

Iluminação

André Tavares da Silva

andre.silva@udesc.br

baseado nos materiais de aula de Marcelo Walter, Claudio Esperança e Paulo Cavalcanti

Fontes de Luz

- Puntiforme
 - Omnidirecional
 - Direcional/Paralela
 - Focada
 - spot, lanterna, abajur (2 spots)
 - headlight (spot na direção da observação)
- Extensa/Área

Fontes de Luz Emitente Puntiformes Direcional

Fonte Directional

Raios paralelos e com mesma intensidade.

Simula os raios solares.

Fontes de Luz Emitente Puntiformes Direcional

- Para uma fonte direcional, algumas simplificações são assumidas:
- A direção de iluminação é constante para todas as superfícies da cena.
- Todos os raios de luz são paralelos:
 - Como se a fonte estivesse no infinito.
 - Boa aproximação para luz do Sol.

Fontes de Luz Emitente Puntiformes Direcional

- A direção da superfície em relação à da luz é importante.
- Posição da fonte e do observador não são importantes.

Fontes de Luz Emitente Puntiformes Omnidirecional

Fonte Omnidirecional ou Pontual

Emite luz em todas as direções.

Atinge os objetos com diferentes direções e intensidades.

Fontes de Luz Emitente Puntiformes Omnidirecional

Neste tipo de luz basta definir um ponto que a partir desse haverá uma iluminação em todas as direções.

Exemplo: uma vela acesa.

Fontes de Luz Emitente Puntiformes Spot/Focada

► Fonte Spot

- Emite luz em forma de um cone a partir de um ponto.
- A intensidade cai a medida que se distancia da fonte.

SpotLight

Fontes de Luz Emitente Puntiformes Spot/Focada

A luz **não** é emitida em todas as direções pois objetos que estão atrás não são iluminados.

Necessário definir a **posição** e **direção** da fonte de luz, qual a concentração de luz e um **ângulo** que irá indicar qual a área de iluminação.

Exemplo: holofote.

Fontes de Luz Emitente Puntiformes Spot/Focada

Fontes de Luz Emitente Puntiformes SPOT

- Parâmetros
 - Cor
 - Intensidade
 - Localização
 - Direção

- Abertura/ângulo
- Afeta "certos" objetos de "certa" forma

Fontes de Luz Emitente Extensas

Luz emitente (glowing object)

- Objetos que brilham/iluminam
- Podem ser facilmente identificados
 - Toda sua superfície/forma emite luz
- Normalmente são áreas emissoras
 - Lampadas Fluorescentes, Difusores

Fontes de Luz Emitente Extensas

Tipo ÁREA

- Referem-se a difusores ou fontes extensas como lâmpadas fluorescentes
- São muito "caras" de calcular pois são, na verdade, um somatório de fontes puntiformes
- Normalmente são aproximadas por UMA puntiforme central envolta numa geometria com cor saturada

Modelos de Iluminação

- Descrevem como a luz
 - Interage com os materiais
 - É transportada na cena (light transport)
 - Atinge o observador
- Categorias
 - Modelos de Iluminação Locais
 - Modelos de Iluminação Globais

Iluminação Local

- O cálculo de iluminação num ponto da superfície independe da energia recebida indiretamente
- Toda informação necessária para este cálculo é LOCAL
- Parcela Ambiente simula este efeito

Modelos de Iluminação Locais

- Não consideram inter-reflexões
- Rápidos para cálculo
- Não são fisicamente corretos
- Em geral, baixo realismo

Exemplo Phong

$$I = I_a k_a + \Sigma \{I_m \left[k_d (N.L) + k_s (R.V)^q \right] \}$$

Ambiente

Difusa

Especular

Modelos de Iluminação Globais

- Toda a cena é considerada
- Consideram inter-reflexões
- Maior custo computacional
- Chave para rendering realista

Exemplo

Local (OpenGL)

Global

http://www.winosi.onlinehome.de/Gallery_t14_03.htm

Ray Casting (primeira ideia de raios)

Para cada pixel da tela

Construa um raio a partir do olho

Para cada objeto na cena

Encontre a intersecção com o raio

Mantenha se for a mais próxima

Calcule a iluminação neste ponto

Arthur Appel. Some Techniques for Shading Machine Renderings of Solids AFIPS Spring Joint Computer Conf, p. 37-45, 1968.

