Kvantno masinsko ucenje

Milan Bojic

Jun 2022

Sadrzaj

1	Kvantno racunarstvo								3	
	1.1	Osnov	ni pojmovi		٠					3
	1.2		no racunarstvo							5
			na inforamcija							5
		1.3.1	Priprema podataka			•			•	6
2	Lin	earne a	algebra za kvantno masinsko ucenje							6
3	Kva	ntna t	eorija kompleksnosti							7
4	Kvantno masinsko ucenje								7	
	4.1	Quant	tum support vector machine							8
			Klasican algoritam							
		4.1.2	_							
	4.2	Quant	tum principal component analysis							
		4.2.1								
		4.2.2	Kvantni algoritam							
	4.3	Kvantı	na neuralna mreza							
		4.3.1	Reprezentacija modela							
		4.3.2	Ucenje modela							

1 Kvantno racunarstvo

Pre nego sto se pocne pricati o Kvantnom masinskom ucenju, treba objasniti neki osnovni pojmovi da bi lakse razumeli ostatak rada

1.1 Osnovni pojmovi

Potrebni pojmovi su:

- Kubit (eng. Qubit)
- Kvantna kola (eng. Quantum Gates)
- Kvantna uvezanost (eng. Quantum entanglement)
- Kvantan memorija, Kvantni registri

Kubit

Kubit (eng. Qubit) je najmanja jedinica informacije u kvantnom računarstvu, slično bit-u u klasičnom računarstvu. Razlika od bita jeste u tome što kubit pored stanja 1 i 0, može da se nalazi i u superpoziciji između oba. Oni se mogu predstaviti formulom (koristeci "bra-ket" notaciju):

$$|\gamma\rangle = \alpha |0\rangle + \beta |1\rangle$$

Ovde su $|0\rangle$ i $|1\rangle$ zapravo stanja kao i kod klasičnog bita, a α i β su kompleksni brojevi koji predstavljaju aplitude zadatih stanja i za njih važi:

$$|\alpha|^2 + |\beta|^2 = 1$$

Posto stanje kubita ima dva stepena slobode sto dovodi do toga da amplitude se mogu zapisati kao:

$$\alpha = \cos\frac{\Theta}{2}$$

$$\beta = e^{i\phi} \sin \frac{\Theta}{2}$$

Takodje mozemo da vidimo da je $|\alpha|^2$ verovatnoca da se kubit nalazi u stanju 0, isto vazi i za $|\beta|^2$ i 1. Saznanje o tomo u kom stanju se nalazi kubit ce se dobiti merenjem kubita, tade ce da kubit izadje iz superpozicije i "pasce" u

stanje 1 ili stanje 0. U tom slucaku kubit ce imati ponasanje kao i obican bit, ali ovako gubimo predjasnje kvantno stanje kubita. U fizičkom svetu kubit se moze predstaviti kao polarizovani fotoni, pre cemu se dva stanje se uzimaju kao vertikalna i horizontalna polarizacija.

Kvantna kapija

Kvantna kapije (eng. Quantum Gates) su logički predstavljaju matricama i oni rade na određenom broju kubita. Matrice su unitarne sa oblikom $2^n \times 2^n$, gde je n broj qubita na kojim radimo . Neke od poznatih kola su: Hademardovo kolo (stavalja kubit u superpoziciju), bit flip kolo (zamenjuje aplitude na kubitu), ali nas najviše zanima rotaciono kolo:

$$R = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix}$$

Ovo kolo rotira kubite u prostoru, odnosno menja njihove amplitude za Θ radiana.

Kvantna uvezanost

Kvantna uvezanost (eng. Quantum entanglement) je fizički pojam gde su dva ,ili više, kubita povezana tako da zajedno prave novo kvantno stanje. U čistim stanjima oni su matematički zapravo proizvodi tenzora amplituda:

$$|\gamma\rangle\otimes|\delta\rangle = \alpha_1\alpha_2|00\rangle + \alpha_1\beta_2|01\rangle + \beta_1\alpha_2|10\rangle + \beta_1\beta_2|11\rangle$$

I ovako napisano kvantno stanje se moze razdvojiti na dva kubita. Ali postoje i kvanta stanja koja se ne mogu razdvojiti npr.

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

Zanimljiva stvar kod uvazanih kubita jeste u tome što dele informacije. Ako bi jedan kubit iz para odneli u neko veoma daleko mesto (na primer druga galaksija), i tamo bi ga izmerili mi bi smo dobili 0 ili 1, međutim drugi kubit bi takođe upao u određeno stanje i to u istom trenutni kad smo izmerili prvi daleki kubit. Ovo je zapravno gde se nalazi glavan različitost između klasičnog i kvantnog računarstva, ova pojava ne postoji u klasičnom računarstvu i ne može se "lako" simulirati.

Kvantni registri

Kvantni registri se sastoje od kvantnog stanja od m uvezanih kubita i moze da se predstavlja do 2^m vrednosti stanja istovremeno. Kvantan memorija su uredjaji koji cuvaju kvantna stanja fotona, bez da unistavaju kvanten informacije koja se nalazi u fotonu. Ovakva memorija zahteva koherentni sistem materije, jer bi u suprotnom kvantna informacija unitar uredjaja bila izgubljena zbog nekoherentnosti.

