

Grafos cuasi-aleatorios y lema de regularidad de Szemerédi

4	Estudiante:
5	Felipe Sánchez Erazo
6	Profesor Guía:
7	Dr. Hiệp Hàn
_	Tesis para optar al título de Ingeniero Matemático de la Universidad de Santiago de
8	Chile
9	Cinie
0	Departamento de Matemática y Ciencia de la computación
	Universidad de Santiago de Chile

A mi abuelo, Sergio Sánchez.

1. Introducción

4 2. Preeliminares

15

16

17

20

21

22

25

29

32

33

34

35

Este capítulo proporciona una introducción concisa de los conceptos y terminologías que se utilizarán en esta tesis. La sección 2.1 da un paseo por las nociones más básicas de la teoría de grafos, otorgando una línea de base para el desarrollo del documento. En la sección 2.2 se repasan algunos conceptos y resultados clásicos del álgebra lineal para abordar las propiedades necesarias de la teoría espectral de grafos. Por último, la sección 2.3 contextualiza y motiva el contenido de la sección 3.

En muchos de los resultados de esta tesis, la desigualdad de Cauchy-Schwarz (DCS) es un argumento fundamental en sus demostraciones. En particular, se emplearán dos variantes que se enunciarán a continuación. Primero recuerde que la DCS establece que todo $a, b \in \mathbb{R}^k$ satisfacen

$$\sum_{i=1}^{k} a_i^2 \sum_{i=1}^{k} b_i^2 \ge \left(\sum_{i=1}^{k} a_i b_i\right)^2. \tag{1}$$

Entonces, si b = (1, ..., 1), se obtiene la primera variante:

$$\sum_{i=1}^{k} a_i^2 \ge \frac{1}{k} \left(\sum_{i=1}^{k} a_i \right)^2. \tag{2}$$

Adicionalmente, considerando los reales $\alpha_1, ..., \alpha_k > 0$ y $\beta_1, ..., \beta_k \geq 0$, defina $a_i = \sqrt{\alpha_i}$ y $b_i = \frac{\beta_i}{\sqrt{\alpha_i}}$ para conseguir la segunda variante:

$$\sum_{i=1}^{k} \frac{\beta_i^2}{\alpha_i} \ge \frac{\left(\sum_{i=1}^{k} \beta_i\right)^2}{\sum_{i=1}^{k} \alpha_i}.$$
 (3)

Por otro lado, será usual utilizar la notación asintótica para destacar la intuición de algunos resultados. Por esto, se define la notación considerando $f, g \neq 0$ como funciones de n:

- Si $\lim_{n\to\infty} f(n)/g(n)\to 0$, se dice que f=o(g).
- In Si $\lim_{n \to \infty} f(n)/g(n) < \infty$, se dice que f = O(g).

2.1. Teoría de grafos

Se denota al conjunto de los primeros n naturales por $[n] := \{1, 2, ..., n\}$. También, si S es un conjunto finito y r es un entero positivo, se establece $\binom{S}{r}$ como el conjunto de todos los subconjuntos de r elementos de S.

Un **grafo** es un par G = (V, E), donde V representa el conjunto de **vértices**, y $E \subseteq \binom{V}{2}$ el conjunto de **aristas**. Dado un grafo G, se escribe V(G) como su conjunto de vértices, E(G) como su conjunto de aristas, y $e_G := |E(G)|$ como la cantidad de aristas presentes en el grafo.

Figura 1: Ejemplo de un grafo con conjunto de vértices $V = \{1, 2, 3, 4, 5\}$ y conjunto de aristas $E = \{12, 23, 13, 45\}$.

Dado un grafo cualquiera G = (V, E) y $u, v \in V$, se dirá que u es **adyacente** a v (o viceversa) si y solamente si $uv \in E$. Si $X, Y \subset V$ son dos subconjuntos no necesariamente disjuntos, se define el conjunto de tuplas que forman una arista en G de la siguiente manera:

$$e(X,Y) := \Big| \{ (x,y) \in X \times Y : xy \in E \} \Big|. \tag{4}$$

Cuando $X \cap Y = \emptyset$, e(X,Y) cuenta el número de aristas entre X e Y, y cuando $X \cap Y \neq \emptyset$, e(X,Y) realiza un doble conteo sobre las aristas que se encuentran en $X \cap Y$. Se entenderá por vecindad de $u \in V$ como el conjunto de todos los vértices adyacentes a u, es decir,

$$N(u) := \{ v \in V(G) : uv \in E(G) \}. \tag{5}$$

Si $\mathbb{1}_X$ denota la función indicatriz de un conjunto X, se define el **grado** de un vértice $u \in V$ con respecto a algún subconjunto de vértices $Y \subseteq V$ de la siguiente manera:

$$\deg(u;Y) := \sum_{v \in Y} \mathbb{1}_E(uv) = |N(u) \cap Y|.$$

En particular, cuando Y = V,

$$\deg(u) = \sum_{v \in V} \mathbb{1}_E(uv) = |N(u)|.$$

Una propiedad elemental en teoría de grafos, es la relación que guarda la suma del grado de todos los vértices y la cantidad de aristas de un grafo.

Proposición 1. Dado un grafo G = (V, E), entonces

$$\sum_{u \in V} \deg(u) = 2e_G. \tag{6}$$

Demostración. Cada arista $uv \in E$ será contada dos veces en la suma, una contribución por u, y otra por v.

En algunas ocasiones estaremos interesados en la cantidad de vecinos que comparten dos vértices del grafo G=(V,E). Entonces, se define el **cogrado** de un par de vértices $u,v\in V$ no necesariamente diferentes mediante:

$$\operatorname{codeg}(u,v) = \sum_{w \in V} \mathbb{1}_E(wu) \mathbb{1}_E(wv) = |N(u) \cap N(v)|.$$

Mostraremos que existe una relación intrínseca entre los conceptos de grado y cogrado, cual será de utilidad en la sección 3.

Proposición 2. Sea G = (V, E) un grafo e $Y \subset V$ un subconjunto de vértices, entonces

$$\sum_{u \in V} \deg(u; Y)^2 = \sum_{v \in Y} \sum_{v' \in Y} \operatorname{codeg}(v, v').$$

Demostración. Utilizando las respectivas definiciones de grado y cogrado, el resultado se obtiene de seguir el siguiente cálculo:

$$\begin{split} \sum_{u \in V} \deg(u; Y)^2 &= \sum_{u \in V} \sum_{v \in Y} \sum_{v' \in Y} \mathbbm{1}_E(uv) \mathbbm{1}_E(uv') \\ &= \sum_{v \in Y} \sum_{v' \in Y} \sum_{u \in V} \mathbbm{1}_E(vu) \mathbbm{1}_E(v'u) \\ &= \sum_{v \in Y} \sum_{v' \in Y} \operatorname{codeg}(v, v'). \end{split}$$

Observe que en particular, cuando Y = V, se satisface

60

67

$$\sum_{u \in V} \deg(u)^2 = \sum_{u \in V} \sum_{v \in V} \operatorname{codeg}(u, v).$$
 (7)

A continuación, se enuncian algunos grafos especiales que son contemplados en esta tesis. Diremos que un grafo G = (V, E) es k-partito si V se puede dividir en k subconjuntos disjuntos $V_1, V_2, ..., V_k$ tales que si $uv \in E$ entonces $u \in V_i$ y $v \in V_j$, con $i \neq j$. En particular, a un grafo 2-partito lo llamaremos **bipartito**.

Figura 2: Ejemplo de un grafo 3-partito.

Un **grafo completo** de n vértices, denotado por K_n , es un grafo en el cual todos sus vértices son adyacentes entre ellos, es decir, todo par de vértices en el grafo posee una arista que los conecta. Similarmente, se denota por $K_{n,m}$ al **grafo bipartito completo** con n y m elementos en sus respectivos conjuntos de vérrtices. Observe que la cantidad de aristas en los grafos anteriores son exactamente $e_{K_n} = \binom{n}{2}$ y $e_{K_{n,m}} = n \cdot m$. Por último, un grafo d-regular es aquel que presenta todos sus vértices con grado d.

Figura 3: Ejemplo de los grafos especiales $K_{3,5}$, K_6 y 3-regular.

Otro concepto relevante en este trabajo, son las diferentes nociones de rutas que se pueden encontrar siguiendo una determinada secuencia de aristas en un grafo. Suponga que el grafo G posee $n \geq k$ vértices, entonces se definen los siguientes conceptos:

- Una caminata, es una secuencia de vértices no necesariamente distintos $v_0, v_1, ..., v_k$ tales que $v_{i-1}v_i \in E(G)$ para todo $i \in [k]$. Si $v_0 = v_k$, se dice que es una caminata cerrada. El largo de una caminata está determinado por la cantidad de aristas que ésta posea.
- Un **ciclo**, es una caminata con $k \ge 2$ vértices únicos a excepción de v_k , que coincide con v_0 . Se denotará por C_k al ciclo de largo k.

Figura 4: Ejemplo de una caminata y un ciclo.

Por otro lado, para estudiar posteriormente relaciones estructurales entre grafos, se define un **isomorfismo** entre los grafos H y G como una biyección $f:V(H)\to V(G)$ tal que $uv\in E(H)$ si y solamente si $f(u)f(v)\in E(G)$. Si existe tal biyección, diremos que H y G son isomorfismos.

Finalmente, se define una **copia etiquetada** de un grafo H en G, como la aplicación inyectiva $f: V(H) \to V(G)$ tal que $f(u)f(v) \in E(G)$ cada vez que $uv \in E(H)$. En otras palabras, es un mapeo de los vértices de H a los de G que preserva las aristas. Se denotará por $\binom{G}{H}$ al conjunto de copias etiquetadas de H en G.

Figura 5: Ejemplo de una copia etiquetada de H en G mediante la función $f: V(H) \to V(G)$ definida por f(1) = a, f(2) = e, f(3) = c, f(4) = b y f(5) = d.

2.2. Álgebra lineal y teoría espectral de grafos

91

93

94

99

101

105

Se define $\mathcal{M}_{n\times m}(\mathbb{R})$ como el conjunto de matrices reales de n filas y m columnas, y denotaremos A^T como la matriz traspuesta de $A \in \mathcal{M}_{n\times m}(\mathbb{R})$. También, representaremos por $\mathbf{1} \in \mathcal{M}_{n\times 1}(\mathbb{R})$ al vector de solo 1-entradas, $J \in \mathcal{M}_{n\times n}(\mathbb{R})$ a la matriz de solo 1-entradas, $I_n \in \mathcal{M}_{n\times n}(\mathbb{R})$ a la matriz identidad, y $e_i \in \mathcal{M}_{n\times 1}(\mathbb{R})$ como el vector de la base canónica de \mathbb{R}^n con entrada 1 en la posición i. Además, $\|\cdot\|$ y $\langle \cdot, \cdot \rangle$ representarán en todo momento la norma y producto interno usales de \mathbb{R}^n (\mathbb{C}^n , según corresponda) respectivamente.

Considerando una matriz cuadrada $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, se define la **traza** de A como la suma de sus elementos de la diagonal principal. Esto es,

$$Tr(A) = a_{11} + a_{22} + \dots + a_{nn}.$$

Si $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$, entonces la traza resulta invariante bajo el orden de multiplicación de dichas matrices. En efecto,

$$\operatorname{Tr}(AB) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} b_{ji} \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{ij} b_{ji} \right) = \operatorname{Tr}(BA).$$

Una manera muy útil de representar un grafo es mediante una matriz cuadrada binaria, en la que sus filas y columnas representarán todos los vértices del grafo. La matriz adopta el valor 1 en las coordenadas en que sus respectivos vértices forman una arista, y 0 cuando no. Bajo esta representación se consigue una visión clara y eficiente entre las relaciónes de los vértices del grafo, y se gozan de las propiedades que ofrece el álgebra lineal.

Definición 3. Dado un grafo G sobre n vértices, se define su **matriz** de adyacencia $A_G \in \mathcal{M}_{n \times n}(\mathbb{R})$ de la siguiente manera:

$$a_{ij} = \begin{cases} 1 & \text{si } ij \in E(G), \\ 0 & \text{en otro caso.} \end{cases}$$

Cuando el contexto sea claro, la matriz de adyacencia será representada simplemente por A.

Figura 6: Ejemplo de representación de unn grafo mediante la matriz de adyacencia.

Observe que la construcción anterior resulta siempre en una matriz simétrica, es decir, $A_G^T = A_G$. Además, a partir de todo grafo G = ([n], E) con matriz de adyacencia A, se puede obtener un vector con los grados de todos los vértices del grafo aplicando el operador A al vector de 1-entradas:

$$A\mathbf{1} = \begin{pmatrix} \deg(1) \\ \vdots \\ \deg(n) \end{pmatrix} \tag{8}$$

Otro aspecto interesante de la matriz de adyacencia que será de utilidad en la sección 4, es que nos permite reescribir la ecuación (4) en función de ella. Para ver esto, considere la matriz de adyacencia A del grafo G = ([n], E), y los vértices $i, j \in [n]$. Luego, según la definición 3,

$$e(\{i\},\{j\}) = \boldsymbol{e}_i^T A \boldsymbol{e}_j = a_{ij}.$$

Y así, por linealidad, se extiende el resultado anterior sobre cualquier conjunto $X, Y \subset [n]$.

$$e(X,Y) = \sum_{i \in X} \sum_{j \in Y} e_i^T A e_j = v_X^T A v_Y.$$
(9)

En la ecuación anterior, y desde ahora en adelante, el vector $v_X = \sum_{i \in X} e_i$ representa el vector indicador del subconjunto de vértices $X \subset [n]$ de algún grafo G = ([n], E).

Es importante destacar que la matriz de adyacencia no solo describe las conexiones entre cada par de vértices en un grafo, sino que también revela la cantidad exacta de caminatas que existen entre dos vértices de un largo determinado. En específico, la posición ij de la t-ésima potencia de la matriz de adyacencia de un grafo guarda la cantidad de caminatas de largo t entre los vértices i y j.

Proposición 4. Sea A la matriz de adyacencia de grafo G = ([n], E). La (i, j)-ésima entrada $a_{ij}^{(t)}$ de A^t , cuenta la cantidad de caminatas de largo t que comienzan y terminan en los vértices i y j respectivamente.

Demostración. Cuando t=1, existe una caminata de largo 1 que conecta los vértices i y j si y solamente si $a_{ij}^{(1)}=1$. Ahora, asuma que el lema se cumple para algún t>1 fijo. Note que cualquier

caminata de largo t+1 entre i y j contiene una caminata de largo t desde i hasta un vecino de j,
digamos k. Entonces si $k \in N(j)$, por la asunción del lema, el número de caminatas de largo t entre i y k es $a_{ik}^{(t)}$. Por lo tanto, el número total de caminatas de largo t+1 desde i hasta t es exactamente

$$\sum_{k \in V} a_{ik}^{(t)} \mathbb{1}_{N(j)}(k) = \sum_{\ell=1}^{n} a_{i\ell}^{(t)} a_{\ell j} = a_{ij}^{(t+1)}.$$

Como consecuencia de la proposición anterior, en cualquier grafo G=([n],E) con matriz de adyacencia A, se puede representar la cantidad total de caminatas cerradas de largo t en el grafo por medio de la traza, $\text{Tr}(A^t) = \sum_{i=1}^n a_{ii}^{(t)}$. Con esto, note que $\text{Tr}(A^2) = 2e_G$. Con escencialmente la misma demostración, enuncia el siguiente corolario que nos será de utilidad más adelante.

Corolario 5. Sea una matriz $F = (f_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{R})$, entonces $\operatorname{Tr}(F^2) = \sum_{(i,j) \in [n]^2} f_{ij}^2$.

Por otro lado, para introducir algunos aspectos de la teoría espectral de grafos, recuerde que el vector no nulo $\mathbf{v} \in \mathbb{R}^n$ es un **vector propio** de alguna matriz $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ con **valor propio** $\lambda \in \mathbb{C}$ si $A\mathbf{v} = \lambda \mathbf{v}$. Esto significa que λ es un valor propio si y solo si $\lambda I_n - A$ es una matriz singular. Así, los valores propios vienen dados por las raíces del polinomio característico $\det(xI_n - A)$. En este trabajo, cuando se haga referencia a los valores y vectores propios de un grafo G, siempre será con respecto a su matriz de adyacencia A. Por ejemplo. si G es un grafo G-regular, entonces con la igualdad (8) se puede deducir que G es el valor propio asociado al vector propio normalizado de 1-entradas de la matriz de adyacencia G.

Proposición 6. Sea $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ una matriz real simétrica, entonces todos sus valores propios son reales. Además, si dos vectores propios están asociados a distintos valores propios, entonces éstos son ortogonales. Más aún, el conjunto de todos los vectores propios define una base ortonormal de \mathbb{R}^n .

Demostración. Se comienza probando que los valores propios de A son reales. Sea λ un valor propio de A y $x \neq 0$ su correspondiente vector propio. Tomando su conjugado (denotado por \overline{z} al complejo conjugado de $z \in \mathbb{C}$), se obtiene paralelamente que

$$A\boldsymbol{x} = \lambda \boldsymbol{x} \qquad A\overline{\boldsymbol{x}} = \overline{\lambda} \overline{\boldsymbol{x}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\overline{\boldsymbol{x}}^T A \boldsymbol{x} = \lambda \|\boldsymbol{x}\|^2 \qquad \qquad \boldsymbol{x}^T A \overline{\boldsymbol{x}} = \overline{\lambda} \|\boldsymbol{x}\|^2.$$

Además, como A es simétrica.

$$\overline{\boldsymbol{x}}^T A \boldsymbol{x} = (A \boldsymbol{x})^T \overline{\boldsymbol{x}} = \boldsymbol{x}^T A \overline{\boldsymbol{x}}.$$

Así, ya que $x \neq 0$, debe ocurrir que $\lambda = \overline{\lambda}$, permitiendo concluir que todos los valores propios de A son números reales.

