Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 029 938 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

23.08.2000 Bulletin 2000/34

(51) Int. CI.⁷: **C22C 38/14**, C21D 8/02

(21) Application number: 00102280.5

(22) Date of filing: 17.02.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 18.02.1999 JP 3964799

16.04.1999 JP 10980599

(71) Applicant:

Nippon Steel Corporation Tokyo 100-8071 (JP) (72) Inventors:

Mizoguchi, Toshiaki
 Tokai-City, Aichi 478-8686 (JP)

Ueshima, Yoshiyuki
 Tokai-City, Aichi 478-8686 (JP)

 Kondo, Katsumi Tokai-City, Aichi 478-8686 (JP)

(74) Representative:

VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) Rolled steel having few inclusion defects

(57)The present invention provides rolled steel having few inclusion defects suitable for steel sheets used for automobiles, steel sheets used for deeply drawn cans and steel pipes, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved AI: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of one of the crystallized phase, the principal component of which is titanium oxide, and the crystallized phase, the principal component of which is alumina, and further composed of at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclusions exist in steel.

Description

15

20

[0001] The present invention relates to rolled steel having few inclusion defects suitable for producing steel sheets for automobile use, steel sheets for making deeply drawn cans, and steel pipes.

[0002] In general, pieces of rolled steel such as steel sheets and steel pipes are made of aluminum killed steel obtained when molten steel made by a converter, which has not been deoxidized yet, is deoxidized by aluminum. After the killed steel has been rolled, surface defects and internal defects such as sliver flaws (linear flaws) caused in the process of cold rolling, cracks and pin holes caused in the case of deep drawing and defects detected in weld zones of steel pipes by the ultrasonic test are caused by inclusions in some cases. It is known that those inclusion defects are caused by the inclusion of oxides, such as alumina, created in the process of deoxidation conducted in molten steel in refining.

[0003] In order to remove the oxide inclusions, the following methods have been conventionally adopted.

- (1) A deoxidizing agent such as aluminum is thrown into molten steel in the process of tapping from a converter so that the period of time, in which the oxide inclusions are raised to the surface of molten steel by coagulation and coalescence, can be extended as much as possible.
- (2) Rise and separation of oxide inclusions are facilitated when molten steel is forcibly agitated by the treatment of CAS (Composition Adjustment by Sealed Argon Gas Bubbling) or RH which is one of the secondary refining methods.
- (3) Alumina is changed into $CaO-Al_2O_3$ by adding Ca into molten steel so that it can be easily crushed in the process of rolling, and the alumina becomes harmless.

[0004] However, the following problems may be encountered in the above methods (1) and (2). Effects of the above methods (1) and (2), by which oxide inclusions can be raised to the surface of molten steel so that the inclusions can be separated from molten steel, are limited. Therefore, it is impossible to perfectly prevent the occurrence of sliver flaws, cracks, pin holes and UST defects. Further, the following problems may be encountered in the above method (3) in which oxide inclusions are reformed by Ca. Material of Ca is expensive, and the yield is very low. Accordingly, the cost of alloy is raised. Further, particles of CaO-Al₂O₃, which are created when Ca is added into molten steel, are enlarged, and the thus created particles of CaO-Al₂O₃ can not be raised to the surface of molten steel, that is, the thus created particles of CaO-Al₂O₃ remain in molten steel. In this case, defects are caused by the particles of CaO-Al₂O₃.

SUMMARY OF THE INVENTION

[0005] The present invention has been accomplished to solve the above conventional problems. It is an object of the present invention to provide rolled steel having few inclusion defects in which particles of oxide inclusions are kept fine and capable of being dispersed in rolled steel.

[0006] In order to solve the above problems, the present invention provides rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium-oxide, and a crystallized phase, the principal component of which is alumina, and the crystallized phases of oxide inclusions exist in steel.

[0007] In the same manner, in order to solve the above problems, the present invention provides rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium-oxide, and a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclusions exist in steel.

[0008] It is preferable that the crystallized phases of oxide inclusions are dispersed in rows in the direction of rolling near the center of a piece of rolled steel. It is preferable that Micro-Vickers hardness of the oxide inclusions at the room temperature is in a range from 600 to 1300 Hv. Further, it is preferable that the maximum diameter of the particles of oxide inclusions obtained by slime extraction is not more than 300 μ m. Furthermore, it is preferable that the number of the particles of oxide inclusions obtained by slime extraction, the diameter of which is not less than 38 μ m, is not more than 50 pieces/kg.

[0009] A preferred embodiment of the present invention is explained as follows.

[0010] In the present invention, rolled steel includes steel sheets, steel pipes, shape steel, bar steel and wire rods.

The basic composition of the rolled steel is C: 0.0002 to 0.7 mass %, S: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, T: 0.001 to 0.25 mass % and dissolved AI: 0.001 to 0.1 mass %.

[0011] In the present invention, rolled steel includes steel sheets, steel pipes, shape steel, bar steel and wire rods. The basic composition of the rolled steel is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, and the selective composition of the rolled steel is Ca: not more than 50 ppm and Mg: not more than 50 ppm, wherein at least one of Ca and Mg is contained.

[0012] Carbon is an essential element to stably enhance the mechanical strength of steel. Therefore, the content of carbon is adjusted in a range from 0.0002 to 0.7% according to the desired mechanical strength of material. In order to ensure the mechanical strength or hardness, it is necessary that rolled steel contains carbon at not less than 0.0002%, however, when the content of carbon is higher than 0.7%, the workability is lowered. Therefore, the content of carbon is kept so that it cannot exceed 0.7%.

[0013] The reasons why the contents of other components are kept in the above ranges are described as follows.

[0014] The reason why the content of Si is kept in a range from 0.001 to 0.5% is described below. When the content of Si is in a range lower than 0.001%, it becomes necessary to conduct pretreatment of material, and the cost of refining is increased, that is, it is not economical to keep the content of Si in a range lower than 0.001%. When the content of Si is higher than 0.5%, defects are caused in the process of plating, and the surface property and the corrosion resistance are impaired.

[0015] The reason why the content of Mn is kept in a range from 0.005 to 2.0% is described below. When the content of Mn is lower than 0.005%, the refining time is extended, which is not economical. When the content of Mn exceeds 2.0%, the workability at steel is greatly impaired.

[0016] The reason why the content of P is kept in a range from 0.001 to 0.05% is described below. In order to keep the content of P lower than 0.001%, it takes time to treat molten pig iron and the cost is raised, which is not economical. When the content of P exceeds 0.05%, the workability of steel is greatly impaired.

[0017] The reason why the content of S is kept in a range from 0.0005 to 0.15% is described below. In order to keep the content of S lower than 0.0005%, it takes time to treat molten pig iron and the cost is raised, which is not economical. When the content of S exceeds 0.15%, the workability and the corrosion resistance of steel are greatly impaired.

[0018] The reason why the content of Ti is kept in a range from 0.001 to 0.25% is described below. When the content of Ti is lower than 0.001%, it becomes difficult to cast molten steel. When the content of Ti is higher than 0.25%, only titanium oxide, which tends to become clusters, is created, and the diameters of inclusion particles are enlarged. As a result, sliver flaws are caused in the same manner as that of alumina.

[0019] The reason why the content of dissolved AI (sol AI) is kept in a range from 0.001 to 0.1% is described below. When the content of dissolved AI is lower than 0.001%, it impossible to conduct a sufficient deoxidation treatment. When the content of dissolved AI exceeds 0.1%, only alumina is created, and surface defects and internal defects are caused.

[0020] Both Ca and Mg form "crystallized phases", the principal component of which is oxide, in the oxide inclusions.

(1) Therefore, they contribute to make the crystallized phase itself fine.

40

45

(2) Also, they contribute to crushing the inclusion so as to make the inclusion fine along an interface of the fine crystallized phase in the process of rolling. The reason why at least one of Ca, the content of which is kept lower than 50 ppm, and Mg, the content of which is kept lower than 50 ppm, is contained is described as follows. Since the vapor pressure of Ca and that of Mg are high and the yield of Ca and that of Mg are low, the cost is raised when the contents of Ca and Mg are increased to a value higher than 50 ppm. The reason why the lower limits of Ca and Mg are not stated plainly is described as follows. Even when the concentration of Ca and that of Mg are lower than the lower limit of analysis in the composition analysis of steel, it is possible to make the inclusions contain at least one of CaO and MgO sufficiently.

[0021] The present invention provides rolled steel, the basic composition of which is described above, and the oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of a crystallized phase, the principal component of which is Ti oxide, and a crystallized phase, the principal component of which is alumina, and the crystallized phases of oxide inclusions are dispersed in steel.

[0022] The present invention provides rolled steel, the basic composition and the selective composition of which are described above, and the oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of a crystallized phase, the principal component of which is Ti oxide, and a crystallized phase, the principal component of which is alumina, and also composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclu-

sions are dispersed in steel. In this case, the crystallized phase is a crystal phase in a solid state, that is, the crystallized phase does not include a glass phase in a solid state. That is, when there is provided a crystallized phase composed of at least two phases of the crystallized phase, the principal component of which is Ti oxide, and the crystallized phase, the principal component of which is alumina, or alternatively when there is provided a crystallized phase composed of at least three phases of the crystallized phase, the principal component of which is Ti oxide, the crystallized phase, the principal component of which is alumina, and at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO, the crystallized phase itself is made to be fine, and further the crystallized phase is easily crushed to more fine particles. As a result, the occurrence of flaws such as sliver flaws can be prevented, and rolled steel having few inclusion defects can be obtained.

