MULTIMEDIA	9	UNIVERSITY
------------	---	------------

STUDENT ID NO								

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2016/2017

PTG 0116 – TRIGONOMETRY AND COORDINATE GEOMETRY

(All sections / Groups)

2 MARCH 2017 9:00 a.m – 11:00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 3 pages with 4 questions and an appendix.
- 2. Answer all questions.
- 3. Unless stated otherwise, if an answer is given as a decimal, it should be rounded to **four** significant figures.
- 4. Write your answers in the Answer Booklet provided.
- 5. Show all workings.

Question 1

- (a) If $\cos \theta = -0.8244$ and $\csc \theta < 0$, find θ in radians for $0 \le \theta \le 2\pi$. [4 marks]
- (b) Verify the identity $\frac{\sin \theta}{\csc \theta \cot \theta} = 1 + \cos \theta$. [4 marks]
- (c) Solve the trigonometric equation $\cos \frac{\theta}{2} = 1 + \cos \theta$ for $0 \le \theta \le 2\pi$. [8 marks]
- (d) Calculate the shaded area of overlapping circles shown in Figure 1. Both circles are with radius of 2.7 m. Distance between the centres PQ is 4.2 m. [9 marks] Note: Area of a sector of a circle with radius r is $\frac{1}{2}r^2\theta$, where θ is in radian.

Question 2

(a) Perform the following. Leave the answer in rectangular form.

(i)	$\frac{(6\angle 130^{\circ})(2\angle 45^{\circ})}{1+i\sqrt{3}}$	[3 marks]
	1 + /3/3	

- (ii) $[2.78(\cos 56.8^{\circ} + i \sin 56.8^{\circ})] + [1.37(\cos 207.3^{\circ} + i \sin 207.3^{\circ})]$ [3 marks]
- (b) (i) Evaluate $-\sqrt{-49} i^{15}$. [4 marks]
 - (ii) Find the cube roots of the answer obtained in (b)(i). Leave the answer in rectangular form. [7 marks]
- (c) Given p = 2i j + k and q = i + 2j 3k.
 - (i) Find $(2p + q) \times (p 2q)$. [4 marks]
 - (ii) Determine the angle θ between **p** and **q** for $0 \le \theta \le \pi$. [4 marks]

Question 3

- (a) Determine the value of k for the following:
 - (i) The midpoint of the line segment from (-4, k) to (6, 1) is (1,5). [2 marks]
 - (ii) The distance between the points (11, k) and (-1, 3) is 13. [3 marks]
 - (iii) The points (6, -1), (3, k) and (-3, -7) are on the same line. [4 marks]
- (b) Find the equation of the ellipse with foci at (1, 3) and (9, 3) and length of major axis equals 10. [7 marks]
- (c) Identify the type of curve represented by the following equations. Find the centre (or vertex if it is a parabola). Sketch each curve.

(i)
$$\frac{(x+4)^2}{4} + \frac{(y-1)^2}{1} = 1$$
 [5 marks]

(ii)
$$(x+3)^2 = -12(y-1)$$
 [4 marks]

Continued...

Question 4

(a) Given
$$A = \begin{bmatrix} 0 & 3 & -1 \\ 1 & 2 & -4 \end{bmatrix}$$
, $B = \begin{bmatrix} -4 & 1 & 0 \\ -2 & 3 & -2 \end{bmatrix}$, $C = \begin{bmatrix} 4 & -1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$,

solve the following:

(i)
$$3A-2B$$

[3 marks]

(ii)
$$5C^T$$

[2 marks]

(iii)
$$CA + 3I_3$$

[4 marks]

(iv)
$$D^{-1}$$

[10 marks]

(b) Find y in the following linear system using Cramer's rule.

$$3x + 3y + z = 9$$

$$x + 2y + z = 8$$

[6 marks]

$$2x - y + z = 1$$

APPENDIX

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A-B) = \cos A \cos B + \sin A \sin B$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\sin^2 A = \frac{1 - \cos 2A}{2}$$
$$\cos^2 A = \frac{1 + \cos 2A}{2}$$

$$\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}$$

$$\tan A = \frac{\sin 2A}{1 + \cos 2A}$$
$$= \frac{1 - \cos 2A}{\sin 2A}$$

$$\sin A \cos B = \frac{1}{2} \left[\sin(A - B) + \sin(A + B) \right]$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$