AUTOMOTIVE TECHNOLOGY

(BASICS)

Feedback: spkingsley@live.in

ANATOMY OF AN AUTOMOBILE (REAR WHEEL DRIVE - 2WD) **STEERING** KYRE. **BRAKE BRAKE** WHEEL TRACK **ENGINE GEAR BOX** DIFFERENTIAL **PROPELLOR CLUTCH SHAFT - REAR SUSPENSION BRAKE BRAKE WHEEL BASE**

ANATOMY OF AN AUTOMOBILE (FOUR WHEEL DRIVE) **STEERING** TYRE **PROPELLOR** KYRE! **BRAKE BRAKE SHAFT - FRONT TRANSFER** CASE - 4WD WHEEL TRACK DIFFERENTIAL 4WD **ENGINE GEAR BOX** DIFFERENTIAL **PROPELLOR CLUTCH SHAFT-REAR SUSPENSION BRAKE BRAKE WHEEL BASE**

ANATOMY OF AN AUTOMOBILE

(FRONT WHEEL DRIVE) **STEERING** TYRE **BRAKE BRAKE** WHEEL TRACK **TRANSAXLE DRIVE SHAFTS CLUTCH** ENGINE **SUSPENSION BRAKE BRAKE WHEEL BASE**

SYSTEMS IN AN AUTOMOBILE

A. POWER TRAIN SYSTEM

- POWER PLANT (POWER GENERATION ENGINE)
 - ENGINE
 - FUEL SYSTEM
 - INTAKE SYSTEM
 - EXHAUST SYSTEM
 - COOLING SYSTEM
- DRIVE LINE (POWER TRANSMISSION)
 - CLUTCH
 - GEAR BOX/TRANSMISSION
 - TRANSFER CASE
 - DIFFERENTIAL
 - WHEELS/TYRES

B. RUNNING SYSTEM

- SUSPENSION
- STEERING
- BRAKING

C. COMFORT SYSTEM

- HVAC/AC/HEATER SYSTEM
- SEATING/UPHOLSTRY/FACIA/INSTRUMENTS
- AUDIO/VIDEO/GPS

ANATOMY OF AN AUTOMOBILE - POWER PLANT

ENGINE

ENGINE IS THE HEART OF THE AUTOMOBILE

- IT GENERATES MOTIVE POWER FOR LOCOMOTION
- IT CONVERTS CHEMICAL ENERGY OF THE FUEL TO MECHANICAL ENERGY
- ENGINE DEVELOPS POWER & TORQUE

TORQUE: - Is the capacity to do work

Measured in Kg-m, N-m, Lb-ft

POWER: - How fast the work can be done
Measured in - Horse Power, Kilo watt

SYSTEMS IN AN AUTOMOBILE

A. POWER TRAIN SYSTEM

- POWER PLANT (POWER GENERATION ENGINE)
 - ENGINE
 - FUEL SYSTEM
 - INTAKE SYSTEM
 - EXHAUST SYSTEM
 - COOLING SYSTEM
- DRIVE LINE (POWER TRANSMISSION)
 - CLUTCH
 - GEAR BOX/TRANSMISSION
 - TRANSFER CASE
 - DIFFERENTIAL
 - WHEELS/TYRES

B. RUNNING SYSTEM

- SUSPENSION
- STEERING
- BRAKING

C. COMFORT SYSTEM

- HVAC/AC/HEATER SYSTEM
- SEATING/UPHOLSTRY/FACIA/INSTRUMENTS
- AUDIO/VIDEO/GPS

ENGINE OPERATION - 4 STROKE

CLASSIFICATION OF ENGINES

ENGINES CAN BE CLASSIFIED IN MANY WAYS:

- 1. By Mechanical construction 4 Stroke/2-Stroke
- 2. By type of Ignition Compression Ignition/Spark Ignition

COMPRESSION IGNITION ENGINES

- Basically Diesel engines
- · Use diesel fuel
- Combustion is initiated by heat, on its own

SPARK IGNITION ENGINES

- Basically Petrol engines, LPG engines, CNG engines
- Use leaded or unleaded petrol, Alcohol, LPG or CNG
- Combustion is initiated by a spark from a spark plug

DIESEL ENGINE

DIESEL ENGIENS ARE COMPRESSION IGNITION ENGINES & USE DIESEL FUEL

DIESEL ENGINES ARE BROADLY CLASSIFIED AS DIRECT INJECTION (DI) AND INDIRECT INJECTION (IDI)

DIRECT INJECTION ENGINE (DI)

ON DIRECT INJECTION DIESEL ENGINES, FUEL IS SPRAYED DIRECTLY ON TOP OF THE PISTON.

