275596USXPCT.ST25 SEQUENCE LISTING

<110> Sugiyama, Haruo Gotoh, Masashi Takasu, Hideo <120> HLA-A24-RESTRICTED CANCER ANTIGEN PEPTIDES <130> 275596USXPCT <140> 10/517,600 <141> 2004-12-13 <150> PCT/JP03/07463 <151> 2003-06-12 <150> JP 2002-171518 <151> 2002-06-12 <150> JP 2002-275572 <151> 2002-09-20 <160> <170> PatentIn version 3.3 <210> 1 449 <211> <212> PRT <213> Homo sapiens <400> Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro 1 5 10 15 Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala 20 25 30 Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr 35 40 45 Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro 50 55 60 Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly 65 70 75 80 Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe 85 90 95 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe 100 105 110 Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe 115 120 125 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile 130 140

Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr 145 150 155 Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe 165 170 175 Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln 180 185 190 Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser 195 200 205 Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp 210 215 220 Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln 225 230 235 240 Met Asn Leu Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser 245 250 255 Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Ser Thr Gly Tyr Glu 260 265 270 Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile 275 280 285 His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro 290 295 300 Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys 305 310 315 Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys 325 330 335 Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro 340 345 350 Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp 355 360 Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln 370 380 Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr 385 390 395 400 His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys 405 410 415

Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val 420 425 430

Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala 435 440 445

Leu

```
<210> 2
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 2
Arg Tyr Phe Pro Asn Ala Pro Tyr Leu
1 5
<210>
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 3
Arg Tyr Pro Gly Val Ala Pro Thr Leu 5
<210> 4
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 4
Arg Tyr Pro Ser Cys Gln Lys Lys Phe 5
<210> 5
'<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400>
         5
Ala Tyr Leu Pro Ala Val Pro Ser Leu \mathbf{5}
```

```
<210> 6
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 6
Asn Tyr Met Asn Leu Gly Ala Thr Leu \mathbf{5}
<210> 7
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 7
Arg Val Pro Gly Val Ala Pro Thr Leu
1 5
<210> 8
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 8
Arg Met Phe Pro Asn Ala Pro Tyr Leu 5
<210> 9
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 9
Arg Trp Pro Ser Cys Gln Lys Lys Phe \frac{1}{5}
<210> 10
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 10
Gln Tyr Arg Ile His Thr His Gly Val Phe
                                                 Page 4
```

<210> 11 <211> 10 <212> PRT

<213> Artificial Sequence

<220>

1

<223> Synthetic Peptide

<400> 11

Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe 1 5 10

<210> 12 <211> 9 <212> PRT <213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 12

Arg Tyr Phe Pro Asn Ala Pro Tyr Phe $1 \hspace{1cm} 5$

<210> 13 <211> 9 <212> PRT <213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 13

Arg Tyr Phe Pro Asn Ala Pro Tyr Trp $\mathbf{1}$

<210> 14 <211> 9 <212> PRT <213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 14

Arg Tyr Phe Pro Asn Ala Pro Tyr Ile 1

<210> 15

<211> 9 <212> PRT <213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 15

```
Arg Tyr Phe Pro Asn Ala Pro Tyr Met 1
<210> 16
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 16
Arg Tyr Pro Gly Val Ala Pro Thr Phe 1
<210> 17
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 17
Arg Tyr Pro Gly Val Ala Pro Thr Trp
5
<210> 18
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 18
Arg Tyr Pro Gly Val Ala Pro Thr Ile
5
<210> 19
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 19
Arg Tyr Pro Gly Val Ala Pro Thr Met \mathbf{1}
<210> 20
<211> 9
        20
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
```

```
<400> 20
Arg Tyr Pro Ser Cys Gln Lys Lys Trp
<210> 21
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 21
Arg Tyr Pro Ser Cys Gln Lys Lys Leu
1 5
<210> 22
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 22
Arg Tyr Pro Ser Cys Gln Lys Lys Ile
1
<210> 23
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 23
Arg Tyr Pro Ser Cys Gln Lys Lys Met
<210> 24
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 24
Ala Tyr Leu Pro Ala Val Pro Ser Phe \mathbf{1}
<210> 25
<211> 9
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Peptide
<400> 25
Ala Tyr Leu Pro Ala Val Pro Ser Trp
5
<210> 26
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 26
Ala Tyr Leu Pro Ala Val Pro Ser Ile \mathbf{5}
<210> 27
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 27
Ala Tyr Leu Pro Ala Val Pro Ser Met \mathbf{1}
<210> 28
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 28
Asn Tyr Met Asn Leu Gly Ala Thr Phe 5
<210> 29
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 29
Asn Tyr Met Asn Leu Gly Ala Thr Trp \mathbf{5}
<210> 30
<211> 9
<212> PRT
```

```
<213> Artificial Sequence
 <220>
 <223>
        Synthetic Peptide
 <400>
        30
Asn Tyr Met Asn Leu Gly Ala Thr Ile \frac{1}{5}
       31
 <210>
 <211>
 <212>
       PRT
 <213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 31
Asn Tyr Met Asn Leu Gly Ala Thr Met 1
<210>
       32
       21
<211>
<212> PRT
       Artificial Sequence
<220>
<223>
       Synthetic Peptide
<400>
       32
Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser 10 15
Ala Ser His Leu Glu
<210>
       33
       3857
<211>
<212>
<213> Artificial Sequence
<220>
<223>
       Synthetic DNA
<400>
aagcttactc tctggcacca aactccatgg gatgattttt cttctagaag agtccaggtg
                                                                         60
gacaggtaag gagtgggagt cagggagtcc agttcaggga cagagattac gggatgaaaa
                                                                        120
gtgaaaggag agggacgggg cccatgccga gggtttctcc cttgtttctc agacagctct
                                                                        180
tgggccaaga ttcagggaga cattgagaca gagcgcttgg cacagaagca gaggggtcag
                                                                        240
ggcgaagtcc cagggcccca ggcgtggctc tcagggtctc aggccccgaa ggcggtgtat
                                                                        300
ggattgggga gtcccagcct tggggattcc ccaactccgc agtttctttt ctccctctcc
                                                                        360
caacctatgt agggtccttc ttcctggata ctcacgacgc ggacccagtt ctcactccca
                                                                        420
ttgggtgtcg ggtttccaga gaagccaatc agtgtcgtcg cggtcgctgt tctaaagtcc
                                                                        480
```

	2	.75596USXPC	r. ST25		
gcacgcaccc accgggactc				catggcgccc	540
cgaaccctcg tcctgctact	ctcgggggcc	ctggccctga	cccagacctg	ggcaggtgag	600
tgcggggtcg ggagggaaac	ggcctctgcg	gggagaagca	aggggcccgc	ctggcggggg	660
cgcaagaccc gggaagccgc	gccgggagga	gggtcgggcg	ggtctcagcc	actcctcgtc	720
cccaggctcc cactccatga	ggtatttctc	cacatccgtg	tcccggcccg	gccgcgggga	780
gccccgcttc atcgccgtgg	gctacgtgga	cgacacgcag	ttcgtgcggt	tcgacagcga	840
cgccgcgagc cagaggatgg	agccgcgggc	gccgtggata	gagcaggagg	ggccggagta	900
ttgggacgag gagacaggga	aagtgaaggc	ccactcacag	actgaccgag	agaacctgcg	960
gatcgcgctc cgctactaca	accagagcga	ggccggtgag	tgaccccggc	ccggggcgca	1020
ggtcacgacc cctcatcccc	cacggacggg	ccgggtcgcc	cacagtctcc	gggtccgaga	1080
tccaccccga agccgcggga	ccccgagacc	cttgccccgg	gagaggccca	ggcgccttaa	1140
cccggtttca ttttcagttt	aggccaaaaa	tcccccggg	ttggtcgggg	ccgggcgggg	1200
ctcgggggac tgggctgacc	gcggggtcgg	ggccaggttc	tcacaccctc	cagatgatgt	1260
ttggctgcga cgtggggtcg	gacgggcgct	tcctccgcgg	gtaccaccag	tacgcctacg	1320
acggcaagga ttacatcgco	ctgaaagagg	acctgcgctc	ttggaccgcg	gcggacatgg	1380
cggctcagat caccaagcgc	aagtgggagg	cggcccatgt	ggcggagcag	cagagagcct	1440
acctggaggg cacgtgcgtg	gacgggctcc	gcagatacct	ggagaacggg	aaggagacgc	1500
tgcagcgcac gggtaccagg	ggccacgggg	cgcctacctg	atcgcctgta	gatcctgtgt	1560
gacacacctg taccttgtco	cccagagtca	ggggctggga	gtcattttct	ctggctacac	1620
acttagtgat ggctgttcac	ttggactgac	agttaatgtt	ggtcagcaag	gtgactacaa	1680
tggttgagtc tcaatggtgt	caccttccag	gatcatacag	ccctaatttt	aatatgaact	1740
caaacacata ttaaattagt	tattttccat	tccctcctcc	attctttgac	tacctctctc	1800
atgctattga acatcacata	aggatggcca	tgtttaccca	atggctcatg	tggattccct	1860
cttagcttct gagtcccaaa	agaaaatgtg	cagtcctgtg	ctgaggggac	cagctctgct	1920
tttggtcact agtgcgatga	cagttgaagt	gtcaaacaga	cacatagttc	actgtcatca	1980
ttgatttaac tgagtcttgg	gtagatttca	gtttgtcttg	ttaattgtgt	gatttcttaa	2040
atcttccaca cagattcccc	aaaggcccat	gtgacccatc	acagcagacc	tgaagataaa	2100
gtcaccctga ggtgctgggc	cctgggcttc	taccctgctg	acatcaccct	gacctggcag	2160
ttgaatgggg aggagctgat	ccaggacatg	gagcttgtgg	agaccaggcc	tgcaggggat	2220
ggaaccttcc agaagtgggc	atctgtggtg	gtgcctcttg	ggaaggagca	gtattacaca	2280
tgccatgtgt accatcaggg	gctgcctgag	cccctcaccc	tgagatgggg	taaggagagt	2340
gtgggtgcag agctggggtc	agggaaagct	ggagctttct	gcagaccctg	agctgctcag	2400
ggctgagagc tggggtcatg	accctcacct	tcatttcttg	tacctgtcct	tcccagagcc	2460
tcctccatcc actgtctcca	acatggcgac	cgttgctgtt	ctggttgtcc	ttggagctgc	2520

