Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

THE UNIVERSITY OF NEBRASKA BULLETIN

OF THE

AGRICULTURAL EXPERIMENT STATION

of NEBRASKA

THE REGIONAL ADAPTATION OF CORN IN NEBRASKA

By T. A. KIESSELBACH AND F. D. KEIM

DISTRIBUTED APRIL 1, 1921

LINCOLN, NEBRASKA U. S. A.

AGRICULTURAL EXPERIMENT STATION OF NEBRASKA.

THE GOVERNING BOARD (THE REGENTS OF THE UNIVERSITY)

HON. PHILIP L. HALL, President, Lincoln......Term expires January, 1923 Hon. HARRY D. LANDIS, Vice President, Seward. Term expires January, 1923 Hon. Frank W. Judson, Omaha......Term expires January, 1925 HON. JOHN R. WEBSTER, Omaha......Term expires January, 1925 HON. WILLIAM L. BATES, Lodgepole......Term expires January, 1927 Hon. George L. Seymour, Elgin......Term expires January, 1927

SAMUEL AVERY, PH. D., LL. D., Chancellor J. S. Dales, M. Ph., Financial Secretary

THE STATION OFFICERS

E. A. BURNETT, D. Sc., Director

W. W. BURR, B. Sc., Assistant Director

W. H. BROKAW, Director of Extension Service

C. A. LEWIS, B. Sc., Bulletin Editor

THE WORKING STAFF

ARTHUR ANDERSON, B. Sc., Assistant in Agronomy

E. M. BROUSE, B. Sc., Superintendent Experimental Substation, Valentine

LAWRENCE BRUNER, B. Sc., Entomology

W. W. Burr, B. Sc., Agronomy (Chairman) *J. W. CALVIN, B. Sc., Associate in Agricultural Chemistry

R. W. DAWSON, B. Sc., Assistant in Entomology

ELI DUNCOMBE, B. Sc., Analyst

H. C. FILLEY, A. M., Rural Economics (Chairman)

*J. H. FRANDSEN, M. S. A., Dairy Husbandry (Chairman)

R. W. Goss, M. S., Assistant in Plant Pathology and Physiology

H. J. Gramlich, B. Sc., Animal Husbandry (Chairman) J. W. Hendrickson, A. M., Assistant in Dairy Husbandry

J. A. Holden, B. Sc., Superintendent Experimental Substation, Mitchell

R. F. Howard, A. M., Horticulture (Chairman)

F. D. KEIM, M. S., Assistant in Agronomy

T. A. KIESSELBACH, PH. D., Agronomy

W. J. LOEFFEL, B. Sc., Assistant in Animal Husbandry

G. A. LOVELAND, A. M., LL. B., Meteorology

JOHN LUITHLY, B. Sc., Assistant in Dairy Husbandry W. E. LYNESS, B. Sc. IN AGR., Assistant in Agronomy

H. M. MARTIN, V. M. D., Assistant in Animal Pathology and Hygiene F. E. Musselll, B. Sc., Poultry Hushandry

F. R. NOHAVEC, B. SC. IN A. E., Assistant in Agricultural Engineering G. L. Peltier, Ph. D., Plant Pathology

J. O. RANKIN, A. M., Assistant in Rural Economics J. C. Russell, M. S., Assistant in Agronomy

O W. Sjogren, B. Sc. in A. E., Agricultural Engineering (Chairman)

L. V. SKIDMORE, D. V. S., Assistant in Animal Pathology and Hygiene

W. P. SNYDER, M. S., Superintendent Experimental Substation, North Platte

M. H. SWENK, M. S., Entomology (Chairman)

F. W. Upson, Ph. D., Chemistry (Chairman) L. Van Es, M. D., V. S., Animal Pathology and Hygiene (Chairman)

H. O. WERNER, B. Sc., Assistant in Hortciulture

C. C. WIGGANS, Ph. D., Assistant in Horticulture

**I. L. Zook, B. Sc., Agronomist, North Platte

*Resigned.

^{**}Detailed from Office of Dry Land Agriculture, United States Department of Agriculture, Washington, D. C.

CONTENTS

Page	•
Summary 4	ŧ
Object and Scope of the Investigations 9)
The Environmental Survey of Nebraska's Corn Growing Conditions11	L
Climate	2
Regional Temperature Variations Within the State13	3
Normal Mean Temperature13	3
Normal Length of Frost-Free Growing Season14	ł
Regional Moisture Variations Within the State14	ŧ
Mean Annual Precipitation15	5
Evaporation Rate15	5
Absorptive and Retentive Power of the Soil18	3
Soil Fertility	
Summary of Conditions When Corn Types Were Studied19)
Normal Regional Differences19)
Temperature and Rainfall During 1915 and 191620)
The Corn Types Survey of Nebraska21	
Two Classes of Investigations	
Native Corn Types Grown at Home22	2
Morphological Characters22	
Methods of Study22	
Results22	
Histological Characters23	
Methods of Study23	
Results	
Native Corn Types Grown Out of Their Home Evironment37	
Morphological Characters	
Histological Characters48	
Comparative Yield of Native Types57	
Comparative Transpiration of Eastern and Western Corn Types60	
Comparative Yields of Corn From Various Sources in Eastern Nebraska61	
Local Corn Compared With Corn From Other States 64	

SUMMARY

Adaptation in corn is looked upon as the fortuitous or chance modification or acquisition of hereditary characters or qualities thru the favorable reaction of the crop to its environment. This may occur thru, (1) mutation from an individual, thus producing a new character; (2) Mendelian recombination of unit characters resulting in new forms; and (3) segregation of the more suitable types present in a mixed population. Survival of the fittest is the active selective principle.

Nebraska's climate is very diversified and affords a splendid opportunity for studying the regional adaptation of corn. Soil differences are not nearly so great a factor in this adaptation

as is climate.

As extremes in climatic conditions, western Nebraska compared with eastern Nebraska normally has a six-degree F. lower temperature during the corn growing season. The frost-free period is fifty days shorter, and the precipitation one-half as great. The growing season of northern Nebraska is four degrees F. cooler than of southern Nebraska, and the frost-free period is about twenty days shorter. The precipitation from north to south is rather similar. Much of the country south of the Platte River is subject to occasional hot winds which are far less common north of this river. No statistics are to be had regarding the evaporation rates for various parts of the State, but experience indicates that the evaporation rate decreases from south to north. This increases the effectiveness of the rainfall.

With an approach from the relatively favorable conditions of eastern Nebraska to the combined short season, low temperature, and low precipitation of western Nebraska, the native corn types assume a more and more dwarfish growth habit. The stalks become shorter and bear the ear closer to the ground. The total leaf area per plant decreases thru a reduction in number, length, and width of the leaves. The ratio of leaf area to dry plant substance and the proportion of grain to stover remain fairly constant. The ears become shorter, smaller in circumference, fewer rowed and frequently are scrubby in appearance. The shelling percentage lowers, and the kernels become shorter and more flinty, as well as slightly lighter in weight.

The leaves, being the seat of transpiration and food synthesis, might be expected to reflect structural adaptation to adverse conditions, if such adaptation occurs. Therefore, extensive studies of leaf structure have been made. The leaf and epidermal thicknesses of native types are fairly constant thruout the State. There is a tendency in the less favored regions for the stomata to be somewhat smaller and greater in number per unit leaf

area. This stomatal character is associated with a rather corresponding reduction in size of epidermal cell, all of which may be ascribed to a more dwarfish development. The number of vascular bundles per unit cross-section of leaf is fairly constant.

While some of the vegetative characters, such as total leaf area and plant weight, may reduce as much as 300 per cent, no important histological leaf characters exhibit more than 15 per cent deviation in the case of native types growing in the most adverse as compared with the most favored parts of the State.

Practically speaking, adaptation with corn consists in a

morphological rather than in a histological reaction.

As a concrete example of the foregoing adaptive reactions, the 1915 difference between home-grown native Richardson County and Kimball County corn types may be cited. These two localities represent the extremes of corn growing conditions within the State. Comparing the measurements of Richardson County corn with those of Kimball County corn, we have the following ratios: Stalk height, 100:60; ear height, 100:35; leaf area, 100:36; stover weight, 100:49; ear weight, 100:24; grain weight, 100:20; total plant substance, 100:34; shelling percentage, 100:84; leaf area, per unit dry matter, 100:100; ear length, 100:65; ear circumference, 100:81; kernel length, 100:73; leaf thickness, 100:96; thickness of upper epidermis, 100:97; thickness of lower epidermis, 100:97; number of vascular bundles per unit of cross-section of leaf, 100:104; number of stomata per square millimeter of upper epidermis, 100:113, and of lower epidermis, 100:115; length of stoma of upper epidermis, 100:89, and of lower epidermis, 100:90; length of epidermal cell of upper epidermis, 100:92, and of lower epidermis, 100:97; and width of epidermal cell of upper epidermis. 100:99, and of lower epidermis, 100:92.

The immediate effect of moving corn from its native environment to less favorable conditions, climate being the chief variable factor, is generally a reduction in both vegetative growth and grain production. The stunting growth effect extends to the cell unit, which in turn is accompanied by histological changes that can not apparently be regarded as of an adaptive nature. These changes may be illustrated by comparison of native Lancaster County corn when grown at home and when grown in the more adverse region of Kimball County. Using the Lancaster County crop as a basis, the relative results were as follows: Plant height, 100 and 80; ear height, 100 and 52; leaf area, 100 and 78; stover weight, 100 and 62; ear weight, 100 and 1; grain weight, 100 and 0.8; total dry matter,

100 and 26; shelling per cent, 100 and 63; leaf area per gram of dry matter, 100 and 300; ear length, 100 and 40; ear circumference, 100 and 44; leaf thickness, 100 and 100; average epidermal thickness, 100 and 97; cuticular thickness, 100 and 103; number of vascular bundles per unit of cross section of leaf, 100 and 116; average number of stomata per unit leaf area, 100 and 107; average length of stomata, 100 and 97; average length of stomatal aperture, 100 and 90; average length of epidermal cell, 100 and 95; average width of epidermal cell, 100 and 95. Altho the slightly reduced length of the stomatal aperture taken by itself might be interpreted as an adaptive reaction to retard transpiration, yet this is contradicted by an

increase in the relative number of stomata.

On the other hand, moving corn to more favorable conditions than its native habitat accelerated the vegetative growth and grain production. This stimulating growth effect extended to the cell unit with its accompanying histological changes which again can not be regarded as adaptive in nature. As a parallel illustration with the preceding case, native Kimball County corn grown at home may be compared with the same corn planted in the more favorable region of Lancaster County. The changes occurring as a result of this transfer practically reversed those of the preceding case in which corn was moved to less favorable conditions. Thus, basing results on the Kimball County crop as 100 per cent, the following relative values are had: Plant height, 100 and 129; ear height, 100 and 154; leaf area, 100 and 140; stover weight, 100 and 161; ear weight, 100 and 135; grain weight, 100 and 131; total dry matter, 100 and 146; shelling per cent, 100 and 97; leaf area per gram of dry matter, 100 and 96; ear length, 100 and 113; ear circumference, 100 and 107; leaf thickness, 100 and 109; average epidermal thickness, 100 and 106; average cuticular thickness, 100 and 91; number of vascular bundles per unit cross section of leaf, 100 and 96; average number of stomata per unit leaf area, 100 and 90; average length of stomata, 100 and 111; average length of stomatal aperture, 100 and 122; average length of epidermal cell, 100 and 105; average width of epidermal cell, 100 and 108.

The actual hereditary difference between types adapted to favorable and to unfavorable climatic conditions may perhaps be best determined by comparing both in the same environment under favorable conditions. Eastern and western Nebraska corn may be thus compared by growing at the Nebraska Experiment Station in Lancaster County. Under these conditions western Nebraska corn was much smaller in plant size, leaf area, and dry matter. Plants from seed of both sources were rather similar as to leaf thickness, epidermal and cuticular thickness, relative

numbers of vascular bundles, number of stomata per unit leaf area, and size of stomata. A slightly shorter stomatal aperture accompanied by a slightly smaller epidermal cell appears to be characteristic of the short season dry land types of western Nebraska. Such a shortening of stomatal aperture is not, however, effective in checking the transpiration rate per unit leaf area.

During four years Kimball County and Lancaster County corn were compared by the potometer method as to their relative transpiration rates. The Lancaster County plants which were 51 per cent taller, had 88 per cent greater leaf area and 79 per cent greater dry matter than the Kimball County corn, used 81 per cent more water per plant, 3 per cent less water per unit leaf area, and equal amounts of water per unit dry plant substance produced. In a comparison of two varieties each from western and eastern Nebraska and from New York state, the seasonal transpiration per unit leaf area was respectively, 102, 101, and 100 grams. The corresponding total plant transpiration for seed from the above three sources was respectively, 85.778, 114.653, and 97.218 kilograms. The data indicate that adaptation of corn to a region of moisture shortage consists in the reduction of vegetative development and consequent reduction in the amount of water used by the individual plant.

In a comparative two-year yield test at the Experiment Station of corn types representing twelve distinct regional areas within the State, those from nearest home yielded the most. When these types are grouped into eastern, central, and western Nebraska groups, the yields were respectively, 59.8, 46.2, and 31.6 bushels per acre. These yields are for equal planting rates normal for adapted types in Lancaster County. The corresponding maturity dates were: September 24, September 21, and

September 12.

In a three year comparison at the Nebraska Experiment Station of: (1) Native Experiment Station Hogue's Yellow Dent corn, (2) seed from nine local farmers, and (3) seed from seven distant eastern Nebraska farmers, the relative grain yields of the three groups were respectively, 100, 94, and 91. Of corn brought to the Station from a distance, that from three southeastern counties yielded 56.9 bushels as compared with an average yield of 63.7 bushels for seed from four northeastern counties and 66.7 bushels for the home grown Hogue's Yellow Dent. The relative yields of these three groups were 85, 96, 100.

In a two-year test comparing native Nebraska Experiment Station corn with native seed from the Experiment Stations of eight neighboring states, the local seed yielded an average of ten bushels or 18 per cent more than the imported seed. Seed from several states yielded quite as well as home-grown seed. It may be concluded from both of the above tests that native seed is in general superior to imported seed. However, it is entirely possible to secure seed, (1) from neighboring farmers, (2) from a distance within one's own state, and (3) from other states, which may be substituted for the native home grown seed without detriment. Nevertheless, the importation of seed corn from a distance is hazardous.

Lines of greatest type similarity run diagonally across the State in a northeasterly and a southwesterly direction. Along such lines the more favorable temperature and longer growing season of the south tends to counterbalance the more favorable precipitation of the north in their effects upon the hereditary growth habits of corn. When seed corn is moved far within the

State, it is usually safest to move along such lines.

Corn native to dry-land regions is often credited with especially high efficiency in grain production. In contrast with corn native to more humid regions, it is said to produce a relatively large amount of grain in proportion to its vegetative growth. The data in these investigations fail to substantiate such a relationship. To some extent at least, this apparently erroneous conception is due to faulty methods of comparison. To illustrate, small early types are frequently moved to more favorable conditions and compared there with larger types at planting rates normal for the larger corn. Such a planting rate provides relatively more optimum conditions for the individual plants of the smaller types which frequently results in a higher

As an average for 1915 and 1916, the ratio of grain to stover (stalk and leaves) for eastern, central, and western Nebraska types grown in their home environment were respectively. .98, .84, and .68. In 1916, when eastern, central, and western Nebraska types were grown under the favorable conditions of Lancaster County, the respective ratios were, 1.04, .84, and .84. When the same three groups of corn were grown in Thurston County with conditions slightly more unfavorable for the large eastern Nebraska types and yet highly favorable for the early western types, respective ratios were, .65, .82, and 1.02. When grown in extreme western Nebraska (Kimball County), these ratios were respectively .11, .52, and .79. In these last two comparisons the western types are at a great advantage because of fuller maturity, but the increased proportion of grain to stover is due to the environmental adaptation and not to any principle of greater inherent efficiency of the western plant.

The practical conclusions deducted from the data in this bulletin are borne out by observations and experiences in the

practical farm operations thruout the State.

proportion of grain production.

THE REGIONAL ADAPTATION OF CORN IN NEBRASKA

T. A. KIESSELBACH AND F. D. KEIM

OBJECT AND SCOPE OF THE INVESTIGATION

The purpose of this investigation was to determine some of the factors involved in the regional adaptation of corn. The procedure has been to make a comparative study of native corn types, known to be locally adapted to various regional areas in Nebraska thru long growth there. The work has been confined to the single species group—Zea mays indentata. No one variety of a common source is grown thruout the state, and therefore it has been impossible to keep within a single variety. It would appear that the data should indicate morphological and histological plant characteristics involved in the adaptation of dent corn to various environments, as found in Nebraska. Comparative yield tests of corn from various sources are also reported.

