Exercices d'applications et de réflexions avec correction : FONCTIONS LOGARITHMIQUES

PROF: ATMANI NAJIB 2BAC BIOF

http:// xriadiat.e-monsite.com

TD+CORRECTIONS-FONCTIONS LOGARITHMIQUES

Exercice1: déterminer le domaine de définition des fonctions suivantes :

1)
$$f: x \to ln(x+1)$$

1)
$$f: x \to ln(x+1)$$
 2) $g: x \to ln(x^2 - 3x + 2)$

3)
$$h: x \to \frac{x}{\ln x}$$

4)
$$k: x \rightarrow \ln x + \ln(x-1)$$

$$5) \quad m: x \to \ln\left(\frac{x-4}{x+1}\right)$$

solution :1) f(x) = ln(x+1)

$$D_f = \{x \in \mathbb{R} / x + 1 > 0\}$$

$$x+1>0 \Leftrightarrow x>-1$$
 donc: $D_f=[-1,+\infty[$

2)
$$g(x) = ln(x^2 - 3x + 2)$$

$$D_g = \left\{ x \in \mathbb{R} / x^2 - 3x + 2 > 0 \right\}$$

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times 1 = 9 - 8 = 1 > 0$$

$$x_1 = \frac{3+1}{2 \times 1} = \frac{4}{2} = 2$$
 et $x_2 = \frac{3-1}{2 \times 1} = \frac{2}{2} = 1$

Donc: $D_{\sigma} =]-\infty,1[\cup]2,+\infty[$

3)
$$h(x) = \frac{x}{\ln x}$$
 $D_h = \{x \in \mathbb{R} \mid x > 0et \ln x \neq 0\}$

 $\ln x = 0 \Leftrightarrow \ln x = \ln 1 \Leftrightarrow x = 1 \text{ donc}: D_h = [0;1] \cup [1;+\infty]$

4)
$$k: x \to \ln x + \ln(x-1)$$

La fonction est définie ssi x>0 et x-1>0 cad x > 0 et x > 1 donc: $D_k =]1; +\infty[$

$$5) m: x \to ln\left(\frac{x-4}{x+1}\right)$$

La fonction est définie ssi $\frac{x-4}{x+1} > 0$ et x+1>0

En utilisant le tableau de signe on trouve :

$$D_m = \left] -\infty, -1 \right[\cup \left] 4, +\infty \right[$$

Exercice2: Résoudre dans R les équations et inéquations suivantes : 1) ln(x-2) = 0

2)
$$ln(3x-1) = ln(5x-10)$$
 3) $ln(2x-1) - ln(1-x) = 0$

4)
$$ln(2x) = ln(x^2 + 1)$$
 5) $ln(2x - 6) \ge 0$

6)
$$ln(x-1)-ln(3x+1)<0$$

Solution :1) ln(x-2) = 0

a)cette équation est définie ssi : x-2>0 $x-2>0 \Leftrightarrow x>2$ donc: $D_E =]2; +\infty[$

b) Résoudre l'équation :

 $ln(x-2) = 0 \Leftrightarrow ln(x-2) = ln(1) \Leftrightarrow x-2 = 1 \Leftrightarrow x = 3 \Leftrightarrow \in D_E$ Donc : $S = \{3\}$

2)
$$ln(3x-1) = ln(5x-10)$$

a) cette équation est définie ssi : 5x-10>0 et

$$3x-1>0 \text{ cad } x>2 \text{ et } x>\frac{1}{3} \text{ donc}: D_E=]2;+\infty[$$

b) Résoudre l'équation :

$$ln(3x-1) = ln(5x-10) \Leftrightarrow 3x-1 = 5x-10 \Leftrightarrow -2x = -9$$

Donc:
$$\Leftrightarrow x = \frac{9}{2} \in D_E$$
 donc: $S = \left\{\frac{9}{2}\right\}$

3)
$$ln(2x-1)-ln(1-x)=0$$

a)cette équation est définie ssi : 2x-1>0 et 1-x>0 cad $x>\frac{1}{2}$ et x<1

donc: $D_E = \left| \frac{1}{2}; 1 \right|$

b) Résoudre l'équation :

$$ln(2x-1)-ln(1-x)=0 \Leftrightarrow ln(2x-1)=ln(1-x)$$

$$2x-1=1-x \Leftrightarrow 3x=2 \Leftrightarrow x=\frac{2}{3} \in D_E$$

 $\mathsf{Donc}: S = \left\{\frac{2}{3}\right\}$

4)
$$ln(2x) = ln(x^2 + 1)$$

a)cette équation est définie ssi : 2x > 0 et

$$x^2 + 1 > 0$$
 cad $x > 0$ donc: $D_E =]0; +\infty[$

b)
$$In(2x) = In(x^2 + 1) \Leftrightarrow 2x = x^2 + 1 \Leftrightarrow x^2 - 2x + 1 = 0$$

$$\Leftrightarrow (x-1)^2 = 0 \Leftrightarrow x = 1 \in D_E \quad \mathsf{Donc} : S = \{1\}$$

- 5) $ln(2x-6) \ge 0$
- a) cette équation est définie ssi : 2x-6>0

$$2x-6>0 \Leftrightarrow x>3$$
 Donc: $D_F = [3;+\infty[$

b) Résoudre l'inéquation :

$$ln(2x-6) \ge 0 \Leftrightarrow ln(2x-6) \ge ln 1 \Leftrightarrow 2x-6 \ge 1$$

$$\Leftrightarrow x \ge \frac{7}{2} \Leftrightarrow x \in \left[\frac{7}{2}; +\infty\right]$$

donc:
$$S = \left[\frac{7}{2}; +\infty\right] \cap \left[3; +\infty\right] = \left[\frac{7}{2}; +\infty\right]$$

- 6) ln(x-1)-ln(3x+1)<0
- a) cette équation est définie ssi : x-1>0 et

$$3x+1>0 \text{ cad } \left(x>-\frac{1}{3};x>1\right) \text{ donc } D_t=\left[1;+\infty\right[$$

b) Résoudre l'inéquation :

$$ln(x-1) - ln(3x+1) < 0 \Leftrightarrow ln(x-1) < ln(3x+1)$$

 $x-1 < 3x+1 \Leftrightarrow 2x > -2 \Leftrightarrow x > -1$

 $\mathsf{Donc}:\ S=\left]-1;+\infty\right[\cap\left]1;+\infty\right[\ \mathsf{donc}:\ S=\left]1;+\infty\right[$

Exercice3: On pose $l n(2) \approx 0.7$ et $l n(3) \approx 1.1$

Calculer: l n(6); l n(4); l n(8); l n(72)

$$l \operatorname{n}\left(\frac{1}{2}\right)$$
; $l \operatorname{n}\left(\frac{3}{2}\right)$; $l \operatorname{n}\left(\sqrt{2}\right)$; $l \operatorname{n}\left(\sqrt{6}\right)$; $l \operatorname{n}\left(3\sqrt{2}\right)$

$$ln(12\sqrt[3]{3})$$
; $A = ln\sqrt{2 + \sqrt{2}} + ln\sqrt{2 - \sqrt{2}}$;

$$B = \frac{1}{4}ln81 + ln\sqrt{3} - ln\frac{1}{27} \quad \text{et } C = ln(\sqrt{2} + 1)^{2015} + ln(\sqrt{2} - 1)^{2019}$$

Solution:

$$l n(6) = l n(2\times3) = l n(2) + l n(3) \approx 0.7 + 1.1 \approx 1.8$$

$$l n(4) = l n(2 \times 2) = l n(2^2) = 2l n(2) \approx 2 \times 0,7 \approx 1,4$$

$$l n(8) = l n(2 \times 2 \times 2) = l n(2^3) = 3l n(2) \approx 3 \times 0, 7 \approx 2, 1$$

$$l n(72) = l n(3^2 \times 2^3) = l n(3^2) + l n(2^3) = 2l n(3) + 3l n(2)$$

$$l n(72) \approx 2 \times 1,1 + 3 \times 0,7 \approx 2,2 + 2,1 \approx 4,3$$

$$l \operatorname{n}\left(\frac{3}{2}\right) = l \operatorname{n}(3) - l \operatorname{n}(2) \approx 1, 1 - 0, 7 \approx 0, 4$$

$$l \, n\left(\frac{1}{2}\right) = -l \, n\left(2\right) \approx -0.7$$

$$l \ n(\sqrt{6}) = \frac{1}{2} l \ n(6) \approx \frac{1}{2} \times 1,8 \approx 0,9$$

$$\ln(3\sqrt{2}) = \ln(3) + \ln(\sqrt{2}) \approx 1.1 + \frac{1}{2}\ln(2) \approx 1.1 + \frac{0.7}{2} \approx 1.1 + 0.35 \approx 1.45$$

$$ln(12\sqrt[3]{3}) = ln(3 \times 2^{2}) + ln(\sqrt[3]{3}) = ln(3) + 2ln(2) + ln(3^{\frac{1}{3}})$$

$$ln(12\sqrt[3]{3}) = ln(3) + 2ln(2) + \frac{1}{3}ln(3) \approx 1, 1+1, 4+\frac{1}{3}\times 1, 1 \approx 2,86$$

$$A = ln\sqrt{2 + \sqrt{2}} + ln\sqrt{2 - \sqrt{2}} = ln\left(\left(\sqrt{2 + \sqrt{2}}\right)\left(\sqrt{2 - \sqrt{2}}\right)\right) = ln\left(\sqrt{\left(2 + \sqrt{2}\right)\left(2 - \sqrt{2}\right)}\right)$$

$$A = ln\left(\sqrt{2^2 - \left(\sqrt{2}\right)^2}\right) = ln\sqrt{2} = \frac{1}{2}ln2 \approx 0.35$$

$$B = \frac{1}{4}ln81 + ln\sqrt{3} - ln\frac{1}{27} = \frac{1}{4}ln3^4 + \frac{1}{2}ln3 - ln\frac{1}{3^3} = \frac{4}{4}ln3 + \frac{1}{2}ln3 + 3ln3$$

$$B \simeq 1, 1 + \frac{1,1}{2} + 3 \times 1, 1 \simeq 4,95$$

$$C = ln\left(\sqrt{2} + 1\right)^{2015} + ln\left(\sqrt{2} - 1\right)^{2019} = ln\left(\left(\sqrt{2} + 1\right)^{2019} \times \left(\sqrt{2} - 1\right)^{2019}\right)$$

$$C = ln\left(\left(\sqrt{2} + 1\right)\left(\sqrt{2} - 1\right)\right)^{2019} = ln\left(\left(\sqrt{2}\right)^2 - 1^2\right)^{2019} = 2019ln(1) = 2019 \times 0 = 0$$

