Toward Enhanced Single-Molecule Cross-Sections in 3D Photonic Crystals

Brandon G. Hacha, Sam J. Evans, Anders J. Bergsten, Michael S. Mattei, Zongfu Yu[†], Randall H. Goldsmith*

Department of Chemistry, University of Wisconsin-Madison, Madison, WI

†Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI

Est. 2011 Saulio the World One Molecule at a line world one world o

Background and Motivation

- Photonic crystals provide unique optical environments, where the dispersion relation can be substantially different from that of free space
- Certain point degeneracies in momentum space, Weyl points, can enhance resonant cross sections at that frequency.

Can we use Weyl points for single-molecule spectroscopy?

We have developed a fabrication process for making 3D photonic crystals with high refractive index contrast, the first step towards Weyl points at visible wavelengths

Simulation and Design

- Our fabrication method will result in a core-shell design, where a low-index core is coated in a high-index material.
- We use a custom Python package to create rod-connected diamond crystals that have a relatively large band gap.
- After simulating, we export the crystals for fabrication²

d- A simulated band structure diagram for a core-shell diamond crystal

Focused Electron Beam Induced Deposition (FEBID)

H₃C-Pt-CH₃

- A scanning electron
 microscope's electron beam is
 used to reduce a precursor gas
- Controlling beam position and exposure time allows for growing these deposits into nanoscale structures

High-Pressure Chemical Vapor Deposition (HPCVD)

1 μm
Over-deposition on the FEBID crystal shown to the left

The FEBID material has too low of a refractive index, so we coat it in amorphous silicon

 At high pressure, the process becomes diffusive and the deposition becomes conformal (mean free path around 1 nanometer)

A FIB milled crystal showing conformal deposition. The light gray regions are the FEBID deposits and the dark gray is silicon.

Optical Characterization

Sample

 Back focal plane reflectometry allows measuring angleresolved reflection without rotating the sample

Scanning Fiber To

Spectrometer

Conclusions and Next Steps

~20 nm of silicon

coating

- We can design, fabricate, and coat photonic crystals with band gaps in the visible and NIR.
- Comparing measurements to simulation will give information about our materials' optical properties
- Before Weyl points, we will characterize crystals with defects that emulate resonant features

Acknowledgments

Funding provided by:

With thanks to: Amalio Fernández-Pacheco, Jakub Jurczyk at TU-Wien Shubhra Pasayat, Jeremy Kirch at UW-Madison

References

- 1. Zhou, M. et al. Nat Commun 2017, 8 (1), 1388.
- 2. Skoric, L et al. Nano Lett. 2020, 20 (1), 184-191.

View this poster online:

