2	r oblisht <i>u</i>					
Question	Answer	Marks	Guidance			
9(a)	$\begin{bmatrix} \frac{1}{2}k^2 \times \frac{25}{4} - 2k \times \frac{5}{2} + 2 = \frac{1}{2} \\ \text{OR} \\ \frac{1}{2}k^2 \times \frac{25}{4} - 2k \times \frac{5}{2} + 2 = k \times \frac{5}{2} + \left(\frac{1}{2} - \frac{5}{2}k\right) \end{bmatrix}$ $25k^2 - 40k + 12 [=0]$	M1*	Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ in the curve equation or equating the line and the curve and then using $x = \frac{5}{2}$ and $p = \frac{1}{2} - \frac{5}{2}k$. Simplify to get a three-term quadratic in k . Condone errors in simplification.			
	$k = \frac{2}{5}$	A1	OE Condone inclusion of $k = \frac{6}{5}$.			
	$\frac{1}{2} = \left(\text{their } \frac{2}{5} \right) \left(\frac{5}{2} \right) + p \implies p =$	DM1*	Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ and <i>their k</i> in an equation in <i>p</i> . Either the line (as shown) or $4p^2 + 12p + 5 = 0$ are the most likely and solving for <i>p</i> .			
	$p = -\frac{1}{2}$	A1	OE Condone inclusion of $p = -\frac{5}{2}$.			
	$\frac{2}{25}x^2 - \frac{6}{5}x + \frac{5}{2} = 0 \left[4x^2 - 60x + 125 = 0 \right]$	DM1	Equating the line and curve using <i>their</i> k and p and simplify to get a three-term quadratic $[=0]$.			
	$\left(\frac{25}{2}, \frac{9}{2}\right)$	A1 A1	OE Accept $x = \frac{25}{2}$, $y = \frac{9}{2}$.			

Question	Answer	Marks	Guidance
9(a)	Alternative Method for Question 9(a)		
	$\left[\frac{1}{2}k^2 \times \frac{25}{4} - 2k \times \frac{5}{2} + 2 = k \times \frac{5}{2} + p\right]$ $4p^2 + 12p + 5 = 0$	M1*	OE Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ in the curve equation or equating the line and the curve and then using $x = \frac{5}{2}$ and $k = \frac{1}{5} - \frac{2}{5}p$. Simplify to get a three-term quadratic in $p = 0$.
	$p = -\frac{1}{2} \text{ OE}$	A1	Condone inclusion of $p = -\frac{5}{2}$.
	$\boxed{\frac{1}{2} = \left(\frac{5}{2}k\right) + \left(their - \frac{1}{2}\right) \implies k =}$	DM1*	Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ and <i>their p</i> in the line equation and solving for k .
	$k = \frac{2}{5}$	A1	OE Condone inclusion of $k = \frac{6}{5}$.
	$\frac{2}{25}x^2 - \frac{6}{5}x + \frac{5}{2}[=0] \left[4x^2 - 60x + 125[=0] \right]$	DM1	Equating the line and curve using <i>their k</i> and p and simplify to get a three-term quadratic $[= 0]$.
	$\left(\frac{25}{2},\frac{9}{2}\right)$	A1 A1	OE Accept $x = \frac{25}{2}$, $y = \frac{9}{2}$.
		7	

Question	Answer	Marks	Guidance			
9(b)	$\left[\frac{1}{2}k^2x^2 - 2kx + 2 = kx + p \implies \right] \frac{1}{2}k^2x^2 - 3kx + 2 - p$	M1*	Equate the original equations of the curve and the line and collect like terms; k and p must still be present.			
	$9k^2 - 4 \times \frac{1}{2}k^2(2-p)$	DM1	Use of $b^2 - 4ac$ for their quadratic in x to give an expression in k and p. This expression can come from their equation in (a).			
	$p < -\frac{5}{2}$	A1				
		3				

rublished