

Fingerprint spoofing detection

Riccardo Cardona, Nicholas Berardo July 10, 2023

Contents

1	Intr	roduction	2
	1.1	Abstract	2
	1.2	Overview	2
	1.3	Features Analisys	2
	1.4	PCA Usage	3
		Training	
2		ssification and Validation	6
	2.1	Introduction	6
	2.2	Multivariate Gaussian Classifiers	7
	2.3	Logistic Regression	Ć
		2.3.1 Linear Logistic Regression	
		2.3.2 Quadratic Logistic Regression	
	2.4	Support Vector Machine	
		Gaussian Misxture Models	

Chapter 1

Introduction

1.1 Abstract

The goal is to build the best model for the Fingerprint-Spoofing Detection task, using the models developed during the laboratory and the lessons.

1.2 Overview

The data set and test set are composed of 10 dimensional features. The last column is the class label which is 1 for the *authentic fingerprint* and 0 for the *spoofed fingerprint*.

The datasets are imbalanced, we have more spoofed fingerprint than the authentic fingerprint. The Training set is composed of ... samples and the Test set is composed of ... samples.

The application we are going to build has $\pi = 0.5$ meaning that we have the same prior probability for both classes, but we have different costs. The cost of False Negative C_{fn} is 1 but the cost of False Positive C_{fp} is 10, so classifying a spoofed fingerprint as an authentic one has an higher cost due to security vulnerability.

1.3 Features Analisys

As we said, the Fingerprint Spoofing Detection task has 10 features. Here below we are going to analyze them.

Figure 1.1: Heatmap

As we can see from the Figures above, the correlation between the features is very small. This lead us to think that using PCA for dimensionality reduction is useless (it could also remove some important information!), but we will try using it.

Now we are going to see the histograms for each of the 10 features. It's easy to see that each feature has a Gaussian distribution.

Figure 1.2: RAW Feature Histogram

1.4 PCA Usage

PCA (Principal Component Analysis) is a Dimensionality Reduction technique that can be used to remove noise, simplify classification and data visualization. It can be also used to avoid overfitting, but it may produce underfitting if too many dimensions are removed (removing too much useful information). So it is a useful technique, but sometimes it can be useless because if used could lead only to bad models.

What does PCA do?

First of all we need to compute the mean of the Dataset μ , then we need to compute the covariance matrix

$$C = \frac{1}{K} \sum_{i=1}^{K} (x_i - \mu)(x_i - \mu)^T$$

From C we need the eigen-decomposition $C = U\Sigma U^T$, where U is a matrix that contains the eigen-vectors and Σ is a diagonal matrix that contains the eigen-values in descending order. The solution are the m eigen-vectors of U corresponding to the m highest eigen-values of Σ .

Figure 1.3: PCA variance

As we can see, if we use 9 dimensions (Number 8 on the principal component index), we are going to reach a 96% of explainance, then if we use 8 dimensions we will explain 91% of the data variance. Starting from 7 to 1 dimensions, we are lower than 90%.

We will consider only 9 and 8 as PCA parameter.

Figure 1.4: PCA

From this plot (Figure 1.4) we can see the distribution of the 2 main features.

Figure 1.5: LDA

From this plot (Figure 1.5) we can see the distribution of the 2 main features using both PCA and LDA

1.5 Training

- \bullet We are going to use a K-Fold Cross Validation approach, with K = 5
- The minDCF computation is computed based on our application $(\pi, C_{fn}, C_{fp}) = (0.5, 1, 10)$, but we have computed the effective prior, which is approximated to $(\pi, C_{fn}, C_{fp}) = (0.09, 1, 1)$. We have also tried this two different application:

$$\begin{split} &-(\pi, C_{\rm fn}, C_{\rm fp}) = (0.1, 1, 1) \\ &-(\pi, C_{\rm fn}, C_{\rm fp}) = (0.9, 1, 1) \end{split}$$

