

СИНТАКСИЧЕСКИЙ АНАЛИЗ: МОДЕЛИ И ПРОЦЕССОРЫ

Большакова Елена Игоревна

СОДЕРЖАНИЕ

- 1. Основные модели синтаксич. анализа (СА)
 - > структуры составляющих
 - структуры зависимостей:проективность, типы синтаксических связей
 - сравнение моделей, комбинированная модель
- 2. Синтаксические парсеры на основе правил
 - стратегии анализа, синтаксическая сегментация
 - ▶ парсеры ЭТАП, Диалинг-АОТ, Compreno
- 3. Синтаксические парсеры на базе обучения: Stanford Parser, MaltParser, SyntaxNet, UDPipe
- 4. Домашнее задание № 3

УРОВНИ АНАЛИЗА ТЕКСТА

ЭТАП СИНТАКСИЧЕСКОГО АНАЛИЗА

- Центральная роль синтаксиса: предложение выражает законченную мысль (предикативность): *This boy is tall. Она прочитала интересную книгу.*
- Единица обработки предложение
- На входе: результат морфологического

 (и постморфологического) анализа
 На выходе: синтаксическая структура предложения
- Приложения синтаксического анализа:
 - Машинный перевод
 - Извлечение информации из текстов
 - Коррекция текстов на ЕЯ: исправление грамматических ошибок
 - Аннотирование текста (глубокое)
 - Вопросно-ответные системы
 - Обучение иностранным языкам

ОСНОВНЫЕ МОДЕЛИ СА

- Сложность формализации и моделирования СА:
 - разные структурные особенности ЕЯ
 - кроме уровня предложений есть значимый подуровень словосочетаний (средство номинации)
- Модели СА отличаются в основном:
 - синтаксическими единицами
 - синтаксическими связями между ними
- Общее: <u>синтаксическое дерево</u> предложения *Почему?*
- Основные подходы к моделированию синтаксической структуры предложений:
 - 📍 структуры (деревья) зависимостей/подчинения
 - системы (деревья) составляющих
 - + в лингвистике РЯ: теория членов предложения

МОДЕЛЬ СИНТАКСИСА: ЧЛЕНЫ ПРЕДЛОЖЕНИЯ

- Отечественная лингвистика (русистика): теория членов предложения (изучается в школе)
- Синтаксические единицы функциональные единицы:
 - сказуемое
 - подлежащее
 - определение
 - дополнение (прямое/косвенное)
- Два типа связи:
 - взаимоподчинительная (подлежащее сказуемое)
 - подчинительная (образует иерархию членов):
 главные члены и второстепенные члены
- Нечеткость (непригодность) лингвистической модели для ее полной формализации

МОДЕЛЬ СИНТАКСИСА: СТРУКТУРЫ ЗАВИСИМОСТЕЙ

- Восходит к Л.Теньеру (французский лингвист), существенное развитие – А. Реформатский, И. Мельчук
- Постулируется только подчинительная связь, корень синтаксического дерева – глагол (сказуемое)
- Синтаксические единицы (≈ члены предложения):
 актанты , сирконстанты
- Иерархия актантов по обязательности
 субъект (≈ подлежащее) объект
- Определения подчиняются актантам и друг другу
- Синтаксические связи (разная степень дифференциации):
 - определительное: желтое солнце
 - прямообъектное: читаю книгу
 - сочинительное: война и мир
 -

МОДЕЛЬ СИНТАКСИСА: СИСТЕМЫ СОСТАВЛЯЮЩИХ

- Возникла в американской лингвистике:
 метод непосредственно составляющих
- Синтаксические единицы *составляющие* (constituents), т.е. отрезки текста (группы соседних слов), получающиеся в результате линейного членения предложения
- Могут вкладываться друг в друга:
 любые две составляющие либо не пересекаются,
 либо одна целиком содержится в другой
- Два крайних случая составляющих: слово, предложение
- Связь этих синтаксических единиц:
 ненаправленное отношение вложения
 ((Серая птичка) (весело (поет (незатейливую песенку))))
- Фактически выделяются <u>словосочетания</u> (фразы *phrases*) разных уровней (без иерархии фраз одного уровня)

