BayesLenseSPTpol

Abstract: At this point there is nothing in here but a few derivations.

Here is the general polarization lensing setup which includes both a gravitational potential and a rotational potential.

$$\widetilde{Q}(x) \equiv Q(x + \nabla \phi(x) + \nabla^{\perp} \psi(x))$$

$$\widetilde{U}(x) \equiv U(x + \nabla \phi(x) + \nabla^{\perp} \psi(x))$$

where Q,U denote the unlensed CMB polarization fields, ϕ denotes the lensing potential, ψ denotes a field rotation potential and $\nabla^{\perp} \equiv (\frac{\partial}{\partial x_2}, -\frac{\partial}{\partial x_1})$. We observe $\widetilde{Q}, \widetilde{U}$ and try to estimate ϕ, ψ, Q and U.

1. Old stuff:

Here is a plot of the power spectrums I was using for the simulations

Here is a plot of the maximum likelihood estimate of ϕ and ψ from \tilde{Q}, \tilde{U}

Finally, here is a plot of the power of the estimated unlensed primodial B mode. In particular I use the estimates $\hat{\phi}$ and $\hat{\psi}$ and unlense the observed \tilde{Q}, \tilde{U} .

Appendix A

If we exclude the zero frequency l = 0 we get

$$-\log P(\widetilde{Q}, \widetilde{U}|\phi, \psi) - c_1 = \frac{1}{2} \int_{\mathbb{R}^2} \left[\frac{\left| \widetilde{E}_k^{\phi \psi} \right|^2}{C_k^{EE}} + \frac{\left| \widetilde{B}_k^{\phi \psi} \right|^2}{C_k^{BB}} \right] dk$$

$$= \frac{1}{2} \int_{\mathbb{R}^2} \left[\frac{\left| -\cos(2\varphi_k)\widetilde{Q}_k^{\phi \psi} - \sin(2\varphi_k)\widetilde{U}_k^{\phi \psi} \right|^2}{C_k^{EE}} + \frac{\left| \sin(2\varphi_k)\widetilde{Q}_k^{\phi \psi} - \cos(2\varphi_k)\widetilde{U}_k^{\phi \psi} \right|^2}{C_k^{BB}} \right] dk$$

$$= \frac{1}{2} \int_{\mathbb{R}^2} \left[\frac{\cos^2(2\varphi_k)}{C_k^{EE}} + \frac{\sin^2(2\varphi_k)}{C_k^{BB}} \right] |\widetilde{Q}_k^{\phi \psi}|^2 dk$$

$$+ \frac{1}{2} \int_{\mathbb{R}^2} \left[\frac{\cos^2(2\varphi_k)}{C_k^{BB}} + \frac{\sin^2(2\varphi_k)}{C_k^{EE}} \right] |\widetilde{U}_k^{\phi \psi}|^2 dk$$

$$+ \frac{1}{2} \int_{\mathbb{R}^2} \left[\frac{2\sin(2\varphi_k)\cos(2\varphi_k)(C_k^{BB} - C_k^{EE})}{C_k^{EE}C_k^{BB}} \right] \widetilde{Q}_k^{\phi \psi} (\widetilde{U}_k^{\phi \psi})^* dk$$

where c_1 is a constant, $Y^{\phi\psi}(x) \equiv Y(x - \nabla\phi(x) - \nabla^{\perp}\psi(x))$ and $\nabla^{\perp} \equiv (\frac{\partial}{\partial x_2}, -\frac{\partial}{\partial x_1})$. Notice that in the last term in the above display, I've implicity used the fact that

$$\int_{\mathbb{R}^2} M_k \widetilde{Q}_k^{\phi\psi} (\widetilde{U}_k^{\phi\psi})^* dk = \int_{\mathbb{R}^2} M_k (\widetilde{Q}_k^{\phi\psi})^* \widetilde{U}_k^{\phi\psi} dk$$

whenever $M_k = M_{-k}$.

Claim 1. Let M_k real and symmetric in k. Let X(x) and Y(x) be real fields. Define $X^{\phi\psi}(x) \equiv X(x - \nabla \phi(x) - \nabla^{\perp}\psi(x))$ and similarly for $Y^{\phi\psi}$. Then

$$\frac{\partial}{\partial \phi_{l}} \int_{\mathbb{R}^{2}} X_{k}^{\phi \psi} (Y_{k}^{\phi \psi})^{*} M_{k} dk = i l_{q} 2 dk \int_{\mathbb{R}^{2}} \left([(\nabla^{q} X)^{\phi \psi}]_{k+l} Y_{k}^{\phi \psi^{*}} + [(\nabla^{q} Y)^{\phi \psi}]_{k+l} X_{k}^{\phi \psi^{*}} \right) M_{k} \frac{dk}{2\pi}$$

$$\frac{\partial}{\partial \psi_{l}} \int_{\mathbb{R}^{2}} X_{k}^{\phi \psi} (Y_{k}^{\phi \psi})^{*} M_{k} dk = -i l_{q} 2 dk \int_{\mathbb{R}^{2}} \left([(\nabla^{\perp, q} X)^{\phi \psi}]_{k+l} Y_{k}^{\phi \psi^{*}} + [(\nabla^{\perp, q} Y)^{\phi \psi}]_{k+l} X_{k}^{\phi \psi^{*}} \right) M_{k} \frac{dk}{2\pi}$$

