Analysis

1	${f Rea}$	l Numbers 2	
	1.1	Fields	
	1.2	Ordered Fields	
	1.3	The Real Field	
2	Basic Topology 7		
	2.1	Metric Spaces	
	2.2	Compact Sets	
3	Sequences and Series 11		
	3.1	Convergence	
	3.2	Cauchy Sequences	
4	Continuity 14		
	4.1	Limits of Functions	
	4.2	Continuous Functions	
	4.3	Properties of Continuous Maps	
5	Differentiation 17		
	5.1	Derivatives	
	5.2	The Mean Value Theorem	
6	Inte	egration 20	
		Integrals	
7	Seq	uences of Functions 21	
	7.1	Pointwise Convergence	
		Uniform Convergence	

Real Numbers

1.1 Fields

Definition 1.1. A nonempty set F and two operations + and \cdot form a **field** if the following axioms $(A \ 1) - (A \ 5)$, $(M \ 1) - (M \ 5)$ and (D) are satisfied.

- (A 1) $x + y \in F$ for any $x, y \in F$.
- (A 2) x + y = y + x for any $x, y \in F$.
- (A 3) (x + y) + z = x + (y + z) for any $x, y, z \in F$.
- (A 4) There is an element $0 \in F$ such that x + 0 = x for any $x \in F$.
- (A 5) For each $x \in F$ there is an element -x in F such that x + (-x) = 0.
- (M 1) $x \cdot y \in F$ for any $x, y \in F$.
- (M 1) $x \cdot y = y \cdot x$ for any $x, y \in F$.
- (M 2) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for any $x, y, z \in F$.
- (M 3) There is an element $1 \in F \setminus \{0\}$ such that $x \cdot 1 = x$ for any $x \in F$.
- (M 4) For each $x \in F \setminus \{0\}$ there is an element x^{-1} in F such that $x \cdot x^{-1} = 0$.
 - (D) $x \cdot (y+z) = x \cdot y + x \cdot z$ for any $x, y, z \in F$.

Theorem 1.2. Let F be a field. Then the following statements are true for any $x, y, z \in F$.

- (a) If x + y = x + z, then y = z.
- (b) If x + y = x, then y = 0.
- (c) If x + y = 0, then y = -x.
- (d) -(-x) = x.

Proof. Note that these statements are consequence of axioms (A 1) - (A 5).

(a) We have

$$y = 0 + y$$

$$= (-x + x) + y$$

$$= -x + (x + y)$$

$$= -x + (x + z)$$

$$= (-x + x) + z$$

$$= 0 + z$$

$$= z.$$

- (b) Since x + y = x = x + 0, we have y = 0 by (a).
- (c) Since x + y = 0 = x + (-x), we have y = -x by (a).
- (d) Since -x + x = 0, we have -(-x) = x by (c).

Theorem 1.3. Let F be a field. Then the following statements are true for any $x \in F \setminus \{0\}$ and $y, z \in F$.

- (a) If $x \cdot y = x \cdot z$, then x = y.
- (b) If $x \cdot y = x$, then y = 1.
- (c) If $x \cdot y = 1$, then $y = x^{-1}$.
- (d) $(x^{-1})^{-1} = x$.

Proof. Note that these statements are consequence of axioms (M 1) - (M 5).

(a) We have

$$y = 1 \cdot y$$

$$= (x^{-1} \cdot x) \cdot y$$

$$= x^{-1} \cdot (x \cdot y)$$

$$= x^{-1} \cdot (x \cdot z)$$

$$= (x^{-1} \cdot x) \cdot z$$

$$= 1 \cdot z$$

$$= z.$$

- (b) Since $x \cdot y = x = x \cdot 1$, we have y = 1 by (a).
- (c) Since $x \cdot y = 1 = x \cdot x^{-1}$, we have $y = x^{-1}$ by (a).
- (d) Since $x^{-1} + x = 1$, we have $(x^{-1})^{-1} = x$ by (c).

Theorem 1.4. Let F be a field. Then the following statements are true for any $x, y \in F$.

- (a) $0 \cdot x = 0$.
- (b) $(-x) \cdot y = -(x \cdot y) = x \cdot (-y)$.

