SCTR's Pune Institute of Computer Technology Dhankawadi, Pune

AN INTERNSHIP REPORT ON

ActOne ML for Pattern Recognition

SUBMITTED BY

Name: Shubham Rajendra Chemate

Class: TE-1 Roll no: 31118

Under the guidance of

Prof. M. S. Wakode

DEPARTMENT OF COMPUTER ENGINEERING ACADEMIC YEAR 2021-22

DEPARTMENT OF COMPUTER ENGINEERING

SCTR's Pune Institute of Computer Technology Dhankawadi, Pune Maharashtra 411043

CERTIFICATE

This is to certify that the SPPU Curriculum-based internship report entitled "ActOne ML for Pattern Recognition"

Submitted by Shubham Rajendra Chemate 31118

has satisfactorily completed the curriculum-based internship under the guidance of *Prof. M. S. Wakode* towards the partial fulfillment of third year Computer Engineering Semester VI, Academic Year 2021-22 of Savitribai Phule Pune University.

Prof. M. S. Wakode Internship Guide PICT, Pune Dr. G. V. Kale Head Department of Computer Engineering PICT, Pune

Place:Pune

Date: 28/04/2022

Acknowledgement

It gives me great pleasure in presenting the internship report on "ActOne ML for Pattern Recognition".

First of all I would like to take this opportunity to thank my internship guide Prof. M. S. Wakode for giving me all the help and guidance needed. I am really grateful for her kind support and valuable suggestions that proved to be beneficial in the overall completion of this internship.

I am thankful to our Head of Computer Engineering Department, Dr. G. V. Kale, for her indispensable support and suggestions throughout the internship work.

I would also genuinely like to express my gratitude to the Department Internship Coordinator, Prof. P. P. Joshi, for her constant guidance and support and for the timely resolution of the doubts related to the internship process.

Finally, I would like to thank my mentor, Prof. T. S. Pinjan for his constant help and support during the overall internship process.

Contents

1	Title	3							
2	Introduction								
3	Problem Statement	4							
4	Objectives and Scope	4							
5	Methodological Details 5.1 Models	6							
6	Modern Engineering Tools Used								
7	Results of Internship Work	8							
8	A chievement	11							

List of Figures

1	Dataset for Linear Regression
2	Architecture Diagram
3	Data Preprocessing
4	Relation between Alerts
5	Data Visualization
6	Linear Regression Model
7	Naive Bayes Classifier
8	Predictor

1 Title

ActOne ML for Pattern Recognition

2 Introduction

In today's rapidly growing technological era, the rate of financial crimes has significantly increased over the past few years. The new types of crimes are becoming more smarter than those which were present already, and because of this crime investigation is also becoming very complex.

Financial crimes analysts spend lots of time on manual processing and repetitive work. According to the data, 56% of organizations spend 30% time on manual processing which is actually considerably high. This issue must be addressed with the help of modern tools and technology.

To address this issue we are developing a solution (Machine Learning based) which will predict the next best steps of investigation for a transaction fraud. The model is based on Linear Regression and Naive Bayes Classifier with a accuracy of around 93%.

3 Problem Statement

We are provided a dataset which contains number of alert so using an efficient algorithm of ML we have to predict some pattern and when further such alerts trigger we have to give our predicted results i.e next best step, the aim is to reduce the manual investigation time.

4 Objectives and Scope

The motive behind this project is to reduce the manual process of analysing fraud and determining investigation steps and automate it using the technology to reduce the time and increase the efficiency. The main challenge is how to design the model which will take details about financial crime and predict investigation steps by analysing it according to the requirements. We can use the recent technologies like machine learning and design the predictor that takes the input as a transaction fraud details (which is in form of alerts) and then it will get processed and analysed using ML algorithm and give result. With this output we can reduce the steps of investigation.

As we are building a model which will predict the workflow of new alert generated depending on the previous existing data we can reduce the time of investigation up to 70% and also increase the efficiency of investigation process. Also we are developing a generalized plugin or extension so that any organization can used it for detecting any fraud and to predict the next best step of investigation.

5 Methodological Details

This project consists of Natural Language Processing and Machine Learning. Natural language processing refers to the branch of computer science and more specifically, the branch of artificial intelligence or AI—concerned with giving computers the ability to understand text and spoken words in much the same way human beings can.

