الجمهورية الجزائوية الديمقواطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2013

المدة: 03 سا و30 د

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين: <u>الموضوع الأول</u>

التمرين الأول: (04 نقاط)

تتكون دارة كهربائية على التسلسل من: مولد للتوتر قوته المحركة الكهربائية E، ناقل أومي مقاومته: $R=1k\Omega$

t=0 نغلق القاطعة K في اللحظة:

- -1 ارسم الدارة الكهربائية مع توجيهها بالنسبة لشدة التيار والتوتر الكهربائيين.
 - معادلة التفاضلية للدارة بدلالة q(t) خلال شحن المكثفة. -2
 - $q(t) = Ae^{\alpha t} + B$: حل المعادلة التفاضلية السابقة، يعطى بالشكل -3

 A,B,α :جد عبارة كل من

- 4- التمثيل البياني يمثل تطور شحنة المكثفة q(t) بدلالة الزمن t (الشكلq(t)).
- أ- استنتج بيانيا قيمة au ثابت الزمن، ثمّ احسب C سعة المكثفة.
 - μ ب استنتج قيمة E القوة المحركة الكهربائية للمولد.
 - = احسب الطاقة الكهربائية المخزنة في المكثفة في اللحظة: $t = 200 \, ms$

التمرين الثاني: (04 نقاط)

 \overrightarrow{F} بقوة G على مركز عطالته G بقوة m=10 بقوة m=10 بقوة g بقوة g ثابتة حاملها يصنع زاوية: $\alpha=30^\circ$ مع المستوى الأفقي، حيث الجزء (AB) أملس، والجزء $\alpha=30^\circ$ خشن (الشكل-2).

t التمثيل البياني (الشكل-3) يمثل تغيرات سرعة G بدلالة الزمن

- استنتج بيانيا طبيعة الحركة والتسارع لـ G لكل مرحلة.
 - AC باستنتج المسافة المقطوعة
 - 2- أ- اكتب نص القانون الثاني لنيوتن.
 - ب- جدْ عبارة شدة قوة الجر \overline{F} ، ثمّ احسبها.
 - \vec{F} جد عبارة شدة قوة الاحتكاك \vec{f} ، ثمّ احسبها.
- د- فسر لماذا يمكن للسرعة أن تصبح ثابتة في المرحلة الأخيرة.

التمرين الثالث: (04 نقاط)

 2 الوقود المستقبلي سيعتمد على تفاعلات الاندماج النووي وفق المعادلة: $^2_1H + ^3_1H \to ^A_ZX + ^1_0n$

- الإنحفاظ. Z و Z باستعمال قانونی الإنحفاظ.
 - 2- عرّف تفاعل الاندماج النووي.
- 3- رتب الأنوية: H_1^2 ، H_2^3 و X^A من الأقل إلى الأكثر استقرارا مع التعليل.
 - MeV و الطاقة المحررة من اندماج نواتى MeV الطاقة المحررة من اندماج نواتى
 - 5- مثّل مخطط الحصيلة الطاقوية لهذا التفاعل.

 $E_{\ell}(^{2}_{_{1}}H)=2,23 MeV$, $E_{\ell}(^{3}_{_{1}}H)=8,57 MeV$, $E_{\ell}(^{A}_{_{z}}X)=28,41 MeV$ المعطيات:

التمرين الرابع (04 نقاط)

 $c = 1.0 \times 10^{-2} \, mol \cdot L^{-1}$ نحضر محلو لا (S) لحمض الإيثانويك CH_3COOH حجمه V ، تركيزه المولي: $\sigma = 16.0 \, mS \cdot m^{-1}$: فكانت: $\sigma = 16.0 \, mS \cdot m^{-1}$ فكانت: $\sigma = 16.0 \, mS \cdot m^{-1}$ فكانت: الكهر بائية النوعية σ للمحلول (S) في درجة حرارة $\sigma = 16.0 \, mS \cdot m^{-1}$

-1 اكتب معادلة التفاعل المنمذجة لانحلال حمض الإيثانويك في الماء.

