Árboles Generadores Mínimos

Técnicas de Diseño de Algoritmos (Ex Algoritmos y Estructuras de Datos III)

Primer cuatrimestre 2024

Definición:

► Un árbol generador (AG) de un grafo G es un subgrafo generador (que tiene el mismo conjunto de vértices) de G que es árbol.

Definición:

► Un árbol generador (AG) de un grafo G es un subgrafo generador (que tiene el mismo conjunto de vértices) de G que es árbol.

Teorema:

Todo grafo conexo tiene (al menos) un árbol generador.

Definición:

▶ Un árbol generador (AG) de un grafo G es un subgrafo generador (que tiene el mismo conjunto de vértices) de G que es árbol.

Teorema:

- Todo grafo conexo tiene (al menos) un árbol generador.
- ▶ G conexo. G tiene un único árbol generador $\iff G$ es árbol.

Definición:

▶ Un árbol generador (AG) de un grafo G es un subgrafo generador (que tiene el mismo conjunto de vértices) de G que es árbol.

Teorema:

- Todo grafo conexo tiene (al menos) un árbol generador.
- ▶ G conexo. G tiene un único árbol generador $\iff G$ es árbol.
- ▶ Sea $T = (V, X_T)$ un AG de G = (V, X) y $e \in X \setminus X_T$. Entonces $T' = T + e - f = (V, X_T \cup \{e\} \setminus \{f\})$, con f una arista del único circuito de T + e, T' es árbol generador de G.

Árbol generador mínimo

Definiciones:

▶ Sea T = (V, X) un árbol y $I : X \to R$ una función que asigna longitudes (o pesos) a las aristas de T. Se define la **longitud** de T como $I(T) = \sum_{e \in T} I(e)$.

Árbol generador mínimo

Definiciones:

- ▶ Sea T = (V, X) un árbol y $I : X \to R$ una función que asigna longitudes (o pesos) a las aristas de T. Se define la **longitud** de T como $I(T) = \sum_{e \in T} I(e)$.
- ▶ Dado un grafo conexo G = (V, X) con una función I que asigna longitudes (o pesos) a sus aristas, un **árbol generador mínimo** de G, T, es un árbol generador de G de mínima longitud, es decir

 $I(T) \leq I(T') \ \forall T'$ árbol generador de G.

Ejemplo de AGM

Ejemplo de AGM

Ejemplo de AGM


```
Entrada: G = (V, X) grafo conexo con una función I: X \to R.
 V_T := \{u\} (u cualquier nodo de G)
 X_{\tau} := \emptyset
 i := 1
 mientras i \le n-1 hacer
      elegir e = (u, v) \in X tal que I(e) sea mínima
         entre las aristas que tienen un extremo
         u \in V_{\mathcal{T}} v el otro v \in V \setminus V_{\mathcal{T}}
      X_T := X_T \cup \{e\}
      V_T := V_T \cup \{v\}
      i := i + 1
 retornar T = (V_T, X_T)
```


Lema:

Sea $T = (V, X_T)$ un árbol generador de G = (V, X). Si $e \in X$ y $e \notin X_T$ y $f \in X_T$ una arista del ciclo de T + e. Entonces $T' = (V, X_T \cup \{e\} \setminus \{f\})$ es árbol generador de G.

Lema:

Sea $T = (V, X_T)$ un árbol generador de G = (V, X). Si $e \in X$ y $e \notin X_T$ y $f \in X_T$ una arista del ciclo de T + e. Entonces $T' = (V, X_T \cup \{e\} \setminus \{f\})$ es árbol generador de G.

Proposición:

Sea G un grafo conexo. Sea $T_k = (V_{T_k}, X_{T_k})$ el árbol que el algoritmo de Prim determina en la iteración k, para $0 \le k \le n-1$. T_k es un subárbol de un árbol generador mínimo de G.

Lema:

Sea $T = (V, X_T)$ un árbol generador de G = (V, X). Si $e \in X$ y $e \notin X_T$ y $f \in X_T$ una arista del ciclo de T + e. Entonces $T' = (V, X_T \cup \{e\} \setminus \{f\})$ es árbol generador de G.

Proposición:

Sea G un grafo conexo. Sea $T_k = (V_{T_k}, X_{T_k})$ el árbol que el algoritmo de Prim determina en la iteración k, para $0 \le k \le n-1$. T_k es un subárbol de un árbol generador mínimo de G.

