

Introducción a la Programación Practica 3

Medina Martinez Jonathan Jason 2023640061 25 de marzo del 2023

Índice

1.	Objetivo					
2.	Intr	Introducción 4				
3.	Des	arrollo	5			
	3.1.	calc_altura_peso(altura_cm, peso_kg)	5			
		3.1.1. Función	5			
		3.1.2. Script	5			
		3.1.3. Ejecución	6			
	3.2.	$\mathrm{fdex}(x)\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	6			
		3.2.1. Función	6			
		3.2.2. Script	6			
		3.2.3. Ejecución	7			
		3.2.4. Grafica	7			
	3.3.	r(ang)	8			
		3.3.1. Función	8			
		3.3.2. Ejecución	8			
		3.3.3. Script	8			
		3.3.4. Ejecución	8			
		3.3.5. Grafica	9			
	3.4.	angulostriangulo(a,b,c) 	10			
		3.4.1. Función	10			
		3.4.2. Ejecución	10			
		3.4.3. Script	11			
		3.4.4. Ejecución	12			
	3.5.	distancia(x0, y0, A, B, C)	13			
		3.5.1. Función	13			
		3.5.2. Script	14			
		3.5.3. Ejecución	14			
	3.6.	$resistencia_paralelo(resistencias) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	15			
		3.6.1. Función	15			
		3.6.2. Ejecución	15			
		3.6.3. Script	15			
		3.6.4. Ejecución	16			
	3.7.	$rango(a,b) \ \ldots \ $	17			
		3.7.1. Función	17			
		3.7.2. Ejecución	17			
		3.7.3. Script	17			
		3.7.4. Ejecución	18			
	3.8.	$\mathrm{energy}(m) \ \ldots $	19			
		3.8.1. Función	19			
		3.8.2. Ejecución	19			

4 .	Con	clusiór	n	25
		3.10.4.	. Ejecución	 24
			. Script	
		3.10.2.	. Ejecución	 23
			. Función	
	3.10.	nmoles	$s(m,\mathrm{MW})\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.\;.$	 23
		3.9.5.	Grafica	 22
		3.9.4.	Ejecución	 22
		3.9.3.	Script	 22
		3.9.2.	Ejecución	 21
		3.9.1.	Función	 21
	3.9.	height	;	 21
		3.8.5.	Grafica	 20
		3.8.4.	Ejecución	 19
		3.8.3.	Script	 19

1. Objetivo

El objetivo de esta práctica es desarrollar funciones que puedan ser llamadas desde la ventana de comandos para convertir unidades de medida.

2. Introducción

En la práctica 4 de Herramientas Computacionales, se busca desarrollar habilidades para implementar funciones en MATLAB que puedan ser llamadas desde la ventana de comandos. Las funciones a implementar tienen distintas aplicaciones como el cálculo de la altura y masa de una persona, cálculo de la resistencia equivalente de varias resistencias en paralelo y la distancia entre un punto y una recta en el plano. Además, se deben programar distintos ejercicios en los que se aplican estas funciones y se solicita al usuario interactuar con ellas.

3. Desarrollo

3.1. calc_altura_peso(altura_cm, peso_kg)

Escriba una función en MATLAB con dos argumentos de entrada y dos de salida. La función debe calcular la altura en pulgadas y la masa en libras de una persona a partir de su altura en centímetros y de su peso en kilogramos. Los argumentos de entrada de la función serán la altura en centímetros y el peso en kilogramos, y los argumentos de salida deben ser la altura en pulgadas y la masa en libras. Pruebe su función en la ventana de comandos utilizando su altura y su peso. Posteriormente, cree un programa que solicite al usuario su altura en centímetros y su peso en kilogramos y le informe al usuario la respectiva conversión.

