# Lecture 4: Amenities and Quantitative Spatial Economic Models ECO 567A

Geoffrey Barrows<sup>1</sup>

<sup>1</sup>CREST, CNRS, Ecole polytechnique

Jan 31, 2025

#### Syllabus

- Part I: Demand for Local Environmental Quality
  - Intro (Jan 10)
  - Demand I Estimation (Jan 17)
  - Demand II Sorting and Environmental Justice (Jan 24)
  - Amenities and Quant. Spatial Economic Models (Jan 31)
- Part II: Supply of Local Environmental Quality Energy
  - Energy Production (Feb 7)
  - Energy Demand (Feb 14)
  - Energy Efficiency Innovation (Feb 21)
  - Trade and Pollution (March 7)
- Part III: Global Externalities
  - Climate Change (March 14)

#### Last Week

- Roback (JPE, 82) lays out simple spatial equilibrium model with
  - Utility equalized across space
  - Identical Agents
  - ► No trade costs
  - ⇒ Distribution of labor and production across space is indeterminate
- Can we augment the model so that model predicts population, production, consumption?
  - ► More realistic
  - Take to the data

# **Endogenous Amenity Supply**

Diamond, Rebecca. "The Determinants and Welfare Implications of US Workers' Diverging Location Choices by Skill: 1980-2000." American Economic Review 106.3 (2016): 479-524.

# Skill Wage Gap has gone up

TABLE 2—OBSERVED CHANGES IN WAGES AND LOCAL REAL WAGES, 1980–2000

| Year              | College/high school grad<br>wage gap<br>(1) | College/high school grad<br>rent gap<br>(2) | Local real wage gap |
|-------------------|---------------------------------------------|---------------------------------------------|---------------------|
| 1980              | 0.383                                       | 0.048                                       | 0.353               |
|                   | [0.0014]                                    | [0.0004]                                    | [0.0014]            |
| 1990              | 0.544                                       | 0.145                                       | 0.454               |
|                   | [0.0010]                                    | [0.0007]                                    | [0.0009]            |
| 2000              | 0.573                                       | 0.119                                       | 0.499               |
|                   | [0.0009]                                    | [0.0004]                                    | [0.0009]            |
| Change, 1980–2000 | 0.190                                       | 0.072                                       | 0.146               |

Notes: Wage gap measures the log wage difference between college and high school graduates. Rent gap measures the log rent difference between college and high school graduates. Note that rent is measured as the city-level rent index and does not reflect differences in housing size choices. Local real wage gap measures the wages net of local rents gap.

# High Skill Cities Became More High Skilled



# High Skill Cities Became More Expensive





# Skill Wage and Rent Gap have Both Gone Up

TABLE 2—OBSERVED CHANGES IN WAGES AND LOCAL REAL WAGES, 1980–2000

| Year              | College/high school grad<br>wage gap<br>(1) | College/high school grad<br>rent gap<br>(2) | Local real wage gap (3) |
|-------------------|---------------------------------------------|---------------------------------------------|-------------------------|
| 1980              | 0.383                                       | 0.048                                       | 0.353                   |
|                   | [0.0014]                                    | [0.0004]                                    | [0.0014]                |
| 1990              | 0.544                                       | 0.145                                       | 0.454                   |
|                   | [0.0010]                                    | [0.0007]                                    | [0.0009]                |
| 2000              | 0.573                                       | 0.119                                       | 0.499                   |
|                   | [0.0009]                                    | [0.0004]                                    | [0.0009]                |
| Change, 1980-2000 | 0.190                                       | 0.072                                       | 0.146                   |

Notes: Wage gap measures the log wage difference between college and high school graduates. Rent gap measures the log rent difference between college and high school graduates. Note that rent is measured as the city-level rent index and does not reflect differences in housing size choices. Local real wage gap measures the wages net of local rents gap.

