Todays topics:

- Linear Regression
 - Simple Linear Regression
 - Multiple Linear Regression
- Evaluation metrics

Algorithm

Algorithm is a step by step procedure which defines a set of instruction to be execuected in certain order to get the desired output

Model:

It reprasent what was learned by ML algorithms

Data model:

one of the main objectives in both ML and data science is finding an equation that best fits a given dataset is known data modeling

Linear Regression:

What is Linear Regression?

It is a linear approach to modeling the relation between dependent values and one or more independent values

Simple Linear Regression:

It provides the one independet values and one dependent values

y=mx+c # y is depedent values and x is independet and m=> cofficient c=>intercept

Multiple Linear Regression:

it provides one dependent values and two or more independent values

```
y=m1\times1+m2\times2+...+c
```

Simple Linear Regression Example

```
In [10]: import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression

#implement dataset
df=pd.DataFrame({"noofrooms":[2,3,4,5,6],"price":[200,300,400,500,600]})
df
```

Out[10]:		noofrooms	price
	0	2	200
	1	3	300
	2	4	400
	3	5	500
	4	6	600

Read X and y values

```
In [6]: X=df[['noofrooms']]
y=df[['price']]
```

Take Linear Regression model

```
In [7]: model=LinearRegression()
    # pass the data to model
    model.fit(X,y)

Out[7]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

In [9]: # find the score for check the accuracy
    model.score(X,y)*100

Out[9]: 100.0

In [12]: # predict the new data
    model.predict([[9]])

Out[12]: array([[900.]])
```

```
In [23]:
         a=np.array([7,8,9]).reshape(-1,1)
         model.predict(a)
Out[23]: array([[700.],
                 [800.],
                 [900.]])
In [24]: y_pred=model.predict(X)
         y_pred
Out[24]: array([[200.],
                 [300.],
                 [400.],
                 [500.],
                 [600.]])
In [30]:
         # using r2 score
         from sklearn.metrics import r2_score
         #r2 score(actual values, predicted values)
         r2_score(y,y_pred)
Out[30]: 1.0
```

27-08-2020:

Today Topics:

- · Multiple Linear Regression
- Model selections
 - train test split
 - cross validation
- · use cases of Linear Regression
- Polynomial Regression

Multiple Linear Regression example

```
Out[1]:
              rooms areasize price
           0
                  2
                           20
                                200
                  3
                           30
                                300
                  4
                           40
                                400
           2
           3
                  5
                                500
                           50
                           60
                                600
```

```
In [2]: # Take X and y values
X=df[['rooms', 'areasize']]
y=df[['price']]
```

```
In [3]: from sklearn.linear_model import LinearRegression
    model=LinearRegression()
    model.fit(X,y)
```

Out[3]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

```
In [4]: # find the score
model.score(X,y)
```

Out[4]: 1.0

Datasets for Linear Regression

```
In [1]: import pandas as pd
import numpy as np
from sklearn.datasets import load_boston
```

```
boston_data=load_boston()
In [2]:
        boston_data
Out[2]: {'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+0
                 4.9800e+00],
                [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
                 9.1400e+00],
                [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
                 4.0300e+00],
                . . . ,
                [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 5.6400e+00],
                [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
                 6.4800e+00],
                [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 7.8800e+00]]),
         'target': array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 1
        5.,
                18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
                15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
                13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
                21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9,
                35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,
                19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
                20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
                23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
                33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
                21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
                20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
                23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
                15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
                17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
                25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
                23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50.
                32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
                34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
                20., 21.7, 19.3, 22.4, 28.1, 23.7, 25., 23.3, 28.7, 21.5, 23.,
                26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,
                31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
                22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
                42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
                36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
                32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
                20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
                20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
                22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
                21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
                19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,
                32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
                18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,
                16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
                13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,
                12.5, 8.5, 5., 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5., 11.9,
                27.9, 17.2, 27.5, 15., 17.2, 17.9, 16.3, 7., 7.2, 7.5, 10.4,
```

