B.Tech. DEGREE EXAMINATION, DECEMBER 2023

First Semester

18MAB101T - CALCULUS AND LINEAR ALGEBRA

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

Note:

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

(ii) Part - B & Part - C should be answered in answer booklet.

Time: 3 hours

Max. Marks: 100

Marks BL CO PO

1

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1.

Find the eigen values of A^2 if $A = \begin{bmatrix} 0 & 2 & 6 \end{bmatrix}$

(A) 3, 2, 5

(B) 9, 4, 25

(C) 4, 1, 2

- 2. The number of positive terms in the canonical form is called

1 1 1

1 1

1

1

(A) Signature

(B) Orthogonal

(C) Index

(D) Identity

Write the quadratic form defined by the matrix $A = \begin{bmatrix} 6 & 1 & -7 \\ 1 & 2 & 0 \\ -7 & 0 & 1 \end{bmatrix}$ 3.

- (A) $6x^2 + 2y^2 + z^2 + 2xy 14xz$ (B) $6x^2 + 2y^2 + z^2 + 2xy + 14xz$
- (C) $6x^2 + y^2 + z^2 + xy + yz$
- (D) $6x^2 + 6y^2 + 6z^2 + xy + 2xyz$
- Find the eigen values of the matrix $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

(A) 2, 2

(B) 7, -3

(C) 4, 5

- (D) 3, 1
- 5. If $rt-s^2 < 0$ at (a,b), then the point is called

2 1

1 2 1

- (A) Maximum point
- (B) Minimum point

(C) Saddle point

- (D) Bounded point
- 6. If $z = x^3 3x^2y + 3y^2$ then the value of $\frac{\partial z}{\partial y}$ is

 (A) $-3x^2 3y$ (B) $-3x^2 3y$

(B) $-3x^2 + 6y$

(C) $3x^2 + 4y + 7x$

(D) $3x^2 - 4y - 7x$

- 7. If $f(x,y) = e^{xy}$, then the value of $f_x(1,1) =$

(C) e

- 8. If $J_1 = \frac{\partial(x,y)}{\partial(u,v)}$ and $J_2 = \frac{\partial(u,v)}{\partial(x,y)}$ then $J_1J_2 = \frac{\partial(u,v)}{\partial(x,y)}$

(A) -1 (C) -2

- (D) 2
- 9. The solution of $(D^3 + 3D^2 + 3D + 2)y = 0$ is

2 1

2

- (A) $y = C_1 e^{-2x} + e^{-x/2} \left(C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right)$
- (B) $y = C_1 e^{-2x} + C_2 e^{-3x} + C_3 e^{-4x}$
- (C) $y = (C_1 + C_2 x + C_3 x^2) e^{-2x}$
- (D) $y = C_1 e^{-2x} + (C_2 + C_3 x) e^{-3x}$
- The particular integral of $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 3e^{4x}$ is
 - (A) $\frac{2}{49}e^{4x}$

(B) $\frac{4}{49}e^{4x}$

(C) $\frac{3}{40}e^{4x}$

- (D) $\frac{3}{40}e^{-4x}$
- 11. The complementary function of
 - $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos[\log(1+x)]$ is
 - (A) $CF = C_1 \cos z + C_2 \sin z$
- (B) $CF = C_1 \cos 2z + C_2 \sin 3z$
- (C) $CF = C_1 e^{2z} + C_2 e^{3z}$
- (D) $CF = C_1 e^z + C_2 e^{-z}$
- 12. The solution of $(D^2 2D + 1)y = 4$ is

3

- (A) $y = (C_1 + C_2 x)e^x + 4$
- (C) $v = (C_1 + C_2 x)e^{-x} + 4$
- (B) $y = C_1 e^x + C_2 e^{-x} + 4$ (D) $y = (C_1 + C_2 x) e^{-2x} + 5$
- 13. The radius of curvature at any point on the curve $r = e^{\theta}$ is

