Mathematical Frameworks for Integrative Analysis of Multi-omics Biological Data

This manuscript (<u>permalink</u>) was automatically generated from <u>BIRSBiointegration/whitePaper@dc3e92c</u> on June 22, 2020.

Authors

• Kim-Anh Lê Cao

Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Australia · Funded by Grant National Health and Medical Research Council Career Development fellowship (GNT1159458)

Aedin C Culhane

© 0000-0002-1395-9734 · ○ aedin · У AedinCulhane

Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Biostatsitics, Harvard TH Chan School of Public Health, Boston, MA, USA · Funded by Chan Zuckerberg Initative, NIH, DoD (need to get grant IDs)

Elana Fertig

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA · Funded by National Institute of Health, National Cancer Institute; National Institute of Health, National Institute of Dental and Craniofacial Research; Lustgarten Foundation; Emerson Foundation; Allegheny Health Network

Jane Roe

Department of Something, University of Whatever; Department of Whatever, University of Something · Funded by XX

Abstract

Introduction to single cell and imaging multi-omics

Current multi-omic technologies

Challenges for interpretation

Need for technology-specific questions and analysis methods vs one size fits all data blender

Case studies

scNMT-seq as a case-study for epigenetic regulation

Overview and biological question

Computational challenges

- Identification of multi-omics signatures that characterise lineage, stage or both.
- Handling missing values
- Do epigenetic changes in some genomic contexts affect cell fate decision more than others? If so, how?

Methods for stats/maths analyses and results summary

scRNA-seq + FISH as a case study for spatial transcriptomics

Overview and biological question

Computational challenges

- Can scRNA-seq data be overlaid onto seqFISH for resolution enhancement
- What is the minimal number of genes needed for data integration?
- Are there signatures of cellular co-localization or spatial coordinates in the non-spatial scRNA-seq data?

Methods for stats/maths analyses and results summary

Spatial proteomics and cross-study analysis

Overview and biological question

Computational challenges

- Integrating partially-overlapping proteomic data collected on different patients with similar phenotypes
- Integration of spatial x-y coordinate co-location and co-expression
- Integration with other 'omics datasets (e.g., scRNA-seq) to support the results of these proteomic analyses
- Can we predict the spatial expression patterns of proteins measured on mass-tag but not measured in the MIBI-TOF data?
- What additional information can we learn about the different macrophage and immune populations in breast cancer by conducting integrated analyses of these datasets?

Methods for stats/maths analyses and results summary

Overview of common analytical methods spanning technologies / case studies

- matrix factorization
- neural network / autoencoders

Data structures and software packages to enable analyses

Basic objectives:

- Support development of efficient data containers/data services, balancing abstraction with concrete responsiveness to new biotechnologies
- Support software developers in achievement of scalability in their tools
- Support end-users in adoption and successful use

A software ecosystem for multimodal single cell genomics

- Defining the ecosystem; scope and principles of evolution
- Current content targets
 - spatial transcriptomics
 - o scNMT-seq ...
- Governance concepts

Containers for developers and users

Details of working components

- Bioc/multiAssayExperiment for single cell
- new classes for proteomics
- PyTorch

Techniques and challenges for benchmarking methods

- realistic simulation studies
- cross-validation, issues in matching dimensions of latent space across folds
- cross-study validation
- benchmark datasets

Relevant citations to include as literature review on benchmarking multi-modal methods:

- Fertig 2012 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460736/
- Haibe-Kains 2012 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283537/
- Meng 2019 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692785/
- Pratapa 2020 https://www.ncbi.nlm.nih.gov/pubmed/31907445

Other links:

- Levi Waldron's benchmarking repo https://github.com/waldronlab/awesome-bioinformatics-benchmarks
- Mike's reviews / evaluation section of awesome-multi-omics https://github.com/mikelove/awesome-multi-omics+multi-omics-reviews--evaluations

Discussion

Emerging analytical methods and technologies

Community needs for data structures, analysis methods, etc

Glossary

• **Term**: Write the definition as a sentence.

References