

Grundlagen der Technischen Informatik 2 Sommersemester 25

Übungsblatt 3

Aufgabe 1: Binäre Entscheidungsdiagramme

Gegeben sei die Funktion f durch das folgende geordnete binäre Entscheidungsdiagramm (OBDD):

1. Reduzieren Sie den OBDD so weit wie möglich und zeichnen Sie den rOBDD. Geben Sie bei jedem Schritt die angewandte Regel an.

Regel 1: Eliminierung von Knoten mit gleichen Nachfolgern.

Regel 2: Gemeinsame Nutzung gleicher Teilbäume.

2. Leiten Sie aus dem rOBDD die Funktion f in disjunktiver Form ab.

3. Die minimierte Funktion von f lautet:

$$f_{min} = \overline{x_2} \, \overline{x_1} \vee \overline{x_3} \, \overline{x_1} \vee \overline{x_3} \, \overline{x_2}$$

Ist es somit möglich die Reduzierung des OBDDs als Minimierungsverfahren zu nutzen? Begründen Sie Ihre Entscheidung.

- 1. Reduzieren Sie den OBDD so weit wie möglich und zeichnen Sie den rOBDD. Geben Sie bei jedem Schritt die angewandte Regel an.
 - Regel 1: Eliminierung von Knoten mit gleichen Nachfolgern.
 - Regel 2: Gemeinsame Nutzung gleicher Teilbäume.

2. Leiten Sie aus dem rOBDD die Funktion f in disjunktiver Form ab.

Aufgabe 2: Maschinenzahlen

- 1. Wandeln Sie die folgenden Binärzahlen in Dezimalzahlen um.
 - (a) 10001_2
- (b) 10101112 64,76+4,74 = 87
- 2. Wandeln Sie die folgenden Dezimalzahlen in Binärzahlen um.
 - (a) 144₁₀
- (b) 413₁₀
- 3. Gegeben sei die Hexadezimalzahl $18A32D_{16}$. Wandeln Sie diese in eine Binärzahl um.
- 4. Gegeben sei die Binärzahl 1101010101001001001111_2 . Wandeln Sie diese in eine Hexadezimalzahl um.
- 5. Berechnen Sie das Zweierkomplement der folgenden 8-Bit Integer.
 - (a) 0x00001100
- (b) 0x11111100
- 6. Wandeln Sie die folgenden Dezimalzahlen in IEEE754 16-bit half-precision floating-point Zahlen um
 - (a) 10000_{10}
- (b) 16.16₁₀
- 7. Wandeln Sie die folgende IEEE754 32-bit floating-point Zahlen in eine Dezimalzahl um.

Aufgabe 3: Schaltnetze

- 1. Seien A = 0b00010101 und B = 0b00111011 als zwei signed 8-bit Integer gegeben.
 - (a) Berechnen Sie A + B. Führen Sie dafür binäre Addition durch. (Das Ergebnis soll ebenfalls ein signed 8-bit Integer sein.)
 - (b) Berechnen Sie B-A. Führen Sie dafür binäre Subtraktion durch. (Das Ergebnis soll ebenfalls ein signed 8-bit Integer sein.)
- 2. Konstruieren Sie analog zum Adder (siehe Vorlesung) einen Subtracter. (Ein Schaltnetz, welches die binäre Subtraktion durchführen kann.)
 - (a) Entwerfen Sie einen Half-Subtracter. (Eine Schaltung, die zwei Bits subtrahieren kann.)
 - (b) Erweitern Sie diese Schaltung zu einem Full-Subtracter. (Eine Schaltung, die drei Bits subtrahieren kann.)
 - (c) Wie kann eine solche Schaltung auf 8 Bit erweitert werden? Beschreiben Sie das theoretische Vorgehen.
- 3. Entwerfen Sie analog zum Multiplexer (siehe Vorlesung) eine Schaltung, welche einen Input e, abhängig vom Steuersignal s_0 an Output o_0 oder Output o_1 weiterleitet.

2. Wandeln Sie die folgenden Dezimalzahlen in Binärzahlen um.

(b)
$$413_{10}$$

a)
$$144/2 = 77 Ro \Lambda$$

 $77/2 = 36 R1 = 10010010_2$
 $36/2 = 18 Ro$
 $18/2 = 9 Ro$
 $9/2 = 4 R1$
 $4/2 = 2 Ro$
 $2/2 = 1 Ro$
 $1/2 = 0 R1$

$$4/3/2 = 206$$
 F1
 $206/2 = 103$ R0
 $103/2 = 51$ F1
 $51/2 = 25$ R1
 $25/2 = 12$ F1
 $12/2 = 6$ R0
 $6/2 = 3$ R0
 $3/2 = 1$ F1
 $1/2 = 0$ F1

3. Gegeben sei die Hexadezimalzahl 18 $A32D_{16}$. Wandeln Sie diese in eine Binärzahl um

$$18A32P_{16} = 000110001100101101$$

$$1000 | 0010 | 1000 | 1001 |$$

5. Berechnen Sie das Zweierkomplement der folgenden 8-Bit Integer.

- 6. Wandeln Sie die folgenden Dezimalzahlen in IEEE754 16-bit half-precision floating-point Zahlen um.
 - (a) 10000_{10}
- (b) 16.16₁₀

100 111 000 10000 j...

