Алгоритмы в линейной алгебре

Арунова Маргарита и Ларсик

https://vk.com/clublarsi

Содержание

Алгоритмы	4
Базисы векторных пространств	4
Выделение базиса из системы векторов	4
Нахождение какого-нибудь базиса линейной оболочки	6
Дополнение линейно независимой системы до базиса всего пространства	7
Нахождение базиса пространства решений ОСЛУ (нахождение ФСР)	8
Нахождение координат вектора в заданном базисе	9
Нахождение матрицы перехода от одного базиса к другому (способ 1)	10
Нахождение матрицы перехода от одного базиса к другому (способ 2)	11
Нахождение координат вектора в новом базисе	12
Способы задания подпространств	13
Переход от ОСЛУ к линейной оболочке	13
Переход от линейной оболочки к ОСЛУ	14
Пересечение, сумма и прямая сумма подпространств	15
Базис суммы подпространств, заданных линейной оболочкой	15
Базис пересечения подпространств, заданных линейной оболочкой	16
Базис пересечения подпространств, заданных ОСЛУ	18
Проекция вектора на подпространство вдоль другого подпространства	19
Поиск дополнительного подпространства	20
Линейные отображения векторных пространств	21
Нахождение матрицы линейного отображения	21
Нахождение координат образа	22
Нахождение матрицы линейного отображения при замене базисов	23
Нахождение базиса ядра линейного отображения	24
Нахождение базиса образа линейного отображения (способ 1)	25
Нахождение базиса образа линейного отображения (способ 2)	26
Нахождение пары базисов, в которых матрица отображения диагональна	27
Сопряжённые пространства	28
Нахождение двойственного базиса	28
Нахождение базиса, которому двойствен заданный базис	29

Билинейные формы на векторном пространстве	30
Нахождение матрицы билинейной формы	30
Нахождение матрицы билинейной формы при замене базисов	31
Доказательства алгоритмов	32
Базисы векторных пространств	32
Выделение базиса из системы векторов	32
Нахождение какого-нибудь базиса линейной оболочки	33
Дополнение линейно независимой системы до базиса всего пространства	34
Нахождение базиса пространства решений ОСЛУ (нахождение ФСР)	35
Нахождение координат вектора в заданном базисе	36
Нахождение матрицы перехода от одного базиса к другому (способ 1)	37
Нахождение матрицы перехода от одного базиса к другому (способ 2)	38
Нахождение координат вектора в новом базисе	39
Способы задания подпространств	40
Переход от ОСЛУ к линейной оболочке	40
Переход от линейной оболочки к ОСЛУ	40
Пересечение, сумма и прямая сумма подпространств	41
Базис суммы подпространств, заданных линейной оболочкой	41
Базис пересечения подпространств, заданных линейной оболочкой	42
Базис пересечения подпространств, заданных ОСЛУ	43
Проекция вектора на подпространство вдоль другого подпространства	44
Поиск дополнительного подпространства	45
Линейные отображения векторных пространств	46
Нахождение матрицы линейного отображения	46
Нахождение координат образа	47
Нахождение матрицы линейного отображения при замене базисов	48
Нахождение базиса ядра линейного отображения	49
Нахождение базиса образа линейного отображения (способ 1)	50
Нахождение базиса образа линейного отображения (способ 2)	51
Нахождение пары базисов, в которых матрица отображения диагональна	52
Сопряжённые пространства	53
Нахождение двойственного базиса	53

Нахождение базиса, которому двойствен заданный базис	55
Билинейные формы на векторном пространстве	56
Нахожление матрицы билинейной формы	56

Алгоритмы

Базисы векторных пространств

Выделение базиса из системы векторов

Дано: пусть $v_1, \ldots, v_m \in \mathbb{F}^n$ – набор векторов.

Задача: найти среди v_1, \dots, v_m базис пространства $\langle v_1, \dots, v_m \rangle$ и векторы, не вошедшие в базис, разложить по полученному базису.

Алгоритм:

1. Составим матрицу, *столбцы* которой – векторы v_1, \ldots, v_m .

$$\begin{array}{ccccc}
v_1 & v_2 & \dots & v_m \\
\downarrow & \downarrow & & \downarrow \\
v_{11} & v_{21} & \dots & v_{m1} \\
v_{12} & v_{22} & \dots & v_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
v_{1n} & v_{2n} & \dots & v_{mn}
\end{array}$$

2. Приведём составленную матрицу элементарными преобразованиями строк к улучшенному ступенчатому виду.

$$\begin{pmatrix} v_{11} & v_{21} & \dots & v_{m1} \\ v_{12} & v_{22} & \dots & v_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ v_{1n} & v_{2n} & \dots & v_{mn} \end{pmatrix} \xrightarrow{\text{\tiny \mathcal{A}PM. $npeo6.}} \begin{pmatrix} \boxed{1} & a_{21} & 0 & \dots & 0 \\ 0 & 0 & \boxed{1} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \boxed{1} \end{pmatrix}$$

- 3. Пусть i_1, i_2, \ldots, i_r номера столбцов, содержащих ведущие элементы строк, тогда векторы $v_{i_1}, v_{i_2}, \ldots, v_{i_r}$ образуют базис $\langle v_1, \ldots, v_m \rangle$.
- 4. Пусть столбец k не имеет ведущего элемента столбца, то есть вектор v_k не в ходит в выбранный базис, тогда в столбце k стоят коэффициенты a_{k1}, \ldots, a_{kl} .

$$\begin{pmatrix} v_1 & v_2 & v_3 & \dots & v_k & \dots \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & a_{21} & 0 & \dots & 0 & a_{k1} & 0 \\ 0 & 0 & 1 & \dots & 0 & a_{k2} & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & a_{kl} & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

С помощью этих коэффициентов вектор v_k выражается через полученный на предыдущем шаге базис: $v_k = a_{k1}v_{i_1} + a_{k2}v_{i_2} + \ldots + a_{kl}v_{i_l}$.

Пример: дан набор векторов

$$v_1 = (1, 1, 1, 1, 0), v_2 = (1, 1, -1, -1, -1), v_3 = (2, 2, 0, 0, -1)$$

 $v_4 = (1, 1, 5, 5, 2), v_5 = (1, -1, -1, 0, 0)$

Найти среди v_1, \ldots, v_5 базис пространства $\langle v_1, \ldots, v_5 \rangle$ и векторы, не вошедшие в базис, разложить по полученному базису.

Решение:

1. Составим матрицу, *столбцы* которой – векторы v_1, \ldots, v_5 .

$$\begin{pmatrix}
1 & 1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1 & -1 \\
1 & -1 & 0 & 5 & -1 \\
1 & -1 & 0 & 5 & 0 \\
0 & -1 & -1 & 2 & 0
\end{pmatrix}$$

2. Приведём составленную матрицу элементарными преобразованиями строк к улучшенному ступенчатому виду.

- 3. Столбцы 1, 2 и 5 содержат ведущие элементы строк, значит, v_1 , v_2 и v_5 базис $\langle v_1, \ldots, v_5 \rangle$.
- 4. Из улучшенного ступенчатого вида матрицы получим линейное выражение v_3 и v_4 .
 - В столбце 3 в первой строке стоит 1, а во второй число 1. Получаем, что $v_3 = v_1 + v_2$.
 - В столбце 4 в первой строке стоит 3, а во второй число —2. Получаем, что $v_4 = 3v_1 2v_2$.

Ответ: v_1, v_2 и v_5 – базис $\langle v_1, \dots, v_5 \rangle$; $v_3 = v_1 + v_2$ и $v_4 = 3v_1 - 2v_2$

Нахождение какого-нибудь базиса линейной оболочки

Дано: пусть $v_1, \ldots, v_m \in \mathbb{F}^n$ – набор векторов. Задача: найти какой-нибудь базис $\langle v_1, \ldots, v_m \rangle$.

Алгоритм:

1. Составим матрицу, строки которой – векторы v_1, \dots, v_m .

$$\begin{array}{cccc}
v_1 \to & \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_2 \to & & & & \\ \vdots & \vdots & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_m \to & & & & \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{pmatrix}$$

2. Приведём составленную матрицу *элементарными преобразованиями строк* к ступенчатому виду.

$$\begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m-1,1} & v_{m-1,2} & \dots & v_{m-1,n} \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{pmatrix}^{\mathfrak{snem. npeo6.}} \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & 0 & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{rn} \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} \leftarrow a_{1}$$

3. Пусть a_1, a_2, \ldots, a_r – ненулевые строки полученной матрицы, тогда эти векторы – базис $\langle v_1, \ldots, v_m \rangle$.

Пример: дан набор векторов

$$v_1 = (1, 0, 0, -1), v_2 = (2, 1, 1, 0), v_3 = (1, 1, 1, 1), v_4 = (1, 2, 3, 4), v_5 = (0, 1, 2, 3)$$

Найти какой-нибудь базис $\langle v_1, \dots, v_m \rangle$.

Решение:

1. Составим матрицу, *строки* которой – векторы v_1, \ldots, v_m . Приведём составленную матрицу элементарными преобразованиями строк к ступенчатому виду.

$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \end{pmatrix} \xrightarrow{\text{\tiny \it S.P.M. npeof.}} \begin{pmatrix} \boxed{1} & 0 & 0 & -1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \leftarrow a_1 \\ \leftarrow a_2 \\ \leftarrow a_3$$

2. Векторы $a_1=(1,0,0,-1),\ a_2=(0,1,1,2),\ a_3=(0,0,1,1)$ – базис $\langle v_1,\dots,v_m\rangle$.

Ответ: $(1,0,0,-1),\ (0,1,1,2),\ (0,0,1,1)$

Дополнение линейно независимой системы до базиса всего пространства

Дано: пусть $v_1, \ldots, v_m \in \mathbb{F}^n$ – линейно независимая система векторов.

Задача: дополнить эту систему до базиса всего подпространства векторами стандартного базиса.

Алгоритм:

1. Составим матрицу, *строки* которой – векторы v_1, \ldots, v_m .

$$\begin{array}{cccc}
v_1 \to & \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_2 \to & & & & \\ \vdots & \vdots & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{pmatrix}$$

2. Приведём составленную матрицу *элементарными преобразованиями строк* к ступенчатому виду.

$$\begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{pmatrix} \xrightarrow[\substack{\text{\tiny e.m. npeof.} \\ \text{\tiny cmpok}}} \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \hline 0 & 0 & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \hline 0 & 0 & 0 & \dots & a_{mn} \end{pmatrix}$$

3. Пусть $i_1, i_2, \ldots, i_{n-m}$ — номера столбцов, не содержащих ведущих элементов строк полученной матрицы, тогда $e_{i_1}, e_{i_2}, \ldots, e_{i_{n-m}}$ — векторы стандартного базиса, дополняющие v_1, \ldots, v_m до базиса всего пространства, то есть $v_1, \ldots, v_m, e_{i_1}, \ldots, e_{i_{n-m}}$ — базис \mathbb{R}^n

Пример: дана линейно независимая система векторов

$$v_1 = (1, 1, 1, 1, 0), v_2 = (1, 1, -1, -1, -1), v_3 = (-1, -1, -1, 0, 0)$$

Требуется дополнить её до базиса всего подпространства векторами стандартного базиса.

Решение:

1. Составим матрицу, строки которой – векторы v_1, v_2, v_3 . Приведём составленную матрицу элементарными преобразованиями строк к ступенчатому виду.

2. Столбцы 2 и 5 не содержат ведущих элементов строк, значит, $e_2 = (0, 1, 0, 0, 0)$ и $e_5 = (0, 0, 0, 0, 1)$ из стандартного базиса \mathbb{R}^5 дополняют v_1, v_2, v_3 до базиса всего пространства.

Ответ: векторы e_2 и e_5 дополняют систему v_1, v_2, v_3 до базиса всего \mathbb{R}^5

Нахождение базиса пространства решений ОСЛУ (нахождение ФСР)

Определение: фундаментальной системой решений ОСЛУ называется всякий базис пространства её решений.

Дано: однородная система линейных уравнений Ax = 0.

Задача: найти фундаментальную систему решений данной ОСЛУ.

Алгоритм:

1. Приведём матрицу A к улучшенному ступенчатому виду:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \xrightarrow[\substack{\text{snem. npeo6.} \\ \text{cmpo}\kappa}]{} \begin{pmatrix} 1 & 0 & b_{13} & \dots & 0 & b_{1n} \\ 0 & 1 & b_{23} & \dots & 0 & b_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & b_{mn} \end{pmatrix}$$

- 2. Пусть i_1, \ldots, i_{n-r} номера столбцов, не содержащих ведущих элементов строк полученной матрицы. Эти номера соответствуют свободным переменным $x_{i_1}, \ldots, x_{i_{n-r}}$.
- 3. Зафиксируем значение k-й свободной переменной x_{i_k} равным 1, а остальных 0. Тогда для данных значений $x_{i_1},\dots,x_{i_{n-r}}$ существует единственное решение ОСЛУ Ax=0. Обозначим это решение $v_k=(-b_{1k},-b_{2k},\dots,-b_{rk},0,\dots,0,\frac{1}{k},0,\dots,0)$.
- 4. Получаем n-r решений системы Ax=0. Векторы v_1,\ldots,v_{n-r} и есть искомая ФСР.

Пример: найти Φ CP однородной системы линейных уравнений Ax=0, где

$$A = \begin{pmatrix} 2 & -4 & 2 & 8 & -6 \\ 6 & -12 & 5 & 5 & 7 \\ 4 & -8 & 3 & -3 & 13 \end{pmatrix}$$

Решение:

1. Приведём матрицу A к улучшенному ступенчатому виду:

$$\begin{pmatrix} 2 & -4 & 2 & 8 & -6 \\ 6 & -12 & 5 & 5 & 7 \\ 4 & -8 & 3 & -3 & 13 \end{pmatrix} \xrightarrow{\text{\tiny SAEM. npeo6.}} \begin{pmatrix} 1 & -2 & 0 & -15 & 22 \\ 0 & 0 & 1 & 19 & -25 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

2. Переменные x_1 и x_3 – *главные*, а x_2 , x_4 и x_5 – *свободные*. Поочерёдно зафиксируем значение одной свободной переменной равным 1, а остальных 0, и выразим главные переменные.

x_1	x_2	x_3	x_4	x_5	
2	1	0	0	0	$\leftarrow v_1$
15	0	-19	1	0	$\leftarrow v_2$
-22	0	25	0	1	$\leftarrow v_3$

Ответ: (2,1,0,0,0), (15,0,-19,1,0), (-22,0,25,0,1)

Нахождение координат вектора в заданном базисе

Дано: базис $e = (e_1, \dots, e_n)$ в \mathbb{F}^n и вектор $v = (v_1, \dots, v_n)$.

Задача: найти координаты вектора v в базисе e.

