Exercises Overview

Exercise 1: Descriptive p. 1-6

- Read CSV (p. 1)
- Scales/Types (p. 6)
- Tidy <- Pivot Longer, Pivot Wider, Separate (p. 1 ff.)
- CASE WHEN (p. 3)
- GROUP BY + COUNT (p. 3)
- Summarize (p. 3)
- Linear Regression **OR** Contingency Table (p. 4 ff.)

Exercise 2: Probability, BINOMIAL Distribution p. 7-13

- Density Table (p. 13) **OR** pbinom (p. 8), dmultinom (p. 11), dgeom (p.12)
- Expected Value + Variance (p. 10)
 - $-E(X) = \sum x * P(x)$
 - $Var(X) = (\sum x^2 P(x)) E(X)^2$
- Conditional Probability (p. 11 ff.)
 - $-P(A|B) = \frac{P(A \cap B)}{P(B)}$
 - Use probabilities from Density Table
- Brute Force pbinom 13.2 (here OR in Exercise 3) (p. 10)

Exercise 3: Central Limit Theorem, NORMAL Distribution p. 8, 10

- Expected Value + Variance for Approximate Distribution (p. 10)
 - $-X \sim N(\mu = E(X) * n, \sigma^2 = Var(X) * n)$
- pnorm (p. 8, 10)
- qnorm (p. 8, 10)
- Brute Force pnorm 13.3 (here OR in Exercise 2) (p. 10)

Exercise 4: Confidence Intervals in externer PDF

- Determine type: Proportion, Mean, Variance
- Confidence Interval:
 - KEYWORD: Normal Approximation OR Exact
- Sample Size
- Interval Length
- · Confidence Level

Exercise 5: Hypothesis Testing p. 14-18

- 1-Sample Test (p. 15 ff.)
- Type of Error (p. 14)
- 2-Sample Test (p. 17 ff.)

(WENN zwei Tests: erst 2-Sample F-Test für Varianz, dann nach Mu mithilfe vom Ergebnis)

(WENN ein Test: Zu 99% 2-Sample Paired t-test)

1 Einlesen

1.1 read_csv - read_csv2

Erzeugt Tibble

read_csv: Komma zum Zeilentrennen und Punkt für Dezimalzahlen

read_csv2: Semicolon zum Zeilentrennen und Komma für Dezimalzahlen

```
read_csv(file = "", col_types = "")
read_csv2(file = "", col_types = "")
```

Mit col_types können wir als String wo jede Position für die jeweilige Spalten steht den Typ bestimmen

Typen:

- $\mathbf{c} = \text{character}$
- **i** = integer
- $\mathbf{n} = \text{number}$
- **d** = double
- **l** = logical
- $\mathbf{f} = \text{factor}$
- **D** = date
- T = date time
- **t** = time
- **?** = guess
- _ **oder** = skip

```
# Csv with ";" separator and "." as decimal point
read.csv("europe.data.csv", sep = ";", dec=".")

# Csv without first line as header
read.csv2("mpg.csv", header=F)

# Csv with 4 integer columns
read_csv2("magnets_pain.csv", col_types = "iiii")
```

1.2 read.csv - read.csv2

Erzeugt Dataframe

- **sep** = Das Zeichen welches die Spalten trennt.
- **dec** = Gibt den trenner für Dezimalzahlen an

1.3 read_delim - read_delim2

Erzeugt Tibble

Der Rest wie bei _

```
read_delim(file = , delim = ,col_types = "")
```

Mit der Option **delim** können wir festlegen, mit welchem Zeichen die Zeilen getrennt werden.

1.4 Tidy Data

Typen:

- Jede Spalte muss eine Variable sein
- Eine Observation ist eine Zeile
- Eine Variable ist z.B. das Alter
- Eine Observation ist "Jackson, 14"

2 Tidying Data

2.1 pivot_longer()

Wir haben eine Tabelle, wo es Spalten gibt, die als Variablen selber Observationen haben. Wir wollen diese Observationen auch als Observationen hinschreiben.

student <chr></chr>	algebra «dbl»	analysis «dbl»	diskrete.math
Adam	NA	2	3
Bernd	5	NA	NA
Cristian	3	1	2
Doris	4	3	4

Wir sehen, dass Algebra etc. eigentlich Observations sind.

- **cols** = Ein c() mit allen Spalten oder spalte_1 : spalte_n.,
- names_to = In welche Spalte die Namens aus cols.,
- values_to = In welche Spalte die Werte die in den Spalten aus cols waren,
- values_drop_na = T falls wir NAs droppen wollen

student <chr></chr>	classes <chr></chr>	grade <dbl></dbl>
Adam	algebra	NA
Adam	analysis	2
Adam	diskrete.math	3
Bernd	algebra	5
Bernd	analysis	NA
Bernd	diskrete.math	NA
Crictian	algobra	2

Hier haben wir jetzt in jeder Spalte eine Variable.

2.2 pivot_wider

Wir haben in einer Spalte für jede Observation zwei Variablen und in einer anderen Spalte die Observation für jede Variable.

	1	,
name <chr></chr>	type <chr></chr>	measure <dbl></dbl>
Adam	height	1.83
Adam	weight	81.00
Bernd	height	1.75
Rernd	weight	71.00

Jede Variable in Type soll eine eigene Spalte bekommen.

- names_from = Die Spalte in der mehrere Variablen stehen.
- values_from = Die Spalte wo die Werte drinnen stehen.

name <chr></chr>	height «dbl»	weight «dbl>
Adam	1.83	81
Bernd	1.75	71
Christian	1 69	55

Jetzt hat jede Variable eine Spalte

3 separate

Wir haben in einer Spalte zwei Werte in einer Zelle.

name <chr></chr>	reatio <chr></chr>
Adam	81/1.83
Bernd	71/1.75
Christian	55/1.69
Doris	62/1.57

Nun wollen wir diese Spalte aufteilen.

- **col** = Die Spalte in der die Observations sind.
- **sep** = Das Zeichen, welches die Observations trennt.
- **into** = Spalten, in welche die Werte nun geschrieben werden sollen.

