Série 2017 PQ selon OFPi 2006 Procédures de qualification

Planificatrice-électricienne CFC

Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 90 minutes pour 19 exercices sur 13 pages

Auxiliaires: Règle, équerre, chablon, recueil de formules sans exemple de calcul et

calculatrice de poche, indépendante du réseau (Tablettes, Smartphones

etc. ne sont pas autorisés).

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés

deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elles. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.
- Les mauvaises réponses induites par une précédente erreur dans le problème doivent être prises en compte lors de la correction.

Barème: Nombres de points maximum: 49,0

47,0	-	49,0	Points = Note	6,0
42,0	-	46,5	Points = Note	5,5
37,0	-	41,5	Points = Note	5,0
32,0	-	36,5	Points = Note	4,5
27,0	-	31,5	Points = Note	4,0
22,5	-	26,5	Points = Note	3,5
17,5	-	22,0	Points = Note	3,0
12,5	-	17,0	Points = Note	2,5
7,5	-	12,0	Points = Note	2,0
2,5	-	7,0	Points = Note	1,5
0,0	-	2,0	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme

exercice avant le 1^{er} septembre 2018.

Créé par: Groupe de travail EFA de l'USIE pour la profession de

planificatrice-électricienne CFC / planificateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices	Nombre maximal	de points obtenus
1.	5.1.7 Pourquoi le secondaire d'un transformateur moyenne tension / basse tension 3 x 400 V est couplé en étoile ? (une réponse) - 2 tensions possibles 230 V et 400 V - Connexion du conducteur PEN	1	
	5.1.3		
2.	 Citez deux avantages des matériaux d'installation fabriqués sans halogène. Les matériaux d'installation sans halogène ne dégagent pas de gaz toxiques et corrosifs en cas d'incendie. Le développement de fumée est beaucoup plus faible en cas d'incendie. Augmentation de la sécurité pour les personnes surprises par un incendie. Intervention simplifiée pour les pompiers. Diminution des dégâts. 	chacun	
	- Elimination des câbles respectueuse de l'environnement.		
3.	5.1.6 Sur la plaquette signalétique d'un transformateur, on trouve les informations suivantes : Tension au primaire = 230 V, tension au secondaire = 12 V, η = 90 %, cos ϕ = 0,88 Le transformateur est chargé avec 280 W (purement ohmique).	3	
	a) le courant côté secondaire. $I_S = \frac{P_s}{U_s} = \frac{280 \text{ W}}{12 \text{ V}} = \underline{\frac{23,3 \text{ A}}{12 \text{ V}}}$	1	
	b) le courant dans la ligne d'alimentation du transformateur. $I_P = \frac{P_s}{U_P \cdot cos \ \phi + \eta} = \frac{280 \ W}{230 \ V \cdot 0,88 \cdot 0,9} = \underline{\frac{1,54 \ A}{230 \ V}}$	2	

Exer	cices	Nombre of maximal	de points obtenus
4.	5.2.9 Comment nomme-t-on les symboles de relais suivants 2	3	
4.	a)	3	
	Relais temporisé, retardé à la chute (minuterie)	1	
	Relais pas à pas, télérupteur	1	
	Relais temporisé, retardé à l'attraction	1	
5.	5.2.1 Calculez l'efficacité lumineuse de l'ampoule fluo compact (ampoule économique). Caractéristiques nominales: - Puissance nominale: - Tension nominale: - Flux lumineux: - Durée de vie: - Durée de vie: - Température de couleur: - 4000 K	2	
	$K = \frac{\Phi}{P} = \frac{1200 \text{ lm}}{11 \text{ W}} = \underline{\frac{109, 1 \frac{\text{lm}}{\text{W}}}{\text{M}}}$		

