4.3 Lie 子群

在定义了 Lie 群与 Lie 代数,并初步研究了它们之间的对应之后,本节将在 Lie 群与 Lie 代数这两个范畴里定义子对象,并在"给定 Lie 群的所有 Lie 子群"和"其对应 Lie 代数的所有 Lie 子代数"之间的建立一个良好的对应关系。

4.3.1 Lie 子群 v.s.Lie 子代数

¶ Lie 子代数

显然,Lie 群 G 的 Lie 子群应当同时是 G 的子流形和 G 的子群;相应地,Lie 代数 g 的 Lie 子代数应当同时是 g 的线性子空间和在 g 的 Lie 括号下的 Lie 代数。唯一有一点需要厘清的是:在定义 Lie 子群时,是应当要求 Lie 子群是光滑子流形(即嵌入子流形),还是只需要是浸入子流形?

答案是"以目的为导向,适者生存":哪种定义能给出更好的"Lie 子群-Lie 子代数对应"就用哪种定义。为此,先研究 Lie 子代数 (其定义是清楚的),再研究对应的 Lie 子群。

定义 4.3.1. (Lie 子代数)

若 f 是 Lie 代数 g 的一个线性子空间, 且满足

$$[X,Y] \in \mathfrak{h}, \qquad \forall X,Y \in \mathfrak{h},$$

则称 f 为 g 的 Lie 子代数。

例 4.3.2. 考虑 Lie 代数 $\mathfrak{q} = \mathfrak{ql}(2,\mathbb{R})$, 以及它的线性子空间

$$\mathfrak{h}_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in \mathbb{R} \right\}, \quad \mathfrak{h}_2 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{R} \right\}, \quad \mathfrak{h}_3 = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

容易验证它们都是 $\mathfrak{g} = \mathfrak{gl}(2,\mathbb{R})$ 的 Lie 子代数. 注意 \mathfrak{h}_1 是一个 1 维的交换 Lie 子代数, \mathfrak{h}_2 是一个 2 维的交换 Lie 子代数, 而 \mathfrak{h}_3 是一个 2 维的非交换 Lie 子代数. 它们对应的 $GL(2,\mathbb{R})$ 的 Lie 子群并不唯一,其中连通 Lie 子群分别是 (将 x>0 等改为 $x\neq 0$ 就得到对应 的不连通子群)

是 g 的子空间,却不是它的 Lie 子代数。

¶ Lie 子群

上面这个例子里,几个 Lie 子代数对应的 Lie 子群都是嵌入子流形。然而,下面这个例子则不然:

例 4.3.3. 考虑交换 Lie 群 $G = \mathbb{T}^2$,它的 Lie 代数是赋有平凡 Lie 括号 $[\cdot,\cdot] \equiv 0$ 的 2 维平凡 Lie 代数 $\mathfrak{g} = \mathbb{R}^2$. 于是 \mathbb{R}^2 的任意线性子空间都是 \mathfrak{g} 的 Lie 子代数. 因为 0 维和

2 维的情形过于平凡,下面仅考虑1维子代数。任取一个 g 的 1 维 Lie 子代数,

$$\mathfrak{h}_{\alpha} = \mathbb{R}^2$$
中斜率为 α 且过原点的直线.

为了得到对应于 Lie 代数 \mathfrak{h}_a 的 G 的 Lie 子群,需要区分有理斜率的直线与无理斜率的直线: 若 $\alpha = p/q$,其中 p,q 为互素的整数,那么 G 的具有 Lie 代数 \mathfrak{h}_α 的 Lie 子群等于

$$H^{\alpha} = H^{p,q} := \{ (e^{ipt}, e^{iqt}) \mid t \in \mathbb{R} \}.$$

这类子群全都同构于 S^1 , 并且全都是 \mathbb{T}^2 的嵌入子流形. 然而, 如果 α 是无理数, 那么相应的 Lie 子群就都是"稠密曲线", 形如

$$H^{\alpha} := \{ (e^{it}, e^{i\alpha t}) \mid t \in \mathbb{R} \},$$

它们都只是 \mathbb{T}^2 中的浸入子流形,且都同构于 \mathbb{R} . 由于 $\overline{H^{\alpha}}=\mathbb{T}^2$,它们都不是嵌入子流形。

于是, Lie 子群"应当"定义为仅要求是浸入子流形而非光滑子流形:

定义 4.3.4. (Lie 子群)

设 H 是 Lie 群 G 的子群,同时也是 G 的浸入子流形,且群乘法 $\mu_H: H\times H\to H$ (关于 H 本身的光滑结构) 是光滑映射,则称 H 为 G 的 Lie 子群.

