1 Modular Arithmetic

Solve the following equations for *x* and *y* modulo the indicated modulus, or show that no solution exists. Show your work.

- (a) $9x \equiv 1 \pmod{11}$.
- (b) $10x + 23 \equiv 3 \pmod{31}$.
- (c) $3x + 15 \equiv 4 \pmod{21}$.
- (d) The system of simultaneous equations $3x + 2y \equiv 0 \pmod{7}$ and $2x + y \equiv 4 \pmod{7}$.

Solution:

- (a) $9x \equiv 1 \pmod{11}$: Multiply both sides by $9^{-1} \equiv 5 \pmod{11}$ to get $x \equiv 5 \pmod{11}$.
- (b) $10x + 23 \equiv 3 \pmod{31}$: Subtract 23 from both sides, then multiply both sides by $10^{-1} = -3 \pmod{31}$ to find $x \equiv (-20) \cdot (-3) \equiv 60 \equiv 29 \pmod{31}$.
- (c) $3x + 15 \equiv 4 \pmod{21}$: Subtract 15 from both sides to get $3x \equiv 10 \pmod{21}$. Now note that this implies $3x \equiv 1 \pmod{3}$, since 3 divides 21, and the latter equation has no solution, so the former cannot either.
- (d) The *system* $3x + 2y \equiv 0 \pmod{7}, 2x + y \equiv 4 \pmod{7}$: First, subtract the first equation from double the second equation to get $2(2x+y) (3x+2y) \equiv x \equiv 1 \pmod{7}$; now plug in to the second equation to get $2+y \equiv 4 \pmod{7}$, so the system has the solution $x \equiv 1 \pmod{7}$, $y \equiv 2 \pmod{7}$.

2 Baby Fermat

Assume that a does have a multiplicative inverse \pmod{m} . Let us prove that its multiplicative inverse can be written as $a^k \pmod{m}$ for some k > 0.

- (a) Consider the sequence $a, a^2, a^3, \ldots \pmod{m}$. Prove that this sequence has repetitions.
- (b) Assuming that $a^i \equiv a^j \pmod{m}$, where i > j, what can you say about $a^{i-j} \pmod{m}$?
- (c) Prove that the multiplicative inverse can be written as $a^k \pmod{m}$. What is k in terms of i and j?

Solution:

- (a) There are only m possible values \pmod{m} , and so after the m-th term we should see repetitions.
- (b) We will temporarily use the notation a^* for the multiplicative inverse of a to avoid confusion. If we multiply both sides by $(a^*)^j$, we get

$$a^{i} \equiv a^{j} \qquad (\text{mod } m),$$

$$a^{i-j} \underbrace{a \cdots a}_{j \text{ times}} \equiv \underbrace{a \cdots a}_{j \text{ times}} \qquad (\text{mod } m),$$

$$a^{i-j} \underbrace{a \cdots a}_{j \text{ times}} \underbrace{a^{*} \cdots a^{*}}_{j \text{ times}} \equiv \underbrace{a \cdots a}_{j \text{ times}} \underbrace{a^{*} \cdots a^{*}}_{j \text{ times}} \qquad (\text{mod } m),$$

$$a^{i-j} \equiv 1 \qquad (\text{mod } m).$$

(c) We can rewrite $a^{i-j} \equiv 1 \pmod{m}$ as $a^{i-j-1}a \equiv 1 \pmod{m}$. Therefore a^{i-j-1} is the multiplicative inverse of $a \pmod{m}$.

3 Does It Exist?

Can you find a number that is a perfect square and is a multiple of 2 but not a multiple of 4? Either give such a number or prove that no such number exists.

Solution:

No, such a number does not exist. In mathematical notation, we are asked to find a number x such that, for $n \in \mathbb{N}$, $4n+2=x^2$ (since x cannot be 4n, 4n+1, or 4n+3). Taking mod 4 of both sides, we get $x^2 \equiv 2 \pmod{4}$. Does this number exist? We will determine this by cases.

We know that $x \pmod{4}$ can have 4 different values:

- $x \mod 4 = 0$. Then $x^2 \equiv 0 \pmod{4}$.
- $x \mod 4 = 1$. Then $x^2 \equiv 1 \pmod{4}$.
- $x \mod 4 = 2$. Then $x^2 \equiv 4 \equiv 0 \pmod{4}$.
- $x \mod 4 = 3$. Then $x^2 \equiv 9 \equiv 1 \pmod{4}$.

Therefore we can see it is impossible to find such a number; no matter what x is, x^2 will never be a multiple of 4 plus 2.

4 Bijections

Let n be an odd number. Let f(x) be a function from $\{0,1,\ldots,n-1\}$ to $\{0,1,\ldots,n-1\}$. In each of these cases say whether or not f(x) is necessarily a bijection. Justify your answer (either prove f(x) is a bijection or give a counterexample).

- (a) $f(x) = 2x \pmod{n}$.
- (b) $f(x) = 5x \pmod{n}$.
- (c) n is prime and

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ x^{-1} \pmod{n} & \text{if } x \neq 0. \end{cases}$$

(d) n is prime and $f(x) = x^2 \pmod{n}$.

Solution:

- (a) Bijection, because there exists the inverse function $g(y) = 2^{-1}y \pmod{n}$. Since n is odd, gcd(2,n) = 1, so the multiplicative inverse of 2 exists.
- (b) Not necessarily a bijection. For example, n = 5, f(0) = f(1) = 0.
- (c) Bijection, because the multiplicative inverse is unique.
- (d) Definitely not a bijection. For example, if n = 3, f(1) = f(2) = 1.