt{5}(A-B) = 2$$

og av den andre ligningen får vi at

$$3(A+B) + \sqrt{5}(A-B) = 2$$

Trekker vi den første ligningen fra den andre, får vi 2(A+B)=0, det vil si A=-B. Setter vi dette inn igjen i det første uttrykket, får vi $(A-A)+\sqrt{5}(A+A)=2$, det vil si $2A=2/\sqrt{5}$. Dermed blir $A=1/\sqrt{5}$ og $B=-1/\sqrt{5}$.

Oppgave 4.1.11

La x_n være sannsynligheten for at du vinner dersom du starter med n millioner og banken med 100 - n millioner. Vi ønsker egentlig å finne x_{90} , men løser problemet for en generell x_n først.

Det er to mulige måter du kan vinne på: Med sannsynlighet $\frac{18}{37}$ vinner du første omgang, innkasserer 1 million og har da sannsynlighet x_{n-1} for å sikre sluttseieren. Den totale sannsynligheten for at du skal vinne på denne måten er $\frac{18}{37}x_{n-1}$. Den andre måten du kan vinne på,

er gjennom å tape første omgang (med sannsynlighet $\frac{19}{37}$), gi fra deg 1 million, for deretter å sikre deg sluttseieren med sannsynlighet x_{n-1} . Den totale sannsynligheten for å vinne på denne måten er $\frac{19}{37}x_{n-1}$.

Dermed ser vi at x_n er gitt ved

$$x_n = \frac{18}{37}x_{n+1} + \frac{19}{37}x_{n-1}$$

som lett omformet gir differensligningen

$$18x_{n+1} - 37x_n + 19x_{n-1} = 0$$

Denne har karakteristisk ligning

$$18r^2 - 37r + 19 = 0$$

med røtter

$$r = \frac{37 \pm \sqrt{1369 - 1368}}{2 \cdot 18} = \frac{37 \pm 1}{36}$$

det vil si

$$r_1 = 1, \quad r_2 = \frac{19}{18}$$

Den generelle løsningen blir da

$$x_n = C + D\left(\frac{19}{18}\right)^n$$

Hvis du starter med null og banken med 100 millioner, så har du tapt. Dermed er $x_0 = C + D = 0$. Starter du med 100 millioner, har du vunnet, så $x_{100} = C + D(\frac{19}{18})^{100} = 1$. Dermed er D = -C og $C = \frac{1}{1 - (\frac{19}{18})^{100}}$. Innsatt overfor gir dette den spesielle løsningen

$$x_n = \frac{1}{1 - (\frac{19}{18})^{100}} \left(1 - \left(\frac{19}{18} \right)^n \right)$$

Setter vi n = 90 får vi altså

$$x_{90} = \frac{1 - (\frac{19}{18})^{90}}{1 - (\frac{19}{18})^{100}} \approx \underline{0.58}$$

Oppgave 4.1.14

La x_n være avviket i middeltemperaturen i måned n
rnfra den årlige middeltemperaturen. Vi har

$$x_{n+2} - \sqrt{3}x_{n+1} + x_n = 0$$

med initialbetingelsene $x_1 = -12$ og $x_3 = -6$. Det er varmest i den måneden k hvor x_k er størst, og kaldest i den måneden t hvor x_t er minst. Vi løser differensligningen for å få en formel for x_n :

Den karakteristiske ligningen er $r^2 - \sqrt{3}r + 1 = 0$ som har de to komplekse røttene

$$r_1 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$
 og $\overline{r_1} = \frac{\sqrt{3}}{2} - \frac{1}{2}i$

Disse har modulus:

$$\rho = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$$

Argumentet til r_1 er bestemt ved at

$$\cos \theta = \frac{\sqrt{3}}{2}$$
 og $\sin \theta = \frac{1}{2}$

det vil si at

$$\theta = \frac{\pi}{6}$$

Den generelle (reelle) løsningen blir dermed

$$x_n = E \cdot \cos\left(\frac{\pi n}{6}\right) + F \cdot \sin\left(\frac{\pi n}{6}\right) \text{ hvor } E, F \in \mathbf{R}$$

Av initialbetingelsene får vi

$$x_1 = E \cdot \frac{\sqrt{3}}{2} + F \cdot \frac{1}{2} = -12$$

og

$$x_3 = E \cdot 0 + F \cdot 1 = -6$$

Den siste ligningen sier at F=-6, som innsatt i den første ligningen gir

$$E \cdot \frac{\sqrt{3}}{2} - 3 = -12 \iff E = -\frac{18}{\sqrt{3}} = -6\sqrt{3}$$

