[L9] Robotics (ME671): Inverse Kinematics - 2

Suril Shah IIT Jodhpur

Kinematic Decoupling

$$o_c^o = o - d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 Inverse position kinematics

- 2. Using q_1 , q_2 , q_3 , determine R_3^0
- 3. Find: $R_6^3 = (R_3^0)^{-1}R = (R_3^0)^T R$
- 4. Find Euler angles corresponding to the rotation matrix

$$R_6^3 = (R_3^0)^T R$$
 Inverse orientation kinematics

Overview: kinematic decoupling

- Systems that have an arm and a wrist
 - Such that the wrist joint axes are aligned at a point
- Inverse kinematics problem can be split into two parts:
 - 1. Inverse position kinematics: position of the wrist center
 - 2. Inverse orientation kinematics: orientation of the wrist

Inverse position kinematics

• Inputs:

$$o = o_6^0 = \begin{bmatrix} o_x \\ o_y \\ o_z \end{bmatrix}, R = R_6^0 = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

· We can write:

$$o = o_6^0 = o_c^o + R \begin{bmatrix} 0 \\ 0 \\ d_6 \end{bmatrix} \qquad \Longrightarrow \qquad o_c^o = o - d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- Substituting $o_c^0 = [x_c y_c z_c]^T$

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x \\ o_y \\ o_z \end{bmatrix} - d_6 \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

Inverse position kinematics: : RRR manipulator

- y_0 y_0
- To solve for θ_1 , project the arm onto the x_0 , y_0 plane $\theta_1 = \operatorname{atan2}(x_c, y_c)$
 - Can also have:

 $\theta_1 = \pi + \operatorname{atan2}(x_c, y_c)$

This will of course change the solutions for θ_2 and θ_3

x_c **→** *x₀*

• θ_1 is undefined

• If $x_c = y_c = 0$

• Any value of θ_1 will work

Warning: singular configurations, offsets

- Solut
 - If there is an offset, wrist centers cannot intersect z_0 .

Left arm and right arm solutions

Left arm and right arm solutions

· Left arm:

 $\theta_{1} = \varphi - \alpha$ $\varphi = a \tan 2(x_{c}, y_{c})$ $\varphi = a \tan 2(x_{c}, y_{c})$

• Right arm:

 $\theta_{1} = \alpha + \beta$ $\alpha = \operatorname{atan2}(x_{c}, y_{c})$ $\beta = \pi + \operatorname{atan2}(\sqrt{x_{c}^{2} + y_{c}^{2} - d^{2}}, d)$ $= \operatorname{atan2}(-\sqrt{x_{c}^{2} + y_{c}^{2} - d^{2}}, -d)$

Therefore there are in general two solutions for θ_1

Left arm and right arm solutions

• Finding θ_2 and θ_3 is identical to the planar two-link manipulator we have seen previously:

$$\cos \theta_3 = \frac{u^2 + s^2 - a_2^2 - a_3^2}{2a_2 a_3}$$
$$u^2 = x_c^2 + y_c^2 - d^2$$
$$s = z_c - d_1$$

$$\Rightarrow \cos \theta_3 = \frac{x_c^2 + y_c^2 - d^2 + (z_c - d_1)^2 - a_2^2 - a_3^2}{2a_2 a_3} \equiv D$$
$$\sin \theta_3 = \pm \sqrt{1 - D^2}$$

• Therefore we can find two solutions for θ_3 :

Left arm and right arm solutions

- The two solutions for θ_3 correspond to the elbow-down and elbow-up positions respectively
- Now solve for θ_2 :

$$\theta_2 = \operatorname{atan2}(u, s) - \operatorname{atan2}(a_2 + a_3 c_3, a_3 s_3)$$

$$= \operatorname{atan2}(\sqrt{x_c^2 + y_c^2 - d^2}, z_c - d_1) - \operatorname{atan2}(a_2 + a_3 c_3, a_3 s_3)$$

Thus there are two solutions for the pair (θ_2, θ_3)

a₂ 0₂ u

Elbow manipulator

• In general, there will be a maximum of four solutions to the inverse *position* kinematics

Inverse orientation: spherical wrist

- Thus we now have R_3^0
- Note that: $R = R_3^0 R_6^3$
- To solve for the final three joint angles:

$$R_6^3 = (R_3^0)^{-1}R = (R_3^0)^T R$$

Inverse orientation: spherical wrist

• The inverse orientation problem reduces to finding a set of Euler angles $(\theta_d, \theta_s, \theta_6)$ that satisfy:

$$R_{6}^{3} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} \\ -s_{5}c_{6} & s_{5}c_{6} & c_{5} \end{bmatrix}$$

- To solve this, take two cases:
 - 1. $r_{13} = r_{23} \neq 0$, i.e., $\theta_5 \neq 0$: Nonsingular
 - 2. $r_{13} = r_{23} = 0$, i.e., $\theta_5 = 0$: Singular
- Nonsingular case ($\theta_5 \neq 0, r_{33} \neq \pm 1$)

$$c_5 = r_{33}, s_5 = \pm \sqrt{1 - r_{33}^2}$$

 $\theta_5 = \operatorname{atan} 2\left(r_{33}, \pm \sqrt{1 - r_{33}^2}\right)$

Inverse orientation: spherical wrist

Singular case $(r_{13} = r_{23} = r_{31} = r_{32} = 0$, thus $\theta_5 = 0$, $s_5 = 0$)

• Therefore, R_6^3 has the form:

$$R_{6}^{3} = \begin{bmatrix} r_{11} & r_{12} & 0 \\ r_{21} & r_{22} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{4}c_{6} - s_{4}s_{6} & -c_{4}s_{6} - s_{4}c_{6} & 0 \\ s_{4}c_{6} + c_{4}s_{6} & -s_{2}s_{6} + c_{4}c_{6} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{46} & -s_{46} & 0 \\ s_{66} & c_{46} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• We can only find the sum θ_4 + θ_6 as follows:

$$\theta_4 + \theta_6 = \operatorname{atan2}(r_{11}, r_{21}) = \operatorname{atan2}(r_{11}, -r_{12})$$

There is an infinite number of solutions

Inverse orientation: spherical wrist

- Thus there are two values for θ_{5} .
- Using the first $(s_5 > 0)$:

$$\theta_4 = \operatorname{atan2}(r_{13}, r_{23})$$

 $\theta_6 = \operatorname{atan2}(-r_{31}, r_{32})$

• Using the second value for θ_5 ($s_5 < 0$):

$$\theta_4 = \text{atan2}(-r_{13}, -r_{23})$$

$$\theta_6 = \operatorname{atan2}(r_{31}, -r_{32})$$

Two solutions for the inverse orientation kinematics

Kinematic Decoupling

Given the pose of tool frame ot 6 DOF robot

$$R_6^0(q_1,...,q_6) = R$$
 $o_6^0(q_1,...,q_6) = o$

1. Find q_1 , q_2 , q_3 such that the position of the wrist center is:

$$o_c^o = o - d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 Inverse position kinematics

- 2. Using q_1 , q_2 , q_3 , determine R_3^0
- 3. Find: $R_6^3 = (R_3^0)^{-1}R = (R_3^0)^T R$
- 4. Find Euler angles corresponding to the rotation matrix

$$R_6^3 = (R_3^0)^T R \begin{tabular}{l} & & \\ &$$

THANK YOU