Mapping ER-EER to Relational Model

ER to Relational Mapping

How do we convert an ER Model into a Relational Model??

Simple!!

Basic Ideas:

- Build a table for each entity set
- Build a table for each relationship set <u>if necessary</u> (more on this later)
- Make a column in the table for each attribute in the entity set
- Composite and Multivalue Attributes
- Primary Key

ER to Relational Mapping

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relationship Types
- Step 4: Mapping of Binary 1:N Relationship Types
- Step 5: Mapping of Binary M:N Relationship Types
- Step 6: Mapping of Multivalued attributes
- Step 7: Mapping of N-ary Relationship Types

Mapping EER Model Constructs to Relations

- Step 8: Mapping of Specialization or Generalization
- Step 9: Mapping of Union Types (Categories)

Mapping – Strong Entity Set

SID	Name	Major	GPA
1234	John	CS	2.8
5678	Mary	E	3.6

SSN	Name	Dept
9999	Smith	Math
8888	Lee	CS

Mapping of Weak Entity

- Weak Entity Set cannot exists alone
- To build a table for weak entity set
 - Construct a table with one column for each attribute in the weak entity
 - Add a column for the primary key of the *Owner* of the Weak Entity
 - Primary Key of the weak entity
 - = Discriminator + foreign key

Mapping - Weak Entity Set

Example:

- Construct a table with one column for each attribute in the weak entity
- Add primary key of the Owner Entity in the table

Mapping of Relationships

Unary/Binary Relationship set

• Depends on the cardinality and participation constraints

N-ary (multiple) Relationship set

Identifying Relationship

EXAMPLE: FOREIGN KEY APPROACH

SID	Name	GPA	Major	No	Date
9999	Bart	3.2	CS	11289	12-09-09
8888	Lisa	4.0	EE	12345	14-02-10

EXAMPLE: RELATIONSHIP RELATION

SID	S\N#	Date
9999	07	12-08-09
8888	05	15-07-10

^{*} Primary key can be either *SID* or S\N#

MAPPING RELATIONSHIP SET UNARY/BINARY RELATIONSHIP

1-1 relationship without total participation

- Relationship relation: Build a table
 - Add columns for each participating entity's primary key.
 - Also add the attributes of the relationship. *(cross-reference)*

1-1 relationship with one total participation

- Foreign key approach:
 - Add primary key of the entity without total participation in the table of the entity with total participation.

Merged relation (alternate mapping):

• merge the two entities and the relationship into a single relation (used when both participations are total).

FIGURE 7.1

THE ER CONCEPTUAL SCHEMA DIAGRAM FOR THE COMPANY DATABASE.

MAPPING RELATIONSHIP SET 1-N BINARY RELATIONSHIP

1-N relationship without total participation

- Same as 1-1 relationship
- Relationship relation: Build a table
 - · Add columns for each participating entity's primary key.
 - Also add the attributes of the relationship.

1-N with total participation on N side

- Foreign key approach:
 - Add a column in the table of the entity <u>on the N side</u>, put in there the primary key of the entity <u>on the 1 side</u>.

EXAMPLE - 1:N RELATIONSHIP SET

SID	Name	Major	GPA	Pro_SSN	Ad_Sem
9999	Ali	EE	3.0	123-456	Fall 2009
8888	Aliya	CS	3.8	567-890	Fall 2008

^{*} Primary key of this table is *SID*

MAPPING RELATIONSHIP SET N-M UNARY/BINARY RELATIONSHIP

N:M relationship

- Relationship relation: Build a table
 - add columns for each participating entity's primary key.
 - Also add the attributes of the relationship.
- *Primary key* of this new table is the union of the foreign keys of both entity sets.
- Note No Foreign Key approach is possible...

MAPPING RELATIONSHIP SET N-ARY RELATIONSHIP

• Intuitively Simple

- Build a new table, add primary keys of all participating entity sets.
- Add attributes of the relationship set
- The primary key of this new table is the union of all primary keys of entities that are on N side
- That is it, we are done.

EXAMPLE - N-ARY RELATIONSHIP SET

P-Key1	P-Key2	P-Key3	A-Key	D-Attribute
9999	8888	7777	6666	Yes
1234	5678	9012	3456	No

^{*} Primary key of this table is *P-Key1* + *P-Key2* + *P-Key3*

FIGURE 4.11

TERNARY RELATIONSHIP TYPES. (A) THE SUPPLY RELATIONSHIP.

SUPPLIER

PROJECT

PROJNAME	• • •
	l

PART

PARTNO	• • •
--------	-------

SUPPLY

SNAME	PROJNAME	PARTNO	QUANTITY
			ı

REPRESENTING RELATIONSHIP IDENTIFYING RELATIONSHIP

Don't create a table for the identifying relationship

As we have built a table for the corresponding weak entity

- WHY ?
 - A special case of 1:N with total participation
 - Reduce Redundancy

Representing Composite Attribute

One column for each component attribute NO column for the composite attribute itself

SSN	Name	Street	City
9999	Dr. Smith	50 1 st St.	Fake City
8888	Dr. Lee	1 B St.	San Jose

