

# Lecture 10. Visual Bag of Words

**Pattern Recognition and Computer Vision** 

Guanbin Li,

School of Computer Science and Engineering, Sun Yat-Sen University



## What we will learn today?

- Visual bag of words (BoW)
- Spatial Pyramid Matching
- Naive Bayes

# Visual bag of words

Object Bag of 'words'





# **Origin 1: Texture Recognition**

- ▶ 纹理泛指物体面上的花纹或线条,是物体上呈现的线形纹路。
- ▶ 传统意义上,在图像中纹理是特征值强度的某种局部重复模式的宏观表现,局部模式重复和平稳性是其主要特点;



Example textures (from Wikipedia)

## **Origin 1: Texture Recognition**

 Texture is characterized by the repetition of basic elements or textons



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

## **Origin 1: Texture Recognition**



#### Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)



**US Presidential Speeches Tag Cloud** 

#### Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)



#### Bags of features for object recognition







face, flowers, building

 Works pretty well for image-level classification and for recognizing object instances

#### **Bags of features for object recognition**













| class        | bag of features     | bag of features           | Parts-and-shape model |
|--------------|---------------------|---------------------------|-----------------------|
|              | Zhang et al. (2005) | Willamowski et al. (2004) | Fergus et al. (2003)  |
| airplanes    | 98.8                | 97.1                      | 90.2                  |
| cars (rear)  | 98.3                | 98.6                      | 90.3                  |
| cars (side)  | 95.0                | 87.3                      | 88.5                  |
| faces        | 100                 | 99.3                      | 96.4                  |
| motorbikes   | 98.5                | 98.0                      | 92.5                  |
| spotted cats | 97.0                | _                         | 90.0                  |

#### **Bag of features**

- First, take a bunch of images, extract features, and build up a "dictionary" or "visual vocabulary" –a list of common features
- Given a new image, extract features and build a histogram for each feature, find the closest visual word in the dictionary

1. Extract features







- 1. Extract features
- 2. Learn "visual vocabulary"



- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"



#### 1. Feature extraction

- Regular grid
  - Vogel & Schiele, 2003
  - Fei-Fei & Perona, 2005



#### 1. Feature extraction

- Regular grid
  - Vogel & Schiele, 2003
  - Fei-Fei & Perona, 2005
- Interest point detector
  - Csurkaet al. 2004
  - Fei-Fei & Perona, 2005
  - Sivicet al. 2005



#### 1. Feature extraction

- Regular grid
  - Vogel & Schiele, 2003
  - Fei-Fei & Perona, 2005
- Interest point detector
  - Csurkaet al. 2004
  - Fei-Fei & Perona, 2005
  - Sivicet al. 2005
- Other methods
  - Random sampling (Vidal-Naquet& Ullman, 2002)
  - Segmentation-based patches (Barnard et al. 2003)
  - CNN

## 2. Learning the visual vocabulary



#### 2. Learning the visual vocabulary



#### 2. Learning the visual vocabulary



#### K-means clustering recap

• Want to minimize sum of squared Euclidean distances between points  $x_{
m i}$  and their nearest cluster centers  $m_k$   $^\circ$ 

$$D(X, M) = \sum_{\text{cluster } k} \sum_{\substack{\text{point } i \text{ in } \\ \text{cluster } k}} (x_i - m_k)^2$$

- •Algorithm:
- Randomly initialize K cluster centers
- Iterate until convergence:
  - Assign each data point to the nearest center
  - Recompute each cluster center as the mean of all points assigned to it

#### From clustering to vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
  - –Unsupervised learning process
  - Each cluster center produced by k-means becomes a codevector
  - Codebook can be learned on separate training set
  - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
  - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
  - Codebook = visual vocabulary
  - Codevector= visual word

# **Example visual vocabulary**



#### Image patch examples of visual words





#### Visual vocabularies: Issues

- How to choose vocabulary size?
  - Too small: visual words not representative of all patches
  - Too large: quantization artifacts, overfitting
- Computational efficiency
  - –Vocabulary trees
     (Nister& Stewenius, 2006)





https://zhuanlan.zhihu.com/p/20554144

# 3. Image representation



#### **Image classification**

 Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?