Different tasks performed in the project include:

- Collect and clean datasets for business & non-business classification, sentiment analysis and entity recognition.
- Train the custom classification and entity recognition models using Python.
- Apply Linear Regression and Naive Bayes Classifier on the preprocess the data.
- Create plugin for predicting next best step of investigation from previously collected data.
 - Train new models for custom document classification and custom entity recognition.
 - Check the status of their models.
 - Extract trade insights from the text data submitted.

5.1 Models

- a) Linear Regression Model
- b) Naive Bayes Classifier

5.1.1 Linear Regression Model

Linear regression is a basic and commonly used type of predictive analysis. The overall idea of regression is to examine two things:

- 1. Does a set of predictor variables do a good job in predicting an outcome (dependent) variable?
- 2. Which variables in particular are significant predictors of the outcome variable, and in what way do they—indicated by the magnitude and sign of the beta estimates—impact the outcome variable?

These regression estimates are used to explain the relationship between one dependent variable and one or more independent variables. The simplest form of the regression equation with one dependent and one independent variable is defined by the formula

$$y = c + b * x$$

where

y = estimated dependent variable score,

c = constant,

b = regression coefficient,

x = score on the independent variable.

CUSTOM_MEDIUM_STRING_13	CUSTOM_MEDIUM_STRING_14	RULE_FP	EXECUTED_PROCESS_ID	ISSUE_TIMESTAMP	ISSUE_KEY	ALERT_ID	ALERT_DATE
NULL	3	ca6115dcf471ac5b4efd4a8ad6c1311e	NULL	54:43.2	0dd88923-d922-451c-b54c-6810fe194a0e	SAM1-1	NULL
NULL	NULL	6ff0c7d52cf06eca7bfe6e211f91d064	NULL	59:18.0	2bdc6ab0-da89-4e25-9fcb-2f34daecb8fe	SAM1-1	NULL
NULL	906	e28e7892e9dac725dd10f7c13804ff07	NULL	54:43.3	2fb2a504-c371-4f70-ad4e-a79c3eeab3dc	SAM1-1	NULL
NULL	1681	5aec577cd4f26eea74c469f2d7bc81e4	NULL	54:45.8	3a749837-79cb-4e2f-a16a-5796943136eb	SAM1-1	NULL
NULL	NULL	fe549f31c6997a444fbba9cc4e947dfb	NULL	59:18.0	4b8576a9-556c-4c3e-8f9b-22f7c1fdc6a2	SAM1-1	NULL
NULL	908	37509c4ab152338bad5ad79310ad3e4e	NULL	54:46.1	531dfccd-bf20-48a8-9102-32214d8ba1eb	SAM1-1	NULL
NULL	1357	c42e062ab1f83fc4a893e1e175a88759	NULL	54:45.6	59ceeaf3-3fca-462c-8710-a3230ad2bc1f	SAM1-1	NULL
NULL	2189	3ac399c678f7fc9f820ffbb36d027df4	NULL	54:44.9	5c953e09-9345-4563-9cef-9e336e080a35	SAM1-1	NULL
NULL	1316	5e9ebe12451242454065684337289a22	NULL	54:43.9	6aa6c7e9-e575-4fd4-b0ef-815ded66edee	SAM1-1	NULL
NULL	4	c4e5d29ef6036ad6e6bff8fc460e36cd	NULL	54:44.1	6c9cd8d6-a19e-4e0d-bdd6-519aa43e2f0b	SAM1-1	NULL
NULL	1667	5aec577cd4f26eea74c469f2d7bc81e4	NULL	54:46.1	711577e2-3da9-4124-adab-ce70e1889abd	SAM1-1	NULL
NULL	NULL	82fb4266c412ecf8bd6db1b59c069ec8	NULL	59:18.0	78418d8e-71e5-43f3-9ad7-d83eb562c5bd	SAM1-1	NULL
NULL	1682	5aec577cd4f26eea74c469f2d7bc81e4	NULL	54:45.8	8179af2f-e5cb-41ee-8b92-cc4deb447d71	SAM1-1	NULL
NULL	2191	09bc94cd8edeb4ae2f6dcf46e6445dab	NULL	54:45.3	a96a0c20-031f-4227-adc6-d43c1c22ff44	SAM1-1	NULL
NULL	2190	b73a1cd95b7b1c670125219173f895bb	NULL	54:45.1	a9ab47e5-dfb7-496d-8703-f0486fbf2dbd	SAM1-1	NULL
NULL	1668	cb45039dbd578727c5c86469277934eb	NULL	54:45.6	bd2349ce-090e-4526-9271-85f0936a925f	SAM1-1	NULL
NULL	1963	09bc94cd8edeb4ae2f6dcf46e6445dab	NULL	54:45.3	ca27eb79-8b7e-4ff4-944d-8b191574f311	SAM1-1	NULL
NULL	1680	5aec577cd4f26eea74c469f2d7bc81e4	NULL	54:45.7	d5d0fb32-9399-437f-9e17-da61e6af05c4	SAM1-1	NULL
NULL	1683	5aec577cd4f26eea74c469f2d7bc81e4	NULL	54:46.0	ed4bb583-85de-49fe-842f-02190c3381b4	SAM1-1	NULL
NULL	5	363875940d37431986974e32df300abd	NULL	54:42.4	f9902c0a-6f5f-49f7-bda3-64a0185528d1	SAM1-1	NULL
NULL	1964	b73a1cd95b7b1c670125219173f895bb	NULL	54:45.2	fb81fa56-86b5-425a-ad0d-7110e001437c	SAM1-1	NULL
NULL	1666	5aec577cd4f26eea74c469f2d7bc81e4	NULL	55:07.5	00332a86-9ab9-4d69-82d1-64f2fadc2541	SAM1-10	NULL
NULL	1374	5aer577rd4f26eea74r469f2d7hr81e4	NULL	55:07.4	02d750d3-e8f1-40e7-ec53-e17d1fcf50e4	SAM1-10	NULL