#### Diamond

- With increased spatial concentration of High Skill labor, differential wage growth may be offset by differential rent growth
- ▶ But if amenities of "High Skill" cities also improve, then High Skill workers also benefit in terms of utility
- Additionally, there could be productivity feedbacks of amenities

ç

#### Diamond

- Build a model with endogenous amenities
- Estimate structural parameters using Census data from the US
- ► Study the determinants of increased skill concentration (wages vs rents vs amenities) and the welfare consequences

#### Model

- Labor Demand
- Labor Supply Household location choice
- Housing Supply
- Amenity Supply

#### **Labor Demand**

▶ Traded output of Firm d in city j in time t  $(Y_{djt})$  combines Labor  $N_{djt}$  and capital  $K_{djt}$ 

$$Y_{djt} = N_{djt}^{\alpha} K_{djt}^{1-\alpha}$$

► Labor Combines High Skill (*H*) And Low Skill (*L*)

$$N_{djt} = \left[\theta_{jt}^L L_{djt}^{
ho} + \theta_{jt}^H H_{djt}^{
ho}\right]^{rac{1}{
ho}}$$

Productivities

$$\theta_{jt}^{L} = f_{L}\left(H_{jt}, L_{jt}\right) e^{\epsilon_{jt}^{L}}$$
  
$$\theta_{jt}^{H} = f_{H}\left(H_{jt}, L_{jt}\right) e^{\epsilon_{jt}^{H}}$$

#### Labor Demand

Firms choose inputs to minimize costs (  $W_{jt}^L, W_{jt}^H, \kappa_t$  input prices)

$$\begin{array}{ll} \underset{L_{djt},H_{djt},K_{djt}}{\text{Min}} & W_{jt}^{L}*L_{djt}+W_{jt}^{H}*H_{djt}+\kappa_{t}*K_{djt} \\ \text{subject to} & Y_{djt}=N_{djt}^{\alpha}K_{djt}^{1-\alpha} \end{array}$$

► First Order Conditions

$$W_{jt}^{H} = \alpha N_{djt}^{\alpha-\rho} K_{djt}^{1-\alpha} H_{djt}^{\rho-1} f_{H} (H_{jt}, L_{jt}) e^{\epsilon_{jt}^{H}}$$

$$W_{jt}^{L} = \alpha N_{djt}^{\alpha-\rho} K_{djt}^{1-\alpha} L_{djt}^{\rho-1} f_{L} (H_{jt}, L_{jt}) e^{\epsilon_{jt}^{L}}$$

$$\kappa_{t} = N_{djt}^{\alpha} K_{djt}^{-\alpha} (1-\alpha)$$

► Log-Linearized Labor Demand at City Level

$$w_{jt}^{H} = \gamma_{HH} \ln H_{jt} + \gamma_{HL} \ln L_{jt} + \epsilon_{jt}^{H}$$
  
$$w_{jt}^{L} = \gamma_{LH} \ln H_{jt} + \gamma_{LL} \ln L_{jt} + \epsilon_{jt}^{L}$$

#### Households

▶ Households (i) choose local good M and traded good O to maximize utility with local price R<sub>jt</sub> and traded prices P<sub>t</sub>

$$\begin{array}{ll} \underset{M_{it},O_{it}}{\text{Max}} & \ln \left( M_{it}^{\zeta} \right) + \ln \left( O_{it}^{1-\zeta} \right) + s_i \left( A_{jt} \right) \\ \text{subject to} & P_t O_{it} + R_{jt} M_{it} \leq W_{jt}^{edu} \end{array}$$

► Marshallian Demands for *M* and *O* 

$$M_{it}$$
 =  $\frac{\zeta W_{jt}^{edu}}{R_{jt}}$   
 $O_{it}$  =  $\frac{(1-\zeta)W_{jt}^{edu}}{P_t}$ 

Indirect Utility for household i living in city j at time t

$$V_{ijt} = \ln \left( \frac{W_{jt}^{edu}}{P_t} \right) - \zeta \ln \left( \frac{R_{jt}}{P_t} \right) + s_i (A_{jt})$$
$$= w_{jt}^{edu} - \zeta r_{jt} + s_i (A_{jt})$$

#### Demand for Amenities

Demand for Amenities

$$s_{i}(A_{jt}) = a_{jt}\beta_{i}^{a} + x_{jt}^{A}\beta_{i}^{x} + x_{j}^{st}\beta_{i}^{st} + x_{j}^{div}\beta_{i}^{div} + \sigma_{i}\epsilon_{ijt}$$

$$\beta_{i}^{a} = \beta^{a}z_{i}$$

$$\beta_{i}^{st} = \beta^{x}z_{i}$$

$$\beta_{i}^{st} = st_{i}\beta^{st}z_{i}$$

$$\beta_{i}^{div} = div_{i}\beta^{div}z_{i}$$

$$\sigma_{i} = \beta^{\sigma}z_{i}$$

$$\epsilon_{ijt} \sim \text{Type I Extreme Value}$$

► z<sub>i</sub> is a 3X1 vector of dummy variables for white, black, and immigrant

 $a_{jt}$  is endogenous amenities,  $X_{jt}^A$  is exogenous amenities, st indicates state, div indicates census division,  $\sigma_i$  is a normalization so that standard deviation of  $\epsilon_{ijt}=1$ 

## Demand for Location j

▶ Indirect Utility for household *i* living in city *j* at time *t* 

$$V_{ijt} = \delta_{jt}^z + x_j^{st} st_i \beta^{st} z_i + x_j^{div} div_i \beta^{div} z_i + \epsilon_{ijt}$$

▶ With common utility

$$\delta_{jt}^{z} = \left(w_{jt}^{edu} - \zeta r_{jt}\right) \beta^{w} z + a_{jt} \beta^{a} z + x_{jt}^{A} \beta^{x} z$$

# Demand for Location j

▶ Probability that a given household *i* chooses to live in *j* 

$$Pr(V_{ijt} > V_{ij't}) = Pr(\delta_{jt}^{z_i} + x_j^{st} st_i \beta^{st} z_i + x_j^{div} div_i \beta^{div} z_i + \epsilon_{ijt}$$

$$> \delta_{j't}^{z_i} + x_{j'}^{st} st_i \beta^{st} z_i + x_{j'}^{div} div_i \beta^{div} z_i + \epsilon_{ij't})$$

Yields standard conditional logit formula

$$H_{jt} = \sum_{i \in H_t} \frac{\exp\left(\delta_{jt}^{z_i} + x_j^{st} s t_i \beta^{st} z_i + x_j^{div} div_i \beta^{div} z_i\right)}{\sum_{k}^{J} \exp\left(\delta_{kt}^{z_i} + x_k^{st} s t_i \beta^{st} z_i + x_k^{div} div_i \beta^{div} z_i\right)}$$

$$L_{jt} = \sum_{i \in L_t} \frac{\exp\left(\delta_{jt}^{z_i} + x_j^{st} s t_i \beta^{st} z_i + x_j^{div} div_i \beta^{div} z_i\right)}{\sum_{k}^{J} \exp\left(\delta_{kt}^{z_i} + x_k^{st} s t_i \beta^{st} z_i + x_k^{div} div_i \beta^{div} z_i\right)}$$

## Supply of Housing

 Price of housing equals marginal cost of housing construction (function of construction cost CC and Land cost LC)

$$P_{it}^{house} = MC(CC_{jt}, LC_{jt})$$

▶ Housing rental price ( $\iota_t$  is interest rate)

$$R_{it} = \iota_t * MC(CC_{it}, LC_{it})$$

Log linearization

$$r_{jt} = \ln(\iota_t) + \ln(CC_{jt}) + \gamma_j \ln(LC_{jt}(HD_{jt}))$$
  
= 
$$\ln(\iota_t) + \ln(CC_{jt}) + \gamma_j \ln(HD_{jt})$$

with

$$\gamma_{j} = \gamma + \gamma^{geo} * e^{\chi_{j}^{geo}} + \gamma^{reg} * e^{\chi_{j}^{reg}}$$
,  $HD_{jt} = L_{jt} \frac{\zeta W_{jt}^{L}}{R_{it}} + H_{jt} \frac{\zeta W_{jt}^{H}}{R_{it}}$ 

 $x_j^{geo}$  is share of land not suitable for development,  $x_j^{reg}$  is index of local growth control policies,  $HD_{jt}$  is housing demand (from M demanded by agents)

