lista4

Paweł Kędzierski

June 20, 2025

1 Zadanie

(venv) pawked@pawkedcomp:~/Pulpit/lab4/zad1\$ python zad1.py
K=10 - Best inertia: 6622.91
K=15 - Best inertia: 5928.53
K=20 - Best inertia: 5541.90
K=30 - Best inertia: 5078.98

Centroids (K=10)

Centroids (K=15)

Centroids (K=20)

Centroids (K=30)

2 Zadanie

```
avg_pooling_test_parameters = [
    (9, 1.1), (9, 1.15), (9, 1.22),
    (9, 1.4), (9, 1.45), (9, 1.5),
    (14, 1.2), (14, 1.28), (14, 1.32),
    (14, 1.65), (14, 1.7), (14, 1.74),
    (22, 1.28), (22, 1.33), (22, 1.39),
    (22, 1.85), (22, 1.92), (22, 1.98),
    (28, 1.3), (28, 1.38), (28, 1.43),
    (28, 2.1), (28, 2.18), (28, 2.26),
    (48, 1.35), (48, 1.43), (48, 1.48),
    (48, 2.2), (48, 2.35), (48, 2.45),
    (70, 1.42), (70, 1.48), (70, 1.53),
    (70, 2.3), (70, 2.48), (70, 2.58),
    (98, 1.48), (98, 1.52), (98, 1.58),
    (98, 2.55), (98, 2.65), (98, 2.75)
]
max_pooling_test_parameters = [
    (11, 1.25), (11, 1.33), (11, 1.42),
    (11, 1.6), (11, 1.68), (11, 1.76),
    (16, 1.35), (16, 1.43), (16, 1.52),
    (16, 1.9), (16, 2.0), (16, 2.08),
    (21, 1.45), (21, 1.53), (21, 1.62),
    (21, 2.12), (21, 2.2), (21, 2.28),
    (32, 1.6), (32, 1.68), (32, 1.76),
    (32, 2.35), (32, 2.45), (32, 2.55),
    (52, 1.82), (52, 1.9), (52, 1.98),
    (52, 2.65), (52, 2.75), (52, 2.85),
    (72, 1.95), (72, 2.05), (72, 2.15),
    (72, 2.88), (72, 2.95), (72, 3.05),
    (98, 2.1), (98, 2.18), (98, 2.26),
    (98, 3.0), (98, 3.1), (98, 3.2)
]
```

```
(venv) pawked@pawkedcomp:~/Pulpit/lab4/zad2$ python zad2.py
--- Running DBSCAN for min_samples=9, eps=1.10 ---
--- Running DBSCAN for min_samples=9, eps=1.15 ---
--- Running DBSCAN for min_samples=9, eps=1.22 ---
--- Running DBSCAN for min_samples=9, eps=1.40 ---
--- Running DBSCAN for min_samples=9, eps=1.45 ---
--- Running DBSCAN for min_samples=9, eps=1.50 ---
```

```
--- Running DBSCAN for min_samples=14, eps=1.20 ---
--- Running DBSCAN for min_samples=14, eps=1.28 ---
--- Running DBSCAN for min_samples=14, eps=1.32 ---
--- Running DBSCAN for min_samples=14, eps=1.65 ---
--- Running DBSCAN for min_samples=14, eps=1.70 ---
--- Running DBSCAN for min_samples=14, eps=1.74 ---
--- Running DBSCAN for min_samples=22, eps=1.28 ---
--- Running DBSCAN for min_samples=22, eps=1.33 ---
--- Running DBSCAN for min_samples=22, eps=1.39 ---
--- Running DBSCAN for min_samples=22, eps=1.85 ---
--- Running DBSCAN for min_samples=22, eps=1.92 ---
--- Running DBSCAN for min_samples=22, eps=1.98 ---
--- Running DBSCAN for min_samples=28, eps=1.30 ---
   Running DBSCAN for min_samples=28, eps=1.38 ---
--- Running DBSCAN for min_samples=28, eps=1.43 ---
--- Running DBSCAN for min_samples=28, eps=2.10 ---
--- Running DBSCAN for min_samples=28, eps=2.18 ---
--- Running DBSCAN for min_samples=28, eps=2.26 ---
```

```
--- Running DBSCAN for min_samples=48, eps=1.35 ---
--- Running DBSCAN for min_samples=48, eps=1.43 ---
--- Running DBSCAN for min_samples=48, eps=1.48 ---
--- Running DBSCAN for min_samples=48, eps=2.20 ---
--- Running DBSCAN for min_samples=48, eps=2.35 ---
--- Running DBSCAN for min_samples=48, eps=2.45 ---
--- Running DBSCAN for min_samples=48, eps=2.45 ---
```

```
--- Running DBSCAN for min_samples=70, eps=1.48 ---
--- Running DBSCAN for min_samples=70, eps=1.53 ---
--- Running DBSCAN for min_samples=70, eps=2.30 ---
--- Running DBSCAN for min_samples=70, eps=2.48 ---
--- Running DBSCAN for min_samples=70, eps=2.58 ---
--- Running DBSCAN for min_samples=98, eps=1.48 ---
--- Running DBSCAN for min_samples=98, eps=1.52 ---
--- Running DBSCAN for min_samples=98, eps=1.58 ---
--- Running DBSCAN for min_samples=98, eps=2.55 ---
--- Running DBSCAN for min_samples=98, eps=2.65 ---
--- Running DBSCAN for min_samples=98, eps=2.65 ---
--- Running DBSCAN for min_samples=98, eps=2.75 ---
```

min	 :	eps	n_clusters	%_noise	
	9	1.1	2	96.2	0.19
li	9	1.15	2	95.6	0.18
li	9	1.22	2	94.6	0.17
1	9	1.4	3	91.1	0.18
1	9	1.45	2	90.7	0.17
1	9	1.5	1	90.2	0.18
1 :	14	1.2	1	97.2	0.18
1 :	14	1.28	1	95.8	0.18
1 :	14	1.32	1	95.6	0.17
1 :	14	1.65	1	90.2	0.17
1 :	14	1.7	1	89.7	0.18
1 :	14	1.74	1	89.6	0.18
1 :	22	1.28	1	97.2	0.17
1 :	22	1.33	1	96.6	0.18
1 2	22	1.39	1	96.6	0.17
	22	1.85	1	89.3	0.18
	22	1.92	1	89.1	0.18
	22	1.98	1	88.5	0.18
1 2	28	1.3	0	100	0.17
	28	1.38	1	96.9	0.17
	28	1.43	1	96.8	0.18
	28	2.1	1	87.7	0.18
	28	2.18	1	87.2	0.18
	28	2.26	-	86.5	0.18
· ·	48	1.35	-	100	0.17
	48	1.43	0	100	0.17
1	48	1.48	0	100	0.17
	48	2.2	1	92.6	0.18
	48	2.35	1	86.5	0.17
	48	2.45	-	85.4	0.18
	70	1.42	-	100	0.17
	70	1.48	0	100	0.17
	70	1.53	· ·	100	0.17
	70	2.3	•	100	0.17
	70	2.48	1	90.4	0.18
	70	2.58	-	85.5	0.17
-	98	1.48		100	0.17
	98	1.52	0	100	0.18
	98	1.58	-	100	0.18
· ·	98	2.55	•	100	0.18
	98	2.65	1	90.2	0.18
1	98	2.75	1	80.7	0.2

Cluster Centroids (After Average Pooling)

