SET II TERM III EXAMINATIONS 2022 S.5BIOLOGY / 1

Time: 2 hours 30 minutes

Instructions:

Answer all questions in this paper

Answers to section A must be written in the table below.

Answers to section B must be written only in the spaces provided.

SECTION A (40 Marks)

6.	11.	16.	21.	26.	31.	36.
7.	12.	17.	22.	27.	32.	37.
8.	13.	18.	23.	28.	33.	38.
9.	14.	19.	24.	29.	34.	39.
10.	15.	20.	25.	30.	35.	40.
	7. 8. 9.	7. 12. 8. 13. 9. 14.	7. 12. 17. 8. 13. 18. 9. 14. 19.	7. 12. 17. 22. 8. 13. 18. 23. 9. 14. 19. 24.	7. 12. 17. 22. 27. 8. 13. 18. 23. 28. 9. 14. 19. 24. 29.	7. 12. 17. 22. 27. 32. 8. 13. 18. 23. 28. 33. 9. 14. 19. 24. 29. 34.

1.	6.	11.	16.	21.	26.	31.	36.			
2.	7.	12.	17.	22.	27.	32.	37.			
3.	8.	13.	18.	23.	28.	33.	38.			
4.	9.	14.	19.	24.	29.	34.	39.			
5.	10.	15.	20.	25.	30.	35.	40.			
	II.	1	SS	SECTION A	\ \					
1. G as	seous exchan	ige in earth	worms occ	curs at the bo	dy surface b	because the b	ody is			
	A. Moist				C. Se	egmented				
	B. Elongate	ed			D. Fl	attened.				
	-				_	f the wings a				
	-						ne possessing			
				the followin	g offsprings	were obtained	ed:			
	mg wings, br									
	ng wings, na									
	stigial wings									
	stegial wings			05.						
	nat was the cr 13.3%	ross over val B.26.		C. 49	10/	D 72.4	0/			
A. 3. Wh	nich of these					D. 73.4	.%0			
J. WI	A. Sugar, c				it vacuoles:					
	•									
	B. Sugar, organic acids, salts and waterC. Sugars, organelles, organic acids and salts									
	D. Sugar, o									
4. Th	e technique	_								
	A. Magnify	ing power]	B. Resolution	n C. Tr	ansmission	D. Contrast			
5. The	e action spec	trum of chlo	rophyll is	highest in th	e following	region of the	e spectrum			

- A. Green
- B. Blue
- C. Yellow

C. Red

- 6. In which part of the chloroplast are complex carbohydrates are made?
 - A. Intermembrane space

B. Inner membrane

	C.	Stroma	D.	Thylakoid
7.	_	g interconversions between carbohydrates, fa	its and p	roteins in body metabolism,
		of these is irreversible?		
	A.	Amino acids to pyruvic acids Fatty acids to acetyl co- enzyme A		
		Pyruvic acid to acetyl co-enzyme A		
	D.			
8.		prrect sequence of the transfer of hydrogen in	n the hyd	lrogen carrier system is
		→ cytochrome → cytochrome o		
B.	NAD	FAD cytochrome	cytoch	rome oxidase → O2
		$FAP \longrightarrow cytochrome \longrightarrow$	-	
		$I2 \longrightarrow FAD \longrightarrow cytochrome \longrightarrow$	cytoch	$ \longrightarrow O2 $
9.	Squam	ous epithelial tissue occurs in		
	A.	Lungs	C.	Esophagus glands
	B.	Endocrine glands	D.	Mammary glands
10.		of the following statements is not true about		
	A.	The foetal O_2 dissociation curve is to the ri	_	
	В. С.	The O_2 dissociation of large animals is to the O_2 shifts the O_2 dissociation curve to the	_	of that for smaller animals
	C. D.	Myoglobin has an O_2 dissociation curve to	_	of that for haemoglobin
				or that for hacmogloom.
11.		noids are mostly abundant in plant organs li		T1 10 '4
	A. B.	Roots and flowers Stems and roots	C. D.	Flowers and fruits Flowers and stems
12.		of these sequences of changes in guard cells		
	plant.			
A.	-	\longrightarrow low CO ₂ \longrightarrow low pHstarch \longrightarrow	sugar	→ exosmosis
	-	\longrightarrow low CO ₂ \longrightarrow High pH \longrightarrow starch		_
	_	\longrightarrow low CO ₂ \longrightarrow High pH \longrightarrow sugar		
D.	Light	\longrightarrow High pH \longrightarrow CO ₂ \longrightarrow low p	Hstarch	→ endosmosis
13.	Faculta	ative parasites are more difficult to control the	han oblig	gatory ones because they.
	A.	Are cupusulated.	•	Can change the mode of
	B.	Have many hosts.	feedin	<u> </u>
	Г		D.	Live in colonies
1/1	E. Which	of the following is the first step of protein s	wnthecic	
17.	W IIICII	of the following is the first step of protein s	ymmesis	•
	A.	Translation.	C.	.Transcription.
	B.	.Transportation.	D.	.D.N.A replication
15.	_	sis of DNA showed that 33% of the bases we	ere aden	ine. The percentage of guanine
		n the DNA sample was	C 17	D 00
16	A34	B. 33 nts Are less efficient than C4 plants in fixing	C. 17	D. 28
10.	CJ Pia	mo mio ross criterent man et piants in main	5 $CO2$ at	1011 CO2 and mgn oxygen

