Московский физико-технический институт Физтех-школа прикладной математики и информатики

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ І СЕМЕСТР

Лектор: Тюленев Александр Иванович

Авторы: Шарипов Артем, Шмакова Екатерина Проект на Github

Содержание

1	Мн	ожество действительных чисел	2
	1.1	Кванторы и множества	2
	1.2	Аксиомы действительных чисел	3
	1.3	Супремумы, инфимумы и грани числовых множеств	4
	1.4	Вложенные отрезки	6
	1.5	Счётные и несчётные множества	9
2	Пре	едел числовой последовательности	11
	2.1	Определение предела последовательности	11
	2.2	Свойства пределов сходящихся последовательностей, связанные с арифме-	
		тическими операциями	14
	2.3	Предельный переход в неравенствах	16
	2.4	Пределы монотонных последовательностей	17
	2.5	Подпоследовательности и частичные пределы	17
	2.6	Критерий Коши	23
3	Топ	ология числовой прямой	24
4	Пре	едел функций	28
	4.1	Классические определения предела	28
	4.2	Предел по множеству	29
	4.3	Критерий Коши для функций	30
	4.4	Односторонние пределы и теорема Вейерштрасса	32
	4.5	Арифметические операции с пределами функций	33
	4.6	Предельные переходы в неравенствах	34
	4.7	Верхние и нижние пределы для функции	35
	4.8	Непрерывность функции в точке и на множестве	37
	4.9	Колебания	40
	4.10	Обратная функция	42
	4.11	Первый замечательный предел и непрерывность элементарных функций	45
	4.12	Число e	46
	4.13	Показательная функция	48
	4.14	Свойства показательной функции	51
		Второй замечательный предел	53
		Эквивалентность функций	55
5	Про	оизводная функции в точке. Дифференциал. Дифференцируемость	58
	5.1	Односторонние производные	59

7	6.4 Лин 7.1 7.2 7.3 7.4 7.5 Кри	Интегрирование дробей	86 89 90 91 93 94 96				
7	Лин 7.1 7.2 7.3 7.4	Интегрирование дробей	8990919394				
7	Лин 7.1 7.2 7.3 7.4	Интегрирование дробей	8990919394				
7	Лин 7.1 7.2 7.3	Интегрирование дробей	8990919193				
7	Лин 7.1 7.2	Интегрирование дробей	89909191				
7	Лин	Интегрирование дробей	899091				
7		Интегрирование дробей	89				
	6.4						
	6.3	Полиномы					
	6.2	Комплексные числа	85				
	6.1	Свойства неопределенного интеграла	84				
	ла		83				
6	Первообразная, неопределенный интеграл, полиномы, комплексные чис-						
	5.13	Исследование функций	78				
		Правило Лопиталя	76				
		Разложение основных элементарных функций по формуле Тейлора	73				
	5.10	Формула Тейлора	69				
	5.9	Теорема Дарбу	69				
	5.8	Следствия из теоремы Лагранжа о среднем	68				
	5.7	Теоремы о среднем	66				
	5.6	Производные функций, заданных параметрически	66				
	5.5	Вычисление производных функций, заданных неявно	65				
	5.4	Формула Лейбница	64				
	0.5	Производные и дифференциалы высших порядков	63				
	5.3						

1 Множество действительных чисел

1.1 Кванторы и множества

Определим следующие символы:

 \land — логическое «и» \lor — логическое «или» \Leftrightarrow — «следует» \longleftrightarrow — «тогда и только тогда» \lor — «отрицание» \lor — «для любого» \lor — «такой, что» \lor — «равно по определению» \lor — «существует и единственно» \lor — «выполняется» \varnothing — пустое множество

Множества можно задавать перечислением, если они конечны, $X = \{x_1, x_2, \dots x_n\}$ или как набор условий $X = \{x : P(x)\}.$

Для множеств будем использовать следующие операции:

- 1. $X \cup Y := \{z \colon z \in X \lor z \in Y\}$ объединение;
- 2. $X \cap Y := \{z : z \in X \land z \in Y\}$ пересечение;
- 3. $X \setminus Y := \{z: z \in X \land z \notin Y\}$ разность.

Определение 1.1. Множество называется бесконечным если $\forall n \in \mathbb{N} \ X$ содержит n различных элементов.

Определение 1.2. Пусть X, Y — непустые множества. Тогда $X \times Y = \{(x,y): x \in X, y \in Y\}$ — декартово произведение.

Определение 1.3. Будем говорить, что задано соответствие f из X в Y, если $X \times Y$ выделено подмножество $G_f \subset X \times Y$.

При этом, если $(x,y) \in G_f$, то говорят, что y поставлен в соответствие x.

 $D_f:=\{x\in X\colon \exists y\in Y\hookrightarrow (x,y)\in G_f\}$ — область определения.

 $E_f:=\{y\in Y\colon \exists x\in X\hookrightarrow (x,y)\in G_f\}$ — область значений.

Определение 1.4. Если $D_f = X$, то говорят, что задано отображение (многозначное) из X в Y $f: X \mapsto Y$.

Определение 1.5. $X, Y \neq \emptyset$. Будем говорить, что $f: X \mapsto Y - \textit{отображение}$, если $D_f = X$ и $\forall x \in X \exists ! y \in Y \colon (x,y) \in G_f$. Последнее можно интерпретировать как y = f(x). Если не сказано обратного, то отображение считать однозначным.

Определение 1.6. $X, Y, Z \neq \emptyset$. $f: X \mapsto Y, y: Y \mapsto Z$ — отображения. Композицией отображений f и g назовём отображение $h = g \circ f$, если $h(x) = g(f(x)) \quad \forall x \in X$.

Определение 1.7. Отображение $f: X \mapsto Y - uнъекция$, если $\forall x_1, x_2 \in X \hookrightarrow x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Определение 1.8. Отображение $f: X \mapsto Y - c \omega p \pi e \kappa u u s$, если $E_f = Y$. Каждый элемент множества X вляется образом хотя бы одного элемента множества Y.

Определение 1.9. Отображение $f: X \mapsto Y$ называется *обратимым*, если $\exists f^{-1}: Y \mapsto X$, такое, что

 $\begin{cases} f\circ f^{-1}=Id_Y\\ f^{-1}\circ f=Id_X & \text{при этом } f^{-1} \text{ называется обратной к } f. \end{cases}$

1.2 Аксиомы действительных чисел

Определение 1.10. *Множееством действительных чисел* называется непустое множество \mathbb{R} , в котором введены 2 бинарные операции:

и отношение порядка "≤". Удовлетворяют 15 аксиомам:

- 1. a + b = b + a $\forall a, b \in \mathbb{R}$ 2. a + (b + c) = (a + b) + c $\forall a, b, c \in \mathbb{R}$ 3. $\exists 0 \in \mathbb{R}: a + 0 = 0 + a = 0$ $\forall a \in \mathbb{R}$
- 4. $\exists (-a): a + (-a) = 0$ $\forall a \in \mathbb{R}$
- $5. \ a \cdot b = b \cdot a \qquad \forall a, b \in \mathbb{R}$
- 6. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ $\forall a, b, c \in \mathbb{R}$ 7. $\exists 1 \neq 0: a \cdot 1 = a$ $\forall a \in \mathbb{R}$
- 8. $\exists \frac{1}{a} : a \cdot \frac{1}{a} = 1$ $\forall a \neq 0$
- 9. $a \cdot (b+c) = a \cdot b + a \cdot c \quad \forall a, b, c \in \mathbb{R}$
- 10. $a \leqslant b \lor b \leqslant a$ $\forall a, b \in \mathbb{R}$ 11. если $a \leqslant b \Rightarrow a + c \leqslant b + c$ $\forall a, b, c \in \mathbb{R}$
- 12. если $a \leqslant b \Rightarrow ac \leqslant bc$ $\forall a, b, c \in \mathbb{R} \land \forall c \geqslant 0$
- 13. если $a \leqslant b \land b \leqslant c \Rightarrow a \leqslant c$ $\forall a, b, c \in \mathbb{R}$
- 14. если $a \leqslant b \land b \leqslant a \Rightarrow a = b \quad \forall a, b \in \mathbb{R}$
- 15. Аксиома непрерывности $\forall A, B \subset \mathbb{R}$

Определение 1.11. Аксиома непрерывности.

 $\forall A, B \subset \mathbb{R} : A, B \neq \emptyset$ и $\forall a \in A, \forall b \in B \hookrightarrow a \leqslant b$. $\exists c \in \mathbb{R} : a \leqslant c \leqslant b$. То есть существует «разделительное число».

Примечание. Аксиома непрерывности не справедлива для рациональных чисел (\mathbb{Q}).

 \mathcal{A} оказательство. Предположим, что $\mathbb Q$ удовлетворяет аксиоме непрерывности.

$$A := \{x \in \mathbb{Q}: x \geqslant 0, x^2 < 2\}, B := \{x \in \mathbb{Q}: x^2 > 2\}.$$

Если аксиома непрерывности верна для \mathbb{Q} , то это означает, что $\exists c \in \mathbb{Q} : \forall a \in A$, $\forall b \in B \hookrightarrow a \leqslant c \leqslant b$. Возьмём наши множества A, B, тогда $c^2 = 2$, но $!\exists c \in \mathbb{Q} : c^2 = 2 \Rightarrow$ противоречие.

Определение 1.12. $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$. Притом $\forall x \in \overline{\mathbb{R}} \neq \pm \infty \hookrightarrow -\infty < x < +\infty$.

Определение 1.13. $\mathbb{N}_0 := \mathbb{N} \cup \{0\}.$

Определение 1.14. $[a,b]:=\{x\in\mathbb{R}:a\leqslant x\leqslant b\}.$

Определение 1.15. $[a,b) := \{x \in \mathbb{R}: a \leqslant x < b\}.$

Определение 1.16. $(a, b] := \{x \in \mathbb{R}: a < x \leqslant b\}.$

Определение 1.17. $(a, b) := \{x \in \mathbb{R}: a < x < b\}.$

Определение 1.18. $a = b \Rightarrow (a, b) = \varnothing$.

1.3 Супремумы, инфимумы и грани числовых множеств

Определение 1.19. Множество $A \subset \mathbb{R}$ называется ограниченным сверху, если $\exists M \in \mathbb{R}$: $a \leqslant M \quad \forall a \in A$.

Примечание. Множество неограниченно сверху, если $\forall M \in \mathbb{R} \quad \exists a \in A : a(M) > M$. Где $a \equiv a(M)$. Т.е. мы как бы "подбираем" a в зависимости от данного M.

Определение 1.20. Множество $A \subset \mathbb{R}$ называется ограниченным снизу, если $\exists m \in \mathbb{R}$: $m \leqslant a \quad \forall a \in A$.

Определение 1.21. Множество $A \subset \mathbb{R}$ называется *ограниченным*, если оно ограниченно и сверху, и снизу.

Определение 1.22. Число M(m) называется верхней (ниженей) гранью числового непустого множества $A \subset \mathbb{R}$, если $x \leqslant M$ $(x \geqslant m)$ $\forall x \in A$.

Определение 1.23. Пусть A — ограниченное сверху множество. Число $M \in \mathbb{R}$ называется супремумом A и записывается M = sup A, если выполняется:

- 1. M является верхней гранью, то есть $\forall x \in A \hookrightarrow x \leqslant M$.
- 2. $\forall M' < M \quad \exists a(M') \in A : M' < a(M') \leqslant M$. То есть никакое другое число не является верхней гранью.

Определение 1.24. Если A — неограниченное сверху множество, то $sup A := +\infty$.

Теорема 1.1. (о существовании и единственности супремума) Супремум существует и единственен.

$$\forall A \subset \mathbb{R} : A \neq \emptyset \hookrightarrow \exists ! \sup A.$$

Доказательство. В случае неограниченного множества A верность теоремы следует из определения. Рассмотрим случай ограниченного множества $A\Rightarrow$ существует хотя бы одна верхняя грань.

Пусть $B := \{ M \in \mathbb{R} : M - \text{верняя грань } A \}.$ $B \neq \emptyset$.

Кроме того A расположенно левее B. Тогда в силу аксиомы непрерывности $\exists c \in \mathbb{R}$: $a \leq c \leq M \quad \forall a \in A, \quad \forall M \in B$.

Покажем, что $c=\sup A$. Действительно, так как $a\leqslant c\ \forall a\in A\Rightarrow c$ — верхняя грань, тогда 1 пункт определния супремума проверен.

Предположим $\exists c' < c$: c' — верхняя грань. Тогда $c' \in B$, но c было выбранно так, что $c \leqslant M$ $\forall M \in B \Rightarrow c \leqslant c'$ — противоречие $\Rightarrow \forall c' < c \hookrightarrow c \notin B \Leftrightarrow \neg(c' \in B) \Leftrightarrow \neg(\forall a \in A \hookrightarrow a \leqslant c') \Leftrightarrow \exists a(c') \in A : a(c') > c'$, но так как $a(c') \in A$, то $a(c') \leqslant c$. И тогда мы показали, что $\forall c' < c$ $\exists a(c') \in A : c' < a(c') \leqslant c$. Значит, мы проверили определние супремума с заменой M на $c \Rightarrow$ он существует.

Докажем единственность супремума. Предположим, что $\exists M_1, M_2 \in \mathbb{R}$: $M_1 = \sup A$ и $M_2 = \sup A$.

Пусть $M_1 > M_2$. Тогда по (2) пункту определения супремума (для M_1) $\exists a(M_2) \in A$: $a(M_2) > M_2 \Rightarrow$ это противоречит тому, что M_2 — верхняя грань (то есть (1) пункт определения M_2 как супремума) \Rightarrow такого быть не может.

Случай $M_2 > M_1$ аналогичен $\Rightarrow M_1 = M_2$, то есть супремум существует и единственнен.

ФПМИ МФТИ, осень 2023

Утверждение 1.1. $M=\sup A\;(M\in\overline{\mathbb{R}},\;A\subset\mathbb{R},\;A\neq\varnothing)\;$ тогда и только тогда, когда

$$\begin{cases} a \leqslant M & \forall a \in A \\ \forall M' < M & \exists a(M') \in A : M' < a(M') \leqslant M \end{cases}$$

Для случая A — ограниченное множество, это просто определние супремума.

Пусть A — неограниченно сверху, тогда $+\infty = \sup A$, но тогда система выше выполняется при замене M на $+\infty$ по отношению порядка $\overline{\mathbb{R}}$.

M наоборот если система выполнена для $M=+\infty$, то тогда A — неограниченно сверху, и тогда $+\infty=\sup A$.

Лемма 1.1. (Лемма Архимеда) Множество натуральных чисел неограниченно сверху.

$$\forall M^{'} \in \mathbb{R} \ \exists N(M^{'}) \in \mathbb{N} : N(M^{'}) > M^{'}.$$

Доказательство. Предположим, что \mathbb{N} — ограниченно сверху ⇒ существует верхняя грань и более того существует конечный супремум $M = \sup \mathbb{N} < +\infty$. Тогда в силу второго пункта определения супрерума: $\forall M' < M$ найдётся натуральное число его больше. Но так как это верно $\forall M'$, то можем взять M' = M - 1.

Тогда $\exists N(M^{'}) \in \mathbb{N}$: $N(M^{'}) > M-1 \Rightarrow N(M^{'})+1 > M \Rightarrow M$ — не супремум. Противоречие.

Определение 1.25. $m \in \mathbb{R}$ называется *инфимумом ограниченного снизу множества* A, если

$$m = \inf A \iff \begin{cases} a \geqslant m & \forall a \in A \\ \forall m' > m, \ \exists a(m') \in A : m' > a(m') \geqslant m \end{cases}$$

Определение 1.26. Если A — неограниченное снизу множество, то inf $A := -\infty$.

Теорема 1.2. (о существовании и единственности инфимума) Инфимум существует и единственнен.

$$\forall A \subset \mathbb{R} : A \neq \emptyset \hookrightarrow \exists ! \inf A.$$

Доказательство. Аналогично супремуму с точностью до замены знаков.

Утверждение 1.2. $m=\inf A\ (m\in\overline{\mathbb{R}},\ A\subset\mathbb{R},\ A\neq\varnothing)$ тогда и только тогда, когда

$$\begin{cases} a \geqslant m & \forall a \in A \\ \forall m' > m & \exists a(m') \in A : m' > a(m') \geqslant m \end{cases}$$

Определение 1.27. Число M называется максимумом (максимальным элементом) множества $E \subset \mathbb{R} \Leftrightarrow M = maxE$, если

- 1. $M \in E$;
- 2. $M \geqslant x \ \forall x \in E$.

Аналогично определяется минимум.

1.4 Вложенные отрезки

Всегда предплогается, что $a_n \leqslant b_n$.

Определение 1.28. Отображение из \mathbb{N} в множество всех отрезков на числовой прямой \mathbb{R} назовём последовательностью отрезков и обозначим $\{[a_n,b_n]\}_{n=1}^{\infty}$

Определение 1.29. Будем говорить, что $\{[a_n,b_n]\}_{n=1}^{\infty}$ — последовательность *вложенных отрезков*, если $\{[a_{n+1},b_{n+1}]\}\subset\{[a_n,b_n]\}$ $\forall n\in\mathbb{N}$

Лемма 1.2. (Лемма Кантора или принцип вложенных отрезков) Любая последовательность вложенных отрезков имеет непустое пересечение (точка лежит сразу во всех отрезках), то есть

$$\forall$$
 вложенной $\{[a_n,b_n]\}_{n=1}^{\infty}$ $\exists x \in \bigcap_{n=1}^{\infty} [a_n,b_n] \Longleftrightarrow \bigcap_{n=1}^{\infty} [a_n,b_n] \neq \varnothing$

Доказательство. $\forall n \in \mathbb{N}$ справедливы неравенства:

$$-\infty < a_n \leqslant a_{n+1} \leqslant b_{n+1} \leqslant b_n < +\infty.$$

Заметим следующий факт (*):

$$\forall n, m \in \mathbb{N} \hookrightarrow -\infty < a_n \leqslant b_m < +\infty$$

Действительно, предположим $m \geqslant n \Rightarrow$ по индукции $b_m \leqslant b_n \Rightarrow a_m \leqslant b_m \leqslant b_n$.

Если же m < n, то $a_m \leqslant a_n \leqslant b_n$.

 $A := \{a_1, a_2 \dots, a_n, \dots\}$ — множество «левых» концов.

 $B := \{b_1, b_2, \dots, b_m, \dots\}$ — множество «правых» концов.

Из (*) получаем, что A расположенно «левее» $B\Rightarrow \exists c\in\mathbb{R}\colon a_n\leqslant c\leqslant b_m\; \forall n,m\in\mathbb{N}\Rightarrow$

$$\Rightarrow a_n \leqslant c \leqslant b_n \quad \forall n \in \mathbb{N} \Rightarrow c \in [a_n, b_n] \ \forall n \in \mathbb{N} \Rightarrow c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$$

Примечание. Лемма Кантора о вложенных отрезках может не работать для интервалов.

Пример: $a_n = 0 \ \forall n \in \mathbb{N}, b_n = \frac{1}{n} \ \forall n \in \mathbb{N}.$

$$(a_n, b_n) = \left(0, \frac{1}{n}\right). \quad \bigcap_{n=1}^{\infty} [a_n, b_n] = \varnothing.$$

Действительно, предположим $\exists x>0\colon x\in\bigcap_{n=1}^\infty\left(0,\frac1n\right)\Rightarrow 0< x<\frac1n\ \forall n\in\mathbb N\Rightarrow n<\frac1x$ противоречие с леммой Архимеда.

Определение 1.30. Последовательность вложенных отрезков $\bigcap_{n=1}^{\infty} [a_n, b_n]$ называется

cтягивающейся, если $\forall n \in \mathbb{N} \ \exists [a_{m(n)}, b_{m(n)}] \colon l < \frac{1}{n}$, где $l = (b_i - a_i)$. l — длина.

Теорема 1.3. Стягивающаяся последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ имеет единственную общую точку, то есть

$$\exists ! x \in \bigcap_{n=1}^{\infty} [a_n, b_n]$$

Доказательство. Ранее было доказано, что пересечение не пусто $\left(\exists x \in \bigcap_{n=1}^{\infty} [a_n, b_n]\right)$.

Тогда предположим, что $\exists x_1, x_2 \in \bigcap_{n=1}^{\infty} [a_n, b_n] \quad (x_1 \neq x_2).$

Так как $x_1 \neq x_2 \Rightarrow |x_1 - x_2| > 0$. Пусть $|x_1 - x_2| = \frac{1}{M}$. Но тогда по лемма Архимеда $\exists N \in \mathbb{N} \colon N > M \Rightarrow \frac{1}{N} < |x_1 - x_2| \Rightarrow$ в силу того, что система отрезков стягивающаяся, то $\exists [a_{m(N)}, b_{m(N)}]$ длина которого $< \frac{1}{N}$, но по предположению x_1, x_2 принадлежат всем отрезкам этой последовательности, в частности $x_1, x_2 \in [a_{m(N)}, b_{m(N)}] \Rightarrow |x_1 - x_2| < \frac{1}{N} \Rightarrow |x_1 - x_2| < |x_1 - x_2| -$ противоречие. Получается $x_1 = x_2$.

Теорема 1.4. (3 принципа непрерывности числовой прямой) Следующие утверждения эквивалентны:

- 1. Аксиома непрерывности.
- 2. Существование inf $u \sup y$ любого непустого множества.
- 3. Лемма Кантора о непустоте пересечения вложенной системы и лемма Архимеда.

Примечание. Ранее было доказанно, что $(1) \to (2), (2) \to (3), (1) \to (3)$. Рассмотрим более сложный переход: $(3) \to (1)$.

Теорема 1.5. Из леммы Кантора и леммы Архимеда следует аксиома непрерывности.

Доказательство. Зафиксируем такие непустые множества $A, B \subset \mathbb{R}$, что A расположенно левее B. Разобьём доказательство на несколько шагов.

<u>Шаг 1.</u> Поскольку A и B — непустые множества, зафиксируем произвольные $a_0 \in A$ и $b_0 \in B$. Поскольку A расположенно левее B, то $a_0 \leq b_0$.

<u>Шаг 2.</u> Если $a_0 = b_0$, то полагаем $c = a_0 = b_0$ и завершаем доказательство. Действительно, если последовательнось A «левее» последовательности B, то из $a \le b \ \forall a \in A, \forall b \in B$ и $a_0 \in A$ следует, что $\forall b \hookrightarrow b \geqslant a_0 = c$. Аналогично, $\forall a \hookrightarrow a \le b_0 = c$.

<u>Шаг 3.</u> Пусть теперь $a_0 < b_0$.

База индукции. Положим $J^0 := [a_0, b_0]$. По построению отрезок J^0 имеет непустое пересечение с множеством A и множеством B.

Шаг индукции. Предположим, что при некотором $n \in \mathbb{N}_0$ мы построили (при n=0 мы это уже проверили) такие отрезки

$$J^0 = [a_0, b_0] \supset \ldots \supset J^n = [a_n, b_n],$$

что справедливо неравенство

$$l(J^j) = |a_j - b_j| \leqslant \frac{|a_0 - b_0|}{2^j} \quad \forall j \in \{0, \dots, n\}.$$

Кроме того,

$$J^j \cap A \neq \emptyset$$
 и $J^j \cap B \neq \emptyset$ $\forall j \in \{0, \dots, n\}.$

Поделим отрезок J^n на две равные части. Обозначим соответствующие отрезки символами I_1^{n+1}, I_2^{n+1} в порядке следования (слева направо). Возможны 2 случая.

В первом случае найдётся такой индекс $k^* \in \{1,2\}$, что

$$I_{k^*}^{n+1}\cap A\neq\varnothing\quad \text{и}\quad I_{k^*}^{n+1}\cap B\neq\varnothing.$$

Тогда положим

$$J^{n+1} := I_{k^*}^{n+1}.$$

Во втором случае I_1^{n+1} имеет непустое пересечение только с A, а I_2^{n+1} имеет непустое пересечение только с B. Тогда положим $c_n:=\frac{a_n+b_n}{2}$. Мы утверждаем, что

$$a < c_n < b \quad \forall a \in A, \forall b \in B.$$

Действительно, поскольку $I_1^{n+1} \cap A \neq \emptyset$ и A расположенно левее B, то заведомо $B \subset [a_n, +\infty)$.

С другой стороны, $I_1^{n+1} \cap B \neq \emptyset$, откуда следует, что

$$B \subset [a_n, +\infty) \setminus [c_n, b_n] = \left(\frac{a_n + b_n}{2}, +\infty\right).$$

Аналогично доказывается, что $A \subset (-\infty, \frac{a_n+b_n}{2})$. Таким образом, выполнено условие $a < c_n < b$. В частности, число c_n разделяет множества A и B.

<u>Шаг 4.</u> В итоге, возможны два случая. В первом случае (назовём его C1), существует число $n_0 \in \mathbb{N}$, для которого левая половина отрезка $[a_{n_0}, b_{n_0}]$ имеет непустое пересечение только с A, а правая половина имеет непустое пересечение только с B.

Во втором случае (назовём его C2), мы получим бесконечную последовательность отрезков $\{J^n\}_{n=0}^{\infty}$, для которой выполнены следующие свойства:

$$J^{n+1} \subset J^n \quad \forall n \in \mathbb{N}_0;$$

$$J^n \cap A \neq \emptyset$$
 и $J^n \cap B \neq \emptyset$ $\forall n \in \mathbb{N}$;

(P3)
$$l(J^n) = \frac{|a_0 - b_0|}{2^n} \leqslant \frac{|a_0 - b_0|}{n} \quad \forall n \in \mathbb{N}.$$
 (1)

<u>Шаг 5.</u> В случае (C1) мы полагаем $c:=\frac{a_{n_0}+b_{n_0}}{2}$ и завершаем построение, поскольку c разделяет A и B.

Шаг 6. В случае (C2) заметим, что в силу (P1) и (P3) последовательность $\{J^n\}_{n=0}^{\infty}$ является стягивающейся последовательностью вложенных отрезков. Имея в виду теорему о существовании и единственности общей точки для стягивающейся последовательности вложенных отрезков, положим

$$c := \bigcap_{n=0}^{\infty} J^n. \tag{2}$$

Покажем, что в этом случае c разделяет A и B. Рассуждая методом от противного, предположим, что найдётся $a^* \in A$ такое, что $a^* > c$. В силу леммы Архимеда и (1) получим, что найдётся $n^* \in \mathbb{N}$ такое, что

$$l(J^{n^*}) < |c - a^*| \tag{3}$$

Но тогда, имеем

$$x < a^* \ \forall x \in J^{n^*}. \tag{4}$$

Действительно, в противном случае мы имели бы $|c-x|\geqslant |c-a^*|$ для некоторой точки $x\in J^{n^*}$, что в комбинации с (2) приводит к неравенству $l(J^{n^*})\geqslant |c-a^*|$, которое противоречит (3).

В силу (P2) отрезок J^{n^*} имеет непустое пересечение с B, а значит существует $b^* \in J^{n^*} \cap B$. Учитывая (4) получаем, что

$$\exists b^* \in B : \quad b^* < a^* \in A.$$

Это противоречит тому, что множество A расположено левее множесва B. Наше противоречие возникло от предположения, что существует точка $a^* \in A$, удовлетворяющая неравенству $a^* > c$. Значит наше предположение было неверно. Поэтому

$$a \leqslant c \quad \forall a \in A.$$

Аналогично доказывается, что

$$c \leqslant b \quad \forall b \in B.$$

Комбинируя последние два вывода, получаем аксиому непрерывности.

1.5 Счётные и несчётные множества

Определение 1.31. Отображение $f: X \mapsto Y$ называется биекцией X на Y, если оно и инъекция, и сюръекция \Leftrightarrow оно обратимо.

Определение 1.32. Множество X называется *конечным*, если $\exists N \in \mathbb{N}$ и биекция X на $\{1, \ldots, N\}$. В противном случае множество называется *бесконечным*.

Определение 1.33. Будем говорить, что *множества* $Xu\ Y$ *равномощны*, если существует биекция X на Y.

Определение 1.34. Будем говорить, что мощность множества Y не меньше мощности множества X, если существует множество $Y' \subset Y$ такое, что X и Y' равномощны.

Определение 1.35. Множество X называется *счётным*, если X равномощно \mathbb{N} .

Определение 1.36. Множество X называется *несчётным*, если X бесконечно и неравномощно \mathbb{N} .

Теорема 1.6. $\mathbb{Q} - c \mathcal{A} \ddot{e} m \mathcal{H} o$.

Доказательство. Построим бесконечную таблицу. Где по горизонтали отложим целые числа, по вектикали — натуральные, а в клетках — их частное.

$\mathbb{N}\backslash\mathbb{Z}$	0	1	-1	2	-2	3	-3	
1	0/1	1/1	-1/1	2/1	-2/1	3/1	-3/1	
2	0/2	1/2	-1/2	2/2	-2/2	3/2	-3/2	
3	0/3	1/3	-1/3	2/3	-2/3	3/3	-3/3	
4	0/4	1/4	-1/4	2/4	-2/4	3/4	-3/4	
	:	:	:	•	•	:	:	•••

Будем двигаться по «змейке» из левого верхнего угла (0/1), нумеруя все попадающиеся рациональные числа, пропуская при этом те, которые встречались ранее.

Таким способом мы занумеруем все рациональные числа, засчёт чего получим инъекцию $\mathbb{N}\mapsto\mathbb{Q}.$

Так как для любого рационального числа найдётся «квадрат», в которое это число попадает, то «змейка» через него пройдёт ⇒ получаем сюръекцию.

Итого это инъекция и сюръекция, получаем биекцию $\Rightarrow \mathbb{N} \leftrightarrow \mathbb{Q}$ (\mathbb{N} равномощно \mathbb{Q} .) \square

Теорема 1.7. \mathbb{R} — несчётно.

Доказательство. \mathbb{R} — бесконечно, поскольку содержит \mathbb{N} . Покажем, что $\mathbb{R} \leftrightarrow \mathbb{N}$.

Предположим противное, то есть существует биекция $\mathbb{N} \leftrightarrow \mathbb{R}$. То есть все точки оказались пронумерованы натуральными числами. Тогда рассмотрим точку x_1 и отрезок J^1 , не содержащий её. Внутри J^1 найдём отрезок J^2 , не содержащий x_2 , и заметим, что он не содержит и x_1 . Продолжая по индукции, построим последовательность $J^1 \supset J^2 \supset \ldots \supset J^k \supset \ldots$ со следующим свойством:

$$\forall k \in \mathbb{N} \quad x_k \notin J^k$$

Следовательно $\{x_1, x_2, \dots, x_k\} \cap J^k = \emptyset \quad \forall k \in \mathbb{N}.$

По лемме Кантора существует точка c — пересечение последовательности вложенных отрезков $(c \in J^k \ \forall k \in \mathbb{N}) \Rightarrow c \neq x_k \ \forall k \in \mathbb{N} \Rightarrow$ мы нашли точку c, которой не присвоен никакой номер \Rightarrow противоречие c тем, что все числа занумерованы.

2 Предел числовой последовательности

2.1 Определение предела последовательности

Определение 2.1. Последовательностью будет называть отображение $x: \mathbb{N} \to \mathbb{R}$.

Примечание. При этом $x(n) \equiv x_n \quad \forall n \in \mathbb{N}.$

Элементом последовательности называется пара (n, x_n) . При этом числа x_n называются значениями элементов последовательности.

Вся последовательность обозначается $\{x_n\} \equiv \{x_n\}_{n=1}^{\infty}$

Определение 2.2. $\hat{\mathbb{R}} := \overline{\mathbb{R}} \cup \{\infty\} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\} \cup \{\infty\} - \mathit{pacширенная числовая прямая.}$

Примечание. Притом $\infty \neq \{-\infty\}, \infty \neq \{+\infty\}.$

Определение 2.3. (Эпсилон окрестность из $\hat{\mathbb{R}}$) пусть $\varepsilon > 0$, тогда

если
$$a\in\mathbb{R}$$
, то $U_{\varepsilon}(a)=(a-\varepsilon,\ a+\varepsilon)$ если $a=+\infty$, то $U_{\varepsilon}(a)=\left(\frac{1}{\varepsilon},\ +\infty\right)$ если $a=-\infty$, то $U_{\varepsilon}(a)=\left(-\infty,\ \frac{1}{\varepsilon}\right)$

если
$$a=\infty$$
, то $U_{\varepsilon}(a)=U_{\varepsilon}(-\infty)\cup U_{\varepsilon}(+\infty)$

Определение 2.4. Пусть $\{x_n\}$ — числовая последовательность. Будем говорить, что элемент $a \in \hat{\mathbb{R}}$ является *пределом последовательности* $\{x_n\}$ и писать $\lim_{n \to \infty} x_n = a \Leftrightarrow x_n \to a, n \to \infty$, если выполнено следующее:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \ \forall n \geqslant N \hookrightarrow x_n \in U_{\varepsilon}(a)$$

Примечание. То есть начиная с какого-то номера (N) все элементы последовательности с большим номером $(n \geqslant N)$ попадут в заданный интервал $(U_{\varepsilon}(a))$. Необязательно искать именно минимальный номер N.

Пример. Рассмотрим последовательность $\{x_n\} = \{\frac{1}{n}\}$. Покажем, что $\lim_{n\to\infty}\frac{1}{n}=0$.

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) = \left\lceil \frac{1}{\varepsilon} \right\rceil + 1 : \forall n \geqslant N(\varepsilon) \hookrightarrow \frac{1}{n} \leqslant \frac{1}{N(\varepsilon)} \leqslant \frac{1}{\lceil \frac{1}{\varepsilon} \rceil + 1} \leqslant \frac{1}{\varepsilon} = \varepsilon.$$

Утверждение 2.1. Пусть $a \in \hat{\mathbb{R}}, c \geqslant 1$, $\lim_{n \to \infty} x_n = a$. Следующие условия эквивалентны:

- 1. $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}: \forall n \geqslant N(\varepsilon) \hookrightarrow |x_n| \in U_{\varepsilon}(a);$
- 2. $\forall \varepsilon > 0 \ \exists \tilde{N}(\varepsilon) \in \mathbb{N} : \forall n \geqslant \tilde{N}(\varepsilon) \hookrightarrow |x_n| \in U_{c\varepsilon}(a)$.

Доказательство. Так как $c \geqslant 1$, то $U_{\varepsilon} \subset U_{c\varepsilon}$, откуда получаем импликацию $(1) \to (2)$ (при $\tilde{N}(\varepsilon) = N(\varepsilon)$).

Теперь докажем (2) \to (1). Так как для любого ε , то возьмём ε/c , то $\forall \varepsilon > 0 \ N(\varepsilon) := \tilde{N}(\varepsilon/c)$: $\forall n \geqslant \tilde{N}(\varepsilon/c) \hookrightarrow x_n \in U_{c\varepsilon/}(a) = U_{\varepsilon}(a)$.

Определение 2.5. Последовательность $\{x_n\}$ называется cxodsumeŭcs, если она имеет конечный предел. В противном случае она называется pacxodsumeŭcs.

Определение 2.6. Последовательность $\{x_n\}$ называется *ограниченной*, если множество значений её элементов ограничено. То есть

$$\exists M \in [0; +\infty): \ \forall n \in \mathbb{N} \hookrightarrow |x_n| \leqslant M.$$

Определение 2.7. Последовательность $\{x_n\}$ называется бесконечно большой, если $\exists \lim_{n \to \infty} x_n = \infty$.

Примечание. Притом

$$\exists \lim_{n \to \infty} x_n = -\infty
\exists \lim_{n \to \infty} x_n = +\infty
\Rightarrow \{x_n\} - \text{бесконечно большая.}$$

Обратное неверно. Контрпример: $\{x_n\} = \{(-1)^n \cdot n\} \ \forall n \in \mathbb{N}$. Она бесконечно большая, но при этом $\lim_{n \to \infty} x_n \neq -\infty$, $\lim_{n \to \infty} x_n \neq +\infty$.

Задача. Как связаны условия:

- 1. Последовательность $\{x_n\}$ неограничена;
- 2. Последовательность $\{x_n\}$ бесконечно большая?

Решение. (2) \to (1). Но (1) \to (2). Контрпример: $\{x_n\}_{n=1}^{\infty} = \{(1+(-1)^n)\cdot n\}_{n=1}^{\infty}$ — неограничена, но и не бесконечно большая.

Лемма 2.1. (Лемма о непересекающихся окрестностях)

$$\forall a, b \in \overline{\mathbb{R}}, \ a \neq b \ \exists \varepsilon > 0 : U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \varnothing.$$

Доказательство. Возможны 4 случая:

1. $a, b \in \mathbb{R}, \ -\infty < a < b < +\infty$. Тогда возьмём $\varepsilon = \frac{b-a}{2}$.

$$U_{\varepsilon}(a) = \left(a - \frac{b-a}{2}, \ a + \frac{b-a}{2}\right) \cap U_{\varepsilon}(b) = \left(a + \frac{b-a}{2}, \ b + \frac{b-a}{2}\right) = \varnothing.$$

 $2. -\infty < a < b = +\infty.$ Рассмотрим $\varepsilon = \frac{1}{|a|+1}$ и заметим, что тогда $\varepsilon \leqslant 1.$

$$U_{\varepsilon}(b) = (|a|+1, +\infty) \cap U_{\varepsilon}(a) = \left(a - \frac{1}{|a|+1}, a + \frac{1}{|a|+1}\right) = \varnothing,$$

так как $U_{\varepsilon}(a) \subset (a-1, a+1)$, который не пересекается с $U_{\varepsilon}(b)$.

- 3. $-\infty=a < b < +\infty$. Тогда действуем по аналогии с пунктом выше и рассматриваем $\varepsilon=\frac{1}{|b|+1}.$
- 4. $-\infty = a < b = +\infty$. Рассмотрим $\varepsilon = 1$.

$$U_{\varepsilon}(a) = (-\infty, -1) \cap U_{\varepsilon}(b) = (1, +\infty) = \varnothing.$$

Теорема 2.1. Если у последовательности $\{x_n\}$ существует предел в $\overline{\mathbb{R}}$, то он единственен в $\overline{\mathbb{R}}$.

Доказательство. Предположим, что $\exists a,b \in \overline{\mathbb{R}} \hookrightarrow a \neq b, \lim_{n \to \infty} x_n = a, \lim_{n \to \infty} x_n = b.$

Тогда по лемме о непересекающихся окрестностях $\exists \varepsilon^* > 0 \colon U_{\varepsilon^*}(a) \cap U_{\varepsilon^*}(b) = \varnothing$. Запишем определение предела:

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \ \exists N_1(\varepsilon) \in \mathbb{N} : \ \forall n \geqslant N_1(\varepsilon) \hookrightarrow |x_n| \in U_{\varepsilon}(a)$$

$$\lim_{n \to \infty} x_n = b \iff \forall \varepsilon > 0 \ \exists N_2(\varepsilon) \in \mathbb{N} : \ \forall n \geqslant N_2(\varepsilon) \hookrightarrow |x_n| \in U_{\varepsilon}(b)$$

Подставим $\varepsilon = \varepsilon^*$.

Следовательно, если мы возьмём $n > max\{N_1(\varepsilon^*), N_2(\varepsilon^*)\}$, то $x_n \in U_{\varepsilon^*}(a) \cap U_{\varepsilon^*}(b) = \emptyset$. Противоречие. Следовательно a = b.

Примечание. В $\hat{\mathbb{R}}$ предел может быть не единственен. (Так как если $+\infty$ — предел, то и ∞ — предел).

Если
$$\{x_n = n\}_{n=1}^{\infty}$$
, то $\lim_{n \to \infty} x_n = +\infty$ и $\lim_{n \to \infty} x_n = \infty$.

Теорема 2.2. Если последовательность $\{x_n\}$ сходится, то она ограничена. Обратное неверно.

Доказательство. Пусть последовательность $\{x_n\}$ сходится, значит у неё есть предел и этот предел — число. Но тогда по определению

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N(\varepsilon) \hookrightarrow x_n \in U_{\varepsilon}(a).$$

Тогда в частности $\exists N=N(1)\colon \forall n\geqslant N(1)\hookrightarrow |x_n|\leqslant |a|+1.$

Поскольку вне хвоста конечное число элементов, то возьмём $M := max\{|x_1|, |x_2, \dots, |x_{N(1)}|, |a|+1\}$. Отсюда следует, $|x_n| \leq M \ \forall n \in \mathbb{N}$.

Контрпример: $\{x_n\} = \{(-1)^n\}_{n=1}^{\infty}$ — ограничена, но не является сходящейся. Более того эта последовательность не имеет предела в $\hat{\mathbb{R}}$.

ФПМИ МФТИ, осень 2023

2.2 Свойства пределов сходящихся последовательностей, связанные с арифметическими операциями

Определение 2.8. Последовательность $\{x_n\}$ называется бесконечно малой, если её предел равен 0.

Лемма 2.2. Произведение ограниченной и бесконечно малой последовательностей есть бесконечно малая последовательность. То есть, если $\{x_n\}$ — ограниченная последовательность, а $\{y_n\}$ бесконечно малая, то $\{z_n\} := \{x_n \cdot y_n\}_{n=1}^{\infty}$ — бесконечно малая последовательность.

Доказательство.

$$\{x_n\}$$
 — ограниченная последовательность $\Leftrightarrow \exists M \geqslant 0 : \forall n \in \mathbb{N} \hookrightarrow |x_n| \leqslant M$.

 $\{y_n\}$ — бесконечно малая последовательность $\Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}: \ \forall n \geqslant N(\varepsilon) \hookrightarrow |y_n - 0| < \varepsilon.$

Тогда
$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N(\varepsilon) \hookrightarrow |x_n \cdot y_n| < M \cdot \varepsilon$$
, а тогда по утверждению $2.1 \; \forall \varepsilon > 0 \; \exists \tilde{N}(\varepsilon) = N(\varepsilon), \; M < 1 \; \text{или} \; \tilde{N}(\varepsilon) = N(\varepsilon/M), \; M \geqslant 1. \; \text{Итого} \; \forall n \geqslant \tilde{N}(\varepsilon) \hookrightarrow |x_n \cdot y_n| < \varepsilon. \quad \Box$

Пемма 2.3. Сумма, разность и произведение бесконечно малых последовательностей есть бесконечно малая последовательность, то есть, если

$$\begin{cases} \{x_n\} & -\textit{ бесконечно малая} \\ \{y_n\} & -\textit{ бесконечно малая} \end{cases} \Rightarrow \begin{cases} \{x_n \pm y_n\} & -\textit{ бесконечно малая} \\ \{x_n \cdot y_n\} & -\textit{ бесконечно малая} \end{cases}$$

Доказательство. Докажем для суммы и разности. Тогда с учётом утверждения 2.1:

$$\forall \varepsilon > 0 \ \exists N_1(\varepsilon) \in \mathbb{N} : \ \forall n \geqslant N_1(\varepsilon) \hookrightarrow |x_n| \in U_{\varepsilon/2}(0)$$

$$\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \in \mathbb{N} : \ \forall n \geqslant N_2(\varepsilon) \hookrightarrow |y_n| \in U_{\varepsilon/2}(0)$$

Возьмём $N(\varepsilon):=\max\{N_1(\varepsilon),N_2(\varepsilon)\}$. Получим

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \ \forall n \geqslant N(\varepsilon) \hookrightarrow x_n \pm y_n \in U_{\varepsilon}(0).$$

Тот факт, что $\{x_n \cdot y_n\}$ — бесконечно малая следует из того, что $\{x_n\}$ ограничена (а это следует из того, что она сходящаяся, так как она бесконечно малая) и $\{y_n\}$ — бесконечно малая, а по лемме 2.2 их произведение будет бесконечно малой последовательностью. \square

Лемма 2.4.

$$\lim_{n \to \infty} x_n = a \in \mathbb{R} \Leftrightarrow \textit{последовательность} \{a - x_n\} - \textit{бесконечно малая}.$$

Лемма 2.5. Пусть $a=\lim_{n\to\infty}a_n,\;b=\lim_{n\to\infty}b_n,\;npu$ этом $a,b\in\mathbb{R}.$ Тогда

$$\lim_{n \to \infty} (a_n \pm b_n) = a \pm b$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$

 \mathcal{A} оказательство. Для суммы и разности нужно лишь заметить, что последовательность $\{(a_n \pm b_n) - (a \pm b)\}_{n=1}^{\infty}$ — бесконечно малая (можно убедиться, раскрыв скобки и воспользовавшись леммой 2.4).

