PSY9511: Seminar 3

Regularization and variable selection

Esten H. Leonardsen 07.09.23

1

Outline

- 1. Introduction
 - · Pragmatic reflections on different models
 - Python
 - \cdot Coding tips: Separation of concerns
- 2. Regularization
 - · Variable selection
 - Shrinkage (+ live coding)
 - · Dimensionality reduction

Models

Which models does you really need to know?

```
1 2 3 4
```

```
iMASS
```



```
library(MASS)
 lda_fit <- lda(display ~ age + fb,</pre>
                 data = display)
iMASS
```


7

Python: pandas

```
path <- '/Users/esten/Downloads/Auto.csv'
df <- read.csv(path)
head(df, 10)</pre>
```

```
mpg cylinders displacement horsepower
     18
                 8
                           307.0
                                          130
                           350.0
     15
                  8
                                          165
3
     18
                  8
                           318.0
                                          150
     16
                           304.0
                                          150
                 8
5
     17
                           302.0
                                          140
                 8
     15
                           429.0
6
                 8
                                          198
     14
                  8
                           454.0
                                          220
8
     14
                  8
                           440.0
                                          215
     14
                           455.0
                                          225
9
                  8
     15
10
                 8
                           390.0
                                          190
```

```
In[1]: import pandas as pd

path = '/Users/esten/Downloads/Auto.csv'
    df = pd.read_csv(path)
    df.head(10)
```

```
Out[1]:
               mpg cylinders displacement horsepower
          0
               18
                           8
                                     307.0
                                                    130
               15
                                     350.0
                           8
                                                    165
               18
                           8
                                     318.0
                                                    150
          3
               16
                                     3040
                                                    150
                           8
               17
                                     302.0
                                                    140
                           8
          5
               15
                           8
                                     429.0
                                                    198
          6
               14
                           8
                                     454.0
                                                    220
          7
               14
                           8
                                     440.0
                                                    215
                                     455.0
          8
               14
                           8
          9
                           8
                                     390.0
                                                    190
```

Python: numpy

```
In[1]: import numpy as np
In[2]: np.random.seed(42)
In[3]:
        np.arange(0, 10, 1)
Out[1]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In[4]: np.isnan([0, 1, np.nan, 3])
Out[2]: array([False, False, True, False])
In[5]: np.amin([1, 0, 3, 2])
Out[3]: 0
Out[6]: np.argmin([1, 0, 3, 2])
Out[4]: 1
In[7]: np.nanmin([1, 0, 3, np.nan])
Out[5]: 0
```

Python: statsmodels

```
path <- '/Users/esten/Downloads/Auto.csv'
data <- read.csv(path)

model <- lm(mpg ~ cylinders + displacement +
horsepower + weight +
acceleration + year,
data=data)

summary(model)</pre>
```

```
Coefficients:
               Estimate Std. Frror Pr(>|t|)
(Intercept) -1.454e+01 4.764e+00 0.00244 **
cvlinders
            -3.299e-01 3.321e-01 0.32122
displacement 7.678e-03 7.358e-03 0.29733
horsepower
          -3.914e-04 1.384e-02 0.97745
weight
            -6.795e-03 6.700e-04 < 2e-16 ***
acceleration 8.527e-02 1.020e-01 0.40383
             7.534e-01 5.262e-02 < 2e-16 ***
vear
Signif. codes:
              0 '***' 0.001 '**' 0.01 '*'
      0.05
```

```
        Out[1]:
        coef std err
        P>|t|
        [0.025 0.975]

        Intercept
        -14.5353 4.764 0.002 -23.90 -5.16

        cylinders
        -0.3299 0.332 0.321 -0.98 0.32

        displacement
        0.0077 0.007 0.297 -0.00 0.02

        horsepower
        -0.0004 0.014 0.977 -0.02 0.02

        weight
        -0.0068 0.001 0.000 -0.00 -0.00

        acceleration
        0.0853 0.102 0.404 -0.11 0.28

        year
        0.7534 0.053 0.000 0.65 0.85
```

```
In[1]: from sklearn.linear_model import LinearRegression
        math = '/Users/esten/Downloads/Auto.csv'
        df = pd.read csv(path)
        predictors = ['cvlinders', 'displacement', 'horsepower',
                      'weight', 'acceleration', 'vear'l
        target = 'mpg'
        model = LinearRegression()
        model.fit(df[predictors], df[target])
        # Print model coefficients
        print(f'Intercept: {model.intercept }')
        print(f'Coefficients: {model.coef }')
        # Print model residuals
        predictions = model.predict(df[predictors])
        residuals = df[target] - predictions
        print(f'Residuals: {residuals.values[:5]}...')
```


