

Übung 4: Finite State Machine (FSM)

Aufgabe: Cola-Automat

Implementieren Sie den Cola-Automaten aus dem Modul dt1, Seite 59/60 in VHDL.

Systemanforderungen:

- Der Automat akzeptiert 10, 20 und 50 Rappen
- Eine Cola-Dose kostet 60 Rappen
- Der Automat liefert Retourgeld

Zustandsdiagramm:

ENTITY der FSM:

Name	Richtung	Тур	Bedeutung
clk	IN	std_ulogic	Systemclock, 10MHz
reset_n	IN	std_ulogic	Reset (aktiv low)
e10rp	IN	boolean	Einwurf 10 Rp
e20rp	IN	boolean	Einwurf 20 Rp
e50rp	IN	boolean	Einwurf 50 Rp
cola	OUT	std_ulogic	Coladose wird ausgegeben
r10rp	OUT	std_ulogic	10 Rp Rückgeld
r20rp	OUT	std_ulogic	20 Rp Rückgeld

Aufgaben:

- 1. Prüfen Sie das Zustandsdiagramm auf Vollständigkeit
- 2. Realisieren Sie die Moore-FSM
- 3. Simulieren Sie die Zustandsmachine: Die Eingänge e10rp, e20rp und e50rp sind z.Bsp. Pulse von der einer clock-Periode Dauer, die clock-Frequenz z.Bsp 10 MHz.
- 4. Wieviele FlipFlops ergeben sich bei:
 - binary encoding
 - one-hot encoding
 - two-hot encoding
 - gray-encoding
- 5. Notieren Sie zu jeder Variante eine mögliche Codierung
- 6. Synthetisieren Sie die Zustandsmaschinen mit Quartus. Was für eine Codierung erwarten Sie? Verifizieren Sie das Resultat mit Hilfe der Quartus Reports.