Algunos comandos de GAMS

Javier León Caballero javileon@ucm.es

Universidad Complutense de Madrid

25 de febrero de 2020

Accediendo a elementos

- Los elementos de un conjunto (set) de GAMS son cadenas de caracteres
- Para acceder a un elemento en específico hay que utilizar comillas

```
sets
i ciudades /1*20/;
* ...
eq1..X('1') + X('2') =L= 40;
```

- El tamaño de un conjunto se obtiene usando card(i)
- La posición del elemento i dentro de su conjunto se obtiene con ord(i)

Operador condicional

 A veces querremos hacer sumatorios solo en algunos términos, o definir ecuaciones para algunos índices:

$$\sum_{i|d_i \ge 0} X_i = 100$$

$$\sum_{i} \sum_{j>i} X_{ij} \le 13$$

$$X_i \ge MY_i \qquad \forall i > 1$$

Operador condicional

 A veces querremos hacer sumatorios solo en algunos términos, o definir ecuaciones para algunos índices:

$$\sum_{i|d_i \ge 0} X_i = 100$$

$$\sum_{i} \sum_{j>i} X_{ij} \le 13$$

$$X_i \ge MY_i \quad \forall i > 1$$

 Ojo: aquello sobre lo que se condicione ha de ser un dato, y no una variable. Si X_i es una variable, lo siguiente no se podrá implementar directamente:

$$\sum_{i|X_i\geq 0}Y_i=20$$

Operador condicional: \$

$$\sum_{i|d_i \ge 0} X_i = 100$$

$$\sum_{i} \sum_{j > i} X_{ij} \le 13$$

$$X_i \ge MY_i \qquad \forall i > 1$$

```
equations
```

Una ejecución de GAMS (sin fallos) puede terminar por lo siguiente:

- Solución óptima encontrada (optimal solution)
- No existe solución factible (model infeasible)
- No existe solución acotada (unbounded)

Una ejecución de GAMS (sin fallos) puede terminar por lo siguiente:

- Solución óptima encontrada (optimal solution)
- No existe solución factible (model infeasible)
- No existe solución acotada (unbounded)
- Se han agotado los recursos: memoria, iteraciones, tiempo (por defecto: 1000s)
- En problemas con variables enteras, se ha alcanzado el gap de integralidad (*integrality gap* deseado (por defecto: 0.1)

¿Qué es el gap?

$$P: \min\{c^tx+d^ty\mid Ax+By=b, x\in\mathbb{R}^n, y\in\mathbb{Z}^m, x\geq 0, y\geq 0\}$$

• Buscamos el óptimo de P, un problema lineal con variables enteras

$$P: \min\{c^t x + d^t y \mid Ax + By = b, x \in \mathbb{R}^n, y \in \mathbb{Z}^m, x \ge 0, y \ge 0\}$$

- Buscamos el óptimo de P, un problema lineal con variables enteras
- El solver va a utilizar algoritmos como *branch and bound*, que irá buscando soluciones de dos maneras:

$$P: \min\{c^t x + d^t y \mid Ax + By = b, x \in \mathbb{R}^n, y \in \mathbb{Z}^m, x \ge 0, y \ge 0\}$$

- Buscamos el óptimo de P, un problema lineal con variables enteras
- El solver va a utilizar algoritmos como *branch and bound*, que irá buscando soluciones de dos maneras:
 - 1. Soluciones que cumplan las condiciones de integralidad de las *y*, factibles. Según avance el algoritmo, el valor objetivo de estas soluciones *enteras* irá decreciendo (por estar minimizando)

$$P: \min\{c^t x + d^t y \mid Ax + By = b, x \in \mathbb{R}^n, y \in \mathbb{Z}^m, x \ge 0, y \ge 0\}$$

- Buscamos el óptimo de P, un problema lineal con variables enteras
- El solver va a utilizar algoritmos como *branch and bound*, que irá buscando soluciones de dos maneras:
 - 1. Soluciones que cumplan las condiciones de integralidad de las *y*, factibles. Según avance el algoritmo, el valor objetivo de estas soluciones *enteras* irá decreciendo (por estar minimizando)
 - 2. Cotas inferiores. Son soluciones a problemas *relajados*. Estas soluciones **no** son necesariamente enteras y por tanto no son factibles de *P*. Cada paso se van añadiendo más restricciones del problema original, y por tanto los valores objetivos irán aumentando (por estar minimizando)

$$P : \min\{c^t x + d^t y \mid Ax + By = b, x \in \mathbb{R}^n, y \in \mathbb{Z}^m, x \ge 0, y \ge 0\}$$

- Buscamos el óptimo de P, un problema lineal con variables enteras
- El solver va a utilizar algoritmos como branch and bound, que irá buscando soluciones de dos maneras:
 - 1. Soluciones que cumplan las condiciones de integralidad de las *y*, factibles. Según avance el algoritmo, el valor objetivo de estas soluciones *enteras* irá decreciendo (por estar minimizando)
 - Cotas inferiores. Son soluciones a problemas relajados. Estas soluciones no son necesariamente enteras y por tanto no son factibles de P. Cada paso se van añadiendo más restricciones del problema original, y por tanto los valores objetivos irán aumentando (por estar minimizando)
- GAMS llama a la solución entera best integer, y a la cota best estimate. Una vez que estos valores coinciden se sabe que se ha llegado al óptimo. Si no:

$$\mathsf{gap} = \frac{\mathsf{best\ integer} - \mathsf{best\ estimate}}{\mathsf{best\ integer}}$$

Gap: fichero .log

69		Nodes				Cuts/		
70	Noc	de Left	Objective	IInf	Best Integer	Best Bound	ItCnt	Gap
71					ŭ			·
72		0+ 0			46.5000			
73	Found	incumbent	of value 46.	.500000	after 0.11 sec.	(21.83 ticks)		
74		0 0	19.6337	8	46.5000	19.6337	251	57.78%
75		0+ 0			20.1219	19.6337		2.43%
76	Found	incumbent	of value 20.	.121858	after 0.11 sec.	(23.97 ticks)		
77		0 0	19.6407	9	20.1219	Cuts: 3	263	2.39%
78		0 0	19.6435	10	20.1219	MIRcuts: 2	280	2.38%
79		0+ 0			20.0206	19.6435		1.88%
80	Found	incumbent	of value 20.	.020616	after 0.13 sec.	(39.28 ticks)		
81		0 0	19.6446	12	20.0206	Cuts: 2	284	1.88%
82		0+ 0			19.7124	19.6446		0.34%
83	Found	incumbent	of value 19	71239/	after 0 13 sec	(15 17 ticks)		

Figura 1: Ejemplo de gap mostrado por CPLEX/GAMS

Gap: optcr

```
* Opciones antes de resolver
* Gap relativo tolerado = 0 -> No se parará hasta el óptimo
option opter = 0;

* 1 hora de tiempo máximo
option reslim = 3600;

model mochila /valorfunc, fobj, dualescenarios/;
solve mochila using mip minimizing OBJ;
```

Sentencia model

• Una vez que se han definido las restricciones, construimos un modelo usando la sentencia model, incluyendo las ecuaciones que queramos:

```
model mochila /valorfunc, fobj, dualescenarios/;
```

• Es posible usar la palabra all para incluir todas las ecuaciones:

```
model mochila /all/;
```

Sentencia model

 Un mismo .gms puede tener varios modelos definidos, los cuales se pueden unir, o restar:

```
model modelo1 /valorfunc, fobj, dualescenarios/;

* Las restricciones de modelo1, junto a una restricción más
model modelo2 /modelo1, otrarestriccion/;

* Las restricciones de modelo2, quitando una restricción
model modelo3 /modelo2-valorfunc/;
```

Más info:

https://www.gams.com/latest/docs/UG_ModelSolve.html

Los resultados: solve y display

• Una vez definido el modelo, se llama a solve para resolverlo:

```
model mochila /valorfunc, fobj, dualescenarios/;

* using MIP: mixed—integer programming
* using LP: linear programming
solve mochila using MIP minimizing OBJ;
```

 Los resultados se ven en el .1st. Es cómodo usar display para ver los valores de las variables que nos interesen:

```
display OBJ.1, X.1, Y.1;
```

Sobre los sufijos

Para ver el valor de la variable X hay que poner X.1. Esto es así ya que el valor es solo uno de los atributos de la variable.

```
* Tras el solve: valor (level) de X, y marginal display X.1, X.m;
```

Hay otros atributos que pueden fijarse antes del solve: .up (upper bound), .lo (lower bound), .fx (fixed value)

```
* ANTES del solve

* Para todo i:

X.up(i) = 5;

X.lo(i) = 2;

* Para algún i en específico:

X.up('5') = 7;

X.fx('3') = 3;
```