(c) $(-x) \cdot (-y) = x \cdot y$.

Proof.

(a) We have

$$0 \cdot x + 0 \cdot x = (0+0) \cdot x = 0 \cdot x,$$

implying $0 \cdot x = 0$.

(b) Since

$$(-x) \cdot y + x \cdot y = (-x + x) \cdot y = 0 \cdot y = 0,$$

we have $(-x) \cdot y = -(x \cdot y)$. One can prove $x \cdot (-y) = -(x \cdot y)$ similarly.

(c) We have

$$(-x) \cdot (-y) = -(x \cdot (-y)) = -(-(x \cdot y)) = x \cdot y$$

by applying (b) twice.

1.2 Ordered Fields

Definition 1.5. An **ordered field** is a field on which relation < is defined such that the following axioms (O 1) – (O 4) hold for any $x, y, z \in F$.

- (O 1) One and only one of the statements x = y, x < y, y < x is true.
- (O 2) If x < y and y < z, then x < z.
- (O 3) If x < y, then x + z < y + z.
- (O 4) If 0 < x and 0 < y, then $0 < x \cdot y$.

Definition 1.6. Let F be an ordered field. The relations >, \leq and \geq are defined as follows for any $x, y \in F$.

$$x > y \Leftrightarrow y < x$$

 $x \le y \Leftrightarrow x < y \text{ or } x = y$
 $x \ge y \Leftrightarrow x > y \text{ or } x = y$.

Definition 1.7. Let F be an ordered field and let $S \subseteq F$.

- An **upper bound** of S is an element x in F such that $x \ge y$ for any $y \in S$. We say that S is **bounded above** if S has an upper bound.
- A **lower bound** of S is an element x in F such that $x \leq y$ for any $y \in S$. We say that S is **bounded below** if S has a lower bound.

Definition 1.8. Let F be an ordered field and let $S \subseteq F$.

- An element of S is called the **maximum** of S, denoted by $\max(S)$, if it is an upper bound of S.
- An element of S is called the **minimum** of S, denoted by $\min(S)$, if it is a lower bound of S.
- The minimum of the set of upper bounds of S is called the **supremum** of S, denoted by $\sup(S)$.
- The maximum of the set of lower bounds of S is called the **infimum** of S, denoted by $\inf(S)$.

1.3 The Real Field

Definition 1.9. \mathbb{R} is an ordered field such that every nonempty subset S of \mathbb{R} that is bounded above has a supremum. The elements of \mathbb{R} are called the **real numbers**.

Theorem 1.10 (Archimedean Property). For any $x, y \in \mathbb{R}$ with x > 0, there is a positive integer n such that

$$n \cdot x > y$$
.

Proof. Let

 $S = \{nx : n \text{ is a positive integer}\}.$

Suppose that y is an upper bound of S. It follows that S has a supremum z. Note that z-x is not an upper bound of S since z-x < z. Thus, z-x < mx for some positive integer m, implying z < (m+1)x, contradiction to the fact that z is an upper bound of S. Hence, y is not an upper bound of S, completing the proof.

Basic Topology

2.1 Metric Spaces

Definition 2.1. A set X and a function $d: X \times X \to \mathbb{R}$ form a **metric space** if the following properties hold for any $x, y, z \in X$.

- 1. $d(x,y) \ge 0$, and d(x,y) = 0 holds if and only if x = y.
- 2. d(x, y) = d(y, x).
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

Remark. We may use the underlying set X to represent the metric space (X, d), and in this case, the distance function d is denoted by d_X .

Definition 2.2. Let X be a metric space. For any $\epsilon > 0$ and $x \in X$, we define the **open ball** of radius ϵ centered at x by

$$B_{\epsilon}(x) = \{ y \in X : d_X(x, y) < \epsilon \}.$$

Definition 2.3. Let X be a metric space with $S \subseteq X$ and $x \in X$.

- We say that x is an **interior point** of S if $B_{\epsilon}(x) \subseteq S$ for some $\epsilon > 0$. If every point of S is an interior point of S, then S is said to be **open**.
- We say that x is an **limit point** of S if $(B_{\epsilon}(x) \setminus \{x\}) \cap S$ is not empty for all $\epsilon > 0$. If every limit point of S is a point of S, then S is said to be **close**.

