

$\begin{array}{l} \textbf{CAS300M12BM2} \\ \textbf{1.2kV, 4.2 m} \boldsymbol{\Omega} \textbf{ All-Silicon Carbide} \\ \textbf{Half-Bridge Module} \end{array}$

C2M MOSFET and Z-RecTM Diode

V _{DS}	1.2 kV
E _{sw, Total @ 300A}	12 mJ
R _{DS(on)}	4.2 mΩ

Features

- Ultra Low Loss
- High-Frequency Operation
- Zero Reverse Recovery Current from Diode
- Zero Turn-off Tail Current from MOSFET
- Normally-off, Fail-safe Device Operation
- Ease of Paralleling
- Copper Baseplate and Aluminum Nitride Insulator

System Benefits

- Enables Compact and Lightweight Systems
- High Efficiency Operation
- Mitigates Over-voltage Protection
- Reduced Thermal Requirements
- Reduced System Cost

Applications

- Induction Heating
- Motor Drives
- Solar and Wind Inverters
- UPS and SMPS
- Traction

Package	62mm x 106mm x 30mm

Part Number	Package	Marking
CAS300M12BM2	Half-Bridge Module	CAS300M12BM2

Maximum Ratings ($T_c = 25$ °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Notes	
V _{DSmax}	Drain - Source Voltage	1.2	kV			
V _{GSmax}	Gate - Source Voltage	-10/+25	V	Absolute Maximum values		
V_{GSop}	Gate - Source Voltage	-5/+20	٧	Recommended Operational Values		
т	Continuous Drain Current	423	A	$V_{GS} = 20 \text{ V, } T_{C} = 25 ^{\circ}\text{C}$	Fig. 26	
$I_{\scriptscriptstyle D}$	Continuous Drain Current	293	A	$V_{GS} = 20 \text{ V, } T_{C} = 90 ^{\circ}\text{C}$	Fig. 26	
$\mathbf{I}_{D(pulse)}$	Pulsed Drain Current	1500	Α	Pulse width t _p limited by T _{jmax}		
T _{Jmax}	Junction Temperature	150	°C			
T _c ,T _{STG}	Case and Storage Temperature Range	-40 to +125	°C			
V_{isol}	Case Isolation Voltage	5.0	kV	AC, 50 Hz , 1 min		
L _{Stray}	Stray Inductance	15	nH	Measured between terminals 2 and 3		
P _D	Power Dissipation	1668	W	T _C = 25 °C, T _J = 150 °C	Fig. 25	

Electrical Characteristics ($T_c = 25$ °C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
V_{DSS}	Drain - Source Blocking Voltage	1.2			kV	$V_{GS_r} = 0 \text{ V, } I_D = 2 \text{ mA}$	
$V_{GS(th)}$	Gate Threshold Voltage	1.8	2.5		V	$V_{DS} = 10 \text{ V}, I_{D} = 15 \text{ mA}$	Fig 7
т	Zero Gate Voltage Drain Current		600	2000	μΑ	$V_{DS} = 1.2 \text{ kV, } V_{GS} = 0 \text{V}$	
$I_{ extsf{DSS}}$	Zero Gate Voltage Drain Current		1500			$V_{DS} = 1.2 \text{ kV,} V_{GS} = 0 \text{V, } T_{J} = 150 ^{\circ}\text{C}$	
I_{GSS}	Gate-Source Leakage Current		1	100	nA	$V_{GS} = 20 \text{ V, } V_{DS} = 0 \text{V}$	
			4.2	5.3		$V_{GS} = 20 \text{ V, } I_{DS} = 300 \text{ A}$	Fig. 4,
$R_{DS(on)}$	On State Resistance		7.7		mΩ	$V_{GS} = 20 \text{ V, } I_{DS} = 300 \text{ A,} $ $T_{J} = 150 \text{ °C}$	5, 6
	Transconductance		156		S	$V_{DS} = 20 \text{ V}, I_{DS} = 300 \text{ A}$	Fig. 8
g _{fs}	Transconductance		144			$V_{DS} = 20 \text{ V}, I_{D} = 300 \text{ A}, T_{J} = 150 ^{\circ}\text{C}$	rig. 6
C_{iss}	Input Capacitance		19.3				Fig. 16, 17
C_{oss}	Output Capacitance		2.57		nF	$V_{DS} = 600 \text{ V}, f = 200 \text{ kHz}, $ $V_{AC} = 25 \text{ mV}$	
C _{rss}	Reverse Transfer Capacitance		0.12]	- TAC	
Eon	Turn-On Switching Energy		5.8		mJ	$V_{DD} = 600 \text{ V}, V_{GS} = -5\text{V}/+20\text{V}$ $I_D = 300 \text{ A}, R_{G(ext)} = 2.5 \Omega$	Fig. 22
E_{Off}	Turn-Off Switching Energy		6.1		mJ	Load = 77 μ H, T_1 = 150 °C Note: IEC 60747-8-4 Definitions	
$R_{G (int)}$	Internal Gate Resistance		3.0		Ω	$f = 200 \text{ kHz}, V_{AC} = 25 \text{ mV}$	
Q_{GS}	Gate-Source Charge		166				
Q_{GD}	Gate-Drain Charge		475		nC	V_{DD} = 800 V, V_{GS} = -5V/+20V, I_{D} = 300 A, Per JEDEC24 pg 27	Fig. 15
\mathbf{Q}_{G}	Total Gate Charge		1025				
$t_{\text{d(on)}}$	Turn-on delay time		76		ns	$V_{DD} = 600V, V_{GS} = -5/+20V,$	
t _r	Rise Time		68		ns	$I_D = 300 \text{ A}, R_{G(ext)} = 2.5 \Omega,$	Fig. 23
$t_{\text{d(off)}}$	Turn-off delay time		168		ns	Timing relative to V _{DS} Note: IEC 60747-8-4, pg 83	
t _f	Fall Time		43		ns	Inductive load	
W	B: 1 5 1 1 1 1		1.6	2.0	V	$I_F = 300 \text{ A, V}_{GS} = 0$	Fig. 10
$V_{\sf SD}$	Diode Forward Voltage		2.0]	$I_F = 300 \text{ A, } T_J = 150 \text{ °C, } V_{GS} = 0$	Fig. 11
Q c	Total Capacitive Charge		3.2		μC		