$$I = I_a k_a + \sum \{I_{pm}[k_d(N.L) + k_s(R.V)^q]\}$$

Principais fenômenos que podem acontecer na interação entre luz e objetos

Interseção Raio / Objeto

• Raio é modelado como uma reta em forma paramétrica: $R(t) = P_0 + t (P_1 - P_0) = P_0 + t V$

• Calcula-se para quais valores do parâmetro *t* a reta intercepta o objeto

Objetos Implícitos

- Objeto implícito é dado por uma equação da forma f(x, y, z) = 0
- Muitas superfícies importantes podem ser modeladas como objetos implícitos principalmente os dados por equações polinomiais
 - Planos (grau 1)
 - Quádricas (grau 2)
 - elipsóides, cones, parabolóides, hiperbolóides
 - Quárticas (grau 4)
 - Toros

Hiperbolóide de duas folhas

Parabolóide de revolução

Hiperbolóide de uma folha

Elipsóide

Parabolóide Hiperbólico

Cone (Hiperbolóide degenerado)

Interseção Raio / Objeto Implícito

- Raio é modelado em forma paramétrica:
 - $R(t) = [R_x(t) R_y(t) R_z(t)]^{\mathrm{T}}$
- Logo, os pontos de interseção satisfazem $f(R_x(t),R_y(t),R_z(t)) = 0$
- Basta resolver a equação para determinar o(s) valor(es) de *t* que a satisfazem

Exemplo: Interseção com Esfera

• Esfera de raio 1 centrada na origem:

$$x^2 + y^2 + z^2 - 1 = 0$$

Raio parametrizado como:

$$[V_x t + P_x V_y t + P_y V_z t + P_z]^T$$

• Logo,

$$(V_x t + P_x)^2 + (V_v t + P_v)^2 + (V_z t + P_z)^2 - 1 = 0$$

ou

$$at^2 + bt + c = 0$$

onde

$$a = V_x^2 + V_y^2 + V_z^2$$

$$b = 2 \left(V_x P_x + V_v P_v + V_z P_z \right)$$

$$c = P_x^2 + P_v^2 + P_z^2 - 1$$

• Seja
$$\Delta = b^2 - 4$$
 ac, então $t = \frac{-b \pm \sqrt{\Delta}}{2a}$

Calculando a Normal no Ponto de Interseção

 Normal é dada pelo gradiente no ponto de interseção

Interseção com Objetos Transformados

- As rotinas de interseção normalmente lidam com objetos primitivos de tamanho, posição e orientação fixas (ex.: esfera de raio unitário na origem)
- Para obter objetos genéricos, usa-se transformações lineares afim
- Para calcular a interseção de um raio R com um objeto transformado S = TS':
 - Leva-se o raio para o sistema de coordenadas da primitiva: $R' = T^{-1}R$
 - Calcula-se o ponto P' resultante da interseção R' \times S'
 - O ponto de interseção é trazido de volta ao sistema de coordenadas do mundo: P = TP

Interseção com Objetos Transformados

Transformando Normais

• Ao contrário do que nossa intuição indica, $N' \neq T N$

• Por quê?

Transformando Normais

- Se a transformação não envolve deformação, isto é, é composta apenas de transformações rígidas e escalas uniformes, ela pode ser aplicada também à normal
- Para transformações afim genéricas, entretanto, $N' = (T^{-1})^T N$
- Prova:
 - Queremos que N' seja perpendicular a qualquer vetor V' sobre o plano tangente à superficie:
 N'· V'= 0

- Sabemos que V'=TV
- Então, $N' \cdot (T V) = 0$ ou, $(N' \cdot T) V = 0$
- Como o produto escalar de dois vetores A e B denotados por matrizes coluna pode ser escrito A^T B, então,
 N'T T V = 0
- Como $A = A^{TT}$, então $N'^T T^{TT} V = 0$
- Lembrando que $(AB)^T = B^T A^T$ então $(T^T N')^T V = 0$ ou $(T^T N') \cdot V = 0$
- Portanto, $(T^T N')=N$
- Resolvendo para N' temos $N' = (T^{-1})^T N$

Interseção com Planos

• Plano em forma implícita

$$Ax + By + Cz + D = 0$$

• Se queremos um plano que passa por um ponto Q e tem normal N podemos escrever

$$(P-Q)\cdot N=0$$

- Resolução da forma habitual
- Entretanto, normalmente não temos planos ilimitados, mas sim polígonos planares!

Interseção com Triângulos

- Calcula-se interseção com o plano que contém o triângulo
- O ponto de interseção está dentro do triângulo?
- O teste é feito sobre a projeção do triângulo sobre um dos planos coordenados (*x-y*, *y-z* ou *x-z*)
- Qual? Escolhe-se o plano para o qual a projeção tem maior área

$$Ax + By + Cz + D = 0$$

Se $|A| > |B|, |C| \rightarrow \text{plano } y\text{-}z$
Se $|B| > |A|, |C| \rightarrow \text{plano } x\text{-}z$
Se $|C| > |A|, |B| \rightarrow \text{plano } x\text{-}y$

Interseção com Triângulos

- Como determinar se o ponto está dentro do triângulo?
- Uma idéia é calcular as coordenadas baricêntricas do ponto de interseção:

$$P = \alpha a + \beta b + \gamma c$$
, onde
 $\alpha + \beta + \gamma = 1$

- P está dentro do triângulo sse P é uma combinação convexa de a, b, c, isto é, $0 \le \alpha, \beta, \gamma \le 1$
- As coordenadas baricêntricas correspondem às áreas relativas dos triângulos que unem o baricentro aos vértices

$$\alpha = A_a / A$$

$$\beta = A_b / A$$

$$\gamma = A_c / A$$

Interseção com Polígonos Convexos

- Uma outra ideia que também funciona com qualquer polígono convexo é considerar o polígono a interseção de semiespaços planos em 2D
- Cada aresta é colinear com uma reta dada por f(x,y) = ax + by + c = 0
- Pode-se escolher a, b e c de tal forma que o interior do polígono corresponda a f(x,y) > 0
- Para saber se o ponto de interseção está no interior (ou na borda) do polígono, basta testar o ponto com relação a todas as arestas

Interseção com Polígonos Quaisquer

- Diversos métodos
 - Soma dos ângulos
 - Dentro: 360°
 - Fora: 0°
 - Regra de paridade (teorema de Jordan)
 - Ray-Casting em 2D
 - Semelhante à regra de paridade
 - Apenas a normal da aresta mais próxima é examinada

Interseção com Sólidos CSG

- Ray-tracing provê um método direto de visualização de sólidos CSG (sem avaliação de bordo)
- A interseção com primitivas é feita como antes, mas todos os pontos interseção são guardados
 - O resultado é uma estrutura de dados que registra os intervalos em que o raio está dentro, fora, ou na fronteira da primitiva
- Para calcular as operações de conjunto (∩, ∪, \) os intervalos são combinados de maneira apropriada

Interseção com Sólidos CSG

Ray Tracing de Sólidos CSG

Interseção com Superfícies Paramétricas

 Superfícies paramétricas são dadas por

$$S(u, v) = [S_x(u,v) S_y(u,v) S_z(u,v)]^T$$

 Raio é representado como a interseção de dois planos

$$A_1x + B_1y + C_1z + D_1 = 0$$

$$A_2x + B_2y + C_2z + D_2 = 0$$

Substituindo, temos

$$A_1 S_x(u,v) + B_1 S_y(u,v) + C_1 S_z(u,v) + D_1 = 0$$

$$A_2 S_x(u,v) + B_2 S_y(u,v) + C_2 S_z(u,v) + D_2 = 0$$

Cada equação representa uma curva de interseção

Interseção com Superfícies Paramétricas

- Ponto de interseção é calculado resolvendo um sistema de 2 equações com 2 incógnitas
 - Se equações são polinomiais, pode-se usar eliminação ou outras técnicas algébricas
 - Exemplo: 2 equações cúbicas podem ser transformadas em uma equação de sexto grau [Kajiya]
 - Pode-se também usar métodos numéricos
 - Método de iteração de Newton [Toth]
- Procedimentos muito dispendiosos
 - Usar métodos de aceleração

Outros Objetos

- Superficies de varredura (sweep)
 - Translação (cilíndrica / cônica)
 - Revolução
 - Varredura genérica
- Terrenos (height fields)
- Blobs (superposição de campos escalares exponenciais)