Алгоритм:

1. Запишем векторы базиса в столбиы матрицы A:

$$A = \begin{pmatrix} e_1 & e_2 & \dots & e_m \\ \downarrow & \downarrow & & \downarrow \\ e_{11} & e_{21} & \dots & e_{n1} \\ e_{12} & e_{22} & \dots & e_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ e_{1n} & e_{2n} & \dots & e_{nn} \end{pmatrix}$$

2. Решим СЛУ Ax = v. Решение Ax = v единственно и является искомыми координатами.

$$\begin{pmatrix} e_{11} & e_{21} & \dots & e_{n1} & v_1 \\ e_{12} & e_{22} & \dots & e_{n2} & v_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ e_{1n} & e_{2n} & \dots & e_{nn} & v_n \end{pmatrix} \xrightarrow{\text{\tiny \mathcal{A}nem. npeo6.}} \begin{pmatrix} 1 & 0 & \dots & 0 & x_1 \\ 0 & 1 & \dots & 0 & x_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & x_n \end{pmatrix}$$

Замечание: в случае, когда известна A^{-1} , можно воспользоваться формулой $x = A^{-1}v$.

Пример: в пространстве \mathbb{R}^3 задан базис $e = (e_1, e_2, e_3)$, где

$$e_1 = (2, -1, -1), e_2 = (3, 1, 1), e_3 = (-2, -1, -2)$$

Найти координаты вектора v=(5,6,9) в базисе е.

Решение:

1. Запишем векторы базиса в *столбцы* матрицы A:

$$A = \begin{pmatrix} e_1 & e_2 & e_3 \\ \downarrow & \downarrow & \downarrow \\ 2 & 3 & -2 \\ -1 & 1 & -1 \\ -1 & 1 & -2 \end{pmatrix}$$

2. Решим СЛУ Ax = v.

$$\begin{pmatrix} 2 & 3 & -2 & | & 5 \\ -1 & 1 & -1 & | & 6 \\ -1 & 1 & -2 & | & 9 \end{pmatrix} \xrightarrow{\text{\tiny \mathcal{P}AM. Npeof.}} \begin{pmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -3 \end{pmatrix}$$

Решением Ax = v является вектор x = (-2, 1, -3). Таким образом, координаты вектора v в базисе е равны x = (-2, 1, -3).

9

Ответ: (-2, 1, -3)

Нахождение матрицы перехода от одного базиса к другому (способ 1)

Дано: два базиса $\mathfrak{e} = (e_1, \dots, e_n)$ и $\mathfrak{f} = (f_1, \dots, f_n)$ в пространстве \mathbb{F}^n .

Задача: найти матрицу перехода от базиса е к в.

Алгоритм:

1. Запишем векторы e_1, \ldots, e_n в столбиы матрицы A, а векторы f_1, \ldots, f_n в столбиы B. Рассмотрим матрицу $(A \mid B)$. Приведём её элементарными преобразованиями строк к виду $(E \mid C)$.

2. Матрица C и есть искомая матрица, то есть $(f_1, ..., f_n) = (e_1, ..., e_n) \cdot C$.

Пример: в пространстве \mathbb{R}^3 заданы два базиса $\mathbf{e}=(e_1,e_2,e_3)$ и $\mathbb{f}=(f_1,f_2,f_3),$ где

$$e_1 = (2, -1, -1), e_2 = (3, 1, 1), e_3 = (-2, -1, -2)$$

 $f_1 = (-3, 1, 2), f_2 = (1, 1, 3), f_3 = (-2, -2, -1)$

Найти матрицу перехода от базиса е к базису f.

Решение:

1. Запишем векторы e_1, \ldots, e_n в *столбцы* матрицы A, а векторы f_1, \ldots, f_n в *столбцы* B. Рассмотрим матрицу $(A \mid B)$. Приведём её *элементарными преобразованиями строк* к виду $(E \mid C)$.

2. Матрица C и есть искомая матрица, то есть $(f_1, \ldots, f_n) = (e_1, \ldots, e_n) \cdot C$.

Ответ:
$$\begin{pmatrix} -1 & 0 & 1 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix}$$

Нахождение матрицы перехода от одного базиса к другому (способ 2)

Дано: два базиса $\mathfrak{e} = (e_1, \dots, e_n)$ и $\mathfrak{f} = (f_1, \dots, f_n)$ в пространстве \mathbb{F}^n .

Задача: найти матрицу перехода от базиса е к Г.

Алгоритм:

1. Запишем векторы e_1, \ldots, e_n в *столбцы* матрицы A, а векторы f_1, \ldots, f_n в *столбцы* B.

$$A = \begin{pmatrix} e_1 & e_2 & \dots & e_n \\ \downarrow & \downarrow & & \downarrow \\ e_{11} & e_{21} & \dots & e_{n1} \\ e_{12} & e_{22} & \dots & e_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ e_{1n} & e_{2n} & \dots & e_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} f_1 & f_2 & \dots & f_n \\ \downarrow & \downarrow & & \downarrow \\ f_{11} & f_{21} & \dots & f_{n1} \\ f_{12} & f_{22} & \dots & f_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ f_{1n} & f_{2n} & \dots & f_{nn} \end{pmatrix}$$

- 2. Найдём обратную матрицу к A.
- 3. Искомая матрица C, такая что $(f_1, \ldots, f_n) = (e_1, \ldots, e_n) \cdot C$, выражается по следующей формуле: $C = A^{-1} \cdot B$.

Пример: в пространстве \mathbb{R}^3 заданы два базиса $\mathbf{e}=(e_1,e_2,e_3)$ и $\mathbf{f}=(f_1,f_2,f_3),$ где

$$e_1 = (2, -1, -1), e_2 = (3, 1, 1), e_3 = (-2, -1, -2)$$

 $f_1 = (-3, 1, 2), f_2 = (1, 1, 3), f_3 = (-2, -2, -1)$

Найти матрицу перехода от базиса е к базису Г.

Решение:

1. Запишем векторы e_1, \dots, e_n в *столбцы* матрицы A, а векторы f_1, \dots, f_n в *столбцы* B.

$$A = \begin{pmatrix} e_1 & e_2 & e_3 \\ \downarrow & \downarrow & \downarrow \\ -1 & 1 & -1 \\ -1 & 1 & -2 \end{pmatrix} \qquad B = \begin{pmatrix} f_1 & f_2 & f_3 \\ \downarrow & \downarrow & \downarrow \\ -3 & 1 & -2 \\ 1 & 1 & -2 \\ 2 & 3 & -1 \end{pmatrix}$$

2. Найдём обратную матрицу к A.

$$A = \begin{pmatrix} 2 & 3 & -2 \\ -1 & 1 & -1 \\ -1 & 1 & -2 \end{pmatrix} \xrightarrow[\substack{\text{nouck} \\ \text{of pamnoù}}}^{\text{nouck}} A^{-1} = \begin{pmatrix} 1/5 & -4/5 & 1/5 \\ 1/5 & 6/5 & -4/5 \\ 0 & 1 & -1 \end{pmatrix}$$

3. Искомая матрица C, такая что $(f_1,\ldots,f_n)=(e_1,\ldots,e_n)\cdot C$, выражается по формуле:

$$C = A^{-1} \cdot B = \begin{pmatrix} 1/5 & -4/5 & 1/5 \\ 1/5 & 6/5 & -4/5 \\ 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} -3 & 1 & -2 \\ 1 & 1 & -2 \\ 2 & 3 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix}$$

11

Ответ: $\begin{pmatrix} -1 & 0 & 1 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix}$

Нахождение координат вектора в новом базисе

Дано: два базиса е = (e_1, \ldots, e_n) и $\mathbb{F} = (f_1, \ldots, f_n)$ в пространстве V, матрица C перехода от базиса е к \mathbb{F} и вектор $v = x_1e_1 + \ldots + x_ne_n$, заданный в базисе е.

Задача: найти координаты вектора v в базисе f.

Алгоритм:

1. Запишем координаты вектора v в базисе e.

$$v=x_1e_1+\ldots+x_ne_n=(e_1,\ldots,e_n)\cdot \begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix} \Leftrightarrow x=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$$
 – координаты v в базисе е

- 2. Найдём обратную матрицу к C.
- 3. Пусть $v = y_1 f_1 + \ldots + y_n f_n$ разложение v по базису $\mathbb F$. Искомые координаты вектора v в базисе $\mathbb F$ выражаются по формуле:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = C^{-1} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пример: в пространстве \mathbb{R}^3 заданы два базиса $\mathfrak{e} = (e_1, e_2, e_3)$ и $\mathfrak{f} = (f_1, f_2, f_3)$, где

$$(f_1, f_2, f_3) = (e_1, e_2, e_3) \cdot \begin{pmatrix} -1 & 0 & 1 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix}$$

Вектор $v=-2e_1+2e_2-2e_3$ задан в базисе $\mathfrak e$. Найти координаты v в базисе $\mathfrak f$.

Решение:

1. Запишем координаты вектора v в базисе e.

$$v = -2e_1 + 2e_2 - 2e_3 = (e_1, e_2, e_3) \cdot \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix} \Leftrightarrow x = \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix}$$
 – координаты v в базисе е

2. Найдём обратную матрицу к C.

$$C = \begin{pmatrix} -1 & 0 & 1 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix} \xrightarrow[of pamnoŭ]{nouc\kappa} C^{-1} = \begin{pmatrix} -3/4 & -1/2 & 1/4 \\ 1/4 & 1/2 & -3/4 \\ 1/4 & -1/2 & 1/4 \end{pmatrix}$$

3. Искомые координаты вектора v в базисе $\mathbb F$ выражаются по формуле:

$$C^{-1} \cdot \begin{pmatrix} -2\\2\\-2 \end{pmatrix} = \begin{pmatrix} -3/4 & -1/2 & 1/4\\1/4 & 1/2 & -3/4\\1/4 & -1/2 & 1/4 \end{pmatrix} \cdot \begin{pmatrix} -2\\2\\-2 \end{pmatrix} = \begin{pmatrix} 0\\2\\-2 \end{pmatrix}$$

Ответ: (0, 2, -2)

Способы задания подпространств

Всякое подпространство в \mathbb{F}^n можно задать двумя способами:

- линейная оболочка конечной системы векторов
- множество решений некоторой ОСЛУ

Переход от ОСЛУ к линейной оболочке

Дано: подпространство, заданное как множество решений ОСЛУ Ax = 0.

Задача: задать подпространство в виде линейной оболочки конечного набора векторов.

Алгоритм:

- 1. Найдём фундаментальную систему решений для Ax = 0. Пусть это векторы v_1, \dots, v_{n-r} .
- 2. Линейная оболочка $\langle v_1, \dots, v_{n-r} \rangle$ задаёт подпространство, являющееся множеством решений ОСЛУ Ax = 0.

Пример: подпространство задано как множество решений следующей однородной системы линейных уравнений:

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ 4x_1 + 2x_2 - 2x_3 = 0 \\ x_1 + 3x_2 + 7x_3 = 0 \end{cases}$$

Требуется задать подпространство в виде линейной оболочки конечного набора векторов.

Решение:

1. Найдём фундаментальную систему решений для Ax = 0, где матрица A равна:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 2 & -2 \\ 1 & 3 & 7 \end{pmatrix}$$

Поиск ФСР для Ax = 0:

$$\begin{pmatrix} 1 & 1 & 1 \\ 4 & 2 & -2 \\ 1 & 3 & 7 \end{pmatrix} \xrightarrow[cmpo\kappa]{\mathfrak{Sign. npeo6.}} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow[cmpo\kappa]{\mathfrak{PCP}} v_1 = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$

2. Линейная оболочка $\langle v_1 \rangle = \langle (2, -3, 1) \rangle$ задаёт подпространство, являющееся множеством решений ОСЛУ Ax = 0.

Ответ: ((2, -3, 1))

Переход от линейной оболочки к ОСЛУ

Дано: $\langle v_1, \dots, v_m \rangle$ — подпространство, заданное как линейная оболочка конечного набора векторов v_1, \dots, v_m .

Задача: задать подпространство как множество решений некоторой ОСЛУ.

Алгоритм:

1. Запишем векторы v_1, \ldots, v_m в строки матрицы A.

$$A = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{pmatrix} \leftarrow v_1 \\ \leftarrow v_2 \\ \vdots \\ \leftarrow v_m$$

- 2. Найдём фундаментальную систему решений для Ax = 0. Пусть это векторы u_1, \ldots, u_{m-r} .
- 3. Запишем векторы u_1, \dots, u_{m-r} в *строки* матрицы B.

$$B = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ u_{21} & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m-r,1} & u_{m-r,2} & \dots & u_{m-r,n} \end{pmatrix} \leftarrow u_1 \\ \leftarrow u_2 \\ \vdots \\ \leftarrow u_m$$

4. Полученная матрица B является матрицей коэффициентов искомой ОСЛУ. Множество решений Bx=0 задаёт подпространство $\langle v_1,\ldots,v_m\rangle$.

Пример: подпространство задано как линейная оболочка векторов

$$v_1 = (1, 4, 2), \ v_2 = (3, 7, 1), \ v_3 = (-2, -3, 1)$$

Требуется задать подпространство как множество решений некоторой ОСЛУ.

Решение:

1. Запишем векторы v_1, v_2, v_3 в *строки* матрицы A.

$$A = \begin{pmatrix} 1 & 4 & 2 \\ 3 & 7 & 1 \\ -2 & -3 & 1 \end{pmatrix} \leftarrow \begin{matrix} v_1 \\ \leftarrow v_2 \\ \leftarrow v_3 \end{matrix}$$

2. Найдём фундаментальную систему решений для Ax = 0.

$$\begin{pmatrix} 1 & 4 & 2 \\ 3 & 7 & 1 \\ -2 & -3 & 1 \end{pmatrix} \xrightarrow[\substack{\text{onem. npeof.} \\ \text{cmpor.}} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow[]{\Phi CP} u_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

3. Запишем вектор u_1 в строки матрицы B.

$$B=(2,-1,1) \ \Rightarrow \ 2x_1-x_2+x_3=0$$
 – искомая ОСЛУ

Ответ: $2x_1 - x_2 + x_3 = 0$

Пересечение, сумма и прямая сумма подпространств

Базис суммы подпространств, заданных линейной оболочкой

Дано: подпространства $U = \langle u_1, \dots, u_k \rangle$ и $W = \langle w_1, \dots, w_m \rangle$ в \mathbb{F}^n .

Задача: найти базис подпространства U + W.

Алгоритм:

1. Запишем векторы u_1, \ldots, u_m и w_1, \ldots, w_m в столбиы матрицы. Приведём составленную матрицу элементарными преобразованиями строк к ступенчатому виду.

$$\begin{pmatrix} u_{11} & \dots & u_{k} & w_{1} & \dots & w_{m} \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ u_{11} & \dots & u_{k1} & w_{11} & \dots & w_{m1} \\ u_{12} & \dots & u_{k2} & w_{12} & \dots & w_{m2} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ u_{1n} & \dots & u_{kn} & w_{1n} & \dots & w_{mn} \end{pmatrix} \xrightarrow{\text{\tiny \it SAEM. npeob.}} \begin{pmatrix} \boxed{a_{11}} & a_{21} & \dots & a_{k1} & b_{11} & b_{21} & \dots & b_{m1} \\ 0 & a_{22} & \dots & a_{k2} & b_{12} & b_{22} & \dots & b_{m2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & b_{mn} \end{pmatrix}$$

2. Пусть $i_1,\ldots,i_p,j_1,\ldots,j_q$ – номера столбцов, содержащих ведущие элементы строк, тогда записанные в столбцы этих номеров векторы $u_{i_1},\ldots,u_{i_p},w_{j_1},\ldots,w_{j_q}$ – базис U+W.

