实验十七 RLC 电路的谐振现象 实验报告

钱思天 1600011388 No.8 2017 年 12 月 30 日

1 实验数据与处理

根据实验的初始设定,以及各仪器的误差计算公式如:

电容箱允差: $\pm 0.65\%(0.01\mu F$ 档)

标准电感允差: ±0.1%

 $e_R = 0.1\Omega$

得关于已知物理量,其值如下表:

表 1: 已知物理量表

己知物理量	电容 C	电感 L	电阻 R
值	$0.05\mu F$	0.1 H	100Ω
允差	$3.25\times 10^{-4}\mu F$	$1 \times 10^{-4} H$	0.1Ω

1.1 谐振频率的测量

1.1.1 实验数据列表

经利萨茹图形完成谐振频率的确定,并通过数字万用表完成各待测电 压值的测量,并根据各仪器允差的确定方法:

谐振频率允差: ±0.001kHz(小一个数量级改变无明显效应)

万用表交流电压档允差: ± (0.2% + 十个字)

得关于测量物理量有下表:

表 2: 本实验测量物理量表

10 = 1 > 1 > 1 = 10 = 10 = 10 = 10 = 10						
测量物理量	谐振频率 f_0	电路总电压 U	电阻电压 U_R	电容电压 U_C		
值	2.2600kHz	0.7001V'	0.5256V	7.313V		
允差	0.001kHz	$2.4\times10^{-3}V$	2.1×10^{-3}	$1.5 \times 10^{-2} V$		

1.1.2 计算 Q 值

根据实测数据,由公式可计算 Q_1 得:

$$Q_1 = \frac{1}{\omega_0 R'C} = \frac{U_R}{2\pi f_0 RCU} = 10.573$$

下计算不确定度,考虑:

$$\frac{\sigma_{Q_1}}{Q_1} = \sqrt{(\frac{\sigma_R}{R})^2 + (\frac{\sigma_C}{C})^2 + (\frac{\sigma_U}{U})^2 + (\frac{\sigma_{U_R}}{U_R})^2 + (\frac{\sigma_{f_0}}{f_0})^2}$$

又:

$$\sigma_R = \frac{e_R}{\sqrt{3}} \Rightarrow \frac{\sigma_R}{R} = 6 \times 10^{-4}$$

$$\sigma_C = \frac{e_C}{\sqrt{3}} = \frac{0.65\%C}{sqrt3} \Rightarrow \frac{\sigma_C}{C} = 4 \times 10^{-3}$$

$$\sigma_U = \frac{e_U}{sqrt3} \Rightarrow \frac{\sigma_U}{U} = 2 \times 10^{-3}$$

$$\sigma_{U_R} = \frac{e_{U_R}}{\sqrt{3}} \Rightarrow \frac{\sigma_{U_R}}{U_R} = 2 \times 10^{-3}$$

$$\sigma_{f_0} = \frac{e_{f_0}}{\sqrt{3}} \Rightarrow \frac{\sigma_{f_0}}{f_0} = 3 \times 10^{-4}$$

得:

$$\sigma_{Q_1} = Q_1 \cdot \sqrt{(\frac{\sigma_R}{R})^2 + (\frac{\sigma_C}{C})^2 + (\frac{\sigma_U}{U})^2 + (\frac{\sigma_{U_R}}{U_R})^2 + (\frac{\sigma_{f_0}}{f_0})^2} = 0.05$$

$$Q_1 \pm \sigma_{Q_1} = 10.57 \pm 0.05$$

同时可根据实测数据及公式计算 Q_2 得:

$$Q_2 = \frac{U_C}{U} = 10.445$$

下计算不确定度,考虑:

$$\frac{\sigma_{Q_2}}{Q_2} = \sqrt{(\frac{\sigma_U}{U})^2 + (\frac{\sigma_{U_C}}{U_C})^2}$$

又:

$$\sigma_{UC} = \frac{e_{UC}}{\sqrt{3}} \Rightarrow \frac{\sigma_{UC}}{U_C} = 1 \times 10^{-3}$$
$$\sigma_U = \frac{e_U}{sqrt3} \Rightarrow \frac{\sigma_U}{U} = 2 \times 10^{-3}$$

得:

$$\begin{split} \sigma_{Q_2} &= Q_2 \cdot \sqrt{(\frac{\sigma_U}{U})^2 + (\frac{\sigma_{U_C}}{U_C})^2} = 0.02 \\ Q_2 &\pm \sigma_{Q_2} = 10.45 \pm 0.02 \end{split}$$

1.2 相频特性曲线的测定

调节信号发生器产生的电压频率,借助示波器观察,并根据公式 $\Delta\phi=\Delta t\times f\times 360^\circ$,得如下数据表:

表 3: 相频关系实测数据表

f/kHz	1.754	1.966	2.089	2.159	2.201	2.232	2.260
$\phi/^{\circ}$	-79.6	-71.8	-58.3	-43.9	-29.3	-16.1	0.0
f/kHz	2.287	2.320	2.365	2.447	2.598	2.918	-
φ/°	13.2	29.6	45.5	59.9	71.1	79.3	-

根据实测数据,得图像如下:

图 1: 相频特性曲线图

1.3 幅频特性曲线的测定

调节信号发生器产生的电压频率,借助数字万用表监控,保持 U=1V,并借助公式 $i=\frac{U_R}{R}$ 得如下数据表:

表 4: 幅频特性实测数据表

f/kHz	1.754	1.860	1.966	2.028	2.089	2.124	2.159	2.180	2.201
U_R/mV	135.34	174.95	239.20	298.60	385.4	454.2	538.9	597.9	656.4
i/mA	1.3534	1.7495	2.392	2.986	3.854	4.542	5.389	5.979	6.564
f/kHz	2.217	2.232	2.246	2.260	2.274	2.287	2.304	2.320	-
U_R/mV	697.5	728.1	745.3	750.7	743.0	725.4	691.6	651.5	-
i/mA	6.975	7.281	7.453	7.507	7.43	7.254	6.916	6.515	-
f/kHz	2.343	2.365	2.406	2.447	2.523	2.598	2.758	2.918	-
U_R/mV	590.1	534.8	446.1	377.9	291.91	237.37	170.23	133.47	-
i/mA	5.901	5.348	4.461	3.779	2.9191	2.3737	1.7023	1.3347	-

可得幅频特性曲线如下:

图 2: 相频特性曲线图

2 课后思考题 6

并借由幅频特性曲线,可读出 $\Delta f = 0.213kHz$,故:

$$Q_3 = \frac{f_0}{\Delta f} = 10.61$$

2 课后思考题

2.1 题(1)

根据电路,有:

$$\begin{cases} |Z| = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2} \\ \phi = \arctan \frac{\omega L - \frac{1}{\omega C}}{R} \\ i = \frac{u}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} \end{cases}$$

谐振下,有:

$$\begin{cases} f_0 = \frac{1}{2\pi\sqrt{LC}} \\ \phi = 0 \\ |Z| = R \\ i = \frac{U}{R} \\ Q = \frac{1}{\omega_0 RC} \end{cases}$$

故在已知 $L=0.1H, C=0.05 \mu F, V_{pp}=3.0V$ 条件下,进行计算,得:

表 5: R 变化前后对比

$R = 500\Omega$	变化情况						
$ Z = 500\Omega$	增大 5 倍						
$\phi = 0$	不变						
$i_{pp} = 6mA$	缩小 5 倍						
$f_0 = 2.25kHz$	不变						
Q = 2.83	缩小 5 倍						
	$ Z = 500\Omega$ $\phi = 0$ $i_{pp} = 6mA$ $f_0 = 2.25kHz$						

3 分析与讨论 7

2.2 题(2)

2.2.1 问(1)

