

UC8188 是一款高性能 MCU+GNSS 多模卫星导航接收机 SoC 芯片。芯片集成了 RISC-V 32 位通用处理器,数字基带处理器,射频前端,具有 4Mb 内嵌的闪存。拥有 SPI、I2C、UARTx2 以及其它丰富的外设。

## 功能特性

- RISC-V 32bit CPU 核心, 带浮点运算
  单元 FPU
  - 163MHz 最高运行率(FPU 及通信 DSP 除外)
  - 支持单周期乘法,硬件整数除法
  - 支持 RISC-V IMFC 指令集,以及 特殊整型扩展指令
  - FPU/DSP@131Mhz
  - 支持 PUF(芯片指纹)
  - 国密 SM2/3/7/9
  - AES128/DES
  - CRC/FFT/卷积编译码硬件加速
- 存储器
  - 4Mb 嵌入式 NOR 闪存,数据代码 统一存储
  - 256KB 数据 SRAM
  - DSP 内嵌独立 128KB Data SRAM
- 低功耗模式
  - 内嵌 RTC 及 PMU 控制各种低功耗 模式
  - 主要部件单独时钟门控
  - 外设时钟门控
  - RTC单独运行低功耗模式
- SPI SLAVE 烧录及调试接口
  - 烧录端口 IO 可复用
  - 支持 4 个硬件断点

#### 时钟

- 内置 DCXO 振荡器, 需外接晶体
- 内置 32Khz RC 振荡器,同时内置 32Khz 晶体振荡器(需外接晶体)
- 内置 PLL,对 DCXO 时钟倍频,同时 CPU 支持 DCXO/PLL 时钟切换
- 常用外设
  - 2x 16650 兼容 UART
  - 2x32 位计数器
  - SPI Master, 最多 4 个外设片选
  - 4xPWM 模块,独立输出
  - GPIO口,可复用IO端口
  - I2C接口
  - 3路 12bit ADC
  - 10bit DAC 以及辅助 DAC
- QFN46 封装
- GNSS 定位
  - GPS
  - QZSS
  - 北斗三号
- 电源/芯片管理
  - 内置 DCDC 转换器
  - 内置核心 LDO, IO LDO
  - 内置锂电池充电功能
  - 片内温度检测



# 目 录

| <i>功能特性</i>                                                                                       | 1              |
|---------------------------------------------------------------------------------------------------|----------------|
| 1 设备简介                                                                                            |                |
| 1.1 功能简介                                                                                          | 5              |
| 1.2 应用场景                                                                                          | 5              |
| 1.3 功能模块框图                                                                                        | 6              |
| 2 芯片管脚描述                                                                                          |                |
| 2.1 QFN46                                                                                         |                |
| 2.2 信号描述                                                                                          |                |
| 3 详细指标                                                                                            |                |
| 3.1 DC 特性                                                                                         |                |
| 3.2 GNSS 北斗特性                                                                                     |                |
| 3.3 ADC 特性                                                                                        |                |
| 3.4 DAC 特性                                                                                        |                |
| 3.5 充电控制器特性                                                                                       |                |
| 3.6 温度检测模块特性                                                                                      |                |
|                                                                                                   | 1 <i>L</i>     |
|                                                                                                   |                |
| 3.7 数字部分其他电气及功能指标                                                                                 | 12             |
| 3.7 数字部分其他电气及功能指标                                                                                 | 12             |
| 3.7 数字部分其他电气及功能指标                                                                                 | 12<br>14       |
| <ul><li>3.7 数字部分其他电气及功能指标</li><li>4 功能模块详细描述</li><li>4.1 MCU 微控制器单元</li></ul>                     | 12<br>14<br>14 |
| <ul><li>3.7 数字部分其他电气及功能指标</li><li>4 功能模块详细描述</li><li>4.1 MCU 微控制器单元</li><li>4.1.1 控制器核心</li></ul> | 12141414       |
| 3.7 数字部分其他电气及功能指标                                                                                 | 1214141414     |
| 3.7 数字部分其他电气及功能指标                                                                                 | 121414141414   |
| 3.7 数字部分其他电气及功能指标                                                                                 |                |
| 3.7 数字部分其他电气及功能指标                                                                                 |                |
| 3.7 数字部分其他电气及功能指标                                                                                 |                |



| 4.7.2 RISC-V MCU 电源域 | 17 |
|----------------------|----|
| 4.7.3 CCE 电源域        | 17 |
| 4.7.4 FLASH 电源域      | 17 |
| 4.7.5 电源工作模式及转换      | 17 |
| 5 参考设计电路             | 17 |
| 6 开发以及文档支持           | 18 |
| 7 产品尺寸               |    |
| 7.1 UC8188 系列-QFN46  | 19 |
| 8 包装以及订货             | 20 |



# 图表索引

| 图 1 UC8188 功能模块框图    | 6  |
|----------------------|----|
| 图 2 UC8188 QFN46 管脚图 | 7  |
| 图 3 电源架构框图           | 16 |
| 图 4 QFN46 尺寸标识图      | 19 |
|                      |    |
| 表 1 UC8188 管脚信息表     | 8  |
| 表 2 DC 特性            | 10 |
| 表 3 定位功能特性           |    |
| 表 4 ADC 性能特性         | 11 |
| 表 5 DAC/辅助 DAC 特性表   | 11 |
| 表 6 充电器特性表           | 12 |
| 表 7 温度检测功能特性表        |    |
| 表 8 数字部分主要指标表        | 12 |
| 表 9 QFN46 封装尺寸详表     | 19 |



## 1 设备简介

### 1.1 功能简介

御芯微 UC8188 SoC 是为物联网及其它需要 MCU+定位的应用开发的高度集成系统芯片。该 SoC 由一个四级流水线的 RISC-V®核心作为主要的 MCU 逻辑计算控制单元、御芯微自研的针对信号处理的通信与计算融合引擎(CCE)、GPS/北斗射频接收机以及相关的时钟模拟电路构成。同时集成了 DCDC 直流电压转换模块、LDO 降压器、电源管理模块(PMU)以及丰富的标准 MCU 外部设备。

#### 1.2 应用场景

- 授时
- 车载、船载定位与导航
- 低功耗 MCU 应用
- 远程机电控制
- 物体定位找寻设备



## 1.3 功能模块框图



图1 UC8188 功能模块框图



## 2 芯片管脚描述

#### 2.1 QFN46

UC8188 QFN46 封装的管脚示意:



图 2 UC8188 QFN46 管脚图



## 2.2 信号描述

#### 表 1 UC8188 管脚信息表

|               | <i>δ</i> :δ: Π4π |               |                        |
|---------------|------------------|---------------|------------------------|
| 名称            | 管脚               | -<br>  类型     | 信号描述                   |
| D CD C CENTRE | QFN46            | D.            |                        |
| DCDC_SENSE    | 8                | Power         | DCDC 电压输出              |
| DCDC_SW       | 9                | Power         | DCDC 输出,外接电感           |
| VBAT          | 10               | Power         | 电池电压输入                 |
| RSTN          | 11               | Digital Input | 芯片复位,低有效,正常工作需拉高       |
| CHAR_ISENSE   | 12               | Analog Output | 充电模块外接功率管              |
| CHAR_GDRV_O   | 13               | Analog Output | 充电模块外接功率管              |
| CHAR_VBAT     | 14               | Power         | 充电模块外部供电输入 5V~7V       |
| CHAR_LED_DRV  | 15               | Analog Output | 充电模块 LED 指示灯驱动         |
| XTAL32K_Q2    | 16               | Analog Input  | 32KHz 晶体输入正端           |
| XTAL32K_Q1    | 17               | Analog Input  | 32KHz 晶体输入负端           |
| LDO_LP_O      | 18               | Analog Output | 低功率 LDO 外接电容           |
| DCOUPL        | 19               | Power         | 数字 LDO 输出,外接滤波电容       |
| AUXDAC_O      | 20               | Analog Output | 辅助 DAC 输出端口            |
| CLKPLL_AVDD   | 21               | Power         | 时钟锁相环电源                |
| LO_AVDD       | 22               | Power         | GPS 本振锁相环电源            |
| RX_AVDD       | 23               | Power         | GPS 接收通道电源             |
| GPSRX_RFIN    | 24               | RF Input      | GPS 射频信号输入             |
| AVDD_CAP      | 25               | Power         | ADC 中 LDO 的外接电容        |
| ADC_CH_A_IN   | 26               | Analog Input  | ADC 片外 A 通道输入信号        |
| ADC_CH_B_IN   | 27               | Analog Input  | ADC 片外 B 通道输入信号        |
| ADC_CH_C_IN   | 28               | Analog Input  | ADC 片外 C 通道输入信号        |
| VBAT_RF       | 29               | Power         | GPRS 射频电源,直接接电池        |
| DCXO_AVDD     | 32               | Power         | GPRS 时钟电源              |
| XTAL26M_N     | 31               | Analog Input  | 26MHz 晶体输入正端           |
| XTAL26M_P     | 30               | Analog Input  | 26MHz 晶体输入负端           |
| GPIO_29       | 33               | Digital Input | 通用数字 IO 管脚/复用 PWM_OUT3 |
| GPIO_28       | 34               | Digital Input | 通用数字 IO 管脚/复用 PWM_OUT2 |
| GPIO_27       | 35               | Digital Input | 通用数字 IO 管脚/复用 PWM_OUT1 |
| GPIO_26       | 36               | Digital Input | 通用数字 IO 管脚/复用 PWM_OUT0 |
| UART_RX       | 37               | Digital Input | UART 接收端               |



| UART_TX   | 38 | Digital Output | UART 发送端                           |
|-----------|----|----------------|------------------------------------|
| GPIO_25   | 39 | Digital IO     | 通用数字 IO 管脚/复用                      |
|           |    |                | AUX_UART_RX                        |
| GPIO_24   | 40 | Digital IO     | 通用数字 IO 管脚/复用                      |
|           |    |                | AUT_UART_TX                        |
| GPIO_13   | 41 | Digital IO     | 通用数字 IO 管脚/复用 SPIM_CSN_0           |
| GPIO_10   | 42 | Digital IO     | 通用数字 IO 管脚/复用 SPIM_DIO1            |
| GPIO_9    | 43 | Digital IO     | 通用数字 IO 管脚/复用 SPIM_DIO0            |
| GPIO_8    | 44 | Digital IO     | 通用数字 IO 管脚/复用 SPIM_CLK             |
| SPI_CSN   | 45 | Digital Input  | SPI_CSN 片选信号,低有效                   |
| GPIO_0    | 46 | Digital IO     | 通用数字 IO 管脚/复用 SPI_SDO              |
| GPIO_1    | 1  | Digital IO     | 通用数字 IO 管脚/复用 SPI_SDI              |
| GPIO_2    | 2  | Digital IO     | 通用数字 IO 管脚/复用 SPI_SCK              |
| GPIO_3    | 3  | Digital IO     | 通用数字 IO 管脚/复用 I <sup>2</sup> C SCL |
| GPIO_4    | 4  | Digital IO     | 通用数字 IO 管脚/复用 I <sup>2</sup> C SDA |
| GPIO_6    | 5  | Digital IO     | 通用数字 IO 管脚/复用 SIM CLK              |
| VDD_D     | 6  | Digital Power  | 数字 LDO 电源输入                        |
| VDD_SIM_O | 7  | Power          | 外置的 SIM 卡供电,输出 1.8V/3.3V 电         |
|           |    |                | 压                                  |



# 3 详细指标

# 3.1 DC 特性

表2DC 特性

|     | DC 特性(Ta=25°C,VBAT=3.7V) |             |                              |     |     |     |    |  |  |
|-----|--------------------------|-------------|------------------------------|-----|-----|-----|----|--|--|
| 序号  | 会粉                       | <b>か</b> ロ. | 115 <del>1.</del>            | 最小  | 典型  | 最大  | 出台 |  |  |
| 175 | 参数                       | 符号          | 状态                           | 值   | 值   | 值   | 单位 |  |  |
| 1   | 工作温度                     | Та          |                              | -40 | -   | 85  | °C |  |  |
|     | 工作电压范                    | * 7         |                              | 1.0 |     | 4.0 |    |  |  |
| 2   | 围                        | Vcc         |                              | 1.8 | 1   | 4.2 | V  |  |  |
| 3   | SLEEP                    | Icc_sleep   | RCOSC32.768kHz 振荡器打开         | -   | 5   | -   | uA |  |  |
|     | MCU                      | T .1        |                              |     | 1.0 |     |    |  |  |
| 4   | standby                  | Icc_mcustb  | e_mcustb 26MHz 频率打开、MCU 数据保持 |     | 1.2 | -   | mA |  |  |
| _   | GPS/BD3/Q                | T           | CNICG TTT                    |     | 40  |     |    |  |  |
| 5   | ZSS                      | Icc_gnss    | GNSS 打开                      | -   | 40  | -   | mA |  |  |