Замечание: можно сначала отдельно найти базисы в U и W, а затем применить алгоритм, составляя матрицу не из данных в задаче векторов, а из полученных базисов.

Пример: даны два подпространства $U=\langle u_1,u_2\rangle$ и $W=\langle w_1,w_2,w_3\rangle,$ где

$$u_1 = (1, 2, 1), u_2 = (1, 1, -1)$$

 $w_1 = (2, 3, 0), w_2 = (1, 2, 2), w_3 = (1, 1, -3)$

Найти базис подпространства U+W.

Решение:

1. Запишем векторы u_1, u_2 и w_1, w_2, w_3 в *столбцы* матрицы. Приведём составленную матрицу элементарными преобразованиями строк к ступенчатому виду.

2. Столбцы 1, 2 и 4 содержат ведущие элементы строк, значит, u_1 , u_2 и w_2 – базис U+W.

Ответ: (1,2,1), (1,1,-1), (1,2,2) – базис U+W

Базис пересечения подпространств, заданных линейной оболочкой

Дано: подпространства $U = \langle u_1, \dots, u_k \rangle$ и $W = \langle w_1, \dots, w_m \rangle$ в \mathbb{F}^n .

Задача: найти базис подпространства $U \cap W$.

Алгоритм:

1. Запишем векторы u_1, \ldots, u_m и w_1, \ldots, w_m в *столбцы* матрицы $S = (A \mid B)$.

$$\begin{pmatrix}
u_1 & \dots & u_k & w_1 & \dots & w_m \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
u_{11} & \dots & u_{k1} & w_{11} & \dots & w_{m1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
u_{1n} & \dots & u_{kn} & w_{1n} & \dots & w_{mn}
\end{pmatrix}$$

- 2. Найдём фундаментальную систему решений для Sx=0. Пусть это векторы v_1,\ldots,v_q , где число q=k+m-r число векторов ФСР.
- 3. Записав векторы v_1,\dots,v_q в $cmonбиль матрицы <math>\Phi,$ получим $\phi y + \partial a m e + man b + y \rho$ матрицу.

$$\Phi = \begin{pmatrix} v_{11} & v_{2} & \dots & v_{q} \\ \downarrow & \downarrow & & \downarrow \\ v_{11} & v_{21} & \dots & v_{q,1} \\ v_{12} & v_{22} & \dots & v_{q,2} \\ \vdots & \vdots & \ddots & \vdots \\ v_{1k} & v_{2k} & \dots & v_{q,k} \\ \hline v_{1,k+1} & v_{2,k+1} & \dots & v_{q,k+1} \\ v_{1,k+2} & v_{2,k+2} & \dots & v_{q,k+2} \\ \vdots & \vdots & \ddots & \vdots \\ v_{1,k+m} & v_{2,k+m} & \dots & v_{q,k+m} \end{pmatrix} \right\} \Phi_{\beta}$$

Обозначим Φ_{α} матрицу, состоящую из первых k строк матрицы Φ , а Φ_{β} – матрицу, состоящую из m последних строк матрицы Φ .

4. Вычислим произведение $P = A\Phi_{\alpha} = -B\Phi_{\beta}$.

$$P = \underbrace{\begin{pmatrix} u_{11} & \dots & u_{k1} \\ \vdots & \ddots & \vdots \\ u_{1n} & \dots & u_{kn} \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} v_{11} & \dots & v_{q,1} \\ \vdots & \ddots & \vdots \\ v_{1k} & \dots & v_{q,k} \end{pmatrix}}_{\Phi_{\alpha}} = \underbrace{-\begin{pmatrix} w_{11} & \dots & w_{m1} \\ \vdots & \ddots & \vdots \\ w_{1n} & \dots & w_{mn} \end{pmatrix}}_{-B} \cdot \underbrace{\begin{pmatrix} v_{1,k+1} & \dots & v_{q,k+1} \\ \vdots & \ddots & \vdots \\ v_{1,k+m} & \dots & v_{q,k+m} \end{pmatrix}}_{\Phi_{\beta}}$$

5. Линейная оболочка векторов, стоящих в столбцах P порождает $U \cap W$. Найдя базис пространства, натянутого на столбцы p_1, \ldots, p_q матрицы P, получим базис для $U \cap W$.

Замечание: можно сначала отдельно найти базисы в U и W, а затем применить алгоритм, составляя матрицу S не из данных в задаче векторов, а из полученных базисов.

Пример: даны два подпространства $U = \langle u_1, u_2 \rangle$ и $W = \langle w_1, w_2, w_3 \rangle$, где

$$u_1 = (1, 2, 1), u_2 = (1, 1, -1)$$

 $w_1 = (2, 3, 0), w_2 = (1, 2, 2), w_3 = (1, 1, -3)$

Найти базис подпространства $U \cap W$.

Решение:

1. Запишем векторы u_1, \ldots, u_m и w_1, \ldots, w_m в *столбцы* матрицы S = (A|B) и найдём ФСР системы Sx = 0.

2. Записав векторы v_1, v_2 в столбцы матрицы Φ , получим фундаментальную матрицу.

$$\Phi = \begin{pmatrix} v_1 & v_2 \\ \downarrow & \downarrow \\ -1 & -2 \\ -1 & -1 \\ 1 & 0 \\ 0 & 2 \\ 0 & 1 \end{pmatrix} \begin{cases} \Phi_{\alpha} \\ \Phi_{\beta} \end{cases}$$

3. Вычислим произведение $P = A\Phi_{\alpha} = -B\Phi_{\beta}$.

$$P = \underbrace{\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix}}_{\Phi_{\alpha}} = \underbrace{-\begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 0 & 2 & -3 \end{pmatrix}}_{-B} \cdot \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 1 \end{pmatrix}}_{\Phi_{\beta}} = \begin{pmatrix} -2 & -3 \\ -3 & -5 \\ 0 & -1 \end{pmatrix}$$

4. Найдём базис пространства, натянутого на столбцы p_1 и p_2 матрицы P. Это векторы p_1 , p_2 . Таким образом, векторы p_1 и p_2 – базис $U \cap W$.

Ответ: (-2, -3, 0), (-3, -5, -1) – базис $U \cap W$

Базис пересечения подпространств, заданных ОСЛУ

Дано: подпространства U и W в \mathbb{F}^n , заданные как множество решений Ax=0 и Bx=0 соответственно.

Задача: найти базис подпространства $U \cap W$.

Алгоритм:

1. Запишем матрицы A и B следующим образом:

$$\left(\frac{A}{B}\right) = \begin{pmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{k1} & \dots & a_{kn} \\
b_{11} & \dots & b_{1n} \\
\vdots & \ddots & \vdots \\
b_{m1} & \dots & b_{mn}
\end{pmatrix} A$$

- 2. Найдем ФСР для $\left(\frac{A}{B}\right) \cdot x = 0$. Пусть это векторы v_1, \dots, v_{n-r} .
- 3. Векторы v_1, \dots, v_{n-r} образуют искомый базис в $U \cap W$.

Пример: даны два подпространства U и W, заданные ОСЛУ Ax=0 и Bx=0 соответственно, где матрицы A и B равны

$$A = \begin{pmatrix} 1 & -1 & -5 \\ -3 & 3 & 15 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & -3 \\ 1 & 3 & 3 \\ 2 & 3 & 0 \end{pmatrix}$$

Найти базис подпространства $U \cap W$.

Решение:

1. Запишем матрицы А и В следующим образом:

$$\left(\frac{A}{B}\right) = \begin{pmatrix}
1 & -1 & -5 \\
-3 & 3 & 15 \\
\hline
1 & 0 & -3 \\
1 & 3 & 3 \\
2 & 3 & 0
\end{pmatrix}$$

$$\left.\begin{array}{cccc}
A \\
B \\
B
\end{array}\right\}$$

2. Найдем ФСР для $\left(\frac{A}{B}\right) \cdot x = 0$.

$$\begin{pmatrix} 1 & -1 & -5 \\ -3 & 3 & 15 \\ 1 & 0 & -3 \\ 1 & 3 & 3 \\ 2 & 3 & 0 \end{pmatrix} \xrightarrow{\text{\tiny SAEM. npeob.}} \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\Phi CP} v_1 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$$

3. Вектор v_1 образует искомый базис в $U \cap W$

Ответ: (3, -2, 1) – базис $U \cap W$

Проекция вектора на подпространство вдоль другого подпространства

Дано: вектор $v \in \mathbb{F}^n$ и подпространства $U = \langle u_1, \dots, u_k \rangle$ и $W = \langle w_1, \dots, w_m \rangle$ в \mathbb{F}^n , такие что выполнено $\mathbb{F}^n = U \oplus W$.

Задача: найти проекцию вектора v на U вдоль W и проекцию v на W вдоль U.

Алгоритм:

1. Запишем векторы u_1, \ldots, u_m и w_1, \ldots, w_m в *столбцы* матрицы $S = (A \mid B)$.

$$\begin{pmatrix}
u_1 & \dots & u_k & w_1 & \dots & w_m \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
u_{11} & \dots & u_{k1} & w_{11} & \dots & w_{m1} \\
\vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\
u_{1n} & \dots & u_{kn} & w_{1n} & \dots & w_{mn}
\end{pmatrix}$$

- 2. Решим систему Sx = v. Пусть $(x_1, \ldots, x_k, y_1, \ldots, y_m)$ решение этой ОСЛУ, то есть вектор $v = \underbrace{x_1u_1 + \ldots + x_ku_k}_X + \underbrace{y_1w_1 + \ldots + y_mw_m}_Y.$ 3. Вектор $x = x_1u_1 + \ldots + x_ku_k$ – проекция v на U вдоль W. Вектор $y = y_1w_1 + \ldots + y_mw_m$ –
- проекция v на W вдоль U.

Замечание: можно сначала отдельно найти базисы в U и W, а затем применить алгоритм, составляя матрицу S не из данных в задаче векторов, а из полученных базисов.

Пример: в \mathbb{R}^3 заданы подпространства $U = \langle u_1, u_2 \rangle$ и $W = \langle w_1, w_2, w_3 \rangle$, $\mathbb{R}^3 = U \oplus W$ и

$$u_1 = (1,3,2), u_2 = (-2,-6,-4)$$

 $w_1 = (1,-2,3), w_2 = (-2,1,5), w_3 = (-3,6,9)$

Найти проекцию вектора v = (5, -13, -26) на U вдоль W и на W вдоль U.

Решение:

1. Запишем векторы u_1, u_2 и w_1, w_2, w_3 в *столбцы* матрицы $S = (A \mid B)$ и решим СЛУ Sx = v.

$$\begin{pmatrix} u_1 & u_2 & w_1 & w_2 & w_3 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & -2 & 1 & -2 & -3 \\ 3 & -6 & -2 & 1 & 6 \\ 2 & -4 & 3 & 5 & -9 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 5 \\ -13 \\ -26 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} -1 \\ 1 \\ 3 \\ -4 \\ 1 \end{pmatrix} \quad - \text{частное решение СЛУ}$$

2. Вектор $v = -u_1 + u_2 + 3w_1 - 4w_2 + w_3 \Rightarrow x = -u_1 + u_2 = (-3, -9, -6)$ – проекция v на U вдоль W и $y = 3w_1 - 4w_2 + w_3 = (8, -4, -20)$ – проекция v на W вдоль U.

Ответ: (-3,-9,-6) – проекция v на U вдоль W и (8,-4,-20) – проекция v на W вдоль U

Поиск дополнительного подпространства

Дано: подпространство $U \subseteq V$.

Задача: найти такое подпространство $W \subseteq V$, что $V = U \oplus W$.

Алгоритм:

- 1. Найдём какой-нибудь базис e_1, \ldots, e_k в U и дополним его до базиса $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ всего пространства V.
- 2. Положим $W = \langle e_{k+1}, \dots, e_n \rangle$. Полученное подпространство и есть искомое.

Замечание: пространство W может быть выбрано не одним способом.

Пример: в пространстве $M_2(\mathbb{R})$ задано подпространство U диагональных матриц. Найти подпространство W, такое что $M_2(\mathbb{R}) = U \oplus W$.

Решение:

1. Выделим базис в U. Матрицы E_{11} и E_{22} образуют базис в U: они линейно независимы и каждая матрица из U представляется в виде линейной комбинации этих матричных единиц:

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = a \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = a \cdot E_{11} + b \cdot E_{22}$$

Дополним E_{11} и E_{22} до базиса всего $M_2(\mathbb{R})$ матрицами E_{12} и E_{21} .

2. Положим $W = \langle E_{12}, E_{21} \rangle$. Полученное подпространство и есть искомое.

Ответ: $W = \langle E_{12}, E_{21} \rangle$

Линейные отображения векторных пространств

Нахождение матрицы линейного отображения

Дано: линейное отображение $\varphi: V \to W, v \mapsto \varphi(v)$, базис $e = (e_1, \dots, e_n)$ в V и базис $f = (f_1, \dots, f_m)$ в W.

Задача: найти матрицу линейного отображения φ в паре базисов $\mathfrak e$ и $\mathfrak f$.

Алгоритм:

1. Найдём образы $\varphi(e_1),\dots,\varphi(e_n)$ и координаты каждого вектора $\varphi(e_j)$ в базисе $\mathfrak f$:

$$arphi(e_j) = a_{1j}f_1 + a_{2j}f_2 + \ldots + a_{mj}f_m = (f_1, f_2, \ldots, f_m) \cdot \begin{pmatrix} a_{1j} \\ a_{2j} \\ \ldots \\ a_{mj} \end{pmatrix}$$
 \uparrow
 $\kappa oop \partial u ham \omega \ arphi(e_j) \ \ 6 \ \ \delta a \ \ s u ce \ \ \ \ \ \ \ \ \$

2. Координаты каждого $\varphi(e_j)$ вектора в базисе $\mathbb F$ запишем в j столбец матрицы A. Полученная матрица и есть искомая матрица линейного отображения φ в паре базисов $\mathfrak e$ и $\mathbb F$.

Пример: найти матрицу линейного отображения

$$\varphi : \mathbb{R}[x]_{\leq 2} \to \mathbb{R}^2, \ f \mapsto \begin{pmatrix} f(3) \\ f'(4) \end{pmatrix}$$

в паре базисов $(1, 2x, x^2)$ и ((1,0), (0,2)).

Решение:

1. Найдём образы $\varphi(e_1)$, $\varphi(e_2)$ и $\varphi(e_3)$, где $(e_1,e_2,e_3)=(1,\ 2x,\ x^2)$:

$$\varphi(1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $\varphi(x) = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ $\varphi(x^2) = \begin{pmatrix} 9 \\ 8 \end{pmatrix}$

Найдём координаты каждого образа в базисе $(f_1, f_2) = ((1, 0), (0, 2))$:

$$\varphi(1) = (f_1, f_2) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $\qquad \varphi(x) = (f_1, f_2) \cdot \begin{pmatrix} 6 \\ 1 \end{pmatrix}$ $\qquad \varphi(x^2) = (f_1, f_2) \cdot \begin{pmatrix} 9 \\ 4 \end{pmatrix}$

2. Координаты каждого $\varphi(e_j)$ вектора в базисе (f_1, f_2) запишем в j столбец матрицы A.

$$A = \begin{pmatrix} 1 & 6 & 9 \\ 0 & 1 & 4 \end{pmatrix}$$

Полученная матрица и есть искомая матрица линейного отображения φ .