Chapter 2

Classification and Validation

2.1 Introduction

We are going to develop this following models:

- Generative Models
 - Multivariate Gaussian Classifier (MVG)
 - MVG Tied Covariance (Only one covariance matrix for everything)
 - MVG Naive (For each covariance matrix takes out only the diagonal)
 - MVG Tied Naive (Only one covariance matrix, but taking only the diagonal)
- Logistic Regression (LR)
 - Linear Logistic Regression
 - Quadratic Logistic Regression
- $\bullet \;$ Support Vector Machine (\mathbf{SVM})
- Gaussian Mixture Models (**GMM**)
 - ..
 - ..

2.2 Multivariate Gaussian Classifiers

We are going to analyze all the Gaussian Classifiers, using the Multivariate Gaussian Classifier and all it's variants:

- Tied Covariance
- Naive Bayes
- Tied Naive Bayes

For all these 4 models we have 2 parameters: $\theta = (\mu, \Sigma)$. We can easily estimate them starting from the likelihood w.r.t. θ for the **M.V.G.**

$$\mathcal{L}(\theta) = \prod_{c}^{K} \prod_{i|c_i=c} \mathcal{N}(x_i|\mu_c, \Sigma_c)$$

Then we can build the log-likelihood because it's easier to work with.

$$l(\theta) = \sum_{c}^{K} \sum_{i|c_i=c} log \mathcal{N}(x_i|\mu_c, \Sigma_c)$$

Now we define $l_c(\theta) = \sum_{i|c_i=c} log \mathcal{N}(x_i|\mu_c, \Sigma_c)$ and compute the $\nabla_{\mu} l_c(\mu_c, \Sigma_c) = 0$ and the $\nabla_{\Sigma} l_c(\mu_c, \Sigma_c) = 0$ obtaining

$$\mu_c^* = \frac{1}{N_c} \sum_{i|c_i = c} x_i$$

$$\Sigma_c^* = \frac{1}{N_c} \sum_{i|c_i = c} (x_i - \mu_c^*) (x_i - \mu_c^*)^T$$

We can do the same thing for the Naive Bayes model (that has diagonal covariance matrix)

$$l(\theta) = \sum_{c}^{K} \sum_{i|c_i = c} \sum_{j=1}^{D} log \mathcal{N}(x_{i,[j]} | \mu_{c,[j]}, \Sigma_{c,[j]})$$

which solutions are

$$\mu_{c,[j]}^* = \frac{1}{N_c} \sum_{i|c_i=c} x_{i,[j]}$$

$$\Sigma_{c,[j]}^* = \frac{1}{N_c} \sum_{i|c_i = c} (x_{i,[j]} - \mu_{c,[j]}^*) (x_{i,[j]} - \mu_{c,[j]}^*)^T$$

Finally, the Tied model can be built in the same way (has a single covariance matrix for all classes)

$$l(\theta) = \sum_{c}^{K} \sum_{i|c_i=c} log \mathcal{N}(x_i|\mu_c, \Sigma)$$

which solutions are

$$\mu_c^* = \frac{1}{N_c} \sum_{i|c_i = c} x_i$$

$$\Sigma^* = \frac{1}{N} \sum_{c}^{K} \sum_{i|c:=c} (x_i - \mu_c^*) (x_i - \mu_c^*)^T$$

The tables below show the computation of the minDCF on the validation set (extracted using K-Fold Cross Validation with K = 5). As said before, we are going to consider the main application (0.5,1,10) and 2 other applications (0.1,1,1) and (0.9,1,1). There are also some computation of PCA with m=9 and m=8.

