DHBW Mannheim

Fakultät Wirtschaft Studiengang, -richtung: BWL, Industrie

Statistik

2. Semester

Dozent

- Thilo Klein
- Duale Ausbildung (Bayer AG, Leverkusen)
- Diplom in Wirtschaftspädagogik und Mathematik, FSU Jena
- Master in Operations Research, University of Cambridge
- 2014 Promotion, University of Cambridge
- 2014-2017 Analyst, OECD Statistikdirektorat
- Seit 2017 Ökonom, ZEW Mannheim
- Seit 2018 Lehrbeauftragter für Mathematik, DHBW Mannheim
- Email: thilo@klein.uk

Modul Wirtschaftsmathematik und Statistik

- Mathematik
 - 30h Präsenzzeit und 45h Selbststudium
 - Lehrbuch: Opitz und Klein (2011). Mathematik Lehrbuch für Ökonomen
- Statistik
 - 30h Präsenzzeit und 45h Selbststudium.
 - Lehrbuch: Quatember (2014). Statistik ohne Angst vor Formeln

Modul Wirtschaftsmathematik und Statistik

Andreas Quatember

Statistik ohne Angst vor Formeln Das Studienbuch für Wirtschafts- und Sozialwissenschaftler

4., aktualisierte Auflage
ISBN 978-3-86894-218-7
203 Seiten | 2-farbig
Mai 2014
€ 24,95 [D] | € 25,70 [A] | SFR 33,60

www.pearson-studium.de www.pearson.ch

Foliensatz: © Andreas Quatember

Klausur Statistik

Hinweise

- Inhalt
 - Vorlesungsstoff (ca. 33%) und Übungsaufgaben (ca. 67%)
 - Vorlesungsstoff: Theorie verstehen, erklären
 - Übungsaufgaben: Theorie anwenden
 - Transferelemente: Anwendung auf verwandte Fragestellungen

Was ist Statistik?

- Alle Methoden der Analyse von Daten mit dem Ziel der Informationsbündelung
- Statistik ist Alltag!

- Analysen des Finanzmarktes, z.B. Kursschwankungen
- Big Data, Kundendatenanalysen im Web (Amazon, iTunes, Google)
- Analysen im Sport, z.B. Matchstatistiken im Fußball

Was ist Statistik?

Was ist Statistik?

- allerdings schwieriges Image des Faches
 - "und jetzt noch etwas für die Statistiker unter unseren Zusehern"
 - "Mit Statistik lässt sich alles beweisen"
 - "Ich glaube nur den Statistiken die ich selbst gefälscht habe" (Winston Churchill)
 - "There are three kinds of lies: lies, damned lies and statistics" (Benjamin Disraeli)

 Verwechselung der Qualität der statistischen Methoden mit der Qualität ihrer Anwendung

Was ist Statistik?

Lügen mit Statistik?

Die meisten "Durchfaller" sind Frauen → Frauen schneiden bei der Klausur schlechter ab

Es gibt mehr weibliche als männliche Studierende und die Durchfallquote ist jeweils gleich → Frauen sind genauso gut wie Männer

Gliederung

- 1. Beschreibende Statistik
 - Es liegen vollständige Daten über eine Grundgesamtheit vor
- 2. Wahrscheinlichkeitstheorie
 - Kombiniert 1 mit 3

- Schließende Statistik
 - Es liegen nur Daten aus einem ausgewählten Teil der Grundgesamtheit vor

Gliederung

- 1. Beschreibende Statistik
- 1.1 Grundbegriffe
- 1.2 Tabellarische und graphische Darstellung von Häufigkeitsverteilungen
- 1.3. Kennzahlen statistischer Verteilungen

Was ist was?

- Erhebungseinheiten: Objekte, über die Daten erhoben werden
- Grundgesamtheit: Gesamtheit aller Erhebungseinheiten
- Merkmal: Eine interessierende Eigenschaft (die analysiert werden soll)
- Merkmalsausprägungen: Die einzelnen möglichen Werte eines Merkmals
- Wertebereich: Alle möglichen Merkmalsausprägungen

Was ist was? - Beispiel 1

Erhebung der Punkteverteilung bei der Statistikklausur

Grundgesamtheit:	alle Prüflinge
Merkmal:	Punkte
Merkmalsausprägungen:	0, 1, 2,

Erhebung der Zufriedenheit von Kunden

Grundgesamtheit:	alle Kunden
Merkmal:	Zufriedenheit mit der Beratung
Merkmalsausprägungen:	sehr zufrieden, eher zufrieden, teils- teils, eher unzufrieden, sehr unzufrieden

Was ist was? - Beispiel 1

Erhebung des besten Kinofilms

Grundgesamtheit:	alle teilnahmewilligen Leser und -innen

Merkmal: bester Film

Merkmalsausprägungen: Film 1, Film 2, ...

Unterscheidung von Merkmalstypen

- Nominal ordinal metrisch
 - Nominal: Unterscheidung der Merkmalsausprägungen dem Namen (Bsp: Geschlecht)
 - Ordinal: Merkmalsausprägungen besitzen eine natürliche Reihenfolge (Bsp: Schulnoten)
 - Metrisch: Merkmalsausprägungen lassen sich reihen und haben die gleiche Einheit (Bsp: Körpergröße)
- Diskret stetig
 - Diskret: Wertebereich umfasst nur bestimmte Merkmalsausprägungen (Bsp: Schulnoten)
 - Stetig: Wertebereich umfasst alle reellen Werte eines Intervalls (Bsp: Körpergröße)

Unterscheidung von Merkmalstypen

Beispiel 2: Merkmalstypen

Merkmal	Merkmalsausprägungen	n / o / m	d/s
Familienstand	ledig (=1), verheiratet (=2), geschieden (=3), verwitwet (=4)	nominal	diskret
100-m-Zeiten	11,21 sec., 11,2435 sec.,		
Preis eines Sportartikels	29,90 €, 34,90 €,		
Platzierungen in einem 100m-Lauf	1., 2., 3.,		
Weitsprungleistung (in ganzen cm)	516 cm, 492 cm,		

Kodierung von Merkmalsausprägungen

Geschlecht: O weiblich (=1) O männlich (=2)

Alter (in vollendeten Lebensjahren): Jahre

Wie schätzen Sie die didaktisch-methodische Qualität der LVA ein?

O 1 (=sehr gut) **O** 2

O 3

O 5 (=sehr schlecht)

Waren die angegebenen Lernunterlagen hilfreich?