Покажем для произведения. Для этого достаточно доказать, что $\{(a_nb_n)-(ab)\}_{n=1}^{\infty}$ — бесконечно малая последовательность.

Заметим, что $a_n b_n - ab = a_n b_n - a_n b + a_n b - ab = a_n \cdot (b_n - b) + b \cdot (a_n - a)$.

Рассмотрим последовательность $\{a_n\cdot (b_n-b)\}_{n=1}^{\infty}$. Она бесконечно малая, как произведение ограниченной на бесконечно малую (так как $\{a_n\}$ — это бесконечно малая последовательность, то она является сходящейся, как следствие и ограниченной), а $\{b_n - b\}$ бесконечно малая).

Теперь рассмотрим последовательность $\{b \cdot (a_n - a)\}_{n=1}^{\infty}$ и стационарную последовательность, которая равна b при всех $n \in N$, тогда снова получаем произведение ограниченной последовательности на бесконечно малую ($\{b\}$ — ограничена, $\{a_n-a\}$ — бесконечно малая), что есть бесконечно малая последовательность.

Итого получаем разность двух бесконечно малых последовательностей, которая есть бесконечно малая последовательность, что мы и хотели. Правило для произведения теперь доказано.

Лемма 2.6. Пусть
$$x_n \neq 0 \ \forall n \in \mathbb{N} \ u \ \exists \lim_{n \to \infty} x_n = x \colon x \in \mathbb{R}, x \neq 0.$$
 Тогда $\exists \lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{x}$.

Доказательство. Покажем, что последовательность $\{\frac{1}{x_n}\}$ — ограничена. Действительно, по определению предела получаем

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N \hookrightarrow x_n \in U_{\varepsilon}(x).$$

Возьмём $\varepsilon = \frac{|x|}{2}$, то $\exists N^* \in \mathbb{N}$: $\forall n \geqslant N^* \hookrightarrow x_n \in U_{\frac{|x|}{2}}(x) \Leftrightarrow x - \frac{|x|}{2} < x_n < x + \frac{|x|}{2}$.

$$\forall n \geqslant N^* \hookrightarrow |x_n| \geqslant \frac{|x|}{2} \Rightarrow \forall n \geqslant N^* \hookrightarrow \frac{1}{|x_n|} \leqslant \frac{2}{|x|}.$$

Возьмём $M:=\max\{\frac{1}{|x_1|},\frac{1}{|x_2|},\dots,\frac{1}{|x_{N^*}|},\frac{2}{|x|}\} \Rightarrow \frac{1}{|x_n|}\leqslant M \ \forall n\in\mathbb{N}\Rightarrow$ последовательность $\left\{\frac{1}{x_n}\right\}$ — ограничена.

Рассмотрим $\frac{1}{x_n} - \frac{1}{x} = \frac{x - x_n}{x \cdot x_n} = \frac{1}{x \cdot x_n} \cdot (x - x_n)$ и заметим, что $\{x - x_n\}$ — бесконечно

малая последовательность, а $\frac{1}{x \cdot x_n}$ — ограничена, так как $\left\{ \frac{1}{x_n} \right\}$ — ограничена.

Итого получаем
$$\frac{1}{x_n} - \frac{1}{x}$$
 — бесконечно малая $\Leftrightarrow \lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{x}$.

Следствие. Пусть $\exists \lim_{n \to \infty} y_n = y, \ y \in \mathbb{R}; \ \exists \lim_{n \to \infty} x_n = x, \ x \in \mathbb{R}, \ x \neq 0 \ \text{и} \ x_n \neq 0 \ \forall n \in \mathbb{N}.$ Тогда $\exists \lim_{n \to \infty} \frac{y_n}{x_n} = \frac{y}{x}.$

Тогда
$$\exists \lim_{n \to \infty} \frac{y_n}{x_n} = \frac{\ddot{y}}{x}.$$

 $extit{Доказательство.}$ Достаточно воспользоваться предыдущей леммой и леммой о пределе произведения последовательностей и рассмотреть $\frac{y_n}{x_n}$, как $y_n \cdot \frac{1}{x_n}$.

2.3 Предельный переход в неравенствах

Лемма 2.7. Пусть есть два элемента $A, B \in \mathbb{R}$ и две числовые последовательности $\{x_n\}, \{y_n\}$ такие, что:

$$\exists \lim_{n \to \infty} x_n = A, \quad \exists \lim_{n \to \infty} y_n = B, \quad A < B.$$

Тогда $\exists N \in \mathbb{N}: \forall n \geqslant N \hookrightarrow x_n < y_n$.

Доказательство. По лемме о непересекающихся окрестностях

$$\exists \varepsilon^* > 0 : U_{\varepsilon^*}(A) \cap U_{\varepsilon^*}(B) = \varnothing.$$

А так как A < B, то $\forall x \in U_{\varepsilon^*}(A)$ и $\forall y \in U_{\varepsilon^*}(B) \hookrightarrow x < y$. Запишем определение предела:

$$\forall \varepsilon > 0 \ \exists N_1(\varepsilon) \in \mathbb{N} : \forall n \geqslant N_1(\varepsilon) \hookrightarrow x_n \in U_{\varepsilon}(A);$$

$$\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \in \mathbb{N} : \forall n \geqslant N_2(\varepsilon) \hookrightarrow y_n \in U_{\varepsilon}(B).$$

Возьмём $N := \max\{N_1(\varepsilon^*), N_2(\varepsilon^*)\} \Rightarrow \forall n \geqslant N \hookrightarrow x_n \in U_{\varepsilon^*}(A)$ и $y_n \in U_{\varepsilon^*}(B) \Rightarrow x_n < y_n$, что нам и надо было.

Теорема 2.3. (Теорема о предельном переходе в неравенстве) Пусть $\exists \lim_{n \to \infty} x_n = A, \ A \in \overline{\mathbb{R}}$ $u \exists \lim_{n \to \infty} y_n = B, \ B \in \overline{\mathbb{R}}.$ Пусть $\exists N \in \mathbb{N}: x_n \leqslant y_n \ \forall n \geqslant N.$ Тогда $A \leqslant B$.

Доказательство. Предположим A>B. Тогда по только что доказанной выше лемме $\exists N^*$: $\forall n\geqslant N^*\hookrightarrow x_n>y_n$.

Положим $\tilde{N} := max\{N, N^*\}$. Тогда $\forall n \geqslant \tilde{N} \hookrightarrow x_n \leqslant y_n$ (по условию) и $x_n > y_n$ (по предположению), а такого быть не может, то есть предположение было неверно.

Задача. Пусть $\exists N \in \mathbb{N}: x_n < y_n \ \forall n \geqslant N$. При этом $x_n \to A, \ n \to \infty \ u \ y_n \to B, \ n \to \infty$. Верно ли, что A < B?

Решение. Нет. Контрпример: $x_n = -\frac{1}{n}, \ y_n = \frac{1}{n}.$ $x_n \to 0, \ n \to \infty$ и $y_n \to 0, \ n \to \infty$, но $y_n > x_n \ \forall n \in \mathbb{N}.$

Примечание. Предельный переход может портить строгие неравенства и превращать их в нестрогие.

Следствие. Если $\forall n \in \mathbb{N} \hookrightarrow x_n \geqslant a, \ a \in \mathbb{R}$ и $\exists \lim_{n \to \infty} x_n = A, \ A \in \overline{\mathbb{R}}$, то $A \geqslant a$.

Доказательство. Положим $y:=a \ \forall n \in \mathbb{N}$ и применим предыдущее утверждение. \square

Теорема 2.4. (Теорема о трёх последовательностях или о двух миллиционерах) Пусть $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ — числовые последовательности. Пусть $\exists \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = c, \ c \in \mathbb{R}$. Пусть $\exists N \in \mathbb{N} : \forall n \geqslant N \hookrightarrow a_n \leqslant c_n \leqslant b_n$. Тогда $\exists \lim_{n\to\infty} c_n = c$.

Доказательство. Распишем определение предела:

$$\lim_{n \to \infty} a_n = c \Leftrightarrow \forall \varepsilon > 0 \ \exists N_1(\varepsilon) \in \mathbb{N} : \forall n \geqslant N_1(\varepsilon) \hookrightarrow a_n \in (c - \varepsilon, c + \varepsilon);$$

$$\lim_{n\to\infty} b_n = c \Leftrightarrow \forall \varepsilon > 0 \ \exists N_2(\varepsilon) \in \mathbb{N} : \forall n \geqslant N_2(\varepsilon) \hookrightarrow b_n \in (c - \varepsilon, c + \varepsilon);$$

$$\forall \varepsilon > 0 \ \exists \tilde{N}(\varepsilon) := \max\{N_1(\varepsilon), N_2(\varepsilon), N\} \in \mathbb{N} : \forall n \geqslant \tilde{N}(\varepsilon) \hookrightarrow \begin{cases} a_n \in (c - \varepsilon, c + \varepsilon); \\ b_n \in (c - \varepsilon, c + \varepsilon); \end{cases} \Rightarrow c_n \in (c - \varepsilon, c + \varepsilon) \Leftrightarrow \exists \lim_{n \to \infty} c_n = c.$$

Теорема 2.5. Пусть $\exists \lim_{n \to \infty} x_n = +\infty \ u \ \exists N \in \mathbb{N} : \forall n \geqslant N \hookrightarrow y_n \geqslant x_n$. Тогда $\exists \lim_{n \to \infty} y_n = +\infty$. Аналогично для $-\infty$.

Доказательство. Вновь распишем определение предела:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N(\varepsilon) \hookrightarrow x_n > \frac{1}{\varepsilon}.$$

Ho тогда
$$\forall \varepsilon > 0 \ \exists \tilde{N} := \max\{N(\varepsilon), N\} : \forall n \geqslant \tilde{N}(\varepsilon) \hookrightarrow y_n \geqslant x_n > \frac{1}{\varepsilon} \Rightarrow \lim_{n \to \infty} y_n = +\infty.$$

2.4 Пределы монотонных последовательностей

Определение 2.9. Последовательность $\{x_n\}$ называется нестрого возрастающей (нестрого убывающей), если $\forall n \in \mathbb{N} \hookrightarrow x_{n+1} \geqslant x_n \ (x_{n+1} \leqslant x_n)$. Соответственно, если поставить строгое неравенство, то получим определения строго возрастающей (строго убывающей) последовательности.

Определение 2.10. Последовательность $\{x_n\}$ называется монотонной, если она нестрого возрастает или нестрого убывает. Соответственно она называется строго монотонной, если она строго возрастает или строго убывает.

Теорема 2.6. (Теорема Вейерштрасса) Любая монотонная последовательность $\{x_n\}$ имеет предел в \mathbb{R} . При этом если $\{x_n\}$ нестрого возрастает, то $\exists \lim_{n \to \infty} x_n = \sup\{x_n\}$. Соответственно, если $\{x_n\}$ нестрого убывает, то $\exists \lim_{n \to \infty} x_n = \inf\{x_n\}$.

Доказательство. Докажем для нестрого возрастающей последовательности. Для нестрого убывающей аналогично.

Сначала рассмотрим случай ограниченной сверху последовательности. По теореме о существовании супремума $\exists M = \sup\{x_n\}$. Покажем, что $\lim_{n\to\infty} x_n = M$. В силу второго пункта определения супремума $\forall \varepsilon > 0 \ \exists N \colon x_N > M - \varepsilon$. Отсюда в силу возрастания последовательности $\{x_n\}$ имеем $\forall \varepsilon > 0 \ \exists N \colon \forall n \geqslant N \hookrightarrow x_n \geqslant x_N > x - \varepsilon$. В силу первого пункта определения супремума $\forall n \in \mathbb{N} \hookrightarrow x_n \leqslant M$. Поэтому $\forall \varepsilon > 0 \ \exists N \colon \forall n \geqslant N \hookrightarrow x_n \in U_\varepsilon(M)$, то есть $\lim_{n\to\infty} x_n = M$.

Теперь рассмотрим теперь случай, когда последовательность $\{x_n\}$ неограничена сверху. Тогда $\forall \varepsilon > 0 \; \exists N \colon x_N > \frac{1}{\varepsilon}$. Отсюда в силу возрастания последовательности $\{x_n\}$ имеем $\forall \varepsilon > 0 \; \exists N \colon \forall n \geqslant N \hookrightarrow x_n \geqslant x_N > \frac{1}{\varepsilon}$, то есть $x_n \in U_{\varepsilon}(+\infty)$, а значит $\lim_{n \to \infty} x_n = +\infty$.

2.5 Подпоследовательности и частичные пределы

Определение 2.11. Пусть дана числовая последовательность $\{x_n\}_{n=1}^{\infty}$. Последовательность $\{y_k\}_{k=1}^{\infty}$ называется *подпоследовательностью* последовательности $\{x_n\}$, если существует строго возрастающая последовательность чисел $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$: $y_k = x_{n_k} \ \forall k \in \mathbb{N}$.

Определение 2.12. Будем говорить, что элемент $A \in \mathbb{R}$ — частичный предел последовательности $\{x_n\}_{n=1}^{\infty}$, если $\exists \{x_{n_k}\}$ — подпоследовательность последовательности $\{x_n\}$: $\lim_{k\to\infty} x_{n_k} = A$.

Пример. $\{x_n\} = \{(-1)^n\}$. Её частичными пределами являются $\{-1\}$, $\{1\}$.

Теорема 2.7. (Критерий частичного предела) Пусть $\{x_n\}$ — числовая последовательность. Пусть $A \in \overline{\mathbb{R}}$. Следующие условия эквивалентны:

- 1. А является частичным пределом последовательности $\{x_n\};$
- 2. $\forall \varepsilon > 0$ в $U_{\varepsilon}(A)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}$;
- 3. $\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n(\varepsilon, N) \geqslant N \colon x_n \in U_{\varepsilon}(A)$.

Доказательство. Доказывать будем в следующем порядке: $(1) \to (2), (2) \to (3), (3) \to (1).$

<u>Шаг 1.</u> Пусть A — частичный предел \Rightarrow существует строго возрастающая последовательность $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$: $\lim_{k \to \infty} x_{n_k} = A$.

Это равносильно тому, что $\forall \varepsilon > 0 \ \exists K(\varepsilon) \in \mathbb{N}: \ \forall k \geqslant K(\varepsilon) \hookrightarrow x_{n_k} \in U_{\varepsilon}(A)$. Но так как $\forall \varepsilon > 0$ в силу леммы Архимеда существует бесконечно много чисел $K \in \mathbb{N}$ удовлетворяющих неравенству $k \geqslant K(\varepsilon)$, то, получается, в $U_{\varepsilon}(A)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}$.

<u>Шаг 2.</u> Пусть выполнено (2). Фиксируем произвольное $\varepsilon > 0$, следовательно в $U_{\varepsilon}(A)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}$.

Пусть $I(\varepsilon)$ — это такие натуральные индексы, что $\{x_n \in U_{\varepsilon}(A) \ \forall n \in I(\varepsilon)\}$. А так как $I(\varepsilon)$ бесконечно по условию (2), то $\forall N \in \mathbb{N} \ \exists n \in I(\varepsilon) : n \geqslant N$. Можно доказать, предположив противное и получив противоречие с тем, что $I(\varepsilon)$ бесконечно.

А так как $\varepsilon>0$ было выбрано произвольно, получаем, что $\forall \varepsilon>0 \ \forall N\in \mathbb{N} \ \exists n\geqslant N\colon x_n\in U_\varepsilon(A).$

<u>Шаг 3.</u> Пусть выполнено (3). Покажем, что выполнено (1). Построим подпоследовательность $\{x_{n_k}\}$ такую, что $\exists \lim_{k \to \infty} x_{n_k} = A$.

Определим $n_1=n(1,1)$. Пусть на некотором шаге $k-1\in\mathbb{N}$ определено значение $n_{k-1}\in\mathbb{N}$. Определим

$$n_k = n\left(\frac{1}{k}, n_{k-1} + 1\right),$$

то есть $n_k = n(\varepsilon, N)$, где $\varepsilon = \frac{1}{k}$, $N = n_{k-1} + 1$. Тогда $n_k \geqslant n_{k-1} + 1 > n_{k-1}$ и $x_{n_k} \in U_{1/k}(A)$. По индукции получаем, что определена последовательность $\{n_k\}$ натуральных чисел такая, что $\forall k \geqslant 2 \hookrightarrow n_k > n_{k-1}$ и $\forall k \in \mathbb{N} \hookrightarrow x_{n_k} \in U_{1/k}(A)$. Поэтому последовательность $\{n_k\}$ строго возрастает и $\lim_{k \to \infty} x_{n_k} = A$. Следовательно, выполнено условие (1).

Теорема 2.8. (Теорема Больцано-Вейерштрасса) Пусть $\{x_n\}$ — ограниченная числовая последовательность. Тогда она имеет хотя бы один конечный частичный предел.

Примечание. Иначе можно сформулировать как: из любой ограниченной числовой последовательности можно выделить сходящуюся подпоследовательность.

Доказательство. Поскольку $\{x_n\}$ — ограниченная числовая последовательность, то найдётся такое $M\geqslant 0$, что

$$|x_n| \leqslant M \ \forall n \in \mathbb{N}.$$

Считаем далее, что $M \neq 0$, так как в данном случае доказательно тривиально (получается стационарная последовательность, предел которой равен 0).

Разделим отрезок $I^1 := [-M, M]$ пополам и через I^2 обозначим ту половину, в которой находятся значения бесконечного количества элементов последовательности. Такая обязательно найдётся, потому что в противном случае в обеих половинах содержались бы значения лишь конечного числа элементов последовательности $\{x_n\}$, но тогда и на всём отрезке I^1 содержались бы значения лишь конечного числа элементов, а такого быть не может, так как $\{x_n\} \subset I^1$.

Небольшое замечание: если в обеих половинах оказалось бесконечное число элементов последовательности, то берём любую.

Далее рассуждаем по индукции. Базу мы уже сделали, теперь сделаем шаг. Предположим при некотором $k \in \mathbb{N}, \ k \geqslant 2$ мы методом половинного деления построили последовательность отрезков $I^1 \supset I^2 \supset \ldots \supset I^k$: $\forall j \in \{1,\ldots,k\}$ отрезок I^j содержит значения бесконечного количества элементов последовательности $\{x_n\}$.

Теперь разделим I^{k+1} на два конгруэнтных отрезка и выберем ту половинку, в которой содержатся значения бесконечного значения элементов последовательности $\{x_n\}$. Такая найдётся, потому что в противном случае получится, что и весь отрезок I^k содержит лишь конечное число элементов последовательности, что не так по построению.

Получаем бесконечную последовательность вложенных отрезков $I^1\supset\ldots\supset I^k\supset\ldots,$ которая является стягивающейся, поскольку

$$l(I^k) = \frac{l(I^1)}{2^{k-1}}, \quad 2^k > k \ \forall k \in \mathbb{N}.$$

Следовательно, $\exists x^* = \bigcap_{k=1}^{\infty} I^k$. Покажем, что x^* — частичный предел. В силу критерия

частичного предела достаточно доказать, что $\forall \varepsilon > 0$ в $U_{\varepsilon}(x^*)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}$.

Действительно, из определения предела и того, что $x^* \in I^k \ \forall k \in \mathbb{N} \Rightarrow \exists k(\varepsilon) \colon x^* \in I^{k(\varepsilon)} \subset U_{\varepsilon}(x^*)$. Следовательно, по построению получаем, что $I^{k(\varepsilon)}$ содержатся бесконечно много значений элементов последовательности, а значит и в $U_{\varepsilon}(x^*)$. Получаем, что хотя бы один частичный предел существует.

Лемма 2.8. Если последовательность $\{x_n\}$ — неограничена сверху, то $+\infty$ является её частичным пределом. Если $\{x_n\}$ неограничена снизу, то $-\infty$ является её частичным пределом.

Доказательство. Докажем для случая неограниченности сверху, так как случай неограниченности снизу рассматривается аналогично.

Заметим, что если $\{x_n\}$ неограничена сверху, то $\forall N \in \mathbb{N}$ отбросим первые N элементов и снова получим последовательность, неограниченную сверху. Рассмотрим последовательность $\{y_n\} = \{x_{n+N}\} \Rightarrow \forall \varepsilon > 0 \ n \in \mathbb{N} \colon y_n > \frac{1}{\varepsilon} \Rightarrow \forall N \in \mathbb{N} \ \forall \varepsilon > 0 \ \exists k > N \colon x_k > \frac{1}{\varepsilon} \Rightarrow$

по критерию частичного предела $+\infty$ является частичным пределом последовательности $\{x_n\}$.

Определение 2.13. $PL(\{x_n\}) := \{L \in \mathbb{R}: L - \text{частичный предел } \{x_n\}\} - \text{множество}$ всех частичных пределов.

Теорема 2.9. (Обобщённая теорема Больцано-Вейерштрасса) Любая числовая последовательность имеет хотя бы один частичный предел в $\overline{\mathbb{R}}$.

Доказательство состоит в применении критерия частичного предела и леммы 2.8.

Определение 2.14. Пусть $A \subset \overline{\mathbb{R}}$. $M \in \overline{\mathbb{R}}$ — супремум A.

$$M = \sup A \Leftrightarrow \begin{cases} a \leqslant M, \ \forall a \in A; \\ \forall M' < M \ \exists a \in A : M' < a. \end{cases}$$

Определение 2.15. Пусть $A \subset \overline{\mathbb{R}}$. $m \in \overline{\mathbb{R}}$ — инфимум A.

$$m = \inf A \Leftrightarrow \begin{cases} a \geqslant m, \ \forall a \in A; \\ \forall m' > m \ \exists a \in A : m' > a. \end{cases}$$

Определение 2.16. Верхним и ниженим пределом последовательности $\{x_n\}$ называются соответственно

$$\overline{\lim}_{n\to\infty} x_n = \sup PL(\{x_n\});$$

$$\lim_{n \to \infty} x_n = \inf PL(\{x_n\}).$$

Лемма 2.9. Пусть последовательность $\{x_n\}$ имеет предел равный $A, A \in \overline{\mathbb{R}}$. Тогда $PL(\{x_n\}) = \{A\}$.

Доказательство. Запишем определение предела:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N \hookrightarrow x_n \in U_{\varepsilon}(A).$$

Возьмём произвольную подпоследовательность x_{n_k} последовательности $\{x_n\}$ и покажем, что $\lim_{k\to\infty} x_{n_k} = A$.

Из того, что n_k строго возрастает легко доказать, что $n_k \geqslant k \Rightarrow \forall \varepsilon > 0 \ \exists K(\varepsilon) = N(\varepsilon)$: $\forall k \geqslant K(\varepsilon) (\Rightarrow n_k \geqslant N(\varepsilon)) \hookrightarrow x_{n_k} \in U_{\varepsilon}(A)$.

Теорема 2.10. Пусть дана числовая последовательность $\{x_n\}$. Тогда $\overline{\lim_{n\to\infty}} x_n \in PL(\{x_n\})$ $u \underset{n\to\infty}{\lim} x_n \in PL(\{x_n\})$.

Доказательство. Докажем для верхнего предела, а для нижнего аналогично.

Обозначим $M = \sup PL(\{x_n\})$. Из определения супремума следует, что $\forall \varepsilon^* > 0 \hookrightarrow U_{\varepsilon/2}(M) \cap PL(\{x_n\}) \neq \varnothing$. Следовательно, $\exists c \in PL(\{x_n\}) : c \in U_{\varepsilon/2}(M) \Rightarrow$ по критерию частичного предела в $U_{\varepsilon/2}(c)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}$.

 $U_{\varepsilon/2}(c)\subset U_{\varepsilon}(M)$, так как $c\in U_{\varepsilon}(M)$. Тогда в $U_{\varepsilon}(M)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}$, но ε был выбран произвольно $\Rightarrow \forall \varepsilon>0$ в $U_{\varepsilon}(M)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}\Rightarrow$ по критерию частичного предела M — частичный предел. \square

Теорема 2.11. Пусть $\{x_n\}$ — числовая последовательность. Тогда для верхнего предела справедливо равенство

$$\overline{\lim}_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} (\sup_{k\geqslant n} x_k),$$

а для ниженего предела

$$\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} (\inf_{k\geqslant n} x_k).$$

Доказательство. Докажем для верхнего предела, а для нижнего аналогично.

<u>Шаг 0.</u> При каждом $n \in \mathbb{N}$ положим

$$y_n := \sup_{k \geqslant n} x_k := \sup \{ x_k : k \geqslant n \}.$$

Заметим, что $y_{n^*} = +\infty$ при каком-то $n^* \in \mathbb{N} \Leftrightarrow y_n = +\infty \ \forall n \in \mathbb{N}$. Действительно, это легко следует из того, что хвосты $\{x_k \colon k \geqslant n_1\}$ и $\{x_k \colon k \geqslant n_2\}$ отличаются не более, чем на конечное число элементов. Если $y_n = +\infty$ при всех $n \in \mathbb{N}$, то, очевидно, $\overline{\lim_{n \to \infty}} x_n = +\infty$. С другой стороны, из определения супремума и равенства $y_n = +\infty$ при всех $n \in \mathbb{N}$ вытекает, что $\forall \varepsilon > 0 \ \forall n \in \mathbb{N} \ \exists k \geqslant n$ такой, что $x_k > \frac{1}{\varepsilon}$. По критерию частичного предела это означает, что $+\infty$ является частичным пределом последовательности $\{x_n\}$, а значит $\overline{\lim_{n \to \infty}} x_n = +\infty$. Резюмируя, получаем, что, если $\exists n \in \mathbb{N} \colon y_n = +\infty$, то требуемое равенство выполнено.

<u>Шаг 1.</u> Заметим, что $y_n \geqslant x_n > -\infty \ \forall n \in \mathbb{N}$. Так как случай $y_n = +\infty$ уже рассмотрен выше, до конца доказательства предполагаем, что $\{y_n\} \subset \mathbb{R}$. Ключевым же для нас наблюдением будет монотонность последовательности $\{y_n\}$. Действительно, из включения

$$\{k \in \mathbb{N} : k \geqslant n+1\} \subset \{k \in \mathbb{N} : k \geqslant n\}$$

вытекает неравенство

$$y_{n+1} \leqslant y_n \ \forall n \in \mathbb{N}.$$
 (1)

<u>Шаг 2.</u> Установим неравенство

$$\overline{\lim}_{n\to\infty} x_n \leqslant \inf_{n\in\mathbb{N}} (\sup_{k\geqslant n} x_k).$$

По теореме 2.10 верхний предел сам является частичным пределом. Фиксируем произвольную подпоследовательность $\{x_{n_j}\}$ последовательности $\{x_n\}$, для которой

$$\overline{\lim}_{n \to \infty} x_n = \lim_{j \to \infty} x_{n_j}.$$
 (2)

Из положенного нами определения y_n (в шаге 0) очевидно, что

$$x_{n_i} \leqslant y_{n_i}$$
.

Поскольку в силу неравенства (1) последовательность $\{y_n\}$ монотонно убывает (нестрого), она имеет предел. А значит имеет предел и подпоследовательность $\{y_{n_j}\}$. Более того,

$$\lim_{j \to \infty} y_{n_j} = \lim_{n \to \infty} y_n. \quad (3)$$

Переходя к пределу в неравенстве $x_{n_j} \leqslant y_{n_j}$ и используя (2) и (3), получим

$$\overline{\lim_{n\to\infty}} x_n \leqslant \lim_{j\to\infty} y_{n_j} = \lim_{n\to\infty} y_n = \inf_{n\in\mathbb{N}} y_n.$$

Из положенного нами определения y_n и неравенства выше и вытекает требуемое в начале шага 2 неравенство.

<u>Шаг 3.</u> Установим неравенство

$$\overline{\lim}_{n\to\infty} x_n \geqslant \inf_{n\in\mathbb{N}} (\sup_{k\geqslant n} x_k).$$

Покажем, что правая часть этого неравенства является частичным пределом. Тогда, учитывая, что верхний предел - это наибольший (в смысле $\overline{\mathbb{R}}$) частичный предел, получаем требуемое неравенство.

Обозначим правую часть неравенства за M. Тогда в силу монотонности $\{y_n\}$ и теоремы Вейерштрасса получим

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N(\varepsilon) \hookrightarrow y_n \in U_{\varepsilon/2}(M).$$
 (4)

Используя определение супремума и наше определение y_n , получим, что

$$\forall \varepsilon > 0 \ \forall n \geqslant N(\varepsilon) \ \exists k \geqslant n : x_k \in U_{\varepsilon/2}(y_n).$$
 (5)

Заметим, что, если $y_n \in U_{\varepsilon/2}(M)$ и $x_k \in U_{\varepsilon/2}(y_n)$, то $x_k \in U_{\varepsilon}(M)$. Следовательно, учитывая (4) и (5), получаем, что $\forall \varepsilon > 0$ $U_{\varepsilon}(M)$ содержит значения бесконечного числа элементов последовательности $\{x_n\}$. По критерию частичного предела это означает, что M — частичный предел. Тогда требуемое неравенство доказано.

<u>Шаг 4.</u> Объединяя доказанные в шагах 2 и 3 неравенства, получаем требуемое равенство. \Box

Теорема 2.12. Пусть $\{x_n\}$ — числовая последовательность. Пусть $A \in \overline{\mathbb{R}}$. Следующие условия эквивалентны:

- 1. $\exists \lim_{n \to \infty} x_n = A;$
- 2. $PL(\{x_n\}) = \{A\};$
- 3. $\lim_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n = A$.

Доказательство. Заметим, что (2) \Leftrightarrow (3) просто из определений. Покажем (3) \to (2). Пусть $c \in PL(\{x_n\})$.

$$\lim_{n\to\infty} x_n \leqslant c \leqslant \overline{\lim_{n\to\infty}} x_n$$
, но они равны по (3) $\Rightarrow c = A$.

Переход $(2) \to (3)$ очевиден. Множество PL состоит всего из одного элемента, то есть крайне легко взять его супремум и инфимум (и они равны).

Переход $(1) \to (2)$ доказали ранее (лемма 2.9).

Покажем $(3) \to (1)$, тогда мы докажем равносительность всех условий.

Сначала рассмотрим случай $A \in \mathbb{R}$. Тогда, используя рассуждения шага 2 теоремы 2.11, легко видеть, что $z_n := \inf\{x_k: k \geqslant n\} \in \mathbb{R}$ и $y_n := \sup\{x_k: k \geqslant n\} \in \mathbb{R}$ при всех $n \in \mathbb{N}$. Используя монотонность последовательностей $\{z_n\}$, $\{y_n\}$ и учитывая теорему 2.10, получаем, что

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = \overline{\lim_{n \to \infty}} x_n = \lim_{n \to \infty} y_n = A.$$

Тогда, используя очевидное неравенство $z_n \leqslant x_n \leqslant y_n$, справедливое при всех $n \in \mathbb{N}$, и теорему о трёх последовательностях, получаем, что $\exists \lim_{n \to \infty} x_n = A$. Рассмотрим случай $A = +\infty$, так как случай $A = -\infty$ рассматривается аналогично.

Рассмотрим случай $A=+\infty$, так как случай $A=-\infty$ рассматривается аналогично. Если $\lim_{n\to\infty} x_n=+\infty$, то по теореме 2.11 в силу определения инфимума получаем, что $\forall \varepsilon>0 \; \exists N(\varepsilon)\in \mathbb{N}:\; z_{N(\varepsilon)}\in U_{\varepsilon}(+\infty).$ По построению последовательности z_n получаем, что $\forall \varepsilon>0 \; \exists N(\varepsilon)\in \mathbb{N}:\; \forall n\geqslant N(\varepsilon)\hookrightarrow x_n\in U_{\varepsilon}(+\infty),$ а значит $\exists \lim_{n\to\infty} x_n=+\infty.$

2.6 Критерий Коши

Определение 2.17. Последовательность $\{x_n\}$ называется $\phi y n damenmaльной$, если выполнено условие Komu:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N, \forall m \geqslant N \hookrightarrow |x_n - x_m| < \varepsilon.$$

Пемма 2.10. Пусть $\{x_n\}$ — сходящаяся последовательность. Тогда она фундаментальна.

Доказательство. Пусть $\{x_n\}$ — сходится к числу c. Тогда

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N(\varepsilon) \hookrightarrow |x_n - c| < \varepsilon/2$$

следовательно, $\forall \varepsilon > 0 \; \exists N(\varepsilon) : \forall n \geqslant N \; \forall m \geqslant N \hookrightarrow |x_n - x_m| \leqslant |x_n - c| + |x_m - c| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Пемма 2.11. Если последовательность $\{x_n\}$ фундаментальна, то она ограничена.

Доказательство. Поскольку условие фундаментальности сформулировано для любого ε , то возьмём $\varepsilon=1$.

$$\exists N(1): \forall n, m \geqslant N(1) \hookrightarrow |x_n - x_m| < 1$$
, возьмём $m = N(1) \Rightarrow$

$$\Rightarrow |x_n - x_{N(1)}| < 1 \ \forall n \geqslant N(1) \Rightarrow |x_n| < 1 + |x_{N(1)}| \ \forall n \geqslant N(1)$$

Положим $M:=\max\{x_1,x_2,\dots,|x_{N(1)}|,1+|x_{N(1)}|\}\Rightarrow |x_n|\leqslant M \ \forall n\in\mathbb{N}\Rightarrow \{x_n\}$ ограниченная последовательность.

Теорема 2.13. (Критерий Коши) Последовательность сходится тогда и только тогда, когда она фундаментальна.

Доказательство. В одну сторону мы уже доказали (лемма 2.10). Докажем в другую сторону.

Пусть последовательность $\{x_n\}$ фундаментальна \Rightarrow она ограничена по лемме 2.11, а тогда у $\{x_n\}$ есть конечный частичный предел по теореме Больцано-Вейерштрасса $\Rightarrow \exists c \in \mathbb{R}$ и $\exists \{x_{n_k}\}$: $\lim_{k \to \infty} x_{n_k} = c \Rightarrow \exists k \in \mathbb{N} : n_k \geqslant N(\varepsilon)$ и $|x_{n_k} - c| < \varepsilon/2$.

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n, m \geqslant N(\varepsilon) \hookrightarrow |x_n - x_m| < \varepsilon/2 \Rightarrow$$

$$\Rightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N(\varepsilon) \hookrightarrow |x_n - c| \leqslant |x_n - x_{n_k}| + |x_{n_k} - c| \Rightarrow |x_n - c| < \varepsilon.$$

Теперь мы доказали утверждение в обе стороны.

3 Топология числовой прямой

Определение 3.1. Пусть E — непустое множество. Тогда $x \in \mathbb{R}$ называется *точкой прикосновения* множества E, если

$$\forall \varepsilon > 0 \ U_{\varepsilon}(x) \cap E \neq \varnothing.$$

Определение 3.2. Замыканием множества E называется множество всех точек прикосновения E и обозначается clE (также можно встретить обозначение \overline{E}).

Определение 3.3. Множество называется *замкнутым*, если оно совпадает со своим замыканием.

Примечание. Множество E всегда содержится в своём замыкании ($E \subset clE$).

Примечание. По определению пустое множество и всё пространство $\mathbb R$ считаются замкнутыми.

Пример. Возьмём два числа $a, b \in \mathbb{R}$: a < b. [a, b] — замкнутое множество.

Покажем, что $\forall c \notin [a, b]$ не является точкой прикосновения.

Действительно, возьмём $\varepsilon^* = min\{\frac{|c-b|}{2}, \frac{|a-c|}{2}\}$. Тогда $U_{\varepsilon^*}(c) \cap [a,b] = \varnothing \Rightarrow$ она не является точкой прикосновения $\Rightarrow \operatorname{cl}[a,b] \subset [a,b]$, а поскольку обратное включение $([a,b] \subset \operatorname{cl}[a,b])$ выполнено автоматически, то получаем, что отрезок замкнут.

Определение 3.4. Пусть G — непустое множество. Будем говорить, что x — внутренняя точка G, если

$$\exists \varepsilon > 0 : U_{\varepsilon}(x) \subset G.$$

Определение 3.5. Внутренностью множества G называется множество всех его внутренних точек и обозначается intG.

Определение 3.6. Множество $G \subset \mathbb{R}$ называется *открытым*, если оно совпадает со своей внутренностью.

Примечание. По определению $\{\emptyset\}$ и \mathbb{R} открыты.

Примечание. Внутренность всегда содержится в своём множестве ($\operatorname{int} G \subset G$).

Пример. Возьмём два числа $a, b \in \mathbb{R}$: a < b. (a, b) — открытое множество.

Действительно, пусть $x \in (a,b)$. Возьмём $\varepsilon = \min\{|x-a|, |b-x|\}$. Раскрыв модульные неравенства, получим $U_{\varepsilon}(x) \subset (a,b)$, то есть $\operatorname{int}(a,b) \subset (a,b)$, а так как $\forall c \notin (a,b) \hookrightarrow c$ — не внутренняя точка, то $(a,b) \subset \operatorname{int}(a,b) \Rightarrow (a,b) = \operatorname{int}(a,b) \Rightarrow (a,b)$ — открытое множество.

Задача. Может ли множество быть и не открытым, и не замкнутым?

Решение. Может. К примеру, полуинтервал. Возьмём (a,b], a < b. Заметим, что a — точка прикосновения по определению, она принадлежит замыканию, но не принадлежит множеству ⇒ оно не является замкнутым. А $b \notin \text{int}(a,b]$, так как $\forall \varepsilon > 0$ $U_{\varepsilon}(b) \not\subset (a,b] \Rightarrow$ оно не является открытым. Итого получаем, что это и не открытое, и не замкнутое множество.

Пример. Возьмём множество \mathbb{Q} . $\mathrm{cl}\mathbb{Q} = \mathbb{R}$, $\mathrm{int}\mathbb{Q} = \varnothing \Rightarrow$ оно и не открыто, и не замкнуто. $\mathrm{int}\mathbb{Q} = \varnothing$ очевидно, так как в любом интервале найдётся иррациональная точка. $\mathrm{cl}\mathbb{Q} = \mathbb{R}$ потому, что в любом интервале найдётся рациональная точка.

Пусть дано $\varepsilon > 0$. Покажем, что любой интервал длины не более ε содержит как рациональную, так и иррациональную точку. Возьмём $k \geqslant \left[\frac{1}{\varepsilon}\right] + 1 \Rightarrow \frac{1}{k} < \varepsilon$. Разобьём всю числовую прямую на равные отрезки длины $\frac{1}{2k}$. Концы этих отрезков, очевидно, рациональны. А иррациональное число в каждом отрезке содержится потому, что мы можем прогомотетировать (домножением на рациональное и прибавлением рационального) отрезок [0,2] в любой такой отрезок, а в отрезке [0,2] содержится как минимум $\sqrt{2}$, являющийся иррациональным числом.

А поскольку длина каждого отрезка $\frac{1}{2k}$, а $\varepsilon > \frac{1}{k}$, то этот отрезок содержится в эпсилон окрестности \Rightarrow для любого интервала найдётся как рациональная, так иррациональная точка внутри.

Определение 3.7. $x \in \mathbb{R}$ называется *изолированной точкой* множества E, если

$$\exists \varepsilon > 0 : \ U_{\varepsilon}(x) \cap E = \{x\}.$$

Определение 3.8. $x \in \mathbb{R}$ называется *предельной точкой* множества E, если

$$\forall \varepsilon > 0 \ (U_{\varepsilon}(x) \setminus \{x\}) \cap E \neq \varnothing.$$

Утверждение 3.1. x-mочка прикосновения $(1) \Leftrightarrow \begin{bmatrix} x-u$ золированная точка x-uрованная точка

Доказательство. Из совокупности в (1) очевидно (просто по определениям). Докажем из (1) в совокупность.

Пусть x — точка прикосновения $\Rightarrow \forall \varepsilon > 0$ $U_{\varepsilon}(x) \cap E \neq \emptyset$. Возможны два случая: если $\exists \varepsilon > 0$: $U_{\varepsilon}(x) \cap E = \{x\} \Rightarrow$ она изолированная, либо $\forall \varepsilon > 0$ $U_{\varepsilon}(x) \cap E$ содержит не только x, но тогда она предельная.

Задача. Пусть $\{x_n\}$ — числовая последовательность. Доказать, что замыкание множества значений последовательности — это объединение множества всех значений последовательности и его частичных пределов, то есть $cl\{x_n\} = \{x_n\} \cup PL(\{x_n\})$.

Теорема 3.1. (Критерий точки прикосновения) Пусть E — множество, $E \neq \emptyset$. Точка x является точкой прикосновения $E \Leftrightarrow \exists \{x_n\} \subset E \colon \lim_{n \to \infty} x_n = x$.

Доказательство. Пусть $\exists \{x_n\} \subset E$: $\lim_{n \to \infty} x_n = x \Rightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}$: $\forall n \geqslant N(\varepsilon) \hookrightarrow x_n \in U_{\varepsilon}(x) \Rightarrow \forall \varepsilon > 0 \ \exists x = x_{N(\varepsilon)}$: $x \in (U_{\varepsilon}(x) \cap E)$.

Пусть обратно, x — точка прикосновения множества E. Построим последовательность, сходящуюся к x.

 $\forall k \in \mathbb{N}$ в силу определения точки прикосновения $U_{\frac{1}{k}}(x) \cap E \neq \emptyset \Rightarrow \exists x_k \in \left(E \cap U_{\frac{1}{k}}(x)\right)$. Тогда рассмотрим неравенство $0 \leqslant |x - x_k| \leqslant \frac{1}{k} \ \forall k \in \mathbb{N}$ по построению. Но $\lim_{k \to \infty} \frac{1}{k} = 0 \Rightarrow$ по теореме о двух миллиционерах $\exists \lim_{k \to \infty} |x - x_k| = 0 \Rightarrow \lim_{k \to \infty} x_k - x = 0 \Rightarrow \lim_{k \to \infty} x_k = x$. \square

Определение 3.9. Множество $K \subset \mathbb{R}$ называется *компактом*, если из любой последовательности значений точек $\{x_n\} \subset K$ можно выделить сходящуюся в K подпоследовательность. То есть

$$\exists \{x_{n_k}\}: \ \exists \lim_{k \to \infty} x_{n_k} = x, \ x \in K.$$

Теорема 3.2. (Критерий компактности в \mathbb{R}) Множество $K \subset \mathbb{R}$ — компактно \Leftrightarrow оно ограниченно и замкнуто.

Доказательство. Шаг 1. Пусть K — ограничено и замкнуто. Докажем, что K — компакт. Возьмём произвольную последовательность $\{x_n\} \subset K$. Покажем, что из неё можно выделить сходящуюся в K подпоследовательность.

Так как $\{x_n\}$ является последовательностью в K, а K ограничено, то $\{x_n\}$ — ограничено, тогда по теореме Больцано-Вейерштрасса существует подпоследовательность x_{n_j} , которая сходится "куда-то".

Пусть $x^* = \lim_{j \to \infty} x_{n_j}$. Тогда в силу критерия точки прикосновения x^* — точка прикосновения K, а K замкнуто $\Rightarrow x^* \in K$.

<u>Шаг 2.</u> Докажем в обратную сторону. Пусть K — компакт. Докажем, что K — ограничено и замкнуто. Будем доказывать от противного.

Предположим, что K — неограничено. Тогда $\forall j \in \mathbb{N} \ \exists x_j \in K \colon |x_j| > j \Rightarrow \exists \{x_j\} \subset K \lim_{j \to \infty} |x_j| = +\infty \Rightarrow$ не существует сходящейся подпоследовательности $\{x_j\}$. Получили противоречие с компактностью $\Rightarrow K$ — ограничено.

Предположим, что K — не замкнуто. Тогда $\exists x^*$ — точка прикосновения K: $x^* \notin K$. Тогда в силу критерия точки прикосновения $\exists \{x_n\} \subset K$: $\lim_{n \to \infty} x_n = x^* \Rightarrow$ любая подпоследовательность $\{x_n\}$ последовательности $\{x_n\}$ тоже сходится к $x^* \notin K$. Получили последовательность $\{x_n\}$ из которой нельзя выделить сходящейся в K подпоследовательность. Противоречие. Получаем, что K — замкнуто.

