Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра теоретических основ электротехники

Лабораторной работа №3
Вариант №1
«Исследование простых цепей синусоидального тока»

Проверил: Батюков С.В. Выполнил: студент гр. №950501 Деркач А.В.

1. Цель работы

Приобретение навыков работы с вольтметром, амперметром, генератором, фазометром. Экспериментальная проверка законов распределения токов и напряжений в последовательной, параллельной и последовательно-параллельной цепях гармонического тока.

2. Расчёт домашнего задания

Исходные данные варианта представлены в таблице 1.

Таблица 1 – Исходные данные

Схема на рис.	U, B	<i>f</i> , Гц	R ₁ , Ом	R ₂ , Ом	R ₃ , Ом	L, мГн	R _k , Om	С, мкФ
3.8	9	900	124,7	124,9	124,9	29,06	46,7	0,936

Последовательная цепь:

Рисунок 1 — Последовательное соединение элементов электрической цепи синусоидального тока

Найдем реактивное сопротивление индуктивности и емкости:

$$X_L = \omega L = 2\pi f L = 164,3304 \text{ Om}$$

 $X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C} = 188,9304 \text{ Om}$

Затем найдём комплексное входное сопротивление цепи:

$$Z_{\text{BX}} = R_1 + R_k + j \left(2\pi f L - \frac{1}{2\pi f C} \right) = 171,4 - 24,5999i =$$

= 173,1563 $e^{-j8,1675^o}$ OM

Теперь найдем комплексный ток и напряжение:

$$\dot{\mathbf{I}} = \frac{\dot{U}}{Z} = 0.0514 + 0.0074j = 51.9762e^{j8.1675^o} \text{ MA}$$

$$\dot{U}_k = \dot{\mathbf{I}}(R_k + jX_L) = 1.1892 + 8.7995i = 8.8795e^{j82.3032^o} \text{ B}$$

$$\dot{U}_c = \dot{\mathbf{I}}(-jX_c) = 1.3951 - 9.7203j = 9.8199e^{-j81.8325^o} \text{ B}$$

$$\dot{U}_1 = \dot{\mathbf{I}}R_1 = 6.4157 + 0.9208i = 6.4814e^{j8.1675^o} \text{ B}$$

П	X_L , Ом	<i>X</i> _С , Ом	$Z_{\scriptscriptstyle m BX}$		I		U_k		U_C		U_1	
Посл. цепь			$Z_{\scriptscriptstyle \mathrm{BX}}, \ \mathrm{Om}$	Ψ, град	I, mA	Ψ, град	U_k , B	Ψ, град	<i>U</i> _С , В	Ψ, град	<i>U</i> ₁ , B	Ψ, град
Расчёт	164,33	188,93	173,16	-8,17	51,98	8,17	8,88	82,30	9,82	-81,83	6,48	8,17
Опыт												

Векторная диаграмма

Параллельная цепь:

Рисунок 2 — Параллельное соединение элементов электрической цепи синусоидального тока

Найдем комплексный ток и напряжение:

$$\begin{split} &\dot{\mathbf{I}}_1 = \frac{\dot{U}}{R_1} = 72,\!1732 \text{ MA}, \qquad \varphi = 0^{\text{o}} \\ &\dot{\mathbf{I}}_2 = \frac{\dot{U}}{-j\mathbf{X}_{\mathbb{C}}} = 0,\!0476j = 47,\!6366e^{j90^{\text{o}}} \text{ MA} \\ &\dot{\mathbf{I}}_3 = \frac{\dot{U}}{jX_L + R_k} = 0,\!0144 - 0,\!0507j = 52,\!6817e^{-j74,\!1357^{\text{o}}} \text{ MA} \\ &\dot{\mathbf{I}} = \dot{\mathbf{I}}_1 + \dot{\mathbf{I}}_2 + \dot{\mathbf{I}}_3 = 0,\!0866 - 0,\!003j = 86,\!6276e^{-j2,\!0101^{\text{o}}} \text{MA} \end{split}$$

Парал. цепь	I		I	1	I	2	I_3		
	І, мА	Ψ, град	I_1 , мА	Ψ, град	<i>I</i> ₂ , мА	Ψ, град	I_3 , м A	Ψ, град	
Расчёт	86,63	-2,01	72,17	0	47,64	90	52,68	-74,14	
Эксп.									