Exercice4: On pose $\alpha = ln(a)$ et $\beta = ln(b)$

Calculer en fonction de α et β les réels suivants :

$$\ln(a^2b^5)$$
 et $\frac{1}{\sqrt[6]{a^7b}}$

Solution:

$$\ln(a^2b^5) = \ln(a^2) + \ln(b^5) = 2\ln a + 5\ln b = 2\alpha + 5\beta$$

$$\ln\left(\frac{1}{\sqrt[6]{a^7b}}\right) = \ln\left(a^{-\frac{7}{6}}b^{-\frac{1}{6}}\right) = \ln a^{-\frac{7}{6}} + \ln b^{-\frac{1}{6}} = -\frac{7}{6}\ln a - \frac{1}{6}\ln b$$

$$\ln\left(\frac{1}{\sqrt[6]{a^7b}}\right) = -\frac{7}{6}\alpha - \frac{1}{6}\beta$$

Exercice5: simplifier et calculer:

$$A = \ln\left(e^2\right) + \ln\left(e^4\right) - \ln\left(\frac{1}{e}\right)$$

$$B = 2\ln\left(\sqrt{e}\right) + \ln\left(e\sqrt{e}\right) - \frac{1}{3}\ln\left(e^{9}\right)$$

Solution:

$$A = \ln(e^{2}) + \ln(e^{4}) - \ln(\frac{1}{e}) = 2\ln(e) + 4\ln(e) - -\ln(e)$$

$$A = 2 \times 1 + 4 \times 1 - -1 = 7$$

$$B = 2\ln(\sqrt{e}) + \ln(e\sqrt{e}) - \frac{1}{3}\ln(e^9) = 2 \times \frac{1}{2}\ln(e) + \ln e + \ln(\sqrt{e}) - \frac{1}{3}9\ln(e)$$

$$B = 1\ln(e) + \ln e + \frac{1}{2}\ln(e) - 3\ln(e) = 1 + 1 + \frac{1}{2} - 3 = \frac{1}{2} - 1 = -\frac{1}{2}$$

Exercice6 : Résoudre dans \mathbb{R} les équations et inéquations suivantes :

1)
$$ln(2x-1) = \frac{3}{2}$$
 2) $2(\ln x)^2 + \ln x - 6 = 0$

3)
$$3(\ln x)^2 + 2\ln x - 1 = 0$$
 4) $\frac{\ln x + 3}{\ln x - 1} \ge -1$

5)
$$lnx + ln(x-1) - ln2 = ln3$$

6)
$$ln(2x+5)+ln(x+1) \le ln4$$

7)
$$ln(14-x) > ln(10+7x-3x^2)$$

Solution: 1) $ln(2x-1) = \frac{3}{2}$

a) cette équation est définie ssi :

$$2x-1>0 \Leftrightarrow x>\frac{1}{2}$$
 donc: $D_E = \left[\frac{1}{2}; +\infty\right]$

b) Résoudre l'équation :

$$ln(2x-1) = \frac{3}{2} \Leftrightarrow ln(2x-1) = \frac{3}{2}ln(e)$$

$$\Leftrightarrow ln(2x-1) = ln\left(e^{\frac{3}{2}}\right) \Leftrightarrow 2x-1 = e^{\frac{3}{2}}$$

$$\Leftrightarrow 2x-1=\left(\sqrt{e}\right)^3 \Leftrightarrow x=\frac{\left(\sqrt{e}\right)^3+1}{2} \in \left[\frac{1}{2};+\infty\right]$$

$$\mathsf{Donc}: S = \left\{ \frac{\left(\sqrt{e}\right)^3 + 1}{2} \right\}$$

2)
$$2(\ln x)^2 + \ln x - 6 = 0$$

a) cette équation est définie ssi : x > 0

b)on pose : $\ln x = X$

on a alors : $2X^2 + X - 6 = 0$

 $\Delta = b^2 - 4ac = 1 + 48 = 49 > 0$

$$X_1 = \frac{-1+7}{2\times 4}$$
 et $X_2 = \frac{-1-7}{2\times 2}$

Donc: $X_1 = \frac{3}{2}$ et $X_2 = -2$

Donc:
$$\ln x_1 = \frac{3}{2}$$
 et $\ln x_2 = -2$

Donc: $x_1 = e^{\frac{3}{2}}$ et $x_2 = e^{-2}$ finalement:

$$S = \left\{ e\sqrt{e}, \frac{1}{e^2} \right\}$$

3)
$$3(\ln x)^2 + 2\ln x - 1 = 0$$

a) cette équation est définie ssi : x > 0

on pose : $\ln x = X$

on a alors : $3X^2 + 2X - 1 = 0$

$$\Delta = b^2 - 4ac = 4 + 12 = 16 > 0$$

$$X_1 = \frac{-2+4}{2\times 3} = \frac{2}{6} = \frac{1}{3}$$
 et $X_2 = \frac{-2-4}{2\times 3} = \frac{-6}{6} = -1$

Donc: $\ln x_1 = \frac{1}{3}$ et $\ln x_2 = -1$

Donc:
$$x_1 = e^{\frac{1}{3}} = \sqrt[3]{e}$$
 et $x_2 = e^{-1} = \frac{1}{e}$

finalement : $S = \left\{ \sqrt[3]{e}, \frac{1}{e} \right\}$

4)
$$\frac{\ln x + 3}{\ln x - 1} \ge -1$$

a) cette équation est définie ssi : x > 0 et $\ln x - 1 \neq 0$ $\ln x - 1 = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow \ln x = \ln e \Leftrightarrow x = e$

donc $D_I =]0; e[\cup]e; +\infty[$

b)
$$\frac{\ln x + 3}{\ln x - 1} \ge -1 \Leftrightarrow \frac{\ln x + 3}{\ln x - 1} + 1 \ge 0 \Leftrightarrow 2 \frac{\ln x + 1}{\ln x - 1} \ge 0$$

 $\ln x + 1 = 0 \Leftrightarrow \ln x = -1 \Leftrightarrow \ln x = \ln \frac{1}{e} \Leftrightarrow x = \frac{1}{e}$

 $\ln x - 1 = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow \ln x = \ln e \Leftrightarrow x = e$

x	0	$\frac{1}{e}$	$e + \infty$
lnx+1	_	+	+
lnx-1	_	_	0 +
$\frac{\ln x + 1}{\ln x - 1}$	+	-	+

$$S = (]0; e[\cup]e; +\infty[) \cap (]0; \frac{1}{e}] \cup]e; +\infty[) = [0; \frac{1}{e}] \cup]e; +\infty[$$

- 5) lnx + ln(x-1) ln2 = ln3
- a) cette équation est définie ssi : x > 0 et x-1>0

 $\mathsf{donc}:\ D_{\scriptscriptstyle E}=\big]1;+\infty\big[$

b)
$$lnx + ln(x-1) - l n 2 = l n 3$$

$$\Leftrightarrow lnx + ln(x-1) = l n 2 + l n 3 \Leftrightarrow ln(x(x-1)) = l n 6$$

Ssi
$$x(x-1) = 6$$
 ssi $x^2 - x - 6 = 0$

$$\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times (-6) = 1 + 24 = 25 > 0$$

$$x_1 = \frac{-(-1) + \sqrt{25}}{2 \times 1}$$
 et $x_2 = \frac{-(-1) - \sqrt{25}}{2 \times 1}$

 $x_1 = 3$ ou $x_2 = -2 \notin]1; +\infty[$ donc: $S = \{3\}$

6)
$$ln(2x-5)+ln(x+1) \le ln4$$

a) cette équation est définie ssi : x+1>0 et

$$2x-5>0$$
 cad $\left(x>\frac{5}{2}etx>-1\right)$ donc $D_{I}=\left[\frac{5}{2};+\infty\right[$

b)

$$ln(2x-5)+ln(x+1) \le ln4 \Leftrightarrow ln((2x-5)(x+1)) \le ln4$$

$$(2x-5)(x+1) \le 4 \Leftrightarrow 2x^2 - 3x - 9 \le 0$$

$$\Delta = b^2 - 4ac = 9 - 4 \times 2 \times (-9) = 9 + 72 = 81 > 0$$

$$x_1 = \frac{3+9}{2 \times 2}$$
 et $x_2 = \frac{3-9}{2 \times 2}$ donc: $x_1 = 3$ et $x_2 = -\frac{3}{2}$

x	$-\infty$	-3/2		3	$+\infty$
2x2-3x-9	+	þ	_	þ	+

Donc:
$$S = \left[-\frac{3}{2}; 3 \right] \cap \left[\frac{5}{2}; +\infty \right] = \left[\frac{5}{2}; 3 \right]$$

