# Thyroid Disease Classification Using Machine Learning

Team Members Name: Sathyapriya.E

Sharmiladevi.S

Nivetha.M

Narmatha.J

Class : BSc.Computer Science

#### 1.INTRODUCTION

#### 1.1 Overview:

- The Thyroid gland is a vascular gland and one of the most important organs of the human body. This gland secretes two hormones which help in controlling the metabolism of the body. The two types of Thyroid disorders are Hyperthyroidism and Hypothyroidism. When this disorder occursin the body, they release certain types of hormones into the body which imbalances the body's metabolism. A thyroid-related Blood test is used to detect this disease but it is often blurred an noise will be present. Data cleansing methods were used to make the data primitive enough for the analytics to show the risk of patients getting this disease. Machine Learning plays a very deciding role in disease prediction. Machine Learning algorithms, SVM support vector machine, Random Forest Classifier, XGB Classifier and ANN Artificial Neural Networks are used to predict the patient's risk of getting thyroid disease. The web app is created to get data from users to predict the type of disease. Thyroid diseases are increasing in magnitude everyday and spreading all over the world.
- The thyroid gland is a vascular and one of the most important organs of the humans body.
- Thyroid gland secrets two harmones which helps in controlling the metabolism of the body.
- Normal thyroid stimulating hormone levels generally fall between 0.4 and 4.0 milliunits
  per liter. Tsh levels higher than 4. mU/L usually indicate an underactive thyroid
  (hypothyroidism), and low TSH levels below 0.4 mU/L indicate an overactive thyroid
  (hyperthyroidism).

## 1.2 Purpose:

- The goal of this study is to categorize **thyroid disease** into three categories: **hyperthyroidism**, hypothyroidism, and normal.
- The main purpose is to search the best classification approach for thyroid disease diagnosis by making the comparison of decision tree algorithms.
- In the line of this purpose, the experiments are conducted to compare different kinds of decision tree algorithms given in the previous section.

## 2.Problem Definition & Design Thinking

## 2.1. Empathy map:

In the ideation phase we have empathized have a client placement trends analysis and we have acquired details. Which are represented in the Empathy Map



## 2.2 Ideation & Brainstroming Map:

- Under this activity our team members or gathered and discussed various ideas to solve our project problem each member contributed 6 to 10 times.
- After gathering all ideas we have asses the impact and feasibility of each point. Finally we have assign the priority for each point based on this values.





## 3. RESULT:

## **Read the Dataset:**

|      | age : | sex on_thyroxi | ne query_on_thyroxir | e on_antithyroid_me | ds si | ick preg | ant thyroid_surge | ry I131_treatmen | t query_hypothyroic | 1 | TT4   | T4U_measured | T4U FTI_measu | red FT | TBG_measured | TBG  | referral_source | target | patient_id |
|------|-------|----------------|----------------------|---------------------|-------|----------|-------------------|------------------|---------------------|---|-------|--------------|---------------|--------|--------------|------|-----------------|--------|------------|
| 0    | 29    | F              | f                    | f                   | f     | f        | f                 | f                | f                   | t | NaN   | f            | NaN           | f Nal  | l f          | NaN  | other           | -      | 840801013  |
| 1    | 29    | F              | f                    | f                   | f     | f        | f                 | f                | f                   | f | 128.0 | f            | NaN           | f Nai  | l f          | NaN  | other           | -      | 840801014  |
| 2    | 41    | F              | f                    | f                   | f     | f        | f                 | f                | f                   | f | NaN   | f            | NaN           | f Nai  | l t          | 11.0 | other           |        | 840801042  |
| 3    | 36    | F              | f                    | f                   | f     | f        | f                 | f                | f                   | f | NaN   | f            | NaN           | f Nal  | l t          | 26.0 | other           | -      | 840803046  |
| 4    | 32    | F              | f                    | f                   | f     | f        | f                 | f                | f                   | f | NaN   | f            | NaN           | f Nal  | l t          | 36.0 | other           | S      | 840803047  |
|      |       |                |                      |                     |       |          | ***               | ***              |                     |   |       |              | ***           |        |              |      |                 |        |            |
| 9167 | 56    | M              | f                    | f                   | f     | f        | f                 | f                | f                   | f | 64.0  | t            | 0.83          | t 77.  | ) f          | NaN  | SVI             | -      | 870119022  |
| 9168 | 22    | M              | f                    | f                   | f     | f        | f                 | f                | f                   | f | 91.0  | t            | 0.92          | t 99.  | ) f          | NaN  | SVI             |        | 870119023  |
| 9169 | 69    | M              | f                    | f                   | f     | f        | f                 | f                | f                   | f | 113.0 | t            | 1.27          | t 89.  | ) f          | NaN  | SVI             | - 1    | 870119025  |
| 9170 | 47    | F              | f                    | f                   | f     | f        | f                 | f                | f                   | f | 75.0  | t            | 0.85          | t 88.  | ) f          | NaN  | other           | -      | 870119027  |
| 9171 | 31    | M              | f                    | f                   | f     | f        | f                 | f                | f                   | t | 66.0  | t            | 1.02          | t 65.  | ) f          | NaN  | other           |        | 870119035  |
|      |       |                |                      |                     |       |          |                   |                  |                     |   |       |              |               |        |              |      |                 |        |            |

