1 Линейная алгебра

- 1. Пусть $f:V\to V$ линейный оператор на векторном пространстве V. Докажите, что следующие два утверждения эквивалентны:
 - Существуют подпространства V_0, V_1 пространства V такие, что $V = V_0 \oplus V_1, f(v) = 0$ для $v \in V_0$ и f(v) = v для $v \in V_1$.
 - $f^2 = f$.

Линейный функционал на пространстве V над полем F — это линейное отображение из V в F. Через $V^* = Hom_k(V,k)$ обозначается пространство функционалов (сложение и умножение на скаляр поточечные). Это пространство называется сопряжённым к пространству V.

- 2. Пусть e_1,\dots,e_n базис V. Докажите, что функционалы e^1,\dots,e^n , заданные равенствами $e^i(e_j)=\delta_{i,j},$ образуют базис V^* . Выведите отсюда, что $V\cong V^*$, если V конечномерно.
- 3. Пусть e_i , $i \in U$ базис V, где $|U| = \infty$. Образуют ли функционалы e^i , $i \in U$, заданные как и в предыдущей задаче, базис V^* ? Верно ли, что $V \cong V^*$.
- 4. Рассмотрим отображение $\phi_V: V \to (V^*)^*$, заданное равенством $\phi_V(x)(f) = f(x)$, является линейным. Докажите, что это отображение всегда инъективно и сюръективно в случае конечномерного V.
- 5. Пусть $\alpha: U \to V$ линейное отображение. Докажите, что $\alpha^*: V^* \to U^*$, заданное равенством $\alpha^*(f) = f\alpha$, тоже является линейным отображением таким, что размерности $Im(\alpha)$ и $Im(\alpha)^*$ совпадают. Докажите, что α сюръективно тогда и только тогда, когда α^* инъективно и α инъективно тогда и только тогда, когда α^* сюръективно. Проверьте равенство $\alpha^{**}\phi_U = \phi_V\alpha$.
- 6. Пусть $f, g \in V^*$ таковы, что f(x)g(x) = 0 для любого $x \in V$. Доказжите, что либо f = 0, либо g = 0.
- 7. Для подпространства V_0 пространства V определим $V_0^{\perp} = \{f \in V^* \mid f(x) = 0 \forall x \in U\}$. Докажите, что V_0^{\perp} подпространство V^* . Докажите, что, если V конечномерно, то $dim(V_0) + dim(V_0^{\perp}) = dim(V)$.
- 8. Пусть $V_2 \subset V_1$ два подпространства V. Докажите, что $V_1^\perp \subset V_2^\perp$.
- 9. Пусть V конечномерно. Докажите, что набор линейных фикционалов на V порождает V^* тогда и только тогда, когда пересечение их ядер равно 0. Верно ли это для бесконечномерного V?
- 10. Пусть \mathbf{u} базис U, \mathbf{v} базис V (оба пространства конечномерны), $\alpha: U \to V$ линейное отображение. Как связаны матрицы $[\alpha]_{\mathbf{u}}^{\mathbf{v}}$ и $[\alpha^*]_{\mathbf{v}^*}^{\mathbf{u}^*}$, где \mathbf{v}^* и \mathbf{u}^* базисы пространств V^* и U^* , построенные по базисам \mathbf{v} и \mathbf{u} как в задаче 2.
- 11. Пусть V пространство над бесконечным полемб x_1, \ldots, x_m ненулевые элементы V. Докажите, что существует функционал на V, который не равен 0 на x_i для всех $1 \le i \le m$.