Aspect based sentiment Analysis and Summarization of Reviews

Ankit Dwivedi <ankitd@stanford.edu> & Arunothia Marappan <arunothi@stanford.edu>

CS221 Project, Stanford University

Motivation

Standard sentiment analysis or star rating does not convey a lot of useful/actionable information about product or business entity. Aspect based sentiment analysis and review summarization help customers make informed decisions, and businesses take corrective actions.

Problem Definition

Aspect based Sentiment Analysis

Input

The price is reasonable, service is poor Great service but food is okay.

Output

Sentiment (Positive, Negative, Neutral) of the review for each of 5 aspects (Ambience, Food, Price, Service, Miscellaneous)

Challenges

- 1 Lack of large labelled data set (no scope for validation set).
- 2 Detecting miscellaneous aspect and neutral sentiment more accurately
- 3 Non trivial reviews, like -
- P Definitely not a restaurant to skip
- Never been disappointed here
- Never been disappointed like this
- 4 Understanding which neutral network architecture works and why

Links

Data: Semeval-2014, kaggle.com/yelp-dataset Code: github.com/ankitdwivedi23/cs221-project Video:

Approaches

Aspect Detection Trained 5 Logistic Regression Classifiers, one for each aspect, using hinge loss function as the optimization objective, and Stochastic Gradient Descent for training. Experimented with following word ngram features:

- Term Frequency-Inverse Document Frequency	
	TF-IDF
	N-gram \iff Review importance
- Pointwise Mutual Information [1],	

N-gram ← Aspect importance

Approaches

2 Sentiment Analysis per Aspect

- Linear Classifier: In addition to using tf-idf and PMI (for positive and negative reviews), added a preprocessing step to modify words present in a negated context

Negated Context Not even the pizza was good ⇒ Not even the

pizza_NEG was good_NEG

- RNN: Trained a bidirectional GRU network, using GloVe word embeddings to represent review tokens

Analysis

- Reviews like "The atmosphere is unheralded" the service impedible and the food magnificent." contain a lot of unseen words which make both TF-IDF and PMI scores not so helpful.
- Reviews like "Not only was the food not bad but the price was also reasonable." makes it difficult to capture negated context.

Going Forward

Aspect based Sentiment Analysis

- In-depth error analysis
- Experiment with attentional encoder networks to capture postive/negative contexts over long ranges [2]
- Add more training and test data from SemEval 2015 and 2016 tasks

2 Summarization

We have not explored summarization beyond a basic baseline of using **TextRank** [3] on sentence vectors to rank the N most important sentences for the summary. Going forward, we would like to explore deep learning models for text summarization.

References

[1] Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and Saif Mohammad.

NRC-canada-2014: Detecting aspects and sentiment in customer

In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 437-442, Dublin, Ireland, August 2014. Association for Computational Linguistics.

- [2] Youwei Song, Jiahai Wang, Tao Jiang, Zhiyue Liu, and Yanghui Rao. Attentional encoder network for targeted sentiment classification. CoRR, abs/1902.09314, 2019.
- [3] Rada Mihalcea and Paul Tarau.

Textrank: Bringing order into texts.

Classification Results

https://drive.google.com/file/d/1QTsI1WpLiVta1TKVEEZE08uMKQMkvXQi/view?usp=sharing