

Luc Dehaspe Erika Souche

Overview

Genotype of genomic location

A

Heterozygous Variant

or

or

https://bit.ly/20wHr5r

Variant calling

- GATK HaplotypeCaller
 - Targeted sequencing
 - \circ WGS

```
java -jar gatk.jar HaplotypeCaller -R genome.fa -I sample.bam -- dbsnp dbsnp_138.hg38.vcf --output sample.HaplotypeCaller.raw.vcf
```

https://software.broadinstitute.org/gatk/documentation/

Variant calling

- Freebayes Bayesian haplotype-based genetic polymorphism discovery and genotyping
 - Amplicon sequencing
 - Targeted sequencing
 - ∘ WGS

```
freebayes -f genome.fa --genotype-qualities sample.bam >
sample.freebayes.vcf
```

https://github.com/ekg/freebayes

Header

```
##fileformat=VCFv4.2
##ALT=<ID=NON REF, Description="Represents any possible alternative
allele at this location">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for
the ref and alt alleles in the order listed">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Approximate read
depth (reads with MQ=255 or with bad mates are filtered)">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=PL, Number=G, Type=Integer, Description="Normalized, Phred-
scaled likelihoods for genotypes as defined in the VCF specification">
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in
genotypes, for each ALT allele, in the same order as listed">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA12878
```


Body

```
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA12878

20 61098 . C T 465.13 .

AC=1;AF=0.500;AN=2;BaseQRankSum=0.516;ClippingRankSum=0.00;DP=44;DP_Orig =124;ExcessHet=3.0103;FS=0.000;MQ=59.48;MQRankSum=0.803;QD=10.57;ReadPos RankSum=1.54;SOR=0.603 GT:AD:DP:GQ:PL 0/1:28,16:44:99:496,0,938

20 61138 . C CT 155.10 . AC=1;AF=0.500;AN=2;BaseQRankSum=-7.350e-01;ClippingRankSum=0.00;DP=32;DP_Orig=131;ExcessHet=3.0103;FS=0.000;MQ=5 9.45;MQRankSum=0.790;QD=4.85;ReadPosRankSum=-3.970e-01;SOR=0.591 GT:AD:DP:GQ:PL 0/1:21,11:32:99:195,0,464

20 61795 . G T 2034.16 . AC=1;AF=0.500;AN=2;BaseQRankSum=-6.330e-01;ClippingRankSum=0.00;DP=60;DP_Orig=164;ExcessHet=3.9794;FS=0.000;MQ=5 9.81;MQRankSum=0.00;QD=17.09;ReadPosRankSum=1.23;SOR=0.723 GT:AD:DP:GQ:PL 0/1:30,30:60:99:1003,0,1027 ...
```


Looking at one position (GATK VCF)

Field	Value
Chromosome	20
Position	61098
dbSNP ID	•
Reference allele	C
Alternate allele	Т
Quality	465.13
Filter	•
Info	AC=1;AF=0.500;AN=2;BaseQRankSum=0.516; ClippingRankSum=0. 00;DP=44;DP_Orig=124; ExcessHet=3.0103;FS=0.000;MQ=59.48; MQRankSum=0.803;QD=10.57; ReadPosRankSum=1.54;SOR=0.603
Format	GT:AD:DP:GQ:PL
Sample	0/1:28,16:44:99:496,0,938

Looking at one position (GATK VCF)

Genotype

0/1 = heterozygous

Looking at one position (GATK VCF)

Looking at one position (GATK VCF)

Looking at one position (GATK VCF)

Field	Value	
Format	GT: AD: DP:	GQ: PL
Sample	0/1: 28,16: 44:	99: 496,0,938

Genotype

0/1 = heterozygous

Allelic Depth

28 reference alleles 16 alternate alleles

Genotype quality

Smallest non-zero PL value Maximum of 99

Depth

44 reads at this position

Looking at one position (GATK VCF)

Field	Value		
Format	GT: AD: [DP: GQ:	PL
Sample	0/1: 28,16:	44: 99:	496,0,938

Genotype

0/1 = heterozygous

Phred Likelihood

Likelihood 0/0, 0/1, 1/1

Allelic Depth

28 reference alleles 16 alternate alleles

Genotype quality

Smallest non-zero PL value Maximum of 99

Depth

44 reads at this position

Checking variants in IGV

(1) variant detected with unbalance allelic depth Amplicon based assay Heterozygous variant G/T

Value
0/1
0.770
3791,1108
4899
99
19373,0,137338

(1) unbalance AD

(1) unbalance AD

Checking variants in IGV

(2) variants on same allele?

