	Cognome	
Informatica teledidattica 2023/2024	Nome	
Scritto di ALGEBRA del 18/04/2024		

L'esame ha la durata di due ore. Rispondere negli spazi predisposti e giustificare le risposte in modo chiaro ed esauriente. Risposte non giustificate non saranno accreditate.

Esercizio 1.

(a) Si calcoli il resto della divisione per 11 del numero 77777⁹⁸⁷⁶⁵⁴³².

(b) Sia n un numero dispari positivo maggiore o uguale a 3. Si consideri l'anello \mathbb{Z}_n i cui elementi sono $\bar{0}, \bar{1}, \ldots, \overline{n-1}$. Dimostrare che la somma di tutti gli elementi di \mathbb{Z}_n è pari a $\bar{0}$.

(c) Ricordo che risolvere una congruenza lineare della forma $aX \equiv b \pmod{n}$ consiste nell'elencare tutte le soluzioni modulo n a due a due incongrue modulo n. Dunque, in generale, una siffatta congruenza può avere più di una soluzione modulo n e risolvere la congruenza significa elencare tutte tali soluzioni modulo n. Questo detto, si risolvano le congruenze

 $15X \equiv 4 \pmod{133}$ e $1288X \equiv 21 \pmod{1575}$.

Esercizio 2.

(a) Siano $E = \langle u \rangle$ ed $F = \langle v, w \rangle$ i sottospazi di \mathbb{R}^3 generati rispettivamente dai vettori $u = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ e $v = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Stabilire se l'endomorfismo f di \mathbb{R}^3 tale che f(x) = x per ogni $x \in E$ e f(x) = 0 per ogni $x \in F$ è diagonalizzabile e, in caso affermativo, calcolare ua base di autovettori per f.

- (b) Stabilire, motivando la risposta, quali dei seguenti insiemi sono spazi vettoriali:
- (i) $\{A \in M_2(\mathbb{R}) \mid \det(A) = 0\}$, (ii) $\{A \in M_2(\mathbb{R}) \mid \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, a, b \in \mathbb{R}\}$, (iii) $\{\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid x \ge 0\}$, (iv) $\{A \in M_2(\mathbb{R}) \mid A = (a_{i,j}), a_{1,2} = 0\}$.

(c) Determinare un sottospazio F di \mathbb{R}^4 tale che F abbia dimensione 3 ed F contenga il sottospazio

$$E = \langle \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} \rangle.$$