МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САУ

ОТЧЕТ

по практической работе № 2

по дисциплине «Акустическое проектирование электроэнергетического оборудования»

ТЕМА: РАСЧЕТ АМПЛИТУДЫ ПУЛЬСИРУЮЩЕГО МОМЕНТА В АСИНХРОННОМ ДВИГАТЕЛЕ ПРИ НЕСИММЕТРИИ НАПРЯЖЕНИЯ В СЭЭС

Вариант 1

Студент гр. 9492	 Викторов А.Д.
Преподаватель	 Доброскок Н.А.

Санкт-Петербург 2024

Постановка задачи

Включение в состав судовой электроэнергетической системы (СЭЭС) нелинейных электрических элементов является одной из причин ухудшения качества электроэнергии. Нелинейные электрические аппараты (статические выпрямители, преобразователи частоты и др.) приводят к появлению высших гармоник напряжения в сетях постоянного и переменного тока, несимметрии напряжения СЭЭС. Пульсация электрической энергии является причиной вибрационных существенного ухудшения характеристик электрооборудования, в том числе электрических машин (ЭМ). Расчет вибрации судовых ЭМ с учетом заданных показателей электроэнергии в СЭЭС включает расчеты амплитуды пульсирующего момента и переменных радиальных электромагнитных сил в асинхронном двигателе при несимметрии и несинусоидальности напряжения в СЭЭС. На основе этих данных можно рассчитать ожидаемые уровни вибрации асинхронного двигателя (АД), возбуждаемой электромагнитными силами. Результаты таких расчетов позволяют выбрать и рассчитать эффективность амортизаторов с учетом судовых условий.

Исходные данные

Амплитуда составляющих прямой и обратной последовательностей фазных напряжений U_I , U_2 , B; частота напряжения питания f_I , Γ ц; скольжение S; число пар полюсов p; параметры схемы замещения AД: — активное и индуктивное сопротивления рассеяния обмотки статора r_{st} , x_{st} , Oм; — приведенные активные и индуктивные сопротивления рассеяния обмотки ротора r_{rt} , x_{rt} , Oм; — активное и индуктивное сопротивление контура намагничивания r_m , r_m

Величина	Размерность	
Вели ини		1
U_1	В	220
U_2	В	4,5
f	Гц	50
S	_	005
p	_	2
Rst	Ом	2,4
Xst	Ом	2,8
Rrt	Ом	1,3
Xrt	Ом	4,6
Xm	Ом	50

Амплитуду пульсирующего момента можно найти по следующей формуле:

$$M_{2\omega 1} = \frac{1}{\omega_1} 3p U_1 U_2 |Y_1 - Y_2|,$$

где Y_{I} и Y_{2} – проводимости схем замещения для прямой и обратной

последовательности, представленных на рисунке 1. $\left(Y_i = \frac{1}{Z_i}\right)$

Рисунок 1 - Схемы замещения для прямой (сверху) и обратной (снизу) последовательности

В целях уменьшения вероятности допустить ошибку при расчете требуемых величин произведем расчет в среде Matlab. Исходный код скрипта представлен в листинге 1.

Листинг 1 – Исходный код скрипта расчета

```
U1 = 220;
U2 = 4.5;
f = 50;
s = 0.05;
p = 2;
Rst = 2.4;
Xst = 1i*2.8;
Rrt = 1.3;
Xrt = 1i*4.6;
Xm = 1i*50;
omega = 2*pi*f;
Z1 = calc_schema(Rst, Xst, Xm, Xrt, Rrt/s);
Z2 = calc schema(Rst, Xst, Xm, Xrt, Rrt/(2-s));
Y1 = 1/Z1;
Y2 = 1/Z2;
M2_w1 = 1 / omega * 3*p*U1*U2 * abs(Y1 - Y2)
K op = U2 / U1
function x = calc_paralel(x1, x2)
    x = (x1*x2) / (x1 + x2);
end
function z = calc schema(Rst, Xst, Xm, Xrt, s)
    z = Rst + Xst + calc paralel(Xm, Xrt+s);
end
```

В результате выполнения приведенного выше скрипта получили следующий результат: $M_{2\omega 1}=1.87 H\cdot M; K_{o.n.}=0.02$. Нормально допустимым коэффициентом напряжения обратной последовательности считается 2%, предельно допустимым — 4%. Таким образом можно сделать вывод о том, что в нашем случае не происходит превышения коэффициента обратной последовательности.