Deep Generative Models

Lecture 2

Roman Isachenko

Ozon Masters

Spring, 2022

We are given i.i.d. samples $\{\mathbf{x}_i\}_{i=1}^n \in \mathcal{X}$ (e.g. $\mathcal{X} = \mathbb{R}^m$) from unknown distribution $\pi(\mathbf{x})$.

Goal

We would like to learn a distribution $\pi(\mathbf{x})$ for

- evaluating $\pi(\mathbf{x})$ for new samples (how likely to get object \mathbf{x} ?);
- ▶ sampling from $\pi(\mathbf{x})$ (to get new objects $\mathbf{x} \sim \pi(\mathbf{x})$).

Instead of searching true $\pi(\mathbf{x})$ over all probability distributions, learn function approximation $p(\mathbf{x}|\theta) \approx \pi(\mathbf{x})$.

Divergence

- ▶ $D(\pi||p) \ge 0$ for all $\pi, p \in \mathcal{S}$;
- ▶ $D(\pi||p) = 0$ if and only if $\pi \equiv p$.

Divergence minimization task

$$\min_{\boldsymbol{\theta}} D(\pi||\boldsymbol{p}).$$

Forward KL

$$\mathit{KL}(\pi||p) = \int \pi(\mathbf{x}) \log rac{\pi(\mathbf{x})}{p(\mathbf{x}|m{ heta})} d\mathbf{x}
ightarrow \min_{m{ heta}}$$

Reverse KL

$$\mathit{KL}(p||\pi) = \int p(\mathbf{x}|\boldsymbol{\theta}) \log \frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x})} d\mathbf{x} \to \min_{\boldsymbol{\theta}}$$

Maximum likelihood estimation (MLE)

$$m{ heta}^* = rg \max_{m{ heta}} p(\mathbf{X}|m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i|m{ heta}) = rg \max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i|m{ heta}).$$

Maximum likelihood estimation is equivalent to minimization of the Monte-Carlo estimate of forward KL.

Likelihood as product of conditionals

Let
$$\mathbf{x} = (x_1, \dots, x_m)$$
, $\mathbf{x}_{1:j} = (x_1, \dots, x_j)$. Then

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}); \quad \log p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{j=1}^{m} \log p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}).$$

MLE problem for autoregressive model

$$\theta^* = \underset{\theta}{\operatorname{arg max}} p(\mathbf{X}|\theta) = \underset{\theta}{\operatorname{arg max}} \sum_{i=1}^n \sum_{j=1}^m \log p(x_{ij}|\mathbf{x}_{i,1:j-1}\theta).$$

Sampling

$$\hat{x}_1 \sim p(x_1|\theta), \quad \hat{x}_2 \sim p(x_2|\hat{x}_1,\theta), \ldots, \quad \hat{x}_m \sim p(x_m|\hat{\mathbf{x}}_{1:m-1},\theta)$$

New generated object is $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_m)$.

Autoregressive MLP

Autoregressive RNN

image credit: https://jmtomczak.github.io/blog/2/2_ARM.html

Outline

1. Autoregressive models (WaveNet, PixelCNN, PixelCNN++)

2. Bayesian framework

3. Latent variable models (LVM)

Outline

1. Autoregressive models (WaveNet, PixelCNN, PixelCNN++)

2. Bayesian framework

3. Latent variable models (LVM

Autoregressive models

- Convolutions could be used for autoregressive models, but they have to be causal.
- ▶ Try to find and understand the difference between Conv A/B.

- Could learn long-range dependecies.
- ▶ Do not suffer from gradient issues.
- ► Easy to estimate probability for given input, but hard generation of new samples (the sequential process).

WaveNet

Goal

Efficient generation of raw audio waveforms with natural sounds.

Solution

Autoregressive model

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{t=1}^{T} p(x_t|\mathbf{x}_{1:t-1}, \boldsymbol{\theta}).$$

- ▶ Each conditional $p(x_t|\mathbf{x}_{1:t-1}, \boldsymbol{\theta})$ models the distribution for the timestamp t.
- The model uses causal dilated convolutions.

WaveNet

Oord A. et al. Wavenet: A generative model for raw audio, 2016

PixelCNN

Goal

Model a distribution $\pi(\mathbf{x})$ of natural images.

Solution

Autoregressive model on 2D pixels

$$p(\mathbf{x}|oldsymbol{ heta}) = \prod_{j=1}^{\mathsf{width} imes \mathsf{height}} p(x_j|\mathbf{x}_{1:j-1},oldsymbol{ heta}).$$

- ▶ We need to introduce the ordering of image pixels.
- ▶ The convolution should be **masked** to make them causal.
- The image has RGB channels, these dependencies could be addressed.

PixelCNN

Raster ordering

Dependencies between pixels

PixelCNN

Masked convolution kernel

PixelCNN++

CIFAR-10 pixel values distribution

- Standard PixelCNN outputs softmax probabilities for values {0, 255} (256 outputs feature maps).
- Categorical distribution do not know anything about numerical relationships (220 is close to 221 and far from 15).
- If pixel value is not presented in the training dataset, it won't be predicted.
- (Look at the edges of the distributions: they have higher probability mass).

