ゆっくり熱力学の基礎していってね

仲山昌人

概要

熱力学の基礎を読んだときのメモです

目次

第	1章	3
I	P.7 $Dx+f(a)=f'(a+0)$ '25 3.22	4
I	P.8 (1.2) f(x) = f(a) + f'(a)(x-a) + o(x-a) + o(x-	5
	P.10 問 1.3 (x,y) ≠ (0,0) で f は連続 '25 5.13	
I	P.10 問 1.3 (0,0) で f は連続 '25 3.26	8
	P.10 問 1.3 (x,y) ≠ (0,0) で fx は存在する '25 5.13	
	P.10 問 1.3 (x,y) ≠ (0,0) で fx は連続 '25 5.13	10
I	P.10 問 1.3 (0,0) で fx は連続 '25 3.26	11
	P.10 問 1.3 (x,y) ≠ (0,0) で fy は存在する '25 5.13	
I	P.10 問 1.3 (x,y) ≠ (0,0) で fy は連続 '25 5.15	14
I	P.10 問 1.3 (0,0) で fy は連続 '25 3.26	15
I	P.10 問 1.3 (0,0) で fxy は不連続 '25 4.1	17
I	P.11 数学の定理 1.1 f(x1,,xm)-f(a1,,xm)-(x1-a1)fx1(a)=o(x-a) '25 4.6	18
I	P.11 数学の定理 1.1 f(a1,x2xm)-f(a1,a2xm)-(x2-a2)fx2(a)=o(x-a) '25 5.17	20
I	P.11 数学の定理 1.1 f(x)=f(a)+ ∇ f(a)(x-a)+o(x-a) '25 4.6	21
I	P.12 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8	22
I	P.12 数学の定理 1.2 fxy=fyx '25 4,8	23
I	$P.12$ 補足 $\mathbf{x}\neq~0$ で $\mathbf{f}(\mathbf{x})$ は連続 '25 4.23	26
I	P.12 補足 x=0 で f(x) は連続 '25 4.23	28
I	2.12 補足 x≠ 0 で C ∞ 級 '25 4.25	29
I	P.12 補足 x=0 で C ∞ 級 '25 5.20	32
I	$P.12$ 補足 $x{=}0$ で $C imes$ 級であるが解析的でない ' 25 5.21 \dots	34
I	$P.12$ 補足 収束するテーラー級数の部分和が $f(x)$ の近似にならない例 ' $25~6.9~\dots$ \dots \dots \dots \dots \dots \dots \dots \dots \dots	35
I	P.12 補足 x ≠ 0 で f(x) は解析的 '25 6.4	36
I	P.12 補足 べき級数の合成 '25 6.1	41
I	P.12 補足 べき級数のべき '25 6.2	46
I	P.12 問題 1.4 x^2 e^y の偏微分 '25 4.16	48
I	P.15 問題 1.5 Z(x,y) の偏微分 '25 6.22	50
I	P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13	51
I	P.15 問題 1.6(ii) 偏微分の連鎖律 '25 6.25	52
I	P.15 問題 1.6(iii) 偏微分の連鎖律 '25 6.13	53
I	P.15 問題 1.6(iv) 偏微分の連鎖律 '25 6.25	54
I	P.15 問題 1.7(i) 合成関数の偏微分 '25 6.27	56
I	P.15 問題 1.7(ii) 合成関数の偏微分の例 '25 6.28	58
Ī	P.16 問題 1.8 偏微分でつまづいたこと '25 6.25	59

第2章		67
P.18	熱力学で扱う状態 '25 7.11	68
P.18	平衡状態 '25 7.14	69
P.19	マクロ物理量 '25 9.8	70
P.19	マクロ物理量 (a)(b)(c) '25 9.8 {#C2_P19_マクロ物理量 (a)(b)(c)_10}	71
P.27	(2.12) その 1 '25 7.5	72
P.27	(2.12) その 2 '25 7.5	74
P.27	相加変数、示量変数、示強変数 '25 7.6	75
P.32	問題 2.1 '25 6.29	77
P.34	(2.23) '25 6.30	78
P.34	$(2.24) \ \ ^125 \ 6.30 \ \ \ldots \$	79
P.34	(2.25) '25 6.30	80
P.35	(2.25.2):(2.25) の示強変数の場合 '25 7.2	81
P.36	o(V)/V=o(1) '25 6.30	82
P.36	(2.30) '25 7.2	83
P.37	$(2.32) \ \ ^125 \ \ 7.1 \ \ \ldots \ \ \ \ldots \ \ \ \ldots \ \ \ \ldots \$	84
P.38	$(2.35) \ \ ^125 \ \ 7.3 \ \ \ldots \ \ \ \ldots \ \ \ \ldots \ \ \ \ldots \$	85
# o ±		0.5
第3章		86
	同じ状態、均一な状態 '25 9.3	
	要請 I(ii) '25 7.3	
	要請 II-(i) '25 7.14	
	操作 '25 7.6	
	単純系 '25 7.6	
	基本関係式 '25 7.7	
	要請 II-(ii) のつづき '25 7.8	
	平衡状態がマクロ状態として一意に定まる'25 7.15	
	均一な平衡状態は U,X と一対一 '25 7.9	
	同一視 '25 7.31	
	くっつけただけ '25 8.28	
	同一視の定義 '25 7.31	
	要請 II '25 9.6	
P.59	要請 II(v) '25 8.2	100
第4章		101
P.61	複合系の S は一意にきまる '25 8.4	102
P.62	4.1.3 plot '25 8.4	103
	- 4.1.3 平衡状態を完全に求める '25 8.5	
P.62	(4.8) 一様連続 '25 8.16	105
	(4.10),(4.11) '25 8.5	
P.64	$(4.16) \max_{V} \{U, V\} = \max_{V} \max_{V} 25 8.9 \dots$	111
	(4.16) '25 8.9	
	(4.17) (4.20) (4.21) (4.22) '25 8.10	
	ε空間 '25 8.9	
	定理 4.1 '25 8.9	
	定理 4.2 '25 9.1	
P.69	完全な知識 '25 9.2	123
	混合系の要請 II(ii) '25 9.1	
	エントロピー減少できない '25 9.1	

P.74 定理 5.1	$'25\ 9.2$	 			 		 														1	26

第1章

P.7 Dx+f(a)=f'(a+0) '25 3.22

f(x)が $[a,a,\epsilon']$ で連続, $(a+a+\epsilon')$ で微分可能とする

$$f'(a+0) = \lim_{\epsilon \to +0} f'(a+\epsilon)$$
が存在するならば

$$D_x^+ f(a)$$
が存在し $D_x^+ f(a) = f'(a+0)$ である

(証明)

 $[a,a+\epsilon']$ で連続, $(a,a+\epsilon')$ で微分可能なので

平均値の定理より
$$\frac{f(a+\epsilon')-f(a)}{\epsilon'}=f'(a+\epsilon),\ 0<\epsilon<\epsilon'$$
 なる ϵ が存在する

 ϵ' に対する ϵ を 1 つ選んで $\epsilon(\epsilon')$ とする

$$f'(a+0) = \lim_{\epsilon \to +0} f'(a+\epsilon)$$
 が存在するので

任意の $\delta > 0$ に対してある ϵ_1 が存在して

$$0<\epsilon<\epsilon_1$$
 ならば $|f'(a+\epsilon)-f'(a+0)|<\delta$ である

$$0<\epsilon'<\epsilon_1$$
 ならば $0<\epsilon(\epsilon')<\epsilon'$ なので $0<\epsilon(\epsilon')<\epsilon_1$

よって
$$|f'(a+\epsilon(\epsilon'))-f'(a+0)|<\delta$$
 である

$$0<\epsilon'<\epsilon_1$$
 ならば $\left|rac{f(a+\epsilon')-f(a)}{\epsilon'}-f'(a+0)
ight|<\delta$ である

$$\therefore \lim_{\epsilon' \to +0} \frac{f(a+\epsilon') - f(a)}{\epsilon'} = f'(a+0)$$
 である (∵ 極限の定義)

$$\lim_{\epsilon' \to +0} rac{f(a+\epsilon')-f(a)}{\epsilon'} = D_x^+(a)$$
 なので

$$D_x^+(a)=f'(a+0)$$
である

P.8 (1.2) f(x)=f(a)+f'(a)(x-a)+o(x-a) '25 3.21

f(x)がx = aで微分可能 $\rightleftarrows x \rightarrow a$ でf(x) = f(a) + f'(a)(x - a) + o(x - a)なるf'(a)が存在する

(証明)

 (\leftarrow)

$$o(x-a) = f(x) - f(a) - f'(a)(x-a)$$
 (: $f = g + o(...) \rightleftharpoons o(...) = f - g$ と定義)

$$\therefore \lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a} = 0$$
 (∵ 付録A $o(\dots)$ の定義)

$$\therefore \ \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} - f'(a) \right) = 0$$

よって任意の $\epsilon > 0$ に対して $0 < |x - a| < \delta$ ならば

$$\left|\frac{f(x)-f(a)}{x-a}-f'(a)\right|<\epsilon$$

よって
$$\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = f'(a)$$
 (: 極限の定義)

よって f(x) は x = a で微分可能 (: 微分の定義)

 (\rightarrow)

x = a で微分可能なので

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) が存在する (∵ 微分の定義)$$

$$\therefore \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) = \lim_{x \to a} f'(a)$$
 (ご 定数の極限)

$$\therefore \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - \lim_{x \to a} f'(a) = 0$$
 (ご 実数の四則の公理)

$$\therefore o(x-a) = f(x) - f(a) - f'(a)(x-a)$$
 (∵ 付録A $o(...)$ の定義)

よって
$$f(x) = f(a) + f'(a)(x - a) + o(x - a)$$
 なる $f'(a)$ が存在する

P.10 問 1.3 (x,y) ≠ (0,0) で f は連続 '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f は連続

(証明)

任意の ϵ に対して

$$|(x,y)-(a,b)|<\epsilon$$
 ならば

$$|x-a| < |(x,y)-(a,b)|$$
 (: 三角不等式)
= ϵ

よって
$$\lim_{(x,y)\to(a,b)} x = a$$

よってxは連続

同様に y は連続

よって

xy は連続 (*1)

x² は連続 (*1)

y² は連続(*1)

$$x^2 - y^2$$
 は連続 (*1),(*2)

 $x^2 + y^2$ は連続 (*2)

$$(x,y) \neq (0,0)$$
 ならば $x^2 + y^2 \neq 0$

よって $(x,y) \neq (0,0)$ ならば

$$\frac{1}{x^2+y^2}$$
 は連続 (*3)

よって
$$(x,y)\neq (0,0)$$
 ならば $xy\frac{x^2-y^2}{x^2+y^2}$ は連続 $(*2)$

また
$$(x,y) \neq (0,0)$$
 ならば $f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$

よって $(x,y) \neq (0,0)$ ならば f(x,y) は連続

(*1)fが連続,gが連続ならばfgは連続

(証明)

$$(a,b)$$
で f,g が連続ならば

$$\lim_{(x,y)\rightarrow(a,b)}f(x,y)=f(a,b), \lim_{(x,y)\rightarrow(a,b)}g(x,y)=g(a,b)$$

 $\therefore \lim fg = f(a,b)g(a,b)$ (ご 積の極限)

よってfgは連続

(*2)fが連続,gが連続ならばf+gは連続

(証明)

$$(a,b)$$
で f,g が連続ならば
$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b),\lim_{(x,y)\to(a,b)}g(x,y)=g(a,b)$$
 $\therefore \lim f+g=f(a,b)+g(a,b)$ (ご 和の極限) よって $f+g$ は連続

よって
$$f+g$$
は連続
$$(*3)f$$
が連続かつ $f\neq 0$ ならば $\frac{1}{f}$ は連続 (証明)
$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b),\;f(a,b)\neq 0$$
 ∴ $\lim\frac{1}{f}=\frac{1}{f(a,b)}$ (∵ 商の極限) よって $\frac{1}{f}$ は連続

P.10 問 1.3 (0,0) で f は連続 '25 3.26

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(x,y)=(0,0)$$
 で f は連続

(証明)

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} xy \frac{x^2-y^2}{x^2+y^2}$$

また
$$(x,y) \neq (0,0)$$
で $\frac{x^2 - y^2}{x^2 + y^2}$ は有界 (*1)

よって
$$\left| \frac{x^2 - y^2}{x^2 + y^2} \right| < m$$
なる m が存在する

また
$$\lim_{(x,y)\to(0,0)} xy = 0$$
 (: 積の極限)

よって
$$\lim_{(x,y)\to(0,0)} xy \frac{x^2 - y^2}{x^2 + y^2} = 0 = f(0,0)$$
 (*2)

よって
$$f(x,y)$$
は $(0,0)$ で連続

P.10 問 1.3 (x,y) ≠ (0,0) で fx は存在する '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f_x は存在する

(証明)

 $(x,y) \neq (0,0)$ とする

このとぎ
$$f(x,y)=xy\frac{x^2-y^2}{x^2+y^2}$$

x,y は独立とする

$$\begin{split} f_x &= f'_{x \, \text{で微分}} \quad \text{(*1)} \\ &= (xy)' \frac{x^2 - y^2}{x^2 + y^2} + xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right)' \quad (\because 積の微分) \\ &= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{(x^2 - y^2)'(x^2 + y^2) - (x^2 - y^2)(x^2 + y^2)'}{(x^2 + y^2)^2} \quad (\because x^2 + y^2 \neq 0$$
なので商の微分より)
$$&= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{4xy^2}{(x^2 + y^2)^2} \\ &= \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \end{split}$$

よって $(x,y) \neq (0,0)$ で f_x は存在する (∵ 公理 : f_x は存在 $\rightleftarrows f_x \in \mathbb{R}$)

$$(*1)f', f_x$$
の定義より

$$\begin{split} f'(x,y) &= \lim_{\Delta x \to 0} \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x} = f_x(x,y) \\ \texttt{よって} f' が存在するならば f' = f_x \end{split}$$

P.10 問 1.3 (x,y) ≠ (0,0) で fx は連続 '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f_x は連続

(証明)

 $(x,y) \neq (0,0)$ とする

$$f_x(x,y) = \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \quad (知頁)$$

$$\lim_{(x,y)\to(a,b)}\frac{yx^4+4x^2y^3-y^5}{(x^2+y^2)^2}=\frac{ba^4+4a^2b^3-b^5}{(a^2+b^2)^2} \quad (\because (a^2+b^2)^2\neq 0 \text{ なので和、積、商の極限、また } \lim_{(x,y)\to(a,b)}x=a(*1))$$

よって任意の ϵ に対して $|(x,y)-(a,b)|<\delta$ ならば

$$\left|\frac{yx^4+4x^2y^3-y^5}{(x^2+y^2)^2}-\frac{ba^4+4a^2b^3-b^5}{(a^2+b^2)^2}\right|<\epsilon$$

また $0 < \delta' < |(a,b)|$ とすると

$$|(x,y)-(a,b)| < \delta' \ \text{ζ if } (x,y) \neq (0,0) \ \text{ζ is } \delta' \ \text{ζ if } (x,y) \neq (0,0) \ \text{ζ is } \delta' \ \text{ζ if } \delta' \ \text{ζ is } \delta' \ \text$$

$$\therefore f_x(x,y) = \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$

よって $|(x,y)-(a,b)| < min(\delta,\delta')$ ならば

$$\left| f_x(x,y) - \frac{ba^4 + 4a^2b^3 - b^5}{(a^2 + b^2)^2} \right| < \epsilon$$

よって
$$\lim_{(x,y)\to(a,b)} f_x(x,y) = \frac{ba^4 + 4a^2b^3 - b^5}{(a^2 + b^2)^2} = f_x(a,b)$$

よって $f_x(x,y)$ は $(a,b) \neq (0,0)$ で連続である

$$\lim_{(x,y)\to(a,b)} x = a$$
 (証明)
任意の ϵ に対して
$$|(x,y)-(a,b)| < \epsilon$$
ならば
$$|x-a|<|(x,y)-(a,b)| < \epsilon \ (∵ 三角不等式)$$
 ∴
$$\lim_{(x,y)\to(a,b)} x = a$$

P.10 問 1.3 (0,0) で fx は連続 '25 3.26

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(x,y)=(0,0)$$
 で f_x は連続

(証明)

$$(x,y) \neq (0,0)$$
 で

 f_x は 別頁 より

$$\begin{split} f_x(x,y) &= \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \\ &= y\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} \end{split}$$

$$\frac{x^4+4x^2y^2-y^4}{x^4+2x^2y^2+y^4}$$
 は有界 $(*1)$ かつ $\lim_{(x,y)\to(0,0)}y=0$

$$\sharp \supset \tau \lim_{(x,y)\to(0,0)} y \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} = 0 \ (*2)$$

また f は (0,0) で連続 (別頁)

よって (0,0) で f_x は存在して

$$f_x(0,0) = \lim_{(x,y) \to (0,0)} f_x(x,y) = 0$$
 (∵ 本文(1.5), (1.6)より)

よって (0,0) で f_x は連続

(*1)
$$\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$$
は有界
(証明) $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ は有界でないと仮定する
任意の $m > 0$ に対して $\left| \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} \right| > m$
 $\therefore \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ または $m < \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ である $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $x^4 + 4x^2y^2 - y^4 < -m(x^4 + 2x^2y^2 + y^4)$ $\therefore (1 + m)x^4 + (4 + 2m)x^2y^2 + (m - 1)y^4 < 0$ $m = 1$ とすると $2x^4 + 6x^2y^2 < 0$ これは矛盾 $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $x^4 + 4x^2y^2 - y^4 > m(x^4 + 2x^2y^2 + y^4)$ $0 > (m - 1)x^4 + (2m - 4)x^2y^2 + (m - 1)y^4$ $m = 2$ とすると $0 > x^4 + y^4$ これは矛盾 $x = 2x^4 + 4x^2y^2 - y^4$ は有界

P.10 問 1.3 (x,y) ≠ (0,0) で fy は存在する '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f_y は存在する

(証明)

 $(x,y) \neq (0,0)$ とする

このとぎ
$$f(x,y)=xyrac{x^2-y^2}{x^2+y^2}$$

x,y は独立とする

$$\begin{split} f_y &= f'_{y \, \text{で微分}} \ \ \, (*1) \\ &= (xy)' \frac{x^2 - y^2}{x^2 + y^2} + xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right)' \quad (∵ 積の微分) \\ &= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{(x^2 - y^2)'(x^2 + y^2) - (x^2 - y^2)(x^2 + y^2)'}{(x^2 + y^2)^2} \quad (\because x^2 + y^2 \neq 0$$
なので商の微分より)
$$&= \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2} \end{split}$$

よって $(x,y) \neq (0,0)$ で f_y は存在する (: 公理: f_y は存在 $\rightleftarrows f_y \in R$)

$$(*1)f', f_y$$
の定義より
$$f'(x,y) = \lim_{\Delta y \to 0} \frac{f(x,y+\Delta y) - f(x,y)}{\Delta y} = f_y(x,y)$$
 よって f' が存在するならば $f' = f_y$

P.10 問 1.3 (x,y) ≠ (0,0) で fy は連続 '25 5.15

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $(x,y) \neq (0,0)$ で f_y は連続

(証明)

 $(x,y) \neq (0,0)$ とする

$$f_y(x,y) = \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2} \quad (知頁)$$

$$\lim_{(x,y)\to(a,b)}\frac{x^5-4y^2x^3-4xy^4}{(x^2+y^2)^2}=\frac{a^5-4b^2a^3-4ab^4}{(a^2+b^2)^2} \quad (\because (a^2+b^2)^2\neq 0 \text{ なので和、積、商の極限、また } \lim_{(x,y)\to(a,b)}y=b)$$

よって任意の ϵ に対して $|(x,y)-(a,b)|<\delta$ ならば

$$\left|\frac{x^5-4y^2x^3-4xy^4}{(x^2+y^2)^2}-\frac{a^5-4b^2a^3-4ab^4}{(a^2+b^2)^2}\right|<\epsilon$$

また $0 < \delta' < |(a,b)|$ とすると

$$|(x,y)-(a,b)| < \delta' \ \text{told} \ (x,y) \neq (0,0) \ \text{cas}$$

$$\therefore f_y(x,y) = \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2}$$

よって
$$|(x,y)-(a,b)| < min(\delta,\delta')$$
 ならば

$$\left| f_y(x,y) - \frac{a^5 - 4b^2a^3 - 4ab^4}{(a^2 + b^2)^2} \right| < \epsilon$$

よって
$$\lim_{(x,y) \to (a,b)} f_y(x,y) = \frac{a^5 - 4b^2a^3 - 4ab^4}{(a^2 + b^2)^2} = f_y(a,b)$$

よって $f_n(x,y)$ は $(a,b) \neq (0,0)$ で連続である

P.10 問 1.3 (0,0) で fy は連続 '25 3.26

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(x,y)=(0,0)$$
 で f_y は連続

(証明)

$$(x,y) \neq (0,0)$$
 で

 f_y は 別頁 より

$$\begin{split} f_y(x,y) &= \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2} \\ &= x\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} \end{split}$$

$$\frac{x^4+4x^2y^2-y^4}{x^4+2x^2y^2+y^4}$$
 は有界 $\begin{picture}(*1)$ かつ $\lim_{(x,y)\to(0,0)}x=0$

よって
$$\lim_{(x,y)\to(0,0)} x \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} = 0$$
 (*2)

また f は (0,0) で連続 (別頁)

よって (0,0) で f_y は存在して

$$f_y(0,0) = \lim_{(x,y) \to (0,0)} f_y(x,y) = 0$$
 (∵ 本文(1.5), (1.6)より)

よって (0,0) で f_u は連続

(*1)
$$\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$$
は有界
(証明) $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ は有界でないと仮定する
任意の $m > 0$ に対して $\left| \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} \right| > m$
 $\therefore \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ または $m < \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ である $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $x^4 - 4x^2y^2 - y^4 < -m(x^4 + 2x^2y^2 + y^4)$ $\therefore (1 + m)x^4 + (-4 + 2m)x^2y^2 + (m - 1)y^4 < 0$ $m = 1$ とすると $2x^4 < 0$ これは矛盾 $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $x^4 - 4x^2y^2 - y^4 > m(x^4 + 2x^2y^2 + y^4)$ $0 > (m - 1)x^4 + (2m + 4)x^2y^2 + (m + 1)y^4$ $m = 1$ とすると $0 > 8x^2y^2 + 2y^4$ これは矛盾 $x - \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ は有界

$$(*2)f(x,y)$$
は有界, $\lim_{(x,y)\to(0,0)}g=0$ ならば $\lim fg=0$

P.10 問 1.3 (0,0) で fxy は不連続 '25 4.1

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(x,y)=(0,0)$$
 で f_{xy} は不連続

(証明)

 $(x,y) \neq (0,0)$ とする

$$f_x = \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \quad (知頁)$$

よって

$$\begin{split} f_{xy} &= \frac{(yx^4 + 4x^2y^3 - y^5)'(x^2 + y^2)^2 - (yx^4 + 4x^2y^3 - y^5)((x^2 + y^2)^2)'}{(x^2 + y^2)^4} \\ &= \frac{x^8 + 10x^6y^2 - 10x^2y^6 - y^8}{(x^2 + y^2)^4} \end{split}$$

$$(*1)x,y$$
は独立なので $f_{xy}=f_x'$
 $_{y$ で微分

また $(x^2 + y^2)^2 \neq 0$ なので和、積、商の微分公式より

経路
$$\begin{cases} x=0 \\ y=y \end{cases}$$
 に沿った $(x,y) \to (0,0)$ の極限は $\lim_{y\to 0} f_{xy}(0,y) = \lim_{y\to 0} -1 = -1$

経路
$$\left\{egin{aligned} x=x \\ y=0 \end{aligned} \right.$$
 に沿った $(x,y) o (0,0)$ の極限は $\lim_{x o 0} f_{xy}(x,0) = \lim_{x o 0} 1 = 1$

経路によって極限が異なるので f_{xy} の $(x,y) \rightarrow (0,0)$ の極限は存在しない

よって (0,0) で f_{xy} は連続ではない

P.11 数学の定理 1.1 f(x1,..,xm)-f(a1,..,xm)-(x1-a1)fx1(a)=o(|x-a|) '25 4.6

fはā の近傍で連続的微分可能ならば

$$\vec{x}\rightarrow\vec{a}$$
 で $f(\vec{x})-f(a_1,\ldots,x_m)-(x_1-a_1)f_{x_1}(\vec{a})=o(|\vec{x}-\vec{a}|)$ である

(証明)

 x_1, \dots, x_m は独立で fは \vec{a} の近傍で連続的微分可能なので

 (a_1,\ldots,x_m) が \vec{a} の近傍ならば

f は区間 $[a_1,x_1]$ で連続、区間 (a_1,x_1) で x_1 で微分可能

よって平均値の定理より

$$\frac{f(\vec{x}) - f(a_1, \dots, x_m)}{x_1 - a_1} = f'(a_1 + k(x_1 - a_1), \dots, x_m), \ 0 < k < 1 \text{ なる } k(x_2, \dots, x_m) \text{ が存在する}$$

$$x_1,\dots,x_m$$
 は独立なので $f_{x_1}=f'_{x_1$ で微分

よって
$$\frac{f(\vec{x})-f(a_1,\ldots,x_m)}{x_1-a_1}=f_{x_1}(a_1+k(x_1-a_1),\ldots,x_m)\ldots(1)$$

また f_{x_1} は \vec{a} で連続なので

$$\lim_{\vec{x} \to \vec{a}} f_{x_1}(\vec{x}) = f_{x_1}(\vec{a})$$

よって任意の δ に対して

$$|\vec{x} - \vec{a}| < \epsilon$$
 ならば $|f_{x_1}(\vec{x}) - f_{x_1}(\vec{a})| < \delta$ なる ϵ が存在する

$$\vec{x}' = (a_1 + k(x_1 - a_1), \dots, x_m)$$
 とする

$$\begin{split} |\vec{x}' - \vec{a}| &= \sqrt{(a_1 + k(x_1 - a_1) - a_1)^2 + \dots + (x_m - a_m)^2} \\ &= \sqrt{k^2(x_1 - a_1)^2 + \dots + (x_m - a_m)^2} \\ &< |\vec{x} - \vec{a}| \quad (*1) \end{split}$$

 $(*1)k = k(x_2, ..., x_m)$ であるが 0 < k < 1なので $k^2(x_1 - a_1)^2 < (x_1 - a_1)^2$

よって $|\vec{x}' - \vec{a}| < \epsilon$ なので $|f_{x_1}(\vec{x}') - f_{x_1}(\vec{a})| < \delta$

$$\therefore \lim_{\vec{x} \to \vec{d}} f_{x_1}(\vec{x}') = f_{x_1}(\vec{a})$$

$$\therefore \lim_{\vec{x} \to \vec{a}} f_{x_1}(a_1 + k(x_1 - a_1), \dots, x_m) = f_{x_1}(\vec{a})$$

$$\label{eq:continuous} \therefore \ \lim_{\vec{x} \to \vec{a}} \frac{f_{x_1}(\vec{x}) - f_{x_1}(a_1, \dots, x_m)}{x_1 - a_1} = f_{x_1}(\vec{a}) \quad (\because \ (1))$$

$$\ \, \lim_{\vec{x}\to\vec{a}}\frac{f_{x_1}(\vec{x})-f_{x_1}(a_1,\dots,x_m)-(x_1-a_1)f_{x_1}(\vec{a})}{x_1-a_1}=0 \ (\because \ \lim c=c,$$
和の極限)

よって任意の δ に対して

$$|\vec{x}-\vec{a}|<\epsilon \text{ is lif}\left|\frac{f(\vec{x})-f(a_1,\ldots,x_m)-(x_1-a_1)f_{x_1}(\vec{a})}{x_1-a_1}\right|<\delta$$

また $|\vec{x} - \vec{a}| \ge |x_1 - a_1|$ (: 三角不等式) なので

$$\left|\frac{f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a})}{|\vec{x} - \vec{a}|}\right| \leq \left|\frac{f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a})}{x_1 - a_1}\right| < \delta$$

よって

$$\lim_{\vec{x} \to \vec{a}} \left| \frac{f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a})}{|\vec{x} - \vec{a}|} \right| = 0$$

よって $\vec{x} \rightarrow \vec{a}$ で

$$f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a}) = o(|\vec{x} - \vec{a}|)$$

(注)
$$\lim_{x_1 \to a_1} \frac{f(\vec{x}) - f(a_1,..,x_m)}{(x_1 - a_1)} = f_{x_1}(a_1,..,x_m)$$
 (*) から始めると $\lim_{x_1 \to a_1} \epsilon \lim_{\vec{x} \to \vec{a}}$ に変換できなくて失敗する 平均値の定理を利用するとうまく $\lim_{\vec{x} \to \vec{a}} \epsilon$ 導ける 平均値の定理は \vec{a} 近傍での f の連続性と微分可能性を利用できるが (*)から始めると \vec{a} での連続性と微分可能性しか

利用できないからだと思われる

P.11 数学の定理 1.1 f(a1,x2..xm)-f(a1,a2..xm)-(x2-a2)fx2(a)=o(|x-a|) '25 5.17

fはā の近傍で連続的微分可能ならば

$$\vec{x} o \vec{a}$$
 で $f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a}) = o(|\vec{x} - \vec{a}|)$ である

(証明)

 x_1 の場合 (別頁) と同様に

$$\lim_{\vec{x}\rightarrow\vec{a}}\left|\frac{f(\vec{x})-f(x_1,a_2,\ldots,x_m)-(x_2-a_2)f_{x_2}(\vec{a})}{|\vec{x}-\vec{a}|}\right|=0$$
 The S

$$g(x_1,\dots,x_m) = \frac{f(\vec{x}) - f(x_1,a_2,\dots,x_m) - (x_2 - a_2)f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|}$$

$$\lim_{\vec{x}\to\vec{a}}|g(x_1,\dots,x_m)|=0$$
なので

任意の
$$\epsilon > 0$$
 に対して $|\vec{x} - \vec{a}| < \delta$ ならば $|g(x_1, \dots, x_m)| < \epsilon$ である

ここで

$$\begin{split} |(a_1,x_2,\dots,x_m)-\vec{a}| &\leq |\vec{x}-\vec{a}| \quad (\because \, \Xi \mathsf{角不等式}) \\ &<\delta \end{split}$$

なので
$$|g(a_1,x_2,\dots,x_m)|<\epsilon$$
 である

$$\therefore \lim_{\vec{x} \to \vec{a}} |g(a_1, x_2, \dots, x_m)| = 0$$

$$\label{eq:continuous} \therefore \ \lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|(a_1, x_2, \dots, x_m) - \vec{a}|} \right| = 0$$

ここで
$$|(a_1, x_2, ..., x_m) - \vec{a}| \le |\vec{x} - \vec{a}|$$
 (: 三角不等式) なので

$$\begin{split} &\left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|} \right| \\ & \leq \left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|(a_1, x_2, \dots, x_m) - \vec{a}|} \right| \\ & \therefore \lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|} \right| = 0 \quad (*1) \end{split}$$

$$(*1)|f| \le |g|, \lim g = 0$$
ならば $\lim f = 0$)

$$\ \, \dot{\cdots} \, \, f(a_1,x_2,\ldots,x_m) - f(a_1,a_2,\ldots,x_m) - (x_2-a_2) f_{x_2}(\vec{a}) = o(|\vec{x}-\vec{a}|)$$

P.11 数学の定理 1.1 f(x)=f(a)+ ∇ f(a)(x-a)+o(|x-a|) '25 4.6

fはā の近傍で連続的微分可能ならば

$$\vec{x} \rightarrow \vec{a}$$
 で $f(\vec{x}) = f(\vec{a}) + \vec{\nabla} f(\vec{a})(\vec{x} - \vec{a}) + o(|\vec{x} - \vec{a}|)$ である

(証明)

$$\lim_{\vec{x} \to \vec{a}} \left| \frac{f(x_1, \dots, x_m) - f(a_1, \dots, x_m) - f_{x_1}(\vec{a})(x_1 - a_1)}{|\vec{x} - \vec{a}|} \right| = 0 \quad (\text{Ng})$$

$$\lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, \dots, x_m) - f(a_1, a_2, \dots, x_m) - f_{x_2}(\vec{a})(x_2 - a_2)}{|\vec{x} - \vec{a}|} \right| = 0 \quad (\text{ND})$$

:

$$\lim_{\vec{x}\to\vec{a}} \left| \frac{f(a_1,\dots,a_{m-1},x_m) - f(a_1,\dots,a_m) - f_{x_m}(\vec{a})(x_m-a_m)}{|\vec{x}-\vec{a}|} \right| = 0 \quad (∵ x_1,x_2 \ \text{の場合と同様})$$

足し合わせて

$$\lim_{\vec{x} \to \vec{a}} \left| \frac{f(\vec{x}) - f(\vec{a}) - f_{x_1}(\vec{a})(x_1 - a_1) - f_{x_2}(\vec{a})(x_2 - a_2) - \dots - f_{x_m}(\vec{a})(x_m - a_m)}{|\vec{x} - \vec{a}|} \right| = 0 \quad (*1)$$

(*1)
$$\lim |f| = 0$$
, $\lim |g| = 0$ ならば $\lim |f| + |g| = 0$ $|f + g| \le |f| + |g|$ (三角不等式) なので $\lim |f + g| = 0$

ここで

$$\begin{split} \vec{\nabla} f(\vec{a}) &= (f_{x_1}(\vec{a}), \dots, f_{x_m}(\vec{a})) \\ (\vec{x} - \vec{a}) &= (x_1 - a_1, \dots, x_m - a_m) \\ \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a}) &= f_{x_1}(\vec{a})(x_1 - a_1) + \dots + f_{x_m}(\vec{a})(x_m - a_m) \end{split}$$

なので

$$\lim_{\vec{x}\to\vec{a}}\left|\frac{f(\vec{x})-f(\vec{a})-\vec{\nabla}f(\vec{a})\cdot(\vec{x}-\vec{a})}{|\vec{x}-\vec{a}|}\right|=0$$

$$\therefore f(\vec{x}) - f(\vec{a}) - \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a}) = o(|\vec{x} - \vec{a}|)$$
 (: 付録 A の $o(\dots)$ の定義)

$$\therefore f(\vec{x}) = f(\vec{a}) + \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a}) + o(|\vec{x} - \vec{a}|)$$
 ($\because f + h = o(\dots) \rightleftharpoons f = -h + o(\dots)$ と定義する)

P.12 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8

ある開領域で $f(x_1,\cdots,x_m)$ が C^∞ 級ならば

その領域で n 階までの偏導関数は微分の順序によらない

(証明)

fの2階以上n階以下の偏導関数を考える

$$f_{x_{p_1}\dots x_{p_i}x_{p_i}\dots x_{p_k}}$$

fは C^{∞} 級なので

 $f_{x_{p_1}...x_{p_i}x_{p_i}}$ は存在し連続である

また $f_{x_{p_1}\dots x_{p_i}x_{p_i}}$ も存在し連続である

よって $f_{x_{p_1}\dots x_{p_i}x_{p_i}}=f_{x_{p_1}\dots x_{p_i}x_{p_i}}$ (: $f_{xy}=f_{yx}$ 別頁)

よって $f_{x_{p_1}...x_{p_s}x_{p_s}...x_{p_b}} = f_{x_{p_1}...x_{p_s}x_{p_s}...x_{p_b}}$ (1)

 p_1, \dots, p_k を昇順に並べたリストを q_1, \dots, q_k とする

(1)より x_{q_1} による偏微分を左隣りの変数の偏微分との入れ換えをくりかえして

$$f_{x_{p_1}...x_{p_k}} = f_{x_{q_1}...x_{p_k}}$$
 とする

 x_{q_1} と同様に x_{q_2} について

$$f_{x_{p_1}\dots x_{p_k}} = f_{x_{q_1}x_{q_2}\dots x_{p_k}}$$
 とする

これを繰り返して

$$f_{x_{p_1}\dots x_{p_k}}=f_{x_{q_1}\dots x_{q_k}}$$
 となる

 r_1, \dots, r_2 は p_1, \dots, p_2 を任意に並べ替えたリストとする。上と同様に

よって
$$f_{x_{r_1}\dots x_{r_k}}=f_{x_{p_1}\dots x_{p_k}}$$
 となる

よって n 階までの偏導関数は微分の順序によらない

P.12 数学の定理 1.2 fxy=fyx '25 4,8

(2変数の場合)

ある開領域で f_{xy}, f_{yx} が連続ならば $f_{xy} = f_{yx}$ である

(証明)

領域内の任意の点 (a,b),(x,y) とする

$$\Delta(x,y) = (f(x,y) - f(x,b)) - (f(a,y) - f(a,b))$$
 とする

$$F(x) = f(x,y) - f(x,b)$$
 とすると

$$\Delta(x,y) = F(x) - F(a)$$

領域内で f は連続なので xの区間[a,x] で f(x,y),f(x,b) は連続

よって F(x) は xの区間[a,x] で連続 (*1)

領域内で f は偏微分可能なので xの区間(a,x) で f(x,y),f(x,b) は x で微分可能

よって F(x) は xの区間(a,x) で x で微分可能 (*2)

よって平均値の定理より

$$\begin{split} \Delta(x,y) &= F(x) - F(a) \\ &= F'(a + (x-a)\theta_1)(x-a), \ 0 < \theta_1 < 1 \\ &= (f_x(a + (x-a)\theta_1, y) - f_x(a + (x-a)\theta_1, b))(x-a) \end{aligned} \tag{*3}$$

(*1)f,gが連続ならばf+gも連続

(*2)f,gが微分可能ならばf+gも微分可能

 $(*3) f_{xy}$ が存在するならばx,yは独立x,yが独立ならば $f_x=f'$

領域内で f_x は連続かつ y で偏微分可能 (∵ f_{xy} が存在するので)

よって $f_x(a+(x-a)\theta_1,y)$ は yの区間[b,y] で連続かつ 区間(b,y) で y で微分可能

よって平均値の定理より

$$\begin{split} f_x(a+(x-a)\theta_1,y) - f_x(a+(x-a)\theta_1,b) \\ &= f_{xy}(a+(x-a)\theta_1,b+(y-b)\theta_2)(x-b), \ 0 < \theta_2 < 1 \end{aligned} \tag{*4}$$

(*4)x,yは独立なので

$$f_{xy} = f'_x$$
 yで微分

よって

$$\Delta(x,y)=f_{xy}(a+(x-a)\theta_1,b+(y-b)\theta_2)(x-a)(x-b)$$

$$x' = a + (x - a)\theta_1$$

$$y' = b + (y-b)\theta_2$$

とすると

$$\frac{\Delta(x,y)}{(x-a)(x-b)} = f_{xy}(x',y')$$

 f_{xy} は連続なので

$$\lim_{(x,y)\to(a,b)}f_{xy}(x,y)=f_{xy}(a,b)$$

よって任意の ϵ に対して

$$|(x,y)-(a,b)|<\delta$$
 ならば $|f_{xy}(x,y)-f_{xy}(a,b)|<\epsilon$

また

$$\begin{split} |(x',y')-(a,b)| &= \sqrt{(a+(x-a)\theta_1-a)^2+(b+(y-b)\theta_2-b)^2} \\ &= \sqrt{(x-a)^2\theta_1^2+(y-b)^2\theta_2^2} \\ &< |(x,y)-(a,b)| \quad (\because \ \ 0<\theta_1<1, \ 0<\theta_2<1) \end{split}$$

よって
$$|(x',y')-(a,b)|<\delta$$
 なので $|f_{xy}(x',y')-f_{xy}(a,b)|<\epsilon$

よって
$$\lim_{(x,y)\to(a,b)} f_{xy}(x',y') = f_{xy}(a,b)$$

よって
$$\lim_{(x,y)\to(a,b)}\frac{\Delta(x,y)}{(x-a)(y-b)}=f_{xy}(a,b)\quad (1)$$

 $\Delta(x,y)$ の右辺の順番をかえて

$$\Delta(x,y) = (f(x,y) - f(a,y)) - (f(x,b) - f(a,b))$$
 とする

$$G(y) = f(x,y) - f(a,y)$$
 とすると

$$\Delta(x,y) = G(y) - G(b)$$

f は領域で連続なので 区間[b,y] で f(x,y),f(a,y) は連続

よって G(y) は 区間[b,y] で連続 (:f,gが連続ならばf+gは連続)

f は領域で偏微分可能なので 区間(b,y)で f(x,y),f(a,y) は y で微分可能

$$(∵x,y$$
が独立なので $f_y=f'_{y$ で微分

よって G(y) は 区間(b,y) で y で微分可能 $(\because (f+g)'=f'+g')$

よって平均値の定理より

$$\begin{split} \Delta(x,y) &= G'(b+(y-b)\theta_3)(y-b), \ 0 < \theta_3 < 1 \\ &= (f_y(x,b+(y-b)\theta_3) - f_y(a,b+(y-b)\theta_3))(y-b) \quad (\because f_y = f'_y) \end{split}$$

領域内で f_y は連続かつx で偏微分可能なので

 $f_y(x,b+(y-b) heta_3)$ は 区間[a,x] で連続かつ 区間(a,x) で x で微分可能 $(\because x,y$ が独立ならば $f_{yx}=f_y'$) $_{x$ で微分

よって平均値の定理より

$$\Delta(x,y) = f_{yx}(a + (x-a)\theta_4, b + (y-b)\theta_3)(y-b)(x-a), \ 0 < \theta_4 < 1$$

$$x' = a + (x - a)\theta_{A}$$

$$y'=b+(y-b)\theta_3$$

とすると

$$\Delta(x,y) = f_{yx}(x',y')(y-b)(x-a)$$

よって
$$\frac{\Delta(x,y)}{(y-b)(x-a)} = f_{yx}(x',y')$$

 f_{yx} は連続なので

$$\lim_{(x,y)\to(a,b)}f_{yx}(x,y)=f_{yx}(a,b)$$

よって任意の ϵ に対して

$$|(x,y)-(a,b)|<\delta$$
 ならば $|f_{ux}(x,y)-f_{ux}(a,b)|<\epsilon$

また

$$\begin{split} |(x',y')-(a,b)| &= \sqrt{(a+(x-a)\theta_4-a)^2+(b+(y-b)\theta_3-b)^2} \\ &= \sqrt{(x-a)^2\theta_4^2+(y-b)^2\theta_3^2} \\ &< |(x,y)-(a,b)| \quad (\because \ 0<\theta_3<1,0<\theta_4<1) \end{split}$$

よって
$$|(x',y')-(a,b)|<\delta$$
 なので

$$|f_{ux}(x',y') - f_{ux}(a,b)| < \epsilon$$

よって
$$\lim_{(x,y)\to(a,b)} f_{yx}(x',y') = f_{yx}(a,b)$$

よって
$$\lim_{(x,y)\to(a,b)} \frac{\Delta(x,y)}{(y-b)(x-a)} = f_{yx}(a,b)$$
 (2)

$$f_{xy}(a,b) = f_{yx}(a,b)$$

a,b は任意なので

$$f_{xy}(x,y) = f_{yx}(x,y)$$

P.12 補足 x ≠ 0 で f(x) は連続 '25 4.23

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $x \neq 0$ でf(x)は連続

(証明)

xは連続 (*1)

よって
$$x \neq 0$$
 ならば $\frac{1}{x}$ は連続 (*2)

よって
$$x \neq 0$$
 ならば $\frac{1}{x^2}$ は連続 (*3)

よって
$$x \neq 0$$
 ならば $-\frac{1}{x^2}$ は連続 (*3)

よって
$$x \neq 0$$
 ならば $e^{-\frac{1}{x^2}}$ は連続 (*4)

$$0 < |x - a| < |a|$$
 ならば $x \neq 0$

(
$$: x = 0$$
 とすると $|a| < |a|$ となり矛盾)

$$e^{-\frac{1}{x^2}}$$
 は $x \neq 0$ で連続なので

任意の ϵ に対して

$$0<|x-a|<\delta$$
 ならば $\left|e^{-rac{1}{x^2}}-e^{-rac{1}{a^2}}
ight|<\epsilon$

よって
$$0 < |x-a| < min(|a|, \delta)$$
 ならば

$$x \neq 0$$
 なので $f(x) = e^{-\frac{1}{x^2}}$

$$\sharp \, \operatorname{tr} \left| e^{-\frac{1}{x^2}} - e^{-\frac{1}{a^2}} \right| < \epsilon$$

$$\therefore |f(x) - f(a)| < \epsilon$$

よって
$$\lim_{x \to a} f(x) = f(a)$$

よって $x \neq 0$ ならば f(x) は連続

$$(*1)$$
0 $< |x-a| < \epsilon$ ならば $|x-a| < \epsilon$

$$\therefore \lim_{x \to a} x = a$$

$$(*2)\lim_{x \to a} f(x) = F, F \neq 0$$
 ならば $\lim_{x \to a} \frac{1}{f} = \frac{1}{F}$

(証明)

任意の
$$\epsilon$$
 に対し $0 < |x-a| < \delta$ ならば $|f(x) - F| < \epsilon \cdots (1)$

$$\epsilon = \frac{|F|}{2}$$
 とすると

$$0<|x-a|<\delta'$$
 ならば $|f(x)-F|<rac{|F|}{2}$

$$\therefore \ |F|-|f(x)|<\frac{|F|}{2}$$
 (: 三角不等式 $|F|-|f(x)|\leq |F-f(x)|)$

$$\therefore |f(x)| > \frac{|F|}{2}$$

$$\therefore \ \frac{1}{|f(x)|} < \frac{2}{|F|} \cdots (2)$$

(∵
$$F \neq 0$$
 なので $|F| > 0$, $0 < a < b$ ならば $\frac{1}{a} > \frac{1}{b}$)
任意の ϵ' に対して $\epsilon = \frac{1}{2}\epsilon'F^2$ とする $0 < |x-a| < \min(\delta,\delta')$ ならば $\left|\frac{1}{f(x)} - \frac{1}{F}\right| = \frac{|f(x) - F|}{|f(x)||F|} < \frac{2\epsilon}{F^2} = \epsilon'$ (∵ (1),(2)) よって $\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{F}$
(*3) $\lim_{x \to a} f(x) = F$, $\lim_{x \to a} g(x) = G$ ならば $\lim_{x \to a} fg = FG$ (証明) 任意の ϵ に対して $0 < |x-a| < \delta$ ならば $|f-F| < \epsilon$, $|g-G| < \epsilon$ … (1) $\epsilon = |F|$ とすると $0 < |x-a| < \delta'$ ならば $|f-F| < |F|$ ∴ $|f| - |F| < |F|$ (∵ 三角不等式 $|a| - |b| \le |a-b|$) ∴ $|f| < 2|F|$ … (2) 任意の ϵ' に対して $\epsilon = \frac{\epsilon'}{|G| + 2|F|}$ とする $0 < |x-a| < \min(\delta,\delta')$ ならば $|fg-FG| = |fg-G| + |G|-FG|$ $= |f(g-G)| + |G(f-F)|$ (∵ 三角不等式 $|a+b| < |a| + |b|$) $= |f||g-G| + |G||f-F|$ $< 2|F|\epsilon + \epsilon|G|$ (∵ (1)(2)) $= \epsilon(2|F| + |G|) = \epsilon'$ よって $\lim_{x \to a} fg = FG$ (*4) a で $f(x)$ は連続, $f(a)$ で $g(x)$ は連続ならば a で $g(f(x))$ は連続 (証明) $\lim_{x \to f(a)} g(x) = g(f(a))$ なので 任意の ϵ に対して $0 < |x-f(a)| < \delta$ ならば $|g(x)-g(f(a))| < \epsilon$ $\lim_{x \to a} f(x) = f(a)$ なので $0 < |x-a| < \delta'$ ならば $|f(x)-f(a)| < \delta$ よって $0 < |x-a| < \delta'$ ならば $|g(f(x))-g(f(a))| < \epsilon$ よって $\lim_{x \to a} g(f(x)) = g(f(a))$ よって a で $g(f(x))$ は連続

P.12 補足 x=0 で f(x) は連続 '25 4.23

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 $x = 0$ で $f(x)$ は連続

(証明)

$$\lim_{x \to 0} e^{\frac{1}{x^2}} = \infty \quad (*1)$$

$$\therefore \lim_{x \to 0} e^{-\frac{1}{x^2}} = 0 \quad (*4)$$

$$\therefore \lim_{x \to 0} f(x) = \lim_{x \to 0} e^{-\frac{1}{x^2}} \quad (\because x \neq 0)$$

$$= 0$$

$$= f(0)$$

よってx = 0でf(x)は連続

$$(*1)e^{\frac{1}{x^2}} = 1 + \left(\frac{1}{x^2}\right) + \frac{\left(\frac{1}{x^2}\right)^2}{2} + \cdots \quad (\because e^x \mathcal{O} 定義)$$

$$> 1 + \frac{1}{x^2}$$

$$\lim_{x \to 0} \left(1 + \frac{1}{x^2}\right) = \infty \quad (*2)$$

$$\lim_{x \to 0} e^{\frac{1}{x^2}} = \infty \quad (*3)$$

$$(*2)任意の\epsilon > 1に対して0 < |x| < \frac{1}{\sqrt{\epsilon - 1}} ならば$$

$$x^2 < \frac{1}{\epsilon - 1} \quad (\because 0 < a < b \alpha \beta i d a^2 < b^2)$$

$$\frac{1}{x^2} > \epsilon - 1 \quad (\because 0 < a < b \alpha \beta i d \frac{1}{a} > \frac{1}{b})$$

$$\lim_{x \to 0} 1 + \frac{1}{x^2} > \epsilon$$

$$\lim_{x \to 0} 1 + \frac{1}{x^2} = \infty$$

$$(*3)g(x) > f(x), \lim_{x \to a} f(x) = \infty \alpha \beta i d \lim_{x \to a} g(x) = \infty$$

$$(証明)$$
任意のをに対して0 < |x - a| < b \alpha \beta i d f(x) > \epsilon
$$\lim_{x \to a} g(x) = \infty$$

$$(*4) \lim_{x \to a} f(x) = \infty \alpha \beta i d \lim_{x \to a} \frac{1}{f(x)} = 0$$

$$(証明)$$
任意のをに対して0 < |x - a| < b \alpha \beta i d f(x) > \epsilon
$$\lim_{x \to a} \frac{1}{f(x)} < \frac{1}{\epsilon} (\because 0 < a < b \alpha \beta i d \frac{1}{a} > \frac{1}{b})$$
任意のも'に対して6 = $\frac{1}{\epsilon'}$ とする

P.12 補足 x ≠ 0 で C ∞ 級 '25 4.25

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $x \neq 0$ で C^{∞} 級

(証明)

 $x \neq 0$ とする

$$\begin{split} f^{(1)} &= \left(e^{-\frac{1}{x^2}}\right)' \\ &= \left(-\frac{1}{x^2}\right)' e^{-\frac{1}{x^2}} \quad (*1), (*2) \\ &= -\left(\frac{1}{x^2}\right)' e^{-\frac{1}{x^2}} \quad (∵ 積の微分) \\ &= -(-2)x^{-3}e^{-\frac{1}{x^2}} \quad (*3) \\ &= 2x^{-3}e^{-\frac{1}{x^2}} \quad \cdots (1) \end{split}$$

である。

n > 0 で

$$f^{(n)} = \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right) e^{-\frac{1}{x^2}}$$
と仮定する

$$\left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right)' = \sum_{\nu=1}^m k_\nu (x^{-\nu})' \quad (∵ 和, 積の微分)$$

 $= \sum_{\nu=1}^{m} (-\nu k_{\nu}) x^{-\nu-1} \quad (*3) \cdots (2)$

なので

$$\begin{split} f^{(n+1)} &= \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right)' e^{-\frac{1}{x^2}} + \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right) \left(e^{-\frac{1}{x^2}}\right)' \quad (\because 積の微分) \\ &= \sum_{\nu=1}^m (-\nu k_\nu) x^{-\nu-1} e^{-\frac{1}{x^2}} + \sum_{\nu=1}^m k_\nu x^{-\nu} 2x^{-3} e^{-\frac{1}{x^2}} \quad (\because (1), (2)) \\ &= \left(\sum_{\nu=1}^m -\nu k_\nu x^{-\nu-1} + \sum_{\nu=1}^m 2k_\nu x^{-\nu-3}\right) e^{-\frac{1}{x^2}} \\ &= \left(\sum_{i=2}^{m+1} -(i-1)k_{i-1}x^{-i} + \sum_{i=4}^{m+3} 2k_{i-3}x^{-i}\right) e^{-\frac{1}{x^2}} \\ &= \left((-1)k_1x^{-2} + (-2)k_2x^{-3} + \sum_{i=4}^{m+1} -(i-1)k_{i-1}x^{-i} + \sum_{i=4}^{m+1} 2k_{i-3}x^{-i} + 2k_{m-1}x^{-(m+1)} + 2k_mx^{-(m+3)}\right) e^{-\frac{1}{x^2}} \\ &= \left((-1)k_1x^{-2} + (-2)k_2x^{-3} + \sum_{i=4}^{m+1} (-(i-1)k_{i-1} + 2k_{i-3})x^{-i} + 2k_{m-1}x^{-(m+1)} + 2k_mx^{-(m+3)}\right) e^{-\frac{1}{x^2}} \end{split}$$

