

Hệ quản trị Cơ sở dữ liệu

Chương 6: Tối ưu hoá câu truy vấn

Giới thiệu

- \square R(A, B, C)
- \square S(C, D, E)

SELECT B, D

FROM R, S

WHERE R.A='c' AND S.E=2 AND R.C=S.C

Giới thiệu (tt)

☐ Câu truy vấn được thực hiện như thế nào?

R

Α	В	С
а	1	10
b	1	10
С	2	10
d	2	10
е	3	10

S

С	D	Е
10	Х	2
20	У	2
30	Z	2
40	х	1
50	У	3

Kết quả

В	D
2	Х

Giới thiệu (tt)

☐ Cách 1

- Tích cartesian
- Phép chọn (selection)
- Phép chiếu (projection)

$$\Pi_{\text{B,D}}\left[\ \sigma_{\text{R.A='c'} \land \ \text{S.E=2} \ \land \ \text{R.C = S.C}} \ (\text{RxS}) \right]$$

Giới thiệu (tt)

RxS A B C C D E

a 1 10 10 x 2
a 1 10 20 y 2
:
c 2 10 10 x 2
c 2 10 20 y 2
c 2 10 30 z 2

Giới thiệu (tt)

- ☐ Cách 2
 - Phép chọn (selection)
 - Phép kết (natural join)
 - Phép chiếu (projection)

$$\Pi_{\mathsf{B},\mathsf{D}}\left[\ \sigma_{\mathsf{R}.\mathsf{A}=\mathsf{c}'\mathsf{c}'}(\mathsf{R})\bowtie\ \sigma_{\mathsf{S}.\mathsf{E}=2}(\mathsf{S})\right]$$

Giới thiệu (tt)

- ☐ Cách 3 sử dụng chỉ mục trên R.A và S.C
 - Tìm các bộ trong R thỏa R.A='c'
 - $-\;$ Với mỗi bộ tìm thấy, tìm tiếp các bộ trong S thỏa R.C=S.C
 - Bỏ đi những bộ S.E ≠ 2
 - Kết các bộ phù hợp của R và S
 - Chiếu trên thuộc tính B và D

Customer(cusID, cusNm, cusStreet, cusCity) Account(accID, cusID, balance) SELECT cusNm FROM Customer WHERE cusID IN (SELECT cusID FROM Account WHERE balance > 100)

UIT IS

Ví dụ 2

- ☐ Customer(cusID, cusNm, cusStreet, cusCity)
- ☐ Account(accID, cusID, balance)

SELECT cusNm FROM Customer, Account WHERE Customer.cusID = Account.cusID AND balance = 100

UIT IS

Nhận xét

☐ Giới hạn

- GROUP BY
- HAVING
- ORDER BY
- DISTINCT
- Aggregation function (Max, Min, Count, Sum, Avg)
- Alias name

Tiền xử lý (preprocessing)

- ☐ Kiểm tra ngữ nghĩa
 - Quan hệ
 - Thuộc tính
 - Select
 - From
 - Kiểu dữ liệu
 - Where

Biến đổi sang ĐSQH

- ☐ Truy vấn đơn
 - Xét câu trúc <SFW>
 - Thay thế <FromList> thành các biến quan hệ
 Sử dụng phép tích cartesian cho các biến quan hệ
 - Thay thế < Condition> thành phép chọn σ_C
 - Thay thế <SelectList> thành phép chiếu π_L

Biến đổi sang ĐSQH (tt)

- ☐ Truy vấn lồng
 - Tồn tại câu truy vấn con S trong < Condition>
 - Áp dụng qui tắc <SFW> cho truy vấn con
 - Phép chọn 2 biến (two-argument selection)
 - Nút là phép chọn không có tham số
 - Nhánh con trái là biến quan hệ R
 - Nhánh con phải là <condition> áp dụng cho mỗi bộ trong R

Biến đổi sang ĐSQH (tt)

