Pesquisa e Classificação de Dados Lista 6 (Arquivos)

Prof. Ricardo Oliveira

Esta lista ${\bf n\tilde{a}o}$ vale nota e ${\bf n\tilde{a}o}$ deve ser entregue, mas apenas utilizada como material de apoio para estudo. Naturalmente, você pode tirar eventuais dúvidas com o professor.

Exercícios marcados com (B) são básicos e essenciais para a matéria. Exercícios marcados com (C) são complementares. Recomenda-se fortemente a resolver todos os exercícios.

- 1. (B) Considere um sistema de arquivos com páginas de tamanho 4Kb, e uma tabela na qual cada registro ocupa 120 bytes. Determine quantos registros são alocados por página, e o tamanho do *padding* gerado.
- 2. (B) Apresente o esquema de um arquivo indexado contendo a tabela abaixo. Considere que os registros foram inseridos na ordem dada, e que o índice é feito com uma árvore B de ordem D=3.

$\underline{\mathbf{cod}}$	item	preco
7	macarrao	2.70
11	notebook	2490.00
15	agua	1.99
20	celular	750.00
25	bala	0.10
10	livro	35.00
18	kinderovo	8000.00
22	cafezinho	0.50

- 3. (B) Apresente o esquema de um arquivo sequencial (ordenado) contendo a tabela dada no exercício anterior. Considere que os registros foram inseridos na ordem dada, que a área de transferência tem espaço total para 3 registros, e que a técnica balanced-line é executada sempre que a área de transferência fica cheia. Indique o número total de vezes em que a técnica foi utilizada.
- 4. (B) Apresente o esquema de um arquivo sequencial indexado contendo os mesmos dados dos exercícios anteriores.
- 5. (B) Apresente um arquivo direto com tamanho máximo de 10 registros contendo os mesmos dados dos exercícios anteriores. Utilize o resto da divisão do código por 10 como função hash, e trate colisões com sondagem linear ($h_i(x) = (h_{i-1}(x) + 1)\%10$).
- 6. (B) Apresente o esquema de um arquivo por hashing extensível com diretório de profundidade 1 e arquivos com capacidade para 3 registros cada, contendo como chaves as representações binárias de 2, 5, 6, 10 e 12, todas com 4 bits. Em seguida, insira a chave 4 neste arquivo e apresente o arquivo resultante.

7. (B) Considere a seguinte tabela:

,	,	0	
$\underline{\mathbf{id}}$	nome	\mathbf{ml}	cor
1		600	1
2	fanta	600	laranja
3	cafe	50	preto
4	suco de laranja	200	laranja
5	agua	510	transp
6	pinga	50	transp

Apresente um esquema de um arquivo invertido contendo duas inversões: uma em relação ao campo **ml**, e outra em relação ao campo **cor**.