Valószínűségszámítás röpzh kérdések megoldásokkal

Csercsik Dávid 2017 ősz

1. Ha $f:\Omega\to\mathbb{R}$, és $B\in\mathcal{B}(\mathbb{R})$ egy \mathbb{R} -beli Borel-halmaz, mit nevezünk B f-szerinti ősképének?

$$\mathbf{MO} \stackrel{\cdot_1}{f} < B > \stackrel{\circ}{=} \{ \omega \in \Omega | f(\omega) \in B \}$$

- 2. Mit nevezünk mérhető függvénynek? $\mathbf{MO}\left(\Omega,\mathfrak{F}\right) \text{ mérhető tér, } f:\Omega\to\mathbb{R} \text{ fv mérhető ha } \forall B\in\mathcal{B}(\mathbb{R}) \text{ esetén}$ $f \stackrel{\circ}{=} \left\{\omega\in\Omega|f(\omega)\in B\right\}\in\mathfrak{F}$ avagy 'minden Borel halmaz ősképe \mathfrak{F} -beli'
- 3. Adjon meg egy mérhető teret, és mondjon példát rajta nem mérhető fv-re! **MO** (pl): Az alaphalmaz: $\Omega = \{kiscica, kiskutya\}$, a σ -algebra: $\mathfrak{F} = \{\emptyset, \Omega\}$ legyen $f: \Omega \to \mathbb{R} \ \omega \in \Omega$ -ra

$$f(\omega) = \begin{cases} 1 & \text{if } \omega = kiskutya \\ 0 & \text{if } \omega = kiscica \end{cases}$$

Ekkor pl. bármilyen, az 1-et tartalmazó, de a 2-t nem tartalmazó Borel halmaz ősképe (= $\{kiskutya\}$) nem eleme a σ -algebrának.

- 4. Eseményalgebra (vagy szigma-algebra) tulajdonságai? MO:
 - $\bullet\,$ zárt véges és megszámlálhatóan végtelen U-ra.
 - zárt különbségképzésre
 - \bullet Tartalmazza $\Omega\text{-t}$ (az alaphalmazt vagy eseményteret).
- 5. Legyen $\Omega=\{X,Y,Z\},\ \mathfrak{F}=2^{\Omega}\ (\Omega\ \text{minden részhalmaza}),\ \mu(A)=|A|\ (A\ \text{elemszáma}).$ Valószínűségi mérték-e $\mu(A)$? MO: Nem mivel Ω -n az értéke $3\neq 1$.
- 6. Legyen $\Omega = \{X, Y, Z\}$, $\mathfrak{F} = 2^{\Omega}$, $\mu(A) = |A|$ (A elemszáma). Mérték-e $\mu(A)$? **MO:** Igen mivel pozitív, \emptyset -ra 0, és teljesül a σ -additivitás: megszámlálható unióra, diszkrét A_i -re $P(\bigcup A_i) = \sum_i P(A_i)$ mert az unió elemszáma diszjunkt halmazok esetén az elemszámok összege.

7. Legyen $(\Omega, \mathfrak{F}, P)$ egy valószínűségi mező, és ξ egy val. változó. Mi ξ értelmezési tartománya?

 $MO: \Omega$

8. Adott $(\Omega, \mathfrak{F}, P)$ valószínűségi mező. Mikor mondjuk hogy 2 esemény független? Mikor mondjuk hogy egy eseményrendszer független?

MO: A és B független ha $P(A \cap B) = P(A)P(B)$. Eseményrendszer független ha az alkotó események páronként függetlenek.

- 9. Adott $(\Omega, \mathfrak{F}, P)$ valószínűségi mező. Hogyan definiáljuk az A esemény feltételes valószínűségét B szerint (másszóval a B-re vett feltételes valószínűségét)? Thf $P(B) \neq 0$. $\mathbf{MO:}P(A|B) \stackrel{\circ}{=} \frac{P(A \cap B)}{P(B)},$
- 10. Legyen $(\Omega, \mathfrak{F}, P)$ egy valószínűségi mező, és ξ egy valváltozó. Definiálja ξ eloszlásfüggvényét (adja meg az értelmezési tartományát, az értékkészletét, és a függvényt magát)!

