# **NEWS for pracma version 0.8.6**

November 20, 2011

NEWS pracma News

## Changes in Version 0.8.6 (2011-11-20)

- Extend the regula\_falsi() function with the Anderson-Bjoerk and Anderson-Bjoerk-King approaches.
- Complete the NEWS.Rd file up to this version.

#### Changes in Version 0.8.5 (2011-11-19)

- sqrtm() matrix square root, based on Denman-Beavers iteration, rootm() matrix p-th root, computing a complex contour integral, signm() matrix sign function.
- fzero() now uses the new zeroin() function, i.e., a Brent-Dekker approach instead of refering to uniroot().
- twinPrimes() twin primes in a given interval, and nextPrime will find the next higher prime.

#### Changes in Version 0.8.4 (2011-11-14)

- Transformations between cartesian, spherical, polar and cylindrical coordinate systems: cart2sph(), sph2cart(), cart2pol(), pol2cart().
- polar() uniformly random points in the unit circle (till Matlab 5).

# Changes in Version 0.8.3 (2011-11-11)

- accumarray() grouping elements and applying a function to each group.
- uniq() Matlab-style 'unique' function, allsums() in the examples.
- small correction to fsolve(), mentioned on the 'check summary' page.

#### Changes in Version 0.8.2 (2011-11-04)

- newmark() Newmark's method for solving second order differential equations of the form y''(t) = f(t, y(t), y'(t)) on [t1, t2].
- cranknic() Crank-Nicolson 'ivp' solver, combining the forward and backward Euler methods for ordinary differential equations.

#### **Changes in Version 0.8.1 (2011-10-30)**

- Corrected pinv() for (nearly) singular matrices.
- Renamed ifactor() to factorize().

# Changes in Version 0.8.0 (2011-10-27)

• Minor corrections and improvements to the 'pracma.pdf' manual, incl. numdiff(), refindall(), trigApprox(), and subspace().

#### **Changes in Version 0.7.9 (2011-10-22)**

• spinterp() monotonic (and later on shape-preserving) interpolation following the approach of Delbourgo and Gregory.

#### **Changes in Version 0.7.8 (2011-10-17)**

• bvp() solves boundary value problems of the following kind: -u''(x) + c1 u'(x) + c2 u(x) = f(x) for x in [a, b].

# Changes in Version 0.7.7 (2011-10-14)

- primes2(n1, n2) will return all prime numbers between n1 and n2 (without storing the numbers from sqrt(n2) up to n1).
- Another change to the NEWS.Rd file.

#### Changes in Version 0.7.6 (2011-08-05)

- gaussNewton() for function minimization and solving systems of nonlinear equations. fsolve() as a wrapper for it.
- fzsolve() for root finding of complex functions.
- softline() Fletcher's inexact linesearch algorithm.

#### Changes in Version 0.7.5 (2011-07-26)

• Put NEWS.Rd in the /inst subdirectory (and NEWS.pdf in /doc), thanks to Kurt Hornik; slightly changed the version numbering.

# Changes in Version 0.7.4 (2011-07-22)

- rortho() generate random orthogonal matrix of size n.
- Titanium data set for testing fitting procedures.

# **Changes in Version 0.7.3 (2011-07-15)**

- erf() and erfc() error and complementary error functions (Matlab style) as (almost) aliases for pnorm().
- erfz() complex error function.

# Changes in Version 0.7.2 (2011-07-11)

• broyden() quasi-Newton root finding method for systems of nonlinear equations.

#### Changes in Version 0.7.1 (2011-07-09)

• cross() has been vectorized (remark on R-help).

#### Changes in Version 0.7.0 (2011-07-07)

- Sigmoid and Einstein functions.
- Updated NEWS.Rd, NEWS.pdf

#### Changes in Version 0.6.9 (2011-07-06)

• Runge-Kutta-Fehlberg method of order (5,4).

# **Changes in Version 0.6.8 (2011-07-05)**

- triquad() Gaussian quadrature over triangles.
- cotes() Newton-Cotes integration formulae for 2 to 8 nodes.

#### Changes in Version 0.6.7 (2011-07-04)

- lagrangeInterp(), newtonInterp() Lagrange and Newton polynomial interpolation, neville() Neville's methods.
- tril(), triu() extracting triangular matrices (Matlab style).

# Changes in Version 0.6.6 (2011-07-02)

- charpoly() computes the characteristic polynomial, the determinant, and the inverse for matrices that are relatively small, applying the Faddejew-Leverrier method.
- froots() to find \*all\* roots (also of second or higher order) of a univariate function in a given interval. The same with fmins() to find all minima.

#### Changes in Version 0.6.5 (2011-07-01)

• Adams-Bashford and Adams-Moulton (i.e., multi-step) methods for ordinary differential equations in function abm3pc().

# Changes in Version 0.6.4 (2011-06-30)

- Changed the description to be more precise about the package.
- droplet\_e() generation of digits for the Euler number. (Should be followed by a function droplet\_pi().)

# Changes in Version 0.6.3 (2011-06-28)

- rationalfit() rational function approximation
- ratinterp() rational interpolation a la Burlisch-Stoer.

#### Changes in Version 0.6.2 (2011-06-26)

• pade() Pade approximation.

# **Changes in Version 0.6.1 (2011-06-25)**

• quadgk() adaptive Gauss-Kronrod quadrature.

#### Changes in Version 0.6.0 (2011-06-24)

- muller() Muller's root finding method.
- Added differential equation example to expm()'s help page.
- Changed NEWS file to become simpler (no subsections); updated the NEWS.Rd, NEWS.pdf files.

#### Changes in Version 0.5.9 (2011-06-23)

- quadl() recursive adaptive Gauss-Lobatto quadrature.
- simpadpt() another recursively adaptive Simpson's rule.
- Added testing procedures for all integration routines; corrected, refined some of these procedures

#### Changes in Version 0.5.8 (2011-06-20)

• quadgr() Gaussian Quadrature with Richardson extrapolation, can handle singularities at endpoints and (half-)infinite intervals.

#### Changes in Version 0.5.7 (2011-06-18)

- expm() for matrix exponentials.
- clenshaw\_curtis() the Clenshaw-Curtis quadrature formula.

#### Changes in Version 0.5.6 (2011-06-17)

- simpson2d() as non-adaptive 2-dimensional Simpson integration.
- dblquad() twofold application of internal function integrate().

# Changes in Version 0.5.5 (2011-06-15)

- gaussHermite() and gaussLaguerre() for infinite intervals.
- Fresnel integrals fresnelS() and frenelC().

# **Changes in Version 0.5.4 (2011-06-12)**

- gaussLegendre() computes coefficients for Gauss Quadrature, and quad2d() uses these weights for 2-dimensional integration.
- quadinf() wrapper for integrate() on infinite intervals.
- Added a version for rapid pi computation to the agm() examples.

#### Changes in Version 0.5.3 (2011-06-06)

- ode23() solving first order (systems of) differential equations.
- barylag2d() 2-dimensional barycentric Lagrange interpolation.

#### Changes in Version 0.5.2 (2011-06-04)

- interp2() for two-dimensional interpolation.
- gradient() now works in two dimensions too.

#### Changes in Version 0.5.1 (2011-06-01)

• fzero(), fminbnd(), fminsearch(), fsolve() as aliases for uniroot(), optimize(), optim() with Nelder-Mead, newtonsys().

#### Changes in Version 0.5.0 (2011-05-31)

• Corrections to help pages.

#### Changes in Version 0.4.9 (2011-05-30)

- romberg() and gauss\_kronrod() for numerical integration.
- Richardson's extrapolation in numberiv(), numdiff().
- Discrete numerical derivatives (one dimension): gradient().

#### Changes in Version 0.4.8 (2011-05-28)

- Numerical function derivatives: fderiv(), grad().
- Specialized operators: hessian(), laplacian().
- Application: taylor().

#### Changes in Version 0.4.7 (2011-05-27)

- plot vector fields: quiver() and vectorfield().
- findintervals().
- Corrections in deval(), deeve(), using findintervals().

# Changes in Version 0.4.6 (2011-05-26)

- Laguerre's method laguerre().
- rk4() and rk4sys() classical fourth order Runge-Kutta.
- deval(), deeve() evaluate ODE solutions.

# Changes in Version 0.4.5 (2011-05-24)

- Lebesgue coefficient: lebesgue().
- poly2str() for string representation of a polynomial.

#### Changes in Version 0.4.4 (2001-05-23)

- Dirichlet's eta() and Riemann's zeta() function.
- rmserr() different accuracy measures; std err() standard error.

#### Changes in Version 0.4.3 (2001-05-22)

- polypow() and polytrans() for polynomials.
- polyApprox() polynomial approximation using Chebyshev.
- trigPoly(), trigApprox() for trigonometric regression.

#### Changes in Version 0.4.2 (2001-05-17)

- segm\_intersect() and segm\_distance() segment distances.
- inpolygon().

#### **Changes in Version 0.4.1 (2011-05-13)**

- polyadd() polynomial addition.
- conv() and deconv() time series (de)convolution.
- detrend() removes (piecewise) linear trends.
- ifft() for normalized inverse Fast Fourier Transform.

#### Changes in Version 0.4.0 (2011-05-10)

• Added tests for functions since version 0.3-7.

#### Changes in Version 0.3.9 (2011-05-09)

• and() and or().

#### Changes in Version 0.3.8 (2011-05-06)

- pchip() and option 'cubic' for interp1() interpolation.
- The complex gamma functions gammaz().
- hadamard() and toeplitz() matrices.

# Changes in Version 0.3.7 (2011-05-04)

- Rank of a matrix, mrank(), and nullspace() for the kernel.
- orth(), orthogonal basis of the image space, and subspace() determines the angle between two subspaces.
- normest() for estimating the (Frobenius) norm of a matrix, and cond() determines the condition number of a matrix.

# Changes in Version 0.3.6 (2011-04-30)

- fact(), more accurate than the R internal function 'factorial'.
- ezplot() as an alias for curve(), but with option "fill = TRUE".
- aitken() for accelerating iterations.
- Renamed polycnv() to polymul().
- Renamed outlierMAD() to hampel().

#### Changes in Version 0.3.5 (2011-04-23)

- agm() for the arithmetic-geometric mean.
- Lambert W function lambertWp() for the real principal branch.
- "Complex Step" derivation with complexstep() and complexstepJ().

#### Changes in Version 0.3.4 (2011-04-21)

- Barycentric Lagrange interpolation through barylag().
- polyfit2() fits a polynomial that exactly meets one additional point.
- Added more references to the help entry 'pracma-package.Rd'.

#### Changes in Version 0.3.3 (2011-04-19)

- hornerdefl() for also returning the deflated polynomial.
- newtonHorner() combining Newton's method and the Horner scheme for root finding for polynomials.
- jacobian() computes the Jacobian of a function  $R^n \rightarrow R^m$  as simple numerical derivative.
- newtonsys() applies Newton's method to functions R^n -> R^n with special application to root finding of complex functions.
- newton() renamed to newtonRaphson().

#### Changes in Version 0.3.2 (2011-04-17)

- Sorting functions: bubbleSort(), insertionSort(), selectionSort(), shellSort(), heapSort(), merge-Sort(), mergeOrdered(), quickSort(), quickSortx(), is.sorted(), and testSort().
- Functions from number theory: eulersPhi(), moebiusFun() and the mertensFun(), sigma(), tau(), omega(), and Omega().

#### Changes in Version 0.3.1 (2011-04-16)

• Chebyshev polynomials of the first kind: chebPoly(), chebCoeff(),and chebApprox().

#### Changes in Version 0.3.0 (2011-04-09)

- New version of news.Rd, news.pdf.
- More test functions for root finding and quadrature.

#### Changes in Version 0.2.9

- fnorm() and the Runge function runge().
- contfrac(), rat(), and rats() for continuous fractions.
- meshgrid() and magic().

# Changes in Version 0.2.8

- quad() adaptive Simpson quadrature.
- Minimum finding with fibsearch() and golden\_ratio().
- Root finding with newton(), secant(), and brentDekker().

# **Changes in Version 0.2.7**

• Regular expression functions regexp(), regexpi(), regexprep() and refindall().

#### Changes in Version 0.2.6

- String functions blanks(), strtrim(), deblank(), strjust(), and strrep().
- interp1() one-dimensional interpolation (incl. spline)

#### Changes in Version 0.2.5

• Matlab functions mode(), clear() and beep().

#### Changes in Version 0.2.4

- primroot() finds the smallest primitive root modulo a given n; needed functions are mod-power() and modorder().
- humps() and sinc(): Matlab test functions.
- Root finding through bisection: bisect(), regulaFalsi().
- outlierMAD(), findpeaks(), and piecewise().
- polycnv() for polynomial multiplication.
- Functions extgcd(), gcd(), and lcm() have been renamed to extGCD(), GCD(), and LCM() respectively.

#### Changes in Version 0.2.3

- strfind(), strfindi(), and findstr().
- circlefit() fitting a circle to plane points.
- mldivide() and mrdivide(), emulating the Matlab backslash operator.

#### Changes in Version 0.2.2

- vnorm() vector norm
- Warning about a nasty "non-ASCII input" in the savgol.RD file has been resolved.

#### Changes in Version 0.2.1

- horner() implementing the horner scheme for evaluating a polynomial and its derivative.
- savgol() Savitzki-Golay smoothing and needed pseudoinverse pinv().

# Changes in Version 0.2.0

- Package renamed to 'pracma' to avoid name clashes with packages such as 'matlab' that are sticking closer to the original.
- Added 'pracma-package' section to the manual.

#### Changes in Version 0.1.9

- reshape(), repmat(), and blkdiag() matrix functions.
- combs() chooses all combinations of k elements out of n, and randcomb() generates a random selection.
- perms() generates all permutations, randperm() a random permutation.
- Pascal triangle as pascal(); nchoosek() returns binomial coefficients.
- Some string functions: strcmp(), strcmpi(), strcat().

#### Changes in Version 0.1.8

- std() as refinement of the standard deviation function.
- ceil() and fix() as aliases for ceiling() and trunc(). [floor() and round() already exist in R.]
- Modulo functions mod(), rem() and integer division idiv().
- Integer functions related to the Euclidean algorithm: extgcd(), gcd(), lcm(), coprime(), and modinv().
- distmat() and crossn(), the vector product in n-dimensional space.

#### Changes in Version 0.1.7

- size(), numel(), ndims(), isempty(), and find().
- eye(), ones(), zeros().
- Functions returning random numbers: rand(), randn(), randi().
- linspace(), logspace(), and logseq() for linearly, logarithmically, and exponentially spaced sequences.

Note that the functions in the 'matlab' package are not exactly mimicking the corresponding Matlab/Octave functions.

#### Changes in Version 0.1.6

- Matrix functions mdiag() and mtrace() added. inv() is introduced as an alias for solve() in R.
- Generate special matrices hankel(), rosser(), and wilkinson(). kron() is an alias for the R function kronecker().
- Renamed factors() to ifactor() to distiguish it more clearly from factors as used in R.

#### Changes in Version 0.1.5

• Added functions for flipping or rotating numeric and complex matrices: flipdim(), flipud(), fliplr(), and rot90().

# Changes in Version 0.1.4

• Added basic complex functions real(), imag(), conj(), and angle() which are essentially only aliases of the R functions Re(), Im(), and Conj().

angle() returns the angle of a complex number in radians. The R function Mod() is here only available as abs().

# Changes in Version 0.1.3

- Added compan() function for the 'companion' matrix; the eig() function is an alias for the R eigen()values function.
- Added the polynomial functions poly(), polyder(), polyfit(), polyint(), and polyval().
- roots() returns real and complex roots of polynomials.
- Simplified the trapz() function.

#### Changes in Version 0.1.2

- Added functions from number theory: primes(), isprime() and factors().
- The corresponding function for factors() in Matlab/Octave is called factor(), but that name should not be shadowed in R!
- Added the polyarea() and trapz() functions.

# Changes in Version 0.1.1

- Added some simple functions such as nthroot(), pow2(), and nextpow2().
- dot() and cross() functions for scalar and vector product.
- Generate matrices through vander() and hilb().

# Changes in Version 0.1.0

• Installation

'pracma' will be a pure R package without using source code in C or Fortran. Therefore, installation will be immediate on all platforms.

Intention

This package provides R implementations of more advanced math functions from Matlab and Octave (and the Euler Math Toolbox) with a special view on optimization and time series routines.

Remark: Typeset this document as:
 R CMD Rd2pdf NEWS.Rd --title="NEWS for pracma version 0.8.6".

# Index

NEWS, 1