PENERAPAN METODE PERAMALAN ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE) UNTUK PENENTUAN TINGKAT SAFETY STOCK PADA INDUSTRI ELEKTRONIK

SKRIPSI

Diajukan sebagai salah satu syarat memperoleh gelar sarjana teknik

NURULITA 0606077421

UNIVERSITAS INDONESIA FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI DEPOK JULI 2010

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Nurulita

NPM : 0606077421

Tanda Tangan :

Tanggal : Juli 2010

HALAMAN PENGESAHAN

Skripsi ini diaj Nama NPM Program Studi Judul Skripsi	: :	Nurulita 0606077421 Teknik Industri Penerapan Met (Autoregressive I Untuk Penentuan Industri Elektronik	<i>Integrated</i> Tingkat	Moving A	ARIMA A <i>verage</i>) ck Pada
sebagai bagi:	an persyarata pada Progran donesia	tan di hadapan D n yang diperluka m Studi Teknik DEWAN PENGUJ	n untuk Industri,	memperole	h gelar
Domhimhing	: Ir. Fauzia Dia				
Penguji	: Prof. Dr. T. Y	uri M. Zagloel, MEn	igSc (
Penguji	: Ir. Dendi P. Is	hak, MSIE	()
Penguji	: Ir. Rahmat Nu	rcahyo, MEngSc	()
Ditetapkan di :	Depok				

Tanggal

: Juli 2010

UCAPAN TERIMA KASIH

Puji syukur penulis panjatkan ke hadirat Allah SWT yang selalu memberikan rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi ini dengan baik. Penyusunan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik dari Departemen Teknik Industri, Fakultas Teknik Universitas Indonesia.

Penulis menyadari bahwa tanpa bantuan dan bimbingan dari berbagai pihak baik secara materil maupun moril, sangatlah sulit bagi penulis untuk menyelesaikan skripsi ini. Oleh karena itu dengan segenap ketulusan hati, penulis mengucapkan banyak terima kasih kepada:

- 1. Ibu Ana (Ir. Fauzia Dianawati, M.Si) selaku dosen pembimbing yang telah menyediakan waktu, tenaga dan pikiran untuk mengarahkan penulis dalam penyusunan skripsi ini. Serta untuk rekomendasinya ke perusahaan yang memudahkan kami untuk memperoleh objek penelitian.
- 2. Bapak Irnu yang telah mengakomodasi penulis untuk mendapatkan akses ke berbagai divisi yang terkait di perusahaan. Bapak Sigit dan Supriyadi atas bimbingannya dan kemudahan akses data yang diperlukan penulis. Bapak Irwan yang menjadi teman sepenangungan dalam menunggu bis karyawan dan untuk sarapan paginya. Kemudian kepada seluruh pihak dari PT Indonesia Epson Industry, Cikarang, Jawa-Barat yang tidak bisa disebutkan satu per satu atas keramahan dan kehangatan kalian selama penulis melakukan penelitian.
- 3. Orang Tua (Papa dan Mama) tercinta yang selalu memberikan dukungan, menyayangi, mendoakan, memberikan perhatian, motivasi, masukan dan inspirasi serta mendengarkan segala keluh kesah penulis. Adik-adik tercinta (Puput, Yuda, dan Api) yang selalu memberi hiburan dan semangat dikala penulis hampir depresi saat menyelesaikan skripsi ini. Terima kasih atas kasih sayang dan kehangatan kalian semua.
- 4. Teman, sahabat, saudara sekaligus rekan seperjuangan skripsi, saudari Rainy Nafitri Naland atas kebersamaan dan kerjasama kita untuk menjadi tim yang kompak dan bersemangat dalam penelitian ini. Walaupun badai, panas, hujan, geledek dan begitu banyak tekanan yang datang, bersamamu kita dapat

melalui semuanya dengan baik, ceria dan tetap menjadi anak yang gaul ditengah-tengah skripsi kita tercinta ini. Terima kasih juga kepada pacar dari saudari Rainy, Irvandi Permana alias Ucup untuk semua kebodohan yang dilakukannya sehingga tekanan yang datang dapat diubah menjadi kenikmatan bersama.

- 5. Chatra Hagusta Prisandi sebagai teman, sahabat, pacar, kakak, ayah dan calon suami yang selalu memberikan kasih sayang, cinta, dan perhatian kepada penulis. Untuk semua motivasi, dorongan, kesabaran yang luar biasa dan pengorbanannya yang menjadi kekuatan bagi penulis untuk tetap semangat.
- 6. Saudari Sisi, Ayu, Renta, Christie, Che, Ijul, Dame, dan Rika untuk persahabatan dan kasih sayang yang luar biasa serta untuk kegilaan-kegilaan yang kita lakukan dan maaf yang selalu kalian berikan kepada penulis.
- 7. Teman-teman lab MIS, Billy, Nicho, Sisi, Steven, Dito, Fatur, Sanny, Norman atas diskusi-diskusi yang menyenangkan di lab kita tercinta, filosofi-filosofi penelitian serta visi yang sama untuk menjadi yang terdepan. Serta kepada saudara Nuki yang telah memberikan kursus singkat mengenai ilmu statistik.
- 8. Teman-teman 2006 atas kekeluargaan dan keceriaan yang selalu kita buat selama masa-masa indah menjadi mahasiswa di kampus tercinta.
- 9. Mba Willy, Ibu Har, Mba Anna, Mas Iwan, Babeh Mursyid, Mas Latief dan segenap karyawan Teknik Industri, atas semua pelayanan yang kekeluargaan yang kalian berikan.
- 10. Teman-teman dari Teknik Industri 2007, 2008 dan 2009 dan rekan-rekan teknik lainnya untuk kehidupan kampus yang luar biasa ini.
- 11. Serta pihak-pihak lain yang tidak bisa penulis sebutkan satu persatu.

Akhir kata, penulis berharap Tuhan Yang Maha Esa berkenan membalas segala kebaikan saudara-saudara semua. Semoga skripsi ini membawa manfaat bagi pengembangan ilmu pengetahuan.

Depok, Juli 2010

Penulis

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini :

Nama : Nurulita

NPM : 0405070585

Program Studi : Teknik Industri

Departemen : Teknik Industri

Fakultas : Teknik

Jenis karya : Skripsi

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Nonekslusif (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul:

"Penerapan Metode Peramalan ARIMA (Autoregressive Integrated Moving Average) Untuk Penentuan Tingkat Safety Stock Pada Industri Elektronik"

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Nonekslusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/ formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilih Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal : Juli 2010

Yang menyatakan

(Nurulita)

vi

ABSTRAK

Nama : Nurulita

Program Studi : Teknik Industri

Judul Skripsi : Penerapan Metode Peramalan ARIMA

(Autoregressive Integrated Moving Average) untuk Penentuan Tingkat Safety Stock pada

Industri Elektronik

Peramalan merupakan bagian dari pengelolaan permintaan sebagai fungsi dalam perencanaan produksi sehingga dapat berguna dalam memberikan gambaran kegiatan produksi yang akan dilaksanakan. Tujuan dari penelitian ini adalah untuk memperoleh model peramalan yang akurat guna memproyeksikan permintaan produk sebagai fungsi dari perencanaan produksi. Oleh karena peramalan tidak mutlak benar dan akurat, pendekatan kesalahan peramalan merupakan kunci utama untuk menetapkan penentuan tingkat persediaan minimum (safety stock). Sehingga peramalan permintaan dapat diprediksi dan jumlah persediaan dapat ditentukan guna mengantisipasi jumlah permintaan yang variatif dan fluktuatif. Menggunakan analisis runtun waktu dengan metode ARIMA, didapatkanlah model peramalan permintaan dimana kesalahan peramalan turun hingga 19%.

Kata kunci:

Peramalan, safety stock, ARIMA, analisis deret waktu, kesalahan peramalan

ABSTRACT

Name : Nurulita

Study Program : Industrial Engineering

Title : Implementation ARIMA (Autoregressive

Integrated Moving Average) Method for Determining Safety Stock Level on Electronical

Industry

Forecasting is part of demand management as production planning functions that could be useful in giving the description of production activities to be carried out. The purpose of this research is to obtain an accurate forecasting model to project the demand for the product as a function of production planning. Because forecasting is not absolutely true and accurate, the forecast error approach is a key to determine the set minimum inventory levels (safety stock). Thus the forecast demand can be predicted and the amount of inventory can be determined to anticipate the number of variety and fluctuative demand. Using time series analysis with ARIMA method, it is concluded that the demand forecasting model in which the forecast error falls to 19%.

Keywords:

Forecasting, safety stock, ARIMA, time series analysis, forecast error

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PERNYATAAN ORISINALITASi	i
HALAMAN PENGESAHANii	i
UCAPAN TERIMA KASIHiv	V
HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASIv	i
ABSTRAKvi	i
DAFTAR ISIiz	
DAFTAR GAMBARxi	i
DAFTAR LAMPIRANxiv	V
BAB I PENDAHULUAN	
1.1 Latar Belakang Permasalahan	1
1.2 Diagram Keterkaitan Masalah	3
1.3 Perumusan Masalah	1
1.4 Tujuan Penelitian	
1.5 Ruang Lingkup Permasalahan	
1.6 Metodologi Penelitian	
1.7 Sistematika Penulisan	3
BAB II LANDASAN TEORI)
2.1 Permintaan (Demand))
2.1.1 Pengelolaan Permintaan (Demand Management)	
2.1.2 Karakteristik Permintaan	2
2.1.3 Permintaan Dependen dan Independen 13	3
2.2 Peramalan (Forecasting)	1
2.2.1 Pengertian dan Konsep Dasar Peramalan	1
2.2.2 Prinsip Peramalan	7
2.2.3 Metode Peramalan	3
2.2.4 Tahapan Peramalan	1
2.3 Analisis Deret Waktu (<i>Time Series Analysis</i>)	1
2.3.1 Definisi	1
2.3.2 Konsep Dasar dan Persamaan Deret Waktu	2

2.3.3 Mengukur Akurasi Peramalan dan Kesalahan Peramalan (Forecast	
Error)	24
2.4 Model ARIMA (Autoregressive Integrated Moving Average)	27
2.4.1 Autokovarian, Autokorelasi, dan Parsial Autokorelasi	28
2.4.2 Proses Autoregresif (AR)	30
2.4.3 Proses Moving Average (MA)	31
2.4.4 Proses Gabungan Autoregressive dan Moving Average (ARMA)	32
2.4.5 Proses Integrated (Stasioner dan Nonstasioner)	33
2.4.6 Metodologi Box-Jenkins	35
2.5 Persediaan (<i>Inventory</i>)	36
2.5.1 Tingkat Pelayanan (Serive Level)	
2.5.2 Perhitungan Safety Stock	38
BAB III PENGUMPULAN DATA	40
3.1 Data Permintaan Produk	
3.2 Data Peramalan Produk	46
3.3 Simpangan Peramalan Produk	47
BAB IV PENGOLAHAN DATA DAN ANALISIS	
4.1 Penentuan Model Peramalan Produk	
4.1.1 Identifikasi Data Deret Waktu	51
4.1.2 Identifikasi Model Deret Waktu	57
4.1.3 Estimasi Parameter Model	
4.1.4 Diagnosis dan Pemeriksaan Model	63
4.1.5 Peramalan Permintaan Produk	65
4.2 Penentuan Safety Stock	69
4.2.1 Perhitungan Penyimpangan Peramalan	69
4.2.2 Penentuan Tingkat Pelayanan (Service Level)	75
4.2.3 Perhitungan Safety Stock	76
BAB V KESIMPULAN DAN SARAN	79
5.1 Kesimpulan	79
5.2 Saran	80
DAFTAR REFERENSI	ΧV
LAMPIRAN	

DAFTAR TABEL

Tabel 2.1. Data dengan Linear Tren dan Proses Diferensiasinya	34
Tabel 2.2. Nilai <i>Safety Factor</i>	37
Tabel 3.1. Permintaan (unit) ProdukPeriode April 2008 – Maret 2010	41
Tabel 3.2. Data Permintaan dan Peramalan Produk	47
Periode (Oktober 2009 – Maret 2010)	47
Tabel 3.3. Simpangan dan Kesalahan Peramalan (Forecast Errors) Produk	48
Tabel 4.1. Perbandingan Data Asli dengan Data Hasil Diferensiasi Tingkat Satu	
untuk Deret Waktu Permintaan Produk	53
Tabel 4.2. Hasil Uji Proses Ljung-Box-Pierce	54
Tabel 4.3. Kesalahan Peramalan Permintaan Produk dengan	
Metode ARIMA (3, 1, 1)	70
Tabel 4.4. Perbandingan Unit Kesalahan Peramalan	
(Selisih Permintaan dengan Peramalan per Deret Waktu)	71
Tabel 4.5. Nilai Safety Factor pada Beberapa Tingkat Service Level	75
Tabel 4.6. Jumlah Safety Stock dalam Berbagai Service Level	76

DAFTAR GAMBAR

Gambar 1.2. Diagram Alir Metodologi Penelitian	8
Gambar 2.1. Demand Management dan Manufacturing	
Planning Control System	. 12
Gambar 2.2. Pola-Pola Tingkat Permintaan yang Terbentuk dari Data Historis	14
Gambar 2.3. Peramalan dalam Suatu Strategi Bisnis	. 16
Gambar 2.4. Trade-off Peramalan	. 17
Gambar 2.5. Metode-metode Peramalan	. 20
Gambar 2.6. $MAD = 3$ untuk Data Terdistribusi Normal dengan Mean = $0 \dots$. 25
Gambar 2.8. Fungsi Autokorelasi dan Parsial Autokorelasi	
Gambar 2.9. Deret Waktu Nonstasioner	. 34
Gambar 2.10. Deret Waktu Stasioner Setelah Diferensiasi 1	
Gambar 2.11. Metodologi Peramalan Box-Jenkins	. 36
Gambar 3.1. Permintaan Produk (April 2008 - Maret 2010)	. 45
Gambar 3.2. Selisih Permintaan dan Peramalan Produk	
(Oktober 2009 – Maret 2010)	
Gambar 4.1. Plot Data Deret Waktu Permintaan Produk	
Periode April 2008 – Maret 2010	. 52
Gambar 4.2. Plot Data Difirensiasi Tingkat Satu Deret Waktu	
Permintaan Produk Periode April 2008 – Maret 2010	. 57
Gambar 4.3. Fungsi Autokorelasi dan Fungsi Autokorelasi Parsial	. 58
Gambar 4.4. Grafik Fungsi Autokorelasi Data Permintaan Diferensiasi 1	. 58
Gambar 4.5. Grafik Fungsi Autokorelasi Parsial	
Data Permintaan Diferensiasi 1	. 59
Gambar 4.6. Statistik z pada $\alpha = 5\%$. 60
Gambar 4.7. Model ARIMA	. 62
Gambar 4.8. Hasil Pengolahan Uji L-Jung Box	. 63
Gambar 4.9. ACF Residual Model ARIMA (3, 1, 1)	. 65
Gambar 4.10. Hasil Peramalan Permintaan Produk	. 66
Gambar 4.11. Permintaan Produk dan Peramalan Permintaan Produk untuk Ti	ga
Bulan ke Depan (Periode April 2010 – Juni 2010)	. 67

xii

Gambar 4.12. Siklus Hidup Produk	8
Gambar 4.13. Perbandingan Permintaan dan Peramalan Produk antara Metode	
ARIMA dengan Metode Peramlan Sebelumnya7	12
Gambar 4.14. Linear Grafik antara Safety Stock dan Service Level	17
Gambar 4.15. Perancangan Tingkat Safety Stock dan Level Produksi pada	
Beberapa Service Level	18

DAFTAR LAMPIRAN

Lampiran 1. Model Pembanding 1 (ARIMA (1, 1, 0))

Lampiran 2. Model Pembanding 2 (ARIMA (0, 1, 1))

xiv

BABI

PENDAHULUAN

1.1 Latar Belakang Permasalahan

Aktivitas manufaktur mengalami lonjakan di seluruh dunia. Keluarnya negara-negara besar dari resesi terdalam sejak PD II menjadi penopang utama peningkatan aktivitas manufaktur. Peningkatan aktivitas manufaktur terjadi baik di negara-negara industri besar seperti Amerika Serikat, Inggris, Uni Eropa dan Australia maupun di negara-negara berkembang seperti China, India, Korea, dan Australia. Meningkatnya aktivitas manufaktur di dunia menyebabkan kegiatan bisnis dan manufaktur semakin giat pula, hal ini berdampak pada persaingan usaha antar perusahaan menjadi semakin ketat (Century Investment Futures, 2010).

Industri elektronik merupakan salah satu industri manufaktur yang bekembang dengan pesat belakangan ini. Di Indonesia sendiri, tahun 2010 adalah kancah ganas agar pelaku industri elektronik dan mutlak memberikan *value added baru*, yakni *digital services* dimana diharapkan memberikan solusi terintegrasi untuk kombinasi media konvensional dan digital. Mereka yang tidak memberikan layanan ini akan ditinggalkan oleh klien atau dikomoditisasikan sehingga akan makin ditekan oleh klien. Dengan dicanangkannya 2009 sebagai tahun ekonomi kreatif, hal ini akan semakin memacu perkembangan industri elektronik di tahun 2010 (Asosiasi Pengusaha Komputer Indonesia, 2010).

Kompetisi antar perusahaan untuk mendapatkan pangsa pasar dimana tujuan utama bagi perusahaan atau pelaku bisnis untuk menjadikan konsumen sebagai tujuan akhir dari strategi bisnis mereka. Hal ini berkaitan dengan tujuan utama dalam sebuah perusahaan yaitu melayani konsumen, dimana tujuan akhir dari perusahaan adalah menjalankan kegiatan perusahaan agar dapat bertemu dengan kebutuhan konsumen (Arnold dan Chapman, 2004). Untuk jenis barang elektronik, ketersediaan barang di pasar menjadi sangat penting dimana dalam suatu retail penjualan barang ada banyak barang tersedia untuk dipilih oleh konsumen. Oleh karena itu, sebagian besar perusahaan manufaktur tidak dapat menunggu hingga permintaan yang sebenarnya datang untuk mulai dapat merencanakan produksi.

1

Perusahaan terus-menerus menghadapi fluktuasi tidak pasti dari pesanan pelanggan. Untuk menghadapi fluktuasi ini pesanan, perusahaan perlu diadakan persediaan ekstra, cadangan kapasitas produksi yang memadai, penjadwalan rencana kerja lembur, serta hati-hati mengelola waktu penjadwalan pengiriman mereka. Oleh karena itu, fluktuasi dapat meningkatkan biaya dan mengurangi efisiensi operasional perusahaan, dan sangat penting bagi perusahaan untuk secara efektif mengelola fluktuasi untuk meningkatkan profitabilitas. Selanjutnya, agar fluktuasi dapat mempengaruhi kemampuan perusahaan untuk memenuhi pesanan pelanggan secara tepat waktu, yang dapat menyebabkan hilangnya kesempatan menjual produk di masa depan pasar yang kompetitif saat ini.

Salah satu cara untuk memprediksi adanya fluktuasi ini adalah dengan meramalkan keadaan masa depan. Sehingga perusahaan dapat memprediksi pesanan yang akan datang dan membantu manajemen untuk mengatur perencanaan produksi dan meningkatkan efisiensi operasional perusahaan. Peramalan merupakan bagian yang sangat penting bagi suatu perusahaan sebagai dasar masukan untuk merencanakan strategi bisnis. Sebagai contoh, dengan meramalkan permintaan, maka pengaturan dan perancanaan produksi (production planning control) dapat dilakukan. Tingkat permintaan (demand levels) sangat mempengaruhi tingkat kapasitas produksi, kebutuhan keuangan dan bagian lainnya dalam suatu bisnis (Ballou, 2004). Dalam bidang fungsional keuangan dan akuntansi, peramalan memberikan dasar bagi perencanaan anggaran dan kontrol biaya. Pemasaran bergantung pada peramalan penjualan untuk merencanakan produk baru, kompensasi tenaga penjualan, dan membuat keputusan penting lainnya. Produksi dan personil operasi menggunakan perkiraan untuk membuat keputusan secara periodik yang melibatkan proses seleksi, perencanaan kapasitas, dan tata letak fasilitas, dan juga untuk keputusan yang terus-menerus tentang perencanaan produksi, penjadwalan, dan persediaan (Chase dan Jacob, 2006: 535).

Kemudian, sebagai tindakan preventif untuk menghindari adanya *backlog* yaitu permintaan yang tidak dapat terpenuhi maupun kelebihan persediaan (*inventory*) maka perusahaan harus mempunyai tingkat persediaan untuk mengantisipasi adanya permintaan yang tidak menentu ini. Tingkat persediaan

atau yang biasa dikenal dengan *safety stock* adalah persediaan cadangan untuk memenuhi permintaan yang diluar perkiraan (Arnold dan Chapman, 2004, 283).

Berdasarkan hal tersebut, diperlukan prakiraan/prediksi mengenai jumlah atau banyaknya permintaan yang akan datang yaitu dengan peramalan (forecasting). Sehingga tujuan dari peramalan yang merupakan bagian dari pengelolaan permintaan (demand management) sebagai fungsi dalam memproyeksikan perencanaan produksi dapat berguna dalam memberikan gambaran kegiatan produksi yang akan dilaksanakan. Kemudian, untuk mengantisipasi adanya kesalahan peramalan makan ditentukanlah sejumlah tingkat persediaan minimum (safety stock) sebagai persediaan cadangan agar perusahaan dapat memenuhi permintaan yang datang.

Penelitian akan menekankan kepada metode peramalan dan pengelolaan permintaan (demand management) yang paling tepat sebagai salah satu dasar perusahaan dalam pengambilan keputusan sehingga efisiensi operasional perusahaan dapat ditingkatkan, kemudian hasil dari peramalan tersebut akan digunakan untuk menentukan tingkat safety stock yang harus disimpan oleh perusahaan sebagai tingkat persediaan minimum. Penelitian akan dilakukan di PT Indonesia Epson Industry (IEI) yang merupakan perusahaan yang bergerak di bidang manufaktur, produk-produknya adalah barang elektronik, printer pada khususnya. PT IEI sendiri merupakan salah satu perusahaan yang sehat dari sisi finansial. Okubo Tokihiro, Senior Chief Corporate Adviser PT IEI mengatakan, perekonomian dunia memang mengalami krisis dan Epson juga sedikit terkena imbas. Namun, Epson tetap akan merpertahankan produksi satu juta unit printer per bulan mulai 2009 dan menyerap 12.000 pekerja saat produksi puncak (Kontan Bisnis, 2009).