Определение 3.10. Система множеств $\{V_{\alpha}\}_{\alpha\in I}$ называется *покрытием* множества E, если $\bigcup_{\alpha\in I}V_{\alpha}\supset E.$

Определение 3.11. Система $\{V_{\beta}\}_{\beta\in J}$ называется $nodno\kappa pumue M$ покрытия $\{V_{\alpha}\}_{\alpha\in I}$, если $J\subset I$ и $\bigcup_{\beta\in J}V_{\beta}\supset E$.

Определение 3.12. Покрытие называется *открытым*, если все V_{α} открыты.

Определение 3.13. Подпокрытие называется *открытым*, если все V_{β} открыты.

Лемма 3.1. (Лемма Гейне-Бореля) Из любого открытого покрытия компакта K можно выделить конечное подпокрытие (открытое).

Доказательство. Будем доказывать от противного. Пусть $\{V_{\alpha}\}_{{\alpha}\in I}$ — открытое покрытие компакта K, из которого нельзя выделить конечного подпокрытия. Так как K компакт, то K ограничен (по критерию компактности), то есть $\exists [a,b] \subset \mathbb{R}$: $K \subset [a,b]$.

Для удобства $I^0 := [a,b]$, разделим его пополам: получаем I^0_1 и I^0_2 . Заметим, что $I^0_1 \cap K$ покрывается $\{V_\alpha\}_{\alpha \in I}$ и $I^0_2 \cap K$ покрывается $\{V_\alpha\}_{\alpha \in I}$. Хотя бы для одного одного из них из $\{V_\alpha\}_{\alpha \in I}$ невозможно выделить конечное подпокрытие, потому что иначе можно было бы выделить конечное подпокрытие $\{V_\alpha\}_{\alpha \in I}$.

Примечание. Если из обеих частей невозможно выделить конечное подпокрытие, то берём любую.

Пусть I^1 — та половинка отрезка I^0 , что из покрытия $\{V_\alpha\}_{\alpha\in I}$ нельзя выделить конечное подпокрытие $I^1\cap K$.

Предположим, что мы построили отрезки $I^0 \supset \ldots \supset I^m\colon |I^j|=\frac12|I^{j-1}|$ и в то же время из $\{V_\alpha\}_{\alpha\in I}$ нельзя выделить конечного подпокрытия множества $K\cap I^j\ \forall j\in\{0,1,\ldots,m\}$. На m+1 шаге поделим отрезок I^m пополам и выберем ту половину, пересечение которой с K не может быть покрыто конечным поднабором $\{V_\alpha\}_{\alpha\in I}$. Получили стягивающуюся

последовательность вложенных отрезков $\{I^m\}$. Тогда по лемме Кантора $\exists x = \bigcap_{i=1}^m I^m$.

Поскольку $x \in K$ (так как K замкнут и $\forall m \in \mathbb{N}$ $x_m \in (I_m \cap K)$, тогда $\lim_{m \to \infty} x_m = x$), а значит $\exists \alpha(x) \in I$: $x \in V_{\alpha(x)}$, но $V_{\alpha(x)}$ — открытое, то есть $\exists \varepsilon > 0$: $U_{\varepsilon}(x) \subset U_{\alpha(x)}$. Так как $|I^m| \to 0$, $m \to \infty$ и $x \in I^m \ \forall m \in \mathbb{N}$, то $\exists m(\varepsilon) \in \mathbb{N}$: $I^{m(\varepsilon)} \subset U_{\varepsilon}(x) \subset V_{\alpha(x)} \Rightarrow I^{m(\varepsilon)} \cap K$ покрывается одним $U_{\alpha(x)}$, что противоречит построению, то есть исходное предположение было неверно.

Задача. Доказать, что если из любого открытого покрытия множества можно выделить конечное подпокрытие, то это множество компакт.

Утверждение 3.2. Пусть $\{x_n\}$ — числовая последовательность. Множество её частичных пределов образуют замкнутое множество.

То есть: $\{x_n\}$ - произвольная числовая последовательность, то $(PL(\{x_n\}))$ - замкнутое множетво.

$$\{x_n\} \cup PL(\{x_n\}) = cl(\{x_n\})$$

Задача. Существует ли последовательность, у которой множество частичных пределов несчётно?

Решение. Да. Например, рациональные точки на числовой прямой: $\mathbb{Q}\{r_n\}_{n=1}^{\infty}$ множество пределов последовательности $PL(\{r_n\}) = \mathbb{R}$. Это следует из того, что в любой U_{ε} любой точки содержится как бесконечно много рациональных, так и иррациональных точек.

4 Предел функций

4.1 Классические определения предела

Определение 4.1. Под функцией, если не оговорено обратное, понимаем однозначное отображение $f: E \mapsto \mathbb{R}$, где $E \subset \mathbb{R}, E \neq \emptyset$.

Определение 4.2. Пусть $\delta > 0$, $x_0 \in \mathbb{R}$. Тогда проколотой дельта-окрестностью точки x_0 называется множество $\mathring{U}_{\delta}(x_0) := U_{\delta}(x_0) \setminus \{x_0\}$

Примечание. Если $x_0 = \pm \infty$ или $x_0 = \infty$, то проколотая окрестность совпадает с непроколотой. Если же $x_0 \in \mathbb{R}$, то $\mathring{U}_{\delta} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$.

Определение 4.3. (По Коши/в терминах окрестностей) Пусть $x_0 \in \hat{\mathbb{R}}$ и пусть $A \in \hat{\mathbb{R}}$. Пусть $f \colon \mathring{U}_{\delta_0} \mapsto \mathbb{R}$. Вудем говорить, что A — предел функции f в точке x_0 и записывать:

$$\begin{bmatrix} \lim_{x \to x_0} f(x) = A \\ f(x) \to A, x \to x_0 \end{bmatrix} \Leftrightarrow \forall \varepsilon > 0 \; \exists \; \delta(\varepsilon) \in (0; \delta_0] : \; \forall x \in \mathring{U}_{\delta}(x_0) \; \hookrightarrow \; f(x) \in U_{\varepsilon}(A)$$

Определение 4.4. Последовательностью Гейне в точке $x_0 \in \hat{\mathbb{R}}$ называется такая числовая последовательность $\{x_n\} \subset \mathbb{R}$, что выполнено два условия:

- $1. \lim_{n \to \infty} x_n = x_0;$
- $2. \ x_n \neq x_0 \ \forall n \in \mathbb{N}.$

Определение 4.5. (По Гейне/в терминах последовательностей) Пусть $x_0 \in \hat{\mathbb{R}}$ и $A \in \hat{\mathbb{R}}$. Пусть $f \colon U_{\delta_0}(x_0) \mapsto \mathbb{R}$. Будем говорить, что f имеет предел в точке x_0 равный A, если для любой последовательности Гейне $\{x_n\} \subset \mathring{U}_{\delta_0}(x_0)$ в точке $x_0 \exists \lim_{n \to \infty} f(x_n) = A$. Пишем:

$$\begin{bmatrix}
\lim_{x \to x_0} f(x) = A \\
f(x) \to A, x \to x_0
\end{bmatrix}$$

Теорема 4.1. (Эквивалентность определений по Коши и по Гейне) Пусть $x_0 \in \hat{\mathbb{R}}$, $A \in \hat{\mathbb{R}}$. Пусть $f : \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R}$. Тогда $\lim_{x \to x_0} f(x) = A$ (по Коши) $\Leftrightarrow \lim_{x \to x_0} f(x) = A$ (по Гейне).

Доказательство. <u>Шаг 1.</u> Докажем сначала, что из Коши следует Гейне. Распишем определение:

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta(\varepsilon) \in (0; \delta_0] : \forall x \in \mathring{U}_{\delta(\varepsilon)}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A).$$
 (1)

Возьмём произвольную последовательность Гейне $\{x_n\} \subset \mathring{U}_{\delta_0}(x_0)$ в точке x_0 . Первый пункт определения выполнен автоматически (так как мы берём из проколотой дельта-окрестности). Запишем определение предела последовательности:

$$\lim_{n \to \infty} x_n = x_0 \Rightarrow \forall \delta \in (0; \delta_0] \ \exists N(\delta) \in \mathbb{N} : \forall n \geqslant N(\delta) \hookrightarrow x_n \in \mathring{U}_{\delta}(x_0).$$

В частности, если фиксирован произвольный $\varepsilon > 0$, то $\forall n \geqslant N(\delta(\varepsilon)) \hookrightarrow x_n \in \mathring{U}_{\delta(\varepsilon)}(x_0)$. Положим $\tilde{N}(\varepsilon) := N(\delta(\varepsilon))$. Из (1) $\implies \forall n \geqslant \tilde{N}(\varepsilon) \hookrightarrow f(x_n) \in U_{\varepsilon}(A)$. Но поскольку $\varepsilon > 0$ был выбран произвольно, то

$$\forall \varepsilon > 0 \ \exists \tilde{N}(\varepsilon) = N(\delta(\varepsilon)) \in \mathbb{N} : \forall n \geqslant \tilde{N}(\varepsilon) \hookrightarrow f(x_n) \in U_{\varepsilon}(A) \Rightarrow \lim_{n \to \infty} f(x_n) = A.$$

Но так как $\{x_n\}$ — последовательность Гейне в точке x_0 была выбрана произвольно, то $\exists \lim_{n\to\infty} f(x_n) = A$ по Гейне.

<u>Шаг 2.</u> Докажем, что из Гейне следует Коши. Предположим, что $\exists \lim_{x \to x_0} f(x) = A$ по Гейне, но не по Коши. Запишем отрицание к Коши:

$$\exists \varepsilon > 0 : \forall \delta \in (0; \delta_0] \ \exists x \in \mathring{U}_{\delta}(x_0) \hookrightarrow f(x) \notin U_{\varepsilon}(A).$$

Раз это верно для любого δ , то возьмём $\delta = \frac{\delta_0}{n}$. Получаем:

$$\exists \varepsilon > 0 : \forall n \in \mathbb{N} \ \exists x_n \in \mathring{U}_{\frac{\delta_0}{n}}(x_0) : f(x_n) \notin U_{\varepsilon}(A).$$

(Примечание на лекции: здесь в неявной форме используется аксиома выбора) Получется последовательность $\{x_n\} \subset \mathring{U}_{\delta_0}(x_0)$. А по построению $\lim_{n \to \infty} x_n = x_0 \Rightarrow \{x_n\}$ — последовательность Гейне в точке x_0 . Но $\forall n \in \mathbb{N}$ $f(x_n) \notin U_{\varepsilon}(A) \Rightarrow \lim_{n \to \infty} f(x_n) \neq A$. Получаем противоречие с существованием предела по Гейне. Значит предположение было неверно и из Гейне следует Коши.

4.2 Предел по множеству

Определение 4.6. Пусть $E \subset \mathbb{R}$, $E \neq \emptyset$, а $x_0 \in \hat{\mathbb{R}}$. Будем говорить, что $x_0 - npedeльная$ точка множества E, если

$$\forall \delta > 0 \ \mathring{U}_{\delta}(x_0) \cap E \neq \varnothing.$$

Лемма 4.1. Пусть $E \subset \mathbb{R}$, $E \neq \varnothing$. $x_0 \in \hat{\mathbb{R}}$ — предельная точка $\Leftrightarrow \exists \{x_n\} \in E \setminus \{x_0\}$: $\exists \lim_{n \to \infty} x_n = x_0$. Любую такую последовательность будем называть последовательностью Гейне в точке x_0 для множества E.

Определение 4.7. (Предел по множеству) Пусть $A \in \hat{\mathbb{R}}$, $x_0 \in \hat{\mathbb{R}}$. Пусть $f: E \mapsto \mathbb{R}$, $E \neq \emptyset$ и x_0 — предельная точка множества E. Будем говорить, что A — предел f по множеству E при $x \to x_0$ и записывать это $\lim_{\substack{x \to x_0 \\ x \in E}} f(x) = A$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in E \cap \mathring{U}_{\delta(\varepsilon)}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A) - \text{по Коши.}$$

 \forall последовательности Гейне $\{x_n\} \subset E$ в точке $x_0 \hookrightarrow \lim_{n \to \infty} f(x_n) = A$.

Теорема 4.2. Определения предела по множеству в терминах Коши и Гейне эквивалентны.

Доказательство. Абсолютно аналогично доказательству теоремы 4.1.

Лемма 4.2. Пусть E_1 , $E_2 \subset \mathbb{R}$. Пусть $A \in \hat{\mathbb{R}}$ и $x_0 \in \hat{\mathbb{R}}$. Пусть $x_0 - n$ редельная точка и для E_1 , и для E_2 . Тогда следующие условия эквивалентны:

(1)
$$\lim_{\substack{x \to x_0 \\ x \in E_1 \cup E_2}} f(x) = A \Leftrightarrow \begin{cases} \lim_{\substack{x \to x_0 \\ x \in E_1}} f(x) = A \\ \lim_{\substack{x \to x_0 \\ x \in E_2}} f(x) = A \end{cases}$$
 (2)

Доказательство. Докажем сначала (1) \rightarrow (2). Распишем (1) по определению:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in (E_1 \cup E_2) \cap \mathring{U}_{\delta(\varepsilon)}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A).$$

Тогда
$$\begin{cases} \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in E_1 \cap \mathring{U}_{\delta(\varepsilon)}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A) \\ \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in E_2 \cap \mathring{U}_{\delta(\varepsilon)}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A) \end{cases} \Rightarrow \begin{cases} \lim_{\substack{x \to x_0 \\ x \in E_1}} f(x) = A \\ \lim_{\substack{x \to x_0 \\ x \in E_2}} f(x) = A \end{cases}$$

Теперь докажем $(2) \to (1)$. То есть выполнена система

$$\begin{cases} \lim_{\substack{x \to x_0 \\ x \in E_1}} f(x) = A \\ \lim_{\substack{x \to x_0 \\ x \in E_2}} f(x) = A \end{cases} \Rightarrow \begin{cases} \forall \varepsilon > 0 \ \exists \delta_1(\varepsilon) > 0 : \forall x \in E_1 \cap \mathring{U}_{\delta_1(\varepsilon)}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A) \\ \forall \varepsilon > 0 \ \exists \delta_2(\varepsilon) > 0 : \forall x \in E_2 \cap \mathring{U}_{\delta_2(\varepsilon)}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A) \end{cases}$$

Получается

$$\forall \varepsilon > 0 \,\exists \delta(\varepsilon) = \min\{\delta_1(\varepsilon), \delta_2(\varepsilon)\} > 0 : \forall x \in (E_1 \cup E_2) \cap \mathring{U}_{\delta(\varepsilon)}(x_0) = (E_1 \cap \mathring{U}_{\delta}(\varepsilon)) \cup (E_2 \cap \mathring{U}_{\delta}(\varepsilon)) \hookrightarrow f(x) \in U_{\varepsilon}(A).$$

Определение 4.8. Функция Дирихле $f = \begin{cases} 0, & x \in \mathbb{R} \backslash \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$

Утверждение 4.1. Функция Дирихле не имеет предела ни в какой точке.

Доказательство. Пусть $x_0 \in \hat{\mathbb{R}}$.

$$\lim_{\substack{x\to x_0\\x\in\mathbb{Q}}}f(x)=1, \text{ a }\lim_{\substack{x\to x_0\\x\in\mathbb{R}\setminus\mathbb{Q}}}f(x)=0. \text{ По только что доказанной нами лемме } \nexists\lim_{\substack{x\to x_0\\x\in\mathbb{R}}}f(x)\Rightarrow$$
 $\nexists\lim_{x\to x_0}f(x).$

4.3 Критерий Коши для функций

Лемма 4.3. Пусть $f: E \mapsto \mathbb{R}$. Пусть $x_0 - npedenьная точка множества <math>E$. Пусть для любой последовательности Гейне $\{x_n\} \subset E$ в точке $x_0 \ni \lim_{n \to \infty} f(x_n) = A$, $A \in \hat{\mathbb{R}}$. Тогда A не зависит от выбора $\{x_n\}$. То есть A одинаково при выборе любого $\{x_n\}$.

Доказательство. Пусть есть две последовательности Гейне $\{x_n\}, \{y_n\} \subset E$ в точке x_0 .

Положим
$$\{z_n\}=egin{cases} x_k, & n=2k \\ y_k, & n=2k-1 \end{cases}$$
 Тогда $\{z_n\}\subset E$ и $\{z_n\}$ — последовательность Гейне в точке x_0 .

ФПМИ МФТИ, осень 2023

31

По условию $\exists \lim_{n \to \infty} f(z_n) = A$. Но тогда $\{f(x_k)\}$ и $\{f(y_k)\}$ — подпоследовательности последовательности $\{f(z_n)\}_{n=1}^{\infty}$. Тогда $\lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} f(y_k) = \lim_{n \to \infty} f(z_n) = A$. Но мы взяли две произвольные последовательности Гейне $\Rightarrow A$ один и тот же.

Примечание. По умолчанию $x_0 \in \hat{\mathbb{R}}, \, \delta_0 > 0.$

Определение 4.9. Пусть $f: \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R}$. Условием Коши для f в точке x_0 назовём:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \in (0, \delta_0]: \ \forall x_1, x_2 \in \mathring{U}_{\delta(\varepsilon)}(x_0) \hookrightarrow |f(x_1) - f(x_2)| < \varepsilon$$

Теорема 4.3. (Критерий Коши) Пусть $f: \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R}$. Следующие условия эквивалентны:

1. f удовлетворяет условию Коши в точке x_0 ;

2.
$$\exists \lim_{x \to x_0} f(x) = a, \ a \in \mathbb{R}.$$

Примечание. Коши даёт критерий именно конечного предела.

Доказательство. Докажем сначала (2) \rightarrow (1). Пусть $\exists \lim_{x \to x_0} f(x) = a, a \in \mathbb{R}$.

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \in [0, \delta_0] \ \forall x \in \mathring{U}_{\delta_0}(x_0) \hookrightarrow |f(x) - a| < \frac{\varepsilon}{2} \Rightarrow$$

$$\Rightarrow \forall \varepsilon > 0 \ \exists \delta(\varepsilon) \in [0, \delta_0] \ \forall x_1, x_2 \in \mathring{U}_{\delta_0}(x_0) \hookrightarrow \begin{cases} |f(x_1) - a| < \frac{\varepsilon}{2}, \\ |f(x_2) - a| < \frac{\varepsilon}{2} \end{cases}$$

Важное примечание. $\delta(\varepsilon)$ в следствии тот же самый.

По теореме о неравенстве треугольника имеем:

$$|f(x_1) - f(x_2)| \le |f(x_1) - a| + |f(x_2) - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

Итого,

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \in (0, \delta_0]: \ \forall x_1, x_2 \in \mathring{U}_{\delta_0}(x_0) \hookrightarrow |f(x_1) - f(x_2)| < \varepsilon,$$

Следовательно, выполнено условие Коши.

Теперь докажем $(1) \to (2)$. Поскольку определение предела по Коши и по Гейне эквивалентны, нам достаточно доказать, что из условия Коши следует существование конечного предела по Гейне.

Зафиксируем произвольную последовательность Гейне в точке x_0 :

$$\{x_n\}: \begin{cases} x_n \to x_0, \ n \to \infty \\ x_n \neq x_0 \end{cases}$$

Тогда
$$\forall \delta > 0 \; \exists N(\delta) \in \mathbb{N} : \; \forall n \geqslant N(\delta) \hookrightarrow x_n \in \mathring{U}_{\delta}(x_0) \Rightarrow$$

 $\Rightarrow \forall \varepsilon > 0 \; \exists N(\delta(\varepsilon)) : \; \forall n, \, m > N(\delta(\varepsilon)) \hookrightarrow |f(x_n) - f(x_m)| < \varepsilon.$

Следовательно, получилось условие Коши для $\{f(x_n)\}$, значит

$$\exists \lim_{n \to \infty} f(x_n) = A(\{x_n\}), \ A(\{x_n\}) \in \mathbb{R}.$$

В итоге, для любой $\{x_n\}$ — произвольной последовательности Гейне в точке x_0 :

$$\exists \lim_{n \to \infty} f(x_n) = A(\{x_n\}), \ A(\{x_n\} \in \mathbb{R}.$$

В силу леммы 4.3 $A(\{x_n\})$ не зависит от выбора $\{x_n\}$, то есть $\exists A \in \mathbb{R} \colon \forall \{x_n\}$ - последовательности Гейне в точке $x_0 \hookrightarrow \lim_{n \to \infty} f(x_n) = A \in \mathbb{R}$.

Значит,
$$\exists \lim_{x \to x_0} f(x) = A$$
.

Примечание. Критерий Коши работает и для пределов по множеству. Доказательство точно такое же.

То есть, пусть $f\colon X\mapsto \mathbb{R},\ x_0$ — предельная точка для X. Тогда следующие условия эквивалентны:

- 1. $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \ \forall x_1, x_2 \in \mathring{U}_{\delta_0} \cap X \hookrightarrow |f(x_1) f(x_2)| < \varepsilon;$
- 2. $\exists \lim_{\substack{x \to x_0 \\ x \in X}} f(x) \in \mathbb{R}.$

Теорема 4.4. (Принцип локализации) Пусть $\exists \overline{\delta} \in (0, +\infty)$: $f(x) = g(x) \ \forall x \in \mathring{U}_{\overline{\delta}}(x_0)$. Тогда $\exists \lim_{x \to x_0} f(x) \Leftrightarrow \exists \lim_{x \to x_0} g(x)$. И если они существуют, то равны.

Доказательство. Очевидно расписывается по определению предела.

Примечание. Тоже самое можно сформулировать по множеству.

4.4 Односторонние пределы и теорема Вейерштрасса

В данном параграфе, если не сказано обратного, $x_0 \in \mathbb{R}$.

Определение 4.10. Пусть $f: \mathring{U}^{+}_{\delta_{0}}(x_{0}) \mapsto \mathbb{R}$, где $\mathring{U}^{+}_{\delta_{0}}(x_{0}) = (x_{0}, x_{0} + \delta_{0})$. Будем говорить, что $A \in \hat{\mathbb{R}}$ является правосторонним пределом f в точке x_{0} , если $\lim_{\substack{x \to x_{0} \\ x \in \mathring{U}^{+}_{\delta_{0}}(x_{0})}} f(x) = A$, и записы-

вать $\lim_{x \to x_0 + 0} f(x) = A$. Аналогично определяется определяется левосторонний предел.

Примечание. Для $-\infty$ по определению предел только левосторонний, для $+\infty$ — правосторонний.

Определение 4.11. Функция называется нестрого возрастающей (нестрого убывающей) на $X \subset \mathbb{R}, X \neq \emptyset$, если

$$\forall x_1, x_2 \in X : x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2) \left(f(x_1) \geqslant f(x_2) \right)$$

Определение 4.12. Функция $f: X \mapsto \mathbb{R}$ называется *монотонной на* X, если либо нестрого возрастает, либо нестрого убывает.

Определение 4.13. Аналогично можно ввести понятия *строгого убывания на* X, *строгого возрастания на* X, *строгой монотонности на* X.

Определение 4.14.

$$\sup_{x\in X} f(x):=\sup\{f(x):\ x\in X\}$$

$$\inf_{x\in X} f(x):=\inf\{f(x):\ x\in X\}$$

$$\max_{x\in X} f(x):=\max\{f(x):\ x\in X\},\ \text{если он существует}$$

$$\min_{x\in X} f(x):=\min\{f(x):\ x\in X\},\ \text{если он существует}$$

Запишем в кванторах:

$$\sup_{x \in X} f(x) = M \in \overline{\mathbb{R}} \Leftrightarrow \begin{cases} f(x) \leqslant M & \forall x \in X \\ \forall M' < M & \exists x' \in X : f(x') > M' \end{cases}$$

Аналогично для инфинума.

Примечание. Максимум и минимум могут быть только из \mathbb{R} , в отличие от супремума и инфимума, которые могут быть из $\overline{\mathbb{R}}$.

Утверждение 4.2. Можно переформулировать определение в терминах окрестностей (вместо M' берём $M-\varepsilon$ или $\frac{1}{\varepsilon}$, в случае $M=+\infty$).

$$M = \sup_{x \in X} f(x) \Leftrightarrow \begin{cases} f(x) \leqslant M \ \forall x \in X \\ \forall \varepsilon > 0 \ \exists x_{\varepsilon} \in X : f(x_{\varepsilon}) \in U_{\varepsilon}(M) \end{cases}$$

Теорема 4.5. (Теорема Вейерштрасса) Пусть $-\infty < a < b < +\infty$. Пусть f нестрого возрастает на (a,b). Тогда

$$\exists \lim_{x \to b-0} f(x) = \sup_{x \in (a,b)} f(x) \qquad (1)$$

$$\exists \lim_{x \to a+0} f(x) = \inf_{x \in (a,b)} f(x) \qquad (2)$$

Примечание. $f \uparrow$ на (a,b) — нестрогое возрастание $f \downarrow$ на (a,b) — нестрогое убывание

Примечание. Для односторонних пределов доказательство аналогично. Интервал (a, b)заменяется на $(x_0, x_0 \pm \delta)$.

Доказательство. Докажем (1), так как (2) аналогично. Пусть

$$E = \{ f(x) : x \in (a, b) \}.$$

Поскольку
$$\exists \sup E = M \Rightarrow \forall \varepsilon > 0 \ \exists x_{\varepsilon} \in (a, b) : \ f(x_{\varepsilon}) \in U_{\varepsilon}(M),$$

но f нестрого возрастает на $(a,b) \Rightarrow f(x) \in U_{\varepsilon}(M) \ \forall x \in [x_{\varepsilon},b).$

Действительно, если М — число, $M - \varepsilon < f(x_{\varepsilon}) \leqslant f(x) \leqslant M$. Если $M = +\infty$, $\frac{1}{\varepsilon} < f(x) \ \forall x \in [x_{\varepsilon}, b) \Rightarrow f(x) \in U_{\varepsilon}(+\infty)$.

Но тогда $\forall \varepsilon > 0$ $\exists \delta(\varepsilon) = b - x_{\varepsilon}$: $\forall x \in \mathring{U}^{-}_{\delta(\varepsilon)}(b) \hookrightarrow f(x) \in U_{\varepsilon}(M) \Rightarrow \lim_{x \to b = 0} f(x) = M$.

4.5 Арифметические операции с пределами функций

Теорема 4.6. Пусть
$$X \neq \varnothing$$
, x_0 — предельная точка. Пусть
$$\begin{cases}\exists \lim_{\substack{x \to x_0 \\ x \in X}} f_1(x) = a_1 \in \mathbb{R}, \\ \exists \lim_{\substack{x \to x_0 \\ x \in X}} f_2(x) = a_2 \in \mathbb{R}, \end{cases}$$
 Тогда 1. $\lim_{\substack{x \to x_0 \\ x \in X}} \left(f_1(x) \pm f_2(x)\right) = a_1 \pm a_2; \quad 2. \lim_{\substack{x \to x_0 \\ x \in X}} \left(f_1(x) \cdot f_2(x)\right) = a_1 \cdot a_2.$

Тогда 1.
$$\lim_{\substack{x \to x_0 \\ x \in X}} \left(f_1(x) \pm f_2(x) \right) = a_1 \pm a_2; \quad 2. \lim_{\substack{x \to x_0 \\ x \in X}} \left(f_1(x) \cdot f_2(x) \right) = a_1 \cdot a_2.$$

Доказательство. Для доказательства достаточно проверить условие определения предела по Гейне. То есть возьмём проивольную $\{x_n\}$ — последовательность Гейне в точке x_0 . Тогда

$$\exists \lim_{n \to \infty} (f_1(x_n) \pm f_2(x_n)) = a_1 \pm a_2$$

$$\exists \lim_{n \to \infty} \left(f_1(x_n) \cdot f_2(x_n) \right) = a_1 \cdot a_2$$

Так как последовательность Гейне выбиралась произвольно, то в силу эквивалентности определения по Коши и по Гейне получили утверждение теоремы. □

Лемма 4.4. (О сохранении знака) Пусть $f: X \mapsto \mathbb{R}, x_0 - n$ редельная точка X. Пусть $\exists \lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = a \neq 0.$ $a \in \mathbb{R}$ (для удобства).

Тогда
$$\exists \overline{\delta} > 0$$
: $\forall x \in \mathring{U}_{\overline{\delta}}(x_0) \cap X \hookrightarrow \begin{cases} f(x) \neq 0, \\ sign(f(x)) = sign(a). \end{cases}$

Доказательство. Запишем определение предела:

$$\forall \varepsilon > 0: \ \exists \delta(\varepsilon) > 0: \forall x \in \mathring{U}_{\overline{\delta}}(x_0) \cap X \hookrightarrow |f(x) - a| < \varepsilon$$

Поскольку $\forall \varepsilon$, то возьмём $\varepsilon = \frac{|a|}{2}$. Тогда

$$\overline{\delta} = \delta\left(\frac{|a|}{2}\right) > 0 \Rightarrow \forall x \in \mathring{U}_{\overline{\delta}}(x_0) \cap X \hookrightarrow |f(x) - a| < \frac{|a|}{2} \Leftrightarrow a - \frac{|a|}{2} < f(x) < \frac{|a|}{2} + a.$$

То есть знак сохраняется.

Следствие. Пусть $f, g: X \mapsto \mathbb{R}, X \neq \emptyset, x_0$ — предельная точка X. Пусть $\exists \lim_{\substack{x \to x_0 \\ x \in X}} f(x) =$

$$B\neq 0 \ \exists \lim_{\substack{x\to x_0\\x\in X}} g(x)=A\neq 0. \ \text{Tогда} \ \exists \overline{\delta}>0 \colon g(x)\neq 0 \ \forall x\in \mathring{U}_{\overline{\delta}}(x_0)\cap X \ \text{и} \ \exists \lim_{\substack{x\to x_0\\x\in X}} \frac{f(x)}{g(x)}=\frac{A}{B}$$

Доказательство. Следует из леммы о сохранении знака, леммы о пределе частного для последовательности и эквивалентности по Коши и по Гейне □

4.6 Предельные переходы в неравенствах

Теорема 4.7. (О трёх функциях или о двух милиционерах) Пусть $f, g, h : X \mapsto \mathbb{R}, x_0 -$ предельная точка для X. Пусть $\exists \lim_{\substack{x \to x_0 \\ x \in X}} f(x) = \lim_{\substack{x \to x_0 \\ x \in X}} g(x) = A, \ A \in \overline{\mathbb{R}}$. Пусть $f(x) \leqslant h(x) \leqslant g(x)$ $\forall x \in X$. Тогда $\exists \lim_{x \to x_0} h(x) = A$.

Теорема 4.8. (О предельном переходе в неравестве) Пусть $f,g:X\mapsto \mathbb{R}, x_0-$ предельная

точка для X. Пусть
$$\begin{cases} \exists \lim_{\substack{x \to x_0 \\ x \in X}} f(x) = A \in \overline{\mathbb{R}}; \\ \exists \lim_{\substack{x \to x_0 \\ x \in X}} g(x) = B \in \overline{\mathbb{R}}. \end{cases}$$
 Тогда, если $f(x) \leqslant g(x) \ \forall x \in X \Rightarrow A \leqslant B.$

Примечание. Строгое неравенство может не сохраниться при предельном переходе.

Пример.

$$f(x) = \frac{1}{x} \to 0, x \to +\infty, \quad g(x) = -\frac{1}{x} \to 0, x \to +\infty.$$

4.7 Верхние и нижние пределы для функции

Для удобства записи в данном параграфе обозначим $E \equiv \mathring{U}_{\delta}(x_0) \cap X$. То есть вместо E нужно подставить вот эту конструкцию.

Определение 4.15. Пусть $f: X \mapsto \mathbb{R}, x_0$ — предельная точка для X.

$$\lim_{\substack{x \to x_0 \\ x \in X}} f(x) := \sup_{\delta > 0} \{\inf_{x \in E} f(x)\} \in \hat{\mathbb{R}}$$

$$\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) := \inf_{\delta > 0} \{ \sup_{x \in E} f(x) \} \in \hat{\mathbb{R}}$$

Также введём обозначения: $\underline{g_{x_0}}(\delta)=\inf_{x\in E}f(x)$ и $\overline{g_{x_0}}(\delta)=\sup_{x\in E}f(x)$.

Лемма 4.5. Если $\delta_1 < \delta_2$, то $\overline{g_{x_0}}(\delta_1) \leqslant \overline{g_{x_0}}(\delta_2)$ и $g_{x_0}(\delta_1) \geqslant g_{x_0}(\delta_2)$.

Доказательство. Доказательство очевидно из определений супремума и инфимума (так как супремум по меньшему множеству не может стать больше.) □

Лемма 4.6.

$$\forall \overline{\delta} > 0 \Rightarrow \inf_{\delta > 0} \overline{g_{x_0}}(\delta) = \inf_{\delta \in (0,\overline{\delta})} \overline{g_{x_0}}(\delta)$$

$$\sup_{\delta>0} \ \underline{g_{x_0}}(\delta) = \sup_{\delta \in (0,\overline{\delta})} \underline{g_{x_0}}(\delta)$$

Доказательство. Докажем первое равенство, так как второе аналогично.

$$\overline{g_{x_0}}(\delta') \leqslant \overline{g_{x_0}}(\delta''), \text{ если } \delta' \in (0, \delta_1), \ \delta'' \in (0, \delta_2) \qquad 0 < \delta_1 < \delta_2$$

$$\sup_{\delta' \in (0, \delta_1)} \underline{g_{x_0}}(\delta) = \sup_{\delta'' \in (0, \delta_2)} \underline{g_{x_0}}(\delta)$$

Теорема 4.9. Пусть $f: X \mapsto \mathbb{R}$. Тогда

 $\overline{\lim_{\substack{x\to x_0\\x\in X}}}f(x)=\sup\{\overline{\lim_{n\to\infty}}f(x_n):\{x_n\}\subset X,\ \{x_n\}\quad -\ nocnedobameльность\ \Gammaейне\ b\ moчке\ x_0\}$

$$\lim_{\substack{x\to x_0\\x\in X}} f(x) = \inf\{\lim_{n\to\infty} f(x_n): \{x_n\}\subset X, \ \{x_n\} \ - \textit{последовательность Гейне в точке } x_0\}$$

Доказательство. Докажем теорему для верхнего предела, так как для нижнего доказательство аналогично.

Обозначим $\sup\{\overline{\lim_{n\to\infty}}f(x_n):\{x_n\}\subset X,\{x_n\}$ — последовательность Гейне в точке $x_0\}$ как J, а также $E\equiv \mathring{U}_\delta(x_0)\cap X$.

Чтобы доказать утверждение нужно проверить два неравенства: $\begin{cases} \overline{\lim}_{\substack{x \to x_0 \\ x \in X}} f(x) \leqslant J, \\ \overline{\lim}_{\substack{x \to x_0 \\ x \in X}} f(x) \geqslant J. \end{cases}$

Докажем второе неравенство. Возьмём произвольную $\delta > 0$ и произвольную последовательность Гейне $\{x_n\} \subset X$ в точке x_0 .

Так как $\{x_n\}$ — последовательность Гейне, то

$$\exists N(\delta) \in \mathbb{N} : \forall n \geqslant N(\delta) \hookrightarrow x_n \in E$$

$$\overline{\lim}_{n\to\infty} f(x_n) = \inf_{N\in\mathbb{N}} \sup_{n\geqslant N} f(x_n) \leqslant \sup_{n\geqslant N(\delta)} f(x_n)$$

$$\sup_{E} f(x) \geqslant \sup_{n \geqslant N(\delta)} f(x_n) = \overline{\lim_{n \to \infty}} f(x_n)$$

«Заморозим» x_n и будем менять $\delta > 0$. Можно взять inf от обеих частей:

$$\inf_{\delta>0} \sup_{E} f(x) \geqslant \overline{\lim_{n\to\infty}} f(x_n)$$

Левая часть не зависит от выбора x_n , следовательно, беря супремум по всем $\{x_n\}$, получим нужное неравенство:

$$\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) \geqslant J,$$

Покажем теперь, что:

$$\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) \leqslant J.$$

Найдём последовательность Гейне в точке x_0 , которая «в точности даст левую часть». В силу леммы 4.6:

$$\forall n \in \mathbb{N} \inf_{\delta \in (0, \frac{1}{n})} \sup_{E} f(x) = \overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) \qquad (1)$$

По определению инфинума $\forall n \in \mathbb{N}$ в силу равенства (1):

$$\exists \delta \in (0, \frac{1}{n}) : \sup_{E} f(x) \in U_{\frac{1}{n}} \left(\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) \right)$$

Но по определению супремума

$$\exists x_n \in E : f(x_n) \in U_{\frac{1}{2n}} \left(\overline{\lim}_{\substack{x \to x_0 \\ x \in X}} f(x) \right).$$

Получается, мы построили последовательность $\{\overline{x_n}\}$ $\subseteq X$, которая является последовательностью Гейне в точке x_0 , и при этом $\lim_{n\to\infty} f(\overline{x_n}) = \overline{\lim_{\substack{x\to x_0\\x\to x_0}}} f(x)$, значит,

$$\exists \overline{\lim}_{n \to \infty} f(\overline{x_n}) = \lim_{n \to \infty} f(\overline{x_n}) = \overline{\lim}_{\substack{x \to x_0 \\ x \in X}} f(x).$$

Теорема 4.10. (О верхнем и нижнем пределе для функции) Пусть $f: X \mapsto \mathbb{R}, A \in \hat{\mathbb{R}}.$ Следующие условия эквивалентны:

1.
$$\exists \lim_{\substack{x \to x_0 \\ x \in X}} f(x) = A;$$

2.
$$\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) = \lim_{\substack{x \to x_0 \\ x \in X}} f(x) = A.$$

Доказательство. (1) $\Leftrightarrow \forall$ последовательности Гейне $\{x_n\} \subset X$ в точке x_0

$$\lim_{n \to \infty} f(x_n) = A \Leftrightarrow \begin{cases} \overline{\lim}_{n \to \infty} f(x_n) = A, \\ \lim_{n \to \infty} f(x_n) = A, \end{cases} \Leftrightarrow \begin{cases} \overline{\lim}_{\substack{x \to x_0 \\ x \in X}} f(x) = A, \\ \frac{\lim}{x \to x_0} f(x) = A. \end{cases} \Leftrightarrow (2)$$

ФПМИ МФТИ, осень 2023

Непрерывность функции в точке и на множестве 4.8

Определение 4.16. Пусть $f: U_{\delta_0}(x_0) \mapsto \mathbb{R}$.

Функция f называется непрерывной в точке x_0 , если $\exists \lim_{x \to x_0} f(x) = f(x_0)$. \Leftrightarrow

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists \delta(\varepsilon) \in (0, \delta_n) : \ \forall x \in U_{\delta(\varepsilon)}(x_0) \hookrightarrow |f(x) - f(x_0)| < \varepsilon.$$

Определение 4.17. Функция $f:U_{\delta_0}(x_0)\mapsto \mathbb{R}$, не являющаяся непрерывной в точке x_0 называется разрывной в точке x_0 .

Классификация точек разрыва

Определение 4.18. Точка x_0 называется точкой устранимого разрыва, если:

$$\begin{cases} \exists \lim_{x \to x_0} f(x) \in \mathbb{R}, \\ \lim_{x \to x_0} f(x) \neq f(x_0). \end{cases}$$

Определение 4.19. Точка x_0 называется точкой разрыва первого рода, если:

$$\begin{cases} \exists \lim_{x \to x_0 + 0} f(x) \in \mathbb{R}, \\ \exists \lim_{x \to x_0 - 0} f(x) \in \mathbb{R}, \\ \lim_{x \to x_0 + 0} f(x) \neq \lim_{x \to x_0 - 0} f(x). \end{cases}$$

Определение 4.20. Точка x_0 называется точкой разрыва второго рода, если хотя бы один из односторонних пределов не существует, либо бесконечен.

Примеры точек разрыва

Устранимый разрыв

Разрыв первого рода

Разрыв второго рода

Определение 4.21. Пусть $X \subset \mathbb{R}, X \neq \emptyset$.

Будем говорить, что $f: X \mapsto \mathbb{R}$ непрерывна в точке $x_0 \in X$ по множеству X, если

$$\begin{bmatrix} x_0 & - &$$
изолированная точка $X, \\ \exists \lim_{\substack{x \to x_0 \\ x \in X}} f(x) = f(x_0). \end{bmatrix}$

Определение 4.22. Функция $f: X \in \mathbb{R}$ называется *непрерывной на X*, если она непрерывна в каждой точке $x_0 \in X$ по множеству X.

Теорема 4.11. Пусть $K \subset \mathbb{R} - \kappa$ омпакт, $K \neq \emptyset$.

Пусть f непрерывна на K. Тогда $f(K) := \{f(x) : x \in K\}$ — компакт.

Доказательство. Пусть $y_n \subset \{f(K)\} \Rightarrow \exists \{x_n\} \subset K : f(x_n) = y_n \ \forall n \in \mathbb{N} \Rightarrow \{x_n\} \subset K$

 $\Rightarrow \exists \{x_{nj}\} \subset K(\{x_{nj}\} - \text{подпоследовательность } \{x_n\})$ и $\exists x^* \in K : x_{nj} \to x^*, j \to \infty$.

Тогда так как f непрерывна в точке x^* , то $\lim_{i \to \infty} f(x_{nj}) = f(x^*) \in f(K)$.

$$f(x_{nj}) = y_{nj} \ \forall j \in \mathbb{N}$$
$$y_{nj} \to f(x^*) \in f(K), j \to \infty.$$

Поскольку $\{y_n\} \subset f(K)$ выбрана произвольно, то f(K) — компакт.

Лемма 4.7. Пусть $X \in \mathbb{R}, X \neq \emptyset, x_n \in X$. Следующие условия эквивалентны:

- 1. f непрерывна в точке x_0 .
- 2. $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \ \forall x \in U_{\delta}(x_0) \cap X \hookrightarrow |f(x) f(x_0)| < \varepsilon$.
- 3. $\forall \{x_n\} \subset X : \lim_{n \to \infty} x_n = x_0 \hookrightarrow \exists \lim_{n \to \infty} f(x_n) = f(x_0).$

Определение 4.23. Пусть $X \in \mathbb{R}, X \neq \emptyset, x_0 \in X$. $f: X \mapsto \mathbb{R}$ называется полунепрерывной сверху в точке x_0 по множеству X, если

$$\begin{bmatrix} x_0 - & \text{изолирована,} \\ \overline{\lim}_{\substack{x \to x_0 \\ x \subset X}} f(x) \leqslant f(x_0). \end{bmatrix}$$

Определение 4.24. Пусть $X \in \mathbb{R}, X \neq \emptyset, x_0 \in X$. $f: X \mapsto \mathbb{R}$ называется *полунепрерывной* снизу в точке x_0 по множеству X, если

$$\begin{bmatrix} x_0 - & \text{изолирована,} \\ \lim_{\substack{x \to x_0 \\ x \subset X}} f(x) \geqslant f(x_0). \end{bmatrix}$$

Определение 4.25. Характеристическая функция множества (индикатор).

$$\chi_E(x) = \begin{cases} 1, x \in E, \\ 0, x \notin E, \end{cases}$$
 где $E \subset \mathbb{R}$ — множество.

Пример. Пусть $G \subset R$ — непустое открытое множество. χ_G — полунепрерывна снизу в каждой точке.

Если $x_0 \in G$, то $\exists U_\delta(x_0) \subset G$ в ней очевидно.

Если $x_0 \notin G$, то $f(x_0) = 0$ и $f(x) \geqslant 0$, так как она является характеристической функцией.

Пример. Пусть $F \subset \mathbb{R}$ — непустое замкнутое множество. χ_F — полунепрерывна сверху в каждой точке.

Теорема 4.12. Пусть $f: X \mapsto \mathbb{R}, x_0 \in X$. Тогда f непрерывна в точке x_0 по множеству $X \Leftrightarrow$ она полунепрерывна снизу в точке x_0 по множеству X и полунепрерывна сверху в точке x_0 по множеству X.

