

Stream Processing and Big Data Platforms

Hong-Linh Truong
Department of Computer Science
<u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Learning objectives

- Understand fundamental concepts and techniques in stream processing in big data
- Able to design streaming analytics in big data platforms and applications
- Able to select and use common stream processing frameworks

Big data at large-scale: the big picture in this course

Elastic Cloud Infrastructures

(VMs, dockers, Kubernetes, OpenStack elastic resource management tools, storage)

Stream analytics for data in motion

Stream processing in big data

Big data coming from streams at near real-time

- the data element/unit may be "small" but voluminous and delivered in a near real-time manner
- o high and volatile throughput, but low processing time expected
- more than just "take a record and store it into a database"

Require large-scale computing infrastructures and many other platform services

- o task parallelism: multiple tasks for processing data
- o data parallelism: data is partitioned into concurrent/parallel data streams
 ⇒ distributed, parallel processing tasks
- stateful analytics: processing needs state information across multiple data and time

Near real-time streaming data processing

Near real-time streaming data processing Big Data platform **Tenants Tenant** IoT devices Service **Streaming Analytics** User activities **Payment** transactions Messaging Systems Messaging (Pub/Sub Systems) **Systems** Machine logs **Streaming** Tracking **Analytics** positions **Streaming Tenant Analytics** Service

(e.g., maintenance)

Example in the cloud – stream processing and big data platforms

Figure source: https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction

Known public cloud services: Amazon Kinesis, Google Dataflow, Alibaba Cloud DataHub

Long history, e.g., from complex event processing (CEP) in the age of enterprise computing

Our practices focus on modern technologies like: Apache Flink and Apache Spark, which are used intensively in business systems and big cloud platforms

Stream processing and big data platforms

Stream processing is a component of big data platforms

 a big data technology for pre-processing, ingestion and high-level analytics, including near-real time machine learning

Stream processing services as big data platforms

- a big data platform offers mainly stream processing services for streaming analytics
- analytics on the fly as the first class
 - historical analytics results as the second class
- e.g., IoT analytics, e-commerce user activities, fraud detection, real time AI/ML

Stream Processing – key concepts

Common concepts

- The way to connect data to streams and obtain data records (messages) from the streams
 - focusing very much on *connector concepts* and well-defined message structures
 - the data can be pulled/pushed via connectors
- The way to specify/program the "analytics" logic
 - o *analytics functions, statements* and how they are glued together to process flows of messages
 - o high-level, easy to use
- The distributed engine to process analytics tasks
 - o handle complex task processing
- The way to push the result to external components (sink databases, new streams, files)

Data stream programming

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can be data described by a primitive data type or by a complex data type, a serializable object, etc.

Streaming data: produced by (near)realtime data sources as well as (big) static data sources ⇒ unbounded and bounded

- Examples of data streams
 - Continuous media (e.g., video for video analytics)
 - Discrete media (e.g., stock market events, twitter events, system monitoring events, comments, notifications, log records)

Messages of events/data records

- messages encapsulating real-world events, data records and other types of data
- data to be sent/processed can be in a simple or complex structure

Split data based on **keys** or not? One message vs batch of messages **We focus on unbounded discrete messages of data**

Message representations and streams

Data Sources:

 via message brokers, databases, websocket, different IO adapters/connectors, etc.

Data Sinks

 messaging systems, databases, file storage/systems (S3, HDFS), etc.

Data representations

- text/CSV, JSON, Arvo format, etc.
- serialization and deserialization (short name: SerDe) are required
- data format validation
- data schema registry for registered schemas

Publisher view: how messages are published Messaging system

topic=queue; no partition

topic = n partitions = n queues

Topic and topic partitions

How messages are handled for consumption

Consumer view in accessing messages: subscription and delivery

Some key issues

- Data order & delivery
 - o late data, out of order data
- Times associated with messages and processing
- Data parallelism
 - key-based data processing
- Task parallelism
 - stateful vs stateless processing

Key issues in streaming data: delay and out of order

Without a timestamp associated to a message, do we know the delay or out of order?

What is the consequence of delay/out of order for processing?

Key issues in streaming data: the notion of times

Times associated with data and processing

Event time

Ingestion time (when the message is

entered into the system)

Processing time

Which time is important for analytics (from business viewpoint)?