The growing of adapted corn is of great importance to the farmer. The simple matter of planting well adapted, rather than poorly adapted seed may determine whether he meets with success or failure in his corn growing. Corn has now been grown in all agricultural areas of the State for many years, and experience indicates that in the main fairly well adapted types are being grown. An attempt is made to analyze what constitutes

such adaptation.

Altho objection has been raised by several investigators* to the use of the term "adaptation," it is used in this paper because of its popular usage, and for the reason of being most expressive of the collective phenomenon of the favorable hereditary reactions of plants to their environment. Plants should not be credited with teleologic or purposive variation. Crop adaptation results from fortuitous or chance variation, and survival of the fittest, thus coming into a greater harmony with the environment. The selective force may be either natural, or artificially directed. Hereditary character changes are involved.

^{*}Omission of a historical review from this bulletin has been necessitated thru a lack of space.

A distinction must be made between these adaptive changes and mere temporary growth response. Hereditary character changes in corn may occur by: (1) Mutation from an individual, thus producing a new character; (2) Mendelian recombi-

Fig. 1-A typical field of corn in western Nebraska.

nation of unit characters resulting in new forms; and (3) segregation of the more suitable types present in a mixed population.

Since the crop environment of any locality is necessarily somewhat fluctuating or variable from year to year, important crop adaptation characteristics are congenial for the most part to the mean or normal conditions. A crop can not be in full accord every year with a fluctuating environment. Consequently, a crop to be well adapted from an agricultural standpoint must be capable of some adjustment to variable conditions.

Adaptation occurs as a favorable reaction to some one or more growth factors of the environment. The environmental conditions which are apt to become limiting factors in Nebraska's corn crop are heat, moisture, and soil fertility. Nebraska's great regional diversity of crop growing conditions affords a splendid opportunity for this study. The environmental and corn types surveys follow.

Fig. 2—A typical field of corn in eastern Nebraska.

THE ENVIRONMENTAL SURVEY OF NEBRASKA'S CORN GROWING CONDITIONS

Climate and soil are the chief variable growth factors in the State, where corn is grown, and variations within these appear to be almost wholly responsible for the widely differing corn types found in various parts of the State.

Climatic differences may be readily analyzed, and their collective effects on corn are very apparent. The effects of regional soil differences are far less pronounced. In general, thruout the State where corn is grown, the land is fertile and capable of producing large crops. Greater local than regional differences

in soil fertility are found with the exception perhaps of the great Sand Hills Area of north and west central Nebraska, as compared with the balance of the State. Special adaptations to these soil differences are rather obscure. Some communities have certain favorite corns for the very fertile bottom land and others for the poorer hills and uplands. The writers have not undertaken in these investigations to substantiate these local preferences.

These investigations are especially concerned with the crop growing conditions in twelve counties in different parts of the State, namely: Richardson, Lancaster, Washington, Thurston, Holt, Nuckolls, Kearney, Lincoln, Cherry, Grant, Kimball and Dawes. It is for corn grown in these counties that the com-

parative type studies were made.

CLIMATE

The climatic considerations of primary importance in a study of the environment as related to the regional adaptation of corn are: (1) Temperature, (2) precipitation, and (3) atmospheric power for evaporation. The accompanying climatic data are based largely upon observations made by the United States Weather Bureau.* The normal climate of any region is best represented by the average for a large number of years. Thirty or more years have been averaged in the following data.

Fig. 3—Normal isotherms for the corn growing season of May, June, July, and August. (Degrees F.)

^{*}The writers are indebted to Director G. A. Loveland of the Nebraska Section of the Weather Bureau for access to the records and for help in compilation.

The seasonal rainfall and temperature for the years 1915 and 1916 are also given for the twelve localities in the State where corn types were studied in detail during those years.

REGIONAL TEMPERATURE VARIATIONS WITHIN THE STATE

Important aspects of temperature related to these studies are: (1) mean temperature of the corn growing season, (2) duration of the frost-free growing season, and (3) occurrence of excessive temperatures of short duration, especially when accompanied by abnormally high wind velocity.

Fig. 4—Altitude variation (in feet) in Nebraska. (After Warren.) The south to north width of the state is 210 miles, or 3 degrees latitude. The east to west length is 425 miles.

NORMAL MEAN TEMPERATURE

We are more concerned with the mean temperature of the corn growing season than with the mean annual temperature. Accordingly, variations thruout the State in the normal mean temperature for the period of May to August, inclusive, have been compiled and are charted in Figure 3. In response chiefly to differences in latitude, this mean seasonal temperature is found to decrease approximately four degrees from the southern to the northern border of the State. Due to the combined effects of increased latitude and altitude, (Figure 4), the corresponding mean temperature of extreme western Nebraska is seven degrees lower than for extreme southeastern Nebraska. The altitude rises rather continually from 1,000 feet in the southeast to a maximum of about 5,300 feet in the west. In general, the isotherms run from the northeast to the southwest.

NORMAL LENGTH OF FROST-FREE GROWING SEASON

The length of the frost-free period between the last killing frost in the spring and the first killing frost in autumn, (Figures 5 and 6), is expressive of the relative length of the growing season available to corn in various parts of the State. The mean duration of the frost-free period in the extreme southeast is approximately 171 days, as compared to 121 days in the northwest. The lines of equal frost dates tend to run in a northeasterly direction.

Fig. 5-Average dates of last killing frost in spring.

Fig. 6-Average dates of first killing frost in autumn.

REGIONAL MOISTURE VARIATIONS WITHIN THE STATE

The principal moisture considerations comprise: (1) total annual precipitation together with its character and distribution through the year: (2) evaporating power of the atmosphere

as a summary expression of temperature, relative humidity, and wind velocity; and (3) absorptive and retentive character of the soil for moisture.

Fig. 7—Average annual precipitation for the different sections of Nebraska. (Inches.)

MEAN ANNUAL PRECIPITATION

As shown in Figure 7, the annual precipitation falls rather gradually from 32 inches in the extreme southeast to 16 inches in the extreme western part of the State. In the eastern two-thirds of the State the lines of equal rainfall run in a somewhat northeasterly direction. The character and distribution of the rainfall is rather uniform thruout the State, being of the torrential type and coming largely during the crop growing season. (Table 1.)

Table 1.—Normal Monthly Distribution of Rainfall in Nebraska. Average of Entire State for Thirty Years.

Month	Inches	Month	Inches
January	.68	July	3.51
February	.71	August	
March	1.16	September	1.84
April	2.40	October	1.49
May	3.60	November	
June		December	.69

Average annual rainfall, 23.31 inches.

EVAPORATION RATE

The power of the atmosphere to evaporate water has a marked influence upon the effectiveness of the rainfall. Data

represent the divisions of the High Plains Region. The divisions are 1, Perkins Plain; 2, 3, Pumpkin Creek Valley; 4, Wildert Ridge; 5, North Platte Valley; 6, Box Butte Table; 7, 8, Dawes Table; 9, Pine Ridge; 10, Hat Creek Basin; 11, White River Basin; 12, Springview worth Table; 14, Holt Plain. Fig. 8-Map showing the Soil Regions of Nebraska. (By Condra, director Nebraska Soil Survey.)

Table 2.—Summary of Normal Climatic Conditions, Altitude, and Soil Type at Various Points in the State Where Corn Types Were Studied.

County	Mean temperature of corn growing season*	Last spring frost	First fall frost	Length of frost free period	Annual precipitation	Altitude	Kind of soil
	Degrees F.	Date	Date	Days	Inches	Feet	
Richardson Washington Thurston Lancaster Nuckolls	$\begin{array}{c} 73-72\\ 71-70\\ 69-68\\ 71-72\\ 71-72\\ \end{array}$	$\begin{array}{c} 4-21 \\ 4-26 \\ 5-1 \\ 4-25 \\ 4-25 \end{array}$	$\begin{array}{c} 10-11 \\ 10-5 \\ 10-1 \\ 10-9 \\ 10-5 \end{array}$	173 162 153 167 161	2000 8000 8000 8000	$^{900}_{1,000}$ $^{1,000}_{1,200}$ $^{1,200}_{1,700}$	Glacial silt loam Loess Loess terrace Loess
Kearney Holt Lincoln Cherry	69-0 <i>7</i> 69-69 89-69 67-69	$\begin{array}{c} 4-29 \\ 5-7 \\ 5-8 \\ 5-11 \end{array}$	$10-2 \\ 9-28 \\ 9-25 \\ 9-23$	156 144 140 135	22 20 20 20	2,200 1,700 3,100 3,000	Loess Fine sandy loam Sandy loess Fine sandy loam
Grant. Dawes. Kimball	67–66 66–65 66–65	5-13 5-17 5-14	$\begin{array}{c} 9-21 \\ 9-19 \\ 9-23 \end{array}$	131 125 132	18 18 16	3,500 3,800 4,800	Sandy loam Fine sandy loam Fine sandy loam

†Data constructed from Figures 3 to 8. *May, June, July, August.

are not available to show the relative differences in evaporation rate for different parts of the State. It is quite likely, however, that as we progress in a northwesterly direction, the accelerating evaporation effects of a lower humidity are in part offset by the reduced temperature. The evaporation rate is unquestionably reduced from the south to the north. Most of the country south of the Platte River is subject to occasional detrimental hot winds with excessive evaporation power, while such winds are seldom known farther north.

ABSORPTIVE AND RETENTIVE POWER OF THE SOIL

Regionally, the soil differs somewhat in absorptive and retentive power due primarily to a difference in texture. The soils of central and western Nebraska are somewhat more porous than eastern soils, and consequently less subject to runoff. In

Table 3.—Precipitation During Five Spring and Summer Months in Regions Where Corn Adaptation Studies Were Located, 1915.

T 4:			Precipi	tation		
Location	April	May	June	July	August	Total
$County \ (1)$	Inches (2)	Inches (3)	Inches (4)	Inches (5)	Inches (6)	Inches (7)
(1)	. ,	. ,	JEBRASKA	(0)	. (0)	(•)
Richardson Washington Thurston Lancaster Nuckolls	1.87 1.25 .60 1.37 1.92	7.62 7.72 5.92 4.77 5.17	5.69 4.45 7.74 4.03 9.71	9.93 8.55 6.95 6.74 4.94	5.28 2.92 2.45 5.57 3.29	30.39 24.89 23.66 22.48 25.03
Average	1.40	6.24	6.32	7.43	3.90	25.29
	(ENTRAL N	NEBRASKA			
Kearney	$3.06 \\ 2.63 \\ 7.10 \\ 3.46$	6.04 4.85 5.55 3.84	8.44 5.17 3.39 4.52	7.96 5.30 4.66 7.40	6.84 1.31 4.23 .89	32.34 19.26 24.93 20.11
Average	4.06	5.07	5.38	6.33	3.32	24.16
	V	VESTERN 1	NEBRASKA			
Grant*	6.31 2.93 5.03	$4.62 \\ 3.16 \\ 3.05$	6.81 4.84 3.53	4.27 2.99 1.07	5.65 5.11 1.75	27.66 19.03 14.43
Average	4.75	3.61	5.06	2.74	4.17	20.37

^{*}Rainfall in Grant County was not available for 1915, and data from Arthur County, bordering on the south, have been supplied.

the Sand Hills Area of north and west central Nebraska there is probably justification for the belief that the type of soil found there is more resistant to atmospheric evaporation of soil moisture than are the heavier soils elsewhere.

SOIL FERTILITY

Regionally, with the exception of much of the Sand Hills Area and north and west central Nebraska, the soils of this State that are not subject to serious erosion are fertile, and the regional adaptation of corn is probably not greatly influenced by difference in soil fertility. The accompanying soil map by Condra indicates the general soil areas found.

Table 4.—Precipitation During Five Spring and Summer Months in Regions Where Corn Adaptation Studies Were Located. 1916.

Location			Precip	itation		
Location	April	May	June	July	August	Total
$County \ (1)$	Inches (2)	Inches (3)	Inches (4)	Inches (5)	Inches (6)	$\frac{-}{Inches}$ (7)
	E	ASTERN N	EBRASKA			
Richardson Cass Lurston Lancaster Nuckolls	3.09 2.21 .73 2.69 2.08	8.24 4.60 5.16 3.48 4.30	2.64 4.33 3.07 3.11 3.45	2.73 .73 .83 1.29 .35	6.72 7.01 3.71 6.70 1.67	23.42 18.88 13.50 17.27 11.85
Average	2.16	5.16	3.32	1.19	5.16	16.98
	C	ENTRAL N	VEBRASKA			
Kearney Holt Lincoln Cherry	3.78 .80 .72 .59	3.13 4.25 1.95 3.42	3.66 3.28 3.09 3.15	.92 .90 .59 1.95	6.85 2.18 2.35 4.45	18.34 11.41 8.70 13.56
Average	1.47	3.19	3.29	1.09	3.96	13.00
	V	VESTERN 1	NEBRASKA			
GrantDawesKimball	$ \begin{array}{r} .49 \\ 1.15 \\ 1.07 \end{array} $	2.15 4.97 3.70	2.32 3.44 .93	2.77 2.38 2.75	3.40 .82 1.61	$\begin{array}{c} 11.13 \\ 12.76 \\ 10.06 \end{array}$
Average	.90	3.61	2.23	2.63	1.94	11.32

SUMMARY OF CONDITIONS WHERE CORN TYPES WERE STUDIED

NORMAL REGIONAL DIFFERENCES

The approximate normal environmental differences between the various localities where the following corn type survey was made are compiled in Table 2 from the preceding charts. Striking regional climatic differences will be noted.

TEMPERATURE AND RAINFALL DURING 1915 AND 1916

Tables 3 to 6 show the temperature and rainfall during the crop growing season for localities where corn types were studied. A knowledge of these conditions may help account for certain

Table 5.—Mean Temperature During Four Spring and Summer Months in Regions Where Corn Adaptation Studies Were Located. 1915.

T		Mea	ın Tempera	ture	
Location	May	June	July	August	Average
$County \ (1)$	$\frac{\overline{Degrees\ F.}}{(2)}$		$\overline{Degrees \ F.}_{(4)}$	$\begin{array}{c} \hline Degrees \ F. \\ (5) \\ \hline \end{array}$	Degrees F
	EA	STERN NEBE	RASKA		
Richardson Washington Thurston Lancaster Nuckolls	$\begin{array}{c} 61.6 \\ 58.4 \\ 57.2 \\ 59.0 \\ 60.0 \end{array}$	69.8 66.0 65.6 67.2 67.4	$72.8 \\ 70.0 \\ 69.6 \\ 71.7 \\ 72.4$	69.6 65.9 65.2 67.9 69.0	68.4 65.1 64.4 66.4 67.2
Average	59.2	67.2	71.3	67.5	66.3
	C	ENTRAL NEE	RASKA		
Kearney	57.5 53.8 55.2 52.7	65.6 63.1 63.8 62.0	71.6 67.2 69.4 67.6	68.6 66.4 68.2 66.4	65.8 62.6 64.1 62.2
Average	54.8	63.6	68.9	67.4	63.7
	W	ESTERN NEI	BRASKA		
Grant*	52.7 53.2 51.8	$61.4 \\ 61.6 \\ 60.0$	$67.0 \\ 66.9 \\ 66.5$	$66.2 \\ 68.0 \\ 66.0$	61.8 62.4 61.1
Average	52.5	61.0	66.8	66.7	61.8

^{*}Temperature data in Grant County were not available for 1915, and data from Arthur County, bordering on the south, have been supplied.

apparent inconsistencies in the comparative plant characters. The year 1915 especially was much wetter than normal. Relatively, the seasonal precipitation for Lincoln County in 1916 was unduly low, which accounts for the outstandingly low plant development there that year.

Table 6.—Mean Temperature During Four Spring and Summer Months in Regions Where Corn Adaptation Studies Were Located. 1916.

Tantin		$\mathbf{M}\mathbf{e}$	an Tempera	ture	
Location	May	June	July	August	Average
County	Degrees F.	Degrees F.	Degrees F.	Degrees F.	Degrees F
(1)	(2)	(3)	(4)	(5)	(6)
	E	ASTERN NEB	RASKA		
Richardson	64.4	70.3	81.9	78.7	73.8
Cass	62.0	66.5	79.6	74.7	70.7
Thurston	60.2	64.9	80.1	73.2	69.6
Lancaster	62.2	67.8	82.1	75. 8	72.0
Nuckolls	56.8	63.8	81.0	76.8	69.6
Average	61.1	66.7	80.9	75.8	71.1
	C	ENTRAL NEB	RASKA		
Kearney	60.7	66.2	80.0	74.4	70.3
Holt	55.0	63.7	79.5	72.8	67.7
Lincoln	58.2	64.6	80.0	74.0	69.2
Cherry	55.0	62.2	79.2	71.2	66.9
Average	57.2	64.2	79.7	73.1	68.5
	w	ESTERN NEE	BRASKA		
Grant	52.5	60.0	70.5	67.6	62.6
Dawes	54.6	62.8	78.0	69.9	66.3
Kimball	53.3	63.0	74.2	68.3	64.7
Average	53.5	61.9	74.2	68.6	64.5

THE CORN TYPES SURVEY OF NEBRASKA

TWO CLASSES OF INVESTIGATIONS

Data having been presented to show the widely different growing conditions in various regions of the State, we may proceed to the comparison of corn types which are found adapted to these conditions. The plant characters were determined by detail measurments, the results of which are summarized in tabular form.

