Análisis de la serie de tiempo USAccDeaths

Contents

Información de contacto	2
Modelando la serie "USAccDeaths"	3
Descripción	3
Observaciones de la serie de tiempo y visualización	3
ACF y PACF	4
Quitando tendencia estacional	5
Aplicando diferencia no estacional	5
ACF y PACF con diferencia estacional y no estacional	6
Ajuste de diferentes modelos	7
Modelo final	8
Pronóstico	9

Información de contacto

```
Mail: alejandro.zavala 1001@gmail.com
Facebook: https://www.facebook.com/AlejandroZavala1001
Git: https://github.com/AlejandroZavala98
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: MASS
## Warning: package 'forecast' was built under R version 4.1.1
## Registered S3 method overwritten by 'quantmod':
     method
                       from
     as.zoo.data.frame zoo
##
## Attaching package: 'forecast'
## The following object is masked from 'package:astsa':
##
##
       gas
```

Modelando la serie "USAccDeaths"

Descripción

"Una serie de tiempo que da los totales mensuales de muertes accidentales en los EE.UU. de 1973-1978"

Observaciones de la serie de tiempo y visualización

##		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
##	1973	9007	8106	8928	9137	10017	10826	11317	10744	9713	9938	9161	8927
##	1974	7750	6981	8038	8422	8714	9512	10120	9823	8743	9129	8710	8680
##	1975	8162	7306	8124	7870	9387	9556	10093	9620	8285	8466	8160	8034
##	1976	7717	7461	7767	7925	8623	8945	10078	9179	8037	8488	7874	8647
##	1977	7792	6957	7726	8106	8890	9299	10625	9302	8314	8850	8265	8796
##	1978	7836	6892	7791	8192	9115	9434	10484	9827	9110	9070	8633	9240

Muertes accidentales en EUA

De esta serie podemos ver

- 1. Es una serie temporal mensual con un lapso de estacionalidad 12.
- 2. Los picos mas altos de la serie ocurren por lo general en el mes de Julio.
- 3. La serie temporal no es estacionaria ya que existe una tendencia estacional.

ACF y PACF

ACF - Muertes accidentales en EUA

PACF – Muertes accidentales en EUA

Quitando tendencia estacional

Dado el gráfico anterior podemos ver una tendencia a la alza de esta serie

Aplicando diferencia no estacional

Muertes accidentales (con diferencia estacional y no estacional)

ACF y PACF con diferencia estacional y no estacional

ACF - Aplicando diferencia estacional y no estacional

PACF – Aplicando diferencia estacional y no estacional

Se propone un modelo que se ajuste a las siguientes características:

$$p \leq 2$$

$$P \leq 1$$

$$q \leq 1$$

$$Q \leq 1$$

Ajuste de diferentes modelos

```
## Modelo ( 0 1 0 0 1 0 12 ) AIC= 873.6886 SSE= 9013344 p-VALUE= 0.033192
## Modelo ( 0 1 0 0 1 1 12 ) AIC= 864.1295 SSE= 6850982 p-VALUE= 0.02092085
## Modelo ( 0 1 0 1 1 0 12 ) AIC= 868.2989 SSE= 7745049 p-VALUE= 0.01424955
## Modelo ( 0 1 0 1 1 1 12 ) AIC= 865.1162 SSE= 5574898 p-VALUE= 0.033424
## Modelo ( 0 1 1 0 1 1 12 ) AIC= 856.88 SSE= 5863035 p-VALUE= 0.6764884
## Modelo ( 1 1 0 0 1 0 12 ) AIC= 868.244 SSE= 7928362 p-VALUE= 0.306149
## Modelo ( 1 1 0 0 1 1 12 ) AIC= 859.2828 SSE= 6040686 p-VALUE= 0.326346
## Modelo ( 1 1 0 1 1 0 12 ) AIC= 863.2667
                             SSE= 6858696 p-VALUE= 0.2285597
                             SSE= 4945052 p-VALUE= 0.4027729
## Modelo ( 1 1 0 1 1 1 12 ) AIC= 860.3391
## Modelo ( 1 1 1 0 1 0 12 ) AIC= 866.2883 SSE= 7394689 p-VALUE= 0.9496107
## Modelo ( 1 1 1 1 1 0 12 ) AIC= 861.6162 SSE= 6433382 p-VALUE= 0.6935192
```

Modelo final

```
## initial value 5.968253
## iter
          2 value 5.813501
## iter
          3 value 5.809452
## iter
          4 value 5.805777
          5 value 5.805632
## iter
## iter
          6 value 5.805618
          7 value 5.805618
## iter
## iter
          7 value 5.805618
## iter
          7 value 5.805618
## final value 5.805618
## converged
## initial value 5.796764
          2 value 5.792329
## iter
## iter
          3 value 5.791962
          4 value 5.791909
## iter
          4 value 5.791909
## iter
          4 value 5.791909
## iter
## final value 5.791909
## converged
```


	Estimate	SE	t.value	p.value
ma1	-0.4303	0.1228	-3.5037	9e-04
sma1	-0.5528	0.1784	-3.0991	3e-03

De tal modo se obtiene:

$$x_t = x_{t-1} + x_{t-12} - x_{t-13} + Z_t - 0.4303Z_{t-1} - 0.5528Z_{t-12} + 0.2378Z_{t-13}$$

$$Z_t \sim N(0, 99347)$$

Pronóstico


```
## $pred
##
                                                        May
                                                                             Jul
              Jan
                         Feb
                                   Mar
                                              Apr
                                                                   Jun
## 1979 8336.061
                   7531.829
                              8314.644
                                        8616.869
                                                   9488.913
                                                             9859.757 10907.470
##
                         Sep
                                   Oct
                                              Nov
                                                        Dec
              Aug
## 1979 10086.508
                   9164.959
                              9384.259
                                        8884.974
                                                   9376.574
##
## $se
##
             Jan
                       Feb
                                Mar
                                          Apr
                                                   May
                                                            Jun
## 1979 315.4481 363.0056 405.0168 443.0623 478.0897 510.7204 541.3879 570.4090
##
             Sep
                       Oct
                                Nov
## 1979 598.0234 624.4178 649.7408 674.1133
```