RECITATION 1 BACKGROUND

10-601: Introduction to Machine Learning 08/30/2019

1 Probability and Statistics

_	1 Todability and Statistics
1.	Two events, A and B, are considered disjoint (mutually exclusive). $P(A) = 0.5$, $P(B) = 0.5$.
	\square What is the $P(A \cup B)$?
	\square What is the $P(A \cap B)$?
	\square What is the $P(A B)$?
2.	Now, instead, the two events A and B are not disjoint, but they are independent.
	\square What is the $P(A \cup B)$?
	\square What is the $P(A \cap B)$?
	\square What is the $P(A B)$?
3.	A student is looking at her activity tracker (Fitbit/Apple Watch) data and she notices that she seems to sleep better on days that she exercises. They observe the following:
	Exercise Good Sleep Probability
	Yes Yes 0.3
	Yes No 0.2
	No No 0.4
	No Yes 0.1
	\square What is the $P(GoodSleep = Yes Exercise = Yes)$?
	\Box Why doesn't $P(GoodSleep = Yes \cap Exercise = Yes) = P(GoodSleep = Yes) \cdot P(Exercise = Yes)$?
	\Box The student merges her activity tracker data with her food logs and finds that the $P(Eatwell = Yes Exercise = Yes \cap GoodSleep = Yes)$ is 0.25. What is the probability of all three happening on the same day?
4.	What is the $E[X]$ where X is a single roll of a fair 6-sided dice $(S = \{1,2,3,4,5,6\})$? What is the $Var[X]$?

5. Imagine that we had a new dice where the sides were $S = \{3,4,5,6,7,8\}$. How does the E[X] and Var[X] compare to our original dice?

2 Calculus

- 1. If $f(x) = x^3 \sin x$, find f'(x).
- 2. If $f(x,y) = (2-x)^2 + 4x^3y 2$, evaluate $\frac{\partial f(x,y)}{\partial x}$ at the point (1,2).
- 3. Find $\frac{\partial}{\partial w_i} \mathbf{x}^T \mathbf{w}$.

3 Vectors, Matrices, and Geometry

- 1. **Inner Product:** $\mathbf{u} = \begin{bmatrix} 6 & 1 & 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 & -10 & -2 \end{bmatrix}$, what is the inner product of \mathbf{u} and \mathbf{v} ? What is the geometric interpretation?
- 2. Cauchy-Schwarz inequality (Optional): Given $\mathbf{u} = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 & -1 & 4 \end{bmatrix}$, what is $||\mathbf{u}||_2$ and $||\mathbf{v}||_2$? What is $\mathbf{u} \cdot \mathbf{v}$? How do $\mathbf{u} \cdot \mathbf{v}$ and $||\mathbf{u}||_2||\mathbf{v}||_2$ compare? Is this always true?
- 3. Matrix algebra. Most generally, $(AB)_{ij} = \sum_k A_{ik} B_{kj}$, if $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, then $\mathbf{AB} \in \mathbb{R}^{m \times p}$.

Given
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 4 & -3 & 2 \\ 1 & 1 & -1 \\ 3 & -2 & 2 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$

- What is **AB**? What about **Bu**?
- What is $tr(\mathbf{A})$, $det(\mathbf{A})$, and rank of \mathbf{A} ? What is $tr(\mathbf{AB})$ and $tr(\mathbf{BA})$?
- What is \mathbf{A}^T ?
- Calculate $\mathbf{u}\mathbf{v}^T$.
- What are the eigenvalues of **A**? (Optional) How do you calculate eigenvalues in general for square matrices?
- 4. **Positive Definiteness:** (Optional) Given $\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$, what is $\mathbf{v}^T \mathbf{A} \mathbf{v}$? Is the result positive/zero/negative? Is this true for all vectors in \mathbb{R}^3 ? Why? (Hint: anything special about the eigenvalues of \mathbf{A} ?)
- 5. **Geometry:** Given a linear function 2x + y = 2,
 - If a given point (x_1, y_1) satisfies $2x_1 + y_1 > 2$, where does it lie relative to the line?

- What is the relationship of vector $\mathbf{v} = (2, 1)$ to this line?
- What is the distance of point (1,2) to this line?

4 CS Fundamentals

- 1. For each (f,g) functions below, is $f(n) = \mathcal{O}(g(n))$ or $g(n) = \mathcal{O}(f(n))$ or both?
 - $f(n) = ln(n), g(n) = log_2(n)$
 - $f(n) = \frac{n}{50}, g(n) = log_{10}(n)$
 - $f(n) = n^{50}, g(n) = 50^n$
- 2. Find the DFS traversal and BFS traversal of the following binary tree.

