7. Силы трения. Силы упругости. Закон всемирного тяготения. Рассмотрим основные силы, действующие в природе: **силы трения**, **силы упругости** и **закон всемирного тяготения**.

1. Силы трения

Силы трения возникают при взаимодействии тел, соприкасающихся друг с другом, и направлены против относительного движения (или его возможности).

Виды сил трения:

1. Трение покоя:

- о Возникает, когда тело пытаются сдвинуть с места, но оно остаётся в покое.
- о Максимальная сила трения покоя: $F_{\text{тр. покоя}} = \mu N$, где:
 - μ коэффициент трения покоя,
 - N сила нормальной реакции опоры.

2. Трение скольжения:

- о Возникает при скольжении одного тела по поверхности другого.
- о Сила трения скольжения: $F_{\text{тр. скольжения}} = \mu N$, где:
 - μ коэффициент трения скольжения,
 - N сила нормальной реакции опоры.

3. Трение качения:

- о Возникает при качении одного тела по поверхности другого.
- о Обычно сила трения качения значительно меньше силы трения скольжения.

2. Силы упругости

Силы упругости возникают при деформации тел и стремятся вернуть тело в исходное состояние.

Закон Гука:

Для малых деформаций сила упругости пропорциональна величине деформации:

$$F_{\text{vm}} = -k\Delta x$$
,

где:

- F_{ynp} сила упругости,
- k коэффициент упругости (жёсткость),
- Δx величина деформации (удлинение или сжатие),
- знак "-" указывает, что сила упругости направлена противоположно деформации.

Примеры:

- Пружина: $F_{\text{vmp}} = -k x$.
- Резиновый шнур: $F_{ynp} = -k\Delta l$.

3. Закон всемирного тяготения

Закон всемирного тяготения описывает силу гравитационного притяжения между двумя телами.

Формулировка:

Два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Математически закон записывается как:

$$F = G \frac{m_1 m_2}{r^2}$$
,

где:

- F сила гравитационного притяжения,
- G гравитационная постоянная ($G \approx 6,67 \cdot 10^{-11} \,\mathrm{H} \,\mathrm{cdotp} \,\mathrm{m}^2/\mathrm{K}\Gamma^2$),
- m_1 и m_2 массы тел,
- r расстояние между центрами масс тел.

Особенности:

- Сила гравитации всегда направлена вдоль линии, соединяющей центры масс тел.
- Сила гравитации действует на любые тела, имеющие массу.

• Вблизи поверхности Земли сила тяжести F = mg, где $g = G \frac{M_{_{3 \text{емли}}}}{R_{_{3 \text{емли}}}^2} \approx 9,81\,\text{m/c}^2$.

4. Примеры

Пример 1: Сила трения

Тело массой $m=5~{\rm kr}$ лежит на горизонтальной поверхности. Коэффициент трения покоя $\mu=0$,4. Найдём максимальную силу трения покоя:

$$F_{\text{TD. ПОКОЯ}} = \mu N = \mu m g = 0, 4.5.9, 81 = 19,62 \text{ H}.$$

Пример 2: Сила упругости

Пружина жёсткостью $k = 200 \, \text{H/m}$ растянута на $\Delta x = 0.1 \, \text{м}$. Найдём силу упругости:

$$F_{ynp} = -k \Delta x = -200 \cdot 0, 1 = -20 H.$$

Знак "-" указывает, что сила направлена против деформации.

Пример 3: Закон всемирного тяготения

Массы двух тел m_1 = $10\,\mathrm{kr}$ и m_2 = $20\,\mathrm{kr}$, расстояние между ними r= $5\,\mathrm{m}$. Найдём силу гравитационного притяжения:

$$F = G \frac{m_1 m_2}{r^2} = 6,67 \cdot 10^{-11} \cdot \frac{10 \cdot 20}{5^2} = 5,336 \cdot 10^{-10} \text{H}.$$

5. Итог

- Силы трения:
 - о Трение покоя: $F_{\text{тр. покоя}} = \mu N$.
 - о Трение скольжения: $F_{\scriptscriptstyle \mathrm{Tp.\; CKOЛЬЖЕНИЯ}} = \mu\,N$.
- Силы упругости:
 - о Закон Гука: $F_{ynp} = -k \Delta x$.
- Закон всемирного тяготения:

$$F = G \frac{m_1 m_2}{r^2}$$
.

Эти силы играют ключевую роль в механике и широко применяются для анализа движения тел, расчёта деформаций и гравитационных взаимодействий.