

Характеристика проблемы

Из-за роста количества данных и слабого развития вычислительных мощностей, для машинного обучения <u>актуален</u> вопрос эффективности алгоритмов.

Для решения данной проблемы используются как другие вычислительные модели, на основе квантовых алгоритмов, так и поиск более эффективных алгоритмов для обучения модели.

Постановка задачи

- Рассмотреть теорему Байеса в машинном обучении
- Рассмотреть современные алгоритмы, применяемые в вероятностном подходе
- Проанализировать результаты работы алгоритмов
- Сравнить классический и вероятностный подход

Теорема Байеса

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(model|data) = \frac{P(data|model)P(model)}{P(data)}$$

P(model) - априорная вероятность P(model|data) - апостериорная вероятность P(data|model) - правдоподобие P(data) - предельное правдоподобие

Теорема Байеса в нейронных сетях

Алгоритм NUTS (No-U-Turn/Heт разворота)

Определение момента остановки работы алгоритма

$$\frac{d}{dt}\frac{(\tilde{\theta}-\theta)\cdot(\tilde{\theta}-\theta)}{2} = (\tilde{\theta}-\theta)\cdot\frac{d}{dt}(\tilde{\theta}-\theta) = (\tilde{\theta}-\theta)\cdot\tilde{r}.$$

Выбор случайного направления

$$v_j \sim \text{Uniform}(\{-1,1\})$$

Метод Стёрмера — Верле для блуждания точки

$$p(\theta,r) = C \cdot \exp(-H)$$
 – вероятность с новым параметрами

$$\mathcal{L}(\theta) = V = -\ln p(\theta)$$

$$H=rac{1}{2}r\cdot r+V$$
 — функция Гамильтона, где r — импульс

$$r^{t+\epsilon/2} = r^t + (\epsilon/2)\nabla_{\theta}\mathcal{L}(\theta^t); \quad \theta^{t+\epsilon} = \theta^t + \epsilon r^{t+\epsilon/2}; \quad r^{t+\epsilon} = r^{t+\epsilon/2} + (\epsilon/2)\nabla_{\theta}\mathcal{L}(\theta^{t+\epsilon}),$$

Границы целевого распределения задаются с использованием формулы

$$\exp\{\mathcal{L}(\theta) - \frac{1}{2}r \cdot r\}$$

Алгоритм NUTS (No-U-Turn/Heт разворота)

Блок-Схема Алгоритма NUTS (No-U-Turn/Heт разворота)

Результат работы NUTS.

Результат работы NUTS.

Алгоритм AVDI

(Automatic Differentiation Variational Inference/Вариационный вывод автоматического дифференцирования)

Мы должны решить задачу, при которой ELBO (доказательство нижней границы) будет минимальна. E_q - это метрика для измерения «расстояния» между двумя распределениями. Следующая форма используется для всех методов класса VI (Variational Inference/Вариационный вывод)

$$\mathsf{ELBO}(\phi) = \mathsf{E}_{q(\theta;\phi)} \left[\log p(\mathsf{data}, \theta) - \log q(\theta; \phi) \right].$$

Результат работы AVDI

Результат прогнозирования

Результат прогнозирования

Результат прогнозирования

Плотность распределения вероятностей при классификации

Сравнение нейросетей

	Стандартная нейронная	Байесовская нейронная	Стандартная нейронная	Байесовская нейронная	Стандартная нейронная	Байесовская нейронная	Байесовская нейронная
	сеть						
Количество итераций	500	500	1000	1000	10000	10000	50000
Время	4.68 s	1.24 s	9.47 s	1.43 s	95 s	6 s	20 s
Точность	85.79%	85.20%	95.40%	88.20%	95%	88.20%	95.20%

Используемые программные продукты

- Python 3.9.7 язык программирования
- Рутс3 3.11.5 библиотека для создания вероятностных моделей
- Arviz 0.11.4 библиотека для анализа данных и моделей

Выводы

- Рассмотрено применение теоремы Байеса в машинном обучении
- Рассмотрено современные алгоритмы, применяемые в вероятностном подходе (NUTS, AVDI)
- Проанализированы результаты работы алгоритмов (NUTS, AVDI)
- Проведено сравнение классического и вероятностного подходов в машинном обучении. Сделан вывод об эффективности AVDI

