This is a Very Important Title!

Person McSomething (Dated: November 22, 2021)

This abstract is abstract.

If you want to learn more about using LATEX, you should check UiO's official tutorials: https://www.mn. uio.no/ifi/tjenester/it/hjelp/latex/

If you are familiar with LATEX and you want to learn more about the REVTeX4-1 document class, check: http://www.physics.csbsju.edu/370/papers/ Journal_Style_Manuals/auguide4-1.pdf

INTRODUKSON

Vi starter med et 2×2 gitter og skal regne dette analytisk slik at vi kan gjøre en sammenlikning med vårt numeriske resultat. Vi ser at hver kombinasjon av ett spinn opp vil være en rotert versjon av de andre kombinasjonene av ett spinn opp. Den samme rotasjonsegenskapen ser vi med tre spinn opp, siden det også bare er ett spinn ned. Med to spinn opp derimot, ser vi at vi får flere kombinasjoner. Vi har igjen fire roterte versjoner hvor spinn opp-partiklene er ved siden av hverandre, men også to hvor de er diagonale til hverandre. For å finne energien vil vi trenge

$$E(s) = -J \sum_{\langle kl \rangle}^{N} s_k \cdot s_l$$

Hvor $\langle kl \rangle$ betyr at vi går over alle partiklene uten å telle interaksjonen mellom partiklene to ganger. s_l og s_k vil også være nabopartikler i gitteret. Vi vil i alle forsøkene, også utenfor 2×2 eksempelet anta periodiske grensebetingelser. Det vil si at vi antar at i hver ende vil nabopartikelen være den motsatte enden. Man kan tenke seg at i én dimensjon så vil partiklene være i en sirkel hvor endene møtes.

Vi skal også regne det magnetiske feltet gitt ved

$$M(\mathbf{s}) = \sum_{i} s_i$$

TEORI II.

Vi skal regne for tilstander **s** gitt som et 2D $L \times L$ gitter med partikler s_i som enten kan ha tilstanden spinn opp eller spinn ned. Vi setter at dersom s_i har tilstanden spinn opp så er $s_i = +1$ og hvis s_i har spinn ned er $s_i = -1$. Vi vil bruke periodiske grensebetingelser slik at naboen til s_1 som er lengst til venstre vil har s_L som er lengst til høyre som sin venstre nabo. Det samme gjelder da lodrett, så den øverste spinnet vil ha den nederste

parikkelen som sin nabo. I dette forsøket antar vi at ved å bruke Hamiltonianeren på en slik state gir energien

$$E(\mathbf{s}) = -J \sum_{\langle kl \rangle}^{N} s_k s_l$$

hvor $\langle kl \rangle$ betyr at den går gjennom det energien mellom hvert spinn og deres naboer én gang og teller ikke dette to ganger. J vil være koblingskonstant. $N=L^2$ altså størrelsen av s slik at vi går gjennom hele matrisen. Vi har også energien per spin ϵ gitt ved

$$\epsilon(\mathbf{s}) = \frac{E(\mathbf{s})}{N}$$

som vi må bruke når vi skal sammenligne matriser av ulike størrelser.

Vi trenger også magnetisaseringen gitt ved

$$M(\mathbf{s}) = \sum_{i}^{N} s_i$$

så vi da får en magnetisasjon per spin som

$$m(\mathbf{s}) = \frac{\mathbf{s}}{N}$$

Vi skal også finne forventingsverdiene $\langle \epsilon \rangle$ og $\langle |m| \rangle$. Forventingsverdien i dette systemet er gitt ved

$$\langle a \rangle = \sum_{i}^{N} a(\mathbf{s}_{i}) p(\mathbf{s}_{i})$$

hvor vi her går gjennom alle mulige tilstander \mathbf{s}_i som systemet av denne størrelsen kan være i. Z er her partisjonsfunksjonen gitt som

$$Z = \sum_{i}^{N} e^{\beta \mathbf{s_i}}$$

hvor $\beta=\frac{1}{k_bT}.$ Vi skal også finne den spesifike varmekapasiteten

$$C_V = \frac{1}{k_B T^2} (\langle \epsilon \rangle^2 - \langle \epsilon \rangle^2)$$

og den susceptilbiliteten

$$\chi = \frac{1}{k_B T} (\langle m^2 \rangle - \langle m \rangle^2 - \langle |m| \rangle^2)$$

så vi må også finne $\langle \epsilon^2 \rangle$ og $\langle m^2 \rangle$.