- ☐ Truy vấn lồng
 - Biến đổi phép chọn 2 biến
 - Thay thế <Condition> bằng 1 cây có gốc là S
 - Nếu S có các bộ trùng nhau thì phải lược bỏ bớt bộ trùng nhau đi
 - Sử dụng phép δ
 - Thay thế phép chọn 2 biến thành σ_{C}
 - σ_C là kết quả của phép cartesian của R và S

Qui tắc: Kết tự nhiên, tích cartesian, hội

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

$$R \times S = S \times R$$

 $(R \times S) \times T = R \times (S \times T)$

$$R \cup S = S \cup R$$

$$R \cup (S \cup T) = (R \cup S) \cup T$$

Qui tắc: Phép chọn σ

- Cho
 - p là vị từ chỉ có các thuộc tính của R
 - q là vị từ chỉ có các thuộc tính của S
 - m là vị từ có các thuộc tính của R và S

Pushing selections

$$\sigma_{\text{p1vp2}}(R) = (\sigma_{\text{p1}}(R)) \cup [\sigma_{\text{p2}}(R)]$$

Quan hệ R là tập hợp ∪_S là phép hội trên tập hợp

Qui tắc: σ, ⋈

$$\sigma_p(R \bowtie S) = [\sigma_p(R)] \bowtie S$$

$$\sigma_q(R \bowtie S) = R \bowtie [\sigma_q(S)]$$

UIT IS

Qui tắc: σ, ⋈(tt)

$$\sigma_{p \wedge q}(R \bowtie S) = [\sigma_p(R)] \bowtie [\sigma_q(S)]$$

$$\sigma_{p\vee q}(R\bowtie S) = [\sigma_p(R)\bowtie S] \cup [R\bowtie \sigma_q(S)]$$

Qui tắc: ♂, ∪ và ♂, –

$$\sigma_{c}(R \cup S) = \sigma_{c}(R) \cup \sigma_{c}(S)$$

$$\sigma_{c}(R-S) = \sigma_{c}(R) - S = \sigma_{c}(R) - \sigma_{c}(S)$$

Qui tắc: Phép chiếu π

- Cho
 - X = tập thuộc tính con của R
 - Y = tập thuộc tính con của R
- Ta có
 - XY = X ∪ Y

$$\pi_{XY}(R) = \pi_{X}[\pi_{X}(R)]$$

Qui tắc: π, ⋈

- Cho
 - X = tập thuộc tính con của R
 - Y = tập thuộc tính con của S
 - Z = tập giao thuộc tính của R và S

Pushing projections

$$\pi_{XY}(R \bowtie S) = \pi_{XY}[\pi_{XZ}(R) \bowtie \pi_{YZ}(S)]$$

Except intersection and difference

Qui tắc: σ, π

- Cho
 - X = tập thuộc tính con của R
 - Z = tập thuộc tính con của R xuất hiện trong vị từ p

$$\pi_{x}[\sigma_{p}(R)] = \pi_{x}\{\sigma_{p}[\mathcal{F}_{x}(R)]\}$$

Qui tắc: σ, π, 🖂

- Cho
 - X = tập thuộc tính con của R
 - Y = tập thuộc tính con của S
 - Z = tập giao thuộc tính của R và S
 - Z' = Z ∪ {các thuộc tính xuất hiện trong vị từ p}

$$\pi_{XY}[\sigma_p(R \bowtie S)] =$$

$$\pi_{\mathsf{X}\mathsf{Y}}\left\{\sigma_{\mathsf{p}}\left[\pi_{\mathsf{X}\mathsf{Z}'}\left(\mathsf{R}\right)\bowtie\pi_{\mathsf{Y}\mathsf{Z}'}\left(\mathsf{S}\right)\right]\right\}$$

Nhận xét: σ , π

- Ví du
 - R(A, B, C, D, E)
 - X={E}
 - p: A=3 ∧ B='a'

 $\pi_{_{X}}\left[\sigma_{_{p}}\left(\mathsf{R}\right)\right]$

 $\pi_{\text{E}}\left\{\sigma_{\text{p}}\left[\pi_{\text{ABE}}(\text{R})\right]\right\}$

Chọn trước tốt hơn???