9172 rows × 31 columns

## **Checking for null values:**

|          | age :   | sex on_thyro: | kine query_on_thyrox | ine on_antithyroid_m | eds si | ick pregnan | t thyroid_surgery | I131_treatment | query_hypothyroid | <br>TT4 | T4U_measured T4U | FTI_measured | FTI TBG_measured | TBG  | referral_source | target | patient_id |
|----------|---------|---------------|----------------------|----------------------|--------|-------------|-------------------|----------------|-------------------|---------|------------------|--------------|------------------|------|-----------------|--------|------------|
| 0        | 29      | F             | f                    | f                    | f      | f           | f f               | f              | t                 | NaN     | f NaN            | f            | laN f            | NaN  | other           |        | 840801013  |
| 1        | 29      | F             | f                    | f                    | f      | f           | f f               | f              | f                 | 128.0   | f NaN            | f            | laN f            | NaN  | other           |        | 840801014  |
| 2        | 41      | F             | f                    | f                    | f      | f           | f f               | f              | f                 | NaN     | f NaN            | f            | laN t            | 11.0 | other           |        | 840801042  |
| 3        | 36      | F             | f                    | f                    | f      | f           | f f               | f              | f                 | NaN     | f NaN            | f            | laN t            | 26.0 | other           |        | 840803046  |
| 4        | 32      | F             | f                    | f                    | f      | f           | f f               | f              | f                 | NaN     | f NaN            | f            | iaN t            | 36.0 | other           | S      | 840803047  |
|          |         |               |                      |                      |        |             |                   |                |                   |         |                  |              |                  |      |                 |        |            |
| 9167     | 56      | M             | f                    | f                    | f      | f           | f f               | f              | f                 | 64.0    | t 0.83           | t            | 77.0 f           | NaN  | SVI             |        | 870119022  |
| 9168     | 22      | M             | f                    | f                    | f      | f           | f f               | f              | f                 | 91.0    | t 0.92           | t            | 9.0 f            | NaN  | SVI             |        | 870119023  |
| 9169     | 69      | M             | f                    | f                    | f      | f           | f f               | f              | f                 | 113.0   | t 1.27           | t            | 89.0 f           | NaN  | SVI             | - 1    | 870119025  |
| 9170     | 47      | F             | f                    | f                    | f      | f           | f f               | f              | f                 | 75.0    | t 0.85           | t            | 88.0 f           | NaN  | other           |        | 870119027  |
| 9171     | 31      | M             | f                    | f                    | f      | f           | f f               | f              | t                 | 66.0    | t 1.02           | t            | 55.0 f           | NaN  | other           | -      | 870119035  |
| 9172 rov | rs × 31 | columns       |                      |                      |        |             |                   |                |                   |         |                  |              |                  |      |                 |        |            |

|      | age : | sex on_thyrox | ine query_on_thyroxi | ine on_antithyroid_me | eds s | ick pregnar | t thyroid_surgery | I131_treatmen | t query_hypothyroid | <br>TT4 | T4U_measured T4U | FTI_measured FTI | TBG_measured TBG | referral_source | target | patient_id |
|------|-------|---------------|----------------------|-----------------------|-------|-------------|-------------------|---------------|---------------------|---------|------------------|------------------|------------------|-----------------|--------|------------|
| 0    | 29    | F             | f                    | f                     | f     | f           | f f               | f             | f t                 | NaN     | f NaN            | f NaN            | f NaN            | other           | Z      | 840801013  |
| 1    | 29    | F             | f                    | f                     | f     | f           | f f               | f             | f f                 | 128.0   | f NaN            | f NaN            | f NaN            | other           | Z      | 840801014  |
| 2    | 41    | F             | f                    | f                     | f     | f           | f f               | •             | f f                 | NaN     | f NaN            | f NaN            | t 11.0           | other           | Z      | 840801042  |
| 3    | 36    | F             | f                    | f                     | f     | f           | f                 |               | f f                 | NaN     | f NaN            | f NaN            | t 26.0           | other           | Z      | 840803046  |
| 4    | 32    | F             | f                    | f                     | f     | f           | f f               |               | f f                 | NaN     | f NaN            | f NaN            | t 36.0           | other           | S      | 840803047  |
|      |       |               |                      |                       |       |             |                   |               |                     |         |                  |                  |                  |                 |        |            |
| 9167 | 56    | M             | f                    | f                     | f     | f           | f f               | 1             | f f                 | 64.0    | t 0.83           | t 77.0           | f NaN            | SVI             | Z      | 870119022  |
| 9168 | 22    | M             | f                    | f                     | f     | f           | f f               |               | f f                 | 91.0    | t 0.92           | t 99.0           | f NaN            | SVI             | Z      | 870119023  |
| 9169 | 69    | M             | f                    | f                     | f     | f           | f f               |               | f f                 | 113.0   | t 1.27           | t 89.0           | f NaN            | SVI             | 1      | 870119025  |
| 9170 | 47    | F             | f                    | f                     | f     | f           | f f               | ·             | f f                 | 75.0    | t 0.85           | t 88.0           | f NaN            | other           | Z      | 870119027  |
| 9171 | 31    | M             | f                    | f                     | f     | f           | f f               | F             | f t                 | 66.0    | t 1.02           | t 65.0           | f NaN            | other           | Z      | 870119035  |

9172 rows × 31 columns

| age                 | 0    |
|---------------------|------|
| sex                 | 307  |
| on_thyroxine        | 0    |
| query_on_thyroxine  | 0    |
| on_antithyroid_meds | 0    |
| sick                | 0    |
| pregnant            | 0    |
| thyroid_surgery     | 0    |
| I131_treatment      | 0    |
| query_hypothyroid   | 0    |
| query_hyperthyroid  | 0    |
| lithium             | 0    |
| goitre              | 0    |
| tumor               | 0    |
| hypopituitary       | 0    |
| psych               | 0    |
| TSH_measured        | 0    |
| TSH                 | 842  |
| T3_measured         | 0    |
| T3                  | 2604 |
| TT4_measured        | 0    |
| TT4                 | 442  |
| T4U_measured        | 0    |
| T4U                 | 809  |
| FTI_measured        | 0    |
| FTI                 | 802  |
| TBG_measured        | 0    |
| TBG                 | 8823 |
| referral_source     | 0    |
| target              | 0    |
| patient_id          | 0    |
| dtype: int64        |      |
|                     |      |

9172 rows × 24 columns

| age                 | 0    |
|---------------------|------|
| sex                 | 307  |
| on_thyroxine        | 0    |
| query_on_thyroxine  | 0    |
| on_antithyroid_meds | 0    |
| sick                | 0    |
| pregnant            | 0    |
| thyroid_surgery     | 0    |
| I131_treatment      | 0    |
| query_hypothyroid   | 0    |
| query_hyperthyroid  | 0    |
| lithium             | 0    |
| goitre              | 0    |
| tumor               | 0    |
| hypopituitary       | 0    |
| psych               | 0    |
| TSH                 | 842  |
| T3                  | 2604 |
| TT4                 | 442  |
| T4U                 | 809  |
| FTI                 | 802  |
| referral_source     | 0    |
| target              | 0    |
| patient_id          | 0    |
| dtype: int64        |      |

| age                 | 0    |
|---------------------|------|
| sex                 | 0    |
| on_thyroxine        | 0    |
| query_on_thyroxine  | 0    |
| on_antithyroid_meds | 0    |
| sick                | 0    |
| pregnant            | 0    |
| thyroid_surgery     | 0    |
| I131_treatment      | 0    |
| query_hypothyroid   | 0    |
| query_hyperthyroid  | 0    |
| lithium             | 0    |
| goitre              | 0    |
| tumor               | 0    |
| hypopituitary       | 0    |
| psych               | 0    |
| TSH                 | 842  |
| T3                  | 2604 |
| TT4                 | 442  |
| T4U                 | 809  |
| FTI                 | 802  |
| referral_source     | 0    |
| target              | 0    |
| patient_id          | 0    |
| dtype: int64        |      |

| age                 | 0 |
|---------------------|---|
| sex                 | 0 |
| on_thyroxine        | 0 |
| query_on_thyroxine  | 0 |
| on_antithyroid_meds | 0 |
| sick                | 0 |
| pregnant            | 0 |
| thyroid_surgery     | 0 |
| I131_treatment      | 0 |
| query_hypothyroid   | 0 |
| query_hyperthyroid  | 0 |
| lithium             | 0 |
| goitre              | 0 |
| tumor               | 0 |
| hypopituitary       | 0 |
| psych               | 0 |
| TSH                 | 0 |
| T3                  | 0 |
| TT4                 | 0 |
| T4U                 | 0 |
| FTI                 | 0 |
| referral_source     | 0 |
| target              | 0 |
| patient_id          | 0 |
| dtype: int64        |   |
|                     |   |

