Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д.И. Менделеева»

ОТЧЕТ ПО ДОМАШНЕЙ РАБОТЕ №13 1 вариант

Выполнил студент группы КС-36: Золотухин Андрей Александрович

Ссылка на репозиторий: https://github.com/

CorgiPuppy/

num-methods-eq-math-phys-chem-labs

Приняла: Кольцова Элеонора Моисеевна

Дата сдачи: 19.05.2025

Москва 2025

Оглавление

Описание задачи	1
Выполнение задачи	3
Задание 1	3
Задание 2	3
Задание 3	3
Задание 4	3
Задание 5	4
Задание 6	5
Задание 7	6
Задание 8	6
Задание 9	6
Задание 10	7
Задание 11	8
Задание 12	9
Задание 13	9
Задание 14	9
Задание 15	9
Задание 16	10
Задание 17	10
Задание 18	12
Задание 19	12
Задание 20	13
Задание 21	13

Описание задачи

Уравнение	Интервалы переменных	Начальные и граничные условия
$\frac{\partial u}{\partial t} = 0, 2\frac{\partial^2 u}{\partial x^2} + 0, 5\frac{\partial^2 u}{\partial y^2} - 5tu$	$x \in [0, 1]$ $y \in [0, 1]$ $t \in [0, 1]$	$u(t = 0, x, y) = 0$ $\begin{cases} \frac{\partial u}{\partial x}(t, x = 0, y) = ty \\ \frac{\partial u}{\partial x}(t, x = 1, y) = 5ty \end{cases}$ $\begin{cases} u(t, x, y = 0) = tx \\ u(t, x, y = 1) = 2tx \end{cases}$

Для заданного уравнения:

- 1. записать неявную разностную схему;
- 2. записать схему переменных направлений;
- 3. привести схемы к виду, удобному для использования метода прогонки;
- 4. проверить сходимость прогонки;
- 5. записать рекуррентное прогоночное соотношение;
- 6. составить алгоритм (блок-схему) расчёта.

Уравнение	Интервалы переменных	Начальные и граничные условия
	$x \in [0, 1]$	$u(t=0,x,y) = e^x$
$\frac{\partial u}{\partial t} = 2\frac{\partial u}{\partial x} - 0,05\frac{\partial u}{\partial y}$	$y \in [0, 1]$	u(t, x = 1, y) = t
	$t \in [0, 1]$	u(t, x, y = 0) = 0

Для заданного уравнения:

- 7. записать неявную разностную схему;
- 8. записать схему расщепления;
- 9. вывести рекуррентное соотношение;
- 10. составить алгоритм (блок-схему) расчёта.

Уравнение	Интервалы переменных	Начальные и граничные условия
$\frac{du}{dx} + 0, 3\frac{d^2u}{dx^2} = 3x^2$	$x \in [0, 1]$	$\begin{cases} \frac{du}{dx}(x=0) = 0\\ \frac{du}{dx}(x=1) = 1 \end{cases}$

Для заданного уравнения:

- 11. представить задачу в нестационарном виде;
- 12. записать разностную схему Кранка-Николсона;
- 13. привести схему к виду, удобному для использования метода прогонки;
- 14. проверить сходимость прогонки;
- 15. найти α_1, β_1 ;
- 16. записать рекуррентное прогоночное соотношение;
- 17. составить алгоритм (блок-схему) расчёта;

Уравнение	Интервалы переменных	Начальные и граничные условия
$\frac{\partial u}{\partial t} + 8 \frac{\partial u}{\partial y} = 7ty \frac{\partial^2 u}{\partial x^2} + 5t \frac{\partial^2 u}{\partial y^2} - 3u^2$	$x \in [0, 1]$ $y \in [0, 1]$ $t \in [0, 1]$	$u(t = 0, x, y) = 0$ $\begin{cases} u(t, x = 0, y) = ty \\ u(t, x = 1, y) = t^{2}y \\ u(t, x, y = 0) = tx \\ u(t, x, y = 1) = t^{2}x \end{cases}$

Для заданного уравнения:

- 18. записать схему предиктор-корректор;
- 19. записать рекуррентное прогоночное соотношение для предиктора;
- 20. записать рекуррентное прогоночное соотношение для корректора;
- 21. указать порядок аппроксимации разностной схемы;