O 1 O 2 O 3 O 4 O 5 (1=sehr hilfreich, ..., 5=überhaupt nicht hilfreich)

Dateneingabe für die elektronische Verarbeitung (z.B. in Excel):

Tabellarische und graph. Darstellung von Häufigkeitsverteilungen

Gliederung

- 1.2. Tabellarische und graphische Darstellung von Häufigkeitsverteilungen
- 1.2.1 Häufigkeitsverteilung einzelner Merkmale
- 1.2.2 Häufigkeitsverteilung zweier Merkmale

Beispiel 3: Tabellarische Darstellung einer Häufigkeitsverteilung

Häufigkeiten (h): Erster Überblick

Punktezahlen (i)	Häufigkeit h
0	1
1	3
2	10
3	16
4	32
5	44
6	20
7	16

N = 142

Tabellarische Darstellung von Häufigkeiten

Häufigkeiten (h): Erster Überblick Relative Häufigkeiten oder Anteile (p) einer Merkmalsausprägung: $p_i = h_i/N$

Prozentzahlen: $p_i \cdot 100$

Punktezahlen (i)	Häufigkeit h	Relative Häufigkeit p	Prozent
0	1	0,007	0,7
1	3	0,021	2,1
2	10	0,070	7,0
3	(16)	→ 0,113 ─	→ 11,3
4	32	0,225	22,5
5	44	0,310	31,0
6	20	0,141	14,1
7	16	0,113	11,3

N=142

Tabellarische Darstellung von Häufigkeiten

Relative Summenhäufigkeit (oder empirische Verteilungsfunktion) = Summe der relativen Häufigkeiten einer Merkmalsausprägung und aller kleineren Merkmalsausprägungen

Punktezahlen (i)	Häufigkeit <u>h</u>	Relative Häufigkeit p	Prozent	Relative Summenhäufigkeit
0	/1	0,007	0,7	0,007
1	3	0,021	2,1	0,028
2	10	0,070 —	7,0	0,098
3	16	0,113	11,3	0,211
4	32	0,225	22,5	0,436
5	44	0,310	31,0	0,746
6	20	0,141	14,1	0,887
7	16	0,113	11,3	1,000

Nur sinnvoll bei metrischen oder ordinalen Merkmalen!

Tabellarische Darstellung von Häufigkeiten

Beispiel 4: Zusammenfassung von Merkmalsausprägungen zu Intervallen: Besonders bei stetigen Merkmalen oder Merkmalen mit vielen Ausprägungen

Altersklassen (i)	Häufigkeit h	Relative Häufigkeit p	Prozent	Relative Summenhäufigkeit
0 - 14	10.805.291	0,135	13,5	0,135
15 - 29	13.722.052	0,171	17,1	0,306
30 - 44	15.845.993	0,198	19,8	0,503
45 - 59	18.625.423	0,232	23,2	0,735
60 - 74	13.737.405	0,171	17,1	0,907

N=80.219.659

Anteil der Bevölkerung unter 30 Jahre = 30,6% Anteil der Bevölkerung zwischen 15 und 59 Jahren als Differenz der relativen Summenhäufigkeiten = 0,735 - 0,135 = 0,600

Tabellarische Darstellung von Häufigkeiten

Pro und Contra der Zusammenfassung in Intervallen

Vorteil: Bessere Übersicht

Nachteil: Verlust an Informationen

Graphische Darstellung von Häufigkeiten

Aufgabe: Die wesentlichsten Informationen "auf einen Blick"

Säulendiagramm: Balken-, Stabdiagramm

Kreisdiagramm: Kuchen-, Tortendiagramm

Graphische Darstellung von Häufigkeiten

Beispiel 5: Graphische Darstellung einer Häufigkeitsverteilung

Note (i)	Häufigkeit h	Relative Häufigkeit p	Prozent
1	16	0,113	11,3
2	20	0,141	14,1
3	44	0,310	31,0
4	32	0,225	22,5
5	30	0,211	21,1

Säulendiagramm

Graphische Darstellung von Häufigkeiten

Beispiel 5: Graphische Darstellung einer Häufigkeitsverteilung

Säulendiagramm

Säulendiagramm mit verschobenem Nullpunkt

→ Falsche Wahrnehmung der Proportionen des Säulendiagramms

Graphische Darstellung von Häufigkeiten

Beispiel 5: Graphische Darstellung einer Häufigkeitsverteilung

Säulendiagramm

Säulendiagramm mit umgeordneten Merkmalsausprägungen

→ Falsche Wahrnehmung der Verteilung des Säulendiagramms

Graphische Darstellung von Häufigkeiten

Beispiel 5: Graphische Darstellung einer Häufigkeitsverteilung

Säulendiagramm

3D Säulendiagramm

→ Verminderte Ablesbarkeit der Säulenhöhen

Graphische Darstellung von Häufigkeiten

Beispiel 5: Graphische Darstellung einer Häufigkeitsverteilung

Säulendiagramm mit Bezeichnung der Merkmalsausprägungen auf der x-Achse

Säulendiagramm mit Legende

> Erhöhte Komplexität durch Wechsel zwischen Legende und Diagramm

Graphische Darstellung von Häufigkeiten

Beispiel 5: Graphische Darstellung einer Häufigkeitsverteilung

Säulendiagramme über zwei Zeitperioden

→ Erschwert die Vergleichbarkeit

Graphische Darstellung von Häufigkeiten

Beispiel 5: Graphische Darstellung einer Häufigkeitsverteilung

Säulendiagramme über zwei Zeitperioden

→ Kombination in einem Diagramm erleichtert die Vergleichbarkeit

Graphische Darstellung von Häufigkeiten

Beispiel 5: Graphische Darstellung einer Häufigkeitsverteilung

→ Auch relative Summenhäufigkeiten sind im Kreisdiagramm ablesbar

Graphische Darstellung von Häufigkeiten

Regeln für die graphische Darstellung

- Säulendiagramme
 - Beschriftungen der x- und y-Achse sind unbedingt anzuführen
 - Nullpunkt der Prozentzahlen auf der y-Achse sollte zum Schnittpunkt der x-Achse liegen
- Säulen- und Kreisdiagramme
 - Titel sind unbedingt anzuführen
 - Ordnung innerhalb der Merkmalsausprägungen beibehalten
 - 3D-Darstellungen vermeiden
 - Direkte Beschriftungen sind Legenden vorzuziehen

→ Die einfachste Grafik ist oft die Beste und spart Zeit!

