MPEI 2024-2025

Funções de dispersão (Hash functions)

Motivação

 Em muitos programas de computador tornase necessário aceder a informação através de uma chave

• Exemplo:

Obter nome associado a um número de telefone

Um dicionário simples: Hashtable

- Em Java, por exemplo, temos estruturas de dados como HashMap e Hashtable
- Para criar uma *Hashtable*:

```
import java.util.*;
Hashtable table = new Hashtable();
```

 Para colocar elementos (par chave-valor) na Hashtable, usase:

```
table.put(chave, valor);
```

Para obter um valor:

```
valor = table.get(chave);
```

Implementação comum

Separate chaining with linked lists

 As chaves são transformadas em posições num array

> usando uma função

 Cada posição do array é o início de uma lista ligada

Implementação da Hashtable Java

Fragmento do Código fonte:

```
public synchronized V put(K key, V value) {
     Entry<?,?> tab[] = table;
     int hash = key.hashCode();
     int index = (hash & 0x7FFFFFFFF) % tab.length;
     Entry<K,V> entry = (Entry<K,V>)tab[index];
     for(; entry != null ; entry = entry.next) {
              if ((entry.hash == hash) && entry.key.equals(key)) {
                      V old = entry.value;
                      entry.value = value;
                       return old;
      addEntry(hash, key, value, index);
      return null
```


Função de dispersão

- Em Inglês hash function
- Qualquer algoritmo que mapeia um conjunto grande e de tamanho variável para um conjunto de tamanho fixo de menor dimensão
- Muitas vezes os elementos do conjunto grande designam-se por chaves
- É, como veremos, essencial para muitas aplicações

Função de dispersão / Hash function

- Mapeia símbolos de um universo U num conjunto de valores
 - em geral inteiros

- Processo pode ser visto como a atribuição a cada símbolo de uma posição num vetor de M posições, entre 0 e M-1
 - As posições designam-se muitas vezes por buckets

Hash Code

- Usa-se um valor de M muito menor do que a dimensão de U
 - Porque o conjunto dos símbolos efetivamente usados é, em geral, apenas uma parte do universo de valores (U)
- Uma função de dispersão recebe um elemento de U como entrada e devolve um número inteiro h
 - no intervalo $0, \ldots, M-1$
 - designado por Código de dispersão (em Inglês hash code)

Funções de dispersão / Hash functions

- O processo pode ser dividido em dois passos:
 - Mapeamento do elemento para um inteiro
 - Mapeamento do inteiro para um conjunto limitado (de inteiros).

Notação

- Adopta-se para a representação h()
 - do Inglês hash function

- e k para uma chave
 - do Inglês <mark>k</mark>ey

Propriedades

 As funções de dispersão devem ter as seguintes propriedades:

Serem determinísticas

para cada chave a função deve devolver sempre o mesmo código

• Uniformidade:

- Uma função de dispersão ideal mapeia as chaves em inteiros de uma forma "aleatória"
 - De forma a que as keys sejam igualmente distribuídas pelos buckets / hash codes.

Funções de dispersão - colisões

- Como o número de elementos de U é em geral maior que M, é inevitável que a função de dispersão mapeie vários elementos diferentes no mesmo valor de h
 - situação em que dizemos ter havido uma colisão
- Exemplo:
 - sendo k um elemento de U e a função de dispersão: $h(k,M) = k \bmod M$
 - teremos colisões para k, M + k, 2M + k, ...

Colisão - Exemplo muito simples

Considere o universo U é o conjunto dos números inteiros que vai de 100001 a 9999999. Suponha que M=100 e se adota os dois últimos dígitos da chave como código de dispersão (em outras palavras, o código é o resto da divisão por 100). Calcule os códigos ($hash\ codes$) para 123456, $7531\ e3677756$.

Resultado:

chave código

123456 56

7531 31

3677756 56

Funções de dispersão / Hash functions

- Existe uma grande variedade
 - com diferentes graus de complexidade e diferentes desempenhos
 - para diferentes tipos de dados
 - inteiros, strings ...

- Em geral o desempenho depende da aplicação
 - pelo que é recomendável testar várias

Funções de dispersão para inteiros

• Mapeiam uma única chave inteira k num número inteiro h(k) entre M possíveis

- Existem vários métodos:
 - baseadas em divisão
 - baseadas em multiplicação
 - membros de famílias universais

Método da Divisão

- Utiliza o resto da divisão por M
- A função de de dispersão é

$$h(k) = k \mod M$$

- M é o número de posições (igual ao tamanho da tabela), que deve ser um número primo
- Exemplo:
 - $-\operatorname{se} M = 11\operatorname{e} \operatorname{a} \operatorname{chave} k = 100\operatorname{temos} h(k) = 1$
- Método bastante rápido
 - Requer apenas uma operação de divisão

Método da Divisão

 Funciona muito mal para muitos tipos de padrões nas chaves

 Foram desenvolvidas variantes como a de Knuth:

$$h(k) = k(k+3) \bmod M$$

Exemplo: Variante de Knuth

- $h(k) = k(k+3) \mod M$
- M = 113
- Aplicação a todos os inteiros de 500 a 600.

- A sequência
 igualmente espaçada
 de números (à
 esquerda) é
 dispersada sem
 regularidade aparente
 - que é o que se pretende de uma boa função de dispersão

Método da multiplicação

- Este método opera em duas etapas:
 - 1. multiplica-se a chave por uma constante A e extrai-se a parte fraccionária de kA

```
Com: 0 < A < 1
```

- 2. multiplica-se por M e arredonda-se para o maior inteiro menor ou igual ao valor obtido
- function h = hmultiplic(k,M)
 % Função de dispersão para baseada na multiplicação
 % Entradas: k chave;
 % M núm. de valores possíveis [0,M-1]
 A= 0.5*(sqrt(5) 1);
 h=floor(M*(mod(k*A,1)));

Função de dispersão para uma sequência de caracteres (string)

Função de dispersão de uma sequência de caracteres (String)

- Calcula qualquer que seja o tamanho da string um inteiro
- Uma sequência de caracteres é em geral representada como uma sequência de inteiros (ex: códigos ASCII)
- Em consequência, a função de dispersão para Strings tem por entrada uma sequência de inteiros

$$k = k1, ..., ki,, kn$$

e produz um número inteiro pequeno $h(k)$

 Os algoritmos para este tipo de entrada assumem que os inteiros são de facto códigos de caracteres

Função de dispersão de uma sequência de caracteres (String)

- Os algoritmos concentram-se na preservação do máximo de informação dos 5 bits menos significativos
 - fazendo muito menos uso dos 3 bits mais significativos

Porque:

- Muitas vezes um caracter é representado em 8 bits
- O código ASCII apenas usa 7 desses 8 bits
- Desses 7, os caracteres comuns apenas usam os 6 menos significativos
- E o mais significativo desses 6 indica essencialmente se é maiúscula ou minúscula
 - muitas vezes pouco relevante

Função de dispersão de uma sequência de caracteres (String)

- Em geral, o processamento consiste em:
 - 1. inicializar h (0 ou outro valor inicial)
 - 2. Percorrer a sequência de inteiros (representando os caracteres) combinando os inteiros ki, um por um, com h
 - Os algoritmos diferem na forma como combinam ki com h
 - Obtenção do resultado final através de h mod M (método da divisão).
- Para evitar problemas de overflow, em geral os inteiros ki são representados por números inteiros sem sinal (unsigned int)
 - A utilização de representações de inteiros com sinal pode resultar em comportamentos estranhos

Exemplo simples

$$hash(key) = \sum_{i=0}^{KeySize-1} Key[KeySize-i-1] \cdot 37^{i}$$

Hash function for strings:

 $hash("ali") = (105 * 1 + 108*37 + 98*37^2) % 10,007 = 8172$

CENG 213 Data Structures

12

Exemplo – hashCode() do Java

- A classe java.lang.String implementa desde o Java 1.2 a função hashCode() usando um somatório de produtos envolvendo todos os caracteres
- Uma instância s da classe java.lang.String tem o seu código h(s) definido por:

$$h(s) = \sum_{i=0}^{n-1} s [i] \cdot 31^{n-1-i}$$

- com s[i] representando o código UTF-16 do caracter i da cadeia de comprimento n
- A adição é efectuada usando 32 bits

Exemplo Matlab - string2hash()

```
str=double(str);
hash = 5381*ones(size(str,1),1);
for i=1:size(str,2),
   hash = mod(hash * 33 + str(:,i), 2^32-1);
end
Exemplos de uso (M=11):
k = António \rightarrow h(k) = 4
k = Antónia -> h(k) = 1
k = Manuel
               -> h(k) = 6
         \rightarrow h(k) = 4
k = Manu
k = Manuela  -> h(k) = 0
         -> h(k) = 0
k = Vitor
```

Problemas

- As funções de dispersão terão que lidar com conjuntos $S \subseteq U$ com |S| = n chaves não conhecidos de antemão
- Normalmente, o objetivo destas funções é obter um número baixo de colisões
 - chaves de S que mapeiam na mesma posição
- Uma função de dispersão determinística (fixa) não pode oferecer qualquer garantia de que não ocorrerá o pior caso:
 - um conjunto S com todos os elementos a serem mapeados na mesma posição, tornando a função de dispersão inútil em muitas situações
- Além disso, uma função determinística não pode ser alterada facilmente em situações em que ocorram muitas colisões

Solução

 A solução para estes problemas consiste em escolher uma função aleatoriamente de uma família de funções

 Têm particular interesse as famílias de funções de dispersão universais

Funções de Dispersão Universais

Funções de dispersão universais

• Uma família H de funções de dispersão h é universal se:

quaisquer duas chaves do universo colidem com probabilidade máxima igual a 1/M quando a função de dispersão h é extraída aleatoriamente de H

$$\forall x, y \in U, \ x \neq y: \quad P_{h \in H}[h(x) = h(y)] \le \frac{1}{M}$$

Exatamente a probabilidade de colisão esperada caso a função de dispersão gerasse códigos realmente aleatórios para cada chave.

