Model Architecture Analysis – Discussion

Experiment Motivation

To see the <u>effects</u> of various <u>architecture configurations</u> on CDQA <u>performance</u>.

Experiment Details - 1

- We looked at **zero-shot CDQA performance changes** in *children* (*layers* = 2, 4, *etc.*) & parent (*layer* = 24) configurations of BERT_{BASE} (layers = 12, attention_heads = 12, hidden_dim = 768)
- The overall pipeline is simply,

Experiment Details - 2

- We classify the models on 2 basis, to see the effect of each on performance
 - Masking Whether it makes any difference to use whole word/word piece masking in CD's.
 - Normalization Since it is known that CD data might contain <u>many exotic entities</u> not encountered in OD data, perhaps Cased models would perform better than uncased models.

Experiment Details - 3

Finally, we measure <u>perplexity of BERT_{BASE}</u> on the training data of all <u>five datasets</u> to see whether there exists any <u>correlation between the PPL. & performance</u>.

Questions Asked & Results

[1st 3 slides relate to uncased word piece models & next include across the board]

Datasets/Domains Used

- SQuAD [Open Domain]
- COVID-QA [Biomedical]
- DuoRC [Movies]
- TechQA [Customer technical support queries]
- CUAD [Legal]

Does scaling layers improve performance?

SQuAD scores

L	A H	EM F1
2	2 128	29.58 41.44
4	2 128	38.59 49.19
8	2 128	44.88 55.38

Generally yes for Open-Domain data • Not always for Closed-Domain data **COVID-QA** scores

L	A H	EM F1
8	12 768	21.3 38.02
10	12 768	19.47 35.45

CUAD scores

L	A H	EM F1
10	2 128	1.15 2.4
12	2 128	0.55 1.86

Does scaling attention heads/hidden dimension improve performance?

Generally **yes** for Open-Domain data • **Not always** for Closed-Domain data SQuAD scores

L	AJH	EM F1
10	2 128	51.58 62.44
10	4 256	71.41 80.44
10	8 512	78.13 86.08

TechQA scores

L	AJH	EM F1
12	4 256	1.94 6.03
12	8 512	1.61 6.86

CUAD scores

L	A H	EM F1
6	4 256	1.23 2.74
6	8 512	0.74 1.95

Does scaling both together improve performance?

SQuAD scores

L	AJH	EM F1
12	12 768	80.9 88.2
24	16 1024	83.49 90.6

Generally yes for Open-Domain data • Not always for Closed-Domain data **COVID-QA** scores

L	AJH	EM F1
12	12 768	22.39 42.11
24	16 1024	22.14 38.52

CUAD scores

L	A H	EM F1
12	12 768	2.46 4.63
24	16 1024	0.78 3.56

How Does PPL. Correlate with Performance

Next Steps

- Training **domain-specific embeddings** and seeing whether they improve performance.
- Motivation Consider the entity, "HIV-1 infection"
 - BERT tokenizes it as [HIV] + [-] + [1] + [infection]. This leads to a sort of *muddied* representation of the entity.
 - If we could have an embedding for the entity as [HIV-1 infection] *it* should, in theory, improve performance.
- However, acc. to this paper, all of BERT's contextualized embeddings occupy a narrow cone in its embedding space. Thus, adding new domain-specific embeddings shouldn't help that much? This is a point I'm trying to reconcile.