WENN Spalte unnötig 'NA': c(NA, "height")

• **convert** = True, wenn neue Spalten von char zu int umgewandelt werden sollen.

name <chr></chr>	weight <chr></chr>	height <chr></chr>
Adam	81	1.83
Bernd	71	1.75
Christian	55	1.69
Doris	62	1.57

4 Wichtige Befehle

4.1 Anfang

knitr::opts_chunk\$set(echo = TRUE, error = T)

- Global Options -> Code -> Editor Keybindings -> Vim
- Global Options -> Code -> Display -> Rainbow Parentheses
- Für m und n in die Keybinds gehen und nach Operator suchen

4.1.1 vim

imap jj <Esc>

4.2 Libraries

{r include=F}
library(tidyverse)
library(TeachingDemos)

4.3 Clean up code

• STRG + i

4.4 Datenerzeugung

- **sample** = Erzeugt ein Sample aus den Werten in dem Array x mit der Länge size. Replace auf False wenn wir nur unique Werte aus x wollen.
- runif = Ein Array mit Länge n mit Werten von min bis max.

```
df <- tibble(
  id = 1:10,
  sex = sample(x = c("f", "m"),
    size = 10,
    replace = T),
  age = round(runif(n = 10, min = 10, max = 35)),
)</pre>
```

4.5 Tibble Zeugs

4.5.1 Zeile Löschen

```
df %>% '['(-1,)
```

4.5.2 filtern

- **filter** = Kann ich nach Werten filtern.
- %in% = falls ich mehrere Sachen in einer Variable filtern will.

```
students %>%
  filter(sex == "m")
flights %>%
  filter(carrier %in% c("AA", "DL"))
flights %>%
  filter(carrier == "AA" | carrier == "DL")
```

4.5.3 NA Werte filtern

• !is.na(Zeile) = Entfernt uns alle NA Werte

```
corona %>% filter(!is.na(new_cases))
```

4.5.4 select

• select = ich kann einzelne Spalten auswählen

```
students %>% select(age)
```

4.5.5 Zeile hinzufügen

• add_row = wir müssen jeden Wert explizit angeben.

```
students %>% add_row(
   id = 11,
   sex = "m",
   age = 25,
   score1 = 4
)
```

4.5.6 Werte in Kategorien

```
df <- df %% mutate(
  grade = case_when(
    sum <= 37 ~ 5,
    sum > 37 & sum <= 45 ~ 4,
    sum > 35 & sum <= 55 ~ 3,
    sum > 55 & sum <= 65 ~ 2,
    sum > 65 ~ 1))
```

4.5.7 ifelse

```
mutate(
  passed = ifelse(grade < 5, yes = 1, no = 0)
)</pre>
```

4.5.8 Werte sortieren

• arrange = Wir sortieren den Tibble nach der ausgewählten Spalte. Wenn andersherum die Spalte mit desc() umgeben.

```
df %>% select(id, sex , grade) %>%
  arrange(sex)
# oder
  arrange(desc(sex))
```

4.5.9 Summarise

- **summarise** = Erstellt eine Übersichtstabelle die nur die Spalten beschreibt die ich angebe, die Spalte nach der ich groupe und die, die ich angebe.
- quantile gibt mir die Quantile erst die Spalte dann welches quantile

4.5.10 Trimmed Mean

• **trim** <- Wenn ich einen Trimmed Mean 40% habe, schneide ich jeweils 20% der kleinsten und größten Werte weg

```
mean(observations, trim = 0.2)
```

4.5.11 Geometric Mean

```
exp(mean(log(x)))
```

4.5.12 Coefficient of Variation

```
sd(x) / mean(x)
```

4.5.13 Werte zählen

- n <- um n() benutzen zu können, muss ich summarise benutzen.
- **count** <- count() kann ich immer benutzen, muss aber die Spalte explizit angeben.

```
er %>% group_by(group) %>%
   summarise(n = n())
er %>% count(group)
```

4.5.14 Rowwise

 rowwise() <- Macht dasselbe wie ein group_by für jede Zeile.

```
er %>% rowwise() %>%
  mutate(x = sum(ex1:ex5))
```

- Ohne Rowwise <- Berechnet die Summe aller Spalten ex für alle Zeilen.
- Mit Rowwise <- Berechnet jeweils die Summe für jede einzelne Zeile.

4.5.15 Unique

• unique = Wenn ich alle unique Zeilen zeigen will.

Gut kombinierbar mit select.

4.5.16 Determine number and rates of Variables

```
data.fail <- data.grade %>%
   group_by(subject, attempt) %>%
   mutate(
      failed = ifelse(grade == 5, 1, 0)
   ) %>%
   summarise(
      no = n(),
      ratio = sum(failed) / no
)
```

4.5.17 Die obersten n Werte

```
df %>% head(10)
```

5 Diagramme und so ein Mist

5.1 plot - Standard ist Scatterplot

Im Normalfall einfach x und y reinwerfen

• **type** - "l" gibt uns einen Lineplot. In ?plot stehen die anderen Optionen.

```
plot(x = x_werte, y = y_werte, type = "1")
```

5.2 Boxplot

5.2.1 Tilde - $y \sim x$

In y stehen die Werte. Ich ordne die Werte dem jeweiligen Typen in x zu

```
boxplot(y ~ x)
boxplot(werte ~ typen)
boxplot(data$score ~ data$attempt)
```

Die linke Variable ist in Abhängigkeit der rechten Variable.

5.2.2 Skewness

- Right Skewed <- Wenn der rechts/obere Whisker länger ODER Median niedrig in der Box
- Left Skewed <- Wenn der linke/untere Whisker länger ODER Median hoch in der Box
- Symmetrisch <- Wenn Median mittig UND Whiskers gleich lang

5.3 Pie Chart - Kuchendiagramm

- labels Die Beschreibung für jedes Kuchenstück
- col Die Farben

```
pie(party$Results_2013,
    labels = party$Party,
    col = party$colors)
```

5.4 Barplot - Balkendiagramm

```
• names.arg - Name
```

• col - Farben:)

6 Cumulative Frequency Distribution

Selbe Idee wie pnorm.

Also h(700) sagt uns wie viele der Werte unter 700 liegen.

· ecdf

```
h <- ecdf(data)
plot(h)</pre>
```

6.0.1 less equal 800

h(800)

6.0.2 greater than 725

```
1 - h(725)
```

6.0.3 greater than 642 und less equal 777

```
h(777) - h(642)
```

6.0.4 equal 696

```
h(697) - h(695)
```

7 Linear Regression

7.1 Scatterplot

```
plot(x, y)
```

7.2 Covariance

Die Kovarianz misst den Grad, zu dem zwei Zufallsvariablen gemeinsam variieren

```
cov(x, y)
```

7.3 Coefficient of Correlation

Ist dasselbe wie Covarianz aber genormt. Zeigt wie stark zwei Variablen zusammenhängen.

- 1 -> steigen perfekt zusammen
- -1 -> fallen perfekt zusammen
- 0 -> bedeutet kein Zusammenhang

```
cor(x, y)
```

7.4 Coefficient of Determination = Proportion of Variation

Tells you how your model or line explains your data.