The corn types survey may be divided into two main sorts of investigation: (1) Native corn types grown in their home environment, and (2) native corn types grown out of their home environment. The types studied in both cases represent native corns from twelve different parts of the State. Such localities, Figure 9, were selected that most regional conditions in Nebraska might be represented. The localities may be re-

grouped to represent more general regional areas. In the tables, the data are assembled by localities into eastern, central, and western Nebraska groups.

Fig. 9—Sources of native corn types used in these investigations, 1915 and 1916.

NATIVE CORN TYPES GROWN AT HOME

MORPHOLOGICAL CHARACTERS

METHODS OF STUDY

During the years 1915 and 1916, detailed measurements were made of representative corn types grown in twelve counties scattered thruout the State. On an average, four representative fields were chosen in each county, and ten successive plants measured in a representative part of each field. The morpho-(1) Height of stalk. logical characters measured were: (2) height of ear, (3) leaf area, (4) grain weight, (5) ear weight, (6) stover weight, (7) total plant weight, (8) shelling per cent, (9) leaf area per gram dry matter produced, (10) length of ear, (11) circumference of ear. (12) length of kernel. (13) width of kernel. Bags were kept in the field for systematically gathering the dry leaves of the selected plants from time to time in order to conserve all the plant substance. Leaf areas were determined by E. G. Montgomery's formula, i.e. $3_4^\prime imes ext{length} imes ext{maximum width.} \dagger$ At maturity all plants were harvested and assembled for uniform air drying in a warm room for several months in order that weights might be comparable.

RESULTS

The data for 1915 and 1916 are given separately in Tables 7 and 8. The two years are averaged in Table 9. In Table 10 the regional differences in plant characters are made more

[†]Montgomery, E. G., 1911, Correlation studies of corn, Nebr. Agr. Exp. Sta. 24th Annual Report, p. 113,

readily visible by giving relative rather than actual figures. In this table the ratios are based upon the measurments for Richardson County corn as 100 per cent. Richardson County, being situated in the extreme southeastern part of the State, has normally the longest growing season, highest temperature, and

greatest precipitation in the State.

By comparing the results for Richardson and Kimball Counties the reaction of corn types adapted to the two most extreme environments may be observed. Based on Richardson County corn measurments as 100 per cent, relative values for Kimball County were as follows: (1) Height of stalk, 60; (2) height of ear, 30; (3) leaf area, 37; (4) stover weight, 41; (5) ear weight, 28; (6) total dry matter, 33; (7) grain weight, 25; (8) shelling per cent, 89; (9) leaf area per gram dry matter, 108; (10) ear length, 67; (11) ear circumference, 80; (12) kernel length, 76; (13) kernel width, 106; and (14) kernel weight, 58. Other counties may be compared in a similar manner. With some irregularities which are due perhaps in part to low frequency of plants studied, the data for the various counties suggest that the more adverse the conditions, the more dwarfish is the growth habit of adapted types of corn.

With the twelve counties under observation, grouped into three State regions from east to west (Table 11), the same principles are brought out. Based on eastern Nebraska measurements as 100 per cent, relative values for eastern, central and western Nebraska were respectively as follows: (1) Height of stalk, 100, 78, and 68; (2) height of ear, 100, 66, and 40; (3) leaf area, 100, 67, and 44; (4) stover weight, 100, 74, and 50; (5) ear weight, 100, 67, and 39; (6) total dry matter, 100, 70, and 44; (7) grain weight, 100, 63, and 35; (8) shelling per cent, 100, 95, and 89; (9) leaf area per gram dry matter, 100, 95 and 98; (10) ear length, 100, 90, and 79; (11) ear circumference, 100, 94, and 84; (12) kernel length, 100, 93, and 84; (13) kernel width, 100, 103, and 101; (14) kernel weight, 100, 85, and 61.

HISTOLOGICAL CHARACTERS

METHODS OF STUDY

Since the leaf is the seat of food synthesis and of transpiration, it would appear that the most important special histological adaptations, if any, would occur there. Therefore, rather detailed microscopic leaf studies were made for all the plants harvested in seven of the counties previously reported.

At the time of measuring the leaf area, about two weeks after tasseling, a leaf sample for sectioning was taken, by means

Table 7.—Plant Characteristics of Native Corn Types Grown in Various Regions of Nebraska. 1915.

Where grown Heigh of stalk County Fred (1) (2) Washington. 8.7 Thurston 7.7	. I	-							Leai	1	Tori		日本 日本日本 日本日本日 日 -	
11			Leaf area	Stover	Ear	Total	Grain	Shelling per cent	area per gram dry	measur	measurements Circum-	T cust	measurements	ursight
	1	11							Harver	Troil Ball	Tel elle	Tollik cii	II III II	weign
. :		Feet (3)	Sq. In. (4)	Grams (5)	Grams (6)	Grams (7)	Grams (8)	Per cent (9)	Sq. In. (10)	Inches (11)	$\begin{bmatrix} Inches \\ (12) \end{bmatrix}$	Inches (13)	Inches (14)	Grams (15)
. :					EA	EASTERN 1	NEBRASKA	KA.						
:		ci	1,293	216	323	539	275	85	2.4	8.1	6.7	.56	65	65
		4.1	1,386	227	307	534	258	84	2.6	8.2	2.0	.56	.32	299
		6.	1,048	157	165	322	132	80	<u>က</u>	7.0	6.0	49	.33	200
		ಪ	1,222	221	195	416	164	84	2.9	7.0	6.0	45	155	222
Nuckolls7.4		∞.	1,174	189	261	450	219	84	5.6	7.5	6.5	.42	.36	.332
Average 8.3		3.5	1,225	203	250	452	210	83	2.8	9.7	6.4	.50	.32	.273
					CE	CENTRAL	NEBRASKA	KA.						
:		2.9	899	168	214	382	178	83	2.4	7.3	6.4	.51	.32	.256
Holt. 6.6		ಣ	746	112	100	212	172	72	3.5	6.1	5.5	.41	32	.163
		ಯ	724	149	193	342	154	80	2.0	7.2	6.0	.47	.34	273
Cherry 6.3		0.	695	128	116	244	87	22	5.9	6.1	5.5	.42	.34	.192
Average 6.6		2.4	765	139	156	295	123	2.2	2.7	6.7	5.8	.45	.33	.221
					WE	WESTERN	NEBRASKA	SKA						
Grant. 6.1		2.1	746	142	70	212	42	09	3.5	6.3	5.4	.43	.28	102
Dawes 6.1		×.	601	108	66	207	72	73	2.9	6.0	5.6	.41	33	160
		-	470	106	42	185	26	7.1	2.5	5.3	5.4	.41	36	.188
Average, 5.8		1.1	909	119		202	57	89	3.0	5.9	5.5	.42	.32	.150

Table 8.—Plant Characteristics of Native Corn Types Grown in Various Regions of Ne-braska, 1916.

	Plan	Plant measurements	rements		Dry matter	natter		Shelling	Leaf	Emeasur	Ear	m	Kernel measurements	ts.
Where grown	Height Height of stalk ear		Leaf area	Stover	Ear	Total	Grain		per gram dry matter	=	Circum- ference	Length	Width	Weight
County	Feet (2)	Feet (3)	Sq. In. (4)	Grams (5)	Grams (6)	Grams (7)	Grams (8)	$\frac{Percent}{(9)}$	Sq. In. (10)	Inches (11)	Inches (12)	Inches (13)	Inches (14)	Grams (15)
					Ē	EASTERN	NEBRASKA	SKA						
Richardson	9.2	3.9	1,274	221	274	495	233	85	2.6	6.7	6.5	.50	.32	.327
Washington	8.6	3.0	1,269	222	282	504	242	98	2.5	∞ %	6.3	.50	.30	.308
Thurston	7.5	60	1,138	176	162	338	133	85	3.4	9.9	5.7	.46	.30	.254
Lancaster	7.4	3.9	1,295	160	208	368	177	85	က က်	7.1	.∞ ∞	.44	30	.290
Nuckolls	6.3	8.2	1,122	197	135	332	108	80	3.4	5.9	5.2	.47	.33	309
Average	7.8	3.6	1,220	195	212	407	179	84	3.1	7.2	5.9	.47	.31	289
)					CI	CENTRAL	NEBRASKA	SKA					_	
Kearney	8.9	3.2	1,029	219	171	390	142	83	2.6	8.9	6.0	.48	.31	.254
Holt	8.9	2.3	973	149	181	330	147	81	2.9	2.0	0.9	.45	ဏ္	.257
lincoln	5.1	1.7	793	124	124	248	66	80	3.5	6.2	5.4	.44	.32	.281
Cherry	5.4	1.7	669	128	142	270	114	80	5.6	6.3	5.4	.44	.32	.271
Average	6.0	2.2	873	155	154	309	125	81	2.8	9.9	5.7	.45	.32	.266
					W	WESTERN	NEBRASKA	SKA						
Grant	4.9	1.2	504	92	80	156	62	- 28	3.2	5.7	4.3	.37	.32	.186
Dawes	5.0	1.2	467	88	121	210	86	81	2:5	6.1	5.3	.43	:32	.224
Kimball	5.7	1.0	468	71	88	160	72	81	2.9	5.5	5.2	.40	.31	.183
Average	5.2	1:1	480	79	97	176	22	80	2.8	5.8	4.9	.40	.32	.198

Table 9.—Plant Characteristics of Native Corn Types Grown in Various Regions of Ne-braska. (Average for 1915 and 1916.)

	Plant	measn	Plant measurements	1	Dry r	Dry matter		Shelling	Leaf	Emeason	Ear measurements	m	Kernel	nts
Where grown	Height Height of of stalk ear		Leaf area	Stover	Ear	Total	Grain		n n	Length	Circum- ference	Length	Width	Weight
County	Feet (2)	Fred (3)	.Sq. In. (4)	Grams (5)	Grams (6)	Grams (7)	Grams (8)	Per cent (9)	Sq. In. (10)		Inches (12)		Inches (14)	Grams (15)
					EA	STERN	NEBRASKA	SKA					,	,
Richardson	8.95	3.50	1,283.5	218.5	298.5	517.0	254.0	85	2.50	8.00	9.9	.530	315	320
Washington	9.10	4.00	1,327.5	224.5	294.5	519.0	250.0	85	2.55	8.25	6.65	.530	.310	.3035
Thurston	7.60	3.10	1,093.0	166.5	163.5	330.0	132.5		က ကဲ	6.80	5.85	.475	.305	.227
Lancaster	7.80	4.10	1,258.5	190.5	201.5	392.0	170.5	84.5	3.5	7.05	5.90	.445	305	.256
Nuckolls	08.9	2.80	1,148.0	193.0	198.0	391.0	163.5		3.0	6.70	5.85	.445	.345	.320
Average	8.05	3.50	1,222.1	198.6	231.2	429.8	194.1	83.5	2.89	7.36	6.17	.485	.316	2854
					CE	CENTRAL	NEBRASKA	SKA						
Kearney	6.90	3.05	964.0	193.5	192.5	386.0	160.0		2.50	7.05	6.20	.495	.315	255
Holt	02.9	2.30	859.5	130.5	140.5	271.0	107.4	76.5	3.10	6.55	5.75	.430	.325	.210
Jincoln	5.70	$\frac{5.00}{1000}$	758.5	136.5	158.5	295.0	126.8	80	2.60	6.70	5.70	.455	330	277
Cherry	5.80	1.85	695.5	128.0	129.0	257.0	100.5	77.5	2.70	6.20	5.45	.430	.330	.2318
Average	6.27	2.30	819.4	147.1	155.1	302.2	123.2	79.2	2.75	6.62	5.77	.452	.325	.2434
					W	WESTERN	NEBRASKA	SKA						
Grant.	5.50	1.65	625.0	109.0	75.0		52.0		3.3	6.0	4.85	.400	.300	.144
Dawes	5.50	1.50	534.0	98.5	110.0	208.5	85.0	2.2	2.5	6.05	5.45	.420	.320	.192
Kımbali	5.40	1.05	469.0	88.5	84.0	172.5	64.0		2.7	5.40	5.30	.405	.335	.1855
Average	5.47	1.40	542.7	98.7	89.7	188.4	67.0	74	2.83	5.82	5.20	.408	.318	.1738

Data in column 10 are the average of ratios rather than the ratio of averages.

Table 10.—Plant Characteristics of Native Corn Types Grown in Various Regions of Ne-

	Plant	Plant measurements	ments		Dry r	Dry matter		Grolling.	Leaf	B	Ear		Kernel	4
Where grown	Height of stalk	Height of ear	Leaf	Stover	Ear	Total	Grain	ber cent per gram per cent per gram dry matter	area per gram dry matter	measur Length	Length ference	me Length	measurements h Width W	Weight
County (1)	Per cent (2)	Per cent (3)		Per cent (5)	Per cent (6)	Per cent (7)	Per cent (8)	Per cent (9)	$\frac{Percent}{(10)}$	Per cent (11)	Per cent (12)	Per cent (13)	Per cent (14)	Per cent (15)
					E	EASTERN	NEBRASKA	SKA						
Richardson.	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Washington	102	114	103	103	66	100	86	100	102	103	101	100	86	95
Thurston	85	83	85	92	55	64	52	95	132	85	88	90	97	71
Lancaster	87	117	86	87	29	92	29	66	128	88	88	84	97	80
Nuckolls	92	80	88	88	99	92	64	96	120	84	88	84	109	100
					C	CENTRAL	NEBRASKA	SKA						
Kearney	2.2	87	75	68	64	22	63	86	100	88	94	93	100	80
Holt	75	99	29	09	47	52	42	06	124	85	87	81	103	99
Lincoln	64	52	29	62	53	22	20	94	104	84	98	98	105	8.7
Cherry	65	53	54	59	43	20	40	91	108	2.2	83	81	105	72
					W	WESTERN	NEBRASKA	SKA						
Grant	62	47	49	50	25	36	20	81	132	75	73	75	95	45
Kimball	09	30	37	40	82	333	25.	80	108	67.	6 0 ∞	76	106	0 v.
)	1	5	2	-	2	5

*Data calculated from Table 9.

Table 11.—Nummary* of Plant Characteristics of Native Corn Types Grown in Various Regions of Nebraska. (Average for 1915 and 1916.)

Rogion in	Plant	t measu	Plant measurements		Dry matter	natter		Sholling	Leaf	E	Ear	ú	Kernel	2
Nebraska where grown	Height of stalk	Height Height of stalk ear	ht Leaf area Stover	Stover	Ear	Total	Grain	per cent pergram	per gram dry matter	Length	dry Circum- matter Length ference Length Width Weight	Length	Width	Weight
	11 69	1 6	II =	. [3]	- (6)	(2)	(E) (S)	(6)	(10)	(11)	(11) (12) (13)	(13)	(14)	(15)
	ì					ACTUAL	ACTUAL VALUES				ĵ,			
	Feet	Feet	Feet S. In. Grams		Grams	Grams	Grams	Per cent	Sq. In.	Inches	Grams Grams Percent Sq. In. Inches Inches Inches Inches Grams	Inches	Inches	Grams
Eastern	1	5	1 000 1	1001	2 100	0.067	164.1	60	00 6		6 17	0 71	916	9064
(Av., 9 C.0.) 6.00 6.30 1,222.1 195.0 201.2 423.6 194.1 65.9 2.63 (ontra)	0.00	00.0	1,222,1	195.6	2.107	423.0	134.1	0.00	60.7	06.1	0.11	.405	016.	£007.
(Av., 4 Co.) 6.27 2.30	6.27	2.30		819.4 147.1 155.1 302.2 123.2 79.2	155.1	302.2	123.2	79.2	2.75	6.62	5.77	.452	.325	.2434
Mestern (Av., 3 Co.) 5.47 1.40	5.47	1.40	542.7	98.7	89.7	188.4	67.0	74.0	2.83	5.83	89.7 188.4 67.0 74.0 2.83 5.82 5.20 408 .318	.408	.318	.1738
					Z.	RELATI	E VALUES	ES						
	Percent	Percent	Prevail Prevail Prevail Prevail Perevit	Percent	Percent	Percent	Per cent	Percent	Per cent	$Per\ cent$	Per cent	Per cent	Per cent	Per cent
Eastern	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Central	100	100	100	001	100	100	100	100	001	001	001	001	700	100
Av., 4 Co.)	20	99	2.9	7-	29	02	63	95	95	90	93	93	103	85
AV., 3 Co.	89	40	77	50	39	7	34	68	86	7.9	84	84	101	61

Compiled from data in Table 9.

of a leaf punch, from the ear leaf of each plant measured. The point of sampling was at the widest part of the leaf midway between the mid-rib and leaf margin. A quantity of adjoining upper and lower epidermis was also removed and preserved. The leaf samples were preserved in absolute alcohol for later study. Previous experience had suggested that fairly comparable data might be secured by use of a similarly situated leaf from ten different plants of each variety. The number of plants studied from any one locality ranges from thirty to sixty, representing three to six different farms. The microscopic sections were made free-hand by using small corks and a sharp razor. An extensive method study proved that the use of only a few measurements would be unreliable because of the inconsistencies of leaf structure and, therefore, a large number of duplicate counts and measurements were made. An average of five varieties were studied microscopically for each of the seven counties. Four hundred transectional leaf measurements, and 160 epidermal counts and measurements were made for each variety, averaging a total of 2,000 per county in the former case and 800 in the latter. The following measurements were taken:

Leaf Thickness—This measurement includes the cuticle of each epidermal layer. Tissue immediately adjacent to the large

vascular bundles was avoided.