Classifier	pi = 0.1	pi = 0.5	pi = 0.9
	RAW Fe	eatures - No	O PCA
MVG	0.616	0.331	0.111
Naive Gaussian	0.806	0.472	0.144
Tied Gaussian	0.706	0.486	0.184
Naive Tied Gaussian	0.79	0.551	0.198

Classifiers	pi = 0.1	pi = 0.5	pi = 0.9
]	PCA (m=9)
MVG	0.629	0.33	0.109
Naive Gaussian	0.74	0.369	0.113
Tied Gaussian	0.696	0.492	0.18
Naive Tied Gaussian	0.772	0.543	0.202

Classifiers $pi = 0.1$		pi = 0.5	pi = 0.9
]	PCA (m=8)
MVG	0.612	0.333	0.109
Naive Gaussian	0.712	0.36	0.112
Tied Gaussian	0.686	0.485	0.181
Naive Tied Gaussian	0.774	0.544	0.201

As we can see, the MVG model, that consider all the covariance matrices, is the best either with PCA or without. PCA is useful only in the Naive Gaussian model. Tied models perform worse.

Overall the best candidate is the MVG classifier without PCA. However, we will see that this kind of model is also useless for our imbalanced data.

2.3 Logistic Regression

We are going to analyze both Linear Logistic Regression and Quadratic Logistic Regression.

2.3.1 Linear Logistic Regression

Logistic Regression is a discriminative model that directly computes the posterior probability P(C=c|X=x). The model parameters are (w,b) that can be estimated using a frequentist approach. There's also an hyperparameter λ that must be estimated by cross-validation. λ is needed to avoid overfitting, if it's too high then the model will underfit but if it's too low then the model will overfit.

The plots show how minDCF is affected by different values of λ . They are exploited to calibrate λ , which is the regularization coefficient.

Figure 2.1: DCF - Linear LogReg

The figure 2.1 shows that using a $\lambda = 10^{-5}$ or $\lambda = 10^{-1}$ is more or less the same, the minDCF doesn't change that much. From $\lambda = 10^{-1}$ to $+\infty$ the minDCF will be too high.

For our main application, it's hard to see, but $\lambda = 0.4$ is the best choice.

	pi=0.1	pi=0.5	pi=0.9
		NO-PCA	
$Log Reg (\lambda = 0.4)$	0.715	0.485	0.189
		PCA m=9	9
$Log Reg (\lambda = 0.4)$	0.705	0.496	0.193
		PCA m=8	3
$Log Reg (\lambda = 0.4)$	0.689	0.483	0.188

Overall, the MVG without PCA has a minDCF = 0.331 and this value is better than all the Linear Logistic Regression values (for our main application)

2.3.2 Quadratic Logistic Regression

The figure 2.2 shows how minDCF is affected by different values of λ . Also in this case, for our main application, taking a $\lambda=10^{-5}$ or $\lambda=10^{-1}$ doesn't change the minDCF that much.

Figure 2.2: DCF - Linear LogReg

It is also easy to see that PCA is pretty useless for all applications. The minDCF it's always worse than the model without PCA.

	pi = 0.1	pi = 0.5	pi=0.9
		NO-PCA	
Log Reg ($\lambda = 0.4, \pi_{\rm T} = 0.1$)	0.6	0.31	0.119
Log Reg ($\lambda = 0.4, \pi_{\rm T} = 0.5$)	0.644	0.305	0.106
Log Reg ($\lambda = 0.4, \pi_{\rm T} = 0.9$)	0.707	0.335	0.105
]	PCA m=9	9
Log Reg ($\lambda = 0.4, \pi_{\rm T} = 0.1$)	0.691	0.489	0.189
Log Reg ($\lambda = 0.4, \pi_{\rm T} = 0.5$)	0.7	0.497	0.191
Log Reg ($\lambda = 0.4, \pi_{\rm T} = 0.9$)	0.713	0.506	0.194
]	PCA m=8	3
Log Reg ($\lambda = 0.4, \pi_{\rm T} = 0.1$)	0.691	0.483	0.191
Log Reg ($\lambda = 0.4, \pi_{\rm T} = 0.5$)	0.691	0.483	0.191
Log Reg ($\lambda = 0.4, \pi_{\rm T} = 0.9$)	0.691	0.483	0.191

This kind of model, with a Quadratic Kernel outperforms the MVG models, for our main application.

