Linearized Longitudinal Equations of Motion

Robert Stengel, Aircraft Flight Dynamics MAE 331, 2014

Learning Objectives

- 6th-order -> 4th-order -> hybrid equations
- Dynamic stability derivatives
- Long-period (phugoid) mode
- Short-period mode

Reading:

Flight Dynamics 452-464, 482-486 Airplane Stability and Control Chapter 7

Copyright 2014 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html

The Jets at an Awkward Age

Chapter 7, *Airplane Stability and Control*, Abzug and Larrabee

- What are the principal subject and scope of the chapter?
- What technical ideas are needed to understand the chapter?
- During what time period did the events covered in the chapter take place?
- What are the three main "takeaway" points or conclusions from the reading?
- What are the three most surprising or remarkable facts that you found in the reading?

Longitudinal LTI Dynamics "Wordle"

3

6th-Order Longitudinal Equations of Motion

- Symmetric aircraft
- · Motions in the vertical plane
- · Flat earth

Nonlinear Dynamic Equations

State Vector, 6 components

$$\dot{u} = X / m - g \sin \theta - qw$$

$$\dot{w} = Z / m + g \cos \theta + qu$$

$$\dot{x}_I = (\cos \theta)u + (\sin \theta)w$$

$$\dot{z}_I = (-\sin \theta)u + (\cos \theta)w$$

$$\dot{q} = M / I_{yy}$$

$$\dot{\theta} = q$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \mathbf{x}_{Lon_6}$$

$$\begin{bmatrix} u \\ w \\ x \\ z \\ \theta \end{bmatrix} = \begin{bmatrix} Axial \ Velocity \\ Vertical \ Velocity \\ Range \\ Altitude(-) \\ Pitch \ Rate \\ Pitch \ Angle \end{bmatrix}$$

4th-Order Longitudinal Equations of Motion

Nonlinear Dynamic Equations, neglecting range and altitude

$$\dot{u} = f_1 = X / m - g \sin \theta - qw$$

$$\dot{w} = f_2 = Z / m + g \cos \theta + qu$$

$$\dot{q} = f_3 = M / I_{yy}$$

$$\dot{\theta} = f_4 = q$$

State Vector, 4 components

Fourth-Order Hybrid Equations of Motion

Transform Longitudinal Velocity Components

Replace Cartesian body components of velocity by polar inertial components Replace X and Z by T, D, and L

$$\dot{u} = f_1 = X / m - g \sin \theta - qw$$

$$\dot{w} = f_2 = Z / m + g \cos \theta + qu$$

$$\dot{q} = f_3 = M / I_{yy}$$

$$\dot{\theta} = f_4 = q$$

7

Transform Longitudinal Velocity Components

Replace Cartesian body components of velocity by polar inertial components Replace X and Z by T, D, and L

$$\begin{aligned} \dot{V} &= f_1 = \left[T \cos(\alpha + i) - D - mg \sin \gamma \right] / m \\ \dot{\gamma} &= f_2 = \left[T \sin(\alpha + i) + L - mg \cos \gamma \right] / mV \\ \dot{q} &= f_3 = M / I_{yy} \\ \dot{\theta} &= f_4 = q \end{aligned}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} V \\ \gamma \\ q \\ \theta \end{bmatrix} = \begin{bmatrix} Velocity \\ Flight Path Angle \\ Pitch Rate \\ Pitch Angle \end{bmatrix}$$

i = Incidence angle of the thrust vectorwith respect to the centerline

Hybrid Longitudinal Equations of Motion

Replace pitch angle by angle of attack

$$\alpha = \theta - \gamma$$

$$\begin{aligned} \dot{V} &= f_1 = \left[T \cos(\alpha + i) - D - mg \sin \gamma \right] / m \\ \dot{\gamma} &= f_2 = \left[T \sin(\alpha + i) + L - mg \cos \gamma \right] / mV \\ \dot{q} &= f_3 = M / I_{yy} \\ \dot{\theta} &= f_4 = q \end{aligned}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} V \\ \gamma \\ q \\ \theta \end{bmatrix} = \begin{bmatrix} Velocity \\ Flight\ Path\ Angle \\ Pitch\ Rate \\ Pitch\ Angle \end{bmatrix}$$

(

Hybrid Longitudinal Equations of Motion

Replace pitch angle by angle of attack

$$\alpha = \theta - \gamma$$

$$\begin{split} \dot{V} &= f_1 = \left[T \cos(\alpha + i) - D - mg \sin \gamma \right] / m \\ \dot{\gamma} &= f_2 = \left[T \sin(\alpha + i) + L - mg \cos \gamma \right] / mV \\ \dot{q} &= f_3 = M / I_{yy} \\ \dot{\alpha} &= \dot{\theta} - \dot{\gamma} = f_4 = q - \frac{1}{mV} \left[T \sin(\alpha + i) + L - mg \cos \gamma \right] \end{split}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} V \\ \gamma \\ q \\ \alpha \end{bmatrix} = \begin{bmatrix} Velocity \\ Flight\ Path\ Angle \\ Pitch\ Rate \\ Angle\ of\ Attack \end{bmatrix}$$

 $\theta = \alpha + \gamma$

Why Transform Equations and State Vector?