10011100010000

Inner ne 1 also egal

blas 1, b" bel 16 float = 13 e= komna verschoben = 13

$$=2b_{0}=11100$$

0111000011100010

7. Wandeln Sie die folgende IEEE754 32-bit floating-point Zahlen in eine Dezimalzahl um.

$$b = 2 \quad (|e \times P| - 1) \quad 1 = 2 \quad -1 = 2 \quad -1 = 128 - 1 = 127$$

Aufgabe 2: Maschinenzahlen

Wandeln Sie die folgenden Binärzahlen in Dezimalzahlen um.

- (a) 10001_2
- (b) 10101112 64,76+4,74 = 87
- 2. Wandeln Sie die folgenden Dezimalzahlen in Binärzahlen um.
 - (a) 144₁₀
- (b) 413₁₀
- 3. Gegeben sei die Hexadezimalzahl $18A32D_{16}$. Wandeln Sie diese in eine Binärzahl um.
- 4. Gegeben sei die Binärzahl 110101010010010011111₂. Wandeln Sie diese in eine Hexadezimalzahl um.
- 5. Berechnen Sie das Zweierkomplement der folgenden 8-Bit Integer.
 - (a) 0x00001100
- (b) 0x11111100
- 6. Wandeln Sie die folgenden Dezimalzahlen in IEEE 754 16-bit half-precision floating-point Zahlen um.
 - (a) 10000_{10}
- (b) 16.16₁₀
- 7. Wandeln Sie die folgende IEEE754 32-bit floating-point Zahlen in eine Dezimalzahl um.

Aufgabe 3: Schaltnetze

- 1. Seien A = 0b00010101 und B = 0b001111011 als zwei signed 8-bit Integer gegeben.
 - (a) Berechnen Sie A + B. Führen Sie dafür binäre Addition durch. (Das Ergebnis soll ebenfalls ein signed 8-bit Integer sein.)
 - (b) Berechnen Sie B-A. Führen Sie dafür binäre Subtraktion durch. (Das Ergebnis soll ebenfalls ein signed 8-bit Integer sein.)
- 2. Konstruieren Sie analog zum Adder (siehe Vorlesung) einen Subtracter. (Ein Schaltnetz, welches die binäre Subtraktion durchführen kann.)
 - (a) Entwerfen Sie einen Half-Subtracter. (Eine Schaltung, die zwei Bits subtrahieren kann.)
 - (b) Erweitern Sie diese Schaltung zu einem Full-Subtracter. (Eine Schaltung, die drei Bits subtrahieren kann.)
 - (c) Wie kann eine solche Schaltung auf 8 Bit erweitert werden? Beschreiben Sie das theoretische Vorgehen.
- 3. Entwerfen Sie analog zum Multiplexer (siehe Vorlesung) eine Schaltung, welche einen Input e, abhängig vom Steuersignal s_0 an Output o_0 oder Output o_1 weiterleitet.

- 1. Seien A = 0b00010101 und B = 0b00111011 als zwei signed 8-bit Integer gegeben.
 - (a) Berechnen Sie A + B. Führen Sie dafür binäre Addition durch. (Das Ergebnis soll ebenfalls ein signed 8-bit Integer sein.)
 - (b) Berechnen Sie B-A. Führen Sie dafür binäre Subtraktion durch. (Das Ergebnis soll ebenfalls ein signed 8-bit Integer sein.)

$$A = 10101$$

$$B = 111011$$

$$A+B = 110101$$

$$+111011$$

$$101000$$

$$B-A = B+(-A+1)$$

$$\begin{array}{c}
B+(-A+1) = 111011 \\
+11111 \\
\hline
+100110
\end{array}$$

- 2. Konstruieren Sie analog zum Adder (siehe Vorlesung) einen Subtracter. (Ein Schaltnetz, welches die binäre Subtraktion durchführen kann.)
 - (a) Entwerfen Sie einen Half-Subtracter. (Eine Schaltung, die zwei Bits subtrahieren kann.)
 - (b) Erweitern Sie diese Schaltung zu einem Full-Subtracter. (Eine Schaltung, die drei Bits subtrahieren kann.)
 - (c) Wie kann eine solche Schaltung auf 8 Bit erweitert werden? Beschreiben Sie das theoretische Vorgehen.