2.4 Support Vector Machine

In this section we are going to see how Linear SVM, Polynomial SVM and RBF SVM will handle our application

SVM - Linear - Raw Feature

Linear SVM can be obtained by the minimization of the primal problem:

$$\hat{J}(\hat{w}) = \frac{1}{2} ||\hat{w}||^2 + C \sum_{i=1}^n \max_i(0, 1 - z_i(\hat{w}^T \hat{x}_i))$$

where

$$\hat{x_i} = \left[\hat{x_i}K\right], \hat{w_i} = \left[wb\right]$$

and K is a regularization term.

Figure 2.3: Linear SVM with C=1

From Figure 2.3 we can see how K is affected (using C = 1). It can be seen that values of K between 10^{-1} and 10^{1} have a low DCF. In our cases we are going to try 3 different values of K = [0.1, 1, 10].

Figure 2.4: Linear SVM with K=1

Figure 2.4 shows the different values of C while setting K = 1. Again, it can be seen that the optiomal values of C are the ones between 10^{-1} and 10^{1} . We are going to test 4 different values of C = [0.01, 0.1, 1, 10]. We also decided to test 0.01 even if the minDCF is "optimal" only for the $\pi = 0.1$

Here the table containing the results:

	K = 0.1	K = 1.0	K = 10
		π =0.1	
C = 0.01	0.99	0.68	0.71
C = 0.1	0.964	0.672	0.713
C = 1.0	0.67	0.722	0.715
C = 10.0	0.956	0.71	0.7
		$\pi = 0.5$	
C = 0.01	0.921	0.532	0.473
C = 0.1	0.78	0.476	0.479
C = 1.0	0.532	0.466	0.473
C = 10.0	0.666	0.492	0.47
		$\pi = 0.9$	
C = 0.01	0.379	0.216	0.187
C = 0.1	0.321	0.186	0.188
C = 1.0	0.216	0.184	0.188
C = 10.0	0.263	0.197	0.187

SVM - Linear - PCA with m=9

We also tried to apply PCA with m=9 since from Figure 2.3 and Figure 2.4 we can see that we can achieve also a good minDCF.

	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 0.01	0.991	0.704	0.701
C = 0.1	0.971	0.669	0.718
C = 1.0	0.694	0.709	0.709
C = 10.0	0.685	0.672	0.73
		$\pi = 0.5$	
C = 0.01	0.973	0.538	0.496
C = 0.1	0.776	0.493	0.492
C = 1.0	0.54	0.494	0.489
C = 10.0	0.518	0.491	0.492
		$\pi = 0.9$	
C = 0.01	0.382	0.216	0.187
C = 0.1	0.321	0.182	0.191
C = 1.0	0.214	0.19	0.194
C = 10.0	0.223	0.196	0.195

From these results we can conclude that using or not using PCA (with m=9, so with almost all features) doesn't change that much.

SVM - Quadratic - Raw Feature with degree = 2

We are going to apply a non-linear separation algorithm. We have seen two kind of non-linear separation. In this section we are going to see the Quadratic one, in the next section there's the RBF.

The kernel is a function that allows the computation of a linear separation in the expanded feature space that corresponds to a non-linear separation in the original feature space. For the Quadratic kernel we have:

$$k(x_1, x_2) = (x_1^T x_2 + c)^d$$

where d identifies the degree, in our case d = 2 and c is a Constant that in our case will take values 1 and 0.

Figure 2.5: Poly K=1, c=1, d=2

Figure 2.5 shows the different values of C with K=1, c=1 e d=2. We are going to try C = [0.01, 0.1, 1, 10], but from the plot it's easy to see that C=1 and C=10 won't be good.