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} V \\ \gamma \\ q \\ \alpha \end{bmatrix} = \begin{bmatrix} Velocity \\ Flight\ Path\ Angle \\ Pitch\ Rate \\ Angle\ of\ Attack \end{bmatrix}$$

- Velocity and flight path angle typically have slow variations
- Pitch rate and angle of attack typically have quicker variations

11

Small Perturbations from Steady Path Approximated by Linear Equations

$$\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}_{N}(t) + \Delta \dot{\mathbf{x}}(t)$$

$$\approx \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t] + \mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(t) \Delta \mathbf{u}(t) + \mathbf{L}(t) \Delta \mathbf{w}(t)$$

Steady, Level Flight

$$\dot{\mathbf{x}}(t) = \mathbf{0} + \Delta \dot{\mathbf{x}}(t)$$

$$\approx \mathbf{f}[\mathbf{x}_N(t), \mathbf{u}_N(t), \mathbf{w}_N(t), t] + \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) + \mathbf{L} \Delta \mathbf{w}(t)$$

Rates of change are "small"

Nominal Equations of Motion in Equilibrium (Trimmed Condition)

$$\dot{\mathbf{x}}_N(t) = \mathbf{0} = \mathbf{f}[\mathbf{x}_N(t), \mathbf{u}_N(t), \mathbf{w}_N(t), t]$$

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{0} = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t]$$

$$\mathbf{x}_{N}^{T} = \begin{bmatrix} V_{N} & \gamma_{N} & 0 & \alpha_{N} \end{bmatrix}^{T} = \mathbf{constant}$$

T, D, L, and M contain state, control, and disturbance effects

$$\dot{V}_{N} = \mathbf{0} = f_{1} = \left[T \cos(\alpha_{N} + i) - D - mg \sin \gamma_{N} \right] / m$$

$$\dot{\gamma}_{N} = \mathbf{0} = f_{2} = \left[T \sin(\alpha_{N} + i) + L - mg \cos \gamma_{N} \right] / mV_{N}$$

$$\dot{q}_{N} = \mathbf{0} = f_{3} = M / I_{yy}$$

$$\dot{\alpha}_{N} = \mathbf{0} = f_{4} = (0) - \frac{1}{mV_{N}} \left[T \sin(\alpha_{N} + i) + L - mg \cos \gamma_{N} \right]$$

(See Supplemental Material for trimmed solution) 13

Small Perturbations from Steady Path **Approximated by Linear Equations**

Linearized Equations of Motion

$$\Delta \dot{\mathbf{x}}_{Lon} = \begin{bmatrix} \Delta \dot{V} \\ \Delta \dot{\gamma} \\ \Delta \dot{q} \\ \Delta \dot{\alpha} \end{bmatrix} = \mathbf{F}_{Lon} \begin{bmatrix} \Delta V \\ \Delta \gamma \\ \Delta q \\ \Delta \alpha \end{bmatrix} + \mathbf{G}_{Lon} \begin{bmatrix} \Delta \delta T \\ \Delta \delta E \\ \dots \end{bmatrix} + \dots$$

Linearized Equations of Motion

Phugoid (Long-Period) Motion

Short-Period Motion

15

Approximate Decoupling of Fast and Slow Modes of Motion

Hybrid linearized equations allow the two modes to be examined separately

Effects of **phugoid** perturbations on **phugoid** motion

Effects of **short-period** perturbations on **phugoid** motion

$$\mathbf{F}_{Lon} = \begin{bmatrix} \mathbf{F}_{Ph} & \mathbf{F}_{SP}^{Ph} \\ \mathbf{F}_{Ph}^{SP} & \mathbf{F}_{SP} \end{bmatrix}$$

Effects of **phugoid** perturbations on **short-period** motion

Effects of short-period perturbations on short-period motion

$$= \begin{bmatrix} \mathbf{F}_{Ph} & small \\ \hline small & \mathbf{F}_{SP} \end{bmatrix} \approx \begin{bmatrix} \mathbf{F}_{Ph} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{F}_{SP} \end{bmatrix}$$

Sensitivity Matrices for Longitudinal LTI Model

$$\Delta \dot{\mathbf{x}}_{Lon}(t) = \mathbf{F}_{Lon} \Delta \mathbf{x}_{Lon}(t) + \mathbf{G}_{Lon} \Delta \mathbf{u}_{Lon}(t) + \mathbf{L}_{Lon} \Delta \mathbf{w}_{Lon}(t)$$

$$\mathbf{F}_{Lon} = \begin{bmatrix} \frac{\partial f_1}{\partial V} & \frac{\partial f_1}{\partial \gamma} & \frac{\partial f_1}{\partial q} & \frac{\partial f_1}{\partial \alpha} \\ \frac{\partial f_2}{\partial V} & \frac{\partial f_2}{\partial \gamma} & \frac{\partial f_2}{\partial q} \\ \frac{\partial f_3}{\partial V} & \frac{\partial f_3}{\partial \gamma} & \frac{\partial f_3}{\partial q} \\ \frac{\partial f_4}{\partial V} & \frac{\partial f_4}{\partial \gamma} & \frac{\partial f_4}{\partial q} \end{bmatrix} \mathbf{G}_{Lon} = \begin{bmatrix} \frac{\partial f_1}{\partial \delta E} & \frac{\partial f_1}{\partial \delta T} & \frac{\partial f_1}{\partial \delta E} \\ \frac{\partial f_2}{\partial \delta E} & \frac{\partial f_2}{\partial \delta T} & \frac{\partial f_1}{\partial \delta} \\ \frac{\partial f_3}{\partial \delta E} & \frac{\partial f_3}{\partial \delta T} & \frac{\partial f_3}{\partial \delta} \\ \frac{\partial f_4}{\partial \delta E} & \frac{\partial f_4}{\partial \delta T} & \frac{\partial f_1}{\partial \delta} \end{bmatrix} \mathbf{L}_{Lon} = \begin{bmatrix} \frac{\partial f_1}{\partial V_{wind}} & \frac{\partial f_1}{\partial \alpha_{wind}} \\ \frac{\partial f_2}{\partial V_{wind}} & \frac{\partial f_3}{\partial \alpha_{wind}} \\ \frac{\partial f_3}{\partial V_{wind}} & \frac{\partial f_3}{\partial \alpha_{wind}} \\ \frac{\partial f_4}{\partial V_{wind}} & \frac{\partial f_4}{\partial \alpha_{wind}} \end{bmatrix}_{7}$$