3.1.1. Función

```
function [altura_pulgadas, peso_libras] = calc_altura_peso(altura_cm,
   peso_kg)
% CALC_ALTURA_PESO Convierte la altura de cm a pulgadas y el peso de
% kilogramos a libras.
% Sintaxis:
%
   [altura_pulgadas, peso_libras] = calc_altura_peso(altura_cm, peso_kg)
%
%
    altura_cm - Altura en centimetros
%
    peso_kg - Peso en kilogramos
%
% Salidas:
    altura_pulgadas - Altura en pulgadas
    peso_libras - Peso en libras
altura_pulgadas = altura_cm / 2.54;
peso_libras = peso_kg / 2.205;
end
```

3.1.2. Script

3.1.3. Ejecución

```
>> convertir
Por favor ingrese su altura en centimetros: 174
Por favor ingrese su peso en kilogramos: 80
Su altura en pulgadas es 68.50 y su masa en libras es 36.28.
```

$3.2. \quad fdex(x)$

Escriba una función MATLAB para la siguiente función matemática:

$$f(x) = 2.9x^4 + 12.5x^2 - 6 * x$$

Escriba la función de forma que x pueda ser un vector. Pruebe su función en la ventana de comandos con f(-6) y f(15). Posteriormente, cree un programa que solicite al usuario un límite inferior a y un límite superior b y grafique la función f(x) en el rango $a \le x \le b$.

3.2.1. Función

```
function y = fdex(x)

% FDEX Calcula la siguiente funcion matematica:
% fdex(x) = ((2.9*x)^4) + ((12.5*x)^2) - (6*x)
%
% Sintaxis:
% y = fdex(x)
%
% Entrada:
% x - El valor de la variable
%
% Salida:
% y - El resultado de la funcion

y = ((2.9*x).^4) + ((12.5*x).^2) - (6*x);
end
```

3.2.2. Script

```
% Este programa permite graficar la funcion f(x) en un rango especificado
% por el usuario.

a = input('Ingrese el limite inferior a: ');

b = input('Ingrese el limite superior b: ');

x = linspace(a, b, 1000);

y = fdex(x);

plot(x, y, 'blue', 'LineWidth', 1.5);

xlabel('x');
```

```
ylabel('f(x)');
title('Grafica de la funcion f(x)');
```

3.2.3. Ejecución

```
>> programa2
Ingrese el limite inferior a: -50
Ingrese el limite superior b: 50
```

3.2.4. Grafica

$3.3. \quad r(ang)$

Escriba una función MATLAB para la siguiente función matemática:

$$r(\theta) = 2(1, 2 - \sin^2(\theta))$$

Escriba la función de forma que θ pueda ser un vector. Pruebe su función en la ventana de comandos con $r(\frac{\pi}{4})$ y $r(\frac{3\pi}{4})$.

3.3.1. Función

```
function y = r(ang)

% Calcula la funcion r(ang) = 2(1.2 - sin^2(ang)) para un vector de
% valores de ang

y = 2*(1.2 - sin(ang).^2);
end
```

3.3.2. Ejecución

```
>> r(pi/4)
ans =
1.4000
>> r(3*pi/4)
ans =
1.4000
```

Posteriormente, cree un programa que grafique la función $r(\theta)$ en el rango $0 \le \theta \le 2\pi$.

3.3.3. Script

```
% Este programa permite graficar la funcion r(ang) en un rango de 0 a 2pi.
ang = linspace(0, 2*pi, 1000);
A = r(ang);
plot(ang, A, 'red', 'LineWidth', 1.5);
xlabel('ang');
ylabel('r(ang)');
title('Grafica de r(ang)');
```

3.3.4. Ejecución

```
>> programa3
```

3.3.5. Grafica

3.4. angulostriangulo(a, b, c)

Escriba una función que calcule los ángulos de un triángulo a partir de las longitudes de sus lados. La función deberá solicitar los tres lados (a, b, c) y devolver los tres ángulos (α, β, γ) .