Funções de dispersão universais

- Esta solução garante um baixo número de colisões em média
 - mesmo no caso de os dados serem escolhidos por alguém interessado na ocorrência do pior cenário (ex: hacker)
- Este tipo de funções pode utilizar mais operações do que as funções que vimos anteriormente
- Existe uma diversidade de famílias universais e métodos para as construir
 - Veremos a seguir alguns

Método de Carter Wegman

• A proposta original, de Carter e Wegman, consiste em escolher um primo $p \ge M$ e definir

$$h_{a,b}(x) = ((\boldsymbol{a}x + \boldsymbol{b}) \bmod p) \bmod M$$

sendo a e b inteiros aleatórios módulo p (a ≠0)

 Nota: Trata-se de uma iteração de um gerador de números aleatórios de congruência linear

Outro método

A chave é representa por um vetor de inteiros

$$[x_1, x_2, ..., x_k]$$

- x_i pertencendo a $\{0,1,...,M-1\}$
- k é o tamanho do vetor
- M um número primo

- Exemplo:
 - Em Strings, x_i pode representar o código do caracter i

Outro método (continuação)

 Para seleccionar uma função de dispersão h escolhem-se k números aleatórios

$$r_1, r_2, ..., r_k$$
 de $\{0, 1, ..., M-1\}$

• E define-se :

$$h(x) = (r_1x_1 + r_2x_2 + ... + r_k x_k) \mod M$$

Exemplo em Matlab

```
s='Métodos Probabilísticos'
M = 113;
% converter para vetor
x=double(s)
% gerar vetor r
r=randi(M-1,1,length(x))
% h(x) = r * x \mod M
h=mod(r*x', M)
```

• Considere-se duas chaves distintas x e y

Pretendemos demonstrar que

$$P[h(x) = h(y)] \le 1/M$$

- Como $x \neq y$ existe pelo menos um índice i tal que $x_i \neq y_i$
- Selecionando números aleatórios r_i com $j \neq i$ Podemos definir $h'(x) = \sum_{i \neq i} r_i x_i$
- Desta forma $h(x) = h'(x) + r_j x_j$

• Exemplo:

$$h(x) = (h'() + 2 x 8) \mod M$$

 $h(y) = (h'() + 2 x 1) \mod M$

 Teremos uma colisão entre x e y exatamente quando

$$h'(x) + r_i x_i = h'(y) + r_i y_i \mod M$$

• Ou, de forma equivalente, quando:

$$r_i(x_i - y_i) = h'(y) - h'(x) \mod M$$

Como M é primo, a divisão por um valor não nulo módulo M é possível e existe apenas um único valor $r_i \mod M$ que constitui a solução, mais exactamente

$$r_i = \frac{h'(y) - h'(x)}{x_i - y_i} \mod M$$

- Temos assim uma possibilidade de igualdade em M
- A probabilidade de colisão é 1/N
 - Como pretendíamos demonstrar

Como ter *n* funções de dispersão ?

Possíveis soluções:

- 1. Ter mesmo *n* funções diferentes
- Usar funções customizáveis (definindo uma família de funções) e usando parâmetros diferentes
- 3. Usar a mesma função de dispersão e processar a chave por forma a ter *n* chaves diferentes baseadas na chave original

```
Exemplo (Matlab):
    for i=1:n
        str= [str num2str(i)];
        h=HashCode(hash,m,str);
    end
```


Propriedades (continuação)

• As *n* funções de dispersão devem cumprir um requisito adicional:

Produzir resultados não-correlacionados

 Esta propriedade é muito importante e é aconselhável verificá-la/avaliá-la em trabalhos envolvendo várias funções

"Teste" de funções de dispersão

- Um teste simples e básico consiste em:
 - 1. Gerar um conjunto grande de chaves (pseudo)aleatórias
 - 2. Processar todas essas chaves com as *n* funções de dispersão
 - Guardando os resultados produzidos (hash codes)
 - 3. Analisar o histograma de cada função de dispersão
 - Para verificar a uniformidade da distribuição dos hash codes
 - 4. Calcular, visualizar e analisar as correlações entre os resultados produzidos pelas várias funções de dispersão

Exemplo

Teste com 100 mil números de 6 funções (h1, . . , h7)

Funções de Dispersão Universais

- https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1 004.pdf
- https://ocw.mit.edu/courses/electrical-engineeringand-computer-science/6-046j-introduction-toalgorithms-sma-5503-fall-2005/video-lectures/lecture-8-universal-hashing-perfect-hashing/lec8.pdf
- http://cswww.bu.edu/faculty/homer/537/talks/SarahAdelBarga l UniversalHashingnotes.pdf