[0023] It is preferable that the crystallized phases of oxide inclusions are dispersed in rows in the direction of rolling near the center with respect to the thickness of a piece of rolled steel. Since the oxide inclusions seldom exist on the surface of the piece of rolled steel, it is possible to obtain rolled steel having few inclusion defects.

[0024] When consideration is given to the deformability of steel in the process of rolling conducted after the completion of hot rolling, it is preferable that Micro-Vickers hardness of oxide inclusions at the room temperature is in a range from 600 to 1300 Hv. The reason why the hardness is kept in the above range is described as follows. When the hardness is lower than 600 Hv, the inclusions are excessively elongated. When the hardness is higher than 1300 Hv, the inclusions are seldom elongated, and it becomes difficult to crush and disperse the inclusions by rolling.

[0025] When the maximum diameter of the particles of oxide inclusions obtained by slime extraction is not larger than 300 μ m and further the number of the particles of oxide inclusions, the diameters of which are not less than 38 μ m, is kept to be not more than 50 pieces/kg, there is little possibility that the particles of oxide inclusions on the surface of rolled steel are drawn out in rows, and it is possible to obtain rolled steel having few inclusion defects.

as follows. Oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of a crystallized phase, the principal component of which is Ti oxide, and a crystallized phase, the principal component of which is alumina. When the crystallized phases concerned are dispersed in rolled steel, oxide inclusions are made to be oxides composed of the two phases of the crystallized phase, the principal component of which is Ti oxide, and the crystallized phase, the principal component of which is alumina, and the crystallized phases of the oxides are made to be fine. Next, the oxide inclusions are further crushed and dispersed by rolling in rows on an interface of the crystallized phase, the particles of which are made to be fine. In this way, when the inclusion is made to be inclusion of the crystallized phase, the principal component of which is fine particles of Ti oxide, and/or the crystallized phase, the principal component of which is alumina, the product defects, which are caused by oxide inclusions, such as sliver flaws in the process of cold rolling, cracks, pin holes and defects detected in the process of UST, can be greatly reduced.

Further, the present invention provides rolled steel, the characteristics of which are described as follows. Oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of a crystallized phase, the principal component of which is Ti oxide, and a crystallized phase, the principal component of which is alumina. Further, oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO. When the crystallized phases concerned are dispersed in rolled steel, oxide inclusions are made to be oxides composed of at least three phases of the crystallized phase, the principal component of which is Ti oxide, the crystallized phase, the principal component of which is alumina, and at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO. Next, the oxide inclusions are further crushed and dispersed by rolling in rows on the interface of the crystallized phase, the particles of which are made to be fine. In this way, when the inclusions are made to be inclusions of the crystallized phase, the principal component of which is fine particles of Ti oxide, and/or the crystallized phase, the principal component of which is alumina, and also when the inclusions are made to be inclusions of at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO, the product defects, which are caused by oxide inclusions, such as sliver flaws in the process of cold rolling, cracks, pin holes and defects detected in the process of UST, can be greatly reduced.

Example 1

2))

[0028] Pieces of rolled steel were produced by a vertical bend-type continuous casting machine under the condition that the slab size was 245 mm thickness \times 1200 to 1600 mm width, the casting speed was 1.4 to 1.7 m/min, and the temperature of molten steel in the tundish was 1560°C. After that, the slabs were hot-rolled, and then the pieces of hot-rolled steel were subjected to acid pickling, cold rolling, annealing and secondary cold rolling when necessary. In this way, products shown on Table 1 were produced.

[0029] Deoxidizing alloy used in the production process and the principal components contained in the crystallized phase of oxide inclusions are shown in Table 2. The hardness of oxide inclusions, the existing formation and the ratio

of occurrence of defects are shown in Table 3. It can be seen from these tables that the present invention can greatly reduce the defects of products caused by oxide inclusions so that the productivity can be enhanced.

[0030] The components of the crystallized phase of inclusions shown in Table 2 were identified in such a manner that the inclusions extracted from a piece of rolled steel of full thickness by means of slime electrolytic extraction (the minimum mesh was 38 μm) was subjected to component identification by SEM (Scanning Electron Microscope) having EDX (Energy Dispersive X-ray Spectrometer). Further, concerning the additional component detected in the above component identification, the content was found by the integral intensity of the peak of the characteristic X-rays.

[0031] The existing formation of inclusion, which is shown in Table 2, on the section in the rolling direction was determined by the profile of the product as follows.

[0032] In the case of a sheet, the full thickness of a section parallel to the rolling direction was observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50) which was taken at a position where the inclusion exists.

[0033] In the case of a wire, the full thickness of a section parallel to the drawing direction (the rolling direction) was observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50) which was taken at a position where the inclusion exists.

[0034] In the cases of a pipe and rod, local positions, which were located below the front or the rear surface by 0.1 mm, 1/8t, 1/4t, 3/8t, 1/2t, 5/8t, 3/4t and 7/8t wherein t is thickness, were observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50 for each local position) which was taken at a position where the inclusion exists.

[0035] In this connection, meanings of *1 to *9 shown in Tables 2 and 3 are described as follows.

- *1: Level of dissolved oxygen, A: Not less than 400 ppm, B: Not less than 200 and lower than 400 ppm, C: Not less than 100 and lower than 200 ppm, and D: Lower than 100 ppm
- *2: Principal component in the crystallized phase is controlled by a quantity of alloy added in the process of deoxidation.
- * 3: MnO and SiO $_{2}$ are contained by not more than 10 weight % as additional components in the crystallized phase.
- *4: TiO_x is contained by not more than 5 weight % as an additional component in the crystallized phase.
- *5: Al $_2$ O $_3$ is contained by not more than 5 weight % as an additional component in the crystallized phase.
- *6: An average is calculated at the room temperature for 10 particles of inclusion when a load of 25 g is given to each of three positions with respect to one type of inclusion.
- *7, *8: The maximum diameter of the inclusion particles and the number of the inclusion particles are controlled by dissolved oxygen before deoxidation.

The method of measuring the maximum diameter of the inclusion particles is described below. Inclusions, which were extracted by means of slime electrolytic extraction (the minimum mesh was $38~\mu m$) from a piece of rolled steel of full thickness of the weight of $1\pm0.1~kg$, were photographed by a stereoscopic microscope, the magnification of which was 40, and the averages of the major and the minor axis of the inclusion particles on the photograph were found with respect to all the inclusion particles, and the maximum value of the thus found averages was determined to be the maximum diameter of the inclusion particles. The number of the inclusion particles was found as follows. The number of all the inclusion particles, which was extracted by means of slime electrolytic extraction (the minimum mesh was $38~\mu m$) and observed by an optical microscope (the magnification was 100) was converted into the number per the unit of 1 kg.

*9: The ratio of occurrence of defects is determined by the following formulas.

In the case of a sheet, the ratio of occurrence of sliver flaws on the surface of the sheet is (total length of sliver flaws/length of a coil)

In the case of a pipe, the ratio of occurrence of UST defects in the electroseamed zone is (number of pipes in which the defects occurred/number of inspected pipes)

In the case of a rod and wire, the ratio of occurrence of surface flaws is (number of coils in which defects occur/total number of inspected coils)

