

AGU 2017 New Orleans, L

Bart Forman

Observatio

011

Objective

USSE

Hyperplanes
Eulerian Grid
Single Platfor

Machine Learnin Emulators Variability

Conclusion:

Extra Slide

Towards the Development of a Global, Satellite-based, Terrestrial Snow Mission Planning Tool

Co-authors: Sujay Kumar¹, Jacqueline Le Moigne², and Sreeja Nag^{2,3}

1=NASA GSFC - Hydrological Sciences: 2=NASA GSFC - Software Engineering: 3=Bay Area Environmental Research Institu

Bart Forman

Assistant Professor, University of Maryland

The Deborah J. Goodings Professor of Global Sustainability

Department of Civil and Environmental Engineering

December 12th, 2017

AGU 2017 New Orleans, LA

Bart Forman

Observations

Observation

occi

TAT-

Eulerian Grid

Trade-off Spa

Emulators

Experimen

Conclusion

AGU 2017 New Orleans, LA

Bart Forman

Observations

Observation

Occi

TAT

Hyperpl

Eulerian Grid Single Platfo Constellation

Trade-off Spa

Emulators Variability

Conclusion

AGU 2017 New Orleans, LA

Bart Forman

Observations

Observation

Occi

TAT

Нуре

Single Platfo

Trade-off Spa

Emulators Variability

Conclusion

AGU 2017 New Orleans, LA

Bart Forman

Observations

Observation

Occ.

1741-

Eulerian Grid Single Platfo

Constellation
Trade-off Spa

Machine Learn Emulators

Experiment

Conclusion

AGU 2017 New Orleans,

Bart Forman

Observatio

Objectives

--,-----

U55

TAT-C
Hyperplanes
Eulerian Grid
Single Platforn
Constellation
Trade-off Space

Machine Learnin Emulators Variability Experiments

Conclusion

Extra Slid

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- 2 How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- 4 How can future mission costs be minimized while ensuring Science requirements are fulfilled?

AGU 2017 New Orleans, LA Bart Forman

Baile Form

O D S C I V a L I C

Objectives

OSSI

TAT-C
Hyperplanes
Eulerian Grid
Single Platforn
Constellation
Trade-off Space

Machine Learnin Emulators Variability Experiments

Conclusion

Extra Slid

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- 2 How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- 4 How can future mission costs be minimized while ensuring Science requirements are fulfilled?

AGU 2017 New Orleans, LA Bart Forman

Objectives

OSSI

TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space

Machine Learnin Emulators Variability Experiments

Conclusion

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- 2 How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- 4 How can future mission costs be minimized while ensuring Science requirements are fulfilled?

AGU 2017 New Orleans, LA Bart Forman

Observatio

Objectives

TAT-C Hyperplanes Eulerian Grid

Single Platform Constellation Trade-off Space Machine Learnin

Emulators
Variability
Experiments

Conclusion

Extra Slid

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- 2 How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- 4 How can future mission costs be minimized while ensuring Science requirements are fulfilled?

AGU 2017 New Orleans, LA

Bart Forman

Observation

Objective

OSSE

033

Hyperplane Eulerian G

Single Platform

Trade-off Spa Machine Learn

Emulators Variability Experiments

Conclusion

Extra Slides

Nature Run Snow Depth & SWE over North America
LIS + MERRA2
- model-based representation

AGU 2017 New Orleans, LA

Bart Forman

Observation

.

USSI

TAT-

Hyperplanes
Eulerian Grid
Single Platforr
Constellation

Trade-off Space

Emulators Variability Experiments

Conclusion

AGU 2017 New Orleans, LA

Bart Forman

AGU 2017 New Orleans, LA

Bart Forman

Observation

OSSI

033

Hyperplanes Eulerian Grid Single Platfor

Single Platform Constellation Trade-off Space

Emulators
Variability
Experiments

Conclusion

AGU 2017 New Orleans, LA

Bart Forman

LIS + GLDAS

- apply representative B.C. error
- no assimilation (a.k.a., Open Loop) with assimilation (merge with observations from suite of sensors)

AGU 2017 New Orleans, LA

Bart Forman

Observation

OSSI

000.

Hypor

Eulerian Grid
Single Platform
Constellation

Machine Learni Emulators Variability Experiments

Conclusion

AGU 2017 New Orleans, LA

Bart Forman

Observation

OSSI

..

Hyperplanes Eulerian Grid Single Platform Constellation

Machine Learni Emulators Variability Experiments

Conclusio

AGU 2017 New Orleans, LA

Bart Forman

Observation

OSSI

Hyperplanes Eulerian Grid Single Platform Constellation

Machine Learni Emulators Variability Experiments

Conclusio

AGU 2017 New Orleans, LA

Bart Forman

Obconvation

...

