Metodología Tarea 3

Luis Ángel

Febrero 17, 2022

Descripción Redacta la sección de metodología. Recuerda incluir la bibliografía ya citada y deja el resto del documento en el estado esqueletal de antes.

Título

Empaquetamiento óptimo de objetos convexos suaves

Introducción

Los problemas de empaquetamiento, también conocidos en la literatura como Cutting and Packing Problems, son todos aquellos problemas donde se tienen dos conjuntos de entidades, las entidades Contenedor y las entidades Objeto. Las entidades Objeto deben quedar empaquetados los Contenedores [1]. Ambas entidades tienen características particulares, dependiendo de la dimensión geométrica sobre la que se esté trabajando.

Llamaremos *objetos* a todos los elementos que deberán ser empaquetados en los *contenedores*, los objetos de 2-dimensiones se les llamará polígonos, y los de 3-dimensiones se les nombrará poliedros. Un polígono(poliedro) suave es aquel cuyas áreas(volumen) son fijas y su forma y tamaño pueden modificarse dentro de ciertos límites.[2]

Estado del arte

Metodología

El problema de empaquetamiento de objetos convexos ha sido abordado de diferentes en la literatura. Entre ellas se encuentra el empaquetamiento aleatorio de partículas con forma de tetraedro [3], el empaquetamiento en columnas de esferas y elipses en contenedores cilíndricos [4, 5] y también la implementación de un método de elementos discretos (DEM por sus siglas en inglés) [6]. La literatura nos indica que hay una corriente clara por resolver los problemas de empaquetamiento de objetos convexos utilizando experimentación y obteniendo

resultados desde una implementación física o usando el DEM que consiste en simular los eventos considerando los efectos de la fricción, la relación de altura y la excentricidad. [3]

Cabe destacar que en estos experimentos los objetos que se van a empaquetar son rígidos cuentan con una función de excentricidad predefinida y estos objetos no pueden ser deformados. Lo cual nos indica que al resolver este problema utilizando métodos de optimización y considerando la particularidad de poder deformarse estamos contribuyendo en el estado del arte implementando modelos de optimización que lleguen a encontrar el empaquetamiento óptimo. Entre los métodos numéricos de solución para los problemas de empaquetamiento se pueden encontrar en [7, 8, 9, 10, 11, 12, 5, 13, 14, 15, 16, 17, 18, 19]

En este proyecto se empaquetarán los objetos más sencillos de cada dimensión geométrica, triángulos y tetraedros respectivamente para la 2D y 3D. Posteriormente se evaluará continuar con objetos más complejos descomponiéndolos con la triangulación de Delaunay.

La presente investigación se realizará con el fin de encontrar una solución óptima a estos problemas de empaquetamiento con objetos suaves. Hasta el momento la literatura solamente se han observado y experimentado con objetos rígidos y con excentricidades predeterminadas. Nosotros buscaremos que la deformidad sea en relación con la atributos de los objetos de 2D y 3D.

El estudio del empaquetamiento de objetos básicos como el tetraedro son interesantes por sus aplicaciones y propiedades en diferentes áreas de la industria, entre ellas la geotécnica, la minería, la transportación, nanotecnología, entre otras.

Análisis teórico del modelo matemático

Diseño del experimento computacional

Presentación de los resultados

Análisis de los resultados

Conclusiones

Limitaciones de la investigación

Trabajo futuro

References

[1] L. Á. Gutiérrez Rodríguez, "Problema generalizado del empaquetamiento de contenedores: una comparación entre diferentes métodos de solución,"