S.3.4 Sur un réseau triphasé 3 x 400 V/ 230 V, on relie : - un chauffe-eau triphasé U = 3 x 400 V, 12 A - l'éclairage d'une halle U = 230 V réparti sur les trois phases : $I_{L1} = 8.2 \text{ A, } \cos \phi_1 = 0.7 \text{ ; } I_{L2} = 7.6 \text{ A, } \cos \phi_2 = 0.85$ $I_{L3} = 9.4 \text{ A, } \cos \phi_3 = 0.9$ Calculez : a) la puissance du chauffe-eau. $P_{Chauffe-eau} = U \cdot I \cdot \sqrt{3} = 400 \text{ V} \cdot 12 \text{ A} \cdot \sqrt{3} = 8314 \text{ W}$ b) la puissance active totale de l'éclairage. $P_{L1} = U_{Réseau} \cdot I_{L1} \cdot \cos \phi_1 = 230 \text{ V} \cdot 8.2 \text{ A} \cdot 0.7 = 1320.2 \text{ W}$ $P_{L2} = U_{Réseau} \cdot I_{L2} \cdot \cos \phi_2 = 230 \text{ V} \cdot 7.6 \text{ A} \cdot 0.85 = 1485.8 \text{ W}$ $P_{L3} = U_{Ráseau} \cdot I_{L3} \cdot \cos \phi_3 = 230 \text{ V} \cdot 9.4 \text{ A} \cdot 0.9 = 1945.8 \text{ W}$ $P_{tot/éclairage} = P_{L1} + P_{L2} + P_{L3} = 1320.2 \text{ W} + 1485.8 \text{ W} + 1945.8 \text{ W}$ $= \frac{4751.5 \text{ W}}{2}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 \text{ W} + 4751.5 \text{ W} = 13065.5 \text{ W}$ $= 5.2.9$ Quelle est la tension U₂, sachant que R₁ = 100 Ω et que R₂ est une diode Zener de 7.2 V? $+ \bigcirc \qquad $	1 2 (0,5) (0,5)	obtenu
- un chauffe-eau triphasé U = 3 x 400 V, 12 A - l'éclairage d'une halle U = 230 V réparti sur les trois phases : $I_{L1} = 8,2$ A, $\cos \phi_1 = 0,7$; $I_{L2} = 7,6$ A, $\cos \phi_2 = 0,85$ $I_{L3} = 9,4$ A, $\cos \phi_3 = 0,9$ Calculez : a) la puissance du chauffe-eau. $P_{Chauffe-eau} = U \cdot I \cdot \sqrt{3} = 400 \text{ V} \cdot 12 \text{ A} \cdot \sqrt{3} = \underline{8314 \text{ W}}$ b) la puissance active totale de l'éclairage. $P_{L1} = U_{R\acute{e}seau} \cdot I_{L1} \cdot \cos\phi_1 = 230 \text{ V} \cdot 8,2 \text{ A} \cdot 0,7 = \underline{1320,2 \text{ W}}$ $P_{L2} = U_{R\acute{e}seau} \cdot I_{L2} \cdot \cos\phi_2 = 230 \text{ V} \cdot 7,6 \text{ A} \cdot 0,85 = \underline{1485,8 \text{ W}}$ $P_{L3} = U_{R\grave{e}seau} \cdot I_{L3} \cdot \cos\phi_3 = 230 \text{ V} \cdot 9,4 \text{ A} \cdot 0,9 = \underline{1945,8 \text{ W}}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320,2 \text{ W} + 1485,8 \text{ W} + 1945,8 \text{ W}$ $= \underline{4751,5 \text{ W}}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 \text{ W} + 4751,5 \text{ W} = \underline{13065,5 \text{ W}}$ 5.2.9 Quelle est la tension U ₂ , sachant que R ₁ = 100 Ω et que R ₂ est une diode Zener de 7,2 V ?	2 (0,5)	
- l'éclairage d'une halle U = 230 V réparti sur les trois phases : $I_{L1} = 8, 2$ A, $\cos \varphi_1 = 0, 7$; $I_{L2} = 7, 6$ A, $\cos \varphi_2 = 0, 85$ $I_{L3} = 9, 4$ A, $\cos \varphi_3 = 0, 9$ Calculez : a) la puissance du chauffe-eau. $ P_{Chauffe-eau} = U \cdot I \cdot \sqrt{3} = 400 \text{ V} \cdot 12 \text{ A} \cdot \sqrt{3} = \underline{8314 \text{ W}} $ b) la puissance active totale de l'éclairage. $ P_{L1} = U_{R\acute{e}seau} \cdot I_{L1} \cdot \cos \varphi_1 = 230 \text{ V} \cdot 8, 2 \text{ A} \cdot 0, 7 = \underline{1320, 2 \text{ W}} $ $ P_{L2} = U_{R\acute{e}seau} \cdot I_{L2} \cdot \cos \varphi_2 = 230 \text{ V} \cdot 7, 6 \text{ A} \cdot 0, 85 = \underline{1485, 8 \text{ W}} $ $ P_{L3} = U_{R\grave{a}seau} \cdot I_{L3} \cdot \cos \varphi_3 = 230 \text{ V} \cdot 9, 4 \text{ A} \cdot 0, 9 = \underline{1945, 8 \text{ W}} $ $ P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W} $ $ = \underline{4751, 5 \text{ W}} $ c) la puissance active totale de tous les récepteurs. $ P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 \text{ W} + 4751, 5 \text{ W} = \underline{13065, 5 \text{ W}} $ 5.2.9 Quelle est la tension U ₂ , sachant que R ₁ = 100 Ω et que R ₂ est une diode Zener de 7,2 V ?	2 (0,5)	
$\begin{array}{l} I_{L1} = 8,2 \overset{\frown}{A}, \cos \phi_1 = 0,7 \ ; \ I_{L2} = 7,6 \ A, \cos \phi_2 = 0,85 \\ I_{L3} = 9,4 \ A, \cos \phi_3 = 0,9 \end{array}$ Calculez : a) la puissance du chauffe-eau. $P_{Chauffe-eau.} = U \cdot I \cdot \sqrt{3} = 400 \ V \cdot 12 \ A \cdot \sqrt{3} = \underline{8314 \ W}$ b) la puissance active totale de l'éclairage. $P_{L1} = U_{R\acute{e}seau} \cdot I_{L1} \cdot \cos \phi_1 = 230 \ V \cdot 8,2 \ A \cdot 0,7 = \underline{1320,2 \ W}$ $P_{L2} = U_{R\acute{e}seau} \cdot I_{L2} \cdot \cos \phi_2 = 230 \ V \cdot 7,6 \ A \cdot 0,85 = \underline{1485,8 \ W}$ $P_{L3} = U_{R\grave{a}seau} \cdot I_{L3} \cdot \cos \phi_3 = 230 \ V \cdot 9,4 \ A \cdot 0,9 = \underline{1945,8 \ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320,2 \ W + 1485,8 \ W + 1945,8 \ W$ $= \underline{4751,5 \ W}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 \ W + 4751,5 \ W = \underline{13065,5 \ W}$ 5.2.9 Quelle est la tension U ₂ , sachant que R ₁ = 100 Ω et que R ₂ est une diode Zener de 7,2 V ?	2 (0,5)	
I _{L3} = 9,4 A, cos $φ_3$ = 0,9 Calculez : a) la puissance du chauffe-eau. $P_{Chauffe-eau.} = U \cdot I \cdot \sqrt{3} = 400 \text{ V} \cdot 12 \text{ A} \cdot \sqrt{3} = 8314 \text{ W}$ b) la puissance active totale de l'éclairage. $P_{L1} = U_{R\acute{e}seau} \cdot I_{L1} \cdot cosφ_1 = 230 \text{ V} \cdot 8, 2 \text{ A} \cdot 0, 7 = 1320, 2 \text{ W}$ $P_{L2} = U_{R\acute{e}seau} \cdot I_{L2} \cdot cosφ_2 = 230 \text{ V} \cdot 7, 6 \text{ A} \cdot 0, 85 = 1485, 8 \text{ W}$ $P_{L3} = U_{R\acute{e}seau} \cdot I_{L3} \cdot cosφ_3 = 230 \text{ V} \cdot 9, 4 \text{ A} \cdot 0, 9 = 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + $	2 (0,5)	