#### **Uses of BoW representation**

- Treat as feature vector for standard classifier
  - –e.g k-nearest neighbors, support vector machine
- Cluster BoW vectors over image collection
  - –Discover visual themes

## Large-scale image matching



 Bag-of-words models have been useful in matching an image to a large database of object instances



how do I find this image in the database?

#### Large-scale image search



#### Build the database:

- Extract features from the database images
- Learn a vocabulary using kmeans (typical k: 100,000)
- Compute weights for each word
- Create an inverted file mapping words to images

#### Weighting the words

 Just as with text, some visual words are more discriminative than others

the, and, or vs. cow, AT&T, Cher

- the bigger fraction of the documents a word appears in, the less useful it is for matching
  - –e.g., a word that appears in all documents is not helping us

#### Large-scale image search

- Pros:
  - –Works well for CD covers, movie posters
  - Real-time performance possible



real-time retrieval from a database of 40,000 CD covers

Nister & Stewenius, Scalable Recognition with a Vocabulary Tree

# **Example bag-of-words matches**



































# **Example bag-of-words matches**



































### Bags of features for action recognition

Space-time interest points



Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, <u>Unsupervised Learning of Human Action</u> <u>Categories Using Spatial-Temporal Words</u>, IJCV 2008.

### Bags of features for action recognition

#### Feature extraction and description



Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, <u>Unsupervised Learning of Human Action</u> Categories Using Spatial-Temporal Words, IJCV 2008.

# What about spatial info?



## What we will learn today?

- Visual bag of words (BoW)
- Spatial Pyramid Matching
- Naive Bayes

### **Pyramids**

- Very useful for representing images.
- Pyramid is built by using multiple copies of image.
- Each level in the pyramid is 1/4 of the size of previous level.
- The lowest level is of the highest resolution.
- The highest level is of the lowest resolution.

# **Bag of words + pyramids**



Locally orderless representation at several levels of spatial resolution







### Scene category dataset



Multi-class classification results (100 training images per class)

|                 | Weak features         |                       | Strong features        |                       |
|-----------------|-----------------------|-----------------------|------------------------|-----------------------|
|                 | (vocabulary size: 16) |                       | (vocabulary size: 200) |                       |
| Level           | Single-level          | Pyramid               | Single-level           | Pyramid               |
| $0(1 \times 1)$ | $45.3 \pm 0.5$        |                       | $72.2 \pm 0.6$         |                       |
| $1(2 \times 2)$ | $53.6 \pm 0.3$        | $56.2 \pm 0.6$        | $77.9 \pm 0.6$         | $79.0 \pm 0.5$        |
| $2(4\times4)$   | $61.7 \pm 0.6$        | $64.7 \pm 0.7$        | $79.4 \pm 0.3$         | <b>81.1</b> $\pm 0.3$ |
| $3(8\times8)$   | $63.3 \pm 0.8$        | <b>66.8</b> $\pm 0.6$ | $77.2 \pm 0.4$         | $80.7 \pm 0.3$        |

# **Bag of words + pyramids**

#### Caltech101 dataset

http://www.vision.caltech.edu/Image\_Datasets/Caltech101/Caltech101.html



Multi-class classification results (30 training images per class)

|       | Weak features (16) |                       | Strong features (200) |                       |  |
|-------|--------------------|-----------------------|-----------------------|-----------------------|--|
| Level | Single-level       | Pyramid               | Single-level          | Pyramid               |  |
| 0     | $15.5 \pm 0.9$     |                       | $41.2 \pm 1.2$        |                       |  |
| 1     | $31.4 \pm 1.2$     | $32.8 \pm 1.3$        | $55.9 \pm 0.9$        | $57.0 \pm 0.8$        |  |
| 2     | $47.2 \pm 1.1$     | $49.3 \pm 1.4$        | $63.6 \pm 0.9$        | <b>64.6</b> $\pm 0.8$ |  |
| 3     | $52.2 \pm 0.8$     | <b>54.0</b> $\pm 1.1$ | $60.3 \pm 0.9$        | $64.6 \pm 0.7$        |  |

Slide credit: Svetlana Lazebnik

## What we will learn today?

- Visual bag of words (BoW)
- Spatial Pyramid Matching
- Naive Bayes

## **Naïve Bayes**

 Classify image using histograms of occurrences on visual words:



- where:
  - $-x^i$  is the event of visual word  $v^i$  appearing in the image,
  - -N(i) the number of times word  $v^i$  occurs in the image,
  - -m is the number of words in our vocabulary.