Når vi flipper et spinn så skal vi også kunne få en energiendring gitt ved

$$\Delta E = E(\mathbf{s}_{etter}) - E(\mathbf{s}_{f o r}) = E(\mathbf{s}_a) - E(\mathbf{s}_b)$$

Utvider vi det får vi

$$\Delta E = -J \sum_{\langle kl \rangle}^{N} s_{a_k} s_{l_a} - (-J) \sum_{\langle kl \rangle}^{N} s_{k_b} s_{l_b}$$

$$\Delta E = -J \sum_{\langle kl \rangle}^{N} s_{k_a} s_{l_a} - s_{k_b} s_{l_b}$$

La oss si at vi flipper spinnet $s_{i,j}$ hvor i representerer den vannrette posisjonen og j den lodrette. Da kun $s_{k_b}s_{l_b}$ kun endre seg hvor $s_{i,j}$ er en av faktorene. Ellers vil $s_{k_b}s_{l_b}=s_{k_a}s_{l_a}$ og her vil $s_{k_a}s_{l_a}-s_{k_b}s_{l_b}=0$. Vi står da kun igjen med

$$\Delta E = -J \begin{pmatrix} s_{i,j-1}s_{i,j_a} - s_{i,j-1}s_{i,j_b} + s_{i+1,j}s_{i,j_a} - s_{i+1,j}s_{i,j_b} \\ + s_{i,j+1}s_{i,j_a} - s_{i,j+1}s_{i,j_b} + s_{i-1,j}s_{i,j_a} - s_{i-1,j}s_{i,j_b} \end{pmatrix}$$

Vi kan så ta ut $(s_{i,j_a} - s_{i,j_b})$ og få

$$\Delta E = -J(s_{i,j_a} - s_{i,j_b})(s_{i,j-1} + s_{i+1,j} + s_{i,j+1} + s_{i-1,j})$$

Vi ser at $s_{i,j_a}-s_{i,j_b}$ er enten +1-(-1)=2 når den skifter fra spin ned til opp og -1-(+1)=-2 når den skifter fra spin opp til ned. Ellers må vi også naboleddene somhar fem muligheter

$$1+1+1+1=4$$

$$1+1+1-1=2$$

$$1 + 1 - 1 - 1 = 0$$

$$1 - 1 - 1 - 1 = -2$$

$$-1-1-1-1=-4$$

Så vi får altså 5 mulige forskjeller i energi

Finne $T_c(L=\infty)$ med finite datasett

Lars Onsager sien analytiske resultater gir oss relasjonen:

$$T_c(L) - T_c(L = \infty) = aL^{-1}$$

Om vi ganger med L på begge side så får kan vi skrive at

$$T_c(L) L = T_c(L = \infty) + a. \tag{1}$$

Som vil si at $T_c(L = \infty)$ er gitt ved stigningstallet til linjen gitt ved $T_c(L) L$.

III. METODE

Forventingsverdier for forksjellige L

Først så paralelliserer vi koden vår med OpenMP, og tester den med å sette opp en litenutregning hvor den kjører over 10 temperaturer og går igjennom 5000 Monte Carlo sykluser med L=10. Vi tar så videre å kjører for L=40, L=60 og L=100 over 500 000 Monte Carlo sykluser med 100 temperatursteg for L=40 og L=60, men 50 steg for L=100. For de to første størrelsene så ser vi på $T=[2.1,2.4]\ J/k_B$ og for L=100 så setter vi $T=[2.2,2.4]\ J/k_B$.

IV. RESULTATER

For $T = 1.0 \ J/k_B$ og L = 20, så fikk vi sannsynligehtsfordelingen som vist i ??.

Figure 1. Histogram og følgende sannsynlighetsfordeling for $T = 1, 0 \ J/k_B$ og L = 20.

For $T = 2, 4 J/k_B$ og L = 20 så fikk vi grafen i ??:

Figure 2. Histogram og følgende sannsynlighetsfordeling for $T=2,4\ J/k_B$ og L=20.

Forventningsverdie for energi og magnetisme per sinn

Vi fikk grafene ?? og ?? for $T=1\ J/k_B$ hvor vi ser hvordan forventingsverdiene utvikler seg med hensyn på antall Monte Carlo sykluser. For $T=2,4\ J/kB$ så fikk vi plottene ?? og ??.

Figure 3. Forventingsverdien av energien per spinn etter et antall Monte Carlo sykluser. Ser at den som starter fra tilfeldig spinnmatrise ender opp på samme steds som grunntilstandsmatrisen. Vi bruker det til å estimere burn-in tiden til systemet.

Figure 5. Forventingsverdien av energien per spinn etter et antall Monte Carlo sykluser. Her er temperatur $T=2.4\ J/k_B$ og L=20. Selv om for høyere temperaturer så vil ikke alle spinn opp være den laveste energitilstanden så bruker vi den som en referansentilstand.

Figure 4. Forventingsverdien til magnetisering per spinn for $T=2.4\ J/k_B$ og L=20. Den tilfeldige s_0 starter på en høy energi imens grunntilstanden starter med alle spinn opp for å ha den laveste energien.

