

BRAC University Dept. of Computer Science and Engineering		Assessment: Assignmer Due: 11:59 PM 18 February 20 Full Marks:	
Semester: Course Code: Section: Course Name:	Spring 2024 CSE251 10/11 Electronic Devices and Circuits	Name:Student ID:	

- ✓ Write down your student ID on the top right corner of each of the pages.
- ✓ Clearly write the solutions, along with the questions, on white paper with black ink (no need to use color pen, don't use pencils).
- ✓ Use CamScanner, or Adobe Scan, or Microsoft Office Lens, or any other software to scan the pages and make a single PDF file.
- ✓ After creating the PDF, make sure that (a) there are no pages missing, (b) all of the pages are legible, (c) your student ID on each page are visible.
- ✓ Please note, collaboration ≠ copying. You are allowed to discuss the questions and clear confusion you might have, but you have to write your solutions independently and be able to explain your answers during a random viva.
- ✓ [Very Important] Rename the PDF in the following format: "A2_StudentID_FullNameWithoutSpace.pdf". For example, if my student ID is 12345678 and my name is Shadman Shahid, the filename should be "A2_12345678_ShadmanShahid.pdf".
- ✓ Submission Link: https://forms.gle/t3jitDhcubjZVhJs6

[CO3] Question 1:

i.

20 Marks

a) Design circuits using **op-amp** that can implement the following functions, where x, y, z indicate input voltages and f indicates the output voltage:

i.
$$f = 3x + 7y$$

ii.
$$f = -3 \int x \, dt + 7y + 5 \frac{dy}{dt}$$

iii.
$$f = 4x - 7y + 8z$$

b) Design circuits using **op-amp** to implement the following Voltage transfer characteristics graphs. Clearly show the saturation voltages and any necessary parameters to fully characterize the device.

- c) **Design** the circuit below such that the closed loop voltage gain is $A_{CL}=18$. The maximum current <u>in any resistor</u> is to be limited to $15~\mu A$ with the input voltage in the range $-30 \le v_I \le 30~mV$.
 - i. What are the values of R_I and R_f ?
 - ii. What is the range of output voltage v_0 ?

Question 2: 20 Marks

 $20~\mathrm{k}\Omega$

a) Find v_0 for the following values of v_I :

i. 0.5 V

ii. −2 V

iii. −8 V

 $10~\mathrm{k}\Omega$

 $20~\mathrm{k}\Omega$

 $5~\mathrm{k}\Omega$

 $20~\mathrm{k}\Omega$

b) Calculate v_0 in terms of I_1 , V_1 and V_2 in the adjacent figure. You may assume the operational amplifier has ideal characteristics.

c) Write the node equations for the v_a and the v_- nodes, and enough more independent relations to specify v_o in terms of v_i . Do not solve.

[CO2] 9