الناقلية λ حيث: λ الناقلية $\lambda_{CH_3CO^-}$ و $\lambda_{CH_3CO^-}$ و $\lambda_{CH_3CO^-}$ الناقلية -2 الناقلية النوعية المولية الشاردية، ثمّ احسبه.

-3, 4 بين أن قيمة الـ pH للمحلول هي -3

 V_a بو اسطة محلول هيدروكسيد البوتاسيوم -4 بو اسطة محلول هيدروكسيد البوتاسيوم -4 $\cdot c_b = 2.0 \times 10^{-3} \ mol \cdot L^{-1}$ تركيزه المولى: $(K^+(aq) + HO^-(aq))$

قبل عملية المعايرة، كانت النسبة:
$$=41,43\times10^{-3}=41,43\times10^{-3}$$
، وأثناء المعايرة عند إضافة قبل عملية المعايرة، كانت النسبة: $=41,43\times10^{-3}$

.
$$\frac{\left[CH_{3}COO^{-}(aq)\right]}{\left[CH_{3}COOH\left(aq\right)\right]}$$
 = 1: مجم: V_{b} = 10 mL

 $A_3COOH\left(aq
ight)/CH_3COO^-\left(aq
ight)$ استنتج قيمة K_A ثابت الحموضة للثنائية: V_3

 $\lambda_{H_3O^+} = 35,0 \, mS \cdot m^2 \cdot mol^{-1}$ ، $\lambda_{CH_3COO^-} = 4,1 \, mS \cdot m^2 \cdot mol^{-1}$:

التمرين التجريبي: (04 نقاط)

في حصة للأعمال المخبرية، كلف الأستاذ فوجًا من التلاميذ بوضع في كل أنبوب من أنابيب الاختبار الثمانية مزيجا يتكون من: $4,5\,mol$ من ميثانوات الإيثيل و $10\,ml$ من الماء.

توضع أنابيب الاختبار مسدودة في حمام مائي درجة حرارته ثابتة $40^{\circ}C$. كل $10 \, min$ يفرغ التلميذ محتوى أحد الأنابيب في بيشر، ثمّ يوضع هذا الأخير في حوض به ماء وجليد، ويعاير الحمض $10 \, min$ المتشكل في البيشر بواسطة محلول هيدروكسيد الصوديوم $10 \, min$ $10 \, min$ ، تركيزه المولي: $10 \, min$ $10 \, min$ ، $10 \, min$ ، تركيزه المولي: $10 \, min$ ، $10 \, min$

يكرر التلاميذ العملية مع بقية الأنابيب وتدون النتائج في الجدول التالي:

t(min)	0	10	20	30	40	50	60	70	80
$V_{\epsilon q}(mL)$	0	2,1	3,7	5,0	6,1	7,0	7,6	7,8	7,8

- 1 لماذا يوضع البيشر في حوض به ماء وجليد؟ وما دور الكاشف الملوّن؟
 - 2- اكتب الصيغة الجزيئية نصف المفصلة للإستر.
- 3- أ سمّ التحول الكيميائي الحادث للجملة في الأنابيب، مع ذكر خصائصه عند حالة التوازن الكيميائي.
 - ب- اكتب معادلة التفاعل الحادث في أنبوب الاختبار.
 - $V_{\epsilon a}$ كا أنبوب بدلالة $N_{\epsilon a}$ كا أنبوب بدلالة الحمض المتشكلة في كل أنبوب بدلالة $N_{\epsilon a}$

استنتج قيمة x تقدم التفاعل في كل من الأزمنة التالية:

t(min)	0	10	20	30	40	50	60	70	80
x (mmol)									

أ- ارسم بيان: X = f(t) على ورقة ميليمترية.

r مردود التحول. كيف يمكن مراقبته r

اعد رسم بيان: X = f(t) على نفس المعلم، في حالة ما أجريت التجربة في درجة -6 اعد رسم بيان: $\theta' = 60^{\circ}C$.

الموضوع الثاني

التمرين الأول: (04 نقاط)

الهدف: در اسة تحول الأسترة.

بعد مدة زمنية من التسخين المرتد، نسكب محتوى الأرلينة في بيشر به ماء مالح، فنلاحظ طفو مادة عضوية.

2- لماذا نستعمل الماء المالح؟

 $n_{E}=f(t)$ (الشكل $n_{E}=f(t)$) المتشكل $n_{E}=f(t)$ بدلالة الزمن مكنتنا من رسم البيان: $n_{E}=f(t)$

ب- هل التحول الكيميائي الحادث تام؟
 كيف تتأكد عمليا من ذلك؟

ج- جد سرعة التفاعل في اللحظات:

 $t_1 = 20 \min$; $t_2 = 40 \min$; $t_3 = 60 \min$.

ناقش النتائج المتحصل عليها. ماذا تستنتج؟

الشكل-1

د- عين مردود التحول. هل يمكن تحسينه عند نزع الماء الناتج؟ فسر ذلك.

ه- استنتج صنف الكحول المستعمل. اكتب صيغته الجزيئية نصف المفصلة مع تسميته.

التمرين الثاني: (04 نقاط)

من بين نظائر عنصر الكلور الطبيعية نظيران مستقران هما: ^{35}CI و نظير آخر مشع هو ^{36}CI 0، يتفكك الكلور ^{36}CI 10 الأرغون ^{36}CI 10، نصف عمر ^{36}CI 20 تقدر بـ ^{36}CI 30 المراجعون ^{36}CI 30.

-1 ماذا تمثّل القيمتان 35 و 37 لنظيري الكلور المستقرين؟ اكتب رمز نواة الكلور 36.

 MeV_{-} احسب طاقة الربط لنواة الكلور 36 بـ -2

3- اكتب معادلة التفكك النووي للكلور 36، مع ذكر القوانين المستعملة ونمط التفكك.

4- في المياه السطحية يتجدد الكلور 36 باستمرار مما يجعل نسبته ثابتة، والعكس بالنسبة للمياه الجوفية، حيث أن الذي يتفكك لا يتجدد. هذا ما يجعله مناسبا لتأريخ المياه الجوفية القديمة. ورُجد في عينة من مياه جوفية أن عدد أنوية الكلور 36 تساوي % 38 من عددها الموجودة في الماء السطحي. احسب عمر الماء الجوفي.

 $1.1\,MeV = 1.6 imes 10^{-13}\,J$ ، $c = 3 imes 10^{\,8}\,$ سرعة الضوء في الفراغ:

	البروتون	النيترون	الكلور 36	الأر غون <i>36</i>
(10 ⁻²⁷ kg) الكتلة	1,672 62	1,674 92	59,711 28	
العدد الشحني Z	1	0	17	18

التمرين الثالث: (04 نقاط)

تتكون دارة كهربائية على التسلسل من مولىد للتوتر قوته المحركة الكهربائية E، وشيعة للتوتر قوته المحركة الكهربائية $(L, r = 5\Omega)$ ، ناقىل أومىي مقاومته: $R = 10\Omega$

نغلق القاطعة K في اللحظة: t=0، وبو اسطة راسم اهتراز مهبطي ذي ذاكرة، نشاهد التمثيل البياني: $u_R=f(t)$.

1- ارسم الشكل التخطيطي للدارة الكهربائية،
 موضتً عليها كيفية ربط راسم الاهتزاز
 المهبطي.

المعادلة التفاضلية $u_{R}(t)$ بين طرفي الناقل الأومي تكون على الشكل:

$$\frac{du_R}{dt} + \frac{(R+r)}{L}u_R = \frac{R}{L}E.$$

au و A من $u_R=A(1-e^{-rac{t}{ au}})$ العبارة: $u_R=A(1-e^{-rac{t}{ au}})$ العبارة: $u_R=A(1-e^{-rac{t}{ au}})$

-4 بالتحليل البُعدي بيّن أن: au متجانس مع الزمن، ثمّ حدّد قيمته بيانيا.

. التنتج قيمة كل من: L ذاتية الوشيعة و E القوة المحركة الكهربائية للمولد.

 $u_R(V)$

0,5

التمرين الرابع: (04 نقاط)

تسقط حبة برد كروية الشكل، قطرها: D = 3cm، كتلتها: m = 13g، دون سرعة ابتدائية في اللحظة: t = 0 من نقطة O ترتفع بـ t = 0 عن سطح الأرض نعتبرها كمبدأ للمحور الشاقولي t = 0). t = 0

-1 بتطبیق القانون الثانی لنیوتن، جد المعادلتین الزمنیتین لسرعة وموضع G مرکز عطالتها.

-2 احسب قيمة السرعة لحظة وصولها إلى سطح الأرض.

ثانيا: في الواقع تخضع حبة البرد بالإضافة لقوة ثقلها \overrightarrow{P} إلى قوة دافعة أرخميدس $\overrightarrow{\Pi}$ وقوة احتكاك \overrightarrow{f} المتناسبة طردا مع مربع السرعة، حيث: $f=kv^2$.

التحليل البُعدي حدِّد وحدة المعامل k في النظام الدولي للوحدات. -1

2- اكتب عبارة قوة دافعة أرخميدس، ثمّ احسب شدتها وقارنها مع شدة قوة الثقل. ماذا تستنتج؟

 $ec{\Pi}: \overrightarrow{\Pi}$ بإهمال قوة دافعة أرخميدس

 v_{r} السرعة الحدية، ثمّ استنتج قيمة k. (الشكل -4).

د- قارن بين السرعتين التي تم حسابهما في السؤالين(أو لا-2) و (ثانيا-3-ج). ماذا تستنتج؟

 $g=9.8\,m\cdot s^{-2}$ ، $ho=1.3\,kg\cdot m^{-3}$: الكتلة الحجمية للهواء: $V=rac{4}{3}\pi r^3$ الكتلة الحجمية المعطيات: حجم الكرة: $V=rac{4}{3}\pi r^3$

التمرين التجريبي: (04 نقاط)

نعاير حجمًا: $V_a=20mL$ من محلول مائي ممدّد لحمض البنزويك $C_6H_5CO_2H$ ، تركيزه المولي . V_b من محلول هيدروكسيد الصوديوم تركيزه المولي: $c_b=10^{-1}\ mol\cdot L^{-1}$ وحجمه $C_b=10^{-1}$ النتائج المتحصل عليها مكنت من رسم البيان: $c_b=10^{-1}$ (الشكل $c_b=10^{-1}$).

1- ارسم بشكل تخطيطي التركيب التجريبي لعملية المعايرة.

2- بيّن كيف يمكن تحقيق قياس الـ pH لمحلول.

3- اكتب معادلة تفاعل المعايرة.

4- حدّد بیانیا:

. c_a ا - إحداثيتي نقطة التكافؤ E، ثمّ احسب

 $C_6H_5COOH(aq)/C_6H_5COO^-(aq)$: ب- قيمة الـ pKa للثنائية

ج – قيمة الـ pH من أجل: $V_b=0$. بيّن أن حمض البنزويك حمض ضعيف.

