

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

UFPR

March 17, 2021

63rd Rbras, Curitiba, Brazil

Introduction Motivation

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

- Generalized linear models: usual in statistical modelling;
 - \longrightarrow mostly univariate cases.
- There is no analogous multivariate framework for GLM.
- Most multivariate techniques are based on the Multivariate Normal distribution;
 - Suitable only for continuous and symmetrical data.

Introduction Motivation

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

- Statistical models are realistic when can describe the dependency structure, when it exists:
 - · Temporal;
 - Spatial;
 - Spatio-temporal;
 - Genetic;
 - Longitudinal and repeated measures.
- We can be interested in more than one response variable, possibly correlated.

Introduction Goals

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

The main goals of this work are:

- To build probability distributions for multivariate, non-normal random variables;
 - discrete, strong asymmetrical and heavy tailed data.
- Multivariate regression models;
- Implement the models in R.

Materials & Methods

Normal Distribution

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

The Normal distribution is expressed by

$$p(y; \mu, \sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\left\{-\frac{1}{2\sigma^2}(y - \mu)^2\right\}.$$
 (1)

where μ is a location parameter and σ^2 a dispersion parameter. This can be generalized as **dispersion model**

$$p(y; \mu, \sigma^2) = a(y; \sigma^2) \exp\left\{-\frac{1}{2\sigma^2}d(y; \mu)\right\}, \quad y \in C, \quad (2)$$

where $a \geq 0$ is an adequate function, C is the smallest interval containing the realizable values of y, d is a unit deviance in $C \times \Omega$, $\mu \in \Omega$ and $\sigma^2 \in \Re_+$.

Materials & Methods Plots

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

Figure: Core of a normal distribution.

Materials & Methods Deviances

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

In 1987, JØRGENSEN introduced the theory of the dispersion models, that are based on deviance residuals.

• A function is called a unit deviance if it satisfies:

$$d(y; y) = 0 \quad \forall y \in \Omega$$
 (3)

$$d(y; \mu) > 0 \quad \forall y \neq \mu.$$
 (4)

Being Ω the parametric space for μ , $\Omega \subseteq \Re$. On a log-likelihood "point-of-view", the deviance can be obtained as:

$$d(y; \mu) = c\{I(y; y) - I(y; \mu)\}$$
 (5)

for a constant c, given that (3) and (4) are satisfied.

Methods & Materials Deviances

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

Distribution	Deviance	С	Ω
Binomial	$2\left\{y\log\frac{y}{\mu}+(n-y)\log\frac{n-y}{n-\mu}\right\}$	{0,1n}	(0, 1)
Poisson	$2(ylog\frac{y}{\mu} - y + \mu)$	{0,1}	(0, ∞)
Gamma	$2\left(\frac{y}{\mu} - \log\frac{y}{\mu} - 1\right)$	(0, ∞)	(0, ∞)
Inverse Normal	$(y-\mu)^2/y\mu^2$	(0, ∞)	(0, ∞)

Table: Unit deviances.

Materials & Methods Multivariate Dispersion Models

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

The multivariate extension of the dispersion model was proposed by JØRGENSEN; LAURITZEN, in 2000

$$p(\mathbf{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = a(\mathbf{y}; \boldsymbol{\Sigma}) \exp \left\{ -\frac{1}{2} t(\mathbf{y}; \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} t(\mathbf{y}; \boldsymbol{\mu}) \right\}, \quad (6)$$

where $\mu \in \Omega$ is a open interval in \Re^p , Σ is a positive-definite symmetric matrix $p \times p$, and $t(\mathbf{y}; \mu)$ is a vector of deviance residuals, given by

$$t(\mathbf{y}; \boldsymbol{\mu}) = sign(\mathbf{y} - \boldsymbol{\mu}) \sqrt{d(\mathbf{y}; \boldsymbol{\mu})},$$

and $t(\mu; \mu) = \mathbf{0}$, for $\mu \in \Omega$.

Materials & Methods Challenges

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

Obtain the normalizing constant $a(y;\Sigma)$

• It can involve integrals of dimension p or infinite sums.

Possible approaches:

- Edgeworth and saddle-point (BARNDORFF-NIELSEN; COX);
- Laplace approximation (TIERNEY; KASS; KADANE);
- Numerical integration.

Materials & Methods

Computational Implementation

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

• Software R (R Core Team, 2018)

Results Overall

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

Main results, so far:

- Construction of non-normalized distributions.
- Characterizing the probability distributions.
- Parameter interpretation.

Results Discrete Cases - Binomial

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

Figure: Core of the non-normalized bivariate Binomial distribution.

Results Discrete Cases - Poisson

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

Figure: Core of the non-normalized bivariate Poisson distribution

Results Continuous Cases

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

Figure: Core of the non-normalized bivariate Gamma distribution.

Results Continuous Cases

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

Figure: Core of the non-normalized bivariate inverse Normal distribution.

Results Interpretation

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

- The parameter ρ controls the correlation.
- The dispersion parameters control the variability and shape.
- Similar to the bivariate normal distribution.
- μ is not necessarily a vector of expectations:
 - \rightarrow better interpreted as a vector of modes.

Discussion Topics

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

- The method is relatively simple and the interpretation of the parameters is intuitive.
- Results about the normalizing constants do not influence directly on the construction of regression models for the location parameters.

Future work:

- Evaluate the performance of approximations to the normalizing constants.
- Perform inference.
- Provide computational implementation.

References

Construction and implementation of multivariate dispersion models

Bruna Wundervald, Dennis Leão & Wagner Hugo Bonat

Introduction

Materials & Methods

Results

Discussion

References

BARNDORFF-NIELSEN, O.; COX, D. R. Edgeworth and Saddle-point approximations with statistical applications. *Journal of the Royal Statistical Society. Series B (Methodological)*, v. 41, n. 3, p. 279–312, 1979.

JØRGENSEN, B. Exponential dispersion models. *Journal of the Royal Statistical Society. Series B (Methodological)*, v. 49, n. 2, p. 127–162, 1987.

JØRGENSEN, B.; LAURITZEN, S. L. Multivariate dispersion models. Journal of Multivariate Analysis, v. 74, n. 2, p. 267–281, 2000.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2018.

TIERNEY, L.; KASS, R. E.; KADANE, J. B. Fully exponential Laplace approximations to expectations and variances of nonpositive functions. *Journal of the American Statistical Association*, v. 84, n. 407, p. 710–716, 1989.

Thank You!

brunadaviesw@gmail.com¹ dennissleao@gmail.com² wbonat@ufpr.br³