

LhARA linear optics documentation

N. Dover, K.R. Long, J. McGarrigle, M. Maxouti

Contents

	1	Intro	oduction	1
	2	Coo	rdinate systems	1
		2.1	Laboratory coordinate system	1
5		2.2	Reference particle local coordinate system	2
		2.3	Transforming to and from reference particle local coordinates to laboratory coordinates	3
	3	Phas	se space and trace space	3
		3.1	Phase space	4
		3.2	Trace space	4
10	4	Tran	nsfer matrices	5
		4.1	Drift	5
		4.2	Quadrupole	5
		4.3	Solenoid	6
		4.4	Non-neutral (electron) plasma (Gabor) lens	7
15		4.5	Dipole	8
	5	Sour	rce	9
		5.1	Energy distribution	9
		5.2	Angular Distribution	11
		5.3	Spatial distribution	11
20		5.4	Simulated distributions	14
	A	Mod	ule, class and data structures	16
		A.1	BeamLine	17
		A.2	Particle and ReferenceParticle	22
		A.3	Beam and extrapolateBeam	30
25		A.4	BeamLineElement	36
		A.5	UserFramework	51
		A.6	visualise	52
	В	Set-ı	up and run	54

1 Introduction

The LhARA [1, 2] linear optics package was written to allow rapid calculations to initiate more detailed studies of the LhARA beam lines and for use as a tool to check issues as they arise. The package has been written in

Python so that it is accessible and can readily be updated, modified and maintained. At present the code treats proton beams only.

This document presents the approximations and notation used and summarises the module, class and data structures that have been adopted.

2 Coordinate systems

2.1 Laboratory coordinate system

The origin of the LhARA coordinate system, the "laboratory coordinate system" or "laboratory reference frame", is at the position of the laser focus at the laser-target interaction point [3]. The z axis is horizontal and parallel to the nominal capture axis, pointing in the downstream direction. The y axis points vertically upwards and the x axis completes a right-handed orthogonal coordinate system.

Unit vectors along the x, y and z axes are i, j and k respectively. The position of the reference particle as well as its momentum and energy are described as functions of the distance it has travelled from the origin of coordinates. The distance the reference particle has travelled is s, making the position, r_0 , momentum, p_0 , and energy, E_0 , of the reference particle position, s:

$$r_0 = r_0(s);$$

 $p_0 = p_0(s);$ and $E_0 = E_0(s).$ (1)

The magnitude of the reference particle velocity is v_0 and the relativistic parameters that determine the reference particle energy and momentum are:

$$\beta_0 = \frac{v_0}{c}; \text{ and}$$

$$\gamma_0 = \frac{1}{\sqrt{1 - \beta_0^2}};$$

where c is the speed of light. The time, t, at which the reference particle is at s is also a function of s:

$$t = t(s) = \frac{s}{v_0} = \frac{s}{c} \frac{E_0}{cp_0};$$
 (2)

where $p_0 = |p_0|$.

2.2 Reference particle local coordinate system

A coordinate system defined relative to the position of the reference particle, the "reference particle local coordinate" (RPLC) system, may be defined using the direction in which the particle is travelling. The position of the particle defines the origin of the RPLC system, see figure 1. The tangent to the reference particle trajectory at s defines the z_r axis with unit vector \mathbf{k}_r . In the laboratory frame, the presence of local electric or magnetic fields may cause the reference particle's trajectory to change. In the neighbourhood of the particle, the curved trajectory may be described in terms of an arc of a circle. The x_r axis (with unit vector \mathbf{i}_r) is then taken to be in the direction pointing away from the centre of the circle. The third coordinate axis, y_r , is defined to complete the right-handed orthogonal coordinate system; the unit vector along the y_r axis being given by $\mathbf{j}_r = \mathbf{k}_r \times \mathbf{i}_r$.

The trajectory of the reference particle is a straight line as it traverses a drift space and a variety of beam-line elements. Examples of such beam-line elements include solenoids and quadrupoles. The reference trajectory

Figure 1: Reference particle local coordinate system. The trajectory of the reference particle is shown as the red line. The distance the reference particle has travelled, measured from the origin of coordinates in the laboratory frame, is labelled s. The origin of the "reference particle local coordinate (RPLC) system is coincident with the position of the reference particle. The directions of unit vectors along each of three righthanded, orthogonal coordinate axes are shown as black arrows labelled i_r , j_r , and j_r .

is also undeviated by passage through an accelerating cavity placed such that the accelerating field is parallel to the reference-particle trajectory.

The RPLC coordinate system at s=0 is taken to coincide with the laboratory coordinate system. Beamline elements are placed sequentially along the trajectory of the reference particle. If necessary a coordinate transformation is performed to ensure that the RPLC system at the entrance to a particular beam-line element is consistent with the definition given above.

2.3 Transforming to and from reference particle local coordinates to laboratory coordinates

In the RPLC system, the trajectory of the reference particle, R_0 , is:

$$\mathbf{R}_0(s) = \mathbf{0} \,. \tag{3}$$

The position of a test particle in the RPLC frame, R, is described with reference to the position of the reference particle. In the laboratory frame, the position of the test particle is:

$$\boldsymbol{r}(s) = \boldsymbol{r}_0(s) + \boldsymbol{\delta r}(s); \tag{4}$$

where:

$$\delta r(s) = \underline{R}(s)R(s)$$
; and (5)

 $\underline{R}(s)$ is a rotation matrix that takes the RPLCs at s to the laboratory frame coordinates.

In the laboratory frame, the unit vectors i_r , j_r and k_r are given by:

$$\mathbf{i}_{r} = \begin{pmatrix} i_{rx} \\ i_{ry} \\ i_{rz} \end{pmatrix};$$

$$\mathbf{j}_{r} = \begin{pmatrix} j_{rx} \\ j_{ry} \\ j_{rz} \end{pmatrix}; \text{ and}$$

$$\mathbf{k}_{r} = \begin{pmatrix} k_{rx} \\ k_{ry} \\ k_{rz} \end{pmatrix}.$$
(6)

The rotation matrix, \underline{R} , may now be written:

$$\underline{\underline{R}}(s) = \begin{bmatrix} i_{rx} & j_{rx} & k_{rx} \\ i_{ry} & j_{ry} & k_{ry} \\ i_{rz} & j_{rz} & k_{rz} \end{bmatrix} . \tag{7}$$

3 Phase space and trace space

The motion of particles passing through an accelerator is most often described using classical Hamiltonian mechanics; quantum mechanics being required only in particular cases such as the description of spin polarisation in a storage ring. In classical Hamiltonian mechanics the equations of motion are solved to give the evolution of the position, momentum, and energy as functions of a single independent parameter. The independent parameter is often taken to be time.

Relativistic mechanics exploits four-vector position, $\underline{\mathcal{R}} = (r, ct)$, and four-vector momentum, $\underline{\mathcal{P}} = (cp, E)$. In the Hamiltonian description of particle dynamics, these four vectors become functions of the independent variable, i.e. $\underline{\mathcal{R}} = \underline{\mathcal{R}}(t)$ and $\underline{\mathcal{P}} = \underline{\mathcal{P}}(t)$. In the laboratory system, the position of the reference particle along its trajectory is directly related to the time coordinate by $t = c\beta_0 s$. This allows s to be taken as the independent variable and for the motion of particles in the beam to be derived as functions of s.

The 6D phase-space coordinates of a particle as a function of s are given by the position and momentum three vectors. The particle energy may be determined from the invariant mass and the time coordinate from the invariant interval between the origin and the position represented by s.

The "trace-space" coordinates of a particle are defined relative to the reference particle. Usually, a beam is understood to contain particles which follow trajectories that differ rather little from that of the reference particle. Trace space is defined such that the position, "momentum", and "energy" coordinates are small for particles which follow trajectories close to that of the reference particle. The utility of this approach is that trace-space coordinates may be used to perform Taylor expansions of the Hamiltonian which may readily be solved to yield a description of particle transport using functions that are linear in the trace-space coordinates.

The notation used for the 6D phase and trace spaces are defined in this section.

3.1 Phase space

The 6D phase-space vector is defined in terms of the three-vector position and three vector momentum as:

$$\begin{bmatrix} \mathbf{r} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \\ \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \end{bmatrix}$$
(8)

The trajectory of the particle may be evaluated as a function of time or s.

95 3.2 Trace space

Trace space is defined to simplify the calculation of the trajectory of particles through the accelerator lattice and is derived from the phase space expressed in the RPLC frame. Consider a particle with position $r_{\rm RPLC} = (x_{\rm RPLC}, y_{\rm RPLC}, z_{\rm RPLC})$ and momentum $p_{\rm RPLC} = (p_{\rm x\,RPLC}, p_{\rm y\,RPLC}, p_{\rm z\,RPLC})$. Taking the magnitude of the momentum of the reference particle in the laboratory frame to be p_0 , the trace-space coordinates are given by:

$$\underline{\phi} = \begin{pmatrix} x_{\text{RPLC}} \\ x'_{\text{RPLC}} \\ y_{\text{RPLC}} \\ y'_{\text{RPLC}} \\ z_{\text{RPLC}} \end{pmatrix};$$
(9)

where:

$$x'_{\text{RPLC}} = \frac{\partial x}{\partial s} = \frac{cp_{x \text{ RPLC}}}{cp_0};$$
 (10)

$$y'_{\text{RPLC}} = \frac{\partial y}{\partial s} = \frac{cp_{y \text{ RPLC}}}{cp_0};$$
 (11)

$$z_{\text{RPLC}} = \frac{s}{\beta_0} - ct = \frac{\Delta s}{\beta_0}$$
; and (12)

$$\delta_{\text{RPLC}} = \frac{E}{cp_0} - \frac{1}{\beta_0} = \frac{\Delta E}{cp_0}. \tag{13}$$

Here $\Delta s = s - s_0$ and $\Delta E = E - E_0$, where s_0 and E_0 are the reference particle position and energy respectively; E and s are the energy and position of a particular particle in the beam.

4 Transfer matrices

A beam line may be described as a series of beam-line elements arranged one after the other. A particle may then be transported through the beam line by transporting it through each element in turn. Taking advantage of the trace-space defined above, the transport of a particle across a particular beam-line element may be performed using a linear transformation:

$$\underline{\phi}_{\text{end}} = \underline{\underline{T}} \, \underline{\phi}_{\text{start}} \,; \tag{14}$$

where $\phi_{\rm start}$ is the trace-space vector at the start of the beam-line element and $\phi_{\rm end}$ is the transformed trace-space vector at the end. The step across the beam-line element implies an increment, δs , to the s-coordinate given by:

$$s_{\rm end} = s_{\rm start} + \delta s;$$
 (15)

where s_{start} and s_{end} are the coordinate along the reference particle trajectory at the start and end of the beamline element respectively. There are many excellent descriptions of the derivation of the transfer matrices, $\underline{\underline{T}}$, so only the results are quoted here. The notation used below is developed from that used in [4].

