Optimisation et optimisation numérique

Chapitre 1 : Premiers éléments d'optimisation

Lucie Le Briquer

16 janvier 2018

Table des matières

1	Introduction	2
2	Théorème de projection	2
3	Quelques structures intéressantes 3.1 Fonctions convexes 3.2 Ellipcité 3.3 Fonctions semi-continue inférieurement (s.c.i.)	Ę
4	Conditions d'optimalité	7

1 Introduction

De manière assez simple, l'optimisation consiste à minimiser J(u) avec $u \in K \subset X$ où X est un espace topologique. $J \colon X \longrightarrow \mathbb{R},]-\infty, +\infty]$ est appelée fonctionnelle. On s'intéresse à l'existence, l'unicité et au calcul des solutions.

On peut par exemple s'intéresser à :

- J linéaire (J(x) = Bx) sur $K = \cap (C_iX \leq b_i)$, ce qui se ramène à de la programmation linéaire.
- \bullet J quadratique :

$$J(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + c$$

- J convexe (SMV Support Vector Machine)
- \bullet J non linéaire

Quelques références :

- 1. Ph. Ciailet, Introduction à l'analyse numérique matricielle et à l'optimisation
- 2. J.F. Bonnans, J.C. Gilbert, C. Lemaréchal et C.A. Sagistizabal, Numerical Optimization
- 3. J. Nocedal et S. Wright, Numerical Optimization
- 4. D.P. Bertseka, s Non linear programming
- 5. M. Nikola, Optimization, Application in image processing (cours MVA)

2 Théorème de projection

- **Définition 1** (convexe) -

Un sous-ensemble $C \subset E$ e.v. est convexe si $\forall x, y \in C, \ \forall t \in [0,1] : tx + (1-t)y \in C$.

Théorème 1 (de projection sur les convexes fermés) –

Soit V un Hilbert et C un convexe fermé de V. Alors pour tout $w \in V$, il existe un unique $p_C(w) \in C$ tel que :

$$|w - p_C(w)|_V = \inf_{v \in C} |w - v|_V$$

De plus, $\forall v \in C$ on a :

$$\langle w - p_C(w), v - p_C(w) \rangle_V \leqslant 0$$

Preuve.

Égalité du parallélogramme :

$$2|a|^2 + 2|b|^2 = |a - b|^2 + |a + b|^2$$

Soit (v_n) une suite minimisante. Soit $\varepsilon > 0$, $\exists n \ge 0 \ \forall p \ge 0$:

$$|w - v_{n+p}|^2 \leqslant d^2 + \varepsilon$$

où $d = \inf_{v \in C} |w - v|$. Par l'égalité du parallélogramme :

$$2|w - v_{n+p}|^2 + 2|w - v_n|^2 = |v_{n+p} - v_n|^2 + 4\left|w - \frac{v_n + v_{n+p}}{2}\right|^2$$

Par suite:

$$|v_{n+p} - v_n|^2 \leqslant 4d^2 + 4\varepsilon - 4\left|w - \underbrace{\frac{v_n + v_{n+p}}{2}}_{\in C}\right|^2$$
$$\leqslant 4d^2 + 4\varepsilon - 4d^2 = 4\varepsilon$$

Par suite (v_n) est de Cauchy, V est complet. Si $p_C(w) = \lim v_n$ on a $p_C(w) \in C$ puisque C est fermé et $|w - p_C(w)|^2 \leq d^2$. L'unicité est laissée en exercice. Enfin,

$$p_C(w) + t(v - p_C(w)) \in C$$
 si $v \in C$ et $t \in [0, 1]$

d'où:

$$|w - p_C(w)|^2 \le \underbrace{|w - p_C(w) + t(v - p_C(w))|^2}_{\gamma(t)}$$

Par un développement de Taylor en t=0 et γ ($\gamma'(0) \ge 0$), on obtient l'inégalité.

3 Quelques structures intéressantes

- **Définition 2** (domaine d'épigraphe) —

Soit
$$f: X \to]-\infty, +\infty],$$

$$dom(f) = \{x \in X \mid f(x) < +\infty\} = (f < +\infty)$$
$$epi(f) = \{(x, y) \in X \times \mathbb{R} \mid y \geqslant f(x)\}$$

3.1 Fonctions convexes

- **Définition 3** (fonction convexe et strictement convexe) —

Soit $f: C \subset E \to \mathbb{R}$ où C est un convexe et E un e.v. On dit que f est convexe si :

$$\forall x, y \in C, \ \forall t \in [0, 1], \ f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

On dit que f est strictement convexe si :

$$\forall x \neq y \in C, \ \forall t \in]0,1[, \ f(tx + (1-t)y) < tf(x) + (1-t)f(y)$$

Exemple. Si $f(x) = \frac{1}{2}\langle Ax, x \rangle$ avec A symétrique positive, f est convexe. Si A est définie positive, f est strictement convexe. (à faire en exercice)

Remarque. Si $f: C \to \mathbb{R}$ est convexe, on peut considérer $\tilde{f}: E \to]-\infty, +\infty]$ définie par :

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \in C \\ +\infty & \text{sinon} \end{cases}$$

 $\operatorname{dom}(\tilde{f}) = C$ et \tilde{f} est convexe au sens étendu (convention $a + (+\infty) = +\infty$ si $a \in]-\infty, +\infty]$).

