

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2000-348958

(43)Date of publication of application : 15.12.2000

(51)Int.CI. H01F 41/02
H01F 1/08

(21)Application number : 11-155832

(71)Applicant : SUZUKI MASAAKI

(22)Date of filing : 03.06.1999

(72)Inventor : ITO NOBORU

SUZUKI MASAAKI

OSHIMA KUNIO

(54) MANUFACTURE OF RESIN-BONDED MAGNET

(57)Abstract:

PROBLEM TO BE SOLVED: To enable a resin-bonded magnet to be naturally decomposed even if it is thrown away as it is and to prevent dioxins from originating from the magnet even if it is incinerated, by a method wherein a thermoplastic resin such as a biodegradable plastic or a non-halogen resin is mixed as a binder into magnetic powder, and the mixture is heated, softened, molded into a rod, and magnetized through a kneader-rooter.

SOLUTION: Thermoplastic resin such as a biodegradable plastic and/or a non-halogen resin which contains no chlorine is mixed as binder into magnetic powder such as ferrite magnetic powder. The weight ratio of thermoplastic resin to the total weight is set at about 45 or less: 100 in a stage where a resin-bonded magnet is molded. The biodegradable plastic formed by the use of natural products is used as a biodegradable plastic, and a polyolefin resin is used as a non-halogen resin. A mixture of thermoplastic resin and magnetic powder is heated, softened, molded into rods, pellets, and sheets, and magnetized through a kneader-rooter, by which a resin-bonded magnet can be obtained.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-348958

(P2000-348958A)

(43)公開日 平成12年12月15日(2000.12.15)

(51)Int.Cl.⁷

H 01 F 41/02
1/08

識別記号

F I

H 01 F 41/02
1/08

テマコード(参考)

G 5 E 0 4 0
A 5 E 0 6 2

審査請求 未請求 請求項の数10 OL (全 3 頁)

(21)出願番号

特願平11-155832

(22)出願日

平成11年6月3日(1999.6.3)

(71)出願人 398068901

鈴木 正明

栃木県黒磯市島方449-45

(72)発明者 伊藤 登

埼玉県鴻巣市赤見台2-2-16-504

(72)発明者 鈴木 正明

栃木県黒磯市島方449-45

(72)発明者 大島 國雄

埼玉県北足立郡伊奈町小針内宿1259-1

Fターム(参考) 5E040 AC08 BB04 BB06 CA01 HB07

HB19

5E062 CC01 CC02 CC03 CC04 CC05

CD05 CE01

(54)【発明の名称】樹脂結合型磁石の製造方法

(57)【要約】

【課題】 日常で使用する場合は自由に貼ったり剥がしたりでき、使用後に廃棄しても、自然分解するまたはダイオキシンが発生しない地球環境に配慮した樹脂結合型磁石を提供する。

【解決手段】 热可塑性樹脂として生分解性プラスチックや塩素を含まないノンハロゲン系樹脂またはこれらを混合した熱可塑性樹脂を結合剤として磁性粉に混入したものをニーダールーダーにて加熱軟化させ棒状または粒状およびシート状に成形し、着磁することで樹脂結合型磁石となる。

【特許請求の範囲】

【請求項 1】 熟可塑性樹脂として自然分解する生分解性プラスチックを結合剤として使用し、磁性粉末に混入したものをニーダールーダーにて加熱軟化させ棒状または粒状およびシート状に成形し、着磁することを特徴とする樹脂結合型磁石の製造方法。

【請求項 2】 熟可塑性樹脂として塩素を含まないノンハロゲン系樹脂を結合剤として使用し、磁性粉末に混入したものをニーダールーダーにて加熱軟化させ棒状または粒状およびシート状に成形し、着磁することを特徴とする樹脂結合型磁石の製造方法。

【請求項 3】 熟可塑性樹脂として自然分解する生分解性プラスチックと塩素を含まないノンハロゲン系樹脂とを混合し結合剤として使用し、磁性粉末に混入したものをニーダールーダーにて加熱軟化させ棒状または粒状およびシート状に成形し、着磁することを特徴とする樹脂結合型磁石の製造方法。

