Assignment 4 on Program Semantics

Adrián Enríquez Ballester

January 9, 2022

Given the function $F: (\mathbf{State} \to \mathbf{State}_{\perp}) \to (\mathbf{State} \to \mathbf{State}_{\perp})$ defined as follows:

$$F(f) = cond(\mathcal{B}[n > 0], f \circ \mathcal{S}[x := 2 * x; n := n - 1], id)$$

(a) Give an explicit definition for $F(\lambda\sigma.\perp)$, $F^2(\lambda\sigma.\perp)$ and $F^3(\lambda\sigma.\perp)$. For the first application of F, as any function right-composed with $\lambda\sigma.\perp$ is the same as $\lambda\sigma.\perp$, we have

$$F\left(\lambda\sigma.\bot\right) = \lambda\sigma. \begin{cases} \bot & \text{if } \sigma(n) > 0\\ \sigma & \text{if } \sigma(n) \leq 0 \end{cases}$$

For its second application, let $g: \mathbf{State} \to \mathbf{State}$ be the function

$$g = S[x := 2 * x; n := n - 1]$$

= $\lambda \sigma.\sigma[x \mapsto 2 \cdot \sigma(x), n \mapsto \sigma(n) - 1]$

As it subtracts 1 to n, by matching the corresponding cases of $F(\lambda \sigma. \perp)$ after applying g, we have

$$F(\lambda \sigma.\bot) \circ g = \lambda \sigma. \begin{cases} \bot & \text{if } \sigma(n) > 1 \\ g(\sigma) & \text{if } \sigma(n) \leq 1 \end{cases}$$

which, once the case of $n \leq 0$ is absorbed by cond, becomes into

$$F^{2}(\lambda \sigma. \bot) = \lambda \sigma. \begin{cases} \bot & \text{if } \sigma(n) > 1\\ \sigma\left[x \mapsto 2 \cdot \sigma(x), n \mapsto 0\right] & \text{if } \sigma(n) = 1\\ \sigma & \text{if } \sigma(n) \le 0 \end{cases}$$

In a similar way, as

$$F^{2}(\lambda \sigma. \bot) \circ g = \lambda \sigma. \begin{cases} \bot & \text{if } \sigma(n) > 2\\ g(g(\sigma)) & \text{if } \sigma(n) = 2\\ g(\sigma) & \text{if } \sigma(n) \leq 1 \end{cases}$$

we reach the next power of F:

$$F^{3}(\lambda \sigma. \bot) = \lambda \sigma. \begin{cases} \bot & \text{if } \sigma(n) > 2\\ \sigma\left[x \mapsto 4 \cdot \sigma(x), n \mapsto 0\right] & \text{if } \sigma(n) = 2\\ \sigma\left[x \mapsto 2 \cdot \sigma(x), n \mapsto 0\right] & \text{if } \sigma(n) = 1\\ \sigma & \text{if } \sigma(n) \le 0 \end{cases}$$

(b) From the results above, conjecture a general defintion for $F^i(\lambda\sigma.\perp)$ where $i \geq 1$. [Optional] Prove by induction on i that your conjecture is correct. Our conjecture is the following:

$$F^{i}(\lambda \sigma. \bot) = \lambda \sigma. \begin{cases} \bot & \text{if } \sigma(n) \ge i \\ g^{\sigma(n)}(\sigma) & \text{if } 0 < \sigma(n) < i \\ \sigma & \text{if } \sigma(n) \le 0 \end{cases}$$

where $g^{j}(\sigma) = \sigma\left[x \mapsto 2^{j} \cdot \sigma(x), n \mapsto \sigma(n) - j\right]$. Note that when $j = \sigma(n)$ it yields $\sigma\left[x \mapsto 2^{j} \cdot \sigma(x), n \mapsto 0\right]$, but we have written it in a more general way for the ease of the following proof.

It has been shown to hold when i=1 (i.e. recall $F(\lambda \sigma. \perp)$ from the previous section). For proceeding with the inductive proof, suppose that it holds for some i, then

$$F^{i}(\lambda \sigma. \bot) \circ g = \lambda \sigma. \begin{cases} \bot & \text{if } \sigma(n) \ge i + 1\\ g^{\sigma(n) - 1}(g(\sigma)) & \text{if } 1 < \sigma(n) < i + 1\\ g(\sigma) & \text{if } \sigma(n) \le 1 \end{cases}$$

and the case of $\sigma(n) = 1$ is $g(\sigma) = g^0(g(\sigma)) = g^{\sigma(n)-1}(g(\sigma))$, thus it can be merged with the $1 < \sigma(n) < i+1$ case. By gathering all these results we obtain

$$F^{i+1}(\lambda \sigma. \bot) = \begin{cases} F^{i}(\lambda \sigma. \bot) \circ g & \text{if } \sigma(n) > 0 \\ \sigma & \text{if } \sigma(n) \le 0 \end{cases}$$
$$= \begin{cases} \bot & \text{if } \sigma(n) \ge i + 1 \\ g^{\sigma(n)}(\sigma) & \text{if } 0 < \sigma(n) < i + 1 \\ \sigma & \text{if } \sigma(n) \le 0 \end{cases}$$

(c) Give an explicit definition for $\sqcup_i F^i(\lambda \sigma. \bot)$.

$$\sqcup_{i} F^{i}(\lambda \sigma. \bot) = \lambda \sigma. \begin{cases} \sigma \left[x \mapsto 2^{\sigma(n)} \cdot \sigma(x), n \mapsto 0 \right] & \text{if } \sigma(n) > 0 \\ \sigma & \text{if } \sigma(n) \leq 0 \end{cases}$$

This function is greater than $F^i(\lambda \sigma. \perp) \ \forall i \geq 1$ in the sense that it has always less values of its domain mapped to \perp (i.e. none at all) and it matches the same image for those of $F^i(\lambda \sigma. \perp)$ which are not mapped to \perp .

(d) Which is the least fixed point of F? Justify you answer.

The least fixed point of F is the function $\sqcup_i F^i$ stated in the previous section.

This result follows by (State \to State_{\perp}, \sqsubseteq) being a *ccpo* for the order relation which we are using, the function F being monotonically increasing and continuous, and a theorem which states that, under these conditions, $\sqcup_i F^i$ is the least fixed point of F.

(e) Given the above, compute the state resulting from the execution of the following program

$$x := 1$$
; while $n > 0$ do $(x := 2 * x; n := n - 1)$

under the initial state $\sigma = [n \mapsto 4]$.

The denotational semantics for its sequenced substatements are:

$$\mathcal{S}[\![x:=1]\!] = \lambda \sigma.\sigma \, [x\mapsto 1]$$
 $\mathcal{S}[\![$ while $n>0$ do $(x:=2*x;\; n:=n-1)]\!] = lfp\; F$

where the required least fixed point is precisely the one which we have been obtaining in this exercise:

$$lfp \ F = \lambda \sigma. \begin{cases} \sigma \left[x \mapsto 2^{\sigma(n)} \cdot \sigma(x), n \mapsto 0 \right] & \text{if } \sigma(n) > 0 \\ \sigma & \text{if } \sigma(n) \leq 0 \end{cases}$$

The whole program semantics consist of its composition

$$lfp F \circ \lambda \sigma. \sigma [x \mapsto 1]$$

so let us apply it to the initial state in order to get the final one:

$$(lfp F \circ \lambda \sigma. \sigma [x \mapsto 1])([n \mapsto 4]) = (lfp F)([x \mapsto 1, n \mapsto 4])$$
$$= [x \mapsto 2^4, n \mapsto 0]$$