Lemma 1.

$$\frac{\partial X_k^{\phi\psi}}{\partial \phi_l} = il_q[(\nabla^q X)^{\phi\psi}]_{k+l} \frac{dk}{\pi} \qquad \frac{\partial X_k^{\phi\psi}}{\partial \phi_l^*} = -il_q[(\nabla^q X)^{\phi\psi}]_{k-l} \frac{dk}{\pi}$$
(1)

$$\frac{\partial X_k^{\phi\psi}}{\partial \psi_l} = -il_q [(\nabla^{\perp,q} X)^{\phi\psi}]_{k+l} \frac{dk}{\pi} \qquad \qquad \frac{\partial X_k^{\phi\psi}}{\partial \psi_l^*} = il_q [(\nabla^{\perp,q} X)^{\phi\psi}]_{k-l} \frac{dk}{\pi}. \tag{2}$$

where $\nabla^q X \equiv \frac{\partial X}{\partial x_q}$.

Proof. First notice

$$\frac{\partial}{\partial \operatorname{re}\phi_l} \nabla^q \phi(x) = \int_{\mathbb{R}^2} ik_q e^{ix \cdot k} \frac{\partial \phi_k}{\partial \operatorname{re}\phi_l} \frac{dk}{2\pi} = \left[il_q e^{ix \cdot l} - il_q e^{-ix \cdot l} \right] \frac{dk}{2\pi}$$
 (3)

$$\frac{\partial}{\partial\operatorname{im}\phi_{l}}\nabla^{q}\phi(x) = \int_{\mathbb{R}^{2}}ik_{q}e^{ix\cdot k}\frac{\partial\phi_{k}}{\partial\operatorname{im}\phi_{l}}\frac{dk}{2\pi} = \left[-l_{q}e^{ix\cdot l} - l_{q}e^{-ix\cdot l}\right]\frac{dk}{2\pi}.\tag{4}$$

Therefore

$$\frac{\partial}{\partial \phi_l} \nabla^q \phi(x) = -il_q e^{-ix \cdot l} \frac{dk}{\pi} \tag{5}$$

$$\frac{\partial}{\partial \phi_l^*} \nabla^q \phi(x) = i l_q e^{ix \cdot l} \frac{dk}{\pi}.$$
 (6)

This implies

$$\begin{split} \frac{\partial X_k^{\phi\psi}}{\partial \phi_l} &= \frac{\partial}{\partial \phi_l} \int_{\mathbb{R}^2} e^{-ix \cdot k} X(x - \nabla \phi(x) - \nabla^\perp \psi(x)) \frac{dx}{2\pi} \\ &= \sum_{q=1,2} \int_{\mathbb{R}^2} e^{-ix \cdot k} \nabla^q X(x - \nabla \phi(x) - \nabla^\perp \psi(x)) \left[-\frac{\partial}{\partial \phi_l} \nabla^q \phi(x) \right] \frac{dx}{2\pi} \\ &= \sum_{q=1,2} \int_{\mathbb{R}^2} e^{-ix \cdot k} \left[(\nabla^q X)^{\phi\psi}(x) \right] \left[il_q e^{-ix \cdot l} \frac{dk}{\pi} \right] \frac{dx}{2\pi} \end{split}$$

Similarly

$$\frac{\partial X_k^{\phi\psi}}{\partial \phi_l^*} = \sum_{q=1,2} \int_{\mathbb{R}^2} e^{-ix \cdot k} \left[(\nabla^q X)^{\phi\psi}(x) \right] \left[-il_q e^{ix \cdot l} \frac{dk}{\pi} \right] \frac{dx}{2\pi}. \tag{7}$$