1.2 Kvantno racunarstvo

Kvantno racunarstvo je vrsta racunarstva gde se koriste kolekcije fizickih osobina kvantne mehanike kao sto su superpozicija i kvantna uvezanost, tako da se izvrsi neka kalkulacija. Uredjaja koji izvrsava kvante kalkulacije zovu se **kvantni racunari**. Kvantni racunari se sastoje od kvantnih kola i elemntarnih kvantnih kapija koje sluze za prenosenje i manipulisanje kvantnih inforamcija. [9]

Jedna od glavnih primena Kvantnih racunara jeste simulacija fizickih sistema, bili oni kvantne ili klasince prirode.

1.3 Kvantna inforamcija

Kvantan informacija je informacija o stanju kvantnog sistema. O njihovim svojstvima bavi se **kvantna teorija informacije**. Takodje, kvantan informacija mogu izmeriti na isti nacin kao i klasicna informacija koristeci se Šenononvoj metodi. Odnosno, postoji jednistveno merilo to jest funkcija nad kvantnim stanjem, koje je funkcija verovatnoce, kontinuiteta i sumiranja.[11] Ova funkcija se zove **von Neumann entropy** i za neki ulazni kubit ϱ postoji ekvivalent u **Shannon entropy** H za neku slucajnu promenljivu X

$$S(\varrho) = H(X)$$

Jos jedna od merila za kvantno stanje jeste merenje "istinitosti" (eng. Fidelity) izmedju dva kvantna stanja $|\phi\rangle$ i $|\psi\rangle$. Neka je F funkcija koja meri osobinu, ona meri verovatnocu da merenjem stanja $|\phi\rangle$ dobijemo stanje $|\psi\rangle$. Izlaz funkcije je izmedju 0 i 1, gde ako je izlaz 0 onda su dva stanja ortogonalna jedna od drugog, a ako je izlaz 1 onda su dva stanja jednaka.[11]

Odnost kvantne i klasicne teorije informacije

Kvantna i klasicna informacija se u dosta stvari razlikuju. Dok se klsaicna informacija prolazi kroz sisteme sa dobro definisanim stanjima, moze se kopirati i pri procesom merenje se nemenja, Kvantna informacija je enkodovana u kvantnim sistemima, ne moze se kopirati i pri procesu merenje ona se menja. Takodje kvantan informacija ima neke osobine koje se ne mogu iskazati u klasicnoj informaciji, kao sto su superpozicija i kvantan uvezanost [7] Kvantana teorija informacije se bavi:

- 1. Prenosenju klasicnih informacija preko kvantnih kanala
- 2. Prenosenje kvantinih informacija preko kvantinh kanala
- 3. Efekat kvantne uvezanosti na prenosenje informacija

1.3.1 Priprema podataka

Za obradu podataka treba nam kvantni RAM (QRAM), koji nam dozvoljava paralelan pristup kvantnim podacima. Neka imamo kopleksan vektor \overrightarrow{v} sa $N=2^n$ dimenzija, gde su njegove komponente oblika

$$v_j = |v_j'|e^{i\Phi_j}$$

Ako imamo parove $|v_j'|, \Phi_j$ cuvamo kao float brojeve u QRAM-u, onda mozemo da konstruisemo $\log_2 N$ kubit kvantno stanje $|v\rangle = |\overrightarrow{v}|^{-\frac{1}{2}} \overrightarrow{v}$ u $O(\log N)$ koraka

Kada smo kreirali kompresovane kvantne vektore od ulaznih vektora, mozemo da vrsimo transformacije koristeci kvantne algoritme, za dalje koriscenje podataka za masinsko ucenje. Ovaj proces zove se **postprocessing** i u opstem obliku njemu je potrebno $O(poly(\log N))$ koraka. [5]

2 Linearne algebra za kvantno masinsko ucenje

Da bi videli kako kvantni racunari poboljsavaju masinsko ucenje, treba da se vidi kako kvantni racunari obradjuju linearnu algebru, jednu od osnova modernog masinskog ucenja.

Tokom godina razvijeni su nekoliko kvantnih algoritama koji resavaju probleme linearne algebre. Zajedno ti algoritmi se nazivaju **osnovni kvantni** **podprogrami linearne algebre** (eng. qBLAS), i oni se koriste u izradi algoritama za kvantno masinsko ucenje.

Primeri algoritama koji su deo qBLAS-a su:

- HHL algoritam: koristi se za resavanje sistema linearnih jednacina, koristeci 2^n dimenzijonalni vektorski prostor za resavanje sistema sa n promenljivih. [1]
- Kvantna Furijeova transformacije [8]
- Kvantan procena faza za eigen vrednosti i eigen vektora/stanja. [8]

Ovi algoritmi se koriste kao osnova napredinij algoritama i algoritama za Kvantno masinsko ucenje. Samo treba pripaziti kod pominjanja ovih algoritama, jer neki od njih koriste neke koncepte koji su samo teorijske prirode ili su tesko kreirani u realnom svetu (npr. QRAM).