Chiếu trước tốt hơn???

Nhận xét: σ , π (tt)

- Bình thường
 - Chiếu trước
- Nhưng
 - Giả sử A và B được cài đặt chỉ mục (index)
 - Physical query plan dùng chỉ mục để chọn ra những bộ có A=3 và B='a' trước
 - Nếu thực hiện chiếu trước $\pi_{AB}(R)$ thì chỉ mục trên A và B là vô ích
 - Chon trước
- →Thông thường chọn trước tốt hơn

Qui tắc: ×, ⋈

$$\sigma_{c}(R \bowtie S) = R \bowtie S$$

$$R \times S = \pi_L [\sigma_C (R \times S)]$$

Qui tắc: δ

$$\delta(\mathsf{R}\bowtie\mathsf{S}) = \delta(\mathsf{R})\bowtie\delta(\mathsf{S})$$

$$\delta(R \times S) = \delta(R) \times \delta(S)$$

$$\delta[\sigma_{C}(R)] = \sigma_{C}[\delta(R)]$$

$$\delta(R \cap_B S) = \delta(R) \cap_B S = R \cap_B \delta(S)$$

= $\delta(R) \cap_B \delta(S)$

Except: \cup_{B} , $-_{\mathsf{B}}$, π

Qui tắc: γ

- Cho
 - X = tập thuộc tính trong R được gom nhóm
 - Y = X ∪ {một số thuộc tính khác của R}

$$\delta[\gamma_X(R)] \ = \ \gamma_X(R)$$

$$\gamma_X(R) = \gamma_X [\pi_Y(R)]$$

Ước lượng chi phí

- Ước lượng kích thước cây truy vấn
 - Quan hệ
 - Các phép toán
- Ước lượng số lần truy xuất IOs
 - Số blocks được đọc hoặc ghi để thực hiện cây truy vấn

Ước lượng kích thước

- Thống kê quan hệ R
 - T(R): số bộ trong R
 - S(R): tổng số byte của 1 bộ trong R
 - B(R): tổng số block chứa tất cả các bộ của R
 - V(R, A): số giá trị khác nhau mà thuộc tính A trong R có thể

Ví du

R	Α	В	U	D
	Х	1	10	а
	Х	1	20	b
	у	1	30	а
	у	1	40	C
	Z	1	50	d

A: chuỗi 20 bytes

B: số nguyên 4 bytes

C: ngày 8 bytes

D: chuỗi 68 bytes

1 block = 1024 bytes (block header: 24 bytes)

$$T(R) = 5$$
 $V(R, A)$

$$V(R, B) = 1$$

$$T(R) = 5$$
 $V(R, A) = 3$ $V(R, B) = 1$ $S(R) = 100$ $V(R, C) = 5$ $V(R, D) = 4$

$$V(R, D) = 4$$

$$B(R) = 1$$

$U\acute{o}$ c lượng: $W = R_1 \times R_2$

$$S(W) = S(R_1) + S(R_2)$$

$$T(W) = T(R_1) \times T(R_2)$$

Ước lượng: W = $\sigma_{Z = val}$ (R)

$$S(W) = S(R)$$

$$T(W) = \frac{T(R)}{V(R, Z)}$$

Số bộ trung bình thỏa điều kiện Z=val

Ước lượng: $W = O_{Z \ge val}$ (R)

$$T(W) = ???$$

• Cách 1

$$T(W) = \frac{T(R)}{2}$$

• Cách 2

$$T(W) = \frac{T(R)}{3}$$

Ví dụ

- Cho
 - R(A, B, C)
 - T(R) = 10000
 - V(R, A) = 50
- Ước lượng kích thước biểu thức

$$S = \mathbf{G}_{A=10 \,\wedge\, B<20}(R)$$

$$T(S) = {T(R) \over V(R, A) \times 3} = {10000 \over 50 \times 3} = 67$$

Ví dụ (tt)