Conversely

$$\frac{\partial X_k^{\phi\psi}}{\partial \psi_l} = \frac{\partial}{\partial \psi_l} \int_{\mathbb{R}^2} e^{-ix \cdot k} X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \frac{dx}{2\pi}
= \int_{\mathbb{R}^2} e^{-ix \cdot k} \nabla^1 X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \left[-\frac{\partial}{\partial \psi_l} \frac{\partial \psi(x)}{\partial x_2} \right] \frac{dx}{2\pi}
+ \int_{\mathbb{R}^2} e^{-ix \cdot k} \nabla^2 X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \left[\frac{\partial}{\partial \psi_l} \frac{\partial \psi(x)}{\partial x_1} \right] \frac{dx}{2\pi}$$

$$= \int_{\mathbb{R}^2} e^{-ix \cdot k} \nabla^1 X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \left[il_2 e^{-ix \cdot l} \frac{dk}{\pi} \right] \frac{dx}{2\pi}
+ \int_{\mathbb{R}^2} e^{-ix \cdot k} \nabla^2 X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \left[-il_1 e^{-ix \cdot l} \frac{dk}{\pi} \right] \frac{dx}{2\pi}$$

$$= \sum_{\sigma=1,2} \int_{\mathbb{R}^2} e^{-ix \cdot k} \left[(\nabla^{\perp, q} X)^{\phi\psi}(x) \right] \left[-il_q e^{-ix \cdot l} \frac{dk}{\pi} \right] \frac{dx}{2\pi}$$
(9)

since $\nabla^{\perp,1} = \nabla^2$ and $\nabla^{\perp,2} = -\nabla^1$. Similary

$$\frac{\partial X_k^{\phi\psi}}{\partial \psi_l^*} = \frac{\partial}{\partial \psi_l} \int_{\mathbb{R}^2} e^{-ix \cdot k} X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \frac{dx}{2\pi}
= \int_{\mathbb{R}^2} e^{-ix \cdot k} \nabla^1 X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \left[-\frac{\partial}{\partial \psi_l^*} \frac{\partial \psi(x)}{\partial x_2} \right] \frac{dx}{2\pi}
+ \int_{\mathbb{R}^2} e^{-ix \cdot k} \nabla^2 X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \left[\frac{\partial}{\partial \psi_l^*} \frac{\partial \psi(x)}{\partial x_1} \right] \frac{dx}{2\pi}$$

$$= \int_{\mathbb{R}^2} e^{-ix \cdot k} \nabla^1 X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \left[-il_2 e^{ix \cdot l} \frac{dk}{\pi} \right] \frac{dx}{2\pi}
+ \int_{\mathbb{R}^2} e^{-ix \cdot k} \nabla^2 X(x - \nabla \phi(x) - \nabla^{\perp} \psi(x)) \left[il_1 e^{ix \cdot l} \frac{dk}{\pi} \right] \frac{dx}{2\pi}$$

$$= \sum_{g=1,2} \int_{\mathbb{R}^2} e^{-ix \cdot k} \left[(\nabla^{\perp,q} X)^{\phi\psi}(x) \right] \left[il_q e^{ix \cdot l} \frac{dk}{\pi} \right] \frac{dx}{2\pi}$$
(11)

Lemma 2. If A(x) and B(x) are real scalar fields then the two integrals, $\int_{\mathbb{R}^2} i\{A_{k-l} - A_{k+l}\}B_k^*dk$ and $\int_{\mathbb{R}^2} \{A_{k-l} + A_{k+l}\}B_k^*dk$, are both real numbers.

Proof. By a simple change of variables it is clear that $\int_{\mathbb{R}^2} \left(i \{ A_{k-l} - A_{k+l} \} B_k^* \right)^* dk = \int_{\mathbb{R}^2} i \{ A_{k'-l} - A_{k'+l} \} B_{k'}^* dk'$ and $\int_{\mathbb{R}^2} \left(\{ A_{k-l} + A_{k+l} \} B_k^* \right)^* dk = \int_{\mathbb{R}^2} \{ A_{k'-l} + A_{k'+l} \} B_{k'}^* dk'$.

The following lemma is equivalent to the so-called Convolution Theorem. We state it here for reference.

Lemma 3. If A(x) and B(x) are real scalar fields then $\int_{\mathbb{R}^2} A_{k+l} B_k^* \frac{dk}{2\pi} = \int_{\mathbb{R}^2} e^{-ix \cdot l} A(x) B(x) \frac{dx}{2\pi}$.

Appendix B

Eq.(4.9) of Lewis 2006

$$\tilde{T}_{\ell} = T_{\ell} - \int \frac{d^{2}\ell'}{2\pi} \ell' \cdot (\ell - \ell') \phi_{\ell - \ell'} T_{\ell'}
- \frac{1}{2} \int \frac{d^{2}\ell_{1}}{2\pi} \frac{d^{2}\ell_{2}}{2\pi} \ell_{1} \cdot (\ell_{1} + \ell_{2} - \ell) (\ell_{1} \cdot \ell_{2}) T_{\ell_{1}} \phi_{\ell_{1}} \phi_{\ell - \ell_{1} - \ell_{2}}$$
(12)

$$\langle \phi_{\ell} \phi_{\ell'}^* \rangle = \delta(\ell - \ell') C_{\ell} = \frac{\delta_{\ell, \ell'}}{(\Delta \ell)^2} C_{\ell} \equiv \delta_{\ell, \ell'} \delta_0 C_{\ell}$$
(13)