Data parallelism: partition stream data based on some keys for analytics

With keyed data: enable parallel processing based on the keys

sliding/tumble window size: period of time or number of events/records

Windowing

Windows size:

otime or number of records

Tumbling window:

o identified by size, no gap between windows

Sliding window:

identified by size and a sliding internal

Session Window:

 identified by "gap" between windows (e.g., the gap of events is used to mark "sessions")

Functions applied to Windows of data

If we

 specify a set of conditions ⇒ windows will be created according to the conditions to store message in corresponding windows

then we can

 Apply functions to messages in the window that match these conditions

Task parallelism: we can have a lot of such functions executed in parallel in multiple compute nodes

Functions

- Can be simple or complex!
- Core for analytics and ML
- Examples
 - individual threshold/alarm based alerting, atypical events monitoring
 - data rollup
 - anomaly detection based on statistical functions, like quantile/T-digest, ...
 - real time AI/machine learning

Example

Monitoring working hours of (taxi/truck) drivers (assume events about pickup/drop captured at near real-time):

- Windows: 12 hours
- Partitioning data/Keyed streams: licenselD
- Function: determine working and break times and check with the law/regulation

Source:

https://www.infoworld.com/article/3293426/how-to-build-stateful-streaming-applications-with-apache-flink.html

What if events/records come late into the windows?

Do we need to deal with late, out of order events/records?

correctness and completeness issues

Support lateness

- Identify timestamp of events/data records
- Identify watermark in streams
 - o a watermark is a timestamp
 - a watermark indicates that no events which are older that the watermark should be processed
 - enable the delay of processing functions to wait for late events
- Using watermark to ignore late data ⇒ computing under "incompleteness assumption"

Delivery guarantees

Exactly once? at least once? or at-most-once End-to-end?

What if the stream processing fails and restarts

Examine a simple example

```
124
          1 1 1
125
          WAIT AND PROCESS DATA
126
127
          while True:
128
              111
129
              Receive the data from source
130
131
132
              msg = consumer.receive()
133
              when should we do this?
134
              consumer.acknowledge(msg)
135
136
137
              try:
138
139
                  MAIN TRANSFORMATION, HERE IS WITH A FUNCTION
140
                  ## assume that the selected data schema is json
141
                  result =dt process json style(msg,op processor)
142
                  ##store the result to the right data sink
143
144
                  dt store to sink(result)
145
              except Exception as ex:
146
                  logging.warn(f'{ex}')
147
                  logging.info("Continue to wait")
148
140
```

How to handle possible errors

Note: Example with a Pulsar consumer for data transformation

Message and processing guarantees

 Message guarantees are the job of the broker/messaging system

- Processing guarantees are the job of the stream processing frameworks
- They are highly connected if messaging systems and processing frameworks are tightly coupled (e.g., Kafka case)

End-to-end exactly once

- Exactly once for processing is not enough
- Messaging systems must support
 - o redeliver messages/data, recoverable data
- Sink and output must support exactly one
 - o idempotent results, roll back
- Coordination among various components

Further reading:

https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-apache-flink.html https://www.confluent.io/blog/simplified-robust-exactly-one-semantics-in-kafka-2-5/ https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-streaming-exactly-once

Performance metrics

Response time

Latency and Throughput

Service latency

- o subseconds! e.g., milliseconds
- max, min or percentile? ⇒ up to application requirements

Throughput

- o how many messages can be processed per second?
- Goal: low latency and high throughput!

Structure of streaming data processing programs (1)

- We have multiple streams of data, different functions for processing data, multiple computing nodes
- Data exchange between tasks
 - links in task graphs reflect data flows
- Stream processing
 - centralized or distributed (in terms of computing resources)

Structure of streaming data processing programs (2)

Dataflows:

- Data source operators: represent sources of streams
- Processing operators: represent processing functions

Distributed processing topology in a cluster

A graph of tasks (running operators); all tasks are running

Nodes of a cluster (VMs, containers, Kubernetes)

Distributed, composable processing topologies in cross distributed sites

Common concepts in existing frameworks - programming level

- How to write streaming program?
- With programming languages
 - low level APIs
 - \circ DSL
 - Java, Scala, Python (Spark, Flink, Kafka)
- High-level data models
 - o KSQL
- Flow/pipeline description
 - Node-RED/GUI-based flow editors