Epidermal Thickness—The upper and lower epidermis were measured at the same point as the leaf thickness, including the cuticle.

Vascular Bundles—Counts were made of the number of vas-

cular bundles in the cross-sections of the leaves.

Number of Stomata in a Unit Area—The number of stomata were counted in 100 microscopic fields for both the upper and lower epidermis of each type. The microscopic fields were chosen systematically in order that the results might be representative.

Length of Stoma and Stomatal Aperture—As far as possible, representative stomata were measured. It was at times with

difficulty that the stomatal aperture was measured.

Length and Width of Epidermal Cells—Since these and all other microscopic measurements were made in eye piece spaces, it was necessary to convert them into microns.

RESILLTS

The results of these histological studies are contained in Tables 12 and 13. The various localities are grouped into eastern, central, and western Nebraska regions. Since these studies involve only seven of the twelve counties used in studying the

preceding morphological adaptations, the morphological characters for these seven counties only are briefly summarized in Tables 14 and 15, in order that the histological data may be directly comparable with them.

Fig. 10—Microphotograph of a cross-section of corn leaf, showing arrangement of vascular bundles, relative epidermal thickness, cuticle, and stomata. Enlarged 233 diameters.

In comparing native types grown under the two extreme conditions of Richardson County and Kimball County, it is observed that whereas the plant weight and leaf area of Kimball County corn are only 34 and 36 per cent as large respectively, the relative thickness of the leaf, and upper and lower epidermis are respectively 96, 97, and 97 per cent as great. The proportion of epidermal thickness to total leaf thickness is almost identical for both extreme types. The number of vascular bundles in one centimeter of cross-section of leaf is 4 per cent

greater for Kimball County corn. Based on Richardson County corn as 100 per cent, the relative number of stomata per square millimeter of epidermis, length of stoma, and length and width of epidermal cells of Kimball County corn were respectively 114, 90, 94, and 95 per cent. Similar comparisons between other counties may be made by a study of the tables. No adaptive structural differences are to be observed.

Fig. 11—Microphotograph of corn epidermis, showing epidermal cells, stomata, and stomatal apertures. Enlarged 116 diameters.

With the counties grouped into eastern, central, and western Nebraska, (Table 16), and the regional data based on eastern Nebraska as 100 per cent, we find that (1) the respective relative leaf thicknesses are, 100, 104, and 101; (2) thickness of upper epidermis, 100, 100, and 99; (3) lower epidermis, 100, 102, and 102; (4) number of vascular bundles in one centimeter of cross section. 100, 94, and 98; (5) average number of stomata per square millimeter epidermis. 100, 112, and 114; (6) average length of stomata, 100, 97, and 90; (7) average length of epidermal cell, 100, 83, and 87; and (8) average width of epidermal cell, 100, 98, and 99. The data suggest that while there is marked adaptation in morphological characters, there is no corresponding

Table 12.—Histological Leaf Measurements of Native Corn Types Grown in Various Regions of Nebraska. 1915.

					- 1/	:				
Where grown		Thickness of				Per ce	Number vascular bundles			
		Leaf	Upper epi- dermis	Low epi dern	-	Upper epi- dermis	Lower epi- dermis	Total epi- dermis	per cm. leaf width	
		$\overline{Iicrons}$ (2)	(3)	(4))	(5)	$Per \ cent \ (6)$	Per cent	(8)	
				TERN						
Richardson		230.3	34.9	29.		15.2	12.8	28.0	63.8	
Lancaster		217.6	33.8	27.	-	15.5	12.4	27.9	68.0	
Thurston		229.8	35.4	28.	1	15.4	12.2	27.6	66.2	
Average	.*	225.9	34.7	28.		15.3	12.4	27.8	66.0	
T * 3		222		TRAL			100	20 -		
Lincoln		236.6	34.3	28.		14.5	12.0	26.5	59.7	
Cherry		232.4	35.4	29.	6	15.3	12.7	28.0	63.9	
Average		234.5	4.5 34.8		0	14.9	12.3	27.2	61.8	
				TERN						
Dawes Kimball		234.7	35.4	28.		15.1	12.2	27.3	62.7	
		221.2	33.8	28.	28.7 15.3		13.0	28.3	66.6	
Average		227.9	27.9 34.6		7	15.2	12.6	27.8	64.6	
	Mus	mber o	£ .	Length		I o	ngth of		idth of	
Where	ston	omata per q. m. m.		of stoma		epidermal c			ermal cell	
grown	Unne	er Low	er Upp	on I	ower	Unne	r Lowe	r Uppe	er Lower	
	epi-				epi-	epi-				
			nis dern		rmis					
			77:	7.4		7.7.	14:	3.4.	3.7.	
County = (1)	(9)	(10			(12)	s Micro (13)			ns Microns (16)	
. ,	X - /		,	TERN		. ,	, ,			
Richardson.	69.9	86.			17.5	96.	7 87.3	35.7	37.4	
Lancaster	68.5			6 4	8.7	107.4	97.7	35.5	35.1	
Thurston	60.0	79.	0 - 50.	7 4	19.2	100.7	7 97.2	35.5	5 ± 36.3	
Average	66.1	83.	0 - 50.	2 4	8.4	101.6	94.1	35.6	36.3	
				TRAL						
Lincoln	73.2				8.3	83.9				
Cherry	75.2	91.	7 47.	1 4	5.4	84.3	85.4	35.6	33.3	
Average	74.2	93.8		_	6.8	84.1	78.4	35.8	34.4	
70				TERN					0.50	
Dawes	74.3				5.9	84.6				
Kimball	79.0	99.0) 43.	5 4	3.0	89.2	85.0	35.2	34.4	
Average	76.6	94.5	2 43.8	3 4	4.4	86.9	82.4	35.8	35.1	

Table 13.—Histological Leaf Measurements of Native Corn Types Grown in Various Regions of Nebraska. The Results for the Various Counties Are Here Expressed in Per Cent of the Results for Richardson County. 1915.1

W/h and much		Thickness of				Per cent of total leaf thickness of			
Where grow		leaf	Upper epi- dermis	Lower epi- dermis	epi-	Lower epi- dermis	epi-	leaf width	
$County \ (1)$		crons (2)	(3)	(4)	()	Per cen (6)	${Per\ cen}$	(8)	
Richardson Lancaster Thurston		100 94 100	100 97 101	YERN NEI 100 91 95	100 102 101	$\begin{array}{c} 100 \\ 97 \\ 95 \end{array}$	100 100 99	100 107 104	
Lincoln Cherry	1	103 101	CENT 98 101	FRAL NEI 96 100	3RASKA 95 101	93 99	94 100	94 100	
Dawes Kimball		102 96	WEST 101 97	97 97	99 101	95 102	97 101	98 104	
Where	stoma	ber of ita per		ength stoma		ngth of ermal ce		Vidth of lermal cell	
grown	stoma sq. r Upper epi-	Lowe	r of er Uppe	stoma er Lowe	epide er Uppe epi-	ermal ce	er Upp	dermal cell per Lower	
grown	stoma sq. r Upper epi-	Lowe	of $\frac{\text{er}}{\text{epi-epi-derm}}$ $\frac{\text{Micro}}{\text{(11)}}$	stoma Per Lowe epiderm ms Micro (12)	epide r Uppe epi- derm ms Micro (13)	ermal ce er Low epi- is derm	er Upper epinis derm	dermal cell or Lower epi- nis dermis ons Microns	
grown County	stoma sq. r Upper epi- dermis	Lowe epi- derm	Transport Office Control Con	r Lowe epiderm ms Micro (12) PERN NEI 100 102 104	epide er Uppe epi- derm ms Micro (13) BRASKA 100 111 104	ermal ce er Low epi is derm ms Micro	er Uprepoint $\frac{\text{Uprepoint}}{\text{ons}}$ $\frac{\text{Uprepoint}}{\text{dern}}$	Lower epi- dermis dermis ons Microns (16) 100 94	
County (1) Richardson Lancaster Thurston	upper epi-dermis (9) 100 98	Low epiderm (10)	Transport Office Property Office Property Office Off	Lowe epiderm Micro (12) CERN NEI	epide er Uppe epi- derm ms Micro (13) BRASKA 100 111 104 BRASKA 87	er Low epidis derm ns Micro (14	er Upre- epidern ons Micr (15) 100 99 90	Lower Lower epi- dermis dermis	
County (1) Richardson Lancaster	stoma sq. r Upper epi- dermis (9) 100 98 86	Low epiderm (10) 97 92 1111	Tope	Lowe epiderm Micro (12)	epide er Uppe epi- derm ms Micro (13) BRASKA 100 111 104 BRASKA 87	er Lower epides derm Micro (14	er Uprepia dern (15 100 99 99 100 100 100 100 100 100 100 1	Lower epi- inis dermis ons Microns (16) 0	

¹Data calculated from Table 12.

Table 14.—Plant Characteristics of Native Corn Types Grown in Various Regions of Nebraska. 1915.1

Where grown	Height of stalk	Height of ear	Leaf area	Total weight of plant	Weight of ear	Shelling per cent	Length of ear
$\frac{\overline{County}}{(1)}$	$Feet \ (2)$	Feet (3)	Sq. in. (4)	Grams (5)	Grams (6)	Per cent (7)	Inches (8)
		EASTE	RN NEBR	ASKA TYPI	ES		
Richardson	8.7	3.2	1,293	539	323	85	8.1
Lancaster	8.3	4.3	1,222	416	195	84	7.0
Thurston	7.7	2.9	1,048	322	165	80	7.0
Average	8.2	3.5	1,188	426	228	83	7.4
		CENTI	RAL NEBR.	ASKA TYPI	ES		
Lincoln	6.4	2.3	724	342	193	80	7.2
Cherry	6.3	2.0	692	244	116	75	6.1
Average	6.3	2.1	708	293	154	77	6.6
		WESTE	ERN NEBR	ASKA TYP	ES		
Dawes	6.1	1.8	601	207	99	73	6.0
$Kimball\dots\dots$	5.2	1.1	470	185	79	71	5.3
Average	5.6	1.4	535	196	89	72	5.6

¹A separate table is made for these seven counties in order that the summary data for the three larger regional sub-divisions may be entirely comparable with corresponding histological data of table 12, which includes only these seven rather than all twelve counties.

Table 15.—Plant Characteristics of Native Corn Types Grown in Various Regions of Nebraska. The Results for the Various Counties Are Here Expressed in Per Cent of the Results for Richardson County. 1915.¹

Where grown	Height of stalk	Height of ear	Leaf area	Total weight of plant		Shelling per cent	
County	Per cent	Per cent	Per cent		Per cent (6)		Per cent
(1)	. (2)	` /	, ,	(/	(0)	(4)	(0)
Richardson	100	100	TERN NE	BRASKA 100	100	100	100
Lancaster		134	94	77	60	99	86
							86
Thurston	88	91	81	60	51	94	. 50
		CEN	TRAL NE	BRASKA			
Lincoln	74	72	56	63	60	94	89
Cherry	72	62	54	45	36	88	75
		WES	STERN NE	EBRASKA			
Dawes	70	56	46	38	31	86	7.4
Kimball	60	34	36	34	24	84	65

Data calculated from Table 14.

Table 16.—Summary of Histological and Morphological Characteristics of Native Corn Types Grown in Various Regions of Nebraska. The Results for Central and Western Nebraska Are Here Expressed in Per Cent of the Results for

Eastern Ne	ebraska	α . 1	915.	l					
Region where gr	OWN	T	nickn	ess o	of		cent of thickne		Number vascular bundles
Region where gr		Leaf	epi	-	epi-	epi-	Lower epi- dermis	epi-	per cm. leaf width
(1)		Per cent (2)	Per cent	t	$Per \\ cent \\ (4)$	$\begin{array}{ c c }\hline Per\\ cent\\ (5) \\\hline \end{array}$	Per cent (6)		(8)
Eastern Nebraska. Central Nebraska. Western Nebraska		100 104 101	100 100 99)	100 103 102	100 97 99	100 99 102	100 98 100	100 94 98
Region where	Num stoma				ngth toma		Length piderma		Vidth oidermal cell
grown	epi-	epi	i- (pi-	epi	- epi	- epi	- epi-	er Lowe epi- is dermi
(1)	(9)	(10) (11)	(12) (13) (14) (15)	(16)
Eastern Nebraska Central Nebraska Western Nebraska	112	100 113 113	3	100 97 87	100 97 92	7 8	4 85	3 101	100 95 97
Region where grown	Height of stalk	, (ight of ar	Lea are	a v	Γotal veight plant	Weight of ear	Shelling per cent	g Length of ear
(1)	(17)	(1	.8)	(19)	(20)	(21)	(22)	(24)
Eastern Nebraska. Central Nebraska. Western Nebraska	100 77 68		00 60 40	100 60 43	0	100 69 46	100 68 39	100 93 87	100 89 76

Data calculated from Tables 12 and 14.

significant histological adaptation. Practically speaking, the types adapted to the driest one-third of the State have developed no less succulent leaf, and no thicker epidermis resulting in reduced opportunity for water evaporation. The actual number of stomata per square millimeter is 14 per cent greater for western than for eastern Nebraska corn. This would seem to increase the opportunity for evaporation.

However, the greater number of stomata would seem to be offset by a reduction of 10 per cent in length. The fact that this 10 per cent reduction in length of stomata is accompanied by a 13 per cent reduction in length of the epidermal cell, which reduction would in no way be associated with water economy,

Fig. 12—Native corn types from nine regional areas of the state, grown comparably in southeastern Nebraska. (Lancaster County.)

Each group of ears is the harvest from ten successive representative plants of each type. The seed from all sources matured well when grown in Lancaster County.

(1) Thurston County corn, (2) Lancaster County corn, (3) Richardson County corn, (4) Holt County corn, (5) Kearney County corn, (6) Nuckolls County corn, (7) Cherry County corn, (8) Kimball County corn, (9) Lincoln County corn.

suggests that neither this stomatal shortening nor increased number of stomata per unit area are adaptive in nature. They are perhaps rather the combined result of less favorable growth conditions and of an inherent smaller cell development which is associated with the smaller plant growth habit of the earlier types.

NATIVE CORN TYPES GROWN OUT OF THEIR HOME ENVIRONMENT

In these tests native seed corn was collected from each of the twelve localities within the State previously considered. These twelve lots of seed were distributed and grown comparatively in five of the same twelve localities, representing a wide range of conditions. Thus, in each test twelve types from various parts of the State were compared with each other in five different environments, one of the types in each case being native home-grown seed. Approximately 300 plants were grown from each type. Care was taken to eliminate the effects of variety plat competition by planting extra discard rows between unlike types.

Fig. 13—Native corn types from nine regional areas of the state, grown comparably in extreme western Nebraska. (Kimball County.)

Each group of ears is the product of ten successive representative plants

Each group of ears is the product of ten successive representative plants of each type. The native Kimball County type is the only one which fully matured when grown in Kimball County.

(1) Thurston County corn, (2) Lancaster County corn, (3) Richardson County corn, (4) Holt County corn, (5) Kearney County corn, (6) Nuckolls County corn, (7) Cherry County corn, (8) Kimball County corn, (9) Lincoln County corn.

Due perhaps in part to local seasonal abnormalities, and in part to the use of relatively few plants, a number of apparent inconsistencies occur. However, the nature of the data would seem to be such as to justify general conclusions.

Morphological characters were recorded for all twelve types grown in each of the five tests. Histological measurements were made for the twelve types grown only in the most extreme regions, namely Lancaster County and Kimball County.

MORPHOLOGICAL CHARACTERS

The same general methods were employed and the same notes taken as in the previous investigation, (p. 22). The tabulated data for each type grown in each locality are the mean results for ten successive plants in a representative part of each plat. The detailed results are recorded in Tables 17 to 21, and are summarized in Tables 22 to 25. A careful study of the tables will show the relative growths made by (1) corn of the same source when grown in different regions, and (2) corn of different sources when grown in single locality.

