

Opérations sur des suites de carré sommable

On note S l'ensemble des applications de \mathbb{N}^* dans \mathbb{R} .

Un élément u de S sera noté $u = (u_n)_{n>1}$.

On note S_1 le sous ensemble de S formé des suites u telles que la série $\sum u_n$ soit convergente.

On note S_2 le sous ensemble de S formé des suites u telles que la série $\sum u_n^2$ soit convergente.

Pour tout élément $u = (u_n)_{n>1}$ de \mathcal{S} , on note :

- $-\Delta(u)$ la suite de terme général $v_n = u_{n+1} u_n$ pour $n \ge 1$.
- $\nabla(u)$ la suite définie par $w_1 = v_1$ et $w_n = v_n v_{n-1}$ si $n \ge 2$. On constate que pour tout $n \ge 2$, $w_n = (u_{n+1} - u_n) - (u_n - u_{n-1}) = u_{n+1} - 2u_n + u_{n-1}$.

Pour tout élément u de S_2 , on note $\sigma(u) = \sum_{n=1}^{\infty} u_n^2$.

- 1. Montrer que S_1 n'est pas inclus dans S_2 , et que S_2 n'est pas inclus dans S_1 . [S]
- 2. Montrer que S_1 est un espace vectoriel sur \mathbb{R} . [S]
- 3. (a) Montrer que si les suites u, v sont dans S_2 , alors la suite p de terme général $p_n = u_n v_n$ est dans S_1 . [S]
 - (b) En déduire que S_2 est muni d'une structure d'espace vectoriel. [S]
 - (c) Montrer qu'on définit un produit scalaire sur S_2 en posant $\langle u, v \rangle = \sum_{n=1}^{\infty} u_n v_n$. [S]
- 4. Montrer que les restrictions de Δ et de ∇ à \mathcal{S}_2 sont des endomorphismes de \mathcal{S}_2 . Pour toute suite u de \mathcal{S}_2 , on notera $J_0(u) = \sigma(u)$, $J_1(u) = \sigma(\Delta(u))$ et $J_2(u) = \sigma(\nabla(u))$. [S]
- 5. On considère la suite u de terme général $u_n = \frac{1}{n}$.
 - (a) Rappeler la valeur de $J_0(u)$. [S]
 - (b) Montrer que $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$. En déduire $J_1(u) = \frac{\pi^2}{3} 3$. [S]
 - (c) Montrer que $\sum_{n=2}^{\infty} \frac{1}{(n+1)(n-1)} = \frac{3}{4}$. En déduire $J_2(u) = \pi^2 \frac{19}{2}$. [S]
 - (d) Contrôler qu'on a bien l'inégalité $J_1(u)^2 \leq J_0(u)J_2(u)$. [S]
- 6. Dans cette question, on va déterminer les valeurs propres de la restriction de Δ à S_2 , et les vecteurs propres associés.
 - (a) Soit u un élément de S_2 , vecteur propre de Δ pour une valeur propre λ (autrement dit : u n'est pas la suite nulle et $\Delta(u) = \lambda u$.) Montrer que $-2 < \lambda < 0$ et que u est une suite géométrique de raison $\lambda + 1$. [S]
 - (b) Etablir la réciproque. En déduire le spectre de la restriction de Δ à \mathcal{S}_2 . [S]

Problèmes de Mathématiques

OPÉRATIONS SUR DES SUITES DE CARRÉ SOMMABLE

Énoncé

- (c) Soit u un élément de S_2 , vecteur propre de Δ pour une valeur propre λ . Calculer $J_0(u), J_1(u), J_2(u)$, et vérifier l'inégalité $J_1(u)^2 \leq J_0(u)J_2(u)$. [S]
- 7. Soient u un élément S_2 . On note $v = \Delta(u)$ et $w = \nabla(u)$. Montrer que $J_1(u) = -\sum_{n=1}^{\infty} u_n w_n$. [S]
- 8. Soit u un élément quelconque de S_2 .
 - (a) En utilisant la question précédente, montrer l'inégalité $2J_1(u) \leq J_0(u) + J_2(u)$. [S]
 - (b) Existe-t-il des suites de S_2 qui satisfont à l'égalité $2J_1(u) = J_0(u) + J_2(u)$? [S]
- 9. Soit u un élément quelconque de S_2 . Montrer que $J_1(u)^2 \leq J_0(u)J_2(u)$. [S]

