基礎統計分析皆是線性模型

請參考原作者 github 主頁‧取得更多範例與詳細說明: https://lindeloev.github.io/tests-as-linear

	分析方法	R內建函式程式碼	線性模型表示式	可用條件	線型模型說明	圖例
簡單 ! (x+1~ x)ml	y 獨立於 x P: 單一樣本 t 檢定 N: Wilcoxon 符號檢定	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	√ for N >14	以單一參數(截距·如平均值)預測 y -(同上·y的預測值是名義或序列數值)	j
	P: Paired-samplet 檢定 N: Wilcoxon 匹配檢定	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$Im(y_2 - y_1 \sim 1)$ $Im(signed_rank(y_2 - y_1) \sim 1)$	√ f <u>or N >14</u>	以單一截距預測 y₂-y₁ - (同上· y₂-y₁ 的預測值是名義或序列數值)	
	y~X(x 是連續變項) P: 皮爾森相關 N: 斯皮爾曼相關	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	$Im(y \sim 1 + x)$ $Im(rank(y) \sim 1 + rank(x))$	for N >10	以單一截距加上 x 的加權(乘以斜率)預測 y(同上·x 與 y 都是名義或序列數值)	نبينبيس
	y~X(x 是類別變項) P: Two-samplet 檢定 P: Welch 氏 t 檢定 N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$Im(y \sim 1 + G_2)^A$ $gls(y \sim 1 + G_2, weights=^B)^A$ $Im(signed_rank(y) \sim 1 + G_2)^A$	√ √ for N >11	以單一截距代表 第1組 (含與 第2組 的差異) 預測 y -(同上·以各組變異數取代單一變異數) -(同上·y的預測值是名義或序列數值)	j
多元迴歸 (+ x, +, x + 1 ~ y)ml	P: 單因子變異數分析 N: Kruskall-Wallis 檢定	aov(y ~ group) kruskal.test(y ~ group)	$\begin{aligned} & \text{Im}(y \sim 1 + G_2 + G_3 + + G_N)^A \\ & \text{Im}(\text{rank}(y) \sim 1 + G_2 + G_3 + + G_N)^A \end{aligned}$	√ for N >11	以單一截距代表 第1組 (含組間差異不等於1)預測 y -(同上· y 的預測值是名義或序列數值)	iţ‡‡
	P: 單因子共變數分析	aov(y ~ group + x)	Im(y ~ 1 + G_2 + G_3 ++ G_N + x) ^A	✓	-(同上·增加 x 的斜率) 註:共變數分析比起變異數分析·多出一個連續變項 x	
	P: 二因子變異數分析	aov(y ~ group * sex)	$Im(y \sim 1 + G_2 + G_3 + + G_N + G_2 + S_3 + + S_K + G_2 * S_2 + G_3 * S_3 + + G_N * S_K)$	✓	$G_N^*S_K$: 組間差異 $\mathbf{y} \sim \mathbf{group}$ 在性別(\mathbf{sex})之間的差異 \pm :除了截距(1)的其他項目 · G_{2toN} · S_{2toK} 表示各組別及性別的 <u>虛擬變項(數值為 0 或 1)</u> · 模型表示式第一行集合組間主要效果 G_i · 第二行集合性別的主要效果 S_i · 第二行集合兩者的所有交互作用項目 $\mathbf{group} \times \mathbf{sex}$ · 各階層相互對應 · 如第二行的 S_2 · 對應第三行的 S_2 與各組別 G_i 之交互作用項目 。	[製作中]
	y~X (y是計數; x是類別變項) N: 卡方儉定	chisq.test(groupXsex_table)	等價的對數線性模型 glm(y ~ 1 + G ₂ + G ₃ + + G _N + S ₂ + S ₃ + + S _K + G ₂ *S ₂ +G ₃ *S ₃ ++G _N *S _K , family=) ^A	✓	$G_N^*S_K$: (同二因子變異數分析) 註: gIm 函式參數格式 gIm $(model$, $family=poisson$ ()) 卡方檢定的完整線性模型表示式是 $log(y_i) = log(N) + log(\alpha_i) + log(\beta_i) + log(\alpha_i\beta_i)$ α_i 與 β_i 都是比例。 詳見本網頁説明。	同二因子變異 數分析
	N: 適合度檢定	chisq.test(y)	glm(y ~ 1 + G_2 + G_3 ++ G_N , family=) ^A	✓	(同單因子共變數分析·其他資訊請參考卡方檢定內註)	同單因子變異 數分析

基礎母數方法(P)與無母數方法(N)以及相等功能的線性模型。R程式碼 y~1+x等同許多統計課程教授的迴歸式 y=1·b+a·x。同色欄位內的模型有許多相似處,但請勿必了解其中細節!留意無母數方法,線性模型僅是合理逼近一定樣本數以上的狀況 (請參考 "可用條件"一欄,點擊超連結可見模擬結果)。某些方法並丕完全符合線性迴歸,例如 Wilcoxon 符號檢定與三項式檢定的適合度考驗。部分 R程式碼裡有作者自建函式 signed_rank = function (x) sign (x) * rank (abs (x)). 變項符號 G_i 與 S_i 都是 「虛擬變數」(dummy variables)。數值為 0 或 1·數值間的差異表示自變數內的類別差異等於斜率。下標記號(例如 G₂ 或 y₁)表示資料裡的各欄位。R 函式 Im 必須匯入長表格(long-format)資料,才能處理有非連續變項的模型。詳細說明與範例請參考原作者網頁 https://lindeloev.github.io/tests-as-linear

[^] 請參考二因子 ANOVA 的線型模型說明。

B與此功能相同的程式碼·但加權係數根據各組變異數 gls(value ~ 1 + G2, weights = varIdent(form = ~1|group), method="ML")