Homework

B.8 [5/5/5] < B.3 > We want to observe the following calculation

$$d_i = a_i + b_i * c_i, i : (0:511)$$

Arrays *a*, *b*, *c*, and *d* memory layout is displayed below (each has 512 4-byte-wide integer elements).

The above calculation employs a for loop that runs through 512 iterations. Assume a 32 Kbyte 4-way set associative cache with a single cycle access time. The miss penalty is 100 CPU cycles/access, and so is the cost of a write-back. The cache is a write-back on hits write-allocate on misses cache (Figure B.32).

- a. [5] < B3 > How many cycles will an iteration take if all three loads and single store miss in the data cache?
- b. [5] < B3 > If the cache line size is 16 bytes, what is the average number of cycles an average iteration will take? (Hint: Spatial locality!)
- c. [5] < B3 > If the cache line size is 64 bytes, what is the average number of cycles an average iteration will take?
- d. If the cache is direct-mapped and its size is reduced to 2048 bytes, what is the average number of cycles an average iteration will take?

Mem. address in bytes	Contents
0–2047	Array a
2048–4095	Array b
4096–6143	Array c
6144–8191	Array d

Figure B.32 Arrays layout in memory.