5

55

25

30

35

40

45

Table 1

	1 1	ofile						ever, the r	est are
	૦૬	1				le impur			
		oduct	C	0.039	Mm. 0.58	0.018	0.006	0 060	901. AI
Inventive example		360	0.0005			0.018	0.012	0.002	0.002
Inventive example		eet	0.0025	0.005	0.80		7 3 3 3 3		0.002
Inventive example		eet	0.0045	0.012	0.15	0.042	0.018	0.018	
Inventive example	1111111111	eet	0.0070	0.021	0.35	0.007	0.023	0.034	0.019
Inventive example		eet	0.0023	0.014	0.38	0.020	0.014	0.020	0.007
Inventive example		eet	0.0047	0.020	0.56	0.034	0.020	0.038	0.017
Inventive example		300	0.0066	0.036	0.B5	0.044	0.025	0.082	0.065
Inventive example		eet	0.0007	0.007	0.12	0.005	0.005	0.003	0.001
Inventive example		eet	0.02	0.086	0.68	0.016	0.004	0.060	0.030
Inventive example		eet	0.04	0.007	0.96	0.025	0.011	0.001	0.002
Inventive example		eet	0.07	0.033	0.16	0.040	0.029	0.017	0.010
Inventive example		300	0.10	0.059	0.42	0.005	0.025	0.035	0.021
Inventive example		eet	0.03	0.005	0.14	0.018	0.016	0.022	0.008
Inventive example		300	0.05	0.042	0.45	0.035	0.019	0.036	0.018
Inventive example		eet_	0.13	0.063	0.73	0.046	0.023	0.093	0.073
Inventive example		eet	0.01	0.093	0.93	0.006	0.006	0.002	0.003
Inventive example		eet	0.0070	0.014	0.17	0.035	0.015	0.015	0.035
Inventive example		eet	0.03	0.042	0.41	0.044	0.007	0.050	0.003
Inventive example	A19 Pi	_	0.023	0.40	1.24	0.008	0.0005	0.230	0.09
Inventive example	A20 Pi		0.13	0.021	1.78	0.011	0.05	0.003	0.002
Inventive example		.pe	0.25	0.15	0.14	0.015	0.0095	0.080	0.035
Inventive example	A22 Pi	.pe	0.34	0.28	0.69	0.004	0.014	0.157	0.068
Inventive example		Pe	0.11	0.17	0.71	0.005	0.008	0.093	0.038
Inventive example	A24 Pi	.pe	0.27	0.27	1.31	0.012	0.07	0.165	0.053
Inventive example	A25 Pi	.pe	0.31	0.015	1.92	0.017	0.01	0.242	0.085
Inventive example	A26 Pi	.pe	0.015	0.16	0.09	0.003	0.022	0.006	0.006
Inventive example	A27 Ro	xd	0.54	0.40	1.24	0.008	0.025	0.210	0.08
Inventive example	A28 Ro	od	0.58	0.021	1.78	0.011	0.063	0.005	0.004
Inventive example	A29 Ro	od .	0.62	0.15	0.14	0.015	0.101	0.065	0.032
Inventive example	A30 Ro	d	0.65	0.28	0.69	0.004	0.14	0.140	0.075
Inventive example	A31 Ro	od	0.59	0.17	0.71	0.005	0.053	0.080	0.035
Inventive example	A32 Ro	od	0.61	0.27	1.31	0.012	0.10	0.155	0.051
Inventive example	A33 Wi	.re	0.67	0.015	1.92	0.017	0.135	0.23	0.088
Inventive example	A34 Wi	.re	0.52	0.15	0.09	0.003	0.018	0.008	0.003
Comparative example	21 Sh	eet	0.0005	0.012	0.15	0.028	0.023	0.015	0.035
Comparative example	B2 Sh	eet	0.04	0.059	0.42	0.040	0.013	0.050	0.002
Comparative example	B3 Pi	pe .	0.25	0.17	0.71	0.004	0.07	Ca:30 ppm	0.060
Comparative example	B4 Ro	od	0.65	0.27	1.31	0.005	0.135	0.000	0.003
Comparative example	BS Pi	.pe	0.27	0.015	0.75	0.015	0.082	0.002	0.110
Comparative example	B6 Ro	od	0.67	0.16	1.42	0.002	0.147	0.260	0.003

Table 2

	Š.	Deoxidizing	Level of dissolved oxygen	Principal component in	Existing inclusion formation on the section in the
		alloy	before Adding deoxidizing	crystallized phase *2	rolling direction
Inventive example	71	FeTi, Al	B	TiO, AliO,	Dispersion over the entire sheet thickness
Inventive example	77	Ferial	В	TiOr, Al,O,	Dispersion in rows near the center of sheet thickness
Inventive example	¥3	FoTi, Al	e.	Tio, Alo,	Diaperaton in rows near the center of sheet thickness
Inventive example	¥	Fetial	æ	Tio, Alo,	
Inventive example	_	Fett, Al	&	Tion, Also,	Dispersion in rows near the center of sheet thickness
Inventive example	99	Petial	æ	Tio, Alo	Disparsion over the entire sheet thickness
Inventive example	7.7	FeTIAL	ed.	TIO, Also,	Dispersion over the entire sheet thickness
Inventive example	۸8	FeT1, A1	B	Tio, Alo	Dispersion over the entire sheet thickness
Inventive example		FeTIAL	၁	Tio, Allo,	Dispersion over the entire sheet thickness
Inventive example	A10	FeTi, Al	၁	rio, Algo,	
Inventive example	111	Ferial	ט	Tio, Alo,	Dispersion in rows mean the center of sheet thickness
Inventive example	A12	FeT1, Al	O	TiO, Al,O,	Dispersion over the entire sheet thickness
Inventive example	A13	FeTiAl	υ	Tio, Also,	Dispersion in rows near the center of sheet thickness
Inventive example	774	Petial	ບ	Tio, Alo,	Dispersion over the entire sheet thickness
Inventive example	A15	PeTi, Al	J	Tio, Alfo,	Dispersion over the entire sheet thickness
Inventive example	7 16	Petial	D .	Tio, Alo	Disparsion in rows near the center of sheet thickness
Inventive example	A17	FeTi, Al	Y	Tio, Alo,	- 1
Inventive example	A18	FeTiAl	Ą	Tio, Aljo,	Dispersion in rows near the center of sheet thickness
Inventive example	419	FeTIAL	C	A1701	over the entire pipe thickness
Inventive example	_		ā	TiO, Al,O, #3	
Inventive example	\neg	Petial	٥	Tio, Alo,	Dispersion in rows mean the center of pips thickness
Inventive example	A22	Petial	٥	TiO, Also,	
Inventive example	123	Fott, Al	0	Tio, Alo,	Dispersion in rows near the center of pipe thickness
Inventive example	A24	FeTiAl	Q	1,0	Dispersion over the entire pipe thickness
Inventive example		reti, Al	a	Tio, Mro, 13	Dispersion over the entire pipe thickness
Inventive example	A26	Fatial	Q	11.05	Dispersion in rows mean the center of pipe thickness
Inventive example	A27	Feti, Al	Q	. ,	Dispersion over the entire rod dismeter
Inventive example	Ī	Fetial	Q	Tio, Al,O, 13	Dispersion in rows near the center of rod dismeter
Inventive example		FoTi, Al	q	Tio, Also,	Dispersion in rows near the center of rod diameter
Inventive example	Ϋ́	Petial	۵	TiO, Alo	Dispersion over the entire rod diameter
Inventive example	A31	FoT1, Al	G	TiO, Al,O,	Dispersion in rows near the center of rod diameter
Inventive example	N32	Petial	O	TiO, A1,0, #3	Dispersion over the entire rod diameter
Inventive example	233	retial.	Q	Tior, Also, *3	Dispersion over the entire wire diameter
Inventive example	A34	FeTIAL	D.	TiOr, Alab,	Dispersion in rows near the center of wire diameter
Comparative example	B1	TV.	68	A1,0, *4	Dispersion over the entire sheet thickness
Comparative example	B2	1.1	ט	TIO, 15	Dispersion in rows mean the center of sheet thickness
Comparative example	B3	Al, Casi	a	CAO, Also,	Riongstion in the rolling direction over the entire
Comparative example	ž	FeSi, FeMn	A	MnO, SiO ₂	Elongation in the folling direction near the center of rod dismeter
Comparative example	95	PoTi, Al	Q	A1,0, *4	Dispersion over the entire pipe thickness
Comparative example	96	Perial	Q	T10, *5	Dispersion in rows near the center of rod dismeter

Table 3

	No.	Micro-	Maximum	Number of	Ratio of
		Vickers	diameter of	inclusion	occur-
	ĺ	hardness	inclusion	particles	rence of
	l	*6, Hv	particle	+8, piece/kg	defects
		i	+7, μm		*9, §
Inventive example	Al	612	179	35.0	0.5
Inventive example	A2	1174	185	32.3	0.4
Inventive example	A3	1236	163	27.4	0.3
Inventive example	A4	1001	158	22.5	0.5
Inventive example	A5	1288	178	26.3	0.4
Inventive example	A6	870	166	24.4	0.3
Inventive example	A7	1062	257	43.2	0.5
Inventive example	A8	723	138	18.5	0.4
Inventive example	A9	692	187	9.7	0.6
Inventive example	A10	612	203	9.9	0.2
Inventive example	A11	946	154	9.5	0.2
Inventive example	A12	1220	165	8.7	0.7
Inventive example	A13	1206	189	8.8	0.2
Inventive example	A14	1001	287	19.5	0.5
Inventive example	A15	1288	264	18.3	0.6
Inventive example	A16	870	122	4.3	0.3
Inventive example	A17	1102	374	246	1.2
Inventive example	A18	1058	326	123	1.4
Inventive example	A19	974	230	26.5	0.0
Inventive example	A20	665	212	22.2	0.0
Inventive example	A21	642	206	35.4	0.0
Inventive example	A22	782	198	32.1	0.0
Inventive example	A23	743	187	30.2	0.0
Inventive example	A24	612	177	27.3	0.0
Inventive example	A25	738	199	33.3	0.0
Inventive example	A26	647	209	34.6	0.0
Inventive example	A27	615	257	33.8	1.2
Inventive example	A28	820	273	27.9	0.8
Inventive example	A29	782	267	27.3	0.5
Inventive example	A30	631	196	25.2	1.1
Inventive example	A31	664	188	22.4	0.7
Inventive example	A32	897	206	19.6	1.1
Inventive example	A33	872	234	20.1	0.9
Inventive example	A34	673	165	17.5	0.6
Comparative example	81	1933	460	250	2.8
Comparative example	B2	1402	324	175	3.2
Comparative example	B3	359	230	43	8.3
Comparative example	B4	443	297	47	16.3
Comparative example	B 5	1505	387	44	6.2
Comparative example	B6	1476	366	42	8.9

Example 2

[0036] Pieces of rolled steel were produced by a vertical bend-type continuous casting machine under the condition that the slab size was 245 mm thickness \times 1200 to 1600 mm width, the casting speed was 1.4 to 1.7 m/min, and the temperature of molten steel in the tundish was 1560°C. After that, the slabs were hot-rolled, and then the pieces of hot-rolled steel were subjected to acid pickling, cold rolling, annealing and secondary cold rolling when necessary. In this way, products shown in Tables 4, 7 and 10 were produced.