Corrigé

Corrigé du problème

1. – La suite de terme général $u_n = \frac{(-1)^n}{\sqrt{n}}$ est dans S_1 mais pas dans S_2 .

En effet la série $\sum u_n$ converge (grâce au critère spécial des séries alternées) mais la série $\sum u_n^2$ diverge (c'est la série harmonique).

L'ensemble S_1 n'est donc pas inclus dans l'ensemble S_2 .

- La suite $u = \left(\frac{1}{n}\right)_{n\geq 1}$ est dans \mathcal{S}_2 mais pas dans \mathcal{S}_1 , car $\sum \frac{1}{n^2}$ converge mais pas $\sum \frac{1}{n}$. L'ensemble \mathcal{S}_2 n'est donc pas inclus dans l'ensemble \mathcal{S}_1 .
- 2. S_1 est de manière évidente non vide (la suite nulle est dans S_1) et stable par combinaisons linéaires : si les séries $\sum u_n$ et $\sum v_n$ convergent, il en est de même des séries $\sum (\lambda u_n + \mu v_n)$. S_1 est donc un sous-espace vectoriel de S. [Q]
- 3. (a) Pour tout entier N, Cauchy-Schwarz permet d'écrire :

$$\left(\sum_{n=1}^{N} |u_n v_n|\right)^2 \le \sum_{n=1}^{N} u_n^2 \sum_{n=1}^{N} v_n^2 \le \sum_{n=1}^{\infty} u_n^2 \sum_{n=1}^{\infty} v_n^2.$$

Par majoration des sommes partielles, on en déduit la convergence de la série de terme général $|u_n v_n|$, c'est-à-dire la convergence absolue de la série $\sum p_n$, ce qu'il fallait démontrer. [Q]

(b) On montre que S_2 est un sous-espace vectoriel de S.

La suite nulle est évidemment dans S_2 .

Soient u, v deux éléments de S_2 , et soient λ, μ deux réels quelconques.

Les séries $\sum u_n^2$, $\sum v_n^2$ et $\sum u_n v_n$ sont convergentes (pour cette dernière, d'après la question précédente). On en déduit que la série $\sum (\lambda u_n + \mu v_n)^2$ est convergente, ce qui prouve que $\lambda u + \mu v$ appartient à \mathcal{S}_2 .

Conclusion : S_2 est muni d'une structure d'espace vectoriel. [Q]

(c) La question 2-a prouve l'existence de $\langle u, v \rangle$, pour tous éléments u et v de \mathcal{S}_2 . L'application $(u, v) \mapsto \langle u, v \rangle$ est de manière évidente bilinéaire et symétrique.

Il est clair aussi que $\langle u, u \rangle = \sum_{n=1}^{\infty} u_n^2$ est ≥ 0 et n'est nul que si la suite u est nulle.

Conclusion : on a bien défini un produit scalaire sur S_2 . [Q]

4. Si u est un élément de S_2 , c'est-à-dire si la série $\sum u_n^2$ converge, alors les séries $\sum u_{n+1}^2$ et $\sum u_{n-1}^2$ convergent (il ne s'agit que d'une translation d'indice !).

Les suites $n \mapsto u_{n+1}$ et $n \mapsto u_{n-1}$ sont donc éléments de S_2 .

Puisque S_2 est un espace vectoriel, la suite $\Delta(u)$ est un élément de S_2 .