El atributo .1 puede ser usado antes del solve para fijar un valor inicial

Sobre los sufijos

Para ver el valor de la variable X hay que poner X.1. Esto es así ya que el valor es solo uno de los atributos de la variable.

```
* Tras el solve: valor (level) de X, y marginal display X.1, X.m;
```

Hay otros atributos que pueden fijarse antes del solve: .up (upper bound), .lo (lower bound), .fx (fixed value)

```
* ANTES del solve

* Para todo i:

X.up(i) = 5;

X.lo(i) = 2;

* Para algún i en específico:

X.up('5') = 7;

X.fx('3') = 3;
```

El atributo .1 puede ser usado antes del solve para fijar un valor inicial

Tipos de variables

Tras definir las variables, se puede establecer un dominio:

- free (por defecto): Variable real, sin cotas. Variable objetivo ha de ser de este tipo
- positive: real mayor o igual a 0
- negative: real menor o igual a 0
- binary: 0 o 1
- integer: entre 0 y una cota (por defecto, 100)
- Otros tipos: sos1, sos2, semicont, semiint. Más info: https://www.gams.com/latest/docs/UG_Variables.html#UG_ Variables_VariableTypes

```
integer variable X(i);

* Aumentar cota superior
X.up(i) = 500;
```

Licencia de GAMS

GAMS proporciona una licencia de prueba de manera gratuita (previo registro). Sus limitaciones:

• 2000 vars y 2000 restricciones (para problemas LP y MIP)

Conjuntos ordenados: problema

Problema de inventario

Una empresa fabrica un determinado producto, y tiene que satisfacer la demanda durante 4 periodos. En cada periodo ha de decidir cuántas unidades fabricar (cada una a coste cp_t) y cuántas almacenar (a coste ca_t), de manera que se satisfaga la demanda dem_t . No puede almacenar más de alm_max unidades cada periodo, y empieza con un inventario de inv_ini unidades. Formular el modelo lineal que minimiza el coste.

Conjuntos ordenados: problema

Problema de inventario

Una empresa fabrica un determinado producto, y tiene que satisfacer la demanda durante 4 periodos. En cada periodo ha de decidir cuántas unidades fabricar (cada una a coste cp_t) y cuántas almacenar (a coste ca_t), de manera que se satisfaga la demanda dem_t . No puede almacenar más de alm_max unidades cada periodo, y empieza con un inventario de inv_ini unidades. Formular el modelo lineal que minimiza el coste.

$$\begin{aligned} &\min \ \sum_t cp_t X_t + ca_t Y_t \\ &\text{s.a.} \ Y_t = Y_{t-1} + X_t - dem_t & \forall t > 1 \\ &Y_1 = inv_ini + X_1 - dem_1 \\ &X_t, Y_t \in \mathbb{Z}^{\geq 0} \end{aligned}$$

Conjuntos ordenados: en GAMS

$$\begin{aligned} &\min \ \sum_t cp_t X_t + ca_t Y_t \\ &\text{s.a.} \ Y_t = Y_{t-1} + X_t - dem_t & \forall t > 1 \\ &Y_1 = inv_ini + X_1 - dem_1 \\ &X_t, Y_t \in \mathbb{Z}^{\geq 0} \end{aligned}$$

```
balance(t)$(ord(t)>1).. Y(t) = Y(t-1) + X(t) - dem(t);
balanceini.. Y('1') = inv_ini + X('1') - dem('1');
```

GAMS interpreta t-1 como el elemento anterior del conjunto ordenado t. También se puede usar t+1 o t-n

Conjuntos ordenados: en GAMS

```
balance(t)\$(ord(t)>1)...Y(t) = Y(t-1) + X(t) - dem(t);
balanceini.. Y('1') = inv_ini + X('1') - dem('1');
```

Más compacto aún:

```
bal(t).. Y(t) = Y(t-1) + X(t) - dem(t) + inv_ini$(ord(t)=1);
```

- Cuando t vale 1, Y(t-1) no está definido, así que GAMS lo interpreta como un 0
- inv_ini\$(ord(t)=1) suma inv_ini solo para t = 1, para el resto de t's esto vale 0

Conjuntos ordenados: circulares

- X(t-1) se refiere al elemento anterior a t. Para el primer elemento el anterior no existe, y vale 0
- Sin embargo hay casos en que los conjuntos pueden ser *circulares*, como por ejemplo estaciones
- En ese caso, el elemento anterior al primero sería el último. Para esto ponemos X(t--1)