4.1 Drift

A "drift" space refers to a region in which the beam propagates in the absence of any electromagnetic fields. In a drift, particles propagate in straight lines, therefore:

$$\underline{\underline{T}}_{\text{drift}} = \begin{pmatrix}
1 & l & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & l & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{l}{\beta_0^2 \gamma_0^2} \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix};$$
(16)

where l is the length of the drift. The increment in the reference particle position is:

$$\delta s = l. \tag{17}$$

4.2 Quadrupole

The passage of a beam particle through a quadrupole magnet may be described by specifying the field gradient, g, within the magnet and the length, l_q , of the quadrupole measured along its axis. The impact of a quadrupole on the trajectory of a particle in the xy plane is independent of the impact of the magnet on the particle's trajectory in the yz plane. In this sense quadrupole focusing in the xz and yz planes is said to be "uncoupled".

If the field gradient along the x and y axes is identical, then:

$$g_x = \frac{\partial B_{qx}}{\partial x} = g_y = \frac{\partial B_{qy}}{\partial y} = g;$$
 (18)

where the field in the quadrupole, B_q , has components $(B_{qx}, B_{qy}, 0)$.

In the "hard-edge" approximation, where the field falls to zero at the start and end of the quadrupole, the transfer matrix for a quadrupole focusing in the xz plane (a "focusing quadrupole") may be written:

$$\underline{T}_{\text{Fquad}} = \begin{pmatrix}
\cos(\sqrt{k_q} l_q) & \frac{\sin(\sqrt{k_q} l_q)}{\sqrt{k_q}} & 0 & 0 & 0 & 0 \\
-\sqrt{k_q} \sin(\sqrt{k_q} l_q) & \cos(\sqrt{k_q} l_q) & 0 & 0 & 0 & 0 \\
0 & 0 & \cosh(\sqrt{k_q} l_q) & \frac{\sinh(\sqrt{k_q} l_q)}{\sqrt{k_q}} & 0 & 0 \\
0 & 0 & \sqrt{k_q} \sinh(\sqrt{k_q} l_q) & \cosh(\sqrt{k_q} l_q) & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{l_q}{\beta_0^2 \gamma_0^2} \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}; (19)$$

where:

$$k_q = \frac{gc}{p} \times 10^{-3} \,\mathrm{m}^{-2} \,,$$
 (20)

c is the speed of light in metres per second, p is the magnitude of the momentum of the particle in MeV/c, and the field gradient, g, is given in T/m. As before, β_0 is the relativistic velocity of the reference particle and $\gamma_0 = (1 - \beta_0^2)^{-\frac{1}{2}}$. The increment in the reference particle position is:

$$\delta s = l_q \,. \tag{21}$$

It is important to include a description of the effect of dispersion on beam transport through the LhARA beam line since the laser-driven proton and ion source provides a broad energy spectrum. Reference [4] describes two methods for the description of dispersion in a linear approximation. The first is to use the reference momentum to calculate the quadrupole focusing strength ($k_{0q} = \frac{gc}{p_0} \times 10^{-3} \,\mathrm{m}^{-2}$) and to include terms in the expressions for x, x', y, and y' dependent on δ . The second is to use equation 20 to calculate the effective quadrupole focusing strength, with k_q evaluated using p. The second approach has been adopted here.

In the same notation, the transfer matrix for a quadrupole focusing in the yz plane (a "defocusing quadrupole") may be written:

$$\underline{T}_{\text{Dquad}} = \begin{pmatrix}
\cosh(\sqrt{k_q}l_q) & \frac{\sinh(\sqrt{k_q}l_q)}{\sqrt{k_q}} & 0 & 0 & 0 & 0 \\
\sqrt{k_q}\sinh(\sqrt{k_q}l_q) & \cosh(\sqrt{k_q}l_q) & 0 & 0 & 0 & 0 \\
0 & 0 & \cos(\sqrt{k_q}l_q) & \frac{\sin(\sqrt{k_q}l_q)}{\sqrt{k_q}} & 0 & 0 \\
0 & 0 & -\sqrt{k_q}\sin(\sqrt{k_q}l_q) & \cos(\sqrt{k_q}l_q) & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{l_q}{\beta_0^2\gamma_0^2} \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}.$$
(22)

4.3 Solenoid

110

The trajectory of a beam particle through a solenoid is determined by the magnetic field strength, B_s , within the solenoid and the length of the solenoid, l_s , measured along its axis. As the particle enters the solenoid, the fringe field imparts momentum transverse to the axis of the magnet. This results in the particle executing a helical trajectory, the axis of the helix being parallel to the solenoid axis. The sense of the rotation depends on the particle charge and the polarity of the field. The helical motion means that the evolution of the particle motion in the xz plane is coupled with the evolution of the particle motion in the yz plane.

In the "hard-edge" approximation, the magnetic field inside the magnet is given by $\mathbf{B}_s = (0, 0, B_{s0})$, where the solenoid axis lies along the z_{RPLC} axis. The solenoid field-strength parameter is then given by:

$$k_s = \left[\frac{B_{s0}c}{2p} \times 10^{-3}\right]^2 \text{ m}^{-2};$$
 (23)

where B_{s0} is measured in T, p in MeV/c and c in m/s.

The transfer matrix for passage of a positive particle through a solenoid with field pointing in the positive $z_{\rm RPLC}$ direction may be written:

$$\underline{T}_{Sol} = \begin{pmatrix} \cos^{2}(\sqrt{k_{s}}l_{s}) & \frac{1}{2\sqrt{k_{s}}}\sin(\sqrt{k_{s}}l_{s}) & \frac{1}{2}\sin(2\sqrt{k_{s}}l_{s}) & \frac{1}{\sqrt{k_{s}}}\sin^{2}(\sqrt{k_{s}}l_{s}) & 0 & 0\\ -\frac{\sqrt{k_{s}}}{2}\sin(2\sqrt{k_{s}}l_{s}) & \cos^{2}(\sqrt{k_{s}}l_{s}) & -\sqrt{k_{s}}\sin^{2}(\sqrt{k_{s}}l_{s}) & \frac{1}{2}\sin(2\sqrt{k_{s}}l_{s}) & 0 & 0\\ -\frac{1}{2}\sin(2\sqrt{k_{s}}l_{s}) & -\frac{1}{\sqrt{k_{s}}}\sin^{2}(\sqrt{k_{s}}l_{s}) & \cos^{2}(\sqrt{k_{s}}l_{s}) & \frac{1}{2\sqrt{k_{s}}}\sin(2\sqrt{k_{s}}l_{s}) & 0 & 0\\ \sqrt{k_{s}}\sin^{2}(\sqrt{k_{s}}l_{s}) & -\frac{1}{2}\sin(2\sqrt{k_{s}}l_{s}) & -\frac{\sqrt{k_{s}}}{2}\sin(2\sqrt{k_{s}}l_{s}) & \cos^{2}(\sqrt{k_{s}}l_{s}) & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & \frac{l}{\beta_{0}^{2}\gamma_{0}^{2}}\\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$(24)$$

As in the case of the quadrupoles, dispersion is accounted for by using p to calculate k_s (equation 23). The increment in the reference particle position is:

$$\delta s = l_s \,. \tag{25}$$

4.4 Non-neutral (electron) plasma (Gabor) lens

A dense gas of electrons confined in a Penning-Malmberg trap provides an electric field that can be used to focus a positive ion beam. The electron gas is confined axially in the lens by an electrostatic potential created using a central anode of length l_G . The gas is confined radially using the uniform field of a solenoid. Assuming a uniform electron density, n_e , the focusing parameter, k_G , may be written:

$$k_G = \frac{e}{2\epsilon_0} \frac{m_p \gamma}{p^2} n_e \quad \text{m}^{-2};$$
 (26)

where e is the charge on the electron, ϵ_0 is the permittivity of free space, and m_p is the proton mass. As in the case of the quadrupoles and solenoid, dispersion is accounted for by using p in equation 26. The force on a particle passing through the electron gas is towards the axis of the lens and is proportional to the radial distance of the particle from the axis. Focusing is therefore cylindrically symmetric and does not couple motion in the the xz and yz planes.

In the "hard-edge" approximation, the electric field inside the lens falls to zero at the end of the electron gas and the contribution of the magnetic field used to confine the electron gas in the transverse direction has a negligible effect on particles passing through the lens. The transfer matrix for the passage of a positive particle through the lens may be written:

$$\underline{T}_{\underline{G}} = \begin{pmatrix} \cos(\sqrt{k_G}l_G) & \frac{\sin(\sqrt{k_G}l_G)}{\sqrt{k_G}} & 0 & 0 & 0 & 0\\ -\sqrt{k_G}\sin(\sqrt{k_G}l_G) & \cos(\sqrt{k_G}l_G) & 0 & 0 & 0 & 0\\ 0 & 0 & \cos(\sqrt{k_G}l_G) & \frac{\sin(\sqrt{k_G}l_G)}{\sqrt{k_G}} & 0 & 0\\ 0 & 0 & -\sqrt{k_G}\sin(\sqrt{k_G}l_G) & \cos(\sqrt{k_G}l_G) & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & \frac{l}{\beta_0^2\gamma_0^2}\\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} . \tag{27}$$

The increment in the reference particle position is:

$$\delta s = l_G. (28)$$

30 4.5 Dipole

The reference particle trajectory in the beam-line elements described above passes along the axis of the element. In contrast, a dipole bends the reference trajectory so that it describes the arc of a circle (see figure 2). The code provides for transport through a "sector dipole" in the hard-edge approximation. In this case, the field within the magnet is taken to be constant and parallel to j_{RPLC} , i.e. $B_D = (0, B_{D0}, 0)$. No edge focusing is considered.

The passage of particles through a dipole may be described by defining the parameter, k_D :

$$k_D = \left[\frac{B_{D0}c}{p} \times 10^{-3} \right]^2 \,\mathrm{m}^{-2} \,.$$
 (29)

The momentum of the reference particle is related to the curvature. ρ , by:

$$p_0 = B_{D0}\rho; (30)$$

so:

135

$$k_D = \frac{1}{\rho};\tag{31}$$

and the angle ϕ is given by:

$$\phi = \frac{l_D}{\rho} \,. \tag{32}$$

Figure 2: Schematic representation of the passage of the reference particle through a sector dipole. The outline of the sector dipole is shown by the solid black lines. The trajectory of the reference particle is shown as the dashed line. The length of the reference-particle trajectory inside the field of the sector dipole is l_D . The $x_{\rm RPLC}$ and $z_{\rm RPLC}$ coordinate axes at the entry and exit of the sector dipole are shown. The radius of curvature of the reference particle trajectory inside the magnet is ρ and the angle through which the $x_{\rm RPLC}$ is rotated is ϕ .