ここで

$$p_i = \begin{cases} 0 & (i=1) \\ -(i-1)k_{i-1} & (i=2,3) \\ -(i-1)k_{i-1} + 2k_{i-3} & (i=4,\dots,m+1) \\ 2k_{i-3} & (i=m+2,m+3) \end{cases}$$

$$s = m + 3$$

とする

$$f^{(n+1)} = \left(\sum_{i=1}^s p_i x^{-i}\right) e^{-1/x^2}$$

よって、 $x \neq 0, n > 0$ において

$$f^{(n)} = \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right) e^{-\frac{1}{x^2}}$$
 The second of the second content of

すべての n で $f^{(n)}$ は存在するので f は C^{∞} 級である

(*1)合成関数の微分

$$g'(x), f'(g(x))$$
が存在するなら

$$f(g(x))' = g'(x)f'(g(x))$$

$$(*2)(e^x)' = e^x$$

(証明

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (∵ e^x の定義)

右辺の項別微分を考える

$$\sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)' = (1)' + \sum_{n=1}^{\infty} \left(\frac{x^n}{n!}\right)'$$

$$= \sum_{n=1}^{\infty} n \frac{x^{n-1}}{n!} \ (*2.1)$$

$$= \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}$$

$$=\sum_{n=0}^{\infty}\frac{x^n}{n!}\ (*2.2)$$

$$= e^x (: e^x$$
の定義)

ここで任意のxに対して

 $-A \le x \le A, A > 0$ なる区間を考える

$$\left|\frac{x^{\nu}}{\nu!}\right| \leq \frac{A^{\nu}}{\nu!}, \nu = 0, 1, 2, \dots$$
 ලක් පි

また
$$\sum_{\nu=0}^{\infty} \frac{A^{\nu}}{\nu!} = e^a \ (\because e^a$$
の定義)

なので
$$\sum_{\nu=0}^{\infty} rac{x^{
u}}{
u!}$$
は区間 $[-A,A]$ で一様収束する

(: 定理:ある区間で $|a_n(x)| \leq C_n$ なる定数 C_n があって

$$\sum^{\infty} C_n が収束するならば \sum^{\infty} a_n は - 様収束する)$$

よって
$$(e^x)' = e^x$$

(∵ 定理:無限級数が収束し各項の導関数が連続で項別微分が 一様収束するならば無限級数の導関数は項別微分に等しい)

$$(*2.1)(1)' = 0$$

$$n > 0$$
ならば $x^n = nx^{n-1}$ (*3)

$$(kf(x))' = kf'(x)$$
 (: 積の微分)

P.12 補足 x=0 で C ∞ 級 '25 5.20

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

x=0 で C^{∞} 級

(証明)

 $x \neq 0$ \mathcal{C}

 $f^{(n)}$ は 別頁 より

$$\begin{split} f^{(n)} &= \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right) e^{-\frac{1}{x^2}} \\ &= \sum_{\nu=1}^m k_\nu x^{-\nu} e^{-\frac{1}{x^2}} \end{split}$$

$$\lim_{x \to 0} x^{-\nu} e^{-\frac{1}{x^2}} = 0 \quad (*1) \ \text{to} \ \mathcal{O} \ \mathcal{O}$$

$$\lim_{x\to 0} f^{(n)}(x) = 0 \quad (∵和、積の極限)$$

$$x=0$$
 で f は連続 (∵ 別紙)

かつ
$$\lim_{x\to 0} f^{(1)}(x) = 0$$
 なので

$$f^{(1)}(0)=0$$
 (∵ $p.7,(1.5),(1.6)$ a で連続, $\lim_{x \to a} f'(x)$ が存在するなら $\lim_{x \to a} f'(x)=f'(a)$)

$$f^{(n)}(0) = 0$$
 と仮定する

$$\lim_{x \to 0} f^{(n)}(x) = 0 = f^{(n)}(0)$$

よって
$$0$$
で $f^{(n)}(x)$ は連続

かつ
$$\lim_{x\to 0} f^{(n+1)}(x) = 0$$
 なので

$$f^{(n+1)}(0) = 0$$
 (: p.7, (1,5), (1.6))

よって任意の
$$n$$
で $f^{(n)}(0) = 0$

よって
$$x=0$$
 で f は C^{∞} 級

$$(*1)e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!} = 1 + y + \frac{1}{2}y^2 + \dots$$
 なので
$$e^{\frac{1}{x^2}} = 1 + x^{-2} + \frac{1}{2}x^{-4} + \dots$$

$$2n\nu \geq 2(n-1)$$
 とする
$$|x^{\nu}e^{\frac{1}{x^2}}||x^{\nu}|(1+x^{-2}+\dots+\frac{1}{n!}x^{-2n})$$

$$= |x^{\nu}| + |x^{\nu-2}| + \dots + \frac{1}{n!}|v^{\nu-2n}|$$

$$\nu, \nu - 2, \dots, \nu - 2(n-1) \geq 0$$
 むので
$$\lim |x^{\nu}| = 0, \dots, \lim |x^{\nu-2(n-1)}| = 0 \text{ or } 1$$

$$\nu - 2n < 0$$
 なので
$$\lim_{x \to 0} |x^{\nu-2n}| = \infty$$

$$\begin{split} & \therefore \lim_{x \to 0} |x^{\nu}| + \dots + \frac{1}{n!} |x^{\nu-2n}| = \infty \ (∵ 和の極限) \\ & \therefore \lim_{x \to 0} \frac{1}{|x^{\nu}| + \dots + \frac{1}{n!} |x^{\nu-2n}|} = 0 \\ & \frac{1}{|x^{\nu}e^{\frac{1}{x^2}}|} < \frac{1}{|x^{\nu}| + \dots + \frac{1}{n!} |x^{\nu-2n}|} なので \\ & \lim_{x \to 0} \frac{1}{|x^{\nu}e^{\frac{1}{x^2}}|} = 0 \\ & \therefore \lim_{x \to 0} \frac{1}{x^{\nu}e^{\frac{1}{x^2}}} = 0 \end{split}$$

P.12 補足 x=0 で C ∞ 級であるが解析的でない '25 5.21

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

x=0 で C^{∞} 級であるが解析的でない

(証明)

x = 0 での f(x) のテーラー級数を T(x) とする

$$T(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$$

$$f^{(n)}(0)=0$$
 (:別紙)なので $T(0)=0$

$$a \neq 0$$
 とする $f(a) \neq 0$, $T(a) = 0$ なので

$$T(a) \neq f(a)$$

よって
$$x \neq 0$$
 ならば $f(x) \neq T(x)$

よって
$$x=0$$
 の近傍で f はテーラー級数と一致しない

よって x=0 の近傍で f はべき級数で表すことができない

(∵ 定理:
$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$
 ならば $\sum_{n=0}^{\infty} c_n x^n$ はテーラー級数である)

よって x=0 の近傍で f は解析的でない

P.12 補足 収束するテーラー級数の部分和が f(x) の近似にならない例 '25 6.9

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

x=0 を中心とした f(x) のテーラー級数 T(x) とする

T(x) の収束半径は ∞ よって任意のx でテーラー級数は収束する。

このとき、 $x \neq 0$ でテーラー級数の部分和の次数をいくら上げても部分和が f(x) の近づくことはない

(証明)

x = 0 での f(x) のテーラー級数を T(x) とする

$$T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

 $f^{(n)}(0) = 0$ (: 別紙) なので T(x) = 0

すべての x について T(x) は収束するので、収束半径は $R_f = \infty$

 $|1| < R_f$ なので T(1) は収束して T(1) = 0

 $\sharp \, \mathcal{E} \, f(1) = e^{-\frac{1}{1^2}} = e^{-1}$

よって T(1) の部分和の次数を上げたとき部分和が近づくのは 0 である。 e^{-1} には近づかない

(補足)

収束半径内にあることは、テーラー級数 T(x) が元の関数 f(x) に一致することの十分条件ではない

テーラーの定理の剰余項が 0 に近づくならばテーラー級数と関数は一致する

この場合、剰余項は

$$R_n = \frac{f^{(n)}(c)}{n!} 1^n, \ 0 < c < 1$$

$$f^{(1)}(x) = 2x^{-3}e^{-\frac{1}{x^2}}$$

$$f^{(n)}(x) = \Big(\sum_{\nu=1}^m k_{\nu} x^{-\nu}\Big) e^{-\frac{1}{x^2}}$$
 (: 別紙)

となる。

 $n \to 0$ で $R_n \to 0$ の筈であるが、証明?

P.12 補足 x ≠ 0 で f(x) は解析的 '25 6.4

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $x \neq 0$ で f(x) は解析的

(証明)

x は a を中心とするべき級数で表される (*1)

$$x = \sum_{n=0}^{\infty} a_n (x-a)^n, \quad a_n = \begin{cases} a & (n=0) \\ 1 & (n=1) \\ 0 & (n>1) \end{cases}$$

収束半径は ∞

$$\begin{split} (*1)F(x) &= \sum_{n=0}^{\infty} a_n (x-a)^n, a_n = \begin{cases} a & (n=0) \\ 1 & (n=1) \end{cases} \text{ e.g. } \\ F(x) &= a_0 (x-a)^0 + a_1 (x-a)^1 + a_2 (x-a)^2 + \dots \\ &= a + (x-a) + 0 \\ &= x \end{split}$$

任意のxで収束するので、収束半径は ∞

$$\frac{1}{r}$$
 は $a \neq 0$ を中心とするべき級数で表される (*2)

$$\frac{1}{x} = \sum_{n=0}^{\infty} b_n (x-a)^n, \quad b_n = (-1)^n \frac{1}{a^{n+1}}$$

収束半径は |a|

 $\frac{1}{x^2}$ は $a \neq 0$ を中心とするべき級数で表される (*3)

$$\frac{1}{x^2} = \sum_{n=0}^{\infty} c_n (x-a)^n, \quad c_n = (-1)^n \frac{n+1}{a^{n+2}}$$

級数は絶対収束する。

$$\frac{1}{x} = \sum_{n=0}^{\infty} b_n (x-a)^n, b_n = (-1)^n \frac{1}{a^{n+1}} とする \\ 級数は絶対収束する。よって \\ \frac{1}{x^2} = \frac{1}{x} \frac{1}{x} = \sum_{n=0}^{\infty} b_n (x-a)^n \sum_{n=0}^{\infty} b_n (x-a)^n \\ = \sum_{n=0}^{\infty} \sum_{k=0}^n b_k (x-a)^k b_{n-k} (x-a)^{n-k} \dots (1) \begin{pmatrix} \because \text{ 絶対収束する級数の積は } \\ \neg - \neg - \text{ 積に等しい } \\ \exists \, \xi \, \neg - \neg - \text{ 積は絶対収束する} \end{pmatrix}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n b_k b_{n-k} \right) (x-a)^n \ \, (\because \text{ 有限級数の線型性})$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n (-1)^k \frac{1}{a^{k+1}} (-1)^{n-k} \frac{1}{a^{n-k+1}} \right) (x-a)^n$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n (-1)^n \frac{1}{a^{n+1}} \sum_{k=0}^n 1 \right) (x-a)^n$$

$$= \sum_{n=0}^{\infty} \left((-1)^n \frac{1}{a^{n+1}} \sum_{k=0}^n 1 \right) (x-a)^n$$
 絕対収束する級数の積をあらわすコーシー積は絶対収束する

(もしくは、収束するべき級数は絶対収束するのでこの級数は絶対収束する)

 $-\frac{1}{x^2}$ は $a \neq 0$ を中心とするべき級数で表される (*4)

$$-\frac{1}{x^2} = \sum_{n=0}^{\infty} s_n (x-a)^n, \quad s_n = (-1)^{n+1} \frac{n+1}{a^{n+2}}$$

よって(1)よりこの級数は絶対収束する

級数は絶対収束する。

$$\begin{split} & \frac{1}{x^2} = \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{a^{n+2}} (x-a)^n \\ & \text{よって} \\ & - \frac{1}{x^2} = (-1) \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{a^{n+2}} (x-a)^n \\ & = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{n+1}{a^{n+2}} (x-a)^n \ (\because 絶対収束する級数は線型性をもつ) \\ & \text{また} \sum_{n=0}^{\infty} \left| (-1)^{n+1} \frac{n+1}{a^{n+2}} (x-a)^n \right| = \sum_{n=0}^{\infty} \left| (-1)^n \frac{n+1}{a^{n+2}} (x-a)^n \right| \\ & \frac{1}{x^2} \mathcal{O} 級数が絶対収束するので右辺は収束する \\ & \text{よって} - \frac{1}{x^2} \mathcal{O} 級数は絶対収束する \\ & \text{よって} - \frac{1}{x^2} \mathcal{O} 級数は絶対収束する \end{split}$$

 e^x は 0 を中心とするべき級数で表される

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (∵ e^x の定義)

すべてのxについて収束する(*5)よって収束半径は ∞

$$\lim_{n\to\infty} \frac{\left|\frac{x^n}{n!}\right| について}{\left|\frac{x^{n+1}}{(n+1)!}\right|} = \lim_{n\to\infty} \left|\frac{x}{n+1}\right| = 0$$
 よってダランベールの判定法より $\sum \left|\frac{x^n}{n!}\right|$ は収束する

最後に $e^{-\frac{1}{x^2}}$ のべき級数を求める。

$$e^x=\sum_{n=0}^\infty a_n x^n,\ a_n=rac{1}{n!}$$
 とする
$$a
eq 0,\ |x-a|<|a|$$
 とする
$$-rac{1}{x^2}=\sum_{m=0}^\infty s_m (x-a)^n,\ s_m=(-1)^{m+1}rac{m+1}{a^{m+2}}$$
 とする

べき級数の合成 (別頁) より
$$\sum_{n=0}^{\infty} |s_m(x-a)^m| < \infty \ \text{to it}$$

$$e^{-\frac{1}{x^2}} = \sum_{p=0}^{\infty} d_p (x-p)^p \; , \quad d_p = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k_1 + \dots + k_n = p} s_{k_1} \dots s_{k_n}$$

である

$$\begin{split} d_p &= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k_1 + \dots + k_n = p} (-1)^{k_1 + 1} \frac{k_1 + 1}{a^{k_1 + 2}} \dots (-1)^{k_n + 1} \frac{k_n + 1}{a^{k_n + 2}} \\ &= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k_1 + \dots + k_n = p} (-1)^{p + n} \frac{(k_1 + 1) \dots (k_n + 1)}{a^{p + 2n}} \end{split}$$

$$=\sum_{n=0}^{\infty}\frac{1}{n!}\Big(\frac{-1}{a}\Big)^{p}\Big(\frac{-1}{a^{2}}\Big)^{n}\sum_{k_{1}+\dots+k_{n}=p}(k_{1}+1)\dots(k_{n}+1)\ (∵ 有限級数の線型性)$$

$$a \neq 0, \; |x-a| < |a|$$
 ならば $-\frac{1}{x^2} = \sum_{m=0}^\infty s_m (x-a)^n$ は絶対収束する

よって
$$\sum_{m=0}^{\infty} |s_m(x-a)^n|$$
 は収束する

よって
$$\sum_{m=0}^{\infty} |s_m(x-a)^n| < \infty$$

よって $a \neq 0$, |x-a| < |a| ならば

$$\begin{split} e^{-\frac{1}{x^2}} &= \sum_{p=0}^{\infty} d_p (x-a)^p \\ d_p &= \sum_{n=0}^{\infty} \frac{1}{n!} \Big(\frac{-1}{a}\Big)^p \Big(\frac{-1}{a^2}\Big)^n \sum_{k_1 + \dots + k_n = n} (k_1 + 1) \dots (k_n + 1) \end{split}$$

 $e^{-\frac{1}{x^2}}$ は $a \neq 0$ を中心とするべき級数であらわされる。よって解析的である。

 $x \neq 0$ で $f(x) = e^{-\frac{1}{x^2}}$ なので $x \neq 0$ で f(x) は解析的である。

(収束性について)

 $a \neq 0, \; |x-a| < |a|$ において $-\frac{1}{x^2}$ と e^x の級数は絶対収束するので、コーシー積の $e^{-\frac{1}{x^2}}$ の級数も絶対収束する

(注)「収束半径=一番近い特異点までの距離」は実関数では成立しないので簡単に収束半径 |a| とは言えない

(最初の3項を求めてみる)

$$= \left(\frac{2}{a^6} - \frac{3}{a^4}\right) e^{-\frac{1}{a^2}}$$

よって

$$e^{-\frac{1}{x^2}} \approx e^{-\frac{1}{a^2}} + \frac{1}{a^2}e^{-\frac{1}{a^2}} + \frac{1}{a^3}e^{-\frac{1}{a^2}} + \left(\frac{2}{a^6} - \frac{3}{a^4}\right)e^{-\frac{1}{a^2}}$$

P.12 補足 べき級数の合成 '25 6.1

$$|x-a| < R_f$$
 ならば $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$ とする

$$|x-b| < R_g$$
 ならば $g(x) = \sum_{m=0}^{\infty} b_m (x-a)^m$ とする

$$R_f > 0, R_g > 0$$
 とする。このとき

$$|x-b| < R_g \text{ his} \sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f, \ c_m = \begin{cases} b_0 - a & (m=0) \\ b_m & (m>0) \end{cases}$$
 ් ශ්ර් ස්

f(g(x)) は b を中心としてべき級数であらわされる

(証明)

$$|x-b| < R_q$$
 とする

$$g(x) = \sum_{m=0}^{\infty} b_m (x-a)^m$$
 とする

$$g(x)-a=\sum_{m=0}^{\infty}b_m(x-b)^m-a=\sum_{m=0}^{\infty}c_m(x-b)^m$$
 , $c_m=egin{cases}b_0-a & (m=0)\\b_m & (m>0) \end{cases}$ なる c_m が存在する

$$(∵ \sum_{m=0}^{\infty} b_m (x-b)^m$$
 は収束するので線型性をもつ)

$$\sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f \ とする$$

$$\left. \therefore \, \left| \, \sum_{m=0}^{\infty} c_m (x-b)^m \right| < R_f \, \left(\because \, |a+b| \leq |a| + |b| \right) \right.$$

$$\therefore |g(x) - a| < R_f$$

$$\begin{split} & \therefore f(g(x)) = \sum_{n=0}^\infty a_n (g(x)-a)^n \ (\because g(x) \& f \text{O} \text{ 収束 **} \text{ 平径内にあるので}) \\ & = \sum_{n=0}^\infty a_n \left(\sum_{m=0}^\infty c_m (x-b)^m \right)^n \\ & = \sum_{n=0}^\infty a_n \sum_{p=0}^\infty \sum_{k_1 + \dots + k_n = p} c_{k_1} \dots c_{k_n} (x-a)^p \ (\because \text{ 別紙 : べき級数のべき は絶対 収束 する}) \\ & = \sum_{n=0}^\infty \sum_{p=0}^\infty a_n \sum_{k_1 + \dots + k_n = p} c_{k_1} \dots c_{k_n} (x-a)^p \ \left(\begin{array}{c} \vdots \text{ 別紙 : べき級数の べき は絶対 収束 する} \\ \text{また 収束 する級数 は線型性をもつ} \end{array} \right) \\ & = \sum_{p=0}^\infty \sum_{n=0}^\infty a_n \sum_{k_1 + \dots + k_n = p} c_{k_1} \dots c_{k_n} (x-a)^p \ \left(\begin{array}{c} \vdots \text{ } \sum |c_m (x-b)^m| < R_f x \text{ o id} \\ \text{ この二重級数 は絶対 収束 する (*1)} \\ \text{ よって 和の 順番を変えてもよ い} \end{array} \right) \\ & = \sum_{p=0}^\infty \left(\sum_{n=0}^\infty a_n \sum_{k_1 + \dots + k_n = p} c_{k_1} \dots c_{k_n} \right) (x-a)^p \ \left(\begin{array}{c} \vdots \text{ 二重級数 は絶対 収束 する (*1)} \\ \text{ よって 内側 の級数 も絶対 収束 する} \\ \text{ 収束 する 級数 は線型性を持つ} \end{array} \right) \\ & = \sum_{n=0}^\infty d_p (x-a)^p \end{aligned}$$

$$d_p = \sum_{n=0}^{\infty} a_n \sum_{k_1+\dots+k_n=p} c_{k_1}\dots c_{k_n}$$
 とする

ここで 上の f(g(x)) をあらわす二重級数は絶対収束する (*1) よって内側の級数も絶対収束する。

よって
$$\sum_{n=0}^{\infty}\left|a_n\sum_{k_1+\dots+k_n=p}c_{k_1}\dots c_{k_n}(x-a)^p\right|$$
 は収束する

$$\therefore \left(\sum |a_n \sum c_{k_1} \dots c_{k_n}|\right) |x-a|^p$$
 は収束する (∵ 収束する級数の線型性)

$$R_f > 0$$
 なので $|x' - a| < R_f, x' \neq a$ なる x' が存在する

$$\left(\sum |a_n\sum c_{k_1}\dots c_{k_n}|\right)|x'-a|^p=w$$
 とすると

$$\label{eq:constraint} \therefore \ \sum |a_n \sum c_{k_1} \dots c_{k_n}| = \frac{w}{|x'-a|^p} \in \mathbb{R}$$

よって d_p は絶対収束する

よって
$$|x-b| < R_g, \sum_{m=0}^\infty \left| c_m (x-b)^m \right| < R_f$$
 ならば $f(g(x))$ は a を中心とするべき級数であらわされる

なお、
$$\sum_{m=0}^{\infty}\left|c_m(x-b)^m\right|< R_f$$
 は a を中心とする区間である $(*2)$

(*1

$$\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}a_n\sum_{k_1+\dots+k_n=p}c_{k_1}\dots c_{k_n}(x-a)^p$$
 は絶対収束する

(証明)

$$\sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f \ としているので$$

$$\therefore \left| \sum_{m=0}^{\infty} |c_m (x-b)^m| \right| < R_f$$

$$\left| \cdot \cdot \cdot \right| \sum_{m=0}^{\infty} |c_m(x-b)^m| + a - a \left| < R_f \right|$$

$$\sum_{m=0}^{\infty} |c_m(x-b)^m| + a$$
は f の収束半径内にあるので f のべき級数は絶対収束する

よって

(*1.1)

$$\Big(\sum_{m=0}^\infty |c_m(x-b)^m|\Big)^n = \sum_{p=0}^\infty \sum_{k_1+\dots+k_n=p} |c_{k_1}|\dots|c_{k_n}| |x-b|^p$$

(証明)

 $|c_m| = d_m$ とする

 $|x-b| \ge 0$ のとき

|x - b| = x - b

よって

$$\begin{split} \Big(\sum_{m=0}^{\infty}|c_m(x-b)^m|\Big)^n &= \Big(\sum_{m=0}^{\infty}d_m(x-b)^m\Big)^n \\ &= \sum_{p=0}^{\infty}\sum_{k_1+\ldots k_n=p}d_{k_1}\ldots d_{k_n}(x-b)^p \quad (∵ 別紙:べき級数のべき) \\ &= \sum_{p=0}^{\infty}\sum_{k_1+\ldots k_n=p}|c_{k_1}|\ldots|c_{k_n}||x-b|^p \end{split}$$

 $|x-b| < 0 \ \mathcal{O} \ge 3$

$$y = -x, b = -a$$
 とする $|x - b| = -x + b = y - a$

よって

$$\begin{split} \Big(\sum_{m=0}^{\infty}|c_m(x-b)^m|\Big)^n &= \Big(\sum_{m=0}^{\infty}d_m(y-a)^m\Big)^n \\ &= \sum_{p=0}^{\infty}\sum_{k_1+\ldots k_n=p}d_{k_1}\ldots d_{k_n}(y-a)^p \quad (∵ 別紙:べき級数のべき) \\ &= \sum_{p=0}^{\infty}\sum_{k_1+\ldots k_n=p}|c_{k_1}|\ldots|c_{k_n}||x-b|^p \end{split}$$

よって
$$\Big(\sum_{m=0}^\infty |c_m(x-b)^m|\Big)^n = \sum_{p=0}^\infty \sum_{k_1+\dots+k_n=p} |c_{k_1}|\dots|c_{k_n}| |x-b|^p$$

 $\sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f$ が存在すると仮定しているので右辺の級数は存在する。すなわち収束する。

(*2

$$\sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f$$
 は b を中心とする区間である

(証明)

$$A = \left\{x \; | \; \sum_{m=0}^{\infty} |c_m(x-b)^m| < R_f \right\} \; とする$$

 $\inf A = \sup A$ の場合

$$\sum_{m=0}^{\infty} |c_m(b-b)^m| = 0 < R_f \text{ なので } b \in A \text{ である}.$$

よって
$$b = \inf A = \sup A$$

よって A は a を中心とする半径 0 の閉区間

 $\inf A < \sup A, \sup A = \infty$ の場合

 $\inf A = -\infty \ (*2.1)$

 $[-\infty, \infty] \subset A \ (*2.2)$

 $\therefore A = \mathbb{R}$

よって A は b を中心とする半径 ∞ の開区間

 $\inf A < \sup A, \sup A < \infty$ の場合

 $\inf A > -\infty$ (*2.1)

$$b < \frac{\inf A + \sup A}{2}$$
 と仮定する

b を中心とした $\inf A$ の対称点 $2b - \inf A$ を考える

仮定より $2b - \inf A < \sup A$

 $\sup A$ は上限なので

 $2b - \inf A < x < \sup A, x \in A$ なる x が存在する

b を中心とした x の対称点 2b-x について

 $2b - \inf A < x$ より $2b - x < \inf A$ である

よって $2b-x \notin A$

よって (*2.1) より $x \notin A$

 $x \in A$ なのでこれは矛盾

よって
$$b \not< \frac{\inf A + \sup A}{2}$$

同様に $b \geqslant \frac{\inf A + \sup A}{2}$

$$\therefore b = \frac{\inf A + \sup A}{2}$$

また (*2.2) より $[\inf A,\sup A]\subset A$ または $(\inf A,\sup A)\subset A$

よって A は a を中心とする半径 $\frac{\inf A + \sup A}{2}$ の開区間または閉区間である

よって A は a を中心とする区間である。

(*2.1)

b を中心とした x の対称点を x' とする

$$x'=x-2(x-b)=2b-x$$
 である

$$\begin{split} \sum |c_m(x'-b)^m| &= \sum |c_m(2b-x-b)^m| \\ &= \sum |c_m(-x+b)^m| \\ &= \sum |c_m(x-b)^m| \end{split}$$

