Python for scientific research Advanced topics

John Joseph Valletta

University of Exeter, Penryn Campus, UK

June 2017

Researcher Development

Statsmodels

statsmodels is a package for the estimation of different statistical models

```
import statsmodels.api as sm
import statsmodels.formula.api as smf

# Read Boston housing data set (a Pandas data frame)
df = sm.datasets.get_rdataset("Boston", "MASS").data
df.head()
```

```
dis rad tax ptratio \
     crim
           zn indus chas
                          nox
                                 rm
                                     age
  0.00632 18.0
              2.31
                      0 0.538 6.575 65.2
                                                 1 296
                                                          15.3
                                         4.0900
              7.07
  0.02731
         0.0
                      0 0.469 6.421 78.9 4.9671
                                                 2 242
                                                          17.8
              7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8
  0.02729
         0.0
         0.0 2.18 0 0.458 6.998 45.8 6.0622
 0.03237
                                                 3 222 18.7
4 0.06905
         0.0 2.18
                      0 0.458 7.147 54.2 6.0622
                                                 3 222 18.7
   black lstat
              medv
0 396 90 4 98
             24.0
  396.90 9.14
              21.6
 392.83 4.03 34.7
  394.63 2.94 33.4
         5.33 36.2
  396.90
```

Statsmodels: Generalised linear model

```
Dependent variable
 medv - median value of owner-occupied homes in $1000's
 Covariates
 crim - per capita crime rate by town
 nox - nitric oxides concentration (parts per 10 million)
 rm - average number of rooms per dwelling
 indus - proportion of non-retail business acres per town.
 rad - index of accessibility to radial highways
# Set up model
model = smf.glm(formula="medv ~ crim + nox + rm + indus + rad",
                family=sm.families.Gaussian(),
                data=df)
# Fit model
model = model.fit()
```

Statsmodels: Generalised linear model

Show summary model.summary()

Generalized Linear Model Regression Results

			.====== <u> </u>			
Dep. Variable:		medy	No. Obs	ervations:		506
Model:		GLN	1 Df Resi	duals:		500
Model Family:		Gaussian	n Df Mode	1:		5
Link Function:		identity	Scale:		36.	7202989747
Method:		IRLS	Log-Lik	celihood:		-1626.6
Date:	Tue,	30 May 2017	' Deviano	e:		18360.
Time:		15:00:23	B Pearson	chi2:		1.84e+04
No. Iterations:		2	2			
	coef s	td err	z	P> z	[0.025	0.975]
Intercept -1	9.9794	3.267	-6.115	0.000	-26.383	-13.576
crim -	0.1608	0.040	-3.973	0.000	-0.240	-0.081
nox -	5.7432	3.784	-1.518	0.129	-13.160	1.674
rm	7.7004	0.420	18.353	0.000	6.878	8.523
indus -	0.1361	0.065	-2.089	0.037	-0.264	-0.008
rad -	0.0628	0.047	-1.342	0.179	-0.154	0.029

Scikit-learn

sklearn is a package for machine learning algorithms

Scikit-learn

```
from sklearn import datasets

# Load popular iris data set
iris = datasets.load_iris()
xTrain = iris.data # petal/sepal width/length
yTrain = iris.target
```


Scikit-learn: k-means clustering

```
from sklearn.cluster import KMeans

# Set up k-means clustering model
model = KMeans(n_clusters=3)

# Fit model with supplied data (unsupervised)
model.fit(xTrain)
```


Scikit-learn: Random forests

```
from sklearn.ensemble import RandomForestClassifier

# Set up Random Forest model
model = RandomForestClassifier(n_estimators=500, oob_score=True)

# Fit model with supplied data (supervised)
model.fit(xTrain, yTrain)
```


Networkx

networkx is a package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks

```
import networkx as nx
# Creating a new empty Graph object
g = nx.Graph()
# Adding nodes
g.add_nodes_from(["Tom", "Zoe",
                  "JJ", "Anna", "Peter"])
# Adding an edge
g.add_edge("JJ", "Zoe")
g.add_edge("JJ", "Anna")
g.add_edge("JJ", "Tom")
g.add_edge("Peter", "Zoe")
g.add_edge("Tom", "Anna")
# Draw network
nx.draw(g, node_size=1500,
        with_labels=True)
```


ArcGIS

arcgis is a package for GIS visualisation and analysis, spatial data management and GIS system administration tasks

```
from arcgis.gis import GIS

# Create a GIS object (anonymous user)
gis = GIS()

# Get map of Cornwall
myMap = gis.map("Cornwall, UK")
myMap
```


MyGene

mygene provides web services to query/retrieve gene annotation data from MyGene.info

```
import mygene
# Instantiate MyGeneInfo class
mg = mygene.MyGeneInfo()
# Query for the name and EnsemblID of genes Ifng and Ccl3
mg.querymany(qterms=["Ifng", "Ccl3"], scopes="symbol",
              fields=["name", "ensembl"], species="human")
[{'_id': '3458',
  '_score': 98.66912,
  'ensembl': {'gene': 'ENSG00000111537',
  'protein': 'ENSP00000229135',
  'transcript': 'ENST00000229135',
  'translation': [{'protein': 'ENSP00000229135', 'rna': 'ENST00000229135'}]},
  'name': 'interferon gamma',
  'query': 'Ifng'},
```

Tweepy

tweepy provides access to Twitter for posting/reading tweets

How about analysing tweets from Mr President?

Image taken from here (analysis done in R)