Доказательство. Если x_0 — изолированнная точка, то доказательство очевидно.

Если x_0 — предельная точка, то непрерывность в ней по множеству $X \Leftrightarrow$

$$\Leftrightarrow \exists \lim_{\substack{x \to x_0 \\ x \in X}} f(x) = f(x_0) \Leftrightarrow \begin{cases} \overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) = f(x_0), \\ \lim_{\substack{x \to x_0 \\ x \in X}} f(x) = f(x_0). \end{cases}$$
(*)

По теореме о верхнем и нижнем пределе для функции.

Заметим, что:

$$f(x_0) \leqslant \lim_{\substack{x \to x_0 \\ x \in X}} f(x) \leqslant \overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) \leqslant f(x_0) \Leftrightarrow (*)$$

Теорема 4.13. Пусть $K - \kappa$ омпакт, $K \neq \varnothing$. Пусть $f: K \mapsto R$. Если $f - \kappa$ полунепрерывна снизу на компакте, то она достигает своего минимума, а если полунепрерывна сверху, то — максимума.

Доказательство. Докажем для полунепрерывности сверху, так как для полунепрерывности снизу доказательство аналогично.

Пусть $f(K) := \{f(x): x \in K\} \subset \mathbb{R}$. Тогда $\exists \sup f(K) = M$. Пока знаем, что $M \in \mathbb{R}$. Из утверждения 4.2 получаем: $\forall n \in \mathbb{N} \ \exists y_n \in f(K): y_n \in U_{\frac{1}{n}}(M)$. Но тогда $\forall n \in \mathbb{N} \ \exists x_n \in K$: $f(x_n) \in U_{\frac{1}{n}}(M) \Rightarrow$ построили последовательность точек $\{x_n\} \subset K$: $f(x_n) \to M, \ n \to \infty$. (Примечание: обычно такая последовательность называется «максимизирующая»)

Так как K — компакт, то существует подпоследовательность $\{x_{n_j}\}$ последовательности $\{x_n\}$ и точка $x^* \in K$: $x_{n_j} \to x^*, j \to \infty$. Но f — полунепрерывна сверху в точке $x^* \Rightarrow \lim_{j \to \infty} f(x_{n_j}) \leqslant \lim_{\substack{x \to x^* \\ x \in K}} f(x) \leqslant f(x^*)$. Но на самом деле $\lim_{j \to \infty} f(x_{n_j}) = \lim_{j \to \infty} f(x_{n_j}) = M$. А тогда $f(x^*) \geqslant M$, но $f(x^*) \in f(K) \Rightarrow f(x^*) \leqslant M$. Итого получаем, $f(x^*) = M$. То есть она достигает максимума.

Следствие. Если функция непрерывна на непустом компакте K, то она достигает и максимума, и минимума. В частности, функция непрерывная на отрезке достигает на нём своего максимума и минимума.

Введём следующие обозначения: если $f \colon E \mapsto \mathbb{R}$ и непрерывна на нём, то $f \in \mathrm{C}(E)$.

Теорема 4.14. (Теорема Больцано-Коши/о промежуточном значении) Пусть a < b. Пусть $f \in C([a,b])$. Тогда $\forall y^* \in [min[f(a),f(b)],max[f(a),f(b)]] \exists x^* \in [a,b]$: $f(x^*) = y^*$.

Доказательство. Для удобства доказательства положим f(a) < f(b), в противном случае доказательство не изменится с точностью до знаков.

<u>Примечание.</u> В доказательстве запись [l,r] подразумевает отрезок [min(l,r), max(l,r)]. Опять же исключительно для удобства записи мы так сокращаем.

Пусть $[a,b] = I^0$. Поделим I^0 пополам, то есть рассмотрим $c_1 = \frac{a+b}{2}$.

Возможно 2 варианта: $\begin{bmatrix} y^* \in [f(c_1), f(b)]; \\ y^* \in [f(a), f(c_1)]. \end{bmatrix}$ Выберем такую половину I^0 , что y^* принад-

лежит отрезку, образованному значениями f в концах половинок, назовём его I^1 . Такой отрезок обязательно найдётся, иначе мы бы пришли к противоречию с тем, что $y^* \in I^0$.

Пусть построено k+1 отрезков: $I^0 \supset I^1 \supset \ldots \supset I^k$. $I^k = [a_k, b_k]$, при этом $y^* \in [a_j, b_j] \, \forall j \in \{0, 1, \ldots, k\}$. $|I^j| = \frac{|b-a|}{2^j} \, \forall j \in \{0, 1, \ldots, k\}$.

Обязательно найдётся половина, для которой y^* будет принадлежать отрезку, образованному значениями функции в концах этой половины, иначе $y^* \notin [a_k, b_k]$, что противоречит построению.

По индукции мы построили стягивающуюся последовательность вложенных отрезков $\{I^k\}_{k=1}^{\infty} \Rightarrow \exists ! x^* = \bigcap_{k=1}^{\infty} I^k$. По построению $\forall k \in \mathbb{N} \ y^* \in [f(a_k), f(b_k)]$.

Но f непрерывна в точке x^* , то есть $a_k \to x^*$, $k \to \infty$ и $b_k \to x^*$, $k \to \infty \Rightarrow f(a_k) \to f(x^*)$, $k \to \infty$ и $f(b_k) \to f(x^*)$, $k \to \infty$. Тогда по теореме о двух миллиционерах и так как y^* — стационарная последовательность, то $y^* = f(x^*)$.

Определение 4.26. *Промежутком* назовём либо отрезок, либо инвервал, либо полуинтервал, то есть $[a,b] \Leftrightarrow [a,b]$ или (a,b), или [a,b), или (a,b).

Теорема 4.15. (Обобщённая теорема о промежуточном значении) Пусть $f: [a,b] \mapsto \mathbb{R}$. Пусть $f \in C([a,b])$. Пусть $m = \inf_{x \in [a,b]} f(x)$, $M = \sup_{x \in [a,b]} f(x)$. Тогда $\forall y^* \in (m,M) \exists x^* \in [a,b]$: $f(x^*) = y^*$.

Доказательство. По определению инфимума $\exists a_1 \in [a,b] : m \leqslant f(a_1) < y^*$. Аналогично по определению супремума $\exists b_1 \in [a,b] : M \geqslant f(b_1) > y^*$. Следовательно $y^* \in [f(a_1),f(b_1)]$. И при этом $f \in C([a_1,b_1]) \Rightarrow$ по теореме Больцано-Коши $\exists x^* \in [a_1,b_1] : f(x^*) = y^*$, что и требовалось.

Следствие. Если $f \in C([a,b])$, то $f([a,b]) = [\min_{x \in [a,b]} f(x), \max_{x \in [a,b]} f(x)]$.

Доказательство. Было доказано, что (так как f непрерывна на [a,b], а отрезок компакт) $\exists x_m \in [a,b] : \forall x \in [a,b] \hookrightarrow f(x) \geqslant f(x_m)$ и $\exists x_M \in [a,b] : \forall x \in [a,b] \hookrightarrow f(x_M) \geqslant f(x)$.

Получается, $\forall x \in [a,b] \hookrightarrow f(x) \in [f(x_m),f(x_M)]$. Но по теореме Больцано-Коши получаем сюръекцию (все значения принимаются), то есть $\forall y \in [f(x_m,f(x_M)] \exists x \in [a,b]$: f(x) = y. Значит $f([a,b]) = [f(x_m),f(x_M)]$.

Задача. Верно ли, что образ интервала — интервал?

Решение. Нет. К примеру, $f(x) = \sin(x), x \in (-\pi, \pi)$. Но для монотонных функций это верно.

4.9 Колебания

Определение 4.27. Пусть $E \subset \mathbb{R}$, $E \neq \emptyset$. Пусть $f: E \mapsto \mathbb{R}$. Колебание f на $E - \omega_E[f] := \sup_{x_1, x_2 \in E} |f(x_1) - f(x_2)|$.

Определение 4.28. Пусть $X \subset \mathbb{R}, X \neq \emptyset, x_0 \in X$. Тогда колебанием функции в точке назовём $\omega_{x_0}[f] := \inf_{\delta>0} \omega_{U_\delta(x_0)}[f]$.

Теорема 4.16. Функция непрерывна в точке по множеству \Leftrightarrow колебание в ней 0. То есть пусть $X \subset \mathbb{R}, X \neq \emptyset, x_0 \in X, f$ — непрерывна в точке x_0 по множеству $X \Leftrightarrow \omega_{x_0}[f] = 0$.

Доказательство. Шаг 1. Пусть f непрерывна в точке $x_0 \Rightarrow \forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0 \; \forall x \in U_\delta(x_0) \cap X \hookrightarrow |f(x) - f(x_0)| < \frac{\varepsilon}{2}$. Тогда $\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0 \; \forall x_1, x_2 \in U_\delta(x_0 \cap X \hookrightarrow |f(x_1) - f(x_2)| < \varepsilon$ по неравенству треугольника.

Получается $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \colon \omega_{U_{\delta(\varepsilon)}(x_0) \cap X}[f] \leqslant \varepsilon$, но так как есть монотонность по δ , то $\exists \lim_{\delta \to +0} \omega_{U_{\delta(\varepsilon)}(x_0) \cap X}[f] = 0 = \inf_{\delta > 0} \omega_{U_{\delta(\varepsilon)}(x_0) \cap X}[f]$ по теореме Вейерштрасса. В одну сторону доказали.

<u>Шаг 2.</u> Пусть $\omega_{x_0}[f]=0$. Покажем непрерывность.

В силу монотонности $\omega_{U_{\delta(\varepsilon)}(x_0)\cap X}[f]$ по δ получаем, что $\exists \lim_{\delta\to +0} \omega_{U_{\delta(\varepsilon)}(x_0)\cap X}[f]=0$. Тогда по определению получаем:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall \delta \in (0, \delta(\varepsilon)] \hookrightarrow \omega_{U_{\delta(\varepsilon)}(x_0) \cap X}[f] < \varepsilon.$$

Тогда, взяв $x_1 = x_0$, а $\delta = \delta(\varepsilon)$, получим

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \sup_{x_2 \in U_{\delta(\varepsilon)}(x_0) \cap X} |f(x_2) - f(x_0)| < \varepsilon \Rightarrow f$$
 — непрерывна в точке x_0 .

Примечание. Можно легко доказать разрывность функции Дирихле в каждой точке.

Заметим, что $\forall \underline{x} \in \mathbb{R} \ \omega_{U_{\delta}(\underline{x})}[D] = 1$, поскольку любой невырожденный интервал на числовой прямой содержит как рациональные, так иррациональные точки $\Rightarrow \omega_{\underline{x}}[D] = 1$ $\forall \underline{x} \in \mathbb{R}$, а значит по теореме 4.16 функция Дирихле разрывна в каждой точке.

Определение 4.29. Функцией Римана назовём:

$$R(x) := \begin{cases} 0, \ \forall x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q}, \ \forall x \in \mathbb{Q} \ (x = \frac{p}{q}, \ p \in \mathbb{Z}, \ q \in \mathbb{N}, \ (p, q) = 1) \end{cases}$$

Задача. Доказать, что функция Римана непрерывна в $\mathbb{R}\backslash\mathbb{Q}$ и разрывна в \mathbb{Q} .

Peweнue. Поскольку в любой окрестности любой точки содержатся иррациональные числа, получаем

$$\omega_x[R] \geqslant \frac{1}{q} \quad \forall x \in \mathbb{Q}.$$

Тогда в силу теоремы 4.16 получаем, что функция Римана разрывна в каждой рациональной точке.

Покажем, что функция Римана непрерывна в каждой иррациональной точке. Зафиксируем $\underline{x} \in \mathbb{R} \setminus \mathbb{Q}$. Заметим, что $\forall q \in \mathbb{N} \ \exists \delta(\underline{x},q) > 0$: $U_{\delta(\underline{x},q)}(\underline{x})$ не содержит несократимых дробей со знаменателями $q' \in \{1,\ldots,q\}$. Действительно, положим

$$\delta(\underline{x},q):=min\{|\underline{x}-\frac{p'}{q'}|:1\leqslant q'\leqslant q, \frac{p'}{q'}$$
 — несократимая дробь.}

Но тогда получается, что $R(\underline{x})-R(x)=0\ \forall x\in (\mathbb{R}\backslash\mathbb{Q})\cap U_{\delta(\underline{x},q)}(\underline{x})$. Если же $x\in\mathbb{Q}\cap U_{\delta(\underline{x},q)}(\underline{x})$, то $|R(\underline{x})-R(x)|<\frac{1}{q}$. В итоге получаем, что $\forall n\in\mathbb{N}\forall\underline{x}\in\mathbb{R}\backslash\mathbb{Q}\ \exists \delta(\underline{x},n)>0$: $\omega_{U_{\delta(\underline{x},n)}(\underline{x})}[R]<\frac{1}{n}$. Отсюда получаем

$$\omega_x[R] = 0 \ \forall x \in \mathbb{R} \backslash \mathbb{Q}.$$

Задача. Доказать, что не существует функции, непрерывной в \mathbb{Q} и разрывной в $\mathbb{R}\backslash\mathbb{Q}$.

Теорема 4.17. (О замене переменной под знаком предела) Пусть $x_0, y_0 \in \mathbb{R}$. Пусть y: $\mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R}, \ f \colon \mathring{U}_{\delta_0}(y_0) \mapsto \mathbb{R}.$

Пусть
$$\exists \lim_{y \to y_0} f(y) = A$$
, $A \in \hat{\mathbb{R}}$ $u \ y(x) \neq y_0 \ \forall x \in \mathring{U}_{\delta_0}(x_0)$. Тогда $\exists \lim_{x \to x_0} f(y(x)) = A$.

Доказательство. Зафиксируем произвольное $\varepsilon > 0$. Так как $\lim_{y \to y_0} f(y) = A$, то

$$\exists \beta \in (0; \beta_0) : \forall y \in U_\beta(y_0) \hookrightarrow f(y) \in U_\varepsilon(A).$$

По определению предела

Теорема 4.18. (Предел композиции 2) Пусть $f: U_{\sigma_0}(y_0) \mapsto \mathbb{R}, \ y: \mathring{U}_{\delta_0}(x_0) \mapsto U_{\sigma_0}(y_0).$ Пусть f непрерывна в точке y_0 и $\lim_{x \to x_0} y(x) = y_0$, Тогда:

$$\exists \lim_{x \to x_0} f \circ y(x) = \lim_{x \to x_0} f(y(x)) = f(y_0)$$

Доказательство.

$$\begin{cases} \forall \varepsilon > 0 \ \exists \sigma(\varepsilon) \in (0, \sigma_0) : \ \forall y \in U_{\sigma(\varepsilon)}(y_0) \hookrightarrow |f(y) - f(y_0)| < \varepsilon \\ \forall \sigma > 0 \ \exists \delta(\sigma) \in (0, \delta_0) : \ \forall y \in U_{\delta(\sigma)}(x_0) \hookrightarrow |y(x) - y_0| < \sigma \end{cases}$$

Объединяя высказывания, получим:

$$\forall \varepsilon > 0 \ \exists \widetilde{\delta}(\varepsilon) = \delta(\sigma(\varepsilon)) \in (0, \delta_0)$$

$$\forall x \in \mathring{U}_{\widetilde{\delta}_{\varepsilon}}(x_0) \hookrightarrow y(x) \in U_{\sigma(\varepsilon)}(y_0), \quad \text{а значит} \quad |f(y(x)) - f(y_0)| < \varepsilon$$

В итоге, получаем:

$$\forall \varepsilon > 0 \ \exists \widetilde{\delta}(\varepsilon) \in (0, \delta_0) : \forall x \in \mathring{U}_{\delta(\varepsilon)}(x_0) \hookrightarrow |f(y(x)) - f(y_0)| < \varepsilon \Leftrightarrow \exists \lim_{x \to x_0} f(y(x)) = f(y_0).$$

Следствие. Если $f:U_{\sigma_0}(y_0)\mapsto \mathbb{R}$, где $y_0=y(x_0),\ y:U_{\delta_0}(x_0)\mapsto \mathbb{R}$, то $\exists\ \overline{\delta}\in (0,\delta_0):f\circ y$ определена в некоторой $U_{\overline{\delta}}(x_0)$ и $f\circ y$ непрерывна в точке x_0 .

Доказательство. Так как y непрерывна в $y_0 = y(x_0) \Rightarrow \exists \lim_{x \to x_0} y(x) = y_0$.

Значит, $\exists \overline{\delta} > 0$: $\forall x \in U_{\overline{\delta}}(x_0) \hookrightarrow y(x) \in U_{\sigma_0}(y_0) \Rightarrow f \circ y(x)$ определена $\forall x \in U_{\overline{\delta}}(x_0)$

Так как f непрерывна в точке y_0 и $y(x) \to y_0 = y(x_0), x \to x_0$, можно воспользоваться предыдущей теоремой. Получается,

$$\lim_{x \to x_0} f(y(x)) = f(y_0) = f(y(x_0))$$

Следовательно, $f \circ y$ непрерывна в точке x_0

4.10 Обратная функция

Лемма 4.8. $f: X \mapsto Y - oбратима на X$, когда f - c юръекция и интекция.

 $\ensuremath{\mathcal{A}\!o\kappa asame \ensuremath{\mathit{nenormeo}}}$. Шаг 1. Пусть f — сюръекция и инъекция, докажем, что f обратима.

Рассмотрим $y \in Y$. Так как f — сюръекция, $\exists x \in X : f(x) = y$. Но так как f — инъекция, то этот x единственный ($\forall x' \neq x \ f(x') \neq f(x) = y$). Следовательно, определим $f^{-1}(y) = x$ (единственный). В одну строну доказали.

 $\underline{\text{Шаг 2.}}$ Пусть f обратима, докажем, что f — сюръекция и инъекция.

Так как f обратима, то $\exists f^{-1}: Y \mapsto X \Rightarrow f$ — сюръекция.

$$\forall y \in Y \ \exists x = f^{-1}(y) : f(f^{-1}(y)) = f(x) = y.$$

Покажем, что f — инъекция. Возьмем $x_1, x_2 \in X$

$$f(x_1) = f(x_2) = y \Rightarrow f^{-1}(f(x_1)) = f^{-1}(f(x_2)) = f^{-1}(y) \Rightarrow x_1 = x_2.$$

Лемма 4.9. Пусть $X \subset \mathbb{R}, X \neq \emptyset$. Пусть $f \colon X \mapsto \mathbb{R}$ строго монотонна. Тогда f обратима, то есть $\exists f^{-1} : f(X) \mapsto X$.

Более того, если f строго возрастает на X, то f^{-1} строго возрастает на f(X). Если f строго убывает на X, то f^{-1} строго убывает на f(X).

Примечание. Лемма неверна, если не требовать строгой монотонности.

Пример. $f(x) \equiv 1$ на \mathbb{R} . Это нестрого монотонная функция и она необратима на \mathbb{R} .

Доказательство. Из строгой монотонности f следует, что $f: X \mapsto f(X)$ инъективно (так как иначе $\exists x_1, x_2 \in X: x_1 < x_2$ и $f(x_1) = f(x_2)$, то есть нарушается строгая монотонность).

Рассмотрим случай возрастания на X, так как случай строго убывания аналогичен.

Обратная f^{-1} : $f(X) \mapsto X$ существует в силу инъективности f (сюръективность очевидна, так как мы используем отображение в f(X)). Покажем, что она тоже строго возрастает. Возьмём $y_1, y_2 \in f(x)$. Пусть $y_2 > y_1$. Предположим, что $f^{-1}(y_2) < f^{-1}(y_1)$ (равно быть не может в силу обратимости f)

Так как f строго возрастает, то $f\Big(f^{-1}(y_2)\Big) < f\Big(f^{-1}(y_1)\Big)$, то есть $y_2 < y_1$. Получили противоречие с нашим предположением, следовательно, $\forall y_1,y_2 \in f(X)$ из $y_1 < y_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y_2)$. То есть обратная функция имеет тот же характер монотонности. \square

Теорема 4.19. (Об обратной функции) Пусть $f \in C([a,b])$ строго монотонна на [a,b]. Тогда $\exists f^{-1} \in C([m,M])$ (где $m = \min_{x \in [a,b]} f(x)$, а $M = \max_{x \in [a,b]} f(x)$) и имеет характер монотонности тот эке, что и у f.

 $\@ifnextcharge{\@ifnextcharge{\psi}} \@ifnextcharge{\@ifnextcha$

f([a,b]) = [m,M] следует из теоремы Больцано-Коши.

Остаётся показать $f^{-1} \in ([m,M])$. Рассмотрим случай $y_0 \in (m,M)$

Так как $y_0 \in (m, M)$, то $x_0 \in (a, b)$. Зафиксируем $\varepsilon > 0$ такое, что $U_{\varepsilon}(x_0) \subset (a, b)$.

Рассмотрим отрезок $[x_0 - \varepsilon, x_0 + \varepsilon] \subset (a, b)$. На нём f строго возрастает и непрерывна.

ФПМИ МФТИ, осень 2023

Следовательно, f осуществляет биекцию $[x_0 - \varepsilon, x_0 + \varepsilon]$ на $[f(x_0 - \varepsilon), f(x_0 + \varepsilon)]$

$$\delta(\varepsilon) = \min\{f(x_0) - f(x_0 - \varepsilon), f(x_0 + \varepsilon) - f(x_0)\}.$$

Рассмотрим интервал $(f(x_0) - \delta(\varepsilon), f(x_0) + \delta(\varepsilon)) \subset (f(x_0 - \varepsilon), f(x_0 + \varepsilon)) \Rightarrow$

$$\Rightarrow \forall y \in \Big(f(x_0) - \delta(\varepsilon), f(x_0) + \delta(\varepsilon)\Big) \hookrightarrow f^{-1}(y) \in U_{\varepsilon}(x_0) = U_{\varepsilon}\Big(f^{-1}(y_0)\Big)$$

Следовательно, f^{-1} непрерывна в точке y_0 .

Для концевых точек аналогично, только в них будет односторонняя непрерывность.

Следствие. Пусть $f \in C([a,b]), a,b \in \hat{\mathbb{R}}$ и строго монотонна. Тогда $\exists f^{-1} \in C((m,M))$ и строго монотонна с тем же характером монотонности, что и у f.

Доказательство. Так как f строго монотонна, то $\exists f^{-1}$, имеющая тот же характер монотонности. Покажем, что f((a,b)) = (m,M).

$$m = \inf_{x \in (a,b)} f(x) \in \hat{\mathbb{R}}$$

$$M = \sup_{x \in (a,b)} f(x) \in \hat{\mathbb{R}}$$

В силу обобщённой теоремы о промежуточном значении.

$$f((a,b))\supset (m,M).$$

Но m и M не могут приниматься. Рассмотрим случай строгого возрастания (для убывания аналогично).

Если
$$\exists x^* \in (a,b): M = f(x^*) \Rightarrow \exists x^{**} \in (x^*,b): f(x^{**}) > f(x^*) = M,$$

но это противоречит тому, что $M=\sup_{x\in(a,b)}f(x).\Rightarrow f\Bigl((a,b\Bigr))\subset\Bigl(m,M\Bigr)\Rightarrow$

$$\Rightarrow f\Big((a,b)\Big) = \Big(m,M\Big).$$

Непрерывность f^{-1} доказывается так же, как в предыдущей теореме.

4.11 Первый замечательный предел и непрерывность элементарных функций

Примечание. В этом параграфе утверждения доказываются неточно (но для экзамена и так сойдёт).

Лемма 4.10.

$$\sin x < x < \operatorname{tg} x, \quad x \in \left(0, \frac{\pi}{2}\right)$$

Доказательство.

$$S_{OAB} < S_{\text{сектора}} < S_{OAC}$$

$$\frac{\sin x}{2} < \frac{x}{2} < \frac{\operatorname{tg} x}{2}$$

Следствие. (Первый замечательный предел)

$$\exists \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство. Так как мы работаем в проколотой окрестности нуля, то $\frac{\sin x}{x}$ определена. В силу принципа локализации достаточно считать, что мы изучаем $\frac{\sin x}{x}$ в интервале $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus \{0\}; \frac{\sin x}{x}$ — чётная.

$$\frac{\sin x}{\operatorname{tg} x} < \frac{\sin x}{x} < 1 \Leftrightarrow \cos x < \frac{\sin x}{x} < 1 \quad \forall x \in \left(0, \frac{\pi}{2}\right)$$

В силу чётности:

$$\cos x < \frac{\sin x}{x} < 1 \quad \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad (*)$$

В силу непрерывности $\cos x$ в нуле $\exists \lim_{x\to 0} \cos x = \cos 0 = 1$.

Пользуясь (*) и теоремой о двух милиционерах получаем, что $\exists \lim_{x\to 0} \frac{\sin x}{x} = 1$

Теорема 4.20. $\sin x \ u \cos x$ непрерывны по всей своей области определения.

Доказательство. В силу теоремы о композиции непрерывных функций достаточно доказать непрерывность синуса в каждой точке, так как $\cos x = \sin\left(x + \frac{\pi}{2}\right)$.

$$\forall x_1, x_2 \in \mathbb{R}: \left| \sin x_1 - \sin x_2 \right| = \left| 2 \sin \left(\frac{x_1 - x_2}{2} \right) \cos \left(\frac{x_1 + x_2}{2} \right) \right| \leqslant 2 \left| \sin \left(\frac{x_1 - x_2}{2} \right) \right| \leqslant \left| x_1 - x_2 \right|$$

$$2 \cdot \frac{|x_1 - x_2|}{2} = |x_1 - x_2|$$

Следовательно, если зафиксировать x_0 , то

$$0 \le |\sin x - \sin x_0| \le |x - x_0| \to 0, x \to x_0.$$

По теореме о двух милиционерах $\lim_{x\to x_0} \sin x = \sin x_0$.

Определение 4.30. Функция $\arcsin x$ по определению обратна к $\sin x$ на отрезке $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Она существует, так как $\sin x$ монотонен и непрерывен на отрезке $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

Следовательно, arcsinx строго возрастает и непрерывна на [-1,1].

Определение 4.31. Функция $\arccos x$ по определению обратна к $\sin x$ на отрезке $[0, \pi]$ Она существует, так как $\cos x$ монотонен и непрерывен на отрезке $[0, \pi]$. Следовательно, $\arccos x$ строго убывает и непрерывна на [-1, 1].

4.12 Число *е*

Лемма 4.11. (Неравенство Бернулли)

$$(1+x)^n \geqslant 1 + nx, \quad \forall x \geqslant -1, \quad \forall n \in \mathbb{N}$$

Доказательство. Будем доказывать по индукции:

При n=1 верно.

Предположим, что доказали при $n=k\in\mathbb{N}$. Покажем, что для n=k+1 верно.

$$(1+x)^{k+1} = (1+x)(1+x)^k \geqslant (1+x)(1+kx) = 1+(k+1)x+kx^2 \geqslant 1+(k+1)x$$
, так как $kx^2 \geqslant 0$.

Следовательно, по индукции верно для всех $n \in \mathbb{N}$.

Теорема 4.21. Последовательность:

$$x_n = \left(1 + \frac{1}{n}\right)^{n+1} \quad n \in \mathbb{N}$$

ограничена снизу и монотонно не возрастает.

Доказательство.

$$\left(1 + \frac{1}{n}\right)^{n+1} \geqslant 1 \quad \forall n \in \mathbb{N}$$

Значит, она ограничена снизу.

Докажем монотонное возрастание (нестрогое убывание) для $n \geqslant 2$:

$$\frac{x_{n-1}}{x_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \left(\frac{n}{n-1}\right)^n \cdot \left(\frac{n}{n+1}\right)^{n+1} = \frac{n-1}{n} \cdot \left(\frac{n}{n-1}\right)^{n+1} \cdot \left(\frac{n}{n+1}\right)^{n+1} = \frac{n-1}{n} \cdot \left(\frac{n}{n+1}\right)^{n+1} \cdot$$

$$\frac{n-1}{n} \cdot \left(\frac{n^2}{n^2 - 1}\right)^{n+1} = \frac{n-1}{n} \cdot \left(1 + \frac{1}{n^2 - 1}\right)^{n+1} \geqslant \left(1 + \frac{n+1}{(n+1)(n-1)}\right) \cdot \frac{n-1}{n} = 1$$

По неравенству Бернулли для $x = \frac{1}{n^2 - 1}$.

Итого получаем:
$$\forall n \geqslant 2 \quad \frac{x_{n-1}}{x_n} \geqslant 1.$$

Следовательно, последовательность нестрого убывает.

Теорема-определение 4.1. $\exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \geqslant 2$ и это число называется «числом е».

Доказательство.

$$\left(1+rac{1}{n}
ight)^n\geqslant 2 \quad \forall n\in\mathbb{N}$$
 из неравенства Бернулли.

В силу предыдущей теоремы и теоремы Вейерштрасса о монотонной последовательности

$$\exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \inf \left\{ \left(1 + \frac{1}{n} \right)^{n+1} : n \in \mathbb{N} \right\} \in \mathbb{R}$$

$$\left(1+\frac{1}{n}\right)^n = \frac{\left(1+\frac{1}{n}\right)^{n+1}}{1+\frac{1}{n}} \Rightarrow \exists \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \frac{\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}}{\lim_{n\to\infty} \left(1+\frac{1}{n}\right)} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}$$

Переходя к пределу в неравенстве:

$$\left(1+\frac{1}{n}\right)^n\geqslant 2.$$

$$\left(1+\frac{1}{n}\right)^n\to e,\ n\to\infty$$
 и $2\to2,\ n\to\infty,$ откуда получаем $e\geqslant 2.$ \qed

4.13Показательная функция

Лемма 4.12. $\forall n \in \mathbb{N}$ функция $f(x) = x^n$ непрерывна на \mathbb{R} . Кроме того, $f([0, +\infty)) = [0, +\infty)$ (*)

Доказательство. Непрерывность следует по индукции из непрерывности произведения непрерывных функций.

Докажем (*). Так как $x \ge 0$, то, очевидно, $f([0, +\infty)) \subset [0, +\infty)$.

Из $f \in C([0, +\infty))$ и теоремы о промежуточном значении:

$$\left(\inf_{x\in[0,+\infty)}f(x),\sup_{x\in[0,+\infty)}f(x)\right)\subset f\left([0,+\infty)\right)$$

$$\inf_{\substack{x \in [0, +\infty)}} x^n = 0$$

$$\sup_{x \in [0, +\infty)} x^n = +\infty \Rightarrow (0, +\infty) \subset f([0, +\infty))$$

Но кроме того f(0) = 0, следовательно:

$$[0, +\infty) \subset f([0, +\infty))$$

Из
$$f([0, +\infty)) \subset [0, +\infty)$$
 и $[0, +\infty) \subset f([0, +\infty))$ следует, что $f([0, +\infty)) = [0, +\infty)$.

Лемма 4.13. $\forall n \in \mathbb{N}$ $f(x) = x^n$ строго возрастает на луче $[0, +\infty)$

Доказательство. Из только что доказанного следует, $\exists f^{-1} : [0, +\infty) \mapsto [0, +\infty)$, обратная $K f(x) = x^n$.

Определение 4.32. Корень n-ой степени: $f^{-1}(x^n) := \sqrt[n]{x}$.

Примечание. $f(x) = \sqrt[n]{x}$ строго возрастает на $[0, +\infty)$ и $C([0, +\infty))$.

Определение 4.33. Пусть $m \in \mathbb{N}$, $n \in \mathbb{N}$, $\frac{m}{n}$ — несократимая дробь.

$$f(x) = x^{\frac{m}{n}} := (\sqrt[n]{x})^m, \quad x \in [0, +\infty).$$

Определение 4.34. $x^{-\frac{m}{n}} := \frac{1}{(\sqrt[n]{x})^m}, \quad x \in (0, +\infty).$

Примечание. Следующие свойства являются «школьными»: Пусть $a \in (0; +\infty), b \in (0; +\infty).$

- 1. $a^{r_1} < a^{r_2}, \ a > 1,$ $r_1, r_2 \in \mathbb{Q}$: $r_1 < r_2$
- 2. $a^{r_1} > a^{r_2}, \ a \in (0,1), \quad r_1, r_2 \in \mathbb{Q}: r_1 < r_2$
- 3. $a^{r_1} \cdot a^{r_2} = a^{r_1 + r_2}$ $\forall r_1, r_2 \in \mathbb{Q}$ 4. $(a^{r_1})^{r_2} = a^{r_1 \cdot r_2}$ $\forall r_1, r_2 \in \mathbb{Q}$ 5. $(a \cdot b)^r = a^r \cdot b^r$ $\forall r \in \mathbb{Q}$
- 6. $a^0 = 1$

Доказательство. Докажем свойство 1. Так как $r_1,r_2\in\mathbb{Q},$ то мы всегда можем представить их в виде дробей $\frac{m_1}{n}$ и $\frac{m_2}{n}$ соответственно, где $m_1, m_2 \in \mathbb{Z}, n \in \mathbb{N}$, притом $m_1 < m_2$. Тогда нам нужно доказать, что $\sqrt[n]{a^{m_1}} < \sqrt[n]{a^{m_2}}$ (1), а для этого доказать, что $a^{m_1} < a^{m_2}$ и $\sqrt[n]{b} < \sqrt[n]{c}$ (2), где $b, c \in (0; +\infty)$:

<u>Шаг 1.</u> Докажем (1).

Для случая $m_1, m_2 > 0$ очевидно, так как исходное неравенство преобразуется к виду $a^{m_1} \cdot (a^{m_2-m_1}-1) > 0$, где оба множителя положительные.

Для случая $m_1 < 0, m_2 > 0$: рассмотрим $a^{-|m_1|} \lor a^{m_2} \Leftrightarrow 0 \lor \frac{a^{m_2} \cdot a^{|m_1|} - 1}{a^{|m_1|}}$, а так как слева и делимое, и делитель положительные, то должен стоять знак <, что нам и нужно было. Случай $m_1, m_2 < 0$ делается аналогично предыдущему (рассмотрением $a^{-|m_1|}$ и $a^{-|m_2|}$). <u>Шаг 2.</u> Неравенство (2) следует из строгого возрастания $f(x) = \sqrt[n]{x}$ на луче $[0; +\infty)$. Объединяя, получаем $a^{r_1} < a^{r_2}, \ a > 1, r_1, r_2 \in \mathbb{Q}$.

Лемма 4.14. (Неравенство Бернулли 2) Пусть $a>1, |r|\leqslant 1, r\in\mathbb{Q}$. Тогда

$$|a^r - 1| \leqslant 2|r| \cdot (a - 1) \quad (*)$$

Доказательство. Сначала докажем для $r=\frac{1}{n}$. Поскольку a>1, то $a^{\frac{1}{n}}=1+\alpha,\ \alpha>0$.

$$a=(1+lpha)^n\geqslant 1+n\cdotlpha\Rightarrowlpha\leqslant\left(rac{a-1}{n}
ight),$$
 значит при $r=rac{1}{n}$ (*) выполняется.

Пусть
$$r \in (0,1]$$
. Следовательно, $\exists !\ n \in \mathbb{N}:\ r \in \left(\frac{1}{n+1},\ \frac{1}{n}\right]$. И $2r \geqslant \frac{1}{n}$.

$$a^r - 1 \leqslant a^{\frac{1}{n}} - 1 \leqslant \frac{1}{n} \cdot (a - 1) \leqslant 2r \cdot (a - 1)$$
, получается при $r \in (0,1]$ доказали.

Для r=0 очевидно.

Рассмотрим случай $r \in [-1,0)$. Тогда $a^r = a^{-|r|} = \frac{1}{a^{|r|}}$.

$$|a^{r} - 1| = 1 - \frac{1}{a^{|r|}} = \frac{1}{a^{|r|}} \cdot (a^{|r|} - 1) \leqslant \frac{2|r| \cdot (a - 1)}{a^{|r|}} \leqslant 2|r| \cdot (a - 1)$$

Чтобы доказать неравенство для произвольных действительных $|r| \leqslant 1$, нужно $\forall x \in$ (-1;1) взять рациональную последовательность r_n , сходящуюся к x, так как для рациональных неравнество верно. А далее предельный переход в неравенстве.

Теорема-определение 4.2. Пусть $a>0, x\in\mathbb{R}$. Тогда $\forall \{r_n\}_{n=1}^{\infty}\subset\mathbb{Q}:\lim_{n\to\infty}r_n=x.$

$$\exists \lim_{n \to \infty} a^{r_n} =: a^x$$

и этот предел не зависит от выбора последовательности $\{r_n\}$.

Доказательство. Рассмотрим случай a>1. Зафиксируем $x\in\mathbb{R}$ и произвольную последовательность $\{r_n\}\subset \mathbb{Q}\colon \lim_{n\to\infty}r_n=x.$ Так как сходящаяся последовательность ограничена, то

$$\exists M \in \mathbb{N} : |r_n| \leqslant M \Rightarrow \frac{1}{a^M} \leqslant a^{r_n} \leqslant a^M \quad \forall n \in \mathbb{N}.$$

ФПМИ МФТИ, осень 2023

Пусть $n, m \in \mathbb{N}$.

$$|a^{r_n} - a^{r_m}| = a^{r_m} \cdot |a^{r_n - r_m} - 1| \le a^M \cdot |a^{r_n - r_m} - 1|.$$

Так как $\{r_n\}$ — сходящаяся последовательность, то она фундаментальна. Значит,

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \in \mathbb{N}: \; \forall n,m \geqslant N(\varepsilon) \hookrightarrow |r_n - r_m| < \varepsilon \Rightarrow$$

$$\Rightarrow \text{при } n,m \geqslant N(1) \hookrightarrow |r_n - r_m| < 1 \Rightarrow$$

$$\Rightarrow \text{при } n,m \geqslant N(1) \hookrightarrow |a^{r_n} - a^{r_m}| \leqslant 2a^M |r_n - r_m| \cdot (a-1)$$

$$\forall \varepsilon > 0 \; \exists \tilde{N}(\varepsilon) = N \left(\frac{\varepsilon}{2a^M \cdot (a-1)}\right) : \forall n,m \geqslant \tilde{N}(\varepsilon) \hookrightarrow |a^{r_n} - a^{r_m}| \leqslant \frac{\varepsilon \cdot 2a^M \cdot (a-1)}{2a^M \cdot (a-1)} = \varepsilon$$

Следовательно, $\{a^{r_n}\}$ фундаментальна. Значит, по критерию коши:

$$\exists \lim_{n \to \infty} a^{r_n} = a^x.$$

Проверим корректность, то есть независимость от выбора последовательности $\{r_n\}$. Пусть $\lim_{n\to\infty}r'_n=x$ и $\lim_{n\to\infty}r''_n=x$.

$$\exists \tilde{N} \in \mathbb{N} : \forall n \geqslant \tilde{N} \hookrightarrow |r'_n - r''_n| \leqslant 1 \Rightarrow$$

$$\Rightarrow \forall n \geqslant \tilde{N} : |a^{r'_n} - a^{r''_n}| = a^{r'_n} \cdot |a^{r''_n - r'_n} - 1| \leqslant 2a^{r'_n} \cdot |r'_n - r''_n| \cdot (a - 1)$$

Так как $\{a^{r'_n}\}_{n=1}^{\infty}$ — сходящаяся последовательность, то она ограничена, значит

$$\exists C>0:\ a^{r_n'}\leqslant C\quad\forall n\in\mathbb{N}\Rightarrow 0\leqslant |a^{r_n'}-a^{r_n''}|\leqslant 2C\cdot (a-1)\cdot |r_n'-r_n''|\to 0, n\to\infty$$

По теореме о двух миллиционерах:

$$\lim_{n \to \infty} a^{r'_n} = \lim_{n \to \infty} a^{r''_n} = a^x.$$

Случай a = 1 тривиален.

Случай $a \in (0,1)$ сводится к только что рассмотренному, если учесть, что

$$a^r = \left(\frac{1}{\frac{1}{a}}\right)^r, \quad \frac{1}{a} > 1.$$

Лемма 4.15. Новое определение совпадает с предыдущим при $x \in \mathbb{Q}$.

Доказательство. При $x \in \mathbb{Q}$ рассмотрим стационарную последовательность $\{r_n\}_{n=1}^{\infty} = x$. Тогда по новому определению $a^x = \lim_{n \to \infty} a^{r_n}$ для любой последовательности $\{r_n\}$, сходящейся к x, в частности и для последовательности $\{r_n\} = x$.

Но тогда
$$a^x = \lim_{n \to \infty} a^{r_n}$$
 по старому определению. \square

Таким образом, мы построили при любом a > 0 функцию $a^x : \mathbb{R} \mapsto (0, +\infty)$.

Теорема 4.22. Пусть a > 0. Функция $f(x) = a^x$ непрерывна в каждой точке числовой прямой.

Доказательство. Пусть a>1. Фиксируем точку $x_0\in\mathbb{R}$.

Тогда по неравенству Бернулли:

$$\forall x \in U_1(x_0) \hookrightarrow |a^x - a^{x_0}| = a^{x_0} \cdot |a^{x - x_0} - 1| \leqslant 2a^{x_0} \cdot |x - x_0| \cdot (a - 1)$$

$$0 \leqslant |a^x - a^{x_0}| \leqslant 2a^{x_0} \cdot |x - x_0| \to 0, x \to x_0 \Rightarrow a^x \to a_{x_0} \cdot (a - 1), x \to x_0$$

Следовательно, a^x непрерывна в точке x_0 . Но x_0 была выбрана произвольно. При a>1доказано.

Случай a=1 тривиален, так как $1=1^r \quad \forall r \in \mathbb{Q} \Rightarrow 1^x=1 \quad \forall x \in \mathbb{R}.$

Случай $a \in (0,1)$ сводится к только что рассмотренному, если учесть, что

$$a^r = \left(\frac{1}{\frac{1}{a}}\right)^r, \quad \frac{1}{a} > 1.$$

4.14 Свойства показательной функции

Теорема 4.23. Докажем свойства показательной функции. Считаем $a, b, c \in (0; +\infty)$, если не сказано обратного.

- 1. a^x строго возрастает $a \in (1; +\infty)$
- $2. \quad a^x$ строго убывает $a \in (0,1)$
- 3. $a^x > 0$ $\forall x \in \mathbb{R}$
- 4. $a^x \cdot a^y = a^{x+y}$ $\forall x, y \in \mathbb{R}$
- 5. $(a^x)^y = a^{xy}$ $\forall x, y \in \mathbb{R}$
- $6. \quad (bc)^x = b^x \cdot c^x$ $\forall x \in \mathbb{R}$
- 7. $a^x \in C(\mathbb{R})$ (доказали используя третье)

Доказательство. 1. Докажем первое свойство, $a \in (1; +\infty)$, второе анологично. Возьмём $x, y \in \mathbb{R}$: x < y.

Так как $x < y \Rightarrow \exists p, q \in \mathbb{Q}: p \geqslant x$ и $q \leqslant y: x .$

Возьмем последовательность $\{r'_n\} \subset \mathbb{Q}$: $\lim_{n \to \infty} r'_n = x$. Тогда $x \leqslant r'_n \leqslant p \ \forall n \in \mathbb{N}$.

Возьмем последовательность $\{r_n''\}\subset \mathbb{Q}$: $\lim_{n\to\infty}r_n''=y$. Тогда $q\leqslant r_n''\leqslant y\ \forall n\in\mathbb{N}$.

Пользуясь свойством монотонности a^r по $r \in \mathbb{Q}$

$$\begin{aligned} a^x &:= \lim_{n \to \infty} a^{r'_n}, \ a^y &:= \lim_{n \to \infty} a^{r''_n}. \\ a^{r'_n} &\leqslant a^p < a^q \leqslant a^{r''_n} \ \forall n \in \mathbb{N} \end{aligned}$$

$$a^{r'_n} \leq a^p < a^q \leq a^{r''_n} \ \forall n \in \mathbb{N}$$

Из предельного перехода в неравенствах и используя определения a^x и a^y получаем:

$$\begin{cases} a^x \leqslant a^p \\ a^q \leqslant a^y \end{cases} \Rightarrow a^x \leqslant a^p < a^q \leqslant a^y$$

2. Докажем третье свойство:

 $a > 1, a \in (0,1)$ аналогично

Пусть $x \in \mathbb{R}$. Тогда $\exists p \in \mathbb{Q} : p \leqslant x$, но для любого рационального числа: $0 < a^p \leqslant a^x$.