Векторная диаграмма

Разветвлённая цепь

Рисунок 3 — Схема смешанного соединения элементов электрической цепи

Найдём комплексное входное сопротивление цепи:

$$Z = R_1 + \frac{R_2(R_3 + R_k + jX_L)}{R_2 + R_3 + R_k + jX_L} = 209,35 + 22,3079j$$

= 210,5352 $e^{j6,0824^o}$ OM

Теперь найдем комплексный ток и напряжение:

$$\begin{split} &\dot{\mathbf{I}}_1 = \frac{\dot{U}}{Z} = 0,0425 - 0,0045j = 42,7482e^{-j6,0824^o} \, \mathrm{MA} \\ &\dot{\mathbf{I}}_2 = \dot{\mathbf{I}}_1 \frac{R_3 + R_k + jX_L}{R_2 + R_3 + R_k + jX_L} = 0,0296 + 0,0045j \\ &= 29,9614e^{j8,6812^o} \, \mathrm{MA} \\ &\dot{\mathbf{I}}_3 = \dot{\mathbf{I}}_1 - \dot{\mathbf{I}}_2 = 0,0129 - 0,0091j = 15,7503e^{-j35,0791^o} \, \mathrm{MA} \\ &\dot{\mathbf{I}} = \dot{\mathbf{I}}_1 + \dot{\mathbf{I}}_2 + \dot{\mathbf{I}}_3 = 0,085 - 0,0091j = 85,4964e^{-j6,0824^o} \, \mathrm{MA} \\ &\dot{U}_1 = \dot{\mathbf{I}}_1 R_1 = 5,3007 - 0,5648j = 5,3307e^{-j6,0824^o} \, \mathrm{B} \\ &\dot{U}_2 = \dot{\mathbf{I}}_2 R_2 = 3,6993 + 0,5648j = 3,7422e^{j8,6812^o} \, \mathrm{B} \\ &\dot{U}_3 = \dot{\mathbf{I}}_3 R_3 = 1,6099 - 1,1306j = 1,9672e^{-j35,0791^o} \, \mathrm{B} \\ &\dot{U}_k = \dot{\mathbf{I}}_3 (R_k + jX_L) = 2,0894 + 1,6954j = 2,6907e^{j39,0566^o} \, \mathrm{B} \end{split}$$

Разв. цепь	I_1		I_2		I_3					U_k	
	<i>I</i> ₁ , мА	Ψ, град	I_2 , м A	Ψ, град	<i>I</i> ₃ , мА	Ψ, град	U_1 , B	U_2 , B	U_3 , B	U_k , B	Ψ, град
Расчёт	42,75	-6,08	29,96	8,68	15,75	-35,08	5,33	3,74	1,97	2,69	39,06
Эксп.											

Векторная диаграмма

Баланс мощностей цепи

$$S_{\text{ист}} = P_{\text{потр}} + jQ_{\text{потр}} = \dot{U}\dot{1} = 0,3826 - 0,0408j$$

$$= 0,3847e^{-j6,0824^{\circ}}$$

$$P_{\text{потр}} = |I_1|^2 R_1 + |I_2|^2 R_2 + |I_3|^2 (R_3 + R_k) = 0,3826 \text{ BT}$$

$$Q_{\text{потр}} = |I_3|^2 X_L = 0,0408 \text{ BT}$$

$$\cos(\varphi) = \left|\frac{P_{\text{потр}}}{S_{\text{ист}}}\right| = 0,9944$$

Вывол

Проведены исследования простых электрических цепей переменного тока. Произведён теоретический расчёт и экспериментальные измерения напряжений, токов, и фазовых сдвигов напряжений на элементах схемы. По результатам работы построены топографические и векторные диаграммы токов и напряжений, составлен баланс мощностей.