112-1 Decision Tree Take Home Exam

學號:412770116 姓名:許嘉隆

題目:假設我們有8筆資料如下:

序號	有房	婚姻	年收入	拖欠				
1	是	單身	125K	否				
2	否	已婚	100K	否				
3	否	單身	70K	否				
4	是	已婚	120K	否				
5	否	離婚	95K	是				
6	否	已婚	60K	否				
7	是	離婚	220K	否				
8	否	單身	85K	是				

目的是要找出**拖欠**的分類標準。若我們使用熵(Entropy)為指標,並使用訊息增益(Information Gain)為分枝的標準。請回答下列問題。

欄位:序號、有房、婚姻、年收入、拖欠

1. 計算拖欠的熵H(拖欠)。(10%)

Entropy =
$$H(p_1, p_2, ..., p_K) = -\sum_{k=1}^{K} p_k \log_2 p_k$$

拖欠	人數	Ratio		
是	2	$\frac{2}{8}$		
沿	6	$\frac{6}{8}$		

$$H$$
(拖欠) = $-\left(\frac{2}{8}\log_2\frac{2}{8} + \frac{6}{8}\log_2\frac{6}{8}\right)$ $\approx -(-0.5 + (-0.31))$ $\equiv 0.81$

- 2. (a) 計算條件熵(Conditional Entropy),已知有房的訊息,拖欠的條件熵H(拖欠|有房)。(10%)
 - (b) 計算有房的資訊增益(Gain有房(拖欠))。(10%)
 - (a) Conditional Entropy:

$$H(D|A) = \sum_{i,k} P(A_i)H(D_K \vee A_i) = -\sum_{i=1}^n P(A_i) \sum_{k=1}^K P(D_k \vee A_i) \log_2 P(D_k \vee A_i)$$

有房	拖欠	人數	Ratio
是 (D ₁ = 3)	是 (D ₁₁)	0	$\frac{0}{3}$
$A_1 = \frac{3}{8}$	否 (D ₁₂)	3	3 3
否 (D ₂ = 5)	是 (D ₂₁)	2	<u>2</u> 5
$A_2 = \frac{5}{8}$	否 (D ₂₂)	3	$\frac{3}{5}$

$$H$$
(拖欠|有房) = $-\frac{3}{8} \left(\frac{0}{3} \log_2 \left(\frac{0}{3} \right) + \frac{3}{3} \log_2 \left(\frac{3}{3} \right) \right) - \frac{5}{8} \left(\frac{2}{5} \log_2 \left(\frac{2}{5} \right) + \frac{3}{5} \log_2 \left(\frac{3}{5} \right) \right)$
 $\approx -\frac{3}{8} (0) - \frac{5}{8} (-1.32 - 0.74)$
= 1.29

(b)
$$Gain_A(D) = H(D) - H(D \lor A)$$

 $Gain_{\overline{A}\overline{B}}($ 拖欠 $) = H($ 拖欠 $) - H($ 拖欠 $) = 0.81 - 1.29 = -0.48$

- 3. (a) 計算條件熵(Conditional Entropy),已知婚姻的訊息,拖欠的條件熵H(拖欠|婚姻)。(10%)
 - (b) 計算婚姻的資訊增益(Gain婚姻(拖欠))。(10%)
 - (a) Conditional Entropy:

$$H(D|A) = \sum_{i,k} P(A_i)H(D_K \vee A_i) = -\sum_{i=1}^n P(A_i) \sum_{k=1}^K P(D_k \vee A_i) \log_2 P(D_k \vee A_i)$$

婚姻	拖欠	人數	Ratio
單身(D ₁ = 3)	是 (D ₁₁)	1	$\frac{1}{3}$
$A_1 = \frac{3}{8}$	否 (D ₁₂)	2	$\frac{2}{3}$
已婚(D ₂ = 3)	是 (D ₂₁)	0	$\frac{0}{3}$
$A_2 = \frac{3}{8}$	否 (D ₂₂)	3	3 3
離婚(D ₃ = 2)	是 (D ₃₁)	1	$\frac{1}{2}$
$A_3 = \frac{2}{8}$	否 (D ₃₂)	1	$\frac{1}{2}$

$$H$$
(拖欠|婚姻) = $-\frac{3}{8} \left(\frac{1}{3} \log_2 \left(\frac{1}{3} \right) + \frac{2}{3} \log_2 \left(\frac{2}{3} \right) \right) - \frac{3}{8} \left(\frac{0}{3} \log_2 \left(\frac{0}{3} \right) + \frac{3}{3} \log_2 \left(\frac{3}{3} \right) \right) - \frac{2}{8} \left(\frac{1}{2} \log_2 \left(\frac{1}{2} \right) + \frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right)$
 $\approx -\frac{3}{8} (-0.53 - 0.39) - \frac{3}{8} (0) - \frac{2}{8} (-0.5 - 0.5)$
 $= 0.345 + 0.25$
 $= 0.595$

(b)
$$Gain_A(D) = H(D) - H(D \lor A)$$

 $Gain_{\text{婚姻}}($ 拖欠 $) = H($ 拖欠 $) - H($ 拖欠 $)$ 婚姻 $) = 0.81 - 0.595 = 0.215$

- 4. (a) 年收入為數值型特徵,若為二元(Binary)分類,試計算條件熵H(拖欠|年收入)最適合的分枝值為何。(20%)
 - (b) 計算年收入的資訊增益(Gain年收入(拖欠))。(10%)

(a)

	60	~	70	~	85	~	95	~	100	~	120	~	125	~	220
		65		7 8		90		98		110		123		173	
	\leq	>	W	>	\leq	>	\leq	>	\forall	>	€	>	€	>	
是	0	2	0	2	1	1	2	0	2	0	2	0	2	0	
否	1	5	2	4	2	4	2	4	3	3	4	2	5	1	
Entropy	H_1	0.755	H_2	0.689	H_3	0.796	H_4	0.5	H_5	0.607	H_6	0.439	H_7	0.755	

$$H_{1} = -\frac{1}{8} \left(\frac{0}{1} \log_{2} \left(\frac{0}{1} \right) + \frac{1}{1} \log_{2} \left(\frac{1}{1} \right) \right) - \frac{7}{8} \left(\frac{2}{7} \log_{2} \left(\frac{2}{7} \right) + \frac{5}{7} \log_{2} \left(\frac{5}{7} \right) \right) \approx 0.755$$

$$H_{2} = -\frac{2}{8} \left(\frac{0}{2} \log_{2} \left(\frac{0}{2} \right) + \frac{2}{2} \log_{2} \left(\frac{2}{2} \right) \right) - \frac{6}{8} \left(\frac{2}{6} \log_{2} \left(\frac{2}{6} \right) + \frac{4}{6} \log_{2} \left(\frac{4}{6} \right) \right) \approx 0.689$$

$$H_{3} = -\frac{3}{8} \left(\frac{1}{3} \log_{2} \left(\frac{1}{3} \right) + \frac{2}{3} \log_{2} \left(\frac{2}{3} \right) \right) - \frac{5}{8} \left(\frac{1}{5} \log_{2} \left(\frac{1}{5} \right) + \frac{4}{5} \log_{2} \left(\frac{4}{5} \right) \right) \approx 0.796$$

$$H_{4} = -\frac{4}{8} \left(\frac{2}{4} \log_{2} \left(\frac{2}{4} \right) + \frac{2}{4} \log_{2} \left(\frac{2}{4} \right) \right) - \frac{4}{8} \left(\frac{0}{4} \log_{2} \left(\frac{0}{4} \right) + \frac{4}{4} \log_{2} \left(\frac{4}{4} \right) \right) \approx 0.5$$

$$H_{5} = -\frac{5}{8} \left(\frac{2}{5} \log_{2} \left(\frac{2}{5} \right) + \frac{3}{5} \log_{2} \left(\frac{3}{5} \right) \right) - \frac{3}{8} \left(\frac{0}{3} \log_{2} \left(\frac{0}{3} \right) + \frac{3}{3} \log_{2} \left(\frac{3}{3} \right) \right) \approx 0.607$$

$$H_{6} = -\frac{6}{8} \left(\frac{2}{6} \log_{2} \left(\frac{2}{6} \right) + \frac{4}{6} \log_{2} \left(\frac{4}{6} \right) \right) - \frac{2}{8} \left(\frac{0}{2} \log_{2} \left(\frac{0}{2} \right) + \frac{2}{2} \log_{2} \left(\frac{2}{2} \right) \right) \approx 0.439$$

$$H_{7} = -\frac{7}{8} \left(\frac{2}{7} \log_{2} \left(\frac{2}{7} \right) + \frac{5}{7} \log_{2} \left(\frac{5}{7} \right) \right) - \frac{1}{8} \left(\frac{0}{1} \log_{2} \left(\frac{0}{1} \right) + \frac{1}{1} \log_{2} \left(\frac{1}{1} \right) \right) \approx 0.755$$

因為H₆的值最小(0.439),所以最適合的分枝值為 123K ■

- (b) $Gain_{\pm \psi \lambda}$ (拖欠) = H(拖欠) H(拖欠) = 0.81 0.439 = 0.371 ■
- 5. (a) 建構第一層的決策樹,以哪個特徵為主。(10%)
 - (b) 建構第一層的決策樹。(10%)
 - (a) 選最大的Imformation Gain

 $Gain_{有房}$ (拖欠) = -0.48

 $Gain_{婚姻}$ (拖欠) = 0.215

 $Gain_{\pm \psi \lambda}$ (拖欠) = 0.371

- :Gain年收入(拖欠)最大
- .: 建構第一層的決策樹,以年收入為主

(b)