Velocity Dynamics

Nonlinear equation

$$\dot{V} = f_1 = \frac{1}{m} \left[T \cos \alpha - D - mg \sin \gamma \right]$$

$$= \frac{1}{m} \left[C_T \cos \alpha \frac{\rho V^2}{2} S - C_D \frac{\rho V^2}{2} S - mg \sin \gamma \right]$$
Thrust along x_B

First row of linearized dynamic equation

$$\Delta \dot{V}(t) = \left[\frac{\partial f_1}{\partial V} \Delta V(t) + \frac{\partial f_1}{\partial \gamma} \Delta \gamma(t) + \frac{\partial f_1}{\partial q} \Delta q(t) + \frac{\partial f_1}{\partial \alpha} \Delta \alpha(t) \right]$$

$$+ \left[\frac{\partial f_1}{\partial \delta E} \Delta \delta E(t) + \frac{\partial f_1}{\partial \delta T} \Delta \delta T(t) + \frac{\partial f_1}{\partial \delta F} \Delta \delta F(t) \right]$$

$$+ \left[\frac{\partial f_1}{\partial V_{wind}} \Delta V_{wind} + \frac{\partial f_1}{\partial \alpha_{wind}} \Delta \alpha_{wind} \right]$$

Sensitivity of Velocity Dynamics to State Perturbations

$$\vec{V} = \left[(C_T \cos \alpha - C_D) \frac{\rho V^2}{2} S - mg \sin \gamma \right] / m$$

Coefficients in first row of F

$$\frac{\partial f_{1}}{\partial V} = \frac{1}{m} \left[\left(C_{T_{V}} \cos \alpha_{N} - C_{D_{V}} \right) \frac{\rho_{N} V_{N}^{2}}{2} S + \left(C_{T_{N}} \cos \alpha_{N} - C_{D_{N}} \right) \rho_{N} V_{N} S \right] \\
\frac{\partial f_{1}}{\partial \gamma} = \frac{-1}{m} \left[mg \cos \gamma_{N} \right] = -g \cos \gamma_{N} \qquad C_{T_{V}} = \frac{\partial C_{T}}{\partial V} \\
C_{D_{V}} = \frac{\partial C_{D}}{\partial V} \\
C_{D_{V}} = \frac{\partial C_{D}}{\partial V} \\
C_{D_{Q}} = \frac{\partial C_{D}}{\partial Q} \\
\frac{\partial f_{1}}{\partial \alpha} = \frac{-1}{m} \left[\left(C_{T_{N}} \sin \alpha_{N} + C_{D_{\alpha}} \right) \frac{\rho_{N} V_{N}^{2}}{2} S \right] \qquad C_{D_{\alpha}} = \frac{\partial C_{D}}{\partial \alpha} \\
C_{D_{Q}} = \frac{\partial C_{D}}{\partial Q} \\
C_{$$

Sensitivity of Velocity Dynamics to **Control and Disturbance Perturbations**

Coefficients in first rows of G and L

$$\frac{\partial f_{1}}{\partial \delta E} = \frac{-1}{m} \left[C_{D_{\delta E}} \frac{\rho_{N} V_{N}^{2}}{2} S \right]
\frac{\partial f_{1}}{\partial \delta T} = \frac{1}{m} \left[C_{T_{\delta T}} \cos \alpha_{N} \frac{\rho_{N} V_{N}^{2}}{2} S \right]
\frac{\partial f_{1}}{\partial \delta F} = \frac{-1}{m} \left[C_{D_{\delta F}} \frac{\rho_{N} V_{N}^{2}}{2} S \right]
C_{T_{\delta T}} = \frac{\partial C_{T}}{\partial \delta T}
C_{D_{\delta E}} = \frac{\partial C_{D}}{\partial \delta E}
C_{D_{\delta E}} = \frac{\partial C_{D}}{\partial \delta E}$$

Flight Path Angle Dynamics

Nonlinear equation

$$\dot{\gamma} = f_2 = \frac{1}{mV} \left[T \sin \alpha + L - mg \cos \gamma \right]$$

$$= \frac{1}{mV} \left[C_T \sin \alpha \frac{\rho V^2}{2} S + C_L \frac{\rho V^2}{2} S - mg \cos \gamma \right]$$

Second row of linearized equation

$$\begin{split} \Delta \dot{\gamma}(t) = & \left[\frac{\partial f_2}{\partial V} \Delta V(t) + \frac{\partial f_2}{\partial \gamma} \Delta \gamma(t) + \frac{\partial f_2}{\partial q} \Delta q(t) + \frac{\partial f_2}{\partial \alpha} \Delta \alpha(t) \right] \\ + & \left[\frac{\partial f_2}{\partial \delta E} \Delta \delta E(t) + \frac{\partial f_2}{\partial \delta T} \Delta \delta T(t) + \frac{\partial f_2}{\partial \delta F} \Delta \delta F(t) \right] \\ + & \left[\frac{\partial f_2}{\partial V_{wind}} \Delta V_{wind} + \frac{\partial f_2}{\partial \alpha_{wind}} \Delta \alpha_{wind} \right] \end{split}$$

21

Sensitivity of Flight Path Angle Dynamics to State Perturbations

$$\dot{\gamma} = \left[\left(C_T \sin \alpha + C_L \right) \frac{\rho V^2}{2} S - mg \cos \gamma \right] / mV$$

