Agrégation Interne

Fonctions convexes

Ce problème est en relation avec la leçon d'oral suivante :

- 217 : Fonctions convexes d'une variable réelle. Applications.

- I - Fonctions convexes. Généralités

I désigne un intervalle réel non réduit à un point et f est une application définie sur I à valeurs réelles.

On rappelle que l'épigraphe de f est la partie de \mathbb{R}^2 définie par :

$$\mathcal{E}(f) = \{(x, y) \in \mathbb{R}^2 \mid y \ge f(x)\}$$

Définition 1 On dit que la fonction f est :

- convexe si:

$$\forall (x,y) \in I^2, \ \forall \lambda \in [0,1], \ f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y) \tag{1}$$

- strictement convexe si pour tout couple (x,y) de points distincts de I et tout réel $\lambda \in]0,1[$, on a :

$$f((1 - \lambda)x + \lambda y) < (1 - \lambda)f(x) + \lambda f(y)$$

- concave [resp. strictement concave] si la fonction -f est convexe [resp. strictement convexe].

Pour $\lambda = 0$ ou $\lambda = 1$, (1) est toujours vérifié (c'est une égalité). On peut donc se limiter à $\lambda \in]0,1[$ pour la définition d'une fonction convexe.

- 1. Montrer que la fonction f est convexe si, et seulement si, son épigraphe est convexe dans $E \times \mathbb{R}$.
- 2. Montrer que la fonction f est convexe si, et seulement si, pour tout couple (A, B) = ((a, f(a)), (b, f(b))) de points du graphe de f, la courbe représentative de la restriction de f à l'intervalle d'extrémités a, b, est au dessous de la corde [AB].
- 3. Montrer que si f est convexe sur I, elle est alors bornée sur tout segment $[a,b] \subset I$.
- 4. Montrer que si f est convexe sur I et admet un minimum local en un point α de I, ce minimum est alors global.
- 5. Montrer qu'une combinaison linéaire à coefficients positifs de fonctions convexes de I dans \mathbb{R} est convexe.
- 6. Soit $(f_k)_{1 \le k \le n}$ une suite finie de fonctions convexes de I dans \mathbb{R} . Montrer que $f = \max_{1 \le k \le n} (f_k)$ est convexe.
- 7. Montrer que si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions convexes de I dans \mathbb{R} qui converge simplement sur I vers une fonction f, alors cette fonction f est convexe.
- 8. Montrer que si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions convexes de I dans \mathbb{R} telle que la série $\sum f_n$ converge simplement sur I vers une fonction f, alors cette fonction f est convexe.
- 9. Soient J un intervalle réel non réduit à un point et $\varphi: I \times J \to \mathbb{R}$ une fonction telle que, pour tout $x \in I$ la fonction $t \mapsto \varphi(x,t)$ est intégrable sur J. Montrer que si, pour tout $t \in J$, la fonction $x \mapsto \varphi(x,t)$ est convexe sur I, alors la fonction $f: x \mapsto \int_J \varphi(x,t) dt$ est convexe.
- 10. Soient J un intervalle réel qui contient f(I) et φ une fonction de J dans \mathbb{R} . Montrer que si f est convexe et φ est convexe croissante, alors $\varphi \circ f$ est convexe sur I.

11. Soient a < b deux réels, $\varphi: [a,b] \to \mathbb{R}$ une fonction croissante. Montrer que la fonction f définie sur [a,b] par :

$$f\left(x\right) = \int_{a}^{x} \varphi\left(t\right) dt$$

est convexe.

- II - Régularité des fonctions convexes

Ici encore, I est un intervalle réel non réduit à un point et f est une application définie sur I à valeurs réelles.

On note \tilde{I} l'intérieur de l'intervalle I.

Pour $x \neq y$ dans I, on note :

$$p(x,y) = \frac{f(y) - f(x)}{y - x}$$

la pente de la droite (MN) où M=(x,f(x)) et N=(y,f(y)) sont deux points du graphe de f.

1. On se propose de montrer que si f est convexe sur I, sa restriction à tout intervalle $[a,b] \subset \overset{\circ}{I}$ est alors lipschitzienne.