#### Data columns (total 24 columns): Column Non-Null Count Dtype 0 9172 non-null int64 age 9172 non-null float64 1 sex on thyroxine 9172 non-null object 2 query on thyroxine 9172 non-null object on\_antithyroid\_meds 9172 non-null object 4 5 9172 non-null object sick 6 9172 non-null object pregnant thyroid\_surgery 9172 non-null object I131\_treatment 9172 non-null object query\_hypothyroid 9172 non-null object 7 8 9 10 query hyperthyroid 9172 non-null object 11 lithium 9172 non-null object 12 goitre 9172 non-null object 9172 non-null object 13 tumor 9172 non-null object 14 hypopituitary 15 psych 9172 non-null object 9172 non-null float64 16 TSH 9172 non-null float64 17 Т3 18 TT4 9172 non-null float64 19 T4U 9172 non-null float64 9172 non-null float64 20 FTI 21 referral\_source 9172 non-null object

```
22 target 9172 non-null object 23 patient_id 9172 non-null int64 dtypes: float64(6), int64(2), object(16) memory usage: 1.7+ MB
```

## **Exploratory Data Analysis:**

## **Descriptive analysis:**

| age                 | 0 |
|---------------------|---|
| sex                 | 0 |
| on_thyroxine        | 0 |
| query_on_thyroxine  | 0 |
| on_antithyroid_meds | 0 |
| sick                | 0 |
| pregnant            | 0 |
| thyroid_surgery     | 0 |
| I131_treatment      | 0 |
| query_hypothyroid   | 0 |
| query_hyperthyroid  | 0 |
| lithium             | 0 |
| goitre              | 0 |
| tumor               | 0 |
| hypopituitary       | 0 |
| psych               | 0 |
| TSH                 | 0 |
| T3                  | 0 |
| TT4                 | 0 |
| T4U                 | 0 |
| FTI                 | 0 |
| referral_source     | 0 |
| target              | 0 |
| patient_id          | 0 |
| dtype: int64        |   |

## Visual analysis:



|            | age           | sex           | TSH           | Т3       | TT4      | T4U           | FTI           | patient_id |
|------------|---------------|---------------|---------------|----------|----------|---------------|---------------|------------|
| age        | 1.000000      | -<br>0.014178 | -<br>0.003978 | 0.003693 | 0.004122 | 0.002045      | 0.004108      | 0.018506   |
| sex        | -<br>0.014178 | 1.000000      | 0.036707      | 0.048889 | 0.150475 | 0.214717      | 0.030148      | -0.018141  |
| TSH        | -<br>0.003978 | 0.036707      | 1.000000      | 0.136613 | 0.264755 | 0.072962      | 0.257900      | -0.006718  |
| Т3         | 0.003693      | 0.048889      | 0.136613      | 1.000000 | 0.471792 | 0.281336      | 0.312401      | 0.031492   |
| TT4        | 0.004122      | 0.150475      | -<br>0.264755 | 0.471792 | 1.000000 | 0.362280      | 0.738279      | 0.023354   |
| T4U        | 0.002045      | 0.214717      | 0.072962      | 0.281336 | 0.362280 | 1.000000      | -<br>0.238927 | -0.037535  |
| FTI        | 0.004108      | 0.030148      | 0.257900      | 0.312401 | 0.738279 | -<br>0.238927 | 1.000000      | 0.022164   |
| patient_id | 0.018506      | -<br>0.018141 | -<br>0.006718 | 0.031492 | 0.023354 | -<br>0.037535 | 0.022164      | 1.000000   |



|          | compo<br>nent_1       | compo<br>nent_2     | compo<br>nent_3    | compo<br>nent_4   | compo<br>nent_5   | compo<br>nent_6 | compo<br>nent_7   | compo<br>nent_8   | compo<br>nent_9   | compon<br>ent_10  |
|----------|-----------------------|---------------------|--------------------|-------------------|-------------------|-----------------|-------------------|-------------------|-------------------|-------------------|
| 0        | 1.2146<br>33e+07      | -<br>9.4543<br>99   | 2.4687<br>19       | -<br>4.7489<br>13 | 1.0975<br>60      | 0.0122<br>87    | -<br>0.2666<br>22 | -<br>0.0619<br>28 | 0.4142<br>06      | 0.83525<br>1      |
| 1        | -<br>1.2146<br>33e+07 | -<br>9.4544<br>99   | 2.1947<br>59       | 3.4785<br>34      | 1.0794<br>80      | 0.0397<br>00    | 0.2131<br>44      | 0.2208<br>36      | 0.1292<br>52      | 0.01256<br>9      |
| 2        | -<br>1.2146<br>30e+07 | 2.5451<br>52        | 1.4319<br>17       | 0.0592<br>78      | -<br>1.0823<br>78 | 0.0946<br>90    | -<br>0.2327<br>47 | -<br>0.3223<br>59 | 0.6986<br>66      | -<br>0.51971<br>4 |
| 3        | -<br>1.2144<br>30e+07 | -<br>2.4606<br>43   | 1.4319<br>35       | 0.0589<br>45      | 1.0654<br>06      | 0.0371<br>89    | -<br>0.2051<br>97 | 0.2203<br>05      | -<br>0.1328<br>86 | 0.01484<br>8      |
| 4        | 1.2144<br>30e+07      | -<br>6.4606<br>45   | 1.4324<br>83       | 0.0587<br>56      | 1.0654<br>76      | 0.0371<br>93    | -<br>0.2051<br>71 | 0.2203<br>15      | 0.1328<br>75      | 0.01483<br>9      |
| •••      |                       |                     |                    |                   |                   |                 |                   |                   |                   |                   |
| 91<br>67 | 1.7171<br>68e+07      | -<br>67.183<br>880  | -<br>37.832<br>040 | 7.8008<br>83      | 0.7602<br>07      | 0.1697<br>00    | 0.6204<br>59      | -<br>0.0664<br>21 | 0.7941<br>99      | -<br>0.54294<br>6 |
| 91<br>68 | 1.7171<br>68e+07      | -<br>101.18<br>1155 | -<br>16.321<br>784 | 3.1694<br>05      | 0.8352<br>36      | 0.0026<br>39    | 0.6408<br>87      | 0.0126<br>21      | -<br>0.0361<br>48 | -<br>0.00359<br>9 |
| 91<br>69 | 1.7171<br>68e+07      | 54.182<br>403       | -<br>26.104<br>141 | 5.2732<br>29      | 0.8112<br>64      | 0.0947<br>84    | 0.6050<br>34      | 0.0484<br>84      | 0.0339<br>33      | -<br>0.01544<br>9 |
| 91<br>70 | 1.7171<br>68e+07      | 76.182<br>503       | -<br>27.074<br>623 | -<br>5.4751<br>11 | 1.2309<br>23      | 0.0951<br>14    | 0.2327<br>55      | -<br>0.1795<br>77 | 0.1360<br>62      | 0.00786<br>3      |
| 91<br>71 | 1.7171<br>69e+07      | 92.185<br>377       | -<br>49.556<br>822 | 10.320<br>205     | -<br>1.2589<br>67 | 0.1698<br>90    | 0.6736<br>45      | 0.1461<br>92      | 0.4702<br>52      | 0.81725<br>0      |