3.4.1. Función

```
function [alpha, beta, gamma] = angulos_triangulo(a, b, c)
% ANGULOSTRIANGULO Funcion que calcula los angulos de un
% triangulo a partir de las longitudes de sus lados.
% Sintaxis:
% angulosTriangulo(a, b, c)
% Entradas:
\% a - longitud del lado a del triangulo
\% b - longitud del lado b del triangulo
\% c - longitud del lado c del triangulo
% Salida:
% alpha - angulo opuesto al lado a en grados
% beta - angulo opuesto al lado b en grados
% gamma - angulo opuesto al lado c en grados
alpha = acosd((b^2 + c^2 - a^2) / (2 * b * c));
beta = acosd((a^2 + c^2 - b^2) / (2 * a * c));
gamma = acosd((a^2 + b^2 - c^2) / (2 * a * b));
end
```

3.4.2. Ejecución

Pruebe su función con los siguientes datos:

$$a = 10, b = 15, c = 7$$

```
>> [a, b, c] = angulosTriangulo(10, 15, 7)

a =

34.0477

b =

122.8783

c =

23.0739
```

$$a = 6, b = 8, c = 10$$

```
>> [a, b, c] = angulosTriangulo(6, 8, 10)

a =

36.8699

b =

53.1301

c =

90
```

$$a = 200, b = 75, c = 250$$

```
>> [a, b, c] = angulosTriangulo(200, 75, 250)

a =
41.4096

b =
14.3615

c =
124.2289
```

3.4.3. Script

Posteriormente, escriba un programa que solicite al usuario los tres lados de un triangulo y le muestra los tres angulos.

```
% Programa para solicitar los tres lados del triangulo al usuario
a = input("Ingrese el lado a: ");
b = input("Ingrese el lado b: ");
c = input("Ingrese el lado c: ");
[alpha, beta, gamma] = angulostriangulo(a, b, c);
fprintf("Los angulos del triangulo son:\n");

fprintf("alpha = %.2f grados\n", alpha);
fprintf("beta = %.2f grados\n", beta);
fprintf("gamma = %.2f grados\n", gamma);
```

3.4.4. Ejecución

```
>> programa4
Ingrese el lado a: 15
Ingrese el lado b: 20
Ingrese el lado c: 10
Los angulos del triangulo son:
alpha = 46.57 grados
beta = 104.48 grados
gamma = 28.96 grados
```

```
>> programa4
Ingrese el lado a: 64
Ingrese el lado b: 78
Ingrese el lado c: 100
Los angulos del triangulo son:
alpha = 39.78 grados
beta = 51.25 grados
gamma = 88.97 grados
```

3.5. distancia(x0, y0, A, B, C)

Escriba una función MATLAB que calcule la distancia entre un punto (x_0, y_0) y una recta

$$Ax + By + C = 0$$

en el plano. La función debería recibir como parámetros $x_0, y_0, A, B y C y$ devolver la distancia d.

3.5.1. Función

```
function d = distancia(x0, y0, A, B, C)
% DISTANCIA Calcula la distancia entre un punto (x0, y0)
% y una recta Ax + By + C = 0
%
% Entradas:
% x0 - El valor de x0
% y0 - El valor de y0
% A - El valor de B
% C - El valor de C
%
% Salida:
% d - La distancia

res = abs(A*x0 + B*y0 + C) / sqrt(A^2 + B^2);
d = res;
end
```

Pruebe su función con lo siguiente:

Punto: (2,4), recta:

$$y = (2x+6)/3.5$$

```
>> x0 = 2;
y0 = 4;
A = -2/3.5;
B = 1;
C = 6/3.5;
>> distancia(x0, y0, A, B, C)
ans =
3.9691
```

Punto: (11, 2): recta:

$$y = -5x + 2$$

```
>> x0 = 11;
y0 = 2;
A = -5;
B = -1;
C = 2;
distancia(x0, y0, A, B, C)
ans =
```

Posteriormente, cree un programa que solicite al usuario un punto y las constantes de la ecuación de la recta, y que le muestre en pantalla la distancia.