$$A_{\ell k} \equiv \frac{\partial \tilde{T}_{\ell}}{\partial T_{k}} = \delta_{\ell,k} + \sum_{\ell'} \frac{(\Delta \ell')^{2}}{2\pi} \ell' \cdot (\ell - \ell') \phi_{\ell - \ell'} \delta_{\ell',k}$$

$$- \frac{1}{2} \sum_{\ell_{1},\ell_{2}} \frac{(\Delta \ell_{1})^{2}}{2\pi} \frac{(\Delta \ell_{2})^{2}}{2\pi} \ell_{1} \cdot (\ell_{1} + \ell_{2} - \ell) (\ell_{1} \cdot \ell_{2}) \delta_{\ell_{1},k} \phi_{\ell_{1}} \phi_{\ell - \ell_{1} - \ell_{2}}$$
(14)

$$= \delta_{\ell,k} + \frac{1}{2\pi} k \cdot (\ell - k) (\Delta \ell')^2 \phi_{\ell-k} - \frac{1}{2} \frac{(\Delta \ell_1)^2}{2\pi} \frac{(\Delta \ell_2)^2}{2\pi} \sum_{\ell_2} k \cdot (k + \ell_2 - \ell) (k \cdot \ell_2) \phi_k \phi_{\ell-k-\ell_2}$$
(15)

$$\frac{\partial \log \det(A)}{\partial \phi} = \frac{1}{\det(A)} \frac{\partial}{\partial \phi} \det(A) \tag{16}$$

Keep $O(\phi)$ for off-diagnal terms and $O(\phi^2)$ for diagnal terms, and accurate to $O(\phi^2)$ for $\det(A)$

$$A_{\ell k} = \delta_{\ell,k} \left(1 - \frac{(\Delta \ell)^4}{8\pi^2} \sum_{\ell_2} (k \cdot \ell_2)^2 \phi_k \phi_{-\ell_2} \right) + \frac{(\Delta \ell)^2}{2\pi} k \cdot (\ell - k) \phi_{\ell - k}$$

$$\det A = 1 - \frac{(\Delta \ell)^4}{8\pi^2} \sum_{k} \sum_{\ell_2} (k \cdot \ell_2)^2 \phi_k \phi_{-\ell_2} + \frac{(\Delta \ell)^4}{4\pi^2} \sum_{\ell} \sum_{k \neq \ell} k \cdot (\ell - k) \ell \cdot (k - \ell) \phi_{\ell - k} \phi_{k - \ell}$$
(17)

Note that $\frac{\partial}{\partial \phi_l} \equiv \frac{\partial}{\partial \text{re}\phi_l} + i \frac{\partial}{\partial \text{Im}\phi_l}$, then $\frac{\partial}{\partial \phi_l} \phi_k = 2\delta_{k,-l}$

$$\frac{\partial}{2\partial\phi_{i}}\det(A) = -\frac{(\Delta\ell)^{4}}{8\pi^{2}} \left(\sum_{\ell_{2}} (i \cdot \ell_{2})^{2} \phi_{-\ell_{2}} + \sum_{k} (i \cdot k)^{2} \phi_{k} \right) + \frac{(\Delta\ell)^{4}}{4\pi^{2}} \sum_{\ell-k=-i} + \sum_{k-\ell=-i} k \cdot (\ell-k) \ \ell \cdot (k-\ell) \phi_{i}$$

$$= -\frac{(\Delta\ell)^{4}}{8\pi^{2}} \sum_{k} (i \cdot k)^{2} (\phi_{-k} + \phi_{k}) - \frac{(\Delta\ell)^{4}}{2\pi^{2}} \phi_{i} \sum_{\ell} \ell \cdot i \ i^{2} + (\ell \cdot i)^{2}$$

$$= -\frac{(\Delta\ell)^{4}}{4\pi^{2}} \sum_{k} (i \cdot k)^{2} \phi_{k} - \frac{(\Delta\ell)^{4}}{2\pi^{2}} \phi_{i} \sum_{\ell} (\ell \cdot i)^{2} \leftarrow \text{diverging?} \tag{18}$$

$$\langle \det A \rangle_{\phi} = 1 - \frac{(\Delta \ell)^2}{8\pi^2} \sum_{k} k^4 C_k^{\phi\phi} + 0 = 1 - \frac{1}{4\pi} \int dk \ k^5 C_k^{\phi\phi}$$
 (19)

 $\det A$ is not directly used in the Hamiltonian Markov chain.

$$\frac{\partial \log \det(A)}{\partial \phi} = \text{Tr}(A^{-1} \frac{\partial A}{\partial \phi}) \text{ seems useless}$$
 (20)