 $\therefore x \in A \text{ } \text{constant} x' \in A \text{ } \text{constant}$

よって $x \notin A$ ならば $x' \notin A$ である

(*2.2)

$$|x-b|<|x_1-b|$$

$$\therefore \ \sum |c_m(x-b)^m| < \sum |c_m(x_1-b)^m|$$

よって
$$x_1 \in A$$
 ならば $x \in A$...(1)

a を中心とした x_1 の対称点を x_1^\prime とする

$$x_1' < x < b$$
 とすると

$$2b - x_1^\prime > 2b - x > b$$

$$\therefore x_1 > 2b-x > b \quad (\because x_1' = 2b-x_1)$$

x は 2b-x の b を中心とした対称点なので

(*2.1) より
$$x \in A$$

よって
$$x_1 \in A$$
 ならば $[x_1', x_1] \subset A$

P.12 補足 べき級数のべき '25 6.2

$$|x-a| < R_f$$
 ならば $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$ とする

 $|x-a| < R_f$ ならば $(f(x))^m, \ m \ge 1$ は a を中心としたべき級数であらわされる

(証明)

 $|x-a| < R_f$ とする

$$\begin{split} (f(x))^2 &= \sum_{n=0}^\infty a_n (x-a)^n \sum_{n=0}^\infty a_n (x-a)^n \dots (1) \\ &= \sum_{n=0}^\infty \sum_{k=0}^n a_k (x-a)^k a_{n-k} (x-a)^{n-k} \quad \left(\begin{array}{c} \ddots \\ & \sum a_n (x-a)^n \\ & & \text{よって級数の積はコーシー積であらわされる} \end{array} \right) \\ &= \sum_{n=0}^\infty \left(\sum_{k=0}^n a_k a_{n-k} \right) (x-a)^n \quad (\because 有限級数の線型性) \\ &= \sum_{n=0}^\infty \left(\sum_{k_1+k_2=n} a_{k_1} a_{k_2} \right) (x-a)^n \quad (*1) \end{split}$$

 $|x-a| < R_f$ ならば (1) のどちらの級数も絶対収束する。よってコーシー積も絶対収束する。よって $(f(x))^2$ をあらわす級数は絶対収束する

$$c_n^m = \sum_{k_1+\dots+k_m=n} a_{k_1}\dots a_{k_m}, \ m\geq 2$$
 とする

$$(f(x))^m = \sum_{n=0}^{\infty} c_n^m (x-a)^n$$
 と仮定する

 $|x-a| < R_f$ で絶対収束すると仮定する

よって $m \ge 2$ ならば

$$(f(x))^m = \sum_{n=0}^{\infty} c_n^m (x-a)^n \ , \quad \ c_n^m = \sum_{k_1 + \dots + k_m = n} a_{k_1} \dots a_{k_m} \ \text{TBS}$$

(2) のどちらの級数も絶対収束するので、コーシー積も絶対収束する。

よって $|x-a| < R_f$ ならば絶対収束する

$$m=1 \; \mbox{\vec{x} if } (f(x))^1 = \sum_{n=0}^{\infty} a_n (x-a)^n$$

よって $m \ge 1$ で $(f(x))^m$ は a を中心とするべき級数であらわされる

(*1)
$$A = \{(k, n - k) \mid n \ge k \ge 0\}$$
 $B = \{(k_1, k_2) \mid k_1 + k_2 = n, \ k_1, k_2 \ge 0\}$ とする
 $(a, b) \in A$ とする
 $b = n - a$
 $\therefore a + b = n$
また $n \ge a \ge 0$
 $\therefore b \ge 0$
 $\therefore (a, b) \in B$
 $(a, b) \in B$
 $(a, b) \in B$
 $(a, b) \in B$
 $\Rightarrow b = n - a$
 $\Rightarrow b = n - a$
 $\Rightarrow b = n - a$
 $\Rightarrow b \ge 0$
 $\Rightarrow n \ge a$
 $\Rightarrow 0$
 \Rightarrow

 $\therefore A = B$

P.12 問題 1.4 x^2 e^y の偏微分 '25 4.16

$$f(x,y) = x^2 e^y, \quad (x,y) \in \mathbb{R}^2$$

fの偏微分と連続性

(i)

$$f_x = 2xe^y$$
 (*1)
 $f_y = x^2e^y$ (*1)
 $f_{xx} = 2e^y$
 $f_{yy} = x^2e^y$
 $f_{xy} = 2xe^y$
 $f_{yx} = 2xe^y$
 $f_x(0,0) = 0, f_x(0,0) = 0$

$$\begin{split} f_x(0,0) &= 0, \ f_x(1,1) = 2e \\ f_y(0,0) &= 0, \ f_y(1,1) = e \\ f_{xx}(0,0) &= 2, \ f_{xx}(1,1) = 2e \\ f_{yy}(0,0) &= 0, \ f_{yy}(1,1) = e \\ f_{xy}(0,0) &= 0, \ f_{xy}(1,1) = 2e \\ f_{yx}(0,0) &= 0, \ f_{yx}(1,1) = 2e \end{split}$$

(ii)

$$x^2$$
 は x で連続よって (x,y) で連続 $(*2)$

$$e^y$$
 は x で連続よって (x,y) で連続 $(*2)$

よって
$$f(x,y) = x^2 e^y$$
 は (x,y) で連続 (*3)

同様に

同様に
$$f_x = 2xe^y \text{ は連続}$$

$$f_y = x^2e^y \text{ は連続}$$

$$f_{xx} = 2e^y \text{ は連続}$$

$$f_{yy} = x^2e^y \text{ は連続}$$

$$f_{xy} = 2xe^y \text{ は連続}$$

$$f_{yx} = 2xe^y \text{ は連続}$$

よって f は C^2 級

(iii)

$$f_{xy}=2xe^y, f_{yx}=2xe^y$$
 なので $f_{xy}=f_{yx}$

$$(*1)$$
 x と y が独立ならば $f_x = f'_{x \tau \otimes \beta}$ $(*2)$ $f(x)$ が x で連続ならば $f(x)$ は (x,y) で連続である (証明)
$$x$$
 で連続なので $f(x) = \lim_{\Delta x \to 0} f(x + \Delta x)$ よって任意の ϵ に対して $0 < |\Delta x| < \delta$ ならば $|f(x + \Delta x) - f(x)| < \epsilon$ $|(\Delta x, \Delta y)| < \delta$ ならば

P.15 問題 1.5 Z(x,y) の偏微分 '25 6.22

$$Z = f(x,y) = x^2 e^y$$
 とする

$$Z = g(x,\eta) = x^2 e^{\eta + x}$$
 とする。

$$\left(\frac{\partial Z}{\partial x}\right)_y \neq \left(\frac{\partial Z}{\partial x}\right)_\eta$$

(証明)

$$Z = f(x,y) = x^2 e^y$$
 とする。 x,y は独立変数とする

 $\eta = y - x$ とする。 η は独立変数とする。y は従属変数である

$${f Z} = f(x,y_1) = f(x,\eta+x) = x^2 e^{\eta+x} = g(x,\eta)$$
 とする

よって

$$\begin{split} \left(\frac{\partial Z}{\partial x}\right)_y &= 2xe^y \\ \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_\eta &= 2xe^{\eta+x} + x^2e^{\eta+x} \\ &= (2x+x^2)e^{\eta+x} \\ &= (2x+x^2)e^{\mathbf{y}} \end{split}$$

$$\therefore \left(\frac{\partial Z}{\partial x}\right)_y \neq \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_\eta$$

P.15 問題 1.6(i) 偏微分の連鎖律 '25 6.13

 x, y, ξ, η は独立変数とする

 $\mathbf{x}(\xi,\eta), \mathbf{y}(\xi,\eta)$ とする

$$\mathbf{Z}(\xi, \eta) = \mathbf{Z}(\mathbf{x}, \mathbf{y})$$
 とする

$$\left(\frac{\partial \mathbf{Z}}{\partial \xi}\right)_{\eta} = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \Big|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial \xi}\right)_{\eta} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \Big|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial \xi}\right)_{\eta} \cdots (1.20)$$

$$\left(\frac{\partial \mathbf{Z}}{\partial \eta}\right)_{\xi} = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{z} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial \eta}\right)_{\xi} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{z} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial \eta}\right)_{\xi} \cdots (1.21)$$

(証明)

 x, y, ξ, η は独立変数とする

 $\mathbf{x}(\xi,\eta), \mathbf{y}(\xi,\eta)$ とする

$$\mathbf{Z}(\xi, \eta) = \mathbf{Z}(\mathbf{x}, \mathbf{y}) \$$
 とする

$$\begin{split} \ddots \left(\frac{\partial \mathbf{Z}}{\partial \xi}\right)_{\eta} &= \frac{d\mathbf{Z}}{d\xi} \quad \left(\because \xi, \eta \text{ が独立なので} \left(\frac{\partial \mathbf{Z}}{\partial \xi}\right)_{\eta} = \frac{d\mathbf{Z}}{d\xi} \right) \\ &= \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{x}}{d\xi} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{y}}{d\xi} \quad \left(\because \text{ 問題1.7} \right) \\ &= \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial \xi}\right)_{\eta} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial \xi}\right)_{\eta} \quad \left(\because \xi, \eta \text{ が独立なので} \left(\frac{\partial \mathbf{x}}{\partial \xi}\right)_{\eta} = \frac{d\mathbf{x}}{d\xi}, \quad \left(\frac{\partial \mathbf{y}}{\partial \xi}\right)_{\eta} = \frac{d\mathbf{y}}{d\xi} \right) \end{split}$$

$$\begin{split} & \div \left(\frac{\partial \mathbf{Z}}{\partial \eta}\right)_{\xi} = \frac{d\mathbf{Z}}{d\eta} \quad \left(\div \xi, \eta \text{ か独立なので} \left(\frac{\partial \mathbf{Z}}{\partial \eta}\right)_{\xi} = \frac{d\mathbf{Z}}{d\eta} \right) \\ & = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{x}}{d\eta} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{y}}{d\eta} \quad (\div \text{ 問題1.7}) \\ & = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial \eta}\right)_{\xi} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial \eta}\right)_{\xi} \quad \left(\div \xi, \eta \text{ が独立なので} \left(\frac{\partial \mathbf{x}}{\partial \eta}\right)_{\xi} = \frac{d\mathbf{x}}{d\eta}, \quad \left(\frac{\partial \mathbf{y}}{\partial \eta}\right)_{\xi} = \frac{d\mathbf{y}}{d\eta} \right) \end{split}$$

P.15 問題 1.6(ii) 偏微分の連鎖律 '25 6.25

 x, y, ξ, η は独立変数とする

 $\mathbf{x}(\xi,\eta), \mathbf{y}(\xi,\eta)$ とする

 $\mathbf{Z}(\xi, \eta) = \mathbf{Z}(\mathbf{x}, \mathbf{y})$ とする

$$\left(\frac{\partial \mathbf{Z}}{\partial \xi}\right)_{\eta} = \left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{z} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial \xi}\right)_{\eta} + \left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{z} \\ y = \mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial \xi}\right)_{\eta} \cdots (1.20)$$

(1.20) を言葉で説明する

(説明)

 $\left(\frac{\partial \mathbf{Z}}{\partial \xi}\right)_{\eta}$ は $\xi\eta$ 平面の点 (ξ,η) における \mathbf{Z} の勾配の ξ 方向成分

 $\left(\frac{\partial \mathbf{Z}}{\partial x}\right)_{y} \Big|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}}$ は xy 平面の点 (\mathbf{x},\mathbf{y}) における \mathbf{Z} の勾配の x 方向成分

 $\left(\frac{\partial \mathbf{x}}{\partial \xi}\right)_n$ は $\xi\eta$ 平面の点 (ξ,η) における \mathbf{x} の勾配の ξ 方向成分

 $\left(\frac{\partial \mathbf{Z}}{\partial y}\right)_{x} \Big|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}}$ は xy 平面の点 (\mathbf{x},\mathbf{y}) における \mathbf{Z} の勾配の y 方向成分

 $\left(rac{\partial m{y}}{\partial \xi}
ight)_{\eta}$ は $\xi\eta$ 平面の点 (ξ,η) における $m{y}$ の勾配の ξ 方向成分

よって (1.20) は

(Zの勾配の ξ 方向成分) = (Zの勾配のx方向成分 $) \times (x$ の勾配の ξ 方向成分) + (Zの勾配のy方向成分 $) \times (y$ の勾配の ξ 方向成分)

と説明される

さらに要約すると (1.20) は

 $(\mathbf{Z}$ の勾配の ξ 方向成分 $) = (\mathbf{Z}$ の勾配のx方向成分の ξ 方向成分 $) + (\mathbf{Z}$ の勾配のy方向成分の ξ 方向成分)

と説明できる

P.15 問題 1.6(iii) 偏微分の連鎖律 '25 6.13

$$f(x,y) = (x+1)(x-y+1)$$
 とする

$$\eta = x - y$$
 とする

$$g(x,\eta) = (x+1)(\eta+1)$$
 とする

このとき

$$\left(\frac{\partial g}{\partial x}\right)_n = x - y + 1 \cdots (1.18)$$
 である

(証明)

 x, y, η は独立変数とする

$$f(x,y) = (x+1)(x-y+1)$$
 とする

$$\mathbf{x}(x,\eta) = x, \ \mathbf{y}(x,\eta) = x - \eta$$
 とする

$$g(x,\eta)=f(\mathbf{x}(x,\eta),\mathbf{y}(x,\eta))=(x+1)(\eta+1)$$
 とする

(1.20) より

$$\begin{split} \left(\frac{\partial g}{\partial x}\right)_{\eta} &= \left(\frac{\partial f}{\partial x}\right)_{y} \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \left(\frac{\partial \mathbf{x}}{\partial x}\right)_{\eta} + \left(\frac{\partial f}{\partial y}\right)_{x} \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \left(\frac{\partial \mathbf{y}}{\partial x}\right)_{\eta} \\ &= (2\mathbf{x} - \mathbf{y} + 2) \cdot 1 + (-\mathbf{x} - 1) \cdot 1 \quad \left(\begin{array}{c} \ddots & \left(\frac{\partial f}{\partial x}\right)_{y} \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} = 2\mathbf{x} - \mathbf{y} + 1, \ \left(\frac{\partial \mathbf{x}}{\partial x}\right)_{\eta} = 1 \\ \left(\frac{\partial f}{\partial y}\right)_{x} \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} = -\mathbf{x} - 1, \ \left(\frac{\partial \mathbf{y}}{\partial x}\right)_{\eta} = 1 \\ &= \mathbf{x} - \mathbf{y} + 1 \end{split}$$

P.15 問題 1.6(iv) 偏微分の連鎖律 '25 6.25

 $x_1, \dots, x_n, \xi_1, \dots, \xi_n$ は独立変数とする

 $\mathbf{x_1}(\xi_1,\cdots,\xi_n),\cdots,\mathbf{x_n}(\xi_1,\cdots,\xi_n)$ とする。 $\mathbf{x_1},\cdots,\mathbf{x_n}$ は偏微分可能とする

 $\mathbf{Z}(\xi_1,\dots,\xi_n)=\mathbf{Z}(\mathbf{x_1},\dots,\mathbf{x_n})$ とする。 \mathbf{Z},\mathbf{Z} は偏微分可能とする

$$\left(\frac{\partial \mathbf{Z}}{\partial \xi_i}\right)_{\xi_{j \neq i}} = \left(\frac{\partial \mathbf{Z}}{\partial x_1}\right)_{x_{i \neq 1}} \left|_{\substack{x_1 = \mathbf{x_1} \\ \vdots \\ x_n = \mathbf{z_n}}} \left(\frac{\partial \mathbf{x_1}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{\substack{x_{i \neq n} \\ \vdots \\ x_n = \mathbf{x_n}}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} \right|_{x_1 = \mathbf{x_1}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_{i \neq n}} \left|_{\substack{x_1 = \mathbf{x_1} \\ \vdots \\ x_n = \mathbf{x_n}}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} \right|_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{x_n}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j \neq i}} + \dots + \left(\frac{\partial \mathbf{x_n}}{\partial x_n}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{x_n = \mathbf{x_n}} \left(\frac{\partial$$

(証明)

$$f(\vec{x} + d\vec{x}) - f(\vec{x}) = df + o(|d\vec{x}|)$$
 (1.13)

$$df = \vec{\nabla} f(\vec{x}) \cdot d\vec{x} = \left(\frac{\partial f(\vec{x})}{\partial x_1}\right)_{x_{i \neq 1}} dx_1 + \dots + \left(\frac{\partial f(\vec{x})}{\partial x_n}\right)_{x_{i \neq n}} dx_n \quad (1.14)$$

において

$$f=\mathbf{Z},\; \vec{x}=(x_1,\cdots,x_n),\; d\vec{x}=(dx_1,\cdots,dx_n)$$
 とする。 x_1,\cdots,x_n は独立変数とする

$$\begin{split} & \boldsymbol{Z}(x_1 + dx_1, \cdots, x_n + dx_n) - \boldsymbol{Z}(x_1, \cdots, x_n) \\ & = \Big(\frac{\partial \boldsymbol{Z}}{\partial x_1}\Big)_{x_{i \neq 1}} dx_1 + \cdots + \Big(\frac{\partial \boldsymbol{Z}}{\partial x_n}\Big)_{x_{i \neq n}} dx_n + o\Big(\sqrt{dx_1^2 + \cdots + dx_n^2}\Big) \end{split}$$

よって

$$\lim_{\substack{(dx_1,\cdots,dx_n)\\ \rightarrow (0,\cdots,0)}} \frac{\mathbf{Z}(x_1+dx_1,\cdots,x_n+dx_n) - \mathbf{Z}(x_1,\cdots,x_n) - \left(\frac{\partial\mathbf{Z}}{\partial x_1}\right)_{x_{i\neq 1}} dx_1 - \cdots - \left(\frac{\partial\mathbf{Z}}{\partial x_n}\right)_{x_{i\neq n}} dx_n}{\sqrt{dx_1^2+\cdots+dx_n^2}} = 0 \quad \textbf{(1)}$$

 $\mathbf{x_i} = \mathbf{x_i}(\xi_1, \cdots, \xi_n)$ とする。 ξ_1, \cdots, ξ_n は独立変数とする。 $\mathbf{x_i}$ は偏微分可能とする

$$dx_i = x_i(\xi_1, \dots, \xi + d\xi_i, \dots, \xi_n) - x_i(\xi_1, \dots, \xi_n)$$
 とする

(1) の極限は経路によらないので

$$\frac{\boldsymbol{Z}(\boldsymbol{x_1} + \boldsymbol{dx_1}, \cdots, \boldsymbol{x_n} + \boldsymbol{dx_n}) - \boldsymbol{Z}(\boldsymbol{x_1}, \cdots, \boldsymbol{x_n}) - \left(\frac{\partial \boldsymbol{Z}}{\partial x_1}\right)_{x_{i \neq 1}} \bigg|_{\substack{x_1 = \boldsymbol{x_1} \\ x_n \stackrel{!}{=} \boldsymbol{x_n}}} \boldsymbol{dx_1} - \cdots - \left(\frac{\partial \boldsymbol{Z}}{\partial x_n}\right)_{x_{i \neq n}} \bigg|_{\substack{x_1 = \boldsymbol{x_1} \\ x_n \stackrel{!}{=} \boldsymbol{x_n}}} \boldsymbol{dx_n}} \\ \frac{\left| \boldsymbol{dx_1} \right|_{x_1 = \boldsymbol{x_1}} \boldsymbol{dx_1} - \cdots - \left(\frac{\partial \boldsymbol{Z}}{\partial x_n}\right)_{x_{i \neq n}} \bigg|_{\substack{x_1 = \boldsymbol{x_1} \\ x_n \stackrel{!}{=} \boldsymbol{x_n}}}} \boldsymbol{dx_n} \\ = 0$$

$$\mathbf{Z}(\xi_1,\cdots,\xi_n)=\mathbf{Z}(\mathbf{x_1}(\xi_1,\cdots,\xi_n),\cdots,\mathbf{x_n}(\xi_1,\cdots,\xi_n))$$
 とする

$$\begin{split} \boldsymbol{Z}(\xi_1,\cdots,\xi+d\xi_i,\cdots,\xi_n) &= \boldsymbol{Z}(\boldsymbol{x_1}(\xi_1,\cdots,\xi+d\xi_i,\cdots,\xi_n),\cdots,\boldsymbol{x_n}(\xi_1,\cdots,\xi+d\xi_i,\cdots,\xi_n)) \\ &= \boldsymbol{Z}(\boldsymbol{x_1}+d\boldsymbol{x_1},\cdots,\boldsymbol{x_n}+d\boldsymbol{x_n}) \end{split}$$

よって

$$\frac{\boldsymbol{Z}(\xi_1,\cdots,\xi+d\xi_i,\cdots,\xi_n)-\boldsymbol{Z}(\xi_1,\cdots,\xi_n)-\left(\frac{\partial\boldsymbol{Z}}{\partial x_1}\right)_{x_{i\neq 1}}\bigg|_{\substack{x_1=x_1\\x_n=x_n\\x_n=x_n\\}} \boldsymbol{dx_1}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{x_{i\neq n}}\bigg|_{\substack{x_1=x_1\\x_n=x_n\\x_n=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{x_{i\neq n}}\bigg|_{\substack{x_1=x_1\\x_n=x_n\\x_n=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{x_{i\neq n}}\bigg|_{\substack{x_1=x_1\\x_n=x_n\\x_n=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{x_{i\neq n}}\bigg|_{\substack{x_1=x_1\\x_n=x_n\\x_n=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\x_n=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_n\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_1\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z}}{\partial x_n}\right)_{\substack{x_1=x_1\\x_1=x_1\\}} \boldsymbol{dx_n}-\cdots-\left(\frac{\partial\boldsymbol{Z$$

ここで

$$\lim_{d\xi_i \to 0} \frac{d\boldsymbol{x_i}}{d\xi_i} = \lim_{d\xi_i \to 0} \frac{\boldsymbol{x_i}(\xi_1, \cdots, \xi + d\xi_i, \cdots, \xi_n) - \boldsymbol{x_i}(\xi_1, \cdots, \xi_n)}{d\xi_i} = \left(\frac{\partial \boldsymbol{x_i}}{\partial \xi_i}\right)_{\xi_{i \neq i}} (\because \boldsymbol{x_i}$$
は偏微分可能)

なので

よって

$$\lim_{d\xi_{i}\rightarrow0}\frac{\boldsymbol{Z}(\xi_{1},\cdots,\xi+d\xi_{i},\cdots,\xi_{n})-\boldsymbol{Z}(\xi_{1},\cdots,\xi_{n})-\left(\frac{\partial\boldsymbol{Z}}{\partial x_{1}}\right)_{x_{i}\neq1}\Big|_{\substack{x_{1}=\boldsymbol{x}_{1}\\x_{n}=\boldsymbol{x}_{n}\\x_{n}\\x_{n}=\boldsymbol{x}_{n}\\x_{n}\\x_{n}\\x_{n$$

よって

$$\frac{\mathbf{Z}(\xi_1,\cdots,\xi+d\xi_i,\cdots,\xi_n) - \mathbf{Z}(\xi_1,\cdots,\xi_n) - \left(\frac{\partial\mathbf{Z}}{\partial x_1}\right)_{x_{i\neq 1}} \left|_{\substack{x_1 = \mathbf{x_1} \\ x_n = \mathbf{x_n}}} \mathbf{dx_1} - \cdots - \left(\frac{\partial\mathbf{Z}}{\partial x_n}\right)_{\substack{x_{i\neq n} \\ x_n = \mathbf{x_n}}} \right|_{\substack{x_1 = \mathbf{x_1} \\ x_n = \mathbf{x_n}}} \mathbf{dx_n} \\ = 0$$

よって

$$\lim_{d\xi_{i}\rightarrow0}\frac{\mathbf{Z}(\xi_{1},\cdots,\xi+d\xi_{i},\cdots,\xi_{n})-\mathbf{Z}(\xi_{1},\cdots,\xi_{n})}{\xi_{i}}=\left(\frac{\partial\mathbf{Z}}{\partial x_{1}}\right)_{x_{i\neq1}}\bigg|_{\substack{x_{1}=\mathbf{x_{1}}\\x_{n}=\mathbf{x_{n$$

よって

$$\left(\frac{\partial \mathbf{Z}}{\partial \xi_i}\right)_{\xi_{j\neq i}} = \left(\frac{\partial \mathbf{Z}}{\partial x_1}\right)_{x_{i\neq 1}} \left|_{\substack{x_1 = \mathbf{x_1} \\ x_n = \mathbf{x_n} \\ x_n = \mathbf{x_n}}} \left(\frac{\partial \mathbf{x_1}}{\partial \xi_i}\right)_{\xi_{j\neq i}} + \dots + \left(\frac{\partial \mathbf{Z}}{\partial x_n}\right)_{x_{i\neq n}} \left|_{\substack{x_1 = \mathbf{x_1} \\ x_n = \mathbf{x_n} \\ x_n = \mathbf{x_n}}} \left(\frac{\partial \mathbf{x_n}}{\partial \xi_i}\right)_{\xi_{j\neq i}} \right.$$
(∵ 偏微分の定義)

P.15 問題 1.7(i) 合成関数の偏微分 '25 6.27

Z = Z(x,y) とする。x,y は独立変数とする

 $\mathbf{x} = \mathbf{x}(t), \ \mathbf{y} = \mathbf{y}(t)$ とする。t は独立変数とする。 \mathbf{x}, \mathbf{y} は微分可能とする

 $\mathbf{Z}(t) = Z(\mathbf{x}, \mathbf{y})$ とする

$$\frac{d\mathbf{Z}}{dt} = \left(\frac{\partial Z}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{x}}{dt} + \left(\frac{\partial Z}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{y}}{dt} \quad (1.22)$$

(証明)

$$f(\vec{x} + d\vec{x}) - f(\vec{x}) = df + o(|d\vec{x}|)$$
 (1.13)

$$df = \vec{\nabla} f(\vec{x}) \cdot d\vec{x} = \left(\frac{\partial f(\vec{x})}{\partial x_1}\right)_{x_{i+1}} dx_1 + \dots + \left(\frac{\partial f(\vec{x})}{\partial x_n}\right)_{x_{i+1}} dx_n \quad (1.14)$$

において

$$f=Z,\; \vec{x}=(x,y),\; d\vec{x}=(dx,dy)$$
 とする。 x,y は独立変数とする

$$Z(x+dx,y+dy) - Z(x,y) = \left(\frac{\partial Z}{\partial x}\right)_y dx + \left(\frac{\partial Z}{\partial y}\right)_z dy + o\left(\sqrt{dx^2 + dy^2}\right)$$

よって

$$\lim_{(dx,dy)\to(0,0)} \frac{Z(x+dx,y+dy) - Z(x,y) - \left(\frac{\partial Z}{\partial x}\right)_y dx - \left(\frac{\partial Z}{\partial y}\right)_x dy}{\sqrt{dx^2 + dy^2}} = 0 \quad (1)$$

