

OVERVIEW

Importing Data

Identifying and Dealing with Missing Data

0

Format the data for Decision Trees

Build a Preliminary Classification Tree

Use Cost Complexity
Pruning to improve the
Tree

Build, Evaluate, Draw and Interpret a final Tree

IMPORTING LIBRARIES

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

from scipy import stats

import pydotplus

import graphviz

What is Pydot plus package?

 Pydot plus allows one to easily create both directed and nondirected graphs from Python.
 ... Output can be in-lined.

What is a graph viz package?

 It is an opensource python module used for drawing graphs specified in DOT language which can be completed using different nodes and edges.

IMPORTING DATA

data=pd.read_csv("heart.csv") data

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
0	40	M	ATA	140	289	0	Normal	172	N	0.0	Up	0
1	49	F	NAP	160	180	0	Normal	156	N	1.0	Flat	1
2	37	М	ATA	130	283	0	ST	98	N	0.0	Up	0
3	48	F	ASY	138	214	0	Normal	108	Υ	1.5	Flat	1
4	54	M	NAP	150	195	0	Normal	122	N	0.0	Up	0
913	45	M	TA	110	264	0	Normal	132	N	1.2	Flat	1
914	68	M	ASY	144	193	1	Normal	141	N	3.4	Flat	1
915	57	M	ASY	130	131	0	Normal	115	Υ	1.2	Flat	1
916	57	F	ATA	130	236	0	LVH	174	N	0.0	Flat	1
917	38	M	NAP	138	175	0	Normal	173	N	0.0	Up	0

918 rows × 12 columns

```
M df.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 303 entries, 0 to 302
  Data columns (total 14 columns):
      Column Non-Null Count Dtype
                303 non-null
                               int64
       age
                303 non-null
                               int64
                303 non-null
                               int64
      trestbps 303 non-null
                               int64
                303 non-null
                               int64
                303 non-null
                               int64
      restecg 303 non-null
                               int64
      thalach
                303 non-null
                               int64
                303 non-null
                               int64
       exang
                303 non-null
                               float64
       oldpeak
                303 non-null
                                int64
                303 non-null
   11 ca
                                int64
   12 thal
                303 non-null
                               int64
   13 target 303 non-null
                               int64
  dtypes: float64(1), int64(13)
  memory usage: 33.3 KB
```

DEALING WITH MISSING DATA

```
df.isna().sum()
             0
age
sex
             0
ср
trestbps
cho1
             0
fbs
restecg
thalach
exang
oldpeak
slope
ca
thal
             0
target
dtype: int64
```

Format the data for Decision Trees

- Heart disease dataset consists of all int and float values.
- Since there are no categorical values in the given dataset we did not perform any encoding method.

HEART DISEASE COUNT---PLOTTING

WE have 165 persons with heart disease and 138 persons without heart disease.

So, our problem is balanced

- Here, least repeated values are taken into categorical
- And more repeated values are taken into continuous.

Graphs

age vs maximum heart rate for heart disease

CORRELATION MATRIX

For better visualization we constructed a correlation matrix.

age	1.00	-0.10	-0.07	0.28	0.21	0.12	-0.12	-0.40	0.10	0.21	-0.17	0.28	0.07	-0.23
xex	-0.10	1.00	-0.05	-0.06	-0.20	0.05	-0.06	-0.04	0.14	0.10	-0.03	0.12	0.21	-0.28
8	-0.07	-0.05	1.00	0.05	-0.08	0.09	0.04	0.30	-0.39	-0.15	0.12	-0.18	-0.16	0.43
stpbs	0.28	-0.06	0.05	1.00	0.12	0.18	-0.11	-0.05	0.07	0.19	-0.12	0.10	0.06	-0.14
chol trestbps	0.21	-0.20	-0.08	0.12	1.00	0.01	-0.15	-0.01	0.07	0.05	-0.00	0.07	0.10	-0.09
tps	0.12	0.05	0.09	0.18	0.01	1.00	-0,08	-0.01	0.03	0.01	-0.06	0.14	-0.03	-0.03
restecg	-0.12	-0.06	0.04	-0.11	-0.15	-0.08	1.00	0.04	-0.07	-0.06	0.09	-0.07	-0.01	0.14
thalach re	-0.40	-0.04	0.30	-0.05	-0.01	-0.01	0.04	1.00	-0.38	-0.34	0.39	-0.21	-0.10	0.42
exang th	0.10	0.14	-0.39	0.07	0.07	0.03	-0.07	-0.38	1.00	0.29	-0.26	0.12	0.21	-0.4
.,	0.21	0.10	-0.15	0.19	0.05	0.01	-0.06	-0.34	0.29	1.00	-0.58	0.22	0.21	-0.43
slope oldpeak	-0.17	-0.03	0.12	-0.12	-0.00	-0.06	0.09	0.39	-0.26	-0.58	1.00	-0.08	-0.10	0.3
ca	0.28	0.12	-0.18	0.10	0.07	0.14	-0.07	-0.21	0.12	0.22	-0.08	1.00	0.15	-0.3
thal	0.07	0.21	-0.16	0.06	0.10	-0.03	-0.01	-0.10	0.21	0.21	-0.10	0.15	1.00	-0.34
target	-0.23	-0.28	0.43	-0.14	-0.09	-0.03	0.14	0.42	-0.44	-0.43	0.35	-0.39	-0.34	1.00
						_								121 1

Out[20]: <AxesSubplot:title={'center':'Correlation between Heart Disease and Numeric Fea


```
preds_pruned = clf_pruned.predict(X_test)
preds_pruned_train = clf_pruned.predict(X_train)
print(accuracy_score(y_train,preds_pruned_train))
print(accuracy_score(y_test,preds_pruned))
```

0.8679245283018868

0.7692307692307693

ACCURACY

Build a Preliminary Classification Tree

Use Cost Complexity Pruning to improve the Tree

cost complexity pruning provides another option to control size of a tree.

• Next, we train the decision tree using effective alphas.

0

THANK YOU