Noname manuscript No.

(will be inserted by the editor)

Stacking Sequence Optimization by an Improved Genetic Algorithm

Zhang Huiyao¹ · Atsushi Yokoyama ^{1,*}

Received: date / Accepted: date

Abstract An improved genetic algorithm is used to obtain the stacking sequence of the laminate that reach the maximum strength

Keywords Genetic Algorithm · Laminates · Stacking Sequence

1 Introduction

Fiber-reinfored composites are widely used in automotive, aerospace, shipbuilding, and other branches of engineering because of their high specific strength and stiffness.

Genetic algorithms(GAs) simulate the process of natural evolutionary includes selection, crossover, and mutation according to Darwin's principal of "survival of the fittest".

According to T Back [?], the selection mechanism is one of the primary means of controlling the GA's convergence rate and its likelihood of finding global optima.

Four evaluation criteria are used. The first is normalized cost per genetic search,

 C_n

cost is determinted by the following formula.

$$C_n = N_g P/R$$

where P is population size, R is Apparent reliability.

2 Failure Theores

For orthoropic materials with three planes of symmetry,

$$F_1\sigma_1 + F_2\sigma_2 + F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\sigma_6^2 + 2F_2F_2 = 1$$
 (1)

Zhang Huiyao

Room 203, Bulding 3, Kyoto Institue of Technology Matsugasaki, Sakyo-ku, Kyoto, 606-8585, JAPAN

E-mail: zhanghy1012@gmail.com

S. Author second address

2 Zhang Huiyao

3 Objective Function

Given the safety factor, The objective function is minimum the weight of the laminate.

$$obj = min(weight)$$

Substituting Eq. 9 for R into Eq. 4,we obtain

$$(F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\sigma_6^2 + 2F_{12}\sigma_1\sigma_2)R^2 + (F_1\sigma_1 + F_2\sigma_2)R - 1 = 0$$

4 Stress-Strain Relationship for a Laminate

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma \end{bmatrix}$$
 (2)

Where Q_{ij} are the stiffnesses of the lamina that are related to the compliance matrix compnents and elastic constants by

$$Q_{11} = \frac{E_1}{1 - \mu_{12}\mu_{21}}$$

$$Q_{22} = \frac{E_2}{1 - \mu_{12}\mu_{21}}$$

$$Q_{66} = G_{12}$$

$$Q_{12} = \frac{\mu_{21}E_2}{1 - \mu_{12}\mu_{21}}$$
(3)

The transformation of the equation*sof the off-axis coordinates to the principal axis of the material stress tensor as

$$[T] = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & 2\sin 2\theta \\ \sin^2 \theta & \cos^2 \theta & -2\sin 2\theta \\ -\frac{1}{2}\sin 2\theta & \frac{1}{2}\sin 2\theta & \cos 2\theta \end{bmatrix}$$
(4)

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{11} & B_{12} & B_{16} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} k_x \\ k_y \\ k_{xy} \end{bmatrix}$$
(5)

$$\begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} + \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{11} & D_{12} & D_{16} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} k_x \\ k_y \\ k_{xy} \end{bmatrix}$$

where

$$A_{ij} = \sum_{k=1}^{n} (\overline{Q_{ij}})_k (h_k - h_{k-1})$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} (\overline{Q_{ij}})_k (h_k - h_{k-1})$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} (\overline{Q_{ij}})_k (h_k - h_{k-1})$$
(6)

The [A], [B], and [D] matrices are called the extensional, coupling, and bending stiffness matrices.

$$F_{1} = \frac{1}{X_{t}} - \frac{1}{X_{c}}, \quad F_{11} = \frac{1}{X_{t}X_{c}}$$

$$F_{2} = \frac{1}{Y_{t}} - \frac{1}{Y_{c}}, \quad F_{22} = \frac{1}{Y_{t}Y_{c}}$$

$$F_{66} = \frac{1}{S^{2}}$$
(7)

$$R = \frac{\sigma_{i(\alpha)}}{\sigma_i}$$

where R is the strength ratio, σ_{ia} is allowable stress, σ_i is the stress under loading substituting Eq. 9 for σ into Eq. 4, we obtain

$$\begin{aligned} F_1 \sigma_{1(a)} + F_2 \sigma_{2(a)} + F_{11} \sigma_{1(a)}^2 + F_{22} \sigma_{2(a)}^2 \\ + F_{66} \sigma_{6(a)}^2 + 2F_{12} \sigma_{1(a)} \sigma_{2(a)} = 1 \end{aligned}$$