注 4.3.5. 事实上, 只需假定群乘法 $\mu_H: H \times H \to H$ 是连续映射。

若 $H \in G$ 的 Lie 子群, 那么包含映射 $\iota_H : H \hookrightarrow G$ 是一个单射 Lie 群同态:

$$\iota_H(\mu_H(h_1, h_2)) = \mu_G(\iota_H(h_1), \iota_H(h_2)).$$

注意根据定义,G 的 Lie 子群 H 上的拓扑与光滑结构不必是作为 G 的子集从 G 上继承而来的.

注 **4.3.6.** 根据例**4.3.3**, 紧 Lie 群的 Lie 子群可能是非紧的。

¶ Lie 子群的 Lie 子代数

下面假设 $\iota_H: H \hookrightarrow G$ 是一个 Lie 子群, 并且设 \mathfrak{h} 是 H 的 Lie 代数. 那么 $d\iota_H: \mathfrak{h} \to \mathfrak{g}$ 是单射, 且根据定义,对于任意 $\in \mathfrak{h}$, $d\iota_H(X)$ 是 G 上由向量 $X_e \in T_eH = (d\iota_H)_e(T_eH) \subset T_eG$ 生成的左不变向量场. 此外,根据定理4.2.8, $d\iota_H: \mathfrak{h} \to \mathfrak{g}$ 是 Lie 代数同态, 即

$$d\iota_H([X,Y]^{\mathfrak{h}}) = [d\iota_H(X), d\iota_H(Y)]^{\mathfrak{g}}, \quad \forall X, Y \in \mathfrak{h}.$$

所以在将 $X \in \mathfrak{h}$ 与 $d\iota_H(X) \in \mathfrak{g}$ 等同起来后, 可以认为 \mathfrak{h} 是 \mathfrak{g} 的一个 Lie 子代数.

注 **4.3.7.** 注意从左不变向量场的角度看, \mathfrak{h} 给出了 G 上的一个分布: 设 G 上的左不变向量场 X^1, \dots, X_k 为 \mathfrak{h} 的一组基,则 $(\mathcal{V}^{\mathfrak{h}})_g := \mathrm{span}((X_1)_g, \dots, (X_k)_g)$ 定义了 G 上的一个 k 维分布, \mathfrak{h} 是子代数的条件则说明该分布是对合的. 不难发现,H 的含单位元的连通分支就是分布 $\mathcal{V}^{\mathfrak{h}}$ 的经过 e 的积分子流形.

根据指数映射的自然性,

就得到

引理 4.3.8. (子群的指数映射)

设 H 是 G 的一个 Lie 子群. 那么子群的指数映射 $\exp_H:\mathfrak{h}\to H$ 是指数映射 $\exp_G:\mathfrak{g}\to G$ 在子代数 \mathfrak{h} 上的限制.

利用指数映射, 可以得到下面 Lie 子群的 Lie 代数的刻画:

定理 4.3.9. (Lie 子群的 Lie 代数)

假设 $H \neq G$ 的 Lie 子群. 那么作为 g 的 Lie 子代数,

$$\mathfrak{h} = \{ X \in \mathfrak{g} \mid$$
对于任意 $t \in \mathbb{R}$,均有 $\exp_G(tX) \in H \}$.

证明 如果 $X \in \mathfrak{h}$, 那么由引理4.3.8, 对于任意的 $t \in \mathbb{R}$,

$$\exp_G(tX) = \exp_H(tX) \in H.$$

反之, 固定 $X \not\in \mathfrak{h}$, 下证存在 $t \in \mathbb{R}$ 使得 $\exp_{\mathbb{C}}(tX) \not\in H$. 为此, 考察映射

$$\varphi: \mathbb{R} \times \mathfrak{h} \to G, \quad (t,Y) \mapsto \exp_G(tX) \exp_G(Y).$$

由 $(d\exp)_0 = \text{Id} \, 与 \, (d\mu)_{e,e}(X,Y) = X + Y \,$ 可得

$$(d\varphi)_{0,0}(\tau,\widetilde{Y}) = \tau X + \widetilde{Y}.$$

由于 $X \not\in \mathfrak{h}$, $(d\varphi)_{0,0}$ 是单射,从而 φ 在 (0,0) 附近是浸入. 特别地,存在一个充分小的 $\varepsilon > 0$ 以及 \mathfrak{h} 中 0 的邻域 U 使得 φ 将 $(-\varepsilon,\varepsilon) \times U$ 单地映入 G. 必要时缩小 U, 可以不妨假定 \exp_H 将 U 微分同胚地映到 e 在 H 中的一个邻域 U. 选取 e 在 H 中的一个更小的邻域 U_0 ,使得 $U_0^{-1}U_0 \subset U$. 根据第二可数性,存在可数点集 $\{h_j \mid j \in \mathbb{N}\} \subset H$ 使得集族 $\{h_j U_0\}$ 覆盖 H.

对于每个j,记

$$T_i = \{ t \in \mathbb{R} \mid \exp_G(tX) \in h_i \mathcal{U}_0 \}.$$

下面断言 T_i 是一个可数集合.

断言的证明: 事实上, 如果 $|t-s| < \varepsilon$ 且 $t, s \in T_i$, 那么

$$\exp_G((t-s)X) = \exp_G(-sX) \exp_G(tX) \in \mathcal{U}_0^{-1} h_j^{-1} h_j \mathcal{U}_0 \subset \mathcal{U}.$$

从而存在唯一的 $Y \in U$ 使得 $\exp_G((t-s)X) = \exp_G(Y)$, 即

$$\varphi(t-s,0) = \varphi(0,Y).$$

因为 φ 在 $(-\varepsilon, \varepsilon) \times U$ 上是单射, 所以 Y = 0 且 t = s.

于是每个 T_j 都是可数集. 取 $t \in \mathbb{R}$ 使得对所有的 j 都有 $t \notin T_j$. 则

$$\exp_G(tX) \not\in \bigcup_j h_j \mathcal{U}_0 = H.$$

这就完成了定理的证明.

注 4.3.10. 注意, $X \in \mathfrak{g}$ 且 $\exp_G(X) \in H$ 并不意味着 $X \in \mathfrak{h}$.

¶线性 Lie 群/线性 Lie 代数

Lie 群中最重要的例子是由矩阵组成的 Lie 群,其群运算为矩阵乘法:从几何上看,它们表示的是 n 维线性空间的线性变换。由群元素的可逆性知由 n 阶方阵组成的所有 Lie 群中,最大的是由全体可逆变换组成的 $GL(n,\mathbb{R})$.

定义 4.3.11. (线性 Lie 群)

一般线性群 $GL(n,\mathbb{R})$ 的任意 Lie 子群都被称为线性 Lie 群或者矩阵 Lie 群 a .

^a部分书籍在定义矩阵 Lie 群时,要求 Lie 子群是闭集.

利用一般线性 Lie 群 $GL(n,\mathbb{R})$ 的指数映射

$$\exp: \mathfrak{gl}(n,\mathbb{R}) \to \mathrm{GL}(n,\mathbb{R}), \qquad A \mapsto e^A = I + A + \frac{A^2}{2!} + \cdots,$$

以及定理 4.3.9, 可以计算线性 Lie 群的 Lie 代数.