- 7) $ln(14-x) > ln(10+7x-3x^2)$
- a) cette équation est définie ssi : 14-x>0 et $10+7x-3x^2>0$ après résolution on trouve :

$$D_I = \left] -1; \frac{10}{3} \right[$$

b)
$$ln(14-x) > ln(10+7x-3x^2)$$

$$14-x \succ 10+7x-3x^2 \Leftrightarrow 3x^2-8x+4 \succ 0$$

$$\Leftrightarrow (x-2)(3x-2) \succ 0 \Leftrightarrow x \in \left] -\infty; \frac{2}{3} \left[\cup \right] 2; +\infty \right[$$

Donc:
$$S = \left(\left[-\infty; \frac{2}{3} \right] \cup \left[2; +\infty \right] \right) \cap \left[-1; \frac{10}{3} \right]$$

$$S = \left[-1; \frac{2}{3} \right] \cup \left[2; \frac{10}{3} \right]$$

Exercice7: Résoudre dans \mathbb{R}^2 le système

suivant :
$$\begin{cases} 3 \ln x + \ln y = 2 \\ 2 \ln x - \ln y = 3 \end{cases}$$

Solution:
$$\begin{cases} 3\ln x + \ln y = 2 \to 1 \\ 2\ln x - \ln y = 3 \to 2 \end{cases} \quad x \succ 0 \text{ et } y \succ 0$$

La somme des deux équations membres à membres donne :

$$5 \ln x = 5 \Leftrightarrow \ln x = 1 \Leftrightarrow \ln x = \ln e \Leftrightarrow x = e$$

On remplace x = e dans la première équation On a donc :

$$3 \ln e + \ln y = 2 \Leftrightarrow \ln y = 2 - 3 \Leftrightarrow \ln y = -1$$

$$\Leftrightarrow y = e^{-1} \Leftrightarrow y = \frac{1}{e} \text{ Donc } S = \left\{ \left(e; \frac{1}{e} \right) \right\}$$

Exercice8 : déterminer le domaine de définition des fonctions suivantes :

1)
$$f: x \to \frac{\ln(x+1)}{\ln(\ln x)}$$
 2) $g: x \to \sqrt{1 - \ln(e-x)}$

3)
$$h: x \to \frac{x}{\sqrt{(\ln(2x))^2 - 1}}$$

Solution: 1) cette fonction est définie ssi:

$$x+1>0$$
 et $x>0$ et $\ln x>0$ et $\ln(\ln x)\neq 0$

Cad
$$x > -1$$
 et $x > 0$ et $x > 1$ et $\ln x \neq 1$

Cad
$$x>1$$
 et $x\neq e$ donc: $D_f=\left[1;e\right[\cup\left[e;+\infty\right[$

2) cette fonction est définie ssi :

$$e - x > 0$$
 et $1 \ge ln(e - x)$

Cad
$$x \prec e$$
 et $e - x \le e$ Cad $x \prec e$ et $x \ge 0$

donc:
$$D_g = [0; e]$$

3)
$$h: x \to \frac{x}{\sqrt{(\ln(2x))^2 - 1}}$$

Cette fonction est définie ssi :

$$2x > 0$$
 et $(ln(2x))^2 - 1 > 0$

Cad
$$x > 0$$
 et $(ln(2x)-1)(ln(2x)+1) > 0$

$$ln(2x)+1=0 \Leftrightarrow ln 2x=-1 \Leftrightarrow ln 2x=ln \frac{1}{e} \Leftrightarrow x=\frac{1}{2e}$$

$$ln(2x)-1=0 \Leftrightarrow ln 2x=1 \Leftrightarrow ln 2x=ln e \Leftrightarrow x=\frac{e}{2}$$

x	0	$\frac{1}{2e}$		$\frac{e}{2}$	$+\infty$
ln2x+1	_	þ	+		+
ln2x-1	_		_	þ	+
(ln2x+1)(ln2x-1)	+	Ý	_	þ	+

$$S = \left]0; \frac{1}{2e}\right] \cup \left[\frac{e}{2}; +\infty\right[$$

Exercice9 : Déterminer les limites suivantes :

1)
$$\lim_{x \to +\infty} \frac{2\ln(x) + 1}{\ln x}$$

2)
$$\lim_{x \to +\infty} \left(\ln^2(x) - \ln x \right)$$

3)
$$\lim_{x \to +\infty} x - \ln x$$

4)
$$\lim_{x \to 0^+} \ln^2(x) + \ln x$$

5)
$$\lim_{x\to 0^+} \left(\frac{1}{x} + lnx\right)$$

6)
$$\lim_{x \to 0^+} x^4 \log x$$

7)
$$\lim_{x \to 0^{+}} 2x - x^{3} \ln x$$

7)
$$\lim_{x \to 0^+} 2x - x^3 \ln x$$
 8) $\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x} \right)$

9)
$$\lim_{x \to 0^+} x (ln(x))^2$$
 on pose : $X = \sqrt{x}$

10)
$$\lim_{x \to +\infty} \frac{\ln(x^2 + 3x)}{x - 1}$$
 11) $\lim_{x \to 0^+} x^2 (\ln x)^5$

Solution: 1)
$$\lim_{x \to +\infty} \frac{2\ln(x)+1}{\ln x}$$
 ?

On a:
$$\lim_{x \to +\infty} 2\ln(x) + 1 = 2 \times (+\infty) + 1 = +\infty$$

Et
$$\lim_{x \to +\infty} \ln(x) = +\infty$$
 donc forme indéterminé(FI)

$$\lim_{x \to +\infty} \frac{2\ln x + 1}{\ln x} = \lim_{x \to +\infty} \frac{\ln x \left(2 + \frac{1}{\ln x}\right)}{\ln x} = \lim_{x \to +\infty} 2 + \frac{1}{\ln x} = 2 + 0 = 2$$

$$\left(\operatorname{car} \lim_{x \to +\infty} \ln x = +\infty \right)$$

$$2)\lim_{x\to\infty}\left(\ln^2(x)-\ln x\right)?$$

$$\lim_{x \to +\infty} \ln^2(x) - \ln x = \lim_{x \to +\infty} \ln^2(x) - \ln x = \lim_{x \to +\infty} \ln x \left(\ln(x) - 1\right) = +\infty$$

(car
$$\lim_{n\to\infty} \ln x = +\infty$$
)

3)
$$\lim_{x\to +\infty} x - \ln x$$
 ?

$$\lim_{x \to +\infty} x - \ln x = \lim_{x \to +\infty} x \left(1 - \frac{\ln x}{x} \right) = +\infty$$

(car
$$\lim_{x\to +\infty} \frac{\ln x}{x} = 0$$
 et $\lim_{x\to +\infty} \ln x = +\infty$)

4)
$$\lim_{x \to 0^+} \ln^2(x) + \ln x$$
 ?

$$\lim_{x \to 0^+} \ln n^2(x) + \ln x = \lim_{x \to 0^+} \ln x \left(\ln(x) + 1 \right) = +\infty$$

Car
$$\lim_{x\to 0^+} \ln(x) = -\infty$$
 et $\lim_{x\to 0^+} \ln(x) + 1 = -\infty$

$$5) \lim_{x\to 0^+} \left(\frac{1}{x} + \ln x\right)$$

$$\lim_{x \to 0^+} \frac{1}{x} + \ln x = \lim_{x \to 0^+} \frac{1 + x \ln x}{x} = \frac{1}{0^+} = +\infty \quad \text{car } \lim_{x \to 0^+} x \ln x = 0$$

6)
$$\lim_{x \to 0^+} x^4 \log x = 0$$
 car $\lim_{x \to 0^+} x^n \ln x = 0$ (où $n \in \mathbb{N}^*$)

7)
$$\lim_{x\to 0^+} 2x - x^3 \ln x = 0$$

8)
$$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right)$$
 on pose : $X = \sqrt{x}$

$$x \to +\infty \Leftrightarrow X \to 0^+$$

$$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right) = \lim_{0^+} \frac{1}{X} \ln\left(1 + X\right) = \lim_{0^+} \frac{\ln\left(1 + X\right)}{X} = 1$$

$$\operatorname{Car}: \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

9)
$$\lim_{x \to 0^+} x (ln(x))^2$$
 on pose : $X = \sqrt{x}$

$$X = \sqrt{x} \iff X^2 = \left(\sqrt{x}\right)^2 \iff X^2 = x$$

$$x \to 0^+ \Leftrightarrow X \to 0^+$$

$$\lim_{x \to 0^{+}} x \left(\ln(x) \right)^{2} = \lim_{x \to 0^{+}} X^{2} \left(\ln(X^{2}) \right)^{2} = \lim_{x \to 0^{+}} X^{2} \left(2\ln X \right)^{2}$$

$$\lim_{x \to 0^{+}} x \left(\ln(x) \right)^{2} = \lim_{x \to 0^{+}} 4X^{2} \left(\ln X \right)^{2}$$

$$\lim_{x \to 0^{+}} x \left(\ln(x) \right)^{2} = 4 \lim_{x \to 0^{+}} \left(X \ln X \right)^{2} = 4 \times 0^{2} = 0$$

$$Car: \lim_{x\to 0^+} x lnx = 0^-$$

10)
$$\lim_{x \to +\infty} \frac{\ln(x^2 + 3x)}{x - 1}$$
? On pose : $f(x) = \frac{\ln(x^2 + 3x)}{x - 1}$

$$f(x) = \frac{\ln\left(x^2\left(1 + \frac{3}{x}\right)\right)}{x - 1} = \frac{\ln x^2 + \ln\left(1 + \frac{3}{x}\right)}{x - 1}$$

$$f(x) = \frac{2lnx + ln\left(1 + \frac{3}{x}\right)}{x - 1} = \frac{2lnx}{x - 1} + \frac{ln\left(1 + \frac{3}{x}\right)}{x - 1}$$

$$f(x) = 2\frac{\frac{\ln x}{x}}{1 - \frac{1}{x}} + \frac{\ln\left(1 + \frac{3}{x}\right)}{x - 1} \quad \text{on a : } \lim_{x \to +\infty} \frac{\ln x}{x} = 0 \quad \text{et}$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ et } \lim_{x \to +\infty} \ln\left(1 + \frac{3}{x}\right) = 0$$

