UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: FYS 1120 Elektromagnetisme

Eksamensdag: 7. oktober 2013 Tid for eksamen: 10:00 – 13:00 Oppgavesettet er på 2 sider

Vedlegg: Liste med likninger (3 sider)

Tillatte hjelpemidler: Angell/Øgrim og Lian: Fysiske størrelser og enheter

Rottman: Matematisk formelsamling Elektronisk kalkulator av godkjent type

Kontroller at denne kopi av oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

I en kule med radius R er ladningsmengden Q fordelt uniformt gjennom volumet. Vi legger et koordinatsystem med origo i kulens sentrum.

a) Skriv opp Gauss' lov og definer alle symbolene som inngår.

SVAR: Gauss' lov kan skrives; $\Phi_E = \int \vec{E} \cdot d\vec{A} = Q_{ext} / \varepsilon_0$, der integralet går over en lukket flate. Her er Φ_E den totale fluksen av det elektriske feltet, \vec{E} , gjennom flate-elementene, $d\vec{A}$. Ladningen som omsluttes av flaten er Q_{encl} , og ε_0 er vakuum permittiviteten.

b) Finn et uttrykk for det elektriske feltet i en avstand 2*R* fra origo.

SVAR: Legger Gauss-flaten som en kuleflate med radius 2R konsentrisk med den ladde kula. På grunn av symmetri, må E-feltet peke radielt i forhold til kulesenteret, og fra Gauss' lov vil feltet ha verdien gitt ved at; $E 4\pi(2R)^2 = Q/\varepsilon_0$, dvs. $E = (1/4\pi\varepsilon_0) Q/(2R)^2$, som fra en punktlading, Q, i origo.

c) Hvor inne i kulen er feltet like stort som det du fant i b)?

SVAR: Inne i kulen er ladningen fordelt uniformt med en tetthet $\rho = Q/V_{\text{kule}}$, der $V_{\text{kule}} = 4\pi R^3/3$. Legger nå en ny konsentrisk sfærisk Gauss-flate med ukjent radius, r < R, som vil omslutte ladningen, $Q_{encl} = \rho 4\pi r^3/3 = Q (r/R)^3$.

Bruker igjen Gauss' lov, og får for *E*-feltet inne i kula;

 $E(r) = (1/4\pi\varepsilon_0) Q_{encl}/r^2 = \frac{(1/4\pi\varepsilon_0) Q r/R^2}{(1/4\pi\varepsilon_0) Q r/R^2}$, som er lik E funnet i spm. b) når r = R/4.

Rettelse: $(1/4\pi\epsilon_0)$ Qr/R³

Oppgave 2

I den klassiske modellen for hydrogen atomet beveger et elektron seg som en punktpartikkel i sirkulær bane rundt atomkjernen. Banen har radius $r = 5.3 \cdot 10^{-11}$ m.

a) Beregn den elektrostatiske kraften på elektronet, og vis at banefarten er $2.2 \cdot 10^6$ m/s.

SVAR: Kraften er bestemt av Coulombs lov (begge ladninger = e), og utgjør sentripetalkraften;

$$m\frac{v^2}{r} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} .$$

Den elektrostatiske kraften blir $8.8 \cdot 10^{-8}$ N, og med m lik elektronmassen blir, $v = 2.2 \cdot 10^{6}$ m/s.

b) Betrakt elektronbevegelsen som en elektrisk strøm. Finn strømmen.

SVAR: Perioden for sirkelbevegelsen er $T = 2\pi r/v = 1.5 \cdot 10^{-16}$ s, og strømmen blir I = e/T = 1.1 mA.

c) Definer vektorstørrelsen; magnetisk dipolmoment, og beregn det magnetiske momentet til elektronet i bevegelse.

SVAR: Magnetisk dipolmoment er gitt ved; $\vec{m} = IA\vec{n}$ der I er strømmen i en plan strømsløyfe med areal A. Momentvektoren peker langs flatenormalen i retningen som tommelen på høyrehånda peker når øvrige fingre legges langsmed strømmen. For elektronet blir $m = I \pi r^2 = 9.7 \cdot 10^{-24} \text{ Am}^2$.

d) Finn energien til dipolen når den er innrettet parallelt med et magnetfelt på 1 T. Hva er energien dersom dipolmomentet peker normalt på feltet?

SVAR: Potensiell energi for en dipol er $U = -\vec{m} \cdot \vec{B}$, og med momentet parallelt med feltet blir U = -mB, som gir $U = -9.7 \cdot 10^{-24}$ J. Med momentet rettet normalt på feltet er energien lik null.

Oppgave 3

a) Lag en tegning som illustrerer E-feltet rundt en elektrisk dipol. Hva er en ekvipotensialflate? Inkluder i samme tegningen også hvordan ekvipotensialflatene tar form nær dipolen.

SVAR: en skisse à la figur 23.23 (b) i læreboka

b) La en ladet partikkel være plassert i en avstand fra en plan metalloverflate. Lag figur, og tegn bilde av E-feltet og ekvipotensialflatene i rommet.

SVAR: en skisse à la figur 23.24 i læreboka.

Oppgave 4

To parallelle kondensatorplater har motsatte og like store ladninger, og i tomrommet mellom platene er det elektriske feltet $E = 3.2 \cdot 10^5 \text{ V/m}$.

a) Finn ladningstettheten på overflaten av hver plate.

SVAR: Platene har ladningstettheten, $\sigma = \pm \epsilon_0 E = \pm 2.8 \cdot 10^{-6} \text{ C/m}^2$.

To kondensatorer er koplet i parallell. De har kapasitanser 35 nF og 75 nF, og spenningsforskjellen mellom koplingspunktene er 220 V.

b) Hvor stor ladning er det på hver kondensator plate? Finn også hvor stor total energi som er lagret i kondensatorene.

SVAR: For kapasitansen C = 35 nF vil platene ha ladning $\pm Q$, der Q = CU = 7.7 μ C når U = 220 V. Samme spenning ligger over den andre kondensatoren, og dens plater har derfor ladning ± 16.5 μ C. Total energi finnes fra formelen $(1/2)C_{res}U^2$, der resultant kapasitansen er summen av de to, 110 nF. Innsetting gir total energi; 2.66 mJ.

Oppgave 5

Figuren viser skjema for en krets der den ukjente resistansen, R, skal bestemmes ut fra at alle resistansene skal avgi en varme-effekt (dissipasjon) på i alt 2.7 W. Batteriet har en ems på 9 V, og en neglisjerbar indre resistans.

SVAR: Her gjelder (med resistanser angitt i Ω); $\mathcal{E} = RI_R + 20 I = 9 V$, og $RI_R = 15 (I - I_R)$.

Dessuten er total varme-effekt, $P = \mathcal{E} I = 2.7 \text{ W}$.

Løsning av disse 3 lineære likningene gir $R = 30 \Omega$.