An Introduction To Algebraic Topology

Rotman

July 6, 2021

Contents

1	Introduction	1
	1.1 Notation	1
	1.2 Brouwer Fixed Point Theorem	2
2	Categories and Functors	3
3	Some Basic Topological Notions	7
	3.1 Homotopy	7
	3.2 Convexity, Contractibility, and Cones	11
4	Problem	14
5	Index	14

1 Introduction

1.1 Notation

$$I = [0, 1].$$

$$S^n = \{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \}$$

 S^n is called the n-sphere. $S^n \subset \mathbb{R}^{n+1}$ (S^1 is the circle); 0-sphere S^0 consists of the two points $\{-1,1\}$ and hence is a discrete two-point space. We may regard S^n as the **equator** of S^{n+1}

$$S^n = \mathbb{R}^{n+1} \cap S^{n+1} = \{(x_1, \dots, x_{n+2}) \in S^{n+1} : x_{n+2} = 0\}$$

The **north pole** is $(0,0,\dots,0,1)\in S^n$; the **south pole** is $(0,0,\dots,0,-1)$. The **antipode** of $x=(x_1,\dots,x_{n+1})\in S^n$ is the other endpoint of the diameter

having one endpoint x; thus the antipode of x is $-x = (-x_1, \dots, -x_{n+1})$, for the distance from -x to x is 2.

$$D^n = \{ x \in \mathbb{R}^n \mid ||x|| \le 1 \}$$

 D^n is called the n-disk (or n-ball). Observe that $S^{n-1} \subset D^n \subset \mathbb{R}^n$; indeed S^{n-1} is the boundary of D^n in \mathbb{R}^n

$$\Delta^n = \{(x_1,\ldots,x_{n+1}) \in \mathbb{R}^{n+1}: \text{ each } x_i \geq 0 \text{ and } \sum x_i = 1\}$$

 Δ^n is called the **standard** *n***-simplex**. Δ^0 is a point, Δ^1 is a closed interval, Δ^2 is a triangle (with interior), Δ^3 is a (solid) tetrahedron, and so on.

There is a standard homeomorphism from S^n - {north pole} to \mathbb{R}^n , called **stereographic projection**. Denote the north pole by N, and define $\sigma: S^n - \{N\} \to \mathbb{R}^n$ to be the intersection of \mathbb{R}^n and the line joining x and N. Points on the latter line have the form tx + (1-t)N, hence they have coordinates $(tx_1, \ldots, tx_n, tx_{n+1} + (1-t))$. The last coordinate is zero for $t = (1-x_{n+1})^{-1}$; hence

$$\sigma(x) = (tx_1, \dots, tx_n)$$

where $t = (1 - x_{n+1})^{-1}$. It is now routine to check that σ is indeed a homeomorphism. Note that $\sigma(x) = x$ iff x lies on the equator S^{n-1}

1.2 Brouwer Fixed Point Theorem

Theorem 1.1. Every continuous $f: D^1 \to D^1$ has a fixed point

Proof. Let f(-1) = a and f(1) = b. If either f(-1) = -1 or f(1) = 1, we are done. Therefore we may assume that f(-1) = a > -1 and that f(1) = b < 1 as drawn. If G is the graph of f and Δ is the graph of the identity

function, then we must prove that $G \cap \Delta \neq \emptyset$. The idea is to use a connectness argument to show that every path in $D^1 \times D^1$ from a to b must cross Δ .

Since f is continuous, $G = \{(x, f(x)) : x \in D^1\}$ is connected (continuous image of connected space is connected). Define $A = \{(x, f(x)) : f(x) > x\}$ and $B = \{(x, f(x)) : f(x) < x\}$. Note that $a \in A$ and $b \in B$, so that $A \neq \emptyset$ and $B \neq \emptyset$. If $G \cap \Delta = \emptyset$, then G is the disjoint union of A and B.