Theorem 2.4. Let X be a metric space and $S \subseteq X$. Then S is open if and only if $X \setminus S$ is closed.

Proof. (\Rightarrow) Suppose that x is a limit point of $X \setminus S$. Then $B_{\epsilon}(x) \setminus S \neq \emptyset$ for any $\epsilon > 0$, implying that x is not an interior point of S. Since S is open, we have $x \notin S$, i.e., $x \in X \setminus S$. Thus, $X \setminus S$ is closed.

 (\Leftarrow) Let $x \in S$. If x is a limit point of $X \setminus S$, then $x \in X \setminus S$ since $X \setminus S$ is closed, contradiction. Thus, x is not a limit point of $X \setminus S$, and there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq S$, implying that S is open.

Theorem 2.5. Let $\{S_{\alpha}\}_{{\alpha}\in A}$ be a collection of open sets.

(a) $\bigcup_{\alpha \in A} S_{\alpha}$ is open.

(b) If A is nonempty and finite, then ⋂_{α∈A} S_α is open.
Proof.
(a) Suppose that x ∈ ⋃_{α∈A} S_α. Then x ∈ S_α for some α ∈ A. Since S_α is open, x is an interior point of S_α, and it follows that x is an interior point of ⋃_{α∈A} S_α. Thus, ⋃_{α∈A} S_α is open.
(b) Suppose that x ∈ ⋂_{α∈A} S_α. For each α ∈ A, since S_α is open, we have B_{ε_α}(x) ⊆ S_α for some ε_α > 0. Since A is finite and nonempty, ε = min({ε_α} s_{α∈A}) exists. It follows that B_ε(x) ⊆ ⋂_{α∈A} S_α, implying that x is an interior point of ⋂_{α∈A} S_α. Thus, ⋂_{α∈A} S_α is open.
Corollary 2.6. Let {S_α}_{α∈A} be a collection of closed sets.

(a) $\bigcap_{\alpha \in A} S_{\alpha}$ is closed.

(b) If A is nonempty and finite, then $\bigcup_{\alpha \in A} S_{\alpha}$ is closed.

Proof. Straightforward from Theorem 2.4 and Theorem 2.5.

2.2 Compact Sets

Definition 2.7. Let (X, d) be a metric space and let $S \subseteq X$.

- A cover of S is a collection of subsets of X whose union contains S. An open cover of S is a cover of S whose elements are all open.
- We say that S is **compact** if every open cover Ω of S contains a finite cover Φ of S.

Theorem 2.8. Let (X, d) be a metric space and let $R \subseteq S \subseteq X$. If S is compact and R is closed, then R is compact.

Proof. Suppose that R has an open cover Ω . Then $\Omega' = \Omega \cup \{X \setminus R\}$ is an open cover of S since $X \setminus R$ is open. Let $\Phi' \subseteq \Omega'$ be a finite cover of S, and let $\Phi = \Phi' \setminus \{X \setminus R\}$. Then Φ is a finite open cover of R with $\Phi \subseteq \Omega$. Thus, R is compact.

Theorem 2.9 (Nested Interval Theorem). Let $\langle I_n \rangle$ be a sequence of rectangles in \mathbb{R}^k such that $I_{n+1} \subseteq I_n$, then the intersection of $\{I_n : n \in \mathbb{N}\}$ is nonempty.

Proof. For each positive integer n, let

$$I_n = [a_n^{(1)}, b_n^{(1)}] \times \cdots \times [a_n^{(k)}, b_n^{(k)}].$$

For each $i \in \{1, \ldots, k\}$, we have

$$a_n^{(i)} \le a_{n+m}^{(i)} \le b_{n+m}^{(i)} \le b_m^{(i)}$$

for any $n, m \in \mathbb{N}$. Thus, $\{a_n^{(i)} : n \in \mathbb{N}\}$ is bounded above, implying the existence of

$$x_i = \sup(\{a_n^{(i)} : n \in \mathbb{N}\}).$$

We have

$$a_n^{(i)} \le x_i \le b_m^{(i)}$$

for any $n, m \in \mathbb{N}$. Thus,

$$x = (x_1, \dots, x_n) \in \bigcap_{n \ge 1} I_n,$$

completing the proof.