3. Докажем четвертое свойство:

Пусть $x, y \in \mathbb{R}$. Возьмем аппроксимирующие последовательности:

$$\{r'_n\}, \{r''_n\} \subset \mathbb{Q}: \lim_{n \to \infty} r'_n = x, \lim_{n \to \infty} r''_n = y.$$

$$a^{r'_n} \cdot a^{r''_n} = a^{r'_n + r''_n}, \forall n \in \mathbb{N}$$

Переходим к пределу в равенстве:

$$a^x \cdot a^y = a^{x+y}$$

Так как x и y - произвольные, верно для всех

4. Докажем пятое свойство: Фиксируем произвольные $x,y \in \mathbb{R}$ Возьмем две аппроксимирующие последовательности для х

Обозначим $r'_n\downarrow x,\;,n\to\infty$ Последовательность r'_n монотонно убывает к x

Обозначим $r_n''\uparrow x,\ ,n\to\infty$ Последовательность r_n'' монотонно возрастает к x

$$\rho'_n \uparrow y, \ n \to \infty$$

$$\rho_n'' \uparrow y, \ n \to \infty$$

$$(a^{r''_n})^{\rho''_n} \leqslant (a^x)^{\rho''_n} \leqslant (a^x)^y \leqslant (a^{r'_n})^y \leqslant a^{r'_n \cdot \rho'_n}$$

В итоге

$$(a^{r_n''})^{\rho_n''} \leqslant (a^x)^y \leqslant a^{r_n' \cdot \rho_n'}$$

Переходим к переделу при $n \to \infty$ в этих двух неравенствах

$$a^{x \cdot y} \leqslant (a^x)^y \leqslant a^{x \cdot y} \Rightarrow (a^x)^y = a^{x \cdot y}$$

5. Шестое свойство доказывается также предельным переходом

$$\{r'_n\} \subset \mathbb{Q}: \quad r'_n \to x, n \to \infty$$

$$(bc)^{x} = \lim_{n \to \infty} (bc)^{r'_{n}} = \lim_{n \to \infty} b^{r'_{n}} c^{r'_{n}} = \lim_{n \to \infty} b^{r'_{n}} \cdot \lim_{n \to \infty} c^{r'_{n}} = b^{x} c^{x}$$

6. Седьмое свойство (о непрерывности) доказано.

Определение 4.35. Если в показательной функции a = e, то функция вида e^x называется экспонентой

Определение 4.36. Пусть $a > 0, a \neq 1$, тогда существует обратная функия к a^x , называется логарифмом и записывается как $\log_a x$

Примечание. Если a=1 разрешить, то теряется инъективность. Так как 1^x это константа, которая отображает все x в одну точку.

Теорема 4.24. Если a > 1, то $\log_a x$ корректно определена, строго возрастает и непрерывна на луче $(0, +\infty)$, а ее область значений $-\mathbb{R}$;

Eсли $a \in (0,1)$ то $\log_a x$ корректно определена, строго убывает и непрерывна н луче $(0,+\infty)$, а ее область значений — \mathbb{R} .

Доказательство. Докажем при a > 1, при $a \in (0, 1)$, аналогично.

Так как a^x - строго возрастает и непрерывна, то существует обратная к ней

Область значений луч $(0, +\infty)$

При
$$n \in \mathbb{N}$$
, $a^n \geqslant 1 + (a-1)n \to +\infty$, $n \to +\infty$ $a^{-n} = \frac{1}{a^n} \leqslant \frac{1}{(a-1)n} \to +0$, $n \to +\infty$ $\inf_{x \in \mathbb{R}} a^x = 0$

$$\inf a^x = 0$$

$$x \in \mathbb{R}$$

$$\sup a^x = +\infty$$

По обобщенной теореме о промежуточном значении для a^x и теоремы об обратной функции. $\log_a x$ -непрерывен строго возратает на луче $(0, +\infty)$, и область значений $\mathbb R$

Определение 4.37. $lnx := \log_e x$ и называется натуральным логарифмом

Определение 4.38. Пусть $\alpha \in \mathbb{R}$. Рассмотим функцию:

$$x^{\alpha} := e^{\alpha lnx}, \ x > 0$$

Эта функция строго монотонна (за исключением случая $\alpha = 0$). Она непрерывна на луче $(0, +\infty)$ как композиция непрерывных функций.

Если $\alpha \geqslant 0$, то x^{α} можно рассмотреть на луче $[0, +\infty)$, полагая $0^{\alpha} := 0$

Теорема 4.25. Доказательство некоторых школьных свойства логарифма по определению

1.
$$\log_a xy = \log_a x + \log_a y$$
, $a > 0, a \neq 1, \forall x, y > 0$

2.
$$\log_a b \cdot \log_b a = 1$$
 $a > 0, a \neq 1, b > 0, b \neq 1$

3.
$$\log_a x^{\alpha} = \alpha \log_a x, \ x > 0, a > 0, a \neq 1, \alpha \in \mathbb{R}$$

Доказательство. 1. Фиксируем произвольные x, y, по определнию логарифма (обратная функция):

$$xy = a^{\log_a(xy)}$$

$$a^{\log_a x + \log_a y} = (a^{\log_a x})(a^{\log_a y}) = xy = a^{\log_a x}$$

Так как a^x инъективно

$$a^{\log_a(xy)} = a^{\log_a x + \log_a y} \Rightarrow \log_a xy = \log_a x + \log_a y$$

2. В силу инъективности a^x

$$a^{\log_a b \cdot \log_b a} = \left(a^{\log_a b}\right)^{\log_b a} = b^{\log_b a} = a = a^1$$

3.
$$a^{\log_a x^{\alpha}} = x^{\alpha}$$

$$a^{\alpha \log_a x} = (a^{\log_a x})^{\alpha} = x^{\alpha}$$

4.15 Второй замечательный предел

Лемма 4.16. Пусть $\{n_k\}\subset\mathbb{N}$ — последовательность натуральных числел, такая что $\exists\lim_{k\to\infty}n_k=+\infty$. Тогда:

$$\exists \lim_{k \to \infty} = \left(1 + \frac{1}{n_k}\right)^{n_k} = e$$

Доказательство. По определению числа е:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \hookrightarrow \left(1 + \frac{1}{n}\right)^n \in U_{\varepsilon}(e)$$

Так как $\lim_{k\to\infty} n_k = +\infty$, то $\exists K(\varepsilon) : \forall k \geqslant K(\varepsilon) \hookrightarrow n_k \geqslant N(\varepsilon) \Rightarrow$

$$\Rightarrow \forall \varepsilon > 0 \ \exists K(\varepsilon) : \forall k \geqslant K(\varepsilon) \hookrightarrow \left(1 + \frac{1}{n_k}\right)^{n_k} \in U_{\varepsilon}(e) \Rightarrow \exists \lim_{k \to \infty} = \left(1 + \frac{1}{n_k}\right)^{n_k} = e$$

Лемма 4.17. $\exists \lim_{x\to 0+0} (1+x)^{1/x} = e$

Доказательство. Возьмем последовательность Гейне в нуле (справа) $\{x_k\}$, то есть $x_k \to 0, k \to \infty$ и $x_k > 0 \ \forall k \in \mathbb{N}$

Так как $x_k \to +0, k \to \infty \Rightarrow \exists K_0 \in \mathbb{N}: \ \forall k \geqslant K_0 \hookrightarrow x_k \in (0,1) \Rightarrow$

$$\Rightarrow \forall k \geqslant K_0 \ \exists n_k \in \mathbb{N} : \ (x_k)^{-1} \in [n_k, n_{k+1})$$

$$\left(1+\frac{1}{n_k+1}\right)^{n_k}\leqslant \left(1+x\right)^{1/x_k}\leqslant \left(1+\frac{1}{n_k}\right)^{n_k+1}$$

$$\left(1+\frac{1}{n_k+1}\right)^{n_k}=\frac{\left(1+\frac{1}{n_k+1}\right)^{n_k+1}}{1+\frac{1}{n_k+1}}\to e,k\to\infty \text{ по предыдущей лемме}$$

$$\left(1+rac{1}{n_k}
ight)^{n_k+1} o e, k o \infty$$
 аналогично предыдущему

Так как последовательность Гейне была выбрана произвольно, то вышенаписанное справедливо для любой последовательности Гейне, значит, по теореме об эквивалетности определений по Коши и по Гейне для одностороннего предела функции (аналогична теореме об эквивалетности определений по Коши и по Гейне для предела функции) получаем $\exists \lim_{x\to 0+0} \left(1+x\right)^{1/x} = e \qquad \qquad \Box$

Лемма 4.18.
$$\exists \lim_{x \to 0-0} (1+x)^{1/x} = e^{-x}$$

Доказательство. Возьмем последовательность Гейне $\{x_k\}$ такую, что $x_k \to 0, k \to \infty$ и $x_k < 0 \ \forall k \in \mathbb{N}$

Рассмотрим последовательность
$$y_k=\frac{-x_k}{1+x_k}>0 \Rightarrow x_k=\frac{-y_k}{1+y_k}$$

$$(1+x_k)(1+y_k)=1 \ \forall f\in \mathbb{N}$$

$$(1+x_k)^{1/x_k} = \left[(1+y_k)^{-1} \right]^{-\frac{1+y_k}{y_k}} = (1+y_k)^{\frac{1}{y_k}+1} = (1+y_k)^{\frac{1}{y_k}} \cdot (1+y_k) \to e, k \to \infty$$

$$(1+y_k)^{\frac{1}{y_k}} \to e, k \to \infty, \qquad (1+y_k) \to 1, k \to \infty$$
 Следовательно, $\exists \lim_{k \to \infty} \left(1+x_k \right)^{1/x_k} = e$. Значит, $\exists \lim_{x \to 0-0} \left(1+x \right)^{1/x} = e$.

Следствие. $\exists \lim_{x \to 0} (1+x)^{1/x} = e -$ второй замечательный предел

Пример.
$$\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$$

$$\frac{\ln(1+x)}{x} = \ln(1+x)^{1/x}$$

 $y(x) = (1+x)^{1/x}$ корректно определена в проколотой окрестности $0, \exists \lim_{x\to 0} y(x) = e \ln(y)$ непрерывна на всей числовой прямой, в частности непрерывна в точке e. Значит, по теореме о замене переменной при вычислении предела

$$\exists \lim_{x \to 0} \ln(y(x)) = \lim_{y \to e} \ln(y) = \ln e = 1$$

Пример. $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$

$$\frac{y(x) = e^x - 1}{x = \ln(1 + y(x))} \Rightarrow \frac{e^x - 1}{x} = \frac{y(x)}{\ln(1 + y(x))}$$

Так как e^x строго растет, то e^x-1 тоже. Значит, y(x) — инъекция. Следовательно, если $x \neq 0$, то $y(x) \neq 0 \Rightarrow \forall x \in \mathring{U}_{\delta}(0) \hookrightarrow y(x) \neq 0$.

Значит, можно воспользоваться теоремой о замене переменной при вычислении предела:

$$\exists \lim_{x \to 0} \frac{y(x)}{\ln(1+y(x))} = \lim_{y \to 0} \frac{y}{\ln(1+y)} = 1$$

4.16 Эквивалентность функций

Определение 4.39. Пусть $\delta_0 > 0, \ x_0 \in \overline{\mathbb{R}}.$ Пусть $\displaystyle \frac{f: \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R},}{g: \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R},}$

Будем говорить, что $f(x) \sim g(x), x \to x_0$, если $\exists \theta \colon \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R}$, такая что

- $1. \lim_{x \to x_0} \theta(x) = 1;$
- 2. $f(x) = \theta(x) \cdot g(x) \quad \forall x \in \mathring{U}_{\delta_0}(x_0).$

Определение 4.40. (Из стандартных книжек).

$$f(x) \sim g(x), x o x_0$$
, если $\exists \lim_{x o x_0} rac{f(x)}{g(x)} = 1, \ g(x)
eq 0 \ \forall x \in \mathbb{R}.$

Примечание. «~» — действительно отношения эквивалентности на множестве функций, заданных в $\mathring{U}_{\delta_0}(x_0)$.

а) Рефлексивность: $f(x) \sim f(x), x \to x_0$

 \mathcal{A} оказательство. Возьмём $\theta \equiv 1$.

b) Симметрия: $f(x) \sim g(x), x \to x_0 \Rightarrow g(x) \sim f(x), x \to x_0$.

Доказательство. $f(x) \sim g(x), x \to x_0 \Rightarrow \exists \theta(x) : \begin{cases} \lim_{x \to x_0} \theta(x) = 1 \\ f(x) = \theta(x)g(x) \end{cases}$

Тогда пусть
$$\overline{\theta}(x) = \begin{cases} \frac{1}{\theta(x)}, & \theta(x) \neq 0 \\ 1, & \theta(x) = 0 \end{cases} \Rightarrow \begin{cases} \lim_{x \to x_0} \overline{\theta}(x) = 1 \\ g(x) = \overline{\theta}(x) f(x) & \forall x \in \mathring{U}_{\delta_0}(x_0) \end{cases}$$

с) Транзитивность: $f(x) \sim g(x), x \to x_0$ и $g(x) \sim h(x), x \to x_0 \Rightarrow f(x) \sim h(x), x \to x_0$

$$\exists \theta_1(x): \ f(x) = \theta_1(x)g(x)$$
 Доказательство.
$$\exists \theta_2(x): \ g(x) = \theta_2(x)h(x) \Rightarrow \theta(x) := \theta_1(x)\theta_2(x),$$

$$\lim_{x \to x_0} \theta_1(x) = \lim_{x \to x_0} \theta_2(x) = 1$$

Так как
$$\begin{cases} \lim_{x \to x_0} \theta(x) = 1 \\ f(x) = \theta(x)h(x) \quad \forall x \in \mathring{U}_{\delta_0}(x_0) \end{cases} \Rightarrow f(x) \sim h(x), x \to x_0$$

- 1. $\sin x \sim x, \ x \to 0$
- 2. $\cos x \sim 1, x \to 0$
- 3. $\tan x \sim x, x \to 0$
- 4. $\arcsin x \sim x, x \to 0$
- 5. $e^x \sim 1 + x, x \to 0$
- 6. $\ln(1+x) \sim x, x \to 0$

Лемма 4.19. Пусть $x_0 \in \mathbb{R}$, $\delta_0 > 0$ f_1 , f_2 , g_1 , g_2 : $\mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R} \leftarrow$ но так писать не следует, лучше каждую отдельно.

следует, лучше каждую отдельно.
$$\Pi y cmb \begin{cases} f_1(x) \sim g_1(x), \ x \to x_0 \\ f_2(x) \sim g_2(x), \ x \to x_0 \end{cases}, \ morda \ f_1(x) \cdot f_2(x) \sim g_1(x) \cdot g_2(x), x \to x_0.$$

Если дополнительно $f_2(x) \neq 0$, $g_2(x) \neq 0$, $\forall x \in \mathring{U}_{\delta_0}(x_0)$, тогда $\frac{f_1(x)}{f_2(x)} \sim \frac{g_1(x)}{g_2(x)}$, $x \to x_0$.

Доказательство. $f_i(x) \sim g_i(x), x \to x_0 \Rightarrow$

$$\Rightarrow i = 1, 2 \quad \exists \theta_i(x) : \begin{cases} \lim_{x \to x_0} \theta_i(x) = 1 \\ f_i(x) = \theta_i(x)g_i(x) \quad \forall x \in \mathring{U}_{\delta_0}(x_0), \end{cases}$$

$$\theta(x) = \theta_1(x)\theta_2(x) : \begin{cases} \lim_{x \to x_0} \theta(x) = 1\\ f_1(x)f_2(x) = \theta(x)g_1(x)g_2(x) \quad \forall x \in \mathring{U}_{\delta_0}(x_0) \end{cases} \Rightarrow$$
$$\Rightarrow f_1(x)f_2(x) \sim g_1(x)g_2(x), x \to x_0$$

Для частного рассуждения аналогичны.

Примечание. Если $\begin{cases} f_1(x) \sim g_1(x), x \to x_0 \\ f_2(x) \sim g_2(x), x \to x_0 \end{cases}$, то из этого не следует, что $f_1(x) \pm f_2(x) \sim g_1(x) \pm g_2(x), x \to x_0$

Пример. Возьмём $x^3 + x \sim x + x^2, \, x \to 0$ и $x \sim x, \, x \to 0$.

Вычтем одно из другого. Неверно, что $x^3 \sim x^2, x \to 0$.

Примечание. Эквивалентность исходных функций в $\mathring{U}_{\delta_0}(x)$ доказывается легко по «книжному» определению.

Замена на эквивалентность позволяет относительно легко вычислять пределы. Π римера не будет. Автор устал(

Лемма 4.20. Пусть
$$\delta_0 > 0$$
, $x_0 \in \overline{\mathbb{R}}$. Пусть $f: \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R}$, $g: \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R}$ $u \ f(x) \sim g(x), x \to x_0$ Тогда $\exists \lim_{x \to x_0} f(x_0) \in \overline{\mathbb{R}} \Leftrightarrow \exists \lim_{x \to x_0} g(x) \in \overline{\mathbb{R}} \ u \ ecnu \ onu \ obs \ cyweensymm, mo \ pashu.$

Доказательство. Задание на дом)

Определение 4.41. (о-малое) Пусть $\delta_0 > 0$, $x_0 \in \overline{\mathbb{R}}$. Пусть $f, g : \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R}$.

Говорят, что f является бесконечно малой функцией по сравнению c g npu $x \to x_0$, и записывается это как $f(x) = o(g(x)), x \to x_0$, если $\exists \varepsilon(x) \colon \check{U}_{\delta_0}(x_0) \mapsto \mathbb{R}$ такая что:

- 1. $\varepsilon(x) \to 0, x \to x_0$;
- 2. $f(x) = \varepsilon(x)q(x) \quad \forall x \in \mathring{U}_{\delta_0}(x_0).$

Примечание. $f(x) = o(g(x)), x \to x_0$ необратимо, то есть нельзя писать o(g(x)) = f(x), потому что o(g(x)) — это не индивидуально взятая функция, а целый класс функций.

Лемма 4.21. Пусть $\delta_0 > 0$, $x_0 \in \mathbb{R}$. Пусть $f, g: U_{\delta_0}(x_0) \mapsto \mathbb{R}$. Тогда если $f(x) \sim g(x), x \to 0$ $x_0, mo f(x) - g(x) = o(g(x)), x \to x_0.$

Доказательство.

$$\exists \theta(x) : \begin{cases} o(x) = 1 \\ f(x) = \theta(x)g(x) \quad \forall x \in \mathring{U}_{\delta_0}(x_0), \end{cases} \Leftrightarrow f(x) - g(x) = (\theta(x) - 1)g(x) \Leftrightarrow \varepsilon(x) = \theta(x) - 1 \to 0, \ x \to x_0.$$

Примеры.

1. $\sin x = x + o(x), x \to 0;$

2. $\cos x = 1 + o(x), x \to 0$;

3. $\tan x = x + o(x), x \to 0;$

4. $\arcsin x = x + o(x), x \to 0$:

5. $e^x = 1 + x + o(x), x \to 0$;

6. $\ln(1+x) = x + o(x), x \to 0$.

Определение 4.42. Пусть $\delta_0 > 0$, $x_0 \in \overline{\mathbb{R}}$. Пусть $f, g : \mathring{U}_{\delta_0}(x_0) \mapsto \mathbb{R}$.

Будем говорить, что f ограничена относительно g в окрестности точки x_0 и записывать $f(x) = O(g(x)), x \to x_0$, если

$$\begin{cases} \exists C > 0 : \\ \exists \delta \in (0, \delta_0) \end{cases} |f(x)| \leqslant C|g(x)| \quad \forall x \in \mathring{U}_{\delta}(x_0)$$

Примечание. $f(x) = O(g(x)), x \to x_0$ необратимо, то есть нельзя писать O(g(x)) = f(x), потому что O(g(x)) — это не индивидуально взятая функция, а целый класс функций.

1.
$$o(f) \pm o(f) = o(f), x \to x_0$$

2.
$$o(f) \cdot o(f) = o(f^2), x \to x_0$$

3.
$$O(f) \pm O(f) = O(f), x \to x_0$$

4.
$$O(f) \cdot O(f) = O(f^2), x \to x_0$$

5.
$$o(f) \cdot O(g) = o(f \cdot g), x \to x_0$$

6.
$$o(f) \pm O(f) = O(f), x \to x_0$$

7.
$$o(f) \cdot o(g) = o(f \cdot g), x \to x_0$$

5 Производная функции в точке. Дифференциал. Дифференцируемость

Определение 5.1. Пусть $f:U_{\delta_0}(x_0)\mapsto \mathbb{R},\ x_0\in \mathbb{R}, \delta_0>0$. Производной функции f в точке x_0 называется:

$$\frac{df}{dx}(x_0) = f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \overline{\mathbb{R}}$$

Определение 5.2. Пусть $x_0 \in \mathbb{R}$, $\delta_0 > 0$ $x_0, x_0 + h \in U_{\delta_0}(x_0)$. Секущей называется прямая, проходящая через точки $(x_0, f(x_0))$ и $(x_0 + h, f(x_0 + h))$

$$y_{\text{сек.}}[x_0, h](x) = f(x_0) + \frac{f(x_0 + h) - f(x_0)}{h}(x - x_0)$$

Примечание. Геометрический смысл производной — предельное положение секущей, то есть прямая, тангенс угла наклона которой является пределом тангенсов углов наклона секущих в зависимости от b

Определение 5.3. Пусть $f: U_{\delta_0}(x_0) \mapsto \mathbb{R}, \ x_0 \in \mathbb{R}, \delta_0 > 0$. Будем говорить, что f дифференцируема в точке x_0 , если $\exists A \in \mathbb{R}: f(x) = f(x_0) + A(x - x_0) + o(x - x_0), x \to x_0$

Теорема 5.1. Функция $f: U_{\delta_0}(x_0) \mapsto \mathbb{R}$ дифференцируема в точке $x_0 \Leftrightarrow f'(x_0) \in \mathbb{R}$. При этом $A = f'(x_0)$.

Доказательство. Функция дифференцируема в точке x_0 значит:

$$f(x) = f(x_0) + A(x - x_0) + \varepsilon(x)(x - x_0), \ \forall x \in U_{\delta_0}(x_0), \ \mathbf{u} \ \varepsilon \to 0, x \to x_0 \Leftrightarrow$$

$$\Leftrightarrow \frac{f(x) - f(x_0)}{x - x_0} = A + \varepsilon(x), \varepsilon \to 0, x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A$$

Определение 5.4. Пусть f дифференцируема в точке x_0 . Тогда дифференциалом f в точке x_0 называется функция $df_{x_0}(h) = f'(x_0)h$

На практике обычно используют обозначения $df(x_0, dx) = f'(x_0)dx$

Задача. Как связаны условия:

- 1. f дифференцируема в точке x_0
- 2. f непрерывна в точке x_0

Решение. 1) $\Leftrightarrow \exists A \in \mathbb{R}: f(x) = f(x_0) + A(x - x_0) + o(x - x_0) \to f(x_0), A(x - x_0) \to 0, o(x - x_0) \to 0, x \to x_0 \Rightarrow 2$).

Из 2) не следует 1). Действительно, дифференцируемость равносильна существованию конечной производной. Следовательно, достаточно предъявить функцию непрерывную в точке, но не имеющую в ней конечной производной.

Например, f(x) = |x| непрерывна в каждой точке, но в нуле не имеет производной.

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$
$$\frac{|x| - 0}{x} = \operatorname{sign} x.$$

Ho sign x в нуле не имеет предела.

Ответ: из 1) следует 2)

5.1 Односторонние производные

Определение 5.5. Односторонние окрестности:

$$U_{\delta}^{+}(x_0) := [x_0, x_0 + \delta)$$

$$U_{\delta}^{-}(x_0) := (x_0 - \delta, x_0]$$

Определение 5.6. Пусть $f:U^+_{\delta_0}(x_0)\mapsto \mathbb{R}$. Тогда если

$$\exists \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \in \overline{R},$$

то он называется правосторонней производной функции f в точке x_0 и обозначается $f'_+(x_0)$

Аналогично определяется левосторонняя производная функции f в точке x_0 и обозначается $f'_{-}(x_0)$

Пример. Рассмотрим f(x) = |x|.

$$f'_{+}(0) = \lim_{x \to +0} \frac{|x|}{x} = \lim_{x \to +0} \frac{x}{x} = 1;$$

$$f'_{-}(0) = \lim_{x \to -0} \frac{|x|}{x} = \lim_{x \to -0} \frac{-x}{x} = -1.$$

Теорема 5.2. Пусть f дифференцируется в точке x_0 . Тогда $f'_+(x_0) = f'_-(x_0) \in \mathbb{R}$.

Доказательство. Функция f дифференцируема в точке x_0 :

$$\exists f'(x_0) \in \mathbb{R} \Leftrightarrow \exists \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}.$$

5.2 Правила вычисления производных и дифференциалов

Теорема 5.3. Пусть функции f и g дифференцируемые g точке $g \in \mathbb{R}$.

Тогда $f \pm g$ и $f \cdot g$ дифференцируемые в точке x_0 , если $g(x_0) \neq 0$, то $\frac{f}{g}$ дифференцируема в точке x_0

Более того справедливы равенства:

1.
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

2.
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

3.
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g^2(x_0)}, \quad g'(x_0) \neq 0.$$

Доказательство. Введем обозначения $\Delta f = f(x) - f(x_0), \ \Delta g = g(x) - g(x_0), \ \Delta x = x - x_0.$

1.
$$\frac{\Delta(f \pm g)}{\Delta x} = \frac{\Delta f \pm \Delta g}{\Delta x} = \frac{\Delta f}{\Delta x} \pm \frac{\Delta g}{\Delta x};$$

$$\frac{\Delta f}{\Delta x} \to f'(x_0), \ \Delta x \to 0 \qquad \frac{\Delta g}{\Delta x} \to g'(x_0), \ \Delta x \to 0;$$

Тогда
$$\frac{\Delta(f \pm g)}{\Delta x} \to f'(x_0) \pm g'(x_0), \ x \to x_0 \Rightarrow (f \pm g)'(x_0) \to f'(x_0) \pm g'(x_0), \ x \to x_0.$$

2.
$$\frac{\Delta(f \cdot g)}{\Delta x} = \frac{f(x)g(x) - f(x_0)g(x_0)}{\Delta x} = \frac{f(x)[g(x) - g(x_0)]}{\Delta x} + \frac{g(x_0)[f(x) - f(x_0)]}{\Delta x} = \frac{f(x)g(x) - f(x_0)g(x_0)}{\Delta x} = \frac{f(x)[g(x) - g(x_0)]}{\Delta x} = \frac{$$

$$= f(x) \cdot \frac{\Delta g}{\Delta x} + g(x_0) \cdot \frac{\Delta f}{\Delta x}.$$

$$\frac{\Delta f}{\Delta x} \to f'(x_0), \Delta x \to 0$$
 $\frac{\Delta g}{\Delta x} \to g'(x_0), \Delta x \to 0$

 $f(x) \to f(x_0), \Delta x \to 0$, так как из дифференцируемости в точке x_0 следует непрерывность

Тогда
$$\frac{\Delta(f \cdot x)}{\Delta x} \to f(x_0)g'(x_0) + g(x_0)f'(x_0), \ \Delta x \to 0 \Rightarrow (f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0).$$

3.
$$\frac{\Delta\left(\frac{f}{g}\right)}{\Delta x} = \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)}}{\Delta x} = \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)\Delta x} =$$

$$= \left(\frac{\left[f(x) - f(x_0)\right]g(x_0)}{\Delta x} - \frac{f(x_0)\left[g(x) - g(x_0)\right]}{\Delta x}\right) \cdot \frac{1}{g(x)g(x_0)}, \ g(x_0) \neq 0, \ g \text{ непрерывна в точке } x_0.$$

Следовательно, переходя к пределу при $x \to x_0$ получим требуемое.

Следствие. $(cf)'(x_0) = c \cdot f'(x_0) \qquad \forall c \in \mathbb{R}$

Следствие. Пусть f и g дифференцируемы в точке x_0 . Тогда выполнено следущее:

1.
$$d(f \pm g)(x_0) = df(x_0) \pm dg(x_0)$$

2.
$$d(f \cdot g)(x_0) = df(x_0) \cdot g(x_0) + f(x_0) \cdot dg(x_0)$$

3.
$$dg(x_0) \neq 0$$
 $d\left(\frac{f}{g}\right)(x_0) = \frac{df(x_0) \cdot g(x_0) - f(x_0) \cdot dg(x_0)}{g^2(x_0)}$

Теорема 5.4. (Производная сложной функции) Пусть f дифференцируема в точке y_0 , g дифференцируем в точке x_0 . Тогда композиция $f \circ g$ дифференцируема в точке x_0 и $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$.

Примечание. Функция f дифференцируема в точке y_0 , g — в точке x_0 , значит они определены в некоторой окрестности. Значения функции g попадут в область определения функции f, потому что g непрерывна (так как дифференцируема). Значит, для любой окрестности, где определена f найдется такая окрестность, что как только x попадает в нее, то g(x) попадает окрестность, где определена f.

Доказательство. Так как f дифференцируема в точке y_0 , то $\exists f'(y_0) \in \mathbb{R}$.

$$f(y) = f(y_0) + f'(y_0)(y - y_0) + \varepsilon_1(y)(y - y_0) \qquad \forall y \in U_{\delta}(y_0) \quad \varepsilon_1(y) \to 0, \quad y \to y_0;$$

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + \varepsilon_2(x)(x - x_0) \qquad \forall x \in U_{\delta}(x_0), \quad \varepsilon_2(x) \to 0, \quad x \to x_0.$$

Вместо y подставим q(x)

$$f(g(x)) = f(g(x_0)) + f'(g(x_0)) \Big(g'(x_0)(x - x_0) + \varepsilon_2(x)(x - x_0) \Big) +$$

$$+ \varepsilon_1(g(x)) \Big(g'(x_0)(x - x_0) + \varepsilon_2(x)(x - x_0) \Big) = (f \circ g)(x_0) + f'(g(x_0))g(x_0)(x - x_0) +$$

$$+ \Big\{ \varepsilon_2(x)f'(g(x_0))(x - x_0) + \varepsilon_1(g(x))g'(x_0)(x - x_0) + \varepsilon_1(g(x))\varepsilon_2(x)(x - x_0) \Big\}$$

$$\{\} = (x - x_0) \Big[\varepsilon_2(x) f'(g(x_0)) + \varepsilon_1(g(x)) g'(x_0) + \varepsilon_1(g(x)) \varepsilon_2(x) \Big] = (x - x_0) \cdot \varepsilon(x) \quad \varepsilon(x) \to 0, x \to x_0$$

Доопределим $\varepsilon_1(g(x_0)) = \varepsilon_1(y_0) = 0$. Тогда ε_1 становится непрерывной в y_0 . И по теореме о замене переменной при вычислении предела $\varepsilon_1(g(x)) \to 0, x \to x_0$

Теорема 5.5. (Производная обратной функции) Пусть $y: U_{\delta}(x_0) \mapsto \mathbb{R}$ строго монотонна и непрерывна в этой окрестности. Пусть $y'(x_0) \neq 0$. Тогда существует обратная функция $x: U_{\sigma}(y_0) \mapsto U_{\delta}(x_0)$ строго монотонна и непрерывна в $U_{\sigma}(y_0)$. При этом x диф-

ференцируема в точке
$$y_0 = y(x_0)$$
 и $x'(y_0) = \frac{1}{y'(x_0)}$

Доказательство. Первая часть теоремы была доказана ранее. Докажем существование производной.

$$\frac{y - y_0}{x(y) - x(y_0)} = \frac{1}{\frac{x(y) - x(y_0)}{y(x(y)) - y(x(y_0))}} \Leftrightarrow \frac{x(y) - x(y_0)}{y - y_0} = \frac{1}{\frac{y(x(y)) - y(x(y_0))}{x(y) - x(y_0)}}$$

y(x) и x(y) взаимообратны.

Так как x(y) осуществляет биективное отображение $U_{\delta}(y_0) \mapsto U_{\delta}(x_0)$, то $x(y) \neq x_0$ при $y \neq y_0$. Из непрерывности x(y) в точке y_0 следует $\exists \lim_{x \to x_0} x(y) = x(y_0)$. Следовательно, можно воспользоваться теоремой о замене переменной при вычислении предела.

$$\exists \lim_{y \to y_0} \frac{1}{\underbrace{y(x(y)) - y(x(y_0))}_{x(y) - x(y_0)}} = \lim_{x \to x_0} \left(\frac{y(x) - y(x_0)}{x - x_0}\right)^{-1} = \frac{1}{y'(x_0)} = x'(y_0)$$

Следствие.

1.
$$a^x = a^x \cdot \ln a, \ \forall a \in (0; +\infty), \ x \in \mathbb{R}$$

1.
$$a^x = a^x \cdot \ln a$$
, $\forall a \in (0; +\infty)$, $x \in \mathbb{R}$ 8. $(\ln x)' = \frac{1}{x}$, $x \in (0; +\infty)$

$$2. \quad (\sin x)' = \cos x,$$

$$x \in \mathbb{R}$$

$$x \in \mathbb{R}$$
 9. $(\arctan x)' = \frac{1}{1+x^2}, \quad x \in \mathbb{R}$ $x \in \mathbb{R}$ 10. $(\operatorname{arcctg} x)' = \frac{1}{1+x^2}, \quad x \in \mathbb{R}$

$$3. \quad (\cos x)' = -\sin x,$$

$$x \in \mathbb{R}$$

10.
$$(\operatorname{arcctg} x)' = \frac{-1}{1 + x^2}, \quad x \in \mathbb{R}$$

$$4. \quad (\operatorname{tg} x)' = \frac{1}{\cos^2 x},$$

$$x \in \mathbb{R}$$

$$x \in \mathbb{R}$$
 11. $(\operatorname{sh} x)' = \operatorname{ch} x$, $x \in \mathbb{R}$

$$x \in \mathbb{R}$$

5.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$
,

$$x \in \mathbb{R}$$

$$12. \quad (\operatorname{ch} x)' = \operatorname{sh} x,$$

$$x \in \mathbb{R}$$

5.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$
, $x \in \mathbb{R}$ 12. $(\operatorname{ch} x)' = \operatorname{sh} x$, $x \in \mathbb{R}$
6. $(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$, $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ 13. $(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$, $x \in \mathbb{R}$

$$x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$$

13.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

$$x \in \mathbb{R}$$

7.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$x \in (0; \pi)$$

7.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, \qquad x \in (0;\pi)$$
 14. $(\coth x)' = -\frac{1}{\sinh^2 x}, \qquad x \in \mathbb{R}$

Доказательство.

1.
$$\frac{e^x - e^{x_0}}{x - x_0} = e^{x_0} \frac{(e^{x - x_0} - 1)}{x - x_0} \to e^{x_0}, x \to x_0 \Rightarrow (e^x)' = e^x$$
$$(a^x)' = (e^{\ln a \cdot x})' = e^{y(x)} \cdot y'(x) = a^x \cdot \ln a, \quad y(x) = \ln a \cdot x.$$

2.
$$\frac{\sin x - \sin x_0}{x - x_0} = \frac{\sin(x_0 + \Delta x) - \sin x_0}{\Delta x} = \frac{\sin x_0 \cdot \cos(\Delta x) + \cos x_0 \cdot \sin(\Delta x) - \sin x_0}{\Delta x} = \cos x_0.$$

3. Редукция с помощью сдвига на $\frac{\pi}{2}$.

4.
$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos x \cdot \cos x + \sin x \cdot \sin x}{\cos^2 x} \frac{1}{\cos^2 x}$$

5. Аналогично $(\operatorname{tg} x)'$.

6.
$$(\arcsin x)' = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1 - x^2}}$$

7. Аналогично $(\arcsin x)'$.

8.
$$y'(x) = (\ln x)' = \frac{1}{e^{y(x)}} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$
.

9.
$$(\arctan x)' = \frac{1}{\frac{1}{\cos^2(\arctan x)}} = \frac{1}{1+x^2}$$

- 10. Аналогично $(\arctan x)'$.
- 11. Задание на дом:)
- 12. Задание на дом:)

13.
$$(\operatorname{th} x)' = \left(\frac{\operatorname{sh} x}{\operatorname{ch} x}\right)' = \frac{\operatorname{ch} x \cdot \operatorname{ch} x - \operatorname{sh} x \cdot \operatorname{sh} x}{\operatorname{ch}^2 x} = \frac{1}{\operatorname{ch}^2 x}.$$

14.
$$(\operatorname{th} x)' = \left(\frac{\operatorname{ch} x}{\operatorname{sh} x}\right)' = \frac{\operatorname{sh} x \cdot \operatorname{sh} x - \operatorname{ch} x \cdot \operatorname{ch} x}{\operatorname{sh}^2 x} = \frac{-1}{\operatorname{sh}^2 x}.$$

5.3 Производные и дифференциалы высших порядков

Определение 5.7. $f^0 = f(x), f'(x)$ определили. (f'(x) - функция точки x). Далее по индукции. Если в некоторой окрестности точки x_0 определена $f^{(n)}(x)$, то $f^{(n+1)}(x_0) = (f^{(n)})'(x_0)$

Определение 5.8. Пусть f дифференцируема в окрестности точки x_0 и $\exists f''(x_0)$. Тогда $\partial u \phi \phi e p e h u u a nom 2$ -ого порядка функции f в точке x_0 называется дифференциал от дифференциала 1-ого порядка как функции точки x при фиксированном dx

To ecte
$$d^2f(x) := d\Big(df(x)\Big)$$

То есть $d^2f(x) := d\Big(df(x)\Big)$ В каждой точке графика построим касательную. Взять дифференциал от дифференциала означает следущее. df(x) — семейство этих касательных. У каждой касательной нужно зафиксировать приращение (на рисунке отмечено жирными точками). Таким образом наша функция огибающая этих приращений. Ее и нужно дифференцировать.

Определение 5.9. Если определён $d^{(n)}f(x)$ в некоторой окрестности точки x_0 и $\exists f^{(n+1)}(x_0)$, то $d^{(n+1)}f(x_0) := d\Big(d^{(n)}f(x)\Big)(x_0)$

Теорема 5.6. Пусть $n \in N$, $\exists f^{(n)}(x_0)$. Тогда $d^{(n+1)}f(x_0) = f^{(n)}(x_0)(dx)^n$

Доказательство. Докажем по индукции. При n=1 очевидно. При $n \geqslant 2$ пусть $\exists f^{(n)}(x_0)$.

$$d^{2}f(x_{0}) = d\left(df(x)\right)\Big|_{x=x_{0}} = d\left(f'(x)dx\right)(x_{0}) = f''(x_{0})(dx)^{2}$$

Пусть формула доказана при $k \in \mathbb{N}$

$$1 \leqslant k \leqslant n - 1 \quad d^k f(x_0) = d\left(d^k f(x)\right)(x_0) = d\left(f^{(k)}(x_0)(dx)^k\right) = f^{(k+1)}(x_0)(dx)^{k+1}$$

Теорема 5.7. (Инвариантность формы первого дифференциала и неинвариантность формы высших дифференциалов) Пусть функция y = y(x) дифференцируема в точке x_0 , а функция z = z(y) дифференцируема в точке $y_0 = y(x_0)$. Тогда дифференциал z, рассматриваемый как функция лишь от y в точке y_0 , и дифференциал функции z = z(y(x)) = f(x) в точке x_0 записываются одинаково, а именно $dz = z'(y_0)$ dy. При этом в первом случае (когда z = z(y)) $dy = y - y_0$, а во втором dy - duфференциал функции <math>y(x) в точке x_0 .

$$dz(y_0) = z'(y_0) dy, dy = y - y_0.$$

Рассмотрим композицию функций z = z(y(x)) = f(x).

$$dz = f'(x_0) dx = z'(y(x_0)) y'(x_0) dx = z'(y(x_0)) dy(x_0)$$

Примечание. Для второго дифференциала форма записи не инвариантна.

Доказательство. Действительно, пусть функция z=z(y) дважды дифференцируема в точке y_0

$$d^2 = z''(y_0) (dy)^2, dy = y - y_0$$

Если же z = z(y(x))

$$d^{2}z = f''(x_{0}) (dx)^{2} = \left(z'(y(x)) \cdot y'(x)\right)' (dx)^{2}, \Big|_{x=x_{0}}$$

$$= \left[z''(y(x))\cdot (y'(x))^2 + z'(y(x))\cdot y''(x_0)\right]\cdot (dx)^2 = z''(y_0)\cdot (y'(x_0))^2\cdot (dx)^2 + z'(y(x_0))\cdot y''(x_0)\cdot (dx)^2 = z''(y_0)\cdot (y'(x_0))^2 + z'(y(x))\cdot (y'(x))^2 + z'(y(x))^2 +$$

$$= z''(y_0)(dy)^2 + z'(y_0) d^2y(x_0)$$

5.4 Формула Лейбница

Введём некоторые обозначения: $0! := 1, n! := 1 \cdot 2 \cdot \ldots \cdot n, \quad n \in \mathbb{N}.$

 C_n^k — биномиальный коэффициент, $C_n^k:=\frac{n!}{k!(n-k)!}$.

Соглашение: $u^{(0)}(x) \equiv u(x)$.

Теорема 5.8. Формула Лейбница Пусть $\exists u^{(n)}(x_0) \in \mathbb{R} \ u \ \exists v^{(n)}(x_0) \in \mathbb{R}.$ Тогда $\exists (u \cdot v)^n = \sum_{k=0}^n C_n^k u^{(k)}(x_0) \cdot v^{(n-k)}(x_0)$

Доказательство. Будем доказывать по индукции.

База: при n=1 верно (обычное правило дифференцирование произведения).

Пусть доказано при некотором $n=k\in\mathbb{N}$, установим при k+1.

При k имеем:

$$(u \cdot v)^{(k)} = \sum_{s=0}^{k} C_k^s u^{(s)}(x_0) \cdot v^{(k-s)}(x_0)$$

$$(u \cdot v)^{(k+1)} = \left(\sum_{s=0}^{k} C_k^s u^{(s)}(x) \cdot v^{(k-s)}(x) \right)' \Big|_{x=x_0} =$$

$$= \sum_{s=0}^{k} C_k^s u^{(s+1)}(x_0) \cdot v^{(k-s)}(x_0) + \sum_{s=0}^{k} C_k^s u^{(s)}(x_0) \cdot v^{(k-s+1)}(x_0) = (*)$$

Произведем замену индексов: $s+1=j,\ s+j-1.$ Получаем

$$(*) = \sum_{j=1}^{k+1} C_k^{j-1} u^{(j)}(x_0) \cdot v^{(k-j+1)}(x_0) + \sum_{j=0}^k C_k^j u^{(j)}(x_0) \cdot v^{(k-j+1)}(x_0) =$$

$$= C_k^k u^{(k+1)}(x_0) \cdot v(x_0) + C_k^0 u(x_0) \cdot v^{(k+1)}(x_0) + \sum_{j=1}^k \left(C_k^{j-1} + C_k^j \right) u^{(j)}(x_0) \cdot v^{(k+1-j)}(x_0) =$$

Заметим, что
$$C_k^k = C_{k+1}^{k+1} = 1$$
, $C_k^0 = C_{k+1}^0 = 1$, $C_k^{j-1} + C_k^j = \frac{k!}{(j-1)!(k-j+1)!} + \frac{k!}{(j)!(k-j)!} = \frac{k!}{(j)!(k-j+1)!} \cdot (k-j+1+j) = \frac{(k+1)!}{(j)!(k+1-j)!} = C_{k+1}^j$. С учетом этого перепишем выражение (*)

$$(u \cdot v)^{(k+1)} = (*) = \sum_{j=0}^{k+1} C_{k+1}^j u^{(j)}(x_0) \cdot v^{(k+1-j)}(x_0)$$

Шаг индукции доказан. Значит, формула верна при всех $n \in \mathbb{N}$.

