High-Dimensional Probability: Answers, Theorems, and Definitions

Last revised on June 10, 2021

- Companion notes for *High-Dimensional Probability*, by Roman Vershynin. Link to book (PDF available online): www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.html.
- **Disclaimer:** These notes compile my answers to the exercises, and lift the required theorems and definitions from the book. I wrote these notes to aid my personal study of the book. Read them at your own risk!*

Contents

0	Appetizer: Using probability to cover a geometric set	2
1	Preliminaries on random variables	Į
	1.1 Basic quantities	1
	1.2 Some classical inequalities	5
	1.3 Limits of random variables	6

^{*}Scribe: Alex Bie, alexbie98@gmail.com.

0 Appetizer: Using probability to cover a geometric set

A point $x \in \mathbb{R}^n$ is a **convex combination** of points $x_1, ..., x_m \in \mathbb{R}^n$ if

$$x = \sum_{i=1}^{m} \lambda_i x_i$$
 with each $\lambda_i \ge 0$ and $\sum_{i=1}^{m} \lambda_i = 1$.

The **convex hull** of $T \subseteq \mathbb{R}^n$, conv(T), is the set of all convex combinations of T.

Theorem 0.0.1 (Catheodory's Theorem). Let $x \in \text{conv}(T)$. There exists $k \leq n+1$ points $x_1, ..., x_k \in T$ such that x is a convex combination of $x_1, ..., x_k$.

The result says we can obtain any point in the convex hull of T using at most a dimension-dependent number of points. Let the **diameter** of a set T be defined as $diam(T) = \sup\{||x - y||_2 : x, y \in T\}$.

Theorem 0.0.2 (Approximate Catheodory's Theorem). Let diam(T) = 1. Let $x \in conv(T)$. For any k, there exists k points $x_1, ..., x_k \in T$ such that

$$\left\| x - \frac{1}{k} \sum_{j=1}^{k} x_j \right\|_2 \le \frac{1}{\sqrt{k}}$$

Proof. Suppose |T| = m. WLOG we can assume T is bounded by 1 in $\|\cdot\|_2$. We write $x = \sum_{i=1}^m \lambda_i x_i$, and interpret λ_i as probabilities. We define the random variable

$$X = x_i$$
 with probability λ_i

for i=1,...,m. We can verify that $\mathbb{E}X=\sum_{i=1}^m\lambda_ix_i=x$. Taking $X_1,...,X_k\stackrel{\mathrm{iid}}{\sim}X$. It remains to analyse the quantity $\mathbb{E}\|x-\frac{1}{k}\sum_{j=1}^kX_j\|_2^2$.

$$\mathbb{E} \left\| x - \frac{1}{k} \sum_{j=1}^{k} X_j \right\|_2^2 \le \frac{1}{k^2} \mathbb{E} \left\| \sum_{j=1}^{k} X_j - x \right\|_2^2$$

$$= \frac{1}{k^2} \sum_{j=1}^{k} \mathbb{E} \left\| X_j - x \right\|_2^2 \qquad \text{(by Exercise 0.0.3 (a))}$$

$$= \frac{1}{k} \mathbb{E} \| X - x \|_2^2$$

Applying the result of Exercise 0.0.3 (b), we obtain

$$\mathbb{E}||X - x||_2^2 = \mathbb{E}||X||_2^2 - ||\mathbb{E}X||_2^2 \le \mathbb{E}||X||_2^2 \le 1$$

Plugging this in above, we obtain the desired bound in expectation, hence there must exist a realization of the X_j , $x_1, ..., x_k$, such that the bound holds.

Exercise 0.0.3. Check the following identities for random vectors.

(a) Let $X_1, ..., X_k$ be independent, mean zero random vectors in \mathbb{R}^n . Show that

$$\mathbb{E} \left\| \sum_{j=1}^{k} X_j \right\|_{2}^{2} = \mathbb{E} \sum_{j=1}^{k} \|X_j\|_{2}^{2}$$

Solution.

$$\mathbb{E} \left\| \sum_{j=1}^{k} X_{j} \right\|_{2}^{2} = \sum_{i=1}^{n} \mathbb{E} \left(\sum_{j=1}^{m} X_{j}^{(i)} \right)^{2} = \sum_{i=1}^{n} \operatorname{Var} \left(\sum_{j=1}^{m} X_{j}^{(i)} \right)$$
 (by mean zero)
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Var} \left(X_{j}^{(i)} \right)$$
 (by independence)
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{E} \left(X_{j}^{(i)} \right)^{2}$$
 (by mean zero)
$$= \mathbb{E} \sum_{j=1}^{m} \|X_{j}\|_{2}^{2}$$

Among other things, this result implies that the expected squared distance of a random walk (starting from the origin) is equal to sum of the expected squared distances of each step.