Theorem 2.10. Every k-cell in \mathbb{R}^k is compact.

Proof. Let $I = [a_1, b_1] \times \cdots \times [a_k, b_k]$. We have

$$||x - x'|| \le \sqrt{\sum_{i=1}^k (a_i - b_i)^2}$$

for any $x, x' \in I$. Assume that there is an open cover \mathcal{O} of I that contains no finite subcover of I. Let $c_i = (a_i + b_i)/2$ for all $i \in \{1, ..., n\}$, and let

$$C = \{I^{(1)} \times \dots \times I^{(k)} : I^{(i)} \in \{[a_i, c_i], [c_i, b_i]\} \text{ for } 1 \le i \le k\}$$

be a collection of 2^k k-cells whose union is I. Then there must be a k-cell $I' \in \mathcal{C}$ cannot be covered by any finite subset of \mathcal{O} , or I could be covered by that set, contradtion.

Thus, if I is not compact, then we can construct a sequence $\langle I_n \rangle$ of k-cells which are not covered by any finite subset of \mathcal{O} such that $I_1 = I$, $I_{n+1} \subseteq I_n$ for any integer $n \ge 1$, and

$$||x - x'|| \le \frac{\sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}}{2^{n-1}}$$

holds for any $x, x' \in I_n$. It follows that there is a point $y \in \bigcap \{I_n\}$, and we have $y \in S$ for some $S \in \mathcal{O}$. Since S is open, we have $B_r(y) \subseteq S$ for some r > 0. Let N be a positive integer such that

$$2^{N} > \frac{\sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}}{r/2}.$$

Then for any $x \in I_N$,

$$||x - y|| \le \frac{\sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}}{2^{N-1}} < r,$$

implying $x \in B_r(y) \subseteq S$. It follows that $I_N \subseteq S$, and $\{S\}$ is a finite subset of \mathcal{O} , contradtion. Thus, I is compact.

Theorem 2.11 (Heine–Borel Theorem). Let $S \subseteq \mathbb{R}^k$. Then S is compact if and only if S is closed and bounded.

Proof. (\Leftarrow) If S is closed and bounded, then there is a k-cell I with $S \subseteq I$. Since I is compact, and S is closed, we conclude that S is compact.

(⇒) Suppose that S is compact. Then S is closed. Since $\mathcal{O} = \{B_r(0_{\mathbb{R}^k}) : r \in \mathbb{N}\}$ is an open cover of S, there is $\mathcal{O}' \subseteq \mathcal{O}$ such that $S \subseteq \bigcup \mathcal{O}'$. It can be shown that $\bigcup \mathcal{O}'$ is bounded, and thus S is bounded.

Sequences and Series

3.1 Convergence

Let $\mathbb{N} = \{1, 2, 3, \dots\}$ denote the set of positive integers.

Definition 3.1. Let $\langle x_n \rangle_{n \in \mathbb{N}}$ be a sequence in a metric space X. We say that $\langle x_n \rangle_{n \in \mathbb{N}}$ converges to a point $x \in X$, denoted by

$$\lim_{n \to \infty} x_n = x,$$

if for any $\epsilon > 0$ there exists some $n_0 \in \mathbb{N}$ such that

$$n \ge n_0 \quad \Rightarrow \quad d_X(x_n, x) < \epsilon$$

holds for all $n \in \mathbb{N}$.

- We say that $\langle x_n \rangle_{n \in \mathbb{N}}$ is **convergent** if it converges to a point in X.
- We say that $\langle x_n \rangle_{n \in \mathbb{N}}$ is **divergent** if it is not convergent.

Theorem 3.2. Let $\langle x_n \rangle_{n \in \mathbb{N}}$ be a sequence in a metric space X. If $\langle x_n \rangle_{n \in \mathbb{N}}$ converges to both $x \in X$ and $x' \in X$, then x = x'.