Figure 6. For ventingsverdien til magentisering per spinn. Her er $T=2,4\ J/k_B$ og $L=20.\$ Vi har brukt 500 000 Monte Carlo sykluser for hver instans av Ising modellen med forskjellige temperaturer.

Forventingsverdier for forksjellige L

Ved paralelliseringen av koden så finner vi at for kort utregning at paralelliseringen er 2,6 ganger raske enn ikke parallellisert. Vi kjørte for $L=40,\,L=60$ L=100 og fikk følgende plot for forventningsverdien energi per spinn:

Figure 8. Vi ser på forkjellige temperaturer $T[2.1,2.4]\ J/k_B$ og ser hva forventingsverdien for absoluttverdien av magnetiserrng per spinn blir etter 500 000 Monte Carlo sykluser. L=40 og L=60 har 100 tempratursteg imens L=100 kun har 50. For L=100 kjørte vi også kun over $T=[2.2,2.4]\ J/k_B$.

Og for C_v (??) og X (??):

Figure 9. Vi ser på forkjellige temperaturer $T[2.1, 2.4]\ J/k_B$ og ser hva forventingsverdien for varmekapasiteten blir etter 500 000 Monte Carlo sykluser. L=40 og L=60 har 100 tempratursteg imens L=100 har 50 steg. For L=100 kjørte vi også kun over $T=[2.2,2.4]\ J/k_B$.

Figure 7. Vi ser på forkjellige temperaturer $T[2.1,2.4]\ J/L$ og ser hva forventingsverdien for energi per spinn blir ett 500 000 Monte Carlo sykluser. L=40 og L=60 har 1 tempratursteg imens L=100 kun har 50. For L=100 kjør vi også kun over $T=[2.2,2.4]\ J/k_B$.

For $\langle |m| \rangle$ så fikk vi:

Figure 10. Vi ser på forkjellige temperaturer $T[2.1, 2.4]\ J/k_B$ og ser hva forventingsverdien for permaebiliteten blir etter 500 000 Monte Carlo sykluser. L=40 og L=60 har 100 tempratursteg imens L=100 har 50 steg. For L=100 kjørte vi også kun over $T=[2.2, 2.4]\ J/k_B$.

Vi finner maksiumemene til C_v for de forskjellige L og bruker likningen til T(L)L, (??), for å finne $T(L = \infty)$, og får at:

$$T(L = \infty) \approx 2,28 \ J/k_B \pm 0,06 \ J/k_B$$

V. DISKUSJON

Forventningsverdie for energi og magnetisme per sinn

Vi vet at forventingsverdien for energien per spinn skal være $\langle \epsilon \rangle = -2 J/k_B$ ved , som vi har funnet analytisk. Det stemmer godt overens med de numeriske resultatene som vi ser i ?? hvor vi den tilfeldige initialstilstanden møter tilstanden med alle spinn opp ved å flate ut ved $\langle \epsilon \rangle \approx -2 J/kB$. For $T = 2.4 J/k_B$ (??) så ser vi at den derimot ikke flater ut ved $\epsilon = -2$, men ved $\epsilon \approx -1.2$, noe som vil si at ved $T = 2.4 J/k_B$ så er ikke tilstaden med lavest energi lenger den mest sannsynlige tilstaden. Tenker det gir mening ved at siden systemet har høyere temperatur, altså høyere gjennomsnitlig energi, så vil forventingsverdien av energi per spinn også løftes opp. I plottet for $\langle \epsilon \rangle$ ved $T = 2.4 J/k_B$ (?? så ser vi at det er større variasjon rundt ekvivalenslinjen enn ved grafen ved $T=1 J/k_B$. Det ligner på oppførselen til temperaturen til to objekter i kontakt, hvor vil se den samme økningen av variasjon ved økning av temperaturen. Magnetiseringen per spinn ser også ut til å gå mot en felles grenseverdi,

men det burde her vært gjort flere Monte Carlo sykluser for å være sikker. Kan derimot være rimelig sikker på at grenseverdien ligger mellom $\langle |m| \rangle = 0,0$ til $\langle |m| \rangle = 0,4$, noe som ihvertfall sier oss at magnetiseringen synker med temperaturen. Det passer med at den mest sannsynlige mikrotilstanden ikke lenger er hvor alle spinn peker opp, der magnetiseringen er størst.

