Podatkovne baze

Visokošolski študij RI Univerzitetni študij UI

Matjaž Kukar, 2023-24

Splošne informacije...

Predavanja (četrtek, 14-17h, PA)

– Matjaž Kukarmatjaz.kukar@fri.uni-lj.si

Govorilne ure: kabinet R2.04

- Vaje (od naslednujega tedna po urniku, termini se lahko še spremenijo)
 - Matej Pičulin
 - Luka Šajn
 - Tadej Škvorc

Viri

- Prezentacije s predavanj/vaj niso dovolj!!!
- Glavna literatura
 - S. Sumathi, S. Esakkirajan: Fundamentals of Relational Database Management Systems, Springer, 2007
 - Paul Wilton and John W. Colby: Beginning SQL, Wrox, 2005.
 - A. Oppel (2004). Databases demystified, McGraw-Hill.
- Ostala priporočena literatura
 - [1] Raghu Ramakrishnan, Johannes Gehrke (2003). Database Management Systems, Third Edition, McGraw-Hill
 - [2] Thomas M. Connolly, Carolyn E. Begg (2010). Database Systems, A Practical Approach to Design, Implementation and Management, Sixth Edition, Pearson
 - [3] Ramez Elmasri, Shamkant B. Navathe (2014). Fundamentals of Database Systems, Seventh Edition, Addison-Wesley
 - [4] Peter Rob, Steven Morris, Carlos Coronel (2010). Database Systems: Design, Implementation and Management, 9th Edition, Addison Wesley.

Vsebina predavanj (ne nujno čisto v tem vrstnem redu)

- I. Osnove
 - Uvod v podatkovne baze: PB in SUPB
 - Podatkovni modeli; relacijski podatkovni model
- II. Relacijsko poizvedovanje
 - Formalni poizvedovalni jeziki; relacijska algebra
 - SQL
- III. Sistemi za upravljanje s podatkovnimi bazami (SUPB)
 - Arhitektura, koncepti, upravljanje
 - Dostop do podatkov
- IV. Načrtovanje PB
 - Normalizacija
 - Konceptualno načrtovanje
- V. Napredne teme s področja PB: <u>transakcije</u>, <u>varnost</u>, ...
- VI. Nerelacijske podatkovne baze (NoSQL)

Vsebina vaj

- I. Podrobnejša obravnava nekaterih tem s predavanj
 - Spoznavanje s programsko opremo
 - Relacijski podatkovni model in relacijska algebra
 - SQL (MariaDB, PostgreSQL)
 - Programski dostop do podatkovne baze
 - Indeksiranje
 - Normalizacija
- II. Domače naloge/kvizi (50% ocene vaj), vsaj 50%
 - Praktične naloge/kvizi s področja relacijske algebre in SQL
 - Oddaja preko spletne učilnice, približno na dva tedna
- III. Seminarska naloga (50% ocene vaj), vsaj 50%
 - Druga polovica semestra (april, maj)
 - Nekoliko obsežnejša kot domače naloge, več podatkov. Poročilo in zagovor!

Pravočasnost izdelave, oddaje in zagovora!

Praktično delo s PB

- FRI: SUPB na FRI, možen priklop iz učilnic in od drugod
 - MariaDB 10.9 (MySQL Workbench ali HeidiSQL client, spletni dostop)
 - PostgreSQL 14.5 (HeidiSQL client, spletni dostop)
- Individualna inštalacija (zelo priporočljiva)
 - MariaDB 10.3 ali novejši (najnovejša različica je 10.11.X LTS)
 - MySQL workbench ali HeidiSQL; tudi DBeaver
 - SQLite3 (del standarde Python knjižnice)
 - Povezave in navodila na učilnici
- Zakaj različni sistemi?

MariaDB, MySQL, PostgreSQL, SQLite ???

- Vsi so odprtokodni sistemi
- MySQL: najpogosteje uporabljan sistem v (osebnih) računalnikih
- MariaDB ≅ MySQL
 - MySQL je pod Oraclovim okriljem; dvomi glede prihodnosti
 - raje uporabljamo kompatibilni, neodvisni MariaDB
- PostgreSQL: zahtevnejši od MariaDB/MySQL, boljša podpora standardom (MariaDB/MySQL: spletne aplilkacije, PostgreSQL "resne" podatkovne aplikacije)
- Težišče dela bo na sistemu MariaDB, PostgreSQL pretežno za primerjavo
- SQLite3 kot primer vgrajene PB (Android, iOS, ...)

