Introduction

Common Sets

TABLE 1 COMMON SETS

Set	Meaning	Example	Description/Example
N	The natural numbers	{ 1 , 2 , 3 ,}	Can sometimes be assumed to include 0, especially by computer scientists
Z	The integers	{ – 2, –1,0,1,2}	
\mathbb{Z}^+	The positive integers	{0,1,2}	
Q	The rational numbers		
R	The real numbers		
C	Complex numbers		

Note that:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Defining Sets

TABLE 2 DEFINING SETS

A set is a collection of things. We call the things elements of the set. If a set consists of the difference faces of a die we can write.

$$S = \{x: 1 \le x \le 6, x \in Z\}$$

Operations

TABLE 3 SET DEFITINITONS

Symbol	Meaning	Example	Description/Example
€	Membership	1 ∈ {1,2}	1 is in the set {1,2}
∉	Not a member	3 ∉ {1,2}	3 is not in {1,2}
	Cardinality	$ \emptyset = 0,$ $ \{\emptyset\} = 1,$	The cardinality of the empty set is zero. The cardanlity of a set containing the empty set is one.
⊆	Subset	$\{1\} \subseteq \{1,2\},$ $\{1,2\} \subseteq \{1,2\},$	
С	Proper subset	{1} ⊂ {1,2}	
Λ	Intersection	$A \cap B$	
U	Union		
\	Difference/Relative Complement	$A \setminus B$	
A^C	Absolute complement	A^{c}	

[a, b]	Open Interval	$[a,b] = \{x \in \mathbb{R} a \le x \\ \le b\}$	
(a, b)	Closed Iterval	$(a,b) = \{x \in \mathbb{R} a < x < b\}$	
×	Cross Product / Cartesian Product	$A \times B$	

⊆ - SUBSET

If $x \in A \rightarrow x \in B$ then $A \subseteq B$ A

⊂ - Proper Subset

 $A \subseteq B \ and \ A \neq B \rightarrow A \subset B$

= **EQUALITY**

 $A = B \leftrightarrow A \subseteq B \text{ and } B \subseteq A$

∩ - Intersection

 $A \cap B \rightarrow x \in A \ and \ x \in B$

Page 3 of 9

U - UNION

$$A \cup B = x \in A \text{ or } x \in B$$

Note the following about the union of A and B

$$A \cup B = (A \cap B^c) \cup (A^c \cap B) \cup (A \cap B)$$
$$= A \backslash B \cup B \backslash A \cup (A \cap B)$$

Disjoint Sets

$$A \cap B = \emptyset$$

$A \setminus B$ -DIFFERENCE (RELATIVE COMPLEMENT)

$$A \backslash B = x \in A \text{ and } x \notin B = A \cap B^C$$

A^c – ABSOLUTE COMPLEMENT

$$A^{C} = \overline{A} = x \in U \text{ and } x \notin A = U \backslash A$$

The set of elements in the universe U which are not in the set A

ADB SYMMETRIC DIFFERENCE

The elements in A or B but not in both

$$A\Delta B = (A\backslash B) \cup (B\backslash A)$$

$$A\Delta B = \big(A \setminus B\big) \cup \big(B \setminus A\big)$$

CROSS PRODUCT / CARTESIAN PRODUCT

If A and B are sets we can form the product C as

$$C = \{(a, b) : a \in A, b \in B\}$$

And we write

$$C = A \times B$$

Rules

TABLE 4 RULES

Law	Name	Description/Example
$A \cap A = A$	Idempotency	
$A \cup A = A$	Idempotency	
$A \cap B = B \cap A$	Commutative	
$A \cup B = B \cup A$	Commutative	
$(A \cup B) \cup C = A \cup (B \cup C)$	Associative	
$(A \cap B) \cap C = A \cap (B \cap C)$	Associative	
$A\cap (A\cup B)=A$	Absorption	
$A \cup (A \cap B) = A$	Absorption	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive	
$\overline{(A \cup A)} = \overline{A} \cap \overline{B}$	De Morgan	
$\overline{(A \cap A)} = \overline{A} \cup \overline{B}$	De Morgan	
$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$	De Morgan	
$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$	De Morgan	

DISTRIBUTIVE LAW 1 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

DISTRIBUTIVE LAW 2 A \cup (B \cap C) = (A \cup B) \cap (A \cup C)

DEMORGAN LAW $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$