|   | compo  | compon  |
|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
|   | nent_1 | nent_2 | nent_3 | nent_4 | nent_5 | nent_6 | nent_7 | nent_8 | nent_9 | ent_10  |
| 0 | 0.0000 | 0.0015 | 0.2233 | 0.0388 | 0.0473 | 0.2346 | 0.2146 | 0.4670 | 0.4975 | 0.94394 |
|   | 00e+00 | 82     | 73     | 30     | 37     | 46     | 90     | 87     | 75     | 1       |
| 1 | 3.4108 | 0.0015 | 0.2230 | 0.0412 | 0.0499 | 0.2315 | 0.2407 | 0.4040 | 0.2217 | 0.46990 |
|   | 71e-08 | 82     | 89     | 94     | 44     | 83     | 63     | 27     | 11     | 3       |
| 2 | 9.8915 | 0.0017 | 0.2222 | 0.0481 | 0.0495 | 0.2395 | 0.2312 | 0.3637 | 0.6419 | 0.16319 |
|   | 39e-07 | 65     | 98     | 55     | 26     | 01     | 06     | 39     | 70     | 5       |

|     | compo  | compon  |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
|     | nent_1 | nent_2 | nent_3 | nent_4 | nent_5 | nent_6 | nent_7 | nent_8 | nent_9 | ent_10  |
| 3   | 6.9343 | 0.0016 | 0.2222 | 0.0481 | 0.0519 | 0.2361 | 0.2446 | 0.4042 | 0.2198 | 0.47121 |
|     | 01e-05 | 89     | 98     | 54     | 73     | 13     | 38     | 37     | 66     | 5       |
| 4   | 6.9377 | 0.0016 | 0.2222 | 0.0481 | 0.0519 | 0.2361 | 0.2446 | 0.4042 | 0.2198 | 0.47121 |
|     | 12e-05 | 28     | 98     | 54     | 63     | 14     | 50     | 34     | 72     | 1       |
| ••• |        |        |        |        |        |        |        |        |        |         |
| 91  | 9.9999 | 0.0007 | 0.1815 | 0.0329 | 0.3151 | 0.2439 | 0.6471 | 0.4653 | 0.6904 | 0.14980 |
| 67  | 96e-01 | 02     | 98     | 12     | 93     | 20     | 73     | 04     | 64     | 9       |
| 91  | 9.9999 | 0.0001 | 0.2038 | 0.0418 | 0.3260 | 0.2340 | 0.6571 | 0.4966 | 0.2689 | 0.46058 |
| 68  | 96e-01 | 83     | 95     | 94     | 11     | 78     | 32     | 70     | 71     | 6       |
| 91  | 9.9999 | 0.0009 | 0.1937 | 0.0378 | 0.3225 | 0.2395 | 0.6396 | 0.5109 | 0.2700 | 0.45375 |
| 69  | 97e-01 | 00     | 55     | 14     | 55     | 06     | 53     | 02     | 96     | 8       |
| 91  | 9.9999 | 0.0005 | 0.1927 | 0.0374 | 0.0281 | 0.2395 | 0.2312 | 0.4204 | 0.2182 | 0.46719 |
| 70  | 97e-01 | 64     | 49     | 22     | 08     | 26     | 02     | 00     | 54     | 1       |
| 91  | 1.0000 | 0.0003 | 0.1694 | 0.0280 | 0.0240 | 0.2439 | 0.6731 | 0.5496 | 0.5260 | 0.93356 |
| 71  | 00e+00 | 20     | 44     | 26     | 65     | 31     | 03     | 75     | 25     | 8       |

## **Model Building:**

## **Random Forest Classifier Model:**

0.7347208457218368

## **Decision Tree Classifier:**

0.7978196233894945

## **KNeighbors Classifier:**

0.804426825239511

## **SVC Model:**

0.7158903204492897

## **Logistic Regression:**

0.7403369672943508

## **Performance Testing:**

## Testing model with multiple & Hyperparameter Tunning:

| age     |    |       |      |      |     |    |    |    |    |    |    |
|---------|----|-------|------|------|-----|----|----|----|----|----|----|
| [<br>16 | 29 | 41    | 36   | 32   | 60  | 77 | 28 | 54 | 42 | 51 | 37 |
| 44      | 43 | 63    | 40   | 75   | 56  | 85 | 71 | 67 | 55 | 61 | 46 |
|         | 82 | 64    | 70   | 33   | 59  | 53 | 52 | 49 | 35 | 48 | 27 |
| 69      | 76 | 73    | 68   | 66   | 30  | 88 | 38 | 58 | 21 | 45 | 83 |
| 62      | 25 | 86    | 72   | 14   | 15  | 39 | 26 | 20 | 80 | 90 | 23 |
| 18      | 13 | 78    | 24   | 81   | 92  | 57 | 74 | 9  | 47 | 17 | 11 |
| 50      | 34 | 8     | 79   | 31   | 65  | 84 | 12 | 10 | 19 | 22 | 1  |
| 2       | 97 | 6     | 89   | 87   | 455 | 93 | 7  | 91 | 5  | 94 | 4  |
| 65511   |    |       |      |      |     |    |    |    |    |    |    |
|         | 95 | 65512 | 3 65 | 526] |     |    |    |    |    |    |    |

sex [2. 1.]