De la même manière, la suite $\nabla(u)$ appartient à \mathcal{S}_2 (à un indice près, elle se déduit de la suite $\Delta(u)$ comme la suite $\Delta(u)$ se déduit de u.)

L'ensemble S_2 est donc stable par les applications Δ et ∇ .

Enfin la linéarité de Δ et de ∇ (et donc de leurs restrictions à \mathcal{S}_2) est évidente. [Q]

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé

5. (a) On sait bien sûr que $J_0(u)$, c'est-à-dire $\sum_{n=1}^{\infty} \frac{1}{n^2}$, est égal à $\frac{\pi^2}{6}$. [Q]

(b) Pour tout
$$N \ge 1$$
, $\sum_{n=1}^{N} \frac{1}{n(n+1)} = \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1}\right) = \sum_{n=1}^{N} \frac{1}{n} - \sum_{n=2}^{N+1} \frac{1}{n} = 1 - \frac{1}{N+1}$.

Quand on fait tendre N vers $+\infty$, on trouve : $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

Puisque $u_n = \frac{1}{n}$, $v = \Delta(u)$ est définie par $v_n = u_{n+1} - u_n = \frac{1}{n+1} - \frac{1}{n}$.

On trouve facilement

$$J_1(u) = \sum_{n=1}^{\infty} v_n^2 = \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n} \right)^2 = \sum_{n=1}^{\infty} \left(\frac{1}{(n+1)^2} + \frac{1}{n^2} - \frac{2}{n(n+1)} \right)$$
$$= \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} + \sum_{n=1}^{\infty} \frac{1}{n^2} - 2 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \left(\frac{\pi^2}{6} - 1 \right) + \frac{\pi^2}{6} - 2 = \frac{\pi^2}{3} - 3.$$
 [Q]

(c) Pour tout entier $N \geq 2$:

$$\sum_{n=2}^{N} \frac{1}{(n+1)(n-1)} = \frac{1}{2} \sum_{n=2}^{N} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) = \frac{1}{2} \left(\sum_{n=1}^{N-1} \frac{1}{n} - \sum_{n=3}^{N+1} \frac{1}{n} \right)$$
$$= \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{N} - \frac{1}{N+1} \right)$$

Quand on fait tendre N vers $+\infty$, on trouve : $\sum_{n=2}^{\infty} \frac{1}{(n+1)(n-1)} = \frac{3}{4}$.

Notons w la suite $\nabla(u)$.

On a $w_1 = v_1 = u_2 - u_1 = -\frac{1}{2}$ et, $\forall n \geq 2, w_n = u_{n+1} - 2u_n + u_{n-1} = \frac{1}{n+1} - \frac{2}{n} + \frac{1}{n-1}$. On en déduit :

$$J_{2}(u) = \sum_{n=1}^{\infty} w_{n}^{2} = \frac{1}{4} + \sum_{n=2}^{\infty} \left(\frac{1}{n+1} - \frac{2}{n} + \frac{1}{n-1}\right)^{2}$$

$$= \frac{1}{4} + \sum_{n=2}^{\infty} \left(\frac{1}{(n+1)^{2}} + \frac{4}{n^{2}} + \frac{1}{(n-1)^{2}} - \frac{4}{(n+1)n} - \frac{4}{n(n-1)} + \frac{2}{(n+1)(n-1)}\right)$$

$$= \frac{1}{4} + \sum_{n=3}^{\infty} \frac{1}{n^{2}} + 4\sum_{n=2}^{\infty} \frac{1}{n^{2}} + \sum_{n=1}^{\infty} \frac{1}{n^{2}} - 4\sum_{n=2}^{\infty} \frac{1}{(n+1)n}$$

$$-4\sum_{n=1}^{\infty} \frac{1}{(n+1)n} + 2\sum_{n=2}^{\infty} \frac{1}{(n+1)(n-1)}$$

$$= \frac{1}{4} + \left(\frac{\pi^{2}}{6} - 1 - \frac{1}{4}\right) + 4\left(\frac{\pi^{2}}{6} - 1\right) + \frac{\pi^{2}}{6} - 4\left(1 - \frac{1}{2}\right) - 4 + 2 \cdot \frac{3}{4} = \pi^{2} - \frac{19}{2}.$$