https://scikit-learn.org/stable/developers/develop.html

```
In[1]: from sklearn.linear_model import LinearRegression
        math = '/Users/esten/Downloads/Auto.csv'
        df = pd.read csv(path)
        predictors = ['cvlinders', 'displacement', 'horsepower',
                      'weight', 'acceleration', 'vear'l
        target = 'mpg'
        model = LinearRegression()
        model.fit(df[predictors], df[target])
        # Print model coefficients
        print(f'Intercept: {model.intercept }')
        print(f'Coefficients: {model.coef }')
        # Print model residuals
        predictions = model.predict(df[predictors])
        residuals = df[target] - predictions
        print(f'Residuals: {residuals.values[:5]}...')
```

```
In[1]: from sklearn.svm import SVR
        path = '/Users/esten/Downloads/Auto.csv'
        df = pd.read csv(path)
        predictors = ['cylinders', 'displacement', 'horsepower',
                      'weight', 'acceleration', 'year'l
        target = 'mpg'
        model = SVR(kernel='linear')
        model.fit(df[predictors], df[target])
        # Print model coefficients
        print(f'Intercept: {model.intercept }')
        print(f'Coefficients: {model.coef }')
        # Print model residuals
        predictions = model.predict(df[predictors])
        residuals = df[target] - predictions
        print(f'Residuals: {residuals.values[:5]}...')
```

Coding tips: Separation of concerns

```
In[1]: # Read and clean data
        path = '/Users/esten/Downloads/Auto.csv'
        df = pd.read csv(path)
        # Split data
        train = df.iloc[:int(len(df) * 0.8)]
        validation = df.iloc[int(len(df) * 0.8):]
        # Define input and output variables
        target = 'mpg'
        # Define necessary data structures for state
        chosen predictors = []
        mses = []
        while len(predictors) > 0:
            best_predictor = {'mse': float('inf'), 'predictor': None}
            for predictor in set(predictors) - set(chosen predictors):
               potential predictors = chosen predictors + [predictor]
               # Fit and evaluate model
               model = LinearRegression()
               model.fit(train[potential predictors], train[target])
               predictions = model.predict(validation[potential predictors])
               test mse = np.mean((validation[target] - predictions) ** 2)
               # Compare model with previous best
               if test mse < best predictor['mse']:</pre>
                   best predictor = {'mse': test mse, 'predictor': predictor}
            # Update state
            chosen predictors.append(best predictor['predictor'])
            mses.append(best predictor['mse'])
            predictors = [p for p in predictors if p != best predictor['predictor']]
```

Coding tips: Separation of concerns

```
In[1]:
        # Read and clean data
        path = '/Users/esten/Downloads/Auto.csv'
        df = pd.read csv(path)
        # Split data
        train = df.iloc[:int(len(df) * 0.8)]
        validation = df.iloc[int(len(df) * 0.8):]
        # Define input and output variables
        target = 'mpg'
        # Define necessary data structures for state
        chosen predictors = []
        mses = []
        while len(predictors) > 0:
            best predictor = {'mse': float('inf'), 'predictor': None}
            for predictor in set(predictors) - set(chosen predictors):
               potential predictors = chosen predictors + [predictor]
               # Fit and evaluate model
                                                                                                             Modelling
               model = LinearRegression()
               model.fit(train[potential predictors], train[target])
               predictions = model.predict(validation[potential predictors])
               test mse = np.mean((validation[target] - predictions) ** 2)
               # Compare model with previous best
               if test mse < best predictor['mse']:</pre>
                   best predictor = {'mse': test mse, 'predictor': predictor}
            chosen predictors.append(best predictor['predictor'])
            mses.append(best predictor['mse'])
            predictors = [p for p in predictors if p != best predictor['predictor']]
```

