K 10/21

СОЕДИНЕНИЕ ПРОВОДНИКОВ

Соединение проводников

последовательное

- $1) \quad I=I_1=I_2$
- $2) \quad U = U_1 + U_2$
- 3) $U = I \cdot R$) $I \cdot R = I \cdot R_1 + I \cdot R_2$ $U_1 = I \cdot R_1$ $U_2 = I \cdot R_2$) $R=R_1+R_2$

- $1)\quad U=U_1=U_2$
- $2) \quad I=I_1+I_2$

$$\left\{ egin{aligned} I = rac{U}{R} \ I_1 = rac{U}{R_1} \ I_2 = rac{U}{R_2} \ \end{pmatrix} rac{U}{R} = rac{U}{R_1} + rac{U}{R_2} \ \downarrow \ I_2 = rac{U}{R_2} \ \end{pmatrix} rac{1}{R} = rac{1}{R} rac{1}{1} + rac{1}{R} rac{1}{2} \ \end{pmatrix}$$

Если R = R₁ = R₂, то
$$R=\frac{R_1}{n}$$

(2) Работа, мощность, количество теплоты. Закон Джоуля-Ленца

$$A=U\cdot q=U\cdot I\cdot t=I^2Rt=rac{U^2}{R}\cdot t$$
 П Работа

$$(1-2)\left[I=\frac{q}{t}\right]$$

$$(2-3)\left[U=IR\right]$$

$$[A,Q]=$$
Дж $=B\cdot K$ л $=B\cdot A\cdot c=A^2\cdot O$ м $\cdot c=rac{B^2}{O}$ м $\cdot c$

2 Закон Джоуля-Ленца

3 Мощность

$$P = rac{A}{t} = U \cdot I = I^2 \cdot R = rac{U^2}{R}$$

 $(1,2,5,6) \rightarrow$ справедливо всегда $(3,4,7,8) \rightarrow$ справедливо для однородного участка цепи (нет ИТ)

$$[P] = Bm = \frac{\mathcal{I}\mathcal{H}}{\mathcal{C}} = A \cdot B = A^2 \cdot OM = \frac{B^2}{OM}$$

ЭДС. ЗАКОН ОМА ДЛЯ ЗАМКНУТОЙ ЦЕПИ

ЭДС источника тока

- Лампочка светится
- Амперметр отклоняется
- Резистор нагревается

за счет чего?

кратковременный ток (пока есть разность потенциалов)

$$[\varepsilon] = B$$

(4) Закон Ома для замкнутой цепи

$$I=rac{narepsilon_1}{R+r_1n}$$

Если R o 0, то $I o \infty$ (т.к $r \ll R$) ⇒ короткое замыкание!

примечание

• ИТ \longrightarrow Источник Тока

примечание

параллельное