CLAIMS

What is claimed is:

1	1.	A write select circuit comprising:
2		a pulse stretcher stretching clock pulses;
3		a READ/WRITE decode selectively passing stretched said clock pulses
4	resp	onsive to a write select signal; and
5		a write driver receiving passed said stretched clock pulses and driving said write
6	seled	ct pulses responsive to received said stretched clock pulses.
1	2.	A write select circuit as in claim 1, wherein said write select circuit is a CMOS
2	write	e select circuit and said pulse stretcher comprises:
3		a delay receiving a local clock and passing a delayed clock; and
4		a NAND gate receiving said local clock and said delayed clock and providing
5	stret	ched said clock pulses.
1	3.	A CMOS write select circuit as in claim 2, wherein said NAND gate is a 2 input
2	NAN	ND gate and said delay is a group of series connected inverters.
1	4.	A write select circuit as in claim 1, wherein said write select circuit is a CMOS
2	write	e select circuit and said READ/WRITE decode is a dynamic decode comprising:
3		a pair of series connected complementary field effect transistors (FETs), stretched
4	said	clock pulses being connected to the gates of said pair, a common drain connection of
5	said	pair being a READ/WRITE decode output; and
6		at least one write enable FET, selectively providing a path to ground for said pair.

1	5.	A CMOS write select circuit as in claim 4, wherein said write driver comprises:
2		a pseudo latch P-type FET (PFET), said READ/WRITE decode output being
3	conn	nected to a conductive terminal of said pseudo latch PFET; and
4		a first inverter, said READ/WRITE decode output being an input to said first
5	inve	rter.
1	6.	A CMOS write select circuit as in claim 5, said write driver further comprising a
2	seco	nd inverter driving said write select pulses, an output of said first inverter being an
3	inpu	t of said second inverter.
1	7.	A bit decoder comprising:
2		a pulse stretcher stretching clock pulses;
3		a bit decode selectively passing stretched said clock pulses responsive to a column
4	addr	ess; and
5		a column driver receiving passed said stretched clock pulses and driving said
6	colui	mn select pulses responsive to received said stretched clock pulses.
1	8.	A bit decoder as in claim 7, wherein said bit decoder is a CMOS bit decoder and
2	said	pulse stretcher comprises:
3		a delay receiving a local clock and passing a delayed clock; and
4		a NAND gate receiving said local clock and said delayed clock and providing
5	streto	ched said clock pulses.
1	9.	A CMOS bit decoder as in claim 8, wherein said NAND gate is a 2 input NAND
2	gate	and said delay is a group of series connected inverters.

10.

1

2

said bit decode is a dynamic decode comprising:

A bit decoder as in claim 7, wherein said bit decoder is a CMOS bit decoder and

3	an n bit address decode connected between a decode node and a common source
4	node;
5	a restore FET connected between a supply and said decode node;
6	a complementary pair of enable FETs, a first of said complementary pair being
7	connected between said supply and a decode out of said bit decode, a second of said
8	complementary pair being connected between a supply return and said common source
9	node, the gate of said restore FET and of each of said complementary pair being
10	connected to an output of said pulse stretcher;
11	a decode out FET connected between said decode out and said enable node, said
12	decode node being connected to the gate of said decode out FET; and
13	a first pseudo latch FET connected between said supply and said decode node and
14	gated by said decode out.
1	11. A CMOS bit decoder as in claim 10, wherein said write driver comprises:
2	a second pseudo latch FET connected between said supply and said decode out;
3	and
4	a decode out inverter driving said column select pulses and connected to the gate
5	of said second pseudo latch FET, said decode out being an input to said decode out
6	inverter.
1	12. A CMOS bit decoder as in claim 11, wherein each of said decode out FET and
2	said second of said complementary pair are N-type FETs and each of said restore FET,
3	said first of said complementary pair, said first pseudo latch FET and said second pseudo
4	latch FET are P-type FETs.
1	13. A CMOS bit decoder as in claim 12, wherein said n-bit address decode comprises
2	n parallel NFETs connected between said decode node and said common source node and
3	said decode out inverter comprises a pair of parallel PFETs.

2	a memory array comprising a plurality of memory cells organized as a plurality of
3	rows and columns;
4	a word decoder selecting a word line identifying one of said rows responsive to a
5	memory location access request;
6	a bit decoder providing column select pulses responsive to said memory location
7	access request;
8	a column select selecting a column responsive to said column select pulses; and
9	a write select selectively providing write select pulses, said write select pulses
10	being wider than corresponding said column select pulses.
1	15. A RAM as in claim 14, wherein said write select comprises:
2	a pulse stretcher stretching clock pulses;
3	a READ/WRITE decode selectively passing stretched said clock pulses
4	responsive to a write select signal; and
5	a write driver receiving passed said stretched clock pulses and driving said write
6	select pulses responsive to received said stretched clock pulses.
1	16. A RAM as in claim 15, wherein said RAM is a CMOS RAM and said
2	READ/WRITE decode is a dynamic decode comprising:
3	a pair of series connected complementary field effect transistors (FETs), stretche
4	said clock pulses being connected to the gates of said pair, a common drain connection of
5	said pair being a READ/WRITE decode output; and
6	at least one write enable FET, selectively providing a path to ground for said pair
1	17. A CMOS RAM as in claim 16, wherein said write driver comprises:
2	a pseudo latch P-type FET (PFET), said READ/WRITE decode output being
3	connected to the drain of said pseudo latch PFET; and

A random access memory (RAM) comprising:

1

14.

