Corso di Basi di dati

2020/2021

http://ivu.di.uniba.it/people/buono.htm

2

numeri e lettere (57/108 risposte) Numeri e lettere numeri + lettere numeri + lettere numeri + lettere Description of the state of

statistiche

- Tempo medio numeri (1-21): 10,22"
- Tempo medio lettere (a-z): 7,9"
- Somma media (numeri + lettere): 18,1"
- Media (numeri-lettere): 28,6"
- Switch overhead medio: 10,5"

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

194

Linguaggi per basi di dati

- · operazioni sullo schema
 - DDL: data definition language
- operazioni sui dati
 - DML: data manipulation language
 - interrogazione ("query")
 - aggiornamento

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

196

Linguaggi di interrogazione per basi di dati relazionali

- Dichiarativi
 - specificano le proprietà del risultato ("che cosa")
- Procedurali
 - specificano le modalità di generazione del risultato ("come")

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Linguaggi di interrogazione

- Algebra relazionale: procedurale
- Calcolo relazionale: dichiarativo (teorico)
- SQL (Structured Query Language): parzialmente dichiarativo (reale)
- QBE (Query by Example): dichiarativo (reale)

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

198

Algebra relazionale

- Insieme di operatori (espressione)
 - su relazioni
 - · che producono relazioni
 - e possono essere composti

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Operatori dell'algebra relazionale

- · unione, intersezione, differenza
- · ridenominazione, selezione, proiezione
- join (join naturale, prodotto cartesiano, thetajoin)

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

200

Operatori insiemistici

- · le relazioni sono insiemi
- · i risultati debbono essere relazioni
- è possibile applicare unione, intersezione, differenza solo a relazioni definite sugli stessi attributi
- $r \cap s = r (r s)$

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

		Uı	nion	е		
Laureati			Qı	uadri		
Matricola	Nome	Età	M	atricola	Nome	Età
7274	Rossi	42		9297	Neri	33
7432	Neri	54		7432	Neri	54
9824	Verdi	45		9824	Verdi	45
	Laure	ati U	Quadri			
	Matri	cola	Nome	Età		
	727	74	Rossi	42		
	743	32	Neri	54		
	982	24	Verdi	45		
	929	97	Neri	33		
	Basi di Dati + I	aboratori	o - Informatio	a Triennale - C	Corso A	

Ridenominazione

- operatore monadico (con un argomento)
- "modifica lo schema" lasciando inalterata l'istanza dell'operando
- $\rho_{B_1B_2...B_k\leftarrow A_1A_2...A_k}$ (r) $\forall t \in r \exists t' t.c.$
- $\forall i = 1, ..., k \quad t'[B_i] = t[A_i]$

 ${}^{\bullet}\rho \\ B_1B_2...B_k \quad \leftarrow \quad A_1A_2...A_k$

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

206

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

P_{Genitore} ← Padre (Paternità)

GenitoreFiglioAdamoAbeleAdamoCainoAbramoIsacco

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Impiegati	Cognome	Ufficio	Stipendio
. 5	Rossi	Roma	55
	Neri	Milano	64
Operai	Cognome	: Fabbrica	Salario
	Bruni	Monza	45
	Verdi	Latina	55
ρ Sede, Retrib		()	。(Impiega 。(Operai)
	Cognome	Sede R	etribuzione
	Rossi	Roma	55
	Neri	Milano	64
	Bruni	Monza	45
	Verdi	Latina	55
	verui	Latina	00
	di Dati + Laborator		

Selezione

- operatore monadico
- produce un risultato che
 - ha lo stesso schema dell'operando
 - contiene un sottoinsieme delle ennuple dell'operando
 - quelle che soddisfano una condizione

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Neri	Napoli	64

- · impiegati che
 - guadagnano più di 50
 - guadagnano più di 50 e lavorano a Milano
 - hanno lo stesso nome della filiale presso cui lavorano

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

212

Selezione, sintassi e semantica

sintassi

σ_{Condizione} (Operando)

- Condizione: espressione booleana (come quelle dei vincoli di ennupla)
- semantica
 - il risultato contiene le ennuple dell'operando che soddisfano la condizione

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

• impiegati che guadagnano più di 50

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
5698	Neri	Napoli	64

σ_{Stipendio > 50} (Impiegati)

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

214

 impiegati che guadagnano più di 50 e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64

σ_{Stipendio} > 50 AND Filiale = 'Milano' (Impiegati)

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

impiegati che hanno lo stesso nome della filiale presso cui lavorano

Impiegati

Matricola	Cognome	Filiale	Stipendio
9553	Milano	Milano	44

σ_{Cognome = Filiale}(Impiegati)

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

216

Selezione e proiezione

- operatori "ortogonali"
- selezione:
 - decomposizione orizzontale
- proiezione:
 - decomposizione verticale

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Proiezione

- operatore monadico
- produce un risultato che
 - ha parte degli attributi dell'operando
 - contiene tutte le ennuple dell'operando

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

- per tutti gli impiegati:
 - matricola e cognome
 - · cognome e filiale

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

220

Proiezione, sintassi e semantica

sintassi

$\pi_{\text{ListaAttributi}}$ (Operando)

- semantica
 - il risultato contiene le ennuple ottenute da tutte le ennuple dell'operando ristrette agli attributi nella lista