With these definitions the transfer matrix for passage through a dipole may be written:

$$\underline{\underline{T}}_{D} = \begin{pmatrix}
\cos(\phi) & \rho \sin(\phi) & 0 & 0 & 0 & \frac{\rho}{\beta_{0}} (1 - \cos(\phi)) \\
-\frac{\sin(\phi)}{\rho} & \cos(\phi) & 0 & 0 & 0 & \frac{\sin(\phi)}{\beta_{0}} \\
0 & 0 & 1 & l & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
-\frac{\sin(\phi)}{\beta_{0}} & -\frac{\rho}{\beta_{0}} (1 - \cos(\phi)) & 0 & 0 & 1 & \frac{l}{\beta^{2}\gamma^{2}} - \frac{l - \rho \sin(\phi)}{\beta_{0}^{2}} \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} .$$
(33)

The increment in the reference particle position is:

$$\delta s = l_D. (34)$$

5 Source

A variety of options for the generation of the particle distribution at source are included in the package (see section ??). The principal, and the default, option is the target-normal sheath acceleration (TNSA) model presented in [5]. The implementation of this model is summarised below. The laboratory and RPLC reference frames coincide at the target, therefore trace- and phase-coordinates are not distinguished in the presentation of the particle-production model.

5.1 Energy distribution

The typical kinetic energy spectrum produced in target-normal sheath acceleration falls rapidly with kinetic energy before dropping rapidly to zero above a maximum "cut off" energy ε_{max} . The kinetic-energy spectrum

of the TNSA model presented in [5] is given by:

$$\frac{dN}{d\varepsilon} = \frac{n_{e0}c_s t_{laser} S_{sheath}}{\sqrt{2\varepsilon T_e}} \exp\left(-\sqrt{\frac{2\varepsilon}{T_e}}\right); \tag{35}$$

where N is the number of protons or ions produced per unit solid angle, ε is the ion kinetic energy, n_{e0} and T_e are the hot electron density and temperature respectively, c_s is the ion acoustic velocity, $t_{\rm laser}$ is the duration of the laser pulse, and $S_{\rm sheath}$ is the effective area over which the TNSA mechanism takes place. The variables and the units in which they are expressed are presented in table 1.

Equation 35 is based on time-limited fluid-dynamical models which are unable to predict the cut-off kinetic energy accurately. The cut-off energy is taken to be that given by the model described in [6] in which the time over which the laser pulse creates the conditions necessary for acceleration is derived. The kinetic energy cut-off is given by:

$$\varepsilon_{max} = X^2 \varepsilon_{i,\infty}; \tag{36}$$

where X is obtained by solving:

$$\frac{t_{laser}}{t_0} = X \left(1 + \frac{1}{2} \frac{1}{1 - X^2} \right) + \frac{1}{4} \ln \left(\frac{1 + X}{1 - X} \right) . \tag{37}$$

Here t_0 is the time over which the ion acceleration may be treated as ballistic and $\varepsilon_{i,\infty}$ is given in table 1.

To generate the kinetic energy spectrum, the probability density function, $g(\varepsilon)$, is defined such that the probability, $\delta \mathcal{P}$, of a particle being generated in the interval $\varepsilon \to \varepsilon + \delta \varepsilon$ is given by:

$$\delta \mathcal{P} = g\left(\varepsilon\right)\delta\varepsilon. \tag{38}$$

 $g(\varepsilon)$ can be written in terms of the differential spectrum given in equation 35 through the introduction of a normalisation constant \mathcal{N} :

$$g(\varepsilon) = \frac{1}{N} \frac{dN}{d\varepsilon} \,. \tag{39}$$

The cumulative distribution funtion, $G(\varepsilon)$, is given by:

$$G(\varepsilon) = \int_{\varepsilon_{\min}}^{\varepsilon_{\max}} g(\varepsilon) d\varepsilon \,; \tag{40}$$

where ε_{\min} is the minimum kinetic energy and the normalisation constant, \mathcal{N} , is set so that $G(\varepsilon_{\max}) = 1$. Carrying out the integration yields:

$$G(\varepsilon) = \frac{2}{\mathcal{N}} \frac{n_{e0}c_s t_{laser} S_{sheath}}{\sqrt{2T_e}} \sqrt{\frac{T_e}{2}} \left[\exp\left(-\sqrt{\frac{2\varepsilon_{\min}}{T_e}}\right) - \exp\left(-\sqrt{\frac{2\varepsilon}{T_e}}\right) \right]; \tag{41}$$

and the normalisation constant is given by:

$$\mathcal{N} = 2 \frac{n_{e0} c_s t_{laser} S_{sheath}}{\sqrt{2T_e}} \sqrt{\frac{T_e}{2}} \left[\exp\left(-\sqrt{\frac{2\varepsilon_{\min}}{T_e}}\right) - \exp\left(-\sqrt{\frac{2\varepsilon}{T_e}}\right) \right]. \tag{42}$$

The kinetic energy spectrum may now be obtained by choosing a value for $G(\varepsilon)$ using a probability distribution uniform over the range $0 < G(\varepsilon) < 1$. The generated value of ε is obtained by evaluating:

$$\varepsilon = \left[\sqrt{\varepsilon_{\min}} - \sqrt{\frac{T_e}{2}} \ln \left(1 - \frac{G(\varepsilon)}{G(\varepsilon_{\max})} \right) \right]^2. \tag{43}$$

Table 1: Parameters present in the analytical expression, equation 35, describing target normal sheath acceleration (TNSA).

Parameter	Definition	Value	Unit
\overline{N}	Ion number	-	-
arepsilon	Ion kinetic energy	-	J
n_{e0}	Hot electron density	$\frac{N_E}{ct_{laser}S_{sheath}}$	pp/m^3
N_e	Accelerated electron number	$\frac{fE_{laser}}{T_e}$	-
E_{laser}	Laser energy	70	J
f	Energy conversion efficiency	$1.2 \times 10^{-15} I^{0.75}$, max=0.5	-
I	Laser intensity	4×10^{20}	W/cm^2
T_e	Hot electron temperature	$m_e c^2 \left[\sqrt{1 + \frac{I\lambda^2}{1.37 \times 10^{18}} - 1} \right]$	J
m_e	Electron mass	9.11×10^{-31}	Kg
c	Speed of light	3×10^8	m/s
λ	Laser wavelength	0.8	μ m
t_{laser}	Laser pulse duration	28×10^{-15}	S
B	Radius of electron bunch	$B = r_0 + dtan(\theta)$	m
S_{sheath}	Electron acceleration area	πB^2	m^2
r_0	Laser spot radius	$\sqrt{rac{P_{laser}}{I\pi}}$, I in W/m^2	m
d	Target thickness	$400 - 600 \times 10^{-9}$	m
θ	Electron half angle divergence	0.436	rad
P_{laser}	Laser power	2.5×10^{15} , $P_{laser} = \frac{E_{laser}}{t_{laser}}$	W
c_s	Ion-acoustic velocity	$\left(\frac{Zk_BT_e}{m_i}\right)^{\frac{1}{2}}$	m/s
Z	Ion charge number	1	-
k_B	Boltzmann constant	1.380649×10^{-23}	$m^2kgs^{-2}K^{-1}$
m_i	Proton mass	1.67×10^{-27}	Kg
P_R	Relativistic power unit	$\frac{m_e c^2}{r_e} = 8.71 \times 10^9$	W
r_e	Electron radius	2.82×10^{-15}	m
$arepsilon_{i,\infty}$	Maximum ion kinetic energy	$2Zm_ec^2\sqrt{rac{fP_{laser}}{P_R}}$	MeV
t_0	Ballistic time	$rac{B}{v(\infty)}$	S
$v(\infty)$	Ballistic velocity	$\sqrt{rac{2arepsilon_{i,\infty}}{m_i}}$	m/s

5.2 Angular Distribution

The angular distribution of the flux of protons and ions produced by the TNSA mechanism may be described as a cone centred on the normal to the foil surface [7]. Radiochromic film has been used to observe the opening angle, 2α , of the cone as a function of energy. The envelope angle, α , defined such that, at a particular energy, all particles are contained within $\pm \alpha(\varepsilon)$ of the z axis. The opening angle is observed to decrease as the ion energy increases.

The distribution of the polar angle, θ_S , at which particles are produced at the laser-driven source is generated by defining r' such that:

$$r' = \frac{\partial r}{\partial s}; \tag{44}$$

where $r = \sin \theta_S$. x' and y' are sampled independently from the probability density function:

$$g(r') = \frac{1}{r_m'^2} \left(r_m'^2 - r'^2 \right) ; \tag{45}$$

where $r'_m = \sin \alpha$. At low kinetic energy ($\varepsilon \sim \varepsilon_{\min}$), $\alpha(\varepsilon)$ is taken to be $\sim 20^{\circ}$. $\alpha(\varepsilon)$ is assumed to decrease linearly with energy such that:

$$\alpha(\varepsilon) = 20^{\circ} - 15^{\circ} \frac{\varepsilon}{\varepsilon_{max}}; \tag{46}$$

i.e. $\alpha(\varepsilon)$ decreases from 20° at $\varepsilon=0$ to 5° at ε_{max} . Finally, the azimuthal angle, ϕ_S , is chose from a distribution uniform over the range $0<\phi_S<2\pi$.

5.3 Spatial distribution

The x and y distributions at production are assumed to be independent and Gaussianly distributed with a standard deviation given by the radius of the laser spot focused on the target.

5.4 Simulated distributions

Distributions 10^6 protons produced by the TNSA mechanism using the algorithm described above are shown in figure 4. The parameters used in the algorithm are presented in table 2. The generated distribution of kinetic energy is in good agreement with the distribution implied by equation 35. The width of the generated polar-angle distribution is observed to fall with kinetic energy and the kinetic-energy dependence of the RMS calculated from the generated particles is in good agreement with that expected from equation 46. As a result, the distribution of θ_S is approximately Gaussian with a width dominated by the contribution of protons with kinetic energy close to ε_{\min} . The generated ϕ_S distribution is flat in the range $0^\circ < \phi_S < 360^\circ$ and the (x,y) distribution is Gaussian in both the x and y projections.

Figure 3: Kinematic distributions of particles at the point of production. <u>Top</u>: The generated kinetic energy disribution is shown as the solid histogram. The required distribution (equation 35), normalised to the lowest kinetic-energy bin, is shown as the solid red line. <u>Second row</u>: Generated r' and ϕ_S distributions. <u>Third row</u>: Generated x' and y' distributions. <u>Bottom</u>: RMS of the θ_S distribution versus kinetic energy. The solid circles are calculated using slices of width 0.15 MeV. The red line shows the result of a straight line fit to the data. The expected dependence from integration of equation 46 is presented in the legend.

Figure 4: Top left: Generated (x, y) distribution of the particle-production point. Top right: The distribution of θ_S versus kinetic energy. Centre left, right: Generated distributions of x' and y'. Bottom left: Generated distribution of δ . Bottom right: Generated distribution of θ_S .

