Geometria Vettoriale nello spazio

1 Vettori geometrici in V_3

Dal momento che i concetti fondamentali sono già stati approfonditi nel piano, ci limitiamo a fornire un rapido elenco delle nozioni più importanti.

Una coppia ordinata (P,Q) di punti dello spazio determina un **segmento orientato** dello spazio, indicato con \overrightarrow{PQ} .

Di un segmento orientato \overrightarrow{PQ} si definiscono il **modulo** $\|\overrightarrow{PQ}\|$ (la distanza tra i punti P e Q), la **direzione** (cioè la direzione della retta PQ) e il **senso** o **verso** ("dal punto P verso il punto Q"). Se P=Q, il segmento orientato \overrightarrow{PP} è un **segmento nullo**.

Due segmenti orientati \overrightarrow{PQ} e \overrightarrow{RS} sono detti **equipollenti** se possiedono lo stesso modulo (sono cioè isometrici), la stessa direzione (sono collineari) e lo stesso verso (sono equiorientati). In questo caso, scriveremo semplicemente $\overrightarrow{PQ} = \overrightarrow{RS}$. L'insieme (o, meglio,
la **classe**) di tutti i segmenti orientati equipollenti ad un dato segmento è un **vettore geometrico** dello spazio. Indichiamo i vettori geometrici con lettere minuscole (\vec{u} , \vec{v} , \vec{w} ecc.) e con V_3 l'insieme dei vettori geometrici dello spazio.

La classe contenente tutti i segmenti nulli è detta **vettore nullo**, e si indica con \vec{o} . Un segmento orientato \overrightarrow{PQ} nella classe \vec{v} è un **rappresentante** del vettore geometrico \vec{v} . In questo caso, scriveremo semplicemente $\vec{v} = \overrightarrow{PQ}$. Il **modulo** di un vettore \vec{v} è il modulo di un suo rappresentante (qualsiasi!); **direzione** e **verso** si definiscono in maniera analoga.

1.1 Addizione e moltiplicazione con scalari in V_3

Anche per quanto riguarda l'addizione e moltiplicazione con uno scalare i vettori in V_3 si comportano come quelli in V_2 . Riassumiamo quindi le principiali caratteristiche qui di seguito:

L' addizione vettoriale di due vettori \vec{u} e \vec{v} si definisce tramite la "regola della poligonale": si scelgono innanzitutto due rappresentanti $\overrightarrow{AB} = \vec{u}$ e $\overrightarrow{BC} = \vec{v}$, e si definisce $\vec{u} + \vec{v} = \overrightarrow{AC}$.

La moltiplicazione con scalare $\lambda \cdot \vec{v}$ (o semplicemente $\lambda \vec{v}$) di un vettore \vec{v} con un numero reale $\lambda \in \mathbb{R}$ (o "moltiplicazione scalare") si definisce come segue: $\lambda \cdot \vec{o} = \vec{o}$, $0 \cdot \vec{v} = \vec{o}$ e per $\vec{v} \neq \vec{o}$, $\lambda \neq 0$:

- $(modulo) \|\lambda \vec{v}\| = |\lambda| \cdot \|\vec{v}\|;$
- (direzione) $\lambda \vec{v}$ ha la direzione di \vec{v} ;

• (verso) $\begin{cases} \sec \lambda > 0, \ \lambda \vec{v} \text{ ha il verso di } \vec{v} \\ \sec \lambda < 0, \ \lambda \vec{v} \text{ ha verso opposto a } \vec{v} \end{cases}$

Per l'addizione valgono le seguenti proprietà:

- (A1) È associativa: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) \quad \forall \vec{a}, \vec{b}, \vec{c} \in V_3$
- (A2) esiste l'elemento neutro, il vettore nullo \vec{o} : $\vec{a} + \vec{o} = \vec{o} + \vec{a} = \vec{a} \quad \forall \vec{a} \in V_3$;
- (A3) esiste l'elemento simmetrico: $\forall \vec{a} \in V_3 \exists (-\vec{a}) \in V_3 \text{ con } \vec{a} + (-\vec{a}) = (-\vec{a}) + \vec{a} = \vec{o}$ (se $\vec{a} = \overrightarrow{PQ}$, allora si sceglie $(-\vec{a}) = \overrightarrow{QP}$);
- (A4) è commutativa: $\vec{a} + \vec{b} = \vec{b} + \vec{a} \quad \forall \vec{a}, \vec{b} \in V_3$

Per la moltiplicazione valgono le seguenti proprietà:

- (M1) $1 \cdot \vec{v} = \vec{v} \ \forall \vec{v} \in V_3$;
- (M2) $(\lambda \mu) \cdot \vec{v} = \lambda \cdot (\mu \vec{v}) \ \forall \lambda, \mu \in \mathbb{R}, \ \forall \vec{v} \in V_3;$
- (M3) $(\lambda + \mu) \cdot \vec{v} = \lambda \vec{v} + \mu \vec{v} \ \forall \lambda, \mu \in \mathbb{R}, \ \forall \vec{v} \in V_3;$
- (M4) $\lambda(\vec{v} + \vec{w}) = \lambda \vec{v} + \lambda \vec{w} \ \forall \lambda \in \mathbb{R}, \ \forall \vec{v}, \vec{w} \in V_3.$

Dal punto di vista algebrico, l'addizione in V_3 si comporta quindi come l'addizione in \mathbb{R} : si dice che $(V_3, +)$ ha la struttura di **gruppo abeliano** (o **gruppo commutativo**). L'esistenza dell'elemento simmetrico permette di definire anche la **sottrazione vettoria-**le, tramite $\vec{a} - \vec{b} := \vec{a} + (-\vec{b})$.

Le proprietà (A1)-(A4) e (M1)-(M4) si riassumono dicendo che $(V_3, +, \cdot)$ è uno spazio vettoriale reale. Esse permettono in particolare di *calcolare* con i vettori senza dover ricorrere all'interpretazione geometrica.

2 Dipendenza e indipendenza lineare

Trattiamo un concetto apparentemente molto tecnico ma che avrà molte implicazioni pratiche, ovvero il concetto di dipendenza o indipendenza lineare.

Definizione: dipendenza lineare

I insieme di vettori <u>non nulli</u> $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ sono detti **linearmente dipendenti** se è possibile esprimerne uno come combinazione lineare degli altri:

$$\vec{v}_n = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \ldots + \lambda_{n-1} \vec{v}_{n-1}$$

Osservazione: se un insieme di vettori è linearmente dipendente allora è possibile esprimere qualsiasi vettore \vec{v}_i dell'insieme, come combinazione lineare degli altri. Basterà isolare \vec{v}_i dall'equazione indicata qui sopra nella definizione.

Ad esempio: considera i vettori $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \vec{v}_4$, linearmente dipendenti poiché:

$$\vec{v}_4 = 2\vec{v}_1 - 3\vec{v}_2 + \frac{1}{3}\vec{v}_3$$

esprimi ora \vec{v}_2 come combinazione lineare degli altri:

.....

.....

Per capire meglio cosa implica la dipendenza e indipendenza lineare occorre trattarla a due e tre dimensioni.

2.1 Indipendenza lineare in V_2

• 2 vettori]: se due vettori (non nulli) $\vec{v}, \vec{w} \in V_2$ sono linearmente dipendenti, ciò significa che

$$\vec{v} = \lambda \vec{w}$$

ciò coincide con l'essere collineari.

Osservazione: come abbiamo visto se il determinante fra i due vettori è nullo:

$$|\vec{v} \cdot \vec{w}| = v_1 w_2 - v_2 w_1 = 0$$

allora i vettori sono collineari, cioè linearmente dipendenti!

• 3 vettori Come abbiamo visto due vettori non nulli e non collineari costituiscono una base di V_2 e possono dunque descrivere qualsiasi altro vettore nel piano. Ciò indica che 3 vettori non nulli sono sempre linearmente dipendenti nel piano. Lo stesso si può affermare anche con 4 o più vettori nel piano: essi saranno sempre linearmente dipendenti.

2.2 Indipendenza lineare in V_3

Gli stessi risultati possono essere generalizzati facilmente nello spazio V_3 .

• 2 vettori Due vettori sono linearmente dipendenti se essi sono collineari: $\vec{v} = \lambda \vec{w}$.

Osservazione: due vettori (non nulli) e non collineari definiscono il piano: ogni terzo vettore appartenente allo stesso piano può essere descritto dai primi due.

• 3 vettori Se tre vettori sono linearmente dipendenti, allora uno dei tre può essere definito come combinazione lineare degli altri due:

$$\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 v_2$$

ciò indica che essi sono **complanari**, cioè appartenenti allo stesso piano.

4 vettori | Come è facilmente intuibile tre vettori nello spazio ne costituiscono una base e possono definire qualsiasi altro vettore come combinazione lineare:
 Siano a, b e c tre vettori non complanari di V₃. Allora il quarto vettore v ∈ V₃ è esprimibile come combinazione lineare

$$\vec{v} = \lambda \vec{a} + \mu \vec{b} + \nu \vec{c} \quad \text{con } \lambda, \mu, \nu \in \mathbb{R}.$$

3 Vettori aritmetici dello spazio

Anche nello spazio possiamo scegliere una base standard così da poter identificare un vettore con le sue componenti x, y, z ottenendo dunque un vettore **aritmetico**.