Coefficients in second row of F

$$\frac{\partial f_{2}}{\partial V} = \frac{1}{mV_{N}} \left[\left(C_{T_{V}} \sin \alpha_{N} + C_{L_{V}} \right) \frac{\rho_{N} V_{N}^{2}}{2} S + \left(C_{T_{N}} \sin \alpha_{N} + C_{L_{N}} \right) \rho_{N} V_{N} S \right] - \frac{1}{mV_{N}^{2}} \left[\left(C_{T_{N}} \sin \alpha_{N} + C_{L_{N}} \right) \frac{\rho_{N} V_{N}^{2}}{2} S - mg \cos \gamma_{N} \right]$$

$$\frac{\partial f_2}{\partial \gamma} = \frac{1}{mV_N} [mg \sin \gamma_N] = g \sin \gamma_N / V_N$$

$$\frac{\partial f_2}{\partial q} = \frac{1}{mV_N} \left[C_{L_q} \frac{\rho_N V_N^2}{2} S \right]$$

$$\frac{\partial f_2}{\partial \alpha} = \frac{1}{mV_N} \left[\left(C_{T_N} \cos \alpha_N + C_{L_\alpha} \right) \frac{\rho_N V_N^2}{2} S \right]$$

$$C_{T_{V}} \equiv \frac{\partial C_{T}}{\partial V}$$

$$C_{L_{V}} \equiv \frac{\partial C_{L}}{\partial V}$$

$$C_{L_{q}} \equiv \frac{\partial C_{L}}{\partial q}$$

$$C_{L_{q}} \equiv \frac{\partial C_{L}}{\partial \alpha}$$

Pitch Rate Dynamics

Nonlinear equation

$$\dot{q} = f_3 = \frac{M}{I_{yy}} = \frac{C_m \left(\rho V^2 / 2\right) SC}{I_{yy}}$$

Third row of linearized equation

$$\begin{split} \Delta \dot{q}(t) = & \left[\frac{\partial f_3}{\partial V} \Delta V(t) + \frac{\partial f_3}{\partial \gamma} \Delta \gamma(t) + \frac{\partial f_3}{\partial q} \Delta q(t) + \frac{\partial f_3}{\partial \alpha} \Delta \alpha(t) \right] \\ + & \left[\frac{\partial f_3}{\partial \delta E} \Delta \delta E(t) + \frac{\partial f_3}{\partial \delta T} \Delta \delta T(t) + \frac{\partial f_3}{\partial \delta F} \Delta \delta F(t) \right] \\ + & \left[\frac{\partial f_3}{\partial V_{wind}} \Delta V_{wind} + \frac{\partial f_3}{\partial \alpha_{wind}} \Delta \alpha_{wind} \right] \end{split}$$

Sensitivity of Pitch Rate **Dynamics to State Perturbations**

$$\dot{q} = C_m \left(\rho V^2 / 2 \right) \frac{S\overline{c}}{I_{yy}}$$

Coefficients in third row of F

$$\frac{\partial f_3}{\partial V} = \frac{1}{I_{yy}} \left[C_{m_V} \frac{\rho_N V_N^2}{2} S\overline{c} + C_{m_N} \rho_N V_N S\overline{c} \right]$$

$$\frac{\partial f_3}{\partial \gamma} = 0$$

$$\frac{\partial f_{3}}{\partial q} = \frac{1}{I_{yy}} \left[C_{m_{q}} \frac{\rho_{N} V_{N}^{2}}{2} S \overline{c} \right]$$

$$C_{m_{v}} = \frac{\partial C_{m}}{\partial V}$$

$$C_{m_{q}} = \frac{\partial C_{m}}{\partial q}$$

$$C_{m_{q}} = \frac{\partial C_{m}}{\partial q}$$

$$C_{m_{\alpha}} = \frac{\partial C_{m}}{\partial q}$$

$$C_{m_{\alpha}} = \frac{\partial C_{m}}{\partial \alpha}$$

$$\frac{\partial f_3}{\partial \alpha} = \frac{1}{I_{yy}} \left[C_{m_{\alpha}} \frac{\rho_N V_N^2}{2} S\overline{c} \right]$$

$$C_{m_{V}} = \frac{\partial C_{m}}{\partial V}$$

$$C_{m_{q}} = \frac{\partial C_{m}}{\partial q}$$

$$C_{m_{\alpha}} = \frac{\partial C_{m}}{\partial \alpha}$$

Angle of Attack Dynamics

Nonlinear equation

$$\dot{\alpha} = f_4 = \dot{\theta} - \dot{\gamma} = q - \frac{1}{mV} [T \sin \alpha + L - mg \cos \gamma]$$

Fourth row of linearized equation

$$\begin{split} \Delta \dot{\alpha}(t) &= \left[\frac{\partial f_4}{\partial V} \Delta V(t) + \frac{\partial f_4}{\partial \gamma} \Delta \gamma(t) + \frac{\partial f_4}{\partial q} \Delta q(t) + \frac{\partial f_4}{\partial \alpha} \Delta \alpha(t) \right] \\ &+ \left[\frac{\partial f_4}{\partial \delta E} \Delta \delta E(t) + \frac{\partial f_4}{\partial \delta T} \Delta \delta T(t) + \frac{\partial f_4}{\partial \delta F} \Delta \delta F(t) \right] \\ &+ \left[\frac{\partial f_4}{\partial V_{wind}} \Delta V_{wind} + \frac{\partial f_4}{\partial \alpha_{wind}} \Delta \alpha_{wind} \right] \end{split}$$

25

Sensitivity of Angle of Attack Dynamics to State Perturbations

$$\dot{\alpha} = \dot{\theta} - \dot{\gamma} = q - \dot{\gamma}$$

Coefficients in fourth row of F

$$\frac{\partial f_4}{\partial V} = -\frac{\partial f_2}{\partial V}$$

$$\frac{\partial f_4}{\partial \gamma} = -\frac{\partial f_2}{\partial \gamma}$$

$$\frac{\partial f_4}{\partial q} = 1 - \frac{\partial f_2}{\partial q}$$

$$\frac{\partial f_4}{\partial \alpha} = -\frac{\partial f_2}{\partial \alpha}$$

Alternative Approach:

Numerical Calculation of the Sensitivity Matrices ("1st Differences")

Remaining elements of F(t), G(t), and L(t) calculated accordingly

27

Current Events SpaceShipTwo Accident October 31, 2014

Flight Profile of SpaceShipOne (Precursor to SpaceShipTwo)

SpaceShipTwo Cutaway Diagram

Current Events SpaceShipTwo Accident October 31, 2014

31

SpaceShipOne Ansari X Prize, December 17, 2003

MAE 331 AIRCRAFT FLIGHT DYNAMICS Assignment #4 due: October 21, 2010

Interest in space tourism is growing, as several companies compete to offer suborbital rides into space for paying customers. The door was opened on October 4, 2004 when Mojave Aerospace Ventures SpaceShipOne (Fig. 1) flew higher than 100 km for the second time in less than three weeks, winning the Ansari X-Prize (http://en.wikipedia.org/wiki/SpaceShipOne). Princeton alumnus, Brian Binnie, was at the controls for the award-winning flight.

Figure 1. SpaceShipOne, in flight, and with astronaut/test pilot Brian Binnie, MAE *78.

This week's assignment is to simulate SpaceShipOne's flight. There are two major parts to the assignment. First, you will develop a longitudinal aerodynamic, inertial, and thrust model for the aircraft. Then, you will calculate the flight trajectory (Fig. 2) using point-mass longitudinal equations of motion. The dynamic equations are similar to those of Assignment #2, but are modified to include thrust, to portray the vehicle in conventional and "feathered" re-entry configuration over a range of angles of attack and Mach numbers, and to account for altitude-dependent variations in gravitational acceleration and atmospheric properties.

33

SpaceShipOne Altitude vs. Range MAE 331 Assignment #4, 2010

SpaceShipOne State Histories

SpaceShipOne Dynamic Pressure and Mach Number Histories

Dimensional Stability and Control Derivatives

37

<u>Dimensional</u> Stability-Derivative Notation

- Redefine force and moment symbols as acceleration symbols
- Dimensional stability derivatives portray acceleration sensitivities to state perturbations

$$\frac{Drag}{mass (m)} \Rightarrow D \propto \dot{V}$$

$$\frac{Lift}{mass} \Rightarrow L \propto V\dot{\gamma}$$

$$\frac{Moment}{moment \ of \ inertia \ (I_{yy})} \Rightarrow M \propto \dot{q}$$

<u>Dimensional</u> Stability-Derivative Notation

$$\frac{\partial f_1}{\partial V} = -D_V \triangleq \frac{1}{m} \left[\left(C_{T_V} \cos \alpha_N - C_{D_V} \right) \frac{\rho_N V_N^2}{2} S + \left(C_{T_N} \cos \alpha_N - C_{D_N} \right) \rho_N V_N S \right]$$

Thrust and drag effects are combined and represented by one symbol

$$\frac{\partial f_2}{\partial \alpha} \equiv \frac{L_{\alpha}}{V_N} \triangleq \frac{1}{mV_N} \left[\left(C_{T_N} \cos \alpha_N + C_{L_{\alpha}} \right) \frac{\rho_N V_N^2}{2} S \right]$$

Thrust and lift effects are combined and represented by one symbol

$$\frac{\partial f_3}{\partial \alpha} = M_{\alpha} \triangleq \frac{1}{I_{yy}} \left[C_{m_{\alpha}} \frac{\rho_N V_N^2}{2} S \overline{c} \right]$$

39

Longitudinal Stability Matrix

Effects of phugoid perturbations on phugoid motion

Effects of short-period perturbations on phugoid motion

$$\mathbf{F}_{Lon} = \begin{bmatrix} \mathbf{F}_{Ph} & \mathbf{F}_{SP}^{Ph} \\ \mathbf{F}_{Ph}^{SP} & \mathbf{F}_{SP} \end{bmatrix} = \begin{bmatrix} -D_{V} & -g\cos\gamma_{N} & -D_{q} & -D_{\alpha} \\ L_{V}/V_{N} & \frac{g}{V_{N}}\sin\gamma_{N} & L_{q}/V_{N} & L_{\alpha}/V_{N} \\ \hline M_{V} & 0 & M_{q} & M_{\alpha} \\ -L_{V}/V_{N} & -\frac{g}{V_{N}}\sin\gamma_{N} & \left(1 - \frac{L_{q}}{V_{N}}\right) & -L_{\alpha}/V_{N} \end{bmatrix}$$

Effects of phugoid perturbations on shortperiod motion Effects of short-period perturbations on short-period motion

Comparison of Fourthand Second-Order Dynamic Models

41

4th-Order Initial-Condition Responses of Business Jet at Two Time Scales

Plotted over different periods of time

4 initial conditions [V(0), $\gamma(0)$, q(0), a(0)]

2nd-Order Models of Longitudinal Motion

Assume off-diagonal blocks of (4 x 4) stability matrix are negligible

$$\mathbf{F}_{Lon} = \begin{bmatrix} \mathbf{F}_{Ph} & \sim 0 \\ \sim 0 & \mathbf{F}_{SP} \end{bmatrix}$$

