Logik und Komplexität ÜBUNG 7

Denis Erfurt, 532437 HU Berlin

Aufgabe 1)

Aus Übungsblatt 1 Aufgabe 1 wissen wir, dass es für eine beliebige Relationalle Signatur σ und einer σ -Struktur \mathfrak{A} eine Isomorphe $\hat{\sigma}$ -Struktur \mathfrak{A}' wobei $\hat{\sigma}$ eine binäre Signatur ist. Sei O.b.d.A. $\hat{\sigma} = \{R_1, ..., R_m\}$

Um zu Zeigen: für alle $l \in \mathbb{N}$ und für alle $F \subseteq \Delta_{l+1}^{\sigma}$ gilt:

$$\mu(EA_{l,f}|All(\sigma)) = 1$$

genügt es zu zeigen:

$$\mu(\neg EA_{l,f}|All(\hat{\sigma})) = 0$$

Zunächst schätzen wir $|C_n|$ ab:

- 1. Es gibt $\binom{n}{l}$ Möglichkeiten, die Menge T zu Wählen.
- 2. Es gibt $\binom{n-l}{l}$ Möglichkeiten, die Menge T' zu Wählen.
- 3. Es gibt $m*2^{\binom{2l}{2}}$ Möglichkeiten Relationen über Knoten aus $T\cup T'$ zu wählen.
- 4. Es gibt $m*2^{\binom{n-2l}{2}}$ Möglichkeiten Relationen zwischen Knoten aus $V\setminus T\cup T'$ zu wählen.
- 5. Für jeden der (n-2l) Knoten z in $V \setminus (T \cup T')$ gibt es $(m*2^{2l})^{n-2l}-1$ Möglichkeiten Relationen mit Knoten aus $(T \cup T')$ zu bilden, ohne den einen Fall, der das Erweiterungsagiom erfüllt.

$$|C_n| \le \binom{n}{l} * \binom{n-l}{l} * 2^{\binom{2l}{2}} * 2^{\binom{n-2l}{2}} * (m*2^{2l}-1)^{n-2l} * 2m$$

Durch Umformung erhalten wir:

$$\frac{|C_n|}{|All(\hat{\sigma})|} \le n^{2l} * 2m * (\frac{m * 2^{2l} - 1}{2^{2l}})^{n-2l}$$

$$n^{2l} * 2m * (\frac{m * 2^{2l} - 1}{2^{2l}})^{n-2l} \longrightarrow_{n \to \infty} 0$$

Damit ist gezeigt:

$$\mu(\neg EA_{l,F}|All(\hat{\sigma})) = 0$$

Sowie

$$\mu(EA_{l,F}|All(\sigma)) = 1$$