Gemeinsame Häufigkeitsverteilung 2er Merkmale

Tabellarische Darstellung

- Häufig werden mehrere Merkmale auf einmal erhoben (z.B. Noten der Statistikklausur und Geschlecht der Studierenden)
- → Ermöglicht Vergleiche über Gruppen

Beispiel 6: Tabellarische Darstellung der gemeinsamen Häufigkeitsverteilung zweier Merkmale

		Studienrichtung					
		BWL	Soz	VWL	Sowi	Stat	Summe
Geschlecht	weiblich	110	120	20	30	20	300
	männlich	90	60	30	10	10	200
	Summe	200	180	50	40	30	500

Gemeinsame Häufigkeitsverteilung 2er Merkmale

Tabellarische Darstellung

Relative Häufigkeiten (p) = Absolute Häufigkeit / Anzahl Erhebungseinheiten $p_{ij} = h_{ij}/N$, z.B.: $p_{11} = h_{11}/N \rightarrow 0.22 = 110/500$

			Studienrichtung (j)					
		BWL	Soz	VWL	Sowi	Stat	Randv. $N_{i.}$	
Caaablaabt (i)	weiblich	(110)	120	20	30	20	300	
Geschlecht (i)	männlich	90	60	30	10	10	200	
_	Randv. N _{.j}	200	180	50	40	30	500	
		Studienrichtung (j)						
		BWL	Soz	-₩L	Sowi	Stat	Randv. p_i	
Geschlecht (i)	weiblich	$(0,22)^{\circ}$	0,24	0,04	0,06	0,04	0,60	
	männlich	0,18	0,12	0,06	0,02	0,02	0,40	
	Randv. $p_{.}$	0,40	0,36	0,10	0,08	0,06) /1	

Randverteilung: Verteilung der einzelnen Merkmale (Geschlecht, Studienrichtung) am Rand der Tabellen

Gemeinsame Häufigkeitsverteilung 2er Merkmale

Tabellarische Darstellung

Vergleich: Häufigkeitsverteilung der Studienrichtung <u>unter Frauen</u> und <u>unter</u> Männern

Bedingte Häufigkeiten = Absolute Häufigkeit / Anzahl Erhebungseinheiten in einer Gruppe: $p_{j|i=k} = h_{kj}/N_{k}$. z.B. $p_{1|i=1} = h_{11}/N_{1}$. = 110/300 = 0,37

		Studienrichtung (j)					
_		BWL	Soz	VWL	Sowi	Stat	Summe
Goschlocht (i)	weiblich	(110)	120	20	30	20	(300)
Geschlecht (i)	männlich	90	60	30	10	10	200
_	Summe	200	180	50	40	30	500
		Studienrichtung (j)					
_		BWL	80z	VWL	Sowi	Stat	Summe
Geschlecht (i)	weiblich	0,37	0,40	0,07	0,10	0,07	1
	männlich	0,45	0,30	0,15	0,05	0,05	1

Gemeinsame Häufigkeitsverteilung 2er Merkmale

Tabellarische Darstellung

Vergleich: Häufigkeitsverteilung der Studienrichtung <u>unter Frauen</u> und <u>unter</u> Männern

Beispiel 7: Tabellarische Darstellung einer bedingten Häufigkeitsverteilung

		Studienrichtung (j)					
		BWL	Soz	VWL	Sowi	Stat	Summe
Cooobloobt (i)	weiblich	0,37	0,40	0,07	0,10	0,07	1
Geschlecht (i)	männlich	0,45	0,30	0,15	0,05	0,05	1

Korrekte Aussage durch Berücksichtigung der Grundgesamtheit auf die sich Prozentzahlen beziehen:

Unter den Frauen studieren 37% BWL, 40% Soziologie, ... Unter den Männern studieren 45% BWL, 30% Soziologie, ...

Tipp: Verwandeln Sie Tabellen nicht in Zahlengräber.

z.B. Verzicht auf die dritte Nachkommastelle

Kennzahlen statistischer Verteilungen

Allgemeines

- Tabellarische und graphische Darstellung geben einen guten Überblick über die Daten → allerdings ist das nur der Anfang aller Statistik
- Weitere Beschreibung anhand von einzelnen Kennzahlen
- Dabei Bündelung der Informationen auf einen einzigen Repräsentanten der Verteilung

Kennzahlen statistischer Verteilungen

Gliederung

- 1.3 Kennzahlen statistischer Verteilungen
- 1.3.1 Kennzahlen der Lage (Mittelwert, Median, Quartile, Modus)
- 1.3.2 Kennzahlen der Streuung (Varianz, Standardabweichung, Variationskoeffizient)
- 1.3.3 Kennzahlen der Konzentration (Lorenzkurve, Ginikoeffizient)
- 1.3.4 Kennzahlen des statistischen Zusammenhangs (Chi Quadrat χ², Cramers V, Kovarianz, Korrelationskoeffizient, Spearmannscher Rangkorrelationskoeffizient, Regressionsrechnung)

Arithmetisches Mittel (1. Variante)

- Idee: Stellvertreter für alle Daten ist jener Wert, der sich bei gleichmäßiger Aufteilung der Summe aller auftretenden Daten (=Merkmalssumme) auf die Erhebungseinheiten ergeben würde
- Beispiel Einkommen von fünf Personen in €:
 - Merkmalsausprägungen: 1.000, 3.000, 4.000, 1.000, 1.000
 - Summe der Merkmalsausprägungen: 1.000 + 3.000 + 4.000 + 1.000 + 1.000 = 10.000
 - Gleichmäßige Aufteilung: 10.000 : 5 = 2.000

Arithmetisches Mittel (1. Variante)

- Formale Umsetzung der Idee des Mittelwerts:
 - Zeichen für den Mittelwert: \bar{x} (sprich "x quer")
 - N = Anzahl der Erhebungseinheiten
 - x_1 = Merkmalsausprägung der 1. Erhebungseinheit
 - x₂= Merkmalsausprägung der 2. Erhebungseinheit ...
 - x_i = Merkmalsausprägung der i-ten Erhebungseinheit

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Arithmetisches Mittel (2. Variante)

- Idee: Multiplikation der Merkmalsausprägungen und Häufigkeiten
- Beispiel Einkommen von fünf Personen in €:
 - Merkmalsausprägungen: 1.000, 3.000, 4.000, 1.000, 1.000
 - Merkmalssumme: 1.000 3+3.000 1+4.000

Merkmalsausprägungen · Häufigkeiten

Ergebnis: 10.000 : 5 = 2.000

Arithmetisches Mittel (2. Variante)

- Formale Umsetzung der Idee des Mittelwerts 2. Variante:
 - k = Anzahl der verschiedenen Merkmalsausprägungen
 - h₁= Häufigkeit der 1. Merkmalsausprägung
 - h₂= Häufigkeit der 2. Merkmalsausprägung...
 - h_i= Häufigkeit der i-ten Merkmalsausprägung

$$\bar{x} = \frac{\sum_{i=1}^{k} x_i \cdot h_i}{N}$$

Auch mit der relativen Häufigkeit p

$$\bar{x} = \frac{\sum_{i=1}^{k} x_i \cdot h_i}{N} = \sum_{i=1}^{k} x_i \cdot \frac{h_i}{N} = \sum_{i=1}^{k} x_i \cdot p_i$$

Arithmetisches Mittel (2. Variante)

Beispiel 8: Berechnung des Mittelwerts der Statistikklausur

Punktezahlen (i)	Häufigkeit h	Relative Häufigkeit p
0	1	0,007
1	3	0,021
2	10	0,070
3	16	0,113
4	32	0,225
5	44	0,310
6	20	0,141
7	16	0,113

$$\bar{x} = \frac{\sum_{i=1}^{k} x_i \cdot h_i}{N} = \frac{0 \cdot 1 + 1 \cdot 3 + \dots + 7 \cdot 16}{142} = \frac{651}{142} = 4,58$$

$$\bar{x} = \sum_{i=1}^{k} x_i \cdot p_i = 0 \cdot 0,007 + 1 \cdot 0,021 + \dots + 7 \cdot 0,113 = 4,58$$

Geometrisches Mittel

- Achtung: Mittelwert eignet sich nur für metrische Merkmale (und auch da nicht immer)
- Beispiel 9: Der Mittelwert von Wachstumsraten
 - Vor drei Jahren: Umsatz von 20 Mio. €. In den drei Jahren seither jährliche Umsatzzuwächse von 10, 90, 50%. Um wie viel Prozent ist der Umsatz pro Jahr durchschnittlich gestiegen?
 - Mittelwert: (10+90+50): 3 = 50%?