1.2 Diagram Keterkaitan Masalah

Diagram keterkaitan masalah pada dasarnya merupakan suatu alat penyederhana penyajian dari argumen-argumen yang menjadi alasan penulisan penelitian dan apa efek yang diharapkan jika solusi dilaksanakan. Berdasarkan latar belakang masalah di atas, maka dapat dibuat diagram keterkaitan

masalah yang menampilkan permasalahan secara visual dan tersusun sistematis.

Diagram keterkaitan masalah dari penelitian ini ditunjukkan oleh Gambar 1.1. Diagram keterkaitan masalah terdiri dari dua bagian yaitu, bagian penyebab (bawah) dan akibat atau efek (atas). Bagian bawah merupakan bagian yang menyatakan argumen permasalahan dan eksplorasi dari gejala permasalahan sehingga ditemukan beberapa akar permasalahan yang akhirnya dipilih satu atau lebih akar permasalahan yang ingin disolusikan sedangkan bagian atas merupakan prediksi manfaat dan akibat atau efek dari solusi yang diusulkan didalam penelitian ini.

1.3 Perumusan Masalah

Pokok permasalahan yang akan diteliti berawal dari permintaan barang yang variatif, tidak konstan, dan sulit diprediksi (dibawah ketidakpastiaan). Oleh karena itu, penelitian diarahkan untuk mengurangi gejala fluktuasi atau ketidakpastian dan permintaan barang yang variatif tersebut dapat diprediksi berdasarkan perilaku-perilaku permintaan sebelumnya sehingga didapatkanlah tingkat persediaan minimum (*safety stock*) untuk mengantisipasi kelebihan atau kekurangan produksi akibat permintaan yang tidak menentu dan variatif ini. Dengan merancang model peramalan yang akurat yang dapat digunakan untuk memprediksi permintaan sebagai fungsi dari perencanaan produksi diharapkan didapatkan presiksi permintaan yang tepat dan memperkirakan tingkat persediaan (*safety stock*) yang harus dipenuhi sehingga efisiensi operasional perusahaan dapat dicapai.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut:

- 1. Memperoleh model peramalan yang akurat untuk memproyeksikan permintaan produk sebagai fungsi dari perencanaan produksi dengan metode ARIMA.
- 2. Menentukan tingkat persediaan (*safety stock*) untuk mengantisipasi jumlah permintaan yang variatif dan fluktuatif.

Gambar 1.1. Diagram Keterkaitan Masalah

1.5 Ruang Lingkup Permasalahan

Ruang lingkup dari penelitian ini digunakan agar masalah yang diteliti lebih dapat terarah dan terfokus sehingga penelitian dapat dilakukan sesuai dengan apa yang direncanakan. Ruang lingkup penelitian ini adalah sebagai berikut:

- 1. Penelitian dilakukan di perusahaan manufaktur yang bergerak di bidang elektronik yaitu PT Indonesia Epson Industry.
- Penelitian ini terbatas pada studi terhadap produk printer sebagai salah satu product image dari perusahaan dimana permintaan terhadap produk ini dari waktu ke waktu mempunyai pengaruh yang sangat besar bagi perencanaan produksi.
- 3. Divisi yang akan diteliti terbatas pada lingkup *Production Planning Control* (*PPC*) yang dapat menyediakan data permintaan terhadap produk tersebut.
- Data historis yang akan digunakan adalah data historis permintaan dua tahun yang lalu, yang akan dianalisa untuk mendapatkan model peramalan yang terpat.

1.6 Metodologi Penelitian

Metode penelitian yang digunakan dalam penelitian ini (Sekaran, 2000) terdiri dari enam tahapan secara sistematis dapat dilihat pada gambar 1.2. dengan penjabaran sebagai berikut, yaitu:

1. Pemilihan topik penelitian

Tahap pertama dalam melakukan penelitian adalah menentukan topik atau bahasan yang akan diteliti. Pemilihan topik penelitian dilakukan dengan melakukan diskusi dengan pihak perusahaan dan dosen pembimbing.

Pada penelitian ini, topik yang dipilih adalah mengenai peramalan, merancang suatu model peramalan yang nantinya dapat digunakan perusahaan untuk membantu dalam proses pengambilan keputusan.

2. Pengumpulan dasar teori

Tahap selanjutnya adalah mengumpulkan dasar teori yang akan digunakan sebagai acuan atau landasan dalam mengembangkan penelitian. Sumbersumber teori berasal dari banyak sumber. Mulai dari buku-buku penunjang,

artikel, penelitian-penelitan sebelumnya seperti skripsi, tesis, disertasi maupun jurnal-jurnal dapat dijadikan sebagai landasan teori penelitian.

Pada penelitian ini, ada empat subjek yang akan dibahas, yaitu mengenai Teori Permintaan (*Demand Management*), Teori Permalan (*Forecasting Method*), Analisis Deret Waktu (*Time Series Analysis*) dan Model ARIMA (*Autoregressive Integrated Moving Average*).

3. Pengumpulan informasi dan data

Pada tahap ini, penulis akan menetukan data-data yang dibutuhkan. Pertama penulis mengidentifikasi data yang diperlukan untuk menyelesaikan masalah peramalan. Data yang akan dikumpulkan terdiri dari dua jenis yaitu data primer dan data sekunder. Data yang bersifat primer adalah data yang diambil melalui wawancara dengan pihak terkait dalam perusahaan, hal dilakukan untuk mengetahui alur proses pemesanan yang datang dari pelanggan hingga data tersebut digunakan oleh perusahaan untuk melakukan perencanaan produksi. Data yang bersifat sekunder adalah data permintaan, produk dan karakteristik dari produk yang dihasilkan oleh perusahaan.

4. Penggunaan informasi dan pengolahan data

Tahap selanjutnya setelah semua data yang dibutuhkan diperoleh adalah menggunakan informasi dan data yang telah didapat. Keseluruhan data permintaan direkap dan dipilihlah produk yang paling berpengaruh (permintaan terbanyak). Kemudian berdasarkan data historis dari permintaan tersebut dirancanglah model peramalan dengan menggunakan metode ARIMA (*Autoregressive Integrated Moving Average*). Selanjutnya, model peramalan didapat dan untuk mengukur keakuratan hasil dari model peramalan yang telah didapatkan adalah dengan mengukur kesalahan (*forecast errors*).

5. Penarikan kesimpulan dan saran

Merupakan tahap terakhir dari keseluruhan penelitian setelah semua tahap dilakukan. Penulis akan membuat kesimpulan akhir berdasarkan analisa yang telah dibuat.

Gambar 1.2. Diagram Alir Metodologi Penelitian

1.7 Sistematika Penulisan

Dalam penulisan tugas akhir ini dibuat dalam lima bagian yang memberikan gambaran sistematis sejak awal penelitian hingga tercapainya tujuan penelitian.

Bab I Pendahulan

Merupakan bagian pendahuluan sebagai pengantar untuk menjelaskan isi penelitian secara garis besar. Dalam bab ini terdapat uraian

mengenai latar belakang masalah, keterkaitan antar masalah, perumusan masalah, tujuan penelitian, ruang lingkup penelitian, metodologi penelitian, serta sistematika penulisan.

Bab II Tinjuaan Pustaka

Berisi tentang landasan teori yang digunakan dalam penelitian. Secara umum, ada empat subjek yang akan dibahas pada bab ini, yaitu mengenai Teori Permintaan (*Demand Management*), Teori Permalan (*Forecasting Method*), Analisis Deret Waktu (*Time Series Analysis*) dan Model ARIMA (*Autoregressive Integrated Moving Average*). Pembahasan teori permintaan dan permalan dimulai dari definisi umum dan modelnya. Kemudian dijelaskan pembahasan metode permalan yang lebih mendalam dengan pendekatan analisis runtun waktu dan salah satu metode atau model yang menggunakan pendekatan tersebut adalah Model ARIMA.

Bab III Pengumpulan Data

Bagian ini memaparkan mengenai pengumpulan data yang dibutuhkan untuk melaksanakan penelitian. Pengumpulan data dilakukan dengan cara observasi, wawancara, dan pengumpulan dokumen di Perusahaan yang menjadi objek penelitian.

Bab IV Pengolahan Data dan Analisa Permasalahan

Menjabarkan tentang pengolahan data dan analisisnya. Pada bab ini, semua data yang telah diperoleh akan diolah menjadi data permintaan. Pengolahan data sendiri terbagi menjadi dua tahap, yaitu perancangan model peramalan, melakukan permalan, dan mengukur kesalahan permalan (*forecast errors*).

Bab V Kesimpulan dan Saran

Merupakan bagian terakhir yang berisi kesimpulan dari pembahasan yang telah dilakukan dari bab-bab sebelumnya.

BAB II LANDASAN TEORI

Bab ini berisi gambaran mengenai dasar teori dan literatur yang akan menjadi dasar penyelesaian permasalahan dalam karya tulis ini yang berasal dari berbagai sumber baik dari buku, artikel, jurnal, maupun media virtual lain yang dapat mendukung teori untuk penelitian. Adapun informasi yang tercakup di dalamnya yakni penjelasan teoritis mengenai permintaan (demand), jenis-jenis permintaan dan pengelolannya. Kemudian metode peramalan (forecasting) yang akan digunakan. Oleh karena telah banyak metode peramalan yang dibangun untuk memodelkan datangnya permintaan, dipilihlah metode yang dapat mencapai tujuan akhir, yakni teknik peramalan yang dapat memprediksikan masa depan secara akurat. Teknik peramalan yang digunakan adalah dengan pendekatan analisis deret waktu (time series analysis). Model time series yang sangat terkenal adalah model Autoregressive Integrated moving Average (ARIMA) yang dikembangkan oleh George E. P. Box dan Gwilym M. Jenkins atau banyak juga yang menyebut metode ini dengan Box-Jenkins Model. Pada bab ini akan dijelaskan konsep-konsep untuk menggunakan teknik peramalan tersebut.

2.1 Permintaan (Demand)

Permintaan merupakan jumlah barang atau jasa yang diinginkan oleh konsumen atau kelompok konsumen dengan harga tertentu (Albert, 1998). Definisi lain dari permintaan yaitu jumlah dari kebutuhan semua pelanggan potensial (pelaku pasar) untuk produk tertentu selama jangka waktu tertentu dan dalam suatu pasar tertentu (Austin, 2002).

Banyak faktor yang mempengaruhi permintaan dari sebuah barang maupun jasa. Walaupun tidak mungkin untuk mengidentifikasi seluruh faktor tersebut, beberapa hal yang biasanya memperngaruhi tingkat permintaan suatu barang atau jasa adalah sebagai berikut:

- 1. Kondisi bisnis secara umum dan keadaan ekonomi
- 2. Faktor kompetisi
- 3. Tren pasar yang mengendalikan permintaan

10

4. Usaha internal perusahaan seperti promosi, periklanan, harga dan produk itu sendiri.

2.1.1 Pengelolaan Permintaan (Demand Management)

Menurut Arnold dan Chapman, 2004: 201, tujuan utama dari sebuah perusahaan yaitu melayani konsumen, dimana tujuan akhir dari perusahaan adalah menjalankan kegiatan perusahaan agar dapat bertemu dengan kebutuhan konsumen.

Pengelolaan permintaan (*demand management*) merupakan suatu fungsi dari pengaturan dan pengelolaan semua permintaan produk. Kegiatan tersebut dapat berupa manajemen jangka pendek, menengah dan jangka panjang. Dalam jangka panjang, proyeksi permintaan dibutuhkan untuk perencanaan strategi bisnis. Dalam jangka menengah, tujuan dari pengelolaan permintaan adalah untuk memproyeksikan jumlah perminaan sebagai fungsi dari perencanaan produksi. Dan contoh pengelolaan permintaan dalam jangka pendek yaitu pengelolaan dibutuhkan untuk mengkombinasikan permintaan dengan penjadwalan produksi (*master production scheduling*).

Pengelolaan permintaan (*demand management*) terdiri dari empat kegiatan utama, yaitu:

1. Peralamaan permintaan (demand forecasting)

Peramalan dapat digunakan sebagai landasan untuk menentukan strategi bisnis di masa depan, merencanakan produksi dan penjadwalan produksi.

Perencanaan strategi bisnis berfokus pada keadaan pasar secara keseluruhan, keadaan ekonomi dalam dua hingga sepuluh tahun ke depan. Tujuan dari perencanaan strategi bisnis adalah menyediakan dan menyiapkan waktu yang cukup untuk merencanakan sumber daya, misalnya ekspansi pabrik, pembelian peralatan, dan kebutuhan lainnya.

Perencanaan produksi berfokus pada kegiatan manufaktur untuk satu hingga tiga tahun kedepan. Dalan kegiatan manufaktur, dengan kata lain peramalan permintaan digunakan untuk menentukan hal-hal yang berkaitan dengan manufaktur seperti modal, perencanaan tenaga kerja, pengadaan bahan baku, tingkat persediaan, dan lain-lainya.

Penjadwalan produksi berfokus pada kegiatan produksi dari saat sekarang hingga beberapa bulan ke depan. Peramalan dilakukan untuk individual item, bahan baku, jumlah komponen, dan lain-lainya.

2. Proses pemesanan (order processing)

Proses pemesanan terjadi ketika pesanan dari konsumen diterima. Produk yang akan dikirim dapat berasal dari gudang (*finished good*) maupun saat masih dalam proses produksi. Jika produk yang dijual berasal dari persediaan, maka pesanan penjualan diproses agar barang dari gudang segera masuk ke tahap *shipping* (pengantaran).

Perencana produksi harus mengetahui apa yang harus diproduksi, berapa banyak, dan kapan produk tersebut harus diantar.

- 3. Jadwal pengantaran (*making delivery promises*), yaitu merupakan konsep ketersediaan barang (*available-to-promise*)
- 4. Konfirmasi antara perencanaan produksi dengan kondisi pasar.

Secara umum ilustrasi pengelolaan permintaan (demand management) digambarkan sebagai berikut.

Gambar 2.1. Demand Management dan Manufacturing Planning Control System (Sumber: Arnold dan Chapman, 2004: 200)

2.1.2 Karakteristik Permintaan

Permintaan terhadap suatu produk dapat menunjukkan jumlah yang berbeda-beda sehingga memiliki karakteristik tertentu dalam suatu periode tertentu. Apabila digambarkan dalam sebuah grafik, maka data historis akan

menunjukkan berbagai macam bentuk maupun pola dari tingkat permintaan yang ada (Arnold dan Chapman, 2004: 201).

Tingkat permintaan biasanya membentuk pola-pola sebagai berikut:

1. Tren (*Trend*)

Pola permintaan tren biasanya dialami oleh produk yang baru mengalami masa kejayaan (*prosperity*) dalam suatu siklus hidupnya. Pada masa seperti itu, biasanya produk akan menunjukkan kecenderungan (tren) naik. Dan sebaliknya, pada masa *declined* produk akan menunjukkan kecenderungan tren yang menurun.

2. Musiman (Seasonality)

Pola musiman biasanya terbentuk oleh permintaan dengan produk yang tingkat permintaannya dipengaruhi oleh cuaca, musim liburan, maupun hari-hari besar. Dasar periode untuk permintaan musiman biasanya dalam rentang waktu tahunan, akan tetapi bulanan dan mingguan juga bias membentuk suatu pola permintaan musiman.

3. Acak (Random)

Pola acak biasanya terjadi pada produk yang tingkat permintaannya diperngaruhi oleh banyak faktor dalam suatu periode tertentu. Variasi yang terjadi mungkin akan sangat kecil, namun membentuk pola acak yang tidak menentu.

4. Siklis (*Cycle*)

Pola siklis hamper mirip dengan pola permintaan musiman. Namun, pola permintaan siklis terbentuk dalam satu rentang periode yang lebih panjang, misal pola musiman tersebut terbentuk dalam rentang waktu beberapa tahun maupun dekade.

Untuk dapat lebih memahami pola permintaan yang terjadi, pola-pola tersebut digambarkan dalam gambar 2.2.

2.1.3 Permintaan Dependen dan Independen

Permintaan untuk suatu barang atau jasa dapat dikatakan independen ketika tingkat permintaan tersebut tidak dipengaruhi oleh barang atau jasa lainnya. Sedangkan permintaan dependen untuk barang atau jasa, terjadi ketika tingkat

permintaan barang atau jasa tersebut diperoleh apabila barang atau jasa yang lainnya juga dipesan/beli.

Gambar 2.2. Pola-Pola Tingkat Permintaan yang Terbentuk dari Data Historis (Sumber: Setyawan, 2006)

2.2 Peramalan (Forecasting)

2.2.1 Pengertian dan Konsep Dasar Peramalan

Peramalan merupakan kegiatan yang mencoba memprediksi keadaan masa depan dengan penggunaan data masa lalu dari sebuah variabel atau kumpulan variabel (Jacobs dan Aquilano, 2004: 470). Definisi lain tentang peramalan "Forecasting is the art of specifying meaningful information about the future" (McLeavey, 1995: 25).

Peramalan merupakan bagian vital bagi setiap organisasi bisnis yang dapat menjadi acuan bagi organisasi tersebut untuk pengambilan keputusan manajemen yang sangat signifikan. Peramalan dapat menjadi dasar bagi perencanaan jangka pendek maupun jangka panjang perusahaan.

Teknik peramalan digunakan secara luas dalam manajemen produksi dan sistem persediaan untuk melihat variasi yang sering muncul di beberapa bagian misalnya, kualitas dan proses control, perencanaan keuangan, pemasaran, analisis investasi, dan perencanaan distribusi (Montgomery dan Johnson, 1998: ix).

Peramalan menjadi salah satu dari bagian proses pengambilan keputusan. Kemampuan untuk memprediksikan aspek yang tidak dapat dikendalikan membuat proses pengambilan keputusan seharusnya mengambil keputusan pada

sesuatu yang telah dibuat berdasarkan keterkaitan variabel yang ada. Berdasarkan hal tersebut, sistem manajemen untuk perencanaan dan pengendalian operasi dengan menjalankan fungsi dari peramalan yang lebih terdefinisi. Berikut adalah contoh penggunaan peramalan dalam suatu perusahaan manufaktur (Montgomery dan Johnson, 1998: 1).

- 1. Manajemen persediaan (*Inventory management*). Dalam mengendalikan persediaan atau pembelian komponen-komponen, perlu diketahui berapa jumlah yang diperlukan setiap komponen untuk menentukan pengadaan *lot sizes*.
- 2. Perencanaan produksi (*Production planning*). Merencanakan lini produksi dalam sebuah proses produksi dibutuhkan peramalan dari jumlah permintaan maupun unit yang dijual untuk periode selanjutnya. Peramalan ini untuk memprediksi jumlah barang jadi, namun dapat juga dikonversikan, ke dalam jumlah barang setengah jadi, komponen-konponen, bahan baku, pekerja dan yang lainnya sehingga keseluruhan sistem manufaktur dapat dijadwalkan.
- 3. Perencanaan keuangan (*Financial planning*). Manajer keuangan akan memperhatikan *cash flow* perusahaan untuk memprediksikan jumlah asset dan modal yang dimiliki, kapan *cash flow* akan naik atau turun seiring dengan waktu sekarang dan masa depan yang dapat membantu dalam proses pengambilan keputusan.
- 4. Penjadwalan pekerja (*Staff schedulling*). Peramalan meramalkan jumlah produk yang akan dibuat, sehingga manajer dapat merencanakan jumlah lini produksi, pekerja serta peralatan yang dibutuhkan dengan lebih efisien.
- 5. Perencanaan fasilitas (*Facilities planning*). Keputusan mengenai fasilitas fasilitas baru dibutuhkan untuk perencanaan jangka panjang berdasarkan dari peramalan atau keadaan sekarang. Hal ini diperlukan untuk merancang fasilitas dan memperkiraan investasi yang diperlukan.
- 6. Pengendalian proses (*Process control*). Peramalan juga menjadi bagian yang penting dalam pengendalian proses. Dengan memonitor variable dari proses kunci dan memprediksikan perilaku dari proses yang akan datang, memungkinkan untuk menentukan waktu yang optimal dan menentukan tindakan pengendalian yang tepat.

Gambar 2.3. Peramalan dalam Suatu Strategi Bisnis

(Sumber: Ballou, 2004: 286)

Tujuan dari peramalan adalah untuk mengurangi resiko dari pengambilan keputusan. Peramalan biasanya salah, namun besar dari kesalahan peramalan (forecast errors) tergantung dari metode peramalan yang digunakan. Dengan menggunakan banyak aspek untuk melakukan peramalan, keakuratan peramalan seharusnya dapat ditingkatkan dan mengurangi beberapa aspek ketidakpastian dalam proses pengambilan keputusan berdasarkan hasil peramalan tersebut.

Konsep ini diilustrasikan dalam gambar 2.4., dimana biaya dari peramalan meningkat, tetapi resiko (ketidakpastian) berkurang. Dalam beberapa tingkatan biaya peramalan akan menurun. Model konseptual dari gambar 2.4. didasarkan pada asumsi nilai marginal yang menurun dari peramalan. Dalam beberapa kondisi, penambahan aspek untuk proses peramalan mungkin tidak berdampak banyak. Namun, hal ini memungkinkan untuk mengurangi kesalahan peramalan.

Dikarenakan peramalan tidak dapat mutlak mengurangi resiko, maka diperlukan proses keputusan secara eksplisit untuk mempertimbangkan ketidakpastian yang dari hasil peramalan (*forecast error*). Konseptual dari peramalan digambarkan dalam persamaan berikut:

Actual Decision = Decision Assuming Forecast Is Correct + Allowance For
Forecast Error

Gambar 2.4. *Trade-off* Peramalan (Sumber: Montgomery dan Johnson, 1998: 3)

Idealnya proses peramalan seharusnya menghasilkan sebuah prediksi dari probabilitas penyebaran variabel yang dapat diprediksi. Namun, peramalan tidak berakhir pada satu prosese tersebut saja. Peramalan merupakan bagian dari sebuah sistem manajemen yang luas dan sebagai sebuag subsistem yang berinteraksi dengan komponen lainnya dari keseluruhan sistem tersebut untuk menentukan kinerja secara keseluruhan.

2.2.2 Prinsip Peramalan

Peramalan memiliki empat karakteristik atau prinsip. Dengan memahami prinsip-prinsip membantu agar mendapatkan peramalan yang lebih efektif (Arnold dan Chapman, 2004: 204).

1. *Peramalan biasanya salah*. Peramalan mencoba untuk melihat masa depan yang belum diketahui dan biasanya salah dalam beberapa asumsi atau perkiraan. Kesalahan (*error*) harus diprediksi dan hal itu tidak dapat dielakan.

