S&DS 365 / 665 Intermediate Machine Learning

Nonparametric Bayes: Gaussian and Dirichlet Processes

(continued)

February 28

Reminders

- Assignment 2 is out
- Quiz 2 on Wednesday (CNN, GP, DP)
- Midterm on March 16 in class
 - practice exam next week
 - review week of March 14

For Today

- Dirichlet process demos and definitions
- Next topic: Approximate inference

Last week's demo: GP samples

Last week's demo: GP samples

Olympic marathon times (men's race)

Olympic marathon times (women's race)

The Dirichlet Process

- The Dirichlet process is analogous to the Gaussian process
- Every partition of sample space has a Dirichlet distribution (more precise shortly)
- GPs are tools for regression functions; DPs are tools for distributions and densities
- DPs finesse the problem of choosing the number of components in a mixture model
 - Example: Don't need to specify the number of topics in a topic model

The Dirichlet Process

Dirichlet processes have some fun mnemonic metaphors, which help understand the concepts:

- Stick breaking
- Chinese restaurants

But it's easy to get confused—we're working with probability distributions over probability distributions

Starting point: CDF

The *empirical distribution* of a set of data is the probability distribution that places probability mass $\frac{1}{n}$ on each data point x_1, x_2, \dots, x_n .

The *empirical CDF* is the function

$$\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(x_i \le x)$$

This is a step function with steps of size $\frac{1}{n}$ on each data point.

ć

Empirical CDF

Empirical CDF

A frequentist 95% confidence band is given by $\hat{F}(x) \pm \sqrt{\frac{1}{2n} \log{(\frac{2}{.05})}}$

Recall: KDE

The *kernel density estimate* is the mixture model that places weight $\frac{1}{n}$ on the kernel bump function centered on each data point:

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

Recall: KDE

Recall: KDE

Getting rid of the data

Both the empirical CDF and kernel density estimate involve the data

We want to construct a *prior* distribution over these objects, before we see any data

Solution: Use synthetic or "imaginary" data!

Think back to our interpretation of the Beta(α , β) prior.

Dirichlet process

Each sample from a Dirichlet process prior has a *random collection of weights*, assigned to a *random selection of data*

Each sample from Dirichlet process mixture has a random collection of weights assigned to a random selection of *model parameters*

Recall our sticking breaking demo

Sample from DP prior

Sample from DP mixture

Stick breaking process

Stick breaking:

• At each step, break off a fraction $V \sim \text{Beta}(1, \alpha)$

"Imaginary data":

At each step, sample X ∼ F₀

Stick breaking process

To draw a single random distribution F from $DP(\alpha, F_0)$:

- ① Draw s_1, s_2, \ldots independently from F_0 .
- ② Draw $V_1, V_2, \ldots \sim \text{Beta}(1, \alpha)$ and set $w_j = V_j \prod_{i=1}^{j-1} (1 V_i)$
- 3 Let F be the discrete distribution that puts mass w_j at s_j

Stick breaking process

The mean of Beta(1, α) is $\frac{1}{1+\alpha}$.

- \bullet As α gets larger, the weights get smaller
- Weights always sum to one

Different α

Different α

Clustering/repeats

Suppose we draw data F, drawn from a Dirichlet process, and then sample data from F:

$$F \sim DP(\alpha, F_0)$$
 $X_1, X_2, \dots, X_n \mid F \sim F$

Since F is a mixture model, the samples X_i are clustered according to which mixture component they are sampled from.

The "Chinese restaurant process" captures this

Chinese restaurant mnemonic

Inspired by the large Chinese restaurants in San Francisco

Chinese restaurant mnemonic

A customer (data point) comes into the restaurant and either

- lacktriangle sits at an empty table, with probability proportional to lpha, or
- sits at an occupied table with probability proportional to number of customers already seated at that table

Chinese restaurant process

- ① Draw $X_1 \sim F_0$.
- **2** For i = 2, ..., n: draw

$$X_i \, | \, X_1, \dots X_{i-1} = egin{cases} X \sim F_{i-1} & ext{with probability } rac{i-1}{i+lpha-1} \ X \sim F_0 & ext{with probability } rac{lpha}{i+lpha-1} \end{cases}$$

where F_{i-1} is the empirical distribution of $X_1, \ldots X_{i-1}$

This allows us to sample from the marginal distribution over X, without explicitly drawing a distribution F from the DP

Chinese restaurant process

Let
$$X_1^*, X_2^*, \dots$$
 denote unique values of X_1, \dots, X_n

Define cluster assignment variables c_1, \ldots, c_n where $c_i = j$ means that X_i takes the value X_j^*

Let
$$n_j = |\{i : c_j = j\}|$$
. Then

$$X_n = egin{cases} X_j^* & \text{with probability } rac{n_j}{n+lpha-1} \ X \sim F_0 & \text{with probability } rac{lpha}{n+lpha-1} \end{cases}$$

This allows us to sample from the marginal distribution over X, without explicitly drawing a distribution F from the DP

The posterior distribution

Let $X_1, \ldots, X_n \sim F$ and let F have prior $\pi = Dir(\alpha, F_0)$

Then the posterior π for F given X_1, \ldots, X_n is

$$\mathsf{Dir}\left(\alpha+n,\overline{F}_n\right)$$

where

$$\overline{F}_n = \frac{n}{n+\alpha}F_n + \frac{\alpha}{n+\alpha}F_0.$$

Here F_n is the empirical distribution of X_1, \ldots, X_n

This says that the Dirichlet process is conjugate to sampling from the distribution—the posterior is another DP

DP Demo

But what actually is a DP?

