2- Si on désigne par \overline{A} la matrice définie par $\overline{A}=(\overline{a_{ij}})_{1\leq i,j\leq n}$, montrer que : $\overline{A\cdot U}=\overline{A}\cdot \overline{U}$. **Solution** : $\overline{A \cdot U}$ est la matrice colonne dont la $i\grave{e}me$ ligne pour $i \in [[1,n]]$ est égale à $\sum a_{ij}x_i$, en utilisant les propriétes du conjugué d'un nombre complexe, on aura :

$$\sum_{j=1}^{j=n} a_{ij} x_i = \sum_{j=1}^{j=n} \overline{a_{ij}} x_i = \sum_{j=1}^{j=n} \overline{a_{ij}} \ \overline{x_i}$$

 $\sum \overline{a_{ij}} \ \overline{x_i}$ est l'élément de la $i\grave{e}me$ ligne, pour $i\in [[1,n]]$, de la matrice colonne $\overline{A}\cdot \overline{U}$. (0.75) pt)

3- Dans cette question, on écrit : $\varphi(U,V)=^t\overline{U}\cdot V$ et on suppose que ${}^t\overline{A}=A$ (A est dite matrice hermitienne).

a/ Soit $\alpha \in Spec(A)$ et $U \in E$ un vecteur propre non nul associé à α . Montrer que $\varphi\left(AU,U\right)=\alpha\varphi\left(U,U\right).$

Solution: On a:

$$\varphi\left(AU,U\right) = {}^{t}\overline{(AU)}\cdot U$$

$$= {}^{t}\overline{U}\cdot {}^{t}\overline{A}\cdot U \text{ en utilisant la question 2 et les propriétés de la transposée}$$

$$= {}^{t}\overline{U}\cdot A\cdot U \text{ puisque } {}^{t}\overline{A} = A$$

$$= {}^{t}\overline{U}\cdot \alpha U \text{ puisque U est un vecteur propre associé à α } (AU = \alpha U)$$

$$= \alpha^{t}\overline{U}\cdot U = \alpha\varphi\left(U,U\right) \qquad \textbf{(1 pt)}$$

b/- Montrer que $\alpha \in \mathbb{R}$.

Solution : On a d'après la question 1 de la partie A :

$$\varphi\left(AU,U\right)=\varphi\left(\alpha U,U\right)=\overline{\alpha}\varphi\left(U,U\right).$$

On en déduit : $\alpha \varphi (U, U) = \overline{\alpha} \varphi (U, U)$, or $\varphi (U, U) \neq 0$ puisque $U \neq 0$ d'après la ,question (1 pt) 5 de la partie A, donc $\alpha = \overline{\alpha}$.

 ${f 4}$ - Soit ${f S}$ une matrice réelle symétrique d'ordre n. Préciser le nombre de valeurs propres

réelles (comptées avec leurs ordres de multiplicité) de S. Solution : La matrice S vérifie la condition ${}^t\overline{S}=S$ et admet n valeurs propres complexes comptées avec leurs ordres de multiplicité. Or d'après la question 3, toute valeur de S est réelle, donc S admet n valeurs propres réelles comptées avec leurs ordres de multiplicité. (1 pt)

Exercice 3: (7 pts)

Remarque : L'objectif de cet exercice est démonter que toute matrice symétrique réelle d'ordre n admet n valeurs propres comptées avec leurs ordres de multiplicité.

On considère le \mathbb{C} -espace vectoriel des matrices colonnes $E=M_{n,1}$ (\mathbb{C}) où $n\in N^*$. Si $U=^t$ (x_1 x_2 . . . x_n) est une matrice de E, on désigne par \overline{U} la matrice colonne t ($\overline{x_1}$ $\overline{x_2}$. . . $\overline{x_n}$) $\in E$ où $\overline{x_i}$ est le conjugué de x_i pour $i\in [[1,n]]$.

Soit l'application définie par :

$$\varphi : \qquad E \times E \qquad \to \qquad \mathbb{C}$$

$$U = \begin{pmatrix} t & x_1 & x_2 & \dots & x_n \end{pmatrix}, V = \begin{pmatrix} t & y_1 & y_2 & \dots & y_n \end{pmatrix} \mapsto \varphi(U, V) = \sum_{i=1}^{i=n} \overline{x_i} y_i$$

Partie A: Montrer que:

1- $\forall \lambda \in \mathbb{C}, \forall (U, V) \in E \times E : \varphi(\lambda U, V) = \overline{\lambda} \varphi(U, V)$.