Donc:
$$\lim_{x \to +\infty} \frac{\ln(x^2 + 3x)}{x - 1} = 0$$

11)
$$\lim_{x \to 0^+} x^2 (\ln x)^5 = \lim_{x \to 0^+} \left(x^{\frac{2}{5}} \ln x \right)^5$$

On a: $\lim_{x \to 0^+} x^{\frac{2}{5}} \ln x = 0$ donc $\lim_{x \to 0^+} x^2 (\ln x)^5 = 0$

Exercice10 : Déterminer le domaine de dérivation et la dérivée de la fonction suivante :

$$f(x) = \ln(3x^2 + 5)$$

Solution: la fonction $u: x \rightarrow 3x^2 + 5$ est dérivable

$$\operatorname{sur} \mathbb{R} \text{ et on a}: 3x^2 + 5 \succ 0 \quad \forall x \in \mathbb{R}$$

alors la fonction : $f: x \to \ln(3x^2 + 5)$ est dérivable

sur
$$\mathbb{R}$$
 et on a : $f'(x) = \frac{(3x^2 + 5)'}{3x^2 + 5} = \frac{6x}{3x^2 + 5} \ \forall x \in \mathbb{R}$

Exercice11 :calculer la dérivée des fonctions

définies par :1) $f(x) = x^2 - \ln x$ 2) $f(x) = x \ln x$

3)
$$f(x) = \ln(1+x^2)$$

Solution :1)
$$f'(x) = (x^2 - \ln x)' = 2x - \frac{1}{x} = \frac{2x^2 - 1}{x}$$

2)
$$f'(x) = (x \ln x)' = x' \ln x + x \ln' x = 1 \ln x + x \times \frac{1}{x} = \ln x + 1$$

3)
$$f'(x) = \left(\ln\left(1+x^2\right)\right)' = \frac{\left(1+x^2\right)'}{1+x^2} = \frac{2x}{1+x^2}$$

Exercice12 :calculer la dérivée de la fonction

définie sur
$$I =]-2; +\infty[$$
 par : $f(x) = \frac{\sqrt[4]{x^3 + 8}}{(x^2 + 1)^3}$

Solution: $\forall x \in]-2; +\infty[$ on a:

$$\ln(f(x)) = \ln\left(\frac{\sqrt[4]{x^3 + 8}}{(x^2 + 1)^3}\right) = \ln(\sqrt[4]{x^3 + 8}) - \ln(x^2 + 1)^3$$

$$\ln(f(x)) = \frac{1}{4}\ln(x^3 + 8) - 3\ln(x^2 + 1)$$

Donc:
$$\frac{f'(x)}{f(x)} = \frac{1}{4} \frac{(x^3 + 8)'}{x^3 + 8} - 3 \frac{(x^2 + 1)'}{x^2 + 1} \quad \forall x \in]-2; +\infty[$$

Donc:
$$\frac{f'(x)}{f(x)} = \frac{1}{4} \frac{3x^2}{x^3 + 8} - 3 \frac{2x}{x^2 + 1}$$

Donc:
$$\frac{f'(x)}{f(x)} = \frac{-3x(7x^3 - x + 64)}{4(x^3 + 8)(x^2 + 1)}$$

Donc:

$$f'(x) = \frac{-3x(7x^3 - x + 64)}{4(x^3 + 8)(x^2 + 1)} f(x) = \frac{-3x(7x^3 - x + 64)}{4\sqrt[4]{(x^3 + 8)^3}(x^2 + 1)^4}$$
 determiner).
6) $N(x) = \frac{x^3 + 2x^2 - 3x + 2}{x - 3}$

Exercice13: Déterminer le domaine de dérivation et la dérivée des fonctions suivantes :

$$1) f(x) = \ln |\ln |x|$$

2)
$$f(x) = \ln \left| \sin^2 x + 3\sin x + 4 \right|$$

Solution: 1) cette fonction est définie ssi:

$$|x| > 0$$
 et $\ln |x| > 0$ cad $x \neq 0$ et $|x| > 1$

$$\mathsf{Donc}:\ D_f = \left] -\infty; -1 \right[\ \cup \]1; +\infty \left[$$

Donc f est dérivable sur $]-\infty;-1[$ et $]1;+\infty[$

$$\forall x \in]-\infty; -1[\cup]1; +\infty[: f'(x) = (\ln|\ln|x||)' = \frac{(\ln|x|)'}{\ln|x|}$$

$$f'(x) = \left(\ln\left|\ln\left|x\right|\right|\right)' = \frac{1}{x \ln\left|x\right|}$$

2)
$$f(x) = \ln \left| \sin^2 x + 3\sin x + 4 \right|$$

cette fonction est définie ssi : $\sin^2 x + 3\sin x + 4 > 0$

on pose : $t = \sin x$ donc : $t^2 + 3t + 4$ $\Delta = 9 - 16 = -7 < 0 \text{ donc} : t^2 + 3t + 4 > 0$

 $\mathsf{Donc}:\,D_{\scriptscriptstyle f}=\mathbb{R}$

Alors : la fonction f est dérivable sur \mathbb{R}

$$f'(x) = \frac{\left(\sin^2 x + 3\sin x + 4\right)'}{\sin^2 x + 3\sin x + 4} = \frac{2\sin x \cos x + 3\cos x}{\sin^2 x + 3\sin x + 4}$$

Exercice14: Déterminer les fonctions primitives des fonctions suivantes :

1)
$$I = \mathbb{R}; f(x) = \frac{x^3}{x^4 + 2}$$
 2) $I =]0;1[;g(x) = \frac{1}{x \ln x}]$

3)
$$I =]-\infty; 1[; h(x) = \frac{1}{x-1}]$$
 4) $I =]\frac{3\pi}{2}; 2\pi[; k(x) = \frac{\cos x}{\sin x}]$ 5) $m(x) = \frac{1}{x^2-1} = \frac{1}{(x+1)(x-1)} = \frac{1}{2} \frac{(x+1)-(x-1)}{(x+1)(x-1)}$

5)
$$M(x) = \frac{1}{x^2 - 1}$$
 (Essayer d'écrire

$$g(x) = \frac{a}{x-1} + \frac{b}{x+1}$$
 où a et b des réels à déterminer).

6)
$$N(x) = \frac{x^3 + 2x^2 - 3x + 2}{x - 3}$$

7)
$$I =]3; +\infty[; q(x) = \frac{1}{(x-2)\ln(x-2)}$$

Solution : 1)on a
$$f(x) = \frac{x^3}{x^4 + 2} = \frac{1}{4} \frac{(x^4 + 2)'}{x^4 + 2}$$

Donc:
$$F(x) = \frac{1}{4} \ln |x^4 + 2| + k \text{ avec } k \in \mathbb{R}$$

Puisque:
$$x^4 + 2 > 0$$
 donc: $F(x) = \frac{1}{4} \ln(x^4 + 2) + k$

2)
$$f(x) = \frac{1}{x \ln x} = \frac{\frac{1}{x}}{\ln x} = \frac{(\ln x)'}{\ln x}$$

donc les fonctions primitives sont :

$$G(x) = \ln |\ln x| + k$$
 avec $k \in \mathbb{R}$

Puisque :
$$x \in]0;1[$$
 donc : $\ln x \prec 0$

Donc:
$$F(x) = \ln(-\ln x) + k$$
 avec $k \in \mathbb{R}$

3)
$$I =]-\infty; 1[; h(x) = \frac{1}{x-1} = \frac{(x-1)'}{x-1}$$
 donc les fonctions

primitives sont :
$$H(x) = \ln|x-1| + k$$

Puisque :
$$x \in]-\infty;1[$$
 donc : $x-1 < 0$

Donc:
$$H(x) = \ln(1-x) + k$$
 avec $k \in \mathbb{R}$

4)
$$I = \left| \frac{3\pi}{2}; 2\pi \right|; k(x) = \frac{\cos x}{\sin x} = \frac{\left(\sin x\right)'}{\sin x}$$
 donc les

fonctions primitives sont : $K(x) = \ln |\sin x| + k$

avec $k \in \mathbb{R}$

5)
$$m(x) = \frac{1}{x^2 - 1} = \frac{1}{(x+1)(x-1)} = \frac{1}{2} \frac{(x+1) - (x-1)}{(x+1)(x-1)}$$

$$m(x) = \frac{1}{2} \left(\frac{(x+1)}{(x+1)(x-1)} - \frac{(x-1)}{(x+1)(x-1)} \right) = \frac{1}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) \quad \text{Donc} : \begin{cases} a+b=5 \\ 2a-b=1 \end{cases} \text{ Donc} : 3a = 6 \text{ Donc} : a = 2$$

