Luc Veldhuis

21 Februari 2016

Herhaling

(G,*) groep \Leftrightarrow G verzameling, $*: G \times G \rightarrow G$ bewerking die voldoet aan de voorwaarden:

- Associatief: a*(b*c) = (a*b)*c
- \exists Neutraal element $e \in G$ a * e = e * a = a
- \exists inverse elementen $\forall a \in G \ \exists a^{-1} \in G$: $a * a^{-1} = a^{-1} * a = e$

Gevolg

- Het neutrale element is uniek. Als e' een ander neutraal element is, dan e = e * e' = e' * e = e'.
- Het inverse element is uniek, namelijk als b een ander inverse element van a is, dan geldt
 b = b * e = b * (a * a⁻¹) = (b * a) * a⁻¹ = e * a⁻¹ = a⁻¹.
- $(a^{-1})^{-1} = a$ want $a^{-1} * (a^{-1})^{-1} = e = (a^{-1})^{-1} * a^{-1}$ maar inverse element is uniek.
- $(a*b)^{-1} = b^{-1}*a^{-1}$. Want $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*b = e = \cdots = (a*b)*(b^{-1}*a^{-1})$
- $a_1, \ldots, a_n \in G \Rightarrow a_1 * \cdots * a_n$ is gedefinieerd zonder haakjes.

Conventie

- In een groep (G,*) laten we ook vaak de bewerking vervallen. (G,*) = G en we schijven ab in plaats van a*b.
- Als * een commutatieve bewerking is, dan schijven we e als 0, a*b als a+b en a^{-1} als -a en a-b als a+(-b).

Stelling

Op een groep G geldt:

$$au = av \Leftrightarrow u = v$$

$$ub = vb \Leftrightarrow u = v$$

Bewijs

```
\Leftarrow duidelijk

\Rightarrow
au = av
a^{-1}(au) = a^{-1}(av)
(a^{-1}a)u = (a^{-1}a)v
eu = ev
u = v
ub = vb op een soortgelijke manier
```

Definitie

- In een groep G laat $x \in G$ en $n \in \mathbb{N}$ $x^n = e$ als n = 0 $x^n = x * \cdots * x$ als n > 0 $x^n = x^{-1} * \cdots * x^{-1}$ als n < 0
- Als G commutatief is, dan nx = 0 als n = 0 $nx = x + \cdots + x$ als n > 0 $nx = (-x) + \cdots + (-x)$ als n < 0 Daarmee geldt $x^n x^m = x^{n+m}$ $x^n y^n = (xy)^n$ nx + mx = (n + m)x nx + ny = n(x + y)

Definitie

Zij G een groep, $x \in G$ x heeft orde $n \geq 1$ als $x^n = e$ en $x^m \neq e$, 0 < m < n De orde van x wordt ook genoteerd als $|x| \in \mathbb{N}$

Opmerking

- x heeft orde $1 \Rightarrow x = e$
- Als |x| = n dan is $\{x^m : m \in \mathbb{Z}\} = \{e, x, x^2, \dots, x^{n-1}\}$. De verzameling heeft de eindige grootte n.
- Als $x^n \neq e$ voor alle $n \in \mathbb{N}$ dan $|x| = \infty$

Voorbeeld

- \mathbb{R} is een groep onder optelling. Elk element $x \neq 0$ heeft een oneindige orde, $|x| = \infty$
- $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ is een groep onder vermenigvuldiging. Elk element $x \neq 1$ heeft orde ∞ .
- $\mathbb{Z}/m\mathbb{Z}$ is een groep onder optelling. Elk element x heeft orde $|x| \leq m$ |x| = m alleen als m priem. Waarbij $\mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}$
- $(\mathbb{Z}/m\mathbb{Z})^* = \{\overline{a} \in \mathbb{Z}/m\mathbb{Z} : \exists \overline{b} : \overline{b}\overline{a} = \overline{a}\overline{b} = \overline{1}\} = \{\overline{a} \in \mathbb{Z}/m\mathbb{Z} : ggd(a, m) = 1\}$

Voorbeeld

$$\mathbb{Z}/12\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}\}$$
 Ordes: 1, 12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12

Opmerking

$$|x| = 12 = m$$
 zijn priem

Voorbeeld

$$\begin{array}{l} (\mathbb{Z}/15\mathbb{Z})^* = \{\overline{1}, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{13}, \overline{14}\} \\ \phi(15) = \phi(3)\phi(5) = (3-1)(5-1) = 8 \\ |\overline{7}| = 4 \to \overline{7777} = \overline{49} = \overline{47} = \overline{137} = \overline{91} = \overline{1} \end{array}$$

