

Democratic Elections in Faulty Distributed Systems

Himanshu Chauhan and Vijay K. Garg

Parallel and Distributed Systems Lab, Department of Electrical and Computer Engineering,

Motivation – Leader Election

Conventional Problem

Node with the highest id should be the leader. All the nodes in the system should agree on the leader.

Motivation – Leader Election

Conventional Problem

Node with the highest id should be the leader. All the nodes in the system should agree on the leader.

■ Philosophers of Ancient Athens would protest!

Motivation – Leader Election

- *Elect* a leader
 - Each node has individual preferences
 - Conduct an election where every node votes

- *Elect* a leader
 - Each node has individual preferences
 - Conduct an election where every node votes

Use Case:

- Job processing system
- Leader distributes work in the system

- *Elect* a leader
 - Each node has individual preferences
 - Conduct an election where every node votes

Use Case:

- Job processing system
- Leader distributes work in the system
- Worker nodes vote, based upon:
 - Latency of communication with *prospective* leader
 - Individual work load

- *Elect* a leader
 - Each node has individual preferences
 - Conduct an election where every node votes

Use Case:

- Job processing system
- Leader distributes work in the system
- Worker nodes vote, based upon:
 - Latency of communication with *prospective* leader
 - Individual work load
- Enter 'Byzantine' Voters!

- 'Multivalued Byzantine Agreement', Turpin and Coan 1984, 'k—set Consensus', Prisco et al. 1999
 - Every voter sends her *top* choice
 - Run Byzantine Agreement
 - Agree on the choice with most votes

'Multivalued Byzantine Agreement', Turpin and Coan 1984,

- 'k-set Consensus', Prisco et al. 1999
 - Every voter sends her *top* choice
 - Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	c	$^{\mathrm{c}}$	a
2^{nd} choice	a	a	\mathbf{a}	\mathbf{a}	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	$^{\mathrm{c}}$

'Multivalued Byzantine Agreement', Turpin and Coan 1984, 'k—set Consensus', Prisco et al. 1999

- Every voter sends her *top* choice
- Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	c	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

Elect choice with most votes (at top) : c or b

'Multivalued Byzantine Agreement', Turpin and Coan 1984, 'k—set Consensus', Prisco et al. 1999

- Every voter sends her *top* choice
- Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	c	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

Elect choice with most votes (at top) : c or b

But ...

- 'Multivalued Byzantine Agreement', Turpin and Coan 1984,
- k—set Consensus', Prisco et al. 1999
 - Every voter sends her *top* choice
 - Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b				a
2^{nd} choice	a	\mathbf{a}	\mathbf{a}	\mathbf{a}	\mathbf{a}	\mathbf{a}	b
3^{rd} choice				b	b	b	

Elect choice with most votes (at top) : c or b

But ...

$$\#(a > b) = 4, \quad \#(b > a) = 3$$

- 'Multivalued Byzantine Agreement', Turpin and Coan 1984,
- 'k-set Consensus', Prisco et al. 1999
 - Every voter sends her *top* choice
 - Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice				С	С	С	a
2^{nd} choice	a	a	a	a	\mathbf{a}	a	
3^{rd} choice	С	С	С				С

Elect choice with most votes (at top) : c or b

But ...

$$\#(a > b) = 4$$
, $\#(b > a) = 3$ and $\#(a > c) = 4$, $\#(c > a) = 3$

Model & Constructs

System

- \blacksquare *n* processes (voters)
- \blacksquare f Byzantine processes (voters) : bad
- \blacksquare Non-faulty processes (voters) : good
- f < n/3

Model & Constructs

System

- \blacksquare *n* processes (voters)
- \bullet f Byzantine processes (voters) : bad
- \blacksquare Non-faulty processes (voters) : good
- f < n/3

Jargon

 \mathcal{A} : Set of candidates

Ranking: Total order over the set of candidates.

Vote: A voter's preference ranking over candidates.

Ballot: Collection of all votes.

Scheme: Mechanism that takes a ballot as input and outputs a

winner.

Conducting Distributed Democratic Elections

- Use Interactive Consistency
 - Agree on everyone's vote¹
 - Agree on the ballot
- Use a *scheme* to decide the winner

¹We use Gradecast based Byzantine Agreement by Ben-Or et al.

Byzantine Social Choice

Social Choice

Given a ballot, declare a candidate as the winner of the election.

Arrow 1950-51, Buchanan 1954, Graaff 1957

Byzantine Social Choice

Given a set of n processes of which at most f are faulty, and a set \mathcal{A} of k choices, design a protocol elects one candidate as the social choice, while meeting the 'protocol requirements'.

Byzantine Social Welfare

Social Welfare

Given a ballot, produce a total order over the set of candidate.

Arrow 1950-51, Buchanan 1954, Graaff 1957, Farquharson 1969

Byzantine Social Welfare

Given a set of n processes of which at most f are faulty, and a set \mathcal{A} of k choices, design a protocol that produces a $total\ order$ over \mathcal{A} , while meeting the 'protocol requirements'.

Protocol Requirements

■ Agreement: All good processes decide on the same choice/ranking.

Protocol Requirements

■ Agreement: All good processes decide on the same choice/ranking.

2 Termination: The protocol terminates in a finite number of rounds.

Validity Condition

Validity: Requirement on the choice/ranking decided, based upon the votes of good processes.

Validity Condition

Validity: Requirement on the choice/ranking decided, based upon the votes of good processes.

- \blacksquare S: If v is the top choice of all good voters, then v must be the winner.
- $lacksymbol{S}'$: If v is the last choice of all good voters, then v must **not** be the winner.
- M': If v is last choice of majority of good voters, then v must **not** be the winner.

Validity Conditions

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	$^{\mathrm{c}}$	\mathbf{c}	\mathbf{a}
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

Table: Ballot of 7 votes (P_6 , P_7 Byzantine)

Validity Conditions

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	$^{\mathrm{c}}$	\mathbf{c}	\mathbf{a}
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	$^{\mathrm{c}}$	\mathbf{c}	b	b	b	\mathbf{c}

Table: Ballot of 7 votes (P_6 , P_7 Byzantine)

M (Elect majority of $good\ \mathrm{voters})$: elect b

Validity Conditions

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	$^{\mathrm{c}}$	\mathbf{c}	\mathbf{a}
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

Table: Ballot of 7 votes (P_6 , P_7 Byzantine)

M (Elect majority of good voters): elect b

P (Do not elect a candidate that is not the top choice of any good voters) : $do\ not\ elect\ a$

$BSC(k, \overline{V})$

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.

BSC(2,M):

BSC(k,V)

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.

BSC(2,M):

 \blacksquare M: elect top choice of majority of good votes

BSC(k,V)

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.

BSC(2,M):

- M: elect top choice of majority of good votes
- Impossible to solve for $f \ge n/4$

BSC(k,V)

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.

BSC(2,M):

- \blacksquare M: elect top choice of majority of good votes
- Impossible to solve for $f \ge n/4$

Reason:

 $f \ge n/4 \Rightarrow$ can not differentiate b/w good and bad votes

BSC(2, M'):

- \blacksquare M': do not elect the last choice of majority of good votes
- Impossible to solve for $f \ge n/4$

$BSC(k, S \wedge M')$:

- \blacksquare S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, do not elect v'

$BSC(k, S \wedge M')$:

- \blacksquare S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, do not elect v'
- Solvable for $k \ge 3$

$BSC(k, S \wedge M')$:

- \blacksquare S: if v is first choice of all good voters, elect v
- \blacksquare M': if v' is last choice of majority of good voters, do not elect v'
- Solvable for $k \ge 3$

Approach:

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	c	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	c	c	b	b	b	c

$BSC(k, S \wedge M')$:

- \blacksquare S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, do not elect v'
- Solvable for $k \ge 3$

Approach:

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	c	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	c	$^{\mathrm{c}}$	b	b	b	\mathbf{c}

■ Round 1 : Agree on *last* choices of all voters

$BSC(k, S \wedge M')$:

- \blacksquare S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, do not elect v'
- Solvable for $k \ge 3$

Approach:

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	c	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	c	$^{\mathrm{c}}$	b	b	b	\mathbf{c}

$$n = 7,$$
 $f = 2,$ $|(n - f)/2 + 1| = 3$

- Round 1 : Agree on *last* choices of all voters
- Remove any candidates that appears $\lfloor (n-f)/2 + 1 \rfloor$ times or more

$BSC(k, S \wedge M')$:

- \blacksquare S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, do not elect v'
- Solvable for $k \ge 3$

Approach:

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	С	С	С	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	С	С	С	b	b	b	С

$$n = 7,$$
 $f = 2,$ $|(n - f)/2 + 1| = 3$

- Round 1 : Agree on *last* choices of all voters
- Remove any candidates that appears $\lfloor (n-f)/2 + 1 \rfloor$ times or more
- $f < n/3 \land k \ge 3 \Rightarrow$ at least one candidate that would not be removed

Byzantine Social Choice – Possibilities

$BSC(k, S \wedge M')$:

- \blacksquare S: if v is first choice of all good voters, elect v
- \blacksquare M': if v' is last choice of majority of good voters, do not elect v'
- Solvable for $k \ge 3$

Approach:

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	С	С	С	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	С	С	С	b	b	b	С

$$n = 7,$$
 $f = 2,$ $|(n - f)/2 + 1| = 3$

- Round 1 : Agree on *last* choices of all voters
- Remove any candidates that appears $\lfloor (n-f)/2 + 1 \rfloor$ times or more
- $f < n/3 \land k \ge 3 \Rightarrow$ at least one candidate that would not be removed
- \blacksquare Round 2 : Use top choices from remaining candidates, agree and decide

$\overline{BSC(k,V)}$ Results – Summarized

Requirement	Unsolvable	Solvable
S	-	$k \ge 2$
S'	-	$k \ge 2$
M	$f \ge n/4 \land k \ge 2$	-
M'	$f \ge n/4 \wedge k = 2$	$k \ge 3$
P	$f \ge 1 \land k \ge n$	f < min(n/k, n/3)
		$\land \ 2 \le k < n$

Table: Impossibilities & Possibilities for $\mathit{BSC}(k,V)$

Given a ballot, produce a total order over the set of candidates

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

for $1 \le i \le k$ $c_i = \text{candidate}$ with most votes at position i in ballot $result[i] = c_i$ **done**

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

for
$$1 \le i \le k$$

 $c_i = \text{candidate}$ with most votes at position i in ballot $result[i] = c_i$

done

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	c	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	$^{\mathrm{c}}$	\mathbf{c}	\mathbf{c}	b	b	b	$^{\mathrm{c}}$

Result: $b \succ a \succ c$

Distance (d) between rankings: # of pair-orderings on which rankings differ

Pairwise Comparison, Condorcet, circa 1785

Distance (d) between rankings: # of pair-orderings on which rankings differ

Pairwise Comparison, Condorcet, circa 1785

r	r'	d
\overline{a}	b	1
b	a	- differ on
c	c	(a,b)

Distance (d) between rankings: # of pair-orderings on which rankings differ

Pairwise Comparison, Condorcet, circa 1785

r	r'	d
\overline{a}	c	2
b	b	- differ on
c	$a \mid$	(a,b) and (b,c)

Distance (d) between rankings: # of pair-orderings on which rankings differ

Pairwise Comparison, Condorcet, circa 1785

r	r'	d
\overline{a}	c	2
b	b	– differ on
c	$a \mid$	(a,b) and (b,c)

Median (m) of ballot: Ranking that has least distance from overall pair-wise comparisons in the ballot

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

For ranking r, let $P_r :=$ ordered pairs from r.

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

For ranking r, let $P_r :=$ ordered pairs from r.

Example: $r = a \succ b \succ c$ then, $P_r = \{(a, b) \ (b, c) \ (a, c)\}$

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

For ranking r, let $P_r :=$ ordered pairs from r.

Example:
$$r = a \succ b \succ c$$
 then, $P_r = \{(a, b) \ (b, c) \ (a, c)\}$

For a given ballot B:

$$score(r, B) = \Sigma$$
 (frequency of p in B)

 S_k : set of all permutations of k candidates (k! permutations)

foreach ranking $r \in S_k$ do compute $score_r = score(r, B)$

done

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

For ranking r, let $P_r :=$ ordered pairs from r.

Example:
$$r = a \succ b \succ c$$
 then, $P_r = \{(a, b) \ (b, c) \ (a, c)\}$

For a given ballot B:

$$score(r, B) = \Sigma$$
 (frequency of p in B)

 S_k : set of all permutations of k candidates (k! permutations)

foreach ranking $r \in S_k$ do

compute
$$score_r = score(r, B)$$

done

select ranking with maximum $score_r$ value as the outcome

Candidates: $\{a,b,c\}$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	c	c	С	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	$^{\mathrm{c}}$	\mathbf{c}	b	b	b	\mathbf{c}

$$\begin{array}{ll} \#(a \succ b) = 4, & \#(b \succ a) = 3, & \#(a \succ c) = 4, \\ \#(c \succ a) = 3, & \#(b \succ c) = 4, & \#(c \succ b) = 3 \end{array}$$

Candidates: $\{a,b,c\}$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	c	c	С	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

$$\begin{array}{ll} \#(a \succ b) = 4, & \#(b \succ a) = 3, & \#(a \succ c) = 4, \\ \#(c \succ a) = 3, & \#(b \succ c) = 4, & \#(c \succ b) = 3 \end{array}$$

Permutations:

Candidates: $\{a,b,c\}$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	$^{\mathrm{c}}$	$^{\mathrm{c}}$	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

$$\begin{array}{ll} \#(a \succ b) = 4, & \#(b \succ a) = 3, & \#(a \succ c) = 4, \\ \#(c \succ a) = 3, & \#(b \succ c) = 4, & \#(c \succ b) = 3 \end{array}$$

Permutations:

pairs:
$$\{(a, b) (b, c) (a, c)\}$$

Candidates: $\{a,b,c\}$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	$^{\mathrm{c}}$	$^{\mathrm{c}}$	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	c	c	b	b	b	\mathbf{c}

$$\#(a \succ b) = 4, \qquad \#(b \succ a) = 3, \qquad \#(a \succ c) = 4, \#(c \succ a) = 3, \qquad \#(b \succ c) = 4, \qquad \#(c \succ b) = 3$$

Permutations:

	u	U	u
c h c	a	h	a
b c a	c	a	b
\boldsymbol{a} a b	b	c	c

12

pairs:
$$\{(a, b) (b, c) (a, c)\}$$

Candidates: $\{a,b,c\}$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	c	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	$^{\mathrm{c}}$	$^{\mathrm{c}}$	b	b	b	\mathbf{c}

$$\begin{array}{ll} \#(a \succ b) = 4, & \#(b \succ a) = 3, & \#(a \succ c) = 4, \\ \#(c \succ a) = 3, & \#(b \succ c) = 4, & \#(c \succ b) = 3 \end{array}$$

Permutations:

\boldsymbol{a}	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a
12	11	11	10	10	9

Candidates: $\{a,b,c\}$

$$\#(a \succ b) = 4, \qquad \#(b \succ a) = 3, \qquad \#(a \succ c) = 4, \#(c \succ a) = 3, \qquad \#(b \succ c) = 4, \qquad \#(c \succ b) = 3$$

Permutations:

a	a	b	b	c	c
\boldsymbol{b}	c	a	c	a	b
c	b	c	a	b	a
12	11	11	10	10	9

Kemeny-Young Scheme Result: $a \succ b \succ c$

Objective: Minimize the influence of bad voters on the outcome

Objective: Minimize the influence of bad voters on the outcome

f bad voters (f < n/3)

B: Agreed upon ballot; S_k : set of all permutations of k candidates

Objective: Minimize the influence of bad voters on the outcome

```
f bad voters (f < n/3)
```

B: Agreed upon ballot; S_k : set of all permutations of k candidates

```
foreach ranking r \in S_k do

F = f most distant rankings from r in B

define B' = B \setminus F

compute score_r = score(r, B')
```

done

Objective: Minimize the influence of bad voters on the outcome

$$f$$
 bad voters $(f < n/3)$

B: Agreed upon ballot; S_k : set of all permutations of k candidates

foreach ranking $r \in S_k$ do

F = f most distant rankings from r in B define $B' = B \setminus F$ compute $score_r = score(r, B')$

done

select ranking with maximum $score_r$ value as the outcome

$$n=7, \qquad f=2$$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	$^{\mathrm{c}}$	\mathbf{c}	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

$$n=7, \qquad f=2$$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

c b

$$n=7, \qquad f=2$$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	\mathbf{c}	\mathbf{c}	\mathbf{c}	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

$$a$$
 b
 c

$$n=7, \qquad f=2$$

	P_1	P_2	P_3	P_6	P_7
1^{st} choice	b	b	b	c	a
2^{nd} choice	a	a	a	a	b
3^{rd} choice	c	c	c	b	c

a	a	b	b	c	C
b	c	a	c	a	b
c	b	c	a	b	a

11

$$n=7, \qquad f=2$$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	$^{\mathrm{c}}$

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a
9	8	11	6	10	6

$$n=7, \qquad f=2$$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1^{st} choice	b	b	b	$^{\mathrm{c}}$	c	c	a
2^{nd} choice	a	a	a	a	a	a	b
3^{rd} choice	c	\mathbf{c}	\mathbf{c}	b	b	b	\mathbf{c}

a	a	\boldsymbol{b}	b	c	C
b	c	a	c	a	b
C	b	c	a	b	a
9	8	11	6	10	6

Pruned-Kemeny Scheme Result: $b \succ a \succ c$

Suppose ω is an *ideal* ranking over k candidates

 \bullet as the election outcome \Rightarrow maximum social welfare

Suppose ω is an *ideal* ranking over k candidates

- \bullet as the election outcome \Rightarrow maximum social welfare
- All good voters in the system favor ω
 - goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$

Suppose ω is an *ideal* ranking over k candidates

- \bullet as the election outcome \Rightarrow maximum social welfare
- All good voters in the system favor ω
 - goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{a} b$
- All bad voters in the system act hostile
 - try to minimize social welfare by voting against ω
 - badProb: probability of a bad voter putting $b \succ a$ in her vote if $a \succ_{\omega} b$

Suppose ω is an *ideal* ranking over k candidates

- \bullet as the election outcome \Rightarrow maximum social welfare
- All good voters in the system favor ω
 - goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$
- All bad voters in the system act hostile
 - try to minimize social welfare by voting against ω
 - badProb: probability of a bad voter putting $b \succ a$ in her vote if $a \succ_{\omega} b$
- Analyze outcomes generated by schemes

Evaluating Scheme Efficacy

Suppose ω is an *ideal* ranking over k candidates

- \bullet as the election outcome \Rightarrow maximum social welfare
- All good voters in the system favor ω
 - goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{a} b$
- All bad voters in the system act hostile
 - try to minimize social welfare by voting against ω
 - badProb: probability of a bad voter putting $b \succ a$ in her vote if $a \succ_{\omega} b$
- Analyze outcomes generated by schemes

of voters = 100, # of bad voters = 33, badProb = 0.9

Simulation Results

Average (of 50 ballots) distances of produced outcomes from the ideal ranking

Simulation Results, contd.

Average (of 50 ballots) distances of produced outcomes from the ideal ranking

Conclusion

■ Introduction of democratic election problem in distributed systems

Conclusion

■ Introduction of democratic election problem in distributed systems

 Pruned-Kemeny-Young Scheme for Byzantine Social Welfare problem

Future Work

- Pruned-Kemeny-Young (and Kemeny-Young)
 - NP-Hard

Future Work

- Pruned-Kemeny-Young (and Kemeny-Young)
 - NP-Hard
 - Yet produce 'better' results

Future Work

- Pruned-Kemeny-Young (and Kemeny-Young)
 - NP-Hard
 - Yet produce 'better' results
 - Explore techniques for finding 'better' outcomes in polynomial steps

Thanks!

Average (of 50 ballots) distances of produced outcomes from the ideal ranking

Related Work

- Arrow's Impossibility Theorem, and his work on Social Choice and Welfare Theory
 - **1950**, 1951
- Pairwise Comparison Schemes, Social Welfare Schemes, Theory of Voting, Welfare Economics
 - Condorcet circa 1785, Buchanan 1954, Graaff 1957, Kemeny 1959, Farquharson 1969, Ishikawa et al. 1979, Young 1988
- Multivalued Byzantine Agreement Schemes, Byzantine Leader Election, k-set Consensus
 - Turpin and Coan 1984, Ostrovsky et al. 1994, Russell et al. 1998, Kapron et al. 2008, Prisco et al. 1999