

MATEMATIKAI ÉS INFORMATIKAI INTÉZET

A kommunikációs gráfok modelljeinek vizsgálata Python programozási nyelvvel

Készítette

Mohai Ferenc programtervező informatikus BSc

Témavezető

Dr. Kusper Gábor egyetemi docens

Tartalomjegyzék

Ве	vezet	és	3
1.	Alap fogalmak		
	1.1.	Szakirodalom	4
	1.2.	A Python programozási nyelvről	7
Összegzés		8	
Irc	dalo	mjegyzék	9

Bevezetés

A szakdolgozati szemináriumon, amikor hallottam Kusper Gábor tanár úr magyarázatát a kutatásról, annak eredményeiről, céljáról, felhasználásáról. és már akkor nagyon megtetszett a téma. A SAT megoldó széles körű felhasználásáról beszélgettünk. Korábbi előadásokon, gyakorlatokon is voltak tanáraim, akik ezt a témát felvetették, és már akkoriban meghozták a kedvemet hozzá. Amikor választanom kellett, nem volt nagy kérdés, hogy ez egy számomra érdekes téma, amivel szívesen dolgozok, és lehetőséget ad a fejlődésre.

Szaktársammal, Rajna Franciskával csak mi ketten érdeklődtünk ebben a témában, úgyhogy mindenki örömmel beszélte meg a részleteket és közös megegyezéssel találtuk ki melyik ágát dolgozza ki a témának. Pozitív és energikus első benyomás után örömmel kezdtünk a munkának. Bíró Csaba és Balla Tamás tanár urakkal dolgoztunk a témával kapcsolatos házi TDK-hoz hasonló előadásokon és kutatásokon ([1, ICAI2020, AM2020]) vettünk részt. Az egyik alkalommal egy plakátot is készítettünk, ezekkel megalapozva egy lendületes kezdést.

Megbeszéltük hol szorul fejlesztésre a SAT megoldó, amin tudok programozással javítani. Valamint a korábbi általuk írt angol nyelvű szakirodalmakkal elsajátíthatom az elméleti hátteret, felzárkózhatok a jelenlegi helyzethez és ezeken dolgozva könnyedén belerázódjak a szakdolgozatom megfogalmazásába. Így kezdtem el a munkámat.

1. fejezet

Alap fogalmak

A munkámat azzal kezdtem, hogy szakirodalmakat olvastam, fordítottam és értelmeztem, amiket korábban témavezetőim írtak [RÉSZLETEZD az alapokat SZAKIRODALOM]. Anyagot gyűjtöttem és dolgoztam fel a SAT megoldókról. Ezekben megjelentek különböző fogalmak, mint a tautológia [RÉSZLETEZD az alapokat alfejezetben SZAKIRODALOM FOGALMAI] cnf, és dnf, valamint programozási nyelvek, mint a Python [RÉSZLETEZD az alapokat PYTHON] és a Wolfram Alpha [RÉSZLETEZD az alapokat WOLFRAM ALPHA].

1.1. Szakirodalom

Szakirodalom fogalmai, definíciói:

- **1.1. Definíció.** Atomi formula, röviden atom: Azt mondjuk, hogy egy szimbólum atomi formula, vagy atom, akkor és csak akkor, ha egy kifejezést jelöl. Ilyen atomok, az igaz és hamis ítéletváltozók. Szimbólumuk általában az I és H betűk magyarul, de szoktuk használni az angol megfelelőjét is a T és F betűket.
- 1.2. Definíció. Literál: Azt mondjuk, hogy egy szimbólum literál, akkor és csak akkor, ha egy atom, vagy annak negáltja.
- 1.3. Definíció. Jól formázott formula, röviden formula: Azt mondjuk, hogy egy szimbólum sorozat jól formázott formula, vagy formula, akkor és csak akkor, ha F formula a következő alakok egyikében van:
 - (a) A, ahol A egy atom;
 - (b) $\neg A$, ahol A egy formula;
 - (c) $(A \wedge B)$, ahol A és B formulák;
 - (d) $(A \vee B)$, ahol A és B formulák;

- (e) $(A \Longrightarrow B)$, ahol A és B formulák;
- (f) $(A \Leftrightarrow B)$, ahol A és B formulák.

Minden formula a fenti esetek véges sokszori alkalmazásával áll elő.

