Отчёт по лабораторной работе 16

Задачи оптимизации. Модель двух стратегий обслуживания

Наталья Андреевна Сидорова

Содержание

Сг	писок литературы	21
5	Выводы	20
4	Выполнение лабораторной работы	9
3	Теоретическое введение	7
2	Задание	E
1	Цель работы	5

Список иллюстраций

4.1	1 стратегия, 2 пункта	9
4.2	Отчет	10
4.3	2 стратегия, 2 пункта	10
4.4	Отчет	11
4.5	Таблица	12
4.6	обе стратегии, 1 пункт	12
4.7	Отчет	13
4.8	1 стратегия, 3 пункта	14
4.9	Отчет	15
4.10	2 стратегия, 3 пункта	15
4.11	Отчет	16
4.12	1 стратегия, 4 пункта	17
4.13	Отчет	18
4.14	2 стратегия, 4 пункта	18
4.15	Отчет	19

Список таблиц

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры[1].

2 Задание

Реализовать с помощью gpss[2]:

- 1. модель с двумя очередями;
- 2. модель с одной очередью;
- 3. изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Теоретическое введение

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением □. Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [а , b] . Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1. автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2. автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска.

Исходные данные: □ = 1, 75 мин, а = 1 мин, b = 7 мин.

Целью моделирования является определение:

- 1. характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;
- 2. наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- 3. оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- 1. коэффициенты загрузки системы;
- 2. максимальные и средние длины очередей;
- 3. средние значения времени ожидания обслуживания.

4 Выполнение лабораторной работы

Первая стратегия обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими двумя пропускными пунктами (рис. 4.1).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl 2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl_1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl_1, Obsl_2 ; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punktl ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 4.1: 1 стратегия, 2 пункта

Отчет (рис. 4.2).

	START	TIME	EN	D TIME	BLOCKS	FACILITIES	STORAG	ES	
			100				0		
	NAI	ME			VALUE				
	OBSL 1				5.000				
	OBSL 2				11.000				
	OTHER1			100	000.000				
	OTHER2			100	001.000				
	PUNKT1			100	003.000				
	PUNKT2			100	02.000				
LABEL		TOC	BLOCK TVP	F	NTRY COI	JNT CURRENT	COUNT DE	TDV	
LADLI					5853			0	
		2	GENERATE TEST		5853		-	0	
		3	TEST		4162		-	0	
		4	TEST TRANSFER QUEUE SEIZE		2431			0	
OBSL 1		5	OUFUE		2928		-	0	
		6	SEIZE		2541			0	
		7	DEDADE		2541		0	0	
		8	ADVANCE		2541		1	0	
		9	RELEASE		2540		0	0	
			TERMINATE		2540		0	0	
OBSL_2			QUEUE		2925			0	
-			SEIZE		2537		0	0	
			DEPART		2537		0	0	
		14	ADVANCE		2537		1	0	
		15	ADVANCE RELEASE		2536		0	0	
		16	TERMINATE		2536		0	0	
		17	TERMINATE GENERATE		1		0	0	
		18	TERMINATE		1		0	0	
PACTITEV		ENEDIEC		NUE TI	WE 3113.T	L. OWNER PEN	D INTER	DETDU	DELAI
PUNKT2						5078			
PUNKT1		2537	0.996	٥.	055 1	5079	0 0	0	200
PONKII		2341	0.997	٥.	955 1	50/9	0 0	0	30
QUEUE		MAX C	ONT. ENTRY	ENTRY	(0) AVE.	CONT. AVE.TI	ME AVE	E. (-0)	RETRY
OTHER1		393	387 2928	12	187.0	098 644.1	07 64	16.758	0
OTHER2		393	388 2925	12	187.	114 644.8	23 64	17.479	0
FEC XN	PRI	BDT	ASSE	M CURF	RENT NEX	KT PARAMETE	R VAI	LUE	
5855	0	10081.	102 5855) 1				
5079	0	10083.	517 5079 808 5078	8	9				
5079 5078	0	10083.	808 5078	14	15				