MO:

$$F_{\xi}: \mathbb{R} \to \mathbb{R}$$
 $F_{\xi}(x) = P(\xi < x) = P(\{\omega \in \Omega | \xi(\omega) < x\}) = P(\overline{\xi} \langle] - \infty, x[\rangle)$

ahol] $-\infty, x[$ a $-\infty, x$ nyílt intervallum jelölése - megj: a nyílt intervallum (a,b)típusú jelölését azért kerüljük, mert (a,b)-vel az a,b rendezett párt jelöljük. $\hat{\xi}$ pedig ξ ősképe.

11. Legyen $(\Omega, \mathfrak{F}, P)$ egy tetszőleges valószínűségi mező. Igaz-e hogy $P(A \cup B) =$ P(A) + P(B)?

MO: Nem, általános esetben $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

12. Sorolja fel az F_{ξ} eloszlásfüggvény tulajdonságait!

MO:

- F_{ξ} monoton növekvő
- $\lim_{x \to \infty} F_{\xi} = 1$ $\lim_{x \to -\infty} F_{\xi} = 0$
- F_{ξ} balról folytonos.
- 13. Mikor mondjuk hogy egy ξ valváltozó hipergeometrikus eloszlású N, n, K paraméterekkel $(N \in \mathbb{N}, K < N, K \in \mathbb{N}, k = 0, ..., K k \in \mathbb{N})$?

MO: Ha

$$P(\xi = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

14. Legyen $(\Omega, \mathfrak{F}, P)$ egy valószínűségi mező és $A \in \mathfrak{F}$. Hogyan definiáljuk a $\chi_A : \omega \to \mathbb{R}$ fv-t? (χ_A A karakterisztikus függvénye vagy indikátorfüggvénye) MO:

$$\chi_A(\omega) \stackrel{\circ}{=} \left\{ \begin{array}{l} 0 & \text{ha } \omega \in \Omega \setminus A \\ 1 & \text{ha } \omega \in A \end{array} \right.$$

15. Hogyan definiáljuk (a χ -vel jelölt karakterisztikus függvény fogalmának segítségével) a lépcsős vagy másnéven egyszerű függvényt?

MO: Legyen $n \in \mathbb{N}^+$, $(\lambda_k)_{1 \le k \le n}$ \mathbb{R} -beli véges rendszer¹. Legyen $(A_k)_{1 \le k \le n}$ \mathfrak{F} -beli (halmaz)rendszer.

$$f: \Omega \to \mathbb{R}, \ f(\omega) \stackrel{\circ}{=} \sum_{j=1}^{n} \lambda_j \chi_{A_j}(\omega)$$

vagy (kevésbé precízen): Lépcsős üggvények lineáris kombinációja.

16. Mikor mondjuk hogy egy ξ valváltozó geometriai eloszlású p paraméterrel (0 ?

MO: Ha

$$P(\xi = k) = p(1 - p)^{k - 1}$$

17. Mikor mondjuk hogy egy ξ valváltozó Poisson eloszlású $\lambda>0$ paraméterrel?

MO: Ha

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

18. Legyen $(\Omega, \mathfrak{F}, P)$ egy valószínűségi mező, és ξ egy valváltozó. Hogyan definiáljuk ξ várható értékét?

MO:

$$E(\xi) \stackrel{\circ}{=} \int_{\Omega} \xi dP$$
 Ha \exists

19. Hogyan szól a Markov-egyenlőtlenség?

MO:

$$P\left(\xi \ge \varepsilon\right) \le \frac{E\left(\xi\right)}{\varepsilon} \tag{1}$$

20. Mi az (N,n,K) paraméterű hipergeometrikus eloszlású valváltozó várható értéke $(N\in\mathbb{N},\,K< N\in\mathbb{N},\,n< N\in\mathbb{N})?$

 $\mathbf{MO:}\ E(\xi) = n\frac{K}{N}$

21. Mi az (n,p) paraméterű binomiális eloszlású valváltozó várható értéke $(n \in \mathbb{N}, 0 ?$

 $\mathbf{MO:}\ E(\xi) = np$

 $^{^1\}mathbb{R}\text{-beli véges rendszer} = \text{véges sok valós szám}$

22. Legyen $(\Omega, \mathfrak{F}, P)$ val. mező, $f: \Omega \to \mathbb{R}$ lépcsős függvény olyan, hogy

$$f \stackrel{\circ}{=} \sum_{j=1}^{n} \lambda_{j} \chi_{A_{j}}$$

ahol χ_{A_j} az A_j halmaz karakterisztikus függvénye (indikátorfüggvénye), $\lambda_j \in \mathbb{R}$, és $A_j \cap A_k = \emptyset$ ha $j \neq k$.

$$\int_{\Omega} f dP \stackrel{\circ}{=} ?$$

MO:

$$\int_{\Omega} f dP \stackrel{\circ}{=} \sum_{j=1}^{n} \lambda_{j} P(A_{j})$$

23. Mondjon példát R-en nem Lebesgue-integrálható fv-re!

MO:

$$g: \mathbb{R} \to \mathbb{R}$$
 $g(x) = \frac{1}{x}$ ha $x \neq 0$, $g(0) = 0$

Mert a pozitív és a negatív rész is végtelen, nem létezik az integrál.

- 24. Abszolút folytonos-e [0,1]-en a Lebesgue mértékre a számláló mérték? **MO:** Nem hiszen pl. bármely csak $(x_1, x_2, ..., x_n)$ $0 \le x_i \le 1$ értéket tartalmazó X halmazra $\lambda(X) = 0 \ne \mu_1(X) = n$ ahol $\mu_1(X)$ a számláló mérték.
- 25. Legyen az (Ω, \mathfrak{F}) mérhető tér $= (\mathbb{R}, 2^{\mathbb{R}})$. σ -véges-e \mathfrak{F} -en a számláló mérték? **MO:** Nem, mert nem létezik olyan $(A_n)_{n\in\mathbb{N}}$ \mathfrak{F} -ben haladó sorozat, hogy

$$\bigcup_{n=0}^{\infty} A_n = \Omega \& \mu(A_n) < \infty \forall n \in \mathbb{N}$$

Nem tudom R-et lefedni egyenként véges sok elemből álló halmazok sorozatával (akármilyen hosszú intervallumot sem tudok).

26. Legyen $\Omega = [0,1]$, $\mathfrak{F} = \mathfrak{B}_{[0,1]}$. Legyen továbbá μ_1 az $\frac{1}{4}$ -re koncentrált, μ_2 pedig a $\frac{3}{4}$ -re koncentrált Dirac-mérték ($\mu_1(A) = 1$ ha $\frac{1}{4} \in A$ és 0 egyébként, $\mu_2(A) = 1$ ha $\frac{3}{4} \in A$ és 0 egyébként). Szinguláris-e μ_1 μ_2 -re? ($A \in \mathfrak{F}$) **MO:** Igen mert

$$\exists \Omega_1, \Omega_2 \in \mathfrak{F} \ \Omega_1 \bigcap \Omega_2 = \emptyset, \ \Omega_1 \bigcup \Omega_2 = \Omega$$