Выполнение задачи

Задание 1

Записать неявную разностную схему:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = 0, 2 \frac{u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i-1,j}^{n+1}}{h_x^2} + 0, 5 \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_y^2} + 5(n+1)\Delta t u_{i,j}^{n+1}.$$
(1)

Задание 2

Записать схему переменных направлений для схемы (1):

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n}}{\Delta t} = \frac{0.2}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_x^2} + \frac{0.5}{2} \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{h_y^2},$$

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\Delta t} = \frac{0.2}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_x^2} + \frac{0.5}{2} \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_y^2} - \frac{0.5}{2} \frac{u_{i,j}^{n+1} - u_{i,j}^{n+1} - u_{i,j}^{n+1}}{h_y^2} - \frac{0.5}{2} \frac{u_{i,j}^{n+1} - u_{i,j}^{n+1}}{h_y^2} - \frac{0$$

Первая подсхема в схеме переменных направлений (2) аппроксимирует производную по времени на первом полушаге интервала Δt и является неявной по координате x и явной по координате y. Вторая подсхема аппроксимирует производную по времени на втором полушаге интервала Δt и является неявной по координате y и явной по координате x.

Задание 3

Привести схемы (2) к виду, удобному для использования метода прогонки:

Первая подсхема

Приведу первую подсхему (2) к виду, удобному для использования метода прогонки:

$$\frac{0,2}{2}\frac{\Delta t}{h_x^2}u_{i+1,j}^{n+\frac{1}{2}} + (1+0,2\frac{\Delta t}{h_x^2})u_{i,j}^{n+\frac{1}{2}} - \frac{0,2}{2}\frac{\Delta t}{h_x^2}u_{i-1,j}^{n+\frac{1}{2}} = u_{i,j}^n + \frac{0,5}{2}\Delta t\frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{h_y^2}.$$

Вторая подсхема

Приведу вторую подсхему (2) к виду, удобному для использования метода прогонки:

$$-\frac{0.5}{2} \frac{\Delta t}{h_y^2} u_{i,j+1}^{n+1} + (1+0.5 \frac{\Delta t}{h_y^2}) u_{i,j}^{n+1} - \frac{0.5}{2} \frac{\Delta t}{h_y^2} u_{i,j-1}^{n+1} = u_{i,j}^{n+\frac{1}{2}} + \frac{0.2}{2} \Delta t \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_x^2} + \\ + \Delta t (-5(n+\frac{1}{2}) \Delta t u^{n+\frac{1}{2}}).$$

Задание 4

Проверить сходимость прогонки для схем (2):

Первая подсхема

Коэффициенты, соответствующие уравнению первой подсхемы (2), имеют вид:

$$a_i = -\frac{0.5}{2} \frac{\Delta t}{h_y^2}, \quad b_i = 1 + 0, 2 \frac{\Delta t}{h_x^2}, \quad c_i = -\frac{0.2}{2} \frac{\Delta t}{h_x^2}, \quad \xi_{i,j}^n = u_{i,j}^n + \frac{0.5}{2} \Delta t \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{h_y^2}.$$

Легко видеть, что для первой подсхемы (2) схемы расщепления достаточное условие сходимости прогонки выполняется:

$$|a_i| + |c_i| = 0, 2\frac{\Delta t}{h_x^2} < 1 + 0, 2\frac{\Delta t}{h_x^2} = |b_i|.$$

Вторая подсхема

Коэффициенты, соответствующие уравнению второй подсхемы (2), имеют вид:

$$\tilde{a}_j = -\frac{0.5}{2} \frac{\Delta t}{h_y^2}, \quad \tilde{b}_j = 1 + 0.5 \frac{\Delta t}{h_y^2}, \quad \tilde{c}_j = -\frac{0.5}{2} \frac{\Delta t}{h_y^2}, \quad \tilde{\xi}_{i,j}^{n + \frac{1}{2}} = u_{i,j}^{n + \frac{1}{2}} + \frac{0.2}{2} \Delta t \frac{u_{i+1,j}^{n + \frac{1}{2}} - 2u_{i,j}^{n + \frac{1}{2}} + u_{i-1,j}^{n + \frac{1}{2}}}{h_x^2} + \Delta t (-5(n + \frac{1}{2})\Delta t u^{n + \frac{1}{2}}).$$

