COMP3411: Artificial Intelligence

Automated Reasoning

This Lecture

- Proof systems
 - Soundness, completeness, decidability
- Resolution and Refutation
- Horn clauses and SLD resolution
- Prolog

Summary So Far

- Propositional Logic
 - Syntax: Formal language built from Λ , V, \neg , \rightarrow
 - ► Semantics: Definition of truth table for every formula
 - ightharpoonup S
 otin P if whenever all formulae in S are True, P is True
- Proof System
 - System of axioms and rules for deduction
 - ► Enables computation of proofs of *P* from *S*
- Basic Questions
 - ► Are the proofs that are computed always correct? (soundness)
 - ► If $S \models P$, is there always a proof of P from S (completeness)

Mechanising Proof

- A proof of a formula *P* from a set of premises *S* is a sequence of lines in which any line in the proof is
 - 1. An axiom of logic or premise from *S*, or
 - 2. A formula deduced from previous lines of the proof using a rule of inference and the last line of the proof is the formula *P*
- Formally captures the notion of mathematical proof
- S proves $P(S \vdash P)$ if there is a proof of P from S; alternatively, P follows from S
- Example: Resolution proof

Soundness and Completeness

- A proof system is sound if (intuitively) it preserves truth
 - Whenever $S \vdash P$, if every formula in S is True, P is also True
 - ▶ Whenever $S \vdash P$, $S \models P$
 - ► If you start with true assumptions, any conclusions must be true
- A proof system is complete if it is capable of proving all consequences of any set of premises (including infinite sets)
 - ► Whenever *P* is entailed by *S*, there is a proof of *P* from *S*
 - ▶ Whenever $S \models P, S \vdash P$
- A proof system is decidable if there is a mechanical procedure (computer program) which when asked whether $S \vdash P$, can always answer 'true' or 'false' correctly

Resolution

- A common type of proof system based on refutation
- Better suited to computer implementation than systems of axioms and rules (can give correct 'false' answers)
- Decidable in the case of Propositional Logic
- Generalises to First-Order Logic (see next set of lectures)
- Needs all formulae to be converted to clausal form

Normal Forms

- A literal ℓ is a propositional variable or the negation of a propositional variable $(P \text{ or } \neg P)$
- A clause is a disjunction of literals $\ell_1 \vee \ell_2 \vee \cdots \vee \ell_n$
- Conjunctive Normal Form (CNF) a conjunction of clauses, e.g. $(P \lor Q \lor \neg R) \land (\neg S \lor \neg R)$ or just one clause, e.g. $P \lor Q$
- Disjunctive Normal Form (DNF) a disjunction of conjunctions of literals, e.g. $(P \land Q \land \neg R) \lor (\neg S \land \neg R)$ or just one conjunction, e.g. $P \land Q$
- Every Propositional Logic formula can be converted to CNF and DNF
- Every Propositional Logic formula is equivalent to its CNF and DNF

Conversion to Conjunctive Normal Form

- Eliminate \leftrightarrow rewriting $P \leftrightarrow Q$ as $(P \rightarrow Q) \land (Q \rightarrow P)$
- Eliminate \rightarrow rewriting $P \rightarrow Q$ as $\neg P \lor Q$
- Use De Morgan's laws to push ¬ inwards (repeatedly)
 - Rewrite $\neg (P \land Q)$ as $\neg P \lor \neg Q$
 - Rewrite $\neg (P \lor Q)$ as $\neg P \land \neg Q$
- Eliminate double negations: rewrite $\neg \neg P$ as P
- Use the distributive laws to get CNF [or DNF] if necessary
 - Rewrite $(P \land Q) \lor R$ as $(P \lor R) \land (Q \lor R)$ [for CNF]
 - Rewrite $(P \lor Q) \land R$ as $(P \land R) \lor (Q \land R)$ [for DNF]

Example Clausal Form

Clausal Form = set of clauses in the CNF

- $\neg (\neg P \lor (Q \land R))$
- $\neg \neg P \land \neg (Q \land R)$
- $\neg \neg P \land (\neg Q \lor \neg R)$
- $P \wedge (\neg Q \vee \neg R)$
- Clausal Form: $\{P, \neg Q \lor \neg R\}$

Resolution Rule of Inference

where B is a propositional variable and A_i and C_j are literals

- \blacksquare B and $\lnot B$ are complementary literals
- \blacksquare $A_1 \lor \cdots \lor A_m \lor C_1 \lor \cdots \lor C_n$ is the resolvent of the two clauses
- Special case: If no A_i and C_j , resolvent is empty clause, denoted \square or \bot

