Predicting Yelp Rating

A guide by Josh, Ian, Ryan and Douglas

Topic: Yelp Review Predictor

 Testing our predictive model on Yelp reviews. Can we predict a Yelp star rating based on various attributes specific to the restaurant?

• What attributes would customer (reviewers) consider most important to their rating? Does it depend on the type of restaurant?

Steps in the Process

- Gather Data
- Import Json into Jupyter Notebook
- Drop unwanted columns/features, filtered data by category, refined to OH
- Factorized attribute columns to break object into separate individual feature strings
- Convert data to binary via out of the box get dummies function to prep for machine learning
- Trained data, and ran multiple different models to see best fit
- Random Forest ftw
- Compared Actual vs. Predicted Yelp stars
- Took a look at feature importance

Cleaning the Dataset

Step 1: remove all businesses that are not restaurants

```
df_new = data[data["categories"].str.contains("Restaurants", na = False)]
df_new.dropna(subset = ['attributes'], inplace = True)
df_new.head()
```

Step 2: include only restaurants in Ohio

```
df_ohio = df_new[df_new['state'] == 'OH']
df_ohio
```

Step 3: cleaning and restructuring columns

```
df_test = df_ohio
df_test['attributes'] = df_test['attributes'].astype('str')
df_test['attributes'] = df_test['attributes'].apply(lambda x : dict(eval(x)) )
df_test2 = df_test["attributes"].apply(pd.Series)

df_test3

df_test3['GoodForKids'] = pd.get_dummies(df_test2['GoodForKids'])
df_test3['RestaurantsGoodForGroups'] = pd.get_dummies(df_test2['RestaurantsGoodForGroups'])
```

Feature Importance Heatmap

0.8

- 0.6

0.4

- 0.2

0.0

- -0.2

Feature Importance Plot

Feature Importance Ratings

Feature	Importance	BusinessAcceptsBitcoin	0.022882
review_count	0.362741	DogsAllowed	0.015573
NoiseLevel	0.068062	RestaurantsTakeOut	0.013263
RestaurantsDelivery	0.049246	HappyHour	0.013102
RestaurantsAttire	0.043898	ByAppointmentOnly	0.013047
Caters	0.040941	DriveThru	0.011705
OutdoorSeating	0.039555	CoatCheck	0.010056
Alcohol	0.039482	ВУОВ	0.008278
RestaurantsPriceRange2	0.037685	WheelchairAccessible	0.007128
RestaurantsReservations	0.035099	GoodForDancing	0.004966
BikeParking	0.034689	BYOBCorkage	0.004684
HasTV	0.034134	BusinessAcceptsCreditCards	0.002469
RestaurantsTableService	0.033454	Corkage	0.002293
RestaurantsGoodForGroups	0.028092	RestaurantsCounterService	0.000000
GoodForKids	0.023478	DietaryRestrictions	0.000000

Yelp Stars, Actual (red) vs Predicted (blue)

Actual vs. Predicted Ratings

Actual	Predicted		
4.0	3.237500	2.0	3.237229
2.5	3.525000	4.5	2.189929
4.0	2.656167	3.5	3.540000
3.5	2.885000	3.0	3.560000
3.5	3.399167	3.0	3.710917
1.0	2.988085	3.5	3.200000
4.0	3.422500	3.0	3.080000
4.0	4.105000	3.0	2.907500
4.0	3.633119	3.5	3.880000
5.0	3.606628	3.0	3.655000

Yelp Stars, Ohio Dataset

1. Challenges/Limitations

- → Finding small business dataset

 Obtaining actual restaurant data.
- → A Lack of Restaurant Data

 The industry is very inept when it comes to data collection.
- → Breaking up feature object into separate strings
 Out of the box factorize pandas function
- → Dealing with null / naan values

 Treating them as false, rather than dropping or true.

2. If we had more time...

- → Utilize web scraping and NLP

 Adding further dimensions and accuracy to predictions
- Take a zoomed look at each feature

 Histograms per feature, determine actual feature importance
- → Expand analysis to identify biases
 Include intangible features and expand data set.

Conclusion

Questions?

LET'S GO BROWNS!