ELECTRICAL & COMPUTER ENGINEERING

School of Engineering

EGRE 365 – Digital Systems

Homework No. 2

Name: Luis Barquero

Major: Computer Engineering

Due Date: 10/02/17

Honor Pledge: I have neither given nor received any unauthorized help on this lab. Signed:

_____Luis Barquero_____

Since both subprograms will use the same inputs to find both the maximum and minimum values, alongside their indices, both subprograms were combined into a single VHDL model for a better implementation.

1) Write a VHDL subprogram that implements the function of finding the maximum of 4 inputs.

The first step in implementing the subprogram was to first define the port, which includes 4 standard logic vectors size 8 (7 down to 0) for each one of the four inputs. From there, the initialization of the maximum and minimum index was created, both of standard logic type of size 2 (1 down to 0).

Next, a procedure labeled finding_max was created that takes in inputs 0-3, finds the maximum value, and outputs the index of that maximum value.

The way the procedure works is that it checks to see if current input is greater than the rest of the inputs. For example, it first checks if input0 is greater than input1, input2, and input3. If so, the input0 is considered the max value, and it outputs the index of input0. The same method is used for the rest of the inputs.

At the same time, the procedure also outputs the value contained in the index, or in other words, it outputs the maximum number.

See Appendix A for the VHDL Model code.

2) Write a VHDL subprogram that implements the function of finding the minimum of 4 inputs.

Given that all inputs and outputs have already been initialized, then in order to find the minimum value, and a procedure labeled finding_min is created that takes in inputs 0-3, finds the minimum value, and outputs the index of the minimum value.

This procedure works in a similar way as the finding_max procedure, except instead of checking if the current input is greater than the rest of the inputs, it checks if the current input is less than the rest of the inputs. If the condition is met, then the procedure outputs the index of the minimum value, alongside the value contained in the index.

See Appendix A for the VHDL Mode code.

3) Write a VHDL entity and architecture that implements a comparator that finds out the maximum number and minimum number in 4 8-bit inputs.

For this part, there is a procedure call in the architecture for both the max and min finders that sends in the inputs, determines the max/min with their indices, and outputs the results.

4) Write a test bench to test your code for a minimum of 10 test cases.

In order to properly test out the model, the following 10 cases were constructed, as illustrated by table 1, where it shows all inputs alongside their max/min index and their max/min value.

Table 1 – Table 1 shows all 10 cases with their corresponding max/min index/value.

Case	Input0	Input1	Input2	Input3	Max_Index	Min_Index	Max_Value	Min_Value	
1	0010_0010	0011_0011	0000_0000	1111_1111	11	10	1111_1111	0000_0000	
	(34)	(51)	(0)	(255)			(255)	(0)	
2	0000_0000	0000_0000	1111_1111	1111_1111	10	00	1111_1111	0000_0000	
	(0)	(0)	(255)	(255)			(255)	(0)	
3	0000_0001	0001_1001	0100_0000	0100_0000	10	00	0100_0000	0000_0001	
	(1)	(25)	(64)	(64)			(64)	(1)	
4	0010_0100	0010_0100	0100_0000	0110_0101	11	00	0110_0101	0010_0100	
	(36)	(36)	(64)	(101)			(101)	(36)	
5	0000_0011	0000_1100	0000_0110	0000_1001	01	00	0000_1100	0000_0011	
	(3)	(12)	(6)	(9)			(12)	(3)	
6	0111_1010	0111_1000	0111_1011	0111_1001	10	01	0111_1011	0111_1000	
	(122)	(120)	(123)	(121)			(123)	(120)	
7	1001_0010	1001_0010	1001_0010	1001_0010	00	00	1001_0010	1001_0010	
	(146)	(146)	(146)	(146)			(146)	(146)	
8	1000_1000	1000_1000	1000_1000	1000_1000	00	00	1000_1000	1000_1000	
	(136)	(136)	(136)	(136)			(136)	(136)	
9	0010_0100	0010_0100	0100_1000	0100_1000	10	00	0100_1000	0010_0100	
	(36)	(36)	(72)	(72)			(72)	(36)	
10	0000_0010	0000_0101	0000_0001	0000_0111	11	10	0000_0111	0000_0001	
	(2)	(5)	(1)	(7)			(7)	(1)	

Appendix B contains the simulation results from the testbench.