on\_thyroxine
[0 1]

query\_on\_thyroxine
[0 1]

on\_antithyroid\_meds
[0 1]

sick [0 1]

```
pregnant
[0 1]
thyroid_surgery
[0 1]
I131_treatment
[0 1]
query_hypothyroid
[1 0]
query_hyperthyroid
[0 1]
lithium
[0 1]
goitre
[0 1]
tumor
[0 1]
hypopituitary
[0 1]
psych
[0 1]
[3.00000000e-01 1.60000000e+00 5.21840275e+00 7.00000000e-01
```

```
1.20000000e+00 1.90000000e+00 1.00000000e+00 5.00000000e-01
2.60000000e+00 6.80000000e+01 1.50000000e+00 5.90000000e+00
5.00000000e-02 4.00000000e+00 4.00000000e-01 8.00000000e-01
2.00000000e-01 3.00000000e+00 9.59999900e+00 1.40000000e+02
6.00000000e-01 1.70000000e+00 2.50000000e+00 6.80000000e+00
2.10000000e+00 1.10000000e+00 9.79999900e+00 3.70000000e+00
1.000000000e-01 3.50000000e-01 9.00000000e+01 1.30000000e+00
2.70000000e+00 2.90000000e+00 2.50000000e-01 5.80000000e+00
2.00000000e+00 9.00000000e-01 3.20000000e+00 7.40000000e+00
1.80000000e+00 5.00000000e+00 7.00000000e+01 6.50000000e+00
1.15999990e+01 4.20000000e+00 8.80000000e+01 2.20000000e+00
5.30000000e+01 1.65000000e+01 8.40000000e+00 4.10000000e+00
3.30000000e+00 8.00000000e+01 1.76000000e+02 3.00000000e+01
1.10000000e+01 6.00000000e+00 7.10000000e+01 9.09999900e+00
1.07000000e+01 4.90000000e+00 3.40000000e+00 1.83000000e+00
4.60000000e+00 1.40000000e+00 1.40000000e+01 3.50000000e+00
4.60000000e+01 1.80000000e+01 1.70000000e+02 1.91999990e+01
7.50000000e+00 1.45000000e+02 7.90000000e+00 1.90000000e+01
4.80000000e+01 2.50000000e+01 7.30000000e+00 6.70000000e+00
1.53000000e+02 3.50000000e+01 3.80000000e+00 2.30000000e+00
9.20000000e+00 1.20000000e+01 5.50000000e+00 1.52999990e+01
1.50000000e-01 1.02999990e+01 4.30000000e+02 2.13000000e+02
3.700000000e+01\ 2.160000000e+02\ 2.600000000e+01\ 4.30000000e+00
2.40000000e+00 4.70000000e+01 8.20000000e+00 1.44000000e+01
1.74000000e+01 1.00000000e+02 1.32000000e+01 4.10000000e+01
3.10000000e+00 2.20000000e+01 4.50000000e+01 4.50000000e+00
2.40000000e+01 6.50000000e+01 4.40000000e+00 5.60000000e+01
1.14000000e+01 5.20000000e+00 5.60000000e+00 8.29999900e+00
4.00000000e+02 2.60000000e+02 5.40000000e+00 8.00000000e+00
6.60000000e+00 8.50000000e+00 5.10000000e+00 1.38000000e+02
4.20000000e+01 4.40000000e+01 2.80000000e+00 1.00000000e+01
5.40000000e+01 3.90000000e+00 1.50000000e+02 3.10000000e+01
6.50000000e-01 2.00000000e+02 8.50000000e+01 8.60000000e+01
6.300000000e+00 5.000000000e+01 3.40000000e+01 1.60000000e+01
9.40000000e+00 1.42999990e+01 4.90000000e+01 6.20000000e+00
8.200000000e+01 7.700000000e+01 9.200000000e+01 1.30000000e+01
4.70000000e+00 5.20000000e+01 2.70000000e+01 8.79999900e+00
1.050000000e+00 8.09999900e+00 1.32999990e+01 2.80000000e+01
1.25000000e+02 1.50000000e+01 1.01000000e+00 3.90000000e+01
2.88000000e+02 2.10000000e+01 3.60000000e+00 4.50000000e-01
1.43000000e+02 2.35000000e+02 5.50000000e+01 7.60000000e+00
3.80000000e+01 3.20000000e+01 6.10000000e+01 4.80000000e+00
1.47999990e+01 7.00000000e+00 2.00000000e+01 9.00000000e+00
9.80000000e+01 2.90000000e+01 6.40000000e+00 1.70000000e+01
2.30000000e+01 1.84000000e+01 3.60000000e+01 1.09000000e+02
8.59999900e+00 6.10000000e+00 1.26000000e+02 4.30000000e+01
9.70000000e+00 4.00000000e-02 1.20000000e-01 6.90000000e+00
1.60000000e+02 1.60000000e-01 5.30000000e-01 8.80000000e-01
2.60000000e-01 2.50000000e-02 3.90000000e-01 7.70000000e-01
7.00000000e-02 4.00000000e+01 2.30000000e-01 8.40000000e-01
9.50000000e-01 3.80000000e-01 4.10000000e-01 6.50000000e-02
5.00000000e-03 7.80000000e-01 8.10000000e-01 1.83000000e+02
6.10000000e-01 3.20000000e-01 8.20000000e-01 8.90000000e+00
8.70000000e-01 9.80000000e-01 4.70000000e-01 5.80000000e-01
```

```
4.30000000e-01 8.00000000e-02 8.60000000e-01 8.90000000e-01
9.10000000e-01 5.30000000e+02 1.00000000e-02 5.20000000e-01
8.30000000e-01 1.50000000e-02 3.00000000e-02 5.90000000e-01
6.20000000e-01 7.40000000e-01 4.60000000e-01 1.78000000e+02
2.00000000e-02 9.00000000e-02 1.65000000e+02 6.80000000e-01
8.50000000e-01 3.50000000e-02 1.70000000e-01 7.10000000e+00
7.80000000e+00 9.90000000e+00 4.20000000e-01 2.80000000e-01
3.70000000e-01 4.40000000e+02 2.70000000e-01 6.30000000e-01
7.10000000e-01 5.70000000e-01 9.20000000e-01 7.20000000e-01
4.9000000e-01 9.4000000e-01 9.7000000e-01 5.6000000e-01
5.40000000e-01 7.90000000e-01 1.03000000e+02 7.50000000e-01
5.73000000e+00 6.70000000e-01 7.20000000e+00 1.10999990e+01
9.30000000e-01 5.10000000e-01 9.50000000e+00 7.60000000e-01
7.70000000e+00 6.0000000e-02 6.4000000e-01 5.70000000e+00
7.300000000e-01 1.990000000e+02 9.90000000e+01 5.80000000e+01
2.20000000e-01 6.60000000e+01 9.60000000e-01 1.90000000e-01
2.40000000e-01 5.50000000e-01 1.80000000e-01 2.10000000e-01
4.80000000e-01 1.02000000e+00 4.40000000e-01 9.90000000e-01
3.40000000e-01 3.30000000e-01 1.17000000e+02 6.90000000e-01
8.90000000e+01 7.60000000e+01 1.51000000e+02 5.10000000e+01
1.39000000e+02 1.40000000e-01 2.90000000e-01 7.80000000e+01
4.72000000e+02 5.30000000e+00 2.30000000e+02 3.10000000e-01
1.20999990e+01 4.50000000e-02 5.50000000e-02 6.00000000e+01
1.30000000e-01 1.08000000e+02 1.88000000e+02 3.05000000e+01
4.68000000e+02 3.60000000e-01 2.64000000e+01 6.60000000e-01
2.36000000e+02 3.30000000e+01 4.78000000e+02 9.29999900e+00
1.16000000e+02 2.55000000e-01 1.10000000e-01 1.14000000e+02
1.03000000e+00 1.97000000e+02 9.60000000e+01 1.15000000e+01
1.31000000e+02 6.70000000e+01 1.06000000e+02 1.72000000e+02
1.64000000e+02 7.50000000e-02 1.41000000e+02 1.04000000e+00
1.35000000e-01 8.50000000e-02 1.25000000e-01 1.15000000e-01
7.30000000e+01 4.36000000e+02 9.50000000e-02 1.19000000e+01
4.94000000e+02 6.20000000e+01 3.93000000e+02 8.70000000e+00
1.05000000e-01 2.52000000e+02 5.90000000e+01 1.18000000e+02
1.14000000e+00 1.12000000e+00 1.91000000e+02 1.66000000e+02
4.60000000e+02 1.92000000e+02 1.36000000e+02 1.77000000e+02
1.98000000e+02 1.37000000e+01 1.67999990e+01 7.40000000e+01
5.00000000e+02 4.01000000e+00]
```

