ST AMAILABLE (

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

10025566

PUBLICATION DATE

27-01-98

APPLICATION DATE

12-07-96

APPLICATION NUMBER

08183858

APPLICANT: YAMAGUCHI PREF GOV;

INVENTOR :

NAKAMURA TAKASHI;

INT.CL.

C23C 14/32 C23C 14/06

TITLE

FORMATION OF COMPOSITE HARD FILM EXCELLENT IN HIGH TEMPERATURE

OXIDATION RESISTANCE BY ION PLATING

ABSTRACT :

PROBLEM TO BE SOLVED: To obtain coating excellent in high temp. oxidation resistance by generating Al vapor and Cr vapor from a generating source of Al vapor and Cr vapor arranged in a vacuum chamber, simultaneously introducing gaseous nitrogen into the vacuum chamber and forming Al-Cr-N composite hard film on a substrate.

SOLUTION: All and 'Cr are melted in a crucible arranged in a vacuum chamber to generate Al vapor and Cr vapor. Otherwise, to a target of Al and Cr, sputtering or arc discharge is used to generate Al vapor and Cr vapor. The compsn. of metals in the crucible or that of the target is preferably composed of, by atom, 25 to 75% Al and 75 to 25% Cr. Gaseous nitrogen is introduced into the mixed vapor of Al and Cr to generate plasma and to form Al-Cr-N composite hard coating, on a substrate. Its heat resistance can be improved to the

level of 1,000°C.

COPYRIGHT: (C)1998,JPO

BNSDOCID: 4/P 410025588A AJ >

BNS cade 1

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-25566

(43)公開日 平成10年(1998)1月27日

(51) Int.CL°	觀別配母	庁内整理番号	· FI			技術表示箇所
C 2 3 C 14/32			C 2 3 C	14/32	Z	
14/06			٠	14/06	\mathbf{A}	

審査請求 有 耐水項の数4 OL (全 6 頁)

M102号) (72)発明者 中村 崇				
(22)出願日 平成8年(1996)7月12日 山口県山口市施町1番1号 (72)発明者 井手 幸夫 山口県山口市赤麦町13-37 (72)発明者 稲田 和典 山口県山口市大字吉敷3745-M102号) (72)発明者 中村 柴	(21)出職番号	特顯平8-183858	(71) 出願人	391016082
(72)発明者 井手 幸夫 山口風山口市赤妻町13-37 (72)発明者 稲田 和典 山口県山口市大字吉敷3745- M102号) (72)発明者 中村 柴				山口県·
山口県山口市赤妻町13-37 (72)発明者 稲田 和與 山口県山口市大字吉敷3745- M102号) (72)発明者 中村 柴	(22)出版日	平成8年(1996)7月12日		山口県山口市幾町1番1号
(72)発明者 福田 和與 山口県山口市大字吉敷3745- M102号) (72)発明者 中村 崇	·		(72)発明者	井子 幸夫
山口渠山口市大字吉敷3745- M102号) (72) 発明者 中村 柴				山口県山口市赤麥町13-37
M102号) (72)発明者 中村 崇			(72)発明者	幣田 和典
(72) 発明者 中村 柴				山口県山口市大宇吉敷3745-13 (ハイム]
				M102号)
福岡県福岡市南区大池 2 一			(72) 発明者	中村一崇
				福岡県福岡市南区大池2-6-11
(74)代理人 弁理士 村田 幸雄			(74)代理人	

(54) 【発明の名称】 イオンプレーティングによる耐高温酸化特性に優れた複合硬質皮膜の形成法

(57)【要約】

【課題】イオンアレーティングを用いて基板上に飛躍的 に向上した耐高温酸化特性(耐高温酸化温度:1000 ℃程度)を有するA1-Cr-N系複合硬質皮膜を形成 する。

【解決手段】真空チャンバー内に配置されたAlとCrの蒸気発生源から、AlとCrの混合蒸気を発生させ、同時に窒素ガスを真空チャンバー内に導入して、前記混合蒸気と窒素ガスとの反応生成物であるAlーCrーN系複合硬質皮膜を基板上に形成させる。