[0037] Deoxidizing alloy used in the production process and the principal components contained in the crystallized phase of oxide inclusions are shown in Tables 5, 8, 11 and 12. The hardness of oxide inclusions, the existing formation

and the ratio of occurrence of defects are shown in Tables 6, 9 and 13. It can be seen from these tables that the present invention can greatly reduce the defects of products caused by oxide inclusions so that the productivity can be enhanced.

[0038] The components of the crystallized phases of inclusions shown in Tables 5, 8 and 12 were identified in such a manner that the inclusions extracted from pieces of rolled steel of full thickness, the weight of which was 1 ± 0.1 kg, by means of slime electrolytic extraction (the minimum mesh was $38 \mu m$) were identified by SEM having EDX. Further, concerning the detected additional component, the content was found from the integral intensity of the peak of the characteristic X-rays.

[0039] The existing inclusion formations shown in Tables 5, 8 and 12 on the section of the rolling direction were determined by the profiles of products as follows.

[0040] In the case of a sheet, the full thickness of a section parallel to the rolling direction was observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50) which was taken at a position where the inclusion exists.

[0041] In the case of a wire, the full thickness of a section parallel to the drawing direction (the rolling direction) was observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50) which was taken at a position where the inclusion exists.

[0042] In the cases of a pipe and rod, local positions, which were located below the front or the rear surface by 0.1 mm, 1/8t, 1/4t, 3/8t, 1/2t, 5/8t, 3/4t and 7/8t wherein t is thickness, were observed by an optical microscope, and the existing formation of inclusion was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50 for each local position) which was taken at a position where the inclusion exists.

[0043] In this connection, the meaning of *1 to *11 shown in Tables 4 to 13 are described as follows.

- *1: Tr: Not more than the lower limit capable of being analyzed, -: Ca or Mg is not added.
- *2: Level of dissolved oxygen

25

30

35

40

45

50

55

A: Not less than 400 ppm, B: Not less than 200 ppm and lower than 400 ppm, C: Not less than 100 ppm and lower than 200 ppm, D: Lower than 100 ppm

- *3: Principal component in the crystallized phase is controlled by a quantity of alloy added in the process of deoxi-
 - *4: Not more than 10 weight % of MnO and SiO2 are contained as additional components in the crystallized phase.
 - *5: Not more than 5 weight % of TiO_x is contained as an additional component in the crystallized phase.
 - *6: Not more than 5 weight % of Al_2O_3 is contained as an additional component in the crystallized phase.
 - *7: Not more than 5 weight % of Al_2O_3 is contained as an additional component in the crystallized phase, and not more than 10 weight % of MnO and SiO_2 are also contained as additional components in the crystallized phase.
 - *8: An average is calculated at the room temperature for 10 particles of inclusion when a load of 25 g is given to each of three positions with respect to one type of inclusion.
 - *9, *10: The maximum diameter of the inclusion particles and the number of the inclusion particles are controlled by dissolved oxygen before deoxidation.

The method of measuring the maximum diameter of the inclusion particles is described below. Inclusions, which were extracted by means of slime electrolytic extraction (the minimum mesh was $38~\mu m$) from a piece of rolled steel of full thickness of the weight of $1\pm0.1~kg$, were photographed by a stereoscopic microscope, the magnification of which was 40, and the averages of the major and the minor axis of the inclusion particles on the photograph were found with respect to all the inclusion particles, and the maximum value of the thus found averages was determined to be the maximum diameter of the inclusion particles. The number of the inclusion particles was found as follows. The number of all the inclusion particles, which was extracted by means of the slime electrolytic extraction (the minimum mesh was $38~\mu m$) and observed by an optical microscope (the magnification was 100) was converted into the number per the unit of 1 kg.

*11: The ratio of occurrence of defects is determined by the following formulas.

In the case of a sheet, the ratio of occurrence of sliver flaws on the surface of the sheet is (total length of sliver flaws/length of a coil)

In the case of a pipe, the ratio of occurrence of UST defects in the electroseamed zone is (number of pipes in which the defects occurred/number of inspected pipes)

In the case of a rod and wire, the ratio of occurrence of surface flaws is (number of coils in which defects occur/total number of inspected coils)

Table 4

	No. Prof							ever, Ca	is.
	of		piesente			the rest	are ir	on and	
	prod		<u>evitable</u>						,
		<u> </u>	Si	Mn	₽	S	Ti	sol. Al	Ca+
Inventive example	Al Shee			0.55	0.017	0.006	0.057	0.048	30
Inventive example	A2 Shee	t 0.00	24 0.005	0.76	0.027	0.011	0.002	0.002	47
Inventive example	A3 Shee	t 0.004	3 0.011	0.14	0.040	0.017	0.017	0.008	Tz
Inventive example	A4 Shee	z 0.000	57 0.019	0.33	0.007	0.022	0.032	0.018	13
Inventive example	A5 Shee	t 0.00	22 0.013	0.36	0.019	0.013	0.019	0.007	42
Inventive example	A6 Shee	t 0.00	5 0.018	0.53	0.032	0.019	0.036	0.016	Tz
Inventive example	A7 Shee	t 0.00	53 0.032	0.81	0.042	0.024	0.078	0.062	17
Inventive example	AB Shee	£ 0.000	0.006	0,11	0.005	0.005	0.003	0.001	31
Inventive example	A9 Shee	t 0.02	0.077	0.65	0.015	0.004	0.057	0.029	5
Inventive example	Alo Shee	t 0.04	0.006	0.91	0.024	0.010	0.001	0.002	12
Inventive example	All Shee	t 0.07	0.030	0.15	0.038	0.028	0.015	0.010	27
Inventive example	A12 Shee	t 0.10	0.053	0.40	0.005	0.024	0.033	0.020	3
Inventive example	Al3 Shee	t 0.03	0.005	0.13	0.017	0.015	0.021	0.008	11
Inventive example	Al4 Shee	t 0.05	0.038	0,43	0.033	0.018	0.034	0.017	29
Inventive example	Al5 Shee	t 0.12	0.057	0.69	0.044	0.022	0.088	0.069	43
Inventive example	Al6 Shee	t 0.00	5 0.084	0.88	0.006	0.006	0.002	0.003	8
Inventive example	A17 Shee	€ 0.000	57 0.013	0.16	0.033	0.014	0.014	0.033	25
Inventive example	Al8 Shee	€ 0.029	0.038	0.39	0.042	0.007	0.048	0.003	45
Inventive example	Al9 Pipe		0.36	1.18	0.008	0.0005	0.219	0.086	Tr
Inventive example	A20 Pipe		0.019	1.69	0.010	0.048	0.003	0.002	17
Inventive example	A21 Pipe		0.135	0.13	0.014	0.009	0.076	0.033	41
Inventive example	A22 Pipe		0.252	0.66	0.004	0.013	0.149	0.065	1
Inventive example	A23 Pipe		0.153	0.67	0.005	0.008	0.088	0.036	3
Inventive example	A24 Pipe		0.243	1.24	0.011	0.067	0.157	0.050	48
Inventive example	A25 Pipe		0.014	1.82	0.016	0.010	0.230	0.081	4
Inventive example	A26 Pipe		0.144	0.09	0.003	0.021	0.006	0.006	19
Inventive example	A27 Rod	0.51	0.36	1.18	0.008	0.024	0.200	0.076	21
Inventive example	A28 Rod	0.55	0.019	1.69	0.010	0.060	0.005	0.004	Tz
Inventive example	A29 Rod	0.59	0.135	0.13	0.014	0.096	0.062	0.030	22
Inventive example	A30 Rod	0.62	0.252	0.66	0.004	0.133	0.133	0.071	37
Inventive example	A31 Rod	0.56	0.153	0.57	0.005	0.050	0.076	0.033	4
Inventive example	A32 Rod	0.58	0.243	1.24	0.011	0.095	0.147	0.048	15
Inventive example	A33 Wire		0.014	1.82	0.016	0.128	0.219	0.084	33
Inventive example	A34 Wire		0.144	0.09	0.003	0.017	0.008	0.003	41
Comparative example				0.14	0.027	0.022	0.014	0.033	
Comparative example			0.053	0.40	0.038	0.012	0.048	0.002	_
Comparative example			0.019	0.16	0.038	0.008	0.014	0.002	
Comparative example	B4 Shee			0.16	0.011	0.013	0.019	0.002	
•	B5 Shee			0.20	0.019		0.019		13
Comparative example						0.011		0.011	+
Comparative example			0.153	0.67	0.004	0.067	0.000	0.057	30
Comparative example	B7 Rod	0.62	0.243	1.24	0.005	0.128	0.000	0.003	ļ <u>-</u>
Comparative example	BB Pipe		0.014	0.71	0.014	0.078	0.002	0.120	5
Comparative example	B9 Rod	0.64	0.144	1.35	0.002	0.140	0.267	0.003	4