Teorema:

El algoritmo de Prim es correcto, es decir dado un grafo G conexo determina un árbol generador mínimo de G.

Lema:

Sea $T = (V, X_T)$ un árbol generador de G = (V, X). Si $e \in X$ y $e \notin X_T$ y $f \in X_T$ una arista del ciclo de T + e. Entonces $T' = (V, X_T \cup \{e\} \setminus \{f\})$ es árbol generador de G.

Proposición:

Sea G un grafo conexo. Sea $T_k = (V_{T_k}, X_{T_k})$ el árbol que el algoritmo de Prim determina en la iteración k, para $0 \le k \le n-1$. T_k es un subárbol de un árbol generador mínimo de G.

Teorema:

El algoritmo de Prim es correcto, es decir dado un grafo G conexo determina un árbol generador mínimo de G.

El algoritmo Prim es un algoritmo goloso.

Prueba del lema

Claramente, T tiene exactamente |V|-1 aristas porque es árbol y T' tiene la misma cantidad de aristas que T ya que las aristas de T' son las mismas de T salvo f (arista de T) que fue sustituida por e (no es arista de T).

Prueba del lema

Claramente, T tiene exactamente |V|-1 aristas porque es árbol y T' tiene la misma cantidad de aristas que T ya que las aristas de T' son las mismas de T salvo f (arista de T) que fue sustituida por e (no es arista de T).

T' no tiene ciclos porque T no los tiene, con el agregado de la arista e se forma un único ciclo en T+e y luego se quita una arista f de dicho ciclo. Consecuentemente, en T' ya no queda ningún ciclo.

Prueba del lema

Claramente, T tiene exactamente |V|-1 aristas porque es árbol y T' tiene la misma cantidad de aristas que T ya que las aristas de T' son las mismas de T salvo f (arista de T) que fue sustituida por e (no es arista de T).

T' no tiene ciclos porque T no los tiene, con el agregado de la arista e se forma un único ciclo en T+e y luego se quita una arista f de dicho ciclo. Consecuentemente, en T' ya no queda ningún ciclo.

T' tiene exactamente |V|-1 aristas y no tiene ciclos entonces T' es árbol. Como T tiene todos los vértices de G, T' es AG de G.

Prueba de la proposición

Sea e_i la arista elegida en la iteración i-ésima de la ejecución del algoritmo de Prim para $1 \le i \le n-1$.

Prueba de la proposición

Sea e_i la arista elegida en la iteración i-ésima de la ejecución del algoritmo de Prim para $1 \le i \le n-1$.

Probaremos por inducción en k que T_k es un subárbol de un generador mínimo de G.

Prueba de la proposición

Sea e_i la arista elegida en la iteración i-ésima de la ejecución del algoritmo de Prim para $1 \le i \le n-1$.

Probaremos por inducción en k que T_k es un subárbol de un generador mínimo de G.

Caso base, k = 0. Claramente, T₀ (árbol de un solo nodo) es un subárbol de cualquer árbol generador de G y particularmente de cualquier AGM T de G ya que todo subgrafo generador de G debe tener a todos los nodos de G.

Es cierta la proposición para T_{k-1} , queremos ver que también es cierta para T_k .

Es cierta la proposición para T_{k-1} , queremos ver que también es cierta para T_k . Supongamos que no, entonces existe un AGM T tal que T_{k-1} es un subárbol suyo y T_k no lo es.

Es cierta la proposición para T_{k-1} , queremos ver que también es cierta para T_k . Supongamos que no, entonces existe un AGM T tal que T_{k-1} es un subárbol suyo y T_k no lo es. Por lo tanto, e_1, \dots, e_{k-1} son aristas de T y $e_k = (a, b)$ no es arista de T. Podemos suponer sin pérdida de generalidad que $a \in V_{T_{k-1}}$ y $b \notin V_{T_{k-1}}$.

Es cierta la proposición para T_{k-1} , queremos ver que también es cierta para T_k . Supongamos que no, entonces existe un AGM T tal que T_{k-1} es un subárbol suyo y T_k no lo es. Por lo tanto, e_1, \cdots, e_{k-1} son aristas de T y $e_k = (a, b)$ no es arista de T. Podemos suponer sin pérdida de generalidad que $a \in V_{T_{k-1}}$ y $b \notin V_{T_{k-1}}$. Sea P_{ab} el camino de T que une a con b y $C = P_{ab} \cup \{e_k\}$ sería el único ciclo de $T + e_k$.