【特許請求の範囲】

【訂求項1】真空チャンバー内に配置されたAI蒸気と Cr蒸気の発生源から、AI蒸気とCr蒸気を発生させ、同時に空素ガスを真空チャンバー内に導入して、前記AIとCrの混合蒸気と深柔ガスとの反応生成物であるAI-Cr-N系複合硬質皮膜を基板上に形成させることを特徴とするイオンプレーティングによる耐高温酸化特性に優れた複合硬質皮膜の形成法。

【前求項2】真空チャンバー内に配置されたルツボを用いて、AlとCrを溶融し、AlとCrの混合蒸気を発生させ、同時に窒素ガスを真空チャンバー内に導入して、前記混合蒸気と登器ガスとの反応生成物であるAlーCrーN系複合硬質皮膜を基板上に形成させることを特徴とするイオンプレーティングによる耐高温酸化特性に優れた複合硬質皮膜の形成法。

【請求項3】真空チャンバー内に配置されたAlとCrのターゲットにスパッタリング又はアーク放電を用いてAlとCrの混合素気を発生させ、同時に窒素ガスを真空チャンバー内に導入して、前記混合蒸気と窒素ガスとの反応生成物であるAl-Cr-N系被合硬質皮膜を基板上に形成させることを特徴とするイオンプレーティングによる耐高温酸化特性に優れた複合硬質皮膜の形成法。

【請求項4】ルツボ内の金属又はターゲットが、A125~75原子%、Cr75~25原子%からなるものであることを特徴とする請求項2又は3に記載のイオンプレーティングによる耐高温酸化特性に優れた複合硬質皮膜の形成法。

【発明の詳細な説明】

[0001]

【発明の風する技術分野】本願発明は、イオンプレーティングを用いて基板上に耐高温酸化特性を飛躍的に向上させたAl-Cr-N系複合硬質皮膜を形成する方法に関するものである。

[0002]

【従来の技術及び発明が解決しようとする課題】従来、イオンプレーティングをはじめとしたPVD法を用いて、基板上に高付加価値な皮膜を形成する技術の開発が盛んに試みられている。そして、イオンプレーティングで最も応用が進んでいるTiN皮膜は、従来にない優れた耐摩耗性や装飾性を有していることから、工具、金型、既銀や時計のフレーム等に多く適用されている。しかしながら、TiN皮膜は約500℃以上になると酸化がはじまるため、高温にさらされる機械部品、工具、金型等への適用は不可能である。そこで改善技術として現在ではTiNにAlを添加することで、その耐酸化特性を向上させることが一般的に行われている。しかしながら、この改善技術では耐熱温度はせいぜい800℃までが限界であり、それ以上の高温における耐酸化特性の向上技術は存在しないのが現状である。

[0003]

【課題を解決するための手段】本願発明者らは、上記課題を解決すべく鋭窓研究を進めた結果、イオンプレーディングを用いて基板上に、従来に比して耐高温酸化特性を飛躍的に向上した複合硬質皮膜を形成させることに成功し、本願発明をなすに至った。

【0004】すなわち本願発明は下記構成の複合硬質皮膜の形成法である。

- (1) 真空チャンバー内に配置されたA1蒸気とCr蒸気の発生源から、A1蒸気とCr蒸気を発生させ、同時に窒素ガスを真空チャンバー内に導入して、前記A1とCrの混合蒸気と窒素ガスとの反応生成物であるA1ーCr-N系複合硬質皮膜を基板上に形成させることを特徴とするイオンプレーティングによる耐高温酸化特性に優れた複合硬質皮膜の形成法。
- (2) 真空チャンパー内に配置されたルツボを用いて、A1とCrを溶融し、A1とCrの混合蒸気を発生させ、同時に窒素ガスを真空チャンバー内に導入して、前記混合蒸気と窒素ガスとの反応生成物であるA1-Cr-N系複合硬質皮膜を基板上に形成させることを特徴とするイオンブレーティングによる耐高温酸化特性に優れた複合硬質皮膜の形成法。
- (3) 真空チャンバー内に配置されたA!とCrのターゲットにスパッタリング又はアーク放電を用いてA!とCrの混合蒸気を発生させ、同時に空案ガスを真空チャンバー内に導入して、前記混合蒸気と空器ガスとの反応生成物であるA!-Cr-N系被合硬質皮膜を整板上に形成させることを特徴とするイオンプレーティングによる耐高温酸化特性に優れた複合硬質皮膜の形成法。
- (4) ルツボ内の金属又はターゲットが、A125~75 原子%、Cr75~25原子%からなるものであることを特徴とする(2) 項又は(3)項に記載のイオンプレーティングによる耐高温酸化特性に優れた複合硬質皮膜の形成法。

【0005】上記において、イオンプレーティングでの 金属の蒸発方法には、電子銃による方法、ホローカソー ドによる方法、スパッタリングによる方法、アーク放電 による方法等が挙げられるが、本発明の実施にはいずれ の方法も採用可能である。すなわち、何らかの方法で真 空中でAI及びCェを蒸発させ、同時に窒素を導入し、 プラズマを発生させて反応生成物を悲板上に成膜形成す ればよいのである。電子銃による場合、Al.Crの蒸 発源(ルツボ)は、二つ必要であるが、適当な組成比の AICr合金あるいはAI粒とCr粒の混合物を用いれ ば一つで構わない。蒸発源が二つの場合は、それぞれの 電子銃の出力を調節してAI及びCrの各蒸発量を制御 することができる。蒸発温が一つの場合は、目的とする A!とCrの組成比に適したA!Cr合金あるいはA1 粒とCr粒の混合物を用いる。スパッタリング法、アー ク放電法を採用する場合は、AlとCrの2つのターゲ

ットを用いてもよいし、目的とする皮膜の、A1/Cr 組成比のターゲットなら1つで簡単に成膜が可能であ る。真空チャンバー内におけるルツボ内の金属又はター ゲットに、A125~75原子%,Cr75~25原子 %からなるものを使用することは、基板上に非常に優れ た耐高温酸化特性を有する皮膜を形成可能となるために 好ましい。

【0006】本発明により形成される皮膜の特徴は、従来のTi-Al-N系膜では800℃までの使用が限界であったものが、本発明に係るAl-Cr-N系版は1000℃以上での使用も可能なことである。なお、Al-Cr-N系皮膜中のAl/Cr原子比は、0.1~2.0であることが、特に優れた耐高温酸化特性を示すため好ましい。

[0007]

【発明の実施の形態】次に本発明の実施の形態を実施例によって説明する。

[0008]

【实施例】

実施例1:図6に概略構成図を示すイオンプレーティン グ装置を用いて、活性化反応性蒸着法(ARE法)によ り、AI-Cr-N系皮膜の形成を行った。図中、1は 真空チャンパー、2はルツボ、2aは電子銃、3は基 板、4はプローブ(イオン化促進用補助電極)、5は反 応ガス供給自動調整弁、6はヒータ、7は発光分光装 置、8は質量分析装置、9は電子銃電源、10はプラズ マ制御装置、11はフイラメント電源、12はフィラメ ントである。AICr合金をルツボに入れ、反応ガスと して窒素を導入し、EBエッミッション電流180m A、処理圧1.3×10-4 Torr, プロープ電圧9 OV, バイアス電圧-50V, フィラメント電流22 A.基板温度350℃で、30分間保持し、活性化反応 性系管法(ARE法)にてSKH51基板に成膜した。 その結果、SKH51基板上に、900℃で1時間酸化 雰囲気中でも耐え得るA1-Cr-N複合皮膜が形成さ れた。実験のためルツボ内の蒸発源として用いた蒸若合 金は、6種のAICr合金であって、その内のCr含有 率は、5原子%、10原子%、20原子%、25原子 %.50原子%及び75原子%のものであった。その結 果、いずれのCr含有率のものにおいても成成が可能で あった。なお、蒸発合金としてA1のみを用いた場合 と、Crのみを用いた場合の成膜も行った。上記実験に おいて蒸発源のAIとCrの組成比を変化させた場合に 得られた各種皮膜のX線回折パターンの変化を図1に示 す。図中、(a)は蒸発源がAlからなるもの、(b) はA175原子%、Cr25原子%からなるもの、 (c)はA150原子%, Cr50原子%からなるも の, (d)はA125原子%, Cr75原子%、からな るもの、及び(e)はCrからなるものを示す。図1か ら、いずれの組成についても成膜が可能であるが、

(b) A175原子%, Cr25原子%を境界として、結晶構造が変化することが解る。得られた皮膜の耐高温酸化特性は、6種の皮膜はいずれも900℃の高温下で酸化されず、特にA150原子%Cr50原子%の合金組成の蒸発源を用いて得られた皮膜は1000℃でも酸化されなかった。以上のことからA1-Cr-N系膜は、従来のTi-A1-N系膜(耐高温酸化特性800℃以下)と比較すると、耐高温酸化特性が200℃程度向上することが明らかとなった。

【0009】図2に、前記蒸発源としてA150原子% Cr50原子%合金を用いて作成した皮膜のオージェ分 析による組成分布を示す。その結果から、A1、Cr及 び窒素はかなり歪に分布しているものの、AlとCrの **室化物を形成していることが解る。待られたA1−Cr** -N系膜の厚さは、表面あらさ計で皮膜の段差を測定し たところ、約1.2µmであった。表面からスパッタす ると図2のように約400分で基板の組成である鉄が現 れることにより、スパッタ時間400分は脱厚に換算し て約1. 2μ mに相当する。また、わられた皮膜はH
uで約2100 (荷重10g) の硬度であって、ほぼTi Nに近い値であった。この皮膜を1000℃で1時間酸 化雰囲気中で保持後、急冷した後のオージェ分析の結果 を図3に示す。図のようにスパッタ時間約450分が酸 化層を含めた皮膜の厚さとなっている。酸化されている 厚さは、酸紫がスパッタ時間約150分で急激に減少す ることから、皮膜全体の約1/3と考えられるが、窒化 された部分がまだ残っており、酸化が膜内だけで基板ま でには及んでいないことが解る。

【0010】実施例2:イオンプレーティングの一つであるスパッタリング法により、A150原子%Cr50原子%をターゲットとしてA1-Cr-N系膜の成膜を試みたところ、ARE法での結果と同様に成膜が可能であった。得られた成膜はARE法で作成したものと同様に1000℃においても、酸化されないことが明らかとなった。スパッタリング法にて作成した皮膜のオージェによる組成分布を図4に示す。スパッタリング法で作成した皮膜のA1,Cr及び登素は、ARE法で作成したものと対比すると均一に分布している。この皮膜を100℃で30分間酸化雰囲気中で保持後、急冷した後のオージェ分析の結果を図5に示す。図5より、酸化は皮膜のほぼ表面のみで停止しており、ARE法による皮膜と同様に優れた耐高温酸化特性を有していることが解る。

[0011]

【発明の効果】上記のとおり、本発明によれば、

- ①、座業界のあらゆる分野で高温酸化雰囲気にさらされる金属部品、金属製品を酸化から保護することが可能となり、従来製造が困難で高価なセラミックス製品しか使用できなかった環境下でもその使用が可能となる。
- ②. 従来のイオンプレーティングによる耐高温酸化特性

③. 新たな装置を用いなくても従来の装置で、本発明に 係る耐高温酸化複合皮膜が、安価に形成できる。

【図面の簡単な説明】

【図1】本発明の実施例1で形成された皮膜のX線回折パターン図。

【図2】実施例1で蒸発源としてA150原子%Cr50原子%合金を用いて作成したA1-Cr-N系耐高温酸化特性の優れた皮膜のオージェによる組成分布図。

【図3】実施例1でA150原子%Cr50原子%合金を用いて作成したA1-Cr-N系耐高温酸化特性の優れた皮膜を1000℃で1時間酸化雰囲気中で保持後、急冷した皮膜、のオージェ分析による組成分布図。