(b) Let X be a random vector in \mathbb{R}^n . Show that

$$\mathbb{E}||X - \mathbb{E}X||_2^2 = \mathbb{E}||X||_2^2 - ||\mathbb{E}X||_2^2$$

Solution.

$$\mathbb{E}||X - \mathbb{E}X||_{2}^{2} = \mathbb{E}\sum_{i=1}^{n} \left(X^{(i)} - (\mathbb{E}X)^{(i)}\right)^{2} = \sum_{i=1}^{n} \operatorname{Var}(X^{(i)}) = \sum_{i=1}^{n} \mathbb{E}\left(X^{(i)}\right)^{2} - \left(\mathbb{E}X^{(i)}\right)^{2} = \mathbb{E}||X||_{2}^{2} - ||\mathbb{E}X||_{2}^{2}$$

Corollary 0.0.4 (Covering polytopes by balls). Let $P \subseteq \mathbb{R}^n$ be a polytope with diam(P) = 1. Let m be the number of vertices of P. Let $\varepsilon > 0$. We can cover P with m^k balls of radius ε for $k \ge \lceil 1/\varepsilon^2 \rceil$.

Proof. Take T to be the vertex set of P. |T| = m. Note that for any $x \in P$, $x \in \text{conv}(T)$. By Theorem 0.0.2, taking $k \ge \lceil 1/\varepsilon^2 \rceil$, we can find $x_1, ..., x_k \in T$ such that

$$\left\| x - \frac{1}{k} \sum_{j=1}^{k} x_j \right\| \le \frac{1}{\sqrt{k}} \le \varepsilon$$

The number of ball centres obtained from selecting a set of k points out of m with repetition is bounded by m^k (possibly repeating orders). Hence we have an ε -cover sufficient to cover P.

Exercise 0.0.5 (Bionomial coefficient inequality). Show that for $1 \le r \le n$

$$\left(\frac{n}{r}\right)^r \le \binom{n}{r} \le \sum_{k=0}^r \binom{n}{k} \le \left(\frac{en}{r}\right)^r$$

Solution. For the first inequality, consider

$$\frac{\left(\frac{n}{r}\right)^r}{\binom{n}{r}} = \underbrace{\frac{\frac{n}{r}}{\frac{n}{r}} \cdot \frac{\frac{n}{r}}{\frac{n-1}{r-1}} \cdot \dots \cdot \frac{\frac{n}{r}}{\frac{n-r+1}{1}}}_{r} \le 1 \cdot 1 \cdot \dots \cdot 1 = 1$$

The second inequality follows immediately. To justify the last inequality, write

$$\left(\frac{en}{r}\right)^r = e^r \cdot \left(\frac{n}{r}\right)^r = \sum_{k=0}^{\infty} \frac{r^k}{k!} \cdot \left(\frac{n}{r}\right)^r$$

$$\geq \sum_{k=0}^r \frac{r^k}{k!} \cdot \left(\frac{n}{r}\right)^r$$

$$= \sum_{k=0}^r \frac{n^k \cdot n^{r-k}}{k! \cdot r^{r-k}}$$

$$\geq \sum_{k=0}^r \frac{n^k}{k!}$$

$$\geq \sum_{k=0}^r \binom{n}{r}$$
(Maclaurin series for e^x)
$$(by $n \geq r$)$$

Exercise 0.0.6 (Improved covering). Show that in the setting of Corollary 0.0.4, for $k \geq \lceil 1/\varepsilon^2 \rceil$

$$(C + C\varepsilon^2 m)^k$$

balls suffice for a suitable constant C.

