	1	ı				ı												18 (8)
1	Hydrogen 1.008 1 -1 1s¹	2		1 -	+	Atomic nur							13 (3)	14 (4)	15 (5)	16 (6)	17 (7) (halogens)	Helium 4.002 602 0 1s ²
2	3 Lithium 6.94 1 [He]2s ¹	Beryllium 9.012 183 2 (-1) [He]2s²				Name Atomic weight (amu, g/mol) Oxidation states (with rare states in brackets) Electron configuration (anomalous configurations denoted with ⚠)								Carbon 12.011 4 3 2 1 -1 -2 -3 -4 [He]2s ² 2p ²	Nitrogen 14.007 5 3 -3 (4 2 1 -1 -2) [He] 2s ² 2p ³	Oxygen 15.999 -2 (2 1 -1) [He]2s ² 2p ⁴	Fluorine 18.998 403 -1 [He]2s ² 2p ⁵	Neon 20.1797 0 [He]2s ² 2p ⁶
3	Na Sodium 22.989 769 1 (-1) [Ne]3s1	Mg Magnesium 24.305 2 (-1) [Ne]3s²	Alkali metals	Alkaline earth metals	Lanthanides 5	Actinides	Transition metals	Post-transition metals	Metalloids	Reactive nonmetals	Noble gases	Chemical properties unknown	Aluminium 26.981 538 3 (2 1 -1 -2) [Ne]3s ² 3p ¹	Silicon 28.085 4 -4 (3 2 1 -1 -2 -3) [Ne]3s ² 3p ²	Phosphorus 30.973 762 5 3 -3 (4 2 1 -1 -2) [Ne]3s ² 3p ³	Sulfur 32.06 6 4 2 -2 (5 3 1 -1) [Ne]3s ² 3p ⁴	Chlorine 35.45 7 5 3 1 -1 (6 4 2) [Ne]3s ² 3p ⁵	Argon 39.95 0 [Ne]3s ² 3p ⁶
4	Potassium 39.0983 1 (-1) [Ar]4s1	Ca Calcium 40.078 2 (-1) [Ar]4s ²	Sc Scandium 44.955 907 3 (2 1) [Ar]4s ² 3d ¹	Titanium 47.867 4 (3 2 1 -1 -2) [Ar]4s² 3d²	V Vanadium 50.9415 5 (4 3 2 1 -1 -3) [Ar]4s ² 3d ³	Cr Chromium 51.9961 6 3 (5 4 2 1 -1 -2 -4) A [Ar] 3d ⁵ 4s ¹	Manganese 54.938 043 7 4 2 (6 5 3 1 -1 -2 -3) [Ar]4s ² 3d ⁵	Fe Iron 55.845 6 3 2 (5 4 1 -1 -2 -4) [Ar]4s ² 3d ⁶	Cobalt 58.933 194 3 2 (5 4 1 -1 -3) [Ar]4s ² 3d ⁷	Nickel 58.6934 2 (4 3 1 -1 -2) [Ar]4s ² 3d ⁸		Zinc 65.38 2 (1 -2) [Ar]4s ² 3d ¹⁰	Gallium 69.723 3 (2 1 -1 -2 -4 -5) [Ar]4s ² 3d ¹⁰ 4p ¹	32 Ge Germanium 72.630 4 2 -4 (3 1 -1 -2 -3) [Ar]4s ² 3d ¹⁰ 4p ²	Arsenic 74.921 595 5 3 -3 (4 2 1 -1 -2) [Ar]4s ² 3d ¹⁰ 4p ³	34 Se Selenium 78.971 6 4 2 -2 (5 3 1 -1) [Ar]4s ² 3d ¹⁰ 4p ⁴	35 Br Bromine 79.904 7 5 3 1 -1 (4) [Ar]4s² 3d¹⁰ 4p⁵	36 Kr Krypton 83.798 0 (2) [Ar]4s ² 3d ¹⁰ 4p ⁶
5	Rb Rubidium 85.4678 1 (-1) [Kr]5s1	38 Sr Strontium 87.62 2 (-1) [Kr]5s²	Yttrium 88.905 838 3 (2 1) [Kr]5s² 4d¹	Zr Zirconium 91.224 4 (3 2 1 -2) [Kr]5s² 4d²	Niobium 92.906 37 5 (4 3 2 1 −1 -3) [Kr]5s¹ 4d⁴	MO Molybdenum 95.95 6 4 (5 3 2 1 −1 −2 −4) M[Kr]5s¹ 4d⁵	Tc Technetium [97] 7 4 (6 5 3 2 1 -1 -3) [Kr]5s² 4d⁵	Ruthenium 101.07 4 3 2 (8 7 6 5 1 -2 -4) Kr]5s¹ 4d²	A5 Rh Rhodium 102.905 49 3 (5 4 2 1 −1 -3) ▲[Kr]5s¹ 4d8	Pd Palladium 106.42 4 2 (6 5 3 1) [Kr]4d10	Silver 107.8682 1 (4 3 2 -1 -2) [Kr]5s1 4d10	Cadmium 112.414 2 (1 -2) [Kr]5s ² 4d ¹⁰	Indium 114.818 3 (2 1 -1 -2 -5) [Kr]5s² 4d¹⁰ 5p¹	50 Sn Tin 118.710 4 2 -4 (3 1 -1 -2 -3) [Kr]5s ² 4d ¹⁰ 5p ²	51 Sb Antimony 121.760 5 3 -3 (4 2 1 -1 -2) [Kr]5s² 4d¹⁰ 5p³	Tellurium 127.60 6 4 2 -2 (5 3 1 -1) [Kr]5s ² 4d ¹⁰ 5p ⁴	Iodine 126.904 47 7 5 3 1 -1 (6 4) [Kr]5s² 4d¹0 5p⁵	Xenon 131.293 0 (8 6 4 2) [Kr]5s ² 4d ¹⁰ 5p ⁶
