Name- Kshitij V Darwhekar

Roll No - TETB19

Sub: Soft Computitng

Batch -B2

Experiment 3: Implementation of Decision Tree, Random Forest, KNN, Naïve Bayes with hyperparameter tunning.

▼ 1. DECISION TREE

df = pd.read_csv("/content/drive/MyDrive/ML/Titanic-Dataset.csv")
df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.0	1	0	PC 17599	71.

```
df.drop(['PassengerId','Name','SibSp','Parch','Ticket','Cabin','Embarked'],axis='columns',
df.head()
```

_		Survived	Pclass	Sex	Age	Fare	77
	0	0	3	male	22.0	7.2500	
,	1	1	1	female	38.0	71.2833	
4	2	1	3	female	26.0	7.9250	
<pre>inputs = df.drop('Survived',axis='columns') target = df.Survived</pre>							
-	-	v	J	IIIGIO	00.0	0.0000	

inputs.Sex = inputs.Sex.map({'male': 1, 'female': 2})

```
inputs.Age[:10]
```

```
0
    22.0
    38.0
1
2
    26.0
3
    35.0
4
    35.0
5
    NaN
6
    54.0
7
    2.0
8
    27.0
9
    14.0
```

Name: Age, dtype: float64

inputs.Age = inputs.Age.fillna(inputs.Age.mean())

inputs.head()

	Pclass	Sex	Age	Fare	7
0	3	1	22.0	7.2500	
1	1	2	38.0	71.2833	
2	3	2	26.0	7.9250	
3	1	2	35.0	53.1000	
4	3	1	35.0	8.0500	

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(inputs, target, test_size=0.2)

len(X_train)

712

len(X_test)

```
from sklearn import tree
model = tree.DecisionTreeClassifier()

model.fit(X_train,y_train)
    DecisionTreeClassifier()

model.score(X_test,y_test)
    0.7877094972067039
```