- 2. Setiap peramalan seharusnya menyertakan estimasi kesalahan (error). Oleh karena peramalan diprediksikan akan menemui kesalahan, pertanyaan sebenarnya adalah "seberapa besar kesalahan tersebut?". Setiap peramalan seharusnya menyertakan estimasi kesalahan yang dapat diukur sebagai tingkat kepercayaan, dapat berupa persentase (plus atau minus) dari peramalan sebagai rentang nilai minimum dan maksimum.
- 3. Peramalan akan lebih akurat untuk kelompok atau grup. Perilaku dari individual item dalam sebuah grup adalah acak bahkan ketika grup tersebut berada dalam keadaan stabil. Sebagai contoh, meramalkan secara akurat seorang murid dalam suatu kelas lebih sulit daripada meramalkan untuk ratarata keseluruhan kelas. Dengan kata lain, peramalan lebih akurat untuk dilakukan pada kelompok atau grup daripada individual item.
- 4. Peramalan lebih akurat untuk jangka waktu yang lebih dekat. Masa depan yang akan diramalkan dalam waktu panjang memiliki ketidakpsatian yang lebih tinggi daripada meramalkan untuk jangka waktu yang pendek. Kebanyakan orang lebih yakin untuk meramalkan apa yang akan mereka lakukan minggu depan dibanding meramalkan apa yang akan mereka lakukan tahun depan. Begitu juga dengan suatu bisnis, permintaan untuk jangka dekat bagi perusahaan lebih mudah untuk diramalkan untuk dibandingkan meramalkan untuk jangka panjang.

2.2.3 Metode Peramalan

Ada dua metode atau teknik peramalan yang dapat digunakan, yaitu teknik peramalan kualitatif dan kuantitatif (Markdakis, 1999).

- **Teknik peramalan kualitatif** lebih menitikberatkan pada pendapat (*judgment*) dan intuisi manusia dalam proses peramalan, sehingga data historis yang ada menjadi tidak begitu penting.
 - "Qualitative forecasting techniques relied on human judgments and intuition more than manipulation of past historical data," atau metode yang hanya didasarkan kepada penilaian dan intuisi, bukan kepada pengolahan data historis.

- Teknik peramalan kuantitatif sangat mengandalkan pada data historis yang dimiliki.Teknik kuantitatif ini biasanya dikelompokkan menjadi dua, yaitu teknik statistik dan teknik deterministik.
 - 1. Teknik statistik menitikberatkan pada pola, perubahan pola, dan faktor gangguan yang disebabkan pengaruh random. Termasuk dalam teknik ini adalah teknik *smoothing*, dekomposisi, dan tenik Bob-Jenkins.
 - 2. Teknik deterministik mencakup identifikasi dan penentuan hubungan antara variabel yang akan diperkirakan dengan variabel-variabel lain yang akan mempengaruhinya. Termasuk dalam teknik ini adalah tenik *regresi* sederhana, *regresi* berganda, *autoregresi*, dan model *input output*.

Pendekatan teknik peramalan kuantitatif terdiri dari tiga pendekatan (Makrdakis, 1999), yaitu:

1. Analisis Deret Waktu (Time Series Analysis)

Metode peramalan ini menggunakan deret waktu (*time series*) sebagai dasar peramalan. Diperlukan data aktual/data historis yang akan diramalkan untuk mengetahui pola data yang diperlukan untuk menentukan metode peramalan yang sesuai. Beberapa contoh metode dengan pendekatan analisi deret waktu adalah *moving average*, metode winter, dekomposisi, *exponential smoothing*, ARIMA (*Autoregressive Integrated Moving Average*), Kalman Filter, Metode Bayesian, dan lain-lain.

2. Analisis Kausal (Causal Methods)

Metode ini menggunakan pendekatan sebab-akibat, dan bertujuan untuk meramalkan keadaan di masa yang akan datang dengan menemukan dan mengukur beberapa variabel bebas (independen) yang penting beserta pengaruhnya terhadap variabel tidak bebas yang akan diramalkan. Pada metode kausal terdapat dua metode yang sering digunakan:

Metode regresi dan korelasi, memakai teknik kuadrat terkecil (least square) dan variabel dalam formulasi matematisnya. Metode ini sering digunakan untuk prediksi jangka pendek. Contohnya: meramalkan hubungan jumlah kredit yang diberikan dengan giro, deposito dan tabungan masyarakat atau meramalkan kemampuan dalam meramal sales suatu produk berdasarkan harganya.

Metode input output, biasa digunakan untuk perencanaan ekonomi nasional jangka panjang. Contohnya: meramalkan pertumbuhan ekonomi seperti pertumbuhan domestik bruto (PDB) untuk beberapa periode tahun ke depan 5-10 tahun mendatang.

3. Analisi Ekonometri (Simulation Analysis)

Metoda ekonometri berdasarkan pada persamaan regresi yang didekati secara simultan. Metoda ini sering digunakan untuk perencanaan ekonomi nasional dalam jangka pendek maupun jangka panjang. Contohnya: meramalkan besarnya indikator moneter buat beberapa tahun ke depan, hal ini sering dilakukan pihak BI tiap tahunnya.

DeLurgio (1998) mengilustrasikan jenis-jenis metode peramalan seperti pada gambar berikut:

Gambar 2.5. Metode-metode Peramalan

(Sumber: DeLurgio, 1998)

2.2.4 Tahapan Peramalan

Tahapan perancangan peramalan secara ringkas terdapat tiga tahapan yang harus dilalui dalam perancangan suatu metode peramalan, yaitu :

- 1. Melakukan analisa pada data masa lampau. Langkah ini bertujuan untuk mendapatkan gambaran pola dari data bersangkutan.
- 2. Memilih metode yang akan digunakan. Terdapat bermacam-macam metode yang tersedia dengan keperluannya. Metode yang berlainan akan menghasilkan sistem prediksi yang berbeda pula untuk data yang sama. Secara umum dapat dikatakan bahwa metoda yang berhasil adalah metoda yang menghasilkan penyimpangan (*error*) sekecil-kecilnya antara hasil prediksi dengan kenyataan yang terjadi.
- 3. Proses transformasi dari data masa lampau dengan menggunakan metode yang dipilih. Apabila diperlukan maka diadakan perubahan sesuai kebutuhannya.

Pada penelitian ini, digunakan metode peramalan dengan pendekatan analisis deret waktu. Model *time series* yang digunakan adalah model *Autoregressive Integrated moving Average* (ARIMA) yang dikembangkan oleh George E. P. Box dan Gwilym M. Jenkins atau banyak juga yang menyebut metode ini dengan Box-Jenkins Model.

2.3 Analisis Deret Waktu (Time Series Analysis)

2.3.1 Definisi

Analisis deret waktu adalah metode peramalan dengan menggunakan pendekatan deret waktu (*time series*) sebagai dasar peramalan, yang memerlukan data aktual lalu yang akan diramalkan untuk mengetahui pola data yang diperlukan untuk menentukan metode peramalan yang sesuai (Markdakis, 1999).

Pendekatan ini mencoba memahami dan menjelaskan mekanisme tertentu, meramalkan suatu nilai di masa depan dengan asumsi bahwa data-data masa lampau dapat memproyeksikan masa depan, dan mengoptimalkan sistem kendali (Iriawan, 2006: 341). Tujuannya yaitu untuk mengamati atau memodelkan *data series* yang telah ada sehingga memungkinkan data yang akan datang yang belum diketahui bisa diprediksi.

Ciri-ciri analisis deret waktu yang menonjol adalah bahwa deretan observasi pada suatu variabel dipandang sebagai realisasi dari variabel random berdistribusi bersama. Yakni kita menganggap adanya fungsi probabilitas bersama variabel random.

2.3.2 Konsep Dasar dan Persamaan Deret Waktu

Analisis time series dikenalkan pada tahun 1970 oleh George E. P. Box dan Gwilym M. Jenkins melalui bukunya Time Series Analysis: Forecasting and Control. Sejak saat itu, time series mulai banyak dikembangkan. Dasar pemikiran time series adalah pengamatan sekarang (z_t) tergantung pada satu atau beberapa pengamatan sebelumnya (z_{t-k}) . Dengan kata lain model *time series* dibuat karena secara statis ada korelasi (dependen) antarderet pengamatan. Untuk melihat adanya dependensi antarpengamatan, dapat melakukan uji korelasi antarpengamatan yang disebut dengan autocorrelation function (ACF) (Montgomery dan Johnson, 1998: 189).

Dengan mempertimbangkan sebuah deret waktu dimana suatu pengamatan yang berurutan dapat dinotasikan dengan sebuah kombinasi linear dari varibelvariabel acak, misalnya, ϵ_t , ϵ_{t-1} , ϵ_{t-2} , yang digambarkan dari probabilitas yang terdistibusi stabil dengan rata-rata 0 dan variance σ_{ϵ}^2 . Distribusi persebaran data ϵ_i adalah terdistribusi normal dan berurut dari variabel-variabel acak ϵ_t , ϵ_{t-1} , ϵ_{t-2} , atau yang dikenal dengan prosess white noise.

Kombinasi linear dari ϵ_i dapat dinotasikan dalam persamaan berikut.

$$x_t = \mu + \delta_0 \epsilon_t + \delta_1 \epsilon_{t-1} + \delta_2 \epsilon_{t-2} + \dots$$
 (2.2)

atau

$$x_t = \mu + \sum_{j=0}^{\infty} \delta_j \epsilon_{t-j}$$

dimana δ adalah bobot dan nilai $j=0,1,2,\ldots$ konstan sedangkan μ adalah konstanta yang menentukan level dari proses. Alternatif lain dari persamaan (2.2) didefinisikan oleh notasi lain, yaitu B.

$$B\epsilon_t = \epsilon_{t-1}$$

Secara umum, dituliskan menjadi:

$$B^{j}\epsilon_{t} = \epsilon_{t-j} \tag{2.3}$$

Dengan menggunakan persamaan (2.2) maka dapat ditulis menjadi:

$$x_t = \mu + (\delta_0 B^0 + \delta_1 B^1 + \delta_2 B^2 + \dots) \epsilon_t$$

atau

$$x_t = \mu + \coprod(B)\epsilon_t \tag{2.4}$$
 dimana $\coprod(B) = \delta_0 B^0 + \delta_1 B^1 + \delta_2 B^2 + \ldots$ dan $\delta_0 = 1$.

Persamaan (2.2) biasanya disebut dengan linear filter. Deret waktu pengamatan yang berurutan dari x_t adalah dependen, karena besarnya ditentukan oleh variabel lainnya yaitu ϵ_t . Selanjutnya, apabila ϵ_t terdistribusi normal dan ϵ_t terdistribusi secara normal juga. Dalam pandangan linear filter model, pengamatan tersebut dapat didefinisikan secara deret waktu atau yang dikenal dengan *transformasi sebuah proses white noise kedalam sebuah deret waktu (time series)*.

Model (2.2) diperoleh dari deret waktu yang stasioner maupun yang nonstasioner. Apabila deret waktu tersebut stasioner berarti deret waktu tersebut naik-turun atau terfluktuasi secara acak namun memiliki rata-rata yang konstan dan apabila deret waktu tersebut nonstasioner, rata-rata tersebut memiliki rentang nilai yang cukup tinggi. Secara umum bobot δ_j dalam linear filter adalah finite atau infinite dan konvergen, dalam suatu deret waktu x_t dan stasioner dengan rata-rata μ . Apabila bobot δ_j , infinite dan divergen, maka deret waktu yang terbentuk adalah nonstasioner dan μ hanya merupakan nilai acuan dari proses yang asli.

Berikut adalah beberapa istilah yang biasa ditemui dalam analisis time series.

- 1. **Stasioneritas.** Asumsi yang sangat penting dalam suatu deret waktu adalah stasioneritas deret pengamatan. Suatu deret pengamatan dikatakan stasioner apabila proses tidak berubah seiring dengan perubahan waktu. Maksudnya, rata-rata deret pengamatan di sepanjang waktu selalu konstan.
- 2. **Fungsi Autokorelasi** (*Autocorelation Function/ACF*). Autokorelasi adalah korelasi antarderet pengamatan suatu deret waktu, sedangkan fungsi autokorelasi (*ACF*) adalah plot dari korelasi-korelasi.

- 3. *Partial Autocorrelation Function (PACF)*. Sepertihalnya fungsi autokorelasi, autokorelasi parsial adalah korelasi antarderet pengamatan dari suatu deret waktu pengamatan. Autokorelasi parsial mengukur keeratan antarpengamatan suatu deret waktu.
- 4. *Cross correlation* digunakan untuk menganalisis deret waktu multivariate sehingga ada lebih dari dua deret waktu yang akan dianalisi. Seperti halnya autokorelasi, *cross correlation* mengukur pula korelasi antar deret waktu, tetapi korelasi yang diukur adalah koralasi daru dua deret waktu.
- 5. **Proses** *White Noise*. Merupakan proses stasioner, proses ini didefinisikan sebagai deret variabel acak yang independen, identik, dan terdistribusi.
- 6. Analisis tren. Analisis ini digunakan untuk menaksir model tren suatu data deret waktu. Ada beberapa model analisis tren, antara lain model linear, kuadratik, eksponensial, pertumbuhan atau penurunan, dan model kurva S. Analisis tren dugunakan apabila deret waktu, tidak ada komponen musiman.
- 7. **Rata-rata bergerak** (*Moving Average*). Teknik ini dapat memperhalus data dengan membuat rata-rata secara keseluruhan secara berurutan dari sekelompok pengamatan pada jangka waktu tertentu.

2.3.3 Mengukur Akurasi Peramalan dan Kesalahan Peramalan (Forecast Error)

Analisis deret waktu akan memberikan peramalan nilai masa depan berdasarkan dari data masa lalu. Tingkat keberhasilan dan keakuratan dari peramalan yang dilakukan dapat diukur dengan menghitung kesalahan peramalan (forecast error).

Pengukuran keakuratan peramalan dapat diukur oleh beberapa indikator kesalahan peramalan (Wheelwright, 1999), yaitu:

1. Rata-rata kesalahan (average/mean error)

Mean error merupakan teknik sederhana dalam menggambarkan tingkat kesalahan dari suatu proses. Kesalahan atau *error* menunjukkan besar selisih antara nilai sebenarnya dengan nilai yang diramalkan, $e_t = X_t - F_t$. Dengan persamaan tersebut maka nilai kesalahan dapat bernilai positif ataupun negative. Bernilai negatif apabila nilai peramalan melebihi dari nilai

sebenarnya dan bernilai positif apabila nilai peramalan lebih kecil dari yang sebenarnya. *Mean error* dapat dinotasikan dalam persamaan berikut.

(2.5)

Apabila digunakan untuk menghitung nilai rata-rata secara keseluruhan yaitu dalam penjumlahan keseluruhan maka adanya nilai positif dan negatif akan saling melemahkan atau menambah kesalahan. Hal ini, menyebabkan *mean error* sulit untuk menggambarkan rata-rata kesalahan dari setiap proses peramalan yang dihitung.

2. Mean Absolute Deviation (MAD)

Untuk mengantisipasi adanya nilai positif dan negative yang akan saling melemahkan atau menambah perhitungan kesalahan pada penjumlahan, maka *error* yang digunakan adalah nilai absolute untuk setiap selisih kesalahan. Perhitungan kesalahan dengan cara ini dinamakan *mean absolute deviation* (*MAD*). Dengan memberi nilai mutlak pada setiap kesalahan yang ada, maka dapat dilihat performance dari setiap hasil perhitungan, berapa nilai penyimpangan yang terjadi dari hasil peramalan. Persamaannya dinotasikan sebagai berikut.

(2.6)

Gambar 2.6. *MAD* = 3 untuk Data Terdistribusi Normal dengan Mean = 0 (Sumber: Chase dan Jacob, 2006: 549)

3. Mean Squared Error (MSE)

Mean Squared Error (MSE) menggunakan nilai kuadrat untuk setiap selisih perhitungan yang terjadi. Perbedaannya dengan mean absolute deviation (MAD) adalah MSE menilai kesalahan untuk penyimpangan yang lebih ekstrem daripada MAD. Sebagai contoh, perhitungan MAD untuk eror nilai 2 dihitung hanya dua kalinya dari eror nilai 1, akan tetapi MSE akan dihitung dengan mengkuadratkan nilai 2, ini berrati kesalahan dihitung empat kalinya dari eror nilai 1. Dengan mengadopsi kriteria untuk meminimalkan nilai MSE berarti nilai penyimpangan akan lebih besar daripada nilai permalan apabila menggunakan satu penyimpangan.

$$MSE = \frac{\sum_{i=1}^{n} e_i^2}{n}$$
 (2.7)

4. Standard Deviation of Errors (SDE)

$$SDE = \frac{\sqrt{\sum_{i=1}^{n} e_i^2}}{n-1}$$
 (2.8)

5. Percentage Error

Percentage Error adalah persentase kesalahan dari nilai yang sebenarnya dengan hasil perhitungan nilai peramalan.

$$PE_t = \frac{X_t - F_t}{X_t} \ 100 \tag{2.9}$$

6. Mean Percentage Error (MPE) dan Mean Absolute Percentage Error (MAPE) MPE adalah rata-rata dari persentase kesalahan (selisih nilai aktual dan peramalan) dari keseluruhan observasi. Sedangkan MAPE juga merupakan nilai rata-rata kesalahan, namun memberikan nilai absolute pada selisih nilai aktual dengan nilai hasil peramalan. MAPE merupakan nilai indikator yang biasa digunakan untuk menunjukkan performance atau keakuratan pada hasil proses peramalan.

$$MPE = \frac{\sum_{i=1}^{n} PE_i}{n} \tag{2.10}$$

dan

$$MAPE = \frac{\sum_{i=1}^{n} |PE_i|}{n}$$
(2.11)

Keterangan:

 $X_t = \text{nilai aktual pada waktu } t$

 F_t = nilai peramalan pada waktu t

e = error atau kesalahan (selisih dari $X_t - F_t$)

n =banyaknya jumlah observasi

2.4 Model ARIMA (Autoregressive Integrated Moving Average)

ARIMA (*Autoregressive Integrated Moving Average*) merupakan salah satu teknik peramalan dengan pendekatan deret waktu yang menggunakan teknik-teknik korelasi antar suatu deret waktu. Dasar pemikiran dari model ARIMA adalah pengamatan sekarang (zt) tergantung pada satu atau beberapa pengamatan sebelumnya (zt-k). Dengan kata lain, model ini dibuat karena secara statis ada korelasi (dependen) antar deret pengamatan. Untuk melihat adanya dependensi antar pengamatan, dapat melakukan uji korelasi antarpengamatan yang sering dikenal dengan fungsi autokorelasi (*autocorrelation function/ACF*) (Iriawan, 2006: 341).

Model ARIMA terdiri dari tiga proses yaitu *autoregressive*, *integrated*, *moving average* dengan order (p, d, q) dinotasikan sebagai ARIMA (p, d, q). Order p untuk menunjukkan adanya proses *autoregressive* pada model, order d untuk menunjukkan proses *integrated* yang harus dilakukan terlebih dahulu pada data, dan order q menunjukkan proses *moving average*. Apabila d = 0 dan q = 0, maka model *autoregressive* dinotasikan sebagai AR(p) dan bila d = 0 dan p = 0, maka model *moving average* dinotasikan sebagai MA(q) sedangkan bila dalam model tersebut ada ketiga proses maka model dinamakan *autoregressive integrated moving average* dinotasikan sebagai ARIMA (p, d, q).

Untuk dapat membangun sebuah model ARIMA yang akurat yaitu apabila memiliki kesalahan (error) yang kecil. Oleh karena itu, dalam

mengidentifikasikan model deret waktu yang ada perlu dilakukan dengan teliti. Dalam ARIMA ada empat proses penting mulai dari identifikasi korelasi, menentukan parameter model, cek diagnosis model, hingga tahap terakhir yaitu melakukan peramalan (Montgomery dan Johnson, 1998: 190).

2.4.1 Autokovarian, Autokorelasi, dan Parsial Autokorelasi

Salah satu cara untuk melihat adanya dependensi antar pengamatan adalah dengan melakukan uji korelasi antarpengamatan yang disebut dengan autocorrelation function (ACF).

Dalam analisis deret waktu, proses statistik yang akan dilakukan tidak dipengaruhi oleh perubahan waktu (*shift*) dari waktu asal pengamatan. Dengan kata lain, adanya proses tren, siklis dan lain-lain dapat disertakan dalam analisis ini. Deret waktu untuk jumlah pengamatan (n) pada waktu asal (t), yaitu $x_t, x_{t+1}, x_{t+2}, \ldots, x_{t+n-1}$, kemudian pada n pengamatan untuk waktu asal (t + k), yaitu $x_{t+k}, x_{t+k+1}, x_{t+k+2}, \ldots, x_{t+k+n-1}$. Maka rata-rata nilai deret waktu tersebut adalah

$$E(x_t) = E\left(\mu + \sum_{j=0}^{\infty} \delta_j \, \epsilon_{t-j}\right) = \mu + E \sum_{j=0}^{\infty} \delta_j \, \epsilon_{t-j}$$

oleh karena jumlah $\sum_{j=0}^{\infty} \delta_j$ adalah bersifat konvergen, maka nilai dari $\sum_{j=0}^{\infty} \delta_j E \epsilon_{t-j} = 0$. Maka rata-rata dari proses tersebut adalah

$$E(x_t) = \mu \tag{2.12}$$

Varian dari proses deret waktu ini adalah

$$\gamma_0 = V(x_t) = E[x_t - E(x_t)]^2$$

$$\gamma_0 = E\left[\sum_{j=0}^{\infty} \delta_j \, \epsilon_{t-j}\right]^2$$

$$\gamma_0 = \sigma_{\epsilon}^2 \sum_{j=0}^{\infty} \delta_j^2$$
(2.13)

Varian ada apabila nilai $\sum_{j=0}^{\infty} \delta_j^2$ bersifat konvergen.

Kovarian diantara x_t dan pengamatan lainnya yang dipisahkan oleh unit k untuk satuan waktu x_{t+k} disebut **autokovarian** dan didefinisikan sebagai

$$\gamma_k = \text{Cov}(x_t, x_{t+k}) = E[x_t - E(x_t)][x_{t+k} - E(x_{t+k})]$$

Dengan demikian autokovarian adalah kovarian diantara dua variabel acak, prefik auto pada istilah tersebut mengacu pada dua observasi dalam suatu deret waktu dimana k adalah observasi pada waktu/periode yang berbeda. Autokovarian pada lag k adalah sebagai berikut.

$$\gamma_k = \sigma_{\epsilon}^2 \sum_{j=0}^{\infty} \delta_j \, \delta_{j+k} \tag{2.14}$$

Autokorelasi diantara nilai yang berturut-turut dalam suatu deret waktu adalah kunci utama dalam mengidentifikasikan pola dasar dan menentukan model korespondasi yang sesuai untuk deret waktu. Autokorelasi pada lag k untuk menunjukkan korelasi diantara dua nilai observasi dalam suatu deret waktu yang dipisahkan oleh unit k adalah

$$\rho_{k} = \frac{\text{Cov}(x_{t}, x_{t+k})}{\sqrt{V(x_{t}).V(x_{t+k})}} = \frac{\gamma_{k}}{\gamma_{0}}$$
(2.15)

Secara grafis ditunjukkan nilai ρ_k dengan lag k, inilah yang disebut **fungsi** autokorelasi (autocorrelation function/ACF). Nilai autokorelasi berkisar antara $-1 \le \rho_k \le 1$. Selanjutnya, $\rho_k = \rho_{-k}$ yang menggambarkan nilai hubungan korelasi antara nilai tersebut, tanda positif menunjukkan bahwa hubungannya adalah berkorelasi positif dan tanda negative menunjukkan bahwa hubungannya adalah berkorelasi negatif. Hubungan yang kuat didapatkan apabila nilai korelasinya 1 dan semakin melemah ke nilai 0.

