МС-23 Теоретический материал

Сравнение генеральных средних и генеральных дисперсий двух нормальных совокупностей,

проверка гипотезы о равенстве вероятностей двух событий

Пусть $\vec{X}=(X_1,...,X_m)$ — выборка из $N(\mu_x,\sigma_x^2)$, $\vec{Y}=(Y_1,...,Y_n)$ — выборка из $N(\mu_y,\sigma_y^2)$. Далее считаем, что выборки \vec{X} и \vec{Y} независимыми, что означает независимость в совокупности m+n случайных величин $X_1,...,X_m,Y_1,...,Y_n$.

1) Сравнение генеральных средних при известной дисперсии

 $(\sigma_x^2,\sigma_y^2$ — известны, μ_x , μ_y — неизвестны)

$$H_0: \mu_{\mathcal{X}} = \mu_{\mathcal{Y}}$$

против любой из трех альтернативных гипотез H_1 : 1) $\mu_x > \mu_y$; 2) $\mu_x < \mu_y$; 3) $\mu_x \neq \mu_y$.

Статистика
$$Z=rac{ar{X}-ar{Y}}{\sqrt{rac{\sigma_X^2}{m}+rac{\sigma_Y^2}{n}}}.$$

H_1	K
1) $\mu_x > \mu_y$	$Z > Z_{\alpha}$
2) $\mu_{x} < \mu_{y}$	$Z < -Z_{\alpha}$
3) $\mu_x \neq \mu_y$	$ Z > Z_{\alpha/2}$

 Z_{α} — процентная точка стандартного нормального распределения N(0,1).

2) Сравнение генеральных средних при неизвестных и равных дисперсиях

 $(\sigma_x^2 = \sigma_y^2 = \sigma -$ неизвестны)

$$H_0: \mu_x = \mu_y; \ H_1: 1) \ \mu_x > \mu_y; 2) \ \mu_x < \mu_y; 3) \ \mu_x \neq \mu_y.$$

Статистика
$$T=rac{ar{x}-ar{y}}{s\sqrt{rac{1}{m}+rac{1}{n}}},$$
 $s^2=rac{m-1}{m+n-2}s_x^2+rac{n-1}{m+n-2}s_y^2$

H_1	K
1) $\mu_x > \mu_y$	$T > t_{\alpha}(m+n-2)$
$2) \mu_x < \mu_y$	$T < -t_{\alpha}(m+n-2)$
3) $\mu_x \neq \mu_y$	$ T > t_{\alpha/2}(m+n-2)$

 $t_{\alpha} \ (m+n-2)$ – $\ 100\alpha$ -процентная точка распределения Стьюдента с m+n-2 степенями свободы

3) Сравнение генеральных средних с неизвестными и неравными дисперсиями

Задача сравнения средних двух нормально распределенных совокупностей при неизвестных и неравных дисперсиях известна как проблема **Беренса-Фишера**. Точного решения этой задачи до настоящего времени нет.

Одно из приближений даёт критерий Кохрана-Кокса.

Статистика критерия:

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_x^2}{m} + \frac{S_y^2}{n}}};$$

Критическое значение статистики:

$$t_{\alpha} = \frac{\frac{s_{x}^{2}}{m}t_{\alpha;m-1} + \frac{s_{y}^{2}}{n}t_{\alpha;n-1}}{\frac{s_{x}^{2}}{m} + \frac{s_{y}^{2}}{n}}.$$

Если выполняется неравенство $|T_{\text{набл.}}| > t_{\alpha}$, гипотеза H_0 отклоняется.

Структура критерия по проверке гипотезы о равенстве дисперсий двух нормальных распределений зависит от того, известно или нет генеральное среднее, а также от вида альтернативной гипотезы.

4) Сравнение дисперсий двух нормальных распределений

 $(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2 - \text{неизвестны})$

$$H_0: \sigma_x^2 = \sigma_y^2; \ H_1: 1) \ \sigma_x^2 > \sigma_y^2; \ 2) \ \sigma_x^2 < \sigma_y^2; \ 3) \ \sigma_x^2 \neq \sigma_y^2.$$

 $H_1 \qquad \qquad \text{Критическая область} \\ 1) \quad \sigma_x^2 > \sigma_y^2 \qquad \qquad \frac{s_x^2}{s_y^2} > F_\alpha(m-1,n-1) \\ \\ 2) \quad \sigma_x^2 < \sigma_y^2 \qquad \qquad \frac{s_y^2}{s_x^2} > F_\alpha(n-1,m-1) \\ \\ 3) \quad \sigma_x^2 \neq \sigma_y^2 \qquad \qquad \frac{s_1^2}{s_2^2} > F_{\alpha/2}(k_1,k_2) \\ \\ F \quad Cl_2 \quad P_2 > 1.25$

символ	$s_x^2 \ge s_y^2$	$s_x^2 < s_y^2$
s_1^2	s_x^2	s_y^2
s_2^2	s_y^2	s_x^2
k_1	m-1	n-1
k_2	n-1	m-1

 $F_{\alpha} \; (k_1, k_2)$ – $\; 100 \alpha$ -процентная точка распределения Фишера с k_1 и $\; k_2$ степенями свободы.

5) Сравнение дисперсий двух нормальных распределений

 $(\mu_x, \mu_y - \mu_y) = (\mu_x, \mu_y - \mu_y) + (\mu_x, \mu_y) + (\mu_$

$$H_0: \sigma_x^2 = \ \sigma_y^2; \ H_1: 1) \ \sigma_x^2 > \ \sigma_y^2; 2) \ \sigma_x^2 < \ \sigma_y^2; 3) \ \sigma_x^2 \neq \ \sigma_y^2.$$

Статистика $F = \frac{S_{0x}^2}{S_{0x}^2}$.

$$S_{0x}^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i - \mu_x)^2; \ S_{0y}^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \mu_y)^2;$$

 $F_lpha \ (k_1,k_2)$ – 100lpha -процентная точка распределения Фишера с k_1 и k_2 степенями свободы, а критическая область определяется той же таблицей, что и в п.4), но с числом степеней свободы на единицу больше.

6) Гипотеза о равенстве вероятностей успеха в двух сериях испытаний Бернулли (n_1 и n_2 порядка сотен или более).

 $H_0: p_1 = p_2; H_1: 1) p_1 > p_2; 2) p_1 < p_2; 3) p_1 \neq p_2.$

Статистика
$$Z=\frac{w_1-w_2}{\sqrt{w(1-w)(\frac{1}{n_1}+\frac{1}{n_2})}}$$
, где $w_1=\frac{m_1}{n_1},\,w_2=\frac{m_2}{n_2},\,$ а $w=\frac{m_1+m_2}{n_1+n_2}$ - относительная частота успехов

в объединенных сериях испытаний.

Далее критические точки и области для проверки выбираются так же, как при сравнении генеральных средних при известной дисперсии.

Python

scipy.stats.ttest_ind

двусторонний тест для нулевой гипотезы о том, что две независимые выборки имеют идентичные средние (ожидаемые) значения.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html#scipy.stats.ttest_ind

https://www.kite.com/python/docs/statsmodels.stats.weightstats.DescrStatsW