Performance, Portability, and Productivity for Data-Parallel Applications on Multi- and Many-Core Architectures

Ari Rasch, Richard Schulze, and Sergei Gorlatch

Generation

Let T and T' be two arbitrary types. A function $h: T[N_1] \dots [N_d] \to T'$ on d-dimensional arrays is called a Multi-Dimensional Homomorphism (MDH) iff there exist combine $operators <math>\circledast_1, \dots, \circledast_d: T' \times T' \to T'$, such that for each $k \in [1, d]$ and arbitrary, concatenated input MDA $a \leftrightarrow_k b$:

$$h(a ++_k b) = h(a) \otimes_k h(b)$$

MDHs can be represented uniformly via our md_hom parallel pattern:

$$\operatorname{md_hom}(f, (\circledast_1, \dots, \circledast_d))(a[N_1] \dots [N_d]) = \underset{i_1 \in [1, N_1]}{\circledast_1} \dots \underset{i_d \in [1, N_d]}{\circledast_d} f(a[i_1] \dots [i_d])$$

Important applications are MDHs:

Linear Algebra (BLAS)

Data Mining

PRL = md_hom(weight, (++, max)) o view(...)

Machine Learning

 $TC = md_hom(*, (++,...,++ , +,...,+)) o view(...)$

Stencil Computations

Gaussian_2D = $md_hom(G_func, (++,++)) o view(...)$ Jacobi_3D = $md_hom(J_func, (++,++, ++)) o view(...)$

Generating OpenCL Code

 $\mathtt{md}\mathtt{hom}(f,(\circledast_1,\ldots,\circledast_k))$ (auto-tunable)

// p

Optimization

Our Auto-Tuning Framework (ATF) is a general-purpose approach that supports auto-tuning of programs written in arbitrary programming languages and that may have interdependent tuning parameters.

#atf::tp name /* name */:
 range /* range */:
 constraint /* constraint */:

We extend the traditional definition of *tuning* parameters by a parameter's constraint.

ATF efficiently generates, stores, and explores the spaces of interdependent tuning parameters

2.75x faster than TVIVI

We provide a novel

chain-of-trees search space structure

for interdependent tuning parameters.

1.37x faster than newest Intel MKL/NVIDIA cuBLAS

Our MDH approach shows often significantly better performance as compared to the currently best-performing performance-portable and hand-optimized approaches.

39x faster than EKR

2x faster than COGENT & Tensor Comprehensions