COVERING SPACES.

In our proof of $T_1(S^1) \cong \mathbb{Z}$ we used $T_1(S^1) \cong \mathbb{Z}^2$ using $T_1(T^2) \cong \mathbb{Z}^2$ using $T_2 \to T^2$ or $T_1(S^1 \vee S^1) \cong F_2$ using $T_4 \to S^1 \vee S^1$. In each case, $T_1(X)$ gives symmetries of the space lying above.

A covering space of X is an \widetilde{X} with $p:\widetilde{X}\to X$ Satisfying: \exists open cover $\{U_{\alpha}\}$ of X so that each $p^{-1}(U_{\alpha})$ is a disjoint union of open sets, each homeomorphic to U_{α} .

Examples. $R \rightarrow S'$ $R \times I \rightarrow S' \times I$ $R^2 \rightarrow T^2$ $S^2 \rightarrow RP^2$ $S' \xrightarrow{\times n} S'$ $R \times I \rightarrow M\ddot{o}bius$ $R^2 \rightarrow Klein$ bottle

A universal covering space is a covering space that is simply connected.

We will see: ① $\mathcal{N}_1(X) \iff$ symmetries of univ. cover \widehat{X} ② Subgroups of $\mathcal{T}_1(X) \iff$ covers of X.

e.g. X = S1,

1) via path lifting, 10 via path projecting

X

b Can b

000

ab by ta

 $p_*(\widetilde{\chi}_i(\widetilde{\chi}))$

 $\langle a, b^2, bab^1 \rangle$

 $\langle a^2, b^2, ab \rangle$

 $\langle a^4, b^4, ab, ba, a^2b^2 \rangle$

(b°a5">

(a>

1

FUNDAMENTAL THEOREM

$$p: \widetilde{X} \to X$$
 covering map
 $G(\widetilde{X}) = \text{deck transformation group}$
 $= p \cdot \text{equivariant symmetries of } \widetilde{X}$

$$\underline{\mathsf{Thm}}:\ 1\longrightarrow \mathsf{Normalizer}\left(\mathsf{p}_*(\pi_{\mathsf{i}}(\tilde{\mathsf{X}}))\right) \to \pi_{\mathsf{i}}(\mathsf{X}) \longrightarrow \mathsf{G}(\tilde{\mathsf{X}}) \longrightarrow 1$$

So:
$$p_* \mathcal{N}_1(\tilde{X})$$
 normal \iff $G(\tilde{X})$ acts transitively on $p'(x_0)$ on $p'(x_0)$ Since change of basept for \tilde{X} \iff conjugation of $p_*\mathcal{N}_1(\tilde{X})$ in $\mathcal{N}_1(\tilde{X})$.

$$p_*(\pi_i(\tilde{X})) = 1 \iff \tilde{X} = \text{universal cover}$$

 $\iff G(\tilde{X}) \cong \pi_i(X)$

Converse: Any
$$\pi_1(X) \to G$$
 is realized by some X . Any $H \hookrightarrow \pi_1(X)$ is realized by some X .

In particular: every 2-generator group is the symmetry group of some cover of SIVS'

LIFTING PROPERTIES

 $p: \widetilde{X} \to X$ covering space

A lift of $f:Y \to X$ is $\hat{f}:Y \to \hat{X}$ with $p\tilde{f}=\hat{f}$.

Proposition 1 (Homotopy lifting property) Given a homotopy $f_t: Y \to X$ and $f_o: Y \to X$ lifting f_o , $\exists ! f_t$ lifting f_t .

Proof: Same as S' case.

Y= point ~ path lifting property
Y= I ~ homotopy lifting for paths

Cor: $p_*: \mathcal{N}_1(\tilde{x}) \to \mathcal{N}_1(x)$ is injective.

Note: $p_*(\pi_i(\tilde{x}))$ is the subgroup of $\pi_i(x)$ consting of loops that lift to loops.

Degree of a cover: |p'(x)| is locally constant, hence constant

Cor: X, \tilde{X} path connected. $degree of p = [\Upsilon_1(X):(\Upsilon_1(\tilde{X}))]$ Proof: Let $H = p_* \Upsilon_1(\tilde{X})$.

Define {cosets of H} -> p-1 (Xo)

 $HEgJ \mapsto \tilde{g}(1).$

Surjective: path proj. Injective: path lifting I

Proposition 2 (Lifting existence criterion) Y = connected, locally path connected. We can lift $f: (Y, y_0) \rightarrow (X, x_0)$ to $f: (Y, y_0) \rightarrow (\widetilde{X}, \widetilde{X}, 0)$ iff $f_*(\pi_1(Y)) \leq p_* \Upsilon_1(\widetilde{X})$.

 $P_{roof}: \implies \widetilde{f} = p\widetilde{f} \implies f_* = p_*\widetilde{f}_*$ $\implies |m f_* \subseteq |m p_*|.$

Suppose Im f* ⊆ Im p*. Want to build f.

Let $y \in Y$, f a path from y_0 to y. Prop $1 \Longrightarrow ff$ has unique lift $\widehat{fg}: Y \longrightarrow \widehat{X}$. Define $\widehat{f}(y) = \widehat{ff}(1)$.

Why is f well-defined?

Let $f' = \text{another path from } y_0$ to y. $\Rightarrow (ff')(ff)$ is a loop ho at x_0 . $\Rightarrow h_0 = f(ff) \in f_*(\pi_1(Y))$ $\Rightarrow h_0 \in p_*(\pi_1(X))$ by assumption. $\Rightarrow \text{ the lifted path } h_0 \text{ is a loop.}$

Uniqueness of lifted paths \Rightarrow $h_o = f j f j'$ $\Rightarrow f j , f j'$ share common endpoint.

Exercise: F continuous.

Proposition 3 (Uniqueness of lifts) Let $f: Y \to X$, Y connected. If lifts \tilde{f}_i , \tilde{f}_2 agree at one point, then they are equal.

 $\frac{P_{roof}}{A}$: Will show $A = \{ y \in Y : \hat{f}_{1}(y) = \hat{f}_{2}(y) \}$ is open and closed in Y.

Let y . Y. Let U be open nobal of Y as in definition of covering space.

Let \tilde{U}_1 , \tilde{U}_2 be the components of $p^{-1}(x)$ containing $\tilde{f}_1(y)$, $\tilde{f}_2(y)$.

Continuity of $f_i \Rightarrow \exists \text{ nlohod } N \text{ of } y \text{ with } f_i(N) \subseteq U_i$

• $\tilde{f}_{1}(Y) \neq \tilde{f}_{2}(Y) \Rightarrow \tilde{U}_{1} \neq \tilde{U}_{2} \Rightarrow \tilde{f}_{1}(N) \cap \tilde{f}_{2}(N) = \emptyset$ $\Rightarrow A \text{ closed}.$

• $\tilde{f}_1(y) = \tilde{f}_2(y) \Rightarrow \tilde{u}_1 = \tilde{u}_2 \Rightarrow \tilde{f}_1|_N = \tilde{f}_2|_N$ Thus A open.