Figure 2.6: Poly K=1, c=1, d=3

Figure 2.6 shows the different values of C with K=1, c=1 but d=3. It's much worse than using d=2, so we decided to don't even show the results of this kernel.

Constant = 0	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 0.01	0.71	0.704	0.682
C = 0.1	0.713	0.674	0.678
C = 1.0	0.831	0.922	0.84
C = 10.0	0.982	0.994	0.975
		$\pi = 0.5$	
C = 0.01	0.337	0.346	0.342
C = 0.1	0.324	0.344	0.346
C = 1.0	0.528	0.551	0.49
C = 10.0	0.947	0.957	0.946
		$\pi = 0.9$	
C = 0.01	0.123	0.121	0.187
C = 0.1	0.125	0.11	0.115
C = 1.0	0.21	0.203	0.223
C = 10.0	0.586	0.769	0.583

Constant = 1	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 0.01	0.63	0.623	0.598
C = 0.1	0.66	0.624	0.677
C = 1.0	0.96	0.931	0.95
C = 10.0	0.996	1.0	1.0
		$\pi = 0.5$	
C = 0.01	0.316	0.311	0.313
C = 0.1	0.348	0.347	0.323
C = 1.0	0.701	0.631	0.644
C = 10.0	0.966	1.0	1.0
		$\pi = 0.9$	
C = 0.01	0.113	0.114	0.104
C = 0.1	0.114	0.112	0.11
C = 1.0	0.281	0.207	0.233
C = 10.0	0.656	0.647	0.569

$\ensuremath{\mathrm{SVM}}$ - Quadratic - PCA with m=9 and degree = 2

We also show the results of PCA with m=9 (always with d=2). From Figure 2.5 we can see that using PCA = 9 or don't using it doesn't change that much. Just for $\pi=0.1$ there's a slight improvement.

Constant = 0	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 0.01	0.645	0.645	0.638
C = 0.1	0.659	0.659	0.656
C = 1.0	0.92	0.871	0.916
C = 10.0	1.0	0.985	0.99
		$\pi = 0.5$	
C = 0.01	0.33	0.344	0.354
C = 0.1	0.345	0.345	0.391
C = 1.0	0.449	0.575	0.574
C = 10.0	1.0	0.975	0.951
		$\pi = 0.9$	
C = 0.01	0.127	0.124	0.109
C = 0.1	0.125	0.113	0.125
C = 1.0	0.181	0.203	0.172
C = 10.0	0.605	0.66	0.527

- Constant = 1	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 0.01	0.576	0.584	0.59
C = 0.1	0.586	0.624	0.667
C = 1.0	0.894	0.992	0.975
C = 10.0	0.998	1.0	0.982
		$\pi = 0.5$	
C = 0.01	0.335	0.334	0.306
C = 0.1	0.35	0.302	0.346
C = 1.0	0.688	0.772	0.56
C = 10.0	0.993	1.0	0.975
		$\pi = 0.9$	
C = 0.01	0.118	0.117	0.105
C = 0.1	0.132	0.114	0.107
C = 1.0	0.22	0.236	0.189
C = 10.0	0.677	0.67	0.594

SVM - Quadratic - PCA with m=8 and degree = 2 We also tried PCA with m=8 because it's even better for some cases.

Constant = 0	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 0.01	0.624	0.654	0.666
C = 0.1	0.66	0.648	0.658
C = 1.0	0.848	0.989	0.798
C = 10.0	0.981	0.999	0.97
		$\pi = 0.5$	
C = 0.01	0.324	0.331	0.333
C = 0.1	0.321	0.336	0.317
C = 1.0	0.593	0.934	0.494
C = 10.0	0.97	0.999	0.91
		$\pi = 0.9$	
C = 0.01	0.127	0.12	0.113
C = 0.1	0.124	0.11	0.116
C = 1.0	0.285	0.359	0.203
C = 10.0	0.511	0.74	0.563

