▶ Orthogonality weight. Varying λ shifts macro F1 by ≈< 0.003. This implies that the OT scalar already explains the signal.
▶ Style dimension. Performance is effectively flat between 64 and 256 dimensions, which means that stylistic information is low-rank.

▶ Blur $(\sqrt{\varepsilon})$. Best results are achieved with blur ≈ 0.003 . Larger values lead to more bias, smaller values cause

more variance, so F1 decreases in either direction.

Projection dimension. There is no gain beyond $n_{\pi}=32$, and larger values simply lead to slower training. Apart from blur tuning in the feature-free balanced OT method, OT variants are not particularly sensitive to orthogonality weight/projection dimension/style dimension tuning in the context of style shift detection.