Лабораторная работа 2.2.4 Определение коэффициента теплопроводности твёрдых тел

Каграманян Артемий, Б01-208 19 апреля 2023 г.

1 Аннотация

Цель работы: 1) определение коэффициентов теплопроводности твёрдых тел путём сравнения с теплопроводностью эталонного материала; 2) вычисление относительных тепловых потерь через боковые поверхности по измеренным значениям температуры вдоль радиусов пластинок.

Оборудование: набор термопар; зеркальный гальванометр; тонкие резиновые прокладки; исследуемые тела; диск из эталонного материала; штангенциркуль.

2 Теоретическая справка

Количество теплоты Δq , протекающее за единицу времени через однородную перегородку толщиной Δz и площадью S при разности температур ΔT , определяется формулой:

$$\Delta q = \kappa S \frac{\Delta T}{\Delta z} \tag{1}$$

 κ - коэффициент теплопроводности. Но этим способом мы пользоваться не будем, потому что результат получится неточным, однако, есть другое решение.

Рис. 1. Установка

Две пластинки с коэффициентами теплопроводности κ_1 и κ_2 зажимаются между стенками, температуры которых равны T_1 и T_2 (температуры термостатов). Если d_1 и d_2 достаточно малы, то и потери тепла через боковые поверхности тоже малы, тогда:

$$\Delta q = \kappa_1 S \frac{\Delta T_1}{\Delta z_1} = \kappa_2 S \frac{\Delta T_2}{\Delta z_2} \tag{2}$$

 $\Delta z_1 = d_1$ и $\Delta z_2 = d_2$, отсюда:

$$\frac{\kappa_1}{\kappa_2} = \frac{d_1}{d_2} \frac{\Delta T_2}{\Delta T_1} \tag{3}$$

Следует учесть тепловые расходы через боковые стенки пластинок. Полный радиальный поток:

$$q_r S_r = -\kappa 2\pi r d \frac{dT}{dr} \tag{4}$$

Осевой поток:

$$q_z S_z = -\kappa \pi r^2 d \frac{dT}{dz} \tag{5}$$

Отношение данных потоков обозначим за δ - параметр, который характеризует расширение теплового потока и его относительные потери. Данный параметр не зависит от радиуса:

$$\delta = \frac{2d\frac{dT}{dr}}{r\frac{dT}{dz}} \tag{6}$$

3 Выполнение работы

Давайте соберем установку как на картинке и оценим время установления теплового потока через пластинки. Для этого поместим в любое место нашу термопару и построим график зависимости напряжения от времени.

Рис. 2. Время установления теплового потока

Итого, у нас получилось $t_{ycm}=54\ c$. Теперь нам нужно откаллибровать термопары. Для этого разместим их на одном уровне, но оставим расстояние между ними. Итого, получилось:

$$a_1 = 0.81 \text{ MB}, \ a_2 = 0.74 \text{ MB}, \ a_3 = 0.88 \text{ MB}, \ a_4 = 0.85 \text{ MB}$$

Далее, отношение разниц температур мы будем считать по формуле:

$$\frac{\Delta T_2}{\Delta T_1} = \frac{U_4/a_4 - U_3/a_3}{U_2/a_2 - U_1/a_1}$$

Дальше нам предстоит измерять теплопроводности разных материалов, помещая в установку разные блины. Вот, что получилось в конце:

	U_1, mB	U_2, mB	U_3, мВ	U_4, мВ	d, см	D, см	dT_2/dT_1	
Псеклиглас(снизу)	1,84	0,95	0,95	0,35	0,52	10	0,67	
Псеклиглас(сверху)	1,68	0,76	0,89	0,18			0,77	
Стекло(снизу)	1,84	0,67	0,72	0,22	0,18	10	0,43	
Стекло(сверху)	1,71	1,39	1,24	0,27			3,03	
Гетинакс(снизу)	1,81	0,74	0,74	0,09	0,31	10	0,61	
Гетинакс(сверху)	1,84	1,03	1,02	0,14			1,09	
Эбонит	1,53	0,85	0,85	0,16	0,39	10	1,01	

Рис. 3. Результаты

Чтобы убедиться, что наша теория верна, положим 2 эбонитовых блина в установку и измерим отношение теплопроводностей:

$$\frac{\kappa_1}{\kappa_2} = \frac{d_1}{d_2} \frac{\Delta T_2}{\Delta T_1} = 1,018 \pm 0,026 \approx 1$$

Итого, нам осталось посчитать теплопроводности наших материалов и сравнить их с табличными.

	х/х_э	х, Вт/(м*K)	
Псеклиглас(снизу)	1,98	0,34	
Псеклиглас(сверху)	1,73	0,29	
Стекло(снизу)	5,07	0,86	
Стекло(сверху)	6,57	1,12	
Гетинакс(снизу)	2,07	0,35	
Гетинакс(сверху)	2,35	0,40	

Рис. 4. Теплопроводности

Осталось оценить тепловые потери. Расположим термопары так, как показано в описании, и снимем показания:

	U_калиб	l, cm	U_расст, мВ	U, MB	U_высоты	U, MB
1	0,81	1,1	0,97	1,20	2,15	2,65
2	0,74	2,1	0,84	1,14	1,22	1,65
3	0,88	3	0,96	1,09	1,14	1,30
4	0,85	4,1	0,92	1,08	0,09	0,11

Итого, получилось $\delta \approx 0.114$

4 Заключение

Мы проделали ряд действий, в результате которых научились измерять теплопроводности разных материалов и оценивать тепловые потери. Все результаты получились сравнимы с табличными в пределах погрешности