Spatiotemporal modelling & automated in-situ sensors to monitor Harmful Algal Blooms(HABs)

Case Study-Lake Victoria

Presenter:

Name: OKELLO, JACOB OKOMO Reg. No: ENC222-0149/2017

GEGIS 6-Oct-21

Introduction

- Harmful Algal Blooms (HABs), a phenomena which turns water bodies dark blue-green due to eutrophication; potentially harming humans and animals e.g., massive fish deaths, etc. (Santoleri et al., 2003), WHO
- Development, stability, and density of the phenomenon affect some environmental factors Lake Surface Air Temperature (LSAT), Sea Surface Temperature (SST) (Tang et al, 2006)
- Hence, quantifying the spatial distributions of HABs in L.
 Victoria is of great significance, which requires high spatiotemporal monitoring. (Sitoki et al., 2012)
- There however exists that niche to support the space observations with a near-real time geointelligent in-situ monitoring and reporting system.

Problem statement

- The rapidly escalating demographics along L. Victoria riparian reserves has negatively impacted water quality through deposits of agricultural, industrial runoff and sewer refuse eutrophicating the said region. (Burkholder et al., 2006; MOH)
- Deterioration in water quality initiates ecosystem conflicts, poor economic growth, reduced tourism, poor water quality furthermore baring achievement of SDG 6 & 14- Clean Water and Sanitation. (Hecky et al., 2010)
- Coupling wide spread spatiotemporal monitoring, and automated in-situ sensors will play a big deal in return. This would inform the Govt. and the general public the affected zones, calling for immediate remedy actions.

Justification

Image Sources: Standard Media KE, KMFRI, allAfricawaters

General and specific objectives

5

- To detect, monitor and report the occurrence of Harmful Algal Blooms(HABs) in Lake Victoria, Kisumu basin.
 - To monitor chlorophyl-a(chl-a) concentration from L8 OLI images.
 - To monitor Lake Surface Air Temperature(LSAT) from L8 TIRS images as another HAB indicator in L. Victoria.
 - To develop automated Internet of Things (IoT) in situ sensors, Applicable in near real-time to monitor and report geo-tagged Water quality data.

Study Area

6

Overall Methodology: Data and Materials

Data Type	Source	Role/Use		
Landsat 8 OLI	Google Earth Engine	Spatiotemporal HAB Monitoring		
(30m, 16 days)	(2015-2021)			
Landsat 8 TIR	Google Earth Engine	Lake Surface Water Temperature		
(100m, 16 days)	(2015-2021)	Monitoring(LSWT)		
Meteorological Data	Kenya Marine & Fisheries Research Institute-KMFRI (2015-2021)			
		Water Quality assessment		
In-Situ Data	In-situ Sensors 2021 Onwards	Continued In-Situ Algal Monitoring		

Tool/Material	Role	Availability	
Google Earth Engine (GEE)	Geocomputation & Processing	Freely Available	
QGIS/ArcMap, R & Python	Further Analysis & Maps	Free	
Microcontroller & Sensors	In-Situ data Monitoring	Local Purchase	
KiCAD	Design the Schematics & basic Circuits	Free & Open source	

Overall methodology

HAB reported dates, from 2015

Year	Date and Month	Reporting body
2015	12 th January, 22 nd February	Nasa Earth data, KMFRI
2016	23 rd July	KMFRI
2017	04 th August	Africa great Lakes
2018	27 th January	KMFRI, Nasa Earth Data
2019	18 th August	KMFRI
2020	29 th August,	KMFRI
2021	No Data	None Reported

Table 3: HABs reported in Lake Victoria, (KMFRI, NASA Earth Data)

Results (a): Chl-a Distribution Maps

Chl-a Distribution Maps, Cont'd

Accuracy Assessment of Chl-a Estimates

13

Accuracy Assessment of Chl-a Estimates

Correlation: S3 OLCI Chl-a and L8 Estimates 2020

Results (b): High LSAT recorded during bloom Events

Results (b): High LSAT recorded during bloom Events

18th August 2019 29th August 2020

Accuracy assessment for LSAT Estimates

17

- Still having problems with getting a better reference data

Obtaining GPS Location, Water Temp and Relative Humidity from Sensors.


```
Places
               V2 VNC Viewer
                                                            192,168
                                                   [Use Neo 6M GPS
                          NEO6M_Ublox
File Edit Tabs Help
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ nano neo6m.
pi@raspberrypi:~/192.168_micros/piStudios/NEO6M_Ublox S python neo6
 File "neo6m.py", line 14
SyntaxError: Non-ASCII character '\xe2' in file neo6m.py on line 14
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ nano neo6m.
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ y
bash: y: command not found
pi@raspberrypi:~/192.168_micros/piStudios/NEO6M_Ublox $ python neo6
Traceback (most recent call last):
 File "neo6m.py", line 10, in <module>
    ser = serial.Serial(port, baudrate=9600, timeout=0.5)
 File "/usr/lib/python2.7/dist-packages/serial/serialutil.py", line
    self.open()
 File "/usr/lib/python2.7/dist-packages/serial/serialposix.py", li
    raise SerialException(msg.errno, "could not open port {}: {}".f
serial.serialutil.SerialException: [Errno 2] could not open port ..
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ nano neo6m.
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ python neo6
Latitude = -1.09458933333, Longitude=37.0182255
Latitude = -1.0946335, Longitude=37.0183605
Latitude = -1.09464316667, Longitude=37.0183326667
Latitude = -1.09464583333, Longitude=37.0183036667
Latitude = -1.094632, Longitude=37.0182801667
Latitude = -1.0946315, Longitude=37.0182573333
Latitude = -1.09462916667, Longitude=37.01823
Latitude = -1.09462816667, Longitude=37.0182126667
Latitude = -1.09462233333, Longitude=37.0181935
Latitude = -1.09462533333, Longitude=37.0181796667
Latitude = -1.09464133333, Longitude=37.0182055
Latitude = -1.09464066667, Longitude=37.0182258333
Latitude = -1.09463783333, Longitude=37.0182228333
Latitude = -1.09463516667, Longitude=37.0181965
Latitude = -1.0946295, Longitude=37.0181818333
Latitude = -1.09462133333, Longitude=37.018166
Latitude = -1.094606, Longitude=37.0181016667
Latitude = -1.09473016667, Longitude=37.0186191667
Latitude = -1.09473666667, Longitude=37.0186191667
latitude = -1.09473233333. Longitude=37.0186283333
```

```
pi@raspi-53
                              time sudo ./dht11 -r 10
   humidity: 44.0 |
                    temperature: 23.0
  humidity: 43.0 |
                    temperature: 23.0
  humidity: 44.0 | temperature: 23.0
  humidity: 44.0 |
                    temperature: 23.0
  humidity: 43.0 |
                    temperature: 23.0
  humidity: 43.0 | temperature: 23.0
  humidity: 43.0 |
                    temperature: 23.0
  humidity: 43.0 |
                    temperature: 23.0
9, humidity: 43.0 | temperature: 23.0
10, humidity: 43.0 | temperature: 23.0
        0m11.710s
real
```

SEGIS 18

Project Timeline

	June - July	August	Sep	Oct	Nov	Dec
Chl-a	Literature Rev (Restructure)	Data Acquisition Preliminary results	Chl-a spatiotemporal Maps - Done			
LSWT	Literature Rev (Restructure)		LSAT spatiotemporal Maps - Done			
IoT	Literature Rev. Acquire all sensors	Unit tests	Long F	O	Full Data Acquisition and Dissemination	

Thank you for your attention! Questions?