Donc les fonctions primitives sont :

$$M(x) = \frac{1}{2} \left(\ln|x - 1| - \ln|x + 1| \right) = \frac{1}{2} \left(\ln\left| \frac{x - 1}{x + 1} \right| \right) = \ln\sqrt{\frac{x - 1}{x + 1}} + k$$

6)
$$n(x) = \frac{x^3 + 2x^2 - 3x + 2}{x - 3} = \frac{(x - 3)(x^2 + 5x + 12) + 38}{x - 3}$$

Donc:
$$n(x) = x^2 + 5x + 12 + \frac{38}{x-3}$$

Donc les fonctions primitives sont :

$$N(x) = \frac{x^3}{3} + \frac{5}{2}x^2 + 12x + 38\ln|x - 3| + k$$
 avec $k \in \mathbb{R}$

7)
$$I =]3; +\infty[; q(x) = \frac{1}{(x-2)\ln(x-2)}$$

$$q(x) = \frac{1}{(x-2)\ln(x-2)} = \frac{\frac{1}{(x-2)}}{\ln(x-2)} = \frac{(\ln(x-2))'}{\ln(x-2)}$$

Donc: donc les fonctions primitives sont:

$$Q(x) = \ln \left| \ln (x-2) \right| + k$$
 avec $k \in \mathbb{R}$

Exercice 15 : Considérons la fonction *f* définie

par:
$$f(x) = \frac{5x+1}{x^2+x-2}$$

1) Déterminer l'ensemble de définition de la fonction f et Déterminer les réels a et b tels que :

$$(\forall x \in D); f(x) = \frac{a}{x-1} + \frac{b}{x+2}$$

2) En déduire la fonction primitive de *f* sur

$$]-\infty;-2[$$
 Tel que $F(-3)=\ln 2$

Solution :1) $D_f = \{x \in \mathbb{R} / x^2 + x - 2 \neq 0\}$

$$\Delta = b^2 - 4ac = 1^2 - 4 \times (-2) \times 1 = 1 + 8 = 9 > 0$$

$$x_1 = \frac{-1+3}{2\times 1} = \frac{2}{2} = 1$$
 et $x_2 = \frac{-1-3}{2\times 1} = \frac{-4}{2} = -2$

Donc: $D_f = \mathbb{R}/\{-2,1\}$

$$f(x) = \frac{a(x+2)+b(x-1)}{(x-1)(x+2)} = \frac{ax+2a+bx-b}{(x-1)(x+2)} = \frac{(a+b)x+2a-b}{(x-1)(x+2)}$$

Donc:
$$\begin{cases} a+b=5 \\ 2a-b=1 \end{cases}$$
 Donc: $3a = 6$ Donc: $a = 2$

Donc:
$$b = 3$$
 Donc: $(\forall x \in D_f)$; $f(x) = \frac{2}{x-1} + \frac{3}{x+2}$

2)
$$(\forall x \in \mathbb{R} / \{-2;1\}); f(x) = 2\frac{(x-1)'}{x-1} + 3\frac{(x+2)'}{x+2}$$

$$F(x) = 2 \ln |x-1| + 3 \ln |x+2| + k \quad k \in \mathbb{R}$$

$$x \in]-\infty; -2[\Leftrightarrow x < -2 \text{ et } x < 1]$$

Donc: x+2<0 et x-1<0

Donc : les fonctions primitives sont :

$$F(x) = 2\ln(1-x) + 3\ln(-x-2) + k \quad k \in \mathbb{R}$$

$$F(-3) = \ln 2 \Leftrightarrow 2\ln(4) + 3\ln(1) + k = \ln 2$$

$$k = \ln 2 - 2\ln(2^2) \Leftrightarrow k = -3\ln 2$$

Donc:
$$F(x) = 2\ln(1-x) + 3\ln(-x-2) - 3\ln 2$$

Exercice 16: simplifier et calculer:

1)
$$\log_8 4$$
 2) $\log_{\sqrt{2}} \frac{1}{2}$ 3) $\log_{\sqrt{3}} 9$

4)
$$A = \log_2\left(\frac{1}{5}\right) + \log_2\left(10\right) + \log_{\frac{1}{2}}\left(\sqrt[5]{3}\right)$$

Solution:1)

$$\log_{\sqrt{2}} \frac{1}{2} = -\log_{\sqrt{2}} 2 = -\log_{\sqrt{2}} \left(\sqrt{2}\right)^2 = -2\log_{\sqrt{2}} \sqrt{2} = -2 \times 1 = -2$$

$$\log_{\sqrt{3}} 9 = \log_{\sqrt{3}} (\sqrt{3})^4 = 4 \log_{\sqrt{3}} \sqrt{3} = 4 \times 1 = 4$$

$$A = \log_2\left(\frac{1}{5}\right) + \log_2\left(10\right) + \log_{\frac{1}{3}}\left(\sqrt[5]{3}\right) = -\log_2 5 + \log_2\left(5 \times 2\right) + \log_{\frac{1}{3}}\left(3^{\frac{1}{5}}\right)$$

$$A = -\log_2 5 + \log_2 5 + \log_2 2 + \frac{1}{5} \log_{\frac{1}{3}} 3 = 1 + \frac{1}{5} \log_{\frac{1}{3}} 3$$

$$A = 1 - \frac{1}{5} \log_{\frac{1}{2}} \frac{1}{3} = 1 - \frac{1}{5} = \frac{4}{5}$$

Exercice17: On pose $\alpha = \log_{40} (100)$ et

 $\beta = \log_{16}(25)$ Calculer β en fonction α

Solution : on a : $\alpha = \frac{\ln 100}{\ln 40} = \frac{\ln (2^2 \times 5^2)}{\ln (2^3 \times 5)} = \frac{2 \ln 2 + 2 \ln 5}{3 \ln 2 + \ln 5}$

D'autre part : $\beta = \frac{\ln 25}{\ln 16} = \frac{\ln (5^2)}{\ln (2^4)} = \frac{2 \ln 5}{4 \ln 2} = \frac{\ln 5}{2 \ln 2}$

Aussi on a : $\alpha = \frac{2 + 2\frac{\ln 5}{\ln 2}}{3 + \frac{\ln 5}{\ln 2}} = \frac{2 + 4\beta}{3 + 2\beta}$

 $\alpha = \frac{2+4\beta}{3+2\beta} \Leftrightarrow \alpha(3+2\beta) = 2+4\beta \Leftrightarrow 3\alpha+2\alpha\beta = 2+4\beta$

 $3\alpha + 2\alpha\beta = 2 + 4\beta \Leftrightarrow 2(\alpha - 2)\beta = 2 - 3\alpha \Leftrightarrow \beta = \frac{2 - 3\alpha}{2(\alpha - 2)}$

Exercice18: simplifier et calculer:

1) $\log_{10} 100$ 2) $\log_{10} 0,0001$

3) $A = \log(250000) + \log\sqrt{250} - \log(125)$

Solution :1) $\log_{10} 100 = \log_{10} 10^2 = 2\log_{10} 10 = 2 \times 1 = 2$

2) $\log_{10} 0.0001 = \log_{10} 10^{-4} = -4 \log_{10} 10 = -4$

3) $A = \log(250000) + \log\sqrt{250} - \log(125)$

 $A = \log(250000) + \log\sqrt{250} - \log(125)$

 $A = \log(5^2 \times 10^4) + \frac{1}{2}\log(5^2 \times 10) - \log(5^3)$

 $A = \log 5^2 + \log 10^4 + \frac{1}{2} (\log 5^2 + \log 10) - 3\log 5$

 $A = 2\log 5 + 4\log 10 + \frac{1}{2}(2\log 5 + 1) - 3\log 5$

 $A = 2\log 5 + 4 + \log 5 + \frac{1}{2} - 3\log 5 = 4 + \frac{1}{2} = \frac{9}{2}$

Exercice 19 : déterminer le plus petit entier

naturel n tel que : $\left(\frac{3}{2}\right)^n \ge 10^{20}$

Solution: $\left(\frac{3}{2}\right)^n \ge 10^{20} \Leftrightarrow \log\left(\left(\frac{3}{2}\right)^n\right) \ge \log\left(10^{20}\right)$

 $\Leftrightarrow n \log \left(\frac{3}{2}\right) \ge 20 \Leftrightarrow n \ge \frac{20}{\log \left(\frac{3}{2}\right)}$

Le plus petit entier naturel n_0 est donc :

 $n_0 = E\left(\frac{20}{l \log\left(\frac{3}{2}\right)}\right) + 1 = 114$

Exercice 20 :1) Résoudre dans R l'équation :

1) $\log_3(2x) \times (\log_5(x) - 1) = 0$

2) $2(\log x)^2 - 19\log x - 10 = 0$

3) $\log_{\frac{1}{2}} \left(x - \frac{1}{2} \right) \ge 1$

4) $\log_{2x}(4x) + \log_{4x}(16x) = 4$

Où log est le logarithme décimal

Solution:1) a) cette équation est définie ssi:

x > 0 et 2x > 0 donc: $D_E =]0; +\infty[$

b) Résoudre l'équation : $\log_3(2x) \times (\log_5(x) - 1) = 0$

ssi $\log_5(x) - 1 = 0$ et $\log_3(2x) = 0$

 $ssilog_5(x) = log_5(5)$ et $log_3(2x) = log_3(1)$

 $ssi_{x}=5 et_{x}=\frac{1}{2} donc: S = \left\{\frac{1}{2};5\right\}$

2) $2(\log x)^2 - 19\log x - 10 = 0$

 $D_E =]0; +\infty[$ on pose : $\log x = X$ donc :