3 Kvantna teorija kompleksnosti

4 Kvantno masinsko ucenje

Kvantno masinsko ucenje je spoj kvantnih racunara i masinskog ucenja. U programima Kvantnog masinskog ucenja koriste se kvantni algoritmi (npr. qBLAS algoritmi) kao deo metoda optimizacija slicne klasicnim metodama masinskog ucenja.

Prema vrsti podataka koji se obradjuju oblast mozemo da dalimo na dve podoblasti

- 1. Obrada klasicnih podataka na kvantnim masinama (**Masinsko ucenje dopunjeno kvantnim racunarima** eng. Quantum-enhanced machine learning)
- 2. Obrada kvantnim podataka na kvantnim masinama

Problem kod obrade klasicnih podataka na kvantnim masinama jeste ucitavanje podataka u sistem, kao i citanje rezultata. Ovo dovodi da algoritnim sa teorijskim eksponencijalnim ubrzanjem, u realnom svetu budu dosta sporiji i fizcki zahtevniji (velicina kvatnog kola zna da poraste i na skalu oko 10^{25} za jednostavnu implementaciju HHL algoritma). [1]

4.1 Quantum support vector machine

Jedan od nejednostavnijih primera metoda Kvantnog masinskog ucenja jeste **Quantum support vector machine** (QSVM). Klasican SVM je metoda koja pronalazi optimalnu podelu hiper-ravni izmedju dva razlicita skupa podataka, tako da sa velikom verovatnocom svi podaci iz jednog skupa podataka ce se naci na jednoj polovini hiper-ravni. [1]

4.1.1 Klasican algoritam

Ova metoda odredjuje klase koristeci linarnu funkciju $w^Tx + b$. SVD predvidja prvu klasu ako je izlaz funkcije je pozitivan, a predvidja drugu klasu je izlaz negativan. Posto kod vecina slucajeva odvojenost izmedju dve klase podataka nije linearzibilno odvojivo, sa SVM metodom koristi se i **Kernel metoda**.

Pronalazenje optimalne hiper-ravni se sastoji od minimizacije $|w|^2/2$ u nejednacini $y_j(w*x_j+b) \geq 1$ za svako j. Ovo minimizicija se moze uraditi, ako uvedemo Karush-Kuhn-Tucker mnozioca $\overrightarrow{\alpha} = (\alpha_1, ..., \alpha_M)$ i maksimizujemo ih nad Lagranzovoj funkcijom:

$$L(\overrightarrow{\alpha}) = \sum_{j=1}^{M} y_j \alpha_j - \frac{1}{2} \sum_{j,k=1}^{M} \alpha_j \alpha_k x_j x_k$$

Sa sledecim ogranicenjima $\sum_{j=1}^{M} \alpha_j = 0$ i $\forall j \leq M \ y_j \alpha_j \geq 0$. Tako da, parametre za hiper-ravan se izvode kao: $w = \sum_{j=1}^{M} \alpha_j x_j$ i $b = y_j - w x_j$ (za one j gde vazi da $\alpha_j \neq 0$). Mali broj α_j je razlicitno od nule, takve promenljive se odnose na vectore x_j koji leze na ravni, ti vektori se zovu **Support vektori** [10]

Kernel metoda transformise podatke u prostor gde su dve klase linearno odvojive. Metoda se oslanja na to da se linearna funkcija moze zapisati iskljucivo kao dot prodakt izmedju primera.

$$w^T x + b = b + \sum_{i=1}^{m} \alpha_i x^T x_i$$

Gde je x_i trening primer a α je vektor koeficijenata. Ovako zapisivanje funkcije nam dozvoljva da zamenim x sa izlazom funkcije $\phi(x)$, a dot prodakt sa funkcijom $k(x, x_i) = \phi(x) * \phi(x_i)$. Funkcija k se zove **kernel**, dok funkcija

 ψ je funkcija koja preslikava podatke iz jednog prostora u drugi. Operator $\langle * \rangle$ predstavlja unutrasnji prodakt ekvivalentno $\phi(x)^T \phi(x_i)$. [4]

Kada zamenimo dot prodakt sa kernelom, funkciju predikcije mozemo da zapisemo kao

$$f(x) = b + \sum_{i} \alpha_{i} k(x, x_{i})$$

Jedan od velikih mana kernel metode jeste cena evaluacije izlaza kernel funkcije je linarna u odnosu na broj trening primera, jer i-ti bi oznacavao clana $\alpha_i k(x, x_i)$ kernel funkcije. [4]

Slozenost SVM je $O(log(1/\epsilon)M^2(N+M))$, gde je ϵ preciznost resenja, N je broj dimenzija prostora nad kojem radimo ,a M je broj trening primera. Takodje krajnje resenje se je binarni klasifikator za neki vektor x:

$$y(x) = sign(\sum_{j=1}^{M} \alpha_j k k(x, x_j) + b)$$

4.1.2 Kvantni algoritam

Pretpostavimo da imamo metodu za treniranje(eng. Oracle) koja vraca norme $|x_j|$, labele y_j i kvanten vektore $|x_j\rangle = \frac{1}{|x_j|} \sum_{k=1}^N (x_j)_k \, |k\rangle$.

