

Exercise 4D

Question 4:

 $\angle A + \angle B = 108^{\circ}$ [Given]

But as $\angle A$, $\angle B$ and $\angle C$ are the angles of a triangle,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

Also, $\angle B + \angle C = 130^{\circ}$ [Given]

$$\Rightarrow$$
 \angle B + 72° = 130°

$$\Rightarrow \angle B = 130^{\circ} - 72^{\circ} = 58^{\circ}$$

Now as, $\angle A + \angle B = 108^{\circ}$

$$\Rightarrow \angle A + 58^{\circ} = 108^{\circ}$$

$$\Rightarrow \angle A = 108^{\circ} - 58^{\circ} = 50^{\circ}$$

$$\therefore \angle A = 50^{\circ}, \angle B = 58^{\circ} \text{ and } \angle C = 72^{\circ}.$$

Question 5:

Since. $\angle A$, $\angle B$ and $\angle C$ are the angles of a triangle.

So,
$$\angle A + \angle B + \angle C = 180^{\circ}$$

Now, $\angle A + \angle B = 125^{\circ}$ [Given]

$$\therefore 125^{\circ} + \angle C = 180^{\circ}$$

$$\Rightarrow \angle C = 180^{\circ} - 125^{\circ} = 55^{\circ}$$

Also, $\angle A + \angle C = 113^{\circ}$ [Given]

$$\Rightarrow \angle A + 55^{\circ} = 113^{\circ}$$

$$\Rightarrow \angle A = 113^{\circ} - 55^{\circ} = 58^{\circ}$$

Now as
$$\angle A + \angle B = 125^{\circ}$$

$$\Rightarrow$$
 58° + \angle B = 125°

$$\Rightarrow \angle B = 125^{\circ} - 58^{\circ} = 67^{\circ}$$

∴
$$\angle A = 58^{\circ}$$
, $\angle B = 67^{\circ}$ and $\angle C = 55^{\circ}$.