Assignment

11.9.2 - 11

EE23BTECH11034 - Prabhat Kukunuri

QUESTION

Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that
$$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$$

SOLUTION

Symbol	Value	Description				
x(n)	(x(0) + nd)u(n)	n th term of an A.P				
x(0)	x(0)	1 st term of the A.P				
d	d	Common difference				
y(n)	x(n) * u(n)	Sum of n terms of an AP				
а	y(p-1)	Sum of first p terms of the AP				
b	y(q-1)	Sum of first q terms of the AP				
С	y(r - 1)	Sum of first r terms of the AP				

TABLE 0 VARIABLE DESCRIPTION

$$y(n) = \frac{n+1}{2} (2x(0) + nd) u(n)$$
 (1)

Using y(n),

$$a = \frac{p}{2} (2x(0) + (p-1)d)$$
 (2)

$$b = \frac{q}{2}(2x(0) + (q-1)d) \tag{3}$$

$$b = \frac{q}{2} (2x(0) + (q-1)d)$$

$$c = \frac{r}{2} (2x(0) + (r-1)d)$$
(4)

The equations (2),(3) and (4) can be represented using an matrix equation,

$$\begin{pmatrix}
p & \frac{p(p-1)}{2} \\
q & \frac{q(q-1)}{2} \\
r & \frac{r(r-1)}{2}
\end{pmatrix}
\begin{pmatrix}
x(0) \\
d
\end{pmatrix} = \begin{pmatrix}
a \\
b \\
c
\end{pmatrix}$$
(5)

Using an augmented matrix to represent the matrix equation,

$$\rightarrow \begin{pmatrix} p & \frac{p(p-1)}{2} & a \\ q & \frac{q(q-1)}{2} & b \\ r & \frac{r(r-1)}{2} & c \end{pmatrix} \tag{6}$$

$$\frac{R_3 = R_3 - R_1}{R_2 = R_2 - R_1}
\xrightarrow{\begin{cases} 1 & \frac{p-1}{2} & \frac{a}{p} \\ 0 & \frac{q-p}{2} & \frac{b}{q} - \frac{a}{p} \\ 0 & \frac{r-p}{2} & \frac{c}{2} - \frac{a}{2} \end{cases}}$$
(8)

$$\xrightarrow{R_2 = \frac{R_2}{q - p}} \begin{pmatrix}
1 & \frac{p - 1}{2} & \frac{a}{p} \\
0 & 1 & \left(\frac{b}{q} - \frac{a}{p}\right) \frac{2}{q - p} \\
0 & \frac{r - p}{2} & \frac{c}{r} - \frac{a}{p}
\end{pmatrix} \tag{9}$$

$$\frac{R_{3}=R_{3}-\frac{r-p}{2}R_{2}}{R_{1}=R_{1}-\frac{p-1}{2}R_{2}} \begin{pmatrix}
1 & 0 & \frac{a}{p} - \frac{\left(\frac{b}{q} - \frac{a}{p}\right)(p-1)}{q-p} \\
0 & 1 & \left(\frac{b}{q} - \frac{a}{p}\right) \frac{2}{q-p} \\
0 & 0 & \left(\frac{c}{r} - \frac{a}{p}\right) - \frac{\left(\frac{b}{q} - \frac{a}{p}\right)(r-p)}{q-p}
\end{pmatrix} (10)$$

$$\implies \begin{pmatrix} 1 & 0 & \frac{aq(q-1)-bp(p-1)}{pq(q-p)} \\ 0 & 1 & \left(\frac{b}{q} - \frac{a}{p}\right) \frac{2}{q-p} \\ 0 & 0 & \frac{\frac{a}{p}(r-q) + \frac{b}{q}(p-r) + \frac{c}{r}(q-p)}{q-p} \end{pmatrix}$$
(11)

Effectively the third row of the matrix can be written as,

$$0 + 0 = \frac{\frac{a}{p}(r - q) + \frac{b}{q}(p - r) + \frac{c}{r}(q - p)}{q - p}$$
 (12)

For the equations to be consistent,

$$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$$
 (13)

Effectively the second row of the matrix can be written as,

$$d = \left(\frac{b}{q} - \frac{a}{p}\right) \frac{2}{q - p} \tag{14}$$

Effectively the first row of the matrix can be written as,

$$x(0) = \frac{aq(q-1) - bp(p-1)}{pq(q-p)}$$
 (15)

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$
 (16)

$$X(z) = \frac{aq(q-1) - bp(p-1)}{pq(q-p)(1-z^{-1})}x(0) + \frac{2(\frac{b}{q} - \frac{a}{p})z^{-1}}{(q-p)(1-z^{-1})^2}$$

$$R.O.C(|z| > 1) \tag{18}$$

	Sum of Arithmetic Progression Terms vs n (Stem Plot)										
150 -											
125 -								(
Sum of n Terms							(
to 75 -											
50 -				•							
25 -			•								
0 -	_										
	Ö		2	•	4	n (6		В	1	0

Fig. 0. Plot of x(n) vs n

	<i>x</i> (0)	5		
	d	2		
	p	8		
$\frac{1}{2}d$	q	10		
	r	4		
	а	96		
	b	140		
	c	32		
TABLE 0				

TABLE 0 Verified Values