 $\mathbf{x} = \mathbf{x}(t), \ \mathbf{y} = \mathbf{y}(t)$ とする。t は独立変数とする。 \mathbf{x}, \mathbf{y} は微分可能とする

$$\mathbf{dx} = \mathbf{x}(t + dt) - \mathbf{x}(t)$$

$$dy = y(t+dt) - y(t)$$
 とする

$$\therefore \lim_{dt\to 0} \frac{dx}{dx} = 0 (∵ x$$
は連続)

$$\therefore \lim_{dt\to 0} \frac{dy}{dt} = 0 (∵ y$$
は連続)

(1) の極限は経路によらないので

$$\lim_{dt \to 0} \frac{Z(\mathbf{x} + \mathbf{dx}, \mathbf{y} + \mathbf{dy}) - Z(\mathbf{x}, \mathbf{y}) - \left(\frac{\partial Z}{\partial x}\right)_{y} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{\mathbf{dx}}{\mathbf{dx}} - \left(\frac{\partial Z}{\partial y}\right)_{x} \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{\mathbf{dy}}{\mathbf{y}} = 0$$

$$\mathbf{Z}(t) = Z(\mathbf{x}(t), \mathbf{y}(t))$$
 とする

$$Z(t+dt) = Z(x(t+dt), y(t+dt))$$
$$= Z(x + dx, y + dy)$$

よって

ここで

$$\lim_{dt\to 0}\frac{d\boldsymbol{x}}{dt}=\lim_{dt\to 0}\frac{\boldsymbol{x}(t+dt)-\boldsymbol{x}(t)}{dt}=\frac{d\boldsymbol{x}}{dt}\quad (∵ \ \boldsymbol{x}$$
は微分可能)

$$\lim_{dt\to 0}\frac{\frac{d\boldsymbol{y}}{dt}}{dt}=\lim_{dt\to 0}\frac{\boldsymbol{y}(t+dt)-\boldsymbol{y}(t)}{dt}=\frac{d\boldsymbol{y}}{dt}\quad (∵ \quad \boldsymbol{y}$$
は微分可能)

なので

$$\begin{split} \lim_{dt\to 0} \frac{\sqrt{dx^2 + dy^2}}{|dt|} &= \lim_{dt\to 0} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \\ &= \sqrt{\left(\lim_{dt\to 0} \frac{dx}{dt}\right)^2 + \left(\lim_{dt\to 0} \frac{dy}{dt}\right)^2} \quad \left(\begin{array}{c} \because \sqrt{x} \mathrm{d}x > 0 \\ \text{合成関数の極限と和の極限より} \end{array} \right) \\ &= \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \\ &< \infty \quad \left(\begin{array}{c} \because \text{微分が存在するので} \left|\frac{dx}{dt}\right| < \infty, \, \left|\frac{dy}{dt}\right| < \infty \right) \end{split}$$

よって

$$\lim_{dt\to 0} \frac{\mathbf{Z}(t+dt) - \mathbf{Z}(t) - \left(\frac{\partial Z}{\partial x}\right)_y \Big|_{\substack{x=x\\y=y}} \frac{dx}{\sqrt{dx^2 + dy^2}} - \left(\frac{\partial Z}{\partial y}\right)_x \Big|_{\substack{x=x\\y=y}} \frac{dy}{\sqrt{dx^2 + dy^2}} = 0$$

$$(\because \lim f = 0, \lim |g| < \infty \text{ if } \lim fg = 0)$$

よって

よって

$$\lim_{dt\to 0} \frac{\mathbf{Z}(t+dt) - \mathbf{Z}(t)}{dt} = \left(\frac{\partial Z}{\partial x}\right)_y \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \frac{d\mathbf{x}}{dt} + \left(\frac{\partial Z}{\partial y}\right)_x \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \frac{d\mathbf{y}}{dt} \quad \left(\begin{array}{c} \because \lim \mathcal{O} \text{線型性より} \\ \lim (f+kg+lh) = a, \lim g = b, \lim h = c \text{ならば} \\ \lim f = a - kb - lc \end{array} \right)$$

よって

$$\frac{d\mathbf{Z}}{dt} = \left(\frac{\partial Z}{\partial x}\right)_y \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \frac{d\mathbf{x}}{dt} + \left(\frac{\partial Z}{\partial y}\right)_x \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \frac{d\mathbf{y}}{dt} \quad (∵ 微分の定義)$$

P.15 問題 1.7(ii) 合成関数の偏微分の例 '25 6.28

$$Z = x^2 e^y$$
 とする

$$\mathbf{x}(t) = t^3$$
, $\mathbf{y}(t) = t^4$ とする

$$\frac{d\mathbf{Z}}{dt} = \left(\frac{\partial Z}{\partial x}\right)_y \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \frac{d\mathbf{x}}{dt} + \left(\frac{\partial Z}{\partial y}\right)_x \bigg|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \frac{d\mathbf{y}}{dt}$$
 であることを確認する

(確認)

$$Z = x^2 e^y$$
 とする。 x, y は独立変数とする

$$\mathbf{x}(t) = t^3, \ \mathbf{y}(t) = t^4$$
 とする。 t は独立変数とする

$$\mathbf{Z}(t) = Z(\mathbf{x}(t), \mathbf{y}(t))$$
 とする

$$Z(t) = Z(x, y) = x^2 e^y = (t^3)^2 e^{t^4} = t^6 e^{t^4}$$

よって

$$\frac{d\mathbf{Z}}{dt} = 6t^5e^{t^4} + t^64t^3e^{t^4} = 6t^5e^{t^4} + 4t^9e^{t^4}$$

また

$$\left(\frac{\partial Z}{\partial x}\right)_{y}\Big|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \frac{d\mathbf{x}}{dt} + \left(\frac{\partial Z}{\partial y}\right)_{x}\Big|_{\substack{x=\mathbf{x}\\y=\mathbf{y}}} \frac{d\mathbf{y}}{dt} = 2\mathbf{x}e^{\mathbf{y}}3t^{2} + \mathbf{x}^{2}e^{\mathbf{y}}4t^{3}$$

$$= 2t^{3}e^{t^{4}}3t^{2} + (t^{3})^{2}e^{t^{4}}4t^{3}$$

$$= 6t^{5}e^{t^{4}} + 4t^{9}e^{t^{4}}$$

よって

$$\frac{d\mathbf{Z}}{dt} = \left(\frac{\partial Z}{\partial x}\right)_y \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{x}}{dt} + \left(\frac{\partial Z}{\partial y}\right)_x \bigg|_{\substack{x = \mathbf{x} \\ y = \mathbf{y}}} \frac{d\mathbf{y}}{dt}$$
 ాన్

P.16 問題 1.8 偏微分でつまづいたこと '25 6.25

偏微分でつまづいて色々考えたことのメモ

1.

x, y は独立変数であるかつ x, y は従属変数であるというのは矛盾である

(証明)

従属変数ならば独立変数ではないので、独立変数であるかつ独立変数でないとなり排中律に反するので矛盾である

2.

x, y を独立変数かつ従属変数と仮定すると矛盾する例

(例)

x, y は独立変数とする (1)

f(x,y) = x + y とする (2)

f(0,1) = 1

 $x = \xi, y = \xi$ とする。 ξ は独立変数とする (3)

 $\therefore f(x,y) = f(\xi,\xi) = 2\xi$

 $x = y = \xi$ なので x = 0, y = 1 である ξ は存在しない

 $\therefore f(0,1) = 未定義$

 $f(0,1) \neq f(0,1)$

これは等号の反射律に反するので矛盾である

よって仮定(1),(2),(3) は矛盾している

なにが矛盾しているかというと、(3) において x と y を従属変数と仮定しているので 1. より (1),(3) は矛盾しているなお (2) は (1),(3) と矛盾していない

3.

f(x,y) の偏微分 $\left(\frac{\partial f}{\partial x}\right)_y$ が定義できるならば x,y は独立変数である

(説明)

偏微分の定義に明記されていないが偏微分が定義されるのは、x,yが独立変数のときに限ると明記すべきだと思う

なぜなら、もしx,yが独立変数でなければ偏微分の定義に使われる $f(x+\Delta x,y)$ が定義できるとは限らないから

x,y が 従属変数であっても、(x,y) 近傍で f(x,y) が定義されるならば 偏微分の定義は成立するが、これを許容すると、(x,y) 近傍で 従属変数 x,y が定義されないだけの場合も f(x,y) が定義されずに偏微分できなくなって不便である

なので x, y が独立変数のときに限り偏微分が定義されるとする

4.

偏微分の連鎖律は矛盾している

(証明)

関数 f(x,y) を考える

$$x = x(\xi, \eta), y = y(\xi, \eta)$$
 とする (1)

偏微分の連鎖律は

$$\left(rac{\partial f}{\partial \xi}
ight)_{\eta} = \left(rac{\partial f}{\partial x}
ight)_{y} \left(rac{\partial x}{\partial \xi}
ight)_{\eta} + \left(rac{\partial f}{\partial y}
ight)_{x} \left(rac{\partial y}{\partial \xi}
ight)_{\eta}$$
 である

 $\left(\frac{\partial f}{\partial x}\right)_{y}$ が定義されているので 3. より x,y は独立変数である

 $\left(\frac{\partial f}{\partial \xi}\right)_n$ が定義されているので 3. より ξ,η は独立変数である

よって(1) よりx,y は従属変数である

よって x,y は独立変数かつ従属変数となり 1. よりこれは矛盾である。

5.

矛盾しない偏微分の連鎖律

x,yを独立変数かつ従属変数とするのを避けるために、従属変数 x_1,y_1 を追加すればよい

f(x,y) を考える。x,y は独立変数とする

$$x_1 = x_1(\xi, \eta), y_1 = y_1(\xi, \eta)$$
 とする

 ξ, η は独立変数、 x_1, y_1 は従属変数とする

偏微分の連鎖律は

$$\left(\frac{\partial g}{\partial \xi}\right)_{\eta} = \left(\frac{\partial f}{\partial x}\right)_{y} \bigg|_{\substack{x=x_1\\y=y_1}} \left(\frac{\partial x_1}{\partial \xi}\right)_{\eta} + \left(\frac{\partial f}{\partial y}\right)_{x} \bigg|_{\substack{x=x_1\\y=y_1}} \left(\frac{\partial y_1}{\partial \xi}\right)_{\eta}$$

となる

ただし
$$\left(\frac{\partial f}{\partial x}\right)_y$$
 $\bigg|_{\substack{x=x_1\\y=y_1}}$ は 偏微分 $\left(\frac{\partial f}{\partial x}\right)_y$ の x,y に x_1,y_1 を代入したものである。以下同様

6.

とはいえ、実際の教科書ではx,yを独立変数としつつ、途中でx,yを従属変数とすることはよくあるこの場合、独立変数のx,yと従属変数のx,yを脳内で区別しないといけない

(注) 脳内で区別というのは普通の言い方をすると文脈で区別するということである

(例)

関数 f(x, y) を考える。x, y は独立変数とする

 ξ, η は独立変数とする。x, y は従属変数である

 $g(\xi, \eta) = f(\mathbf{x}, \mathbf{y}) \$ とする

偏微分の連鎖律は

$$\left(\frac{\partial g}{\partial \xi}\right)_{\eta} = \left(\frac{\partial f}{\partial x}\right)_{y} \bigg|_{\substack{x=x\\y=y}} \left(\frac{\partial x}{\partial \xi}\right)_{\eta} + \left(\frac{\partial f}{\partial y}\right)_{x} \bigg|_{\substack{x=x\\y=y}} \left(\frac{\partial y}{\partial \xi}\right)_{\eta}$$
 である

という感じで脳内で区別する

わたしにはハードルが高いので無理せず x_1, y_1 と書き直して区別すればいいかなと思う

7.

異なる関数を同じ関数とすることは矛盾である

(例)

Z = f(x,y) = x + y とする。x,y は独立変数とする

 $Z = g(\xi, \eta) = \xi - \eta$ とする。 ξ, η は独立変数とする

Z = f(1,1) = 2

Z = g(1,1) = 0

 $\therefore Z = 2 = 0$

よって矛盾

8.

変数が独立変数である関数 Z(x,y) と 変数が従属変数である関数 Z(x,y) は異なる関数である

なので同じ関数 Zとするのは矛盾である

(例)

Z(x,y) = x + y とする。x,y は独立変数とする (1)

 $Z(x,y)=x+y, \ x=\xi, \ y=\xi$ とする。 ξ は独立変数とする。 x,y は従属変数である (2)

(1) OZEZ(0,1) = 1

(2) の Z だと Z(0,1)は未定義

よって(1)のZと(2)のZは異なる関数である

関数 Z の式が同じでも、定義域が異なれば異なる関数である

従属変数の変域が明示されていない場合、変数が独立変数である関数 Z(x,y) と 変数が従属変数である関数 Z(x,y) は式が同じだから同じ関数とは言えない

q

熱力学では

同じ変数を独立変数としかつ従属変数とし、かつ

異なる関数を同じ関数とすることもよくある

矛盾 アンド 矛盾 でわたしら素人は悶絶してしまう

(例)

$$Z = f(x,y) = x^2 e^y$$
 とする。

$$Z = f(x,y) = f(x,\eta + x) = x^2 e^{\eta + x} = g(x,\eta)$$
 とする。

Z は x,y の関数なので Z=Z(x,y)=f(x,y) である

Z は x, η の関数なので $Z = Z(x, \eta) = g(x, \eta)$ である

$$\left(\frac{\partial Z}{\partial x}\right)_y = 2xe^y$$

偏微分が定義できるので、3. より x,y は独立変数である

$$\left(\frac{\partial Z}{\partial x}\right)_{\eta} = (2x + x^2)e^{\eta + x}$$

偏微分が定義できるので、3. より x, η は独立変数である

よって

$$Z=Z(1,1)=f(1,1)=e$$

$$Z = Z(1,1) = g(1,1) = e^2$$

$$\therefore Z(1,1) \neq Z(1,1)$$

となり矛盾する

また x, y, η は独立変数で、 $g(x, \eta)$ は y によらないので

$$\left(\frac{\partial Z}{\partial x}\right)_y = \left(\frac{\partial g}{\partial x}\right)_y = (2x + x^2)e^{\eta + x}$$

 $\eta = y - x \, \, \text{toc}$

$$\left(\frac{\partial Z}{\partial x}\right)_{y} = (2x + x^{2})e^{y}$$

$$\therefore \left(\frac{\partial Z}{\partial x}\right)_y \neq \left(\frac{\partial Z}{\partial x}\right)_y$$

となり矛盾する

10.

上の例で矛盾が生じないように変数、関数を区別する

上の例では2つの異なる関数を同じ関数 Z と仮定しているところが矛盾しているので

関数 Z_1, Z_2 として区別する

また 変数 y を独立変数かつ従属変数と仮定しているのが矛盾しているので

y は独立変数とし、 y_1 は 従属変数として区別する

(例)

 $Z_1 = f(x,y) = x^2 e^y$ とする。x,y は独立変数とする

 $\eta = y_1 - x$ とする。 η は独立変数とする、 y_1 は従属変数である

$$Z_2 = f(x,y_1) = f(x,\eta+x) = x^2 e^{\eta+x} = g(x,\eta)$$
 とする。

 Z_1 は x,y の関数なので $Z_1=Z_1(x,y)=f(x,y)$ である

 Z_2 は x,η の関数なので $Z_2=Z_2(x,\eta)=g(x,\eta)$ である

$$\left(\frac{\partial Z_1}{\partial x}\right)_y = 2xe^y$$

$$\left(\frac{\partial Z_2}{\partial x}\right)_n = (2x+x^2)e^{\eta+x}$$

$$Z_1 = Z_1(1,1) = f(1,1) = e$$

$$Z_2 = Z_2(1,1) = g(1,1) = e^2$$

$$\therefore Z_1(1,1) \neq Z_2(1,1)$$

となり矛盾しない

また、 x, y, η は独立変数で、 $g(x, \eta)$ は y によらないので

$$\left(\frac{\partial Z_2}{\partial x}\right)_y = \left(\frac{\partial g}{\partial x}\right)_y = (2x+x^2)e^{\eta+x}$$

$$\eta = y_1 - x$$
 なので

$$\left(\frac{\partial Z_2}{\partial x}\right)_y = (2x + x^2)e^{y_1}$$

$$\therefore \left(\frac{\partial Z_1}{\partial x}\right)_y \neq \left(\frac{\partial Z_2}{\partial x}\right)_y$$

となり矛盾しない

11.

上の例の変数、関数の区別を脳内で行う

(例)

$$Z = f(x, y) = x^2 e^y$$
 とする。 x, y は独立変数とする

 $\eta = y - x$ とする。 η は独立変数とする、y は従属変数である

$$\mathbf{Z} = f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}, \mathbf{\eta} + \mathbf{x}) = \mathbf{x}^2 e^{\mathbf{\eta} + \mathbf{x}} = g(\mathbf{x}, \mathbf{\eta})$$
 とする。

Z は x, y の関数なので Z = Z(x, y) = f(x, y) である

Z は x, η の関数なので $Z = Z(x, \eta) = g(x, \eta)$ である

$$\left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{y}} = 2\mathbf{x}e^{\mathbf{y}}$$

$$\left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{n}} = (2\mathbf{x} + \mathbf{x}^2)e^{\mathbf{\eta} + \mathbf{x}}$$

$$\mathbf{Z} = \mathbf{Z}(1,1) = f(1,1) = e$$

$$\mathbf{Z} = \mathbf{Z}(1,1) = q(1,1) = e^2$$

 $\therefore Z(1,1) \neq Z(1,1)$

となり矛盾しない

また x, y, η は独立変数で、 $g(x, \eta)$ は y によらないので

$$\left(\frac{\partial \mathbf{Z}}{\partial \boldsymbol{x}}\right)_{\boldsymbol{y}} = \left(\frac{\partial g}{\partial \boldsymbol{x}}\right)_{\boldsymbol{y}} = (2\boldsymbol{x} + \boldsymbol{x}^2)e^{\boldsymbol{\eta} + \boldsymbol{x}}$$

 $\eta = y - x$ なので

$$\left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{y}} = (2\mathbf{x} + \mathbf{x}^2)e^{\mathbf{y}}$$

$$\therefore \left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{y}} \neq \left(\frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)_{\mathbf{y}}$$

となり矛盾しない

12.

座標変換においても 1. の矛盾はおこる

(例)

$$f(x,y)=x^2+y^2$$
 とする。 x,y は独立変数とする(1)
$$x=x(r,\theta)=r\cos\theta$$

$$y=y(r,\theta)=r\sin\theta$$
 とする。 r,θ は独立変数とする(2)
$$f(x,y)=f(x(r,\theta),y(r,\theta))=r^2=g(r,\theta)$$
 とする

こんな感じの座標変換はよくあるが、

- (1) において x,y は独立変数と仮定しかつ
- (2) において x,y は従属変数と仮定しているので 1. の矛盾になっている

矛盾しないためには独立変数 x,y と 従属変数 x_1,y_1 を区別して

$$f(x,y)=x^2+y^2$$
 とする。 x,y は独立変数とする
$$x_1=x_1(r,\theta)=r\cos\theta$$

$$y_1=y_1(r,\theta)=r\sin\theta$$
 とする。 r,θ は独立変数とする。
$$f(x_1,y_1)=f(x_1(r,\theta),y_1(r,\theta))=r^2=g(r,\theta)$$

としなければならない。

 x_1, y_1 を追加せずに、脳内で独立変数 x, y と 従属変数 x, y を区別するときは

$$f(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^2 + \boldsymbol{y}^2$$
 とする。 $\boldsymbol{x}, \boldsymbol{y}$ は独立変数とする
$$\begin{split} \boldsymbol{x} &= \boldsymbol{x}(r, \theta) = r \cos \theta \\ \boldsymbol{y} &= \boldsymbol{y}(r, \theta) = r \sin \theta \text{ とする}, r, \theta \text{ は独立変数とする}, \\ f(\boldsymbol{x}, \boldsymbol{y}) &= f(\boldsymbol{x}(r, \theta), \boldsymbol{y}(r, \theta)) = r^2 = g(r, \theta) \text{ とする} \end{split}$$

となる

13.

ラグランジアンから運動方程式を導くときは

従属変数をあとから独立変数にするということをおこなう

このときもある変数を独立変数かつ従属変数とする矛盾 1. と

別の関数を同じ関数とする矛盾 7. はおこっている

(例)

$$x=x(t)$$
 $\dot{x}=\dot{x}(t)$ とする。 t は独立変数とする (1) ラグランジアンは $L=\dot{x}^2-x^2$ とする 運動方程式は $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right)_x - \left(\frac{\partial L}{\partial x}\right)_{\dot{x}} = 0$ より (2) $\dot{x}=x-x=0$

という感じでラグランジアンから運動方程式を得るが、

(1) より x, \dot{x} は従属変数である

$$(2)$$
 より $\left(rac{\partial L}{\partial \dot{x}}
ight)_x$ と $\left(rac{\partial L}{\partial x}
ight)_{\dot{x}}$ が定義されているので 3 . より x , \dot{x} は独立変数である

よってx, \dot{x} は従属変数かつ独立変数となり 1. より矛盾である

また L の変数が明記されていないため L は $L(x,\dot{x})$ かもしれないし L(t) かもしれないし、その他かもしれない。 もし L(t) であるならば

(2) において L を 関数 $L(x, \dot{x})$ と仮定しているので

異なる関数 L(t) と $L(x,\dot{x})$ を同じ関数 L としていることになり 7. より矛盾する

また もし $L(x,\dot{x})$ であっても

- (1) では $L(x,\dot{x}), x,\dot{x}$ は従属変数
- (2) では $L(x,\dot{x}), x,\dot{x}$ は独立変数

としているので 8. よりこれら L は異なる関数である。よって 7. より矛盾する

矛盾しないようにするには、従属変数 x, \dot{x} と 独立変数 x_1, x_2 を区別し

さらに 関数 L と 関数 L_1 を区別しておけばよい

$$x=x(t)$$
 $\dot{x}=\dot{x}(t)$ とする。 t は独立変数とする ラグランジアンは $L=\dot{x}^2-x^2$ とする $L_1(x_1,x_2)=x_2^2-x_1^2$ とする。 x_1,x_2 は独立変数とする 運動方程式は $\left.\frac{d}{dt}\left(\frac{\partial L_1}{\partial x_2}\right)_{x_1}\right|_{\substack{x_1=x\\x_2=\dot{x}}}-\left(\frac{\partial L_1}{\partial x_1}\right)_{x_2}\right|_{\substack{x_1=x\\x_2=\dot{x}}}=0$ より $\ddot{x}-x=0$

こうすると矛盾はおこらない。

従属変数 x,\dot{x} と 独立変数 x,\dot{x} を脳内で区別し

さらに関数 L と 関数 L を脳内で区別するならば

$$m{x} = m{x}(t)$$
 $\dot{m{x}} = \dot{m{x}}(t)$ とする。 t は独立変数とする ラグランジアンは $m{L} = \dot{m{x}}^2 - m{x}^2$ とする $m{L}(m{x},\dot{m{x}}) = \dot{m{x}}^2 - m{x}^2$ とする。 $m{x},\dot{m{x}}$ は独立変数とする 運動方程式は

$$\frac{d}{dt} \left(\frac{\partial \mathbf{L}}{\partial \dot{x}} \right)_{x} \bigg|_{\substack{x = x \\ \dot{x} = \dot{x}}} - \left(\frac{\partial \mathbf{L}}{\partial x} \right)_{\dot{x}} \bigg|_{\substack{x = x \\ \dot{x} = \dot{x}}} = 0 \ \ \text{\sharp 9}$$

$$\therefore \ \ \ddot{x} - \mathbf{x} = 0$$

となる。

第2章

P.18 熱力学で扱う状態 '25 7.11

熱力学で扱う状態の定義

(説明)

定義は明記されていない。熱力学的状態は経験的に決まる

熱力学の歴史において水と水蒸気の系の温度と圧力は熱力学状態として認められた

少し遅れて磁化も熱力学状態として認められた

なにが熱力学的状態であるかは発見されるものである

なにかの現象の熱力学的な説明が発見できればそれは熱力学的現象であり熱力学的状態であったということになる

もともと水と水蒸気の圧力と温度の法則を記述したものが熱力学である

水と水蒸気の理論を抽象化し (つまり理論の水と水蒸気の部分を A,B にして) 色々な物質や量や現象を当てはめて拡張を試み、うまくいけばそれは熱力学になる

P.18 平衡状態 '25 7.14

十分長い時間放っておくとマクロに見る限り変化が起こらない状態になる、これを平衡状態という

(説明)

「十分長い時間」というのは経験的に定義される。経験的に1時間でよいと判断できれば1時間は十分長い時間となる

「マクロに変化が起こらない状態」は 3.1 節 P.40 の「マクロに見て同じ状態」の定義を用いると、 2.3 節の (a),(b),(c) のマクロ物理量が変化しない状態のことである

この定義によると過冷却した水も平衡状態となるが、過冷却した水は平衡状態ではない。準安定状態という。熱力学の対象ではない。経験的に平衡状態として熱力学の理論を作ろうとしても不都合があることがわかっているから平衡状態でないとされている。

結局、熱力学的な平衡状態というのは経験的にきまるものである。おおむね上の定義のとおりであるが、そうでない場合もある。

- ○○は平衡状態であると1つ1つ具体的に定義するのが経験的定義
- ○○が平衡状態か否かは平衡状態としても不都合がないとか、熱力学の理論がうまく適用できるとかで決まる

このような経験的定義は定義と理論がどうどうめぐりしてるだけで何も主張してないように見える。がそうではなく、定義が存在すると仮定したときの理論と解釈すべきである。定義は仮定、公理とし理論は定理とみるべきである。定義と理論が実験結果をうまく説明できるならば何も主張してないと切り捨てるべきではない。経験的定義は正しい仮定だったと解釈するべきである

P.19 マクロ物理量 '25 9.8

マクロ物理量の定義

- (a) 幾何学的な量
- (b) ミクロ物理量を系全体にわたって足し合わせた量
- (c) ミクロ物理量をマクロスケールで空間、時間平均した平均
- (d) 熱力学特有の量
- (e) 2 つの状態におけるマクロ物理量の値を比較して得られる量

(説明)

マクロ物理量が (a)~(e) であるというのは仮定、要請である。これの正しさは経験的に保証される

この先 (a)~(e) 以外のマクロ物理量が現れるかもしれない

また、具体的にどういうマクロ物理量が (a)~(e) に該当するかも経験的にきまる

温度、圧力、体積、密度、粒子数は熱力学の歴史においてマクロ物理量となった

この先も必要に応じて新たなマクロ物理量を作られるかもしれない

- (a) は体積以外は想像がつかない
- (b) は全エネルギー、全粒子数
- (c) は圧力、粒子密度

空間平均は密度とわかるが、時間平均はよくわからない。平衡状態では時間経過によってマクロ物理量が変化しないのだから時間平均する意味がないような気がする

- (d) は温度、エントロピー
- (e) は熱容量

P.19 マクロ物理量 (a)(b)(c) '25 9.8 {#C2_P19_マクロ物理量 (a)(b)(c)_10}

マクロ物理量 (a)(b)(c) について

明記されていないが以下の性質と仮定、要請がある

- (1) 均一な系において (a)(b)(c) は体積 Vの関数である
- (2) その関数は連続であると仮定、要請する

(説明)