- **Propriété 1** (condition de convexité) —

 $f:U\subset E\to\mathbb{R},\,U$ ouvert, et dérivable en tout point d'un convexe C. Alors :

$$f$$
 est convexe $\Leftrightarrow f(y) \geqslant f(x) + f'(x)(y-x) \ \forall x, y \in C$

f est strictement convexe $\Leftrightarrow f(y) > f(x) + f'(x)(y-x) \ \forall x \neq y \in C$

Preuve. Voir TD

Exercice. Soit E un e.v.

- 1. Vérifier que $f: E \to]-\infty, +\infty]$ est convexe ssi $\operatorname{epi}(f)$ est convexe (en particulier $\operatorname{dom}(f)$ est convexe).
- 2. Si $(f_i)_{i\in I}$ est une famille de fonctions convexes alors $\sup_{i\in I} f_i$ est convexe.

3.2 Ellipcité

- **Définition 4** (fonction elliptique) —

Une fonction $f:V\to\mathbb{R}$ où V est un Hilbert est dite elliptique si f est \mathcal{C}^1 et s'il existe $\alpha>0$ tel que $\forall x,y\in V$ on a :

$$\langle \underbrace{\nabla f(y)}_{\in V} - \nabla f(x), y - x \rangle_V \geqslant \alpha |x - y|_V^2$$

Notation. $\langle \nabla f(x), h \rangle = f'(x)h = df(x)h$. $df(x) = f'(x) \in \mathcal{L}(V, \mathbb{R}) = V'$ le dual topologique.

- **Propriété 2** (CNS d'ellipticité au 2eme ordre) —

Si f est \mathcal{C}^2 alors f est elliptique ssi $f''(x)(v,v) \geqslant \alpha |v|_V^2$

Notation. $f''(x) = d^2 f(x) \in \mathcal{L}(V, \mathcal{L}(V, \mathbb{R})) \equiv \mathcal{L}(V \otimes V, \mathbb{R})$

Preuve.

 $\gamma(t) = f(x + tv), \ x, v \in V$

$$\gamma'(t) - \gamma'(0) = df(x + tv)v - df(x)v$$

$$= (f'(\underbrace{x + tv}_{y}) - f'(x))v$$

$$t(\gamma'(t) - \gamma'(0)) = \langle \nabla f(y) - \nabla f(x), \underbrace{x - y}_{tv} \rangle$$

$$\geqslant \alpha t^{2}|v|_{V}^{2}$$

d'où

$$\frac{\gamma'(t) - \gamma'(0)}{t} \geqslant \alpha |v|_V^2$$

Puis passage à la limite $t \to 0$, $t \neq 0$. Autre sens en exercice.

3.3 Fonctions semi-continue inférieurement (s.c.i.)

- Définition 5

On dit que $f \colon E \to]-\infty, +\infty]$ est s.c.i. en $x \in E$ si $\forall \varepsilon > 0, \exists U \ (x \in U)$ tel que $\inf_U f \geqslant f(x) - \varepsilon$.

- Propriété 3 –

Soit $f \colon E \to]-\infty, +\infty]$. Sont équivalents :

- 1. *f* est s.c.i.
- 2. $\forall \lambda \in \mathbb{R}, (f \leqslant \lambda)$ est fermé.
- 3. epi(f) est fermé.

Preuve. Voir TD

Corollaire 1

Si $(f_i)_{i\in I}$ est une famille de fonctions s.c.i. de $E\to]-\infty,+\infty]$, sup f_i est s.c.i.

Preuve.

$$\operatorname{epi}(\sup_{I} f_{i}) = \bigcap_{i \in I} \underbrace{\operatorname{epi}(f_{i})}_{\text{ferm\'e}} \text{ ferm\'e}$$

Propriété 4 ——

Si $f : E \to]-\infty, +\infty]$ est s.c.i. alors dom(f) est fermé.

Preuve. En exercice.

- Théorème 2 -

Si $f: E \to]-\infty, +\infty]$ est s.c.i. et $K \subset E$ compacte, alors l'infimimum de f sur K est atteint i.e. $\exists x_K \in K$ tel que $f(x_K) = \inf_K f$.

Preuve.

Soit $(x_n)_{n\geqslant 0}$ une suite minimisante, on en extrait une sous-suite convergente $(x_{n_k})_{k\geqslant 0}$. Si $x_K = \lim_{k\to +\infty} x_{n_k} \in K$ alors $f(x_K) \leqslant \underline{\lim} f(x_{n_k}) = \inf_K f$ et $\inf_K f \leqslant f(x_K)$.

Remarque. Marge de progression utile en dimension infinie.

