$$H22-4$$
(1) $\begin{cases} 5 = \pm \pm x \\ \gamma = \pm -x \end{cases}$

東鎖公式士)、
 $\frac{\partial u}{\partial 5} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial 5} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial 5} = \frac{1}{2}(u_x + u_x)$
 $\frac{\partial u}{\partial 7} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial 7} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial 7} = \frac{1}{2}(u_x + u_x)$
(上)、
 $\frac{\partial u}{\partial 7} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial 7} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial 7} = \frac{1}{2}(u_x + u_x)$
(上)、
 $\frac{\partial u}{\partial 7} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial 7} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial 7} = \frac{1}{2}(u_x + u_x)$
(上)、
 $\frac{\partial u}{\partial 7} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial 7} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial 7} = \frac{1}{2}(u_x + u_x)$
(2)
(1) を多で積分すると、アの関数やを用いて 2u = Sin $5 + \varphi(\gamma)$

$$Sinx + \varphi(-x) = 0$$
 $(x \in \mathbb{R})$ by,
 $\varphi(x) = Sinx$

$$U(t,x) = \frac{1}{2} \left(\sin(t+x) + \sin(t-x) \right) \qquad \left(= \sinh \cos x \right)$$