(1)

P.40 の均一な状態の定義より、均一な系の体積 V の部分系のマクロ物理量 (a)(b)(c) は同じになるすなわち体積 V についてマクロ物理量 (a)(b)(c) は一意に存在する。

よって均一な系の部分系においてマクロ物理量 (a)(b)(c) は体積 V の関数である

相加変数はマクロ物理量 (a)(b)(c) のみの関数と仮定、要請するので (別頁)

均一な系の部分系において相加変数は体積 V の関数となる

(2)

「均一な系において相加変数は示量変数である」(別頁)

というのを導くために(1)の関数が連続関数であることを仮定、要請する

P.27 (2.12) その 1 '25 7.5

系が均一でかつ X が相加変数とする

$$V^{(i)}=\lambda V^{(1)}$$
 ならば $X^{(i)}=\lambda X^{(1)}$

(証明)

(1) λ が正の整数の場合

$$V^{(i)} = \lambda V^{(1)}$$
 とする

系が均一で X は相加変数なので

$$X^{(i)} = \sum_{i=1}^{\lambda} X^{(1)} = \lambda X^{(1)}$$

(2) λ が正の有理数の場合

$$\lambda = \frac{p}{q}$$
 とする。 p, q は正の整数

$$V^{(i)}=rac{p}{q}V^{(1)}$$
 とする

$$V^{(1)'} = rac{1}{q} V^{(1)}$$
 とすると

$$qV^{(1)'} = V^{(1)}$$

$$qX^{(1)'} = X^{(1)} \ (\because \ (1))$$

$$\therefore X^{(1)'} = \frac{1}{q} X^{(1)}$$

$$V^{(i)}=pV^{(1)^\prime}$$
 なので

$$\begin{split} \therefore X^{(i)} &= p X^{(1)'} \quad (\because \ (1)) \\ &= \frac{p}{q} X^{(1)} \end{split}$$

(3) λ が正の無理数の場合

$$rac{1}{2}\lambda < q_1 < \lambda$$
 である 有理数 q_1 が存在する

$$\lambda - q_1 = \xi_1$$
 とする $0 < \xi_1 < \frac{\lambda}{2}$ である

さらに

$$\frac{1}{2}\xi_1 < q_2 < \xi_1$$
 である 有理数 q_2 が存在する

$$\xi_1 - q_2 = \xi_2$$
 とする $0 < \xi_2 < \frac{\xi_1}{2} < \frac{\lambda}{2^2}$ である

同様に

$$\frac{1}{2}\xi_{n-1} < q_n < \xi_{n-1}$$
 である 有理数 q_n が存在する

$$\xi_{n-1}-q_n=\xi_n$$
 とする $0<\xi_n<rac{\xi_{n-1}}{2}<rac{\lambda}{2^n}$ である

$$\therefore \lambda - \sum_{i=1}^{n} q_n = \xi_n, \ 0 < \xi_n < \frac{\lambda}{2^n}$$

$$\therefore \lim_{n \to \infty} \left(\lambda - \sum_{n=1}^{n} q_n \right) = \lim_{n \to \infty} \xi_n$$

$$\therefore \lim_{n \to \infty} \left(\lambda - \sum_{n=1}^{n} q_n \right) = 0$$

$$\therefore \ \sum_{n=1}^{\infty} q_n = \lambda \ (\because \ \lim (f-g) = 0, \lim f = a$$
ならば $\lim g = a)$

この数列 q_n を使って

$$egin{aligned} V^{(i)} &= \lambda V^{(1)} \ &= \Bigl(\sum_{n=1}^\infty q_n\Bigr) V^{(1)} \ &= \sum_{n=1}^\infty (q_n V^{(1)}) \; (\because \;\; 収束する級数は線型性をもつ) \end{aligned}$$

体積が $q_n V^{(1)}$ である部分系の X を $X_n^{(1)}$ とする。X は相加変数なので

$$X^{(i)} = \sum_{n=1}^{\infty} X_n^{(1)}$$

$$(2) \ \, \sharp \, \, \emptyset \, \, \, X_n^{(1)} = q_n X^{(1)}$$

よって

$$egin{aligned} X^{(i)} &= \sum_{n=1}^\infty (q_n X^{(1)}) \ &= \Big(\sum_{n=1}^\infty q_n\Big) X^{(1)} \; (\because \;\; 収束する級数の線型性) \ &= \lambda X^{(1)} \end{aligned}$$

$$(1),(2),(3)$$
 より $\lambda \in \mathbb{R}, \ \lambda > 0$ に対して

$$V^{(i)} = \lambda V^{(1)}$$
 ならば $X^{(i)} = \lambda X^{(1)}$

P.27 (2.12) その 2 '25 7.5

系が均一でかつ X が相加変数とする

$$X^{(i)} = KV^{(i)}$$
 (2.12)

(証明)

系が均一でXが相加変数のとき

$$V^{(i)} = \lambda V^{(1)}$$
 ならば $X^{(i)} = \lambda X^{(1)}$ (別頁)

よって

$$\frac{X^{(i)}}{V^{(i)}} = \frac{\lambda X^{(1)}}{\lambda V^{(1)}} = \frac{X^{(1)}}{V^{(1)}}$$

ここで

$$K=rac{X^{(1)}}{V^{(1)}}$$
 とすると

$$\frac{X^{(i)}}{V^{(i)}} = K$$

$$\therefore X^{(i)} = KV^{(i)}$$

P.27 相加変数、示量変数、示強変数 '25 7.6

(1) 相加変数の定義

 $X = \sum_i X^{(i)}$ (2.11) が成立すれば X を「相加的物理量」、「相加変数」と言う

(2) 示量変数の定義

均一な状態の系の部分系において、 $X^{(i)}=KV^{(i)}$ (2.12) であるとき X を「示量的物理量」、「示量変数」と言う

- (3) 相加変数は均一な状態では示量変数でもある
- (4) 示強変数の定義
- 6章で定義される。温度 T、ポテンシャル μ は示強変数である
- (5) 均一な状態の系において示強変数は部分系の体積に依らず同じ値をもつ
- (6) この性質(5)は示量変数の密度ももつが、示量変数の密度を示強変数と呼ぶことを避ける

(説明)

「相加変数、示量変数、示強変数は 2.3 節の (a),(b),(c) のマクロ物理量のみの関数である」かつ「その関数は連続関数である」という暗黙の要請がある

3.1 節の同じ状態の定義が (a),(b),(c) のマクロ物理量に限定されているので、これらの要請がないと同じ状態の系の相加変数、示量変数、示強変数が同じと言えなくなる。そうすると「相加変数は均一な状態では示量変数である」を導くことができなくなる

「相加変数は均一な状態では示量変数でもある」

不均一な状態では相加変数は示量変数にならない例

X を系の粒子数とする

X は相加変数 で、 $X = X^{(1)} + X^{(2)}$ である

 $V^{(1)} = V^{(2)}$ とする

 $X^{(1)}=K_1V^{(1)},\ X^{(2)}=K_2V^{(2)}$ なる $K_1,\ K_2$ が存在する

図の場合、あきらかに $X^{(1)} \neq X^{(2)}$ なので

 $K_1 \neq K_2$

よって X は示量変数ではない

P.32 問題 2.1 '25 6.29

f(x,y) を考える。x,y は独立変数とする

$$U^{(1)} = U^{(1)}$$

 $U=U^{(1)}+{\color{red}U^{(2)}}$ とする。 $U,~U^{(1)}$ は独立変数とする

$${\color{red} Z(U^{(1)},U) = f({\color{red} U^{(1)}}, \; {\color{red} U^{(2)}})}$$
 とする

$$\left(rac{\partial {f Z}}{\partial U^{(1)}}
ight)_U$$
 を求める

(解答)

f(x,y) を考える。x,y は独立変数とする

$$U^{(1)} = U^{(1)}$$

 $U=U^{(1)}+{\color{red}U^{(2)}}$ とする。 $U,~U^{(1)}$ は独立変数とする

$$Z(U^{(1)}, U) = f(U^{(1)}, U^{(2)})$$
 とする

$$\begin{split} \left(\frac{\partial \mathbf{Z}}{\partial U^{(1)}}\right)_{U} &= \left(\frac{\partial f}{\partial x}\right)_{y} \bigg|_{\substack{x = \underline{U}^{(1)}\\y = U^{(2)}}} \left(\frac{\partial \underline{U}^{(1)}}{\partial U^{(1)}}\right)_{U} + \left(\frac{\partial f}{\partial y}\right)_{x} \bigg|_{\substack{x = \underline{U}^{(1)}\\y = U^{(2)}}} \left(\frac{\partial \underline{U}^{(2)}}{\partial U^{(1)}}\right)_{U} \\ &= f_{x}(\underline{U}^{(1)}, \underline{U}^{(2)}) - f_{y}(\underline{U}^{(1)}, \underline{U}^{(2)}) \end{split}$$

P.34 (2.23) '25 6.30

$$\Delta \langle N \rangle = (V$$
によらない定数) × V (2.23)

(証明)

$$\langle N^{(1)}\rangle = K^{(1)}V$$

$$\langle N^{(2)}\rangle = K^{(2)}V$$

$$\ \, \boldsymbol{\cdot} \boldsymbol{\cdot} \ \Delta \langle N \rangle = (K^{(2)} - K^{(1)}) V$$

P.34 (2.24) '25 6.30

$$\delta N = o(V) \quad (2.24)$$

(説明)

大きい系Vのなかの遠くにはなれた部分系 $V^{(i)},V^{(j)}$ を考える

遠くに離れるほど ゆらぎ $\delta N^{(i)}$ と $\delta N^{(j)}$ の相関関係が少なくなる

よって

$$\lim_{V \rightarrow \infty} \frac{\delta N}{V} = \lim_{V \rightarrow \infty} \frac{\cdots + \delta N^{(i)} + \cdots}{V} = 0$$

証明?

たとえば $\delta N^{(i)}$ が独立なら平均 $\dfrac{\cdots + \delta N^{(i)} + \cdots}{V} = 0$ といえる。

しかし、i,j がはなれていれば $\delta N^{(i)}, \delta N^{(j)}$ は独立だが、近ければ $\delta N^{(i)}, \delta N^{(j)}$ は独立でない

P.34 (2.25) '25 6.30

$$\frac{\delta N}{\Delta \langle N \rangle} \propto \frac{o(V)}{V} \rightarrow 0 \ (V \rightarrow \infty) \ \ (2.25)$$

(証明)

$$\langle N^{(1)}\rangle = K^{(1)}V$$

$$\langle N^{(2)}\rangle = K^{(2)}V$$

$$\ \, \boldsymbol{\cdot} \boldsymbol{\cdot} \ \Delta \langle N \rangle = (K^{(2)} - K^{(1)}) V$$

$$\delta N = o(V) ~~(2.24)$$

$$\label{eq:lambda} \therefore \, \frac{\delta N}{\Delta \langle N \rangle} = \frac{\delta N}{(K^{(2)} - K^{(1)})V} \! \propto \frac{\delta N}{V} = \frac{o(V)}{V}$$

$$\frac{o(V)}{V} = o(1) \to 0 \ (V \to \infty) \ (別頁)$$

$$\label{eq:delta-def} \therefore \, \frac{\delta N}{\Delta \langle N \rangle} \propto \frac{o(V)}{V} \to 0 \,\, (V \to \infty)$$

P.35 (2.25.2):(2.25) の示強変数の場合 '25 7.2

示強変数のゆらぎは相対的に $rac{o(V)}{V}
ightarrow 0$ となる

相対的というのは $\Delta\langle T \rangle$ と比較してという意味である

$$\frac{\delta T}{\Delta \langle T \rangle} \propto \frac{o(V)}{V} \rightarrow 0 \ (V \rightarrow \infty) \ \ (2.25.2)$$

(証明)

示強変数は Vによらないので

$$\langle T^{(i)} \rangle = K^{(i)}$$

$$\langle T^{(j)}\rangle = K^{(j)}$$

$$\therefore \Delta \langle T \rangle = K^{(i)} - K^{(j)}$$

$$(2.29)$$
 より $\delta T = {o(V)\over V}$ なので

$$\label{eq:deltaT} \therefore \frac{\delta T}{\Delta \langle T \rangle} = \frac{\delta T}{K^{(i)} - K^{(j)}} \propto \delta T = \frac{o(V)}{V}$$

ここで

$$\frac{o(V)}{V} = o(1) \to 0 \ (V \to \infty) \ (別頁)$$

なので

$$\label{eq:deltaT} \dot{\cdot}\cdot\frac{\delta T}{\Delta\langle T\rangle}\propto\frac{o(V)}{V}\to 0\ (V\to\infty)$$

上のとおり Vが大きいとき示強変数のゆらぎは $(\Delta \langle T \rangle$ と比べて) 相対的に無視できると言えるが、

$$\delta T = \frac{o(V)}{V} \to 0 \ (V \to \infty)$$

なので V が大きいとき示強変数のゆらぎは $(\Delta \langle T \rangle$ によらず) 絶対的に無視できると言えるような気がする

P.36 o(V)/V=o(1) '25 6.30

$$\frac{o(V)}{V} = o(1)$$

(証明)

$$f(V) = \frac{o(V)}{V}$$

とする

$$o(V)=Vf(V)$$

$$\therefore \ \lim_{V \to \infty} \frac{V f(V)}{V} = 0$$

$$\therefore \lim_{V \to \infty} f(V) = 0$$

$$\therefore \lim_{V \to \infty} \frac{f(V)}{1} = 0$$

$$\therefore f(V) = o(1)$$

$$\therefore \, \frac{o(V)}{V} = o(1)$$

(o(1) の性質)

$$f(V) = o(1) \iff \lim_{V \to \infty} f(V) = 0$$

(証明)

$$f(V) = o(1) \text{ ς is }$$

$$\therefore \lim_{V \to \infty} f(V) = 0$$

$$\lim_{V \to \infty} f(V) = 0$$
ならば

$$\lim_{V\to\infty}\frac{f(V)}{1}=0$$

$$\therefore f(V) = o(1) (\because 付録A)$$

P.36 (2.30) '25 7.2

$$U = \sum_{i} U^{(i)} + \frac{1}{2} \sum_{i} \sum_{j(\neq i)} U^{(ij)}_{int} \ \ (2.30)$$

(説明)

同じ U としているが $U,\; U^{(i)},\; U^{(ij)}_{int}$ はすべて異なる

 ${\color{red}U_0},~{\color{blue}U_1},~{\color{blue}U_2}_{int}$ として区別すると

となる

 U_1 は示量変数とし、 $U_{2\ int}$ は非示量変数とする。

よって U_0 は非示量変数である

$${\color{red}{U_{1}}^{(i)}} = K^{(i)}V^{(i)}$$

$$U_1 = \sum_i U_1{}^{(i)}$$

である

P.37 (2.32) '25 7.1

$$v_{int}^{\alpha\beta} \sim \frac{\exp[-r/r_{int}]}{r} ~(2.32)$$

 $r \simeq r_{int}$ を過ぎると急激に小さくなる

(説明)

プロットを見ると r_{int} 近辺で $\frac{\exp[-r/r_{int}]}{r}$ は急激に減少しているのがわかる。数式での証明?

 r_{int} 近辺で $\frac{1}{r}$ も急激に減少しているがそれほど 0 には近づかない。いっぽう $\frac{\exp[-r/r_{int}]}{r}$ はほとんど 0 になるまたプロットから

$$r\sim 0$$
 で $\dfrac{\exp[-r/r_{int}]}{r}$ は $\dfrac{1}{r}$ に近づく

$$r\gg r_{int}$$
 で $rac{\exp[-r/r_{int}]}{r}$ は $\exp[-r/r_{int}]$ に近づく

となることがわかる

P.38 (2.35) '25 7.3

$$U = \sum_{i} U^{(i)} + o(V) \ \ (2.35)$$

o(V) の項は相対的に無視できる

(説明)

同じ U としているが U, $U^{(i)}$ は異なる量である

 ${\color{red} U_0},\; {\color{blue} U_1}$ として区別すると

$${\color{red} {U_0}} = \sum_i {\color{blue} {U_1^{(i)}}} + o(V) ~~(2.35)$$

となる

 U_1 は示量変数とする

よって

$$U_1 = \sum_i U_1^{(i)}$$

$$U_1 = KV$$

$$\ \ \, \dot{\cdot} \cdot \frac{o(V)}{U_1} \propto \frac{o(V)}{V} \to 0 \ (V \to \infty)$$

よって o(V) は $U_1 = \sum_i U_1^{(i)}$ と比べて相対的に無視できる

第3章

P.40 同じ状態、均一な状態 '25 9.3

定義:マクロに見て同じ状態、異なる状態

「2.3 節の (a)~(c) のタイプのマクロ物理量すべて比較したとき、どの量の値の差もマクロに見て無視できれば、2 つの状態はマクロに見て同じ状態、そうでない場合は、異なる状態という」

定義:マクロに見て均一な状態

「系の同じ形、同じ体積の2つの部分系に着目して、部分系をどこから取り出してもマクロに見て同じ状態ならば、系はマクロに 見て均一な状態」

(説明)

「系の同じ形、…」という部分は 3.3.6 節で系の形に依らず同一視するという話と矛盾するのでこれは定義から外したほうがいいかもしれない

「(a)~(c) のタイプのマクロ物理量」と限定されているので 2.6 節の「均一な状態で相加変数は示量変数になる」という話を導出できない

導出できるようにするには、「すべての相加変数は (a)~(c) のタイプのマクロ物理量だけの関数となる」という仮定、要請を追加しないといけない。明記されていないが、暗黙で仮定されていると思う

また示強変数が一致するという条件もないが、これもおそらく「すべての示強変数は (a)~(c) タイプのマクロ物理量だけの関数となる」という暗黙の仮定、要請があると思う

P.43 要請 I(ii) '25 7.3

要請 I(ii)

もしもある部分系の状態がその部分系をそのまま孤立させたときのときの平衡状態とマクロに見て同じ状態にあれば、その部分系の状態も平衡状態と呼ぶ

平衡状態の部分系も平衡状態

(説明)

「そのまま孤立させて」というのは「そのまま孤立できる」という前提がある。この前提は仮定、要請である。この仮定が正しいことは経験的に保証されている

もしかしたら部分系を「そのまま孤立できない」系が見つかるかもしれない。そのときはこの仮定は考え直さないといけない

経験的な仮定、要請といってもわたしらど素人は教科書の言うことをそのまま信じるだけだが

「孤立させる」というのは P.18 にあるように外部とやりとりしないようにすること。完全な壁で囲むことである

「そのまま孤立させる」とは温度などマクロな物理量が同じままで孤立させること。孤立させるというだけでは温度が違った状態で孤立させることも含む

「マクロに見て同じ状態」とは温度、体積などマクロ物理量が同じということ

話を部分系に限っているのは、対象となる系は部分系かまたは全体系しかなく、全体系の場合ただの孤立系の平衡状態となる。要請が意味をもつのは部分系に対してだけなので部分系と限っている

P.44 要請 II-(i) '25 7.14

要請 II-(i)

それぞれの平衡状態に対して値が一意的に定まるエントロピーという ${\mathbb E S}$ が存在する

(説明)

「それぞれの平衡状態」というのはマクロ物理量が異なる平衡状態のこと

「一意的に定まる」というのはマクロ物理量に対して一意に定まるということ

「量 S」の量はマクロ物理量のこと

P.45 操作 '25 7.6

操作は関数である

(説明)

明記されていないが操作は関数であると仮定している。つまり

同一の状態から同一の操作によって遷移する状態は1つである

同一の状態から同一の操作によって遷移する状態が複数あることはないと仮定する

P.46 単純系 '25 7.6

単純系の定義

(定義)

外力がない場合、内部束縛のない部分系を単純系という

外力がある場合、内部束縛がなく外力による不均一さが無視できる部分系を単純系という

(説明)

内部束縛とは仕切りのことである

3.3.4 節にあるとおり相転移による不均一があっても単純系という

磁化云々はよくわからないので、水と水蒸気の系を考えることとする

本文では明記されていないが、断熱で動かない仕切りは束縛とみなさない

断熱で動かない仕切りで区切られた複合系は単純系である (5.3 節 P.85)

独立した単純系のあつまりは複合系であり、単純系である

束縛というのは独立して変化できないという意味である。 $V^{(1)}$ を変化させると $V^{(2)}$ も変化してしまうとき束縛はある

均一、不均一の定義は、すべてのマクロ物理量が座標によらないとき均一な系といい、座標によって変わるマクロ物理量があると き不均一な系という

P.47 基本関係式 '25 7.7

基本関係式

(説明)

基本変数の関数のエントロピーを基本関係式という

基本変数の定義?基本関係式の定義?

Uと相加変数でSが表示できればなんでも基本変数と基本関係式になるのか?

ほかの変数でSを表示させると基本関係式にならなくなる理由?

基本変数、基本関係式はひとつだけ?

P.48 要請 II-(ii) のつづき '25 7.8

要請 II-(ii) のつづき

単純系の部分系は元の系と同じ基本関係式をもつ

部分系ごとに異なりうる添字(i)が不要

U をいくらでも大きくすれば微係数はいくらでも0 に近づく

(説明)

元の系の基本関係式

 $S = S(U, \mathbf{X}), U, \mathbf{X}$ は独立変数ならば

単純系の部分系の基本関係式は

 $S^{(i)} = S(U^{(i)}, \boldsymbol{X}^{(i)}), \, U^{(i)}, \boldsymbol{X}^{(i)}$ は独立変数 となる

「部分系ごとに異なりうる添字 (i) が不要」というのは

U = U(W), X = X(Y),とする。W, Yを独立変数とするとき

 $m{U^{(i)}} = m{U}(W^{(i)}), m{X^{(i)}} = m{X}(m{Y^{(i)}})$ とする。 $W^{(i)}, m{Y^{(i)}}$ を独立変数とすることである

「U をいくらでも大きくすれば微係数はいくらでも0 に近づく」というのは?

P.50 平衡状態がマクロ状態として一意に定まる'25 7.15

平衡状態がマクロ状態として一意に定まることを意味しない

(説明)

平衡状態がマクロ状態の定義が明確でないので、一意に定まるという意味が不明である

ここでは、相の配置が異なれば異なるマクロ状態であるという文脈で話をしている

いっぽう、3.3.6 節のように相の配置が異なっても同一視するという文脈もある

ただこの節での主題は均一な部分系に関することで、相の配置によってマクロ状態が一意に定まるか定まらないかは主題ととく に関係ない

P.51 均一な平衡状態は U,X と一対一 '25 7.9

単純系の均一な平衡状態は、U,Xの値と一対一対応する

均一な平衡状態に対応するU, Xの値をもつ不均一な平衡状態は存在しない

そのようなエントロピーの自然な変数 U, X が存在する

(説明)

これらは 要請 II(iv) である

図にするとこんな感じ

均一な部分系の平衡状態は自然な変数以外の変数に依存することはない

均一な部分系の平衡状態の集合はどのように得ることができるか、均一な部分系の平衡状態のとりうる U,X はどのように得られるか?

P.52 同一視 '25 7.31

形状が既知のときに平衡状態はU, Xでマクロに見て一意的に定まる

裏を返せば形状までU, Xで定まるとはいっていない

..

全体の U,V,N も同じなので U,V,N と S(U,V,N) から導かれるマクロ物理量の値はすべて一致する

(説明)

「平衡状態はマクロに見て一意的に定まる」の意味は平衡状態のマクロ物理量が一意に定まるということ

「裏を返せば」というのは、U,Xで平衡状態が一意に決まるのだから、形状が異なっていてもU,Xが同じなら同じ平衡状態ということになる。これが「裏を返せば」のいみである

また、この時点で形状の違いを平衡状態の違いに含んでいない

なので、このあと形状の違いを無視して平衡状態を同一視するとあらためて定義しているが、同じことを繰り返して言っているだけである

「全体の U,V,N も同じなので U,V,N と S(U,V,N) から導かれるマクロ物理量の値はすべて一致する」という文において、全体系と部分系の U,V,N が同じ記号になっているのでわかりにくい

「全体の U,V,N も同じなので点線の部分系の U_p,V_p,N_p と $S(U_p,V_p,N_p)$ から導かれるマクロ物理量の値はすべて一致する」ということである

P.53 くっつけただけ '25 8.28

全体系も、同一視できる部分系をくっつけただけだから、熱力学的性質は同じであり、全体系も同一視できる

(説明)

「くっつけただけだから熱力学的性質は同じ」これは仮定、要請である。

この要請が妥当であるとする理由は経験による

水と水蒸気の系だと経験的に図 4.3(a) と (b) の熱力学的性質は同じというのが正しいとわかっているからこのような要請ができる

もし右からくっつけるのと、左からくっつけるのとで熱力学的性質の異なる系が見つかればこの要請も見直さないといけない

「熱力学的性質」の定義も経験的に与えられる。水と水蒸気の系なら温度、圧力、体積のことである。新しい系を考えるならそれにあった「熱力学的性質」をまた定義しないといけない

P.53 同一視の定義 '25 7.31

全系のU,Xの値は同じで容器の形状や相の空間配置だけが異なっている平衡状態は常に同一視する

(説明)

同一視するというのは等号で結ぶということである。この文は平衡状態の集合の要素間の等号の定義である

この定義の妥当性は経験的なものだと思われる

形状によって平衡状態を区別するような熱力学もあるかもしれないが、この本では形状によって平衡状態を区別しないという定義のもとに熱力学を作っている

P.58 要請 II '25 9.6

要請 II(i),(ii),(iii),(iv),(v)

(説明)

- (i) はエントロピーの存在を仮定、要請する
- (ii),(iii),(iv),(v) はエントロピーに関する法則を仮定、要請する
- これらの仮定、要請が正しいことは経験的に保証される
- これらの仮定、要請から導かれる定理が実験、観察をうまく説明できれば、これらの仮定、要請は正しいと認められる
- こういう話の進め方は力学と同じである

力学では明記されないがまず力の存在が仮定される。つぎに力の3法則が仮定される

これらの仮定が正しいことは経験的に認められる。つまり実験、観測をうまく説明できれば正しいとみとめられる

これらの仮定の正しさが別の普遍的に正しい公理から導かれるならばなんの文句もないがそうもいかない。経験的に正しいとい うのが精一杯である

仮定ではなく定義という見方もできるが、仮定と定義はよく似ている。ほとんど同じことである。要請 (ii)~(v) をエントロピーの 定義とみることができる。あまり明記しないが定義はいつも妥当性を仮定している。つまり定義を満たす実体が存在することを 仮定する。そしてその仮定の正しさは経験によって判断される。

P.59 要請 II(v) '25 8.2

$$\hat{S} = \sum_{i} S^{(i)}(U^{(i)}, \mathbf{X}^{(i)}) \quad (3.13)$$

すべての単純系の部分系が平衡状態のとき複合系は平衡状態である

 \hat{S} の最大値は複合系のエントロピーに等しい

 \hat{S} が最大のとき複合系は平衡状態である

 \hat{S} が最大でないとき複合系は非平衡状態である

(説明)

複合系の平衡状態について、平衡状態の定義における「長い時間」は部分系の平衡状態の「長い時間」と同じ意味。また「何の変化もない」というのは部分系が「変化しない」という意味とするのが妥当である

要請 II-(v) 以前に複合系のエントロピーの定義はないので、要請 II(v) は複合系のエントロピーが存在すると仮定して (要請 (i))、そのエントロピーは $\max \hat{S}$ に等しいと仮定するという主張だと解釈する

要請 II(v) を複合系のエントロピーの定義と解釈するとどうどうめぐりになって何も主張していないことになる

要請 II(i) より複合系の1つの平衡状態に対してエントロピーは1つきまる

(3.13) の $U^{(i)}, \mathbf{X}^{(i)}$ は部分系 i が平衡状態という条件のもとでの値である。複合系が平衡状態であるという条件は満たしていなくてよい

なので \hat{S} の最大値を与える $U^{(i)}, \mathbf{X}^{(i)}$ は複合系の平衡状態を与えるとは限らないが、 \hat{S} が最大のとき、複合系は平衡状態であると仮定する。これは定理?証明?