Constant = 1	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 0.01	0.561	0.541	0.53
C = 0.1	0.546	0.592	0.634
C = 1.0	0.985	0.865	0.98
C = 10.0	1.0	0.996	0994
		$\pi = 0.5$	
C = 0.01	0.323	0.32	0.308
C = 0.1	0.349	0.316	0.336
C = 1.0	0.657	0.649	0.7
C = 10.0	1.0	0.985	0.989
		$\pi = 0.9$	
C = 0.01	0.114	0.108	0.101
C = 0.1	0.111	0.113	0.102
C = 1.0	0.262	0.217	0.211
C = 10.0	0.697	0.743	0.647

SVM - Radial Basis kernel Function - Raw Feature

As we introduced in the Quadratic SVM section, there's another kernel function we are going to see. This one is called Gaussian Radial Basis Function or RBF:

$$k(x_1, x_2) = e^{-\gamma ||x_1 - x_2||^2}$$

where $||x_1 - x_2||^2$ rapresent the distance between x_1 and x_2 and the closer it is, the bigger is the kernel, meanwhile γ is an indicator of the width of the kernel. If γ is low then the kernel will be large, otherwise it will be small (if $\gamma >> 0$ then this will be equal to 1-NN).

Figure 2.7: RBF

Figura 2.7 shows the different values of C with different values of γ . We are going to test C = [1, 10, 100] with a $\gamma = [0.001, 0.0001]$, those are the best parameter we can get.

$\gamma = 0.001$	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 1.0	0.592	0.575	0.578
C = 10.0	0.58	0.599	0.601
C = 100.0	0.586	0.579	0.601
		$\pi = 0.5$	
C = 1.0	0.302	0.3	0.301
C = 10.0	0.293	0.298	0.302
C = 100.0	0.332	0.331	0.335
		$\pi = 0.9$	
C = 1.0	0.097	0.1	0.101
C = 10.0	0.089	0.089	0.089
C = 100.0	0.101	0.103	0.102

$\gamma = 0.0001$	K = 0.1	K = 1.0	K = 10	
		$\pi = 0.1$		
C = 1.0	0.671	0.662	0.659	
C = 10.0	0.574	0.58	0.584	
C = 100.0	0.568	0.575	0.725	
	$\pi = 0.5$			
C = 1.0	0.473	0.42	0.419	
C = 10.0	0.406	0.381	0.354	
C = 100.0	0.289	0.306	0.472	
		$\pi = 0.9$		
C = 1.0	0.163	0.159	0.158	
C = 10.0	0.137	0.133	0.13	
C = 100.0	0.097	0.103	0.276	

SVM - Radial Basis kernel Function - PCA with m=9

We also tried to use PCA both with m=9 and m=8.

$\gamma = 0.001$	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 1.0	0.588	0.585	0.579
C = 10.0	0.534	0.541	0.542
C = 100.0	0.678	0.671	0.906
		$\pi = 0.5$	
C = 1.0	0.295	0.294	0.298
C = 10.0	0.297	0.301	0.299
C = 100.0	0.328	0.333	0.895
		$\pi = 0.9$	
C = 1.0	0.103	0.104	0.104
C = 10.0	0.102	0.103	0.102
C = 100.0	0.107	0.108	0.285

$\gamma = 0.0001$	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 1.0	0.672	0.672	0.662
C = 10.0	0.621	0.605	0.624
C = 100.0	0.553	0.502	0.592
		$\pi = 0.5$	
C = 1.0	0.439	0.433	0.42
C = 10.0	0.407	0.391	0.376
C = 100.0	0.301	0.302	0.317
		$\pi = 0.9$	
C = 1.0	0.165	0.159	0.16
C = 10.0	0.139	0.132	0.128
C = 100.0	0.103	0.106	0.12

