Übungsblatt 6: Produkt und Koprodukt

In den folgenden Übungen sind alle Ringe kommutativ mit Eins.

Übung 6.1. (wird benotet, auf 5 Punkten) Sei R ein Ring, sei $n \in \mathbb{N}$. Beweisen Sie, dass das Koproduktmodul $R^{(\mathbb{N}^n)}$ und das Polynommodul $R[X_1, \ldots, X_n]$ als R-Moduln isomorph sind. Sind sie auch als Ringe isomorph?

Übung 6.2. (Richtung Tensorprodukt) Seien M und N zwei \mathbb{Z} -Moduln. Sei $\mathbb{Z}^{(M \times N)}$ die direkte Summe von \mathbb{Z} über die Indexmenge $M \times N$, worin wir die Eins in dem Summand mit Index (m,n) als $e_{(m,n)}$ bezeichnen. sei $K \subset \mathbb{Z}^{(M \times N)}$ das von den folgenden Elementen erzeugte Untermodul:

$$\{e_{(m_1+m_2,n)}-e_{(m_1,n)}-e_{(m_2,n)}\mid m_1,m_2\in M,n\in N\}\cup \{e_{(m,n_1+n_2)}-e_{(m,n_1)}-e_{(m,n_2)}\mid m\in M,n_1,n_2\in N\}.$$

Sei $T = \mathbb{Z}^{(M \times N)}/K$ der Faktormodul. Konstruieren Sie eine \mathbb{Z} -bilineare Abbildung $f: M \times N \to T$, wodurch jede \mathbb{Z} -bilineare Abbildung $M \times N \to P$ faktorisiert.

Hinweis. Für drei R-Moduln M, N, T heißt eine Abbildung $f: M \times N \to T$ R-bilinear wenn die Abbildungen $f(m, \cdot): N \to T$ für jedes $m \in M$ und $f(\cdot, n): M \to T$ für jedes $n \in N$ alle R-linear sind.

Übung 6.3. Sei R ein Ring und sei N ein R-Modul. Die Spur $\operatorname{tr}_N(M)$ von N in einem R-Modul M ist durch

$$\operatorname{tr}_N(M) := \sum_{\varphi \in \operatorname{Hom}_{R-\operatorname{Mod}}(N,M)} \operatorname{Im}(\varphi)$$

definiert.

- 1) Beweisen Sie, dass es ein R-lineares Homomorphismus $\psi: N^{(I)} \to M$ gibt, sodass $\operatorname{tr}_N(M) = \operatorname{Im}(\psi)$ gilt.
- 2) Beweisen Sie, dass $M \mapsto \operatorname{tr}_N(M)$ ein Funktor von der Kategorie R Mod auf sich selbst ist.

Übung 6.4. Sei R ein Ring und sei M ein R-Modul. Sei $m \in M$. Beweisen Sie die Äquivalenz der zwei folgenden Aussagen:

- 1) Ann(mR) = (0) und es gibt ein Untermodul $F \subset M$, sodass M = F + mR und F und mR in direkter Summe sind.
- 2) es gibt $f \in \operatorname{Hom}_{R-\operatorname{Mod}}(M,R)$ mit $f(m) = 1_R$.

Beweisen zudem, dass 1) und 2) die Zerlegung $M = \ker(f) \oplus mR$ implizieren.

Erinnerung. Mit mR wird das von m erzeugte Untermodul bezeichnet.