

# Physics of breeding



Janne Wallenius

Nuclear Engineering, KTH



# Intended learning outcomes

Generation IV reactors are intended to

Increase fuel resources by a factor > 100 by breeding of fissile fuel from  $^{238}$ U or  $^{232}$ Th.

After today's meeting and associated home assignment, you will be able to

- Evaluate the capacity of a reactor to breed fissile fuel from fertile nuclides
- Assess the impact of power density, fuel composition and coolant on breeding
- Develop unconventional approaches to breeding



### Why do we need breeding?

- Inventory of easily recoverable fissile nuclide is limited
- Fissile nuclides may be produced by neutron capture in "fertile" nuclides:
- $= n + {}^{232}\text{Th} \rightarrow {}^{233}\text{Th} + γ \rightarrow {}^{233}\text{Pa} + ν + e \rightarrow {}^{233}\text{U} + ν + e$
- Natural uranium consists of 99.3% <sup>238</sup>U
- Easily recoverable thorium resources ≈ twice of uranium resources
- How long may the world rely on nuclear fission power?
- Where do these fuel resources reside?



# What is breeding, more exactly?

#### **PURPOSE**

The intention of breeding is to reload a nuclear reactor with its own spent fuel, adding only 238U or 232Th as top-up. Any surplus fuel may be collected to start additional reactors.

#### **DEFINITION**

 The sum of reactivity changes during burn-up and subsequent cooling, reprocessing and refabrication of the fuel should be larger than zero.



#### Mathematical formulation

#### Instantaneous in-pile conversion ratio:

$$CR_{ip} = \frac{\sum_{A,m} \sigma_c(^m A) C(^m A) \eta(^{m+1} A')}{\sum_{A,m} \sigma_f(^m A) C(^m A) \eta(^m A)},$$

Reactivity produced by capture

Reactivity destroyed by fission



# η-value

Average number of neutrons produced in an absorption

$$\eta = \nu \frac{\sigma_f}{\sigma_a} \simeq \nu \frac{\sigma_f}{\sigma_f + \sigma_c}$$









#### Thermal spectrum reactors

#### In a thermal spectrum reactor, we have

$$\sigma_f$$
 (fertile) ≈ 0

 $\eta$  (fertile) ≈ 0

$$CR_{ip} = \frac{\sigma_c(fertile) \times C(fertile) \times \eta(fissile)}{\sigma_f(fissile) \times C(fissile) \times \eta(fissile)} = \frac{\sigma_c(fertile) \times C(fertile)}{\sigma_f(fissile) \times C(fissile)}$$



Independent of  $\eta$ !



### Example: CANDU reactor

#### Cross sections for capture & fission

| Cross section                       | Value  |
|-------------------------------------|--------|
| σ <sub>c</sub> ( <sup>232</sup> Th) | 1.84 b |
| <b>σ</b> <sub>f</sub> (233U)        | 118 b  |

Which is the maximum concentration of <sup>233</sup>U permitted to obtain CR<sub>ip</sub> > 1.0?



Maximum achievable burn-up ≈ 0.7%!



#### Fast spectrum reactors

In fast rectors, all nuclides have a significant probability for fission.

#### Sodium cooled rod lattice with (238U,239Pu)O2 fuel

| Nuclide | <b>σ</b> <sub>c</sub> [b] | σ <sub>f</sub> [b] | $\sigma_{ m f}/[\sigma_{ m f}+\sigma_{ m c}]$ | η    |
|---------|---------------------------|--------------------|-----------------------------------------------|------|
| 238U    | 0.25                      | 0.04               | 0.14                                          | 0.38 |
| 239Pu   | 0.40                      | 1.68               | 0.81                                          | 2.37 |
| 240Pu   | 0.43                      | 0.35               | 0.45                                          | 1.38 |

In-pile conversion rate  $CR_{ip} > 1.0$  if  $C(^{239}Pu) < 14.3\%$ 



#### Breeding and burn-up

- Better neutron economy makes breeding with high burn-up possible
- Burn-up limited to ≈ 10% by damage dose to fuel cladding, not by reactivity
- U-Pu cycle features better reactivity margin
- Fissile mass at EoL < BoL! (contradicts conventional definition of breeding)</p>





 $(238 \bigcup_{0.895}, 239 Pu_{0.105})O_2$ 

 $(232Th_{0.908}, 233U_{0.092})O_{2}$ 



### Power density and breeding

- Starting a fast reactor, Pu from spent LWR fuel would be used
- Contains <sup>241</sup>Pu with half-life of 14 years ( <sup>241</sup>Pu  $\rightarrow$  <sup>241</sup>Am +  $\beta$  )
- Decay of <sup>241</sup>Pu occurs both during irradiation and cooling

| Nuclide           | Fraction |  |
|-------------------|----------|--|
| <sup>238</sup> Pu | 0,035    |  |
| 239Pu             | 0,519    |  |
| <sup>240</sup> Pu | 0,238    |  |
| 241Pu             | 0,129    |  |
| 242Pu             | 0,079    |  |

Pu from spent PWR fuel



Reducing power density reduces conversion ratio

 $(238 U_{0.875}, Pu_{0.125})O_2$ 



### Fuel composition

- "High density" fuels feature higher density of actinides & higher reactivity
- Carbides, nitrides and metal alloy fuels have been used in fast reactors
- Fewer light atoms in fuel leads to harder neutron spectrum

| Fuel                                  | Oxide | Carbide | Nitride | Metal alloy |
|---------------------------------------|-------|---------|---------|-------------|
| σ <sub>c</sub> (238U)                 | 0.29  | 0.26    | 0.25    | 0.20        |
| <b>σ</b> <sub>f</sub> (239Pu)         | 1.80  | 1.73    | 1.68    | 1.61        |
| $\sigma_c$ (238U)/ $\sigma_f$ (239Pu) | 0.16  | 0.15    | 0.15    | 0.12        |

Harder spectrum
reduces
conversion ratio!

