Problem D How Many Trees?

Input: standard input Output: standard output Time Limit: 100 seconds Memory Limit: 32 MB

A binary search tree is a binary tree with root \mathbf{k} such that any node \mathbf{v} reachable from its left has **label** (\mathbf{v}) < **label** (\mathbf{k}) and any node \mathbf{w} reachable from its right has **label** (\mathbf{v}) > **label** (\mathbf{k}). It is a search structure which can find a node with label \mathbf{x} in $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ average time, where \mathbf{n} is the size of the tree (number of vertices).

Given a number **n**, can you tell how many different binary search trees may be constructed with a **set** of numbers of size **n** such that each element of the set will be associated to the label of exactly one node in a binary search tree?

Input and Output

The input will contain a number $1 \le i \le 300$ per line representing the number of elements of the set. You have to print a line in the output for each entry with the answer to the previous question.

Sample Input

1 2

3

Sample Output

2

5

(The Joint Effort Contest, Problem setter: Rodrigo Malta Schmidt)