【請求項 4】 成形した樹脂結合型磁石の形を整形するために遠心分離器またはヘンシェルミキサーおよび振動装置を使用し、球状にすることを特徴とする請求項 1 から 3 記載の製造方法。

【請求項 5】 製造段階では着磁しないで棒状または粒状およびシート状に成形し、形を整形した後着磁することを特徴とする請求項 1 から 4 記載の製造方法。

【請求項 6】 生分解性プラスチックは、天然物利用系生分解性プラスチックであるでんぶんやセルロースおよびキチン・キトサン・海産多糖類などの天然高分子、微生物產生系生分解性プラスチックであるバイオポリエスチル・カードラン・ブルラン・バクテリアセルロース・ポリアミノ酸などの高分子、化学合成系生分解性プラスチックである脂肪族ポリエスチルおよび共重合体・ポリウレタン樹脂・ポリアミド系樹脂・ポリビニルアルコール・ポリエテールなどの合成高分子、およびこれらの天然物利用系・微生物產生系・化学合成系を複合した合成高分子、または光分解性プラスチックを使用することを特徴とする請求項 1 および 3 記載の製造方法。

【請求項 7】 熟可塑性合成樹脂として塩素を含まないノンハロゲン系樹脂は、ポリオレフィン系樹脂・ポリアミド系樹脂・ポリエスチル系樹脂・スチレン系樹脂・ウレタン系樹脂などの合成樹脂およびこれらを共重合した合成樹脂を使用することを特徴とする請求項 2 および 3 記載の製造方法。

【請求項 8】 磁性粉末としてフェライト磁性粉やサマリウム (S m) ・ネオジウム (N d) ・セリウム (C e) ・プラセジウム (P r) などの希土類元素を含む合金磁性粉およびこれらの磁性粉を混合した磁性粉を使用することを特徴とする請求項 1 から 3 記載の製造方法。

【請求項 9】 樹脂結合型磁石の重量比は、少なくとも結合剤である熟可塑性樹脂が、樹脂結合型磁石を成形する段階で磁性粉末に対し、総重量の 45% 以下である

ことを特徴とする請求項 1 から 3 記載の製造方法。

【請求項 10】 製造段階でトルマリンまたは肥料成分および土壤活性剤を混入し、棒状・粒状・シート状に成形することを特徴とする請求項 1 から 3 記載の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、地球環境に配慮した樹脂結合型磁石に係り、特に使用後に廃棄した場合、自然分解するまたは焼却時にダイオキシンが発生しない樹脂結合型磁石の成形に関する。

【0002】

【従来の技術】 樹脂結合型磁石は、熟可塑性樹脂剤に磁性粉を混入し、加熱軟化して成形するため柔軟性があり加工性に富んだ磁石として有効性を有している。

【0003】 また、樹脂結合型磁石の利用範囲は、家庭では冷蔵庫や洗濯機などのスチール面、会社ではホワイトボードやスチール製のロッカー、机、壁面などの磁性体面に対して、マグネットボタンやマグネットバーなどの磁石製品として、または自動車の初心者マークやモーター用マグネットとして一般的に広範囲に利用されている。

【0004】

【発明が解決しようとする課題】 このように会社や家庭など私たちの生活の中で磁性体面であれば自由に貼つたり剥がしたりできる便利な樹脂結合型磁石製品も、その利用が済めば廃棄しなければならず、焼却によるダイオキシン問題が大きな社会現象になっている。

【0005】 そこで本発明は、マグネットとしての利用が済んだとの廃棄について、そのまま廃棄しても自然分解する、または焼却しても塩素が入っていないためダイオキシンが発生しない樹脂結合型磁石を製造することを目的とする。

【0006】

【課題を解決するための手段】 前述の目的を達成するため、本発明の樹脂結合型磁石の製造方法は、熟可塑性樹脂として生分解性プラスチックや塩素を含まないノンハロゲン系樹脂を結合剤として磁性粉に混入したものをニーダールーダーにて加熱軟化させ棒状または粒状およびシート状に成形し、着磁することで樹脂結合型磁石となることを特徴とするものである。

