

Updates pT Training: KNN

Wei Shi

EMTF Working Meeting

x: input variables(dimension d)

of train event

y: input variables of test event

Mode: 15

Input variables: dphi12, dphi23, dphi34

Target variable: 1/Gen pT

$$R_{ ext{rescaled}} = \left(\sum_{i=1}^d rac{1}{w_i^2} |x_i - y_i|^2
ight)^{\!\!rac{1}{2}}$$

$$\langle t(i,V) \rangle = \frac{\sum_{j \in V} w_j t_j f(\operatorname{dis}(i,j))}{\sum_{j \in V} w_j f(\operatorname{dis}(i,j))}$$

MSE = Deviation^2/N

Last plot shows predicted pT tends to be smaller than GEN pT, for large pT

Comments

- What pT range are we caring about? Depends on L1 endcap muon trigger threshold?
- Maybe we don't need to choose the best model, instead, we can use weighted models for final pT training
- Maybe we can use different model for different input variables, some model may perform better than others in certain parameter region(eta)

Back up

 For a test event, the algorithm finds the k-nearest neighbours using the input variables, where each training event contains a regression value. The predicted regression value for the test event is the weighted average of the regression values of the k-nearest neighbours

"nkNN=95:ScaleFrac=0.8:SigmaFact=1.0:Ker nel=Gaus:UseKernel=F:UseWeight=T:!Trim"

• Test with 131872 events, Train with 131814 events

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0011	0.001129	0.001119	0.001114	0.001113	0.001114	0.001117	0.001120	0.001124
	5753	52	74	7	98	96	74	5	62
MSE(train)	0.0009	0.000966	0.000997	0.001017	0.001033	0.001046	0.001060	0.001069	0.001077
	10486	04	173	23	56	84	53	54	52
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0011	0.001129	0.001133	0.001136	0.001139	0.001141	0.001144	0.001148	0.001152
	2702	89	08	55	34	93	49	28	24
MSE(train)	0.0010 8521	0.001092 36	0.001099 16	0.001104 48	0.001109 43	0.001114 16	0.001119	0.001124 04	0.001128 87