IMPERIAL COLLEGE LONDON DEPARTMENT OF MATHEMATICS

Solutions to Question Sheet 6

MATH40003 Linear Algebra and Groups

Term 2, 2020/21

Problem sheet released on Friday of week 7. All questions can be attempted before the tutorials at the end of week 8. Solutions will be released following the tutorials.

Question 1 Suppose (G, \cdot) is a group and H is a subgroup of G. Prove that each of the following is an equivalence relation on G (where g, h are elements of G):

- (i) $g \sim_1 h$ if and only if there is $k \in G$ with $h = kgk^{-1}$;
- (ii) $g \sim_2 h$ if and only if $h^{-1}g \in H$.

In the case where (G,.) is the group $(\mathbb{R}^2,+)$ and H is the subgroup $\{(x,x)\in\mathbb{R}^2: x\in\mathbb{R}\}$, describe geometrically the \sim_2 -equivalence classes. What are the \sim_1 -equivalence classes?

Solution: (i) Clearly $g \sim_1 g$ (take k = e). If $g \sim_1 h$ take k with $kgk^{-1} = h$. Then $g = k^{-1}hk = k^{-1}h(k^{-1})^{-1}$. So $h \sim_1 g$. Finally if $g \sim_1 h$ and $h \sim_1 f$ take $k, j \in G$ with $h = kgk^{-1}$ and $f = jhj^{-1}$. So $f = jkgk^{-1}j^{-1} = (jk)g(jk)^{-1}$, so $g \sim_1 f$, as required.

(ii) $g \sim_2 g$ as $g^{-1}g = e \in H$. If $g \sim_2 h$ then $h^{-1}g \in H$, so $g^{-1}h = (h^{-1}g)^{-1} \in H$, whence $h \sim_2 g$. If $g \sim_2 h$ and $h \sim_2 f$ then $g^{-1}h, h^{-1}f \in H$. So taking the product, $g^{-1}f \in H$ and $g \sim_2 f$. (Note that each of the three things to be verified corresponds to one of the conditions in the test for a subgroup.)

In the example the equivalence class C containing a point $(a,b) \in \mathbb{R}^2$ has the property that $(c,d) \in C$ iff there is $(x,x) \in H$ with (c,d) = (a,b) + (x,x). So we might write C = (a,b) + H. In other words, C is the line through (a,b) which is parallel to the line H.

This group is abelian (and written additively), so $g \sim_1 h$ iff there is k with h = k + g - k = g. So the \sim_1 -classes are just sets of size 1 (i.e. \sim_1 is the equality relation!).

Question 2 Suppose (G, \cdot) is a group and H, K are subgroups of G.

- (i) Show that $H \cap K$ is a subgroup of G.
- (ii) Show that if $H \cup K$ is a subgroup of G then either $H \subseteq K$ or $K \subseteq H$.

Solution: (i) Use the test from the notes. As $e \in H \cap K$ we have $H \cap K \neq \emptyset$. If $g, h \in H \cap K$ then $g, h \in H$, so $gh \in H$ as H is a subgroup. Similarly $gh \in K$, so $gh \in H \cap K$. Also $g^{-1} \in H$ as H is a subgroup and $g \in H$; similarly $g^{-1} \in K$. So $g^{-1} \in H \cap K$.

(ii) If not, there exist $h \in H \setminus K$ and $k \in K \setminus H$. We have $hk \in H \cup K$, so $hk \in H$ or $hk \in K$. In the first case we have hk = h' for some $h' \in H$. Rearranging, we obtain $k = h'h^{-1}$. As $h, h' \in H$ and H is a subgroup, this means $k \in H$ contradicting how it was chosen. But also the case $hk \in K$ leads to a similar contradiction. Thus no such choice of h, k is possible: we have either $H \subseteq K$ or $K \subseteq H$.

Question 3 Which of the following groups are cyclic?

(a) S_2 .

- (b) $GL(2, \mathbb{R})$.
- (c) $\left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \mid \ a,b \in \{1,-1\} \right\}$ under matrix multiplication.
- (d) $(\mathbb{Q}, +)$.

Solution:

- (a) Yes. It is $\langle g \rangle$, where $g = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
- (b) No. $GL(2, \mathbb{R})$ is not abelian, so it cannot be cyclic.
- (c) No. Every element has order 1 or 2, so they all generate proper cyclic subgroups.
- (d) No. Suppose $\frac{p}{q}$ is a generator, in lowest terms. All of the powers of this generator have the form $\frac{np}{q}$ for $n \in \mathbb{Z}$. But such an element has denominator at most q, and this is a contradiction (since \mathbb{Q} has elements with denominators greater than q).

Question 4 Let G and H be finite groups. Let $G \times H$ be the set $\{(g,h) \mid g \in G, h \in H\}$ with the binary operation $(g_1,h_1)*(g_2,h_2)=(g_1g_2,h_1h_2)$.

- (a) Show that $(G \times H, *)$ is a group.
- (b) Show that if $g \in G$ and $h \in H$ have orders a, b respectively, then the order of (g, h) in $G \times H$ is the lowest common multiple of a and b.
- (c) Show that if G and H are both cyclic, and $\gcd(|G|,|H|)=1$, then $G\times H$ is cyclic. Is the converse true?

Solution:

- (a) Easy; just check the group axioms. The identity is (e_G, e_H) .
- (b) We have $(g,h)^t = (g^t,h^t)$. Now

$$(g^t, h^t) = (e_G, e_H) \iff a \text{ divides } t \text{ and } b \text{ divides } t$$

 $\iff \operatorname{lcm}(a, b) \text{ divides } t.$

So $\operatorname{ord}(g, h)$ is $\operatorname{lcm}(a, b)$.

(c) Let |G| = m and |H| = n. Since $G \times H$ has order mn, it is cyclic if and only if there exists an element (g, h) with order mn. Let $g \in G$ have order m and $h \in H$ have order n. By (b), (g, h) has order mn, so $G \times H$ is cyclic. The converse is also true. Let $(g, h) \in G \times H$ have order mn and suppose g has order g and g has order g. Then g divides g and g and g and g and g are coprime.

Question 5 Find an example of each of the following:

- (a) an element of order 3 in the group $GL(2, \mathbb{C})$.
- (b) an element of order 3 in the group $GL(2,\mathbb{R})$.

- (c) an element of infinite order in the group $GL(2, \mathbb{R})$.
- (d) an element of order 12 in the group S_7 .

Solution:

(a) E.g.
$$\begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix}$$
, where $\omega = e^{2\pi i/3}$, or as in (b).

(b) E.g.
$$\begin{pmatrix} \cos 2\pi/3 & \sin 2\pi/3 \\ -\sin 2\pi/3 & \cos 2\pi/3 \end{pmatrix}$$
.

(c) E.g.
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

(d) E.g.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 6 & 7 & 5 \end{pmatrix}$$
, or $(1234)(567)$ in cycle notation.

Question 6 Prove that if $\{x_1, \ldots, x_n\}$ is any finite subset of $(\mathbb{Q}, +)$, then the subgroup $\langle x_1, \ldots, x_n \rangle$ is cyclic.

Solution: Let d_1, \ldots, d_n be the denominators when x_1, \ldots, x_n are expressed in lowest terms. Then each of x_1, \ldots, x_n is in the cyclic subgroup generated by $1/\ell$, where ℓ is $lcm(d_1, \ldots, d_n)$. So $\langle x_1, \ldots, x_n \rangle$ is a subgroup of the cyclic group $\langle 1/\ell \rangle$ and is therefore cyclic (theorem in notes).