СИСТЕМА СОСТАВЛЯЮЩИХ: ФОРМАЛИЗАЦИЯ

Предложение – цепочка словоформ

$$S = (w1, w2, ..., wN)$$

- т.е. конечное <u>линейное упорядоченное</u> множество.
- *Составляющая* произвольная подпоследовательность (*отрезок*) цепочки.
- *Система составляющих* такое множество *С* отрезков этого множества *S*, которое удовлетворяет условиям:
 - 1. $\forall w \in S : w \in C$ (т.е. слово составляющая)
 - 2. $S \in C$ (т.е. само предложение является элементом системы своих составляющих)
 - 3. $\forall \alpha, \beta$, таких что $\alpha \in S$, $\beta \in S$ и либо $\alpha \cap \beta = \emptyset$, либо $\alpha \subset \beta$, либо $\beta \subset \alpha$ (т.е. любые две составляющие или не пересекаются, или одна из них вложена в другую)

ДЕРЕВЬЯ СОСТАВЛЯЮЩИХ

- Вложенность отрезков системы составляющих С изображается как дерево составляющих
 - листья слова предложения
 - поддеревья фразы (составляющие)
 - дуги отношения вложения
- Для предложения S возможны разные деревья/системы C среди них только некоторые отражают принятые в лингвистике соглашения о граммат. структуре предложения

РАЗМЕЧЕННАЯ СИСТЕМА СОСТАВЛЯЮЩИХ

- Для анализа ЕЯ обычно используется
 размеченная система составляющих:
 упорядоченная тройка <C, W, φ> ,
 - где *C* система составляющих,
 - W множество меток различных грамматических классов , т.н. фразовые категории,
 - ϕ отображение C во множество всех непустых подмножеств W,
 - т.е. список пар *«составляющая + метка/метки, приписанные данной составляющей»*
- Из этой лингвистической модели возникли формальные грамматики Н. Хомского (генеративная лингвистика)

РАЗМЕЧЕННОЕ ДЕРЕВО СОСТАВЛЯЮЩИХ

Метки: S – предложение Det – детерминатив

типы N- существительное V- глагол

NP – именная группа VP – глагольная группа

фраз A – прилагательное Adv – наречие

Prep – предлог *PP* – предложная группа

(Эти школьники) (скоро (напишут (диктант (по (русскому языку)))

Правильные синтаксические структуры фиксируются КС-грамматикой

ФОРМАЛИЗАЦИЯ: ГРАММАТИКА ПРЕДЛОЖЕНИЯ

- Формальная *КС-грамматика* (по Н.Хомскому)должна описывать структуру всех грамматически правильных фраз
- КС-грамматика для примера дерева (слайд 12):
 - $S \rightarrow NP VP$
 - NP → N | <u>A N</u> | <u>Det N</u> | <u>N PP</u>
 - $VP \rightarrow V \mid \underline{V} \mid \underline{NP} \mid \underline{Adv} \mid \underline{VP}$
 - PP → <u>Prep NP</u>

Обозначения: Sentence, Noun, NounPhrase, Determiner, Verb, VerbPhrase, Preposition, PrepositionPhrase, Adjective, Adverb,

• *S, NP, VP, A, N, Det...* – *Нетерминалы*, соответствуют <u>типам</u> фраз и <u>частям речи</u>; *Терминалы*?

ДЕРЕВО СОСТАВЛЯЮЩИХ: ДОПОЛНИТЕЛЬНЫЙ ПРИМЕР

СТРУКТУРЫ ЗАВИСИМОСТЕЙ: ФОРМАЛИЗАЦИЯ

- Предложение расматривается как **множество** словоформ $S = \{w1, w2, ..., wN\}$
- Синтаксическая зависимость бинарное антисимметричное отношение *R* подчинения между его элементами, образующее корневое дерево (неупорядоченное)
 - связность полной структуры предложения
 - нетранзитивное отношение (хотя можно говорить об опосредованном подчинении)
- Дерево зависимостей (связь подчинения):

ДЕРЕВЬЯ ЗАВИСИМОСТЕЙ

- Дерево зависимостей (подчинения) предложения:
 - √ узлы слова (корень дерева сказуемое)
 - ✓ дуги подчинительная связь (зависимость)
- Особенность: дерево предложения должно быть дополнено информацией о его линейной структуре (т.е. задан порядок слов) – в отличие от деревьев составляющих, которые отражают одновременно синтаксическую и линейную структуру предложения.
- Дерево зависимостей можно изобразить, связав слова на прямой направленными дугами зависимости (подчинения); причем все дуги по одну сторону от прямой:

ДЕРЕВЬЯ ЗАВИСИМОСТЕЙ: ПРОЕКТИВНОСТЬ

- Проективность: некая «правильность» фразы S
- Дерево зависимостей <S, R> для цепочки слов
 S = (w1, w2, ..., wN) называется проективным, если
 для ∀α, β, γ точек цепочки, таких что
 если α → β и γ находится между α и β, следует,
 что γ зависит от α: α → γ
- *Проективность* означает возможность изобразить зависимости слов *S* на прямой так, что одновременно:
- а) ни одна из дуг не пересекает другую дугу,
- б) никакая дуга не накрывает вершину (корень дерева)