例 4.3.12. (特殊线性群) 特殊线性群

$$\mathrm{SL}(n,\mathbb{R}) = \{ X \in \mathrm{GL}(n,\mathbb{R}) : \det X = 1 \}.$$

是一个非紧的 (n^2-1) 维线性子群. 为了确定它的 Lie 代数 $\mathfrak{sl}(n,\mathbb{R})$, 首先注意到

$$\det e^{tA} = e^{t\operatorname{Tr}(A)}.$$

于是对于 $n \times n$ 矩阵 $A, e^{tA} \in SL(n, \mathbb{R})$ 当且仅当 Tr(A) = 0. 故

$$\mathfrak{sl}(n,\mathbb{R}) = \{ A \in \mathfrak{gl}(n,\mathbb{R}) \mid \text{Tr}(A) = 0 \}.$$

例 4.3.13. (正交群)接下来考察正交群

$$O(n) = \{ X \in GL(n, \mathbb{R}) : X^T X = I_n \}.$$

它是 $\mathrm{GL}(n,\mathbb{R})$ 的一个 $\frac{n(n+1)}{2}$ 维紧 Lie 子群. 为了确定它的 Lie 代数 $\mathfrak{o}(n)$,首先注意到 $(e^A)^T=e^{A^T}$,从而

$$(e^{tA})^T e^{tA} = I_n \Longleftrightarrow e^{tA^T} = e^{-tA}.$$

由于 exp 在 0 附近是双射, 所以 $A \in \mathfrak{o}(n)$ 当且仅当 $A^T = -A$, 即

$$\mathfrak{o}(n) = \{A \in \mathfrak{gl}(n,\mathbb{R}) \mid A^T + A = 0\}$$

是所有 $n \times n$ 斜对称矩阵组成的空间.

注意 O(n) 恰有两个连通分支, 其中包含 I_n 的连通分支被称为 特殊正交群,

$$SO(n) = \{X \in GL(n, \mathbb{R}) : X^TX = I_n, \det X = 1\} = O(n) \cap SL(n, \mathbb{R}).$$

它的 Lie 代数 $\mathfrak{so}(n)$ 与 $\mathfrak{o}(n)$ 是一样的.

¶ Lie 子群/Lie 代数对应

给定 Lie 群 G 的任意 Lie 子群 H,可以得到 $\mathfrak g$ 的一个 Lie 子代数 $\mathfrak h$. 接下来证明 $\mathfrak g$ 的 Lie 子代数与 G 的连通 Lie 子群之间有一个一一对应:

定理 4.3.14. (Lie 子群-Lie 子代数对应)

设 G 是一个 Lie 群, $\mathfrak g$ 是它的 Lie 代数. 如果 $\mathfrak h$ 是 $\mathfrak g$ 的一个 Lie 子代数, 那么存在 G 的唯一一个连通 Lie 子群 H, 使得它的 Lie 代数是 $\mathfrak h$.

证明 分为 4 步: 构造目标浸入子流形,证明它是子群,是 Lie 群,以及证明其唯一性。第一步:构造 H:【思路:如何从 f) 出发,构造出所求的浸入子流形?参见注记4.3.7】

设 X_1, \dots, X_k 是 $\mathfrak{h} \subset \mathfrak{g}$ 的一组基. 由于 X_i 都是 G 上的左不变向量场, 并且在 e 处 线性无关, 所以它们在任意 $g \in G$ 点处都线性无关. 令

$$\mathcal{V}_g = \operatorname{span}\{X_1(g), \cdots, X_k(g)\}.$$

则

- \mathcal{V} 是 G 上的一个 k 维分布.
- 此分布是对合的, 因为对所有的 i, j, 都有 $[X_i, X_i] \in \mathfrak{h}$.

于是根据 Frobenius 定理, 分布 \mathcal{V} 存在唯一的经过 e 的极大连通积分流形, 记为 H. 它是 G 的一个浸入子流形.

注意这些左不变向量场所张成的分布 ν 也是"左不变"的,即

$$(dL_{q_1})_{q_2}(\mathcal{V}_{q_2}) = \mathcal{V}_{q_1 q_2}.$$

所以如果 $N \in \mathcal{V}$ 的一个积分流形, 那么对任意的 g, $L_q(N)$ 也是它的积分流形.

第二步: H 是一个子群: 【思路: 如何证明一个元素是包含在极大连通积分子流形 H 中的? 利用 H 的极大性: 如果 H' 是另一个积分流形并且 $H'\cap H\neq\emptyset$, 那么 $H'\subset H$.】

任取 $h_1, h_2 \in H$.