Bitno nam je za algoritam da ova metoda vraca podatke pod donjom granicom, da bi se kompleksost jezgra algoritma mogla iskazati. Koristeci evaluaciju inner prodakt priprema se kernel matrica, moze se dobiti SVD algoritam kompleksnoscu $O(\log(1/\epsilon)M^3 + M^2\log(N/\epsilon))$ Kernel matrica je od velike vaznosti za reformulaciju algoritma kao funkciju kvadratnog troska. Uvodimo simplifikaciju za nejednakosti, tako sto uvocimo promenljivu e_j i koristimo osoboinu labela da $y_j^2 = 1$

$$y_i(w \cdot x_i + b) \ge 1 \rightarrow (w \cdot x_i + b) = y_i - y_i e_i$$

Porod ove jednacine imamo i implicitan uslov Lagranzove funkcije da sadrzi taksanu (eng. penalty) promenljvi $\gamma/2\sum_{j=1}^M e_j^2$ gde definisana γ za relativne tezinu greske treniranja. Ako uzmemo parcijalno derivat od Lagranzove funkcije i eliminisemo promenljivu u i e_j dovodi do aprokcismaciju funkcije kvadratnog troska problema:

$$F\begin{bmatrix} \underline{b} \\ \overrightarrow{\alpha} \end{bmatrix} \equiv \begin{bmatrix} \underline{0} & \overrightarrow{1}^T \\ \overrightarrow{1} & K + \gamma^{-1} \mathbb{1} \end{bmatrix} \begin{bmatrix} \underline{b} \\ \overrightarrow{\alpha} \end{bmatrix} = \begin{bmatrix} \underline{0} \\ \overrightarrow{y} \end{bmatrix}$$

Ovde $K_{ij} = x_i^T \cdot x_j$ je simetricna kernel matrica, $y = (y_1, ..., y_m)$ kao i $\overrightarrow{1} = (1, ..., 1)$. Matrica F je dimenzija $(M+1) \times (M+1)$. Dodatna dimenzija (red i kolona) se sastoji od jedinica, zbog offset-a b. Promenljiva α_j ima ulogu odredjivanje distance od optimalnog resenja. Tako da na resenje, odnonsno pronalazenje promenljivih za SVM je oblika:

$$\begin{bmatrix} b \\ \overrightarrow{\alpha} \end{bmatrix} = F^{-1} \begin{bmatrix} 0 \\ \overrightarrow{y} \end{bmatrix}$$

U klasicnom algoritmu kopleksnost SVM sa funkcijom kvadratnog troska je $O(M^3)$

U kvantnom algoritmu, zadatak je generisanje stanja $|b,\overrightarrow{\alpha}\rangle$ koja opisuju hiper-ravan i onda klasifikuju stanja $|x\rangle$. U algoritmu, resavamo normalizovanu jednacinu $\hat{F}|b,\overrightarrow{\alpha}\rangle=|y\rangle$, gde je $\hat{F}=F/trF$ sa ogranicenjem $||F||\leq 1$. Klasa ce biti odredjenja kao verovatnoca uspeha pri swap testu izmedju $|b,\overrightarrow{\alpha}\rangle$ i $|x\rangle$. Za efikasnost merenje algoritma, posebno izracunavanja interzne matrice, matrica \hat{F} mora da se razdvoji na jednostavne elemente. Tako da matrica \hat{F} moze da se razdvoji na sledece elemente $\hat{F}=(J+K+\gamma^{-1}\mathbb{1})/trF$. Gde je matrica

$$J = \begin{bmatrix} 0 & \overrightarrow{1}^T \\ \overrightarrow{1} & 0 \end{bmatrix}$$

Takodje, za estimaciju faze pravimo formulaciju Lijevog prodakta $e^{-i\hat{F}\Delta t}=e^{-i\gamma^{-1}\mathbbm{1}\Delta t/trF}e^{-iJ\Delta t/trF}e^{-iK\Delta t/trF}+O(\Delta t)$

Za njega vazi da ima dve eigen vrednosti oblika $\lambda_{\pm}=\pm\sqrt{M}$,a, istovetno, eigen stanja su oblika $|\lambda_{\pm}\rangle=\frac{1}{\sqrt{2}}(|0\rangle\pm\frac{1}{\sqrt{M}}\sum_{k=1}^{M}|k\rangle)$. Za matricu $\gamma^{-1}\mathbb{1}$ dve eigne vrednosti su $v_1=0$ i $v_2=\gamma^{-1}M$. Sada mozemo da aproksimiramo fazu za $e^{-i\hat{F}\Delta t}$.

Prvi korak, Stanje $|y\rangle$ moze da se transformise u eigen state $|u_j\rangle$ matrice \hat{F} , koja ima eigen vrednost λ_j . Ono je obilka $|y\rangle = \sum_{j=1}^{M+1} \langle u_j | y \rangle |u_j\rangle$. Ako inicijalizujemo aproksimaciju eigen vrednosti na $|0\rangle$, i primenimo estimaciju faze nad stanjem dobicemo stanje blize pravoj eigen vrednosti:

$$|y\rangle |0\rangle \rightarrow \sum_{j=1}^{M+1} \langle u_j | y\rangle |u_k\rangle |\lambda_j\rangle \rightarrow \sum_{j=1}^{M+1} \frac{\langle u_j | y\rangle}{\lambda_j} |u_j\rangle$$

Drugi korak je da invertujemo dobijeno stanje eigen vrednosti, pozivajuci rotaciju stanja. Na kraju dobijamo novo stanje sa trazenim parametrima

SVM
$$(C = b^2 + \sum_{k=1}^{M} \alpha_k^2)$$

$$|b, \overrightarrow{\alpha}\rangle = \frac{1}{\sqrt{C}}(b|0\rangle + \sum_{k=1}^{M} \alpha_k |k\rangle)$$

Klasifikacije Sada imamo trenirani model kvantnog SVM-a i zelimo da klasifikujemo stanje $|x\rangle$. Od stanja $|b, \overrightarrow{\alpha}\rangle$, koriscenjem metode za treniranje, konstruisemo stanje:

$$|\tilde{u}\rangle = \frac{1}{\sqrt{N_u}} (b|0\rangle|0\rangle + \sum_{k=1}^{M} \alpha_k |x_k| |k\rangle |x_k\rangle)$$

Gde nam je $N_u = b^2 + \sum_{k=1}^M \alpha_k^2 |x_k|^2$. Pored ovoga konstruisemo i ulazno stanje $|\tilde{x}\rangle$:

$$|\tilde{x}\rangle = \frac{1}{\sqrt{N_x}}(|0\rangle |0\rangle + \sum_{k=1}^{M} |x| |k\rangle |x\rangle)$$

Gde nam je $N_x = M|x|^2 + 1$. Konstruisemo dva nova stanja $|\psi\rangle$ i $|\phi\rangle$; $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle |\tilde{u}\rangle + |1\rangle |\tilde{x}\rangle)$ i $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$. Merenjem swap testa, verovatnoca dobivanja pozitivne vrendosti je $P = |\langle \psi | \phi \rangle|^2 = \frac{1}{2}(1 - \langle \tilde{u} | \tilde{x} \rangle)$. Ovde unutrasnji produkt, odnosno $\langle \tilde{u} | \tilde{x} \rangle = \frac{1}{\sqrt{N_x N_u}}(b + \sum_{k=1}^M \alpha_k |x_k| |x| \langle x_k | x \rangle)$, koji se obicno izracunava u O(1) na kvatnom racunaru. Ako hocemo preciznost ϵ , treba da iteriramo kroz algoritam merenja $O(P(1 - P)/\epsilon^2)$ puta. [10]

4.2 Quantum principal component analysis

Ova je metoda koja se koristni za smanjivanje dimenzija vektora podataka gde nam je bitno da sacuvamo sto vise informacije o podatku - labava kompresija (eng. lossy compression).

4.2.1 Klasicni algoritam

Neka za svaku tacku $x^{(i)} \in \mathbb{C}^n$ zelimo da transformisemo u tacku $c^{(i)} \in \mathbb{C}^l$ gde je l < n. Zelimo da nadjemo funkciju enkodovanja koja za ulaz x vraca c, odnosno, f(x) = c. Takodje zelimo da nadjemo funkciju dekodovanja $g(f(x)) \approx x$.

Zbog jednostavnosti, uzecemo funkciju mnozenja matrica kao funkciju dekodavanja. Neka je g(c) = Dc, gde je $D \in \mathbb{C}^{n \times l}$ matrica definisana za

dekodovanje. Takodje zbog optimalno izracunavanja funkcije enkodovanja, PCA uvodi ogranicenje da su kolone medjusobno ortogonalne. Jos jedno ogranicenje koje moze da se uvede u algoritam, i koji ce dovesti do jedinstvenog resenja, jeste da su sve kolone matrice D u unitarnoj normi. Jedan od nacina na koji hocemo da nadjemo optimalnu projekciju c za ulaz x jeste da nadjemo najmanju L2 distancu izmedju ulaza x i dekodovane vrednosti g(c)

$$c^* = \underset{c}{\operatorname{argmin}} ||x - g(c)||_2^2$$

I ova za pronalazenje minimalne distance ce dovesti do optimalnog resenje $c = D^T x[4]$. Tako da funkcija enkodovanja je oblika:

$$f(x) = D^T x$$

Takodje, mozemo da uvedemo novu funkciju rekonstrukcije ulaza x

$$r(x) = q(f(x)) = DD^T x$$

Sada treba da se nadje optimalna matrica D. Ovo ce se resiti na isti nacin kao i pronalazenje optimalnog c za ulaz x, odnostno kao pronalazenje minimalne L2 distance za ulazne vektore njihove rekonstrukcije.

$$D^* = \underset{D}{\operatorname{argmin}} \sqrt{\sum_{i,j} (x_j^i - r(x^i)_j)^2} \text{ gde vazi } D^T D = I_l$$

Posle procesa izvodjenja [4], jendacina za optimalnu matricu D je oblika:

$$D^* = \underset{D}{\operatorname{argmin}} Tr(D^T X^T X D)$$
gde vazi $D^T D = I_l$

Gde nam je $X \in C^{m \times n}$ matrica gde su redovi ulazni vektori x. Ova jednacna se moze resiti koristeci eigen dekompoziciju. Gde bi se pronasli eigen vektor za $X^T X$ za najvecu eigne vrednost.

