МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

АДЫГЕЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерно-физический факультет Кафедра автоматизированных систем обработки информации и управления

ОТЧЕТ ПО ПРАКТИКЕ

Программаная реализация численного метода Нахождение обратной матрицы методом исключения неизвестных Гаусса.

2 курс, группа 2ИВТ

Выполнил:	
	_ Ю. А. Береснев
«»	_ 2021 г.
Руководитель:	
	_ С.В. Теплоухов
« »	2021 г.

Майкоп, 2021 г.

1. Введение

1.1. Цель работы

Целью данной работы является вычисление матрицы обратной заданной.

1.2. Теория

Нахождение обратной матрицы методом исключения неизвестных Гаусса. Первый шаг для нахождения обратной матрицы методом исключения неизвестных Гаусса - приписать к матрице A единичную матрицу того же порядка, отделив их вертикальной чертой. Мы получим сдвоенную матрицу (A|E). Умножим обе части этой матрицы на A^{-1} . Тогда получим $(A \cdot A^{-1}|E \cdot A^{-1})$, но $A \cdot A^{-1} = E$ и $E \cdot A^{-1} = A^{-1}$.

2. Ход работы

2.1. Код программы

```
#include <conio.h>
#include <iostream>
#include <math.h>
using namespace std;
int opr(double** a, int n) {
    if (n == 1)
        return a[0][0];
    else if (n == 2)
        return a[0][0] * a[1][1] - a[0][1] * a[1][0];
    else {
        double d = 0;
        for (int k = 0; k < n; k++) {
            double** m = new double* [n - 1];
            for (int i = 0; i < n - 1; i++) {
                m[i] = new double[n - 1];
            for (int i = 1; i < n; i++) {
                int t = 0;
                for (int j = 0; j < n; j++) {
                    if (j == k)
                        continue;
                    m[i - 1][t] = a[i][j];
                    t++;
                }
            }
            d += pow(-1, k + 2) * a[0][k] * opr(m, n - 1);
```

```
}
        return d;
}
void obr(double** 0, int n)
    double temp;
    double** E = new double* [n];
    for (int i = 0; i < n; i++)
        E[i] = new double[n];
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
        {
            if (i == j) E[i][j] = 1.0;
            else E[i][j] = 0.0;
        }
    for (int k = 0; k < n; k++)
    {
        temp = O[k][k];
        for (int j = 0; j < n; j++)
        {
            0[k][j] /= temp;
            E[k][j] /= temp;
        }
        for (int i = k + 1; i < n; i++)
        {
            temp = O[i][k];
            for (int j = 0; j < n; j++)
            {
                O[i][j] -= O[k][j] * temp;
                E[i][j] -= E[k][j] * temp;
            }
        }
    }
    for (int k = n - 1; k > 0; k--)
        for (int i = k - 1; i \ge 0; i--)
```

```
{
            temp = O[i][k];
            for (int j = 0; j < n; j++)
            {
                O[i][j] -= O[k][j] * temp;
                E[i][j] -= E[k][j] * temp;
            }
        }
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            O[i][j] = E[i][j];
}
int main()
{
    setlocale(LC_ALL, "Russian");
    int n;
    cout << "Укажите размерность квадратной матрицы:" << endl << "n=";
    cin >> n;
    double** A = new double* [n];
    cout << "Введите элементы матрицы:" << endl;
    for (int i = 0; i < n; i++) {
        A[i] = new double[n];
        for (int j = 0; j < n; j++) {
            cout << "A[" << i << "][" << j << "]=";
            cin >> A[i][j];
        }
    }
    if (n < 1) cout << "Определитель вычислить невозможно и обратной матрицы не сущес
    else
    {
        cout << "Определитель для заданной матрицы = " << opr(A, n) << endl;
        if (opr(A, n) == 0) cout << "Матрица вырожденная и обратной матрицы для неё н
        else {
            obr(A, n);
            cout << "Обратная матрица для заданной:" << endl;
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    cout << A[i][j] << " ";
                } cout << endl;</pre>
            }
        }
    }
```

```
_getch();
return 0;
}
```

```
С:\Users\beres\source\repos\Project1\Debug\Project1.exe

Укажите размерность квадратной матрицы:
n=3
Введите элементы матрицы:
A[0][0]=1
A[0][1]=2
A[0][2]=3
A[1][0]=3
A[1][0]=3
A[1][1]=2
A[1][2]=3
A[2][0]=1
A[2][0]=1
A[2][1]=2
A[2][0]=1
A[2][1]=2
A[2][1]=2
A[2][1]=2
A[2][1]=2
A[2][2]=3
Определитель для заданной матрицы = 0
```

Рис. 1. Окно программы с вырожденной матрицей

```
C:\Users\beres\source\repos\Project1\Debug\Project1.ex
Укажите размерность квадратной матрицы:
n=3
Введите элементы матрицы:
A[0][0]=3
 [0][1]=2
 [0][2]=3
 [1][0]=2
    [1]=1
 [1][2]=3
 [2][0]=3
A[2][1]=1
A[2][2]=2
Определитель для заданной матрицы = 4
Обратная матрица для заданной:
-0.25
       -0.25
              0.75
1.25
      -0.75
              -0.75
-0.25
       0.75
              -0.25
```

Рис. 2. Окно программы с обратной матрицей

Список литературы

- [1] Кнут Д.Э. Всё про Т
EX. Москва: Изд. Вильямс, 2003 г. 550 с.
- [2] Львовский С.М. Набор и верстка в системе LATeX. 3-е издание, исправленное и дополненное, 2003 г.
- [3] Воронцов К.В. РТБХ в примерах, 2005 г.
- [4] Страуструп Б. Язык программирования С++, 2013 г.
- [5] Кёниг Э., Му Б. Эффективное программирование на С++, 2016 г.
- [6] Мейерс С. Эффективный и современный С++, 2018 г.
- [7] Довгаль В.А., Коробков В.Н. Программирование на языке C++ в среде Microsoft Visual Studio Часть 1, Учебно-методическое пособие, 2015 г.