

Flot-max / coupe-min

CM nº7 — Algorithmique (AL5)

Matěj Stehlík 10/11/2023

Arcs sortants et entrants

Définition

Soient G = (V, E) un graphe orienté et $U \subseteq V$. Alors, on note $\partial^+(U)$ l'ensemble des arcs dont le début est dans U. De même, on note $\partial^-(U)$ l'ensemble des arcs dont la fin est dans U.

Arcs sortants et entrants

Définition

Soient G = (V, E) un graphe orienté et $U \subseteq V$. Alors, on note $\partial^+(U)$ l'ensemble des arcs dont le début est dans U. De même, on note $\partial^-(U)$ l'ensemble des arcs dont la fin est dans U.

$$\delta^-(U)$$

Degré sortant et degré entrant

Définition

- le degré entrant $d^-(v)$, est le nombre d'arcs dont la fin est v.
- le degré sortant $d^+(v)$, est le nombre d'arcs dont le début est v.
- On a $d^-(v) = |\partial^-(\{v\})|$ et $d^+(v) = |\partial^+(\{v\})|$.
- v est une source si $d^-(v) = 0$.
- v est un puits si $d^+(v) = 0$.

Degré sortant et degré entrant

Définition

- le degré entrant $d^-(v)$, est le nombre d'arcs dont la fin est v.
- le degré sortant $d^+(v)$, est le nombre d'arcs dont le début est v.
- On a $d^-(v) = |\partial^-(\{v\})|$ et $d^+(v) = |\partial^+(\{v\})|$.
- v est une source si $d^-(v) = 0$.
- v est un puits si $d^+(v) = 0$.

$$d^+(v) = 1$$
$$d^-(v) = 2$$

Flot max et coupe min

- Deux problèmes classiques de l'optimisation combinatoire.
- Exemple de la dualité mathématique.

Quelques applications

- Fouille de données.
- Sélection de projets.
- Ordonnancement (par exemple compagnies aériennes).
- Segmentation de l'image.
- Connectivité et fiabilité des réseaux.
- Calcul distribuée...

Réseaux

Définition

Un *réseau* est un graphe orienté G = (V, E) avec :

- deux sommets spéciaux :
 - la source s tel que $d^-(s) = 0$
 - le puits t tel que $d^+(t) = 0$
- une fonction de capacité

$$c: E \to \mathbb{R}^+$$
. $c(e) \in \mathbb{R}$

Coupes

Définition

Une s-t coupe est une partition (A,B) de V telle que $s\in A$ et $t\in B$

Définition

La capacité d'une coupe (A, B) est $cap(A, B) = \sum_{e \in \bigoplus_{A}} c(e)$.

On re compte que les arcs qui vont de A vers B V

$$cap(A, B) = 2 + 4 + 1 + 2 + 5 = 14$$

Le problème de la coupe minimum

Problème

Trouver une s-t coupe de capacité minimum.

$$cap(A, B) = 2 + 2 + 2 + 3 = 9$$

Flots

Définition

Un s-t flot est une fonction $f:E\to\mathbb{R}^+$ qui vérifie

- Pour tout $e \in E$, $0 \le f(e) \le c(e)$ (contrainte de capacité)
- Pour tout $v \in V \{s, t\}$, $\sum_{e \in \delta^-(v)} f(e) = \sum_{e \in \delta^+(v)} f(e)$ (conservation de flot).

Définition

La valeur d'un flot f est $val(f) = \sum_{e \in \delta^+(s)} f(e)$.

la sonne du flot sur tous les arcs qui sortent de s

$$ral(f) = 2 + 1 + 3 = 6$$

Le problème du flot maximum

Problème

Trouver un s-t flot de valeur maximum.

$$val(f) = 2 + 2 + 5 = 9$$

Un peu d'histoire : le réseau ferroviaire du bloc de l'Est

Flots et coupes

Lemme

Soit f un flot et (A, B) une s - tcoupe. Alors, le flot qui traverse la coupe est égal au flot qui sort de s.

