

Название:

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ БИОМЕДИЦИНСКАЯ ТЕХНИКА

КАФЕДРА БИОМЕДИЦИНСКИЕ ТЕХНИЧЕСКИЕ СИСТЕМЫ (БМТ-1)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.03** Прикладная информатика (Цифровые биомедицинские системы)

ОТЧЕТ

Функциональная и модульная декомпозиция

по лабораторной работе № 3

Дисциплина:	Алго	ритми	зация	и пр	90Г	раммиј	рование	·

Студент	БМТ1-13Б		И.А. Атнагулов	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподаватель			Т.А.Ким	
		(Подпись, дата)	(И.О. Фамилия)	

Задание

Дано четное число N > 2. Проверить для него гипотезу Гольдбаха, состоящую в том, что каждое четное число представимо в виде суммы двух простых чисел. Вывести на экран само число и простые числа, из которых оно формируется.

Исходный код

```
#Lab. №3 Main
module Main
include("Lab. №3 Include.jl")
using.Include
function main()
    println("Введите чётное целое число больше 2, я покажу из суммы каких простых
чисел оно состоит.")
    n = input()
    println(primes(n))
end
using Test
@testset "mod_test" begin
   @test primes(4) == (2,2)
    @test primes(6) == (3,3)
    @test primes(20) == (3,17)
    @test primes(22) == (3,19)
end
end
Main.main()
```

```
#Lab. №3 Include
module Include
export input, primes
    function input()
        n = parse(Int32, readline())
        return n
    end
    function eratostene(n)
        res = zeros(Int8,3*n)
        for i in 2:n
            if res[i]==1
                continue
            end
            j = i*2
            while j<=n
                res[j] = 1
                j+=i
```

```
end
end
return res
end
function primes(n)
sieve = eratostene(n)
ans = 0
for i in 2:n-1
    if (sieve[i] == 0) & (sieve[n-i] == 0) & (i<=n-i)
        return i,n-i
    end
end
println("Введено некорректное число.")
end
end
end
```

Схема алгоритма

Тестирование алгоритма

Наименование проверки	Ввод	Полученный результат	Вывод
1	20	(3, 17)	Программа работает.
2	22	(3, 19)	Программа работает

Выводы

Я научился работать с модулями и юнит тестами в языке Julia