

Mathématiques

Classe: BAC

Chapitre: Suites Réelles

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

[™] 5 min

3 pts

On considère la suite (U_n) définie par : $U_n = \frac{5n-2}{3n+4}$; pour tout $n \in IN$.

- **1°)** Montrer que (U_n) est majorée par $\frac{5}{2}$.
- **2°)** Montrer que $\left(U_{\scriptscriptstyle n}\right)$ est minorée par $\frac{-1}{2}$.
- **3°)** Est-ce que la suite $\left(U_{n}\right)$ est bornée.

Exercice 2:

[™] 5 min

3 pts

On considère la suite $\left(U_n\right)$ définie par : $U_n=\frac{2n+3}{n+1}$; pour tout $n\in IN$.

- **1°)** Montrer que pour tout $n \in IN : 2 \le U_n \le 3$.
- **2°)** Etudier la monotonie de la suite (U_n) .

Exercice 3:

(5) 10 min

3,5 pts

On considère la suite $\left(U_n\right)$ définie par : $\begin{cases} U_0=2\\ U_{n+1}=\frac{-1}{2+U_n}, & \text{pour tout } n\in IN \end{cases}$

Soit la suite V définie sur IN par : $V_n = \frac{1}{1 + U_n}$.

- **1°)** Calculer U_1 , U_2 , V_1 et V_2 .
- **2°)** Calculer $V_{n+1} V_n$ pour tout $n \in IN$, et déduire la nature de la suite (V_n) .
- **3°)** Calculer V_n en fonction de n, puis déduire U_n en fonction de n.

Exercice 4:

C 5 min

3 pts

Soit $\left(U_{\scriptscriptstyle n}\right)$ une suite arithmétique de premier terme $\,U_{\scriptscriptstyle 0}=-10\,$ de raison $\,r=3$.

- **1°)** Calculer U_{20} et U_{100} .
- **2°)** Calculer la somme : $S = U_0 + U_1 + U_2 + \dots + U_{100}$.

Exercice 5:

(5) 10 min

3 pts

Soit (V_n) une suite géométrique de raison q, des termes $V_0=5$ et $V_1=10$.

- 1°) Déterminer la valeur de q.
- **2°)** Calculer V_4 et V_{20} .
- **3°)** Calculer la somme : $S = V_0 + V_1 + V_2 + ... + V_{20}$.

3 pts

On considère la suite (U_n) définie par : $\begin{cases} U_0 = 1 \\ U_{n+1} = 2U_n - n + 1, \text{ pour tout } n \in IN \end{cases}$

Soit (V_n) la suite définie *IN* par : $V_n = U_n - n$.

- 1°) Montrer que (V_n) est une suite géométrique et déterminer sa raison et sa première terme.
- **2°)** Déduire que : $U_n = 2^n + n$.

4 pts

On considère la suite $\left(U_n\right)$ définie par : $\begin{cases} U_0=1\\ U_{n+1}=\frac{4U_n-9}{U_n-2}, \text{ pour tout } n\in IN \end{cases}$

- **1°)** Calculer U_1 et montrer que pour tout $n \in IN : U_n \neq 3$.
- **2°)** Soit (V_n) la suite définie *IN* par : $V_n = \frac{1}{II 3}$.
 - a) Montrer que (V_n) est une suite arithmétique.
 - **b)** Déterminer V_n , puis U_n en fonction de n.

Exercice 8: © 20 min

5 pts

On considère la suite $\left(U_n\right)$ définie par : $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{3U_n + 2}{U_n + 2}, \text{ pour tout } n \in IN \end{cases}$

- **1°)** Calculer U_1 et U_2 .
- **2°)** Montrer que pour tout $n \in IN : 1 \le U_n \le 2$.
- **3°)** Etudier la monotonie de $\left(U_{\scriptscriptstyle n}\right)$. En déduire que $\left(U_{\scriptscriptstyle n}\right)$ est convergente.
- **4°)** Soit (V_n) la suite définie *IN* par : $V_n = \frac{U_n + 1}{U_n 2}$.
 - a) Montrer que (V_n) est une suite géométrique et déterminer sa raison et sa première terme.
 - **b)** Déterminer V_n , puis U_n en fonction de n.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000