• Ước lượng kích thước biểu thức

$$S = \sigma_{A=10 \vee B<20}(R)$$

- Giả sử
 - n là T(R)
 - m₁ là số bộ thỏa A=10 trong R
 - m_2 là số bộ thỏa B<20 trong R

$$T(S) = n(1 - (1 - \frac{m_1}{n})(1 - \frac{m_2}{n}))$$

Ước lượng: W = R_1 ⋈ R_2

- Cho
 - X = tập thuộc tính của R₁
 - Y = tập thuộc tính của R₂
- Xét trường hợp X ∩ Y = ∅

$$T(W) = ?$$

Tương tự $R_1 \times R_2$

Ước lượng: $W = R_1 \bowtie R_2$ (tt)

Xét trường hợp X ∩ Y = A

R₁ A B C

- Giả sử
 - $V(R_1, A) \le V(R_2, A)$
 - Mọi giá trị của A trong R₁ thì có trong R₂
 - $V(R_2, A) \le V(R_1, A)$
 - Mọi giá trị của A có trong R₂ thì có trong R₁

UIT IS

Ước lượng: $W = R_1 \bowtie R_2$ (tt)

1 bộ trong R_1 sẽ thỏa với $\frac{T(R_2)}{V(R_2, A)}$ bộ trong R_2

$$T(W) = T(R_1) \times \frac{T(R_2)}{V(R_2, A)}$$

Ước lượng: $W = R_1 \bowtie R_2$ (tt)

• $V(R_1, A) \leq V(R_2, A)$

$$T(W) = T(R_1) \times \frac{T(R_2)}{V(R_2, A)}$$

• $V(R_2, A) \leq V(R_1, A)$

$$T(W) = T(R_2) \times \frac{T(R_1)}{V(R_1, A)}$$

Tổng quát

$$T(W) = \frac{T(T_1) T(R_2)}{\max\{V(R_1, A), V(R_2, A)\}}$$

Ước lượng: $W = R_1 \bowtie R_2$ (tt)

Xét trường hợp X ∩ Y = A

- W(A, B, C, D)
 - Các thuộc tính không tham gia vào phép kết thì số lượng các giá trị vẫn giữ nguyên
 - $V(W, A) = min \{V(R_1, A), V(R_2, A)\}$
 - $V(W, B) = V(R_1, B)$
 - V(W, C) = V(R₁, C)
 - V(W, D) = V(R₂, D)

Ví dụ

$$Z = R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, D)$$

$$R_1$$
 R_2 R_3 $T(R_1) = 1000$ $T(R_2) = 2000$ $T(R_3) = 3000$ $V(R_1, A) = 50$ $V(R_2, B) = 200$ $V(R_3, C) = 90$ $V(R_1, B) = 100$ $V(R_2, C) = 300$ $V(R_3, D) = 500$

Ví dụ (tt)

$$U = R_1(A, B) \bowtie R_2(B, C)$$

$$T(U) = \frac{1000 \times 2000}{200}$$

$$V(U, A) = 50$$

$$V(U, B) = 100$$

$$V(U, C) = 300$$

Ví dụ (tt)

$$Z = U \bowtie R_3(C, D)$$

$$T(Z) = \frac{1000 \times 2000 \times 3000}{200 \times 300}$$

$$V(Z, A) = 50$$

$$V(Z, B) = 100$$

$$V(Z, C) = 90$$

$$V(Z, D) = 500$$

Nhận xét

- Phép chiếu
- Phép tích

Ước lượng chính xác

- Phép chọn
- Phép kết
- Uớc lượng tương đối hợp lý
 số lượng bộ của các quan hệ tương đối lớn
 giá trị của các thuộc tính phân bố đồng đều
- Phép toán khác
 - Hôi
 - Giao
 - Trừ
 - Lược bỏ trùng lắp
 - Gom nhóm