Легко видеть, что для второй подсхемы (2) схемы расщепления достаточное условие сходимости прогонки выполняется:

$$|\tilde{a}_j| + |\tilde{c}_j| = 0, 5 \frac{\Delta t}{h_y^2} < 1 + 0, 5 \frac{\Delta t}{h_y^2} = |\tilde{b}_j|.$$

Задание 5

Записать рекуррентное прогоночное соотношение для схем (2):

Первая подсхема

Рекуррентное прогоночное соотношение для первой подсхемы (2) имеет вид:

$$u_{i,j}^{n+\frac{1}{2}} = \alpha_i u_{i+1,j}^{n+\frac{1}{2}} + \beta_i.$$

Прогоночные коэффициенты:

$$\alpha_i = -\frac{a_i}{b_i + c_i \alpha_{i-1}}, \ \beta_i = \frac{\xi_{i,j}^n - c_i \beta_{i-1}}{b_i + c_i \alpha_{i-1}}.$$

Вторая подсхема

Рекуррентное прогоночное соотношение для второй подсхемы (2) имеет вид:

$$u_{i,j}^{n+1} = \tilde{\alpha}_j u_{i,j+1}^{n+1} + \tilde{\beta}_i.$$

Прогоночные коэффициенты:

$$\tilde{\alpha}_j = -\frac{\tilde{a}_j}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}, \ \tilde{\beta}_j = \frac{\tilde{\xi}_{i,j}^{n+\frac{1}{2}} - \tilde{c}_j \tilde{\beta}_{j-1}}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}.$$

Задание 6

Составить алгоритм (блок-схему) расчёта для схем (2):

Записать неявную разностную схему:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - 2\frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{h_x} + 0,05\frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h_y} = 0.$$
 (3)

Задание 8

Записать схему расщепления для схемы (3): Рассмотрю метод разрешения неявной разностной схемы (3), называемый **методом дробных шагов**. Данный метод позволяет представить разностной схему (3) в виде двух подсхем, каждая из которых может быть решена с помощью метода прогонки.

Разобью пополам интервал Δt между точками t^n и t^{n+1} на разностной сетке и обозначу полученную промежуточную точку как $t^{n+\frac{1}{2}}$.

Запишу на первом полушаге интервала Δt неявную разностную схему, которая будет учитывать только производную по координате x:

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^n}{\Delta t} - 2\frac{u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_x} = 0.$$
(4)

Запишу на втором полушаге интервала Δt неявную разностную схему, которая будет учитывать только производную порядка по координате y:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\Delta t} + 0.05 \frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h_y} = 0.$$
 (5)

Складывая подсхемы (4) и (5), получаю соотношение, отличающееся от неявной разностной схемы (3) только тем, что вторая производная по координате x аппроксимирована в нём не на (n+1)-м шаге по времени, а на шаге $(n+\frac{1}{2})$:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - 2\frac{u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_x} + 0,05\frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h_y} = 0.$$
 (6)

Таким образом, дифференциальное уравнение из условия задачи может быть аппроксимировано с помощью последовательного разрешения двух подсхем (4), (5), называемых в совокупности **схемой расщепления**.

Задание 9

Вывести рекуррентное соотношение для подсхем (4) и (5):

Первая подсхема

Выражаю $u_{i,j}^{n+\frac{1}{2}}$ и разностной схемы (4):

$$u_{i,j}^{n+\frac{1}{2}} = \frac{2\frac{\Delta t}{h_x}}{1 + 2\frac{\Delta t}{h_x}} u_{i+1,j}^{n+\frac{1}{2}} + \frac{u_{i,j}^n}{1 + 2\frac{\Delta t}{h_x}}.$$

Вторая подсхема

Выражаю $u_{i,j}^{n+1}$ и разностной схемы (5):

$$u_{i,j}^{n+1} = \frac{0,05\frac{\Delta t}{h_y}}{1+0,05\frac{\Delta t}{h_y}}u_{i,j-1}^{n+1} + \frac{u_{i,j}^{n+\frac{1}{2}}}{1+0,05\frac{\Delta t}{h_y}}.$$

Задание 10

Составить алгоритм (блок-схему) расчёта схемы (6):

Задание 11

Представить задачу в нестационарном виде:

Представлю стационарную задачу в нестационарном виду. Для этого в уравнение

необходимо добавить фиктивную производную по времени:

$$-\frac{du}{dx} = 0, 3\frac{d^2u}{dx^2} - 3x^2 \to \frac{\partial \tilde{u}}{\partial \tau} - \frac{\partial \tilde{u}}{\partial x} = 0, 3\frac{\partial^2 \tilde{u}}{\partial x^2} - 3x^2. \tag{7}$$

При этом искомая функция станет уже функцией двух переменных:

$$u(x) \to \tilde{u}(x,\tau).$$

Задание 12

Записать разностную схему Кранка-Николсона для уравнения (7):

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{1}{2} \frac{u_{j+1}^{n+1} - u_j^{n+1}}{h} - \frac{1}{2} \frac{u_{j+1}^n - u_j^n}{h} = \frac{0.3}{2} \frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{h^2} + \frac{0.3}{2} \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2} - 3((j-1)h)^2.$$
(8)

Задание 13

Привести схему (8) к виду, удобному для использования метода прогонки:

$$-(\frac{1}{2}\frac{\Delta t}{h}+\frac{0,3}{2}\frac{\Delta t}{h^2})u_{j+1}^{n+1}+(1+\frac{1}{2}\frac{\Delta t}{h}+0,3\frac{\Delta t}{h^2})u_{j}^{n+1}-\frac{0,3}{2}\frac{\Delta t}{h^2}u_{j-1}^{n+1}=u_{j}^{n}+\frac{0,3}{2}\frac{\Delta t}{h^2}(u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n})+\frac{1}{2}\frac{\Delta t}{h}(u_{j+1}^{n}-u_{j}^{n})-\Delta t 3((j-1)h_{x})^{2}.$$

Введу следующие обозначения:

$$a_{j} = -\left(\frac{1}{2}\frac{\Delta t}{h} + \frac{0.3}{2}\frac{\Delta t}{h^{2}}\right), \ b_{j} = 1 + \frac{1}{2}\frac{\Delta t}{h} + 0.3\frac{\Delta t}{h^{2}}, \ c_{j} = -\frac{0.3}{2}\frac{\Delta t}{h^{2}},$$

$$\xi_{j}^{n} = u_{j}^{n} + \frac{0.3}{2}\frac{\Delta t}{h^{2}}(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}) + \frac{1}{2}\frac{\Delta t}{h}(u_{j+1}^{n} - u_{j}^{n}) - \Delta t 3((j-1)h_{x})^{2}.$$

С учётом обозначений равенство будет иметь вид:

$$\alpha_j u_{j+1}^{n+1} + b_j u_j^{n+1} + c_j u_{j-1}^{n+1} = \xi_j^n.$$

Данное преобразование называется *преобразованием схемы Кранка-Николсона к* виду, удобному для использования метода прогонки.

Задание 14

Проверить сходимость прогонки:

Легко видеть, что для разностной схемы (8) достаточное условие сходимости прогонки выполняется:

$$|a_j| + |c_j| = \frac{1}{2} \frac{\Delta t}{h} + 0, 3 \frac{\Delta t}{h^2} < 1 + \frac{1}{2} \frac{\Delta t}{h} + 0, 3 \frac{\Delta t}{h^2} = |b_j|.$$

Задание 15

Найти α_1 , β_1 :

Для реализации разностной схемы Кранка-Николсона требуется ввести некоторое дополнительное условие, связывающее значения функции u(t, x) на (n+1)-м шаге по времени. Представлю это дополнительное условие в виде линейной зависимости

$$u_j^{n+1} = \alpha_j u_{j+1}^{n+1} + \beta j, \tag{9}$$

справедливой для любого из значений j = 1..N - 1.

Соотношение (9) называют **рекуррентным прогоночным соотношением**, а коэффициенты $\alpha_j,\,\beta_j$ - **прогоночными коэффициентами**.

Для определения прогоночных коэффициентов на 1-м шаге по координате x, использую рекуррентное прогоночное соотношение (9), записанное для j=1:

$$u_1^{n+1} = \alpha_1 u_2^{n+1} + \beta_1$$

и левое граничное условие:

$$u_1^{n+1} = u_2^{n+1}$$
.

Сравнивая эти два соотношения, получаю:

$$\alpha_1 = 1, \ \beta_1 = 0.$$

Задание 16

Записать рекуррентное прогоночное соотношение:

Соотношение (9) является рекуррентным прогоночным соотношением.