Example - Multivalue attribute

EXAMPLE - MULTIVALUE ATTRIBUTE

DEPT_LOCATIONS

Correspondence between ER Model & Relational Model

ER Model

- 1. Entity type
- 2. 1:1 or 1:N relationship type
- 3. M:N relationship type
- 4. *n*-ary relationship type
- 5. Simple attribute
- 6. Composite attribute
- 7. Multivalued attribute
- 8. Value set
- 9. Key attribute

Relational Model

- 1. Entity relation
- 2. Foreign key (or relationship relation)
- 3. Relationship relation and two foreign keys
- 4. Relationship relation and n foreign keys
- 5. Attribute
- 6. Set of simple component attributes
- 7. Relation and foreign key
- 8. Domain
- 9. Primary (or secondary) key

ER TO RELATIONAL: EXAMPLE FOOTBALL CLUB

"A football club has a name and a ground and is made up of players. A player can play for only one club. A manager, represented by his name manages a club. A footballer has a registration number, name and age. A club manager also buys players. Each club plays against other clubs in the league and matches have a date, venue and score."

Mapping EER Model Constructs to Relations

- For Mapping Specialization or Generalization we have four options:
 - Multiple relations-Superclass and subclasses
 - Multiple relations-Subclass relations only
 - Single relation with one type attribute
 - Single relation with multiple type attributes

ATTRIBUTE-DEFINED SPECIALIZATION ON JOBTYPE

(a) EMPLOYEE

SSN FName MInit LName BirthDate Ad	ddress JobType
------------------------------------	----------------

SECRETARY

SSN TypingSpeed

TECHNICIAN

SSN TGrade

ENGINEER

SSN EngType

Mapping EER Model Constructs to Relations

Multiple relations- Superclass & Subclasses

- Create a relation for the Superclass
- Create a relation for each subclass and also include the primary key of the Superclass
- This option works for any specialization (total or partial, disjoint or over-lapping).

SECRETARY

SSN TypingSpeed

TECHNICIAN
SSN TGrade

ENGINEER

SSN EngType

36

GENERALIZING CAR AND TRUCK INTO THE SUPERCLASS VEHICLE.

(b) CAR

VehicleId LicensePlateNo	Price	MaxSpeed	NoOfPassengers
--------------------------	-------	----------	----------------

TRUCK

<u>VehicleId</u> LicensePlateNo	Price	NoOfAxles	Tonnage
---------------------------------	-------	-----------	---------

Mapping EER Model Constructs to Relations

Multiple Relations-Subclass only

- Create a relation for each subclass
 - include the attributes of the superclass in each subclass relation
- Works only in for specialization where subclasses are total
 - Every entity in the superclass must belong to at least one of the subclasses.
- It is preferred that subclasses are <u>disjoint</u>
 - to avoid redundancy
- How to get all entities?
 - Need Outer join (or full outer join) to get
 all entities

 (b) CAR

VehicleId

 VehicleId
 LicensePlateNo
 Price
 MaxSpeed
 NoOfPassengers

 TRUCK

Price

LicensePlateNo

NoOfAxles

ATTRIBUTE-DEFINED SPECIALIZATION ON JOBTYPE

/ \			~ · -	_
(c)	⊢ N/	IDI (DYE	_
\mathbf{v}	LIV	$\Gamma \Gamma$,,,	_

SSN	FName	MInit	LName	BirthDate	Address	JobType	TypingSpeed	TGrade	EngType
-----	-------	-------	-------	-----------	---------	---------	-------------	--------	---------

Mapping EER Model Constructs to Relations

Single relation with one type attribute

- Create a single relation for superclass and all of the subclasses
- The new relation includes the attributes of superclass and all the attributes of each subclass
- The relation also includes <u>an attribute (type)</u> that indicates the subclass to which each tuple belongs
- Not recommended if subclasses have many attributes
- This option works only for a specialization whose subclasses are *disjoint*

FIGURE 4.5

EER DIAGRAM NOTATION FOR AN OVERLAPPING SPECIALIZATION.

(d) PART
PartNo Description MFlag DrawingNo ManufactureDate BatchNo PFlag SupplierName ListPrice

Mapping EER Model Constructs to Relations

Single relation with multiple type attributes

- Create a single relation for superclass and all of the subclasses
- The new relation includes the attributes of superclass and all the attributes of each subclass
- The relation also includes **m type attributes**, where m is the no of subclasses.
 - Each is a boolean type attribute indicating whether a tuple belongs to the ith subclass.
- This option is for <u>overlapping subclasses</u> (but will work for a disjoint subclasses).

Example

Mapping of Shared Subclasses (Multiple Inheritance)

- A shared subclass, is a subclass of several classes, indicating multiple inheritance.
- These classes must all have the same key attribute. WHY?
 - Otherwise, the shared subclass would be modeled as a category.
- We can apply any of the four options discussed before to a shared subclass, subject to the restriction.

Mapping of Union Types (Categories)

Category (union type)

- A vehicle OWNER represents a subset of the *union* of the three superclasses COMPANY, BANK, and PERSON
- A category member must exist in *at least one* of its superclasses

• Difference from *shared subclass*, which is a:

- subset of the *intersection* of its superclasses
- shared subclass member must exist in *all* of its superclasses

Activity

Figure 4.12 EER schema for a SMALL_AIRPORT database.

Activity

