Artificial Neural Networks

Prof. Dr. Sen Cheng

Nov 18, 2019

Problem Set 7: Artifical Neural Networks

Tutors: Vinita Samarasinghe (samarasinghe@ini.rub.de), Thomas Walther (thomas.walther@rub.de)

1. The universal approximation theorem states that any function can be approximated by a neural network with one hidden layer.

$$f(x) = \sum_{i=1}^{N} \mathbf{v}_i \phi \left(\mathbf{w}_i^T x + b_i \right) \tag{1}$$

Implement this network in a Python function using only elementary programming operations. For the activation function $\phi(\cdot)$, use the sigmoid function $\sigma(\cdot)$. For the latter, use the expit function from scipy.special.

2. Using the previously implemented function f(x), manually set the parameters v_i, w_i, b_i, N in your program to replicate the output of f(x) shown in the Figures 1a, 1b, and 1c.

Useful applet that visualizes the impact of the network parameters: http://neuralnetworks and deeplearning. com/chap4.html

Figure 1: Sample outputs of f(x).

- 3. Given $g(x) = \sin(2\pi x)$ on the domain [0; 1].
 - (a) Approximate g(x) with f(x) using N=10, by computing v_i, w_i, b_i in a program. Plot the functions g(x) and f(x) in a single figure.
 - (b) Compute the residual error |f(x) g(x)| using elementary programming operations. Repeat the approximation for several larger values of N. Plot the residual error against N.