AFRL-RH-WP-TP-2008-0006

Quantifying Biomarkers of Liver Damage Using Shotgun Proteomics

Lee W. Ott
Frank Witzmann
Indiana University School of Medicine
Indianapolis IN 46151

Camilla A. Mauzy Claude C. Grigsby Deirdre A. Mahle John J. Schlager

Biosciences and Protection Division Applied Biotechnology Branch Wright-Patterson AFB OH 45433-5707

August 2006

Interim Report for April 2005 – July 2006

Approved for public release; Distribution unlimited.

Air Force Research Laboratory
Human Effectiveness Directorate
Biosciences and Protection Division
Applied Biotechnology Branch
Wright-Patterson AFB OH 45433-5707

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88 ABW, Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

AFRL-RH-WP-TP-2008-0006

//SIGNED//
Diane Todd, Work Unit Manager
Applied Biotechnology Branch

//SIGNED//
Mark M. Hoffman, Deputy Chief
Biosciences and Protection Division

Biosciences and Protection Division Human Effectiveness Directorate Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washing PLEASE DO NOT RETURN YOUR FO	ton, DC 20503. DRM TO THE ABOVE ADDRESS.					
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE		3. DATES COVERED (From - To)			
August 2006	Interim		April 2005 – July 2006			
4. TITLE AND SUBTITLE		5a. CON	ITRACT NUMBER			
Quantifying Biomarkers of Liver	Damage Using Shotgun Proteomics					
		5b. GRA	NT NUMBER			
		NA				
		5c PPO	GRAM ELEMENT NUMBER			
		622021				
6. AUTHOR(S)		5d. PRO	JECT NUMBER			
* Lee W. Ott, Frank Witzmann		7184				
		Fo TAC	V NIIMDED			
	Grigsby, Deirdre A. Mahle, John J.	D D	5e. TASK NUMBER			
Schlager						
		-	RK UNIT NUMBER			
		405				
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER			
*Indiana University School of Med	dicine Indianapolis IN 46151					
indiana on versity sensor of fire	dienie, metaliapons II v 10151					
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)			
Air Force Materiel Command **			AFRL/RHPB			
Air Force Research Laboratory						
Human Effectiveness Directora			11. SPONSORING/MONITORING AGENCY REPORT NUMBER			
Biosciences and Protection Div	ISION					
Applied Biotechnology Branch Wright-Patterson AFB OH 4543	33-5707		AFRL-RH-WP-TP-2008-0006			
12. DISTRIBUTION AVAILABILITY ST						
Approved for public release; di						
13. SUPPLEMENTARY NOTES						
ABW/PA cleared on 31 Mar 08	as WPAFB-08-0641.					
14. ABSTRACT						
In a preliminary examination of	labeless protein quantitation proteomic	cs, we inve	estigated the serum composition of rats			
•	ha-naphthylisothiocyanate (ANIT) to fi		•			
	n doses of 1, 20, and 100 mg/kg. Colle					
	ter. MS/MS spectra were searched ag					
	re grouped according to protein and q					
	he highest abundance relative to the c		d in all three treatment groups compared			
			d in all tillee treatment groups compared itrol. Since ANIT is an accepted model			
	data from this study may help indicate					
15. SUBJECT TERMS			-			
	damage protein levels AN	NT treatme	ent blood clots			
16. SECURITY CLASSIFICATION OF	.		OF RESPONSIBLE PERSON			
10. OLCONITT CLASSIFICATION OF.	ABSTRACT OF PAGES		Ua Mauzy			

19b. TELEPONE NUMBER (Include area code)

13

c. THIS PAGE U

SAR

b. ABSTRACT U

a. REPORT U

TILLO		TIONAL	$I \setminus I$	Γ	DI	$\Lambda NII/$
	PAUIT	HICHNAL	1 Y I		DI	AINN

TABLE OF CONTENTS

Section	Page
Introduction	1
Materials and Methods	1
Results	1
Discussion	5
References	6

PREFACE

Special acknowledgement goes to Nathan Pedrick in Frank Witzmann's laboratory for assistance in instrumentation. This research was supported in part by an appointment to the Research Participation Program at the Air Force Research Laboratory, Human Effectiveness Directorate, Bioscience and Protection Division, Wright-Patterson AFB OH, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and AFRL/RHP.