4	a first inverter, said READ/WRITE decode output being an input to said first	
5	inverter.	
1	18. A CMOS RAM as in claim 17, said write driver further comprising a second	
2	inverter driving said write select pulses, an output of said first inverter being an input of	f
3	said second inverter.	
1	19. A RAM as in claim 15, wherein said bit decoder comprises:	
2	a pulse stretcher stretching clock pulses;	
3	a bit decode selectively passing stretched said clock pulses responsive to a colur	nn
4	address; and	
5	a column driver receiving passed said stretched clock pulses from said bit decod	e
6	and driving said column select pulses responsive to received said stretched clock pulses	
1	20. A RAM as in claim 19, wherein said RAM is a CMOS RAM and said bit decode	e
2	is a dynamic decode comprising:	
3	an n bit address decode connected between a decode node and a common source	;
4	node;	
5	a restore FET connected between a supply and said decode node;	
6	a complementary pair of enable FETs, a first of said complementary pair being	
7	connected between said supply and a decode out of said bit decode, a second of said	
8	complementary pair being connected between a supply return and said common source	
9	node, the gate of said restore FET and of each of said complementary pair being	
10	connected to an output of said pulse stretcher;	
11	a decode out FET connected between said decode out and said enable node, said	l
12	decode node being connected to the gate of said decode out FET; and	
13	a first pseudo latch FET connected between said supply and said decode node ar	ıd
14	gated by said decode out.	

- 1 21. A CMOS RAM as in claim 20, wherein said write driver comprises:
- a second pseudo latch FET connected between said supply and said decode out;
- 3 and
- 4 a decode out inverter driving said column select pulses and connected to the gate
- of said second pseudo latch FET, said decode out being an input to said decode out
- 6 inverter.
- 1 22. A CMOS RAM as in claim 21, wherein each of said decode out FET and said
- 2 second of said complementary pair are N-type FETs and each of said restore FET, said
- first of said complementary pair, said first pseudo latch FET and said second pseudo latch
- 4 FET are P-type FETs.
- 1 23. A CMOS RAM as in claim 22, wherein said n-bit address decode comprises n
- 2 parallel NFETs connected between said decode node and said common source node and,
- 3 said decode out inverter comprises a pair of parallel P FETs.
- 1 24. A RAM as in claim 19, wherein each said pulse stretcher comprises:
- 2 a delay receiving a local clock and passing a delayed clock; and
- a NAND gate receiving said local clock and said delayed clock and providing
- 4 stretched said clock pulses.
- 1 25. A RAM as in claim 24, wherein said delay in said write select is twice as long as
- 2 said delay in said bit decoder.
- 1 26. A RAM as in claim 25, wherein each said NAND gate is a 2 input NAND gate
- and each said delay is a group of series connected inverters.
- 1 27. A RAM as in claim 25, wherein said column select pulses are wider than word
- line pulses provided to said selected word line by said word decoder.

i	28. A RAM as in claim 27, wherein said plurality of memory cells are static RAM	1
2	(SRAM) cells.	
1	29. A RAM as in claim 27, wherein said SRAM cells are 2 port SRAM cells.	
1	30. A RAM as in claim 27, wherein said RAM is an SRAM macro on an integrate	ed
2	circuit (IC) chip.	
1	31. A CMOS integrated circuit (IC) chip including a static random access memory	y
2	(SRAM), said SRAM comprising:	
3	an array comprising a plurality of SRAM cells organized as a plurality of rows	s
4	and columns;	
5	a word decoder selectively providing a word line pulse to a word line selected	l
6	from one of said rows, said word line pulse being synchronized to a local clock, said	
7	word decoder pulsing the selected said word line responsive to an access request;	
8	a bit decoder comprising:	
9	a pulse stretcher stretching clock pulses,	
10	a bit decode selectively passing stretched said clock pulses responsive	to a
11	column address, and	
12	a column driver receiving passed said stretched clock pulses and driving	ng a
13	column select pulse responsive to each received one of said stretched clock	
14	pulses, said column select pulse being wider than a word line select pulse from	n
15	said word decoder;	
16	a column select selecting a column responsive to said column select pulse; and	d
17	a write select comprising:	
18	a pulse stretcher stretching clock pulses,	
19	a READ/WRITE decode selectively passing stretched said clock pulses	s
20	responsive to a write select signal, and	

21	a write driver receiving passed said stretched clock pulses from said
22	READ/WRITE decode and driving a write select pulse responsive to each
23	received one of said stretched clock pulses, each said write select pulse being
24	wider than said column select pulse.

- 32. A CMOS IC as in claim 31, wherein each said pulse stretcher comprises:
 a delay receiving said local clock and passing a delayed said local clock, said
 delay in said write select being longer than said delay in said bit decoder; and
 a NAND gate receiving said local clock and providing said stretched clock pulses.
- 1 33. A CMOS IC as in claim 32, wherein each said NAND gate is a 2 input NAND gate and each said delay is a group of series connected inverters.
- 1 34. A CMOS IC as in claim 33, wherein said delay in said write select is twice as long as said delay in said bit decoder.
- 1 35. A CMOS IC as in claim 30, wherein said SRAM cells are 2 port SRAM cells.