| T3           |     |     |      |           |      |
|--------------|-----|-----|------|-----------|------|
| [ 1.97062881 | 1.9 | 2.6 | 1.8  | 1.7       | 2.3  |
| 2.4          | 2.9 | 2.  | 2.1  | 1.6       | 0.1  |
| 1.4          | 1.2 | 1.5 | 1.3  | 2.5       | 2.7  |
| 2.2          | 2.8 | 3.2 | 0.4  | 0.8       | 1.   |
| 1.1          | 3.7 | 4.4 | 3.   | 3.1       | 3.6  |
| 7.6          | 0.9 | 4.2 | 0.5  | 0.6       | 0.3  |
| 0.7          | 3.8 | 0.2 | 4.1  | 6.6       | 4.7  |
| 8.599999     | 3.3 | 4.3 | 0.05 | 3.4       | 4.6  |
| 4.9          | 6.2 | 3.5 | 3.9  | 8.9       | 4.5  |
| 8.099999     | 5.  | 4.8 | 5.1  | 5.3       | 6.7  |
| 7.3          | 6.1 | 4.  | 5.5  | 5.4       | 5.7  |
| 7.           | 6.  | 7.1 | 8.5  | 10.599999 | 1.44 |

```
6.9
                 6.8 5.6 6.4 18.
13.299999 0.83 0.69 0.93
 5.2
         6.5
8.
  9.5
 5.9
T4U
[0.97605572 1.02 1.06 0.94
1.07 0.87 0.89
                                  1.08
                                            0.84
                                   0.62
                                            0.91
                 1.38
                          0.79
 0.68
         1.
                                   0.95
                                            1.57
                          0.7
 0.92
         1.48
                 1.1
                                   1.01
                                            1.05
 0.96
         0.78
                 1.4
                          0.66
                                   0.86
                                            0.76
         1.16
                 1.12
 0.9
                          0.98
                                   1.04
                                            1.26
 0.83
         0.97
                 0.93
                          0.88
                                   0.73
                                             1.29
         0.75
 1.3
                 0.8
                          1.83
                                   1.03
                                            0.61
 1.44
         1.18
                 0.59
                          0.81
                                   0.64
                                            1.2
 0.82
                 0.99
                                   1.22
                                            0.71
         1.19
                          1.56
                 0.32
 1.32
         0.67
                           1.11
                                   0.85
                                            0.52
 1.15
         1.21
                 0.77
                          0.69
                                   1.51
                                            1.33
 0.55
         1.45
                 1.24
                          1.79
                                   0.72
                                            1.73
                 1.09
         1.68
                                   0.35
                                            0.3
 1.27
                          1.43
         0.2
                  1.41
                           1.14
                                    0.53
                                            1.52
 1.28
 1.23
         0.74
                 1.53
                          1.62
                                   1.66
                                            0.4
 1.86
         1.59
                 0.29
                          0.34
                                   1.17
                                            1.76
                 1.71
 0.57
         0.63
                          0.31
                                   0.49
                                            1.31
         0.5
                 1.75
                                   0.36
                                             1.42
 1.34
                          1.36
         1.74
                 1.46
                                            1.47
 0.6
                          1.63
                                   0.28
 1.25
         1.96
                 1.39
                                            1.55
                          0.48
                                   0.56
                 1.64
                                   1.67
 0.65
         1.69
                          1.65
                                            1.77
 1.82
         0.19
                 1.49
                          1.35
                                   1.5
                                            1.97
                          1.35
1.61
 1.94
         1.58
                 0.58
                                   0.54
                                            1.7
                          2.03
 0.38
         0.41
                 0.25
                                   1.93
                                            0.944
                 2.01
                          1.54
                                   1.88
         2.12
 1.8
                                            0.46
        1.37
                 0.47
1.6
                          2.32
 1.84
                                   1.78
                                            1.89
                 1.0
2.33
0.42
2.
                                            0.45
 0.44
        0.17
                                   0.37
 1.95
        0.51
                                   1.81
                                            2.15
        2.16
 2.02
FTI
[113.64074552 47.
                   85.
                                84.
                                          96.
105. 95.
                    106.
                               176.
                                          129.
                     39.
           69.
 100.
                               91.
                                          90.
                                92.
           66.
                    121.
                                          173.
 93.
                                67.
           31.
 117.
                     113.
                                          101.
 126.
                     149.
          123.
                                68.
                                          86.
           131.
                    116.
 132.
                                97.
                                          124.
                     104.
 136.
           142.
                                7.5
                                          107.
                               88.
          110.
                    130.
 73.
                                          128.
          102.
                               163.
 122.
                     134.
                                          63.
          81.
 354.
                     109.
                               114.
                                         133.
           99.
                               108.
 170.
                     111.
                                         161.
 78.
          148.
                      98.
                                135.
                                          80.
```

