decl: Training and testing on different distributions

cat App example:

training data

- _ data from mobile app (blurry, low res) = 10,000
- data from web (high quality, high ves) = 200,000

test data: data trom mobile opp.

Mill data from web help: ?

Koption: combine m= 210,000, random shuttle (bad devset)

train	der	test
205/000	2500	5,00

adu: train, dev, test have some distribution

disadu: dev set major data will come from web pase data.

Jetion 2:

webdata train: 2051000

train set: 200,000 + 5000 web

der: 2500 app

test: 2000 app-

adv: dev set is activate to test set

dis: training dist is different from des, test set

speech recognition example:

- sneech adivated vect view mirror in car.

Devitest Training: speech activated purchased data (X,y) vearview mirror smort speaker control 201000 voice keyhoavd dev / test tragn 500,000 00000 1 CO(00) 200,000 dev) train 000) train: 500,000 from others 00050,000 (0,000 Rom vearview

5000 your recivilers gen:

5000 YOM YOUR VIEW. test:

1802: Bais I Variance with Mismatched Data distribution:

Assume human error on cut classitiation = 04

Training ervor = (% DEN EALUN = CO.Y

Train dist = Dev dist 45

problem is variance, more data, az reg, dropost.

if Traindist & Dev dist

- -) may be if is doing time on devset.

 -) training set may be easy (hish res, high quality)

 -) dovset may be hard (low res, low quality)

tluman evror	01	Ο'n	0.1	O'l' available his
Training error =	(%	١%	(0.1.	11% John milmoth
Training der set		1.5.1.	111.	117 J data milmatch
ne√ set =		10%	\ 2.1.	aoi. degree of overtit
Test set =				(sind bigger derset)

3 hish bias low variance -)high bias This is variance problem y parta mis moutch -) date mis match -) not generalising well on training-devised which moblem. problem. -) 1000 variance -> get more train comes nom same train data dot to devited dist

thuman level ervor:

Trafining set ewor:

Training dev set ervor:

Our set ervor:

12.1.

degree to oversit deviset

Test set ervor:

12.7. thuman level ervor: test set evvov';

training data is harder than dev, fest set.

More General Formulation:

dec 3: Data Mismatch Problem :-

· covery out manual evvor analysis to try understand difference between training and devitest sets.

1. rearview number - car noise in der set

2. year view number - misterosiniting street numbers inder set.

sol: collect more data similar to dev/ test-set.

- -) add carnoice to original acido
- -1 add move numbers avide in trainset.

Artifical data synthesis:

normal avido + "car noire" = synthesized in car avdio

disadu: overtit data Invarinoite

loropohy unique car noite can be even better nertormance.

car roise.

CON NECOSAULTION'S

computer graphic generation of cur image.

+ syn thesished = 20

model might overthe training syntresize of data.

dec4: Transfer dearning:

trained NN: (X19) x + inruse
y + cat, dog, bird

Transfer learning X -> image (radiology diagnosis)

- remove last layer weights & ounut radiology output.

-) vetrain the last layer.

- 1) if you have small data, then tretrain last layer weights.
- 1) if you have more data, then retrain complete NN.

use case!-

- -> If you have alot of data, for the montem you are transfering from (m=1,000,000)
- -) and less data, for the number, you are transfering to.

Transfer from A > B

- 1) Task AID have some input X
- 10 You have lot more data Task A than Task B.
- 3 low level features from A could be helpful for leavining 13.

decs: Multi Task Learning:

Autonomous vehicle:

detect:

- _ redestrians
- other cars
- stop signs
- _ traffic lights

Contot
$$\chi^{(i)}(\text{imase}) \longrightarrow \chi^{(i)}(\text{ped, cav, stop, teathic lights}) \\
Y=(\chi^{(1)}\chi^{(2)}, \chi^{(2)}, \chi^{(m)}) \\
(4,m)$$

4055: given
$$y_{(4,1)}^{(i)}$$

4055: $y_{(4,1)}^{(i)}$
 $y_{(4,1)}^{($

> This is multitusk learning.

unlike softmay regression:

one îmaje has multiple lables.

When Mutitask learning Works:

- 1 training on set of fasks that could hereby from leaving shared lower forel teatures.
- 1 Usually: amount data you have for each task is quite similar.

Franster learning
A (4000,000) B (1,000)

multi task leaning A1 1000 A2 (000 A100 1000

- -) A100 now has 99,000 more data noint which can he used tov low level teature extraorchion.
- 3) can train a big enough MN to do well on all tasks.

deco: End to End Deep dearning:

speech recognition example:

tourditional!

X mec teatures mu phonenes -) words -) transcripts y anido

FndtoEnd:

m = (0,000 n - (00,000 h X -----> Y transcripts

-) need a lot of data for end to end approach.

dec7: Whether to use End to Ind Deep learning:

pros:

- . dets the data sneak (nonetally NN learns best f(x)=y)
- · dess hand-designing of components needed.

cons:

- · May need large amount data which is hard to collect.
- · Excludes pontentially usefully hand designed components. which can be very nelphil and can be cheap.

Do you have sufficient date to learn a tunction of the complexity needed to map X +y?

Autonomous car:

- · Use DL to learn individual comporents
- · carefully choose X -> 4 depending on what you can data tor

image -> steering (?) (work in progress).