 $2X^2 - 19X - 10 = 0$

 $\Delta = b^2 - 4ac = (19)^2 - 4 \times 2 \times (-10) = 361 + 80 = 441 = (21)^2 > 0$

 $X_1 = \frac{19+21}{2\times 2} = 10$ et $X_2 = \frac{19-21}{2\times 2} = -\frac{1}{2}$

Donc: $\log x_1 = 10 \text{ et } \log x_2 = -\frac{1}{2}$

Donc: $x_1 = 10^{10}$ et $x_2 = 10^{-\frac{1}{2}} = \frac{1}{10^{\frac{1}{2}}} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}$

Donc: $S = \left\{ \frac{\sqrt{10}}{10}, 10^{10} \right\}$

: 3)a) cette équation est définie ssi :

$$x - \frac{1}{2} > 0$$
 donc: $x > \frac{1}{2}$ donc: $D_i = \left[\frac{1}{2}; +\infty \right[$

a)
$$\log_{\frac{1}{2}} \left(x - \frac{1}{2} \right) \ge 1 \Leftrightarrow \log_{\frac{1}{2}} \left(x - \frac{1}{2} \right) \ge \log_{\frac{1}{2}} \left(\frac{1}{2} \right) \Leftrightarrow x - \frac{1}{2} \le \frac{1}{2}$$

 $\mbox{car}:\,\log_{_{_{1}}}$ est strictement décroissante

donc:
$$x \le 1$$
 donc: $S =]-\infty;1] \cap]\frac{1}{2};+\infty = [\frac{1}{2};1]$

4)a) cette équation est définie ssi :

4x > 0 et 16x > 0 et 2x > 0 et $2x \ne 1$ et $4x \ne 1$

donc:
$$x > 0$$
 et $x \neq \frac{1}{2}$ et $x \neq \frac{1}{4}$

$$\mathsf{donc} : D_I =]0; +\infty \left[-\left\{ \frac{1}{4}; \frac{1}{2} \right\} \right]$$

b)
$$\forall x \in D_1 : \log_{2x}(4x) + \log_{4x}(16x) = 4 \iff$$

$$\Leftrightarrow \log_{2x}(2) + \log_{2x}(2x) + \log_{4x}(4x) + \log_{4x}(4) = 4$$

Or on a $\log_a(a) = 1$ donc:

$$\Leftrightarrow \log_{2x}(2) + \log_{4x}(4) = 2$$

Et on a :
$$\log_{2x}(2) = \frac{\ln(2)}{\ln(2x)} = \frac{1}{\log_2(2x)}$$

$$\log_2(2x) = \log_2(2) + \log_2 x = 1 + \log_2 x$$

Donc:
$$\log_{2x}(2) = \frac{1}{1 + \log_2 x}$$

D'autre part on a :
$$\log_{4x}(4) = \frac{\ln(4)}{\ln(4x)} = \frac{1}{\log_4(4x)}$$
 et

$$\log_4(4x) = \log_4(4) + \log_4 x = 1 + \log_4 x$$

Et puisque :
$$\log_4 x = \frac{\ln(x)}{\ln(4)} = \frac{\ln(x)}{2\ln(2)} = \frac{1}{2}\log_2 x$$

Donc:
$$\log_{4x}(4) = \frac{1}{1 + \frac{1}{2}\log_2(x)} = \frac{2}{2 + \log_2(x)}$$
 $3)\frac{\log_3(5x+1)}{\log_3(7x-1)^2} \le 1$

Donc l'équation devient :
$$\frac{1}{1 + \log_2 x} + \frac{2}{2 + \log_2 x} = 2$$

Cad:
$$2(\log_2 x)^2 + 3\log_2 x = 0$$

Cad:
$$\log_2 x = \frac{-3}{2}$$
 ou $\log_2 x = 0$

Cad:
$$x = 2^{\frac{-3}{2}} = \frac{2}{2^{\frac{3}{2}}} = \frac{2}{\sqrt{2^3}} = \frac{1}{2\sqrt{2}}$$
 ou $x = 1$

donc:
$$S = \left\{ \frac{1}{2\sqrt{2}}; 1 \right\}$$

Exercice 21 :1) Résoudre dans \mathbb{R} les inéquations et équations suivantes :

1)
$$\log_3(7x-1)^2 = 0$$
 2) $\log_3(5x+1) = 2$

$$3) \frac{\log_3(5x+1)}{\log_3(7x-1)^2} \le 1$$

Solution: 1)a) cette équation est définie ssi :

$$7x-1\neq 0$$
 donc: $x\neq \frac{1}{7}$ donc: $D_I = \mathbb{R} - \left\{\frac{1}{7}\right\}$

"b)
$$\log_3 (7x-1)^2 = 0 \Leftrightarrow (7x-1)^2 = 1$$

$$\Leftrightarrow 7x-1=1 \text{ ou } 7x-1=-1 \Leftrightarrow x=\frac{2}{7} \text{ ou } x=0$$

donc:
$$S = \left\{0; \frac{2}{7}\right\}$$

2)
$$\log_3(5x+1)=2$$

2)a) cette équation est définie ssi : 5x+1>0

Donc:
$$D_E = \left[-\frac{1}{5}; +\infty \right]$$

$$\log_3(5x+1) = 2 \Leftrightarrow 5x+1 = 3^2 \Leftrightarrow 5x = 8 \Leftrightarrow x = \frac{8}{5}$$

Puisque :
$$\frac{8}{5} \in \left[-\frac{1}{5}; +\infty \right]$$
 alors :: $S = \left\{ \frac{8}{5} \right\}$

$$3) \frac{\log_3(5x+1)}{\log_3(7x-1)^2} \le 1$$

a) cette équation est définie ssi : 5x+1>0 et

$$\log_3 (7x-1)^2 \neq 0$$
 et $7x-1 \neq 0$

cad:
$$x \succ -\frac{1}{5}$$
 et $x \neq \frac{1}{7}$ et $x \neq \frac{2}{7}$ et $x \neq 0$

$$D_E = \left] -\frac{1}{5}; +\infty \right[-\left\{0; \frac{1}{7}; \frac{2}{7}\right\}$$

D'abord étudions le signe de : $\log_3(7x-1)^2$

$$\log_3(7x-1)^2 \ge 0 \Leftrightarrow (7x-1)^2 \ge 1 \text{ car} : \log_{\frac{1}{2}} \text{ est}$$

strictement décroissante

$$\Leftrightarrow (7x-1)^2 - 1 \ge 0 \Leftrightarrow x(7x-2) \ge 0$$

1cas : si :
$$x \in \left] -\frac{1}{5}; 0 \left[\cup \right] \frac{2}{7}; +\infty \right[$$
 on a donc :

$$\log_3 \left(7x - 1\right)^2 \ge 0$$

$$\frac{\log_{3}(5x+1)}{\log_{3}(7x-1)^{2}} \le 1 \iff \log_{3}(5x+1) \le \log_{3}(7x-1)^{2}$$

$$\Leftrightarrow$$
 5x+1 \leq $(7x-1)^2 \Leftrightarrow$ 0 \leq 49x² -19x

$$\Leftrightarrow x \in \left[-\frac{1}{5}; 0 \right] \cup \left[\frac{19}{49}; +\infty \right]$$

2cas : si : $x \in \left[0; \frac{1}{7}\right] \cup \left[\frac{1}{7}; \frac{2}{7}\right]$ on a donc :

$$\log_3(7x-1)^2 < 0$$

$$\frac{\log_3(5x+1)}{\log_3(7x-1)^2} \le 1 \Leftrightarrow \log_3(7x-1)^2 \le \log_3(5x+1)$$

$$\Leftrightarrow (7x-1)^2 \le 5x+1 \Leftrightarrow 49x^2-19x \le 0$$

$$\Leftrightarrow x \in \left(\left]0; \frac{1}{7}\right[\cup \left]\frac{1}{7}; \frac{2}{7}\right[\right) \cap \left[0; \frac{19}{49}\right] \Leftrightarrow x \in \left]0; \frac{1}{7}\right[\cup \left]\frac{1}{7}; \frac{2}{7}\right[$$

$$\mathsf{Donc}:\ S = \left] -\frac{1}{5}; 0 \right[\ \cup \] 0; \frac{1}{7} \left[\ \cup \] \frac{1}{7}; \frac{2}{7} \left[\ \cup \left[\frac{19}{49}; +\infty \right[\right] \right]$$

Exercice 22:A) soit la fonction g définie

$$par: g(x) = x - lnx$$

Prof/ATMANI NAJIB

1) Déterminer $D_{\scriptscriptstyle g}$ l'ensemble de définition de la fonction g et déterminer les limites aux bornes de $D_{\scriptscriptstyle g}$

- 2) Déterminer la fonction dérivée de la fonction g puis dresser le tableau de variation de g
- 3) en déduire que : $\forall x > 0$ x > lnx
- B) soit la fonction f définie par :

$$\begin{cases} f(x) = \frac{x + lnx}{x - lnx}; si..x > 0 \\ f(0) = -1 \end{cases}$$

