Solve the equation $52x = 7 \pmod{165}$

Problem Solving - What are the terms/strategies I may need? What do I know?

Our previous question solved $52^{-1} = 73$ under mod 165

Solving equations by using the multiplicative inverse.

Definition of mod $a \pmod{n} = r$ when a = pn + r where $p, r \in Z$ and $0 \le r < n$

Solve the equation $52x = 7 \pmod{165}$

Steps & Process – Try to answer the question writing in many steps to avoid small errors.

Recall that our inverse $52^{-1} = 73$ under mod 165. Using this we get:

$$52x = 7 \pmod{165}$$
 \Rightarrow $(73)52x = (73)7 \pmod{165}$ \Rightarrow $x = 511 \pmod{165}$

Since 511 = 3(165) + 16 we have $x = 16 \pmod{165}$

Solve the equation $52x = 7 \pmod{165}$

Solidify Understanding – Explain why the steps makes sense by connecting to math you know.

Why are finding inverses useful?

When can we guarantee that mod n will always have an inverse for all elements (except 0)?

For Video Please click the link below:

<u>Video</u>