Appendix A

VHDL Code

Figure 1 – Figure 1 shows the code used for the VHDL Model

```
F -- Programmed by: Luis Baquero
       --Purpose: This VHDL Model will take 4 inputs and will determine the maximum value, the minimum value
                  the index of the maximum value, and the index of the minimum value.
       library IEEE;
       use IEEE.STD_LOGIC_1164.ALL;
       use ieee.numeric std.ALL;
    E entity compareENT is
          Port ( in0 : in STD_LOGIC_VECTOR (7 downto 0); --Input 0
in1 : in STD_LOGIC_VECTOR (7 downto 0); --Input 1
signal max_index : out STD_LOGIC_VECTOR (1 downto 0)) is --Signal to find the index of the max value
23
24
25
26
           -- Find maximum value
               if (in0 >= in1 and in0 >= in2 and in0 >= in3) then --This will check to see if input 0 is greater than the rest of the inputs.
28
29
                        max_value <= in0;</pre>
                                                                      -- If input 0 is greater than the rest, it outputs the max value and the index.
                        max_index <= b"00'
               elsif (in1 >= in0 and in1 >= in2 and in1 >= in3) then --This will check to see if input 0 is greater than the rest of the inputs.
31
                        max_value <= in1;
                                                                         -- If input 1 is greater than the rest, it outputs the max value and the index.
                        max_index <= b"01
               elsif (in2 >= in0 and in2 >= in1 and in2 >= in3) then --This will check to see if input 0 is greater than the rest of the inputs.
34
35
                        max value <= in2;
                                                                         --If input 2 is greater than the rest, it outputs the max value and the index.
                        max index <= b"10
               elsif (in3 >= in0 and in3 >= in1 and in3 >= in2) then --This will check to see if input 0 is greater than the rest of the inputs.
37
                        max value <= in3;
                                                                         -- If input 3 is greater than the rest, it outputs the max value and the index.
38
                       max_index <= b"11";
39
               end if;
       end finding_max;
40
41
     procedure finding_min (signal input0, input1, input2, input3 : in STD_LOGIC_VECTOR (7 downto 0);
        signal min_value : out STD_LOGIC_VECTOR (7 downto 0);
signal min_index : out STD_LOGIC_VECTOR (1 downto 0)) is
43
                                                                                  -- Signal to find min value of the inputs
                                                                                  --Signal to find the index of the min value
45
46
    - begin
              -- Find minimum value
48
            if (in0 <= in1 and in0 <= in2 and in0 <= in3) then --This will check to see if input 0 is greater than the rest of the inputs.
               min value <= in0;
49
                                                                     --If input 0 is greater than the rest, it outputs the max value and the index.
50
               min_index <= b"00";
51
            elsif (in1 <= in0 and in1 <= in2 and in1 <= in3) then --This will check to see if input 0 is greater than the rest of the inputs.
              min_value <= in1;
                                                                         -- If input 1 is greater than the rest, it outputs the max value and the index.
53
54
55
                min_index <= b"01";
             elsif (in2 <= in0 and in2 <= in1 and in2 <= in3) then --This will check to see if input 0 is greater than the rest of the inputs.
               min value <= in2;
                                                                         -- If input 2 is greater than the rest, it outputs the max value and the index.
56
57
58
                min_index <= b"10";
             elsif (in3 <= in0 and in3 <= in1 and in3 <= in2) then --This will check to see if input 0 is greater than the rest of the inputs.
               min_value <= in3;
                                                                         --If input 3 is greater than the rest, it outputs the max value and the index.
               min_index <= b"11";
59
60
                end if:
      end finding_min;
61
62
63
      begin
           process(in0,in1, in2, in3)
64
65
             begin
66
                finding_max(in0, in1, in2, in3,
                                                          -- Calls the procedure max finder
67
                              max_val,max_idx);
               finding_min(in0, in1, in2, in3,
68
                                                          -- Calls the procedure min finder
69
                              min_val,min_idx);
           end process;
    end simple;
```

Figure 2 – Figure 2 shows the code used for the VHDL Testbench

```
--Programmed by: Luis Baquero
       --Purpose: This VHDL Testbench will take 4 inputs and will determine the maximum value, the minimum value
                    the index of the maximum value, and the index of the minimum value.
        LIBRARY ieee;
        USE ieee.std logic 1164.ALL;
     ENTITY compareTB IS END compareTB;
     □ ARCHITECTURE behavior OF compareTB IS
           -- define the maximum delay for the DUT
           constant MAX_DELAY : time := 100 ns;
constant BIT_WIDTH : integer := 8;
14
15
           constant NO_OF_VALUES : integer := 10;
17
18
        -- define signals that connect to DUT
           signal in0_sig : std_logic_vector((BIT_WIDTH-1) downto 0); --Input 0
           signal in1_sig : std_logic_vector((BIT_WIDTH-1) downto 0); --Input 1
20
           signal in2_sig : std_logic_vector((BIT_WIDTH-1) downto 0); --Input 2
signal in3_sig : std_logic_vector((BIT_WIDTH-1) downto 0); --Input 3
21
22
           signal max_index_sig : std_logic_vector(1 downto 0);
                                                                             --Max Index
                                                                            --Min Index
           signal min_index_sig : std_logic_vector(1 downto 0); --Min Ir
signal max_value_sig : std_logic_vector((BIT_WIDTH-1) downto 0);
23
25
26
           signal min_value_sig : std_logic_vector((BIT_WIDTH-1) downto 0);
                                                                                          --Min Value
          28
30
31
32
34
35
          -- Test Cases 1 and 2 for Input 1
                                                                                                   -- Test Cases 3 and 4 for Input 1
38
                                                                                                   -- Test Cases 5 and 6 for Input 1
                                                                  "10010010","10001000",
"00100100","00000101");
39
                                                                                                   -- Test Cases 7 and 8 for Input 1
40
                                                                                                   -- Test Cases 9 and 10 for Input 1
           constant in2_sig_values : input_value_array := ("00000000","111111111",
                                                                                                   -- Test Cases 1 and 2 for Input 2
                                                                  "01000000","01000000",
"00000110","01111011",
"10010010","10001000",
"01001000","00000001");
43
                                                                                                   -- Test Cases 3 and 4 for Input 2
                                                                                                    -- Test Cases 5 and 6 for Input 2
                                                                                                   -- Test Cases 7 and 8 for Input 2
45
46
                                                                                                    -- Test Cases 9 and 10 for Input 2
48
           constant in3_sig_values : input_value_array := ("11111111", "11111111",
                                                                                                   -- Test Cases 1 and 2 for Input 3
                                                                  "01000000","01100101",
"00001001","01111001",
"10010010","10001000",
"01001000","00000111");
                                                                                                   -- Test Cases 3 and 4 for Input 3
                                                                                                   --Test Cases 5 and 6 for Input 3
--Test Cases 7 and 8 for Input 3
50
51
53
           begin
55
56
                  -- this is the process that will generate the inputs
            stimulus : process
58
59
              begin
                 for i in 0 to (NO OF VALUES-1) loop
                  in0 sig <= in0 sig values(i);
in1_sig <= in1_sig_values(i);
in1_sig <= in1_sig_values(i);
in2_sig <= in2_sig_values(i);
in3_sig <= in3_sig_values(i);
wait for MAX_DELAY;</pre>
61
62
                 end loop;
                 wait; -- stop the process to avoid an infinite loop
67
           end process stimulus;
     自
69
             -- this is the component instantiation for the
70
              -- DUT - the device we are testing
71
             DUT : entity work.compareENT(simple)
                                          => in0_sig,
=> in1 sig,
72
                   port map ( in0
73
                                 in1
                                 in2
                                          => in2_sig,
                                          => in3_sig,
75
                                 max_idx => max_index_sig,
                                 min_idx => min_index_sig,
78
                                 max_val => max_value_sig,
79
                                 min_val => min_value_sig);
80
         end behavior:
81
82
```

Appendix B

VHDL Simulations

					9					<u>=</u>
										S
8'500000010	8'500000101	8,500000001	8'500000111	2'b11	2'b10	8'500000111	8,500000001		Ca & 10	0 ns 100 ns 200 ns 300 ns 400 ns 500 ns 100 ns 1000 ns 1000 ns
8'b00100100	8,500100100	8'b01001000	8'b01001000	2'b10		8,501001000	8'b00100100		Case 9	00 ns
8,510001000	8'510001000	8'510001000	8'b10001000			8'b10001000	8'b10001000		(ase &	00 ns
8'b10010010	8,510010010	8'510010010	8'510010010	2,900	2,000	8'b10010010	8'b10010010	—	252)0 ns
8'b01111010	8'501111000	8'501111011	8'b01111001	2'b10	Z'b01	8'b01111011	8'b01111000		Case 6	00 ns
8'b0000011	8,600001100	8,500000110	8'500001001	2'b01		8,00001100	8'b00000011		(ase S	Su 00
8'b00100100	8,500100100		8'b01100101	Z'b11		8'501100101	8,00100100	-	9264	00 ns
8'500000001	8,00011001	8,501000000	8,501000000			8'b01000000	8,000000001	-	CASE 3	00 ns
8,600000000	8,500000000	8'b11111111		2'b10	2,000				Caser	00 ns
in0_sig (8'b00100010	in1_sig 8'b00110011	in2_sig (8'b000000000	in3_sig (8'b11111111	2'b11	2'b10	8'b11111111	min_value_sig (8'b00000000		Case (as a constant of the con)1
in0_sig	in1_sig	in2_sig	in3_sig	max_index_sig (2'b11	min_index_sig (2'b10	max_value_sig (8'b11111111	min_value_sig			3

Entity;comparetb Architecture:behavior Date: Mon Oct 02 18:09:03 EDT 2017 Row: 1 Page: 1