

Course > Topic 4... > 4.7 Mul... > Multin...

Multinomial Coefficients Video

4.7 Multinomials

POLL

What is the coefficient of xy in the expansion of $(x+y+2)^4$?

RESULTS

48 48%

24 27%

12 14%

None of the above 11%

Submit

Results gathered from 262 respondents.

FEEDBACK

The answer is 48. The number of ways to have 2"2"s, 1 "x", 1 "y" is 12 (using multinomial coefficient). Then we multiply it with $2^2 = 4$ and get the answer.

1

3.0/3.0 points (graded)

In how many ways can you give three baseball tickets, three soccer tickets, and three opera tickets, all general admission, to nine friend so each gets one ticket?

✓ Answer: 1680 1680

1680

Explanation

Using the multinomial coefficient, we get the answer $\binom{9}{3.3.3} = 1680$.

Submit

You have used 3 of 4 attempts

1 Answers are displayed within the problem

2

0 points possible (ungraded)

How many ways can we divide 12 people into:

• three labeled groups evenly

X Answer: 34650

Explanation

$$\binom{12}{4,4,4} = 34650.$$

• three unlabeled groups evenly

Explanation

Since the groups are unlabeled, every permutation of the three group counts the same, hence the number of ways is $\binom{12}{4,4,4}/3!=11550.$

ullet three labeled groups with 3,4 and 5 people

Explanation
$$\binom{12}{3,4,5}=27720.$$

• three unlabeled groups with 3, 4 and 5 people

Explanation

Since the groups have different sizes, they are distinct regardless of label, hence answer stays $\binom{12}{3,4,5} = 27720$.

• three unordered groups with 3, 3 and 6 people

Explanation

Since the groups are unlabeled, every permutation of the two groups that have 3 people counts the same, hence the number of ways is ${12 \choose 3.3.6}/2! = 9240$.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

3

4.0/4.0 points (graded)

• What is the coefficient of x^3y^2 in expansion of $(x+2y+1)^{10}$?

10080

✓ Answer: 10080

10080

Explanation

$$(x+2y+1)^{10} = \underbrace{(x+2y+1)\cdots(x+2y+1)}_{10\;(x+2y+1)s}.$$

To form x^3y^2 , we need to pick three x's, two 2y's, and five 1's. The number of ways is $\binom{10}{3,2,5}$.

The resulting term of x^3y^2 is $\binom{10}{3.2.5}(x^3(2y)^21^5)$. Hence the coefficient is $\binom{10}{3,2,5}$ 2² = 10080.

ullet What is the coefficient of x^3 in expansion of $\left(x^2-x+2
ight)^{10}$

-38400

✓ Answer: -38400

-38400

$$(x^2 - x + 2)^{10} = \underbrace{(x^2 - x + 2) \cdots (x^2 - x + 2)}_{10 \ (x^2 - x + 2)s}.$$

To form x^3 , we can pick one x^2 's, one -x's, and eight 2's. The number of ways is $\binom{10}{1,1,8}$. Or we can pick zero x^2 's, three -x's, and seven 2's. The number of ways is $\binom{10}{0.3.7}$.

The resulting term of x^3 is $\binom{10}{1,1,8}$ $\left(x^2\left(-x\right)2^8\right)+\binom{10}{0,3,7}\left(\left(x^2\right)^0\left(-x\right)^32^7\right)$. Hence the coefficient is $\binom{10}{1.1.8}(-1)2^8 + \binom{10}{0.3.7}(-1)^32^7 = -38400$

Submit

You have used 3 of 4 attempts

1 Answers are displayed within the problem

4

0 points possible (ungraded)

How many terms are there in the expansion of $(x+y+z)^{10}+(x-y+z)^{10}$?

45

X Answer: 36

45

Explanation

All the terms where y has odd power will be cancelled out. We only need to consider the number of terms where the power of y is 0,2,4,6,8,10(i.e., $y^0,y^2,y^4,y^6,y^8,y^{10}$) , which is $1 + 3 + 5 + \cdots + 11 = 36$

Submit

You have used 4 of 4 attempts

Answers are displayed within the problem

5

0 points possible (ungraded)

How many anagrams, with or without meaning, does "REFEREE" have such that:

there is no constraint

20

X Answer: 105

20

Explanation

We have 4 "E"s, 2 "R"s, and 1 "F". The answer is ${7 \choose 1.2.4}=105$.

• two "R"'s are separated

X Answer: 75

Explanation

Suppose the 2 "R"s are not separated. Then we have 4 "E"s, 1 "RR", 1 "F". The number of them is $\binom{6}{1.1.4}$.

The number of angrams where two "R"'s are separated $105 - {6 \choose 1.1.4} = 75$.

• it contains subword "EE"

Explanation

There are only 3 words that do not contain "EE" (i.e. "EREREFE", "EREFERE", "EFERERE"). $105 - \binom{3}{1} = 102.$

• it begins with letter "R"

Explanation

Fixing "R" in the first postions, we now have 4"E"s, 1 "R", 1 "F". The number of them $\binom{6}{1.1.4} = 30.$

You have used 4 of 4 attempts Submit

Answers are displayed within the problem

6

0 points possible (ungraded)

How many anagrams, with or without meaning, do the following words have?

• CHAIR

120 ✓ Answer: 120 120

Explanation

Permutation of 5 letters.

INDIA

Explanation

There are two "I"s, so there are $\binom{5}{2,1,1,1}=60$ anagrams.

SWIMMING

Explanation

There are two "I"s and two "M"s, so ${8 \choose 2,2,1,1,1,1} = 10080$ anagrams.

Submit

You have used 2 of 4 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Topic 4 / Multinomial

Add a Post

Show all posts by recent activity ▼ General Comments Questions and comments regarding this section. 13 **≜** Staff Problem 3

2019	Multinomial Coefficients 4.7 Multinomials DSE210x Courseware edX		
	Questions and comments regarding problem 3.	8 new_	11
	<u>▲ Staff</u>		7
2	Problem 2 Questions and comments regarding problem 2. Staff		7
9	Problem 5 Questions and comments regarding problem 5. Staff		3
9	Problem 1 Questions and comments regarding problem 1. Staff		5
•	Problem 4 Questions and comments regarding problem 4. Staff		1
2	Problem 6 Questions and comments regarding problem 6. Staff		1

© All Rights Reserved