Targeted assay

Recessive disorder

Two heterozygous variants: GACT/G and G/A

Format	Variant 1	Variant 2
GT	0/1	0/1
AB	-	0.490
AD	50,39	42,44
DP	89	86
GQ	99	99
PL	1460,0,1947	1328,0,1128

(2) Variants on same allele?

Checking variants in IGV

(3) real de novo variant?

Targeted assay
Trio *i.e.* child & parents
Heterozygous deletion TA/T in child

Format	Value
GT	0/1
AD	43,51
DP	94
GQ	99
PL	1742,0,1448

(3) real de novo?

Checking variants in IGV

(3) real de novo variant?

Targeted assay
Trio *i.e.* child & parents
Heterozygous deletion TA/T in child

Format	Index	Mother	Father
GT	0/1	0/0	0/0
AD	43,51	103,0	81,0
DP	94	103	81
GQ	99	-	-
PL	1742,0,1448	-	-

Joint calling/genotyping

- Make one VCF file with many samples
- Benefits
 - Easy comparison (reference calls included)
 - Inheritance inference
 - More accurate genotypes

Joint calling/genotyping

```
java -jar gatk.jar HaplotypeCaller -R genome.fa -I sample.bam --
dbsnp dbsnp_138.hg38.vcf --output-mode EMIT_ALL_SITES --all-site-
pls --output sample.HaplotypeCaller.raw.g.vcf
```

https://software.broadinstitute.org/gatk/documentation/

genomeVCF (gVCF)

Store reference and candidate variant information
 Nucleotide level

genomeVCF (gVCF)

- Store reference and candidate variant information
 - Nucleotide level
 - Region level

Joint calling/genotyping

java -jar gatk.jar HaplotypeCaller -R genome.fa -I sample.bam -dbsnp dbsnp_138.hg38.vcf --output-mode EMIT_ALL_SITES --all-sitepls --output sample.HaplotypeCaller.raw.g.vcf

java -jar gatk.jar GenomicsDBImport -V mother.g.vcf.gz -V
father.g.vcf.gz -V son.g.vcf.gz --genomicsdb-workspace-path
database

java -jar gatk.jar GenotypeGVCFs -R genome.fa -V gendb://database -O trio.vcf.gz

https://software.broadinstitute.org/gatk/documentation/

Multi-sample VCF

```
#CHROM POS ID
                                OUAL FILTER INFO FORMAT INDEX FATHER
                REF
                         AT_1T
      MOTHER
14 25103662 . T C
                               1340.16
      AC=4; AF=0.667; AN=6; BaseQRankSum=2.86; ClippingRankSum=0.318; DP=54;
   FS=0.000; MLEAC=4; MLEAF=0.667; MO=60.00; MO0=0; MORankSum=-6.350e-
   01; QD=24.82; ReadPosRankSum=0.421; SOR=0.811 GT: AB: AD: DP: GO: PL: TP
      0|1:0.500:7,7:14:99:238,0,217:711|1:.:0,24:24:71:903,71,0:71
      0|1:0.560:9,7:16:99:231,0,280:71
14 29237221
                                1711.13
                   ΤА
      AC=1; AF=0.167; AN=6; BaseQRankSum=-3.000e-
   02; ClippingRankSum=0.448; DP=279; FS=8.696; MLEAC=1; MLEAF=0.167; MO=60.11
   ;MO0=0;MORankSum=0.918;OD=18.20;ReadPosRankSum=-7.290e-01;SOR=1.911
      GT:AD:DP:GO:PL:TP 0/1:43,51:94:99:1742,0,1448:36
      0/0:81,0:81:99:0,120,1800:36 0/0:103,0:103:99:0,120,1800:36
                                      3458.90
14
      31344406
                         T G
      AC=6; AF=1.00; AN=6; DP=92; FS=0.000; MLEAC=6; MLEAF=1.00; MO=60.00; MO0=
0;OD=32.40;SOR=5.762 GT:AD:DP:GO:PL:TP
      1|1:0,34:34:99:1317,102,0:801|1:0,31:31:92:1163,92,0:80
      1|1:0,27:27:81:1005,81,0:80
```