Table 2: Parameterised laser driven

Parameter	Value	Unit
σ_x	4e-06	μ m
$\mid \sigma_y \mid$	4e-06	μ m
$ \cos heta_S _{ ext{min}}$	0.998	
$arepsilon_{ ext{min}}$	1.0	MeV
$arepsilon_{ ext{max}}$	25.0	MeV
nPnts	1000	
Laser power	250000000000000000000000000000000000000	W
Laser energy	70.0	J
Laser wavelength	0.8	μ m
Laser pulse duration	2.8e-14	s
Laser spot size	4e-07	μ m
Laser intensity	4e+20	J/m^2
Electron divergence angle	25.0	degrees
RMS θ_S at $K = 0 \mathrm{MeV}$	20	degrees
Scaled slope of RMS θ_S versus K	15	degrees

References

175

- [1] G. Aymar, T. Becker, *et al.*, "LhARA: The Laser-hybrid Accelerator for Radiobiological Applications," *Frontiers in Physics* **8** (2020) .
 - https://www.frontiersin.org/articles/10.3389/fphy.2020.567738.
 - [2] The LhARA consortium, "The Laser-hybrid Accelerator for Radiobiological Applications," Tech. Rep. CCAP-TN-01, The Centre for the Clinical Application of Particles, Imperial College London, 2020. https://ccap.hep.ph.ic.ac.uk/trac/raw-attachment/wiki/Communication/Notes/CCAP-TN-01.pdf.
 - [3] The LhARA collaboration, "Baseline for the LhARA design update," Tech. Rep. CCAP-TN-11, The Centre for the Clinical Application of Particles, Imperial College London, 2022.

 https://ccap.hep.ph.ic.ac.uk/trac/raw-attachment/wiki/Communication/Notes/CCAP-TN-11-LhARA-Design-Baseline.pdf.
- [4] A. Wolski, *Beam dynamics in high energy particle accelerators*. Imperial College Press, 57 Shelton Street, Covent Garden, London WC2H 9HE, 2014.
 - [5] J. Fuchs, P. Antici, *et al.*, "Laser-driven proton scaling laws and new paths towards energy increase," *Nature Physics* **2** (01, 2006) .
- [6] J. Schreiber, F. Bell, *et al.*, "Analytical Model for Ion Acceleration by High-Intensity Laser Pulses," *Physical review letters* **97** (08, 2006) 045005.
 - [7] P. Casolaro, L. Campajola, G. Breglio, S. Buontempo, M. Consales, A. Cusano, A. Cutolo, F. Di Capua, F. Fienga, and P. Vaiano, "Real-time dosimetry with radiochromic films," *Scientific Reports* **9** (03, 2019).

A Module, class and data structures

195

200

The linear optics package has been written in object-oriented Python and is broken down in four principal modules:

- BeamLineElement: provides the various beam-line elements required to build a description of the beam line. Each individual element, such as a drift, quadrupole, etc., is described in a class derived from the BeamLineElement parent class.
- <u>BeamLine</u>: provides code to assemble the elements into a coherent beam line. BeamLine is a singleton class to ensure that two beam lines can not be simulated in a single run of the package. The extrapolateBeam class is derived from the Beam class to handle the propagation of beam envelopes without the need to track individual particles.
- <u>Beam:</u> provides code to calculate ensemble properties of the beam such as emittance. The ensemble properties are stored as instance attributes of the Beam class.
- <u>Particle</u>: provides code to record beam particles at positions along the beam line. The module provides the singleton ReferenceParticle class derived from the Particle class.

Other modules: BeamIO, LaTeX, PhysicalConstants, Report, Simulation, UserFramework, Utilities, and Visualise support the principal modules or provide services. The data structure is implemented as attributes of the instances of the various classes. This section describes the implementation of the various modules, the classes of which they are composed, and how access to the data is provided.

Each class has methods by which to access a list of the class instances and a Boolean flag by which to generate debug print out (see table 3).

Table 3: Methods by which to set and access class attributes.

Method	Argument	Return	Comment
getinstances()		List of instances of class	For singleton classes such as BeamLine,
			getinstances () returns a single instance
			rather than a list.
setDebug(Debug)	Boolean		Sets flag to generate debug print-out
getDebug()		Boolean debug flag	If True, generate debug print-out
setAll2None()			Set all instance attributes to None at start of
			instantiation.
SummaryStr()		String	Text sring to record parameters in debug print
			out.

A.1 BeamLine

BeamLine is a singleton class that sets up the beam line geometry and provides methods to track particles through the beam line using the transfer matarices defined in section A.4. The beam-line geometry is provided in the form of a "csv" file read using pandas. The format of the "csv" file is defined in section ??. Alternatively, if a data file written using the BeamIO package is being read, the beam-line geometry is read from the top of the data file. The instance of the BeamLine class is created when the first record of the data file is read.

A.1.1 Instantiation

215

The call to instantiate the BeamLineElenent class is:

BeamLine (BeamLineSpecificationCSVfile, readDataFile)

BeamLineSpecificationCSVfile is a the full path of the CSV file containing the beam-line specificiation. readDataFile is a boolean flag. If readDataFile is set to True, then the BeamLine instance will be created and the beam-line geometry will be read from the header of the BeamIO data file. If readDataFile is not set or is set to False, the beam-line geometry will be read from BeamLineSpecificationCSVfile.

A.1.2 Instance attributes and access methods

The instance attributes are presented in table 4 and the access methods are summarised in table 5.

Table 4: Definition of attributes of instances of the BeamLine class.

Attribute	Type	Comment
BeamLineSpecificationCSVfile*	path	Full path to beam-line specification csv file.
BeamLineParamPandasInstance	dataframe	Pandas data frame containing beam-line specification.
Element	list	List of instances of BeamLineElement class con-
		taining pointers to the elements that make up the beam
		line.

225

A.1.3 Processing methods

Table 6 presents the processing methods provided in the BeamLine class.

A.1.4 I/o methods

230

Table 7 presents the i/o methods provided in the BeamLine class.

A.1.5 Utilities

 $Table\ 8\ presents\ the\ utilities\ provided\ in\ the\ {\tt BeamLine}\ class.$

Table 5: Definition of access methods for the BeamLine class.

Comment	Set trace space at source; SrcTrcSpc presented as (1, 6)	np.ndarray.	Get instance of BeamLine class.	BeamLineSpecificationCSVfile() Get beam line specification csv file.	Get pandas dat from containing beam-line specification.	get list of BeamLineElement instances.
Get method	getSrcTrcSpc()		<pre>getinsance()</pre>	BeamLineSpecificationCSVfi	(getBeamLineParamPandas)	<pre>getElement()</pre>
Set method	setSrcTrcSpc(SrcTrcSpc)					

Table 6: Processing methods provided by the ${\tt BeamLine}$ class.

Method	Argument(s)	Return	Comment
addBeamLine()		Success	Loops through pandas data frame and manages parsing and in-
			stanciation of the beam line elements defined in the specification
			csv file. Returns Success (bool) which is True if the beam-
			line has been set up OK and is False otherwise.
addFacility()			Manages the extraction of the facility parameters from the
			pandas data frame and the creation of the single instance of
			Facility(BeamLineElement).
addSource()			Manages the extraction of the source parameters from the pan-
			das data frame and the creation of the single instance of
			Source (BeamLineElement).
parseFacility()		Name, KO, VCMVr	Parses pandas data frane to extract facility parameters. Returns
			the facility Name (str), the kinetic energy of the reference parti-
			cle, K0 (float) in MeV, and the vacuum chamber mother volume
			radius, VCMVr (float) in m.
parseSource()		Name, Mode, Param	Parses pandas data frane to extract source parameters. Returns
			Name (str), Mode (int) Param (list) containing the parameters
			required to instanciate source Mode.
addBeamLineElement(iBLE)			Adds BeamLineElement instance iBLE to the list of in-
			stances of BeamLineElement that make up the beam line.
checkConsistency()		Consistent	Checks the consistency of the beam line representation in mem-
			ory with that requested in the specification CSV file. Returns
			Consistent (bool) which is True if the beamline is consis-
			tent is False otherwise.
trackBeamn(NEvts, particleFILE)			Generates NEvts (int) particles and tracks them through the
			beam line.

 $\label{thm:class} \begin{tabular}{ll} Table 7: I/o methods provided by the {\tt BeamLine} \ class. \end{tabular}$

Method	Argument(s)	Return	Comment
csv2pandas(csvFILE)	Path	pandas dataframe	Read CSV file to create pandas data frame.
			csvFILE (path) is the full path to the csv
pandasBeamLine()		pandas dataframe	Create pandas dataframe from BeamLine
			instance.
getHeader()		List	Prepares list of header fields for
			pandasBeamLine.
readBeamLine(file)	Path	Boolean	Called from BeamIO. Reads BeamLine
			from data file.

 $\begin{tabular}{ll} \textbf{Table 8:} & \textbf{Utilities provided by the } \textbf{BeamLine class.} \\ \end{tabular}$

Method	Argument(s)	Return	Comment
cleaninstance()			Remove BeamLine instance.
fixsz()		List	Loop through BeamLineElement in-
			stances to set s and z at exit.

A.2 Particle and ReferenceParticle

The Particle class provides methods to transport particles through the beam line. The trace and phase space is recorded at the start and end of each element. The ReferenceParticle derived class is a singleton and records the trajectory of the reference particle.

A.2.1 Particle

240

A.2.1.1 Instantiation

The call to instantiate the Particle class is:

Particle (Species)

Species, the type of particle to be propagated, is a string containing the particle name. At present valid particle species are proton, pion, and muon.

A.2.1.2 Instance attributes and access methods

The instance attributes are presented in table 9 and the access methods are summarised in table 10.

Table 9: Definition of attributes of instances of the Particle class.

Attribute	Type	Comment
Species	str	Particle species; proton, muon or pion.
Location	list	List of strings containing the unique Name of the BeamLineElement at the
		particle position is reported.
S	list	List of floats recording s coordinate at which particle position is reported.
TraceSpace	list	List of np.ndarray containing 6D trace space of particle at s.
PhaseSpace	list	List of np.ndarray containing 6D phase space (RPLC) of particle at s.
LabPhaseSpace	list	List of np.ndarray containing 6D phase space (Lab) of particle at s.

A.2.1.3 Processing methods

Table 11 presents the processing methods provided in the Particle class.

A.2.1.4 I/o methods

The i/o methods provided by the Particle class are listed in table 12.

A.2.1.5 Utilities

The utilities provided by the Particle class are listed in table 13.

Table 10: Definition of access methods for the ${\tt Particle}$ class.

Set method	Get method	Comment
setSpecies	getSpecies	Set/get particle species.
setLocation	getLocation	Set/get list of locations location.
sets	gets	Set/get list of s coordinates.
setTraceSpace	getTraceSpace	Set/get list of trace-space vectors.
setRPLCPhaseSpace	setRPLCPhaseSpace	Set/get list of phase-space vectirs in RPLC coordinates.
setLabPhaseSpace	getLabPhaseSpace	Set/get list of phase-space vectirs in Lab coordinates.
resetParticleInstances		Resets list of particle instances preserving reference parti-
		cle as firt instance in the list.
recordParticle(Loc,z,s,TrcSpc)		Records particle attributes. Arguments: Loc=Location,
		z=z, $s=s$, and TrcSpc=trace space.
setSourceTraceSpace(TrcSpc)		Sets TrcSpc=trace space at source.

Table 11: Processing methods provided by the Particle class.