On se donne, une fonction f convexe sur I, un intervalle $[a,b] \subset \overset{\circ}{I}$ et un réel $\varepsilon > 0$ tel que $[a-\varepsilon,b+\varepsilon] \subset I$.

- (a) Soient $x \neq y$ dans [a, b] et $z = y + \frac{y x}{|y x|} \varepsilon$. Montrer que $y = (1 \lambda)x + \lambda z$ avec $\lambda = \frac{|y x|}{|y x| + \varepsilon} \in]0, 1[.$
- (b) Montrer que f est lipschitzienne sur [a, b].
- (c) En déduire que f est continue sur $\stackrel{\circ}{I}$.
- 2. Montrer que si f est continue sur I et convexe sur $\overset{\circ}{I}$, elle est alors convexe sur I.
- 3. Montrer que les trois propriétés suivantes sont équivalentes :
 - (a) f est convexe;
 - (b) pour tous x, y, z dans I tels que x < y < z, on a :

$$p(x,y) \le p(x,z) \le p(y,z)$$

(inégalité des trois pentes, figure 1);

(c) pour tout $a \in I$ la fonction :

$$\tau_a: x \mapsto p(a, x) = \frac{f(x) - f(a)}{x - a}$$

est croissante sur $I \setminus \{a\}$.

- 4. En utilisant la caractérisation (c) de la question précédente, montrer que si f est convexe sur I, sa restriction à tout intervalle $[a,b] \subset \overset{\circ}{I}$ est alors lipschitzienne (et f est continue sur $\overset{\circ}{I}$).
- 5. Montrer qu'une fonction f de \mathbb{R} dans \mathbb{R} est affine si, et seulement si, elle est à la fois convexe et concave.
- 6. Montrer que si f, g sont deux fonctions convexes de \mathbb{R} dans \mathbb{R} telles que la fonction f + g soit affine, alors les fonctions f et g sont également affines.

FIGURE 1 – Inégalité des trois pentes

- 7. Montrer qu'une fonction f de \mathbb{R} dans \mathbb{R} est constante si, et seulement si, elle est convexe et majorée.
- 8. Montrer que f est convexe si, et seulement si, pour tous x < y < z dans I on a :

$$d(x, y, z) = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ f(x) & f(y) & f(z) \end{vmatrix} \ge 0$$

- 9. Soit f une fonction convexe de \mathbb{R}^+ dans \mathbb{R} .
 - (a) Montrer que la fonction $g: x \mapsto \frac{f(x)}{x}$ admet une limite finie ou égale à $+\infty$ quand x tend vers $+\infty$.
 - (b) Montrer que si $\lim_{x \to +\infty} \frac{f(x)}{x} = \alpha \in \mathbb{R}$ alors la fonction $h: x \mapsto f(x) \alpha x$ admet une limite finie ou égale à $-\infty$ quand x tend vers $+\infty$.
- 10. Soit f une fonction continue de \mathbb{R}_+^* dans \mathbb{R} et g la fonction définie sur \mathbb{R}_+^* par $g(x) = xf\left(\frac{1}{x}\right)$. Montrer que f et g sont simultanément convexes.
- 11. Montrer que si f est convexe sur I, elle admet alors une dérivée à droite et à gauche en tout point de I, les fonctions dérivées à droite et à gauche étant croissantes sur I et pour a < b dans I on a :

$$f'_g(a) \le f'_d(a) \le \frac{f(b) - f(a)}{b - a} \le f'_g(b) \le f'_d(b)$$

12. Soit φ une fonction continue sur un segment [a,b] et dérivable à droite et à gauche en tout point de]a,b[. Montrer que si $\varphi(a)=\varphi(b)$, il existe alors un point $c\in]a,b[$ tel que $\varphi'_g(c)\varphi'_d(c)\leq 0$ (théorème de Rolle).