Untuk mengukur keeratan hubungan antarpengamatan suatu waktu disebut **fungsi autokorelasi parsial** (*partial autocorrelation function/PACF*). Dalam suatu deret waktu, korelasi antara x_t dan x_{t-k} pada lag k akan mempengaruhi perpindahan nilai $x_t, x_{t+1}, x_{t+2}, \ldots, x_{t+k-1}$. Secara notasi, koefisien autokorelasi parsial k yang ke- dinotasikan sebagai \emptyset_{kk} . Plot \emptyset_{kk} dengan lag k disebut fungsi autokorelasi parsial (\emptyset_{kk}). Catatan $\emptyset_{00} = \rho_0 = 1$ dan $\emptyset_{11} = \rho_1$.

Gambar 2.7. Fungsi Autokorelasi $\rho_k \ge 1$ (Sumber: Box dan Jenkins, 1994: 30)

2.4.2 Proses Autoregresif (AR)

Model autoregresif (AR) dinotasikan sebagai berikut

$$x_t = \emptyset_1 x_{t-1} + \emptyset_2 x_{t-2} + \emptyset_3 x_{t-3} + \dots + \emptyset_p x_{t-p} + e_t$$

(2.16)

dimana x_t adalah variabel dependen dan $x_{t-1}, x_{t-2}, x_{t-3}, \ldots x_{t-p}$ adalah independen variabel. Variabel independen merupakan deretan nilai dari variabel yang sama atau sejenis, misal x_{t-1} adalah jumlah permintaan pada periode t-1, maka x_{t-2} adalah jumlah permintaan untuk periode t-2 dan seterusnya. Sedangkan e_t adalah error atau unit residual yang menggambarkan gangguan acak yang tidak bias dijelaskan oleh model.

Model yang digambarklan oleh persamaan 2.16 disebut autoregresif karena persamaan tersebut seperti persamaan regresi $(x = a + b_1 z_1 + b_2 z_2 + b_3 z_3 + \ldots + b_k z_k + e)$. Perbedaannya adalah $z_1 = x_{t-1}, z_2 = x_{t-2}, z_3 = x_{t-3}, \ldots, z_k = x_{t-p}$ dan variabel independen adalah nilai dari periode dengan lag 1, 2, 3, . . . periode p. Dengan demikian, proses autoregresif adalah sebagai berikut:

- 1. Menentukan model persamaan 2.16 yang sesuai
- 2. Menentukan nilai dari *p* (menentukan panjangnya persamaan yang terbentuk)

3. Mengestimasikan nilai koefisien $\emptyset_1, \emptyset_2, \emptyset_3, \ldots, \emptyset_k$

Kemudian setelah menemukan model yang sesuai, model tersebut dapat digunakan untuk meramalkan keadaan nilai yang akan datang. Sebagai contoh, p = 3 dan $\emptyset_1 = 0.8$, $\emptyset_2 = 0.5$, $\emptyset_3 = -0.4$ (karena nilai p adalah 3, maka $\emptyset_4 = \emptyset_5 = \emptyset_6 = \ldots = 0$, maka model autoregresif adalah sebagai berikut.

$$x_t = 0.8x_{t-1} + 0.5x_{t-2} - 0.4x_{t-3} + e_t$$

Model tersebut adalah persamaan matematis untuk menentukan nilai x_t (meramalkan) yang akan datang.

2.4.3 Proses Moving Average (MA)

Tidak semua data series dapat dimodelkan dengan persamaan seperti diatas. Proses yang menentukan model deret waktu apakah autoregresif atau moving average tergantung dari korelasi antardata yang akan dimodelkan (autokorelasi). Model lain dari model ARIMA adalah moving average yang dinotasikan sebagai berikut

$$x_{t} = e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \theta_{3}e_{t-3} - \dots - \theta_{k}e_{t-q}$$
(2.17)

dimana, seperti yang telah disebutkan diatas bahwa e_t adalah error atau unit residual dan e_{t-1} , e_{t-2} , e_{t-3} , ..., e_{t-q} adalah selisih nilai sebenarnya dengan nilai yang diramalkan dengan nilai pada periode t.

Persamaan (2.17) dengan (2.16) menunjukkan bahwa nilai x_t tergantung dari nilai yang sebelumnya (e_t , e_{t-1} , e_{t-2} , . . . , e_{t-q}) daripada nilai variabel itu sendiri. Pendekatan antara proses autoregresif dan moving average adalah sama yaitu dengan mengukur autokorelasi, perbedaannya adalah model autoregresif mengukur autokorelasi antara nilai berturut-turut dari x_t sedangkan model moving average mengukur autokorelasi antara nilai error atau residual. Menurut persamaan (2.17) nilai yang akan datang dapat diprediksi dengan menggunakan error pada beberapa periode yang lalu. Contoh untuk model moving average apabila nilai q=2, $\theta_1=0$,6 dan $\theta_2=-0.3$, model peramalan q=2 atau MA (2) untuk x_t adalah $x_t=e_t-0.6e_{t-1}-0.3e_{t-2}$ dimana e_t adalah nilai acak yang tidak dapat diprediksi oleh model.

2.4.4 Proses Gabungan Autoregressive dan Moving Average (ARMA)

Proses selanjutnya adalah proses gabungan, dimana pola dari data series yang terbentuk, model terbaik digambarkan dengan menggabungkan proses autoregresif dan moving average (AR dan MA). Bentuk umum persamaan ARMA adalah gabungan dari persamaan AR dan MA yang dinotasikan sebagai berikut

$$x_{t} = \emptyset_{1} x_{t-1} + \emptyset_{2} x_{t-2} + \ldots + \emptyset_{p} x_{t-p} + e_{t} - \theta_{1} e_{t-1} - \theta_{2} e_{t-2} - \ldots - \theta_{k} e_{t-q}$$
(2.18)

Persamaan tersebut menunjukkan bahwa permintaan tergantung dari nilai persamaan masa lalu dan error masa lalu antara nilai permintaan sebenarnya dengan nilai peramalan yang diramalkan. Sebagai contoh, dengan menggabungkan persamaan AR dan MA yaitu p=3, $\emptyset_1=0.8$, $\emptyset_2=0.5$, $\emptyset_3=-0.4$ dan q=2, $\theta_1=0.6$ dan $\theta_2=-0.3$ maka persamaan model peramalannya adalah $x_t=0.8x_{t-1}+0.5x_{t-2}-0.4x_{t-3}-0.6e_{t-1}-0.3e_{t-2}+e_t$ dimana e_t adalah nilai acak yang tidak dapat diprediksi oleh model.

Mengidentifikasikan nilai p dan q

Untuk mengetahui niali *p* dan *q* yang akan digunakan oleh model dapat diidentifikasi dengan melihat autokorelasi dan parsial autokorelasi dari data deret waktu yang ada. Gambar 2.7. menunjukkan berbagai jenis bentuk dari autokorelasi dan parasial autokorelasi yang terbentuk dan model ARMA yang sesuai untuk kondisi tersebut.

Secara umum fungsi autokorelasi dan model yang sesuai dirangkum dalam tabel berikut.

Tabel 2.2. Bentuk Fungsi Autokorelasi dan Fungsi Autokorelasi Parsial

Model	Fungsi Autokorelasi	Fungsi Autokorelasi Parsial
AR (p)	Naik/Turun secara eksponensial	Terpotong pada lag <i>q</i>
MA (q)	Terpotong pada lag q	Naik/Turun secara eksponensial
ARMA (p,q)	Naik/Turun secara eksponensial	Naik/Turun secara eksponensial

(Sumber: Montgomery dan Johnson, 1998: 208)

Gambar 2.8. Fungsi Autokorelasi dan Parsial Autokorelasi (Sumber: Wheelwright, 1999: 136)

2.4.5 Proses Integrated (Stasioner dan Nonstasioner)

Model Autoregressive Moving Average (ARMA) merupakan model dari deret waktu stationer yang dapat diandalkan untuk menggambarkan nilai peramalan masa depan dari deret waktu yang sangat variatif. Teori dasar dari model ARMA adalah korelasi dan stasioneritas artinya menggunakan dan membaca perilaku korelasi antar nilai masa lalu untuk meramalkan nilai masa depan. Keadaan stationer diperlukan untuk dapat merepresentasikan keadaan data secara keseluruhan yaitu data tanpa tren, musiman, dan sebagainya. Namun, ARMA model adalah pendekatan yang dapat digunakan untuk berbagai jenis deret waktu. Apabila deret waktu belum stationer (nonstasioner) maka perlu dilakukan diferensiasi pada data series untuk menghilangkan tren tersebut.

Secara sederhana proses diferensiasi (d), model ARIMA (p,d,q) ditunjukkan pada table berikut.

Tabel 2.1. Data dengan Linear Tren dan Proses Diferensiasinya

Data Series	Diferensiasi Pertama	Data Series Baru
2	4 - 2 = 2	2
4	6 - 4 = 2	2
6	8 - 6 = 2	2
8	10 - 8 = 2	2
10	12 - 10 = 2	2
12		

(Sumber: Wheelwright, 1999: 135)

Data series stasioner didapatkan setelah melakukan diferensiasi tingkat satu (d = 1). Terkadang, proses transformasi yang diperlukan untuk mendapatkan data stasioner untuk menghilangkan deret waktu nonstasioner dilakukan lebih dari satu kali proses. Sebagai contoh, dalam deret waktu ekonomik, variabilitas data series dalam observasi mempunyai tingkat nonstasioner yang tinggi, sehingga membutuhkan proses transfomasi yang banyak, namun persentase perubahan nilai observasi relative pada level yang independen. Penggunaan algoritma untuk data sebenarnya akan dapat menghasilkan proses stationer yang dapat diterima oleh model untuk dianalisis selanjutnya.

Gambar 2.9. Deret Waktu Nonstasioner

Gambar 2.10. Deret Waktu Stasioner Setelah Diferensiasi 1

2.4.6 Metodologi Box-Jenkins

Metodologi Box-Jenkins adalah tahapan-tahapan dalam membangun model ARIMA. Dimulai dengan membuat plot dari deret waktu yang ada. Kemudian dilanjutkan dengan tahap pertama yaitu mengidentifikasi model ARIMA yang sesuai apakah deret tersebut membentuk model autoregresif (AR) tingkat p, moving average (MA) tingkat q dan apakah data tersebut nonstasioner sehingga harus mengalami diferensiasi terlebih dahulu (*integrated*). Identifikasi model yang sesuai adalah dengan mengamati nilai autokorelasi dan parsial autokorelasi dari suatu deret waktu. Selanjutnya tahap kedua adalah dengan mengestimasikan nilai parameter untuk model tersebut yaitu dengan menentukan besar koefisien untuk model AR dan untuk model MA. Setelah parameter didapatkan maka model akan terbentuk, namun apakah model tersebut dapat digunakan untuk proses peramalan harus diuji terlebih dahulu yaitu dengan diagnostik cek. Apabila model tersebut belum memadai untuk digunakan sebagai dasar peramalan maka kembali ke tahap pertama, namun apabila model telah memadai untuk melakukan permalan maka lanjut ke tahap ketiga yaitu melakukan peramalan.

Proses pembuatan model ARIMA digambarkan dalam secara skematis dalam diagram berikut.

Gambar 2.11. Metodologi Peramalan Box-Jenkins

(Sumber: Wheelwright, 1999: 133)

2.5 Persediaan (*Inventory*)

Persediaan (*inventory*) adalah suatu sumber daya menganggur yang keberadaannya menunggu proses lebih lanjut. Buchan dan Koenigsberg (1977) mengidentifikasikan fungsi inventori menjadi 3 jenis motif, yakni :

- 1. Motif transaksi (*transaction motive*), motif ini bertujuan untuk menjamin kelancaran pemenuhan permintaan barang. Besarnya inventori minimal untuk menjamin kelancaran pemenuhan permintaan disebut stok operasi (*operating stock*).
- 2. Motif berjaga-jaga (precautionary motive), motif ini adalah motif untuk meredam ketidakpastian baik yang berasal dari pemakai (user) maupun

pemasok (*supplier*). Besarnya inventori untuk meredam ketidakpastian disebut cadangan pengaman (*safety stock*) atau cadangan penyangga (*buffer stock*).

3. Motif berspekulasi (*speculative motive*), motif ini adalah motif untuk mendapatkan keuntungan yang berlipat ganda di kemudian hari.

2.5.1 Tingkat Pelayanan (Serive Level)

Service level atau tingkat layanan merupakan salah satu metode untuk penilaian kinerja dari manajemen persediaan dan juga gudang. Service level adalah suatu tingkat yang memperlihatkan jumlah pemesanan (reservasi) akan suatu material yang dipenuhi tepat waktu dibandingkan dengan total pemesanan terhadap material tersebut. Biasanya service level dinyatakan dalam satuan persen, dimana semakin mendekati nilai 100%, berarti kebutuhan akan material dapat terpenuhi dengan sangat baik. Nilai service level ini memiliki keterkaitan dengan jumlah kejadian stockout, yaitu kekurangan material daripada yang dibutuhkan, yang merupakan salah satu cara penilaian kerja inventory control. Semakin tinggi nilai service level, maka kejadian stock out semakin jarang. Berikut adalah nilai service level dan safety factor pada setiap tingkatannya.

Tabel 2.2. Nilai Safety Factor

Service Level (%)	Safety Factor
50	0.00
70	0.67
80	0.84
85	1.04
90	1.28
94	1.56
96	1.75
97	1.88
98	2.05
99	2.33

(Sumber: Arnold dan Chapman, 2004: 291)

Tingkat *service level* yang diinginkan tergantung dari keputusan manajemen yang menentukan tingkat toleransi dari banyaknya barang yang *backlog*.

2.5.2 Perhitungan Safety Stock

Safety stock merupakan persediaan yang disiapkan sebagai penyangga untuk mengantisipasi adanya perbedaan antara peramalan dan permintaan aktual, antara delivery time yang diharapan dan aktualnya, serta hal-hal tak terduga lainnya. Jumlah safety stock yang dibutuhkan untuk memenuhi tingkat permintaan/kebutuhan tertentu dapat ditentukan melalui simulasi computer atau metode statistic. Dalam perhitungannya, diperlukan sample data mengenai volume penjualan /penggunaan dan siklus pengorderan. Formula yang digunakan untuk menghitung nilai safety stock adalah

$$\sigma_c = \sqrt{\bar{R}(\sigma_S^2) + \bar{S}^2(\sigma_R^2)}$$
(2.19)

dimana:

 σ_c = Jumlah *safety stock* yang dibutuhkan

 \bar{R} = Siklus pengisian inventori rata-rata (*lead time*)

 σ_s = Standar deviasi penjualan/penggunaan rata-rata

 \bar{S} = Penjualan/penggunaan rata-rata

 σ_R = Standar deviasi siklus pengisian persediaan (lead time)

Standar deviasi penjualan / penggunaan rata-rata (σ_s) didapat dari formula berikut. Demikian juga dengan formula untuk perhitungan standar deviasi siklus pengisian persediaan (σ_R).

$$\sigma_{\rm S} = \sqrt{\frac{\sum f \, d^2}{n-1}} \tag{2.20}$$

dimana:

f = frekuensi kejadian

d = deviasi kejadian terhadap rata-rata (mean)

n = Total observasi

Oleh karena *safety stock* merupakan jumlah persediaan yang dibutuhkan untuk mengantisipasi adanya kesalahan peramalan (*forecast error*). Kesalahan peramalan merupakan kunci utama untuk menentukan tingkat *safety stock* (Chockalingam, 2008). Perhitungan *safety stock* berdasarkan kesalahan peramalan (*forecast error*) adalah sebagai berikut.

$$Safety Stock = SL \times FE \times \sqrt{LT}$$
(2.21)

dimana:

SL = Tingkat Pelayanan (Service Level) Pelanggan

FE = Forecast Error, yang digunakan adalah RSME (Root Mean Square Error) lihat persamaan (2.7)

LT = Lead Time produk

BAB III

PENGUMPULAN DATA

Bab ini menjelaskan mengenai pengumpulan data yang dibutuhkan untuk melaksanakan penelitian. Pengumpulan data dilakukan dengan cara observasi, wawancara, dan pengumpulan dokumen di perusahaan. Data yang diperlukan dibagi menjadi dua, yaitu data permintaan produk dan data peramalan produk yang digunakan oleh perusahaan sebagai acuan dalam melakukan perencanaan produksi.

3.1 Data Permintaan Produk

Penelitian dilakukan di salah satu perusahaan manufaktur yang bergerak di bidang elektronik. Produk utamanya adalah printer, perusahaan tersebut memproduksi dua jenis printer yaitu IJP (Ink Jet Printer) dan SIDM (Series Ink Dot Matrix). IJP merupakan printer rumahan (home/office printer) sedangkan SIDM adalah printer untuk bisnis (business printer) salah satu contohnya adalah mesin cetak untuk kasir.

Berdasarkan wawancara dan data permintaan yang didapat untuk semua jenis printer. Akhirnya diputuskanlah salah satu tipe printer yang dapat menjadi representasi untuk menggambarkan perilaku permintaan produk printer pada perusahaan tersebut. Permintaan produk yang akan diteliti adalah permintaan produk pada dua tahun terakhir (April 2008 – Maret 2010).

Berikut adalah data permintaan produk selama dua tahun terakhir (April 2008 – Maret 2010).

Tabel 3.1. Permintaan (unit) Produk Periode April 2008 – Maret 2010

eries	Periode	Permintaan (unit)
	07/04/2008	19.210
	14/04/2008	18.650
	21/04/2008	14.309
	28/04/2008	25.226
	5/05/2008	24.377
	12/05/2008	22.039
	19/05/2008	20.562
	26/05/2008	22.309
8	2/06/2008	19.523
200	09/06/2008	16.139
nber	16/06/2008	18.633
epter	23/06/2008	20.519
- S	7/07/2008	33.976
2008	14/07/2008	23.521
pril	21/07/2008	20.433
A	28/07/2008	21.665
	04/08/2008	26.543
	11/08/2008	23.260
	18/08/2008	24.652
	25/08/2008	25.283
	01/09/2008	25.480
	8/09/2008	21.742
	15/09/2008	24.040
	22/09/2008	24.352
	April 2008 - September 2008	07/04/2008 14/04/2008 21/04/2008 28/04/2008 5/05/2008 12/05/2008 19/05/2008 26/05/2008 26/05/2008 26/05/2008 26/05/2008 26/05/2008 26/05/2008 26/05/2008 21/06/2008 23/06/2008 23/06/2008 23/06/2008 21/07/2008 21/07/2008 21/07/2008 28/07/2008 28/07/2008 11/08/2008 11/08/2008 25/08/2008 01/09/2008 15/09/2008

Tabel 3.1. Permintaan (unit) Printer Produk Periode April 2008 – Maret 2010 (lanjutan)

Se	eries	Periode	Permintaan (unit)
25		06/10/2008	19.442
26		13/10/2008	16.751
27		20/10/2008	9.396
28		27/10/2008	21.504
29		03/11/2008	17.756
30		10/11/2008	14.780
31		17/11/2008	13.672
32		24/11/2008	16.800
33		01/12/2008	19.747
34	2006	8/12/2008	8.432
35	aret	15/12/2008	13.444
36	×	22/12/2008	15.070
37	5008	05/01/2009	29.924
38	ber 2	12/01/2009	16.280
39	Oktober 2008 - Maret 2009	19/01/2009	14.552
40		26/01/2009	17.636
41		02/02/2009	16.260
42		09/02/2009	17.296
43		16/02/2009	20.692
44		23/02/2009	20.996
45		2/03/2009	13.096
46		09/03/2009	17.956
47		16/03/2009	20.468
48		23/03/2009	19.928

Tabel 3.1. Permintaan (unit) Printer Produk Periode April 2008 – Maret 2010 (lanjutan)

Series		Periode	Permintaan (unit)
49		06/04/2009	15.927
50		13/04/2009	15.843
51		20/04/2009	12.455
52		27/04/2009	21.312
53		4/05/2009	13.536
54		11/05/2009	12.525
55		18/05/2009	11.508
56		25/05/2009	11.757
57	6	1/06/2009	10.537
58	500	08/06/2009	7.780
59	April 2009 - September 2009	15/06/2009	8.795
60	epter	22/06/2009	9.432
61) - S	06/07/2009	17.629
62	2006	13/07/2009	13.736
63	pril	20/07/2009	12.806
64	A	27/07/2009	13.103
65		03/08/2009	15.266
66		10/08/2009	14.770
67		17/08/2009	15.464
68		24/08/2009	16.065
69		7/09/2009	17.462
70		14/09/2009	11.972
71		21/09/2009	896
72		28/09/2009	13.104

Tabel 3.1. Permintaan (unit) Printer Produk Periode April 2008 – Maret 2010 (lanjutan)

Se	eries	Periode	Permintaan (unit)
73		5/10/2009	9.456
74		12/10/2009	6.580
75		19/10/2009	5.572
76		26/10/2009	8.800
77		2/11/2009	4.172
78		09/11/2009	632
79		16/11/2009	5.744
80		23/11/2009	7.470
81		7/12/2009	22.424
82	2010	14/12/2009	8.880
83	aret	21/12/2009	7.252
84	M	28/12/2009	10.436
85	Oktober 2009 - Maret 2010	4/01/2010	16.976
86	ber 2	11/01/2010	10.296
87	Okto	18/01/2010	13.792
88		25/01/2010	14.196
89		1/02/2010	6.396
90		08/02/2010	11.356
91		15/02/2010	13.968
92		22/02/2010	13.528
93		1/03/2010	6.480
94		08/03/2010	6.984
95		15/03/2010	9.816
96		22/03/2010	10.738

Universitas Indonesia

3.2 Data Peramalan Produk

Untuk perusahaan elektronik, perusahaan tidak dapat menunggu hingga permintaan yang sebenarnya datang untuk mulai merencanakan produksi karena produk akan didistribusikan untuk beberapa negara. Oleh karena itu, perusahaan memiliki sistem peralaman dan tujuan dari hasil peramalan tersebut akan digunakan dalam perencanaan produksi (*production planning*) sebagai gambaran jumlah produk yang akan diproduksi. Perencanaan produksi tersebut ditransformasikan dalam sebuah MPS (*Master Production Schedulling*) yang terus direvisi apabila permintaan yang sebenarnya datang, terus-menerus secara sekuensial hingga menghasilkan ramalan dan rencana produksi yang berkelanjutan. Perencaaan tersebut berguna untuk mengatur sumber daya yang dibutuhkan mulai dari biaya, peralatan, bahan baku, penempatan pekerja dan sumber daya lainnya.