Jahr	Umsatzverlauf mit proz. Anstig	eg Umsatzverlauf mit Mittelwer
1	$20 \cdot (1+0,10) = 20 \cdot 1,10$	= 22 20 · 1,5 = 30
2	$22 \cdot 1,90 = 41,8$	30 · 1,5 = 45
3	41,8 (1,50) = 62,7	45 · 1,5 = 67,5

Wachstumsfaktor

Geometrisches Mittel

- Wdhl: $20 \cdot 1.5 \cdot 1.5 \cdot 1.5 = 20 \cdot 1.5^3 \neq 62.7$
- Welcher konstante Wachstumsfaktor würde also 62,7 ergeben?

20 ·
$$g^3 = 62.7 \rightarrow g = \sqrt[3]{\frac{62.7}{20}} = \sqrt[3]{3.135} = 1.464$$

Auch aus Wachstumsfaktoren:

$$g = \sqrt[3]{1,1 \cdot 1,9 \cdot 1,5} = \sqrt[3]{3,135} = 1,464$$

- → Die durchschnittliche jährliche Wachstumsrate liegt bei 46,4% (1,464-1)
- Allgemeine Formel $g = \sqrt[n]{x_1 \cdot x_2 \cdot, \dots, x_n}$

Geometrisches Mittel

- Häufiges Anwendungsgebiet des geometrische Mittelwerts: prozentuelles Wachstum von Indizes (z.B. Preisindex für die Lebenshaltung, Aktienindizes, ...)
- Bsp: Preisliche Entwicklung eines Warenkorbs:
 Jahr 0 = 100, Jahr 1 = 105; Jahr 2 = 108,15
- →Inflationsrate: Quotient des aktuellen Werts des Preisindexes für die Lebenshaltung und des Werts vor genau einem Jahr
- \rightarrow Jahr 1: 105 / 100 =1,05 \rightarrow Inflationsrate 5%
- → Jahr 2: 108,15 / 105 = 1,03 → Inflationsrate 3%
- → Durchschnittliche Inflationsrate = $\sqrt[2]{1,05 \cdot 1,03} = 1,03995$ → Knapp unter 4%

Median (Zentralwert)

- Idee des Median (\tilde{x} , sprich "x Welle"): Als Stellvertreter für alle Daten gilt jener Wert, der bei Sortierung der Daten aller N Erhebungseinheiten nach der Größe in der Mitte steht.
- Bsp: Körpergröße von 5 Erhebungseinheiten (ungerade Anzahl):
 148, 158, 148, 160, 155
- \rightarrow Sortierung: 148, 148, 155, 158, 160 $\rightarrow \tilde{x} = 155$
- Bsp: Körpergröße von 6 Erhebungseinheiten (*gerade* Anzahl):
 148, 158, 148, 160, 155, 157
- → Sortierung: 148, 148, 155, 157, 158, 160 $\rightarrow \tilde{x} = \frac{155+157}{2} = 156$
- →Interpretation: (mindestens) die Hälfte der Erhebungseinheiten hat Werte die kleiner gleich dem Median sind, andere Hälfte größer gleich

Median (Zentralwert)

Allgemeine Formel

$$\tilde{x} = \begin{cases} x_{\frac{n+1}{2}} & \text{für n ungerade} \\ \frac{1}{2} \cdot \left(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}\right) & \text{für n gerade} \end{cases}$$

Median (Zentralwert)

Beispiel 10: Median eines diskreten Merkmals

Punktezahlen	Häufigkeit	Relative Häufigkeit	Prozent	Relative Summenhäufigkeit
0	1	0,007	0,7	0,007
1	3	0,021	2,1	0,028
2	10	0,070	7,0	0,098
3	16	0,113	11,3	0,211
4	32	0,225	22,5	0,436
5	44	0,310	31,0	0,746
6	20	0,141	14,1	0,887
7	16	0,113	11,3	1,000

142 Erhebungseinheiten \rightarrow 71. und 72. stehen in der Mitte Wann überschreitet die relative Summenhäufigkeit *erstmals* 0,5? $\rightarrow \tilde{x} = 5$

Voraussetzung für Medianberechnung ist die Sortierbarkeit der Merkmalsausprägungen → nur bei metrischen und ordinalen Merkmalen

Median (Zentralwert)

- Vergleich arithmetisches Mittel und Median
 - Einkommensverteilung: 1.000, 1.000, 1.000, 1.000, 11.000
 - Mittelwert: $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{15.000}{5} = 3.000$
 - Median: $\tilde{x} = x_{\frac{n+1}{2}} = x_{\frac{5+1}{2}} = x_3 = 1.000$

- → Mittelwert ist anfällig gegenüber Ausreißern (auch Zahlenfehlern)
- → Median ist robust gegenüber Ausreißern

Quartile

- Median ist zwar informativ, aber viele Informationen gehen trotzdem verloren: z.B. welche Punktzahl erreichen mindestens 25% der Studenten
- Idee: Median teilte die Verteilung in zwei Hälften → Unterteilung in Viertel auch möglich (Quartile = Viertelwerte der Verteilung)
 - 1. Quartil (unteres Quartil, Q_{0,25}) 25% der Erhebungseinheiten sind kleiner gleich dem 1. Quartilswert
 - 2. Quartil (mittleres Quartil, $Q_{0,50}$) 50% der Erhebungseinheiten sind kleiner gleich dem 2. Quartilswert (= Median)
 - 3. Quartil (oberes Quartil, $Q_{0,75}$) 75% der Erhebungseinheiten sind kleiner gleich dem 3. Quartilswert

Quartile

Allgemeine Formel

$$Q_p = \begin{cases} x_{\lceil n \cdot p \rceil} & \text{für n-p nicht ganzzahlig} \\ \frac{1}{2} \cdot \left(x_{n \cdot p} + x_{n \cdot p+1} \right) & \text{für n-p ganzzahlig} \end{cases}$$