OSSE

USSE

...

Eulerian Grid Single Platforn

Constellation
Trade-off Space

Emulators Variability

Conclusions

AGU 2017 New Orleans, LA

Bart Forman

Obconvation

...

OSSE

OSSE

...

Eulerian Grid

Constellation
Trade-off Space

Emulators Variability

Conclusions

AGU 2017 New Orleans, LA

Bart Forman

Observation

...

USSE

...

Eulerian Grid

Constellation
Trade-off Space

Emulators Variability Experiments

Conclusions

AGU 2017 New Orleans, LA

Bart Forman

04----

USSE

...

Eulerian Grid Single Platforn

Constellation
Trade-off Space

Emulators Variability Experiments

Conclusions

AGU 2017 New Orleans, LA

Bart Forman

Observatio

OSSE

Hyperpla

Eulerian Grid Single Platform

Constellation

Trade-off Space

Emulators
Variability

Conclusions

"Comb" Viewing \mapsto Single Platform

AGU 2017 New Orleans, LA

Bart Forman

Obscivatio

Ob:--+:.--

0005

OSSI

Hunornia

Eulerian Grid

Single Platform

Constellation

Trade-off Spac

Machine Learnii

Variability

Conclusions

"Comb" Viewing \mapsto Constellation

AGU 2017 New Orleans, LA

Bart Forman

Observation

Ob:--+:.--

OSSE

1741-4

Eulerian Grid

Constellation

Trade-off Space

Emulators

Conclusions

Trade-off Space: Coverage vs. Resolution

AGU 2017 New Orleans, LA

. .

.

0551

0331

Hyperplanes Eulerian Grid

Trade-off Space

Machine Learnin
Emulators
Variability
Experiments

Conclusion

- Explore trade-off between engineering and science
 - Field-of-View (FOV)?
 - Platform altitude?
 - Repeat cycle?
 - Single platform vs. constellation?
 - Orbital configuration(s)?
- How do we get the most scientific bang for our buck?

Machine Learning "Emulators"

AGU 2017 New Orleans, LA

Bart Forman

Observation

OI

OSSE

Hyper

Eulerian Grid Single Platfor Constellation

Trade-off Space

Variability
Experiments

Conclusions

Extra Slide

Physically-based Land Surface Model(s)

Observation Operator (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)

Multi-frequency, Multi-polarization Training Targets

Machine Learning "Emulators"

AGU 2017 New Orleans, LA

Bart Forman

Observatio

OL:---:

OSSE

TAT-0

Hyperplanes Eulerian Grid Single Platform Constellation

Trade-off Space

Emulators Variability

Conclusion:

Extra Slide

Physically-based Land Surface Model(s)

Observation Operator (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)

18V - 36V	
18H - 36H	
10V - 36V	
10H - 36H	-

Multi-frequency, Multi-polarization Training Targets

Machine Learning "Emulators"

AGU 2017 New Orleans, LA

Bart Forman

Observation

011

OSSE

TAT_0

Hyperplanes
Eulerian Grid
Single Platform
Constellation

Machine Learn

Variability Experiments

Conclusion

Extra Slide

Physically-based Land Surface Model(s)

Observation Operator (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)

Multi-frequency, Multi-polarization **Training Targets**

Spatiotemporal Variability

AGU 2017 New Orleans, LA

Bart Forman

. .

0.000.000.0

nece

TAT-C

Eulerian Grid Single Platfor Constellation

Machine Lear

Variability Experiments

Conclusio

Spatiotemporal Variability

AGU 2017 New Orleans, LA

Bart Forman

Observation

_

OSSI

TAT-0

Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space

Emulators
Variability
Experiments

Conclusion

Relevancy Scenarios

AGU 2017 New Orleans, LA

Bart Forman

Obscivatio

01.

OSS

Hyperplanes
Eulerian Grid
Single Platfor

Single Platform Constellation Trade-off Space

Emulators Variability Experiments

Conclusion

- Scenario 1: Benchmark Analysis
 - Passive MW Assimilation only
- Scenario 2: Comparative Analysis
 - ▶ Passive MW vs. Active MW vs. LIDAR
- Scenario 3: Multi-sensor Analysis
 - single-sensor platform
 - multi-sensor platform
 - constellation of sensors

AGU 2017 New Orleans, L

Bart Forman

Observation

OL:---

0551

Hyperplanes
Eulerian Grid
Single Platforn
Constellation
Trade-off Space

Emulators
Variability
Experiments

Conclusions

- Global snow mission will require evidence of achievable science via OSSE ... or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - ▶ Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e SWF and show depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going → open to ideas + suggestions!

AGU 2017 New Orleans, I

Bart Forman

Observation

Objective

OSSI

Hyperplanes
Eulerian Grid
Single Platforn
Constellation
Trade-off Space

Machine Learnin Emulators Variability Experiments

Conclusions

- Global snow mission will require evidence of achievable science via OSSE . . . or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - ▶ Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e.
 - SvvE and snow depth
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going → open to ideas + suggestions!

AGU 2017 New Orleans, La

Observation

Objective

OSS

TAT-C
Hyperplanes
Eulerian Grid
Single Platforn
Constellation
Trade-off Space

Emulators
Variability
Experiments

Conclusions

- Global snow mission will require evidence of achievable science via OSSE . . . or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - ► Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e. SWE and show death)
 - Multiple frequencies/polarizations/observations allow form floribility and mediclarity in DA framework
- Snow OSSE is on-going → open to ideas + suggestions!

AGU 2017 New Orleans, LA Bart Forman

Observation

Objective

USS

Hyperplanes
Eulerian Grid
Single Platforn
Constellation
Trade-off Space

Machine Learnin Emulators Variability Experiments

Conclusions

- Global snow mission will require evidence of achievable science via OSSE . . . or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - ▶ Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going → open to ideas + suggestions!

AGU 2017 New Orleans, LA

Bart Forman

Observati

Objective

033

Hyperplanes
Eulerian Grid
Single Platforn
Constellation
Trade-off Space

Machine Learnir Emulators Variability Experiments

Conclusions

- Global snow mission will require evidence of achievable science via OSSE ... or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - ▶ Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going → open to ideas + suggestions!

AGU 2017 New Orleans, L

Bart Forman

Observation

OF:--+:--

OSS

TAT-

Hyperplanes Eulerian Grid Single Platforn Constellation

Machine Learni Emulators Variability

Conclusions

Extra Slide:

Thank You.

Questions and/or Comments?

Financial support provided by:

NASA New Investigator Program (NNX14AI49G) NASA GRACE-FO Science Team (NNX16AF17G) NASA High Mountain Asia Science Team (NNX17AC15G)

High-performance computing support provided by UMD's Division of Information Technology

SVM Mathematical Framework (1 of 2)

AGU 2017 New Orleans, LA

Bart Forman

Observation

Objective

OSSI

Hyperplanes
Eulerian Grid
Single Platfori

Machine Learni Emulators Variability

Conclusio

Extra Slides

For parameters C>0 and $\varepsilon>0$, the **standard (primal)** form is:

$$\begin{aligned} & \underset{\mathbf{w}, \, \delta, \, \boldsymbol{\xi}, \, \boldsymbol{\xi}^*}{\text{minimize}} & & \frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle + C \sum_{i=1}^m \left(\xi_i + \xi_i^* \right) \\ & \text{subject to} & & \langle \mathbf{w} \cdot \phi(\mathbf{x}_i) \rangle + \delta - z_i \leq \varepsilon + \xi_i \\ & & z_i - \langle \mathbf{w} \cdot \phi(\mathbf{x}_i) \rangle - \delta \leq \varepsilon + \xi_i^* \\ & & \xi_i, \xi_i^* \geq 0, i = 1, 2, \dots, m. \end{aligned}$$

where m is the available number of T_b measurements in time (for a given location in space), z_i is a T_b measurement at time i, and ξ and ξ^* are slack variables.

SVM Mathematical Framework (2 of 2)

AGU 2017 New Orleans, LA

Bart Forman

Observati

OSSE

TAT-

Hyperplanes
Eulerian Grid
Single Platfort
Constellation

Machine Learni Emulators Variability Experiments

Conclusi

Extra Slides

Primal optimization is commonly solved in **dual form** as:

$$\begin{split} & \underset{\alpha_i, \ \alpha_i^*}{\text{minimize}} & \quad \frac{1}{2} \sum_{i,j=1}^m \left(\alpha_i - \alpha_i^*\right) \left(\alpha_j - \alpha_j^*\right) \left\langle \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) \right\rangle \\ & \quad + \varepsilon \sum_{i=1}^m \left(\alpha_i + \alpha_i^*\right) - \sum_{i=1}^m z_i \left(\alpha_i - \alpha_i^*\right) \\ & \quad \text{subject to} & \quad \sum_{i=1}^m \left(\alpha_i - \alpha_i^*\right) = 0, \\ & \quad \alpha_i \ , \ \alpha_i^* \in [0 \ , \ C] \ , \ i = 1, 2, \dots, m \end{split}$$

where α_i and α_i^* are Lagrangian multipliers, $\langle \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) \rangle$ is the inner dot product of $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$, ε is the specified error tolerance, and C is a positive constant that dictates a penalized loss during training.