8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11.

```
9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
        10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
        15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
        19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
        29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
        20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
        23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),
 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DI
S', 'RAD',
        'DESCR': ".. _boston_dataset:\n\nBoston house prices dataset\n------
-----\n\n**Data Set Characteristics:** \n\n
                                                    :Number of Instances: 506
        :Number of Attributes: 13 numeric/categorical predictive. Median Value
(attribute 14) is usually the target.\n\n
                                            :Attribute Information (in orde
                       per capita crime rate by town\n
            - CRIM
                                                                        propo
rtion of residential land zoned for lots over 25,000 sq.ft.\n
                                                                   INDUS
proportion of non-retail business acres per town\n
                                                                   Charles Ri
                                                        - CHAS
ver dummy variable (= 1 if tract bounds river; 0 otherwise)\n
                                                                   - NOX
nitric oxides concentration (parts per 10 million)\n
                                                          - RM
                                                                     average
number of rooms per dwelling\n
                                     AGE
                                                proportion of owner-occupied u
nits built prior to 1940\n
                                 - DIS
                                           weighted distances to five Boston
employment centres\n
                           - RAD
                                      index of accessibility to radial highway
s\n
          - TAX
                     full-value property-tax rate per $10,000\n
IO pupil-teacher ratio by town\n
                                      - B
                                                  1000(Bk - 0.63)^2 where Bk
                                            - LSTAT
is the proportion of blacks by town\n
                                                      % lower status of the p
opulation\n
                  MEDV
                             Median value of owner-occupied homes in $1000's\n
      :Missing Attribute Values: None\n\n
                                         :Creator: Harrison, D. and Rubinfe
ld, D.L.\n\nThis is a copy of UCI ML housing dataset.\nhttps://archive.ics.uci.
edu/ml/machine-learning-databases/housing/\n\nThis dataset was taken from the
StatLib library which is maintained at Carnegie Mellon University.\n\nThe Bosto
n house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\nprices and the
demand for clean air', J. Environ. Economics & Management,\nvol.5, 81-102, 197
    Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n...', Wiley, 1980.
N.B. Various transformations are used in the table on\npages 244-261 of the lat
ter.\n\nThe Boston house-price data has been used in many machine learning pape
rs that address regression\nproblems.
                                      \n
                                             \n.. topic:: References\n\n
Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data an
d Sources of Collinearity', Wiley, 1980. 244-261.\n - Quinlan,R. (1993). Comb
ining Instance-Based and Model-Based Learning. In Proceedings on the Tenth Inte
rnational Conference of Machine Learning, 236-243, University of Massachusetts,
Amherst. Morgan Kaufmann.\n",
 'filename': 'C:\\Users\\Kanakamma\\Anaconda3\\lib\\site-packages\\sklearn\\dat
asets\\data\\boston house prices.csv'}
```

```
In [3]: boston_data.keys()
Out[3]: dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
```

```
In [4]:
         data1=boston data.data
         data1
Out[4]: array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
                 4.9800e+00],
                [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
                 9.1400e+00],
                [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
                 4.0300e+00],
                [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 5.6400e+00],
                [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
                 6.4800e+00],
                [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 7.8800e+0011)
In [5]:
         cn=boston_data.feature_names
Out[5]: array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
                 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')
In [6]:
         df=pd.DataFrame(data1,columns=cn)
         df['Target']=boston data.target
         df.head()
Out[6]:
              CRIM
                     ZN INDUS CHAS
                                       NOX
                                                   AGE
                                                          DIS
                                                               RAD
                                                                     TAX PTRATIO
                                                                                       B LSTAT
                                              RM
         0 0.00632
                    18.0
                           2.31
                                   0.0
                                      0.538
                                             6.575
                                                   65.2 4.0900
                                                                1.0
                                                                    296.0
                                                                              15.3
                                                                                   396.90
                                                                                            4.98
          1 0.02731
                           7.07
                                  0.0
                                      0.469 6.421
                                                                    242.0
                                                                              17.8 396.90
                     0.0
                                                   78.9 4.9671
                                                                2.0
                                                                                            9.14
          2 0.02729
                     0.0
                           7.07
                                  0.0 0.469 7.185
                                                   61.1 4.9671
                                                                2.0
                                                                    242.0
                                                                              17.8 392.83
                                                                                            4.03
          3 0.03237
                     0.0
                           2.18
                                  0.0
                                      0.458 6.998
                                                   45.8
                                                        6.0622
                                                                3.0
                                                                    222.0
                                                                              18.7 394.63
                                                                                            2.94
            0.06905
                     0.0
                           2.18
                                  0.0 0.458 7.147
                                                   54.2 6.0622
                                                                3.0 222.0
                                                                              18.7 396.90
                                                                                            5.33
         df.shape
In [7]:
Out[7]: (506, 14)
```

```
In [8]: # find the missing values
         df.isnull().sum()
 Out[8]: CRIM
                     0
                     0
         ΖN
         INDUS
                     0
         CHAS
                     0
         NOX
                     0
         RM
                     0
         AGE
                     0
         DIS
                     0
         RAD
                     0
         TAX
                     0
         PTRATIO
                    0
                     0
         LSTAT
                     0
         Target
         dtype: int64
 In [9]: # apply the simple linear regression for this boston dataset
         from sklearn.linear model import LinearRegression
         model=LinearRegression()
In [10]: X=df[['RM']]
         y=df[['Target']]
In [11]: model.fit(X,y)
Out[11]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [12]: model.score(X,y)
Out[12]: 0.4835254559913343
```

