Chapter Notes

Model create a passthrough filter. Autoencoder is not constrained, forced to learn anything

Model learns to generate filter to generate original signal

Unsupervised Pretraining Using Stacked AutoEncoders

Bee path training data; not enough training

Use replacement neural network; a base layer which already 'learned about path of an insect' and train upper layers. Follow best practices when training pre-trained models

Model gets a learning boost (making limited training data not a big deal) by using network that resolves a similar task.

Unsupervised Pretraining Using Stacked AutoEncoders

Bee path training data; plenty of unlabeled data

Train AutoEncoder, learn 'codings' from ALL training data

Use encoder to **train** task (i.e. Bee Path) using labeled data only. After training the model should generalize well when inferring on unlabeled data.

Dense(1)

Tying Weights

Model trains 2 weight matrices instead of 4 if they were not 'common'

 $B(4,4) = \sum_{L} \sum_{i,j} A_{i,j,L} + w_{b}$

CONV2DTranpose (Strides = 2, Kernel_size= 3, same=valid)

CONV2DTranpose (Strides = 2, Kernel_size= 3, same=valid)

1	1
1	1

InputID

012345678

Max index	
$i \times s_i$ to $i \times s_i + k_{hsize} - 1$	i_max_index = 6
$j \times s_j$ to $j \times s_j + k_{wsize} - 1$	j_max_index = 6

012345678

1	1	
1	1	

InputID

012345678

Max index

 $\times s_i$ to $i \times s_i + k_{hsize} - 1$ i_max_index = 6 $\times s_j$ to $j \times s_j + k_{wsize} - 1$ j_max_index = 6

1	1
1	1

0	1	2
3	4	5
6	7	8

$i \times s_i$ to $i \times s_i + k_{hsize} - 1$	i_max_index = 6
$j \times s_j$ to $j \times s_j + k_{wsize} - 1$	j_max_index = 6

1	1
1	1

0	1	2
3	4	5
6	7	8

$i \times s_i$ to $i \times s_i + k_{hsize} - 1$	i_max_index = 6
$j \times s_j$ to $j \times s_j + k_{wsize} - 1$	j_max_index = 6

1	1
1	1

0	1	2
3	4	5
6	7	8

Max index

$i \times s_i$ to $i \times s_i + k_{hsize} - 1$	i_max_index = 6
$i \times s_j$ to $j \times s_j + k_{wsize} - 1$	j_max_index = 6

1	1
1	1

InputID

012345678

Max index	
$i \times s_i$ to $i \times s_i + k_{hsize} - 1$	i_max_index = 6
$j \times s_j$ to $j \times s_j + k_{wsize} - 1$	j_max_index = 6

1	1
1	1

1	1
1	1

InputID

012345678

Max index	
$i \times s_i$ to $i \times s_i + k_{hsize} - 1$	i_max_index =
$j \times s_j$ to $j \times s_j + k_{wsize} - 1$	j_max_index =

1	1
1	1

CONV2DTranpose (Strides = 2, Kernel_size= 3, same=padding)

Output = 8×8

Input = 4x4 Strides = 2 Kernel = 3 VALUE (Truncate)

Phase 1

Discriminator

Images

images	
Generator Image	0
	:
Real Image	
	:

Train Discriminator to 'understand' generated images vs real images

Phase 2

Generator

Generator Image	1
:	:

Train Generator to create realistic images by learning from the discriminators reaction.

Discriminator (Fail):
"You think this is an image, this is not an image, this region needs to be re-done. Please fix"

I have acquired no

I have acquired new s

Discriminator (Pass): "This image is an image great work"

Generator: Nothing to really learn, but thanks for confirming

Phase 1

Phase 2

Mini-Batch Discriminator:

Measure similarity between images in batch. For instance a scor

Notes