Es cierta la proposición para T_{k-1} , queremos ver que también es cierta para T_k . Supongamos que no, entonces existe un AGM T tal que T_{k-1} es un subárbol suyo y T_k no lo es. Por lo tanto, e_1, \cdots, e_{k-1} son aristas de T y $e_k = (a, b)$ no es arista de T. Podemos suponer sin pérdida de generalidad que $a \in V_{T_{k-1}}$ y $b \notin V_{T_{k-1}}$. Sea P_{ab} el camino de T que une a con b y $C = P_{ab} \cup \{e_k\}$ sería el único ciclo de $T + e_k$. Existe una arista $f = (c, d) \in P_{ab}$ tal que $c \in V_{T_{k-1}}$ y $d \notin V_{T_{k-1}}$ ya que el camino P_{ab} comienza en a (un nodo de $V_{T_{k-1}}$) y termina en b (un nodo que no está en $V_{T_{k-1}}$).

 \triangleright Es cierta la proposición para T_{k-1} , queremos ver que también es cierta para T_k . Supongamos que no, entonces existe un AGM T tal que T_{k-1} es un subárbol suyo y T_k no lo es. Por lo tanto, e_1, \dots, e_{k-1} son aristas de T y $e_k = (a, b)$ no es arista de T. Podemos suponer sin pérdida de generalidad que $a \in V_{T_{k-1}}$ y $b \notin V_{T_{k-1}}$. Sea P_{ab} el camino de T que une acon b y $C = P_{ab} \cup \{e_k\}$ sería el único ciclo de $T + e_k$. Existe una arista $f = (c, d) \in P_{ab}$ tal que $c \in V_{T_{k-1}}$ y $d \notin V_{T_{k-1}}$ ya que el camino P_{ab} comienza en a (un nodo de $V_{T_{b-1}}$) y termina en b (un nodo que no está en $V_{T_{k-1}}$). Claramente, $I(f) \ge I(e_k)$ ya que ambas aristas estaban disponibles para competir en la iteración k de la ejecución del algoritmo y e_k fue la arista elegida de esa iteración.

 \triangleright Es cierta la proposición para T_{k-1} , queremos ver que también es cierta para T_k . Supongamos que no, entonces existe un AGM T tal que T_{k-1} es un subárbol suyo y T_k no lo es. Por lo tanto, e_1, \dots, e_{k-1} son aristas de T y $e_k = (a, b)$ no es arista de T. Podemos suponer sin pérdida de generalidad que $a \in V_{T_{k-1}}$ y $b \notin V_{T_{k-1}}$. Sea P_{ab} el camino de T que une acon b y $C = P_{ab} \cup \{e_k\}$ sería el único ciclo de $T + e_k$. Existe una arista $f = (c, d) \in P_{ab}$ tal que $c \in V_{T_{k-1}}$ y $d \notin V_{T_{k-1}}$ ya que el camino P_{ab} comienza en a (un nodo de $V_{T_{b-1}}$) y termina en b (un nodo que no está en $V_{T_{k-1}}$). Claramente, $I(f) \ge I(e_k)$ ya que ambas aristas estaban disponibles para competir en la iteración k de la ejecución del algoritmo y e_k fue la arista elegida de esa iteración. Es más, $I(f) = I(e_k)$, porque si $I(f) > I(e_k)$ entonces $I(T) > I(T' = T \cup \{e_k\} \setminus \{f\})$ y T no sería mínimo, lo cual es una contradicción.

 \triangleright Es cierta la proposición para T_{k-1} , queremos ver que también es cierta para T_k . Supongamos que no, entonces existe un AGM T tal que T_{k-1} es un subárbol suyo y T_k no lo es. Por lo tanto, e_1, \dots, e_{k-1} son aristas de T y $e_k = (a, b)$ no es arista de T. Podemos suponer sin pérdida de generalidad que $a \in V_{T_{k-1}}$ y $b \notin V_{T_{k-1}}$. Sea P_{ab} el camino de T que une acon b y $C = P_{ab} \cup \{e_k\}$ sería el único ciclo de $T + e_k$. Existe una arista $f = (c, d) \in P_{ab}$ tal que $c \in V_{T_{k-1}}$ y $d \notin V_{T_{k-1}}$ ya que el camino P_{ab} comienza en a (un nodo de $V_{T_{k-1}}$) y termina en b (un nodo que no está en $V_{T_{\nu-1}}$). Claramente, $I(f) \ge I(e_k)$ ya que ambas aristas estaban disponibles para competir en la iteración k de la ejecución del algoritmo y e_k fue la arista elegida de esa iteración. Es más, $I(f) = I(e_k)$, porque si $I(f) > I(e_k)$ entonces $I(T) > I(T' = T \cup \{e_k\} \setminus \{f\})$ y T no sería mínimo, lo cual es una contradicción. Por lo tanto, $T' = T \cup \{e_k\} \setminus \{f\}$ es un AGM que tiene a T_k como subárbol.

