Lab 2: Importing, exploring, managing data using functions

Solutions

DATE

Answer the questions in this lab and submit the compiled WORD or PDF by the deadline.

Importing Data

1. When reading in the Police Shootings Excel data set, what do the arguments sheet=1 and col_names=TRUE mean?

sheet=1 Takes the data from the first sheet. col_names use the first row as column names.

Use the NCbirths data set to answer the next set of questions. Read in the data set in the code chunk below.

```
nc <- read.csv("data/NCbirths.csv", header=TRUE)</pre>
```

2. How many observations and variables are contained in this data set?

dim(nc)

```
## [1] 1000 13
```

There are 1000 observations and 13 variables

- they don't have to have used dim. they could have looked in the environment.
- 3. Calculate the mean age of the mothers (mage) in the sample.

```
mean(nc$mage)
```

```
## [1] 27
```

4. Pregnancies last on average 38 weeks. Edit the weeks variable to change all records where weeks is greater than 38, to equal 38. That is, for all record where weeks>38, change the value of weeks to <-38.

```
nc$weeks[nc$weeks>38] <- 38
max(nc$weeks, na.rm=TRUE)</pre>
```

```
## [1] 38
```

They need to have confirmed that they did the recoding correctly.

5. Use the summary function to calculate summary statistics on the fathers age (fage). Round to 3 digits using the digits= argument. Don't forget that you can look at the bottom of the help for summary (?summary) file for examples on how to use this function.

```
summary(nc$fage, digits=3)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 14.0 25.0 30.0 30.3 35.0 55.0 171
```

6. What is the distribution of smoking habit (habit) amongst the mothers in the sample? i.e. How many are smokers and how many are non-smokers? *Hint: Use the table()* function.

table(nc\$habit)

```
## ## nonsmoker smoker
## 873 126
```

There are 873 non-smokers and 126 smokers in the sample.

- 7. Use the ifelse() function to create a new variable called missing_fage to identify if the fathers age is missing. The logical statement to identify if something is missing looks like this: is.na(variable).
 - Set this new variable equal to 'MISSING' if fage is missing (the logical statement is TRUE)
 - set this new variable equal to 'OBSERVED' if fage is not missing (the logical statement is FALSE)

```
nc$missing_fage <- ifelse(is.na(nc$fage), 'MISSING', 'OBSERVED')
table(nc$missing_fage)</pre>
```

```
## ## MISSING OBSERVED ## 171 829
```

- They have to make this variable on the nc data set.
- They also have to do something to show that it was created.
- 8. What class of data is this new variable?

```
class(nc$missing_fage)
```

[1] "character"

This new variable is a character variable.

9. What percent of records are missing the fathers age?

```
mean(is.na(nc$fage))*100
```

[1] 17.1

17.1% of the data on the fathers age is missing.

• There are many ways they can get this answer.