- 1 -> your model explains 100% of your data
- 0.5 -> your model explains 50% of your data
- 0 -> your model is useless just like you

```
cor(x, y)^2
```

7.5 Regression line Y ~ X

- Criterion is our Y
- · Predictor is our X
- · a ist unser y-Achsenabschitt/Intercept
- b ist unsere Steigung/Slope

7.5.1 abline zeichnet unsere Linie

Wir müssen als erstes Plotten.

In RMarkdown für abline den ganzen Codeblock ausführen.

```
plot(x, y)
model <- lm(y ~ x)
abline(model)</pre>
```

7.5.2 a und b bekommen

```
y = a + b * x

model <- lm(y ~ x)
a <- model$coefficients[1]
b <- model$coefficients[2]</pre>
```

7.5.3 Predict value for x = 8

```
model <- lm(y ~ x)
a <- model$coefficients[1]
b <- model$coefficients[2]
new_y <- a + b * 8</pre>
```

7.6 Regression line X ~ Y

```
- Criterion is our X
- Predictor is our Y
xy_model <- lm(x ~ y)
alpha <- xy_model$coefficients[1]
beta <- xy_model$coefficients[2]
a_line <- -(alpha / beta)
b_line <- 1 / beta
abline(a = a_line, b = b_line, col = "red")</pre>
```

8 Contingency table

8.1 Mit 2 Spalten x & y

```
chisq.test(x, y)
```

8.2 Keyword: Contingency Table - Observed Val-

```
chisq.test(x, y)$observed
```

8.3 Keyword: Indifference Table - Expected values

```
chisq.test(tab)$expected
```

8.4 X hoch 2

```
x2 <- chisq.test(x, y)$statistic</pre>
```

8.5 C

```
c \leftarrow sqrt((x2 / (x2 + sum(tab))))
```

8.6 C corr

```
c_korr <- sqrt((min(length, height)/(min(length, height) -1)) * x2/(x2+sum(tab)))</pre>
```

- 0.0-0.3 <- Keine Assoziation
- 0.3-0.8 <- Some kind of Assoziation
- 0.8-1.0 <- Strong Assoziation

8.7 Mit Matrix

```
40 | 10 | 50
20 | 10 | 30
10 | 10 | 20
70 | 30 | 100
```

Wir müssen nicht die gesamt Felder betrachten

- nrow wie viele Zeilen wir haben
- **ncol** wie viele spalten wir haben Die daten werden automatisch eingeordnet

```
tab <- matrix(c(40, 10, 20, 10, 10, 10),
    nrow = 3,
    ncol = 2,</pre>
```

```
byrow = T)
chisq.test(tab)
```

8.8 Spearman Rank Correlation

```
cor.test(x, y, method = "spearman")
```

8.9 Conditional Relative Frequency Distribution

tab / rowSums(tab)

9 R shenanigans

9.1 groups fehlermeldung muten

```
summarize(.groups = "drop")
```

9.1.1 Ganzzahldivision

x %/% v

9.1.2 Modulo (x mod y)

x %% y

Qualitative, Nominal, Discrete

- Gender
- Religion
- Course
- Exam
- Country
- Color
- Binary yes/no question
- Name
- · Hair color
- Type of Transmission
- Type of Train
- Fuel Type
- Immatriculation Number

Quantitative, Ordinal, Discrete

- Score (when multiple exams in column)
- · Marks in Maths
- Rating of Movie on 7-Point
- · Attitude towards something

Quantitative, Interval, Discrete

- Birthday
- IQ
- Year
- Month
- Day

Quantitative, Interval, Continuous

• Temperature in Celsius/Fahrenheit

Quantitative, Ratio, Discrete

- Age
- Population
- Attempt
- Semester
- · Credit Points
- Number of bottles of wine
- Number of Cylinders

Quantitative, Ratio, Continuous

- Height
- · Weight
- Size
- Time to respond
- Engine Displacement in Litre
- Miles per Gallon
- Temperature in Kelvin
- BMI

Quantitative, Ratio, Discrete (Special Case)

· Score (when one exam in column)

10 Variables

10.1 Type

- Qualitative <- Bedeutet Kategorien.
- Quantitative <- Bedeutet messbar bzw. abzählbar.

10.2 Scale

- Nominal <- Daten sind in unique Kategorien: blau, braun, grün
- Ordinal <- Daten können gerankt werden: gut, mittel, schlecht
- Interval <- Daten haben selbes Intervall aber keinen absoluten Nullpunkt:

Celsius

- Ratio <- Daten haben absoluten Nullpunkt, dadurch ist auch das doppelte eines Wertes wirklich das doppelte: Kelvin

10.3 Range

- Discrete <- Bedeutet endlich.
- Continuous <- Bedeutet unendlich viele Werte zwischen zwei Werten.

11 Probability

11.1 Basic Rules

$P(A^c)$	1-P(A)	Probability that A will not happen
$P(\emptyset)$	0	Probability of a null Event
$P(A \cap B)$	P(A) * P(B)	Probability of <i>A</i> and <i>B</i> occurring
$F(A \cap B)$	P(A B) * P(B)	Frobability of A and B occurring
$P(A \setminus B)$	$P(A) - P(A \cap B)$	Probability of A without B
$P(A \cup B)$	$P(A) + P(B) - P(A \cap B)$	Probability of A or B occurring
P(A B)	$\frac{P(A \cap B)}{P(B)}$	Probability of A if B already happened

Table 1: A, B = Events; P(x) = Probability of Event x

 $A \subseteq B \implies P(A) \le P(B)$

11.2 Crossproduct

 $A \times B$

```
omega <- expand.grid(x = 1:6, y = 1:6)
```

11.7 Bayes formular

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \cdot P(B)$$

11.3 Union

 $A \cup B$

```
union(x = a, y = b)
```

11.4 Intersection

 $A \cap B$

```
intersect(x = a, y = b)
```

11.5 Difference

 $A \setminus B$

```
setdiff(x = a, y = b)
```

11.6 Examples

```
# Cases where first die is 1
omega %>% filter(x = 1)
# Cases where sum of dice equals 7
omega %>% filter(x + y = 7)
# Probability of dice equals 12
count(omega %>% filter(x + y = 12)) / count(omega)
```

12 Probability Distribution Functions

- "p" returns the cumulative density function
 Wenn du "more than" oder "less than", dann p
- 2. "d" returns the height of the probability density function

Wenn du genau die Wahrscheinlichkeit für einen ² einzigen Wert suchst, dann d.

3. "q" returns the inverse cumulative density function (quantiles)

Wenn wir den echten Wert eines Prozentwertes suchen, dann q.

