CSCI 3110 Graph (2)

A. Topological order – linear ordering of the vertices in a digraph(without cycles) in which vertex x precedes vertex y if there is a directed edge from x to y in the graph.

Application: compiler expression evaluation

B. Topological sort – a technique that arrange the vertices into topological order according to an acyclic digraph. A *topological sort* of a DAG G is a linear ordering of all its vertices such that if G contains an arc (u, v), then u appears before v in the order. Many DAGs have more than one possible topological order.

A directed graph without cycles

The topological orders (a) a, g, d, b, e, c, f and (b) a, b, g, d, e, f, c

Application of topological sort: Given Pre-requisites map of the department, what is a correct sequence of courses to take that satisfy the pre-requisite requirements

Solution 1: Arranges the vertices in the Graph into a topological order and places them in list a List.

- 1. Find a vertex that has no successor
- 2. Add the vertex to the beginning of a list
- 3. Remove that vertex from the graph, as well as all edges that lead from it
- 4. Repeat the previous steps until the graph is empty When the loop ends, the list of vertices will be in topological order

```
TopSort(in theGraph:Graph, out aList:List) {
    n=number of vertices in theGraph
    for (step = 1 through n) {
        Select a vertex v that has no successors
        aList.Insert(1, v)
        Delete from theGraph vertex v and its edges
    }
}
```

Solution 2: DFS topological sorting algorithm

- 1. A modification of the iterative DFS algorithm
- 2. Push all vertices that have no predecessor onto a stack
- 3. Each time you pop a vertex from the stack, add it to the beginning of a list of vertices
- 4. When the traversal ends, the list of vertices will be in topological order

```
TopSort(in theGraph:Graph, out aList:list) {
    s.createStack()
    for (all vertices v in the graph)
       if (v has no predecessors)
               s.push(v)
               mark v as visited
        }
    while (!s.isEmpty()) {
       if (no unvisited vertices are adjacent to the vertex on the top of the stack) {
               s.pop()
               aList.insert(1, v)
       else
               select an unvisited vertex u adjacent to the vertex on top of the stack
               s.push(u)
               mark u as visited
       } // end if
   } // end while
```

A trace of topSort2

C. Spanning Trees – a spanning tree of a connected undirected graph G is a subgraph of G that contains all of G's vertices and enough of its edges to form a tree (connected, acyclic)

- Is spanning tree unique given an undirected graph?
- Would a spanning tree with N vertices have less than N-1 edges?
- Would a spanning tree with N vertices have more than N-1 edges?

Detecting a cycle in an undirected connected graph

- A connected undirected graph that has n vertices must have at least n-1 edges
- A connected undirected graph that has n vertices and exactly n-1 edges cannot contain a cycle
- A connected undirected graph that has n vertices and more than n-1 edges must contain at least one cycle

A graph may have many spanning trees; for instance the complete graph on four vertices

has sixteen spanning trees:

- **DFS spanning tree** spanning tree created by executing a depth-first search of a graph's vertices.
- **BFS spanning tree** spanning tree created by executing a breadth-first search of a graph's vertices.

■ **Minimum spanning tree(MSP)** – spanning tree of a weighted, connected, undirected graph which has minimal sum of edge-weights.

Application of MSP: When constructing a networks (of phone lines, or cable lines, ...), how to design the network lines such that the smallest total amount of wire is used.

Solution 1: Kruskal's algorithm: O(ElogE), E is the number of edges

// main idea: at each step, add an edge to the intermediate spanning tree such that it does // not form a cycle and it will result in a MST (with least total sum of edge weights)

sort the edges of G in increasing order by weights keep a subgraph S of G, initially empty for each edge \underline{e} in sorted list of edges if the endpoints of \underline{e} are disconnected in S add \underline{e} to S

return S

Practice Problem:

Solution 2: Prim's algorithm:

// the edges currently included always form a single tree

PrimsAlgorithm(in v:Vertex)

Mark vertex v as visited and include it in the minimum spanning tree while (there are unvisited vertices)

find the least-cost edge(v, u) from a visited vertex v to some unvisited vertex u

Mark u as visited

Add the vertex u and the edge (v, u) to the minimum spanning tree

Practice Problem:

Minimum edge weight data structure	Time complexity (total)			
adjacency matrix, searching	$O(V ^2)$			
binary heap and adjacency list	$O((V + E)\log V) = O(E \log V)$			
Fibonacci heap and adjacency list	$O(E + V \log V)$			

D. Shortest path – between two vertices in a weighted graph is the path that has the smallest sum of its edge weights.

Dijkstra's shortest path algorithm finds the shortest path from one vertex to all other vertices in a weighted, directed graph (all edge weights are nonnegative).

			weight					
Step	<u>v</u>	vertexSet	[0]	[1]	[2]	[3]	[4]	
1	-	0	0	8	00	9	4	
2	4	0, 4	0	8	5	9	4	
3	2	0, 4, 2	0	7	5	8	4	
4	1	0, 4, 2, 1	0	7	5	8	4	
5	3	0, 4, 2, 1, 3	0	7	5	8	4	

A trace of the shortest-path algorithm applied to the graph

<u>Practice problems: Show the shortest path from the starting node s (or 0) to all other nodes in the graph.</u>