Ответ:
$$A = \begin{pmatrix} 1 & 6 & 9 \\ 0 & 1 & 4 \end{pmatrix}$$

Нахождение координат образа

Дано: линейное отображение $\varphi: V \to W$, базис $e = (e_1, \dots, e_n)$ в V, базис $f = (f_1, \dots, f_m)$ в W, матрица линейного отображения $A = A(\varphi, e, f)$ и вектор $v \in V$.

Задача: найти координаты образа $\varphi(v)$ в базисе f.

Алгоритм:

- 1. Найдём координаты v в базисе e. Пусть $v = x_1 e_1 + \ldots + x_n e_n$, то есть (x_1, \ldots, x_n) координаты вектора v в e.
- 2. Координаты образа $\varphi(v)$ в базисе \mathbb{F} связаны соотношением:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Вектор (y_1,\ldots,y_m) – искомые координаты $\varphi(v)$ в базисе f.

Замечание: зная координаты вектора $\varphi(v)$ в базисе \mathbb{F} , нетрудно получить и сам образ равный $\varphi(v) = y_1 f_1 + \ldots + y_m f_m$.

Пример: линейное отображение $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ задано в паре стандартных базисах матрицей

$$A = \begin{pmatrix} 2 & 4 & 1 \\ 1 & 7 & 3 \end{pmatrix}$$

Найти координаты $\varphi(v)$ в стандартном базисе, где v=(1,-2,-1).

Решение:

- 1. Вектор $v = e_1 2e_2 e_3$, где $e = (e_1, e_2, e_3)$ стандартный базис в \mathbb{R}^3 , то есть координаты вектора v в стандартом базисе \mathbb{R}^3 совпадают с самим вектором v.
- 2. Координаты образа $\varphi(v)$ в стандартном базисе \mathbb{R}^2 равны:

$$A \cdot \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 1 & 7 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} -7 \\ -16 \end{pmatrix}$$

Ответ: (-7,-16) – координаты $\varphi(v)$ в стандартном базисе \mathbb{R}^2

Нахождение матрицы линейного отображения при замене базисов

Дано: линейное отображение $\varphi: V \to W$, заданное матрицей $A = A(\varphi, \mathfrak{e}, \mathbb{f})$ в паре базисов $\mathfrak{e} = (e_1, \ldots, e_n)$ в V и $\mathbb{f} = (f_1, \ldots, f_m)$ в W, и другие базисы $\mathfrak{e}' = (e_1', \ldots, e_n')$ в V и $\mathbb{f}' = (f_1', \ldots, f_m')$ в W, причём $\mathfrak{e}' = \mathfrak{e} \cdot C$ и $\mathbb{f}' = \mathbb{f} \cdot D$.

Задача: найти матрицу $A^{'}=A(\varphi, \mathfrak{e}^{'}, \mathfrak{f}^{'})$ линейного отображения φ в паре базисов $\mathfrak{e}^{'}$ и $\mathfrak{f}^{'}$.

Алгоритм:

- 1. Найдём D^{-1} матрицу, обратную к D.
- 2. Вычислим выражение $A^{'} = D^{-1}AC$. Полученная матрица $A^{'}$ искомая.

Пример: линейное отображение $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ задано в паре стандартных базисов матрицей

$$A = \begin{pmatrix} 2 & 4 & 1 \\ 1 & 7 & 3 \end{pmatrix}$$

Найти матрицу φ в базисах $\mathfrak{e}'=\left((1,-3,1),(2,-2,-1),(-3,1,1)\right)$ и $\mathfrak{f}'=\left((-3,4),(-2,3)\right)$.

Решение:

1. Матрица перехода от стандартного базиса \mathbb{R}^3 к $\mathfrak{e}^{'}$ и от стандартного базиса \mathbb{R}^2 к $\mathfrak{l}^{'}$ равны соответсвенно:

$$C = \begin{pmatrix} 1 & 2 & -3 \\ -3 & -2 & 1 \\ 1 & -1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix}$$

Найдём обратную к матрице D:

$$D = \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix} \xrightarrow[\text{obparmioù}]{\text{nouck}} D^{-1} = \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix}$$

2. Вычислим выражение $A' = D^{-1}AC$.

$$A' = D^{-1}AC = \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 & 1 \\ 1 & 7 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & -3 \\ -3 & -2 & 1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 61 & 45 & -11 \\ -87 & -65 & 17 \end{pmatrix}$$

Полученная матрица $A^{'}$ искомая.

Ответ:
$$A(\varphi, e', f') = \begin{pmatrix} 61 & 45 & -11 \\ -87 & -65 & 17 \end{pmatrix}$$

Нахождение базиса ядра линейного отображения

Дано: линейное отображение $\varphi:V\to W$, заданное в паре базисов $\mathfrak{e}=(e_1,\dots,e_n)$ в V и $\mathbb{f}=(f_1,\dots,f_m)$ в W матрицей $A=A(\varphi,\mathfrak{e},\mathbb{f}).$

3адача: найти базис $\ker \varphi$.

Алгоритм:

- 1. Найдём ФСР для ОСЛУ Ax = 0. Пусть это векторы u_1, \ldots, u_{n-r} . Эти векторы образуют базис ядра в координатах.
- 2. Пусть $u_k = (x_{1k}, \dots, x_{nk})$. Для каждого $k = 1, \dots, n-r$ вычислим вектор

$$v_k = (e_1, \dots, e_n) \cdot u_k = (e_1, \dots, e_n) \cdot \begin{pmatrix} x_{1k} \\ \dots \\ x_{nk} \end{pmatrix} = x_{1k}e_1 + \dots + x_{nk}e_n$$

3. Векторы v_1, \ldots, v_{n-r} образуют базис в $\ker \varphi$.

Замечание: если требуется записать ответ в базисе, в котором задана матрица φ , то ответом являются векторы-координаты u_1, \ldots, u_{n-r} . Нахождение векторов v_1, \ldots, v_{n-r} – это переход к записи ответа в стандартном базисе.

Пример: линейное отображение $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ задано в матрицей

$$A = \begin{pmatrix} 2 & -1 & 7 \\ -6 & -2 & -6 \end{pmatrix}$$

в паре базисов ((1,-2,-1),(3,1,-1),(0,1,1)) и ((-1,4),(-2,1)). Найти базис ядра φ . Ответ запишите в стандартном базисе.

Решение:

1. Найдём ФСР для ОСЛУ Ax = 0.

$$\begin{pmatrix} 2 & -1 & 7 \\ -6 & -2 & -6 \end{pmatrix} \xrightarrow[\substack{cmpo\kappa}]{\text{ мем. преоб.}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \end{pmatrix} \xrightarrow[]{\Phi CP} u_1 = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} - \text{базис ker } \varphi \text{ в координатах}$$

2. Вычислим следующее произведение

$$v_{1} = (e_{1}, e_{2}, e_{3}) \cdot u_{1} = \begin{pmatrix} e_{1} & e_{2} & e_{3} \\ \downarrow & \downarrow & \downarrow \\ 1 & 3 & 0 \\ -2 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \\ 0 \end{pmatrix}$$

3. Вектор v_1 является базисом ядра.

Ответ: (7, 8, 0) – базис $\ker \varphi$

Нахождение базиса образа линейного отображения (способ 1)

Дано: линейное отображение $\varphi:V\to W$, заданное в паре базисов $\mathfrak{e}=(e_1,\dots,e_n)$ в V и $\mathbb{f}=(f_1,\dots,f_m)$ в W матрицей $A=A(\varphi,\mathfrak{e},\mathbb{f}).$

3адача: найти базис $\operatorname{Im} \varphi$.

Алгоритм:

- 1. Решим ОСЛУ Ax = 0. Пусть i_1, \ldots, i_r номера главных неизвестных этой ОСЛУ.
- 2. Базис образа в координатах образуют столбцы $A^{(i_1)}, \ldots, A^{(i_r)}$ матрицы A.
- 3. Для каждого $k = 1, \dots, r$ вычислим вектор

$$w_k = (f_1, \dots, f_m) \cdot A^{(i_k)} = (f_1, \dots, f_m) \cdot \begin{pmatrix} a_{1k} \\ \dots \\ a_{mk} \end{pmatrix} = a_{1k} f_1 + \dots + a_{mk} f_m$$

$$\uparrow_{A^{(i_k)}}$$

4. Векторы w_1, \ldots, w_r – искомый базис $\operatorname{Im} \varphi$.

Замечание: алгоритм удобно применять, когда в задаче также требуется найти базис ядра φ , то есть применить предыдущий алгоритм, в котором решается ОСЛУ Ax=0. В противном случае можно использовать следующий алгоритм.

Пример: линейное отображение $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ задано в матрицей

$$A = \begin{pmatrix} 2 & -1 & 7 \\ -6 & -2 & -6 \end{pmatrix}$$

в паре базисов ((1,-2,-1),(3,1,-1),(0,1,1)) и ((-1,4),(-2,1)). Найти базис образа φ . Ответ запишите в стандартном базисе.

Решение:

- 1. Из предыдущей задачи получаем, что 1 и 2 номера главных переменных в ОСЛУ Ax=0.
- 2. Столбцы $A^{(1)}$ и $A^{(2)}$ матрицы A образуют базис в $\operatorname{Im} \varphi$ в координатах.
- 3. Вычислим векторы w_1 и w_2 :

$$w_{1} = (f_{1}, f_{2}) \cdot A^{(1)} = \begin{pmatrix} f_{1} & f_{2} \\ \downarrow & \downarrow \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -6 \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix}$$

$$w_{2} = (f_{1}, f_{2}) \cdot A^{(2)} = \begin{pmatrix} -1 & -2 \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 5 \\ -6 \end{pmatrix}$$

Векторы w_1 и w_2 – базис $\operatorname{Im} \varphi$.

Ответ: (10, 2), (5, -6) – базис Im φ

Нахождение базиса образа линейного отображения (способ 2)

Дано: линейное отображение $\varphi:V\to W$, заданное в паре базисов $\mathfrak{e}=(e_1,\dots,e_n)$ в V и $\mathbb{f}=(f_1,\dots,f_m)$ в W матрицей $A=A(\varphi,\mathfrak{e},\mathbb{f}).$

3адача: найти базис $\operatorname{Im} \varphi$.

Алгоритм:

- 1. Найдём базис линейной оболочки столбцов $\langle A^{(1)}, \dots, A^{(n)} \rangle$ матрицы A. Пусть его образуют векторы u_1, \dots, u_r . Эта система векторов является базисом $\operatorname{Im} \varphi$ в координатах.
- 2. Пусть $u_k = (y_{1k}, \dots, y_{mk})$. Для каждого $k = 1, \dots, r$ вычислим вектор

$$w_k = (f_1, \dots, f_m) \cdot u_k = (f_1, \dots, f_m) \cdot \begin{pmatrix} y_{1k} \\ \dots \\ y_{mk} \end{pmatrix} = y_{1k} f_1 + \dots + y_{mk} f_m$$

3. Векторы w_1, \ldots, w_r образуют базис в $\operatorname{Im} \varphi$.

Замечание: для поиска базиса $\langle A^{(1)}, \dots, A^{(n)} \rangle$ можно применить любой из двух ранее описанных алгоритмов поиска базиса линейной оболочки.

Пример: линейное отображение $\varphi:\mathbb{R}^3 \to \mathbb{R}^2$ задано в матрицей

$$A = \begin{pmatrix} 2 & -1 & 7 \\ -6 & -2 & -6 \end{pmatrix}$$

в паре базисов ((1,-2,-1),(3,1,-1),(0,1,1)) и ((-1,4),(-2,1)). Найти базис образа φ . Ответ запишите в стандартном базисе.

Решение:

1. Найдём базис линейной оболочки столбцов $\langle A^{(1)}, A^{(2)}, A^{(3)} \rangle$ матрицы A. Воспользуемся транспонированным алгоритмом нахождения какого-нибудь базиса линейной оболочки.

$$\begin{pmatrix} 2 & -1 & 7 \\ -6 & -2 & -6 \end{pmatrix} \xrightarrow[\text{столбцов}]{\text{элем. преоб.}} \begin{pmatrix} \boxed{2} & 0 & 0 \\ -6 & -5 & 0 \end{pmatrix}$$

Векторы $u_1=(2,-6)$ и $u_2=(0,-5)$ – базис $\langle A^{(1)},A^{(2)},A^{(3)}\rangle$ и базис $\operatorname{Im}\varphi$ в координатах.

2. Вычислим векторы w_1 и w_2 , образующие базис $\operatorname{Im} \varphi$.

$$w_1 = (f_1, f_2) \cdot u_1 = \begin{pmatrix} 10 \\ 2 \end{pmatrix}$$
 $w_2 = (f_1, f_2) \cdot u_2 = \begin{pmatrix} 10 \\ -5 \end{pmatrix}$

Ответ: (10, 2), (10, -5) – базис Im φ

Если при поиске базиса $\langle A^{(1)}, A^{(2)}, A^{(3)} \rangle$ воспользоваться алгоритмом выделения базиса из системы векторов, то ответ будет совпадать с результатом способа 1.

Нахождение пары базисов, в которых матрица отображения диагональна

Дано: линейное отображение $\varphi:V\to W$, заданное в паре базисов $\mathfrak{e}=(e_1,\dots,e_n)$ в V и $\mathbb{f}=(f_1,\dots,f_m)$ в W матрицей $A=A(\varphi,\mathfrak{e},\mathbb{f}).$

 ${f 3}$ адача: найти такие базисы ${f e}^{'}$ в V и ${f f}^{'}$ в W, что $A^{'}=A(\varphi,{f e}^{'},{f f}^{'})$ диагональна.

Алгоритм:

- 1. Пусть векторы v_1, \ldots, v_{n-r} базис $\ker \varphi$. Положим $e'_{r+1} = v_1, \ldots, e'_n = v_{n-r}$. Дополним векторы e'_{r+1}, \ldots, e'_n векторами e'_1, \ldots, e'_r до базиса всего V.
- 2. Положим $f_1' = \varphi(e_1'), \dots, f_r' = \varphi(e_r')$. Дополним f_1', \dots, f_r' векторами f_{r+1}', \dots, f_m' до базиса W.
- 3. Найденные базисы e' и f' искомые.

Пример: линейное отображение $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ задано в матрицей

$$A = \begin{pmatrix} 2 & -1 & 7 \\ -6 & -2 & -6 \end{pmatrix}$$

в паре базисов e = ((1, -2, -1), (3, 1, -1), (0, 1, 1)) и f = ((-1, 4), (-2, 1)). Найти такие базисы e' в \mathbb{R}^3 и f' в \mathbb{R}^2 , что $A' = A(\varphi, e', f')$ диагональна.

