Chapter 4 and 5: Real Functions of One Real Variable

Introduction

This chapter is devoted to the functions of a real variable which are often modeled for the study of curves and mechanical calculations. In this regard, we present the foundations of the functions of a real variable, where the objective is to know and interpret the notion of the limit, continuity and derivability of a function, and to present some of their properties.

Contents

In	trodu	iction	1
1	Lim	its	2
	1.1	Limit at a Point	2
	1.2	Operations on Limits	3
	1.3 4	Evaluating Limits in Indeterminate Form	
			7
	2.1	Continuity at Point	7
	2.2	Operations on Continuity	8
	2.3	Intermediate Value Theorem (IVT)	9
3	Der	ivability	10
	3.1	Derivability at a Point	10
	3.2	Operations on derivative	11
	3 3	Rolle's Theorem	14

Real function

The concept of a function is the fundamental concept of calculus and analysis. Real function f of one real variable is a mapping from the set $D \subseteq \mathbb{R}$, a subset in real numbers \mathbb{R} , to the set of all real numbers \mathbb{R} .

$$f: D \to \mathbb{R}, \qquad x \longmapsto f(x)$$

• *D* is the domain of the function *f* , where $D = \{x \in \mathbb{R}, f(x) \text{ makes sense }\}$

1 Limits

Limits are used to analyze the local behavior of functions near points of interest. A function f is said to have a limit ℓ at x_0 if it is possible to make the function arbitrarily close to ℓ by choosing values closer and closer to x_0 . Note that the actual value at x_0 is irrelevant to the value of the limit.

The notation is as follows:

$$\lim_{x \to x_0} f(x) = \ell$$

which is read as "the limit of f(x) as x approaches x_0 is ℓ "

1.1 Limit at a Point

We consider values of a function that approaches a value from either inferior or superior.

• The left-hand limit of a function f as it approaches x_0 is the limit

$$\lim_{x \to x_0^-} f(x) = \ell$$

Which indicates that the limit is defined in terms of a number less than the given number x_0 .

• The right-hand limit of a function f as it approaches x_0 is the limit

$$\lim_{x \to x_0^+} f(x) = \ell$$

Which indicates that the limit is defined in terms of a number greater than the given number x_0 .

• $\lim_{x \to x_0} f(x) = \ell$ if and only if both the left- hand and right-hand limits at $x = x_0$ exist and share the same value.

$$\lim_{x \to x_0^-} f(x) = \ell = \lim_{x \to x_0^+} f(x).$$

Example : Compute the limit : $\lim_{x\to 0} |x|$ • The right-hand limit at x=0 : $\lim_{x\to 0^+} |x| = \lim_{x\to 0^+} x = 0$ • The left-hand limit at x=0 : $\lim_{x\to 0^-} |x| = \lim_{x\to 0^-} -x = 0$

So the right-hand and left-hand limits are equal. Then $\lim_{x\to 0} |x| = 0$

Infinite Limits

• If a function is defined on either side of x_0 , but the limit as x approaches x_0 is infinity or negative infinity, then the function has an infinite limit, we write

$$\lim_{x \to x_0} f(x) = \infty$$

•The graph of the function will have a vertical asymptote at x_0 .

Limits at Infinity

• Limits at infinity are used to describe the behavior of functions as the independent variable increases or decreases without bound. we write

$$\lim_{x \to \pm \infty} f(x) = \ell$$

• The graph of the function will have a horizontal asymptote at $y = \ell$.

Operations on Limits 1.2

 \bigcirc Assume that $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$, $\lim_{x \to x_0} g(x) = m \in \mathbb{R}$ and $c \in \mathbb{R}$. Therefore :

$\lim_{x\to x_0} f(x)$	$\lim_{x\to x_0}g(x)$	$\lim_{x\to x_0}(f+g)(x)$	$\lim_{x\to x_0} (f\times g)(x)$
ℓ	m	$\ell + m$	$\ell \times m$
			$\int +\infty \qquad \text{Si } m > 0$
+∞	m	+∞	$\left\{ -\infty \qquad \text{Si } m < 0 \right.$
			Indeterminate Si $m = 0$
	m	-∞	$\int -\infty \qquad \text{Si } m > 0$
$-\infty$			$\left\{ +\infty \qquad \text{Si } m < 0 \right.$
			Indeterminate Si $m = 0$
+∞	+∞	+∞	+∞
$-\infty$	$-\infty$	$-\infty$	+∞
$-\infty$	+∞	Indeterminate	-∞

$$\bigcirc \lim_{x \to x_0} cf(x) = c \lim_{x \to x_0} f(x) = c\ell$$

$$\bigcirc \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{\ell}{m} \text{ if } m \neq 0$$