Ovviamente questa base standard sarà composta da vettori unitari e perpendicolari tra loro. È inoltre abbastanza intuitivo capire come la componente z sarà quella che normalmente indichiamo come "altezza" (o componente verticale). Bisogna invece trovare una convenzione per chiarire sul piano xy (piano orizzontale), quale sia la direzione x e quale la y.

3.1 Base ortonormata

Definizione: Base ortonormata

Una base $\{\vec{i}, \vec{j}, \vec{k}\}$ di V_3 è detta base ortonormata orientata positivamente se vale quanto segue:

(i)
$$\|\vec{i}\| = \|\vec{j}\| = \|\vec{k}\| = 1;$$

(ii)
$$\vec{i} \perp \vec{j}$$
, $\vec{i} \perp \vec{k}$, $\vec{j} \perp \vec{k}$;

(iii) la terna ordinata $(\vec{i}, \vec{j}, \vec{k})$ forma un sistema destro (o terna positiva) di vettori, cioè l'angolo convesso e orientato tra \vec{i} è positivo se osservato dal semispazio indicato da \vec{k} .

La condizione (iii) può essere sostituita dalla seguente, detta regola della mano destra:

(iii)' la terna ordinata $(\vec{i}, \vec{j}, \vec{k})$ forma un sistema destro (o terna positiva) di vettori, possiamo cioè sovrapporre ai vettori \vec{i}, \vec{j} e \vec{k} rispettivamente il pollice, l'indice e il medio della mano destra.

Illustrazione:

Domanda: sfruttando la base standard introdotta qui sopra, quale dei due sistemi di riferimento illustrati qui sopra è corretto?

3.2 Vettori aritmetici

Sia quindi $\{\vec{i}, \vec{j}, \vec{k}\}$ una base ortonormata di V_3 . Ogni vettore $\vec{v} \in V_3$ si lascia scomporre in un unico modo come combinazione lineare di $\vec{i}, \vec{j}, \vec{k}$:

Il vettore \vec{v} è determinato in maniera univoca dai numeri reali v_1, v_2, v_3 . In particolare, la"legge"

$$\vec{v} = v_1 \cdot \vec{i} + v_2 \cdot \vec{j} + v_3 \cdot \vec{k} \quad \longmapsto \quad \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

permette di identificare l'insieme V_3 dei vettori geometrici con l'insieme dei **vettori aritmetici** dello spazio (che indichiamo con \mathbb{R}^3):

$$\mathbb{R}^3 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\} .$$

È facile mostrare che l'insieme dei vettori aritmetici munito dell'addizione vettoriale

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} := \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix}$$

e della moltiplicazione con un numero reale

$$\lambda \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} := \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \\ \lambda v_3 \end{pmatrix}$$

possiede una struttura di spazio vettoriale, compatibile con le corrispondenti operazioni tra i vettori geometrici.

ESEMPIO: Dati i vettori
$$\vec{a} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \vec{b} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$
 e $\vec{c} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ calcola il vettore

$$\vec{x} = 3\vec{a} - 2\vec{b} + \vec{c} = \dots$$

3.3 Applicazioni

a) Condizione di collinearità tra 2 vettori $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$:

$$\vec{v} \parallel \vec{w} \iff \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \lambda \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \iff \begin{cases} \exists \lambda \in \mathbb{R} \text{ con} \\ w_1 = \lambda v_1 \\ w_2 = \lambda v_2 \\ w_3 = \lambda v_3 \end{cases}$$

ESERCIZIO: Verifica la collinearità dei vettori $\vec{v} = \begin{pmatrix} -\sqrt{2} \\ 0 \\ 3 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} 2 \\ 0 \\ -3\sqrt{2} \end{pmatrix}$.

b) Condizione di complanarità tra 3 vettori $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \ e \ \vec{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$:

$$\begin{array}{ccc} \vec{u}, \vec{v}, \vec{w} & \exists \ \lambda, \mu \in \mathbb{R} \ \text{con} \\ \text{sono} & \Longleftrightarrow & \lambda \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \mu \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \iff \begin{cases} \lambda u_1 + \mu v_1 = w_1 \\ \lambda u_2 + \mu v_2 = w_2 \\ \lambda u_3 + \mu v_3 = w_3 \end{cases}$$

I tre vettori sono quindi complanari (cioè linearmente dipendenti) se e soltanto se il sistema di 3 equazioni

$$\begin{cases} \lambda u_1 + \mu v_1 = w_1 \\ \lambda u_2 + \mu v_2 = w_2 \\ \lambda u_3 + \mu v_3 = w_3 \end{cases}$$

nelle 2 incognite λ, μ possiede (almeno) una soluzione¹.

