

ACTIVIDAD III

1. INTERNET Y ENVÍO DE PAQUETES IP

Internet funciona mediante el envío de paquetes IP que viajan entre una computadora y un servidor, saltando de un router a otro hasta llegar a su destino. Este proceso involucra:

- **Un cliente** que envía una solicitud.
- **Routers** que dirigen los paquetes hacia el servidor correspondiente.
- **Un servidor** que responde y devuelve la información al cliente.

Para que esto ocurra, se requiere la traducción de nombres de dominio, el ruteo de paquetes a través de redes y la interacción con gateways y servidores.

Para efectos de esta explicación, usaremos indistintamente las palabras "Gateway" y "Router", aunque es importante entender la diferencia entre ambos. El término Gateway se refiere a cualquier dispositivo que conecta una red con otra, permitiendo la comunicación entre ellas, independientemente de las tecnologías o protocolos que usen. Por otro lado, un router es el tipo de gateway más común, utilizado para conectar dos redes diferentes a través del uso de dos interfaces de red distintas.

Un router, por ejemplo, conecta una red local (como la de tu casa o empresa) con Internet, actuando como intermediario que enruta los datos hacia su destino. Aunque todos los routers son gateways, no todos los gateways son routers. Existen otros dispositivos, como firewalls o servidores proxy, que también cumplen funciones de gateway en diferentes contextos de red.

A continuación, explicamos este proceso en detalle con un ejemplo.

2. ¿QUÉ SUCEDE AL COLOCAR UNA DIRECCIÓN EN EL NAVEGADOR?

Cuando escribimos una dirección web en el navegador (por ejemplo, www.google.com), se desencadenan varios pasos:

1. Resolución del nombre de dominio a dirección IP:

El navegador consulta un servidor DNS para traducir el nombre de dominio a una dirección IP, como 172.217.16.196.

2. Determinación de la red local o externa:

• El sistema operativo compara la dirección IP del destino con la configuración de la red local (IP y máscara de subred).

- Si pertenece a la red local, el paquete se envía directamente al dispositivo correspondiente.
- Si no, se envía al gateway.

3. Envío del paquete al gateway:

- El gateway, configurado como la puerta de enlace predeterminada, traduce la dirección IP privada del dispositivo a una IP pública mediante NAT.
- El paquete se prepara con:
 - o **IP de origen:** La dirección IP pública del gateway.
 - o **IP de destino:** La dirección IP del servidor web.

4. Ruteo en la red global:

- El gateway envía el paquete a otro router superior si el destino no está en su red.
- Este proceso se repite hasta que el paquete llega al servidor destino, gracias a las tablas de ruteo preconfiguradas en cada router.

5. Respuesta del servidor:

- El servidor procesa la solicitud y responde con los datos solicitados (como el código HTML de la página web).
- Los paquetes de respuesta viajan de vuelta al cliente, siguiendo una ruta similar.

6. Procesamiento en el cliente:

El navegador reensambla los paquetes, interpreta el contenido y muestra la página web solicitada.

3. ACTIVIDAD PRÁCTICA: EXPLORANDO LA RED CON 'ping' Y 'traceroute'

1. Comprobar conectividad con 'ping':

En la consola, ejecuta el comando `ping www.google.com`. Observa los siguientes datos:

- Conexión exitosa: Si el servidor responde, hay conectividad. Si no, puede haber un problema en la red o el servidor podría estar configurado para ignorar solicitudes de 'ping'.
- **Dirección IP:** Nota la dirección IP que se muestra. Esta dirección puede usarse directamente en el navegador para acceder al servidor.
- Latencia: Observa el tiempo en milisegundos (ms) que tarda cada respuesta. Latencias altas indican posibles problemas de conexión.

```
C:\Users\diego>ping www.google.com

Haciendo ping a www.google.com [142.251.133.36] con 32 bytes de datos:
Respuesta desde 142.251.133.36: bytes=32 tiempo=28ms TTL=118
Respuesta desde 142.251.133.36: bytes=32 tiempo=55ms TTL=118
Respuesta desde 142.251.133.36: bytes=32 tiempo=48ms TTL=118
Respuesta desde 142.251.133.36: bytes=32 tiempo=48ms TTL=118

Estadísticas de ping para 142.251.133.36:

Paquetes: enviados = 4, recibidos = 4, perdidos = 0
(0% perdidos),
Tiempos aproximados de ida y vuelta en milisegundos:
Mínimo = 28ms, Máximo = 55ms, Media = 44ms
```

2. Probar acceso con direcciones IP:

Introduce la dirección IP del servidor en la barra de navegación del navegador web y verifica si puedes acceder al sitio. Compara esta experiencia con el uso del nombre de dominio.

3. Rastrear la ruta con `traceroute`:

- Ejecuta el comando `traceroute www.google.com` (en Windows, usa `tracert`).
 Esto mostrará los routers intermedios por los que pasa el paquete para llegar al servidor.
- Observa cuántos "saltos" hay entre tu dispositivo y el servidor, y toma nota de los tiempos de respuesta en cada punto.


```
::\Users\diego>tracert 142.251.133.36
raza a la dirección eze10s02-in-f4.1e100.net [142.251.133.36]
sobre un máximo de 30 saltos:
        3 ms
                  3 ms
                            3 ms 823G-2.Home [192.168.1.1]
                 4 ms
                           5 ms 100.68.16.1
        5 ms
     137 ms
                 27 ms
                           50 ms
                                  10.245.0.2
       50 ms
                 33 ms
                           29 ms
                 33 ms
       28 ms
                                   142.250.165.186
                           29 ms 108.170.255.29
34 ms 142.251.77.165
30 ms eze10s02-in-f4.1e100.net [142.251.133.36]
       29 ms
                 30 ms
                 32 ms
       30 ms
                 30 ms
 raza completa.
```

4. Hacer 'ping' a diferentes puntos de la red:

- Realiza 'ping' a los siguientes destinos:
 - Tu gateway (router hogareño): Generalmente tiene la dirección IP 192.168.1.1 o similar.
 - o El servidor destino: Usa la dirección IP obtenida con el DNS o 'ping'.
 - Routers intermedios: Utiliza las direcciones IP que identificaste con `traceroute`.

```
C:\Users\diego>ping 200.14.38.202

Haciendo ping a 200.14.38.202 con 32 bytes de datos:
Respuesta desde 200.14.38.202: bytes=32 tiempo=28ms TTL=251
Respuesta desde 200.14.38.202: bytes=32 tiempo=28ms TTL=251
Respuesta desde 200.14.38.202: bytes=32 tiempo=33ms TTL=251
Respuesta desde 200.14.38.202: bytes=32 tiempo=47ms TTL=251

Estadísticas de ping para 200.14.38.202:
    Paquetes: enviados = 4, recibidos = 4, perdidos = 0
    (0% perdidos),
Tiempos aproximados de ida y vuelta en milisegundos:
    Mínimo = 28ms, Máximo = 47ms, Media = 34ms
```

• Compara los tiempos de respuesta para cada punto y analiza las diferencias.

5. Reflexión:

- ¿Qué aprendiste sobre la estructura de la red?
- ¿Qué factores podrían estar afectando la latencia?
- ¿Cuántos saltos detectaste entre tu dispositivo y el servidor?