Resolution Rule

- Consider $A_1 \vee \cdots \vee A_m \vee B$ and $\neg B \vee C_1 \vee \cdots \vee C_n$
 - Suppose both are True
 - ► If *B* is True, $\neg B$ is False so $C_1 \vee \cdots \vee C_n$ must be True
 - If B is False, $A_1 \vee \cdots \vee A_m$ must be True
 - ightharpoonup Hence $A_1 \vee \cdots \vee A_m \vee C_1 \vee \cdots \vee C_n$ is True

Hence the resolution rule is sound

Starting with true premises, any conclusion made using resolution must be true

Applying Resolution: Naive Method

- Convert knowledge base into clausal form
- Repeatedly apply resolution rule to the resulting clauses
- *P* follows from the knowledge base if and only if each clause in the CNF of *P* can be derived using resolution from the clauses of the knowledge base (or subsumption)
- Example
 - $P \rightarrow Q, Q \rightarrow R + P \rightarrow R$
 - ightharpoonup Clauses $\neg P \lor Q$, $\neg Q \lor R$, show $\neg P \lor R$
 - Follows from one resolution step (Q and $\neg Q$ cancel, leaving $\neg P \lor R$)

Refutation Systems

- To show that P follows from S (i.e. $S \vdash P$) using refutation, start with S and $\neg P$ in clausal form and derive a contradiction using resolution
- A contradiction is the "empty clause" (a clause with no literals)
- The empty clause □ is unsatisfiable (always False)
- So if the empty clause \square is derived using resolution, the original set of clauses is unsatisfiable (never all True together)
- That is, if we can derive \square from the clausal forms of S and $\neg P$, these clauses can never be all True together
- Hence whenever the clauses of S are all True, at least one clause from $\neg P$ must be False, i.e. $\neg P$ must be False and P must be True
- By definition, $S \models P$ (so P can correctly be concluded from S)

Applying Resolution Refutation

- Negate query to be proven (resolution is a refutation system)
- Convert knowledge base and negated query into CNF
- Repeatedly apply resolution until either the empty clause (contradiction) is derived or no more clauses can be derived
- If the empty clause is derived, answer 'true' (query follows from knowledge base), otherwise answer 'false' (query does not follow from knowledge base)

Resolution: Example 1

$$(G \lor H) \to (\neg J \land \neg K), G \vdash \neg J$$

Clausal form of is $\{\neg G \lor \neg J, \neg H \lor \neg J, \neg G \lor \neg K, \neg H \lor \neg K\}$

1.
$$\neg G \lor \neg J$$
 [Premise]

- 1. $\neg G \lor \neg J$ [Premise] 2. $\neg H \lor \neg J$ [Premise] 3. $\neg G \lor \neg K$ [Premise] 4. $\neg H \lor \neg K$ [Premise]
- 5. G [Premise]
 6. J [¬ Query]
 7. $\neg G$ [1, 6 Resolution]
 - [5, 7 Resolution]

Resolution: Example 2

$$P \to \neg Q, \neg Q \to R \vdash P \to R$$

Recall
$$P \to R \Leftrightarrow \neg P \lor R$$

Clausal form of $\neg(\neg P \lor R)$ is $\{P, \neg R\}$

1.
$$\neg P \lor \neg Q$$
 [Premise]

FD : 7

$$\sim$$
 2. $Q \vee R$

[Premise]

[¬ Query]

$$\Delta - K$$

[¬ Query]

[1, 3 Resolution]

[2, 5 Resolution

[4, 6 Resolution]

Resolution: Example 3

$$\vdash ((P \lor Q) \land \neg P) \rightarrow Q$$

Clausal form of $\vdash ((P \lor Q) \land \neg P) \rightarrow Q$ is $\{P \lor Q, \neg P, \neg Q\}$

[¬ Query]

[¬ Query]

3. $\neg Q$ [\neg Query] 4. Q [1, 2 Reso [1, 2 Resolution

5. **□**

[3, 4 Resolution]

Rewriting negated query in CNF:

$$\neg [((P \lor Q) \land \neg P) \to Q]$$

$$\neg [\, \neg ((P \lor Q) \land \neg P) \lor Q]$$

$$\neg \neg ((P \lor Q) \land \neg P) \land \neg Q$$

$$(P \lor Q) \land \neg P \land \neg Q$$

Now write in clausal form:

$$\{P \lor Q, \neg P, \neg Q\}$$

Soundness and Completeness Again

For Propositional Logic

- Resolution refutation is sound, i.e. it preserves truth (if a set of premises are all true, any conclusion drawn from those premises must also be true)
- Resolution refutation is complete, i.e. it is capable of proving all consequences of any knowledge base (not shown here!)
- Resolution refutation is decidable, i.e. there is an algorithm implementing resolution which when asked whether $S \vdash P$, can always answer 'true' or 'false' (correctly)

Heuristics in Applying Resolution

- Clause elimination can disregard certain types of clauses
 - Pure clauses: contain literal L where $\neg L$ doesn't appear elsewhere
 - ► Tautologies: clauses containing both L and $\neg L$
 - ► Subsumed clauses: another clause is a subset of the literals
- Ordering strategies
 - Resolve unit clauses (only one literal) first
 - Start with query clauses
 - ► Aim to shorten clauses

Horn Clauses

Using a less expressive language makes proof procedure easier.