### Naïve Bayes -classification

 Our goal is to classify that the image represented by x is belongs class that has the highest posterior probability:

$$c^* = arg \max_{c} P(c \mid \boldsymbol{x})$$

### Naïve Bayes -conditional independence

- Naïve Bayes classifier assumes that visual words are conditionally independent given object class.
- Therefore, we can multiply the probability of each visual word to obtain the joint probability.
- Model for image x under object class c:

$$P(x \mid c) = \prod_{i=1}^{m} P(x_i \mid c)$$

• How do we compute  $P(x^i|c)$ 

### **Naïve Bayes –prior**

- Class priors P(c) encode how likely we are to see one class versus others.
- Note that:

$$\sum_{i=1}^{m} P(c) = 1$$

### **Naïve Bayes -posterior**

 equations from the previous slides, we can now calculate the probability that an image represented by x belongs to class category c.

$$P(c \mid \mathbf{x}) = \frac{P(c) P(\mathbf{x} \mid c)}{\sum_{c'} P(c') P(\mathbf{x} \mid c')}$$

**Bayes Theorem** 

### **Naïve Bayes -posterior**

 equations from the previous slides, we can now calculate the probability that an image represented by x belongs to class category c.

$$P(c \mid \mathbf{x}) = \frac{P(c) P(\mathbf{x} \mid c)}{\sum_{c'} P(c') P(\mathbf{x} \mid c')}$$

$$P(c \mid \mathbf{x}) = \frac{P(c) \prod_{i=1}^{m} P(x_i \mid c)}{\sum_{c'} P(c') \prod_{i=1}^{m} P(x_i \mid c')}$$

### Naïve Bayes -classification

 We can now classify that the image represented by x is belongs class that has the highest probability:

$$c^* = arg \max_{c} P(c \mid \mathbf{x})$$
$$c^* = arg \max_{c} \log P(c \mid \mathbf{x})$$

## Let's break down the posterior

The probability that x belongs to class  $c_1$ :

$$P(c_1 \mid \mathbf{x}) = \frac{P(c_1) \prod_{i=1}^m P(x_i \mid c_1)}{\sum_{c'} P(c') \prod_{i=1}^m P(x_i \mid c')}$$

And the probability that x belongs to class  $c_2$ :

$$P(c_2 \mid \mathbf{x}) = \frac{P(c_2) \prod_{i=1}^m P(x_i \mid c_2)}{\sum_{c'} P(c') \prod_{i=1}^m P(x_i \mid c')}$$

#### **Both their denominators are the same**

The probability that x belongs to class  $c_1$ :

$$P(c_1 \mid \mathbf{x}) = \frac{P(c_1) \prod_{i=1}^m P(x_i \mid c_1)}{\sum_{c'} P(c') \prod_{i=1}^m P(x_i \mid c')}$$

And the probability that x belongs to class  $c_2$ :

$$P(c_2 \mid \mathbf{x}) = \frac{P(c_2) \prod_{i=1}^m P(x_i \mid c_2)}{\sum_{c'} P(c') \prod_{i=1}^m P(x_i \mid c')}$$

### **Both their denominators are the same**

 Since we only want the max, we can ignore the denominator:

$$P(c_1 \mid \boldsymbol{x}) \propto P(c_1) \prod_{i=1}^{m} P(x_i \mid c_1)$$

$$P(c_2 | \mathbf{x}) \propto P(c_2) \prod_{i=1}^{m} P(x_i | c_2)$$

## For the general class c,

$$P(c \mid \mathbf{x}) \propto P(c) \prod_{i=1}^{m} P(x_i \mid c)$$

We can take the log:

$$\log P(c \mid \mathbf{x}) \propto \log P(c) + \sum_{i=1}^{m} \log P(x_i \mid c)$$

### Naïve Bayes -classification

So, the following classification becomes:

$$c^* = arg \max_{c} P(c \mid \mathbf{x})$$
$$c^* = arg \max_{c} \log P(c \mid \mathbf{x})$$

$$c^* = arg \max_{c} log P(c) + \sum_{i=1}^{m} log P(x_i | c)$$

### What we have learned today

- Visual bag of words (BoW)
- Spatial Pyramid Matching
- Naive Bayes