partial pressure because.

	41. af al aaa a4 41	he bottom of a por	nd			
grow	ın or argae at u	ne bottom of a por	14.			
A.	Light			C.	Minera	
В.	Carbondioxi			D.	Oxyge	en
19. Lack	of iodine in the	e diet causes creti	nism because iod	line		
A.	Controls me	tabolism.				
B.	Is essential i	n the formation of	f metabolic ezym	es.		
C.	Influences g	rowth of bones.				
D.	Is required f	or synthesis of thy	roxine.			
20. Acco	rding to Mende	el, the following a	re correct except	t		
A.	Each charact	teristic of an organ	nism is controlled	d by	a pair o	f alleles.
B.	Each allele i	s transmitted from	n generation to ge	enera	ation in	a discrete unit.
C.	There are se	veral varieties of a	alleles from each	pare	ent.	
D.	Each organis	sm inherits one all	lele of each pair,	fron	n each p	arent.
21. Whic	h of the follow	ring can change M	lendels dihybrid	ratio	from 9:	:3:3:1 to 1:1:1:1
A.	Linkage.	B. Pleiotropy	C. Complement	talv	genes.	D. Leathal gen
A. S B. S	Sin-atrio node t Sino-atrio node	traqnsmission of o to atria to atrio-ve to ventricles to a	electrical impulso entricular node to trio –ventricular	es to pur node	initiate kinje tis e to purl	sue to ventricles kinje tissue to at
A. S B. S C. A	Sin-atrio node t Sino-atrio node Atrio-ventricula	traqnsmission of to atria to atrio-ve	electrical impulse entricular node to trio –ventricular sino-atrio node t	es to puri node	initiate kinje tis e to purl ırkinje t	sue to ventricles kinje tissue to at issue to ventricl
A. S B. S C. A D. A	Sin-atrio node t Sino-atrio node Atrio-ventricula Atrio-ventricula	traqnsmission of o to atria to atrio-ve e to ventricles to a ar node to atria to ar node to purkinj	electrical impulse entricular node to trio –ventricular sino-atrio node t e tissue to ventri	es to pur node to pu cles	initiate kinje tis e to purl ırkinje t to atria	sue to ventricles kinje tissue to at issue to ventricl to sino-atrio no
A. S B. S C. A D. A	Sin-atrio node to Sino-atrio node to Sino-atrio node Atrio-ventriculario	traqnsmission of o to atria to atrio-ve e to ventricles to a ar node to atria to	electrical impulse entricular node to trio –ventricular sino-atrio node t e tissue to ventri	es to pur node to pu cles	initiate kinje tis e to purl urkinje t to atria	sue to ventricles kinje tissue to at issue to ventricle to sino-atrio noo
A. S B. S C. A D. A	Sin-atrio node to Sino-atrio node to Sino-atrio node Atrio-ventricula Atrio-ventricula the of the follow Lipase.	traqnsmission of oto atria to atrice to ventricles to a ar node to atria to ar node to purking	electrical impulse entricular node to trio –ventricular sino-atrio node t e tissue to ventri	es to pur node to pu cles	initiate kinje tis e to purl ırkinje t to atria	sue to ventricles kinje tissue to at issue to ventricle to sino-atrio noo
A. S B. S C. A D. A 23. Whice A. B.	Sin-atrio node to Sino-atrio node to Sino-atrio node Atrio-ventricular Atrio-ventricular hof the follow Lipase. enterokinase	traqnsmission of o to atria to atrio-ve e to ventricles to a ar node to atria to ar node to purkinj	electrical impulse entricular node to trio –ventricular sino-atrio node to e tissue to ventri	es to pur node to pu cles	initiate kinje tis e to purl urkinje t to atria	kinje tissue to at issue to ventricles to ventricle to sino-atrio noo leum?
A. S B. S C. A D. A 23. Whice A. B.	Sin-atrio node to Sino-atrio node to Sino-atrio node Atrio-ventricular Atrio-ventricular hof the follow Lipase. enterokinase	traqnsmission of oto atria to atrice to ventricles to a ar node to atria to ar node to purking	electrical impulse entricular node to trio –ventricular sino-atrio node to e tissue to ventri	es to pur node to pu cles	initiate kinje tis e to purl urkinje t to atria of the il	kinje tissue to at issue to ventricles to ventricle to sino-atrio noo leum?