根据公式 $Q=\frac{U_C}{U}$,故可调节 f 使电路谐振。只要此时 f_0 使得 $\frac{U_C}{U}$ 最大时,理论计算有 $f=\frac{1}{2\pi\sqrt{LC}}\sqrt{1-\frac{CR_r^2}{L}}$,考虑此时 C 数量级极小,可近似认为此时 $f\approx\frac{1}{2\pi\sqrt{LC}}=f_0$,据此判断谐振。计算得 Q 值后,还可以进一步利用公式 $Q=\frac{1}{2\pi f_0 CR_r}$ 得 R_r 。由 $f_0=\frac{1}{2\pi\sqrt{LC}}$ 可得 L。

2.2.2 问(2)

- 1 连接电路;
- **2** 调节 f 并保持 U 不变,当 U_C 出现极大值时,记录 f_0, C, U, U_C ;
- 3 根据(1)中列出公式完成计算。

2.2.3 问(3)

将题中所给数据代入,得:

$$\begin{cases}
Q = 100 \\
R_r = 8.04\Omega \\
L = 0.213mH
\end{cases}$$

将数据代回,得 $\frac{CR_r^2}{L}\sim 10^{-7}$,故这个近似是可行的。

3 分析与讨论

3.1 各曲线特征及理解

3.1.1 相频特性曲线

主要特征 ϕ 随 f 单调上升; 当电路处于谐振即 $f = f_0$ 时, $\phi = 0$; 随着 f 的不断增大, ϕ 趋向于 90°; 随着 f 的不断减小, ϕ 趋向于 -90°。

4 收获与感想 8

理解 当 $f < f_0$ 时,电路呈电容性,电流相位超前于电压相位, $\phi < 0$,随着 f 的不断减小,电路会逐渐趋于(但不能达到)纯电容性,即 ϕ 趋于 -90° ;当 $f > f_0$ 时,电路呈电感性,电流相位落后于电压相位, $\phi > 0$,随着 f 的不断增大,电路会逐渐趋于(但不能达到)纯电感性,即 ϕ 趋于 90° ;当 $f = f_0$ 时,电路呈纯电阻性,故 $\phi = 0$ 。

3.1.2 幅频特性曲线

主要特征 在 $f = f_0$ 处,存在一极大值。

理解 考虑 $i=\frac{u}{\sqrt{R^2+(\omega L-\frac{1}{\omega C})^2}}$,可以看出,当 $f=f_0=\frac{1}{2\pi\sqrt{LC}}$ 时,分母(|Z|)有一极小值,故 i 有一极大值。

3.2 比较三种方法计算所得的 Q 值

三种方法计算所得 Q 值如下:

$$Q_1 \pm \sigma_{Q_1} = 10.57 \pm 0.05$$

 $Q_2 \pm \sigma_{Q_2} = 10.45 \pm 0.02$
 $Q_3 = 10.61$

从数值上看,三个 Q 的计算值大致相等,其间的误差,大致可以认为是实验所用的仪器精度所造成。同时,对于 Q_1 与 Q_2 ,由于其采用的测量器具相同,故而精度大致在同一数量级上。

此外,在实际计算中,对于 Q_3 ,其计算相对于 Q_1 与 Q_2 较为繁琐。

4 收获与感想

本次实验,是本学期的最后一个实验,而实验的内容,也是大家所常听闻的电路谐振。

在进行实验的时候,我通过对 U_C 与 U 的观察,切身感受到了共振现象。而在计算中,也发现三种方法所得的 Q 值大致相等,也感受到理论的精妙。

4 收获与感想 9

从实验中,我从将电路中电流信号,转变为串接电阻的电压信号这一设计,感受到了信号转换的重要性,这一点在过往的实验课程中也一再的强调。

此外,在本次实验中,我也感受到了自己某些实验能力还有不足,例 如电路接线,示波器的使用等,希望在以后的实验课程中,能够提高自己 的实验能力。