Method	Argument(s)	Return	Comment
fillPhaseSpaceAll()		Boolean	Fill phase space for all Particle instances. Class Method. Re-
			turn True if successful.
fillPhaseSpace()		Boolean	Fill phase space for current Particle instance. Return True
			if successful.
initialiseSums()			Initialises sums used to calculate covariance matrix.
incrementSums(iPrtcl)	Particle instance		Increment sums used to calculate covariance matrix.
<pre>calcCovarianceMatrix()</pre>			Calculate covariance matrix.
evaluateBeam()			Work through locations and calculate parameters from covariance
			matrix.
calcRPLCPhaseSpace(nLoc)	Int	np.ndarray	np.ndarray Calculate and return phase space in RPLCs at location nLoc.
RPLCTraceSpace2PhaseSpace(TrcSpc)	np.ndarray	np.ndarray	np.ndarray Transform trace space to phase space in RPLCs.
RPLCPhaseSpace2TraceSpace(TrcSpc)	np.ndarray	np.ndarray Transform	Transform phase space to trace space in RPLCs.

Table 12: No methods provided by the Particle class.

Method	Argument(s) Return Comment	Return	Comment
createParticleFile(path, file)	Path, Str	Path	Class method, kept for backward compatibility.
flushNcloseParticleFile(file)	Path		Class method, kept for backward compatibility.
openParticleFile (path, file)	Path, Str		Class method, kept for backward compatibility.
closeParticleFile(path, file)	Path, Str		Class method, kept for backward compatibility.
readParticle (file)	Path	Boolean	Read particle from input stream. Called from BeamIO. file is
			full path to file. Return True if end of file.
writeParticle(file, clean)	Path, boolean		Write particle to output stream. Called from BeamlO. file is
			full path to file. If clean, then clean particle instance after write.

Table 13: Utilities provided by the Particle class.

Method	Argument(s) Return	Comment				
<pre>cleanAllParticles()</pre>		Delete	all	Particle	instances	including
		ReferenceParticle.	cePart:	icle.		
cleanParticles()		Delete	all	Particle	instances	except
		ReferenceParticle.	cePart	icle.		
plotTraceSpaceProgression()		Plot transv	erse trace	Plot transverse trace space at each location. Class method. Writes	tion. Class met	hod. Writes
		file to 99-Scratch/.	-Scratc	h/.		
plotLongitudinalTraceSpaceProgression()		Plot longi	tudinal tr	Plot longitudinal trace space at each location. Class method.	location. Cla	ass method.
		Writes file	to 99-S	to 99-Scratch/.		
printProgression()		Print partio	cle param	Print particle parameters at each location.	on.	
getLines()		Returns lir	nes to be ı	Returns lines to be used to create summary pandas data frame.	nary pandas da	ıta frame.
createReport()		Creates cs	sv file cor	Creates CSV file containing summary of beam progression	of beam progre	ssion.

255 A.2.2 ReferenceParticle

A.2.2.1 Instantiation

ReferenceParticle is a singleton derived class. The call to instantiate the ReferenceParticle class is:

ReferenceParticle(Species)

Species, the type of particle to be propagated, is a string containing the particle name. At present valid particle species are proton, pion, and muon.

A.2.2.2 Instance attributes and access methods

In addition to the instance attributes inheritted from the parent class, the ReferenceParticle class provides the instance attributes presented in table 14 and the access methods are summarised in table 15.

Table 14: Definition of attributes of instances of the ReferenceParticle class.

Attribute	Type	Comment
_sIn[]	list	List of floats containing the s coordinates at the entrance to the beam line
		elements along the locus of the reference particle trajectory.
_sOut[]	list	List of floats containing the s coordinates at the exit to the beam line elements
		along the locus of the reference particle trajectory.
_RrIn[]	list	List of ndarrays containing the four-vector position in laboratory coordinates at
		the entrance to the beam line elements along the locus of the reference particle
		trajectory.
_RrOut[]	list	List of ndarrays containing the four-vector position in laboratory coordinates
		at the exit to the beam line elements along the locus of the reference particle
		trajectory.
_PrIn[]	list	List of ndarrays containing the four-vector momentum in laboratory coordi-
		nates at the entrance to the beam line elements along the locus of the reference
		particle trajectory.
_PrOut[]	list	List of ndarrays containing the four-vector momentum in laboratory coordi-
		nates at the exit to the beam line elements along the locus of the reference
		particle trajectory.
_Rot2LabIn[]	list	List of ndarrays containing the rotation matrices taking RPLC to laboratory
		coordinates at the entrance to the beam line elements along the locus of the
		reference particle trajectory.
_Rot2LabOut[]	list	List of ndarrays containing the rotation matrices taking RPLC to laboratory
		coordinates at the exit to the beam line elements along the locus of the refer-
		ence particle trajectory.

Table 15: Definition of access methods for the ReferenceParticle class.

Set method	Get method	Comment
setRPDebug	getRPDebug	Set/get ReferenceParticle debug flag.
setsIn	getsIn	Set/get _sIn
setsOut	getsOut	Set/get _sOut
setRrIn	getRrIn	Set/get _RrIn
setRrOut	getRrOut	Set/get _RrOut
setPrIn	getPrIn	Set/get _PrIn
setPr0ut	getPrOut	Set/get _PrOut
	getMomentumIn(iLoc)	Get magnitude of three-vector momentum at
		entrance of location iLoc
	getMomentumOut(iLoc)	Get magnitude of three-vector momentum at
		exit of location iLoc
setRot2LabIn	getRot2LabIn	Set/get_Rot2LabIn
setRot2LabOut	getRot2LabOut	Set/get _Rot2LabOut
	getb0(iLoc)	Get β_0 .
	getg0b0(iLoc)	Get $\gamma_0\beta_0$.
setAllRP2None		Set all ReferenceParticle attributes to
		None.

Table 16: Processing methods provided by the ReferenceParticle class.

Method	Argument(s)	Return	Comment
setReferenceParticleAtSource()		boolean	Set
			ReferenceParticle
			attributes at source. Re-
			turns True if success.
setReferenceParticleAtDrift(iBLE)	BLE	boolean	Set
			ReferenceParticle
			attributes at
			BeamLineElement
			(BLE) instance iBLE.
			Returns True if success.

A.2.2.3 Processing methods

 $Table\ 16\ presents\ the\ processing\ methods\ provided\ in\ the\ {\tt ReferenceParticle}\ class.$

A.2.2.4 I/o methods

270 The ReferenceParticle class provides no additional i/o methods.

A.2.2.5 Utilities

The ReferenceParticle class provides no additional utilities.

A.3 Beam and extrapolateBeam

The Beam class is in some sense a "sister" class to Particle. Whereas an instance of Particle records the passage of a particle travelling through the beam line, an instance of Beam records the collective properties of the beam such as emittance, as the beam progresses through the beam line. The beam parameters reported in the attributes of an instance of Beam are obtained by summing over nEvtsMax particles to evaluate the covariance matrices by location.

The extrapolatedBeam class is derived from Beam. An instance of extrapolatedBeam calculates the covariance matrix at a location along the beam line and then uses the transfer matrices to propagate the beam envelope.

A.3.1 Beam

285

295

A.3.1.1 Instantiation

The call to instantiate the Beam class is:

InputDatafile is either the full path to a data file in one of the formats specified in BeamIO or an instance of the BeamIO class that refers to an existing data file that can be read. nEvtMax is the maximum number of events to read or process using the Beam instance. outputCSVfile is the full path to the output file, in CSV format, contining the beam paramters at the locations traversed by the beam. startlocation is the location along the beam line at which propagation will start; if startlocation is absent or None propagation will start at the source. beamlineSpecificationCSVfile is the CSV file specifying the beam line. beamlineSpecificationCSVfile is kept for backward compatibilty. If the first record of InputDatafile contains the specification of the beam line, beamlineSpecificationCSVfile is not required.

A.3.1.2 Instance attributes and access methods

The instance attributes are presented in table 17 and the access methods are summarised in table 18.

A.3.1.3 Processing methods

Table 19 presents the processing methods provided in the Beam class.

00 A.3.1.4 I/o methods

The Beam class has no i/o methods.

A.3.1.5 Utilities

The utilities provided by the Beam class are listed in table 20.

Table 17: Definition of attributes of instances of the Beam class.

Attribute	Type	Comment
InputDataFile	Path/BeamIO	Path to, or BeamIO instance of input file.
nEvtMax	int	Maximum number of particles to read and process.
outputCSVfile	Path	Path to output CSV file to contain beam parmeters by location.
startlocation	int	Location at which to start beam propagation.
BLspecCSVfile	Path	beamlineSpecificationCSVfile, kept for backward compatibility.
Location[iLoc]	List	List of locations (int) at which beam parameters are recorded.
s[iLoc]	List	List of s coordinates of reference particle at locations at which beam parame-
		ters are recorded.
nParticles[iLoc]	List	List of number of particles (int) recorded at location iloc.
CovMtrx[iLoc][6,6]	List	List of covariance matrices (ndarray) by location.
sigmaxy[iLoc][2]	List	List of $\sigma_x = \text{sigmaxy[iLoc][0]}$ and $\sigma_y = \text{sigmaxy[iLoc][1]}$
		(float).
emittance[iLoc][5]	List	List of emittance by location: $\epsilon_x = \text{emittance[iLoc][0]}, \epsilon_y =$
		emittance[iLoc][1], $\epsilon_{\rm L} = {\rm emittance[iLoc][2]}, \; \epsilon_{\rm 4D} =$
		emittance[iLoc][3], $\epsilon_{6D} = \text{emittance[iLoc][4]}$.
Twiss[iLoc][2][3]	List	List of Twiss parameters by location: Twiss[iLoc][0][0:2] =
		$[\alpha_x, \beta_x, \gamma_x]$, Twiss [iLoc] [1] [0:2] = $[\alpha_y, \beta_y, \gamma_y]$.

Table 18: Definition of access methods for the Beam class.

Set method	Get method	Comment
setInputDataFile	getInputDataFile	Set path to input file.
setBeamIOread	getBeamIOread	Set instance of BeamIO for input file.
setnEvtMax	getnEvtMax	Set maximum number of particles to deal with.
setoutputCSVfile	getoutputCSVfile	Set pathh to output CSV file.
setstartlocation	getstartlocation	Set start location.
setbeamlineSpecificationCSVfile	getbeamlineSpecificationCSVfile	Set beam line specification file.
sets	sets	Set s by location.
setsigmaxy	setsigmaxy	Set $\sigma_{x,y}$ by location.
setEmittance	setEmittance	Set emittance list by location.
setTwiss	setTwiss	Set Twiss paramter list by location.
resetBeamInstances		Set list of beam instances to [].
	getCovSums	Get list of sums used to calculate covariance matrices.
	getCovMtrx	Get list of covariance matrices by location.
	getnParticles	Get number of particles entering covariance sums by loca-
		tion.
	getCovarianceMatrix	Get list of covariance matrices by location.
	getCovMtrx	Get list of covariance matrices by location.

Table 19: Processing methods provided by the $\ensuremath{\mathsf{Beam}}$ class.

Method	Argument(s) Return Comment	Return	Comment
initialiseSums()			Initialise sums to be used to calculate covariance matrices by lo-
			cation.
<pre>incfementSums(iPrtcl)</pre>	Particle		Increment sums for covariance matrix calculation for Particle
			instance iPrtcl.
calcCovarianceMatrix()			Calculate covariance matrices by location.
evaluateBeam(TrackBeam=False)	boolean		Loop over nEvtMax partices to calculate beam parameters by lo-
			cation. If TrackBeam is True, particles are transported through
			the beam line. If TrackBeam is False, covariance matrices
			stored as Beam instance attributes are used.

