МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут»

Кафедра систем управління літальними апаратами

Лабораторна робота № 3

з дисципліни «Об'єктно-орієнтоване програмування СУ»

Тема: "Структурування програм з використанням функцій"

ХАІ.301.173.322.02 ЛР

Виконав студент гр	322
Гуса	р Анастасія
(підпис, дата)	(П.І.Б.)
Перевірив к.т.н., зав. кафедри В. (Білозерський
(пілпис лата)	(ПТР)

МЕТА РОБОТИ

Вивчити теоретичний матеріал із синтаксису визначення і виклику

функцій та особливостей послідовностей у Python, а також документацію бібліотеки питру; отримати навички реалізації бібліотеки функцій з параметрами, що структурують вирішення завдань «згори – до низу».

ПОСТАНОВКА ЗАДАЧІ

Завдання 1. Описати функцію відповідно до варіанту. Для виклику функції (друга частина задачі) описати іншу функцію, що на вході має список вхідних даних і повертає список вихідних даних. Введення даних, виклик функції та виведення результатів реалізувати в третій функції без параметрів.

Завдання 2. Розробити дві вкладені функції для вирішення задачі обробки двовимірних масивів відповідно до варіанту: зовнішня — без параметрів, внутрішня має на вході ім'я файлу з даними, на виході — підраховані параметри матриці (перша частина задачі) та перетворену матрицю (друга частина задачі). Для обробки масивів використати функції бібліотеки питру.

ВИКОНАННЯ РОБОТИ

Ргос19 Описати функцію RingS (R1, R2) дійсного типу, яка знаходить площу кільця, укладеного між двома колами із загальним центром і радіусами R1 і R2 (R1 і R2 - речові, R1> R2). З її допомогою знайти площі трьох кілець, для яких дані зовнішні і внутрішні радіуси. Скористатися формулою площі круга радіусу R: $S = \pi \cdot R2$. Як значення π вважати рівним 3.14.

Вхідні дані:

- 1) R1 радіус зовнішнього кола
- 2) R2 радіус внутрішнього кола

Алгоритм вирішення:

import math

```
def RingS(R1, R2):
  """Функція для обчислення площі кільця між двома колами"""
  if R1 \le R2:
    raise ValueError("Радіус зовнішнього кола (R1) повинен бути більшим за радіус внутрішнього кола
(R2).")
  # Використовуємо значення \pi = 3.14
  pi = 3.14
  # Обчислюємо площі двох кіл та їх різницю
  area ring = pi * (R1**2 - R2**2)
  return area ring
# Приклад використання функції для трьох кілець:
R1 1, R2 1 = 8, 4
R1 2, R2 2 = 14, 9
R1 3, R2 3 = 22, 14
print(f"Площа першого кільця: {RingS(R1 1, R2 1)}")
print(f"Площа другого кільця: {RingS(R1 2, R2 2)}")
print(f"Площа третього кільця: {RingS(R1_3, R2_3)}")
Площа першого кільця: 150.72
Площа др�гого кільця: 361.1
Площа третього кільця: 904.32
```


Matrix 12. У текстовому файлі задана матриця розміру М × N. Знайти мінімальний серед максимальних елементів її стовпців. Відсортувати задану матрицю по рядках по спадаючій.

Вхідні дані:

```
Матриця
3 4 3
3 4 2 2
2 1 5 1
5 2 1 4
Алгоритм вирішення:
def read matrix from input():
  """Читання матриці з введення користувача"""
  matrix = [
     [3, 4, 3],
     [3, 4, 2, 2],
     [2, 1, 5, 1],
     [5, 2, 1, 4]
 return matrix
def find min of max elements(matrix):
 """Знаходимо мінімальний серед максимальних елементів стовпців"""
 if not matrix:
   return None
```

```
# Трансформуємо матрицю для однакових кількостей елементів у стовпцях
  num columns = max(len(row) for row in matrix) # Найбільша кількість стовпців
  max elements = []
  for col in range(num_columns):
    # Отримуємо максимальний елемент для кожного стовпця
    column elements = [matrix[row][col] for row in range(len(matrix)) if col < len(matrix[row])]
    if column elements:
      max in column = max(column elements)
      max elements.append(max in column)
  return min(max elements)
def sort matrix by rows(matrix):
  """Сортуємо матрицю по рядках за спадаючим порядком"""
  return [sorted(row, reverse=True) for row in matrix]
def print matrix(matrix):
  """Виведення матриці на екран"""
  for row in matrix:
    print(" ".join(map(str, row)))
def main():
  matrix = read matrix from input()
  if matrix: #Перевіряємо, чи матриця не порожня
    min of max = find min of max elements(matrix)
    print(f"Мінімальний серед максимальних елементів стовпців: {min of max}")
    sorted_matrix = sort_matrix_by_rows(matrix)
    print("Відсортована матриця:")
    print matrix(sorted matrix)
  else:
    print("Матриця порожня.")
if __name__ == "__main__":
  main()
Мінімальний серед максимальних ел 🗫 ентів стовпців: 4
Відсортована матриця:
  3 3
   3 2 2
   2 1 1
   4 2 1
```


Висновок

У ході виконання завдання були розроблені функції для обчислення площі кільця між двома колами та для обробки матриці. Перша функція ефективно обчислює площу кільця, враховуючи умови R1>R2R1 > R2R1>R2. Друга функція знаходить мінімум серед максимальних елементів стовпців матриці та сортує її за рядками. Завдання демонструє важливість математичних розрахунків та правильної обробки даних у програмуванні.