

I/O Management, System Protection and Security

Kakoli Bora

Department of Computer Science

Kernel I/O Subsystem

Kakoli Bora

Department of Computer Science

Slides Credits for all PPTs of this course

- The slides/diagrams in this course are an adaptation, combination, and enhancement of material from the following resources and persons:
- 1. Slides of Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne 9th edition 2013 and some slides from 10th edition 2018

Overview

PES UNIVERSITY ONLINE

- Kernel provide many services related to I/O. Some of them are
 - scheduling
 - caching
 - spooling
 - Device reservation
 - Error handling
- These are provided by kernel's I/O subsystem and build on the hardware and device driver infrastructure.

Kernel I/O Subsystem

Scheduling

- Some I/O request ordering via per-device queue
- Some OSs try fairness
- Some implement Quality Of Service (i.e. IPQOS)
- Buffering store data in memory while transferring between devices
 - To cope with device speed mismatch
 - To cope with device transfer size mismatch
 - To maintain "copy semantics"
 - Double buffering two copies of the data
 - Kernel and user
 - Varying sizes
 - Full / being processed and not-full / being used
 - Copy-on-write can be used for efficiency in some cases

Device Status Table

Sun Enterprise 6000 device-transfer rates

Kernel I/O Subsystem

- Caching faster device holding copy of data
 - Always just a copy
 - Key to performance
 - Sometimes combined with buffering
- Spooling hold output for a device
 - If device can serve only one request at a time
 - i.e., Printing
- Device reservation provides exclusive access to a device
 - System calls for allocation and de-allocation
 - Watch out for deadlock

Error Handling

- OS can recover from disk read, device unavailable, transient write failures
 - Retry a read or write, for example
 - Some systems more advanced Solaris FMA, AIX
 - Track error frequencies, stop using device with increasing frequency of retry-able errors
- Most return an error number or code when I/O request fails
- System error logs hold problem reports

I/O Protection

PES UNIVERSITY

- User process may accidentally or purposefully attempt to disrupt normal operation via illegal I/O instructions
 - All I/O instructions defined to be privileged
 - I/O must be performed via system calls
 - Memory-mapped and I/O port memory locations must be protected too

Kernel Data Structures

- Kernel keeps state info for I/O components, including open file tables, network connections, character device state
- Many, many complex data structures to track buffers, memory allocation, "dirty" blocks
- Some use object-oriented methods and message passing to implement I/O
 - Windows uses message passing
 - Message with I/O information passed from user mode into kernel
 - Message modified as it flows through to device driver and back to process

UNIX I/O Kernel Structure

THANK YOU

Kakoli Bora

Department of Computer Science Engineering

K_bora@pes.edu