Complejidad del Algoritmo de Prim

 \triangleright $O(n^2)$, implementación estándar.

Complejidad del Algoritmo de Prim

- $ightharpoonup O(n^2)$, implementación estándar.
- ▶ $O((m+n) \log n)$, usando heap binario.

Complejidad del Algoritmo de Prim

- $ightharpoonup O(n^2)$, implementación estándar.
- ▶ $O((m+n) \log n)$, usando heap binario.
- ▶ $O(m + n \log n)$, usando heap fibonacci.

```
Entrada: G = (V, X) grafo conexo con una función I: X \to R.
X_{\tau} := \emptyset
i := 1
 mientras i \le n-1 hacer
     elegir e \in X tal que I(e) sea mínima entre las
        aristas que no forman circuito con las
        aristas que ya están en X_T
    X_T := X_T \cup \{e\}
     i := i + 1
retornar T = (V, X_T)
```


Proposición:

Sea G un grafo conexo. Sea $B_k = (V, X_{T_k})$ el bosque que el algoritmo de Kruskal genera en algún momento con exactamente k aristas, $0 \le k \le n-1$. B_k es un subgrafo generador sin ciclos de un árbol generador mínimo de G.

Proposición:

Sea G un grafo conexo. Sea $B_k = (V, X_{T_k})$ el bosque que el algoritmo de Kruskal genera en algún momento con exactamente k aristas, $0 \le k \le n-1$. B_k es un subgrafo generador sin ciclos de un árbol generador mínimo de G.

Teorema:

El algoritmo de Kruskal es correcto, es decir dado un grafo G conexo determina un árbol generador mínimo de G.

Proposición:

Sea G un grafo conexo. Sea $B_k = (V, X_{T_k})$ el bosque que el algoritmo de Kruskal genera en algún momento con exactamente k aristas, $0 \le k \le n-1$. B_k es un subgrafo generador sin ciclos de un árbol generador mínimo de G.

Teorema:

El algoritmo de Kruskal es correcto, es decir dado un grafo G conexo determina un árbol generador mínimo de G.

El algoritmo Kruskal es un algoritmo goloso.

Sean e_1, \cdots, e_m las aristas ordenadas de menor a mayor de acuerdo a la función I $(I(e_1) \leq \cdots \leq I(e_m))$

Sean e_1, \dots, e_m las aristas ordenadas de menor a mayor de acuerdo a la función $I(I(e_1) \leq \dots \leq I(e_m))$ y $e'_1 = e_{j_1}, \dots, e'_{n-1} = e_{j_{n-1}}$, las n-1 aristas agregadas durante la ejecución del algoritmo de Kruskal siguiendo este orden de aristas, es decir que $1 = j_1 < \dots < j_{n-1}$.

Sean e_1, \cdots, e_m las aristas ordenadas de menor a mayor de acuerdo a la función $I\left(I(e_1) \leq \cdots \leq I(e_m)\right)$ y $e_1' = e_{j_1}, \cdots, e_{n-1}' = e_{j_{n-1}}$, las n-1 aristas agregadas durante la ejecución del algoritmo de Kruskal siguiendo este orden de aristas, es decir que $1=j_1<\cdots< j_{n-1}$. Claramente, por la forma de elegir las aristas del algoritmo, $B_k=\left(V,X_{T_k}=\{e_1',\cdots,e_k'\}\right)$ no contiene ciclos .

Sean e_1, \cdots, e_m las aristas ordenadas de menor a mayor de acuerdo a la función $I\left(I(e_1) \leq \cdots \leq I(e_m)\right)$ y $e_1' = e_{j_1}, \cdots, e_{n-1}' = e_{j_{n-1}}$, las n-1 aristas agregadas durante la ejecución del algoritmo de Kruskal siguiendo este orden de aristas, es decir que $1=j_1<\cdots < j_{n-1}$. Claramente, por la forma de elegir las aristas del algoritmo, $B_k=(V,X_{T_k}=\{e_1',\cdots,e_k'\})$ no contiene ciclos . A continuación, vamos a probar por inducción en k que B_k es subgrafo generador de algún AGM T.