- 13. En utilisant le théorème de Rolle, montrer que si f est deux fois dérivable sur I, elle est alors convexe sur I si, et seulement si, $f''(x) \ge 0$ pour tout $x \in I$.
- 14. Soit φ une fonction continue sur un segment [a,b] et dérivable à droite et à gauche en tout point de]a,b[. Montrer qu'il existe un point $c\in]a,b[$ tel que $\frac{\varphi\left(b\right)-\varphi\left(a\right)}{b-a}$ soit dans le segment d'extrémités $\varphi_{a}'\left(c\right)$ et $\varphi_{d}'\left(c\right)$ (théorème des accroissements finis).
- 15. Soit φ une fonction continue sur un segment [a,b] et dérivable à droite et à gauche en tout point de]a,b[. Montrer que si $\varphi'_d(x) \geq 0$ et $\varphi'_g(x) \geq 0$ pour tout $x \in]a,b[$, la fonction φ est alors croissante sur [a,b].
- 16. Soient φ une fonction dérivable sur I et α un point de I. Montrer que si $(x \alpha) \varphi'(x) \ge 0$ [resp. $(x \alpha) \varphi'(x) \le 0$] pour tout $x \in I$, la fonction φ admet alors un minimum [resp. maximum] global en α .
- 17. On suppose que I est un intervalle réel ouvert. Montrer que la fonction f est convexe sur I si, et seulement si, elle est dérivable à droite et à gauche sur I de dérivées f'_d et f'_g croissantes.
- 18. Soit f une fonction dérivable sur I. Montrer que les propriétés suivantes sont équivalentes :
 - (a) f est convexe sur I;
 - (b) la fonction dérivée f' est croissante sur I;
 - (c) la courbe représentative de f est située au dessus de sa tangente en tout point a de I.
- 19. Soit q une fonction continue de \mathbb{R} dans \mathbb{R}^+ non identiquement nulle. Montrer que l'unique solution à valeurs réelles bornée sur \mathbb{R} de l'équation différentielle y''-qy=0 est la fonction nulle.
- 20. Soient q une fonction continue de \mathbb{R} dans \mathbb{R}^+ et y une solution à valeurs réelles de l'équation différentielle y'' qy = 0. Montrer que si y s'annule en deux points distincts alors elle est identiquement nulle.

- III - Fonctions mid-convexes

Définition 2 On dit que $f: I \to \mathbb{R}$ est mid-convexe si :

$$\forall (x,y) \in I^2, \ f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$$

- 1. Montrer qu'une fonction convexe sur I est mid-convexe.
- 2. On se propose de montrer que f est mid-convexe si, et seulement si, pour tout entier $n \geq 2$ et toute suite $(x_k)_{1 \leq k \leq n}$ de points de I, on a :

$$f\left(\frac{x_1 + \dots + x_n}{n}\right) \le \frac{f(x_1) + \dots + f(x_n)}{n} \tag{2}$$

(a) Montrer que si $f: I \to \mathbb{R}$ est mid-convexe, on a alors pour tout entier $p \geq 1$ et toute suite $(x_k)_{1 \leq k \leq 2^p}$ de points de I:

$$f\left(\frac{1}{2^p}\sum_{k=1}^{2^p} x_k\right) \le \frac{1}{2^p}\sum_{k=1}^{2^p} f(x_k)$$

- (b) Soit $f: I \to \mathbb{R}$ mid-convexe. Montrer que si l'inégalité (2) est vérifiée pour $n+1 \geq 3$, elle l'est également pour n.
- (c) Conclure.

3. Montrer que f est mid-convexe si, et seulement si :

$$\forall (x,y) \in I^2, \ \forall \lambda \in [0,1] \cap \mathbb{Q}, \ f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y)$$

- 4. Montrer qu'une fonction $f: I \to \mathbb{R}$ continue est convexe si, et seulement si, elle est mid-convexe.
- 5. Montrer qu'une fonction $f:I\to\mathbb{R}$ monotone est convexe si, et seulement si, elle est midconvexe.
- 6. Soit $f: I \to \mathbb{R}$ mid-convexe. Montrer que si f est majorée sur un segment $[a, b] \subset I$, elle y est alors minorée.
- 7. On se propose de montrer qu'une fonction mid-convexe sur I qui est majorée au voisinage d'un point α de I est convexe sur I.

