

Mechanics and machines, lab 1

Intro to subject History of CAD Solid modeling

Class activities

Triple repetition: lab, HW, project

Almost final exam task

- Make CAD model
- 2. Solve Inverse Dynamics problem
- 3. Balancing the mechanism
- 4. Propose a gearbox
- 5. Check the durability of the mechanism

Fusion 360: kinematics

ANSYS: inverse dynamics problem

Balancing

Gearbox

Gear Model Number

CSD-50-80-2A-GR

Series	Size	Ratio	Туре
CSD	50	80	2A-GR

- Zero-backlash
- · Reduced thickness, 1/4 size of CSF Series
- Hollow through bore, extra-large through bore also available
- · Extremely high positioning accuracy
- · Excellent Repeatability
- · Compact and simple design

Gear Performance Data		
Rated Torque L10	260	Nm
Limit for Average Torque	363	Nm
Limit for Repeated Peak Torque	659	Nm
Limit for Momentary Peak Torque	1,000	Nm
Starting Torque	63	Ncm
Backdriving Torque	62	Nm
Ave. Input Speed	2,500	rpm

Transient Structural

Computer Aided Design (1)

Computer Aided Design (2)

History of CAD (1)

- 60th Theoretical studies of the possibility of solving design problems on the computer were carried out.
- 70th Methods, algorithms and programs for solving individual tasks for different design stages were developed.
- 80th CAD is being developed and improved. 3D modeling became more popular.
- 90th Developers had finished formation of base concepts of CAD and unified data transfer between systems.

Popular CAD systems in Russia (1)

Siemens NX

Prof

- All in one system (CAD,CAM,CAE,PDM)
- Free for students
- Can create a real aircraft

Cons

- Complex system
- Not popular in small companies

Common usage

- If you need a good drawings. Make CAD anywhere, afterwards import to Kompas-3D
- 2) If you need Standard Component Library (SCL), use either Kompas, or Solid Edge, or https://www.mcmaster.com/. Insert needed stuff in NX

Creating a solid body

Most of the bodies can be created using only 4 operations:

- Sketch
- Extrude
- Revolute
- Combine

NX workspace, checklist

- □ Browser
- ☐ Design History
- □ Toolbar
- □ Data Panel
- ☐ View Cube
- ☐ Help

Sketches, checklist

- ☐ Choose Plane
- □ Construction
- ☐ Toolbar
- Constraints
- ☐ Change Parameters

Task 1: make CAD model of detail below

Oleg Bulichev Mechanics and machines

Task 2: make an animated sketch

Task 3: make CAD model of detail below

Hint: It can be solved making 2 equal sketches perpendicular to each other, extruding them and using "combine" command

Oleg Bulichev Mechanics and machines

References

- NX interface
- https://urokinx.ru/

Oleg Bulichev

