

Supermercado ao Domicílio - Final

Mestrado Integrado em Engenharia Informática e Computação

Concepção e Análise de Algoritmos

Turma 2, grupo A:

Cristiana Maria Monteiro Ribeiro - up201305188@fe.up.pt

Marta Diogo Torgal Pinto - up201407727@fe.up.pt

Mónica Ariana Ribeiro Fernandes - up201404789@fe.up.pt

Índice

Introdução	2
Análise do problema	3
Formalização do tema	5
Dados de entrada	5
Dados de saída	6
Função Objetivo	6
Funcionalidades da aplicação	7
Clientes	7
Registar-se	7
Login	8
 Realizar uma encomenda 	8
2. Modificar conta	8
3. Eliminar conta	8
Distribuição de entregas	8
Administração do supermercado	8
 Mudar nome do Supermercado 	9
2. Modificar o local do Supermercado	9
3. Modificar Camiões	9
Pesquisa de Ruas	9
Pesquisa Exata	9
Pesquisa Aproximada	10
Pesquisa com sucesso	10
Limites da Aplicação	10
Resultados Esperados	11
Descrição da solução	11
Técnicas de Concepção	11
Algoritmos	12
1. Dijkstra	12
2. Travel Salesman Problem	12
3. Knuth-Morris-Pratt	13
4. Pesquisa Aproximada	13
Diagrama de Classes	14
Conclusão	16
Bibliografia	16
CAL	

Introdução

Este projeto foi desenvolvido na Unidade Curricular Concepção e Análise de Algoritmos do Mestrado Integrado em Engenharia Informática e Computação da Faculdade de Engenharia da Universidade do Porto.

Neste relatório encontra-se o tema escolhido pelo nosso grupo, qual a abordagem escolhida para alcançar a solução, os resultados esperados e as principais dificuldades durante a elaboração do mesmo.

Análise do problema

O tema escolhido foi o Supermercado ao Domicílio (tema 6) cujo principal objetivo é rentabilizar o serviço de entrega das encomendas feitas pelos clientes, sendo que o fator decisivo na escolha dos itinerários é a distância.

Na primeira fase do projeto, consideramos apenas a existência de um só ponto de distribuição (um só Supermercado) a partir do qual serão calculadas as distâncias mínimas para os pontos de entrega, tendo sempre como objetivo minimizar o número de viagens e maximizar o número de entregas feitas na mesma viagem.

Deste modo, as encomendas serão agrupadas pela data da sua entrega e é com base nesse critério que os camiões serão carregados. Considerando a possibilidade do peso da mercadoria exceder o limite de peso suportado pelo camião, tornou-se necessário investir em mais do que um camião para o transporte da mercadoria na mesma data.

Na segunda fase da elaboração do projeto, será acrescentada uma nova funcionalidade: pesquisa de *strings*, cujo principal objetivo é verificar se na rua introduzida pelo utilizador existe ou não algum supermercado. Para isso, consideramos a existência de uma cadeia de supermercados com vários pontos de distribuição espalhados pelo mapa.

É expectável que o utilizador introduza o nome (ou parte dele) da rua que pretende procurar no sistema. A partir daí, o programa realiza a pesquisa exata com a string introduzida e caso a pesquisa seja bem-sucedida, verifica se existe algum supermercado nessa rua. No caso desta pesquisa falhar, o programa efectua a pesquisa aproximada que indicará ao utilizador os nomes de ruas mais semelhantes, ou seja, em que a distância entre a *string* introduzida e o nome da rua for menor. De seguida, o utilizador pode escolher qual a rua que pretende analisar e o programa verifica a existência ou não de algum supermercado nessa mesma rua.

Durante a execução do programa, são mostradas mensagens informativas na consola para que o utilizador perceba qual das pesquisas está a ser efetuada.

A elaboração do projeto baseou-se na estrutura de dados grafo que foi construído com

recurso a um mapa real. O mapa real usado foi obtido através do site https://www.openstreetmap.org/. Assim sendo, os nós do grafo representam tanto os supermercados como as casas que vão ser alvo da entrega e as arestas representam os itinerários escolhidos desde o supermercado até aos postos de entrega.

