

ÁLGEBRA

GRADO EN INGENIERÍA INFORMÁTICA

CURSO 2014/15. Convocatoria Extraordinaria 2.

Apellidos y Nombre	:	DNI :
,		
Grupo de teoría :	Grupo de prácticas:	

1. (10 puntos) Calcular, usando el algoritmo de Euclides, el máximo común divisor en $\mathbb{Z}_5[x]$ de :

$$p(x) = -2x - x^2 + 6x^3 + 3x^4$$
 y $p(x) = -2 - 3x + 6x^2 + 9x^3$

Definir polinomio irreducible y decir si el máximo comun divisor es irreducible en $\mathbb{Z}[x]$ y en $\mathbb{Z}_{5}[x]$.

- 2. (10 puntos) Consideramos el producto cartesiano $G = S_4 \times A_3 \times M_2(\mathbb{R})$, se pide:
 - a) Definir una operación que dote a G de estructura de grupo.
 - b) Calcular el elemento neutro y el simétrico de $a = \left(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right)$.
 - b) Calcular, si existen, subgrupos de 3 y 24 elementos de G.
- 3. (10 puntos) Dado el siguiente grafo:

- a) Matrices de adyacencia e incidencia.
- b) ¿Es 3-coloreable? ¿Y 3-cromático? Calcular una coloración óptima.
- c) Comprobar si es bipartito, bipartito completo, regular, plano y completo.
- 4. (15 puntos) Para $V = M_{3\times 1}(\mathbb{R})$ y $V' = P_3(\mathbb{R})$ definimos $f: V \longrightarrow V'$, $f \begin{pmatrix} a \\ b \\ c \end{pmatrix} = (a-b) + (b-c)x + (c-a)x^2$.

Se pide:

- a) Demostrar que f es lineal.
- b) Calcular la expresión matricial de f respecto de las bases canónicas.
- c) Demostrar que $B = \{(1, 1, 1), (1, 1, 0), (0, 1, 1)\}$ es base de V y que $B' = \{x^3, x 1, x, x x^2\}$ es base de V'.
- d) Calcular la expresión matricial de f respecto de las bases B y B'
- e) ¿Qué relación hay entre las matrices calculadas en los apartados b) y d)?
- f) Clasificar f.
- 5. (5 puntos) Estudiar si la matriz siguiente es diagonalizable por semejanza para $\mathbb{K} = \mathbb{R}$ y para $\mathbb{K} = \mathbb{C}$.

$$A = \begin{pmatrix} 0 & 0 & 0 & 37 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

- 6. (10 puntos) Sea V un espacio vectorial euclideo con base $B = \{v_1, v_2\}$, y sea $G = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ su matriz de Gram respecto de la base B.
 - a) Calcular la expresión general de su producto escalar.
 - b) ¿Es B una base ortogonal? ¿y unitaria?. Calcular una base ortonormal de V.
 - c) Sea U un subespacio vectorial de V con sistema de generadores $S = \{(2, -1), (-1/2, 1/4)\}$.
 - i. Calcular dimensión, base y ecuaciones paramétricas e implícitas de U.
 - ii. Ampliar la base de U hasta una de V.