Por otro lado, considere $u, v \in \mathbb{R}^n$ vectores propios distintos de A asociados a los valores propios $\lambda, \mu \in \mathbb{R} \setminus \{0\}$ respectivamente. Calculamos como sigue,

$$\lambda \langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \lambda \boldsymbol{u}, \boldsymbol{v} \rangle = \langle A \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \boldsymbol{u}, A^T \boldsymbol{v} \rangle = \langle \boldsymbol{u}, A \boldsymbol{v} \rangle = \langle \boldsymbol{u}, \mu \boldsymbol{v} \rangle = \mu \langle \boldsymbol{u}, \boldsymbol{v} \rangle.$$

De esta manera, $\lambda \langle \boldsymbol{u}, \boldsymbol{v} \rangle = \mu \langle \boldsymbol{u}, \boldsymbol{v} \rangle$ si y solamente si $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0$. Ya probada la ortogonalidad de los vectores propios de A, defina $\mathcal{B} = \{u_1, u_2, ..., u_n\}$ como el conjunto de vectores propios normalizados de A para probar que \mathcal{B} constituye una base ortonormal de \mathbb{R}^n . Para esto, sean $c_1, ..., c_n \in \mathbb{R}$ tales que 158

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_n \mathbf{u}_n = 0.$$

Entonces, para cualquier $i \in [n]$, multiplicando por la izquierda la igualdad anterior por u_i^T ,

$$\boldsymbol{u}_i^T(c_1\boldsymbol{u}_1 + \dots + c_n\boldsymbol{u}_n) = c_i\boldsymbol{u}_i^T\boldsymbol{u}_i = c_i = 0.$$

Así, queda demostrado que \mathcal{B} es una base ortonormal de \mathbb{R}^n .

155

156

157

159

160

162

167

168

169

170

171

172

173

174

176

177

A continuación, se enunciará sin demostración uno de los teoremas más importantes del álgebra lineal, y se estudiarán algunas de sus consecuencias bajo el contexto de la teoría de grafos.

Teorema 7. (Teorema espectral) Sea $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ una matriz real simétrica. Entonces existen 163 matrices P ortogonal y D diagonal tales que 164

$$A = PDP^{T} = \sum_{i=1}^{n} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}.$$

$$(10)$$

En donde la matriz diagonal D está compuesta por los valores propios $\lambda_i \in \mathbb{R}$ de A, y las 165 columnas de P son los vectores propios ortonormales $v_i \in \mathbb{R}^n$ de A. 166

Con el teorema anterior es posible representar la matriz de adyacencia de un grafo por medio de dos matrices que dependen únicamente de sus valores y vectores propios para obtener propiedades desde una perspectiva espectral.

En primera instancia, observe que la descomposición espectral (10) permite trabajar eficientemente con las potencias de una matriz real simétrica, puesto a que el problema se reduce a calcular la respectiva potencia de la matriz diagonal de valores propios. Para visualizar este hecho, primero observe como se comporta el cuadrado de una matriz simétrica $A \in \mathcal{M}_{n \times n}(\mathbb{R})$:

$$A^{2} = (PDP^{T})(PDP^{T}) = PD(P^{T}P)DP^{T} = PD^{2}P^{T}.$$

Luego, de manera inductiva se obtiene que $A^k = PD^kP^T$. Esta propiedad resulta altamente útil de cara al cálculo de caminatas de largo k entre dos vértices de un grafo. Más aún, la Proposición 8 y el Corolario 9 mostrarán que el número de caminatas cerradas en un grafo queda totalmente determinado por los valores propios del mismo.

Proposición 8. La traza de toda matriz simétrica $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ es igual a la suma de sus valores 178 propios. 179

Demostración. Sea $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ una matriz simétrica, $\lambda_1, ..., \lambda_n$ sus valores propios, y $v_1, ..., v_n$ sus vectores propios. Se escribe la traza estratégicamente de la siguiente manera:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} \boldsymbol{e}_{i}^{T} A \boldsymbol{e}_{i}.$$

Con esto, se concluye utilizando la descomposición espectral.

183

191

192

193

194

196

197

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} \boldsymbol{e}_{i}^{T} \left(\sum_{j=1}^{n} \lambda_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{T} \right) \boldsymbol{e}_{i}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j} \boldsymbol{e}_{i}^{T} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{T} \boldsymbol{e}_{i}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j} \langle \boldsymbol{e}_{i}, \boldsymbol{v}_{j} \rangle \langle \boldsymbol{v}_{j}, \boldsymbol{e}_{i} \rangle$$

$$= \sum_{j=1}^{n} \lambda_{j} \|\boldsymbol{v}_{j}\|^{2}$$

$$= \sum_{j=1}^{n} \lambda_{j}.$$

El siguiente corolario extiende el resultado anterior sobre cualquier potencia de una matriz real simétrica.

Corolario 9. Sea $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ una matriz simétrica y $\lambda_1, ..., \lambda_n$ sus valores propios, entonces se cumple $\operatorname{Tr}(A^k) = \sum_{i=1}^n \lambda_i^k$.

Demostración. El resultado sigue de utilizar que la traza de la multiplicación de dos matrices es invariante bajo el orden de la multiplicación,

$$\operatorname{Tr}(A^k) = \operatorname{Tr}([PDP^T]^k) = \operatorname{Tr}(P[D^kP^T]) = \operatorname{Tr}([D^kP^T]P) = \operatorname{Tr}(D^k) = \sum_{i=1}^n \lambda_i^k.$$

i=1

De esta manera, la cantidad de caminatas cerradas de largo k entre dos vértices de un grafo se simplifica a solo calcular la suma de la k-ésima potencia de todos sus valores propios. Más adelante, en la sección 3, esta propiedad será de utilidad debido a que entrega una buena aproximación de la cantidad de copias etiquetadas de ciclos de largo k que existen en un grafo G = ([n], E). En particular, si A es la matriz de adyacencia de G y $\lambda_1, ..., \lambda_n$ sus valores propios,

$$\left| \binom{G}{C_k} \right| = \operatorname{Tr}(A^k) + o(n^k) = \sum_{i=1}^n \lambda_i^k + o(n^k)$$
 (11)

Finalmente, es posible caracterizar cada valor propio de una matriz real simétrica por medio del teorema de *Courant-Fischer*. Se enuncia sin demostración.

Teorema 10. (Teorema de Courant-Fischer) Sea $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ una matriz real simétrica, cuyos valores propios son $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$, y $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ sus vectores propios. Entonces,

(i)
$$\lambda_k = \inf_{\substack{\boldsymbol{x} \perp \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_{k-1}\} \\ \boldsymbol{x} \neq \boldsymbol{0}}} \frac{\langle \boldsymbol{x}, A\boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}.$$

$$\lambda_k = \sup_{\substack{\boldsymbol{x} \perp \{\boldsymbol{v}_{k+1}, \dots, \boldsymbol{v}_n\} \\ \boldsymbol{x} \neq \boldsymbol{0}}} \frac{\langle \boldsymbol{x}, A\boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}.$$

Corolario 11. Sea λ_1 el valor propio más grande de la matriz simétrica $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, entonces

$$\lambda_1 = \sup_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\|A\boldsymbol{x}\|}{\|\boldsymbol{x}\|}.$$

Demostración. Si v_1 un vector propio de A correspondiente a λ_1 , entonces

$$\lambda_1 = \frac{\|Av_1\|}{\|v_1\|} \le \sup_{x \ne 0} \frac{\|Ax\|}{\|x\|}.$$

Por otro lado, observando que el valor propio más grande de A^2 es λ_1^2 , se concluye para cualquier $x \in \mathbb{R}^n$ que

$$||A\boldsymbol{x}||^2 = \langle A\boldsymbol{x}, A\boldsymbol{x} \rangle = \langle \boldsymbol{x}, A^T A \boldsymbol{x} \rangle = \langle \boldsymbol{x}, A^2 \boldsymbol{x} \rangle \le \lambda_1^n \langle \boldsymbol{x}, \boldsymbol{x} \rangle = \lambda_1^2 ||\boldsymbol{x}||^2.$$

Usualmente, el primer valor propio de todo grafo juega un papel protagónico. Para los fines de estas tesis, es necesario establecer una cota inferior del primer valor propio.

Proposición 12. El primer valor propio de la matriz de adyacencia de un grafo es al menos el promedio de los grados. En particular, cuando el grafo es d-regular, el primer valor propio coincide con d.

Demostración. Considerando A como la matriz de adyacencia del grafo G = ([n], E), se desarrolla en función del Teorema 10:

$$\lambda_1 = \sup_{\substack{\boldsymbol{x} \in \mathbb{R}^n \\ \boldsymbol{x} \neq \boldsymbol{0}}} \frac{\langle \boldsymbol{x}, A \boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle} \ge \frac{\langle \boldsymbol{1}, A \boldsymbol{1} \rangle}{\langle \boldsymbol{1}, \boldsymbol{1} \rangle} = \frac{2e_G}{n} = \frac{\sum_{v \in V(G)} \deg(v)}{n}.$$

Adicionalmente, con apoyo de la igualdad (8) y usando la cota anterior, se concluye que $\lambda_1 = d$ cada vez que G es un grafo d-regular.

2.3. Grafos aleatorios

204

214

215

216

218

El objetivo de la presente sección es proporcionar un breve contexto teórico para abordar más adelante la noción y propiedades de los grafos *cuasi-aleatorios*.

Intuitivamente, se podría pensar en un grafo aleatorio de n vértices como el resultado de seleccionar aleatoriamente un subconjunto de aristas de K_n . En 1959, Erdös-Rényi y Edgar Gilbert* referencia * proponen dicha selección de la siguiente manera: comenzando con un grafo sin aristas

 $G = ([n], \emptyset)$, decidir sobre cada par de vértices de G si agregar una arista con una probabilidad p establecida. En cada repetición del proceso anterior se genera un nuevo grafo de n vértices, que contribuye a la creación del espacio de probabilidad conocido como G(n, p), y se denomina modelo binomial. Entonces, considerando \mathcal{G}^n como el conjunto de todos los grafos de n vértices, se define formalmente.

Definición 13. (Modelo binomial) Sea $p \in (0,1)$. Se define G(n,p) como el espacio de probabilidad $(\mathcal{G}^n, \mathcal{P}(\mathcal{G}^n), \mathbb{P})$, con

$$\mathbb{P}\left(\{G\}\right) = p^{e_G} (1-p)^{\binom{n}{2} - e_G} \quad , \quad \forall G \sim G(n,p).$$

Diremos que $\mathcal{P}_n \subset \mathcal{G}^n$ es una propiedad de grafos si es cerrada bajo isomorfismos de grafos. Más aún, G satisface la propiedad \mathcal{P}_n con alta probabilidad si $\mathbb{P}(\mathcal{P}_n) \to 1$ cuando $n \to \infty$. Dicho esto, se probará que G(n,p) posee una distribución de aristas en el siguiente sentido:

Proposición 14. Sea $\varepsilon > 0$ y $p \in (0,1)$. Si $G \sim G(n,p)$, entonces satisface con alta probabilidad la siguiente propiedad:

$$\mathcal{P}_n^{p,\varepsilon} := \{ G \in \mathcal{G}^n : \left| e(A,B) - p|A||B| \right| \le \varepsilon n^2 , \ \forall A,B \subset V(G) \}.$$

Para dar prueba a la proposición anterior es necesario utilizar la desigualdad de Chernov. Existiendo diversas formas de expresar tal desigualdad, en esta tesis se utiliza el resultado para el caso en que cada variable aleatoria solo toma los valores 0 o 1, como se plantea en * referencia * en la ecuación (2.12) de la observación 2.5.

Teorema 15. (Designaldad de Chernov) Sean $X_1,...,X_N$ variables aleatorias independientes tales que $X_i = 1$ con probabilidad $p, y X_i = 0$ con probabilidad 1 - p. Entonces, si $X = \sum_{i=1}^{N} X_i$, se satisface

$$\mathbb{P}(|X - \mathbb{E}[X]| > t) \le 2 \exp\left(-\frac{2t^2}{N}\right) \quad , \quad \forall t \ge 0.$$

239 Con esto, damos paso a la demostración prometida.

227

228

232

233

234

235

244

Demostración Proposición 14. Dado $p \in (0,1)$ y $\varepsilon > 0$, considere $G \sim G(n,p)$ y $A,B \subset V(G)$.

Defina la variable aleatoria $X = e(A,B) = \sum_{a \in A} \sum_{b \in B} X_{ab}$, en donde

$$X_{ab} = \begin{cases} 1 & \text{si } ab \in E(G), \\ 0 & \text{en otro caso.} \end{cases}$$

Para utilizar la cota de Chernov más adelante, se separa la variable aleatoria X en sumas de variables aleatorias independientes. Vale decir $X = X_1 + X_2$, en donde

$$X_1 = 2 \sum_{ab \in \binom{A \cap B}{2}} X_{ab} \quad , y X_2 = \sum_{\substack{a \in A, b \in B \\ a \neq b \\ ab \notin \binom{A \cap B}{2}}} X_{ab}.$$

Al calcular la esperanza de X_1 y X_2 se obtiene el siguiente resultado:

$$\mathbb{E}[X_1] = \mu_1 = 2p\binom{|A \cap B|}{2}$$
, $\mathbb{E}[X_2] = \mu_2 = p\left(|A||B| - |A \cap B| - 2\binom{|A \cap B|}{2}\right)$.

Notando ahora que $|A||B| \le n^2$, se utiliza la desigualdad de Chernov con $t = \frac{\varepsilon}{3}n^2$ sobre $i \in \{1, 2\}$ para obtener lo siguiente:

$$\mathcal{P}\left(|X_i - \mu_i| > \frac{\varepsilon}{3}n^2\right) \le 2\exp\left(-\frac{2\left(\frac{\varepsilon}{3}n^2\right)^2}{|A||B|}\right)$$

$$\le 2\exp\left(-\frac{2}{9}\varepsilon^2n^2\right). \tag{12}$$

Luego, si ocurre simultáneamente que $|X_1 - \mu_1| \le \frac{\varepsilon}{3} n^2$ y $|X_2 - \mu_2| \le \frac{\varepsilon}{3} n^2$, entonces

$$|X_1 + X_2 - (\mu_1 + \mu_2)| \le \frac{2}{3}\varepsilon n^2, \ \forall A, B \in V(G).$$

Y así, como $\mu_1 + \mu_2 = p(|A||B| - |A \cap B|) = p|A||B| \pm \varepsilon n$, se tendrá que todo $A, B \subset V(G)$ satisface $|X - p|A||B| \le \varepsilon n^2$.

Por lo anterior, se concluye utilizando la cota de la unión de la siguiente manera:

$$1 - \mathbb{P}(\mathcal{P}_{n}^{p,\varepsilon}) = \mathbb{P}\left(\exists A, B \subset V(G) : \left| X - p|A||B| \right| > \varepsilon n^{2}\right)$$

$$\leq \mathbb{P}\left(\exists A, B \subset V(G) : \left| X_{1} - \mu_{1} \right| > \frac{\varepsilon}{3}n^{2} \lor \left| X_{2} - \mu_{2} \right| > \varepsilon n^{2}\right)$$

$$\leq \mathbb{P}\left(\exists A, B \subset V(G) : \left| X_{1} - \mu_{1} \right| > \frac{\varepsilon}{3}n^{2}\right) + \mathbb{P}\left(\left| X_{2} - \mu_{2} \right| > \frac{\varepsilon}{3}n^{2}\right)$$

$$\leq \sum_{\substack{A \subset V(G) \\ B \subset V(G)}} \mathbb{P}\left(\left| X_{1} - \mu_{1} \right| > \frac{\varepsilon}{3}n^{2}\right) + \sum_{\substack{A \subset V(G) \\ B \subset V(G)}} \mathbb{P}\left(\left| X_{2} - \mu_{2} \right| > \frac{\varepsilon}{3}n^{2}\right)$$

$$\stackrel{(12)}{\leq} 2^{2n+1} \exp\left(-\frac{2}{9}\varepsilon^{2}n^{2}\right) \xrightarrow[n \to \infty]{} 0.$$

3. Cuasi-aleatoriedad

Trabajar con estructuras discretas aleatorias brinda una amplia gama de propiedades ideales y deseables, lo que las convierte en piezas fundamenteles tanto en matemáticas como en ciencias de la computación. Por ejemplo, el modelo de grafo aleatorio binomial goza de una distribución uniforme de aristas, buenas propiedades y es robusto. La cuestión ahora es cómo capturar las propiedades esenciales de la aleatoriedad dentro de un marco determinista. Esta idea condujo a la noción de cuasi-aleatoriedad, que en la actualidad, es un tópico central en las matemáticas discretas. En términos generales, las propiedades cuasi-aleatorias son características deterministas que son propias de objetos realmente aleatorios. Aunque la noción de cuasi-aleatoriedad es interesante por sí misma, su estudio ha revelado profundas conexiones entre varias ramas de la matemática y

ciencias de la computación, encontrando aplicaciones en teoría de grafos, teoría de números, teoría ergódica, geometría, y algoritmos y complejidad.

Como se verá a detalle más adelante en la sección 4, una de las razones principales por las cuales el estudio de la cuasi-aleatoriedad no se limita a un área específica, es el hecho de que existe un teorema de partición que permite la aproximación de cualquier objeto discreto por otros cuasi-aleatorios. Con esto, nos referimos al célebre lema de regularidad de Szemerédi, que establece que todo grafo se puede aproximar mediante un número finito de grafos cuasi-aleatorios, permitiendo la conexión entre un grafo arbitrario y los cuasi-aleatorios.

