

SW356x 软件二次开发指南_系统及外设模块说明

1. 概述

本指南主要针对 SW356x 的系统及外设模块进行说明,方便软件人员进行二次开发,提高效率。其中系统包括系统架构及资源,时钟,地址映射,中断等,外设模块包括 UART, GPIO, Watchdog, ATM, BTM, I2C 等。

注: 涉及协议相关模块暂不说明。

2. 系统说明

2.1. 系统架构及资源

SW356x 基于 ARM Cortex-M0 的架构,如下图所示,主要包括 Cortex-M0 CPU, AHB/APB 总线, 128/256KB flash, 4KB sram 以及一些外设组成。

2.2. 地址映射

注: 涉及协议相关模块的地址暂不说明。

2.2.1. AHB 外设

Address	Peripherals Description
0x40010000-0x40010FFF	GPIO
0x40000000-0x4000FFFF	APB Subsystem Peripherals
0x20000000-0x20000FFF	SRAM
0x00000000-0x000FFFFF	Flash

2.2.2. APB 外设

Address	Peripherals Description
0x4000F000-0x4000F7FF	RCC
0x4000C000-0x4000C7FF	I2C
0x40008000-0x400087FF	Watchdog
0x40004000-0x400047FF	UART
0x40002000-0x400027FF	BTM4
0x40000000-0x400007FF	ATM0

2.3. 时钟

系统有 2 个 RC 时钟源:

RC2 为高频时钟 25/30/35/40MHz(根据实际需求 trimming 到一种固定时钟输出,默认输出 25MHz), RC1 为低频时钟 125KHz(deep sleep 用), 通过 MUX 产生系统 SYS_CLK, 具体如下图所示。其中 SWD 调试时有外部 SWD_CLK 时钟输入, I2C slave 模式时有外部 I2C_SCL 时钟输入。

注: 涉及协议相关模块的时钟暂不说明。

2.4. 低功耗

系统低功耗分为普通休眠和深度休眠两种模式。为了达到最低功耗,在普通休眠和深度休眠时,可使能 flash 低功耗。

模式	进入条件	唤醒条件	时钟影响	电源影响	唤醒时延
普通休眠	LPMODE=0	中断	关闭 CPU 核	无	M0 内核固
SLEEP	+ WFI(WFE)		心时钟,其		有时延+flash
			余时钟无影		唤醒时延
			响		
深度休眠	LPMODE=1	任意外部中	关闭高频时	无	高频时钟起
DEEP SLEEP	+WFI(WFE)	断或工作于	钟 RC2,系		振时延+
			统工作于低		M0 内核固
		的内部模块	频时钟		有时延+flash
		中断			唤醒时延

2.5. 中断

中断向量表如下(注: 涉及协议相关模块的中断不说明):

中断编号	中断类型	中断源	说明
0	MSP	-	内核中断
1	Reset	ARM 内核	
2	NMI	Watchdog	
3	HardFault	ARM 内核	
4~10	Reserved	-	

11	SVC	ARM 内核	
12~13	Reserved	-	
14	PendSV	ARM 内核	
15	SysTick	SysTick 定时器	
16	中断#0	UART	外部中断
18	中断#2	I2C Master	
21	中断#5	I2C Slave	
22	中断#6	GPIO	
33	中断#17	BTM4	
37	中断#21	ATM0	

3. 二次开发可用资源

当前二次开发平台可使用的硬件资源如下:

硬件类别	硬件资源	描述
串口	UART	UART TX/RX 复用 pin 参考 4.2.2 章节的 Pinmux。波特率在 默认情况下(CPU 频率为 25MHz)最大支持 460800。
海田 CDIO	GPIO0~GPIO3,	其他 GPIOx 是否可用参考 4.2.2 章节的 Pinmux,根据实际端
通用 GPIO	GPIO6, GPIO7	口使用情况确定。
	ATM0	计时精度 1000/PCLK_MHz ns, 默认情况下(CPU 频率为 25MHz)为 80ns, 计时器位宽 24bit。
定时器	BTM4	计时精度 8us (125K 时钟), 计时器位宽 20bit。
足 町 柏	Watchdog	计时精度 8us (125K 时钟), 计时器位宽 24bit。
	SysTick	计时精度默认情况(CPU 频率为 25MHz)下为 40ns, 休眠为 8us, 计时器位宽 24bit。
I2C	I2C	支持主从模式,I2C 复用 pin 参考 4.2.2 章节的 Pinmux。

4. 外设说明

4.1. UART

4.1.1. 基本特点

- 1) 支持波特率可配置;
- 2) 没有校验位,固定一个结束位;
- 3) 支持缓存,收发各有一字节缓冲区;
- 4) 支持常用波特率: 19200, 38400, 57600, 115200, 460800, 921600 默认情况下, CPU 频率为 25MHz, 即 APB 时钟频率为 12.5MHz 时, 不支持 921600 波

特率。CPU 频率为 30/35/40MHz 时, 支持 921600 波特率。

4.1.2. 使用流程

该IP 模块主要用于调试打印或者基本的UART 通信,主要使用流程如下:

- 1) UART 初始化,初始化包括如下配置:
 - 配置UART Pinmux:

打开UART 时钟,释放UART 复位;

配置波特率;

使能UART TX/RX 功能;

- 2) 根据需要配置是否开启中断。
- 3) 收发数据。

4.2. **GPIO**

4.2.1. 基本特点

- 1) 最多支持 15 个 GPIO;
- 2) 支持上/下拉使能,默认上拉电阻为 $10K\Omega$,其中 GPIO0/1/2/3/6/7/10/11/14 还可以配置上拉电阻为 $4K\Omega$;
- 3) 支持 push-pull 和 open drain 类型;
- 4) 支持高/低电平触发、上升/下降沿及上下沿(双沿)触发中断;
- 5) 支持多功能 pin 复用;
- 6) IO 电平为 3.3V:

4.2.2. Pinmux 复用

除了通用 IO 功能外,芯片管脚还能通过寄存器配置实现 IO 管脚复用,比如对于某个 IO 管脚,可以用于 I2C 模块的 SCL 传输,也可以用于 UART 的 RX 传输。具体复用关系如下。

PAD	ADC					Digi	tal Function	n Select						
Name	Mux	0	1	2	3	4	5	6	7	8	9	10	11	12~15
DP1		GPIO8			UART_TX	UART_RX								DP1
DM1		GPIO9			UART_RX	UART_TX								DM1
DP2		GPIO12	7		UART_TX	UART_RX								DP2
DM2		GPIO13			UART_RX	UART_TX								DM2
CC11		GPIO4			UART_TX	UART_RX								CC11
CC21		GPIO5			UART_RX	UART_TX								CC21
CC12	ADC2/3	GPIO10	I2C_SCK	I2C_SDA			UART_TX	UART_RX						CC12
CC22	ADC2/3	GPIO11	I2C_SDA	I2C_SCK			UART_RX	UART_TX						CC22
GPIO0	ADC0	GPIO0	UART_TX	ATM	UART_RX			I2C_SCK	I2C_SDA					ADC
GPIO1	ADC1	GPIO1	UART_RX	ATM	UART_TX			I2C_SDA	I2C_SCK					ADC
GPIO2	ADC2/3	GPIO2	I2C_SDA	I2C_SCK			UART_TX	UART_RX	ATM					ADC
GPIO3	ADC2/3	GPIO3	I2C_SCK	I2C_SDA			UART_RX	UART_TX	ATM					ADC
GPIO6	ADC2/3	GPIO6	I2C_SCK	I2C_SDA		SWD_SCK		UART_TX	UART_RX	ATM				ADC

GPIO7	ADC2/3	GPIO7	I2C_SDA	I2C_SCK	SWD_DIO		UART_RX	UART_TX	ATM		ADC
VD	ADC2/3	GPIO14	I2C_SCK	I2C_SDA		UART_TX	UART_RX	ATM			VD

注:填充灰色的为 Pinmux 的默认配置。

4.2.3. 使用流程

该 IP 模块主要用于软件通过寄存器配置,控制芯片管脚的状态,以及接收芯片管脚状态到寄存器的功能,同时还具有监控管脚状态的变化并产生中断的功能。主要使用流程如下:

1) GPIOx 初始化,初始化包括如下配置:

打开 GPIO 时钟:

释放 GPIO 复位;

Pinmux:

输入/输出;

上/下拉使能及上拉电阻选择;

Open Drain 模式;

- 2) 如果为输入模式,可以采集 IO 高/低电平;如果为输出模式,可以输出高/低电平。
- 3) 根据需要配置是否开启中断以及中断触发类型(高电平、低电平、上升沿、下降沿、 双沿),采集外部信号触发中断。

4.2.4. 注意事项

对于低压的 GPIO (GPIO0/1/2/3/6/7/14), 如果配置为 open drain, 且上拉到 5V (或者其他 高于 4V 的电压), 会存在倒灌电, 导致 GPIO 的 IO 电压波动且输出电压高于 3.3V。

4.3. ATM

4.3.1. 基本特点

- 1) 计时精度 1000/PCLK MHz ns, 默认情况下为 80ns (PCLK 为 12.5MHz);
- 2) 24bit 计时器位宽;
- 3) 支持外部 GPIO 触发计时;
 - 4) 支持 timeout 中断:

4.3.2. 使用流程

该IP 模块主要用于实现时间片段计时,外部事件时间长度计时,以及外部事件次数的计数功能。主要使用流程如下:

- 1) ATM0 初始化,初始化包括如下配置: 打开ATM0 时钟:
- 2) 配置 current 和 reload 值。
- 3) 根据需要配置是否开启中断。
- 4) ATM0 使能。
- 5) 开始计时,采用倒计时的方式,比如初始值为 0xFF,那么它从 0xFF 计数到 0 即完成一轮计时。

6) 计数到 0 时,产生中断,如果中断服务程序中没有将 Timer 关闭,那么它会重新装载 Reload 值循环计时。

如果需要对外部时间长度或者次数计数,需要在ATMO 初始化后,增加如下配置:

- 1) 外部事件输入 Pinmux 配置 (参考 Pinmux 及 GPIO 模块函数说明进行配置)。
- 2) 外部类型配置。外部事件次数可配置为上升沿/下降沿计数,外部时间事件长度可配置为低电平/高电平时间计数。

4.4. BTM

4.4.1. 基本特点

- 1) 计时精度 8us (125KHz 时钟);
- 2) BTM4 计数器位宽为 20bit;
- 3) 支持 timeout 中断功能;

4.4.2. 使用流程

该 IP 模块主要用于以 125KHz 的时钟进行计时。主要使用流程如下:

- 1) BTM4 初始化,初始化包括如下配置: 打开 BTM 时钟;
- 2) 配置 reload 值。
- 3) 根据需要配置是否开启中断。
- 4) BTM4 使能。
- 5) 开始计时,采用倒计时的方式,比如初始值为 0xFF,那么它从 0xFF 计数到 0 即完成一轮计时。
- 6) 计数到 0 时,产生中断,如果中断服务程序中没有将 Timer 关闭,那么它会重新装载 Reload 值循环计时。

4.5. Watchdog

4.5.1. 基本特点

- 1) 计时精度 8us (125KHz 时钟);
- 2) 看门狗计数器位宽 24 比特:
- 3) 支持中断和复位产生,中断连接到 CPU 的 NMI 中断;
- 4) 看门狗复位可以配置为复位 CPU, 全芯片, 或者不复位任何电路;

4.5.2. 使用流程

该 IP 模块内部含有一个计时器,工作于 125KHz 时钟。计数初始值软件可配,配置完初始值后,计数器自动开始倒计数,记到 0 以后,如果之前中断标志位无效,则产生中断。 Watchdog 中断是 CPU 的不可屏蔽中断,必须响应。内部计数器重新装载初始值开始新一轮的倒计数,再次计到 0 以后,如果上次的中断标志位仍然有效(未被清除),并且配置寄存器

中 Watchdog 复位产生使能有效,则产生计时溢出复位信号。这个信号在芯片复位控制寄存器(RCC 模块)的控制下复位全芯片或者 CPU。主要使用流程如下:

1) Watchdog 初始化,初始化包括如下配置:

打开Watchdog 时钟;

释放Watchdog 复位;

配置reload 值;

使能Watchdog:

- 2) 根据需要配置是否开启中断。
- 3) 根据需要配置溢出复位信号的复位类型。

4.6. I2C

4.6.1. 基本特点

- 1) 支持主从模式及仲裁机制,从模式可一直开启;
- 2) 从模式支持设备地址软、硬件(根据 pin 的配置)可配;
- 3) 从模式只支持 8bit 寄存器地址;
- 4) 主模式支持多字节寄存器地址;
- 5) 支持 100K (Standard Mode);
- 6) 主模式支持空发时钟:
- 7) 主模式支持 SCL 拉低超时中断;
- 8) 从模式支持 SCL 拉低;
- 9) 主从模式 TX/RX FIFO 各为 8byte;

4.6.2. 使用流程

- 1. 主模式
 - 1) I2C 初始化, 初始化包括如下配置:

打开 I2C 时钟;

释放 I2C 复位;

配置 I2C 通信频率:

配置 Slave 地址;

使能主模式:

- 2) 根据需要配置相应的中断使能。
- 3) 配置 I2C 信号各数据段使能及读/写数据个数。
- 4) 检查当前总线是否空闲,空闲则启动传输,非空闲则退出。
- 5) 如果是写操作则填写数据,读操作的读取数。
- 6) 等待传输完成,即发送 STOP Bit。

2. 从模式

1) I2C 初始化,初始化包括如下配置:

打开 I2C 时钟:

释放 I2C 复位;

配置 Slave 地址;

使能从模式;

- 2) 根据需要配置相应的中断使能。
- 3) 如果 Slave 是接收数据,则当 RX Data Received Pending 置位时,读 RX data fifo 接收数据。
- 4) 如果 Slave 是发送数据,则当 TX Data Prepare Pending 置位时,写 TX data fifo 发送数据。
- 5) 等待传输完成,即收到 STOP Bit,Transfer Finished Pending 置位。

5. 版本历史

版本	日期	详细说明
V0.1.0	2023.3.14	初始版本
V0.1.1	2023.4.6	增加 BTM4,删减 ATM1 相关描述
V0.1.2	2023.4.28	增加 GPIO 注意事项说明

免责声明

珠海智融科技股份有限公司(以下简称"本公司")将按需对本文件内容作相应修改,且不 另行通知。请客户自行在本公司官网下载最新文本。

本文件仅供客户参考,本公司不对客户产品的设计、应用承担任何责任。客户应保证在将本公司产品集成到任何产品中,不会侵犯第三方知识产权,如客户产品发生侵权行为,本公司将不承担任何责任。

客户转售本公司产品所做的任何虚假宣传,本公司将对此不承担任何责任;如本文件被第三方篡改,篡改后的文本对本公司不产生任何约束力。