### (19) 世界知的所有権機関 国際事務局



# : CONTROL CONTROL ON CONTROL ON THE CONTROL ON THE

# (43) 国際公開日 2003 年12 月11 日 (11.12.2003)

**PCT** 

# (10) 国際公開番号 WO 03/102638 A1

(51) 国際特許分類7: G02B 5/20, G02F 1/1335, 1/13357

(21) 国際出願番号:

PCT/JP02/12363

(22) 国際出願日:

2002年11月27日(27.11.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-163031 2002 年6 月4 日 (04.06.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 東レ株式 会社 (TORAY INDUSTRIES, INC.) [JP/JP]; 〒103-8666 東京都中央区日本橋室町2丁目2番1号 Tokyo (JP).

(72) 発明者; および

WO 03/102638 A1

(75) 発明者/出願人 (米国についてのみ): 山下 哲夫 (YAMASHITA,Tetsuo) [JP/JP]; 〒608-8353 京都府 京 都市 山科区西野野色町 6 7番 1号 アルモード山 科 4 0 4 Kyoto (JP). 滝口 育美 (TAKIGUCHI,Ikumi) [JP/JP]; 〒520-0842 滋賀県 大津市 園山 2 丁目 3番1号B5-307 Shiga (JP). 小嶋 英幸 (KO-JIMA,Hideyuki) [JP/JP]; 〒520-0842 滋賀県 大津市園山2丁目13番1号 Shiga (JP). 佐々木浩行(SASAKI,Hiroyuki) [JP/JP]; 〒520-0532 滋賀県 滋賀郡志賀町小野湖青1丁目3番5号 Shiga (JP).

- (74) 代理人: 佐藤謙二(SATO,Kenji); 〒520-8558 滋賀県 大津市 園山 1 丁目 1番 1号 株式会社東レアイ・ピー・イー 滋賀支所内 Shiga (JP).
- (81) 指定国 (国内): CN, KR, SG, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

#### 添付公開書類:

#### — 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: COLOR FILTER FOR LIQUID CRYSTAL DISPLAY AND SEMITRANSMISSION LIQUID CRYSTAL DISPLAY

(54) 発明の名称: 液晶表示装置用カラーフィルターおよび半透過型液晶表示装置



(57) Abstract: A semitransmission liquid crystal display having a high color reproducibility in the transmission display mode and excellent characteristics (color reproducibility, luminance) in the reflection display mode and produced at low cost and a color filter for a semitransmission liquid crystal display such that the difference in chromaticity between the reflection display and transmission display is small, and the luminance is high are disclosed. The semitransmission liquid crystal display comprising reflecting means including a

pair of opposed substrates with a liquid crystal layer interposed therebetween and a light source using ambient light and a backlight light source is characterized in that a color filter having pixels each including transmission and reflection regions and a coloring layer made of the same material is provided and the backlight light source is a three-wavelength LED backlight.

[続葉有]

### (57) 要約:

透過表示での色再現性が高く、反射表示での特性(色再現性、明るさ)に優れた低コストな半透過型液晶表示装置を得る。また、反射表示と透過表示での色度 差が少なく、明るい半透過型液晶表示装置用カラーフィルターを得る。

液晶層を挟んで互いに対向して配置される一対の基板と、周辺光を光源として活用する反射手段と、バックライト光源とを備えてなる半透過型液晶表示装置において、透過用領域と反射用領域とをカラーフィルターの1画素内に設け、該1 画素内で着色層が同一材料からなるカラーフィルター、および、3波長型のLE Dバックライト光源を具備してなることを特徴とする半透過型液晶表示装置である。



## 明 細 書

液晶表示装置用カラーフィルターおよび半透過型液晶表示装置

#### 技術分野

本発明は、液晶表示装置用カラーフィルターおよびそれを用いた半透過型液晶 表示装置に関するものである。

#### 背景技術

現在、液晶表示装置は軽量、薄型、低消費電力等の特性を生かし、ノートPC、携帯情報端末、デスクトップモニタ、デジタルカメラなど様々な用途で使用されている。バックライトを使用した液晶表示装置においては、低消費電力化を進めるためにバックライト光の利用効率を高めることが求められている。そのため、カラーフィルターには、透過率の向上が要求されている。カラーフィルターの透過率は年々向上しているが、透過率向上による消費電力の大幅な低下は望めなくなってきている。

最近では電力消費量の大きなバックライト光源を必要としない反射型液晶表示 装置の開発が進められており、透過型液晶表示装置にくらべ約1/7と大幅な消費電力の低減が可能であることが発表されている(日経マイクロデバイス別冊フラットパネル・ディスプレイ1998、P. 126)。

反射型液晶表示装置では、消費電力の低減に加えて、屋外での視認性に優れるという利点もある。しかし、十分な環境光強度が確保されない場所では表示が暗くなってしまい、視認性が極端に悪くなるという問題点がある。環境光強度が低い場所でも表示が視認されるようにするために、光源を備えた2つの方式が考案されている。一つは、(1)光源としてバックライトを設け、さらに1画素内の反射膜の一部に切り欠きを入れ、一部が透過型表示方式、一部が反射型表示方式とした液晶表示装置、いわゆる半透過型液晶表示装置(文献としては例えばファインプロセステクノロジージャパン'99、専門技術セミナーテキストA5)、もう一つは、(2)フロントライトを設けた液晶表示装置である。

携帯端末に用いられるバックライト光源、フロントライト光源としては、3波長型の蛍光管、ならびに白色LEDがある。3波長型の蛍光管は消費電力の点からは有利であり、また透過色の色再現性を向上させることが知られており、モバイルPC、PDAなど比較的大きめの携帯端末に使用されている。一方、白色LEDは小型化、薄型化に有利であり、携帯電話などの小型携帯端末に使用されている。

白色LEDはスペクトルの形状により、2波長型と3波長型に分けられる。2 波長型の白色LEDは青色LEDと蛍光体との組み合わせで白色を得ている(第 5 図)。一方、3波長型の白色LEDは、紫外光LEDと赤緑青蛍光体との組み合わせ(第1図)、または赤緑青3色のLEDの組み合わせ(第2図)で白色としている。いままでは、白色LED光源として、2波長型の白色LEDがほぼ唯一の選択肢として使用されてきた(日経エレクトロニクス、2002年2-25号)。

バックライトを設けた半透過型液晶表示装置では、バックライト光を利用する 透過表示と環境光を利用する反射表示が1画素内に共存するため、環境光強度に よらず、視認性のよい表示を行うことが出来る。しかし、第6図に示すような従 来の構成のカラーフィルター、すなわち、反射用領域と透過用領域が特別には設 けられていない、1 画素内での着色が均一なカラーフィルターを用いた場合には、 鮮やかな透過表示を得ようとすると問題点が生じていた。具体的には透過色の色 鮮やかさ (色純度) を向上させると、反射色もそれに伴いさらに色純度が高くな り、色純度とトレードオフの関係にある明るさが極端に低下する。そのため、十 分な視認性が得られないというものである。この問題点は、透過表示を行うとき にはバックライト光がカラーフィルターを1回透過するのに対して、反射表示で は、環境光が入射時と反射時の2回カラーフィルターを透過することに起因する。 また、透過表示では光源がバックライト光である一方、反射表示では光源が自然 光であるために、透過表示と反射表示とでは色純度だけでなく色調も異なってし まう。これは、自然光が第13図に示すようなD65光源に代表されるような連 続的なスペクトルを持つのに対して、バックライト光源が第1図~第5図に示す ようにある特性の波長にスペクトルのピークをもつことに起因する。

上記の問題点を解消する方法の一つとして、反射用領域に透明樹脂層を形成し、



反射用領域の着色層膜厚を薄くすることで、反射表示での明るさを向上させる方 法、いわゆる膜厚調整方式が特開2001-33778号公報に記載されている。 第7図は、従来知られている構成の半透過型液晶表示装置用カラーフィルターの 断面図を模式的に示したものである。反射用領域6には透明樹脂層3が形成され、 反射用領域6の着色層5の膜厚は、透過用領域7の着色層5の膜厚に比べて、薄 くなっている。反射用領域の着色層の明るさを透過用領域の着色層の明るさと同 程度以上にするためには、透過用領域の着色層膜厚に対する反射用領域の着色層 膜厚を1/2以下にする必要がある。一方で反射用領域の着色層の薄膜化の程度 が大きくなると、膜厚のばらつき、つまり表示色のばらつきが大きくなり、製品 歩留まりの低下など加工上での問題が生じる。反射表示での明るさの向上と加工 性を勘案すると、透過用領域の着色層膜厚に対する反射用領域の着色層膜厚を1 /2~2/5程度にする必要がある。この方式においては、透過表示での色再現 性を高くした場合には、前述の薄膜化の程度では、反射表示での十分な明るさを 得ることが出来ず、色鮮やかな透過表示と明るい反射表示が両立できないという 問題がある。また、膜厚を変えただけでは、透過表示と反射表示とで色調が異な るという問題は解消できない。

第8図に示すような透過用領域および/または反射用領域を塗り分けたカラーフィルターを用いた場合、色純度、明るさを自由に変えることができるので、目的にあった透過表示色、明るさと反射表示色、明るさを達成することができる。この方法(6色塗布方式)では、反射用領域と透過用領域の色層がそれぞれ独立しているため、透過表示での色再現性を高めた場合でも十分な明るさの反射表示を得ることが出来る。しかし、現在主流のフォトリソ法では、一色の画素を形成するのに二度以上色材料を塗布しフォトリソ加工することになり、赤、緑、青の三色の画素を形成するには各色2回、すなわち計6回のフォトリソ加工が必要となり、製造コストが増大してしまうという問題点があった。また、透過用領域(または反射用領域)に色材料を塗布する場合、透過用領域と反射用領域の境界部分にすき間が生じないように塗布する場合、透過用領域と反射用領域の境界部分にすき間が生じないように塗布すること、または、色材料が重ならないように塗布することは、生産上困難であり、製品の歩留まり低下、ひいてはカラーフィルターの製造コストの増



加を招く恐れがある。反射用領域と透過用領域の境界部分にすき間が生じてしまうと、その部分から光が漏れ、液晶表示装置の画質が低下する。逆に、色材料が重なってしまうと、境界部分のみ色が濃くなり、画面上のムラとして認識されてしまうおそれがある。また液晶表示装置におけるセルギャップの不良を招いてしまう。つまり、液晶表示装置の歩留まり低下、ひいては液晶表示装置製造コストの増加を招く恐れがある。

透過表示と反射表示とで色再現性の高い表示を可能とする方法として、反射用 領域に開口領域を形成し、反射表示での明るさを向上させる方法、いわゆる面積 調整方式が特開2000-1111902号公報に記載されている。第9図は、従 来知られているこの構成の半透過型液晶表示装置用カラーフィルターの断面図を 模式的に示したものである。この場合には、フォトリソ工程は3回で済み、低コ ストのカラーフィルターを製造することが出来る。しかし、上述の透過用領域お よび/または反射用領域を塗り分ける方法に比べて、反射表示での色純度一反射 率特性が低下してしまい、色の鮮やかさと十分な明るさを両立することが出来な いという問題点があった。特に透過表示ならびに反射表示での色再現性を高くし た場合には、反射表示での明るさが暗くなり、液晶表示装置としての性能が不十 分なものとなっていた。

従来、携帯端末用などの半透過型液晶表示装置においては、2波長型のLED 光源、または3波長型の蛍光管が用いられてきたが、従来知られている半透過型 液晶表示装置用の低コストタイプカラーフィルターとの組み合わせでは、透過表 示での高い色再現性と反射表示での十分な明るさの両立が満足するレベルまでに は達成できないという問題点があった。

#### 発明の開示

本発明は、かかる従来技術の欠点に鑑み創案されたもので、透過表示での色再現性が高く、反射表示での特性(色再現性、明るさ)に優れた低コストな半透過型液晶表示装置を提供することにある。また、半透過型液晶表示装置用の反射表示と透過表示とでの色度差を少なくし、かつ色特性、表示特性に優れたカラーフィルターを安価に提供することにある。



従来技術での課題は以下の要件によって解決される。

(1) 液晶層を挟んで互いに対向して配置される一対の基板と、周辺光を光源と して活用する反射手段と、バックライト光源とを備えてなる半透過型液晶表示装 置において、

透過用領域と反射用領域とをカラーフィルターの1画素内に設け、該1画素内で着色層が同一材料からなるカラーフィルター、および、3波長型のLEDバックライト光源を具備してなることを特徴とする半透過型液晶表示装置。

- (2) 透過用領域と反射用領域が、同一膜厚の着色層からなり、反射用領域には 開口を有する少なくとも一色の画素を含むカラーフィルターを使用している(1) に記載の半透過型液晶表示装置。
- (3) 反射用領域と透過用領域の着色層の膜厚が異なる少なくとも一色の画素を含むカラーフィルターを使用している(1) に記載の半透過型液晶表示装置。
- (4) 反射用領域には開口を有するカラーフィルターを使用している(3) に記載の半透過型液晶表示装置。
- (5)透過用領域と反射用領域を含むカラーフィルターであって、少なくとも一色の画素において透過領域に2種類以上の着色層が積層されていることを特徴とする液晶表示装置用カラーフィルター。
- (6) 透過用領域に第一の着色層を形成し、第一の着色層上と反射用領域に第二 の着色層を形成した(5)に記載の液晶表示装置用カラーフィルター。
- (7)透過用領域と反射用領域に第一の着色層を形成し、第一の着色層上の透過用領域に第二の着色層を形成した(5)に記載の液晶表示装置用カラーフィルター。
- (8) 少なくとも一色の画素において、透過用領域と反射用領域が同一色材料からなり、反射用領域には透明領域を含む(5)に記載の液晶表示装置用カラーフィルター。
- (9) 緑色着色層上に該着色層の顔料組成とは異なる組成の緑着色層を積層させた(5) に記載の液晶表示装置用カラーフィルター。
- (10) 赤色着色層上に該着色層の顔料組成とは異なる組成の赤着色層を積層させた(5) に記載の液晶表示装置用カラーフィルター。



- (11) 赤色着色層上にキナクリドン骨格をもつ顔料を含む着色層を積層させた
- (10) に記載の液晶表示装置用カラーフィルター。
- (12) 青色着色層上に該着色層の顔料組成とは異なる組成の青着色層を積層させた(5) に記載の液晶表示装置用カラーフィルター。
- (13) 青色着色層上と赤色着色層上に同一の着色層を積層し、かつ青色着色層上の積層色材料面積が赤色着色層上の積層色材料面積よりも狭い(5) に記載の液晶表示装置用カラーフィルター。
- (14) 着色層の上にオーバーコート層を形成した(5) に記載の液晶表示装置 用カラーフィルター。
- (15) 透過用領域の色度(x0,y0)と反射用領域の色度(x、y)の色度 差δが以下の色を満たす画素を含まない(5)に記載の液晶表示素子用カラーフィルター。

 $\delta = (x - x \ 0)^{2} + (y - y \ 0)^{2} \ge 1 \times 10^{-3}$ 

(16)(5)に記載のカラーフィルターを用いた半透過型液晶表示装置。

3波長型の光源は、透過表示での色再現性を向上させることは知られているが、本発明において、透過表示での色特性だけでなく、環境光を用いる反射表示での色特性も向上できる場合があることを見出した。色特性が向上できる場合とは、ある特定のカラーフィルター構造、具体的には面積調整方式、膜厚調整方式の場合である。また、3波長型の光源の中でもLED光源を用いた場合に著しく反射表示での特性が向上できることを見出した。

#### 図面の簡単な説明

第1図は本発明で使用される3波長型光源のスペクトル例(紫外LED+赤緑青蛍光体)である。

第2図は本発明で使用される3波長型光源のスペクトル例(赤緑青LEDの組み合わせ)である。

第3図は3波長型冷陰極蛍光ランプのスペクトル例である。

第4図は3波長型有機エレクトロルミネッセンス光源のスペクトル例である。





第5図は2波長型LED光源のスペクトル例である。

第6図は半透過型液晶表示装置に使用されるカラーフィルターの構成図である。

第7図は半透過型液晶表示装置に使用されるカラーフィルターの構成図である。

第8図は半透過型液晶表示装置に使用されるカラーフィルターの構成図である。

第9図は半透過型液晶表示装置に使用されるカラーフィルターの構成図である。

第10図は実施例1,5 (3波長LEDとの組み合わせ)の透過用領域スペクトルと比較例1(2波長LEDとの組み合わせ)の透過用領域スペクトルである。

第11図は実施例1 (面積調整方式のカラーフィルターと3波長LEDとの組み合わせ)の反射用領域スペクトルである。

第12図は実施例5(膜厚調整型カラーフィルターと3波長LEDとの組み合わせ)の反射用領域スペクトルである。

第13図はC光源、D65光源のスペクトルである。

第14図は実施例11のカラーフィルターの構成図である。

第15図は実施例12のカラーフィルターの構成図である。

符号1は透明基板、符号2はブラックマトリックス、符号3は透明樹脂層、符号4は非感光性カラーペーストからなる着色層、符号5は感光性カラーレジストからなる着色層、符号6は反射用領域、符号7は透過用領域、符号8Bは青画素領域、符号8Gは緑画素領域、符号8Rは赤画素領域、符号9は開口領域、符号10はオーバーコート層である。

# 発明を実施するための最良の形態

本発明の液晶表示装置においては、少なくとも電圧の印加による調光機能をもつ液晶層と、該液晶層を挟んで互いに対向して配置される一対の基板と、周辺光を光源として活用する反射手段と、バックライト光源とを備えてなる半透過型液晶表示装置において、



観測者と反対側の基板の液晶と接する側の面に部分的に形成された反射板を有し、該基板のさらに背面側に配置されるバックライト光源からの光を透過する透過用領域と外光を反射する反射用領域とをカラーフィルターの1 画素に相当する領域に設け

1 画素内で着色層が同一であり、透過用領域と反射用領域の着色特性が異なる カラーフィルター、および3波長型のLEDバックライト光源を具備してなるこ とが重要である。

反射手段とバックライト光源とを共に備えることで、バックライト光源よりも周辺光の強度が強い屋外環境や比較的薄暗い屋内環境でも良好な表示を得ることが出来る。また、反射手段を観測者と反対側の基板の液晶と接する面に配置することで、視差による画像のボケ、混色などのない鮮明な画像を得ることが可能となる。さらに、透過用領域と反射用領域の着色特性が異なるカラーフィルター、3波長型のLEDバックライト光源を使用することで、色鮮やかな透過表示と明るい反射表示を両立させた極めて視認性に優れた半透過型液晶表示装置を得ることが可能となる。

本発明の半透過型液晶表示装置においては、反射手段が形成される基板は、カラーフィルター側基板、カラーフィルターに対向する基板のいずれでもよい。カラーフィルター側に反射膜が形成されている場合は、色材料が形成されている画素領域の内、反射膜が形成されている領域が反射用領域となり、画素領域の中で反射膜が形成されていない領域が透過用領域となる。反射膜がカラーフィルターに対向する基板上に形成されている場合は、該対向基板の反射膜形成領域に対応するカラーフィルター画素領域が透過用領域となる。

本発明の半透過型液晶表示装置に使用するカラーフィルターは、透過用領域と 反射用領域の着色特性が異なることが重要である。液晶表示装置を低コストに製造する観点からは、透過用領域と反射用領域が同一着色層からなり、反射用領域 には開口領域を有する少なくとも一色の画素を含むカラーフィルター、いわゆる 面積調整方式のカラーフィルターを用いてもよく、反射用領域において基板と着 色層の間に透明樹脂層を有し、反射用領域と透過用領域の着色層膜厚が異なる少



なくとも一色の画素を含むカラーフィルター、いわゆる膜厚調整方式のカラーフィルターを用いてもよく、1画素中に面積調整方式と膜厚調整方式を組み合わせたカラーフィルターを用いてもよい。さらに、1画素中の透過用領域については複数の着色層を積層したカラーフィルターを用いてもよい。複数の着色層としては、異なった着色層を用いてもよいし、同一の着色層を用いてもよい。

ここでいう同一の着色層とは、顔料組成、顔料と樹脂の重量比が同じであることをいい、異なった着色層とは、顔料組成、顔料と樹脂の重量比のいずれかが異なっていることをいう。

本発明で使用されるカラーフィルターにおいては、上記カラーフィルター構成がすべての画素について、単一である必要はなく、それぞれの構成を各色画素毎に組み合わせてもよい。

本発明で使用するカラーフィルターにおいては、少なくとも1色の画素について、透過用領域と反射用領域が同一着色層、同一膜厚からなり、反射用領域には開口領域を有してもよい。反射用領域に開口領域を有することで、反射表示での明るさを向上させることが出来、かつ製造コストを低減できる。開口領域を形成させる色については、特に限定はなく赤画素、緑画素、青画素のいずれでもよい。しかしながら、用いるバックライト光源と環境光の特性差を勘案し、目標の着色、明るさを達成できるように開口領域を形成させる色、反射用領域に対する開口領域の割合(以下「開口領域率」と呼ぶ)を決めることが好ましい。ここでいう開口領域とは具体的には可視領域での平均透過率が80%以上である領域である。

開口領域を含む色画素が複数ある場合は、開口領域率が緑>赤~青の順に大きいことが好ましい。青画素と赤画素の開口領域率はほぼ同等である。具体的には、緑画素についていえば、開口領域率が10%以上50%以下、赤画素についていえば、5%以上30%以下、青画素についていえば、30%以下であることが好ましい。さらには緑画素についていえば、開口領域率が10%以上40%以下、赤画素についていえば、6%以上25%以下、青画素についていえば、4%以上25%以下であることがより好ましい。上記範囲から開口領域率が狭い方向にはずれると、反射表示の時に明るい表示が得られず、また、開口領域率が広い方向にはずれると反射表示の時に色鮮やかな表示を得ることができない。

開口領域の形成によって、表面の平坦性が損なわれ、液晶配向を乱す可能性が ある場合には、色材料の上に平坦化層としてオーバーコート層を形成することが 好ましい。具体的には、エポキシ樹脂膜、アクリルエポキシ樹脂膜、アクリル樹 脂膜、シロキサンポリマ系の膜、ポリイミド膜、ケイ素含有ポリイミド膜、ポリ イミドシロキサン膜等が挙げられる。

本発明で使用するカラーフィルターにおいては、少なくとも1色の画素につい て、基板上の反射用領域に透明樹脂層を形成してもよい。

反射用領域に透明樹脂層を形成すると反射用領域は透明樹脂層の膜厚分凸にな り、透過用領域は反射用領域に比べて低くなる。つまり、部分的に凸のある基板 となる。凸のある基板上に非感光性カラーペーストおよび/または感光性カラー レジストを塗布すると、着色塗液の平坦化(レベリング)によって、凸が形成さ れている反射用領域の膜厚に比べて、透過用領域の着色層の膜厚は厚くなる。こ のように着色塗液の平坦化により、反射用領域の着色と透過用領域の着色を変え ることができ、反射表示での明るさを向上させることが出来る。

本発明で用いる透明樹脂層とは、具体的には可視光領域の平均透過率が80% 以上である樹脂層である。反射用領域に形成される透明樹脂層の膜厚は、光源の 違いを勘案したうえで反射用領域と透過用領域の色純度、明るさ、色調が所望の 特性となるように選択させる。透明樹脂の膜厚が大きいほど、平坦化により反射 用領域と透過用領域に形成される着色層の膜厚差が大きくなり、反射用領域の明 るさを向上させる効果が大きい。透明樹脂層の膜厚があまり大きくなると、①カ ラーフィルター表面の段差が大きくなり、液晶配向に悪影響を及ぼし表示品位が 悪化する、②反射用領域の着色層膜厚を制御することが困難になり、着色のばら つきが大きくなる、ので透明樹脂屬の膜厚は5μm以下が好ましい。

透明樹脂層を形成させる色については、特に限定はなく赤画素、緑画素、青画 素のいずれでもよいが、用いるバックライト光源と環境光の特性差を勘案し、目 標の着色、明るさを達成できるように決めることが好ましい。緑画素に透明樹脂 層を形成し、反射領域での色特性を向上させた場合には、反射表示での明るさを 向上できることからより好ましい。また、青画素に透明樹脂層を形成し、反射領 域での色特性を向上させた場合には、反射表示でのホワイトバランスを向上でき



ることからより好ましい。

本発明で使用するカラーフィルターは、上記2つの方法を1画素内で組み合わせた、反射用領域において基板と着色層の間に透明樹脂層を有し、反射用領域と透過用領域の着色層膜厚が異なり、かつ反射用領域の着色層には開口領域を有する少なくとも1色の画素を含んでもよい。

また、少なくとも一色の画素の透過用領域については複数の着色層を積層してもよい。このような構成とすることで透過表示と反射表示での色度差を低減することができる。また、すべての画素について開口領域を含むカラーフィルターに比べ透過率の向上を図ることができる。着色層を積層させる色については、特に限定はなく赤画素、緑画素、青画素のいずれでもよいが用いるバックライト光源と環境光の特性差を加味し、反射表示と透過表示での色度差を小さくするように着色層を積層させる色を決めることが好ましい。また、透過用領域へ積層させる着色層の面積についても、反射表示と透過表示での色度差を小さくするように決めることが好ましい。透過用領域に色材料を重ねる場合には、境界部分にすき間や色の重なりの生じない方法が好ましい。具体的には、最初に透過用領域にのみ色材料を塗布し、次に透過用領域と反射用領域に同一色材料を塗布する方法、もしくは最初に透過反射用と反射用領域に同一の色材料を塗布した後、透過用領域のみにさらに色材料を塗布する方法が好ましい。

透過用領域の色度(x 0, y 0)と反射用領域の色度(x 、y)の色度差  $\delta$  については、 $\delta$  = (x - x 0)  $^2$  + (y - y 0)  $^2$   $\ge$   $1 \times 1$   $0^{-3}$  である画素を含まないことが好ましく、 $\delta$  = (x - x 0)  $^2$  + (y - y 0)  $^2$   $\ge$   $5 \times 1$   $0^{-4}$  である画素を含まないことがより好ましい。

ここでいう透過領域色度とは、上述のカラーフィルター透過領域を顕微分光光度計などで測定したときに得られる分光スペクトルから求められるものである。透過用領域が複数の色材料の積層により平面的に複数の領域に分割されている場合は、それぞれの領域の分光スペクトルを測定し、面積についての加重平均を取ることにより求める。反射領域色度とは該領域中の着色領域の分光スペクトル、透明領域の分光スペクトルをそれぞれ各波長で自乗し、着色領域と透明領域との面積についての加重平均を取ることにより求められるものである。



色度の計算には、光源の違いを考慮に入れるため、透過用領域はC光源、2波長型光源、3波長型光源の内のいずれかにより、反射用領域はD65光源で行うことが好ましい。ここでいう2波長型のLED光源の例としては、青色LEDと黄色蛍光体または黄緑色蛍光体とを組み合わせて白色光を発するLED光源があげられる。また、3波長型光源の例としては、3波長蛍光管、紫外LEDと赤、青、緑蛍光体とを組み合わせた白色LED光源、赤、青、緑各色のLEDを組み合わせた白色LED光源、有機エレクトロルミネッセンス光源などがあげられる。

本発明の透明樹脂層は感光性レジストを使用して形成することができる。感光性樹脂材料としてはポリイミド系樹脂、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂等の材料が使用でき、アクリル系樹脂が好ましく用いられる。感光性アクリルレジストとしては、少なくともアクリル系ポリマー、アクリル系多官能モノマーあるいはオリゴマー、光重合開始剤を含有させた構成を有するのが一般的である。また、エポキシモノマーを加えたいわゆるアクリルエポキシレジストとしてもよい。透明樹脂層を感光性レジストで形成した場合は、フォトリソ加工の露光工程で、露光マスクと透明樹脂層を形成する基板の距離を変えることで透明樹脂層の表面の丸みや平坦性を制御することが可能である。

本発明の透明樹脂層は非感光性ペーストを使用しても形成することができる。 非感光性樹脂材料としてはポリイミド系樹脂、エポキシ系樹脂、アクリル系樹脂、 ウレタン系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂等の材料が使用で き、その中でもポリイミド系樹脂が好ましく用いられる。透明樹脂層を非感光性 ペーストで形成した場合は、透明樹脂層の上部表面が平坦な構造にすることがで き、またより小さな面積の透明樹脂層を形成することが可能である。

反射用領域に形成する透明樹脂層には光散乱のための粒子を含んでもよい。透明樹脂層に光拡散の粒子を含むことで、正反射成分による表示のギラツキを押さえ、良好な反射表示を得ることができる。また、透過用領域には透明樹脂層は存在しないので光の散乱がなく、効率的にバックライト光を使用することができる。 光散乱のための粒子としてはシリカ、アルミナ、チタニアなどの無機酸化物粒子、金属粒子、アクリル、スチレン、シリコーン、フッ素含有ポリマーなどの樹脂粒



子などの材料を使用することができる。光散乱粒子の粒径としては  $0.1 \sim 10$   $\mu$  m の範囲で用いることができる。光拡散の粒子径が透明樹脂層の厚み以下である場合は透明樹脂層が平坦になるのでより好ましい。

透明樹脂層の形成によって、表面の平坦性が損なわれ透過用領域と反射用領域の表面段差が生じる場合があるので、画素上に平坦化層としてオーバーコート層を形成するのが好ましい。具体的には、エポキシ膜、アクリルエポキシ膜、アクリル膜、シロキサンポリマ系の膜、ポリイミド膜、ケイ素含有ポリイミド膜、ポリイミドシロキサン膜等が挙げられる。

カラーフィルターの形成は、ガラス、高分子フィルム等の透明基板側に限定されず、駆動素子側基板にも行うことができる。カラーフィルターのパターン形状については、ストライプ状、アイランド状などがあげられるが特に限定されるものではない。また、必要に応じてカラーフィルター上に柱状の固定式スペーサーが配置されていてもよい。

画素の形成方法については、フォトリソ法、印刷法、電着法等があげられるが特に限定されない。パターン形成性などを考慮するとフォトリソ法で行うことがより好ましい。

本発明で使用するカラーペーストおよびカラーレジストは、着色成分と樹脂成分を含む。樹脂成分としては、ポリイミド系樹脂、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂等の材料が好ましく用いられる。

感光性カラーレジストは、着色成分と樹脂成分を含み、樹脂成分は光によって 反応する感光成分を含む。感光性カラーレジストの種類には、光照射された樹脂 部分が現像液へ溶解するポジ型と、光照射された樹脂部分が現像液へ難溶化する ネガ型があり、どちらも使用することが可能である。ネガ型樹脂を用いた場合、 可視光領域での感光成分の透明性が高く、好ましい。感光性カラーレジストの樹 脂成分としてはポリイミド系樹脂、エポキシ系樹脂、アクリル系樹脂、ウレタン 系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂等の材料が好ましく用いら れる。

本発明のカラーフィルターは、少なくとも赤、緑、青の3色の色画素から構成

され、使用される着色材料は、有機顔料、無機顔料、染料問わず着色剤全般を使用することができる。さらには、紫外線吸収剤、分散剤などの種々の添加剤を添加してもよい。分散剤としては界面活性剤、顔料の中間体、染料の中間体、高分子分散剤などの広範囲のものが使用される。また、塗布性やレベリング性向上のために種々の添加剤を加えても良い。

顔料の具体的な例としては、ピグメントレッド (PR-) 2、3、9、22、3 8、81、97、122、123、144、146、149、166、168、169、177、179、180、190、192、206、207、209、215、216、224、242、254、266、ピグメントグリーン (PG-) 7、10、36、37、38、47、ピグメントブルー (PB-) 15 (15:1、15:2、15:3、15:4、15:6)、16、17、21、22、60、64、ピグメントイエロー (PY-) 12、13、14、17、20、24、83、86、93、94、95、109、110、117、125、129、137、138、139、147、148、150、153、154、155、166、173、180、185、ピグメントバイオレット (PV-) 19、23、29、30、32、33、36、37、38、40、50、ピグメントオレンジ (PO-) 5、13、17、31、36、38、40、42、43、51、55、59、61、64、65、71などが挙げられる。これらの顔料は1種類のみで使用しても良く、2種類以上で組み合わせて使用しても良い。

上記顔料は必要に応じて、ロジン処理、酸性基処理、塩基性処理、顔料誘導体 処理などの表面処理が施されているものを使用しても良い。

なお、PR (ピグメントレッド)、PY (ピグメントイエロー)、PV (ピグメントバイオレット)、PO (ピグメントオレンジ) 等は、カラーインデックス (C.

I.; The Society of Dyers and Colourists 社発行)の記号であり、正式には頭にC.

I. を付するもの(例えば、C. I. PR254など)である。これは染料や染色の標準を規定したものであり、それぞれの記号は特定の標準となる染料とその色を指定するものもである。なお、以下の本発明の説明においては、原則として、前記C. I. の表記は省略(例えば、C. I. PR254ならば、PR254)する。





非感光性ペーストを用いて透明樹脂層を形成する方法の一例をあげる。透明基板上に非感光性ペーストを塗布し、ホットプレート、オーブン、真空乾燥などを用いて加熱乾燥(セミキュア)する。セミキュア膜上にポジ型フォトレジストを塗布し、加熱乾燥(プリベーク)する。プリベーク後にマスク露光し、アルカリ現像し、フォトレジストを溶剤で剥離することで透明樹脂層を形成し加熱硬化させる。

感光性レジストを用いて透明樹脂層を形成する方法の一例をあげる。透明基板上に感光性レジストを塗布し、ホットプレート、オーブン、真空乾燥を用いて加熱乾燥(プリベーク)する。プリベーク後にマスク露光し、アルカリ現像し後に加熱硬化することで、透明樹脂層を得る。

着色画素を形成する方法の一例をあげる。透明基板上、もしくは画素の反射用 領域に透明樹脂層が形成された透明基板上に、たとえば非感光性カラーペースト を塗布、ホットプレート、オーブン、真空乾燥を用いて加熱乾燥(セミキュア) する。このセミキュア膜上にポジ型感光性レジストを塗布し、加熱乾燥(プリベ ーク)する。プリベーク後にマスク露光、アルカリ現像し、加熱硬化させる。

本発明においては、反射用領域への透明樹脂層の形成、ならびに着色塗液の平坦化 (レベリング) によって、着色層膜厚を変えた例を記載しているが、別の方法によってもよい。例えば、感光性カラーレジストからなる着色層はフォトリソ加工におけるマスク露光の露光量により硬化する膜厚を変えることができる。樹脂成分がアクリル樹脂の場合について述べるが、本発明の感光性カラーレジストはこれに限定されない。感光性カラーレジストをフォトリソ加工する場合には、露光量が十分多いと感光性カラーレジストの光架橋が進み、露光された部分は現像液にほとんど溶解されない。未露光部分はアクリル樹脂の光架橋が進まないので、現像液に溶解する。一方、露光量が感光性樹脂の硬化に十分でない場合はアクリル樹脂の光架橋が十分進まないので、露光された部分でも現像液に一部の塗



膜が溶解する。したがって、露光量によって感光性樹脂の膜厚を調整することが 可能である。

露光量を調節する方法としては半透過フォトマスクを使用する方法や、スリットまたは網点フォトマスクを使用する方法がある。半透過フォトマスクはフォトマスクに 0 より大きく1 0 0 %未満の透過率の半透過領域を持つ。この半透過フォトマスクを使用することで、露光量が多い部分と少ない部分で膜厚を調整することができる。スリットフォトマスクではフォトマスクの遮光部分に 2 0 μ m 以下の幅でスリットを形成し、単位面積あたりでスリットを通過した露光量を平均化して露光量を調整することができる。網点フォトマスクでは、フォトマスクの遮光部分に 1 個あたりの面積 4 0 0 μ m ² 以下の円形、楕円形、四角形、長方形、菱形、台形、などを 1 個以上形成し、単位面積あたりでスリットを通過した露光量を平均化して露光量を調整することができる。

本発明の半透過型液晶表示装置は、少なくとも赤、緑、青の3色の画素を有するカラーフィルターと3波長型のバックライト光源とを組み合わせて使用される。

本発明に使用されるバックライト光源としては、3波長型の光源であることが 重要であり、また赤色、緑色、赤色に対応する各ピーク以外に不純成分となるサイドピークがなく/または小さく、スペクトル形状が急峻であることが重要である。上記条件を満たす光源であれば、冷陰極蛍光管、熱陰極蛍光管、発光ダイオード(LED)、有機エレクトロルミネッセンス光源、無機エレクトロルミネッセンス光源、平面蛍光ランプ、メタルハライドランプなど光源全般を使用することもできるが、3波長型のLED光源であれば、本発明の目的とするところの透過表示での高い色再現性と反射表示での優れた特性(色再現性、明るさ)を得るに対して著しい効果があることを見出した。

3波長型のLED光源には、RGB各色の発色を持つダイオードをそれぞれ組み合わせた白色光源、ならびに紫外発光のダイオードとRGB各色に対応した蛍光体とを組み合わせた白色光源がある。一例としては、シャープ(株)のチップLED"GM1WA80350A"があげられ、紫外発光のダイオードとRGB各色に対応した蛍光体とを組み合わせた白色LED光源としては、豊田合成(株)の白色



LEDがある(日経エレクトロニクス、2002年2-25号)。

好ましい画素の着色設計は、光源の違いを考慮に入れるため、透過用領域はバックライト光源、反射用領域は太陽光(自然光)に近いD65光源で行うことが好ましい。

本発明の半透過型液晶表示装置は、駆動方法、表示方式にも限定されず、アクティブマトリクス方式、パッシブマトリクス方式、TNモード、STNモード、ECBモード、OCBモードなど種々の液晶表示装置に適用される。また、液晶表示装置の構成、例えば偏光板の数、散乱体の位置等にも限定されずに使用することができる。

本発明で使用するカラーフィルターの作製方法の一例を述べる。

少なくともポリイミド前駆体、着色剤、溶剤からなるカラーペーストを透明基板上に塗布した後、風乾、加熱乾燥、真空乾燥などにより、ポリイミド前駆体着色被膜を形成する。加熱乾燥の場合、オーブン、ホットプレートなどを使用して、50~180℃の範囲で1分~3時間行うのが好ましい。次に、このようにして得られたポリイミド前駆体着色被膜に、通常の湿式エッチングによりパターンを形成する。まず、ポリイミド前駆体着色被膜上にポジ型フォトレジストを塗布し、フォトレジスト被膜を形成する。続いて該フォトレジスト被膜上に各色画素パターンを含むマスク、または必要に応じて開口領域を形成するためのパターンを含むマスクを置き、露光装置を用いて紫外線を照射する。露光後、ポジ型フォトレジスト用アルカリ現像液により、フォトレジスト被膜とポリイミド前駆体着色被膜のエッチングを同時に行う。エッチング後、不要となったフォトレジスト被膜を剥離する。

ポリイミド前駆体着色被膜は、その後、加熱処理することによって、ポリイミド着色被膜に変換される。加熱処理は通常、空気中、窒素雰囲気中、あるいは、真空中などで、 $150\sim350$  C、好ましくは $180\sim250$  Cの温度のもとで、 $0.5\sim5$  時間、連続的または段階的に行われる。

反射領域に透明樹脂層を含むカラーフィルター基板を作製する場合には、透明 基板上にポリアミック酸と溶剤からなる非感光性ペーストを全面に塗布し、ホットプレートを使用して、60~200℃の範囲で1~60分間加熱乾燥する。次



にこのようにして得られたポリアミック酸被膜にポジ型フォトレジストを塗布し、ホットプレートを使用して60~150℃の範囲で1~30分加熱乾燥させる。露光装置を用いて、紫外線を照射し目的のパターンを焼き付け、アルカリ現像して所望位置に所望パターンで透明樹脂層を得る。透明樹脂層は200~300℃で加熱硬化させる。次に、反射用領域に透明樹脂層が形成され、反射用領域と透過用領域の着色層膜厚が異なる画素について着色層を形成する。少なくともアクリル系ポリマー、アクリル系多官能モノマー、光重合開始剤からなる感光性アクリル樹脂、着色剤、溶剤からなる感光性カラーレジストを塗布した後、風乾、加熱乾燥、真空乾燥などにより、感光性アクリル着色被膜を形成する。加熱乾燥の場合、オーブン、ホットプレートなどを使用し、60~200℃の範囲で1分~3時間行うのが好ましい。続いて感光性アクリル着色被膜にフォトマスクと露光装置を用いて紫外線をパターン状に照射する。露光後、アルカリ現像液により、感光性アクリル着色被膜のエッチングを行う。

以上の工程を赤、緑、青の画素(必要に応じてブラックマトリックス)について行い、必要に応じて、平坦化のためのオーバーコート層、ITOなどの透明導電膜などを製膜して液晶表示装置用カラーフィルターが作製できる。

次に、このカラーフィルターを用いて作成した半透過型液晶表示装置の一例について述べる。上記カラーフィルター上に、透明保護膜を形成し、さらにその上にITO膜などの透明電極を製膜する。次に、このカラーフィルター基板と、金属蒸着膜などがパターニングされた半透過反射膜、半透過反射膜上の透明絶縁膜、さらにその上にITO膜などの透明電極が形成された半透過反射基板とを、さらにそれらの基板上に設けられた液晶配向のためのラビング処理を施した液晶配向膜、およびセルギャップ保持のためのスペーサーを介して、対向させてシールし貼りあわせる。なお、半透過反射基板上には、反射膜、透明電極以外に、光拡散用の突起物、薄膜トランジスタ(TFT)素子や薄膜ダイオード(TFD)素子、および走査線、信号線などを設け、TFT液晶表示装置や、TFD液晶表示装置を作成することができる。次に、シール部に設けられた注入口から液晶を注入した後に、注入口を封止する。つぎに、ICドライバー等を実装することによりモジュールが完成する。



次に、本発明で用いるバックライト光源の作製方法の一例を説明する。

LEDを用いたバックライト光源の場合は、必要な電圧を印加するよう配線が パターニングされた基板上にLED素子を配置し、駆動用のドライバICを取り 付け、拡散板、導光板、プリズムシート、ガイドロット等を適宜組み合わせ、バ ックライト光源が完成する。

3 波長型の蛍光管の場合には、まずはじめに赤、緑、青色の各色に対応する無機物蛍光体、酢酸プチルなどの有機溶剤、ニトロセルロース等のバインダー樹脂からなる蛍光体スラリーを、真空吸引により円筒状ガラス管内壁に塗布し、400℃~650℃の温度で3分間~20分間熱処理することにより、蛍光体の焼き付けおよびガス抜きを行う。次に、ガラス管内を10-2~10-5 Torrまで真空排気し、アルゴンガス、あるいはアルゴンガスとネオンガス、クリプトンガス、キセノンガス等の混合ガスを封入する。あらかじめ、電極部に取り付けられた水銀ディスペンサーを高周波で加熱し、水銀を管内に拡散させる。最後にエージングを数時間行い、3 波長蛍光管が完成する。得られた3 波長蛍光管と拡散板、導光板、プリズムシート、ガイドロット等を適宜組み合わせ、バックライト光源が完成する。

有機エレクトロルミネッセンスを用いたバックライト光源の場合は、まずはじめにITOガラス基板に、ポジ型フォトレジストをスピンコートし、所望の厚さになるように塗布する。この塗布膜をフォトマスクを介してパターン露光し、現像してパターニングを行い、現像後にキュアする。次に正孔輸送層、発光層を含む薄膜層パターンを真空蒸着法によって形成し、電子輸送層、アルミニウムを所望の厚さに蒸着する。基板と封止板とを硬化性エポキシ樹脂を用いて貼り合わせて封止し、有機エレクトロルミネッセンス光源が完成する。

#### 実施例

#### <測定法>

透過率、色座標:大塚電子(株)製、"MCPD-2000"顕微分光光度計を用い、カラーフィルター上に製膜されているものと同一製膜条件により作製されるITOを製膜したガラスをリファレンスとして測定した。

ここでいう透過領域色度とは、上述のカラーフィルター透過領域を顕微分光光



度計などで測定したときに得られる分光スペクトルから求められるものである。 透過用領域が複数の色材料の積層により平面的に複数の領域に分割されている場合は、それぞれの領域の分光スペクトルを測定し、面積についての加重平均を取ることにより求める。反射領域色度とは該領域中の着色領域の分光スペクトル、 透明領域の分光スペクトルをそれぞれ各波長で自乗し、着色領域と透明領域との 面積についての加重平均を取ることにより求められるものである。

以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらに限定されない。

なお、以下の実施例、比較例では、特に断りがない場合は画素開口部に対する 反射板の形成領域(反射用領域)の割合は50%とする。また、透明樹脂層を形 成する領域は、各画素の反射用領域とする。

#### 実施例1

A. ポリアミック酸溶液の作成

4, 4' -ジアミノジフェニルエーテル 95. 1 g およびビス(3-アミノプロピル)テトラメチルジシロキサン 6. 2 g を  $\gamma$  -ブチロラクトン 5 2 5 g 、 N - y + y - y + y - y - y + y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y - y -

B. ポリマー分散剤の合成

C. 非感光性カラーペーストの作成

ピグメントグリーンPR254、4.5gとポリマー分散剤(PD) 22.5



gおよびャーブチロラクトン 42.8g、3ーメトキシー3ーメチルー1ーブタ ノール 20.2gをガラスビーズ 90gとともに仕込み、ホモジナイザーを用 い、7000rpmで5時間分散後、ガラスビーズを濾過し、除去した。このよ うにしてPR254からなる分散液5%溶液(RD)を得た。

分散液(RD) 25.5 gにポリアミック酸溶液(PAA) 8.0 gを $\gamma$  ープチロラクトン 50.0 gで希釈した溶液を添加混合し、赤色カラーペースト (RPI-1) を得た。同様にして、第1表に示す割合で赤ペースト (R-1, R-2, R-3, R-4, R-5, R-6)、緑ペースト (GPI-1、G-1, G-2, G-3, G-4, G-5)、青ペースト (BPI-1、B-1, B-2, B-3, B-4, B-5) を得た。

D. 非感光性ペースト (透明樹脂層に用いる) の作製

ポリアミック酸溶液(PAA) 16.0gを $\gamma$ -ブチロラクトン 34.0g で希釈し非感光性透明ペースト(TPI-1)を得た。

E. 感光性カラーレジストの作製

ピグメントレッドPR254、35.2gを3-メチル-3-メトキシブタノール200gとともに仕込み、ホモジナイザーを用い、7000rpmで5時間分散後、ガラスビーズを濾過し、分散液を得た。アクリル共重合体溶液(ダイセル化学工業株式会社製"サイクロマーP"、ACA-250、43wt%溶液)35.00g、多官能モノマーとしてペンタエリスリトールテトラメタクリレート15.00g、光重合開始剤として"イルガキュア"369 7.50gにシクロペンタノン130.00gを加えた濃度20重量%の感光性樹アクリル樹脂溶液(AC-1)を得た。赤分散液20gと感光性樹アクリル樹脂溶液(AC-1)を得た。赤分散液20gと感光性樹アクリル樹脂溶液(AC-1)を得た。同様にして、第1表に示す割合で赤レジスト(RAC-2)、緑レジスト(GAC-1、GAC-2)、青レジスト(BAC-1、BAC-2)を得た。



第1表

| ペースト番号 | 顔料組成(wt%)          | 顔料/樹脂(重量比) |
|--------|--------------------|------------|
| RPI-1  | PR254=100          | 28/72      |
| GPI-1  | PG36/PY138 = 55/45 | 42/58      |
| BPI-1  | PB15:6/PV23 = 96/4 | 35/65      |
| RAC-1  | PR254=100          | 28/72      |
| GAC-1  | PG36/PY138 = 55/45 | 42/58      |
| BAC-1  | PB15:6/PV23 = 96/4 | 35/65      |
| R-1    | PR209/PO38 = 85/15 | 33/67      |
| R-2    | PR209/PO38 = 70/30 | 25/75      |
| R-3    | PR209/PO38 = 30/70 | 17/83      |
| R-4    | PR254/PR122=85/15  | 11/89      |
| R-5    | PR254=100          | 23/77      |
| R-6    | PR254/PR138=85/15  | 14/86      |
| G-1    | PG36/PY138 = 75/25 | 17/83      |
| G-2    | PG36 = 100         | 32/68      |
| G-3    | PG36/PY138=85/25   | 26/74      |
| G-4    | PG36/PY138=70/30   | 40/60      |
| G-5    | PG36/PY138 = 55/45 | 15/85      |
| B-1    | PB15:6 = 100       | 17/83      |
| B-2    | PB15:6/PV23 = 93/7 | 12/88      |
| B-3    | PB15:6=100         | 8/92       |
| B-4    | PB15:6=100         | 25/75      |
| B-5    | PB15:6/PV23 = 96/4 | 12/88      |

# F. 着色塗膜の作成と評価

ブラックマトリクスがパターン加工されたガラス基板上に赤ペースト(RPI-1)をスピンナーでガラス基板上に塗布した。該塗膜を、120℃で20分乾燥し、この上にポジ型フォトレジスト(東京応化株式会社製"OFPR-800")を塗布し、90℃で10分乾燥した。キャノン株式会社製紫外線露光機"PLA-501F"を用い、クロム製のフォトマスクを介して60mJ/cm²(365nmの紫外線強度)露光した。このとき用いたフォトマスクは、反射用領域内での開口領域の割合(開口領域率)が11%のものである。露光後、テトラメチルアンモニウムハイドロオキサイドの2.0%の水溶液からなる現像液に浸漬し、



フォトレジストの現像、ポリイミド前駆体の着色塗膜のエッチングを同時に行った。エッチング後不要となったフォトレジスト層をアセトンで剥離した。さらにポリイミド前駆体の着色塗膜を 240  $\mathbb C$  で 30 分熱処理し、ポリイミドに転換した。熱処理後の塗膜厚さは透過用領域、反射用領域共に  $1.2\mu$  mで、透過用領域での C 光源を通したときの色度(x 、y)は(0.567、0.310)であった。

次にスピンナーでカラーペースト(GPI-1)を塗布し、反射領域での開口領域率が 2.7%であるフォトマスクを用いたこと以外は赤画素と同様にフォトリソ加工し、着色層を形成した。緑色着色層の膜厚は透過用領域、反射用領域共に  $1.2\mu m$ で、透過用領域での C 光源を通したときの仕上がりの色度(x 、y)は (0.321、0.541) であった。

次にスピンナーでカラーペースト(BPI-1)を塗布し、反射領域での開口領域率が13%であるフォトマスクを用いたこと以外は赤画素と同様にフォトリソ加工し、着色層を形成した。青色着色層の膜厚は透過用領域、反射用領域共に1.2 $\mu$ mで、透過用領域でのC光源を通したときの仕上がりの色度(x、y)は(0.138、0.127)であった。このようにして得られた画素膜上にオーバーコート層(J S R 社製"オプトマーS S 6 5 0 0 J S S 0 5 0 0")を 2  $\mu$  mの厚みで製膜した。その上に I T O膜を膜厚 0.1  $\mu$  m となるようにスパッタリングした。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。得られたスペクトル(透過用領域スペクトル)を第10図に、反射用領域における着色領域、透明領域、それぞれのスペクトルを面積についての加重平均をしたスペクトル(面積調整方式カラーフィルターでの反射用領域スペクトル)を第11図に示す。

### G. バックライト光源の作成

日亜化学(株)製2波長型白色LED "NSSW440"を配線がパターニングされた基板上に配置し、駆動用のドライバICを取り付けた。反射板、導光板、拡散板、プリズムシートを組み合わせ、バックライト光源を作成した。また、3波長型白色LED(紫外LED+RGB蛍光体)、3波長白色LED(RGB3チッ



プLED)を用いて、同様にバックライト光源を作製した。

赤、緑、青の蛍光体としてそれぞれ $Y_2O_3$ : Eu、 $LaPO_4$ : Tb, Ce、 $BaMg_2Al_{16}O_{27}$ : Euを使用し、酢酸プチル、ニトロセルロースと混合し、蛍光体スラリーを作製した。直径2mmの円筒ガラス管内に蛍光体スラリーを塗布し、550%、 $5分間熱処理し、蛍光体を焼き付けた。ガラス管内を<math>10^{-4}$  Torrまで真空排気し、アルゴンガスとキセノンガスの混合ガスを封入、水銀を管内に拡散させ、3波長蛍光管を作製した。作成した3波長蛍光管と反射板、導光板、拡散板、プリズムシートを組み合わせ、バックライト光源を作製した。

また、有機エレクトロルミネッセンス光源についても以下のように作製した。 ITOガラス基板 (ジオマテック (株) 製) 上にポジ型フォトレジスト(東京応 化工業(株)製、OFPR-800)をスピンコート法により厚さ3μmになる ように塗布した。この塗布膜にフォトマスクを介してパターン露光し、現像して フォトレジストのパターニングを行い、現像後に160℃でキュアした。次に発 光層を含む薄膜層パターンはシャドーマスクを介した抵抗線加熱方式による真空 蒸着法によって形成した。なお、蒸着時の真空度は2×10<sup>-4</sup>Paであり、蒸着 中は蒸着源に対して基板を回転させた。まず、銅フタロシアニンを15nm、N, 4, 4'ージアミン (α-ΝΡD)を60nmを基板全面に蒸着して正孔輸送層 を形成した。次にホスト材料としてトリス(8-キノリノラト)アルミニウム(III) (A 1 q 3)、ドーパント材料として 2, 3, 5, 6 - 1 H、4 H - テトラヒドロ-9-(2'-ベンゾチアゾリル)キノリジノ[9,9a,1-gh]クマリン (C545)を用いて、ドーパントが1.0重量%となるように共蒸着し、緑色 発光層をパターニングした。次に、シャドーマスクを1ピッチ分ずらした位置に 合わせて、ホスト材料としてAla3、ゲスト材料として4-(ジシアノメチレ ン)-2-メチル-6-(1,1,7,7-テトラメチルジュロリジル-9-エ ニル) - 4 H - ピラン (DC J T) を用いて、ドーパントが 2. 0 重量%となる ように共蒸着し、赤色発光層をパターニングした。さらにシャドーマスクを1ピ ッチ分ずらした位置に合わせて、4,4'-ビス(2,2'-ジフェニルビニル) ジフェニル(DPVBi)を20nm蒸着して、青色発光層をパターニングした。



次に、2,9-ジメチルー4,7-ジフェニルー1,10-フェナントロリンを45nm基板全面に蒸着して電子輸送層を形成した。その後、薄膜層をリチウム蒸気に曝してドーピング(膜厚換算で0.5nm)した。次に対向電極として、アルミニウムを400nmの厚さに蒸着した。対向電強が形成された基板を蒸着機から取り出し、ロータリーポンプによる減圧雰囲気下で20分間保持した後、露点-100℃以下のアルゴン雰囲気下に移した。この低湿雰囲気下で、基板と封止板とを硬化性エポキシ樹脂を用いて貼り合わせて封止した。

作製した3波長型光源のスペクトルならびに2波長型LEDのスペクトルを第 1図~第5図に示す。

### 実施例2

赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がそれぞれ14%、43%、18%であるフォトマスクと使用したこと以外は実施例1と同様にしてカラーフィルター基板を作製した。このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、ITO膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。

#### 比較例1

赤画素、緑画素、青画素の着色層膜厚を1.8 $\mu$ mとなるように着色塗膜を塗布したこと、赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がそれぞれ14%、40%、17%であるフォトマスクと使用したこと以外は実施例1と同様にしてカラーフィルター基板を作製した。赤画素、緑画素、青画素各色の透過用領域でのC光源を通したときの色度(x、y)はそれぞれ(0.622、0.328)、(0.298、0.581)、(0.135、0.099)であった。このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、ITO膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。比較例1で得られたスペクトル(透過用領域スペクトル)を実施例1で得られたスペクト



ルと共に第10図に示す。

実施例1、実施例2で作成した着色塗膜のD65光源での反射領域色度、3波 長型LED光源(紫外LED+RGB蛍光体)での透過領域色度、ならびに比較 例1で作成した着色塗膜のD65光源での反射領域色度、2波長型LED光源で の透過領域色度を第2表に示す。

|              |     |      |       | 海、馬名首村名 | Į.       |          |    |       |       | 反射領域        | 反射領域色度(D65光源)       |            |
|--------------|-----|------|-------|---------|----------|----------|----|-------|-------|-------------|---------------------|------------|
|              |     |      |       | · Tr    | N        |          | f  |       |       |             | な田田が                | BBスカバルのマ値) |
|              |     | ×    | >-    | >       | 色再現性     | 光源       |    | ×     | >     | <b>&gt;</b> | これでは<br> (対比較例1向上率) | (対比較例向上率)  |
|              | Ω   |      | 0.294 | 32.4    |          |          | ď  | 0.519 | 0.332 | 27.5        | %EC                 |            |
| ]            | . C |      | 0.596 | 62.0    |          | -        | Ø  | 0.302 | 0.454 | 64.3        |                     | 36.9       |
| <b>耒施例</b> 1 | σ.  |      | 0.165 | 20.1    |          | 3波長型1日   | Θ  | 0.195 | 0.170 | 18.9        | (+52%)              |            |
|              | 3   |      | 0.341 | 38.2    |          | (CV-LED  | ₹  | 0.320 | 0.330 | 36.9        | / N - 1             |            |
|              | i a | 0618 | 0.294 | 32.4    | *00<br>- | +RGB短光体) | ď  | 0.497 | 0.332 | 29.8        |                     | 41.3       |
|              | . C |      | 0.596 | 62.0    |          |          | Ø  | 0.306 | 0.408 | 70.8        | 77.                 | <u> </u>   |
| 実施例2         | ) C |      | 0.165 | 201     |          |          | Ω  | 0.211 | 0.192 | 23.2        | 2                   | (+12%)     |
|              | }   |      | 0.341 | 38.2    |          |          | ≯  | 0.320 | 0.323 | 41.3        |                     |            |
|              | 2   |      | 0.349 | 23.4    |          |          | ĸ  | 0.496 | 0.331 | 27.7        |                     |            |
| 1            | : O |      | 0.576 | 57.3    | 200      | 2波長型     | Ø  | 0.299 | 0.409 | 63.2        | 728                 | 36.9       |
| に 作 交 1 列 1  |     | _    | 0600  | 9.6     | *<br>CD  |          | 20 | 0.221 | 0.194 | 19.8        |                     |            |
|              | 3   |      | 0.341 | 29.8    |          |          | ≩  | 0.324 | 0.325 | 36.9        |                     |            |

第2数



実施例1と比較例1でのカラーフィルターとバックライト光源の組み合わせによる色特性を比較すると、透過領域色度での色再現範囲、反射領域色度での明るさは同等であるが、実施例1の反射領域での色再現範囲が比較例1に比べて、52%向上していることがわかる。また、実施例2と比較例1でのカラーフィルターとバックライト光源の組み合わせによる色特性を比較すると、透過領域色度での色再現範囲、反射領域色度での色再現範囲は同等であるが、実施例2の反射領域での明るさが比較例1に比べて、12%向上していることがわかる。

実施例1、実施例2のカラーフィルター、3波長型LED光源(紫外LED+RGB蛍光体)を用いた液晶表示装置と、比較例2のカラーフィルター、2波長型LED光源を用いた液晶表示装置の表示特性を比較したところ、透過表示では同等の色鮮やかさを示した。反射表示では、実施例1と比較例1の明るさは同等であったが、実施例1の液晶表示装置の方がより色鮮やかな表示であり、より良好な視認性を示した。また、実施例2と比較例1の液晶表示装置を比較すると、反射表示での色再現範囲は同等であったが、実施例2の液晶表示装置の方がより明るく、暗い場所でもより良好な視認性を示した。

### 実施例3

赤画素、緑画素、青画素の着色層膜厚を1.  $1 \mu$  m となるように着色塗膜を塗布したこと、赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がそれぞれ10%、27%、10%であるフォトマスクと使用したこと以外は実施例1と同様にしてカラーフィルター基板を作製した。赤画素、緑画素、青画素各色の透過用領域でのC光源を通したときの色度(x、y)はそれぞれ(0.551、0.305)、(0.324、0.531)、(0.139、0.135)であった。このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、ITO膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。

#### 実施例4

赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がそれぞれ14%、43%、19%であるフォトマスクと使用したこと以外は実施例3と同様にして



カラーフィルター基板を作製した。このようにして得られた画素膜上に実施例1 と同様にしてオーバーコート層、ITO膜を製膜した。この様にして得られたカ ラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部 の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを 各測定部について平均した。

実施例3、実施例4で作成した着色塗膜のD65光源での反射領域色度、3波 長型LED光源(RGB3チップLED)での透過領域色度、ならびに比較例2 で作成した着色塗膜のD65光源での反射領域色度、2波長型LED光源での透 過領域色度を第3表に示す。

|          |   |       |       | 英语領指布庫 | (hi     |                                       |   |       |           | 反射領域 | 反射領域色度(D65光源) |            |
|----------|---|-------|-------|--------|---------|---------------------------------------|---|-------|-----------|------|---------------|------------|
|          |   |       |       |        | 1 1 1   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |   |       | <br> <br> | >    | 色再現性          | 明るさ(WのY値)  |
|          |   | ×     | ≻     | >      | 和 地 祖 四 | 光                                     |   | ×     | >         | Y    | (対比較例)向上率)    | (対比較例)向上率) |
|          | ď | 0.648 | 0.287 | 31.5   |         |                                       | œ | 0.526 | 0.332     | 27.5 | 26%           |            |
| 1        | Ø | 0.255 | 0.574 | 62.3   |         |                                       | Ø | 0.304 | 0.454     | 66.1 |               | 36.9       |
| 米高を記     | Œ | 0.130 | 0.184 | 22.1   |         |                                       | ω | 0.181 | 0.157     | 17.2 | (362+)        |            |
|          | ₹ | 0.337 | 0.342 | 38.6   | 300     | 3波長型(日)                               | ₹ | 0.319 | 0.328     | 36.9 | (NO.)         |            |
|          | ď | 0.648 | 0.287 | 31.5   | Š       | (RGB-LED)                             | ď | 0.496 | 0.331     | 30.5 |               | 42.5       |
| 10 44 CE | O | 0.255 | 0.574 | 62.3   |         |                                       | Ø | 0.307 | 0.410     | 72.3 | 7.7<br>%      |            |
| 米高密4     | œ | 0.130 | 0.184 | 22.1   |         |                                       | Ш | 0.211 | 0.196     | 24.9 |               | (+15%)     |
|          | 3 | 0.337 | 0.342 | 38.6   |         |                                       | ≯ | 0.320 | 0.323     | 42.5 |               |            |
|          | α | 0.630 | 0.349 | 23.4   |         | ,                                     | œ | 0.496 | 0.331     | 27.7 |               |            |
| 10年20日   | Ø | 0.333 | 0.576 | 57.3   | ٤       | 2波長型                                  | Ø | 0.299 | 0.409     | 63.2 | ٠.<br>چ       | 36.9       |
| 1042191  | Ю | 0.132 | 0.090 | 8.6    | Š       | 9                                     | ß | 0.221 | 0.194     | 19.8 |               |            |
|          | 3 | 0.336 | 0.341 | 29.8   |         |                                       | ₹ | 0.324 | 0.325     | 36.9 |               |            |

第3法



実施例3と比較例1でのカラーフィルターとバックライト光源の組み合わせによる色特性を比較すると、透過領域色度での色再現範囲、反射領域色度での明るさは同等であるが、実施例3の反射領域での色再現範囲が比較例1に比べて、73%向上していることがわかる。また、実施例4と比較例1でのカラーフィルターとバックライト光源の組み合わせによる色特性を比較すると、透過領域色度での色再現範囲、反射領域色度での色再現範囲は同等であるが、実施例4の反射領域での明るさが比較例1に比べて、15%向上していることがわかる。

実施例3、実施例4のカラーフィルター、3波長型LED光源(RGB3チップLED)を用いた液晶表示装置と、比較例2のカラーフィルター、2波長型LED光源を用いた液晶表示装置の表示特性を比較したところ、透過表示では同等の色鮮やかさを示した。反射表示では、実施例3と比較例1の明るさは同等であったが、実施例3の液晶表示装置の方がより色鮮やかな表示であり、より良好な視認性を示した。また、実施例4と比較例1の液晶表示装置を比較すると、反射表示での色再現範囲は同等であったが、実施例4の液晶表示装置の方がより明るく、暗い場所でもより良好な視認性を示した。

#### 比較例2

赤画素、緑画素、青画素の着色層膜厚を1.6 $\mu$ mとなるように着色塗膜を塗布したこと、赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がそれぞれ13%、37%、16%であるフォトマスクと使用したこと以外は実施例1と同様にしてカラーフィルター基板を作製した。赤画素、緑画素、青画素各色の透過用領域でのC光源を通したときの色度(x、y)はそれぞれ(0.606、0.322)、(0.311、0.566)、(0.136、0.108)であった。このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、ITO膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。

#### 比較例3

赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がそれぞれ14%、 41%、17%であるフォトマスクと使用したこと以外は比較例2と同様にして





### 比較例4

赤画素、緑画素、青画素の着色層膜厚を1.  $5 \mu$  mとなるように着色塗膜を塗布したこと、赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がそれぞれ13%、35%、15%であるフォトマスクと使用したこと以外は実施例1と同様にしてカラーフィルター基板を作製した。赤画素、緑画素、青画素各色の透過用領域でのC光源を通したときの色度(x、y)はそれぞれ(0.599、0.320)、(0.313、0.561)、(0.136、0.111)であった。このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、ITO膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。

# 比較例5

赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がそれぞれ14%、41%、18%であるフォトマスクと使用したこと以外は参考例3と同様にしてカラーフィルター基板を作製した。このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、ITO膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。

比較例2、比較例3で作成した着色塗膜のD65光源での反射領域色度、3波 長型蛍光光源での透過領域色度、比較例4、比較例5で作成した着色塗膜のD6 5光源での反射領域色度、有機EL光源での透過領域色度、ならびに比較例1で 作成した着色塗膜のD65光源での反射領域色度、2波長型LED光源での透過 領域色度を第4表に示す。

Ţ

|                                                                                             |   |          |          | 海過領域各  | 1      |               |     |       |       | 反射領域        | 反射領域色度(D65光源)      |                      |
|---------------------------------------------------------------------------------------------|---|----------|----------|--------|--------|---------------|-----|-------|-------|-------------|--------------------|----------------------|
|                                                                                             |   | ×        | <b>A</b> | \<br>\ |        | 光源            |     | ×     | >     | <b>&gt;</b> | 色再現性<br>(対比較例)向上率) | 明るさ(WのY値) (対比較例)向上率) |
|                                                                                             | 8 | <u>1</u> | 0.349    | 23.4   |        |               | 2   | 0.496 | 0.331 | 27.7        |                    |                      |
| 10/##/JD/                                                                                   | Ø |          | 0.576    | 57.3   | ě      | 2波長型          | Ø   | 0.299 | 0.409 | 63.2        | -<br>-<br>%        | 898                  |
|                                                                                             | ற |          | 0.090    | 9.8    | Ŝ      | 9             | Ω   | 0.221 | 0.194 | 19.8        | 2                  | )<br>)               |
|                                                                                             | € |          | 0.341    | 29.8   |        |               | ⋛   | 0.324 | 0.325 | 36.9        |                    |                      |
|                                                                                             | ď | 0.608    | 0.329    | 24.2   |        |               | 8   | 0.501 | 0.332 | 27.2        | 17%                |                      |
| して一つで                                                                                       | Ø |          | 0.587    | 64.9   | ۵      | 3波長型          | Ø   | 0.301 | 0.419 | 64.0        | 2                  | 698                  |
| TC#XP/IZ                                                                                    | മ |          | 0.080    | 7.8    | Š      | 断光光源          | m   | 0.212 | 0.186 | 19.7        | (+13%)             |                      |
|                                                                                             | ₹ |          | 0.345    | 32.3   |        |               | ≯   | 0.322 | 0.326 | 36.9        | (NO. 1)            |                      |
|                                                                                             | α | ł        | 0.329    | 24.2   |        |               | ď   | 0.494 | 0.332 | 27.9        |                    | 38.1                 |
| Ltaktolo                                                                                    | Ø |          | 0.587    | 64.9   | 808    | 3波長型          | Ø   | 0.303 | 0.409 | 66.0        | 2.<br>%            |                      |
| アに事業を行って                                                                                    | 8 |          | 0.080    | 7.8    | e<br>) | 短光光源          | ß   | 0.216 | 0.190 | 20.5        |                    | (*8*)                |
|                                                                                             | 3 |          | 0.345    | 32.3   |        |               | `}  | 0.321 | 0.324 | 38.1        |                    | ,                    |
|                                                                                             | ď |          | 0.321    | 28.5   |        |               | œ   | 0.502 | 0.332 | 27.5        | ,<br>%3-           |                      |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Ø |          | 0.565    | 59.7   | 90     | 3波長型          | Ø   | 0.301 | 0.426 | 64.0        |                    | 36.9                 |
| 1,C#X P/14                                                                                  | œ |          | 0.135    | 14.2   | 200    | 油機 に光源        | 100 | 0.207 | 0.180 | 19.1        | (+20%)             |                      |
|                                                                                             | ₹ | !        | 0.341    | 34.1   |        |               | ≱   | 0.321 | 0.326 | 36.9        |                    |                      |
|                                                                                             | ď | 1        | 0.321    | 28.5   |        |               | ď   | 0.494 | 0.332 | 28.3        |                    | 38.9                 |
| 17年77年17                                                                                    | Ö |          | 0.565    | 59.7   | , C    | 3波長型          | Ø   | 0.303 | 0.410 | 66.8        | 15%                |                      |
| CKX#JT                                                                                      | œ |          | 0.135    | 14.2   |        | <b>価を下し光源</b> | m   | 0.217 | 0.194 | 21.7        | :                  | (+2%)                |
|                                                                                             | ₹ |          | 0.341    | 34.1   |        |               | ₹   | 0.321 | 0.324 | 38.9        |                    |                      |

第4款



比較例2、比較例4と比較例1でのカラーフィルターとパックライト光源の組 み合わせによる色特性を比較すると、透過領域色度での色再現範囲、反射領域色 度での明るさは同等である。一方、 反射領域色度での色再現範囲について、比 較例2、比較例3の比較例1に対する向上率は、それぞれ、13%、20%であ り、3波長型のLED光源を用いた場合の向上率に比べ、低い値となっている。 また、比較例3、比較例5と比較例1でのカラーフィルターとバックライト光源 の組み合わせによる色特性を比較すると、透過領域色度での色再現範囲、反射領 域色度での色再現範囲は同等である。一方、 反射領域色度での明るさについて、 比較例2、比較例3の比較例1に対する向上率は、それぞれ、3%、5%であり、 3波長型のLED光源を用いた場合の向上率に比べ、低い値となっている。これ は、比較例2で用いた3波長型の蛍光光源が、490 nm 付近、580 nm 付近 に比較的大きなサイドピークを持つことに起因すると考えれらる。また、比較例 3で用いた3波長型有機EL光源は全体的にピークがブロードであるため、反射 領域色度の色特性向上率が低くなってしまったと考えれらる。したがって、3波 長光源のなかでも3波長型LEDは、ピンホール型カラーフィルターを用いた半 透過型液晶表示装置の反射表示での色特性を著しく向上させることがわかる。

### 比較例6

赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がないフォトマスクと使用したこと以外は実施例1と同様にして、反射用領域と透過用領域の着色特性が等しい第6図の様な、いわゆる従来構成のカラーフィルター基板を作製した。このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、ITO膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。

#### 比較例7

赤画素、緑画素、青画素のフォトリソ加工用に開口領域率がないフォトマスクと使用したこと以外は比較例1と同様にして、反射用領域と透過用領域の着色特性が等しい第6図の様な、いわゆる従来構成のカラーフィルター基板を作製した。このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、I



TO膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。

比較例6で作成した着色塗膜のD65光源での反射領域色度、3波長型LED 光源(紫外LED+RGB蛍光体)での透過領域色度、ならびに比較例7で作成 した着色塗膜のD65光源での反射領域色度、2波長型LED光源での透過領域 色度を第5表に示す。

|      |     |       |                  | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |           |            |    |       |       | E 946日花       | 日 (このの半海) |                      |
|------|-----|-------|------------------|-----------------------------------------|-----------|------------|----|-------|-------|---------------|-----------|----------------------|
|      |     |       |                  | 的過程阿田西                                  | ‡rD¦      |            |    |       |       | XX1174-5X     | 16        | (サバサニッナ 100          |
|      |     | ×     | >                | <b>&gt;</b>                             | 色再現性      | 光源         |    | ×     | >-    | <b>&gt;</b> - | 色再現性      | 明るさ(WのY1個)(対比較例7向上率) |
|      | 0   | - 1   | 0.994            | 32.4                                    |           |            | α  | 0.645 | 0.334 | 19.3          |           | 26.8                 |
|      |     |       | 0.59.0<br>0.59.6 | 620                                     | -         | 3波長型[日]    | Ø  | 0.289 | 0.603 | 53.3          | 2,2       |                      |
| 比較例  | ם כ | 0.47  | 0.000            | 20.5                                    | *<br>5000 | (CV-LED    | Ш  | 0.135 | 0.090 | 7.7           |           | (+25%)               |
|      | ) } |       | 0.00             | 0 00                                    | ,         | +日の日田半年(4) | 3  | 0.321 | 0.348 | 26.8          |           |                      |
|      | Š   | 0.330 | 0.041            | 200                                     |           |            | 1  |       | 000   | 00,           |           |                      |
|      | α   | 0.630 | 0.349            | 23.4                                    |           |            | Y  | 0.663 | C.ddd | 9. j          |           |                      |
|      | C   | 0.333 | 0.576            | 57.3                                    | 300       | 2波長型       | Q  | 0.261 | 0.638 | 42.6          | 84%       | . 21.4               |
| 比較例7 | 0   | 0130  | 0800             | 8                                       | ŝ         | 8          | 00 | 0.137 | 0.070 | 4.5           | •         |                      |
|      | 2   | 201.5 |                  | 5 ;                                     |           | -          | 3  | 0000  | 0350  | 21.0          |           |                      |
|      | 3   | 950   | 0341             | 00.00                                   |           |            | 3  | 0.530 | 700.0 | 11.12         |           |                      |

部の投



比較例6と比較例7でのカラーフィルターとバックライト光源の組み合わせによる色特性を比較すると、3波長型のLED光源を用いた場合は2波長型LED光源を用いた場合に比べ、反射領域色度での明るさが25%向上している。明るさの向上率は高いものの、明るさの絶対値(白色WでのY値)は、わずか26.8しかなく、半透過型液晶表示装置用のカラーフィルターとしては非常に暗いものであった。したがって、3波長型LED光源との組み合わせにおいても、従来構成のカラーフィルターでは、半透過型液晶表示装置に要求される特性を満足することは出来ず、カラーフィルターの構成としては透過用領域と反射用領域の着色特性が異なることが必要であることがわかる。

### 実施例5

ブラックマトリクスがパターン加工されたガラス基板上に非感光性ペースト (TPI-1) をスピンナーで塗布した。

該塗膜を、120℃のオーブンで20分乾燥し、この上にポジ型フォトレジスト(東京応化株式会社製OFPR-800)を塗布し、90℃で10分オーブン乾燥した。キャノン株式会社製紫外線露光機PLA-501Fを用い、フォトマスクパターンを介して赤、緑、青の各画素の反射用領域に透明樹脂層が残るように60mJ/cm²(365nmの紫外線強度)で露光した。露光後、テトラメチルアンモニウムハイドロオキサイドの1.6%の水溶液からなる現像液に浸漬し、フォトレジストの現像、ポリアミック酸の塗膜のエッチングを同時に行った。エッチング後不要となったフォトレジスト層をアセトンで剥離し、240℃で30分熱処理し、各画素の反射用領域に透明樹脂層を得た。このときの透明樹脂層の膜厚は1.8μmであった。

次に、透明樹脂層を形成したガラス基板上に赤レジスト(RAC-1)をスピンナーで基板上に塗布し、該塗膜を80Cのオープンで10分熱処理した。紫外線露光機を用い、赤画素の透過用領域と反射用領域は光が透過するクロム製フォトマスクを介して、100 mJ/c m² (365 n mの紫外線強度)で露光した。露光後にテトラメチルアンモニウムハイドロオキサイドの1.6%の水溶液からなる現像液に浸漬し、着色層を現像した。現像後に240Cのオープンで30分熱処理をし、赤画素を得た。透過用領域の画素の中央での膜厚は $1.2\mu$ mで、



C光源を通したときの色度(x、y)は(0.567、0.310)であった。また、透過用領域の画素の中央での膜厚(TPI-1とRAC-1からなる塗膜との合計)は $2.3\mu$ mで、反射用領域と透過用領域の着色層の膜厚比は2/5であった。

同様にして、緑レジスト(GAC-1)をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は $1.2\mu m$ で、C光源を通 したときの色度(x、y)は(0.321、0.541)であった。また、透過 用領域の画素の中央での膜厚(TPI-1とGAC-1からなる塗膜との合計) は  $2.3\mu m$ で、反射用領域と透過用領域の着色層の膜厚比は2/5であった。

同様にして、青レジスト(BAC-1)をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は1.2  $\mu$  mで、C光源を通したときの色度(x、y)は(0.138、0.127)であった。また、反射用領域の画素の中央での膜厚(TPI-1とBAC-1からなる塗膜との合計)は2.3  $\mu$  mで、反射用領域と透過用領域の着色層の膜厚比は2/5であった。このようにして得られた画素膜上にオーバーコート層(JSR社製"オプトマーSS6500/SS0500")を2  $\mu$  mの厚みで製膜した。さらにもう一度オーバーコート層(JSR社製"オプトマーSS6500/SS0500")を2  $\mu$  mの厚みで製膜し、その上にITO膜を膜厚0.1  $\mu$  mとなるようにスパッタリングした。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。透過用領域でのスペクトルを第10図に、反射用領域でのスペクトルを第12図に示す。

### 比較例8

実施例 5 と同様にして、ブラックマトリクスがパターン加工されたガラス基板上に透明樹脂層を形成した。このときの透明樹脂層の膜厚は  $2.6~\mu$  mであった。 次に、透明樹脂層を形成したガラス基板上に赤レジスト(RAC-1)をスピンナーで基板上に塗布し、実施例 5 と同様にして赤画素を得た。透過用領域の画素の中央での膜厚は  $1.8~\mu$  mで、C光源を通したときの色度(x、y)は(0.622、0.328)であった。また、透過用領域の画素の中央での膜厚(T P



I-1とRAC-1からなる塗膜との合計)は3.4 $\mu$ mで、反射用領域と透過用領域の着色層の膜厚比は2/5であった。

同様にして、緑レジスト(GAC-1)をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は $1.8\mu m$ で、C光源を通したときの色度(x、y)は(0.298、0.581)であった。また、透過用領域の画素の中央での膜厚(TPI-1とGAC-1からなる塗膜との合計)は $3.4\mu m$ で、反射用領域と透過用領域の着色層の膜厚比は2/5であった。

同様にして、青レジスト(BAC-1)をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は1.8  $\mu$  mで、C光源を通したときの色度(x、y)は(0.135、0.099)であった。また、反射用領域の画素の中央での膜厚(TPI-1とBAC-1からなる塗膜との合計)は3.4  $\mu$  mで、反射用領域と透過用領域の着色層の膜厚比は2/5であった。このようにして得られた画素膜上に実施例5と同様にしてオーバーコート層、ITO膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板のそれぞれの角部の4つの画素について、分光スペクトルを測定した。

実施例5で作成した着色塗膜のD65光源での反射領域色度、3波長型LED 光源(紫外LED+RGB蛍光体)での透過領域色度、ならびに比較例8で作成 した着色塗膜のD65光源での反射領域色度、2波長型LED光源での透過領域 色度を第6表に示す。

|      |      |       |       | 活、语名指在 | 極     |          |   |       |       | 反射領域色度([    | 色度(D65光源) |            |
|------|------|-------|-------|--------|-------|----------|---|-------|-------|-------------|-----------|------------|
|      |      |       |       | 品面面製品  | N.    |          |   |       |       |             |           | 明るさ(WのY値)  |
|      |      | ×     | ≯₁    | >-     | 色再現性  | 光        |   | ×     | ≯     | <b>&gt;</b> | 色再現性      | (対比較例8向上率) |
|      | α    | 0618  | 0.294 | 32.4   |       |          | ď | 0.537 | 0.305 | 27.5        |           | 38.3       |
| ;    | 2 (  | 720   | 0.596 | 62.0   | ,,,,, | 3波長型LED  | Ø | 0.320 | 0.527 | 68.8        | 886       |            |
| 更施例5 | ) u  | 0137  | 0.165 | 20.1   | ŝ     | (UV-LED  | ß | 0.140 | 0.157 | 18.6        | 3         | (+13%)     |
| •    | ) }  | 98.0  | 0.341 | 38.0   |       | +RGB強光体) | ₹ | 0.315 | 0.339 | 38.3        |           |            |
|      | 2 0  | 0630  | 0.349 | 23.4   |       |          | ď | 0.599 | 0.321 | 24.1        |           |            |
|      | : C  | 0.333 | 0.576 | 57.3   | 300   | 2波長型     | Ø | 0.306 | 0.570 | 64.3        | 55%       | 33.8       |
| 比較例8 | ) II | 0132  | 0600  | 93     | နိဂ်စ | 9        | 8 | 0.135 | 0.122 | 13.0        |           |            |
|      | ַ ב  | 3 6 6 | 0.944 | 908    |       |          | 3 | 0.318 | 0.344 | 33.8        | f         |            |

部6次

実施例5と比較例8でのカラーフィルターとバックライト光源の組み合わせに よる色特性を比較すると、透過領域色度での色再現範囲は同等であるが、実施例 5の反射領域色度での白色の明るさは比較例8と比べて明るく、より視認性の高 い反射表示が期待される。

実施例5のカラーフィルター、3波長型LED光源(紫外LED+RGB蛍光体)を用いた液晶表示装置と、比較例8のカラーフィルター、2波長型LED光源を用いた液晶表示装置の表示特性を比較したところ、透過表示では同等の色鮮やかさを示した。反射表示では、比較例8の明るさは液晶表示装置としては不十分で、視認性が悪かった。一方、実施例5の液晶表示装置は反射表示が明るく、より良好な視認性を示した。

このように、2波長型のLEDと膜厚調整方式のカラーフィルターを使用した 半透過型液晶表示装置で透過表示での色再現性を高くした場合には、加工上の問題から反射表示での十分な明るさを得ることが出来ないが、3波長型のLEDを 用いた場合は、十分な明るさの反射表示を得ることが出来た。つまり、3波長型 のLEDと膜厚調整方式のカラーフィルターとの組み合わせで初めて鮮やかな透 過表示と十分な明るさの反射表示が実現できたといえる。

#### 実施例6

次に、透明樹脂層を形成したガラス基板上に赤レジスト(RAC-1)をスピンナーで基板上に塗布し、実施例 10 と同様にして赤画素を得た。透過用領域の画素の中央での膜厚は 1.2  $\mu$  mで、C光源を通したときの色度(x、y)は(0.567、0.310)であった。また、透過用領域の画素の中央での膜厚(TP I-1 とRAC-1 からなる塗膜との合計)は 2.3  $\mu$  mで、反射用領域と透過用領域の着色層の膜厚比は 2/5 であった。

同様にして、青レジスト(BAC-1)をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は $1.2\mu m$ で、C光源を通 したときの色度(x、y)は(0.138、0.127)であった。また、反射 用領域の画素の中央での膜厚(TPI-1とBAC-1からなる塗膜との合計)は2.3 μmで、反射用領域と透過用領域の着色層の膜厚比は2/5であった。

次に、実施例 5 と同様にして、緑画素の透過用領域に緑レジスト (GAC-1) をスピンナーで基板上に塗布し、着色塗膜を作製した。透過用領域の画素の中央での膜厚は1. 2  $\mu$  mで、C光源を通したときの色度(x、y)は(0. 3 2 1、0. 5 4 1)であった。

次に、実施例 5 と同様にして、緑画素の透過用領域に緑レジスト(GAC-1)をスピンナーで基板上に塗布し、着色塗膜を作製した。透過用領域の画素の中央での膜厚は 1 . 2  $\mu$  mで、C 光源を通したときの色度(x 、y)は(0 . 3 2 1 、0 . 5 4 1)であった。次に、緑画素の反射用領域に実施例 5 と同様にして、緑レジスト(GAC-2)をスピンナーで基板上に塗布し、着色塗膜を作製した。反射用領域の画素の中央での膜厚は 1 . 2  $\mu$  mで、C 光源を通したときの色度(x 、y)は(0 . 3 2 9 、0 . 4 4 4 1 であった。

このようにして得られた画素膜上に実施例 5 と同様にしてオーバーコート層、 I T O膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。

## 比較例9

実施例 5 と同様にして、ブラックマトリクスがパターン加工されたガラス基板上に透明樹脂層を形成した。このときの透明樹脂層の膜厚は $2.6\mu$ mであった。次に、透明樹脂層を形成したガラス基板上に赤レジスト(RAC-1)をスピンナーで基板上に塗布し、実施例 5 と同様にして赤画素を得た。透過用領域の画素の中央での膜厚は $1.8\mu$ mで、C光源を通したときの色度(x、y)は(0.622、0.328)であった。また、透過用領域の画素の中央での膜厚(T P I-1 とRAC-1 からなる塗膜との合計)は $3.4\mu$ mで、反射用領域と透過用領域の着色層の膜厚比は2/5 であった。

同様にして、青レジスト(BAC-1)をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は $1.8\mu m$ で、C光源を通 したときの色度(x、y)は(0.135、0.099)であった。また、反射



用領域の画素の中央での膜厚(TPI-1とBAC-1からなる塗膜との合計)は3.4 μ mで、反射用領域と透過用領域の着色層の膜厚比は2/5であった。

このようにして得られた画素膜上に実施例 5 と同様にしてオーバーコート層、 I T O 膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部 4 つの画素について、分光スペクトルを測定した。

実施例6で作成した着色塗膜のD65光源での反射領域色度、3波長型LED 光源(紫外LED+RGB蛍光体)での透過領域色度、ならびに比較例9で作成 した着色塗膜のD65光源での反射領域色度、2波長型LED光源での透過領域 色度を第7表に示す。



明るさ(WのY値) (対比較例9向上率) (\*8+) 38.9 35.9 反射領域色度(D65光源) 。 色再現性 48% 38% 27.5 70.6 18.6 38.9 24.1 70.6 13.0 35.9 0.305 0.527 0.157 0.341 0.321 0.527 0.122 0.537 0.322 0.140 0.316 0.599 0.322 0.135 ×  $\alpha \alpha \alpha \Rightarrow \alpha \alpha \alpha \Rightarrow$ 3波長型LED (UV-LED +RGB蛍光体) 2波長型 LED 光淌 色再現性 809 908 90% 透過領域色度 32.4 62.0 20.1 38.2 23.4 57.3 8.6 29.8 0.294 0.596 0.165 0.341 0.349 0.576 0.090 0.618 0.271 0.137 0.336 0.333 0.336 ×  $\alpha$   $\alpha$   $\alpha$   $\beta$   $\alpha$   $\alpha$   $\alpha$   $\beta$ 実施例 比較例

第7表

実施例6と比較例9でのカラーフィルターとバックライト光源の組み合わせによる色特性を比較すると、透過領域色度での色再現範囲、反射領域色度での色再現範囲は同等であるが、実施例6の反射領域での明るさが比較例9に比べて、8%向上していることがわかる。

実施例6のカラーフィルター、3波長型LED光源(紫外LED+RGB蛍光体)を用いた液晶表示装置と、比較例9のカラーフィルター、2波長型LED光源を用いた液晶表示装置の表示特性を比較したところ、透過表示では同等の色鮮やかさを示した。反射表示については、実施例6の液晶表示装置は明るく、暗い場所でも良好な視認性を示した。一方、比較例9は反射表示が暗く、表示を認識するのがやや困難であった。

このように、1色については反射用領域と透過用領域を塗り分けた方式、その他の2色については膜厚調整方式としたカラーフィルターを使用し、2波長型のLEDを用いた半透過型液晶表示装置において、透過表示での色再現性を高くした場合には、反射表示での十分な明るさを得ることが出来ないが、3波長型のLEDを用いた場合は、十分な明るさの反射表示を得ることが出来た。つまり、膜厚調整方式で作製された少なくとも一色の画素を含むカラーフィルターと3波長型のLEDを使用することで、鮮やかな透過表示と明るい反射表示が実現できたといえる。

### 実施例7

実施例 5 と同様にして、ブラックマトリクスがパターン加工されたガラス基板上に透明樹脂層を形成した。このときの透明樹脂層の膜厚は 2.0 μ m であった。 次に、透明樹脂層を形成したガラス基板上に赤レジスト (RAC-1) をスピ

ンナーで基板上に塗布し、実施例 5 と同様にして赤画素を得た。透過用領域の画素の中央での膜厚は $1.4\mu$ mで、C光源を通したときの色度(x、y)は(0.588、0.316)であった。また、透過用領域の画素の中央での膜厚(TP I-1 とRAC-1 からなる塗膜との合計)は $2.6\mu$ mで、反射用領域と透過用領域の着色層の膜厚比は2/5 であった。

同様にして、緑レジスト (GAC-1) をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は1.4 μ m で、C 光源を通



同様にして、青レジスト(BAC-1)をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は1.  $4\mu$ mで、C光源を通 したときの色度(x、y)は(0. 136、0. 117)であった。また、反射 用領域の画素の中央での膜厚(TPI-1とBAC-1からなる塗膜との合計) は2.  $6\mu$ mで、反射用領域と透過用領域の着色層の膜厚比は2/5であった。 このようにして得られた画素膜上に実施例5と同様にしてオーバーコート層、IT O膜を製膜した。この様にして得られたカラーフィルター基板について、基板 中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトル を測定した。

## 比較例10

実施例 5 と同様にして、ブラックマトリクスがパターン加工されたガラス基板上に透明樹脂層を形成した。このときの透明樹脂層の膜厚は $3.2\mu$  mであった。次に、透明樹脂層を形成したガラス基板上に赤レジスト(RAC-1)をスピンナーで基板上に塗布し、実施例 5 と同様にして赤画素を得た。透過用領域の画素の中央での膜厚は $2.3\mu$  mで、C光源を通したときの色度(x 、y)は(0.644、0.333)であった。また、透過用領域の画素の中央での膜厚(T P I-1 とRAC-1 からなる塗膜との合計)は $4.1\mu$  mで、反射用領域と透過用領域の着色層の膜厚比は2/5 であった。

同様にして、緑レジスト(GAC-1)をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は $2.3\mu m$ で、C光源を通 したときの色度(x、y)は(0.287、0.601)であった。また、透過 用領域の画素の中央での膜厚(TPI-1とGAC-1からなる塗膜との合計) は $4.1\mu m$ で、反射用領域と透過用領域の着色層の膜厚比は2/5であった。

同様にして、青レジスト(BAC-1)をスピンナーで基板上に塗布し、着色 塗膜を作製した。透過用領域の画素の中央での膜厚は2.  $3 \mu m$ で、C光源を通 したときの色度(x、y)は(0. 136、0. 085)であった。また、反射



用領域の画素の中央での膜厚(TPI-1とBAC-1からなる塗膜との合計)は4.  $1\mu$ mで、反射用領域と透過用領域の着色層の膜厚比は2/5であった。このようにして得られた画素膜上に実施例5と同様にしてオーバーコート層、I T O 膜を製膜した。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。

実施例7で作成した着色塗膜のD65光源での反射領域色度、3波長型LED 光源(紫外LED+RGB蛍光体)での透過領域色度、ならびに比較例10で作 成した着色塗膜のD65光源での反射領域色度、2波長型LED光源での透過領 域色度を第8表に示す。

明るさ(WのY値) (対比較例の向上率) 反射領域色度(D65光源) ◆ 色再現性 22% 22% 30.5 74.3 21.7 21.7 26.4 26.4 15.1 33.0 >-0.315 0.435 0.175 0.323 0.331 0.169 0.329 0.509 0.314 0.166 0.316 0.513 0.295 0.204 αоп≽ മെവയ≥ 3波長型LED (UV-LED +RGB蛍光体) 2波長型 LED 光漪 色再現性 88% 68% 透過領域色度 31.0 59.4 17.5 36.0 21.1 51.1 56.3 0.298 0.617 0.151 0.341 0.349 0.596 0.077 0.634 0.255 0.137 0.336 0.644 0.322 0.133 ×  $x \cap x \otimes x \cap x \otimes x$ 比較例の 実施例7

(+28%)

42.2

33.0

第8表



実施例7と比較例10でのカラーフィルターとバックライト光源の組み合わせによる色特性を比較すると、透過領域色度での色再現範囲、反射領域色度での色再現範囲は同等であるが、実施例7の反射領域での明るさが比較例10に比べて、28%向上していることがわかる。

実施例7のカラーフィルター、3波長型LED光源(紫外LED+RGB蛍光体)を用いた液晶表示装置と、比較例10のカラーフィルター、2波長型LED 光源を用いた液晶表示装置の表示特性を比較したところ、透過表示では同等の色 鮮やかさを示した。反射表示については、実施例7の液晶表示装置は非常に明る く、暗い場所でもより良好な視認性を示した。一方、比較例10は反射表示が非 常に暗く、表示を認識するのが困難であった。

このように、膜厚調整方式と面積調整方式を組み合わせたカラーフィルターを使用し、2波長型のLEDを用いた半透過型液晶表示装置において、透過表示での色再現性を高くした場合には、反射表示での十分な明るさを得ることが出来ないが、3波長型のLEDを用いた場合は、十分な明るさの反射表示を得ることが出来た。つまり、膜厚調整方式と面積調整方式を組み合わせたカラーフィルターと3波長型のLEDを使用することで、鮮やかな透過表示と十分な明るさの反射表示が実現できたといえる。

#### 比較例11

赤画素、緑画素、青画素の反射用領域に実施例 5 と同様にして、赤レジスト(RAC-2)、緑レジスト(GAC-2)、青レジスト(BAC-2)をスピンナーで基板上に塗布し、着色塗膜を作製した。反射用領域の画素の中央での膜厚は赤画素、緑画素、青画素すべてについて 1 . 2  $\mu$  mであった。また、C光源を通したときの色度(x 、y)は赤画素、緑画素、青画素について、それぞれ(0 . 4 5 3 、0 . 3 0 8 )、(0 . 3 2 9 、0 . 4 4 4 )、(0 . 1 7 0 、0 . 2 0 5 )であった。赤画素、緑画素、青画素の透過用領域に実施例 5 と同様にして着色層塗膜を作製した。

このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、 ITO膜を製膜した。得られたカラーフィルター基板について、基板中央部の1 つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。





比較例12

赤画素、緑画素、青画素の透過用領域に比較例8と同様にして着色層塗膜を作製したこと以外は比較例11と同様にして着色層塗膜を作製した。

このようにして得られた画素膜上に実施例1と同様にしてオーバーコート層、ITO膜を製膜した。得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを測定部について平均した。

比較例11で作成した着色塗膜のD65光源での反射領域色度、3波長型LED光源(紫外LED+RGB蛍光体)での透過領域色度、ならびに比較例12で作成した着色塗膜のD65光源での反射領域色度、2波長型LED光源での透過領域色度を第9表に示す。

| _             |           |               |       |           | _         | _                                        | -                                      | $\overline{}$ |       | _        | _     |            | - | ٦     |
|---------------|-----------|---------------|-------|-----------|-----------|------------------------------------------|----------------------------------------|---------------|-------|----------|-------|------------|---|-------|
|               | はなったが、おり、 | (対比較例12向上率)   | r ac  | r.<br>000 |           | (30)                                     | (2)                                    |               |       |          | 38.4  |            |   |       |
| 历射領域各度(DGS光源) |           | 色再現性          |       |           | 212       | <u>:</u>                                 |                                        |               |       |          | 41%   | :          |   |       |
| <b>历</b> 韩領城  | W W W W   | >             | 25.7  |           | 70.6      | 18.9                                     |                                        | 38.4          | 25.7  | 100      | 00/   | 18.9       | 2 | 400   |
|               |           | ≯ı            | 0.328 |           | 0.527     | 21.59                                    |                                        | 0.348         | 0.328 | 1        | 0.527 | 0.159      |   | 0.348 |
|               |           | ×             | 1     |           |           |                                          | _                                      |               | 0.573 |          |       |            | _ |       |
|               | l         |               | Δ     | <u>'</u>  | O         | a                                        | 3                                      | ₹             | В     |          | Ø     | Φ          | : | 3     |
|               |           | 光瀬            |       | 1         | - 3波根型100 | (11/11/11/11/11/11/11/11/11/11/11/11/11/ | יייייייייייייייייייייייייייייייייייייי | +RGB(知光存)     |       | i i      | 2.波長型 |            |   |       |
|               | PX.       | 色再現性          |       |           | 700       | င်္ခ                                     |                                        |               |       |          | Č     | နိုင်<br>ဝ |   |       |
| 代書では今日、デ      | 透過開墾已度    | <b>&gt;</b> - | 5     | 4.70      | 62.0      |                                          |                                        | 38.2          | 03.4  | j        | 57.3  | ď          | 2 | 000   |
|               | , )       | አ             | 1000  | U.284     | 0.596     |                                          | 0.155                                  | 0.341         | 076.0 | 5        | 0.576 |            | 3 | 0.044 |
|               |           | ×             |       | L COLD    | 1760      | 1 1 1                                    | 0.137                                  | 9550          | 0000  | 0.00     |       |            |   |       |
|               |           |               | 1     | Υ.        | <u>C</u>  | 7                                        | Φ                                      | 3             | 2     | <u>Y</u> | C     | ) (        | 0 | 3     |
|               | -         |               |       |           |           | ト一章 (例11                                 |                                        |               |       |          | 1     | 比較例2       |   |       |

第9款





比較例11と比較例12でのカラーフィルターとバックライト光源の組み合わせによる色特性を比較すると、透過領域色度での色再現範囲は同等であり、反射領域色度での特性は同一であった。

比較例11のカラーフィルター、3波長型LED光源(紫外LED+RGB蛍光体)を用いた液晶表示装置と、比較例12のカラーフィルター、2波長型LED光源を用いた液晶表示装置の表示特性を比較したところ、透過表示では同等の色鮮やかさを示した。反射表示での特性は、比較例11と比較例12とで同一であった。

このように、6色塗布方式では透過用領域と反射用領域とで独立に着色塗膜を作製するため、バックライト光源を変えたことによる反射表示への特性向上効果は見られない。

本発明に記載した液晶表示装置での反射表示明るさ向上効果をまとめて第10 表に示す。

|              | RGB-LED | UV-LED<br>+RGB蛍光体 | 有機EL | 冷陰極管 |
|--------------|---------|-------------------|------|------|
| 二二 4 忠 号田 安女 | 0       | 0                 | Δ    | Δ    |
| 面積調整         | 15%     | 12%               | 5%   | 3%   |
| o# 信         |         | 0                 |      |      |
| 膜厚調整         |         | 13%               |      |      |
| C            |         | ×                 |      |      |
| 6色塗布         | ļ       | 0%                |      |      |

第10表

面積調整方式、膜厚調整方式のカラーフィルターと3波長型のバックライト光源を組み合わせることで、環境光を用いる反射表示においても、明るさが向上していることがわかる。また、3波長型の光源の中でもLED光源を用いた場合に特に明るさが向上していることがわかる。

## 実施例8

プラックマトリクスがパターン加工されたガラス基板上にC光源を通したとき

の色度 (x 、y) が (0.466、0.294) となるように赤ペースト (R-1)をスピンナーでガラス基板上に塗布した。該塗膜を、120℃で20分乾燥 し、この上にポジ型フォトレジスト(東京応化株式会社製OFPR-800)を 塗布し、90℃で10分乾燥した。キャノン株式会社製紫外線露光機PLA-5 01Fを用い、クロム製のフォトマスクを介して60mJ/cm² (365nmの 紫外線強度)露光した。このとき用いたフォトマスクは、反射用領域内での開口 領域の割合(開口領域率)が12%のものである。露光後、テトラメチルアンモ ニウムハイドロオキサイドの2.25%の水溶液からなる現像液に浸漬し、フォ トレジストの現像、ポリイミド前駆体の着色塗膜のエッチングを同時に行った。 エッチング後不要となったフォトレジスト層をアセトンで剥離した。さらにポリ イミド前駆体の着色塗膜を240℃で30分熱処理し、ポリイミドに転換した。 次に、C光源を通したときの仕上がりの色度(x、y)が(0.152,0.1 90)になるように、青ペースト (B-1) を塗布し、赤画素と同様にフォトリ ソ加工した。このとき用いたフォトマスクは、反射用領域内での開口領域の割合 (開口領域率)が9%のものである。次にC光源を通したときの仕上がりの色度 (x、y)が(0.309、0.373)になるようにスピンナーでカラーペー スト(G-1)を塗布し、赤画素と同様にフォトリソ加工した。このときは緑画 素中には開口領域が形成されないフォトマスクを使用した。最後にスピンナーで カラーペースト(G-2)を塗布し、緑画素の透過用領域に緑着色層を積層した。 緑画素の透過用領域にC光源を通したときの色度(x、y)は(0.284、0. 443)であった。このようにして得られた画素膜上にオーバーコート層を 2μ mの厚みで製膜し、さらにその上にΙΤΟ膜を膜厚 0. 1μmとなるようにスパ ッタリングした。このようにして得られたカラーフィルター基板について、基板 中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトル を測定した。得られたカラーフィルターのD65光源での反射領域色度、2波長 型LED光源での透過領域色度、色度差δを第11表に示す。

第11表

| $\Gamma$ | 诱過領域色 | 度(2波長型L | ED光源) | 反射領域色 | 度(D65光源 |      | 色度差                    |
|----------|-------|---------|-------|-------|---------|------|------------------------|
| 1        | X     | ٧       | Y     | ×     | У       | Υ    | δ                      |
| R        |       | 0.332   | 42.6  | 0.485 | 0.331   | 33.1 | 1.7 × 10 <sup>-5</sup> |
| G        |       | 0.438   | 68.7  | 0.308 | 0.438   | 67.9 | $1.5 \times 10^{-7}$   |
| В        | 1     | 0.186   | 26.1  | 0.168 | 0.185   | 21.6 | $1.9 \times 10^{-4}$   |

### 比較例13

赤、青、緑画素のフォトリソ加工時に画素内に開口領域が形成されないフォトマスクを使用したこと、緑画素に画素を積層しないこと、C光源を通したときの仕上がり色度が異なること以外は実施例8と同様にして、カラーフィルターを作製した。用いたカラーペーストは赤ペースト(R-1)、緑ペースト(G-1)、青ペースト(B-1)である。また、C光源を通したときの仕上がりの色度(x,y)は、赤画素について(0.405,0.285)、緑画素について(0.309,0.373)、青画素について(0.178,0.225)である。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。得られたカラーフィルターのD65光源での反射領域色度、2波長型LED光源での透過領域色度、色度差δを第12表に示す。

第12表

|     | 诱调領域色 | 度(2波長型L | ED光源) | 反射領域色 | 度(D65光源 |      | 色度差                  |
|-----|-------|---------|-------|-------|---------|------|----------------------|
| 1 1 | X     | V       | Y     | ×     | У       | Υ    | δ                    |
| R   | 0.425 | 0.317   | 54.0  | 0.486 | 0.304   | 32.6 | $3.9 \times 10^{-3}$ |
| G   | 0.328 | 0.379   | 86.0  | 0.308 | 0.438   | 67.9 | $3.8 \times 10^{-3}$ |
| В   | 0.184 | 0.227   | 36.8  | 0.143 | 0.187   | 22.3 | $3.3 \times 10^{-3}$ |

#### 比較例14

緑画素のフォトリソ加工時に緑画素内の開口領域が26%になるようにパターン加工されたフォトマスクを使用し、C光源での仕上がり色度が(0.303,0.440)となるように緑ペーストを塗布したこと、緑画素に画素を積層しないこと以外は実施例8と同様にして、カラーフィルターを作製した。用いたカラ



ーペーストは赤ペースト (R-1)、緑ペースト (G-1)、青ペースト (B-1) である。

この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。得られたカラーフィルターのD65光源での反射領域色度、2波長型LED光源での透過領域色度、色度差δを第13表に示す。

第13表

|     | 透過領域色 | 度(2波長型L | ED光源) | 反射領域色 | 度(D65光源 |      | 色度差                  |
|-----|-------|---------|-------|-------|---------|------|----------------------|
| 1 1 | X     | V       | Y     | ×     | У       | Υ    | δ                    |
| R   | 0.489 | 0.332   | 42.6  | 0.485 | 0.331   | 33.1 | $1.7 \times 10^{-5}$ |
| G   | 0.326 | 0.437   | 74.2  | 0.300 | 0.438   | 62.3 | $6.6 \times 10^{-4}$ |
| B   | 0.154 | 0.186   | 26.1  | 0.168 | 0.185   | 21.6 | $1.9 \times 10^{-4}$ |

比較例13、比較例14で作製したカラーフィルターを用いた半透過型液晶表示装置と実施例8のカラーフィルターを用いた液晶表示装置との表示特性の違いを反射表示についてはバックライトを消灯し屋外の環境光下で、透過表示については暗室でバックライト光源を点灯して比較した。なお、透過表示に使用する光源は2波長型のLED光源を用いた。従来の技術で作製された比較例1の液晶表示装置は透過表示での色合いが全体的に薄く、反射表示との視認性に大きな違いが見られた。一方、実施例8のカラーフィルターを用いた液晶表示装置は反射表示と透過表示での色合いの違いがほとんどなく良好な表示特性を示した。比較例14の液晶表示装置は比較例13に比べると反射表示と透過表示で色合いは良好であるもの実施例8の液晶表示装置に比べ、暗かった。また反射表示での明るさが実施例8の液晶表示装置に比べ、暗かった。

# 実施例9

ブラックマトリクスがパターン加工されたガラス基板上にC光源を通したときの色度(x、y)が(0. 405、0. 301)となるように表1に示す割合で調整した赤ペースト(R-2)をスピンナーでガラス基板上に塗布した。該塗膜を、120 $\mathbb{C}$ で20分乾燥し、この上にポジ型フォトレジスト(東京応化株式会社製OFPR-800)を塗布し、90 $\mathbb{C}$ で10分乾燥した。キャノン株式会社



製紫外線露光機PLA-501Fを用い、クロム製のフォトマスクを介して60 m J/c m² (365 n m の紫外線強度) 露光した。このときは赤画素中には開口 領域が形成されないフォトマスクを使用した。露光後、テトラメチルアンモニウ ムハイドロオキサイドの2.25%の水溶液からなる現像液に浸漬し、フォトレ ジストの現像、ポリイミド前駆体の着色塗膜のエッチングを同時に行った。エッ チング後不要となったフォトレジスト層をアセトンで剥離した。さらにポリイミ ド前駆体の着色塗膜を240℃で30分熱処理し、ポリイミドに転換した。次に C光源を通したときの仕上がりの色度 (x、y) が (0.307, 0.426) になるようにスピンナーでカラーペースト (G-1) を塗布し、赤画素と同様に フォトリソ加工した。このとき用いたフォトマスクは、反射用領域内での開口領 域の割合 (開口領域率) が23%のものである。次に、C光源を通したときの仕 上がりの色度 (x、y) が (0.148,0.182) になるように、青ペース ト (B-1) を塗布し、赤画素と同様にフォトリソ加工した。このとき用いたフ オトマスクは、反射用領域内での開口領域の割合(開口領域率)が10%のもの である。最後にスピンナーで表1に示す割合で調整したカラーペースト(R-3) を塗布し、赤画素の透過用領域全体と青画素の透過用領域面積の50%に赤着色 層を積層した。赤画素の透過用領域にC光源を通したときの色度(x、y)は(0. 474、0.326) であった。また、青画素の透過用領域のC光源を通したと きの色度 (x、y) は (0.171、0.169) であった。このようにして得 られた画素膜上にオーバーコート層を 2 μ m の厚みで製膜し、さらにその上に Ι ΤΟ膜を膜厚 0. 1 μ m となるようにスパッタリングした。

この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。得られたカラーフィルターのD65光源での反射領域色度、3波長型LED光源(RGB3チップLED)での透過領域色度、色度差δを第14表に示す。

第14表



|   | 透過領域色 | 度(3波長型L | ED光源) | 反射領域色 | 度(D65光源 |      | 色度差                    |
|---|-------|---------|-------|-------|---------|------|------------------------|
|   | x     | у       | Υ     | ×     | У       | Υ    | δ                      |
| R | 0.488 | 0.321   | 41.1  | 0.488 | 0.323   | 33.4 | $2.9 \times 10^{-6}$   |
| G | 0.298 | 0.438   | 74.5  | 0.305 | 0.438   | 61.4 | 4.9 × 10 <sup>-5</sup> |
| B | 0.169 | 0.186   | 21.4  | 0.174 | 0.187   | 20.9 | 3.2 × 10 <sup>-5</sup> |

#### 比較例15

赤画素のフォトリソ加工時に赤画素内の開口領域が11%になるようにパターン加工されたフォトマスクを使用し、青画素のフォトリソ加工時に青画素内の開口領域が12%になるようにパターン加工されたフォトマスクを使用して、カラーフィルターを作製した。なお、用いたカラーペーストは赤ペースト(R-2)、緑ペースト(G-1)、青ペースト(B-1)であり、赤画素、青画素に着色層は積層していない。また、C光源を通したときの仕上がりの色度(x、y)が、赤画素については(0.469,0.313)、青画素については(0.141,0.167)となるようにカラーペーストを塗布した。緑画素については、実施例9と同様に塗布、加工を行った。

この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。得られたカラーフィルターのD65光源での反射領域色度、3波長型LED光源(RGB3チップLED)での透過領域色度、色度差δを第15表に示す。

第15表

|   | 透過領域色 | 度(3波長型L | ED光源) | 反射領域色 | 度(D65光源 |      | 色度差                  |
|---|-------|---------|-------|-------|---------|------|----------------------|
|   | ×     | у       | ΥΥ    | ×     | у       | Υ    | δ                    |
| R | 0.488 | 0.308   | 36.8  | 0.488 | 0.344   | 31.0 | $1.2 \times 10^{-3}$ |
| G | 0.298 | 0.438   | 74.5  | 0.305 | 0.438   | 61.4 | $4.9 \times 10^{-5}$ |
| В | 0.139 | 0.187   | 24.8  | 0.183 | 0.187   | 20.1 | $1.9 \times 10^{-3}$ |

比較例15で作製したカラーフィルターを用いた半透過型液晶表示装置と実施例9のカラーフィルターを用いた液晶表示装置との表示特性の違いを反射表示についてはバックライトを消灯し屋外の環境光下で、透過表示については暗室でバックライト光源を点灯して比較した。なお、透過表示に使用する光源は3波長型

のLED光源(RGB3チップLED)を用いた。比較例15のカラーフィルターを用いた液晶表示装置と実施例9の液晶表示装置では、色の鮮やかさは同等であったが、実施例9の液晶表示装置のほうが反射表示と透過表示での色合いの変化がほとんどなく良好な表示特性を示した。

### 実施例10

ブラックマトリクスがパターン加工されたガラス基板上にC光源を通したとき の色度(x、y)が(0.466、0.294)となるように赤ペースト(R ー 1)をスピンナーでガラス基板上に塗布した。該塗膜を、120℃で20分乾燥 し、この上にポジ型フォトレジスト(東京応化株式会社製OFPR-800)を 塗布し、90℃で10分乾燥した。キャノン株式会社製紫外線露光機PLA-5 01Fを用い、クロム製のフォトマスクを介して60mJ/cm² (365nmの 紫外線強度)露光した。このとき用いたフォトマスクは、反射用領域内での開口 領域の割合(開口領域率)が12%のものである。露光後、テトラメチルアンモ ニウムハイドロオキサイドの2.25%の水溶液からなる現像液に浸漬し、フォ トレジストの現像、ポリイミド前駆体の着色塗膜のエッチングを同時に行った。 エッチング後不要となったフォトレジスト層をアセトンで剥離した。さらにポリ イミド前駆体の着色塗膜を240℃で30分熱処理し、ポリイミドに転換した。 次に、C光源を通したときの仕上がりの色度(x、y)が(0.200,0.2 3 2) になるように、青ペースト (B-2) を塗布し、赤画素と同様にフォトリ ソ加工した。このときは青画素中には開口領域が形成されないフォトマスクを使 用した。次にC光源を通したときの仕上がりの色度(x、y)が(0.309、 373)になるようにスピンナーでカラーペースト(G-1)を塗布し、赤 画素と同様にフォトリソ加工した。このときは緑画素中には開口領域が形成され ないフォトマスクを使用した。次にスピンナーでカラーペースト(G-2)を塗 布し、緑画素の透過用領域に緑着色層を積層した。緑画素の透過用領域にC光源 を通したときの色度(x、y)は(0.284、0.443)であった。最後に スピンナーでカラーペースト(B-1)を塗布し、青画素の透過用領域に青着色 層を積層した。青画素の透過用領域にC光源を通したときの色度(x、y)は(0. 158、0.188)であった。このようにして得られた画素膜上にオーバーコ



ート層を  $2 \mu$  m の厚みで製膜し、さらにその上に I T O 膜を膜厚  $0.1 \mu$  m となるようにスパッタリングした。

この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。得られたカラーフィルターのD65光源での反射領域色度、2波長型LED光源での透過領域色度、色度差δを第16表に示す。

第16表

|   | 透過領域色 | 度(2波長型L | ED光源) | 反射領域色 | 度(D65光源 |      | 色度差                    |
|---|-------|---------|-------|-------|---------|------|------------------------|
|   | X     | V       | Y     | х     | У       | Υ    | δ                      |
| R | 0.489 | 0.332   | 42.6  | 0.485 | 0.331   | 33.1 | 1.7 × 10 <sup>-5</sup> |
| G | 0.307 | 0.438   | 68.7  | 0.308 | 0.438   | 67.9 | $1.5 \times 10^{-7}$   |
| В | 0.160 | 0.187   | 25.2  | 0.155 | 0.186   | 22.1 | $3.0 \times 10^{-5}$   |

比較例14で作製したカラーフィルターを用いた半透過型液晶表示装置と実施例10のカラーフィルターを用いた液晶表示装置との表示特性の違いを反射表示についてはバックライトを消灯し屋外の環境光下で、透過表示については暗室でバックライト光源を点灯して比較した。なお、透過表示に使用する光源は2波長型のLED光源を用いた。実施例10の液晶表示装置は反射表示と透過表示で色合いの違いは視認されず、表示特性は極めて良好であった。比較例14の液晶表示装置は実施例10の液晶表示装置と比較すると反射表示と透過表示での色合いの変化が視認された。また反射表示での明るさが実施例10の液晶表示装置に比べ、暗かった。

#### 実施例11

プラックマトリクスがパターン加工されたガラス基板上に赤ペースト(R-4)をスピンナーで基板上に塗布した。該塗膜を、120℃で20分乾燥し、この上にポジ型フォトレジスト(東京応化株式会社製OFPR-800)を塗布し、90℃で10分乾燥した。キャノン株式会社製紫外線露光機PLA-501Fを用い、クロム製のフォトマスクを介して60mJ/cm²(365nmの紫外線強度)で露光した。このときは赤画素中の透過用領域にのみ着色層が残るフォトマスク



を使用した。露光後、テトラメチルアンモニウムハイドロオキサイドの2. 25%の水溶液からなる現像液に浸漬し、フォトレジストの現像、ポリイミド前駆体の着色塗膜のエッチングを同時に行った。エッチング後不要となったフォトレジスト層をアセトンで剥離した。さらにポリイミド前駆体の着色塗膜を240℃で30分熱処理し、ポリイミドに転換した。このときの着色層膜厚は1. 4 $\mu$ mで、C光源を通したときの色度(x、y)は(0.429,0.281)であった。次に赤画素と同様にして緑画素、青画素を形成した。このとき用いた緑ペーストはG-3、青ペーストはB-3である。このときの緑画素着色層膜厚は1.4 $\mu$ mで、C光源を通したときの色度(x、y)は(0.291、0.457)であった。また、このときの青画素着色層膜厚は1.4 $\mu$ mで、C光源を通したときの色度(x、y)は(0.291、0.457)であった。また、このときの青画素着色層膜厚は1.4 $\mu$ mで、C光源を通したときの色度(x、y)は(0.191、0.241)であった。このようにして透過用領域を形成した。

次に、透過用領域、反射用領域ともに着色層が残るフォトマスクを用いたこと、以下のカラーペーストを用いたこと以外は透過用領域の形成と同様にして、透過用領域と反射用領域に着色層パターンを形成した。これにより、透過用領域には 2色の着色層が重ねられた。このときのペーストは赤画素用にR-6、緑画素用にG-5、青画素用にB-5を用いた。作製した各色画素の反射用領域の着色層膜厚は 1.  $4\mu$  mであった。C光源を通したときの赤色画素の色度(x、y)は (0. 453、0. 308)、緑色画素の色度(x、y)は (0. 329、0. 44

このようにして得られた画素膜上にオーバーコート層を 2 μ m の厚みで製膜 し、さらにその上に I T O 膜を膜厚 0.1 μ m となるようにスパッタリングした。 この様にして得られたカラーフィルター基板について、基板中央部の 1 つの画素、基板それぞれの角部 4 つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。得られたカラーフィルターの

D 6 5 光源での反射領域色度、 3 波長型 L E D 光源での透過領域色度、色度差 δ

第17表

を第17表に示す。





## 実施例12

先に透過用領域、反射用領域を形成し、次に、透過用領域を形成した、つまり 画素の形成順を実施例11と逆にしたこと以外は、実施例11と同様にして、着 色層パターンを形成した。

このようにして得られた画素膜上にオーバーコート層を $2\mu$ mの厚みで製膜し、さらにその上にITO膜を膜厚 $0.1\mu$ mとなるようにスパッタリングした。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。得られたカラーフィルターの0.5光源での反射領域色度、3波長型LED光源での透過領域色度、色度差5を第1.8表に示す。

第18表

|   | 透過領域色 | 度(2波長型L | ED光源) | 反射領域色 | 度(D65光源 |      | 色度差                    |
|---|-------|---------|-------|-------|---------|------|------------------------|
| 1 | · X   | V       | Y     | x     | У       | Y    | δ                      |
| R | 0.574 | 0.338   | 28.5  | 0.573 | 0.328   | 25.7 | $1.0 \times 10^{-4}$   |
| G | 0.321 | 0.527   | 58.8  | 0.322 | 0.527   | 70.6 | 1.1 × 10 <sup>-6</sup> |
| В |       | 0.159   | 20.0  | 0.139 | 0.159   | 18.9 | 1.3 × 10 <sup>-5</sup> |

#### 比較例16

以下のカラーペーストを用いたこと以外は実施例11と同様にして、透過用領域に着色層パターンを形成した。このときのペーストは赤画素用にR-5、緑画素用にG-4、青画素用にB-4を用いた。作製した各色画素の透過用領域の着色層膜厚は1.4μmであった。C光源を通したときの赤色画素の色度(x、y)は(0.552,0.306)、緑色画素の色度(x、y)は(0.298、0.538)、青色画素の色度(x、y)は(0.139、0.159)であった。次に、反射用領域にのみ着色層が残るフォトマスクを用いたこと、以下のカラ

ーペーストを用いたこと以外は透過用領域の形成と同様にして、反射用領域に着色層パターンを形成した。このときのペーストは赤画素用にR-6、緑画素用にG-5、青画素用にB-5を用いた。作製した各色画素の反射用領域の着色層膜厚は $1.4\mu$ mであった。C光源を通したときの赤色画素の色度 (x,y)は (0.453,0.308)、緑色画素の色度 (x,y)は (0.329,0.444)、青色画素の色度 (x,y)は (0.170,0.205) であった。

このようにして得られた画素膜上にオーバーコート層を  $2~\mu$  mの厚みで製膜し、さらにその上に I T O 膜を膜厚  $0.1~\mu$  m となるようにスパッタリングした。この様にして得られたカラーフィルター基板について、基板中央部の1つの画素、基板それぞれの角部 4つの画素について、分光スペクトルを測定した。測定した画素スペクトルを各測定部について平均した。得られたカラーフィルターの $0.5~\mu$  と表表での反射領域色度、 $3~\mu$  を第19表に示す。

第19表

| П | 透過領域  | 色度(2波長) | ED光源) | 反射領   | 域色度(D6 | 5光源) | 色度差                  |
|---|-------|---------|-------|-------|--------|------|----------------------|
| t | X     | V       | Y     | х     | у      | Υ    | δ                    |
| R | 0.574 | 0.337   | 28.1  | 0.573 | 0.328  | 25.7 | 7.8×10 <sup>-5</sup> |
| G | 0.328 | 0.530   | 61.2  | 0.322 | 0.527  | 70.6 | $5.8 \times 10^{-5}$ |
| B | 0.139 | 0.150   | 18.6  | 0.139 | 0.159  | 18.9 | $7.5 \times 10^{-5}$ |

比較例16で作製したカラーフィルターを用いた半透過型液晶表示装置と実施例11,12のカラーフィルターを用いた液晶表示装置との表示特性の違いを反射表示についてはバックライトを消灯し屋外の環境光下で、透過表示については暗室でバックライト光源を点灯して比較した。なお、透過表示に使用する光源は2波長型のLED光源を用いた。実施例11,12の液晶表示装置は反射表示と透過表示で色合いの違いは視認されず、表示特性は極めて良好であった。比較例16の液晶表示装置は反射表示と透過表示で色合いの違いは視認されなかったが、画面内に数カ所白色輝点や、色むらが観察され画面品質が悪かった。

## 産業上の利用可能性



本発明により、透過表示での色再現性が高く、反射表示での特性(色再現性、明るさ)に優れた低コストな半透過型液晶表示装置が提供可能となる。また、反射表示と透過表示での色度差が少なく、明るい半透過型液晶表示装置用カラーフィルターを得ることが可能となる。



# 請求の範囲

- 1. 液晶層を挟んで互いに対向して配置される一対の基板と、周辺光を光源として活用する反射手段と、バックライト光源とを備えてなる半透過型液晶表示装置において、透過用領域と反射用領域とをカラーフィルターの1画素内に設け、該1画素内で着色層が同一材料からなるカラーフィルター、および、3波長型のLEDバックライト光源を具備してなることを特徴とする半透過型液晶表示装置。
- 2. 透過用領域と反射用領域が、同一膜厚の着色層からなり、反射用領域には開口を有する少なくとも一色の画素を含むカラーフィルターを使用している請求の 範囲第1項記載の半透過型液晶表示装置。
- 3. 反射用領域と透過用領域の着色層の膜厚が異なる少なくとも一色の画素を含むカラーフィルターを使用している請求の範囲第1項記載の半透過型液晶表示装置。
- 4. 反射用領域には開口を有するカラーフィルターを使用している請求の範囲第3項記載の半透過型液晶表示装置。
- 5. 透過用領域と反射用領域を含むカラーフィルターであって、少なくとも一色 の画素において透過領域に2種類以上の着色層が積層されていることを特徴とす る液晶表示装置用カラーフィルター。
- 6. 透過用領域に第一の着色層を形成し、第一の着色層上と反射用領域に第二の 着色層を形成した請求の範囲第5項記載の液晶表示装置用カラーフィルター。
- 7. 透過用領域と反射用領域に第一の着色層を形成し、第一の着色層上の透過用領域に第二の着色層を形成した請求の範囲第5項記載の液晶表示装置用カラーフィルター。



- 8. 少なくとも一色の画素においで、透過用領域と反射用領域が同一色材料からなり、反射用領域には開口領域を含む請求の範囲第5項記載の液晶表示装置用カラーフィルター。
- 9. 緑色着色層上に該着色層の顔料組成とは異なる組成の緑着色層を積層させた請求の範囲第5項記載の液晶表示装置用カラーフィルター。
- 10. 赤色着色層上に該着色層の顔料組成とは異なる組成の赤着色層を積層させた請求の範囲第5項記載の液晶表示装置用カラーフィルター。
- 11. 赤色着色層上にキナクリドン骨格をもつ顔料を含む着色層を積層させた請求の範囲第10項記載の液晶表示装置用カラーフィルター。
- 12. 青色着色層上に該着色層の顔料組成とは異なる組成の青着色層を積層させた請求の範囲第5項記載の液晶表示装置用カラーフィルター。
- 13. 青色着色層上と赤色着色層上に同一の着色層を積層し、かつ青色着色層上の積層色材料面積が赤色着色層上の積層色材料面積よりも狭い請求の範囲第5項記載の液晶表示装置用カラーフィルター。
- 14. 着色層の上にオーバーコート層を形成した請求の範囲第5項記載の液晶表示装置用カラーフィルター。
- 15. 透過用領域の色度 (x0, y0) と反射用領域の色度 (x、y) の色度差 δ が以下の色を満たす画素を含まない請求の範囲第5項記載の液晶表示素子用カラーフィルター。

$$\delta = (x - x \ 0)^{2} + (y - y \ 0)^{2} \ge 1 \times 1 \ 0^{-3}$$

/O 03/102638

16.請求の範囲第5項記載のカラーフィルターを用いた半透過型液晶表示装置。

第1図



第2図



第3図



第4図



第5図





第6図



第7図





第8図



第9図



第10図



第11図



第12図



第13図





第14図



第15図



International Vication No.
PCT - P02/12363

| A. CLASSIFICATION OF SUBJECT MATTER Int.Cl <sup>7</sup> G02B5/20, G02F1/1335, G02F1/13357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                          |                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|--|--|
| According to International Patent Classification (IPC) or to both national classification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                          |                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S SEARCHED                                                                                                                      |                                                          |                        |  |  |
| Minimum documentation searched (classification system followed by classification symbols)  Int.Cl <sup>7</sup> G02B5/20, G02F1/1335, G02F1/13357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                                          |                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion searched other than minimum documentation to the                                                                           | extent that such documents are included                  | in the fields searched |  |  |
| Jitsu<br>Kokai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uyo Shinan Koho 1926-1996<br>i Jitsuyo Shinan Koho 1971-2003                                                                    | Toroku Jitsuyo Shinan Koho<br>Jitsuyo Shinan Toroku Koho | 1994–2003<br>1996–2003 |  |  |
| Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                          |                        |  |  |
| C. DOCUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MENTS CONSIDERED TO BE RELEVANT                                                                                                 |                                                          |                        |  |  |
| Category*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Citation of document, with indication, where ap                                                                                 | propriate, of the relevant passages                      | Relevant to claim No.  |  |  |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JP 2000-66199 A (Seiko Epson<br>03 March, 2000 (03.03.00),<br>Par. Nos. [0001], [0083] to [<br>[0093]; Fig. 9<br>(Family: none) | į                                                        | 1-4                    |  |  |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JP 2001-125094 A (Fujitsu Lt<br>11 May, 2001 (11.05.01),<br>Claims 1 to 5; Par. Nos. [004<br>all drawings<br>(Family: none)     |                                                          | 1-4                    |  |  |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JP 9-197979 A (Nichia Chemic<br>31 July, 1997 (31.07.97),<br>Claims; Par. No. [0004]; all<br>(Family: none)                     |                                                          | 1-4                    |  |  |
| × Furth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er documents are listed in the continuation of Box C.                                                                           | See patent family annex.                                 |                        |  |  |
| * Special categories of cited documents:  "A" document defining the general state of the art which is not considered to be of particular relevance  "E" earlier document but published on or after the international filing date  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "P" document published prior to the international filing date but later than the priority date claimed  Date of the actual completion of the international search  26 February, 2003 (26.02.03)  "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family  Date of mailing of the international search report  11 March, 2003 (11.03.03) |                                                                                                                                 |                                                          |                        |  |  |
| Name and mailing address of the ISA/ Japanese Patent Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 | Authorized officer                                       |                        |  |  |
| Faccimile No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 | Telephone No.                                            |                        |  |  |



Internation Vication No.
PCT/JP02/12363

| C (Continua | tion). DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                             | -                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category*   | Citation of document, with indication, where appropriate, of the relevant passages                                                     | Relevant to claim No. |
| Y<br>A      | JP 2001-281648 A (Optrex Corp.), 10 October, 2001 (10.10.01), Claims 4, 5; Par. Nos. [0031] to [0037], [0042] to [0049] (Family: none) | 5-12,14-16<br>13      |
| Y           | JP 2001-33768 A (Seiko Epson Corp.),<br>09 February, 2001 (09.02.01),<br>Par. Nos. [0051] to [0058]; Fig. 2<br>(Family: none)          | 7                     |
| Y           | JP 2002-71938 A (Toray Industries, Inc.),<br>12 March, 2002 (12.03.02),<br>Claims<br>(Family: none)                                    | 11                    |
|             |                                                                                                                                        |                       |
| :<br>:      | ·                                                                                                                                      |                       |
|             |                                                                                                                                        |                       |
|             |                                                                                                                                        |                       |
|             | ·                                                                                                                                      |                       |
|             |                                                                                                                                        |                       |
|             |                                                                                                                                        |                       |
|             |                                                                                                                                        |                       |
|             |                                                                                                                                        |                       |
|             |                                                                                                                                        |                       |
|             |                                                                                                                                        |                       |



|                                                                |                                                                                                     |                       | ·                     |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--|--|
| A. 発明の原                                                        | 関する分野の分類(国際特許分類(IPC))                                                                               |                       |                       |  |  |
| Int. Cl                                                        | ' G02B 5/20 G02F 1                                                                                  | /1335 G02F            | 1/13357               |  |  |
| B. 調査を行                                                        | テッな公邸                                                                                               |                       |                       |  |  |
|                                                                | か、現資料(国際特許分類(IPC))                                                                                  |                       |                       |  |  |
| W                                                              |                                                                                                     |                       |                       |  |  |
| Int. Cl                                                        | ' G02B 5/20 G02F 1                                                                                  | /1335 G02F            | 1/13357               |  |  |
|                                                                |                                                                                                     |                       |                       |  |  |
| . 同. J. 17日7次261 い A                                           | の次約で調本な行った八四に合まれるもの                                                                                 |                       |                       |  |  |
| 取小胶質件以2                                                        | トの資料で調査を行った分野に含まれるもの                                                                                |                       |                       |  |  |
| 日本国关州初:<br>  日本国公盟宝                                            | 用新宏公報 1971-2003年                                                                                    |                       |                       |  |  |
| 日本国本研究                                                         | 用新客公報 1994-2003年                                                                                    |                       |                       |  |  |
| 日本国実用新                                                         | 案公報     1926-1996年       用新案公報     1971-2003年       用新案公報     1994-2003年       案登録公報     1996-2003年 |                       |                       |  |  |
|                                                                |                                                                                                     |                       |                       |  |  |
| 国際調査で使用                                                        | 目した電子データベース(データベースの名称、                                                                              | 調査に使用した用語)            |                       |  |  |
|                                                                |                                                                                                     |                       |                       |  |  |
|                                                                |                                                                                                     |                       |                       |  |  |
|                                                                | ·                                                                                                   |                       |                       |  |  |
| C. 関連する                                                        | 3と認められる文献                                                                                           |                       |                       |  |  |
| 引用文献の                                                          |                                                                                                     |                       | 関連する                  |  |  |
| カテゴリー*                                                         | 引用文献名 及び一部の箇所が関連すると                                                                                 | ときは、その関連する箇所の         | 表示 請求の範囲の番号           |  |  |
|                                                                | JP 2000-66199 A                                                                                     | (セイコーエプソン株式           | (会社)                  |  |  |
|                                                                | 2000.03.03                                                                                          |                       |                       |  |  |
| Y                                                              | $[0001]$ , $[0083] \sim [00]$                                                                       | 086]. [0090           | $1 \sim 1-4$          |  |  |
| *                                                              | 【0093】、図9                                                                                           |                       |                       |  |  |
|                                                                | (ファミリーなし)                                                                                           |                       |                       |  |  |
|                                                                | (2) (3) 40)                                                                                         |                       |                       |  |  |
|                                                                | ID 0001 105004 A                                                                                    | (常工:番地学会社)            | }                     |  |  |
|                                                                | JP 2001-125094 A                                                                                    | (鱼工理体式云红)             |                       |  |  |
|                                                                | 2001. 05. 11                                                                                        |                       |                       |  |  |
| Y                                                              | 【請求項1】~【請求項5】、【00                                                                                   | $040] \sim [0041]$    | 1-4                   |  |  |
|                                                                | 全図                                                                                                  |                       | 1                     |  |  |
| <del> </del>                                                   |                                                                                                     |                       |                       |  |  |
| X C欄の続き                                                        | きにも文献が列挙されている。                                                                                      | □ パテントファミリー           | -に関する別紙を参照。           |  |  |
|                                                                | الرفيد == بالرب                                                                                     | の日の後にハギシン             | 4 <del>4</del> 4      |  |  |
| * 引用文献の                                                        | ワカテゴリー<br>車のある文献ではなく、一般的技術水準を示す                                                                     | の日の後に公表され「エー国際出願日又は優先 | た义歌<br>日後に公表された文献であって |  |  |
| 「ハ」やに関い                                                        | 至いのる人間ではなく、一枚的状態が中でかり                                                                               |                       | ではなく、発明の原理又は理論        |  |  |
|                                                                | 頭日前の出願または特許であるが、国際出願日                                                                               | の理解のために引用             |                       |  |  |
| 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明                          |                                                                                                     |                       |                       |  |  |
|                                                                | 主張に疑義を提起する文献又は他の文献の発行                                                                               |                       | がないと考えられるもの           |  |  |
|                                                                | 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以                                                 |                       |                       |  |  |
|                                                                | 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに                                                                  |                       |                       |  |  |
| 「〇」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの                     |                                                                                                     |                       |                       |  |  |
| 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献                   |                                                                                                     |                       |                       |  |  |
| 国際調査を完了した日国際調査報告の発送日                                           |                                                                                                     |                       |                       |  |  |
| 26.02.03 11.03.03                                              |                                                                                                     |                       |                       |  |  |
|                                                                |                                                                                                     |                       |                       |  |  |
| 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 2 V 7635                        |                                                                                                     |                       |                       |  |  |
|                                                                | 国特許庁(ISA/JP)                                                                                        | 峰 祐治                  |                       |  |  |
| 郵便番号100-8915<br>  東京都千代田区霞が関三丁目4番3号   電話番号 03-3581-1101 内線 653 |                                                                                                     |                       |                       |  |  |
| 東京都                                                            | 部千代田区段が関三丁目4番3号                                                                                     | 电耐倒写 ∪3一3581          | -1101 内線 6532         |  |  |



| C (続き). 関連すると認められる文献 |                                                                                |                      |  |  |  |
|----------------------|--------------------------------------------------------------------------------|----------------------|--|--|--|
| 引用文献の<br>カテゴリー*      | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                              | 関連する 請求の範囲の番号        |  |  |  |
| 77-2-                | (ファミリーなし)                                                                      | HUAN - A MOKTAN HI A |  |  |  |
| ,                    | (ファミリーなじ)<br>  JP 9-197979 A (日亜化学工業株式会社)                                      |                      |  |  |  |
|                      | 1                                                                              |                      |  |  |  |
| Y                    | 【請求の範囲】、【0004】、全図<br>(ファミリーなし)                                                 | 1-4                  |  |  |  |
|                      | JP 2001-281648 A (オプトレックス株式会社)<br>2001.10.10                                   | 5 10 11 10           |  |  |  |
| Υ .                  | 【請求項4】、【請求項5】、【0031】~【0037】<br>【0042】~【0049】                                   | 5-12、14-16           |  |  |  |
| A                    | (ファミリーなし)                                                                      | 13                   |  |  |  |
|                      |                                                                                |                      |  |  |  |
| Y                    | JP 2001-33768 A (セイコーエプソン株式会社)<br>2001.02.09<br>【0051】~【0058】、 図2<br>(ファミリーなし) | 7                    |  |  |  |
| Y                    | JP 2002-71938 A (東レ株式会社)<br>2002.03.12<br>【特許請求の範囲】<br>(ファミリーなし)               | 11                   |  |  |  |
|                      |                                                                                |                      |  |  |  |
|                      | ·                                                                              |                      |  |  |  |
|                      |                                                                                |                      |  |  |  |
|                      | ·                                                                              |                      |  |  |  |
|                      |                                                                                |                      |  |  |  |