重庆理工大学考试试题卷

2013~ 2014 学年第二学期

学生答题不得超过此线 题号 总分 总分人 分数 得分 评卷人 一、单项选择题(本大题共10小题,每小题2分,共20分)。 (1) 点(7,-1,2)关于() 的对称点是(7,-1,-2). B_{x} xoy \overline{m} $C \cdot yoz \equiv D \cdot zox \equiv$ (2) 将 yoz 面上的直线 y=z-1绕 z 轴旋转而成的曲面方程是 (). A, $x^2 + y^2 = z - 1$ B, $x^2 + y^2 = (z - 1)^2$ C, $x^2 + y^2 + 1 = z^2$ D, $(x + 1)^2 = y^2 + z^2$ (3) $\lim_{(x,y)\to(0,0)} \frac{xy}{2-\sqrt{xy+4}} = ($). A、-4 B、4 C、 $-\frac{1}{4}$ D、不存在 (4) 曲面 $x^2 + y^2 + z^2 - x + y - z - 10 = 0$ 在点 (2,1,2) 处的切平面方程为 (A, x+y+z-5=0 B, 3x+3y+3z-5=0 C, $\frac{x-2}{1}=\frac{y-1}{1}=\frac{z-2}{1}$ D, $\frac{x}{3}=\frac{y}{3}=\frac{z}{3}$ (5) $\c y f(x, y, z) = 5x^2 - y^2 + 6z^2 + x - y + z$, $\c y grad f(0, 0, 0) = ($ B. 3 $C, \vec{i} - \vec{j} + \vec{k}$ D. $\vec{i} + \vec{j} + \vec{k}$ A, 1 (6) 设 $D = \{(x, y) | x^2 + y^2 \le 2x \}$, 则二重积分 $\iint_{\mathbb{R}} \sqrt{x^2 + y^2} \, dx dy$ 可表示为(A, $\int_0^{2\pi} d\theta \int_0^1 \rho^2 d\rho$ B, $\int_0^{2\pi} d\theta \int_0^{2\cos\theta} \rho^2 d\rho$ C, $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^1 \rho^2 d\rho$ D, $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \rho^2 d\rho$ (7) 曲面 $\Sigma \in z = xy$ 被柱面 $x^2 + y^2 = 1(x \ge 0, y \ge 0)$ 截下部分,D 为曲面 Σ 在 xoy 面投影区域,则曲面 Σ 的面积是(A、 $\iint_D xyd\sigma$ B、 $\iint_D d\sigma$ C、 $\iint_\Sigma xydS$ D、 $\iint_\Sigma dS$ (8) 下列级数**收敛**的是(). A, $\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots$ B, $\sum_{n=1}^{\infty} \frac{1}{4+n}$ C, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ D, $\sum_{n=1}^{\infty} \left(\frac{1}{3^n} + \frac{8}{n}\right)$ (9) 函数 $f(x) = \begin{cases} -1 & -\pi \le x < 0 \\ 1 & 0 \le x < \pi \end{cases}$ 展开成傅里叶级数,其系数 $a_n = ($) D、 $\begin{cases} 0 & n$ 为偶数 $\frac{4}{n} & n$ 为奇数 C, 0 (10) 级数 $\sum_{n=1}^{\infty} \frac{\sin 2^n}{3^n}$ ().

D、可能收敛可能发散

C、发散

A、条件收敛

B、绝对收敛

重庆理工大学考试试题卷

2013~ 2014 学年第二学期

密 数 数 数 $\frac{\dot{g}}{\dot{g}}$ 数 数 $\frac{\dot{g}}{\dot{g}}$ 数 数 $\frac{\dot{g}}{\dot{g}}$ 3 分,共 15 分) (1) 设 $\frac{\dot{g}}{\dot{g}}$ 3 分,共 15 分) (2) 交换积分次序 $\int_{0}^{1} dx \int_{2x}^{2} f(x,y) dy =$	
得分 评卷人 二、填空题(本大题共 5 小题,每小题 3 分,共 15 分) (1) 设 $\vec{a} = (1,-2,1),\vec{b} = (0,3,-4)$,则 $Prj_{\vec{b}}\vec{a} = \underline{\hspace{1cm}}$ (2) 交换积分次序 $\int_0^1 dx \int_{2x}^2 f(x,y) dy = \underline{\hspace{1cm}}$	
(1) 设 $\vec{a} = (1, -2, 1), \vec{b} = (0, 3, -4), \text{则 } Prj_{\vec{b}} \vec{a} = \underline{\qquad}$ (2) 交换积分次序 $\int_0^1 dx \int_{2x}^2 f(x, y) dy = \underline{\qquad}$	
	·
(3) 设 Ω : $x^2 + y^2 + z^2 \le 1$, 则 $\iint_{\Omega} (x^2 + y^2) z dv = $ (4) 幂级数 $\sum_{n=1}^{\infty} \frac{2n-1}{3^n} x^n$ 的收敛区间是	
	·
(5) 函数 $z = xe^{y}$ 在点 $(1,0)$ 处沿 $\vec{l} = (1,-1)$ 方向的方向导数 $\frac{\partial z}{\partial l}\Big _{\substack{x=1\\y=0}} = \underline{\qquad}$.	
得分 评卷人 三、求解下列各题(本大题共 10 小题,每小题 6 分,共 60 分)。	
(1) 求通过点 $P(1,-2,-1)$ 、 $Q(-1,0,3)$ 且垂直于平面	, 求函数
$3x-y+z-2=0$ 平面方程. $z = f(x,y)$ 在点 (1,0) 处的全微分 dz $\Big _{\substack{x=1\\y=0}}$.	
(3) 设函数 $z = (2x - y)^{3x - 2y}$,求 $\frac{\partial z}{\partial x}\Big _{\substack{x=1 \ y=1}}^{x=1}$, $\frac{\partial z}{\partial y}\Big _{\substack{x=1 \ y=1}}^{x=1}$. (4) 求函数 $f(x, y) = 2(3x - y) - 3x^2 - y^2$ 的极值.	:
(5) 计算 $\iint_{D} xd\sigma$,其中 D 是由抛物线 $y = x^2 - 2$ 及直线 $y = x$ 所 (6) 计算 $\iint_{\Omega} zdv$,其中 Ω 是由 $z = \frac{1}{2}(x^2 + y^2)$ 与 $z = 1$ 围成的	5日区域.
围成的闭区域.	

重庆理工大学考试试题卷

2013~ 2014 学年第二学期

班级	学号	姓名	考试科目 <u>高等数学[(2)机电]</u> <u>A 卷</u> 闭卷 共 <u>3</u> 页
••••••	•••••		・・ 封 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(7) 计算∫ _L (x		·····································	(8) 计算 $\iint_L (x^3 - y) dx + (x - y^3) dy$, 其中 L 为以点 $O(0,0)$, $A(1,0)$, $B(1,1)$ 为顶点的三角形 OAB 的正向边界.
_	(x-4)dydz + (5-y)dzdx + (5-y)dzdx	(2z-7)dxdy,其中Σ为球	(10)将函数 $f(x) = \frac{1}{x}$ 展开成 $x - 1$ 的幂级数.
得分 证明: 直线		明题(5 分) $与直线 L_2: \begin{cases} 3x+6y-3z = 2x \\ 2x-y-z = 2x \end{cases}$	= 5 平行.