Proof. For any $\epsilon > 0$, there exists some $n_0 \in \mathbb{N}$ such that

$$d_X(x_n, x) < \frac{\epsilon}{2}$$
 and $d_X(x_n, x') < \frac{\epsilon}{2}$

hold for all $n \in \mathbb{N}$ with $n \geq n_0$. Then we have

$$d_X(x, x') \le d_X(x_n, x) + d_X(x_n, x') < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for all $n \in \mathbb{N}$ with $n \geq n_0$. Thus $d_X(x, x') = 0$, implying x = x'.

Theorem 3.3. Let $\langle a_n \rangle_{n \in \mathbb{N}}$ and $\langle b_n \rangle_{n \in \mathbb{N}}$ be sequence in \mathbb{R} with

$$\lim_{n \to \infty} a_n = L \quad \text{and} \quad \lim_{n \to \infty} b_n = M.$$

Then the following statements are true.

(a) We have

$$\lim_{n \to \infty} (a_n + b_n) = L + M \quad \text{and} \quad \lim_{n \to \infty} (a_n - b_n) = L - M.$$

(b) We have

$$\lim_{n \to \infty} a_n b_n = LM.$$

(c) If $L \neq 0$ and $a_n \neq 0$ for all $n \in \mathbb{N}$, then we have

$$\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{L}.$$

Proof.

(a) For any $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$|a_n - L| < \frac{\epsilon}{2}$$
 and $|b_n - M| < \frac{\epsilon}{2}$

holds for all $n \in \mathbb{N}$ with $n \geq n_0$. Then

$$|(a_n + b_n) - (L + M)| \le |a_n - L| + |b_n - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

and

$$|(a_n - b_n) - (L - M)| \le |a_n - L| + |-b_n + M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

hold for all $n \in \mathbb{N}$ with $n \geq n_0$, completing the proof.

(b) Choose C > 0 such that $|L| \le C$ and $|b_n| \le C$ for all $n \in \mathbb{N}$. For any $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$|a_n - L| < \frac{\epsilon}{2C}$$
 and $|b_n - M| < \frac{\epsilon}{2C}$

hold for all $n \in \mathbb{N}$ with $n \geq n_0$. Then

$$|a_n b_n - LM| = |(a_n - L)b_n + (b_n - M)L|$$

$$\leq |a_n - L| \cdot |b_n| + |b_n - M| \cdot |L|$$

$$\leq |a_n - L| \cdot C + |b_n - M| \cdot C$$

$$< \epsilon$$

holds for all $n \in \mathbb{N}$ with $n \geq n_0$, completing the proof.

(c) For any $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$|a_n - L| < \min\left(\left\{\frac{|L|^2\epsilon}{2}, \frac{|L|}{2}\right\}\right)$$

hold for all $n \in \mathbb{N}$ with $n \geq n_0$. Then for all $n \in \mathbb{N}$ with $n \geq n_0$ we have

$$|a_n| = |L + (a_n - L)| \ge |L| - |a_n - L| > \frac{|L|}{2},$$

implying

$$\left|\frac{1}{a_n} - \frac{1}{L}\right| = \left|\frac{a_n - L}{a_n L}\right| = \frac{|a_n - L|}{|a_n| \cdot |L|} < \frac{|L|^2 \epsilon/2}{|L|/2 \cdot |L|} = \epsilon,$$

completing the proof.

3.2 Cauchy Sequences

Definition 3.4. Let $\langle x_n \rangle_{n \in \mathbb{N}}$ be a sequence in a metric space X. We say that $\langle x_n \rangle_{n \in \mathbb{N}}$ is a **Cauchy sequence**, if for any $\epsilon > 0$ there exists some $n_0 \in \mathbb{N}$ such that

$$n \ge n_0$$
 and $m \ge n_0$ \Rightarrow $d_X(x_n, x_m) < \epsilon$

holds for all $n, m \in \mathbb{N}$.

Definition 3.5. Let $\langle a_n \rangle_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} .

• We say that $\langle a_n \rangle_{n \in \mathbb{N}}$ is increasing (resp., strictly increasing) if

$$a_n \le a_{n+1} \qquad \text{(resp., } a_n < a_{n+1})$$

holds for all $n \in \mathbb{N}$.