Quartile

Bsp: Körpergröße von 7 Erhebungseinheiten

Sortierung: 148, 148, 155, 158, 160, 162, 178

1. Quartil: $p=0.25 \rightarrow n \cdot p=7 \cdot 0.25=1.75$ (nicht ganzzahlig)

$$\rightarrow Q_{0.25} = x_{[n \cdot p]} = x_{[1.75]} = x_2 = 148$$

 Interpretation: (mindestens) 25% der Erhebungseinheiten haben Werte die kleiner gleich dem 1. Quartilswert sind (sind höchstens 148 cm groß)

Quartile

Bsp: Körpergröße von 8 Erhebungseinheiten:

Sortierung: 148, 148, 155, 158, 160, 162, 165, 178

3. Quartil: $p=0.75 \rightarrow n \cdot p=8 \cdot 0.75=6$ (ganzzahlig) \rightarrow

$$Q_{0,75} = \frac{1}{2} \cdot \left(x_{8 \cdot 0,75} + x_{8 \cdot 0,75+1} \right) = \frac{1}{2} \cdot \left(x_6 + x_7 \right) = \frac{162 + 165}{2} = 163,5$$

 Interpretation: (mindestens) 75% der Erhebungseinheiten haben Werte die kleiner gleich dem 3. Quartilswert sind (sind höchstens 163,5 cm groß)

Quartile

Beispiel 10: Quartile eines diskreten Merkmals

Punktezahlen	Häufigkeit	Relative Häufigkeit	Prozent	Relative Summenhäufigkeit			
0	1	0,007	0,7	0,007			
1	3	0,021	2,1	0,028			
2	10	0,070	7,0	0,098			
3	16	0,113	11,3	0,211			
4	32	0,225	22,5	0,436 1. Q	uartil		
5	44	0,310	31,0	0,746 2. Q	uartil		
6	20	0,141	14,1	0,887 3. C	(uartil		
7	16	0,113	11,3	1,000			

Wann überschreitet die relative Summenhäufigkeit das erste Mal 0,25; 0,5; 0,75

- 1. Quartil $Q_{0,25}$ =4 \rightarrow (mindestens) 25% der Studenten erreichen höchstens 4 Punkte
- 2. Quartil $Q_{0.5}$ =5 \rightarrow (mindestens) 50% der Studenten erreichen höchstens 5 Punkte
- 3. Quartil $Q_{0.75}$ =6 \rightarrow (mindestens) 75% der Studenten erreichen höchstens 6 Punkte

Boxplots

Zusammenfassung der Lage-Kennzahlen in Box-Plots

Punktezahlen

Boxplots

Vergleich von Häufigkeitsverteilungen mit Boxplots

Modus

- Kennzahl der Lage die auch bei nominalen Merkmalen verwendet werden kann
- Idee des Modus: Stellvertreter ist die Merkmalsausprägung mit der größten (relativen) Häufigkeit

Punktezahlen	Häufigkeit	Relative Häufigkeit	Prozent	Relative Summenhäufigkeit
0	1	0,007	0,7	0,007
1	3	0,021	2,1	0,028
2	10	0,070	7,0	0,098
3	16	0,113	11,3	0,211
4	32	0,225	22,5	0,436
5	44	0,310	31,0	0,746
6	20	0,141	14,1	0,887
7	16	0,113	11,3	1,000

 $X \mod = 5$

Modus

Varianz

- Generelle Überlegung: Lagekennzahl beschreibt die Verteilung mit einer Merkmalsausprägung (stellvertretend für alle) → beschreibt den Charakter der Verteilung nur unzureichend
- Bsp:
 - Einkommen 1: 1.000, 3.000, 4.000, 1.000, 1000
 - Einkommen 2: 1.800, 2.200, 2.400, 1.800, 1.800
 - In beiden Gruppen $\bar{x}=2000$, aber die Einkommen in der zweiten Verteilung "liegen näher beieinander" als in der ersten Verteilung
- Idee: Kennzahl für die Streuung als Abstand der Merkmalsausprägungen voneinander oder vom einer fixen Größe

Varianz

- Idee Varianz: Quadrierte Abweichungen der Merkmalsausprägungen aller Erhebungseinheiten vom Mittelwert bestimmen und davon den Mittelwert berechnen
- Bsp. Einkommen 1: 1.000, 3.000, 4.000, 1.000, $1000 \rightarrow \bar{x} = 2000$
- →Quadrierte Abweichungen: (1.000-2.000)², (3.000-2.000)², (4.000-2.000)², (1.000-2.000)², (1.000-2.000)²
- → Mittelwert berechnen: 8 Mio : 5 = 1,6 Mio. =: Varianz

Varianz

- Formale Umsetzung der Idee der Varianz:
 - Zeichen für die Varianz: s² (sprich "s Quadrat")

$$s^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}$$

■ Bsp. Einkommen 2: 1.800, 2.200, 2.400, 1.800, $1800 \rightarrow \bar{x} = 2000$

$$\Rightarrow s^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}$$

$$= \frac{(1.800 - 2.000)^2 + (2.200 - 2.000)^2 + (2.400 - 2.000)^2 + (1.800 - 2.000)^2 + (1.800 - 2.000)^2}{5}$$

$$= 64.000$$

Varianz

Zusammenfassung der Formeln:

Rohdaten

$$s^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}$$

Häufigkeiten

$$s^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \bar{x})^{2} \cdot h_{i}}{N}$$

Relative Häufigkeiten

$$s^2 = \sum_{i=1}^k (x_i - \bar{x})^2 \cdot p_i$$

Varianz

Beispiel 11: Berechnung der Varianz mit Häufigkeiten

Punktezahlen	$(x_i - \bar{x})^2$	Häufigkeit (hi)
0	$(0-4,58)^2 = 20,98$	1
1	$(1-4,58)^2 = 12,82$	3
2	$(2-4,58)^2 = 6,66$	10
3	$(3-4,58)^2 = 2,50$	16
4	$(4-4,58)^2 = 0,34$	32
5	$(5-4,58)^2 = 0,18$	44
6	$(6-4,58)^2 = 2,02$	20
7	$(7-4,58)^2 = 5,86$	16

$$s^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \bar{x})^{2} \cdot h_{i}}{N} = \frac{20,98 \cdot 1 + 12,82 \cdot 3 + \dots + 5,86 \cdot 16}{142} = 2,24$$

Standardabweichung

- Probleme der Varianz: Quadrierte Abweichungen sind nicht anschaulich im Vergleich zum Mittelwert ($\bar{x} = 2000 \text{ und } s^2 = 1,6 \text{ Mio.}$)
- Idee Standardabweichung: Wurzel aus Varianz bringt Streuungskennzahl auf die selbe Maßeinheit wie die Merkmalsausprägungen und den Mittelwert
- Standardabweichung: $s = \sqrt{s^2}$
- Beispiel 11: $s = \sqrt{2,24} = 1,5$
- Beispiel Einkommen 1 mit $\bar{x} = 2000$: $s = \sqrt{1.600.000} = 1.264,91$ €

Variationskoeffizient

- Probleme der Varianz und Standardabweichung:
 - sind in bestimmten Einheiten definiert (cm² und cm oder € und €)
 → erschwert den Vergleich zwischen Verteilungen mit unterschiedlichen Maßeinheiten
 - Ebenso schwieriger Vergleich von Verteilungen mit unterschiedlichen Mittelwerten
- Bsp. Weitsprungweiten 1: 9m, 10m, 11m $\rightarrow \bar{x} = 10$, s² = 0,67 und s = 0,82
- Bsp. Weitsprungweiten 2: 900cm, 1.000cm, 1.100cm $\rightarrow \bar{x} = 1.000$, $s^2 = 6.666,67$ und s = 81,65
- Idee Variationskoeffizient ("sprich v"): Streuung der Merkmale in Relation zum Mittelwert

Variationskoeffizient

- Formale Umsetzung der Idee des Variationskoeffizienten:
 - Zeichen für Variationskoeffizient: v (sprich "v")

$$v = \frac{s}{\bar{x}}$$

Bsp. Sprungweiten 1

$$\rightarrow v = \frac{0.82}{10} = 0.082$$

Bsp. Sprungweiten 2

$$\rightarrow v = \frac{81,65}{1000} = 0,082$$

Lorenzkurve

- Generelle Überlegung: Mittelwert und Varianz liefern Aussagen über die gesamte Verteilung, aber wenige Information wie gleichmäßig die Merkmalssumme auf die einzelnen Erhebungseinheiten konzentriert ist.
- Bsp:
 - Einkommen 1: 1.000, 3.000, 4.000, 1.000, 1.000 mit $\bar{x} = 2.000$ und $s^2 = 1,6$ Mio
 - Jede Person erhält jetzt 10.000 € zusätzlich
 - Einkommen 2: 11.000, 13.000, 14.000, 11.000, 11.000 mit $\bar{x} = 12.000$ und $s^2 = 1,6$ Mio
- Frage: Wie gleichmäßig konzentriert sich die Merkmalssumme auf die einzelnen Erhebungseinheiten?

Lorenzkurve

 Häufige Anwendung im Bereich der BWL (Marktkonzentration), VWL (Vermögen, Einkommen)

Idee: Gegenüberstellung des Anteils an der Grundgesamtheit und des Anteils an der Merkmalssumme

Lorenzkurve

 Beispiel 12: Messung der Konzentration einer Merkmalssumme auf die Erhebungseinheiten

Person	Anteile an Grund- gesamtheit	Kumulierter Anteil an Grund- gesamtheit	Einkom- men	Anteile am Gesamt- einkommen	Kumulierter Anteile am Gesamt- einkommen
Α	0,2	0,2	1.000	0,1	0,1
D	0,2 —	0,4	1.000	0,1	0,2
E	0,2	0,6	1.000	0,1	0,3
В	0,2	0,8	3.000	0,3	0,6
С	0,2	1	4.000	0,4	1
			10.000		

Aussagen: Die ärmsten 40% der Bevölkerung verdienen 20% des Einkommens

Aussagen: Die reichsten 20% der Bevölkerung verdienen 40% des Einkommens

→ Kumulierter Anteil GG (1-0,8)=0,2 vs. Kumulierter Anteil E. (1-0,6)=0,4

Lorenzkurve

 Beispiel 12: Messung der Konzentration einer Merkmalssumme auf die Erhebungseinheiten

Person	Anteile an Grund- gesamtheit	Kumulierter Anteil an Grund- gesamtheit	Einkom- men	Anteile am Gesamt- einkommen	Kumulierter Anteile am Gesamt- einkommen
Α	0,2		1.000	0,1	
D	0,2		1.000	0,1	
Е	0,2		1.000	0,1	
В	0,2		3.000	0,3	
С	0,2		4.000	0,4	
			10.000		

Aussagen: Die ärmsten 40% der Bevölkerung verdienen 20% des Einkommens

Aussagen: Die reichsten 20% der Bevölkerung verdienen 40% des Einkommens

→ Kumulierter Anteil GG (1-0,8)=0,2 vs. Kumulierter Anteil E. (1-0,6)=0,4

Lorenzkurve

Graphische Veranschaulichung durch Lorenzkurve

Lorenzkurve

Nullkonzentration vs. Maximalkonzentration

Nullkonzentration: Gleichverteilung der Einkommen über die Erhebungseinheiten

Maximalkonzentration: Eine Erhebungseinheit verdient gesamtes Einkommen, die anderen nichts

Fläche zwischen Diagonale und Lorenzkurve als Maß für die Konzentration der Einkommen

Lorenzkurve

Nullkonzentration vs. Maximalkonzentration

Nullkonzentration: Fläche zwischen Diagonale und Lorenzkurve = 0

Maximalkonzentration: Fläche zwischen Diagonale und Lorenzkurve ist:

$$\frac{1}{2} - \frac{1 \cdot \frac{1}{N}}{2} = \frac{1}{2} - \frac{1}{2 \cdot N} = \frac{1}{2} \cdot \left(1 - \frac{1}{N}\right)$$

In diesem Beispiel = 0,4

Ginikoeffizient

- Bisherige Maßzahl abhängig von N (Anzahl der Erhebungseinheiten)
- Idee normierter Ginikoeffizient: Fläche zwischen Lorenzkurve und der Diagonale dividiert durch maximale Fläche zwischen Lorenzkurve und Diagonale → 0 bei Nullkonzentration, 1 bei Maximalkonzentration

Fläche Lorenzkurve als Summe der Abschnitte auf der x-Achse

Fläche A+B $(0.8-1) = (1-0.8)\cdot(1-0.6)/2 + (1-0.8)\cdot0.6 = 0.16$

Fläche C+D (0,6-0,8) = (0,8-0,6)+

 $(0,6-0,3)/2(0,8-0,6)\cdot 0,3 = 0,09$

Fläche E $(0-0.6) = (0.6-0) \cdot (0.3-0)/2 = 0.09$

Summe Flächen A-E = 0.34

Fläche Diagonale = $1 \cdot 1 / 2 = 0.5$

Differenz = 0.5-0.34 = 0.16

Fläche Maximalkonzentration = 0,4

Normierter Ginikoeffizient = 0.16: 0.4 = 0.4

Ginikoeffizient

- Zusammenfassung:
 - Lorenzkurve und Ginikoeffizient sind eng verbunden
 - Komplizierte Formel (daher weggelassen)
 - Übungsaufgabe an einfachen Beispielen per Taschenrechner lösbar, bei umfangreicheren Datensätzen Nutzung von Softwareprogrammen empfohlen (auch Excel kann das)

Color	Gini coefficient	0,35 - 0,39	0,55 - 0,59
	< 0,25	0,40 - 0,44	> 0,60
	0,25 - 0,29	0,45 - 0,49	NA
	0,30 - 0,34	0,50 - 0,54	di.