$$\sum_{e \in \delta^+(A)} f(e) - \sum_{e \in \delta^-(A)} f(e) = \operatorname{val}(f).$$

$$val(f) = 2 + 2 + 5 = 9$$

= 5 + 2 - 2 + 4 = 9

Flots et coupes

Démonstration

$$\operatorname{val}(f) = \sum_{e \in \delta^{+}(s)} f(e) \qquad \text{definition de val}(f)$$

$$= \sum_{e \in \delta^{+}(s)} f(e) - \sum_{e \in \delta^{-}(s)} f(e) = 0 \quad \text{parce que S} \quad \text{est une source}$$

$$= \sum_{v \in A} \left(\sum_{e \in \delta^{+}(v)} f(e) - \sum_{e \in \delta^{-}(v)} f(e) \right) \qquad \text{Sauf quand} \quad \text{V = S} \quad \text{(conserv.} \quad \text{du flot et le fair que tof A)}$$

Dualité faible

Lemme

Soit f un flot et (A, B) une s - t coupe quelconques. Alors, la valeur de f est inférieure ou égale à la capacité de la coupe.

Démonstration

$$\operatorname{val}(f) = \sum_{e \in \delta^{+}(A)} f(e) - \sum_{e \in \delta^{-}(A)} f(e)$$
 lemme précédent
$$\leq \sum_{e \in \delta^{+}(A)} f(e)$$

$$\leq \sum_{e \in \delta^{+}(A)} c(e)$$
 pare que $f(e) \leq c(e)$ (contrainte de Capacité)
$$= \operatorname{cap}(A, B).$$
 def. de capacité

Certificat d'optimalité

Corollaire

Soit f un flot et (A, B) une coupe. Si val(f) = cap(A, B), alors f est un flot max et (A, B) est une coupe min.

Vers un algorithme de flot max

Un algorithme glouton

- Commencer par le flot nul, càd, f(e) = 0 pour chaque arc $e \in E$.
- Trouver un s-t chemin P où tout arc vérifie f(e) < c(e).
- Augmenter le flot le long le chemin *P*.
- Répéter jusqu'à devenir coincé.

$$\operatorname{val}(f) = \bigvee \bigcirc$$

Vers un algorithme de flot max

Un algorithme glouton

- Commencer par le flot nul, càd, f(e) = 0 pour chaque arc $e \in E$.
- Trouver un s-t chemin P où tout arc vérifie f(e) < c(e).
- Augmenter le flot le long le chemin *P*.
- Répéter jusqu'à devenir coincé.

Vers un algorithme de flot max

Un algorithme glouton

- Commencer par le flot nul, càd, f(e) = 0 pour chaque arc $e \in E$.
- Trouver un s-t chemin P où tout arc vérifie f(e) < c(e).
- Augmenter le flot le long le chemin P.
- Répéter jusqu'à devenir coincé.

On peut faire miera!

$$val(f) = 6$$

Le graphe résiduel

Arc originel:

- $e = (u, v) \in E$.
- Flot f(e), capacité c(e).

Arc résiduel:

- "annuler" le flot envoyé.
- e = (u, v) et $e^R = (v, u)$.
- Capacité résiduelle :

$$c_f(e) = egin{cases} c(e) - f(e) & ext{si } e \in E \\ f(e) & ext{si } e^R \in E. \end{cases}$$

On me met pas les arcs de capacité résiduelle 0.

Le graphe résiduel

En général: • Si fle) = cle), on ne met pas l'arc e dans Gr

Graphe résiduel :

- Arcs résiduels avec capacité résiduelle positive.
- $E_f = \{e \mid f(e) < c(e)\} \cup \{e^R \mid f(e) > 0\}.$

Chemin augmentant:

- Un chemin augmentant est un s-t chemin simple dans le graphe résiduel G_f .
- La capacité $cap(G_f, P)$ d'un chemin augmentant P est le minimum des capacités résiduelles parmi tous les arcs de P.