GATK best practices

Variant recalibration

- Variant Quality Score Recalibration (VQSR)
 - Compute new quality score
 - Distinguish good from bad variants
 - Based on validated variant resources

Variant recalibration

```
java -jar gatk.jar VariantRecalibrator -R genome.fasta -V
multi sample.vcf.gz --resource
hapmap, known=false, training=true, truth=true, prior=15.0:hapmap.s
ites.vcf.qz --resource
omni, known=false, training=true, truth=false, prior=12.0:1000G omn
i2.5.sites.vcf.qz --resource
1000G, known=false, training=true, truth=false, prior=10.0:1000G ph
asel.snps.high confidence.vcf.gz --resource
dbsnp, known=true, training=false, truth=false, prior=2.0:Homo sapi
ens.dbsnp138.vcf.qz -an QD -an MQ -an MQRankSum -an
ReadPosRankSum -an FS -an SOR -mode SNP -O output.recal --
tranches-file vgsr.tranches --rscript-file vgsr.plots.R
java -jar gatk.jar ApplyVQSR -R Homo sapiens assembly38.fasta -
V input.vcf.gz -O output.vcf.gz --truth-sensitivity-filter-
level 99.0 --tranches-file vgsr.tranches --recal-file
output.recal -mode SNP
```

https://software.broadinstitute.org/gatk/documentation/

Variant calling pipelines available at GC

- Validated for diagnostic use (human)
 - Amplicon
 - Multiplicom
 - Multiplex PCR
 - Targeted
 - Custom assays
 - Whole Exome Sequencing (WES)
 - $_{\circ}$ WGS
- Research
 - Molecular Inversion Probes (MIPs)
 - Non-human species

Use of cell lines

Father NA12877

Mother NA12878

∘ Son

Cell line with Illumina Platinum calls

NA12882

Cell line with Illumina Platinum calls + Genome in a bottle

Cell line

Clinical exome (160X) - NA12878

Clinical exome (160X) - NA12878

- Clinical exome (160X) NA12878
 - Correct variants
 - True Positives (TP)
 - Correct reference calls
 - True Negatives (TN)
 - Mismatches
 - False Positives (FP)
 - False Negatives (FN)

Sensitivity Specificity

Use optimal variant filtering strategy to

- Maximise sensitivity & specificity
- Avoid the need to check variants in IGV

VCF quality control

Count and monitor

- Number of variants per sample
 - SNPs
 - Indels
- Transition/Transversion ratio
- Insertion to deletion ratio
- Number of heterozygous variants
- Number of new variants (i.e. not in dbSNP)

```
java -jar CollectVariantCallingMetrics INPUT=sample.vcf.gz
OUTPUT=sample.vcf.metrics DBSNP=dbsnp138.vcf
```

https://broadinstitute.github.io/picard/

Variant metrics

Known vs new variants (WGS)

Annotation

• de novo variant: TA/T

Format	Index	Mother	Father
GT	0/1	0/0	0/0
AD	43,51	103,0	81,0
DP	94	103	81
GQ	99	99	99
PL	1742,0,1448	0,120,1800	0,120,1800

- FOXG1, associated to Rett syndrome (autosomal dominant)
- o Frameshift
- Not found in public databases

Annovar

Gene-based

- Genic vs intergenic (RefSeq, UCSC, or ensembl)
- o Synonymous, non-synonymous, splicing, frameshift, intronic

Region-based

- Segmental duplications
- Conserved regions

Filter-based

- Allele frequencies (gnomad, ...)
- Pathogenicity prediction scores (SIFT, PolyPhen, CADD, ...)
- Clinical interpretation (clinvar_20180603 & intervar_20180118)

```
table_annovar.pl sample.vcf database/ -buildver hg38 -out sample_annotatef -remove -protocol refseq,cadd _operation
```

http://annovar.openbioinformatics.org/en/latest/

Luc Dehaspe Erika Souche

Viewing variants in IGV

Genotype refinement workflow

Extra step proposed by GATK