ДЕРЕВЬЯ ЗАВИСИМОСТЕЙ: СЛАБАЯ ПРОЕКТИВНОСТЬ

- Содержательный смысл проективности: синтаксически связанные слова близки к друг другу в цепочке слов предложения.
- Большинство правильных предложений русского языка проективны.
- Однако возможен также случай слабой проективности.
- Дерево слабопроективно, если
 ни одна из дуг не пересекает другую дугу,
 но допускается накрывание дугой корневой вершины.

Пример слабой проективности:

ДЕРЕВЬЯ ЗАВИСИМОСТЕЙ: НЕПРОЕКТИВНОСТЬ

- Непроективные предложения встречаются
 в художественной литературе, в разговорной речи
 чаще на языках со свободным (или относительно
 свободным) порядком слов.
- Такие предложения усложняют синтаксический анализ (и сложнее воспринимаются человеком).
- Примеры:
 - Я памятник себе воздвиг нерукотворный
 - Кубок все выиграть мечтают

РАЗМЕЧЕННЫЕ ДЕРЕВЬЯ ЗАВИСИМОСТЕЙ

Для анализа ЕЯ обычно используется

размеченное дерево зависимостей:

упорядоченная четверка $\langle S, R, W, \varphi \rangle$,

где S – множество слов предложения,

- R отношение, которым задается дерево зависимостей для S
- W множество меток возможных типов синтаксических связей
- φ отображение множества дуг дерева во множество W, т.е.
 список пар «дуга дерева + метка типа связи»

ТИПЫ СИНТАКСИЧЕСКИХ СВЯЗЕЙ

- Количество и набор типов зависит от конкретной модели синтаксического анализа.
- Наиболее распространенные виды:
 - Прямообъектное: уделить → внимание, вижу → лес
 - Определительное: очень ← хорошо, важный ← вопрос
 - Отпредложное: $в \to здание$, хлеб $\to c \to маслом$
 - Предикат (сказуемое) и субъект (подлежащее):
 спасатели ← обнаружили
 - Посессивное: книга → врача
 - Аппозитивное (приложение): диван ← кровать
 - Количественное: пять ← машин
 - Обстоятельственное: $лежать \rightarrow на \rightarrow полу$
 - Ограничительное: $he \rightarrow \partial ЛЯ \rightarrow всех$

СРАВНЕНИЕ МОДЕЛЕЙ СА: ОБЩИЕ СВОЙСТВА

- Для любого предложения только некоторые (размеченные) деревья составляющих и некоторые (размеченные) деревья зависимостей правильны с лингвистической точки зрения ⇒ нужны грамматики:
 - грамматики составляющих (например, КС-грамматики)
 - грамматики зависимостей
- Для некоторых предложений\фраз ЕЯ возможно более одной правильной синтаксической структуры – это случай синтаксической омонимии, которая не может быть разрешена на этапе самого СА (разные смыслы фразы)
 - Он встретил брата в костюме /в коридоре
 - Я видел его молодым... Мать любит дочь.
 (принципиальная неоднозначность грамматик ЕЯ)

СРАВНЕНИЕ ДЕРЕВЬЕВ СА: ПРИМЕР

ОСОБЕННОСТИ СТРУКТУР СОСТАВЛЯЮЩИХ

Достоинства:

- Естественное представление неподчинительных отношений: (картонка и (маленькая собачонка))
- Фиксируют в явном виде разные словосочетания/фразы

Недостатки:

- Синтаксическая связь только вложение фраз
- Неоднозначности членения на фразы:
 (древние (стены города)) и ((древние стены) города)
- Не позволяют представлять разорванные синтаксические единицы и непроективные структуры, в частности, вопросит. предложения: *Which book did the student read?*
- Проблемы представления сложных предложений

Подходят для описания синтаксиса языков со строгим (жестким) порядком слов (английский и др.)

ОСОБЕННОСТИ ДЕРЕВЬЕВ ЗАВИСИМОСТЕЙ

Достоинства:

- Возможность представления непроективных структур
- Возможность отображать разнотипные синтаксические связи (но только между словами)

Недостатки:

- Неоднозначности в отображении неподчинительных (сочинительных) отношений: *красивый и умный*
- Не позволяют отобразить связи:
 - разноуровневых единиц (крупнее слово), например, конструкции с вспомогат. глаголом: будет читать
 - двойного подчинения и приложений: директор Иванов

Подходят для языков с достаточно свободным порядком слов (русский, испанский и др.)

