UFPE - Universidade Federal de Pernambuco CIN – Centro de Informática

Relatório Projeto 2

Sistemas Digitais

Walmir Bispo da Silva Júnior (wbsj) Sandro Victor Rosevel de Santana (svrs2) Isaac Ferreira Silva (ifs5) João Marcos Lyra Vieira (jmlv)

Recife, PE 2021

INTRODUÇÃO

Os registradores são um dos mais importantes elementos de memória, podendo ser arranjados a fim de exercer inúmeras funções em diversos tipos de sistemas digitais. Uma delas são os contadores, que podem ser montados em diversas configurações, sendo comum a construção de contadores de tempo, como os cronômetros digitais.

No caso deste projeto, o cronômetro será configurado de modo a exibir os segundos e décimos de segundos, partindo de 0,0 até 999,9. De início foi necessário escolher o modelo adequado para a implementação do circuito. Considerando a sequência de contagem do cronômetro, optou-se pela montagem em cascata, que interligados operam como o cronometro desejado. São quatro registradores que incrementam sua contagem a cada ciclo completo (contar até 9) do registrador anterior.

O cronometro deve possuir quatro botões básicos, sendo eles: Reset, Contar, Pausar e Parar. Para ativar a ação dos botões é necessário que o usuário pressione e solte o mesmo, caso fique com o botão pressionado, nada deverá ocorrer.

VISÃO GERAL

Para a criação do cronômetro digital foi definido que seria usado um conjunto de registradores, e cada registrador funcionaria em cascata. Portanto é necessário definir apenas um clock de 10Hz, que comandará o primeiro registrador, os restantes serão ativados a cada ciclo completo do anterior.

O sistema é composto de um único e grande módulo inicializado no estado Reset. Basicamente todos os processos são manipulados dentro alguns procedimentos Always, o primeiro controla a contagem principal e a contagem em background.

Todos os outros procedimentos Always restantes são utilizados para definir qual o estado atual e o próximo estado do circuito assim como casos particulares de mudança de estado (Por exemplo, o que ocorre caso seja pressionado o botão contar ou o botão reset durante a contagem do cronometro em background?).

A lógica implementada para a mudança dos estados se utiliza de algumas variáveis suplementares nomeadas de key_reset, key_contar, key_pausar e key_parar. Estas variáveis servem para construir o método de funcionamento dos botões (Só devem funcionar quando o usuário soltar o botão) e definir qual o momento certo de realizar a mudança dos estados.

A saída do circuito é formada por quatro registradores (out0, out1, out2 e out3) de 4 bits. Após a determinação do próximo estado do circuito, trata-se a saída de acordo com a imagem abaixo:

```
case(estado_atual)
   reset: begin
       out0=4'd0:
       out1=4'd0;
out2=4'd0;
out3=4'd0;
   contar: begin
       out0=cont0:
       out2=cont2:
       out3=cont3;
   pausar: begin
       out0=aux_pausa0;
       out1=aux_pausa1;
       out2=aux_pausa2;
       out3=aux_pausa3;
   parar: begin
       out0=aux_para0;
       out1=aux_para1;
out2=aux_para2;
       out3=aux_para3;
```

Vale salientar também a função dos registradores acima:

- 1 cont0, cont1, cont2 e cont3 = Armazenam o resultado da contagem principal e da contagem background durante o estado Pausar.
- 2- aux_pausa0, aux_pausa1, aux_pausa2 e aux_pausa3 = Armazenam o último valor da contagem principal antes de pressionado o botão pausar. Enquanto isso a contagem continua em background.
- 3- aux_para0, aux_para1, aux_para2 e aux_para3 = Armazenam o último valor da contagem principal antes de pressionado o botão parar.

Todo o circuito em forma de diagrama de blocos, gerado pela ferramenta RTL Viewer do Quartus Prime Lite, segue abaixo:

Figura –Diagrama de bloco do circuito completo

DIAGRAMA DE ESTADOS

Para facilitar a visualização das ações realizadas pelo módulo desenvolvido neste projeto, uma tabela de transição de estados e um diagrama de estados foram elaborados.

Em um primeiro momento, vale salientar o significado das siglas presentes em cada imagem:

R – Representa o estado Reset

Key 3 – Indica que o botão Reset foi pressionado

C – Representa o estado Contar

Key 2 – Indica que o botão Contar foi pressionado

P – Representa o estado Pausar

Key 1 – Indica que o botão Pausar foi pressionado

S - Representa o estado Parar

Key 0 – Indica que o botão Parar foi pressionado

A coluna "Estado Atual", como o próprio nome sugere, registra um possível estado do circuito, e para cada possível estado o usuário pode pressionar qualquer um dos 4 botões disponíveis. Logo, basta observar na seção "Próximo Estado" para saber qual ação o circuito tomará em cada situação.

Por exemplo: Supondo que o circuito está no estado Reset (R) e o usuário pressione o botão de Pausar (Key1), a partir da tabela de transição vê-se que nada ocorre e o circuito permanece no estado Reset.

Estado Atual		Entrada				Saida	Contando
	Key3	Key2	Key1	Key0			
R	R	С	R	S		0.000	0
С	R	С	Р	S		Contando	1
P	R	Р	C*	S		SSS.D	1
S	R	С	S	S		SSS.D	0
		Próximo	Estado .				

Tabela – Tabela de transição de estados

Tomando a tabela de transição de estados como base, elaborou-se o Diagrama de Estados. Cada seta no diagrama indica a ação necessária para que o circuito mude de um estado para outro, por exemplo: Considerando que o circuito está no estado Contar e o botão Parar (Key0) é pressionado, nota-se, no diagrama abaixo, a transição do estado Contar para o estado Parar por meio da seta "Key0" que interliga ambos.

O losango vermelho indica que o sistema inicia automaticamente no estado Reset.

Figura – Diagrama de estados

SIMULAÇÕES

Conforme a especificação do projeto, o cronometro deve funcionar corretamente em todas as situações previstas, sendo elas:

- 1- Ao soltar o botão Reset o circuito deve Resetar a contagem
- 2- Ao soltar o botão Contar o circuito deve iniciar a contagem
- 3- Ao soltar o botão Pausar o circuito deve pausar a contagem e "rodar" em background
- 4- Ao soltar o botão Pausar pela segunda vez o circuito deve retomar a contagem a partir do valor obtido durante a contagem em background
- 5- Ao soltar o botão Parar o circuito deve parar a contagem
- 6- Enquanto o cronometro estiver pausado, nada ocorrerá caso o botão Contar seja pressionado

Esclarecida as condições de teste, segue-se as simulações de waveforms de cada uma delas, respectivamente.

Figura - Condição de teste: botão Reset e botão Contar

Figura - Condição de teste: botão Pausar e contagem em Background

Figura - Condição de teste: botão Parar

Figura - Condição de teste: Contagem em background e Reset

Figura - Condição de teste: Cronometro pausado com botão Contar pressionado

Figura – Todas condições de teste juntas