In order to avoid a too tedious discussion, the reader is referred for most comparisons directly to the tables, and especially Tables 22 to 25. Only a few of the possible compari-

sons will be brought out in this discussion.

Native Lancaster County corn grew only 80 per cent as tall when grown in Kimball County as when grown in Lancaster County. Other relative values for Kimball County grown corn were: Height of ear, 52 per cent; leaf area, 78 per cent; stover weight, 62 per cent; ear weight, 1 per cent; total dry matter, 26 per cent; grain weight, 0.8 per cent; shelling percentage, 63; amount of leaf area per unit dry matter, 300 per cent; length of ear, 40 per cent; and ear circumference, 44 per cent. This illustrates the reduction in vegetative growth and even more extreme grain reduction when corn is moved to a less favorable region.

On the other hand, when corn is moved to a more favorable region, its vegetative growth and grain production are considerably increased. To illustrate, when native Kimball County corn was grown both at home and in Lancaster County the ratios of the latter to the former were: Plant height, 129 per cent; ear height, 154 per cent; leaf area, 140 per cent; stover weight, 161 per cent; ear weight, 135 per cent; total dry matter, 146 per cent; grain weight, 131 per cent; shelling percentage, 97; amount of leaf area per unit dry matter, 96 per cent; ear length, 113 per cent; and ear circumference, 107 per cent.

When home grown seed was planted in these two extreme localities, the relative values based on Lancaster County plants as 100 per cent, were as follows: Stalk height, 100 and 56; ear height, 100 and 26; leaf area, 100 and 30; stover weight, 100 and 35; ear weight, 100 and 33; total dry matter, 100 and 34;

	Plans	Plant measurements	rements		Dry 1	Dry matter		=======================================	Jeor I	3	Ear		Kernel	
Source of Seed	Height Height	Height	Leaf area	Stover	Ear	Total	Grain	per cent	_	measar	ements Circum-	m .	asureme	<u>.</u>
	stalk	car	11						matter		Length ference	Length	Width	Weight
County (1)	Feet (2)	Feet (3)	,8q. In. (4)	Grams (5)	Grams (6)	Grams (7)	Grams (8)	Per cent (9)	,8q. In. (10)	Inches (11)	Inches (12)	Inches (13)	Inches (14)	Grams (15)
					EAST	EASTERN NEBRASKA	3RASKA	Ξ						
Richardson	8.3	4.2	1,298	220	286	909	249	87	2.6	7.8	5.9	.50	.27	276
Lancaster	7.5	4.2	1,414	193	276	469	240	87	3.0	7.8	6.4	12:	.28	289
Washington	2.8	4.	1,407	215	209	424	176	85	3.5	7.4	6.2	.48	.28	.280
Thurston	7.4	က	1,209	174	197	371	165	84	3.5	7.0	6.1	.47	18:	.280
Nuckolls	7.5	ა. 4.	1,459	217	283	200	229	81	2.9	8.1	8.9	.48	 	.347
Average	7.7	3.9	1,357	204	250	454	212	85	3.0	7.6	6.3	.49	.29	294
					CENT	CENTRAL NEBRASKA	BRASKA	TYPES						
Kearney	6.9	3.5	1,259	185	179	364	149	83	3.4	6.7	6.0	.48	.33	.331
Holt	8.9 -	თ 67	1,219	202	196	398	153	28	0.e	7.0	6.3	.46	ee:	.314
Lincoln	6.1	ლ 	849	167	197	364	160	81	2.5	7.4	5.8	.45	.35	.316
Cherry	0.9	2.8	833	155	166	321	131	43	2.6	6.4	5.9	.43	ee:	.327
Average	6.4	2.1	1,040	177	184	361	148	80	8.7	6.9	6.0	.45	£.	.344
					WEST	WESTERN NEBRASKA	BRASKA	A TYPES						
Kimball	5.4	1.7	594	108	123	231	96	28	2.6	6.2	5.8	.43	.34	307
Grant	5.7	2.0	775	191	157	318	129	85	2.4	6.7	5.6	.45	.34	.293
Average	5.5	<u>∞</u> .	684	134	140	274	112	80	2.5	6.4	5.7	.44	7.5	300

Table 18.—Plant Characteristics of Corn Types When Moved from Their Various Native Nebraska Localities and Grown in Northeastern Nebraska. (Thurston County) 1916.

	Plant	Plant measurements	rements		Dry n	Dry matter	1	Sholling	Leaf	Easur	Ear	J.	Kernel	t s
Source of Seed	Height Height of of stalk car	Height of ear	Leaf area	Stover	Ear	Total	Grain		per gram dry matter	Length	Circum- ference	Length	Width	Weight
Connety	Feet (5)	Fret (3)	Sq. Im. (4)	Grams (5)	Grams (6)	Grams (7)	Grams (8)	Per cent (9)	.Sq. In. (10)	Inches (11)	Inches (12)	Inches (13)	Inches (14)	Grams (15)
					EASTE	EASTERN NEBRASKA	BRASKA	TYPES						
Richardson.	8.9	4.4	1,502	184	175	359	147	84	4.2	7.5	5.9	.45	.27	.205
Lancaster	×.4	4.4	1,320	208	171	379	145	85	3.5	6.5	0.9	.48	53	.23,
Washington	∞	4.6	1,596	233	133	998	112	84	4.4	6.3	4.8	.48	.28	.25
Thurston	2	3.5	985	169	152	321	125	85	3.1	5.8	5.5	.44	.29	.24
Nuckolls	8.4	4.5	1,330	200	140	340	115	85	3.9	0.9	5.7	.46	.32	.26
Average.	×.5	4.3	1,346	199	154	353	129	83	3.8	6.4	5.6	.46	.29	.241
					CENT	CENTRAL NEBRASKA	BRASKA	TYPES						
Kearney	7.4	3.4	1,086	142	146	288	128	88	3.8	5.8	5.6	.46	.30	.280
Holt	7.2	3.2	1,081	158	144	302	122	85	3.6	5.5	5.8	.48	.31	.279
Lincoln.	9.7	3.2	939	151	119	270	100	84	33 53	5.2	5.3	.43	ښ ښ	.30
Cherry	7.1	3.0	936	119	135	254	115	85	3.7	5.5	5.1	.43	.33	.29
Average.	7.3	35 6.5	1,010	142	136	278	116	85	3.6	5.5	5.4	.45	.32	.290
					WEST	WESTERN NEBRASKA	BRASKA	TYPES						
Kimball.	6.4	97 97	647	111	125	236	101	81	2.7	5.4	5.6	.42	.36	.32
Grant	6.4	2.4	$\infty 0 \infty$	104	143	247	117	82	ಎ ಎ	5.9	5.7	.43	.34	29
Dawes	6.2	2.3	717	91	113	204	95	84	3.5	5.5	5.4	.41	.32	.260
Average	33	2.3	79.4	10.5	197	929	104	33	3.2	5.6	5.6	49.	3.4	294

	Plan	t measu	Plant measurements		Dry n	Dry matter	-		Leaf	A	Ear		Kernel	
Source of Seed	Hoight	Hoioh		-				Shelling	area	measur	measurements	m	measurements	ıts
	of of stalk ear	of	Leaf area	Stover	Ear	Total	Grain	per cent per grain dry matter	dry dry matter	Length	Circum- ference	Length	Width	Weight
County (1)	Feet (2)	Fred (3)	Sq. In. (4)	Grams (5)	Grams (6)	Grams (7)	Grams (8)	Per cent (9)	Sq. In. (10)	Inches (11)	Inches (12)	Inches (13)	Inches (14)	Grams (15)
					FAST	EASTERN NEBRASKA	BRASKA	TYPES						
Richardson	9.9	2.6	1,094	167	143	310	113	62	3.5	6.9	5.7	.41	.25	126
Lancaster	7.1	5.9	959	165	130	295	94	72	3.5	6.7	5.6	.40	.25	.085
Washington	7.4	2.7	991	163	123	286	88	72	3.5	7.9	5.5	.40	.27	.126
Thurston	œ. 9	2.5	891	145	163	308	130	80	6.2	7.2	5.8	.44	.30	.175
Nuckolls	7.3	 	1,066	185	141	326	109	22	3.2	7.5	0.9	.43	.30	.157
Average	7.0	2.7	1,000	165	140	305	107	92	3.3	7.2	5.7	.42	.27	.134
					CENT	CENTRAL NEBRASKA	BRASK	A TYPES						
Kearney	6.3	2.0	820	156	94	250	64	89	3.3	7.3	5.5	.41	53	176
Holt	6.4	2.1	954	153	149	302	119	80	3.1	6.4	8.0	.44	.32	214
Lincoln	6.4	2.1	840	143	146	588	112	22	2.9	7.6	8.6	.42	32	215
Cherry	5.8	1.7	624	121	151	272	121	80	2.2	7.3	5.5	.41	.32	209
Average	6.2	2.0	808	143	135	278	104	92	2.8	7.1	5.6	.42	.32	.203
					WEST	VESTERN NEBRASKA	BRASK	A TYPES						
Kimball	4.7	1.0	928	20	109	179	88	81	2.0	6.2	5.8	.41	.31	.216
Grant	5.4	ا. د:	587	106	142	248	112	79	2.3	6.1	5.8	.32	.43	224
Dawes	ت. د:	=	440	65	131	196	110	84	2.5	5.5	5.3	.41	32.	.276
Average	75	-	468	8	197	202	109	100	6 6	1	2	00	à	000

Table 20.—Plant Characteristics of Corn Types When Moved from Their Various Native Nebraska. (Lincoln County) 1916.

Source of Seed	riant	Plant measurements	ements		Dry matter	natter		Shelling	Leaf	Emeasur	Ear measurements	me	Kernel measurements	ıts
	Height Height of of stalk ear	Height of ear	Leaf area	Stover	Ear	Total	Grain		per gram dry matter	Length	Circum- ference	Length	Width	Weight
County	Feet ::	Feet (3)	Sq. In. (4)	Grams (5)	Grams (6)	Grams (7)	Grams (8)	Per cent (9)	Sq. In. (10)	Inches (11)	Inches (12)	Inches (13)	Inches (14)	Grams (15)
					EAST	EASTERN NEBRASKA	BRASKA	TYPES						
Richardson	0.9	2.7	1.074	128	89	197	22	84	5.4	5.6	5.3	.42	.27	.201
Lancaster	5.2	2.4	1,061	133	75	208	62	83	5.1	5.4	5.1	.45	.29	.228
Washington	6.0	2.8	1,150	150	47	197	39	83	5.8 8.0	ა. დ	4.9	.46	:29	.246
Thurston	5.5	2.1	941	142	64	206	51	80	4.6	4.2	4.9	.41	:22	.225
Nuckolls	5.4	2.0	1,002	130	86	228	92	28	4.4	5.6	5.3	.45	.30	.282
Average	5.7	2.4	1,046	137	7.0	207	57	82	5.1	4.9	5.1	.44	.28	.236
					CENT	CENTRAL NEBRASKA	BRASKA	TYPES						
Kearnev	5.2	1.8	836	111	110	221	88	81	3.8	6.4	5.5	.46	.33	.392
Holt	4.6	1.6	922	105	45	150	36	81	6.1	4.9	5.2	.41	.32	.273
incoln	5.1	1.7	792	118	119	237	92	22	က	5.7	5.1	.43	.31	.266
Cherry	4.7	1.4	762	108	92	184	62	81	4.1	5.2	4.6	.41	.33	.264
Average	4.9	1.6	828	110	87	197	70	80	4.4	5.5	5.1	.43	.32	299
					WEST	WESTERN NEBRASKA	BRASKA	TYPES						
Kimball	4.2	1.2	472	73	62	135	20	- 80	3.4	5.0	5.0	.40	.35	308
Grant	4.2		563	105	54	159	42	78	3. 5.	4.4	4.8	.39		.278
Dawes	4:2	1.1	525	7.4	58	132	46	62	4.0	4.1	4.9	.41	.34	.288
Average	4.2	1.2	520	84	58	147	46	- 62	3.6	4.5	4.9	.40	.34	291

Table 21.—Plant Characteristics of Corn Types When Moved from Their Various Native Nebraska Localities and Grown in Extreme Western Nebraska. (Kimball County) 1916.

	Plant	t measur	Plant measurements		Dry 1	Dry matter		Sholling	Leaf	E	Ear	- m	Kernel	4
Source of Seed	Height of	Height Height of	Leaf area	Stover	Ear	Total	Grain	per cent	per gram dry matter	Lenoth	Circum-	Lenoth	Width	Weight
County	Feet (9)	Feet (3)	Sq. In.	Grams	Grams	Grams	Grams (8)	Per cent	Sq. In.	Inches	- 11			Grams (15)
(+)	j -	9	·	<u>)</u>	EAST	EASTERN NEBRASKA	BRASKA	Η			- -	_		
Richardson	6.9	3.0	1.050	128	24	152	18	_	6.9	5.8	3.2	.35	:23	.059
Lancaster	6.0	2.2	1,100	119	က	122	03	55	9.0	3.1	8.5	:		
Washington	7.4	3.0	1,140	143	17	160	<u>- </u>	41	7.1	6.0	8.4	.34 26		.082
Thurston Nuckolls	6.0	3.1 2.0	563 1,042	$\frac{100}{156}$	36	122	15 28	77	5.4 5.4	6.3	4.4 5.1		22.52 28.52	.081
Average	6.4	2.7	979	129	20	149	14	63	6.6	5.5	4.1	$.26^{2}$.242	.0762
					CENT	CENTRAL NEBRASKA	BRASKA	TYPES						
Kearney	5.9	1.9	718	102	20	172	54	2.2	4.2	5.5	5.1	.36	.28	.116
Holt	5.7	1.9	759	108	49	157	33	89	4.9	5.5	5.3	.32	.27	660.
Lincoln	5.1	1.6	491	92	55	131	40	73	3.7	5.3	4.9	.34	28	.124
Cherry	4.9	1.4	536	73	42	152	62	82	3.5	5.4	5.5	.36	.29	.148
Average	5.4	1.7	626	06	63	153	47	74	3.9	5.4	5.1	.34	.28	.122
					WEST	WESTERN NEBRASKA	BRASK	A TYPES						
Kimball	4.2	1.1	425	29	16	158	73	08	2.7	5.5	5.4	.39	.30	.197
Grant	4.9	1.6	426	22	53	130	37	20	ೞ	4.2	4.4	.34	:25	.174
Dawes	4.5	1.0	330	65	92	141	26	74	2.3	4.5	4.7	.35	.28	.144
Average	4.5	1.2	394	70	73	143	55	75	2.8	4.7	4.8	.36	.28	.172

¹Ear measurements in this and similar tables are the average for the ears produced, whereas, the ear and grain yield per plant is the mean for the entire number of plants.

²Average for four counties only.