КОМБИНИРОВАННАЯ МОДЕЛЬ СА

- Попытки преодолеть ограничения подходов
- Гладкий А. (1985 г.) теория синтаксических групп
- Синтаксическая группа: множество слов (фраза), которое вступает в отношение зависимости целиком, а не посредством одного из входящих в него слов,
- Пример гибкости комбинированной модели:
 - (a) *таблица допустимых размеров* (таблица, в которую сведены допустимые размеры) синтаксическая группа: *допустимых размеров*
 - (б) *таблица допустимых размеров* (таблица, размеры которой допустимы)

КОМБИНИРОВАННЫЕ СТРУКТУРЫ СОСТАВЛЯЮЩИХ И ЗАВИСИМОСТЕЙ

Синтаксич. группы с внутренней иерархией и без таковой, например: отсутствие внутренней иерархии в предложном сочетании

Возможность установления подчинительной связи между группами в целом

Допустимость разрывных групп

Примеры А.Гладкого

ПАРСЕРЫ ДЛЯ СА: ПОДХОДЫ К ПОСТРОЕНИЮ

Парсер – синтаксический анализатор

На входе: предложение текста, являющееся результатом

морфологического анализа словоформ!)

На выходе: синтаксическое дерево предложения

Подходы к построению парсеров:

- Подход, базирующийся на правила и словарях модель СА взаимосвязано включает:
 - способ представления синтаксической структуры
 - способ описания грамматических правил:
 грамматика составляющих / грамматика зависимостей,
 (строится экспертами или автоматизиров. по корпусам)
 - метод/алгоритм синтаксического анализа
- Подход на основе статистики и машинного обучения
- Гибридные подходы

СТРАТЕГИИ АНАЛИЗА ДЛЯ ГРАММАТИК СОСТАВЛЯЮЩИХ

- Алгоритмы СА на основе КС-грамматик:
 Нисходящие (top-down) или Восходящие (bottom-up)
 В общем случае недетерминированный разбор с возвратами, экспоненциальная сложность
- Алгоритм Кока-Янгера-Касами (СҮК)
 - КС-грамматики в нормальной форме Хомского: правила вида $A \! o \! B \, C$ и $A \! o \! \gamma$
 - Разбор снизу-вверх
 - Полиномиальная сложность: О (|G|× n × n),
 n длина предложения, |G| мощность грамматики
- Алгоритм Эрли
 - Не накладывает ограничений на грамматику
 - Разбор сверху-вниз
 - Кубическая сложность
- Проблема: неоднозначность грамматик, омонимия

РАЗРЕШЕНИЕ СИНТАКСИЧЕСКОЙ ОМОНИМИИ ДЛЯ КС-ГРАММАТИК

- Применение статистики синтаксических разборов
- На <u>основе корпуса</u> подсчитать вероятность каждого правила грамматики:

$$P = \{ \dots \\ NP \rightarrow DT \ NN \\ NP \rightarrow DT \ ADJ \ NN \\ NP \rightarrow NN \ NN \\ \dots \}$$

$$P = \{ \dots \\ NP \rightarrow DT \ NN \\ NN \\ NP \rightarrow DT \ ADJ \ NN \\ 0,6 \\ NP \rightarrow NN \ NN \\ 0,1 \\ \dots \}$$

- В итоге: КС- грамматика с вероятностями
- Вероятность дерева разбора определяется перемножением вероятностей правил, примененных при его построении
- Выбирается наиболее вероятное дерево

СТРАТЕГИИ АНАЛИЗА ДЛЯ ГРАММАТИК ЗАВИСИМОСТЕЙ

- Рассматриваются деревья зависимости, для которых выполняется свойство проективности
- Перебор на основе <u>графов</u>: среди всех возможных деревьев ищется правильное
- Метод на основе переходов: анализ предложения слева направо, поиск связей между соседними словами
- Метод фильтров:
 - Порождаются всевозможные синтаксические связи слов
 - Отбрасываются ошибочные и избыточные связи путем применения фильтров (например, правил согласования)
 - Фильтры: условия правильно построенных деревьев
- На практике для эффективности часто применяется: синтаксическая сегментация (Syntactic chunking) путем установления высоковероятных локальных связей

СИНТАКСИЧЕСКАЯ СЕГМЕНТАЦИЯ

Может предшествовать построению синт. дерева, быть начальным этапом CA – Syntactic chunking, частичный синтаксический анализ, выделение:

- <u>простых предложений в составе сложных</u> для проведения их независимого синтаксического анализа.
- локальных синтаксич. групп именных, глагольных и др. словосочетаний на базе высоковероятных локальных связей.
 Примеры:
- {Студент московского университета} прочитал {весьма интересную английскую статью} и {скоро будет делать} {краткий доклад}.
- Артур указал на { эту девочку}, {предложившую принести} {чистые тарелки и ложки}.
- [Олег узнал его], [он {видел этого человека} {два года} назад].

