I. a Maela:

1) What is LPP?

It is a mathematical method used to optimize complex system while resources are limited and minimizing and minimizing a linear objective function.

2) What is fearible solution?

It satisfies all of the sonstraints of the LPP but may no necessarily optimize the objective funds

3) What is optimal solution?

It is not only satisfies all the constraints but also max or min the objective function represting the best possible outcome.

4) What is unrestricted varible?

i) It can be either positive, negative

between two non-negative variable

x= y1- y2, y1, y2 >0

Maximize
$$Z = 5x_1 + 4x_2$$

S.T
 $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$ $x_1, x_2 \xrightarrow{x_0}$

Sol:

$$Z = 521 + 422$$

put $2 = 0$
 $621 + 42 = 24$
 $621 + 42 = 24$
 $621 + 42 = 24$
 $621 + 42 = 24$
 $621 = 24$
 $21 = 4$
 $21 = 4$
 $21 = 4$
 $21 = 4$
 $21 = 4$
 $21 = 4$

$$\chi_{1} + 2\chi_{2} = 6$$

put $\chi_{1} = 0$
 $\chi_{1} = 6$
 $\chi_{2} = 6$
 $\chi_{2} = 3$
 $\chi_{2} = 3$
 $\chi_{3} = 3$
 $\chi_{4} = 3$

$$-x_{1}+x_{2}=1$$

$$x_{1}=0$$

$$x_{2}=1$$

$$(0,01)$$

$$x_{2}=2$$

$$x_{1}=1$$

$$(0,01)$$

$$x_{1}=1$$

$$x_{1}=1$$

$$x_{2}=1$$

$$x_{3}=1$$

$$x_{4}=1$$

$$x_{2}=1$$

$$x_{4}=1$$

(arnel Values (0,0) =)
$$5(0)+4(0) =$$
) $7=0$
 $(0,0)$ =) $5(0)+4(0) =$) $7=0$
 $(4,0)$ =) $5(4)+4(0) =$) $7=20$
 $(3,1.5)$ =) $5(3)+4(1.5) =$) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1.5)$ =) $7=20$
 $(3,1$

Max Z= 21

a) Simple Method:

Max Z= 52, +722 8.T

 $3x_1 + 8x_2 \le 4$ $10x_1 + 7x_2 \le 35$ $x_1, x_2 \ge 0$

501:

Max Z = 521+72+051+052+053

$$3x_1 + 3x_2 + 8x_3 = 34$$

 $10x_1 + 7x_2 + 8x_3 = 35$

CB YB XB
$$x_1$$
 x_2 8_1 8_2 8_3 x_0 x_0 x_0 x_0 x_1 x_2 x_1 x_1 x_1 x_2 x_1 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_2 x_1 x_1 x_2 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_1 x_2 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_1 x_2 x_1 x_1 x_1 x_1 x_2 x_1 x_2 x_1 x_1 x_1 x_2 x_1 x

BOLEKKINE

Max

3) Big M Method:

Manimize $Z = 4x_1 + 3x_2$ S.T

$$2x_1 + x_2 \ge 10$$

$$-3x_1 + 2x_2 \le 6$$

$$x_1 + x_2 \ge 6$$
 and $x_1, x_2 \ge 0$

Max
$$Z^* = -4x_1 - 3x_2$$

S.T
$$234 + 32 \ge 10$$

$$-34 + 32 \le 6$$

$$34 + 32 \ge 6$$

$$34 + 32 \ge 6$$
and
$$31, 22 \ge 0$$

Max
$$Z^* = -4x_1 + 3x_2 + 0s_1 + 0s_2 + 0s_3 - MAI - MA2$$

S.T

 $2x_1 + x_2 - s_1 + 0s_2 + 0s_3 + AI = I0$
 $-3x_1 + 2x_2 + 0s_1 + s_2 + 0s_3 = b$
 $x_1 + x_2 + 0s_1 + 0s_2 - c_3 + A_2 = b$

CB YB XB x_1 x_2 s_1 s_2 s_3 a_1 a_2 a_1 a_1 a_1 a_1 a_1 a_1 a_2 a_1 $a_$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

Max
$$Z^{\dagger} = -22$$

Min $T = -(-22) = 22$.

A) Big M muthod:

Minimize Z= 4x1 + x2 321+22=3 Ax1+3x2 26 $24 + 222 \leq 4$ and 21,2820

Max z= -4x1-x2+0S1+0S2-MAI-MA2

371+72+A1=3 $4x_1 + 3x_2 - S_1 + A_2 = 6$ 21+222+52=4

The constitue franction is

Cj [-4 -1 0 -M -MJ 0 Az Rates 82 A1 XB X1 X2 81 CB YB 3 B pivot 0 1+ 0 0 AI 1 1.5 0 0 -M A2 6 4 3 -1 0 82 4 8 2 0 1 0 0 4 zj-g -7M-4 -4M-1 M 0 0 0 9 [-4 -1 0 0 -M -M] XB X1 X2 81 82 A1 A2 Vatio CB AB 1/3 0 0 1/3 0 24 1 1 -M A2 2 0 [5/3] -1 0 -4/3 1 ==12 3 0 5/3 0 1 -1/3 0 9 = 18 82 0 7-9 -1 -5M M O -4+7M O The state of the s G [-4 -1 0 0 -M -M] CB YB XB X1 X2 S1 S2 A1 A2 Tatio -4 × 3/5 1 0 1/5 0 3/5 -1/5 3 22 6/5 0 1 -3/5 0 -4/5 3/5 -2 -時1 0 82 1 0 0 11 1 -1 巧-cj 0 0 -1 0 -8+M =+M

1

Max
$$Z^{\dagger} = -\frac{17}{5}$$

Man $Z = -(-\frac{17}{5})$

Man $Z = 17/5$

5) Graphical Method:

$$5x_1 + 3x_2 \le 30$$

 $x_1 + 2x_2 \le 18$ and $x_1, x_2 \ge 0$

$$5x_1 + 3x_2 = 30$$

 $x_1 + 2x_2 = 18$

$$5\chi_1 + 3\chi_2 = 30$$

 $\chi_1 = 0 = 0$ $\chi_2 = 10$ $\chi_1 = 0$ $\chi_2 = 0$ $\chi_1 = 0$ $\chi_1 = 0$ $\chi_2 = 0$ $\chi_1 = 0$

$$\chi_1 + 2\chi_2 = 18$$
 $\chi_1 = 0 \Rightarrow \chi_2 = 9 \quad (0, 9)$
 $\chi_2 = 0 \Rightarrow \chi_1 = 18 \quad (18, 0)$

$$521 + 32 = 30$$

 $-521 - 102 = -90$
 $-42 = -60$

$$x_1 + 2(\frac{60}{7}) = 18$$
 $x_1 = \frac{6}{7}$
 $(\frac{6}{7}) = \frac{6}{7}$

Corner value
$$Z = 2(5\chi_1 + 3\chi_2)$$

 $(0,0)$ $= 2(0+0)$ $= 3$
 $(0,0)$ $= 2(0+0)$ $= 3$
 $(0,0)$ $= 2(0+3(0))$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$ $= 3$
 $(0,0)$

$$x_1 = 6$$
 $x_2 = 0$.