Devoir surveillé n° 3 du 25/11/2019 - Durée : 1h15

NOM, Prénom :					
Documents et calculatrices non autorisés. Barème indicatif Toutes les réponses doivent être justifiées et les résultats soulignés.					
Répondez uniquen	ment dans les cases de cet énoncé. Si vous manquez de place, contin	uez au verso.			
	Calculer le volume du cône de \mathbb{R}^3 , d'origine O , d'axe de révolution O r rapport à cet axe, et de hauteur O 1.	0z, d'angle			

$=rac{1}{V}\iiint_{\Delta}zdx$	teur $oldsymbol{z_G}$ de son ce $oldsymbol{c} dy dz.$	entre de gravite	G sur l'axe Uz	z, donnee par ia	formule :

Exercice 2. (5 pts) On considère le domaine $\Delta = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le z^4, 0 \le z \le 1\}.$

a) Dessiner et caractériser géométriquement $\boldsymbol{\Delta}.$

Exercice	3.	(4	pts)
LACICIC	•	\ T	D UD

Pour R>0, on considère le domaine $\Delta=\{(x,y,z)\in I\!\!R^3,\; x^2+y^2+z^2\leq R^2,\;\;z\geq 0\}.$

- a) Dessiner et caractériser géométriquement Δ .
- b) Donner son volume \boldsymbol{V} sans faire obligatoirement de calcul.
- c) Calculer la hauteur $\boldsymbol{z_G}$ de son centre de gravité \boldsymbol{G} sur l'axe $\boldsymbol{0z}$, donnée par la formule :

 $z_G = \frac{1}{V} \iiint_{\Delta} z \, dx \, dy \, dz$. (On rappellera au tableau les éléments d'intégration.)

aaro r oquan	ion différentielle	avec conditi	 $\frac{g(x)-2g(x)}{x}$	$x_j = \epsilon x_j$	et y (0) -

Exercice 5.	(4 pts) Resoudre 1' équation différentielle : $y'' - 3y' + y = x$.
I	