- 由于 $h_1 = L_{h_1} e \in H \cap L_{h_1} H \neq \emptyset$,而 H 是极大的,所以 $L_{h_1} H \subset H$. 特别地, $h_1 h_2 = L_{h_1} h_2 \in H$.
- 由于 $L_{h_1^{-1}}(h_1)=e\in H\cap L_{h_1^{-1}}H$,而 H 是极大的,所以 $L_{h_1^{-1}}H\subset H$. 特别地, $h_1^{-1}=L_{h_1^{-1}}e\in H$.

于是H是G的子群.

第三步: μ_H 的光滑性. 【光滑性是一个问题,因为 H 上的拓扑/光滑结构并不来自于 G. 不过,H 的 拓扑并不太差: 由局部 Frobenius 定理,在任意点的小邻域中,H 是 "分层的",每一层都是嵌入子流形.】 首先注意到复合映射

$$\mu_G|_{H\times H}: H\times H\hookrightarrow G\times G\stackrel{\mu_G}{\to} G$$

是光滑的. 设 $h_1h_2 = h \in H$, 并取 h 的满足局部 Frobenius 定理 (见定理3.4.19) 的邻域 U(该邻域是 G 中开集且以 h 为中心),则 $H \cap U$ 的包含 h 的连通分支恰为

$$H_0 = \{ x \in U \mid x^{k+1} = \dots = x^n = 0 \}.$$

取 h_1,h_2 在 G 中的邻域 U_1,U_2 使得 $U_1 \cdot U_2 \subset U$ (此处使用的是 G 中乘法的连续性). 不妨设 U_1,U_2 充分小使得它们也分别是 h_1,h_2 的满足局部 Frobenius 定理的邻域. 令 H_1,H_2 分别为在 $H \cap U_1$ 和 $H \cap U_2$ 的包含 h_1,h_2 的连通分支,则 $H_1 \cdot H_2 \subset H_0$. 由于 H_i 上的拓扑与光滑结构是从 G 中继承的,所以 $\mu_H: H_1 \times H_2 \to H_0$ 是光滑的. 特别地,由 h 的任意性可知 $\mu_H: H \times H \to H$ 是连续映射. 于是 $\mu_H: H \times H \to H$ 是光滑映射.

第四步: *H* **的唯一性:** 【思路:如何证明两个连通 Lie 群是相同的?利用如下事实:每一个连通 Lie 群是由 e 的任意开邻域生成的.】

设 K 是 G 的另一个连通 Lie 子群,其 Lie 代数也是 \mathfrak{h} . 根据注记4.3.7,K 也是 \mathcal{V} 的一个经过 e 的积分流形. 于是 $K \subset H$. 由于 $T_eK = T_eH$,包含映射在 e 附近是一个局部微分同胚. 换句话说,存在一个 e 在 K 中的开邻域 K_e 与一个 e 在 H 中的开邻域 H_e 使得 $K_e = H_e$. 所以由 Lie 群 K 与 H 的连通性就得到

$$K = \bigcup_{j>1} K_e^j = \bigcup_{j>1} H_e^j = H.$$

4.3.2 闭 Lie 子群

¶ 闭子群

当然,在 Lie 群 G 的所有 Lie 子群 H 中,那些不仅仅是浸入子流形而且事实上还是光滑子流形的 Lie 子群在使用上更方便,因为它们在拓扑上都是闭子集:

命题 4.3.15. (子群 + 子流形 ⇒ 闭集)

假设 G 是一个 Lie 群, H 既是 G 的子群又是 G 的光滑子流形, 那么 H 是 G 中的一个闭子集.

证明 由于 H 是 G 的光滑子流形,它是局部闭的 5 . 特别地,存在 e 在 G 中的一个开邻域 U 使得 $U \cap H = U \cap \overline{H}$. 任取 $h \in \overline{H}$,以及 H 中的收敛到 h 的序列 h_n . 由于 hU 是 h 在 G 中的一个开邻域, $hU \cap H \neq \emptyset$. 取 $h' \in hU \cap H$,那么 $h^{-1}h' \in U$. 因为 $h_n^{-1}h' \in H$ 收敛到 $h^{-1}h'$,所以 $h^{-1}h' \in U \cap \overline{H} = U \cap H$. 故 $h \in H$. 这就证明了定理.