 \bigcirc **Limit of Composition :** Suppose that $\lim_{x \to x_0} g(x) = \ell$ and $\lim_{x \to \ell} f(x) = \ell'$, then

$$\lim_{x \to x_0} f(g(x)) = \ell'$$

Comparative Growth

Suppose that f and g are two functions such that $\lim_{x \to +\infty} f(x) = +\infty$, and $\lim_{x \to +\infty} g(x) = +\infty$. We say that f grows faster than g as $x \to +\infty$ if the following holds:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = +\infty \qquad \text{or equivalently,} \quad \lim_{x \to +\infty} \frac{g(x)}{f(x)} = 0$$

Results:

• Exponential functions grow faster than every polynomial functions and polynomial functions grow faster than logarithmic functions. Let *n* be positive number:

1.
$$\lim_{x \to \infty} \frac{e^x}{x^n} = \infty$$
 and, $\lim_{x \to \infty} \frac{x^n}{e^x} = 0$

2.
$$\lim_{x \to \infty} \frac{x^n}{\ln(x)} = \infty$$
 and, $\lim_{x \to \infty} \frac{\ln(x)}{x^n} = 0$

Indeterminate Form

An indeterminate form is an expression involving two functions whose limit cannot be determined solely from the limits of the individual functions.

$$+\infty-\infty$$
, $0.\infty$, $\frac{\infty}{\infty}$, $\frac{0}{0}$

1.3 Evaluating Limits in Indeterminate Form

We present some methods that allows us to transform an indeterminate form into one that allows for direct evaluation.

● Polynomial function as $x \to \pm \infty$ with indeterminate form $+\infty - \infty$ Factor out the highest power of x in the polynomial function.

Example:

Find
$$\lim_{x \to +\infty} -2x^3 + 4x - 1$$
,

We write, $\lim_{x \to +\infty} -2x^3 (1 - \frac{2}{x^2} + \frac{1}{2x^3})$. Thus, $\lim_{x \to \infty} -2x^3 = -\infty$ and $\lim_{x \to \infty} (1 - \frac{2}{x^2} + \frac{1}{2x^3}) = 1$

Therefore, $\lim_{x \to +\infty} -2x^3 + 4x - 1 = \lim_{x \to +\infty} -2x^3 = -\infty$.

• Rational function as $x \to \pm \infty$ with indeterminate form $\frac{\infty}{\infty}$

Divide out the highest power of x in both the numerator and denominator.

Example: $\lim_{x \to +\infty} \frac{x^2 - 1}{x + 3}$. Both numerator and denominator approach $+\infty$ as $x \to +\infty$. Thus

$$\lim_{x \to +\infty} \frac{x^2 - 1}{x + 3} = \lim_{x \to +\infty} \frac{x^2 (1 - \frac{1}{x^2})}{x (1 + \frac{3}{x})} = +\infty$$

• Factoring Method $\left(\frac{0}{0} \text{ form }\right)$

Factoring method is a technique to finding limits that works by canceling out common factors.

Find
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

Using the substitution rule gives $\lim_{x\to 3} \frac{x^2-9}{x-3} = \frac{0}{0}$ find the common divisor which is (x-3) and divide both the numerator and denominator by it,

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3}$$
$$= \lim_{x \to 3} (x + 3)$$
$$= 6$$

ullet L'Hospital's Rule $\left(\frac{0}{0} \text{ or } \frac{\infty}{\infty} \text{ form } \right)$

Suppose f and g are differentiable and $g'(x) \neq 0$ near x_0 (except possibly at x_0). Suppose that

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{0}{0}, \text{ or } \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty}$$

Then,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Example:

Find
$$\lim_{x \to -2} \frac{x+2}{x^2+3x+2}$$

Using the substitution rule gives $\lim_{x \to -2} \frac{x+2}{x^2+3x+2} = \frac{0}{0}$. Apply L'Hospital's Rule

$$\lim_{x \to -2} \frac{x+2}{x^2 + 3x + 2} = \lim_{x \to -2} \frac{(x+2)'}{(x^2 + 3x + 2)'}$$
$$= \lim_{x \to -2} \frac{1}{2x + 3}$$
$$= -1.$$

Conjugate multiplication

This method useful for fraction functions that contain square roots. It rationalizes the numerator or denominator of a fraction, which means getting rid of square roots.