Рис. 4.2: Отчет

Вторая стратегия обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. 4.3).

```
рипкt STORAGE 2
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди
ENTER punkt,1; занатие пункта
DEPART Other; выход из очереди
ADVANCE 4,3; обслуживание на пункте
LEAVE punkt,1; освобождение пункта
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта, указывающего на окончание рабочей недели
; (7 дней x 24 часа x 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 4.3: 2 стратегия, 2 пункта

Отчет (рис. 4.4).

	GPSS	Worl	d Sim	ulatio	on Rep	port -	Untitle	ed Model	1.2.1		
		субб	ora,	мая 17	7, 20:	25 18:5	7:40				
	START I	IME		El	ND TI	ME BLO	CKS F	ACILITIES	STOR	RAGES	
								0			
	NAME					VALU	ΙE				
	OTHER				10	VALU	00				
	PUNKT					10000.0	00				
LABEL		TOC	BIO	CK TVI	or .	FMTDV	COUNT	CUDDENT	COUNT	DFTDV	
LADLI	EL LOC			FRATE	1	57	19	0		0	
		2	OUF	UF		57	19	66	8	0	
		3	ENT	ER		50	51		0	0	
		4	DEP	ENTER DEPART ADVANCE LEAVE TERMINATE GENERATE		50	51		0	0	
		5	ADV			50	51		2	0	
		6	LEA			50	49		0	0	
		7	TER			50	49		0	0	
		8	GEN			1		0 0	0	0	
				MINATE			1				
OUFUE		MAX	CONT.	ENTR	ENT	RY (0) A	VE.CON	T. AVE.TI	ME Z	AVE. (-0	RETRY
OTHER		668	668	5719	9	4 3	44.466	607.1	38	607.56	2 0
STORAGE		CAP.	REM.	MIN.	MAX.	ENTRI	ES AVL	. AVE.C.	UTIL.	RETRY	DELAY
PUNKT								2.000			
FEC XN	PRI	BD	Т	ASSI	EM CI	URRENT	NEXT	PARAMETE	R V	/ALUE	
5721	PRI 0	10080	.466	572		0	1		2006		
5051	0	10081	.269	505	l.	5	6				
	0										
5722	0	20160	.000	5722	2	0	8				

Рис. 4.4: Отчет

Сравнительная таблица. Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше. (рис. 4.5).

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина очереди	393	393	786	668
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Рис. 4.5: Таблица

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- 1. коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- 2. среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- 3. среднее время ожидания обслуживания не должно превышать 4 мин. Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. 4.6).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди

SEIZE punkt; занятие пункта

DEPART Other; выход из очереди

ADVANCE 4,3; обслуживание на пункте

RELEASE punkt; освобождение пункта

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта, указывающего на окончание рабочей недели

; (7 дней x 24 часа x 60 мил = 10080 мил)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 4.6: обе стратегии, 1 пункт

Отчет. В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше (рис. 4.7).

	GP	SS World	Simulation	Report -	Untitl	ed Model l	.3.1				
		суббо	га, мая 17,	2025 19:0	02:30						
	START	TIME	END	TIME BLO	OCKS F	ACILITIES	STORAGES				
		0.000	1008	0.000	9	1	0				
	NΔ	MF		VAL	IF.						
	NAI OTHER		10000.000								
	PUNKT			10000.0	200						
	FUNKI			10001.	000						
LABEL		TOC	BIOCK TYPE	FNTD	COUNT	CURRENT CO	OHNT DETDY				
DADLE											
		2	OUEUE	5	744	0 3233	0				
		3	SEIZE	21	111		0				
			DEPART			0					
		_				1					
			RELEASE		510		0				
			TERMINATE		510	0	0				
			GENERATE		1	0					
			TERMINATE		1		0				
			ILIMITALE		-	·	·				
							INTER RETRY				
PUNKT		2511	1.000	4.014	1	2512 0	0 0	3233			
QUEUE		MAX C	ONT. ENTRY	ENTRY(0) A	AVE.CON	T. AVE.TIM	E AVE.(-0)	RETRY			
OTHER		3234 3	233 5744	1 1	617.676	2838.81	9 2839.313	0			
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE				
			255 2512								
			384 5746								
			000 5747								

Рис. 4.7: Отчет

Построим модель для первой стратегии с 3 пропускными пунктами (рис. 4.8).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TRANSFER 0.33, others, Obsl_3
others TRANSFER 0.5, Obsl 1, Obsl 2
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение \kappa очереди 1
SEIZE punktl ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punktl ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl_2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 3
Obsl 3 QUEUE Other3 ; присоединение к очереди 3
SEIZE punkt3 ; занятие пункта 3
DEPART Other3 ; выход из очереди 3
ADVANCE 4,3 ; обслуживание на пункте 3
RELEASE punkt3 ; освобождение пункта 3
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 4.8: 1 стратегия, 3 пункта

Отчет. В этом случае среднее время ожидания больше 4. (рис. 4.9).

LABEL	LOC				CURRE		UNT R		
	0.700	GENERATE		547		0		0	
		TRANSFER				0		0	
OTHERS	3			682		0		0	
OBS1_1	4		6.7	853		1		0	
		SEIZE		852		0		0	
		DEPART		852		0		0	
		ADVANCE		852		1		0	
		RELEASE	1	851		0		0	
	9	TERMINATE	1	851		0		0	
OBS1_2	10	QUEUE	1	829		0		0	
	11	SEIZE	1	829		0		0	
	12	DEPART	1	829		0		0	
	13	ADVANCE	1	829		0		0	
	14	RELEASE	1	829		0		0	
	15	TERMINATE	1	829		0		0	
OBS1_3	16	QUEUE	1	865		3		0	
	17	SEIZE	1	862		0		0	
	18	DEPART	1	862		0		0	
	19	ADVANCE	1	862		1		0	
	20	RELEASE	1	861		0		0	
	21	TERMINATE	1	861		0		0	
	22	GENERATE		1		0		0	
	23	TERMINATE		1		0		0	
FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELA
PUNKT2		0.717			0	0	0	0	
PUNKT3		0.740			5534	100	9500	250	
PUNKT1		0.727					0	0	
QUEUE	MAY C	ONT. ENTRY	FNTDV (0)	AUF CON	T AVE	TIME	277	. (=0)	DETD
OTHER2	11	0 1829		1.112	I. AVE	6.126	AVI	8.482	O O
OTHER3	13	3 1865		1.112		6.126 6.132		8.458	(2000)
UIREK3	13	2 1002	213	1.134		0.134		0.450	U

Рис. 4.9: Отчет

Построим модель для второй стратегии с 3 пропускными пунктами (рис. 4.10).