a) la puissance du chauffe-eau. $P_{Chauffe-eau.} = U \cdot I \cdot \sqrt{3} = 400 \ V \cdot 12 \ A \cdot \sqrt{3} = \underline{8314 \ W}$ b) la puissance active totale de l'éclairage. $P_{L1} = U_{R\acute{e}seau} \cdot I_{L1} \cdot cos\phi_1 = 230 \ V \cdot 8, 2 \ A \cdot 0, 7 = \underline{1320, 2 \ W}$ $P_{L2} = U_{R\acute{e}seau} \cdot I_{L2} \cdot cos\phi_2 = 230 \ V \cdot 7, 6 \ A \cdot 0, 85 = \underline{1485, 8 \ W}$ $P_{L3} = U_{R\grave{e}seau} \cdot I_{L3} \cdot cos\phi_3 = 230 \ V \cdot 9, 4 \ A \cdot 0, 9 = \underline{1945, 8 \ W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \ W + 1485, 8 \ W + 1945, 8 \ W$ $= \underline{4751, 5 \ W}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 \ W + 4751, 5 \ W = \underline{13065, 5 \ W}$ 5.2.9 Quelle est la tension U ₂ , sachant que R ₁ = 100 Ω et que R ₂ est une diode Zener de 7,2 V ?	2 (0,5)	
$\begin{split} &P_{Chauffe-eau.} = U \cdot I \cdot \sqrt{3} = 400 V \cdot 12 A \cdot \sqrt{3} = \underline{8314 W} \\ &b) \text{ la puissance active totale de l'éclairage.} \\ &P_{L1} = U_{R\acute{e}seau} \cdot I_{L1} \cdot cos\phi_1 = 230 V \cdot 8, 2 A \cdot 0, 7 = \underline{1320, 2 W} \\ &P_{L2} = U_{R\acute{e}seau} \cdot I_{L2} \cdot cos\phi_2 = 230 V \cdot 7, 6 A \cdot 0, 85 = \underline{1485, 8 W} \\ &P_{L3} = U_{R\grave{a}seau} \cdot I_{L3} \cdot cos\phi_3 = 230 V \cdot 9, 4 A \cdot 0, 9 = \underline{1945, 8 W} \\ &P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 W + 1485, 8 W + 1945, 8 W \\ &= \underline{4751, 5 W} \end{split}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 W + 4751, 5 W = \underline{13065, 5 W} \end{split}$	2 (0,5)	
b) la puissance active totale de l'éclairage. $P_{L1} = U_{R\acute{e}seau} \cdot I_{L1} \cdot cos\phi_1 = 230 V \cdot 8, 2 A \cdot 0, 7 = \underline{1320, 2 W}$ $P_{L2} = U_{R\acute{e}seau} \cdot I_{L2} \cdot cos\phi_2 = 230 V \cdot 7, 6 A \cdot 0, 85 = \underline{1485, 8 W}$ $P_{L3} = U_{R\grave{e}seau} \cdot I_{L3} \cdot cos\phi_3 = 230 V \cdot 9, 4 A \cdot 0, 9 = \underline{1945, 8 W}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 W + 1485, 8 W + 1945, 8 W$ $= \underline{4751, 5 W}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 W + 4751, 5 W = \underline{13065, 5 W}$ $5.2.9$ Quelle est la tension U ₂ , sachant que R ₁ = 100 Ω et que R ₂ est une diode Zener de 7,2 V ?	(0,5)	
$\begin{array}{l} P_{L1} = U_{R\acute{e}seau} \cdot I_{L1} \cdot cos\phi_1 = 230 V \cdot 8, 2 A \cdot 0, 7 = \underline{1320, 2 W} \\ \\ P_{L2} = U_{R\acute{e}seau} \cdot I_{L2} \cdot cos\phi_2 = 230 V \cdot 7, 6 A \cdot 0, 85 = \underline{1485, 8 W} \\ \\ P_{L3} = U_{R\acute{e}seau} \cdot I_{L3} \cdot cos\phi_3 = 230 V \cdot 9, 4 A \cdot 0, 9 = \underline{1945, 8 W} \\ \\ P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 W + 1485, 8 W + 1945, 8 W \\ \\ = \underline{4751, 5 W} \\ \\ c) \text{la puissance active totale de tous les récepteurs.} \\ \\ P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 W + 4751, 5 W = \underline{13065, 5 W} \\ \\ \hline 5.2.9 \\ \text{Quelle est la tension U}_2, \text{sachant que R}_1 = 100 \Omega \text{et que R}_2 \text{est une diode Zener de 7,2 V ?} \\ \end{array}$	(0,5)	
$\begin{split} P_{L2} &= U_{R\acute{e}seau} \cdot I_{L2} \cdot cos\phi_2 = 230 \ V \cdot 7, 6 \ A \cdot 0, 85 = \underline{\underline{1485, 8 \ W}} \\ P_{L3} &= U_{R\grave{a}seau} \cdot I_{L3} \cdot cos\phi_3 = 230 \ V \cdot 9, 4 \ A \cdot 0, 9 = \underline{\underline{1945, 8 \ W}} \\ P_{tot/\acute{e}clairage} &= P_{L1} + P_{L2} + P_{L3} = 1320, 2 \ W + 1485, 8 \ W + 1945, 8 \ W \\ &= \underline{\underline{4751, 5 \ W}} \end{split}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} &= P_{Chauffe-eau} + P_{Eclairage} = 8314 \ W + 4751, 5 \ W = \underline{\underline{13065, 5 \ W}} \end{split}$ 5.2.9 Quelle est la tension U_2 , sachant que R_1 = 100 Ω et que R_2 est une diode Zener de 7,2 V ?		
$P_{L3} = U_{R\grave{a}seau} \cdot I_{L3} \cdot cos\phi_3 = 230 \text{ V} \cdot 9,4 \text{ A} \cdot 0,9 = \underline{\underline{1945,8 W}}$ $P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320,2 \text{ W} + 1485,8 \text{ W} + 1945,8 \text{ W}$ $= \underline{\underline{4751,5 W}}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 \text{ W} + 4751,5 \text{ W} = \underline{\underline{13065,5 W}}$ $5.2.9$ Quelle est la tension U ₂ , sachant que R ₁ = 100 Ω et que R ₂ est une diode Zener de 7,2 V ?	(0,5)	
$P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $= \underline{4751, 5 \text{ W}}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 \text{ W} + 4751, 5 \text{ W} = \underline{13065, 5 \text{ W}}$ $5.2.9$ Quelle est la tension U ₂ , sachant que R ₁ = 100 Ω et que R ₂ est une diode Zener de 7,2 V ?	Ī	
$= \underline{4751,5~W}$ c) la puissance active totale de tous les récepteurs. $P_{Tot} = P_{Chauffe-eau} + \ P_{Eclairage} = 8314~W~+4751,5~W = \underline{\underline{13065,5~W}}$ 5.2.9 Quelle est la tension U ₂ , sachant que R ₁ = 100 Ω et que R ₂ est une diode Zener de 7,2 V ?	(0,5)	
$P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 \text{ W} + 4751, 5 \text{ W} = \underbrace{\underline{13065, 5 \text{ W}}}_{5.2.9}$ 5.2.9 Quelle est la tension U ₂ , sachant que R ₁ = 100 Ω et que R ₂ est une diode Zener de 7,2 V ?	(0,5)	
5.2.9 Quelle est la tension U_2 , sachant que R_1 = 100 Ω et que R_2 est une diode Zener de 7,2 V ?	1	
Quelle est la tension U_2 , sachant que R_1 = 100 Ω et que R_2 est une diode Zener de 7,2 V ?		
Quelle est la tension U_2 , sachant que R_1 = 100 Ω et que R_2 est une diode Zener de 7,2 V ?		
+ O R ₁ O +	2	
$\bigcup_{1} U_{1}$ $R_{2} \downarrow_{1} U_{2}$		
- 0 -		
a) $U_1 = 6 \text{ V}$	1	
$U_2 = \underline{\underline{6} \ V}$		
b) U ₁ = 9 V	1	
$U_2 = \underline{7, 2 V}$		
'	1	1
	1	

