netcopula package

Report at 2016-05-06

Sergio Venturini

Using all the data from Achana et al. (2014) (i.e. imputing the missing outcomes)

All the latent variables are estimated, that is, we do not use the imputation algorithm.

Γ (outcome copula correlation matrix)

Here, the Γ matrix is not estimated, but it is constrained to be equal to the identity matrix.

Σ_{M} (common between-study covariance structure)

parameters Sigma_M

parameters Corr_M

μ (study-specific baseline effects)

parameters mu

δ (study-specific [random] treatment effects)

parameters delta

d (pooled treatment effects across trials)

parameters d

x (latent variables)

parameters x

Using only complete data for the first two outcomes from Achana et al. (2014)

All the latent variables are estimated, that is, we do not use the imputation algorithm.

Γ (outcome copula correlation matrix)

Here, the Γ matrix is not estimated, but it is constrained to be equal to the identity matrix.

Σ_{M} (common between-study covariance structure)

parameters Sigma_M

parameters Corr_M

μ (study-specific baseline effects)

parameters mu

δ (study-specific [random] treatment effects)

parameters delta

d (pooled treatment effects across trials)

parameters d

x (latent variables)

parameters x