aatagtcact ggagctgtgg tggcttttgt gatgaagatg agaaggagaa acacaggtag	2580								
gaaagggcag agtctgagtt ttctctcagc ctcctttaga gtgtgctctg ctcatcaatg	2640								
gggaacacag gcacacccca cattgctact gtctctaact gggtctgctg tcagttctgg	2700								
gaacttccta gtgtcaagat cttcctggaa ctctcacagc ttttcttctc acaggtggaa	2760								
aaggagggga ctatgctctg gctccaggtt agtgtgggga cagagttgtc ctggggacat	2820								
tggagtgaag ttggagatga tgggagctct gggaatccat aatagctcct ccagagaaat	2880								
cttctaggtg cctgagttgt gccatgaaat gaatatgtac atgtacatat gcatatacat	2940								
ttgttttgtt ttaccctagg ctcccagacc tctgatctgt ctctcccaga ttgtaaaggt	3000								
gacactctag ggtctgattg gggaggggca atgtggacat gattgggttt caggaactcc	3060								
cagaatcccc tgtgagtgag tgatgggttg ttcgaatgtt gtcttcacag tgatggttca	3120								
tgaccctcat tctctagcgt gaagacagct gcctggagtg gacttggtga cagacaatgt	3180								
cttctcatat ctcctgtgac atccagagcc ctcagttctc tttagtcaag tgtctgatgt	3240								
tccctgtgag cctatggact caatgtgaag aactgtggag cccagtccac ccctctacac	3300								
caggaccctg tccctgcact gctctgtctt cccttccaca gccaaccttg ctggttcagc	3360								
caaacactga gggacatctg tagcctgtca gctccatgct accctgacct gcaactcctc	3420								
acttccacac tgagaataat aatttgaatg taaccttgat tgttatcatc ttgacctagg	3480								
gctgatttct tgttaatttc atggattgag aatgcttaga ggttttgttt gtttgtttga	3540								
ttgatttgtt tttttgaaga aataaatgat agatgaataa acttccagaa tctgggtcac	3600								
tatgctgtgt gtatctgttg ggacaggatg agactgtagc agctgagtgt gaacagggct	3660								
gtgccgaggt gggctcagtt tgctttgatc tgtgatgggg ccacacctcc actgtgtcac	3720								
ctctgggctc tgttccctct atcactatga ggcacatgct gagagtttgt ggtcacaaag	3780								
acacagggaa ggcctgagcc ttgccctgtc cccaggatta tgagccccca gggctaaaga	3840								
tcagagactc ggaattc	3857								
<210> 34 <211> 1119 <212> DNA <213> Artificial Sequence <220>									
<223> Synthetic DNA <400> 34									
atggccgtca tggcgccccg aaccctcgtc ctgctactct cgggggccct ggccctgacc	60								
cagacctggg caggctccca ctccatgagg tatttctcca catccgtgtc ccggcccggc	120								
cgcggggagc cccgcttcat cgccgtgggc tacgtggacg acacgcagtt cgtgcggttc	180								
gacagcgacg ccgcgagcca gaggatggag ccgcgggcgc cgtggataga gcaggagggg	240								
ccggagtatt gggacgagga gacagggaaa gtgaaggccc actcacagac tgaccgagag	300								
aacctgcgga tcgcgctccg ctactacaac cagagcgagg ccggttctca caccctccag	360								

