HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG BỘ MÔN KHOA HỌC MÁY TÍNH

ĐỀ THI KẾT THÚC HỌC PHẦN (Hình thức thi: Viết)

----o0o-----

Kỳ thi hết môn, Học kỳ 2, năm học 2022-2023

Học phần: **Toán rời rạc 2**Trình độ đào tạo: **Đại học**Hình thức đào tạo: **Chính quy**Thời gian thi: **90 phút**

$\mathbf{D}\mathbf{\hat{E}}\ \mathbf{S}\mathbf{\hat{O}}\ \mathbf{6}$

Câu 1 (2 điểm). Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh và 20 cạnh được biểu diễn dưới dạng danh sách cạnh như sau:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối	
1	2	5	7	
1	5	5	9	
1	8	5	10	
1	10	6	7	
2	3	6	10	
2	4	7	8	
2	6	7	9	
4	6	7	10	
4	8	8	9	
5	6	9	10	

- a) Tìm $\deg^+(u)$ và $\deg^-(u)$ với mọi $u \in V$.
- b) Tìm số đường đi có độ dài 2 trên đồ thị G từ đỉnh 1 tới các đỉnh 3, 7 và 10?

Câu 2 (2 điểm).

- a) Viết hàm có tên DFS(int u) bằng C/C++ sử dụng ngăn xếp thực hiện thuật toán tìm kiếm theo chiều sâu bắt đầu từ một đỉnh u trên đồ thị G=< V, E> được biểu diễn dưới dạng ma trận kề $a[\][\].$
- b) Sử dụng thuật toán tìm kiếm theo chiều sâu DFS vừa trình bày, chứng minh rằng đồ thị G đã cho trong $\mathbf{Cau}\ \mathbf{1}$ là đồ thị liên thông yếu nhưng không liên thông mạnh?

Câu 3 (2 điểm). Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 8 đỉnh được biểu diễn dưới dạng ma trận kề như sau:

- a) Viết một hàm có tên Hamilton(int $a[\][\])$ in C/C++ để tìm chu trình Hamilton của một đồ thị G=< V, E> được biểu diễn bởi ma trận trọng số $a[\][\]$ sử dụng thuật toán quay lui.
- b) Áp dụng thuật toán tìm chu trình Hamilton trên đồ thị vừa trình bày, chỉ ra các chu trình Hamilton xuất phát từ đỉnh 1 trên đồ thị G đã cho.

Câu 4 (2 điểm).

- a) Chúng minh rằng, nếu T là một cây có n $(n \ge 2)$ đỉnh thì T có ít nhất hai đỉnh treo.
- b) Cho đơn đồ thị vô hướng G=< V, E> gồm 10 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau:

	1	2	3	4	5	6	7	8	9	10
1	0	5	∞	∞	4	3	∞	∞	∞	∞
2	5	0	2	∞	1	3	∞	∞	∞	∞
3	∞	2	0	3	5	∞	∞	∞	∞	∞
4	∞	∞	3	0	∞	∞	∞	2	∞	∞
5	4	1	5	∞	0	∞	1	∞	3	2
6	3	3	∞	∞	∞	0	4	∞	∞	3
7	∞	∞	∞	∞	1	4	0	5	∞	∞
8	∞	∞	∞	2	∞	∞	5	0	∞	8
9	∞	∞	∞	∞	3	∞	∞	∞	0	∞
10	∞	∞	∞	∞	2	3	∞	∞	∞	0

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện thuật toán?

Câu 5 (2 điểm). Cho đơn đồ thị có hướng $G = \langle V, E \rangle$ gồm 7 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau:

	1	2	3	4	5	6	7
1	0	3	1	∞	∞	∞	∞
2	∞	0	∞	2	5	∞	∞
3	∞	1	0	2	∞	4	∞
4	∞	∞	∞	0	2	1	∞
5	∞	∞	∞	∞	0	∞	1
6	∞	∞	∞	∞	∞	0	3
7	∞	∞	∞	∞	∞	∞	0

- a) Trình bày thuật toán Dijkstra tìm đường đi ngắn nhất xuất phát từ đỉnh $u \in V$?
- b) Áp dụng thuật toán Dijkstra vừa trình bày, tìm đường đi ngắn nhất từ đỉnh 1 đến các đỉnh còn lại của đồ thị G đã cho, chỉ rõ kết quả của mỗi bước thực hiện thuật toán.

-HÉT-----

Chú ý: Sinh viên không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm