Linear Algebra/Probability Theory review

MinSeok Song

• Rank Nullity Theorem

Let $T: V \to W$ be a linear transformation between two vector spaces. Then Rank(T) + Nullity(T) = dim(V). (this can be easily shown by using first isomorphism theorem and splitting lemma(check))

Proof. Another method is to compare Nullity(T) and dim(V), and apply Steinitz exchange lemma to find the dimension of the image.

- Steinitz exchange lemma: use induction and exchange u_k with w_i for some $i \in \{w_k \dots w_n\}$ in a induction step.
- Why is covariance matrix positive definitie? First define joint normal distribution.

$$X_{i} = m_{i} + a_{i1}Z_{1} + a_{i2}Z_{2} + \dots + a_{im}Z_{m}$$

For the case $m_j = 0$, we have X = AZ. AA^T is called the covariance matrix. Every symmetric semi-positive can be written as this form: use the spectral theorem.

- $Tr(A) = \sum \lambda_i$
- 1. normal iff unitarily diagonalizable
 - 2. Hermitian iff unitarily diagonalizable with real diagonal entries (aka Spectral theorem)
- (digression)

X is diagonalizable iff the minimal polynomial is the product of distinct $x-\lambda_i$'s. So the degree of this polynomial is equal to the number of distinct eigenvalues.

Characteristic polynomial of a square matrix is $\det(tI-A)$. Caley-Hamilton states that every square matrix over a commutative ring satisfies its own characteristic equation (intuition: $p(A)v_j = p(\lambda_j)v_j = 0$). Indeed, characteristic polynomial and minimal polynomial have the same roots over \mathbb{C} (use $0 = \mu_A(A) \cdot v = \mu_A(\lambda) \cdot v$). In fact, it is important to note that $f(\lambda)$ is an eigenvalue of f(A).

•	positive eigenvalues+positive definite
	Usually, we consider positive definite matrix AND symmetric matrix so eigenvalue is real.
•	Gerschgorin's theorem
	Lemma 1. Strictly diagonally dominant matrix is nonsingular.
	<i>Proof.</i> There exists $x \neq 0$ such that $Ax = 0$. Use triangle inequality. \Box
	Theorem 2. The number of eigenvalues in each connected component of $\bigcup_{i=1}^{n} G_i$ is equal to the number of Gerschgorin discs that constitute that component.
	<i>Proof.</i> Suppose $z \notin \bigcup_{i=1}^n G_i$. Use the above lemma on $A-zI$. For the second statement, scale the non-diagonal elements.
	Note that G_i is a closed disc.
	1. Schur factorization $A = QRQ^T$
	<i>Proof.</i> Consider E_{λ} and complement with Steinitz exchange lemma to form orthogonal basis of \mathbb{C}^n . Think in terms of change of basis. Use induction.
	2. Singular Value Decomposition
	<i>Proof.</i> Apply spectral theorem on AA^T and A^TA .
	 LDU decomposition Cholesky decomposition A real Hermitian positive-definite matrix A can be expressed as LL^T. QR decomposition (Gram Schmidt Algorithm) LU factorization