atgatgtttg	gctgcgacgt	ggggtcggac	gggcgcttcc	tccgcgggta	ccaccagtac	420
gcctacgacg	gcaaggatta	catcgccctg	aaagaggacc	tgcgctcttg	gaccgcggcg	480
gacatggcgg	ctcagatcac	caagcgcaag	tgggaggcgg	cccatgtggc	ggagcagcag	540
agagcctacc	tggagggcac	gtgcgtggac	gggctccgca	gatacctgga	gaacgggaag	600
gagacgctgc	agcgcacgga	ttccccaaag	gcccatgtga	cccatcacag	cagacctgaa	660
gataaagtca	ccctgaggtg	ctgggccctg	ggcttctacc	ctgctgacat	caccctgacc	720
tggcagttga	atggggagga	gctgatccag	gacatggagc	ttgtggagac	caggcctgca	780
ggggatggaa	ccttccagaa	gtgggcatct	gtggtggtgc	ctcttgggaa	ggagcagtat	840
tacacatgcc	atgtgtacca	tcaggggctg	cctgagcccc	tcaccctgag	atgggagcct	900
cctccatcca	ctgtctccaa	catggcgacc	gttgctgttc	tggttgtcct	tggagctgca	960
atagtcactg	gagctgtggt	ggcttttgtg	atgaagatga	gaaggagaaa	cacaggtgga	1020
aaaggagggg	actatgctct	ggctccaggc	tcccagacct	ctgatctgtc	tctcccagat	1080
tgtaaagtga	tggttcatga	ccctcattct	ctagcgtga			1119

<210> 35

<211> 372 <212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 35

Met Ala Val Met Ala Pro Arg Thr Leu Val Leu Leu Ser Gly Ala 1 5 10 15

Leu Ala Leu Thr Gln Thr Trp Ala Gly Ser His Ser Met Arg Tyr Phe 20 25 30

Ser Thr Ser Val Ser Arg Pro Gly Arg Gly Glu Pro Arg Phe Ile Ala 35 40 45

Val Gly Tyr Val Asp Asp Thr Gln Phe Val Arg Phe Asp Ser Asp Ala 50 60

Ala Ser Gln Arg Met Glu Pro Arg Ala Pro Trp Ile Glu Gln Glu Gly 65 70 75 80

Pro Glu Tyr Trp Asp Glu Glu Thr Gly Lys Val Lys Ala His Ser Gln 85 90 95

Thr Asp Arg Glu Asn Leu Arg Ile Ala Leu Arg Tyr Tyr Asn Gln Ser 100 105 110

Glu Ala Gly Ser His Thr Leu Gln Met Met Phe Gly Cys Asp Val Gly 115 125

Ser Asp Gly Arg Phe Leu Arg Gly Tyr His Gln Tyr Ala Tyr Asp Gly 130 140 Lys Asp Tyr Ile Ala Leu Lys Glu Asp Leu Arg Ser Trp Thr Ala Ala 145 150 155 160 Asp Met Ala Ala Gln Ile Thr Lys Arg Lys Trp Glu Ala Ala His Val 165 170 175 Ala Glu Gln Gln Arg Ala Tyr Leu Glu Gly Thr Cys Val Asp Gly Leu 180 185 190 Arg Arg Tyr Leu Glu Asn Gly Lys Glu Thr Leu Gln Arg Thr Asp Ser 195 200 205 Pro Lys Ala His Val Thr His His Ser Arg Pro Glu Asp Lys Val Thr 210 215 220 Leu Arg Cys Trp Ala Leu Gly Phe Tyr Pro Ala Asp Ile Thr Leu Thr 225 230 240 Trp Gln Leu Asn Gly Glu Glu Leu Ile Gln Asp Met Glu Leu Val Glu 245 250 255 Thr Arg Pro Ala Gly Asp Gly Thr Phe Gln Lys Trp Ala Ser Val Val 260 265 270 Val Pro Leu Gly Lys Glu Gln Tyr Tyr Thr Cys His Val Tyr His Gln 275 280 285 Gly Leu Pro Glu Pro Leu Thr Leu Arg Trp Glu Pro Pro Pro Ser Thr 290 295 300 Val Ser Asn Met Ala Thr Val Ala Val Leu Val Val Leu Gly Ala Ala 305 310 315 320 Ile Val Thr Gly Ala Val Val Ala Phe Val Met Lys Met Arg Arg Arg 325 330 335 Asn Thr Gly Gly Lys Gly Gly Asp Tyr Ala Leu Ala Pro Gly Ser Gln 340 345 350 Thr Ser Asp Leu Ser Leu Pro Asp Cys Lys Val Met Val His Asp Pro 355 360 365 His Ser Leu Ala 370