 $^{^1\}mathrm{più}$ tardi impareremo a studiare la dipendenza lineare di tre vettori in modo più efficiente grazie al determinante

c) Scomposizione di un vettore $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ come combinazione lineare di tre vettori (non complanari) $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$: dobbiamo ricavare tre numeri reali λ, μ, ν tali che

$$\vec{a} = \lambda \vec{u} + \mu \vec{v} + \nu \vec{w} \quad ,$$

ovvero

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \mu \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \nu \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \iff \begin{cases} \lambda u_1 + \mu v_1 + \nu w_1 = a_1 \\ \lambda u_2 + \mu v_2 + \nu w_2 = a_2 \\ \lambda u_3 + \mu v_3 + \nu w_3 = a_3 \end{cases}$$

Si tratta di un sistema di 3 equazioni nelle 3 incognite λ, μ, ν ; se i vettori \vec{u}, \vec{v} e \vec{w} formano una base di V_3 esiste sempre una e una sola soluzione.

ESERCIZIO: scrivi il vettore $\vec{a} = \begin{pmatrix} 4 \\ -9 \\ 19 \end{pmatrix}$ come combinazione lineare dei vettori \vec{u} , \vec{v} e \vec{w} dell'esempio in **b**).

Soluzione: $\vec{a} = 3\vec{u} - 3\vec{v} + 4\vec{w}$

4 Il prodotto scalare nello spazio

Definizione: Prodotto scalare

Siano \vec{v} , \vec{w} due vettori geometrici di V_3 ; il loro **prodotto scalare** $\vec{v} \cdot \vec{w}$ è il numero reale definito come segue:

- se $\vec{v} = \vec{o}$ oppure $\vec{w} = \vec{o}$, allora $\vec{v} \cdot \vec{w} = 0$;
- se $\vec{v} \neq \vec{o}$ e $\vec{w} \neq \vec{o}$, allora si definisce

$$\vec{v} \cdot \vec{w} = \|\vec{v}\| \cdot \|\vec{w}\| \cdot \cos \alpha \quad ,$$

dove α è l'angolo (solitamente positivo e convesso) tra due rappresentanti di \vec{v} e \vec{w} uscenti da uno stesso punto.

Analogamente a quanto visto in V_2 , il prodotto scalare di due vettori aritmetici possiede una semplice espressione:

Teorema: Prodotto scalare di 2 vettori aritmetici

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = v_1 w_1 + v_2 w_2 + v_3 w_3 \quad .$$

4.1 Applicazioni

a) Modulo di un vettore aritmetico: dal momento che $\vec{v} \cdot \vec{v} = ||\vec{v}|| \cdot ||\vec{v}|| \cdot \underbrace{\cos 0^{\circ}}_{1} = ||\vec{v}||^{2}$,

$$\|\vec{v}\| = \left\| \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \right\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + v_2^2 + v_3^2} .$$

Esempio:, Calcola il modulo del vettore $\vec{v} = \begin{pmatrix} 1 \\ 4 \\ 8 \end{pmatrix}$:

$$\|\vec{v}\| = \dots$$

Osservazione: È possibile derivare questa formula per il calcolo del modulo di un vettore in V_3 anche utilizzando il teorema di Pitagora: si tratta di calcolare la lunghezza della diagonale interna di un parallelogrammo avente lati lunghi v_1 , v_2 , v_3 .

b) Angolo tra 2 vettori aritmetici: dalla definizione ricaviamo immediatamente

$$\cos \alpha = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \cdot \|\vec{w}\|} = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{\sqrt{v_1^2 + v_2^2 + v_3^2} \cdot \sqrt{w_1^2 + w_2^2 + w_3^2}} \quad .$$

ESERCIZIO: calcola l'angolo tra i vettori $\vec{v} = \begin{pmatrix} 1 \\ 4 \\ 8 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}$.

c) Condizione di ortogonalità: se due vettori \vec{v} e \vec{w} sono ortogonali, allora vale $\vec{v} \cdot \vec{w} = \|\vec{v}\| \cdot \|\vec{w}\| \cdot \underbrace{\cos 90^{\circ}}_{0}$, cioè

$$\vec{v} \perp \vec{w} \iff \vec{v} \cdot \vec{w} = 0 \iff v_1 w_1 + v_2 w_2 + v_3 w_3 = 0$$
.

Ad **esempio**, è facile mostrare che $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \perp \begin{pmatrix} 7 \\ -2 \\ -1 \end{pmatrix}$:

Osservazione: a differenza di quanto avviene a due dimensioni, in V_3 non è possibile trovare una direzione ortogonale univoca a un vettore dato. Vi sono infatti infinite direzioni ortogonali che si dispongono come dei "raggi di un ombrello".

5 Il prodotto vettoriale

Introduciamo una nuova operazione tra vettori di V_3 , fondamentale per le applicazioni geometriche.