Exer	cices	Nombre maximal	de points obtenus
8.	5.1.4 Réglage d'un relais thermique pour la protection de moteur. Sur la plaquette signalétique du moteur, on trouve les informations suivantes : P = 6500 W, $\cos \varphi = 0.87$, $\eta = 0.82$, U = 3 x 400 V, raccordement en étoile. A quel courant doit-on régler le relais thermique pour protéger le moteur des surcharges ? Règle professionnelle : 2 x la puissance utile = au courant de ligne. $I = 2 \cdot 6.5 \text{ kW} => \underline{13 \text{ A}}$ ou $I = \frac{P}{\sqrt{3} \cdot U \cdot \cos \varphi \cdot \eta} = \frac{6500 \text{ W}}{\sqrt{3} \cdot 400 \text{ V} \cdot 0.87 \cdot 0.82} = \underline{13.15 \text{ A}}$	2	
9.	5.3.1 Une lampe de contrôle 230 V / 5 W / 50 Hz est raccordée en série avec un condensateur, sur le réseau 400 V / 50 Hz. Calculez: a) l'intensité du courant dans ce circuit série. $I = \frac{P}{U} = \frac{5 \text{ W}}{230 \text{ V}} = \underline{21,74 \text{ mA}}$	1	
	b) la tension aux bornes du condensateur. $U_{bc}=\sqrt{U^2-{U_w}^2}=\sqrt{(400~V)^2-(230~V)^2}=\underline{327,3~V}$	1	
	c) la capacité du condensateur. (réponse donnée en nF)	2	
	$X_{c} = \frac{U_{bc}}{I} = \frac{327, 3 \text{ V}}{21,74 \text{ mA}} = \underline{15,05 \text{ k}\Omega}$	(1)	
	$C = \frac{1}{\omega \cdot X_c} = \frac{1}{2\pi \cdot 50 \text{ Hz} \cdot 15,05 \text{ k}\Omega} = \frac{212 \text{ nF}}{2\pi \cdot 50 \text{ Hz} \cdot 15,05 \text{ k}\Omega}$	(1)	