4. "r" returns randomly generated numbers

12.1 Normalverteilung

12.1.1 pnorm

```
pnorm(q = , mean = , sd = )

# kleiner gleich 8000€

pnorm(q = 8000, mean = 0, sd = 1)

# größer als 8000€

1-pnorm(q = 8000, mean = 0, sd = 1)
```

q = Der Wert, bis zu dem wir $P(X \le q)$ berechnen.

Die Ausgabe ist die Wahrscheinlichkeit, dass $X \leq q$ gilt.

Beispiel: berechnet $P(X \le 1.96)$ für die Standardnormalverteilung.)

```
dnorm(x = , mean = , sd = )
dnorm(x = 0, mean = 0, sd = 1)
```

x = Der Wert, an dem die Dichte berechnet wird.

Beispiel: gibt die Dichte der Standardnormalverteilung bei x = 0 zurück.)

```
qnorm(p = , mean = , sd = )
qnorm(p = 0.975, mean = 0, sd = 1)
```

Ein interval containing the middle 80% of X

Jeweils 10% weil wir die 20 durch 2 teilen

```
qnorm(p = c(0.1, 0.9), mean = mu, sd = sigma)
```

p = Das Quantil, also der Wahrscheinlichkeitswert (zwischen 0 und 1)

Die Ausgabe ist der *x*-Wert, sodass $P(X \le x) = p$ gilt.

Beispiel: liefert das 97,5%-Quantil der Standardnormalverteilung.)

```
rnorm(n = , mean = , sd = )
rnorm(n = 10, mean = 0, sd = 1)
```

n = Anzahl der zu erzeugenden Zufallswerte.

Die Ausgabe sind n Zufallswerte aus der Normalverteilung. **Beispiel:** erzeugt 10 Zufallswerte aus einer Standardnormalverteilung.)

12.2 Binomialverteilung

size = number of trials (zero or more) prob = probability of success on each trial.

```
pbinom(q = , size = , prob = )
pbinom(q = 5, size = 10, prob = 0.3)
```

q = Die Anzahl der Erfolge, bis zu der $P(X \le q)$ berechnet wird.

Die Ausgabe ist die Wahrscheinlichkeit, dass in *size* Versuchen höchstens *q* Erfolge erzielt werden.

Beispiel: Berechnet $P(X \le 5)$ für eine Binomialverteilung mit 10 Versuchen und einer Erfolgswahrscheinlichkeit von 0.3.)

```
dbinom(x = , size = , prob = )
dbinom(x = 3, size = 10, prob = 0.3)
```

x = Die Anzahl der Erfolge, für die die Wahrscheinlichkeit berechnet wird.

Beispiel: Gibt die Wahrscheinlichkeit zurück, genau 3 Erfolge in 10 Versuchen zu erzielen.)

```
qbinom(p = , size = , prob = )
qbinom(p = 0.975, size = 10, prob = 0.3)
```

p = Das Quantil, also der Wahrscheinlichkeitswert (zwischen 0 und 1).

Die Ausgabe ist die kleinste Anzahl von Erfolgen, sodass $P(X \le x) \ge p$ gilt.

Beispiel: Liefert das 97,5%-Quantil der Binomialverteilung.)

```
rbinom(n = , size = , prob = )
rbinom(n = 10, size = 10, prob = 0.3)
```

n = Anzahl der zu erzeugenden Zufallszahlen.

Die Ausgabe sind n Zufallszahlen, die jeweils die Anzahl der Erfolge in size Versuchen darstellen.

Beispiel: Erzeugt 10 Zufallszahlen aus einer Binomialverteilung mit 10 Versuchen und einer Erfolgswahrscheinlichkeit von 0.3.)

12.3 Hypergeometrische Verteilung

n = Nummer der Erfolge

m = Nummer der Misserfolge

k = Wie viele Versuche es gibt

```
phyper(q = , m = , n = , k = )
phyper(q = 5, m = 20, n = 30, k = 10)
```

q = Die Anzahl der Erfolge, bis zu der $P(X \le q)$ berechnet wird.

Die Ausgabe ist die Wahrscheinlichkeit, dass bei k Ziehungen aus einer Urne mit m Erfolgen und n Misserfolgen höchstens q Erfolge erzielt werden.

Beispiel: Berechnet $P(X \le 5)$ für eine Hypergeometrische Verteilung mit m = 20, n = 30 und k = 10.

```
dhyper(x = , m = , n = , k = )
dhyper(x = 3, m = 20, n = 30, k = 10)
```

x = Die Anzahl der Erfolge, für die die Wahrscheinlichkeit berechnet wird.

Beispiel: Gibt die Wahrscheinlichkeit zurück, genau 3 Erfolge bei 10 Ziehungen zu erzielen.

```
qhyper(p = , m = , n = , k = )
qhyper(p = 0.975, m = 20, n = 30, k = 10)
```

p = Das Quantil, also der Wahrscheinlichkeitswert (zwischen 0 und 1).

Die Ausgabe ist die kleinste Anzahl von Erfolgen, sodass $P(X \le x) \ge p$ gilt.

Beispiel: Liefert das 97,5%-Quantil der Hypergeometrischen Verteilung.

```
rhyper(nn = , m = , n = , k = )
rhyper(nn = 10, m = 20, n = 30, k = 10)
```

nn = Anzahl der zu erzeugenden Zufallszahlen.

Die Ausgabe sind nn Zufallszahlen, die jeweils die Anzahl der Erfolge in k Ziehungen darstellen.

Beispiel: Erzeugt 10 Zufallszahlen aus einer Hypergeometrischen Verteilung mit m = 20, n = 30 und k = 10.

13 Expected Value und Varianz

13.1 Discrete Random Variablen

Erwartungswert(Mean) und Varianz einer diskreten Zufallsvariablen X mit Wahrscheinlichkeitsfunktion p(x)

$$E[X] = \sum_{x} x \cdot p(x)$$

$$Var(X) = E[X^2] - (E[X])^2$$

```
price <- c(3,4,2,2.5)
prob <- c(0.2,0.4,0.25,0.15)
expected <- sum(price * prob)
expectedX <- sum(price^2 * prob)
var <- expectedX - expected^2
samples <- 100 # Sample Size
mu <- expected * samples
sigma2 <- var * samples
# X ~ N(mu = mu, sigma2 = sigma2)</pre>
```

```
sd <- sd(sigma2)

1 - pnorm(300, mu, sd)
```

Hier berechnen wir erst Mean und dann die Var. Um zur SD zu gelangen müssen wir sqrt()

