Problema 1

Elías López Rivera ¹, Adolfo Ángel Cardoso Vásquez ², Jonathan Sayid Mercado Martínez ³

 3 Instituto Politécnico Nacional $^{1\,2}$ Universidad Nacional Autónoma de México

26 de enero de 2025

1. Enunciado

Dados $V:=\{x\in\mathbb{R}:x>0\}$ y las operaciones binarias definidas para $x,y,\alpha\in\mathbb{R}$

$$x \blacklozenge y = xy$$
$$\alpha \blacktriangle x = x^{\alpha}$$

Demuestre que $(V, \blacklozenge, \blacktriangle, \mathbb{R})$, es un espacio vectorial.

2. Solución

Tomemos (V, \spadesuit) :

1) Sean $x, y \in V$, como x, y > 0, tenemos que xy > 0 de donde se sigue que $x \spadesuit y > 0$, por tanto $x \spadesuit y \in V$, obtenemos que la opración binaria \spadesuit es cerrada bajo V:

$$igodeta: V \times V o V$$

2) Sean $x, y \in V$, al estar estos contenidos en \mathbb{R} , sabemos que el producto respeta la conmutatividad, es decir xy = yx, por tanto tenemos:

$$x \blacklozenge y = xy = yx = y \blacklozenge x \qquad \forall x, y \in V$$

Problema 1 2 SOLUCIÓN

Se sigue que $\phi: V \times V \to V$, es **conmutativa**

3) Sean $x, y, z \in V$, como ambos estan contenidos en \mathbb{R} , el producto cumple la asociatividad, es decir x(yz) = (xy)z, por tanto:

$$x \blacklozenge (y \blacklozenge z) = x(yz) = (xy)z = (x \blacklozenge y) \blacklozenge z \qquad \forall x, y \in V$$

Se sigue que $\blacklozenge: V \times V \to V$ es asociativa

4) Sea $x \in V$, por estar este en \mathbb{R} , existe $1 \in \mathbb{R}$ unico de tal manera que 1 x = x, como 1 > 0, se tiene que $1 \in V$, por tanto:

$$\forall x \in V \quad \exists 1 \in V : 1 \land x = x$$

Se sigue que $\blacklozenge: V \times V \to V$, tiene un **elemento neutro**

5) Sea $x \in V$, como esta contenido en \mathbb{R} , sabemos que existe $x^{-1} \in \mathbb{R}$ unico tal que $x x^{-1} = 1$, como x > 0, tenemos que $x^{-1} > 0$, finalmente obtenemos:

$$\forall x \in V \quad \exists \ x^{-1} \in V : x \bullet x^{-1} = 1$$

Se sigue que $\blacklozenge: V \times V \to V$, tiene **elementos inversos**

*) De 1), 2), 3), 4) se sigue que (V, \spadesuit) es grupo abeliano

Tomemos (V, \blacktriangle) :

1') Sean $x \in V$, $y \in \mathbb{R}$, tenemos que como x > 0 entonces $x^y > 0$, por tanto $y \blacktriangle x \in V$, se sigue que \blacktriangle , es una operación cerrada bajo un escalar en \mathbb{R} y un vector en V:

$$A: \mathbb{R} \times V \to V$$

2') Tomemos $x, z \in V$ y $\lambda \in \mathbb{R}$, podemos notar que como todos estan contenidos en \mathbb{R} , $(xy)^{\lambda} = x^{\lambda}y^{\lambda}$, de donde se sigue que:

$$\lambda \blacktriangle (x \blacklozenge y) = (xy)^{\lambda} = x^{\lambda} y^{\lambda} = \lambda \blacktriangle x \blacklozenge \lambda \blacktriangle y \qquad \forall x, y \in V, \lambda \in \mathbb{R}$$

Problema 1 2 SOLUCIÓN

Derivado de lo anterior $\blacktriangle : \mathbb{R} \times V \to V$, cumple con la **distributividad** escalar, respecto a la operación binaria \blacklozenge

3') Tomemos $\lambda, \alpha \in \mathbb{R}, x \in V$, como todos estan contenidos en $\mathbb{R}, x^{\alpha} x^{\lambda} = x^{\alpha+\lambda}$, de donde se sigue que:

$$(\alpha + \lambda) \blacktriangle x = x^{\alpha + \lambda} = x^{\alpha} x^{\lambda} = \alpha \blacktriangle x \spadesuit \lambda \blacktriangle x \qquad \forall \alpha, \lambda \in \mathbb{R}, x \in V$$

Se tiene que $\blacktriangle: \mathbb{R} \times V \to V$, cumple distributividad vectorial respecto a la suma escalar

4') Tomemos $y \in V$, sabemos que sea $1 \in \mathbb{R}$, se cumple que $y^1 = y$, por tanto:

$$\forall y \in V \quad \exists 1 \in \mathbb{R} : 1 \blacktriangle y = y$$

Se sigue que $\Delta : \mathbb{R} \times V \to V$ tiene un **elemento neutro**

5') Tomemos $\lambda, \epsilon \in \mathbb{R}$, y $x \in V$, por estar todos los anteriores contenidos en \mathbb{R} , sabemos que se cumple que $(x^{\epsilon})^{\lambda} = x^{\lambda \epsilon}$, de donde se obtiene que:

$$(\lambda \, \epsilon) \, \blacktriangle \, x = \, x^{\lambda \, \epsilon} = (x^{\epsilon})^{\lambda} = \lambda \, \blacktriangle \, (\epsilon \, \blacktriangle \, x) \qquad \forall \, \, \epsilon, \lambda \in \mathbb{R}, \, x \in V$$

De *), 1'), 2'), 3'), 4'), 5') se sigue que $(V, \blacklozenge, \blacktriangle, \mathbb{R})$ es un \mathbb{R} -espacio vectorial.