

INTRODUCCIÓN

Se busca entrenar un modelo el cual prediga qué jugador de fútbol será el ganador del Balón de Oro en la actualidad y en los próximos años. Se utilizarán datos del videojuego FIFA que representan estadísticas de los jugadores. Se emplearán modelos de clasificación y regresión para realizar estas predicciones basadas en la información proporcionada. El futbolista que tenga mejor valoración general en el juego se considerará como el Balón de Oro.

Modelo: GaussianNB, RandomForestClassifier, DecisionTreesClassifier, SVC y DecisionTreesRegressor.

DATASET

	Known As	Full Name	0verall	Potential	Value(in Euro)	Positions Played	Best Position	Nationality	Image Link	Age	 LM Rating	CM Rating	RM Rating	LWB Rating	CDM Rating
0	L. Messi	Lionel Messi	91	91	54000000	RW	CAM	Argentina	https://cdn.sofifa.net/players/158/023/23_60.png	35	91	88	91	67	66
1	K. Benzema	Karim Benzema	91	91	64000000	CF,ST	CF	France	https://cdn.sofifa.net/players/165/153/23_60.png	34	89	84	89	67	67
2	R. Lewandowski	Robert Lewandowski	91	91	84000000	ST	ST	Poland	https://cdn.sofifa.net/players/188/545/23_60.png	33	86	83	86	67	69
3	K. De Bruyne	Kevin De Bruyne	91	91	107500000	CM,CAM	СМ	Belgium	https://cdn.sofifa.net/players/192/985/23_60.png	31	91	91	91	82	82
4	K. Mbappé	Kylian Mbappé	91	95	190500000	ST,LW	ST	France	https://cdn.sofifa.net/players/231/747/23_60.png	23	92	84	92	70	66
5	M. Salah	Mohamed Salah	90	90	115500000	RW	RW	Egypt	https://cdn.sofifa.net/players/209/331/23_60.png	30	90	85	90	74	71
6	T. Courtois	Thibaut Courtois	90	91	90000000	GK	GK	Belgium	https://cdn.sofifa.net/players/192/119/23_60.png	30	34	35	34	32	34
7	M. Neuer	Manuel Neuer	90	90	13500000	GK	GK	Germany	https://cdn.sofifa.net/players/167/495/23_60.png	36	47	53	47	39	46
8	Cristiano Ronaldo	C. Ronaldo dos Santos Aveiro	90	90	41000000	ST	ST	Portugal	https://cdn.sofifa.net/players/020/801/23_60.png	37	87	81	87	65	62
9	V. van Dijk	Virgil van Dijk	90	90	98000000	СВ	СВ	Netherlands	https://cdn.sofifa.net/players/203/376/23_60.png	30	73	79	73	83	88

(18538, 56)

EJEMPLO

Encontramos los jugadores mas prometedores.

La siguiente gráfica nos muestra aquellos jugadores los cuales tienen un rango de crecimiento mayor, dato a tener en cuenta en el estudio a futuro lejano.

CLASIFICACIÓN

Los jugadores de nuestro dataset serán clasificados según sus estadísticas individuales en si estos pueden ser posibles ganadores del Balón de oro.

Para esto agregamos una nueva columna la cual posee valores binarios siendo el 1 Potencial Ganador y el 0 No Potencial Ganador.

CLASIFICACIÓN

En el siguiente bloque se muestran todas las columnas elegidas a ser entrenadas y clasificadas, y a su vez definiendo nuestro groundtruth para el modelo de clasificación.

```
ent col clf=["International Reputation", "Height(in cm)",
         "TotalStats", "BaseStats", "Preferred Foot" , "Pace Total" , "Shooting Total", "Passing Total",
       "Dribbling Total", "Defending Total", "Physicality Total", 'Crossing',
       'Finishing', 'Heading Accuracy', 'Short Passing', 'Volleys',
       'Dribbling', 'Curve', 'Freekick Accuracy', 'LongPassing', 'BallControl',
       'Acceleration', 'Sprint Speed', 'Agility', 'Balance',
       'Shot Power', 'Jumping', 'Stamina', 'Strength', 'Long Shots',
       'Aggression', 'Interceptions', 'Positioning', 'Vision', 'Penalties',
       'Composure', 'Marking', 'Standing Tackle', 'Sliding Tackle', "Potential Winner"]
#Se define el dataset a entrenar
entrenamiento = df[ent col clf]
X = entrenamiento.values[:, :-1]
y = entrenamiento.values[:, -1]
X, y = \text{shuffle}(X, y, random state=200)
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=200)
```