【図4】実施例2でスパッタリング法により、A150 原子%Cr50原子%をターゲットとして形成されたA1-Cr-N系皮膜のオージェによる組成分布図。

【図5】実施例2で形成されたA 1 - C r - N系皮膜を 1000℃で30分間酸化溶囲気中で保持後、急冷した皮膜、のオージェ分析による組成分布図。

【図6】本発明実施例1で用いたイオンプレーティング 装置の概略構成図。

【符号の説明】

1: 真空チャンバー,

2:ルツボ,2a:電

子銃

3: 基板.

4:プローブ (イオン

化促進用補助電極)

5:反応ガス供給自動調整弁.

6:ヒータ

7:発光分光分析装置,

8:質量分析裝置

9:電子銃電源,

10:アラズマ制御装置

11:フィラメント電源,

12:フィラメント

[図1]

【図2】

BNSDOCID: JP

[図3]

[図4]

1000でから車冷したAI-CrN系複合皮膜のオージェ分析

【図5】

スパッタリング法にて作品した皮質を1000でから急冷したオージェ分析

【図6】

8N6DOCID: «JP 410025566A 1 >

Jisck intel

This English translation is produced by machine translation and may contain errors. The JPO, the NCIPI, and those who drafted this document in the reginal language are not responsible for the result of the translation.

Voter

- I. Untranslatable words are replaced with astorisks (****).
- ?. Texts in the figures are not translated and shown as it is.

Franslated: 00:42:50 JST 09/29/2005

Dictionary: Last updated 09/08/2005 / Priority:

FULL CONTENTS

Claim(s)]

Claim 1] From the source of aluminum steam arranged in a vacuum chamber, and Cr steam, generate aluminum steam and Cr steam and nitrogen gas is simultaneously introduced in a vacuum chamber. The method of forming the compound hard anodic oxide coating excellent in the high temperature proof oxidization characteristic by ion plating characterized by making the aluminum—Cr—N system compound hard anodic oxide coating which is the reaction product of mixed steam of said aluminum and Cr, and nitrogen gas form on a substrate.

Claim 2] Using the crucible arranged in a vacuum chamber, fuse aluminum and Cr, generate mixed steam of aluminum and Cr, and nitrogen gas is simultaneously introduced in a vacuum chamber. The method of forming the compound hard anodic oxide coating excellent in the high temperature-proof oxidization characteristic by ion plating characterized by making the aluminum—Cr—N system compound hard anodic oxide coating which is the reaction product of said mixed steam and nitrogen gas form on a substrate. Claim 3] Use sputtering or arc discharge for the target of aluminum and Cr arranged in a vacuum chamber, generate mixed steam of iluminum and Cr, and nitrogen gas is simultaneously introduced in a vacuum chamber. The method of forming the compound hard inodic oxide coating excellent in the high temperature-proof oxidization characteristic by ion plating characterized by making the iluminum—Cr—N system compound hard anodic oxide coating which is the reaction product of said mixed steam and nitrogen gas form in a substrate.

Claim 4] The method of forming the compound hard anodic oxide coating excellent in the high temperature—proof oxidization thereoteristic by ion plating according to claim 2 or 3 characterized by the metal or the target in a crucible being what consists of 25 or aluminum75 atom %, and 75 to Cr25 atom %.

Detailed Description of the Invention]

0001]

Field of the Invention] The invention in this application relates to the method of forming on a substrate the aluminum—Cr-N system compound hard anodic oxide coating which raised the high temperature—proof oxidization characteristic by leaps and bounds using ion lating.

0002]

Description of the Prior Art] Development of the technology which forms a high-value added coat on a substrate is conventionally ried briskly using the PVD methods including ion plating. And since it has the outstanding abrasion resistance and the fanciness which are not in the former, many TiN coats on a tool, a metallic mold, glasses, the frame of a clock, etc. with which application is progressing nost by ion plating are applied. However, since oxidization will start if a TiN coat becomes about 500 degrees C or more, the application to a machine part, a tool, a metallic mold, etc. which are exposed to high temperature is impossible. Then, generally raising he acid-proof-ized characteristic is performed to TiN by adding aluminum as improvement technology now. However, with this approvement technology, even at most 800 degrees C of a heat-resistant temperature are a limit, and the present condition is that the approvement technology of the acid-proof-ized characteristic of hot [beyond it] does not exist.

Means for solving problem] As a result of advancing research wholeheartedly that the above-mentioned technical problem should be olved, invention-in-this-application persons succeed in making the compound hard anodic oxide coating which improved the high emperature-proof oxidization characteristic by leaps and bounds as compared with the former form on a substrate using ion plating, and came to make the invention in this application.

0004] That is, the invention in this application is a method of forming the compound hard anodic oxide coating of the following composition.

- 1) From the source of aluminum steam arranged in a vacuum chamber, and Cr steam, generate aluminum steam and Cr steam and ittroduce nitrogen gas in a vacuum chamber simultaneously. The method of forming the compound hard anodic oxide coating excellent in the high temperature—proof oxidization characteristic by ion plating characterized by making the aluminum—Cr—N system compound lard anodic oxide coating which is the reaction product of mixed steam of said aluminum and Cr, and nitrogen gas form on a substrate.

 2) Using the crucible arranged in a vacuum chamber, fuse aluminum and Cr, generate mixed steam of aluminum and Cr, and introduce ittrogen gas in a vacuum chamber simultaneously. The method of forming the compound hard anodic oxide coating excellent in the high emperature—proof oxidization characteristic by ion plating characterized by making the aluminum—Cr—N system compound hard anodic oxide coating which is the reaction product of said mixed steam and nitrogen gas form on a substrate.
- 3) Use sputtering or arc discharge for the target of aluminum and Cr arranged in a vacuum chamber, generate mixed steam of luminum and Cr, and introduce nitrogen gas in a vacuum chamber simultaneously. The method of forming the compound hard anodic ixide coating excellent in the high temperature—proof oxidization characteristic by ion plating characterized by making the aluminum—IN system compound hard anodic oxide coating which is the reaction product of said mixed steam and nitrogen gas form on a

substrate.

(4) a crucible — inside — metal — or — a target — aluminum — 25 - 75 — an atom — % — Cr — 75 - 25 — an atom — % — from - becoming — a thing — it is — things — the feature — carrying out — (— two —) — a clause — or — (— three —) — a clause — a description — ion — plating — depending — -proof — high temperature — oxidization — the characteristic — having excelled — composite — hard anodic oxide coating — formation — a method.

[0005] In the above, although the method of depending on an electron gun, the method of depending on a HORO cathode, the method of depending on sputtering, the method of depending on arc discharge, etc. are mentioned to the evaporation method of the metal in ior plating, any method is employable as operation of this invention. Namely, what is necessary is to evaporate aluminum and Cr in a vacuum by a certain method, to introduce nitrogen simultaneously, to generate plasma, and just to carry out membrane formation formation of the reaction product on a substrate. When based on an electron gun, two evaporation sources (crucible) of aluminum and Or are required, but one will be available if the mixture of the AICr alloy of a suitable composition ratio or aluminum grain, and Cr grain s used. When the number of evaporation sources is two, the output of each electron gun can be adjusted and each amount of evaporation of aluminum and Cr can be controlled. When the number of evaporation sources is one, the mixture of an AlCr alloy or aluminum grain suitable for the composition ratio of aluminum and Cr made into the purpose, and Or grain is used. When adopting the sputtering method and an arc discharge method, two targets, aluminum and Cr, may be used, and if it is the target of an aluminum/Cr composition ratio of the coat made into the purpose, membranes can be easily formed by one. Since formation of the coat which has the high temperature-proof oxidization characteristic of having excelled very much on the substrate is attained, it is desirable to use what becomes the metal or the target in the crucible in a vacuum chamber from 25 to aluminum75 atom % and 75 to Cr25 atom %. [0006] The aluminum-Cr-N system film with which the feature of the coat formed of this invention requires for this invention that whose use up to 800 degrees C was a limit by the conventional Ti-aluminum-N system film is that use at 1000 degrees C or more is also possible. In addition, the aluminum/Or atom ratio in an aluminum-Cr-N system coat has it, in order that that it is 0.1-2.0 may show the high temperature-proof oxidization characteristic of having excelled especially. [desirable] 00071

Mode for carrying out the invention] Next, an example explains the form of operation of this invention. 0008]

Working example]

Example 1: The aluminum-Cr-N system cost was formed in drawing 6 by the activated reactive evaporation method (the ARE method) ising the ion plating equipment in which an outline composition figure is shown. A vacuum chamber and 2 among a figure a crucible and la an electron gun and 3 for one A substrate, 4 — a probe (auxiliary electrode for ionization promotion), and 5 — a reactant gas supply lutomatic adjustment valve and 6 — as for an electron gun power supply and 10, luminescence spectrum equipment and 8 are [a *UIRAMENTO power supply and 12] filaments plasma control equipment and 11 a mass spectroscope and 9 a heater and 7. Put an NCr alloy into a crucible, introduce nitrogen as reactant gas, and 180mA of EB EMMISSHON current, processing pressure 1.3x10-Torr, the probe voltage 90V, and bias voltage - it held for 30 minutes with 50V, the filament current 22A, and the substrate emperature of 350 degrees C, and membranes were formed to SKH51 substrate by the activated-reactive-evaporation method (the ARE method). As a result, the aluminum-Cr-N compound coat which can be borne also in 1-hour oxidization atmosphere at 900 legrees C was formed on the SKH51 board. The vapor deposition alloys used as an evaporation source in a crucible for the experiment vere six sorts of AICr alloys, and Or content of them was the thing of five atom %, ten atom %, 20 atom %, 25 atom %, 50 atom %, and 75 tom %. As a result, membranes were able to be formed also in the thing of which Cr content. In addition, membrane formation the case there only aluminum is used as an evaporation alloy, and at the time of using only Cr was also performed. Change of the X diffraction rattern of the various coats obtained when changing the composition ratio of aluminum and Cr of an evaporation source in the abovenentioned experiment is shown in drawing 1, the inside of a figure, the thing which, as for (a), an evaporation source becomes from luminum, the thing which (b) becomes from aluminum75 atom % and Cr25 atom %, the thing which (c) becomes from aluminum50 atom , and Cr50 atom %, and (d) — aluminum25 atom %, Cr75 atom %, ** et al. — so-called — and (e) shows what consists of Cr. Although nembranes can be formed also about composition [which] from drawing 1 , it turns out that a crystal structure changes bordering on b) aluminum75 atom % and Cr25 atom %. As for the high temperature proof exidization characteristic of the obtained coat, six sorts of oats [no] oxidized under 900-degree C high temperature, and at least 1000 degrees C of coats in particular obtained using the vaporation source of alloy composition of aluminum50 atom %Cr50 atom % did not oxidize. The aluminum-Cr-N system film became listinct [that the high temperature-proof oxidization characteristic improves by about 200 degrees C as compared with the conventional Ti-aluminum-N system film (high temperature-proof oxidization characteristic of 800 degrees C or less)] from the above hing.

0009] The composition distribution by the Auger analysis of the cost which used and created the aluminum50 atom %Cr50 atom % alloy s said evaporation source to drawing 2 is shown. Although aluminum, Cr, and nitrogen are distributed from the result quite distorted, it ums out that the nitriding thing of aluminum and Cr is formed the thickness of the obtained aluminum—Cr—N system film — the urface — oh, when the level difference of the coat was measured by **********************, it was about 1.2 micrometers. When weld slag is carried out rom the surface, and iron which is composition of a substrate appears in about 400 minutes like drawing 2, it converts into film hickness and is equivalent to about 1.2 micrometers for weld slag time 400 minutes. Moreover, in Hv, the obtained coat was about 100 (10g of loads) hardness, and was a value almost near TiN. The result of the Auger analysis after carrying out rapid cooling of this oat after maintenance in 1-hour oxidization atmosphere at 1000 degrees C is shown in drawing 3. As shown in a figure, weld slag time bout 450 minutes have thickness of the coat including a layer of oxides. Since oxygen decreases rapidly in weld slag about 150 inutes, the thickness which has oxidized is considered to be about 1/3 of the whole coat, but the nitrided portion still remains and it arms out that oxidization has not reached by a substrate only within a film.

3010] Example 2: When aluminum50 atom %Cr50 atom % was targeted and membrane formation of the aluminum—Cr—N system film was ried by the sputtering method which is one of the ion plating, membranes were able to be formed like the result in the ARE method. The obtained membrane formation became clear [not oxidizing] also in 1000 degrees C like what was created by the ARE method. The omposition distribution by Auger of the coat created by the sputtering method is shown in drawing 4. If aluminum. Cr. and the itrogen of the coat created by the sputtering method are contrasted with what was created by the ARE method, they are distributed niformly. The result of the Auger analysis after carrying out rapid cooling of this coat after maintenance in oxidization atmosphere for 0 minutes at 1000 degrees C is shown in drawing 5. Drawing 5 shows that oxidization has the high temperature—proof oxidization

characteristic of having stopped only on the surface mostly and having excelled like the coat by the ARE method of a coat.
[0011]

[Effect of the Invention] According to [above-mentioned passage] this invention, it becomes possible to protect the metal parts exposed to high temperature oxidization atmosphere in all the fields of **. industrial world, and metal goods from oxidization, and the use of manufacture is conventionally attained also under the environment which has used only difficult and expensive ceramic products

- **. [the compound hard enodic oxide coating excellent in the high temperature-proof oxidization characteristic by the conventional ion plating] Since around 1000 degrees C can be raised when 800 degrees C is application limits, the endurance of the industrial commodity exposed to high temperature can be raised by leaps and bounds, and the industrial application field can be extended sharply.
- **. Even if it does not use new equipment, with conventional equipment, the high temperature-proof oxidization compound coat concerning this invention can form inexpensive.

[Brief Description of the Drawings]

[Drawing 1] The X diffraction pattern figure of the coat formed in the example 1 of this invention.

[Drawing 2] The composition distribution map by Auger of a coat who was excellent in the high temperature—proof [aluminum—Cr—N system] oxidization characteristic created in the example 1 using an aluminum50 atom %Cr50 atom % alloy as an evaporation source. [Drawing 3] The composition distribution map by the Auger analysis of coat ** which carried out rapid cooling of the coat which was excellent in the high temperature—proof [aluminum—Cr—N system] oxidization characteristic created using the aluminum50 atom %Cr50 atom % alloy in the example 1 after maintenance in 1—hour oxidization atmosphere at 1000 degrees C.

Drawing 4] The composition distribution map by Auger of the aluminum-Cr-N system coat formed considering aluminum50 atom %Cr50 atom % as a target by the sputtering method in the example 2.

Drawing 5] The composition distribution map by the Auger analysis of coat ** which carried out rapid cooling of the aluminum-Cr-N system coat formed in the example 2 after maintenance in oxidization atmosphere for 30 minutes at 1000 degrees C.

Drawing 6] The outline composition figure of the ion plating equipment used in this invention example 1.

Explanations of letters or numerals]

1: Vacuum chamber 2: A crucible, 2a:electron gun

3: Substrate 4: Probe (auxiliary electrode for ionization promotion)

5: Reactant gas supply automatic adjustment valve 6: Heater

1: Quantometer 8: Mass spectroscope

3: Electron gun power supply 10: Plasma control equipment

11: Filament power supply 12: Filament

Drawing 1]

17K.064

Drawing 3]

1000℃から草冷したAl-Cr-N系複合皮膜のオージェ分析

AICrをターゲットとしてスパッタリング法にて作気した皮膜のオージェ分析

スパッタリング法にて仲國した庶職を1000℃から政治したオージェ分析

Drawing 6]

Translation completed.]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.