Решение:

- 1. Вектор (7,8,0) базис $\ker \varphi$. Положим $e_3'=(7,8,0)$ и дополним его до базиса \mathbb{R}^3 . Номера главных переменных Ax=0 определяют дополнение в координатах (1,0,0) и (0,1,0). Эти координаты в базисе \mathfrak{e} дают векторы $e_1=(1,-2,-1)$ и $e_2=(3,1,-1)$. Таким образом, $e_1'=e_1=(1,-2,-1)$ и $e_2'=e_2=(3,1,-1)$ дополняют вектор $e_3'=(7,8,0)$ до базиса \mathbb{R}^3 . Искомый базис $\mathfrak{e}'=((1,-2,-1),(3,1,-1),(7,8,0))$.
- 2. Найдём $f_1^{'}=\varphi(e_1^{'})$ и $f_2^{'}=\varphi(e_2^{'})$. Векторы $f_1^{'}$ и $f_2^{'}$ образуют базис $\mathbb{f}^{'}$.

$$f_{1}^{'} = \varphi(e_{1}^{'}) = \varphi(e_{1}) = (f_{1}, f_{2}) \cdot A^{(1)} = \begin{pmatrix} 10 \\ 2 \end{pmatrix} \qquad f_{2}^{'} = \varphi(e_{2}^{'}) = \varphi(e_{2}) = (f_{1}, f_{2}) \cdot A^{(2)} = \begin{pmatrix} 5 \\ -6 \end{pmatrix}$$

3. В полученных базисах \mathfrak{e}' и \mathfrak{f}' матрица $A' = A(\varphi, \mathfrak{e}', \mathfrak{f}')$ имеет диагональный вид.

Ответ: e' = ((1, -2, -1), (3, 1, -1), (7, 8, 0)) и f' = ((10, 2), (5, -6))

Проверка:
$$e_1^{'}=e_1,\ e_2^{'}=e_2,\ e_3^{'}=-2e_1+3e_2+e_3$$
 и $f_1^{'}=2f_1-6f_2,\ f_2=-f_1-2f_2,$ то есть
$$e^{'}=e\cdot C=e\cdot \begin{pmatrix} 1 & 0 & -2\\ 0 & 1 & 3\\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbb{f}^{'}=\mathbb{f}\cdot D=\mathbb{f}\cdot \begin{pmatrix} 2 & -1\\ -6 & -2 \end{pmatrix}$$

Нетрудно убедиться, что в новых базисах φ имеет диагональную матрицу:

$$A' = D^{-1}AC = \begin{pmatrix} 2 & -1 \\ -6 & -2 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 2 & -1 & 7 \\ -6 & -2 & -6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Сопряжённые пространства

Нахождение двойственного базиса

Дано: два базиса $e = (e_1, \dots, e_n)$ и $e' = (e'_1, \dots, e'_n)$ в V, где $e' = e \cdot C$, и двойственный к e базис $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ в V^* .

 ${f 3}$ адача: найти базис $arepsilon'=(arepsilon_1^{'},\ldots,arepsilon_n^{'})$ в V^* , двойственный к ${\mathfrak e}$.

Алгоритм:

1. Вычислим базис ε' , двойственный к \mathfrak{e}' , по формуле $\varepsilon' = C^{-1} \cdot \varepsilon$:

$$\begin{pmatrix} \varepsilon_1' \\ \vdots \\ \varepsilon_n' \end{pmatrix} = C^{-1} \cdot \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

Пример: в пространстве V заданы два базиса $e = (e_1, e_2, e_3)$ и $e' = (e'_1, e'_2, e'_3)$, причём векторы $e'_1 = 2e_1 + e_2$, $e'_2 = e_2 + e_3$, $e'_3 = e_1 + e_2 + e_3$. В V^* задан базис $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$, двойственный к e. Найдите базис ε' в V^* , двойственный к e'.

Решение:

1. Из условия получаем матрицу перехода от e к e'

$$(e_{1}^{'}, e_{2}^{'}, e_{3}^{'}) = (e_{1}, e_{2}, e_{3}) \cdot \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = (e_{1}, e_{2}, e_{3}) \cdot C$$

$$C = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{\substack{nouc\kappa \\ of pamhoù}} C^{-1} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -2 & 2 \end{pmatrix}$$

Вычислим базис ε' , двойственный к \mathfrak{e}' , по формуле $\varepsilon' = C^{-1} \cdot \varepsilon$:

$$\begin{pmatrix} \varepsilon_1' \\ \varepsilon_2' \\ \varepsilon_3' \end{pmatrix} = C^{-1} \cdot \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix} = \begin{pmatrix} \varepsilon_2 + \varepsilon_3 \\ -\varepsilon_1 + 2\varepsilon_2 - \varepsilon_3 \\ \varepsilon_1 - 2\varepsilon_2 + 2\varepsilon_3 \end{pmatrix}$$

Ответ:
$$\varepsilon^{'}=(\varepsilon_{1}^{'},\varepsilon_{2}^{'},\varepsilon_{3}^{'})$$
, где $\varepsilon_{1}^{'}=\varepsilon_{2}+\varepsilon_{3}$
$$\varepsilon_{2}^{'}=-\varepsilon_{1}+2\varepsilon_{2}-\varepsilon_{3}$$

$$\varepsilon_{3}^{'}=\varepsilon_{1}-2\varepsilon_{2}+2\varepsilon_{3}$$

Нахождение базиса, которому двойствен заданный базис

Дано: два базиса $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)$ и $\varepsilon^{'}=(\varepsilon_1^{'},\ldots,\varepsilon_n^{'})$ в пространстве V^* , где $\varepsilon^{'}=C^{-1}\cdot\varepsilon$, и базис $\mathfrak{e}=(e_1,\ldots,e_n)$ в V, которому двойствен ε .

 ${f 3}$ адача: найти базис ${f e}^{'}=(e_1^{'},\ldots,e_n^{'})$ в V, которому двойствен ${f e}.$

Алгоритм:

1. Вычислим базис e', которому двойствен e', по формуле $e' = e \cdot C$:

$$(e_1^{\prime},\ldots,e_n^{\prime})=(e_1,\ldots,e_n)\cdot C$$

Пример: в пространстве V^* заданы два базиса $\varepsilon=(\varepsilon_1,\varepsilon_2,\varepsilon_3)$ и $\varepsilon^{'}=(\varepsilon_1^{'},\varepsilon_2^{'},\varepsilon_3^{'})$, причём линейные функции $\varepsilon_1^{'}=\varepsilon_1+\varepsilon_3,\varepsilon_2^{'}=\varepsilon_1+2\varepsilon_3,\varepsilon_3^{'}=\varepsilon_1+\varepsilon_2$. В V задан базис $\mathfrak{e}=(e_1,e_2,e_3)$, которому двойствен ε . Найдите базис $\mathfrak{e}^{'}$ в V, которому двойствен $\varepsilon^{'}$.

Решение:

1. Из условия получаем

$$\begin{pmatrix} \varepsilon_1' \\ \varepsilon_2' \\ \varepsilon_3' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix} = C^{-1} \cdot \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix}$$

$$C^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{\substack{nouck \\ oбpamnoŭ}} C = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$

Вычислим базис e', которому двойствен ε' , по формуле $e' = e \cdot C$:

$$(e_{1}^{'},e_{2}^{'},e_{3}^{'}) = (e_{1},e_{2},e_{3}) \cdot C = (e_{1},e_{2},e_{3}) \cdot \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix} = (2e_{1} - 2e_{2} - e_{3}, -e_{1} + e_{2} + e_{3}, e_{2})$$

Ответ:
$$\mathbf{e}^{'}=(e_{1}^{'},e_{2}^{'},e_{3}^{'}),$$
 где $e_{1}^{'}=2e_{1}-2e_{2}-e_{3}$
$$e_{2}^{'}=-e_{1}+e_{2}+e_{3}$$

$$e_{3}^{'}=e_{2}$$

Билинейные формы на векторном пространстве

Нахождение матрицы билинейной формы

Дано: билинейная форма $\beta: V \to \mathbb{F}$ и базис $\mathfrak{e} = (e_1, \dots, e_n)$ в V.

Задача: найти матрицу $B = B(\beta, e)$ билинейной формы β .

Алгоритм:

1. Вычислим значения $\beta(e_i,e_j)$ для каждого $i=1,\dots,n$ и каждого $j=1,\dots,n$.

2. Положим $B = (b_{ij})$, где $b_{ij} = \beta(e_i, e_j)$. Матрица B – искомая.

Пример: найдите матрицу билинейной формы

$$\beta(f,g) = \int_{-1}^{1} f(x)g(x)dx$$

на пространстве $\mathbb{R}[x]_{\leq 2}$ в базисе $(1, x, x^2)$.

Решение:

1. Вычислим следующие выражения:

$$\beta(1,1) = \int_{-1}^{1} dx = 2 \qquad \beta(1,x) = \int_{-1}^{1} x dx = 0 \qquad \beta(1,x^{2}) = \int_{-1}^{1} x^{2} dx = \frac{2}{3}$$

$$\beta(x,1) = \int_{-1}^{1} x dx = 0 \qquad \beta(x,x) = \int_{-1}^{1} x^{2} dx = \frac{2}{3} \qquad \beta(x,x^{2}) = \int_{-1}^{1} x^{3} dx = 0$$

$$\beta(x^{2},1) = \int_{-1}^{1} x^{2} dx = \frac{2}{3} \qquad \beta(x^{2},x) = \int_{-1}^{1} x^{3} dx = 0 \qquad \beta(x^{2},x^{2}) = \int_{-1}^{1} x^{4} dx = \frac{2}{5}$$

2. Получаем следующую матрицу билинейной формы

$$B = \begin{pmatrix} 2 & 0 & 2/3 \\ 0 & 2/3 & 0 \\ 2/3 & 0 & 2/5 \end{pmatrix}$$

Ответ:
$$\begin{pmatrix} 2 & 0 & 2/3 \\ 0 & 2/3 & 0 \\ 2/3 & 0 & 2/5 \end{pmatrix}$$

Нахождение матрицы билинейной формы при замене базисов

Дано: билинейная форма $\beta:V\to\mathbb{F}$, заданная на пространстве V матрицей $B=B(\beta,\mathfrak{e})$ в базисе $\mathfrak{e}=(e_1,\ldots,e_n)$, и другой базис $\mathfrak{f}=(f_1,\ldots,f_m)$ в V, причём $\mathfrak{f}=\mathfrak{e}\cdot C$.

Задача: найти матрицу $B^{'}=B(\beta,\mathbb{I})$ билинейной формы β в базисе \mathbb{I} .

Алгоритм:

1. Вычислим выражение $B^{'}=C^{T}BC$. Полученная матрица $B^{'}$ искомая.

Пример: билинейная форма $\beta:\mathbb{R}^3 \to \mathbb{R}$ задана в стандартных базисах матрицей

$$B = \begin{pmatrix} 1 & -3 & 0 \\ -4 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix}$$

Найти матрицу β в базисе $\mathbb{f} = ((1, -3, 1), (2, -2, -1), (-3, 1, 1)).$

Решение:

1. Матрица перехода от стандартного базиса \mathbb{R}^3 к базису \mathbb{F} равна

$$C = \begin{pmatrix} 1 & 2 & -3 \\ -3 & -2 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

Вычислим искомую матрицу $B' = B(\beta, \mathbb{I})$ по формуле $B' = C^T B C$.

$$B' = C^T B C = \begin{pmatrix} 1 & 2 & -3 \\ -3 & -2 & 1 \\ 1 & -1 & 1 \end{pmatrix}^T \cdot \begin{pmatrix} 1 & -3 & 0 \\ -4 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & -3 \\ -3 & -2 & 1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -3 & 1 \\ 2 & -2 & -1 \\ -3 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -3 & 0 \\ -4 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & -3 \\ -3 & -2 & 1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 43 & 52 & -57 \\ 32 & 37 & -36 \\ -33 & -32 & 27 \end{pmatrix}$$

Ответ:
$$\begin{pmatrix} 43 & 52 & -57 \\ 32 & 37 & -36 \\ -33 & -32 & 27 \end{pmatrix}$$

Доказательства алгоритмов

Базисы векторных пространств

Выделение базиса из системы векторов

Предложение: элементарные преобразования строк сохраняют линейные зависимости между столбцами матрицы.

Если $A \leadsto B$ элементарными преобразованиями строк, то

$$\alpha_1 A^{(1)} + \ldots + \alpha_n A^{(n)} = \vec{0} \iff \alpha_1 B^{(1)} + \ldots + \alpha_n B^{(n)} = \vec{0}$$

В частности, при $1 \leqslant i_1 < \ldots < i_k \leqslant n$

$$A^{(i_1)},\ldots,A^{(i_k)}$$
 – линейно независимы $\Leftrightarrow B^{(i_1)},\ldots,B^{(i_k)}$ – линейно независимы

Обозначим $\alpha = (\alpha_1, \dots, \alpha_n)^T$. Выражение $\alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = \vec{0}$ можно записать в виде

$$\alpha_1 A^{(1)} + \ldots + \alpha_n A^{(n)} = A \cdot \alpha = \vec{0}$$

Последнее означает, что α – решение $Ax = \vec{0} \Leftrightarrow \alpha$ – решение $Bx = \vec{0}$, так как элементарные преобразования строк не меняют множество решений ОСЛУ. Таким образом,

$$B \cdot \alpha = \alpha_1 B^{(1)} + \ldots + \alpha_n B^{(n)} = \vec{0}$$

Получаем, что элементарные преобразования строк сохраняют все зависимости столбцов.

В алгоритме после приведения составленной матрицы к улучшенному ступенчатому виду в столбцах сохранятся все линейные зависимости.

В приведённой матрице видно, какие столбцы образуют максимальную линейно независимую систему и как остальные столбцы выражаются через эту систему.

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ v_{11} & v_{21} & v_{31} & v_{41} & v_{51} \\ v_{12} & v_{22} & v_{32} & v_{42} & v_{52} \\ v_{13} & v_{23} & v_{33} & v_{43} & v_{53} \end{pmatrix} \xrightarrow{\text{\tiny \it o.e.m. npeo6.}} \begin{pmatrix} u_1 & u_2 & u_3 & u_4 & u_5 \\ \hline (1) & 0 & a_{31} & a_{41} & 0 \\ \hline 0 & (1) & a_{32} & a_{42} & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Векторы u_1 , u_2 и u_3 образуют базис системы u_1, \ldots, u_5 : эти векторы линейно независимы и остальные столбцы матрицы выражаются через них. Из полученной матрицы видно, что векторы $u_3 = a_{31} \cdot u_1 + a_{32} \cdot u_2$ и $u_4 = a_{41} \cdot u_1 + a_{42} \cdot u_2$.

Столбцы в исходной матрице имеют те же зависимости, что и в полученной. Значит, векторы v_1 , v_2 и v_3 – базис пространства $\langle v_1, \dots, v_5 \rangle$, а $v_3 = a_{31} \cdot v_1 + a_{32} \cdot v_2$ и $v_4 = a_{41} \cdot v_1 + a_{42} \cdot v_2$.

Нахождение какого-нибудь базиса линейной оболочки

Предложение: при элементарных преобразованиях строк матрицы A линейная оболочка $\langle A_{(1)}, \dots, A_{(n)} \rangle$ сохраняется.