3.5.2. Script

```
%Programa que solicita los valores de x0, y0, A, B, C para calcular la
% distancia de unpunto a una recta de la forma Ax + By + C = 0

x0 = input('Ingrese la coordenada x del punto: ');
y0 = input('Ingrese la coordenada y del punto: ');

A = input('Ingrese la constante A de la ecuacion de la recta: ');
B = input('Ingrese la constante B de la ecuacion de la recta: ');
C = input('Ingrese la constante C de la ecuacion de la recta: ');
d = distancia(x0, y0, A, B, C);

fprintf(['La distancia entre el punto (%g, %g) y la recta %gx + %gy + ' ...
'%g = 0 es: %g\n'], x0, y0, A, B, C, d);
```

3.5.3. Ejecución

```
>> programa5
Ingrese la coordenada x del punto: 15
Ingrese la coordenada y del punto: 10
Ingrese la constante A de la ecuacion de la recta: 25
Ingrese la constante B de la ecuacion de la recta: 12
Ingrese la constante C de la ecuacion de la recta: 33
La distancia entre el punto (15, 10) y la recta 25x + 12y + 33 = 0 es: 19.0402
```

```
>> programa5
Ingrese la coordenada x del punto: 65
Ingrese la coordenada y del punto: -3
Ingrese la constante A de la ecuacion de la recta: 13
Ingrese la constante B de la ecuacion de la recta: 26
Ingrese la constante C de la ecuacion de la recta: 112
La distancia entre el punto (65, -3) y la recta 13x + 26y + 112 = 0 es: 30.2385
```

3.6. resistencia_paralelo(resistencias)

Escriba una función que calcule R_{Eq} . Los parámetros de entrada deberán ser un vector en el cual cada elemento representa un valor de la resistencia, y la salida sera el valor de la resistencia equivalente R_{Eq} .

3.6.1. Función

```
function req = resistencia_paralelo(resistencias)
% RESISTENCIA_PARALELO Calcula la resistencia equivalente de un conjunto de
% resistencias conectadas en paralelo
%
% Entrada:
% resistencias - vector que contiene los valores de resistencia
    individuales
%
% Salida:
% req - La resistencia equivalente
resistencias_inv = 1 ./ resistencias;
suma_inv = sum(resistencias_inv);
req = 1 / suma_inv;
end
```

Utilice su función para calcular la resistencia equivalente de las siguientes resistencias conectadas en paralelo:

50, 75, 300, 60, 500, 180 y 200.

3.6.2. Ejecución

```
>> resistencia_paralelo([50, 75, 300, 60, 500, 180, 200])
ans =
15.1771
```

Posteriormente, cree un programa que permita al usuario proporcionar el valor de las resistencias en paralelo en forma de vector, y le devuelva el valor de la resistencia equivalente.

3.6.3. Script

```
% Programa para pedir al usuario el vector de resistencias
resistencias = input(['Ingrese los valores de resistencia en paralelo,' ...
' separados por comas: ']);
req = resistencia_paralelo(resistencias);
fprintf(['La resistencia equivalente de las resistencias en paralelo' ...
' [%s] es: %g\n'], num2str(resistencias), req);
```

3.6.4. Ejecución

>> programa6

Ingrese los valores de resistencia en paralelo, separados por comas y entre []:[110, 33, 330, 250, 256]

La resistencia equivalente de las resistencias en paralelo [110 33 330 250 256] es: 19.8687

>> programa6

Ingrese los valores de resistencia en paralelo, separados por comas y entre []:[100, 250, 45, 56, 47, 12]

La resistencia equivalente de las resistencias en paralelo [100 250 45 56 47 12] es: 6.30162

>> A = randi(1000,1,50)								
A =									
Columns 1 through 15									
133 546 828 838 475 836	834	204	545	875	122	857	900	218	77
Columns 16 through 30									
470 414 503 126 402 527	133	871 (603	266	865	59	458	723	339
Columns 31 through 45									
895 779 70 279 709 744	380	865 4	420	240	598	480	899	935	818
Columns 46 through 50									
900 66 336 5	829								
>> programa6 Ingrese los valores de []:A	resiste	ncia en	n para	lelo,	separa	idos po	or com	as y ei	ntre
La resistencia equival 834 204 545 875 133 871 603 266 380 865 420 240 829] es: 2.69756	122 8	57 90 9 458	0 218 723		475 402	836 527 8		14 503 9 70	

$3.7. \quad \text{rango}(a,b)$

Escriba una función que proporcione un numero entero aleatorio en un rango concreto especificado a partir de dos números. La función deberá tener dos argumentos de entrada a y b, los cuales determinaran el rango, y la salida sera el numero aleatorio calculado n.