			Ħ	TOPTOT	
	Š.	Decridizing alloy	Level of dissolved oxygen Principal before adding deoxidizing crystalli	Principal component in crystallized phase *3	Existing inclusion formation on the section in the rolling direction
\top	_	See 1	alloy #2	0.0	Palentinia Article Alba and the black black black
or design	:		4 0		Dispersion (or rough the sector of about this page
	2	Borni Al Casi	G		
example		.17		100	
example	12	Fati, Al. Feca	53	71.0	Dispersion in rows near the center of sheet thickness
example.	946		ß	0.17	
exemple .	N.7	Ferial, Casi	B		Dispersion over the entire sheet thickness
example	88	FeT1, Al, Casi	B	20,7	Dispersion in rows near the center of sheet thickness
example	A.9		0	AL ₂ O ₃ ,	over the antire sheet thickness
example	250	Pofi, Al, Ca	U		Dispersion in rows near the center of sheet thickness
example	MI	Perial, casi	D D		ابدا
example	A12	FeT1, A1, CaSi	J.	TiOs, Algos, CaO	Dispersion over the entire sheet thickness
Inventive example	A13	Ferial, Casi	ט	TiOs, Algos, CaO	Dispersion in rows near the center of sheet thickness
eremble	134	Ferial, Casi	ð		Dispersion over the entire sheet thickness
Inventive example	A15	Ferial, Faca	C		Disparsion over the entire sheet thickness
Inventive example	۸16	Fetial, Casi	ບ	10011	Dispersion in rows near the center of sheet thickness
Inventive example	A17	FeTi, Al, CaSi	٧	TiOn, Algo, Cao	Dispersion over the entire sheet thickness
Inventive example	2	Perial, Casi	*		Dispersion in rows near the center of sheet thickness
BYAMPIE	ş	ان اد	U	ALPO, CaO	Dispersion over the entire pipe thickness
oxample	2	PeTi, Al, Ca		ALO,	
example	V21	PoTIAL, CaSi		10,0	Dispersion in rows near the center of pipe thickness
example	22	~ 1		O.T	Dispersion over the entire pipe thickness
example	۲ کا	FeT1, Al, Casi	٥	A1,0, CaO	over the entire pipe
ar dwexe		21	a	V. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Dispersion over the entire pube iniciness
Inventive example	A25	Parts, AL, Cast	0	TION, ALFORD TO	Dispersion over the entire pipe thickness
a lame x	1	Pari Al Paca			
example	728			A1-0. Cao	Dispersion in rows near the center of rod disserter
example	524	Port. Al. Ca	q	M.0. CaO	
example	230		۵		Dispersion over the entire rod dismeter
•	131	Perl, Al, CaSi	α		Dispersion over the entire rod dismeter
Inventive example	132	Perial, casi	ď	Tio, Allo, Cao *4	Dispersion over the entire rod dismeter
_	A33	Perial, Seca	Ω	TiOz, Also, Cao 44	Dispersion over the entire wire dismeter
_	Š	Ferial, Cash	О	Tio, Alo, Cao	Dispersion in rows near the center of wire dispers
Comparative example	B1	AL	В	A1 to, *5	Dispersion over the entire sheet thickness
example	B2	7.	υ		Dispersion in rows near the center of sheet thickness
example	£3	FeTi, Al	υ	Tion, Also,	Dispersion in rows near the center of sheet thickness
Comparative example	Z	FeTiA1	4	Tio,, Algo,	Dispersion in rows near the center of sheet thickness
Comparative example	B.5	Ti, Casi	cd;	Titon, cao	Blongation in the rolling direction near the center
	Γ				Blongstion in the rolling direction over the antine
Comparative example	B6	Al, Faca	a	Aljo, cao	pipe thickness
Comparative example	B.7	Pesi, FeMn	a	Mono, sko,	Blongstion in the rolling direction near the center of rod diameter
Comparative example	3.8	Fofi, Al, Casi	, a	Algo, CaO #5	Riongation in the rolling direction over the entire pipe thickness
Comparative example	89	Petial, Ca	Ω	TiO2, CaO *6	Blongation in the rolling direction near the center
٦.					Trace contract to

Table 6

	No.	Micro- Vickers hardness	Maximum diameter of inclusion	Number of inclusion particles	Ratio of occur-
		*8, Hv	particle	*10, piece/kg	defects
Inventive example	A1	581	163	35.4	0.4
Inventive example	A2	1115	168	32.5	0.3
Inventive example	A3	1174	150	27.7	0.2
Inventive example	A4	950	146	22.7	0.4
Inventive example	A5	1223	162	26.6	0.3
Inventive example	A6	826	153	24.6	0.2
Inventive example	A7	1009	226	43.6	0.4
Inventive example	A8	687	130	18.7	0.3
Inventive example	A9	658	170	9.8	0.4
Inventive example	Alo	643	192	10.0	0.1
Inventive example	A11	899	143	9.6	0.1
Inventive example	A12	1159	152	8.8	0.4
Inventive example	A13	1146	171	8.9	0.1
Inventive example	A14	950	250	19.7	0.4
Inventive example	A15	1223	231	18.5	0.4
Inventive example	A16	826	118	4.3	0.2
Inventive example	A17	1047	345	98.5	1.0
Inventive example	A18	1005	332	79.0	1.2
Inventive example	A19	925	204	26.8	0
Inventive example	A20	632	190	22.4	0
Inventive example	A21	610	185	35.8	0
Inventive example	A22	743	178	32.4	0
Inventive example	A23	705	170	30.5	0
Inventive example	A24	643	162	27.6	0
Inventive example	A25	701	179	33.6	0
Inventive example	A26	615	187	34.9	0
Inventive example	A27	645	226	34.1	1.0
Inventive example	A28	779	238	28.2	0.5
Inventive example	A29	743	234	27.6	0.3
Inventive example	A30	600	177	25.5	0.9
Inventive example	A31	634	170	22.6	0.5
Inventive example	A32	852	185	19.8	0.9
Inventive example	A33	829	207	20.3	0.7
Inventive example	A34	640	152	17.7	0.4
Comparative example	B1	2010	465	262.5	2.9
Comparative example	B2	1452	314	183.8	3.4
Comparative example	B3	773	252	45.1	0.5
Comparative example	B4	1054	318	146.0	1.3
Comparative example	85	491	275	44.1	4.6
Comparative example	В6	377	322	35.2	8.7
Comparative example	B7	465	234	19.4	17.1
Comparative example	B8	382	237	46.2	6.5
Comparative example	B9	520	248	33.6	9.3