Definition 1.2. A subspace X of a topological space Y is a **retract** of Y if there is a continuous map $r: Y \to X$ with r(x) = x for all $x \in X$; such a map r is called a **retraction**

Theorem 1.3 (Brouwer fixed point theorem). *If* $f: D^n \to D^n$ *is continuous, then there exists* $x \in D^n$ *with* f(x) = x

2 Categories and Functors

Definition 2.1. A category \mathcal{C} consists of three ingredients: a class of **objects**, obj \mathcal{C} ; sets of **morphisms** $\operatorname{Hom}(A,B)$, one for every ordered pair $A,B \in \operatorname{obj} \mathcal{C}$; **composition** $\operatorname{Hom}(A,B) \times \operatorname{Hom}(B,C) \to \operatorname{Hom}(A,C)$, denoted by $(f,g) \to g \circ f$, for every $A,B,C \in \operatorname{obj} \mathcal{C}$ satisfying the following axioms

- 1. the family of Hom(A, B)'s is pairwise disjoint
- 2. composition is associative when defined
- 3. for each $A \in \text{obj } \mathcal{C}$ there exists an identity $1_A \in \text{Hom}(A,A)$ satisfying $1_A \circ f = f$ for every $f \in \text{Hom}(B,A)$, all $B \in \text{obj } \mathcal{C}$ and $g \circ 1_A = g$ for every $g \in \text{Hom}(A,C)$, all $C \in \text{obj } \mathcal{C}$

Definition 2.2. Let C and A be categories with obj $C \subset \operatorname{obj} A$. If $A, B \in \operatorname{obj} C$, let's denote the two possible Hom sets by $\operatorname{Hom}_{C}(A, B)$ and $\operatorname{Hom}_{A}(A, B)$. Then C is a **subcategory** of A if $\operatorname{Hom}_{C}(A, B) \subset \operatorname{Hom}_{A}(A, B)$ for all $A, B \in \operatorname{obj} C$ and if composition in C is the same as composition in A

Example 2.1. $C = \mathbf{Top}^2$. here obj C consists of all ordered pairs (X, A) where X is a topological space and A is a subspace of X. A morphism $f:(X,A) \to (Y,B)$ is an ordered pair (f,f') where $f:X \to Y$ is continuous and fi=jf' (where i and j are inclusions)

$$\begin{array}{ccc}
A & \stackrel{i}{\longrightarrow} & X \\
f' \downarrow & & \downarrow f \\
B & \stackrel{i}{\longrightarrow} & Y
\end{array}$$

and composition is coordinatewise. **Top**² is called the category of **pairs** (of topological spaces)

Example 2.2. $C = \mathbf{Top}_*$. Here obj C consists of all ordered pairs (X, x_0) where X is a topological space and x_0 is a point of X. \mathbf{Top}_* is a subcategory of \mathbf{Top}^2 and it is called the category of **pointed spaces**; x_0 is called the **basepoint** of (X, x_0) and morphisms are called **pointed maps** (or **basepoint preserving maps**). The category \mathbf{Sets}_* of pointed sets is defined similarly

Exercise 2.0.1. Let $f \in \operatorname{Hom}(A,B)$ be a morphism in a category \mathcal{C} . If f has a left inverse g ($g \in \operatorname{Hom}(B,A) \setminus$ and $g \circ f = 1_A$) and a right inverse h ($h \in \operatorname{Hom}(B,A)$ and $f \circ h = 1_B$), then g = h

Exercise 2.0.2. A set X is called **quasi-ordered** (or **pre-ordered**) if X has a transitive and reflexive relation \leq (such a set is partially ordered if \leq is antisymmetric). Prove that the following construction gives a category C. Define obj C = X, if $x, y \in X$ and $x \nleq y$, define $\operatorname{Hom}(x, y) = \emptyset$; if $x \leq y$, define $\operatorname{Hom}(x, y)$ to be a set with exactly one element, denoted by i_y^x ; if $x \leq y \leq z$ define composition by $i_z^y \circ i_y^x = i_z^x$

Exercise 2.0.3. Let G be a **monoid**, that is, a semigroup with 1. Show that the following gives a category C. Let obj C have exactly one element, denoted by *; define $\operatorname{Hom}(*,*) = G$ and define composition $G \times G \to G$ as the given multiplication in G

Definition 2.3. A **diagram** in a category \mathcal{C} is a directed graph whose vertices are labeled by objects of \mathcal{C} and whose directed edges are labeled by morphisms in \mathcal{C} . A **commutative diagram** in \mathcal{C} is a diagram in which, for each pair of vertices, every two paths (composites) between them are equal as morphisms.

Exercise 2.0.4. Given a category C, shows that the following construction gives a category M. First, an object of M is a morphism of C. Next, if $f,g \in \text{obj } M$, say $f:A \to B$ and $g:C \to D$, then a morphism in M is an ordered pair (h,k) of morphisms in C s.t. the diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow h & & \downarrow k \\
C & \xrightarrow{g} & D
\end{array}$$

commutes. Define composition coordinatewise

$$(h', k') \circ (h, k) = (h' \circ h, k' \circ k)$$

Definition 2.4. A **congruence** on a category C is an equivalence relation \sim on the class $\bigcup_{(A,B)} \operatorname{Hom}(A,B)$ of all morphisms in C s.t.

- 1. $f \in \text{Hom}(A, B)$ and $f \sim f'$ implies $f' \in \text{Hom}(A, B)$
- 2. $f \sim f'$, $g \sim g'$ and the composite $g \circ f$ exists imply that

$$g \circ f \sim g' \circ f'$$

Theorem 2.5. Let C be a category with congruence \sim and let [f] denote the equivalence class of a morphism f. Define C' as follows

$$obj C' = obj C$$

$$Hom_{C'}(A, B) = \{ [f] : f \in Hom_{C}(A, B) \}$$

$$[g] \circ [f] = [g \circ f]$$

Then C' is a category

Proof. Property 1 in the definition of congruence shows that \sim partitions each set $\operatorname{Hom}_{\mathcal{C}}(A,B)$ and this implies that $\operatorname{Hom}_{\mathcal{C}'}(A,B)$ is a set; moreover, the family of these sets is pairwise disjoint. Property 2 in the definition of congruence shows that composition in \mathcal{C}' is well. \mathcal{C}' is associative and $[1_A]$ is the identity is not hard

The category C' is called a **quotient category** of C; one usually denotes $\operatorname{Hom}_{C'}(A,B)$ by [A,B]

Exercise 2.0.5. Let G be a group and let C be the one-object category it defines: obj $C = \{*\}$, $\operatorname{Hom}(*,*) = G$ and composition is the group operation. If H is a normal subgroup of G, define $x \sim y$ to mean $xy^{-1} \in H$. Show that \sim is a congruence on C and that [*,*] = G/H in the corresponding quotient category

Definition 2.6. If A and C are categories, a **functor** $T : A \to C$ is a function, that is,

- 1. $A \in \text{obj } A \text{ implies } TA \in \text{obj } C$
- 2. if $f:A\to A'$ is a morphism in A, then $Tf:TA\to TA'$ is a morphism in C
- 3. if f, g are morphisms in A for which $g \circ f$ is defined, then

$$T(g \circ f) = (Tg) \circ (Tf)$$

4. $T(1_A) = 1_{TA}$ for every $A \in \text{obj } A$

Example 2.3. If C is a category, the **identity functor** $J: C \to C$ is defined by JA = A for every object A and Jf = f for every morphism

Example 2.4. If M is a fixed topological space, Then $T_m: \mathbf{Top} \to \mathbf{Top}$ is a functor, where $T_M(X) = X \times M$ and if $f: X \to Y$ is continuous, then $T_M(f): X \times M \to Y \times M$ is defined by $(x,m) \mapsto (f(x),m)$

Example 2.5. Fix an object A in category C. Then $\operatorname{Hom}(A, -) : C \to \mathbf{Sets}$ is a functor assigning to each object B the set $\operatorname{Hom}(A, B)$ and to each morphism $f: B \to B'$ the **induced map** $\operatorname{Hom}(A, f) : \operatorname{Hom}(A, B) \to \operatorname{Hom}(A, B')$ defined by $g \mapsto f \circ g$. One usually denotes the induced map $\operatorname{Hom}(A, f)$ by f_*

Functors as just defined are also called **covariant functors** to distinguish them from **contravariant functors** that reverse the direction of arrows. Thus the functor of the example is sometimes called a **covariant Hom functor**.