Was bedeutet Zusammenhang?

 Statistischer Zusammenhang: Die Verteilung eines Merkmals hängt mit der Verteilung eines anderen Merkmals zusammen

Beispiel: Bildung und Einkommen

Jahre Bildung	Mittelwert
	monatlicher
	Bruttolohn in €
0-10	1.722
11-15	2.522
Größer 15	4.100

DHBW Thilo Klein: Statistik 79

Was bedeutet Zusammenhang?

 Kausaler Statistischer Zusammenhang: Die Verteilung eines Merkmals bestimmt ursächlich die Verteilung eines anderen Merkmals (→ Ursache und Wirkung)

Statistischer vs. kausaler Zusammenhang

Absolute Häufigkeiten

Kennzahlen des statistischen Zusammenhanges

Chi-Quadrat

Beispiel 13: Messung eines Zusammenhangs von nominalen Merkmalen

Studienrichtung (i)

/ tooolato i laaligitoitoii		Stadiorniontaria (j)					
		BWL	Soz	VWL	Sowi	Stat	Summe
Geschlecht (i)	weiblich	(110)	120	20	30	20	300
Geschiedh (i)	männlich	90	60	30	10	10	200
	Summe	200	180	50	40	30	500
Relative Häu	figkeiten	0,40	0,36	0,10	0,08	0,06	1
Bedingte Häufigke	eitsverteilung		Studie	nrichtu	ng (j)		
		BWL 4	Soz	VWL	Sowi	Stat	Summe
Geschlecht (i)	weiblich	0,37	0,40	0,07	0,10	0,07	1
Geschiedh (i)	männlich	0,45	0,30	0,15	0,05	0,05	1

Wenn *kein* statistischer Zusammenhang zwischen Geschlecht und Studienrichtung vorliegt → gleiche bedingte Häufigkeitsverteilung unter Frauen und Männern

Chi-Quadrat

Idee: Wenn kein statistischer Zusammenhang → erwartete relative Häufigkeiten

Beobachtete absolute								
	j	BWL	Soz	VWL	Sowi	Stat	Randv. N _{i.}	
Cocobloobt (i)	weiblich	(110)	120	20	30	20	300	
Geschlecht (i)	männlich	90	60	30	10	10	200	
	Randv. N _{.j}	200	180	50	40	30	500	
Beobachtete relativ	e Häufigkeiten p_{ij}^b		Studienrichtung (j)					
		BWL	Soz	VWL	Sowi	Stat	Randv. p_i	
Cocoblocht (i)	weiblich	0,22	0,24	0,04	0,06	0,04	0,60	
Geschlecht (i)	männlich	0,18	0,12	0,06	0,02	0,02	0,40	
	Randv. $p_{.j}$	0,40	0,36	0,10	0,08	0,06	1	

22% weibliche BWL Studenten. Wenn das Geschlecht nicht die Studienwahl beeinflussen würde, würden sowohl 40% der Männer als auch Frauen BWL studieren.

Welchen Anteil an weiblichen BWL Studenten würde man erwarten? → 60% weibliche

Studenten · 40% BWL Studium = 24%

$$p_{ij}^e = p_{i.}^b \cdot p_{.j}^b$$

Erwartete relative		Studienrichtung (j)					
		BWL	Soz	VWL	Sowi	Stat	Randv. p_{i}
Coschlocht (i)	weiblich	0,24	0,216	0,06	0,048	0,036	0,60
Geschlecht (i)	männlich	0,16	0,144	0,04	0,032	0,024	0,40
	Randv. $p_{.i}$	0,40	0,36	0,10	0,08	0,06	1

Chi-Quadrat

 Idee Chi-Quadrat: Verwendung der Differenzen der beobachteten und der bei Fehlen eines Zusammenhangs erwarteten (relativen)
 Häufigkeiten

Beobachtetet relative		Stud	ienrichtung	ı (j)			
		BWL	Soz	VWL	Sowi	Stat	Randv. p_i
Geschlecht (i)	weiblich	0,22	0,24	0,04	0,06	0,04	0,60
Geschiecht (i)	männlich	0,18	0,12	0,06	0,02	0,02	0,40
	Randv. p_{i}	0,40	0,36	0,10	0,08	0,06	1

Erwartete relative		Studienrichtung (j)					
		BWL	Soz	VWL	Sowi	Stat	Summe
Geschlecht (i)	weiblich	0,24	0,216	0,06	0,048	0,036	0,60
Geschiedh (i)	männlich	0,16	0,144	0,04	0,032	0,024	0,40
	Summe	0,40	0,36	0,10	0,08	0,06	1

Je größer die Differenz zwischen beobachteter und erwarteter Häufigkeit desto stärker ist der Zusammenhang zwischen Geschlecht und Studienwahl -> Zusammenfassung der Differenzen in einer Kennzahl!

Chi-Quadrat

Formale Umsetzung Chi-Quadrat:

$$\chi^2 = N \cdot \sum \frac{\left(p_{ij}^b - p_{ij}^e\right)^2}{p_{ij}^e}$$

Wenn die Merkmale nicht statistisch zusammenhängen χ^2 =0 Beispiel 13:

$$\chi^2 = 500 \cdot \left[\frac{(0,22 - 0,24)^2}{0,24} + \frac{(0,24 - 0,216)^2}{0,216} + \cdots \right] = 18,06$$

→ Normierung notwendig

Cramers V

 Idee und formelles Umsetzung Cramers V: Chi-Quadrat normieren so dass Kennzahl zwischen 0 (kein Zusammenhang) und 1 (vollständiger Zusammenhang) liegt

$$V = \sqrt{\frac{\chi^2}{N \cdot (\min(k, l) - 1)}}$$

k, I = die Anzahl der Merkmalsausprägungen der beiden Merkmale; min(k,l) = die kleinere der beiden Anzahlen Beispiel 13:

$$V = \sqrt{\frac{18,06}{500 \cdot (2-1)}} = 0,19$$

Cramers V

Interpretation Cramers V (Faustregeln)

Kovarianz

- Generelle Überlegung: Metrische Merkmale erlauben genauere Aussagen zum Zusammenhang
- Beispiel 14: Erhebung von zwei metrischen Merkmalen

Person	Α	В	С	D	Е
Alter	21	46	55	35	28
Einkommen	1.850	2.500	2.560	2.230	1.800

Alter und Einkommen

Streudiagramm

Kovarianz

- Idee: Richtung des Zusammenhangs sollte sich im Vorzeichen der Kennzahl widerspiegeln (positiv mit >0, kein Zusammenhang =0, negativ <0)
- Beispiel: Drei Streudiagramme für beliebige Merkmale x und y

Kovarianz

- Idee: Stärke des Zusammenhangs sollte sich in der Größe der Kennzahl widerspiegeln (starker Zusammenhang mit großen Werten, kleiner Zusammenhang mit kleineren Werten)
- Beispiel: Drei Streudiagramme für beliebige Merkmale x und y

kein Zusammenh.

mittlerer Zusammenh.

starker Zusammenh.