Um jetzt herauszufinden Wieviele Parkplätze wir bauen müssen um 99% der Autos parken zu können. Müssen wir die Anzahl der Häuser mal dem expected Value und Var rechnen

```
n <- 1000
qnorm(0.99, mean = mu, sd=sd)
```

13.2 Beispiel 2:

```
p <- 0.53
                    #money gain in €/kg for one
→ bag
w <- 50
                         #weight of single bag
n <- 300
                         #amount of bags
expected_weight_total <-n * w
expected_price <- expected_weight_total * p</pre>
sd_w <- 2
                        #sd for one bag
                 #var for one bag
var_w <- sd_w^2</pre>
var_w_total <- n * var_w #var for all bags</pre>
var_price <- p^2 * var_total</pre>
# X ~ N(expected_price, var_price)
```

13.3 X ist Binomially distributed

$$E[X] = n \cdot p$$
 , $Var(X) = n \cdot p \cdot (1 - p)$

14 Central Limit Theorem

Es müssen midestens 30 Werte vorhanden sein, damit wir aproxxen können

14.1 Nach Maximum Sample size Umstellen *n*

⚠ Hier sollte alpha 0.5 sein, sonst Brute force ⚠

Quantilgleichung die bei der Normalapproximation der Binominalverteilung angewendet wird:

$$k + 0.5 = n \cdot p + \text{qnorm}(\alpha) \cdot \sqrt{n \cdot p \cdot (1 - p)}$$

Wir wissen, das wenn alpha = 0.5, ist qnorm(0.5) = 0. Damit können wir $\sqrt{n \cdot p \cdot (1-p)}$ ignorieren! - Jetzt haben wir also:

$$k + 0.5 = n \cdot p \implies n = \frac{k + 0.5}{p}$$

Beispiel: Aus den Fakultäten B (25%) und C (30%) stammen insgesamt 55% aller Studierenden. Bei einer zufällig gezogenen Stichprobe der Größe n ist die Anzahl X der Studierenden aus B und C binomialverteilt, also X Bin(n, 0,55). Ein Raum bietet 80 Plätze, weshalb die Bedingung. Der Raum soll mit eine Chance von 50% ausreichen

 $P(X \le 80) >= 0.5$ erfüllt sein muss. Bestimme das maximale n, für das diese Anforderung gilt.

$$k = 80$$
, $p = 0.55$, $\alpha = 0.5$, qnorm(0.5) = 0
$$n = \frac{80.5}{0.55} \approx 146.36.$$

```
n <- 80.5 / 0.55 #146.3636
```

14.2 Bruteforce pbinom for n

```
tibble(
  num = 1:500,
  v = pbinom(80, num, prob = 0.5)
) %>%
  filter(v < 0.9) %>%
  head(1)
```

14.3 Bruteforce pnorm for n

5

2

Distributions

1.1)Binominale Distribution mit Zurücklegen

↑ ↑ Mit Zurücklegen ↑ ↑ ↑

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

Beispiel: Wir haben 7 Weiße Bälle und 3 Rote Bälle: Wie Wie groß ist die Wahrscheinlichkeit, dass wir in n=5 Zügen k=2 rote Bälle ziehen? p ist 7/10

$$P(X=2) = {5 \choose 2} \left(\frac{3}{10}\right)^2 \left(\frac{7}{10}\right)^3.$$

dbinom(x = 2, size = 5, prob = 3/10)#0.1029193

x: Wie viele Rote Bälle wir bekommen wollen,

size: Wie Oft wir ziehen,

prob: Die prob einen Roten Ball zu ziehen

Beispiel: Angenommen, wir haben n = 5 Versuche. drei mögliche Ergebnisse (z.B. rot, blau, schwarz) mit

1.3) Multinomial Distribution mit Zurücklegen

 $Rot = \frac{15}{20}$, $Gr\ddot{\mathbf{u}}n = \frac{4}{20}$, $Blau = \frac{1}{20}$. Wir fragen: Wie groß ist die Wahrscheinlichkeit, dass genau Rot=2, $Gr\ddot{\mathbf{u}}n$ =2, Blau=1

Formel:
$$\frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$

$$\frac{5!}{2!2!1!} \left(\frac{15}{20}\right)^2 \left(\frac{4}{20}\right)^2 \left(\frac{1}{20}\right)^1 = 0.3375.$$

(factorial(5) / (factorial(2) * factorial(2) * ((15/20)² * (4/20)² * (1/20)¹) #0.03375 #Hier auch als Funktion dmultinom(c(2, 2, 1),prob=c(15/20,4/20, 1/20))

1.2) Hypergemoetric Distribution ohne Zurücklegen

∧ ∧ Nutzen wir nur wenn das erste ziehen das zweite Ziehen beeinflusst \wedge \wedge

↑ ↑ Wie Binomial, aber ohne Zurücklegen ↑ ↑

$$P(X = k) = \frac{\binom{M}{k} \binom{N - M}{n - k}}{\binom{N}{n}}$$

N: Gesamtanzahl aller Elemente(z.B alle Kugeln),

M: Anzahl der Roten Kugeln gesamt,

Wie oft wir Ziehen,

Wie viele Roten wir Ziehen

dhyper(x = 2, m = 3, n = 7, k = 5)

x: wie viele von den gezogenen Bällen Rot sein sollen,

wie viele Rote Bälle,

wie viele nicht Rote,

wie viele Bälle wir ziehen

1.4) Multivariate Hypergeometric Distribution

OHNE Zurücklegen

Mie Binomial aber mit mehr als zwei Optionen.
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M

Beispiel:

Angenommen, wir haben n = 5 Versuche. drei mögliche Ergebnisse (z.B. rot, blau, schwarz) mit $Rot = \frac{15}{20}$, $Gr\ddot{u}n = \frac{4}{20}$, $Blau = \frac{1}{20}$. Wir fragen: Wie groß ist die Wahrscheinlichkeit, dass genau Rot=2, Grün=2, Blau=1

Formel: $P(X_1 = k_1, X_2 = k_2, ..., X_r = k_r) = \frac{\binom{K_1}{k_1} \binom{K_2}{k_2} ... \binom{K_r}{k_r}}{\binom{N}{1}}$

$$\frac{\binom{15}{2}\binom{4}{2}\binom{1}{1}}{\binom{20}{5}} \approx 0.04063467.$$

(choose(15,2) * choose(4,2) * choose(1,1))/choose(20,5) #0.04063467

1.4) Sequentielle Ziehung mit Zurücklegen

Wir haben insgesamt 20 Bälle, davon sind 15 Bälle nicht rot und 5 Bälle sind rot. Wir wollen die Wahrscheinlichkeit erst 4 nicht rote Bälle zu ziehen und dann ein roten Ball zu ziehen. - Geometrische Verteilung