Вычислительная сложность — O(n)

ПРАВИЛА УСТАНОВЛЕНИЯ ЛОКАЛЬНЫХ СВЯЗЕЙ

Пример: Установление высоковероятной локальной связи прилагательное+существительное – *A N приветливый взор, открытый взору*

- Если у N и A совпадают род, число, падеж (согласование), то сделать существительное N главным и установить связь $A \leftarrow N$
- Если N является неизменяемым, то сделать его главным и установить связь $A \leftarrow N$
- Если прилагательное A является отглагольным, то сделать его главным и установить связь $A \to N$
- Если прилагательное является неизменяемым, то сделать N главным словом и установить связь A ← N

Возможны другие высоковероятные локальные связи

ПАРСЕРЫ НА ПРАВИЛАХ: СИСТЕМА ЭТАП

- Система Этап разрабатывалась для машинного перевода с 1970 гг., одна из первых значимых систем в настоящее время Этап-3 http://proling.iitp.ru/etap/
- Несколько ЕЯ: русский, французский, английский
- База: Лингвистическая теория (модель) «Смысл⇔Текст» поверхностный и глубинный синтаксис
- Парсер системы: деревья и грамматика зависимостей, много лингв. правил анализа (декларат. представление)
- Синтаксическая информация представлена также в ТКС – толково-комбинаторном словаре:

модели управления слов-предикатов,

т.е. описание их синтаксических валентностей, в частности: падеж актантов (актант – заполнитель валентности: слово/фраза)

СИСТЕМА *ЭТАП*: СИНТАКСИЧЕСКИЙ АНАЛИЗ

ЭТАП: ПРИМЕР СИНТАКСИЧЕСКОЙ СТРУКТУРЫ

Размеченное дерево зависимостей:

- узлы дерева слова предложения
- каждая дуга дерева помечена именем синтаксического отношения : СинтО (поверхностный синтаксис)

ЭТАП: СХЕМА АНАЛИЗА

ПАРСЕРЫ НА ПРАВИЛАХ ДЛЯ РЯ: ДИАЛИНГ-АОТ

- Проект *Диалинг-АОТ* (*aot.ru*) лингвистич. анализа русскоязычных текстов (1998-2001 гг.), открытый код, инженерный подход (на правилах), <u>веб-интерфейс</u>
- Модуль графематики: токенизация и сегментация на предложения, свертка словарных словосочетаний и др.
- Морфологический модуль: для каждой словоформы множество морфологических омонимов
- Постморфологический анализ на правилах
- Модуль синтаксического анализа *SynAn*
 - базируется на понятии синтаксической группы комбинированная, гибридная модель синтаксиса
 - синтаксические правила представлены процедурно
 - Используются модели управления слов-предикатов Ударить – Кто? Кого? Чем?

АОТ: ОСОБЕННОСТИ СА

- Не ставится цель получить полную синтаксическую структуру предложения, а только формирование различных синтаксических групп слов
- На начальном этапе фрагментационный анализ
 (= синтаксической сегментации): деление предложения
 на неразрывные синтаксические единства и
 установление частичной иерархии:
 - главные и придаточные предложения (простые)
 - причастные и деепричастные обороты

Что здесь неверно?

АОТ: СИНТАКСИЧЕСКИЕ ГРУППЫ (39 типов)

		_	
Тип	Название	Пример	
Количественная группа (последовательность числительных)	колич	двадцать восемь	
Последовательность чисел	СЛОЖ-ЧИСЛ	12,3, II-III	
Группа существительного, пре- модифицированная одним или несколькими прилагательными	прил-сущ	длинная тяжелая д идущий челове	<u> </u>
Группа существительного, премодифицированная наречным числительным	НАР-ЧИСЛ- СУЩ	много ребят, мало стульев	
Группа существительного, премодифицированная числительным	СУЩ-ЧИСЛ	восемь попугаев, д человека	ва
Предложная группа	ПГ	в дом, на холме	