امتحان شهادة البكالوريا دورة: 2013

المادة :العلوم الفيزيائية الشعبة: علوم تجريبية

نمة	العلا	المالة (المالة الأمالة)	محاور
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	موضوع
		<u>التمرين الأول</u> : (04 نقاط)	
	0.5	1- رسم الدارة الكهربائية:	
	0.5	$\mathbf{E} \uparrow \mathbf{u}_{\mathbf{C}}$ المعادلة التفاضلية: $u_{c} + u_{R} = E$ $u_{c} + u_{C} = E$	
	0.5	$\frac{dq}{dt} + \frac{1}{RC} q = \frac{E}{R}$ ومنه:	
	0.25	$q(t)=A\cdot e^{lpha t}+B$ عبارة الثوابت: $q(t)=A\cdot e^{lpha t}+B$ ولدينا:	
	0.25	(1) $A=-B$ ومنه $q(0)=A+B=0$	
	0.5	$A \cdot e^{lpha \cdot t} (rac{1}{RC} + lpha) + rac{B}{RC} = rac{E}{R}$ بتعويض الحل في المعادلة التفاضلية نجد:	
04		$\cdot lpha = -rac{1}{RC}$ و منه: $B = CE$ و منه: $B = CE$	
	0.5	$q(au)=0$,63 $q_{\max}=0$,63 $ imes 4$,8 $ imes 10^{-4}=3$,0 $ imes 10^{-4}$ C : $ au$ أ قيمة $ imes$ أ قيمة	
		au = 39 ms	
	0.5	$C = \frac{\tau}{R} = 39 \times 10^{-6} F = 39 \mu F$	
	0.5	$\cdot E \simeq 12V$ ومنه: $q_{ ext{max}} = cE: E$ ومنه:	
	0.5	$E_C(200 \text{ms}) = \frac{q^2}{2C} = 2,9 \times 10^{-3} J \rightarrow$	
		التمرين الثاني: (04 نقاط)	
	0.25	المركة المرحلة الأولى: $vlpha t = 0,16s$ فالحركة مستقيمة متسارعة.	
	0.25	$a_{GI} = rac{\Delta v}{\Delta t} = rac{2-0}{4-0} = 0$, 5 $m \cdot s^{-2}$: تسار عها	
	0.5	$a_{G2} = rac{\Delta v}{\Delta t} = g$ الحركة مستقيمة منتظمة. تسار عها: $v = cte \ [16\ s\ , 24\ s]$ المرحلة الثانية:	
	0.25	$AC = d = d_1 + d_2 = 64 + 64 = 128 \; m$ بطريقة المساحات $AC = d = d_1 + d_2 = 64 + 64 = 128 \; m$	
	0.5	y^{\wedge} نص القانون الثاني لنيوتن.	
04	0.0	\vec{F}_y \vec{F}_y	
	0.5	α F_{x} χ	
	0.5	\overrightarrow{A} \overrightarrow{P} \overrightarrow{B} $F = 5.77 N$: ومنه $F = \frac{m \cdot a_{GI}}{\cos 30^{\circ}}$	
		y'	
	0.5	ومنه: $f = 5$ N ومنه: $f = F \cdot \cos 30^{\circ}$	
	0.5	$X \xrightarrow{\alpha} F_X \xrightarrow{X}$	
		$B \qquad \vec{P} \qquad C$	
	0.25	د- لما أصبح الجزء خشن نشأت مقاومة أبدتها الجملة لتغير y^{i}	
		$v=cte$ ومنه: $f=F\coslpha$ ومنه:	

تابع الإجابة النموذجية لمادة: العلوم الفيزيائية الشعبة: علوم تجريبية امتحان البكالوريا دورة: 2013