Definizione Prodotto vettoriale Siano \vec{v} e \vec{w} due vettori in V_3 . Il loro **prodotto vettoriale** $\vec{v} \times \vec{w}$ (leggi " \vec{v} cross \vec{w} ") è il vettore in V_3 che soddisfa le seguenti condizioni:

- se $\vec{v} = \vec{o}$ oppure $\vec{w} = \vec{o}$, allora $\vec{v} \times \vec{w} = \vec{o}$;
- siano $\vec{v} \neq \vec{o}$ e $\vec{w} \neq \vec{o}$; allora
 - 1) (modulo) $||\vec{v} \times \vec{w}|| = ||\vec{v}|| \cdot ||\vec{w}|| \cdot |\sin \alpha|$ ove α è l'angolo tra \vec{v} e \vec{w} ;
 - **2)** (direzione) $\vec{v} \times \vec{w} \perp \vec{v} \in \vec{v} \times \vec{w} \perp \vec{w}$;
 - 3) (verso) la terna ordinata $(\vec{v}, \vec{w}, \vec{v} \times \vec{w})$ è una terna positiva

In altre parole:

- 1) il modulo di $\vec{v} \times \vec{w}$ è uguale all'area di un parallelogrammo avente lati equipollenti a \vec{v} e \vec{w} ;
- 2) $\vec{v} \times \vec{w}$ è perpendicolare a un piano parallelo a due rappresentanti di \vec{v} e \vec{w} ;
- 3) i vettori $\vec{v}, \vec{w}, \vec{v} \times \vec{w}$ (considerati in questo ordine) soddisfano la "regola della mano destra": $\vec{v} \leftrightarrow \text{pollice}, \vec{v} \leftrightarrow \text{indice}, \vec{v} \times \vec{w} \leftrightarrow \text{medio}$ (della mano destra!).

Illustrazione:

- 1) $\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \cdot \|\vec{w}\| \cdot |\sin \alpha| = \mathcal{A}$
- 2) $\vec{v} \times \vec{w} \perp \vec{v}$, $\vec{v} \times \vec{w} \perp \vec{w}$
- 3) $(\vec{v}, \vec{w}, \vec{v} \times \vec{w})$ è una terna positiva.

ESERCIZIO: Considerando come spazio vettoriale la nostra classe (per semplicità immagina che si tratti di un cubo) e i vettori:

- \vec{a} ha modulo $||\vec{a}|| = 3$, è parallelo al pavimento e alla lavagna e punta verso le finestre.
- $\bullet \ \vec{b}$ ha modulo $\|\vec{b}\|=2,$ è perpendicolare alla lavagna e punta verso il fondo dell'aula.

Descrivi i vettori $\vec{a} \times \vec{b}$ e $\vec{b} \times \vec{a}$.

5.1 Proprietà del prodotto vettoriale

(i) $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v} \ \forall \ \vec{v}, \vec{w} \in V_3$ (il prodotto vettoriale è cioè anticommutativo).

Dimostrazione: ovvia.

(ii) Due vettori \vec{v} e \vec{w} sono collineari $\iff \vec{v} \times \vec{w} = \vec{o}$.

Dimostrazione:

(iii) Per due vettori non nulli e ortogonali \vec{v} e \vec{w} , vale

$$\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \cdot \|\vec{w}\| \cdot \sin\left(\pm \frac{\pi}{2}\right) = \pm \|\vec{v}\| \cdot \|\vec{w}\|$$
.

(iv) Per due vettori \vec{v} , \vec{w} e uno scalare $\lambda \in \mathbb{R}$, vale:

$$\lambda(\vec{v} \times \vec{w}) = \vec{v} \times (\lambda \vec{w}) = (\lambda \vec{v}) \times \vec{w}$$

(v) Per tre vettori \vec{u} , \vec{v} e \vec{w} vale:

$$\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$$
 e $(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}$

Per il calcolo del prodotto vettoriale di due vettori aritmetici vale il

Teorema: Prodotto vettoriale di 2 vettori aritmetici

Siano $\vec{v}, \vec{w} \in V_3$; allora

$$\vec{v} \times \vec{w} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ -v_1 w_3 + v_3 w_1 \\ v_1 w_2 - v_2 w_1 \end{pmatrix} .$$

Esempio calcola:

$$\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix} = \dots$$

Osservazione: questa formula di calcolo risulta apparentemente complessa. Prima di dimostrarla possiamo però confermare che quanto ottenuto nell'esempio qui sopra è compatibile con la definizione data a inizio sezione, vale a dire che vale:

1) modulo: $\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \cdot \|\vec{w}\| \cdot |\sin \alpha|$

Liceo Lugano 2 $2^a {\rm L} - {\rm Anno}~2020/21$

3) direzione: $\vec{v} \times \vec{w} \perp \vec{v}$ e $\vec{v} \times \vec{w} \perp \vec{w}$

3) verso: la terna ordinata $(\vec{v}, \vec{w}, \vec{v} \times \vec{w})$ è una terna positiva: tralasciato.

Dimostrazione:

Innanzitutto possiamo notare che per i vettori della base ortonormata $(\vec{e_1},\vec{e_2},\vec{e_3})$ vale:

$$\vec{e}_1 \times \vec{e}_1 = \vec{e}_2 \times \vec{e}_2 = \vec{e}_3 \times \vec{e}_3 = \dots$$

e inoltre:

$$\vec{e}_1 \times \vec{e}_2 = \dots \qquad \vec{e}_1 \times \vec{e}_3 = \dots \qquad \vec{e}_2 \times \vec{e}_3 = \dots$$

ovviamente se l'ordine dei vettori viene invertito otteniamo un vettore di verso opposto. Ricordando che

$$\vec{v} = v_1 \vec{e}_1 + v_2 \vec{e}_2 + v_3 \vec{e}_3$$
 $\vec{w} = w_1 \vec{e}_1 + w_2 \vec{e}_2 + w_3 \vec{e}_3$

e che vale la proprietà "distributiva" otteniamo:

Liceo Lugano 2 $2^a {\it L} - {\it Anno}~2020/21$

Calcolo con il determinante: utilizzando l'abbreviazione $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ (determinante di ordine 2), è possibile riformulare il calcolo del prodotto vettoriale in un modo più semplice da ricordare:

$$\vec{v} \times \vec{w} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} + \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \end{vmatrix} \\ - \begin{vmatrix} v_1 & w_1 \\ v_3 & w_3 \end{vmatrix} \\ + \begin{vmatrix} v_1 & w_1 \\ v_2 & w_2 \end{vmatrix} \end{pmatrix} .$$

In particolare per il calcolo di ogni componente viene "esclusa" dal determinante la stessa componente dei vettori di partenza: per la x viene "tolta" la prima riga dai due vettori, per la y la seconda e per la z la terza. Inoltre bisogna ricordarsi di invertire il segno nella componente y.

ESERCIZIO:
$$siano \ \vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}. \ Calcola$$

$$\vec{u} \times \vec{v} \quad , \quad \vec{v} \times \vec{u} \quad , \quad \vec{v} \times \vec{w} \quad , \quad \vec{u} \times (\vec{v} \times \vec{w}) \quad , \quad (\vec{u} \times \vec{v}) \times \vec{w} \quad .$$

Osservazione: come mostra l'esempio, in generale vale $\vec{u} \times (\vec{v} \times \vec{w}) \neq (\vec{u} \times \vec{v}) \times \vec{w}$. Il prodotto vettoriale non soddisfa la proprietà associativa; non ha quindi senso scrivere semplicemente $\vec{u} \times \vec{v} \times \vec{w}$.

5.2 Applicazioni del prodotto vettoriale

a) Direzione ortogonale a due vettori $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$.

Risulta immediatamente chiaro che qualsiasi vettore collineare al vettore $\vec{v} \times \vec{w}$ soddisfa questa condizione.

ESERCIZIO: se $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, determina 3 vettori ortogonali a \vec{v} e \vec{w}

b) Area $\mathcal{A}(\vec{v}, \vec{w})$ del parallelogrammo definito da \vec{v} e \vec{w} .

È chiaro che vale, per definizione, $\mathcal{A}(\vec{v}, \vec{w}) = ||\vec{v} \times \vec{w}||$.

ESERCIZIO: siano \vec{v} e \vec{w} come sopra; calcola l'area del parallelogrammo definito da \vec{v} e \vec{w} .

6 Il prodotto misto

Infine introduciamo un terzo tipo di prodotto tra due vettori, che combina il prodotto scalare e quello vettoriale.

Definizione: Prodotto misto

Siano $\vec{u}, \vec{v}, \vec{w}$ tre vettori di V_3 . Il loro **prodotto misto** $[\vec{u}, \vec{v}, \vec{w}]$ è il numero reale

$$[\vec{u}, \vec{v}, \vec{w}] := (\vec{u} \times \vec{v}) \cdot \vec{w}$$

Esempio: Calcola il prodotto misto

$$\left[\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} \right]$$

Interpretazione geometrica: innanzitutto notiamo che

$$[\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \times \vec{v}) \cdot \vec{w} = ||\vec{u} \times \vec{v}|| \cdot ||\vec{w}|| \cdot \cos \alpha$$

dove α è l'angolo convesso e positivo tra $\vec{u} \times \vec{v}$ e \vec{w} .

Nota che $\|\vec{w}\| \cdot \cos \alpha = \pm h$, dove h è l'altezza del parallelepipedo avente \vec{u} , \vec{v} e \vec{w} come spigoli, e $\|\vec{u} \times \vec{v}\| = \mathcal{A}(\vec{u}, \vec{w})$ è l'area del parallelogrammo avente per lati \vec{u} e \vec{v} . Nota inoltre che vale $\cos \alpha > 0$ se e soltanto se α è acuto, cioè se $(\vec{u}, \vec{v}, \vec{w})$ è una terna positiva (soddisfa cioè la "regola della mano destra").