Table 22.—Summary of Plant Characteristics of Corn Types When Moved from Their Unions Native Nebraska Localities and Interchanged with Each Other. 1916.*

	Plant	t measu	Plant measurements		Dry r	Dry matter		Sholling	Leaf	E	Ear	Ē	Kernel) ts
Where grown	Height of stalk	Height of ear	Leaf area	Stover	Ear	Total	Grain	per cent	per gram dry matter	Length	Circum- ference	Length	Width	Weight
County (1)	Fred (2)	Fred (3)	.Sq. In. (4)	Grams (5)	Grams (6)	Grams (7)	Grams (8)	Per cent (9)	Sq. In. (10)	Inches (11)	Inches (12) 1	Inches (13)	Inches (14)	Grams (15)
				Z	NATIVE 1	LANCASTER COUNTY	TER CO		CORN					
Lancaster Thurston Lincoln Cherry Kimball	7.7.7.8 7.7.7.7 6.0	44020	1,414 1,320 1,061 959 1,100	193 208 133 165 119	276 171 75 130	469 379 208 295 122	240 145 62 94	88.2 57.2 55.2 55.2	3.0 3.1 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	7.8 5.5 6.7 6.7	6.4 6.0 5.1 2.5 8.5	.51 .48 .45	 222252 2529	.289 .237 .085
				Į	NATIVE	THURSTON		COUNTY CO	CORN					
Lancaster. Thurston. Lincoln. Cherry	4.8.70.8.70	322.53	1,209 985 941 891 563	174 169 142 145	197 152 64 163	371 321 206 308 122	165 125 51 130 15	888 80 70 80 70	3.2.4. 2.2.4. 3.0.9.4.	7.4.7.6 6.7.2.2.8 6.3.2.2.8		7.4.4.4.2. 7.4.1.4.2.	23 23 23 23 23 23	.280 .245 .225 .175
					NATIVE	LINCOLN		COUNTY CORN	Z					
Lancaster. Thurston Lincoln. Cherry	6.1 7.6 5.1 6.4	3.1 3.2 1.7 2.1	849 939 792 840 491	167 151 118 143	197 119 119 146 55	364 270 237 289 131	160 100 92 112 40	81 84 77 77 73	9, 89, 89, 89 9, 70, 89, 97, 99	4.7.7.7.7.7.7.7.6.7.6.0.3.9.4.	~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	45 42 42 42 42 42		316 307 266 215 124
					NATIVE	CHERRY	AY COUNTY	NTY CORN	z					
Lancas'er Thurston Lincoln. Cherry	6.0 1.7.4 7.2 4 8.6 8.0	2.8 3.0 1.4 1.7	833 936 762 624 536	155 119 108 121 73	166 135 76 151 79	321 254 184 272 152	131 115 62 121 62	79 85 81 80 78	2.6 3.7 3.5 3.5 3.5	6.70.70.70.70.70.70.70.70.70.70.70.70.70.	6.1.4 6.1.6 6.1.6 7.2.6			.327 .295 .264 .264 .209 .148
					NATIVE	KIMBALL	COL	INTY CORN	Z					
Lancaster. Thurston. Lincoln (Therry	न् न् श्रद्ध १८ ७ न न न	2.3	594 647 376 425	108 111 73 70 67	123 125 62 109 91	231 236 135 179	96 101 50 888 73	78 81 80 80	998899 97407	0 10 10 00 10 01 4 0 01 10	00000000000000000000000000000000000000		2000 000 000 000 000 000 000 000 000 00	.326 .326 .308 .216

Table 23.—Summary of Plant Characteristics of Corn Types When Moved from Their

	Plan	Plant measurements	rements		Dry n	Dry matter		Sholling	Leaf	E	Ear	Jun.	Kernel	9
Where grown	Height of stalk	Height Height of stalk ear	Leaf area	Stover	Ear	Total	Grain	per cent	area per gram dry matter	Length	Circum- ference	Length	Width	Weight
County (1)	Percent (2)	Percent (3)	Per cent (4)	Per cent (5)	Per cent Per cent (5) (6)	Per cent (7)	Per cent (8)	Per cent (9)	Per cent (10)	Per cent (11)	Per cent (12)	Per cent (13)	$\frac{Per\ cent}{(14)}$	Per cen (15)
				Z	NATIVE I	TSACIA	ER COI	INTY CORN	Z					
Longoston	100	100	100		1001	100			100	100	100	100	100	100
Thurston	112	102	66	108	62	81	09	86	117	88	94	94	104	85
Lincoln	16	57	75	69	27	44	26 30	95	170	69 8	80	00 K	104	79 29
Cherry. Kimball.	808	25	78	629	1 T	26	9.0	63	300	40	44		3 :	:
				2	NATIVE	PHIJEST	ON COUNTY	VTY CORN	Z					
Thurston	100	100	100	,	100	100	100	2		100	100	100	100	100
Lancaster	95	94	123	103	130	115	132	102	103	121	111	107	107	114
Lincoln	87	989	06 6	86	107	96	41 104	0 86 86	94	124	105	100	103	71
Kimball	20	88	57	09	14	- 38	12	85	149	109	80	64	92	22
				7	NATIVE	LINCOLN	N COUN	TY CORN	7					
Lincoln	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Lancaster	120	182	107	141	165	154	174	105	99	130	114	105	113	119
Thurston	149	88	119	258	100	114	109	109	106	161	104	007	100	211
Cherry.	100	94	00 00 00 00 00 00 00 00 00 00 00 00 00	64	44	55	43	95	112		96	79	66	47
	-				NATIVE	CHERRY	Y COUN'	ry Corn	h-					
Charry	100	100	100	100	100	100		100	100	100	100	100	100	100
Lancas er		165	133	128	110	118	108	66	111	88	107	105	103	156
Thurston	122	176	150	86	68	93	95	106	168	75	86	105	103	141
Lincoln	2 5	27 S	222	50 00 00 00 00 00 00 00 00 00 00 00 00 0	200	89 Y	2 2	101	186	17.	% 5 7 7	300	501	71
NIIIDaile	1	2	20	_	TATE VE	LIMBAL		NEC COBN						
		6		7	TATIVA	TEGMIN	٥	- 1		9	00	601	100	100
Kimball	001	001	100	100	100	001	100	100	001	100	100	100	3 =	156
Lancaster	621	104 904	140	101	137	140	138	101	200	26	104	108	120	165
Inurston.	100	109	111	109	89	85	89	1001	126	91	. 86	103	117	156
Oborni	110	-	00											0 1 1

*Compiled from data in Table 22

	Plan	t measu.	Plant measurements		Dry 1	Dry matter		;	Leaf	Ĕ	Ear		Kernel	
Where grown	Height	Height						Shelling	area	measur	measurements	me	measurements	ıts
	of stalk	of	Leaf area	Stover	Ear	Total	Grain	nei cent	dry matter	Length	Circum- ference	Length	Width	Weight
('ounty (1)	Feet (2)	Feet (3)	Sq. In. (4)	Grams (5)	Grams (6)	Grams (7)	Grams (8)	Per cent (9)	Sq. In. (10)	Inches (11)	Inches (12)	Inches (13)	Inches (14) 1	Grams (15)
					EAST	EASTERN NEBRASKA	BRASKA	H						
Lancaster	7.7	3.9	1,357	204	250	454	212	85	3.0	9.2	6.3	.49	.29	297
Thurston	8	4.3	1,347	199	154	353	129	83	3.8	6.4	5.6	.46	.29	.241
Lincoln	5.7	2.4	1,046	137	20	207	57	85	5.1	4.9	5.1	.44	.28	.23
Cherry	7.0	5.7	1,000	165	140	305	107	92	3.2	7.2	5.7	.42	.27	.13
Kımball	6.3	2.7	626	129	20	150}	14	63	9.9	5.5	4.1	.26	.24	.07
					CENT	CENTRAL NEBRASK	BRASKA	TYPES						
Lancaster	6.4	3.1	1,040	177	184	198	148	80	2.7	6.9	0.9	.45	.33	.34
Thurston	2.5	3.2	1,010	142	136	278	116	85	3.6	5.5	5.4	.45	.32	.29(
Lincoln	4.9	1.6	828	110	82	197	20	80	4.4	5.5	5.1	.43	.32	.29
Cherry	6.2	5.0	808	143	135	278	104	92	8.2	7.1	5.6	.42	.32	:20
Kimball	5.4	1.7	979	90	63	153	47	74	3.9	5.4	5.1	.34	.28	.122
					WEST	WESTERN NEBRASK	BRASK	A TYPES						
Lancaster	5.5	1.8	684	134	140	274	112	80	2.5	6.4	5.7	.44	.34	.30
Thurston	6.3	ر دن دن	724	102	127	228	104	85	3.2	5.6	5.6	.42	.34	.274
Lincoln	7	1.5	520	84	28	147	46	42	3.6	4.5	4.9	.40	.34	.29
Cherry	5.1	1.1	468	80	127	208	103	81	ಚಿ	5.9	5.6	38	35	.23
Kımball	4.5	1:2	394	20	73	143	70	75	86	7 7	0 1	96	00	17

Table 25.—Summary of Plant Characteristics of Corn Types When Moved from Their Various Native Nebraska Localities and Grown in Different Regions. Data Are Based on

	Plant	Plant measurements	ments		Dry n	Dry matter		Shalling	Leaf	E	Ear	m	Kernel	ate
Where grown	Height of stalk	Height of ear	Leaf	Stover	Ear	Total	Grain	per cent	per gram dry matter	Length	Circum- ference	Length	Width	Weight
County (1)	Per cent (2)	Per cent (3)	Per cent (4)	Per cent (5)	Per cent (6)	Per cent (7)	Per cent (8)	Per cent (9)	Per cent (10)	Per cent (11)	Per cent (12)	Per cent (13)	Per cent (14)	Per cent (15)
					EASTE	EASTERN NEBRASKA	BRASKA	TYPES						
Lancaster	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Thurston	110	110	66	98	62	78	61	86	127	84	88	94	100	85
Lincoln	74	9	22	29	28	46	22	96	170	64	25	06	97	81
Cherry.	91	69	74	8	99	29	20	88	107	95	06	98	93	46
Kimball	85	69	72	63	œ	33	7	74	550	72	65	53	83	26
					CENT	CENTRAL NEBRASKA	BRASKA	TYPES						
Lancaster	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Thurston	114	103	97	80	74	2.2	28	106	133	80	06	100	97	84
Lincoln	22	52	80	62	47	55	47	100	163	80	82	96	97	87
Cherry	26	64	78	81	73	22	20	95	104	103	93	93	97	53
Kimball	84	55	09	51	34	42	32	92	144	282	85	92	85	
					WEST	WESTERN NEBRASKA	BRASKA	TYPES						
Lancaster	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Thurston	114	128	106	92	91	83	93	102	128	87	86	92	100	6
Lincoln	92	29	92	63	41	54	41	66	144	20	98	91	100	97
Cherry	93	61	89	09	91	92	95	101	132	92	86	98	103	08
Limboll	60	67	rc X	62	62	62	70	70	110	7.5	×	68	CO	r.

grain weight, 100 and 30; shelling percentage, 100 and 92; amount of leaf area per unit dry matter, 100 and 90; ear length,

100 and 70; and ear circumference, 100 and 84.

When native Lancaster County corn was grown in Lancaster, Thurston, Cherry, Lincoln, and Kimball Counties, the respective relative total plant weights were: 100, 81, 63, 44, and 26, while the respective relative grain weights were: 100, 60, 39, 26, and 0.8.

When native Kimball County corn was planted in Kimball, Lincoln, Cherry, Thurston, and Lancaster Counties, the relative total plant weights were respectively: 100, 85, 113, 149, and 146. Corresponding relative grain values were: 100, 68,

120, 138, and 131.

In less extreme cases than the above comparisons, less marked growth differences usually exist, and great regularity and consistency did not always prevail. In the main, however,

indications are similar.

In Table 24 the twelve native corn types which were planted in five different parts of the State are assembled regionally. Thus, we have three groups—eastern, central, and western Nebraska types, grown comparatively in Lancaster, Thurston, Cherry, Lincoln, and Kimball Counties. In Table 25 relative values are given for each group, based on the mean results for the corn grown in Lancaster County.

The relative total yields of dry matter for eastern Nebraska types grown in Lancaster, Thurston, Cherry, Lincoln and Kimball Counties were respectively: 100, 78, 67, 46, and 33. Corresponding relative yields of grain per plant were: 100, 61,

50, 27 and 7.

The relative total yields of dry matter for central Nebraska types grown in Lancaster, Thurston, Cherry, Lincoln, and Kimball Counties were respectively: 100, 77, 77, 55, and 42. Corresponding yields of grain were: 100, 78, 70, 47, and 32.

The relative total yields of dry matter for western Nebraska types grown in Lancaster, Thurston, Cherry, Lincoln, and Kimball Counties were respectively: 100, 83, 76, 54, and 52. Corresponding grain yields were: 100, 93, 92, 41, and 49.

The effects of interchanging native corn types upon their relative development may be similarly observed for other plant

characters by a study of the tables.

HISTOLOGICAL LEAF CHARACTERS

The eleven native types considered morphologically in the preceding discussion, were also compared as to leaf structure when grown in both Lancaster and Kimball Counties. These

represent extreme conditions, and it is believed that by such comparison, structural differences due either to hereditary adaptation or to mere environmental adjustment, may be determined. (Tables 26-28.) The methods of sampling and technique were the same as previously described. Seven hundred and twenty transectional leaf measurements, and one thousand epidermal counts and measurements were made for each of the eleven corn types grown in Lancaster and Kimball

Counties, respectively.

Comparing eastern, central, and western Nebraska types when grown in Lancaster County we have the following relative leaf values: (1) Leaf thickness, 100, 103, and 104; (2) average epidermal thickness, 100, 100, and 103; (3) thickness of cuticle, 100, 101, and 98; (4) number of vascular bundles per unit of cross section, 100, 95, and 100; (5) number of stomata per unit area of epidermis, 100, 101, 97; (6) length of stoma, 100, 100, and 100; (7) length of stomatal aperture, 100, 94, and 90; (8) length of epidermal cell, 100, 93, and 94; and (9) width of epidermal cell, 100, 100, and 104.

Corresponding relative values for corn grown in Kimball County were: (1) Leaf thickness, 100, 89, and 95; (2) average epidermal thickness, 100, 97, and 96; (3) thickness of cuticle, 100, 98, and 98; (4) number of vascular bundles per unit of cross section, 100, 103, and 101; (5) number of stomata per unit area of epidermis, 100, 104, and 102; (6) length of stomata, 100, 101, and 98; (7) length of stomatal aperture, 100, 101, and 96; (8) length of epidermal cell, 100, 100, and 100; and (9) width

of epidermal cell, 100, 95, and 100.

As an average for corn grown in both Lancaster and Kimball Counties the respective relative values for eastern, central, and western Nebraska types were: (1) Leaf thickness, 100, 96, and 100; (2) average epidermal thickness, 100, 99, and 100; (3) thickness of cuticle, 100, 100, 98; (4) number of vascular bundles per unit cross section of leaf, 100, 99, and 100; (5) number of stomata per unit area of epidermis, 100, 102, and 99; (6) length of stomata, 100, 100, and 99; (7) length of stomatal aperture, 100, 97, and 93; (8) length of epidermal cell, 100, 97, and 102.

To determine the effect of the environment only upon the corn leaf structure, we may compare the mean results of the twelve types grown in Lancaster County as against the same corn grown in Kimball County. The relative values based on Lancaster County as 100 per cent are: (1) Leaf thickness, 100 and 87; (2) average epidermal thickness, 100 and 91; (3) thickness of cuticle, 100 and 97; (4) number of vascular bundles

Table 26.—Histological Leaf Measurements of Corn Types When Moved from Their Various Native Nebraska, (Lancaster County) 1916.

,	Ξ.	Thickness of	Jo	Per ce	Per cent of total leaf thickness of	al leaf of	Thick	Thickness of cuticle of	uticle	Per ce	Per cent of epidermal thickness of	dermal of	Number
Source of seed	Leaf	Upper epi- dermis	Lower epi- dermis	Upper epi- dermis	Lower epi- dermis	Total epi- dermis	Upper epi- dermis	Lower epi- dermis	Total cuticle	Upper cuticle	Lower	Total cuticle	pundies per cm. leaf width
County	Microns (2)	Microns .	Microns (4)	Per cent (5)	Per cent (6)		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Microns (9)	Microns (10)	Per cent (11)	Per cent (12)	Per cent (13)	(14)
				EAST	PERN N	EASTERN NEBRASKA	A TYPES						
Richardson	220.0	33.8	27.0	15.3	12.2	27.5	5.8	4.9	10.7	17.1	18.1	17.6	69.2
Lancaster	221.8	35.1	29.5	25.8	13.1	28.9	6.5	5.9	12.4	18.5	20.2	19.3	68.6
Washington	209.8	33.4	25.9	15.9	12.3	28.5	6.4	5.6	12.0	19.1	21.6	20.3	70.1
Thurston	225.2	36.3	29.0	16.1	12.8	28.9	9.9	6.2	15.8	18:1	21.3	19.7	66.5
Nuckolls	219.2	55 45 55	58.6	15.6	13.0	28.5	8.9	6.3	13.1	39.8	55.0	50.9	66.7
Average	219.2	34.6	97.3	15.7	12.7	28.4	6.4	5.8	12.2	18.5	20.6	19.6	68.2
				CEN	FRAL NI	CENTRAL NEBRASKA	A TYPES						
Kearney	228.9	35.3	29.5	15.4	12.9	28.2	6.4	5.9	12.3	18.1	20.0	19.0	64.4
Holt	224.5	35.9	27.1	14.6	12.0	26.6	9.9	6.2	12.8	20.0	25.8	21.4	68.7
Lincoln	228.2	35.1	28.4	15.4	12.4	27.7	6.2	5.6	11.8	17.6	19.7	18.6	60.5
Cherry	222.1	34.6	28.1	15.5	12.6	28.1	6.5	6.1	12.6	18.7	21.7	20.5	8.99
Average	225.9	34.5	28.3	15.2	12.4	27.6	6.4	5.9	12.3	18.6	21.1	19.8	65.1
				WEST	PERN N	WESTERN NEBRASKA	A TYPES						
Kimball	924.0	34.2	27.6	15.2	12.3	27.5	5.9	5.1	11.0	17.2	18.4	17.8	9.89
Grant	232.5	36.9	30.1	15.9	13.0	28.8	6.9	6.1	13.0	18.7	20.0	19.3	68.1
Average	55.55	35.5	29.0	15.5	12.6	28.1	6.4	5.6	12.0	17.9	19.2	18.5	68.3

Table 26 (continued).—Histological Leaf Measurements of Corn Types When Moved from Their Various Native Nebraska Localities and Grown in Southeastern Nebraska. (Lancaster County) 1916.

