Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Departamento de Informática Ciência da Computação Laboratório de Circuitos Digitais Prof. Braga

1. IDENTIFICAÇÃO

Relatório - 4

Título - Codificador de Display de 7 Segmentos Nome do Aluno - Eduardo Silva Vieira

2. RESUMO SOBRE O TEMA DA AULA PRÁTICA

Este projeto tem como objetivo a utilização de funções e portas lógicas, tabela verdade e construção de circuitos combinacionais. Por meio deste estudo, pode-se compreender o funcionamento de um codificador de display 7 segmentos.

3. INTRODUÇÃO

Circuitos combinacionais são conhecidos como aqueles cuja a saída depende diretamente das variáveis de entrada. Para solucionar os presentes problemas para a qual uma determinada saída é esperada, torna-se necessário conhecer sua expressão característica. Para isso, tem-se que construir tabelas verdade para cada situação, a fim de alcançar a expressão acima referida.

4. DESCRIÇÃO DO EXPERIMENTO (PARTE EXPERIMENTAL) Circuito 1

Proponha um circuito digital que apresente os valores de uma entrada BCD de 4 bits em um display de sete segmentos. Os valores BCD inválidos deverão apresentar a letra E na saída.

5. RESULTADOS OBTIDOS

Codificador de Display de 7 Segmentos

Neste circuito, temos que construir a tabela verdade para o circuito baseada nas condições impostas na descrição. Assim, tem-se a tabela verdade a seguir, onde foi montada 4 (quatro) entradas (x0, x1, x2, x3) para o circuito terá 7 (sete) saídas (a, b, c, d, e, f, g) com base no display de 7 segmentos.

Como a entrada será um número binário de 4 bits e usamos apenas um display, os números mostrados variam entre 0 e 9. Dessa forma, de acordo com a

descrição, valores fora desse intervalo não serão reconhecidos e o display mostrará o valor E de erro.

Abaixo podemos ver a tabela verdade e o circuito combinacional correspondente.

x0	x1	x2	хЗ	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
	0	0	1	0	1	1 1 0	0	0	0	0
0 0 0 0 0 0 0	0	1 1 0	0	1	1	0	1	1 0	0	1
0	0 1 1 1	1	1	1	1	1	1		0 1 1 1	1
0	1		0	0 1 0 1	1	1 1 1 1 1 1 0	0 1	0	1	1 1 1 0
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	0	0	1	1	1	1	1
0		1 1 0	1		1 1	1	0	1 0 1	0	
1	0	0	0	1	1	1	1 0	1	1 1	1
1	0	0 1 1 0	1	1	1	1		0	1	1
1	0	1	0	1	0		1 1 1	1	1	1
1 1	0	1	1	1 1	0	0	1	1	1 1	1
1	0 1 1		0	1	0		1	1 1 1	1	1
1		0	1	1	0	0	1		1	1
1	1	1 1	0	1	0	0	1	1	1 1	1_
1	1	1	1	1	0	0	1	1	1	1

Tabela 1 - Tabela Verdade do Codificador de Display de 7 Segmentos

Figura 1 - Circuito Lógico - Codificador de 7 Segmentos

Para mostrar dois dígitos (unidade e dezena), usamos dois displays de 7 segmentos e refazemos a tabela verdade adicionando mais duas saídas para o circuito, como vemos abaixo.

x0	xl	x2	хЗ	a	b	С	d	е	f	g	х	У
0	0	0	0	1	1	1	1	1	1	0	0	0
0	0	0	1	0	1	1	0	0	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1	0	0
0	0	1	1	1	1	1	1	0	0	1	0	0
0	1	0	0	0	1	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1	0	1	1	0	0
0	1	1	0	0	0	1	1	1	1	1	0	0
0	1	1	1	1	1	1	0	0	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1	0	0
1	0	0	1	1	1	1	0	0	1	1	0	0
1	0	1	0	1	1	1	1	1	1	0	1	1
1	0	1	1	0	1	1	0	0	0	0	1	1
1	1	0	0	1	1	0	1	1	0	1	1	1
1	1	0	1	1	1	1	1	0	0	1	1	1
1	1	1	0	0	1	1	0	0	1	1	1	1
1	1	1	1	1	0	1	1	0	1	1	1	1

Tabela 2 - Tabela Verdade Circuito 2

Figura 2 - Decodificador

Figura 3 - Main

6. CONCLUSÃO

Desta forma, através dos experimentos, foi possível montar um circuito combinacional de codificação de um display de 7 segmentos por meio de uma entrada de 4 bits e tratamento de erros com valores fora do intervalo 0 e 9 através da construção e análise de suas respectivas tabelas verdade e outro que varia entre 0 e 15 com o uso de dois displays.