Table 20: Utilities provided by the Beam class.

plotBeamProgression(plotFILE)	createReport()	Agermena ()		getHeader()	printProgression()	cleanBeams()	Method Argument(s) Return Comment
path		1511	lict	list	:	boolean	Return
Plot beam parameters by location; plotFILE is full path to plot file.	Interface to Report class to make beam paramter CSV file.	tion.	ore lines for CSV file	Prepare header for CSV file containing beam parameters by location	Print beam parameters by location.	Delete all Beam instances, returns True if successful.	Comment

A.3.2 extrapolateBeam

A.3.2.1 Instantiation

The call to instantiate the extrapolateBeam class is:

The arguments are passed directly to a call to instantiate the parent Beam class. In the execution of extrapolateBeam, the covariance matrices are calculated from nEvtMax at startlocation. If startlocation, the last location provided in the input data file is used as the source.

A.3.2.2 Instance attributes and access methods

Instance attributes are inheritted from Beam (table 17). Access methods are also inheritted from Beam (table 18). The method resetextrapolateBeamInstances is provided to reset only the list of instances of extrapolateBeam.

A.3.2.3 Processing methods

Table 21 presents the processing methods provided in the extrapolateBeam class.

Table 21: Processing methods provided by the extrapolateBeam class.

Method	Argument(s)	Return	Comment
initialiseSums()			Initialise sums to be used to
			calculate covariance matrices at
			startlocation.
incfementSums(iPrtcl)	Particle		Increment sums for covari-
			ance matrix calculation for
			Particle instance iPrtcl
			at startlocation.
extrapolateCovarianceMatrix()			Extrapolate covariance matrices
			along the beam line by location.
extrapolateBeam()			Estrapolate beam envelope and
			beam parameters along the beam
			line by location.

A.3.2.4 I/o methods

The extrapolateBeam class has no i/o methods.

20 A.3.2.5 Utilities

The utilities provided by the extrapolateBeam class are listed in table 22.

Table 22: Utilities provided by the extrapolateBeam class.

Method	Argument(s)	Return	Comment
<pre>cleanextrapolateBeams()</pre>		boolean	Delete all extrapolateBeam in-
			stances, returns True if successful.

A.4 BeamLineElement

A.4.1 Parent class

A.4.1.1 Instantiation

The call to instantiate the BeamLineElenent class is:

BeamLineElement (Name, rStrt, vStrt, drStrt, dvStrt)

where:

330

Name: (string) is the unique name of the element;

rStrt: (numpy.ndarray(3)) is the three-vector position in laboratory coordinates of the start of the element;

vStrt: (numpy.ndarray(1,2)) is the polar, θ , and azimuthal, ϕ , angles that define the y (i=0) and z (i=1) axes of the RPLC coordinate system at the start of the element (vStrt = $[[i], [\theta, \phi]]$);

drStrt: (numpy.ndarray(3)) error in the three-vector position with respect to the nominal position; and

dvStrt: (numpy.ndarray(1,2)) error in the polar and azimuthal angles defining RLPC the y and z axes.

All arguments are required.

335 A.4.1.2 Instance attributes and access methods

Properties common to all beam-line elements are stored as instance attributes of the parent BeamLineElement class. The instance attributes are defined in table 23. The attributes are accessed and set using the methods defined in table 24.

A.4.1.3 Processing methods

Table 25 presents the processing methods provided in the BeamLineElement class.

A.4.1.4 I/o methods

Methods to read and write instance attributes to the files defined using the BeamIO package (see section ?? are provided. The calls are:

readElement(dataFILE) and writeElement(dataFILE);

where dataFILE is BeamIO instance.

A.4.1.5 Utilities

Table 26 presents the utilities provided in the BeamLineElement class.

Table 23: Definition of attributes of instances of the BeamLineElement class. The attributes marked * above the dividing line are required in the call to instantiate the element. The attributes marked † below the dividing line are calculated.

Attribute	Type	Unit	Comment
Name*	String		Name of beam-line element.
rStrt*	numpy.ndarray	m	[x, y, z] position of entrance to element in laboratory coordinate
			system.
vStrt*	numpy.ndarray	rad	$[[i], [\theta, \phi]]$ (polar and azimuthal angles) of RPLC y and z axes
			(i = 0, 1 respectively) at start.
drStrt*	numpy.ndarray	m	"Error", $[x, y, z]$, displacement of start from nominal position
			(not yet implemented).
dvStrt*	numpy.ndarray	rad	"Error", $[[i], [\theta, \phi]]$, deviation in θ and ϕ from nominal axis (not
			yet implemented).
Strt2End [†]	numpy.ndarray		1×3 translation from start of element to end; in laboratory
			coordinates. Set in derived class.
Rot2LbStrt [†]	numpy.ndarray		3×3 rotation matrix that takes RPLC axes to laboratory axes
			at start.
Rot2LbEnd [†]	numpy.ndarray		3×3 rotation matrix that takes RPLC axes to laboratory axes
			at end. Set in derived class.
TnrsMtrx [†]	numpy.ndarray		3×3 transfer matrix. Set in derived class.

Table 24: Definition of access methods for the BeamLineElement class.

Set method	Get method	Comment
setName(Name)	getName()	Set/get name of beam-line element.
setrStrt(rStrt)	getrStrt()	Set/get laboratory $[x, y, z]$ position of entrance.
setvStrt(vStrt)	getvStrt()	Set/get RPLC $[\theta, \phi]$ of principal axis at start of element.
	getvEnd()	Set/get RPLC $[\theta, \phi]$ of principal axis at end of element.
setdrStrt(drStrt)	getdrStrt()	Set/get "error" displacement.
setdvStrt(dvStrt)	getdvStrt()	Set/get "error" deviation in $[\theta, \phi]$.
setLength(length)	getLength	Set/get increment in s across element, (length for elements that
		do not bend beam).
<pre>setRot2LbStrt()</pre>	getRot2LbStrt()	Set/get rotation matrix from RPLC axes to laboratory.
<pre>setRot2LabStrt()</pre>	getRot2LbStrt()	Setget rotation matrix from RPLC to laboratory at start.
setStrt2End(t)	getStrt2End()	Set/get displacement vector start to end in laboratory coordinates.
		setStrt2End takes 1 argument, t, a 1D np.ndarray containing the
		translation from the start to the end of the element in RPLC.
setRot2LbEnd(R)	getRot2LbEnd()	Set/get rotation matrix from RPLC to laboratory at end.
		setRot2LbEnd takes 1 argument, R, a 2D np.array containing the
		rotation matrix to be set.
	<pre>getTransferMatrix()</pre>	Get transfer matrix set in derived class.
	getLines()	Get lines to write LaTeX specification of element.

Table 25: Processing methods provided by the BeamLineElement class.

Method	Argument(s)	Return	Comment
OutsideBeamPipe(R)	Float	Boolean	Returns False if particle is inside beam pipe. If $\mathbb R$, radial distance from z axis
			in RPLC, falls outside beam pipe, returns True.
ExpansionParameterFail(R)	Float	Boolean	Calculates an approximate expansion parameter and returns False if the pa-
			rameter is large (>1) . Not yet used in Transport.
Transport (V)	6×1 np.ndarray	6×1 np.ndarray	Transport 6D trace-space vector, V, across element. Final trace-space vector
			returned.
Shit2Local(V)	6×1 np.ndarray	6×1 np.ndarray	Transform 6D trace-space vector, V, from RPLC to laboratory coordinates.
			Phase-space vector in laboratory frame returned.
Shit2Laboratory(U)	6×1 np.ndarray	6×1 np.ndarray	Transform 6D phase-space vector, U, from laboratory coordinates to trace-
			space coordinates in the RPLC frame. Trace-space vector in RLPC frame
			returned.

Table 26: Utilities provided by the BeamLineElement class.

Method	Argument(s)	Return	Return Comment
cleaninstances()			Delete (using "del") all instances of the BeamLineElement
			class. Reset instances list.
<pre>removeInstance(inst)</pre>	Instance of BLE		Remove instance inst and remove from list of instances of
			BeamLineElement.
<pre>visualise(axs, CoordSys,Proj)</pre>	axs - MatPlotLib "axes" instance		Manages plotting (visualisation) of element.
	CoordSys-string		"Lab" or "RPLC", coordinate system in which to visualise ele-
			ment.
	Proj-string		" xz " or " yz " projection to visualise.

A.4.2 Derived class: Facility (BeamLineElement)

45 A.4.2.1 Instantiation

The call to instantiate the Facility derived class is:

FacilityName, rStrt, vStrt, drStrt, dvStrt, p0, VCMV)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These arguments are passed directly to BeamLineElement. The Facility arguments are translated into instance attributes as described in section A.4.2.2 and defined in table 27.

A.4.2.2 Instance attributes and access methods

The instance attributes are defined in table 27. The attributes are accessed and set using the methods defined in table 28.

Table 27: Definition of attributes of instances of the Facility (BeamLineElement) derived class. All attributes are required in the call to instantiate the element.

Attribute	Type	Unit	Comment
р0	float	MeV	Kinetic energy of reference particle.
VCMV	float	m	Radius of vacuum-chamber mother volume. The radius defines
			edge of the volume at which a particle trajectory is terminated. It
			may be necessary to introduce a beam pipe later.

Table 28: Definition of access methods for the Facility derived class.

Set method	Get method	Comment
setp0(Name)	getp0()	Set/get momentum of reference particle (in
		MeV).
setVCMV(VCMV)	getrVCMV()	Set/get radius of vacuum chamber mother
		volume.

A.4.2.3 Processing methods

The Facility derived class has no processing methods other than those inheritted from the parent class.

A.4.2.4 I/o methods

The Facility derived class has no i/o methods other than those inheritted from the parent class.

A.4.2.5 Utilities

The Facility derived class has no utilities other than those inheritted from the parent class.

60 A.4.3 Derived class: Drift (BeamLineElement)

A.4.3.1 Instantiation

The call to instantiate the Drift derived class is:

```
Drift (Name, rStrt, vStrt, drStrt, dvStrt, Length)
```

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These arguments are passed directly to BeamLineElement.

A.4.3.2 Instance attributes and access methods

The instance attributes are defined in table 29. The attributes are accessed and set using the methods defined in table 30.

Table 29: Definition of attributes of instances of the Drift (BeamLineElement) derived class. All attributes are required in the call to instantiate the element.

Attribute	Type	Unit	Comment
Length	float	m	Length of drift.

Table 30: Definition of access methods for the Facility derived class.

Set method	Get method	Comment
setLength (Length)	getLength()	Set/get length of drift (in m).
<pre>setTransferMatrix()</pre>		Set transfer matrix.

A.4.3.3 Processing methods

The Drift derived class has no processing methods other than those inheritted from the parent class.

A.4.3.4 I/o methods

The Drift derived class has no i/o methods other than those inheritted from the parent class.

A.4.3.5 Utilities

The Drift derived class has no utilities other than those inheritted from the parent class.