```
punkt STORAGE 3

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди

ENTER punkt; занятие пункта

DEPART Other; выход из очереди

ADVANCE 4,3; обслуживание на пункте

LEAVE punkt; освобождение пункта

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 4.10: 2 стратегия, 3 пункта

Отчет. В этом случае все критерии выполняются, поэтому модель оптимальна. (рис. 4.11).

		суббо	та,	мая 1	7, 20	25 19:	11:40				
	START T	IME		El	ND TI	ME BI	OCKS	FACILITIE	s sto	RAGES	
	0.	000		100	080.0	00	9	0		1	
	NAME	1				VAI	UE				
	OTHER					10001.	000				
	PUNKT					10000.	000				
LABEL		LOC	BLO	CK TYI	PE.	ENTE	RY COUN	T CURRENT	COUNT	RETRY	
		1	GEN	ERATE		5	683		0	0	
		2	QUE	UE			683		0	0	
		3	ENT	ER		5	683		0	0	
		4	DEP	ART		5	683		0	0	
				ANCE			683		3	0	
				VE			680		0	0	
		7	TER	MINATE	3	5	680		0	0	
				ERATE			1		0	0	
		9	TER	MINATI	Ξ				0	0	
UEUE		MAX C	ONT.	ENTR	Y ENI	RY(0)	AVE.CO	NT. AVE.T	IME	AVE.(-0)	RETE
OTHER		12	0	5683	3 2	521	1.06	3 1.	885	3.388	0
TORAGE		CAP.	REM.	MIN.	MAX.	ENTE	RIES AV	L. AVE.C	. UTIL	. RETRY	DELA
PUNKT		3	0	0	3	5 6	83 1	2.243	0.74	8 0	0
	PRI							PARAMET	ER	VALUE	
5680	0	10080.	434	5680)	5	6				
5683	0	10080.	631	568	3	5	6				
5683 5685	0	10082.	068	5688	5	0	1				
5684	0	10082.	592	5684	4	5	6				
5686		20160.									