ПАРСЕРЫ НА ПРАВИЛАХ ДЛЯ РЯ: Compreno

- Разрабатывается в АВВҮҮ более 30 лет
- Объемлющая система машинного перевода, построенная на основе перевода любого человеческого языка на универсальный язык понятий и обратно.
- Включает в себя все основные этапы обработки текстов: морфологический, синтаксический и семантический.
- Синтаксический анализ на основе грамматик зависимостей, предусматривающих даже непроективные связи.
- Требует громадного объема памяти, не переносим

Compreno: ПРИМЕР СИНТАКСИЧ. АНАЛИЗА

ПАРСЕРЫ НА ОСНОВЕ ОБУЧЕНИЯ

- Для <u>машинного обучения</u> на основе статистики и необходим корпус с синтаксической разметкой
- Корпуса текстов с синтаксич. разметкой (*Treebank*):
 - для английского языка *Pen Treebank*
 - для чешского языка *Prague Dependency Treebank*
 - для русского *SynTagRus* (синт. подкорпус *НКРЯ*)
- Проект *Universal Dependencies*: более 100 корпусов для 60 языков
- Современные парсеры в открытом доступе, обученные для нескольких языков:
 - Stanford Parser
 - MaltParser
 - SyntaxNet
 - UDPipe

ПРИМЕР СИНТАКСИЧЕСКОЙ РАЗМЕТКИ

- Национальный корпус русского языка (*НКРЯ*): ruscorpora.ru
- Подкорпус с синтаксической разметкой: SynTagRus
 - Разметка корпуса производилась в полуавтоматическом режиме:
 - Обработка предложения морфологическим и синтаксическим анализатором ЭТАП
 - Коррекция лингвистом
 - В результате, для каждого предложения: правильная морфологическая разметка
 - + единственное, размеченное дерево зависимостей
- Важно: качество разметки, подкорпус пополняется

ОЦЕНКИ КАЧЕСТВА СИНТАКСИЧЕСКОГО АНАЛИЗА

- Для деревьев составляющих оценивают полноту, точность, F-меру и т.д. верно размеченных в рамках предложения составляющих (правильно указано начало, конец и нетерминальный символ)
- Для деревьев зависимостей оценивают:
 - процент слов, правильно определенных корнем дерева метрика *unlabeled attachment score* (*UAS*)
 - процент слов с правильно определенной родительской вершиной и типом зависимости метрика labeled attachment score (LAS)
 - *accuracy* доля верных ответов
- НО! На эти оценки влияет качество предшествующих этапов: токенизации, морфологического анализа
- CoNLL Shared Task, обучение на SynTagRus: 86-92% LAS

Stanford Parser: ВЕРОЯТНОСТНЫЕ МОДЕЛИ

http://nlp.stanford.edu/software/lex-parser.html

- Несколько версий, изначально для английского языка, сейчас – для ряда языков: немецкого, итальянского, португальского, болгарского, арабского, китайского и др.
- Версия 3.4 (2014 г.) : Shift-reduce constituency parser
 - деревья составляющих, нисходящий анализ
 - КС-грамматика *PCFG*, лексикализация,
 применение вероятностей и контекстной информации
 - алгоритм А* при построении дерева
 - вычислительная сложность O(n⁵) от длины входа
 - средства преобразования в дерево зависимостей
- Нейросетевая версия 3.5: Neural-network dependency parser
 - деревья зависимостей + типы синт. связей
 - только для английского и китайского языков

MaltParser: ОБУЧЕНИЕ ДЛЯ СТРУКТУР ЗАВИСИМОСТЕЙ

http://maltparser.org/

- Первый значимый на основе машинного обучения, для деревьев зависимостей,
 2 режима работы:
 - Обучение синтаксической модели: построение правил, предсказывающих действия анализатора
 - Синтаксический анализ на основе обученной модели
- Обученные модели для разных ЕЯ, неплохие результаты даже при небольшом обучающем корпусе
- Первая модель 2011 г. для русского языка:
 - корпус SynTagRus (41186 предл., 719957 токенов),
 70% для обучения,15% для настройки параметров
 - предобработка текста: TreeTagger,_CSTLemma
 - тестирование (15% корпуса): UAS 88.0 %
 LAS 82.2 %