P(Keinen roten Ball) = $\frac{15}{20}$ P(Einen roten Ball) = $\frac{5}{20}$

$$P(X=5) = \left(1 - \frac{5}{20}\right)^4 \cdot \frac{5}{20}$$

x = Nummer der anderen Bälle bis der blaue kommt. todo Erst nehmen wir die chance (gegenwahrscheinlichkeit) keinen roten zu ziehen hoch 4 und dann mal die chance einen roten zu ziehen

1.6) Sequentielle Ziehung ohne Zurücklegen

<u>∧</u> ∧ Ohne Zurücklegen ∧ ∧

Wir haben insgesamt 20 Bälle, davon sind 15 Bälle nicht rot und 5 Bälle sind rot. Wir wollen die Wahrscheinlichkeit erst 4 nicht rote Bälle zu ziehen und dann ein roten Ball zu ziehen. Negative hypergeometrische Verteilung

P(Keinen roten Ball) = $\frac{15}{20}$ P(Einen roten Ball) = $\frac{5}{20}$ P(einen roten Ball nach 4 Zügen) = $\frac{5}{16}$

$$P(X=5) = \frac{\binom{15}{4}\binom{5}{0}}{\binom{20}{5}} \cdot \frac{5}{16}$$

Wir berechnen die Wahrscheinlichkeit 4 nicht rote Bälle zu ziehen Multipliziert mit der Wahrscheinlichkeit einen roten aus den verbleibenden Bällen zu Ziehen.

((choose(15,4)*choose(5,0))/choose(20,4)) * 5/16 #0.0880418

16 Probability - Beispiele

16.1 Beispiel 1

A biased coin (head with probability 1/3) head with probability 1/3) is tossed. If the coins shows tail a fair die is rolled 5 times and if the coin shows head a biased die (6 with probability 0.4) is rolled 5 times. The number of sixes are counted.

16.1.1 a) Determine the density of the random X which counts the number of sixes.

```
result <- tibble(
    num = 0:5,
    head = dbinom(num, 5, prob = 0.4),
    tail = dbinom(num, 5, prob = 1/6),
    dens = head * 1/3 + tail * 2/3
}
result</pre>
```

16.1.2 b) Evaluate the expected value and the variance of 12 the random variable X.

```
expected <- sum(result$num * result$dens)
expectedX <- sum(result$num^2 * result$dens)
var <- expectedX - expected^2
var</pre>
```

16.1.3 c) What is the probability that the coin had shown a head if 3 sixes has been in the 5 rolls?

$$P(\text{Head} \mid 3 \text{ Sixes}) = \frac{P(\text{Head} \land 3 \text{ Sixes})}{P(3 \text{ Sixes})}$$

```
p_head_and_three <- 1/3 * dbinom(3, 5, prob = 0.4)
p_three <- 0.098233471 #dens wert für 3 aus der a
p_head_when_threes <- p_head_and_three / p_three
```

Hier als oneliner:

```
(1/3 * dbinom(3, 5, prob = 0.4)) / 0.098233471
```

16.2 Beispiel 2

In a particular town 10% of the families have no children, 20% have one child, 50% have two children, 20% have 3 children and 10% have 4 children. Let T represent the total number of children, and G the number of girls, in a family chosen at random from this town

16.2.1 a

10

Assuming that children are equally like to be boys or girls find distribution of G.

```
tibble(
  g = 0:4) %>% rowwise() %>%
    dens = sum(c(0.1, 0.2, 0.4, 0.2, 0.1) *
                 dbinom(g, size = 0:4,
                  prob = 0.5))))
           dens
      g
  <int>
          <dbl>
      0 0.331
1
      1 0.4
3
      2 0.213
      3 0.05
      4 0.00625
```

g = 0:4: gibt an wieviele Kinder die Familie hat.

dens : Für jede Berechung von dens ist g eine Statische Zahl. Z.b 2.

Wir berechnen die Prob das eine Familie 0-4 Kinder hat MAL die Prob das eine Familie mit 0-4 Kindern 2 Mädchen hat. Das wäre 0.213

16.2.2 b

f you know that 2 girls are in an arbitrary chosen family, find the probability that the family has 4 children **A:** Hier brauchen wir Bayes theorem

$$P(4 \text{ Children} \mid 2 \text{ Girls}) = \frac{P(4 \text{ Children} \land 2 \text{ Girls})}{P(2 \text{ Girls})}$$

16.2.3 b

Suppose the names of all children in the town are put into a hat, and a name is picked out at random. Let U be the total number of children in the family of the child picked at at random. Find the distribution of U.

```
(0:4) * c(0.1, 0.2, 0.4, 0.2, 0.1) / sum((0:4) * 

- c(0.1, 0.2, 0.4, 0.2, 0.1))
#0.0 0.1 0.4 0.3 0.2
```

jedes *N* an Kindern die eine Familie haben kann Teilen wir durch das Expected Value an Kindern. So kennen wir die Chance das die Familie die wir ziehen *N* Kinder hat

17 Type I and II Errors

	True state of H_0	
Statistical decision	H ₀ True	H ₀ False
Reject H_0	Type I Error	Correct
Do not reject H_0	Correct	Type II Error

Definitions:

- α : Probability of rejecting H_0 given that H_0 is true.
- β : Probability of not rejecting H_0 given that H_0 is false.

18 Relevante Übersetzungen

- 1. Dispersion: Streuung (vermutlich SD gemeint)
- 2. Scatter: Streuung (vermutlich SD gemeint)

19 P-Value

Hypothese	Test-Typ	p-Wert Berechnung
$H_0: \mu \geq \mu_0$	Einseitig (links)	p = pnorm(z)
$H_0: \mu \leq \mu_0$	Einseitig (rechts)	p = 1 - pnorm(z)
$H_0: \mu = \mu_0$	Zweiseitig	$p = 2 \cdot pnorm(- z)$

20 Type II Error β

20.1 Normal Distribution - Two Sided

Was brauchen wir:

Symbol	Bedeutung
ub	Upper bound
lb	lower bound
sigma	Population Sigma
mul	Test Mean - gegeben in der Aufgabenstellung

```
beta <- pnorm(ub, mean = mu1, sd = sigma/sqrt(n))
   - pnorm(lb, mean = mu1, sd = sigma/sqrt(n))</pre>
```

20.2 Normal Distribution - Rechtsseitiger Test

```
beta <- pnorm(ub, mean = mu1, sd = sigma/sqrt(n))
```

20.3 Normal Distribution - Linksseitiger Test

20.4 Binomial Distribution - two sided

Was brauchen wir:

Symbol	Bedeutung	
p0	population proportion	
p1	Test Proportion - gegeben in der aufgabestellung	

21 Hypothesen Test

 H_0 : <=, >= oder = H_1 : <, > oder != μ : Population Mean σ_0 : Population Sigma - Der Index 0 z.b. μ_0 bedeutet, dass es sich um einen gegebenen Wert, und nicht um einen geschätzten Wert handelt.