Задание 17

Составить алгоритм (блок-схему) расчёта:

Задание 18

Записать схему предиктор-корректор:

Данная схема требует особого способа расщепления интервала Δt : интервал Δt между точками t^n и t^{n+1} на разностной сетке делится пополам; интервал $\Delta t/2$ между точками t^n и $t^{n+\frac{1}{2}}$ снова делится пополам.

На первом полушаге интервала $\Delta t/2$ записывается неявная разностная схема, в которой учитывается только производная второго порядка по координате x:

$$\frac{u_{i,j}^{n+\frac{1}{4}} - u_{i,j}^n}{\Delta t/2} = 7(n + \frac{1}{4})\Delta t(j-1)h_y \frac{u_{i+1,j}^{n+\frac{1}{4}} - 2u_{i,j}^{n+\frac{1}{4}} + u_{i-1,j}^{n+\frac{1}{4}}}{h_x^2} - 3(u_{i,j}^{n+\frac{1}{4}} * u_{i,j}^n).$$
(10)

На втором полушаге интервала $\Delta t/2$ записывается неявная разностная схема, в которой учитывается только производная второго порядка по координате y:

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{4}}}{\Delta t/2} + 8 \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j-1}^{n+\frac{1}{2}}}{h_y} = 5(n+\frac{1}{2}) \Delta t \frac{u_{i,j+1}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i,j-1}^{n+\frac{1}{2}}}{h_y^2}.$$
 (11)

Результатом последовательного решения подсхем (10), (11), называемых в совокупности **предиктором**, являются значения функции u(t, x, y) на шаге по времени $(n+\frac{1}{2})$. Для завершения расчётов на всём интервале Δt используется поправочное разностное соотношение, называемое **корректором**:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} + 8 \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j-1}^{n+\frac{1}{2}}}{h_{y}} = 7(n + \frac{1}{2})\Delta t(j-1)h_{y} \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_{x}^{2}} + 5(n + \frac{1}{2})\Delta t \frac{u_{i,j+1}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i,j-1}^{n+\frac{1}{2}}}{h_{y}^{2}} - 3(u_{i,j}^{n+\frac{1}{2}})^{2}.$$
 (12)

Таким образом, схема предиктор-корректор в случае двумерных задач состоит из трёх подсхем.

Задание 19

Записать рекуррентное прогоночное соотношение для предиктора:

Первая подсхема

Рекуррентное прогоночное соотношение для первой подсхемы предиктора (10) имеет вид:

$$u_{i,j}^{n+\frac{1}{4}} = \alpha_i u_{i+1,j}^{n+\frac{1}{4}} + \beta_i.$$

Прогоночные коэффициенты:

$$\alpha_i = -\frac{a_i}{b_i + c_i \alpha_{i-1}}, \ \beta_i = \frac{\xi_{i,j}^n - c_i \beta_{i-1}}{b_i + c_i \alpha_{i-1}}.$$

Вторая подсхема

Рекуррентное прогоночное соотношение для второй подсхемы предиктора (11) имеет вид:

$$u_{i,j}^{n+\frac{1}{2}} = \tilde{\alpha}_j u_{i,j+1}^{n+\frac{1}{2}} + \tilde{\beta}_i.$$

Прогоночные коэффициенты:

$$\tilde{\alpha}_j = -\frac{\tilde{a}_j}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}, \ \tilde{\beta}_j = \frac{\tilde{\xi}_{i,j}^{n+\frac{1}{4}} - \tilde{c}_j \tilde{\beta}_{j-1}}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}.$$

Задание 20

Записать рекуррентное прогоночное соотношение для корректора (12):

$$u_{i,j}^{n+1} = u_{i,j}^{n} - 8 \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j-1}^{n+\frac{1}{2}}}{h_y} + 7(n+\frac{1}{2})\Delta t(j-1)h_y \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_x^2} + 5(n+\frac{1}{2})\Delta t \frac{u_{i,j+1}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i,j-1}^{n+\frac{1}{2}}}{h_y^2} - 3(u_{i,j}^{n+\frac{1}{2}})^2.$$

Задание 21

Определить порядок аппроксимации разностной схемы: $O(\Delta t^2, h_x^2, h_y)$.