Solution. We can give a tighter bound than given in the proof of Corollary 0.0.4 on the number of ball centres obtained from selecting a set of k points out of m with repetition (since computing the mean of k is order-invariant with respect to input points). By the "stars-and-bars" argument, this quantity is given by

$$\binom{m+k-1}{k-1}$$

Note that $\min\{k-1, m\} = k-1 \le \min\{k, m-1\}$, so looking at row m+k-1 of Pascal's triangle

$$\binom{m+k-1}{k-1} \le \binom{m+k-1}{k}$$

Then, using Exercise 0.0.5

$$\binom{m+k-1}{k} \le \left(\frac{e(m+k-1)}{k}\right)^k = \left(e\frac{k-1}{k} + e\frac{1}{k}m\right)^k \le (e + e\varepsilon^2 m)^k$$

†https://en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

1 Preliminaries on random variables

1.1 Basic quantities

The **expection** of a random variable X is denoted as $\mathbb{E}X$, and **variance** is denoted as $Var(X) = \mathbb{E}(X - \mathbb{E}X)^2$. (We note that the expectation operator \mathbb{E} can be directly defined as the Lebesgue integral of the random variable (measurable function) $X : \Omega \to \mathbb{R}$ in the probability space $(\Omega, \mathcal{M}, \mathbb{P})$.

The moment generating function of X is given by

$$M_X(t) = \mathbb{E}e^{tX}$$
 for all $t \in \mathbb{R}$

The **p-th moment** of X is given by $\mathbb{E}X^p$. We also let $||X||_p = (\mathbb{E}X^p)^{\frac{1}{p}}$ denote the **p-norm** of X. For $p = \infty$, we have

$$||X||_{\infty} = \operatorname{ess\,sup} X$$

recalling that the **essential supremum** of a function f is the "smallest value γ such that $\{\omega \in \Omega : |f(\omega)| > \gamma\}$ has measure 0".

From this, we can define the L^p spaces[‡], given a probability space $(\Omega, \mathcal{M}, \mathbb{P})$

$$L^p = \{X : ||X||_p < \infty\}$$

Results from measure and integration theory tell us that the $(L^p, \|\cdot\|_p)$ are complete. In the case of L^2 , we have that with the inner product

$$\langle X, Y \rangle = \int_{\Omega} XY(\omega)\mu(\omega)$$

= $\mathbb{E}XY$

 $(L^2, \langle \cdot, \cdot \rangle)$ is a Hilbert space. In this case we can express the **standard deviation** of X as $\sqrt{\text{Var}(X)} = \|X - \mathbb{E}X\|_2$, and the **covariance** of random variable X and Y as

$$Cov(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y) = \langle X - \mathbb{E}X, Y - \mathbb{E}Y \rangle$$

In this setting, considering random variables as vectors in L^2 , the covariance between X and Y can be interpreted as the alignment between the vectors $X - \mathbb{E}X$ and $Y - \mathbb{E}Y$.

1.2 Some classical inequalities

We say $f: \mathbb{R} \to \mathbb{R}$ is **convex** if

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y) \qquad \text{for all } x, y \in \mathbb{R} \text{ and } t \in [0, 1]$$

Jensen's inequality states that for any random variable X and a convex function f, we get

$$f(\mathbb{E}X) \le \mathbb{E}(f(X))$$

A corollary of Jensen's inequality implies that§

$$||X||_p \le ||X||_q$$
 for all $1 \le p \le q \le \infty$

Minkowski's inequality asserts that the triangle inequality holds for the L_p spaces

$$||X + Y||_p \le ||X||_p + ||Y||_p$$
 for all $X, Y \in L^p$

In L^2 , we have the **Cauchy-Schwarz inequality**, which states that $|\mathbb{E}XY| \leq \mathbb{E}|XY| \leq ||X||_2 ||Y||_2$. **Holder's inequality** additionally asserts that for 1/p + 1/q = 1

$$|\mathbb{E}XY| \le ||XY||_1 \le ||X||_p ||Y||_q$$

[†]A technical note is that the objects of L_p are actually equivalence classes of functions [X] with equality almost everywhere, otherwise $\|\cdot\|_p$ is only a semi-norm.

[§] For $q < \infty$, the result follows by applying Jensen's inequality for $f(x) = x^{\frac{q}{p}}$. Otherwise, $||X||_{\infty} = \gamma = (\mathbb{E}\gamma^p)^{\frac{1}{p}} = ||\gamma||_p \ge ||X||_p$

which also holds for $p = 1, q = \infty$.

The cumulative distribution function of X is defined as

$$F_X(t) = \mathbb{P}\{X \le t\} = \mathbb{P}(X^{-1}(-\infty, t])$$
 for all $t \in \mathbb{R}$

and we refer to $\mathbb{P}\{X > t\} = 1 - F_X(t)$ as the **tail** of X.

Lemma 1.2.1 (Integral identity). Let $X \ge 0$ be a random variable. Then

$$\mathbb{E}X = \int_0^\infty \mathbb{P}\{X > t\}dt$$

1.3 Limits of random variables