 \hat{S} の最大値を与える $U^{(i)}, \mathbf{X}^{(i)}$ が 1 つとは仮定していないので複合系において同じエントロピーを与える複数の平衡状態があり得る

第4章

P.61 複合系の S は一意にきまる '25 8.4

複合系の S は U,V,N と内部束縛の関数として一意に決まる

(説明)

「内部束縛 C の関数」というのは「条件 C」のもとでという意味である

S = S(U, V, N : C) というのは不思議な表記であるがこれは

S = (S(U, V, N)かつC) という意味である

Cのもとで S が U,V,N の関数になるというのは仮定とか要請ではない。計算した結果 S が U,V,N の関数だったという主張である

P.62 4.1.3 plot '25 8.4

$$\hat{S} = K \Big(\frac{N}{2}\Big)^{1/3} \Big[\Big(U^{(1)}V^{(1)}\Big)^{1/3} + \Big((U-U^{(1)})(V-V^{(1)})\Big)^{1/3} \Big] \eqno(4.8)$$

(説明)

(4.8) のプロットはこんな感じ

この \hat{S} は回関数になっている。

複合系の \hat{S} はいつも Π ? Π になることはない?極大になる箇所が複数あったりする?

 \hat{S} が $U^{(1)}, V^{(1)}$ の変域の端で最大になったりしてもいいの?

そのとき \hat{S} の偏微分が0でなくてもいい?

要請 $\mathrm{II}(\mathrm{v})$ は \hat{S} の微分についてはなにも言ってない

要請 $\mathrm{II}(\mathbf{i})$ より \hat{S} が最大になる $U^{(1)}, V^{(1)}$ は 1 つである。 \hat{S} のプロットが複数箇所で最大になったりはしない

P.62 4.1.3 平衡状態を完全に求める '25 8.5

すべての部分系の平衡状態を完全に求めれば、複合系の平衡状態も完全に求まる

複合系は単に部分系がくっついているだけだからだ

(説明)

「平衡状態を完全に求める」の意味は扱っているマクロ物理量が全部求まるという意味だとおもう

「単に部分系がくっついている」というのは部分系の変数が独立して変化できるという意味だと思う。ある部分系の変数の変化が 他の部分系の変数に影響を与えないということ

「~だから」というのは「単に部分系がくっついているだけならば複合系の平衡状態も完全に求まる」という前提があることを意味する。この前提は仮定、要請である。この前提の正しさは経験によって担保されている。

経験的に正しいとされている要請を他の仮定、要請から導こうとするのは無駄な努力である。そうでない系が見つかればまた前提も変わるだけだからである

P.62 (4.8) 一様連続 '25 8.16

$$\begin{split} \hat{S}_2(U^{(1)},V^{(1)}) &= K \Big(\frac{N}{2}\Big)^{1/3} \left[\Big(U^{(1)},V^{(1)}\Big)^{1/3} + \Big((U-U^{(1)})(V-V^{(1)})\Big)^{1/3} \right] \end{aligned} \tag{4.8}$$

$$\hat{S}_2(U^{(1)},V^{(1)}) \ \text{は} \ 0 \leq U^{(1)} \leq U, 0 \leq V^{(1)} \leq V \ \text{で一様連続である} \end{split}$$

(証明)

$$f(x,y) = (xy)^{1/3} + \left((X-x)(Y-y)\right)^{1/3} とする$$
 0 \leq $x \leq$ $X,0 \leq$ $y \leq$ Y とする

g(x,y) = xy は $0 \le x \le X, 0 \le y \le Y$ で一様連続である (*1)

(*1)
$$0 \le x_0, x_1 \le X, 0 \le y_0, y_1 \le Y$$
とする
$$|x_1y_1 - x_0y_0|$$

$$= |x_1(y_1 - y_0) + y_0(x_1 - x_0)|$$

$$\le |x_1||y_1 - y_0| + |y_0||x_1 - x_0|$$
 (∵ 三角不等式)
$$\le X|y_1 - y_0| + Y|x_1 - x_0|$$

$$d = |(x_1, y_1) - (x_0, y_0)| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$$
とする
$$|x_1 - x_0| \le d, \ |y_1 - y_0| \le d$$
 (∵ 三角不等式)
$$\therefore X|x_1 - x_0| \le Xd, \ Y|y_1 - y_0| \le Yd$$

$$\therefore X|y_1 - y_0| + Y|x_1 - x_0| \le (X + Y)d$$

$$\therefore |x_1y_1 - x_0y_0| \le (X + Y)d$$

$$\therefore |x_1y_1 - x_0y_0| \le (X + Y)d$$

$$\varepsilon > 0$$
 とする
$$X + Y = 0$$
 のとき $X = Y = 0$
$$\therefore |x_1y_1 - x_0y_0| = 0$$

$$\varepsilon$$

$$X + Y \neq 0$$
 のとき
$$d = |(x_0, y_0) - (x_1, y_1)| < \frac{\varepsilon}{X + Y}$$
 ならば
$$|x_1y_1 - x_0y_0| \le (X + Y)d \le (X + Y)\frac{\varepsilon}{X + Y}$$
 まって xy は一様連続

 $h(t) = t^{1/3}$ は 0 < t < Tで一様連続である (*2)

$$\vdots \ \varepsilon > (t_1-t_0)^{1/3} \geq t_1^{1/3} - t_0^{1/3} = |t_1^{1/3} - t_0^{1/3}|$$

$$t_0 > t_1 \ \text{のときも同様に} \ \varepsilon > |t_1^{1/3} - t_0^{1/3}|$$
 よって $t^{1/3}$ は一様連続

 $h(g(x,y)) = (xy)^{1/3}$ は $0 \le x \le X, 0 \le y \le Y$ で一様連続である (*3)

(*3)
$$h(t)$$
が $0 \le t \le T$ で一様連続
$$g(x,y)$$
が $0 \le x \le X, \ 0 \le y \le Y$ で一様連続とする
$$0 \le g(x,y) \le T$$
とする
$$\varepsilon_h > 0$$
とする
$$\delta_h$$
が存在して $|t_1 - t_0| < \delta_h$ ならば $|h(t_1) - h(t_0)| < \varepsilon_h$
$$g(x,y)$$
は一様連続なので $x_1, \ y_1$ によらない δ_g が存在して
$$|(x_1,y_1) - (x_0,y_0)| < \delta_g$$
ならば $|g(x_1,y_1) - g(x_0,y_0)| < \delta_h$ ∴ $|h(g(x_1,y_1)) - h(g(x_0,y_0))| < \varepsilon_h$ よって $h(g(x,y))$ は x,y について一様連続

 $h(g(X-x,Y-y)) = \left((X-x)(Y-y)\right)^{1/3}$ は $0 \le x \le X, 0 \le y \le Y$ で一様連続である (*4)

(*4)
$$h(s,t)$$
が $0 \le s \le S$, $0 \le t \le T$ で一様連続 $f(x)$ が $0 \le x \le X$ で一様連続 $g(y)$ が $0 \le y \le Y$ で一様連続 $0 \le f(x) \le S$, $0 \le g(y) \le T$ とする $\varepsilon_h > 0$ に対して s_0, t_0, s_1, t_1 によらない δ_h があって $|(s_1,t_1)-(s_0,t_0)| < \delta_h$ ならば $|h(s_1,t_1)-h(s_0,t_0)| < \varepsilon_h$ x_0,x_1 によらない δ_f があって $|x_1-x_0| < \delta_f$ ならば $|f(x_1)-f(x_0)| < \delta_h/\sqrt{2}$ y_0,y_1 によらない δ_g があって $|y_1-y_0| < \delta_g$ ならば $|g(y_1)-g(y_0)| < \delta_h/\sqrt{2}$ $d=min(\delta_f,\delta_g)$ とする $|(x_1,y_1)-(x_0,y_0)| < d \le \delta_f$ なので (∵ 三角不等式) $|f(x_1)-f(x_0)| < \delta_h/\sqrt{2}$ 可様に $|g(y_1)-g(y_0)| < \delta_h/\sqrt{2}$ $(f(x_1)-f(x_0)) < \delta_h/\sqrt{2}$ $(f(x_1),g(y_1))-(f(x_0),g(y_0))|$ $= \sqrt{(f(x_1)-f(x_0))^2+(g(y_1)-g(y_0))^2}$ $<\sqrt{\delta_h^2/2+\delta_h^2/2}=\delta_h$ よって $|h(f(x_1),g(y_1))-h(f(x_0),g(y_0))| < \varepsilon_h$ よって $h(f(x),g(y))$ は $0 \le x \le X$, $0 \le y \le Y$ で一様連続

よって
$$f(x,y)=(xy)^{1/3}+\left((X-x)(Y-y)\right)^{1/3}$$
 は一様連続である (: f,g が一様連続ならば $f+g$ も一様連続) よって $\hat{S_2}(U^{(1)},V^{(1)})$ は一様連続 (: f が一様連続ならば kf も一様連続)

P.63 (4.10),(4.11) '25 8.5

$$\begin{split} S(U,V,N:C_1,C_2) &= K \Big(\frac{UN}{2}\Big)^{1/3} \left[\left(\frac{V^{(1)}}{1+\sqrt{\frac{V-V^{(1)}}{V^{(1)}}}}\right)^{1/3} + \left(\frac{V-V^{(1)}}{1+\sqrt{\frac{V^{(1)}}{V-V^{(1)}}}}\right)^{1/3} \right] \end{aligned} \ (4.10) \\ U^{(1)} &= \frac{U}{1+\sqrt{\frac{V-V^{(1)}}{V^{(1)}}}} \ (4.11)$$

(証明)

$$\begin{split} \hat{S}(U^{(1)},V^{(1)},N^{(1)},U^{(2)},V^{(2)},N^{(2)}) &= S^{(1)}(U^{(1)},V^{(1)},N^{(1)}) + S^{(2)}(U^{(2)},V^{(2)},N^{(2)}) \ (\because 3.13) \\ &= K(U^{(1)}V^{(1)}N^{(1)})^{1/3} + K(U^{(2)}V^{(2)}N^{(2)})^{1/3} \ (\because 3.5) \\ &= K[(U^{(1)}V^{(1)}N^{(1)})^{1/3} + (U^{(2)}V^{(2)}N^{(2)})^{1/3}] \end{split}$$

 $U^{(1)},V^{(1)},N^{(1)},U^{(2)},V^{(2)},N^{(2)}$ は独立変数とする。K は定数とする

$$C_0:\; U=U^{(1)}+U_1^{(2)}, V=V^{(1)}+V_1^{(2)}, N=N^{(1)}+N_1^{(2)}$$
 (4.3) とする

U,V,N は独立変数とする

$$\begin{split} \hat{S}_1(U,V,N,U^{(1)},V^{(1)},N^{(1)}) &= \hat{S}(U^{(1)},V^{(1)},N^{(1)},U-U^{(1)},V-V^{(1)},N-N^{(1)}) \\ &= K[(U^{(1)}V^{(1)}N^{(1)})^{1/3} + ((U-U^{(1)})(V-V^{(1)})(N-N^{(1)}))^{1/3}] \end{split}$$

とする

$$C_1:\;N_1^{(1)}=rac{N}{2}$$
 とする

$$\begin{split} \hat{S}_2(U,V,N,U^{(1)},V^{(1)}) &= \hat{S}_1(U,V,N,U^{(1)},V^{(1)},N_1^{(1)}) \\ &= K \Big(\frac{N}{2}\Big)^{1/3} [(U^{(1)}V^{(1)})^{1/3} + ((U-U^{(1)})(V-V^{(1)}))^{1/3}] \end{split} \tag{4.7}$$

とする

$$C_2:~0\leq V_1^{(1)}\leq V$$
 とする

$$\begin{split} \hat{S_3}(U,V,N,U^{(1)}) &= \hat{S}_2(U,V,N,U^{(1)},V_1^{(1)}) \\ &= K \Big(\frac{N}{2}\Big)^{1/3} [(U^{(1)}V_1^{(1)})^{1/3} + ((U-U^{(1)})(V-V_1^{(1)}))^{1/3}] \end{split}$$

とする

$$\begin{split} S(U,V,N:C_0,C_1,C_2) &= \max_{U^{(1)},V^{(1)},N^{(1)},U^{(2)},V^{(2)},N^{(2)}} (\hat{S},C_0,C_1,C_2) \ (\because \ \Xi \ \ \Pi(\mathbf{v})) \\ &= \max_{U^{(1)},V^{(1)},N^{(1)}} (\hat{S}_1,C_1,C_2) \ (\because \ C_0) \\ &= \max_{U^{(1)},V^{(1)}} (\hat{S}_2,C_2) \ (\because \ C_1) \\ &= \max_{U^{(1)}} \hat{S}_3 \ (\because \ C_2) \end{split}$$

任意の U,V,N に対して上の等式が成立する。よって $\max_{U^{(1)}} \hat{S}_3$ が存在すれば $S(U,V,N:C_0,C_1,C_2)$ は存在する

 $\max_{U^{(1)}} \hat{S}_3$ を求める

 $0 \leq U^{(1)} \leq U$ で $\hat{S_3}$ は連続である $\begin{picture}(*1)\end{picture}$

 $(*1)(U^{(1)})^{1/3}$ は連続(: p>0ならば x^p は連続 $(U-U^{(1)})^{1/3}$ は連続(: 連続関数の合成関数は連続)よって \hat{S}_3 は連続(: 連続関数の線形性)

 $0 < U^{(1)} < U \ \mathtt{Ltd}$

$$\begin{split} \frac{\partial \hat{S}_3}{\partial U^{(1)}} &= K \Big(\frac{N}{2}\Big)^{1/3} \Big[\frac{1}{3} (U^{(1)})^{-2/3} (V_1^{(1)})^{1/3} + \frac{1}{3} (-1) (U - U^{(1)})^{-2/3} (V - V_1^{(1)})^{1/3} \Big] \text{ (*2)} \\ &= K \Big(\frac{N}{2}\Big)^{1/3} \frac{1}{3} \Big[(U^{(1)})^{-2/3} (V_1^{(1)})^{1/3} - (U - U^{(1)})^{-2/3} (V - V_1^{(1)})^{1/3} \Big] \end{split}$$

(*2)0 < a < 1, x > 0ならば $(x^a)' = ax^{a-1}$

 $0 < u_1 < u_2 < U$ とする

$$\left.\frac{\partial \hat{S}_3}{\partial U^{(1)}}\right|_{U^{(1)}=u_2} - \left.\frac{\partial \hat{S}_3}{\partial U^{(1)}}\right|_{U^{(1)}=u_1} = K\left(\frac{N}{2}\right)^{1/3} \frac{1}{3} \left[(u_2^{-2/3} - u_1^{-2/3})(V_1^{(1)})^{1/3} - ((U - u_2)^{-2/3} - (U - u_1)^{-2/3})(V - V_1^{(1)})^{1/3} \right] + C(U - u_2)^{-2/3} + C(U - u_1)^{-2/3} + C(U - u_2)^{-2/3} +$$

$$0 < u_1 < u_2$$
 なので $u_1^{-2/3} > u_2^{-2/3}$ (∵ $0 < a < b, p < 0$ ならば $a^p > b^p$)

$$\therefore \, u_2^{-2/3} - u_1^{-2/3} < 0$$

また
$$-u_1 > -u_2$$
 なので

$$\therefore U - u_1 > U - u_2 > 0$$

$$\therefore (U-u_1)^{-2/3} < (U-u_2)^{-2/3}$$

$$\therefore (U-u_2)^{-2/3} - (U-u_1)^{-2/3} > 0$$

$$\left. \div \left. \frac{\partial \hat{S}_3}{\partial U^{(1)}} \right|_{U^{(1)}=u_2} - \left. \frac{\partial \hat{S}_3}{\partial U^{(1)}} \right|_{U^{(1)}=u_1} < 0$$

よって
$$rac{\partial \hat{S}_3}{\partial U^{(1)}}$$
 は強単調減少である

よって
$$\left. \frac{\partial \hat{S}_3}{\partial U^{(1)}} \right|_{U^{(1)}=U^{(1)}} = 0, \ 0 < U_1^{(1)} < U$$
 ならば $U_1^{(1)}$ で \hat{S}_3 は最大となる (*3)

(*3)
$$a \le x \le b$$
で $f(x)$ が連続 $a < x < b$ で $f'(x)$ が強単調減少とする $a < x_0 < b$ で $f'(x_0) = 0$ とする $a \le x < x_0$ のとき $f'(c) = \frac{f(x_0) - f(x)}{x_0 - x}, \ x < c < x_0$ (∵ 平均値の定理) $f'(c) > f'(x_0) = 0$ (∵ $f'(x)$ は強単調減少) $\vdots \frac{f(x_0) - f(x)}{x_0 - x} > 0$ $x_0 - x > 0$ なので $\vdots f(x_0) > f(x)$ $x_0 < x \le b$ のとき $f'(c) = \frac{f(x) - f(x_b)}{x - x_0}, \ x_0 < c < x$ (∵ 平均値の定理) $f'(c) < f'(x_0) = 0$ なので $f(x) - f(x_0)$ < 0 $x - x_0 > 0$ なので $f(x) - f(x_0) < 0$ $\vdots f(x) < f(x_0)$ < 0 < 0 $\vdots f(x) < f(x_0)$ $\vdots f(x) < f(x_0)$

$$\left.\frac{\partial \hat{S}_3}{\partial U^{(1)}}\right|_{U^{(1)}=U_1^{(1)}}=0$$
 , $0 < U_1^{(1)} < U$ とする

$$(U_1^{(1)})^{-2/3}(V_1^{(1)})^{1/3} - (U - U_1^{(1)})^{-2/3}(V - V_1^{(1)})^{1/3} = 0$$

$$\ \, \boldsymbol{\cdots} \, \, (U_1^{(1)})^{-2/3} (V_1^{(1)})^{1/3} = (U - U_1^{(1)})^{-2/3} (V - V_1^{(1)})^{1/3}$$

 $V_1^{(1)} \neq 0 \ \texttt{2}$

$$\ \, \dot{\cdots} \, \left(\frac{U_1^{(1)}}{U-U_1^{(1)}}\right)^{-2/3} = \Big(\frac{V-V_1^{(1)}}{V_1^{(1)}}\Big)^{1/3}$$

$$\ \, \dot{\cdots} \, \left(\frac{U - U_1^{(1)}}{U_1^{(1)}} \right)^2 = \frac{V - V_1^{(1)}}{V_1^{(1)}}$$

$$\therefore \frac{U - U_1^{(1)}}{U_1^{(1)}} = \pm \sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}$$

$$\frac{U - U_1^{(1)}}{U_1^{(1)}} = \sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}$$
 とすると

$$U_1^{(1)} = rac{U}{1 + \sqrt{rac{V - V_1^{(1)}}{V_i^{(1)}}}}$$
 となる

逆に
$$V_1^{(1)} \neq 0$$
, $V_1^{(1)} \neq V$ かつ $U_1^{(1)} = \frac{U}{1 + \sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}}$ とすると

$$U>0$$
かつ $\sqrt{\frac{V-V_1^{(1)}}{V_1^{(1)}}}>0$ なので $0< U_1^{(1)} < U$ である

また

$$\begin{split} \frac{\partial \hat{S}_3}{\partial U^{(1)}}\Big|_{U^{(1)}=U_1^{(1)}} &= K \Big(\frac{N}{2}\Big)^{1/3} \frac{1}{3} \Big[(U_1^{(1)})^{-2/3} (V_1^{(1)})^{1/3} - (U - U_1^{(1)})^{-2/3} (V - V_1^{(1)})^{1/3} \Big] \\ &= K \Big(\frac{N}{2}\Big)^{1/3} \frac{1}{3} \left[\left(\frac{U}{1 + \sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}} \right)^{-2/3} (V_1^{(1)})^{1/3} - \left(U - \frac{U}{1 + \sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}} \right)^{-2/3} (V - V_1^{(1)})^{1/3} \right] \\ &= K \Big(\frac{N}{2}\Big)^{1/3} \frac{1}{3} \left[\left(\frac{U}{1 + \sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}} (V^{(1)})^{-1/2} \right)^{-2/3} - \left(\frac{U\sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}} {1 + \sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}} (V - V_1^{(1)})^{-1/2} \right)^{-2/3} \right] \\ &= K \Big(\frac{N}{2}\Big)^{1/3} \frac{1}{3} \left[\left(\frac{U(V^{(1)})^{-1/2}}{1 + \sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}} \right)^{-2/3} - \left(\frac{U(V^{(1)})^{-1/2}}{1 + \sqrt{\frac{V - V_1^{(1)}}{V_1^{(1)}}}} \right)^{-2/3} \right] \\ &= 0 \end{split}$$

である

よって
$$V_1^{(1)} \neq 0$$
, $V_1^{(1)} \neq V$ ならば

$$U_1^{(1)} = rac{U}{1+\sqrt{rac{V-V_1^{(1)}}{V_1^{(1)}}}} \; (4.11) \;$$
において $\hat{S_3}$ は最大となる

よって

$$0 < V_1^{(1)} < V$$
 ならば

$$S(U,V,N:C_0,C_1,C_2) = \max_{U^{(1)}} \hat{S_3} = \frac{\partial \hat{S}_3}{\partial U^{(1)}} \Big|_{U^{(1)} = U_1^{(1)}}$$

$$\begin{split} &=K\Big(\frac{N}{2}\Big)^{1/3}\left[\left(\frac{U}{1+\sqrt{\frac{V-V_1^{(1)}}{V_1^{(1)}}}}V_1^{(1)}\right)^{1/3}+\left(\left(U-\frac{U}{1+\sqrt{\frac{V-V_1^{(1)}}{V_1^{(1)}}}}\right)(V-V_1^{(1)})\right)^{1/3}\right]\\ &=K\Big(\frac{UN}{2}\Big)^{1/3}\left[\left(\frac{V_1^{(1)}}{1+\sqrt{\frac{V-V_1^{(1)}}{V_1^{(1)}}}}\right)^{1/3}+\left(\frac{V-V_1^{(1)}}{1+\sqrt{\frac{V_1(1)}{V-V_1^{(1)}}}}\right)^{1/3}\right]\ (4.10) \end{split}$$

 $V_1^{(1)} = 0$ ならば

$$\hat{S}_3 = K \Big(\frac{N}{2}\Big)^{1/3} (U - U^{(1)})^{1/3} V^{1/3}$$

この $\hat{S_3}$ は $0 \leq U^{(1)} \leq U$ で強単調減少である $\mbox{ (*4)}$

 $(*4)0 \le x \le X$ で $(X-x)^{1/3}$ は強単調減少(証明)

$$0 \leq x_1 < x_2 \leq X \, \text{\it Ltd}$$

$$\therefore X - x_1 > X - x_2 \ge 0$$

$$\therefore (X-x_1)^{1/3} > (X-x_2)^{1/3} ($$
∵ 省略) よって $(X-x)^{1/3}$ は強単調減少

よって
$$U_1^{(1)}=0$$
 で $\hat{S}_3=K\Bigl(\frac{N}{2}\Bigr)^{1/3}U^{1/3}V^{1/3}$ は最大となる

$$V_1^{(1)} = V$$
 ならば

$$\hat{S}_3 = K \left(\frac{N}{2}\right)^{1/3} (U^{(1)})^{1/3} V^{1/3}$$

この \hat{S}_3 は $0 \leq U^{(1)} \leq U$ で強単調増加である (*5)

 $(*5)0 \le x \le X$ で $x^{1/3}$ は強単調増加 (証明)省略

よって
$$U_1^{(1)}=U$$
 で $\hat{S}_3=K\Big(\frac{N}{2}\Big)^{1/3}U^{1/3}V^{1/3}$ は最大となる

よって

$$V_{\mathrm{l}}^{(1)}=V$$
または $V_{\mathrm{l}}^{(1)}=V$ ならば

$$S(U,V,N:C_0,C_1,C_2) = \max_{U^{(1)}} \hat{S}_3 = K \Big(\frac{N}{2}\Big)^{1/3} U^{1/3} V^{1/3}$$

本文では $V_1^{(1)}=0$ または $V_1^{(1)}=V$ の場合について書かれていないが、暗黙で $0< V_1^{(1)}< V$ と仮定されているのかもしれない (注意) 複合系のエントロピー S は U,V,N を変化させたときの \hat{S} の最大値ではない。 $U^{(1)},V^{(1)},N^{(1)},U^{(2)},V^{(2)},N^{(2)}$ を変化させたときの \hat{S} の最大値である (要請 $\Pi(\mathbf{v})$)

$$P.64 (4.16) max_{U,V} = max_{U,max_{V}} '25 8.9$$

$$\max_{U^{(1)},V^{(1)}}\hat{S}_2$$
 は存在する

 $\max_{V^{(1)}}\max_{U^{(1)}}\hat{S}_2$ は存在する

$$\max_{U^{(1)},V^{(1)}}\hat{S}_2 = \max_{V^{(1)}}\max_{U^{(1)}}\hat{S}_2$$
 (4.16) ాద్ద

(証明)

$$\hat{S}_2(U^{(1)},V^{(1)}) = K \Big(\frac{N}{2}\Big)^{1/3} [(U^{(1)}V^{(1)})^{1/3} + ((U-U^{(1)})(V-V^{(1)}))^{1/3}]$$
 とする

$$\hat{S}_2$$
 は $0 \leq U^{(1)} \leq U, \; 0 \leq V^{(1)} \leq V$ で一様連続 (別頁)