<210> 36 <211> 36 <212> DNA

275596USXPCT.ST25 <213> Artificial Sequence <220> <223> Synthetic DNA <400> 36 cccaagctta ctctctggca ccaaactcca tgggat 36 <210> <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 37 cgggagatct acaggcgatc aggtaggcgc 30 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> Synthetic DNA <223> <400> 38 cgcaggctct cacactattc aggtgatctc 30 <210> 39 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 39 cggaattccg agtctctgat ctttagccct gggggctc 38 <210> 40 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 40 aggacttgga ctctgagagg cagggtctt 29 <210> 41 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 41 catagtcccc tccttttcca cctgtgagaa 30

. .

```
<210> 42
      23
<211>
<212>
      DNA
<213>
     Artificial Sequence
<220>
<223> Synthetic DNA
<400> 42
                                                                       23
cgaaccctcg tcctgctact ctc
<210> 43
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 43
agcatagtcc cctccttttc cac
                                                                       23
<210> 44
       39
<211>
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 44
                                                                       39
cccaagcttc gccgaggatg gccgtcatgg cgccccgaa
<210>
       45
<211> 41
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
                                                                       41
ccggaattct gtcttcacgc tagagaatga gggtcatgaa c
<210> 46
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 46
Pro Tyr Val Ser Arg Leu Leu Gly Ile
1
<210> 47
       9
<211>
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Peptide
<400> 47
Ile Met Pro Lys Ala Gly Leu Leu Ile
1
<210> 48
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 48
Thr Tyr Ala Cys Phe Val Ser Asn Leu 1
<210> 49
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 49
Gln Tyr Ser Trp Phe Val Asn Gly Thr Phe 1 5 10
<210> 50
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 50
Ala Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu
5 10 15
<210> 51
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 51
Ala Leu Leu Pro Ala Val Pro Ser Leu
1
<210> 52
<211> 9
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 52
Asn Gln Met Asn Leu Gly Ala Thr Leu \mathbf{5}
<210> 53
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 53
Arg Phe Phe Pro Asn Ala Pro Tyr Leu 5
<210> 54
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 54
Arg Trp Phe Pro Asn Ala Pro Tyr Leu \mathbf{1}
<210> 55
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 55
Arg Phe Pro Gly Val Ala Pro Thr Leu 1
<210> 56
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 56
Arg Met Pro Gly Val Ala Pro Thr Leu
1 5
```

```
<211> 9
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Synthetic Peptide
 <400> 57
Arg Trp Pro Gly Val Ala Pro Thr Leu 5
<210> 58
<211> 9
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Synthetic Peptide
 <400> 58
Arg Phe Pro Ser Cys Gln Lys Lys Phe
 <210> 59
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 59
Arg Met Pro Ser Cys Gln Lys Lys Phe 1
<210> 60
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 60
Ala Phe Leu Pro Ala Val Pro Ser Leu \mathbf{5}
<210> 61
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 61
Ala Met Leu Pro Ala Val Pro Ser Leu 5
```

```
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 62
Ala Trp Leu Pro Ala Val Pro Ser Leu
1
<210> 63
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 63
Asn Phe Met Asn Leu Gly Ala Thr Leu
1 5
<210> 64
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 64
Asn Met Met Asn Leu Gly Ala Thr Leu \mathbf{5}
<210> 65
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 65
Asn Trp Met Asn Leu Gly Ala Thr Leu 5
<210> 66
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 66
Arg Tyr Pro Ser Ser Gln Lys Lys Phe
```

<210> 62

1

```
<210> 67
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 67

Arg Tyr Pro Ser Ala Gln Lys Lys Phe
1 5
```

5

<210> 68 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Peptide

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Axx = Abu
<400> 68

Arg Tyr Pro Ser Xaa Gln Lys Lys Phe 1 5