Дата: 12.06.23

ФИО: Козлов Евгений Юрьевич

Группа: 224-322

ЛАБОРАТОРНАЯ РАБОТА №2

Сравнение различных фильтров для устранения шумов в изображении

1. Цель работы

Проанализировать возможности фильтров для устранения различных шумовых структур, подобрать параметры фильтрации под конкретное изображение.

2. Содержание работы

- 1. Проанализировать предложенные изображения определить тип шумовой структуры.
- 2. Обосновать выбор фильтров, которые могут быть использованы для устранения шумов в предложенных изображениях [4]
- 3. Провести фильтрацию изображений для устранения шумовой структуры [4, 6]
- 4. Оценить эффективность устранения шумов с помощью показателя PSNR [5]
- 5. Построить диаграмму, отражающую изменение показателя PSNR для изображений до и после фильтрации

3. Исходные данные и программное обеспечение

Используемая среда программирования: Visual Studio Code

Используемый язык программирования: Python 3.11.1 64-bit

Используемые библиотеки: numpy, scipy, skimage, matplotlib

4. Выполнение работы

Изображение	test2_1	test2_2	test2_3	test2_4
с шумовой структурой				
Шумовая структура	Флуктуационный шум	Шум квантования	Импульсный шум	Шум дискретизации
Метод устранения	TV Chambolle	TV Bregman	Медианный фильтр	Гауссовский фильтр
Обоснование метода	Вариационные фильтры усредняют шум, сохраняя резкость контуров объектов. Шум распределён равномерно по всему изображению.	Фильтр здесь должен быть более чувствителен для определения шума. Был использован метод на регуляризации Брегмана.	Медианный фильтр оперирует на небольших областях изображения, заменяя резкие пики медианным знамениями.	Гауссовский фильтр плавно размывает изображение, стирая резкие границы, но изображение при этом размывается.
Параметры фильтрации	weight = 0.1 , eps = 0.00000015	weight = 7.5 , eps = 0.000005	Маска: прямоугольник 5×9 для выреза галочки	sigma_x = 5, _y = 4 (как шаг пикс. сетки)
Р Ориг/Шум	27.98	34.46	31.66	26.637853
S Шум/Фильтр	28.86	33.90	28.67	25.547059
R Ориг/Фильтр	31.90	33.86	31.40	24.512642

Результаты

Слева представлено зашумленное изображение, справа – его отфильтрованный результат.

1. Флуктуационный шум.

2. Шум квантования (постеризация).

3. Импульсный шум.

4. Шум дискретизации.

Вывод

Было проведено сравнение различных фильтров для устранения шумов в изображении. Необходимо понимать тип шумовой структуры для выбора подходящего фильтра, иначе обработка может нанести ещё большие потери

информации. В работе фильтров используются статистические методы, благодаря им происходит полное размытие изображения до значений среднего, медианного и т. п. уровня.

Почти все фильтры не различают зашумлённые и незашумлённые области. Чтобы минимизировать потери, стоит применять фильтры избирательно, и если шумовая структура это позволяет — на определённой области.

Все изображения размещены на гугл-диске по адресу:

https://drive.google.com/drive/folders/1UWP1KEAZR4wI52x2OGs2OXu3Za2xE 0BF?usp=sharing

