Blatt 17: Integrieren

Grundintegrale.

Bestimme (ohne auf die jeweiligen Gültigkeitsbereiche Rücksicht zu nehmen)

(a)
$$\int \frac{dx}{\cos^2(x)}$$
 (b) $\int \frac{dx}{\sin^2(x)}$ (c) $\int \frac{dx}{\sqrt{1-x^2}}$

(c)
$$\int \frac{dx}{\sqrt{1-x^2}}$$

(b)
$$\int \cosh(x)dx$$
 (e) $\int \frac{dx}{\cosh^2(x)}$ (f) $\int \frac{dx}{\sinh^2(x)}$

(e)
$$\int \frac{dx}{\cosh^2(x)}$$

(f)
$$\int \frac{dx}{\sinh^2(x)}$$

|2| Stammfunktion von 1/x.

In Vo. 4 Bsp. 2.11(ii) haben wir für a,b>0 gesehen, dass $\int_a^b \frac{dx}{x} = \log(x) \mid_a^b$ gilt. In vielen Formelsammlungen findet man allerdings

$$\int \frac{dx}{x} = \log|x| \quad (x \neq 0).$$

Versuche diesen Umstand zu klären.

Tipp: Betrachte analog zur Vorlesung den Fall a, b < 0.

3 Partielle Integration, explizit.

Berechne die folgenden Integrale:

(a)
$$\int_{1}^{2} x \log(x) dx$$
 (b)
$$\int_{1}^{2} x^{2} \log(x) dx$$
 (c)
$$\int_{0}^{\pi} x \sin(x) dx$$

(b)
$$\int_{1}^{2} x^{2} \log(x) dx$$

(c)
$$\int_{0}^{\pi} x \sin(x) \, dx$$

(d)
$$\int_{0}^{\pi} x^{2} \cos(x) dx$$

(e)
$$\int_{0}^{1} x^{2}e^{x} dx$$

(d)
$$\int_{0}^{\pi} x^{2} \cos(x) dx$$
 (e) $\int_{0}^{1} x^{2} e^{x} dx$ (f) $\int_{0}^{1} x \sqrt{1+x} dx$

4 Eindeutigkeit von Stammfunktionen (Ein Da Capo zur UE Schulmathematik 6). Mittels partieller Integration berechnen wir

$$\int \frac{dx}{x \log(x)} = \left[\frac{1}{\log(x)} \log(x) \right] - \int -\frac{\log(x)dx}{x \log^2(x)} = 1 + \int \frac{dx}{x \log(x)}.$$

Impliziert das 0 = 1? Warum, Warum nicht? Ist die partielle Integration nicht korrekt ausgeführt oder darf hier überhaupt partiell integriert werden?

Tipp: Wie sieht es mit $\int_a^b \frac{dx}{x \log(x)}$ aus?

| 5 | Substitutionsregel, explizit.

Berechne mittels Substitutionsmethode:

(a)
$$\int_{0}^{2\pi} x \cos(x) dx$$
 (b)
$$\int_{0}^{\pi} x \sin(x) dx$$
 (c)
$$\int_{2}^{4} \frac{dx}{x \log(x)}$$

(b)
$$\int_{0}^{\pi} x \sin(x) \, dx$$

(c)
$$\int_{2}^{4} \frac{dx}{x \log(x)}$$

Tipp: Setze $x = t + \pi$. Tipp: Setze $x = t + \pi/2$.

Tipp: Setze $u = \log(x)$.

- "Umkehrung" der logarithmischen Ableitung.
 - (a) Beweise die folgende Aussage: Sei $\varphi:[a,b]\to\mathbb{R}$ stetig differenzierbar und sei $\varphi(x) \neq 0$ für alle $x \in [a, b]$. Dann gilt (Schreibweise wie in |2|)

$$\int_{a}^{b} \frac{\varphi'(x)}{\varphi(x)} dx = \log |\varphi(x)| \mid_{a}^{b}$$

- (b) Berechne $\int_{0}^{b} \tan(x) dx$ für $[a, b] \subseteq (-\pi/2, \pi/2)$.
- | 7 | Integrale der Arcusfunktionen. Berechne die folgenden Integrale

(a)
$$\int \arctan(x) dx$$

(b)
$$\int \arcsin(x) dx$$

Tipp: Beginne mit demselben Trick wie bei der Berechnung von $\int \log(x) dx$ in Vo. 4 Bsp. 2.14(ii), dann verwende | 6 | bzw. substituiere geeignet.

8 Explizite Integrale.

Bestimme:

(a)
$$\int \frac{dx}{\sqrt{1-x^2}}$$

(b)
$$\int xe^{x^2} dx$$

(c)
$$\int \frac{dx}{x^2\sqrt{4+x^2}}$$

(a) $\int \frac{dx}{\sqrt{1-x^2}}$ (b) $\int xe^{x^2} dx$ (c) $\int \frac{dx}{x^2\sqrt{4+x^2}}$ Tipp: Setze $x=2\tan(z)$.

9 Uneigentliche Integrale.

Uberprüfe die folgenden uneigentlichen Integrale auf Konvergenz und berechne gegebenenfalls ihren Wert:

(a)
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$$

(a)
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$$
 (b)
$$\int_{0}^{1} \frac{dx}{\sqrt{1+x^2-2x}}$$
 (c)
$$\int_{0}^{\infty} \frac{e^t}{t} dt$$

(c)
$$\int_{0}^{\infty} \frac{e^{t}}{t} dt$$

10 Integraltest für Reihen.

Für welche $s \in \mathbb{R}$ konvergiert die Reihe $\sum_{n=2}^{\infty} \frac{1}{n(\log(n))^s}$?