El estudio sistemático de los grafos cuasi-aleatorios fue iniciado por Rödl * referencia * y Thomason * referencia *, y su punto incial es la siguiente noción de distribución uniforme de aristas para definir la cuasi-aleatoriedad de un grafo. * Buscar año... *

Definición 16. Sea $p \in (0,1)$ y $(G_n)_{n\to\infty}$ una secuencia de grafos, en donde cada G_n posee n vértices. Entonces el grafo G_n es **cuasi-aleatorio** si en todo par de subconjuntos $X,Y \subset V(G_n)$ se encuentra una distribución de aristas similar, es decir,

$$e(X,Y) = p|X||Y| + o(n^2).$$
 (13)

En otras palabras, la distribución uniforme de aristas establece que, hasta el término de error $o(n^2)$, cualquier par de subconjuntos de vértices poseen tantas aristas como se esperaría de un grafo aleatorio G(n,p). Es importante destacar que esta propiedad no solo se cumple con alta probabilidad en un grafo aleatorio G(n,p), sino que también se considera como una de sus características distintivas.

3.1. Teorema de Chung, Graham y Wilson

Una contribución revolucionaria en la teoría de grafos cuasi-aleatorios fue en 1989 por Fan Chung, Ronald Graham y Richard M. Wilson * referencia *. Ellos presentaron una extensa lista de propiedades superficialmente diferentes entre sí, y demostraron que todas son equivalentes al concepto de cuasi-aleatoriedad entendido en la Definición 3.

En la presente sección se enuncia el teorema de Chung, Graham y Wilson junto a una demostración formal.

Teorema 17. (Chung, Graham y Wilson) Sea $p \in (0,1)$ fijo. Para cualquier secuencia de grafos $(G_n)_{n\to\infty}$ con $|V(G_n)| = n$ vértices y $e_{G_n} = (p+o(1))\binom{n}{2}$ aristas, las siguientes propiedades son equivalentes:

 $DISC_n$: Para todo $X, Y \subseteq V(G_n)$,

$$\left|e(X,Y) - p|X||Y|\right| = o(n^2).$$

 $DISC'_p$: Para todo $X \subseteq V(G_n)$,

$$\left| e(X) - p\binom{|X|}{2} \right| = o(n^2).$$

 $COUNT_p$: Para cada grafo H, la cantidad de copias etiquetadas de H en G_n está dada por

$$\left|\binom{G_n}{H}\right| = \left(p^{e(H)} + o(1)\right) n^{v(H)}.$$

 $COUNT_{C4,p}$: La cantidad de copias etiquetadas de ciclos de largo 4 es

$$\left| \begin{pmatrix} G_n \\ C_4 \end{pmatrix} \right| = (p^4 + o(1))n^4.$$

 $CODEG_p$:

$$\sum_{u,v \in V(G_n)} \left| \operatorname{codeg}(u,v) - p^2 n \right| = o(n^3).$$

 EIG_p : Si $\lambda_1 \ge \cdots \ge \lambda_n$ son los valores propios de de la matriz de adyacencia de G_n , entonces

$$\lambda_1 = pn + o(n)$$
 , $\max_{i \neq 1} |\lambda_i| = o(n)$.

Para una comprensión e intuición inicial de cada propiedad del Teorema 17, se ha utilizado notación asintótica en su enunciado. Sin embargo, con dicha formulación no queda del todo claro las dependencias cuantificadas de los errores en las implicancias cada par de propiedades. Entonces, se replantean equivalentemente las propiedades con una versión cuantitativa, asociando algún parámetro de error ε en todo grafo específico G con un conjunto de vértices suficientemente grande. Por ejemplo, bajo los supuestos del Teorema 17, asuma que la sucesión de grafos $(G_n)_{n\to\infty}$ satisface DISC $_p$, y luego, la versión equivalente establece que para todo $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que el grafo G sobre $n \geq n_0$ vértices satisface

$$\mathrm{DISC}_p(\varepsilon): \quad e(X,Y) = p|X||Y| \pm \varepsilon n^2, \quad \forall X,Y \subseteq V(G).$$

De manera general, diremos que una secuencia de grafos $(G_n)_{n\to\infty}$ con $|V(G_n)|=n$ satisface la propiedad P_{x_1,\dots,x_k}^{-1} si para cada elección de $\varepsilon>0$, existe algún $n_0\in\mathbb{N}$ tal que el grafo G con $n\geq n_0$ vértices satisface $P_{x_1,\dots,x_k}(\varepsilon)$. Más aún, se dirá que la propiedad Q_{y_1,\dots,y_ℓ} implica la propiedad P_{x_1,\dots,x_k} si y solamente si $P_{x_1,\dots,x_k}(\varepsilon)$ implica $Q_{y_1,\dots,y_\ell}(\delta)$. Es decir, para todo $\varepsilon>0$, existe $\delta>0$ y $n_0\in\mathbb{N}$ tales que el grafo G con $n\geq n_0$ vértices cumple con $Q_{y_1,\dots,y_\ell}(\delta)$ cada vez que satisfaga la propiedad $P_{x_1,\dots,x_k}(\varepsilon)$. Se desarrollará la demostración formal del Teorema 17 utilizando notación ε - δ , mostrando que cada par de propiedades P_{x_1,\dots,x_k} y Q_{y_1,\dots,y_ℓ} son equivalentes entre sí con un cambio polinomial en el error, esto es, $P_{x_1,\dots,x_k}(\varepsilon)\Rightarrow Q_{y_1,\dots,y_\ell}(C\varepsilon^c)$ para algún par de constantes C,c>0.

Demostración Teorema de Chung, Graham y Wilson

La demostración del Teorema fue descompuesta en ocho proposiciones, las cuales mostrarán la equivalencia entre todas las propiedades conforme al siguiente esquema:

 $^{^{1}}$ Los parámetros $x_{1},...,x_{k}$ pueden ser de distinta naturaleza, dependiendo de la propiedad simbolizada. En las propiedades del Teorema 17 se utiliza k=1 con $x_{1}=p$ salvo en la propiedad COUNT $_{C4,p}$, en donde k=2.

Con esto en mente, damos paso a la demostración de cada proposición considerada en el esquema (14).

Proposición 18. Para todo $\varepsilon > 0$ y $p \in (0,1)$, existe $\delta > 0$ y $n_0 \in \mathbb{N}$ tales que el grafo G sobre $n \geq n_0$ vértices satisface $\mathrm{DISC}'_p(\varepsilon)$ cada vez que cumpla con $\mathrm{DISC}_p(\delta)$. En particular,

$$\mathrm{DISC}_p \Rightarrow \mathrm{DISC'}_p$$
.

Demostración. Dado $\varepsilon > 0$ y $p \in (0,1)$, se elige $\delta < \frac{\varepsilon}{2}$ y $n_0 \in \mathbb{N}$ suficientemente grande. Entonces, considerando el grafo G con $n \geq n_0$ vértices que satisface $\mathrm{DISC}_p(\delta)$ y $X \subset V(G)$, se utiliza la propiedad $\mathrm{DISC}_p(\delta)$ para obtener el resultado de la siguiente manera:

$$e(X) = p \frac{|X|^2}{2} \pm \delta n^2 = p\binom{|X|}{2} \pm 2\delta n^2.$$

Las igualdades anteriores consideran e(X,X)=2e(X), por definición, y la aproximación $\binom{|X|}{2}=\frac{|X|^2}{2}\pm\delta n^2$.

Proposición 19. Para todo $\varepsilon > 0$ y $p \in (0,1)$, existe $\delta > 0$ y $n_0 \in \mathbb{N}$ tales que el grafo G sobre $n \geq n_0$ vértices satisface $\mathrm{DISC}_p(\varepsilon)$ cada vez que cumpla con $\mathrm{DISC'}_p(\delta)$. En particular,

$$\mathrm{DISC'}_{p} \Rightarrow \mathrm{DISC}_{p}$$
.

Demostración. Dado $\varepsilon > 0$ y $p \in (0,1)$, se elige $\delta < \frac{\varepsilon}{4}$ y $n_0 \in \mathbb{N}$ suficientemente grande. Considere también el grafo G sobre $n \geq n_0$ vértices que satisface $\mathrm{DISC'}_p(\delta)$.

330

331

332

333

336

En primera instancia, se lleva el conteo de aristas que existen entre pares de subconjuntos de vértices a un conteo equivalente mediante la combinación aditiva de las aristas que se encuentran en un subconjunto único de vértices. Es decir, para $X, Y \subset V(G)$,

$$e(X,Y) = e(X \cup Y) + e(X \cap Y) - e(X \setminus Y) - e(Y \setminus X). \tag{15}$$

Observe que con esta configuración, el conteo de las aristas entre X e Y es doble cuando los vértices que componen las aristas pertenecen a $X \cap Y$. Luego, se utiliza la propiedad $\mathrm{DISC'}_p(\delta)$ sobre la identidad (15) para conseguir el resultado.

$$\begin{split} e(X,Y) &= p\left({|X \cup Y| \choose 2} + {|X \cap Y| \choose 2} - {|X \setminus Y| \choose 2} - {|Y \setminus X| \choose 2}\right) \pm 4\delta n^2 \\ &= p|X||Y| \pm 4\delta n^2 \\ &= p|X||Y| \pm \varepsilon n^2. \end{split}$$

Proposición 20. Para todo $\varepsilon > 0$ y $p \in (0,1)$, existe $\delta > 0$ y $n_0 \in \mathbb{N}$ tales que el grafo G sobre $n \geq n_0$ vértices satisface $\mathrm{COUNT}_p(\varepsilon)$ cada vez que cumpla con $\mathrm{DISC'}_p(\delta)$. En otras palabras,

$$DISC'_{p} \Rightarrow COUNT_{p}$$
.

Demostración. Sea $\varepsilon > 0$, $p \in (0,1)$ y H un grafo sobre ℓ vértices, elegimos $\delta < \frac{\varepsilon}{6\ell^2}$ y $n_0 \in \mathbb{N}$ suficientemente grande. Considere también el grafo G = (V, E) con $n \ge n_0$ vértices que satisface la propiedad COUNT $_p(\varepsilon)$.

Dado cualquier grafo F con ℓ vértices y $e_F \geq 1$ aristas, razonamos por inducción sobre su cantidad de aristas para probar que

$$\left| \binom{G}{F} \right| = p^{e_F} n^{\ell} \pm 4e_F \delta n^{\ell}. \tag{16}$$

Una vez probada la ecuación (16), el resultado seguirá de tomar F = H y la elección de δ para conseguir las siguientes desigualdades:

$$4e_F\delta n^\ell \le 4\binom{\ell}{2}\delta n^\ell \le 4\delta\left(\frac{\ell^2}{2} + \delta\ell^2\right)n^\ell \le 6\delta\ell^2 n^\ell < \varepsilon n^\ell.$$

Entonces, cuando $e_F = 1$, $\left| {G \choose F} \right|$ es el número de pares ordenados de vértices de G que forman una arista junto a cualquier combinación de $\ell - 2$ vértices para completar una copia de F. Es decir,

$$\left| \binom{G}{F} \right| = 2e_G(n-2)(n-3)\cdots(n-\ell+1).$$

Luego, si aplicamos la propiedad DISC $_p(\delta)$ sobre V, se obtiene que la cantidad de aristas es

$$e_G = \frac{pn(n-1)}{2} \pm \delta n^2.$$

Así, con $\left|\binom{G}{F}\right| = pn^{\ell} \pm 4\delta n^{\ell}$, se prueba el caso inicial de la inducción. Ahora, sea F un grafo con $e_F > 1$ aristas y asuma que se satisface la ecuación (16) en cualquier grafo con una cantidad de aristas menor que e_F . Para desarrollar la inducción, suponga que $ij \in E(F)$ y considere la siguiente notación:

- i) F^- corresponde es el grafo producido por eliminar la arista ij de F.
- ii) F^* es el resultado de eliminar los vértices de la arista ij en F.

342

343

344

348

353

354

Sea T^- una copia etiquetada de F^- en G, es decir, T^- se corresponde una aplicación inyectiva $f: V(F^-) \to V(T^-) \subseteq V$ tal que $f(u)f(v) \in E(T^-)$ cada vez que $uv \in E(F^-)$. Entonces, considerando $e_{T^-} := f(i)f(j)$, se escribe la cantidad de copias etiquetadas de F en G de manera conveniente para utilizar la hipótesis inductiva como se muestra a continuación:

$$\begin{vmatrix}
\binom{G}{F}
\end{vmatrix} = \sum_{T^{-} \in \binom{G}{F^{-}}} \mathbb{1}_{E}(e_{T^{-}})
= \sum_{T^{-} \in \binom{G}{F^{-}}} [\mathbb{1}_{E}(e_{T^{-}}) + p - p]
= \sum_{T^{-} \in \binom{G}{F^{-}}} p + \sum_{T^{-} \in \binom{G}{F^{-}}} [\mathbb{1}_{E}(e_{T^{-}}) - p]
= p \left|\binom{G}{F^{-}}\right| + \sum_{T^{-} \in \binom{G}{F^{-}}} [\mathbb{1}_{E}(e_{T^{-}}) - p]
\stackrel{(16)}{=} p^{e_{F}} n^{\ell} + \sum_{T^{-} \in \binom{G}{F^{-}}} [\mathbb{1}_{E}(e_{T^{-}}) - p] \pm 4(e_{F} - 1) \delta n^{\ell}.$$
(17)

En este punto, es suficiente probar que el segundo sumando de la desigualdad (17) es pequeño. Para esto, considere T^* una copia de F^* , y denote por F_i^* y F_j^* a los grafos resultantes de eliminar de F^- los vértices j e i respectivamente. Con esto, defina los siguientes conjuntos:

$$\begin{split} &A_i^{T^*} := \{v \in V \ : \ T^* \text{ con } v \text{ forma una copia de } F_i^*\} \\ &A_j^{T^*} := \{v \in V \ : \ T^* \text{ con } v \text{ forma una copia de } F_j^*\}. \end{split}$$

Los conjuntos anteriores, por construcción, son tales que para cada tupla $(a,b) \in A_i^{T^*} \times A_j^{T^*}$ añadida a T^* se obtiene una copia de F^- . Así, reescribiendo el segundo sumando de la igualdad (17) convenientemente y utilizando la propiedad $\mathrm{DISC'}_p(\delta)$,

$$\left| \sum_{T^{-} \in \binom{G}{F^{-}}} [\mathbb{1}_{E}(e_{T^{-}}) - p] \right| = \left| \sum_{T^{*} \in \binom{G}{F^{*}}} \sum_{f \in A_{i}^{T^{*}} \times A_{j}^{T^{*}}} [\mathbb{1}_{E}(f) - p] \right|$$

$$\leq \sum_{T^{*} \in \binom{G}{F^{*}}} \left| \sum_{f \in A_{i}^{T^{*}} \times A_{j}^{T^{*}}} [\mathbb{1}_{E}(f) - p] \right|$$

$$= \sum_{T^{*} \in \binom{G}{F^{*}}} \left| e(A_{i}^{T^{*}}, A_{j}^{T^{*}}) - p|A_{i}^{T^{*}}||A_{j}^{T^{*}}| \right|$$

$$\leq \sum_{T^{*} \in \binom{G}{F^{*}}} \delta n^{2}$$

$$\leq 4\delta n^{\ell}.$$

De esta manera, tomando la elección de δ y F=H se obtiene el resultado.

Proposición 21. Para todo $\varepsilon > 0$ y $p \in (0,1)$, existe $\delta > 0$ y $n_0 \in \mathbb{N}$ tales que el grafo G sobre $n \geq n_0$ vértices satisface COUNT $_{C_4,p}(\varepsilon)$ cada vez que cumpla con COUNT $_p(\delta)$. En otras palabras,

$$COUNT_p \Rightarrow COUNT_{C_4,p}$$
.

Demostración. Se trata de un caso particular de COUNT_p, en donde H=C4 y $\delta<\epsilon$.

Proposición 22. Para todo $\varepsilon > 0$ y $p \in (0,1)$, existe $\delta > 0$ y $n_0 \in \mathbb{N}$ tales que el grafo G sobre $n \geq n_0$ vértices y $e_G = \frac{pn^2}{2} \pm \delta n^2$ aristas satisface $\mathrm{CODEG}_p(\varepsilon)$ cada vez que cumpla con COUNT $_{C_4,p}(\delta)$. En particular,

$$COUNT_{C_4,p} \Rightarrow CODEG_p$$
.

Demostración. Dado $\varepsilon > 0$ y $p \in (0,1)$, elegimos $\delta < \frac{\varepsilon^2}{16}$ y $n_0 \in \mathbb{N}$ suficientemente grande. También considere el grafo G sobre $n \geq n_0$ vértices y $e_G = \frac{pn^2}{2} \pm \delta n^2$ aristas que satisface $\text{COUNT}_{C_4,p}(\delta)$.

