INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT151 8-input multiplexer

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT151

FEATURES

- True and complement outputs
- Multifunction capability
- Permits multiplexing from n lines to 1 line
- · Non-inverting data path
- See the "251" for the 3-state version
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT151 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}\text{C}$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBOL	PARAMETER	CONDITIONS	НС	нст	ONII	
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	I_n to Y, \overline{Y}		17	19	ns	
	S_n to Y, \overline{Y}		19	20	ns	
	E to Y		12	13	ns	
	E to Y		14	18	ns	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	40	40	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT151

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
4, 3, 2, 1, 15, 14, 13, 12	I ₀ to I ₇	multiplexer inputs
5	Υ	multiplexer output
6	Y	complementary multiplexer output
7	Ē	enable input (active LOW)
8 GND		ground (0 V)
11, 10, 9	S ₀ , S ₁ , S ₂	select inputs
16	V _{CC}	positive supply voltage

74HC/HCT151

FUNCTION TABLE

INPUTS											OUT	PUTS	
Ē	S ₂	S ₁	S ₀	I ₀	I ₁	l ₂	l ₃	I ₄	l ₅	I ₆	l ₇	Ŧ	Y
Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	L	L	Х	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	L	Н	X	Х	Х	X	X	X	X	L	Н
L	L	L	Н	Х	L	X	Х	X	X	X	X	Н	L
L	L	L	Н	Х	Н	Х	Х	X	X	X	X	L	Н
L	L	Н	L	Χ	Х	L	Х	Х	Х	Х	Х	Н	L
L	L	Н	L	Χ	X	Н	Х	X	X	X	X	L	Н
L	L	Н	Н	Х	X	X	L	X	X	X	X	Н	L
L	L	Н	Н	Х	Х	Х	Н	X	X	X	X	L	Н
L	Н	L	L	Х	Х	Х	Х	L	Х	Х	Х	Н	L
L	Н	L	L	Х	X	X	Х	Н	X	X	X	L	Н
L	Н	L	Н	Х	X	Х	Х	X	L	X	X	Н	L
L	Н	L	Н	Χ	Х	Х	Х	Х	Н	X	X	L	Н
L	Н	Н	L	Х	Х	Х	Х	Х	Х	L	Х	Н	L
L	Н	Н	L	Х	X	X	Х	X	X	Н	X	L	Н
L	Н	Н	Н	Х	X	X	Х	X	X	X	L	Н	L
L	Н	Н	Н	Χ	Х	Х	X	Х	Х	Х	Н	L	Н

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care.

Philips Semiconductors Product specification

8-input multiplexer

74HC/HCT151

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
					74H	1		MANEEODMO			
	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay I _n to Y		52 19 15	170 34 29		215 43 37		255 51 43	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay I _n to Y		58 21 17	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay S _n to Y		61 22 18	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay S_n to \overline{Y}		61 22 18	205 41 35		255 51 43		310 62 53	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay E to Y		41 15 12	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay E to Y		47 17 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7

Philips Semiconductors Product specification

8-input multiplexer

74HC/HCT151

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT							
In	0.45							
S _n	1.50							
Ē	0.30							

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
SYMBOL		74HCT									MANTEODMO	
		+25			−40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(-,		
t _{PHL} / t _{PLH}	propagation delay In to Y		22	38		48		57	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay I_n to \overline{Y}		22	38		48		57	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay S _n to Y		23	41		51		62	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay S_n to \overline{Y}		25	43		54		65	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay E to Y		16	29		36		44	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay E to Y		21	36		45		54	ns	4.5	Fig.7	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7	

74HC/HCT151

AC WAVEFORMS

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT : $V_M = 1.3$ V; $V_I = GND$ to 3 V.

Fig.6 Waveforms showing the multiplexer input (I_n) to outputs $(Y \text{ and } \overline{Y})$ propagation delays and the output transition times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT : V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the select input (S_n) and enable input (\overline{E}) to outputs $(Y \text{ and } \overline{Y})$ propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".