- 1)Montrer que $D_f = [0; +\infty]$
- 2)Montrer que f est continue à droite de 0
- 3)calculer: $\lim_{x \to +\infty} f(x)$
- 4) Etudier la dérivabilité de la fonction *f* à droite de 0
- 5) Montrer que : $\forall x \in]0; +\infty[f'(x) = \frac{2(1-lnx)}{(x-lnx)^2}$
- 6) Dresser le tableau de variation de f
- 7) déterminer les points d'intersections de C_f et la

Droite : (Δ) : y = 1

8) Montrer que : C_f coupe l'axe des abscisses

en un point d'abscisse dans $\left]\frac{1}{2};1\right[$

9) Construire la courbe C_f dans un repère

$$\left(O; \vec{i}; \vec{j}\right)$$
 ($ln2 \approx 0,7$, $e \approx 2,7$)

Solution :1) $D_g =]0; +\infty[$

$$\lim_{x \to +\infty} g\left(x\right) = \lim_{x \to +\infty} x - \ln x = \lim_{x \to +\infty} x \left(1 - \frac{\ln x}{x}\right) = +\infty$$

 $Car: \lim_{x \to +\infty} \frac{lnx}{x} = 0$

 $\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} x - lnx = +\infty \quad \text{Car} : \lim_{x \to 0^{+}} lnx = -\infty$

2) $g'(x) = (x - lnx)' = 1 - \frac{1}{x} = \frac{x - 1}{x}$

Le signe de: g'(x) est celui de x-1 car $x \in]0;+\infty[$

Tableau de variation de g

x	0	1	$+\infty$
f'(x)	_	þ	+
f(x)	+∞ <	× ₁ /	\rightarrow + ∞

3)on remarque que : que la fonction g

Admet une valeur minimal en $x_0 = 1$

Donc:
$$g(1) \le g(x) \quad \forall x \in]0; +\infty[$$
 $g(1) = 1$

Donc:
$$0 < 1 \le x - lnx$$
 Donc: $lnx < x \quad \forall x \in]0; +\infty[$

B) 1)
$$\begin{cases} f(x) = \frac{x + lnx}{x - lnx} \\ f(0) = -1 \end{cases}$$

f est définie ssi $x - lnx \neq 0$ et x > 0

On a
$$0 < x - lnx$$
 donc: $x - lnx \ne 0$ et on a $f(0) = -1$

$$\mathsf{Donc}:\ D_f = \big[0; +\infty\big[$$

2)
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x + \ln x}{x - \ln x} = \lim_{x \to 0^{+}} \frac{\ln x \left(\frac{x}{\ln x} + 1\right)}{\ln x \left(\frac{x}{\ln x} - 1\right)} = \lim_{x \to 0^{+}} \frac{\frac{x}{\ln x} + 1}{\frac{x}{\ln x} - 1}$$

Et on a
$$\lim_{x \to 0^+} lnx = -\infty$$
 donc $\lim_{x \to 0^+} \frac{x}{lnx} = 0^-$ et $\frac{0}{\infty} = 0$ $f(x) = 1 \Leftrightarrow \frac{x + lnx}{x - lnx} = 1 \Leftrightarrow x + lnx = x - lnx$

$$\lim_{x \to 0^{+}} f(x) = -1 = f(0)$$

Donc : f est continue à droite de 0 3)

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x + \ln x}{x - \ln x} = \lim_{x \to +\infty} \frac{x \left(1 + \frac{\ln x}{x}\right)}{x \left(1 - \frac{\ln x}{x}\right)} = \lim_{x \to +\infty} \frac{1 + \frac{\ln x}{x}}{1 - \frac{\ln x}{x}} = 1$$

$$(a) f \text{ est continue sur } D_f = [0; +\infty[\text{ donc continue sur } D_f = [0;$$

$$\operatorname{Car}: \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

<u>Interprétation graphique</u>: la droite y = 1 est une

asymptote a la courbe de f

4) Etude de la dérivabilité de la fonction f à droite de 0:

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\frac{x + lnx}{x - lnx} + 1}{x} = \lim_{x \to 0^{+}} \frac{\frac{x + lnx + x - lnx}{x - lnx}}{x}$$

$$= \lim_{x \to 0^{+}} \frac{2x}{x(x - lnx)} = \lim_{x \to 0^{+}} \frac{2}{x - lnx} = 0 = f'_{d}(0)$$

Donc : f est dérivable à droite de 0

$$f'(x) = \left(\frac{x + lnx}{x - lnx}\right)' = \frac{\left(x + lnx\right)'\left(x - lnx\right) - \left(x + lnx\right)\left(x - lnx\right)'}{\left(x - lnx\right)^2}$$

$$= \frac{\left(1 + \frac{1}{x}\right)(x - \ln x) - \left(x + \ln x\right)\left(1 - \frac{1}{x}\right)}{\left(x - \ln x\right)^2} = \frac{x - \ln x + 1 - \frac{\ln x}{x} - x - \ln x + 1 + \frac{\ln x}{x}}{\left(x - \ln x\right)^2}$$

$$\forall x \in]0; +\infty[:f'(x) = \frac{2 - 2lnx}{(x - lnx)^2} = \frac{2(1 - lnx)}{(x - lnx)^2}$$

6) tableau de variation de $f: x \in]0; +\infty[$

Le signe de: f'(x) est celui de 1-lnx

 $1 - lnx > 0 \Leftrightarrow 1 > lnx \Leftrightarrow lne > lnx \Leftrightarrow e > x$ Tableau de variation de f

x	О	e	$+\infty$
f'(x)	+	þ	
f(x)	1	e+1	\ _1

7) points d'intersections de C_f et (Δ) : y=1 ?

$$f(x) = 1 \Leftrightarrow \frac{x + lnx}{x - lnx} = 1 \Leftrightarrow x + lnx = x - lnx$$

$$f(x) = 1 \Leftrightarrow 2lnx = 0 \Leftrightarrow x = 1$$

le point d'intersection de C_f et la Droite : (Δ): y=1

est : A(1;1)

Sur:
$$\left[\frac{1}{2};1\right]$$
 et on a: $f(1) = \frac{\frac{1}{2} + ln(1)}{\frac{1}{2} - ln(1)} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1 > 0$

Et
$$f\left(\frac{1}{2}\right) = \frac{\frac{1}{2} + ln\left(\frac{1}{2}\right)}{\frac{1}{2} - ln\left(\frac{1}{2}\right)} = \frac{\frac{1}{2} - ln2}{\frac{1}{2} + ln2} = \frac{\frac{1 - 2ln2}{2}}{\frac{1 + 2ln2}{2}} = \frac{1 - 2ln2}{1 + 2ln2} < 0$$

Donc : d'après le théorème des valeurs

intermédiaires : l'équation f(x) = 0 admet au

moins une solution dans $\left|\frac{1}{2},1\right|$ cad C_f coupe

l'axe des abscisses en un point d'abscisse

dans
$$\left]\frac{1}{2};1\right[$$

9)

Exercice 23 : Considérons les fonctions f et g définies sur $]-1;+\infty[$ par :

$$f(x) = \ln(1+x) - x + \frac{x^2}{2}$$
 et $g(x) = \ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3}$

1)a)calculer les limites suivantes : $\lim_{x \to -1^+} f(x)$

$$\lim_{x \to +\infty} f(x) \; ; \; \lim_{x \to -1^+} g(x)$$

b) montrer que : $\forall x \in]-1;+\infty[$ on a :

$$g(x) = (1+x) \left(\frac{\ln(1+x)}{1+x} - \frac{2x^3 - 3x^2 + 6x}{6(1+x)} \right)$$

et en déduire : $\lim_{x \to +\infty} g(x)$

c) Etudier les variations les fonctions f et g Puis dresser les tableaux de variations de f et g

2) en déduire que $\forall x \in]0; +\infty[$:

$$x - \frac{x^2}{2} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$$

3) calculer: $\lim_{x\to 0^+} \frac{x - \ln(1+x)}{x^2}$

4)monter que : $\forall x \in]0; +\infty[$:

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$$

Solution :1) $\lim_{x \to -1^+} \ln(1+x)$?

On pose: t = 1 + x $x \rightarrow -1^+ \Leftrightarrow t \rightarrow 0^+$

 $\lim_{x \to -1^{+}} \ln(1+x) = \lim_{t \to 0^{+}} \ln t = -\infty$

Et on a : $\lim_{x \to -1^+} -x + \frac{x^2}{2} = 1 + \frac{1}{2} = \frac{3}{2}$

Donc: $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \ln(1+x) - x + \frac{x^2}{2} = -\infty$

 $\lim_{x \to +\infty} f(x)$? on a: $\lim_{x \to +\infty} -x + \frac{x^2}{2} = \lim_{x \to +\infty} \frac{x^2}{2} = +\infty$

Et on a : $\lim_{x \to +\infty} \ln(1+x) = +\infty$ donc $\lim_{x \to +\infty} f(x) = +\infty$

 $\lim_{x \to -1^+} g(x) = ? \quad \text{on a} : \lim_{x \to -1^+} \ln(1+x) = -\infty$

Et $\lim_{x \to -1^+} -x + \frac{x^2}{2} - \frac{x^3}{3} = \frac{11}{6}$ donc: $\lim_{x \to -1^+} g(x) = -\infty$

b) montrons que : $\forall x \in]-1;+\infty[$ on a :

$$g(x) = (1+x)\left(\frac{\ln(1+x)}{1+x} - \frac{2x^3 - 3x^2 + 6x}{6(1+x)}\right)$$
?

$$g(x) = \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right) = \ln(1+x) - \left(\frac{2x^3 - 3x^2 + 6x}{6}\right)$$

$$g(x) = (1+x)\left(\frac{\ln(1+x)}{1+x} - \frac{2x^3 - 3x^2 + 6x}{6(1+x)}\right)$$

Déduction de : $\lim_{x \to +\infty} g(x)$?