4.2.2 Kvantni algoritam

U kvantnom algoritmu bitno nam je da nedjenmo eigen vektore i eigen vrednosti za ulaz. Ovo se dosta olanja na drugi deo metode koji je opisan u Support vector machine sekciju. Ako izaberemo random vektor v_j iz skupa ulaznih vektora,kreiramo kvanto stanje $|v_j\rangle$; tada mozemo da kreiramo density matricu $\rho = (1/N) \sum_j |v\rangle \langle v|$ gde je N velinica skupa vektora. [1] Slicno

qSVM nad *density* matricom ρ mozemo da apliciramo algoritam esitacije faze stanja. Odnosnto, da primenimo $e^{-i\rho t}$, t puta nad inicijalnim stanjem:

$$|v_j\rangle |0\rangle \to \sum_i \psi_i |\chi_i\rangle |\widetilde{r}_i\rangle$$

Gde je $|\chi_i\rangle$ eigen vektor od matrice ρ , $\widetilde{r_i}$ je esimacija eigen vrednosti, a $\psi_i = \langle \chi_i | v_j + \rangle$. I primenom SWAP testa na dobijenim stanjem dobijamo stanje:

$$\sum_{i} r_{i} \left| \chi_{i} \right\rangle \left\langle \chi_{i} \right| \otimes \left| \widetilde{r_{i}} \right\rangle \left\langle \widetilde{r_{i}} \right|$$

Merenjem ovog stanja mi dobojamo eigen vrednost i eigen vektor za density matricu ρ . Ako uradimo ovaj proces nad vecem brojem kopija matrice ρ , dobicemo preciznije estimacije eigen vrednosti i eigen vektora.

Sada kada imamo eigen vrednost i eigen vektor mozemo da rekonstruisemo matricu za enkodovanje D. Vremenska slozenost ovog algoritma je $O(\log d)$. [6]

4.3 Kvantna neuralna mreza

Neuralne mreze su osnova polja koji se naziva **Duboko ucenje** i zato ima veliku paznju za razvog i primenjivanje istog. U papiru [3], autori su predstavili osnove algoritama za Kvantnu neuralnu mrezu (QNN). Da li su neke primere, neke prednosti i neke nedostatke kvantnog pristupa neuralnim mrezema

Neka unani skup stringova ϕ oblika $z=z_1z_2\ldots z_n$ gde svako z_i je bit cija vrednost moze da bude +1 ili -1, kao i binarnu oznake l(z) koje moze da bude +1 ili -1. Zbog jednostavnosti neka se u nasem setu nalazi sve permutacije ovako opisanog stringa, to jest neka $|\phi|=2^n$. Predstavicemo kvantni proces koji radi na n+1 kubita (poslednji kubit sluzi kao izlaz procesa). Kvantni proces se sastoji od unitarnih transformacija ulaznih stanja: $U_a(\theta)$. Svaka transformacija radi nad podskupu ulaznih kubita i zavisi od promenljive θ . Sada izabracemo podskup od L transformacija:

$$\mathbf{U}(\overrightarrow{\theta}) = U_L(\theta_L)U_{L-1}(\theta_{L-1})\dots U_1(\theta_1)$$

koja zavise od L parametara $\overrightarrow{\theta} = \theta_L \theta_{L-1} \dots \theta_1$. Za svaki string z kreiracemo pocetno stanje:

$$|z,1\rangle = |z_1,z_2,\ldots z_n,1\rangle$$

Primenjivanje unitarne transformacije vraca stanje: $U(\overrightarrow{\theta})|z,1\rangle$ Na izlazu meri se dodati kubit sa Puali-jevim operatorom σ_y , koji se kasnije naziva i Y_{n+1} . Tako da na kraju imamo izlaz +1 ili -1. Cilj je isti kao i kod klasicnih neuralnih mreze da "naucimo" proces da vraca tacne vrednosti za dati ulazni string. Posto merenje izlaznog kubita nije sigurno, odnosno merenje kubita dobijamo tacnu vrednost sa nekom verovatnocom uvodimo transformaciju:

$$\langle z, 1 | U^T(\overrightarrow{\theta}) Y_{n+1} U(\overrightarrow{\theta}) | z, 1 \rangle$$

koji predstavlja prosecnu vrednost merenja, ako Y_{n+1} merimo na vise kopija originalno izlaza.

Ovde, kao i u klasicnoj neuralnoj mrezi, cilj nam je da nadjemo parametar $\overrightarrow{\theta}$ koja vraca tacnu vrednost sa velikom preciznoscu. Slicno kao i prethodnoj postavci imamo: L unitarnih promenljivi sa korespodentnim promenljivama $\overrightarrow{\theta}$, kao i ulazni string z; tada mozemo da predstavimo funkciju troska:

$$loss(\overrightarrow{\theta}, z) = 1 - l(z) \langle z, 1 | U^{T}(\overrightarrow{\theta}) Y_{n+1} U(\overrightarrow{\theta}) | z, 1 \rangle$$

Mozemo primetiti da ova funkcija troska je linearna i da je minimum u 0, jer je vracema vrednost izmedju -1 i +1. Ako pretpostavimo da kvantna neuralna mreza radi savrseno, tako da za svaki ulazni string z, merenje uvek vraca tacnu oznaku. To onda znaci da optamalna promenljiva $\overrightarrow{\theta}$ postoji i da je minimum za funkciju trosa u 0 za sve ulaze z.