Poor Jo country	Num. pe	Number of stomata per sq. m. m.	omata m.	Len	Length of stoma	oma	Leng	Length of stomatal aperture	natal	Length of epidermal cell	th of nal cell	Wic epider	Width of epidermal cell
pource of seed	Upper epi- dermis	Lower epi- dermis	Average	Upper epi- dermis	Lower epi- dermis	Average	Upper epi- dermis	Lower epi- dermis	Average	Upper epi- dermis	Lower epi- dermis	Upper epi- dermis	Lower epi- dermis
County (1)	(2)	(3)	(4)	Microns (5)	Microns (6)	Microns Microns Microns Microns (5) (6) (7) (8)	Microns (8)	Microns (9)	Microns (10)	$\overline{Microns} \overline{Microns} M$	Microns (12)	Microns (13)	Microns (14)
				EAS	TERN NE	EASTERN NEBRASKA	TYPES						
Richardson	6.92	90.5	83.7	48.3	48.1	48.2	16.7	16.4	16.5	87.2	86.4	33.1	33.9
Lancaster	80.2	102.7	91.4	49.5	48.5	49.0	17.0	16.6	16.8	83.2	83.5	34.5	34.0
Washington	81.5	95.9	88.7	50.5	47.0	48.7	17.7	17.6	17.6	88.5	91.9	34.1	34.5
Thurston	79.1	93.0	86.0	50.0	50.2	50.5	16.9	16.8	16.8	81.7	81.6	32.7	34.2
Nuckolls	75.6	91.1	83.3	51.6	51.9	51.7	17.8	18.0	17.9	81.8	79.2	34.6	33.7
Average	78.7	94.6	9.98	50.2	49.1	49.6	17.2	17.1	17.1	84.5	84.5	33.8	34.1
				CEN	TRAL NI	CENTRAL NEBRASKA	A TYPES						
Kearney	68.2	82.2	_	51.3	49.3	50.3	17.9	17.1	17.5	82.5	80.4	35.0	34.2
Holt	91.0	115.9	103.4	47.6	46.7	47.1	15.6	15.5	15.5	77.5	77.2	31.4	31.9
incoln	79.8	81.6		50.7	53.3	52.0	14.3	16.1	15.7	77.9	-0.67	34.5	36.7
Cherry	78.6	103.5	91.0	51.1	47.7	49.4	15.3	15.4	15.3	7.77	77.8	34.2	33.1
Average	79.4	95.8	87.6	50.2	49.2	49.7	16.0	16.0	16.0	78.9	78.6	33.8	34.0
				WES	TERN N	WESTERN NEBRASKA	A TYPES	7.5					
Kimball	79.3	94.8	87.0	48.8	49.4	49.1	15.2	15.7	15.4	78.6	83.6	34.4	34.8
Grant	72.6	91.3	81.9	51.5	49.2	50.3	15.1	15.5	15.3	78.2	6.77	36.2	35.8
Average	75.9	93.0	84.4	50.1	49.3	49.7	15.1	15.6	15.3	78.4	80.7	35.3	35.3

Table 27.-Histological Leaf Measurements of Corn Types When Moved from Their Various Notice Nebraska Localities and Grown in Extreme Western Nebraska. (Kimball County)

5	T	Thickness of	Jo	Per ce	Per cent of total leaf thickness of	al leaf of	Thick	Thickness of cuticle of	uticle	Per ce	Per cent of epidermal thickness of	dermal of	Number
Source of Seed	Leaf	Upper epi- dermis	Lower epi- dermis	Upper epi- dermis	Lower epi- dermis	Total epi- dermis	Upper epi- dermis	Lower epi- dermis	Total cuticle	Upper cuticle	Lower	Total cuticle	pundles per cm. leaf width
County (1)	Microns (2)	Microns (3)	Microns Microns Microns (2) (3)	Per cent (5)	Per cent (6)	Per cent (7)	$\begin{array}{c c} Per cent & Microns & Microns & Microns & \\ \hline (7) & (8) & (9) & (10) & \end{array}$	Microns (9)	Microns (10)		Per cent (12)	Per cent (13)	(14)
				EAS	TERN N	EASTERN NEBRASKA	A TYPES						
Richardson	202.6	30.5	25.3	15.0	12.4	27.4	6.3	5.9	12.2	20.6	23.3	21.9	78.3
Lancaster	222.0	33.6	27.2	15.1	12.2	27.3	9.9	6.2	12.8	19.6	22.8	21.2	7.67
Washington	204.1	30.3	25.9	15.1	12.7	27.7	5.8	5.5	11.3	18.7	21.2	19.9	67.9
Thurston	197.5	31.8	26.7	16.1	13.5	29.6	5.6	5.6	11.2	17.6	20.9	19.2	78.9
Nuckolls	95.3	32.1	28.5	16.4	14.6	31.0	6.3	0.9	12.3	19.6	21.0	20.3	77.3
Average	204.3	31.8	26.7	15.5	13.1	28.6	6.1	5.8	12.0	19.2	21.8	20.5	76.4
				CEN	TRAL NI	CENTRAL NEBRASKA	A TYPES						
Kearney	176.2	31.2	26.0	17.7	14.7	32.4	6.5	6.1	12.6	20.8	23.4	22.1	79.4
Holt	198.2	32.0	26.2	16.1	13.2	29.3	6.3	0.9	12.3	19.7	22.9	21.3	74.8
Sincoln	182.6	30.1	26.6	16.4	14.5	30.9	0.9	5.8 8.0	11.8	19.9	21.8	20.8	77.6
Cherry	172.3	29.2	25.0	16.9	14.5	31.4	5.4	5.0	10.4	18.4	20.0	19.2	82.7
Average	182.3	30.6	25.9	16.8	14.2	31.0	6.0	5.7	11.8	19.7	22.0	20.8	78.6
				WES	TERN N	WESTERN NEBRASKA	A TYPES	,,					
Kimball	204.7	32.0	26.3	15.6	12.8	28.4	6.3	5.8	12.1	19.7	22.0	20.8	71.3
Grant.	184.5	21 00 rG	25.2	15.4	13.6	29.0	5.9	5.6	11.5	20.7	22.3	21.4	82.6
Average	194.6	30.2	25.7	15.5	13.2	28.7	6.1	5.7	11.8	20.2	22.1	21.0	76.9

Table 27 (continued),—Histological Measurements of Corn Types When Moved from Their Various Native Nebraska Localities and Crown in Extreme Western Nebraska. (Kimball County) 1916.

•	Nam	Number of stomata per sq. m. m.	omata m.	l'en	Length of stoma	nma	Leng	Length of stomatal aperture	natal	Length of epidermal cell	th of nat cell	Wid epider	Width of epidermal cell
Source of seed	Upper epi- dermis	Lower epi- dermis	Average	Upper epi- dermis	Lower epi- dermis	Average	Upper epi- dermis	Lower epi- dermis	Avorage	Upper epi- dermis	Lower epi- dermis	Upper epi- dermis	Lower epi- dermis
County (1)	(15)	(16)	(17)	Microns (18)	Microns (19)	Microns (20)	Microns (21)	Microns (22)	Microns Micr	Microns (24)	Microns (25)	Microns (26)	Microns (27)
				EAS	FERN N	EASTERN NEBRASKA TYPES	A TYPES	**					
Richardson	84.5	1 93.7	89.1	43.4	45.8	44.6	10.8	13.7	12.2	75.3	0.67	32.0	32.8
ancaster	85.4	109.4	97.4	48.2	47.4	47.8	15.3	15.2	15.2	80.7	78.1	32.5	32.1
Washington	74.2	94.9	84.5	47.3	47.1	47.2	14.4	14.8	14.6	83.2	80.0	31.8	34.6
Thurston	81.3	107.3	94.3	47.8	45.2	46.5	14.6	13.9	14.2	81.0	78.4	31.7	30.8
Nuckolls	74.8	89.9	82.3	50.8	49.0	49.9	16.5	15.6	16.0	80.7	0.62	32.1	32.1
Average	80.0	99.0	89.5	47.5	46.9	47.2	14.3	14.6	14.4	80.2	78.9	32.0	32.5
				CEN	FRAL N	CENTRAL NEBRASKA TYPES	A TYPES	**					
Kearney	83.0	84.2	83.6	48.2	49.9	49.0	14.7	16.0	15.3	79.0	81.1	6.62	30.8
Holt	68.5	108.8	88.6	50.3	49.5	49.9	16.0	16.0	16.0	81.1	82.0	33.0	29.1
incoln	79.8	109.4	94.6	48.6	46.4	47.5	14.3	14.3	14.3	80.3	80.7	31.7	29.9
Cherry	94.5	115.1	104.8	43.7	43.3	43.5	2. 2. 2.	12.7	12.7	6.97	77.5	30.4	29.0
Average	81.4	104.4	92.9	47.7	47.3	47.5	14.4	14.7	14.6	79.3	80.3	31.2	29.7
				WES	TERN N	WESTERN NEBRASKA TYPES	A TYPES	7.0					
Kimball	89.1	1.06.1	9.7.6	44.8	43.6	44.2	12.6	12.6	12.6	78.0	76.5	32.4	31.6
Grant	71.9	6.86	85.4	49.2	47.2	48.2	15.6	14.8	15.2	83.8	79.8	34.4	31.1
Average	80.5	102.5	91.5	47.0	45.4	46.2	14.1	13.7	13.9	80.9	78.1	33.4	\tag{2}

Table 28.—Summany of Histological Leaf Measurements of Corn Types When Moved from Their Various Native Nebraska Localities and Grown Both in Extreme Eastern and Western Nebraska, 1916.*

2		Thickness of	jo	Per ce	Per cent of total leaf thickness of	al leaf of	Thick	Thickness of cuticle of	uticle	Per ce	Per cent of epidermal thickness of	lermal of	Number
nase to avinge	Leaf	Upper epi- dermis	Lower epi- dermis	Upper epi- dermis	Lower epi- dermis	Total epi- dermis	Upper epi- dermis	Lower epi- dermis	Total cuticle	Upper cuticle	Lower	Total cuticle	per cm. leaf width
(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)	(13)	(14)
		ŭ	orn Gro	wn in I	ACTUAL VALUES Corn Grown in Lancaster County (Eastern Nebraska	ACTUAL VALUES incaster County	ES ty (Eas	stern N	ebraska	(i			
	Microns		Wierons Microns		Per cent	Per cent	Per cent Per cent Microns Microns Microns	Microns	Microns	-	Per cent	Per cent	
Eastern Nebraska	219.2	34.6	27.9	15.7	12.7	27.0 8.0 4.0	6.4	ro r oo o	12:2	18.5	20:6	$\frac{19.6}{29.6}$	68.2
Vestern Nebraska.	228.2	35.5	29.0	15.5	12.4	28.1	6.4	5.6 5.6	12.3	17.9	$\frac{21.4}{19.2}$	$\frac{20.1}{18.5}$	65.1 68.3
Average	224.4	34.9	28.4	15.5	12.6	28.0	6.4	5.8	12.2	18.3	20.4	19.4	67.2
		Ç	Corn Grown in Kimball	vn in K		County	(Weste	ern Neb	raska)				
Eastern Nebraska.	204.3	31.8	26.7	15.5		28.6	6.1	6.1 5.8 12.0	12.0		21.8	20.5	76.4
Central Nebraska.	182.3	30.6	25.9	16.8	14.2	31.0	6.0	5.7	11.8	19.7	22.0	20.8	78.6
Western Nebraska	194.6	30.2	25.7	15.5	13.2	28.7	6.1	5.7	11.8		22.0	21.0	6.97
Average	193.7	30.9	26.1	15.9	13.5	29.4	6.1	5.7	11.9	19.7	21.9	20.8	77.3
		, c	n Grou	n in L	RELATIV	RELATIVE VALUES	E VALUES County (Eastern Nebraska)	orn No	oracka)				
	Per cent	Per cent	Per cent	Per cent	Per cent Per cent Per cent Per cent Per cent Per cent	Per cent	Per ent	Per cent	Per cent	Per cent	Per cent Per cent Per cent	Per cent	Ğ
Sastern Nebraska.	100	100	100	100	100	100	100	100	100	100	100	100	100
Central Nebraska	103	100	101	97	86 6	97	100	102	101	100	104	102	95
Western Nebraska	104	103		65 . 		66		97	86	26	93	94	100
		Corn		vn in K	_	County	_	Western Nebraska	raska)				
Eastern Nebraska	100	100	100	100	100	100	100	100	100	100	100	100	100
Central Nebraska.	68	96	97	108	108	108	86	86	86	103	101	101	103
Western Nebraska	95	95	96	100	101	100	100	86	86	105	101	103	101

Table 28 (continued).—Summary of Histological Leaf Measurements of Corn Types When Moved from Their Various Native Nebraska Localities and Grown Both in Extreme Eastern and Western Nebraska. 1916.*

	Numl	Number of stomata per sq. m. m.	mata m.	Len	Length of stoma	oma .	Lengt	Length of stomatal	natal	Length of epidermal cell	th of	Widepoint	Width of epidermal cell
Source of seed	Upper epi- dermis	Lower epi- dermis	Average	Upper epi- dermis	Lower epi- dermis	Average	Upper epi- dermis	Lower epi- dermis	Average	Upper epi- dermis	Lower epi- dermis	Upper epi- dermis	Lower epi- dermis
(1)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)
		Cor	n Grow	'n in Le	ACTUA	ACTUAL VALUES	ACTUAL VALUES Corn Grown in Lancaster County (Eastern Nebraska)	ern Ne	braska)		Microson Microson of Microson of	Microns	Microns
Eastern Nebraska	78.7	94.6	9.98	Mucrons 50.2	M_{1crons} 49.1	M. erons 49.6	Microns Microns Microns Microns Microns 49.1 49.6 17.2 17.1 17.1	17.1	17.1	4	84.5	33.8	
Central Nebraska.	79.4	95.8	9.7.8	50.2	49.2	49.7	16.0	16.0	16.0	78.9	78.6 80.7	ట ట గు రు చ	34.0 35.3
Western inedfaska.	6.67	99.0		100	40.0		1.01					0 7 0	3
Average	78.0	94.5	85.9	50.2	49.2	49.7	16.1	16.2	16.1	9.08	81.3	34.3	34.5
		Corn		Grown in Kimball County	mball C	ounty	(Wester	Western Nebraska	aska)				
Fastern Nebraska	80.0	0.66	89.5	47.5	46.9	47.2	14.3	14.6	14.4	80.2	78.9	32.0	32.5
Central Nebraska	21.4	104.4	92.9	47.7	47.3	47.5	14.4	14.7	14.6	79.3	80.3	31.2	29.7
Western Nebraska.	80.5	102.5	91.5	47.0	45.4	46.2	14.1	13.7	13.9	80.9	78.1	33.4	31.3
Average	80.6	102.0	91.3	47.4	46.5	47.3	14.3	14.3	14.3	80.1	79.1	32.2	31.2
)		Č			RELATI	RELATIVE VALUES	RELATIVE VALUES Com Gramm in Longaster County (Fastern Nehraska)	ern Ne	hraska)				
	Day gant	100	COFII GFOWII III LE		Dor cont	$Porcent \mid Porcent \mid$	Percent	Per cent Per cent	Per cent	Per cent	Per cent	Per cent	Per cent
Factorn Nehraska	100	100	100	100		100	100	100	100	100		100	100
Central Nebraska	101	101	101	100	100	100	93	94	94	93	93	100	100
Western Nebraska.	96	86	97	100	100	100	88	91	06	93	95	104	103
		ညိ	Corn Grown in	vn in K	Kimball	County	_	Western Nebraska	raska)				
Eastern Nebraska	100	100	100	100	100	100		100	100	100	100	100	100
Central Nebraska	102	105	104	100	101	101	101	101	101	66	102	97	91
Western Nehraska	101	103	102	66	26	86	66	94	96	101	66	104	96

per unit of cross section, 100 and 115; (5) number of stomata per unit area of epidermis, 100 and 106; (6) length of stomata, 100 and 95; (7) length of stomatal aperture, 100 and 88; (8) length of epidermal cell, 100 and 98; and (9) width of epidermal

cell, 100 and 93.

The immediate result of growing corn under more adverse climatic conditions, namely, shortage of heat units and moisture, is to reduce the vegetative development in all its phases. Stalks become shorter, and bear the ear closer to the ground; leaf development and the production of plant substances are markedly reduced. The general effect is to reduce the opportunity for transpiration and photosynthesis. Associated with this reduction in vegetative growth is found a reduction in the size of the vegetative unit—the cell. Accordingly, under the more adverse conditions the leaves are thinner, as are also the epidermis and the cuticle. The stomata are more numerous in a given area of leaf surface. The stomata as well as the stomatal apertures are somewhat reduced in size. Furthermore, the cells being smaller, more vascular bundles occur in a unit of cross-section.

