Enoncé

EXERCICE N° 1 : (6 points)

Le plan complexe P est rapporté à un repère orthonormé (O, \vec{u} , \vec{v}). Soit Δ la droite d'équation x=2 et A le point d'affixe 2.

- 1) Vérifier que Δ est l'ensemble des points M d'affixe z tels que 4 z $\overline{z} = 0$
- 2) Soit j l'application de $P \setminus \Delta$ dans P, qui à tout point M d'affixe z associe le point M' d'affixe $z' = \frac{4 z\bar{z}}{4 z \bar{z}}$
 - a Montrer que z' est un nombre réel.
- b Déterminer l'ensemble (Γ) des points M (z) tel que z'=k où k est un réel donné différent de 2.
- 3) a Montrer que pour tout nombre complexe z tel que $Re(z) \neq 2$ on a : |z' z| = |z' 2|
- b En déduire que pour tout point M de P \ Δ , le point M' est l'intersection de la médiatrice de [AM] avec l'axe des abscisses .
- 4) Soit D la droite d'équation x = 3.

Pour tout point M de D on désigne par M' le point **j** (M) et par M'' le symétrique de M' par rapport à (AM).

Montrer que M'' appartient à une parabole de foyer A et dont on précisera la directrice .

EXERCICE N° 2 : (4 points)

Dans le plan orienté, on considère un triangle rectangle ABC tel que

$$(A\vec{B}, A\vec{C}) \stackrel{o}{=} \frac{\pi}{2} (2\pi)$$
 et $AB = 2$ AC.

Soient D et D' deux droites parallèles passant respectivement par B et C et ne contenant aucun des côtés du triangle ABC .

Soit Δ la droite passant par A et perpendiculaire à D et D'.

La droite Δ coupe les droites D et D' respectivement en I et J .

- 1) Soit S la similitude directe qui transforme A en B et C en A.
 - a Déterminer l'angle et le rapport de S.
 - b Soit Ω le centre de S.

Montrer que Ω est le projeté orthogonal de A sur (BC).

- 2) a Déterminer S(D') et $S(\Delta)$
 - b En déduire S(J)
 - c Montrer que le cercle de diamètre [IJ] passe par Ω .

PROBLEME: (10 points)

Dans tout le problème, n désigne un entier naturel non nul . On considère la fonction $f_{\mathfrak{n}}$

définie sur
$$[0, +\infty [$$
 par : $f_n(x) = x^n e^{-nx}$.

On appelle C_n la courbe représentative de la fonction f_n dans le plan rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) (unité graphique : 3 cm)

- A 1) a Dresser le tableau de variation de la fonction f_n .
 - b Déterminer la position relative des courbes C_n et C_{n+1} .
 - 2) a Tracer C₁ et C₂ en précisant les demi-tangentes à l'origine .
 - b $\,$ Calculer l'aire $S_n\,$ du domaine limité par la courbe C_1 et les droites d'équations respectives x=0 et x=n .
 - $\begin{array}{ccc} c \text{ } Calculer & \lim & S_n & . \\ & x \longrightarrow + \infty & \end{array}$
- B Pour tout réel $x \ge 0$ et pour tout entier $n \ge 1$, on pose :

$$F_n(x) = \sum_{n=0}^{\infty} f_n(t)dt$$

1) Montrer que , pour tout $t \ge 0$, on a :

$$0 \le f_1(t) e^{t/2} \le 1$$

2) a - Montrer alors que , pour tout $\ t \ge 0$ et tout entier $\ n \ge 1$, on a :

$$0 \le f_n(t) e^{-t/2} \le 1$$

b - En déduire que , pour tout $x \ge 0$ et pour tout entier $n \ge 1$, on a :

$$0 \le F_n(x) \le 2$$

C - Pour tout réel $u \ge 0$ et pour tout entier $n \ge 1$, on pose :

$$G_n(u) = \dot{\mathbf{Q}}^u t^n e^{-t} dt$$

1) a - Montrer que , pour tout entier $n \ge 2$, on a : $G_n(u)$ = - $u^n \ e^{-u}$ + n $G_{n\text{-}1} \ (u)$ b - En déduire que :

$$G_n(u) = -n! e^{-u} \sum_{p=2}^{n} \frac{u^p}{p!} + n! G_1(u)$$

2) Montrer alors que:

$$\lim_{u \to +\infty} G_n(u) = n !$$

3) a - Montrer que, pour tout réel $x \ge 0$ et pour tout entier $n \ge 1$, on a :

$$G'_n(nx) = n^n f_n(x)$$

 f_n étant la fonction définie dans la partie A .

b - Montrer alors que , pour tout réel $n \ge 0$ et pour tout entier $n \ge 1$, on a :

$$F_n(x) = \frac{1}{n^{n+1}} G_n(nx)$$

c - En déduire $\lim F_n(x)$

$$X \rightarrow + \infty$$