| 127. | 213. | 119.     | 65.      | 89.  |
|------|------|----------|----------|------|
| 143. | 316. | 155.     | 172.     | 150. |
| 103. | 120. | 258.     | 5.       | 272. |
| 263. | 166. | 138.     | 52.      | 164. |
| 337. | 94.  | 118.     | 182.     | 41.  |
| 70.  | 144. | 10.      | 4.       | 13.  |
|      |      |          |          |      |
| 87.  | 140. | 74.      | 152.     | 77.  |
| 3.   | 82.  | 145.     | 64.      | 79.  |
| 147. | 54.  | 83.      | 634.     | 650. |
| 12.  | 61.  | 11.      | 115.     | 35.  |
| 17.  | 165. | 167.     | 153.     | 44.  |
| 3.4  | 55.  | 71.      | 253.     | 75.  |
| 2.5  | 197. | 24.      | 156.     | 237. |
| 203. | 112. | 141.     | 3.5      | 190. |
| 37.  | 45.  | 193.     | 57.      | 76.  |
| 160. | 6.   | 200.     | 485.     | 49.  |
| 158. | 137. | 428.     | 450.     | 174. |
| 189. | 202. | 159.     | 196.     | 154. |
| 139. | 34.  | 222.     | 184.     | 178. |
| 146. | 125. | 21.      | 157.     | 51.  |
| 839. | 332. | 151.     | 305.     | 299. |
| 266. | 32.  | 53.      | 370.     | 22.  |
| 168. | 60.  | 187.     | 171.     | 220. |
| 169. | 232. | 254.     | 345.     | 194. |
| 211. | 217. | 550.     | 23.      | 257. |
| 188. | 192. | 179.     | 218.     | 208. |
| 6.6  | 240. | 43.      | 259.     | 265. |
| 9.   | 212. | 347.     | 216.     | 29.  |
| 186. | 162. | 256.     | 177.     | 20.  |
| 33.  | 308. | 482.     | 16.      | 180. |
| 59.  | 264. | 881.     | 204.     | 15.  |
| 1.4  | 271. | 58.      | 334.     | 214. |
| 228. | 205. | 72.      | 183.     | 612. |
| 445. | 244. | 175.     | 2.8      | 283. |
| 62.  | 7.6  | 5.4      | 199.     | 209. |
| 227. | 26.  | 48.      | 221.     | 28.  |
| 195. | 395. | 206.     | 46.      | 198. |
| 215. | 8.5  | 56.      | 14.      | 223. |
| 8.9  | 8.4  | 18.      | 9.099999 | 50.  |
| 207. | 185. | 291.     | 235.     | 36.  |
| 224. | 19.  | 7.       | 312.     | 247. |
| 40.  | 274. | 210.     | 242.     | 251. |
| 27.  | 181. | 2.       | 249.     | 42.  |
| 349. | 191. | 280.     | 281.     | 201. |
| 245. | 362. | 219.     | 239.     | 273. |
| 356. | 2.4  | 8.299999 | 236.     | 8.7  |
| 262. | 3.84 | 231.     | 369.     | 3.1  |
| 378. | 546. | 268.     | 25.      | 298. |
| 241. | 642. | 238.     | 233.     | 325. |
| 255. | 4.5  | 519.     | 4.15     | 297. |
| 4.85 | 321. | 226.     | 290.     | 243. |
| 5.5  | 288. | 38.      | 329.     | ]    |

```
referral_source
[5 3 1 0 2 4]

patient_id
[840801013 840801014 840801042 ... 870119025 870119027 870119035]
```

## Comparing model accuracy before & after applying hyperparameter tuning:

```
0.8460521968946151
```

0.7330690452593327

0.6362735381565907

0.7330690452593327

## **Integrate with web FrameWork:**

## **Building HML pages:**

```
<html>
<head>
<center>
<font size="10">
<h1>
<u>Thyroid Disease Classification</u></h1>
<style>
body
{
```

```
background-image:url("123.JPG");
background-repeat:no repeat;
h1
color:white;
form
color:white;
</style>
</font>
</center>
</head>
<form action="">
Age         
sp;        
p;       .<input
type="text"><br><br>
Sex         
sp;        
p;        
;:<input type="radio"value="f">Female
```

<input type="radio" value="m">Male<br><br>

On\_thyroxine

query\_on\_thyroxine :<input type="text"><br>

On\_antithyroid\_meds :<input type="text"><br><br>

Sick &n

Pregnant &nbs

Thyroid\_surgery &nb

I131\_treatment

Query\_hypothyroid :<input type="text"><br>

Query\_hyperthyroid :<input type="text"><br>

Lithium &nbsp

type :"text"><br>

Goitre

Tumor &

Hypoituitary

Psych &

TSH &nb

T3 &nbs

TT4 &nb

T4U &nb

FTI &nb

<button type="submit" class="btn btn-primary btn-block btn-large">Predict</button>
</font>
</form>

</html>



#### 4. ADVANTAGES & DISADVANTAGES:

#### **Advantages:**

- It helps to regulate many body functions by constantly releasing a steady amount of thyroid hormones into the bloodstream.
- Controls how much energy your body uses.
- It is used throughout your entire body to keep many of your body's systems working correctly.

#### **Disadvantages:**

- Thyroid disorders can cause puberty and menstruation to occur abnormally early or late.
- In addition, abnormally high or low levels of thyroid hormone can cause very light or very heavy menstrual periods, very irregular menstrual periods, or absent menstrual periods (a condition called amenorrhea).
- This can be dangerous because it can cause your heart to beat faster and weight loss without trying.

## **5. APPLICATIONS:**

- Assume a machine learning model can detect thyroid disease in a patient. The thyroid disease can then be easily identified based on the symptoms in the patient's history.
- Currently, models are evaluated using accuracy metrics on a validation dataset that is accessible.
- The thyroid gland is a vital hormone gland: It plays a major role in the metabolism, growth and development of the human body. It helps to regulate many body functions by constantly releasing a steady amount of thyroid hormones into the bloodstream.

#### 6. CONCLUSION:

- The combination of the Recursive Feature Elimination and the Support Vector Machine Technique has proven to be effective.
- The feature set finally used is 'Age', 'Sex', 'TSH', 'TT4', 'T4U', 'T3', 'FTI'. Age and Sex have been considered as important features because Thyroid disorders are said to occur during a particular age and most particularly in females.
- 2 classes of Thyroid disorders namely Hyperthyroid, Hypothyroidcan be classified.