I) Gauß Test:

Hauptziel: Hier wird die Hypothese über den Mittelwert (μ) getestet

Mean μ ist unbekannt, wir kennen SD σ_0

Gegeben muss sein:

$$H_0: \mu = \mu_0, \quad H_0: \mu \le \mu_0, \quad H_0: \mu \ge \mu_0$$

Symbol	Bedeutung
n	Stichprobengröße
σ_0	Standardabweichung der Gesamtheit
$\overline{X}_{(n)}$	Sample Mean

Decision Rule *R*:

$$T = \frac{\overline{X} - \mu_0}{\frac{\sigma_0}{\sqrt{n}}} \in R \implies \text{reject } H_0$$

Rejection Region *R*:

H_0	rejection region R
$\mu = \mu_0$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$\mu \leq \mu_0$	$(u_{1-\alpha},\infty)$
$\mu \geq \mu_0$	$(-\infty, -u_{1-\alpha})$

$$u_{1-\frac{\alpha}{2}} = \text{qnorm}(1 - (\text{alpha / 2}))$$

Beispiel:

```
n <- 100
      sd <- 0.3
      sample_mean <- 10.1</pre>
     alpha <- 0.1
      #HO: mu = 10, H1: mu != 10
     mu0 <- 10
     #Rejection region
     ru <- qnorm(1 - (alpha / 2))
     rl <- -qnorm(1 - (alpha / 2))
     #[-inf , -1.644854] or [1.644854, inf]
10
      \#teststatistic
11
     t <- (sample_mean - mu0) /(sd / sqrt(n))
12
      #3.333333
      t > ru
      #we reject h0 because we are in the rejection
                                                                 10
16
      \rightarrow region
                                                                 11
      p_value <- 2* pnorm(-abs(t))</pre>
                                                                 12
17
      #0.0008581207
                                                                 13
18
     p_value < alpha</pre>
                                                                 14
19
      #True we reject HO
                                                                 15
20
```

P-Value berechnen:

```
pnorm(t) #H0: mu >= mu0
1-pnorm(t) #H0: mu <= mu0
2*pnorm(-abs(t)) #H0: mu = mu0</pre>
```

II) t-Test:

Hauptziel: Hier wird die Hypothese über den Mittelwert (μ) getestet.

Mean μ und SD σ_0 sind unbekannt

 \wedge Mean μ_0 wird durch H_0 gegeben \wedge

Gegeben muss sein:

$$H_0: \mu = \mu_0, \quad H_0: \mu \leq \mu_0, \quad H_0: \mu \geq \mu_0$$

Symbol	Bedeutung
n	Stichprobengröße
$S_{(n)}$	Sample SD
$\overline{X}_{(n)}$	Sample Mean

Decision Rule:

$$T = \frac{\overline{X} - \mu_0}{\frac{s_{(n)}}{\sqrt{n}}} \in R \implies \text{reject } H_0$$

Rejection Region *R*:

H_0	Rejection Region <i>R</i>
$\mu = \mu_0$	$(-\infty, -t_{n-1,1-\frac{\alpha}{2}}) \cup (t_{n-1,1-\frac{\alpha}{2}}, \infty)$
$\mu \leq \mu_0$	$(t_{n-1,1-lpha},\infty)$
$\mu \geq \mu_0$	$(-\infty, -t_{n-1,1-\alpha})$

$$t_{n-1,1-\frac{\alpha}{2}} = qt(1-alpha/2, n-1)$$

exact ∧ (nur möglich wenn wir Sample habe) ∧:

```
t.test(x = sample, mu = mu0, alternative =
    "two.sided", conf.level = 1-alpha)
```

Approx Beispiel:

```
#HO: mu >= 250, h1: < 250
n <- 82
sample_mu <- 248
sample_sd <- 5</pre>
alpha <- 0.05
mu0 <- 250
R \leftarrow -qt(1-alpha, n-1)
#[ , -1.663884]
t <- (sample_mu - mu0) / ((sample_sd) / sqrt(n))
#-3.622154
t < R
#We reject the HO
p_value \leftarrow pt(t,n - 1)
#0.0002540167
p_value < alpha</pre>
#True We reject the HO
```

P-Value berechnen:

```
pt(t, n-1) #HO: mu >= muO
1-pt(t, n-1) #HO: mu <= muO
2*pt(-abs(t), n-1) #HO: mu = muO</pre>
```

III) Test für Varianz σ_0^2 :

Hauptziel: Hier wird die Hypothese über die Varianz (σ_0^2) getestet.

Mean μ und SD σ sind unbekannt

 \bigwedge Kein σ_0 da σ gegeben durch $H_0 \bigwedge$ ∧ Also kein Schätzwert ∧

Gegeben muss sein:

$$H_0: \sigma^2 = \sigma_0^2$$
, $H_0: \sigma^2 \le \sigma_0^2$, $H_0: \sigma^2 \ge \sigma_0^2$

Symbol	Bedeutung
$S_{(n)}$	Sample SD
$\overline{X}_{(n)}$	Sample Mean

Decision Rule:

$$T = \frac{(n-1) S_{(n)}}{\sigma_0^2} \in R \implies \text{reject } H_0.$$

Rejection Region *R*:

H_0	rejection region R
$\sigma^2 = \sigma_0^2$	$(0, \chi^2_{n-1, \frac{\alpha}{2}}) \cup (\chi^2_{n-1, 1-\frac{\alpha}{2}}, \infty)$
$\sigma^2 \leq \sigma_0^2$	$\left(\chi^2_{n-1,1-lpha},\infty ight)$
$\sigma^2 \ge \frac{\sigma_0^2}{\sigma_0^2}$	$(0,\chi^2_{n-1,\alpha})$

Beispiel:

```
#h0: sd >= 7, h1: sd <7
      n <- 82
      sample_mu <- 248
      sample_sd <- 5</pre>
      alpha <- 0.05
      sd0 < -7
      #Rejection region
      R <- qchisq(alpha, n-1)
      #[ , 61.26148
10
      #Teststatistics
      t \leftarrow ((n - 1) * sample_sd)/sd0
11
      #57.85714
      \# We \ reject \ HO, \ in \ R \ area
      p_value <- pchisq(t, n-1)</pre>
      #0.02419782
     p_value < alpha</pre>
17
      #we reject HO
```