The fallacy of viewing such changes as being teleological or purposive is seen in the existence of both favorable and unfavorable reactions to adverse climatic conditions, moisture shortage being one of these conditions. A reduction in the plant size and leaf area and stomatal aperture indicates favorable reactions for reduced water requirements. On the other hand, a thinner epidermis and cuticle and a relative increase in number of stomata and water carrying vascular bundles suggest greater water dissipating capacity, and, therefore, must be considered as an adverse development inconsistent with the idea of purposiveness. Probably the true explanation of these reactions is that the reduced turgor and reduced rapidity of cell division caused by limited moisture and heat results in a materially smaller physical development.

When a comparison is made of native adapted corn types grown in their respective home localities, a combination of two entirely distinct factors is involved in the relative plant development, namely heredity and environment. Differences due to hereditary adaptation cannot be definitely determined by such comparisons, since the effect of the difference in environment is

not eliminated.

Such comparisons of native home-grown corn types disclose that corn from the more adverse conditions, moisture shortage being one of the conditions, is smaller in practically all of its vegetative growth characters. The stalk and ear height, leaf area and plant substance are markedly lower. The

stomata are somewhat shorter while the leaf and epidermal thickness are practically identical. Stomata are more numerous

and in general the cell size is somewhat smaller.

Probably the actual hereditary differences existing between types adapted to favorable and to unfavorable climatic conditions may be best determined by growing them all comparatively in the same environment under favorable conditions. general when grown in eastern Nebraska, (Lancaster County), western Nebraska corn was markedly smaller in size of plant, leaf area, and plant substance than was eastern Nebraska corn. On the other hand, the leaf thickness, epidermal and cuticular thickness, relative number of vascular bundles, number of stomata per unit leaf area, and size of stomata were rather similar for corn of both sources. The data suggested that a slightly smaller stomatal aperture associated with a somewhat smaller epidermal cell is characteristic of the short season dry land types of western Nebraska. This would not seem to be of any adaptive importance because the reduction is insufficient to act as a check upon transpiration, as may be seen in Table 30.

COMPARATIVE YIELDS OF NATIVE TYPES

During 1916 and 1917, the native corn types from various parts of the state were compared for yield at the Experiment Station. Yields were based on the center row of duplicate three-row fifteenth-acre plats in which only hills with a full number of plants, three per hill, and surrounded by a full stand, were harvested. The results are given in Table 29. The average yields for eastern, central and western Nebraska types for the two years were respectively: 59.8, 46.2, and 31.6 bushels per acre. The corresponding maturity dates were September 24, Septem-

ber 21, and September 12.

No attempt has been made in connection with these investigations to make a reliable comparative yield per acre test for the various native corn types. Such a test would involve the growing of each type at several different planting rates for a period of years in order to determine the optimum rate for each, and to average seasonal effects.† In any environment as a general rule the maximum yield is obtained for the smaller and earlier types at a thicker planting rate than for the larger, later maturing types. Tests of this sort have almost universally been made at a single arbitrary planting rate which is likely to be too thin for the smaller types when compared under favorable growing conditions, and too thick for the larger types when compared

[†]Kiesselbach, T. A., 1918, Nebraska Agricultural Experiment Station Research Eulletin No. 13, pp. 45-47.

Table 29.—Yields of Corn Types When Moved from Their Various Native Nebraska Localities and Groven Three* Plants Per IIII at the Experiment Station (Lan-

Jo 200 10	Dg	Date tasseling	ing		Date ripe	4)	Yield	Yield grain per acre	r acre
Source of seed	1916	1917	Average	1916	1917	Average	1916	1917	Average
County							Bushels	Bushels	Bushels
			EASTERN N	NEBRASKA	TYPES				
Richardson	7-31	8-8	8-4	9-21	10 - 1	9-26	64.0	63.0	63.5
Lancaster	7-27	8-5	8-1	9-20	10 - 1	9-25	6.99	65.0	62.9
Washington	7-30	8-7	8-3	9-18	10-4	9-26	68.0	66.7	67.8
Thurston	7-25	8-1	7-28	9 - 14	9-20	9-17	47.3	47.3	47.3
Nuckolls	7-29	8-5	8-1	9-25	9-28	9-25	55.0	55.2	55.1
Average			8-1			924			59.8
			CENTRAL N	NEBRASKA	TYPES				
Kearney	7-20	7-31	7-25	9 - 16	10 - 1	9-23	52.1	59.2	55.6
Iolt	7-24	7-31	727	9 - 15	9-28	9-21	47.6	44.5	46.0
incoln	7-15	7-28	7-21	9-12	9-26	9-19	40.5	42.7	41.6
Cherry	7-16	7-30	7-23	9-12	9-56	9-19	45.7	37.5	41.6
Average			7-24			9-21			46.2
			WESTERN N	NEBRASKA	TYPES				
Kimball	7-13	7-25	7-19	86	9 - 12	9-10	27.3	26.7	27.0
Grant	7-15	8-1	7-23	9-12	9-18	9-15	39.1	33.6	36.3
Average			7-21			9-12			31.6

*These yields probably do not do full justice to the central and western Nebraska types since experience has indicated that the optimum rate of planning for the smaller types is greater than for the larger eastern types.

and	
Dry	
tively	11%
from	Years A verage, 1911-1917.
Corn	rane
Native Corn	Sul V Sa
of 1	r Vean
	egions. Four Vo
nspiration	Humid Regions
Table $30Tra$	

Source of seed and variety	Native county	Height of plant	Total dry matter	Leaf area per plant	Total water transpired	Transpiration per gram dry matter	Transpiration Transpiration per gram per square dry matter inch leaf area
(1)	(2)	Inches (3)	$\frac{Grams}{(4)}$	Sq. in. (5)	Kilo. (6)	Grams (7)	Grams (8)
Marten's White Dent	Kimball	WESTI 72 88	WESTERN NEBRASKA 72 286 6 88 441 9	ASKA 675 995	$\frac{68.479}{103.078}$	240 233	101 103
Average		80	363	835	85.778	236	102
		EASTI	EASTERN NEBRASKA	ASKA			
Hogue's Yellow Dent	Lancaster	109	513	1,270	123.947	$\frac{240}{2}$	86
*University No. 3	Wayne	94	426	1,049	105.359	250	105
Average		101	469	1,159	114.653	245	101
		NEW	YORK STATE	ATE			
Rocky Mountain Dent Wood's White Dent		93 96	384 442	$^{891}_{1,107}$	92.861 101.576	235	$\begin{array}{c} 105 \\ 94 \end{array}$
Average		94	413	666	97.218	233	100

The data in columns 7 and 8 are averages of ratios for the four years and not ratios of averages. *University No. 3 originated six years prior to these experiments from native Wayne County (northeast Nebraska) corn, and is smaller and about one week earlier maturing than typical Lancaster County corn.

under adverse conditions. In eastern Nebraska, the average optimum planting rate for small varieties is likely to be about 65 per cent thicker than for large varieties.

COMPARATIVE TRANSPIRATION OF EASTERN AND WESTERN CORN TYPES

The preceding morphological and histological adaptation studies have indicated that the chief adaptive characteristic of dry-land short-season corn was a marked reduction in vegetative growth. There was no definite indication of favorable structural adaptive reaction, tho a somewhat shorter stomatal aperture prevailed. This was regarded more as a dwarfish correlation, than as a directly adaptive feature. If adaptively effective, the shorter aperture should be expected to reduce the relative amount of transpiration per unit leaf area. This is not the case, as shown in Table 30.

Two native varieties each from western Nebraska, eastern Nebraska, and New York state were grown to normal maturity during four years, at the Nebraska Experiment Station, in large potometers, and the relative use of water determined. The native climates of western Nebraska, eastern Nebraska, and New York increase progressively in precipitation, and atmospheric humidity. Accordingly, this investigation affords an opportunity to study the adaptation occurring in corn as a reaction to moisture shortage. The method for determining the transpiration is the same as that described in Nebraska Research Bulletin

No. 6, 1916, pp. 45, 48 and 49.

The transpiration per square inch leaf area was practically the same for corn native to all three regions. For western Nebraska, eastern Nebraska, and New York types it was respectively: 102, 101, and 100 grams water transpired per square inch leaf area. These cannot be regarded as adaptive differences. On the other hand the total amounts of water transpired per plant were respectively: 85,778, 114,653, and 97,218 kilograms. Eastern Nebraska and New York corn transpired respectively: 34 and 13 per cent more per plant than western Nebraska corn. Comparing the two most extreme native Nebraska types tested, namely Kimball County and Lancaster County corn, we find that the latter used 81 per cent more water per plant, 3 per cent less per unit leaf area, and equal amounts per unit dry matter produced. The Lancaster County corn plants were 51 per cent taller, had 88 per cent greater leaf area and 79 per cent greater dry matter than the Kimball County corn.

COMPARATIVE YIELDS OF CORN FROM VARIOUS SOURCES IN EASTERN NEBRASKA

The following test was made to throw light on two questions: (1) What variation in yield may be expected in corn grown by different farmers in the same community? and (2) How do local varieties compare in yield with varieties secured at some distance?

The tests were made at the Nebraska Experiment Station in Lancaster County. Yields were based upon the middle rows of well-replicated three-row plats of which the first fifty consecutive full-stand hills were harvested and air dried. Thus variation in stand, variety plat competition, and soil differences were rather largely eliminated. All being fairly large varieties, it would appear that a uniform rate of planting should

give significant results.

Hogue's Yellow Dent corn has been grown at the Experiment Station for about twenty years and has long been regarded as unsurpassed in yield under Experiment Station conditions. The Nebraska White Prize corn grown at the Station has been regarded as one of the most productive white varieties and has been grown there for twelve years. The other local corn secured from ten near-by farmers has in most cases been grown by them ten or more years, and has been handled in the customary farm manner. Likewise the corn types secured from other eastern counties had been grown there for a long term of years and were regarded as fully adapted. The results are given in Table 31.

As an average for the three years, the home grown Hogue's Yellow Dent outyielded seed from all other sources. Of the local varieties the lowest yielder was 7.7 bushels less than Hogue's Yellow Dent. Three of the ten local corns yielded within 3 per cent as much as Hogue's, which yielded 6 per cent more than the average of all other local sorts.

Of the seed obtained at a distance from other eastern counties, one yielded 16.7 bushels less than Hogue's. Another yielded 10.5 bushels less. Three of the remaining five yielded within

two bushels of the home-grown Hogue's Yellow Dent.

The data suggest that there may be considerable variation in yielding capacity of corn grown by different farmers in the same locality and also among corn secured from various distant sources. Seed from three southeastern counties with more favorable growing conditions averaged 56.9 bushels as against 66.7 bushels for home grown Hogue's Yellow Dent. Seed from four northeastern counties with somewhat shorter growing season but equal in rainfall, averaged 63.7 bushels. Thus the relative yields

Table 31.—Comparative Yield Test at the Nebraska Experiment Station of Secured Locally, and from Distant Eastern Nebraska Localities. Three Average, 1915-1917.

Native seed from	rom	Variety or color	Total	Rate	Date	d.	Shrinly	Yield
Grower	County	10100 10 6001111	of plats averaged	hill	ing		age	acre
							Per cent	
	SEED FROM	SEED FROM WITHIN FIVE MILES OF EXPERIMENT STATION	EXPERIMEN	IT STA	TION			
Nebraska Experiment Station	Lancaster	Hogue's Yellow Dent.	123	ಽಽ	9-8	9-27	15.4	66.7
R. B. Roberts	Lancaster	Yellow	21	က	×-×	9-26	14.6	62.6
S. Moore	Lancaster	Moore's White Dent	21	ಣ	2-8	9-56	13.2	65.3
C. Stanley	Lancaster	St. Charles White	21	ಣ	8-5	9-26	14.8	63.1
J. T. Graham	Lancaster	Reid's Yellow Dent	21	က	2-8	9-56	17.0	61.8
J. T. Graham	Lancaster	Boone County White.	21	က	6-8	9-26	18.0	59.4
L. K. Schoenleber	Lancaster	White	21	က	9-8	9-27	16.5	60.9
E. Aronson	Lancaster	Chase's White Dent	21	ಣ	9-8	9-56	14.2	63.6
J. F. Jensen	Lancaster	Chase's White Dent	21	က	2-8	9-27	16.2	64.6
C. W. Clarke	Lancaster	St. Charles White	21	က	8-5	9-56	12.1	65.9
Emery Darby. Nebraska Experiment	Lancaster	Yellow	21	က	2-8	9-27	15.3	59.0
Station	Lancaster	Nebraska White Prize.	21	က	2-8	9-27	14.3	63.4
	SEED FR	SEED FROM OTHER EASTERN NEBRASKA		COUNTIES	80			
C. J. Brush	Nemaha	Boone County White	17	ಣ	8-11	10 - 3	22.0	50.0
F. J. Rist	Richardson	Reid's Yellow Dent.	17	ಣ	8-9	9-28	19.5	64.6
William Ernst	Johnson	Nebraska White Prize	17	က	2-8	9-28	20.1	56.2
Lee Smith.	Washington	Nebraska White Prize	17	က	8-8	9 - 27	14.7	60.4
Anderson Brothers	Wayne	Reid's Yellow Dent	17	ಣ	8-5	9-24	8.4	63.5
F. H. Roggenbach	Cuming	Reid's Yellow Dent	17	ಣ	9-8	9-27	12.4	65.8
K. K. Seymour	Dodge	Reid's Yellow Dent	17	ಣ	8-8 8-8	9-27	13.2	65.0

All yields based on fifty normal hills in the center row of 3-row plats.

Table 32.—Comparative Vields of Local Corn Versus Corn Imported from Other States. Two Year Average, 1916 and 1917.

Source of seed	Variety	Total number of plats averaged	Rate per hill	Date tasseling	Date ripe	Shrink- age	Yield per acre
		A Land			the facility of the state of th	Per cent	Per cent Bushels
	LOCAL NEBRASKA EXPERIMENT STATION VARIETIES	PERIMENT S	STATION	VARIETIES			
Lincoln, Nebr	Hogue's Yellow Dent Nebraska White Prize	44	ကက	8-4 8-7	$9-25 \\ 9-27$	10.3	64.0 66.1
Average		4	8				65.0
	IMPORTED	TED VARIETIES	LES				
Wooster, Ohio	Clarage	4	ec.	8-1	9-23	7.4	42.6
Columbia, Mo	Reid's Yellow Dent.	4	က	9-8	9-28	13.6	60.2
Urbana, Ill.	Reid's Yellow Dent.	4	က	8-5	9-27	9.7	61.7
Ames, Íowa	Reid's Yellow Dent.	4	က	2-8	9-27	7.8	65.6
L-fayette, Ind	Reid's Yellow Dent.	4	ಣ	8-8	9-28	8.4	65.3
Manhattan, Kas	Commercial White	4	က	6-8	10-2	21.9	55.4
Manhattan, Kas	Pride of Saline	4	က	9-8	9-30	19.4	60.2
St. Paul, Minn	Minnesota No. 13	4	က	7-30	9 - 17	0.9	40.3
Brookings, S. D.	Disco Ninety Day	4	က	7-29	9-13	6.5	44.2
А ургаор		A	3				0.55

of: (1) Well-acclimated home-grown Station seed, (2) seed from three northeastern counties, and (3) seed from three southeast-

ern counties were respectively: 100, 96, and 85.

The performance of the three Nebraska White Prize corn samples secured from different sources and compared at the Nebraska Station is of special interest. Seed which had been grown upward of thirteen years by the Experiment Station in Lancaster County and by William Ernst of Johnson County originated from seed grown by Lee Smith in Washington County. The grain yields of corn from the three sources were respectively: 63.4, 56.2, and 60.4 bushels per acre. Thoro local acclimatization improved it for Experiment Station conditions, whereas, seed having been acclimated farther southeast was thereby reduced in productivity for the conditions prevailing at the Experiment Station.

LOCAL CORN COMPARED WITH CORN FROM OTHER STATES

During 1916 and 1917 seed corn was obtained from eight neighboring states and compared at the Experiment Station with the two acclimated local varieties—Hogue's Yellow Dent and Nebraska White Prize. The imported varieties were obtained from the Experiment Stations of the respective states and were acclimated to the conditions prevailing at those Experiment Stations. One variety was grown from each state except Kansas, from which two varieties were tested. Methods of testing were the same as in the preceding tests. The results are given in Table 32.

In this test the two local varieties, Hogue's Yellow Dent and Nebraska White Prize, yielded respectively 64.0 and 66.1 bushels per acre with an average of 65 bushels. Of the nine imported corns, two yielded practically the same as the local, three yielded within four bushels, one nine and a half bushels less, and three more than twenty bushels less. The nine imported

corns averaged ten bushels less than the local.

One may conclude from the data that, as a general principle, locally adapted seed is superior to seed haphazardly imported. However, the mere matter of distance is not an absolute deciding factor in adaptation. It is quite possible to secure highly productive seed from a distance, but such introductions may meet with disaster unless preceded by local experience with the corn. Without such preceding definite experience, the rational procedure is to plant only locally grown corn known to be adapted. Importation is likely to be successful in proportion to the similarity of growing conditions of the source and destination of the seed.

(3M)