Summing amplifier

- Aside from amplification, the opamp can be made to do addition very easily.
- If one takes the inverting amplifier and combines several inputs each via its own resistor:
 - The current from each input will be proportional to the applied voltage and the input resistance

Summing amplifier II

 At the inverting terminal, these currents will combine to equal the current through the feedback resistor

$$i_a = \frac{\left(v_a - v_o\right)}{R_f}$$

This results in the following relationship:

$$v_o = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right)$$

- Note that the output is a weighted sum of the inputs.
- The number of inputs is not limited to three.

Difference amplifier

- Subtraction should come naturally to the op-amp since its output is proportional to the difference between the two inputs.
- Applying KCL to node a in the circuit shown gives:

$$v_o = \left(\frac{R_2}{R_1} + 1\right) v_a - \frac{R_2}{R_1} v_1$$

Difference amplifier II

Applying KCL to node b gives:

$$v_b = \frac{R_4}{R_3 + R_4} v_2$$

• With the negative feedback present, we know that $v_a = v_b$ resulting in the following relationship:

$$v_o = \frac{R_2 (1 + R_1 / R_2)}{R_1 (1 + R_3 / R_4)} v_2 - \frac{R_2}{R_1} v_1$$

Common mode rejection

- It is important that a difference amplifier reject any signal that is common to the two inputs.
- For the given circuit, this is true if:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

At which point, the output is:

$$v_o = \frac{R_2}{R_1} (v_2 - v_1)$$

Cascaded op amps

- It is common to use multiple op-amp stages chained together.
- This head to tail configuration is called "cascading"
- Each amplifier is then called a "stage"

Cascaded op amps II

- Due to the ideal op-amps' input and output impedance, stages can be chained together without impacting the performance of any one stage.
- One reason for cascading amplifier stages is to increase the overall gain.
- The gain of a series of amplifiers is the product of the individual gains:

$$A = A_1 A_2 A_3$$

5.39 For the op amp circuit in Fig. 5.76, determine the value of v_2 in order to make $v_o = -16.5$ V.

A four-input summing amplifier has $R_1 = R_2 = R_3 = R_4 = 80 \text{ k}\Omega$. What value of feedback resistor is needed to make it an averaging amplifier?

Design an op amp circuit to perform the following operation:

$$v_o = 3v_1 - 2v_2$$

All resistances must be $\leq 100 \text{ k}\Omega$.