Sia $\mathcal{V}(\vec{u}, \vec{v}, \vec{w})$ il volume del parallelepipedo avente \vec{u} , \vec{v} e \vec{w} come spigoli; otteniamo

$$\|\vec{u} \times \vec{v}\| \cdot \|\vec{w}\| \cdot \cos \alpha = \pm \mathcal{A} \cdot h$$
.

Quindi

- $|[\vec{u}, \vec{v}, \vec{w}]| = \mathcal{V}(\vec{u}, \vec{v}, \vec{w})$ è il volume del parallelepipedo;
- $[\vec{u}, \vec{v}, \vec{w}] > 0 \iff (\vec{u}, \vec{v}, \vec{w})$ è una terna positiva.

In altre parole: $[\vec{u}, \vec{v}, \vec{w}] = \pm \mathcal{V}(\vec{u}, \vec{v}, \vec{w})$ è il volume orientato di un parallelepipedo determinato da \vec{u} , \vec{v} e \vec{w} .

6.1 Proprietà del prodotto misto

(i) Scambiando due vettori di una terna:

$$\left[\begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} \right] = \dots$$

In generale scambiando due vettori nel prodotto misto si ottiene lo stesso risultato ma con segno invertito. Questo perché cambia l'orientamento della terna ma non il parallelepipedo che viene definito e dunque nemmeno il suo volume.

Permutando ciclicamente i vettori di una terna, non cambiano né il volume, né l'orientamento. Ovvero:

(ii) Vale anche $[\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w})$ ovvero $(\vec{u} \times \vec{v}) \cdot \vec{w} = \vec{u} \cdot (\vec{v} \times \vec{w})$

Dimostrazione:

(iii) Tre vettori $\vec{u}, \vec{v}, \vec{w}$ sono linearmente dipendenti (complanari) $\iff [\vec{u}, \vec{v}, \vec{w}] = 0$.

Dimostrazione:

(iv) Se due dei Tre vettori $\vec{u}, \vec{v}, \vec{w}$ sono collineari fra loro, allora $\Rightarrow [\vec{u}, \vec{v}, \vec{w}] = 0$.

Dimostrazione:

6.2 Prodotto misto di vettori aritmetici

Per il prodotto misto di tre vettori aritmetici $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \vec{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$

si utilizza la notazione

$$[\vec{u}, \vec{v}, \vec{w}] = \begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} .$$

Tale numero è anche detto **determinante** dei vettori $\vec{u}, \vec{v}, \vec{w}$ (si parla di determinante di ordine 3). Invece di $[\vec{u}, \vec{v}, \vec{w}]$ si scrive anche det $(\vec{u}, \vec{v}, \vec{w})$.

Per il calcolo del determinante, sfruttiamo ad es. l'osservazione (ii):

$$[\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} + \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \end{vmatrix} \\ - \begin{vmatrix} v_1 & w_1 \\ v_3 & w_3 \end{vmatrix} \\ + \begin{vmatrix} v_1 & w_1 \\ v_2 & w_2 \end{vmatrix} \end{pmatrix} = u_1 \cdot \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \end{vmatrix} - u_2 \cdot \begin{vmatrix} v_1 & w_1 \\ v_3 & w_3 \end{vmatrix} + u_3 \cdot \begin{vmatrix} v_1 & w_1 \\ v_2 & w_2 \end{vmatrix} + \begin{vmatrix} v_1 & w_1 \\ v_2 & w_2 \end{vmatrix}$$

(si tratta dello "sviluppo di Laplace del determinante rispetto alla prima colonna").

Esercizio: calcola
$$[\vec{u}, \vec{v}, \vec{w}]$$
 con $\vec{u} = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 1 \\ 5 \\ 8 \end{pmatrix}$.

Un'altra formula utile per il calcolo di un determinante di ordine 3 è la seguente:

Teorema: Regola di Sarrus

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = u_1 v_2 w_3 + v_1 w_2 u_3 + w_1 u_2 v_3 - u_3 v_2 w_1 - v_3 w_2 u_1 - w_3 u_2 v_1$$

Dimostrazione: semplice verifica.