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé

(d) On constate que:

$$J_0(u)J_2(u) - J_1(u)^2 = \frac{\pi^2}{6}\left(\pi^2 - \frac{19}{2}\right) - \left(\frac{\pi^2}{3} - 3\right)^2 = \frac{\pi^4}{18} + \frac{5\pi^2}{12} - 9 \approx 0.524 > 0$$

On a donc bien vérifié l'inégalité : $J_1(u)^2 \leq J_0(u)J_2(u)$. [Q]

6. (a) Par hypothèse, et pour tout entier $n \ge 1$: $u_{n+1} - u_n = \lambda u_n$.

On en déduit $u_{n+1} = (\lambda + 1)u_n$ et donc, pour tout $n \ge 1$: $u_n = (\lambda + 1)^{n-1}u_1$.

Autrement dit, la suite u est géométrique de raison $\lambda + 1$.

Mais par hypothèse, la série $\sum u_n^2$ est convergente.

Cela exige $|\lambda + 1| < 1$, c'est-à-dire $-2 < \lambda < 0$. [Q]

(b) Soit u une suite géométrique de raison q, avec |q| < 1.

De cette manière la suite u est dans S_2 .

Pour tout $n \ge 1$, on a : $u_{n+1} - u_n = (q-1)u_n$. Ainsi $\Delta(u) = (q-1)u$.

La suite u (qui n'est pas nulle si on choisit $u_1 \neq 0$) est donc vecteur propre de Δ pour la valeur propre q-1 (elle même élément de]-2,0[.)

Conclusion : le spectre de la restriction de Δ à \mathcal{S}_2 est]-2,0[. Pour chaque valeur propre λ , le sous-espace propre est l'ensemble des suites géométriques de raison $\lambda+1$ (c'est une droite vectorielle, engendrée par la suite de terme général $(\lambda+1)^n$.) [Q]

(c) – On sait que pour tout entier $n \ge 1$, $u_n = (\lambda + 1)^{n-1}u_1$, avec $u_1 \ne 0$.

On en déduit $J_0(u) = \sum_{n=1}^{\infty} u_n^2 = u_1^2 \sum_{n=0}^{\infty} (\lambda + 1)^{2n} = u_1^2 \frac{1}{1 - (\lambda + 1)^2} = -u_1^2 \frac{1}{\lambda(\lambda + 2)}$.

- On sait que $v = \Delta(u) = \lambda u$.

On en déduit $J_1(u) = \sum_{n=1}^{\infty} v_n^2 = \lambda^2 J_0(u) = -u_1^2 \frac{\lambda}{\lambda + 2}$.

- Notons $w = \nabla(u)$. Par définition $w_1 = v_1 = \lambda u_1$.

D'autre part, pour tout $n \ge 2$, $w_n = v_n - v_{n-1} = \lambda(u_n - u_{n-1}) = \lambda v_{n-1} = \lambda^2 u_{n-1}$.

On en déduit $J_2(u) = \lambda^2 u_1^2 + \sum_{n=2}^{\infty} w_n^2 = \lambda^2 u_1^2 + \lambda^4 \sum_{n=2}^{\infty} u_{n-1}^2 = \lambda^2 u_1^2 + \lambda^4 J_0(u)$.

Ainsi $J_2(u) = \lambda^2 u_1^2 - \lambda^3 u_1^2 \frac{1}{\lambda + 2} = u_1^2 \frac{2\lambda^2}{\lambda + 2}.$

- On constate que $J_1(u)^2 - J_0(u)J_2(u) = \frac{\lambda^2 u_1^4}{(\lambda+2)^2} + \frac{u_1^2}{\lambda(\lambda+2)} \frac{2\lambda^2 u_1^2}{\lambda+2} = u_1^4 \frac{\lambda}{\lambda+2}$.

