

Sztuczne Sieci Neuronowe Sprawozdanie z projektu

Aleksandra Poręba Grzegorz Podsiadło

14 czerwca 2020

Spis treści

1	\mathbf{W} stęp	3
2	Sieć neuronowa	4
3	Badanie wpływu ilości kolumn na wyniki sieci 3.1 Korelacja pomiędzy danymi	5 5 7
4	Przewidywanie wyniku egzaminu na podstawie pozostałych	8
5	Podsumowanie	9

1 Wstęp

2 Sieć neuronowa

3 Badanie wpływu ilości kolumn na wyniki sieci

3.1 Korelacja pomiędzy danymi

W ramach projektu został obliczony współczynnik korelacji *Pearsona* pomiędzy danymi z repozytorium. Dzięki niemu możemy sprawdzić jak bardzo zależne są od siebie dane, a dzięki temu dostosować informacje użyte do uczenia sieci.

Do obliczenia współczynnika korelacji została użyta funkcja pakietu MATLAB corr.

3.1.1 Korelacja pomiędzy wynikami egzaminów

Na początku został wyznaczony współczynnik korelacji pomiędzy wynikami egzaminów. Otrzymane wyniki przedstawiono w tabeli poniżej.

Egzamin 1 i 2	Egzamin 1 i 3	Egzamin 2 i 3
0.6453	0.6435	0.8578

Dla wszystkich kombinacji otrzymaliśmy wartości większe od 0.5, możemy więc uznać, że dane są od siebie zależne. Największa korelacja występuje pomiędzy egzaminem 2 oraz 3 - współczynnik jest równy 0.86.

Na rysunkach poniżej zależności pomiędzy zbiorami zostały przedstawione w sposób graficzny.

Rysunek 1: Zależności pomiędzy wynikami egzaminów przedstawione w sposób graficzny.

3.1.2 Korelacja pomiędzy czynnikami środowiskowymi a wynikami egzaminów

W dalszej części analizy zbioru danych została zbadana zależność pomiędzy czynnikami, będącymi wejściem sieci neuronowej, a wynikami kolejnych egzaminów. Otrzymane współczynniki korelacji przedstawiono w tabeli poniżej.

Czynnik środowiskowy	Egzamin 1	Egzamin 2	Egzamin 3
Płeć	0.1558	-0.1886	-0.2396
Rasa	0.1771	0.0770	0.0907
Wykształcenie rodzica	-0.0584	-0.0306	-0.0571
Przystąpienie do kursu	0.3269	0.1906	0.2182
Dieta	-0.1564	-0.1838	-0.2647

Otrzymane wartości są dość niskie, nie istnieje wyraźna korelacja pomiędzy którąś z tych cech, a wynikami. Najmniejszą zależność obserwujemy

pomiędzy wynikami, wykształceniem rodziców - są one najbliższe zeru. Największe znaczenie ma przystąpienie do kursu przygotowawczego, w dalszej kolejności dieta oraz płeć.

3.2 Testowanie sieci neuronowej

Dla wybranych najlepszych parametrów sieci zostało przeprowadzone uczenie z pomniejszoną ilością kolumn. Celem tego zabiegu było zbadanie, jaki wpływ mają te czynniki na poprawność działania sieci.

4 Przewidywanie wyniku egzaminu na podstawie pozostałych

Jak zostało zauważone podczas badania korelacji, wyniki egzaminów są od siebie zależne (wysoki współczynnik korelacji). Korzystając z wyników z dwóch egzaminów podjęto próbę stworzenia sieci obliczającą wynik z trzeciego egzaminu.

Otrzymane błędy testowania zostały przedstawione poniżej.

Rysunek 2: Błąd uczenia i testowania sieci dla X prób dla kolejnych egzaminów

Na podstawie obserwacji wielkości błędów, można zauważyć, że dla egzaminów 2 oraz 3 sieć osiąga dobre wyniki - na poziomie wartości 50. Dla egzaminu 1 błędy przyjmują wartości dwa razy większe.

Otrzymane wyniki można powiązać z analizowaną wcześniej korelacją danych - wyniki egzaminów 2 i 3 są ze sobą w większym stopniu powiązane, niż egzamin 1 z egzaminem 2 lub 3.

5 Podsumowanie

Literatura