Example:

Evaluate
$$\lim_{x\to 4} \frac{\sqrt{x}-2}{x-4}$$

By substitution, we find :
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \frac{0}{0}$$

Multiply the numerator and denominator by the conjugate of $\sqrt{x}-2$ which is $\sqrt{x}+2$, we obtain

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{(x - 4)(\sqrt{x} + 2)}$$

$$= \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)}$$

$$= \lim_{x \to 4} \frac{1}{\sqrt{x} + 2} \quad \text{(Cancel the } (x - 4))$$

$$= \frac{1}{4}$$

Alternative methods to evaluate limits

• Squeeze Theorem

Suppose that $g(x) \le f(x) \le h(x)$ for all x close to x_0 but not equal to x_0 . If $\lim_{x \to x_0} g(x) = \ell = \lim_{x \to x_0} h(x)$, then

$$\lim_{x \to x_0} f(x) = \ell$$

The quantity x_0 and ℓ may be a finite number or $\pm \infty$.

Results: we represent two important limits:

$$\lim_{x \to +\infty} \frac{\sin(x)}{x} = 0, \qquad \lim_{x \to +\infty} \frac{1 - \cos(x)}{x} = 0$$

Monotone Limits

Suppose that the limits of f and g both exist as $x \to x_0$. if $f(x) \le g(x)$ when x is near x_0 , then

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

Some Special Limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1, \qquad \lim_{x \to 0} \frac{\tan(x)}{x} = 1, \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1, \qquad \lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1$$

2 Continuity

Continuous functions are functions that take nearby values at nearby points.

2.1 Continuity at Point

Definition 2.1

• Let $I \subseteq \mathbb{R}$ and $f: I \to \mathbb{R}$ be a function. we say that f is continuous at a point $x_0 \in I$ if,

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Otherwise, f is said to be discontinuous at x_0 .

• We say that f is continuous on I if f is continuous at every point of I.

Checking Continuity at a Point

A function f is continuous at $x = x_0$ if the following three conditions hold:

- 1. $f(x_0)$ is defined (that is, x_0 belongs to the domain of f)
- 2. $\lim_{x \to x_0} f(x)$ exists (that is, left-hand limit = right-hand limit)
- 3. $\lim_{x \to x_0} f(x) = f(x_0)$

One-sided continuity:

- f is left continuous at a point x_0 if, $\lim_{x \to x_0^-} f(x) = f(x_0)$
- f is right continuous at a point x_0 if, $\lim_{x \to x_0^+} f(x) = f(x_0)$
- f is continuous at x_0 if and only if these two limits exist and are equal.

$$\lim_{x \to x_0^-} f(x) = f(x_0) = \lim_{x \to x_0^+} f(x)$$

Remark 1

- \bigcirc Every polynomial function is continuous on \mathbb{R} .
- Every rational function is continuous on its domain.
- \bigcirc sin and cos are continuous everywhere on $\mathbb R$
- \bigcirc The square root is continuous on \mathbb{R}^+

2.2 Operations on Continuity

The basic properties of continuous functions follow from those of limits:

If $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are continuous at x_0 of I, and λ is a constant, then:

- 1. f + g is continuous at x_0
- 2. λf is continuous at x_0
- 3. fg is continuous at x_0
- 4. If $f(x_0) \neq 0$, then $\frac{1}{f}$ is continuous at x_0 .

Theorem 1 Let $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$ two functions such that $f(I) \subseteq J$. If f is continuous at x_0 of I and if g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .

Example:

Determine whether $h(x) = \cos(x^2 - 5x + 2)$ is continuous.

Note that, h(x) = f(g(x)), where $f(x) = \cos(x)$ and $g(x) = x^2 - 5x + 2$

Since both f and g are continuous for all x, then h is continuous for all x.

Continuous extension: When we can remove a discontinuity by redefining the function at that point, we call the discontinuity removable. (Not all discontinuities are removable, however.)

If $\lim_{x \to x_0} f(x) = \ell$, but $f(x_0)$ is not defined, we define a new function

$$\tilde{f}(x) = \begin{cases} f(x) & \text{for } x \neq x_0 \\ \ell & \text{for } x = x_0 \end{cases}$$

which is continuous at x_0 . It is called the continuous extension of f(x) to x_0 .

Example:

Show that the following function have continuous extension, and find the extension:

$$f(x) = \frac{x^2 - 1}{x^3 + 1}$$
, for $x \neq -1$

Here f(-1) has not been defined.

$$\lim_{x \to -1} \frac{x^2 - 1}{x^3 + 1} = \lim_{x \to -1} \frac{(x+1)(x-1)}{(x+1)(x^2 - x + 1)}$$
$$= \lim_{x \to -1} \frac{x - 1}{x^2 - x + 1}$$
$$= \frac{-2}{3}$$

Thus, $\lim_{x\to -1} f(x)$ exists, therefore f has a removable discontinuity at $x_0 = -1$. Hence, The continuous extension is

$$\tilde{f}(x) = \begin{cases} \frac{x^2 - 1}{x^3 + 1} & \text{for } x \neq -1 \\ -\frac{2}{3} & \text{for } x = -1 \end{cases}$$

○ As one consequence of previous results, the image of interval under a continuous function is an interval :

Theorem 2 Let $f: I \to \mathbb{R}$ be a continuous function on an interval I, then f(I) is an anterval.

I	f(I)		
	f is strictly increasing	f is strictly decreasing	
[a, b]	[f(a),f(b)]	[f(b),f(a)]	
[a, b[$[f(a), \lim_{x \to b^-} f(x)[$	$\lim_{x\to b^-} f(x), f(a)$	
]a,b]	$\lim_{x \to a^+} f(x), f(b)$	$[f(b), \lim_{x \to a^+} f(x)[$	
]a, b[$\lim_{x \to a^+} f(x), \lim_{x \to a^+} f(x)$	$\lim_{x \to a^{+}} f(x), \lim_{x \to a^{+}} f(x)[$	

Theorem 3 Let $f: I \to \mathbb{R}$ is the function defined on $I \subseteq \mathbb{R}$. Assume that f is continuous and strictly monotonic on the closed interval I, then

- 1. f establishes a bijection of the interval I into the image interval f(I).
- 2. $f^{-1}: f(I) \to I$ is continuous and strictly monotonic on f(I)

2.3 Intermediate Value Theorem (IVT)

The intermediate value theorem describes a key property of continuous functions. It states that a continuous function on an interval takes on all values between any two of its values.

Theorem 4 *Let* $f : [a, b] \longrightarrow \mathbb{R}$ *such that*

- ullet f is continuous on the closed interval [a,b]
- k be any number between f(a) and f(b).

Then, there exists at least $c \in]a, b[$ such that f(c) = k.

Geometric interpretation f(b) k f(a) a c_1 c_2 c_3 b

The most used version of the intermediate value theorem given as:

Theorem 5 *Let* $f : [a, b] \longrightarrow \mathbb{R}$ *such that*

- *f* is continuous on the closed interval [a, b],
- f(a).f(b) < 0

Then, there exists at least $c \in]a, b[$ such that f(c) = 0.

Example:

Show that the equation $4x^3 - 6x^2 + 3x - 2 = 0$ has a solution in the interval [1, 2].

Consider the function $f(x) = 4x^3 - 6x^2 + 3x - 2$ over the closed interval [1,2]

The function f is a polynomial, therefore it is continuous over [1,2].

We have
$$f(1) = -1$$
 and $f(2) = 12$, hence $f(1)f(2) < 0$

by the Mean-Value-Theorem there exists a value c in the interval]1,2[such that f(c)=0, i.e. there is a solution for the equation f(x)=0 in the interval]1,2[.

3 Derivability

3.1 Derivability at a Point

Below, we note I a non-empty interval of \mathbb{R} .

Definition 3.1

Let $f: I \to \mathbb{R}$ be a function, and let $x_0 \in I$. we say that f is differentiable at x_0 if the limit

$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$$

exists, and finite. This limit is called the derivative of f at x_0 , we note $f'(x_0)$.

Remark 2

Alternative formula for the derivative:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Geometric interpretation of the derivative :

If f is differentiable at x_0 , then the curve representing the function f have a tangent to the point $(x_0, f(x_0))$, with the slope $f'(x_0)$.

One-sided derivatives:

In analogy to one-sided limits, we define one-sided derivatives

• The left-hand derivative of a function f at x_0

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

• The right- hand derivative of a function f at x_0

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

f is differentiable at x_0 if and only if these two limits exist and are equal.

Example:

Show that f(x) = |x - 1| is not differentiable at x = 0

• The right-hand derivative at x = 0:

$$\lim_{x \to 1^+} \frac{|x-1| - 0}{x - 1} \lim_{x \to 1^+} \frac{x - 1}{x - 1} = 1$$

• The left-hand derivative at x = 0:

$$\lim_{x \to 1^{-}} \frac{|x-1| - 0}{x - 1} \lim_{x \to 1^{+}} \frac{-(x-1)}{x - 1} = -1$$

So the right-hand and left-hand derivatives differ.