Kovarianz

• Idee: Berechnung des Produkts der Abweichungen vom Mittelwert für jede Erhebungseinheit $(x_i - \bar{x}) \cdot (y_i - \bar{y})$

Punkte B, C, A und E mit positiven gerichteten Rechtecksflächen

Punkte D mit negativer gerichteter Rechtecksfläche

Kovarianz

• Formale Umsetzung der Kovarianz (s_{xy}) : Mittelwert der gerichteten Rechtsecksflächen $(x_i - \bar{x}) \cdot (y_i - \bar{y})$

$$s_{xy} = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{N}$$

Im Beispiel 14

$$s_{xy} = \frac{(21-37)\cdot(1.850-2188)+\dots+(28-37)\cdot(1.800-2188)}{5} = 3.664$$

Kovarianz

$$s_{xy} = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{N}$$

Idee: Richtung der Kovarianz sollte sich im Vorzeichen widerspiegeln Check: *Vorzeichen* der Kovarianz abhängig vom Ausmaß positiver und negativer gerichteter Rechtecksflächen

$$s_{xy}=0$$

Kovarianz

$$s_{xy} = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{N}$$

Idee: Stärke des Zusammenhangs sollte sich in der Größe der

Kennzahl widerspiegeln

Check: Größe der Kovarianz abhängig von der Größe der

Rechtecksflächen

kein Zusammenh. $s_{xy} = 0$

mittlerer Zusammenh. $s_{xy} > 0$

starker Zusammenh. $s_{xy} \gg 0$

Korrelationskoeffizient

- Problem der Kovarianz (s_{xy}): nicht beschränkter Wertebereich → erschwert den Vergleich von verschiedenen Kovarianzen → Normierung notwendig
- Idee Korrelationskoeffizient: Division der Kovarianz durch das Produkt der Standardabweichungen der Merkmale → Messung des linearen statistischen Zusammenhanges

$$r = \frac{s_{xy}}{s_x \cdot s_y}$$

Im Beispiel 14

$$r = \frac{3.664}{12.21 \cdot 316.95} = 0,947$$

Korrelationskoeffizient

- r schwankt zwischen -1 und +1
- Interpretation r (Faustregeln)

Spearmanscher Rangkorrelationskoeffizient

 Problem des Korrelationskoeffizienten: nur bei metrischen Merkmalen, aber nicht bei ordinalen Merkmalen (z.B. Noten, Rangstufen)

Beispiel 16: Erhebung von zwei ordinalen Merkmalen

Studierende	Α	В	С	D	Е	F	
Mathe-Note x	1	1	5	5	4	2	r=0,96
Statistik-Note y	2	2	5	4	4	3	,

Andere Kodierung der Noten: 1, 10, 100, 1.000, 10.000

Studierende	Α	В	С	D	Е	F	0.00
Mathe-Note x	1	1	10000	10000	1000	10	r=0,68
Statistik-Note y	10	10	10000	1000	1000	100	

Idee Rangkorrelationskoeffizient: Korrelation der Ränge der Erhebungseinheiten (anstatt der Merkmalsausprägungen)

Spearmanscher Rangkorrelationskoeffizient

Studierende	Α	В	С	D	Е	F
Mathe-Note x	1	1	5	5	4	2
Statistik-Note y	2	2	5	4	4	3
Studierende	Α	В	С	D	Е	F
Mathe-Rang u	1,5	1,5	5,5	5,5	4	3
Statistik-Rang v	1,5	1,5	6	4,5	4,5	3

Korrelationskoeffizient der Rangzahlen ist unabhängig von der gewählten Kodierung → Interpretation wie normaler Korrelationskoeffizient

$$r = \frac{s_{uv}}{s_u \cdot s_v}$$

$$r = \frac{s_{uv}}{s_u \cdot s_v}$$
 Im Beispiel: $r = \frac{2,625}{1,658 \cdot 1,658} = \frac{2,625}{2,75} = 0,955$

Regressionsrechnung

- Überlegung: Kann man mit der Kenntnis über die Richtung und Größe des statistischen Zusammenhangs weitergehende Aussagen (z.B. kausale Aussagen und Prognosen) treffen
- Bestimmung einer Funktion die den Zusammenhang zweier Merkmale in einer Funktion (zumeist lineare Gleichung) erfasst
- →Regressionsgerade als Gerade die "am Nächsten zu den Punkten" liegt

Regressionsrechnung

 Formale Umsetzung: Methode der kleinsten Quadrate (Extremwertaufgabe) ergibt die Gleichung der Regressionsgerade

$$y = b_1 \cdot x + b_2$$

Mit dem Regressionskoeffizienten (Steigung): $b_1 = \frac{s_{xy}}{s_x^2}$

und der Konstante (Achsenabschnitt): $b_2 = \bar{y} - b_1 \cdot \bar{x}$

Beispiel 15: Berechnung der Gleichung der Regressionsgeraden:

$$b_1 = \frac{3.664}{149.2} = 24,6$$
 und $b_2 = 2.188 - 24,6 \cdot 37 = 1.279,4$

Regressionsgerade: $y = 24.6 \cdot x + 1.279.4$

Achtung weitere Bezeichnungen: y = Regresssand oder abhängiges Merkmal oder Variable; x = Regression oder unabhängiges Merkmal oder Variable

Regressionsrechnung

Für jede Erhebungseinheit gibt es

- 2 Werte: z.B. für Person A
- 1) Beobachtetes Einkommen:

Person A = 1.850

2) Geschätztes Einkommen Person A = 24,6·21+1.279,4 = 1.796

Differenz zwischen beobachtetem Einkommen und geschätztem Einkommen ist Residuum → ein Teil des beobachteten Einkommens kann nicht durch die Regressionsfunktion erklärt werden → man macht einen Fehler bei der Schätzung!!!

z.B. Person A: 1.850 - 1.796 = 54

→ Summe der quadrierten Residuen ist ein Maß für die Güte der Regression

Regressionsrechnung

 Verwendung der Regressionsgeraden zur Schätzung fehlender Werte bzw. zur Prognose

Regressionsgerade: $y = 24.6 \cdot x + 1.279.4$

Bsp: Alter x = 40 → Einkommen $y = 24.6 \cdot 40 + 1.279.4 = 2.263.4$ €

Vertrauen in die Schätzung

Bestimmtheitsmaß B: $B = r^2$

Im Beispiel 15: $B = 0.947^2 = 0.897$

B gibt den Anteil der durch die Regression erklärten Varianz der abhängigen Variable an ("Erklärungsanteil")