3.7.1. Función

```
function n = rango(a,b)
% RANGO Genera un numero entero aleatorio en el rango [a,b]
%
% Entradas:
% a - Limite inferior del rango
% b - Limite superior del rango
%
% Salida:
% n - Numero aleatorio dentro del rango dado
n = randi([a,b]);
end
```

Utilice su función en la Ventana de Comandos para:

3.7.2. Ejecución

Generar un numero aleatorio entre 1 y 49

```
>> rango(1,49)
ans =
44
```

Generar un numero aleatorio entre -35 y -2

```
>> rango(-35,-2)
ans =
-13
```

Posteriormente, cree un programa que pida al usuario el rango y le muestre al usuario el numero aleatorio generado dentro de dicho rango.

3.7.3. Script

```
% Programa para pedir al usuario el rango
a = input('Introduce el limite inferior del rango: ');
b = input('Introduce el limite superior del rango: ');
n = rango(a, b);
fprintf('El numero aleatorio generado entre %d y %d es %d.\n', a, b, n);
```

3.7.4. Ejecución

```
>> programa7
Introduce el limite inferior del rango: 23
Introduce el limite superior del rango: 158
El numero aleatorio generado entre 23 y 158 es 142.
```

```
>> programa7
Introduce el limite inferior del rango: -150
Introduce el limite superior del rango: -23
El numero aleatorio generado entre -150 y -23 es -91.
```

```
>> programa7
Introduce el limite inferior del rango: 150
Introduce el limite superior del rango: 235
El numero aleatorio generado entre 150 y 235 es 162.
```

3.8. energy(m)

La ecuación más famosa en física es:

$$E = mc^2$$

que relaciona la energía E con la masa m. La rapidez de la luz en el vacío, c, es la propiedad que vincula a las dos. La rapidez de la luz en el vacío es $2,9979 \times 10^8$ m/s.

Cree una función llamada energy para encontrar la energía correspondiente a una masa dada en kg. Su resultado estará en Joules, pues 1 kg \cdot m²/s² = 1 joule.

3.8.1. Función

```
function E = energy(m)
% ENERGY Calcula la energia E correspondiente a una masa m en kg,
% utilizando E = mc^2
%
% Entrada:
% m - Masa en kg
%
% Salida:
% E - Energia
c = 2.9979e8;
E = m * c^2;
end
```

3.8.2. Ejecución

```
>> energy(100)
ans =
8.9874e+18
```

Cree un programa que use su función para encontrar la energía correspondiente a masas desde 1 kg hasta 10^6 kg. Use la función logspace para crear un vector masa adecuado.

3.8.3. Script

```
% Programa para crear vector de masas

masas = logspace(0, 6, 1000);
energias = energy(masas);
semilogx(masas, energias);
xlabel('Masa (kg)');
ylabel('Energia (joules)');
title('Energia correspondiente a diferentes masas');
```

3.8.4. Ejecución

```
>> programa8
```

3.8.5. Grafica

3.9. height

Un cohete se lanza verticalmente. En el tiempo t=0, el motor del cohete se apaga. En ese momento, el cohete ha alcanzado una altura de 500 metros y se eleva con una velocidad de 125 metros por segundo. Entonces la gravedad toma el control. La altura del cohete como función del tiempo es:

$$h(t) = -\frac{9.8}{2}t^2 + 125t + 500 \qquad \text{para } t > 0$$

Cree una función llamada 'height' que acepte un tiempo 't' como entrada y regrese la altura 'h' del cohete.

3.9.1. Función

```
function h = height(t)
% HEIGTH Calcula la altura del cohete en funcion del tiempo
%
% Entrada:
% t - Tiempo
%
% Salida:
% h - Altura

if t <= 0
h = 500;
else
h = -4.9 * t^2 + 125 * t + 500;
end
end</pre>
```

3.9.2. Ejecución

```
>> height(10)
ans =
1260
```

```
>> height(20)
ans =
1.0400e+03
```

```
>> height(16)
ans =
1.2456e+03
```

Cree un programa que grafique h(t) contra t para tiempos desde 0 hasta 30 segundos. Use un incremento de 0.5 segundo en su vector tiempo.