5.2.6 Deux résistances, 20 Ω et 60 Ω, sont connectées en parallèle et alimentées par une batterie. La tension aux bornes de la batterie est de 6 V. Calculez : a) le courant l'traversant l'ampèremètre. 1 I = \frac{U}{R_L} = \frac{6 V}{15 Ω} = \frac{0.4 A}{20 Ω + 60 Ω} = \frac{15 Ω}{20 Ω + 60 Ω} = \frac	ercices			Nombre maximal	de point
Calculez: a) le courant l'traversant l'ampèremètre. $I = \frac{U}{R_L} = \frac{6 \text{ V}}{15 \Omega} = \underline{0.4 \text{ A}}$ $R_L = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{20 \Omega \cdot 60 \Omega}{20 \Omega + 60 \Omega} = \underline{15 \Omega}$ (0,5) b) la tension à vide U_o de la batterie. $U_o = I \cdot R_{Equ} = 0.4 \text{ A} \cdot 15.4 \Omega = \underline{6.16 \text{ V}}$ $R_{Equ} = R_L + R_1 = 15 \Omega + 0.4 \Omega = \underline{15.4 \Omega}$ (0,5) $\frac{5.5.1}{Système KNX}$ a) Cochez pour indiquer si l'affirmation suivante est juste ou fausse. Affirmation $\frac{Affirmation}{Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs}$ $\frac{Affirmation}{Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs}$ $\frac{Affirmation}{Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs}$ $\frac{Affirmation}{Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs}$ $\frac{Adresse de groupe}{Le système KNX est un système KNX ?}$ 1 Adresse de groupe	Deux résistances, 20 Ω et 60 Ω , sont connectées en parallèle		ntées par		Obtona
Calculez: a) le courant l'traversant l'ampèremètre. $I = \frac{U}{R_L} = \frac{6 \text{ V}}{15 \Omega} = \underline{0.4 \text{ A}} \tag{0.5}$ $R_L = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{20 \Omega \cdot 60 \Omega}{20 \Omega + 60 \Omega} = \underline{15 \Omega} \tag{0.5}$ b) la tension à vide Uo de la batterie. $U_o = I \cdot R_{Equ} = 0.4 \text{ A} \cdot 15.4 \Omega = \underline{6.16 \text{ V}} \tag{0.5}$ $R_{Equ} = R_L + R_i = 15 \Omega + 0.4 \Omega = \underline{15.4 \Omega} \tag{0.5}$ $5.5.1$ Système KNX a) Cochez pour indiquer si l'affirmation suivante est juste ou fausse. $Affirmation \qquad Juste Faux$ Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs $connectés.$ b) Comment nomme-t-on les deux différentes adresses dans un système KNX ? Adresse de groupe	0.4Ω $U = 6 V$ $V = 20 \Omega$ $R_2 = 60 \Omega$				
a) le courant l'traversant l'ampèremètre. $I = \frac{U}{R_L} = \frac{6 V}{15 \Omega} = \underline{0.4 A} \qquad (0.5)$ $R_L = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{20 \Omega \cdot 60 \Omega}{20 \Omega + 60 \Omega} = \underline{15 \Omega} \qquad (0.5)$ b) la tension à vide U_0 de la batterie. $U_0 = I \cdot R_{Equ} = 0.4 A \cdot 15.4 \Omega = \underline{6.16 V} \qquad (0.5)$ $R_{Equ} = R_L + R_i = 15 \Omega + 0.4 \Omega = \underline{15.4 \Omega} \qquad (0.5)$ $5.5.1$ Système KNX a) Cochez pour indiquer si l'affirmation suivante est juste ou fausse.					
$R_{L} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}} = \frac{20 \ \Omega \cdot 60 \ \Omega}{20 \ \Omega + 60 \ \Omega} = \underline{15 \ \Omega} \tag{0.5}$ b) la tension à vide U_{0} de la batterie. $U_{0} = I \cdot R_{Equ} = 0, 4 \ A \cdot 15, 4 \ \Omega = \underline{6, 16 \ V} \tag{0.5}$ $R_{Equ} = R_{L} + R_{i} = 15 \ \Omega + 0, 4 \ \Omega = \underline{15, 4 \ \Omega} \tag{0.5}$ $5.5.1$ Système KNX a) Cochez pour indiquer si l'affirmation suivante est juste ou fausse. $\boxed{Affirmation \qquad Juste Faux}$ Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs $\boxed{\Box}$ 1 b) Comment nomme-t-on les deux différentes adresses dans un système KNX ? 1 $\boxed{Adresse de groupe} \tag{0.5}$				1	
b) la tension à vide U_o de la batterie. $U_o = I \cdot R_{Equ} = 0, 4 \text{ A} \cdot 15, 4 \Omega = \underline{6,16 \text{ V}} \tag{0,5}$ $R_{Equ} = R_L + R_i = 15 \Omega + 0, 4 \Omega = \underline{15, 4 \Omega} \tag{0,5}$ $\begin{array}{c} 5.5.1 \\ \text{Système KNX} \\ \text{a) Cochez pour indiquer si l'affirmation suivante est juste ou fausse.} \end{array}$ $\begin{array}{c} 2 \\ \text{Affirmation} \\ \text{Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs} \\ \text{connectés.} \end{array}$ $\begin{array}{c} 1 \\ \text{Adresse de groupe} \end{array}$	$I = \frac{U}{R_L} = \frac{6 \text{ V}}{15 \Omega} = \underline{0.4 \text{ A}}$			(0,5)	
$U_{o} = I \cdot R_{Equ} = 0, 4 \text{ A} \cdot 15, 4 \Omega = \underline{6, 16 \text{ V}} \tag{0,5}$ $R_{Equ} = R_{L} + R_{i} = 15 \Omega + 0, 4 \Omega = \underline{15, 4 \Omega} \tag{0,5}$ $5.5.1$ Système KNX a) Cochez pour indiquer si l'affirmation suivante est juste ou fausse. $Affirmation \qquad Juste \qquad Faux$ Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs $connectés.$ b) Comment nomme-t-on les deux différentes adresses dans un système KNX ? $Adresse de groupe \tag{0,5}$	$R_{L} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}} = \frac{20 \Omega \cdot 60 \Omega}{20 \Omega + 60 \Omega} = \underline{15 \Omega}$			(0,5)	
$R_{Equ} = R_L + R_i = 15 \Omega + 0, 4 \Omega = \underline{15, 4 \Omega} \tag{0,5}$ $5.5.1$ Système KNX a) Cochez pour indiquer si l'affirmation suivante est juste ou fausse. $Affirmation \qquad Juste \qquad Faux$ Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs $Connectés.$ b) Comment nomme-t-on les deux différentes adresses dans un système KNX ? $Adresse de groupe \tag{0,5}$	b) la tension à vide U₀ de la batterie.			1	
5.5.1 Système KNX a) Cochez pour indiquer si l'affirmation suivante est juste ou fausse. Affirmation Juste Faux Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs connectés. b) Comment nomme-t-on les deux différentes adresses dans un système KNX? Adresse de groupe (0,5)	$\mathbf{U_o} = \mathbf{I} \cdot \mathbf{R_{Equ}} = 0, 4 \mathbf{A} \cdot 15, 4 \Omega = \underline{\underline{6, 16 V}}$			(0,5)	
Affirmation Juste Faux Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs connectés. b) Comment nomme-t-on les deux différentes adresses dans un système KNX ? Adresse de groupe 2 Affirmation Juste Faux 1 1 1 1 1 1 1 1 1 1 1 1 1	$\mathbf{R}_{\mathrm{Equ}} = \mathbf{R}_{\mathrm{L}} + \mathbf{R}_{\mathrm{i}} = 15 \Omega + 0, 4 \Omega = \underline{15, 4 \Omega}$			(0,5)	
Affirmation Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs connectés. b) Comment nomme-t-on les deux différentes adresses dans un système KNX ? Adresse de groupe Affirmation Juste Faux 1 (0,5)				2	
Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs onnectés. b) Comment nomme-t-on les deux différentes adresses dans un système KNX? Adresse de groupe (0,5)	a) Cochez pour indiquer si l'affirmation suivante est juste ou t	fausse.			
avec intelligence distribuée dans les dispositifs connectés. b) Comment nomme-t-on les deux différentes adresses dans un système KNX? Adresse de groupe (0,5)	Affirmation	Juste	Faux		
Adresse de groupe (0,5)	avec intelligence distribuée dans les dispositifs	\boxtimes		1	
	b) Comment nomme-t-on les deux différentes adresses dans	un systè	me KNX ?	1	
Adresse physique (0,5)	Adresse de groupe			(0,5)	
	Adresse physique			(0,5)	

Exer	cices					Nombre of maximal	de points obtenus
12.	5.2.6 Pour chacune des affirmati ou fausse.	ions suivantes, cod	chez afin d'indic	quer si elle	est juste	2	
	Aff	irmations		Juste	Faux		
	NiCd – Accus sont ecolog	· · · ·			\boxtimes	0,5	
	La force électromotrice (F plomb est de 2 V	EM) d'un accumul	ateur au	\boxtimes		0,5	
	Les accumulateurs Nicke taille égale, 10 fois plus d accumulateurs NiCd	e capacité que les				0,5	
	Lithium-Ionen-Accus ont to ca. 3,6 V	une force électrom	otrice de	\boxtimes		0,5	
13.	5.1.4/ 5.1.5 Cochez dans le tableau, qu différents moyens de prote		ntervient(-ienne	ent) dans l	es	2	
			Composant				
	Moyen de protection	Dispositif magnétique	Dispositif thermique	Dispos courar différe	nt		
	Relais de protection pour moteur		\boxtimes			0,5	
	DDR (RCD)				\boxtimes	0,5	
	Disjoncteur de canalisation					0,5	
	Disjoncteur de moteur		\boxtimes			0,5	

rcices				Nombre of maximal	de points obtenus
5.3.4 Consommateurs sur un réseau triphasé 3 >	400 V / 50	Hz		2	
a) Calculez les courants de ligne (I _{L1} , I _{L2} , I _{L3})				1,5	
Tous les consommateurs ont une charge p	urement rés	istive.			
L ₁ —					
N ————————————————————————————————————					
$R_1 = 27 \Omega$ $P_2 = 1000 W$ $R_3 = 54 \Omega$					
U 230 V				(0.5)	
a) $I_{L1} = \frac{U}{R_1} = \frac{230 \text{ V}}{27 \Omega} = \underline{8,52 \text{ A}}$				(0,5)	
$I_{L2} = \frac{P_2}{U} = \frac{1000 \text{ W}}{230 \text{ V}} = \underline{4,35 \text{ A}}$				(0,5)	
$I_{L3} = \frac{U}{R_3} = \frac{230 \text{ V}}{54 \Omega} = \frac{4,26 \text{ A}}{}$				(0,5)	
b) Que devient le courant du neutre, si l'on	ajoute un ré	ecepteur équil	ibré couplé	0,5	
en étoile de 4kW ?					
L ₁					
L ₃					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- · - · - · - · - ·		P ₄ = 4 kW		
		R_4 R_4 R_4	7		
	L	J			
	<u> </u>				
Cochez l'affirmation correcte.					
Affirmation	Reste le même	Augmente	Diminue		
Le courant dans le conducteur de neutre					
Le courant dans le conducteur de neutre					

