Algoritmos Numéricos

08/11/2023

Aula T2 -: Trabalho 2

Prof.: Paulo Roberto Nunes de Souza

1 Introdução

Este trabalho contempla o assunto Ajustes de Curvas da disciplina Algoritmos Numéricos. O trabalho é em **grupo de até 3 pessoas** e deve ser entregue pelo Google Sala de Aula da disciplina. O grupo deve implementar calcular o ajuste de curvas para os dados fornecidos e, a partir do cálculo dos coeficientse β_0 e β_1 , determinar a estimativa de idade de uma amostra.

2 Carbono-14 no planeta terra

O carbono-14, C14 ou radiocarbono é um isótopo radioativo natural do elemento carbono, recebendo esta numeração porque apresenta número de massa 14 (6 prótons e 8 nêutrons). Este isótopo apresenta dois nêutrons a mais no seu núcleo que o isótopo estável carbono-12.

Ele se forma nas camadas superiores da atmosfera onde os átomos de nitrogênio-14 são bombardeados por nêutrons contidos nos raios cósmicos:

$$_{7}N^{14} + _{0}n^{1} \rightarrow _{6}C^{14} + _{1}H^{1}$$

Reagindo com o oxigênio do ar forma dióxido de carbono ($C^{14}O_2$), cuja quantidade permanece constante na atmosfera. O carbono-14 está presente na Terra numa proporção de um para cada 10^{12} átomos de carbono-12. Este $C^{14}O_2$, juntamente com o $C^{12}O_2$ normal, é absorvido pelos animais e vegetais sendo, através de mecanismos metabólicos, incorporados a estrutura destes organismos. Enquanto o animal ou vegetal permanecer vivo a relação quantitativa entre o carbono-14 e o carbono-12 permanece constante. A partir da morte do ser vivo, a quantidade de C-14 existente em um tecido orgânico cairá pela interrupção de sua absorção da atmosfera e decaimento dos C-14 que já haviam sido absorvidos pelo organismo enquanto vivo. Cerca de 50 mil anos depois, esta quantidade começa a ser pequena demais para uma datação precisa.

Quando o ser vivo morre inicia-se uma diminuição da quantidade de carbono-14 devido a sua desintegração radioativa. No carbono-14, um nêutron do núcleo se desintegra produzindo um próton (que permanece no núcleo aumentando o número atômico de 6 para 7) com emissão de uma partícula beta (elétron nuclear). O resultado da desintegração do nêutron nuclear do carbono-14 origina como produto o átomo de nitrogênio-14:

$$_{6}C^{14} \rightarrow _{7}N^{14} + _{-1}\beta^{0}$$

3 Experimento de regressão

Uma equipe de historiadores fez uma grande descoberta de uma biblioteca na Polônia com obras de diversos períodos da história humana. Algumas dessas obras possuem informações de quando elas foram produzidas. Os historiadores pretendem usar a informação destas obras para conseguir datas as demais obras que não contêm esta informação.

Os historiadores utilizaram um espectrômetro de massas em amostras idênticas de exemplares datados para serem usados como referência. A tabela a seguir exibe a idade dos documentos, em anos, e a quantidade de carbono-14 encontrada na amostra de cada uma das obras.

Os dados coletados foram os seguintes:

t	N	t	N	t	N	t	N
77	59661545127	597	56023285835	1215	51986776587	1841	48194428313
131	59272980868	689	55403107473	1287	51535845232	1846	48165287627
136	59237138543	701	55322704014	1313	51373955360	1901	47845812585
177	58943989631	798	54677186462	1354	51119735808	1963	47488217390
186	58879835517	848	54347384762	1422	50700833780	2001	47270353646
244	58468052408	890	54071895392	1510	50163851068	2022	47150409778
323	57911820970	960	53615840481	1577	49758811422	2031	47099084756
334	57834782072	1060	52970997216	1582	49728714833	2084	46798005196
371	57576445703	1064	52945368905	1609	49566510689	2169	46319144898
459	56966618736	1070	52906948155	1625	49470654651	2196	46168072773
509	56623009875	1159	52340235651	1686	49106843188	2234	45956272155
537	56431494197	1177	52226361174	1764	48645561215	2312	45524579654

Utilizando os dados da tabela de quantidade de carbono-14 das amostras de referência, você deve fazer o ajuste para o modelo a seguir

$$u(t): N = \beta_0 e^{\beta_1 t}$$

Onde:

N =Quantidade de carbono-14 na amostra

t = Idade da amostra em anos

Utilizando os coeficientes β_0 e β_1 , além da equação $N = \beta_0 e^{\beta_1 t}$, estimar qual seria a idade de uma amostra cuja quantidade de carbono-14 seja:

• N = 53307321157.

3.1 Grupo

Os trabalhos devem ser feitos em grupos de até 3 pessoas e podem ser implementados em qualquer linguagem de programação, desde que o ajuste de curva seja totalmente implementada pelo grupo sem a utilização de bibliotecas que calculem regressão ou sistemas lineares.

3.2 Entrega

Cada grupo (até 3 pessoas) pode entregar apenas uma cópia do trabalho, desde que todos os integrantes estejam devidamente identificados no documento. A entrega deve ser feita pelo Google Sala de Aula da disciplina. Entregas feitas após o prazo do trabalho serão penalizadas conforme especificado no Plano de Ensino da disciplina.