Show all your work with proper notations.

1. If  $g(x) = x^4 - 2$ , find g'(1) using the limit definition of the derivative and use it to find the equation of the tangent line of g(x) at x = 1.

2. Name three ways in which a function can fail to be differentiable. Show each case using an example graph or function with a non-differentiable point.

a.

3. Sketch a graph of a function for which f(0) = 0, f'(0) = -1, f(1) = 0, and f'(1) = -1.

b.

c.

4. State the general form for these derivative rules:

a. The power rule

e. The product rule

b. The constant multiple rule

f. The quotient rule

c. The sum rule

g. The chain rule

- d. The difference rule
- 5. Find both the first and the second derivatives. Express in BOTH major notations.

$$f(x) = 6x^{-5/3}$$

6. Find the first derivative. Express in BOTH major notations.

$$a. \quad g(x) = \frac{x^2 + x + 1}{x}$$

$$b. \quad y = 3p - \sqrt{p}$$

| Find the derivative:                                   |                                         |                                       |  |
|--------------------------------------------------------|-----------------------------------------|---------------------------------------|--|
| Find the derivative:                                   | $8.  y = \cot(6x)$                      | 9. $f(x) = sec^2x \cdot \tan x$       |  |
| $7.  f(x) = \frac{\sin x}{\cos x}$                     | 8. $y = \cot(0x)$                       | $\int (x) = \sec x \cdot \tan x$      |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
| 10 ()                                                  | . (2.)                                  | 10.77                                 |  |
| $10. \ g(x) = \tan(\cos x)$                            | $11. \ y = \sec x \cdot \sin(3x)$       | $12. h(x) = tan^{10}3x$               |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
| $12 f(0) = \sin(\cos(\tan \theta))$                    | 44 5() ((25 +4)12 + 2)3                 | 1-csc x                               |  |
| 13. $f(\theta) = \sin(\cos(\tan \theta))$              | 14. $f(x) = ((3x^5 + x^4)^{12} + 2x)^3$ | $15. \ y = \frac{1 - \csc x}{\cot x}$ |  |
|                                                        |                                         | cocx                                  |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
| 5-1140 21 find dy                                      | formatical from the second              | <u> </u>                              |  |
| For #16-21, find $\frac{dy}{dx}$ . Assume $y$ is a dif | terentiable function of $x$ .           |                                       |  |
| $16. \ 3y = x \cdot \cos^5 y$                          | 17. $xy + y^2 + x^3 = 7$                | $18. \ \frac{\sin y}{y^2 + 1} = 3x$   |  |
|                                                        |                                         | $y^2+1$                               |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
| 19. $\tan(x - y) = \frac{y}{1 + x^2}$                  | 20. $xy = \cot x^2 + x^3$               | $21. \ x^3 + y^3 = 6xy$               |  |
| $1+x^2$                                                |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |
|                                                        |                                         |                                       |  |

22. Use implicit differentiation to find an equation of the tangent line to the curve sin(x + y) = 2x - 2y at the point  $(\pi, \pi)$ .

If f and g are differentiable functions such that f(2)=3, f'(2)=-1, g(2)=-5, and g'(2)=2, find the answers to the following problems.

| answers to the following problems. |                 |                                      |
|------------------------------------|-----------------|--------------------------------------|
| 23. $(g-f)'(2)$                    | 24. (fg)'(2)    | $25. \left(\frac{f}{g+f}\right)'(2)$ |
| 26. $(5f + 3g)'(2)$                | 27. (f • f)'(2) | 28. $(g \circ f)'(2)$                |

For #29-32, use the table to find the indicated value.

| x | f(x) | f'(x) | g(x) | g'(x)          |
|---|------|-------|------|----------------|
| 1 | 5    | -1    | 1    | 2              |
| 2 | 4    | -1    | 3    | 3              |
|   |      |       |      | 2              |
| 3 | 3    | -1    | 4    | 1              |
| 4 | 2    | -1    | 5    | 1              |
| 5 | 1    | 0     | 6    | 1              |
|   |      |       |      | $-\frac{1}{2}$ |
| 6 | 2    | 1     | 4    | -2             |

| 29. $h(x) = f(x) + g(x)$ , find $h'(2)$ .                    | 30. $d(x) = \frac{f(x)}{g(x)}$ , find $d'(3)$ . |
|--------------------------------------------------------------|-------------------------------------------------|
| $31.k(x) = [f(x)]^2, \text{ find } k(4) \text{ and } k'(4).$ | 32. $p(x) = g[f(x)]$ , find $p'(6)$ .           |
|                                                              |                                                 |

## Answers:

1.

$$\begin{split} \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} &= \lim_{h \to 0} \frac{(x+h)^4 - 2 - (x^4 - 2)}{h} \\ &= \lim_{h \to 0} \frac{(x^2 + 2xh + h^2)^2 - x^4}{h} \\ &= \lim_{h \to 0} \frac{x^4 + 2x^3h + x^2h^2 + 2x^3h + 4x^2h^2 + 2xh^3 + h^2x^2 + 2xh^3 + h^4 - x^4}{h} \\ &= \lim_{h \to 0} \frac{2x^3h + x^2h^2 + 2x^3h + 4x^2h^2 + 2xh^3 + h^2x^2 + 2xh^3 + h^4}{h} \\ &= \lim_{h \to 0} 2x^3 + x^2h + 2x^3 + 4x^2h + 2xh^2 + hx^2 + 2xh^2 + h^3 \\ &= 2x^3 + 2x^3 \\ &= 4x^3 \end{split}$$

g'(1) = 4; g(1) = -1; The equation of the tangent line to g(x) at x = 1 is y + 1 = 4(x - 1)

- 2. possible examples:
- a. Jump discontinuity at x = 0









c. Vertical tangent at x = 0 d. Infinite oscillation at x = 0





- a.  $\frac{d}{dx}x^n = nx^{n-1}$  for all real numbers n. e.  $\frac{d}{dx}[f(x) \cdot g(x)] = \frac{d}{dx}f(x) \cdot g(x) + \frac{d}{dx}g(x) \cdot f(x)$
- b.  $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$
- f.  $\frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) g'(x)f(x)}{g^2(x)}$
- c,d.  $\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$  g.  $\frac{d}{dx}f[g(x)] = f'[g(x)] \cdot g'(x)$

| 5.                                                      | 6.                                                |
|---------------------------------------------------------|---------------------------------------------------|
| $f'(x) = \frac{d}{dx}f(x) = -10x^{-8/3}$                | a. $g'(x) = \frac{d}{dx}g(x) = 1 - x^{-2}$        |
| $f''(x) = \frac{d^2f(x)}{dx^2} = \frac{80}{3}x^{-11/3}$ | b. $y' = \frac{dy}{dx} = 3 - \frac{1}{2}p^{-1/2}$ |
| $f(x) = \frac{1}{dx^2} = \frac{1}{3}x^{1/3}$            |                                                   |
| 7. y = 3x - 4                                           |                                                   |