Guía 3: Sistemas Dinámicos e Inestabilidades

1) Puntos Fijos y Bifurcaciones

Crecimiento Poblacional Humano: un modelo simple de crecimiento poblacional de organismos vivos es $\dot{N}=rN$, donde $N(t)=N_0e^{rt}$ es la población al tiempo $t,\,r>0$ es la tasa de crecimiento y $N(t=0)=N_0$. Es un hecho empírico que el crecimiento exponencial predicho por este modelo no puede continuar por siempre. Un modelo más realista es aquel propuesto por Verhulst (1838) para el crecimiento poblacional humano:

$$\dot{N} = r \left(1 - \frac{N}{K} \right) N,\tag{1}$$

donde K > 0 es la capacidad de carga.

- a) Resuelva analiticamente el modelo (1) para una dada condición inicial arbitraria $N(t=0)=N_0$. (Ayuda: utilice el cambio de variables $x\equiv 1/N$).
- b) Encuentre los puntos fijos y estudie su estabilidad. Grafique cualitativamente N(t).
- c) ¿Existen bifurcaciones en el modelo (1)? En caso afirmativo, estudie las mismas.

2) El sistema de Lorenz

Considere el sistema de Lorenz (Lorenz 1963):

$$\dot{x} = \sigma(y - x),\tag{2}$$

$$\dot{y} = \rho x - y - xz,\tag{3}$$

$$\dot{z} = xy - \beta z \tag{4}$$

donde x, y y z son funciones del tiempo y $\beta=8/3$, $\sigma=10$ y ρ parámetros del sistema.

- a) Resuelva numéricamente el sistema de Lorenz hasta t=50 usando la condición inicial $W_0=(x_0,y_0,z_0)=(0,0.5,0.5)$, y $\rho=2$. Grafique y(t) y z(t) y la trayectoria en el espacio de fase proyectada en el plano y-z (es decir y(z)). A qué dinámica corresponde esta solución? Utilice un método con paso de tiempo variable: scipy.integrate.ode(f).set_integrator('dopri5') en SciPy.
- b) Para la misma condición inicial, utilice (i) $\rho=10$ y (ii) $\rho=24$. Grafique y(t) y z(t), y(z), y la trayectoria en el espacio de fases tridimensional (x,y,z). Cómo cambian las soluciones?
- c) Para $\rho=25$ grafique nuevamente y(t) y z(t), y(z), y la trayectoria en el espacio de fases tridimensional. Compare las soluciones numéricas $\rho=24$ y $\rho=25$. La solución con $\rho=24$ va a continuar igual para todo tiempo? Por qué?
- d) Para $\rho=30$ muestre la evolución temporal de y para las siguientes condiciones iniciales: (i) $W_0=(x_0,y_0,z_0)=(0,0.5,0.5)$ y (ii) $W_0'=(x_0,y_0,z_0)=(0,0.5,0.50001)$. Qué observa?
- e) (Opcional) Resuelva numéricamente las ecuaciones de Lorenz con un método de Runge–Kutta de orden 4 (RK4) con paso fijo. Integre las ecuaciones con los mismos parámetros del inciso anterior usando la condición inicial $(x_0,y_0,z_0)=(0,0.5,0.5)$ con (i) el método de RK4 con paso fijo con $\delta t=0.005$ y (ii) con el método utilizado en el primer inciso. Compare las dos soluciones. Grafique la diferencia absoluta entre las dos soluciones en función del tiempo. Qué ocurre?

3) Inestabilidades en flujos estratificados

Haciendo uso del solver BOUSS en GHOST, resuelva numéricamente las ecuaciones para un flujo incompresible con $\rho_0=1$, en un recinto de longitud $4\pi\times 2\pi\times 2\pi$ y resolución espacial $N_x=256,N_y=16,N_z=128$. Hacer uso del Material Adicional. Utilice como condición inicial el siguiente perfil para la velocidad horizontal

$$u = u_0 \{ \tanh[\gamma(z - \pi/2)] + \tanh[\gamma(-z + 3\pi/2)] - 1 \}, \tag{5}$$

donde γ controla la pendiente de la tangente hiperbólica, y por lo tanto el gradiente de la velocidad inicial. A la vez, perturbe este perfil con un campo de velocidad aleatorio con amplitud u_1 .

- a) Grafique el perfil de la velocidad u(z), y calcule analíticamente el máximo número de Richardson en función de la frecuencia de Brunt-Väisälä N y de γ .
- b) Calcule la resolución espacial Δx , Δy y Δz . Cómo justifica la elección de Δy que resulta de los parámetros dados? Para $u_0=1$ y asumiendo que $u_0>>u_1$, estime Δt usando la condición CFL.
- c) Realice una simulación con $u_0=1$, $u_1=0.1$, $\nu=\kappa=2\times 10^{-3}$, N=2 y $\gamma=10$ hasta t=10. Guarde el campo de velocidad y la temperatura para $\Delta t \leq 0.6$. Estudie la evolución temporal de u,ω_v y de la temperatura θ . Qué observa?
- d) Con los mismos parámetros del punto c), realice ahora simulaciones variando N entre 0 y 6 (pasos de a 1). Qué ocurre? Estime la tasa de crecimiento de la inestabilidad en función del máximo número de Richardson en el flujo.
- e) Con los mismos parámetros del punto c), fije ahora N=2 y varíe γ entre 5 y 20 (pasos de a 5). Grafique el número de onda del modo más inestable en función de γ (ayuda: puede estimar este número de onda contando cuantos máximos de la vorticidad ω_y aparecen a lo largo de un corte horizontal a medida que se desarrolla la inestabilidad).