5.5 Вычисление производных функций, заданных неявно

Определение 5.10. Будем говорить, что функция $y: X \mapsto \mathbb{R}$ неявно задана уравнением F(x,y) = 0, если F(x,y(x)) = 0 $\forall x \in X$.

Пример.

$$x^{2} + y^{2} = 1$$

 $F(x, y) = x^{2} + y^{2} - 1$

 $y_1(x) = \sqrt{1-x^2}$ — функция, неявно заданная уравнением F(x,y) = 0 $y_2(x) = -\sqrt{1-x^2}$ — функция, неявно заданная уравнением F(x,y) = 0

Также заметим, что функций, неявно задающихся данным уравнением, бесконечно много.

Примечание. В домашних задачах априори предполагается, что неявно заданные функции существуют и они дифференцируемы. Однако в общем случае это нужно доказывать.

Чтобы найти производную неявно заданной функции, необходимо:

- 1. Продифференцировать обе части уравнения, вместо y подставляя y(x). Так как оно является тождеством при всех значениях x,
- 2. Выразить производную y'(x).

5.6 Производные функций, заданных параметрически

Пусть y = y(t), определены в некоторой $U_{\delta}(t_0)$.

Если для x выполнены условия, требуемые для теоремы об обратной функции, то $\exists t =$ t(x), определенная в $U_{\delta}(x_0)$, $x_0 = x(t_0)$.

Пусть также выполнены все условия теоремы о дифференцировании обратной функции и теоремы о дифференцировании сложной функции. Тогда

$$f(x) = y(t(x))$$

$$y_x'(x_0) = rac{y_t'(t_0)}{x_t'(t_0)},$$
где $t_0 = t(x_0)$

5.7Теоремы о среднем

Определение 5.11. Пусть $f: X \mapsto \mathbb{R}, X \subset \mathbb{R}$.

Будем говорить, что точка x_0 — точка локального максимума (локального минимума) функции f, то есть, точка локального экстремума, если

$$\exists \delta = \delta(x_0) > 0 : \begin{cases} f(x) \leqslant f(x_0) \ \forall x \in U_{\delta}(x_0) \cap X \\ (f(x) \geqslant f(x_0) \ \forall x \in U_{\delta}(x_0) \cap X) \end{cases}$$

Определение 5.12. Пусть $f: X \mapsto \mathbb{R}, X \subset \mathbb{R}$.

Будем говорить, что точка x_0 — точка строгого локального максимума (строгого локального минимума), то есть строгого экстремума функции f, если

$$\exists \delta = \delta(x_0) > 0 : \begin{cases} f(x) < f(x_0) \ \forall x \in \mathring{U}_{\delta}(x_0) \cap X \\ \left(f(x) > f(x_0) \ \forall x \in \mathring{U}_{\delta}(x_0) \cap X \right) \end{cases}$$

Лемма 5.1. Пусть $f:[a,b] \mapsto \mathbb{R}$. Пусть $x_0 - m$ очка локального минимума (локального максимума).

$$\exists f'_{+}(x_{0}), mo \ f'_{+}(x_{0}) \geqslant 0$$
$$\exists f'_{-}(x_{0}), mo \ f'_{-}(x_{0}) \leqslant 0$$
$$\left(\exists f'_{+}(x_{0}), mo \ f'_{+}(x_{0}) \leqslant 0\right)$$
$$\exists f'_{-}(x_{0}), mo \ f'_{-}(x_{0}) \geqslant 0$$

Доказательство. .

Докажем для случая, когда x_0 — точка локального минимума, так как для локального максимума доказательство аналогично.

Пусь
$$\exists f'_{+}(x_{0}) \Rightarrow \exists \lim_{x \to x_{0} + 0} \frac{f(x) - f(x_{0})}{x - x_{0}}$$
Так как $x_{0} = \exists \text{покальный максимум. То$

Так как x_0 — локальный максимум, то

$$\exists \delta > 0: \ f(x) \geqslant f(x_0) \quad \forall x \in U_{\delta}(x_0) \cap [a,b]$$

А так как берется правсторонний предел, то $x > x_0$.

Следовательно, $\forall x \in \mathring{U}^+_{\delta}(x_0) \cap [a,b] \hookrightarrow \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$

Следовательно, делая предельный переход в неравенстве, получим $f'_+\geqslant 0$

Если
$$\exists f'_{-}(x_0) := \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}$$
, то $\exists \delta > 0 : \ f(x) \geqslant f(x_0) \quad \forall x \in U_{\delta}(x_0)$ Так как x приближается к x_0 слева, то $x - x_0 \leqslant 0$. Следовательно,

$$\forall x \in \mathring{U}_{\delta}^{-}(x_0) \cap [a, b] \hookrightarrow \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0$$

Следовательно, делая предельный переход в неравенстве, получим $f'_{-} \leqslant 0$

Теорема 5.9. (Теорема Ферма) Пусть $f: U_{\delta}(x_0) \mapsto \mathbb{R}$ дифференцируема в точке x_0 . $Torda, ecnu x_0 - локальный экстремум <math>f, f'(x_0) = 0$

 \mathcal{A} оказательство. В силу предыдущей леммы $\begin{cases} f'_+(x_0) \geqslant 0 \\ f'_-(x_0) \leqslant 0, \end{cases}$ если x_0 — локальный минимум. Следовательно, $\exists f'(x_0) \in \mathbb{R} \Leftrightarrow \begin{cases} \exists f'_+(x_0) \in \mathbb{R} \\ \exists f'_-(x_0) \in \mathbb{R} \end{cases}$ и $f'_+(x_0) = f'_-(x_0) \Rightarrow f'(x_0) = 0.$

нимум. Следовательно,
$$\exists f'(x_0) \in \mathbb{R} \Leftrightarrow \begin{cases} \exists f'_+(x_0) \in \mathbb{R} \\ \exists f'_-(x_0) \in \mathbb{R} \end{cases}$$
 и $f'_+(x_0) = f'_-(x_0) \Rightarrow f'(x_0) = 0$.

Доказательство для локального максимума аналогично.

Теорема 5.10. Ролля (о среднем) Пусть $f \in C([a,b])$ и дифференцируема на интервале u f(a) = f(b). Torda $\exists \xi \in (a, b) : f'(\xi) = 0$.

Доказательство. Возможны два случая:

Случай 1. $f \equiv const.$ $f'(x) = 0 \quad \forall x \in (a, b).$

Значит, в качестве ξ можно взять любую точку из (a,b).

Случай 2. Если $f \neq const$, то в силу непрерывности f достигает наибольшего и наименьшего значения на [a, b].

Следовательно, существует точка локального экстремума $\xi \in [a,b]$ (в котором достигается либо локальный максимум, либо локальный минимум).

Значит, так как f дифференцируема на интервале (a,b), по теореме Ферма $f'(\xi)=0$. \square

Теорема 5.11. (Коши о среднем) Пусть $f, g \in C([a, b])$ и дифференцируема на интервале $(a,b). \ \Pi y cmb \ g'(x) \neq 0 \quad \forall x \in (a,b). \ Tor \partial a \ \exists \xi \in (a,b): \ \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$

Доказательство. Так как $g'(x) \neq 0 \quad \forall x \in [a,b]$, то $g(a) \neq g(b)$. Иначе получили противоречие теореме Ролля. Следовательно, формула корректна

Рассмотрим функцию $h(x) = f(x) - k \cdot g(x)$, при $k = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Заметим, что h(b) = h(a).

Так как $h \in C([a,b])$ и дифференцируема на интервале (a,b), то по теореме Ролля

$$\exists \xi \in (a,b) : h'(\xi) = 0$$

$$h'(\xi) = f'(\xi) - kg'(\xi) = 0 \Rightarrow k = \frac{f'(\xi)}{g'(\xi)} \Rightarrow \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Предположим, что на малом интервале x(t) обратима и удволетворяет условиям теоремы об обратной функции

$$x = x(t)$$

$$y = y(t)$$

$$y'(x) = \frac{y'(t)}{x'(t)}\Big|_{t=t(x)}$$

Следствие. (Теорема Лагранжа о среднем) Пусть $f \in C([a,b])$ и дифференцируема на интервале (a,b).

Тогда найдется $\xi \in (q, b)$: $f(b) - f(a) = f'(\xi)(b - a)$

Доказательство. Применить теорему Коши о среднем при f=f и g=x

5.8 Следствия из теоремы Лагранжа о среднем

Теорема 5.12. Пусть $f \in C(U_{\delta}(x_0))$ Пусть f дифференцируема в $\mathring{U}_{\delta}(x_0)$ $E_{CAU} \exists \lim_{x \to x_0 + 0} f'(x_0), mo \exists f'_{+}(x_0) = \lim_{x \to x_0 + 0} f'(x)$ $E_{CAU} \exists \lim_{x \to x_0 - 0} f'(x_0), mo \exists f'_{-}(x_0) = \lim_{x \to x_0 - 0} f'(x)$

Доказательство. Докажем для правой производной, так как для левой аналогично. Фиксируем $x \in \mathring{U}^+_{\delta}(x_0)$. Выполнены все условия теоремы Лагранжа о среднем на отрез-

ке
$$[x_0, x] \Rightarrow \xi(x) \in (x_0, x) : \frac{f(x) - f(x_0)}{x - x_0} = f'(\xi(x))$$
 (*)

x был выбран произвольно, $\xi(x) \neq x_0 \quad \forall x \in \mathring{U}^+_{\delta}(x_0) \Rightarrow$

$$\Rightarrow \exists \lim_{x \to x_0 + 0} f'(\xi(x)) = \lim_{\xi \to x_0 + 0} f'(\xi) \Leftrightarrow \exists \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = f'_+(x_0)$$

Значит, в силу (*) получаем $\lim_{\xi \to x_0 + 0} f'(\xi) = f'_+(x_0)$

Аналогично для левосторонней производной.

Следствие. Если f дифференцируема на интервале (a, b), то f' не имеет разрывов 1-ого рода и устранимых разрывов.

Доказательство. Из следствия теоремы Лагранжа о среднем вытекает, что если $\exists \lim_{x \to x_0} f'(x)$, то он обязан быть равен $f'(x_0)$. Значит, устранимых разрывов быть не может.

При разрыве 1-ого рода односторонние пределы существуют, но не равны. Из следствия теоремы Лагранжа это значит, что существует првосторонняя и левостороняя призводная, но они не равны. Но это противоречит условию, что f дифференцируема на (a,b). Значит, f' не имеет разрывов 1-ого рода.

Таким образом, если функция дифференцируема на интервале (a,b), то разрывы у нее могут быть только второго рода.

Пример.
$$f(x) = \begin{cases} x^2 \cdot \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$

f дифференцируема всюду на \mathbb{R} , но производная имеет разрыв второго рода

ФПМИ МФТИ, осень 2023

Доказательство. Если $x \neq 0$, то $f'(x) = 2x \cdot \sin \frac{1}{x} + x^2 \cos \frac{1}{x} \cdot \left(\frac{-1}{x^2}\right) = 2x \cdot \sin \frac{1}{x} - \cos \frac{1}{x}$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x^2 \cdot \sin\frac{1}{x} - 0}{x} = \lim_{x \to 0} x \sin\frac{1}{x} = 0$$

 $\nexists \lim_{x \to 0} f'(x) \Rightarrow f'$ имеет в нуле разрыв второго рода

5.9 Теорема Дарбу

Лемма 5.2. Пусть f дифференцируема на интервале (a,b). Пусть $x, y \in (a,b)$ и $f'(x) \cdot f'(y) < 0$. Тогда $\exists \xi \in (x,y) : f'(\xi) = 0$

Доказательство. Рассмотрим случай f'(x)>0 f'(y)<0. Так как $f\in C((a,b))\Rightarrow f\in C([x,y])$. Значит, f достигает максимума и минимума на [x,y]. Точка максимума находится

на
$$(x,y)$$
, так как $\begin{cases} f'_+(x_M) \leqslant 0 \\ f'_-(x_M) \geqslant 0 \end{cases}$. То есть точка максимума $\begin{cases} x_M \neq x, \\ x_M \neq y. \end{cases}$

Следовательно, по теореме Ферма $f'(x_M) = 0$.

Аналогично рассматривается случай f'(x) < 0 f'(y) > 0.

Теорема 5.13. (Теорема Дарбу) Пусть f дифференцируема на интервале (a,b). Тогда если f' принимает какие-либо два значения, то она принимает все значения между ними.

Доказательство. $\begin{cases} f'(x) = A \\ f'(y) = B \end{cases} \quad \text{Покажем, что } \forall C \in (A,B) \ \exists x_c \in (x,y) : f'(x_c) = C \end{cases}$

Фиксируем $C \in (A, B)$. Рассмотрим $h(t) = f(t) - C \cdot t$.

h дифференцируема на (x,y).

$$h'(x) = f'(x) - C = A - C$$

 $h'(y) = f'(y) - C = B - C$ $\Rightarrow h'(x) \cdot h'(y) = (A - C)(B - C) < 0$

Следовательно, по предыдущей лемме:

$$\exists \xi \in (x,y): h'(\xi) = 0 = f'(\xi) - C \Rightarrow f'(\xi) = 0$$

Тогда положим $x_c = \xi$

5.10 Формула Тейлора

Определение 5.13. Пусть $n \in \mathbb{N}_0$, $f: U_{\delta}(x_0) \mapsto \mathbb{R}$ имеет n-ую (конечную) производную в точке x_0 . Тогда полиномом (многочленом) Тейлора функции f с центром в точке x_0 называется

$$T_{x_0}^n[f](x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Определение 5.14. Формальным n-ым остаточным членом формулы Тейлора функции f c центром e точке x_0 называется

$$r_{x_0}^n[f](x) := f(x) - T_{x_0}^n[f](x), x \in U_{\delta_0}(x_0)$$

Лемма 5.3. $\varphi_n(x) = (x - x_0)^n \ Tor \partial a$

a)
$$\forall k \in \{0, \dots, n\} \hookrightarrow \varphi_n^{(k)} = n(n-1)\dots(x-k+1)(x-x_0)^{n-k},$$

 $\forall k > n \hookrightarrow \varphi_n^{(k)}(x) \equiv 0$

b)
$$\varphi_n^{(k)}(x_0) = \begin{cases} 0, k \neq n \\ n!, k = n \end{cases}$$

Доказательство. Пункт b) сразу следует из пункта a)

Пункт а) доказывается по индукции:

При k=1 очевидно.

Пусть доказано при каком-то $k \in \mathbb{N}, \ k \in \{1, \dots, n-1\}$

Тогда
$$((x_0)^n)^{(k+1)} = (n(n-1)\dots(n-k+1)(x-x_0)^{n-1})' =$$
$$= n(n-1)\dots(x-k+1)(x-x_0)^{n-(k+1)}$$

Лемма 5.4. Пусть $\exists f^{(n)}(x_0) \in \mathbb{R}$. Тогда $\forall k \in \{0, ..., n\} \hookrightarrow \left(r_{x_0}^n[f](x)\right)^{(k)}(x_0) = 0$

Доказательство. Фиксируем $k \in \{0, \ldots, n\}$

$$r_{x_0}^n[f](x) = f(x_0) - \sum_{j=0}^n \frac{f^{(j)}}{j!}(x - x_0)^j$$

$$\left. \left(r_{x_0}^n[f](x) \right)^{(k)} \right|_{x=x_0} = f^{(k)}(x_0) - \left(\sum_{j=0}^n \frac{f^{(j)}}{j!} (x - x_0)^j \right)^{(k)} \right|_{x=x_0} = f^{(k)}(x_0) - f^{(k)}(x_0) \frac{k!}{k!} = 0$$

Теорема 5.14. (Формула Тейлора с остаточным членом в форме Пеано) Путь f дифференцируемо в точке x_0 п раз, $n \in \mathbb{N}_0$. Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)(x_0)}}{k!} (x - x_0)^k + o((x - x_0)^n), x \to x_0$$

Примечание. Запись $x \to x_0$ означает, что равенство справедливо в некоторой окрестности $U_{\delta}(x_0)$

$$o\left((x-x_0)^n\right)$$
 — это «функция», предстваимая в виде

$$\varepsilon_{x_0}[f](x)(x-x_0)^n$$
, где $\varepsilon_{x_0}[f](x) \to 0, x \to x_0$.

 \mathcal{A} оказательство. Так как $\exists f^{(n)}(x_0)$, то $\exists U_{\delta}(x_0)$, в которой определена $f^{(n-1)}(x)$.

По определению $r_{x_0}^n[f](x) = f(x_0) - T_{x_0}^n[f](x), \quad \varphi_n(x) = (x - x_0)^n$

Достаточно доказать, что $\frac{r_{x_0}^n[f](x)}{(x-x_0)^n} \to 0, x \to x_0$

Заметим, что $\varphi_n(x_0)=(x-x_0)^n=0,\quad r_{x_0}^n[f](x_0)=0.$ Тогда

$$\frac{r_{x_0}^n[f](x)}{(x-x_0)^n} = \frac{r_{x_0}^n[f](x) - r_{x_0}^n[f](x_0)}{\varphi_n(x) - \varphi_n(x_0)}$$

Так как $r_{x_0}^n[f](x)$ дифференцируема n раз, то можно применить теорему Коши о сред-

$$\frac{r_{x_0}^n[f](x) - r_{x_0}^n[f](x_0)}{\varphi_n(x) - \varphi_n(x_0)} = \frac{\left(r_{x_0}^n[f]\right)'(\xi)}{\varphi_n'(\xi)}, \text{ где } \xi \in (x, x_0)$$

По предыдущей лемме имеем $\forall k \in \{0,\ldots,n\} \hookrightarrow \left(r_{x_0}^n[f](x)\right)^{(k)}(x_0) = 0$ и

$$\forall k \in \{0, \dots, n-1\} \hookrightarrow \varphi_n^{(k)}(x_0) = 0$$

$$\frac{\left(r_{x_0}^n[f]\right)'(\xi)}{\varphi_n'(\xi)} = \frac{r_{x_0}^{n-1}[f'](\xi)}{n \cdot \varphi_{n-1}(\xi)} = \frac{\left(r_{x_0}^n[f]\right)'(\xi_1) - \left(r_{x_0}^n[f]\right)'(x_0)}{n(\varphi_{n-1}(\xi_1) - \varphi_{n-1}(x_0))}$$

Тогда, снова применяя теорему Коши о среденем получаем:

$$\frac{\left(r_{x_0}^n[f]\right)'(\xi_1) - \left(r_{x_0}^n[f]\right)'(x_0)}{n(\varphi_{n-1}(\xi_1) - \varphi_{n-1}(x_0))} = \frac{\left(r_{x_0}^n[f]\right)^{(2)}(\xi_1)}{\varphi_n^2(\xi_1)}, \text{ где } \xi \in (\xi, x_0)$$

Повторяем предыдущий шаг n-1 раз. После него получим

$$\frac{r_{x_0}^n[f](x)}{(x-x_0)^n} = \dots = \frac{\left(r_{x_0}^n[f]\right)^{(n-1)}(\xi_{n-1}) - \left(r_{x_0}^n[f]\right)^{(n-1)}(x_0)}{n!(\xi_{n-1}-x_0))}, \text{ где } \xi_{n-1} \in (\xi n-2, x_0)$$

Заметим, что $\xi_{n-1}(x) \in (x_0,x)$. Следовательно, $\xi_{n-1}(x) \to x_0, x \to x_0$, но $\xi_{n-1}(x) \neq x_0$. Значит, $\exists \lim_{x \to x_0} \frac{\left(r_{x_0}^n[f]\right)^{(n-1)}(\xi_{n-1}) - \left(r_{x_0}^n[f]\right)^{(n-1)}(x_0)}{n!(\xi_{n-1}-x_0))}$. По теореме о замене переменной при

$$\lim_{\xi_{n-1} \to x_0} \frac{\left(r_{x_0}^n[f]\right)^{(n-1)}(\xi_{n-1}) - \left(r_{x_0}^n[f]\right)^{(n-1)}(x_0)}{n!(\xi_{n-1} - x_0))} = \frac{\left(r_{x_0}^n[f]\right)^{(n)}(x_0)}{n!} = 0 \Rightarrow$$

$$\Rightarrow \exists \lim_{x \to x_0} \frac{r_{x_0}^n[f](x)}{(x - x_0)^n} = 0$$

Теорема 5.15. (Формула Тейлора с остаточным членом в форме Лагранжа) Пусть $\exists f^{(n+1)}$ в некоторой $U_{\delta}(x_0)$. Тогда $\forall x \in \mathring{U}_{\delta}(x_0)$ справедливо равенство

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{(n+1)}, \ \ e \partial e \ \xi \in (x_0, x).$$

Доказательство. $\varphi_{n+1}(x) = (x-x_0)^{n+1}$

$$r_{x_0}^n[f](x) = f(x_0) - T_{x_0}^n[f](x)$$

Можно применить теорему Коши n+1 раз:

$$\frac{r_{x_0}^n[f](x)}{\varphi_{n+1}(x)} = \frac{\left(r_{x_0}^n[f]\right)^{(n+1)}(\xi_{n+1})}{(n+1)!}$$

Так как (n+1)-ая произвдная полинома степени n равна нулю, то справедливо равенство

$$\frac{\left(r_{x_0}^n[f]\right)^{(n+1)}(\xi_{n+1})}{(n+1)!} = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!}, \xi := \xi_{n+1}$$

Теорема 5.16. (Теорема о единственности) Пусть $\exists f^{(n)}(x_0) \in \mathbb{R}$. Тогда, если

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n), x \to x_0, \text{ mo } a_k = \frac{f^{(k)}(x_0)}{k!}$$

Примечание. Теорема верна, только если выполняется условие $\exists f^{(n)}(x_0) \in \mathbb{R}$. Может случиться так, что производная не существует, но разложение есть.

Пример. Задача на дом

$$\begin{cases} f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n), x \to x_0, \\ f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n), x \to x_0, \end{cases}$$

$$\lim_{x \to x_0} f(x) = a_0 = f(x_0)$$

$$\begin{cases} \frac{f(x) - f(x_0)}{x - x_0} = \sum_{k=1}^n a_k (x - x_0)^{k-1} + o\left((x - x_0)^{n-1}\right), x \to x_0\\ \frac{f(x) - f(x_0)}{x - x_0} = \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^{k-1} + o\left((x - x_0)^{n-1}\right), x \to x_0 \end{cases}$$

$$a_1 = f'(x_0)$$

И так далее n шагов. Получим, что $a_k = \frac{f^{(k)}(x_0)}{k!}$

Теорема 5.17. (Почленное дифференцрование формулы Тейлора) Пусть $n \in \mathbb{N}$ и $\exists f^{(n)}(x_0)$.

Тогда если
$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n), x \to x_0, mo$$

$$f'(x) = \sum_{k=1}^{n} a_k \cdot k \cdot (x - x_0)^{k-1} + o((x - x_0)^{n-1}), x \to x_0.$$

Доказательство. В силу теоремы о единственности $a_k = \frac{f^{(k)}(x_0)}{k!}$.

По формуле Тейлора с остаточным членом в форме Пеано, примененной к функции f',

получим, что
$$f'(x) = \sum_{k=0}^{n-1} \frac{(f')^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^{n-1}), x \to x_0$$

$$j = k + 1$$

$$f'(x) = \sum_{j=1}^{n} \frac{f^{(j)}(x_0)}{(j-1)!} (x - x_0)^{j-1} + o\left((x - x_0)^{n-1}\right), x \to x_0$$

$$f'(x) = \sum_{j=1}^{n} \frac{f^{(j)}(x_0)}{j!} \cdot j \cdot (x - x_0)^{j-1} + o\left((x - x_0)^{n-1}\right), x \to x_0$$
$$k = j$$
$$f'(x) = \sum_{k=1}^{n} a_k \cdot k \cdot (x - x_0)^{k-1} + o\left((x - x_0)^{n-1}\right), x \to x_0.$$

Теорема 5.18. (Почленное интегрирование формулы Тейлора) Пусть $\exists f^{(n+1)}(x_0) \ u$ $f'(x) = \sum_{k=0}^{n} b_k (x - x_0)^k + o\Big((x - x_0)^n\Big)$. Тогда

$$f(x) = f(x_0) + \sum_{k=0}^{n} \frac{b_k}{k+1} \cdot (x-x_0)^{k+1} + o((x-x_0)^{n+1}), x \to x_0$$

Доказательство. В силу теоремы о единственности $b_k = \frac{(f')^{(k)}(x_0)}{k!}$.

По формуле Тейлора с остаточным членом в форме Пеано, примененной к функции f, получим, что $f(x) = f(x_0) + \sum_{k=1}^{n+1} \frac{(f)^{(k)}(x_0)}{k!} \cdot (x-x_0)^k + o\Big((x-x_0)^{n+1}\Big), x \to x_0$

$$j = k - 1$$

$$f(x) = f(x_0) + \sum_{j=0}^{n} \frac{(f')^{(j)}(x_0)}{(j+1)!} (x - x_0)^{j+1} + o((x - x_0)^{n+1}), x \to x_0$$

$$f(x) = f(x_0) + \sum_{j=0}^{n} \frac{(f')^{(j)}(x_0)}{j!} \cdot \frac{1}{j+1} \cdot (x-x_0)^{j+1} + o\Big((x-x_0)^{n+1}\Big), x \to x_0$$

$$k = i$$

$$f(x) = f(x_0) + \sum_{k=0}^{n} \frac{b_k}{k+1} \cdot (x - x_0)^{k+1} + o((x - x_0)^{n+1}), x \to x_0.$$

Задача. Пусть $f(x) = f(x_0) + a_1 \cdot x + a_2 \cdot x^2 + o(x^2), x \to 0$. Верно ли, что

- 1. f непрерывна о точке 0
- 2. f дифференцируема в точке 0
- 3. f дважды дифференцируема в точке 0

5.11 Разложение основных элементарных функций по формуле Тейлора

Определение 5.15. Путем сдвига формулы Тейлора с центром в точке x_0 может быть редуцирована к формуле Тейлора с центром в нуле. Тогда такая формула называется формулой Маклорена. То есть если $\exists f^{(n)}(0) \in \mathbb{R}$, то

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \cdot x^{k} + o(x^{n}), x \to 0$$

Лемма 5.5. Пусть f дифференцируема в окрестности 0. Тогда

- 1. Ecnu f четная, то f' нечетна,
- 2. Если f нечетная, то f' четна

Доказательство. Докажем пункт 1. так как пункт 2. аналогичен.

Пусть f — четная функция, тогда.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(-x - \Delta x) - f(-x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(-x + \Delta x) - f(-x)}{-\Delta x} = -f'(-x)$$

Примечание. Аналогично можно доказать, что если f четная и дифференцируема в нуле, то ее f'(0) = 0

Лемма 5.6. Пусть f — четная $u \exists f^{(2n+1)}(0) \in \mathbb{R}$, тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(2k)} \cdot x^{2k}}{(2k)!} + o(x^{2n+1}), x \to 0$$

Eсли f — нечетная и $\exists f^{(2n+2)}(0) \in \mathbb{R}$, тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(2k+1)} \cdot x^{2k+1}}{(2k+1)!} + o(x^{2n+2}), x \to 0$$

Доказательство. f — четная, но f' — нечетная, f'' — четная, f''' — нечетная и так далее. Но в силу предыдущей леммы и замечания $f'(0) = f'''(0) = \ldots = f^{(2n+1)}(0) = 0$.

Значит, по формуле Тейлора с остаточным членом в форма Пеано

$$f(x) = \sum_{j=0}^{2n+1} \frac{f^{(j)}}{j!} x^j + o(x^{2n+1}), x \to 0$$

$$= \sum_{k=0}^{n} \frac{f^{(2k)} \cdot x^{2k}}{(2k)!} + o(x^{2n+1}), x \to 0$$

Для нечетной доказательство аналогично

1. $(e^{x(n)})(0) = 1$

$$\forall n \in \mathbb{N}_0 \hookrightarrow e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n), x \to 0$$

2.
$$(\operatorname{sh} x)^{(j)}(0) = \begin{cases} 0, j = 2k \\ 1, j = 2k + 1 \end{cases}$$

$$\operatorname{sh} x = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}), x \to 0$$

Аналогично $\operatorname{ch} x$

$$\operatorname{ch} x = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}), x \to 0$$

_

3.
$$(\sin x)^{(j)}(0) = \begin{cases} 0, j = 2k \\ (-1)^k, j = 2k+1 \end{cases}$$

$$\sin x = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)!} \cdot x^{2k+1} + o(x^{2n+2}), x \to 0$$

Aналогично $\cos x$

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} \cdot x^{2k} + o(x^{2n+1}), x \to 0$$

4.
$$((1+x)^{\alpha})^{(n)} = \alpha \cdot \ldots \cdot (\alpha - n + 1), \quad \alpha \in \mathbb{R}$$

$$(1+x)^{\alpha} = \sum_{k=0}^{n} C_{\alpha}^{k} x^{k} + 0(x^{n}), x \to 0,$$

где
$$\begin{cases} C_{\alpha}^{k} = \frac{\alpha \cdot \dots \cdot (\alpha - n + 1)}{k!}, k \in \mathbb{N} \\ C_{\alpha}^{0} = 1 \end{cases}$$

5.
$$\ln(1+x)' = \frac{1}{1+x}$$
 $(1+x)^{-1} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n), x \to 0$

Тогда $\ln(1+x)$ получается из теоремы о почленном интегрировании форулы Тейлора с учетом, что $\ln(1)=0$

$$\ln(1+x) = \sum_{k=0}^{n} \frac{(-1)^k x^{k+1}}{k+1} + o(x^n) = \sum_{k=1}^{n+1} \frac{(-1)^{k-1} x^k}{k} + o(x^n), x \to 0$$

Задача. Пусть $x_0 > 0$. Разложить $\ln x$ по степеням $(x - x_0)$ с точностью до $o\Big((x - x_0)^{n+1}\Big)$

Pewenue.
$$\ln(x_0 + x - x_0) = \ln x_0 + \ln\left(1 + \frac{x - x_0}{x_0}\right)$$

 $t(x) = \frac{x - x_0}{x_0}, \quad t(x) \to 0, \quad x \to x_0$
 $\ln x = \ln x_0 + \sum_{k=1}^{n+1} \frac{(-1)^k \cdot (x - x_0)^k}{k \cdot x_0^k} + 0\left((x - x_0)^{n+1}\right), x \to x_0$

Примечание. Заметим, что разложение $\ln(1+x-1)$ не является решением данной задачи (если $x_0 \neq 1$), так как в условии просят разложить по степеням $x-x_0$, а $x-1 \not\to 0$, при $x-x_0 \to 0$

Задача. Разложить $\operatorname{tg} x$ в окрестности нуля с точностью до $o(x^3)$

Решение.
$$\operatorname{tg} x = \frac{\sin x}{\cos x} = \frac{x - \frac{x^3}{6} + o(x^3)}{1 - \frac{x^2}{2} + o(x^3)}$$

$$t(x) = -\frac{x^2}{2} + o(x^3), t(x) \to 0, x \to 0$$
$$(1 - t(x))^{-1} = \sum_{k=0}^{n} (-1)^k (t(x))^k + o(t(x))^n, t(x) \to 0$$

Условие $t(x) \to 0$ необходимо, так как оно влияет на величину «поправки » $o((t(x))^n) =$ $\varepsilon \Big(t(x)\Big)t^n(x)$, где $\varepsilon \Big(t(x)\Big) \to 0, x \to 0$ $\left(1 - \frac{x^2}{2} + o(x^3)\right)^{-1} = (1 - t(x))^{-1} = 1 + \frac{x^2}{2} + o(x^3), x \to 0$

$$\operatorname{tg} x = \left(x - \frac{x^3}{6} + o(x^3)\right) \left(1 + \frac{x^2}{2} + o(x^3)\right) = x - \frac{x^3}{6} + \frac{x^3}{2} + o(x^3) = x + \frac{x^3}{3} + o(x^3), x \to 0$$

5.12Правило Лопиталя

Теорема 5.19. (Раскрытие неопределенности вида $\frac{0}{0}$) Пусть $-\infty < a < b < +\infty$. Пусть f и g дифференцируемы на (a,b), а также $\exists \lim_{x\to a+0} f(x) = 0$, $\exists \lim_{x\to a+0} g(x) = 0$ и $g'(x) \neq 0$ 0 $\forall x \in (a,b)$. Torda, echu $\exists \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = C \in \overline{\mathbb{R}}$, mo $\exists \lim_{x \to a+0} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)} = C$

Доказательство. Доопределим функции f и q нулем в точке a. Тогда f и q станут непрерывными справа в точке a. Значит, $\forall x \in (a,b)$ можно воспользоваться теоремой Коши о среднем: $\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi(x))}{g'(\xi(x))}$, где $\xi(x) \in (a,x)$. Так как $\lim_{x \to a+0} \xi(x) = a$, $\xi(x) \neq a$ $\forall x \in (a,b)$, можно воспользоваться теоремой о замене

переменной при вычислении предела, то есть $\lim_{x\to a+0} \frac{f'(\xi(x))}{q'(\xi(x))} = \lim_{\xi\to a+0} \frac{f'(\xi)}{q'(\xi)} = C.$

Следовательно, переходя к пределу равенства, получаем $\exists \lim_{x \to a+0} \frac{f(x)}{g(x)} = C$.

Теорема 5.20. Пусть f и g дифференцируемы на луче $(A, +\infty)$, (A > 0) и $\exists \lim_{x \to \infty} f(x) =$ $\lim_{x\to +\infty}g(x)=0$. Пусть $g'(x)\neq 0$ $\forall x\in (A,\infty)$. Тогда если $\exists\lim_{x\to +\infty}\frac{f'(x)}{g'(x)}=C\in\overline{\mathbb{R}}$, то $\exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = C.$

Доказательство. Сделаем замену: $t=t(x)=\frac{1}{x}, \quad x(t)=\frac{1}{t}.$ Получаем: $(A,+\infty)\to$ $\left(0,\frac{1}{4}\right)$. Рассмотрим функции $f_1(t)=f\left(\frac{1}{t}\right),\quad g_1(t)=g\left(\frac{1}{t}\right)$.

Теперь заметим, что $\lim_{t \to +0} f_1(t) = \lim_{t \to +0} f\left(\frac{1}{t}\right) = \lim_{x \to +\infty} f(x) = 0.$

Аналогично $\lim_{t\to+0} g_1(t) = 0$

 f_1 и g_1 дифференцируемы на отрезке $\left(0, \frac{1}{A}\right)$ и $g_1'(t) = g'\left(\frac{1}{t}\right) \cdot \left(\frac{-1}{t^2}\right) \neq 0 \quad \forall t \in \left(0, \frac{1}{A}\right).$ Следовательно, можем воспользоваться предыдущей теоремой:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{t \to +0} \frac{f_1(t)}{g_1(t)} = \lim_{t \to +0} \frac{f_1'(t)}{g_1'(t)} = \lim_{t \to +0} \frac{\frac{-1}{t^2} f'\left(\frac{1}{t}\right)}{\frac{-1}{t^2} g'\left(\frac{1}{t}\right)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(t)}$$

Теорема 5.21. (неопределенность $\frac{\infty}{\infty}$) Пусть $-\infty < a < b < +\infty$ и $\exists \lim_{x \to a+0} |f(x)| = +\infty$, $\exists \lim_{x \to a+0} |g(x)| = +\infty$ Пусть f и g дифференцируемы на (a,b) и $g'(x) \neq 0$ $\forall x \in (a,b)$ Тогда если $\exists \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = C \in \overline{\mathbb{R}}$, то $\exists \lim_{x \to a+0} \frac{f(x)}{g(x)} = C$.

Примечание. Правило Лопиталя справедливо не только для интервала (a,b), но также для лучей.

Доказательство. По определению предела $\forall \varepsilon > 0 \ \exists a_{\varepsilon} \in (a,b) : \ \frac{f'(x)}{g'(x)} \in U_{\varepsilon}(C) \ \forall (a,a_{\varepsilon}).$

Зафиксируем $\varepsilon \in (0,1)$ и a_{ε} . Заметим, что если $x \in (a,a_{\varepsilon})$, то по теореме Коши о среднем:

$$\frac{f(x) - f(a_{\varepsilon})}{g(x) - g(a_{\varepsilon})} = \frac{f'(\xi(x))}{g'(\xi(x))}$$
, где $\xi(x) \in (x, a_{\varepsilon})$ (*)

Из-за того, что $\lim_{x\to a+0}|f(x)|=+\infty$ и $\exists\lim_{x\to +0}|g(x)|=+\infty$, в окрестности a эти функции

не равны нулю. Более того,
$$\exists \delta(\varepsilon) \in (a, a_{\varepsilon}) : \forall x \in (a, \delta(\varepsilon)) \hookrightarrow \begin{cases} \frac{|f(a_{\varepsilon})|}{|f(x)|} < \frac{\varepsilon}{3} \\ \frac{|g(a_{\varepsilon})|}{|g(x)|} < \frac{\varepsilon}{3} \end{cases}$$

Из (*) следует:
$$\frac{f(x)}{g(x)} = \frac{1 - \frac{g(a_{\varepsilon})}{g(x)}}{1 - \frac{f(a_{\varepsilon})}{f(x)}} \cdot \frac{f'(\xi(x))}{g'(\xi(x))}, \text{ где } \frac{f'(\xi(x))}{g'(\xi(x))} \in U_{\varepsilon}(C) \text{ и}$$
$$1 - \varepsilon < \frac{1 - \varepsilon/_3}{1 + \varepsilon/_3} < \frac{1 - \frac{g(a_{\varepsilon})}{g(x)}}{1 - \frac{f(a_{\varepsilon})}{f(x)}} < \frac{1 + \varepsilon/_3}{1 - \varepsilon/_3} < 1 + \varepsilon$$

Значит,
$$\forall x \in (a, \delta_{\varepsilon}) \hookrightarrow \frac{f(x)}{g(x)} \in \begin{bmatrix} \left((c - \varepsilon)(1 - \varepsilon), (c + \varepsilon)(1 + \varepsilon) \right), \ C \in \mathbb{R} \\ \left(\frac{1 - \varepsilon}{\varepsilon}, +\infty \right), \ C = +\infty \\ \left(-\infty, \frac{1 + \varepsilon}{\varepsilon} \right), \ C = -\infty \end{bmatrix} \Rightarrow \lim_{x \to a + 0} \frac{f(x)}{g(x)} = C$$

Пример.
$$f(x) = x^n, n \in \mathbb{N}$$
 $\lim_{x \to +\infty} \frac{f(x)}{g(x)} - ?$

Peшeниe.
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{n \cdot x^{n-1}}{\ln a \cdot a^x} = \dots = \lim_{x \to +\infty} \frac{n!}{(\ln a)^n \cdot a^x} = 0$$

Пример.
$$f(x) = \ln x$$
, $g(x) = x^{\varepsilon}$, $\varepsilon > 0$. $\lim_{x \to +\infty} \frac{f(x)}{g(x)} - ?$

Peшение.
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{1/x}{\varepsilon \cdot x^{\varepsilon - 1}} = \lim_{x \to \infty} \frac{1}{\varepsilon \cdot x^{\varepsilon}} = 0$$

Пример.
$$\lim_{x\to+0} x \cdot \ln x - ?$$

Pemenue.
$$\lim_{x \to +0} x \cdot \ln x = \lim_{x \to +0} \frac{\ln x}{1/x} = \lim_{x \to +0} \frac{1/x}{-1/x^2} = 0$$

5.13 Исследование функций

Теорема 5.22. Пусть f дифференцируема на (a, b). Тогда:

- 1. $f'(x) \ge 0 \quad \forall x \in (a,b) \Leftrightarrow f$ нестрого возрастает на (a,b).
- 2. $f'(x) \leq 0 \quad \forall x \in (a,b) \Leftrightarrow f$ нестрого убивает на (a,b).
- 3. Ecnu $f'(x) > 0 \quad \forall x \in (a,b), mo \ f \ cmporo \ возрастает на <math>(a,b)$
- 4. Если $f'(x) < 0 \quad \forall x \in (a,b)$, то f строго убывает на (a,b).

Доказательство. Докажем 1., 2 — аналогично.

<u>Шаг 1</u>. Пусть $f'(x) \geqslant 0 \forall x \in (a,b)$. Рассмотрим две точки $x,y \in (a,b)$. По теореме Лагранжа о среднем: $f(y) - f(x) = f'(\xi)(y-x)$, где $f'(\xi) \geqslant 0$, $(y-x) > 0 \Rightarrow f(y) \geqslant f(x)$ (*) <u>Шаг 2.</u>Пусть f нестрого возрастает на (a,b). Фиксируем точку $x,x_0 \in (a,b)$.

 $\frac{f(x)-f(x_0)}{x-x_0}\geqslant 0$, так как если $x>x_0$, то числитель неотрицательный, а знаменатель положительный, а если $x< x_0$, то числитель неположительный, а знаменатель отрицательный.

Так как по условию fо условию дифференцируема в точке x_0 , переходя к пределу в неравенстве получим $f'(x_0) \geqslant 0$. Но x_0 можно выбрать произвольно.

Пример. $f(x) = x^3$.

f строго возрастает на \mathbb{R} . f'(0)=0. Поэтому из строгого возрастания не вытекает положительность производной

Теорема 5.23. (Достаточное условие экстремума) Пусть $f \in C(U_{\delta}(x_0))$ и дифференцируема в $\mathring{U}_{\delta}(x_0)$. Тогда если производная меняет знак при переходе через точку x_0 , то x_0 — точка локального экстремума (если знак меняется $c \leftarrow *$ на e », то локальный минумум, если e «+» на e », то локальный максимум).

Доказательство. Если $x \in \mathring{U}_{\delta}(x_0)$, то по теореме Лагранжа о среднем: $f(x) - f(x_0) = f'(\xi(x))(x - x_0)$. Если $f'(x) \geqslant 0 \ \forall x \in (x_0 - \delta, x_0), \ f'(x) \leqslant 0 \ \forall x \in (x_0, x_0 + \delta) \Rightarrow f(x) \leqslant f(x_0) \ \forall x \in (x_0 - \delta, x_0), \ 3$ начит, x_0 — нестрогий локальный максимум.

Аналогично доказываются остальные случаи.

Теорема 5.24. (Достаточное условие экстремума в терминах высших производных) Пусть $\exists f^{(n)}(x_0), n \in \mathbb{N}$. При этом $f^{(i)}(x_0) = 0 \ \forall i \in \{1, 2, \dots, n-1\}, f^{(n)}(x_0) \neq 0$. Тогда если n нечетно, то x_0 не является точкой экстремума, если n четно и $f^{(n)}(x_0) > 0$, то x_0 — строгий локальный минимум, если n четно и $f^{(n)}(x_0) < 0$, то x_0 — строгий локальный максимум.

Доказательство. Так как $\exists f^{(n)}(x_0)$, то по теореме Тейлора с остаточным членом в форме Пеано $f(x) = f(x_0) + \sum_{k=1}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + o\Big((x-x_0)^n\Big).$ $\frac{f(x) - f(x_0)}{(x-x_0)^n} = \frac{f^{(n)}(x_0)}{n!} + \varepsilon(x), \text{где } \varepsilon(x) \to 0, x \to x_0.$

Если n четно и $f^{(n)}(x_0) > 0$, то $\exists \delta > 0 : \forall x \in \mathring{U}_{\delta}(x_0) \hookrightarrow \frac{f^{(n)}(x_0)}{n!} + \varepsilon(x) > 0$ и $(x - x_0)^n > 0$ Следовательно, $f(x) - f(x_0) > 0$ $\forall x \in \mathring{U}_{\delta}(x_0)$. Значит, x_0 — строгий локальный минимум.

Аналогично рассматривается случай $f^{(n)}(x_0) < 0$.

Если n нечетно, то знак правой части сохраниться в некоторой $U_{\delta}(x_0)$, но знак $(x-x_0)^n$ меняется при переходе через x_0 . Тогда и знак числителя тоже меняется при переходе через x_0 . Значит, x_0 не является точкой локального экстремума.

Примечание. В теореме выше изложено лишь достаточное условие.

