Dérivation- Etude de fonctions

Pr. Latrach Abdelkbir

Exercice @:

On donne ci-dessous la courbe représentative d'une fonction définie sur R.

- **1.** Donner f'(1) et f'(0).
- **2.** La fonction f est-elle dérivable en 2 ?
- **3.** Déterminer $f'_g(2)$ et $f'_d(2)$.
- **4.** Dresser le tableau de variations de f en précisant le signe de f'(x).
- **5.** Dresser le tableau de signe de f.
- **6.** Résoudre graphiquement l'inéquation $f(x) \le 3$.

Exercice 2:

On considère la fonction f définie par $f(x) = x\sqrt{3 - 2x}$ et soit (C_f) sa courbe representative dans le plan muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$.

- **1.** Donner \mathfrak{O}_f le domaine de définition de f.
- **2.** Calculer $\lim_{x \to -\infty} f(x)$.
- **3.** Etudier la dérivabilité de f en $\frac{3}{2}$ à gauche. Interpréter graphiquement le résultat.
- **4. a.** Montrer, pour tout $x \in \mathcal{D}_f \setminus \left\{\frac{3}{2}\right\}$, que :

$$f'(x) = \frac{3(1-x)}{\sqrt{3-2x}}.$$

- **b.** Étudier les variations de f.
- \bullet . Dresser le tableau de variations de f.
- **5.** Soit g la restriction de f sur $]-\infty$; 1].
- **a.** Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
- **b.** Etudier la dérivabilité de g^{-1} sur J.
- **c.** Calculer $(g^{-1})'(0)$.

Exercice 3:

On considère la fonction f définie sur \mathbb{R} par $f(x) = x + \frac{1}{2} + \frac{1}{x^2 + 1}$ et soit (C_f) sa courbe representative dans le plan muni d'un repère orthonormé $(0, \vec{l}, \vec{j})$.

- **1. G.** Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
 - **b.** Montrer que (C_f) admet une asymptote oblique (Δ) à déterminer au voisinage de $+\infty$ et $-\infty$.
- **2. a.** Calculer f'(x) pour tout $x \in \mathbb{R}$.
 - **b.** Montrer que f est strictement croissante sur \mathbb{R} .

- \bullet . Écrire une équation de la tangente (T) à la courbe (C_f) au point d'abscisse -1.
- 3. Donner les coordonnées des points d'intersection de (C_f) avec les axes du repère.
- **4.** Montrer que (C_f) admet deux points d'inflexion à déterminer.
- **5.** Construire (Δ), (T) et (C_f). (on prend $||\vec{i}|| = ||\vec{j}|| =$ $1cm, \frac{\sqrt{3}}{3} \simeq 0.6, f\left(\frac{\sqrt{3}}{3}\right) \simeq 1.8 \text{ et } f\left(-\frac{\sqrt{3}}{3}\right) \simeq 0.7).$ **6.** Résoudre graphiquement l'inéquation f(x) > 0.
- **7.** Montrer, pour tout $x \ge 0$, que $\frac{1}{x+2} + \sqrt{x+1} \ge \frac{3}{2}$.
- **8. a.** Montrer que f admet une fonction réciproque f^{-1} definie sur un intervalle I à déterminer.
- **b.** Montrer que f^{-1} est dérivable en 0 puis calculer $(f^{-1})'(0)$.
 - **C.** Tracer $(C_{f^{-1}})$ dans le même repère.

Exercice 4:

- I. On considère g la fonction définie sur $\mathbb R$ par $g(x) = 1 + \frac{x}{\sqrt{x^2 + 1}}$
- **1.** Calculer $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to -\infty} g(x)$.
- 2. G. Montrer, pour tout réel x, que $g'(x) = \frac{1}{(x^2+1)\sqrt{x^2+1}}$
 - **b.** Donner le tableau des variations de g.
 - **c.** En déduire, pour tout réel x, que g(x) > 0.
- II. Soit f la fonction définie sur \mathbb{R} par : $f(x) = x - 1 + \sqrt{x^2 + 1}$, et soit (C_f) sa courbe representative dans le plan muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$.
- **1.** Calculer $\lim_{x \to +\infty} f(x)$.
- **2.** Montrer que $\lim_{x \to -\infty} f(x) = -1$. Interpréter géométriquement le résultat.
- **3.** Montrer que la droite (D): y = 2x 1 est une asymptote oblique de (C_f) au voisinage de $+\infty$.
- **4. a.** Montrer, pour tout réel x, que f'(x) = g(x).
 - **b.** Dresser le tableau des variations de f.
- **5.** Calculer f(1) puis tracer (C_f) .
- **6. a.** Montrer que f admet une fonction réciproque f^{-1} definie sur un intervalle J à déterminer.
- **b.** Montrer que f^{-1} est dérivable en $\sqrt{2}$ puis calculer $(f^{-1})'(\sqrt{2}).$
 - **c.** Tracer $(C_{f^{-1}})$ dans le même repère.

Exercice 5:

Soit f la fonction définie sur \mathbb{R} par $f(x) = 1 - \sqrt{x^2 + 2x}$, et soit (C_f) sa courbe representative dans le plan muni d'un repère orthonormé

- **1.** Donner D_f le domaine de définition de f.
- **2. g.** Montrer que la droite d'équation x = -1 est un axe de symétrie de (C_f) .
 - **b.** En déduire D_E le domaine d'étude de f.

- **3.** Calculer $\lim_{x \to +\infty} f(x)$.
- **4.** Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement le résultat.
- **5.** Montrer que la droite d'équation y = -x est une asymptote oblique de (C_f) au voisinage de $+\infty$.
- **6. a.** Etudier les variations de f sur D_E .
 - **b.** Dresser le tableau de variations de f sur D_f .
- **7. a.** Montrer que l'équation f(x) = 0 admet une unique solution α sur $[0; +\infty[$.
 - **b.** Vérifier que $0 < \alpha < 1$.
- **3.** Construire (C_f) .
- **9.** Soit g la restriction de f sur $[0; +\infty[$.
- Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle I à déterminer.
- **b.** Calculer g(1).
- **c.** Montrer que g^{-1} est dérivable en $1 \sqrt{3}$ puis calculer $(g^{-1})'(1 \sqrt{3})$.
- **d.** Tracer $(C_{g^{-1}})$ dans le même repère.

Exercice 6:

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x^2 + 1$ et soit (C_f) sa courbe representative dans le plan muni d'un repère orthonormé $(0, \vec{\imath}, \vec{\jmath})$.

- **1. G.** Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
 - **b.** Étudier les branches infinies de (C_f) .
- **2.** Montrer que le point $\Omega(1; -1)$ est un centre de symétrie de (C_f) .
- **3. a.** Calculer f'(x) pour tout $x \in \mathbb{R}$.
 - **b.** Étudier le signe de f'(x).
 - \bullet . Dresser le tableau de variations de la fonction f.
- **4.** Montrer que le point Ω est un point d'inflexion pour la courbe (C_f) .
- **5. a.** Écrire une équation de la tangente (T) à la courbe (C_f) au point Ω .
 - **b.** Calculer g(3) puis racer (C_f) .
- **6.** Soit g la restriction de f sur $[2; +\infty[$.
- **G.** Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
- **b.** Montrer que g^{-1} est dérivable en 1 puis calculer $(g^{-1})'(1)$.
- **C.** Tracer $\left(\mathcal{C}_{g^{-1}}\right)$ dans le même repère.

Exercice 2:

Soit f la fonction définie sur \mathbb{R} par $f(x) = x - \sqrt{2x - 1}$ et soit (C_f) sa courbe representative dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

- **1.** Donner D_f le domaine de définition de f.
- **2. a.** Calculer $\lim_{x \to +\infty} f(x)$.
 - **b.** Déterminer la nature de la branche infinie de (C_f) au voisinage de $+\infty$.

- **3.** Etudier la dérivabilité de f à droite en $\frac{1}{2}$. Interpréter graphiquement le résultat.
- **4. a.** Montrer que f est dérivable sur $\left]\frac{1}{2}; +\infty\right[$.
 - **b.** Montrer que le signe de f'(x) sur $\left[\frac{1}{2}; +\infty\right[$ est le signe de x-1.
 - **c.** Dresser le tableau de variations de f sur D_f .
 - **d.** Écrire une équation de la tangente (T) à la courbe (C_f) au point d'abscisse 5.
- **5.** Construire (C_f) .
- **6.** Soit g la restriction de f sur $[1; +\infty[$.
- **G.** Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
- **b.** Montrer que g^{-1} est dérivable en 2 puis calculer $(g^{-1})'(2)$.
- **c.** Tracer $(C_{q^{-1}})$ dans le même repère.
- **7. G.** Vérifier, pour tout $x \in [1; +\infty[$, que $g(x) = \frac{1}{2}(\sqrt{2x-1} 1)^2$.
 - **b.** Calculer $g^{-1}(x)$ pour tout $x \in J$.

Exercice 8:

Soient f la fonction définie sur \mathbb{R} par $f(x) = \sin(2x)$ et (C_f) sa courbe d'un repère $(0, \vec{\imath}, \vec{\jmath})$ tel que $||\vec{\imath}|| = \frac{\pi}{4}$ et $||\vec{\jmath}|| = 1$.

- 1. Montrer que f est périodique de période π .
- **2.** Etudier la parité de f.
- **3.** Vérifier que la droite (Δ): $x = \frac{\pi}{4}$ est un axe de symétrie de (C_f) .
- **4.** Expliquer pourquoi il suffit d'étudier la fonction f sur l'intervalle $I = \left[0, \frac{\pi}{4}\right]$?
- **5. a.** Calculer f'(x) pour tout $x \in I$.
- **b.** Étudier le signe de f'(x) puis dresser le tableau de variations de la fonction f sur I.
- **6.** Construire (C_f) sur $\left[\frac{-3\pi}{2}, \frac{5\pi}{2}\right]$.

Exercice 9:

Soit f la fonction définie par $f(x) = \begin{cases} \frac{x^2+3}{x+1}; & x \le 0 \\ -\frac{\sqrt{x+1}}{x}; & x > 0 \end{cases}$.

- - **b.** Etudier les branches infinies de (C_f) .
- **2.** *f* est-elle continue en 0 ?
- **3.** Etudier la dérivabilité de f en 0, puis interpréter géométriquement le résultat obtenu.
- **4. G.** Calculer f'(x) sur les intervalles $]-\infty; 0[$ et $]0; +\infty[$.
- **b.** Étudier le signe de f'(x) puis dresser le tableau de variations de la fonction f.
- **5.** Construire (C_f) .

Pr. Latrach Abdelkbir