- Master's thesis, Universidad Autónoma de Nuevo León, 2019.
- [2] P. Ji, K. He, Y. Jin, H. Lan, and C. Li, "An iterative merging algorithm for soft rectangle packing and its extension for application of fixed-outline floorplanning of soft modules," *Computers & Operations Research*, vol. 86, pp. 110–123, 2017.
- [3] S. Zhao, X. Zhou, W. Liu, and C. Lai, "Random packing of tetrahedral particles using the polyhedral discrete element method," *Particuology*, vol. 23, pp. 109–117, 2015.
- [4] B. Zhao, X. An, H. Zhao, D. Gou, L. Shen, and X. Sun, "Dem simulation on random packings of binary tetrahedron-sphere mixtures," *Powder Technology*, vol. 361, pp. 160–170, 2020.
- [5] T. Romanova, I. Litvinchev, and A. Pankratov, "Packing ellipsoids in an optimized cylinder," *European Journal of Operational Research*, vol. 285, no. 2, pp. 429–443, 2020.
- [6] B. Zhao, X. An, Y. Wang, Q. Qian, X. Yang, and X. Sun, "Dem dynamic simulation of tetrahedral particle packing under 3d mechanical vibration," *Powder Technology*, vol. 317, pp. 171–180, 2017.
- [7] B. Chazelle, H. Edelsbrunner, and L. J. Guibas, "The complexity of cutting complexes," *Discrete & Computational Geometry*, vol. 4, no. 2, pp. 139–181, 1989.
- [8] J. A. Bennell and J. F. Oliveira, "A tutorial in irregular shape packing problems," *Journal of the Operational Research Society*, vol. 60, no. sup1, pp. S93–S105, 2009.
- [9] G. Scheithauer, Introduction to cutting and packing optimization: Problems, modeling approaches, solution methods, vol. 263. Springer, 2017.
- [10] L. J. Araújo, E. Özcan, J. A. Atkin, and M. Baumers, "Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset," *International Journal of Production Research*, vol. 57, no. 18, pp. 5920–5934, 2019.
- [11] T. Romanova, A. Pankratov, and I. Litvinchev, "Packing ellipses in an optimized convex polygon," *J. Glob. Optim.*, 2019.
- [12] A. A. Leao, F. M. Toledo, J. F. Oliveira, M. A. Carravilla, and R. Alvarez-Valdés, "Irregular packing problems: A review of mathematical models," *European Journal of Operational Research*, vol. 282, no. 3, pp. 803–822, 2020.
- [13] J. Raeder, D. Larson, W. Li, E. L. Kepko, and T. Fuller-Rowell, "Openggcm simulations for the themis mission," *Space Science Reviews*, vol. 141, no. 1, pp. 535–555, 2008.

- [14] I. Litvinchev, T. Romanova, R. Corrales-Diaz, A. Esquerra-Arguelles, and A. Martinez-Noa, "Lagrangian approach to modeling placement conditions in optimized packing problems," *Mobile Networks and Applications*, vol. 25, pp. 2126–2133, 2020.
- [15] A. Pankratov, T. Romanova, and I. Litvinchev, "Packing oblique 3d objects," *Mathematics*, vol. 8, no. 7, p. 1130, 2020.
- [16] J. Kallrath, Business optimization using mathematical programming: an introduction with case studies and solutions in various algebraic modeling languages. Springer, 2021.
- [17] T. Romanova, Y. Stoyan, A. Pankratov, I. Litvinchev, S. Plankovskyy, Y. Tsegelnyk, and O. Shypul, "Sparsest balanced packing of irregular 3d objects in a cylindrical container," *European Journal of Operational Re*search, vol. 291, no. 1, pp. 84–100, 2021.
- [18] T. Romanova, Y. Stoyan, A. Pankratov, I. Litvinchev, K. Avramov, M. Chernobryvko, I. Yanchevskyi, I. Mozgova, and J. Bennell, "Optimal layout of ellipses and its application for additive manufacturing," *Interna*tional Journal of Production Research, vol. 59, no. 2, pp. 560–575, 2021.
- [19] T. Romanova, A. Pankratov, I. Litvinchev, S. Plankovskyy, Y. Tsegelnyk, and O. Shypul, "Sparsest packing of two-dimensional objects," *International Journal of Production Research*, vol. 59, no. 13, pp. 3900–3915, 2021.