Statistical Inference Project

Guy Cole October 2, 2016

Simulation Exercise

Overview

Investigate the exponential distribution in R and compare it w/the Central Limit Theorem.

As mandated by assignment, exponential distribution will be simulated in R using rexp(n, lambda) where lambda is the rate parameter. Distribution mean and standard deviation are 1/lambda and lambda = 0.2 for all simulations.

Assignment mandates investigation of "distribution of averages of 40 exponentials" w/1000 simulations.

Simulations

Initialization.

```
set.seed(54321)
lambda <- 0.2
n <- 40
simulationLimit <- 1000
standardDeviation <- 1/lambda</pre>
```

Sample Mean vs Theoretical Mean

```
simulation <- rexp(simulationLimit * n, rate = lambda)
simulatedMean <- mean(simulation)
simulatedMean

## [1] 4.990132
theoreticalMean <- 1/lambda
theoreticalMean</pre>
## [1] 5
```

Sample Variance vs Theoretical Variance

```
datum <- NULL
for (ii in 1:simulationLimit) {
  datum <- c(datum, mean(rexp(n, lambda)))
}</pre>
```

Illustrate sample mean vs theoretical mean.

```
library(ggplot2)
dataFrame1 <- data.frame(header = c("Sample Mean", "Theoretical Mean"), values = c(simulatedMean, theoregg <- ggplot(NULL, aes(x=datum))
plot1 <- gg + geom_histogram(aes(y=..density..), color="blue", fill="red", binwidth=0.1) + labs(title = plot1</pre>
```


Standard deviation

```
sd(datum)
```

[1] 0.7773352

Variance

```
varianceDatum <- sd(datum)^2
varianceDatum</pre>
```

[1] 0.60425

Theoretical variance

```
theoreticalDatum <- (1/lambda)^2/n
theoreticalDatum
```

[1] 0.625

Normal Distribution

The distribution plot (above) clearly exhibits gaussian bell curve shape, indicated normal distribution. Plot below uses qqnorm() to compare simulation to normal, indicating close approximation.

```
qqnorm(datum)
qqline(datum, col=10)
```

Normal Q-Q Plot

Tooth Growth

Overview

Explore the R datasets "ToothGrowth" data.

"ToothGrowth" captures the length of teeth in ten guinea pigs w/three dose levels of Vitamin C (0.5, 1 and 2 mg), delivered via orange juice or ascorbic acid.

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(knitr)
library(datasets)
data("ToothGrowth")
Data Dictionary
  • [,1] len numeric Tooth length
  • [,2] supp factor Supplement type (VC or OJ).
  • [,3] dose numeric Dose in milligrams.
str(ToothGrowth)
                    60 obs. of 3 variables:
## 'data.frame':
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
head (ToothGrowth)
##
      len supp dose
## 1 4.2
           VC 0.5
## 2 11.5
           VC 0.5
           VC 0.5
## 3 7.3
## 4 5.8
            VC 0.5
## 5 6.4
            VC 0.5
## 6 10.0
            VC 0.5
summary(ToothGrowth)
##
         len
                                 dose
                    supp
```

Initial Analysis

Initial analysis indicates that longer tooth length correlates to higher vitamin C dosage.

```
summaryDataFrame <- ToothGrowth %>% group_by(supp, dose) %>% summarise(count = n(), mean=mean(len), med
kable (summaryDataFrame ,digits = 3, align = 'c')
```

supp	dose	count	mean	median	standard deviation
OJ	0.5	10	13.23	12.25	4.460
OJ	1.0	10	22.70	23.45	3.911
OJ	2.0	10	26.06	25.95	2.655
VC	0.5	10	7.98	7.15	2.747
VC	1.0	10	16.77	16.50	2.515
VC	2.0	10	26.14	25.95	4.798

tooth length by supplement type

Confidence Interval Testing

Employ t test to verify null hypotheses (both supply menthods produce same results).

```
t.test(ToothGrowth$len[ToothGrowth$supp=="0J"], ToothGrowth$len[ToothGrowth$supp=="VC"], paired=FALSE,
##
##
   Welch Two Sample t-test
##
## data: ToothGrowth$len[ToothGrowth$supp == "OJ"] and ToothGrowth$len[ToothGrowth$supp == "VC"]
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean of x mean of y
## 20.66333 16.96333
Return p-value of 0.06063 which is not large enough to reject null hypothesis. Conclusion is that tooth length
not caused by supply method.
Test increasing dose from 0.5 to 1.
t.test(ToothGrowth$len[ToothGrowth$dose==0.5], ToothGrowth$len[ToothGrowth$dose==1], paired=FALSE, var.
##
   Two Sample t-test
##
## data: ToothGrowth$len[ToothGrowth$dose == 0.5] and ToothGrowth$len[ToothGrowth$dose == 1]
## t = -6.4766, df = 38, p-value = 1.266e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983748 -6.276252
## sample estimates:
## mean of x mean of y
##
      10.605
                19.735
Dramatically lower p value (1.266e-07) implies dosage impacts mean.
t.test(ToothGrowth$len[ToothGrowth$dose==1], ToothGrowth$len[ToothGrowth$dose==2], paired=FALSE, var.eq
##
##
   Two Sample t-test
##
## data: ToothGrowth$len[ToothGrowth$dose == 1] and ToothGrowth$len[ToothGrowth$dose == 2]
## t = -4.9005, df = 38, p-value = 1.811e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.994387 -3.735613
## sample estimates:
## mean of x mean of y
##
      19.735
                26.100
```

Which also yields a very low p value (1.811e-05) which implies that increased vitamin C dosage encourages tooth growth.

Conclusion

Analysis using t-tests indicate that delivery methods do not impact tooth growth. Increased levels of vitamin C dosage encourages increased tooth growth.