

Successor Features for Transfer in Reinforcement Learning

Michaela Hanajikova, Nicola Maritan, Maria Sgaravatto

What is *transfer* in Reinforcement Learning?

Transfer in Reinforcement Learning

- Process of leveraging knowledge acquired in one or more tasks to improve performance on other tasks.
- In this paper, a task is a Markov Decision Process (MDP).
- In particular, we are interested in the transfer between tasks:
 - Having the same components of an MDP...
 - ... except for the reward function.

Example

$$M_{\text{thirsty}} = \left(\mathcal{S}, \mathcal{A}, p, r_{\text{thirsty}}, \gamma \right)$$

Same MDP except for the reward function.

Consider an MDP

$$M = (S, A, p, r, \gamma).$$

We can express the one-step reward associated with transition (s, a, s') as

$$r(s, a, s') = \boldsymbol{\phi}(s, a, s')^{\mathsf{T}} \boldsymbol{w}$$

without loss of generality.

Let $\phi_t \triangleq \phi(s_t, a_t, s_{t+1})$. For a given policy π on M we have:

$$Q^{\pi}(s,a) \triangleq \mathbb{E}^{\pi}[r_{t+1} + \gamma r_{t+2} + \cdots \mid s_t = s, a_t = a]$$

$$= \mathbb{E}^{\pi}[\boldsymbol{\phi}_{t+1}^{\top}\boldsymbol{w} + \gamma \boldsymbol{\phi}_{t+2}^{\top}\boldsymbol{w} + \cdots \mid s_t = s, a_t = a]$$

$$= \mathbb{E}^{\pi}[\sum_{i=t}^{\infty} \gamma^{i-t} \boldsymbol{\phi}_{i+1} \mid s_t = s, a_t = a]^{\top}\boldsymbol{w}$$

$$= \boldsymbol{\psi}^{\pi}(s,a)^{\top}\boldsymbol{w}.$$

Consider the decomposition

$$Q^{\pi}(s,a) = \boldsymbol{\psi}^{\pi}(s,a)^{\mathsf{T}}\boldsymbol{w}.$$

We call $\psi^{\pi}(s, a)$ the successor features (SFs) of (s, a) under policy π .

Consider the decomposition

$$Q^{\pi}(s,a) = \boldsymbol{\psi}^{\pi}(s,a)^{\mathsf{T}} \boldsymbol{w}.$$

Main idea is having:

- ψ^{π} to summarize M's dynamics induced by π on the environment.
- w to capture M's rewards.

Transfer via SFs

Family of MDPs

Suppose ϕ is fixed. We define

$$\mathcal{M}^{\phi}(\mathcal{S}, \mathcal{A}, p, \gamma) \triangleq$$

$$\triangleq \{ M(\mathcal{S}, \mathcal{A}, p, r, \gamma) \mid r(s, a, s') = \phi(s, a, s')^{\mathsf{T}} w \}.$$

The task $M_i \in \mathcal{M}^{\phi}$ is entirely defined by the corresponding w_i .

Generalized Policy Improvement with SFs

Let:

- π_i^* be the optimal policy for M_i and $Q_i^{\pi_i^*}$ its action-value function.
- $Q_j^{\pi_i^{\star}}$ the action-value function of π_i^{\star} when executed in $M_j \in \mathcal{M}^{\phi}$.

Generalized Policy Improvement with SFs

Suppose you know

$$\left\{Q_{i}^{\pi_{j}^{\star}}\right\}_{j=1,\dots,n}$$

for $M_1, ..., M_n \in \mathcal{M}^{\phi}$ and $M_i \in \mathcal{M}^{\phi}$. Greedly choose

$$\pi(s) \in \operatorname{argmax}_a \operatorname{max}_j Q_i^{\pi_j^*}(s, a).$$

Generalized Policy Improvement with SFs

$$\pi(s) \in \operatorname{argmax}_{a} \max_{j} Q_{i}^{\pi_{j}^{\star}}(s, a)$$

Then we are guaranteed that

$$Q_i^{\pi_i^*}(s,a) - Q_i^{\pi}(s,a) \le \frac{2}{1-\gamma} \phi_{\max} \min_j ||w_i - w_j||$$

where $\phi_{\text{max}} = \max_{s,a} ||\phi(s,a)||$.