Approximate Phugoid Equation

$$\Delta \dot{\mathbf{x}}_{Ph} = \begin{bmatrix} \Delta \dot{V} \\ \Delta \dot{\gamma} \end{bmatrix} \approx \begin{bmatrix} -D_{V} & -g \cos \gamma_{N} \\ L_{V} & \frac{g}{V_{N}} \sin \gamma_{N} \end{bmatrix} \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix} + \begin{bmatrix} T_{\delta T} \\ L_{\delta T} & \\ V_{N} & \Delta \delta T + \begin{bmatrix} -D_{V} \\ L_{V} & \\ V_{N} & \end{bmatrix} \Delta V_{wind}$$

2nd-Order Models of Longitudinal Motion

$$\mathbf{F}_{Lon} = \begin{bmatrix} \mathbf{F}_{Ph} & \sim 0 \\ \sim 0 & \mathbf{F}_{SP} \end{bmatrix}$$

Approximate Short-Period Equation

$$\begin{split} \Delta \dot{\mathbf{x}}_{SP} &= \\ \left[\begin{array}{ccc} \Delta \dot{q} \\ \Delta \dot{\alpha} \end{array} \right] \approx \left[\begin{array}{ccc} M_q & M_\alpha \\ \left(1 - \frac{L_q}{V_N} \right) & -\frac{L_\alpha}{V_N} \end{array} \right] \left[\begin{array}{c} \Delta q \\ \Delta \alpha \end{array} \right] \\ + \left[\begin{array}{ccc} M_{\delta E} \\ -L_{\delta E} / V_N \end{array} \right] \Delta \delta E + \left[\begin{array}{ccc} M_\alpha \\ -L_\alpha / V_N \end{array} \right] \Delta \alpha_{wind} \end{split}$$

44

Comparison of Bizjet 4th- and 2nd-Order Model Responses

Comparison of Bizjet 4th- and 2nd-Order Model Responses

Approximate Phugoid Response to a 10% Thrust Increase

Approximate Short-Period Response to a 0.1-Rad Pitch Control Step Input

What is the steady-state response?

Normal Load Factor Response to a 0.1-Rad Pitch Control Step Input

· Normal load factor at the center of mass

$$n_z = \frac{V_N}{g} \left(\Delta \dot{\alpha} - \Delta q \right) = \frac{V_N}{g} \left(\frac{L_\alpha}{V_N} \Delta \alpha + \frac{L_{\delta E}}{V_N} \Delta \delta E \right)$$

Pilot focuses on normal load factor during rapid maneuvering

49

Next Time: Lateral-Directional Dynamics

Reading: Flight Dynamics 574-591

Supplemental Material

51

Trimmed Solution of the Equations of Motion

Flight Conditions for Steady, Level Flight

Nonlinear longitudinal model

$$\begin{split} \dot{V} &= f_1 = \frac{1}{m} \big[T \cos \left(\alpha + i \right) - D - mg \sin \gamma \, \big] \\ \dot{\gamma} &= f_2 = \frac{1}{mV} \big[T \sin \left(\alpha + i \right) + L - mg \cos \gamma \, \big] \\ \dot{q} &= f_3 = M / I_{yy} \\ \dot{\alpha} &= f_4 = \dot{\theta} - \dot{\gamma} = q - \frac{1}{mV} \big[T \sin \left(\alpha + i \right) + L - mg \cos \gamma \, \big] \end{split}$$

Nonlinear longitudinal model in equilibrium

$$\begin{aligned} \mathbf{0} &= f_1 = \frac{1}{m} \left[T \cos(\alpha + i) - D - mg \sin \gamma \right] \\ \mathbf{0} &= f_2 = \frac{1}{mV} \left[T \sin(\alpha + i) + L - mg \cos \gamma \right] \\ \mathbf{0} &= f_3 = M / I_{yy} \\ \mathbf{0} &= f_4 = \dot{\theta} - \dot{\gamma} = q - \frac{1}{mV} \left[T \sin(\alpha + i) + L - mg \cos \gamma \right] \end{aligned}$$

Numerical Solution for Level Flight Trimmed Condition

- Specify desired altitude and airspeed, h_N and V_N
- Guess starting values for the trim parameters, δT_0 , δE_0 , and θ_0
- Calculate starting values of f_1 , f_2 , and f_3

$$f_{1} = \frac{1}{m} \Big[T \left(\delta T, \delta E, \theta, h, V \right) \cos \left(\alpha + i \right) - D \left(\delta T, \delta E, \theta, h, V \right) \Big]$$

$$f_{2} = \frac{1}{mV_{N}} \Big[T \left(\delta T, \delta E, \theta, h, V \right) \sin \left(\alpha + i \right) + L \left(\delta T, \delta E, \theta, h, V \right) - mg \Big]$$

$$f_{3} = M \left(\delta T, \delta E, \theta, h, V \right) / I_{yy}$$

- f_1 , f_2 , and f_3 = 0 in equilibrium, but not for arbitrary δT_0 , δE_0 , and θ_0
- Define a scalar, positive-definite trim error cost function, e.g.,

$$J(\delta T, \delta E, \theta) = a(f_1^2) + b(f_2^2) + c(f_3^2)$$

Minimize the Cost Function with Respect to the Trim Parameters

Error cost is "bowl-shaped"

$$J(\delta T, \delta E, \theta) = a(f_1^2) + b(f_2^2) + c(f_3^2)$$

Cost is minimized at bottom of bowl, i.e., when

$$\left[\begin{array}{cc} \frac{\partial J}{\partial \delta T} & \frac{\partial J}{\partial \delta E} & \frac{\partial J}{\partial \theta} \end{array}\right] = \mathbf{0}$$

Search to find the minimum value of J

55

Example of Search for Trimmed Condition (Fig. 3.6-9, *Flight Dynamics***)**

In MATLAB, use fminsearch to find trim settings

$$(\delta T^*, \delta E^*, \theta^*)$$
 = fminsearch $[J, (\delta T, \delta E, \theta)]$

