ESPCI

Systèmes linéaires, signaux et bruit

TD 2 : Transformée de Fourier et échantillonage

1 Calcul et estimation de spectre

- 1. Exprimez le signal s(t) représenté en Fig. 1 à l'aide d'un produit de convolution avec le peigne de Dirac
- 2. Déduisez-en son spectre, $\tilde{s}(\omega)$. En général, quelle est la forme du spectre d'un signal périodique?
- 3. Qu'affiche, en général, la fonction « Fast Fourier Transform » (FFT) d'un oscilloscope correctement réglé pour un tel signal?
- 4. Que devient s(t) si on supprime la composante centrale ($\omega = 0$) de son spectre?
- 5. Que devient le spectre si le signal est retardé de T/2? Comment cela se traduit-il sur l'affichage de l'oscilloscope?

2 Échantillonage, reconstruction, sous-échantillonage

- 1. On considère un signal s(t) dont le spectre est borné à la pulsation $\omega_{\rm m}$. On échantillonne ce signal à une pulsation $\omega_{\rm e} \gg \omega_{\rm m}$. Donnez l'aspect du spectre du signal échantillonné.
- 2. Quelle est la valeur minimale de $\omega_{\rm e}$ pour échantillonner correctement le signal?
- 3. On considère le signal $s(t) = \cos(\omega_{\rm m} t)$. La Fig. 2 montre l'aspect du signal échantillonné aux pulsations $\omega_{\rm e} \gg \omega_{\rm m}$, $\omega_{\rm e} = 2.2\omega_{\rm m}$ et $\omega_{\rm e} = 1.8\omega_{\rm m}$. Commentez le résultat obtenu.
- 4. Expliquez comment on peut retrouver le signal original à partir d'un signal échantillonné correctement.

FIGURE 1 – Signal carré périodique s(t).

FIGURE 2 – Signal $s(t) = \cos(t)$ ($\omega_{\rm m} = 1$, pointillés) échantillonné aux pulsations $\omega_{\rm e} = 7.3$, 2.2, et 1.8.

- 5. On observe un signal $s(t) = \cos(1.1t)$ échantilloné à une pulsation $\omega_e = 1$. En raisonnant sur le spectre, quel signal obtient-on si on lui applique la reconstruction de Shannon?
- 6. Effet stroboscopique : on échantillone à une pulsation ω_e la rotation d'une roue, marquée d'un point sur sa périphérie, à la vitesse ω_0 . Tracez la courbe donnant la vitesse de rotation observée ω en fonction de la vitesse de rotation réelle pour une pulsation d'échantillonage fixée.