|              | Sep. 13.                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question     | (a) man X1 x2                                                                                                                                                                                                                                                                                                                                                           |
| 2003 Midtern |                                                                                                                                                                                                                                                                                                                                                                         |
|              | 94. ( <b>~</b> 94. ,                                                                                                                                                                                                                                                                                                                                                    |
|              | $L = x_1^{\alpha} x_2^{1-\alpha} - x(p_1 x_1 + p_2 x_2 - M)$ Here, since MU1>0. MU2>0                                                                                                                                                                                                                                                                                   |
|              | Foc. Il = axi = 221-a-xp1=0 the constraint must be bindly                                                                                                                                                                                                                                                                                                               |
|              | Foc. de = axi x2 (-a - xp1 =0) the constraint must be binding.                                                                                                                                                                                                                                                                                                          |
|              | $\frac{\partial \ell}{\partial x} = (1-d) \chi_1^{\alpha} \chi_2^{-\alpha} - \lambda \rho_2 = 0$                                                                                                                                                                                                                                                                        |
|              | dx = 1 / m = 3 f / m                                                                                                                                                                                                                                                                                                                                                    |
|              | >(PIXI+P2X2-M)=0. >>0. => PIXI+P=X>=M                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                                                                                                                                                                                                                         |
|              | $\frac{\times \chi_2}{(1-\alpha)\chi_1} = \frac{p_1}{p_2} \iff \alpha p_2 \chi_2 = (1-\alpha)p_1 \chi_1$                                                                                                                                                                                                                                                                |
|              | (1-d) X1 P2                                                                                                                                                                                                                                                                                                                                                             |
|              | substitute this back to the budget constraint.                                                                                                                                                                                                                                                                                                                          |
|              | $M = \frac{2M}{M} M = \frac{(1-d)M}{M}$                                                                                                                                                                                                                                                                                                                                 |
|              | $\chi_1^M(\rho,M) = \frac{2M}{\rho_1} \qquad \chi_2^M(\rho,M) = \frac{(1-\alpha)M}{\rho_2}$                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                                                                                                                                                                                                         |
|              | (b) Indirect uplitus function                                                                                                                                                                                                                                                                                                                                           |
|              | (b) Indirect utility function.<br>$V(p_1, p_2, M) = (x_1^M)^{\alpha} (x_2^M)^{1-\alpha}$                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                         |
|              | $= \left(\frac{\alpha N}{P_1}\right)^{\alpha} \left(\frac{(1-\alpha)N}{P_2}\right)^{\alpha}$                                                                                                                                                                                                                                                                            |
|              | $= \left(\frac{\Delta}{P_1}\right)^{\alpha} \left(\frac{1-\alpha}{P_2}\right)^{1-\alpha} M$                                                                                                                                                                                                                                                                             |
|              | (PI) (P)                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                         |
|              | ca) Verify The Roy's identity:                                                                                                                                                                                                                                                                                                                                          |
|              | $m = \frac{4V}{C} \left( -\frac{\alpha}{C} \right)^{\alpha} \left( \frac{1-\alpha}{C} \right)^{\frac{\alpha}{2}} \left( \frac{1-\alpha}{C} \right)^{\frac{\alpha}{2}}$                                                                                                                                                                                                  |
|              | $\chi_{1}^{m} = -\frac{\frac{\partial V}{\partial p_{1}}}{\frac{\partial V}{\partial M}} = -\frac{\left(-\alpha\right)\left(\frac{\alpha}{p_{1}}\right)^{\alpha}\left(\frac{1-\alpha}{p_{2}}\right)^{\frac{\alpha}{p_{1}}}}{\left(\frac{1-\alpha}{p_{1}}\right)^{\alpha}\left(\frac{1-\alpha}{p_{2}}\right)^{\frac{\alpha}{p_{1}}}} = \frac{\alpha m}{p_{1}}$ Verified. |
|              | on (pi) (pi)                                                                                                                                                                                                                                                                                                                                                            |
|              | x could be verified in the same way.                                                                                                                                                                                                                                                                                                                                    |
|              | ~,,,.                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                                                                                                                                                                                                                                                                                                                                                         |

| Question       | V(priprim) = M(pi+pr) . Recover the corresponding almost utility                                                                                                       |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | $V(p_1, p_2, M) = M(p_1 + p_2)$ . Recover the corresponding acres of thing                                                                                             |
| JR Example 2.1 | Step 1: let $M=1$ . $V(p_1, p_2, 1) = (p_1^r + p_2^r)^{-\frac{1}{r}}$                                                                                                  |
|                | Step 1: let /11=1. V(pi, ps,1) = (pi ps,1)                                                                                                                             |
|                | Step 2: min V(pipz) sit. pix+pxx =1                                                                                                                                    |
|                |                                                                                                                                                                        |
|                | 1 = - (pir+pzr) - > (pizi+pzzz-1)                                                                                                                                      |
|                | foc: [ρ,7: -(-f)(ρ,σ+ρ,σ)-1-1 ρ,σ-1 - x, x =0                                                                                                                          |
|                | [pz]: -(-+)(pi+psr)-+-18psr-1-25x=0                                                                                                                                    |
|                |                                                                                                                                                                        |
|                | λ(p1×1+p2/5-1)=0                                                                                                                                                       |
|                |                                                                                                                                                                        |
|                | $\Rightarrow  (\frac{p_1}{p_2})^{r-1} = \frac{z_1}{z_{22}} \qquad \frac{p_1}{p_2} = (\frac{\chi_1}{\chi_2})^{r-1} \Rightarrow p_1 = (\frac{\chi_1}{\chi_2})^{r-1} p_2$ |
|                | Substitute into pix1+pax2=1                                                                                                                                            |
|                | $\left(\frac{\chi_1}{\chi_2}\right)^{\frac{1}{p-1}} p_2 \chi_1 + p_2 \chi_2 = 1$ Substitute into $p_1 x_1 + p_2 x_2 = 1$                                               |
|                | $\Rightarrow p_2\left[\left(\frac{x_1}{k_2}\right)^{\frac{1}{p-1}} \cdot x_1 + x_2\right] = 1$                                                                         |
|                | * XzH                                                                                                                                                                  |
|                | $\Rightarrow p^* = \frac{\chi_2 \vec{r}}{\chi_1 \vec{r}_1 + \chi_2 \vec{r}_1}$                                                                                         |
|                |                                                                                                                                                                        |
|                | and $\rho_1^* = \frac{x_1 \frac{r}{r}}{x_1 \frac{r}{r} + x_2 \frac{r}{r}}$                                                                                             |
|                | χ <sub>1</sub> (=) + χ <sub>2</sub> r-ι                                                                                                                                |
|                | Step 3: substate pt. pt back                                                                                                                                           |
|                |                                                                                                                                                                        |
|                | $\mathcal{U}(x_1, x_2) = \mathcal{V}(p_1^{-1}, p_2^{-1}) = \left(x_1^{\frac{1}{d-1}} + x_2^{\frac{1}{1-1}}\right)^{\frac{1}{1-1}}$                                     |
|                |                                                                                                                                                                        |
|                |                                                                                                                                                                        |
|                |                                                                                                                                                                        |
|                |                                                                                                                                                                        |
|                |                                                                                                                                                                        |
|                |                                                                                                                                                                        |



Multi3Cb. 
$$u(x) = (\alpha_1 \times \beta_1 + \alpha_2 \times x_3)^{\frac{1}{p}}, \text{ assume } \alpha_1 + \alpha_2 = 1$$

$$(a) \quad \rho \to 1 \quad \Rightarrow \quad u(x) = \alpha_1 \times_1 + \alpha_2 \times x_3$$

$$(b) \quad \rho \to 0.$$

$$u(x) = \exp\left(\frac{1}{p}\log(\alpha_1 x_1^p + \alpha_2 x_3^p)\right)$$

$$f(x) = f(x) + f'(x)(x - x_3)$$

$$+ \text{the Consider the first order Taylor exponsion centered at } \rho = 0$$

$$\text{for the term Possible (symfrim. with respect to } \rho.$$

$$\phi_1 x_1^1 + \alpha_2 x_2^2 = \alpha_1 x_1^2 + \alpha_3 x_2^2 + \alpha_1 p_1 f' \ln x_1 + \alpha_2 f_2 f' \ln x_2 + O(p^2)$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \beta_2 x_1 \ln x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \beta_2 x_1 \ln x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \beta_2 x_1 \ln x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \beta_2 x_1 \ln x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \alpha_2 x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \alpha_2 x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \alpha_2 x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \alpha_2 x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \alpha_2 x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \alpha_2 x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \alpha_2 x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + \alpha_2 x_2 + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \beta_1 (\ln x_1 + o(p^2) + o(p^2))$$

$$= \alpha_1 + \alpha_2 + \alpha_3 + o(p^2)$$

$$= \alpha_1 + \alpha_2 +$$

$$= \lim_{\rho \to -\rho^*} \chi_z \left( \alpha_1 \left( \frac{\chi_1}{\chi_2} \right)^{\rho} + \alpha_z \right)^{\frac{1}{\rho}}$$

let 
$$r = \frac{x_1}{x_2}$$

1>1 => Inr >0

Let 
$$r = \frac{x_1}{x_2} > 1$$

$$\lim_{\rho \to 0} x_2 \left( x_1 r^{\rho} + x_2 \right)^{\frac{1}{\rho}}$$

$$= \lim_{\rho \to \infty} e^{x} p \left[ \ln(\alpha_1 r^{\rho} + \alpha_2) + \ln x_2 \right]$$

Similarly . we can prove when x1<x2.

Sometimes we let  $f = \frac{\sigma}{\sigma}$  and  $\sigma = \frac{1}{1-\rho}$ , where  $\sigma$  has a meaning of the elasticity of substitution.

Hence, the CES utility function is given by

$$\mu(x) = \left( \propto_1 \chi_1 \frac{\sigma_{-1}}{\sigma} + \sim_2 \chi_2 \frac{\sigma_{-1}}{\sigma} \right)^{\frac{\sigma}{\sigma-1}}$$

when P-1, 5-10, perfect substitute

