ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

FEUILLE DE TRAVAUX DIRIGÉS N° 1

ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

Suites numériques

Enseignant-Formateur: H. El-Otmany

A.U.: 2019-2020

Exercice n°1 (Initiation aux suites)

- 1. Soit (u_n) une suite arithmétique de premier terme $u_0 = 1$ et de raison r = 4.
 - (a) Calculer u_1 , u_2 , u_3 et u_4 .
 - (b) Donner u_n en fonction de n et calculer u_{32} .
- 2. Soit (v_n) une suite géométrique de premier terme $v_0 = 2$ et de raison q = 3.
 - (a) Calculer v_1 , v_2 , v_3 et v_4 .
 - (b) Donner v_n en fonction de n et calculer v_{21} .

Exercice n°2 Soit (u_n) ma suite définie par $u_n = n^2 - n + 1$.

- 1. Calculer u_0 et u_{10} .
- 2. Exprimer, u_{n+1} en fonction de n et u_n .

Exercice n°3 Soit (u_n) ma suite définie par $u_n = \frac{1}{n+1}$.

- 1. Exprimer $u_{n+1} u_n$ en fonction de n.
- 2. En déduire le sens de variation de la suite (u_n) .

Exercice n°4 Montrer par récurrence que :

- 1. Pour tout entier naturel $n \ge 6$, $2^n \ge 6n + 7$.
- 2. Pour tout $n \in \mathbb{N}$, $u_n = 4 \frac{1}{2^n 1}$ où la suite u_n est définie par $u_0 = 2$ et $u_{n+1} = \frac{1}{2}u_n + 2$.
- 3. Pour tout $n \in \mathbb{N}$, $2^{2n} + 2$ est un entier divisible par 3 (a divisible par 3 s'écrit a = 3q).
- 4. $a \geqslant 0$, pour tout $n \in \mathbb{N}^*$, $(1+a)^n \geqslant 1+na$.

Exercice n°5 Démontrer

- 1. Pour tout $n \ge 1$, $\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$
- 2. Pour tout $n \ge 1$, $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

Exercice n°6 Calculer la limite des suites données par les termes généraux suivants :

$$\frac{n^3}{-3+\sin n}, \quad \cos(\frac{1}{n}), \quad e^{-(n+1)^2}\cos(n^3+1)$$
$$\sqrt{n+1}-\sqrt{n}, \quad \frac{3^n-2^n}{2^n+3^n}, \quad \frac{1}{n}\ln(1+2n)$$

Exercice n°7 On considère la suite (u_n) définie par $u_1 = 1$ et $u_n = \frac{n}{n+1}u_n + \frac{4}{n+1}$.

- 1. Calculer u_2 .
- 2. Démontrer que la suite (v_n) définie par $v_n = nu_n$ est une suite arithmétique dont on précisera le premier terme et la raison de (v_n) .
- 3. En déduire l'expression de (v_n) en fonction de n, puis celle de u_n en fonction de n.
- 4. En déduire que la suite (u_n) est strictement monotone et bornée.

Exercice n°8 Déterminer, si elle existe, la limite des suites suivantes (Devoir à la maison, étudier la nature des suites) :

$$a_n = \frac{1}{\sqrt{n+1}}, \quad b_n = \sqrt{n^2 + 2n - 2} - \sqrt{2n+2}; \quad c_n = \frac{4^n - 3^n}{4^n + 3^n}$$

$$d_n = \frac{\ln(e+n^3)}{\ln(e+2n^5)}; \quad e_n = \frac{\ln(\sqrt{2n} + 2e^n)}{n+4}; \quad f_n = 4^n e^{-4n}$$

$$g_n = \frac{\sin(n) + 3\cos(n^2)}{\sqrt{n}}; \quad h_n = \frac{n^3 + 5n}{4n^2 + \sin(n) + \ln(n)}; \quad k_n = \frac{x^n - y^n}{x^n + y^n}, x, y \in]0, +\infty[$$

Exercice n°9 Un chef d'entreprise paie 6000 euros par an pour l'entretien de ses machines. Lors du renouvellement du contrat pour les dix prochaines années, une société lui propose deux formules :

- Contrat A: Le contrat augmente de 5% par an.
 - 1. Exprimer en fonction de n le montant un du contrat lors de la $n^{\text{ième}}$ année.
 - 2. Calculer le montant du contrat pour la 10ème année.
 - 3. Au bout de combien d'années le contrat dépasserait-il le double du contrat initial?
 - 4. Calculer la somme payée, au total, au bout de ces 10 années.
- Contrat B: Le contrat augmente de 350 euros par an.
 - 1. Exprimer en fonction de n le montant v_n du contrat lors de la $n^{\text{ième}}$ année.
 - 2. Calculer le montant du contrat pour la 10^{ème} année.
 - 3. Calculer la somme payée, au total, au bout de ces 10 années.
 - 4. Quel est le contrat le plus avantageux?

Exercice n°10 En traversant une plaque de verre teintée, un rayon lumineux perd 23% de son intensité lumineuse.

- 1. Soit I_0 l'intensité d'un rayon lumineux à son entrée dans la plaque de verre et I_1 son intensité à la sortie. Exprimer I_1 en fonction de I_0 .
- 2. On superpose n plaques de verre identiques; on note In l'intensité du rayon à la sortie de la $n^{\text{ième}}$ plaque.
 - a. Exprimer In en fonction de I_{n-1} .
 - b. Quelle est la nature de la suite I_n ? Déterminer l'expression de I_n en fonction de n et de I_0 .
 - c. Quel est le sens de variation de I_n ?
- 3. Quelle est l'intensité initiale d'un rayon dont l'intensité après avoir traversé 4 plaques est égale à 15?
- 4. Calculer le nombre minimum de plaques qu'un rayon doit avoir traversé pour que son intensité sortante soit inférieure ou égale au quart de son intensité entrante?