Table 12: Rubidium 87 D₂ ($5^2S_{1/2} \longrightarrow 5^2P_{3/2}$) Dipole Matrix Elements for σ^+ transitions ($F=1, m_F \longrightarrow F'$, $m_F'=m_F+1$), expressed as multiples of $\langle J=1/2||er||J'=3/2\rangle$.

ples of $\langle J = 1/2 er J' = 3/2 \rangle$.				
	$m_F = -1$	$m_F = 0$	$m_F = 1$	
F'=2	$\sqrt{\frac{1}{24}}$	$\sqrt{\frac{1}{8}}$	$\sqrt{\frac{1}{4}}$	
F'=1	$\sqrt{\frac{5}{24}}$	$\sqrt{\frac{5}{24}}$		
F'=0	$\sqrt{\frac{1}{6}}$			

Table 13: Rubidium 87 D₂ ($5^2S_{1/2} \longrightarrow 5^2P_{3/2}$) Dipole Matrix Elements for π transitions ($F = 1, m_F \longrightarrow F'$, $m_F' = m_F$), expressed as multiples of $\langle J = 1/2 | |er| | J' = 3/2 \rangle$.

	$m_F = -1$	$m_F = 0$	$m_F = 1$
F'=2	$-\sqrt{\frac{1}{8}}$	$-\sqrt{\frac{1}{6}}$	$-\sqrt{\frac{1}{8}}$
F'=1	$-\sqrt{\frac{5}{24}}$	0	$\sqrt{\frac{5}{24}}$
F'=0		$\sqrt{\frac{1}{6}}$	

Table 14: Rubidium 87 D₂ ($5^2S_{1/2} \longrightarrow 5^2P_{3/2}$) Dipole Matrix Elements for σ^- transitions ($F = 1, m_F \longrightarrow F'$, $m_F' = m_F - 1$), expressed as multiples of $\langle J = 1/2 | |er| | J' = 3/2 \rangle$.

	$m_F = -1$	$m_F = 0$	$m_F = 1$
F'=2	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{1}{8}}$	$\sqrt{\frac{1}{24}}$
F'=1		$-\sqrt{\frac{5}{24}}$	$-\sqrt{\frac{5}{24}}$
F'=0			$\sqrt{\frac{1}{6}}$