Soient $f: I \to \mathbb{R}$ mid-convexe, $\alpha \in \overset{\circ}{I}$, $\eta > 0$ et $M \in \mathbb{R}$ tels que $[\alpha - \eta, \alpha + \eta] \subset \overset{\circ}{I}$ et :

$$\forall x \in [\alpha - \eta, \alpha + \eta], \ f(x) \le M$$

On désigne par ε un nombre rationnel dans]0,1[.

(a) Déterminer deux nombres rationnels λ et μ dans]0,1[tels que pour tout $x \in [\alpha - \varepsilon \eta, \alpha + \varepsilon \eta]$, on ait :

$$\begin{cases} x = (1 - \lambda) \alpha + \lambda \left(\alpha + \frac{x - \alpha}{\varepsilon} \right) \\ \alpha = (1 - \mu) \left(\alpha - \frac{x - \alpha}{\varepsilon} \right) + \mu x \end{cases}$$

(b) Montrer que, pour tout $x \in [\alpha - \varepsilon \eta, \alpha + \varepsilon \eta]$, on a :

$$|f(x) - f(\alpha)| \le \varepsilon |M - f(\alpha)|$$

(c) Soit $\beta \neq \alpha$ dans \tilde{I} et $\rho > 1$ un nombre rationnel tel que $\gamma = (1 - \rho) \alpha + \rho \beta \in \tilde{I}$. En notant $\lambda = \frac{1}{\rho}$, montrer que :

$$J = \{(1 - \lambda) x + \lambda \gamma \mid x \in [\alpha - \eta, \alpha + \eta]\}$$

est un voisinage de β dans $\overset{\circ}{I}$ sur lequel f est majorée.

(d) En déduire que f est continue sur $\overset{\circ}{I}$ et convexe sur $\overset{\circ}{I}$.

- IV -Inégalités de convexité

Définition 3 Étant donnée une suite finie $(x_i)_{1 \le i \le n}$ de points de I, on dit qu'un réel x est combinaison linéaire convexe des x_i , pour i compris entre 1 et n, s'il existe une suite $(\lambda_i)_{1 \le i \le n}$ de réels positifs ou nuls telle que :

$$\sum_{i=1}^{p} \lambda_i = 1 \text{ et } x = \sum_{i=1}^{p} \lambda_i x_i$$

Une combinaison linéaire convexe de points de I est dans I, puisque I est convexe.

1. Montrer qu'une fonction $f:I\to\mathbb{R}$ est convexe si, et seulement si, pour toute combinaison linéaire convexe $\sum_{i=1}^n \lambda_i x_i$ de points de I, on a :

$$f\left(\sum_{i=1}^{p} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{p} \lambda_{i} f\left(x_{i}\right)$$

(inégalité de Jensen).

2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe. Montrer que pour toute fonction continue $\varphi: [a, b] \to \mathbb{R}$ (avec a < b), on a:

$$f\left(\frac{1}{b-a}\int_{a}^{b}\varphi\left(t\right)dt\right)\leq\frac{1}{b-a}\int_{a}^{b}f\circ\varphi\left(t\right)dt$$

3. Montrer que pour tous réels p,q strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$ et tous réels x,y strictement positifs, on a :

$$xy \le \frac{1}{p}x^p + \frac{1}{q}y^q$$

4. Soient p, q deux réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$. Montrer que pour tous vecteurs x, y dans \mathbb{C}^n on a :

$$\left| \sum_{i=1}^{n} x_i \overline{y_i} \right| \le \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}$$

5. Pour toute suite finie $x=(x_i)_{1\leq i\leq n}$ de réels strictement positifs, on note :

$$H(x) = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}, \ G(x) = \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}, \ A(x) = \frac{\sum_{i=1}^{n} x_i}{n}$$

les moyennes harmonique, géométrique et arithmétique de x. Montrer que :

$$H\left(x\right) < G\left(x\right) < A\left(x\right)$$

- 6. Soit $x = (x_i)_{1 \le i \le n}$ une suite finie de réels strictement positifs telle que $\prod_{i=1}^{n} x_i = 1$. Montrer que $\prod_{i=1}^{n} (2 + x_i) \ge 3^n$ en précisant dans quel cas l'égalité est réalisée.
- 7. Déterminer, parmi toutes les ellipses d'aire donnée S>0, celles de périmètre minimal.