INTRODUCTION

Alpha-Naphthylisothiocyanate (ANIT) is a widely used model hepatotoxin for intrahepatic cholestasis [1-3]. Although the mechanism of ANIT-induced hepatotoxicity is not completely understood, the current model is a reversible glutathione-ANIT conjugate is produced in hepatic parenchymal cells and selectively accumulated in bile where it dissociates to reduced glutathione and ANIT [4, 5]. The exposure of biliary epithelial cells to a cytotoxic level of ANIT results in necrotic death followed by hyperplastic growth and eventually the obstruction of bile flow. At some point, there is an increase in the permeability of the tight junctions between parenchymal cells and bile duct epithelial cells resulting in the exposure of parenchymal cells to a necrotic concentration of bile acid salts. Neutrophil infiltration and subsequent release of free radicals and serine proteases from the infiltrated neutrophil have been implicated in ANIT hepatotoxicity [6, 7]. Reactive oxygen species have also been implicated as a mechanism of ANIT-induced cholangiocyte apoptosis [8], and disruption of lipid homeostasis contributes to ANIT-induced cholestasis [9, 10].

This study aims to determine biomarkers of liver damage induced by ANIT. These biomarkers have the potential to detect the severity of cholestasis. Proteins increased in response to low levels of ANIT could be indicative of mild cholestasis; while the higher level biomarkers could represent more severe cholestasis.

MATERIALS AND METHODS

Male Fischer 344 rats were orally gavaged with 0, 1, 20, or 100 mg/kg of ANIT in corn oil. Sera were collected 96 h post-dose, and albumin, IgG and transferrin were depleted using an Agilent multiple affinity removal cartridge specific for mouse and rat. Samples were dried and resuspended with 8M Urea/100mM Ammonium Bicarbonate buffer. A Bradford protein assay was used to determine protein concentration. Proteins were reduced with dithiolthreitol (40-fold molar excess), alkylated with iodoacetimide (70-fold molar excess), and subjected to an overnight tryptic digest (1:70 trypsin:protein). 10cm of 5 micron particle size C-18 reverse phase resin (Michrom Biosciences, Inc.) was packed into 100 micron ID fused silica tubing using a pressurized bomb. The column was placed inline with the Paradigm HPLC System (Michrom Biosciences, Inc.). Peptides were loaded onto the C-18 resin using the autosampler and eluted over 95 minutes using a gradient of Acetonitrile (5% to 60% Acetonitrile in 0.025% Formic Acid) and sprayed directly into an LTQ mass spectrometer. Sequest was then used to search the MS/MS to find the best theoretical match for each experimental spectrum. Bioworks 3.2 filtered on the basis of XCorr values (+1 ions 2.56, +2 ions 3.22, +3 ions 3.45) and integrated the peak area of each peptide and grouped the peptides into proteins. Protein ratios were then determined using normalized peak areas (peak area/total peak area multiplied by 100). Each sample was analyzed three times by mass spectrometry to account for technical variance.

RESULTS

Protein levels decrease upon exposure to increasing levels of ANIT Table 1. All ratios shown as ANIT treated over pretreated and represent an average of three independent analyses. These proteins would be indicative of healthy individuals not exposed to the hepatotoxin.

Table1. Proteins that Decrease in Response to ANIT. The second column lists the IPI protein database accession number. The last three columns represent doses of ANIT.