What does this mean?

$$Q_i^{\pi_i^{\star}}(s, a) - Q_i^{\pi}(s, a) \le \frac{2}{1 - \nu} \phi_{\max} \min_j ||w_i - w_j||$$

In this example: $j \in \{1,2,3,4\}$ $\mathbf{w}_i, \mathbf{w}_i \in \mathbb{R}^2$

 π performance on task M_i will **not** be close to π_i^*

What does this mean?

$$Q_i^{\pi_i^{\star}}(s, a) - Q_i^{\pi}(s, a) \le \frac{2}{1 - \gamma} \phi_{\max} \min_j ||w_i - w_j||$$

In this example: $j \in \{1,2,3,4\}$ $w_i, w_i \in \mathbb{R}^2$

Transfer via SFs – In practice

The two versions of SFQL

- 1. SFQL- ϕ
 - assumption:
 - ϕ is known
- 2. SFQL-h
 - assumption:
 - ϕ is *not* known
 - $-\phi \in \mathbb{R}^h$

SFQL-φ

Given initial tasks $M_1, \dots, M_n \in \mathcal{M}^{\phi}$, learn and store

$$\left\{\boldsymbol{\psi}^{\pi_{j}^{\star}}, \boldsymbol{w}_{j}\right\}_{j=1,...,n}$$

Given a new task $M_i \in \mathcal{M}^{\phi}$:

- 1. Learn w_i .
- 2. Compute π using the GPI with SFs Theorem.
 - This becomes trivial using SFs

$$Q_i^{\pi_j^{\star}}(s,a) = \boldsymbol{\psi}^{\pi_j^{\star}}(s,a)^{\mathsf{T}} \boldsymbol{w}_i$$

SFQL-φ

Given initial tasks $M_1, \dots, M_n \in \mathcal{M}^{\phi}$, learn and store

$$\left\{\boldsymbol{\psi}^{\pi_{j}^{\star}}, \boldsymbol{w}_{j}\right\}_{j=1,...,n}$$

Given a new task $M_i \in \mathcal{M}^{\phi}$:

- 1. Learn w_i .
- 2. Compute π using the GPI with SFs Theorem.
- 3. Learn $\psi^{\pi_i^{\star}}$ starting from π .
- 4. Store $\{\boldsymbol{\psi}^{\pi_i^{\star}}, \boldsymbol{w}_i\}$.

SFQL- ϕ – Learning ψ^{π}

It is easy to see that

$$\psi^{\pi}(s, a) = \phi_{t+1} + \gamma \mathbb{E}^{\pi} [\psi^{\pi}(s_{t+1}, \pi(s_{t+1})) \mid s_t = s, a_t = a]$$

- SFs satisfy a Bellman equation.
- Any RL method can be used.
- The paper uses Q-Learning (QL), hence the name SFQL.

SFQL-φ – Learning w

Since we assume ϕ is known and

$$r(s, a, s') = \boldsymbol{\phi}(s, a, s')^{\mathsf{T}} \boldsymbol{w}$$

This is an easy supervised learning problem.

SFQL-h

Then by using the samples collected by QL in the first 20 tasks, we simultaneously learn $w_1, ..., w_{20}$ and ϕ .

Experiment

Environment layout

Layout and optimal trajectories associated with specific tasks (i.e. colors).

Results

Figure 2: Average and cumulative return per task in the four-room domain. SFQL-h receives no reward during the first 20 tasks while learning $\tilde{\phi}$. Error-bands show one standard error over 30 runs.

Results

- All versions of SFQL significantly outperform the other two methods.
- SFQL-h seems to achieve good overall performance faster than SFQL- ϕ .
 - One possible explanation could be that the learnt ϕ may be less sparse than the real one, thus facilitating learning.

Thank you for your attention

