Time Series Forecasting

Développez un outil de prévision de la consommation d'énergie

OBJECTIF

Créer un outil de prédiction de la consommation d'énergie de nos clients et anticiper les besoins du marché en utilisant des réseaux neuronaux récurrents

Le dataset

Ce dataset contient la consommation électrique d'un seul foyer par minute, sur une période de 4 ans, soit 3 millions de valeurs entre décembre 2006, et novembre 2010.

Il y a différentes mesures électriques (volt, ampère, kilowatt) mais nous restons concentré sur notre cible à prédire : la colonne "global activy power" qui elle, est en kilowatt.

Notre cible : Global active power

Global activity power par années

Les différentes étapes pour modéliser une série temporelle

- Set index sur le datetime
- Split le dataset (train / test)
- Normaliser les features
- Convertir les valeurs en matrice
- Reshape en X=t and Y=t+1.
- Reshape input en 3D: (sample size, time steps, features)

Résultats obtenus avec LSTM

- Resample par jour
- Variation de la sequence length
- Variation du Batch size
- Test en resample par heure

```
model = Sequential()
model.add(Input(shape=(sequence_length, num_features)))
model.add(LSTM(14, return_sequences=False, activation='tanh'))
model.add(Dense(1, activation='linear'))
```

shuffle = False	Silutifie - raise	SHUTTLE = False
loss: 0.4181 - mae: 0.4785	loss: 0.3659 - mae: 0.4479	loss: 0.3862 - mae: 0.4577

batch size = 252

chuffle - Falce

sampling rate = 1

stride = 1

sequence length = 14

sampling rate = 1

batch_size = 252

stride = 1

sequence length = 7

sampling rate = 1

batch size = 252

shuffle - False

stride = 1

sequence length = 28

Variation Batch size

```
sampling_rate = 1
sequence_length = 14
stride = 1
batch_size = 32
shuffle = False
```

```
sampling_rate = 1
sequence_length = 14
stride = 1
batch_size = 64
shuffle = False
```

```
sampling_rate = 1
sequence_length = 14
stride = 1
batch_size = 128
shuffle = False
```

```
loss: 0.3513 - mae: 0.4267
```

```
loss: 0.3476 - mae: 0.4232
```

loss: 0.3559 - mae: 0.4202

```
sampling_rate = 1
sequence_length = 14
stride = 1
batch_size = 256
shuffle = False
```

```
sampling_rate = 1
sequence_length = 14
stride = 1
batch_size = 512
shuffle = False
```

loss: 0.3701 - mae: 0.4405

loss: 0.3520 - mae: 0.4268

Modification LSTM

```
model = Sequential()
model.add(Input(shape=(sequence_length, num_features)))
model.add(LSTM(28, return_sequences=False, activation='tanh'))
model.add(Dense(1, activation='linear'))
```

loss: 0.3377 - mae: 0.4150

Resample par heure

```
sampling_rate = 1
sequence_length = 24
stride = 1
batch_size = 512
shuffle = False
```

loss: 0.2870 - mae: 0.3797

Conclusion

- Meilleurs résultats en resampling par heure
- Difficultés de compréhension du preprocessing pour les time series en DL
- Next step: Continuer les tests avec LSTM et GRU, améliorer le modèle en jouant sur le preprocessing et les hyperparamètres