Lecture 4 - Batteries

Lecture summary

- Electrochemistry fundamentals
- Battery history and overview
- Battery definitions
- Improving capacity
- Essential materials properties
 - types of electrode behaviour
- Effect of charging rate on capacity
- Galvanostatic measurements

Essential electrochemistry

Quantities

Throughout this course, we will see a number of electronics/electrochemistry terms, summarised here:

Term	Symbol	Description	Units	
Potential (or voltage)	E or V	the 'push' moving the electrons	Volts (V)	
Current	I	the rate at which electrons move	Amperes (A)	
Charge	Q	amount of electrons	Coloumbs (C) or Amp-hours (Ah, 1 mAh = 3.6 C)	
Resistance	R	effects reducing the current	Ohms (Ω)	
Capacitance	С	ability to store charge	Farads (F)	
Power	Р	how much current, and with what force	Watts (W)	

Important relationships

Ohm's law - current and potential are linked:

$$V = IR$$

(Ohm's law) A current flowing for a period of time gives an overall charge:

$$Q = It$$

Power is a combination of current and voltage:

$$P = IV$$

Resistivity (ρ) and conductivity (σ) are inversely related. Note that resistance (R) is related to resistivity (ρ) by accounting for the geometry of the object.

$$ho = rac{1}{\sigma}$$

Why batteries?

- Portable electronics
- Electric vehicles
- Grid-storage (e.g. from renewables)
- ...

Future batteries require more charge stored in a smaller volume and/or mass.

This requires *new materials* from chemistry.

- ca. 190 AD: Baghdad (or Parthian) battery
 - Iron and copper electrodes, filled with vinegar

- ca. 190 AD: Baghdad (or Parthian) battery
 - Iron and copper electrodes, filled with vinegar
- **1800**: Volta created the voltaic pile
 - Alternating Ag and Zn discs, NaCl electrolyte
 - $\circ \ \ \text{Enabled} \ \textit{chemistry} \ \text{e.g.} \ 2 \operatorname{H}_2 \mathrm{O} \longrightarrow \mathrm{H}_2 + \mathrm{O}_2$

- ca. 190 AD: Baghdad (or Parthian) battery
 - Iron and copper electrodes, filled with vinegar
- **1800**: Volta created the voltaic pile
 - Alternating Ag and Zn discs, NaCl electrolyte
 - \circ Enabled *chemistry* e.g. $2\,\mathrm{H_2O}\longrightarrow\mathrm{H_2}+\mathrm{O_2}$
- 1836: Daniell cell:

$$Zn|Zn^{2+},SO_4^{2-}||SO_4^{2-}|Cu^{2+}|Cu|$$

First practical electricity source (used to power

telegraphs)

• **1859** Lead-acid battery (first rechargeable)

- ca. 190 AD: Baghdad (or Parthian) battery
 - Iron and copper electrodes, filled with vinegar
- **1800**: Volta created the voltaic pile
 - Alternating Ag and Zn discs, NaCl electrolyte
 - \circ Enabled *chemistry* e.g. $2\,\mathrm{H_2O}\longrightarrow\mathrm{H_2}+\mathrm{O_2}$
- 1836: Daniell cell:

$$|Zn|Zn^{2+}, SO_4^{2-}||SO_4^{2-}|Cu^{2+}|Cu|$$

First practical electricity source (used to power

telegraphs)

1859 Lead-acid battery (first rechargeable)

• 1886 The first dry cell:

$$\rm Zn|NH_4Cl|MnO_2$$

- $\circ~\mathrm{NH_4Cl}$ immobilised with plaster of Paris $(\mathrm{CaSO_4} \cdot 0.5\mathrm{H_2O})$
- 1899 The first alkaline battery: NiO(OH)|KOH|Cd

- ca. 190 AD: Baghdad (or Parthian) battery
 - Iron and copper electrodes, filled with vinegar
- 1800: Volta created the voltaic pile
 - Alternating Ag and Zn discs, NaCl electrolyte
 - \circ Enabled *chemistry* e.g. $2\,\mathrm{H_2O}\longrightarrow\mathrm{H_2}+\mathrm{O_2}$
- 1836: Daniell cell:

$$Zn|Zn^{2+},SO_4^{2-}||SO_4^{2-}|Cu^{2+}|Cu|$$

First practical electricity source (used to power

telegraphs)

1859 Lead-acid battery (first rechargeable)

• 1886 The first dry cell: $Zn|NH_4Cl|MnO_9$

- $\circ~\mathrm{NH_4Cl}$ immobilised with plaster of Paris $(\mathrm{CaSO_4} \cdot 0.5\mathrm{H_2O})$
- 1899 The first alkaline battery: NiO(OH)|KOH|Cd
- 1991 Li-ion battery commercialised by Sony

Chemistry Nobel prize 2019

Awarded for contributions to the development of the Li-ion battery

Definitions

Charge

Discharge

Naming of *anode* and *cathode* is often unclear. Here we define:

- Cathode is **positive** electrode under **discharge** (being reduced)
- Anode is negative electrode under discharge (oxidised)

Main approaches

Cationic battery

Charge carried across electrolyte by cations

- Li⁺, Na⁺ ...
 Mg²⁺, Ca²⁺, ...
- Even Zn^{2+} , Al^{3+}

Anionic battery

Anion charge carrier in electrolyte

- OH⁻ (NiCd or NiMH)
- F^- , Cl^-
- HSO₄ (in Pb-acid)

What makes a 'good' battery?