よって
$$\max_{U^{(1)},V^{(1)}} \hat{S_2}$$
 は存在する (: 閉領域の連続関数は最大値をもつ)

また

$$0 \leq V_0^{(1)} \leq V$$
とすると $\hat{S_2}(U^{(1)}, V_0^{(1)})$ は $0 \leq U^{(1)} \leq U$ で連続

よって
$$\max_{U^{(1)}} \hat{S_2}(U^{(1)}, V_0^{(1)})$$
 は存在する (∵ 閉区間で連続関数は最大値をもつ)

$$V_0^{(1)}$$
 は任意なので $\max_{U^{(1)}} \hat{S_2}(U^{(1)},V^{(1)})$ は存在する

また
$$\max_{U(1)} \hat{S}_2$$
 は $0 \le V^{(1)} \le V$ で連続 (*1)

(*1)
$$f(x,y)$$
が一様連続ならば $\max_y f(x,y)$ は連続 (証明)
$$f(x,y)$$
は一様連続なので任意の ε に対して x,x_0,y によらない δ があって
$$|(x,y)-(x_0,y)|<\delta$$
ならば $|f(x,y)-f(x_0,y)|<\varepsilon$ $|x-x_0|<\delta$ ならば
$$|(x,y)-(x_0,y)|=\sqrt{(x-x_0)^2+(y-y)^2}=|x-x_0|<\delta$$
 よって $|x-x_0|<\delta$ ならば $|f(x,y)-f(x_0,y)|<\varepsilon$ \therefore $-\varepsilon< f(x,y)-f(x_0,y)<\varepsilon$ \therefore $-\varepsilon+f(x_0,y) $f(x_0,y)\leq\max_y f(x_0,y)$ なので(1)の右側の不等式より $f(x,y)<\varepsilon+\max_y f(x_0,y)$ yは任意なので \therefore $-\varepsilon+\max_y f(x,y)<\max_y f(x_0,y)+\varepsilon$ \therefore $-\varepsilon+\max_y f(x,y)<\max_y f(x_0,y)$ また $f(x,y)<\max_y f(x,y)$ \cos $f(x,y)<\max_y f(x,y)$ \cos $f(x,y)<\max_y f(x,y)$ \cos $f(x,y)<\infty$ $f(x,y)<\infty$$

よって $\max_{V^{(1)}}\max_{U^{(1)}}\hat{S_2}$ は存在する (: 閉区間の連続関数は最大値をもつ)

よって
$$\max_{U^{(1)},V^{(1)}} \hat{S_2} = \max_{V^{(1)}} \max_{U^{(1)}} \hat{S_2}$$
 である (*2)

(*2)
$$\max_{x,y} f(x,y)$$
, $\max_{x} \max_{y} f(x,y)$ が存在するならば $\max_{x,y} f(x,y) = \max_{x} \max_{y} f(x,y)$ (証明)
$$f(x,y) \leq \max_{x,y} f(x,y)$$
 yは任意なので $\max_{y} f(x,y) \leq \max_{x,y} f(x,y)$ xは任意なので $\max_{x} \max_{y} f(x,y) \leq \max_{x,y} f(x,y)$ また $f(x,y) \leq \max_{x} \max_{y} f(x,y) \leq \max_{x} \max_{y} f(x,y)$ x, yは任意なので $\max_{x} f(x,y) \leq \max_{x} \max_{y} f(x,y)$ よって $\max_{x,y} f(x,y) = \max_{x} \max_{y} f(x,y)$ よって $\max_{x,y} f(x,y) = \max_{x} \max_{y} f(x,y)$

P.64 (4.16) '25 8.9

$$S(U,V,N:C_1) = \max_{U^{(1)},V^{(1)}} \hat{S} = \max_{V^{(1)}} \max_{U^{(1)}} \hat{S} = \max_{V^{(1)}} S(U,V,N:C_1,C_2) \quad (4.16)$$

(説明)

$$\hat{S}(U^{(1)}, V^{(1)}, N^{(1)}, U^{(2)}, V^{(2)}, N^{(2)}) = S^{(1)}(U^{(1)}, V^{(1)}, N^{(1)}) + S^{(2)}(U^{(2)}, V^{(2)}, N^{(2)}) \ (\because 3.13)$$

 $U^{(1)},V^{(1)},N^{(1)},U^{(2)},V^{(2)},N^{(2)}$ は独立変数、K は定数とする

$$C_0:\; U=U^{(1)}+U_1^{(2)}, V=V^{(1)}+V_1^{(2)}, N=N^{(1)}+N_1^{(2)}$$
 (4.3) とする

U,V,N は独立変数とする

$$\hat{S}_1(U,V,N,U^{(1)},V^{(1)},N^{(1)}) = \hat{S}(U^{(1)},V^{(1)},N^{(1)},U-U^{(1)},V-V^{(1)},N-N^{(1)})$$
 とする

$$C_1:\;N^{(1)}=rac{N}{2}$$
 とする

$$\hat{S}_2(U,V,N,U^{(1)},V^{(1)})=\hat{S}_1(U,V,N,U^{(1)},V^{(1)},\frac{N}{2})$$
 とする

$$\begin{split} S(U,V,N:C_0,C_1) &= \max_{U^{(1)},V^{(1)},N^{(1)},U^{(2)},V^{(2)},N^{(2)}} \left(\hat{S} \ , \ C_0, \ C_1 \right) \, (\because \ \Xi \ \Pi(\mathbf{v})) \\ &= \max_{U^{(1)},V^{(1)},N^{(1)},U^{(2)},V^{(2)},N^{(2)}} \left(\hat{S}_1, \ C_1 \right) \, (\because \ C_0) \\ &= \max_{U^{(1)},V^{(1)},N^{(1)}} \left(\hat{S}_1, \ C_1 \right) \, (\because \ \hat{S}_1 \ \exists \ U^{(2)},V^{(2)},N^{(2)} \ \forall \ \& \ \& \ \& \ V \ \mathcal{O} \ \circlearrowleft) \\ &= \max_{U^{(1)},V^{(1)},N^{(1)}} \hat{S}_2 \, (\because \ \hat{S}_2 \ \exists \ N^{(1)} \ \& \ \& \ \& \ \& \ V \ \mathcal{O} \ \circlearrowleft) \\ &= \max_{V^{(1)}} \max_{U^{(1)}} \hat{S}_2 \, (U,V,N,U^{(1)},V^{(1)}) \, \, (*1) \end{split}$$

(*1) 別頁

上の等式は任意の U,V,N で成立する。かつ $\max_{V^{(1)}}\max_{U^{(1)}}\hat{S}_2$ は存在する (別頁)

よって
$$S(U,V,N:C_0,C_1)$$
 は存在する

$$C_2:\ V^{(1)}=V_1^{(1)}$$
 とする

$$\hat{S}_3(U,V,N,U^{(1)}) = \hat{S}_2(U,V,N,U^{(1)},V_1^{(1)})$$
 とする

上の等式は任意のU, V, Nで成立する。

また、
$$\hat{S}_2(U,V,N,U^{(1)},V^{(1)})$$
 は一様連続なので (別頁)

よって
$$\hat{S}_2(U,V,N,U^{(1)},V_1^{(1)})$$
 は連続 $(∵ \ f(x,y)$ が連続ならば $f(a,y)$ は連続)

よって
$$\hat{S}_3(U,V,N,U^{(1)})$$
 は連続

よって
$$\max_{U^{(1)}} \hat{S_3}(U,V,N,U^{(1)})$$
 は存在する (∵ 閉区間で連続な関数は最大値をもつ)

よって
$$S(U,V,N:C_0,C_1,C_2)$$
 は存在する

$$\begin{split} \max_{V_1^{(1)}} S(U,V,N:C_0,C_1,C_2) &= \max_{V_1^{(1)}} \max_{U^{(1)}} \hat{S_3} \\ &= \max_{V_1^{(1)}} \max_{U^{(1)}} \hat{S_2}(U,V,N,U^{(1)},V_1^{(1)}) \end{split}$$

 $V_1^{(1)}$ は ダミー変数なので

$$\max_{V^{(1)}} S(U,V,N:C_0,C_1,C_2) = \max_{V^{(1)}} \max_{U^{(1)}} \hat{S_2}(U,V,N,U^{(1)},V^{(1)})$$

任意の U,V,N で等式は成立する。かつ $\max_{V^{(1)}}\max_{U^{(1)}}\hat{S_2}(U,V,N,U^{(1)},V^{(1)})$ は存在する (別頁)

よって $\max_{V^{(1)}} S(U,V,N:C_0,C_1,C_2)$ は存在する

よって

$$\begin{split} S(U,V,N:C_0,C_1) &= \max_{U^{(1)},V^{(1)}} \hat{S}_2(U,V,N,U^{(1)},V^{(1)}) \\ &= \max_{V^{(1)}} \max_{U^{(1)}} \hat{S}_2(U,V,N,U^{(1)},V^{(1)}) \\ &= \max_{V^{(1)}} S(U,V,N:C_0,C_1,C_2) \end{split}$$

 C_2 で $V_1^{(1)}$ を固定したのに $\max_{V_1^{(1)}}$ とするのはおかしい感じがするが

固定するといいつつ $V_1^{(1)}$ は任意なので、 C_2 の制約はないのと同じという話である

P.64 (4.17) (4.20) (4.21) (4.22) '25 8.10

$$f(x) + f(X - x)$$
 (4.17)

$$V^{(1)} = \frac{V}{2} \ (4.20)$$

$$S(U,V,N:C_1) = K(UVN)^{1/3} \ \ (4.21)$$

$$U^{(1)} = \frac{U}{2} \quad (4.22)$$

(説明)

$$S(U,V,N:C_1,C_2) = K \Big(\frac{UN}{2}\Big)^{1/3} \left[\left(\frac{V^{(1)}}{1+\sqrt{\frac{V-V^{(1)}}{V^{(1)}}}}\right)^{1/3} + \left(\frac{V-V^{(1)}}{1+\sqrt{\frac{V^{(1)}}{V-V^{(1)}}}}\right)^{1/3} \right] \eqno(4.10)$$

x は独立変数とする。0 < x < X とする

$$f(x) = \left(rac{x}{1+\sqrt{rac{X-x}{x}}}
ight)^{1/3}$$
 とする

$$f(X-x) = \left(rac{X-x}{1+\sqrt{rac{x}{X-x}}}
ight)^{1/3}$$
 である

よって X = Vとすると

$$S(U,V,N:C_1,C_2) = K\Big(\frac{UN}{2}\Big)^{1/3}\Big[f(V^{(1)}) + f(V-V^{(1)})\Big]$$
 である

よって $S(U,V,N:C_1,C_2)$ は f(x)+f(X-x) (4.17) の形をしている

本文ではf'(x)は強単調としているがプロットしてみると

となり f'(x) は単調減少でも単調増加でもない

$$S_1^{(1)}(U^{(1)},V^{(1)})=S^{(1)}(U^{(1)},V^{(1)},N^{(1)}),C_0,C_1 \ =S^{(1)}(U^{(1)},V^{(1)},N^{(1)}),C_1\ (\because C_0$$
は $U^{(2)},V^{(2)},N^{(2)}$ の制約なので)
$$=S^{(1)}(U^{(1)},V^{(1)},\frac{N}{2})\ (\because C_1:N^{(1)}=\frac{N}{2})$$

$$=K\Big(\frac{N}{2}\Big)^{1/3}(U^{(1)}V^{(1)})^{1/3}$$

とする

5.3 節によると $S_1^{(1)}(U^{(1)},V^{(1)})$ は $V^{(1)}$ について同関数 である よって $\frac{\partial S_1^{(1)}}{\partial V^{(1)}}$ は強単調減少である

しかし
$$S_2^{(1)}(V^{(1)}) = S_1^{(1)} \left(\frac{U}{1 + \sqrt{\frac{V - V^{(1)}}{V^{(1)}}}}, V^{(1)} \right)$$
 が $V^{(1)}$ について回関数である保証はない (*1)

(*1)f(x,y)が凹であってもf(g(y),y)が凹とは限らない f(g(y),y)が凹となる条件は?

よって $rac{dS_2}{dV^{(1)}}$ が強単調減少かどうかはわからない

実際
$$S_2^{(1)}(V^{(1)}) = K\Big(\frac{N}{2}\Big)^{1/3} f(V^{(1)})$$
 であるが、

上のプロットのとおり f'(x) は強単調減少ではなく、よって $\dfrac{dS_2^{(1)}}{dV^{(1)}}$ は強単調減少ではない。

ここでうまいこと f(x)+f(X-x) が $\frac{X}{2}$ で最大になっているのは

たまたま (f(x) + f(X - x))' が強単調減少になっているからである

これがいつも保証されているわけではない。(保証される条件は?)

また、強単調減少かどうか確認するのも大変である。(ここでは数値計算してプロットして確認。解析的な確認は?)

$$x = \frac{X}{2}$$
 で $(f(x) - f(X - x))' = 0$ となる (*2)

よって
$$\frac{X}{2}$$
 において $f(x)+f(X-x)$ は最大となる (*3)

 $(*3)0 \le x \le X \circ g(x)$ は連続

$$0 < x < X$$
で $g'(x)$ が強単調減少
$$0 < x_0 < X, g'(x_0) = 0$$
ならば $g(x_0)$ は最大

最大値は

$$\begin{split} f(X/2) + f(X - X/2) &= 2f(X/2) \\ &= 2 \left(\frac{X/2}{1 + \sqrt{\frac{X - X/2}{X/2}}} \right)^{1/3} \\ &= 2 \left(\frac{X}{4} \right)^{1/3} = (2X)^{1/3} \end{split}$$

となる

よって

$$\begin{split} S(U,V,N:C_1) &= \max_{V^{(1)}} S(U,V,N:C_1,C_2) \ (\because \ (4.15)) \\ &= \max_{V^{(1)}} K\Big(\frac{UN}{2}\Big)^{1/3} \Big[f(V^{(1)}) + f(V-V^{(1)}) \Big] \\ &= K\Big(\frac{UN}{2}\Big)^{1/3} (2V)^{1/3} \\ &= K(UNV)^{1/3} \ \ (4.21) \end{split}$$

となる

$$\max_{V^{(1)}} S(U,V,N:C_1,C_2)$$
 を与える $V^{(1)}$ は $V^{(1)}=\frac{V}{2}$ (4.20) である

また
$$S(U,V,N:C_1,C_2)$$
 を与える $U^{(1)}$ は

$$\begin{split} U^{(1)} &= \frac{U}{1 + \sqrt{\frac{V - V^{(1)}}{V^{(1)}}}} \; (\because \; (4.11)) \\ &= \frac{U}{1 + \sqrt{\frac{V - V/2}{V/2}}} \\ &= \frac{U}{2} \; \; (4.22) \end{split}$$

である

P.66 ε空間 '25 8.9

- (1) ε 空間の次元は dim $\varepsilon = t + 1$ (4.23)
- (2) ε 空間の各々の点は、この単純系の平衡状態と一対一に対応する
- $(3) \ \varepsilon \ \text{は} \ \hat{\varepsilon} \ \text{の部分空間で、} \dim \hat{\varepsilon} = \sum_i \dim \varepsilon_i = \sum_i (t_i + 1) \geq \dim \varepsilon \ \ (4.24)$

(説明)

(1)

$$t=2, \ X=X_1, X_2$$
 とする

$$\begin{split} \varepsilon &= \{(U, X_1, X_2): U \in \mathbb{R}, X_1 \in \mathbb{R}, X_2 \in \mathbb{R}\} \\ &= span((1, 0, 0), (0, 1, 0), (0, 0, 1)) \end{split}$$

よって $\dim \epsilon = 3$ である

同様に $t \in \mathbb{Z}^+$ (正の整数) のとき dim $\varepsilon = t+1$ (4.23) である

(注意)

$$\varepsilon = \{(U,X_1,X_2): U \geq 0, X_1 \geq 0, X_2 \geq 0\}$$
 とすると ε はベクトル空間ではなくなる

なぜならベクトル空間の定義の $\lceil v \in \varepsilon$ ならば $\lambda v \in \varepsilon, \lambda \in \mathbb{R}$ 」に反するので

なので ε をベクトル空間として扱うとマイナスの物理量 N とかマイナスの体積 Vとかが出てきてちょっと変な感じがするとはいえ、 ε をベクトル空間として扱っているのはこの節だけみたいなのであまり気にしなくてよいと思う

(2)

これは仮定、要請である (たぶん要請 II(iv) で系全体を部分系とした場合だと思う)

(3)

$$egin{aligned} t_1 &= 1, \ \pmb{X}^{(1)} &= X_1^{(1)} \ \succeq$$
する
$$egin{aligned} arepsilon_1 &= \{(U^{(1)}, X_1^{(1)}): U^{(1)} \in \mathbb{R}, X_1^{(1)} \in \mathbb{R}\} \\ &= span((1,0), (0,1)) \end{aligned}$$

よって $\dim \varepsilon_1 = 2$

$$t_2=2, \ m{X}^{(2)}=X_1^{(2)}, X_2^{(2)}$$
 とする

$$\begin{split} \varepsilon_2 &= \{(U^{(2)}, X_1^{(2)}, X_2^{(2)}) : U^{(2)} \in \mathbb{R}, X_1^{(2)} \in \mathbb{R}, X_2^{(2)} \in \mathbb{R}\} \\ &= span((1,0,0), (0,1,0), (0,0,1)) \end{split}$$

よって $\dim \varepsilon_2 = 3$

$$\begin{split} \hat{\varepsilon} &= \{(U^{(1)}, X_1^{(1)}, U^{(2)}, X_1^{(2)}, X_2^{(2)}) : U^{(1)} \in \mathbb{R}, X_1^{(1)} \in \mathbb{R}, U^{(2)} \in \mathbb{R}, X_1^{(2)} \in \mathbb{R}, X_2^{(2)} \in \mathbb{R}\} \\ &= span((1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)) \end{split}$$

よって $\dim \hat{\varepsilon} = 5$

$$U=U^{(1)}+U^{(2)},\; X_1=X_1^{(1)}+X^{(2)},\; X_2=X_2^{(2)}$$
 とする

$$\begin{split} \varepsilon &= \{(U, X_1, X_2, 0, 0): U \in \mathbb{R}, X_1 \in \mathbb{R}, X_2 \in \mathbb{R}\} \\ &= span((1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)) \end{split}$$

よって ε は $\hat{\varepsilon}$ の部分空間で $\dim \varepsilon = 3$ である

よって $\dim \hat{\varepsilon} = \dim \varepsilon_1 + \dim \varepsilon_2 = (t_1+1) + (t_2+1) > \dim \varepsilon$

部分系の個数 $\in \mathbb{Z}^+,\ t_i \in \mathbb{Z}^+$ (\mathbb{Z}^+ は正の整数) の場合も同様に

$$\dim \hat{\varepsilon} = \sum_i \dim \varepsilon_i = \sum_i (t_i + 1) \geq \dim \varepsilon \ (4.24)$$

等号が成立するのは部分系の個数 =1 のとき

P.68 定理 4.1 '25 8.9

(1) 内部束縛 C_1, \ldots, C_h が少ないほど、最大値を探す範囲が広くなるので S は大きくなる

(2) 定理
$$4.1\ S(U, \mathbf{X}; \dots, C_{k-1}, C_k, C_{k+1}, \dots) \le S(U, \mathbf{X}; \dots, C_{k-1}, C_{k+1}, \dots)$$
 (4.25)

(説明)

(1)

例として部分系2つからなる複合系をかんがえる

部分系の自然変数を
$$U^{(i)}, \boldsymbol{X}^{(i)} = U^{(i)}, X_1^{(i)}, X_2^{(i)}$$
 とする

$$U=U^{(1)}+U^{(2)},\; X_1=X_1^{(1)}+X_1^{(2)},\; X_2=X_1^{(1)}+X_2^{(2)}$$
 とする

$$\begin{split} \hat{S}(U, \boldsymbol{X}, U^{(1)}, X_1^{(1)}, X_2^{(1)}) &= S^{(1)}(U^{(1)}, X_1^{(1)}, X_2^{(1)}) + S^{(2)}(U^{(2)}, X_1^{(2)}, X_2^{(2)}) \\ &= S^{(1)}(U^{(1)}, X_1^{(1)}, X_2^{(1)}) + S^{(2)}(U - U^{(1)}, X_1 - X_1^{(1)}, X_2 - X_2^{(1)}) \end{split}$$

とする

内部束縛を
$$C_1:\ X_1^{(1)}=1,\ C_2:\ X_2^{(1)}=2$$
 とする

$$\begin{split} S_1(U, \pmb{X}: C_1, C_2) &= \max_{U^{(1)}, X_1^{(1)}, X_2^{(1)}} \left(\hat{S}, C_1, C_2 \right) \\ &= \max_{U^{(1)}} \hat{S}(U, \pmb{X}, U^{(1)}, 1, 2) \end{split}$$

とする

$$\begin{split} S_2(U, \pmb{X}:C_1) &= \max_{U^{(1)}, X_1^{(1)}, X_2^{(1)}} \left(\hat{S}, C_1\right) \\ &= \max_{U^{(1)}, X_2^{(1)}} \hat{S}(U, \pmb{X}, U^{(1)}, 1, X_2^{(1)}) \end{split}$$

とする

任意の $X_2^{(1)}$ について

$$\max_{U^{(1)}} \hat{S}(U, \boldsymbol{X}, U^{(1)}, 1, X_2^{(1)}) \leq \max_{U^{(1)}, X_2^{(1)}} \hat{S}(U, \boldsymbol{X}, U^{(1)}, 1, X_2^{(1)})$$

なので

$$\max_{U^{(1)}} \hat{S}(U, \boldsymbol{X}, U^{(1)}, 1, 2) \leq \max_{U^{(1)}, X_2^{(1)}} \hat{S}(U, \boldsymbol{X}, U^{(1)}, 1, X_2^{(1)})$$

よって
$$S_1(U, \mathbf{X}: C_1, C_2) \leq S_2(U, \mathbf{X}: C_1)$$
 である

各最大値 $\max_{U^{(1)}}$..., $\max_{U^{(1)},X_2^{(1)}}$... は存在すると仮定している

「内部束縛が少ないほど、最大値を探す範囲が広くなるのでSは大きくなる」というのは

$$A = \{y: 0 \leq y \leq Y\}$$
、 $B = \{y: y \in A, y$ についての束縛 $\}$ とすると $B \subseteq A$ である

このとき
$$\left(y \in B, \max_{x,y} f(x,y)\right) \le \left(y \in A, \max_{x,y} f(x,y)\right)$$
 ということである (*1)

(*1)(証明)

$$y_0 \in B$$
が存在して $\left(y \in B, \max_{x,y} f(x,y)\right) = \max_x f(x,y_0)$
任意の $y \in A$ について $\max_x f(x,y) \leq \left(y \in A, \max_{x,y} f(x,y)\right)$
∴ $\max_x f(x,y_0) \leq \max_x f(x,y)$

$$\div \left(y \in B, \, \max_{x,y} f(x,y)\right) \leq \left(y \in A, \, \max_{x,y} f(x,y)\right)$$
 各最大値 $\max_x \dots$, $\max_{x,y} \dots$ は存在すると仮定している

(2)

任意の
$$\hat{S}$$
 と C_1,\dots,C_b に対しても同様に

$$S(U, \pmb{X}; \dots, C_{k-1}, C_k, C_{k+1}, \dots) \leq S(U, \pmb{X}; \dots, C_{k-1}, C_{k+1}, \dots) \ \ (4.25)$$

である

P.68 定理 4.2 '25 9.1

定理 4.2 の後半

... $\{U^{(i)}, \boldsymbol{X}^{(i)}\}$ の値の範囲は、引数として与えられた $U, \boldsymbol{X}; \boldsymbol{C}$ の下で、相加性を満たすような範囲内とする

(説明)

「相加性を満たすような範囲内」というのは $U^{(1)},\ U^{(2)}$ の範囲が $U=U^{(1)}+U^{(2)}$ を満たすような範囲内にあるということ ただ、これだけだと $0\leq U^{(1)}\leq U$ とかの範囲制限ができない

なので、 $0 \le U^{(i)} \le U$ とか $0 \le V^{(i)} \le V$ とかいう条件が C に含まれているはず

だが、4.1.3節の例ではこの条件は明示されていなかった。暗黙的な範囲制限もあるみたいなので注意

P.69 完全な知識 '25 9.2

... 系の熱力学的性質に関する完全な知識を得たことになる ...

(説明)

「完全な知識」というのはよくわからないが、この文脈から考えるに $S(U, \mathbf{X})$ の式が得られることのような感じがする

P.71 混合系の要請 II(ii) '25 9.1

要請 II(ii) は、異なる物質が空間的に分離している単純系の平衡状態でも矛盾なく成り立つ

(説明)

これは仮定、要請である。経験的に正しさが保証されている

空間的に分離してるのに要請 $\mathrm{II}(\mathrm{ii})$ が成立しないような物質が見つかればまた見直さないといけない

P.72 エントロピー減少できない '25 9.1

- (1) 断熱-断物の壁でかこまれた系に、どんな力学的仕事をしようともエントロピーを減少できない
- (2) このような帰結を要請 I,II から導ける

(説明)

(1)

これは仮定、要請である。経験的に正しさが保証されている

「どんな力学的仕事」というのも経験的に定義される。断熱-断物の壁としているので膨張、圧縮のことだと思われる 断熱膨張、断熱圧縮してもエントロピーは変化しない

(2)

(1) は経験的な要請であるが、要請 I,II から導けるらしい

P.74 定理 5.1 '25 9.2

定理 5.1 エントロピーは相加的、したがって均一な平衡状態では示量的

(説明)

相加的というのは部分系の量の和が全体系の量になること

 $S = \sum_i S^{(i)}$ (5.3)、部分系 $S^{(i)}$ は単純系でも複合系でもよい。部分系は単純系か単純系の集まった複合系かのどちらかしかない。 よってエントロピーは相加的である

ここで「複合系は必ず単純系に分割できる」と仮定、要請している。これは経験的に保証される

示量的というのは系の量が体積に比例すること

全体系が均一な平衡状態とする。部分系 1 の体積 $V^{(1)}$ 、部分系 2 の体積 $V^{(2)}=kV^{(1)},\ k\in \mathbf{Z}^+$ とする

部分系 2 を k 個の部分系 2-1,...,2-k に分割する。体積は $V^{(2-i)} = V^{(1)}$ とする。

全体系が均一なので部分系 2-1,...,2-k のマクロ物理量

全体系が均一な平衡状態にあるとき、これを 10 個の等しい体積の部分系に分割する。全体系が均一なので部分系のマクロ物理量は同じである。 $S^{(i)}=S^{(j)}$ よって $S=10S^{(1)}$