- Highly fuel efficient
- Noisy
- Easy cold starting ability

INDIRECT INJECTION ENGINE

ON INDIRECT INJECTION DIESEL ENGINES, FUEL IS SPRAYED ON TO A SEPERATE PRE-CHAMBER.

- Less fuel efficient
- Less Noisy/smoother
- Requires pre-heating for starting

PETROL/CNG/LPG ENGINES

PETROL ENGINES ARE SPARK IGNITION ENGINES & USE GASOLINE/CNG/LPG FUEL

PETROL ENGINES ARE BROADLY CLASSIFIED AS CARBURATED AND FUEL INJECTED ENGINE

CARBURETED ENGINE

ON CARBURETED ENGINE, THE PETROL & AIR ARE MIXED IN THE CARBURETER BEFORE BEING SENT IN TO THE ENGINE

FUEL INJECTED ENGINE

ON FUEL INJECTED ENGINES, THE PETROL IS INJECTED SEPERATELY AND THE PETROL AND AIR ARE MIXED INSIDE THE CYLINDER.

FUEL INJECTED ENGINES CAN BE FURTHER CLASSIFIED AS:

SINGLE/MULTI POINT FUEL INJECTION, Where the fuel is injected outside the cylinder

GASOLINE DIRECT INJECTION (GDI), Where the fuel is injected directly in to the engine cylinder

THERMAL EFFICIENCY

FUEL EFFICIENCY

(FUEL CONSUMPTION)

FUEL EFFICIENCY IS A COMBINATION OF ENGINE EFFICIENCY, VEHICLE PARAMTERS & DRIVING PATTERN

ENGINE EFFICIENCY

+

TRANSMISSION EFFICIENCY

(CLUTCH+GEARBOX+DIFFERENTIAL+ WHEELS + TYRES)

+

WEIGHT/LOAD/SPEED

+

AERODYNAMIC PARAMETERS

(DRAG - BODY SHAPE)

+

DRIVING PATTERN

(DRIVING STYLE & TRAFFIC CONDITIONS)

FUEL EFFICIENCY - Kms/Lit OR Lit/100 Kms

ENGINE PARAMETERS

ENGINE CAPACITY, cc = CYL. CAPACITY X No OF CYL

UNITS - cc - Cubic centimeter - Lit - Liters = cc/1000

ENGINE PARAMETERS

BORE, mm: The diameter of the cylinder

STROKE, mm: The distance between top most point of piston travel to the bottommost point of piston movement

CAPACITY, cc: Also called displacement. The volume displaced by all pistons while moving from top to bottom. Also indicated in Liters.

CLEARANCE VOLUME: The volume available above piston, with the piston in top most point.

COMPRESSION RATIO: The ratio between the total volume to the clearance volume.

VALVE MECHANISM: The mechanism by which the valves are operated. It could be push rod type or overhead camshaft type

TIMING SYSTEM: The mechanism by which the camshaft & fuel injection pump are operated. It could be gear driven, chain driven or belt driven.

VALVE LAYOUTS (NO. OF VALVES PER CYLINDER)

2 VALVES/CYL

3 VALVES/CYL

4 VALVES/CYL

VALVE OPERATING MECHANISM

PUSH ROD ENGINE

OVERHEAD CAM ENGINE

VALVE OPERATING MECHANISM

SINGLE OVERHEAD CAMSHAFT (SOHC)

2 VALVES/CYL, SOHC - VALVES OPERATED EITHER DIRECTLY OR THROUGH ROCKERS

4 VALVES/CYL, SOHC - VALVES OPERATED THROUGH ROCKERS