A. S B. S C. A D. A 23. Whic A. B. 24. cells A.	Sin-atrio node to Sino-atrio node to Sino-atrio node Atrio-ventricular Atrio-ventricular Atrio-ventricular Lipase. enterokinase are limited to keep their vo	traqnsmission of o to atria to atrio-ve e to ventricles to a ar node to atria to ar node to purkinj ving enzymes is se esmall size in order olume down.	electrical impulse entricular node to trio –ventricular sino-atrio node to e tissue to ventri	node to purcles ning C.	initiate kinje tis e to purl urkinje t to atria of the il lactase sucrase	kinje tissue to at issue to ventricles to ventricle to sino-atrio noo leum?
A. S. B. S. C. A. D. A. S. A. B. 24. cells	Sin-atrio node to Sino-atrio node to Sino-atrio node Atrio-ventricular Atrio-ventricular Atrio-ventricular Lipase. enterokinase are limited to keep their vo	traqnsmission of oto atria to atria to atrice to ventricles to a ar node to atria to ar node to purking enzymes is seen small size in order	electrical impulse entricular node to trio –ventricular sino-atrio node to e tissue to ventri	node to purcles ning C.	initiate kinje tis e to purl urkinje t to atria of the il lactase sucrase	kinje tissue to at issue to ventricles to ventricle to sino-atrio noo leum?
A. S B. S C. A D. A 23. Whic A. B. 24. cells A.	Sin-atrio node to Sino-atrio node to Sino-atrio node Atrio-ventricular Atrio-ventricular Atrio-ventricular to Lipase. enterokinase are limited to keep their von Allow move	traqnsmission of o to atria to atrio-ve e to ventricles to a ar node to atria to ar node to purkinj ving enzymes is se esmall size in order olume down.	electrical impulse entricular node to trio –ventricular sino-atrio node to e tissue to ventri	node to purcles ning C.	initiate kinje tis e to purl urkinje t to atria of the il lactase sucrase	kinje tissue to at issue to ventricles to ventricle to sino-atrio noo leum?
A. S B. S C. A D. A 23. Whic A. B. 24. cells A. B.	Sin-atrio node to Sino-atrio node to Sino-atrio node to Sino-atrio node to Atrio-ventricular Atrio-ventricular to Lipase. enterokinase are limited to keep their von Allow move Cut down the	traqnsmission of of to atria to atria to atrices to a ar node to atria to ar node to purking ar node to purking enzymes is sessmall size in order olume down.	electrical impulse entricular node to trio –ventricular sino-atrio node to e tissue to ventri	node to purcles ning C.	initiate kinje tis e to purl urkinje t to atria of the il lactase sucrase	kinje tissue to at issue to ventricles to ventricle to sino-atrio noo leum?
A. S B. S C. A D. A 23. Whice A. B. 24. cells A. B. C. D.	Sin-atrio node of Sino-atrio node of Sino-atrio node of Sino-atrio node of Sino-atrio node of Sino-atrio-ventricular sino-ventricular sino-ventricular sino-ventricular sino-ventricular sino-ventricular sino-ventricular sino-ventricular sino-atrio node of sino-	traqnsmission of oto atria to atria to atria to atrio-ve to ventricles to a ar node to atria to ar node to purking enzymes is sessionall size in order olume down.	electrical impulse entricular node to trio –ventricular sino-atrio node to e tissue to ventri ecreted by the limit of to in and out of the nents.	es to pur node to pu cles	initiate kinje tis e to purl urkinje to to atria of the il lactase sucrases.	sue to ventricles kinje tissue to at issue to ventricl to sino-atrio noo leum?
A. S B. S C. A D. A 23. Whice A. B. 24. cells A. B. C. D.	Sin-atrio node of Sino-atrio node of Sino-atrio node of Sino-atrio node of Sino-atrio node of Sino-atrio-ventricular sino-ventricular sino-ventricular sino-ventricular sino-ventricular sino-ventricular sino-ventricular sino-ventricular sino-atrio node of sino-	traqnsmission of of to atria to atria to atrio-vere to ventricles to a ar node to atria to ar node to purking enzymes is seen small size in order to blume down. The energy requirement of the energy requirement of the energy requirement control the extract less oxygen	electrical impulse entricular node to trio –ventricular sino-atrio node to e tissue to ventri ecreted by the limit of to in and out of the nents.	es to pur node to pu cles	initiate kinje tis e to purl urkinje to to atria of the il lactase sucrases.	sue to ventricles kinje tissue to at issue to ventricl to sino-atrio noo leum?