Sean e_1, \cdots, e_m las aristas ordenadas de menor a mayor de acuerdo a la función $I\left(I(e_1) \leq \cdots \leq I(e_m)\right)$ y $e'_1 = e_{j_1}, \cdots, e'_{n-1} = e_{j_{n-1}}$, las n-1 aristas agregadas durante la ejecución del algoritmo de Kruskal siguiendo este orden de aristas, es decir que $1=j_1 < \cdots < j_{n-1}$. Claramente, por la forma de elegir las aristas del algoritmo, $B_k = (V, X_{T_k} = \{e'_1, \cdots, e'_k\})$ no contiene ciclos . A continuación, vamos a probar por inducción en k que B_k es subgrafo generador de algún AGM T.

► Caso base, k = 0. Claramente, B_0 es un subgrafo generador sin aristas y sin ciclos de cualquer árbol generador y particularmente de cualquier AGM T.

Es cierta la proposición para B_{k-1} , queremos ver que también es cierta para B_k .

Es cierta la proposición para B_{k-1} , queremos ver que también es cierta para B_k . Supongamos que no, entonces existe un AGM T tal que B_{k-1} es un subgrafo generador suyo y B_k no lo es.

Es cierta la proposición para B_{k-1} , queremos ver que también es cierta para B_k . Supongamos que no, entonces existe un AGM T tal que B_{k-1} es un subgrafo generador suyo y B_k no lo es. Por lo tanto, $e'_1 = e_{j_1}, \cdots, e'_{k-1} = e_{j_{k-1}}$ son aristas de T y $e'_k = e_{j_k} = (a, b)$ no es arista de T.

Es cierta la proposición para B_{k-1} , queremos ver que también es cierta para B_k . Supongamos que no, entonces existe un AGM T tal que B_{k-1} es un subgrafo generador suyo y B_k no lo es. Por lo tanto, $e'_1 = e_{j_1}, \cdots, e'_{k-1} = e_{j_{k-1}}$ son aristas de T y $e'_k = e_{j_k} = (a,b)$ no es arista de T. Sea P_{ab} el camino de T que une a con b y $C = P_{ab} \cup \{e'_k\}$ sería el único ciclo de $T + e'_k$.

Es cierta la proposición para B_{k-1} , queremos ver que también es cierta para B_k . Supongamos que no, entonces existe un AGM T tal que B_{k-1} es un subgrafo generador suyo y B_k no lo es. Por lo tanto, $e'_1 = e_{j_1}, \cdots, e'_{k-1} = e_{j_{k-1}}$ son aristas de T y $e'_k = e_{j_k} = (a,b)$ no es arista de T. Sea P_{ab} el camino de T que une a con b y $C = P_{ab} \cup \{e'_k\}$ sería el único ciclo de $T + e'_k$. Cualquier arista $e_p \in P_{ab}$, $I(e_p) \leq I(e'_k)$, caso contrario $I(T' = T \cup \{e'_k\} \setminus \{e_p\}) < I(T)$ y como T' es AG entonces T no sería mínimo, contradicción.

 \triangleright Es cierta la proposición para B_{k-1} , queremos ver que también es cierta para B_k . Supongamos que no, entonces existe un AGM T tal que B_{k-1} es un subgrafo generador suyo y B_k no lo es. Por lo tanto, $e'_1 = e_{i_1}, \dots, e'_{k-1} = e_{i_{k-1}}$ son aristas de T y $e'_{k} = e_{i_{k}} = (a, b)$ no es arista de T. Sea P_{ab} el camino de T que une a con b y $C = P_{ab} \cup \{e'_{k}\}$ sería el único ciclo de $T + e'_{k}$. Cualquier arista $e_{p} \in P_{ab}$, $I(e_{p}) \leq I(e'_{k})$, caso contrario $I(T' = T \cup \{e'_{k}\} \setminus \{e_{p}\}) < I(T)$ y como T' es AG entonces T no sería mínimo, contradicción. Hay una arista $e_p \in P_{ab}$ tal que e_p no está en B_k sino C es un ciclo de B_k y sería otra contradicción.