6	Caesium 132.905 452 1 (-1) [Xe]6s ¹	Ba Barium 137.327 2 (-1) [Xe]6s²	6*	Hafnium 178.486 4 (3 2 1 -2) [Xe]6s ² 4f ¹⁴ 5d ²	Tantalum 180.947 88 5 (4 3 2 1 -1 -3) [Xe]6s ² 4f ¹⁴ 5d ³	Tungsten 183.84 6 4 (5 3 2 1 -1 -2 -4) [Xe]6s ² 4f ¹⁴ 5d ⁴	Renium 186.207 4 (7 6 5 3 2 1 -1 -3) [Xe]6s ² 4f ¹⁴ 5d ⁵	OS Osmium 190.23 4 (8 7 6 5 3 2 1 -1 -2 -4) [Xe]6s ² 4f ¹⁴ 5d ⁶	77 Ir Iridium 192.217 4 3 (9 8 7 6 5 2 1 -1 -3) [Xe] $6s^2 4f^{14}$ $5d^7$	Platinum 195.084 4 2 (6 5 3 1 -1 -2 -3)	Gold 196.966 570 3 (5 2 1 −1 −2 −3)	Mercury 200.592 2 1 (-2) [Xe]6s ² 4f ¹⁴ 5d ¹⁰	Thallium 204.38 3 1 (2 -1 -2 -5) [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ¹	Pb Lead 207.2 4 2 (3 1 -1 -2 -4) [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ²	Bismuth 208.980 40 3 (4 3 2 1 -1 -2 -3) [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ³	Polonium [209] 4 2 -2 (6 5) [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁴	Atatine [210] 1 -1 (7 5 3) [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁵	Radon [222] 0 (6 2) [Xe]6s² 4f¹⁴ 5d¹⁰ 6p⁶
7	Francium [223] 1 [Rn]7s1	Radium [226] 2 [Rn]7s²	7*	Rutherfordium [267] 4 [Rn]7s ² 5f ¹⁴ 6d ²	Db Dubnium [270] 5 [Rn]7s ² 5f ¹⁴ 6d ³	Seaborgium [269] 6 [Rn]7s ² 5f ¹⁴ 6d ⁴	Bh Bohrium [270] 7 [Rn]7s ² 5f ¹⁴ 6d ⁵	HS Hassium [270] 8 [Rn]7s ² 5f ¹⁴ 6d ⁶	Meitnerium [278]	DS Darmstadtium [281]	Rg Roentgenium [281]	Copernicium [285] 2	Nh Nihonium [286]	Flerovium [289]	Moscovium [289]	LV Livermorium [293]	Tennessine [293]	Oganesson [294]
	210	6*	57 Lanthanum 138.905 47 3 (2 1) <u>∧</u> [Xe]6s² 5d¹	Cerium 140.116 4 3 (2) [Xe]6s ² 4f ¹ 5d ¹	Praseodymium 140.907 66 3 (4 2) [Xe]6s ² 4f ³	Neodymium 144.242 3 (4 2) [Xe]6s ² 4f ⁴	Promethium [145] 3 (2) [Xe]6s ² 4f ⁵	Samarium 150.36 3 (2) [Xe]6s ² 4f ⁶	Europium 151.964 3 2 [Xe]6s² 4f7	Gadolinium 157.25 3 (2 1) ▲ [Xe]6s² 4f7 5d¹	65 Tb Terbium 158.925 354 3 (4 2 1) [Xe]6s ² 4f ⁹	Dy Dysprosium 162.500 3 (4 2) [Xe]6s ² 4f ¹⁰	HOImium 164.930 329 3 (2) [Xe]6s ² 4f ¹¹	Erbium 167.259 3 (2) [Xe]6s² 4f¹²	Thulium 168.934 219 3 (2) [Xe]6s² 4f¹³	70 Ytterbium 173.05 3 (2) [Xe]6s ² 4f ¹⁴	71 Lu Lutetium 174.9668 3 (2) [Xe]6s ² 4f ¹⁴ 5d ¹	
	Flinders Ac Science direct.me		AC Actinium [227] 3 (2) ▲[Rn]7s² 6d¹	Th Thorium 232.0377 4 (3 2 1) ▲ [Rn]7s² 6d²	Protactinium 231.035 88 5 (4 3 2) [Rn]7s ² 5f ² 6d ¹	Uranium 238.028 91 6 4 (5 3 2 1) ▲ [Rn]7s² 5f³ 6d¹	93 Np Neptunium [237] 5 (7 6 4 3 2) ▲ [Rn]7s² 5f⁴ 6d¹	Pu Plutonium [244] 4 (8 7 6 5 3 2 1) [Rn]7s ² 5f ⁶	95 Am Americium [243] 3 (8 7 6 5 4 2) [Rn]7s ² 5f ⁷	96 Cm Curium [247] 3 (6 4 2) [Rn]7s² 5f ⁷ 6d¹	97 BK Berkelium [247] 3 (4 2) [Rn]7s ² 5f ⁹	98 Cf Californium [251] 3 (4 2) [Rn]7s ² 5f ¹⁰	Einsteinium [252] 3 (4 2) [Rn]7s ² 5f ¹¹	Fermium [257] 3 (2) [Rn]7s ² 5f ¹²	Mendelevium [258] 3 (2) [Rn]7s ² 5f ¹³	Nobelium [259] 2 (3) [Rn]7s ² 5f ¹⁴	103 Lr Lawrencium [262] 3 ▲[Rn]7s² 5f¹⁴ 7p¹	