3. Entwerfen Sie analog zum Multiplexer (siehe Vorlesung) eine Schaltung, welche eir abhängig vom Steuersignal s_0 an Output o_0 oder Output o_1 weiterleitet.													ein	en	Inp	ut e	2,															
													•					•	_													
•	۰	۰	۰	٠	۰	٠	۰	٠	۰	٠	۰	۰	۰	۰	٠	۰	۰	٠	۰	۰	۰	٠	۰	۰	۰	۰	٠	٠	۰	۰	٠	۰
۰				۰	۰	۰	۰	۰	0	٠	۰	0	0	0	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	0	۰	۰	۰	۰	•	۰	۰
۰	۰	۰	۰	٠	۰	۰	۰	۰	0	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	0	۰	۰	۰	۰	۰	۰	۰	٠	
•			٠	•	•			•	٠	•		٠	٠	٠	•			•	٠			٠	•	•			•	•	٠	٠	•	
			٠	٠				۰	٠			٠	۰	۰				٠	٠	٠			٠	•	•			٠	٠	•		
				۰					۰					۰														۰				
				٠		٠		٠				۰			٠		٠					٠					٠	٠	۰			
			٠		٠		٠	٠	٠	٠	٠	٠	٠	۰		٠			٠	۰	٠	٠	٠	٠			٠		٠	٠		
		۰	۰	۰	٠		٠	٠	0		٠	٠	٠	٠		٠			٠	٠	۰		۰		٠							
		۰	۰	٠	٠	٠		٠	۰	٠	۰	٠	۰	۰	٠	۰	٠	٠	۰	۰		٠	۰	۰	۰	٠	٠	٠	۰			
				۰				0					0		۰			۰	۰					۰				۰	۰			
				۰	۰	٠	۰	٠	0	٠	۰	۰			٠	۰	٠	٠	۰	۰	۰	٠		۰		٠	٠	۰	٠		٠	
٠	۰	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	۰	۰	٠	٠	٠	٠	٠	۰	٠	٠	۰	٠	۰	٠	٠	٠	٠	٠	٠	
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	
•	۰	۰	۰	٠	٠	٠	۰	٠	۰	٠	۰	٠	۰	۰	٠	۰	٠	٠	۰	۰	۰	٠	۰	۰	۰	٠	٠	٠	۰	٠	٠	
۰	۰	۰	۰	۰	۰	۰	0	۰	0	۰		۰	۰	۰	۰		0	۰	0		۰	۰	۰	0		۰	۰	۰	0	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	0	۰	۰	0	0	0	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰
٠	۰	٠	٠	۰	۰	٠	۰	۰	0	٠	۰	۰	0	0	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	۰	٠	۰	۰	۰	٠	٠	
•	۰	۰	۰	۰	٠	٠	٠	٠	0	٠	۰	۰	۰	۰	٠	۰	٠	٠	٠	۰	۰	٠	۰	٠	۰	٠	٠	٠	٠	۰	٠	
•		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	٠	٠	
																			٠										٠			
		٠	۰		٠		٠	۰	۰	٠	٠	۰	۰		۰	٠		۰	٠		٠	٠	٠				٠	٠	٠			
٠		٠	۰	٠	٠		٠	0	۰	٠			0	0			٠	0	٠		٠		۰	٠					۰			
				۰	٠	٠		۰	0	٠	٠		0			٠	٠	۰	۰		۰			۰				۰	٠	٠		
				۰	۰	٠			0	٠	۰	۰			٠		۰		۰			٠		۰			٠	۰	۰		٠	
٠		۰	۰		٠	٠	٠	٠	۰	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	۰	٠	۰	٠	٠	٠	٠			٠		
•	۰	٠	٠	٠	٠	٠	٠	٠	۰		٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			
•	۰	۰	۰	٠	۰	٠		۰	•	٠		۰	۰	0	٠		٠	٠	٠	0	۰	۰	۰	۰		٠	۰	٠	۰	٠	٠	
٠	۰	۰	۰	۰	۰	۰	0	۰	0	٠		۰	۰	۰	۰		۰	۰	0		۰	۰	۰	0		۰	۰	۰	0	۰	٠	
۰	۰		0	۰	۰	٠	۰	0	0	۰	۰	0	0	0	۰	۰	۰	0	٠		۰	۰	0	٠	۰	٠	0	۰	۰	۰	٠	
۰		۰																														
٠		٠																														
٠		۰																														
٠		٠																														
		٠																														
۰				۰				0		۰			0	0					٠		۰											
				۰				0	0				0	0	۰														۰	۰		
			•	٠	٠	٠	٠	۰	۰		٠		0	0	۰	٠	٠	۰	٠	۰	٠	۰	٠	٠			۰	۰	٠		٠	
٠		٠	۰	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠		٠		٠	٠	٠	٠	٠	٠		٠		٠	٠	٠	•		
•	۰	۰	۰	٠	٠	٠	۰	۰	۰			۰	•	0	٠		٠	۰	٠	0	۰	۰	٠	۰		٠	۰	۰	۰		٠	
•	۰	۰		٠	۰	۰	0	۰		٠		۰	۰		٠		۰	۰	۰		۰	۰	۰			۰	۰	۰		•	٠	۰
۰		۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	0	۰	۰	۰	۰	۰	۰	۰	۰	
•	•	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	۰	۰	٠	٠	٠	٠	٠	۰	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠		۰																														
٠		٠																														
•		۰																														
۰	۰		۰	۰				۰	۰	•			۰	۰	۰			۰	۰				۰	۰	۰	•		۰	۰	۰	•	۰

.

.

.

.

.

.

. . .

.

.

.

.

.

.

.