Neka imamo skup stringova S za treniranje, sa njihovim oznakama. Imamo kvantni proces koji ima mogucnost da prikaze trazene labele i zavisi od parametara $\overrightarrow{\theta}$. Opisacemo proces kako da dodjemo do optimalnih parametara $\overrightarrow{\theta}$. Neka pocnemo sa random promenljivom $\overrightarrow{\theta}$ (ili ako imamo neku pretpostavku vrednosti parametara). Izaberimo neki string z^1 iz skupa za traniranje. Primenjujemo kvanti proces nad izabranim stringom:

$$U(\overrightarrow{\theta})|z,1\rangle$$

i merimo Y_{n+1} na zadnjem kubitu. Nakon nekoliko merenja mozemo da imamo dobru aproksimaciju ocekivane vrednosti od Y_{n+1} i tada izracunavamo $loss(\overrightarrow{\theta},z^1)$. Nakon toga, zelimo da promenimo parametar $\overrightarrow{\theta}$ tako da smanjimo funkciju troska za string z^1 . Postoje dva nacina da se uradi trazeno: (1) da uradimo pomeraj po nekom uzimanju uzorka u $[\overrightarrow{\theta}-\epsilon,\overrightarrow{\theta}+\epsilon]$ intervalu. (2) da izracunamo derivat funkcije troska po $\overrightarrow{\theta}$ i da se malo pomerimo

ka pravcu koji smanjuje funkciju. Ovo nam daje novi parametar $\overrightarrow{\theta^1}$. Sada biramo ponovo iz skupa neki string z^2 i ponovimo prethodni proces ali sa parametrom $\overrightarrow{\theta^1}$. Ovako dobijamo novi parametar $\overrightarrow{\theta^2}$ koji ima manju funkciju troska za string z^2 nego parametar $\overrightarrow{\theta^1}$. Ovako prolazimo kroz proces sve dok ne prodjemo kroz ceo skup S. Kao rezultat ovoga generisali smo sekvencu parametara $\overrightarrow{\theta^1}$, $\overrightarrow{\theta^2}$, ... $\overrightarrow{\theta^S}$. Ako nam je "ucenje" parametara uspesno onda bi smo dobila da operator $U(\overrightarrow{\theta^S})$, kada se primeni na stanju $|z,1\rangle$, vratice stanje koje kada se izmeri na izlazu vraca tacnu oznaku l(z). Ako je z iz skupa za traniranje, reci cemo da je model fitovao podatke za treniranje. Ako je z izvan skupa za treniranje, mozemo raci da je model naucio da generalizuje i za nevidjenje podatke.

Ovaj proces koji je opisan, primeti ce te, u klasicnom masinskom ucenje zove se "Stohasticko uvenje". U tradicijonalnom masinskom ucenju sa neuronskim mrezama, parametri se prikazuju kao promenljive unutar matrice, koja je linarna u odnosu na unutrasnje vektore. Nad Komponentama tih vektora vrsi se nelinearne transformacije, pre nego sto se mnoze sa ostalim parametrima. Uvedjenje dobre ne linearnosti je jedan od glavnih delova uspesne implementiacije modela u klasicnom masinskom ucenju. Ovu osobinu klasnih neuralnim mreza tesko je prebaciti u kvantni sistem, jer je kvantna mehanika, osnova celog koncepta kvantnog racunarstva, samo po sebi linearna. U metodi koja je opisana, svaka unitarna opearcija se izvrsava nad izlazom prethodne operacije, pri cemu se izmedju operacija ne izvrsava nikakva nelinearna transformacije. Neka name je svaka unitarne transformacija oblika $e^{i\theta \sum}$, gde je \sum produkt tenzora koji se sastoji iz skupa Paulijevih operatora, i rade nad nekolicinom kubita. Derivat operatora po $\overrightarrow{\theta}$ je ogranica po L, to jest po broju parametara. Ovo je znacajno, jer znaci da gradijent ne moze da ode u beskonacno i tako izbegavamo veliko problem koji se moze desiti klasicnim neuralnim mrezama.

4.3.1 Reprezentacija modela

Neka imamo 2^n , *n*-bitnih stringova i vezano za njih postoje $2^{(2^n)}$ funkcija oznaka l(z). Ako nam je data odredjena funkcija oznaka onda mozemo da definisemo operator nad komputacionim osnovama kao:

$$U_l |z, z_{n+1}\rangle = e^{i\frac{\pi}{4}l(z)X_{n+1}} |z, z_{n+1}\rangle$$

Ovaj operator rotira ulazni kubit oko x-ose za $\frac{\pi}{4}$ puta oznaka za string z. Tako da iz toga imamo:

$$U_l^T Y_{n+1} U_l = \cos(\frac{\pi}{4}l(Z)) Y_{n+1} + \sin(\frac{\pi}{4}l(Z)) Z_{n+1}$$

gde u formuli l(Z) je interpretirana kao operator dijagonalan u odnosu na komputaciona osnovna stanja. Takodje, posto funkcija oznaka l(z) moze da vrati ili +1 ili -1 iz toga imamo $\langle z, 1|U_l^TY_{n+1}U_l|z, 1\rangle = l(z)$. Ovo nam pokazuje da bar na nekom abstraktnom nivou imamo mogucnost da predstavimo bilo koju funkciju oznake kao kvantno kolo.

