Упражнение

Моделирование в хсоѕ

Демидова Екатерина Алексеевна

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Математическая модель	
4	Выводы	19

Список иллюстраций

3.1	Модель фигуры Лиссажу в хсоз	6
3.2	Параметры генератора синусоидального сигнала	7
3.3	Задать параметры устройства для построения графика	8
3.4	Фигура Лиссажу при $A=B=1, a=2, b=2, \delta=0$	9
3.5	Фигура Лиссажу при $A=B=1, a=2, b=2, \delta=\pi/4$	9
3.6	Фигура Лиссажу при $A=B=1, a=2, b=2, \delta=\pi/2$	10
3.7	Фигура Лиссажу при $A=B=1, a=2, b=2, \delta=3*\pi/4$	10
3.8	Фигура Лиссажу при $A=B=1, a=2, b=2, \delta=\pi$	11
3.9	Фигура Лиссажу при $A=B=1, a=2, b=4, \delta=0$	11
3.10	Фигура Лиссажу при $A=B=1, a=2, b=4, \delta=\pi/4$	12
3.11	Фигура Лиссажу при $A=B=1, a=2, b=4, \delta=\pi/2$	12
3.12	Фигура Лиссажу при $A=B=1, a=2, b=4, \delta=3*\pi/4$	13
3.13	Фигура Лиссажу при $A=B=1, a=2, b=4, \delta=\pi$	13
3.14	Фигура Лиссажу при $A=B=1, a=2, b=6, \delta=0$	14
3.15	Фигура Лиссажу при $A=B=1, a=2, b=6, \delta=\pi/4$	14
3.16	Фигура Лиссажу при $A=B=1, a=2, b=6, \delta=\pi/2$	15
3.17	Фигура Лиссажу при $A=B=1, a=2, b=6, \delta=3*\pi/4$	15
3.18	Фигура Лиссажу при $A=B=1, a=2, b=6, \delta=\pi$	16
3.19	Фигура Лиссажу при $A=B=1, a=2, b=3, \delta=0$	16
3.20	Фигура Лиссажу при $A=B=1, a=2, b=3, \delta=\pi/4$	17
3.21	Фигура Лиссажу при $A=B=1, a=2, b=3, \delta=\pi/2$	17
3.22	Фигура Лиссажу при $A=B=1, a=2, b=3, \delta=3*\pi/4$	18
3.23	Фигура Лиссажу при $A=B=1, a=2, b=3, \delta=\pi$	18

1 Цель работы

Построить с помощью хсоз фигуры Лиссажу.

2 Задание

Построить с помощью хсоз фигуры Лиссажу со следующими параметрами:

1)
$$A = B = 1, a = 2, b = 2, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

2)
$$A = B = 1, a = 2, b = 4, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

3)
$$A = B = 1, a = 2, b = 6, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

4)
$$A = B = 1, a = 2, b = 3, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

3 Выполнение лабораторной работы

3.1 Математическая модель

$$\begin{cases} x(t) = Asin(at + \delta), \\ y(t) = Bsin(bt), \end{cases}$$

где A,B – амплитуды колебаний, a,b – частоты, δ – сдвиг фаз.

3.2 Реализация модели в хсоѕ

Построим модель при помощи блоков моделирования(рис. [3.1]).

Рис. 3.1: Модель фигуры Лиссажу в хсоѕ

В модели использованы следующие блоки xcos: - CLOCK_c — запуск часов модельного времени; - GENSIN_f — блок генератора синусоидального сигнала; - CSCOPXY — регистрирующее устройство для построения графика типа y = f(x); - TEXT f — задаёт текст примечаний.

Затем будем зададавать разные значения для параметров блоков генераторов синусоидального сигнала, фаза меняется только у блока, описывающего изменение x(верхний). На рис. [3.2] изображен пример для одного из них

Рис. 3.2: Параметры генератора синусоидального сигнала

Также зададим параметры устройства для построения графика(рис. [3.3]).

Рис. 3.3: Задать параметры устройства для построения графика

Построим графики для варианта 1 (рис. [3.4] - [3.8]).

Рис. 3.4: Фигура Лиссажу при $A=B=1, a=2, b=2, \delta=0$

Рис. 3.5: Фигура Лиссажу при $A=B=1, a=2, b=2, \delta=\pi/4$

Рис. 3.6: Фигура Лиссажу при $A=B=1, a=2, b=2, \delta=\pi/2$

Рис. 3.7: Фигура Лиссажу при A=B=1, $a=2,b=2,\delta=3*\pi/4$

Рис. 3.8: Фигура Лиссажу при A=B=1 , a=2 , b=2 , $\delta=\pi$

Построим графики для варианта 2 (рис. [3.9] - [3.13]).

Рис. 3.9: Фигура Лиссажу при A=B=1 , a=2 , b=4 , $\delta=0$

Рис. 3.10: Фигура Лиссажу при $A=B=1, a=2, b=4, \delta=\pi/4$

Рис. 3.11: Фигура Лиссажу при A=B=1 , a=2 , b=4 , $\delta=\pi/2$

Рис. 3.12: Фигура Лиссажу при A=B=1, a=2, b=4, $\delta=3*\pi/4$

Рис. 3.13: Фигура Лиссажу при A=B=1 , a=2 , b=4 , $\delta=\pi$

Построим графики для варианта 3 (рис. [3.14] - [3.18]).

Рис. 3.14: Фигура Лиссажу при $A=B=1, a=2, b=6, \delta=0$

Рис. 3.15: Фигура Лиссажу при $A=B=1, a=2, b=6, \delta=\pi/4$

Рис. 3.16: Фигура Лиссажу при A=B=1, a=2, b=6, $\delta=\pi/2$

Рис. 3.17: Фигура Лиссажу при $A=B=1, a=2, b=6, \delta=3*\pi/4$

Рис. 3.18: Фигура Лиссажу при A=B=1 , a=2 , b=6 , $\delta=\pi$

Построим графики для варианта 4 (рис. [3.19] - [3.23]).

Рис. 3.19: Фигура Лиссажу при $A=B=1, a=2, b=3, \delta=0$

Рис. 3.20: Фигура Лиссажу при A=B=1, a=2, b=3, $\delta=\pi/4$

Рис. 3.21: Фигура Лиссажу при A=B=1, a=2, b=3, $\delta=\pi/2$

Рис. 3.22: Фигура Лиссажу при A=B=1, a=2, b=3, $\delta=3*\pi/4$

Рис. 3.23: Фигура Лиссажу при A=B=1 , a=2 , b=3 , $\delta=\pi$

4 Выводы

В результате выполнения работы были построены с помощью xcos фигуры Лиссажу.