#### 7. FUTURE SCOPE:

- It helps the doctors to easily diagnosis the patients.
- Easy to predict whether the patient is having hypothyroid or hyperthyroid.
- It helps the Health care professional to easily predict with less expensive.

#### 8. APPENDIX:

#### **SOURCE CODE:**

#### Importing the libraries:

import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sns

import pickle

df

#### **Read the Dataset:**

```
file = open("/content/thyroidDF (1) (1).csv")
df = pd.read_csv(file)
```

## **Checking for null values:**

```
feature cols = ["age",
                "sex",
                "on thyroxine",
                "query on thyroxine",
                "on antithyroid medication",
                "sick",
                "pregnant",
                "thyroid surgery",
                "I131 treatment",
                "query hypothyroid",
                "query hyperthyroid",
                "lithium",
                "goitre",
                "tumor",
                "hypopituitary",
                "psych",
                "TSH measured",
                "TSH",
                "T3 measured",
                "T3",
                "TT4 measured",
                "TT4",
                "T4U measured",
                "T4U",
                "FTI measured",
                "FTI",
                "TBG measured",
                "TBG",
               "target"]
df
  target = df.target
  create = target.str.split('([A-Za-z]+)', expand=True)
  create = create[1]
  target = create.replace({None:'Z'}) #here z is none type
  df.target = target
  df.target.unique()
```

```
array(['Z', 'S', 'F', 'AK', 'R', 'I', 'M', 'N', 'G', 'K', 'A',
'KJ', 'L', 'MK', 'Q', 'J', 'C', 'O', 'LJ', 'H', 'D', 'GK',
'MI', 'P', 'FK', 'B', 'GI', 'GKJ', 'OI', 'E'], dtype=object)
df
df = df.replace(['?'],np.nan)
df.isnull().sum()
df.drop(['TBG measured','TBG','T3 measured','TSH measured','TT
4 measured', 'T4U measured', 'FTI measured'], axis=1, inplace=True
)
df
df.isnull().sum()
df.sex.replace({'F':2,'M':1},inplace=True)
round Values = round(df.sex.mean())
df.sex.fillna(round Values,inplace=True)
df.sex.unique()
array([2., 1.])
df.isnull().sum()
from sklearn.impute import KNNImputer
knnimp = KNNImputer(n neighbors=3)
cols = ['TSH','T3','TT4','T4U','FTI']
for i in cols:
   df[i] = knnimp.fit transform(df[[i]])
```

```
df.isnull().sum()
df.info()
```

## **Exploratory Data Analysis:**

## **Descriptive Analysis:**

```
df.info()
```

## **Visual Analysis:**

```
plt.figure(figsize=(20,20))
sns.heatmap(df.corr(),annot=True)

<a href="mailto:decorror">Axes: ></a>

df.corr()

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

cols = df.select_dtypes(include=['object'])

for i in cols.columns:
    try:
        df[i] = le.fit_transform(df[i])
    except:
        continue
```

```
for a in range(len(df.corr())):
    for b in range(a):
        if((df.corr().iloc[a,b]) >= 0.7):
            print(df.corr().columns[b])
ТТ4
df.drop('TT4',axis=1,inplace=True)
df.hist(bins=25, figsize=(20, 20));
X = df.drop('target',axis=1)
y = df.target
df2 = X
y.unique()
array([29, 28, 6, 1, 27, 13, 19, 22, 8, 15, 0, 16, 17, 21, 26, 14,
3, 23, 18, 12, 4, 10, 20, 25, 7, 2, 9, 11, 24, 5])
from sklearn.decomposition import PCA
pca = PCA(n components=10)
v = pca.fit transform(X)
X pca = pd.DataFrame(data = v, columns = ['component 1', 'component
2', 'component 3', 'component 4', 'component 5', 'component 6', 'com
ponent 7','component 8','component 9','component 10'])
X pca
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
for i in X pca.columns:
    X pca[i] = scaler.fit transform(X pca[[i]])
X pca.hist(bins=25, figsize=(20,20));
```

## **Model Building:**

## Training the model in multiple algorithms:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_pca,y,test_size=0
.33,random state=42)
```

#### **Random Forest Classifier Model:**

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(max_depth=2,n_estimators=200)

rclf = rf.fit(X_train,y_train)

rfpred = rclf.predict(X_test)

accuracy_score(rfpred,y_test)
```

#### **Decision Tree Classifier:**

```
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(max_depth=3)
clf = tree.fit(X_train,y_train)
treepredict = clf.predict(X_test)
accuracy_score(treepredict,y_test)
```

## **KNeighbors Classifier:**

```
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=3)
knnclf = neigh.fit(X_train,y_train)
y_pred = knnclf.predict(X_test)
accuracy_score(y_pred,y_test)
```

## **SVC Model:**

```
from sklearn.svm import SVC
svm = SVC(kernel="sigmoid")
sclf = svm.fit(X_train,y_train)
y_pred = sclf.predict(X_test)
accuracy_score(y_pred,y_test)
```

## **Logistic Regression:**

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(max_iter=1000)
lrclf = lr.fit(X_train,y_train)
y_pred = lrclf.predict(X_test)
accuracy_score(y_pred,y_test)
```

## **Performance Testing:**

## Testing model with multiple & Hyperparameter Tunning:

```
for i in df2.columns:
    print("\n\n")
    print(i)
    print(df2[i].unique())

referral_source
[5 3 1 0 2 4]

patient_id
[840801013 840801014 840801042 ... 870119025 870119027 870119035]
```

# Comparing model accuracy before & after applying hyperparameter tuning:

```
cols = ['age','sex','TSH','T3','T4U','FTI']
for i in cols:
    df2[i] = scaler.fit_transform(df2[[i]])

X = df2
y = df['target']
```

```
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=0.33,
random state=42)
from sklearn.metrics import accuracy score
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(max depth=3)
clf = tree.fit(X train,y train)
y pred = clf.predict(X test)
accuracy_score(y_pred,y_test)
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(max depth=2, n estimators=200)
rclf = rf.fit(X train, y train)
y pred = rclf.predict(X test)
accuracy score(y pred,y test)
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n neighbors=3)
knnclf = neigh.fit(X train,y train)
y pred = knnclf.predict(X test)
accuracy score(y pred,y test)
from sklearn.svm import SVC
svm = SVC(kernel="sigmoid")
sclf = svm.fit(X train, y train)
y pred = sclf.predict(X test)
accuracy score(y pred,y test)
```