Solution: Soit $\lambda \in \mathbb{C}$ et soit $(U, V) \in E \times E$: on a

$$\varphi\left(\lambda U,V\right) = \sum_{i=1}^{i=n} \overline{\lambda x_i} y_i = \overline{\lambda} \sum_{i=1}^{i=n} \overline{x_i} y_i = \overline{\lambda} \varphi\left(U,V\right) \qquad \textbf{(0.5 pt)}.$$

2- $\forall \lambda \in \mathbb{C}, \forall (U, V) \in E \times E : \varphi(U, \lambda V) = \lambda \varphi(U, V)$.

Solution: Soit $\lambda \in \mathbb{C}$ et soit $(U, V) \in E \times E$: on a

$$\varphi(U, \lambda V) = \sum_{i=1}^{i=n} \overline{x_i} (\lambda y_i) = \lambda \sum_{i=1}^{i=n} \overline{x_i} y_i = \overline{\lambda} \varphi(U, V) \qquad (0.5 \text{ pt})$$

3- $\forall U \in E, \forall V \in E : \varphi(V, U) = \overline{\varphi(U, V)}.$

Solution: Soit $\lambda \in \mathbb{C}$ et soit $(U, V) \in E \times E$: on a

$$\varphi\left(V,U\right) = \sum_{i=1}^{i=n} \overline{y_i} x_i = \sum_{i=1}^{i=n} \overline{y_i} \overline{x_i} = \sum_{i=1}^{i=n} \overline{\overline{x_i}} \overline{y_i} = \sum_{i=1}^{i=n} \overline{x_i} y_i = \overline{\varphi\left(U,V\right)}$$
 (0.5 pt).

4- $\forall U \in E : \varphi(U, U) \in \mathbb{R}^+$.

Solution: Soit
$$U \in E$$
: on a $\varphi(U, U) = \sum_{i=1}^{i=n} \overline{x_i} x_i = \sum_{i=1}^{i=n} |x_i|^2 \ge 0$ (0.5 pt).

5- $\forall U \in E : [\varphi(U, U) = 0 \text{ ssi } U = 0_E].$

Solution: (0,75 pt)

Partie B:

Soit $A = (a_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{C}).$

1- Peut-on préciser le nombre de valeurs propres de A.

Solution: Le polynôme caractéristique de A étant de degré $n \in N^*$ et à coefficients complexes, il admet donc n racines comptées avec leurs ordres de multiplicité dans \mathbb{C} , donc A admet n valeurs propres comptées avec leurs ordres de multiplicité. (0.5 pt).

$$\begin{array}{l} \text{On a: } P = \left(\begin{array}{c} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 2 & -2 \end{array} \right) \quad \text{. Le calcul de l'inverse de } P \text{ donne: } P^{-1} = \left(\begin{array}{c} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{4} \\ \frac{1}{2} & 0 & -\frac{1}{4} \end{array} \right) \\ \text{Enfin: } P^{-1}.A.P = \left(\begin{array}{c} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{4} \\ \frac{1}{2} & 0 & -\frac{1}{4} \end{array} \right) \left(\begin{array}{c} 1 & 0 & -2 \\ 0 & 1 & 0 \\ -8 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 2 & -2 \end{array} \right) = \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 5 \end{array} \right) = \end{array}$$

A'. (2.25 pt)

Exercice 2: (5 pts)

Soit (S) le système linéaire défini sur \mathbb{R} par : $\begin{cases} x - y + zz = 1 \\ 2x + y + 3z = 1 \\ x + 2y + z = \alpha \\ 4x - y + 7z = \beta \end{cases}$ où α et

 β sont dans \mathbb{R} .

1- Déterminer le rang du système (S).

Solution: On échelonne la matrice du système, on trouve rg(S) = 2 (0.25 pt)

2- Déterminer la matrice principale, les équations principales et les inconnues principales du système (S).

Solution : Si on supprime la dernière colonne de (S) et les deux dernières lignes, on ontient une matrice extraite carrée d'ordre 2 de déterminant égal à $3 \neq 0$, cette matrice on la note $R = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$. Ainsi les équations principales sont les deux premières et les inconnues principales sont x et y (0.75 pt).

3- Appliquer le théorème de Rouché-Fontené pour donner une condition nécessaire et suffisante sur α et β pour que le système (S) soit compatible (Préciser le(s) déterminant(s) bordant(s) le déterminant principal).

