WORKSHEET 10

ADRIAN PĂCURAR

 $\bf Problem~1.$ Compute the following limits. Do NOT use L'Hopital's rule.

(a)
$$\lim_{x\to\infty} \sqrt{x} \sin \frac{1}{x}$$

(b)
$$\lim_{x\to\infty} x \tan \frac{1}{x}$$
.

(c)
$$\lim_{x\to 0} \frac{\sin 4x}{\tan 5x}$$

Problem 2. Sketch a (not necessarely continuous) function f satisfying all of the following conditions:

- f(-x) = -f(x) and $\lim_{x\to\infty} f(x) = 0$
- f'(2) = 0 and f'(0) = 1
- f'(x) < 0 if x > 2 f'(x) > 0 if 0 < x < 2
- f''(x) < 0 if 0 < x < 4 f''(x) > 0 if x > 4

Problem 3. What would the graph look like if we require the function in Problem 2 to be continuous? Give a sketch.

Problem 4. Sketch the following functions (compute the necessary derivatives, find critical and inflection points, concavity, increasing/decreasing, asymptotes, etc.).

(a)
$$f(x) = e^{-x^2}$$

(b)
$$f(x) = xe^{-x^2}$$

Problem 5. Compute the following limits:

(a)
$$\lim_{x\to 0^+} \frac{\ln x}{x}$$

(b)
$$\lim_{x\to 0} \frac{x3^x}{3^x - 1}$$

(c)
$$\lim_{x\to\infty} x^3 e^{-x^2}$$

(d)
$$\lim_{x\to\infty} (x - \ln x)$$

(e) $\lim_{x\to 0^+} x^{\sqrt{x}}$

(f)
$$\lim_{x\to\infty} x^{1/x}$$