With m=9 the results are more or less the same

SVM - Radial Basis kernel Function - PCA with m=8

$\gamma = 0.001$	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 1.0	0.568	0.569	0.573
C = 10.0	0.528	0.54	0.545
C = 100.0	0.664	0.672	0.666
		$\pi = 0.5$	
C = 1.0	0.297	0.297	0.296
C = 10.0	0.281	0.29	0.294
C = 100.0	0.318	0.315	0.305
		$\pi = 0.9$	
C = 1.0	0.102	0.104	0.105
C = 10.0	0.101	0.103	0.103
C = 100.0	0.108	0.105	0.104

$\gamma = 0.0001$	K = 0.1	K = 1.0	K = 10
		$\pi = 0.1$	
C = 1.0	0.665	0.662	0.645
C = 10.0	0.617	0.607	0.679
C = 100.0	0.55	0.529	0.844
		$\pi = 0.5$	
C = 1.0	0.439	0.433	0.43
C = 10.0	0.397	0.389	0.387
C = 100.0	0.306	0.29	0.686
		$\pi = 0.9$	
C = 1.0	0.165	0.158	0.156
C = 10.0	0.141	0.135	0.153
C = 100.0	0.106	0.107	0.301

Also with m=8 the results are more or less the same

2.5 Gaussian Misxture Models

GMM - RAW Feature

Components	2^1	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}
				$\pi = 0.1$			
Full-Cov	0.497	0.526	0.69	0.63	0.877	0.976	1.0
Diag-Cov	0.719	0.544	0.514	0.531	0.592	0.698	0.741
Full-Cov-Tied	0.616	0.611	0.558	0.542	0.588	0.563	0.71
Diag-Cov-Tied	0.805	0.558	0.501	0.56	0.601	0.673	0.765
				$\pi = 0.5$			
Full-Cov	0.28	0.264	0.325	0.391	0.568	0.737	1.0
Diag-Cov	0.451	0.275	0.262	0.26	0.281	0.359	0.425
Full-Cov-Tied	0.331	0.255	0.244	0.253	0.292	0.314	0.341
Diag-Cov-Tied	0.462	0.276	0.254	0.262	0.282	0.286	0.358
				$\pi = 0.9$			
Full-Cov	0.105	0.094	0.108	0.124	0.213	0.306	0.523
Diag-Cov	0.141	0.087	0.09	0.092	0.107	0.122	0.144
Full-Cov-Tied	0.111	0.098	0.083	0.087	0.104	0.108	0.134
Diag-Cov-Tied	0.144	0.086	0.089	0.088	0.093	0.11	0.131

 $\ensuremath{\mathrm{GMM}}$ - PCA with m=9

Components	2^1	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}
				$\pi = 0.1$			
Full-Cov	0.455	0.599	0.599	0.684	0.837	0.999	1.0
Diag-Cov	0.742	0.599	0.553	0.546	0.513	0.638	0.729
Full-Cov-Tied	0.629	0.608	0.56	0.56	0.494	0.522	0.589
Diag-Cov-Tied	0.741	0.554	0.528	0.538	0.554	0.58	0.624
				$\pi = 0.5$			
Full-Cov	0.299	0.293	0.322	0.371	0.467	0.704	1.0
Diag-Cov	0.367	0.272	0.253	0.281	0.287	0.34	0.374
Full-Cov-Tied	0.33	0.261	0.269	0.254	0.285	0.324	0.322
Diag-Cov-Tied	0.368	0.268	0.248	0.276	0.306	0.328	0.359
				$\pi = 0.9$			
Full-Cov	0.099	0.091	0.113	0.125	0.158	0.218	0.376
Diag-Cov	0.114	0.096	0.094	0.093	0.103	0.109	0.135
Full-Cov-Tied	0.109	0.103	0.087	0.095	0.109	0.119	0.138
Diag-Cov-Tied	0.114	0.087	0.095	0.09	0.093	0.101	0.12