This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

1	1. An optical circulator having a longitudinal axis comprising:
2	a first beam displacer/combiner that displaces at least one optical beam
3	into two polarized component beams and combines at least two polarized
4	component beams to form an optical beam;
5	a first nonreciprocal rotator, optically coupled to the first beam
6	displacer/combiner distally along the longitudinal axis, for rotating the
7	polarization orientation of the polarized component beams;
8	a first beam angle turner, optically coupled to the first nonreciprocal
9	rotator distally along the longitudinal axis, for turning the polarized
10	component beams through an angle, wherein the path of the polarized beam
11	converges to or diverges from the longitudinal axis of the circulator depending
12	upon the polarization and propagation direction of the polarized component
13	beam;
14	a second beam angle turner, optically coupled to the first beam angle
15	turner distally along the longitudinal axis, for turning the polarized component
16	beams through an angle, wherein the path of the polarized beam converges to
17	or diverges from the longitudinal axis of the circulator depending upon the
18	polarization and propagation direction of the polarized component beam;
19	a second nonreciprocal rotator, optically coupled to the second beam
20	angle turner distally along the longitudinal axis, for rotating the polarization
21	orientation of the polarized component beams; and
22	a second beam displacer/combiner, optically coupled to the second
23	nonreciprocal rotator distally along the longitudinal axis, that displaces at leas
24	one optical beam into two polarized component beams and combines at least
25	two polarized component beams to form an optical beam.

PATENT

- 1 2. The optical circulator according to claim 1, further comprising at least
- 2 one imaging element, optically coupled to the first beam displacer/combiner
- 3 proximally along the longitudinal axis, for turning two or more adjacently
- 4 spaced optical beams in a convergent or divergent propagation direction with
- 5 respect to the longitudinal axis of the circulator.
- 1 3. The optical circulator according to claim 1, further comprising at least
- 2 one imaging element, optically coupled to the second beam
- 3 displacer/combiner distally along the longitudinal axis, for coupling light into
- 4 or collimating light from the second beam displacer/combiner.
- 1 4. The optical circulator of claim 1, wherein the first and second beam
- 2 displacer/combiners comprise birefringent crystal/plates.
- 1 5. The optical circulator of claim 1, further comprising three or more
- 2 optical ports distributed such that at least two optical ports are optically
- 3 coupled to the first beam displacer combiner proximally along the longitudinal
- 4 axis, and one optical port is optically coupled to the second beam
- 5 displacer/combiner distally along/the longitudinal axis.
- 1 6. The optical circulator of claim 5, comprising 4 or more optical ports.
- 1 7. The optical circulator of claim 1, wherein the first or second beam
- 2 angle turners comprise Rochon, Wollaston, or modified Rochon or Wollaston
- 3 prisms or a pair of birefringent wedges separated by a complete gap.
- 1 8. The optical circulator of claim 7, wherein the each of the first or
- 2 second beam angle turners comprise two or more Rochon, Wollaston, or
- 3 modified Rochon or Wollaston prisms or a pair of birefringent wedges
- 4 separated by a complete gap.

Attorney Docket No.: 10629-802 1352543_1

- 1 9. The optical circulator of claim 1, wherein the first and second beam
- 2 angle turners define a complete gap along the longitudinal axis of the optical
- 3 circulator and between the first and second beam angle turners.
- 1 10. The optical circulator of claim 1, wherein the first or second beam
- 2 angle turner defines a complete gap along the longitudinal axis of the
- 3 circulator and the complete gap separates portions of the first or second beam
- 4 angle turners.
- 1 11. The optical circulator of claim 1, wherein the first or second
- 2 nonreciprocal rotators comprise Faraday rotators.
- 1 12. The optical circulator of claim 1, wherein the first or second
- 2 nonreciprocal rotators comprise two or more nonreciprocal rotators, and each
- 3 of the two or more nonreciprogal rotators rotates a polarization orientation of
- 4 polarized component beams passing through to it a same or different
- 5 polarization orientation with respect to others of the two or more nonreciprocal
- 6 rotators.
- 1 13. The optical circulator of claim 12, wherein each of the two or more
- 2 nonreciprocal rotators rotates a polarization orientation of polarized
- 3 component/beams passing through to a different polarization orientation with
- 4 respect to others of the two or more nonreciprocal rotators
- 1 14. The optical circulator of claim 1, where polarization mode dispersion is
- 2 substantially eliminated.
 - / 15. An optical circulator having optical beam paths comprising:

Attorney Docket No.: 10629-802 1352543_1

_	PATENT
2	a first beam displacer/combiner that displaces at least one optical beam
3	into two polarized component beams and combines at least two polarized
4	component beams to form an optical beam;
5	a second beam displacer/combiner, optically coupled to the first beam
6	displacer/combiner optically coupled to the first beam displacer/combiner
7	along the optical beam paths, that displaces at least one optical beam into two
8	polarized component beams and combines at least two polarized component
9	beams to form an optical beam;
10	a first beam angle turner, optically coupled to the first beam
11	displacer/combiner along the optical beam paths, for turning the polarized
12	component beams through an angle, wherein the path of the polarized beam
13	converges to or diverges from the beam path possessed by the polarized
14	component beams immediately before entering the first beam angle turner
15	depending upon the polarization and propagation direction of the polarized
16	component beam;
17	a second beam angle turner, optically coupled to the second beam
18	displacer/combiner and the first beam angle turner along the optical beam
19	paths, for turning the polarized component beams through an angle, wherein
20	the path of the polarized beam converges to or diverges from the beam path
21	possessed by the polarized component beams immediately before entering the
22	second beam angle turner depending upon the polarization and propagation
23	direction of the polarized component beam;
24	a first nonreciprocal rotator, optically coupled to the first beam
25	displacer/combiner and the beam angle turner along the optical beam paths, for
26	rotating the polarization orientation of the polarized component beams; and
27	a second nonreciprocal rotator, optically coupled to the second beam
28	angle turner and the second beam displacer/combiner, for rotating the
29	polarization orientation of the polarized component beams.