• We say that $\langle a_n \rangle_{n \in \mathbb{N}}$ is decreasing (resp., strictly decreasing) if

$$a_n \ge a_{n+1} \qquad \text{(resp., } a_n > a_{n+1}\text{)}$$

holds for all $n \in \mathbb{N}$.

Theorem 3.6. Let $\langle a_n \rangle_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} . If $\langle a_n \rangle_{n \in \mathbb{N}}$ is increasing and its range $A = \{a_n : n \in \mathbb{N}\}$ is bounded above, then $\langle a_n \rangle_{n \in \mathbb{N}}$ converges.

Proof. Let $L = \sup(A)$. For any $\epsilon > 0$, since $L - \epsilon$ is not an upper bound of A, there exists $n_0 \in \mathbb{N}$ with $a_{n_0} > L - \epsilon$. Since $\langle a_n \rangle_{n \in \mathbb{N}}$ is increasing, for all $n \in \mathbb{N}$ with $n \geq n_0$ we have

$$L - \epsilon < a_{n_0} \le a_n \le L$$
,

and thus $|a_n - L| < \epsilon$. It follows that $\langle a_n \rangle_{n \in \mathbb{N}}$ converges to L.

Continuity

4.1 Limits of Functions

Definition 4.1. Let X and Y be a metric spaces and let $f: D \to Y$ be a map with $D \subseteq X$. Let $a \in X$ be a limit point and $b \in Y$. Then we say that b is the **limit** of f at a, denoted

$$\lim_{x \to a} f(x) = b,$$

if for any $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in D$,

$$0 < d_X(x, a) < \delta \quad \Rightarrow \quad d_Y(f(x), b) < \epsilon.$$

4.2 Continuous Functions

Definition 4.2. Let X and Y be a metric spaces and let $f: D \to Y$ be a map with $D \subseteq X$. We say that f is **continuous** at $a \in X$ if for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$d_Y(f(x), f(a)) < \epsilon$$

holds for any $x \in D$ with

$$d_X(x,a) < \delta.$$

Also, we say that f is **continuous** on D if f is continuous at every point of D.

Theorem 4.3. Let X and Y be metric spaces. Let $f: X \to Y$ be a map. Then f is continuous if and only if $f^{-1}(E)$ is open for any open set E in Y.

Proof. To be completed. \Box

4.3 Properties of Continuous Maps

Theorem 4.4. Let X and Y be metric spaces, and let $f: X \to Y$ be a continuous map. If $K \subseteq X$ is compact, then f(K) is compact.

Proof. For any open cover $\{V_{\alpha}\}_{{\alpha}\in A}$ of f(K), we have

$$K \subseteq f^{-1}(f(K)) \subseteq f^{-1}\left(\bigcup_{\alpha \in A} V_{\alpha}\right) = \bigcup_{\alpha \in A} f^{-1}(V_{\alpha}).$$

Since f is continuous, $\{f^{-1}(V_{\alpha})\}_{{\alpha}\in A}$ is an open cover of K. Due to compactness of K, there exist $\alpha_1, \ldots, \alpha_m \in A$ such that

$$K \subseteq \bigcup_{i=1}^{m} f^{-1}(V_{\alpha_i}),$$

and we have

$$f(K) \subseteq f\left(\bigcup_{i=1}^m f^{-1}(V_{\alpha_i})\right) = f\left(f^{-1}\left(\bigcup_{i=1}^m V_{\alpha_i}\right)\right) = \bigcup_{i=1}^m V_{\alpha_i}.$$

Thus, f(K) is compact.

Theorem 4.5. Let X be a metric space and let $f: X \to \mathbb{R}$ be a continuous map. If $K \subseteq X$ is compact, then $\max(f(K))$ and $\min(f(K))$ exist.

Proof. Since f is continuous and K is compact, f(K) is a compact subset of \mathbb{R} . Thus, f(K) has maximum and minimum.

Theorem 4.6 (Intermediate Value Theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous and let $c \in \mathbb{R}$. If f(a) < c < f(b), then f(x) = c for some $x \in (a, b)$.