és

$$\mu_1(\Omega_1) = 0 \quad \mu_2(\Omega_2) = 0$$

pl
$$\Omega_1 = [0, \frac{1}{2}[, \Omega_2 = [\frac{1}{2}, 1]]$$

27. Mikor mondjuk, hogy μ_1 mérték abszolút folytonos a μ_2 mértékre nézve? **MO**:

$$(\forall A \in \mathfrak{F}) (\mu_2(A) = 0 \Rightarrow \mu_1(A) = 0)$$

- 28. Mikor mondjuk, hogy μ_1 mérték szinguláris a μ_2 mértékre nézve? **MO:** Ha $\exists \Omega_1, \ \Omega_2 \in \mathfrak{F} \text{ hogy } \Omega_1 \bigcap \Omega_2 = \emptyset, \Omega_1 \bigcup \Omega_2 = \Omega \text{ valamint igaz hogy } \mu_1(\Omega_1) = 0$ és $\mu_2(\Omega_2) = 0$.
- 29. Legyen $(\omega, \mathfrak{F}, P)$ val mező, $\xi: \Omega \to \mathbb{R}$ valváltozó, Q_{ξ} ξ eloszlása és $\lambda_{\mathbb{R}}$ a Lebesguemérték. Mikor mondjuk hogy ξ folytonos eloszlású? MO: Ha $Q_{\xi} \ll \lambda_{\mathbb{R}}$
- 30. Legyen $(\omega, \mathfrak{F}, P)$ val mező, $\xi: \Omega \to \mathbb{R}$ folytonos eloszlású valváltozó, Q_{ξ} a ξ valváltozó eloszlása és $\lambda_{\mathbb{R}}$ a Lebesgue-mérték. Definiálja ξ sűrűségfüggvényét! $\mathbf{MO}: f: \mathbb{R} \to \mathbb{R}_+$ mérhető olyan hogy $\forall A \in \mathfrak{B}_{\mathbb{R}}$ -re

$$Q_{\xi}(A) = \int_{A} f d\lambda_{\mathbb{R}}$$

31. Mit mond ki a Radon-Nikodym tétel? $\mathbf{MO}: (\Omega, \mathfrak{F})$ mérhető tér, $\mu, \nu : \mathfrak{F} \to \mathbb{R}$ mértékek, és $\mu \ll \nu$ (μ abszolút folytonos ν -re nézve). Ekkor \exists ! (egyértelműen létezik) $f : \Omega \to \mathbb{R}_+$ mérhető fv, hogy $\forall A \in \mathfrak{F}$ -re

$$\mu(A) = \int_A f d\nu = \int_{\Omega} (\chi_A f) d\nu$$

Ahol χ_A az A halmaz karakterisztikus függvénye. Ekkor f-et a μ mérték ν szerinti RN (Radon-Nikodym) deriváltjának hívjuk.

- 32. Sorolja fel a sűrűségfüggvény tulajdonságait! **MO**:
 - $f \geq 0$
 - $\int_{\mathbb{R}} f d\lambda = Q_{\xi}(\mathbb{R}) = 1$
- 33. Folytonos valószínűségi változó esetén mi az összefüggés az eloszlásfüggvény és a sűrűségfüggvény között (hogyan határozhatom meg az F_{ξ} eloszlásfüggvény értékét az x pontban, ha ismert az f sűrűségfüggvény)?

MO:

$$F_{\xi}(x) = \int_{-\infty}^{x} f(x)dx$$

ahol $f \xi$ sűrűségfüggvénye.

34. Mikor mondjuk hogy ξ standard normális eloszlású? **MO:** Ha a sűrűségfüggvénye

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

35. Folytonos valószínűségi változó esetén mi az összefüggés a várható érték és a sűrűségfüggvény között?

MO:

$$E(\xi) = \int_{-\infty}^{\infty} x f(x) dx$$

ahol $f \xi$ sűrűségfüggvénye.

36. Mikor mondjuk hogy ξ exponenciális eloszlású?

MO: Ha a sűrűségfüggvénye

$$f(x) = \alpha e^{-\alpha x} \ ha \ x > 0 \ , 0 \ ha \ x \le 0$$

37. ξ egy valváltozó. Definiálja ξ szórását, ha $E(\xi)$ ξ várható értéke.

MO:

$$\sigma(\xi) = \sqrt{E((\xi - E(\xi))^2)}$$

38. Legyen ξ egy valváltozó, melynek sűrűségfüggvénye

$$f(x) = \frac{1}{\sqrt{2\pi}b} e^{\frac{-x^2 + 2ax - a^2}{2b^2}}$$

Mi ξ várható értéke és szórása?

MO: a és b (normális eloszlás: $m = a, \sigma = b$).

39. Hogy szól a Csebisev-egyenlőtlenség?

MO: Legyen ξ egy valváltozó és legyen $E(\xi)$ véges. Ekkor

$$P(|\xi - E(\xi)| \ge \varepsilon) \le \frac{\sigma^2(\xi)}{\varepsilon^2}$$

40. Mutasson példát olyan függvényre, mely R-en Lebesgue integrálható, de nem Riemann-integrálható!

MO: Dirichlet fv, másnéven a racionális számok karakterisztikus fv-e: $\chi_{\mathbb{Q}}$: Racionális számokon 1-et vesz fel, máshol 0-t. Mivel a rac. számok megszámlálhatóan sokan vannak, a Lebesgue-integrál 0, de a Riemann integrál nem létezik, mivel a felső közelítő összeg minden intervallumra az intervallum hossza (mivel minden intervallumban van racionális szám), az alsó pedig 0.

41. Folytonos valószínűségi változó esetén mi az összefüggés a sűrűsűgfüggvény és a szórásnégyzet között, ha a valószínűségi változó várható értéke 0?

MO:

$$\sigma^{2}(\xi) = V(x) = \int_{-\infty}^{\infty} x^{2} f(x) dx$$

ahol $f \xi$ sűrűségfüggvénye.

42. Legyenek ξ és η valváltozók ($\xi, \eta: \Omega \to \mathbb{R}$). Legyen \mathfrak{F}_{ξ} a ξ és \mathfrak{F}_{η} az η által generált σ algebra. Mikor mondjuk hogy ξ és η függetlenek?

MO: Ha $\forall (A_k)_{1 \leq k \leq n}$ $n \in \mathbb{N}^+$ \mathfrak{F}_{ξ} -beli és $(B_j)_{1 \leq j \leq m}$ $m \in \mathbb{N}^+$ \mathfrak{F}_{η} -beli rendszer független (bármit veszek az $(A_k)_{1 \leq k \leq n}$ rendszerből és bármit a $(B_j)_{1 \leq j \leq n}$, rendszerből, azok függetlenek)

43. Határozza meg az alábbi peremeloszlásokból az együttes eloszlást, ha ξ és η függetlenek!

ξ η	0	1	ξ perem
0	?	?	3/4
1	?	?	1/4
η perem	1/3	2/3	

MO:

ξ η	0	1	ξ perem
0	1/4	1/2	3/4
1	1/12	1/6	1/4
η perem	1/3	2/3	

44. Mutasson példát arra hogy a peremeloszlásokból nem határozható meg egyértelműen az együttes eloszlás!

MO: Pl.

•	ξ η	-1	0	1	ξ perem
-	-1	$\frac{1}{8} + a$	0	$\frac{1}{8} - a$	$\frac{1}{4}$
	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$
	1	$\frac{1}{8} - a$	0	$\frac{1}{8} + a$	$\frac{1}{4}$
	η perem	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	

45. Ha ξ egy kétdimentiós valváltozó, milyen határértékekkel kapcsolatos tulajdonságok teljesülnek az $F_{\xi}(x,y)$ (együttes) eloszlásfüggvényre?

MO:

$$\lim_{x \to -\infty} F_{\xi}(x, y) = 0 \qquad \lim_{y \to -\infty} F_{\xi}(x, y) = 0 \qquad \lim_{x, y \to +\infty, +\infty} F_{\xi}(x, y) = 1$$

46. Ha ξ egy kétdimenziós vektor értékű valószínűségi változó, melynek (együttes) sűrűségfüggvénye f(x,y), akkor mi az $I\times J$ téglalapba esés valószínűsége? ($I=[a,b],\ J=[c,d]$)

MO:

$$P(\eta \in I, \ \gamma \in J) = \int_{I \times J} f(x, y) dx dy = \int_a^b \int_c^d f(x, y) dx dy$$

47. Legyen $\xi(\xi_1, \xi_2) : \omega \to \mathbb{R}$ valváltozó, melynek a sűrűságfüggvénye $f_{\xi_1, \xi_2}(x, y)$. Hogyan határozzuk meg az $f_{\xi_1}(x)$ marginális sűrűségfüggvényt?

MO:

$$f_{\xi_1}(x) = \int_{-\infty}^{\infty} f_{\xi_1,\xi_2}(x,y) dy$$

48. Hogyan definiáljuk ξ és η valváltozók kovarianciáját?

MO:

$$cov(\xi, \eta) = E((\xi - E(\xi))(\eta - E(\eta)))$$

49. Legyenek ξ és η valváltozók. Tegyük fel hogy a következő várható értékek léteznek, és ismertek: $E(\xi\eta),\ E(\xi),\ E(\eta)$. Mikor mondjuk hogy ξ és η korrelálatlanok?

MO: Ha

$$cov(\xi, \eta) = E(\xi\eta) - E(\xi)E(\eta) = 0$$

50. Legyenek ξ és η valváltozók. Tegyük fel hogy a $\sigma^2(\xi)$ és $\sigma^2(\eta)$ szórásnégyzetek, valamint $cov(\xi,\eta)$ létezik és ismert. $\sigma^2(\xi+\eta)=?$

MO:

$$\sigma^2(\xi + \eta) = \sigma^2(\xi) + \sigma^2(\eta) + 2cov(\xi, \eta)$$

Legyenek a ξ diszkrét valváltozó lehetséges értékei $x_1, x_2, ..., x_n$ és a megfelelő valószínűségek $p_1, p_2, ..., p_n$. Ekkor az $\eta = h(\xi)$ valváltozó lehetséges értékei a $y_1 = h(x_1), \ y_2 = h(x_2), ...$ számok. Hogyan számolhatóak az η lehetséges értékeihez tartozó valószínűségek?

MO:

$$P(\eta = y_k) = \sum_{h(x_i) = y_k} P(\xi = x_i) = \sum_{h(x_i) = y_k} p_i$$

51. Legyen ξ folytonos eloszlású valváltozó, sűrűségfv-e: f(x), és legyen $h: \mathbb{R} \to \mathbb{R}$ szigorúan monoton és differenciálható. Legyen $\eta = h(\xi)$. Mi lesz η sűrűségfüggvénye?

MO:

$$g(y) = f(h^{-1}(y)) \left| \frac{dh^{-1}(y)}{dy} \right|$$

52. Legyen (ξ, η) egy 2 dimenziós vektor valváltozó, az együttes sűrűségfüggvény $f_{(\xi, \eta)}(x, y)$, η peremsűrűségfüggvénye pedig $f_{\eta}(y)$. Hogyan definiáljuk a ξ valváltozó $\eta = z$ feltétel melletti feltételes sűrűségfüggvényét?

MO:

$$f_{\xi|\eta=z}(x) \stackrel{\circ}{=} \frac{f_{(\xi,\eta)}(x,z)}{f_{\eta}(z)}$$

53. Ha ξ és η folytonos valváltozók, hogyan definiáljuk a $\xi=z$ feltétel melletti feltételes eloszlásfüggvényét?

MO:

$$F^*(x|z) = \lim_{h \to 0} (P(\xi < x, z < \eta < z + h))$$

ha ∃

54. Legyen a (ξ, η) diszkrét valószínűségi vektorváltozó (együttes) eloszlásfüggvénye F(x,y), és η peremeloszlás-függvénye $F_{\eta}(y)$, valamint tegyük fel hogy $F_{\eta}(y_j) \neq F_{\eta}(y_i)$. Hogyan számolható ki a $P(\xi < x|y_i < \eta < y_j)$ valószínűség?

MO:

$$P(\xi < x | y_i < \eta < y_j) = F^*(x | y_i < \eta < y_j) = \frac{F(x, y_j) - F(x, y_i)}{F_{\eta}(y_j) - F_{\eta}(y_i)}$$

55. Ha ξ, η folytonos vektorértékű valváltozó, hogyan definiáljuk a ξ valváltozó η -ra vonatkoztatott regressziós függvényét?

MO:

$$r(z) \stackrel{\circ}{=} E(\xi | \eta = z)$$

56. Hogyan definiáljuk $f:\Omega\to\mathbb{R}$ függvény 2-normáját, ha $f\in\mathcal{L}^2_\mathbb{R}(\Omega,\mathfrak{F},P)$

MO:

$$||f||_2 \left(\stackrel{\circ}{=} \int_{\Omega} |f|^2 dP\right)^{1/2}$$

57. Legyen $(\omega, \mathfrak{F}, P)$ val mező. Mikor mondjuk hogy ξ és η ugyanazon ekvivalencia-osztályba tartoznak $(\xi \sim \eta)$?

MO: Ha P-szerint csak 0-mértékű halmazon térnek el egymástól:

$$\overset{\bullet}{f} \stackrel{\circ}{=} \{h: \Omega \to \mathbb{R} | h \text{ mérhető, és } h = f \text{ 1 vallal} \}$$

58. Hogyan szól az 1 vallal egyenletes konvergencia definíciója? MO:

Legyen $(f_n)_{n\in\mathbb{N}}$ L^p -beli fv sorozat, $f\in L^p$.

 $f_n \to f$ 1 vallal egyenletesen (m.m. egyenletesen), ha

$$(f_n - f) \in L^{\infty} \ \forall n \in \mathbb{N} \ \text{és} \ ||f_n - f||_{\infty} \to 0 \quad (n \to +\infty)$$

59. Mikor mondjuk hogy $f_n \to f$ 1 vallal? **MO:** $f_n \to f$ 1 vallal, azaz $f_n \xrightarrow{mm} f$ P.m.m.,

$$\exists A \in \mathfrak{F} \text{ hogy } P(\Omega \setminus A) = 0 \text{ és } f_n(\omega) \to f(\omega) \ \forall \omega \in A\text{-ra}$$

másszóval, val. mező és valváltozó esetén:

$$P(\{\omega \in \Omega | \xi_n(\omega) \to \xi(\omega)\}) = 1$$

60. Mikor mondjuk hogy $f_n \to f L_p$ -ben? **MO:**

$$f_n \xrightarrow{L_p} f$$
 ha $||f_n - f||_p \to 0$, azaz $\left(\int_{\Omega} |f_n - f|^p dP \right)^{1/p} \to 0$

61. $(\Omega, \mathfrak{F}, P)$ val mező, $(\xi_n)_{n \in \mathbb{N}}$ val vált sorozat Ω -n, $\xi : \Omega \to \mathbb{R}$ val vált. Mikor mondjuk hogy $\xi_n \to \xi$ sztochasztikusan?

MO: ha

$$\forall \varepsilon > 0 : P(|\xi_n - \xi| > \varepsilon) \to 0$$

azaz

$$P(\{\omega \in \Omega | |\xi_n(\omega) - \xi(\omega)| > \varepsilon\}) \to 0$$

62. $(\Omega, \mathfrak{F}, P)$ val mező, $(\xi_n)_{n\in\mathbb{N}}$ val vált sorozat Ω -n, $\xi: \Omega \to \mathbb{R}$ val vált. Mikor mondjuk hogy $\xi_n \to f$ eloszlásban?

MO: ha

$$P(\xi_n < x) \to P(\xi < x) \ \forall x \in \mathbb{R} \text{ melyre } x \to P(\xi < x) (= F_{\xi}(x)) \text{ folytonos fv}$$

röviden: $F_{\xi_n(x)} \to F_{\xi}(x)$

63. Hogyan szól a centrális határeloszlás tétel?

MO:

 $\xi_1,\ \xi_2,\ ,\xi_3,...$ független, azonos eloszlású valváltozók, $\sigma^2(\xi_i)<\infty$. Ekkor

$$\frac{\sum_{j=1}^{n} \xi_{j} - nE(\xi_{1})}{\sqrt{n}\sigma(\xi_{1})} \rightarrow N(0,1) \quad \text{eloszlásban}$$

64. Mit mond ki a nagy számok Bernoulli féle gyenge törvénye? (segítség: olyan valváltozók sorozatátlagának konvergenciájára vonatkozik, melyek csak 0 és 1 értéket vehetnek fel) Milyen típusú konvergenciára vonatkozik?

MO: Ha $(\xi_j)_{j\in\mathbb{N}^+}$ függetlenek, valamint $P(\xi_j=1)=p$ és $P(\xi_j=0)=1-p$ ahol $p\in]0,1[$ akkor

$$\frac{\sum_{j=1}^n \xi_j}{n} \to p$$
sztohasztikusan, ahol p a konstans p értékű függvény

65. Az 1 dimenziós szimmetrikus bolyongásról szóló DeMoivre-Laplace tétel a következőképpen szól:

$$S_n \stackrel{\circ}{=} \sum_{j=1}^n \xi_j$$
 ekkor $P\left(\frac{S_n}{\sqrt{n}} < b\right) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^b e^{-\frac{t^2}{2}} dt$ eloszlásban

Milyen értékeket vehet fel ξ_j és milyen valószínűséggel?

MO:
$$P(\xi_j = 1) = P(\xi_j = -1) = \frac{1}{2}$$