Es cierta la proposición para B_{k-1} , queremos ver que también es cierta para B_k . Supongamos que no, entonces existe un AGM T tal que B_{k-1} es un subgrafo generador suyo y B_k no lo es. Por lo tanto, $e'_1 = e_{i_1}, \dots, e'_{k-1} = e_{i_{k-1}}$ son aristas de T y $e'_{k} = e_{i_{k}} = (a, b)$ no es arista de T. Sea P_{ab} el camino de T que une a con b y $C = P_{ab} \cup \{e'_{k}\}$ sería el único ciclo de $T + e'_{k}$. Cualquier arista $e_{p} \in P_{ab}$, $I(e_{p}) \leq I(e'_{k})$, caso contrario $I(T' = T \cup \{e'_{k}\} \setminus \{e_{p}\}) < I(T)$ y como T' es AG entonces T no sería mínimo, contradicción. Hay una arista $e_p \in P_{ab}$ tal que e_p no está en B_k sino C es un ciclo de B_k y sería otra contradicción. Si $p < j_k$, e_p formaba un ciclo con las aristas de B_{k-1} ya que fue descartada por el algoritmo y ese ciclo estaría en T y es contradicción.

ightharpoonup Es cierta la proposición para B_{k-1} , queremos ver que también es cierta para B_k . Supongamos que no, entonces existe un AGM T tal que B_{k-1} es un subgrafo generador suyo y B_k no lo es. Por lo tanto, $e'_1 = e_{i_1}, \dots, e'_{k-1} = e_{i_{k-1}}$ son aristas de T y $e'_{k} = e_{i_{k}} = (a, b)$ no es arista de T. Sea P_{ab} el camino de T que une a con b y $C = P_{ab} \cup \{e'_{k}\}$ sería el único ciclo de $T + e'_{k}$. Cualquier arista $e_{p} \in P_{ab}$, $I(e_{p}) \leq I(e'_{k})$, caso contrario $I(T' = T \cup \{e'_{k}\} \setminus \{e_{p}\}) < I(T)$ y como T' es AG entonces T no sería mínimo, contradicción. Hay una arista $e_p \in P_{ab}$ tal que e_p no está en B_k sino C es un ciclo de B_k y sería otra contradicción. Si $p < j_k$, e_p formaba un ciclo con las aristas de B_{k-1} ya que fue descartada por el algoritmo y ese ciclo estaría en T y es contradicción. Por lo tanto, $p > j_k$ y $I(e_p) \geq I(e'_k)$.

 \triangleright Es cierta la proposición para B_{k-1} , queremos ver que también es cierta para B_k . Supongamos que no, entonces existe un AGM T tal que B_{k-1} es un subgrafo generador suyo y B_k no lo es. Por lo tanto, $e'_1 = e_{i_1}, \dots, e'_{k-1} = e_{i_{k-1}}$ son aristas de T y $e'_{k} = e_{i_{k}} = (a, b)$ no es arista de T. Sea P_{ab} el camino de T que une a con b y $C = P_{ab} \cup \{e'_{k}\}$ sería el único ciclo de $T + e'_{k}$. Cualquier arista $e_{p} \in P_{ab}$, $I(e_{p}) \leq I(e'_{k})$, caso contrario $I(T' = T \cup \{e'_{k}\} \setminus \{e_{p}\}) < I(T)$ y como T' es AG entonces T no sería mínimo, contradicción. Hay una arista $e_p \in P_{ab}$ tal que e_p no está en B_k sino C es un ciclo de B_k y sería otra contradicción. Si $p < j_k$, e_p formaba un ciclo con las aristas de B_{k-1} ya que fue descartada por el algoritmo y ese ciclo estaría en T y es contradicción. Por lo tanto, $p > j_k$ y $I(e_p) \geq I(e'_k)$. Consecuentemente, $I(e_p) = I(e'_k)$ y $T' = T \cup \{e'_k\} \setminus \{e_p\}$ es un AGM que tiene a B_k como subgrafo generador.

Complejidad del Algoritmo de Kruskal

 \triangleright O(m*n), implementación trivial.

Complejidad del Algoritmo de Kruskal

- \triangleright O(m*n), implementación trivial.
- ▶ $O(m \log n + m \log n)$, union and find (por rango).

Complejidad del Algoritmo de Kruskal

- \triangleright O(m*n), implementación trivial.
- ▶ $O(m \log n + m \log n)$, union and find (por rango).
- ► $O(m \log n + m * \alpha(n))$, union and find (por rango + compresión de camino).