Introduction à IP

S22 - Architecture des réseaux Adressage IP

Cédric Wemmert

IUT Robert Schuman - Département Informatique

wemmert@unistra.fr

2022

Adressage IPv6

Problèmes d'Ethernet

- Environ 2³² machines dans le monde
- Soit 0,00734 s d'accès au réseau en Ethernet par an par machine (cf. TD)
- Des tables de propagation très grosse (1 entrée = 1 adresse MAC)
- ullet LAN ightarrow 1 administrateur, une zone géographique restreinte
- Ne fournit pas les outils pour communiquer proprement entre différents LAN, d'organisations différentes
- 1 Ethernet ne permet pas de connecter toutes les machines du monde!

Inter-Network Protocols

000000

Deux niveaux génériques basiques

- Réseau local : Ethernet
- Réseau global : Internet
 - Internet Protocol (IP) décrit dans le RFC 791 (1981)
 - https://tools.ietf.org/html/rfc791
 - Objectif : faire communiquer 2 équipements dans des réseaux locaux différents

Gateway Protocols

000000

IP : Internet Protocol

- Réseau de Réseaux
- Implémentation de la couche 'réseau' (modèle OSI)
- Basée sur l'adresse IP :
 - IPv4 ou IPv6
- Échange de paquets

IP: Internet Protocol

- Ensemble des règles de communication sur Internet
- Internet = réseau de réseaux
- Communication des réseaux locaux entre eux

Services rendus

000000

- Utilisation du système d'adressage IP
- Fractionnement des messages en <u>paquets</u>; chaque paquet est acheminé indépendamment
- Pas de contrôle des erreurs de transmission
- Acheminement des données sur le réseau (routage)...
- ... en mode NON connecté!

Internet Protocol

000000

- Envoi de paquets IP :
 - de bout en bout, à travers des réseaux interconnectés (Internet)
 - via des réseaux hétérogènes (débit, taille des trames, adressage)
- Fonctionnement simple au niveau des données échangées :
 - pas de retransmission (non fiable)
 - déséguencement possible
 - pas de contrôle de flux/congestion
 - modèle de service usuel : « best effort »

IP = couche unificatrice

- IP est au dessus de tout protocole de niveau liaison
- Il existe des règles d'encapsulation du paquet IP pour chaque type de liaison

000000

Internet Protocol: la couche unificatrice!

000000

Protocole de bout en bout!

Adresses IPv4

Introduction à IP

- Identifie une interface:
 - Plusieurs interfaces → plusieurs adresses IP
- Adresses IP gérées et vendues par l'ICANN :
 - Internet Corporation for Assigned Names and Numbers
 - remplace l'IANA, Internet Assigned Numbers Agency (1998) qui en devient un département

Suite de 4 octets / 32 bits séparés par des «.»

174 91 198 01011011 . 11000110 10101110 00000010

Adresses IPv4 : deux parties

Introduction à IP

- réseau (en rouge) : routage sur internet
- hôte (en noir) : routage à l'intérieur du réseau local

Adressage IPv6

Organisation par classes:

- La classe définit la longueur des parties réseau et hôte
- On achète une <u>plage</u> d'adresses définie par la partie réseau

Classes

Introduction à IP

```
Classe A : 1 octet réseau commence par 0...

Classe B : 2 octets réseau commence par 10...

Classe C : 3 octets réseau commence par 110...

Classe D : multicast commence par 1110...

Classe E : expérimental/non-utilisée le reste 1111...
```

Adressage IPv6

Organisation par classes:

- La classe définit la longueur des parties réseau et hôte
- On achète une plage d'adresses définie par la partie réseau

Classes

Introduction à IP

```
Classe A : 0.0.0.0 - 127.255.255.255
```

Classe B : 128.0.0.0 - 191.255.255.255

Classe C : 192.0.0.0 - 223.255.255.255

Classe D : 224.0.0.0 - 239.255.255.255

Classe F : 240.0.0.0 - 247.255.255.255

Problème

Comment un ordinateur peut-il séparer de manière efficace la partie réseau et la partie hôte connaissant simplement l'adresse IP?

Réseau: masque d'adresses IPv4

Définition d'un masque par défaut :

- Le masque est codé sur 32 bits : les premiers sont positionnés à 1, et les suivants sont à 0
- Connaissant la classe, définie par le nombre de bits à 1, on peut retrouver :
 - la partie réseau par un ET bit à bit
 - la partie hôte par un ET avec le complément bit à bit du masque

Classe A: Masque de 8 bits (1 octet)

Adresse IPv4	01011011.11000110.10101110.00000010	91.198.174. 2	
Masque par défaut	1111111.00000000.0000000.00000000	255. 0. 0. 0	
Complément du masque	00000000.111111111.111111111.11111111	0.255.255.255	
Réseau	01011011.00000000.00000000.00000000	91 . 0. 0. 0	
Hôte	0000000.11000110.10101110.00000010	0.198.174. 2	
Adrassa IDvA	01011011 11000110 10101110 00000010	91 198 174 2	_