由此启发如下定义:

定义 4.3.16. (Lie 群的闭子群)

设 G 是 Lie 群.

- (1) 如果 G 的子群 H 是 G 中的闭子集,则称它是 G 的闭子群.
- (2) 如果 G 的 Lie 子群 H 是 G 中的光滑子流形,则称它是 G 的闭 Lie 子群.

由命题4.3.15, 如果 H 是 G 的闭 Lie 子群,则 H 是 G 的一个闭子群. 注意闭子群 的定义中并不要求 H 是一个 Lie 子群.

¶ Cartan 闭子群定理

下面这个由 E. Cartan 在 1930 年证明的重要定理说明反过来也成立:

定理 4.3.17. (Cartan 闭子群定理)

Lie 群 G 的任意闭子群 H 都是 G 闭 Lie 子群 (从而都是光滑子流形).

⁵拓扑空间 X 的子集 E,若满足"任意 $x \in E$,均存在 x 在 X 中的邻域 U,使得 $E \cap U$ 是 U 中的闭集,则称 E 是局部闭的.

注 **4.3.18**. 该定理非常强大的地方在于:在定理中只假定了两个非常弱且易于验证的条件"在代数上 H 是一个子群,在拓扑上 H 是一个闭子集",结论却说明"在分析上H 是满足所需的光滑性,即 H 是光滑子流形,且乘法映射是光滑映射".于是,在验证某个群是 Lie 群时该定理非常有用:比如,显然 O(n), $SL(n,\mathbb{R})$ 都是 $GL(n,\mathbb{R})$ 的闭子群,所以不必验证它们的流形结构以及乘法的光滑性,就可以直接断言它们都是 Lie 群.

作为 Cartan 闭子群定理的一个直接推论, 立刻有

推论 4.3.19. (Lie 群同态的核是 Lie 子群)

如果 $\varphi: G \to H$ 是一个 Lie 群同态, 那么 $\ker(\varphi)$ 是 G 的一个闭 Lie 子群.

注意每个 Lie 群同态都是常秩映射,从而该结论也可由常秩映射水平集定理得到. Cartan 闭子群定理的另一个重要推论是

推论 4.3.20. (Lie 群同态: 连续即光滑)

设 G,H 是 Lie 群, $\phi:G\to H$ 是一个连续同态, 则 ϕ 光滑.

证明 因为 $\phi: G \to H$ 是一个连续同态,所以 $\Gamma_{\phi} = \{(g, \phi(g)) \mid g \in G\}$ 是 $G \times H$ 的闭子群, 因此也是 $G \times H$ 的闭 Lie 子群. 由此可以推出投影

$$p:\Gamma_{\phi}\stackrel{i}{\hookrightarrow} G\times H\stackrel{\pi_1}{\longrightarrow} G$$

是双射并且是光滑的. 不仅如此, $dp_{(e_G,e_H)}$ 也是双射. 于是,映射 p 在 (e_G,e_H) 附近是一个局部微分同胚. 由左平移可知,p 处处都是局部微分同胚. 由于 p 是双射,它一定是全局微分同胚. 故 $\phi = \pi_2 \circ p^{-1}$ 是光滑的.

Lie 群中这类"连续 \Rightarrow 光滑"的结果跟注4.1.5中提到的 Hilbert 第五问题从精神上看是一致的。

¶ Cartan 闭子群定理: 证明

假设 H 是 Lie 群 G 的一个闭子群. 令 (本小节中所有 exp 均为 exp $_G$)

$$\mathfrak{h} = \{ X \in \mathfrak{g} \mid \exp(tX) \in H, \forall t \in \mathbb{R} \}.$$

为了证明定理4.3.17, 先证明几个引理:

引理 4.3.21

η 是 g 的一个线性子空间.