## 3.2 GNSS 北斗特性

表3定位功能特性

|             | GNSS 特性    |               |                                  |         |         |     |     |  |  |  |  |
|-------------|------------|---------------|----------------------------------|---------|---------|-----|-----|--|--|--|--|
| <del></del> | 42 141     | <i>/</i> // □ | <b>→</b> <i>t</i> <sub>1</sub> 1 |         | 34 /34  |     |     |  |  |  |  |
| 序号          | 参数         | 符号            | 条件                               | 最小值     | 典型值     | 最大值 | 単位  |  |  |  |  |
|             |            |               | GPS                              | -       | 1575.42 | -   |     |  |  |  |  |
| 1           | 输入频率       | F_gps         | BDS                              | -       | 1575.42 | -   | MHz |  |  |  |  |
|             |            | QZSS          | -                                | 1575.42 | -       |     |     |  |  |  |  |
| 2           | 输入反射系数     | S11           |                                  | -       | -10     | -   | dB  |  |  |  |  |
| 3           | 镜像抑制比      | IRR           |                                  | -       | 32      | -   | dB  |  |  |  |  |
| 4           | 增益控制范围     | G_range       |                                  | 60      | -       | 112 | dB  |  |  |  |  |
| 5           | 增益控制步进     | G_step        |                                  | -       | 1       | -   | dB  |  |  |  |  |
| 6           | 输入 1dB 压缩点 | ICP1          |                                  | -       | -60     | -   | dBm |  |  |  |  |
| 7           | 冷启动时间      | T_CS          |                                  | -       | -       | 30  | s   |  |  |  |  |
| 8           | 热启动时间      | T_HS          |                                  | -       | -       | 2   | s   |  |  |  |  |
| 9           | 重捕获时间      | T_AS          |                                  | -       | -       | 1   | s   |  |  |  |  |
| 10          | 冷启动捕获灵敏度   | SEN_CS        |                                  | -       | -148    | -   | dBm |  |  |  |  |
| 11          | 跟踪灵敏度      | SEN_TR        |                                  | -       | -162    | -   | dBm |  |  |  |  |
| 12          | 定位精度       | ACCU_POS      | CEP                              | -       | -       | 3.5 | m   |  |  |  |  |



| 13 | 测速精度        | ACCU_POS | CEP | - | -  | 0.1 | m/s |
|----|-------------|----------|-----|---|----|-----|-----|
| 14 | 定位更新率       | R_POS    |     | - | -  | 5   | Hz  |
| 15 | 单 GPS 功耗    | GPS_O    |     | - | 32 | -   | mA  |
| 16 | 单 BDS3 功耗   | BDS3_O   |     | - | 40 | -   | mA  |
| 17 | GPS+BDS3 功耗 | GB       |     | - | 40 | -   | mA  |

## 3.3 ADC 特性

表 4 ADC 性能特性

|   | ADC 特性    |           |          |      |          |              |         |  |  |  |
|---|-----------|-----------|----------|------|----------|--------------|---------|--|--|--|
| 序 | <b>分坐</b> | <i>//</i> | 友 th     |      | 参数指标     |              | . X (2- |  |  |  |
| 号 | 参数        | 符号        | 条件       | 最小值  | 典型值      | 最大值          | 単位      |  |  |  |
| 1 | 工作电压      | AVDD_CAP  |          | 1.58 | 1.6      | 2            | V       |  |  |  |
| 2 | 分辨率       | Res       |          | 12   | -        | -            | Bits    |  |  |  |
| 3 | 输入电压范围    | Vin       |          | 0    | -        | AVDD_CA<br>P | V       |  |  |  |
| 4 | 时钟频率      | fADC      |          | _    | 26M      | -            | Hz      |  |  |  |
| 5 | 采样率       | FS        |          | 45K  | -        | 360K         | SPS     |  |  |  |
| 6 | 参考正端电压    | VREF+     | `        | -    | AVDD_CAP | -            | V       |  |  |  |
| 7 | 参考负端电压    | VREF-     |          | -    | GND      | -            | V       |  |  |  |
| 8 | 采样时间      | Ts        | fADC=26M | _    | 153.846  | -            | nS      |  |  |  |
| 9 | 输入阻抗      | RAIN      |          | _    | 1        | -            | GΩ      |  |  |  |