La clave de esta demostración radica en encontrar una buena cota para $\sum_{u,v \in V(G)} \text{codeg}(u,v)$ y $\sum_{u,v \in V(G)} \text{codeg}(u,v)^2$. Para esto, será necesario la utilización apropiada de la desigualdad de Cauchy-Schwarz vista en (2). Por un lado, con la relación entre el grado y el cogrado (7) se obtiene la primera de las cotas:

$$\begin{split} \sum_{u,v \in V(G)} \operatorname{codeg}(u,v) &= \sum_{x \in V(G)} \deg(x)^2 \\ & \stackrel{\text{DCS}}{\geq} \frac{1}{n} \left(\sum_{x \in V(G)} \deg(x) \right)^2 \\ &= \frac{4e_G^2}{n} \\ &\geq \frac{4}{n} \left(\frac{pn^2}{2} - \delta n^2 \right)^2 \\ &\geq p^2 n^3 - 4\delta n^3. \end{split}$$

Por otro lado, usando COUNT_{C4,p}(δ),

379

380

$$\sum_{u,v \in V(G)} \operatorname{codeg}(u,v)^2 = \left| \binom{G}{C_4} \right| \pm \delta n^4 \le p^4 n^4 + 2\delta n^4.$$

Así, con las cotas anteriores, se obtiene el resultado de la siguiente manera:

$$\begin{split} \sum_{u,v \in V(G)} \left| \operatorname{codeg}(u,v) - p^2 n \right| & \stackrel{\mathrm{DCS}}{\leq} n \left(\sum_{u,v \in V(G)} (\operatorname{codeg}(u,v) - p^2 n)^2 \right)^{1/2} \\ &= n \left(\sum_{u,v \in V(G)} \operatorname{codeg}(u,v)^2 - 2p^2 n \sum_{u,v \in V(G)} \operatorname{codeg}(u,v) + \sum_{u,v \in V(G)} p^4 n^2 \right)^{1/2} \\ &\leq n \left(p^4 n^4 + 2\delta n^4 + 2p^2 n (4\delta n^3 - p^2 n^3) + p^4 n^4 \right)^{1/2} \\ &= n ((2 + 8p^2)\delta n^4)^{1/2} \\ &\leq 4\delta^{1/2} n^3. \end{split}$$

Proposición 23. Para todo $\varepsilon > 0$ y $p \in (0,1)$, existe $\delta > 0$ y $n_0 \in \mathbb{N}$ tales que el grafo G sobre $n \geq n_0$ vértices y $e_G = \frac{pn^2}{2} \pm \delta n^2$ aristas satisface $\mathrm{DISC}_p(\varepsilon)$ cada vez que cumpla con $\mathrm{CODEG}_p(\delta)$.

En particular,

381

388

$$CODEG_p \Rightarrow DISC_p$$
.

Demostración. Dado $\varepsilon > 0, \ p \in (0,1)$, seleccionamos $\delta < \frac{\varepsilon^4}{81}$ y $n_0 \in \mathbb{N}$ suficientemente grande. Sea G un grafo de $n \ge n_0$ vértices y $e_G = \frac{pn^2}{2} \pm \delta n^2$ aristas que satisface la propiedad CODEG $_p(\delta)$.

En primera instancia note que la propiedad CODEG $_p(\delta)$ induce una concentración en los grados

En primera instancia note que la propiedad CODEG $_p(\delta)$ induce una concentración en los grados de los vértices de G. En efecto,

$$\begin{split} \sum_{x \in V(G)} \left| \deg(x) - pn \right| & \stackrel{\text{DCS}}{\leq} n^{1/2} \left(\sum_{x \in V(G)} (\deg(x) - pn)^2 \right)^{1/2} \\ &= n^{1/2} \left(\sum_{x \in V(G)} \deg(x)^2 - 2pn \sum_{x \in V(G)} \deg(x) + p^2 n^3 \right)^{1/2} \\ & \stackrel{(7)}{=} n^{1/2} \left(\left(\sum_{u,v \in V(G)} \operatorname{codeg}(u,v) - p^2 n \right) - 4pne_G + 2p^2 n^3 \right)^{1/2} \\ & \leq n^{1/2} \left(\left(\sum_{u,v \in V(G)} \left| \operatorname{codeg}(u,v) - p^2 n \right| \right) + 4pn \left(\delta n^2 - \frac{pn^2}{2} \right) + 2p^2 n^3 \right)^{1/2} \\ & \leq n^{1/2} \left(2p^2 n^3 - 2p^2 n^3 + 4p\delta n^3 + \delta n^3 \right)^{1/2} \\ & < 3\delta^{1/2} n^2. \end{split}$$

Luego, para todo $X, Y \in V(G)$, se reescribe la expresión de la propiedad DISC_p de forma conveniente para posteriormente utilizar la desigualdad de Cauchy-Schwarz.

$$\left| e(X,Y) - p|X||Y| \right| = \left| \sum_{x \in X} (\deg(x;Y) - p|Y|) \right| \stackrel{DCS}{\leq} n^{1/2} \left(\sum_{x \in X} (\deg(x;Y) - p|Y|)^2 \right)^{1/2}. \tag{18}$$

En la desigualdad anterior se ha conseguido que el argumento de la suma sea siempre no negativo, lo que permite extender su dominio de X a V(G). De esta manera, usando a la cota proveniente de la conentración de los grados en los vértices de G, se prueba el resultado continuando desde (18):

$$\begin{split} \left| e(X,Y) - p|X||Y| \right| &\leq n^{1/2} \left(\sum_{x \in V(G)} (\deg(x;Y) - p|Y|)^2 \right)^{1/2} \\ &= n^{1/2} \left(\sum_{x \in V(G)} \deg(x;Y)^2 - 2p|Y| \sum_{x \in V(G)} \deg(x;Y) + \sum_{x \in V(G)} p^2|Y|^2 \right)^{1/2} \\ &= n^{1/2} \left(2p^2 n|Y|^2 - p^2 n|Y|^2 + 2p|Y||Y|pn - 2p|Y||Y|pn \right) \\ &+ \sum_{y,y' \in Y} \operatorname{codeg}(y,y') - 2p|Y| \sum_{y \in Y} \deg(y)^{1/2} \\ &= n^{1/2} \left(\sum_{y,y' \in Y} (\operatorname{codeg}(y,y') - p^2 n) - 2p|Y| \sum_{y \in Y} (\deg(y) - pn) \right)^{1/2} \\ &\leq n^{1/2} \left(\left| \sum_{y,y' \in Y} (\operatorname{codeg}(y,y') - p^2 n) \right| + \left| 2p|Y| \sum_{y \in Y} (\deg(y) - pn) \right| \right)^{1/2} \\ &\leq n^{1/2} \left(\sum_{u,v \in V(G)} \left| \operatorname{codeg}(u,v) - p^2 n \right| + 2p|Y| \sum_{x \in V(G)} \left| \deg(x) - pn \right| \right)^2 \\ &\leq n^{1/2} \left(\delta n^3 + 6p \delta^{1/2} n^3 \right)^{1/2} \\ &\leq 3\delta^{1/4} n^2. \end{split}$$

Proposición 24. Para todo $\varepsilon > 0$ y $p \in (0,1)$, existe $\delta > 0$ y $n_0 \in \mathbb{N}$ tales que el grafo G sobre $n \geq n_0$ vértices y $e_G = \frac{pn^2}{2} \pm \delta n^2$ aristas satisface $COUNT_{C_4,p}(\varepsilon)$ cada vez que cumpla con $EIG_p(\delta)$. En particular,

394

$$EIG_p \Rightarrow COUNT_{C_4,p}$$
.

Demostración. Dado $\varepsilon > 0$ y $p \in (0,1)$, se elige $\delta < \frac{\varepsilon}{20}$ y $n_0 \in \mathbb{N}$ suficientemente grande. Consideramos el grafo G sobre $n \geq n_0$ vértices y $e_G = \frac{pn^2}{2} \pm \delta n^2$ aristas que satisface la propiedad $\mathrm{EIG}_p(\delta)$, $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ como la matriz de adyacencia de G, y $\lambda_1 \geq \cdots \geq \lambda_n$ los valores propios de A.

Recuerde que la cantidad de copias etiquetadas de caminatas cerradas de largo 4, que no son C_4 , en G se encuentran dentro de un error de a lo más δn^4 con respecto al número de copias etiquetadas de C_4 en G. Con esto, junto al Lema 4 y el Corolario 9 se obtiene lo siguiente:

$$\left| \binom{G}{C_4} \right| = \text{Tr}(A^4) \pm \delta n^4 = \sum_{i=1}^n \lambda_i^4 \pm \delta n^4 = \lambda_1^4 + \sum_{i=2}^n \lambda_i^4 \pm \delta n^4.$$
 (19)

Luego, recordando que $Tr(A^2) = 2e_G$, y usando $EIG_p(\delta)$,

407

417

$$\sum_{i=2}^{n} \lambda_i^4 \le \max_{i \ne 1} \lambda_i^2 \sum_{i=1}^{n} \lambda_i^2 \le \delta n^2 \text{Tr}(A^2) \le \delta n^2 (pn^2 + 2\delta n^2) \le 3\delta n^4.$$
 (20)

Finalmente, se concluirá tras usar la propiedad $\mathrm{EIG}_p(\delta)$ sobre el primer valor propio y la cota mostrada en (20). Entonces, continuando desde la ecuación (19),

$$\left| \binom{G}{C_4} \right| = \lambda_1^4 + \sum_{i=2}^n \lambda_i^4 \pm \delta n^4 \le p^4 n^4 + 20\delta n^4.$$

Proposición 25. Para todo $\varepsilon > 0$ y $p \in (0,1)$, existe $\delta > 0$ y $n_0 \in \mathbb{N}$ tales que el grafo G sobre $n \geq n_0$ vértices y $e_G = \frac{pn^2}{2} \pm \delta n^2$ aristas satisface $\mathrm{EIG}_p(\varepsilon)$ cada vez que cumpla la propiedad $\mathrm{COUNT}_{C_4,p}(\delta)$. Es decir,

 $COUNT_{C_4,p} \Rightarrow EIG_p$.

Demostración. Sea $\varepsilon > 0$ y $p \in (0,1)$, escogemos $\delta < \frac{\varepsilon^4}{4}$ y $n_0 \in \mathbb{N}$ suficientemente grande. Sea también G un grafo sobre $n \geq n_0$ vértices y $e_G = \frac{pn^2}{2} \pm \delta n^2$ aristas que satisface la propiedad COUNT $_{C_4,p}(\delta)$, $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ la matriz de adyacencia de G, y $\lambda_1 \geq \cdots \geq \lambda_n$ los valores propios de A.

En lo que respecta al primer valor propio, sabemos por un lado que éste es al menos el promedio de los grados gracias al Lema 12. Es decir,

$$\lambda_1 \ge \frac{\sum_{x \in V(G)} \deg(x)}{n} = \frac{2e_G}{n} = \frac{2}{n} \left(\frac{pn^2}{2} \pm \delta n^2\right) \ge pn - 2\delta n. \tag{21}$$

Por otro lado, mediante el Lema 4, el Corolario 9 y la propiedad COUNT $_{C_4,p}(\delta)$,

$$\lambda_1^4 \le \sum_{i=1}^n \lambda_i^4 = \text{Tr}(A^4) = \left| \binom{G}{C_4} \right| \pm \delta n^4 \le p^4 n^4 + 2\delta n.$$
 (22)

La desigualdad (22) implica que $\lambda_1 \leq pn + (2\delta)^{1/4}n$, y en combinación con la cota vista en (21), se obtiene que $\lambda_1 = pn \pm (2\delta)^{1/4}n$. Por último, observe por las cotas vistas anteriormente que

$$\max_{i \neq 1} |\lambda_1|^4 \leq \sum_{i=2}^n \lambda_i^4 + \lambda_1^4 - \lambda_1^4
= \text{Tr}(A^4) - \lambda_1^4
\leq p^4 n^4 + 2\delta n^2 - p^4 n^4 + 2\delta n^4
= 4\delta n^4.$$

De esta manera, se logra probar el resultado determinando que $\max_{i \neq 1} |\lambda_i| \leq (4\delta)^{1/4} n$.

3.2. Aspectos adicionales del teorema de CGW

420

421

422

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

La noción inicial presentada de un grafo cuasi-aleatorio por distribución de aristas según la Definición 3 contempla verificar que si todo par de subconjuntos de vértices del grafo satisfacen la condición DISC_p para determinar la cuasi-aleatoriedad. En otras palabras, se requiere comprobar un número exponencial de subconjuntos. Por esto, resulta sorprendente que tal propiedad sea equivalente a todas las otras (salvo $\mathrm{DISC'}_p$), debido a que se verifican de manera polinomial. Otro aspecto interesante es que la propiedad más débil $\mathrm{COUNT}_{C_4,p},$ que solo requiere que la condición de conteo sea verdadera para el ciclo C_4 , sea suficientemente sólida para implicar la afirmación de conteo de la propiedad COUNT_p; que dice que el número de copias etiquetadas de cualquier grafo F de tamaño fijo en G = ([n], E) es aproximadamente el esperado de los grafos aleatorios G(n, p).

A continuación mostraremos que no es suficiente que la condición de conteo sea verdadera para ciclos de largo inferior a 4 para determinar la cuasi-aleatoriedad de un grafo. Para ver esto, en primer lugar se la construcción de un contraejemplo de un grafo que posee la cantidad de copias etiquetadas esperadas de C_3 , pero que no cumple con las condiciones para ser cuasi-aleatorio.

Proposición 26. Existe un grafo G = ([n], E) con $(\frac{1}{3})^3$ $n^3 + o(n^3)$ copias etiquetadas de C_3 , pero que no es cuasi-aleatorio.

Demostración. La idea de la construcción consiste en la combinación de dos grafos, uno con una cantidad mayor que la esperada en un grafo aleatorio G(n,p) de copias etiquetadas de C_3 , y otro con una cantidad menor. Consideramos entonces independientemente los grafos completos K_{n_1} y K_{n_2,n_2} tales que su unión disjunta forma el grafo $G=K_{n_1}\cup K_{n_2,n_2}$ con $n_1+2n_2=n$ vértices. 440

Figura 7: Esquema de la configuración del grafo usado como contraejemplo. Aquí, •—• representa las aristas permitidas dentro del grafo G.

En K_{n_1} y K_{n_2,n_2} , observe que la cantidad de sus aristas y copias etiquetadas de C_3 son las 441 siguientes: 442

$$e_{K_{n_1}} \approx \frac{n_1^2}{2}$$
 , $\left| {K_{n_1} \choose C_3} \right| \approx n_1^3$, $\left| {K_{n_1} \choose C_3} \right| \approx n_1^3$, $\left| {K_{n_2,n_2} \choose C_3} \right| = 0$.

Bajo esta configuración, se encontrará el parámetro $p \in (0,1)$ de manera tal que el grafo Gposea la cantidad esperada de aristas y copias etiquetadas de C_3 según lo haría un grafo aleatorio G(n,p). Para ello, se plantea el siguiente sistema de ecuaciones:

$$\begin{cases} p\frac{n^2}{2} = \frac{n_1^2}{2} + \frac{(n-n_1)^2}{4}, \\ p^3n^3 = n_1^3. \end{cases}$$

Resolviendo el sistema anterior, se obtiene que $p=\frac{1}{3}$ y $n_1=n_2=\frac{n}{3}$. Esta construcción, en efecto, presenta

$$e_G = {n \choose 3 \choose 2} + {n^2 \over 9} = {1 \over 3} {n \choose 2} + o(n^2),$$

448 Como también,

451

452

453

455

456

462

$$\left| \binom{G}{C_3} \right| = \left(\frac{n}{3} \right)^3 + o(n^3) = \left(\frac{1}{3} \right)^3 n^3 + o(n^3).$$

Sin embargo, el grafo G no es cuasi-aleatorio debido a que no existen aristas entre K_{n_1} y K_{n_2,n_2} ni dentro de los conjuntos de vértices que conforman a K_{n_2,n_2} .

Lo expuesto se enfoca en el caso muy particular en el que $p = \frac{1}{3}$, pero es importante destacar la técnica utilizada. En específico, la interpolación de dos grafos arbitrarios con una cantidad esperada menor y mayor de copias etiquetadas de C_3 según G(n, p) produce un nuevo contraejemplo.

De manera más general, es posible extender la propiedad $\text{COUNT}_{C_4,p}$ a $\text{COUNT}_{C_{2t},p}$ con $t \geq 2$. Es decir,

$$\mathrm{COUNT}_{C_{2t},p}:\ \left|\binom{G_n}{C_{2t}}\right| = \left(p^{2t} + o(1)\right)n^{2t}\ ,\ \forall t \geq 2.$$

Se expone un bosquejo de la demostración.

Proposición 27. Sea $p \in (0,1)$ y $(G_n)_{n\to\infty}$ una secuencia de grafos con $|V(G_n)| = n$ vértices y $e_{G_n} = (p+o(1))\binom{n}{2}$ aristas, entonces las propiedades COUNT $_{C_{2t},p}$ y EIG $_p$ son equivalentes.

Demostración. Este resultado es una consecuencia directa de las demostraciones de la Proposición 24 y 25 tras el siguiente par de observaciones. En primer lugar, la cantidad de copias etiquetadas caminatas cerradas de largo 2t que no son C_{2t} en G_n están dentro de un error $O(n^{2t-1})$, es decir,

$$\operatorname{Tr}(A^{2t}) = \sum_{i=1}^{n} \lambda_i^{2t} = \left| \binom{G_n}{C_{2t}} \right| + O(n^{2t-1}).$$

También, se debe modificar la cota presentada en la ecuación (20) como sigue:

$$\sum_{i=2}^n \lambda_i^{2t} \leq \max_{i \neq 1} \lambda_i^{2(t-1)} \sum_{i=1}^n \lambda_i^2 = \max_{i \neq 1} \lambda_i^{2t-2} \operatorname{Tr}(A^2).$$

Con estas observaciones el resultado queda demostrado.

Es importante destacar que la demostración anterior es funcional gracias a que los ciclos de largo par preservan una contribución positiva en la suma de cada uno de los valores propios de G, eliminando la posibilidad de cancelaciones entre ellos.