A.4.4 Derived class: Aperture (BeamLineElement)

A.4.4.1 Instantiation

The call to instantiate the Aperture derived class is:

```
Aperture (Name, rStrt, vStrt, drStrt, dvStrt, ParamList)
```

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These arguments are passed directly to BeamLineElement.

A.4.4.2 Instance attributes and access methods

The instance attributes are defined in table 31. The attributes are accessed and set using the methods defined in table 33.

A.4.4.3 Processing methods

5 The Aperture processing method is defined in table 33.

Table 31: Definition of attributes of instances of the Aperture (BeamLineElement) derived class. All attributes are required in the call to instantiate the element.

Attribute	Type	Unit	Comment	
ParamList	[]		List containing aperture parameters. The first parameter is an	
			int and defines the aperture "Type". The remaining elements	
			in the parameter list are floats with meanings that depend on	
			Type.	
ParamList[0]	int		Type= 0; circular	
ParamList[1]	float	m	Radius of circular aperture	
ParamList[0]	int		Type= 1; Elliptical	
ParamList[1]	float	m	Radius of elliptical aperture along x_{RPLC} axis	
ParamList[2]	float	m	Radius of elliptical aperture along y_{RPLC} axis	
ParamList[0]	int		Type= 2; Rectangular	
ParamList[1]	float	m	Size of aperture along x_{RPLC} axis	
ParamList[2]	float	m	Size of aperture along y_{RPLC} axis	

 $\begin{tabular}{ll} Table 32: Definition of access methods for the {\tt Aperture} derived class. \\ \end{tabular}$

Set method	Get method	Comment
setApertureParameters(ParamList)		Set aperture parameters. Sets Type and pa-
		rameters depending on Type.
	getType()	Get Type of aperture.
	getParams()	Get aperture parameters.

Table 33: Utilities provided by the Aperture derived class.

Method	Argument(s)	Return	Comment
Transport (V)	np.ndarray	np.ndarray or None	Transport trace-space vector V. If V falls out-
			side of the aperture, return None.

A.4.4.4 I/o methods

The Aperture derived class has no i/o methods other than those inheritted from the parent class.

A.4.4.5 Utilities

The Aperture derived class has no utilities other than those inheritted from the parent class.

A.4.5 Derived class: FocusQuadrupole (BeamLineElement)

A.4.5.1 Instantiation

The call to instantiate the FocusQuadrupole derived class is:

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These arguments are passed directly to BeamLineElement. The quadrupole Length is required together with either the field gradient, Strength (equation 18), or the quadrupole k parameter, kFQ (equation 20).

A.4.5.2 Instance attributes and access methods

The instance attributes are defined in table 34. The attributes are accessed and set using the methods defined in table 36.

Table 34: Definition of attributes of instances of the FocusQuadrupole (BeamLineElement) derived class. All attributes are required in the call to instantiate the element.

Attribute	Type	Unit	Comment
FQmode	int		If 0, use particle momentum in calculation of transfer matrix; if
			1, use reference particle momentum.
Length	float	m	Effective length of quadrupole.
Strength	float	T/m	Magnetic field gradient; required if kFQ is not given.
kFQ	float	m^{-2}	Quadrupole k parameter.

Table 35: Definition of access methods for the FocusQuadrupole derived class.

Set method	Get method	Comment
setFQmode(FQmode)	getFQmode()	Set/get FQmode.
setLength(Length)	getLength()	Set/get length.
setStrength(Length)	getStrength()	Set/get strength (field gradient).
setKFQ(Length)	getKFQ()	Set/get kFQ, quadrupole k parameter.

400

A.4.5.3 Processing methods

The FocusQuadrupole processing methods are defined in table 36.

A.4.5.4 I/o methods

The Focus quadrupole derived class has no i/o methods other than those inheritted from the parent class.

Table 36: Utilities provided by the FocusQuadrupole derived class.

Method	Argument(s)	Return	Comment
calckFQ()		float	Calculates kFQ if strength is given in instance
			attributes.
calcStrength()		float	Calculates Strength if kFQ is is given in
			instance attributes.

405 **A.4.5.5** Utilities

The Focus quadrupole derived class has no utilities other than those inheritted from the parent class.

A.4.6 Derived class: DefocusQuadrupole (BeamLineElement)

A.4.6.1 Instantiation

The call to instantiate the DefocusQuadrupole derived class is:

DefocusQuadrupole(Name, rStrt, vStrt, drStrt, dvStrt, Length, Strength, kDQ)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These arguments are passed directly to BeamLineElement. The quadrupole Length is required together with either the field gradient, Strength (equation 18), or the quadrupole k parameter, kDQ (equation 20).

415 A.4.6.2 Instance attributes and access methods

The instance attributes are defined in table 37. The attributes are accessed and set using the methods defined in table 39.

Table 37: Definition of attributes of instances of the DefocusQuadrupole (BeamLineElement) derived class. All attributes are required in the call to instantiate the element.

Attribute	Type	Unit	Comment	
DQmode	int		If 0, use particle momentum in calculation of transfer matrix; if	
			1, use reference particle momentum.	
Length	float	m	Effective length of quadrupole.	
Strength	float	T/m	Magnetic field gradient; required if kDQ is not given.	
kDQ	float	m^{-2}	Quadrupole k parameter.	

A.4.6.3 Processing methods

The DefocusQuadrupole processing methods are defined in table 39.

420 **A.4.6.4 I/o methods**

The Defocusquadrupole derived class has no i/o methods other than those inheritted from the parent class.

A.4.6.5 Utilities

The Defocusquadrupole derived class has no utilities other than those inheritted from the parent class.

Table 38: Definition of access methods for the DefocusQuadrupole derived class.

Set method	Get method	Comment
setDQmode(DQmode)	getDQmode()	Set/get DQmode.
setLength(Length)	getLength()	Set/get length.
setStrength(Length)	getStrength()	Set/get strength (field gradient).
setKDQ(Length)	getKDQ()	Set/get kDQ, quadrupole k parameter.

Table 39: Utilities provided by the DefocusQuadrupole derived class.

Method	Argument(s)	Return	Comment
calckDQ()		float	Calculates kDQ if strength is specified.
calcStrength()		float	Calculates Strength if kDQ is specified.

A.4.7 Derived class: SectorDipole (BeamLineElement)

A.4.7.1 Instantiation

The call to instantiate the SectorDipole derived class is:

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These arguments are passed directly to BeamLineElement.

The orientation of the RLPC coordinate axes with respect to those of the laboratory frame changes from the start of sector dipole to its end. Referring to figure 2, the vector, $v_{\rm ES}$, that translates the origin of the RLPC coordinate system at the start of the sector dipole to the origin of the RLPC coordinate system at its end is given by:

$$\mathbf{v}_{\rm ES} = 2\rho_0 \sin\left(\frac{\phi}{2}\right) \begin{pmatrix} \sin\left(\frac{\phi}{2}\right) \\ 0 \\ \cos\left(\frac{\phi}{2}\right) \end{pmatrix}; \tag{47}$$

where ρ_0 is the radius of the circular locus of the trajectory of the reference particle. If the rotation matrix taking the RPLC axes at the start of the sector dipole to the laboratory coordinate axes is $\underline{\underline{R}}_{S}$, then the vector, v_{ES}^{lab} , that translates from the start of the sector dipole to its end in laboratory coordinates is given by:

$$\mathbf{v}_{\mathrm{ES}}^{\mathrm{lab}} = \underline{\underline{R}}_{\mathrm{S}} \mathbf{v}_{\mathrm{ES}} \,.$$
 (48)

The rotation matrix that transforms from the RPLC system at the end of the sector dipole to the laboratory coordinate system, $\underline{\underline{R}}_{E}$ is given by:

$$\underline{\underline{R}}_{E} = \underline{\underline{R}}_{S}\underline{\underline{R}}; \tag{49}$$

where:

$$\underline{\underline{R}} = \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{pmatrix} . \tag{50}$$

430 A.4.7.2 Instance attributes and access methods

The instance attributes are defined in table 40. The attributes are accessed and set using the methods defined in table 41.

Table 40: Definition of attributes of instances of the SectorDipole (BeamLineElement) derived class. All attributes are required in the call to instantiate the element.

Attribute	Type	Unit	Comment
Angle	float	rad	Angle through which sector dipole bends positive reference par-
			ticle.
В	float	T	Magnetic field.

Table 41: Definition of access methods for the SectorDipole derived class.

Set method	Get method	Comment
setAngle(Angle)	getAngle()	Set/get bending angle.
setB(B)	getB()	Set/get dipole magnetic field.
setLength()	getLength()	Set/get length of reference particle trajectory
		through sector dipole (arc length).

A.4.7.3 Processing methods

The SectorDipole derived class has no processing methods other than those inheritted from the parent class.

A.4.7.4 I/o methods

The SectorDipole derived class has no i/o methods other than those inheritted from the parent class.

A.4.7.5 Utilities

The SectorDipole derived class has no utilities other than those inheritted from the parent class.

440 A.4.8 Derived class: Solenoid (BeamLineElement)

A.4.8.1 Instantiation

The call to instantiate the Solenoid derived class is:

```
Solenoid (Name, rStrt, vStrt, drStrt, dvStrt, Length, Strength, kSol)
```

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These arguments are passed directly to BeamLineElement. The solenoid Length is required together with either the magnetic field strength, Strength or the solenoid k parameter, kSol (equation 23).

A.4.8.2 Instance attributes and access methods

The instance attributes are defined in table 42. The attributes are accessed and set using the methods defined in table 44.

50 A.4.8.3 Processing methods

The Solenoid processing method is defined in table 44.

A.4.8.4 I/o methods

The Solenoid derived class has no i/o methods other than those inheritted from the parent class.

Table 42: Definition of attributes of instances of the Solenoid (BeamLineElement) derived class. All attributes are required in the call to instantiate the element.

Attribute	Type	Unit	Comment	
Length	float	m	Effective length of solenoid.	
Strength	float	T/m	Magnetic field gradient; required if kSol is not given.	
kSol	float	m^{-2}	GaborLens k parameter required if Strength not given.	

Table 43: Definition of access methods for the Solenoid derived class.

Set method Get method		Comment
setLength(Length)	getLength()	Set/get length.
setStrength(B)	getStrength()	Set/get strength (solenoid magnetic field).
setKSol(Length)	getKFQ()	Set/get kSol, solenoid k parameter.

A.4.8.5 Utilities

The Solenoid derived class has no utilities other than those inheritted from the parent class.

Table 44: Utilities provided by the Solenoid derived class.

Method	Argument(s)	Return	Comment
calckSol()		float	Calculates kSol if strength is specified.
calcStrength()		float	Calculates Strength if kSol is specified.

A.4.9 Derived class: GaborLens (BeamLineElement)

A.4.9.1 Instantiation

460

The call to instantiate the GaborLens derived class is:

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These arguments are passed directly to BeamLineElement. The Gabor lens Length is required together with either the parameters Bz, VA, RA, and Rp corresponding, respectively, to the parameters B_z , V_A , V_A and R_p defined in section 4.4, or kSol, the solenoid strength parameter of the equaivalent solenoid (see section 4.4). The effective electon number density inside the trap is calculated using either Bz, VA, RA and Rp or kSol.

