7FNCE025 High Frequency Trading

Dr Hui Gong

Week 3 Seminar Questions

- 1. If $dS = \mu S dt + \sigma S dZ$, and A and n are constants, find the stochastic equations satisfied by
 - (a) f(S) = AS;
 - (b) $f(S) = S^n$.
- 2. By expanding df in Taylor series to $\mathcal{O}dt$ and using that $(dZ)^2 = dt$, prove that

$$\int_{t_0}^t Z(\tau)dZ(\tau) = \frac{1}{2} \left(Z(t)^2 - Z(t_0)^2 \right) - \frac{1}{2} (t - t_0).$$

3. Consider the general stochastic differential equation

$$dG = A(G, t)dt + B(G, t)dZ.$$

Use Itô's Lemma to show that it is theoretically possible to find a function f(G) which itself follows a random walk but with zero drift.

4. There are n assets satisfying the following stochastic differential equations

$$dS_i = \mu_i S_i dt + \sigma_i S_i dZ_i$$
 for $i = 1, \dots, n$.

Recall that the Wiener process dZ_i satisfies

$$\mathbb{E}[dZ_i] = 0, \qquad dZ_i^2 = dt$$

as usual, but the asset price changes are correlated with

$$dZ_i dZ_i = \rho_{ij} dt$$

where $-1 \le \rho_{ij} = \rho_{ji} \le 1.^1$

Derive Itô's Lemma for a function $f(S_1, \ldots, S_n)$ of the *n* assets S_1, \ldots, S_n .

¹Note that we do not need to take the expected value. In general if two Wiener processes $Z_1(t)$ and $Z_2(t)$ are correlated we have that $dZ_1(t)dZ_2(t) = \rho dt$ where ρ is the correlation coefficient