Пусть $A \leadsto B$ элементарными преобразованиями строк. Каждая полученная строка – это линейная комбинация строк исходной матрицы, значит

$$B_{(1)}, \ldots, B_{(n)} \in \langle A_{(1)}, \ldots, A_{(n)} \rangle \Rightarrow \langle B_{(1)}, \ldots, B_{(n)} \rangle \subseteq \langle A_{(1)}, \ldots, A_{(n)} \rangle$$

Элементарными преобразования обратимы \Rightarrow получаем включение в другую сторону. Таким образом, верно $\langle B_{(1)}, \dots, B_{(n)} \rangle = \langle A_{(1)}, \dots, A_{(n)} \rangle$.

В алгоритме после приведения составленной матрицы A к ступенчатому виду B линейная оболочка $\langle B_{(1)}, \ldots, B_{(n)} \rangle = \langle A_{(1)}, \ldots, A_{(n)} \rangle$. Если из строк матрицы B выбрать максимальную линейно независимую систему, то линейная оболочка выбранных строк также будет совпадать с $\langle A_{(1)}, \ldots, A_{(n)} \rangle$.

По ступенчатому виду матрицы B легко определить максимальную линейно независимую систему строк – это ненулевые строки этой матрицы. Таких строк будет всего $r = \operatorname{rk} A$.

Взятые ненулевые строки всегда линейно независимы. Рассмотрим следующую систему векторов:

$$(*) \begin{pmatrix} c_{11} \\ c_{12} \\ c_{13} \\ \vdots \\ c_{1n} \end{pmatrix}, \begin{pmatrix} 0 \\ c_{22} \\ c_{23} \\ \vdots \\ c_{2n} \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ c_{33} \\ \vdots \\ c_{3n} \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ c_{nm} \end{pmatrix}, \text{ где } c_{ii} \neq 0 \text{ для всех } i = 1, \dots, n$$

Положив эти векторы в строки матрицы, получим верхнетреугольную квадратную матрицу, определитель которой не равен нулю \Leftrightarrow строки матрицы линейно независимы. Значит, всякая подсистема рассматриваемой системы линейно независима.

Выбрав ненулевые строки в матрице B, получим подсистему системы (*). Таким образом, строки $B_{(1)}, \ldots, B_{(r)}$ линейно независимы и $\langle B_{(1)}, \ldots, B_{(r)} \rangle$ совпадает с $\langle A_{(1)}, \ldots, A_{(n)} \rangle \Rightarrow$ полученные векторы $B_{(1)}, \ldots, B_{(r)}$ являются базисом $\langle A_{(1)}, \ldots, A_{(n)} \rangle$.

Дополнение линейно независимой системы до базиса всего пространства

После применения алгоритма получаем дополнение векторами стандартного базиса до базиса всего \mathbb{F}^n .

Из строк матрицы, полученной при применении алгоритма, и дополняющих векторов можно составить верхнетреугольную матрицу с ненулевым определителем.

Рассмотрим это утверждение на примере:

$$\begin{array}{c} v_1 \to \\ v_2 \to \\ v_3 \to \end{array} \begin{pmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \\ v_{31} & v_{32} & v_{33} & v_{34} & v_{35} \end{pmatrix} \overset{\text{\tiny 3.1.6M. npeof.}}{\sim} \begin{pmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ \hline 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ \hline 0 & 0 & 0 & 0 & a_{35} \end{bmatrix} & \leftarrow a_1 \\ \leftarrow a_2 \\ \leftarrow a_3 \end{array}$$

 \Rightarrow дополнение векторами e_3 и e_4

Составим верхнетреугольную матрицу из a_1 , a_2 , a_3 , e_3 и e_4 .

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & a_{35} \end{pmatrix} \leftarrow \begin{matrix} a_1 \\ \leftarrow a_2 \\ \leftarrow e_3 \\ \leftarrow e_4 \\ \leftarrow a_3 \end{matrix}$$

Нетрудно увидеть, что $\det A = a_{11} \cdot a_{22} \cdot a_{35} \neq 0$, то есть векторы a_1 , a_2 , a_3 , e_3 и e_4 линейно независимы. Так как элементарные преобразования обратимы и сохраняют условие линейной независимости, векторы v_1 , v_2 , v_3 , e_3 и e_4 также линейно независимы.

После дополнения векторами стандартного базиса согласно алгоритму получаем линейно независимую систему, в которой число векторов совпадает с размерностью всего пространства, то есть эта система векторов – базис в \mathbb{F}^n .

Нахождение базиса пространства решений ОСЛУ (нахождение ФСР)

Модифицируем алгоритм, добавив перенумерацию переменных. Следующий алгоритм описывает метод построения фундаментальной системы решений.

- Пусть $A \leadsto B$ элементарными преобразованиями строк, где B улучшенный ступенчатый вид, и r число ненулевых строк в $B \Rightarrow$ всего r главных переменных и n-r свободных.
- Перенумеруем переменные так, чтобы x_1, \ldots, x_r стали главными, а x_{r+1}, \ldots, x_n свободными. Тогда общее решение имеет следующий вид:

$$\begin{cases} x_1 = c_{11}x_{r+1} + c_{12}x_{r+2} + \dots + c_{1,n-r}x_{n-r} \\ x_2 = c_{21}x_{r+1} + c_{22}x_{r+2} + \dots + c_{2,n-r}x_{n-r} \\ \vdots \\ x_r = c_{r1}x_{r+1} + c_{r2}x_{r+2} + \dots + c_{r,n-r}x_{n-r} \end{cases}$$

 Поочерёдно присваивая одной из свободных переменных значение 1, а остальным 0, получим следующие решения системы:

$$u_{1} = \begin{pmatrix} c_{11} \\ c_{21} \\ \vdots \\ c_{r1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, u_{2} = \begin{pmatrix} c_{12} \\ c_{22} \\ \vdots \\ c_{r2} \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, u_{n-r} = \begin{pmatrix} c_{1,n-r} \\ c_{2,n-r} \\ \vdots \\ c_{r,n-r} \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Предложение: u_1, u_2, \dots, u_{n-r} – это ФСР для Ax = 0.

Пусть U – пространство решений Ax = 0.

1. Линейная независимость векторов.

Пусть $u = \alpha_1 u_1 + \ldots + \alpha_{n-r} u_{n-r} = \vec{0}$. Нетрудно увидеть, что (r+i)-я координата вектора u равна α_i для каждого $i=1,\ldots,n-r$. Следовательно, выполнено условие линейной независимости: $\alpha_1 = \ldots = \alpha_{n-r} = 0$.

2. $U = \langle u_1, \dots, u_{n-r} \rangle$.

Включение $\langle u_1, \dots, u_{n-r} \rangle \subseteq U$ верно, так как $u_1, \dots, u_{n-r} \in U$, покажем включение в обратную сторону.

Пусть $u \in U$ и $u = (\diamond, \ldots, \diamond, \alpha_1, \ldots, \alpha_{n-r})$. Рассмотрим $v = u - \alpha_1 u_1 - \ldots - \alpha_{n-r} u_{n-r}$. Вектор $v \in U$, так как $u \in U$ и $\alpha_1 u_1 + \ldots + \alpha_{n-r} u_{n-r} \in U$, и $v = (\diamond, \ldots, \diamond, 0, \ldots, 0) \Rightarrow v = \vec{0}$ по формулам для общего решения.

Получаем, что $u = \alpha_1 u_1 + \ldots + \alpha_{n-r} u_{n-r}$, то есть $u \in \langle u_1, \ldots, u_{n-r} \rangle \Rightarrow U \subseteq \langle u_1, \ldots, u_{n-r} \rangle$.

Таким образом, u_1, u_2, \dots, u_{n-r} – базис в U, то есть ФСР для Ax = 0.

Нахождение координат вектора в заданном базисе

Пусть V векторное пространство над \mathbb{F} , $\dim V = n$ и $\mathfrak{e} = (e_1, \dots, e_n)$ – базис в V. Для каждого $v \in V$ существуют единственные $\alpha_1, \dots, \alpha_n \in \mathbb{F}$, такие что

$$v = \alpha_1 e_1 + \ldots + \alpha_n e_n$$

Определение: скаляры $\alpha_1, \ldots, \alpha_n$ называются координатами вектора v в базисе e.

Выражение $v = \alpha_1 e_1 + \ldots + \alpha_n e_n$ можно переписать в следующем виде:

$$\begin{array}{cccc}
e_1 & e_2 & \dots & e_m & & v \\
\downarrow & \downarrow & & \downarrow & & \downarrow \\
e_{11} & e_{21} & \dots & e_{n1} \\
e_{12} & e_{22} & \dots & e_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
e_{1n} & e_{2n} & \dots & e_{nn}
\end{array} \right) \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

Получаем, что вектор $\alpha = (\alpha_1, \dots, \alpha_n)$ – решение СЛУ Ax = v, где $A = (e_1, \dots, e_n)$.

Данное решение единственно, так как единственно представление v в виде линейной комбинации базисных векторов. Единственность следует и из новорожденности матрицы A: так как $\det A \neq 0$, СЛУ Ax = v имеет единственное решение.

Нахождение матрицы перехода от одного базиса к другому (способ 1)

Пусть
$$e = (e_1, \dots, e_n)$$
 и $f = (f_1, \dots, f_n)$ – два базиса в V и
$$(f_1, \dots, f_n) = (e_1, \dots, e_n) \cdot C, \ C \in M_n(\mathbb{R}), \ \det C \neq 0$$

Определение: матрица C называется матрицей перехода от базиса $\mathfrak e$ к базису $\mathfrak f$.

Из определения следует, что для нахождения матрицы перехода от базиса $\mathfrak e$ к базису $\mathfrak f$ достаточно найти координаты векторов базиса $\mathfrak f$ в базисе $\mathfrak e$:

$$f_1 = c_{11}e_1 + c_{21}e_2 + \dots + c_{n1}e_n$$

$$f_2 = c_{12}e_1 + c_{22}e_2 + \dots + c_{n2}e_n$$

$$\vdots$$

$$f_n = c_{1n}e_1 + c_{2n}e_2 + \dots + c_{nn}e_n$$

и записать соответствующие координаты в столбцы матрицы C:

$$C = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{13} \\ c_{21} & c_{22} & \dots & c_{23} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}$$

Чтобы найти координаты векторов базиса $\mathbb F$ в базисе $\mathbb F$, нужно для каждого $k=1,\ldots,n$ решить следующее уравнение:

$$c_{1k}e_{1} + c_{2k}e_{2} + \ldots + c_{nk}e_{n} = f_{k} \Leftrightarrow e_{1} \quad e_{2} \quad \ldots \quad e_{n}$$

$$\downarrow \quad \downarrow \qquad \qquad \downarrow$$

$$\Leftrightarrow (e_{1}, \ldots, e_{n}) \cdot \begin{pmatrix} c_{1k} \\ c_{2k} \\ \vdots \\ c_{nk} \end{pmatrix} = f_{k} \Leftrightarrow \begin{pmatrix} e_{11} & e_{21} & \ldots & e_{n1} \\ e_{12} & e_{22} & \ldots & e_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ e_{1n} & e_{2n} & \ldots & e_{nn} \end{pmatrix} \cdot \begin{pmatrix} c_{1k} \\ c_{2k} \\ \vdots \\ c_{nk} \end{pmatrix} = \begin{pmatrix} f_{k1} \\ f_{k2} \\ \vdots \\ f_{kn} \end{pmatrix}$$

$$\uparrow$$

$$cmon \delta e u \ neu 3 \textit{gec} \textit{cmenbux}$$

Описанные уравнения можно решать одновременно, то есть сразу решать матричное уравнение $A \cdot C = B$, где A и B – матрицы, в столбцах которых записаны векторы базиса $\mathfrak e$ и $\mathfrak l$ соответственно. Таким образом, нужно производить операции с матрицей $(A \mid B)$.

После приведения расширенной матрицы к виду, когда в левой части стоит E, получим решения для каждого уравнения в столбцах правой части.

Полученная в правой части матрица и есть матрица C по определению.

$$\begin{pmatrix} e_{11} & e_{21} & \dots & e_{n1} \\ e_{12} & e_{22} & \dots & e_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ e_{1n} & e_{2n} & \dots & e_{nn} \end{pmatrix} \xrightarrow{f_{11}} \begin{array}{c} f_{21} & \dots & f_{n1} \\ f_{12} & f_{22} & \dots & f_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ e_{1n} & e_{2n} & \dots & e_{nn} \end{array} \xrightarrow{f_{1n}} \begin{array}{c} f_{11} & f_{21} & \dots & f_{n1} \\ f_{12} & f_{22} & \dots & f_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ f_{1n} & f_{2n} & \dots & f_{nn} \end{array} \xrightarrow{g_{AeM. npeo6.}} \begin{pmatrix} 1 & 0 & \dots & 0 & c_{11} & c_{12} & \dots & c_{1n} \\ 0 & 1 & \dots & 0 & c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}$$

Нахождение матрицы перехода от одного базиса к другому (способ 2)

Пусть
$$e = (e_1, \dots, e_n)$$
 и $f = (f_1, \dots, f_n)$ – два базиса в V и

$$(f_1,\ldots,f_n)=(e_1,\ldots,e_n)\cdot C,\ C\in M_n(\mathbb{R}),\ \det C\neq 0$$

Определение: матрица C называется матрицей перехода от базиса $\mathfrak e$ к базису $\mathfrak f$.

Нетрудно увидеть, что матрица перехода от базиса \mathbb{F} к базису \mathfrak{e} равна C^{-1} :

$$(f_1, \dots, f_n) = (e_1, \dots, e_n) \cdot C \text{ if } \det C \neq 0 \Rightarrow (e_1, \dots, e_n) = (f_1, \dots, f_n) \cdot C^{-1}$$

Обозначим стандартный базис $g = (g_1, \ldots, g_n)$. Матрица, составленная из координат векторов стандартного базиса, равна E.

Рассмотрим матрицы A и B, столбцами которых являются векторы базисов $\mathfrak e$ и $\mathfrak f$.

$$A = \begin{pmatrix} e_1 & e_2 & \dots & e_n \\ \downarrow & \downarrow & & \downarrow \\ e_{11} & e_{21} & \dots & e_{n1} \\ e_{12} & e_{22} & \dots & e_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ e_{1n} & e_{2n} & \dots & e_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} f_1 & f_2 & \dots & f_n \\ \downarrow & \downarrow & & \downarrow \\ f_{11} & f_{21} & \dots & f_{n1} \\ f_{12} & f_{22} & \dots & f_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ f_{1n} & f_{2n} & \dots & f_{nn} \end{pmatrix}$$

Матрицы A и B по определению являются матрицами перехода от стандартного базиса \mathfrak{g} к базисам \mathfrak{e} и \mathfrak{f} соответственно: $(e_1,\ldots,e_n)=(g_1,\ldots,g_n)\cdot A$ и $(f_1,\ldots,f_n)=(g_1,\ldots,g_n)\cdot B$. Матрица перехода от \mathfrak{e} к \mathfrak{g} будет равна обратной к матрице A.

Получаем следующее равенство:

$$(f_1,\ldots,f_n)=(g_1,\ldots,g_n)\cdot B=\underbrace{(e_1,\ldots,e_n)\cdot A^{-1}}_{(g_1,\ldots,g_n)}\cdot B$$

Значит, матрица перехода от е к $\mathbb F$ равна $C = A^{-1} \cdot B$.