Definition 2.7. if A and C are categories, a **contravariant functor** $S : A \to C$ is a function that

- 1. $A \in \text{obj } A \text{ implies } SA \in \text{obj } C$
- 2. if $f:A\to A'$ is a morphism in $\mathcal C$, then $Sf:SA'\to SA$ is a morphism in $\mathcal C$
- 3. if f, g are morphisms in A for which $g \circ f$ is defined, then

$$S(g \circ f) = S(f) \circ S(g)$$

4. $S(1_A) = 1_{SA}$ for every $A \in \text{obj } A$

Example 2.6. Fix an object B in a category C. Then $\operatorname{Hom}(-,B):C\to\operatorname{Sets}$ is a contravariant functor assigning to each object A the set $\operatorname{Hom}(A,B)$ and to each morphism $g:A\to A'$ the **induced map** $\operatorname{Hom}(g,B):\operatorname{Hom}(A',B)\to\operatorname{Hom}(A,B)$ defined by $h\mapsto h\circ g$. One usually denotes the induced map $\operatorname{Hom}(g,B)$ by g^* ; $\operatorname{Hom}(-,B)$ is called a **contravariant Hom functor**

Definition 2.8. An **equivalence** in a category C is a morphism $f: A \to B$ for which there exists a morphism $g: B \to A$ with $f \circ g = 1_B$ and $g \circ f = 1_A$

Theorem 2.9. *If* A *and* C *are categories and* $T : A \to C$ *is a functor of either variance, then* f *an equivalence in* A *implies that* Tf *is an equivalence in* C

Exercise 2.0.6. Let C and A be categories, let \sim be a congruence on C. If $T:C\to A$ is a functor with T(f)=T(g) whenever $f\sim g$, then T defines a functor $T':C'\to A$ (where C' is the quotient category) by T'(X)=T(X) for every object X and T'([f])=T(f) for every morphism f.

Exercise 2.0.7. 1. if X is a topological space, show that C(X), the set of all continuous real-valued functions on X, is a commutative ring with 1 under pointwise operations

$$f + g : x \mapsto f(x) + g(x)$$
 and $f \cdot g \mapsto f(x)g(x)$

for all $x \in X$

2. show that $X \mapsto C(X)$ gives a (contravariant) functor **Top** \rightarrow **Rings**

Proof. 2. From exercise 2.0.4

3 Some Basic Topological Notions

3.1 Homotopy

Definition 3.1. If X and Y are spaces and if f_0, f_1 are continuous maps from X to Y, then f_0 is **homotopic** to f_1 , denoted by $f_0 \simeq f_1$ if there is a continuous map $F: X \times \mathbf{I} \to Y$ with

$$F(x,0) = f_0(x)$$
 and $F(x,1) = f_1(x)$ for all $x \in X$

Such a map F is called a **homotopy**, written as $F: f_0 \simeq f_1$

If $f_t: X \to Y$ is defined by $f_t(x) = F(x,t)$, then a homotopy F gives a one-parameter family of continuous maps deforming f_0 into f_1

Lemma 3.2 (Gluing lemma). Assume that a space X is a finite union of closed subsets $X = \bigcup_{i=1}^n X_i$. If, for some space Y, there are continuous maps $f_i : X_i \to Y$ that agree on overlaps $(f_i|X_i \cap X_j = f_j|X_i \cap X_j$ for all i,j), then there exists a unique continuous $f: X \to Y$ with $f|X_i = f_i$ for all i

Proof. If *C* is closed in *Y*, then

$$\begin{split} f^{-1}(C) &= X \cap f^{-1}(C) = (\bigcup X_i) \cap f^{-1}(C) \\ &= \bigcup (X_i \cap f^{-1}(C)) \\ &= \bigcup (X_i \cap f_i^{-1}(C)) = \bigcup f_i^{-1}(C) \end{split}$$