证明 显然 \mathfrak{h} 在数乘下是闭的. 由命题4.2.22, 存在光滑函数 $Z: (-\varepsilon, \varepsilon) \to \mathfrak{g}$ 使得

$$\exp(tX)\exp(tY) = \exp(t(X+Y) + t^2Z(t)).$$

于是(该公式被称为"Lie 乘积公式"或"Trotter 乘积公式")

$$\exp(t(X+Y)) = \lim_{n\to\infty} \left(\exp(\frac{tX}{n})\exp(\frac{tY}{n})\right)^n.$$

从而由 H 中的乘法封闭性可知 \mathfrak{h} 在加法下是封闭的.

引理 4.3.22

赋予 \mathfrak{g} 一个内积. 假设 $X_1, X_2, \dots \in \mathfrak{g}$ 满足

- (1) 对所有的 i, $X_i \neq 0$, 并且当 $i \rightarrow \infty$ 时 $|X_i| \rightarrow 0$.
- (2) 对所有的 i, $\exp(X_i) \in H$.
- (3) $\lim_{i\to\infty} \frac{X_i}{|X_i|} = X \in \mathfrak{g}.$

那么 $X \in \mathfrak{h}$.

$$|n_i X_i - tX| \le \left| \left[\frac{t}{|X_i|} \right] - \frac{t}{|X_i|} \right| |X_i| + t \left| \frac{X_i}{|X_i|} - X \right| \to 0.$$

于是由H的闭性可知

$$\exp(tX) = \lim_{i \to \infty} \exp(n_i X_i) = \lim_{i \to \infty} (\exp X_i)^{n_i} \in H.$$

引理 4.3.23

指数映射 $\exp: \mathfrak{g} \to G$ 将 0 在 \mathfrak{h} 中的充分小邻域双射地映到 e 在 H 中的邻域.

证明 由引理4.3.21, \mathfrak{h} 是 \mathfrak{g} 的线性子空间. 取 \mathfrak{g} 的线性子空间 \mathfrak{h}' 使得 $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}'$. 定义映射

$$\Phi: \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}' \to G, \quad \Phi(X+Y) = \exp(X) \exp(Y).$$

则 $d\Phi_0(\widetilde{X}+\widetilde{Y})=\widetilde{X}+\widetilde{Y}$. 从而在 0 附近, Φ 是一个从 \mathfrak{g} 到 G 的局部微分同胚. 由于 $\exp|_{\mathfrak{h}}=\Phi|_{\mathfrak{h}}$, 故为了证明引理, 只需证明 Φ 将 0 在 \mathfrak{h} 中的一个邻域双射地映到 e 在 H 中的一个邻域.

下面用反证法。由于 Φ 在 0 附近是双射,且将 $\Phi(\mathfrak{h}) \subset H$,所以若结论不成立,则存在 $X_i + Y_i \in \mathfrak{h} \oplus \mathfrak{h}'$,其中 $Y_i \neq 0$,使得 $X_i + Y_i \to 0$ 且 $\Phi(X_i + Y_i) \in H$. 因为 $\exp(X_i) \in H$,所以对所有的 i 都有 $\exp(Y_i) \in H$. 延用引理4.3.22中的内积. 令 Y 为点集 $\{\frac{Y_i}{|Y_i|}\}$ 的一个极限点. 那么由引理 4.3.22, $Y \in \mathfrak{h}$. 另一方面,由于 $Y \in \mathfrak{h}'$,故 Y = 0,这就是所需的矛盾,因为由构造可知 |Y| = 1.

在这些准备工作之后,最后证明 Cartan 闭子群定理:

证明 [Cartan 闭子群定理的证明] 由引理4.3.23, 存在 e 在 G 中的邻域 U 与 0 在 \mathfrak{g} 中的邻域 V 使得 $\exp^{-1}: U \to V$ 是一个微分同胚, 且满足 $\exp^{-1}(U \cap H) = V \cap \mathfrak{h}$. 于是 (\exp^{-1}, U, V) 是 G 上的一个坐标卡,且在该坐标卡下 H 在 e 附近是一个光滑子流形. 对于任意 $h \in H$,可以用 G 中的左平移来得到 G 的在 h 附近跟 H 相容的坐标卡. 所以 H 是 H 的光滑子流形. 这也说明了 H 的光滑性:显然 H0 是光滑的,于是根据第二章习题,H1 :H2 H3 H4 是光滑的.