Remark 3

We say that a function f is differentiable on an interval I when f is differentiable in any point of I.

Theorem 6 If f has a derivative at x = a, then f is continuous at x = a.

3.2 Operations on derivative

Let $f, g : I \to \mathbb{R}$ two functions. We assume that f and g are differentiable of x. Therefore, 1) f + g is differentiable, and

$$(f+g)'(x) = f'(x) + g'(x)$$

2) fg is differentiable, and

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

3) If $g(x_0) \neq 0$, then $\frac{f}{g}$ is differentiable, and

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Theorem 7 (Derivatives of composite functions) Let $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$ two functions such that $f(I) \subseteq J$. If f is differentiable of x, and g is differentiable of f(x), then $g \circ f$ is differentiable of x and

$$(g \circ f)'(x) = g'(f(x))f'(x)$$

Common Derivatives

	1
f(x)	f'(x)
$c, c \in \mathbb{R}$	0
$cx, c \in \mathbb{R}$	С
$x^n, n \ge 1$	nx^{n-1}
$\frac{1}{x}$	$\frac{-1}{x^2}$
$\frac{1}{x^n}, n \ge 1$	—n
\sqrt{x}	$\frac{\overline{x^{n+1}}}{\frac{1}{2\sqrt{x}}}$
ln(x), x > 0	$\frac{1}{x}$
e^x	e^x
sin(x)	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\sin(cx), c \in \mathbb{R}$	$c\cos(cx)$

Applications of Derivatives

Derivatives have various applications in Mathematics, We'll learn about these two applications of derivatives :

1. Monotonicity of functions

Derivatives can be used to determine whether a function is increasing, decreasing or constant on an interval.

Theorem 8 Let f be a differentiable function on an intervalle I:

- 1. f is increasing on $I \iff \forall x \in I$, $f'(x) \ge 0$
- 2. f is decreasing on $I \iff \forall x \in I$, $f'(x) \leq 0$
- 3. f is constant on $I \iff \forall x \in I$, f'(x) = 0

2. Extremum of Functions

An extremum of a function is the point where we get the maximum or minimum value of the function in some interval.

• Let $f: I \to \mathbb{R}$ be a function, and let $c \in I$. We say that c is a **critical point** of f if f'(c) = 0 or f'(c) is undefined.

Let $f: I \to \mathbb{R}$ is differentiable, and $c \in I$ be a critical point of f. Then

- 1. If f'(x) > 0 for all x < c and f'(x) < 0 for all x > c, then f(c) is the maximum value of f.
- 2. If f'(x) < 0 for all x < c and f'(x) > 0 for all x > c, then f(c) is the minimum value of f.

Example:

Find the extremum of $f(x) = 3x^2 - 18x + 5$ on [0, 7].

First, we find all possible critical points:

$$f'(x) = 0$$
$$6x - 18 = 0$$
$$x = 3$$

for $x \in [0,3[$, we have f'(x) < 0 and for $x \in]3,7[$, we have f'(x) > 0 Then f(3) = -22 is the muximum value of f on [0,7].

3.3 Rolle's Theorem

In analysis, special case of the mean-value theorem of differential calculus is Rolle's theorem.

Theorem 9 *Let* $f : [a, b] \longrightarrow \mathbb{R}$ *such that*

- f is continuous on the closed interval [a, b],
- f is differentiable on the open interval]a,b[,
- f(a) = f(b).

Then, there exists $c \in]a, b[$ such that f'(c) = 0.

There exists at least one point of graph of f where the tangent is horizontal.

Example : Let g(x) = (1-x)f(x)

with f is a continuous function on [0,1], differentiable on]0,1[and verify f(0)=0Show that

$$\exists c \in]0,1[, f'(c) = \frac{f(c)}{1-c}$$

Apply Rolle's theorem:

- 1) g is continuous [0,1] because it is the product of two continuous functions on [0,1] (f is a continuous function on [0,1] and $x \mapsto 1-x$ continuous polynômial on \mathbb{R} hence on [0,1]).
 - 2) *g* is differentiable on]0, 1[since it is the product of two differentiable functions on]0, 1[.
 - 3) g(0) = f(0) = 0, $g(1) = 0 \times f(1) = 0$. Hence g(0) = g(1)

According to Rolle's theorem: $\exists c \in]0, 1[, g'(c) = 0.$

Where

$$g'(c) = -f(c) + (1-c)f'(c)$$

It follows,

$$f'(c) = \frac{f(c)}{1 - c}.$$