Den spesielle løsningen blir derfor

$$F(n) = x_n = \frac{-6\sqrt{3}\cos\left(\frac{\pi n}{6}\right) - 6\sin\left(\frac{\pi n}{6}\right)}{-6\sin\left(\frac{\pi n}{6}\right)}$$

Vi deriverer for å bestemme ekstremalpunktene:

$$F'(n) = 6\sqrt{3} \cdot \frac{\pi}{6} \sin\left(\frac{\pi n}{6}\right) - 6 \cdot \frac{\pi}{6} \cos\left(\frac{\pi n}{6}\right)$$
$$= \sqrt{3}\pi \sin\left(\frac{\pi n}{6}\right) - \pi \cos\left(\frac{\pi n}{6}\right)$$

Av dette får vi videre at

$$F'(n) = 0 \iff \pi \cos\left(\frac{\pi n}{6}\right) = \sqrt{3}\pi \sin\left(\frac{\pi n}{6}\right)$$

Siden $\cos\theta=\sqrt{3}\sin\theta$ nøyaktig når $\theta=\frac{\pi}{6}$ eller $\theta=\frac{7\pi}{6}$, betyr dette at vi må ha

$$\frac{\pi n}{6} = \frac{\pi}{6} \quad \text{eller} \quad \frac{\pi n}{6} = \frac{7\pi}{6}$$

det vil si

$$n = 1$$
 eller $n = 7$

Temperaturfunksjonen har altså ekstremalverdier for n = 1 og for n = 7. Siden vi vet at $F(1) = x_1 = -12$, og vi har at F(7) = -F(1) = 12 (både cosinus og sinus skifter fortegn), ser vi at det er kaldest i måned nr 1 og varmest i måned nr 7.

Vi setter opp en oversikt over temperaturen i de ulike månedene:

$$F(1) = x_1 = -12$$

$$F(2) = -6\sqrt{3} \cdot \frac{1}{2} - 6 \cdot \frac{\sqrt{3}}{2} = -6\sqrt{3}$$

$$F(3) = x_3 = -6$$

$$F(4) = -6\sqrt{3} \cdot \left(-\frac{1}{2}\right) - 6 \cdot \frac{\sqrt{3}}{2} = 0$$

$$F(5) = -6\sqrt{3} \cdot \left(-\frac{\sqrt{3}}{2}\right) - 6 \cdot \frac{1}{2} = 6$$

$$F(6) = -6\sqrt{3} \cdot (-1) - 6 \cdot 0 = 6\sqrt{3}$$

$$F(7) = -F(1) = 12$$

$$F(8) = -F(2) = 6\sqrt{3}$$

$$F(9) = -F(3) = 6$$

$$F(10) = -F(4) = 0$$

$$F(11) = -F(5) = -6$$

$$F(12) = -F(6) = -6\sqrt{3}$$

Disse punktene kan nå markeres i et koordinatsystem (gjør dette, og tegn en kontinuerlig temperaturkurve som går gjennom alle disse punktene).

Kommentar:

Vi kunne også ha funnet løsningen uten å derivere, simpelthen ved å observere at formelen F(n) kan omskrives på følgende måte:

$$F(n) = -6\sqrt{3}\cos\left(\frac{\pi n}{6}\right) - 6\sin\left(\frac{\pi n}{6}\right)$$
$$= -12\left(\frac{\sqrt{3}}{2}\cos\left(\frac{\pi n}{6}\right) + \frac{1}{2}\sin\left(\frac{\pi n}{6}\right)\right)$$

$$= -12\left(\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi n}{6}\right) + \cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi n}{6}\right)\right)$$
$$= -12\left(\sin\left(\frac{\pi}{3} + \frac{\pi n}{6}\right)\right)$$

Dette uttrykket blir minst når $\sin(\frac{\pi}{3} + \frac{\pi n}{6})$ er størst, det vil si når argumentet $(\frac{\pi}{3} + \frac{\pi n}{6})$ er lik $\frac{\pi}{2}$, altså når n = 1. Uttrykket blir størst når $\sin(\frac{\pi}{3} + \frac{\pi n}{6})$ er minst, det vil si når argumentet $(\frac{\pi}{3} + \frac{\pi n}{6})$ er lik $\frac{3\pi}{2}$, altså når n = 7.

