FIRST NAME: LAST NAME: ID NUMBER:

- 1. The goal of supervised learning is:
 - (a) to learn what features are useful
 - (b) to learn a model with low true risk
 - (c) to learn a model with low empirical risk
 - (d) to learn a deep neural network
 - (e) none of the above
- 2. If you flip 10 times a coin that has probability 0.25 to give tail, the probability that you obtain exactly 1 head is:
 - (a) $0.25^9 \times (1 0.25)$ (b) $(1 0.25)^9 \times 0.25$

 - (c) $10 \times 0.25^9 \times (1 0.25)$
 - (d) $10 \times (1 0.25)^9 \times 0.25$
 - (e) none of the above
- 3. Let $\mathcal{X}, \mathcal{Y}, \mathcal{D}, \ell(\mathbf{x}, y), \mathcal{H}, h, S$ defined as usual during the course. The definition of training error $L_S(h)$ is:
 - (a) $L_S(h) = \mathbf{E}_{\mathbf{x}, y \sim \mathcal{S}}[(h(\mathbf{x}) y)^2]$
 - (b) $L_S(h) = \frac{1}{|S|} \sum_{i=1}^{|S|} (h(\mathbf{x}_i) y_i)^2$
 - (c) $L_S(h) = \mathbf{E}_{\mathbf{x}, y \sim \mathcal{S}}[\ell(h, (\mathbf{x}, y))]$
 - (d) $L_S(h) = \frac{1}{|S|} \sum_{i=1}^{|S|} \ell(h, (\mathbf{x}_i, y_i))$ (e) none of the above
- 4. Let $\mathcal{X}, \mathcal{Y}, \mathcal{D}, \ell(\mathbf{x}, y), \mathcal{H}, h, S$ defined as usual during the course. The definition of generalization error $L_{\mathcal{D}}(h)$ is:
 - (a) $L_{\mathcal{D}}(h) = \mathbf{E}_{\mathbf{x}, y \sim \mathcal{D}}[(h(\mathbf{x}) y)^2]$
 - (b) $L_{\mathcal{D}}(h) = \frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} (h(\mathbf{x}_i) y_i)^2$
 - (c) $L_{\mathcal{D}}(h) = \mathbf{E}_{\mathbf{x}, y \sim \mathcal{D}}[\ell(h, (\mathbf{x}, y))]$
 - (d) $L_{\mathcal{D}}(h) = \frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} \ell(h, (\mathbf{x}_i, y_i))$
 - (e) none of the above
- 5. In the ERM approach we pick the model for making predictions by:
 - (a) finding the hypothesis with smallest training error
 - (b) finding the hypothesis with smallest generalization error
 - (c) finding the hypothesis with smallest complexity
 - (d) finding the hypothesis that minimizes the expected regularization
 - (e) none of the above
- 6. Ideally, the choice of the loss function should depend on:
 - (a) the real-world problem you are trying to solve
 - (b) the hypothesis class you want to use
 - (c) the implementation that is available
 - (d) the amount of data you have
 - (e) none of the above
- 7. What does "overfitting" refer to?
 - (a) Learning a model that has perfect accuracy on all datasets
 - (b) Learning a model that performs well on both training data and validation data
 - (c) Learning a model that performs well on training data but poorly on new data
 - (d) Failing to converge during training
 - (e) none of the above

- 8. A dataset is linearly separable if:
 - (a) you can connect its instances with a line
 - (b) you can learn a liner model from it
 - (c) there is linear model that perfectly classifies it
 - (d) you can plot it in 2 dimensions
 - (e) none of the above
- 9. In the context of machine learning algorithms, what does the term "gradient descent" refer to?
 - (a) A method for solving linear equations
 - (b) An optimization algorithm used to minimize a cost function
 - (c) A technique for clustering data points
 - (d) A form of unsupervised learning
 - (e) none of the above
- 10. What is the main idea behind the concept of bias-complexity trade-off?
 - (a) Balancing the trade-off between model simplicity and interpretability
 - (b) Balancing the trade-off between accuracy and training time
 - (c) Balancing the trade-off between estimation error and approximation error
 - (d) Balancing the trade-off between feature selection and feature engineering
 - (e) none of the above
- 11. What is the purpose of regularization?
 - (a) To reduce model complexity so to prevent overfitting
 - (b) To increase model complexity so to prevent overfitting
 - (c) To improve training speed
 - (d) To eliminate bias in the model
 - (e) none of the above
- 12. What is the purpose of using a test set?
 - (a) To test the model on multiple datasets
 - (b) To assess the model's performance on the training set
 - (c) To compare different models on unseen data
 - (d) To obtain a good estimate of the generalization error
 - (e) none of the above
- 13. What is a main difference between SVMs and linear models?
 - (a) there is no difference
 - (b) SVM can be used to learn models that are polynomial in the features
 - (c) SVMs can be used only for linearly separable data
 - (d) SVMs consider the margin of the model, linear models do not
 - (e) none of the above
- 14. The VC dimension is a measure of:
 - (a) the dimension of each point in a dataset
 - (b) the complexity of an hypothesis class
 - (c) the number of features in a model
 - (d) the generalizability of an hypothesis
 - (e) none of the above
- 15. What is the key idea behind hierarchical clustering?
 - (a) Assigning each data point to the nearest centroid
 - (b) Dividing the dataset into a fixed number of clusters
 - (c) Creating a tree-like structure representing various clusterings
 - (d) Determining the density of data points in different regions
 - (e) none of the above