Coding tips: Separation of concerns

```
In[1]: # Read and clean data
        path = '/Users/esten/Downloads/Auto.csv'
        df = pd.read csv(path)
        # Split data
        train = df.iloc[:int(len(df) * 0.8)]
        validation = df.iloc[int(len(df) * 0.8):]
        # Define input and output variables
        predictors = ['cylinders', 'displacement', 'horsepower',
                         'weight', 'acceleration', 'year']
        target = 'mpg'
        # Define necessary data structures for state
        chosen predictors = []
        mses = []
                                                                                                                   Modelling
        def fit and evaluate model(model: LinearRegression, train: pd.DataFrame,
                                    validation: pd.DataFrame, variables: List[str].
                                    target: str):
            """ Fit a given model on a training dataset using a given set of variables
            and return MSE from a validation dataset. "
            model.fit(train[potential predictors], train[target])
            predictions = model.predict(validation[potential predictors])
            return np.mean((validation[target] - predictions) ** 2)
        while len(predictors) > 0:
            best predictor = {'mse': float('inf'), 'predictor': None}
            for predictor in set(predictors) - set(chosen predictors):
                potential predictors = chosen predictors + [predictor]
                test mse = fit and evaluate model(LinearRegression(), train, validation,
                                                   variables=potential_predictors,
                                                   target=target)
                # Compare model with previous best
                if test mse < best predictor['mse']:
                    best predictor = {'mse': test mse, 'predictor': predictor}
            # Undate state
            chosen predictors.append(best predictor['predictor'])
            mses.append(best predictor['mse'])
            predictors = [p for p in predictors if p != best predictor['predictor']]
```

Regularization

Regularization: Motivation

$$y \sim \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \beta_3 * X_3$$

Regularization: Motivation

Regularization: Motivation

$$y \sim \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \beta_3 * X_3$$

Regularization: Out-of-sample testing

Using 80 samples for validation

```
In[1]: import pandas as pd

df = pd.read_csv('/Users/esten/Downloads/Auto.csv')
    train = df.iloc[:int(len(df) * 0.8)]
    validation = df.iloc[int(len(df) * 0.8):]
    print(f'Using {len(train)} samples for training')
    print(f'Using {len(validation)} samples for validation')
Out[1]: Using 317 samples for training
```

Regularization: Methods

1. Variable selection

- a. Best subset selection
- b. Forward stepwise selection
- c. Backward stepwise selection

2. Shrinkage

- a. LASSO
- b. Ridge Regression

3. Dimensionality reduction

- a. Principal Component Regression
- b. Partial Least Squares

Variable selection

The number of predictors we are using in our model directly impacts model complexity.

Variable selection: Outline

<u>Problem</u>

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Variable selection: Outline

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Motivation

- 1. Reduce model complexity (overfitting)
- 2. Simplify interpretation

Variable selection: Outline

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

<u>Solution</u>

Train models on all subsets p and select the best one.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

```
In[1]:
       import numpy as np
       from itertools import chain, combinations
        from sklearn.linear model import LinearRegression
       subsets = list(chain.from_iterable(combinations(predictors, r) \
                                            for r in range(len(predictors)+1)))
       best = {'mse': float('inf'), 'subset': None}
        for subset in subsets:
            if len(subset) == 0:
                continue
            model = LinearRegression()
            model.fit(train[list(subset)], train[target])
            predictions = model.predict(validation[list(subset)])
            mse = np.mean((predictions - validation[target]) ** 2)
            if mse < best['mse']:</pre>
                best = {'mse': mse. 'subset': subset}
       print(f'MSE: {best["mse"]:.2f}, predictors: {best["subset"]}')
Out[1]: MSE: 29.68, predictors: ('cylinders', 'displacement', 'horsepower', 'weight', 'year')
```

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Train models on all subsets p and select the best one.

+ Positives

Guaranteed to find the optimal solution. Simple implementation

- Drawbacks

Need to train many $(2^{|P|})$ models.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

<u>Solution</u>

Start with no predictors. Iteratively add the predictor that yields the best model until all are included.