Com recurso à aplicação *GraphViewer* conseguimos ilustrar as rotas das viagens e os nomes das ruas, bem como o resultado das pesquisas, uma vez que se estas forem bem-sucedidas e o supermercado existir, o seu ícon representativo será diferenciado.

Formalização do tema

Dados de entrada

Para ler e guardar a informação necessária à execução do programa, utilizámos alguns ficheiros de texto:

- <u>roads.txt</u> guarda o identificador e o nome da estrada, bem como um indicador de bidirecionalidade (isto é, se a rua é de um ou de dois sentidos).
- <u>users.txt</u> guarda o nome dos clientes do supermercado, o seu número de identificação fiscal e o identificador da sua casa (nó).
- <u>edges.txt</u> guarda o identificador da estrada a que a aresta pertence, bem como o seu nó de origem e o nó de destino.
- <u>vertex.txt</u> guarda o identificador do nó, a sua latitude e longitude em graus e em radianos.
- <u>delivery.txt</u> guarda a informação das entregas a realizar a casa, o peso da encomenda e a data a realizar a entrega.

Os ficheiros correspondentes aos nós, às arestas e às estradas foram obtidos com recurso ao programa cedido (*Parser*) na página do moodle da unidade curricular de modo a obter mapas reais usámos o OpenStreetMaps(*https://www.openstreetmap.org/*).

A partir destes construímos um grafo pesado **G =< V, E >** em que:

- → <u>V</u> <u>Vértice</u> ou nó que representa as conexões entre as arestas. Alguns deles representam o supermercado e as casas às quais se pretende realizar as entregas.
- → <u>E</u>- <u>Aresta</u> representa uma rua (ou parte dela menos comum). O seu peso é dado pela distância entre o nó de origem e o nó de destino.

Para a implementação da pesquisa de *strings*, é pedido ao utilizador que introduza a *string* que deverá ser analisada pelo programa.

Dados de saída

O resultado do programa, isto é, as casas nas quais foram feitas entregas e o percurso percorrido pelo camião, é apresentado na forma de gráfico com o suporte da ferramenta *Graph Viewer*, como foi referido anteriormente.

solicitada a pesquisa de uma *string*, para além das mensagens informativas (que explicitam o sucesso ou insucesso da pesquisa), no caso de existir um supermercado na rua procurada, o programa altera o seu *ícon* correspondente para o utilizador poder ver com clareza a sua localização no mapa.

Figura 2: Supermercado resultante da pesquisa.

Função Objetivo

- Efetuar o maior número de entregas possível (desde o supermercado até ao destino) no mesmo dia, escolhendo sempre o caminho mais curto, nunca esquecendo a necessidade de respeitar a capacidade máxima dos camiões.
- Tendo sido fornecido o nome de uma rua (ou parte dele), verificar se a rua existe e, em caso afirmativo, indicar se existe ou não um supermercado nessa mesma rua.

Funcionalidades da aplicação

A aplicação começa por mostrar um menu, em que o utilizador pode escolher quais são as atividades que pretende realizar:

```
Bem-vindo ao Super Precos Baixos!!

1 - Clientes

2 - Distribuicao de entregas

3 - Administrar Supermercado

4 - Pesquisar Ruas

5 - Sair.

Insira o numero da sua escolha. Obrigado.
```

Clientes

Registar-se

```
Bem-vindo a tab dos Clientes!

1 - Registar-se

2 - Login

3 - Sair.

Insira o número da sua escolha. Obrigado.

1

Indique por favor:

0 seu nome

Marta Torgal

0 seu nif:

123456789

0 id da sua morada:

154025730

Ja se encontra registado!
```

Login

```
Bem-vindo a tab do Login!
Introduza o seu nif
123456789
Bem-vindo a tab dos Clientes, 123456789!
1 - Realizar uma encomenda
2 - Modificar Conta
3- Eliminar Conta
4 - Ver perfil
5- Sair
```

1. Realizar uma encomenda

```
Indique o peso da sua encomenda!
50
Indique a data de entrega da encomenda!
09/04/2017
```

2. Modificar conta

```
Modificar conta de Cliente
1 - Modificar o Nome da conta
2 - Modificar a Morada
3 - Sair
```

3. Eliminar conta

A conta do utilizador que fez o Login é eliminada.