es		obtenus
3.4	maximal	oblenus
uel est la valeur du courant dans le conducteur de neutre, lorsque I_{L1} = 4,6 A, = 3,8 A et I_{L3} = 2,6 A ? (solution graphique) 3 x 400 V / 50 Hz	2	
——————————————————————————————————————		
:		
I _{L1} = 4,6 A I _{L2} = 5,6 A I _{L3} = 2,6 A		
1 A 10 mm		
I A = IU IIIIII		
l ₁ l ₃ l ₂		
olution : I _{N =} 1,7 A (Correcte de 1,5 A à 1,9 A)	(2)	
	1 A = 10 mm 1 A = 10 mm I _{1,1} = 4,6 A	1 A = 10 mm 1 A = 10 mm 1 N ₂ = 3.8 A

Exercices	Nombre of maximal	de points obtenus
 5.3.2 Vous avez mesuré les valeurs suivantes avec les différents appareils de mesure pour un moteur à courant alternatif monophasé. 	5	
NH 09 / N 02 / N 02 / N 02 / N 03 / N 03 / N 04 / N		
Calculez :		
a) la puissance apparente S.	1	
$S = U \cdot I = 230 V \cdot 5,9 A = \underline{1357 VA}$		
b) le cos φ.	1	
$\cos \varphi = \frac{P}{S} = \frac{923 \text{ W}}{1357 \text{ VA}} = \frac{0.68}{1000}$		
c) la puissance réactive Q.	1	
$Q = \sqrt{(S)^2 - (P)^2} = \sqrt{(1357 \text{ VA})^2 - (923 \text{ W})^2} = \underline{994,7 \text{ var}}$		
d) le courant l lorsque le cos φ passe à 0,9.	1	
$I_{\text{Comp.}} = \frac{P}{U \cdot \cos \varphi_{\text{C.}}} = \frac{923 \text{ W}}{230 \text{ V} \cdot 0.9} = \frac{4.46 \text{ A}}{230 \text{ V} \cdot 0.9}$		
e) la capacité du condensateur, raccordé en parallèle avec le moteur, afin d'améliorer le cos φ à 0,9. (Capacité du condensateur en μF)	1	
$Q_c = P (\tan \phi_1 - \tan \phi_2) = 923 \text{ W} \cdot (1,078 - 0,484) = \underline{548,2 \text{ var}}$	(0,5)	
$X_{c} = \frac{(U)^{2}}{Q_{c}} = \frac{(230 \text{ V})^{2}}{548, 2 \text{ var}} = \underline{96, 5 \Omega}$		
$C = \frac{1}{2 \pi \cdot f \cdot X_c} = \frac{1}{2 \pi \cdot 50 \text{ Hz} \cdot 96, 5 \Omega} = \frac{33 \mu F}{2 \pi \cdot 50 \text{ Hz} \cdot 96, 5 \Omega}$	(0,5)	

