```
require('igraph')
## Loading required package: igraph
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
##
       decompose, spectrum
## The following object is masked from 'package:base':
##
##
       union
require('ggplot2')
## Loading required package: ggplot2
require('reshape')
## Loading required package: reshape
setwd("~/git/subgraph/mgc_based/")
listGs<- list.files(path = "../graphml/", pattern = "*.graphml")</pre>
#read in covariates and graph list
#find those with common ids, sort by id
covariates<- read.csv("../covariates/predictors.csv",stringsAsFactors = F)</pre>
ids <- unlist( lapply(listGs,function(x)strtrim(x,6)))</pre>
common_id<- intersect(covariates$RUNNO , ids)</pre>
covariates <- covariates[covariates$RUNNO%in%common_id,]</pre>
covariates <- covariates[order(covariates$RUNNO),]</pre>
listGs<- listGs[ids%in%common id]</pre>
listGs<- listGs[order(listGs)]</pre>
graphList<- lapply(listGs, function(x){</pre>
  read.graph( file = paste("../graphml/",x,sep = ""),format = "graphml")
})
AdjacencyList<- lapply(graphList, function(x){
  get.adjacency(x)
})
HemisphereList<- lapply(graphList, function(x){</pre>
  get.vertex.attribute(x,name="hemisphere")
})
DegreeList<- lapply(AdjacencyList, function(x){</pre>
  rowSums(as.matrix(x))
n = nrow(AdjacencyList[[1]])
```

```
############################
## Compute all local corr
library(ecodist)
library(energy)
library(HHG)
## HHG Ver. 2.0 - package for non parametric tests of independence and equality of distributions.
## type vignette('HHG') or ?HHG for documentation, examples and a quickstart guide.
## use suppressPackageStartupMessages(library(HHG)) to suppress this message.
source("MGCLocalCorr.R")
source("./MGCSampleStat.R")
##
## Attaching package: 'SDMTools'
## The following object is masked from 'package:ecodist':
##
       distance
LowerTriMatrix = sapply(AdjacencyList,function(x){
 x = as.matrix(x)
 x[lower.tri(x)]
})
AdjMatrix = t(LowerTriMatrix[,covariates$GENOTYPE>=1])
GenoType = covariates$GENOTYPE[covariates$GENOTYPE>=1]
A = as.matrix(dist(AdjMatrix))
B = as.matrix(dist(GenoType))
image(A)
```