Finalmente, se explora un caso siempre interesante de estudio, ya que simplifica varios cálculos y surge de manera recurrente en la vida cotidiana: un grafo d-regulrar. En nuestro contexto, se verá que toda secuencia $(G_n)_{n\to\infty}$ de grafos d-regular satisface la propiedad $\mathrm{DISC}_{\frac{d}{n}}$ si y solo si cumple con $\mathrm{EIG}_{\frac{d}{n}}$. Dicha equivalencia nace como una consecuencia del siguiente teorema.

Teorema 28. (Expander Mixing Lemma) Sea G = ([n], E) un grafo d-regular, $y \ d = \lambda_1 \ge \lambda_2 \ge 1$... $\ge \lambda_n$ los valores propios asociados a la matriz de adyacencia A de G. Si se denota:

$$\lambda = \max_{i \neq 1} |\lambda_i|.$$

Entonces, para cada $X, Y \subset [n]$,

464

465

467

468

469

470

473

477

$$\left| e(X,Y) - \frac{d}{n}|X||Y| \right| \le \lambda \sqrt{|X||Y|\left(1 - \frac{|X|}{n}\right)\left(1 - \frac{|Y|}{n}\right)}. \tag{23}$$

Demostración. Sea $\mathcal{B} = \{v_1, ..., v_n\}$ la base ortonormal de \mathbb{R}^n compuesta por los vectores propios de A. Utilizando la descomposición espectral, se denotamos

$$A_1 = \lambda_1 oldsymbol{v}_1 oldsymbol{v}_1^T \;\; ext{y} \;\; \Delta = \sum_{i=2}^n \lambda_i oldsymbol{v}_i oldsymbol{v}_i^T,$$

de manera que $A = A_1 + \Delta$.

Coforme a la ecuación (9), para todo $X, Y \subset [n]$, se cumple la siguiente igualdad:

$$e(X,Y) = \boldsymbol{v}_X^T A \boldsymbol{v}_Y = \boldsymbol{v}_X^T A_1 \boldsymbol{v}_Y + \boldsymbol{v}_X^T \Delta \boldsymbol{v}_Y. \tag{24}$$

De la ecuación anterior se espera que el primer sumando sea el término principal, mientras que el segundo el factor de error. Para ver esto, se representan los vectores v_X y v_Y según la base \mathcal{B} .

Es decir,

$$\mathbf{v}_X = \sum_{i=1}^n \alpha_i \mathbf{v}_i \quad \mathbf{v} \quad \mathbf{v}_Y = \sum_{i=1}^n \beta_i \mathbf{v}_i,$$

donde $\alpha_i = \boldsymbol{v}_X^T \boldsymbol{v}_i$ y $\beta_i = \boldsymbol{v}_Y^T \boldsymbol{v}_i$. Con esto, se calcula:

$$\|\alpha_i\|^2 = \sum_{i=1}^n \alpha_i^2$$

$$= \sum_{i=1}^n \langle \boldsymbol{v}_X, \boldsymbol{v}_i \rangle^2$$

$$= \sum_{i=1}^n \langle \sum_{j \in X} \boldsymbol{e}_j, \boldsymbol{v}_i \rangle^2$$

$$= \sum_{i=1}^n \sum_{j=1}^n \langle \boldsymbol{e}_j, \boldsymbol{v}_i \rangle^2 \mathbb{1}_X(i)$$

$$= \sum_{i=1}^n \|\boldsymbol{v}_i\|^2 \mathbb{1}_X(i)$$

$$= |X|.$$

482

Análogamente, $\|\beta_i\|^2 = \sum_{i=1}^n \beta_i^2 = |Y|$. Ahora, se estudian los sumandos de la igualdad (24) por separado. Por un lado,

$$\mathbf{v}_{X}^{T} A_{1} \mathbf{v}_{Y} = \left(\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}\right)^{T} \left(\lambda_{1} \mathbf{v}_{1} \mathbf{v}_{1}^{T}\right) \left(\sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j}\right) \\
= \lambda_{1} \left(\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}^{T}\right) \left(\mathbf{v}_{1} \mathbf{v}_{1}^{T}\right) \left(\sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j}\right) \\
= \lambda_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \beta_{j} \left(\mathbf{v}_{i}^{T} \mathbf{v}_{1}\right) \left(\mathbf{v}_{1}^{T} \mathbf{v}_{j}\right) \\
= \lambda_{1} \alpha_{1} \beta_{1}.$$
(25)

Por otro lado, de la misma manera que el cálculo anterior,

$$\boldsymbol{v}_{X}^{T} \Delta \boldsymbol{v}_{Y} = \left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{v}_{i}\right)^{T} \left(\sum_{j=2}^{n} \lambda_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{T}\right) \left(\sum_{k=1}^{n} \beta_{k} \boldsymbol{v}_{k}\right) = \sum_{i=1}^{n} \lambda_{i} \alpha_{i} \beta_{i}.$$
(26)

Luego, dado que G es un grafo d-regular, $\lambda_1 = d$ y $\boldsymbol{v}_1 = \frac{1}{\sqrt{n}}(1,...,1)^T$ son valor y vector propio respectivamente de A. En consecuencia,

$$\alpha_1 = \frac{|X|}{\sqrt{n}} \quad \text{y} \quad \beta_1 = \frac{|Y|}{\sqrt{n}}.$$

Así, la ecuación (25) resulta en $\boldsymbol{v}_X^T A_1 \boldsymbol{v}_Y = \frac{d}{n} |X| |Y|$.

487

488

489

490

Para el término de error, recordando la definición de λ , se desarrolla el valor absoluto de la ecuación (26) usando la desigualdad de Cauchy-Schwarz.

$$\begin{aligned} \left| \boldsymbol{v}_{X}^{T} \Delta \boldsymbol{v}_{Y} \right| &= \left| \sum_{i=2}^{n} \lambda_{i} \alpha_{i} \beta_{i} \right| \\ &\leq \lambda \left| \sum_{i=2}^{n} \alpha_{i} \beta_{i} \right| \\ &\stackrel{\text{DCS}}{\leq} \lambda \sqrt{\sum_{i=2}^{n} \alpha_{i}^{2} \sum_{i=2} \beta_{i}^{2}} \\ &= \lambda \sqrt{\left(\|\alpha_{i}\|^{2} - \alpha_{1}^{2} \right) \left(\|\beta_{i}\|^{2} - \beta_{1}^{2} \right)} \\ &= \lambda \sqrt{\left| X \right| \left| Y \right| \left(1 - \frac{\left| X \right|}{n} \right) \left(1 - \frac{\left| Y \right|}{n} \right)}. \end{aligned}$$

Finalmente, el resultado se obtiene directamente de tomar el valor absoluto de la ecuación (24)
de la siguiente manera:

$$|e(X,Y) - \boldsymbol{v}_X^T A_1 \boldsymbol{v}_Y| = |\boldsymbol{v}_X^T \Delta \boldsymbol{v}_Y|.$$

El teorema anterior permite asegurar que todo grafo d-regular G = ([n], E) con un conjunto de

vértices suficientemente grande que satisface la propiedad $\mathrm{EIG}_{\frac{d}{n}}(\delta)$, también cumple con $\mathrm{DISC}_{\frac{d}{n}}(\varepsilon)$. En efecto, para todo $\varepsilon>0$ y $X,Y\subset[n]$, elija $n_0\in\mathbb{N}$ suficientemente grande y $\delta<\frac{\varepsilon n}{\sqrt{|X||Y|}}$.

Entonces, si G satisface la propiedad $\mathrm{EIG}_{\frac{d}{\omega}}(\delta)$, por el Teorema 28:

493

495

501

502

503

505

506

507

$$\left| e(X,Y) - \frac{d}{n}|X||Y| \right| \le \lambda \sqrt{|X||Y| \left(1 - \frac{|X|}{n}\right) \left(1 - \frac{|Y|}{n}\right)}$$

$$< \delta n \sqrt{|X||Y|}$$

$$< \varepsilon n^2.$$

Finalmente, en un grafo d-regular, la equivalencia entre las propiedades $EIG_{\frac{d}{n}}$ y $DISC_{\frac{d}{n}}$ se completa por el camino de implicancias ya demostradas según el esquema (14).

4. Lema de regularidad de Szemerédi

El lema de regularidad de Szemerédi (1975) * referencia * ha mostrado ser un resultado muy poderoso e importante en la teoría de grafos extremal. Sus aplicaciones no se restringen solo a la teoría de grafos, si no que también las tiene en teoría de números combinatorios, geometría discreta y ciencias de la computación. Originalmente, fue creado por Szemerédi como un lema auxiliar en la demostración de la famosa conjetura de Erdös y Turán (1936) * referencia *, que establece que todo conjunto de números enteros suficientemente grande debe contener una progresión aritmética de cualquier longitud finita.

A grandes rasgos, el lema dice que el conjunto de vértices de todo grafo puede ser particionado en una cantidad finita de partes que muestran comportamientos *regulares* entre la mayoría de los pares de partes. Este hecho es importante debido a que permite entender cualquier grafo con menos información, y se aprovechan cada una de las propiedades equivalentes vistas en el Teorema 17.

Hasta enunciar formalmente el lema de regularidad, se definirán los conceptos necesarios para su buena comprensión. Dado un grafo G y los subconjuntos de vértices $X, Y \subset V(G)$, se define la **densidad de aristas** entre X e Y de la siguiente manera:

$$d(X,Y) = \frac{e(X,Y)}{|X||Y|}. (27)$$

Diremos que $\mathcal{P} = \{X_1, X_2, ..., X_k\}$ es una **partición** del conjunto X si:

i) $\bigcup_{i=1}^k X_i = X$.

508

509

510

511

512

513

514

520

521

534

535

ii) $X_i \cap X_j = \emptyset$ para todo $i, j \in [k]$.

Cuando $|X_1| \le |X_2| \le ... \le |X_k| = |X_1| + 1$, llamaremos a \mathcal{P} como una **equipartición**. En particular, cada parte posee $\lceil |X|/k \rceil$ o $|X|/k \mid$ elementos.

También, es necesario conocer en qué sentido los pares de partes entregados por el lema son regulares.

Definición 29. Sea G un grafo $y|X,Y \subset V(G)$ subconjuntos no necesariamente disjuntos. Diremos que (X,Y) es un par ε -regular en G si para todo $A \subset X$ y $B \subset Y$ con $|A| \ge \varepsilon |X|$ y $|B| \ge \varepsilon |Y|$, se cumple

$$\left| d(A,B) - d(X,Y) \right| \le \varepsilon.$$

Cuando (X,Y) no es un par ε -regular, entonces la irregularidad es evidenciada por algún $A\subseteq X$ y $B\subseteq Y$ que satisfacen $|A|\geq \varepsilon |X|$ y $|B|\geq \varepsilon |Y|$, pero $\Big|d(A,B)-d(X,Y)\Big|>\varepsilon$.

Notaremos que la noción de un par ε -regular es, de hecho, una analogía de la propiedad $\mathrm{DISC}_p(\varepsilon)$ para grafos bipartitos. Es decir, si G es tal que $V(G) = U \cup W$ y $p \in (0,1)$, se cumple

$$\left| e(X,Y) - p|X||Y| \right| = o(|U||W|) , \forall X \subset U, \forall Y \subset W.$$
 (28)

En efecto, si (U,W) es un par ε -regular, entonces todo $A\subset U$ y $B\subset W$ tales que $|A|\geq \varepsilon |U|$ y $|B|\geq \varepsilon |W|$ satisfacen

$$e(A, B) = d(U, W)|A||B| \pm \varepsilon |A||B| = d(U, W)|A||B| \pm \varepsilon |U||W|.$$

Ahora bien, si al menos uno de los subconjuntos de la condición de un par ε -regular no es suficientemente grande, digamos $|A| < \varepsilon |X|$, entonces

$$d(U,W)|A||B|-\varepsilon|U||W|<0\leq e(A,B)\leq |A||B|\leq \varepsilon|U||W|< d(U,W)|A||B|+\varepsilon|U||W|.$$

De esta manera, tomando p = d(U, W), se obtiene la analogía planteada.

Por último, debemos saber la noción de regularidad en una partición del conjunto de vértices de un grafo.

Definición 30. Dado un grafo G, una partición $\mathcal{P} = \{V_1, ..., V_k\}$ del conjunto de vértices V(G) es una partición ε -regular si

$$\sum_{\substack{(i,j)\in[k]^2\\(V_i,V_i)\text{ no }\varepsilon\text{-regular}}} |V_i||V_j| \leq \varepsilon |V(G)|^2.$$

Es decir, todos los pares de subconjuntos de vértices en la partición son ε -regular salvo una fracción ε de pares de vértices.

Note que si una partición ε -regular de k partes es en particular una equipartición, entonces a lo más εk^2 pares de elementos de la partición no son ε -regular.

Ya con todo lo requerido, se enuncia formalmente el lema de regularidad.

Teorema 31. (Lema de regularidad de Szemerédi) Para todo $\varepsilon > 0$, existe un entero $M = M(\varepsilon)$ tal que todo grafo admite una partición ε -regular de a lo más M partes.

Otra forma de encontrar el resultado, es cuando todas las partes de la partición poseen aproximadamente el mismo tamaño.

Teorema 32. (Regularidad de Szemerédi - Equipartición) Para todo $\varepsilon > 0$ y $m_0 \in \mathbb{N}$, existe un entero $M = M(\varepsilon)$ tal que todo grafo admite una equipartición ε -regular de su conjunto de vértices de k partes, con $m_0 \le k \le M$.

Lo poderoso del lema de regularidad es que la cota de partes que entrega es independiente del tamaño del grafo, y solo depende del parámetro ε . Esto ya que en grafo más grandes, el tamaño de las partes podrían ser considerablemente más grandes.

En la subsección 4.1 se demostrará rigurosamente el Teorema 31 desde una mirada clásica, y se expondrá la manera de probar el 32. Más adelante, en la sección 4.2, nos limitaremos a mostrar una forma novedosa e ingeniosa de demostrar el Teorema 31 desde una perspectiva espectral. Finalmente, en la subsección 4.3 se mostrarán las aplicaciones más famosas del lema de regularidad de Szemerédi.

4.1. Demostración por incremento de energía

Se empleará una técnica llamada argumento de incremento de energía, cual para todo grafo G, funciona algorítmicamente de la siguiente manera:

- 1. Comenzar con la partición trivial de V(G), i.e, $\mathcal{P} = \{V(G)\}$.
- 2. Mientras la partición actual \mathcal{P} no es ε -regular:
 - (a) Para cada par (V_i, V_j) no ε -regular, encontrar los subconjuntos $A^{ij} \subset V_i$ y $A^{ji} \subset V_j$ que evidencian la irregularidad del par.
 - (b) Refinar \mathcal{P} utilizando simultáneamente los conjuntos A^{ij} y A^{ji} encontrados de cada par (V_i, V_j) no ε -regular para obtener \mathcal{Q} .
 - (c) Actualizar \mathcal{P} con \mathcal{Q} .

Siendo \mathcal{P} y \mathcal{Q} dos particiones de un mismo conjunto de vértices, diremos que \mathcal{Q} refina a \mathcal{P} si cada parte de \mathcal{Q} está contenida en una parte de \mathcal{P} . En lo que resta de esta subsección mostraremos que el algoritmo tiene un fin, y que entrega una partición ε -regular en un número de iteraciones que solo depende de ε .

Definición 33. (Energía) Sea G un grafo sobre n vértices y $X,Y \subset V(G)$. Se define en primer lugar

$$q(X,Y) := \frac{|X||Y|}{n^2} d(X,Y)^2 = \frac{e(X,Y)^2}{n^2|X||Y|}.$$

Luego, para particiones $\mathcal{P}_X = \{X_1, ..., X_k\}$ de X y $\mathcal{P}_Y = \{Y_1, ..., Y_\ell\}$ de Y, se define

573

574

575

576

577

579

580

581

582

583

584

$$q(\mathcal{P}_X, \mathcal{P}_Y) := \sum_{i=1}^k \sum_{j=1}^\ell q(X_i, Y_j).$$

Finalmente, para una partición $\mathcal{P} = \{V_1, ..., V_k\}$, se define su **energía** mediante

$$q(\mathcal{P}) := \sum_{i=1}^{k} \sum_{j=1}^{k} q(V_i, V_j) = \sum_{i=1}^{k} \sum_{j=1}^{k} \frac{|V_i||V_j|}{n^2} d(V_i, V_j)^2.$$

Observe que en toda partición \mathcal{P} de V(G), siempre se tendrá que $0 \leq q(\mathcal{P}) \leq 1$. En efecto,

$$q(\mathcal{P}) = \sum_{i=1}^{k} \sum_{j=1}^{k} \frac{|V_i||V_j|}{n^2} d(V_i, V_j)^2$$

$$\leq \frac{1}{n^2} \sum_{i=1}^{k} |V_i| \sum_{j=1}^{k} |V_j|$$
= 1.

La última observación es crucial en la demostración del Teorema 31, puesto que los Lemas 34, 35 y 36 nos asegurarán que la energía de una partición nunca decrece bajo refinamiento. Por consecuencia, el algoritmo de la técnica argumento de incremento de energía tendrá un fin, y entregará una partición ε -regular. Dicho esto, procedemos a enunciar y demostrar cada uno de los lemas mencionados para probar clásicamente el Teorema 31.

El priero de los lemas, afirma que la energía de una partición no decrece bajo cualquier refinamiento arbitrario.

Lema 34. Sea G un grafo, $X,Y \subset V(G)$, $y \mathcal{P}_X y \mathcal{P}_Y$ particiones de X e Y respectivamente, entonces $q(\mathcal{P}_X,\mathcal{P}_Y) \geq q(X,Y)$. Además, si \mathcal{P} y \mathcal{P}' son dos particiones de vértices de G, entonces $q(\mathcal{P}) \leq q(\mathcal{P}')$ cada vez que \mathcal{P}' refina a \mathcal{P} .

Demostración. Considere un grafo G sobre n vértices, los conjuntos $X, Y \subset V(G)$, y las particiones $\mathcal{P}_X = \{X_1, ..., X_k\}$ y $\mathcal{P}_Y = \{Y_1, ..., Y_\ell\}$ de X e Y respectivamente. En primera instancia, se utiliza la desigualdad (3) proveniente de Cauchy-Schwarz para probar que $q(\mathcal{P}_X, \mathcal{P}_Y) \geq q(X, Y)$. Para esto, se desarrolla como sigue:

$$q(\mathcal{P}_{X}, \mathcal{P}_{Y}) = \sum_{i=1}^{k} \sum_{j=1}^{\ell} q(X_{i}, Y_{j})$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{k} \sum_{j=1}^{\ell} \frac{e(X_{i}, Y_{j})^{2}}{|X_{i}||Y_{j}|}$$

$$\stackrel{(3)}{\geq} \frac{1}{n^{2}} \frac{\left(\sum_{i=1}^{k} \sum_{j=1}^{\ell} e(X_{i}, Y_{j})\right)^{2}}{\sum_{i=1}^{k} \sum_{j=1}^{\ell} |X_{i}||Y_{j}|}$$

$$= \frac{1}{n^{2}} \frac{e(X, Y)^{2}}{\left(\sum_{i=1}^{k} |X_{i}|\right) \left(\sum_{j=1}^{\ell} |Y_{j}|\right)}$$

$$= \frac{e(X, Y)^{2}}{n^{2}|X||Y|}$$

$$= q(X, Y).$$

$$(29)$$

Sea ahora la partición $\mathcal{P} = \{V_1, ..., V_k\}$ de V(G) y $\mathcal{P}' = \{\mathcal{P}'_{V_1}, ..., \mathcal{P}'_{V_k}\}$ un refinamiento de \mathcal{P} . Entonces, se utiliza el resultado probado previamente para completar el resultado: 591

$$q(\mathcal{P}) = \sum_{i=1}^{k} \sum_{j=1}^{k} q(V_i, V_j) \stackrel{(29)}{\leq} \sum_{i=1}^{k} \sum_{j=1}^{k} q(\mathcal{P}'_{V_i}, \mathcal{P}'_{V_j}).$$

Ahora, veremos que refinar un par (X,Y) no ε -regular de un grafo G, mediante los subconjuntos 593 que evidencian su irregularidad, provoca un aumento estricto en la energía.

Lema 35. Sea $\varepsilon > 0$, G un grafo de n vértices y $X, Y \subset V(G)$. Si (X, Y) no es un par ε -regular, 595 existen particiones $\mathcal{P}_X = \{X_1, X_2\}$ de X y $\mathcal{P}_Y = \{Y_1, Y_2\}$ de Y tales que

$$q(\mathcal{P}_X, \mathcal{P}_Y) > q(X, Y) + \varepsilon^4 \frac{|X||Y|}{n^2}.$$

Demostración. Dado $\varepsilon > 0$, considere el grafo G sobre n vértices y $X,Y \subset V(G)$ subconjuntos 597 tales que el par (X,Y) no es ε -regular. Entonces, existen los subconjuntos $X_1 \subset X$ e $Y_1 \subset Y$ que evidencian la irregularidad del par (X,Y), y son tales que

$$|X_1| \ge \varepsilon |X| \quad \text{y} \quad |Y_1| \ge \varepsilon |Y|.$$
 (30)

Se define adicionalmente los conjuntos $X_2 := X \setminus X_1, Y_2 := Y \setminus Y_1, y \eta := d(X_1, Y_1) - d(X, Y),$ 600 cual por definición de par ε -regular, satisface

$$|\eta| > \varepsilon. \tag{31}$$

Por un lado, observe la siguiente descomposición, 602

592

601

$$e(X,Y) = e(X_1,Y) + e(X_2,Y)$$

= $e(X_1,Y_1) + e(X_1,Y_2) + e(X_2,Y_1) + e(X_2,Y_2)$.

De esta manera,

$$\sum_{i+j>2} e(X_i, Y_j) = e(X, Y) - e(X_1, Y_1). \tag{32}$$

Por otro lado, se tiene que,

$$|X||Y| = (|X_1| + |X_2|)(|Y_1| + |Y_2|)$$

= $|X_1||Y_1| + |X_1||Y_2| + |X_2||Y_1| + |X_2||Y_2|$.

605 Así,

$$\sum_{i+j>2} |X_i||Y_j| = |X||Y| - |X_1||Y_1|. \tag{33}$$

Ahora, definiendo las particiones $\mathcal{P}_X = \{X_1, X_2\}$ de X y $\mathcal{P}_Y = \{Y_1, Y_2\}$ de Y, desarrollamos,

$$q(\mathcal{P}_{X}, \mathcal{P}_{Y}) = \sum_{i=1}^{2} \sum_{j=1}^{2} q(X_{i}, Y_{j})$$

$$= \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{e(X_{i}, Y_{j})^{2}}{n^{2}|X_{i}||Y_{j}|}$$

$$= \frac{1}{n^{2}} \left(\frac{e(X_{1}, Y_{1})^{2}}{|X_{i}||Y_{j}|} + \sum_{i+j>2} \frac{e(X_{i}, Y_{j})^{2}}{|X_{i}||Y_{j}|} \right)$$

$$\stackrel{(3)}{\geq} \frac{1}{n^{2}} \left(\frac{e(X_{1}, Y_{1})^{2}}{|X_{1}||Y_{1}|} + \frac{\left(\sum_{i+j>2} e(X_{i}, Y_{j})\right)^{2}}{\sum_{i+j>2} |X_{i}||Y_{j}|} \right)$$

$$\stackrel{(32)}{=} \frac{y}{n^{2}} \stackrel{(33)}{=} \frac{1}{n^{2}} \left(\frac{e(X_{1}, Y_{1})^{2}}{|X_{1}||Y_{1}|} + \frac{\left(e(X, Y) - e(X_{1}, Y_{1})\right)^{2}}{|X_{1}||Y_{1}|} \right). \tag{34}$$

Luego, por definición, note que

$$e(X_1, Y_1) = \frac{|X_1||Y_1|e(X, Y)}{|X||Y|} + \eta |X_1||Y_1|.$$
(35)

Con esto, se continúa el cálculo desde la desigualdad (34) como sigue:

$$n^{2}q(\mathcal{P}_{X},\mathcal{P}_{Y}) \geq \frac{e(X_{1},Y_{1})^{2}}{|X_{1}||Y_{1}|} + \frac{(e(X,Y) - e(X_{1},Y_{1}))^{2}}{|X||Y_{1}||X_{1}||Y_{1}|}$$

$$\stackrel{(35)}{=} \frac{1}{|X_{1}||Y_{1}|} \left(\frac{|X_{1}||Y_{1}|e(X,Y)}{|X||Y_{1}|} + \eta|X_{1}||Y_{1}| \right)^{2}$$

$$+ \frac{1}{|X||Y_{1}| - |X_{1}||Y_{1}|} \left(\frac{|X||Y_{1}| - |X_{1}||Y_{1}|}{|X||Y_{1}|} e(X,Y) - \eta|X_{1}||Y_{1}| \right)^{2}$$

$$= \frac{|X_{1}||Y_{1}|}{|X|^{2}|Y_{1}^{2}} e(X,Y)^{2} + 2\frac{|X_{1}||Y_{1}|}{|X||Y_{1}|} \eta e(X,Y) + \eta^{2}|X_{1}||Y_{1}|$$

$$+ \frac{|X||Y_{1}| - |X_{1}||Y_{1}|}{|X|^{2}|Y_{1}^{2}} e(X,Y)^{2} - 2\frac{|X_{1}||Y_{1}|}{|X||Y_{1}|} \eta e(X,Y) + \frac{\eta^{2}|X_{1}|^{2}|Y_{1}|^{2}}{|X||Y_{1}| - |X_{1}||Y_{1}|}$$

$$= \frac{e(X,Y)^{2}}{|X||Y_{1}} + \eta^{2}|X_{1}||Y_{1}| \left(1 + \frac{|X_{1}||Y_{1}|}{|X||Y_{1}| - |X_{1}||Y_{1}|}\right)$$

$$\geq \frac{e(X,Y)^{2}}{|X||Y_{1}} + \eta^{2}|X_{1}||Y_{1}|. \tag{36}$$

Finalmente, utilizando las cotas (30) y (31), podemos concluir desde la desigualdad (36),

$$q(\mathcal{P}_X, \mathcal{P}_Y) = \frac{e(X, Y)^2}{n^2 |X||Y|} + \eta^2 \frac{|X_1||Y_1|}{n^2}$$
$$= q(X, Y) + \eta^2 \frac{|X_1||Y_1|}{n^2}$$
$$> q(X, Y) + \varepsilon^4 \frac{|X||Y|}{n^2}.$$

Vimos que particionar cualquier par de conjuntos no ε -regular por medio de sus subconjuntos que evidencian la irregularidad produce un aumento en la energía. Entonces, haciendo alusión al paso 2(b) del algoritmo de la técnica argumento de incremento de energía, se mostrará que refinar simultáneamente todos los pares de conjuntos no ε -regular de un grafo produce un aumento estricto de al menos ε^5 en la energía.

Lema 36. Sea $\varepsilon > 0$, un grafo G y una partición $\mathcal{P} = \{V_1, ... V_k\}$ no ε -regular de V(G). Entonces existe un refinamiento \mathcal{Q} de \mathcal{P} , en el que cada V_i se particiona en a lo más 2^k partes y es tal que

$$q(\mathcal{Q}) > q(\mathcal{P}) + \varepsilon^5$$
.

Demostración. Sea $\varepsilon > 0$ y $\mathcal{P} = \{V_1, ..., V_k\}$ una partición no ε -regular del conjunto de n vértices de un grafo G. Sabemos que para todos los $(i,j) \in [k]^2$ tales que el par (V_i, V_j) no es ε -regular, existen los subconjuntos $A^{ij} \subset V_i$ y $A^{ji} \subset V_j$ testigos de su irregularidad. Observe que en cada V_i se podrían encontrar a lo más k conjuntos no vacíos A^{ij} que evidencian la irregularidad de los pares (V_i, V_j) no ε -regular. Considere ahora la partición $\mathcal{Q} = \{Q_1, ..., Q_k\}$ que refina a \mathcal{P} , en la que cada Q_i es una partición resultante de dividir el conjunto V_i según la intersección de todos los

subconjuntos no vacíos A^{ij} que atestiguan la irregularidad de los pares (V_i, V_j) no ε -regular. En consecuencia, $|Q_i| \leq 2^k$.

Para simplicidad en la notación, se define $\Theta := \{(i, j) \in [k]^2 : (V_i, V_j) \text{ es } \varepsilon\text{-regular}\}$. Luego, como la partición \mathcal{P} no es ε -regular, se cumple la desigualdad

$$\sum_{(i,j)\notin\Theta} \frac{|V_i||V_j|}{n^2} > \varepsilon. \tag{37}$$

Así, junto a los lemas probados previamente, se da prueba al resultado de la siguiente manera:

$$\begin{split} q(\mathcal{Q}) &= \sum_{(i,j) \in [k]^2} q(\mathcal{Q}_i, \mathcal{Q}_j) \\ &= \sum_{(i,j) \in \Theta} q(\mathcal{Q}_i, \mathcal{Q}_j) + \sum_{(i,j) \notin \Theta} q(\mathcal{Q}_i, \mathcal{Q}_j) \\ &\overset{\text{Lema } 34}{\geq} \sum_{(i,j) \in \Theta} q(V_i, V_j) + \sum_{(i,j) \notin \Theta} q(\{A^{ij}, V_i \setminus A^{ij}\}, \{A^{ji}, V_j \setminus A^{ji}\}) \\ &\overset{\text{Lema } 35}{\geq} \sum_{(i,j) \in \Theta} q(V_i, V_j) + \sum_{(i,j) \notin \Theta} \left(q(V_i, V_j) + \varepsilon^4 \frac{|V_i||V_j|}{n^2}\right) \\ &= \sum_{(i,j) \in [k]^2} q(V_i, V_j) + \sum_{(i,j) \notin \Theta} \varepsilon^4 \frac{|V_i||V_j|}{n^2} \\ &\overset{(37)}{\geq} q(\mathcal{P}) + \varepsilon^5. \end{split}$$

* Cambiar por > en la última línea y donde dice lema 33, cuando lo cambio se me descuadra :c $\hfill\Box$

Este último Lema culmina lo que se necesita para dar prueba formal del lema de regularidad de Szemerédi mediante el argumento de incremento de energía.

Demostración del Teorema 31. Dado $\varepsilon > 0$ y un grafo G, elegimos inicialmente la partición trivial del conjunto de vértices $\mathcal{P} = \{V(G)\}$. Ahora, iterativamente (actualizando \mathcal{P}), aplicaremos el Lema 36 cada vez que la partición actual no sea ε -regular. Observe que por cada aplicación del Lema 36 se consigue un aumento de al menos ε^5 en la energía, y como la energía de toda partición está acotada superiormente por 1, el proceso iterativo terminará luego de a lo más ε^{-5} pasos. El resultado será necesariamente una partición ε -regular debido a la cota de la energía.

Para una partición no ε -regular con k elementos, el Lema 36 encuentra un refinamiento de a lo más $k2^k$ partes. Dicho refinamiento será producido en cada iteración del algoritmo de argumento de incremento de energía, y la cantidad de partes producidas las acotaremos crudamente en cada paso por $k2^k < 2^{2^k}$. Comenzando con la partición trivial de una parte, ejemplificaremos con las tres primeras iteraciones del algoritmo para mostrar la cantidad de partes producidas en cada paso tras aplicar el Lema 36.

$$1^{\frac{ra}{2}}$$
 Iteración: $1 \rightarrow 2 < 2^2$ partes.

$$2^{\underline{da}}$$
 Iteración: $2^2 \rightarrow (2^2) 2^{(2^2)} < 2^{2^2}$ partes.

$$1^{\frac{\text{ra}}{2}}$$
 Iteración: $1 \rightarrow 2 < 2^2$ partes. $2^{\frac{\text{da}}{2}}$ Iteración: $2^2 \rightarrow (2^2) 2^{(2^2)} < 2^{2^{2^2}}$ partes. $3^{\frac{\text{ra}}{2}}$ Iteración: $2^{2^{2^2}} \rightarrow (2^{2^{2^2}}) 2^{(2^{2^2})} < 2^{2^{2^{2^2}}}$ partes.

Finalmente, como el algoritmo debe luego de a lo más ε^{-5} iteraciones, la cantidad de partes al final de proceso será

$$M(\varepsilon) \le 2^{2^{\varepsilon^{-2}}}$$
 Altura $2\varepsilon^{-5}$.

Desde ahora en adelante, vamos a definir y consirar una torre de altura k de la siguiente manera:

$$\mathrm{torre}(k) := \left. 2^{2^{\cdot \cdot \cdot^2}} \right\} \mathrm{Altura} \ k.$$

Durante la demostración del Teorema 31 se utilizó una cota que podría parecer exagerada para encontrar la cantidad de partes que devuelve el algoritmo implementado, por sobre todo, considerando lo rápido que crece a medida que ε se hace más pequeño. Sorprendentemente, en 1997, T. Gowers * referencia * prueba que tal límite inferior de partes es necesario. Más precisamente, mostró que es posible encontrar una constante c>0 tal que para todo suficientemente pequeño $\varepsilon > 0$, existe un grafo sin partición ε -regular siempre que posea una cantidad menor que torre($[\varepsilon^{-c}]$) partes (ver Moshkovitz y Shapira * referencia * (2016) para una demostración corta).

Finalmente, se expone la forma de probar el Teorema 32. La idea de la demostración consiste en modificar el algoritmo de la técnica de argumento de incremento de energía, de manera que en cada iteración del refinamiento se logre obtener una equipartición. Este procedimiento conservará el incremento de energía en cada paso y terminará con una equipartición del conjunto de vértices de un grafo cualquiera. Entonces, para todo grafo G, la modificación del algoritmo es la siguiente:

- 1. Comenzar con una equipartición inicial arbitraria \mathcal{P} de V(G) con m_0 partes.
- 2. Mientras la partición actual \mathcal{P} no es ε -regular:

647

648

649

651

652

653

654

655

657 658

659

660

661

663

664

665

668

669

670

672

- (a) Para cada par (V_i, V_j) no ε -regular, encontrar los subconjuntos $A^{ij} \subset V_i$ y $A^{ji} \subset V_j$ que evidencian la irregularidad de los pares.
- (b) Refinar \mathcal{P} usando simultáneamente los conjuntos A^{ij} y A^{ji} para obtener la partición \mathcal{Q} , cual divide cada parte de \mathcal{P} en a lo más $2^{|\mathcal{P}|}$ partes.
- (c) Modificar la partición Q refinando, si es posible, cada uno de sus elementos para formar partes iguales de tamaño |V(G)|/m, dada alguna elección apropiada del entero m= $m(|Q|,\varepsilon)$. Luego, los elementos de Q que no fueron refinados previamente a causa de su bajo tamaño y los conjuntos de vértices residuales del refinamiento anterior, deben ser combinados y posteriormente dividir el resultado en partes iguales de tamaño |V(G)|/m.
- (d) Actualizar \mathcal{P} con la modificación de \mathcal{Q} .

El algoritmo anterior obtiene una equipartición del conjunto de vértices del grafo G. En lo que respecta a la energía del proceso, el paso 2(b) conserva un aumento de al menos ε^5 en cada iteración. El paso 2(c) podría ocasionar una baja en la energía, sin embargo, no debería ser significativa con una elección de m suficientemente grande. En resumidas cuentas, el proceso anterior aumenta la energía en cada iteración en al menos $\varepsilon^5/2$, logrando terminar luego de a lo más $2\varepsilon^{-5}$ pasos con una equipartición de a lo más torre(ε^{-5}) partes.

679 4.2. Demostración espectral

674

675

676

677

678

680

682

683

684

685

688

689

690

691

692

693

697

699

En 2012, Terence Tao * referencia * publica en su blog una prueba del lema de regularidad de Szemerédi usando la descomposición espectral de la matriz de adyacencia. La idea original de la demostración proviene de los autores Frieze y Kannan * referencia *, a quieres Tao les da el crédito en su publicación. Más adelante, en 2013, Cioba y Martin * referencia * escribieron la demostración con más detalles. La prueba que se expone en esta sección está basada escencialmente en la publicación de Cioba y Martin.

Demostración espectral del Teorema 31. Dado $\varepsilon > 0$, consideramos la función $F: \mathbb{N} \to \mathbb{N}$ definida por

$$F(\ell) = \left\lceil \frac{1}{\varepsilon^6} \left(\frac{2\ell^2}{\varepsilon^2} \right)^{4\ell} \right\rceil.$$

Denotaremos por $F^{(i)}$ a la *i*-ésima composición de F con ella misma, y escogemos $n_0 \in \mathbb{N}$ suficientemente grande.

Sea G = ([n], E) un grafo con $n \ge n_0$ vértices, y A su matriz de adyacencia. Ordenamos los valores propios $|\lambda_1| \ge ... \ge |\lambda_n|$ de A de manera decreciente y consideramos $u_1, ... u_n$ los vectores propios correspondientes, que forman una base ortonormal de \mathbb{R}^n .

Por la Proposición 4 y el Corolario 9, se satisface

$$Tr(T) = \sum_{i=1}^{n} \lambda_1^2 = 2e_G \le n^2.$$
 (38)

De lo anterior, al notar que $i\lambda_i^2 \leq \sum_{j=1}^i \lambda_j^2 \leq n^2$, se encuentra la cota

$$\lambda_i \le \frac{n}{\sqrt{i}}, \ \forall i \in [n].$$
 (39)

Consideramos también los intervalos $I_1, \ldots, I_{\lceil 1/\varepsilon^3 \rceil} \subset [n]$ definidos por

- $I_1 = \{1, 2, \dots, F^{(1)}(1) 1\}$ y
- $I_k = \{F^{(k-1)}(1), \dots, F^k(1) 1\}$ para todo $k = 2, \dots, I_{\lceil 1/\varepsilon^3 \rceil}$.

Con esta construcción, debe existir un natural $1 \le L \le \lceil 1/\varepsilon^3 \rceil$ que cumple con

$$\sum_{L \le j < F(L)} \lambda_j^2 \le \varepsilon^3 n^2,\tag{40}$$

porque de lo contrario, se obtiene

$$\sum_{i=1}^{n} \lambda_i^2 \ge \sum_{k=1}^{\lceil 1/\varepsilon^3 \rceil} \sum_{i \in I_k} \lambda_i^2 > \lceil 1/\varepsilon^3 \rceil \cdot \varepsilon^3 n^2 > n^2,$$

que contradice la desigualdad (38).

700

701

702

703

705

709

710

711

Ahora, usando L, separamos la matriz A en tres matrices simetricas:

$$A = S + F + Q,$$

donde la matriz S se interretará como la componente estructural,

$$S = \sum_{i < L} \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^T,$$

la matriz F como la componente de error,

$$F = \sum_{L \le i < F(L)} \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^T,$$

y la matriz Q como la componente cuasi-aleatoria,

$$Q = \sum_{i \ge F(L)} \lambda_i \mathbf{u}_i \mathbf{u} i^T.$$

Usaremos los vectores propios $u_1,...u_{L-1}$ de S para definir una partición de V(G) como mostraremos a continuación. Consideramos el intervalo de $\mathbb R$ de longitud $2\sqrt{(L/\varepsilon)}\cdot n^{-1/2}$ centrado en el origen y lo particionamos en $t=2(L/\varepsilon)^2$ subintervalos $J_1,...,J_t$ de longitud $(\varepsilon/L)^{3/2}n^{-1/2}$ cada uno. Luego, clasificamos los vértices $v\in V(G)$ según su valor $u_i(v)$ de la siguiente manera:

$$V_i^j = \{ v \in V(G) : \boldsymbol{u}_i(v) \in J_j \}, \ 1 \le j \le t.$$

Con esto, tomamos el refinamiento de todos estos conjuntos $\{V_i^j \neq \emptyset : i \in [L-1], j \in [t]\}$ para obtener los conjuntos $V_0, V_1, ..., V_M$, en donde $M \leq (\frac{2L^2}{\varepsilon^2})^L$. El resultado anterior considera un conjunto excepcional de vértices V_0 que está definido como sigue:

$$V_0 = \left\{ v \in V(G) : |\boldsymbol{u}_i(v)| > \sqrt{\frac{L}{\varepsilon}} n^{-1/2} \text{ para algún } i \in [L-1] \right\}.$$

Mostraremos que el conjunto excepcional V_0 es suficientemente pequeño. En efecto, observando que

$$L - 1 = \sum_{i=1}^{L-1} \|\mathbf{u}_i\|^2 \ge \sum_{i=1}^{L-1} \sum_{v \in V(G)}^n \mathbf{u}_i(v)^2 \ge |V_0| \left(\frac{L}{\varepsilon n}\right),$$

se determina que $|V_0| < \varepsilon n$.

Probaremos que la partición construida del conjunto de vértices del grafo $\mathcal{P} = \{V_0, V_1, ..., V_M\}$ es ε -regular. Comenzamos identificando los pares excepcionales. Para esto, sea $F = (f_{xy})$ y defina

$$\Sigma_F = \left\{ (i,j) : \sum_{(x,y) \in V_i \times V_j} f_{xy}^2 > \varepsilon |V_i| |V_j| \right\}$$

Entonces, por la definición de F y el Corolario 5, tenemos que

$$\varepsilon^{3} n^{2} \geq \sum_{L \leq i < F(L)} \lambda_{i}^{2} = \text{Tr}(F^{2}) = \sum_{(x,y) \in V(G)^{2}} f_{xy}^{2} \geq \sum_{(i,j) \in \Sigma_{F}} \sum_{(x,y) \in V_{i} \times V_{j}} f_{xy}^{2} > \varepsilon \sum_{(i,j) \in \Sigma_{F}} |V_{i}| |V_{j}|,$$

y por consecuencia

$$\varepsilon^2 n^2 \ge \sum_{(i,j)\in\Sigma_F} |V_i||V_j|. \tag{41}$$

719 Además, sea

$$\Sigma_Q = \left\{ (i,j) : \min\{|V_i|, |V_j|\} < \frac{\varepsilon}{M} n \right\} \cup \left\{ (i,j) : i = 0 \text{ o } j = 0 \right\},$$

y observe que

$$\sum_{(i,j)\in\Sigma_Q} |V_i||V_j| \le 2M \cdot \frac{\varepsilon}{M} n + 2|V_0|n < 4\varepsilon n.$$

Ahora, sea $(i,j) \notin \Sigma_F \cup \Sigma_Q$, y $d_{ij} = d(V_i,V_j)$ la densidad del par (V_i,V_j) . Entonces, dado los subconjuntos $X \subset V_i$ e $Y \subset V_j$, note la siguiente descomposición:

$$\begin{vmatrix}
e(X,Y) - d_{ij}|X||Y| \\
& \leq |\mathbf{v}_X^T S \mathbf{v}_Y - d_{ij}|X||Y| \\
& \leq |\mathbf{v}_X^T S \mathbf{v}_Y - d_{ij}|X||Y| + |\mathbf{v}_X^T F \mathbf{v}_Y| + |\mathbf{v}_X^T Q \mathbf{v}_Y|.$$
(42)

En este punto, el objetivo es encontrar cotas para cada uno de los sumandos anteriores.

Para comenzar, por la definición de Σ_F y la desigualdad de Cauchy-Schwarz, se obtiene la primera de las cotas de la siguiente manera:

$$\left| \boldsymbol{v}_X^T F \boldsymbol{v}_Y \right|^2 = \left| \sum_{(x,y) \in X \times Y} f_{xy} \right|^2 \stackrel{\text{DCS}}{\leq} \left(\sum_{(x,y) \in X \times Y} f_{xy}^2 \right) |X| |Y| \leq \varepsilon^2 |V_i| |V_j| |X| |Y| \leq \varepsilon^2 |V_i|^2 |V_j|^2. \tag{43}$$

Para la próxima cota, debemos observar por la construcción de Q y el Teorema 10 que

$$\left\|\boldsymbol{v}_X^TQ\boldsymbol{v}_Y\right\|\overset{\mathrm{DCS}}{\leq}\left\|\boldsymbol{v}_X\right\|\left\|Q\boldsymbol{v}_Y\right\|\leq \left\|\boldsymbol{v}_X\right\|\left\|\boldsymbol{v}_Y\right\|\frac{n}{\sqrt{F(L)}}=\sqrt{|X||Y|}\frac{n}{\sqrt{F(L)}}\leq \frac{n^2}{\sqrt{F(L)}}.$$

Además, como $M \leq (\frac{2L^2}{\varepsilon^2})^L$, concluimos de la elección de $F(\cdot)$ que $F(L) \geq \frac{1}{\varepsilon^6} \left(\frac{2L^2}{\varepsilon^2}\right)^{4L} \geq \frac{1}{\varepsilon^6} M^4$.

Y así, cuando $(i,j) \neq \Sigma_Q$, se tiene

$$\left| \boldsymbol{v}_{X}^{T} Q \boldsymbol{v}_{Y} \right| \leq \frac{n^{2}}{\sqrt{F(L)}} \leq \frac{M^{2} |V_{i}| |V_{j}|}{\varepsilon^{2} \sqrt{F(L)}} \leq \varepsilon |V_{i}| |V_{j}|. \tag{44}$$

Por último, para la tercera cota, analizamos $S=(s_{xy})$. Sean s_{ab} y s_{cd} los valores mínimo y máximo de todos los s_{xy} sobre $(u,v) \in V_i \times V_j$. Entonces,

$$s_{cd} - s_{ab} = \sum_{i < L} \lambda_i \mathbf{u}_i(c) \mathbf{u}_i(d) - \lambda_i \mathbf{u}_i(a) \mathbf{u}_i(b)$$

$$\leq \sum_{i < L} |\lambda_i| \left| \mathbf{u}_i(c) \mathbf{u}_i(d) - \mathbf{u}_i(a) \mathbf{u}_i(d) + \mathbf{u}_i(a) \mathbf{u}_i(d) - \mathbf{u}_i(a) \mathbf{u}_i(b) \right|$$

$$\leq n \sum_{i < L} \left| \mathbf{u}_i(d) \left(\mathbf{u}_i(c) - \mathbf{u}_i(a) \right) + \mathbf{u}_i(a) \left(\mathbf{u}_i(d) - \mathbf{u}_i(b) \right) \right|$$

$$\leq n \sum_{i < L} |\mathbf{u}_i(b)| \left| \mathbf{u}_i(a) - \mathbf{u}_i(c) \right| + |\mathbf{u}_i(c)| \left| \mathbf{u}_i(b) - \mathbf{u}_i(d) \right|$$

$$\leq Ln \cdot 4 \cdot \sqrt{\frac{L}{\varepsilon n}} \cdot \frac{\varepsilon}{L} \sqrt{\frac{\varepsilon}{Ln}}$$

$$= 4\varepsilon.$$

Ahora bien, como d_{ij} es el promedio de S sobre $V_i \times V_j$, tenemos que $s_{ab} \leq d_{ij} \leq s_{cd}$, y por ende, $|s_{xy} - d_{ij}| \leq s_{cd} - s_{ab}$ para cada $(u, v) \in V_i \times V_j$. Como resultado,

$$|v_X^T S v_Y - d_{ij}|V_i||V_j|| \le \sum_{(x,y)\in X\times Y} |s_{xy} - d_{ij}| \le (s_{cd} - s_{ab})|X||Y| \le 4\varepsilon |X||Y|.$$
 (45)

Utilizando las desigualdades (43), (44) y (45) en la expresión enunciada en (42) se concluye la demostración del teorema.

4.3. Aplicaciones

735

737 4.3.1. Eliminación de triángulos

738 4.3.2. Emparejamiento inducido

⁷³⁹ 4.3.3. Teorema de Roth

40 4.4. Enunciado y demostración

Por otro lado, con el espíritu del Teorema 17, es posible expresar un resultado análogo a la propiedad $\mathrm{COUNT}_p(\varepsilon)$ utilizando el concepto de par ε -regular. Dicho resultado, para $H=K_3$ es conocido como el lema de conteo de triángulos.

Lema 37. (Lema de conteo de triángulos) Sea $\varepsilon > 0$, G = (V, E) un grafo, y los conjuntos no necesariamente disjuntos $X, Y, Z \subset V$ tales que los pares (X, Y), (Y, Z) y (X, Z) son ε -regular. Entonces,

$$|\{(x,y,z)\in X\times Y\times Z: xy, xz, yz\in E\}|=d(X,Y)d(X,Z)d(Y,Z)|X||Y||Z|\pm 3\varepsilon |X||Y||Z|.$$

Demostración. Se realizará un proceso inductivo similar al visto en la demostración de la Proposición 20 sobre la cantidad de aristas del grafo $K_3 = ([3], \{12, 23, 13\})$. Cuando el grafo no posee aristas, entonces

$$|\{(x,y,z)\in X\times Y\times Z: xy, xz, yz\not\in E\}|=|X||Y||Z|.$$

También, recordando que la condición de un par ε -regular es equivalente a BI – DISC $_p(\varepsilon)$ para algún $p \in (0, 1)$, cuando el grafo presenta una arista,

$$|\{(x,y,z) \in X \times Y \times Z : xy \in E\}| = (d(X,Y)|X||Y| \pm \varepsilon |X||Y|) |Z|.$$

Ahora, se plantea la hipótesis inductiva de la siguiente manera:

750

753

754

755

759

761

$$|\{(x, y, z) \in X, Y, Z : xy, yz \in E\}| = d(X, Y)d(Y, Z)|X||Y||Z| \pm 2\varepsilon |X||Y||Z|.$$

Defina $e^- = \varphi(1)\varphi(3)$, y T^- como el grafo correspondido a una copia etiquetada del grafo ([3], {12, 23}) en G bajo la apliación inyectiva $\varphi: [3] \to V(T^-) \subset V$. Con esto, se desarrolla inductivamente como sigue:

$$|\{(x,y,z) \in X \times Y \times Z : xy, yz, xz \in E\}| = \sum_{T^{-}} \left[\mathbb{1}_{E}(e^{-}) + d(X,Z) - d(X,Z) \right]$$

$$= d(X,Y)d(Y,Z)d(X,Z)|X||Y||Z|$$

$$+ \sum_{T^{-}} \left(\mathbb{1}_{E}(e^{-}) - d(X,Z) \right) \pm 2\varepsilon |X||Y||Z|. \tag{46}$$

En este punto, nos falta probar que el segundo sumando de la igualdad (46) se corresponde con un factor de error, para esto, sea T^* una copia del grafo singleton $\{2\}$ en G, y considere los siguientes conjuntos:

$$A_1^{T^*} = \{x \in X : T^* \text{ con } x \text{ forma una copia de } (\{1,2\},\{12\}) \text{ en } G\}.$$

$$A_3^{T^*} = \{z \in Z : T^* \text{ con } z \text{ forma una copia de } (\{2,3\},\{23\}) \text{ en } G\}.$$

De esta manera, dada la equivalencia de la condición del par (X, Z) ε -regular con versión bipartita de la propiedad $\mathrm{DISC}_{d(X,Z)}(\varepsilon)$ vista en (28), se consigue la siguiente desigualdad:

$$\left| \sum_{T^{-}} \left(\mathbb{1}_{E}(e^{-}) \right) - d(X, Z) \right| \leq \sum_{T^{+}} \left| \sum_{f \in A_{1}^{T^{*}} \times A_{3}^{T^{*}}} \left(\mathbb{1}_{E}(f) - d(X, Z) \right) \right|$$

$$= \sum_{T^{+}} \left| e(A_{1}^{T^{*}}, A_{3}^{T^{*}}) - d(X, Z) |A_{1}^{T^{*}}| |A_{3}^{T^{*}}| \right|$$

$$\leq \sum_{T^{*}} \varepsilon |X| |Z|$$

$$\leq \varepsilon |X| |Y| |Z|.$$

Finalmente, aplicando la última desigualdad en la ecuación (46) se prueba lo prometido.

En la demostración anterior solo fue necesario utilizar que los pares (X, Y) y (X, Z) son ε regular, por lo que es interesante destacar que uno de los pares de conjuntos de vértices podría no
ser necesariamente un par ε -regular para el que lema de conteo de triángulos funcione correctamente.

Bajo el mismo planteamiento de la inducción vista en la demostración del Lema 37 (y Proposición 20), es posible generalizar el resultado para contar apropiadamente cualquier grafo H. Se enuncia sin demostración.