Solution: Les déterminant bordants le déterminant principal sont:

$$\Delta_1 = \left| egin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & lpha \end{array} \right| \ {
m et} \ \Delta_2 = \left| egin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 4 & -1 & eta \end{array} \right|$$

On a : (S) compatible ssi $\Delta_1 = \Delta_2 = 0$.

Le calcul des deux déterminants donne : $\Delta_1 = 3\alpha$ et $\Delta_2 = 3\beta - 9$ donc (S) compatible ssi $\alpha = 0$ et $\beta = 3$. (2 pts)

4- Résoudre le système (S) dans le cas où il est compatible .

Solution : On pose $\alpha=0$ et $\beta=3$, pour résoudre le système associé, il suffira de résoudre le système de Cramer suivant : $\begin{cases} x - y = 1 - 2z \\ 2x + y = 1 - 3z \end{cases}$ La somme des deux équations donne 3x = 2 - 5z, i.e. : $x = \frac{2 - 5z}{3}$, on obtient alors

$$y = 1 - 3z - 2\frac{2 - 5z}{3} = \frac{z - 1}{3}$$

Donc l'ensemble des solutions est $: \left\{ \left(\frac{2-5z}{3}, \frac{z-1}{3}, z \right), z \in \mathbb{R} \right\}$ (2 pts)

Exercice 1: (8 pts)

Soit la matrice définie par : $A_m=\left(egin{array}{ccc}1&0&m\\0&1&0\\4m&0&1\end{array}
ight)\in M_3\left(\mathbb{R}\right).$

1- Calculer le polynôme caractéristique de A_m .

Solution: $P_{A_m}(X) = (1 - X)(1 + 2m - X)(1 - 2m - X)$ (1 pt)

2- Déduire le déterminant de A_m .

Solution: Le déterminant de A_m est le produit des **trois** valeurs propres de A_m donc det $A_m = 1 (1 - 2m) (1 + 2m)$ (0.5 pt)

3- Calculer de deux façons différentes la trace de A_m .

Solution: Par définition la trace de A_m est la somme de ses éléments diagonaux, i.e.: $Tr(A_m) = 3$ (0.25 pt)

La trace est égale aussi à la somme des trois valeurs propores de A_m , i.e. : 1+1-2m+1+2m=3 (0.5 pt)

4- Préciser la ou les valeurs de m pour que 0 soit une valeur propre de A_m . Conclure.

Solution: 0 valeur propre ssi m = 1/2 ou m = -1/2 (0.25 pt)

5- Préciser la ou les valer de m pour que A_m admette au moins une valeur propre multiple.

Solution: A_m admet au moins une valeur propre multiple dans les trois cas suivants: 1 + 2m = 1 ou 1 - 2m = 1 ou 1 - 2m = 1 + 2m, i.e. m = 0 (0.5 pt)

6- Déduire une condition nécessaire et suffisante sur m pour que A_m soit diagonalisable.

Solution: A_m est diagonalisable pour tout $m \neq 0$, puisque dans ce cas A_m admet trois propres simples.

Pour m = 0, $A_0 = Id$ donc A_0 est diagonale.

On en conclut que A_m est diagonalisable pour tout réel m. (0.75 pt)

7- On pose m=-2 et considérons la matrice $A=A_{-2}=M_B(f)$ où $f\in End(\mathbb{R}^3)$ et B la base canonique de \mathbb{R}^3 .

a- Déterminer une base $B^{'}$ formée des vecteurs propres de f.

Solution: On cherche pour chaque valeur propre de f qui sont $\lambda_1 = 1, \lambda_2 = -3$ et $\lambda = 5$, l'espace propre associé. En échelonnant les matrices A - I, A + 3I et A - 5I, on trouve $E_1 = \langle v_1 = (0, 1, 0) \rangle$, $E_{-3} = \langle v_2 = (1, 0, 2) \rangle$ et $E_5 = \langle v_3 = (1, 0, -2) \rangle$,

Donc $B' = (v_1, v_2, v_3)$ (1.75 pt)

b- En déduire la matrice $A' = M_{B'}(f)$.

Solution: $A' = M_{B'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. (0.25 pt)

c- Vérifier par un calcul matriciel que A et A' sont semblabes.

Solution : Il suffit de montrer que $A' = P^{-1}.A.P$ où P est la matrice de passage de B vers B'.

1