EE363 Winter 2008-09

Lecture 16 Analysis of systems with sector nonlinearities

- Sector nonlinearities
- Lur'e system
- Analysis via quadratic Lyapunov functions
- Extension to multiple nonlinearities

Sector nonlinearities

a function $\phi: \mathbf{R} \to \mathbf{R}$ is said to be in sector [l,u] if for all $q \in \mathbf{R}$, $p = \phi(q)$ lies between lq and uq

can be expressed as quadratic inequality

$$(p-uq)(p-lq) \le 0$$
 for all $q, p = \phi(q)$

examples:

- ullet sector [-1,1] means $|\phi(q)| \leq |q|$
- sector $[0, \infty]$ means $\phi(q)$ and q always have same sign (graph in first & third quadrants)

some equivalent statements:

• ϕ is in sector [l, u] iff for all q,

$$\left|\phi(q) - \frac{u+l}{2}q\right| \le \frac{u-l}{2}|q|$$

ullet ϕ is in sector [l,u] iff for each q there is $\theta(q)\in [l,u]$ with $\phi(q)=\theta(q)q$

Nonlinear feedback representation

linear dynamical system with nonlinear feedback

closed-loop system: $\dot{x} = Ax + B\phi(t, Cx)$

- a common representation that separates linear and nonlinear time-varying parts
- \bullet often p, q are scalar signals

Lur'e system

a (single nonlinearity) Lur'e system has the form

$$\dot{x} = Ax + Bp, \qquad q = Cx, \qquad p = \phi(t, q)$$

where $\phi(t,\cdot):\mathbf{R}\to\mathbf{R}$ is in sector [l,u] for each t

here A, B, C, l, and u are given; ϕ is otherwise not specified

- a common method for describing time-varying nonlinearity and/or uncertainty
- ullet goal is to prove stability, or derive a bound, using only the sector information about ϕ
- if we succeed, the result is strong, since it applies to a large family of nonlinear time-varying systems

Stability analysis via quadratic Lyapunov functions

let's try to establish global asymptotic stability of Lur'e system, using quadratic Lyapunov function $V(z)=z^TPz$

we'll require P>0 and $\dot{V}(z)\leq -\alpha V(z)$, where $\alpha>0$ is given

second condition is:

$$\dot{V}(z) + \alpha V(z) = 2z^T P \left(Az + B\phi(t, Cz) \right) + \alpha z^T P z \le 0$$

for all z and all sector [l,u] functions $\phi(t,\cdot)$

same as:

$$2z^T P (Az + Bp) + \alpha z^T Pz \le 0$$

for all z, and all p satisfying $(p - uq)(p - lq) \leq 0$, where q = Cz

we can express this last condition as a quadratic inequality in (z, p):

$$\begin{bmatrix} z \\ p \end{bmatrix}^T \begin{bmatrix} \sigma C^T C & -\nu C^T \\ -\nu C & 1 \end{bmatrix} \begin{bmatrix} z \\ p \end{bmatrix} \le 0$$

where $\sigma = lu$, $\nu = (l + u)/2$

so $\dot{V} + \alpha V \leq 0$ is equivalent to:

$$\begin{bmatrix} z \\ p \end{bmatrix}^T \begin{bmatrix} A^TP + PA + \alpha P & PB \\ B^TP & 0 \end{bmatrix} \begin{bmatrix} z \\ p \end{bmatrix} \le 0$$

whenever

$$\begin{bmatrix} z \\ p \end{bmatrix}^T \begin{bmatrix} \sigma C^T C & -\nu C^T \\ -\nu C & 1 \end{bmatrix} \begin{bmatrix} z \\ p \end{bmatrix} \le 0$$

by (lossless) S-procedure this is equivalent to: there is a $\tau \geq 0$ with

$$\begin{bmatrix} A^T P + PA + \alpha P & PB \\ B^T P & 0 \end{bmatrix} \le \tau \begin{bmatrix} \sigma C^T C & -\nu C^T \\ -\nu C & 1 \end{bmatrix}$$