Proof. To be completed. \Box

Differentiation

5.1 Derivatives

Definition 5.1. Let $f: D \to \mathbb{R}$ be a map with $D \subseteq \mathbb{R}$. For each $a \in \mathbb{R}$ such that $(a - \delta, a + \delta) \subseteq D$ for some $\delta > 0$, we define the **derivative** of f at a by

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

We say that f is **differentiable** at a if f'(a) exists.

Theorem 5.2. Let $f: D \to \mathbb{R}$ be a map with $D \subseteq \mathbb{R}$. For each $a \in \mathbb{R}$ such that $(a - \delta, a + \delta) \subseteq D$ for some $\delta > 0$, if f is differentiable at a, then f is continuous at a.

Proof. We have

$$\lim_{x \to a} f(x) = \lim_{h \to 0} f(a+h)$$

$$= \lim_{h \to 0} \left(f(a) + \frac{f(a+h) - f(a)}{h} \cdot h \right)$$

$$= f(a) + f'(a) \cdot 0$$

$$= f(a).$$

Theorem 5.3. Let f and g be real functions. If both f and g are differentiable at $a \in \mathbb{R}$, then the following statements are true.

- (a) f + g is differentiable at a, and (f + g)'(a) = f'(a) + g'(a).
- (b) $f \cdot g$ is differentiable at a, and $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$.
- (c) If $g(a) \neq 0$, then 1/g is differentiable at a, and $(1/g)'(a) = -g'(a)/(g(a))^2$.
- (a) We have

Proof.

$$(f+g)'(a) = \lim_{h \to 0} \frac{(f+g)(a+h) - (f+g)(a)}{h}$$

$$= \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} + \frac{g(a+h) - g(a)}{h} \right)$$

$$= f'(a) + g'(a).$$

(b) We have

$$(f \cdot g)'(a) = \lim_{h \to 0} \frac{(f \cdot g)(a+h) - (f \cdot g)(a)}{h}$$

$$= \lim_{h \to 0} \frac{f(a+h)g(a+h) - f(a)g(a+h) + f(a)g(a+h) - f(a)g(a)}{h}$$

$$= \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \cdot g(a+h) + f(a) \cdot \frac{g(a+h) - g(a)}{h} \right)$$

$$= f'(a) \cdot g(a) + f(a) \cdot g'(a).$$

(c) We have

$$\left(\frac{1}{g}\right)'(a) = \lim_{h \to 0} \frac{(1/g)(a+h) - (1/g)(a)}{h}$$

$$= \lim_{h \to 0} \frac{g(a) - g(a+h)}{hg(a)g(a+h)}$$

$$= \frac{-g'(a)}{(g(a))^2}.$$

Theorem 5.4 (Chain Rule). Let f and g be real functions. If f is differentiable at $a \in \mathbb{R}$ and g is differentiable at f(a), then $g \circ f$ is differentiable at a, and

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a).$$

Proof. Let

$$u(x,h) = \begin{cases} 0, & \text{if } h = 0\\ \frac{f(x+h) - f(x)}{h} - f'(x), & \text{otherwise} \end{cases}$$

and

$$v(y,k) = \begin{cases} 0, & \text{if } k = 0\\ \frac{g(y+k) - g(y)}{k} - g'(y), & \text{otherwise.} \end{cases}$$

Note that we have

$$f(x+h) = f(x) + h \cdot (f'(x) + u(x,h))$$

$$g(y+k) = g(y) + k \cdot (g'(y) + v(y,k)).$$

Then for every $h \neq 0$ we have

$$\frac{g(f(a+h)) - g(f(a))}{h} = \frac{(f(a+h) - f(a)) \cdot (g'(f(a)) + v(f(a), f(a+h) - f(a)))}{h}$$
$$= (f'(a) + u(a,h)) \cdot (g'(f(a)) + v(f(a), (f'(a) + u(a,h))h)).$$

Since

$$\lim_{h \to 0} u(x, h) = 0 \quad \text{and} \quad \lim_{k \to 0} v(y, k) = 0,$$

it follows that

$$(g \circ f)'(a) = \lim_{h \to 0} \frac{g(f(a+h)) - g(f(a))}{h} = f'(a) \cdot g'(f(a)).$$

5.2 The Mean Value Theorem

Theorem 5.5. Let f be a real function. If f has a local maximum at a and f is differentiable at a, then f'(a) = 0.