# Supply of Amenities

- ► Endogenous Amenity a<sub>jt</sub> is an index of
  - School Quality, retail environment, crime, environment, transportation infrastructure, quality of the job market (beyond wages)
- Assume Endogenous Amenity  $a_{jt}$  responds to skill mix

$$a_{jt} = \gamma^a \ln \left( \frac{H_{jt}}{L_{jt}} \right) + \epsilon^a_{jt}$$

## Skill Mix and Amenities

| Apparel stores per 1,000 residents | Eating and<br>drinking places per<br>1,000 residents | Movie theaters per<br>1,000 residents |
|------------------------------------|------------------------------------------------------|---------------------------------------|
|                                    |                                                      |                                       |
| 0.477***<br>[0.0928]               | 0.182***<br>[0.0539]                                 | 0.230<br>[0.166]                      |
|                                    |                                                      |                                       |
|                                    | 0.477***<br>[0.0928]                                 | [0.0928] [0.0539]                     |

|                             | Bus routes | Public        | Avg. daily traffic: | Avg. daily traffic: |  |
|-----------------------------|------------|---------------|---------------------|---------------------|--|
|                             | per capita | transit index | interstates         | major roads         |  |
| $\Delta$ College emp. ratio | 1.045***   | 0.0161        | -0.169*             | -0.0513             |  |
|                             | [0.376]    | [0.338]       | [0.0979]            | [0.0704]            |  |

|                             | Property crimes per<br>1,000 residents | Violent crimes per<br>1,000 residents | Gov. spending on<br>parks per capita | EPA air<br>quality index |  |
|-----------------------------|----------------------------------------|---------------------------------------|--------------------------------------|--------------------------|--|
|                             | Panel C. Crin                          | ne amenities                          | Panel D. Environ                     | ment amenities           |  |
| $\Delta$ College emp. ratio | -0.231*                                | 0.115                                 | 0.263                                | -0.539***                |  |
| _ conege empreum            | [0.122]                                | [0.155]                               | [0.172]                              | [0.171]                  |  |
|                             | Gov. K–12 spend-<br>ing per student    | Student-teacher ratio                 | Patents<br>per capita                | Employment rate          |  |
|                             | Panel E. School amenities              |                                       | Panel F. Job amenities               |                          |  |
| $\Delta$ College emp. ratio | 0.129**                                | 0.00423                               | 0.104                                | 0.0105                   |  |
| gp-                         | [0.0639]                               | [0.0631]                              | [0.234]                              | [0.00787]                |  |

#### Equilibrium

Equilibrium is menu of wages, rents, amenities  $(w_{jt}^{L*}, w_{jt}^{H*}, r_{jt}^*, \frac{H_{jt}^*}{L_{jt}^*})$  with population levels  $H_{jt}^*, L_{jt}^*$  such that 4 market clear:

1. High Skill Labor

$$H_{jt}^{*} = \sum_{i \in H_{t}} \frac{\exp\left(\delta_{jt}^{z_{i}} + x_{j}^{st} s t_{i} \beta^{st} z_{i} + x_{j}^{div} div_{i} \beta^{div} z_{i}\right)}{\sum\limits_{k}^{J} \exp\left(\delta_{kt}^{z_{i}} + x_{k}^{st} s t_{i} \beta^{st} z_{i} + x_{k}^{div} div_{i} \beta^{div} z_{i}\right)}$$

$$w_{jt}^{H*} = \gamma_{HH} \ln H_{jt}^{*} + \gamma_{HL} \ln L_{jt}^{*} + \epsilon_{jt}^{H}$$

Low Skill Labor

$$\begin{array}{lcl} L_{jt}^{*} & = & \displaystyle\sum_{i \in L_{t}} \frac{\exp\left(\delta_{jt}^{z_{i}} + \boldsymbol{x}_{j}^{st}st_{i}\beta^{st}\boldsymbol{z}_{i} + \boldsymbol{x}_{j}^{div}div_{i}\beta^{div}\boldsymbol{z}_{i}\right)}{\sum\limits_{k} \exp\left(\delta_{kt}^{z_{i}} + \boldsymbol{x}_{k}^{st}st_{i}\beta^{st}\boldsymbol{z}_{i} + \boldsymbol{x}_{k}^{div}div_{i}\beta^{div}\boldsymbol{z}_{i}\right)} \\ w_{jt}^{L*} & = & \gamma_{LH} \ln H_{jt}^{*} + \gamma_{LL} \ln L_{jt}^{*} + \epsilon_{jt}^{L} \end{array}$$

## Equilibrium

Equilibrium is menu of wages, rents, amenities  $(w_{jt}^{L*}, w_{jt}^{H*}, r_{jt}^*, \frac{H_{jt}^*}{L_{jt}^*})$  with population levels  $H_{it}^*, L_{it}^*$  such that 4 market clear:

3. Housing

$$r_{jt} = \ln(\iota_t) + \ln(CC_{jt}) + \gamma_j \ln(HD_{jt})$$

$$HD_{jt} = L_{jt} \frac{\zeta W_{jt}^L}{R_{jt}} + H_{jt} \frac{\zeta W_{jt}^H}{R_{jt}}$$

4. Amenities

$$a_{jt} = \gamma^{a} \ln \left( \frac{H_{jt}}{L_{jt}} \right) + \epsilon_{jt}^{a}$$
  
$$\delta_{jt}^{z} = \left( w_{jt}^{edu} - \zeta r_{jt} \right) \beta^{w} z + a_{jt} \beta^{a} z + x_{jt}^{A} \beta^{x} z$$

## **Estimation Strategy**

- 1. Estimate  $\delta_{it}^{educ,z}$  by conditional Logit
- 2. Estimate all structural parameters simultaneously by GMM

$$\begin{split} \delta_{jt}^{H,z} &= \left(w_{jt}^H - \zeta r_{jt}\right) \beta^{\mathbf{w},H} \mathbf{z} + a_{jt} \beta^{\mathbf{a},H} \mathbf{z} + x_{jt}^A \beta^{\mathbf{x},H} \mathbf{z} \\ \delta_{jt}^{L,z} &= \left(w_{jt}^L - \zeta r_{jt}\right) \beta^{\mathbf{w},L} \mathbf{z} + a_{jt} \beta^{\mathbf{a},L} \mathbf{z} + x_{jt}^A \beta^{\mathbf{x},L} \mathbf{z} \\ w_{jt}^{H*} &= \gamma_{HH} \ln H_{jt}^* + \gamma_{HL} \ln L_{jt}^* + \epsilon_{jt}^H \\ w_{jt}^{L*} &= \gamma_{LH} \ln H_{jt}^* + \gamma_{LL} \ln L_{jt}^* + \epsilon_{jt}^L \\ r_{jt} &= \ln(\iota_t) + \ln(CC_{jt}) + \gamma_j \ln(L_{jt} \frac{\zeta W_{jt}^L}{R_{jt}} + H_{jt} \frac{\zeta W_{jt}^H}{R_{jt}}) \\ a_{jt} &= \gamma^a \ln \left(\frac{H_{jt}}{L_{jt}}\right) + \epsilon_{jt}^a \end{split}$$

## Structural parameters to estimate

1. Labor Demand

$$\gamma_{HH}, \gamma_{HL}, \gamma_{LH}, \gamma_{LL}$$

2. Labor Supply

$$\beta^{\rm st}, \beta^{\rm div}, \beta^{\rm w,educ}, \zeta^{\rm educ}, \beta^{\rm a,educ}$$

3. Housing Supply

$$\gamma, \gamma^{geo}, \gamma^{reg}$$

4. Amenity Supply

$$\gamma^a$$

## Structural parameters to estimate

1. Labor Demand

$$\gamma_{HH}, \gamma_{HL}, \gamma_{LH}, \gamma_{LL}$$

2. Labor Supply

$$\beta^{\rm st}, \beta^{\rm div}, \beta^{\rm w,educ}, \zeta^{\rm educ}, \beta^{\rm a,educ}$$

3. Housing Supply

$$\gamma, \gamma^{\text{geo}}, \gamma^{\text{reg}}$$

4. Amenity Supply

$$\gamma^a$$

#### **Estimation**

- $\blacktriangleright$  Let  $\Delta$  indicate difference between 1980 and 1990 or 2000
- We want to estimate

$$\Delta \delta_{jt}^{z} = \beta^{w} z \left( \Delta w_{jt}^{edu} - \zeta \Delta r_{jt} \right) + \beta^{a} z \Delta a_{jt} + \beta^{x} z \Delta x_{jt}^{A}$$
$$= \beta^{w} z \left( \Delta w_{jt}^{edu} - \zeta \Delta r_{jt} \right) + \beta^{a} z \Delta a_{jt} + \Delta \xi_{jt}^{z}$$

