Fast Mean Estimation with Sub-Gaussian Rates

Cherapanamjeri, Flammarion, Bartlett

1 Introduction

1.1 Goal

To obtain high probability mean estimates when only the existence of the 2^{nd} moment is known. This is also called the *heavy tailed* setting, where higher order moments from the sampling distribution need not exist.

1.2 Existing results

Consider the estimator to be the sample mean $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$ where $\{X_i\}_{i=1}^n$ are sampled from a distribution P with only finite 2^{nd} moment and mean θ^* . Markov's inequality gives:

$$\Pr(\|\widehat{\theta} - \theta^{\star}\|_{2} > t) \le \frac{\mathbb{E}[\|\widehat{\theta} - \theta^{\star}\|_{2}^{2}]}{t^{2}}$$

Note that $\widehat{\theta} - \theta^* = \frac{1}{n} \sum_{i=1}^n (X_i - \theta^*)$ and hence:

$$\|\widehat{\theta} - \theta^{\star}\|_{2}^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} \|X_{i} - \theta^{\star}\|_{2}^{2} + \frac{1}{n} \sum_{\substack{i,j=1\\i \neq j}}^{n} (X_{i} - \theta^{\star})^{T} (X_{j} - \theta^{\star}) \Rightarrow \mathbb{E}[\|\widehat{\theta} - \theta^{\star}\|_{2}^{2}] = \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\left[\|X_{i} - \theta^{\star}\|_{2}^{2}\right]$$

and since $\mathbb{E}\left[\|X_i - \theta^*\|_2^2\right] = \mathbb{E}\left[\operatorname{trace}(X_i - \theta^*)(X_i - \theta^*)^T\right] = \Sigma$, we get:

$$\mathbb{E}[\|\widehat{\theta} - \theta^{\star}\|_{2}^{2}] = \frac{\operatorname{trace}(\Sigma)}{n}$$

therefore leading to:

$$\Pr\left(\|\widehat{\theta} - \theta^{\star}\|_{2} > \sqrt{\frac{\operatorname{trace}(\Sigma)}{n\delta}}\right) \leq \delta$$

which corresponds to: with probability at least $1 - \delta$:

$$\|\widehat{\theta} - \theta^{\star}\|_{2} \le \sqrt{\frac{\operatorname{trace}(\Sigma)}{n\delta}}$$

In contrast, when P is Gaussian, we get:

$$\Pr\left(\|\widehat{\theta} - \theta^{\star}\|_{2} > O\left(\sqrt{\frac{\operatorname{trace}(\Sigma)}{n}} + \sqrt{\frac{\|\Sigma\|_{2}\log(1/\delta)}{n}}\right)\right) \leq \delta$$

We will denote $\sqrt{\frac{\operatorname{trace}(\Sigma)}{n}} + \sqrt{\frac{\|\Sigma\|_2 \log(1/\delta)}{n}}$ as $\operatorname{OPT}_{n,\delta,\Sigma}$ as a shorthand.

To show this, consider $Z_i = X_i - \theta^*$ for all $i \in [n]$. Then $\|\widehat{\theta} - \theta^*\|_2 = \left\|\frac{1}{n}\sum_{i=1}^n Z_i\right\|_2$, where Z_i s are zero mean Gaussian RVs with covariance Σ . Note that $Z_i = \Sigma^{1/2}Y_i$ for all $i \in [n]$ where Y_i s are standard multivariate Gaussian RVs. Now, we have that:

$$\|Z_i\| - \|Z_i'\|_2 \le \|Z_i - Z_i'\|_2 \le \|\Sigma^{1/2}(Y_i - Y_i')\|_2 \le \|\Sigma^{1/2}\|_2 \|Y_i - Y_i'\|_2$$

which shows that $||Z_i||$ is a $||\Sigma^{1/2}||_2$ -Lipschitz function of Y_i . By a Lipschitz concentration lemma due to Tsirelson, Ibragimov and Sudakov, we have:

$$\Pr\left(\left\|\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right\|_{2}-\mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right\|_{2}\right]>t\right)\leq\exp\left(-\frac{nt^{2}}{2\|\Sigma\|_{2}}\right)$$

leading to:

$$\Pr\left(\left\|\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right\|_{2} > \mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right\|_{2}\right] + t\right) \leq \exp\left(-\frac{nt^{2}}{2\|\Sigma\|_{2}}\right)$$

and with probability at least $1 - \delta$:

$$\begin{split} \|\widehat{\theta} - \theta^\star\|_2 &\leq \mathbb{E}[\|\widehat{\theta} - \theta^\star\|_2] + \sqrt{\frac{2\|\Sigma\|_2 \log(1/\delta)}{n}} \leq \sqrt{\mathbb{E}[\|\widehat{\theta} - \theta^\star\|_2^2]} + \sqrt{\frac{2\|\Sigma\|_2 \log(1/\delta)}{n}} \\ &\leq \sqrt{\frac{\operatorname{trace}(\Sigma)}{n}} + \sqrt{\frac{2\|\Sigma\|_2 \log(1/\delta)}{n}} \end{split}$$

Lugosi and Mendelson showed that with only bounded 2^{nd} moment, this rate can be achieved, but the estimator proposed is intractable.

2 Main Result

Theorem 2.1. Let $\{X_i\}_{i=1}^n$ be a set of n i.i.d. random vectors i.e. $X_i \in \mathbb{R}^p$, sampled from a distribution with mean θ^* and covariance Σ . Then Descent – Mean – Estimate with stepsize $\gamma = \frac{1}{20}$ and number of iterations $T = 1000 \frac{\log(\|\theta^*\|_2)}{\epsilon}$ returns a mean estimate $\widehat{\theta}_{n,\delta}$ that satisfies with probability at least $1 - \delta$:

$$\|\widehat{\theta}_{n,\delta} - \theta^{\star}\|_{2} \le \max(\epsilon, 480000 \cdot \text{OPT}_{n,\delta,\Sigma})$$

Descent – Mean – Estimate is Algorithm 1 in the main text.