Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 4 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.	Mark:							
Determine if $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ can 1	oe writte	en as a linear combination of the vectors	$\begin{bmatrix} 5 \\ 2 \\ -3 \\ 2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$	

Standard S1.	Mark:		
Determine if the vectors	$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix},$	$\begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$	are linearly dependent or linearly independent

Standard S3.

$$\begin{bmatrix}
\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \\
\end{bmatrix}$$
Let $W = \operatorname{span} \left(\left\{ \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\} \right)$. Find a basis of W .

Standard S4.
$$\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}$$
 Compute the dimension of W .