9/11/28

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

(dg)

CRM08

Rev 1.14

BS(PHY)

<06/11/2023>

CONTINUOUS INTERNAL EVALUATION - 1

Dept: BS(PHY)	T/~~~		S Code: BPHYS102	
09/11/2023	Time: 3-4:30 pm	Max Marks: 50	Elective: N	

Note: Answer any 2 full questions, choosing one full question from each part.

Q1	N	Questions	Marks	RBT	CO's				
	PART A								
1		Define acceptance angle and numerical aperture and obtain an expression for the numerical aperture of an optical fiber.	10	L1& L2	CO1				
		With the help of energy band diagram explain the construction, principle and working of a semiconductor diode laser.	10	L2	COI				
		The ratio of population of two energy levels is 1.059x10 ⁻³⁰ . Find the wavelength of light emitted by spontaneous emission at 330K.	5	L3	CO1				
OR									
2	a	Explain the interaction of radiation with matter and mention any two properties and applications of laser.	10	L2	CO1				
	b	Derive an expression for energy density using Einstein's A and B coefficients thus conclude on $B_{12}=B_{21}$.	10	L1& L2	CO1				
C	-	The angle of acceptance of an optical fiber is 30° when kept in air. Find the angle of acceptance when it is in a medium of refractive index 1.33.	5	L3	CO1				

PART B								
3		State and explain Heisenberg's Uncertainty principle. Prove the non-confinement of electron inside the nucleus based on this principle.	10	L1& L2	CO2			
		Derive the eigen function of a particle inside an infinite potential well of width 'a' using the method of normalization.	10	L2	CO2			
		An electron is associated with a de-Broglie wavelength of 1nm. Calculate the energy and the corresponding momentum of the electron.	5	L3	CO2			
OR								
4	a	Derive an expression for de-Broglie wavelength by analogy and mention any four properties of de-Broglie waves.	10	L2	CO2			
	b	Set-up one dimensional time independent Schrödinger equation.	10	L2	CO2			
	C	An electron is trapped in a 1-D potential well of infinite height and of width of 0.1nm. Calculate the energy required to excite it from its ground state to first two excited states.		L3	CO2			

Amon

Prepared by: Dr. Raveesha P M

HOD: Prof. M Ramananda Kamath