Рис. 4.11: Отчет

Построим модель для первой стратегии с 4 пропускными пунктами (рис. 4.12).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TRANSFER 0.5, ab, cd
ab TRANSFER 0.5, obsl 1, obsl 2
cd TRANSFER 0.5, obs1_3, obs1_4
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punktl ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 3
Obsl 3 QUEUE Other3 ; присоединение к очереди 3
SEIZE punkt3 ; занятие пункта 3
DEPART Other3 ; выход из очереди 3
ADVANCE 4,3 ; обслуживание на пункте 3
RELEASE punkt3 ; освобождение пункта 3
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 4
Obsl 4 QUEUE Other4 ; присоединение к очереди 4
SEIZE punkt4 ; занятие пункта 4
DEPART Other4 ; выход из очереди 4
ADVANCE 4,3 ; обслуживание на пункте 4
RELEASE punkt4; освобождение пункта 4
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 4.12: 1 стратегия, 4 пункта

Отчет. В этом случае все критерии выполнены, поэтому 4 пункта являются оптимальным количеством для первой стратегии. (рис. 4.13).

FACILITY	ENTRIE	ES UT	IL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
PUNKT4	1413	3 0	.557	3.97	1 1	5623	0	0	0	0
PUNKT3	1378	3 0	.545	3.98	9 1	0	0	0	0	(
PUNKT2	1366	5 0	.541	3.99	3 1	0	0	0	0	(
PUNKT1	1465	5 0	.584	4.01	8 1	5621	0	0	0	(
QUEUE	MAX	CONT.	ENTRY	ENTRY(0)	AVE.CO	NT. AV	E.TIME	E AVI	E.(-0)	RETRY
OTHER4	7	0	1413	628	0.41	5	2.958	3	5.325	0
OTHER3	8	0	1378	655	0.34	5	2.52	7	4.816	0
OTHER2	6	0	1366	625	0.36	3	2.67	5	4.934	0
OTHER1	6	0	1465	590	0.49	2	3.385	-	5.667	0

Рис. 4.13: Отчет

Построим модель для второй стратегии с 4 пропускными пунктами (рис. 4.14).

```
рunkt STORAGE 4

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди

ENTER punkt; занятие пункта

DEPART Other; выход из очереди

ADVANCE 4,3; обслуживание на пункте

LEAVE punkt; освобождение пункта

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 4.14: 2 стратегия, 4 пункта

Отчет. Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

(рис. 4.15).

	START	TIME		FN	END TIME BLOCKS FACILITIES STORAGES						
								0 1			
	~		100			5 8	٠				
	NAM	ſĒ									
	OTHER				10	001.0	00				
	PUNKT					000.0					
LABEL		LOC	BLO	CK TYP	E	ENTRY	COUNT	CURRENT	COUNT	RETRY	
		1		ERATE			19			0	
		2	QUE	UE		57	19		0	0	
		3	ENT	ER		57	19		0	0	
		4	DEP	ART		57	19		0	0	
		5	ADV.	ANCE		57	19		4	0	
		6	LEA	VE		57	15		0	0	
		7	TER	MINATE		5715			0	0	
		8	GEN	ERATE	ATE				0		
		9	TER	MINATE			1		0	0	
OUEUE		MAX (CONT.	ENTRY	ENTRY	(0) A	VE.CON	I. AVE.T	IME .	AVE.(-0)	RETE
OTHER								0.3			
STORAGE								. AVE.C			
PUNKT		4	0	0	4	571	9 1	2.253	0.56	3 0	0
FEC XN	PRI	BD:	r	ASSE	M CUR	RENT	NEXT	PARAMETE	ER	VALUE	
5718	0	10082	.346	5718		5	6				
5717	0	10082	412	5717		5	6				
5719	0	10083	393	5719		5	6				
5721	0	10084	.393	5721		0	1				
5720	0	10085	.162	5720		5	6				
5722	0	20160	.000	5722		0	8				

Рис. 4.15: Отчет

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

5 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- 1. модель с двумя очередями;
- 2. модель с одной очередью;
- 3. изменила модели, чтобы определить оптимальное число пропускных пунктов.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Лабораторная работа 16. Задачи оптимизации. Модель двух стратегий обслуживания [Электронный ресурс].
- 2. Королькова А.В., Кулябов Д.С. Имитационное моделирование в GPSS [Электронный ресурс].