Резюме

Функция f непрерывна в точке x_0 , $x_0 \in \mathbf{R}$, если она определена в окрестности V_{x_0} этой точки и если $\lim_{x \to x_0} f(x) = f(x_0)$.

Пусть функции f и g непрерывны в точке x_0 . Сумма f+g, произведение $f\cdot g$ и, если $g(x_0)\neq 0$, то и частное $\frac{f}{g}$ есть функции, непрерывные в точке x_0 .

Функция f непрерывна на интервале (a;b), a < b, если она непрерывна в каждой его точке. Функция f непрерывна на сегменте [a;b], a < b, если она непрерывна на интервале (a;b) и, кроме того, $\lim_{x \to a+0} f(x) = f(a)$, $\lim_{x \to b-0} f(x) = f(b)$. Справедливы утверждения: если f непрерывна на [a;b], то

- 1) f ограничена на [a;b];
- (a;b) своих точных граней;
- 3) если $f(a) \cdot f(b) < 0$, то на [a;b] существует хотя бы одна точка ξ такая, что $f(\xi) = 0$;
- 4) если $f(a) \neq f(b)$, то для всякого C, лежащего между f(a) и f(b), существует $\xi \in (a;b)$ такая, что $f(\xi) = C$.

Пусть функция f возрастает (убывает) и непрерывна на (a;b). Тогда обратная функция f^{-1} возрастает (убывает) и непрерывна на интервале (c;d) = E(f).

Контрольные вопросы к главе 4

- 1. В чем состоит определение функции, непрерывной в точке x_0 числовой оси? Покажите, что $\sin x$ и $\cos x$ функции, непрерывные в каждой точке x_0 , $x_0 \in \mathbf{R}$.
- 2. Опишите понятие «приращение функции f в точке x_0 , $x_0 \in \mathbb{R}$ ». В чем состоит свойство приращения Δf , эквивалентное непрерывности функции f?

- 3. Дайте определения: а) точки разрыва функции f; б) точки разрыва первого рода функции f; точки разрыва второго рода функции f. Приведите примеры.
 - 4. Что такое точка устранимого разрыва? Приведите пример.
- 5. Сформулируйте теорему о непрерывности сложной функции. Опираясь на нее, найдите пределы:
 - a) $\lim_{x\to 0} \cos(\sin x)$; б) $\lim_{x\to \pi/2} \sin(\cos x)$.
- 6. Опишите понятие о функции, обратной функции f, приведите примеры. Какое свойство функции f гарантирует существование обратной функции f^{-1} ?
- 7. Функция f непрерывна и возрастает на интервале (a;b), a < b. Что можно утверждать об области определения обратной функции f^{-1} и ее свойствах?
- 8. Перечислите основные элементарные функции. Опишите понятие «элементарная функция», приведите примеры.
- 9. Элементарная функция f определена на интервале (a;b), a < b. Будет ли f непрерывной на (a;b)?

Ответы на контрольные вопросы

- 5. a) 1; б) 0.
- 6. Строгая монотонность f в области ее определения.