

### 第10章习题讲解

中国海洋大学 计算机系

## 习题十:1

#### 【关联矩阵的定义】

### 解

$$M(G) = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$M(G) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

## 习题十:2



### [分析]利用定理10.3求解

### 解 写出图10.9的关联矩阵M(G)和基本关联矩阵 $M_f(G)$ .

$$M(G) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{\mathbf{f}}(\mathbf{G}) = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

| 1,2,3,4 | 0 | 1,3,4,6 | 1 |
|---------|---|---------|---|
| 1,2,3,5 | 0 | 1,3,5,6 | 1 |
| 1,2,3,6 | 1 | 1,4,5,6 | 1 |
| 1,2,4,5 | 0 | 2,3,4,5 | 0 |
| 1,2,4,6 | 0 | 2,3,4,6 | 1 |
| 1,2,5,6 | 1 | 2,3,5,6 | 0 |
| 1,3,4,5 | 0 | 2,4,5,6 | 1 |
|         |   | 3,4,5,6 | 1 |

## 习题十:2(续)

### 根据计算结果,画出所有生成树.



# 3

### 3.求标定的完全图K₄中的所有生成树。

### 解标定的 $K_4$ 如下图所示,其关联矩阵为



| 1,2,3 | 1 | 1,3,5 | 1 | 2,3,4 | 1 | 2,5,6 | 1 |
|-------|---|-------|---|-------|---|-------|---|
| 1,2,4 | 1 | 1,3,6 | 1 | 2,3,5 | 1 | 3,4,5 | 0 |
| 1,2,5 | 0 | 1,4,5 | 1 | 2,3,6 | 0 | 3,4,6 | 1 |
| 1,2,6 | 1 | 1,4,6 | 0 | 2,4,5 | 1 | 3,5,6 | 1 |
| 1,3,4 | 1 | 1,5,6 | 1 | 2,4,6 | 1 | 4,5,6 | 1 |

## 习题十:3(续)

### 根据计算结果,画出所有生成树.





### [分析]写出邻接矩阵A(D),求出A<sup>2</sup>,A<sup>3</sup>, A<sup>4</sup>,P(D)

解

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{A}^{2}$$

$$A^{2} = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 3 & 2 & 2 & 2 \\ 1 & 2 & 1 & 0 \\ 2 & 2 & 2 & 1 \\ 1 & 2 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} A^{2} = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} A^{3} = \begin{bmatrix} 3 & 2 & 2 & 2 \\ 1 & 2 & 1 & 0 \\ 2 & 2 & 2 & 1 \\ 1 & 2 & 1 & 0 \end{bmatrix} A^{4} = \begin{bmatrix} 5 & 6 & 4 & 2 \\ 2 & 2 & 2 & 1 \\ 4 & 4 & 3 & 2 \\ 2 & 2 & 2 & 1 \end{bmatrix}$$

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{B}_2 = \begin{bmatrix} 2 & 4 & 2 & 6 \\ 1 & 0 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{B}_{2} = \begin{bmatrix} 2 & 4 & 2 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \mathbf{B}_{3} = \begin{bmatrix} 5 & 6 & 4 & 2 \\ 2 & 2 & 2 & 1 \\ 4 & 4 & 3 & 2 \\ 2 & 2 & 2 & 1 \end{bmatrix} \mathbf{B}_{4} = \begin{bmatrix} 10 & 12 & 8 & 4 \\ 4 & 4 & 4 & 2 \\ 8 & 8 & 6 & 4 \\ 4 & 4 & 4 & 2 \end{bmatrix}$$

### 习题十:4(续)

根据以上计算可知,

- (1)  $v_1$ 到 $v_4$ 长度为1,2,3,4的通路分别为0,0,2,2条;
- (2) v<sub>1</sub>到v<sub>4</sub>长度小于等于3通路为2条;
- (3)  $v_1$ 到 $v_1$ 长度为1,2,3,4的回路分别为1,1,3,5条;
- (4)  $v_4$ 到 $v_4$ 长度小于等于3的回路为1条;
- (5) D中长度为4的通路(不含回路)为33条;
- (6) D中长度为4的回路为11条;
- (7) D中长度小于等于4的通路为88条,其中22条回路;