Теорема 5.25. (Необходимое условие экстремума в терминах второй производной) Пусть $\exists f''(x_0)$. Тогда если x_0 — точка локального экстремума, то $f'(x_0) = 0$ и, если x_0 — ло-кальный максимум, $f''(x_0) \leq 0$, а если локальный минимум, то $f''(x_0) \geq 0$.

Доказательство. То, что $f'(x_0) = 0$, следует из теоремы Ферма.

Докажем утверждение для локального минимума. Предположим противное: пусть если x_0 — локальный минимум, то $f''(x_0) < 0$. Но из этого условия по предыдущей теореме при производной порядка n=2 получаем, что x_0 — строгий локальный максимум. Получили противоречие. Значит, наше предположение неверно и если x_0 — локальный минимум, то $f''(x_0) \geqslant 0$.

Доказательство для локального максимума аналогично.

Выпуклости и точки перегиба

Примечание. Выпуклые вверх функции иногда называют вогнутыми

Задача. Доказать, что если f выпукла вверх (вниз) на (a,b), то она непрерывна на (a,b)

Теорема 5.26. Пусть $f:(a,b)\mapsto\mathbb{R}$ дважды дифференцируема на (a,b). Тогда

- 1. f выпукла вниз на $(a,b) \Leftrightarrow f''(x) \geqslant 0 \ \forall x \in (a,b)$
- 2. f выпукла вверх на $(a,b) \Leftrightarrow f''(x) \leq 0 \ \forall x \in (a,b)$

Доказательство. Докажем пункт 1., так как пункт 2. аналогичен.

Шаг 1. Пусть f выпукла вниз. Фиксируем $x_0 \in (a, b)$. Введем $u \in (0, \min\{x_0 - a, b - x_0\})$,

$$x_1 = x_0 - u$$

 $x_2 = x_0 - u$ $\Rightarrow x_0 = \frac{x_1 + x_2}{2}$

Разложим функцию f по формуле Тейлора с остаточным членом в форме Пеано:

$$f(x_1) = f(x_0) + f'(x_0)(-u) + \frac{f''(x_0) \cdot u^2}{2} + o(u^2), u \to 0$$

$$f(x_2) = f(x_0) + f'(x_0)(u) + \frac{f''(x_0) \cdot u^2}{2} + o(u^2), u \to 0$$

Используем условие выпуклости при $t = \frac{1}{2}$:

$$f(x_0) \leqslant \frac{f(x_1) + f(x_2)}{2} = \frac{2f(x_0) + f''(x_0) + o(u^2)}{2} = f(x_0) + f''(x_0)\frac{u^2}{2} + o(u^2)$$

$$f(x_0) \leqslant f(x_0) + f''(x_0) \frac{u^2}{2} + o(u^2) \Rightarrow f''(x_0) \frac{u^2}{2} + o(u^2) \geqslant 0 \Rightarrow \frac{f''(x_0)}{2} + o(1)$$

Переходя к пределу в неравенстве получим $f''(x_0) \ge 0$

<u>Шаг 2.</u> Пусть наоборот $f''(x) \ge 0 \ \forall x \in (a,b)$. Покажем, что f выпукла вниз на (a,b). Фиксируем произвольные точки $x_1, x_2 \in (a,b)$ и $t \in (0,1)$. Покажем, что выполняется

$$f(\underbrace{t \cdot x_1(1-t) \cdot x_2}_{x_0}) \leqslant t \cdot f(x_1) + (1-t) \cdot f(x_2)$$

Воспользуемся формулой Тейлора с остаточным членом в форме Лагранжа:

$$f(x_1) = f(x_0) + f'(x_0)(x_1 - x_0) + \frac{f''(\xi_1)}{2!}(x_1 - x_0)^2, \ \xi_1 \in (x_1, x_0)$$
$$f(x_2) = f(x_0) + f'(x_0)(x_2 - x_0) + \frac{f''(\xi_2)}{2!}(x_2 - x_0)^2, \ \xi_2 \in (x_0, x_2)$$

Так как $\frac{f''(\xi_1)}{2!} \geqslant 0$ и $\frac{f''(\xi_2)}{2!} \geqslant 0$, то $\frac{f(x_1) \geqslant f(x_0) + f'(x_0)(x_1 - x_0)}{f(x_2) \geqslant f(x_0) + f'(x_0)(x_2 - x_0)}$. Следовательно,

$$t \cdot f(x_1) + (1-t) \cdot f(x_2) \geqslant t \cdot f(x_0) + (1-t) \cdot f(x_0) + t \cdot f'(x_0)(x_1 - x_0) + (1-t) \cdot f'(x_0)(x_2 - x_0)$$

$$t \cdot f(x_1) + (1-t) \cdot f(x_2) \geqslant f(x_0) + f'(x_0) \underbrace{\left(t \cdot (x_1 - x_0) + (1-t) \cdot (x_2 - x_0)\right)}_{0} = f(x_0)$$

Так как $t \in (0,1)$ и точки x_1, x_2 выбраны произвольно, то теорема доказана.

Определение 5.18. Пусть $f \in C((a,b))$ и $\exists f'(x_0) \in \overline{\mathbb{R}}$. Пусть выполняется одно их двух условий:

- 1. f выпукла вниз на $U_{\delta}^{-}(x_{0})$ и выпукла вверх на $U_{\delta}^{+}(x_{0})$
- 2. fвыпукла вверх на $U_{\delta}^{-}(x_{0})$ и выпукла вниз на $U_{\delta}^{+}(x_{0})$

Тогда x_0 называется точкой перегиба графика функции f

Теорема 5.27. (Критерий точки перегиба) Пусть $f \in C(U_{\delta}(x_0))$ и $\exists f'(x_0) \in \overline{\mathbb{R}}$, f дважды дифференцируема в $\mathring{U}_{\delta}(x_0)$. Тогда x_0 — точка перегиба графика функции $f \Leftrightarrow$

$$\Leftrightarrow \begin{cases} f''(x) \geqslant 0 \ \forall x \in (x_0 - \delta, x_0) \ u \ f''(x) \leqslant 0 \ \forall (x_0, x_0 + \delta) \\ f''(x) \leqslant 0 \ \forall x \in (x_0 - \delta, x_0) \ u \ f''(x) \geqslant 0 \ \forall (x_0, x_0 + \delta) \end{cases}$$

Доказательство. Доказательство состоит в применении определения и критерия выпуклости. \Box

Определение 5.19. Пусть f дифференцируема в точке x_0 . Будем говорить что, график функции f переходит c одной стороны касательной на другую при переходе через точку x_0 , если $\exists \delta > 0$:

$$\begin{bmatrix} y_{\text{kac.}}(x) \leqslant f(x) \ \forall x \in (x_0 - \delta, x_0) \ \text{и} \ y_{\text{kac.}}(x) \geqslant f(x) \ \forall x \in (x_0, x_0 + \delta) \\ y_{\text{kac.}}(x) \geqslant f(x) \ \forall x \in (x_0 - \delta, x_0) \ \text{и} \ y_{\text{kac.}}(x) \leqslant f(x) \ \forall x \in (x_0, x_0 + \delta) \end{bmatrix}$$

Теорема 5.28. Пусть f дважды дифференцируема в $\mathring{U}_{\delta}(x_0)$ и дифференцируема в точке x_0 . Тогда если x_0 — точка перегиба графика функции f, то график переходит c одной стороны касательной на другую.

Обратное неверно.

Доказательство. Пусть x_0 — точка перегиба графика. Тогда в силу критерия точки перегиба $\exists \delta > 0 : f''(x) \leq 0 \ \forall (x_0 - \delta, x_0)$ и $f''(x) \geq 0 \ \forall x \in (x_{0,x_0+\delta})$ (второй случай рассматривается аналогично).

По формуле Тейлора с остаточным членом в форме Лагранжа имеем:

$$\forall x \in (x_0 - \delta, x_0) \hookrightarrow f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{y_{\text{Kac.}}} + \underbrace{\frac{f''(\xi)(x - x_0)^2}{2}}_{,}, \quad \underbrace{\frac{f''(\xi)(x - x_0)^2}{2}}_{,} \leqslant 0 \Rightarrow$$

$$\Rightarrow f(x) \leqslant y_{\text{Kac.}}(x) \ \forall x \in (x_0 - \delta, x_0)$$

$$\forall x \in (x_0, x_0 + \delta) \hookrightarrow f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{y_{\text{Kac.}}} + \underbrace{\frac{f''(\xi)(x - x_0)^2}{2}}_{f''(\xi)(x - x_0)^2}, \quad \underbrace{\frac{f''(\xi)(x - x_0)^2}{2}}_{f''(\xi)(x - x_0)^2} \geqslant 0 \Rightarrow$$

$$\Rightarrow f(x) \geqslant y_{\text{kac.}}(x) \ \forall x \in (x_0, x_0 + \delta)$$

Следовательно, график перешел с одной стороны касательной на другую. Почему обратное неверно?

Пример.

$$f(x) = \begin{cases} x^3 \left(2 + \sin\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0 \end{cases}$$

Горизонтальная касательная в точке 0: $y_{\text{kac.}} = 0$

$$\begin{cases} f(x) > 0, \ x > 0 \\ f(x) < 0, x < 0 \end{cases}$$

Но точка 0 не является точкой перегиба графика f, так как f не обладает какой-либо выпуклостью в левой или правой полуокрестности точки 0.

Асимптоты y0 0 x_0 x_0 .

Вертикальная асимптота

Наклонная асимптота

Определение 5.20. Будем говорить, что график функции f имеет вертикальную асимптоту в точке x_0 , если $\begin{cases} \lim_{x \to x_0 + 0} f(x) = \pm \infty \\ \lim_{x \to x_0 - 0} f(x) = \pm \infty \end{cases}$

Определение 5.21. Прямая $y = k \cdot x + b, \ b, k \in \mathbb{R}$ называется наклонной асимптотой графика функции $f:(A,\infty)$, если $\exists \lim_{x\to +\infty} (f(x)-kx-b)=0$.

Аналогично определяется наклонная асимnmoma на $-\infty$

Теорема 5.29. (Критерий асимптоты)

Прямая
$$y = kx + b - acumnmoma$$
 функции $f: (A, +\infty) \Leftrightarrow (*)$
$$\begin{cases} \exists \lim_{x \to +\infty} \frac{f(x)}{x} = k \\ \exists \lim_{x \to +\infty} (f(x) - kx) = b \end{cases}$$

Доказательство. Шаг 1. Пусть y = kx + b — асимптота. Следовательно,

$$\exists \lim_{x \to +\infty} (f(x) - kx) - b = 0 \Rightarrow \exists \lim_{x \to +\infty} (f(x) - kx) = b \Rightarrow f(x) - kx = b + o(1), x \to +\infty$$

Разделив все на x, получаем

$$\frac{f(x)}{x} = k + \frac{b}{x} + \frac{1}{x}o(1), x \to \infty.$$

Следовательно, $\lim_{x\to +\infty}\frac{f(x)}{x}=k$. <u>Шаг 2.</u> Пусть обратно выполнена (*). Тогда $\lim_{x\to +\infty}(f(x)-kx)=b$.

План построения графика

- 1. Найти область определения.
- 2. Найти точки пересечения с осями координат.
- 3. Построить асимптоты, если они есть.
- 4. Нарисовать эскиз графика.
- 5. Найти f'(x), точки экстремума, интервалы возрастания и убывания функции.
- 6. Найти f''(x), интервалы выгнутости и вогнутости, точки перегиба.
- 7. Строим уточненный график.

6 Первообразная, неопределенный интеграл, полиномы, комплексные числа

Определение 6.1. Будем говорить, что $f:(a,b) \mapsto \mathbb{R}$ имеет *первообразную* F на (a,b), если F — дифференцируема на (a,b) и $\forall x \in (a,b)$ F'(x) = f(x).

Примечание. Бессмысленно считать первообазную в точке, мы всегда рассматриваем интервалы.

Примечание. Если $f:(a,b)\mapsto \mathbb{R}$ имеет устранимый разрыв или разрыв первого рода, то она не имеет на (a,b) первообразной (следствие из теоремы Лагранжа о среднем).

Определение 6.2. *Неопределенным интегралом* функции f на (a,b) будем называть множество всех первообразных на (a,b) и записывать $\int f(x) \, dx$.

Лемма 6.1. Пусть f дифференцируема на (a,b). Тогда $f'(x) = 0 \ \forall x \in (a,b) \Leftrightarrow f(x) \equiv const.$

Доказательство. 1. Если $f(x)=t \ \forall x\in (a,b), \ \text{то} \ f'(x)=0 \ \forall x\in (a,b).$

2. Пусть $f'(x) = 0 \ \forall x \in (a,b)$. Рассмотрим произвольные $x_1, x_2 \in (a,b)$, тогда по теореме Лагранжа $\exists \xi \in (a,b) \colon f(x_1) - f(x_2) = f'(\xi)(x_1 - x_2) = 0 \Rightarrow f(x_1) = f(x_2)$. А так как x_1 и x_2 были выбраны из (a,b) произвольно, то f(x) = const на (a,b).

Следствие. Пусть F — первообразная f на (a,b). Тогда $\int f(x) \, dx = \{F(x) + C : C \in \mathbb{R}\}.$

Доказательство. Пусть F_1 и F_2 — две различные первообразные f. Тогда $F_1'(x) - F_2'(x) = f(x) - f(x) = 0 \Rightarrow$ по лемме 2.1 $F_1 - F_2 = const \Rightarrow$ первообразные отличаются только на $C \in \mathbb{R}$.

6.1 Свойства неопределенного интеграла

1. Линейность

Теорема 6.1. Пусть $a, b \in \mathbb{R}$: a < b и существуют первообразные для f_1 на (a, b) и f_2 на (a, b). Тогда если $\alpha_1, \alpha_2 \in \mathbb{R}$: $|\alpha_1| + |\alpha_2| > 0$, то существует первообразная для $\alpha_1 f_1 + \alpha_2 f_2$ и более того $\int \left(\alpha_1 f_1(x) + \alpha_2 f_2(x)\right) dx = \alpha_1 \int f_1(x) dx + \alpha_2 \int f_2(x) dx$.

Доказательство. Пусть F_1 — первообразная для f_1 , а F_2 — первообразная для f_2 . Тогда $\alpha_1F_1+\alpha_2F_2$ — первообразная для $\alpha_1f_1+\alpha_2f_2$ (так как производные обладают свойством линейности), можно убедиться в этом, взяв производную $\Rightarrow \int \left(\alpha_1f_1(x)+\alpha_2f_2(x)\right)dx = \alpha_1F_1+\alpha_2F_2+C$. С другой стороны $\alpha_1\int f_1(x)\,dx = \alpha_1F_1(x)+C_1$ и $\alpha_2\int f_2(x)\,dx = \alpha_2F_2(x)+C_2$, сложив это, получим $\alpha_1F_1(x)+C_1+\alpha_2F_2(x)+C_2$, что равно $\alpha_1F_1+\alpha_2F_2+C$, так как что C_1+C_2 , что C «пробегают» все вещественные числа.

Примечание. Равенство надо понимать, как равенство семейств функций, то есть семейства совпадают. \Box

Примечание.

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$$

$$\int -\frac{1}{\sqrt{1-x^2}} dx = -\arcsin x + C$$
 или же $\arccos x + C$

но это не значит, что — $\arcsin x = \arccos x$. Это значит, что данные семейства равны (константы не равны).

2. Интегрирование подстановкой (замена переменной)

Теорема 6.2. Пусть $a, b \in \mathbb{R}$: a < b и f имеет первообразную F на (a, b). Пусть x: $(\alpha, \beta) \mapsto (a, b)$ дифференцируема на (α, β) . Тогда $\int f(x(t))x'(t) dt = \int f(x(t)) dx(t) = F(x(t)) + C$.

Доказательство. По теореме о дифференцировании композиции функций получается $F(x(t))' = F'(x(t))x'(t) \ \forall t \in (\alpha, \beta)$. Тогда отсюда и из структуры множества первообразных получаем искомое.

3. Интегрирование по частям

Теорема 6.3. Пусть $a,b \in \mathbb{R}$: a < b и U,V дифференцируемы на (a,b). Тогда выполняется $\int U(x) \, dV(x) = U(x) \cdot V(x) - \int V(x) \, dU(x)$, где dV(x) = V'(x) dx, dU(x) = U'(x) dx.

Доказательство. Так как U,V дифференцируемы на (a,b), то $\exists (UV)'(x) = U'(x)V(x) + V'(x)U(x)$ по формуле Лейбница, откуда в силу линейности интеграла $\int (UV)'\,dx = \int U'(x)V(x)\,dx + \int V'(x)U(x)\,dx \Rightarrow \int U(x)V'(x)\,dx = U(x)V(x) + C - \int U'(x)V(x)\,dx = U(x)V(x) - \int U'(x)V(x)\,dx$, где равенство понимается с точки зрения семейства функций.

Стандартные интегралы

$$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C, \ \alpha \neq -1$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \frac{1}{\cos^{2} x} dx = \tan x + C, \ x \neq \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$$

$$\int \sinh x = \cosh x + C$$

$$\int \frac{1}{\cosh^{2} x} dx = \sinh x + C$$

$$\int \frac{1}{\cosh^{2} x} dx = \sinh x + C$$

$$\int \frac{1}{\cosh^{2} x} dx = \cot x + C$$

$$\int \frac{1}{1 + x^{2}} dx = \arctan x + C$$

$$\int \frac{1}{1 + x^{2}} dx = \arctan x + C, \ |x| < 1$$

$$\int \frac{1}{\sqrt{1 - x^{2}}} dx = \arcsin x + C, \ |x| < 1$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C, \ a > 0, a \neq 1$$

$$\int \frac{1}{\sqrt{x^{2} + a}} dx = \ln|x + \sqrt{x^{2} + a}| + C, \ x^{2} + a > 0$$

$$\int \frac{1}{x + a} dx = \ln|x + a| + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \cosh x = \sinh x + C$$

$$\int \sinh x = \cosh x + C$$

$$\int \frac{1}{\sinh^{2} x} dx = -\coth x + C, \ x \neq 0$$

$$\int -\frac{1}{1 + x^{2}} dx = \arctan x + C, \ |x| < 1$$

$$\int \frac{1}{\sqrt{1 - x^{2}}} dx = \arcsin x + C, \ |x| < 1$$

$$\int \frac{1}{\sqrt{1 - x^{2}}} dx = \ln |x + \sqrt{x^{2} + a}| + C, \ x^{2} + a > 0$$

6.2 Комплексные числа

Определение 6.3. \mathbb{C} — множество пар вещественных чисел (x_1, x_2) с введёнными следующим образом операциями:

1.
$$(x_1, x_2) \pm (y_1, y_2) = (x_1 \pm y_1, x_2 \pm y_2), \forall (x_1, x_2), (y_1, y_2) \in \mathbb{C};$$

2.
$$\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2), \forall (x_1, x_2) \in \mathbb{C}, \alpha \in \mathbb{R};$$

3.
$$(x_1, x_2) \cdot (y_1, y_2) = (x_1y_1 - x_2y_2, x_2y_1 + x_1y_2), \forall (x_1, x_2), (y_1, y_2) \in \mathbb{C};$$

4.
$$\forall z \neq 0 \ \exists ! \frac{1}{z} : z \cdot \frac{1}{z} = 1.$$

Также $(1,0) \equiv 1$, i := (0,1). Действительной частью назовём x_1 и будем обозначать Rez, мнимой — x_2 и будем обозначать Imz.

1.
$$z_1 + z_2 = z_2 + z_1$$
 $\forall z_1, z_2 \in \mathbb{C}$

$$2. \quad z_1 \cdot z_2 = z_2 \cdot z_1 \qquad \forall z_1, z_2 \in \mathbb{C}$$

Свойства комплексных чисел: 3. $(z_1+z_2)+z_3=z_1+(z_2+z_3)$ $\forall z_1,z_2,z_3\in\mathbb{C}$

4.
$$z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3 \quad \forall z_1, z_2, z_3 \in \mathbb{C}$$

5.
$$z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3 \quad \forall z_1, z_2, z_3 \in \mathbb{C}$$

Если ввести на плоскости полярные координаты, то любой ненулевой вектор можно представить как $z=(r\cos\varphi,r\sin\varphi)$, где r — модуль вектора, φ — аргумент. То есть мы можем ввести mpuronomempureckyho форму sanucu komnekchoro uucna — $z=r\cos\varphi+i\sin\varphi$, где φ определено с точностью до 2π .

Определение 6.4. Пусть z = x + iy. Тогда $e^z := e^x \cdot (\cos y + i \sin y)$.

Следствие. $e^{i\varphi}:=\cos\varphi+i\sin\varphi$ — формула Эйлера. Как следствие $z=re^{i\varphi}\ \forall z\in\mathbb{C}.$

Свойства экспоненты комплексного числа: $e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}, \ \forall z_1,z_2\in\mathbb{C}.$

Доказательство. Пусть $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$.

Тогда
$$e^{z_1} \cdot e^{z_2} = (e^{x_1} \cdot e^{x_2}) \cdot (\cos y_1 + i \sin y_1) \cdot (\cos y_2 + i \sin y_2) = e^{x_1 + x_2} \cdot (\cos y_1 + y_2 + i \sin y_1 + y_2) = e^{z_1 + z_2}.$$

Следствие. Пусть $z_1, z_2 \in \mathbb{C}$, то $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$, а $\arg(z_1 \cdot z_2) = \arg z_1 + \arg z_2$.

Доказательство. Достаочно записать числа в экспоненциальном виде и воспользоваться свойством, которое мы доказали ранее $z_1 \cdot z_2 = r_1 e^{i\varphi_1} \cdot r_2 e^{i\varphi_2} = (r_1 \cdot r_2) e^{i(\varphi_1 + \varphi_2)} \Rightarrow |z_1 \cdot z_2| = |z_1| \cdot |z_2| = r_1 \cdot r_2$, a arg $z_1 \cdot z_2 = \arg z_1 + \arg z_2 = \varphi_1 + \varphi_2$.

Следствие. Пусть $z_1, z_2 \in \mathbb{C}, z_2 \neq 0$. Тогда $\exists! z = \frac{z_1}{z_2}$, при этом $|z| = \frac{|z_1|}{|z_2|}$, а $\arg z = \arg z_1 - \arg z_2$.

Доказательство. Представим исходную дробь как $z \cdot z_2 = z_1$. Пусть $z = re^{i\varphi}$, $z_1 = r_1e^{i\varphi_1}$, $z_2 = r_2e^{i\varphi_2}$. По правилам, выведенным ранее, получим $(r \cdot r_2)e^{i(\varphi+\varphi_2)} = r_1e^{i\varphi_1} \Rightarrow r = \frac{r_1}{r_2}$, а $\varphi = \varphi_1 - \varphi_2$.

Определение 6.5. Пусть $z \in \mathbb{C}$, z = a + bi. Тогда его *комплексно сопряженным* числом назовем $\overline{z} := a - bi$.

1.
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$
;

$$2. \ \overline{\overline{z}} = z;$$

Свойства комплексных сопряжений:

3.
$$\overline{z^n} = (\overline{z})^n$$
;

$$4. z + \overline{z} = 2 \text{Re} z;$$

5.
$$z - \overline{z} = 2 \text{Im} z$$
.

6.3 Полиномы

Определение 6.6. Комплексным полиномом n-ой степени назовём $P_n(z) = \sum_{k=0}^n \alpha_k z^k$, притом $\alpha_k \in \mathbb{C} \ \forall k \in \{0,1,\ldots,n\}$.

Утверждение 6.1. Следующие условия эквивалентны:

1.
$$P_n(z) = Q_n(z) \ \forall z \in \mathbb{C};$$

2.
$$P_n(x) = Q_n(x) \ \forall x \in \mathbb{R};$$

3.
$$a_k = b_k \ \forall k \in \{0, 1, \dots, n\}.$$

Доказательство. $(1) \Rightarrow (2), (3) \Rightarrow (1)$ очевидно.

Докажем (2) \Rightarrow (3). Имеем $P_n(x) = \sum_{k=0}^n a_k x^k$, $Q_n(x) = \sum_{k=0}^n b_k x^k$, подставим x=0, тогда $a_0=b_0$, тогда вычитая один полином из другого и деля на x, получим $a_1=b_1$ и так далее. Итого $a_k=b_k \ \forall k \in \{0,1,\ldots,n\}$.

Определение 6.7. Алгребраической дробью назовём $R(z) = \frac{P_n(z)}{Q_m(z)}$. Притом, если $n \geqslant m$, то дробь называется неправильной, иначе правильной.

Теорема 6.4. Для любых полиномов $P_n(z)$ и $Q_m(z)$: $n \geqslant m$, $\exists ! D_{n-m}(z)$ и R(z): $\frac{P_n(z)}{Q_m(z)} = D_{n-m}(z) + \frac{R(z)}{Q_m(z)}$, где $\deg R(z) < m$.

Доказательство. Пусть $P_n(z) = \sum_{k=0}^n a_k z^k$, $Q_m(z) = \sum_{k=0}^m b_k z^k$. Воспользуемся методом неопределённых коэффициентов для поиска $D_{n-m}(z)$. Приведём к общему знаменателю, то есть умножим на $Q_m(z)$, получим $P_n(z) = D_{n-m}(z)Q_m(z) + R(z)$. Запишем $D_{n-m}(z)$ в виде $\sum_{k=0}^{n-m} d_k z^k$, тогда имеем $\sum_{k=0}^n a_k z^k = d_{n-m} z^{n-m} \cdot b_m z^m +$ младшие члены, так как степень R(z) меньше, чем n-m. А так как полиномы равны, то $a_n = d_{n-m} \cdot b_m \Rightarrow d_{n-m} = \frac{a_n}{b_n}$ однозначно. Рассмотрим разность $P_n(z) - d_{n-m} z^{n-m} \cdot Q_m(z) = \tilde{P}(z)$, так как от n-ой степени мы уже избавились, то степень $\tilde{P}(z)$ не выше n-1. Итого имеем $\frac{P_n(z)}{Q_m(z)} = d_{n-m} z^{n-m} + \frac{\tilde{P}(z)}{Q_m(z)}$, пока степень $\tilde{P}>Q_m$, то продолжаем по индукции с $\tilde{P}(z)$. Получаем, что требовалось. \square

Теорема 6.5. (Теорема Безу) Число z_0 является корнем полинома $P_n(z) \Leftrightarrow P_n(z)$ делится на $(z-z_0)$ без остатка.

 \mathcal{A} оказательство. В силу только что доказанной теоремы $\frac{P_n(z)}{z-z_0}=P_{n-1}(z)+\frac{C_0}{z-z_0}\Leftrightarrow P_n(z)=P_{n-1}(z)(z-z_0)+C_0$, а как как z_0 корень, то $P_n(z_0)=0=C_0$, а значит есть деление без остатка.

Теорема 6.6. (Основная теорема алгебры) Пусть $n \in \mathbb{N}$. Тогда любой полином $P_n(z)$ имеет хотя бы один комплексный корень.

Следствие. Любой полином $P_n(z) = a \prod_{k=1}^n (z - z_k)$ (без учёта кратности).

Доказательство. По основной теореме алгебры $P_n(z)$ имеет корень z_1 , тогда в силу теоремы Безу можно поделить $P_n(z)$ на $(z-z_1)$ без остатка, то есть $P_n(z)=(z-z_1)P_{n-1}(z)$. Продолжая по индукции, получаем разложение многочлена на множители.

Далее до конца главы коэффициенты подразумеваются вещественные.

Определение 6.8. Пусть $P_n(z) = \sum_{k=0}^n a_k z^k$, $a_k \in \mathbb{R} \ \forall k \in \{0, 1, ..., n\}$. Тогда $\overline{P_n(z)} = \sum_{k=0}^n \overline{a_k z^k} = \sum_{k=0}^n \overline{a_k z^k} = \sum_{k=0}^n a_k \overline{z^k} = \sum_{$

Определение 6.9. Будем говорить, что $z_0 - \kappa openь$ $\kappa pamhocmu$ k $(k \le n)$ полинома $P_n(z)$, если $P_n(z) = (z-z_0)^k \cdot Q(z)$, где Q(z) не имеет в качестве корня z_0 .

Теорема 6.7. Пусть $P_n(z) = \sum_{k=0}^n a_k z^k$, $a_k \in \mathbb{R} \ \forall k \in \{0, 1, ..., n\} \ u \ z_0 - \kappa openь кратности <math>k \leqslant n$. Тогда $\overline{z}_0 - \kappa openь кратности <math>k$.

<u>Доказательство.</u> Так как z_0 — корень кратности k, то $P_n(z)=(z-z_0)^k\cdot Q(z)$. Тогда $P_n(z)=\overline{(z-z_0)^k}\cdot \overline{Q(z)}$, но так как $\overline{P_n(z)}=P_n(\overline{z})$, то получаем $P_n(\overline{\overline{z}})=(\overline{\overline{z}}-\overline{z_0})^k\cdot \overline{Q(\overline{z})}\Rightarrow P_n(z)=(z-\overline{z_0})^k\cdot \overline{Q(\overline{z})}$, откуда получаем, что $\overline{z_0}$ — корень кратности k.

<u>Примечание. Необходимо также убедиться, что $Q(\overline{z})$. Пусть $Q_1(z)=\overline{Q(\overline{z})}$. Тогда $Q_1(\overline{z_0})=\overline{Q(\overline{z_0})}=\overline{Q(z_0)}\neq 0$.</u>

Следствие. Пусть $P_n(z) = \sum_{k=0}^n a_k z^k$, $a_k \in \mathbb{R} \ \forall k \in \{0, 1, \dots, n\}$. Тогда $P_n(x) = a(x - x_1)^{k_1} \cdot \dots \cdot (x - x_s)^{k_s} \cdot (x^2 + p_1 x + q_1)^{l_1} \cdot \dots \cdot (x^2 + p_t x + q_t)^{l_t}$, $n = k_1 + \dots + k_s + l_1 + \dots + l_t$, где $\forall i \in \{1, 2, \dots, t\} \hookrightarrow p_i^2 - 4q_i < 0$.

Доказательство. Рассмотрим $P_n(z) = a(z-x_1)^{k_1} \cdot \ldots \cdot (z-x_s)^{k_s} \cdot (z-z_1)^{l_1} \cdot (z-\overline{z_1})^{l_1} \cdot \ldots \cdot (z-z_t)^{l_t} \cdot (z-\overline{z_t})^{l_t}$, где $x_i \in \mathbb{R} \ \forall i \in \{1,2,\ldots,s\}$. Раскроем все полиномы $(z-z_i)(z-\overline{z_i}) \ \forall i \in \{1,2,\ldots,t\}$, получим $z^2-(z_i+\overline{z_i})z+z_i\overline{z_i}$, тогда $p_i^2-4q_i=(z_i+\overline{z_i})^2-4z_i\overline{z_i}=(z_i-\overline{z_i})^2=(2i\cdot \mathrm{Im} z_i)^2=-4(\mathrm{Im} z_i)^2$, что меньше нуля.

Теорема 6.8. Пусть P(x), Q(x) — полиномы с вещественными коэффициентами, $R(x) = \frac{P(x)}{Q(x)}$ — правильная дробь и x_0 — корень кратности k знаменателя, то есть $Q(x) = (x-x_0)^k \cdot \tilde{Q}(x)$, где $\tilde{Q}(x_0) \neq 0$. Тогда $\exists ! A \in \mathbb{R}$, $F(x) : \frac{P(x)}{Q(x)} = \frac{A}{(x-x_0)^k} + \frac{F(x)}{(x-x_0)^{k-1} \cdot \tilde{Q}(x)}$, где $\deg F(x) < \deg \tilde{Q}(x) + k - 1$.

Доказательство. Равенство теоремы равносильно $P(x) = A \cdot \tilde{Q}(x) + F(x) \cdot (x - x_0) \Leftrightarrow P(x) - A \cdot \tilde{Q}(x) = F(x) \cdot (x - x_0) \Leftrightarrow$ левая часть делится на $(x - x_0)$ без остатка, следовательно по теореме Безу $P(x_0) - A \cdot \tilde{Q}(x_0) = 0$, а так как $\tilde{Q}(x_0) \neq 0$, то $A = \frac{P(x_0)}{\tilde{Q}(x_0)}$ — однозначно,

откуда однозначно определяется $F(x)=\frac{P(x)-A\cdot \tilde{Q}(x)}{x-x_0}$. Получаем $\deg P(x)-A\cdot \tilde{Q}(x)<\deg Q(x)\Rightarrow \deg F(x)<\deg Q(x)-1=\deg \tilde{Q(x)}+k-1$.

Теорема 6.9. Пусть P и Q — полиномы c вещественными коэффициентами, $\frac{P}{Q}$ — правильная дробь и $z_0 \in \mathbb{C}$ ($Imz_0 \neq 0$) — корень кратности k. Тогда $\exists !B, C \in \mathbb{R}$ и помином F: $\frac{P(x)}{Q(x)} = \frac{Bx + C}{(x^2 + p_0x + q_0)^k} + \frac{F(x)}{(x^2 + p_0x + q_0)^{k-1} \cdot \tilde{Q}(x)}$, где $\tilde{Q}(x)$ определяется из $Q(x) = (x^2 + p_0x + q_0)^k \cdot \tilde{Q}(x)$, при этом второе слагаемое — правильная дробь.

Доказательство. Равенство теоремы равносильно $P(x) = (Bx+C) \cdot \tilde{Q}(x) + F(x)(x^2 + p_0 x + q_0) \Leftrightarrow P(x) - (Bx+C) \cdot \tilde{Q}(x) = F(x)(x^2 + p_0 x + q_0) \Leftrightarrow P(x) - (Bx+C) \cdot \tilde{Q}(x)$ делится без остатка на $(x-z_0)$, что по теореме Безу равносильно $P(z_0) - (Bz_0 + C) \cdot \tilde{Q}(z_0) = 0$, но $\tilde{Q}(z_0) \neq 0$, тогда $Bz_0 + C = \frac{P(z_0)}{\tilde{Q}(z_0)} = x_1 + y_1 i$. Пусть $z_0 = x_0 + y_0 i$. Тогда $Bx_0 + By_0 i + C = x_1 + y_1 i \Rightarrow Bx_0 + C = x_1$

и $By_0=y_1$. А так как ${\rm Im}z_0\neq 0$, то $B=\frac{y_1}{y_0}\Rightarrow C=x_1-\frac{y_1}{y_0}\cdot x_0$, то есть мы однозначно нашли коэффициенты, а тогда полином F тоже строится однозначно.

То, что второе слагаемое правильная дробь доказывается аналогично предыдущей теореме. \Box

Следствие. Пусть $R(x) = \frac{P(x)}{Q(x)}$ — правильная дробь и $Q(x) = a(x-x_1)^{k_1} \cdot \dots \cdot (x-x_s)^{k_s} \cdot (x^2 + x_s)^{k_s}$ $(p_1x+q_1)^{l_1}\cdot\ldots\cdot(x^2+p_tx+q_t)^{l_t}, \ n=k_1+\ldots+k_s+l_1+\ldots+l_t,$ где $\forall i\in\{1,2,\ldots,t\}\hookrightarrow p_i^2-4q_i<0$. Тогда $R(x) = \sum_{j=1}^{s} \sum_{i=1}^{k_i} \frac{A_j^i}{(x-x_i)^j} + \sum_{j=1}^{t} \sum_{i'=1}^{l_{i'}} \frac{B_{j'}^{i'}x + C_{j'}^{i'}}{(x^2 + p_{i'}x + q_{i'})^{j'}}.$

 $extit{Доказательство.}$ «Доказывается многократным повторением теорем, которые только что были» (с) Тюленев А.И.

Интегрирование дробей

Алгоритм работы с дробями: если дробь неправильная, значит надо поделить её в сто-

$$\int \frac{1}{(x-x_0)^k} dx = \frac{1}{1-k} \cdot \frac{1}{(x-x_0)^{k-1}} + C, \ k \neq 1.$$

$$\int \frac{1}{(x-x_0)^k} dx = \ln|x-x_0| + C.$$

Научимся считать $\int \frac{Bx+C}{(x^2+nx+a)^l}, l \in \mathbb{R}.$

Вынесем
$$\frac{B}{2}$$
, получим $\frac{B}{2}\int \frac{2x+\frac{2C}{B}}{(x^2+px+q)^l}dx = \frac{B}{2}\int \frac{2x+p}{(x^2+px+q)^l}dx + \left(C-\frac{B\cdot p}{2}\right)\int \frac{1}{(x^2+px+q)^l}dx$

Первый интеграл берётся заменой $t = x^2 + px + q$, со вторым сложнее:

$$\int \frac{1}{(x^2+px+q)^l} dx = \int \frac{1}{\left((x+\frac{p}{2})^2+(q-\frac{p^2}{4})\right)^l} dx, \text{ так как } q-\frac{p^2}{4}>0, \text{ то оно представимо}$$

в виде a^2 , $a \in \mathbb{R}_+$, сделаем замену $t = x + \frac{p}{2}$. Получаем $\int \frac{1}{(t^2 + a^2)^l} dx$.

Если l=1, то искомый интеграл равен $\frac{1}{a}\mathrm{arctg}\frac{t}{a}+C$. Если l>1, то будем интегрировать по частям. Обозначим $I_l(t) = \int \frac{1}{(t^2+a^2)^l} dt$. Получаем $\frac{t}{(t^2+a^2)^l} + l \cdot \int \frac{t \cdot 2t}{(t^2+a^2)^{l+1}} dt =$ $\frac{t}{(t^2+a^2)^l} + 2l \cdot \int \frac{1}{(t^2+a^2)^l} dt - 2l \cdot a^2 \cdot \int \frac{1}{(t^2+a^2)^{l+1}} dx.$

Итого получаем $I_l(t) = \frac{t}{(t^2 + a^2)^l} + 2l \cdot I_l(t) - 2l \cdot a^2 \cdot I_{l+1}(t)$, то есть рекуррентное соотношение. Откуда $I_{l+1}(t) = \left| \frac{t}{(t^2 + a^2)^l} + (2l-1) \cdot I_l(t) \right| \cdot \frac{1}{2l \cdot a^2}$.

1)
$$\int R(x^{1/n})\,dx$$
 3) Подстановки Чебышева
$$\int ax^m(bx^n+c)^p\,dx$$
 делается замена $t=x^{1/n}$ 2)
$$\int R(x,)\,dx$$

2)
$$\int R(x,)\,dx$$

Теорема 6.10.

COMING SOON......

7 Линейные пространства (векторные пространства)

Определение 7.1. \mathbb{R}^n , $n \in \mathbb{N}$ — пространство строк длины n из вещественных чисел, то есть $x \in \mathbb{R}^n$, $x = (x_1, \dots, x_n)$.

Примечание. В литературе можно ещё встретить $\mathbb{C}^n \sim \mathbb{R}^{2n}, z = (z_1, \dots, z_n).$

Определение 7.2. Пусть E — множество, на котором введены операции (отображения): «+» : $E \times E \mapsto E$

удовлетворяющее следующим условиям: $\mathbb{R} \times \mathcal{E} \mapsto \mathcal{E}$

- 1. a+b=b+a $\forall a,b \in E$
- 2. $(a+b) + c = a + (b+c) \quad \forall a, b, c \in E$
- 3. $\exists \overline{0} \in E : a + \overline{0} = a \qquad \forall a \in E$
- 4. $\exists -a \in E: a + (-a) = \overline{0} \quad \forall a \in E$
- 5. $(\alpha\beta) \cdot a = \alpha \cdot (\beta \cdot a) \quad \forall \alpha, \beta \in \mathbb{R}, \forall a \in E$
- 6. $1 \cdot a = a$ $1 \in \mathbb{R}, \forall a \in \mathcal{E}$
- 7. $(\alpha + \beta) \cdot a = \alpha \cdot a + \beta \cdot a \quad \forall \alpha, \beta \in \mathbb{R}, \forall a \in E$
- 8. $\alpha \cdot (a+b) = \alpha \cdot a + \alpha \cdot b \quad \forall \alpha \in \mathbb{R}, \forall a, b \in E$

то $(E, +, \cdot)$ называется вещественным векторным пространством или вещественным линейным пространством или линейным пространством над полем вещественных чисел (\mathbb{R}) .

Примечание. Заменяя вещественные числа на комплексные, можно получить определение комплексного линейного пространства или линейного пространства над \mathbb{C} .

Примеры. «Базовые» линейные пространства — \mathbb{R}^n , \mathbb{C}^n .

В \mathbb{R}^n введём операцию «+» следующим образом: $\forall x, y \in \mathbb{R}^n \hookrightarrow x + y = (x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$, - а «·» так: $\forall \alpha \in \mathbb{R}, \ \forall x \in \mathbb{R}^n \hookrightarrow \alpha \cdot x = (\alpha x_1, \dots, \alpha x_n)$. Требуемым аксиомам \mathbb{R}^n очевидно удовлетворяет.

Утверждение 7.1. Элемент $\bar{0}$ единственен.

 \mathcal{A} оказательство. Пусть $\exists \overline{0}_1, \overline{0}_2 \colon \overline{0}_1 \neq \overline{0}_2$. Тогда по аксиомам 1 и 3 получаем $\overline{0}_1 = \overline{0}_1 + \overline{0}_2 = \overline{0}_2 + \overline{0}_1 = \overline{0}_2 \Rightarrow \overline{0}_1 = \overline{0}_2$, то есть исходное предположение было неверно и $\overline{0}$ единственен. \square

Утверждение 7.2. $\forall a \in E$ элемент -a единственен.

Доказательство. Пусть $\exists -a_1$ и $-a_2 \in E$: $a+(-a_1)=0$ и $a+(-a_2)=0$. Тогда $-a_1=-a_1+0=-a_1+a+(-a_2)=0+(-a_2)=-a_2 \Rightarrow -a_1=-a_2$, то есть исходное предположение было неверно и -a единственно.

Утверждение 7.3. $0 \cdot a = \overline{0}, \forall a \in E$.

Доказательство. $0 \cdot a = (0 \cdot a) + \overline{0} = (0 \cdot a) + a + (-a) = (0+1) \cdot a + (-a) = a + (-a) = \overline{0}$. \square

Линейные пространства — это не только \mathbb{R}^n и \mathbb{C}^n .

Примеры. Пусть $E = \{P(x): x \in \mathbb{R}\}$, то есть пространства всех полиномов P(x). Это будет вещественным векторным пространством, так как удовлетворяет всем аксиомам. Также $F = \{P(z): z \in \mathbb{C}\}$ — комплексное векторное пространство.

Примечание. Эти примеры интересны тем, что они «бесконечномерны», но об этом позже.

7.1Нормированное пространство

Определение 7.3. Линейное нормированное пространство (ЛНП) — это пара (E, ||||), где Е — вещественное линейное пространство, а $\| \| : E \mapsto [0; +\infty)$ — отображение, удовлетворя-

1.
$$||x|| \ge 0$$
 $\forall x \in E; ||x|| = 0 \Leftrightarrow x = \overline{0}$

ющее свойствам (назовём это нормой): 2. $||x|| \ge 0$ $\forall \alpha \in \mathbb{R}, \ \forall x \in \mathcal{E}$

3.
$$||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in E$$

Пример. В $\mathbb{R}^n \|x\|_1 = \sum_{k=1}^n |x_k|$ и $\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|$. Проверка, почему эти нормы удовлетворяют свойствам, очевидна.

Примечание.
$$\forall p \in (1; +\infty) \ \|x\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$$
, но эту формулу тяжелее доказать.

Пример. C([a,b]) — линейное пространство всех непрерывных на [a,b] функций, будем рассматривать его как вещественное линейное пространство $(a, b \in \mathbb{R})$.

Пусть
$$f_1 \in C([a,b]), f_2 \in ([a,b]).$$
 Тогда
$$\begin{cases} (f_1 + f_2)(x) := f_1(x) + f_2(x) \ \forall x \in [a,b] \\ (\alpha f_1)(x) := \alpha \cdot f_1(x) \ \forall \alpha \in \mathbb{R}, \forall x \in [a,b] \end{cases}$$

определение операций над функциями из C([a,b]). Заметим, что данные операции корректно введены, так как сумма двух непрерывных функций — непрерывная функция и произведение числа на непрерывную функцию — непрерывная функция.