Table 7

5		1 1	rofile							vever, Mg	is
5		of	roduct		table :			the rest	are 1	ron and	1
		PE	-oauec	C	Si	Mn	p	5	Ti	sol. Al	Mg*1
	Inventive example	A35 Sh	1 00 £	0.0006	0.037	0.58	0.012	0.005	0.058	0.052	29
	Inventive example		eet	0.0027	0.006	0.77	0.023	0.012	0.002	0.001	45
	Inventive example	A37 Sh	3005	0.0048	0.012	0.12	0.038	0.019	0.018	0.005	2
10	Inventive example	A38 Sh	reet	0.0068	0.021	0.33	0.005	0.025	0.035	0.021	16
	Inventive example	A39 Sh	100t	0.0023	0.015	0.35	0.022	0.011	0.021	0.006	43
	Inventive example	A40 Sh	3005	0.0049	0.020	0.52	0.031	0.021	0.038	0.013	Tr
	Inventive example	A41 Sh	leet	0.0069	0.033	0.88	0.042	0.025	0.078	0.065	19
	Inventive example		teet	0.0003	0.007	0.10	0.005	0.003	0.003	0.003	32
	Inventive example		leet	0.03	0.078	0.62	0.014	0.004	0.059	0.031	4
15	Inventive example		leet	0.05	0.004	0.92	0.022	0.012	0.001	D.002	15
	Inventive example	-	eet	0.08	0.040	0.15	0.032	0.031	0.018	0.015	28
	Inventive example		eet	0.11	0.054	0.48	0.006	0.026	0.035	0.023	Îr
	Inventive example		2000	0.04	0.003	0.11	0.018	0.017	0.020	0.007	10
	Inventive example		neet	0.05	0.042	0.42	0.035	0.016	0.037	0.017	32
	Inventive example Inventive example		neet	0.008	0.059	0.66	0.045	0.025	0.082	0.072	9
20	Inventive example	-	3000	0.006	0.016	0.15	0.030	0.003	0.002	0.002	22
	Inventive example		eet	0.030	0.041	0.32	0.048	0.005	0.019	0.003	46
	Inventive example		pe	0.020	0.42	1.21	0.005	0.0006	0.222	0.087	2
	Inventive example		pe	0.11	0.022	1.57	0.009	0.052	0.002	0.002	18
	Inventive example		pe	0.28	0.141	0.11	0.012	0.008	0.079	0.036	43
25	Inventive example		pe	0.35	0.268	0.68	0.003	0.011	0.150	0.065	Tx
23	Inventive example	A57 Pi	ipe	0.11	0.158	0.69	0.008	0.007	0.082	0.038	5
	Inventive example	A58 Pi	ipe	0.26	0.255	1.26	0.015	0.071	0.162	0.052	49
	Inventive example	A59 Pi	pe	0.31	0.015	1.91	0.019	0.001	0.245	0.082	3
	Inventive example	A60 Pi	pe	0.016	0.146	0.08	0.003	0.025	0.004	0.004	20
	Inventive example	A61 Ro	od	0.53	0.380	1.21	0.009	0.029	0.210	0.080	22
30	Inventive example	A62 Ro		0,56	0.021	1.72	0.012	0.062	0.003	0.003	3
	Inventive example	A63 Ro		0.60	0.141	0.11	0.016	0.102	0.072	0.032	25
	Inventive example	A64 Ro		0.65	0.255	0.68	0.003	0.143	0.145	0.071	32
	Inventive example	A65 Ro		0.58	0.152	0.62	0.005	0.049	0.068	0.031	46
	Inventive example	A65 Ro	ire	0.59	0.256	1.22	0.013	0.099	0.141	0.049	30
	Inventive example Inventive example		ire	0.51	0.143	0.07	0.004	0.022	0.231	0.082	44
35	Comparative example		eet	0.0006	0.013	0.13	0.028	0.022	0.012	0.035	
	Comparative example		3001	0.05	0.055	0.13	0.028	0.011	0.052	0.001	1
	Comparative example		eet	0.02	0.023	0.12	0.009	0.007	0.011	0.003	
	Comparative example		leet	0.003	0.015	0.35	0.003	0.015	0.017	0.009	-
	Comparative example		eet	0.0009	0.004	0.18	0.012	0.015	0.010	0.013	10
	Comparative example		ipe	0.26	0.163	0.69	0.003	0.072	0.000	0.063	32
40	Comparative example			0.63	0.258	1.28	0.004	0.132	0.000	0.002	-
	Comparative example		pe	0.27	0.015	0.69	0.018	0.081	0.001	0.115	3
	Comparative example		_	0.66	0.155	1.48	0.003	0.142	0.285	0.030	46
											لستتسا

rable 8

	1	Property districts	Tours of diseast	. 4000000000000000000000000000000000000	
	_	a) low	orders before adding	cruetalliesd whee to	rolling discussion total control of the section in the
			deoxidizing alloy *2		
Inventive example	A35	FeTi, Al, FeMgSi	В	T10, A1,0, Mg0	Dispersion over the entire sheet thickness
Inventive example	A36	-	প্র	TiOs, Also, Mgo	Disparsion in rows near the center of sheet thickness
Inventive example			æ	TiOx, Al.O., MgO	
Inventive example		PeTiAl, FeMgSi	В	TIOk, Algo, Mgo	Dispersion over the entire sheet thickness
Inventive example		\rightarrow	8	Tiox, Algo, Mgo	Dispersion in rows near the center of sheet thickness
Inventive example		_	æ	Tios, Algo, Mgo	u
Inventive example		_	В	Tios, Alzo, Mgo	Dispersion over the entire sheet thickness
Inventive example	342	_	В	Tio, Alzo, Mgo	Disparsion in rows near the center of sheet thickness
Inventive example	7	٤	C	TIO, Al.O, Mgo	Dispersion over the entire sheat thickness
Inventive example	_	_	ა	A1,0,,	Dispersion in rows near the center of sheet thickness
Inventive example	MAS	Pe	C	A1,03,	
Inventive example	9 V	_	C	A1,0,,	
Inventive example	A47	Ì	ີ	Tio, Al20, Mgo	Dispersion in rows near the center of sheet thickness
Inventive example	448		C	Tion, Alzo, Mgo	Dispersion in rows near the center of sheet thickness
Inventive example	1 N49		၁	TIOR, Algo, Mgo	Dispersion over the entire sheet thickness
Inventive example	A50	_	υ	A1,0,,	Dispersion in rows near the center of sheet thickness
Inventive example	151	_	٧	Algo,	
Inventive example	752	T	٧	11,01,	Disparsion in rows mean the center of sheet thickness
Inventive example		Fe	C	T10, A1,0, Mg0 *4	
Inventive example	A54	Feri, Al, Mg	D	TION, ALZO, MGO *4	Dispersion in rows near the center of pipe thickness
Inventive example		4	D	A120,	Į
Inventive example		4	D	TiOk, Also, Mgo	Disparsion over the entire pipe thickness
Inventive example	N57	2	Q	A1203,	Dispersion over the entire pipe thickness
Inventive example	2	_	Ф	TiOr, Al20, MgO *4	Dispersion over the entire pipe thickness
Inventive example	52		D	Algo,	Dispersion over the entire pipe thickness
Inventive example	99V		Q	Tion, Alfon, Mgo	Dispersion in rows near the centur of pipe thickness
Inventive example	<u>و</u>	Ĕ	a	TiO, AliO, Mgo 44	
Inventive example	762	ŭ		TiOx, Al2Os, MgO *4	Dispersion in rows near the center of rod diameter
Inventive example	¥63	4	٥	TIDK, Alson, MgO	
Inventive example	¥94	5	D	Tiok, Alsos, Mgo	Dispersion over the entire rod dismeter
Inventive example		2	Q	TIOK, Alto, Mgo	Dispersion over the entire rod dismeter
Inventive example		Ē	D	TiOr, Alch, Mgo *4	Dispersion over the entire rod diameter
Inventive example	¥92.	FeTIAL,	D	TiOs, Al,O, MgO 44	Dispersion over the entire wire diameter
Inventive example	¥68	FeTiAl, FeMgSi	D	TIOx, Alto, Mgo	Dispersion in rows near the center of wire diameter
Comparative example	310 B10	Al	В	A1,0, *5	Dispersion over the entire sheet thickness
Comparative example	118 811	7.7	C	T10, "6	Disparaton in rows near the center of sheet thickness
Comparative example	1e B12	Feti, Al	C	Tio, Aljo,	
Comparative example	16 B13		A	Tio, Alto,	
Comparative example	10 B14	_	ú	Tio, Mgo	center of sheet
Comparative example	316	A1, FeWgSi	D	Al ₂ O ₃ , MgO	Dispersion over the entire sheet thickness
Comparative exemple	Ale Bic	-	c	-078 049	Blongation in the rolling direction near the center
2 Annual Manual		1		lows form	
Comparative example B17	114 817	4	D	A1203, MgO *5	Dispersion over the entire sheet thickness
Comparative example B18	16 B18	Pettal, Mg	0	Pior, Mgo *6	Dispersion in rows near the center of rod dismeter

Table 9

-		No.	Micro-	Maximum	Number of	Ratio of
5		j	Vickers	diameter of	inclusion	occur-
			hardness	inclusion	particles	rence of
	1		*8, Hv	particle	*10, piece/kg	defects
		j		*9, um		*11, *
	Inventive example	A35	612	160	34.5	0.4
10	Inventive example	A36	1245	167	37.1	0.3
	Inventive example	A37	1206	145	30.2	0.2
	Inventive example	A38	982	137	25.3	0.4
	Inventive example	A39	1275	153	29.5	0.3
	Inventive example	A40	854	145	27.6	0.3
15	Inventive example	A41	1085	218	44.8	0.4
15	Inventive example	A42	715	130	21.2	0.2
	Inventive example	A43	683	170	10.5	0.4
	Inventive example	244	672	175	12.5	0.2
	Inventive example	A45	925	145	11.9	0.3
	Inventive example	A46	1283	142	10.2	0.4
20	Inventive example	A47	1271	165	10.8	0.4
	Inventive example	A48	972 [.]	328	21.2	0.3
	Inventive example	A49	1254	319	20.5	0.4
	Inventive example	A50	849	106	6.2	0.3
	Inventive example	A51	1072	305	102.0	1.1
25	Inventive example	A52	1070	292	82.0	0.9
25	Inventive example	λ53	945	195	29.5	0
	Inventive example	A54	655	183	25.6	0
	Inventive example	A55	644	172	36.8	0
	Inventive example	A56	773	176	37.6	0
	Inventive example	A57	783	163	34.4	0
30	Inventive example	A58	644	152	33.2	0
	Inventive example	A59	728	170	26.1	0
	Inventive example	A60	645	173	34.8	0
	Inventive example	A61	676	218	36.5	0.9
	Inventive example	A62	748	232	25.5	0.5
35	Inventive example	A63	755	244	30.2	0.6
	Inventive example	A64	645	168	28.7	0.8
	Inventive example	A65	643	167	30.2	0.9
	Inventive example	A66	885	170	21.2	0.8
	Inventive example	A67	854	194	22.0	0.7
40	Inventive example	A68	640	149	20.3	0.4
40	Comparative example	B10	2010	496	256.8	3.1
	Comparative example	B11	1453	358	196.2	3.5
	Comparative example	B12	795	241	43.2	0.5
	Comparative example	B13	1052	326	154.3	1.3
	Comparative example	B14	1826	268	41.3	5.2
45	Comparative example	B15	2384	303	32.6	8.9
	Comparative example	B16	475	220	20.5	16.7
	Comparative example	B17	2243	225	43.5	7.2
	Comparative example	B18	1785	235	35.2	9,1

