Discussion 7 – Gradient Descent

Data 100, Spring 2020

Suraj Rampure

Friday, March 6th, 2020

Minimizing Loss

Recall, in order to find the optimal value of our parameter $\hat{\beta}$, we need to find the value of β that minimizes our average loss, $L(\beta)$. $\rightarrow \frac{1}{n} \hat{\beta}$ (----)

• Different choices of loss functions will lead to different values of $\hat{\beta}$. $L_2: (y-\hat{y})^{\prime}$ $L_1: [y-\hat{y}]^{\prime}$

Sometimes, we're able to find an **analytical** solution for the minimizing value of β .

- For instance, for simple linear regression where our model is $\hat{y}_i=eta_0+eta_1x_i$, from Data 8 we know that $\hat{eta}_1=r\frac{SD(y)}{SD(x)}$, and $\hat{eta}_0=ar{y}-\hat{eta}_1ar{x}$.
- As we look at more and more complex loss functions, though, this becomes less common, and so we need to look at numerical techniques (like gradient descent).

Minimizing Loss – A Naive Approach

Suppose we want to find the value x^* that minimizes f(x) (where x is either a scalar or vector).

Let's suppose we don't know what gradient descent is, and that we also can't compute the derivative/gradient of f, so we can't set it equal to 0 and solve. How else can we estimate x^* ?

Gradient Descent

Goal: Identify the global minimum of a function.

- We know that any minimum of a function occurs where the gradient is 0.
- We also know that gradients point in the direction in which a function is increasing.
- Hence, gradient descent tries to find the point at which the gradient is 0, by moving in the opposite direction of the gradient, iteratively.

Gradient descent uplate equation

B = B -
$$\propto \nabla L (B^{(t)})$$

learning rate

"how big of a

step to take"

decaying LR: gets smaller

as t increases

(smaller steps when

near to minimum)

The example of the control of t

simple linear regression yî = Bo + B, x; L = 1 = (y:- B. - P, x:) $\nabla L(\vec{\beta}) = \begin{bmatrix} \frac{\partial L}{\partial \beta} \\ \frac{\partial L}{\partial \beta} \end{bmatrix} \quad \vec{\beta} = \begin{bmatrix} \beta & 0 \\ \beta & 1 \end{bmatrix}$

Links to Demos

- https://www.benfrederickson.com/numerical-optimization/
- https://alykhantejani.github.io/images/gradient_descent_line_graph.gif