or

$$\begin{bmatrix} A^T P + PA + \alpha P - \tau \sigma C^T C & PB + \tau \nu C^T \\ B^T P + \tau \nu C & -\tau \end{bmatrix} \le 0$$

an LMI in P and τ (2,2 block automatically gives $\tau \geq 0$)

by homogeneity, we can replace condition P>0 with $P\geq I$ our final LMI is

$$\begin{bmatrix} A^T P + PA + \alpha P - \tau \sigma C^T C & PB + \tau \nu C^T \\ B^T P + \tau \nu C & -\tau \end{bmatrix} \le 0, \qquad P \ge I$$

with variables P and au

- hence, can efficiently determine if there exists a quadratic Lyapunov function that proves stability of Lur'e system
- this LMI can also be solved via an ARE-like equation, or by a graphical method that has been known since the 1960s
- this method is more sophisticated and powerful than the 1895 approach:
 - replace nonlinearity with $\phi(t,q) = \nu q$
 - choose Q > 0 (e.g., Q = I) and solve Lyapunov equation

$$(A + \nu BC)^T P + P(A + \nu BC) + Q = 0$$

for P

- hope P works for nonlinear system

Multiple nonlinearities

we consider system

$$\dot{x} = Ax + Bp, \qquad q = Cx, \qquad p_i = \phi_i(t, q_i), \quad i = 1, \dots, m$$

where $\phi_i(t,\cdot): \mathbf{R} \to \mathbf{R}$ is sector $[l_i,u_i]$ for each t

we seek $V(z) = z^T P z$, with P > 0, so that $\dot{V} + \alpha V \leq 0$

last condition equivalent to:

$$\begin{bmatrix} z \\ p \end{bmatrix}^T \begin{bmatrix} A^TP + PA + \alpha P & PB \\ B^TP & 0 \end{bmatrix} \begin{bmatrix} z \\ p \end{bmatrix} \le 0$$

whenever

$$(p_i - u_i q_i)(p_i - l_i q_i) \le 0, \quad i = 1, \dots, m$$

we can express this last condition as

$$\begin{bmatrix} z \\ p \end{bmatrix}^T \begin{bmatrix} \sigma c_i c_i^T & -\nu_i c_i e_i^T \\ -\nu_i e_i c_i^T & e_i e_i^T \end{bmatrix} \begin{bmatrix} z \\ p \end{bmatrix} \le 0, \quad i = 1, \dots, m$$

where c_i^T is the ith row of C, e_i is the ith unit vector, $\sigma_i=l_iu_i$, and $\nu_i=(l_i+u_i)/2$

now we use (lossy) S-procedure to get a sufficient condition: there exists $\tau_1, \ldots, \tau_m \geq 0$ such that

$$\begin{bmatrix} A^{T}P + PA + \alpha P - \sum_{i=1}^{m} \tau_{i} \sigma_{i} c_{i} c_{i}^{T} & PB + \sum_{i=1}^{m} \tau_{i} \nu_{i} c_{i} e_{i}^{T} \\ B^{T}P + \sum_{i=1}^{m} \tau_{i} \nu_{i} e_{i} c_{i}^{T} & -\sum_{i=1}^{m} \tau_{i} e_{i} e_{i}^{T} \end{bmatrix} \leq 0$$

we can write this as:

$$\begin{bmatrix} A^T P + PA + \alpha P - C^T DFC & PB + C^T DG \\ B^T P + DGC & -D \end{bmatrix} \le 0$$

where

$$D = \mathbf{diag}(\tau_1, \dots, \tau_m), \qquad F = \mathbf{diag}(\sigma_1, \dots, \sigma_m), \qquad G = \mathbf{diag}(\nu_1, \dots, \nu_m)$$

