ZFSC: Общий план работ по подтверждени теории.

Евгений Монахов

Главная цель

Построить и доказать Zero-Field Spectral Cosmology (ZFSC) через эксперименты и численные расчёты. Ключевой ориентир: вывести массы поколений частиц, матрицы смешивания CKM/PMNS, силы взаимодействий и строгое геометрическое определение постоянной тонкой структуры α . Всё остальное (СМВ, космология, H_0 , возраст Вселенной) служит дополнительными проверками.

Этап I. Микромир — «лестница поколений»

А. Спектры и массы

- Построить базовую матрицу $H(N, \Delta, r, g_L, g_R, h_1, h_2, h_3)$.
- Получить собственные значения $\lambda_n(H)$.
- Интерпретировать первые три устойчивые положительные моды как массы поколений (u/d, $e/\mu/\tau$, нейтрино).

Простыми словами: Мы проверяем, что в матрице естественным образом рождаются «три этажа» масс частиц.

B. CKM и PMNS

$$CKM = U_u^{\dagger} U_d$$
, $PMNS = U_{\ell}^{\dagger} U_{\nu}$.

Простыми словами: Берём «направления» (собственные векторы) из разных секторов. Если они не совпадают, рождается смешивание. Мы ожидаем: малые углы для кварков (СКМ), большие углы для нейтрино (PMNS).

${f C.}$ Геометрическое α

$$\alpha^{-1} = \mathcal{F}$$
(геометрия H и слоёв)

Простыми словами: Хотим вывести $1/\alpha \approx 137$ как математическую константу. Это будет главный «вау-результат» всей работы.

1

Этап II. Сотрудничество с CERN и LHC

А. Письма и «кости»

- Не раскрывая всю теорию, отправлять запросы в коллаборации (ATLAS, CMS, LHCb).
- Ставить акценты: «есть математический метод, который предсказывает иерархии масс и смешивания».
- Просить проверить отдельные численные совпадения.

В. Проверки на LHC

- Сравнение иерархий поколений $(m_t/m_c/m_u,\,m_\tau/m_u/m_e)$.
- Углы СКМ и PMNS.
- Возможные аномалии в редких распадах (В-мезоны, лептонная универсальность).

Простыми словами: Мы хотим, чтобы LHC подтвердил: «да, предсказания масс и смешивания совпадают с нашими данными».

Этап III. Космология и реликтовое излучение (СМВ)

А. Наш прогноз

ZFSC предсказывает:

- слегка изменённый возраст Вселенной $(t(z) = t_{\Lambda CDM}(z) + \gamma \ln(1+z)),$
- медленную эволюцию $G_{\text{eff}}(t)$,
- фрактальные паттерны в анизотропиях СМВ.

Простыми словами: Если мы правы, в СМВ должны быть «необъяснимые шероховатости» — они уже есть, но стандартная космология их игнорирует.

В. Данные коллабораций

- Планк (Planck, ESA).
- ACT (Atacama Cosmology Telescope).
- SPT (South Pole Telescope).

Мы можем скачать их открытые карты и проверить нашу гипотезу напрямую.

2

Этап IV. Тактика работы

- 1. **Самостоятельные проверки.** Сначала считаем сами: массы, СКМ/PMNS, α, СМВ-анализ.
- 2. **«Кости» коллаборациям.** Посылаем частичные результаты, не раскрывая полной картины.
- 3. **Независимая верификация.** Когда несколько независимых коллабораций подтверждают совпадения публикуем ZFSC.

 $\it Простыми$ словами: Сначала сами убеждаемся, что работает. Потом даём учёным проверять куски. И только когда совпадения устойчивы — открываем всю теорию.

Финальная цель

- Математическое и экспериментальное подтверждение ZFSC.
- Главный результат: α как геометрическая константа.
- Побочный бонус: новая космология с объяснением СМВ и H_0 .

Итог: Если всё это подтверждается — мы сделали шаг к «Теории всего».