Théorème 3

Soit $f:V\to]-\infty,+\infty]$ avec V un Hilbert. Alors f est convexe s.c.i. ssi f est l'enveloppe supérieure de ses minorantes affines, i.e. :

$$f(x) = \sup_{(l,a)\in V'\times\mathbb{R},\ l+a\leqslant f} l(x) + a$$

Contre-exemple.

et $+\infty$ en dehors de [-1,1]. Cette fonction n'est pas s.c.i., on ne peut pas l'approcher par des droites aux points -1 et 1.

Preuve.

Si $\operatorname{epi}(f) = \emptyset$ i.e. $f = +\infty$: ok. Sinon, soit $x \in \operatorname{dom}(f)$ alors $\forall \lambda < f(x), (x, \lambda) \notin \operatorname{epi}(f)$. Or $\operatorname{epi}(f)$ est un convexe fermé (f est convexe et s.c.i) d'où (projection sur les convexes fermés) il existe $(l, a) \in V' \times \mathbb{R}$ tel que $\forall y \in \operatorname{dom}(f)$:

$$l(x) + a\lambda < l(y) + af(y)$$

Or pour y = x, on a $a\lambda < af(x)$, d'où a > 0. Par suite, quitte à diviser par a, on peut supposer que a = 1, ainsi :

$$l(x) + \lambda < l(y) + f(y)$$
 i.e. $f(y) > l(x - y) + \lambda$

Vrai pour $y \in \text{dom}(f)$ mais aussi pour $y \notin \text{dom}(f)$.

$$f > \underbrace{-l + l(x) + \lambda}_{=\lambda \text{ en } x}$$

Comme λ est arbitraire, on a le résultat pour $x \in \text{dom}(f)$.

Si $x \notin \text{dom}(f)$, alors comme dom(f) est un convexe fermé, on note $x_C = p_C(x)$ et $\lambda < f(x_C)$. $(x_C, \lambda) \cap \text{epi}(f) = \emptyset$. D'où il existe $(l, a) \in V' \times \mathbb{R}$ tel que :

$$l(x_C) + a\lambda < l(y) + af(y) \ \forall y \in dom(f)$$

De même en prenant $y = x_C$ on a a > 0 et donc on se ramène à :

$$l(x_C) + \lambda < l(y) + f(y) \ \forall \mathbf{y} \in \mathbf{V}$$

De plus comme $\langle x - x_C, y - x_C \rangle \leq 0 \ \forall y \in \text{dom}(f) = C$, on a

$$g_t(y) = l(x_C - y) + \lambda + t\underbrace{\langle x - x_C, y - x_C \rangle}_{\leqslant 0}$$

qui est une minorante affine affine de f. Donc :

$$g_t(x) = l(x_C - x) + \lambda + t|x - x_C|^2 \xrightarrow[t \to +\infty]{} +\infty$$

4 Conditions d'optimalité

- **Définition 6** (minimum local)

 $J: X \longrightarrow \mathbb{R}, X$ espace topologique.

- $x \in X$ est un minimum local de J si $\exists V$ un voisinage de X tel que $J(x) = \inf_{V} J$
- $x \in X$ est un minimum local strict de J si $\exists V$ un voisinage de X tel que :

$$J(x) < J(y) \ \forall y \in V \setminus \{x\}$$

• $x \in X$ est un minimum local de J par rapport à $U \subset X$ si $\exists V$ un voisinage de X tel que $J(x) = \inf_{V \cap U} J$

- **Théorème 4** (équation d'Euler) —

Soit U un ouvert de E e.v. et $J: U \longrightarrow \mathbb{R}$ une fonction. Si $u \in U$ est un minimum local de J et J dérivable en u alors J'(u) = 0.

Remarque. C'est une condition nécessaire du premier ordre (CN1).

Preuve. Immédiat en considérant $\gamma(t) = J(u+tv)$ avec $v \in E$. $\gamma'(0) = J'(u)v = 0 \ \forall v \in E$. \square

- Théorème 5 (CN2) —

Si de plus J est deux fois dérivable en u alors $J''(u)(v,v) \ge 0 \ \forall v \in E$.

Preuve. Idem.

Théorème 6 (CS2) ——

 $J\colon U\longrightarrow \mathbb{R}$ avec U ouvert de E e.v.n. On suppose que J est dérivable en u et J'(u)=0.

- 1. Si J''(x) existe et il existe $\alpha > 0$ tel que $J''(x)(u,u) \ge \alpha |v|^2 \ \forall v \in E$ alors x est un minimum local strict.
- 2. S'il existe B un ouvert contenant x tel que $\forall y \in B$ J''(y) existe et $J''(y)(v,v) \ge 0 \ \forall v \in E$ alors x est un minimum local de J.

Preuve. cf. TD

Théorème 7 —

Soit $J \colon C \longrightarrow \mathbb{R}$ avec C un convexe de E et soit :

$$S = \{ x \in C \mid J(x) = \inf J \}$$

l'ensemble des minima globaux sur C. On suppose qu'il existe $x_* \in C$ minimum local.

- 1. Si J est convexe alors S est convexe et $x_* \in S$ (i.e. un minimum local est global).
- 2. Si *J* est strictement convexe, alors $S = \{x_*\}$.

Preuve. cf. TD