- Review
 - ► literal proposition variable or negation of proposition variable
 - clause disjunction of literals
- Definite Clause exactly one positive literal
 - e.g. $B \vee \neg A_1 \vee \ldots \vee \neg A_n$, i.e. $B \leftarrow A_1 \wedge \ldots \wedge A_n$
- Negative Clause no positive literals
 - e.g. $\neg Q_1 \lor \neg Q_2$ (negation of a query)
- Horn Clause clause with at most one positive literal

Prolog

- Horn clauses in First-Order Logic
- SLD resolution
- Depth-first search strategy with backtracking
- User control
 - Ordering of clauses in Prolog database (facts and rules)
 - Ordering of subgoals in body of a rule
- Prolog is a programming language based on resolution refutation relying on the programmer to exploit search control rules

Prolog Clauses

$$P := Q, R, S.$$

$$P \leftarrow Q \land R \land S$$
.

$$P \vee \neg (Q \wedge R \wedge S)$$

$$P \vee \neg Q \vee \neg R \vee \neg S$$

Prolog DB = set of clauses

Queries:

$$\perp \leftarrow Q \land R \land S$$

$$\neg (Q \land R \land S)$$

$$\neg Q \lor \neg R \lor \neg S$$

$$P \to Q \equiv \neg P \lor Q$$
$$P \leftarrow Q \equiv P \lor \neg Q$$

$$P \leftarrow Q \equiv P \vee \neg Q$$

 $\perp \equiv$ false (i.e. a contradiction)

SLD Resolution – \vdash_{SLD}

C KB C₁

 C_2

- Selected literals Linear form Definite clauses resolution
- SLD refutation of a clause *C* from a set of clauses *KB* is a sequence
 - 1. First clause of sequence is *C*
 - 2. Each intermediate clause C_i is derived by resolving the previous clause C_{i-1} and a clause from KB
 - 3. The last clause in the sequence is \Box
- For a definite KB and negative clause query $Q: KB \cup Q \vdash \Box$ if and only if $KB \cup Q \vdash_{SLD} \Box$

Prolog Example

Example Execution of Prolog interpreter

```
r.
                                      Initial goal set = \{p\}
u.
                                      1. \{q, r, s\}
                                                             because p := q, r, s.
V.
                                      2. \{r, u, r, s\}
                                                            because q :- r, u.
                                      3. \{u, r, s\}
                                                            because r.
q:-r, u.
                                      4. \{r, s\}
                                                             because u.
s :- V.
                                      5. {s}
                                                            because r.
p :- q, r, s.
                                      6. {v}
                                                            because s :- v
                                      7. {}
                                                            because v.
?- p.
                                      8. => true
                                                             because empty clause
```

- In each step, we remove the first element in the goal set and replace it with the body of the clause whose head matches that element. E.g. remove *p* and replace by *q*, *r*, s.
- **Note**: The simple Prolog interpreter isn't smart enough to remove the duplication of *r* in step 2.

Prolog Interpreter

```
Input: A query Q and a logic program KB
Output: 'true' if Q follows from KB, 'false' otherwise
      Initialise current goal set to \{Q\}
      while the current goal set is not empty do
               Choose G from the current goal set; (first in goal set)
               Make a copy G': B_1, \ldots, B_n of a clause from KB
                                                                                  Inefficient and not how a
                (try all in KB) (if no such rule, try alternative rules)
                                                                                  real Prolog interpreter works
               Replace G by B_1, \ldots, B_n in current goal set
               if current goal set is empty:
                        output 'true'
               else output 'false'
```

Depth-first, left-right with backtracking

Conclusion: Propositional Logic

- Propositions built from \land , \lor , \neg , \rightarrow
- Sound, complete and decidable proof systems (inference procedures)
 - Natural deduction
 - Resolution refutation
 - Prolog for special case of definite clauses
 - ► Tableau method
- Limited expressive power
 - Cannot express ontologies (no relations)
- First-Order Logic can express knowledge about objects, properties and relationships between objects