Réseau: masque d'adresses IPv4

Définition d'un masque par défaut :

- Le masque est codé sur 32 bits : les premiers sont positionnés à 1, et les suivants sont à 0
- Connaissant la classe, définie par le nombre de bits à 1, on peut retrouver :
 - la partie réseau par un ET bit à bit
 - la partie hôte par un ET avec le complément bit à bit du masque

Classe B: Masque de 16 bits (2 octets)

0.0000 0 7 7 1000 00 00 20 07 10 (2 00000)			
Adresse IPv4	10000010.11000110.10101110.00000010	130.198.174. 2	
Masque par défaut	11111111.11111111.00000000.00000000	255.255. 0. 0	
Complément du masque	00000000.00000000.111111111.11111111	0. 0.255.255	
Réseau	10000010.11000110.00000000.00000000	130.198. 0. 0	
Hôte	00000000.00000000.10101110.00000010	0. 0.174. 2	
Adresse IDvA	10000010.11000110.10101110.00000010	130.198.174. 2	

Réseau: masque d'adresses IPv4

Définition d'un masque par défaut :

- Le masque est codé sur 32 bits : les premiers sont positionnés à 1, et les suivants sont à 0
- Connaissant la classe, définie par le nombre de bits à 1, on peut retrouver :
 - la partie réseau par un ET bit à bit
 - la partie hôte par un ET avec le complément bit à bit du masque

Classe C: Masque de 24 bits (3 octets)

ciasse c . Masque ut	24 DIG (3 OCIEGS)	
Adresse IPv4	11001000.11000110.10101110.00000010	200.198.174. 2
Masque par défaut	11111111.11111111.11111111.00000000	255.255.255. 0
Complément du masque	00000000.00000000.00000000.111111111	0. 0. 0.255
Réseau	11001000.11000110.10101110.00000000	200.198.174. 0
Hôte	0000000.0000000.0000000.00000010	0. 0. 0. <mark>2</mark>
Adresse IPv4	11001000.11000110.10101110.00000010	200.198.174. 2

Introduction à IP

Pénurie d'adresses IPv4

	0000000.0000000.0000000.0000000	0. 0. 0. 0
Classe A		
	01111111.11111111.11111111.1111111	127.255.255.255
	10000000.00000000.00000000.00000000	128. 0. 0. 0
Classe B		
	•	•
	10111111.111111111.11111111.11111111	191.255.255.255
	11000000.00000000.00000000.00000000	192. 0. 0. 0
Classe C		•
	11011111.11111111.11111111.11111111	223.255.255.255
Classe D&E	11100000.00000000.00000000.00000000	224. 0. 0. 0
	11111111.11111111.11111111.11111111	255.255.255.255

Adresses spéciales

Par réseau (p.ex. classe A)

- X. 0. 0: adresse du réseau (tous les bits <u>hôte</u> mis à 0)
- X . 255 . 255 . 255 : broadcast dans un réseau (tous les bits <u>hôte</u> mis à 1) adresse multicast pour toutes les machines du réseau
- 0. X. X: adresse hôte dans le réseau courant (tous les bits <u>réseau</u> mis à 0)
- 255.255.255.255: adresse broadcast (tous les bits mis à 1) limitée au même sous-réseau que la liaison locale utilisée

Adresses privées

- Non routables à travers Internet
- Peuvent être ré-utilisées indépendamment sur divers sites
 - Classe A

10.0.0.0 -- 10.255.255.255

Classe B

172.16.0.0 -- 172.31.255.255

Classe C

192.168.0.0 -- 192.168.255.255

Adresses spéciales (suite)

Boucle locale

- adresses de la forme 127. X. X. X
- 127.0.0.1 = loopback
- adresse reconnue localement par tout hôte utilisant IP, même non connecté à un réseau
- utilité uniquement locale :
 - pas de circulation sur le réseau
 - servent à la communication de processus utilisant IP sur une même machine

Adresses spéciales (suite)

Multicast

Introduction à IP

- 224. X. X. X: adresse multicast
 - Représente un groupe de machines
 - Nécessite un protocole d'adhésion (IGMP)

Spécifiques au lien

- 169.254. X. X = link local
 - Adresses réservées à un processus (Automatic Private Internet Protocol Addressing
 - APIPA) qui permet à un système d'exploitation de s'attribuer automatiquement une adresse IP, lorsque le serveur DHCP est hors service ou injoignable
 - Non routables à travers Internet

Sous-réseau

Introduction à IP

- Un réseau est potentiellement grand :
 - par exemple, en classe A: 16 millions d'hôtes par réseau
- Impossible de fonctionner en réseau local
- Besoin de pouvoir découper un réseau en sous-parties

Notion de sous-réseau

- Permet de découper un réseau donné en plusieurs sous-réseaux
- Permet le routage à l'intérieur d'un réseau