Since each f_i is continuous, $f_i^{-1}(C)$ is closed in X_i . Since X_i is closed in X, $f_i^{-1}(C)$ is closed in X, therefore $f^{-1}(C)$ is closed in X and f is continuous \square

Lemma 3.3 (Gluing Lemma). Assume that a space X has a (possibly infinite) open cover $X = \bigcup X_i$. If for some space Y, there are continuous maps $f_i : X_i \to Y$ that agree on overlaps, then there exists a unique continuous $f: X \to Y$ with $f|X_i = f_i$ for all i

Theorem 3.4. Homotopy is an equivalence relation on the set of all continuous maps $X \to Y$

Proof. Reflexivity. If $f: X \to Y$, define $F: X \times \mathbf{I} \to Y$ by F(x,t) = f(x) for all $x \in X$ and $t \in \mathbf{I}$; clearly $F: f \simeq f$

Symmetry: Assume that $f \simeq g$, so there is a continuous $F: X \times \mathbf{I} \to Y$ with F(x,0) = f(x) and F(x,1) = g(x) for all $x \in X$. Define $G: X \times \mathbf{I} \to Y$ by G(x,t) = F(x,1-t), and note that $G: g \simeq f$.

Transivity: assume that $F : f \simeq g$ and $G : g \simeq h$. Define $H : X \times I \to Y$ by

$$H(x,t) = \begin{cases} F(x,2t) & 0 \le t \le 1/2 \\ G(x,2t-1) & 1/2 \le t \le 1 \end{cases}$$

Because these functions agree on the overlap $\{(x, 1/2) : x \in X\}$, the gluing lemma shows that H is continuous. Therefore $H : f \simeq h$

Definition 3.5. If $f: X \to Y$ is continuous, its **homotopy class** is the equivalence class

$$[f] = \{ continuous g : X \to Y : g \simeq f \}$$

The family of all such homotopy classes is denoted by [X, Y]

Theorem 3.6. Let $f_i: X \to Y$ and $g_i: Y \to Z$, for i = 0, 1, be continuous. If $f_0 \simeq f_1$ and $g_0 \simeq g_1$, then $g_0 \circ f_0 \simeq g_1 \circ f_1$; that is, $[g_0 \circ f_0] = [g_1 \circ f_1]$

Proof. Let $F: f_0 \simeq f_1$ and $G: g_0 \simeq g_1$ be homotopies. First, we show that

$$g_0 \circ f_0 \simeq g_1 \circ f_0$$

Define $H: X \times \mathbf{I} \to Z$ by $H(x,t) = G(f_0(x),t)$. Clearly, H is continuous; moreover, $H(x,0) = G(f_0(x),0) = g_0(f_0(x))$ and $H(x,1) = G(f_0(x),1) = g_1(f_0(x))$. Now observe that

$$K:g_1\circ f_0\sim g_1\circ f_1$$

where $K: X \times \mathbf{I} \to Z$ is the composite $g_1 \circ F$. Now use the transitivity of the homotopy relation, we have $g_0 \circ f_0 \simeq g_1 \circ f_1$

Corollary 3.7. *Homotopy is a congruence on the category Top.*

It follows from Theorem 2.5 that there is a quotient category whose objects are topological spaces X, whose Hom sets are Hom(X,Y) = [X,Y] and whose composition is $[g] \circ [f] = [g \circ f]$

Definition 3.8. The quotient category just described is called the **homotopy category**, and it is denoted by **hTop**

All the functors $T: \mathbf{Top} \to \mathcal{A}$ that we shall construct, where \mathcal{A} is some "algebraic" category (e.g. **Ab**, **Groups**, **Rings**) will have the property that $f \simeq g$ implies T(f) = T(g). This fact, aside from a natural wish to identify homotopic maps, makes homotopy valuable, beacause it guarantees that the algebraic problem in \mathcal{A} arising from a topological problem via T is simpler than the original problem