IJ

PATENT

- The optical circulator according to elaim 15, further comprising at least
- 2 one imaging element, optically coupled to the first beam displacer/combiner,
- 3 for turning two or more adjacently spaced optical beams in a convergent or
- 4 divergent propagation direction from the beam path possessed by the optical
- 5 beam immediately before it enters the first imaging element.
- 1 17. The optical circulator according to claim 15, further comprising at least
- 2 one imaging element, optically coupled to the second beamy
- 3 displacer/combiner, for coupling light into or collimating light from the
- 4 second beam displacer/combiner.
- The optical circulator of claim/15, wherein the first and second beam 1 18.
- 2 displacer/combiners comprise birefringent crystal plates.
- 19. The optical circulator of claim 15, further comprising three or more 1
- 2 optical ports distributed such that at least two optical ports are optically
- coupled to the first beam displacer/combiner, and one optical port is optically 3
- coupled to the second beam displacer/combiner. 4
- 1 20. The optical circulator of claim 19, comprising 4 or more optical ports.
- 1 21. The optical circulator of claim 15, wherein the first or second beam
- 2 angle turners comprise Rochon, Wollaston, or modified Rochon or Wollaston
- prisms or a pair of birefringent wedges separated by a complete gap. 3
- 1 22. The optical circulator of claim 21, wherein the each of the first or
- 2 second beam angle turners comprise two or more Rochon, Wollaston, or

- 41 -

- 3 modified Rochon or Wollaston prisms or a pair of birefringent wedges
- separated by a complete gap.

Attorney Docket No.: 10629-802 1352543 1

- 1 23. The optical circulator of claim 15, wherein the first and second beam
- 2 angle turners define a complete gap along the optical beam paths.
- 1 24. The optical circulator of claim 15, wherein the first or second beam
- 2 angle turner defines a complete gap along the optical beam paths and the
- 3 complete gap separates portions of the first or second beam angle turners.
- 1 25. The optical circulator of claim 15, wherein the first or second
- 2 nonreciprocal rotators comprise Faraday rotators,
- 1 26. The optical circulator of claim 15, wherein the first or second
- 2 nonreciprocal rotators comprise two or more nonreciprocal rotators, and each
- 3 of the two or more nonreciprocal rotators rotates a polarization orientation of
- polarized component beams passing through to a same or different polarization 4
- 5 orientation with respect to there of the two or more nonreciprocal rotators.
- The optical circulator of claim 26, wherein each of the two or more 1 27.
- 2 nonreciprocal rotators rotates a polarization orientation of polarized
- component beams passing through to a different polarization orientation with 3
- respect to others of the two or more nonreciprocal rotators 4
- 1 28. The optical circulator of claim 15, wherein the polarization mode
- 2 dispersion is substantially eliminated.
- 1 29. An optical telecommunications system comprising the optical
- 2 circulator of claim 1.
- The optical telecommunications system of claim 29, wherein the 1
- 2 optical telecommunications system comprises a wavelength division

- 3 multiplexer, an Erbium-doped fiber amplifier, an add-drop multiplexer, a
- 4 dispersion compensator, or an optical time domain reflectometer
- 1 31. An optical telecommunications system comprising the optical
- 2 circulator of claim 15.
- 1 32. The optical telecommunications system of claim 31, wherein the
- 2 optical telecommunications system comprises a wavelength division
- 3 multiplexer, an Erbium-doped fiber amplifier, an add-drop multiplexer, a
- 4 dispersion compensator, or an optical time domain reflectometer
- 1 33. A method of adjusting fram separation of optical beams in the
- 2 circulator of claim 1 comprising adjusting a length of a complete gap along the
- 3 horizontal axis of the circulator and defined by the first and second beam angle
- 4 turners.
- 1 34. A method of adjusting beam separation of optical beams entering or
- 2 exiting the circulator of plaim 15 comprising adjusting a length of a complete
- 3 gap defined by the first and second beam angle turners.
- 1 35. A method of circulating a optical signal comprising passing it though
- 2 an optical pathway wherein the optical pathway comprises at least one
- 3 circulator according to claim 1.
- 1 36. A method of circulating a optical signal comprising passing it though
- 2 an optical pathway wherein the optical pathway comprises at least one
- 3 circulator according to claim 15.

4

5 $\sqrt{37}$. A method of transmitting an optical beam comprising:

- 6/ passing the optical beam through a nonreciprocal optical device
- 7 comprising at least one beam angle turner.
- A modified Rochon prism comprising a pair of birefringent wedges 1 38.
- 2 optically coupled to one another, and an optical axis of one of the pair of
- 3 birefringent wedges being oriented normal to the plane of normal incidence,
- 4 and an optical axis of the other hirefringent wedge being oriented 45 degrees
- 5 in a plane of normal incidence with respect to an optical axis orientation the
- other birefringent wedge would possess in a conventional Rochon prism. 6
- 1 39. A modified Wollaston prism comprising a pair of birefringent wedges
- 2 optically coupled to one another, and an optical axis of each of the pair of
- 3 birefringent wedges being oriented perpendicularly to each other and 45
- 4 degrees in a plane of normal incidence with respect to an optical axis in a
- 5 conventional Wollaston prism.
- 1 An optical circulator comprising the modified Rochon or Wollaston
- 2 prism of claim 38.

ard CIIT