- 1.4. Definíció. Formula: Adott ítéletváltozónak egy véges, nem üres V halmaza.
 - 1. Ítéletváltozó: ha $A \in V$, akkor A formula.
 - 2. Negáció: ha A formula, akkor $\neg A$ is formula.
- 1.5. Definíció. Klóz, angolul clause: Azt mondjuk, hogy egy formula klóz, akkor és csak akkor, ha adott literáloknak és formális összekötőknek egy véges, nem üres, egynél több elemű W halmaza.
 - 1. pozitív literál: ha $B \in W$, és B egy pozitív literál.
 - 2. negatív literál: ha B pozitív literál, akkor $\neg B$ negatív literál.
 - 3. és formális összekötő: ha $B \wedge \neg B$, akkor \wedge egy és formális összekötő.
 - 4. vagy formális összekötő: ha $B \vee \neg B$, akkor \vee egy vagy formális összekötő.
- 1.6. Megjegyzés. Létezik konjunktív és diszjunktív klóz is. Ezeket később részletezem. Diszjunktív klóz: Azt mondjuk, hogy l_i szimbólumok egy klózt alkotnak, akkor és csak akkor, ha minden l_i literál: $l_1 \vee \ldots \vee l_n$ Konjunktív klóz: Azt mondjuk, hogy l_i szimbólumok egy klózt alkotnak, akkor és csak akkor, ha minden l_i literál: $l_1 \wedge \ldots \wedge l_n$
- 1.7. Definíció. Implikáció: Azt mondjuk hogy formális összekötő implikáció, akkor és csak akkor, ha mindkét oldalán van egy literál, és egy harmadik literált állít elő a kettő értékéből, oly módon, hogy az összes bal oldali értékből pozitív literált állít elő, kivéve, ha a bal oldalán pozitív, a jobb oldalán negatív literál van. Mivel a negatív értékből nem következik a pozitív érték. Jelölése: $A \implies B$
- 1.8. Definíció. Ekvivalencia: Azt mondjuk, hogy formális összekötő ekvivalencia, akkor és csak akkor, ha mindkét oldalán van egy literál, és egy harmadik literált állít elő a kettő értékéből, oly módon, hogy ha mindkét oldalán ugyan az a pólusú literál van, akkor pozitív literált állít elő, kivéve, ha eltérnek a pólusok.
- 1.9. Megjegyzés. Pólus alatt a negatív vagy pozitív jelzőt értjük.
- **1.10. Definíció.** Konjukció: Azt mondjuk, hogy formális összekötő konjukció, akkor és csak akkor, ha mindkét oldalán van egy literál, és egy harmadik literált állít elő a kettő értékéből, oly módon, hogy ha mindkét oldalán pozitív literál van, akkor és csak akkor pozitív literált állít elő, különben negatív literált. Jele: ∧

- **1.11. Definíció.** Diszjunkció: Azt mondjuk, hogy formális összekötő diszjunkció, akkor és csak akkor, ha mindkét oldalán van egy literál, és egy harmadik literált állít elő a kettő értékéből, oly módon, hogy ha mindkét oldalán negatív literál van, akkor negatív literált állít elő, különben pozitív literált. Jele: ∨
- **1.12. Definíció.** Konjunktív normál forma, röviden KNF, angolul conjunctive normal form, mint CNF: Azt mondjuk, hogy logikai formula konjunktív normál forma, akkor és csak akkor, ha egy vagy több klózt egymáshoz kötünk konjunkcióval.
- **1.13. Definíció.** Diszjunktív normál forma, röviden DNF, angolul disjunctive normal form, mint DNF: Azt mondjuk, hogy logikai formula diszjunktív normál forma, akkor és csak akkor, ha egy vagy több klózt egymáshoz kötünk diszjunkcióval.
- **1.14. Definíció.** Interpretáció: Adott ítéletváltozóknak egy véges sok, nem üres V halmaza. Azt mondjuk, hogy a J hozzárendelés az F formula egy interpretációja, akkor és csak akkor, ha F minden atomjához vagy az igaz, vagy a hamis értéket rendeljük, de csak az egyiket.
- **1.15. Definíció.** Logikai törvény, más néven tautológia: Azt mondjuk, hogy az F formula logikai törvény, vagy tautológia, akkor és csak akkor, ha F minden interpretációjában igaz.
- **1.16. Definíció.** Logikai ellent mondás, angolul contradiction, unsatisfiable: Azt mondjuk, hogy az F formula logikai ellentmondás, akkor és csak akkor, ha F minden interpretációjában hamis.
- **1.17. Definíció.** Kielégíthető, angolul satisfiable: Azt mondjuk, hogy az F formula kielégíthető, akkor és csak akkor, ha F legalább egy interpretációjában igaz.
- **1.18. Definíció.** Hamissá tehető, angolul falseable: Azt mondjuk, hogy az F formula hamissá tehető, akkor és csak akkor, ha F legalább egy interpretációjában hamis.
- 1.19. Megjegyzés. Kielégítő ellentéte a logikai ellentmondás, mivel ha valami nem kielégíthető, akkor abból következik, hogy logikai ellentmondás. Hamissá tehető ellentéte a logikai törvény, mivel ha valami nem hamissá tehető, akkor abból következik, hogy logikai törvény.
 - Igazság tábla: Oszloponként tartalmazza az összes atomot, ami a formulánkban van, és az utolsó oszlopban a formulát is. Soronként minden atomhoz értéket rendel (minden lehetséges sorrendben), és a formulába behelyettesítve kiszámítja a formula értékét. Az eredményét az utolsó oszlopban láthatjuk.
 - Logikai törvény, tautológia: Ezek segítségével felírhatunk olyan formulákat, és igazság táblákat, amelyek minden lehetséges esetre igaz értéket adnak eredményül.

részletet beilleszteni a szakirodalom fordításaimból.

1.2. A Python programozási nyelvről

részletezés [2, 102. oldal] szöveg [2, 3]

1.20. Tétel. Tétel szövege.

Bizonyítás. Bizonyítás szövege.

Összegzés

Irodalomjegyzék

- [1] ICAI2020, AM2020 AGRIA MÉDIA: ...
- [2] FAZEKAS ISTVÁN: Valószínűségszámítás, Debreceni Egyetem, Debrecen, 2004.
- [3] TÓMÁCS TIBOR: A valószínűségszámítás alapjai, Líceum Kiadó, Eger, 2005.

Nyilatkozat

Alulírott, bü	intetőjogi felelősségem	tudatában kijelentem, ho	gy
az általam benyújtott,		cír	nű
szakdolgozat önálló szellemi termé	kem. Amennyiben más	sok munkáját felhasználta	m,
azokra megfelelően hivatkozom, be	eleértve a nyomtatott és	az internetes forrásokat i	s.
Aláírásommal igazolom, hogy a	az elektronikusan feltölt	ött és a papíralapú szakd	ol-
gozatom formai és tartalmi szempo	ontból mindenben mege	egyezik.	

Eger, 2022. április 6.

aláírás