امة	العلا	ب ، سودب عدد ، معرب معرب معرب معرب معرب معرب معرب معرب			
مجموع	مجزأة	(0.	عاصر الإجابة (الموصوح الاو		محاور موضوع
	3×0.25 0.5 3×0.25 3×0.25	(-	Z = 2	203	
04	0.5	:ومنه $E_{\!\scriptscriptstyle b\!b}$ و	$=E_{m{\ell}}({}_{2}^{4}X)-(E_{m{\ell}}({}_{1}^{2}H)+E_{m{\ell}}({}_{1}^{3}H))$ حررة:		
	0.75	$\begin{array}{c} 2p + 3n \\ \hline \\ 2H + 3H \end{array}$	ΔE_1 ΔE_2 الطاقوية: ΔE_2 ΔE_3 ΔE_4 ΔE_4 ΔE_5 ΔE_5 ΔE_6 ΔE_7 ΔE_7 ΔE_8 ΔE_8 ΔE_9 Δ	E _{lib} = 17,61 MeV مخطط الحصيلة –5	
	0.5	,	$I(\ell) + H_2O(\ell) = CH_3COO^-(aq) + H_3O^+(aq)$	2 العبارة: جدول تقد	
		1. c c _a V	0 بوفرة	0	
	0.5	c _a V - x	x بوفرة	х	
04		ن.ت c _a V -x _f	بوفرة x _f	xf	
	0.5		$\sigma = (\lambda_{H_3O^+} \cdot [H_3O^+] + \lambda_{CH_3COO^-}$		
	0.25	H ₃ C	$[D^{+}(aq)] = 0.4 \times 10^{-3} \text{ mol} \cdot L^{-1} \cdot [H_{3}O^{+}] = \frac{1}{(\lambda_{H})^{-1}}$	$rac{\sigma}{}_{_{{}_{3}\mathrm{O}^{+}}+\lambda_{\mathrm{CH}_{3}\mathrm{COO}^{-}})}$ اِذَن:	
	0.5		pH = -lc	$\log\left[H_3O^+\right] = 3.4 \qquad -3$	
	0.5		$K_a = \frac{\left[H_3O^+\right]_f\left[CH_3COO^-\right]_f}{\left[CH_3COOH\right]_f} = 1,65 \times 10^{-5}$:4	4- أ- ثابت الحموض	
	0.75	$V_{be} = 20$	$ m V_b = 10~mL$ ومنه $ m V_b = 10~mL$		
	0.5		$Va = \frac{c_b \cdot V_{be}}{c_a}$	$\omega=4~mL$: عند التكافؤ	

تابع الإجابة النموذجية لمادة: العلوم الفيزيائية الشعبة: علوم تجريبية امتحان البكالوريا دورة: 2013

	العلا	عناصر الإجابة (الموضوع الأول)	محاور
مجموع	مجزأة		موضوع
04	2×0.25 0.25 0.75 0.25 0.5 0.5 2×0.25	التعريبي: (40 نقاط) التعريبي: (40 نقاط) -1 لتوقيف الثقاعل. — دور الكاشف الملون لمعرفة التكافؤ . -1 $HCOOCH_2CH_3$ $+1$ $HCOOCH_2CH_3$ $+1$ $HCOOCH_2CH_3$ $+1$ $HCOOCH_2CH_3$ $+1$ $HCOOCH_3$ $+1$ $HCOOCH_4$ $+1$ $HCOOCH_5$ $+1$ $HCOOCH_4$ $+1$ $HCOOCH_4$ $+1$ $HCOOCH_5$ $+1$ $HCOOCH_4$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$	
	0.25	t (min) مراقبة المردود: استعمال مزيج ابتدائي غير متكافئ في كمية المادة نحسن من قيمة المردود. 6- رسم البيان كيفيا.	

تابع الإجابة النموذجية لمادة: العلوم الفيزيائية الشعبة: علوم تجريبية امتحان البكالوريا دورة: 2013

