WHAT IF THE TRUTH TABLE IS MORE COMPLEX?

WEEK 2. DEEPER DIVE

AN EXAMPLE FROM LAST TIME...

How do we set up a truth table for this expression?

How do we set up a truth table for this expression?

Consider: how many rows did we need for $(a \land b)$?

4: two for each of the sentence letters a and b to represent their possible truth values

How do we set up a truth table for this expression?

Consider: how many rows did we need for $(a \land b)$?

4: two for each of the sentence letters a and b to represent their possible truth values

General formula for truth tables:

We need n columns and 2^n rows where n is the number of sentence letters.

How do we set up a truth table for this expression?

General formula for truth tables:

We need 2^n rows where n is the number of sentence letters.

How do we set up a truth table for this expression?

General formula for truth tables:

We need 2^n rows where n is the number of sentence letters.

So for $((p \rightarrow q) \land r)$, we need 3 columns and $2^3 = 8$ rows

p q r $((p \rightarrow q) \land r)$ How do we fill the columns?

1. We have *n* columns left of the vertical line, one for each of the sentence letters in our final expression.

p q r $((p \rightarrow q) \land r)$ How do we fill the columns?

- 1. We have *n* columns left of the vertical line, one for each of the sentence letters in our final expression.
- 2. We write the sentence letters in alphabetical order above the horizontal line.

p q r $((p \rightarrow q) \land r)$ How do we fill the columns? 1. We have n columns left of the

- vertical line, one for each of the sentence letters in our final expression.
- 2. We write the sentence letters in alphabetical order above the horizontal line.
- 3. We write the full expression we're considering the right of the vertical line.

$((p \rightarrow q) \land r)$

How do we fill the rows?

1. Starting from the left-most column: The first half (i.e., 2^{n-1}) are true and the remainder false.

How do we fill the rows?

- 1. Starting from the left-most column: The first half (i.e., 2^{n-1}) are true and the remainder false.
 - Then, for the next column, 2^{n-2} are true and 2^{n-2} are false and we repeat this pattern all the way down.

How do we fill the rows?

- 1. Starting from the left-most column: The first half (i.e., 2^{n-1}) are true and the remainder false.
- 2. Then, for the next column, 2^{n-2} are true and 2^{n-2} are false and we repeat this pattern all the way down.
- 3. Then, for the next column, 2^{n-3} are true and 2^{n-3} are false and we repeat this pattern all the way down again.

р	q	r	$((p \to q) \land r)$
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

How do we fill in the right side of the vertical line?

р	q	r	$((p \to q) \land r)$
Т	Т	Т	
Τ	Τ	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

How do we fill in the right side of the vertical line?

When we fill in the columns, we first copy over the truth values for the atomics.

р	q	r	((p -	$\rightarrow q)$	∧ <i>r</i>)
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	F
Т	F	Т	Т	F	Т
Т	F	F	Т	F	F
F	Т	Т	F	Τ	Τ
F	Т	F	F	Т	F
F	F	Т	F	F	Т
F	F	F	F	F	F

Finally, we fill in the truth values for the connectives.

р	q	r	((<i>p</i>	\rightarrow	q)	$\wedge r$
Т	Т	Т	Т	Т	Т	Т
Т	Τ	F	Т	Т	Т	F
Т	F	Т	Т	F	F	Т
Т	F	F	Т	F	F	F
F	Т	Т	F	Т	Т	Т
F	Т	F	F	Т	Т	F
F	F	Т	F	Т	F	Т
F	F	F	F	Т	F	F

We work our way out leaving the main connective (A) for last.

р	q	r	((p	\rightarrow	q)	\land	r)
Т	Т	Т	Т	Т	Т	Τ	Т
Т	Т	F	Т	Т	Т	F	F
Τ	F	Т	Т	F	F	F	Т
Τ	F	F	Т	F	F	F	F
F	Τ	Т	F	Т	Т	Т	Т
F	Τ	F	F	Т	Т	F	F
F	F	Т	F	Т	F	Т	Т
F	F	F	F	Т	F	F	F

When we consider the main connective, we consider when $(p \land q)$ and r are both true.

Complete truth table:

р	q	r	((<i>p</i>	ightarrow	q)	\wedge	r)
Т	Т	Т	Т	Т	Т	T	Т
Τ	Т	F	Т	Т	Т	F	F
Т	F	Т	Т	F	F	F	Т
Τ	F	F	Т	F	F	F	F
F	Τ	Т	F	Т	Т	Т	Т
F	Т	F	F	Т	Т	F	F
	F				F		
F	F	F	F	Т	F	F	F

We'll indicate the column that represents the truth values of the whole formula by circling it.

Another example

р	q	r	$((p \land q)$	V	<i>(p</i>	\rightarrow	<i>r</i>))
Т	Т	Т	ТТТ	T	Τ	Т	Т
Т	Т	F	ТТТ	Т	Т	F	F
Т	F	Т	TFF	Т	Т	Т	Т
Т	F	F	TFF	F	Т	F	F
F	Т	Т	F F T	Т	F	Т	Т
F	Т	F	F F T	Т	F	Т	F
F	F	Т	FFF	Т	F	Т	Т
F	F	F	FFF	Т	F	Т	F

What if the expression is always true?

$$\begin{array}{c|c} p & (p \lor \neg p) \\ \hline T & T & T \\ F & T & T \end{array}$$

What if the expression is always true?

$$\begin{array}{c|c} p & (p \lor \neg p) \\ \hline T & T & T \\ F & T & T \end{array}$$

Or always false?

$$\begin{array}{c|cccc} p & (p \land \neg p) \\ \hline T & T & F \\ F & T & T \end{array}$$

We call an expression that is always true a *tautology*.

We call an expression that is always true a *tautology*.

An expression that is always false is called a *contradiction*.

We call an expression that is always true a *tautology*.

An expression that is always false is called a *contradiction*.

An expression that is sometimes true sometimes false is called *contingent*.

Tautology:

$$\begin{array}{c|c} p & (p \lor \neg p) \\ \hline T & T & T \\ F & T & T \end{array}$$

Contradiction:

$$\begin{array}{c|cccc} p & (p & \land \neg p) \\ \hline T & T & F \\ F & T & F \end{array}$$