Ước lượng: $W = R_1 \cup R_2$

• R₁ và R₂ là bag

$$T(W) = T(R_1) + T(R_2)$$

R₁ và R₂ là set

$$T'(W) = T(R_1) + T(R_2)$$

$$\mathsf{T}''(\mathsf{W}) \leq \mathsf{T}(\mathsf{R}_1) \, + \, \mathsf{T}(\mathsf{R}_2)$$

$$\rightarrow T(W) = \frac{T'(W) + T''(W)}{2}$$

Ước lượng: $W = R_1$ ∩ R_2

- Cách 1
 - TH1: T'(W)=0
 - TH2: T"(W)=T(R₁) hoặc T"(W)=T(R₂)

$$\rightarrow T(W) = \frac{T'(W) + T''(W)}{2}$$

- Cách 2
 - Trường hợp đặc biệt của phép kết tự nhiên
 - Chỉ áp dụng cho \cap_{S}

$$T(W) = \frac{T(R_1) T(R_2)}{\max\{V(R_1, Z), V(R_2, Z)\}}$$

Uớc lượng: $W = R_1 - R_2$

- TH1: T(W) = T(R₁)
- TH2: $T(W) = T(R_1) T(R_2)$

$$\rightarrow T(W) = T(R_1) - \frac{1}{2}T(R_2)$$

Uớc lượng: W = δ (R)

- TH1: T(W) = 1
 - Nếu trong R không có bộ nào thì T(W)=0
- TH2: T(W) = T(R)
 - $R(a_1, a_2, ..., a_n)$

$$\rightarrow$$
 T(W) = min{ $\frac{1}{2}$ T(R), tích các V(R, a_i)}

Ước lượng: $W = \gamma(R)$

- γ_L(R)
 - Số lượng bộ trong W và cũng là số lượng nhóm
- TH1: T(W) = 1
- TH2: T(W) = T(R)
 - R(a₁, a₂, ..., a_n)
 - Số lượng nhóm tối đa là tích các $V(R, a_i)$, i=1..n
 - \rightarrow T(W) = min{ $\frac{1}{2}$ T(R₁), tích các V(R, a_i)}

UIT IS

Ví dụ (tt)

- ☐ Cộng kích thước sau khi thực hiện các phép toán, ngoại trừ
 - Các nút lá
 - Nút gốc
- **□** (1): 100+50+1000=1150
- **□** (2): 100+1000=1100
- $\hfill \square$ Phép lược bỏ trùng lắp thực hiện sau thì tốt hơn

Ước lượng số lần truy xuất lOs

- Các tham số thống kê
 - B(R): tổng số block chứa tất cả các bộ của R
 - f(R): số bộ tối đa trong mỗi block
 - M: số block trống trên bộ nhớ
- Quan tâm
 - Quan hệ R có được gom thành cụm không (clustered)?
 - Thuộc tính trong các phép toán có chỉ mục không (index)?
 - Chỉ mục có gom cụm không (clustering index)?
 - Kết quả cần được sắp thứ tự không?

Ví dụ

- R₁⋈ R₂
 - $T(R_1) = 10000$
 - $T(R_2) = 5000$
 - $S(R_1) = S(R_2) = 1/10$ block
 - M=101 blocks
- Số block được đọc (bỏ qua việc ghi) để thực hiện phép kết tự nhiên trên là bao nhiêu?

Nhận xét

- Ước lượng số lần truy xuất IOs không là cách tốt nhất
 - Bở qua chi phí CPU
 - Bỏ qua tham số thời gian
 - Xét trường hợp M đủ hoặc thiếu