PixelCNN++

Mixture of logistic distributions

$$p(x|\mu,s) = rac{\exp^{-(x-\mu)/s}}{s(1+\exp^{-(x-\mu)/s})^2};$$
 $p(x|\mu,s,\pi) = \sum_{k=1}^K \pi_k p(x|\mu_k,s_k);$

To adopt probability calculation to discrete values:

$$P_d(x|\mu, s, \pi) = P(x + 0.5|\mu, s, \pi) - P(x - 0.5|\mu, s, \pi)$$

For the edge case of 0, replace x-0.5 by $-\infty$, and for 255 replace x+0.5 by $+\infty$.

Salimans T. et al. PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications, 2017

CIFAR-10 generated samples

PixelCNN

PixelCNN++

Oord A., Kalchbrenner N., Kavukcuoglu K. Pixel recurrent neural networks, 2016 Salimans T. et al. PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications, 2017

Generative models zoo

Outline

1. Autoregressive models (WaveNet, PixelCNN, PixelCNN++)

2. Bayesian framework

3. Latent variable models (LVM

Bayes theorem

$$p(\mathbf{t}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{\int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}}$$

- x − observed variables, t − unobserved variables (latent variables/parameters);
- $p(\mathbf{x}|\mathbf{t})$ likelihood;
- $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}$ evidence;
- ▶ $p(\mathbf{t})$ prior distribution, $p(\mathbf{t}|\mathbf{x})$ posterior distribution.

Meaning

We have unobserved variables \mathbf{t} and some prior knowledge about them $p(\mathbf{t})$. Then, the data \mathbf{x} has been observed. Posterior distribution $p(\mathbf{t}|\mathbf{x})$ summarizes the knowledge after the observations.

Let consider the case, where the unobserved variables ${\bf t}$ is our model parameters ${m heta}.$

- $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^n$ observed samples;
- ▶ $p(\theta)$ prior parameters distribution (we treat model parameters θ as random variables).

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

Note the difference from

$$p(\mathbf{x}) = \int p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}.$$

Posterior distribution

$$p(\boldsymbol{\theta}|\mathbf{X}) = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

If evidence $p(\mathbf{X})$ is intractable (due to multidimensional integration), we can't get posterior distribution and perform the precise inference.

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} \left(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right)$$

MAP estimation

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \arg\max_{\boldsymbol{\theta}} \bigl(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\bigr)$$

Estimated θ^* is a deterministic variable, but we could treat it as a random variable with density $p(\theta|\mathbf{X}) = \delta(\theta - \theta^*)$.

Dirac delta function

$$\delta(x) = \begin{cases} +\infty, & x = 0; \\ 0, & x \neq 0; \end{cases} \int \delta(x) dx = 1; \int f(x) \delta(x-y) dx = f(y).$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta \approx p(\mathbf{x}|\theta^*).$$

Outline

1. Autoregressive models (WaveNet, PixelCNN, PixelCNN++)

2. Bayesian framework

3. Latent variable models (LVM)

Latent variable models (LVM)

MLE problem

$$m{ heta}^* = rg \max_{m{ heta}} p(\mathbf{X}|m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i|m{ heta}) = rg \max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i|m{ heta}).$$

The distribution $p(\mathbf{x}|\theta)$ could be very complex and intractable (as well as real distribution $\pi(\mathbf{x})$).

Extended probabilistic model

Introduce latent variable z for each sample x

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z}); \quad \log p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) + \log p(\mathbf{z}).$$

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z})d\mathbf{z}.$$

Motivation

The distributions $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ and $p(\mathbf{z})$ could be quite simple.

Latent variable models (LVM)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

Examples

Mixture of gaussians

PCA model

- ▶ $p(z) = \text{Categorical}(\pi)$ ▶ $p(z) = \mathcal{N}(z|0, I)$
- $p(\mathbf{x}|z,\theta) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_z, \boldsymbol{\Sigma}_z) \quad P(\mathbf{x}|\mathbf{z},\theta) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$

Latent variable models (LVM)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

PCA projects original data **X** onto a low dimensional latent space while maximizing the variance of the projected data.

- $p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2\mathbf{I})$
- $p(z) = \mathcal{N}(z|0, \mathbf{I})$
- $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$
- $ho(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^T(\mathbf{x} \boldsymbol{\mu}), \sigma^2\mathbf{M}), \text{ where } \mathbf{M} = \mathbf{W}\mathbf{W}^T + \sigma^2\mathbf{I}$

Maximum likelihood estimation for LVM

MLE for extended problem

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \prod_{i=1}^n p(\mathbf{x}_i, \mathbf{z}_i | \boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i, \mathbf{z}_i | \boldsymbol{\theta}). \end{aligned}$$

However, **Z** is unknown.

MLE for original problem

$$\begin{split} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i, \mathbf{z}_i|\boldsymbol{\theta}) d\mathbf{z}_i = \\ &= \arg\max_{\boldsymbol{\theta}} \log \sum_{i=1}^n \int p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{split}$$

Naive approach

Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})p(\mathbf{z})d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})}p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_{k},\boldsymbol{\theta}),$$

where $\mathbf{z}_k \sim p(\mathbf{z})$.

Challenge: to cover the space properly, the number of samples grows exponentially with respect to dimensionality of **z**.

Summary

- WaveNet and PixelCNN models use masked causal convolutions (1D or 2D) to get autoregressive model.
- ► PixelCNN++ proposes to use discretized mixture of logistics for output distribution.
- Bayesian inference is a generalization of most common machine learning tasks. It allows to construct MLE, MAP and bayesian inference, to compare models complexity and many-many more cool stuff.
- ▶ LVM introduces latent representation of observed samples to make model more interpretable.