correlation:

Correlation provides a relation between two features

- if value is 0 => their is no correlation between two features
- if value is 1=> their is posssitive relation
- if value is -1=> their is negative relation

```
In [13]: # find the correlation
df.corr()
```

Out[13]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	0.
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	- 0.
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	- 0.747881	0.
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.
Target	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.

```
In [14]: X=df[['RM','ZN','LSTAT']]
    y=df[['Target']]
    model.fit(X,y)
    model.score(X,y)
```

Out[14]: 0.6398856030562653

Model Selection

- Train Test Split: it is one of the model selection for spliting our dataset into two parts i.e training and testing it will provide hight efficiency and good accuracy for our model
- Cross Validaton(K-Fold)

```
In [58]: X=df.drop('Target',axis=1)
y=df[['Target']]
```

```
In [59]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=42
X_train.head()
```

Out[59]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST
	5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.
	116	0.13158	0.0	10.01	0.0	0.547	6.176	72.5	2.7301	6.0	432.0	17.8	393.30	12.
	45	0.17142	0.0	6.91	0.0	0.448	5.682	33.8	5.1004	3.0	233.0	17.9	396.90	10.
	16	1.05393	0.0	8.14	0.0	0.538	5.935	29.3	4.4986	4.0	307.0	21.0	386.85	6.
	468	15.57570	0.0	18.10	0.0	0.580	5.926	71.0	2.9084	24.0	666.0	20.2	368.74	18.

```
In [50]: from sklearn.linear_model import LinearRegression
    model=LinearRegression()
    model.fit(X_train,y_train)
```

Out[50]: LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)

```
In [51]: | model.score(X_train,y_train)
```

Out[51]: 0.7434997532004697

```
In [52]: model.score(X_test,y_test)
```

Out[52]: 0.7112260057484916

Cross validation:

Syntax: cross val score(modelname,inputvalues,targetvalues,cv=number of samples)

```
In [57]: from sklearn.model_selection import cross_val_score
    score=cross_val_score(model,X,y,cv=5)
    score.mean()
```

Out[57]: 0.3532759243958782

improve accuracy:

```
In [33]: X=df.drop('Target',axis=1)
y=df[['Target']]

#model.fit(X,y)
#model.score(X,y)
```

```
In [47]: from sklearn.model selection import cross val score, KFold
         # Create 5 folds
         \# seed = 7
         kfold = KFold(n splits=10,shuffle=True)
         # Create a model
         model = LinearRegression()
         # Train and evaluate multiple models using kfolds
         results = cross_val_score(model, X, y, cv=kfold, scoring='r2')
         print(results)
         print("Mean:", results.mean())
         print("Std:", results.std())
         [0.78079328 0.66807429 0.71816623 0.80710498 0.70591488 0.77724365
          0.67229182 0.71217609 0.57070419 0.72025184]
         Mean: 0.7132721245223294
         Std: 0.0645227973803984
In [48]: | from sklearn.metrics import SCORERS
         sorted(SCORERS.keys())
In [51]:
         import pandas as pd
         import matplotlib.pyplot as plt
         from mpl toolkits.mplot3d import Axes3D
         import matplotlib as mpl
         import numpy as np
         import seaborn as sns
In [65]: # Visualizing 3-D numeric data with Scatter Plots
         # Length, breadth and depth
         fig = plt.figure(figsize=(8, 6))
         ax = fig.add_subplot(111, projection='3d')
         xs = df['RM']
         ys = df['LSTAT']
         zs = df['Target']
         ax.scatter(xs,ys,zs, s=50, alpha=0.6, edgecolors='w')
         ax.set_xlabel('RM')
         ax.set_ylabel('LSTAT')
         ax.set_zlabel('Target')
 In [ ]:
```