

SDS 385: Stat Models for Big Data

Lecture 4: GD with momentum.

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Polyak's heavy ball method

Figure 1: B. Polyak

 $\beta_{t+1} = \beta_t - \alpha \nabla f(\beta_t) + \underbrace{\theta(\beta_t - \beta_{t-1})}_{\text{momentum term}}$

Momentum

Recall GD?

• For a L smooth and μ convex optimization problem, i.e. $\mu I \leq \|H\| \leq LI$,

$$\|\beta_t - \beta^*\| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^t \|\beta_0 - \beta^*\|$$

where $\kappa = L/\mu$ i.e. the condition number of the Hessian.

• For the same problem, using Polyak's method we can show that,

$$\left\| \begin{bmatrix} \beta_{t+1} - \beta^* \\ \beta_t - \beta^* \end{bmatrix} \right\| \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^t \left\| \begin{bmatrix} \beta_1 - \beta^* \\ \beta_0 - \beta^* \end{bmatrix} \right\|$$

3

· Recall we have:

$$\beta_{t+1} - \beta^* = (1 + \theta)(\beta_t - \beta^*) - \alpha \nabla f(\beta_t) - \theta(\beta_{t-1} - \beta^*)$$

= $((1 + \theta)I - \alpha \nabla^2 f(z_t))(\beta_t - \beta^*) - \theta(\beta_{t-1} - \beta^*)$

• This gives the dynamic system:

$$\begin{bmatrix} \beta_{t+1} - \beta^* \\ \beta_t - \beta^* \end{bmatrix} \le \begin{bmatrix} (1+\theta)I - \alpha \nabla^2 f(z_t) & -\theta I \\ I & 0 \end{bmatrix} \begin{bmatrix} \beta_t - \beta^* \\ \beta_{t-1} - \beta^* \end{bmatrix}$$

4

• We need to upper bound the norm of

$$M := \begin{bmatrix} (1+\theta)I - \alpha \nabla^2 f(z_t) & -\theta I \\ I & 0 \end{bmatrix}$$

• It can be shown that:

$$||M|| = \left\| \begin{bmatrix} (1+\theta) - \alpha \Lambda & -\theta I \\ I & 0 \end{bmatrix} \right\|$$
$$= \max_{i} \left\| \begin{bmatrix} (1+\theta) - \alpha \lambda_{i} & -\theta \\ 1 & 0 \end{bmatrix} \right\|$$

 Eigenvalues of the 2 × 2 matrix can be written as a solution of the following quadratic:

$$\sigma^2 - \sigma((1+\theta) - \alpha\lambda_i) + \theta = 0$$

- If $((1+\theta) \alpha \lambda_i)^2 \le 4\theta$, the roots are imaginary and the magnitude is $\sqrt{\theta}$
- This is satisfied if

$$\theta \in [(1 - \sqrt{\alpha \lambda_i})^2, (1 + \sqrt{\alpha \lambda_i})^2]$$

- But recall that $\lambda_i \in [\mu, L]$.
- If we set $1 \sqrt{\alpha L} = -(1 \sqrt{\alpha \mu})$, then we have

$$\alpha = \left(\frac{2}{\sqrt{L} + \sqrt{\mu}}\right)^2$$
 $\theta = \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^2$

 \bullet So the new contraction factor becomes $\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$

• If we only assume that $\|\nabla^2 f(x)\| \le L$ and not strong convexity, then in your homework you will prove that

$$f(\beta_t) - f(\beta^*) \le c_L \frac{\|\beta_0 - \beta^*\|^2}{t}$$

- Note that this is much weaker than the linear convergence we saw before.
- Question is can we do better?

Figure 2: Y. Nesterov

- Keep track of two vectors x_t and y_t
- $x_{t+1} = y_t \alpha_t \nabla f(y_t)$ $y_{t+1} = x_{t+1} + \underbrace{\frac{t}{t+3}}_{t+3} (x_{t+1} x_t)$ μ_{t+1}

• Can be re-written as:

$$x_{t+1} = x_t + \mu(x_t - x_{t-1}) - \alpha_t \nabla f(x_t + \mu_t(x_t - x_{t-1}))$$

• Very much like the momentum method, but computes the derivative at a future step.

Acknowledgment

Y. Chen's large scale Optimization class at Princeton.