The Hilbert Scheme of Curves and related Moduli Spaces of Reflexive Sheaves

Jan Oddvar Kleppe (Oslo University College)

Abstract Let H(d,g) be the Hilbert scheme of curves of degree d and arithmetic genus g in some projective space \mathbf{P} and let $\mathbf{H}_{\mathbf{X}}$ be the local Hilbert functor of flat deformations $X_S \subset \mathbf{P} \times S$, S a local artinian k-algebra, at a fixed curve X. An effective method of studying the local ring of H(d,g) at (X) with respect to e.g. smoothness and dimension, is to look at other local deformation functors \mathbf{D} over $\mathbf{H}_{\mathbf{X}}$, $\mathbf{D} \to \mathbf{H}_{\mathbf{X}}$, which allow a surjective tangent map $t_{\mathbf{D}} \to t_{\mathbf{H}_{\mathbf{X}}} = H^0(N_X)$ and a corresponding injective map of obstruction spaces. We consider several such deformation functors \mathbf{D} which determine H(d,g) locally under various assumptions. In particular we look to the functor $(\mathbf{1})$ of deformations of a pair (X,Y) where $X \subset Y$, $(\mathbf{2})$ of graded deformations of the homogeneous coordinate ring of X and $(\mathbf{3})$ of deformations of a pair (X,ξ) where ξ is an extension in the Serre-correspondence

$$\xi$$
 ; $0 \to O_{\mathbf{P}} \to F \to I_X \otimes L \to 0$.

The latter allows us to prove results for the moduli space of stable reflexive sheaves of rank 2 on \mathbf{P} . Moreover by making some cup products explicit we get necessary and sufficient conditions for the unobstructedness of some classes of reflexive sheaves on \mathbf{P}^3 .