For orthoropic materials with three planes of symmetry,

$$(F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\sigma_6^2 + 2F_{12}\sigma_1\sigma_2)R^2 + (F_1\sigma_1 + F_2\sigma_2)R - 1 = 0$$

4.1 Solution by a genetic algorithm

as required. Don't forget to give each section and subsection a unique label).

5 Results and Discussion

Table 1: Typical Properties of a Unidirectional Lamina(SI System of Units)

31 1			` ,	
Property	Symbol	Unit	Glass/Epoxy	Graphite/Epoxy
Fiber volume fraction	V_f		0.45	0.70
Longitudinal elastic modulus	$\vec{E_1}$	GPa	38.6	181
Traverse elastic modulus	E_2	GPa	8.27	10.3
Major Poisson's ratio	v_{12}		0.26	0.28
Shear modulus	G_{12}	GPa	4.14	7.17
Ultimate longitudinal tensile strength	$(\boldsymbol{\sigma}_1^T)_{ult}$	MPa	1062	1500
Ultimate longitudinal compressive strength	$(\sigma_1^C)_{ult}$	MPa	610	1500
Ultimate transverse tensile strength	$(\sigma_2^T)_{ult}$	MPa	31	40
Ultimate transverse compressive strength	$(\sigma_2^{\overline{C}})_{ult}$	MPa	118	246
Ultimate in-plane shear strength	$(au_{12})_{ult}$	MPa	72	68

Table 2: GA-parameters

4 Zhang Huiyao

parameter	value		
population size	20		
encoding method	float encoding		
selection strategy	roulette wheel		
crossover strategy	one-point		
mutation strategy	mass mutation		

6 Concluding Remarks

7 Acknowledgements

This is work was supported by The target function is

$$p = \begin{cases} 1 E\left(x_{new}\right) < E\left(x_{old}\right) \\ \exp\left(-\frac{E\left(x_{new}\right) - E\left(x_{old}\right)}{T}\right) E\left(x_{new}\right) > E\left(x_{old}\right) \end{cases}$$
(8)

$$f(r) = \sin(r)/r + 1$$
 where $r = \sqrt{(x - 50)^2 + (y - 50)^2} + 2.71828$

we define R is the strength ratio,

$$R = \frac{\sigma_{i(\alpha)}}{\sigma_i} \tag{9}$$

where $\sigma_{i\sigma}$ is allowable stress and σ_i is the stress under loading, R is the ratio of the component of allowable stress and the stress component under stress. substituting $\sigma_{i(\alpha)}$ for σ_i into Eq. 4, we obtain

$$F_{1}\sigma_{1(\alpha)} + F_{2}\sigma_{2(\alpha)} + F_{11}\sigma_{1(\alpha)}^{2} + F_{22}\sigma_{2(\alpha)}^{2} + F_{66}\sigma_{6(\alpha)}^{2} + 2F_{12}\sigma_{1(\alpha)}\sigma_{2(\alpha)} = 1$$

$$(10)$$

Substituting $\sigma_{i(\sigma)} = R\sigma_i$ into Eq. 4,we obtain

$$(F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\sigma_6^2 + 2F_{12}\sigma_1\sigma_2)R^2 + (F_1\sigma_1 + F_2\sigma_2)R - 1 = 0$$
(11)

This is a quadric equation about R, the value of (R-1) is the multiples that the stress can be increased. The objective function to be maximized is the strength of the laminate.

$$F = \max(\frac{1}{R(i) - 1})\tag{12}$$

where i is the layer number

References

Fig. 1: the flowchart of Genetic Algorithm