Oppgave 4.3.1

Vi skal finne grenseverdiene.

a)
$$\lim_{n \to \infty} \frac{8n^4 + 2n}{3n^4 - 7} = \lim_{n \to \infty} \frac{\frac{8n^4 + 2n}{n^4}}{\frac{3n^4 - 7}{n^4}} = \lim_{n \to \infty} \frac{8 + \frac{2}{n^3}}{3 - \frac{7}{n^4}} = \frac{8 + 0}{3 - 0} = \frac{8}{3}$$

b)
$$\lim_{n \to \infty} \frac{3n^2 - 4}{-2n^3 + 7} = \lim_{n \to \infty} \frac{\frac{3n^2 - 4}{n^3}}{\frac{-2n^3 + 7}{n^3}} = \lim_{n \to \infty} \frac{\frac{3}{n} - \frac{4}{n^3}}{-2 + \frac{7}{n^3}} = \frac{0 - 0}{-2 + 0} = \underline{0}$$

c)
$$\lim_{n \to \infty} \frac{5n^3 + 2n - 13}{7n - 4} = \lim_{n \to \infty} \frac{\frac{5n^3 + 2n - 13}{n}}{\frac{7n - 4}{n}} = \lim_{n \to \infty} \frac{5n^2 + 2 - \frac{13}{n}}{7 - \frac{4}{n}} = \underline{\infty}$$

Oppgave 4.3.3

Vi skal finne grenseverdiene.

a)
$$\lim_{n \to \infty} (\sqrt{n+2} - \sqrt{n}) = \lim_{n \to \infty} \frac{(\sqrt{n+2} - \sqrt{n})(\sqrt{n+2} + \sqrt{n})}{\sqrt{n+2} + \sqrt{n}}$$

 $= \lim_{n \to \infty} \frac{n+2-n}{\sqrt{n+2} + \sqrt{n}} = \lim_{n \to \infty} \frac{2}{\sqrt{n+2} + \sqrt{n}} = \underline{0}$

b)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n + \sqrt{n}} - \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n + \sqrt{n}} + \sqrt{n}}{(\sqrt{n + \sqrt{n}} - \sqrt{n})(\sqrt{n + \sqrt{n}} + \sqrt{n})}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n + \sqrt{n}} + \sqrt{n}}{n + \sqrt{n} - n} = \lim_{n \to \infty} \frac{\sqrt{n + \sqrt{n}} + \sqrt{n}}{\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{\frac{n + \sqrt{n}}{n}} + \sqrt{n}}{1} = \lim_{n \to \infty} \left(\sqrt{1 + \frac{\sqrt{n}}{n}} + 1\right)$$

$$= \lim_{n \to \infty} \left(\sqrt{1 + \frac{1}{\sqrt{n}}} + 1\right) = 1 + 1 = \underline{2}$$

Oppgave 4.3.4a

Vi skal vise at $\lim_{n\to\infty} (3-\frac{2}{n})=3$ ved å bruke definisjon 4.3.1. Vi skal altså vise at følgen $a_n=3-\frac{2}{n}$ konvergerer mot a=3. Siden

$$|a_n - a| = \left|3 - \frac{2}{n} - 3\right| = \left|-\frac{2}{n}\right| = \frac{2}{n}$$

må vi vise at uansett hvilken $\varepsilon > 0$ vi blir gitt, kan vi finne et naturlig tall N slik at $|a_n - a| = \frac{2}{n} < \varepsilon$ når $n > \mathbb{N}$. Men dette er lett: Vi velger bare $N \in \mathbb{N}$ til å være et naturlig tall slik at $\frac{2}{N} < \varepsilon$, det vil si slik at $N > \frac{2}{\varepsilon}$. Et slikt naturlig tall N finnes ifølge Arkimedes prinsipp (2.2.6).

Oppgave 4.3.14

Vi skal finne eksempler på følger $\{a_n\}$ og $\{b_n\}$ som er slik at $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \infty$ og som samtidig oppfyller:

a)
$$\lim_{n\to\infty} (a_n - b_n) = \infty$$
.
La $a_n = 2n$ og $b_n = n$. Da er

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} (2n - n) = \lim_{n \to \infty} n = \infty$$

b)
$$\lim_{n\to\infty} (a_n - b_n) = -\infty$$
.
La $a_n = n$ og $b_n = 2n$. Da er
$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} (n - 2n) = \lim_{n\to\infty} (-n) = -\infty$$

c)
$$\lim_{n\to\infty} (a_n - b_n)$$
 er et endelig tall.
La $a_n = n$ og $b_n = n - \frac{1}{n}$. Da er

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} \left(n - n + \frac{1}{n} \right) = \lim_{n \to \infty} \frac{1}{n} = 0$$