- this is an LMI in variables P and D
- 2,2 block automatically gives us $\tau_i \geq 0$
- ullet by homogeneity, we can add $P \geq I$ to ensure P > 0
- solving these LMIs allows us to (sometimes) find quadratic Lyapunov functions for Lur'e system with multiple nonlinearities (which was impossible until recently)

Example

we consider system

$$\dot{x}_2 = \phi_1(t, x_1), \qquad \dot{x}_3 = \phi_2(t, x_2), \qquad \dot{x}_1 = \phi_3(t, -2(x_1 + x_2 + x_3))$$

where $\phi_1(t,\cdot),\ \phi_2(t,\cdot),\ \phi_3(t,\cdot)$ are sector $[1-\delta,1+\delta]$

- ullet δ gives the percentage nonlinearity
- for $\delta=0$, we have (stable) linear system $\dot{x}=\begin{bmatrix} -2 & -2 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}x$

let's put system in Lur'e form:

$$\dot{x} = Ax + Bp, \qquad q = Cx, \qquad p_i = \phi_i(q_i)$$

where

$$A = 0, \qquad B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & -2 & -2 \end{bmatrix}$$

the sector limits are $l_i = 1 - \delta$, $u_i = 1 + \delta$

define $\sigma = l_i u_i = 1 - \delta^2$, and note that $(l_i + u_i)/2 = 1$

we take x(0)=(1,0,0), and seek to bound $J=\int_0^\infty \|x(t)\|^2\ dt$

(for $\delta = 0$ we can calculate J exactly by solving a Lyapunov equation)

we'll use quadratic Lyapunov function $V(z)=z^TPz$, with $P\geq 0$

Lyapunov conditions for bounding J: if $\dot{V}(z) \leq -z^T z$ whenever the sector conditions are satisfied, then $J \leq x(0)^T Px(0) = P_{11}$

use S-procedure as above to get sufficient condition:

$$\begin{bmatrix} A^T P + PA + I - \sigma C^T DC & PB + C^T D \\ B^T P + DC & -D \end{bmatrix} \le 0$$

which is an LMI in variables P and $D = \mathbf{diag}(\tau_1, \tau_2, \tau_3)$

note that LMI gives $\tau_i \geq 0$ automatically

to get best bound on J for given δ , we solve SDP

minimize
$$P_{11}$$
 subject to
$$\begin{bmatrix} A^TP+PA+I-\sigma C^TDC & PB+C^TD \\ B^TP+DC & -D \end{bmatrix} \leq 0$$

$$P>0$$

with variables P and D (which is diagonal)

optimal value gives best bound on J that can be obtained from a quadratic Lyapunov function, using S-procedure

Upper bound on J

ullet bound is tight for $\delta=0$; for $\delta\geq0.15$, LMI is infeasible

Approximate worst-case simulation

- ullet heuristic method for finding 'bad' ϕ_i 's, i.e., ones that lead to large J
- ullet find V from worst-case analysis as above
- \bullet at time t, choose p_i 's to maximize $\dot{V}(x(t))$ subject to sector constraints $|p_i-q_i| \leq \delta |q_i|$
- using $\dot{V}(x(t)) = 2x^T P(Ax + Bp)$, we get

$$p = q + \delta \operatorname{diag}(\operatorname{sign}(B^T P x))|q|$$

simulate

$$\dot{x} = Ax + Bp,$$
 $p = q + \delta \operatorname{diag}(\operatorname{sign}(B^T P x))|q|$

starting from x(0) = (1, 0, 0)

Approximate worst-case simulation

AWC simulation with $\delta=0.05$: $J_{\rm awc}=1.49$; $J_{\rm ub}=1.65$ for comparison, linear case ($\delta=0$): $J_{\rm lin}=1.00$

Upper and lower bounds on worst-case ${\cal J}$

ullet lower curve gives J obtained from approximate worst-case simulation