Data historis peramalan yang dilakukan oleh perusahaan dalam enam bulan terakhir adalah sebagai berikut.

Tabel 3.2. Data Permintaan dan Peramalan Produk Periode (Oktober 2009 – Maret 2010)

N T -	D : 1	Dem	and
No	Period	Fixed	Forecast
1	05/10/2009	9.456	6.890
2	12/10/2009	6.580	7.510
3	19/10/2009	5.572	9.536
4	26/10/2009	8.800	8.253
5	02/11/2009	4.172	6.681
6	09/11/2009	632	7.764
7	16/11/2009	5.744	8.223
8	23/11/2009	7.470	8.392
9	07/12/2009	22.424	8.424
10	14/12/2009	8.880	8.524
11	21/12/2009	7.252	2.989
12	28/12/2009	10.436	3.541
13	04/01/2010	16.976	9.528
14	11/01/2010	10.296	9.292
15	18/01/2010	13.792	10.072
16	25/01/2010	14.196	8.900
17	01/02/2010	6.396	9.096
18	08/02/2010	11.356	8.496
19	15/02/2010	13.968	6.800
20	22/02/2010	13.528	6.784
21	01/03/2010	6.480	6.660
22	08/03/2010	6.984	7.980
23	15/03/2010	9.816	6.552
24	22/03/2010	10.738	1.134

3.3 Simpangan Peramalan Produk

Berdasarkan data selisih antara permalan dan permintaan produk, dapat dilihat adanya penyimpangan yang relatif besar antara peramalan produk dengan permintaan produk yang sebenarnya. Perbedaan antara besarnya peramalan dan

permintaan menunjukkan ketidakakuratan peramalan tersebut. Berikut adalah penyimpangan peramalan produk (*forecast error*) selama 6 bulan terakhir.

Tabel 3.3. Simpangan dan Kesalahan Peramalan (Forecast Errors) Produk

Demand Forecast Error							
Period	Fixed	Forecast	Error	Absolute Error	Squared Error	% Error	Absolute % Error
05/10/2009	9.456	6.890	2566	2566	6584356	27,1	27,1
12/10/2009	6.580	7.510	-930	930	864900	-14,1	14,1
19/10/2009	5.572	9.536	-3964	3964	15713296	-71,1	71,1
26/10/2009	8.800	8.253	547	547	299209	6,2	6,2
02/11/2009	4.172	6.681	-2509	2509	6295081	-60,1	60,1
09/11/2009	632	7.764	-7132	7132	50865424	-1128,5	1128,5
16/11/2009	5.744	8.223	-2479	2479	6145441	-43,2	43,2
23/11/2009	7.470	8.392	-922	922	850084	-12,3	12,3
07/12/2009	22.424	8.424	14000	14000	196000000	62,4	62,4
14/12/2009	8.880	8.524	356	356	126736	4,0	4,0
21/12/2009	7.252	2.989	4263	4263	18173169	58,8	58,8
28/12/2009	10.436	3.541	6895	6895	47541025	66,1	66,1
04/01/2010	16.976	9.528	7448	7448	55472704	43,9	43,9
11/01/2010	10.296	9.292	1004	1004	1008016	9,8	9,8
18/01/2010	13.792	10.072	3720	3720	13838400	27,0	27,0
25/01/2010	14.196	8.900	5296	5296	28047616	37,3	37,3
01/02/2010	6.396	9.096	-2700	2700	7290000	-42,2	42,2
08/02/2010	11.356	8.496	2860	2860	8179600	25,2	25,2
15/02/2010	13.968	6.800	7168	7168	51380224	51,3	51,3
22/02/2010	13.528	6.784	6744	6744	45481536	49,9	49,9
01/03/2010	6.480	6.660	-180	180	32400	-2,8	2,8
08/03/2010	6.984	7.980	-996	996	992016	-14,3	14,3
15/03/2010	9.816	6.552	3264	3264	10653696	33,3	33,3
22/03/2010	10.738	1.134	9604	9604	92236816	89,4	89,4
			2247	4064	27669656	-33	83
			Mean Error	MAD	MSE	MPE	MAPE

Gambar 3.2. Selisih Permintaan dan Peramalan Produk (Oktober 2009 – Maret 2010)

Berdasarkan tabel dan grafik terlihat bahwa penyimpangan peramalan cukup besar. Dilihat dari MAPE (*Mean Absolute Percentage Error*) sebagai salah satu indikator dari keakuratan peramalan didapatkan kesalahan dari peramalan adalah sebesar 83%. Nilai ini terbilang cukup besar karena berarti peramalan yang diberlakukan memiliki simpangan hingga ±83% dari permintaan yang sebenarnya. Oleh karena itu, penelitian diarahkan untuk membangun model peramalan yang memiliki tingkat keakuratan yang lebih tinggi kemudian membangun rancangan tingkat *safety stock* sebagai tindakan untuk mengatasi besar dari *forecast errors* tersebut.

BAB IV

PENGOLAHAN DATA DAN ANALISIS

Pada bagian ini semua data yang telah diperoleh akan diolah dan dianalisis. Pengolahan data sendiri terbagi menjadi tiga tahap, yaitu pengolahan data permintaan produk untuk mendapatkan model peramalan, kemudian penetapan tingkat pelayanan (service level) perusahaan. Pada tahap terakhir adalah penentuan tingkat safety stock berdasarkan tingkat kesalahan peramalan dan tingkat pelayanan (service level) yang diinginkan.

4.1 Penentuan Model Peramalan Produk

Dalam membuat model peramalan dengan model ARIMA, ada beberapa tahap yang harus dilakukan hingga model tersebut dapat digunakan untuk melakukan peramalan.

4.1.1 Identifikasi Data Deret Waktu

Pada tahap awal analisis data dilakukan identifikasi pada data yang ada. Apakah data tersebut mempunyai tren naik, musiman, acak maupun acak. Untuk mengetahui tren dari suatu deret waktu maka dibuatlah plot data deret waktu dalam bentuk grafik. Selain itu, hal ini dilakukan untuk memenuhi asumsi dasar penggunaan model ARIMA yaitu data deret waktu yang akan dijadikan model harus bersifat stasioner. Apabila data yang ada bersifat nonstasioner maka data tersebut harus diferensiasi terlebih dahulu agar model yang dihasilkan dapat merepresentasikan keadaan data secara keseluruhan (Montgomery dan Johnson, 1998: 203).

Pengolahan data dilakukan dengan menggunakan bantuan *software* statistik yaitu Minitab 14. Berikut data plot data deret waktu untuk data permintaan produk periode April 2008 – Maret 2010.

Gambar 4.1. Plot Data Deret Waktu Permintaan Produk
Periode April 2008 – Maret 2010

Berdasarkan plot data deret waktu pada gambar 4.1. dapat disimpulkan bahwa data deret waktu untuk permintaan produk adalah nonstastioner dengan tren yang cenderung menurun. Oleh karena itu, data harus didiferensiasi agar menghasilkan data yang stasioner. Perbandingan antara data asli dengan data hasil diferensiasi tingkat satu untuk deret waktu permintaan produk adalah sebagai berikut.

Tabel 4.1. Perbandingan Data Asli dengan Data Hasil Diferensiasi Tingkat Satu untuk Deret Waktu Permintaan Produk

C -		Minaga	Pern	nintaan (unit)
Se	ries	Minggu	Origin	Difference 1
1		07/04/2008	19.210	*
2		14/04/2008	18.650	-560
3		21/04/2008	14.309	-4.341
4		28/04/2008	25.226	10.917
5		5/05/2008	24.377	-849
6		12/05/2008	22.039	-2.338
7		19/05/2008	20.562	-1.477
8		26/05/2008	22.309	1.747
9	∞	2/06/2008	19.523	-2.786
10	200	09/06/2008	16.139	-3.384
11	nber	16/06/2008	18.633	2.494
12	April 2008 - September 2008	23/06/2008	20.519	1.886
13	S - S	7/07/2008	33.976	13.457
14	2008	14/07/2008	23.521	-10.455
15	pril	21/07/2008	20.433	-3.088
16	A	28/07/2008	21.665	1.232
17		04/08/2008	26.543	4.878
18		11/08/2008	23.260	-3.283
19		18/08/2008	24.652	1.392
20		25/08/2008	25.283	631
21		01/09/2008	25.480	197
22		8/09/2008	21.742	-3.738
23		15/09/2008	24.040	2.298
24		22/09/2008	24.352	312

Tabel 4.1. Perbandingan Data Asli dengan Data Hasil Diferensiasi Tingkat Satu untuk Deret Waktu Permintaan Produk (lanjutan)

) / C	Perm	nintaan (unit)
Se	ries	Minggu	Origin	Difference 1
25		06/10/2008	19.442	-4.910
26		13/10/2008	16.751	-2.691
27		20/10/2008	9.396	-7.355
28		27/10/2008	21.504	12.108
29		03/11/2008	17.756	-3.748
30		10/11/2008	14.780	-2.976
31		17/11/2008	13.672	-1.108
32		24/11/2008	16.800	3.128
33		01/12/2008	19.747	2.947
34	Oktober 2008 - Maret 2009	8/12/2008	8.432	-11.315
35	aret	15/12/2008	13.444	5.012
36	- M	22/12/2008	15.070	1.626
37	2008	05/01/2009	29.924	14.854
38	ber 2	12/01/2009	16.280	-13.644
39	Okto	19/01/2009	14.552	-1.728
40		26/01/2009	17.636	3.084
41		02/02/2009	16.260	-1.376
42		09/02/2009	17.296	1.036
43		16/02/2009	20.692	3.396
44		23/02/2009	20.996	304
45		2/03/2009	13.096	-7.900
46		09/03/2009	17.956	4.860
47		16/03/2009	20.468	2.512
48		23/03/2009	19.928	-540

Tabel 4.1. Perbandingan Data Asli dengan Data Hasil Diferensiasi Tingkat Satu untuk Deret Waktu Permintaan Produk (lanjutan)

		N. 4.	Perm	nintaan (unit)
Se	ries	Minggu	Origin	Difference 1
49		06/04/2009	15.927	-4.001
50		13/04/2009	15.843	-84
51		20/04/2009	12.455	-3.388
52		27/04/2009	21.312	8.857
53		4/05/2009	13.536	-7.776
54		11/05/2009	12.525	-1.011
55		18/05/2009	11.508	-1.017
56		25/05/2009	11.757	249
57	6	1/06/2009	10.537	-1.220
58	200	08/06/2009	7.780	-2.757
59	nber	15/06/2009	8.795	1.015
60	April 2009 - September 2009	22/06/2009	9.432	637
61	S-C	06/07/2009	17.629	8.197
62	2005	13/07/2009	13.736	-3.893
63	pril	20/07/2009	12.806	-930
64	A	27/07/2009	13.103	297
65		03/08/2009	15.266	2.163
66		10/08/2009	14.770	-496
67		17/08/2009	15.464	694
68		24/08/2009	16.065	601
69		7/09/2009	17.462	1.397
70		14/09/2009	11.972	-5.490
71		21/09/2009	896	-11.076
72		28/09/2009	13.104	12.208

Tabel 4.1. Perbandingan Data Asli dengan Data Hasil Diferensiasi Tingkat Satu untuk Deret Waktu Permintaan Produk (lanjutan)

Series) (°	Permintaan (unit)		
Se	ries	Minggu	Origin	Difference 1	
73		5/10/2009	9.456	-3.648	
74		12/10/2009	6.580	-2.876	
75		19/10/2009	5.572	-1.008	
76	1/	26/10/2009	8.800	3.228	
77		2/11/2009	4.172	-4.628	
78		09/11/2009	632	-3.540	
79		16/11/2009	5.744	5.112	
80		23/11/2009	7.470	1.726	
81		7/12/2009	22.424	14.954	
82	2010	14/12/2009	8.880	-13.544	
83	aret (21/12/2009	7.252	-1.628	
84	Oktober 2009 - Maret 2010	28/12/2009	10.436	3.184	
85	6003	4/01/2010	16.976	6.540	
86	ber 2	11/01/2010	10.296	-6.680	
87	Okto	18/01/2010	13.792	3.496	
88		25/01/2010	14.196	404	
89		1/02/2010	6.396	-7.800	
90		08/02/2010	11.356	4.960	
91		15/02/2010	13.968	2.612	
92		22/02/2010	13.528	-440	
93		1/03/2010	6.480	-7.048	
94		08/03/2010	6.984	504	
95		15/03/2010	9.816	2.832	
96		22/03/2010	10.738	922	

Digambarkan secara grafik untuk data diferensiasi tingkat satu permintaan produk adalah sebagai berikut.

Gambar 4.2. Plot Data Difirensiasi Tingkat Satu Deret Waktu Permintaan Produk Periode April 2008 – Maret 2010

Analisis Plot Deret Waktu

Berdasarkan grafik tersebut dapat terlihat bahwa data telah stasioner, dengan demikian deret waktu tersebut dapat digunakan untuk membuat model ARIMA. Apabila setelah melakukan diferensiasi tingkat satu data masih bersifat nonstasioner maka perlu dilakukan lagi diferensiasi tingkat dua dengan menggunakan data diferensiasi tingkat satu sebagai data asli. Data permintaan produk telah stationer pada diferensiasi tingkat satu, maka telah didapatkan order d untuk model ARIMA (p, d, q) yaitu d = 1. Sehingga model ARIMA sementara adalah ARIMA (p, 1, q). Selanjutnya, order p dan q dapat ditentukan dengan melakukan uji korelasi antar deret waktu tersebut yaitu dengan fungsi autokorelasi (ACF) dan fungsi autokorelasi parsial (PACF).

4.1.2 Identifikasi Model Deret Waktu

Setelah mengintepretasikan model data deret waktu langkah selanjutnya adalah menghitung ACF dan PACF dari data dan membuat plotnya. Data yang digunakan untuk menghitung ACF dan PACF adalah data yang telah stasioner

yaitu data diferensiasi tingkat satu. Berikut adalah hasil perhitungan besar autokorelasi dan parsial korelasi untuk data permintaan .

Autocorrelation Function: Difference 1				Partial Autocorrelation Function: Difference 1				
Lag	ACF	T	LBQ		Lag	PACF	T	
1	-0,346513	-3,38	11,77		1	-0,346513	-3,38	
2	-0,156519	-1,37	14,20		2	-0,314332	-3,06	
3	-0,144211	-1,24	16,28		3	-0,409104	-3,99	
4	0,261207	2,21	23,19		4	-0,065333	-0,64	
5	-0,015623	-0,13	23,22		5	-0,039014	-0,38	
6	-0,133428	-1,07	25,06		6	-0,143361	-1,40	
7	0,123699	0,98	26,66		7	0,121805	1,19	
8	-0,118710	-0,93	28,15		8	-0,119101	-1,16	
9	0,245702	1,92	34,62		9	0,243476	2,37	
10	-0,383827	-2,88	50,59		10	-0,255584	-2,49	
11	0,187429	1,30	54,45		11	-0,051270	-0,50	
12	0,011516	0,08	54,46		12	-0,018162	-0,18	
13	0,009636	0,07	54,47		13	-0,197356	-1,92	
14	-0,230203	-1,57	60,50		14	-0,304965	-2,97	
15	0,236569	1,57	66,95		15	0,054114	0,53	
16	0,009379		66,96		16	-0,200111	-1,95	
17	-0,100840	-0,65	68,16		17	0,027333	0,27	
18	-0,007483	-0,05	68,17		18	-0,103167	-1,01	
19	0,006842	0,04	68,17		19	0,013333	0,13	
20	0,241799	1,56	75,36		20	0,249331	2,43	
21	-0,234558	-1,47	82,21		21	-0,011493	-0,11	
22	-0,011995	-0,07	82,23		22	-0,037089	-0,36	
23	-0,110648	-0,68	83,79		23	-0,179019	-1,74	
24	0,357157	2,18	100,35		24	-0,139615	-1,36	
					U'			

Gambar 4.3. Fungsi Autokorelasi dan Fungsi Autokorelasi Parsial

Gambar 4.4. Grafik Fungsi Autokorelasi Data Permintaan Diferensiasi 1

Gambar 4.5. Grafik Fungsi Autokorelasi Parsial Data Permintaan Diferensiasi 1

Analisis Model Deret Waktu

Jumlah data deret waktu adalah sebanyak 96 deret, banyaknya lag adalah n / 4 = 96 / 4 = 24 lag. Pada gambar 4.4. dan gambar 4.5. menujunkkan besarnya korelasi antar deret waktu antara ke-24 lag tersebut. Hasil autokorelasi menunjukkan nilai ACF, statistik T, dan Ljung-Box Q. Kemudian menampilkan uji hipotesis yang ditunjukkan dalam selang kepercayaan (*confident level*) 95% untuk level toleransi (α) = 5% dan ditunjukkan dalam grafik gambar 4.5.

Hipotesis

 $H_0: \rho_k = 0$

 $H_1: \rho_k \neq 0$

Hipotesis awal adalah antara deret waktu ϵ_t dengan ϵ_{t-k} tidak ada korelasi $(\rho_k=0)$ dan hipotesis alternatifnya adalah sebaliknya yaitu deret waktu ϵ_t dengan ϵ_{t-k} mempunyai korelasi $(\rho_k\neq 0)$.

Gambar 4.6. Statistik z pada $\alpha = 5\%$

Daerah Penolakan

Daerah penolakan adalah T > $Z_{0.05}$, sehingga hipotesis awal akan ditolak apabila nilai T lebih dari $Z_{0.05} = 1,645$. Dari hasil perhitungan nilai ACF nilai statistik T setelah lag 1 bernilai -3,36 (tanda negatif menunjukkan korelasi negatif pada data) > 1,645. Grafik pada gambar 4.6. menunjukkan lokasi statistik jatuh di daerah penolakan. Dengan kata lain, pada lag 1 atau antara ϵ_t dengan ϵ_{t-k} mempunyai korelasi ($\rho_k \neq 0$). Selain itu, nilai korelasi juga dapat dilihat langsung dengan melihat grafik 4.4. garis putus-putus merupakan selang kepercayaan yang merupakan garis batas signifikansi autokorelasi. Pada grafik menunjukkan korelasi pada beberapa lag melewati garis putus-putus. Grafik juga menunjukkan bahwa nilai-nilai autokorelasi membentuk pola naik – turun pada nilai autokorelasi positif dan negatif. Hal ini menunjukkan bahwa data - data tersebut memiliki korelasi satu sama lain. Nilai ACF terputus pada lag 1 artinya setelah lag 1 artinya korelasi deret waktu pada suatu waktu tertentu hingga lag 1, deret tersebut masih saling memperngaruhi (berkorelasi) namun setelah lag 1 korelasi tersebut terputus. Nilai ACF mengindikasikan model moving average. Berdasarkan hasil, kita dapat memperkirakan bahwa model deret waktunya model moving average. Oleh karena nilai ACF terputus pada lag 1, maka perkiraan model sementara mengandung model moving average berorde 1 atau MA (1). Nilai ACF mengindikasikan adanya proses moving average pada model deret waktu tersebut sedangkan nilai PACF digunakan untuk mengidentifikasi proses autoregresif. Sama seperti intepretasi untuk nilai ACF, PACF berdasarkan gambar 4.5. memiliki autokorelasi dan terputus pada lag 3. Sehingga dapat diperkirakan

Universitas Indonesia

bahwa model mengandung proses autoregresif dengan orde 3 atau AR (3).

Sehingga identifikasi model sementara adalah ARIMA (p, d, q) yaitu (3, 1, 1) nilai d didapatkan pada tahap sebelumnya yaitu dengan melakukan diferensiasi tingkat satu agar data tersebut memiliki stasioneritas. Model ARIMA sementara adalah sebagai berikut.

$$x_t = \emptyset_1 x_{t-1} + \emptyset_2 x_{t-2} + \emptyset_3 x_{t-3} + e_t - \theta_1 e_{t-1}$$

4.1.3 Estimasi Parameter Model

Setelah identifikasi model awal ARIMA didapatkan, langkah selanjutnya adalah menentukan besar nilai parameter model yaitu besarnya koefisien autoregresif (\emptyset) dan koefisien *moving average* (θ) agar model tersebut berbentuk persamaan yang utuh. Besarnya parameter ditentukan dengan melakukan *trial* dan *error* dengan membandingkan nilai MSE (*Mean Squared Error*) terkecil yang dihasilkan oleh kedua parameter tersebut. Dengan bantuan minitab, kedua parameter tersebut dapat ditentukan secara otomatis karena analisis minitab telah melakukan iterasi dan menghasilkan nilai optimal untuk menentukan besar dari kedua parameter tersebut. Hasil perhitungan parameternya adalah sebagai berikut.

ARIMA Model: Demand

Estimates at each iteration

Iteration	SSE		I	Paramete:	rs	
0	3030703094	0,100	0,100	0,100	0,100	-62,355
1	2633780250	-0,050	0,009	0,012	0,066	-102,794
2	2487557485	-0,200	0,070	0,031	-0,034	-129,995
3	2411939387	-0,077	0,074	0,047	0,116	-120,578
4	2132773262	-0,048	0,160	0,131	0,266	-138,986
5	1955364886	-0,198	0,261	0,214	0,237	-178,509
6	1854535446	-0,348	0,374	0,313	0,221	-221,954
7	1843184842	-0,412	0,424	0,363	0,210	-242,054
8	1843023731	-0,422	0,431	0,372	0,202	-245,589
9	1843015138	-0,425	0,432	0,374	0,199	-246,445
10	1843013998	-0,427	0,433	0,375	0,198	-246,680
11	1843013802	-0,427	0,433	0,375	0,197	-246,757
12	1843013767	-0,427	0,433	0,375	0,197	-246,785
13	1843013761	-0,427	0,433	0,375	0,197	-246,797

Relative change in each estimate less than 0,0010

Final Estimates of Parameters

```
Coef SE Coef
                            Т
                                   P
Туре
        -0,4274 0,2221 -1,92 0,057
AR
    1
         0,4335
                0,1375 -3,15 0,002
AR
AR
    3
         0,3749
                0,1248 -3,00 0,003
                         0,83 0,409
                  0,2376
MA
    1
          0,1970
         -246,8
                   372,1 -0,66 0,509
Constant
```

Differencing: 1 regular difference

Number of observations: Original series 96, after differencing 95

Residuals: SS = 1835505080 (backforecasts excluded)

MS = 20394501 DF = 90

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Gambar 4.7. Model ARIMA

Analisis Estimasi Parameter Model

Sebelum menggunakan hasil parameter untuk diterapkan pada model, harus dilihat signifikansi parameter model. Apakah parameter tersebut cukup signifikan untuk dijadikan kostanta pada model. Model deret waktu sementara adalah ARIMA dengan orde (3, 1, 1) nilai d = 1 hanya menunjukkan bahwa data mengalami sekali proses diferensiasi sehingga untuk model ini terdapat empat parameter (p = 3 dan d = 1) yaitu $\emptyset_1, \emptyset_2, \emptyset_3$, dan θ_1 .