 $lackbox{}\Delta \xi^z_{it}$  indicates unobserved components of amenities

#### **Estimation**

- $\blacktriangleright$  Let  $\Delta$  indicate difference between 1980 and 1990 or 2000
- We want to estimate

$$\Delta \delta_{jt}^{z} = \beta^{w} z \left( \Delta w_{jt}^{edu} - \zeta \Delta r_{jt} \right) + \beta^{a} z \Delta a_{jt} + \beta^{x} z \Delta x_{jt}^{A}$$
$$= \beta^{w} z \left( \Delta w_{jt}^{edu} - \zeta \Delta r_{jt} \right) + \beta^{a} z \Delta a_{jt} + \Delta \xi_{jt}^{z}$$

- $lackbox{}\Delta \xi^z_{it}$  indicates unobserved components of amenities
- ▶ Endogeneity problem :  $\Delta w_{jt}^{edu}$ ,  $\Delta r_{jt}$ ,  $\Delta a_{jt}$  are correlated with  $\Delta \xi_{jt}^z$
- Need 3 instruments  $\Delta Z_{jt}$  that are correlated with  $\Delta w_{jt}^{edu}, \Delta r_{jt}, \Delta a_{jt}$ , but uncorrelated with  $\Delta \xi_{jt}^z$

# Tutorial on Method of Moments (MM)

► For a single equilibrium condition

$$E\left[\Delta Z_{jt}'*\Delta \xi_{jt}^z\right]=0$$

$$E\left[\Delta Z_{jt}'*\left[\Delta \delta_{jt}^{z}-\left(\boldsymbol{\beta}^{\boldsymbol{w}}\boldsymbol{z}\left(\Delta w_{jt}^{edu}-\zeta\Delta r_{jt}\right)+\boldsymbol{\beta}^{\boldsymbol{a}}\boldsymbol{z}\Delta a_{jt}\right)\right]\right]=0$$
> Suppose we have 4 cities and 3 instruments, and suppress  $\Delta$ 

► In matrix notation

$$\begin{pmatrix} Z_{1,1} & Z_{1,2} & Z_{1,3} \\ Z_{2,1} & Z_{2,2} & Z_{2,3} \\ Z_{3,1} & Z_{3,2} & Z_{3,3} \\ Z_{4,1} & Z_{4,2} & Z_{4,3} \end{pmatrix}' \begin{pmatrix} \xi_1 \left(\beta^W, \zeta, \beta^a\right) \\ \xi_2 \left(\beta^W, \zeta, \beta^a\right) \\ \xi_3 \left(\beta^W, \zeta, \beta^a\right) \\ \xi_4 \left(\beta^W, \zeta, \beta^a\right) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

or multiplying out

$$\xi_{1}(\cdot) * Z_{1,1} + \xi_{2}(\cdot) * Z_{2,1} + \xi_{3}(\cdot) * Z_{3,1} + \xi_{4}(\cdot) * Z_{4,1} = 0$$
  
$$\xi_{1}(\cdot) * Z_{1,2} + \xi_{2}(\cdot) * Z_{2,2} + \xi_{3}(\cdot) * Z_{3,2} + \xi_{4}(\cdot) * Z_{4,2} = 0$$
  
$$\xi_{1}(\cdot) * Z_{1,3} + \xi_{2}(\cdot) * Z_{2,3} + \xi_{3}(\cdot) * Z_{3,3} + \xi_{4}(\cdot) * Z_{4,3} = 0$$

 $ightharpoonup \Longrightarrow$  3 equations in 3 unknowns  $(\beta^W, \zeta, \beta^a)$ 

#### Instrumental Variables: Bartick Shocks

- National trends in wages reflect trends in productivity
- Increased productivity tends to raise labor demand, and hence the wage
- Strategy: use "exogenous" trends in wages at the industry level for individuals outside of the city multiplied by initial industry concentration in the city

$$\Delta B_{jt}^{H} = \sum_{ind} \left( w_{ind,-j,t}^{H} - w_{ind,-j,1980}^{H} \right) \frac{H_{ind,j,1980}}{H_{J,1980}}$$
$$\Delta B_{jt}^{L} = \sum_{ind} \left( w_{ind,-j,t}^{L} - w_{ind,-j,1980}^{L} \right) \frac{L_{ind,j,1980}}{L_{J,1980}}$$

▶ "Bartick Shocks"  $\Delta B^H_{jt}$   $\Delta B^L_{jt}$  should correlate with  $\Delta w^H_{jt}$  and  $\Delta w^L_{it}$ , though not  $\Delta \xi^Z_{it}$ 