Recall:

A random function m is distributed according to a Gaussian process if for every x_1, x_2, \ldots, x_n the random vector $m(x_1), \ldots, m(x_n)$ has a multivariate Gaussian distribution

$$N(\mu(x), K(x))$$

But what actually is a DP?

A random distribution F is distributed according to a Dirichlet process $DP(\alpha, F_0)$ if for every partition A_1, \ldots, A_n of the sample space the random vector $F(A_1), \ldots, F(A_n)$ has a Dirichlet distribution

$$Dir (\alpha F_0(A_1), \alpha F_0(A_2), \dots, \alpha F_0(A_n))$$

But what actually is a DP?

As a special case, if the sample space is the real line we can take the partition to be

$$A_1 = \{z : z \leq x\}$$

$$A_2=\{z\ :\ z>x\}$$

and then

$$F(x) \sim \text{Beta}\Big(\alpha F_0(x), \alpha(1 - F_0(x))\Big)$$

Big picture

The definition tells us the precise sense in which a DP is an infinite Dirichlet distribution

But this is not concrete

The sticking breaking and Chinese restaurant processes give us algorithms for working with a DP

Big picture

Historically:

DP definition \longrightarrow CRP \longrightarrow Stick breaking

Big picture

Conceptually, algorithmically:

 DP definition $\longleftarrow \mathsf{CRP}$ \longleftarrow Stick breaking

From DP to DPM

- A DP is a distribution over distributions.
- A Dirichlet process mixture is a distribution over mixture models
- DPMs are Bayesian versions of kernel density estimation
- Subject to the curse of dimensionality!
- In stick breaking we replace X_i by θ_i
- In Chinese restaurant process we replace X_i^* by θ_i^*

Sample from DP mixture

Nonparametric Bayesian mixture model

$$F \sim \mathsf{DP}(\alpha, F_0)$$

 $\theta_1, \dots, \theta_n | F \sim F$
 $X_i | \theta_i \sim f(x | \theta_i), i = 1, \dots, n.$

Stick breaking process for DPM

Stick breaking:

• At each step, break off a fraction $V \sim \text{Beta}(1, \alpha)$

Sample model parameters:

• At each step, sample $\theta \sim F_0$

Stick breaking process for DPM

To draw a single random mixture from DPM(α , F_0):

- **1** Draw $\theta_1, \theta_2, \ldots$ independently from F_0 .
- ② Draw $V_1, V_2, \ldots \sim \text{Beta}(1, \alpha)$ and set $w_j = V_j \prod_{i=1}^{j-1} (1 V_i)$
- 3 Let f be the (infinite) mixture model

$$f(x) = \sum_{j=1}^{\infty} w_j f(x \mid \theta_j)$$

Chinese restaurant process for a DPM

- **1** Draw $\theta_1 \sim F_0$.
- **2** For i = 2, ..., n: draw

$$\theta_i \, | \, \theta_1, \dots \theta_{i-1} = egin{cases} heta \sim F_{i-1} & ext{with probability } rac{i-1}{i+lpha-1} \ heta \sim F_0 & ext{with probability } rac{lpha}{i+lpha-1} \end{cases}$$

where F_{i-1} is the empirical distribution of $\theta_1, \dots \theta_{i-1}$

Chinese restaurant process for a DPM

Let $\theta_1^*, \theta_2^*, \dots$ denote unique values of $\theta_1, \dots, \theta_n$

Define cluster assignment variables c_1, \ldots, c_n where $c_i = j$ means that θ_i takes the value θ_i^*

Let $n_j = |\{i : c_j = j\}|$. Then

$$heta_n = egin{cases} heta_j^* & \text{with probability } rac{n_j}{n+lpha-1} \ heta \sim F_0 & \text{with probability } rac{lpha}{n+lpha-1} \end{cases}$$

The posterior for a DPM

- The posterior distribution does not have a closed form need to approximate it algorithmically
- Two forms of approximations: Gibbs sampling and variational methods — next topic

Summary

- A Dirichlet process is a prior over distribution functions
- The stick breaking process tells us how to sample F
- The Chinese restaurant process tells us how to sample X
- A Dirichlet process is a Bayesian version of the empirical CDF
- A Dirichlet process mixture is a Bayesian version of kernel density estimation
- Bayesian nonparametric methods require a lot of conceptual machinery and computation