Definition 3.9. A continuous map $f: X \to Y$ is a **homotopy equivalence** if there is a continuous map $g: Y \to X$ with $g \circ f \simeq 1_X$ and $f \circ g \simeq 1_Y$. Two spaces X and Y have the **same homotopy type** if there is a homotopy equivalence $f: X \to Y$

f is a homotopy equivalence iff $[f] \in [X, Y]$ is an equivalence in **hTop**. ()

Definition 3.10. Let X and Y be spaces, and let $y_0 \in Y$. The **constant map** at y_0 is the function $c: X \to Y$ with $c(x) = y_0$ for all $x \in X$. A continuous map $f: X \to Y$ is **nullhomotopic** if there is a constant map $c: X \to Y$ with $f \simeq c$

Theorem 3.11. Let \mathbb{C} denote the complex numbers, let $\Sigma_{\rho} \subset \mathbb{C} \approx \mathbb{R}^2$ denote the circle with center at the origin 0 and radius ρ , and let $f_{\rho}^n : \Sigma_{\rho} \to \mathbb{C} - \{0\}$ denote the restriction to Σ^{ρ} of $z \mapsto z^n$. If none of the maps f_{ρ}^n is nullhomotopic ($n \ge 1$ and $\rho > 0$) then the fundamental theorem of algebra is true (i.e., every nonconstant complex polynomial has a complex root)

Proof. Consider the polynomial with complex coefficients

$$g(z) = z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$$

Choose $\rho > \max\{1, \sum_{i=1}^{n-1} |a_i|\}$ and define $F: \Sigma_{\rho} \times \mathbf{I} \to \mathbb{C}$

$$F(z,t) = z^{n} + \sum_{i=0}^{n-1} (1-t)a_{i}z^{i}$$

It's obvious that $F:g|\Sigma_{\rho}\simeq f_{\rho}^{n}$ if we can show that the image of F is contained in $\mathbb{C}-\{0\}$. that is, $F(z,t)\neq 0$. If, on the contrary, F(z,t)=0 for some $t\in \mathbf{I}$ and some z with $|z|=\rho$, then $z^{n}=-\sum_{i=0}^{n-1}(1-t)a_{i}z^{i}$. The triangle inequality gives

$$\rho^n \leq \sum_{i=0}^{n-1} (1-t) |a_i| \rho^i \leq \sum_{i=0}^{n-1} |a_i| \rho^i \leq \left(\sum_{i=0}^{n-1} |a_i|\right) \rho^{n-1}$$

for $\rho > 1$ implies that $\rho^i \leq \rho^{n-1}$. Canceling ρ^{n-1} gives $\rho \leq \sum_{i=0}^{n-1} |a_i|$, a contradiction.

Assume now that g has no complex roots. Define $G: \Sigma_{\rho} \times \mathbf{I} \to \mathbb{C} - \{0\}$ by G(z,t) = g((1-t)z). (Since g has no roots, the values of G do lie in $\mathbb{C} - \{0\}$) Visibly, $G: g|\Sigma_{\rho} \simeq k$, where k is the constant function at a_0 . Therefore $g|\Sigma_{\rho}$ is nullhomotopic and by transitivity, f_{ρ}^n is nullhomotopic, contradicting the hypothesis.

A common problem involves extending a map $f: X \to Z$ to a larger space Y; the picture is

Homotopy itself raises such a problem: if $f_0, f_1: X \to Z$ then $f_0 \simeq f_1$ if we can extend $f_0 \cup f_1: X \times \{0\} \cup X \times \{1\} \to Z$ to all of $X \times \mathbf{I}$

Theorem 3.12. Let $f: S^n \to Y$ be a continuous map into some space Y. TFAE

- 1. f is nullhomotopic
- 2. f can be extended to a continuous map $D^{n+1} \to Y$
- 3. if $x_0 \in S^n$ and $k : S^n \to Y$ is the constant map at $f(x_0)$, then there is a homotopy $F : f \simeq k$ with $F(x_0, t) = f(x_0)$ for all $t \in I$