RuBP carboxylase is inactivated by high oxygen partial pressures.

17. what is the water potential of a cell if its pressure potential is 500KPa and its olute

C.5400KPa

D. -5400KPa.

B. 4400KPa

PEP carboxylase has a high affinity for oxygen.

C₃ plants use more energy

In C3 plants, energy is lost.

A.

B.

C.

D.

A.

potential is -4900KPa? -4400 KPa

- B. Are relatively bigger in size.
- C. Employ parallel flow system of gaseous exchange.
- D. Possess large gills with a small surface are to volume ratio.
- 26. Usually, Na⁺ and K⁺ are actively pumped out of the red blood cell. When the cell is treated with a metabolic poison, it bursts because.
 - A. The metabolic poison weakens the cell surface.
 - B. Accumulation of K⁺ and Na⁺ inside the cell alters its water potential.
 - C. The influx of K⁺ damages the structure of the surface.
 - D. The accumulation of Na⁺ inside of the cell alters its water potential.
- 27. The latent heat of vaporization of sweat is 3.15 KJ cm⁻³. What is the percentage of energy lost by sweating from a manual worker who loses 2dm³ per day of sweat if his daily energy intake is 40,000 KJ per day?
 - A. 6.30

C. 8.25.

B. 7.88.

D. 15.75.

28. The figure below represents a

- A. Tracheids. C. Sieve tube.
- B. Xylem vessel element. D. Phloem parenchyma cells
- 29. Which set of products is liberated during both aerobic and anaerobic respiration in plants?
 - A. Carbondioxide and ethanol
- C. Water and carbondioxide.

B. Ethanol and water.

- D. Carbondioxide and ethanol.
- 30. Which of the following pairs of reactants is not required for the light independent reactions of photosynthesis?
 - A. NADPH and ATP

C. RUBP and free oxygen

B. ATP and carotenoids.

- D. Carbon dioxide and enzymes
- 31. A property of water that makes it a suitable component of the hyrdrostatic skeleton is its
 - A. High density.

C. Low viscosity.

B. High surface tension.

D. Incompressibility.

- 32. Gamets are haploid because
 - A. Two replications of DNA occur during meiosis
 - B. Homologous chromosomes separate during meiosis.
 - C. Crossing over occurs during prophase I
 - D. Chromatids do not separate during meiosis.

- 33. Which one of the following is correct about the counter current mechanism in teleosts?
- A. Blood with a low oxygen concentration flows in the same direction with water of high oxygen concentration.
- B. Water of low oxygen concentration flows near blood of high oxygen concentration.
- C. Blood with a high oxygen concentration flows in the opposite direction to water of a high oxygen concentration.
- D. Water of a high oxygen concentration flows in opposite direction to blood of low oxygen concentration.
- 34. Which one of the following is the tidal volume in an individual whose ventilation rate is 2000dm³/ min and takes 10 breaths per minute?