Таким образом мы наделяем множество непрерывных на [a,b] функций структурой линейного пространства.

Также введём норму в С ([a,b]): $||f||_{\mathrm{C}([a,b])}:=\max_{x\in \mathbb{R}^n}|f(x)|$. Заметим, что тах непрерывной на отрезке функции достигается. Проверим аксиомы нормы:

- 1. $||f||_{\mathrm{C}([a,b])}\geqslant 0$ очевидно; $||f||_{\mathrm{C}([a,b])}=0\Leftrightarrow \max_{x\in[a,b]}|f(x)|=0\Rightarrow f(x)\equiv 0$ на [a,b];
- $2. \ \|\alpha f\|_{\mathcal{C}([a,b])} = \max_{x \in [a,b]} |\alpha f(x)| = |\alpha| \max_{x \in [a,b]} |f(x)| = |\alpha| \|f\|_{\mathcal{C}([a,b])};$
- 3. $||f_1+f_2||_{C([a,b])} = \max_{x \in [a,b]} |f_1(x)+f_2(x)| = |f_1(x^*)+f_2(x^*)| \le |f_1(x^*)|+|f_2(x^*)| \le \max_{x \in [a,b]} |f_1(x)| + \max_{x \in [a,b]} |f_2(x)| = ||f_1||_{C([a,b])} + ||f_2||_{C([a,b])}.$

Замечание: x^* — точка отрезка в которой достигается максимум (в силу непрерывности на отрезке).

7.2Метрическое пространство

Определение 7.4. Пара (X, ρ) — метрическое пространство $(M\Pi)$, где X — абстрактное множество, $X \neq \emptyset$, а $\rho: X \times X \mapsto [0; +\infty)$, удовлетворяющее следующим аксиомам:

- 1. $\rho(x,y) \geqslant 0$ $\forall x, y \in X$
- 2. $\rho(x,y) = 0 \Leftrightarrow x = y \qquad \forall x,y \in X$ 3. $\rho(x,y) = \rho(y,x) \qquad \forall x,y \in X$ 4. $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z) \qquad \forall x,y,z \in X$

Определение 7.5. Пусть (X, ρ) метрическое пространство. *Открытым шаром* с центром в точке $x \in X$ и радиуса $r \geqslant 0$ называется множество $B_r(x) := \{y \in X : \rho(x,y) < r\},$ $\overline{B}_r(x):=\{y\in X\colon
ho(x,y)\leqslant r\}$ — «замкнутый» шар, а $\mathring{B}_r(x)=B_r(x)\backslash\{x\}$ — проколотый шар.

Примеры.

- 1. $X = \mathbb{R}, \, \rho(x, y) = |x y|;$
- 2. $X = \mathbb{Q}, \ \rho(x, y) = |x y|;$
- 3. $X = [0; 1], \rho(x, y) = |x y|;$
- 4. $X = [0; 1] \cap Q$, $\rho(x, y) = |x y|$;
- 5. $X = \mathbb{R}, \, \rho(x,y) = |e^x e^y|;$
- 6. Любое линейно нормированное пространство (E, ||||) становится метрическим пространством, если $\rho(x, y) := ||x y||$.

Примечание. Если (X, ρ) — метрическое пространство, тогда $X' \subset X$ — непустое множество, X' само становится метрическим пространством если сузить метрику ρ на него.

Задача. Может ли в метрическом пространстве шар меньшего радиуса внутри себя строго содержать шар большего радиуса?

Решение. Да, может. Возьмём X=[0;1], $\rho(x,y)=|x-y|,$ а $B_{\frac{3}{4}}\left(\frac{1}{2}\right)=[0;1],$ $B_{\frac{7}{8}}(1)=\left(\frac{1}{8};1\right]-$ все условия выполнены.

Примечание. Шар в метрическом пространстве не однозначно определяет центр и радиус: так в $X = [0; 1], \, \rho(x, y) = |x - y|$ получается $B_{\frac{3}{4}}(1) = B_2(1) = [0; 1].$

Определение 7.6. Пусть (X, ρ) —[метрическое пространство, $E \subset X$. $x_0 \in X$ — точка прикосновения E, если $\forall \varepsilon > 0 \hookrightarrow B_{\varepsilon}(x_0) \cap E \neq \emptyset$.

Определение 7.7. Пусть (X, ρ) метрическое пространство, $E \subset X$. $x_0 \in X$ — npedenbhas mouka E, если $\forall \varepsilon > 0 \hookrightarrow \mathring{B}_{\varepsilon}(x_0) \cap E \neq \varnothing$.

Определение 7.8. Пусть (X_1, ρ_1) , (X_2, ρ_2) метрические пространства, $E \subset X_1$, $f: E \mapsto X_2$, $x_0 \in X_1$ — предельная точка E. Будем говорить, что $\exists \lim_{\substack{x \to x_0 \\ x \in E}} f(x) = y_0 \in X_2$ по Коши, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in (\mathring{B}_{\delta(\varepsilon)}(x_0) \cap \mathcal{E}) \hookrightarrow f(x) \in B_{\varepsilon}(y_0).$$

Определение 7.9. Пусть (X_1, ρ_1) , (X_2, ρ_2) метрические пространства, $E \subset X_1$, $f: E: X_2$, $x_0 \in X_1$ — предельная точка E. Будем говорить, что $\exists \lim_{x \to x_0} f(x) = y_0 \in X_2$ по Гейне, если

 \forall последовательности Гейне $\{x_n\}\subset E$ в точке $x_0\hookrightarrow \exists\lim_{n\to\infty}f(x_n)=y_0.$

Примечание. Определение последовательности Гейне в точке x_0 остается тем же, за тем исключением, что $\exists \lim_{n\to\infty} x_n = x_0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}: \forall n \geqslant N(\varepsilon) \hookrightarrow x_n \in B_\varepsilon(x_0) \Leftrightarrow \exists \lim_{n\to\infty} \rho(x_n,x_0) = 0.$

Определение 7.10. Пусть (X_1, ρ_1) , (X_2, ρ_2) метрические пространства, $E \subset X_1$, $E \neq \emptyset$, $f: E \mapsto X_2, x_0 \in E$. Будем говорить, что f непрерывно в точке x_0 , если:

- 1. x_0 изолированная точка E, то есть $\exists \varepsilon > 0 \colon B_{\varepsilon}(x_0) \cap E = \varnothing;$
- 2. x_0 предельная точка E, то есть $\exists \lim_{\substack{x \to x_0 \\ x \in \mathbb{B}}} f(x) = f(x_0)$.

Определение 7.11. Пусть (X_1, ρ_1) , (X_2, ρ_2) метрические пространства, $E \subset X_1$, $E \neq \emptyset$. Отображение $f: E \mapsto X_2$ называется непрерывным на E, если оно непрерывно в каждой точке множества E.

7.3 Равномерная непрерывность

Определение 7.12. Пусть (X_1, ρ_1) , (X_2, ρ_2) метрические пространства, $E \subset X_1$, $E \neq \emptyset$. Будем говорить, что отображение $f: E \mapsto X_2$ равномерно непрерывно на E, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x', x'' \in E \ \rho_1(x', x'') < \delta(\varepsilon) \hookrightarrow \rho_2(f(x'), f(x'')) < \varepsilon.$$

Задача. Как связаны условия?

- 1. $f \in C(E)$;
- 2. f равномерно непрерывна на E.

Решение. Запишем в кванторах первое утверждение:

$$\forall x' \in \mathcal{E}, \forall \varepsilon > 0 \ \exists \delta(x', \varepsilon) > 0 : \forall x'' \in \mathcal{E} \ \rho_1(x', x'') < \delta(\varepsilon, x') \hookrightarrow \rho_2(f(x'), f(x'')) < \varepsilon.$$

Отсюда видно, что из $(2) \Rightarrow (1)$, так как $\forall x' \in E$ возьмём $\delta(x', \varepsilon) = \delta(\varepsilon)$ из равномерной непрерывности, но из $(1) \not\Rightarrow (2)$. В качестве примера возьмём $X_1 = \mathbb{R}, X_2 = \mathbb{R}, \rho_1 = |x_1 - y_1|,$ $\rho_2 = |x_2 - y_2|$, где $x_1, y_1 \in X_1, \ x_2, y_2 \in X_2$ (обычные расстояния на \mathbb{R}). Отображение $f(x) = x^2$ — непрерывно в каждой точке числовой прямой, но равномерно непрерывно оно не будет. **Нужна КартинОчка**

Сформулируем отрицание к равномерной непрерывности:

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x', x'' \in \mathbb{R} : |x' - x''| < \delta, \quad |f(x') - f(x'')| \geqslant \varepsilon, \text{ то есть } |(x')^2 - (x'')^2| \geqslant \varepsilon,$$

$$(x')^2 - (x'')^2 = (x' - x'')(x' + x'').$$

$$\exists \varepsilon = 1 : \forall \delta > 0 \ \exists x' = \frac{2}{\delta}, x'' = \frac{\delta}{2} + \frac{2}{\delta} : |x' - x''| < \delta, \ |(x')^2 - (x'')^2| \geqslant 1.$$

Значит равномерной непрерывности нет.

Определение 7.13. Пусть (X, ρ) — метрическое пространство. Множество $K \subset X$ называется компактом, если $\forall \{x_n\} \subset K \ \exists \{x_{n_j}\}$ — подпоследовательность, сходящаяся к некоторой точке $x^* \in K$.

Примечание. Критерий компактности, который мы ввели ранее, здесь не работает (компактность не эквивалетна ограниченности и замкнутости, но из компактности следует ограниченность и замкнутость).

Определение 7.14. Пустое множество Ø по определению считаем компактом.

Теорема 7.1. (Теорема Кантора) Пусть (X_1, ρ_1) , (X_2, ρ_2) — метрические пространства, $K \subset X_1$ — компакт и $f: K \mapsto X_2$. Если f непрерывно на K, то оно равномерно непрерывно на K.

Доказательство. Будем доказывать от противного. Пусть $f \in C(K)$, но не равномерно непрерывно на K. Сформулируем отрицание к равномерной непрерывности, то есть

$$\exists \varepsilon^* > 0 : \forall \delta > 0 \ \exists x', x'' \in K : \rho_1(x', x'') < \delta, \quad \rho_2(f(x'), f(x'') \geqslant \varepsilon^*.$$

Раз $\forall \delta$, то возьмём δ вида $\frac{1}{n}$, где $n \in N$. Тогда $\forall n \in \mathbb{N} \ \exists x_n', x_n'' \in K$: $\begin{cases} \rho_1(x_n', x_n'') < \frac{1}{n} \\ \rho_2(f(x_n'), f(x_n'')) \geqslant \varepsilon^* \end{cases}$

Последовательность $\{x'_n\} \subset K$. Тогда по определению компактности $\exists \{x'_{n_j}\} \subset K$ подпоследовательность и $\exists x^* \in K : \rho_1(x_{n_j}{}', x^*) \to 0, j \to \infty$ (1), то есть сходится к x^* . Но f непрерывна к x^* по условию, тогда:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in \left(B_{\delta(\varepsilon)}(x^*) \cap K \right) \hookrightarrow \rho_2(f(x^*), f(x)) < \frac{\varepsilon}{2} \Rightarrow$$

$$\Rightarrow \forall x', x'' \in (B_{\delta(\varepsilon)} \cap K) \hookrightarrow \rho_2(f(x'), f(x'')) \leqslant \rho_2(f(x^*), f(x')) + \rho_2(f(x^*), f(x'')) < \varepsilon \quad (2).$$

Из (1) и с учетом того, что $\rho_2(x''_{n_j}, x^*) \to 0$, $j \to \infty$ получается, что $\exists N \in \mathbb{N}: \forall j \geqslant N \hookrightarrow x'_{n_j}, x''_{n_j} \in B_{\delta(\varepsilon^*)}(x^*) \Rightarrow \rho_2(f(x'_{n_j}), f(x''_{n_j})) \geqslant \varepsilon^*, \ \forall j \geqslant N.$

С другой стороны из (2) $\forall j \geqslant N \hookrightarrow \rho_2(f(x'), f(x'')) < \varepsilon^*$. Противоречие. То есть исходное предположение было неверно. **Нужна картиночка.**

Нужна картиночка.

7.4 Евклидово пространство

Определение 7.15. (Вещественное евклидово пространство) Пусть E — линейное пространство, $a <\cdot, \cdot>: E \times E \mapsto \mathbb{R}$ удовлетворяющее следующим условиям:

 $\forall x \in E$

- 1. $\langle x, x \rangle \in [0; +\infty)$
- $2. \langle x, x \rangle = 0 \Leftrightarrow x = 0$
- 3. $\langle x, y \rangle = \langle y, x \rangle$ $\forall x, y \in E$
- 4. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle \quad \forall \alpha, \beta \in \mathbb{R}, \forall x, y, z \in \mathcal{E}$

тогда (E, $<\cdot$, $\cdot>$) называется евклидовым пространством со скалярным произведением $<\cdot$, $\cdot>$.

Определение 7.16. Комплексное евклидово пространство — пара (E, $<\cdot$, $\cdot>$), где Е — линейное пространство, а $<\cdot$, $\cdot>$: E \times E \mapsto C, удовлетворяющее следующим условиям:

- 1. $\langle x, x \rangle \in [0; +\infty)$
- $2. \langle x, x \rangle = 0 \Leftrightarrow x = 0$
- 3. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ $\forall x, y \in \mathbb{R}$
- 4. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle \quad \forall \alpha, \beta \in \mathbb{C}, \forall x, y, z \in \mathcal{E}$

Далее будем работать с вещественными евклидовыми пространствами.

Теорема 7.2. (Неравенство Коши-Буняковского-Шварца) Пусть $(E, <\cdot, \cdot>)$ — евклидово пространство. Тогда справедливо

$$|\langle x, y \rangle| \leqslant \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle} \quad \forall x, y \in E.$$

Доказательство. Фиксируем x,y и рассмотрим $< x + ty, \ x + ty> \geqslant 0$ (по аксиомам скалярного произведения). Оно раскрывается как $< x, \ x> + 2t < x, \ y> + t^2 < y, \ y> \geqslant 0 \ \forall t \in \mathbb{R}$. Рассмотрим это как квадратный трехчлен относительно t, тогда дискриминант должен быть ≤ 0 , то есть $4 < x, \ y>^2 - 4 < x, \ x> \cdot < y, \ y> \leqslant 0 \Rightarrow < x, \ y>^2 \leqslant < x, \ x> \cdot < y, \ y> \Rightarrow |< x, \ y>| \leqslant \sqrt{< x, \ x>} \cdot \sqrt{< y, \ y>}$.

Пример. \mathbb{R}^n становится евклидовым пространством, если ввести скалярное произведение следующим способом — $< x, y > := \sum_{k=1}^n x_k y_k$. По определению проверяются все аксиомы.

Итого получаем следующее неравенство:

$$\left| \sum_{i=1}^{n} x_i y_i \right| = \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}$$

Определение 7.17. Определим *евклидову норму*, как $||x||_e := \sqrt{\langle x, x \rangle}$.

Теорема 7.3. Объект, который мы только что определили, действительно задает норму.

Доказательство. Просто проверим аксиомы нормы:

- 1. $||x||_e \ge 0 \ \forall x \in E \text{верно};$
- 2. $||x||_e = 0 \Leftrightarrow \langle x, x \rangle = 0 \Leftrightarrow x = 0$ верно;
- 3. $\|\alpha x\|_e = \sqrt{<\alpha x, \alpha x>} = \sqrt{\alpha^2 < x, x>} = |\alpha| < x, x>$ верно;
- 4. $\|x+y\|_e^2 = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \leqslant \langle x, x \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle} + \langle y, y \rangle = \left(\langle x, x \rangle + \langle y, y \rangle\right)^2$, то есть $\|x+y\|_e^2 \leqslant \left(\|x\|_e + \|y\|_e\right)^2$ верно.

Итого получаем, что введённая нами норма удовлетворяет всем аксиомам нормы.

Тут нужна картиночка

Определение 7.18. Под
$$||x||_2$$
 будем обозначать $\sqrt{\sum_{k=1}^n x_k^2}$.

Задача. Пусть (E, ||||) — линейное нормированное пространство. Можно ли в E ввести скалярное произведение так, чтобы |||| порождалось через скалярное произведение?

Теорема 7.4. (Критерий евклидовости) Пусть E = (E, ||||). Норма |||| является евклидовой \Leftrightarrow выполнено тождество параллелограмма, то есть

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2, \quad \forall x, y \in E.$$

 \mathcal{A} оказательство. Шаг 1. Пусть $\|\|$ — евклидова норма. Тогда

$$||x + y||^2 + ||x - y||^2 = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle =$$

$$= < x, x> + 2 < x, y> + < y, y> + < x, x> - 2 < x, y> + < y, y> = 2 < x, x> + 2 < y, y> = 2 ||x||^2 + 2 ||y||^2.$$

<u>Шаг 2.</u> Пусть выполнено тождество параллелограмма. Предъявим скалярное произведение. Рассмотрим $< x, y> = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$, проверим, что выполнены аксиомы скалярного произведения. Покажем, что < x+y, z> = < x, z> + < y, z>:

$$< x, z > = \frac{1}{4} (\|x + z\|^2 - \|x - z\|^2)$$

$$< y, z > = \frac{1}{4} (\|y + z\|^2 - \|y - z\|^2)$$

Сложив, получим $< x, z> + < y, z> = \frac{1}{4}(\|x+z\|^2 - \|x-z\|^2 + \|y+z\|^2 - \|y-z\|^2)$ (1). Применим тождество параллелограмма:

$$||x+z||^2 + ||y+z||^2 = \frac{1}{2} (||x+y+2z||^2 + ||x-y||^2)$$

$$||x - z||^2 + ||y - z||^2 = \frac{1}{2} (||x + y - 2z||^2 + ||x - y||^2)$$

Вычтем одно из другого и получим

$$(1) = \frac{1}{8} (\|x+y+2z\|^2 - \|x+y-2z\|^2) =$$

$$= \frac{1}{8} \left(4 \left\| \frac{x+y}{2} + z \right\|^2 - 4 \left\| \frac{x+y}{2} - z \right\|^2 \right) = 2 \cdot \frac{1}{4} \left(\left\| \frac{x+y}{2} + z \right\|^2 - \left\| \frac{x+y}{2} - z \right\|^2 \right) =$$

$$= 2 < \frac{x+y}{2} + z > .$$

Пока мы доказали, что $< x, z> + < y, z> = 2 < \frac{x+y}{2}, z>$. Подставим y=0. С учетом <0, z>=0 получим $< x, z> = 2 < \frac{x}{2}, z> \forall x,z \in E$. Подставляя это в ранее доказанное нами тождество, получим то, что требовалось, то есть < x, z> + < y, z> = < x+y, z>.

Имеем:

- 1. $\langle x, y \rangle = \langle y, x \rangle \ \forall x, y \in E$ очевидно;
- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle \ \forall x, y, z \in E$ проверили только что;
- 3. $\langle \frac{x}{2}, z \rangle = \frac{1}{2} \langle x, z \rangle \Leftrightarrow \langle \frac{m}{2^n} x, z \rangle = \frac{m}{2^n} \langle x, z \rangle \ \forall n \in \mathbb{N}, \ \forall m \in \mathbb{Z};$
- 4. $\langle x, x \rangle \geqslant 0$ и $\langle x, x \rangle = 0 \Leftrightarrow x = 0 \ \forall x \in E$ очевидно по тому, как мы ввели скалярное произведение.

Так как $f(\alpha) = \|\alpha x + y\|$ — непрерывна как функция от α (так как $|f(\alpha) - f(\beta)| = \||\alpha x + y| - |\beta x + y|\| \le |\alpha - \beta| \|x\| \to 0, \beta \to \alpha$), а так как любое иррациональное число является пределом последовательности двоично рациональных чисел, то (3) с помощью предела преобразуется в $<\alpha x, z>=\alpha < x, z> \forall \alpha \in \mathbb{R}, \forall x,z \in E$.

Итого теорема полностью доказана.

Утверждение 7.4. Вспомним про линейное пространство непрерывных на отрезке функций. Его норма $||f||_C$ является неевклидовой, то есть не может быть порождена какимлибо скалярным произведением.

Доказательство. Без ограничения общности будем считать, что $a=0,\,b=1,\,$ так как его всегда можно отмасштабировать к любому другому отрезку.

Нужна картиночка

Проверим тождество параллелограмма. Возьмём $f_1(x) = x$, а $f_2(x) = 1 - x$. $2||f_1||^2 = 2$, $2||f_2||^2 = 2$, $||f_1+f_2||^2 = 1$, $||f_1-f_2||^2 = 1$, но так как $4 \neq 2$ (подставляя значения в тождество параллелограмма) получаем, что норма не является евклидовой.

7.5 Топология метрического пространства

Определение 7.19. Пусть (X, ρ) — метрическое пространство, $E \subset X$ — множество. Точка $x_0 \in E$ называется *внутренней*, если

$$\exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset \mathcal{E}.$$

Определение 7.20. Пусть (X, ρ) — метрическое пространство, $E \subset X$ — множество. Внутренностью E будем называть множество всех внутренних точек E и обозначать int E.

Примечание. Определения точки прикосновения и предельной точки уже были даны.

Определение 7.21. Пусть (X, ρ) — метрическое пространство, $E \subset X$ — множество. Замыканием E будем называть множество всех точек прикосновения и обозначать clE или \overline{E} .

Утверждение 7.5. $intE \subset E \subset clE$.

Определение 7.22. Множество E — открыто, если E \subset int $E \Leftrightarrow E = int E$.

Определение 7.23. Множество E — замкнуто, если $clE \subset E \Leftrightarrow E = clE$.

Примечание. Множества бывают и не открытые и не замкнутые, к примеру, \mathbb{Q} или (a;b] (полуинтервал).

Определение 7.24. Пустое множество \varnothing и X считаются и открытыми, и замкнутыми.

Пример. Бывают нетривиальные множества, которые и открыты, и замкнуты. Пусть $X = [0;1] \cap [2;3], \rho = |x-y|$. Тогда [0;1] и [2;3] — и открыты, и замкнуты.

Нужна картинка.

Определение 7.25. Метрическое пространство (X, ρ) называется *топологически связным*, если его нельзя представить в виде непересекающегося (дизъюнктного) объединения двух и более множеств, которые одновременно и открыты, и замкнуты.

Лемма 7.1. Пусть (X, ρ) — метрическое пространство. Тогда $\forall x \in X, \forall r > 0 \hookrightarrow B_r(x)$ — открытое множество.

Доказательство. По определению $B_r(x) = \{y \in X : \rho(x,y) < r\}$.

Нужна картинка

Пусть $y \in B_r(x) \in B_r(x)$. Тогда $\rho(x,y) < r$. Пусть $\delta = r - \rho(x,y)2$. Докажем, что $B_\delta(y) \subset B_r(x)$:

Пусть
$$z \in B_{\delta}(y)$$
 $\rho(y,z) < \delta$. Тогда $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z) < \rho(x,y) + \delta = \rho(x,y) + r - \rho(x,y) = r \Leftrightarrow \rho(x,z) < r \Rightarrow z \in B_r(x)$, что и требовалось.

Утверждение 7.6. $E_1 \subset E_2 \Rightarrow intE_1 \subset intE_2$.

Теорема 7.5. Пусть (X, ρ) — метрическое пространство, $E \subset X$. Тогда

- 1. intE omкрытое множество $\Leftrightarrow intintE = intE;$
- 2. clE замкнутое множество $\Leftrightarrow clclE$.

Доказательство. Шаг 1. Пусть $x_0 \in \text{intE} \Rightarrow \exists B_r(x_0) \subset E \Rightarrow \text{int}B_r(x_0) \subset \text{intE}$, a $\text{int}B_r(x_0) = B_r(x_0)$ по только что доказанной лемме $\Rightarrow \text{intE}$ — открытое множество.

<u>Шаг 2.</u> Пусть x_0 — точка прикосновения clE. Покажем, что $x_0 \in$ clE. Так как x_0 — точка прикосновения, то

$$\forall \varepsilon > 0 \ B_{\frac{\varepsilon}{2}}(x_0) \cap \mathrm{clE} \neq \varnothing \Rightarrow \forall \varepsilon > 0 \ \exists y \in \mathrm{clE} : y \in (B_{\frac{\varepsilon}{2}} \cap \mathrm{clE}).$$

Так как y — точка прикосновения E, то $\forall \varepsilon > 0$ $B_{\frac{\varepsilon}{2}} \cap E \neq \emptyset \Rightarrow \forall \varepsilon > 0$ $\exists z \in E, y \in clE$:

$$\begin{cases} \rho(x_0, y) < \frac{\varepsilon}{2} \\ \rho(y, z) < \frac{\varepsilon}{2} \end{cases} \Rightarrow \rho(x_0, z) \leqslant \rho_{x_0, y} + \rho(y, z) < \varepsilon.$$

Таким образом $\forall \varepsilon > 0 \quad \exists z \in E : \rho_{x_0,z} < \varepsilon \Rightarrow \forall \varepsilon > 0 \ B_{\varepsilon}(x_0) \cap E \neq \varnothing \Rightarrow x_0 \in clE$, то есть любая прикосновения принадлежит этому же множеству \Rightarrow оно (clE) замкнуто.

Примечание. $\overline{B}_r(x)$ не всегда совпадает с замыканием открытого шара. Также стоит отметить, что происходит такая коллизия обозначений.

Пример. Пусть $X = [0; 1] \cap \{2\}, \rho(x, y) = |x - y|$. Возьмём $B_1(1) = (0; 1]$. $cl B_1(1) = [0; 1]$, но $\overline{B}_1(1) = X$, то есть замкнутый шар может быть «шире», чем замыкание открытого шара.

Лемма 7.2. Пусть (X, ρ) — метрическое пространство. Тогда $\forall E \subset X \hookrightarrow$

- 1. $X \setminus clE = int(X \setminus E)$;
- 2. $X \setminus intE = cl(X \setminus E)$.

Доказательство. Покажем (2), так как (1) аналогично

Пусть
$$x^* \in (X \setminus \text{intE})$$
. Тогда $\begin{cases} x^* \in X \\ !(x^* \in \text{intE}) \end{cases} \Leftrightarrow \begin{cases} x^* \in X \\ \forall \varepsilon > 0 \ B_{\varepsilon}(x^*) \not\subset E \end{cases} \Leftrightarrow$

 $\Leftrightarrow \forall \varepsilon > 0 \ B_{\varepsilon}(x^*) \cap (X \backslash E) \neq \emptyset \Leftrightarrow x^*$ — точка прикосновения $X \backslash E \Leftrightarrow x^* \in \operatorname{cl}(X \backslash E)$.

Следствие. Пусть (X, ρ) — метрическое пространство. Тогда множество Е замкнуто \Leftrightarrow $(X\backslash E)$ открыто.

Доказательство. Так как Е замкнуто, то оно совпадает со своим замыканием. В силу предыдущей леммы $X \setminus E = X \setminus clE = int(X \setminus E) - X \setminus E$ открыто.

Определение 7.26. Пусть Е — множество в метрическом пространстве. Тогда границей множества назовём clE\intE и будем обозначать ∂E .

Лемма 7.3. Пусть (X, ρ) — метрическое пространство, $E \subset X$. Тогда $x_0 \in \partial E \Leftrightarrow$ $\Leftrightarrow \forall \varepsilon > 0 \hookrightarrow \begin{cases} B_{\varepsilon}(x_0) \cap E \neq \varnothing \\ B_{\varepsilon}(x_0) \cap (X \setminus E) \neq \varnothing \end{cases}$

 \mathcal{A} оказательство. Так как $x_0 \in \partial E$, то по определению $\begin{cases} \forall \varepsilon > 0 \ B_{\varepsilon}(x_0) \cap E \neq \varnothing \\ !(\exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset E) \end{cases} \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ B_{\varepsilon}(x_0) \cap E \neq \varnothing \\ \forall \varepsilon > 0 \ B_{\varepsilon}(x_0) \cap (X \setminus E) \neq \varnothing \end{cases}$, что нам и нужно было.

$$\Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ B_{\varepsilon}(x_0) \cap \mathbf{E} \neq \emptyset \\ \forall \varepsilon > 0 \ B_{\varepsilon}(x_0) \cap (X \backslash \mathbf{E}) \neq \emptyset \end{cases}$$
, что нам и нужно было.

Теорема 7.6. (Критерий точки прикосновения) x_0 — точка прикосновения множества $E \Leftrightarrow \exists \{x_n\} \subset E: \rho(x_n, x_0) \to 0, \ n \to \infty.$

Доказательство. Ровно такое же, как и на числовой прямой.

Теорема 7.7. (Критерий предельной точки) x_0 — предельная точка множества $E \Leftrightarrow$ $\begin{cases} x_n \neq x_0 \ \forall n \in \mathbb{N} \\ \rho(x_n, x_0) \to 0, n \to \infty \end{cases}$

Доказательство. Точно такое же, как и на числовой прямой.

Я не смог его найти.

Задача. Пусть (X, ρ) — метрическое пространство. Доказать, что $\forall E \subset X \hookrightarrow E \cup \partial E =$ $clE, E \backslash \partial E = intE.$

Задача. Верны ли следующие включения?

- 1. $int(E_1 \cup E_2) \subset (intE_1 \cup intE_2)$;
- 2. $(intE_1 \cup intE_2) \subset int(E_1 \cup E_2)$;
- 3. $cl(E_1 \cup E_2) \subset (clE_1 \cup clE_2);$
- 4. $(clE_1 \cup clE_2) \subset cl(E_1 \cup E_2);$
- 5. $\partial(E_1 \cup E_2) \subset (\partial E_1 \cup \partial E_2);$
- 6. $(\partial E_1 \cup \partial E_2) \subset \partial (E_1 \cup E_2)$.

Пример. Может быть так, что $\partial E = \mathbb{R}$, а int $E = \emptyset$. К примеру, $E = \mathbb{Q}$.

Определение 7.27. Пусть (X, ρ) — метрическое пространство, $E \subset X$. Множество E называется *ограниченным*, если $\exists B_R(x_0) \colon E \subset B_R(x_0)$.

Определение 7.28. Пусть (X, ρ) — метрическое пространство, $E \subset X$. Множество E вполне ограничено, если

$$\forall \varepsilon > 0$$
 ∃конечное число точек $\{x_1, \dots, x_{N(\varepsilon)}\}$: $\mathbf{E} \subset \bigcup_{i=1}^{N(\varepsilon)} B_{\varepsilon}(x_i)$.

Примечание. И эти точки называются ε -сетью для E.

Лемма 7.4. Если множество E — вполне ограничено, то E ограничено.

Доказательство. Так как Е вполне ограничено, то $\forall \varepsilon > 0 \; \exists$ конечная ε -сеть. Значит и для $\varepsilon = 1 \; \exists$ конечная 1-сеть $\{x_1, \dots, x_N\}$. Мы можем взять, к примеру, $M = N + \max_{i \in \{1, \dots, N\}} \rho(x_1, x_i)$, тогда $\mathbf{E} \subset B_M(x_1)$ по неравенству треугольника \Rightarrow Е ограничено.

Лемма 7.5. Пусть (X, ρ) — метрическое пространство, а $\{x_n\} \subset X$ сходится κ $x^* \in X$. Тогда $\{x_n\}$ фундаментальна.

Доказательство. Пусть $\{x_n\} \to x^*, n \to \infty$, запишем это:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N(\varepsilon) \hookrightarrow \rho(x_n, x^*) < \varepsilon.$$

Тогда
$$\forall \varepsilon > 0 \ \exists \tilde{N}(\varepsilon) = N(\frac{\varepsilon}{2}) \colon \forall n, m \geqslant \tilde{N}(\varepsilon) \hookrightarrow \rho(x_n, x_m) \leqslant \rho(x_n, x^*) + \rho(x^*, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Лемма 7.6. Пусть (X, ρ) — метрическое пространство, $K \subset X$. Если множество K — компакт, то K — вполне ограниченное множество.

Доказательство. Предположим противное. Будем считать, что $K \neq \emptyset$, так как пустое множество по определению компакт. Запишем отрицание к определению вполне ограниченного множества:

$$\exists \varepsilon > 0 : \forall$$
 конечное набора точек $\{x_1, \dots, x_{N(\varepsilon)}\} : \mathbf{E} \not\subset \bigcup_{i=1}^{N(\varepsilon)} B_{\varepsilon}(x_i).$

Пусть $x_1 \in K$. Возьмём $B_{\varepsilon}(x_1)$, он не покрывает $K \Rightarrow \exists x_2 \colon x_2 \in (K \backslash B_{\varepsilon}(x_1))$, но $\{x_1, x_2\}$ тоже не ε -сеть $\Rightarrow \exists x_3 \in (K \backslash (B_{\varepsilon}(x_1) \cup B_{\varepsilon}(x_2)))$. Так продолжим по индукции. Пусть таким образом мы построили точки $x_1, \dots, x_n \colon K \backslash \bigcup_{i=1}^n B_{\varepsilon}(x_i) \neq \emptyset$, тогда возьмём

 $x_{n+1} \in \left(K \setminus \bigcup_{i=1}^{n} B_{\varepsilon}(x_{i})\right)$, а $\{x_{1}, \ldots, x_{n+1}\}$ снова не ε -сеть. То есть мы построили последовательность $\{x_{n}\} \subset K$: $\rho(x_{i}, x_{j}) \geqslant \varepsilon \ \forall i \neq j \Rightarrow$ любая её подпоследовательность не является фундаментальной, а значит сходящейся, а значит K — не компакт. Противоречие.

Определение 7.29. Метрическое пространство (X, ρ) называется *полным*, если любая его фундаментальная последовательность сходится к некоторой точке этого пространства, в противном случае пространство называется *неполным*.

Примеры.

 $X = \mathbb{R}, \ \rho(x,y) = |x-y|$ — полное (критерий Коши мы доказывали ранее). $X = \mathbb{Q}, \ \rho(x,y) = |x-y|$ — неполное.

Утверждение 7.7. В любом метрическом пространстве любая сфера — замкнутое множество.

Пример. Множество, которое ограничено и замкнуто, но не является компактом:

$$X = \{x = (x_1, \dots, x_n, \dots) : \exists \lim_{n \to \infty} x_n = 0\}, \ \rho(x, y) = \sup_{i \in \mathbb{N}} |x_i - y_i|.$$

Рвссмотрим $S_1(0) := \{x \in X : \sup_{i \in \mathbb{N}} |x_i| = 1\}$, то есть единичную сферу. Оно является ограниченным и замкнутым множеством, но не вполне ограниченным, а значит, не компактом.

Замечание. Для доказательства того, что множество не является вполне ограниченным рассмотрим $e_n = (0, \ldots, 0, 1, 0, \ldots)$, то есть все 0, кроме 1 на n-ом месте. Тогда $\rho(e_n, e_m) = 1$, то есть мы получили бесконечную систему, между которыми попарные расстояния равны $1 \Rightarrow$ нет вполне ограниченности.

Теорема 7.8. (Гейне-Борель 2.0) Пусть (X, ρ) — метрическое пространство, $K \subset X$ — компакт. Тогда для любого открытого покрытия $\{U_{\alpha}\}_{\alpha \in A}$ компакта существует конечное подпокрытие $\{U_{\alpha_i}\}_{i=1}^N$.

Доказательство. Так как из компактности следует вполне ограниченность, то $\forall n \in \mathbb{N} \exists$ конечная $\frac{1}{n}$ -сеть, которую обозначим как $\{z_n(1), \ldots, z_n(N)\}$.

Предположим, что существует открытое покрытие $\{U_{\alpha}\}_{\alpha\in A}$ из которого нельзя извлечь конечное подпокрытие. Тогда существует шар радиуса $\frac{1}{n}$ в центром в какой-то точке $\frac{1}{n}$ -сети, то есть $\exists i\in\{1,\ldots,N\}\colon B_{\frac{1}{n}}(z_n(i))$ нельзя покрыть конечным набором множеств из системы $\{U_{\alpha}\}_{\alpha\in A}$, так как в противном случае каждый шар $B_{\frac{1}{n}}(z_n(i))$ покрывался бы конечным числом элементом из покрытия $\{U_{\alpha}\}_{\alpha\in A}$, а так как шаров конечное число и они покрывают K, то получили бы конечное подпокрытие K, а мы предположили, что его нет.

Получается, $\forall n \in \mathbb{Z} \ \exists z_n \in K \colon B_{\frac{1}{n}}(z_n)$ не может быть покрыт конечным числом элементов из $\{U_{\alpha}\}_{\alpha \in A}$, получаем последовательность $\{z_n\}$, из неё, так как K компакт, можно извлечь сходящуюся подпоследовательность $\{z_{n_m}\} \Rightarrow \exists z^* \in K \colon \rho(z_{n_m}, z^*) \to 0, \ m \to \infty$. Так как $z^* \in K$, а $\{U_{\alpha}\}_{\alpha \in A}$ — покрытие, то $\exists \alpha^* \in A \colon z^* \in U_{\alpha^*}$, но U_{α^*} открытое множество $\Rightarrow \varepsilon^* > 0 \colon B_{\varepsilon^*}(z^*) \subset U_{\alpha^*}$.

Так как $\{z_{n_m}\}$ сходится к z^* , то начиная с некоторого номера $\rho(z_{n_m},z^*)$ можно сделать меньше, чем $\frac{\varepsilon^*}{4}$. Запишем более формально: $\exists M \in \mathbb{N} \colon \forall m \geqslant M \hookrightarrow \rho(z_{n_m},z^*) < \frac{\varepsilon^*}{4}$ и $\frac{1}{n_m} < \frac{\varepsilon^*}{4}$ по построению. Рассмотрим $B_{\frac{1}{n_m}}(z_{n_m})$. Заметим, что $B_{\frac{1}{n_m}}(z_{n_m}) \subset B_{\varepsilon^*}(z^*) \subset U_{\alpha^*} \Rightarrow \forall m \geqslant M \hookrightarrow B_{\frac{1}{n_m}}(z_{n_m}) \subset U_{\alpha^*}$ — противоречие с построением.

Замечание. Включение $B_{\frac{1}{n_m}}(z_{n_m})\subset B_{\varepsilon^*}(z^*)$ верно по неравенству треугольника, то есть возьмём $y\in B_{\frac{1}{n_m}}(z_{n_m})$, тогда $\rho(z^*,y)\leqslant \rho(z^*,z_{n_m})+\rho(z_{n_m},y)<\frac{\varepsilon^*}{4}+\frac{1}{n_m}<\frac{\varepsilon^*}{4}+\frac{\varepsilon^*}{4}<\frac{\varepsilon^*}{2}$

Теорема 7.9. Пусть (X, ρ) — метрическое пространство. Если K — компакт, то он ограничен и замкнут.

Доказательство. Ограниченность уже была доказана ранее. Докажем замкнутость. Будем доказывать от противного.

Предположим противное, то есть $\exists x^* \notin K$ являющаяся его точкой прикосновения. Тогда по критерию точки прикосновения $\exists \{x_n\} \subset K \colon \rho(x^*, x_n) \to 0, \ n \to \infty \Rightarrow \forall \{x_{n_j}\}$ подпоследовательности последовательности $\{x_n\}$ тоже сходится к $x^* \notin K$ — противоречие с компактностью.

Напоминание. На пространство \mathbb{R}^n можно смотреть по-разному.

$$\mathbb{R}^n := \{x = (x_1, \dots, x_n) : x_i \in \mathbb{R} \ \forall i \in \{1, \dots, n\} \}.$$

$$\rho(x,y) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}. \quad \|x\| = \sqrt{\sum_{i=1}^{n} x_i^2}. \quad \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

Лемма 7.7. Последовательность $\{x^m\} \subset \mathbb{R}^n$ сходится κ $x^* \Leftrightarrow \forall i \in \{1, \dots, n\}$ $x_i^m \to x_i^*$, $m \to \infty$.

Доказательство. Шаг 1. Заметим, что $\forall i \in \{1, ..., n\}$ справедливо неравенство

$$|x_i^* - x_i^m| \le \sqrt{|x_i^* - x_i^m|^2} \le \sqrt{\sum_{i=1}^n |x_i^* - x_i^m|^2} = \rho(x^*, x^m).$$

<u>Шаг 2.</u> Пусть $\forall i \in \{1, \dots, n\} \hookrightarrow x_i^m \to x_i^*, m \to \infty$. Тогда $\sum_{i=1}^n |x_i^* - x_i^m|^2 \to 0, m \to \infty$.

Извлекая корень, получаем

$$\sqrt{\sum_{i=1}^{n}|x_i^*-x_i^m|^2}\to 0, m\to\infty.$$

Теорема 7.10. (Теорема Больцано-Вейерштрасса в \mathbb{R}^n) Из любой ограниченной последовательности $\{x^m\}_{m=1}^{\infty}$ можно выделить сходящуюся подпоследовательность $\{x^{m_j}\}_{j=1}^{\infty}$.

Доказательство. Доказательство будем проводить по индукции (по размерности пространства).

База: при n=1 мы её уже доказали.

Предположим, что доказано при $n_0 \in \mathbb{N}$, докажем для $n_0 + 1$. Возьмём последовательность $x^m = (x_1^m, \dots, x_{n_0+1}^m) \subset \mathbb{R}^{n_0+1}$ — она ограничена. Спроектируем теперь точки x^m на $\mathbb{R}^{n_0} \times \{0\}$, получим последовательность $\{\overline{x}^m\} \subset \mathbb{R}^{n_0}$, но эта последовательность тоже

ограничена, так как
$$\|\overline{x}^m\| = \sqrt{\sum_{i=1}^{n_0} (\overline{x}_i^m)^2} \leqslant \sqrt{\sum_{i=1}^{n_0+1} (\overline{x}_i^m)^2} \leqslant C \ \forall m \in \mathbb{N}.$$

По предположению индукции Больцано-Вейерштрасс работает для размерности n_0 , тогда $\exists \{\overline{x}^{m_k}\}$ сходящаяся к $\overline{x}^* \in \mathbb{R}^{n_0}$.

Последовательность $\{x_{n_0+1}^{m_k}\}$ ограничена в $\mathbb{R} \Rightarrow$ по теореме Больцано-Вейерштрасса $\exists \{x_{n_0+1}^{m_{k_j}}\}: \{x_{n_0+1}^{m_{k_j}}\} \to x_{n_0+1}^*, \ \mathfrak{E} \to \infty$. Рассмотрим вектор $x^* = (\overline{x}^*, x_{n_0+1}^*)$. В итоге так как $\{\overline{x}^{m_{k_j}}\} \to \overline{x}^*, \ j \to \infty$, получается, что $x^{m_{k_j}} \to x^*, \ j \to \infty$, то есть мы сделали шаг индукции.

Теорема 7.11. (Критерий компактности в \mathbb{R}^n) Множество $K \subset \mathbb{R}^n$ — компакт \Leftrightarrow оно ограничено и замкнуто.

<u>Шаг 2.</u> Пусть K — ограничено и замкнуто. Возьмём произвольную последовательность $\{x^m\} \subset K$. Поскольку K ограничено, то по теореме Больцано-Вейерштрасса в $\mathbb{R}^n \exists \{x^{m_j}\} \subset K$: она сходится к некоторой точке $x^* \in \mathbb{R}^n \Rightarrow$ в силу критерия точки прикосновения x^* — точка прикосновения для K, но в силу замкнутости K получаем $x^* \in K$.

Теорема 7.12. (Критерий Коши в \mathbb{R}^n) Последовательность $\{x^m\} \subset \mathbb{R}^n$ сходится \Leftrightarrow когда выполнено условие Коши, то есть $\forall \varepsilon > 0 \ \exists N(\varepsilon) \colon \forall m,l \geqslant N(\varepsilon) \hookrightarrow \sqrt{\sum_{i=1}^n (x_i^m - x_i^l)^2} \leqslant \varepsilon$.

Доказательство. Точно такое же, как и в одномерном случае с учётом теоремы Больцано-Вейерштрасса. \Box

8 Кривые

8.1 Вектор-функции

Определение 8.1. Отображение $E \subset \mathbb{R}$ в \mathbb{R}^n называется вектор-функцией.