Remarque: G=6 (quand f est la f(st nul)

- Soit f un flot et P un chemin augmentant dans G_f .
- En envoyant un flot de valeur $cap(G_f, P)$ on obtient un nouveau flot f' de valeur $val(f') = val(f) + cap(G_f, P)$.

```
Augment (f, c, P): \varepsilon \leftarrow \min\{c_f(e): e \in E(P)\} for e \in E(P): if e \in E: f(e) \leftarrow f(e) + \varepsilon else: f(e^R) \leftarrow f(e) - \varepsilon return f
```


- Soit f un flot et P un chemin augmentant dans G_f .
- En envoyant un flot de valeur $cap(G_f, P)$ on obtient un nouveau flot f' de valeur $val(f') = val(f) + cap(G_f, P)$.

```
Augment (f, c, P): \varepsilon \leftarrow \min\{c_f(e): e \in E(P)\} for e \in E(P): if e \in E: f(e) \leftarrow f(e) + \varepsilon else: f(e^R) \leftarrow f(e) - \varepsilon return f
```


- Soit f un flot et P un chemin augmentant dans G_f .
- En envoyant un flot de valeur $cap(G_f, P)$ on obtient un nouveau flot f' de valeur $val(f') = val(f) + cap(G_f, P)$.

```
Augment (f, c, P): \varepsilon \leftarrow \min\{c_f(e): e \in E(P)\} for e \in E(P): if e \in E: f(e) \leftarrow f(e) + \varepsilon else: f(e^R) \leftarrow f(e) - \varepsilon return f
```


- Soit f un flot et P un chemin augmentant dans G_f .
- En envoyant un flot de valeur $cap(G_f, P)$ on obtient un nouveau flot f' de valeur $val(f') = val(f) + cap(G_f, P)$.

```
Augment (f, c, P): \varepsilon \leftarrow \min\{c_f(e) : e \in E(P)\} for e \in E(P): if e \in E: f(e) \leftarrow f(e) + \varepsilon else: f(e^R) \leftarrow f(e) - \varepsilon return f
```



```
Ford-Fulkerson(G,s,t,c):

for e \in E(G):

f \leftarrow 0

G_f \leftarrow graphe residuel

while \exists chemin augmentant P:

f \leftarrow Augment(f,c,P)

mettre a jour G_f

return f
```



```
Ford-Fulkerson(G,s,t,c):

for e \in E(G):

f \leftarrow 0

G_f \leftarrow graphe residuel

while \exists chemin augmentant P:

f \leftarrow Augment(f,c,P)

mettre a jour G_f

return f
```



```
Ford-Fulkerson(G,s,t,c):

for e \in E(G):

f \leftarrow 0

G_f \leftarrow graphe residuel

while \exists chemin augmentant P:

f \leftarrow Augment(f,c,P)

mettre a jour G_f

return f
```



```
Ford-Fulkerson(G, s, t, c):
     for e \in E(G):
            f \leftarrow 0
     G_f \leftarrow \text{graphe residuel}
     while \exists chemin augmentant P:
            f \leftarrow \text{Augment}(f, c, P)
           mettre a jour G_f
      return f
```

Le théorème flot-max/coupe-min

Théorème des chemins augmentants (a Hun justifie l'algo de F.-F.) Un flot f est maximum ssi il n'y a pas de chemin augmentant.

Théorème (Elias-Feinstein-Shannon 1956; Ford-Fulkerson 1956)

La valeur maximum d'un flot est égale à la capacité minimum d'une ce théorème garantit l'existence d'un certificat d'optimalité. (Dualité forte)

On va prouver les deux théorèmes en même temps en démontrant que les énoncés suivants sont équivalents :

- (1) Il existe une coupe (A,B) telle que $\mathrm{val}(f) = \mathrm{cap}(A,B)$.

 (2) Le flot f est maximum.

 (3) Il n'existe pas de chemin augmentant par rapport à f.

