\leftarrow	Optimization algorithms	8/10 points (80.00%)
	Quiz, 10 questions	
	Congratulations! You passed!	Next Item
~	1 / 1 points	
1.		
Which	n notation would you use to denote the 3rd layer's activations when the in	input is the 7th example from the 8th minibatch?
	$a^{[3]\{7\}(8)}$	
0	$a^{[3]\{8\}(7)}$	
Corr	rect	
	$a^{[8]\{3\}(7)}$	
	$a^{[8]\{7\}(3)}$	
	1/1	
\	points	
2.	n of these statements about mini-batch gradient descent do you agree wi	uith2
WITICH		
	Training one epoch (one pass through the training set) using mini-batc using batch gradient descent.	ch gradient descent is faster than training one epoch
	You should implement mini-batch gradient descent without an explicit	it for-loop over different mini-batches, so that the
	algorithm processes all mini-batches at the same time (vectorization).	
0	One iteration of mini-batch gradient descent (computing on a single m descent.	mini-batch) is faster than one iteration of batch gradient
	descent.	
Corr	rect	
~	1 / 1 points	
3.		
	s the best mini-batch size usually not 1 and not m, but instead something	ng in-between?
	If the mini-batch size is 1, you lose the benefits of vectorization across	s examples in the mini-batch.
Corr	rect	

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient

descent. Optimization algorithms

8/10 points (80.00%)

Un-sel@ctied1is questictns

	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
--	---

Un-selected is correct

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making
progress.

Correct

1/1 points

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

8/10 points (80.00%)

5. Quiz, 10 questions

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $heta_1=10^oC$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=10\,$

Correct

$$v_2=7.5$$
 , $v_2^{corrected}=7.5$

$$igcup v_2=10$$
 , $v_2^{corrected}=7.5$

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

Correct

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$lpha = 0.95^t lpha_0$$

$$lpha = rac{1}{1+2*t}lpha_0$$

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check two Details 2 to 10 points (80.00%)

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing $\boldsymbol{\beta}$ will create more oscillation within the red line.

This should be selected

Increasing eta will create more oscillations within the red line.

This should not be selected

False. Increasing β will cause fewer oscillations

1/1 points 8.

8/10 points (80.00%)

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

(1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)

(1) is gradient descent. (2) is gradient descent with momentum (small eta). (3) is gradient descent with momentum (large eta)

Correct

0 / 1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try initializing all the weights to zero

Un-selected is correct

Try mini-batch gradient descent

Correct

Try better random initialization for the weights

Correct

Try using Adam

	ect

← Optimization algorithms

8/10 points (80.00%)

•	-	-	٦
			ı

Quiz, 10 questions Try tuning the learning rate lpha

This should be selected

1/1 points

10.

Which of the following statements about Adam is False?

Adam should be used with batch gradient computations, not with mini-batches.

Correct