Elements of the Stability Matrix

Stability derivatives portray <u>acceleration</u> sensitivities to state perturbations

$$\frac{\partial f_1}{\partial V} \equiv -D_V; \qquad \frac{\partial f_1}{\partial \gamma} = -g\cos\gamma_N; \qquad \frac{\partial f_1}{\partial q} \equiv -D_q; \qquad \frac{\partial f_1}{\partial \alpha} \equiv -D_\alpha$$

$$\boxed{ \frac{\partial f_2}{\partial V} \equiv \frac{L_V}{V_N}; \qquad \frac{\partial f_2}{\partial \gamma} = \frac{g}{V_N} \sin \gamma_N; \qquad \frac{\partial f_2}{\partial q} \equiv \frac{L_q}{V_N}; \qquad \frac{\partial f_2}{\partial \alpha} \equiv \frac{L_\alpha}{V_N} }$$

$$\frac{\partial f_3}{\partial V} = M_V; \qquad \frac{\partial f_3}{\partial \gamma} = 0; \qquad \frac{\partial f_3}{\partial q} = M_q; \qquad \frac{\partial f_3}{\partial \alpha} = M_\alpha$$

$$\frac{\partial f_4}{\partial V} = -\frac{L_V}{V_N}; \quad \frac{\partial f_4}{\partial \gamma} = -\frac{g}{V_N} \sin \gamma_N; \qquad \frac{\partial f_4}{\partial q} = 1 - \frac{L_q}{V_N}; \qquad \frac{\partial f_4}{\partial \alpha} = -\frac{L_\alpha}{V_N}$$

57

Control and Disturbance Sensitivities in Flight Path Angle, Pitch Rate, and **Angle-of-Attack Dynamics**

$$\begin{vmatrix} \frac{\partial f_2}{\partial \delta E} = \frac{1}{mV_N} \left[C_{L_{\delta E}} \frac{\rho V_N^2}{2} S \right] \\ \frac{\partial f_2}{\partial \delta T} = \frac{1}{mV_N} \left[C_{T_{\delta T}} \sin \alpha_N \frac{\rho V_N^2}{2} S \right] \\ \frac{\partial f_3}{\partial \delta T} = \frac{1}{I_{yy}} \left[C_{m_{\delta E}} \frac{\rho V_N^2}{2} S \overline{c} \right] \\ \frac{\partial f_4}{\partial \delta E} = -\frac{\partial f_2}{\partial \delta E} \\ \frac{\partial f_3}{\partial \delta T} = \frac{1}{I_{yy}} \left[C_{m_{\delta T}} \frac{\rho V_N^2}{2} S \overline{c} \right] \\ \frac{\partial f_4}{\partial \delta T} = -\frac{\partial f_2}{\partial \delta T} \\ \frac{\partial f_3}{\partial \delta F} = \frac{1}{I_{yy}} \left[C_{m_{\delta F}} \frac{\rho V_N^2}{2} S \overline{c} \right] \\ \frac{\partial f_4}{\partial \delta F} = -\frac{\partial f_2}{\partial \delta F}$$

$$\frac{\partial f_{2}}{\partial \delta E} = \frac{1}{mV_{N}} \left[C_{L_{\delta E}} \frac{\rho V_{N}^{2}}{2} S \right]$$

$$\frac{\partial f_{3}}{\partial \delta E} = \frac{1}{I_{yy}} \left[C_{m_{\delta E}} \frac{\rho V_{N}^{2}}{2} S \overline{c} \right]$$

$$\frac{\partial f_{4}}{\partial \delta E} = -\frac{\partial f_{2}}{\partial \delta E}$$

$$\frac{\partial f_{2}}{\partial \delta T} = \frac{1}{mV_{N}} \left[C_{T_{\delta T}} \sin \alpha_{N} \frac{\rho V_{N}^{2}}{2} S \right]$$

$$\frac{\partial f_{3}}{\partial \delta T} = \frac{1}{I_{yy}} \left[C_{m_{\delta T}} \frac{\rho V_{N}^{2}}{2} S \overline{c} \right]$$

$$\frac{\partial f_{4}}{\partial \delta E} = -\frac{\partial f_{2}}{\partial \delta E}$$

$$\frac{\partial f_{4}}{\partial \delta T} = -\frac{\partial f_{2}}{\partial \delta T}$$

$$\frac{\partial f_{2}}{\partial \delta F} = \frac{1}{mV_{N}} \left[C_{L_{\delta F}} \frac{\rho V_{N}^{2}}{2} S \overline{c} \right]$$

$$\frac{\partial f_{3}}{\partial \delta F} = \frac{1}{I_{yy}} \left[C_{m_{\delta F}} \frac{\rho V_{N}^{2}}{2} S \overline{c} \right]$$

$$\frac{\partial f_4}{\partial \delta E} = -\frac{\partial f_2}{\partial \delta E}$$
$$\frac{\partial f_4}{\partial \delta T} = -\frac{\partial f_2}{\partial \delta T}$$
$$\frac{\partial f_4}{\partial \delta F} = -\frac{\partial f_2}{\partial \delta F}$$

$$\begin{vmatrix} \frac{\partial f_2}{\partial V_{wind}} = -\frac{\partial f_2}{\partial V} \\ \frac{\partial f_2}{\partial \alpha_{wind}} = -\frac{\partial f_2}{\partial \alpha} \end{vmatrix}$$

$$\frac{\partial f_4}{\partial V_{wind}} = \frac{\partial f_2}{\partial V}$$
$$\frac{\partial f_3}{\partial \alpha_{wind}} = \frac{\partial f_2}{\partial \alpha}$$