Izpitni red

- 1. Iz vaj (sprotna preverjanja) in seminarske naloge morate od **vsakega doseči najmanj polovico** vseh možnih točk, da lahko pristopite k izpitu.
- 2. Sodelovanje na predavanjih in vajah se lahko nagradi (do + 10% točk, subjektivna ocena)
- 3. Pisni izpit morate za pozitivno oceno pisati najmanj 50%, k čemer se potem prištejejo točke vaj. Po potrebi tudi ustni izpiti!
- 4. Pisni izpit lahko nadomestite z dvema neobveznima kolokvijema
 začetek aprila, konec maja, vsak vsaj 50%
- 5. Veljavnost vaj: do vključno 30. 9. tekočega šolskega leta!

Kaj bo treba zares dobro znati

- Poznavanje temeljnih konceptov relacijskih PB
- Samostojna vzpostavitev SUPB (MariaDB ali MySQL)
- Suverena uporaba orodij za delo s SUPB
- Suvereno programiranje v SQL
- Obvladovanje programskega dostopa do PB (Python, ODBC)
- Razumevanje in uporaba indeksiranja
- Osnove načrtovanja PB (normalizacija, ER)

Usposobljeni za samostojno in učinkovito delo s PB

Poglavje I **Uvod v podatkovne baze**Osnove

- Splošno o podatkovnih bazah
- Zgodovina shranjevanja podatkov
- Datotečni sistem in SUPB
- Opisovanje in shranjevanje podatkov v PB
- Poizvedovanje v PB

Splošno o podatkovnih bazah (PB)

Stanje danes:

- Organizacije odvisne od zmožnosti pridobivanja natančnih in pravočasnih informacij iz shranjenih podatkov
- Podatki predstavljajo konkurenčno prednost.
- Brez zmožnosti za upravljanje z velikimi količinami podatkov in zmožnosti za hitro iskanje ustreznih podatkov postanejo podatki breme za organizacijo.
- Paradoks: zaradi preveč podatkov potrebujemo dodatne metapodatke (podatke o podatkih)
- Potrebujemo ustrezne mehanizme za upravljanje s podatki in učinkovito iskanje po njih → Podatkovne baze.

Terminologija: ali ločimo med pojmoma?

- Podatkovna baza (PB)
- Sistem za upravljanje s podatkovnimi bazami (SUPB)

Definicija PB

 Podatkovna baza je avtomatizirana, večuporabniška, formalno definirana in (centralno) nadzorovana zbirka logično povezanih podatkov.

<u>Definicija SUPB</u>

 Sistem za upravljanje s podatkovno bazo – SUPB angleško: Database Management System – DBMS

je splošnonamenski skupek programske opreme, ki omogoča kreiranje, vzdrževanje in nadzor nad dostopom do podatkov v PB.

- Obstaja veliko vrst SUPB. Omejili se bomo predvsem na relacijske ter v manjši meri na sodobne nerelacijske (NoSQL):
 - Oracle, MS SQL, IBM DB2, PostgreSQL, MySQL/MariaDB, ...
 - Cassandra, Neo4J, Mongo DB, Couch DB, ...

Alternativa SUPB

- Shranjevanje v datotečnem sistemu v aplikaciji lastni obliki
- Problemi: neprenosljivost, nefleksibilnost, redundantnost ...

Prednosti?

Od začetka 80-let prevladujejo relacijski SUPB

- Osnovni gradnik je tabela kot predstavitev abstraktne relacije
- Relacijski povpraševalni jeziki
 - Formalni: relacijska algebra, relacijski račun
 - Praktični: SQL, LINQ, PRQL (prequel pipelined relational QL), ...
 - SQL: v večjem delu prenosljiv med različnimi relacijskimi SUPB
- Formalne jezike si bomo ogledali v kratkem
- Relacijsko povpraševanje z jezikom SQL