#### Instrumental Variables via GMM

- ► GMM stands for Generalized Method of Moments
- ▶ In this case, the assumption is

$$E\left[\Delta Z'_{jt} * \Delta \xi^{z}_{jt}\right] = 0$$

$$E\left[\Delta Z'_{jt} * \left[\Delta \delta^{z}_{jt} - \left(\beta^{w} z \left(\Delta w^{edu}_{jt} - \zeta \Delta r_{jt}\right) + \beta^{a} z \Delta a_{jt}\right)\right]\right] = 0$$

with

$$\Delta Z_{jt} \in \{\Delta B_{jt}^H, \Delta B_{jt}^L, \Delta B_{jt}^H x_j^{reg}, \Delta B_{jt}^L x_j^{reg}, \Delta B_{jt}^H x_j^{geo}, \Delta B_{jt}^L x_j^{geo}\}$$

▶ Via GMM, we choose  $\beta^w$ ,  $\zeta$ ,  $\beta^a$  for both high skill and low skill that make the expectation hold

#### Data

- ▶ US Census 1980, 1990, 2000, 5% public use sample
- 300 metro areas (commuting zones)
- Household wage education (college vs non college), rents, industry, demographic characteristics
- City-level amenities crime, enviro, etc
- Housing supply characteristics

#### Worker Preference for Cities

TABLE 5—GMM ESTIMATES OF MODEL PARAMETERS

|                           | Non-<br>college      | College        | Non-<br>college      | College              | Non-<br>college      | College              | Non-<br>college      | College              |
|---------------------------|----------------------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                           | (1)                  |                | (2)                  |                      | (3)                  |                      | (4)                  |                      |
| Panel A. Worke            | r preference         | s for cities   |                      |                      |                      |                      |                      |                      |
| Wage                      | 4.155***<br>[0.603]  |                | 3.757***<br>[0.561]  | -1.783***<br>[0.682] | 4.026***<br>[0.727]  | 2.116***<br>[1.146]  | 3.261***<br>[1.064]  | 4.976***<br>[1.671]  |
| Rent                      | -2.418***<br>[0.349] | -1.404 [0.833] | -2.329***<br>[0.348] | 1.105***<br>[0.423]  | -2.496***<br>[0.451] | -1.312***<br>[0.711] | -2.944***<br>[0.551] | -2.159***<br>[0.821] |
| Implied local expenditure | 0.582***             | 0.254**        | 0.62                 | 0.62                 | 0.62                 | 0.62                 | 0.903***             | 0.434***             |
| share                     | [0.0678]             | [0.078]        | _                    | _                    | _                    | _                    | [0.261]              | [0.0810]             |
| Amenity index             | _                    | _              | _                    | _                    | 0.274*<br>[0.147]    | 1.012***<br>[0.115]  | 0.771***<br>[0.307]  | 0.638***<br>[0.185]  |

# Estimates of Productivity

| Largest Increases in College Productivity |                       |  |  |  |
|-------------------------------------------|-----------------------|--|--|--|
| msa                                       | $\Delta$ Productivity |  |  |  |
| San Jose, CA                              | 0.237                 |  |  |  |
| Milwaukee, WI                             | 0.236                 |  |  |  |
| Tulsa, OK                                 | 0.213                 |  |  |  |
| San Francisco-Oakland-Vallejo, CA         | 0.202                 |  |  |  |
| New York-Northeastern NJ                  | 0.170                 |  |  |  |
| Hartford-Bristol-Middleton- New Bri       | tain, CT 0.168        |  |  |  |
| Oklahoma City, OK                         | 0.163                 |  |  |  |
| Philadelphia, PA/NJ                       | 0.160                 |  |  |  |
| Chicago, IL                               | 0.153                 |  |  |  |
| Birmingham, AL                            | 0.131                 |  |  |  |

## **Estimates of Amenities**

| Best Amenities for College Worker | rs, 1980 |
|-----------------------------------|----------|
| msa                               | Amenity  |
| Los Angeles-Long Beach, CA        | 2.071    |
| San Francisco-Oakland-Vallejo, CA | 1.853    |
| Washington, DC/MD/VA              | 1.761    |
| Denver-Boulder, CO                | 1.666    |
| Seattle-Everett, WA               | 1.569    |
| New York-Northeastern NJ          | 1.529    |
| Chicago, IL                       | 1.500    |
| Dallas-Fort Worth, TX             | 1.500    |
| Phoenix, AZ                       | 1.465    |
| Minneapolis-St. Paul, MN          | 1.456    |