Hipotesis

Untuk parameter autoregresif (AR)

$$H_0: \emptyset_1, \emptyset_2, \emptyset_3 = 0$$

$$H_1: \emptyset_1, \emptyset_2, \emptyset_3 \neq 0$$

Untuk parameter moving average (MA)

 $H_0: \theta_1 = 0$

$$H_1: \theta_1 \neq 0$$

Hipotesis awal adalah parameter AR dan MA tidak cukup signifikan dalam model, sedangkan hipotesis alternatif adalah parameter AR dan MA cukup signifikan dalam model.

Daerah Penolakan

Daerah penolakan adalah T > $Z_{0,05}$ atau p-value < α , sehingga hipotesis awal akan ditolak apabila nilai T lebih dari $Z_{0,05}$ = 1,645 atau nilai p-value < 0,05.

Berdasarkan pengolahan data, didapatkan nilai p-value untuk setiap parameter yaitu $\emptyset_1 = 0.047$; $\emptyset_2 = 0.002$; $\emptyset_3 = 0.003$; dan $\theta_1 = 0.049$. Semua nilai p-value tersebut dibawah < 0.05 dengan kata lain nilai p-value jatuh di daerah penolakan. Sehingga hipotesis awal ditolak dan hipotesis alternatif diterima, dengan kata lain pada hipotesis alternatif disebutkan bahwa parameter cukup signifikan dalam model. Jadi, persamaan model ARIMAnya adalah sebagai berikut:

$$x_t = -0.427x_{t-1} + 0.433x_{t-2} + 0.375\emptyset_3x_{t-3} - 0.2e_{t-1} - 247$$

4.1.4 Diagnosis dan Pemeriksaan Model

Persamaan peramalan dengan metode ARIMA telah diperoleh, namun harus di uji kembali apakah model persamaan tersebut telah memadai untuk dijadikan model peramalan. Uji Ljung-Box digunakan untuk mendekteksi adanya korelasi antar-residual. Dilakukan uji Ljung-Box karena dalam analisis deret waktu, asumsi bahwa residual mengikuti proses *white noise* yaitu deret variabel acak yang independen (tidak berkorelasi), identik dan terdistribusi normal dengan ratarata mendekati $0 (\mu = 0)$ dan standar deviasi tertentu (σ)

Untuk mendeteksi adanya proses *white noise*, dilakukan uji korelasi yang berguna mendeteksi independensi residul dan uji kenormalan residual model. Hasil Uji Ljung-Box adalah sebagai berikut.

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Gambar 4.8. Hasil Pengolahan Uji L-Jung Box

Analisis Hasil Diagnosis Model

Hipotesis

$$H_0: \rho_{a_t,a_{t-k}} = 0$$

$$H_1: \rho_{a_t,a_{t-k}} \neq 0$$

Hipotesis awal adalah ada korelasi antar lag sedangkan hipotesis alternatif adalah minimal ada satu lag tidak berkorelasi (tidak ada korelasi yang cukup berarti dari residual antar lag).

Daerah penolakan

Uji korelasi menggunakan statistic chi-square (x^2) dengan daerah penolakan:

Statistik Ljung-Box-Pierce >
$$x_{(\alpha,df)}^2$$

df atau degree of freedom ditentukan oleh banyaknya lag dan jumlah parameter. Dalam data ini, dibagi menjadi empat lag (lag 12, 24, 36 dan 48) sedangkan jumlah parameter adalah 5 (3 parameter AR, 1 parameter MA, dan 1 parameter konstanta).

Level torelansi yang digunakan (α) adalah 5% dan deteksi independensi antar lag dilakukan pada tiap lag. Gambar 4.8. menggambarkan korelasi antar lag 12, 24, 26 dan 48. Hasil uji korelasi Ljung-Box adalah sebagai berikut.

Tabel 4.2. Hasil Uji Proses Ljung-Box-Pierce

Lag (K)	df (K-k)	Statistik Ljung-Box	(x^2, df)	p-value
12	7	13,5	14,0671	0,003
24	19	33,7	30,1435	0,001
36	31	42,3	44,773	0,001
48	43	63,8	65,5048	0

Gambar 4.9. ACF Residual Model ARIMA (3, 1, 1)

Berdasarkan hasil uji Ljung-Box didapatkan nilai statistik Ljung-Box berada dibawah nilai $x_{(\alpha,df)}^2$ hanya pada daerah lag 24, hasil uji statistik berada di atas nilai $x_{(\alpha,df)}^2$. Maka hipotesis pertama ditolak sehingga hipotesis alternatif yaitu minimal ada 1 lag yang berkorelasi diterima. Selain itu berdasarkan grafik ACF residual pada Gamabr 4.9. dapat dikatakan bahwa residual memiliki korelasi pada dua lag, namun apabila melihat korelasi lag secara keseluruhan dapat dikatakan bahwa dua lag yang berkorelasi ini yaitu pada lag 10 dan lag 24, tidak ada korelasi yang cukup berarti apabila dibandingkan dengan korelasi lag secara keseluruhan. Jadi dapat disimpulkan bahwa residual telah memenuhi asumsi independensi. Sehingga dapat dikatakan bahwa model yang diperoleh cukup memadai untuk dijadikan model peramalan permintaan produk yang akan datang.

4.1.5 Peramalan Permintaan Produk

Melalui metode ARIMA didapatkanlah persamaan peramalan yaitu fungsi permintaan terhadap deret waktu. Persamaan permintaan tersebut adalah sebagai berikut:

$$x_t = -0.427x_{t-1} + 0.433x_{t-2} + 0.375\emptyset_3x_{t-3} - 0.2e_{t-1} - 247$$

Dengan persamaan permintaan tersebut, dapat diramalkan proyeksi permintaan ke depan. Sesuai dengan prinsip peramalan yang ke-4 efektif (Arnold dan Chapman, 2004: 204) yaitu peramalan akan lebih akurat bila diterapkan untuk jangka waktu yang lebih pendek. Oleh sebab itu, peramalan permintaan akan dilakukan untuk memproyeksikan jumlah permintaan untuk tiga bulan ke depan (April 2010 – Juni 2010).

Hasil peramalan permintaan produk periode April 2010 – Juni 2010 adalah sebagai berikut.

Forecasts from	period	96	(12)	periode	ahead)
----------------	--------	----	------	---------	--------

		95 Pe	rcent	
		Lim	its	
Period	Forecast	Lower	Upper	Actual
97	8703,6	-149,6	17556,8	
98	7865,0	-1592,0	17322,0	
99	8512,9	-1123,4	18149,1	
100	9115,3	-646,1	18876,8	
101	8644,6	-2060,5	19349,6	
102	8094,9	-3285,4	19475,2	
103	8061,3	-3700,1	19822,6	
104	8243,6	-3784,3	20271,5	
105	8139,5	-4332,3	20611,4	
106	7870,8	-5081,4	20823,0	
107	7715,6	-5636,1	21067,3	
108	7690,7	-5987,9	21369,2	

Gambar 4.10. Hasil Peramalan Permintaan Produk

Gambar 4.11. Permintaan Produk dan Peramalan Permintaan Produk untuk Tiga Bulan ke Depan (Periode April 2010 – Juni 2010)

Analisis Peramalan Permintaan Produk

Berdasarkan grafik data deret waktu, dapat dilihat bahwa permintaan mempunyai tren yang cenderung menurun dalam kurun waktu dua tahun terakhir, namun masih pada level permintaan yang rata-rata artinya jumlah permintaan tersebut terdistribusi normal. Hal ini mungkin disebabkan karena produk dalam penelitian yaitu printer yang merupakan barang elektronik yang berbasis teknologi. Pada umumnya, jenis barang seperti ini biasanya mempunyai siklus hidup produk (*product life cycle*) yang pendek karena teknologi cepat sekali berkembang dan kehadiran produk baru baik dari produk yang benar-benar baru maupun produk hasil modifikasi dari produk yang sebelumnya akan lebih dicari oleh pasar.

Lonjakan kenaikan permintaan terjadi secara tiba-tiba pada waktu-waktu tertentu. Setelah diamati adanya kenaikan jumlah permintaan dipengaruhi oleh faktor eksternal yaitu pada saat musim liburan dan akhir tahun permintaan akan mencapai lonjakan yang cukup tinggi (*peak season*). Lonjakan permintaan seperti ini, ternyata berulang untuk periode berikutnya, sehingga siklus musisman juga dapat dijadikan sebagai salah satu dasar peramalan.

Dari model peramalan juga dapat dilihat,

permintaan produk antara periode satu dengan yang lain mempunyai korelasi. Pada model ARIMA (3, 1, 1) permintaan produk diperngaruhi oleh tiga permintaan sebelumnya dan selisih antara dua permintaan terkahir. Konstanta negatif permintaan sebelumnya menunjukkan tren produk yang cenderung menurun namun, pergeseran penurunan permintaan tidak bergerak secara signifikan karena seperti yang telah disebutkan sebelumnya bahwa tingkat permintaan rata-rata cenderung stasioner sesuai dengan persamaan peramalan produk diatas.

Gambar 4.12. Siklus Hidup Produk

(Sumber: www.12manage.com)

Produk berada dalam masa transformasi dalam masa *maturity* ke tahap *decline*, karena permintaan historis dua tahun terakhir sedangkan untuk produk jenis ini biasanya siklus produknya pendek. Untuk produk-produk teknologi umur kejayaannya di pasar berkisar 3-5 tahun (Kontan Bisnis, 2010). Setelah itu produk akan ditinggalkan karena adanya produk baru yang lebih canggih. Dalam internal perusahaan juga seperti itu, perusahaan terus menerus-menerus melakukan inovasi produk, memodifikasi produk lama dengan menambahkan teknologi yang baru didalamnya, maupun benar-benar mengeluarkan produk yang baru. Oleh sebab

itu, permintaan untuk produk berbasis teknologi terutama dalam masa transformasi dalam masa *maturity* ke tahap *decline* akan mempunyai kecenderungan yang menurun. Prinsip pemetaan siklus hidup produk juga dapat dijadikan sebagai salah satu bantuan untuk meramalkan keadaan pasar dan permintaan di masa depan, membantu membaca siklus musiman dan lonjakan permintaan yang terjadi guna merencanakan strategi perusahaan untuk memasarkan produk di masa depan.

4.2 Penentuan Safety Stock

Pada dasarnya perusahaan (untuk jenis perusahaan manufaktur) melakukan peramalan adalah untuk memprediksikan jumlah permintaan yang akan datang. Permintaan sebagai fungsi dari perencanaan produksi dapat diperkiraan. Sebagai contoh, dengan meramalkan permintaan, maka pengaturan dan perancanaan produksi (production planning control) dapat dilakukan. Tingkat permintaan (demand levels) sangat mempengaruhi tingkat kapasitas produksi, kebutuhan keuangan dan bagian lainnya dalam suatu bisnis (Ballou, 2004).

Namun, peramalan tidak mungkin mutlak dan mencapai tingkat keakuratan 100%. Pada kenyataannya sering kali jumlah produk yang diramalkan menyimpang jauh dari permintaan yang sebenarnya. Oleh sebab itu, agar fungsi permintaan tetap dapat membantu meningkatkan efisiensi perusahaan, fungsi peramalan membantu memprediksi jumlah permintaan dan dengan menghitung besar dari kesalahan peramalan (forecast error) dapat diprediksi sejumlah produk yang harus terus diproduksi sebagai safety stock yaitu jumlah persediaan yang dibutuhkan untuk mengantisipasi kesalahan peramalan.

4.2.1 Perhitungan Penyimpangan Peramalan

Berdasarkan hasil perhitungan peramalan dengan menggunakan metode ARIMA (3, 1, 1) didapatkan prediksi permintaan untuk tiga bulan ke depan. Hasil peramalan peramalan ini tidak mencapai keakuratan 100%, perhitungan kesalahan peramalan dengan menggunakan metode ini adalah sebagai berikut.

Tabel 4.3. Kesalahan Peramalan Permintaan Produk dengan Metode ARIMA (3, 1, 1)

		Dei	mand		F	orecast Error		
No	Week	Actual	Forecast	Residual Error	Absolute Error	Squared Error	% Error	Absolute % Error
1	5/10/2009	9456	13850	-4394	4394	19308115	-46	46
2	12/10/2009	6580	10495	-3915	3915	15324093	-59	59
3	19/10/2009	5572	5338	234	234	54616	4	4
4	26/10/2009	8800	8324	476	476	226290	5	5
5	2/11/2009	4172	8595	-4423	4423	19562044	-106	106
6	09/11/2009	632	5753	-5121	5121	26227714	-810	810
7	16/11/2009	5744	3703	2041	2041	4164865	36	36
8	23/11/2009	7470	6180	1290	1290	1665132	17	17
9	7/12/2009	22424	5343	17082	17082	291777642	76	76
10	14/12/2009	8880	9756	-876	876	766850	-10	10
11	21/12/2009	7252	7466	-214	214	45625	-3	3
12	28/12/2009	10436	8008	2428	2428	5895184	23	23
13	4/01/2010	16976	14133	2843	2843	8081512	17	17
14	11/01/2010	10296	12604	-2308	2308	5326402	-22	22
15	18/01/2010	13792	9331	4462	4462	19904982	32	32
16	25/01/2010	14196	11616	2580	2580	6657432	18	18
17	1/02/2010	6396	14257	-7861	7861	61796893	-123	123
18	08/02/2010	11356	9546	1810	1810	3276100	16	16
19	15/02/2010	13968	11862	2106	2106	4434394	15	15
20	22/02/2010	13528	12964	564	564	317983	4	4
21	1/03/2010	6480	10367	-3887	3887	15104882	-60	60
22	08/03/2010	6984	9223	-2239	2239	5012673	-32	32
23	15/03/2010	9816	10183	-367	367	134616	-4	4
24	22/03/2010	10738	10855	-117	117	13642	-1	1
		9664	9573	91	3068	21461653	-42	64
		Ave	erage	Mean Error	MAD	MSE	MPE	MAPE

Analisis Penyimpangan Hasil Peramalan

Kesalahan peramalan dengan metode ARIMA (3, 1, 1) yang diukur dengan MAPE (*Mean Absolute Percentage Error*) yaitu rata-rata persen kesalahan adalah sebesar 64% berarti keakuratan peramalan sekitar 36%. Apabila dibandingkan dengan kesalahan peramalan yang dilakukan peramalan (lihat tabel 3.3.) yaitu sebesar 83%, peramalan dengan metode ini menghasilkan perhitungan yang lebih baik yaitu keakuratan naik sebesar 19%.

Apabila ditinjau per satuan waktu (periode mingguan) kesalahan peramalan dengan metode ARIMA memberikan selisih yang lebih baik (Tabel 4.4).

Tabel 4.4. Perbandingan Unit Kesalahan Peramalan (Selisih Permintaan dengan Peramalan per Deret Waktu)

		Met	ode ARIM	A (3,1,1)	Meto	de Sebelui	mnya
No	Week	Actual	Forecast	Residual Error	Actual	Forecast	Residual Error
1	5/10/2009	9456	13850	-4394	9.456	6.890	2566
2	12/10/2009	6580	10495	-3915	6.580	7.510	-930
3	19/10/2009	5572	5338	234	5.572	9.536	-3964
4	26/10/2009	8800	8324	476	8.800	8.253	547
5	2/11/2009	4172	8595	-4423	4.172	6.681	-2509
6	09/11/2009	632	5753	-5121	632	7.764	-7132
7	16/11/2009	5744	3703	2041	5.744	8.223	-2479
8	23/11/2009	7470	6180	1290	7.470	8.392	-922
9	7/12/2009	22424	5343	17082	22.424	8.424	14000
10	14/12/2009	8880	9756	-876	8.880	8.524	356
11	21/12/2009	7252	7466	-214	7.252	2.989	4263
12	28/12/2009	10436	8008	2428	10.436	3.541	6895
13	4/01/2010	16976	14133	2843	16.976	9.528	7448
14	11/01/2010	10296	12604	-2308	10.296	9.292	1004
15	18/01/2010	13792	9331	4462	13.792	10.072	3720
16	25/01/2010	14196	11616	2580	14.196	8.900	5296
17	1/02/2010	6396	14257	-7861	6.396	9.096	-2700
18	08/02/2010	11356	9546	1810	11.356	8.496	2860
19	15/02/2010	13968	11862	2106	13.968	6.800	7168
20	22/02/2010	13528	12964	564	13.528	6.784	6744
21	1/03/2010	6480	10367	-3887	6.480	6.660	-180
22	08/03/2010	6984	9223	-2239	6.984	7.980	-996
23	15/03/2010	9816	10183	-367	9.816	6.552	3264
24	22/03/2010	10738	10855	-117	10.738	1.134	9604
		9.664	9.573	91	9.664	7.418	2.247

Gambar 4.13.. Perbandingan Permintaan dan Peramalan Produk antara Metode ARIMA dengan Metode Peramlan Sebelumnya

Residual error merupakan selisih antara unit yang diramalkan dengan unit yang sebenarnya. Sebagai contoh, pada periode pertama permintaan yang sebenarnya sejumlah 9.456 unit pada metode peramalan sebelumnya diramalkan permintaan berjumlah 6.890 artinya dari hasil peramalan ini apabila dibandingkan dengan permintaan yang sebenarnya artinya jumlah unit akan mengalami backlog (kekurangan) sebesar 2.566. Maka antisipasi untuk mengatasi kekurangan unit ini seharusnya unit peramalan ditambah sebanyak 2.566 unit, oleh sebab itu tanda residual errornya bertanda positif. Sedangkan dengan metode ARIMA, residual error bertanda negatif artinya hasil peramalan ini mengalami kelebihan unit. Permintaan yang sebenarnya berjumlah 9.456 unit sedangkan diramalkan akan mencapai 13.850 unit sehingga hasil peramalan dengan permintaan yang sebenarnya mengalami kelebihan unit. Pada industri elektronik sangat dianjurkan untuk menghindari adanya backlog, lebih baik kelebihan produksi agar menjamin barang tersebut tersedia dipasar. Karena pada prinsipnya, apabila barang sudah tidak ada di pasar (dimana konsumen dapat dengan bebas memilih produk), konsumen dapat dengan mudahnya beralih ke produk lain yang tersedia di pasar. Berbeda dengan industri otomotif dimana pelanggan akan tetap setia menunggu hingga barang yang diinginkan tersedia dan sampai ke tangan konsumen. Untuk barang elektronik sifatnya adalah subsitusi karena mereka akan membeli produk tersebut karena kebutuhan akan fungsinya, jadi selama ada produk pengganti yang mempunyai fungsi yang sama, konsumen akan rela untuk menggantinya terlebih apabila produk pengganti tersebut mempunyai harga yang lebih murah. Perilaku konsumen pada industri elektronik akan berbeda dengan industri otomotif. Sehingga kelebihan produksi akan lebih diizinkan dibanding kekurangan produksi.

Metode ARIMA menghasilkan peramalan yang lebih mendekati dengan keadaan sebenarnya (lihat tabel 4.4.) pada setiap periodenya (mingguan). Pada minggu pertama selisihnya 4.394 unit dimana peramalan lebih dari peramalan yang sebenarnya. Pada minggu kedua keadaannya hamper serupa, unit peramalan lebih 3.915 unit dari permintaan yang sebenarnya. Namun untuk minggu 3 dan minggu 4 peramalan kurang dari permintaan sebenarnya, hal ini dapat diantispasi dengan menggunakan kelebihan pada periode sebelumnya. Sehingga dalam kurun

waktu satu bulan (empat periode peramalan). Hasil produksi dapat seimbang dan kelebihan produksi yang ada dapat digunakan untuk menutupi kekurangan unit dari proses peramalan yang ada. Bergitu seterusnya hingga 24 periode peramalan ke depan. Apabila dibandingkan dengan metode yang sebelumnya, metode ARIMA dapat menggambarkan keadaaan permintaan yang sebenarnya, sehingga Mean Error selama 24 periode ini sangat kecil apabila dibandingkan dengan metode sebelumnya, yaitu 91 unit untuk ARIMA dan 2.247 unit untuk metode sebelumnya (perusahaan). Angka ini dapat menunjukkan bahwa selisih kekurangan dan kelebihan pada metode ini mencapai titik yang seimbang, sehingga metode ini dapat dianjurkan untuk digunakan dalam meramalkan permintaan di masa yang akan datang. Mean error yang sangat kecil dapat disimpulkan bahwa angka/unit ini dapat menggambarkan permintaan sebagai fungsi dari perencanaan produksi. Antispasi selisih peramalan dan kelebihan peramalan dapat saling menutupi. Jadi, apabila suatu waktu terjadi lonjakan permintaan yang begitu tinggi, resiko backlog (kekurangan) dapat diperkecil dengan kelebihan simpangan, begitu juga sebaliknya apabila terjadi kelebihan maka jumlah ini akan disimpan sebagai stock untuk menutupi kekurangan dari hasil peramalan.

Selain itu, sebagai model pembanding dilakukanlah uji terhadap dua model pembanding lainnya. Berdasarkan data deret waktu yang dimiliki ada dua model pembanding yang bias diajukan yaitu model pertama ARIMA (1,1 0) atau ARI (1,1) dan model kedua yaitu ARIMA (0, 1, 1) atau IMA (1,1). Namun, dari kedua model pembanding tersebut tidak menghasilkan *forecast error* yang lebih kecil yaitu 78% untuk model ARI (1,1) maupun untuk model IMA (1,1). Untuk selengkapnya lihat lampiran 1 dan 2. Sehingga sejauh ini model terbaik yang dapat digunakan untuk melakukan peramalan adalah model ARIMA (3,1,1) dengan *forecast error* sebesar 64%. Oleh karena itu, metode ini dapat diajukan untuk memproyeksikan peramalan permintaan produk di masa mendatang.