Note: The reverse recovery is purely capacitive

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
R _{thJCM}	Thermal Resistance Juction-to-Case for MOSFET		0.070	0.075	°C/W	$T_c = 90 ^{\circ}C, P_D = 150 W$	Fig. 27
R _{thJCD}	Thermal Resistance Juction-to-Case for Diode		0.073	0.076		$T_c = 90 ^{\circ}\text{C}, P_D = 130 \text{W}$	Fig. 28

Additional Module Data

Symbol	Parameter	Max.	Unit	Test Condtion
W	Weight	300	g	
М	Mounting Torque	5	Nm	To heatsink and terminals
	Clearance Distance	9	mm	Terminal to terminal
Creepage Distance	30	mm	Terminal to terminal	
	40	mm	Terminal to baseplate	

Figure 1. Output Characteristics $T_1 = -40$ °C

Figure 2. Output Characteristics $T_1 = 25$ °C

Figure 3. Output Characteristics $T_1 = 150 \, ^{\circ}\text{C}$

Figure 4. Normalized On-Resistance vs. Temperature

Figure 5. On-Resistance vs. Drain Current for Various Temperatures

Figure 6. On-Resistance vs. Temperature for Various Gate-Source Voltage

Figure 7. Threshold Voltage vs. Temperature

Figure 8. Transfer Characteristic for Various **Junction Temperatures**

Figure 9. Diode Characteristic at -40 °C

Figure 10. Diode Characteristic at 25 °C

Figure 11. Diode Characteristic at 150 °C

Figure 12. 3rd Quadrant Characteristic at -40 °C

Figure 13. 3rd Quadrant Characteristic at 25 °C

Figure 14. 3rd Quadrant Characteristic at 150 °C

Figure 15. Typical Gate Charge Characteristics

Figure 16. Typical Capacitances vs. Drain-Source Voltage (0 - 200 V)

Figure 17. Typical Capacitances vs. Drain-Source Voltage (0 - 1 kV)

Figure 18. Typical Output Capacitor Stored Energy

Figure 19. Inductive Switching Energy vs. Drain Current For $\rm V_{DS}$ = 600V, $\rm R_{\rm G}$ = 2.5 Ω

Figure 20. Inductive Switching Energy vs. Drain Current For V_{DS} = 800 V, R_{G} = 2.5 Ω

Figure 21. Inductive Switching Energy vs. $R_{G(ext)}$

Figure 22. Inductive Switching Energy vs. Temperature

Figure 23. Timing vs $R_{G(ext)}$

Figure 24. Resistive Switching Time Description

Figure 25. Maximum Power Dissipation (MOSFET) Derating vs Case Temperature

Figure 26. Continuous Drain Current Derating vs Case Temperature

Figure 27. MOSFET Junction to Case Thermal Impedance

Figure 28. Diode Junction to Case Thermal Impedance

Package Dimensions (mm)

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems.