import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

df = pd.read_csv('/content/drive/My Drive/kddcup99_csv.csv')

df.head()

₽		duration	protocol_type	service	flag	src_bytes	dst_bytes	land	wrong_fragment
	0	0	tcp	http	SF	181	5450	0	(
	1	0	tcp	http	SF	239	486	0	(
	2	0	tcp	http	SF	235	1337	0	(
	3	0	tcp	http	SF	219	1337	0	(
	4	0	tcp	http	SF	217	2032	0	(

df.describe()

₽		duration	src_bytes	dst_bytes	land	wrong_fragment	
	count	494020.000000	4.940200e+05	4.940200e+05	494020.000000	494020.000000	49402
	mean	47.979400	3.025616e+03	8.685308e+02	0.000045	0.006433	
	std	707.747185	9.882191e+05	3.304003e+04	0.006673	0.134805	
	min	0.000000	0.000000e+00	0.000000e+00	0.000000	0.000000	
	25%	0.000000	4.500000e+01	0.000000e+00	0.000000	0.000000	
	50%	0.000000	5.200000e+02	0.000000e+00	0.000000	0.000000	
	75%	0.000000	1.032000e+03	0.000000e+00	0.000000	0.000000	
	max	58329.000000	6.933756e+08	5.155468e+06	1.000000	3.000000	

```
import seaborn as sns
import matplotlib.pyplot as plt
#get correlations of each features in dataset
corrmat = df.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(20,20))
#plot heat map
g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn")
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnir import pandas.util.testing as tm

Removal of redundant features¶

```
df['lnum_outbound_cmds'].value_counts()
df.drop('lnum_outbound_cmds', axis=1, inplace=True)
df['is_host_login'].value_counts()
df.drop('is_host_login', axis=1, inplace=True)
df['wrong_fragment'].value_counts()
df.drop('wrong_fragment', axis=1, inplace=True)
df['hot'].value counts()
df.drop('hot', axis=1, inplace=True)
df['num_failed_logins'].value_counts()
df.drop('num_failed_logins', axis=1, inplace=True)
df['logged in'].value counts()
df.drop('logged_in', axis=1, inplace=True)
df['lroot_shell'].value_counts()
df.drop('lroot_shell', axis=1, inplace=True)
df['lnum_file_creations'].value_counts()
df.drop('lnum_file_creations', axis=1, inplace=True)
df['lnum_shells'].value_counts()
df.drop('lnum_shells', axis=1, inplace=True)
df['lnum_access_files'].value_counts()
df.drop('lnum_access_files', axis=1, inplace=True)
df['is_guest_login'].value_counts()
df.drop('is_guest_login', axis=1, inplace=True)
df['serror_rate'].value_counts()
df.drop('serror_rate', axis=1, inplace=True)
df['srv_serror_rate'].value_counts()
df.drop('srv_serror_rate', axis=1, inplace=True)
df['rerror_rate'].value_counts()
df.drop('rerror_rate', axis=1, inplace=True)
df['srv_rerror_rate'].value_counts()
df.drop('srv rerror rate', axis=1, inplace=True)
df['same_srv_rate'].value_counts()
df.drop('same_srv_rate', axis=1, inplace=True)
df['diff srv rate'].value counts()
df.drop('diff srv rate', axis=1, inplace=True)
df['srv diff host rate'].value counts()
df.drop('srv_diff_host_rate', axis=1, inplace=True)
df['dst_host_same_srv_rate'].value_counts()
df.drop('dst_host_same_srv_rate', axis=1, inplace=True)
df['dst_host_diff_srv_rate'].value_counts()
df.drop('dst_host_diff_srv_rate', axis=1, inplace=True)
df['dst_host_same_src_port_rate'].value_counts()
df.drop('dst_host_same_src_port_rate', axis=1, inplace=True)
df['dst host srv diff host rate'].value counts()
df.drop('dst_host_srv_diff_host_rate', axis=1, inplace=True)
df['dst_host_serror_rate'].value_counts()
df.drop('dst_host_serror_rate', axis=1, inplace=True)
df['dst host srv serror rate'].value counts()
df.drop('dst_host_srv_serror_rate', axis=1, inplace=True)
df['dst_host_rerror_rate'].value_counts()
```

```
dt.drop('dst_host_rerror_rate', axis=1, inplace=True)
df['dst_host_srv_rerror_rate'].value_counts()
df.drop('dst_host_srv_rerror_rate', axis=1, inplace=True)
df['lsu_attempted'].value_counts()
df.drop('lsu_attempted', axis=1, inplace=True)
df['urgent'].value_counts()
df.drop('urgent', axis=1, inplace=True)
#df['lnum_outbound_cmds'].value_counts()
#df.drop('lnum_outbound_cmds', axis=1, inplace=True)
#df['is_host_login'].value_counts()
#df.drop('is_host_login', axis=1, inplace=True)
df['protocol_type'] = df['protocol_type'].astype('category')
df['service'] = df['service'].astype('category')
df['flag'] = df['flag'].astype('category')
cat_columns = df.select_dtypes(['category']).columns
df[cat_columns] = df[cat_columns].apply(lambda x: x.cat.codes)
Removal of duplicates
df.drop_duplicates(subset=None, keep='first', inplace=True)
df.shape
   (115856, 14)
df['label'].value_counts()
 C→
```

normal 83691 neptune 27618

Log-scaled distribution of attacks

← <Figure size 432x288 with 0 Axes>

KDD skewness and kurtosis

df.skew()

С→

```
duration
                       14.985219
                       1.424176
protocol_type
service
                       0.538835
flag
                       -1.593586
src_bytes
                      338.612541
dst_bytes
                      66.342305
land
                       90.954070
lnum_compromised
                      202.472917
lnum_root
                      201.989612
count
                       1.856803
                       0 000000
court
```

df.kurtosis()

Г⇒	duration	306.909769
_	protocol_type	5.583877
	service	-1.085504
	flag	1.398477
	src_bytes	115052.482121
	dst_bytes	4779.294916
	land	8270.785682
	<pre>lnum_compromised</pre>	44196.852559
	lnum_root	44312.253465
	count	2.751708
	srv_count	121.865683
	dst_host_count	-1.490660
	dst_host_srv_count	-1.719594
	dtype: float64	

Univariate histogramms

 \Box

KDD standardization

20000

df.shape

[→ (115856, 14)

data = df.values

X = data[:, 0:13]

Х

from sklearn.preprocessing import StandardScaler
sScaler = StandardScaler()
rescaleX = sScaler.fit_transform(X)

rescaleX

С→

KDD normalization¶

```
from sklearn.preprocessing import Normalizer
norm = Normalizer()
xNormalize = norm.fit_transform(X)
```

xNormalize

```
□→ array([[0.00000000e+00, 1.83382493e-04, 4.03441484e-03, ..., 1.46705994e-03, 1.65044243e-03, 1.65044243e-03], [0.00000000e+00, 1.84198300e-03, 4.05236260e-02, ..., 1.47358640e-02, 3.49976770e-02, 3.49976770e-02], [0.00000000e+00, 7.36176259e-04, 1.61958777e-02, ..., 5.88941007e-03, 2.13491115e-02, 2.13491115e-02], ..., [0.00000000e+00, 8.03889689e-04, 1.76855732e-02, ..., 1.44700144e-02, 1.28622350e-02, 2.04991871e-01], [0.00000000e+00, 7.92770426e-04, 1.74409494e-02, ..., 9.51324512e-03, 2.06120311e-02, 2.02156459e-01], [0.00000000e+00, 7.81439612e-04, 1.71916715e-02, ..., 2.73503864e-02, 4.68863767e-03, 1.99267101e-01]])
```

df_Normalized = pd.DataFrame(data=xNormalize)

df_Normalized.hist(figsize=(50, 30), bins=20)
plt.show()


```
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
df['label'] = df['label'].astype('category')
cat_columns = df.select_dtypes(['category']).columns
df[cat_columns] = df[cat_columns].apply(lambda x: x.cat.codes)
data = df.values
Y = data[:,13]
X = data[:,0:14]
Υ
    array([11, 11, 11, ..., 11, 11, 11])
Χ
[ 0, 1, 22, ..., 9, 9, [ 0, 1, 22, ..., 19, 19, [ 0, 1, 22, ..., 29, 29,
                                            11],
                                            11],
                                            11],
               0,
                    1, 22, ..., 16, 255,
                                            11],
              0,
                                26, 255,
                    1, 22, ...,
                                            11],
                  1, 22, ..., 6, 255,
                                            11]])
X = np.transpose(X)
Χ
   array([[ 0, 0, 0, ..., 0,
                                      0,
                                             0],
               1,
                  1,
                       1, ..., 1,
                                      1,
                                             1],
            [ 22, 22, 22, ...,
                                 22,
                                      22,
                   19, 29, ..., 16, 26,
            [ 9, 19, 29, ..., 255, 255, 255],
            [ 11, 11, 11, ..., 11, 11, 11]])
df.shape
    (115856, 14)
from sklearn.decomposition import PCA
pca = PCA(n_components=3)
pca.fit(X,Y)
 \Box
```

```
BCK/same Tarra - Sharahad warran lambal - m samananaha 2 - mandam shaha Nama
pca.components_
     array([[-3.52173642e-07, 2.79466075e-07, 1.77143379e-07, ...,
              1.21788939e-07, 2.48040098e-07, 1.40279534e-07],
            [ 2.34367963e-04, 2.05770794e-05, 5.71442093e-05, ...,
              5.04536665e-05, 5.04396671e-05, 5.18923964e-05],
            [-1.65785111e-05, -1.92922353e-05, -2.32806533e-05, ...,
             -7.07292499e-05, -7.11720485e-05, -7.25587675e-05]])
pca.explained variance
     array([3.44607340e+16, 3.83057958e+13, 1.43144455e+10])
pca.transform(X)
     array([[-4.96067932e+07, -1.78470363e+06, 4.12964297e+05],
            [-4.96089793e+07, -1.78750338e+06, -3.80981995e+04],
            [-4.96089514e+07, -1.78705313e+06, -3.69984891e+04],
            [-4.96089735e+07, -1.78736297e+06, -3.79208693e+04],
            [ 6.44973089e+08, 1.82711188e+03, -1.28239185e+00],
            [-4.96679542e+07, 2.14397646e+07, -4.08055851e+01],
            [-4.96089809e+07, -1.78752093e+06, -3.81544438e+04],
            [-4.96089810e+07, -1.78749197e+06, -3.80738178e+04],
            [-4.96089810e+07, -1.78749154e+06, -3.80663269e+04],
            [-4.96089231e+07, -1.78744445e+06, -3.87414537e+04],
            [-4.96089765e+07, -1.78740344e+06, -3.83026862e+04],
            [-4.96086917e+07, -1.78566113e+06, -3.12102674e+04],
            [-4.96089478e+07, -1.78466182e+06, -3.95372808e+04],
            [-4.96089556e+07, -1.78729335e+06, -3.78183750e+04]])
```