Velocity-Dependent Derivative Definitions

Air compressibility effects are a principal source of velocity dependence

$$C_{D_{M}} = \frac{\partial C_{D}}{\partial M} = \frac{\partial C_{D}}{\partial (V/a)} = a \frac{\partial C_{D}}{\partial V}$$

$$a = Speed of Sound$$

$$M = Mach number = V/a$$

$$a = Speed of Sound$$

 $M = Mach number = V/a$

$$C_{D_V} = \frac{\partial C_D}{\partial V} = \left(\frac{1}{a}\right) C_{D_M}$$

$$C_{L_V} = \frac{\partial C_L}{\partial V} = \left(\frac{1}{a}\right) C_{L_M}$$

$$C_{m_V} = \frac{\partial C_m}{\partial V} = \left(\frac{1}{a}\right) C_{m_M}$$

Wing Lift and Moment Coefficient Sensitivity to Pitch Rate

Straight-wing incompressible flow estimate (Etkin)

$$\begin{vmatrix} C_{L_{\bar{q}_{wing}}} = -2C_{L_{\alpha_{wing}}} \left(h_{cm} - 0.75 \right) \\ C_{m_{\bar{q}_{wing}}} = -2C_{L_{\alpha_{wing}}} \left(h_{cm} - 0.5 \right)^2$$

Straight-wing supersonic flow estimate (Etkin)

$$C_{L_{\hat{q}_{wing}}} = -2C_{L_{\alpha_{wing}}} (h_{cm} - 0.5)$$

$$C_{m_{\hat{q}_{wing}}} = -\frac{2}{3\sqrt{M^2 - 1}} - 2C_{L_{\alpha_{wing}}} (h_{cm} - 0.5)^2$$

Triangular-wing estimate (Bryson, Nielsen)

$$C_{L_{\hat{q}_{wing}}} = -\frac{2\pi}{3} C_{L_{\alpha_{wing}}}$$

$$C_{m_{\hat{q}_{wing}}} = -\frac{\pi}{3AR}$$

Control- and Disturbance-Effect Matrices

Control-effect derivatives portray acceleration sensitivities to control input perturbations

$$\mathbf{G}_{Lon} = \begin{bmatrix} -D_{\delta E} & T_{\delta T} & -D_{\delta F} \\ L_{\delta E} / V_{N} & L_{\delta T} / V_{N} & L_{\delta F} / V_{N} \\ \hline M_{\delta E} & M_{\delta T} & M_{\delta F} \\ -L_{\delta E} / V_{N} & -L_{\delta T} / V_{N} & -L_{\delta F} / V_{N} \end{bmatrix}$$

Disturbance-effect derivatives portray acceleration sensitivities to disturbance input perturbations

$$\mathbf{L}_{Lon} = \begin{bmatrix} & -D_{V_{wind}} & & -D_{\alpha_{wind}} \\ & L_{V_{wind}} / V_N & & L_{\alpha_{wind}} / V_N \\ & & M_{V_{wind}} & & M_{\alpha_{wind}} \\ & -L_{V_{wind}} / V_N & & -L_{\alpha_{wind}} / V_N \end{bmatrix}$$

61

Primary Longitudinal Stability Derivatives

$$D_{V} \triangleq \frac{-1}{m} \left[\left(C_{T_{V}} - C_{D_{V}} \right) \frac{\rho V_{N}^{2}}{2} S + \left(C_{T_{N}} - C_{D_{N}} \right) \rho V_{N} S \right]$$

$$\boxed{L_{V}/V_{N} \simeq \frac{1}{mV_{N}} \left[C_{L_{V}} \frac{\rho V_{N}^{2}}{2} S + C_{L_{N}} \rho V_{N} S \right] - \frac{1}{mV_{N}^{2}} \left[C_{L_{N}} \frac{\rho V_{N}^{2}}{2} S - mg \right]}$$

$$M_{q} = \frac{1}{I_{yy}} \left[C_{m_{q}} \frac{\rho V_{N}^{2}}{2} S \overline{c} \right] \qquad M_{\alpha} = \frac{1}{I_{yy}} \left[C_{m_{\alpha}} \frac{\rho V_{N}^{2}}{2} S \overline{c} \right]$$

$$M_{\alpha} = \frac{1}{I_{yy}} \left[C_{m_{\alpha}} \frac{\rho V_{N}^{2}}{2} S\overline{c} \right]$$

$$\boxed{L_{\alpha}/V_{N} \simeq \frac{1}{mV_{N}} \left[\left(C_{T_{N}} + C_{L_{\alpha}} \right) \frac{\rho V_{N}^{2}}{2} S \right]}$$

Small angle assumptions

Primary Phugoid Control Derivatives

$$D_{\delta T} \simeq \frac{-1}{m} \left[C_{T_{\delta T}} \frac{\rho V_N^2}{2} S \right]$$

$$L_{\delta F} / V_N \simeq \frac{1}{m V_N} \left[C_{L_{\delta F}} \frac{\rho V_N^2}{2} S \right]$$

63

Primary Short-Period Control Derivatives

$$M_{\delta E} = C_{m_{\delta E}} \left(\frac{\rho_N V_N^2}{2I_{yy}} \right) S\overline{c}$$

$$L_{\delta E} / V = C_{L_{\delta E}} \left(\frac{\rho_N V_N^2}{2m} \right) S$$

Flight Motions

Simulator Demonstration of Short-Period Response to Elevator Deflection

http://www.youtube.com/watch?v=107ZqBS0_B8

Simulator Demonstration of Phugoid Response http://www.youtube.com/watch?v=DEOGM_9NGTI

Dornier Do-128 Short-Period Demonstration

http://www.youtube.com/watch?v=3hdLXE0rc9Q

Dornier Do-128 Phugoid Demonstration

http://www.youtube.com/watch?v=jzxtpQ30nLg&feature=related