MaltParser: АНАЛИЗ

- Особенность размеченного дерева зависимостей:
 - узлы соответствуют элементам предложения:
 словам и знакам препинания
 - специальная (пустая) корневая вершина
- ❖ Детерминированный алгоритм построения дерева, архитектура transition-based parser
- ❖ Разбор предложения происходит слева направо, <u>один</u> проход по предложению, используются <u>два стека</u>: для обработанной и необработанной частей предложения
- Процесс анализа последовательные переходы (4 вида) от одной конфигурации анализа к другой
- ❖ Предсказатель (машинный классификатор) определяет переход по текущей конфигурации
- ❖ Вычислительная сложность *O(n)*, по все же относительно долгое время работы парсера

CPABHEHИE Stanford Parser и MaltParser НА ОДНОЙ КОЛЛЕКЦИИ

MaltParser: ОБУЧЕНИЕ

 Построение правил, предсказывающих действия анализатора по признакам предыстории разбора

- Предсказатель фактически опирается на признаки предыстории разбора, соответствующие некоторой частично построенной древесной структуре
- Признаки: части речи, типы зависимостей, леммы некоторых элементов используемых стеков (берутся из синтаксически размеченного корпуса)
- Разбиение предысторий на классы эквивалентности, в зависимости от учитываемых признаков
- Обучение сводится к задаче классификации, методы:
 - SVM метод опорных векторов
 - MBL обучение, основанное на предыстории с использованием к ближайших соседей

MaltParser: ПРИМЕР РАЗБОРА

Экспериментальное исследование рассмотренных алгоритмов проводилось на наборе тестовых функций (минимум которых известен), характеризующихся различной размерностью, количеством экстремумов, а также сложностью ландшафта изменений значений функций.

TAPCEP SYNTAXNET

https://opensource.google.com/projects/syntaxnet

- Фреймворк для разработки систем анализа ЕЯ, от *Google*, 2 режима работы: Обучение + Синт.анализ
- Машинное обучение модели на основе нейронных сетей, с применением библиотеки *TensorFlow*
- Обученные модели для 40 языков, для построения синтаксических деревьев зависимостей, в них встроены: сегментация на токены, предложения + морфол.анализ
- При обучении использованы корпуса с *UD* разметкой: *Universal Dependencies* – универсальная для всех ЕЯ разметка морфологических признаков и синтаксических зависимостей *https://universaldependencies.org*
- Парсер для РЯ: на корпусе SynTagRus качество анализа не сильно превосходит MaltParser
- Сравнительно медленная работа, сложность запуска

UDPipe: КОНВЕЙЕР ДЛЯ СИНТАКСИЧЕСКОГО АНАЛИЗА

http://ufal.mff.cuni.cz/udpipe

- Развивающийся проект, открытый код
- Обучаемый конвейер для проведения СА, включающий модули токенизации, сегментации на предложения, морфологического и синтаксического анализа
- Построение синтаксических <u>деревьев зависимостей:</u> transition-based parser, сложность близка к линейной
- *UDPipe 2.0*: 60 параметров обучения
- Для обучения: корпуса с универсальной для всех ЕЯ разметкой Universal Dependencies
- Обученные модели (парсеры) для более 30 языков, 3 модели для РЯ (есть модель для *SynTagRus*)
- Вывод в виде текстового файла с результирующим деревом зависимостей

UDPipe: ПРИМЕР ВЫВОДА

Очень большой шар вполне может взлететь над домом.

1 Очень очень ADV _ Degree=Pos 2 obl 2 большой большой ADJ Case=Nom|Degree=Pos|Gender= Masc | Number = Sing 3 amod шар шар NOUN _ Animacy=Inan | Case=Nom | Gender=Masc | 3 Number=Sing 5 nsubj вполне вполне ADV _ Degree=Pos 5 advmod _ может мочь VERB _ Aspect=Imp|Mood=Ind|Number=Sing| Person=3|Tense=Pres|VerbForm=Fin|Voice=Act 0 root взлететь взлететь VERB ___ Aspect=Perf|VerbForm=Inf|Voice 6 =Act 5 xcomp над над ADP 8 case домом дом NOUN _ Animacy=Inan | Case=Ins | Gender=Masc |Number=Sing 6 obl _ SpaceAfter=No 9 . . PUNCT 5 punct SpacesAfter=\n

UDPipe: ПРИМЕР РАЗБОРА - 1

Очень большой шар вполне может взлететь над домом .