Exer	cices	Nombre maximal	de points obtenus
17.	5.4.4 Une ligne triphasée 3 x 400 V / 50 Hz en cuivre de section A = 10 mm² alimente un chauffage triphasé équilibré 3 x 400V. La ligne a une longueur de 50 m et elle est parcourue par un courant I = 35 A. $ (\rho_{Cu} = 0.0175 \ \frac{\Omega \cdot mm^2}{m}) $	3	obtenus
	Calculez : a) la chute de tension en ligne exprimée en volt. $\Delta U = \frac{\sqrt{3} \cdot I \cdot l \cdot \rho}{A} = \frac{\sqrt{3} \cdot 35 \ A \cdot 50 \ m \cdot 0,0175 \ \Omega \ mm^2}{m \cdot 10 \ mm^2} = \underline{5,3 \ V}$	1	
	b) la chute de tension en ligne, exprimée en pourcent. $\Delta U = \frac{\Delta U \cdot 100 \ \%}{U} = \frac{5,3 \ V \cdot 100 \ \%}{400 \ V} = \underline{\frac{1,33 \ \%}{1000000000000000000000000000000000000$	1	
	c) la puissance perdue en watts. $P_V=\frac{3\cdot I^2\cdot l\cdot \rho}{A}=\frac{3\cdot (35A)^2\cdot 50m\cdot 0,0175\Omegamm^2}{m\cdot 10mm^2}=\underline{321,6W}$ ou	1	
	$\begin{split} P_v &= 3 \cdot I^2 \cdot R_l = 3 \cdot (35)^2 \cdot 0,0875 \Omega = \underline{\underline{321,6 W}} \\ \\ R_{Ltg.} &= \frac{\rho \cdot l}{A} = \frac{0,0175 \Omega \cdot mm^2 \cdot 50 m}{m \cdot 10 mm^2} = \underline{0,0875 \Omega} \end{split}$		

ercices	Nombre of maximal	de point obtenu
5.4.4		
Une installation se compose d'un moteur triphasé et d'un chauffage résistif.	3	
L'installation est compensée selon le schéma suivant.		
3 x 400 V / 50 Hz		
∏ F₃		
ү ү ү		
<u> </u>		
\top $(_{M})$		
c_1, c_2, c_3		
Moteur triphasé Chauffage résistif 3 x 400 V 3 x 400 V		
3 x 400 V		
C ₁ , C ₂ , C ₃ : Trois condensateurs de chacun 1 kvar connectés en triangle,		
M: Moteur alternatif U = 3 x 400 V, I = 12 A, $\cos \varphi = 0.86$		
E: Chauffage résistif P = 3 kW		
Quel est le facteur de puissance de l'ensemble du circuit ?		
·		
$P_{\text{Tot.}} = P_{\text{M}} + P_{\text{R}} = 7150 \text{ W} + 3000 \text{ W} = \underline{10150 \text{ W}}$	(0,5)	
$P_{M} = \sqrt{3} \cdot U \cdot I \cdot \cos \varphi_{M} = \sqrt{3} \cdot 400 V \cdot 12 A \cdot 0,86 = \frac{7150 W}{2}$	(0,5)	
$P_{R}=3000\mathrm{W}$		
$Q_{\text{Tot.}} = Q_{\text{M}} - Q_{\text{C}} = 4240 \text{var} - 3000 \text{var} = \underline{1240 \text{var}}$	(0,5)	
	(3,3)	
$Q_{M} = \sqrt{3} \cdot U \cdot I \cdot \sin \varphi_{M} = \sqrt{3} \cdot 400 V \cdot 12 A \cdot 0,51 = \underline{4240 \text{var}}$	(0,5)	
$\cos \varphi_{\rm M} = 0.86 = \varphi_{\rm M} = 30.68 = \sin \varphi_{\rm M} = 0.51$		
TM TM		
$Q_{C} = 3 \cdot Q_{1} = 3 \cdot 1000 \text{ var} = 3000 \text{ var}$		
$O_{\pi_{ab}}$ 1240 var		
$\tan \varphi = \frac{Q_{\text{Tot.}}}{P_{\text{Tot.}}} = \frac{1240 \text{ var}}{10150 \text{ W}} = \frac{0,122}{10150 \text{ W}}$		
Tot. 10130 W		
$\tan \phi_{\text{Tot.}} = 0,122 => \phi_{\text{Tot.}} = 6,956 \degree => \cos \phi_{\text{Tot.}} = \underline{0,993}$	(1)	
100.		

Exer	cices	Nombre maximal	de points obtenus
19.	5.2.9 Un bureau en open space doit être équipé d'une lampe parabolique à LED de 32 W. L'éclairage doit être de 400 lux	3	osterius
	Dimension du bureau : Longueur 15 m, Largeur 7 m, Hauteur 3 m Rendement lumineux du local : 0,7		
	Luminaire encastré : Longueur 1,198 m, Largeur 0,151 m Type : Tulux Nr. 28XM8M 32 W, 3279 lm, LED PRIM		
	Rendement du luminaire : $\eta_L = 95 \%$		
	Calculez :		
	a) le nombre de luminaires nécessaire en tenant compte d'un facteur de vieillissement (encrassement) de 0,8.	2	
	$n = \frac{Em \cdot A}{\Phi_L \cdot \eta_R \cdot \eta_L \cdot WF} = \frac{400 \text{ lx} \cdot 7 \text{ m} \cdot 15 \text{ m}}{3279 \text{ lm} \cdot 0, 70 \cdot 0, 95 \cdot 0, 8} = \underline{24 \text{ Luminaires}}$		
	b) la puissance par mètre carré du local.	1	
	P par m ² = $\frac{P_L \cdot n}{A} = \frac{32 W \cdot 24}{7 m \cdot 15 m} = \frac{7,31 \frac{W}{m^2}}{}$		
	Total	49	