1	What is claimed is:			
2				
3	1.	A pro	ocess for producing low pour point hydrocarbon products having	
4		an initial boiling point above about 150 degrees C from a F		
5		Tropsch plant which comprises:		
6				
7		(a)	recovering a feedstock comprising C ₅ plus syncrude from a	
8			Fischer-Tropsch plant;	
9		(b)	dewaxing the C_5 plus syncrude feedstock in a catalytic dewaxing	
10			zone by contacting the C_{5} plus syncrude feedstock with a	
11			dewaxing catalyst under dewaxing conditions, whereby a $C_{\scriptscriptstyle 5}$	
12			plus intermediate is produced having a lowered pour point	
13			relative to the C₅ plus syncrude feedstock;	
14		(c)	hydrofinishing the C_5 plus intermediate in a hydrofinishing zone	
15			under hydrofinishing conditions, whereby a UV stabilized $C_{\mbox{\scriptsize 5}}$ plus	
16			product is produced; and	
17		(d)	separately collecting from the UV stabilized C_5 plus product a	
18			low pour point hydrocarbon product having an initial boiling point	
19			above about 150 degrees C.	
20				
21	2.	The	process of claim 1 wherein a low pour point diesel and a	
22		lubri	cating base oil are separately recovered from the UV stabilized C ₅	
23		plus	product.	
24				
25	3.	The	process of claim 1 wherein the dewaxing catalyst of step (b)	
26		cont	ains at least one active metal having hydrogenation activity.	
27				
28	4.	The	process of claim 3 wherein the dewaxing catalyst comprises an	
29		inter	mediate pore size SAPO.	
30				
31	5.	The	process of claim 4 wherein the dewaxing catalyst comprises at	
32		leas	t one SAPO selected from the group consisting of SAPO-11,	
33		SAP	O-31, and SAPO-41.	

1	6.	The process of claim 5 wherein the dewaxing catalyst comprises
2		SAPO-11.
3		
4	7.	The process of claim 3 wherein the dewaxing catalyst comprises an
5		intermediate pore size zeolite.
6		
7	8.	The process of claim 7 wherein the dewaxing catalyst comprises at
8		least one zeolite selected from the group consisting of SSZ-32, ZSM-
9		22, ZSM-23, ZSM-35, and ZSM-48.
10		
11	9.	The process of claim 8 wherein an ultra high VI, low pour point
12		lubricating base oil is collected in step (d).
13		
14	10.	The process of claim 3 wherein at least one of the active metals is
15		selected from the group consisting of platinum and palladium.
16		
17	11.	The process of claim 10 wherein at least one of the active metals is
18		platinum.
19		
20	12.	The process of claim 3 wherein the dewaxing catalyst is a non-zeolitic
21		molecular sieve and the active metal is added by non-aqueous
22		addition.
23		
24	13.	The process of claim 1 wherein the hydrofinishing conditions of step (c)
25		comprise a pressure of between about 200 psig to about 3000 psig.
26		
27	14.	The process of claim 13 wherein the hydrofinishing conditions
28		comprise a pressure of between about 500 psig and about 2000 psig.
29		1 1
30	15.	A process for producing low pour point syncrude products having an
31		initial boiling point above about 120 degrees C from a Fischer-Tropsch
32		plant which comprises:
33		promise security construction.

1		(a)	recovering a feedstock comprising C ₅ plus syncrude from a
2			Fischer-Tropsch plant;
3		(b)	dewaxing the C ₅ plus hydrocarbon feedstock in a
4			hydroisomerization zone by contacting the C_5 plus syncrude
5			feedstock with a hydroisomerization catalyst under
6			hydroisomerization conditions, whereby an isomerized C_5 plus
7			intermediate is produced having a lowered pour point relative to
8			the C ₅ plus syncrude feedstock;
9		(c)	hydrofinishing the isomerized C_5 plus intermediate in a
10			hydrofinishing zone under hydrofinishing conditions, whereby a
11			UV stabilized C ₅ plus product is produced; and
12		(d)	separately collecting from the UV stabilized C_5 plus product a
13			low pour point diesel product and a lubricating base oil product.
14			
15	16.	The	process of claim 15 wherein the hydroisomerization catalyst
16		comp	orises an intermediate pore size SAPO and at least one
17		hydro	ogenation component comprising an active metal having
18		hydro	ogenation activity.
19			
20	17.	The	process of claim 16 wherein the hydroisomerization catalyst
21			orises at least one SAPO selected from the group consisting of
22		SAP	O-11, SAPO-31, and SAPO-41.
23			
24	18.	The	process of claim 17 wherein the hydroisomerization catalyst
25		com	orises SAPO-11.
26			
27	19.		process of claim 16 wherein at least one of the active metal is
28		seled	cted from the group consisting of platinum and palladium.
29			
30	20.		process of claim 19 wherein at least one of the active metal is
31		platir	num.
32			
33	21.		process of claim 16 wherein the active metal is added to the
34		hvdr	oisomerization catalyst by non-aqueous addition

1					
2	22.	The	process of claim 15 wherein the hydrofinishing conditions of step		
3		(c) c	omprise a pressure of between about 200 psig to about 3000 psig.		
4					
5	23.	The	process of claim 22 wherein the hydrofinishing conditions		
6		com	orise a pressure of between about 500 psig and about 2000 psig.		
7					
8	24.	The process of claim 16 wherein the cut-point for the separation of the			
9		low p	oour point diesel product from the lubricating base oil product is		
10		pre-s	selected to maximize the yield of the low pour point diesel product.		
11					
12	25.	A pro	ocess for producing ultra high VI, low pour point lubricating base oil		
13		prod	uct from a Fischer-Tropsch plant which comprises:		
14					
15		(a)	recovering a feedstock comprising C ₅ plus syncrude from a		
16			Fischer-Tropsch plant;		
17		(b)	dewaxing the C ₅ plus syncrude feedstock in a catalytic		
18			hydrodewaxing zone by contacting the C₅ plus hydrocarbon		
19			feedstock with hydroisomerization dewaxing catalyst comprising		
20			an intermediate pore size zeolite and at least one metal having		
21			hydrogenation activity, said dewaxing being carried out under		
22			hydrodewaxing conditions selected to produce an C₅ plus		
23			intermediate having a lowered pour point relative to the C₅ plus		
24			syncrude feedstock;		
25		(c)	hydrofinishing the C₅ plus intermediate in a hydrofinishing zone		
26			under hydrofinishing conditions, whereby a UV stabilized C ₅ plus		
27			product is produced; and		
28		(d)	separately collecting from the UV stabilized C₅ plus product an		
29			ultra high VI, low pour point lubricating base oil product.		
30					
31	26.	The	process of claim 25 wherein the intermediate pore size zeolite is		
32		also characterized by having one-dimensional pores one-dimensional			
33		pore	· ·		
34					

1	27.	The process of claim 25 wherein the intermediate pore size zeolite
2		having one dimensional pores comprises at least one zeolite selected
3		from the group consisting of SSZ-32, ZSM-22, and ZSM-23.
4		
5	28.	The process of claim 25 wherein at least one of the active metal is
6		selected from the group consisting of platinum and palladium.
7		
8	29.	The process of claim 28 wherein at least one of the active metal is
9		platinum.
0		
1	30.	The process of claim 25 wherein the hydrofinishing conditions of step
2		(c) comprise a pressure of between about 200 psig to about 3000 psig
3		
4	31.	The process of claim 30 wherein the hydrofinishing conditions
15		comprise a pressure of between about 500 psig and about 2000 psig.