Нахождение координат вектора в новом базисе

Доказательство алгоритма полностью повторяет доказательство следующего утверждения:

Пусть е =
$$(e_1,\ldots,e_n)$$
 и $\mathbb{f}=(f_1,\ldots,f_n)$ – два базиса в V и

$$(f_1,\ldots,f_n)=(e_1,\ldots,e_n)\cdot C,\ C\in M_n(\mathbb{R}),\ \det C\neq 0$$

Пусть $v \in V$, тогда

$$v = x_1 e_1 + \ldots + x_n e_n \text{ if } v = y_1 f_1 + \ldots + y_n f_n$$

Предложение: преобразования координат вектора при замене базиса вычисляется по следующей формуле

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Запишем выражение вектора v в виде произведения матриц:

$$v = (e_1, \dots, e_n) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \dots, f_n) \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Так как $(f_1, \ldots, f_n) = (e_1, \ldots, e_n) \cdot C$, получаем

$$v = (f_1, \dots, f_n) \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (e_1, \dots, e_n) \cdot C \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$(e_1, \dots, e_n) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Таким образом, верно следующее

$$(e_1, \dots, e_n) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (e_1, \dots, e_n) \cdot C \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

В силу линейной независимости e_1, \ldots, e_n , получаем

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Способы задания подпространств

Переход от ОСЛУ к линейной оболочке

Определение: фундаментальной системой решений ОСЛУ называется всякий базис пространства её решений.

В задаче подпространство задано как множество решений Ax = 0. Найденная в алгоритме ФСР для Ax = 0 является базисом пространства решений этой ОСЛУ, значит, линейная оболочка векторов ФСР задаёт данное в задаче подпространство.

Переход от линейной оболочки к ОСЛУ

Пусть искомая ОСЛУ задана матрицей коэффициентов B:

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kn} \end{pmatrix} \leftarrow b_1 \\ \leftarrow b_2 \\ \vdots \\ \leftarrow b_k$$

Подпространство, образованное множеством решений Bx = 0, совпадает с $\langle v_1, \dots, v_m \rangle$, поэтому векторы v_1, \dots, v_m – решения для Bx = 0, то есть верны следующие системы:

$$(*) \underbrace{\begin{cases} b_{11}v_{11} + b_{12}v_{12} + \ldots + b_{1n}v_{1n} = 0 \\ b_{21}v_{11} + b_{22}v_{12} + \ldots + b_{2n}v_{1n} = 0 \\ \vdots \\ b_{k1}v_{11} + b_{k2}v_{12} + \ldots + b_{kn}v_{1n} = 0 \end{cases}}_{Bv_{11}} \dots \underbrace{\begin{cases} b_{11}v_{m1} + b_{12}v_{m2} + \ldots + b_{1n}v_{mn} = 0 \\ b_{21}v_{m1} + b_{22}v_{m2} + \ldots + b_{2n}v_{mn} = 0 \\ \vdots \\ b_{k1}v_{m1} + b_{k2}v_{m2} + \ldots + b_{kn}v_{mn} = 0 \end{cases}}_{Bv_{m1}}$$

С другой стороны, векторы b_1, \ldots, b_k – решения для Ax = 0, где

$$A = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{pmatrix} \leftarrow v_1 \leftarrow v_2$$

Взяв первые строки каждой из систем (*), получим равенство $Ab_1=0$, взяв вторые, получим $Ab_2=0$ и т.д. Каждая строка искомой ОСЛУ – решение Ax=0.

Чтобы получить строки матрицы B, достаточно найти Φ CP для Ax = 0. Любая другая система Cx = 0, задающая $\langle v_1, \ldots, v_m \rangle$, будет эквивалентна Bx = 0, так как строки матрицы C также решения Ax = 0, то есть выражаются через Φ CP b_1, \ldots, b_k .

Пересечение, сумма и прямая сумма подпространств

Базис суммы подпространств, заданных линейной оболочкой

Определение: суммой двух подпространств U и W называется множество

$$U + W = \{u + w \mid u \in U, w \in W\}$$

Множество U + W – подпространство.

В задаче подпространства U и W заданы как линейная оболочка конечных наборов векторов u_1, \ldots, u_k и w_1, \ldots, w_m соответственно.

Каждый вектор $u \in U$ выражается в виде линейной комбинации u_1, \ldots, u_k , а каждый вектор $w \in W$ — в виде линейной комбинации w_1, \ldots, w_m , значит, каждый вектор $u + w \in U + W$ имеет вид $u + w = \alpha_1 u_1 + \ldots + \alpha_k u_k + \beta_1 w_1 + \ldots + \beta_m w_m$. Таким образом, имеем следующее вложение $U + W \subseteq \langle u_1, \ldots, u_k, w_1, \ldots, w_m \rangle$.

Докажем вложенность $\langle u_1, \dots, u_k, w_1, \dots, w_m \rangle \subseteq U + W$. Для этого покажем, что всякий вектор $v = \alpha_1 u_1 + \dots + \alpha_k u_k + \beta_1 w_1 + \dots + \beta_m w_m$ лежит в U + W. Действительно, взяв $u \in U$, такой что $u = \alpha_1 u_1 + \dots + \alpha_k u_k$, и $w \in W$, такой что $w = \beta_1 w_1 + \dots + \beta_m w_m$, получим $v = u + w \in U + W$. Итог: $U + W = \langle u_1, \dots, u_k, w_1, \dots, w_m \rangle$.

Сумма U и W заданна линейной оболочкой, поэтому, чтобы найти базис U+W, достаточно применить алгоритм поиска базиса для линейной оболочки конечного набора векторов.

Базис пересечения подпространств, заданных линейной оболочкой

В задаче подпространства U и W заданы как линейная оболочка конечных наборов векторов u_1, \ldots, u_k и w_1, \ldots, w_m соответственно.

Если вектор $v \in U \cap W$, то одновременно выполнено $v \in U$ и $v \in W$, то есть

$$\begin{cases} v = x_1 u_1 + \ldots + x_k u_k \\ v = y_1 w_1 + \ldots + y_m w_m \end{cases} \Rightarrow v - v = x_1 u_1 + \ldots + x_k u_k - y_1 w_1 - \ldots - y_m w_m = \vec{0}$$

Произведём замену $x_{k+1} = -y_1, \dots, x_{k+m} = -y_m$ и получим следующее выражение

(*)
$$x_1u_1 + \ldots + x_ku_k + x_{k+1}w_1 + \ldots + x_{k+m}w_m = \vec{0}$$

Таким образом, вектор v лежит в пересечении, если существуют $x_1, \ldots, x_k, x_{k+1}, \ldots, x_{k+m}$, такие что выполнено (*). Значит, нахождение базиса пересечения сводится к нахождению координат, для которых вектор $v \in U \cap W$.

Для нахождения координат достаточно найти Φ CP для OCЛУ (*), то есть записать векторы u_1, \ldots, u_k и w_1, \ldots, w_m в столбцы матрицы $S = (A \mid B)$ и найти Φ CP для Sx = 0.

$$\begin{pmatrix}
u_1 & \dots & u_k & w_1 & \dots & w_m \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
u_{11} & \dots & u_{k1} & w_{11} & \dots & w_{m1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
u_{1n} & \dots & u_{kn} & w_{1n} & \dots & w_{mn}
\end{pmatrix}$$

$$\Phi = \begin{pmatrix} v_1 & \dots & v_q \\ \downarrow & & \downarrow \\ v_{11} & \dots & v_{q,1} \\ \vdots & \ddots & \vdots \\ v_{1k} & \dots & v_{q,k} \\ \hline v_{1,k+1} & \dots & v_{q,k+1} \\ \vdots & \ddots & \vdots \\ v_{1,k+m} & \dots & v_{q,k+m} \end{pmatrix} \right\} \Phi_{\beta}$$

Обозначим Φ_{α} матрицу, состоящую из первых k строк матрицы Φ , а Φ_{β} – матрицу, состоящую из m последних строк матрицы Φ .

Первые k координат у v_1, \ldots, v_q – это x_1, \ldots, x_k , а последние m координат – это x_{k+1}, \ldots, x_{k+m} , поэтому каждый столбец Φ_{α} является набором x_1, \ldots, x_k , таким что $v = x_1u_1 + \ldots + x_ku_k \in U \cap W$, а каждый столбец Φ_{β} – набор x_{k+1}, \ldots, x_{k+m} , такой что $v = -x_{k+1}w_1 - \ldots - x_{k+m}w_m \in U \cap W$.

Получаем, что столбцы p_1,\dots,p_q матрицы $P=A\Phi_\alpha=-B\Phi_\beta$ – векторы, порождающие $U\cap W.$ Чтобы найти базис $U\cap W$ достаточно найти базис в $\langle p_1,\dots,p_q\rangle.$

Базис пересечения подпространств, заданных ОСЛУ

В задаче подпространства U и W заданы как множество решений ОСЛУ Ax=0 и Bx=0 соответственно.

Если вектор $v \in U \cap W$, то одновременно выполнено $v \in U$ и $v \in W$, то есть вектор v – решение и Ax = 0, и Bx = 0. Значит, все векторы из $U \cap W$ удовлетворяют

$$\begin{cases} Ax = 0 \\ Bx = 0 \end{cases} \Leftrightarrow \left(\frac{A}{B}\right)x = 0$$

Таким образом, подпространство $U \cap W$ вложено в подпространство, заданное как множество решений $\left(\frac{A}{B}\right) \cdot x = 0.$

Покажем вложенность в обратную сторону. Если вектор v – решение $\left(\frac{A}{B}\right) \cdot x = 0$, то он удовлетворяет любой подсистеме этой ОСЛУ, в частности системам Ax = 0 и Bx = 0. Значит, вектор v лежит в $U \cap W$.

Таким образом, множество решений уравнения $\binom{A}{B} \cdot x = 0$ задаёт подпространство $U \cap W$. Фундаментальная система решений этого уравнения – базис подпространства $U \cap W$.

Проекция вектора на подпространство вдоль другого подпространства

$$V = U \oplus W \Rightarrow \forall v \in V \; \exists ! \; u \in U, \; w \in W, \;$$
такие что $v = u + w$

Определение: вектор u называется проекцией вектора v на U вдоль W, вектор w называется проекцией вектора v на W вдоль U.

В задаче $V = \mathbb{F}^n$ и подпространства U и W заданы как линейная оболочка конечных наборов векторов u_1, \ldots, u_k и w_1, \ldots, w_m соответственно.

Каждый вектор $u \in U$ выражается в виде линейной комбинации u_1, \ldots, u_k , а каждый вектор $w \in W$ — в виде линейной комбинации w_1, \ldots, w_m . Так как для $v \in V$ существуют единственные $u \in U$ и $w \in W$, такие что v = u + w, вектор v выражается в виде линейной комбинации векторов u_1, \ldots, u_k и w_1, \ldots, w_m .

Получаем следующее уравнение $v=x_1u_1+\ldots+x_ku_k+y_1w_1+\ldots+y_mw_m$ на неизвестные $x_1,\ldots,x_k,y_1,\ldots,y_m$. Это уравнение соответствует СЛУ Sx=v, где

$$S = \begin{pmatrix} u_1 & \dots & u_k & w_1 & \dots & w_m \\ \downarrow & & \downarrow & \downarrow & & \downarrow \\ u_{11} & \dots & u_{k1} & w_{11} & \dots & w_{m1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ u_{1n} & \dots & u_{kn} & w_{1n} & \dots & w_{mn} \end{pmatrix}$$

Такая система всегда будет иметь единственное или бесконечно много решений в силу существования представления v = u + w. Решение будет единственно, если системы $\{u\} = (u_1, \dots, u_k)$ и $\{w\} = (w_1, \dots, w_m)$ линейно независимы, то есть $\{u\} \sqcup \{w\}$ – базис в V и det $S \neq 0$.

После нахождения единственного или частного решения СЛУ несложно получить соответствующие представлению v = u + w векторы $u = x_1u_1 + \ldots + x_ku_k$ и $w = y_1w_1 + \ldots + y_mw_m$.

Поиск дополнительного подпространства

Определение: говорят, что векторное пространство V разлагается в прямую сумму $U_1, \dots, U_k,$ если

- 1. $V = U_1 + \ldots + U_k$
- $2. U_1, \ldots, U_k$ линейно независимы

Обозначение: $V=U_1\oplus\ldots\oplus U_k$.

В случае разложения в прямую сумму двух подпространств:

$$V = U \oplus W \Leftrightarrow \begin{cases} V = U + W \\ U \cap W = \{\vec{0}\} \end{cases} \Leftrightarrow \begin{cases} \dim V = \dim U + \dim W \\ U \cap W = \{\vec{0}\} \end{cases}$$

Если e_1, \ldots, e_k – базис подпространства U и e_{k+1}, \ldots, e_n – дополнения базиса U до базиса всего V, то $U + \langle e_{k+1}, \ldots, e_n \rangle = \langle e_1, \ldots, e_n \rangle = V$, то есть при $W = \langle e_{k+1}, \ldots, e_n \rangle$ выполнено условие U + W = V.

Покажем, что $U \cap W = \{\vec{0}\}$. Если вектор $v \in U \cap W$, то $v \in U$ и $v \in W$, то есть вектор $v = \alpha_1 e_1 + \ldots + \alpha_k e_k$ и $v = \alpha_{k+1} e_{k+1} + \ldots + \alpha_n e_n$. Получаем, что

$$\begin{cases} v = \alpha_1 e_1 + \ldots + \alpha_k e_k \\ v = \alpha_{k+1} e_{k+1} + \ldots + \alpha_n e_n \end{cases} \Rightarrow \alpha_1 e_1 + \ldots + \alpha_k e_k = \alpha_{k+1} e_{k+1} + \ldots + \alpha_n e_n \Leftrightarrow \alpha_1 e_1 + \ldots + \alpha_k e_k - \alpha_{k+1} e_{k+1} - \ldots - \alpha_n e_n = 0$$

Последнее выражение это линейная комбинация линейно независимых векторов, которая равна нулю. Значит, $\alpha_1 = \ldots = \alpha_n = 0$ и вектор v = 0. Следовательно, $U \cap V = \{\vec{0}\}$.

Имеем $V=U\oplus W,$ то есть заданное описанном образом подпространство W удовлетворяет требуемым условиям.

Линейные отображения векторных пространств

Нахождение матрицы линейного отображения

Пусть V и W — векторные пространства над \mathbb{F} . Векторы $\mathfrak{e}=(e_1,\ldots,e_n)$ — базис в V, векторы $\mathbb{f}=(f_1,\ldots,f_m)$ — базис в W.

Пусть $\varphi:V \to W$ — линейное отображение. Для каждого $j=1,\dots,n$

$$\varphi(e_j) = a_{1j}f_1 + a_{2j}f_2 + \dots + a_{mj}f_m = (f_1, f_2, \dots, f_m) \cdot \begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{mj} \end{pmatrix}$$

Тогда $(\varphi(e_1),\ldots,\varphi(e_n))=(f_1,\ldots,f_m)\cdot A$, где $A\in \mathrm{Mat}_{m\times n}(\mathbb{F})$. В j-м столбце матрицы A стоят координаты вектора $\varphi(e_j)$ базисе \mathbb{F} .