4.2.2 Penentuan Tingkat Pelayanan (Service Level)

Pada teorinya perusahaan ingin mempunyai jumlah safety stocks pada tingkat yang optimal sehingga biaya dari kelebihan persediaan (inventory) maupun biaya akibat stockout mencapai biaya yang minimum. Pada penelitian ini ruang lingkup tidak mencakup biaya, perhitungan safety stock tergantung pada tingkat pelayanan yang ingin perusahaan berikan kepada pelanggan. Nilai safety factor dapat dilihat dengan melihat service level $(probability) = 100\% - \alpha$ sehingga nilai z_{α} atau safety factor yang merupakan rasio tingkat keamanan dapat ditentukan. Berikut adalah nilai safety factor untuk beberapa tingkat pelayananan $(service\ level)$ adalah sebagai berikut.

Tabel 4.5. Nilai *Safety Factor* pada Beberapa Tingkat *Service Level*

Service Level	Safety Factor
50%	0
60%	0,253347103
75%	0,674489750
80%	0,841621234
85%	1,036433389
90%	1,281551566
91%	1,340755034
92%	1,40507156
93%	1,475791028
94%	1,554773595
95%	1,644853627
96%	1,750686071
97%	1,880793608
98%	2,053748911
99%	2,326347874

4.2.3 Perhitungan Safety Stock

Dengan persamaan 2.21 nilai *safety stock* dapat ditentukan. *Safety stock* merupakan komponen dari total persediaan untuk menanggulagi adanya fluktuasi pada permintaan. Oleh karena itu, kesalahan peramalan (*forecasr error*) merupakan kunci utama dalam menerapkan dan menentukan stretegi *safety stock* (jumlah produk yang harus tersedia) yang tepat.

Kesalahan peramalan yang ditetapkan sebagai simpangan kesalahan (forecast error) adalah RSME (Root Mean Square Error) karena akan menentukan jumlah dari safety stock dalam satuan unit. Berdasarkan metode ARIMA nilai penyimpangan dari permintaan yang sebenarnya dengan hasil peramalan adalah RSME = 4.633 unit. Berikut adalah jumlah safety stock pada berbagai service level.

Tabel 4.6. Jumlah Safety Stock dalam Berbagai Service Level

	Service Level		90%	92%	93%	94%	95%	96%	97%
A	Safety								
	Factor		1,28	1,41	1,48	1,55	1,64	1,75	1,88
	Lead Time	Weeks	1	1	1	1	1	1	1
	Forecast								
	Error	Weekly	4.633	4.633	4.633	4.633	4.633	4.633	4.633
1	Safety Stock	Units	5.937	6.509	6.837	7.203	7.620	8.110	8.713

	Forecast	Safety Stock (unit)						
Series	Demand (unit)	Service Level 90%	Service Level 92%	Service Level 93%	Service Level 94%	Service Level 95%	Service Level 96%	Service Level 97%
97	8.704	5.937	6.509	6.837	7.203	7.620	8.110	8.713
98	7.865	5.937	6.509	6.837	7.203	7.620	8.110	8.713
99	8.513	5.937	6.509	6.837	7.203	7.620	8.110	8.713
100	9.115	5.937	6.509	6.837	7.203	7.620	8.110	8.713
101	8.645	5.937	6.509	6.837	7.203	7.620	8.110	8.713
102	8.095	5.937	6.509	6.837	7.203	7.620	8.110	8.713
103	8.061	5.937	6.509	6.837	7.203	7.620	8.110	8.713
104	8.244	5.937	6.509	6.837	7.203	7.620	8.110	8.713
105	8.140	5.937	6.509	6.837	7.203	7.620	8.110	8.713
106	7.871	5.937	6.509	6.837	7.203	7.620	8.110	8.713
107	7.716	5.937	6.509	6.837	7.203	7.620	8.110	8.713
108	7.691	5.937	6.509	6.837	7.203	7.620	8.110	8.713

Gambar 4.14. Linear Grafik antara Safety Stock dan Service Level

Analisis Tingkat Pelayanan (Service Level) dan Safety Stock

Tingkat *service level* yang diinginkan tergantung dari keputusan manajemen yang menentukan tingkat toleransi yang diijinkan dari banyaknya barang yang *backlog*. Pada umumnya, mengapa perusahaan menyiapkan *safety stock* di gudang adalah untuk menghindari dari *lost sales*. Namun, tidak selamanya memenuhi seluruh permintaan dapat menguntungkan perusahaan. Di satu sisi, apabila perusahaan telah mencapai kapasitas produksi maksimal dengan kata lain untuk memenuhi permintaan di luar kapasitas produksi, perusahaan harus menambah sumber daya. Penambahan sumber daya tersebut dapat berupa penambahan mesin, pekerja, lini produksi dan sebagainya. Sehingga jumlah *lost sales* yang hilang akibat gagal menjual lebih kecil daripada apabila perusahaan harus menambah biaya sumber daya.

Di sisi lain, alasan untuk menghidari adanya *stockout* adalah biaya *backorder* dan kemungkinan kehilangan pelanggan. Sehingga *stockout* dihindari oleh perusahaan. Oleh sebab itu, tingkat *service level* yang ingin digunakan tergantung pada kebijakan perusahaan masing-masing, sejauh mana jumlah *stockout* yang diijinkan (tingkat toleransi pemenuhan permintaan). Pada umumnya tingkat *service level* yang digunakan berkisar dari 95% - 99% artinya semakin tinggi tingkat *service level* yang diinginkan, semakin banyak jumlah barang/produk yang harus di *stock*.

Seperti dapat dilihat pada Tabel 4.5 dan Gambar 4.13 banyaknya jumlah *safety stock* linear dengan tingkat *service level* yang diinginkan.

Pada gambar 4.13 dapat dilihat proyeksi permintaan untuk tiga bulan ke depan, dimana menurut prediksi diramalkan permintaan fluktuatif naik dan turun. Pada prinsipnya peramalan hanya memprediksikan keadaan masa depan dan tidak bias dihandalkan 100% ada kesalahan peramalan (forecast error). Safety stock adalah kunci untuk mengantisipasi adanya kesalahan peramalan dan permintaan yang fluktuatif ini. Pada service level 90%, safety stock yang disarankan sebesar 5.937 unit, artinya untuk tiga bulan ke depan disarankan untuk mempunyai jumlah persediaan digudang yang selalu ada sebesar 5.937 unit. Oleh karena peramalan yang digunakan mempunyai kesalahan sebesar 64%, besar safety stock ini juga dapat diasumsikan sebagai jumlah produk minimum yang harus diproduksi, artinya selama tiga bulan jumlah produksi dipertahankan pada level tersebut agar dapat memenuhi permintaan yang fluktuatif tersebut.

Gambar 4.15. Perancangan Tingkat *Safety Stock* dan Level Produksi pada Beberapa *Service Level*

•

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Tujuan dari penelitian ini adalah untuk memperoleh model peramalan yang akurat guna memproyeksikan permintaan produk sebagai fungsi dari perencanaan produksi dan hasil peramalan tersebut dapat digunakan untuk menentukan tingkat persediaan minimum (*safety stock*) guna mengantisipasi jumlah permintaan yang variatif. Berdasarkan hasil pengolahan data dan analisis dapat disimpulkan bahwa:

1. Model peramalan permintaan produk dengan metode ARIMA adalah model ARIMA (3, 1, 1) dengan persamaan sebagai berikut:

$$x_t = -0.427x_{t-1} + 0.433x_{t-2} + 0.375\emptyset_3x_{t-3} - 0.2e_{t-1} - 247$$

Tingkat kesalahan peramalan (*forecast error*) untuk model persamaan tersebut adalah dengan MAPE (*Mean Absolute Percentage Error*) sebesar 64% turun sebesar 19% dari metode peramalan sebelummnya yaitu 83%.

Mean error (rata-rata kesalahan peramalan per unit) memberikan nilai yang sangat kecil yaitu 91 unit sedangkan metode sebelumnya mean error yang dihasilkan sebesar 2.247 unit. Dapat disimpulkan bahwa metode ini dapat menggambarkan permintaan sebagai fungsi dari perencanaan produksi.

2. Berdasarkan hasil peramalan dimana kesalahan peramalan sebesar 64% (MAPE) dan 4.633 unit (RSME) maka persediaan yang dibutuhkan untuk mengantisipasi adanya kesalahan peramalan ini (safety stock) pada beberapa tingkat service level yang diinginkan adalah 5.937 unit pada service level 90%, 6.509 unit pada service level 92%, 6.837 unit pada service level 93%, 7.203 unit pada service level 94%, 7.620 unit pada service level 95%, 8.110 unit pada service level 96% dan apabila ingin mencapai service level 97%, maka unit safety stock yang harus disediakan adalah sebanyak 8.713 unit. Permintaan untuk tiga bulan kedepan variatif dan fluktuatif sehingga besarnya safety stock ini dapat diasumsikan sebagai jumlah produk minimum yang harus diproduksi, artinya selama tiga bulan jumlah produksi dipertahankan pada level tersebut agar dapat memenuhi permintaan yang fluktuatif tersebut.

5.2 Saran

Untuk penelitian selanjutnya, diharapkan ada beberapa perubahan yang harus dilakukan demi tercapainya hasil penelitian yang lebih baik. Saran yang penulis dapat berikan adalah:

- 1. Metode peramalan banyak jenis dan pengunaannya, pada penelitian ini metode peramalan yang dilakukan adalah metode analisis berdasarkan deret waktu. Sebaiknya analisis metode peramalan yang digunakan dikombinasikan dari analisis deret waktu, maupun analisis regresi. Dengan analisis regresi dapat diketahui faktor-faktor yang mempengaruhi besarnya permintaan sehingga hasil peramalan dapat bersifat lebih pasti dibanding hanya dengan memperhatikan deretan-deretan angka peramalan beradasarkan waktu (time series analysis).
- 2. Pada perhitungan *safety stock* di penelitian ini, besarnya *safety stock* merupakan alternative dari beberapa *service level* yang ada. Untuk penelitan selanjutnya, sebaiknya memperhitungkan faktor biaya apakah nilai *backlog* lebih menguntungkan daripada perusahaan mengejar target untuk memenuhi banyaknya permintaan dan sebaliknya. Dengan mengetahui besarnya biaya, dapat ditentukan tingkat *safety stock* yang paling optimal.

DAFTAR REFERENSI

- Arnold, J.R. Tony & Chapman, N. Stephen. (2004). *Introduction to material management* (pp. 199-273). New Jersey: Prentice-Hall Inc.
- Ballou, H. Ronald. (2004). *Business logistics management* (5th ed) (pp. 286-389). New Jersey: Prentice-Hall Inc.
- Box, E. P. George & Jenkins, M. Gwilym. (2004). *Time series analysis, forecasting and control.* New Jersey: Prentice-Hall Inc.
- Chase, B. Richard & Jacobs, F. Robert. (2004). *Operation management for competitive advantage*. United States of America: McGraw-Hill Inc.
- Chockalingam, Mark. (2010). Forecast error and safety stock strategies. India: Demand Planning LCC.
- Iriawan, Nur & Astuti, Puji. (2006). Mengolah data statistik dengan mudah menggunakan Minitab 14. Yogyakarta: ANDI.
- Juenet, Jully. (2006). Demand forecast accuracy and performance of inventory policies under multi-level rolling schedule environments. *International Journal of Production Economics* 103 (401-419).
- Montgomery, C. Douglas & Johnson, A. Lynwood. (1998). Forecasting and time series analysis. United States of America: McGraw-Hill Inc.
- Narasimhan, L. Seetharama & McLeavey, W. Dennis. (2000). *Production Planning and Inventory Control*. New Jersey: Prentice-Hall Inc.
- Simamora, Bilson. (2005). *Analisis multivariat pemasaran*. Jakarta: PT Gramedia Pustaka Utama.
- Spyros Makridakis & Steven C. Wheelwright. (1999). Forecasting Methods for Management. New York: John Wiley & Sons
- (2010, May). Engineering Statistic Handbook: ARIMA Modelling. www.engineeringstatistichandbook.com

LAMPIRAN 1

Model Pembanding 1 (ARIMA (1, 1, 0))

Auto	ocorrelatio	n Fun	ction: D	emand	Part	ial Autocor	relation	Function: Demand
Lag	ACF	Т	LBQ		Lag	PACF	Т	
1	0,622569	6,10	38,38		l ī	0,622569	6,10	
2	0,502461	3,70	63,65		2	0,187570	1,84	
3	0,499362	3,24	88,88		3	0,217386	2,13	
4	0,592141	3,48	124,73		4	0,329681	3,23	
5	0,499809	2,63	150,56		5	0,006901	0,07	
6	0,421719	2,07	169,15		6	-0,009355	-0,09	
7	0,440912	2,07	189,70		7	0,094816	0,93	
8	0,359584		203,52		8	-0,163284	-1,60	
9	0,379133	1,66	219,07		9	0,093646	0,92	
10	0,218286	0,93	224,28		10	-0,260590	-2,55	
11	0,336357		236,80		11	0,230151	2,26	
12	0,321349	1,33	248,37		12	0,035015	0,34	
13	0,275966	1,12	257,00		13	-0,046626	-0,46	
14	0,228989	0,92	263,02		14	0,115911	1,14	
15	0,358252		277,92		15	0,231474	2,27	
16	0,327256		290,52		16	-0,113806	-1,12	
17	0,265130	•	298,89		17	0,120070	1,18	
18	0,278647		308,26		18	-0,093727	-0,92	
19	0,289313		318,48		19	0,025380	0,25	
20	0,298235	•	329,49		20	-0,080132	-0,79	
21	0,132259		331,69		21	-0,296301	-2,90	
22	0,140105		334,18		22	-0,010067	-0,10	
23	0,155505		337,30		23	-0,005763	-0,06	
24	0,256296	0,93	345,88		24	0,131689	1,29	

ARIMA Model: Demand

Estimates at each iteration

Iteration	SSE	Para	meters
0	3056132221	0,100	-80,171
1	2740549960	-0,050	-95,316
2	2552333083	-0,200	-109,642
3	2491603260	-0,339	-121,990
4	2491450410	-0,346	-122,095
5	2491450025	-0.347	-122,079

Relative change in each estimate less than 0,0010

Final Estimates of Parameters

```
Type Coef SE Coef T P AR 1 -0,3466 0,0973 -3,56 0,001 Constant -122,1 531,0 -0,23 0,819
```

```
Differencing: 1 regular difference Number of observations: Original series 96, after differencing 95 Residuals: SS = 2491426736 (backforecasts excluded) MS = 26789535 DF = 93
```

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag	12	24	36	48
Chi-Square	42,3	86,0	103,3	156,1
DF	10	22	34	46
P-Value	0.000	0.000	0.000	0.000

Forecasts from period 96

		95 Percen	t Limits	
Period	Forecast	Lower	Upper	Actual
97	10296,3	149,6	20443,0	
98	10327,3	-1793,1	22447,8	
99	10194,5	-4245,3	24634,3	
100	10118,5	-6118,9	26355,9	
101	10022,8	-7893,6	27939,1	
102	9933,9	-9497,4	29365,1	
103	9842,6	-11000,0	30685,2	
104	9752,1	-12410,1	31914,4	
105	9661,4	-13746,8	33069,6	
106	9570,8	-15020,2	34161,8	
107	9480,1	-16239,3	35199,6	
108	9389,5	-17411,0	36189,9	
109	9298,8	-18540,7	37138,3	
110	9208,2	-19632,9	38049,3	
111	9117,5	-20691,6	38926,6	
112	9026,9	-21719,8	39773,5	
113	8936,2	-22720,2	40592,6	
114	8845,6	-23695,2	41386,4	
115	8754,9	-24646,8	42156,7	
116	8664,2	-25576,8	42905,3	
117	8573,6	-26486,7	43633,9	
118	8482,9	-27377,9	44343,7	
119	8392,3	-28251,5	45036,1	
120	8301,6	-29108,8	45712,1	

No	Mode	Dema	and			Forecast Err	or	
No	Week	Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error
1	07/04/2008	19210	*	*				
2	14/04/2008	18650	19062,9	-412,9	412, 9	170486,41	-2,213941019	2,213941019
3	21/04/2008	14309	18722	-4413	4413	19474569	-30,84072961	30,84072961
4	28/04/2008	2 5226	15691,2	9534,3	9534,3	90902876,49	37,79627758	37,79627758
5	5/05/2008	24377	21319,5	3057,4	3057,4	9347694,76	12,54220184	12,54220184
6	12/05/2008	22039	24549,3	-2510,2	2510,2	6301104,04	-11,38975729	11,38975729
7	19/05/2008	20562	22727,5	-2165,4	2165,4	4688957,16	-10,53102553	10,53102553
8	26/05/2008	22309	20951,5	1357,1	1357,1	1841720,41	6,083304197	6,083304197
9	2/06/2008	19523	21581,3	-2058,3	2058,3	4236598,89	-10,54294934	10,54294934
10	09/06/2008	16139	20367	-4227,7	4227,7	17873447,29	-26,19506422	26,19506422
11	16/06/2008	18633	17189,6	1443	1443	2082249	7,744490839	7,744490839
12	23/06/2008	20519	17646,2	2872,6	2872,6	8251830,76	13,99984405	13,99984405
13	7/07/2008	33976	19743,1	14232,9	14232,9	202575442,4	41,89104073	41,89104073
14	14/07/2008	23521	29188,8	-5668,1	5668,1	32127357,61	-24,09834741	24,09834741
15	21/07/2008	20433	27022,7	-6590,1	6590,1	43429418,01	-32,25287041	32,25287041
16	28/07/2008	21665	21381,4	283,6	283,6	80428,96	1,309023771	1,309023771
17	04/08/2008	26543	21115,6	5427,1	5427,1	29453414,41	20,44667649	20,44667649
18	11/08/2008	23260	24730	-1470	1470	2160900	-6,319862425	6,319862425
19	18/08/2008	24652	24276,4	376	376	141376	1,525206471	1,525206471
20	25/08/2008	2 5283	24047,3	1235,6	1235,6	1526707,36	4,887097604	4,887097604
21	01/09/2008	25480	24942,2	537,8	537,8	289228,84	2,110675039	2,110675039
22	8/09/2008	21742	25289,4	-3547,6	3547,6	12585465,76	-16,31695628	16,31695628
23	15/09/2008	24040	22915,8	1124,3	1124,3	1264050,49	4,676769231	4,676769231
24	22/09/2008	24352	23120,9	1230,7	1230,7	1514622,49	5,053877363	5,053877363

		De	mand			Forecast I	Error	
No	Week	Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error
25	06/10/2008	19442	24121,3	-4679,8	4679,8	21900528,04	-24,07118792	24,07118792
26	13/10/2008	16751	21022,2	-4271	4271	18241441	-25,49668083	25,49668083
27	20/10/2008	9396	17561,7	-8165,7	8165,7	66678656,49	-86,90613027	86,90613027
28	27/10/2008	21504	11823,5	9680,5	9680,5	93712080,25	45,0172061	45,0172061
29	03/11/2008	17756	17184,7	571,3	571,3	326383,69	3,217503942	3,217503942
30	10/11/2008	14780	18933,2	-4153,2	4153,2	17249070,24	-28,10013532	28,10013532
31	17/11/2008	13672	15689,5	-2017,5	2017,5	4070306,25	-14,75643651	14,75643651
32	24/11/2008	16800	13934	2866	2 866	8213956	17,05952381	17,05952381
33	01/12/2008	19747	15593,6	4153,4	4153,4	17250731,56	21,03306831	21,03306831
34	8/12/2008	8432	18603,4	-10171,4	10171,4	103457378	-120,6285579	120,6285579
35	15/12/2008	13444	12232,2	1211,8	1211,8	1468459,24	9,013686403	9,013686403
36	22/12/2008	15070	11584,5	3485,5	3485,5	12148710,25	23,12873258	23,12873258
37	05/01/2009	29924	14384,3	15539,7	15539,7	241482276,1	51,93055741	51,93055741
38	12/01/2009	16280	2 4652,8	-8372,8	8372,8	70103779,84	-51,42997543	51,42997543
39	19/01/2009	14552	20887,6	-6335,6	6335,6	40139827,36	-43,53765805	43,53765805
40	26/01/2009	17636	15028,9	2607,1	2607,1	6796970,41	14,78283057	14,78283057
41	02/02/2009	16260	16444,9	-184,9	184,9	34188,01	-1,137146371	1,137146371
42	09/02/2009	17296	16614,9	681,1	681,1	463897,21	3,937904718	3,937904718
43	16/02/2009	20692	16814,8	3877,2	3877,2	15032679,84	18,7376764	18,7376764
44	23/02/2009	20996	19392,7	1603,3	1603,3	2570570,89	7,636216422	7,636216422
45	2/03/2009	13096	20768,5	-7672,5	7672,5	58867256,25	-58,58659133	58,58659133
46	09/03/2009	17956	15712,4	2243,6	2243,6	5033740,96	12,49498775	12,49498775
47	16/03/2009	20468	16149,2	4318,8	4318,8	18652033,44	21,10025406	21,10025406
48	23/03/2009	19928	19475,1	452,9	452,9	205118,41	2,272681654	2,272681654

		De	mand			Forecast	Error	
No	Week	Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error
49	06/04/2009	15927	19992,9	-4066,1	4066,1	16533169,21	-25,5299244	25,5299244
50	13/04/2009	15843	17191,7	-1348,9	1348,9	1819531,21	-8,514277779	8,514277779
51	20/04/2009	12455	15749,5	-3295	3295	10857025	-26,45630094	26,45630094
52	27/04/2009	21312	13507,4	7804,6	7804,6	60911781,16	36,62068318	36,62068318
53	4/05/2009	13536	18119,6	-4583,7	4583,7	21010305,69	-33,86328209	33,86328209
54	11/05/2009	12525	16109	-3584,4	3584,4	12847923,36	-28,61887805	28,61887805
55	18/05/2009	11508	12753	-1245,4	1245,4	1551021,16	-10,82241301	10,82241301
56	25/05/2009	11757	11738,8	18,5	18,5	342,25	0,157349051	0,157349051
57	1/06/2009	10537	11548,6	-1011,6	1011,6	1023334,56	-9,600455538	9,600455538
58	08/06/2009	7780	10837,8	-3057,8	3057,8	9350140,84	-39,3033419	39,3033419
59	15/06/2009	8795	8613,3	181,4	181,4	32905,96	2,062605888	2,062605888
60	22/06/2009	9432	8321,4	1110,9	1110,9	1234098,81	11,77761522	11,77761522
61	06/07/2009	17629	9089,1	8539,9	8539,9	72929892,01	48,44233933	48,44233933
62	13/07/2009	13736	14665,6	-929,5	929,5	863970,25	-6,766840661	6,766840661
63	20/07/2009	12806	14963,1	-2157,4	2157,4	4654374,76	-16,84718524	16,84718524
64	27/07/2009	13103	13006,1	96,7	96,7	9350,89	0,738010196	0,738010196
65	03/08/2009	15266	12878	2388	2388	5702544	15,64260448	15,64260448
66	10/08/2009	14770	14393,6	375,9	375,9	141300,81	2,545109855	2,545109855
67	17/08/2009	15464	14819,9	644,1	644,1	414864,81	4,165157786	4,165157786
68	24/08/2009	16065	15100,9	963,7	963,7	928717,69	5,998904423	5,998904423
69	7/09/2009	17462	15734,6	1727,4	1727,4	2983910,76	9,892337647	9,892337647
70	14/09/2009	11972	16855,7	-4883,7	4883,7	23850525,69	-40,79268293	40,79268293
71	21/09/2009	896	13753	-12857	12857	165302449	-1434,933036	1434,933036
72	28/09/2009	13104	4613,4	8490,6	8490,6	72090288,36	64,79395604	64,79395604