Proof. Assume for contradiction that $f'(a) \neq 0$. Choose $\delta > 0$ such that $f(x) \leq f(a)$ and

$$\left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| < \frac{|f'(a)|}{2}$$

hold for all $x \in (a - \delta, a + \delta)$. If f'(a) > 0, then

$$f(x) - f(a) > \frac{f'(a)(x-a)}{2} > 0$$

for all $x \in (a, a + \delta)$, contradiction. If f'(a) < 0, then

$$f(x) - f(a) > \frac{f'(a)(x-a)}{2} > 0$$

for all $x \in (a - \delta, a)$, contradiction. Thus, f'(a) = 0.

Theorem 5.6 (Rolle's Theorem). Let f be a real function that is continuous on [a, b] and is differentiable on (a, b). If f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Proof. Let $c^+, c^- \in [a, b]$ such that $f(c^-) \le f(x) \le f(c^+)$ for all $x \in [a, b]$. If $\{c^+, c^-\} = \{a, b\}$, then f is a constant function, and thus f'(c) = 0 for all $c \in (a, b)$. Otherwise, let $c \in \{c^+, c^-\} \setminus \{a, b\}$, and we have f'(c) = 0.

Theorem 5.7 (Mean Value Theorem). Let f be a real function that is continuous on [a, b] and is differentiable on (a, b). Then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(a) - f(b)}{a - b}.$$

Proof. Define $g:[a,b]\to\mathbb{R}$ with

$$g(x) = f(x) - f(a) - \frac{f(a) - f(b)}{a - b} \cdot (x - a).$$

Note that g is continuous on [a, b] and is differentiable on (a, b). Also we have g(a) = g(b) = 0. Thus, there exists $c \in (a, b)$ with g'(c) = 0. Since

$$g'(x) = f'(x) - \frac{f(a) - f(b)}{a - b}$$

holds for all $x \in (a, b)$, we have

$$f'(c) = \frac{f(a) - f(b)}{a - b}.$$

Integration

6.1 Integrals

Definition 6.1. Let [a, b] be a given interval. A **partition** of [a, b] is a finite set

$$P = \{x_0, x_1, \dots, x_n\}$$
 with $a \le x_0 < x_1 < \dots < x_{n-1} < x_n \le b$.

For every partition P of [a, b], the **upper sum** of f with respect to P is defined by

$$U(f, P) = \sum_{i=1}^{n} \sup\{f(x) : x_{i-1} \le x \le x_i\} \cdot (x_i - x_{i-1}),$$

and the **lower sum** of f with respect to P is defined by

$$L(f, P) = \sum_{i=1}^{n} \inf\{f(x) : x_{i-1} \le x \le x_i\} \cdot (x_i - x_{i-1}).$$

Finally, we define the **upper integral** and the **lower integral** of f on [a,b] by

$$\int_{a}^{b} f(x) dx = \inf \{ U(f, P) : P \text{ is a parition of } [a, b] \}$$

and

$$\int_a^b f(x) dx = \sup \{ L(f, P) : P \text{ is a parition of } [a, b] \},$$

respectively. If

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx,$$

then we say that f is **integrable** on [a, b], and this common value is denoted by

$$\int_a^b f(x) \, dx.$$

Sequences of Functions

7.1 Pointwise Convergence

Definition 7.1. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of real-valued functions defined on $D\subseteq\mathbb{R}$. We say that $(f_n)_{n\in\mathbb{N}}$ converges pointwise to a function f defined on D if

$$\lim_{n \to \infty} f_n(x) = f(x)$$

for all $x \in D$.

7.2 Uniform Convergence

Definition 7.2. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of real-valued functions defined on $D\subseteq\mathbb{R}$. We say that $(f_n)_{n\in\mathbb{N}}$ converges uniformly to a function f defined on D, if for each $\epsilon\in\mathbb{R}^+$ there exists $n_0\in\mathbb{N}$ such that

$$n \ge N \quad \Rightarrow \quad |f_n(x) - f(x)| < \epsilon$$

for all $x \in D$ and $n \in \mathbb{N}$.