Démonstration du théorème flot-max/coupe-min (1/2)

- (1) ⇒ (2) Corollaire à la dualité faible. (cerhificat d'ophinalité)
- $(2) \Rightarrow (3)$ Soit f un flot. S'il existe un chemin augmentant P, on peut augmenter f en envoyant un flot le long P.

$$(3) \Rightarrow (1)$$

- Soit f un flot sans chemin augmentant.
- Soit A un ensemble de sommets atteignables depuis s dans le graphe il existe un chemin de s à tous les sonnets dons A. résiduel.
- Par la définition de $A, s \in A$.
- Par la définition de f, $t \notin A$.

Démonstration du théorème flot-max/coupe-min (2/2)

$$val(f) = \sum_{e \in \delta^{+}(A)} f(e) - \sum_{e \in \delta^{-}(A)} f(e)$$

$$= \sum_{e \in \delta^{+}(A)} c(e)$$

$$= cap(A, B)$$

• Sur tous les arcs $e \in S^+(A)$, on a f(e) = c(e), Sinon on pourrait Aanguenter l'ensemble A des samuets atteignal

· Sur tous les arcs es & (A),

on a flej - U,

Comment trouver une coupe minimum?

- Il suffit de prendre A comme l'ensemble des sommets atteignables à partir de s dans le graphe résiduel G_f .
- C'est-à-dire, $v \in A$ ssi il existe un chemin orienté dans G_f avec sommet de départ s et sommet d'arrivée v.
- Si vous trouvez que $t \in A$, alors il existe un chemin augmentant et f n'est pas maximum dans ce cas, il faut encore faire tourner Ford–Fulkerson!

Terminaison de l'algorithme de Ford-Fulkerson

- Si toutes les capacités sont entières, alors tous les flots intermédiaires sont entiers (récurrence).
- En particulier, $\varepsilon \geq 1$ à chaque étape.
- Donc, l'algorithme termine au bout de $C = \sum_{e \in E} c(e)$ itérations de la boucle while.
- L'algorithme termine aussi quand les capacités sont rationnelles (il suffit de les multiplier par le plut petit commun multiple).
- En général, pour les capacités réelles, il y a des cas où l'algorithme ne termine jamais...

Complexité de l'algorithme de Ford-Fulkerson (capacités entières)

Théorème

Si toutes les capacités sont entières, la complexité de l'algorithme de Ford-Fulkerson est de O(mC), où $C = \sum_{e \in E} c(e)$.

- Nous avons déjà remarqué qu'il y a O(C) itération de la boucle while.
- Dans chacune des itérations :
 - On peut trouver un chemin augmentant en temps O(m+n) (avec DFS ou BFS).
 - En supposant que chaque sommet de G est incident à au moins un arc, on a $m \ge n/2$; par conséquent O(m+n) = O(m).
 - La procédure augment est de complexité O(n), la longueur du chemin P étant au plus n-1.
 - Mettre à jour G_f est de complexité O(m).

Bien choisir les chemins augmentants

- Si l'algorithme de Ford-Fulkerson choisit toujours le chemin augmentant avec 3 arcs, alors l'algorithme termine au bout de 1000 itérations.
- Par contre, si l'on choisit les chemins augmentants de longueur 2, alors l'algorithme se termine au bout de 2 itérations seulement!

Une amélioration: l'algorithme de Edmonds-Karp

- Si l'on utilise un BFS pour trouver un chemin augmentant avec le nombre minimum d'arcs, on peut prouver que l'algorithme termine toujours (même pour les capacités irrationnelles).
- Cette version est appelée l'algorithme de Edmonds–Karp, et on peut prouver que sa complexité est de $O(nm^2)$.
- Peut-on faire mieux?

L'état de l'art

- Très récemment, Chen, Kyng, Liu, Peng, Probst Gutenberg et Sachdeva 1 ont donné un algorithme de flot-max de complexité $m^{1+o(1)}$, c'est-à-dire, d'une complexité quasi linéaire!
- Un vrai tour de force, utilise des techniques avancées de l'optimisation continue.

^{1.} https://arxiv.org/pdf/2203.00671.pdf

