1. Krets

1.1. Elements

1.1.1. Resistor

$$i_R$$
 $n+$
 $n+$
 $n+$

Figure 1: A resistor.

The current through a resistor is given by Ohm's law:

$$i_R = \frac{v^+ - v^-}{R} = G(v^+ - v^-) \tag{1}$$

To get the element stamps for the resistor in the conductance matrix, we use Kirchhoff's Current Law (KCL) at nodes n+ and n-.

At node n+:

$$i_{n+} = i_R = G(v^+ - v^-) (2)$$

At node n-:

$$i_{n-} = -i_R = -G(v^+ - v^-) \eqno(3)$$

This leads to the following conductance matrix stamps:

Table 1: Element stamps for a resistor in the conductance matrix in group 1.

$$\begin{array}{cccc} & v^+ & v^- & \text{RHS} \\ \hline v^+ & +G & -G \\ v^- & -G & +G \\ \end{array}$$

To get the stamps in group 2, we introduce a current variable i_R for the resistor:

$$v^{+} - v^{-} = Ri_{R} \Rightarrow v^{+} - v^{-} - Ri_{R} = 0 \tag{4}$$

Table 2: Element stamps for a resistor in the conductance matrix in group 2.

	v^+	v^-	i_R	RHS
v^+			+1	
v^{-}			-1	
i_R	+1	-1	-R	

1.1.2. BJT

1.1.3. Capacitor

Table 3: Element stamps for a capacitor in the conductance matrix in group 1.

Table 4: Element stamps for a capacitor in the conductance matrix in group 2.

Figure 2: Capacitor Companion model for Backwards Euler.

The dynamic element equation

$$i(t_{n+1}) = C(u(t_{n+1}))u'(t_{n+1})$$
(5)

using $i(t_{n+1})\approx i_{n+1}$ and $u(t_{n+1})\approx u_{n+1}$

$$i_{n+1} = C(u_{n+1})u'(t_{n+1}) \approx C(u_{n+1}) \left(\frac{u_{n+1} - u_n}{h}\right) \tag{6}$$

$$u_{n+1} = \frac{h}{C}i_{n+1} + u_n \tag{7}$$

so

$$G_{n+1} = \frac{h}{C}$$
 and $u_n = u_{n+1} - G_{n+1}i_{n+1}$ (8)

1.1.4. Current Source

Figure 3: A current source.

The current through an independent current source is given by:

$$i_S = I \tag{9}$$

To get the element stamps for the independent current source in the conductance matrix, we use Kirchhoff's Current Law (KCL) at nodes n+ and n-.

At node n+:

$$i_{n+} = i_S = I \tag{10}$$

At node n-:

$$i_{n-} = -i_S = -I (11)$$

This leads to the following conductance matrix stamps:

Table 5: Element stamp for an independent current source in group 1

	v^+	v^-	RHS
v^+			+I
v^{-}			-I

Table 6: Element stamp for an independent current source in group 2

	v^+	v^{-}	i	RHS
v^+			+1	
v^-			-1	
$_{-}i$			+1	I

1.1.5. Diode

The diode is modeled as a nonlinear element with a current-voltage relationship defined by the Shockley diode equation:

$$I_D = I_S \left(e^{\frac{V_D}{nV_T}} - 1 \right) \tag{12}$$

Where I_D is the diode current, I_S is the reverse saturation current, V_D is the voltage across the diode, V_T is the thermal voltage, and, n is the ideality factor, also known as the quality factor, emission coefficient, or the material constant.

Figure 4: Diode IV Curve

The conductance of the diode is G_D and is given by the derivative of the Shockley diode equation with respect to the voltage:

$$G_D = \frac{dI_D}{dV_D} = \frac{I_S}{nV_T} e^{\frac{V_D}{nV_T}} \tag{13}$$

The companion model for the diode can be represented as a current source in parallel with a conductance.

$$I_{\rm eq} = I_D - G_{\rm eq} V_D \tag{14}$$

Figure 5: Diode Companion model

The element stamps for the diode in the conductance matrix are given by:

Table 7: Element stamps for a diode in group 1.

	v^+	v^-	RHS
v^+	$+G_{\mathrm{eq}}$	$-G_{ m eq}$	$-I_{ m eq}$
v^-	$-G_{ m eq}$	$+G_{\rm eq}$	$+I_{ m eq}$

1.1.6. Inductor

The dynamic element equation

$$u(t_{n+1}) = L(i(t_{n+1}))i'(t_{n+1})$$
(15)

using $u(t_{n+1}) \approx u_{n+1}$ and $i(t_{n+1}) \approx i_{n+1}$

$$u_{n+1} = L(i_{n+1})i'(t_{n+1}) \approx L(i_{n+1}) \left(\frac{i_{n+1} - i_n}{h}\right)$$
 (16)

$$i_{n+1} = \frac{h}{L}u_{n+1} + i_n \tag{17}$$

$$G_{n+1} = \frac{h}{L}$$
 and $i_n = i_{n+1} - G_{n+1}u_{n+1}$ (18)

Figure 6: Inductor companion model for Backwards Euler.

1.1.7. Mosfet

1.1.8. Voltage Source

In the conductance matrix the stamps for a voltage source are given by:

If the positive terminal is connect to node i and the node is not grounded, the stamp is: 1

1.2. Analyses

$$|x_{\text{new}} - x_{\text{old}}| \leq \text{relative_tolerance} * \max(|x_{\text{new}}|, |x_{\text{old}}|) + \begin{cases} \text{current_absolute_tolerance} \\ \text{voltage_absolute_tolerance} \end{cases} \tag{19}$$

1.2.1. DC

During DC analysis, the circuit is analyzed under steady-state conditions with all capacitors treated as open circuits and all inductors treated as short circuits.

1.2.1.1. Diode IV Curve

$$\begin{cases} V_1 = 1 \\ R_1 = 1000 \end{cases}$$

Figure 7: Diode IV Curve

Lets build the conductance matrix for this circuit.

$$\begin{pmatrix}
0 & 1 & 0 \\
1 & \frac{1}{R} & -\frac{1}{R} \\
0 & -\frac{1}{R} & \frac{1}{R} + G_D
\end{pmatrix} \begin{vmatrix}
I(V_1) \\ V_{\text{in}} \\ V_{\text{out}}
\end{vmatrix} = \begin{pmatrix}
1 \\ 0 \\ I_D
\end{pmatrix}$$
(20)

A Appendix

A.1 Constants

The following physical constants are used throughout this document:

 $k_B = 1.380649 \cdot 10^{-23}$ (Boltzmann constant)

 $q = 1.602176634 \cdot 10^{-19}$ (Elementary charge)

T = 300 (Standard temperature)

 $V_T = \frac{k_B T}{q} \approx 0.02585$ (Thermal voltage at 300K)

 $I_S = 1 \cdot 10^- 12$ (reverse saturation current)

0.000000000001