Schema mnemonico:

Esercizio: calcoliamo di nuovo il determinante dell'es. precedente.

$$\begin{vmatrix} -1 & 3 & 1 \\ 2 & 1 & 5 \\ 5 & -2 & 8 \end{vmatrix} = \dots$$

6.3 Applicazioni del prodotto misto:

a) Volume $V(\vec{u}, \vec{v}, \vec{w})$ del parallelepipedo avente $\vec{u}, \vec{v}, \vec{w}$ quali spigoli: come abbiamo già notato,

$$\mathcal{V}(\vec{u}, \vec{v}, \vec{w}) = \left| \left[\vec{u}, \vec{v}, \vec{w} \right] \right|$$

b) Altezza h del parallelepipedo avente \vec{u} , \vec{v} , \vec{w} quali spigoli (relativa alla faccia \vec{u} , \vec{v}):

Dal momento che vale

$$\mathcal{V} = \left| \left[\vec{u}, \vec{v}, \vec{w} \right] \right| = \underbrace{\left\| \vec{u} \times \vec{v} \right\|}_{\mathcal{A}_{base}} \cdot \underbrace{\left\| \vec{w} \right\| \cdot \left| \cos \alpha \right|}_{h} ,$$

otteniamo

$$h = \frac{\left| \left[\vec{u}, \vec{v}, \vec{w} \right] \right|}{\left\| \vec{u} \times \vec{v} \right\|}$$

c) dall'osservazione (iii) a pagina 17 segue che il determinante permette una verifica immediata della dipendenza (o dell'indipendenza) lineare:

Teorema: Criterio per la dipendenza lineare

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, \, \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \, \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \text{ sono linearmente dipendenti } \iff \left| \begin{array}{ccc} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{array} \right| = 0 \quad .$$

ESERCIZIO: Per
$$k \in \mathbb{R}$$
 Considera i vettori: $\vec{u} = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 1 \\ 5 \\ k \end{pmatrix}$.

Per quali k questi tre vettori sono dipendenti linearmente e quindi complanari?

Liceo Lugano 2 $2^a {\it L} - {\it Anno}~2020/21$

6.4 Riassunto

Possiamo riassumere in modo schematico le importanti proprietà degli strumenti sviluppati fin'ora. In due e tre dimensioni.

1.	Prodotto scalare $\vec{v} \cdot \vec{w}$ il cui risultato è un
	• Definizione:
	• Vettori aritmetici:
	Condizione di ortogonalità:
	• Angolo tra vettori:
2.	Prodotto vettoriale $\vec{v} \times \vec{w}$ il cui risultato è un ed è definito solo in
	• Definizione:
	• Vettori aritmetici:
	• Interpretazione geometrica:
	Condizione di collinearità:
	• Direzione ortogonale:
3.	Determinante di ordine 2 definito solamente in e tra vettori.
	• Definizione:
	• Interpretazione geometrica:
	Condizione di dipendenza lineare:
4.	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$
	• Definizione:
	• Interpretazione geometrica:
	Condizione di dipendenza lineare:

7 La regola di Cramer

Consideriamo un sistema di equazioni

$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

e riscriviamolo nella forma vettoriale $x \cdot \vec{a} + y \cdot \vec{b} + z \cdot \vec{c} = \vec{d}$, con

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \quad , \quad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \quad , \quad \vec{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \quad , \quad \vec{d} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} \quad .$$

Sia

$$D = [\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0 .$$

Per quanto visto nei paragrafi precedenti, sappiamo già che il sistema possiede un'unica soluzione per ogni scelta di \vec{d} se e soltanto se $\{\vec{a}, \vec{b}, \vec{c}\}$ è una base di V_3 , e che ciò è equivalente a $D \neq 0$. In questo caso, grazie al determinante è possibile esprimere x, y e z per mezzo di formule nei coefficienti del sistema.

Teorema: La regola di Cramer

Se vale

$$D = [\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0 \quad ,$$

il sistema possiede l'unica soluzione (x, y, z), con

$$x = \frac{D_1}{D}$$
 , $y = \frac{D_2}{D}$, $z = \frac{D_3}{D}$,

dove

$$D_{1} = [\vec{d}, \vec{b}, \vec{c}] = \begin{vmatrix} d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3} \end{vmatrix}, D_{2} = [\vec{a}, \vec{d}, \vec{c}] = \begin{vmatrix} a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3} \end{vmatrix}, D_{3} = [\vec{a}, \vec{b}, \vec{d}] = \begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}.$$

Dimostrazione: tralasciata.

Osservazione: se $d_1 = d_2 = d_3 = 0$ (cioè se il sistema è omogeneo) e $D \neq 0$, vale $D_1 = D_2 = D_3 = 0$ e l'unica soluzione del sistema è (x, y, z) = (0, 0, 0), in accordo con la definizione di *indipendenza lineare* ("l'unico modo di esprimere \vec{o} come combinazione lineare di \vec{a} , \vec{b} e \vec{c} è per mezzo di coefficienti nulli").

Liceo Lugano 2 $2^a {\rm L} \mbox{ - Anno } 2020/21$

Esercizio: risolviamo il sistema di equazioni

$$\begin{cases} 3x - y - 2z = -14 \\ 3x + 2y - 3z = -9 \\ 2x - y + 4z = 11 \end{cases}$$

Risultato: (-1; 3; 4)