3.9.3. Script

```
% Programa que grafica la funcion height
t = 0:0.5:30;
h = zeros(size(t));
for i = 1:length(t)
h(i) = height(t(i));
end
plot(t, h);
xlabel('Tiempo (s)');
ylabel('Altura (m)');
title('Altura del Cohete en Funcion del Tiempo');
```

3.9.4. Ejecución

```
>> programa9
```

3.9.5. Grafica

3.10. nmoles(m, MW)

En química de secundaria, se introduce la relación entre moles y masa:

$$n = \frac{m}{MW}$$

Donde n es el número de moles de una sustancia, m es la masa de la sustancia, y MW es el peso molecular (masa molar) de la sustancia.

Cree una función llamado nmoles que requiera dos entradas vectoriales (la masa y el peso molecular) y que regrese el correspondiente número de moles.

3.10.1. Función

```
function n = nmoles(m, MW)
% NMOLES encuentra el numero de moles correspondiente a la masa y peso
% molecular dados
%
% Entradas:
% m - vector de masa de la sustancia en gramos
% MW - vector de peso molecular de la sustancia en g/mol
%
% Salida:
% n - vector de numero de moles correspondientes a cada masa y peso
% molecular
n = m ./ MW;
end
```

3.10.2. Ejecución

```
>> nmoles(12, 18.2)
ans =
0.6593
```

Escriba un programa que obtenga el numero de moles para los compuestos que se muestran en la siguiente tabla, para masas desde 1 hasta 10g.

Compuesto	Peso molecular (masa molar)
Benceno	78.115 g/mol
Alcohol etílico	46.07 g/mol
Refrigerante R134a (tetrafluoroetano)	102.3 g/mol

3.10.3. Script

```
% Programa para calcular las masas de 1 a 10 gramos y imprimirlos en una
% tabla.
pesoMolecular = [78.115, 46.07, 102.3]; % g/mol
compuestos = {'Benceno', 'Alcohol etilico', 'Refrigerante R134a'};
nCompuestos = length(compuestos);
masas = 1:10;
nMasas = length(masas);
resultados = zeros(nMasas, nCompuestos);
for i = 1:nCompuestos
for j = 1:nMasas
resultados(j, i) = nmoles(masas(j)/1000, pesoMolecular(i));
end
end
disp('Numero de moles para masas de 1 a 10 gramos:')
fprintf('\%-10s\%-20s\%-20s\%-20s\n', 'Masa (g)', compuestos{:})
for i = 1:nMasas
fprintf('\%-10.0f\%-20.3e\%-20.3e\%-20.3e\%n', masas(i), resultados(i,:))
end
```

3.10.4. Ejecución

```
>> Programa10
Numero de moles para masas de 1 a 10 gramos:
Masa (g) Benceno
                    Alcohol etilico
                                                 Refrigerante R134a
         1.280e-05
                             2.171e-05
                                                 9.775e-06
1
2
                                                 1.955e-05
         2.560e-05
                             4.341e-05
3
                                                 2.933e-05
         3.840e-05
                             6.512e-05
         5.121e-05
                            8.682e-05
                                                3.910e-05
5
                            1.085e-04
                                                4.888e-05
         6.401e-05
6
         7.681e-05
                            1.302e-04
                                                5.865e-05
7
                                                6.843e-05
         8.961e-05
                            1.519e-04
8
         1.024e-04
                             1.736e-04
                                                 7.820e-05
                                                 8.798e-05
9
         1.152e-04
                             1.954e-04
10
         1.280e-04
                             2.171e-04
                                                 9.775e-05
```

4. Conclusión

En conclusión, esta práctica busca fortalecer las habilidades de programación en MATLAB y aplicarlas en distintas funciones matemáticas para resolver problemas en el mundo real. La implementación de funciones permite la reutilización de código y facilita la solución de problemas repetitivos en distintos contextos.