(C) r

- (D) $\sqrt{2} r$
- 14. The equation of the circle of curvature at any point (x,y) with centre of curvature $\overline{x}, \overline{y}$ and with radius of curvature ρ is
 - (A) $(x-\overline{x})^2 + (y-\overline{y})^2 = \rho^2$
- (C) $(x+\overline{x})^2 + (y+\overline{y})^2 = \rho^2$
- (B) $(x-\overline{x})^2 + (y-\overline{y})^2 = \rho$ (D) $(x+\overline{x})^2 + (y+\overline{y})^2 = \rho$

15. (n) = (A) (n+1)! (B) n! (C) (n-1)! (D) (n+2)!16. $\beta(m,n) = (A) (m) (n)$ (B) (m) / (n)

(C) $\frac{|(m+n)|}{|(n)|/|(m)}$ (D) $\frac{|(m+n)|}{|(m)|(n)}$

17. The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if

(A) p=1
(B) p=0

(C) p<1 (D) p>1

Let $\sum_{n=1}^{\infty} u_n$ be a series of positive terms such that $\lim_{n\to\infty} \frac{u_n}{u_{n+1}} = l$. Then the

series is convergent if

- (A) l > 1 (B) l < 1 (C) l = 1 (D) l = 0
- 19. The sequence $S_n = \frac{2n^3 + 7n}{5n^3 + 3n^2}$ converges to
 - (A) 1 (B) 0 (C) 1/5 (D) 2/5
- 20. If $\sum_{n=1}^{\infty} u_n$ is a series of positive terms and $\lim_{n\to\infty} u_n^{1/n} = l$, then $\sum u_n$ is divergent if
 - (A) l < l (B) l > l (C) l = l (D) l = 0

$PART - B (5 \times 4 = 20 Marks)$

Answer **ANY FIVE** Questions

Answer **ANY FIVE** Questions

Answer **ANY FIVE** Questions

Answer **ANY FIVE** Questions $A = \begin{bmatrix}
3 & -1 & 1 \\
-1 & 5 & -6 \\
-1 & -2 & 0
\end{bmatrix}$ are 3 and 6. Find the eigen values of A^{-1} .

22. Find the nature of the quadratic form $x_1^2 + 3x_2^2 + 6x_3^2 + 2x_1x_2 + 2x_2x_3 + 4x_3x_1$ without reducing to canonical form.

23. Find $\frac{dy}{dx}$, if $xe^{-y} - 2ye^x = 1$.

1 5 1

24. Examine for extreme values of
$$f(x,y) = x^2 + y^2 + 6x + 12$$
.

25. Solve
$$(D^2 + 3D + 2)y = e^{-2x}$$
.

26. Find its envelope of the straight line
$$\frac{x}{a} + \frac{y}{b} = 1$$
, where a and b are connected by the relation $a+b=c$, where c being a constant.

Test the convergence of
$$\left\{\frac{n-2}{3n}\right\}$$
.

$$PART - C (5 \times 12 = 60 Marks)$$

28. a. Reduce the quadratic form
$$x_1^2 + 5x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 6x_3x_1$$
 to a canonical form using orthogonal transformation.

b. Verify Cayley-Hamilton theorem for the matrix
$$A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$
 and hence find A^{-1} .

29. a. Find the Taylor series expansion of
$$e^{xy}$$
 at (1,1) up to the third degree terms.

b. Find the volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

30. a. Solve
$$(D^2 + 5D + 6)y = x^2 + 4e^{3x}$$
,

b. Solve
$$\frac{d^2y}{dx^2} + y = \cos ecx$$
 by the method of variation of parameters.

31. a. Find the evolute of the parabola
$$y^2 = 4ax$$
.

b. Find the radius of curvature at the point
$$\left(\frac{3a}{2}, \frac{3a}{2}\right)$$
 of the curve $x^3 + y^3 = 3axy$.

32. a. Test the convergence of divergence of the series
$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots \infty, x > 0$$
.

b. Test the convergence of the series
$$x + \frac{1}{2} \frac{x^3}{3} + \frac{1.3}{2.4} \frac{x^5}{5} + \frac{1.3.5}{2.4.6} \frac{x^7}{7} + ... \infty, x > 0.$$