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (1+x) \left(\frac{\ln(1+x)}{1+x} - \frac{2x^3 - 3x^2 + 6x}{6(1+x)} \right)$$

 $\lim_{x \to +\infty} \frac{\ln(1+x)}{1+x}$? On pose: t = 1+x

 $x \to +\infty \Leftrightarrow t \to +\infty$ donc:

$$\lim_{x \to +\infty} \frac{\ln(1+x)}{1+x} = \lim_{t \to +\infty} \frac{\ln t}{t} = 0$$

$$\lim_{x \to +\infty} \frac{2x^3 - 3x^2 + 6x}{6(1+x)} = \lim_{x \to +\infty} \frac{2x^3}{6x} = \lim_{x \to +\infty} \frac{x^2}{3} = +\infty$$

Donc: $\lim_{x \to +\infty} g(x) = -\infty$ car $\lim_{x \to +\infty} 1 + x = +\infty$

C1) Etude des variations les fonctions f?

 $\forall x \in]-1;+\infty[x \rightarrow \ln(1+x) \text{ est dérivable donc f est dérivable et on a :}$

$$f'(x) = \frac{(1+x)'}{1+x} - 1 + x = \frac{1}{1+x} - (1-x) = \frac{x^2}{1+x} \ge 0 \quad \forall x \in]-1; +\infty[$$

$$f'(x) = 0 \Leftrightarrow x = 0$$

Donc : tableau de variations de f :

x	-1	0	$+\infty$
f'(x)	+	О	+
f(x)	$-\infty$	_0	$+\infty$

C2) Etude des variations les fonctions g ? g est dérivable sur $\forall x \in]-1;+\infty[$ et on a :

$$g'(x) = \frac{1}{1+x} - (1-x+x^2) = \frac{-x^3}{1+x}$$

Le signe de g'(x) est celui de -x

Donc: tableau de variations de g:

x	-1	0	$+\infty$
g'(x)	+	þ	
g(x)	$-\infty$	~ 0~	

2) déduction d'un encadrement de $\ln(1+x)$?

Des variations les fonctions f et g en deduit que :

$$g(x) \prec 0 \prec f(x) \quad \forall x \in]0; +\infty[$$
 donc:

$$\ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3} < 0 < \ln(1+x) - x + \frac{x^2}{2}$$

Donc:
$$x - \frac{x^2}{2} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3} \quad \forall x \in]0; +\infty[$$

3)
$$\lim_{x\to 0^+} \frac{x - \ln(1+x)}{x^2}$$
 ?

Donc: $x - \frac{x^2}{2} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$ on deduit que

$$\frac{1}{2} - \frac{x}{3} < \frac{x - \ln(1 + x)}{x^2} < \frac{1}{2} \text{ et puisque} : \lim_{x \to 0^+} \frac{1}{2} - \frac{x}{3} = \frac{1}{2}$$

Donc:
$$\lim_{x\to 0^+} \frac{x - \ln(1+x)}{x^2} = \frac{1}{2}$$

4)montrons que : $\forall x \in]0; +\infty[$:

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$$
?

Soit ψ la fonction définie $\forall x \in]-1; +\infty[$

Par:
$$\psi(x) = g(x) + \frac{x^4}{4}$$

 ψ est dérivable sur $\forall x \in]-1;+\infty[$ et on a :

$$\psi'(x) = g'(x) + x^3 = \frac{x^4}{1+x} \ge 0 \quad \forall x \in]-1; +\infty[$$

 $\psi'(x) = 0 \Leftrightarrow x = 0$ donc ψ strictement croissante

$$x \ge 0 \Rightarrow \psi(x) \ge \psi(0) = 0$$

donc:
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} < \ln(1+x) \quad \forall x \in]0; +\infty[$$

donc:
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$$

Exercice 24 : Considérons la fonction f définie

par:
$$f(x) = x-3+\frac{3}{2x}+\frac{1}{2}\ln\left|\frac{x+1}{x-1}\right|$$

- 1) Déterminer l'ensemble de définition de la fonction f
- 2)montrer que le domaine d'étude de f est :

$$D_{\scriptscriptstyle E} = \left]0;1\right[\,\cup\,\right]1;+\infty[$$

- 3) Déterminer les limites aux bornes de D_E
- 4) Etudier les variations de f sur $D_{\scriptscriptstyle E}$

5) Etudier les branches infinies de $\left(C_{f}\right)$ la courbe de f

6). Construire la courbe $\left(C_{f}\right)$ dans D_{E}

Solution : 1)
$$f(x) = x - 3 + \frac{3}{2x} + \frac{1}{2} \ln \left| \frac{x+1}{x-1} \right|$$

cette fonction est définie ssi : $x \neq 0$ et $x \neq 1$

et
$$\frac{x+1}{x-1} \neq 0$$
 donc: $x \neq -1$ et $x \neq 1$ et $x \neq 0$

donc: $D_I = \mathbb{R} - \{-1; 0; 1\}$

2)le domaine d'étude de f ?

a)
$$\forall x \in \mathbb{R} - \{-1,0,1\}$$
 on a $-x \in \mathbb{R} - \{-1,0,1\}$

b)
$$f(-x) = -x - 3 - \frac{3}{2x} + \frac{1}{2} \ln \left| \frac{-x+1}{-x-1} \right|$$

$$f(-x) = -x - 3 - \frac{3}{2x} + \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right|$$

$$f(-x) = -x - 3 - \frac{3}{2x} - \frac{1}{2} \ln \left| \frac{x+1}{x-1} \right|$$

$$Donc: f(-x)+f(x)=-6$$

Donc:
$$f(2\times 0-x)+f(x)=2\times (-3)-f(x)$$

Donc le point : I(0,-3) est un centre de symétrie

de (C_f) la courbe de f

donc II suffit d'étudier f sur : $D_{\scriptscriptstyle E} = \left]0;1\right[\, \cup \, \right]1;+\infty \left[$

3) les limites aux bornes de D_E ?

$$\lim_{x \to 0^+} f(x) = +\infty$$

On a :
$$\lim_{x \to 1} \left| \frac{x+1}{x-1} \right| = +\infty$$
 et $\lim_{t \to +\infty} \ln t = +\infty$

donc:
$$\lim_{x \to 1} f(x) = +\infty$$

on a:
$$\lim_{x \to +\infty} \ln \left| \frac{x+1}{x-1} \right| = 0$$
 donc: $\lim_{x \to +\infty} f(x) = +\infty$

4) Etude des variations de f sur D_E ?

La fonction f est dérivable sur les intervalles $]1;+\infty[$ et]0;1[(somme et composées de fonctions dérivables)

et on a :
$$f'(x) = 1 - \frac{3}{2x^2} + \frac{1}{2} \left(\frac{1}{x+1} - \frac{1}{x-1} \right) = \frac{(2x^2 - 1)(x^2 - 3)}{2x^2(x^2 - 1)}$$

$$\forall x \in]0;1[\cup]1;+\infty[$$

Donc: tableau de variations de f:

5) Etude des branches infinies de (C_f)

la courbe de f?

• $\lim_{x\to 0^+} f(x) = +\infty$ donc: x=0 est une asymptote

de la courbe de f

• $\lim_{x \to 1} f(x) = +\infty$ donc: x = 1 est une asymptote

de la courbe de f

• x = -1 est une asymptote de la courbe de f (par symétrie)

• On a:
$$f(x)-(x-3) = \frac{3}{2x} + \frac{1}{2} \ln \left| \frac{x+1}{x-1} \right|$$

$$\lim_{|x| \to +\infty} f(x) - (x-3) = \lim_{|x| \to +\infty} \frac{3}{2x} + \frac{1}{2} \ln \left| \frac{x+1}{x-1} \right| = 0$$

Donc : y = x - 3 est une asymptote oblique de la courbe de f au voisinage de $+\infty$ et $-\infty$

Exercice 25 :1) Résoudre dans R l'équation :

$$\log_x (x+1) = \log_{x+1} (x)$$

2) Résoudre dans R l'inéquation :

$$\log_2(x) > \log_x(2)$$

Exercice 26 : Considérons la fonction *f* définie

$$par: f(x) = \sqrt{1 - \ln x}$$

- 1) Déterminer l'ensemble de définition de la fonction *f*
- 2) Résoudre l'équation f(x) = 1
- 3) Résoudre l'inéquation $f(x) \le 1$
- 4) Etudier la dérivabilité de la fonction *f* à gauche de e
- 5) Etudier les variations de *f* et en déduire que *f* est une bijection de D_f vers un intervalle J.
- 6) Construire dans le même repère Cf et C_{f-1}

Exercice 27 : Considérons la fonction *g* définie

par:
$$g(x) = x \ln\left(1 + \frac{1}{x}\right)$$

Prof/ATMANI NAJIB

- 1. Déterminer l'ensemble de définition de la fonction g
- 2. a) Montrer que la fonction g admet un prolongement par continuité en 0 noté g
- b) Etudier la dérivabilité de g en 0 et interpréter géométriquement le résultat obtenu.
- 3. Déterminer les limites de la fonction g en $+\infty$ et en -1 à gauche.

- 4. Déterminer la fonction dérivée de la fonction *g* puis dresser le tableau de variation de g
- 5. Etudier les branches infinies de la courbe *Cg*.
- 6. Construire la courbe Cg

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

16