Fuels with U/Pu ratio = 7/1



## Spectrum hardening



- Lower density of light atoms results in less slowing down of neutrons in elastic collisions.
- Average neutron energy increases
- Spectrum averaged capture cross section decreases
- Fewer neutrons reach energies below the sodium resonance at 3 keV



## High density, high conversion rate fuels

- The higher actinide density permits to reduce Pu fraction in fuel
- Raises conversion ratio!





Reactivities normalized to zero at BoL



#### Coolant and breeding

- Lead coolant will be used in the next fast reactor built in Russia (BREST)
- Helium coolant is considered for the ALLEGRO project in central Europe
- Neutron spectrum might be affected by choice of coolant

#### Na, Pb & He cooled rod lattices with $(^{238}U,Pu)O_2$ fuel & P/D = 1.17

| Fuel                                  | Sodium | Lead | Helium |
|---------------------------------------|--------|------|--------|
| σ <sub>c</sub> ( <sup>238</sup> U)    | 0.29   | 0.29 | 0.28   |
| <b>σ</b> <sub>f</sub> (239Pu)         | 1.80   | 1.73 | 1.73   |
| $\sigma_c$ (238U)/ $\sigma_f$ (239Pu) | 0.16   | 0.17 | 0.16   |

- Reduced fission rate for lead coolant, due to in-elastic scattering
- For same P/D, Pb provides the highest conversion ratio!
- Sodium and helium yield similar conversion ratios



### Fuel rod pitch & spectrum softening





- Velocity of lead limited to 2 m/s by erosion concerns
- Rod pitch must be increased to achieve same cooling rate (power density)
- In lead-cooled reactors with power density of 30 kW/m, P/D ≈ 1.5
- Spectrum softens, requiring to increase Pu fraction in fuel.
- Conversion ratio more sensitive to Pu fraction than to spectrum.
- CR<sub>ip</sub> < 1.0 for lead coolant with oxide fuel</p>



#### Conversion ratio > 1 with Pb coolant

- In order to achieve CR<sub>ip</sub> > 1 with Pb coolant a dense fuel is required
- Metal alloy fuel is not compatible with liquid lead.
- Mixed nitride fuel selected for BREST project





### Unconventional breeding cycles

- Fertile nuclides not available in nature are present in spent fuel
- 237Np breeds into 238Pu and eventually 239Pu
- $\bigcirc$   $\eta$ -value for <sup>237</sup>Np > 1.0, may be used as fuel without fissile support!



#### Sodium cooled rod lattice with <sup>237</sup>NpO<sub>2</sub> fuel

| Nuclide           | <b>σ</b> <sub>c</sub> [b] | $\sigma_{f}[b]$ | $\sigma_{\rm f}/[\sigma_{\rm f}+\sigma_{\rm c}]$ | η    |
|-------------------|---------------------------|-----------------|--------------------------------------------------|------|
| <sup>237</sup> Np | 0.80                      | 0.57            | 0.42                                             | 1.21 |
| 238Pu             | 0.27                      | 1.32            | 0.83                                             | 2.55 |

 $\eta > 2.0$  not a requirement for breeding!

#### Summary

- Breeding with high fuel burn-up achievable in a fast neutron spectrum
- Onversion ratio is affected by power density, fuel composition, choice of coolant and coolant volume fraction.
- Sodium coolant & metal alloy fuel maximizes conversion ratio
- Lead coolant requires dense fuel (e.g. nitride) to provide for CR<sub>ip</sub> > 1.0
- O Neptunium fuel features conversion ratio > 1.0, in spite of  $\eta$  < 2.0.



### Home assignment 1

- Calculate cross sections for capture and fission, and neutron production, for the relevant nuclides in the U-Pu cycle, using Serpent. Adopt Pu from spent PWR fuel.
- Calculate the instantaneous in-pile conversion ratio at beginning-of-life, using

| Group No    | Sodium | Lead | Helium |
|-------------|--------|------|--------|
| Oxide       | 1      | 5    | 9      |
| Nitride     | 2      | 6    | 10     |
| Carbide     | 3      | 7    | 11     |
| Metal alloy | 4      | 8    |        |

- Do the calculation as function of P/D for P/D = 1.15 to 1.50 and adjust the <sup>238</sup>U fraction so that the reactivity in an infinite rod lattice = 0.10, corresponding to 10% leakage in a finite reactor core.
- Which is the maximum P/D for which a conversion ratio larger than 1.0 is attainable in each case?
- Discuss how the cross sections depend on the coolant volume fraction.