Perhaps the most important parameter in batteries is the total energy capacity, E_{bat}

• Combination of cell voltage (V) and amount of charge (Q) stored in the material:

$$E_{\mathrm{bat}} = QV$$

Q is expressed in units of Ah, so E_{bat} is in Wh (Watt-hours)

What makes a 'good' battery?

Perhaps the most important parameter in batteries is the total energy capacity, $E_{\rm bat}$

• Combination of cell voltage (V) and amount of charge (Q) stored in the material:

$$E_{\rm bat} = QV$$

Q is expressed in units of Ah, so E_{bat} is in Wh (Watt-hours)

- E_{bat} is dependent on the amount of battery material. More useful are:
 - Specific (gravimetric) energy (Wh g⁻¹).
 Q per unit mass (Ah g⁻¹)
 - (Volumetric) energy density (Wh L⁻¹).
 Q per unit volume (Ah L⁻¹)

Improving batteries

Ideally, we want to maximise *both* volumetric and gravimetric energy densities

© Barrie Lawson 11

Approches to increase E_{bat}

1. Increase operating voltage, V

Need large (+ve or -ve) electrode potentials: large electronegativity differences (e.g. Li⁺, F⁻)

The charge stored in a material can be calculated using Faraday's Law:

$$Q_{
m theoretical} = rac{nF}{3.6 M_w} \qquad {
m (in~mAh~g^{-1})}$$

The charge stored in a material can be calculated using Faraday's Law:

$$Q_{
m theoretical} = rac{nF}{3.6 M_w} \qquad {
m (in~mAh~g^{-1})}$$

e.g. for the cathode ${\rm LiCoO_2} \longrightarrow {\rm Li}^+ + {\rm e}^- + {\rm CoO_2}$:

The charge stored in a material can be calculated using Faraday's Law:

$$Q_{
m theoretical} = rac{nF}{3.6 M_w} \qquad {
m (in~mAh~g^{-1})}$$

e.g. for the cathode ${\rm LiCoO_2} \longrightarrow {\rm Li}^+ + {\rm e}^- + {\rm CoO_2}$:

$$n = 1, F = 96485.3 \text{ As mol}^{-1}, M_w = 97.873 \text{ g mol}^{-1}$$

 $\therefore Q = 274 \text{ mAh g}^{-1}$

The charge stored in a material can be calculated using Faraday's Law:

$$Q_{
m theoretical} = rac{nF}{3.6 M_w} \qquad {
m (in~mAh~g^{-1})}$$

e.g. for the cathode ${\rm LiCoO_2} \longrightarrow {\rm Li}^+ + {\rm e}^- + {\rm CoO_2}$:

$$n=1, F=96485.3~{
m As~mol}^{-1}, M_w=97.873~{
m g~mol}^{-1} \ dots Q=274~{
m mAh~g}^{-1}$$

In reality, the charge stored is less than the theoretical maximum

- CoO₂ is unstable: $2 \operatorname{Co^{IV}O}_2 \longrightarrow \operatorname{Co^{III}_2O}_3 + \frac{1}{2} \operatorname{O}_2$
 - We can only safely reach Li_{0.5}CoO₂, so the useful capacity is 137 mAh g⁻¹

Which will give the highest energy capacity

Which of the following cathode combinations will give the highest E_{bat}?

Reaction	Potential vs. Li/Li ⁺ (V)
${ m LiCoPO_4} \longrightarrow { m Li}^+ + { m CoPO_4} + { m e}^-$	4.7
${ m LiF} + { m Ag}^0 \longrightarrow { m AgF} + { m Li}^+ + { m e}^-$	4.1
${ m LiTiS}_2 \longrightarrow { m Li}^+ + { m TiS}_2 + { m e}^-$	2.0

Vote

Results

Go to www.menti.com and use the code 9209 5065

Which will give the largest energy capacity?

