Time-dependent adiabatic *GW*

Jinyuan Wu

May 12, 2023

1 / 11

Jinyuan Wu May 12, 2023

Table of content

- Overview
- 2 Kadanoff-Baym equations
- Towards a single-time formalism
- What does TD-aGW see?

Jinyuan Wu May 12, 2023 2 / 11

Keldysh formalism

Motivation

$$\langle A \rangle = \langle S^{-1} \mathcal{T}_t(SA_I(t)) \rangle, \quad S = U(\infty, -\infty)$$
 (1)

Non-equilibrium state: not pure; contains excited state components; $|\Psi_n\rangle$ is excited state $\Rightarrow S |\Psi_n\rangle \neq \mathrm{e}^{\mathrm{i}\,\alpha} |\Psi_n\rangle \Rightarrow$ we can't peel the S^{-1} off!!

Solution Four (instead of one) types of propagators: (note S^{-1} is *anti*-time ordered)

Keldysh formalism

Four types of (fermionic) propagators

$$i G^{--} = i G^{c} = \langle \mathcal{T} \psi_{1} \psi_{2}^{\dagger} \rangle, \quad i G^{++} = i G^{a} = \langle \tilde{\mathcal{T}} \psi_{1} \psi_{2}^{\dagger} \rangle,$$

$$i G^{+-} = i G^{>} = \langle \psi_{1} \psi_{2}^{\dagger} \rangle, \quad i G^{-+} = i G^{<} = -\langle \psi_{2}^{\dagger} \psi_{1} \rangle.$$
(2)

Diagrams

Self-energy

$$G = \begin{pmatrix} G^{--} & G^{-+} \\ G^{+-} & G^{++} \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma^{--} & \Sigma^{-+} \\ \Sigma^{+-} & \Sigma^{++} \end{pmatrix}, \quad G = G_0 + G_0 \Sigma G. \quad (3)$$

Alternative formulation: Keldysh contour

Keldysh contour The information in the G matrix can be alternatively stored in a time-ordered Green function on *Keldysh contour*

Green function EOM

From Keldysh contour to physical contour Lengreth theorem:

$$(AB)^{<} = A^{R}B^{<} + A^{<}B^{A}, \quad (AB)^{>} = A^{R}B^{>} + A^{>}B^{A},$$

 $(AB)^{R} = A^{R}B^{R}, \quad (AB)^{A} = A^{A}B^{A},$ (4)

where

$$A^{>}(t_{1}, t_{2}) = A(t_{1}^{+}, t_{2}^{-}), \quad A^{<}(t_{1}, t_{2}) = A(t_{1}^{-}, t_{2}^{+}),$$

$$A^{\mathsf{R}}(t_{1}, t_{2}) = \theta(t_{1} - t_{2})(A^{>} - A^{<}).$$
(5)

Mapping an equation on Keldysh contour to its counterpart on the physical time axis!

Derivation of EOM of $G^{<,>}$ and G^{A}

Recommended references The following series

Václav Špička, Bedřich Velický, and Anděla Kalvová. "Long and short time quantum dynamics: I. Between Green's functions and transport equations". In: *Physica E: Low-dimensional Systems and Nanostructures* 29.1-2 (2005), pp. 154–174

Reconstruction of $G^{<}$

Overview

Goal obtaining quantum kinetics:

- Quantum master equation (QME), i.e. EOM of $\rho(\mathbf{r}_1, \mathbf{r}_2, t)$,
- and its long wave length limit, the quantum Boltzmann equation (QBE)

Gradient expansion: from QME to QBE

Example: TODO