15

55

Table 10

	No.	Profile	l .	-					owever, (ray.
	1	of		-			and the	rest	are iron	and	
	1 1	product		izable						1	
			С	Si	Mn	P	S	Ti	sol. Al	Ca*1	Mg
Inventive example	A69	Sheet	0.0004	0.039	0.56	0.010	0.004	0.052	0.048	28	
Inventive example	A70	Sheet	0.0029	0.008	0.79	0.025		0.001	0.002	49	1
Inventive example	A71	Sheet	0.0050	0.010	0.14	0.036	0.022	0.017	0.006	2	4
Inventive example	A72	Sheet	0.0066	0.023	0.35	0.003	0.027	0.036	0.025	11	T
Inventive example	A73	Sheet	0.0021	0.017	0.38	0.018	0.009	0.025	0.005	43	1
Inventive example	A74	Sheet	0.0052	0.018	0.50	0.035	0.026	0.032	0.016	Tr	3
Inventive example	A75	Sheet	0.0062	0.035	0.90	0.042	0.028	0.078	0.066	19	
Inventive example	A76	Sheet	0.0003	0.009	0.12	0.004	0.002	0.002	0.004	29	1
Inventive example	A77	Sheet	0.02	0.076	0.63	0.015	0.005	0.062	0.033	3	2
Inventive example	A78	Sheet	0.04	0.004	0.99	0.026	0.015	0.002	0.001	10	1
Inventive example	A79	Sheet	0.08	0.045	0.21	0.030	0.035	0.019	0.017	25	1
Inventive example	A80	Sheet	0.13	0.052	0.43	0.007	0.026	0.031	0.025	3	3
Inventive example	A81	Sheet	0.05	0.002	0.10	0.019	0.018	0.022	0.008	10	4
Inventive example	A82	Sheet	0.06	0.044	0.38	0.036	0.016	0.038	0.019	25	—"
_			0.14	0.057	0.67	0.044	0.022	0.038	0.019	41	-
Inventive example	A83	Sheet								6	
Inventive example	ABA	Sheet	0.009	0.088	0.85	0.005	0.003	0.002	0.003		4
Inventive example	A85	Sheet	0.005	0.012	0.11	0.033	0.011	0.017	0.035	23	<u> </u>
Inventi va exampl a	A86	Sheet	0.028	0.044	0.35	0.052		0.052	0.004	42	1
Inventive example	A87	Pipe	0.022	0.40	1.18	0.006	0.0007	0.232	0.088	1	4
Inventive example	ASS	Pipo	0.14	0.020	1.72	0.010	0.055	0.002	0.001	12	7
Inventive example	A89	Pípe	0.32	0.145	0.09	0.015	0.009	0.077	0.039	44	<u></u>
Inventive example	A90	Pipe	0.42	0.262	0.62	0.005	0.011	0.125	0.067	Tr	1
Inventive example	A91	Pipe	0.10	0.165	0.71	0,009	0.008	0.088	0.038	2	
Inventive example	A92	Pipe	0.28	0.243	1.32	0.016	0.074	0.168	0.051	47	1 2
Inventive example	A93	Pipe	0.33	0.013	1.90	0.021	0.001	0.240	0.085	3	2
Inventive example	A94	Pipe	0.018	0.139	0.06	0.003	0.022	0.003	0.002	17	
Inventive example	A95	Rod	0.57	0.392	1.23	0.008	0.028	0.230	0.075	23	
Inventive example	A96	Rod	0.56	0.023	1.75	0.011	0.063	0.004	0.003	2	1
Inventive example	A97	Rod	0.62	0.147	0.11	0.018	0.123	0.077	0.035	26	
Inventive example	A98	Rod	0.68	0.258	0.66	0.004	0.147	0.156	0.075	39	┰
Inventive example	A99	Rod	0.52	0.148	0.58	0.005	0.042	0.066	0.033	48	-
Inventive example		Rod	0.62	0.263	1.32	0.015		0.144	0.052	11	-
Inventive example		Wire	0.62	0.012	1.92	0.021	0.138	0.238	0.032	32	-
Inventive example	-	Wire	0.50	0.155	0.05	0.004		0.005	0.003	42	-
		Sheet	0.0004	0.012		0.022	0.019	0.011	0.028	-	
Comparative example	_			· · · · · · · · · · · · · · · · · · ·	0.12					+	<u> </u>
Comparative example	920	Sheet	0.04	0.058	0.38	0.034	0.010	0.055	0.001	 - -	₩-
Comparative example		Sheet	0.01	0.022	0.11	0.007	0.005	0.013	0.004	 - -	<u> </u>
Comparative example		Sheet	0.003	0.013	0.38	0.022	0.012	0.021	0.012	- -	<u> </u>
Comparative example		Sheet	0.0008	0.003	0.15	0.014	0.018	0.009	0.000	13	1
Comparative example	924	Pipe	0.23	0.172	0.72	0.002	0.076	0.000	0.069	30	1 4
Comparative example	B25	Rod	0.66	0.268	1.31	0.005	0.142	0.000	0.003	<u> </u>	<u> </u>
Comparative example	B26	Pipe	0.28	0.012	0.72	0.023	0.078	0.001	0.120	5	4
Comparative example	B27	Rod	0.61	0.165	1.52	0.004	0.138	0.268	0.020	47	

Table 11

			-	
	}	No.	Deckidizing alloy	Level of dissolved
5	1			oxygen before adding
				deoxidizing alloy *2
	Inventive example	A69	FeTi, Al, FeCa, FeMgSi	В
	Inventive example	A70	FeTiAl, Ca, Mg	В
	Inventive example	A71	FeTi, Al, Ca, Mg	B
	Inventive example	A72	FeTiAl, CaSi, Mg	В
10	Inventive example	A73	FeTi, Al, Ca, FeMgSi	B
	Inventive example	A74	FeTiAl, Ca, FeMqSi	D.
	Inventive example	A75	FeTiAl, CaSi, FeMgSi	В
	Inventive example	A76	FeTi, Al, FeCs, Mg	В
	Inventive example	A77	FeTiAl, CaSi, FeMgSi	С
15	Inventive example	A78	FeTi, Al, FeCa, Mg	С
,,,	Inventive example	A79	FeTiAl, CaSi, FeMgSi	С
	Inventive example	A80	FeTi, Al, Casi, FeMgSi	С
	Inventive example	A 81	FeTiAl, Ca, Mg	С
	Inventive example	A82	FeTiAl, FeCa, FeMgSi	С
	Inventive example	EB4	FeTiAl, CaSi, FeMgSi	C
20	Inventive example	A84	PeTiAl, CaSi, FeMgSi	c
	Inventive example	A6 5	FeTi, Al, FeCa, FeMgSi	A
	Inventive example	AB6	FeTiAl, FeCa, FeMgSi	λ
	Inventive example	AB7	FeTiAl, CaSi, FeMySi	С
	Inventive example	788	FeTi, Al, FeCa, Mg	D
	Inventive example	A89	FeTiAl, CaSi, FeMgSi	D
25	Inventive example	A90	FeTiAl, CaSi, Mg-Coke	D
	Inventive example	A91	Fefi, Al, CaSi, FeMgSi	D
	Inventive example		FeTiAl, CaSi, FeMqSi	Ď
	Inventive example		FeTi, Al, FeCa, FeMgSi	D
	Inventive example		FeTiAl, FeCa, FeMgSi	Ď
30	Inventive example	A95	FeTi, Al, CaSi, FeMgSi	D
	Inventive example	A96	FeTiAl, Ca, Mg-Coke	D
	Inventive example	λ97	feTi, Al, CaSi, Mg	D
	Inventive example	A98	FeTiAl, CaSi, FeMgSi	Ð
	Inventive example	A99	FeTi, Al, CaSi, FeMgSi	D
	Inventive example	A100	FeTiAl, CaSi, Mg-Coke	D
35	Inventive example	A101	FeTiAl, FeCa, Mg	D
	Inventive example	A102	FeTiAl, CaSi, FeMqSi	D
	Comparative	B 19	Al	В
	example	27.7		Ç
	Comparative	B20	Ti	С
40	example	_B20	**)
	Comparative	B21	FeTi, Al	С
	example	BZI	reii, Ai	
	Comparative	322	FeTiAl	A
	example	-44	101261	6
	Comparative	B23	Ti, FeCa, Mg	В
45	example			
	Comparative	B24	Al, CaSi, FeMgSi	D
	example		,,	-
	Comparative	B25	FeSi, FeMn	D
	example			
50	Comparative	B26	FeTi, Al, FeMgSi	D
	example	<u></u>		
	Comparative	B27	FeTiAl, Mg-Coke	Ð
	example			