Figure 1: Dataset for Linear Regression

5.1.2 Naive Bayes Classifier

Naive Bayes is a classification algorithm for binary (two-class) and multiclass classification problems. It is called Naive Bayes or idiot Bayes because the calculations of the probabilities for each class are simplified to make their calculations tractable".

5.2 Architecture Diagram

Figure 2: Architecture Diagram

6 Modern Engineering Tools Used

Technologies which we have used in this project are Amazon Comprehend & Amazon Simple Storage Service (Amazon S3) for Natural Language Processing, Machine Learning to train and test the model and AI algorithm for prediction using python language.

1. Amazon Comprehend:

It is a natural-language processing (NLP) service offered by Amazon Web Services that uses machine learning to uncover valuable insights and connections in text.

2. Amazon S3:

Amazon Simple Storage Service is also a service offered by Amazon Web Services that provides object storage through a web service interface.

3. Jupyter Notebook:

The Jupyter Notebook is an open-source web application that allows data scientists to create and share documents that integrate live code, equations, computational output, visualizations, and other multimedia resources, along with explanatory text in a single document

4. Python:

Python is a computer programming language often used to build websites and software, automate tasks, and conduct data analysis. Python is a general-purpose language, meaning it can be used to create a variety of different programs and isn't specialized for any specific problems.

5. Excel:

Analyze Data in Excel empowers you to understand your data through natural language queries that allow you to ask questions about your data without having to write complicated formulas. In addition, Analyze Data provides high-level visual summaries, trends, and patterns.

7 Results of Internship Work

(Screenshots of work done)

Figure 3: Data Preprocessing

Figure 4: Relation between Alerts

Figure 5: Data Visualization

Figure 6: Linear Regression Model

Figure 7: Naive Bayes Classifier

```
In [31]: print('The Gaussian Model Has Achieved %.2f Percent Accuracy'%(algorithm.score(features, target)))
    The Gaussian Model Has Achieved 0.85 Percent Accuracy
In [32]: observation = [[84]]
In [35]: predictions=algorithm.predict(observation)
In [36]: predictions
Out[36]: array(['SAM-5'], dtype='<U7')
In [ ]:</pre>
```

Figure 8: Predictor

8 Achievement

- \bullet Guided Investigation: Consistent approach to inv
stigation using guided ML steps
- Cost Saving: Time-spent on similar event is reduced
- \bullet Integrated the Model with Actimize Case Manager so that it can be used on larger scale