Assignment 3 — AD

Schmidt, Victor Alexander, rqc908 Ibsen, Helga Rykov, mcv462 Larsen, Christian Vadstrup, 1jq919

Monday 08:00, March 6th

Task 1

$\overline{\textbf{Algorithm 1} \text{ Is}_\bar{b}_\text{beers}_\text{possible}(p, b, \bar{b})}$

```
1: for i = 1 to n - 1 do
         toll = 2(p_{i+1} - p_i)

if (b_i < \bar{b}) or (b_i > \bar{b}) and toll < b_i - \bar{b}) then

beers to send = \bar{b} - b_i
 3:
 4:
               b_{i+1} = b_{i+1} - (beers to send + toll)
 5:
               b_i = b_i + \text{beers to send}
 6:
          end if
 7:
 8: end for
 9: if b_n \geq \bar{b} then
          return True
10:
11: end if
12: return False
```

Task 2

The greedy choice property in Algorithm 1 is b_i . We make sure that the current bar has \bar{b} beers, by greedily importing $\bar{b} - b_i$ beers from the next bar over, no matter how many beers the next bar has. If we have a surplus of beers at bar i that exceeds the toll (the amount lost in translation); $toll < b_i - \bar{b}$, we send the surplus to the next bar over instead.

This way, bar i always have $b_i \geq \bar{b}$ and bar i+1 has the optimal substructure, while making the greedy choice for bar i. The final problem then is if bar n has $b_n \geq \bar{b}$ beers, since we greedily solved for all other bars in order, then there exists an optimal solution.

Loop invariant proof

To prove the correctness of **Algorithm 1**, we need to show that the loop invariant holds true for each iteration of the for-loop. The for-loop maintains the following invariant:

At the start of each iteration of the for-loop, all the elements of b before the i-th index have a value greater than or equal to \bar{b} .

We use the loop invariant as follows:

Initialization: At the start of the loop, we assume that the loop invariant holds true. Before the first iteration, we have i = 1. Therefore, the loop invariant is that for all $j \in [1, i)$, $b_j \geq \bar{b}$.

Maintenance: We need to show that if the loop invariant holds true for i, then it also holds true for i+1. In each iteration, we calculate the toll as $toll = 2(p_{i+1} - p_i)$ and check if the current value of b_i is less than \bar{b} or greater than \bar{b} with the difference between them greater than the toll. If the condition is true, we calculate the number of beers to send as beers to send $= \bar{b} - b_i$ and update the values of b_{i+1} and b_i accordingly. Now, we need to show that the loop invariant still holds true for i+1.

If $b_i \geq \bar{b}$, then we do not update the values of b_i and b_{i+1} . Therefore, the loop invariant still holds true for i+1.

If $b_i < \bar{b}$ or $b_i > \bar{b}$ and $toll < b_i - \bar{b}$, then we update the values of b_i and b_{i+1} such that $b_{i+1} = b_{i+1} - (\text{beers to send} + toll)$ and $b_i = b_i + \text{beers to send}$. Since beers to send $= \bar{b} - b_i$ and $toll = 2(p_{i+1} - p_i)$, we have $b_{i+1} \ge \bar{b}$ and $b_j \ge \bar{b}$ for all $j \in [1, i+1)$. Therefore, the loop invariant holds true for i+1.

Termination: The loop terminates when i=n-1. At this point, we need to check if $b_n \geq \bar{b}$. If this condition is true, then we return True. Otherwise, we return False. Since the loop invariant holds true for all $j \in [1, n-1)$, we know that $b_n \geq \bar{b}$ if and only if $b_j \geq \bar{b}$ for all $j \in [1, n)$. Therefore, the termination condition also satisfies the loop invariant.

In conclusion, the loop invariant holds true for the entire for-loop and **Algorithm 1** is correct.

Task 3

Algorithm 2 Find max $\hat{b}(p, b)$

```
1: \hat{b} = 0
 2: L = 1
 3: R = \max\{b\}
     while L \leq R \operatorname{do}
          m = |\overline{\frac{L+R}{2}}|
 5:
          if Is \bar{b} beers possible(p, b, m) then
 6:
              L = \hat{b} + 1
 7:
          else
 8:
               R = \hat{b} - 1
 9:
          end if
10:
          \hat{b} = L
12: end while
13: return \hat{b}
```

This algorithm runs in $O(n \log B)$ time, where $B = \max\{b\}$ (the maximum amount of beer in any bar). The algorithm draws heavy inspiration from the binary search algorithm, as finding \hat{b} is like exactly the same as finding a key in a sorted array. The sorted array that we simulate binary seach on would be $\{1, 2, ..., B-1, B\}$. We know binary search takes $O(\log n)$ time, which in our case is $O(\log B)$ time.

As we already know the running time of "Is_ \bar{b} _beers_possible(p, b, \bar{b})" has been proven in **Task 2** to run in O(n) time, and since we know the while-loop runs this function $\log B$ times, we have the following runtime:

$$O(n) \cdot O(\log B) = O(n \log B)$$