Proof. $1 \to 2$. Assume that $F: f \simeq c$, where $c(x) = y_0$ for all $x \in S^n$. Define $g: D^{n+1} \to Y$ by

$$g(x) = \begin{cases} y_0 & 0 \le ||x|| \le 1/2 \\ F(x/||x||, 2-2||x||) & 1/2 \le ||x|| \le 1 \end{cases}$$

if $x \neq 0$, then $x/\|x\| \in S^n$; if $1/2 \leq \|x\| \leq 1$ then $2-2\|x\| \in I$; if $\|x\| = 1/2$ then $2-2\|x\| = 1$ and $F(x/\|x\|, 1) = c(x/\|x\|) = y_0$. The gluing lemma shows

that g is continuous. Finally g does extend f: if $x \in S^n$, then ||x|| = 1 and g(x) = F(x, 0) = f(x).

 $2 \to 3$. Assume that $g: D^{n+1} \to Y$ extends f. Define $F: S^n \times \mathbf{I} \to Y$ by $F(x,t) = g((1-t)x + tx_0)$; note that $(1-t)x + tx_0 \in D^{n+1}$. Visibly F is continuous. Now F(x,0) = g(x) = f(x) while $F(x,1) = g(x_0) = f(x_0)$ for all $x \in S^n$; hence $F: f \simeq k$ where $k: S^n \to Y$ is the constant map at $f(x_0)$. Finally, $F(x_0,t) = g(x_0) = f(x_0)$ for all $t \in \mathbf{I}$

 $3 \rightarrow 1$ obvious

3.2 Convexity, Contractibility, and Cones

Definition 3.13. A subset X of \mathbb{R}^m is **convex** if for each pair of points $x, y \in X$ the line segment joining x and y is contained in X. In other words, if $x, y \in X$, then $tx + (1 - t)y \in X$ for all $t \in \mathbf{I}$

Definition 3.14. A space X is **contractible** if 1_X is nullhomotopic

Theorem 3.15. *Every convex set X is contractible*

Proof. Choose
$$x_0 \in X$$
, and define $c: X \to X$ by $c(x) = x_0$ for all $x \in X$. Define $F: X \times I \to X$ by $F(x,t) = tx_0 + (1-t)x$. Hence $F: 1_X \simeq c$.

A hemisphere is contractible but not convex, so that the converse of Theorem 3.15 is not true

Exercise 3.2.1. Let $R: S^1 \to S^1$ be rotation by α radians. Prove that $R \simeq 1_S$. Conclude that every continuous map $f: S^1 \to S^1$ is homotopic to a continuous map $g: S^1 \to S^1$ with g(1) = 1 (where $1 = e^{2\pi i 0} \in S^1$)

Proof. Let $F: S^1 \times \mathbf{I} \to S^1$ be

$$F((\cos \theta, \sin \theta), t) = (\cos(\theta + \alpha(1 - t)), \sin(\theta + \alpha(1 - t)))$$

Exercise 3.2.2. Let $X = \{0\} \cup \{1, 1/2, 1/3, ..., 1/n, ...\}$ and let Y be a countable discrete space. Show that X and Y do not have the same homotopy type.

Definition 3.16. Let X be a topological space and let $X' = \{X_j : j \in J\}$ be a partition of X. The **natural map** $\nu : X \to X'$ is defined by $\nu(x) = X_j$ where $x \in X_j$. The **quotient topology** on X' is the family of all subsets U' of X' for which $\nu^{-1}(U')$ is open in X

 $\nu: X \to X'$ is continuous when X' has the quotient topology. There are two special cases that we wish to mention. If A is a subset of X, then we write X/A for X', where the partition of X consists of A together with all the one-point subsets of X-A. The second special case arises from an equivalence relation \sim on X. In this case, the partition consists of the equivalence classes, the natural map is given by $\nu: x \mapsto [x]$, and the quotient space is denoted by X/\sim .

