Enunţuri:

1. Fie
$$A = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 2 & 3 & 2 & -1 \\ 3 & 2 & 4 & 2 \end{pmatrix}$$
.

- (a) Determinați dimensiunea subspațiului $L=\left\{x\in\mathbb{R}^4|Ax=0\right\}$ și o bază a acestuia;
- (b) Determinați o descompunere $\mathbb{R}^4 = L \oplus L_0$;
- (c) Descompuneți vectorul x = (1,2,1,2) ca suma dintre un vector din L și unul din L_0 .
- 2. Fie $\mathcal{B} = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$ baza canonică din \mathbb{R}^3 şi $\mathcal{B}' = \{u_1 = (1,2,1), u_2 = (1,-1,0), u_3 = (3,1,-2)\}$. Să se determine matricea de trecere de la \mathcal{B} la \mathcal{B}' şi coordonatele lui v = (2,3,-5) în raport cu baza \mathcal{B}' .
- 3. Fie $L = Span(x_1, x_2, x_3)$, unde $x_1 = (1, 1, 1, 1)$, $x_2 = (3, 2, 1, 3)$, $x_3 = (2, 1, 0, 2)$. Determinați un sistem de ecuații pentru care mulțimea soluțiilor este L.
- 4. Fie aplicația liniară $T: \mathbb{R}^3 \to \mathbb{R}^3$,

$$T(x,y,z) = (-7x + 2y + 2z, -8x + 3y + 2z, -32x + 8y + 9z).$$

- (a) Determinați matricea lui *T* în raport cu baza canonică;
- (b) Fie baza $\mathcal{B} = \{v_1, v_2, v_3\}$, unde $v_1 = (1, 1, 4), v_2 = (1, 0, 4), v_3 = (0, 1, -1)$. Determinați matricea lui T în raport cu baza \mathcal{B} .
- 5. Fie aplicaţia liniară $T: \mathbb{R}^4 \to \mathbb{R}^3$,

$$T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 + x_4, 2x_1 - 3x_2 + x_3 - x_4, x_1 - 2x_2 - 2x_4).$$

Determinați cîte o bază în Ker(T) și în Im(T).

Indicaţii:

- 1. (a) Rezolvați sistemul și găsiți un sistem fundamental de soluții;
 - (b) Completați baza lui L la o bază a lui \mathbb{R}^4 . Spațiul L_0 este generat de vectorii adăugați.
 - (c) Orice $x \in \mathbb{R}^4$ trebuie să se scrie ca $x = x_0 + x_1$ cu $x_0 \in L_0$ şi $x_1 \in L$. Observați că dacă ați determinat unul dintre acești vectori (să zicem x_1 atunci $x_0 = x x_1$). O metodă ar fi pornind de la observația că $Ax = Ax_0 + Ax_1$.
- 2. Matricea de trecere se obține aplicînd definiția.
- 3. Determinați mai întîi dimensiunea lui L. Sistemul căutat este $A \cdot x = 0$, cu Rang(A) = 4 dim(L).
- 4. Aplicați definiția în ambele cazuri. Sau la punctul b) folosiți formula de schimbare a bazei pentru aplicații liniare. Se poate aplica și metoda Gauss!
- 5. Ker(T) se calculează cu definiția. Pentru Im(T) folosiți faptul că un sistem de generatori in acesta este format de imaginea unui sistem de generatori din \mathbb{R}^4 .

Dacă trimiteți rezolvările pe e-mail veți primi feed-back. Pentru întrebări folosiți Zulip, stream-urile Algebra si Geometrie/143 și Algebra si Geometrie/144 (va trebui să faceți un cont în prealabil).