# 3.4 DAC 特性

#### 表5 DAC/辅助 DAC 特性表

|   | 辅助/音频 DAC 特性 |            |   |          |          |     |      |  |  |  |
|---|--------------|------------|---|----------|----------|-----|------|--|--|--|
| 序 | 条 参数指标       |            |   | <b>公</b> |          |     |      |  |  |  |
| 号 | 参数           | 符号         | 件 | 最小值      | 典型值      | 最大值 | 単位   |  |  |  |
| 1 | 工作电压         | AVDD_CAP   |   | 1.58     | 1.6      | 2   | V    |  |  |  |
| 2 | 分辨率          | Resolution |   | -        | 10       | -   | Bits |  |  |  |
| 3 | 工作时钟         | fDAC(音频)   |   | -        | 2M       | -   | Hz   |  |  |  |
| 4 | 采样率          | FS(音频)     |   | -        | 2M       | -   | SPS  |  |  |  |
| 5 | 参考电压正端       | VREF+      |   | -        | AVDD_CAP | -   | V    |  |  |  |
| 6 | 参考电压负端       | VREF-      |   | -        | GND      | -   | V    |  |  |  |



## 3.5 充电控制器特性

表6 充电器特性表

|      | charger 特性 |               |                |     |      |     |    |  |  |  |
|------|------------|---------------|----------------|-----|------|-----|----|--|--|--|
| ci D | 分坐。        | <i>//</i> / D |                |     | 参数指标 |     |    |  |  |  |
| 序号   | 参数         | 符号            | 条件             | 最小值 | 典型值  | 最大值 | 单位 |  |  |  |
| 1    | 充电电压       | Vchr          |                | 4.3 | -    | 6.7 | V  |  |  |  |
| 2    | 激活阶段电流     | I_act         | R=0.2Ω(电流采用电阻) | -   | 60   | 80  | mA |  |  |  |
| 3    | 预充电1阶段电流   | I_pre_cc1     |                | -   | 60   | 80  | mA |  |  |  |
| 4    | 预充电2阶段电流   | I_pre_cc2     |                | -   | 60   | 80  | mA |  |  |  |
| 5    | 恒流充电电流     | I_CC          |                | -   | 750  | 800 | mA |  |  |  |
| 6    | 恒压充电电压     | I_CV          |                | -   | 4.2  | 4.3 | V  |  |  |  |
| 7    | led 驱动电流   | I_LED         |                | 0.1 | 1    | 36  | mA |  |  |  |

## 3.6 温度检测模块特性

表7温度检测功能特性表

|    | 温度检测特性   |             |      |      |     |                                       |                      |  |  |  |  |
|----|----------|-------------|------|------|-----|---------------------------------------|----------------------|--|--|--|--|
| 序号 | 参数       | bb 🗆        | A 11 |      |     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                      |  |  |  |  |
|    |          | 符号          | 条件   | 最小值  | 典型值 | 最大值                                   | 単位                   |  |  |  |  |
| 1  | 片内温度检测范围 | TR_IN       |      | -40  | -   | 85                                    | ℃                    |  |  |  |  |
| 2  | 片内温度检测精度 | T_ACCU_ON   |      | -1.5 | -   | 1.5                                   | ℃                    |  |  |  |  |
| 3  | 体温检测范围   | TR_BODY     |      | 35   | -   | 45                                    | ℃                    |  |  |  |  |
| 4  | 体温检测精度   | T_ACCU_BODY |      | -0.2 | _   | 0.2                                   | $^{\circ}\mathbb{C}$ |  |  |  |  |

## 3.7 数字部分其他电气及功能指标

表8数字部分主要指标表

| 温度检测特性 |                |       |    |      |     |          |        |
|--------|----------------|-------|----|------|-----|----------|--------|
|        | 参数             | 符号    | 条件 | 参数指标 |     |          | 34 (). |
| 序号     |                |       |    | 最小值  | 典型值 | 最大值      | 単位     |
| 1      | 数字核心电压         | VCORE |    | 0.9  | 1.2 | 1.32     | V      |
| 2      | 数字 IO 工作电压     | VIO   |    | 1.8  | 2.5 | 3.3/4.21 | V      |
| 3      | PMU/RTC 独立工作电压 | Vrtc  |    | 0.85 | 1   | 1.32     | V      |
| 4      | MCU 工作频率/整数计算  | Fint  |    | 26   | 131 | 163      | MHz    |
| 5      | MCU工作频率/浮点     | Ffd   |    | 26   | 131 | 157      | MHz    |



| 6 | DSP 工作频率 | Fdsp | 26 | 131 | 157 | MHz |
|---|----------|------|----|-----|-----|-----|

IO 管脚最高耐压 4.2V,最高工作电压 3.3V





### 4 功能模块详细描述

该 SoC 的主要组成部分——RISC-V 逻辑计算核心和通信计算融合引擎(CCE)以异构计算单元架构设计。RISC-V 逻辑运算单元和 CCE 引擎可以通过各自的地址映射关系访问共享内存。并且可以灵活配置。同时,一个 TCDM 到 APB 的桥接模块负责将来自系统软件对外设的访问转换为 APB 协议,以完成系统软件对 APB 外设各种寄存器的访问。

SoC 的模拟部分,为芯片提供关键的电源供应、时钟源等功能。其中 DCXO(数控晶体振荡器)以及 PLL(锁相环)能为内部逻辑以及射频收发器提供精度 1PPM 的各种时钟。支持 GPS,北斗等定位技术的射频接收前端。这些射频模块由一个自主研发的数字射频前端控制,并进行数据的预处理(包括重采样,带通滤波等,发送调制等)。CCE 则负责与射频数字前端进行交互以及提供调制解调算法服务。同时模拟部分也设计了多通道的数字/模拟(DA),模拟/数字(AD)转换电路。

以下章节将对各种能模块做出更详细的介绍以及阐述关键的设计指标。

#### 4.1 MCU 微控制器单元

#### 4.1.1 控制器核心

UC8188 的 RISC-V 控制器核心是一个顺序执行的四级流水线核心。具有接近 1 的 IPC(单一时钟完成指令数)。该核心提供 RISC-V 组织标准框架完整的整数指令集支持(RV32I),以及 32 比特到 16 比特的压缩指令集(RV32C)支持。UC8188 实现了RV32F,32 比特的单精度浮点运算单元,支持单精度浮点运算。同时,核心也实现了一些高级的扩展指令,例如硬件自动循环、自递增数据存取指令、比特处理指令、乘累加指令、定点指令、压缩平行单指令多数据处理(SIMD)以及点乘指令。对特权指令的支持到RISC-V 组织定义标准的 1.9 版本。

#### 4.1.2 SRAM 随机存储器

UC8188 片上系统芯片内嵌接近 400KB 随机存储器。MCU 核心和通信计算融合引擎 (CCE) 有各自独享的随机代码存储器以及随机数据存储器。同时一部分共享内存可通过 相互访问接口相互访问,如图 1 所示。

#### 4.2 非易失存储器

御芯微 UC8188 内嵌 FLASH 主要指标如下:

- 存储器大小 16Mbit
- 工作电压 1.6-2.5V
- 最大工作频率, QSPI 104MHz/88MHz, SPI 模式 50MHz
- 可擦写次数 100000
- 支持 UUID 以及 OTP 保护的安全寄存器
- 数据保持时间 10 年以上

#### 4.3 通信与计算融合引擎 CCE

通信与计算融合引擎(CCE)是御芯微自主研发的信号处理以及特殊运算单元。负责 SoC 的 GPS 基带信号处理。



#### 4.4 数字射频前端 Digital Front End (RF)

数字射频前端(DFE)主要功能模块:

- 计时控制器:精准控制射频的收发;
- 数字重采样: 各工作频率以及串并转换的数字重采样;
- 数字滤波: 带通、低通数字滤波器;
- 射频参数以及状态控制。射频收发控制是一个比较复杂的过程, 对射频各子模块 的控制都有特殊的顺序和要求。
- 数据转存: DFE 处理过的数据,以及 CCE 运算的结果,都相互进行转存。

#### 4.5 外设

御芯微 UC8188 支持以下的外部设备

- 2xUART(16650兼容), 其中一路支持标准 modem 控制信号;
- SPI 主设备, 支持 QSPI 操作, 支持 4 个外部设备片选信号。双向 FIFO, 宽度 32 比特, 深度 8。最高工作频率 50MHz(取决于外部 PCB 布线及外设限制);
- FLASH 控制器 SPI 主设备,内部外设,用于硬件从 Flash 获取代码和数据。系统软件可在硬件空闲的状态下使用该接口对片上 flash 进行操作。
- SPI 从设备, 御芯微专用 SPI 接口, 用于软件的调试以及一些特殊功能。最高工作 频率 10Mhz, 输出管脚可复用;
- I<sup>2</sup>C,标准双线 I<sup>2</sup>C,最高 400kbps,输出复用 GPIO 管脚;
- RTC 实时时钟, 支持日历以及闹钟功能。支持 2000-2099 年日历;
- PWM, 4 通道输出脉宽调制模块。 最高周期与芯片工作频率相关(具有 32 比特的分频控制寄存器),可随时更改 PWM 周期和高电平输出占空比。输出复用 GPIO 管脚;
- GPIO 最多 32 位通用 IO 接口管脚
- EVENT模块,可处理 GPIO 以及内部各种事件信号,对 MCU 发出中断请求。
- Timer/Counter 2 个 32 比特内部计数器模块,支持比较/溢出等多种事件输出状态,可独立工作,有各自独立的分频控制寄存器。



### 4.6 数字低功耗设计



图 3 电源架构框图

图 3 为电源设计的整体框图。超低功耗部分由一个低功耗 LDO,即 LDO\_LP 供电,该 LDO 输出 1.0V, 只为电源管理模块(PMU)以及 RTC 部分的数字逻辑供电。UC8088 内嵌 DCDC 转换器电路, 能将外部供电降至 2.5V。然后大功率 LDO 再次将此电压降低到数字部分所需要的核心电压。

在低功耗休眠模式下,LDO\_LP提供不超过10uA的电流。1.0V电压使得RTC所消耗的功率进一步降低。RTC内部对32KHz的时钟采用链条降频电路,降低电路的反转频率,进一步降低功耗。

#### 4.7 上电状态

当芯片外接电源被打开的时候,LDO\_LP 立即对模拟内部 POR 电路、数字部分的 PMU 供和 32Khz RC 振荡器供电。 当外部 RESET 信号电压超过一定阈值时候,POR 电路 给 PMU 产生系统上电的复位信号。

PMU 被复位之后,首先将内部数字电路的 RESET 拉低,然后依次打开 DCDC,LDO\_HP。当 LDO\_HP 稳定之后, 打开 DCXO 时钟振荡器。等待若干时间后,PMU 释放内部数字电路的 RESET 信号。MCU 开始启动。在 PMU 复位完成之后数字部分的供电被打开,其他射频供电都处于关闭的状态。

MCU 在 RESET 复位拉高以后,从 FLASH 的默认位置开始读取启动代码,此时 DCXO 提供 26Mhz 的低频时钟。FLASH 也工作在较低性能的模式。御芯微的启动代码完成一些特殊的操作,将模拟 PLL 打开,等待高频时钟稳定后, 将数字部分的时钟从 26MHz 切换到高频时钟。 同时,FLASH 也被调整成高性能工作模式。在一切其他特殊寄存器操作完成之后, 启动过程完毕,操作系统或用户程序开始执行。

低功耗模式的控制以及电源的控制都通过 PMU 的寄存器,由系统软件进行调控。



芯片内部采取了多电压域以及多电源域的划分,由 PMU 控制各模块的开关以及工作模式。

#### 4.7.1 Always On 电源域

此电源域由 LDO LP 电源供电,外部供电立刻工作,不可关闭。

此部分电源域主要由 RTC 和 PMU 以及 32KHz RC 振荡器和晶体振荡器 (二选一) 模块构成。在此 SoC 各低功耗工作模式下,此模块都保持供电。

#### 4.7.2 RISC-V MCU 电源域

此电源域由 LDO HP 供电,电源供电由 PMU 进行控制。

此电源域模块主要包含 RISC-V 核心,相关的代码存取电路,内部互联以及各种外设。外设没有再单独划分电源域。电源的控制由 PMU 控制,各种电源工作模式的切换由系统软件控制。

#### 4.7.3 CCE 电源域

此电源域由 LDO\_HP 供电, 电源供电由 MCU 通过 PMU 进行控制。 此电源域模块主要包含 DFE, CCE 以及相对应的独立 SRAM 模块。

#### 4.7.4 FLASH 电源域

Flash 由 DCDC 直接供电, DCDC 直接提供 Flash 所需电压以及相应的 IO 管脚所需电源。

#### 4.7.5 电源工作模式及转换

以上电源域除 4.7.1 描述的 AON 电源域以外,其他都可以单独控制。除电源域控制之外,时钟门控也是有效降低动态功耗的一种办法。此 SoC 支持以下时钟门控及电源控制模式。下面将描述各模式功能以及进入和退出方法

- RISC-V 独立工作及时钟门控模式: CCE 电源域关闭,RISC-V 独立工作。 CCE 的电源由 RISC-V 通过 PMU 进行开关。 RISC-V 在系统软件空闲的状态,可向 PMU 发起时钟门控请求。 在发起请求之前, 系统软件可以设置 RTC 的闹铃功能, 在某一时刻自动退出时钟门控模式。 在此模式下, RISC-V 电源保持开启,输入主时钟被钳制。 任何可支持的外部事件中断和 RTC 闹铃都可以通知 PMU 将 RISC-V 从此模式唤醒。
- RISC-V+CCE 时钟门控模式: RISC-V 和 CCE 电源域都开启。此模式及芯片数字逻辑部分的完全工作模式,只可以采用上一点类似的时钟门控的方式降低功耗。此模式下,一旦进入时钟门控模式, PMU 可以在进入之前被请求在进入时钟门控的状态之后整体降低 RISC-V 和 CCE 的电源域电压到一个较低域值,保持内部寄存器以及 SRAM 内容。此方法可进一步降低静态功耗。
- 低功耗休眠模式:此模式由 MCU 系统软件发起,在此模式下,只有 AON 电源保持 开启。整个 RISC-V/CCE 电源域被关闭,DCDC 以及高频时钟电路都被关闭。整个芯 片只有 LDO\_LP 供电。此模式只能被 RTC 的闹钟或制定的外部管脚指定电平信号唤 醒。

## 5 参考设计电路

访问 www.uc8088.com 获取相关参考设计的电路方案。



# 6 开发以及文档支持

访问 www.uc8088.com 获取相关芯片软件开发 SDK、例程及软件编程手册。



# 7 产品尺寸

## 7.1 UC8188 系列-QFN46



图 4 QFN46 尺寸标识图

表 9 QFN46 封装尺寸详表

| 标识 | 最小值 (mm) | 标准 (mm) | 最大   |
|----|----------|---------|------|
|    |          |         | (mm) |
| A  | 0.70     | 0.75    | 0.80 |
| A1 | 0        | 0.02    | 0.05 |
| b  | 0.15     | 0.20    | 0.25 |
| c  | 0.18     | 0.20    | 0.25 |
| D  | 6.40     | 6.50    | 6.60 |
| D2 | 5.00     | 5.10    | 5.20 |
| e  |          | 0.40BSC |      |
| Ne |          | 3.20BSC |      |
| Nd | 5.20BSC  |         |      |
| Е  | 4.40     | 4.50    | 4.60 |
| E2 | 3.00     | 3.10    | 3.20 |
| L  | 0.35     | 0.40    | 0.45 |
| h  | 0.30     | 0.35    | 0.40 |



# 8 包装以及订货

| Product Model 型号 | Package 封装 | Packing 包装 | MPQ 最小订购 |  |
|------------------|------------|------------|----------|--|
|                  |            |            | 量        |  |
| UC8188MP4Q46     | QFN46_6x6  | Tape Real  | 3K       |  |