Определение: A называется матрицей линейного отображения φ в базисах $\mathfrak e$ и $\mathfrak k$.

Обозначение: $A = A(\varphi, e, f)$.

Нахождение координат образа

Доказательство алгоритма полностью повторяет доказательство следующего утверждения:

Пусть $\varphi: V \to W$ — линейное отображение, $\mathfrak{e} = (e_1, \dots, e_n)$ — базис V и $\mathfrak{f} = (f_1, \dots, f_n)$ — базис W. Матрица $A = A(\varphi, \mathfrak{e}, \mathfrak{f})$ — матрица φ в паре базисов \mathfrak{e} и \mathfrak{f} .

Вектор $v \in V \implies v = x_1 e_1 + \ldots + x_n e_n$. Вектор $\varphi(v) \in W \implies \varphi(v) = y_1 f_1 + \ldots + y_m f_m$.

Предложение: координаты вектора и его образа связаны следующим соотношением

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Рассмотрим следующее выражение

$$\varphi(v) = \varphi(x_1 e_1 + \dots + x_n e_n) \stackrel{\text{no num. } \varphi}{=}$$

$$= \varphi(x_1 e_1) + \dots + \varphi(x_n e_n) \stackrel{\text{no num. } \varphi}{=} x_1 \varphi(e_1) + \dots + x_n \varphi(e_n) =$$

$$= \underbrace{(\varphi(e_1), \dots, \varphi(e_n))}_{(f_1, \dots, f_m) \cdot A} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \dots, f_m) \cdot A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

С другой стороны, образ v представляется в виде линейной комбинации векторов f_1, \ldots, f_m

$$\varphi(v) = y_1 f_1 + \ldots + y_m f_m = (f_1, \ldots, f_m) \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Имеем равенство

$$(f_1, \dots, f_m) \cdot A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \dots, f_m) \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

В силу линейной независимости векторов f_1,\ldots,f_m полученное равенство равносильно

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Нахождение матрицы линейного отображения при замене базисов

Доказательство алгоритма полностью повторяет доказательство следующего утверждения:

Отображение $\varphi:V\to W$ задано в паре базисов е и $\mathbb F$ и имеет матрицу $A=A(\varphi,\mathfrak e,\mathbb F)$. Пусть $\mathfrak e'$ и $\mathbb F'$ — другие базисы в V и W соответственно, $\mathfrak e'=\mathfrak e\cdot C$ и $\mathbb F'=\mathfrak F\cdot D$ (матрицы C и D — невырожденные).

Предложение: матрица φ в паре базисов e' и f' равна $A' = A(\varphi, e', f') = D^{-1}AC$.

Так как $(e_{1}^{'},\ldots,e_{n}^{'})=(e_{1},\ldots,e_{n})\cdot C$, вектор $e_{j}^{'}=c_{1j}e_{1}+\ldots+c_{nj}e_{n}$ для всех $j=1,\ldots,n$. Применив к $e_{j}^{'}$ линейное отображение φ , получим

$$\varphi(e_{j}^{'}) \stackrel{\text{no num. } \varphi}{=} c_{1j} \cdot \varphi(e_{1}) + \ldots + c_{nj} \cdot \varphi(e_{n}) = (\varphi(e_{1}), \ldots, \varphi(e_{n})) \cdot \begin{pmatrix} c_{1j} \\ \ldots \\ c_{nj} \end{pmatrix}$$

Таким образом, выполнено

$$(\varphi(e_1'), \dots, \varphi(e_n')) = \underbrace{(\varphi(e_1), \dots, \varphi(e_n))}_{(f_1, \dots, f_m) \cdot A} \cdot C = (f_1, \dots, f_m) \cdot A \cdot C$$

С другой стороны,

$$(\varphi(e_1'), \dots, \varphi(e_n')) = (f_1', \dots, f_m') \cdot A' = (f_1, \dots, f_m) \cdot D \cdot A'$$

Имеем равенство

$$(f_1,\ldots,f_m)\cdot A\cdot C=(f_1,\ldots,f_m)\cdot D\cdot A'$$

В силу линейной независимости векторов f_1, \ldots, f_m полученное равенство равносильно

$$A \cdot C = D \cdot A' \iff A' = D^{-1}AC$$

.....

Нахождение базиса ядра линейного отображения

Пусть $\varphi: V \to W$ – линейное отображение.

Определение: ядро линейного отображения φ – это $\ker \varphi = \{v \in V \mid \varphi(v) = 0\} \subseteq V$.

Если известна матрица A линейного отображения φ в заданной паре базисов $\mathfrak{e} = (e_1, \dots, e_n)$ в V и $\mathbb{f} = (f_1, \dots, f_m)$ в W, то для каждого вектора $v = x_1e_1 + \dots + x_ne_n \in V$ нетрудно получить координаты образа этого вектора по формуле

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Вектор $v = x_1 e_1 + \ldots + x_n e_n \in V$ лежит в ядре $\Leftrightarrow \varphi(v) = y_1 f_1 + \ldots + y_m f_m = 0$, что равносильно $(y_1, \ldots, y_m) = \vec{0} \Leftrightarrow Ax = \vec{0}$. Таким образом, в ядре лежат векторы, координаты которых в базисе е удовлетворяют ОСЛУ Ax = 0.

Найдя базис u_1, \ldots, u_{n-r} подпространства решений Ax = 0, получим базис ядра φ в координатах. Чтобы найти векторы, образующие базис ядра φ , нужно каждый вектор-координаты умножить слева на (e_1, \ldots, e_n) , то есть для $k = 1, \ldots, n-r$ вычислить $v_k = (e_1, \ldots, e_n) \cdot u_k$.

Нахождение базиса образа линейного отображения (способ 1)

Пусть $\varphi: V \to W$ – линейное отображение.

Определение: образ линейного отображения φ – это $\mathrm{Im}(V)\subseteq W$.

Предложение: пусть e_1, \ldots, e_k — базис $\ker \varphi$ и векторы e_{k+1}, \ldots, e_n дополняют его до базиса всего V. Тогда $\varphi(e_{k+1}), \ldots, \varphi(e_n)$ образуют базис $\operatorname{Im} \varphi$.

Образ $\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle$, так как для каждого $v = x_1 e_1 + \dots + x_n e_n \in V$ его образ выражается в виде $\varphi(v) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$. Векторы e_1, \dots, e_k – базис $\ker \varphi$, следовательно векторы $\varphi(e_1) = \dots = \varphi(e_k) = 0$. Тогда получаем, что $\operatorname{Im} \varphi = \langle \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle$.

Покажем, что векторы $\varphi(e_{k+1})\dots, \varphi(e_n)$ линейно независимы. Запишем их линейную комбинацию $\alpha_{k+1}\varphi(e_{k+1})+\dots+\alpha_n\varphi(e_n)=0$, где $\alpha_i\in\mathbb{F}\Leftrightarrow \varphi(\alpha_{k+1}e_{k+1}+\dots+\alpha_ne_n)=0$. Последнее означает, что $\alpha_{k+1}e_{k+1}+\dots+\alpha_ne_n\in\ker\varphi$. Тогда этот вектор линейно выражается через векторы базиса ядра, то есть $\alpha_{k+1}e_{k+1}+\dots+\alpha_ne_n=\beta_1e_1+\dots+\beta_ke_k$, где $\beta_i\in\mathbb{F}$.

Выражение равносильно $\alpha_{k+1}e_{k+1}+\ldots+\alpha_ne_n-\beta_1e_1-\ldots-\beta_ke_k=0$. Так как векторы e_1,\ldots,e_n – базис V, они линейно независимы $\Rightarrow \alpha_{k+1}=\ldots=\alpha_n=\beta_1=\ldots=\beta_k=0 \Rightarrow \varphi(e_{k+1})\ldots,\varphi(e_n)$ линейно независимы.

Таким образом, $\varphi(e_{k+1})\dots, \varphi(e_n)$ – базис $\operatorname{Im} \varphi$.

Пусть линейное отображение φ задано в паре базисов $\mathfrak e$ и $\mathfrak f$ матрицей $A=A(\varphi,\mathfrak e,\mathfrak f)$.

Пусть базис $\ker \varphi$ равен v_1, \ldots, v_k и найден по алгоритму поиска базиса ядра, то есть известны векторы u_1, \ldots, u_k ФСР для Ax = 0, образующие базис ядра в координатах.

Векторы v_1, \ldots, v_k легко дополняются до базиса всего пространства. Достаточно дополнить их координаты в базисе \mathfrak{e} (векторы u_1, \ldots, u_k) до базиса \mathbb{R}^n . Это дополнение u_{k+1}, \ldots, u_n – векторы стандартного базиса \mathbb{R}^n с номерами i_1, \ldots, i_r главных переменных Ax = 0.

Применив координаты u_{k+1}, \ldots, u_n к базису е, получим векторы v_{k+1}, \ldots, v_n , дополняющие базис ядра до базиса всего подпространства.

Векторы $\varphi(v_{k+1}), \ldots, \varphi(v_n)$ – базис Im φ . Их нетрудно найти, зная координаты v_{k+1}, \ldots, v_n в базисе φ (векторы u_{k+1}, \ldots, u_n). Умножив каждый дополняющий вектор-координату u_j на матрицу A слева, получим координаты $\varphi(v_{k+1}), \ldots, \varphi(v_n)$ в базисе f.

Заметим, что при умножении j-го вектора стандартного базиса \mathbb{R}^n на матрицу слева мы получаем j-ый столбец матрицы. Векторы u_{k+1},\ldots,u_n – векторы стандартного базиса \mathbb{R}^n с номерами i_1,\ldots,i_r \Rightarrow умножив их на A слева, получим i_1,\ldots,i_r столбцы этой матрицы.

Таким образом, $A^{(i_1)}, \ldots, A^{(i_r)}$ – базис $\operatorname{Im} \varphi$ в координатах. Применив эти координаты к базису \mathbb{F} , получим искомый базис $\operatorname{Im} \varphi$.

Нахождение базиса образа линейного отображения (способ 2)

Пусть $\varphi:V \to W$ – линейное отображение.

Определение: образ линейного отображения φ – это $\mathrm{Im}(V)\subseteq W$.

Пусть линейное отображение φ задано в паре базисов $\mathfrak e$ и $\mathfrak f$ матрицей $A=A(\varphi,\mathfrak e,\mathfrak f).$

Образ $\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle$, так как для каждого $v = x_1 e_1 + \dots + x_n e_n \in V$ его образ выражается в виде $\varphi(v) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$. В координатах в базисе $\mathbb F$ образ вектора v равен $x_1 A^{(1)} + \dots + x_n A^{(n)}$, поэтому в координатах образ φ – это $\langle A^{(1)}, \dots, A^{(n)} \rangle$.

Найдя базис линейной оболочки $\langle A^{(1)}, \dots, A^{(n)} \rangle$, получим базис образа в координатах. Применив эти координаты к базису \mathbb{F} , получим искомый базис $\operatorname{Im} \varphi$.

Нахождение пары базисов, в которых матрица отображения диагональна

Доказательство алгоритма полностью повторяет доказательство следующего утверждения:

Предложение: пусть
$$\operatorname{rk} \varphi = r$$
, тогда существует базисы е в V и $\operatorname{\mathbb{F}}$ в W , такие что
$$A(\varphi, \operatorname{\mathfrak{e}}, \operatorname{\mathbb{F}}) = \left(\begin{array}{c|cccc} E_r & 0 \\ \hline 0 & 0 \end{array} \right) = \left(\begin{array}{c|ccccc} r & n-r \\ \hline 1 & \dots & 0 & 0 & \dots & 0 \\ \hline \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \hline 0 & \dots & 1 & 0 & \dots & 0 \\ \hline 0 & \dots & 0 & 0 & \dots & 0 \\ \hline \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \hline 0 & \dots & 0 & 0 & \dots & 0 \end{array} \right) \right\} m - r$$

Пусть e_{r+1}, \ldots, e_n — базис $\ker \varphi$. Дополним его векторами e_1, \ldots, e_r до базиса всего V. Положим $f_1 = \varphi(e_1), \ldots, f_r = \varphi(e_r)$, тогда (f_1, \ldots, f_r) — базис $\operatorname{Im} \varphi$. Дополним f_1, \ldots, f_r до базиса f_1, \ldots, f_m всего W.

Базисы е $=(e_1,\ldots,e_n)$ и $\mathbb{f}=(f_1,\ldots,f_m)$ – искомые.

Сопряжённые пространства

Нахождение двойственного базиса

Доказательство алгоритма полностью повторяет доказательство следующего утверждения:

Пусть е = (e_1, \ldots, e_n) – фиксированный базис в V. При $i=1,\ldots,n$ рассмотрим линейную функцию $\varepsilon_i \in V^*$, такую что $\varepsilon_i(e_j) = \delta_{ij}$.

Определение: базис $(\varepsilon_1, \dots, \varepsilon_n)$ пространства V^* , определённый условием выше, называется базисом, двойственным (сопряжённым) к $\mathfrak e$.

Замечание: удобная форма представления двойственного базиса:

$$\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} \circ (e_1, \dots, e_n) = E,$$

где операция \circ – это «взятие значения», то есть $\varepsilon_i \circ e_j = \varepsilon_i(e_j)$.

Предложение: всякий базис пространства V^* двойствен некоторому базису в V.

Пусть $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ – базис пространства V^* . Рассмотрим базис $\mathfrak{e}' = (e_1', \dots, e_n')$ в V и двойственный ему базис $\varepsilon' = (\varepsilon_1', \dots, \varepsilon_n')$ в V^* .

Существует матрица $C \in M_n^0(\mathbb{F})$, такая что

$$\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} = C \cdot \begin{pmatrix} \varepsilon_1' \\ \vdots \\ \varepsilon_n' \end{pmatrix}$$

Положим $e = (e_1, \dots, e_n) = (e_1^{'}, \dots, e_n^{'}) \cdot C^{-1}$. Тогда

$$\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} \circ (e_1, \dots, e_n) = C \cdot \underbrace{\begin{pmatrix} \varepsilon_1' \\ \vdots \\ \varepsilon_n' \end{pmatrix}}_{F} \circ (e_1', \dots, e_n') \cdot C^{-1} = C \cdot E \cdot C^{-1} = E$$

Таким образом, $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)$ двойствен построенному базису $\mathfrak{e}=(e_1,\ldots,e_n).$

Покажем, что $\mathfrak e$ определён однозначно. Пусть $\mathfrak f$ – другой базис в V, которому двойствен ε . Существует матрица $D \in M_n^0(\mathbb F)$, что $\mathfrak f = \mathfrak e \cdot D$. Матрица перехода $D \neq E$, так как $\mathfrak f \neq \mathfrak e$.

Рассмотрим выражение

$$E = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} \circ (f_1, \dots, f_n) = \underbrace{\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}} \circ (e_1, \dots, e_n) \cdot D = D \neq E \implies \text{противоречие}$$

Нахождение базиса, которому двойствен заданный базис
Доказательство алгоритма полностью повторяет доказательство предыдущего алгоритма.

Билинейные формы на векторном простран	стве
--	------

Нахождение матрицы билинейной формы