Example 3.1. Let $X = I \times I$ and define $(x,0) \sim (x,1)$ for every $x \in I$. Then

 X/\sim is homeomorphic to the cylinder $S^1\times \mathbf{I}$. Furthermore, suppose we define a second equivalence relation on $\mathbf{I}\times\mathbf{I}$ by $(x,0)\sim(x,1)$ for all $x\in\mathbf{I}$ and $(0,y)\sim(1,y)$ for all $y\in\mathbf{I}$. Then $\mathbf{I}\times\mathbf{I}/\sim$ is the **torus** $S^1\times S^1$

Example 3.2. If $h: X \to Y$ is a function, then **ker** h is the equivalence relation on X defined by $x \sim x'$ if h(x) = h(x'). The corresponding quotient space is denoted by $X/\ker h$. Note that, given $h: X \to Y$ there always exists an injection $\varphi: X/\ker h \to Y$ making the diagram

namely, $\varphi([x]) = h(x)$

Definition 3.17. A continuous surjection $f: X \to Y$ is an **identification** if a subset U of Y is open iff $f^{-1}(U)$ is open in X

Example 3.3. If \sim is an equivalence relation on X and X/\sim is given the quotient topology, then the natural map $\nu:X\to X/\sim$ is an identification

Example 3.4. If $f: X \to Y$ is a continuous surjective map having a **section** (i.e., there is a continuous $s: Y \to X$ with $fs = 1_Y$), then f is an identification

Theorem 3.18. Let $f: X \to Y$ be a continuous surjection. Then f is an identification iff for all spaces Z and all functions $g: Y \to Z$, one has g continuous iff gf is continuous

$$X \xrightarrow{gf} Z$$

$$f \xrightarrow{\chi} g$$

Proof. Assume f is an identification. If g is continuous, then gf is continuous. Conversely, if f is continuous and let V be open in Z. Then $f^{-1}g^{-1}(V)$ is open in X; since f is an identification, $g^{-1}(V)$ is open in Y

Assume the condition. Let $Z/\ker f$, let $\nu:X\to X/\ker f$ be the natural map and let $\varphi:X/\ker f\to Y$ be the injection of Example 3.2. Note that φ is surjective because f is. Consider the commutative diagram

Then $\varphi^{-1}f = \nu$ is continuous implies that φ^{-1} is continuous, by hypothesis. Also φ is continuous because ν is an identification. We conclude that φ is a homeomorphism

Definition 3.19. Let $f: X \to Y$ be a function and let $y \in Y$. Then $f^{-1}(y)$ is called the **fiber** over y

Corollary 3.20. Let $f: X \to Y$ be an identification and, for some space Z, let $h: X \to Z$ be a continuous function that is constant on each fiber of f. Then $hf^{-1}: Y \to Z$ is continuous

$$X \xrightarrow{h} Z$$

$$f \xrightarrow{f} hf^{-1}$$

Moreover, hf^{-1} is an open (closed) map iff h(U) is open (closed) in Z whenever U is an open (closed) set in X of the form $U = f^{-1}f(U)$

Proof. h is constant on each fiber of f implies that hf^{-1} is well-defined. hf^{-1} is continuous because $(hf^{-1})(f) = h$ is continuous, and Theorem 3.18 applies. Finally if V is open in Y, then $f^{-1}(V)$ is an open set of the stated form $f^{-1}(V) = f^{-1}f(f^{-1}(V))$

Corollary 3.21. *Let* X *and* Z *be spaces and let* $h: X \to Z$ *be an identification. Then the map* $\varphi: X/\ker h \to Z$ *defined by* $[x] \mapsto h(x)$ *is a homeomorphism*

Proof. φ is a bijection. φ is continuous by Corollary 3.20. The $\nu: X \to X/\ker h$ be the natural map. Let U open in $X/\ker h$. Then $h^{-1}\varphi(U) = \nu^{-1}(U)$ is an open set in X, because ν is continuous and hence $\varphi(U)$ is open, because h is an identification

- 4 Problem
- 5 Index

congruence, 5 functor, 5

homotopy, 7