Sources:

Initial data, and electron configurations: https://pubchem.ncbi.nlm.nih.gov/rest/pug/periodictable/XML/?response_type=display)

https://web.archive.org/web/20220523153627/https://pubchem.ncbi.nlm.nih.gov/rest/pug/periodictable/XML/?response_type=display)

Corrected atomic masses: https://iupac.gmul.ac.uk/AtWt/ (archive: https://iupac.gmul.ac.uk/AtWt/ (archive: https://web.archive.org/web/20220523153640/https://iupac.gmul.ac.uk/AtWt/ (archive: https://web.archive.org/web/20220523153640/https://iupac.gmul.ac.uk/AtWt/ (archive: https://web.archive.org/web/20220523153640/https://iupac.gmul.ac.uk/AtWt/ (archive: <a href="https://web/atwo.org/web/20220523153640/https://web/atwo.org/web

More detailed oxidation states: https://www.compoundchem.com/2015/11/17/oxidation-states/ (archive:

https://web.archive.org/web/20220523153614/https://www.compoundchem.com/2015/11/17/oxidation-states/) i.e. https://io.wp.com/www.compoundchem.com/wp-content/uploads/2015/11/The-Periodic-Table-Of-Oxidation-States-2016.png?ssl=1 (archive: https://web.archive.org/web/20220523153619/https://io.wp.com/www.compoundchem.com/wp-content/uploads/2015/11/The-Periodic-Table-Of-Oxidation-States-2016.png?ssl=1)

Electron configuration exceptions: https://en.wikipedia.org/wiki/Electron configuration (archive: https://en.wikipedia.org/w/index.php?title=Electron configuration&oldid=1084879392).

Nickel electron configuration: https://en.wikipedia.org/wiki/Nickel#Electron configuration dispute (archive: https://en.wikipedia.org/wiki/Nickel#Electron configuration dispute (archive: https://en.wikipedia.org/wiki/Nickel#Electron configuration dispute (archive: https://en.wiki/Nickel#Electron dispute (archive: https://en.wiki/Nickel#Electron dispute (archive: https://en.wiki/Nickel#Electron dispute (archive: https://

Lawrencium electron configuration: https://en.wikipedia.org/wiki/Lawrencium (archive: https://en.wikipedia.org/wiki/Lawrencium (archive: https://en.wikipedia.org/wiki/Lawrencium (archive: https://en.wikipedia.org/wiki/Lawrencium (archive: https://en.wikipedia.org/w/index.php?title=Lawrencium&oldid=1083399220)

There were also several manual changes from these sources (mostly for the synthetic elements at the end) based on quick google searches, Wikipedia pages for individual elements, etc.