21 April 2022 09:29

$$\begin{split} &i\partial_t z + \partial_x^2 z + |z|^2 z = 0,\\ &z = u + iv \end{split}$$

1)
$$\partial_t u = -\partial_x^2 v - (u^2 + v^2)v$$

2) $\partial_t v = \partial_x^2 u + (u^2 + v^2)u$

1)
$$\partial_t u + \partial_x^2 v = f(u, v)$$

2) $\partial_t v - \partial_x^2 u = g(u, v)$

$$f(u,v) = -(u^2 + v^2)v$$

$$g(u,v) = (u^2 + v^2)u$$

$$au_{j-1}^{n+1} + bu_{j}^{n+1} + au_{j+1}^{n+1} - au_{j-1}^{n} - bu_{j}^{n} - au_{j+1}^{n} + cv_{j-1}^{n+1} + ev_{j}^{n+1} + cv_{j+1}^{n+1} + cv_{j+1}^{n} + ev_{j}^{n} + cv_{j+1}^{n} = pf_{j-1}^{n+1} + qf_{j}^{n+1} + pf_{j+1}^{n+1} + pf_{j-1}^{n} + qf_{j}^{n} + pf_{j+1}^{n} + qf_{j}^{n} + pf_{j+1}^{n} + qf_{j}^{n} + qf_{j}^{n}$$

u_{test}	v_{test}	f_{test}	g_{test}	Equation
t	0	1	0	$a\tau + b\tau + a\tau + 0 + 0 + 0 + 6 \cdot 0 = p + q + p + p + q + p; \tau(2a + b) = 4p + 2q$
x^2t	0	x ²	-2 <i>t</i>	$2a\tau h^2 = 4ph^2$
0	t	0	1	

Нормировки: b = 1 E = 1

Алгориз

1) Делаем явный шаг по времени по схеме, например, Маккормака. Обозначим получившиеся решения как \tilde{u}, \tilde{v} .

2) Представим точное решение как $u_i = \tilde{u}_i + \varepsilon_i, \ v_i = \tilde{v}_i + \delta_i$

 $u_j=\tilde{u}_j+arepsilon_j,\ v_j=\tilde{v}_j+\delta_j$ 3) Подставляем данные представления в компактную схему и линеаризуем ее.

Явный шаг по времени. Схема Маккормака

$$\begin{split} &u_{j}^{n+\frac{1}{2}} = u_{j} - \frac{\tau}{h^{2}} \left(v_{j-1}^{n} - 2v_{j}^{n} + v_{j+1}^{n} \right) - \tau v_{j}^{n} \left(\left(u_{j}^{n} \right)^{2} + \left(v_{j}^{n} \right)^{2} \right) \\ &v_{j}^{n+\frac{1}{2}} = v_{j} + \frac{\tau}{h^{2}} \left(u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n} \right) + \tau u_{j}^{n} \left(\left(u_{j}^{n} \right)^{2} + \left(v_{j}^{n} \right)^{2} \right) \end{split}$$

Корректор

$$\begin{split} &u_{j}^{n+1} = \frac{u_{j}^{n} + u_{j}^{n+\frac{1}{2}}}{2} - \frac{\tau}{2h^{2}} \left(v_{j-1}^{n} - 2v_{j}^{n} + v_{j+1}^{n} \right) - \frac{\tau}{2} v_{j}^{n} \left(\left(u_{j}^{n} \right)^{2} + \left(v_{j}^{n} \right)^{2} \right) \\ &v_{j}^{n+1} = \frac{v_{j}^{n} + v_{j}^{n+\frac{1}{2}}}{2} + \frac{\tau}{2h^{2}} \left(u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n} \right) + \frac{\tau}{2} u_{j}^{n} \left(\left(u_{j}^{n} \right)^{2} + \left(v_{j}^{n} \right)^{2} \right) \end{split}$$