 $y \sim 1$ mse = 146.47

<u>Problem</u>

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

<u>Solution</u>

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

<u>Solution</u>

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

```
In[1]: def fit and evaluate(train: pd.DataFrame, validation: pd.DataFrame.
                             predictors: List[str], target: str);
           model = LinearRegression()
           model.fit(train[predictors], train[target])
           train predictions = model.predict(train[predictors])
           validation predictions = model.predict(validation[predictors])
           return np.mean((train predictions - train[target]) ** 2). \
                  np.mean((validation predictions - validation[target]) ** 2)
        predictors = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year']
        target = 'mpg'
        train['intercept'] = 1
        validation['intercept'] = 1
        train mse, validation mse = fit and evaluate(train, validation,
                                                    predictors=['intercept'],
                                                    target=target)
        print(f'[]: {validation mse:.2f} ({train mse:.2f})')
        chosen predictors = []
        while len(chosen predictors) < len(predictors):
           best predictor = {'train mse': None, 'validation mse': float('inf'),
                             'predictor': None}
           for predictor in set(predictors) - set(chosen predictors):
               train mse, validation mse = fit and evaluate(train, validation,
                                           predictors=chosen predictors + [predictor].
                                           target=target)
               if validation mse < best predictor['validation mse']:
                   best predictor = { 'train mse': train mse. 'validation mse': validation mse. 'predictor': predictor}
           chosen predictors.append(best predictor['predictor'])
           print(f'{chosen predictors}: {best predictor["validation mse"]:.2f} ({best predictor["train mse"]:.2f})')
```

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with no predictors. Iteratively add the predictor that yields the best model until all are included.

+ Positives

Need to train fewer models.

- Drawbacks

Not guaranteed to find the optimal solution.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

<u>Solution</u>

Start with all predictors. Iteratively remove the predictor that yields the best model until all you have none left.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with all predictors. Iteratively remove the predictor that yields the best model until all you have none left.

+ Positives

Need to train fewer models.

- Drawbacks

Not guaranteed to find the optimal solution.

Shrinkage

$$y \sim \beta_0 + \frac{\beta_1}{\lambda_1} x_1 + \frac{\beta_2}{\lambda_2} x_2 + \frac{\beta_3}{\lambda_3} x_3 + \frac{\beta_4}{\lambda_4} x_4 + \frac{\beta_5}{\lambda_5} x_5 + \frac{\beta_6}{\lambda_6} x_6$$

```
        Out[1]:
        coef std err
        P>|t|
        [0.025 0.975]

        Intercept
        -14.5353 4.764 0.002 -23.90 -5.16

        cylinders
        -0.3299 0.332 0.321 -0.98 0.32

        displacement
        0.007 0.007 0.297 -0.00 0.02

        horsepower
        -0.0004 0.014 0.977 -0.02 0.02

        weight
        -0.0068 0.001 0.000 -0.00 -0.00

        acceleration
        0.0853 0.102 0.404 -0.11 0.28

        year
        0.7534 0.053 0.000 0.65 0.85
```

$$mse = bias^2 + variance + irreducible error$$

salary
$$\sim \beta_0 + \beta_1 * age$$

salary
$$\sim \beta_0 + \beta_1 * age$$

$$salary \sim 300000 + 10000 * age$$

$$salary \sim 600000 + 0 * age$$

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

Shrinkage

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$X = \frac{x - \mu_X}{\sigma_X^2}$$

$$X = \frac{x - \mu_X}{\sigma_X^2}$$

```
In[1]: for col in predictors:
    print(f'{col}: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')

# z-score standardization
for col in predictors:
    df[col] = (df[col] - np.mean(df[col])) / np.std(df[col])

for col in predictors:
    print(f'{col} after: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')
```

$$X = \frac{X - \mu_X}{\sigma_X^2}$$

```
In[1]: for col in predictors:
    print(f'{col}: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')

# z-score standardization
for col in predictors:
    df[col] = (df[col] - np.mean(df[col])) / np.std(df[col])

for col in predictors:
    print(f'{col} after: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')
```

```
Out[1]:

cylinders: 5.47 (1.70)
displacement: 194.41 (104.51)
horsepower: 104.47 (38.44)
weight: 2977.58 (848.32)
acceleration: 15.54 (2.76)
year: 75.98 (3.68)
cylinders after: -0.00 (1.00)
displacement after: -0.00 (1.00)
horsepower after: -0.00 (1.00)
weight after: -0.00 (1.00)
acceleration after: 0.00 (1.00)
year after: -0.00 (1.00)
```


http://localhost:8888/notebooks/notebooks/Live%20coding.ipynb

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

Regularization through shrinking the model covariates towards zero.