Protein Name	IPI	1 mg/kg	20 mg/kg	100 mg/kg
Alpha-1-inhibitor 3 precursor	IPI00201262	0.946767	0.485953	0.013578
Alpha-2-globin chain	IPI00201202	0.456655	0.14163	0.083014
	11100203030	0.430033	0.14103	0.003014
Alpha-2-HS-glycoprotein	IPI00327469	1.565994	0.861849	0.169885
precursor				
Anionic trypsin I precursor	IPI00212767	2.425354	0.124566	0.058506
Apolipoprotein A-I	IPI00563778	1.485341	0.540123	0.468427
Apolipoprotein A-I precursor	IPI00197703	1.485341	0.540123	0.468427
Apolipoprotein A-IV precursor	IPI00324272	0.538851	0.681997	0.181877
Contrapsin-like protease				
inhibitor 1 precursor	IPI00200593	1.453088	0.597673	0.305622
Contrapsin-like protease				
inhibitor 3 precursor	IPI00200591	1.308563	0.592263	0.209985
Fetub protein	IPI00212708	0.70911	0.921711	0.15584
Fetuin-B precursor	IPI00559588	0.70911	0.921711	0.152683
Hemoglobin alpha-1/2 subunit	IPI00287835	0.456655	0.14163	0.083014
Histidine-rich glycoprotein	IPI00191789	2.128469	1.059675	0.311549
Histidine-rich glycoprotein 1	IPI00201347	1.748193	1.063261	0.388458
Murinoglobulin 2	IPI00564327	1.122217	0.385506	0.049461
PREDICTED: hypothetical				
protein XP_579477	IPI00734558	0.972352	0.600282	0.00734
PREDICTED: similar to				
Murinoglobulin 1 homolog	IPI00368704	1.121146	0.455815	0.020759
Rat alpha(1)-inhibitor 3, variant I				
precursor	IPI00212666	0.977366	0.61013	0.007432
Serine protease inhibitor 2.1		_		
(Fragment)	IPI00211074	1.011942	0.403521	0.095942
Vitamin D-binding protein				
precursor	IPI00194097	0.658084	0.299516	0.083001

Protein levels increased in exposure to increasing doses of ANIT Table 2. The protein ratios are expressed as ANIT treated over pretreated and represent an average of three independent analyses. Proteins in this table represent putative biomarkers to exposure of ANIT.

Table 2. Potential biomarkers of exposure to ANIT. The second column lists the IPI protein database accession number. The last three columns represent doses of ANIT.

Duntalu Massa	IDI	4 //	00//	400 //
Protein Name	IPI	1 mg/kg	20 mg/kg	100 mg/kg
Complement component 9	IPI00561894	3.83715	2.981348	6.184085
Fibrinogen, gamma polypeptide	IPI00555210	0.409077	3.320876	2.540892
Haptoglobin precursor	IPI00325610	0.007605	0.278047	0.342858
Inter-alpha-trypsin inhibitor	IPI00326984			
heavy chain H3 precursor		0.23479	0.537671	0.414187
Rat T-kininogen	IPI00187796	3.005327	4.389969	3.32364
Splice Isoform 1 of Fibrinogen				
alpha chain precursor	IPI00202651	0.695303	4.514717	2.074696
Splice Isoform Gamma-A of				
Fibrinogen gamma chain				
precursor	IPI00230944	0.337093	3.414798	2.458402
Splice Isoform of Fibronectin				
precursor	IPI00200757	0.010109	0.53244	0.497446
T-kininogen I precursor	IPI00327182	2.291727	4.389969	3.32364
T-kininogen II precursor	IPI00679245	2.284642	6.508513	11.90976

Fibrinogen-gamma Precursor Protein Levels

Figure 1. **Fibrinogen Levels.** Fibrinogen represents a putative biomarker of higher doses of ANIT. *Only at the 20 mg/kg and the 100 mg/kg doses are the protein levels significantly higher (p<0.05). p = pretreated (control), T = treated; 1, 20, 100 = 1, 20, or 100 mg ANIT per kg body weight

T-Kininogen Protein Levels

Figure 2. **Potential biomarker of ANIT.** Kininogen represents a putative biomarker of ANIT. *For all three doses of ANIT the protein levels of kininogen are significantly higher (p<0.05) than the protein levels in the pretreated rats. p = pretreated (control), T = treated; 1, 20, 100 = 1, 20, or 100 mg ANIT per kg body weight

DISCUSSION

The proteins induced by ANIT treatment play a role in regulating the blood clot formation. Kininogen has no enzymatic activity and plays a role in initiating the intrinsic coagulation pathway [11]. Negatively charged phospholipids have been shown to initiate the formation of blood clots [12, 13]. ANIT has been shown to increase the serum concentration of these phospholipids [10]. This event could mimic the natural release of phospholipids by blood platelets. Sera levels of serine proteases also increase in response to ANIT [6, 7, 14]. Serine proteases play an essential role in the conversion of fibrinogen precursors to active fibrin. Fibrin polymers solidify the clot. Although serine proteases were not detected in any of the treatment groups, serine protease inhibitors (murinoglobulin and serine protease inhibitor 2.1) and the alpha-1 inhibitor 3 precursor protein levels decrease in response to increasing levels of ANIT. Since serine protease activity is essential for proper clotting, low levels of ANIT may not trigger the formation of blood clots.