UDPipe: ПРИМЕР РАЗБОРА - 2

Тем хуже для тебя, - философски заметил Платонов

БИБЛИОТЕКА *NLTK* : ПАРСЕРЫ

- Более 40 синтаксических анализаторов в классе parse (https://www.nltk.org/api/nltk.parse.html) почти все для английского языка, показывают работу по шагам, есть графический интерфейс (Demo.py)
- Для деревьев составляющих:
 - КС-грамматики: разные направления
 - КС-грамматики с вероятностями
- Для деревьев зависимостей, архитектуры:
 - на основе переходов (transition-based):
 классический алгоритм, а также MaltParser
 - на основе графов: разные способы оценки дуг в процессе выделения дерева
- ❖ Генератор предложений по заданной КС-грамматике

КАЧЕСТВО ПАРСЕРОВ ДЛЯ РЯ

Все парсеры обучены на корпусе *SynTagRus*Оценивается точность предварительной токенизации и сегментации на предложения

Оценка качества синтаксического анализа:

- правильность корня предложения (UAS)
- точность хозяина (предка), от которого есть зависимость
- точность <u>типов</u> всех синтаксических <u>связей</u>

(абсолютно для всех предложений и относительно только верно выделенных при сегментации и токенизации)

парсер	предл.	токены	корень		никсох		все связи	
парсер			абс.	отн.	абс.	отн.	абс.	отн.
MaltParser	95.27%	77.06%	51.63%	66.99%	26.04%	33.79%	2.64%	3.43%
SyntaxNet	96.14%	84.72%	77.71%	91.73%	64.31%	74.64%	16.20%	18.70%
UDPipe	99.54%	96.24%	87.32%	90.73%	81.17%	84.34%	40.70%	42.29%

ЗАКЛЮЧЕНИЕ

- Этап синтаксического анализа текста реально сложный этап, и актуальной остается задача улучшения качества работы парсеров
- Точность разбора зависит от нескольких факторов:
 - качества предшествующих токенизации, сегментации и морфологического анализа
 - использования или нет пунктуации
- Кроме точности СА важна скорость работы парсера
- Существенная проблема синтаксическая омонимия, чем длиннее предложение, тем в среднем больше вариантов разбора, а выявление из них верного зависит от семантики текста

СПАСИБО ЗА ВНИМАНИЕ

РЕЗУЛЬТАТЫ ПАРСЕРА АОТ?

http://aot.ru/demo/synt.html

- Эти школьники скоро напишут диктант по русскому языку
- Очень большой шар вполне может взлететь над домом
- Студенты факультета читают рекомендованную литературу по дискретной математике
- Кубок все мечтают выиграть
- Кубок все выиграть мечтают
- Мы увидели больного врача Сидорова
- Он встретил брата в костюме /в коридоре
- Глокая куздра штеко будланула бокра и курдячит бокрёнка

ДОМАШНЕЕ ЗАДАНИЕ № 3

<u>На выбор</u>варианты:

- А. <u>Исследование</u> различных <u>типов коллокаций</u> на базе ресурса *RuWac*
- В. Сравнительный анализ возможностей двух парсеров для русского/английского языка
- С. Составление программы для <u>синтаксической</u> <u>сегментации</u> текстов на РЯ (на основе правил выявления высоковероятных синтаксических связей)
- D. Программное <u>извлечение</u> из текста на РЯ (на основе мер ассоциаций) наиболее частотных неразрывных двухсловных коллокаций и их анализ
- E. Автоматическое <u>извлечение терминов</u> из текста на основе комбинации признаков, оценка средней точности

Срок выполнения задания – до 10 апреля включительно

ЛОКАЛЬНЫЕ ВЫСОКОВЕРОЯТНЫЕ СИНТАКСИЧЕСКИЕ СВЯЗИ В РЯ

Из наиболее распространенных:

- V и N (вин. падеж): перевозит → грузы
- N и N (род. падеж): перевозка → грузов,
- № и А (согласованные): интересная ← книга
- Ри А (согласованные): прочитанная ← книга
- V и V (инфинитив): yмее $m \to п$ лаваmь
- N и V (инфинитив): умение → плавать
- А и V (инфинитив): готовый → помочь
- Adv и Adv: очень ← хорошо
- Adv и A : весьма ← интересный
- Adv и V: быстро ← бежит
- Num и N : пять ← машин
- ...

ПРАВИЛО УСТАНОВЛЕНИЯ ЛОКАЛЬНОЙ СВЯЗИ ПРЕДЛОГА

Правило установления локальной зависимости *Prep* → *N* (предлог-существительное): в город

- Если падеж N соответствует падежам, обслуживаемым предлогом Prep, то установить связь, сделав Prep главным словом
- Если *N* является неизменяемым, то установить связь, сделав *Prep* главным словом
- В иных случаях связь не устанавливать

Правило установления зависимости : *N* → *Prep* (существительное-предлог): освобождение от

- Если N является отглагольным, то сделать его главным и установить связь
- В противном случае связь не устанавливать