Objasnjenje kako da se napise operator U_l kao produkt dve kubit unitarne transformacije. Zbog ovoga treba da se predje na boolean promenljive $b_i = \frac{1}{2}(1-z_i)$ i neka funkcija oznake l bude oblika 1-2b gde je $b \in 0,1$. Sada mozemo da iskoristimo **Reed-Muller** iskazivanje bilo koje boolean funkcije u obliku bitova $b_1 \dots b_n$:

$$b = a_0 \oplus (a_1b_1 \oplus a_2b_2 \oplus \dots a_nb_n) \oplus (a_{12}b_1b_2 \oplus a_{13}b_1b_3 \oplus \dots) \oplus \dots \oplus a_{12\dots n}b_1b_2 \dots b_n$$

gde su koeficijenati $a \in 0, 1$. Primecuje se da imamo 2^n koeficijenta i posto su oni ili 0 ili 1 da stvarno imao $2^{(2^n)}$ mogucih *boolean* funkcija. Nasa funkcija b moze biti ekoponencijalno dugacka. Sada mozemo da zapisemo unitarnu transformaciju koja zavisi od funkcije oznaka kao:

$$U_l = e^{i\frac{\pi}{4}X_{n+1}}e^{-1\frac{\pi}{2}BX_{n+1}}$$

gde je B operator, dijagonalan u odnostu na kompuntacione baze, koji odgovara nama data funklcija b. Svaka vrednostu u B se mnozi sa X_{n+1} tako da svaka vrednost je komutativna sa ostalim vrednostima. Svaka clan, razlicit od nule, u **Reed-Muller** formuli utice u U_l na kontrolni bit flip na izlaznom kubitu.

Ovaj rezultat kvantno reprezentacije ima analog u klasicnoj teoriji reprezentacije [2]. Ona pokazuje da bilo koja boolean funkcija ozneke moze da se prestavi u neuralnoj mrezi dubine tri, gde srednji slog ima velicinu 2^n . Ovako velika matrica ne bi mogla da se prestavi na klasicnim racunarima, ali na kvantnim racunarima, oni po prirori rade nad Hilbertovim prostorim sa eksponencijalnim dimenzijama. Ali jos nije dokazano da svaka boolean funkcija moze da se prestavi u kvantno kolo koje nije eksponencionalne dubine. Na tome se trenutno dosta radi u naucnim krugobima.

Reprezentacija parnosti podskupa Neka imamo datu funkciju oznaka koja vraca parnost podskupa bitova datog stringa. Neka je podskup \mathbb{S} i neka je $a_j = 1$ ako bit j je u podskupu i $a_j = 0$ ako j nije u podskupu. Reed-Muller formula za parnost podskup je:

$$P_{\mathbb{S}}(z) = \sum_{j} \oplus a_{j}b_{j}$$

Ovo nam dozvoljava da napravimo unitarnu transformaciju koja implementira parnost podskupa:

$$U_{P_{S}} = e^{i\frac{\pi}{4}X_{n+1}} e^{-i\frac{\pi}{2}\sum_{j} a_{j}B_{j}X_{n+1}}$$

Kolo se sastoji od, najvise, n operatora nad dva kubita koji su komutativni medjusobno, gde je pridodati kubit u svim operatorima nad dva kubita.

4.3.2 Ucenje modela

References

- [1] Pancotti N. et al. Biamonte J. Wittek P. "Quantum machine learning". In: *Nature* 549 (2017).
- [2] George V. Cybenko. "Approximation by superpositions of a sigmoidal function". In: *Mathematics of Control, Signals and Systems* 2 (1989), pp. 303–314.
- [3] Edward FarZXhi and Hartmut Neven. "Classification with Quantum Neural Networks on Near Term Processors". In: (2018). DOI: 10.48550/ARXIV.1802.06002. URL: https://arxiv.org/abs/1802.06002.
- [4] I. Goodfellow, Y. Bengio, and A. Courville. *Deep Learning*. Adaptive Computation and Machine Learning series. MIT Press, 2016. ISBN: 9780262035613. URL: https://books.google.rs/books?id=Np9SDQAAQBAJ.
- [5] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. "Quantum algorithms for supervised and unsupervised machine learning". In: arXiv preprint arXiv:1307.0411 (2013).
- [6] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. "Quantum principal component analysis". In: Nature Physics 10.9 (July 2014), pp. 631–633. DOI: 10.1038/nphys3029. URL: https://doi.org/10.1038%2Fnphys3029.
- [7] Dan C. Marinescu. Classical and quantum information. Academic Press, 2012. Chap. 8. ISBN: 9780123838742; 0123838746.
- [8] Dan C. Marinescu. Classical and quantum information. Academic Press, 2012. Chap. 5. ISBN: 9780123838742; 0123838746.
- [9] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.
- [10] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. "Quantum support vector machine for big data classification". In: *Physical review letters* 113.13 (2014), p. 130503.
- [11] Vlatko Vedral. Introduction to Quantum Information Science. Oxford University Press, 2006.