2

Ideal materials properties

Anode/Cathode	Electrolyte
High capacity for charge-carrying ion	High ionic conductivity
Large potential difference (cell voltage)	Low electronic conductivity
Good ionic and electronic conductor (ideally)	Stable in contact with electrodes

Ideal materials properties

Anode/Cathode	Electrolyte
High capacity for charge-carrying ion	High ionic conductivity
Large potential difference (cell voltage)	Low electronic conductivity
Good ionic and electronic conductor (ideally)	Stable in contact with electrodes

Electrode materials fall into two categories:

- Conversion
- Intercalation

Conversion electrodes

Electrochemical reaction proceeds during charge/discharge. As a general equation,

$$\mathrm{A}_a\mathrm{B}_b + (b imes c)\mathrm{C^n} + (nbc - am)\mathrm{e^-}
ightleftharpoons \mathrm{aA^m} + b\mathrm{BC}_c$$

Conversion electrodes

Electrochemical reaction proceeds during charge/discharge. As a general equation,

$$\mathrm{A}_a\mathrm{B}_b + (b imes c)\mathrm{C^n} + (nbc - am)\mathrm{e^-} \Longrightarrow \mathrm{aA^m} + b\mathrm{BC}_c$$

Examples:

Chloride-ion battery cathodes:

$$\operatorname{BiCl}_3 + 3\operatorname{Li}^+ + 3\operatorname{e}^- \rightleftharpoons \operatorname{Bi}^0 + 3\operatorname{LiCl}^-$$

Lithium-sulfur cathode (here, a = 0):

$$S + 2 Li^{+} + 2 e^{-} \rightleftharpoons Li_{2}S$$

Metal hydride anode (used in NiMH):

$$H_2O + M^0 + e^- \rightleftharpoons OH^- + MH$$

Conversion electrodes (2)

Advantages

- Wide range of reactions possible
 - o could avoid scarce/expensive elements by using e.g. Fe, Cu, O...
- Large theoretical capacities
 - \circ More than one charge carrier per heavy metal (see BiCl_3 example)

Conversion electrodes (2)

Advantages

- Wide range of reactions possible
 - o could avoid scarce/expensive elements by using e.g. Fe, Cu, O...
- Large theoretical capacities
 - More than one charge carrier per heavy metal (see BiCl₃ example)

Disadvantages

- Often low conductivity (ionic and/or electronic)
- Substantial volume changes during cycling
- Side reactions/dissolution of intermediate species

Intercalation electrodes

No chemical 'reaction'; mobile species is 'inserted' into a material able to accommodate its charge/size.

Example: Li_xCoO_2

- Close-packed hcp oxygen array
- Co occupies alternate layers of octahedral holes
- Li^+ can insert between Co layers, reducing $\text{Co}^{\text{IV}} \rightleftharpoons \text{Co}^{\text{III}}$
 - Layer spacing varies with x
 - High Li⁺ conductivity due to 2D vacancy-hopping mechanism

Intercalation cathode families

	2D conductor	3D conductor	1D conductor
Туре	$\alpha\mathrm{-NaFeO}_2$	spinel	olivine
Structure	c JSmol	JSmol	JSmol
Formula	${\rm LiCoO}_2$	$\rm LiMn_2O_4$	${\rm LiFePO}_4$
$Q_{ m theo.}$ / mAh g ⁻¹	274	148	170

Charging rates

A high $E_{\rm bat}$ is good, but we want to (dis)charge batteries quickly!

- Tradeoff between *Power* (P = IV) and $\mathrm{E}_{\mathrm{bat}} (= ItV)$
- Seen on a Ragone plot:

Charging rates

A high E_{bat} is good, but we want to (dis)charge batteries quickly!

- Tradeoff between *Power* (P = IV) and $\mathrm{E}_{\mathrm{bat}} (= ItV)$
- Seen on a Ragone plot:

 ${
m E_{bat}}$ depends on the (dis)charge rate, so to compare different materials we use the $C{
m -rate}=rac{I}{Q}$

• e.g. for a 1000 mAh battery: 1C would sustain 1 A for 1 hour, 2C gives 2A for 30 mins, $\frac{C}{6}$ gives 0.167 A for 6 hours, etc.

Electrochemical measurements

To avoid variations in rate, battery analysis uses *Galvanostatic* (constant current) electrochemistry

- measure the resulting potential.
- easier to separate chemistry effects from rate effects

Electrochemical measurements (2)

e.g. for a 2.2 Ah battery:

Electrochemical measurements (2)

e.g. for a 2.2 Ah battery:

4.2 4.0 3.8 Potential (V) 3.6 3.4 3.2 3.0 0.2C 0.5C 1.0C 2.8 0.5 1.0 0.0 Capacity (Ah) 80 100 Capacity w.r.t nominal (%) 0.5 1.0 0.9 0.6 δ in Li_{δ}CoO₂

Capacity is often expressed in a number of formats

Material insights from galvanostats

Lecture recap

- we define cathode and anode under discharge conditions!
- two main categories of battery (based on mobile ion):
 - cationic or anionic
- we want to maximise
 - Charge stored Q in materials, and
 - \circ operating voltage V
- Two types of electrode operation:
 - Conversion
 - wide range of chemistry, but problems with volume change and side reactions
 - intercalation
 - limited number of suitable materials
- we can use galvanostatic measurements to learn a lot

Return to course contents 26