Zadanie: AIL Autobusy i ludzie

Warsztaty ILO, grupa olimpijska, dzień 16. Dostępna pamięć: 128 MB.

Główna ulica Bitocji jest reprezentowana za pomocą prostej linii. Na tej linii jest rozlokowanych 10^6 przystanków autobusowych. Są one ponumerowane liczbami całkowitymi od 1 do 10^6 w kolejności ich występowania. W mieście kursuje n autobusów, są one ponumerowane od 1 do n. Każdego dnia i-ty autobus odjeżdża z przystanku s_i do przystanku f_i ($s_i < f_i$). Zatrzymuje się on także na wszystkich pośrednich przystankach. Autobus odjeżdża w momencie t_i i jedzie tak szybko, że przyjeżdża również w momencie t_i . Moment t_i jest różny dla wszystkich autobusów. Dodatkowo autobusy są w stanie pomieścić dowolną liczbę osób.

W Bitocji mieszka m obywateli. Dzisiaj i-ta osoba powinna dostać się z przystanku l_i na przystanek r_i ($l_i < r_i$). Przychodzi ona na swój początkowy przystanek dokładnie w momencie b_i . Z jednej strony każdy z obywateli chce dostać się na końcowy przystanek jak najszybciej to możliwe, jednak z drugiej bardzo nie chcą przesiadać się do innych autobusów (jest to strasznie męczące i kłopotliwe). Formalnie: i-ta osoba wybiera autobus j z minimalnym momentem t_j takim, że $s_j \le l_i$, $r_i \le f_j$ i $b_i \le t_j$.

Twoim zadaniem jest wyznaczenie dla każdej osoby czy jest wstanie dojechać dzisiaj do swojego końcowego przystanku i podanie numeru autobusu, którym powinna pojechać dana osoba.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite n i m $(1 \le n, m \le 10^6)$ oznaczające kolejno liczbę autobusów oraz liczbę obywateli Bitocji

W każdej z kolejnych n linii znajdują się trzy liczby całkowite s_i , f_i , t_i ($1 \le s_i$, f_i , $t_i \le 10^6$, $s_i < f_i$) oznaczające kolejno numer przystanku z którego odjeżdża i-ty autobus, numer przystanku na którym kończy trasę oraz moment w którym autobus odjeżdża. Możesz założyć, że wszystkie momenty t_i są różne.

Każdy kolejny z m wierszy zawiera trzy liczby całkowite l_i , r_i , b_i ($1 \le l_i$, r_i , $b_i \le 10^6$, $l_i < r_i$), oznaczające numery przystanków z których i-ta osoba rozpoczyna trasę, na którym kończy oraz moment w którym osoba znajdzie się na przystanku l_i .

Wyjście

Na wyjściu powinno znaleźć się m liczb całkowitych oddzielonych spacjami – i-ta z nich powinna wynosić –1 jeżeli i-ta osoba nie jest w stanie dostać się do docelowego przystanku lub numer autobusu który powinna użyć.

4 1 -1

Przykład

Dla danych wejściowych:

poprawnym wynikiem jest:

4 3

1 10 10

5 6 2

6 7 3

5 7 4

5 7 1

1 2 1

1 10 11

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n, m \le 1000$	21
2	brak dodatkowych założeń	79