Introduction

A faster combinatorial algorithm for triangle detection

Sanjana Das

May 6, 2025

Introduction

Problem (Triangle detection

Given a tripartite graph G, determine whether it has a triangle.

- ▶ Input: Matrices $A \in \{0,1\}^{X \times Y}$, $B \in \{0,1\}^{Y \times Z}$, $C \in \{0,1\}^{X \times Z}$.
- ▶ **Output:** Is there $(x, z) \in X \times Z$ where both AB and C are nonzero?

Problem and main result

Introduction

Given a tripartite graph G, determine whether it has a triangle.

- ▶ Input: Matrices $A \in \{0,1\}^{X \times Y}$, $B \in \{0,1\}^{Y \times Z}$, $C \in \{0,1\}^{X \times Z}$.
- ▶ **Output:** Is there $(x, z) \in X \times Z$ where both AB and C are nonzero?

Until recently, the best combinatorial algorithm was $n^3 \cdot (\log n)^{-4}$ time.

Theorem (Abboud-Fischer-Kelley-Lovett-Meka 2024)

There is an $n^3 \cdot 2^{-\Omega((\log n)^{1/7})}$ time combinatorial algorithm for triangle detection (and therefore also BMM).

Notions of regularity

Main idea: Decompose the problem into a bunch of 'nice' pieces, on which solving triangle detection is much easier.

Notions of regularity

Main idea: Decompose the problem into a bunch of 'nice' pieces, on which solving triangle detection is much easier.

Introduction

For $A \in \{0,1\}^{X \times Y}$, we write $\mathbb{E}[A]$ for the density of A. We say A is:

- $ightharpoonup \varepsilon$ -min-degree if $\deg_{\Delta}(x) > (1-\varepsilon)\mathbb{E}[A]|Y|$ for all $x \in X$.
- \triangleright $(\varepsilon, 2, d)$ -grid regular if for random $x_1, x_2 \in X$ and $y_1, \dots, y_d \in Y$,

$$(\mathbb{P}[x_1, x_2, y_1, \dots, y_d \text{ form a } K_{2,d}])^{1/2d} \leq (1+\varepsilon)\mathbb{E}[A].$$

Introduction

Regularity speeds up triangle detection

Theorem (Kelley-Lovett-Meka 2024)

If A and B^{T} are ε -min-degree and $(\varepsilon, 2, d)$ -grid regular, then

$$(1 - 80\varepsilon)\mathbb{E}[A]\mathbb{E}[B] |Y| \le (AB)(x, z) \le (1 + 80\varepsilon)\mathbb{E}[A]\mathbb{E}[B] |Y|$$

for all but a $2^{-\varepsilon d/2}$ -fraction of $(x, z) \in X \times Z$.

Think of $\varepsilon \approx \frac{1}{160}$ as a small constant and d as growing with n.

Regularity speeds up triangle detection

Theorem (Kelley-Lovett-Meka 2024)

If A and B^{T} are ε -min-degree and $(\varepsilon, 2, d)$ -grid regular, then

$$(1 - 80\varepsilon)\mathbb{E}[A]\mathbb{E}[B]|Y| \le (AB)(x, z) \le (1 + 80\varepsilon)\mathbb{E}[A]\mathbb{E}[B]|Y|$$

for all but a $2^{-\varepsilon d/2}$ -fraction of $(x, z) \in X \times Z$.

Think of $\varepsilon \approx \frac{1}{160}$ as a small constant and d as growing with n.

- ▶ If A and B meet these conditions, all but a $2^{-\varepsilon d/2}$ -fraction of the entries of AB are positive.
- ▶ So if more than a $2^{-\varepsilon d/2}$ -fraction of the entries of C are 1's, then there is automatically a triangle!
- ▶ Otherwise we can brute force: Go through all $(x, z) \in X \times Z$ which are edges in C (there are at most $2^{-\varepsilon d/2}|X||Z|$ of these) and all $y \in Y$. This takes $2^{-\varepsilon d/2} |X| |Y| |Z|$ time.