Table 1

	X	No.	Principal		component in	it in	Existing inclusion formation on the section in the rolling
		O	rysta	crystallized phase *3	phase	1,3	direction
Inventive example	.e A69		T10x, A	A120, C	CAO, M	MgO	Dispersion over the entire sheet thickness
Inventive example	A70	Г			Cao,	MgO	Dispersion in rows near the center of sheat thickness
Inventive example	A71		Tio, A		Cao, X	Maro	Dispersion in rows near the center of sheet thickness
	<u> </u>		Tio, A		Cao, M	Mgo	Dispersion over the entire sheet thickness
Inventive example	A73	1		71203, C	CaO, M	Mg0	Dispersion in rows near the center of sheet thickness
			T10x, A	A1203, C	Cao, M	Mg0	Dispersion in rows mear the center of sheet thickness
		Г	Tiox, A	A1203, C		M 50	Dispersion over the entire sheet thickness
	A76	Г	Tiox, A	,	Cao, M	0.5	Dispersion in rows near the center of sheet thickness
	PLA 9	Γ		Alzo, C		MgO	
	87A	Π	Tio, A		Cao, M	Mg0	Dispersion in rows near the center of sheet thickness
	٠	Г		A120, C		Mgo	Dispersion in rows near the center of sheet thickness
			Tio, A			Mg0	Dispersion over the entire sheet thickness
Inventive example	.e A81		Tion, A		Cao, X	Ng0	Dispersion in rows near the center of sheet thickness
	.e A82		Tio, A		CaO, M	MgO	Dispersion in rows near the center of sheet thickness
Inventive exampl	.e A83		riok, A	A1,03, C	Cao, M	obje.	Dispersion over the entire sheet thickness
Inventive example	A84	Г	TIOK, A.	1		061	Dispersion in rows near the center of sheet thickness
Inventive example	A85	Γ	Tiox, A		CaO, M	6 490	Dispersion over the entire sheet thickness
Inventive example	A86	Γ	Tio, A	A120, C	CaO, M	Mgo	Dispersion in rows near the center of sheet thickness
		П	TiOx, A		CaO, M	Mg0 *4	Dispersion over the entire pipe thickness
		Г	Tiox, A	A1,03, C			Dispersion in rows near the center of pipe thickness
Inventive example	A89	Γ			Cao,	MgG	Dispersion over the entire pipe thickness
Inventive example	A90		Tiox, A.		Cao,	Mg0	Dispersion over the entire pipe thickness
Inventive example	164		Tiox, A	A1,03, C	CaO, M	MgO	Dispersion over the antire pipe thickness
Inventive exampl	•		Tiok, A	Algo, C	Cao, M	Mg0 *4	Dispersion over the entire pipe thickness
Inventive exampl	A93		Tion, A	11,0, C		Mg0 *4	Dispersion over the entire pipe thickness
Inventive exampl	A94		Tio, A		CaO, M	Mg0	Dispersion in rows near the center of pipe thickness
Inventive exampl	A95		Tiox, A	A1203, C	CaO, M	Mg0 +4	Dispersion over the entire rod diameter
Inventive example	96¥ 9:		T10, A		CaO, Mgo *4	1d0 +4	Dispersion in rows near the center of rod diameter
Inventive example	A97		Tio, A	A1,03, C	CAO, M	MgO	Dispersion over the entire rod diameter
Inventive example	A98		Tiok, A	A1,03, C	CaO, M	MgO	Dispersion over the entire rod diameter
	A99				CaO, M	Mg0	Disparsion over the entire rod diameter
Inventive exampl	•	ALCO T	Tiok, A		CaO, M	Mg0 *4	Dispersion over the entire rod diameter
Inventive example	_		Tiox, A.	A1,0, C	CaO, M	Mgo *4	Dispersion over the entire wire diameter
Inventive example		A102 T	Tiox, A.		CaO, M	Mg0	Dispersion over the entire wire diameter
Comparative exampl	ple B19		A120, 15	.			Dispersion over the entire sheet thickness
Comparative examp	1p1e B20	_	Tio, 16				Dispersion in rows near the center of sheet thickness
Comparative exampl	1ple B21		T10x, A1203	1,0,			Dispersion in rows near the center of sheet thickness
Comparative exampl			TiO, A	A1,0,			Dispersion in rows near the center of sheet thickness
Comparative examp	nple B23		TIOX, C	Cao, Mgo	o		Dispersion in rows near the center of sheet thickness
Comparative examp	9		A1,03, (Mgo		Dispersion over the entire pipe thickness
Comparative example	_	B25 H4	Mno, 81	810,			Elongation in the rolling direction near the center of rod diameter
	_		A1203, C	Cao, N	Mg0 #5		Dispersion over the entire pipe thickness
	•		Tiox, Cao,		Mg0 +7		Dispersion in rows near the center of rod dismeter
					ļ		

Table 13

	No.	Micro-	Maximum	Number of	Ratio of
	1	Vickers	diameter of	inclusion	occni-
		hard-	inclusion	particles	rence of
	İ	ness	particle	*10, piece/kg	defects
		*8, Hv	▼9, μ <u>m</u>		*11, %
Inventive example	A69	609	133	31.1	0.2
Inventive example	A70	1235	140	30.5	0.1
Inventive example	A71	1203	122	24.3	0.0
Inventive example	A72	995	115	22.2	0.2
Inventive example	A73	1284	103	26.3	0.1
Inventive example	A74	941	95	24.4	0.1
Inventive example	A75	1056	248	34.6	0.2
Inventive example	A76	753	120	15.8	0.0
Inventive example	A77	698	135	5.3	0.2
Inventive example	A78	635	144	7.8	0.0
Inventive example	A79	1002	126	8.8	0.1
Inventive example	A80	1262	142	7.8	0.3
Inventive example	A81	1291	122	9.5	0.2
Inventive example	A82	945	184	8.1	0.1
Inventive example	A83	1254	192	18.3	0.3
Inventive example	A84	835	95	3.8	0.1
Inventive example	A85	1108	308	104.0	0.8
Inventive example	A86	1005	313	82.5	0.7
Inventive example	A87	963	155	23.7	0
Inventive example	A88	645	160	19.8	0
Inventive example	A89	675	142	30.6	0
Inventive example	A90	758	195	33.6	
Inventive example	A91	587	152	28.5	0
Inventive example	A92	624	128	30.4	0
Inventive example	A93	758	138	20.2	0
Inventive example	A94	654	136	29.8	0
Inventive example	A95	758	198	30.9	0.5
Inventive example	A96	654	262	19.6	0.3
Inventive example	A97	753	224	26.8	0.4
Inventive example	A98	621	139	24.5	0.5
Inventive example	A99	683	157	26.3	0.5
Inventive example	A100	958	195	17.2	0.4
Inventive example	A101	868	183	17.9	0.5
Inventive example	A102	632 2005	130	15.5	0.2
Comparative example	B19		486	238.5	3.0
Comparative example	B20	1380	368	200.3	
Comparative example	B21	756	196	36.8	0.5
Comparative example	B22	998	352	163.5	1.2
Comparative example	B23	1527	234	36.5	3.8
Comparative example	B24	2068	275	27.5	8.0
Comparative example	B25	462	210	18.5	16.8
Comparative example	B26	1952	192	38.4	7.1
Comparative example	B27	1468	208	30.7	7.3

^[0044] As can be seen from the above explanations, the present invention provides rolled steel having few inclusion defects in which fine particles of oxide inclusions are dispersed.

^[0045] Therefore, it is possible for the present invention to contribute to the development of industry by providing rolled steel having few inclusion defects in which the conventional problems are completely solved.

Claims

5

15

20

25

30

35

50

- 1. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, and the crystallized phases of oxide inclusions exist in steel.
- 2. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, and the crystallized phases of oxide inclusions exist in steel being dispersed in rows in the rolling direction near the center of rolled steel.
 - 3. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, Micro-Vickers hardness at the room temperature of the oxide inclusions is 600 to 1300 Hv, and the crystallized phases of oxide inclusions exist in steel.
 - 4. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, Micro-Vickers hardness at the room temperature of the oxide inclusions is 600 to 1300 Hv, and the crystallized phases of oxide inclusions exist in steel being dispersed in rows in the rolling direction near the center of rolled steel.
 - 5. Rolled steel having few defects of inclusion, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is alumina, and further composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclusions exist in steel.
- 6. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved AI: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is alumina, and further composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclusions exist in steel being dispersed in rows in the rolling direction near the center of steel.
 - 7. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is alumina, and further composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, Micro-Vickers hardness of the oxide inclusions at the room temperature is 600 to 1300 Hv, and the crystallized phases of oxide inclusions exist in steel.

- Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, and further composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, Micro-Vickers hardness of the oxide inclusions at the room temperature is 600 to 1300 Hv, and the crystallized phases of oxide inclusions exist in steel being dispersed in rows in the rolling direction near the center of steel.
- Rolled steel according to any one of claims 1 to 8, wherein the maximum diameter of particles of oxide inclusions obtained by slime extraction is not more than 300 μm .
- 10. Rolled steel having few inclusion defects according to claim 9 wherein the number of particles of oxide inclusions obtained by slime extraction, the diameters of which are not less than 38 μm, is not more than 50 pieces/kg.

21

20

25

30

35

40

45

50