Код работы:

```
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
from skimage.io import imread, imshow, imsave
from skimage import data, img_as_float, metrics, restoration, filters,
morphology as morph
# https://sci-hub.ru/https://www.sciencedirect.com/science/arti-
cle/abs/pii/016727899290242F
# https://eeweb.engineering.nyu.edu/iselesni/lecture notes/TVDmm/
# https://www.youtube.com/watch?v=6cRwZ19iiHo
# https://scikit-image.org/skimage-tutorials/lectures/1_image_fil-
ters.html
# skimage.io некорректно работает с сохранением изображения с
low contrast, даже если флаг check contrast=False
# https://github.com/scikit-image/scikit-image/issues/3819
# тем не менее, библиотека позволяет их выводить на экран, поэтому для
данной лабораторной работы был использован
# функционал Jupiter Notebook
emap = lambda f, xs: [f(x) for x in xs]
unzip = lambda xs: [[a for a, _ in xs], [b for _, b in xs]]
       = lambda pic: (lambda ax: ax.axis('off') and ax.imshow(pic,
cmap='gray'))(plt.subplots()[1])
float64 = lambda x: x.astype(np.float64) / 255.0
loadf64 = lambda x: float64(imread(x))
psnr = metrics.peak_signal_noise_ratio
compare = lambda fn, o, n, f: {'Ориг/Шум': fn(o, n), 'Шум/Фильтр': fn(n,
f), 'Ориг/Фильтр': fn(o, f)}
```

```
psnr ssim1 = lambda o, n, f: {'': compare(psnr, o, n, f)}
psnr_ssim = lambda o, n, f: pd.DataFrame(psnr_ssim1(o, n, f))
def show(pics, title=None):
    cols, rows = 2, (len(pics) // 2) + (len(pics) % 2)
    fig, axs = plt.subplots(rows, cols, squeeze=True, constrained_lay-
out=True)
    show1 = lambda pic, ax: ax.axis('off') and ax.imshow(pic,
cmap='gray')
    [show1(pic, ax) for pic, ax in zip(pics, axs.flat)]
IMG ARR = emap(loadf64, ['img/init/test2 0.jpg',
'img/dist/1/test2_1.jpg', 'img/dist/2/test2_2.jpg',
'img/dist/3/test2_3.jpg', 'img/dist/4/test2_4.jpg'])
INIT_IMG, STAT, POST, SQRT, PIXL = IMG_ARR
emap(show1, IMG ARR)
# Флуктуационный шум
# Вариационные фильтры усредняют шум, сохраняя резкость контуров объек-
тов. Шум распределён равномерно по всему изображению.
FILTERED_1 = restoration.denoise_tv_chambolle(stat, 0.08,
eps=0.00000015)
show([STAT, FILTERED 1])
psnr ssim(INIT IMG, STAT, FILTERED 1).T.plot.barh(title='PSNR, Флуктуа-
ционный шум', color=['yellowgreen', 'teal', 'mediumseagreen'])
def some_highlights(styler, min_color="red", max_color="green"):
    styler.highlight_min(color=min color, axis=None)
    styler.highlight max(color=max color, axis=None)
    return styler
psnr ssim(INIT IMG, STAT, FILTERED 1).style.pipe(some highlights)
# Шум квантования
# Фильтр здесь должен быть более чувствителен для определения шума. Был
использован метод на регуляризации Брегмана.
FILTERED_2 = restoration.denoise_tv_bregman(POST, 7.5, eps=0.000005,
max_num_iter=5000)
show([POST, FILTERED 2])
psnr ssim(INIT IMG, POST, FILTERED 2).T.plot.barh(title='PSNR, Шум кван-
тования (постеризация)', color=['yellowgreen', 'teal',
'mediumseagreen'])
psnr ssim(INIT IMG, POST, FILTERED 2).T.T.style.pipe(some highlights)
# Импульсный шум
# Медианный фильтр оперирует на небольших областях изображения, заменяя
резкие пики медианным знамениями.
FILTERED_3 = filters.median(SQRT, morph.rectangle(5, 9))
show([SQRT, FILTERED 3])
```

```
psnr ssim(INIT IMG, SQRT, FILTERED 3).T.plot.barh(title='PSNR, Импульс-
ный шум', color=['yellowgreen', 'teal', 'mediumseagreen'])
psnr_ssim(INIT_IMG, SQRT, FILTERED_3).T.T.style.pipe(some_highlights)
# Шум дискретизации
# Гауссовский фильтр плавно размывает изображение, стирая резкие гра-
ницы, но изображение при этом размывается.
FILTERED 4 = filters.gaussian(PIXL, sigma=(5, 4))
show([PIXL, FILTERED_4])
psnr ssim(INIT IMG, PIXL, FILTERED 4).T.plot.barh(title='PSNR, Шум дис-
кретизации', color=['yellowgreen', 'teal', 'mediumseagreen'])
psnr_ssim(INIT_IMG, PIXL, FILTERED_4).T.T.style.pipe(some_highlights)
# Вывод данных
pd.DataFrame({
    'Флуктуационный шум': psnr_ssim1(INIT_IMG, STAT, FILTERED_1),
    'Шум квантования': psnr_ssim1(INIT_IMG, POST, FILTERED_2),
    'Импульсный шум': psnr_ssim1(INIT_IMG, SQRT, FILTERED_3),
    'Шум дикретизации': psnr_ssim1(INIT_IMG, PIXL, FILTERED_4),
```