MEP 2003

METHANE ($\lambda \approx 3.39 \,\mu\text{m}$)

Absorbing molecule CH₄, F ⁽²⁾₂ component, P(7) v₃ transition

1 CIPM recommended values

1.1 The values $f = 88\ 376\ 181\ 600.18\ \text{kHz}$ $\lambda = 3\ 392\ 231\ 397.327\ \text{fm}$

with a relative standard uncertainty of 3×10^{-12} apply to the radiation of a He-Ne laser stabilized to the central component, (7-6) transition, of the resolved hyperfine-structure triplet. The values correspond to the mean frequency of the two recoil-split components for molecules which are effectively stationary, i.e. the values are corrected for second-order Doppler shift.

1.2 The values
$$f = 88 \ 376 \ 181 \ 600.5 \ \text{kHz}$$

 $\lambda = 3 \ 392 \ 231 \ 397.31 \ \text{fm}$

with a relative standard uncertainty of 2.3×10^{-11} apply to the radiation of a He-Ne laser stabilized to the centre of the unresolved hyperfine-structure of a methane cell, within or external to the laser, held at room temperature and subject to the following conditions:

- methane pressure ≤ 3 Pa;
- mean one-way intracavity surface power density (i.e., the output power density divided by the transmittance of the output mirror) ≤ 10⁴ W m⁻²;
- radius of wavefront curvature ≥ 1 m;
- inequality of power between counter-propagating waves ≤ 5 %;
- servo-referenced to a detector placed at the output facing the laser tube.

2. Source data

2.1 Resolved hyperfine structure

Adopted value : $f = 88\,376\,181\,600.18\,(27)\,\text{kHz}$ $u_c/y = 3 \times 10^{-12}$

for which:

 $\lambda = 3392\ 231\ 397.327\ (10)\ \text{fm}$ $u_c/y = 3 \times 10^{-12}$

calculated from

x/kHz	Laser	Frequency chain	Year	source data
600.29	LPI	PTB	1991	[1]
599.9	LPI	VNIIFTRI	1985-1986	[2]
600.11	LPI	VNIIFTRI	1989-1992	[2]
600.18	PTB	VNIIFTRI	1989	[2]
600.16	PTB	PTB	1992	[3]
600.44	ILP	ILP	1988-1991	[4]

Unweighted mean : $f = 88 \ 376 \ 181 \ 600.18 \ \text{kHz}$

where $f = (88\ 376\ 181\ 000 + x)$ kHz.

Other available values having uncertainties larger than 200 Hz have not been used. The relative standard uncertainty of one measurement was estimated to be 2.9×10^{-12} using the maximum deviation from the mean and rounded to 3×10^{-12} .

2.2 Unresolved hyperfine structure

Adopted value : $f = 88\,376\,181\,600.5\,(2.0)\,\mathrm{kHz}$ $u_c/y = 2.3\times10^{-11}$

for which

 $\lambda = 3392\ 231\ 397.31\ (8)\ \text{fm}$ $u_c/y = 2.3 \times 10^{-11}$

calculated from

x / kHz	Frequency source	Frequency chain	Year	source data
600.9	Stationary device	ILP	1983	[4-7]
601.48	Portable laser 2	NRC	1985	[8, 9]
599.33	Portable laser 3	NRC	1986-1991	[8, 9]
596.82	Portable laser 1	AIST	1988-1990	[9]
601.52	CH ₄ beam	PTB	1987-1989	[9-11]
601.77	Portable laser M101	VNIIFTRI	1985-1992	[2, 9]
600.12	Portable laser P1	VNIIFTRI	1985-1988	[2, 9]
598.5	Portable laser PL	VNIIFTRI	1986	[2]
600.96	Portable laser B.3	BIPM	1985-1992	[9]
601.33	Portable laser VB	BIPM	1988-1991	[9]
600.3	Portable laser VNIBI	BIPM	1991	[9, 12]
Unweighted mean :		f = 88 376 181 600.46 kHz		

where $f_{\text{CH4}} = (88\ 376\ 181\ 000 + x) \text{ kHz}.$

The standard deviation of one determination is 1.7 kHz. This is equivalent to a relative uncertainty of 1.9×10^{-11} , increased by the CCL to 2.3×10^{-11} to give an uncertainty of 2 kHz.

3. References

- [1] CCDM/92-8a, LPI, Replies to the Questionnaire of the CCDM-92.
- [2] CCDM/92-9a, VNIIFTRI, Concerning He-Ne/CH₄ laser absolute frequency.
- [3] Kramer G., Lipphardt B., Weiss C. O., Coherent frequency synthesis in the infrared, 1992 IEEE Frequency Control Symposium, May 27-29 1992, Hershey, PA, USA.
- [4] CCDM/92-23a, ILP, Replies of the Institute of Laser Physics of the Siberian Branch of the Russian Academy of Science to the BIPM Questionnaire (CCDM/92-1).

- [5] Zakhar'yash V. F., Klement'ev V. M., Nikitin M. V., Timchenko B. A., Chebotaev V. P., Absolute measurement of the frequency of the E-Line of methane, *Sov. Phys. Tech. Phys.*, 1983, **28**, 1374-1375.
- [6] Chebotayev V. P., Klementyev V. M., Nikitin M. V., Timchenko B. A., Zakharyash V. F., Comparison of Frequency Stabilities of the Rb Standard and of the He-Ne/CH₄ Laser Stabilized to the E Line in Methane, *Appl. Phys. B*, 1985, **36**, 59-61.
- [7] Bagayev S. N., Borisov B. D., Gol'Dort V. G., Gusev A. Yu., Dychkov A. S., Zakhar'yash V. F., Klement'yev V. M., Nikitin M. V., Timchenko B. A., Chebotayev V. P., Yumin V. V., An Optical Standard of Time, *Avtometrya*, 1983, 3, 37-58.
- [8] CCDM/92-4a, NRC, Reponse to Questionnaire CCDM.
- [9] Felder R., A Decade of Work on the Determination of the Frequency of F_2^2 Methane Transition at $\lambda \approx 3.39 \, \mu m$, Rapport BIPM, 1992, **92/8**.
- [10] Weiss C. O., Kramer G., Lipphardt B., Garcia E., Frequency Measurement of a CH₄ Hyperfine Line at 88 THz/"Optical Clock", *IEEE J. Quant. Electron.*, 1988, **24**, 1970-1972.
- [11] Felder R., Robertsson L., Report on the 1989 PTB Experiment, Rapport BIPM, 1992, 92/7.
- [12] CCDM/92-20a, BIPM, Reply to the Questionnaire for the CCDM.