MÉTODOS DE CLASIFICACIÓN

FEATURE IMPORTANCES

	Feature	Importance
0	Dribbling Total	0.067238
1	BallControl	0.058766
2	BaseStats	0.049948
3	Dribbling	0.042424
4	TotalStats	0.033705
5	Interceptions	0.033295
6	Sliding Tackle	0.032866
7	Defending Total	0.030638
8	Composure	0.029817
9	Short Passing	0.029712
10	Standing Tackle	0.029046
11	Sprint Speed	0.028069
12	Vision	0.026641
13	Pace Total	0.025938
14	Acceleration	0.024374
15	Marking	0.024196
16	Shooting Total	0.024161
17	Passing Total	0.023743
18	Height(in cm)	0.023216

19	LongPassing	0.023117
20	Finishing	0.022510
21	Crossing	0.022305
22	Freekick Accuracy	0.021810
23	Long Shots	0.021134
24	Positioning	0.020989
25	Stamina	0.019918
26	Balance	0.019785
27	Heading Accuracy	0.019435
28	Jumping	0.019218
29	Volleys	0.019138
30	Strength	0.018605
31	Physicality Total	0.018293
32	Curve	0.018082
33	Aggression	0.017528
34	Agility	0.017285
35	Penalties	0.016693
36	Shot Power	0.016041
37	International Reputation	0.007313
38	Preferred Foot	0.003009

REGRESIÓN

EN LA ACTUALIDAD

Construimos nuestro modelo de regresión basado en DecisionTreeRegressor, con el proposito de predecir la Valoración General (Overall) en base a las estadisticas con las cuales el modelo entrenó. Este proceso se relizara un número N de veces para una mayor precisión de los datos.

Una vez este modelo termine sus N iteraciones, verificamos cuales fueron los jugadores que tuvieron una mayor valoración general predecido en cada iteración. Con esta información se hallará la probabilidad de que este jugador sea ganador del Balón de oro.

```
#Copiamos y eliminamos los jugadores que no son potenciales ganadores
df 2 = entrenamiento.copy()
df 2 = df 2[df 2['Potential Winner']!=0]
X = df 2.drop(['Overall'], axis=1)
y = df 2['0verall']
 jugadores valoracion = df 2.copy()
 jugadores valoracion['Full Name'] = df[['Known As']]
 jugadores_valoracion['Valoracion_General'] = 0
 jugadores valoracion['Prob BalonDeOro'] = 0
acc = []
 for i in tqdm(range(1,101)):
    X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=i)
    reg model = DecisionTreeRegressor(max depth=20, min samples leaf=6)
    reg model.fit(X train, y train)
    y_pred = reg_model.predict(X_test)
    r = r2 score(y test, y pred)
    acc.append(r)
    jugadores valoracion['Valoracion General'] += reg model.predict(X)
    max valoracion = jugadores valoracion['Valoracion General'].max()
    jugadores valoracion['Prob BalonDeOro'] += (jugadores valoracion['Valoracion|General'] == max valoracion).astype(int)
 jugadores valoracion['Valoracion General'] /= i
 jugadores valoracion['Valoracion General'] = np.round(jugadores valoracion['Valoracion General'], 3)
 jugadores valoracion['Prob BalonDeOro'] = np.round((jugadores valoracion['Prob BalonDeOro'] / jugadores valoracion['Prob BalonDeOro'].sum())*100, 2
 jugadores valoracion =jugadores valoracion.sort values('Valoracion General', ascending=False)
 jugadores valoracion = jugadores valoracion[['Full Name', 'Valoracion General', 'Prob BalonDeOro']]
 print('\nR2:',np.mean(acc))
       | 100/100 [00:02<00:00, 36.66it/s]
```

R2: 0.8967938176773853

RESULTADOS ACTUALIDAD

ESTUDIO A FUTURO

CRITERIOS DE ACTUALIZACIÓN DE ESTADISTICAS:

- Todo jugador J> 33 años decrecerá un 11% en todas sus estadísticas, y un 12% de Valoración.
- Todo jugador J entre 21-25 años elevará todas sus estadisticas en un 4%.
- Todo jugador J< 21 años elevará todas sus estadísticas en un 10% a excepción de
- Se agregan los 5 años que han "pasado".

```
#@title *Definimos una funcion para simular una temporada* { display-mode: "form" }
    def Simular 5años(datasetprueba):
        #PARA LOS MAYORES DE 33
        columnas excluir = ['Age', 'Known As', 'Full Name', 'Overall', 'Potential', 'Positions Played', 'Best Position',
                            'Nationality', 'Height(in cm)', 'Club Name', 'Club Position', 'Contract Until',
                            'Preferred Foot', 'International Reputation', 'Estilo', 'Potential Winner', 'National Team Name','Avg Score']
        condicion = datasetprueba['Age'] > 33
        datasetprueba.loc[datasetprueba['Age'] > 33, 'Avg Score'] *= 0.88
        columnas reducir = datasetprueba.columns[~datasetprueba.columns.isin(columnas excluir)]
        datasetprueba.loc[condicion, columnas reducir] *= 0.89
        #ENTRE 21-25
        columnas excluir = ['Age', 'Known As', 'Full Name', 'Overall', 'Potential', 'Positions Played', 'Best Position',
                             'Nationality', 'Height(in cm)', 'Club Name', 'Club Position', 'Contract Until',
                            'Preferred Foot', 'International Reputation', 'Estilo', 'Potential Winner', 'National Team Name', 'Avg Score']
        condicion = (datasetprueba['Age'] >= 21) & (datasetprueba['Age'] <= 25)</pre>
        columnas reducir = datasetprueba.columns[~datasetprueba.columns.isin(columnas excluir)]
        datasetprueba.loc[condicion, columnas reducir] *= 1.04
        #MENOS DE 21
        columnas excluir = ['Age', 'Known As', 'Full Name', 'Overall', 'Potential', 'Positions Played', 'Best Position',
                            'Nationality', 'Height(in cm)', 'Club Name', 'Club Position', 'Contract Until',
                            'Preferred Foot', 'International Reputation', 'Estilo', 'Potential Winner', 'National Team Name', 'Avg Score']
        condicion = datasetprueba['Age'] < 21</pre>
        columnas reducir = datasetprueba.columns[~datasetprueba.columns.isin(columnas excluir)]
        datasetprueba.loc[condicion, columnas reducir] *= 1.1
        datasetprueba.loc[datasetprueba['Age'] < 21, 'Avg Score'] *= 1.2
        datasetprueba["Age"] += 5
        return datasetprueba
```

RESULTADOS FUTURO CERCANO

FUTURO LEJANO (10 AÑOS)

SE VUELVE A USAR LA FUNCIÓN QUE SIMULA EL PASO DE 5 AÑOS Y DA UNA ACTUALIZACIÓN DE ESTADISTICAS SEGÚN LA EDAD DEL FUTBOLISTA.

SE PROCURA QUE LOS JUGADORES MAS JOVENES ALCANCEN SU MÁXIMO POTENCIAL.

RESULTADOS FUTURO LEJANO

CONCLUSIONES

- Al examinar los feature importances, se observó que el clasificador asignó un valor cercano ala mayoria de estadísticas entrenadas. Esto indica que los jugadores no tienen ventaja por la posición en la que jueguen, ya que el clasificador al otorga importancia equitativa a cada estadística.
- El proceso de simulación y estudio a futuro resultó ser un éxito, ya que los jugadores que identificamos previamente como promesas aparecen al final de la simulación como potenciales ganadores del Balón de Oro. Estos resultados respaldan la eficacia de nuestro enfoque de clasificación y regresión en la predicción de futuros talentos.

CONCLUSIONES

 Durante la simulación a futuro, el accuracy del modelo de regresión decayó progresivamente debido a la variación en las estadísticas de los jugadores a lo largo del tiempo, afectando así la precisión de las predicciones a un futuro hipotético. Aunque el proceso proporcionó valiosa perspectiva, resalta la importancia de entender la naturaleza cambiante del fútbol.

GRACIAS

'Que Deus nos abençoe e nos proteja'