Distribuição de entregas

```
id Truck 27
  truck date: 12/12/2017;;;
  truck capacity max: 500
  truck max distance: 1.93622e+006
Indique, por favor, o id do camiao!
```

Após o utilizador escolher um id (do camião) da lista que lhe é mostrada, o utilizador pode visualizar qual é o itinerário feito por esse camião (imagem na secção Dados de Saída).

Administração do supermercado

```
Bem-vindo ao tab de administracao do Super Preços Baixos

1 - Mudar o Nome do Supermercado

2 - Modificar o local do Supermercado

3 - Modificar Camioes

4 - Sair.

Insira o número da sua escolha. Obrigado.
```

1. Mudar nome do Supermercado

```
Insira o número da sua escolha. Obrigado.
Indique o novo nome do Supermercado
Compraki
Bem-vindo ao tab de administracao do Compraki
```

2. Modificar o local do Supermercado

```
Indique a nova morada(id) do Supermercado
137319915
A morada não se encontra no mapa!
```

3. Modificar Camiões

```
Insira o número da sua escolha. Obrigado.
1 - Modificar a capacidade maxima do camiao
2 - Modificar a distancia maxima percorrida pelo camiao
3 - Sair.
Insira o número da sua escolha. Obrigado.
```

Pesquisa de Ruas

Pesquisa Exata

```
Insira o numero da sua escolha. Obrigado.
Bem-Vindo à pesquisa de Supermercado por rua! Pf insira o nome de uma rua que deseja procurar.
Inicio de pesquisa exata...
A rua que procurava foi encontrada: Beeline Court
Supermercado nao encontrado na rua pesquisada.
Bem-vindo ao Super Precos Baixos!!
1 - Clientes
2 - Distribuicao de entregas
3 - Administrar Supermercado
4 - Pesquisar Ruas
5 - Sair.
Insira o numero da sua escolha. Obrigado.
```

Pesquisa Aproximada

4

Bem-Vindo à pesquisa de Supermercado por rua! Pf insira o nome de uma rua que deseja procurar. Chs

Inicio de pesquisa aproximada...

A rua que procurava foi encontrada: Chris Craft Street Supermercado nao encontrado na rua pesquisada.

Pesquisa com sucesso

Insira o numero da sua escolha. Obrigado.

4

Bem-Vindo à pesquisa de Supermercado por rua! Pf insira o nome de uma rua que deseja procurar. mish

Inicio de pesquisa exata...

A rua que procurava foi encontrada: Amish Avenue Supermercado encontrado na rua pesquisada.

Limites da Aplicação

- Os limites da aplicação recaem sobre a capacidade máxima que o camião pode transportar, assim como a data em que a entrega se realiza. Datas diferentes, implicam viagens diferentes e a sobrecarga de um camião também.
 O camião também tem um limite máximo de distância que pode percorrer numa viagem, e se este for ultrapassado, então, não é possível efetuar a entrega.
- Como utilizámos uma pequena parte do mapa, nem todos os nós estão ligados e é possível que existam casas em que não se podem efetuar entregas.
- 3. Para descobrir a distância real entre dois vértices foi necessário recorrer a fórmulas matemáticas.
 - 3.1. De forma a converter a longitude e a latitude em coordenadas planas aplicámos as seguintes fórmulas:

```
x = Raio_da_Terra * cos (latitude) * cos (longitude);y = Raio_da_Terra * cos (latitude) * sin (longitude);
```

3.2. Para calcular a distância entre dois vértices:

```
deltaLat = latitude1 - latitude2;

deltaLon = longitude 1 - longitude2;

c = 2* asin ( √a);

a = sin(deltaLat/2)* sin(deltaLat/2) +

sin(deltaLon/2)*sin(deltaLon/2)*cos(latitude1)*cos(latidude2);

Distância = 100* c* Raio_da_Terra;
```

Resultados Esperados

- Espera-se que as despesas da companhia de supermercados sejam reduzidas, dado que o número de entregas durante uma única viagem será maximizado.
- Também é expectável que as ruas pesquisadas pelo utilizador sejam encontradas (caso existam) e que os supermercados sejam diferenciados.

Será possível visualizar o percurso de cada viagem e o resuldado da pesquisa com a ajuda da ferramenta *GraphicViewer*.