A.4.9.2 Instance attributes and access methods

The instance attributes are defined in table 45. The attributes are accessed and set using the methods defined in table 46.

A.4.9.3 Processing methods

The GaborLens processing method is defined in table 44.

Table 45: Definition of attributes of instances of the GaborLens (BeamLineElement) derived class. All attributes are required in the call to instantiate the element.

Attribute	Type	Unit	Comment	
Bz	float	Т	Effective length of Gabor lens.	
VA	float	V	Effective length of Gabor lens.	
RA	float	m	Effective length of Gabor lens.	
RP	float	m	Effective length of Gabor lens.	
Length	float	m	Effective length of Gabor lens.	
Strength	float	T/m	Magnetic field gradient; required if kSol is not given.	
kSol	float	m^{-2}	k parameter of the solenoid with the equivalent focusing strength.	

Table 46: Definition of access methods for the GaborLens derived class.

Set method	Get method	Comment
setBz(Bz)	getBz()	Set/get magnetic field of the Penning-
		Malmberg trap.
setVA(VA)	getVA()	Set/get anode voltage of the Penning-
		Malmberg trap.
setRA(RA)	getRA()	Set/get radius of the anode of the Penning-
		Malmberg trap.
setRP(RP)	getRP()	Set/get magnetic effective radiius of the
		plasma confined within the Penning-
		Malmberg trap.
setLength(Length)	getLength()	Set/get effective length of the lens.
setStrength(Strength)	getStrength()	Set/get k-parameter of the solenoid with the
		equivalent focal length.
setElectronDenisty()	<pre>getElectronDenisty()</pre>	Set/get electron density.

A.4.9.4 I/o methods

The GaborLens derived class has no i/o methods other than those inheritted from the parent class.

A.4.9.5 Utilities

The GaborLens derived class has no utilities other than those inheritted from the parent class.

475 A.4.10 Derived class: CylindricalRFCavity (BeamLineElement)

A.4.10.1 Instantiation

The call to instantiate the CylindricalRFCavity derived class is:

```
CylindricalRFCavity(Name, rStrt, vStrt, drStrt, dvStrt, Gradient, Frequency, Phase)
```

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These arguments are passed directly to BeamLineElement.

A.4.10.2 Instance attributes and access methods

The instance attributes are defined in table 47. The attributes are accessed and set using the methods defined in table 48.

Table 47: Definition of attributes of instances of the CylindricalRFCavity (BeamLineElement) derived class. All attributes are required in the call to instantiate the element.

Attribute	Type	Unit	Comment		
Gradient	float	MV/m	Peak electric field gradient on axis.		
Frequency	float	MHz	MHz Resonant frequency.		
Phase	float	rad	rad Phase cavity at time reference particle crosses centre of cavity		
			"linac convention".		
TransitTimeFactor	float		Transit time factor (equation ??).		
VO	float	MV	MV Peak voltage.		
alpha	float		α parameter defined in equation ??.		
wperp	float		ω_{\perp} parameter defined in equation ??.		
cperp	float		c_{\perp} parameter defined in equation ??.		
sperp	float		s_{\perp} parameter defined in equation ??.		
wprll	float		$\omega_{ }$ parameter defined in equation ??.		
cprll	float		$c_{ }$ parameter defined in equation ??.		
sprll	float		$ s_{\parallel} $ parameter defined in equation ??.		

485 A.4.10.3 Processing methods

The CylindricalRFCavity derived class has no processing methods other than those inheritted from the parent class.

A.4.10.4 I/o methods

The CylindricalRFCavity derived class has no i/o methods other than those inheritted from the parent class.

A.4.10.5 Utilities

The CylindricalRFCavity derived class has no utilities other than those inheritted from the parent class.

A.4.10.6 Processing methods

The CylindricalRFCavity dericed class has no processing methods.

Table 48: Definition of access methods for the CylindricalRFCavity derived class.

Set method	Get method	Comment
setGradient(Gradient)	getGradient()	Set/get peak electric field gradi-
		ent.
setFrequency(Frequency)	getFrequency()	Set/get frequency.
setAngularFrequency(AngFreq)	<pre>getAngularFrequency()</pre>	Set/get angular frequency.
setPhase (Phase)	getPhase()	Set/get phase.
setWaveNumber(WaveNumber)	getWaveNumber()	Set/get wavenumber.
setLength (Length)	getLength()	Set/get Length.
setRadius(Radius)	getRadius()	Set/get Radius.
setTransitTimeFactor	<pre>getTransitTimeFactor()</pre>	Set/get TransitTimeFactor.
(TransitTimeFactor)		
setV0(V0)	getV0()	Set/get peak voltage.
setalpha(alpha)	getalpha()	Set/get alpha.
setwperp(wperp)	getwperp()	Set/get wperp.
setcperp(cperp)	getcperp()	Set/get cperp.
setsperp(sperp)	getsperp()	Set/get sperp.
setwprll(wprll)	getwprll()	Set/get wprll.
setcprll(cprll)	getcprll()	Set/get cprll.
setsprll(sprll)	getsprll()	Set/get sprll.
setmrf(mrf)	getmrf()	Set/get mrf.

495 A.5 UserFramework

UserFramework is a module that provides a set of methods used in the code provided to allow users easy access to the code and data. The following methods are provided:

```
startAnalysis (argv): processes input flags passed in call to run script.
```

Argument:

500

505

510

argv: list of arguments passed to main by call to run script.

Returns:

Success: (boolean) True if processing successful.

Debug: (boolean) Set to True if flag -d is set to True.

inputfile: (path) full path to input file; set using flag -y.

outputfile: (path) full path to output file; set using flag -o.

nEvts: (integer) number of events to process; set using flag -n.

bdsimfile: (path) full path to bdsim format file; set using flag -z.

beamspecfile: (path) full path to beam specification CSV file; set using flag -b.

handleFILES (beamspecfile, inputfile, outputfile, bdsimFILE=False): File handling method to check files exist and create relevant BeamIO instances.

Arguments:

beamspecfile: (path) full path to beam specification CSV file;

inputfile: (path) full path to input file;

outputfile: (path) full path to output file;

bdsimfile: (path) full path to bdsim format file.

Returns:

520

525

Success: (boolean) True if file handling successful.

ibmIOr: (BeamIO) instance of BeamIO class for file to be read.

ibmIOw: (BeamIO) instance of BeamIO class for file to be written.

EventLoop (iUsrAnl, ibmIOr, ibmIOw, nEvtsIn): executes loop over nEvtsIn events. Reads event record or generates event if ibmIOr=None, and handles end-of-file. Passes control to UserAnal. EventLoo Arguments:

iUsrAnl: (UserAnal) instance.

ibmIOr: (BeamIO) instance of BeamIO class for file to be read.

ibmIOw: (BeamIO) instance of BeamIO class for file to be written.

nEvtsIn: (integer) number of events to process.

Returns:

Success: (boolean) True if successful.

A.6 visualise

The visualise class manages the visualisation of the beam line and particles traversing it.

A.6.1 Instantiation

The call to instantiate the visualise class is:

Beam (CoordSys, Projection)

CoordSys (string) is either "RPLC" to visualise the beam line in the reference particle local coordinate system or "Lab". Projection (string) is either "xs" (RPLC) or "xz" (lab) to visualise the xs or xz projecton and eithed "ys" (RPLC) or "yz" (lab) to visualise the xs or xz projecton.

A.6.2 Instance attributes and access methods

The instance attributes are presented in table 49 and the access methods are summarised in table 50.

Table 49: Definition of attributes of instances of the visualise class.

Attribute	Type	Comment
CoordSys	String	Either "RPLC" to visualise the in the reference particle local coordinate system
		or "Lab".
Projection	String	Either " xs " (RPLC) or " xz " (lab) to visualise the xs or xz projecton and eithed
		" ys " (RPLC) or " yz " (lab) to visualise the xs or xz projecton.

A.6.3 Processing methods

Table 51 presents the processing methods provided in the visualise class.

Table 50: Definition of access methods for the visualise class.

Set method	Get method	Comment
setCoordSys	getCoordSys	Set coordinate system for visualisation.
setProjection	setProjection	Set projection for visualisation.

Table 51: Processing methods provided by the visualise class.

Method	Argument(s)	Return	Comment
Particles(axs, nPrtcl)	plot, integer		Manage ploting of nPrtcl particles on
			matplotlib axes instance.
BeamLine(axs)	plot		Manage ploting of beam line on
			matplotlib axes instance.

A.6.4 I/o methods

The visualise class has no i/o methods.

A.6.5 Utilities

The visualise class has no i/o methods.

B Set-up and run

Introduction

This section summarises the steps needed to set-up and run the linear optics simulation of the LhARA beam line. A summary of the tasks that the software suite performs will be documented in due course. The code has been developed in python; python 3 is assumed.

Getting the code

565

The linear optics package is maintained using the GitHub version-control system. The latest release can be downloaded from:

```
\centerline{
  \href{https://github.com/ImperialCollegeLondon/LhARAlinearOptics.git}{https://github.com/ImperialCollegeLondon/LhARAlinearOptics.git}
```

Dependencies and required packages

The linear optics code requires the following packages:

• Python modules: scipy and matplotlib.

It may be convenient to run the package in a "virtual environment". To set this up, after updating your python installation to python 3.9, execute the following commands:

- 1. python3 -m venv --system-site-packages venv
 - This creates the director venv that contains files related to the virtual environment.
- 2. source venv/bin/activate
- 3. python -m pip install pandas scipy matplotlib

To exit from the virtual environment, execute the command deactivate. The command source venv/bin/activate places you back into the virtual environment.

The Imperial HEP linux cluster provides python 3.9.18 by default.

Unpacking the code, directories, and running the tests

After downloading the package from GitHub, or cloning the repository, you will find a "README.md" file which provides some orientation and instructions to run the code. In particular, a bash script "startup.bash" is provided which:

- Sets the "LhARAOpticsPATH" environment variable so that the files that hold constants etc. required by the code can be located; and
- Adds "01-Code" (see below) to the PYTHONPATH. The scripts in "02-Tests" (see below) may then be run with the command "python 02-Tests/<filename>.py".
- Below the top directory, the directory structure in which the code is presented is:
 - 01-Code: contains the python implementation as a series of modules. Each module contains a single class or a related set of methods.
 - 02-Tests: contains self-contained test scripts that run the various methods and simulation packages defined in the code directory.
- 11-Parameters: contains the parameter set used to specify the various beam lines presently implemented. The instructions in the README.md file should be followed to set up and run the code.

Running the code

590

595

Execute "startup.bash" from the top directory (i.e. run the bash command "source startup.bash"). This will:

- Set up "LhARAOpticsPATH"; and
- Add "01-Code" to the PYTHONPATH. The scripts in "02-Tests" may then be run with the command "python 02-Tests/<filename>.py";
- Example scripts are provided in "03-Scripts", these can be used first to "Run" the simulation and then to "Read" the data file produced. Example scripts are provided for the DRACO, LION, and LhARA Stage 1 beam lines.