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

• matricola e cognome di tutti gli impiegati

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5698	Rossi

 $\Pi_{\text{Matricola, Cognome}} \text{ (Impiegati)}$

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

222

• cognome e filiale di tutti gli impiegati

Cognome	Filiale
Neri	Napoli
Neri	Milano
Rossi	Roma

 $\Pi_{\text{Cognome, Filiale}} \text{ (Impiegati)}$

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Proprietà selezione

- Cardinalità
 - $|\sigma_{C}(R)| \leq |(R)|$
- Grado
 - grado($\sigma_{c}(R)$) = grado(R)
- Proprietà commutativa
 - $\sigma_{C1}(\sigma_{C2}(R)) = \sigma_{C2}(\sigma_{C1}(R))$
- Idempotenza
 - $\sigma_{C1}(\sigma_{C2}(R)) = \sigma_{C1 \land C2}(R)$

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

224

Cardinalità della proiezione

- una proiezione contiene al più tante ennuple quante l'operando
 - può contenerne di meno
- se X è una superchiave di R, allora $\pi_X(R)$ contiene esattamente tante ennuple quante R
- $\pi_X(\pi_Y(R)) = \pi_X(R)$
 - se $X \subseteq Y$

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

σ & π

- Combinando selezione e proiezione, si possiamo estrarre interessanti informazioni da una relazione
- Es.: matricola e cognome degli impiegati che guadagnano più di 50

Matricola	Cognome
7309	Rossi
5998	Neri
5698	Neri

PROJ_{Matricola,Cognome} (SEL_{Stipendio > 50} (Impiegati))

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

226

- Combinando selezione e proiezione, possiamo estrarre informazioni da una relazione
- spesso si vuole correlare informazioni presenti in relazioni diverse

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Join

- operatore più interessante dell'algebra relazionale
- permette di correlare dati in relazioni diverse

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

228

Prove scritte in un concorso pubblico

- I compiti sono anonimi e ad ognuno è associata una busta chiusa con il nome del candidato
- Ciascun compito e la relativa busta vengono contrassegnati con uno stesso numero

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

1	25	1	Mario Rossi
2	13	2	Nicola Russo
3	27	3	Mario Bianchi
4	28	4	Remo Neri
		Rossi a Russ	
	Mario	Bianc	hi 27
	Remo	Neri	28

Numer	o Voto	Numero	Candidato
1	25	1	Mario Rossi
2	13	2	Nicola Russo
3	27	3	Mario Bianchi
4	28	4	Remo Neri

Numero	Candidato	Voto
1	Mario Rossi	25
2	Nicola Russo	13
3	Mario Bianchi	27
4	Remo Neri	28

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Join naturale

- operatore binario (generalizzabile)
- produce un risultato
 - sull'unione degli attributi degli operandi
 - con ennuple costruite ciascuna a partire da una ennupla di ognuno degli operandi

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

232

Join, sintassi e semantica

- R₁(X₁), R₂(X₂)
- R₁ JOIN R₂ è una relazione su X₁X₂

```
 \{ t \text{ su } X_1X_2 \mid esistono \ t_1 \in R_1e \ t_2 \in R_2 \\ con \ t[X_1] = t_1 \ e \ t[X_2] = t_2 \}
```

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Reparto	Capo
Α	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	Α	Mori
Neri	В	Bruni
Bianchi	В	Bruni

- ogni ennupla contribuisce al risultato:
 - join completo

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

234

Un join non completo

ImpiegatoRepartoRossiANeriBBianchiB

Reparto Capo
B Mori
C Bruni

ImpiegatoRepartoCapoNeriBMoriBianchiBMori

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Risultato Impiegati JOIN Capi=?

impiegati		
Impiegato	Reparto	
Rossi	Α	
Neri	В	

Oup.	
Sede	Capo
В	Mori
В	Bruni

Capi

Impiegato	Reparto	Sede	Саро
Rossi	Α	В	Mori
Neri	В	В	Bruni
Rossi	Α	В	Bruni
Neri	В	В	Mori

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

238

Join, sintassi e semantica

- R₁(X₁), R₂(X₂)
- R₁ JOIN R₂ è una relazione su X₁X₂

 $\{ t \text{ su } X_1X_2 \mid esistono \ t_1 \in R_1e \ t_2 \in R_2 \\ con \ t[X_1] = t_1 \ e \ t[X_2] = t_2 \}$

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

Cardinalità del join

- Il join di R₁ e R₂ contiene un numero di ennuple compreso fra zero e il prodotto di |R₁| e |R₂|
- se il join coinvolge una chiave di R₂, allora il numero di ennuple è compreso fra zero e |R₁|
- se il join coinvolge una chiave di R₂ e un vincolo di integrità referenziale, allora il numero di ennuple è pari a |R₁|

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

240

Cardinalità del join, 2

- R₁(A,B), R₂(B,C)
- in generale

$$0 \ \leq \ |R_1 \text{ join } R_2| \ \leq \ |R_1| \times |R_2|$$

se B è chiave in R2

$$0 \ \leq \ |R_1 \text{ join } R_2| \ \leq \ |R_1|$$

 se B è chiave in R₂ ed esiste vincolo di integrità referenziale fra B (in R₁) e R₂:

$$|R_1 \text{ JOIN } R_2| = |R_1|$$

Basi di Dati + Laboratorio - Informatica Triennale - Corso A