Descrição da solução

Técnicas de Concepção

Das diversas classes do programa destacam-se as seguintes:

- Company Classe responsável por interligar o grafo, o supermercado e o graphviewer.
- Supermarket Classe do supermercado. Guarda os camiões, e todos os dados do supermercado, bem como os utilizadores.
- Graph Responsável por criar o grafo (inclui as classes Vertex e Edge).
- Info Classe de informação. Esta classe representa o tipo de cada Vertex.
- Graphviewer Responsável por criar a animação do grafo.

- Truck Classe do camião. Guarda as suas características (data da entrega, distância máxima, capacidade máxima, distância percorrida, capacidade utilizada) assim como as suas encomendas.
- User Responsável por guardar os dados dos utilizadores da aplicação.
- Order Classe da encomenda. Guarda as suas características (data, peso, etc).
- Road Classe responsável por guardar as informações das ruas presentos no programa.

Algoritmos

1. Dijkstra

Optámos por usar este algoritmo, uma vez que é capaz de calcular o menor caminho entre dois nós de um grafo, e que os pesos, neste projeto, não são negativos.

Grande parte do algoritmo tinha sido implementada nas aulas práticas, contudo, algumas alterações foram acrescentadas no sentido de o adaptar ao tema que nos foi proposto.

Este método tem uma complexidade temporal de $O(|E|^*log|V|)$, em que "E" é o número de arestas e "V" o número de vértices.

A complexidade espacial é de ordem O (1).

2. Travel Salesman Problem

Travel Salesman é um algoritmo para determinar o menor caminho a percorrer vários pontos/cidades (visitando apenas uma única vez cada uma deles), retornando ao ponto/cidade de origem. Este problema de otimização é inspirado na necessidade dos vendedores ao realizar entregas em diversos locais percorrendo o menor caminho possível, reduzindo o tempo necessário para a viagem e os possíveis custos de transporte.

Este problema foi também o problema do nosso projecto. Tentamos recolher informação sobre este algoritmo de modo a melhorar a abordagem ao nosso tema.

3. Knuth-Morris-Pratt

Este algoritmo foi implementado para realizar a pesquisa exata e a sua função é procurar a ocorrência de uma *string* num texto.

Knuth-Morris-Pratt possui complexidade temporal e espacial de O(|T| + |P|), em que |T| representa o tamanho da string de texto e |P| representa o tamanho da string que é procurada nesse texto.

.

4. Pesquisa Aproximada

O algoritmo de Pesquisa Aproximada verifica quais as *strings* de texto que necessitam de menor número de alterações relativamente a uma palavra que queiramos procurar e retorna-as.

Como medimos o tempo de execução desta pesquisa, comprava-se que quanto maior for o número de alterações a efetuar numa palavra, maior é o tempo de execução do algoritmo, comprovando a dependência deste em relação ao tamanho da *string* de texto e de padrão.

Este algoritmo possui complexidade temporal e espacial de O(|P|.|T|).

Diagrama de Classes

Figura 3: Diagrama de classes UML.

Foi anexado ao projecto uma pasta com a imagem do diagrama de classes UML, para melhor visualização e realização de zoom se necessário.

Conclusão

O desenvolvimento deste projeto permitiu a todos os elementos do grupo compreender

e utilizar uma estrutura de dados tão importante como é o grafo. Permitiu também o

uso de programação dinâmica, nos seus diversos tipos.

Com a análise e pesquisa de quais seriam os melhores algoritmos a implementar na

nossa aplicação, aprendemos um pouco mais no que diz respeito a esse aspecto.

Aliás, encontrar o algoritmo que melhor se aplicava ao problema, foi uma das

dificuldades principais com que o grupo se deparou.

Agora que o projeto está finalizado, achámos que fomos capazes de encontrar a

melhor solução para a resolução do problema e acreditamos que cumprimos todos os

requisitos.

O trabalho foi distribuído de igual forma por todos os elementos, por isso estas são as

percentagens que atribuímos a cada um :

Cristiana Maria Monteiro Ribeiro - 33.33%

Marta Diogo Torgal Pinto - 33.33%

Mónica Ariana Ribeiro Fernandes - 33.33%

Bibliografia

http://www.movable-type.co.uk/scripts/latlong.html

• https://en.wikipedia.org/wiki/Travelling_salesman_problem

• Página da Unidade Curricular do Moodle.

CAL

16