CMSC 510 - Fall 2018

Homework Assignment 2

Announced: 10/22

Due: Monday, 11/12, noon

The problem

- Implement and test:
 - Logistic regression (LR) with L₁ regularization
 - LR is differentiable (Lect 7)
 - But L₁ norm is not
 - Use proximal gradient descent
 - For L₁ norm, that's soft-thresholding (Lect 12)
- Use tensorflow library
- Dataset the same as in HW1:
 - Classify two digits from MNIST dataset
 - But: use Y=-1 or Y=1 to encode your classes
 - not Y=0 or Y=1

Hints about tensorflow

- See: tensorflow_minimizeF.py
 - Performs projected gradient descent on a simple function
 - The function has global minimum at
 - $W_1 = -0.25, W_2 = 2$
 - But the feasible set Q is: $w_1 > = 0$, $w_2 > = 0$
 - For this function, the best solution is $w_1=0$, $w_2=2$
 - The code does the following, in a loop:
 - Gradient step on the function, followed up by proximal step
 - Here, the proximal step is just "make w nonnegative" by replacing negative values with 0, the closest non-negative value
 - Feasible set Q is set of all vectors with nonnegative coordinates, i.e., for 2D, $w_1>=0$, $w_2>=0$
 - In your actual code, you should use soft-thresholding instead

Hints about tensorflow

- See: tensorflow_leastSquares.py
 - Performs gradient descent on a function based on data
 - We have some fake data x,y, where y=w*x+b+small_gaussian_noise
 - The code tries to find best w_{best}, b_{best} that predict y
 - It uses the loss: (y-y_{predicted})²
 - $y_{predicted} = w_{best} * x + b_{best}$
 - In your code:
 - x,y will be taken from the MNIST dataset
 - the loss should be logistic loss (Lect 7)
 - Note that y should be -1 or 1, not 0 or 1
 - you need to add the proximal step / soft-thresholding (Lect12)
 - Constant L is unknown, you should try several gradient step sizes
 - Constant in front of L1 penalty is unknown, you should try several values

Returning the Assignment

- Solution code should be written by you and you only (no web/book/friend/etc. code)
 - You can freely use the code provided on BB as your starting point
- Upload through Blackboard
 - A report in PDF
 - Results of tests of the two methods on MNIST dataset, for decreasing training set sizes (include you V#, and what are your two digits defining the two-class problem).
 - Code in python for solving the MNIST classification problem (for full size of the training set):
 - FamilyNameFirstName.py
 - The file should have your name in a comment at the top