(1)

Bepaal de orde en graad van de differentiaalvergelijking $e^{y'''} - x \cdot y''' + y = 0$.

Cursus p. 42:

- * De orde van de differentiaalvergelijking is de orde van de hoogste afgeleide die voorkomt in de vergelijking.
- * De graad is de exponent van de macht waarmee de hoogste afgeleide voorkomt, waarbij de vergelijking als velterm in die hoogste afgeleide wordt beschouwd.

* orde = 3, want y'' is de hoogste afgeleide die voorkomt in de vergelijking.

* graad is onbepaald, omwille van ey"

(19)

Bepaal de orde en graad van de differentiaal vergelijking $y' + x = (y - xy')^{-3}$

Cursus p.42:

* graad = 4, omwille van y'4

* De orde van de differentiaalvergelijking is de orde van de hoogste afgeleide die voorkomt in de vergelijking.

* De graad is de exponent van de macht waarmee de hoogste afgeleide voorkomt, waarbij de <u>vergelijking</u> als veelterm in die hoogste afgeleide wordt beschouwd.

* DVG:
$$y' + x = \frac{1}{(y - xy')^3}$$
 merkuaardig product: $(y' + x)(y^3 - 3y^2xy' + 3y.x^2.y'^2 - x^3y'^3) = 1$ $(y' + x)(y^3 - 3y^2xy' + 3y.x^2.y'^2 - x^3y'^3) = 1$ $y^3.y' - 3xy^2.y'^2 + 3x^2y.y'^3 - x^3y'^4 + xy^3 - 3x^2y^2y' + 3x^3y.y'^2 - x^4.y'^3 - 1 = 0$ $-x^3y'^4 + (3x^2y - x^4).y'^3 + (3x^3y - 3xy^2).y'^2 + (y^3 - 3x^2y^2)y' + xy^3 - 1 = 0$ * orde = 1, want y' is de hoogste afgeleide die voorkomt in de vergelijking.

(2c) Toon aan dat de familie krommen $y = C_1 + \ln |C_2 x|$ te schrijven is met één constante.

 $y = C_1 + \ln |C_2 x|$) eigenschap van logaritmen $y = c_1 + \ln|c_2| + \ln|x|$ CIER en en ColeR = constante C C1+ln/C2/ER

 \Rightarrow y = C + enlx1

(5) a) Toon aan dat
$$y = C_1 e^x + C_2 e^{2x} + x$$
 de AO is van $y'' - 3y' + 2y = 2x - 3$.
b) Bepaal de PO door (0,0) en (1,0)

a)
$$y = c_1 e^x + c_2 e^{dx} + x$$
 2 affeiden maar x
 $y' = c_1 e^x + d \cdot c_2 e^{dx} + 1$ 2 affeiden maar x
 $y'' = c_1 e^x + 4 \cdot c_2 e^{dx}$

$$= \frac{3y'' - 3y' + dy}{4 + 2ce^{2x} + 3[4e^{2x} + 3ce^{2x} + 1]} + 2[4e^{2x} + 4ce^{2x} + x]$$

$$= 2x - 3$$

b) Mubstitutie van (0,0) en (1,0) in AO:
$$y = Ge^{x} + C_{2}e^{2x} + x$$

$$\begin{cases}
0 = C_{1} + C_{2} \\
0 = C_{1} \cdot e + C_{2} \cdot e^{2} + 1
\end{cases} \Rightarrow \begin{cases}
C_{2} = -C_{1} \\
C_{1}(e - e^{2}) = -1
\end{cases}$$

$$\Rightarrow \begin{cases}
C_{1} = \frac{-1}{e - e^{2}} = \frac{1}{e^{2} - e}
\end{cases}$$

$$\Rightarrow$$
 PO door (0,0) en (1,0):
 $y = \frac{1}{e^2 - e} [e^{x} - e^{2x}] + x$

8 Bepaal de DVG van de familie cirkels met gegeven straal R en middelpunt op de X-as.

STAP 1: Vergelijking van de formilie krommen

* straal v/d cirkels = R

* middelpunt vid cirkels = m(C, 0)(punt opde X-as)

 $\Rightarrow \underline{vgl}: (x-C)^2 + y^2 = R^2$

STAP2: DVG van de familiekrommen

Deze familie cirkels is enkel afhankelijk van 1 constante, namelijk van $C: (X-C)^2 + y^2 = R^2$

-> Elke cirkel van deze familie cirkels heeft dezelfde straal R

→ De cirkels van deze familie cirkels hebben <u>miet</u> dezelfde waarde voor de constante C.

U cursus p. 44

Om de DVG van deze familie cirkels te bepalen, mag de vergelijking dus maar 1 keer afgeleid worden:

$$\begin{cases} (x-c)^2 + y^2 = R^2 & (2) \text{ jumplicult affection naarx} \\ 2(x-c) + 2y \cdot y' = 0 & (1) \end{cases}$$

luit (1):
$$x-c = -y \cdot y'$$
 $\int \text{ mubstitute in } (2)$
 $OVG: y^2 \cdot y'^2 + y^2 = R^2$

STAP1: Vergelijking van de familie krommen

$$*$$
 top = $t(0,C_1)$

$$\Rightarrow$$
 vgl: $(y-c_1)=c_2 x^2$

STAPA: DVG van de familie krommen

- (1) ! Controle of de constanten G en C₂ onafhankelijk zijn

 → OK, deze familie krommen is niet te schrijven met
 1 constante.
- (2) DVG vid familie krommen

 Deze familie parabolen is afhankelijk van 2 constanten

 (namelijk van C_1 en C_2): $y-C_1 = C_2 \times^2$ V curnes p. 44

Om de DVG van deze familie parabolen te bepalen, mag de vergelijking dus maar 2 keer afgeleid worden:

$$\begin{cases} y'-C_1 = C_2 x^2 \\ y' = 2C_2 x \end{cases} \text{ impliciet affeiden naar } x$$

$$\begin{cases} y'' = 2C_2 x \\ y'' = 2C_2 \end{cases} \text{ affeiden naar } x$$

Substitutie van (1) in (2): y'=y''x

$$\underline{DVG}: Xy'' = y'$$