Lema 38. (Lema de conteo de grafos) Sea $\varepsilon > 0$, H un grafo sobre k vértices, y G un grafo de n vértices con los subconjuntos disjuntos $V_1, ..., V_k \subset V(G)$ tales que los pares (V_i, V_j) son ε regular siempre que $ij \in E(H)$. Entonces, la cantidad de tuplas $(v_1, ..., v_k) \in V_1 \times \cdots \times V_k$ tales que $v_i v_j \in E(G)$ cada vez que $ij \in E(H)$ es

$$\left(\prod_{ij\in E(H)}d(V_i,V_j)\right)\left(\prod_{\ell=1}^k|V_\ell|\right)\pm e_H\cdot\varepsilon\prod_{\ell=1}^k|V_\ell|.$$

4.5. Aplicaciones

Usualmente las aplicaciones del lema de regularidad de Szemerédi son desarrolladas en base a los siguientes pasos:

- 1. Obtener una partición del conjunto de vértices del grafo con el lema de regularidad.
- 2. **Limpiar** el grafo eliminando aristas con mal comportamiento según el problema. Generalmente, se eliminan las aristas entre los pares de partes que presentan:

i) Irregularidad.

785

786

787

788

789

790

791

805

806

807

- ii) Baja densidad.
 - iii) Al menos una de las partes es demasiada pequeña.
 - 3. Contar un determinado patrón en el grafo limpio utilizando algún lema de conteo.

Teniendo esta fórmula en mente, damos paso a la primera aplicación del lema de regularidad, cual plantea intuitivamente que todo grafo con *pocos* triángulos puede convertirse en un grafo libre de triángulos eliminando *pocas* aristas. Formalmente,

Teorema 39. (Lema de eliminación de triángulos) Para todo $\varepsilon > 0$, existe $\delta > 0$ y $n_0 \in \mathbb{N}$ tal que todo grafo sobre $n \geq n_0$ vértices con a lo más δn^3 triángulos se puede hacer libre de triángulos eliminando a lo más εn^2 aristas.

Demostración. Dado $\varepsilon > 0$, elija $\varepsilon_r = \frac{1}{4} \left(\frac{\varepsilon}{3}\right)^3$ y utilice el Teorema ?? para obtener la constante $M = M(\varepsilon_r)$. Considere además $\delta = \frac{1}{2} \frac{\varepsilon_r^4}{M^3}$ y $n_0 \in \mathbb{N}$ suficientemente grande, de manera tal que el grafo G = (V, E) con $n \geq n_0$ vértices posee a lo más εn^3 triángulos. Luego, nuevamente por el Teorema ??, se asegura la existencia de una partición ε_r -regular $\mathcal{P} = \{V_1, ..., V_M\}$.

Para limpiar el grafo, para cada $(i,j) \in [M]^2$, se eliminan todas las aristas entre V_i y V_j cuando

- (a) (V_i, V_j) no es un par ε_r -regular,
- (b) $d(V_i, V_j) < (4\varepsilon_r)^{1/3}$, o
- (c) $\min\{|V_i||V_j|\} < \frac{n}{M}\varepsilon_r$.

De esta manera, como la partición es ε_r -regular, las aristas removidas por la condición (a) son a lo más

$$\sum_{\substack{(i,j)\in[M]^2\\ (V_i,V_j) \text{ no } \varepsilon_r\text{-regular}}} |V_i||V_j| \leq \varepsilon_r n^2.$$

Las aristas eliminadas en los conjuntos de baja densidad por la condición (b) son a lo más

$$\sum_{\substack{(i,j)\in[M]^2\\d(V_i,V_j)<(4\varepsilon_r)^{1/3}}} d(V_i,V_j)|V_i||V_j|<(4\varepsilon_r)^{1/3}\sum_{\substack{(i,j)\in[M]^2}} |V_i||V_j|=(4\varepsilon_r)^{1/3}n^2.$$

Por último, debido a que cada vértice de G puede ser adyacente con a lo más $\frac{n}{M}\varepsilon_r$ vértices en a lo más M subconjuntos demasiado pequeños, las aristas removidas por (c) son a lo más

$$M \cdot \frac{n}{M} \varepsilon_r \cdot n = \varepsilon_r n^2.$$

En total, en la limpieza, se eliminan a lo más εn^2 aristas.

810

811

812

813

814

817

818

819

821

823

824

825

833

834

Ahora, nos falta probar que el grafo limpio G' = (V, E') es libre de triángulos. Para esto, observe que la condición de eliminación de aristas (a) nos asegura que cada par (V_i, V_j) es ε_r -regular, y que se satisface la hipótesis del lema de conteo de grafos. Entonces, si luego de la limpieza del grafo aún existe un triángulo $(x, y, z) \in V_i \times V_j \times V_\ell$, el Lema 37 nos dice que incluso hay más triángulos. En particular, gracias a la eliminación de las aristas por la condición (b) y (c),

$$\begin{aligned} |\{(x,y,z) \in V_i \times V_j \times V_\ell : xy, yz, xz \in E'\}| &\geq d(V_i,V_j)d(V_i,V_\ell)d(V_j,V_\ell)|V_i||V_j||V_\ell| - 3\varepsilon_r |V_i||V_j||V_\ell| \\ &\geq \varepsilon_r |V_i||V_j||V_\ell| \\ &\geq \frac{\varepsilon^4 n^3}{M^3} \\ &> \delta n^3. \end{aligned}$$

Finalmente, con nuestra elección de δ , el resultado se prueba formulando la siguiente contradicción: si existe un triángulo en el grafo limpio G', el lema de conteo de triángulos nos dice que en realidad existen más de δn^3 triángulos. No obstante, el grafo original posee a lo más δn^3 triángulos, por lo que se concluye que el grafo G' obtenido desde G es libre de triángulos removiendo a lo más εn^2 aristas.

Denotaremos por k-PA a una prograsión aritmética de k elementos. En particular, diremos que un conjunto de números naturales A es libre de 3-PA si no existen los elementos $x, x+y, x+2y \in A$, con $y \neq 0$. Cuando y = 0, diremos que la 3-PA es trivial.

Teorema 40. (Teorema de Roth) Para todo $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que si el conjunto $A \subset [n]$ posee $|A| \geq \varepsilon n$ elementos, entonces A contiene una 3-PA no trivial cada vez que $n \geq n_0$.

Demostración. Sea $\varepsilon > 0$ y el conjunto $A \subset [n]$ con $|A| \geq \varepsilon n$ elementos. La idea es construir un grafo 3-partito de manera conveniente para posteriormente utilizar el lema de eliminación de triángulos. Considere el grafo 3-partito G = (V, E) con partición de vértices $V = V_1 \cup V_2 \cup V_3$, en donde $V_1 = [n], V_2 = [2n]$ y $V_3 = [3n]$, y son disjuntos entre cada par de ellos. Así, G tiene 6n vértices, y se definen las aristas de la siguiente manera:

- 1. Existe una arista desde $i \in V_1$ hasta $j \in V_2$ si y solamente si $j i \in A$.
- 2. Existe una arista desde $j \in V_2$ hasta $k \in V_3$ si y solamente si $k j \in A$.
- 3. Existe una arista desde $i \in V_1$ hasta $k \in V_3$ si y solamente si $\frac{k-i}{2} \in A$.

Luego, la tupla $(i,j,k) \in V_1 \times V_2 \times V_3$ define un triángulo en G si y solamente si $j-i \in A$, $k-j \in A$ y $\frac{k-i}{2} \in A$, o bien, $\left\{j-i,\frac{k-i}{2},k-j\right\}$ es una 3-PA en A con diferencia $\frac{k-2j+i}{2}$. En específico, diremos que un triángulo $(i,j,k) \in V_1 \times V_2 \times V_3$ es trivial en G si para algún $a \in A$ se satisface que $j-i=\frac{k-i}{2}=k-j=a$.

Ahora, observando que cada triángulo trivial se puede identificar con el par $(i,a) \in V_1 \times A$, la cantidad de triángulos triviales es exactamente $n|A| \geq \varepsilon n^2$. Además, por construcción, no existen triángulos triviales que compartan una arista, por lo que no se puede eliminar dos triángulos triviales removiendo solo una arista. En consecuencia, debemos eliminar al menos $\varepsilon n^2 = \frac{\varepsilon}{36}(6n)^2$ aristas para hacer de G libre de triángulos.

Utilizando el lema eliminación de triángulos eligiendo $\varepsilon_0 = \frac{\varepsilon}{36}$, existen $\delta_0 > 0$ y $n_0' \in \mathbb{N}$ tal que el grafo G con $6n \ge n_0'$ vértices y a lo más $\delta_0(6n)^3$ triángulos, se convierte en libre de triángulos eliminando a lo más $\varepsilon_0(6n)^2$ aristas. Entonces, estableciendo $\delta = 216\delta_0$, note que existen como máximo $\delta n^3 - \varepsilon n^2$ triángulos no triviales. Sabiendo esto, aseguramos la existencia de un triángulo no trivial cuando $n > \frac{\varepsilon+1}{\delta}$. En efecto,

$$n > \frac{\varepsilon + 1}{\delta} \implies \delta n - \varepsilon > 1 \implies n^2(\delta n - \varepsilon) > 1.$$

Finalmente, el resultado queda demostrado tomando $n_0 > \max\left\{\frac{n'_0}{6}, \frac{\varepsilon+1}{\delta}\right\}$ suficientemente grande.

Definición 41. Dado un grafo G = (V, E), un un conjunto $M \subseteq E$ es un **emparejamiento** en G si no existen un par de aristas en M que compartan algún vértice. Diremos que M es un **emparejamiento inducido** si es un emparejamiento y toda arista de G con un vértice en V(M) es una arista en M.

* Usar k o M para la cantidad de partes?, aquí se me confunde con el emparejamiento, pero en TRL y demo espectral de regularidad usé M como las partes. De momento en esta parte lo dejaré con k. *

Teorema 42. (Emparejamiento inducido) Para todo $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que todo grafo G = (V, E) de $n \ge n_0$ vértices que está compuesto por la unión de n emparejamientos inducidos, posee a lo más εn^2 aristas.

Demostración. Dado $\varepsilon > 0$, aplique el Teorema ?? con $\varepsilon_r = \frac{\varepsilon}{10}$ para obtener la constante $M(\varepsilon_r)$. Considere $n_0 \in \mathbb{N}$ suficientemente grande, y asuma que el grafo G = (V, E) con $n \geq n_0$ vértices y compueston por n emparejamientos inducidos satisface $e_G > \varepsilon n$. Nuevamente, por el Teorema ??, se asegura la existencia de la partición $\mathcal{P} = \{V_1, ..., V_k\}$ con $k \leq M(\varepsilon)$ partes que es ε_r -regular.

Para cada $(i, j) \in [k]^2$ se eliminan todas las aristas entre los conjuntos V_i y V_j cuando éstos presenten irregularidad, densidad menor que $2\varepsilon_r$, o al menos uno de los conjuntos es menor que $\frac{n}{k}\varepsilon_r$. En total, el proceso de limpieza remueve a lo más $4\varepsilon_r n^2$ aristas de G para obtener un nuevo grafo G'. En consecuencia,

$$e'_G \ge e_G - 4\varepsilon_r n^2 > \varepsilon n^2 - \frac{4}{10}\varepsilon n^2 > \frac{\varepsilon}{2}n^2.$$

Ahora, observe que debe existir un emparejamiento inducido M en G' con al menos $\frac{\varepsilon}{2}n$ aristas (y al menos εn vértices). De no ser así, todos los emparejamientos tendrán a lo más $\frac{\varepsilon}{2}n$ aristas, por lo que $e'_G < \frac{\varepsilon}{2}n^2$.

Se define $U_i := V_i \cap V(M)$ como el subconjunto de vértices de M que comparte elementos con V_i , y $U := \bigcup_{i \in [k]} \{U_i : |U_i| \ge \varepsilon_r |V_i|\}$. Es decir, U es la unión de todos los conjuntos $U_i \subset V(M)$ que

comparten una fracción suficientemente grande de vértices con V_i . Note que podemos obtener el conjunto U removiendo a lo más $\varepsilon_r n = \frac{\varepsilon}{10} n$ vértices de V(M), pues

$$\sum_{i \in [k]} |U_i| < \sum_{i \in [k]} \varepsilon_r |V_i| = \frac{\varepsilon}{10} n.$$

De esta manera, recordando que $|V(M)| \geq \varepsilon n$, se determina que $|U| > \varepsilon n - \frac{\varepsilon}{10}n = \frac{9}{10}\varepsilon n$. Además, como también $|M| \geq \frac{\varepsilon}{2}n$, debe existir al menos un vértice en U que sea parte de una arista en M. Luego, dada la limpieza de G, dicha arista debe pertenecer a algún par $U_t \times U_\ell$ que satisfacen $|U_k| \geq \varepsilon_r |V_k|$ y $|U_\ell| \geq \varepsilon_r |V_\ell|$, y son tales que su correspondiente par (V_t, V_ℓ) es ε_r -regular con densidad $d(V_t, V_\ell) \geq 2\varepsilon_r$. Entonces, por regularidad,

$$d(U_t, U_\ell) = d(V_t, V_\ell) \pm \varepsilon_r \ge 2\varepsilon_r - \varepsilon_r = \varepsilon_r. \tag{47}$$

Ahora, como que M es un emparejamiento inducido, todo par de subconjuntos $A,B\subset V(M)$ debe satisfacer

$$e(A, B) \le \min\{|A|, |B|\}.$$

Sin embargo, la desigualdad (47) implica que

$$e(U_t, U_\ell) = d(U_t, U_\ell)|U_t||U_\ell|$$

$$\geq |U_t||U_\ell|\varepsilon_r$$

$$\geq |U_t||V_\ell|\varepsilon_r^2$$

$$\geq |U_t|\frac{n}{k}\varepsilon_r^3$$

$$> |U_t|.$$

La designaldad anterior nos dice que existe una arista entre U_k y U_ℓ que no pertenece a M, por lo que se contradice la hipótesis de que M es un emparejamiento inducido.

 * Comentar que el siguiente teorema será utilizado para demostrar alternativamente el Teorema de Roth. *

Teorema 43. (Ajtai-Szemerédi) Para todo $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que siempre que $n \ge n_0$, todo subconjunto $S \subset [n]^2$ con $|S| \ge \varepsilon n^2$ posee elementos de la forma $\{(a,b), (a+d,b), (a,b+d)\}$ para algún $a,b,d \in \mathbb{N}$, con $d \ne 0$.

Demostración. Sea $\varepsilon > 0$, $n_0 \in \mathbb{N}$ suficientemente grande tal que $n \ge n_0$, y $S \subset [n]^2$ un subconjunto con al menos εn^2 elementos. Vamos a construir un grafo bipartito $G = (U \cup W, E)$ con conjunto de vértices $U = \{u_1, ..., u_n\}$ y $W = \{w_1, ..., w_n\}$ definiendo las aristas de la siguiente manera:

$$u_i w_j \in E \iff (i, j) \in S.$$

Interpretando a $[n]^2$ como una grilla bidimensional, se puede definir una relación entre pares de aristas en G en función de la distancia que abarca la suma de las coordenadas de sus respectivos pares en S. Esto es,

$$u_i w_j \sim u_k w_\ell \iff i + j = k + \ell = q.$$

* Dibujito con 2 ejemplos de q. * Observe que para cada $2 \le q \le 2n$ se define un emparejamiento en G debido a que no existen aristas que compartan un vértice, por lo que las clases de equivalencia (cada una asociada a algún q) de la relación forman una partición de emparejamientos de E. En efecto, suponga que las aristas que pertenecen a la misma clase u_iw_j y u_kw_j comparten el vértice w_j . Entonces, como i+j=k+j, se determina que $u_i=u_k$ y se concluye que u_iw_j y u_kw_j son la misma arista.

Luego, como $e_G = |S| \ge \varepsilon n^2$, el Teorema 42 asegura que existe al menos un emparejamiento no inducido. Esto significa que en un emparejamiento que contiene las aristas con la relación $u_i w_j \sim u_k w_\ell$ puede existir el trío de aristas $u_i w_j$, $u_k w_\ell$ y $u_i w_\ell$. Así, para algún $d \in \mathbb{N}$, (i, j), (k, ℓ) y (i, ℓ) elementos de S que satisfacen

$$k - i = j - \ell = d.$$

Finalmente, el resultado se consigue tomando $(i, \ell) = (a, b)$ para obtener j = b + d y k = a + d.

* Poner dibujito de la esquina *

 * Comentar que el Teorema de la esquina nos entrega otro camino para demostrar el Teorema de Roth. *

Segunda demostración Teorema 40. Dado $\varepsilon > 0$, escogemos $n_0 \in \mathbb{N}$ suficientemente grande. Para $n \geq n_0$, sea $A \subset [n]$ un conjunto que posee al menos εn elementos. Se define el siguiente conjunto:

$$B = \{(x, y) \in [2n]^2 : x - y \in A\},\$$

Observe que cada $a \in A$ da lugar a exactamente n elementos en B con x-y=a, permitiendo determinar que $|B|=n|A| \geq \varepsilon n^2$. Luego, el Teorema 43 asegura la existencia de elementos de la forma $\{(a,b),(a,b+d),(a+d,b)\}$ en B. Por consecuencia, se encuentra una 3-PA no trivial en A tomando x=a-b, e y=d.

5. Bibliografía

- [1] Krivelevich, M., Sudakov, B. (2006). Pseudo-random Graphs. In Bolyai Society Mathematical Studies (pp. 199–262). Springer Berlin Heidelberg.
- [2] Chung, F. R. K., Graham, R. L., Wilson, R. M. (1989). Quasi-random graphs. Combinatorica. An International Journal on Combinatorics and the Theory of Computing.
- [3] Chan, T. F. N., Král', D., Noel, J. A., Pehova, Y., Sharifzadeh, M., Volec, J. (2020). Characterization of quasirandom permutations by a pattern sum. Random Structures Algorithms.
- 935 [4] Hàn, H., Kiwi, M., Pavez-Signé, M. (2021). Quasi-random words and limits of word sequences. Journal Europeen de Combinatoire [European Journal of Combinatorics].