Based on the results of this study, ANIT induces the formation of blood clots in a dose dependent manner. Low levels of ANIT would indicate low levels of clotting due to the absence of serine proteases and essential clotting factors. Medium doses of clotting show the presence of kininogen that initiates blood clotting. Fibrinogen was found to be highest in 100mg/kg dose of ANIT. Fibrinogen plays a role in the final stages of blood clotting.

REFERENCES

- 1. Capizzo, F. and R.J. Roberts, *-naphthylisothiocyanate (ANIT)-induced hepatotoxicity and disposition in various species*. Toxicol Appl Pharmacol, 1971. **19**(2): p. 176-87.
- 2. Goldfarb, S., E.J. Singer, and H. Popper, *Experimental cholangitis due to alphanaphthyl-isothiocyanate (ANIT)*. Am J Pathol, 1962. **40**: p. 685-98.
- 3. Plaa, G.L. and B.G. Priestly, *Intrahepatic cholestasis induced by drugs and chemicals*. Pharmacol Rev, 1976. **28**(3): p. 207-73.
- 4. Jean, P.A. and R.A. Roth, *Naphthylisothiocyanate disposition in bile and its relationship to liver glutathione and toxicity.* Biochem Pharmacol, 1995. **50**(9): p. 1469-74.
- 5. Jean, P.A., M.B. Bailie, and R.A. Roth, *1-naphthylisothiocyanate-induced elevation of biliary glutathione.* Biochem Pharmacol, 1995. **49**(2): p. 197-202.
- 6. Hill, D.A. and R.A. Roth, *Alpha-naphthylisothiocyanate causes neutrophils to release factors that are cytotoxic to hepatocytes.* Toxicol Appl Pharmacol, 1998. **148**(1): p. 169-75.
- 7. Kongo, M., et al., *An association between lipid peroxidation and alpha-naphthylisothiocyanate-induced liver injury in rats.* Toxicol Lett, 1999. **105**(2): p. 103-10.
- 8. Lesage, G., et al., Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis. Am J Physiol Gastrointest Liver Physiol, 2001. **281**(1): p. G182-90.
- 9. Chisholm, J.W., J.R. Paterniti, and P.J. Dolphin, *Accumulation of cholestatic lipoproteins in ANIT-treated human apolipoprotein A-I transgenic rats is diminished through dose-dependent apolipoprotein A-I activation of LCAT*. Biochim Biophys Acta, 2000. **1487**(2-3): p. 145-54.
- 10. Chisholm, J.W. and P.J. Dolphin, *Abnormal lipoproteins in the ANIT-treated rat: a transient and reversible animal model of intrahepatic cholestasis.* J Lipid Res, 1996. **37**(5): p. 1086-98.
- 11. Heimark, R.L., et al., *Surface activation of blood coagulation, fibrinolysis and kinin formation.* Nature, 1980. **286**(5772): p. 456-60.
- 12. Warn-Cramer, B.J. and S.I. Rapaport, *Evidence suggestive of activation of the intrinsic pathway of blood coagulation after injection of factor Xa/phospholipid into rabbits.*Arterioscler Thromb Vasc Biol, 1995. **15**(1): p. 133-9.
- 13. Brinkman, H.J., et al., *The activation of human blood coagulation factor X on the surface of endothelial cells: a comparison with various vascular cells, platelets and monocytes.*Br J Haematol, 1994. **87**(2): p. 332-42.

14. Hill, D.A., P.A. Jean, and R.A. Roth, *Bile duct epithelial cells exposed to alphanaphthylisothiocyanate produce a factor that causes neutrophil-dependent hepatocellular injury in vitro*. Toxicol Sci, 1999. **47**(1): p. 118-25.