mgc_result = MGCSampleStat(A,B)
mgc_result

[1] 0.1013322

ldcorr=MGCLocalCorr(A,B,option='dcor')\$corr;
lmdcorr=MGCLocalCorr(A,B,option='mcor')\$corr
lmantel=MGCLocalCorr(A,B,option='mantel')\$corr
ldcorr

```
## [,1] [,2]
## [1,] 0.2241791 0.2215222
## [2,] 0.2277821 0.2252497
## [3,] 0.2272890 0.2247079
```

```
## [4,] 0.2261109 0.2235600
  [5,] 0.2269153 0.2243762
  [6,] 0.2275038 0.2249775
## [7,] 0.2284445 0.2259923
   [8,] 0.2286600 0.2262344
##
  [9,] 0.2280735 0.2256821
## [10,] 0.2293121 0.2269597
## [11,] 0.2280953 0.2258036
## [12,] 0.2310084 0.2287255
## [13,] 0.2310428 0.2287919
## [14,] 0.2281517 0.2259559
## [15,] 0.2308340 0.2286215
## [16,] 0.2295066 0.2273438
## [17,] 0.2359676 0.2338073
## [18,] 0.2344469 0.2322863
## [19,] 0.2327976 0.2305943
## [20,] 0.2312618 0.2289698
## [21,] 0.2310930 0.2287228
lmdcorr
##
               [,1]
                          [,2]
  [1,] 0.00000000 0.00000000
## [2,] 0.09243169 0.08525495
   [3,] 0.10047875 0.08799893
## [4,] 0.11947777 0.10400986
  [5,] 0.11953964 0.10133216
## [6,] 0.09896962 0.07821629
## [7,] 0.09672132 0.07474661
  [8,] 0.09846038 0.07497433
## [9,] 0.10800302 0.08357894
## [10,] 0.10643611 0.08121826
## [11,] 0.10665352 0.08110696
## [12,] 0.10422467 0.07865220
## [13,] 0.10703107 0.08220562
## [14,] 0.10333601 0.07951882
## [15,] 0.10306176 0.08073138
## [16,] 0.09727297 0.07724313
## [17,] 0.10996845 0.09318260
## [18,] 0.09971848 0.08637174
## [19,] 0.08045508 0.07173693
## [20,] 0.06749143 0.06249813
## [21,] 0.05663861 0.05546064
lmantel
               [,1]
   [1,] 0.00000000 0.00000000
##
   [2,] 0.06109966 0.05364184
   [3,] 0.06847480 0.05771624
  [4,] 0.07328227 0.06043800
##
   [5,] 0.08580448 0.07155342
##
  [6,] 0.06014455 0.04400783
## [7,] 0.05480100 0.03758526
## [8,] 0.05453027 0.03658844
## [9,] 0.05270130 0.03428726
```

```
## [10,] 0.07387255 0.05570100
## [11,] 0.09622641 0.07862117
## [12,] 0.09750382 0.08018999
## [13,] 0.09939297 0.08275202
## [14,] 0.09532972 0.07939782
## [15,] 0.10444806 0.08980766
## [16,] 0.10184316 0.08851266
## [17,] 0.12013639 0.10892620
## [18,] 0.11014102 0.10092897
## [19,] 0.10718826 0.10172939
## [20,] 0.09883228 0.09697879
## [21,] 0.09781755 0.09999296
### Permutation Test of local corr
source("MGCSampleStat.R")
test=MGCSampleStat(A,B)
test
## [1] 0.1013322
source("MGCPermutationTest.R")
test=MGCPermutationTest(A,B,rep=1000,option='mcor')
test
## $pMGC
## [1] 0.14
##
## $statMGC
## [1] 0.1013322
##
## $pLocalCorr
##
         [,1] [,2]
##
    [1,]
            1 1.000
## [2,]
            1 0.081
  [3,]
            1 0.106
  [4,]
##
            1 0.069
##
  [5,]
            1 0.074
## [6,]
            1 0.116
## [7,]
            1 0.121
##
   [8,]
            1 0.117
## [9,]
            1 0.093
## [10,]
            1 0.104
## [11,]
            1 0.103
## [12,]
            1 0.110
## [13,]
            1 0.104
## [14,]
            1 0.102
## [15,]
            1 0.103
## [16,]
            1 0.114
## [17,]
            1 0.080
## [18,]
            1 0.087
## [19,]
            1 0.112
## [20,]
            1 0.119
## [21,]
            1 0.128
##
## $localCorr
                           [,2]
##
               [,1]
```

```
## [1,] 0.0000000 0.00000000
## [2,] 0.09243169 0.08525495
## [3,] 0.10047875 0.08799893
## [4,] 0.11947777 0.10400986
## [5,] 0.11953964 0.10133216
## [6,] 0.09896962 0.07821629
## [7,] 0.09672132 0.07474661
## [8,] 0.09846038 0.07497433
## [9,] 0.10800302 0.08357894
## [10,] 0.10643611 0.08121826
## [11,] 0.10665352 0.08110696
## [12,] 0.10422467 0.07865220
## [13,] 0.10703107 0.08220562
## [14,] 0.10333601 0.07951882
## [15,] 0.10306176 0.08073138
## [16,] 0.09727297 0.07724313
## [17,] 0.10996845 0.09318260
## [18,] 0.09971848 0.08637174
## [19,] 0.08045508 0.07173693
## [20,] 0.06749143 0.06249813
## [21,] 0.05663861 0.05546064
## $optimalInd
## [1] 42
```