A. 0.2 dm³ C. 200dm³ B. 2.0dm³ D. 20dm³

- 35. In single circulation, blood flows at a low pressure because,
 - A. the blood passes through two capillary system.
 - B. Animals that have single circulation have single-chambered hearts.
 - C. The single circulatory system lacks valves.
 - D. The main vessels in single circulation are capillaries.
- 36. When someone is infected with HIV, reduction in..... results into AIDS
 - A. Number of plasma cells

C. Number of T killer cells.

B. Number of T helper cells

- D. Number T suppressor cells
- 37. The biochemical property of blood essential for its protective function of the body is the
 - A. Ability to clot.

C. Presence of haemoglobin.

B. Possession of antibodies.

- D. Possession of white blood cells.
- 38. When a tall red flowered plant was crossed with a short and white flowered plant, all the offspring were tall and redflowered. When the F1 plants were selfed, the F2 phenotypes were in a ratio of 3:1. This occurrence suggests occurance of

A. Epistasis

C. Crossing over.

B. Recombination

- D. Linkage.
- 39. A man of blood group **B** married a woman of blood group **AB. Which** of the following blood genotypes would not be of their children?

A. **AO**

C. **BB**

B. **BO**

D. AA.

- 40. Loss of water from the blood of a human body can result into.
 - A. Lowering of the body temperature.
 - B. Slowing down the rate of breathing.
 - C. Lowering of blood presuure.
 - D. Slowing down of heart beat.

SECTION B

- 41. The table below shows blood group system in humans. Complete the table by
 - (i) Filling in the antigens and antibodies for each blood group.
 - (ii) Indicating whether agglutination occurs (by a cross **X**) or no agglutination occurs (by a tick), when an individual of each blood group receives blood from blood group **AB**. (06 marks)

Blood group	anitigens	antibodies	Agglutination /no agglutination when receives blood of AB blood group
A			
В			
AB			
0			

(b)	How	v can a	a Rhes	sus neg	ative n	nother	affect	a Rhes	sus pos	itive fo	her wor (04 ma	
 			• • • • • • •								 	• • • • • • • • • • • • • • • • • • • •
 											 	• • • • • • • • •
												• • • • • • • • •

42. (a) the figure below shows an anabolic and catabolic reaction in a living cell

(i) Using arrows **X** and **Y**, indicate the direction of the anabolic and catabolic reactions respectively on the figure above. (02 marks)

(ii)	Name the compound marked ${\bf B}$ and one example of the process marked	ed A and C (03 marks)
A.		······································
В		
C		
(b) descr	ribe what happens to the end product of glycolysis in plants in absence of	oxygen
		(05 marks).
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • •		•••••
i	In an oil seed plant species, the allele for tallness is dorminant over the all dwarfness. Meanwhile the allele for chlorophyll production and non chloroncomplete dorminance. The heterozygous plants are variegated.	phyll show
((a) Using suitable symbols, construct a diagram of a cross between a tall pleaves and a dwarf plant with variegated leaves, to show the genotypes offspring.	
• • • • • • • • • • • • • • • • • • • •		

	• • • • • • •		
	•••••		
	(b)	Explain why 25% of the offspring of the cross in (a) would fail to surv	vive .(02 marks)
	14. (a)	Illustrating with a cell of one pair of homologous chromes, draw diagrace below to show.	
((i)	Mitotic metaphase.	(02 marks)
,	···		(02 1)
((ii)	Meiotic metaphase I	(02 marks)

(c) Explain how meiosis contributes to genetic variation.

(04 marks)

.....

45. The figure below shows the immune response of a person's blood after vaccinations are given on day one and 60 days later.

(a) What is the effect of giving immunization to the individual?

(01 mark)

.....

(b) Explain the shape of the graph.	(04 marks)
(c) During vaccination against tetanus, children are in measles virus. Explain how this procedure can restetanus.	sult in long term immunity against (05 marks)
46. (a) state the role of the following in protein synthe	esis
(i) Messenger RNA	(03 marks)

		•••••	••••••	• • • • • • • • • • • • • • • • • • • •			
• • • • • • • •	• • • • • • • • • • • • • • • • • • • •						
	(ii)	Transfer RNA				(03 marks)	
		•••••					
		•••••					
••••••		•••••					
••••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •		••••••	• • • • • • • • • • • • • • • • • • • •
	(b) giv	ve two ways that su	ggest that DNA	is hereditary	y material	(04 marks)	
		•••••					
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •

END