Cette quantité est négative car $\lambda \in]-2,0[$.

On a donc l'inégalité $J_1(u)^2 \leq J_0(u)J_2(u)$.

[Q]

7. On sait que la suite w est dans S_2 (voir question 4.)

D'après la question 3-a, cela implique la convergence de la série $\sum u_n w_n$.

Dans le calcul suivant, toutes les séries sont convergentes :

Corrigé

$$\sum_{n=1}^{\infty} u_n w_n = u_1 w_1 + \sum_{n=2}^{\infty} u_n (v_n - v_{n-1}) = u_1 v_1 + \sum_{n=2}^{\infty} u_n v_n - \sum_{n=2}^{\infty} u_n v_{n-1}$$

$$= \sum_{n=1}^{\infty} u_n v_n - \sum_{n=1}^{\infty} u_{n+1} v_n = \sum_{n=1}^{\infty} (u_n - u_{n+1}) v_n = -\sum_{n=1}^{\infty} v_n^2 = -J_1(u).$$
[Q]

8. (a) Il suffit d'évaluer la différence et d'utiliser le résultat précédent.

$$J_0(u) + J_2(u) - 2J_1(u) = \sum_{n=1}^{\infty} u_n^2 + \sum_{n=1}^{\infty} w_n^2 + 2\sum_{n=1}^{\infty} u_n w_n = \sum_{n=1}^{\infty} (u_n + w_n)^2 \ge 0$$

On a donc démontré l'inégalité $2J_1(u) \leq J_0(u) + J_2(u)$. [Q]

(b) Notons que la suite nulle convient. Nous allons vérifier que c'est la seule. On suppose donc que $2J_1(u) = J_0(u) + J_2(u)$.

Comme cela résulte de la question précédente, on a $\sum_{n=1}^{\infty} (u_n + w_n)^2 = 0$.

Autrement dit, et pour tout $n \ge 1$, $u_n + w_n = 0$.

Or $w_1 = v_1 = u_2 - u_1$. On en déduit $u_2 = 0$.

D'autre part, pour tout $n \ge 2$, on a $w_n + u_n = u_{n+1} - u_n + u_{n-1}$.

La suite u satisfait donc à une récurrence linéaire d'ordre 2 d'équation caractéristique $t^2 - t + 1 = 0$, dont une racine complexe est $t = \exp \frac{i\pi}{3}$.

On en déduit l'existence de scalaires α, β tels que, $\forall n \geq 1, u_n = \alpha \cos \frac{n\pi}{3} + \beta \sin \frac{n\pi}{3}$.

Ainsi la suite u est périodique. Mais pour qu'elle soit élément de S_2 , il faut au moins qu'elle converge vers 0: cela n'est possible que si u est la suite nulle.

Conclusion:

La seule suite u de S_2 qui vérifie l'égalité $2J_1(u) = J_0(u) + J_2(u)$ est la suite nulle. [Q]

9. D'après la question (a), on peut écrire $J_1(u)^2 = \left(\sum_{n=1}^{\infty} u_n w_n\right)^2$.

Or pour tout entier N, et grâce à Cauchy-Schwarz $\left(\sum_{n=1}^N u_n w_n\right)^2 \leq \sum_{n=1}^N u_n^2 \sum_{n=1}^N w_n^2$.

En faisant tendre N vers $+\infty$, on trouve : $\left(\sum_{n=1}^{\infty} u_n w_n\right)^2 \leq \sum_{n=1}^{\infty} u_n^2 \sum_{n=1}^{\infty} w_n^2$.

On a donc prouvé l'inégalité : $J_1(u)^2 \le J_0(u)J_2(u)$. [Q]

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.