

基于ATTPC的¹⁶C(d,d) ¹⁶C非弹性散射反应

马俊睿

指导老师: 柳卫平, 陈洁

实验背景(幻数Z=6)

1963年诺贝尔奖 玛丽亚·格佩特-梅耶

幻数Z=6是存在的, 但它很难被观测到。

$$V = V_c(r) + V_T(r)S_{12} + V_{L,S}(r)\mathbf{L} \cdot \mathbf{S}$$

幻数Z=6的实验证据

/						
	14C	15C	16C	17C	18C	19C
/-						

碳同位素质子分布半径、B(E2)压低

DT Tran, HJ Ong, GHagen, et al. Nature Comm. 9 (2018) 1594

实验背景(幻数Z=6)

16C能级

16C的第一激发态

B(E2)极小 质子形变参数极小

Jiang Y, Lou JL, Ye YL, et al. Physical Review C, 2020, 101(2): 024601.

16C研究方案

直接核反应: 逆运动学

¹⁶C (d,d) ¹⁶C

弹性散射:验证不稳定核光学势计算

非弹性散射:获取激发态角分布,提取中子质子跃迁矩阵元比值,寻找质子激发为主导的2+态,验证质子支壳层结构

实验装置 (活性靶时间投影室)

● 初级束: ¹⁸O

● 初级靶: ⁹Be

● 入射粒子: 11.5A MeV ¹⁶C

● 工作气体: 300 Torr H₂

● 磁场: 2.85 T

- 很高的有效靶厚度,可以进行几百粒子每秒的测量
- 可以使用纯的氘或氢气,有效降低本底和副反应道
- 可以记录更长的径迹和更多的信息
- 分析较为复杂

实验分析(运动学)

反应粒子空间径迹

顶点重建与拟合

反应粒子的运动学

¹⁶C(d,d)¹⁶C激发能谱

弹性散射反应截面角分布

实验分析 (1.766MeV激发态)

¹⁶C(d,d)¹⁶C 1.766MeV 激发态角分布

¹⁶C(p,p)¹⁶C 1.766MeV 激发态角分布

计算结果 往期实验结果

$$\delta_{p}^{m}$$
=1.59 fm δ_{d}^{m} =1.44 fm

$$\frac{M_N}{M_P}$$
=3.04

$$\delta_p$$
 =0.94 fm

$$\frac{M_N}{M_P}$$
=3-6

$$\delta_p = 1.2 - 0.9 fm$$

实验分析 (6.107MeV激发态)

¹⁶C(d,d)¹⁶C 6.107MeV 激发态角分布

¹⁶C(p,p)¹⁶C 6.107MeV 激发态角分布

实验分析 (6.107MeV激发态)

¹⁶C(d,d)¹⁶C 6.107MeV 激发态角分布

¹⁶C(p,p)¹⁶C 6.107MeV 激发态角分布

计算结果

$$\begin{array}{l} \delta_p^m \text{=0.67 fm} \\ \delta_d^m \text{=1.00 fm} \end{array}$$

$$\frac{M_N}{M_P}$$
=0.36

$$\delta_{\rm p}$$
 =1.95 fm

致谢

欢迎各位老师与同学讨论与合作!