		Dem	and			Forecast	Error	
No	Week	Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error
73	5/10/2009	9456	8750,1	705,9	705,9	498294,81	7,465101523	7,465101523
74	12/10/2009	6580	10598,5	-4018,5	4018,5	16148342,25	-61,07142857	61,07142857
75	19/10/2009	5572	7454,9	-1882,9	1882,9	3545312,41	-33,79217516	33,79217516
76	26/10/2009	8800	5799,3	3000,7	3000,7	9004200,49	34,09886364	34,09886364
77	2/11/2009	4172	7558,9	-3386,9	3386,9	11471091,61	-81,18168744	81,18168744
78	09/11/2009	632	5654,2	-5022,2	5022,2	25222492,84	-794,6518987	794,6518987
79	16/11/2009	5744	1737,1	4006,9	4006,9	16055247,61	69,75800836	69,75800836
80	23/11/2009	7470	3849,9	3620,1	3620,1	13105124,01	48,46184739	48,46184739
81	7/12/2009	22424	6749,6	15674,4	156 74 ,4	245686815,4	69,90010703	69,90010703
82	14/12/2009	8880	17118,2	-8238,2	8238,2	67867939,24	-92,77252252	92,77252252
83	21/12/2009	7252	13452,9	-6200,9	6200,9	38451160,81	-85,50606729	85,50606729
84	28/12/2009	10436	7694,3	2741,7	2741,7	7516918,89	26,27155998	26,27155998
85	4/01/2010	16976	9210,2	7765,8	7765,8	60307649,64	45,74575872	45,74575872
86	11/01/2010	10296	14586,9	-4290,9	4290,9	18411822,81	-41,67540793	41,67540793
87	18/01/2010	13792	12489,5	1302,5	1302,5	1696506,25	9,44388051	9,44388051
88	25/01/2010	14196	12458	1738	1738	3020644	12,24288532	12,24288532
89	1/02/2010	6396	13933,9	-7537,9	7537,9	56819936,41	-117,8533458	117,8533458
90	08/02/2010	11356	8977,8	2378,2	2378,2	5655835,24	20,94223318	20,94223318
91	15/02/2010	13968	9514,6	4453,4	4453,4	19832771,56	31,88287514	31,88287514
92	22/02/2010	13528	12940,5	587,5	587,5	345156,25	4,342844471	4,342844471
93	1/03/2010	6480	13558,4	-7078,4	7078,4	50103746,56	-109,2345679	109,2345679
94	08/03/2010	6984	8801,1	-1817,1	1817,1	3301852,41	-26,01804124	26,01804124
95	15/03/2010	9816	6687,2	3128,8	3128,8	9789389,44	31,87449063	31,87449063
96	22/03/2010	10738	8712,2	2025,8	2025,8	4103865,64	18,86571056	18,86571056
<u></u>		15523,47	15524,59	-1,1168421	3821,664211	26225535,48	-28,47995378	50,49178862
	Average		Mean Error	MAD	MSE	MPE	MAPE	

No	Week	Dem	nand		Forecast Error					
NO	Week	Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error		
1	5/10/2009	9456	8750	706	706	498295	7	7		
2	12/10/2009	6580	10599	-4019	4019	16148342	-61	61		
3	19/10/2009	5572	7455	-1883	1883	3545312	-34	34		
4	26/10/2009	8800	5799	3001	3001	9004200	34	34		
5	2/11/2009	4172	7559	-3387	3387	11471092	-81	81		
6	09/11/2009	632	5654	-5022	5022	25222493	-795	795		
7	16/11/2009	5744	1737	4007	4007	16055248	70	70		
8	23/11/2009	7470	3850	3620	3620	13105124	48	48		
9	7/12/2009	22424	6750	15674	15674	245686815	70	70		
10	14/12/2009	8880	17118	-8238	8238	67867939	-93	93		
11	21/12/2009	7252	13453	-6201	6201	38451161	-86	86		
12	28/12/2009	10436	7694	2742	2742	7516919	26	26		
13	4/01/2010	16976	9210	7766	7766	60307650	46	46		
14	11/01/2010	10296	14587	-4291	4291	18411823	-42	42		
15	18/01/2010	13792	12490	1303	1303	1696506	9	9		
16	25/01/2010	14196	12458	1738	1738	3020644	12	12		
17	1/02/2010	6396	13934	-7538	7538	56819936	-118	118		
18	08/02/2010	11356	8978	2378	2378	5655835	21	21		
19	15/02/2010	13968	9515	4453	4453	19832772	32	32		
20	22/02/2010	13528	12941	588	588	345156	4	4		
21	1/03/2010	6480	13558	-7078	7078	50103747	-109	109		
22	08/03/2010	6984	8801	-1817	1817	3301852	-26	26		
23	15/03/2010	9816	6687	3129	3129	9789389	32	32		
24	22/03/2010	10738	8712	2026	2026	4103866	19	19		
		9664	9512	152	4275	2 8665088	-42	78		
		Ave	rage	Mean Error	MAD	MSE	MPE	MAPE		

LAMPIRAN 2

Model Pembanding 2 (ARIMA (0, 1, 1))

Autocorrelation Function: Difference 1

Partial Autocorrelation Function: Difference 1

Ι	ag	ACF	Т	LBQ	Lag	PACF	Т
	1	-0,346513	-3,38	11,77	1	-0,346513	-3,38
	2	-0,156519	-1,37	14,20	2	-0,314332	-3,06
	3	-0,144211	-1,24	16,28	3	-0,409104	-3,99
	4	0,261207	2,21	23,19	4	-0,065333	-0,64
	5	-0,015623	-0,13	23,22	5	-0,039014	-0,38
	6	-0,133428	-1,07	25,06	6	-0,143361	-1,40
	7	0,123699	0,98	26,66	7	0,121805	1,19
	8	-0,118710	-0,93	28,15	8	-0,119101	-1,16
	9	0,245702	1,92	34,62	9	0,243476	2,37
	10	-0,383827	-2,88	50,59	10	-0,255584	-2,49
	11	0,187429	1,30	54,45	11	-0,051270	-0,50
	12	0,011516	0,08	54,46	12	-0,018162	-0,18
	13	0,009636	0,07	54,47	13	-0,197356	-1,92
	14	-0,230203	-1,57	60,50	14	-0,304965	-2,97
	15	0,236569	1,57	66,95	15	0,054114	0,53
	16	0,009379	0,06	66,96	16	-0,200111	-1,95
	17	-0,100840	-0,65	68,16	17	0,027333	0,27
	18	-0,007483	-0,05	68,17	18	-0,103167	-1,01
	19	0,006842	0,04	68,17	19	0,013333	0,13
	20	0,241799	1,56	75,36	20	0,249331	2,43
	21	-0,234558	-1,47	82,21	21	-0,011493	-0,11
	22	-0,011995	-0,07	82,23	22	-0,037089	-0,36
	23	-0,110648	-0,68	83,79	23	-0,179019	-1,74
	24	0,357157	2,18	100,35	24	-0,139615	-1,36

ARIMA Model: Demand

Estimates at each iteration

Iteration	SSE	Par	ameters
0	2652321424	0,100	-89,079
_1	2430038843	0,250	-91,987
2	2246079841	0,400	-94,960
3	2099804772	0,550	-98,137
4	2011918953	0,700	-102,646
5	2002734643	0,741	-108,156
6	2001314927	0,756	-110,529
7	2000966448	0,763	-111,636
8	2000867526	0,766	-112,222
9	2000838507	0,769	-112,549
10	2000830497	0,770	-112,738
11	2000828805	0,770	-112,849

Relative change in each estimate less than 0,0010

Final Estimates of Parameters

```
Type Coef SE Coef T P MA 1 0,7705 0,0662 11,65 0,000 Constant -112,8 111,2 -1,01 0,313
```

Differencing: 1 regular difference

Number of observations: Original series 96, after differencing 95

Residuals: SS = 1999300325 (backforecasts excluded)

MS = 21497853 DF = 93

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag	12	24	36	48
Chi-Square	26,1	58,5	70,2	106,7
DF	10	22	34	46
P-Value	0,004	0,000	0,000	0,000

Forecasts from period 96

95 Percent Limits

		Llm	103	
Period	Forecast	Lower	Upper	Actual
97	9606,6	517,0	18696,1	
98	9493,7	167,8	18819,6	
99	9380,9	-175,6	18937,3	
100	9268,0	-513,6	19049,6	
101	9155,2	-846,5	19156,8	
102	9042,3	-1174,6	19259,3	
103	8929,5	-1498,4	19357,3	
104	8816,6	-1817,9	19451,1	
105	8703,8	-2133,5	19541,0	
106	8590,9	-2445,4	19627,2	
107	8478,1	-2753,7	19709,9	
108	8365,2	-3058,7	19789,2	
109	8252,4	-3360,5	19865,3	
110	8139,5	-3659,3	19938,4	
111	8026,7	-3955,2	20008,6	
112	7913,8	-4248,4	20076,1	
113	7801,0	-4538,9	20140,9	
114	7688,1	-4826,9	20203,2	
115	7575,3	-5112,5	20263,1	
116	7462,4	-5395,8	20320,6	
117	7349,6	-5676,8	20376,0	
118	7236,7	-5955,7	20429,2	
119	7123,9	-6232,5	20480,3	
120	7011,0	-6507,3	20529,4	

No	Mook	De	mand			Forecast Er	rror	
INO	Week	Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error
1	07/04/2008	19210	*	*				
2	14/04/2008	18650	20049,7	-1399,7	1399,7	1959160,09	-7,505093834	7,505093834
3	21/04/2008	14309	19615,5	-5306,5	5306,5	28158942,25	-37,08505137	37,08505137
4	28/04/2008	25226	18284,1	6941,4	6941,4	48183033,96	27,5 1739311	27,51739311
5	5/05/2008	24377	19765	4611,9	4611,9	21269621,61	18,91914066	18,91914066
6	12/05/2008	22039	20711	1328,1	1328,1	1763849,61	6,026108144	6,026108144
7	19/05/2008	20562	20903	-340,9	340,9	116212,81	-1,657904591	1,657904591
8	26/05/2008	22309	20711,4	1597,2	1597,2	2551047,84	7,159570749	7,159570749
9	2/06/2008	19523	20965,6	-1442,6	1442,6	2081094,76	-7,389233212	7,389233212
10	09/06/2008	16139	20521,9	-4382,6	4382,6	19207182,76	-27,15483323	27,15483323
11	16/06/2008	18633	19402,3	-769,7	769,7	592438,09	-4,130931808	4,130931808
12	23/06/2008	20519	19113	1405,8	1405,8	1976273,64	6,851277853	6,851277853
13	7/07/2008	33976	19323	14653	14653	214710409	43,12750177	43,12750177
14	14/07/2008	23521	22573,4	947,3	947,3	897377,29	4,027516188	4,027516188
15	21/07/2008	20433	22677,9	-2245,3	2245,3	5041372,09	-10,988812	10,988812
16	28/07/2008	21665	22050,1	-385,1	385,1	148302,01	-1,777521348	1,777521348
17	04/08/2008	26543	21848,5	4694,2	4694,2	22035513,64	17,68546531	17,68546531
18	11/08/2008	23260	22813,5	446,5	446,5	199362,25	1,919604471	1,919604471
19	18/08/2008	24652	22803,6	1848,8	1848,8	3418061,44	7,499472668	7,499472668
20	25/08/2008	25283	23114,6	2168,3	2168,3	4701524,89	8,576152261	8,576152261
21	01/09/2008	25480	23499,6	1980,4	1980,4	3921984,16	7,772370487	7,772370487
22	8/09/2008	21742	23841,1	-2099,3	2099,3	4407060,49	-9,655594293	9,655594293
23	15/09/2008	24040	23246,7	793,4	793,4	629483,56	3,30031905	3,30031905
24	22/09/2008	24352	23315,5	1036,1	1036,1	1073503,21	4,254751228	4,254751228

No	Mode	Demand				Forecast E	rror	
No	Week	Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error
25	06/10/2008	19442	23440,4	-3998,9	3998,9	15991201,21	-20,56888615	20,56888615
26	13/10/2008	16751	22410,3	-5659,1	5659,1	32025412,81	-33,78325135	33,78325135
27	20/10/2008	9396	20998,2	-11602,2	11602,2	134611044,8	-123,4802043	123,4802043
28	27/10/2008	21504	18222,1	3281,9	3281,9	10770867,61	15,26181176	15,26181176
29	03/11/2008	17756	18862,6	-1106,6	1106,6	1224563,56	-6,232259518	6,232259518
30	10/11/2008	14780	18495,7	-3715,7	3715,7	13806426,49	-25,14005413	25,14005413
31	17/11/2008	13672	17530	-3858	3858	14884164	-28,21825629	28,21825629
32	24/11/2008	16800	16531,5	268,5	2 68,5	72092,25	1,598214286	1,598214286
33	01/12/2008	19747	16480,3	3266,7	3266,7	10671328,89	16,54276599	16,54276599
34	8/12/2008	8432	17117,3	-8685,3	8685,3	75434436,09	-103,0040323	103,0040323
35	15/12/2008	13444	15010,8	-1566,8	1566,8	2454862,24	-11,65426956	11,65426956
36	22/12/2008	15070	14538,3	531,7	531,7	282704,89	3,528201725	3,528201725
37	05/01/2009	29924	14547,5	15376,5	15376,5	236436752,3	51,38517578	51,38517578
38	12/01/2009	16280	17964,3	-1684,3	1684,3	2 836866,49	-10,3458231	10,3458231
39	19/01/2009	14552	17464,8	-291 2, 8	2912,8	8484403,84	-20,01649258	20,01649258
40	26/01/2009	17636	16683,3	95 2,7	952,7	907637,29	5,402018598	5,402018598
41	02/02/2009	16260	16789,2	-529,2	529,2	280052,64	-3,254612546	3,254612546
42	09/02/2009	17296	16554,8	741,2	741,2	549377,44	4,285383904	4,285383904
43	16/02/2009	20692	16612,1	4079,9	4079,9	16645584,01	19,71728204	19,71728204
44	23/02/2009	20996	17435,8	3560,2	3560,2	12675024,04	16,95656315	16,95656315
45	2/03/2009	13096	18140,2	-5044,2	5044,2	25443953,64	-38,51710446	38,51710446
46	09/03/2009	17956	16869,5	1086,5	1086,5	1180482,25	6,050902205	6,050902205
47	16/03/2009	20468	17006	3462	3462	11985444	16,91420754	16,91420754
48	23/03/2009	19928	17687,9	2240,1	2240,1	5018048,01	11,24096748	11,24096748

No	Week	Demand		Forecast Error					
		Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error	
49	06/04/2009	15927	18089	-2162,2	2162,2	4675108,84	-13,57585956	13,57585956	
50	13/04/2009	15843	17479,8	-1637	1637	2679769	-10,33276946	10,33276946	
51	20/04/2009	12455	16990,9	-4536,4	4536,4	20578924,96	-36,42378257	36,42378257	
52	27/04/2009	21312	15837,2	5474,8	5474,8	29973435,04	25,68881381	25,68881381	
53	4/05/2009	13536	16981	-3445,1	3445,1	11868714,01	-25,45157692	25,45157692	
54	11/05/2009	12525	16077	-3552,4	3552,4	12619545,76	-28,36338087	28,36338087	
55	18/05/2009	11508	15148,7	-3641,1	3641,1	13257609,21	-31,64082867	31,64082867	
56	25/05/2009	11757	14200,8	-2443,5	2443,5	5970692,25	-20,78283279	20,78283279	
57	1/06/2009	10537	13526,7	-2989,7	2989,7	8938306,09	-28,37335105	28,37335105	
58	08/06/2009	778 0	12727,6	-4947,6	4947,6	24478745,76	-63,59383033	63,59383033	
59	15/06/2009	8795	11478,7	-2684	2684	7203856	-30,51838039	30,51838039	
60	22/06/2009	9432	10750,4	-1318,1	1318,1	1737387,61	-13,97432228	13,97432228	
61	06/07/2009	17629	10334,7	7294,3	7294,3	53206812,49	41,37670883	41,37670883	
62	13/07/2009	13736	11896,3	1839,8	1839,8	3384864,04	13,39390366	13,39390366	
63	20/07/2009	12806	12205,4	600,3	600,3	360360,09	4,687756234	4,687756234	
64	27/07/2009	13103	12230,4	872,4	872,4	761081,76	6,658118875	6,658118875	
65	03/08/2009	15266	12318	2948	2948	8690704	19,31088694	19,31088694	
66	10/08/2009	14770	12881,4	1888,1	1888,1	3564921,61	12,78377738	12,78377738	
67	17/08/2009	15464	13202,4	2261,6	2261,6	5114834,56	14,62493533	14,62493533	
68	24/08/2009	16065	13608,3	2456,3	2456,3	6033409,69	15,29014106	15,29014106	
69	7/09/2009	17462	14059,7	3402,3	3402,3	11575645,29	19,48402245	19,48402245	
70	14/09/2009	11972	14727,8	-2755,8	2755,8	7594433,64	-23,01871032	23,01871032	
71	21/09/2009	896	13982,4	-13086,4	13086,4	171253865	-1460,535714	1460,535714	
72	28/09/2009	13104	10865,6	2238,4	2238,4	5010434,56	17,08180708	17,08180708	

No	Week	Demand		Forecast Error					
		Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error	
73	5/10/2009	9456	11266,6	-1810,6	1810,6	3278272,36	-19,14763113	19,14763113	
74	12/10/2009	6580	10738,1	-4158,1	4158,1	17289795,61	-63,19300912	63,19300912	
75	19/10/2009	5572	9670,8	-4098,8	4098,8	16800161,44	-73,56066045	73,56066045	
76	26/10/2009	8800	8617,1	182,9	182,9	33452,41	2,078409091	2,078409091	
77	2/11/2009	4172	8546,2	-4374,2	4374,2	19133625,64	-104,8465964	104,8465964	
78	09/11/2009	632	742 9,3	-6797,3	6797,3	46203287,29	-1075,522152	1075,522152	
79	16/11/2009	5744	5756,1	-12,1	12,1	146,41	-0,210654596	0,210654596	
80	23/11/2009	7470	5640,5	1829,5	1829,5	3347070,25	24,49129853	24,49129853	
81	7/12/2009	22424	5947,6	16476,4	16476,4	271471757	73,47663218	73,47663218	
82	14/12/2009	8880	9616,9	-736,9	736,9	543021,61	-8,298423423	8,298423423	
83	21/12/2009	7252	9334,9	-2082,9	2082,9	4338472,41	-28,72173194	28,72173194	
84	28/12/2009	10436	8743,9	1692,1	1692,1	2863202,41	16,21406669	16,21406669	
85	4/01/2010	16976	9019,5	7956,5	7956,5	63305892,25	46,86910933	46,86910933	
86	11/01/2010	10296	10733	-437	437	190969	-4,244366744	4,244366744	
87	18/01/2010	13792	10519,9	3272,1	3272,1	10706638,41	23,72462297	23,72462297	
88	25/01/2010	14196	11158,1	3037,9	3037,9	9228836,41	21,39969005	21,39969005	
89	1/02/2010	6396	11742,6	-5346,6	5346,6	2 8586131,56	-83,59287054	83,59287054	
90	08/02/2010	11356	10402,5	953,5	953,5	909162,25	8,396442409	8,396442409	
91	15/02/2010	13968	10508,5	3459,5	3459,5	11968140,25	24,76732532	24,76732532	
92	22/02/2010	13528	11189,8	2338,2	2338,2	5467179,24	17,28415139	17,28415139	
93	1/03/2010	6480	11613,6	-5133,6	5133,6	26353848,96	-79,22222222	79,22222222	
94	08/03/2010	6984	10322,4	-3338,4	3338,4	11144914,56	-47,80068729	47,80068729	
95	15/03/2010	9816	9443,2	372,8	372,8	138979,84	3,797881011	3,797881011	
96	22/03/2010	10738	9415,9	1322,1	1322,1	1747948,41	12,31234867	12,31234867	
			15510,74	12,731579	3302,428421	21045262,2	-32,71361663	49,52862689	
		Ave	rage	Mean Error	MAD	MSE	MPE	MAPE	

No	Week	Demand		Forecast Error					
		Actual	Forecast	Residual Error	Absolute Error	Squared Error	Percentage Error	Absoulte Percentage Error	
1	5/10/2009	9456	11267	-1811	1811	3278272	-19	19	
2	12/10/2009	6580	10738	-4158	4158	17289796	-63	63	
3	19/10/2009	5572	9671	-4099	4099	16800161	-74	74	
4	26/10/2009	8800	8617	183	183	33452	2	2	
5	2/11/2009	4172	8546	-4374	4374	19133626	-105	105	
6	09/11/2009	632	7 429	-6797	6797	46203287	-1076	1076	
7	16/11/2009	5744	5756	-12	12	146	0	0	
8	23/11/2009	7470	5641	1830	1830	3347070	24	24	
9	7/12/2009	22424	5948	16476	16476	271471757	73	73	
10	14/12/2009	8880	9617	-737	737	543022	-8	8	
11	21/12/2009	7252	9335	-2083	2083	4338472	-29	29	
12	28/12/2009	10436	8744	1692	1692	2 863202	16	16	
13	4/01/2010	16976	9020	7957	7957	63305892	47	47	
14	11/01/2010	10296	10733	-437	437	190969	-4	4	
15	18/01/2010	13792	10520	3272	3272	10706638	24	24	
16	25/01/2010	14196	11158	3038	3038	9228836	21	21	
17	1/02/2010	6396	11743	-5347	5347	28586132	-84	84	
18	08/02/2010	11356	10403	954	954	909162	8	8	
19	15/02/2010	13968	10509	3460	3460	11968140	25	25	
20	22/02/2010	13528	11190	2338	2338	5467179	17	17	
21	1/03/2010	6480	11614	-5134	5134	26353849	-79	79	
22	08/03/2010	6984	10322	-3338	3338	11144915	-48	48	
23	15/03/2010	9816	9443	373	373	138980	4	4	
24	22/03/2010	10738	9416	1322	1322	1747948	12	12	
		9664	9474	190	3384	23127121	-55	78	
	Average		Mean Error	MAD	MSE	MPE	МАРЕ		