- ► Hold certain channels fixed at 1980's levels, for example hold amenities and rents fixed, but let wages evolve
- Compute counterfactual utility derived from living in each city for each household
- Assign the household to live in the counterfactual 1st-choice city
- Compute counterfactual city-level college ratio changes
- Compare to observed changes

Panel A. Predicted change in In college ratio due only to productivity changes



Panel B. Predicted change in In college ratio due to observed wage and rent changes



Panel C. Predicted change in In college ratio due to observed changes in wage, rent, and endogenous amenities



Predicted In(college ratio) change

# Decomposition of Well-Being Inequality

- ► Hold certain channels fixed at 1980's levels, for example hold amenities and rents fixed, but let wages evolve
- Compute counterfactual utility derived from living in each city for each household
- ► Compare observed utility level in 1980 to counterfactual utility level from counterfactual 1st-choice city in future decade
- take average over college and noncollege workers

# Decomposition of Well-Being Inequality

| Year                                                       | (1)               | (2)               | (3)               | (4)               |
|------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| 1980                                                       | 0.383             | 0.383             | 0.383             | 0.383             |
|                                                            | _                 | _                 | _                 | _                 |
| 1990                                                       | 0.540<br>[0.0022] | 0.519<br>[0.0024] | 0.570<br>[0.0316] | 0.730<br>[0.1344] |
| 2000                                                       | 0.601<br>[0.0033] | 0.577<br>[0.0012] | 0.639<br>[0.0364] | 0.956<br>[0.2398] |
| Change: 1980–2000                                          | 0.218<br>[0.0033] | 0.194<br>[0.0012] | 0.256<br>[0.0364] | 0.573<br>[0.2398] |
| Wages                                                      | _                 | _                 | _                 | _                 |
| Rents                                                      |                   | _                 | _                 | _                 |
| Endog. amenities from resorting of workers                 |                   |                   | _                 | _                 |
| Endog. amenities from national supply of college graduates |                   |                   |                   | _                 |

Notes: Well-being gap is measured by the difference in a college and high school graduate's willingness to pay to live in his first-choice city from the choices available in 2000 versus his first choice in 1980. For example, the well-being gap due to wage changes only accounts for the welfare impact of wage changes from 1980 to 2000, while the well-being due to wages and rents accounts for both the impacts of wages and rents. The well-being gap is normalized to the college wage gap in 1980. Standard errors for welfare estimates use the delta method.

#### Conclusions from Diamond

- Reduced form evidence that amenity quality responds to local skill mix
- Changes in productivity is important driver of observed changes in collage vs noncollege skill mix in cities
- Changes in endogenous amenity quality is important driver of observed changes in collage vs noncollege skill mix in cities
- ➤ Taking into account endogenous amenity changes, the well-being gap between college-educated and noncollege-educated workers increased by 25 percentage points (from .38 to .63), which is 30% higher than the observed wage gap.

## Tutorial on Conditional Logit

ightharpoonup Utility for agent *i* for choosing option *j* is

$$V_{ij} = \delta_i + \epsilon_{ij}$$

▶ Random component of utility is distributed EV Type I

(PDF) 
$$f(\epsilon_{ii}) = e^{-\epsilon_{ij}} e^{-e^{-\epsilon_{ij}}}$$
, (CDF)  $F(\epsilon_{ii}) = e^{-e^{-\epsilon_{ij}}}$ 

► Then the difference between two draws  $\epsilon_{ijk} = \epsilon_{ij} - \epsilon_{ik}$  is distributed Logistic

$$(CDF)$$
  $G(\epsilon_{ijk}) = \frac{e^{\epsilon_{ijk}}}{1 + e^{\epsilon_{ijk}}}$ 

Implies that the probability that i chooses option j

Prob(*i* chooses *j*) = 
$$Pr(V_{ij} > V_{ij'}) = Pr(\delta_j + \epsilon_{ij} > \delta_{j'} + \epsilon_{ij'})$$
  
 =  $Pr(\delta_j - \delta_{j'} > \epsilon_{ij'} - \epsilon_{ij}) = \frac{e^{\delta_j}}{\sum_k e^{\delta_k}}$