P-value Berechnen:

```
pchisq(t, n-1) \#H0: sd >= sd0
1-pchisq(t, n-1) #HO: sd <= sd0
2*pchisq(-abs(t), n-1) #H0: sd = sd0
```

IIII) Bernoulli Test für Probability p_0 :

Hauptziel: Zu prüfen, ob die beobachtete Erfolgsrate \hat{p} signifikant von der vorgegebenen Wahrscheinlichkeit p₀ abweicht

Probability p_0 ist unbekannt

Number of successes:
$$X = \sum_{i=1}^{n} X_i \sim B(n, p)$$
, d.h. $\mathbb{E}(X) = np$
$$\text{Var}(X) = np(1-p).$$

Gegeben muss sein:

$$H_0: p = p_0, \quad H_0: p \le p_0, \quad H_0: p \ge p_0$$

Symbol	Bedeutung
n	Stichprobengröße
X	Number of successes
\hat{p}	$\frac{X}{n}$ Example Probability

Teststatistic

$$T = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, \quad \text{mit } \hat{p} = \frac{X}{n}.$$

Rejection Region R

H_0	Rejection Area R
$p = p_0$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$p \leq p_0$	$(u_{1-\alpha},\infty)$
$p \ge p_0$	$(-\infty, -u_{1-\alpha})$

Normal Approximation:

```
#a) 80% immunity rate
     #b) HO: p <= 80, H1: p > 80
     p0 <- 0.8; n <- 200; x <- 172
     alpha <- 0.05
     phut <- x / n
     #Rejection region
     R <- qnorm(1 - alpha)</pre>
     #r <- [1.644854, ]
     #teststatistic
     t <- (phut-p0)/sqrt((p0 * (1 - p0)) / n)
     #We reject HO
     p_value <- 1 - pnorm(t)</pre>
15
     #0.01694743
     p_value < alpha</pre>
     #We reject HO
```

Exact test:

```
binom.test(172, p = 0.8, n = n, alternative =

¬ 'greater', conf.level = 1-alpha)
```

10

11

12

13

16

17

0) Alle Infos 2-Sample Tests:

MEOOOOOOOOOW

```
/\____/\
/ o o \
( == ^ == )
) (
( ) () () )
( ( ) ( ) )
```

I) 2-Sample Gauss Test:

Hauptziel: Hier wird die Hypothese über die Mittelwerte (μ_1, μ_2) getestet

Means sind unbekannt, wir kennen σ_1 , σ_2

Gegeben muss sein:

$$H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 \le \mu_2, \quad H_0: \mu_1 \ge \mu_2$$

Symbol	Bedeutung
n_1, n_2	Stichprobengrößen
σ_1 , σ_2	SD der gesamtheiten
$\overline{X}_{(n_1)}$, $\overline{Y}_{(n_2)}$	Sample Means

Teststatistik:

$$T = \frac{\overline{X}_{(n_1)} - \overline{Y}_{(n_2)}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Decision Rule R:

$$T \in R \implies \text{reject } H_0$$

Rejection Region *R*:

H_0	Rejection Region R
$\mu_1 = \mu_2$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$\mu_1 \leq \mu_2$	$(u_{1-\alpha},\infty)$
$\mu_1 \ge \mu_2$	$(-\infty, u_{\alpha})$

Beispiel:

```
m1 <- c(5.46, 5.34, ..., 5.82)
     m2 <- c(5.45, 5.31, 4.11, ..., 4.09)
     sd1 <- 0.5
     sd2 <- 0.6
     n1 <- length(m1)
     n2 \leftarrow length(m2)
     #test the HO: mu1 >= mu2
     alpha <- 0.05
     #rejection Region
     r <- qnorm(alpha)
     #[, -1.644854]
11
     #teststistic
12
     t \leftarrow (mean(m1) - mean(m2)) /
13
       sqrt((sd1^2 / n1) + (sd2^2 / n2))
14
     #1.027782
15
     p_value <- pnorm(t)</pre>
16
     #0.8479739
17
     #we fail to reject HO since we are outside of the
18
        rejection area
```

P-value Berechnen:

```
pnorm(t) #H0: mu1 >= mu2
1-pnorm(t) #H0: mu1 <= mu2
2*pnorm(-abs(t)) #H0: mu1 = mu2</pre>
```

II) 2-Sample t-Test (Varianzen gleich und unbekannt):

Hauptziel: Hier wird die Hypothese über die Mittelwerte (μ_1, μ_2) getestet

Means μ_1 , μ_2 sind unbekannt und $\sigma_1 = \sigma_2$

Gegeben muss sein:

 $H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 \le \mu_2, \quad H_0: \mu_1 \ge \mu_2$

★ Es muss für x und y ein Sample gegeben sein ★ Beispiel:

III) Welch test (Varianzen ungleich, aber unbekannt):

Hauptziel: Hier wird die Hypothese über die Mittelwerte (μ_1, μ_2) getestet

Means μ_1, μ_2 sind unbekannt und $\sigma_1 \neq \sigma_2$

Gegeben muss sein:

 $H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 \leq \mu_2, \quad H_0: \mu_1 \geq \mu_2$

★ Es muss für x und y ein Sample gegeben sein ★ Beispiel:

 \wedge Das einzige was sich ändert ist: var.equal = $F \wedge$

IV) Two Paired Sample t-Test

σ ist unbekannt

Gegeben muss sein:

 $H_0: \mu_1 = 0$, $H_0: \mu_1 \le 0$, $H_0: \mu_1 \ge 0$

★ Es muss für x und y ein Sample gegeben sein ★ Beispiel:

```
#H0: mu = 0, H1: mu != 0

x <- c(16, 15, 11, 20, ..., 15, 14, 16)

y <- c(13, 13, 10,.., 10, 15, 11, 16)

t.test(x = x, y = y, alternative = 'two.sided',

-- paired = T, var.equal = T, conf.level = 0.95,

-- mu = 0)

#0.0007205
```

↑ Das einzige was sich ändert ist: paired = T↑

V) Testing two Variances - F Test

Hauptziel: Wir vergleichen die beiden sample Varianzen.

σ ist unbekannt

Gegeben muss sein:

```
H_0: \sigma_1 = \sigma_2, H_0: \sigma_1 \leq \sigma_2, H_0: \sigma_1 \geq \sigma_2
```

⚠ Es muss für x und y ein Sample gegeben sein ⚠ **Beispiel:**

Beispiel: Erst H0 dass vars gleich sind. Wenn nicht reject, dann müssten wir mein Mean test, var.equal auf True