Shrinkage: LASSO

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{lasso} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |\beta_j|$$

Shrinkage: LASSO

Shrinkage: LASSO

Predictor	Ridge	LASSO
Intercept	23.44	23.44
Weight	-5.59	-4.78
Year	2.75	2.00
Horsepower	-0.07	-0.09
Cylinders	-0.54	0
Acceleration	0.19	0
Displacement	0.66	0

Predictor	Ridge	LASSO
Intercept	23.44	23.44
Weight	-5.59	-4.78
Year	2.75	2.00
Horsepower	-0.07	-0.09
Cylinders	-0.54	0
Acceleration	0.19	0
Displacement	0.66	0

A coefficient of 0 does not mean the predictor has no predictive value for the outcome!

Whiteboard!

Shrinkage: Summary

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

Fits the **best** model to the data.

Shrinkage: Summary

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

Fits the **best** model to the data.

Fits the **best** model to the data while **shrinking** coefficients towards zero.

Shrinkage: Summary

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{lasso} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |\beta_j|$$

Fits the **best** model to the data.

Fits the **best** model to the data while **shrinking** coefficients towards zero.

Fits the **best** model to the data while **shrinking** coefficients towards zero such that some variables are effectively **removed**.

Dimensionality reduction

Although we have p predictors, there are actually q < p dimensions of variability in our data, and using q instead of p is going to reduce model complexity.

Dimensionality reduction: Outline

1	0.86	0.89	0.41	0.93
0.30				
0.86		0.84	0.68	0.89
0.89	0.84		0.50	0.95
0.41	0.68	0.50		0.54
0.93	0.89	0.95	0.54	

 $v \implies$ direction of greatest variance in X

PC1 = 0.69 * horsepower + 0.71 * weight

 $v \implies$ direction of greatest variance in X after regressing out PC1

PC2 = 0.69 * horsepower + 0.71 * weight

mpg	horsepower	weight	PC1	PC2
18	130	3504	0.908	0.303
15	165	3693	1.709	0.517
18	150	3436	1.219	0.455
16	150	3433	1.217	0.457
17	140	3449	1.046	0.260
15	198	4341	2.856	0.583
14	220	4354	3.272	0.977

mpg	horsepower	weight	PC1	PC2
18	130	3504	0.908	0.303
15	165	3693	1.709	0.517
18	150	3436	1.219	0.455
16	150	3433	1.217	0.457
17	140	3449	1.046	0.260
15	198	4341	2.856	0.583
14	220	4354	3.272	0.977

 $mpg \sim \beta_0 + \beta_1 * horsepower + \beta_2 * weight$

mpg	horsepower	weight	PC1	PC2
18	130	3504	0.908	0.303
15	165	3693	1.709	0.517
18	150	3436	1.219	0.455
16	150	3433	1.217	0.457
17	140	3449	1.046	0.260
15	198	4341	2.856	0.583
14	220	4354	3.272	0.977

$$mpg \sim \beta_0 + \beta_1 * horsepower + \beta_2 * weight$$

$$mpg \sim \beta_0 + \beta_1 * PC1 + \beta_2 * PC2$$

Principal component regression

- 1. Fit a PCA to transform your p predictors into p principal components.
- 2. Fit a linear regression model using a subset of the principal components.

+ Positives

- The principal components are orthogonal, so there is no issue of collinearity.
- The principal components are ordered by the amount of variance they explain, so
 we can the early principal components are (probably) the best predictors.

- Drawbacks

- · Have to select number of principal components to use.
- What if the principal components that explain the largest amount of variance are not related to the outcome?

Dimensionality reduction: Partial least squares

 $v \implies$ direction of greatest variance in X

Dimensionality reduction: Partial least squares

 $v \implies$ direction of greatest covariance between X and Y