【0007】 また、磁性粉に混入する熟可塑性樹脂は、成形性をよくするため生分解性プラスチックと塩素を含まないノンハロゲン系樹脂を適宜混合し、結合剤として使用してもよい。

【0008】 また、熟可塑性樹脂と混入する磁性粉は、磁力の強弱によりフェライト磁性粉やサマリウム (S m) ・ネオジウム (N d) ・セリウム (C e) ・プラセジウム (P r) などの希土類元素を含む合成磁性粉を適宜混合し、使用目的により磁力の単位である B · H m a

x を 0.2 からその配合割合により段階的に強磁性体にする樹脂結合型磁石を成形してもよい。

【0009】

【発明の実施形態】本発明の樹脂結合型磁石は、環境問題に対応した熱可塑性樹脂として生分解性プラスチックや塩素を含まないノンハロゲン系樹脂またはこれらを混合した熱可塑性樹脂を結合剤として磁性粉に混入する。

【0010】この熱可塑性樹脂と磁性粉の混入比は、少なくとも結合剤である熱可塑性樹脂が樹脂結合型磁石を成形する段階で、磁力の単位である $B \cdot H_{max} \times 0.2$ 以上を保持するため、総重量の 45% 以下とする。

【0011】この磁性粉に混入する熱可塑性樹脂である生分解性プラスチックは、天然物利用系生分解性プラスチックであるでんぶんやセルロースおよびキチン・キトサン・海産多糖類などの天然高分子、微生物産生系生分解性プラスチックであるバイオポリエステル・カードラン・プルラン・バクテリアセルロース・ポリアミノ酸などの高分子、化学合成系生分解性プラスチックである脂肪族ポリエステルおよび共重合体・ポリウレタン樹脂・ポリアミド系樹脂・ポリビニルアルコール・ポリエーテルなどの合成高分子、およびこれらの天然物利用系・微生物産生系・化学合成系を複合した合成高分子、または光分解性プラスチックがある。

【0012】また、この磁性粉に混入する熱可塑性樹脂である塩素を含まないノンハロゲン系樹脂は、ポリオレフィン系樹脂・ポリアミド系樹脂・ポリエステル系樹脂・スチレン系樹脂・ウレタン系樹脂などの合成樹脂およびこれらを共重合した合成樹脂がある。

【0013】また、磁性粉末としてフェライト磁性粉やサマリウム ($S\text{m}$)・ネオジウム ($N\text{d}$)・セリウム ($C\text{e}$)・プラセジウム ($P\text{r}$)などの希土類元素を含む合金磁性粉を混合することで、

む合金磁性粉およびこれらの磁性粉を混合した磁性粉がある。

【0014】この磁性粉を使用目的により磁力の単位である $B \cdot H_{max} \times 0.2$ からその配合割合により段階的に強磁性体にすることができるものである。

【0015】これらの熱可塑性樹脂と磁性粉を混入したものをニードルーダーにて加熱軟化させ棒状または粒状およびシート状に成形し、着磁することにより樹脂結合型磁石とするものである。

【0016】そして、この成形される樹脂結合型磁石は、地球環境に配慮したものであり、使用後廃棄した場合、自然分解するまたは焼却時にダイオキシンが発生しない樹脂結合型磁石ができるものである。

【0017】

【発明の効果】以上詳述の如く、本発明の樹脂結合型磁石の製造方法によれば、通常使用する場合は、磁性体面に自由に貼ったり剥がしたりする樹脂結合型磁石ができる、かつ使用後に廃棄した場合も自然分解するまたは焼却してもダイオキシンが発生しない環境に配慮した極めて有効的なものである。

【0018】また、自然分解することを利用してマグネットの磁力と製造段階でトルマリンまたは肥料成分および土壤活性剤を混入することで、バイオ肥料とすることもできる。

【0019】また、熱可塑性樹脂に混入する磁性粉末としてフェライト磁性粉やサマリウム ($S\text{m}$)・ネオジウム ($N\text{d}$)・セリウム ($C\text{e}$)・プラセジウム ($P\text{r}$)などの希土類元素を含む合金磁性粉を混合することで、使用目的により磁力の単位である $B \cdot H_{max} \times 0.2$ からその配合割合により段階的に強磁性体にことができるものである。