Mini-project: MultiKnapsack with MinMaxType constraints

Nhóm 17 Vi Thành Đạt Đỗ Trường Mạnh May 14, 2019

Hanoi University of Science and Technoloy

Mục lục

- 1. Mô tả bài toán
- 2. Mô hình bài toán
- 3. Dữ liệu đầu vào
- 4. Chiến lược tìm kiếm
- 5. Kết quả thực nghiệm

- · Có N items cần xếp vào M bins
- Item i (i = 1,...,N)
 - w_i: trọng số 1
 - p_i: trọng số 2
 - t_i : thể loại
 - r_i: lóp
 - · $D_{i:}$ tập bins mà item i có thể được xếp vào

- · Bin b
 - W_b: sức chứa 1 (tải tối đa cho trọng số 1)
 - · LW_b: tải tối thiểu cho trọng số 1
 - P_b : tải tối đa cho trọng số 2
 - T_b: Số lượng thể loại tối đa cho các items trong bin
 - \cdot R_b : số lượng lớp tối đa cho các items trong bin

- · Ràng buộc cho mỗi bin b
 - C1: Tổng trọng số 1 của các items được xếp vào b phải lớn hơn hoặc bằng LW_b và nhỏ hơn hoặc bằng W_b
 - \cdot C2: Tổng trọng số 2 của các items được xếp vào b phải nhỏ hơn hoặc bằng P_b
 - \cdot C3: Tổng số thể loại của các items được xếp vào b phải nhỏ hơn hoặc bằng T_b
 - \cdot C4: Tổng số lớp của các items được xếp vào b phải nhỏ hơn hoặc bằng R_b
- · Mục tiêu
 - · Tối đa số lượng item xếp được

Mô hình bài toán

Mô hình bài toán

- · Biến
 - X_i : bin mà item i được xếp vào, $D(X_i) = \{0, 1, ...N\}$, $X_i = 0 \Rightarrow$ item không được xếp vào bin nào
- Ràng buộc: $\forall b = 1, ..., M$
 - · $LW_b \le \sum_{i=1}^{N} (X_i == b) * W_i \le W_b$
 - $\sum_{i=1}^{N} (X_i == b) * p_i \leq P_b$
 - T
 - · R

Dữ liệu đầu vào

Dữ liệu đầu vào

Nhận xét: Các item có cùng loại và cùng class thì có cùng tập D
 => Gộp các item này lại thành một nhóm (có w = tổng các w các item, có p = tổng p các item, t và r và D giống như các item) => 2 kiểu dữ liệu: item gộp và item riêng rẽ

- Cách tính violation cho mỗi bin: $violation_b = max(0, _W_b - W_b) + max(0, LW_b - _W_b) + max(0, _P_b - P_b) + max(0, _T_b - T_b) + max(0, _R_b - R_b)$
 - _W_b: Tổng trong số 1 của bin b
 - _P_b: Tổng trọng số 2 của bin b
 - · $_T_b$: Tổng số type trong bin b
 - \cdot _ R_b : Tổng số class trong bin b

- · Khởi tạo: các item không nằm trong bin nào
- Tìm kiếm: Ưu tiên việc thoả mãn ràng buộc LW của một bin nào đó
 - B1: Duyệt qua tập bin khả dụng xây dựng tập binCandidate có violation nhỏ nhất => Chọn ngẫu nhiên để xét tiếp
 - B2: Xây dựng tập itemCandidate có violationDelta nhỏ nhất =>
 Chọn ngẫu nhiên để tiến hành chuyển sang bin đã chọn
 - Nếu tập itemCandidate của bin được chọn rỗng => loại bin khỏi tập khả dụng

- Chiến lược di chuyển một item từ bin bx sang bin by có violationDelta = 0: chỉ di chuyển nếu max(W_{bx} _W_{bx}, W_{by} _W_{by}) < max(W_{bx} _W'_{bx}, W_{by} _W'_{by}) => Ý nghĩa: tạo ra khoảng trống W lớn hơn cho cơ hội đút thêm item được cao hơn
- Chiến lược reset nếu binCandidate rỗng: bỏ các item khỏi bin có violation > 0
 tiếp tục tìm kiếm

- · Chạy thuật toán tìm kiếm trên 2 kiểu dữ liệu:
 - · Dữ liệu item tách biệt => tìm kiếm lời giải
 - Dữ liệu nhóm => tìm kiếm lời giải => phân rã thành item tách biệt
 => cải thiện bằng cách cho thêm item có thể thêm

Kết quả thực nghiệm

Kết quả thực nghiệm

	Bộ 1000	Bộ 3000
Search	302	1961
Search + gộp nhóm	547	2555

Cảm ơn đã lắng nghe