

第3部 RTシステム構築実習

宮本 信彦

国立研究開発法人産業技術総合研究所 ロボットイノベーション研究センター ロボットソフトウェアプラットフォーム研究チーム

2

資料

- USBメモリで配布
 - 「WEBページ」フォルダのHTMLファイルを開く
 - チュートリアル(ROBOMECH2018、第3部) _ OpenRTM-aist.html
- もしくはRTミドルウェア講習会のページからリンクをクリック
 - チュートリアル(第3部)

プログラム

10:00 -10:50	第1部(その1): インターネットを利用したロボット サーピスとRSiの取り組み2018 担当: 成田雅彦 氏(産業技術大学院大学)
11:00 -11:50	第1部(その2): OpenRTM-aistおよびRTコンボーネントプログラミングの概要 担当: 安藤慶昭 氏 (産総研) 概要: RTミドルウェア(OpenRTM-aist)はロボット システムをコンポーネント指向で構築するソフトウェ アプラットフォームです。RTミドルウェアを利用す ることで、既存のコンボーネントを再利用し、モジュ ール指向の柔軟なロボットシステムを構築することが できます。RTミドルウエアについて、その概要およ びRTコンポーネントの機能やプログラミングの流れ について説明します。
11:50 -12:00	質疑応答・意見交換
12:00 -13:00	昼食
13:00 -14:30	第2部: RTコンポーネントの作成入門 担当: 宮本信彦 氏 (産総研) 概要: RTシステムを設計するツールRTSystemEditor およびRTコンポーネントを作成するツールRTCBuild erの使用方法について解説するとともに、RTCBuilde rで体験していただきます。 チュートリアル(第2部、Windows) チュートリアル(第2部、Ubuntu) 資料(zipファイル)
14:45 -17:00	第3部: RTシステム構築実習 担当: 宮本信彦 氏 (産総研) 概要: OpenRTM-aistを利用してロボットを制御する プログラム これがに作成します。 チュートリアル(第3部)

....____. ...IST)

複数台のロボットが連携するシステムの構築

• アクセスポイントのRasperry PiにノートPCと LEGO Mindstroms EV3を接続する

2部の実習完了時点で、 Raspberry PiとノートPCが接続済み

アクセスポイントのRaspberry PiにEV3を接続する

EV3配布

• Raspberry Pi、EV3の番号を確認

2部で使用したRaspberry Piと同一番号のEV3を使う

Educator Vehicle組立て

- Educator Vehicleの組立て
 - EV3を本体に装着

EV3本体を土台に取り付ける

- EV3とLモーターをケーブルで接続
 - B → Lモーター(左)
 - C → Lモーター(右)

EV3の接続

- 電源投入
 - 中央のボタンを押す
 - 起動すると自動的にアクセスポイントに接続

- 起動しない場合はリセットを実行する

EV3の接続

- IPアドレスが192.168.11.xxxになっているかを確認する
 - 接続には多少時間が必要

画面上に表示されたIPアドレスを確認する

- スクリプトファイル実行(RTCの起動)
 - ボタン操作で「File Browser」→「scripts」→「start_rtcs.sh」を選択

EV3(2台目の接続)

- ネームサーバーの接続
 - EV3の画面上に表示されたIPアドレスを入力する

動作確認

- データポートの接続
 - EducatorVehicle0の現在の速度出力をRaspberryPiMouseRTC0の目標速度入力に接続する。
 - current_vel(EducatorVehicle0) → target_velocity_in(RaspberryPiMouseRTC0)

EducatorVehicle1のアウトポートを RaspberryPiMouseRTCのインポートと接続

動作確認

• RTCをアクティブ化する

おわりに

- これで実習は一通り終了です。
- 時間が余った場合は、以下のような課題に挑戦してみてください。 (手順はWEBページ資料で説明)
 - EV3のタッチセンサのオンオフでRaspberry Piを操作
 - ジョイスティックコンポーネントで2台同時に操作
 - EV3を喋らせる
 - マーカーを認識してRaspberry Piマウスを追従させる
 - カメラは2台まで貸し出し
- 実習を終了する際について
 - タッチセンサなどの実習中に取り付けた部品は、取り外して実習前の状態で返却してください
 - Raspberry Piマウス、EV3の電源をオフにして返却してください

真ん中のボタンを1秒以上押す

左上のボタンを(数回)押す

Power Offを選択