複雑さの理論 中間テスト練習問題

問1

2 階微分方程式

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

 $(ただし, x \in \mathbb{C}, \omega$ は定数) について, 以下の問に答えよ.

(1)

$$x = C_0 \exp(i\omega t) + C_1 \exp(-i\omega t), \quad C_0, C_1 \in \mathbb{C}$$
 は任意定数

としたとき,xが一般解となることを示せ.

(2) 次の初期条件

$$t = 0$$
 のとき $x = a\cos\phi$, $\frac{dx}{dt} = -a\omega\sin\phi$

(ただし a, ϕ は定数)を与えたとき、任意定数を含まない解を求めよ.

問 2

微分方程式

$$\frac{d^2x}{dt^2} + p\frac{dx}{dt} + qx = 0$$

の 2 つの解 x_1, x_2 と、そのロンスキー行列式 $W(x_1, x_2)$

$$W(x_1, x_2) \equiv x_1 x_2' - x_1' x_2 = \begin{vmatrix} x_1 & x_2 \\ x_1' & x_2' \end{vmatrix}$$

について,次が成り立つことを示せ.

- (1) W' + pW = 0
- (2) x_1, x_2 が 1 次従属ならば $W(x_1, x_2) = 0$

ただし、 x_1, x_2 が 1 次独立であるとは、 C_1, C_2 を定数として $C_1x_1 + C_2x_2 \neq 0$ が恒等的に成り立つことであり、1 次従属はそうでないことである.

問3

次の微分方程式を解け. ただし(6)は特解を一つ求めよ.

$$(1)$$
 $\frac{dx}{dt} = a - bx$ ただし、 a, b は定数.

(2)
$$(t^2 + tx)\frac{dx}{dt} = x^2$$
 解答は x, t の満たす関係式でよい.

$$(3) \frac{dx}{dt} = e^{x/t} + \frac{x}{t}$$

(4)
$$\frac{dx}{dt} = -\frac{1}{t}x^2 + \frac{1}{t}x + t$$
 ヒント:特解は $x_0 = t$

(5)
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 3x = e^{2t}$$

(6)
$$\frac{d^3x}{dt^3} - \frac{d^2x}{dt^2} + \frac{dx}{dt} - x = t^2 - t + 1$$