PLSC 502 – Fall 2016 Linear Regression II

November 15, 2016

Setup

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Estimators:

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

and

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$
$$= \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})Y_{i}}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

$$u_i \sim \text{i.i.d. } N(0, \sigma^2)$$

meaning:

$$Var(Y|X,\beta) = \sigma^2$$

so:

$$\operatorname{Var}(\hat{\beta}_{1}) = \operatorname{Var}\left[\frac{\sum_{i=1}^{N}(X_{i}-\bar{X})Y_{i}}{\sum_{i=1}^{N}(X_{i}-\bar{X})^{2}}\right]$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\operatorname{Var}(Y)$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\sigma^{2}$$

$$= \frac{\sigma^{2}}{\sum(X_{i}-\bar{X})^{2}}.$$

$Var(\hat{eta}_0)$ and $Cov(\hat{eta}_0,\hat{eta}_1)$

Similarly:

$$Var(\hat{\beta}_0) = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2$$

and:

$$\mathsf{Cov}(\hat{eta}_0,\hat{eta}_1) = rac{-ar{X}}{\sum (X_i - ar{X})^2} \sigma^2$$

Important Things

- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto \sigma^2$
- $\mathsf{Var}(\hat{eta}_0)$ and $\mathsf{Var}(\hat{eta}_1) \propto -\sum (X_i \bar{X})$
- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto -N$
- $\operatorname{sign}[\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1)] = \operatorname{sign}(\bar{X})$

The Gauss-Markov Theorem

"Given the assumptions of the classical linear regression model, the least squares estimators are the minimum variance estimators among the class of unbiased linear estimators. (They are BLUE)."

Gauss-Markov, continued

Imagine:

$$\hat{\beta}_{1} = \frac{\sum (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum (X_{i} - \bar{X})^{2}}$$

Rewrite:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{N} (X_i - \bar{X})^2}.$$

k are "weights":

$$\hat{\beta}_1 = \sum k_i Y_i$$

with
$$k_i = \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}$$
.

Gauss-Markov (continued)

Alternative (non-LS) estimator:

$$\tilde{\beta}_1 = \sum w_i Y_i$$

Unbiasedness requires:

$$E(\tilde{\beta}_1) = \sum_i w_i E(Y_i)$$

$$= \sum_i w_i (\beta_0 + \beta_1 X_i)$$

$$= \beta_0 \sum_i w_i + \beta_1 \sum_i w_i X_i$$

Gauss-Markov (continued)

Variance:

$$\begin{aligned} \mathsf{Var}(\tilde{\beta}_1) &= \mathsf{Var}\left(\sum w_i Y_i\right) \\ &= \sigma^2 \sum w_i^2 \\ &= \sigma^2 \sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} + \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2 \\ &= \sigma^2 \sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2 + \sigma^2 \left[\frac{1}{\sum (X_i - \bar{X})^2} \right] \end{aligned}$$

Gauss-Markov (continued)

Because $\sigma^2 \left[\frac{1}{\sum (X_i - \bar{X})^2} \right]$ is a constant, min[Var($\tilde{\beta}_1$)] minimizes

$$\sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2.$$

Minimized at:

$$w_i = \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}.$$

implying:

$$Var(\tilde{\beta}_1) = \frac{\sigma^2}{\sum (X_i - \bar{X})^2}$$

= $Var(\hat{\beta}_1)$

If $u_i \sim N(0, \sigma^2)$, then:

$$\hat{eta}_0 \sim N[eta_0, Var(\hat{eta}_0)]$$

and

$$\hat{eta}_1 \sim \textit{N}[eta_1, \mathsf{Var}(\hat{eta}_1)]$$

Means:

$$z_{\hat{\beta}_1} = \frac{(\hat{\beta}_1 - \beta_1)}{\sqrt{\mathsf{Var}(\hat{\beta}_1)}}$$
$$= \frac{(\hat{\beta}_1 - \beta_1)}{\mathsf{s.e.}(\hat{\beta}_1)}$$
$$= \sim N(0, 1)$$

A Small Problem...

$$\sigma^2 = ???$$

Solution: use

$$\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{N - k}$$

Gives:

$$\widehat{\mathsf{Var}(\hat{eta}_1)} = \frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2},$$

and

$$\widehat{\mathsf{Var}(\hat{\beta}_0)} = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \hat{\sigma}^2$$

Inference (continued)

$$\widehat{\text{s.e.}(\hat{\beta}_1)} = \sqrt{\widehat{\text{Var}(\hat{\beta}_1)}}$$

$$= \sqrt{\frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2}}$$

$$= \frac{\hat{\sigma}}{\sqrt{\sum (X_i - \bar{X})^2}}$$

implies:

$$t_{\hat{\beta}_{1}} \equiv \frac{(\hat{\beta}_{1} - \beta_{1})}{\widehat{s.e.}(\hat{\beta}_{1})} = \frac{(\hat{\beta}_{1} - \beta_{1})}{\frac{\hat{\sigma}}{\sqrt{\sum (X_{i} - \bar{X}})^{2}}}$$

$$= \frac{(\hat{\beta}_{1} - \beta_{1})\sqrt{\sum (X_{i} - \bar{X}})^{2}}{\hat{\sigma}}$$

$$\sim t_{N-k}$$

Predictions and Variance

Point prediction:

$$\hat{Y}_k = \hat{\beta}_0 + \hat{\beta}_1 X_k$$

 Y_k is unbiased:

$$\begin{split} \mathsf{E}(\hat{Y}_k) &= \mathsf{E}(\hat{\beta}_0 + \hat{\beta}_1 X_k) \\ &= \mathsf{E}(\hat{\beta}_0) + X_k \mathsf{E}(\hat{\beta}_1) \\ &= \beta_0 + \beta_1 X_k \\ &= \mathsf{E}(Y_k) \end{split}$$

Variability:

$$\begin{array}{lcl} \operatorname{Var}(\hat{Y}_k) & = & \operatorname{Var}(\hat{\beta}_0 + \hat{\beta}_1 X_k) \\ & = & \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2 + \left[\frac{\sigma^2}{\sum (X_i - \bar{X})^2} \right] X_k^2 + 2 \left[\frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \sigma^2 \right] X_k \\ & = & \sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right] \end{array}$$

Variability of Predictions

$$\mathsf{Var}(\hat{Y}_k) = \sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]$$

means that $Var(\hat{Y}_k)$:

- Decreases in N
- Decreases in Var(X)
- Increases in $|X \bar{X}|$

Predictions and Inference

Standard error of the prediction:

$$\widehat{\text{s.e.}(\hat{Y}_k)} = \sqrt{\sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]}$$

 \rightarrow (e.g.) confidence intervals:

95% c.i.
$$(\hat{Y}_k) = \hat{Y}_k \pm [1.96 \times \widehat{\text{s.e.}(\hat{Y}_k)}]$$

Example: Infant Mortality and DPT Immunizations

```
> with(IMdata, describe(infantmortalityperK))
    vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 177 44.3 40.4 29.3 38.9 34.7 2.9 167 164 0.99 0.03 3.04
> with(IMdata, describe(DPTpct))
    vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 177 81.8 19.6 90 85.2 11.9 24 99 75 -1.3 0.59 1.47
```

Scatterplot of Infant Mortality and DPT Immunizations (2000)

Example, Continued

```
> IMDPT<-with(IMdata, lm(infantmortalityperK~DPTpct))
> summary(IMDPT) # regression
Call:
lm(formula = infantmortalityperK ~ DPTpct, data = IMdata)
Residuals:
  Min 10 Median 30 Max
-56.8 -16.3 -5.1 11.8 86.6
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 173.277 8.489 20.4 <2e-16 ***
DPTpct -1.576 0.101 -15.6 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 26.2 on 175 degrees of freedom
Multiple R-Squared: 0.582, Adjusted R-squared: 0.58
F-statistic: 244 on 1 and 175 DF, p-value: <2e-16
```

Example, Continued

Things

```
Var(\hat{\beta}):
> vcov(IMDPT)
            (Intercept) DPTpct
(Intercept) 72.0677 -0.83317
DPTpct
            -0.8332 0.01018
95 percent c.i.s:
> confint(IMDPT)
              2.5 % 97.5 %
(Intercept) 156.523 190.032
DPTpct -1.775 -1.377
```

Predictions

A Plot, With Cls

Scatterplot of Infant Mortality and DPT Immunizations, along with Least-Squares Line and 95% Prediction Confidence Intervals

