Project Name	ILLC			
Device Name	me dsPIC33CK256MP506			
Revision Number				
Target Hardware	00178-Low_Voltage_Interleaved_LLC_Converter used with 00146-dsPIC33CK256MP506_Digital_Power_PIM (MA33048 Digital Power PIM)			
Hardware used for testing	CK DP PIM + Digital Power Development Board			
Engineer	M91281			
Date	October 1, 2019			

Specification

dsPIC33CK		DP PIM			
Pin #	Port #	Edge Card Connector Pin #	Signal Name	Peripheral	Description
1	RB14	45	PWM_C_H1	PG1	complementary pair $F_{sw} = 500 - 1000 \text{ kHz}$ $D = 50\%$ $Tdr = Tdf = 100ns$
2	RB15	47	PWM_C_L1		
63	RB12	42	PWM_C_SR_H1	PG2	Same as above. In sync with PG1, but 100ns phase shifted
64	RB13	40	PWM_C_SR_L1		
61	RB10	37	PWM_C_H2	PG3	complementary pair $F_{sw} = 500 - 1000 \text{ kHz}$ $D = 50\%$ $Tdr = Tdf = 100 \text{ns}$ half period phase shift with respect to PG1
62	RB11	41	PWM_C_L2		
59	RD1	43	PWM_C_SR_H2	PG4	Same as above. In sync with PG3, but 100ns phase shifted
60	RD0	44	PWM_C_SR_L2		
7	RC0/AN12	16	-	Shared Core ADC	Attach potentiometer based voltage divider providing 0 – 3.3V to tune PWM switching frequency between 500 – 1000 kHz

Features

- This code is for open loop testing of the ILLC converter
- The 2 primary and 2 secondary PWM channels are running at the same switching frequency and duty cycle
- Switching frequency can be adjusted between 500 1000 kHz by applying 0 -3.3V by connecting voltage divider tap point to RC0/AN12

Manipulation

Any of the configurations can be used to build the project. Not that this firmware is based on the firmware created for DPSK3. As a result, internal variable and subroutine names are usually not related to their actual usage for this particular hardware. All relevant pre-compiler macros can be found in the "drv_power_controllers.h" header file.

PWM Period: Can be adjusted with the connected potentiometer in the range of 500

- 1000 kHz

Duty Cycle: MAXIMUM_DUTY_RATIO 0.50 // Maximum Duty Ratio in [%]

(H1-L1) to (H2-L2) Phase Shift:

PG3_TO_PG1_OFFSET 0.50 // Offset as proportion of the

PWM period

Dead Times: PWM_DEAD_TIME_RISING 20 // Rising edge dead time [2.5ns]

PWM_DEAD_TIME_FALLING 20 // Falling edge dead time [2.5ns]

Commenting the following lines in "main.c" can be used to disable any of the PWM generators:

```
Drv_PowerControllerBuck1_EnableControlLoop();
// Enable PG3 outputs
```

Drv PowerControllerBoost1 EnableControlLoop();

// Enable PG2 outputs

// Enable PG1 outputs

Drv_PowerControllerBuck2_EnableControlLoop();

// Enable PG4 outputs

Drv_PowerControllerBoost2_EnableControlLoop();

Synchronous rectifier phase shift can be set by modifying the additive term in the line shown below:

```
PG3TRIGC = (MPER >> 1) + 40;
```

Note that the phase delay is measured in terms of ticks [2.5ns], e.g. the value of 40 refers to 100ns.