(مة	العلا	/ man m/ Tu-sh	محاور
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	موضوع
		التمرين الأول: (04 نقاط)	
	0.50	1- دور التسخين المرتد تكثيف البخار المتصاعد ومنع ضياعه فيعود إلى الأرلينة.	
		 إضافة حمض الكبريت المركز هو تسريع التفاعل. 	
	0.25	2– فصل المواد	
	0.50	$CH_3COOH + C_4H_9OH = CH_3COOC_4H_9 + H_2O - 1 - 3$	
	0.75	$ au_{\scriptscriptstyle f} < 1$: نلاحظ أن $ au_{\scriptscriptstyle f} = rac{X_{\scriptscriptstyle f}}{X_{ m max}} = rac{0,6}{1} = 0,6$ ب	
		التأكد عمليا من تحول الأسترة غير تام نضيف قطرات من كاشف ملون.	
04		ج- سرعة التفاعل.	
		$v(t_1) = \frac{\Delta n_E}{\Delta t} = 0,0080 mol \cdot min^{-1}$	
	4×0.25	$v(t_2) = 0.0035 mol \cdot min^{-1}$	
		$v(t_3) = 0.0020 mol \cdot min^{-1}$	
		نلاحظ أن السرعة تتناقص فالتحول بطئ.	
	0.50	$r = au_{\scriptscriptstyle f} imes 100 = 60\%$ د- المردود:	
		يمكن تحسينه بنزع الماء الناتج من التحول وذلك لجعل التحول يتطور في اتجاه الأسترة.	
		ه— صنف الكحول المستعمل: ثانوي	
	0.50	$CH_3-CHOH-CH_2CH_3$ بوتانول $CH_3-CHOH-CH_3$ بوتانول	
		التمرين الثاني: (04)	
	0.25	-1 القيمتان هما العدد الكتلي و يمثلان عدد النويات (النيوكليونات) في كل نظير .	
	0.25	الرمز: 36 17 17	
04	4×0.25	$E_{\ell} = (Z \cdot m_p + (A-Z) \cdot m_n - m(\frac{36}{17}C1)) \cdot c^2 = 307,54125 MeV$ - طاقة الربط –2	
	4×0.25	$^{36}_{17}CI ightarrow ^{36}_{18}Ar + ^{A}_{Z}X$ معادلة التفكك: $^{-3}$	
	4×0.25	ومنه: نمط التفكك: eta^- ومنه: نمط التفكك: eta^- ومنه: نمط التفكك ومنه: نمط التفكك ومنه: نمط التفكك ومنه: نمط التفكك ومنه ومنه: نمط التفكك ومنه ومنه ومنه ومنه ومنه ومنه ومنه ومنه	
	6×0.25	$t = \frac{-t_{1/2}}{\ln 2} \cdot \ln(\frac{N}{N_0}) = \frac{-301 \times 10^3}{\ln 2} \cdot \ln(\frac{38}{100}) = 420 \times 10^3 \text{ ans } :$	
	0.5	$u_{\beta} \uparrow $ (04) الرسم: $u_{\beta} \uparrow $ ($u_{\beta} \uparrow 0$) الرسم:	
		$u_R + u_B = E'$ $u_R + u_B =$	
	0.75	(L, r) : المعادلة التفاضلية: $u_B + u_B = E$ المعادلة التفاضلية: $u_R + u_B = E$ ومنه: $u_R + u_B = E$ أي: $u_R + u_B = E$	
04	4×0.25	$\tau = \frac{L}{R}$ ومنه: $\tau = \frac{L}{R}$ ومنه: $u_R = A(1 - e^{-\tau})$	
	0.5	$R+r$ $R+r$ $R+r$ $\cdot [\tau] = \frac{[U][T]}{[I]} \cdot \frac{[I]}{[U]} = [T] \equiv s$:التحليل البعدي -4	
	0.5	$ au_R(au)=0$,63 $u_{Rmax}=2V$. فإن $u_R(au)=0$ فيمته:	
	0.75	$E = \frac{u_{Rmax} \cdot (R+r)}{R} = 4.8 \text{ V}$ 9 $L = \tau (R+r) = 18 \times 10^{-3} \text{ H} : L$ قيمة -5	
		K	

تابع الإجابة النموذجية لمادة: العلوم الفيزيائية الشعبة: علوم تجريبية امتحان البكالوريا دورة: 2013

