Speedrun

XIV OIJ, zawody II stopnia

10 czerwca 2020

Bajtosia ma w końcu chwilę wolnego i chce pograć w grę komputerową. Gra składa się z N poziomów ponumerowanych od 1 do N. Recenzenci bardzo chwalą nieliniową fabułę gry. Gracz może zacząć grę na dowolnym, wybranym przez siebie poziomie (od 1 do N). Dodatkowo, dla każdego poziomu i ustalony jest poziom T_i , który po nim następuje. Gracz wygrywa w momencie, kiedy trafia do już ukończonego poziomu. Autorzy gry nie chcieli przecież, aby gra była nudna i powtarzalna. Zauważ, że przy takich warunkach nie jest konieczne ukończenie wszystkich poziomów do wygrania gry. Gracz w ten sposób nie będzie się nudził przy kolejnej przygodzie.

Bajtosia pasjonuje się speedrunningiem – aktywnością, która polega na jak najszybszym przechodzeniu gier. Bajtosia jest w stanie przejść każdy poziom gry. Pokonanie poziomu numer i zajmuje jej dokładnie i minut. Dalej jednak nie wie jak najszybciej może wygrać.

Pomóż jej i napisz program, który wczyta opis gry, wyliczy minimalną liczbę minut potrzebną na wygranie i wypisze wynik na standardowe wyjście.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba naturalna N ($1 \le N \le 100\,000$), określająca liczbę poziomów gry. W drugim (ostatnim) wierszu wejścia znajduje się opis tych poziomów: N liczb całkowitych T_i ($1 \le T_i \le N$), pooddzielanych pojedynczymi odstępami: i-ta liczba określa, że po przejściu poziomu i trafia się do poziomu i.

Wyjście

W pierwszym (jedynym) wierszu wyjścia należy wypisać jedną liczbę całkowitą – minimalną liczbę minut, które potrzebuje Bajtosia aby wygrać.

Ocenianie

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów
dla każdego i : T_i jest równe i albo $i+1$	22
$N \le 1000$	36
dla co najwyżej 10 poziomów zachodzi $T_i \leq i$	38
wszystkie liczby T_i są parami różne	41

Przykłady

Wejście dla testu spe0a:

10 4 1 1 3 4 1 6 9 10 10 Wyjście dla testu spe0a:

8

Wyjaśnienie do przykładu: Gra ma 10 poziomów. Ciąg T=(4,1,1,3,4,1,6,9,10,10) z drugiego wiersza wejścia należy odczytać następująco: po ukończeniu pierwszego poziomu trafimy do poziomu numer $T_1=4$, po ukończeniu drugiego poziomu trafimy do poziomu numer $T_2=1,\ldots$, a po ukończeniu dziesiątego poziomu trafiamy do poziomu numer $T_1=10$.

Aby wygrać grę w 8 minut można rozpocząć na poziomie numer 3. Bajtosia ukończy ten poziom w 3 minuty. Następnie, ponieważ trzeci element ciągu T jest równy 1, Bajtosia trafi do poziomu numer 1, który ukończy w jedną minutę, a następnie

przejdzie do poziomu numer 4 (bo $T_1=4$). Poziom czwarty zajmie Bajtosi kolejne 4 minuty, po czym trafi do poziomu numer 3 (ponieważ $T_4=3$), który już wcześniej ukończyła, zatem gra się zakończy wygraną. Sumarycznie przejście gry zajmie 3+1+4=8 minut. Zauważ, że istnieją też inne optymalne rozwiązania, które również skutkują wygraniem w 8 minut, na przykład można zacząć od poziomu numer 4.

Wejście dla testu spe0b:	_	Wyjście dla testu spe0b:
6		4
2 3 1 4 6 5		

Wyjaśnienie do przykładu: Aby wygrać grę w 4 minuty wystarczy rozpocząć na poziomie numer 4. Bajtosia przejdzie go w 4 minuty, a jako że $T_4 = 4$, przejście tego poziomu spowoduje trafienie do poziomu numer 4 ponownie, co kończy grę. Jest to najszybszy sposób wygrania gry.

Wejście dla testu spe0c:	Wyjście dla testu spe0c:
7	6
5 4 1 2 3 7 6	

Wyjaśnienie do przykładu: Bajtosia mogłaby zacząć od czwartego poziomu. Ukończenie go zajęło by jej 4 minuty. Ponieważ $T_4 = 2$, ukończenie tego poziomu spowoduje trafienie do drugiego poziomu. Bajtosia na pokonanie tego poziomu potrzebuje dwóch minut, a po jego ukończeniu trafia do poziomu numer $T_2 = 4$, czyli poziomu już ukończonego, więc Bajtosia wygra po 6 minutach.

Pozostałe testy przykładowe

- test spe0d: N=20, $T_1=20$, $T_2=19$, $T_3=18$, ..., $T_{20}=1$.
- test spe0e: N = 1000. Jeżeli rozpocznie się grę w poziomie o numerze parzystym, należy przejść wszystkie poziomy o numerach parzystych. Analogiczna sytuacja jest w przypadku poziomów nieparzystych.
- test spe0f: N = 99999. Dla wszystkich i = 1, 2, ..., N: $T_i = 99999$.
- test spe0g: $N=100\,000$. Żeby wygrać grę należy przejść wszystkie poziomy.