Adresses IPv4: réseau

Introduction à IP

Adressage IPv6

Adresses IPv4: sous-réseaux

Adresses IPv4: sous-réseaux

- Adresse découpée en 3 parties : réseau R sous-réseau S hôte H
- Cela permet un découpage plus fin
- Le découpage ne peut être deviné à partir de l'adresse et nécessite un masque de (sous-)réseau : netmask
 - Les bits à 1 désignent réseau + sous-réseau : R+S
 - Ceux à 0 le numéro de l'hôte dans le sous-réseau : H

- 1993 : Système de classe génère gaspillage important (surtout des classes A)
- → Remplacement du système de classe par CIDR.
 - Réseau + sous-réseau sont représentés par un préfixe :
 - p. ex. 200.16.0.0/14
 - /14 ↔ 14 bits à 1 dans le masque de sous-réseau
 - Meilleure utilisation des adresses disponibles :
 - 1 réseau ↔ 1 préfixe (au lieu de plusieurs classes C)
 - Table de routage plus petite

Adresse IPv4	01010010.00001010.00011110.00000010	82. 10. 30.2/24
Masque par défaut	1111111.00000000.0000000.00000000	255. 0. 0. 0
Masque de S-R	11111111.11111111.111111111.00000000	255.255.255.0
Réseau	01010010.00000000.00000000.00000000	82. 0. 0.0
	04040040 00004040 00044440 00000000	00 10 00 0
Réseau étendu	01010010.00001010.00011110.00000000	82. 10. 30.0
Sous-réseau	00000000.00001010.00011110.00000000	0. 10. 30.0
Hôte dans S-R	0000000.00000000.00000000.00000010	0. 0. 0.2

Qui vend des adresses IP?

- Internet Corporation for Assigned Names and Numbers (ICANN) est la société pour l'attribution des noms de domaine et des numéros sur Internet (autorité de régulation de l'Internet - société à but non lucratif)
- Internet Assigned Numbers Authority (IANA) est le département de l'ICANN qui vend des blocs d'@IP au Regional Internet Registries (RIR)
- Les RIR (5 dans le monde) vendent des blocs d'adresses aux Fournisseurs d'Accès Internet (FAI)
- Les FAI vous attribuent une adresse ID

Pénurie d'adresses IPv4

Pénurie d'adresses

Introduction à IP

- IANA n'a plus d'@IPv4 depuis le 31 janvier 2011
- Au 25 novembre 2019, le RIPE NCC (RIR Europe) a annoncé la pénurie d'IPv4, après avoir effectué sa dernière attribution /22 IPv4 à partir des dernières adresses restantes. "Nous sommes maintenant à court d'adresses IPv4." (source : arcep.fr)
- → Invention du CIDR, NAT et IPv6 pour palier cette pénurie

Solution à long terme

IPv6 est la seule solution à long terme!

IPv6

Introduction à IP

Espace d'adressage sur 128 bits

ightarrow 667 millions de milliards d'adresses par millimètre carré de surface terrestre!

Notation hexadécimale
 2001:0db8:0000:85a3:0000:0000:ac1f:8001

Possibilité de compresser l'écriture
 2001:db8:0:85a3::ac1f:8001

• « :: » : désigne la plus longue suite de 0

• « 0 » : résume une suite de 0 consécutifs sur 2 octets

Adresses IPv6

4 familles d'adresses

- 2000::/3: unicast globale ouverte à la réservation
- fc00::/7: locale unique comparable aux adresses privées d'IPv4. ID global sur 40 bits. 64 bits d'ID de l'hôte
- fe80::/10: lien local adresse créée automatiquement pour chaque interface IPv6 (avec @MAC). Unique sur un lien
- ff00::/8: multicast remplace le broadcast. 112 bits pour l'id. groupe

... et quelques adresses réservées (::/8)

- ::/128 : non spécifiée, quand l'hôte ne connait pas son IP
- ::1/128: loopback
- ::ffff:0:0/96: pour contenir une IPv4 dans une structure IPv6

Déploiement d'IPv6

Introduction à IP

- Le déploiement d'IPv6 peine à décoller
- La France est à environ 43% derrière l'Allemagne (env. 50%)

- lacktriangle beaucoup de différences entre IPv6 et IPv4 ightarrow transition plus difficile
- la promotion d'IPv6 a commencé bien avant qu'une demande réelle existe (impression que l'IPv6 est un échec)
- demande asymétrique (certains acteurs à court d'adresses IPv4 et certains qui en ont suffisamment et n'ont aucune raison de changer

S22 - Architecture des réseaux

L'essentiel

Introduction à IP

- Ethernet ne permet pas de connecter toutes les machines du monde
- IP: Protocole de niveau réseau
 - · achemine les paquets indépendamment
 - sans aucun contrôle
 - en mode non-connecté
- IP = couche unificatrice
- @IP possède 2 parties : réseau et hôte
- On détermine ces parties en utilisant un masque
- Pénurie d'@IP:
 - CIDR et IPv6
- IPv6: LA solution à long terme
 - Augmente laaaaaaaaaaaargement l'espace d'adressage

0000