Large Language Models

Materials Science Databases

- 1. RSpace Example Use Case of LLM
- 2. Short Theory on Retrieval Augmented Generation

4. Outlook: LLMs x Materials Science Databases

- 3. Two High-Throughput Experimentation DBs MPS and MekG

Document-Tags in RSpace using 'Ontology'

RSpace Community Edition:

- + sharing tags in a lab group
- + namespace variables
- manual insertion of tags
- no hierarchical relationships

Idea: Use LLM to retrieve relevant classes from the BattINFO ontology

Ontologies for tag creation experiment_phase=preperation,execution,analysis

Whats the unit for measurements of the cell potential?

After rewriting the original answer to fit the new context, I found that the unit for measurements of the cell potential is Volt (V) and its related units such as:

Volt VoltPerCentiMetre VoltPerKelvin VoltPerMetre VoltPerMicroSecond VoltPerMilliMetre VoltPerSecond VoltPerSquareMetre VoltSecondPerMetre

So, my answer is: ^Volt

After carefully reviewing the new context information, I'd suggest adding the following tags to a document about spectroscopic analysis of a Lithium electrode:

^AtomicForceMicroscopy ^Electrochemistry ^LithiumBattery ^Spectroscopy

Retrieval Augmented Generation

LLMs hallucinate -> RAG provides facts as context when prompting an LLM

Retrieval Augmented Generation

LLMs hallucinate -> RAG provides facts as context when prompting an LLM

Retrieval Augmented Generation

LLMs hallucinate -> RAG provides facts as context when prompting an LLM

databases from HTE of metal oxide solid state materials synthesis, characterization and analysis

The materials provenance store

Relational DB

The materials experiment knowledge graph

GraphDB

Statt et al. Scientific Data 2023 10:184

Statt et al. Digital Discovery 2023,2, 909

MPS - Relational DB

samples: 11.2M

sample-process: 24M

processes: printing, annealing, electrochemistry, diffraction, spectroscopy etc.

analysis: figure-of-merit

MekG - GraphDB

nodes: sample, process, sample-process, exp. and analysis details

edges: relationship between nodes

52M nodes, 110M edges

Discussion - Comparison MPS and MekG

preparation time:

(very complex queries)

MekG: ~mins, MPS: ~days

and execution time:

"graph-based queries are sufficiently fast for real-time data exploration"

"graph schema more intuitive than the SQL schema"

Use Case - Automate Design of Experiments

Experiment

Prior knowledge "correlation of OER activity in pH 3 and pH 7 electrolytes among metal oxide catalysts" DB Query Find catalysts that have been tested at pH 7 but not at pH 3 Find catalysts that have been synthesized but not tested

69K new activity measurements proposed

Use Cases of LLMs + Materials Science DB

1. Text2Query - Instead of writing queries in Cypher or SQL, a LLM converts natural language + the schema of the database to create the DB query

2. Al Agents - Instead of the user defining a series of actions to perform, specialized agents (LLMs) prompt each other. User only gives a goal, and the model figure out the steps themselves

Idea - Design of Experiments by interacting LLM Agents

Backup

Human researchers possess domain expertise combined with intuition from their aggregated prior knowledge, both of which are unrivaled by machine learning to-date.

Auto Dev - Tufano et al. - 2024 - arXiv:2403.08299v1

Agentic Al Systems

Code Generation for Computer Vision: va.landing.ai/chat/

Robotics: Figure AI - https://www.youtube.com/watch?v=Q5MKo7ldsok

Prompt for BattINFO tagging

```
"Context information about the ontology is below.\n"

"-----\n"

"Context_str}\n"

"Given the context information above I want you to think step by step to answer the query in a crisp manner, "

"incase case you don't know the answer say 'I don't know!'.\n"

"Query: {query_str} Output only a list of tags, seperated by a '^': ^CycleLife ^LithiumAirBattery ^R2012."

"Make sure all tags are in the context information above.\n"

"Answer: "
```

RAG - Pipeline

LOAD SPLIT **EMBED** STORE [0.3, 0.4, 0.1, 1.8, 1.1...] [0.7, 1.4, 2.1, 4.8, 4.1...] [1.2, 0.3, 1.2, 4.1, 1.8...] URLs JSON [0.3, 0.4, 0.1, 1.8, 1.1...] [0.7, 1.4, 2.1, 4.8, 4.1...] [1.2, 0.3, 1.2, 4.1, 1.8...]