Forventingsverdier for forksjellige L

Om vi sammenlikner plottet for $\langle \epsilon \rangle$ (T) (??) med entalpien til vann som funksjon av temperatur, så ser vi at grafen vi har fått ligner veldig på en faseovergang hvor et materiale smelter hvor vi har en svak økning ved $T \approx$ $2,25 \ J/k_B$ og svak utflatning igjen ved $T \approx 2,3 \ J/k_B$. Tenker at faseovergangen i Ising modellen korrelerer med faseovergangen til materialer med at flippingsfrekvensen gir samme effekt som vibrasjonen til partiklene i et materiale. Det gir da mening at vi har en overgang som ligner mest på overgangen fra solid til flytende materiale ettersom spinnnene i Ising modellen ikke får en stor økning av mulige bevegelser som molekylene i et materiale gjør ved overgangen fra væske til gass. Kanskje man vil sette en slik faseovergang om man introduserte en grense hvor antall mulige spinnretninger øker, slik at spinnene får et større bevegelsesrom.

Magnetiseringen (?? har stor varisjon ved temperaturer mellom $T = 2, 1 J/k_B$ til $T = 2, 25 J/k_B$. Etter det så stabiliserer den gjennomsnitlige magnetiseringen seg rundt $\langle (\rangle m) = 0$. Vi ser at magnetiseringen begynner å stabilserer seg senere for større L, og den ser også ut til stabilisere seg raskere for større L også, men det er ikke helt tydelig med kun de tre grafene vi har. Permaebiliteten også tydelig endring ved økning av L, hvor grafen blir spissere og maksverdien ser ut til å øke eksponentsielt. Det ville gitt mening siden ved påvirkning av et magnetfelt, så vil det være $N=L^2$ spinn som bidrar til den totale magnetiseringen når alle spinnene retter seg etter det eksterne magnetfeltet. Vi ser at maksverdien til permabiliteten ser ut til å følge $N=L^2$ for L=40 og L=60, men ikke for L=100, noe som ikke virker helt riktig. Permaebiliteten følger tydelig av hvor magnetiseringen begynner å stabilisere seg og hvor lang tid den bruker på å komme seg ned til $\langle m \rangle = 0$.

For varmekapsiteten (??) så forventet vi egentlig at maksimumet til grafen skulle øke og bli spissere ved økning av L, men kan være at det er fordi vi har for få temperatursteg Men siden T_c ikke er avhening av hvor høyt topppunktet til grafen er, så bruker vi dataene for L=100 i beregningene av $T(L=\infty)$ også. Med det så fikk vi en verdi nærme den analtyske verdien funnet av Lars Onsager: $T(L=\infty)\approx 2,269\ J/k_B$.

VI. CONKLUSJON

ACKNOWLEDGMENTS

I would like thank myself for writing this beautiful document.

REFERENCES

- Reference 1
- Reference 2

Appendix A: 2×2 gitter

Vi starter med å finne alle mulige tilstander for et 2×2 gitter, som gitt i figur ??

Figure 11. Alle tilstander som er mulig i et 2×2 -gitter. En rute med en prikk i seg betyr at dette spinnet har spin opp altså +1, mens en blank rute betyr at dette spinnet har spin ned, altså -1

Vi ser altså at det er 16 forskjellige muligheter tilstander i et 2×2 -gitter, men noen av disse er symmetriske. Alle fire tilstandene med ett spin opp er symmetriske, det samme gjelder for ett spin ned. Alle tilstandene for to spin opp hvor to av dem er naboer er har også en symmetri og det samme med de to diagonale. Vi kan derfor si at de som er symmetriske har samme total energi.

Så var det magnetiseringen. Siden magnetiseringen er gitt som

Appendix B: This is another appendix

Tada.

Note that this document is written in the two-column format. If you want to display a large equation, a large figure, or whatever, in one-column format, you can do this like so:

This text and this equation are both in one-column format. [?]

$$\frac{-\hbar^2}{2m}\nabla^2\Psi + V\Psi = i\hbar\frac{\partial}{\partial t}\Psi \tag{B1}$$

Note that the equation numbering (this: ??) follows the appendix as this text is technically inside Appendix ??. If you want a detailed listing of (almost) every available math command, check: https://en.wikibooks.org/wiki/LaTeX/Mathematics.

And now we're back to two-column format. It's really easy to switch between the two. It's recommended to keep the two-column format, because it is easier to read, it's not very cluttered, etc. Pro Tip: You should also get used to working with REVTeX because it is really helpful in FYS2150.

One last thing, this is a code listing:

This will be displayed with a cool programming font!

You can add extra arguments using optional parameters:

This will be displayed with a cool programming font!

You can also list code from a file using lstinputlisting. If you're interested, check https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings.

This is a basic table:

Table I. This is a nice table

Hey	Hey	Hey	
Hello	Hello	Hello	
Bye	Bye	Bye	

You can a detailed description of tables here: https://en.wikibooks.org/wiki/LaTeX/Tables.

I'm not going to delve into Tikz in any level detail, but here's a quick picture:

Figure 12. This is great caption

If you want to know more, check: https://en.wikibooks.org/wiki/LaTeX/PGF/TikZ.