Given any $A \in \{0,1\}^{X \times Y}$ and $B \in \{0,1\}^{Y \times Z}$, we can decompose

$$AB = \sum_{k} A_{k}B_{k}$$

for smaller matrices $A_k \in \{0,1\}^{X_k \times Y_k}$ and $B_k \in \{0,1\}^{Y_k \times Z_k}$ such that:

- ▶ $\mathbb{E}[A_k] \leq 2^{-d}$, $\mathbb{E}[B_k] \leq 2^{-d}$, or both A_k and B_k^{T} are ε -min-degree and $(\varepsilon, 2, d)$ -grid regular (for each k).
- ▶ $\sum_{k} |X_{k}| |Y_{k}| |Z_{k}| \leq \text{poly}(d) \cdot |X| |Y| |Z|$.
- ▶ The number of indices k is at most $2^{O_{\varepsilon}(d^{7})}$.

Theorem (AFKLM24)

Given any $A \in \{0,1\}^{X \times Y}$ and $B \in \{0,1\}^{Y \times Z}$, we can decompose

$$AB = \sum_{k} A_{k}B_{k}$$

for smaller matrices $A_k \in \{0,1\}^{X_k \times Y_k}$ and $B_k \in \{0,1\}^{Y_k \times Z_k}$ such that:

- ▶ $\mathbb{E}[A_k] \leq 2^{-d}$, $\mathbb{E}[B_k] \leq 2^{-d}$, or both A_k and B_k^{T} are ε -min-degree and $(\varepsilon, 2, d)$ -grid regular (for each k).
- ▶ $\sum_{k} |X_{k}| |Y_{k}| |Z_{k}| \leq \text{poly}(d) \cdot |X| |Y| |Z|$.
- ▶ The number of indices k is at most $2^{O_{\varepsilon}(d^7)}$.

Set $d = c(\log n)^{1/7}$ (so $2^{O_{\varepsilon}(d^7)} < n^{0.1}$); this gives runtime

$$\sum_{\cdot} 2^{-\varepsilon d/2} \left| X_k \right| \left| Y_k \right| \left| Z_k \right| = 2^{-\varepsilon d/2} \cdot \mathsf{poly}(\mathit{d}) \cdot \left| X \right| \left| Y \right| \left| Z \right| = 2^{-\Omega(\mathit{d})} \mathit{n}^3.$$

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0,1\}^{X_{\ell} \times Y_{\ell}}$ such that:

▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.

Decomposing a single matrix

•0000

- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0,1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.

Given $A \in \{0,1\}^{X \times Y}$ such that $\mathbb{E}[A] \geq 2^{-d}$, find a *single* regular piece $A[X_*, Y_*]$ which is not too small (which we call a good rectangle).

Once we can do this, we'll get the decomposition by iteratively removing good rectangles.

Density increments

Main idea: If A is not regular, we can find a density increment — a piece A[X', Y'] which is substantially denser.

Claim

Let $\gamma \in (0,1)$. We can find X' with $|X'| \geq (1-\gamma)|X|$ such that either A[X',Y] is ε -min-degree, or $\mathbb{E}[A[X',Y]] \geq (1+\varepsilon\gamma)\mathbb{E}[A]$.

Claim

Either A itself is $(\varepsilon, 2, d)$ -grid regular, or we can find X' and Y' with

$$|X'||Y'| \ge \frac{\varepsilon}{16} \cdot \mathbb{E}[A]^{-2d} \cdot |X||Y|$$

such that $\mathbb{E}[A[X', Y']] \geq (1 + \frac{\varepsilon}{2})\mathbb{E}[A]$.

We'll have $\mathbb{E}[A] \geq 2^{-d}$, so this shrinks our sets by $\frac{\varepsilon}{16} \cdot 2^{-2d^2} = 2^{-O_{\varepsilon}(d^2)}$.

To find a good rectangle, start with $(X_*, Y_*) \leftarrow (X, Y)$, and repeatedly:

Decomposing a single matrix

- ▶ By shrinking X_* by at most $\frac{1}{2}$, either we can make $A[X_*, Y_*]$ ε -min-degree, or we get a density increment of $(1 + \frac{\varepsilon}{2})$.
- ▶ Either $A[X_*, Y_*]$ itself is $(\varepsilon, 2, d)$ -grid regular, or we get a density increment of $(1 + \frac{\varepsilon}{2})$ with shrinkage $2^{-O_{\varepsilon}(d^2)}$.
- ▶ If either fails, repeat with this denser submatrix as our new (X_*, Y_*) .

To find a good rectangle, start with $(X_*, Y_*) \leftarrow (X, Y)$, and repeatedly:

- ▶ By shrinking X_* by at most $\frac{1}{2}$, either we can make $A[X_*, Y_*]$ ε -min-degree, or we get a density increment of $(1+\frac{\varepsilon}{2})$.
- ▶ Either $A[X_*, Y_*]$ itself is $(\varepsilon, 2, d)$ -grid regular, or we get a density increment of $(1+\frac{\varepsilon}{2})$ with shrinkage $2^{-O_{\varepsilon}(d^2)}$.
- If either fails, repeat with this denser submatrix as our new (X_*, Y_*) .

To find a good rectangle, start with $(X_*, Y_*) \leftarrow (X, Y)$, and repeatedly:

- ▶ By shrinking X_* by at most $\frac{1}{2}$, either we can make $A[X_*, Y_*]$ ε -min-degree, or we get a density increment of $(1+\frac{\varepsilon}{2})$.
- ▶ Either $A[X_*, Y_*]$ itself is $(\varepsilon, 2, d)$ -grid regular, or we get a density increment of $(1+\frac{\varepsilon}{2})$ with shrinkage $2^{-O_{\varepsilon}(d^2)}$.
- If either fails, repeat with this denser submatrix as our new (X_*, Y_*) .

To find a good rectangle, start with $(X_*, Y_*) \leftarrow (X, Y)$, and repeatedly:

Decomposing a single matrix

- ▶ By shrinking X_* by at most $\frac{1}{2}$, either we can make $A[X_*, Y_*]$ ε -min-degree, or we get a density increment of $(1+\frac{\varepsilon}{2})$.
- ▶ Either $A[X_*, Y_*]$ itself is $(\varepsilon, 2, d)$ -grid regular, or we get a density increment of $(1+\frac{\varepsilon}{2})$ with shrinkage $2^{-O_{\varepsilon}(d^2)}$.
- If either fails, repeat with this denser submatrix as our new (X_*, Y_*) .

Claim

This gives a good rectangle with $|X_*| |Y_*| \ge 2^{-O_{\varepsilon}(d^3)} |X| |Y|$.

- We get a density increment of $(1+\frac{\varepsilon}{2})$ each time, starting at 2^{-d} , so we fail at most $O_{\varepsilon}(d)$ times.
- ► Each failure shrinks $|X_*||Y_*|$ by $2^{-O_{\varepsilon}(d^2)}$.

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0,1\}^{X_{\ell} \times Y_{\ell}}$ such that:

▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.

Decomposing a single matrix

- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0,1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).

Decomposing a single matrix

▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0,1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).

Decomposing a single matrix

▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0,1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$.
- ► The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).

Decomposing a single matrix

▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0,1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).
- ▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

Introduction

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0,1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$.
- ► The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).
- \blacktriangleright When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0,1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).
- ▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

Decomposing a single matrix — analysis

To show $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$:

 \triangleright Every piece we remove is at least as dense as the current A, so removing it drops the density of A by a factor of

$$1 - \frac{|X_{\ell}| |Y_{\ell}|}{|X| |Y|}.$$

Decomposing a single matrix

- ▶ The density stays above 2^{-d} , so $\prod_{\ell} (1 \frac{|X_{\ell}||Y_{\ell}|}{|X||Y|}) \ge 2^{-d}$ (excluding the last two pieces).
- ▶ Use the bound $1 x < 2^{-x}$ to conclude.

Decomposing a single matrix — analysis

To show $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \le (d+2) \cdot |X| |Y|$:

 \triangleright Every piece we remove is at least as dense as the current A, so removing it drops the density of A by a factor of

$$1 - \frac{|X_{\ell}| |Y_{\ell}|}{|X| |Y|}.$$

Decomposing a single matrix

- ▶ The density stays above 2^{-d} , so $\prod_{\ell} (1 \frac{|X_{\ell}||Y_{\ell}|}{|X||Y_{\ell}|}) \ge 2^{-d}$ (excluding the last two pieces).
- ▶ Use the bound $1 x < 2^{-x}$ to conclude.

To bound the number of parts:

- ► Each part has $|X_{\ell}| |Y_{\ell}| \ge 2^{-O_{\varepsilon}(d^3)} |X| |Y|$.
- ▶ So there's at most $2^{O_{\varepsilon}(d^3)}$ indices ℓ in the above sum.

Introduction

Introduction

Remove some $B[Y_*, Z_*]$ from B, and account for $A[X, Y_*]B[Y_*, Z_*]$.

▶ Decompose $A[X, Y_*] = \sum_{\ell} A_{\ell}$ (for $A_{\ell} \in \{0, 1\}^{X_{\ell}, Y_{\ell}}$).

Introduction

- ▶ Decompose $A[X, Y_*] = \sum_{\ell} A_{\ell}$ (for $A_{\ell} \in \{0, 1\}^{X_{\ell}, Y_{\ell}}$).
- ► Then $A[X, Y_*]B[Y_*, Z_*] = \sum_{\ell} A_{\ell}B[Y_{\ell}, Z_*]$. So for each ℓ :

Introduction

- ▶ Decompose $A[X, Y_*] = \sum_{\ell} A_{\ell}$ (for $A_{\ell} \in \{0, 1\}^{X_{\ell}, Y_{\ell}}$).
- ▶ Then $A[X, Y_*]B[Y_*, Z_*] = \sum_{\ell} A_{\ell}B[Y_{\ell}, Z_*]$. So for each ℓ :
 - ▶ Find $Z_{\ell} \subseteq Z_*$ with $|Z_{\ell}| \ge (1 \gamma)|Z_*|$ such that either $B[Y_{\ell}, Z_{\ell}]^{\mathsf{T}}$ is ε -min-degree, or we get a density increment of $(1 + \varepsilon \gamma)$.

Introduction

- ▶ Decompose $A[X, Y_*] = \sum_{\ell} A_{\ell}$ (for $A_{\ell} \in \{0, 1\}^{X_{\ell}, Y_{\ell}}$).
- ▶ Then $A[X, Y_*]B[Y_*, Z_*] = \sum_{\ell} A_{\ell}B[Y_{\ell}, Z_*]$. So for each ℓ :
 - ▶ Find $Z_{\ell} \subseteq Z_*$ with $|Z_{\ell}| > (1 \gamma)|Z_*|$ such that either $B[Y_{\ell}, Z_{\ell}]^{\mathsf{T}}$ is ε -min-degree, or we get a density increment of $(1 + \varepsilon \gamma)$.
 - ▶ $B[Y_{\ell}, Z_{\ell}]^{\mathsf{T}}$ is $(\varepsilon, 2, d)$ -grid regular, or we get an increment of $(1 + \frac{\varepsilon}{2})$.

Introduction

- ▶ Decompose $A[X, Y_*] = \sum_{\ell} A_{\ell}$ (for $A_{\ell} \in \{0, 1\}^{X_{\ell}, Y_{\ell}}$).
- ▶ Then $A[X, Y_*]B[Y_*, Z_*] = \sum_{\ell} A_{\ell}B[Y_{\ell}, Z_*]$. So for each ℓ :
 - ▶ Find $Z_{\ell} \subseteq Z_*$ with $|Z_{\ell}| > (1 \gamma)|Z_*|$ such that either $B[Y_{\ell}, Z_{\ell}]^{\mathsf{T}}$ is ε -min-degree, or we get a density increment of $(1 + \varepsilon \gamma)$.
 - ▶ $B[Y_{\ell}, Z_{\ell}]^{\mathsf{T}}$ is $(\varepsilon, 2, d)$ -grid regular, or we get an increment of $(1 + \frac{\varepsilon}{2})$.
- ▶ We're missing $A[X_{\ell}, Y_{\ell}]B[Y_{\ell}, Z_* \setminus Z_{\ell}]$; we recurse to handle it.