Common concepts in existing frameworks - key common concepts

- Abstraction of streams
- Connector library for data sources/sinks
 - very important for application domains
- Runtime elasticity
 - add/remove (new) operators
 - add/remove underlying computing nodes
- Fault tolerance

Where do you find most of concepts that we have discussed

- Apache Storm
 - https://storm.apache.org/
- Apache Spark (Structured Streaming)
 - https://spark.apache.org/
- Apache Kafka Streams and KSQL
 - strongly bounded to Kafka messaging
- Apache Flink (Stream Analytics)
 - native, clustered, better data sources/sinks
- Apache Beam (<u>https://beam.apache.org/</u>)
 - unifying programming models for batch and stream processing

Practical learning paths

- Path 1: if you don't have a preference and need challenges
 - Apache Flink Stream API (e.g., with RabbitMQ/Kafka connectors)
- Path 2: many of you have worked with Kafka
 - Kafka Streams DSL (everything can be done with Kafka)
- Path 3: for those of you who are working with Spark (and Python is the main programming language)
 - Apache Spark Structured Streaming
- Path 4: for those who deal with MQTT brokers
 - Apache Storm (but also Kafka, ...): Spout and Bolt API or Stream API

Examples of Apache Flink

Apache Flink

Figure source: https://flink.apache.org/

Flink runtime view

JVM Process

(Worker)

Task

Slot

Task

ask

Slot

TaskManager

Task

Slot

Task

Operators within a task

Parallelism

- Checkpointing
- Monitoring

Remember 24/7 applications

(Worker)

Task

Slot

Task

Task

Slot

TaskManager

Task

Slot

Task

Figure source: https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/concepts/flink-architecture/

Main elements in Flink applications

Rich set of sources and sinks via many connectors

Connectors

- Major systems in big data
- We have used many of them in our study
 - Apache Kafka
 - Apache Cassandra
 - Elasticsearch (sink)
 - Hadoop FileSystem
 - RabbitMQ
 - Apache NiFi
 - Google PubSub

Main

- Setting environments
- Handling inputs and outputs via data streams
- Key functions for processing data
- Stream processing flows

Bounded and unbounded streams

Stream processing flows

Split streaming data into different windows with a key for analytics purposes

Keyed data/Keyed window: if we can separate data via keys

Source: https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/windows/

Stream processing flows

Handling streaming data without a key for analytics purposes

Source: https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/windows/

Datflow vs Execution Graph

Figure source:

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/j ob scheduling/

Windows and Times

Flink

Flink

Figure source: https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/time/

Processing Time

Batch/Tumbling Windows

Figure source: https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/windows/

Sliding windows

Figure source: https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/windows/

Session Windows

Use cases: Web/user activities clicks

Figure source: https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/windows/

Window Functions

Reduce Function

Reduce through the combination of two inputs

Aggregate Function

Add an input into an accumulator

ProcessWindow Function

 Get all elements of the windows and many other information so that you can do many tasks

Triggers & Evictor

• Trigger: determine if a window is ready for window functions

Evictor: actions after the trigger fires and before and/or after the windows function is called

Fault tolerance

- Principles: checkpointing, restarts operators from the latest successful checkpoints
- Need support from data stream sources/sinks w.r.t. (end-to-end) exactly once message receiving and result delivery

Figure source:

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/stateful-stream-processing/

Example with Base Transceiver Station

Data in our git

```
station_id,datapoint_id,alarm_id,event_time,value,valueThreshold,isActive,storedtime 1161115016,121,308,2017-02-18 18:28:05 UTC,240,240,false, 1161114050,143,312,2017-02-18 18:56:20 UTC,28.5,28,true, 1161115040,141,312,2017-02-18 18:22:03 UTC,56.5,56,true, 1161114008,121,308,2017-02-18 18:34:09 UTC,240,240,false, 1161115040,141,312,2017-02-18 18:20:49 UTC,56,56,false,
```

See the code in our git:

https://github.com/rdsea/bigdataplatforms/tree/master/tutorials/streamingwithflink/

Simple example

Monitoring

Summary

Focus:

- Practical programming with one of the stacks:
 - Apache Flink Stream API (with different connectors)
 - Apache Spark
 - Kafka Streams
- Check the common concepts in other tools/systems

Action:

- Work on use cases where you can use stream analytics (as a user/developer) ⇒ there are many interesting analytics
- Provision services for stream processing (as a platform)

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