لامة	العا	, , , , , , , , , , , , , , , , , , ,	محاور
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	موضوع
	3×0.25	التمرين الرابع: (04 نقاط) $mg = ma$ ومنه: $g = g \cdot t$ إذن: $v = g \cdot t$ (مع تمثيل القوى) أو لاً: $v = g \cdot t$ المعادلات الزمنية: $v = g \cdot t$ ومنه: $v = g \cdot t$ إذن	
	0.20	dt (2) $x = \frac{1}{2}gt^2$ ومنه: $v = \frac{dz}{dt} = gt$: 9	
	0.25	$v = \sqrt{2gz} = 171, 4 \text{ m} \cdot s^{-1}$ ومنه: $v = \sqrt{2gz} = 171, 4 \text{ m} \cdot s^{-1}$ ومنه: $v = \sqrt{2gz} = 171, 4 \text{ m} \cdot s^{-1}$ ومنه: $v = \sqrt{2gz} = 171, 4 \text{ m} \cdot s^{-1}$	
	0.5	$kg \cdot m^{-1}$: ومنه: $k = \frac{[F]}{[v]^2} = \frac{[M] \cdot [L]}{[T]^2} \cdot \frac{[T]^2}{[L]^2} = \frac{[M]}{[L]}$ ومنه: $k = \frac{f}{v^2}$ ومنه: $k = \frac{f}{v^2}$	
04	0.5	$\Pi = \rho V g = \frac{\pi \rho D^3 g}{6} = 1.8 \times 10^{-4} N$: دافعة أرخميدس -2	
04	0.25	$P=mg=127,4 imes10^{-3}N$. قوة الثقل:	
	0.25	المقارنة: P/Π قوة الثقل أكبر بكثير من دافعة أرخميدس. يمكن إهمال $\overline\Pi$.	
	0.5	ومنه: $\frac{dv}{dt} = A - Bv^2$ أي $\frac{dv}{dt} = A - Bv^2$ (مع تمثيل القوى) $\frac{dv}{dt} = A - Bv^2$ أي $\frac{dv}{dt} = A - Bv^2$ (مع تمثيل القوى)	
	0.25	\cdot $v_{lim} = \sqrt{\frac{A}{B}}$ تكون: $\frac{dv}{dt} = \theta$ عند النظام الدائم: $v_{lim} = \sqrt{\frac{A}{B}}$ تكون	
	0.5	$k = \frac{mg}{v_{lim}^2} = 2.0 \times 10^{-4} kg / m \qquad 9 \qquad v_{lim} = 25 m / s \stackrel{-}{\longrightarrow}$	
	0.25	د- المقارنة: السرعة الأولى أكبر بكثير لأتنا أهملنا قوة الإحتكاك مع الهواء.	
		التمرين التجريبي: (04 نقاط)	
	0.5	1- الرسم التخطيطي.	
		 2− القیاس یکون دوما بعد معایرة جهاز الـpH متر: 	
	0.5	 نخرج المسبار من المحلول الخاص ثم نقوم بتنظيفه. 	
	0.5	 نغمس المسبار في المحلول الذي نريد قياس الـ pH له. نرج المحلول بواسطة مخلاط مغناطيسي بحذر لا يلامس المسبار القطعة المغناطيسية. 	
		- نضع جهاز الـ pH متر في وضعية "قياس" ثم ننتظر استقرار القيمة المشار إليها.	
04		عند إجراء عدة قياسات متتالية يمكن تنظيف المسبار بالماء المقطر بين قياسين متتاليين.	
V4	0.5	$C_6H_5CO_2H\left(aq ight)+HO^-\left(aq ight)=C_6H_5CO_2^-\left(aq ight)+H_2O(\ell)$ عادلة تفاعل المعايرة: -3	
	0.75	$E\left(V_{_{bE}}=18,4mL\;;\;pH_{_{E}}=8 ight)$ -أ $-$ نقطة التكافق: -1	
	0.5	\cdot $c_a=9,2 imes 10^{-2}$ $mol.L^{-1}$: و منه $c_a.V_a=c_b.V_{bE}$: عند التكافؤ	
	0.5	$pH=pK_{_a}=4,2$ ب عند نقطة نصف التكافؤ $E_{_{\mathcal{V}_2}}$ نجد:	
		$pH=2,7$ و من البيان نجد: $V_{_b}=0$	
	0.75	(الحمض $C_6H_5CO_2H$ ضعيف $-Logc_a=0.7$ نصيف $-Logc_a=0.7$	
		$\cdot au_{_{\! f}} < 1 :$ يمكن استعمال	
		ملاحظة: يمكن قبول القياسات القريبة حدا مما سبق.	