CSE/ECE 848 Introduction to Evolutionary Computation

Module 1 - Lecture 3 - Part 2 Problem Solving and Search: Search

Wolfgang Banzhaf, CSE
John R. Koza Chair in Genetic Programming

Search

- Simulation (single-scenario) is different from optimization/ modelling -> straightforward in the direction of processing
- Multi-scenario simulation as a means to understand a problem
- Optimization & modelling have to search through a huge set of possibilities we call a "space"
- Each solution (or possibility) is a point in the search space
- How large is this space?

Search II

Complexity

Function	Function Value			
log N	1	1.699	2	3
N	10	50	100	1,000
NlogN	23.026	765.2	460.52	6,907.75
N^2	100	2,500	10,000	10^{6}
N^3	1,000	125,000	10^{6}	10^{9}
2^N	1,024	1.126×10^{15}	1.27×10^{30}	1.05×10^{301}
10^N	10^2	10^{50}	10^{100}	$10^{1,000}$
N!	$3,628.8 \times 10^3$	3.041×10^{64}	10^{158}	4×10^{2567}

From: Chopard/Tomassini, An Introduction to Metaheuristics for Optimization, Springer, 2018

Optimization vs. Constraint Satisfaction

- Objective function: a way of assigning a value to a possible solution that reflects its quality on a scale
 - Number of un-checked queens (maximize)
 - Length of a tour visiting given set of cities (minimize)
- Constraint: a binary evaluation telling whether a given requirement holds or not
 - Find a configuration of eight queens on a chessboard such that no two queens check each other
 - Find a tour with minimal length where city X is visited after city Y

Problem vs. Problem Solver

- There is a distinction between the problem (search space) ...
- ... and the problem solver (mover through search space)

NP Problems

- We only looked at classifying the problem, and did not discuss problem solvers
- This classification scheme needs the properties of the problem solver
- Benefit of this scheme: possible to tell how difficult the problem is

NP - Key Notions

- Problem size: dimensionality of the problem at hand and number of different values for the problem variables
- Running-time: number of operations the algorithm takes to terminate
 - Worst-case as a function of problem size
 - Polynomial or super-polynomial (e.g., exponential)
- Problem reduction: transforming current problem into another via mapping

NP Problems - Classes

The difficulty of a problem can now be classified:

- Class P: Algorithm can solve the problem in polynomial time (worst-case running-time for problem size n is less than F(n) for some polynomial formula F)
- Class NP: Problem can be solved and any solution can be verified within polynomial time by some other algorithm (P subset of NP)
- Class NP-complete: Problem belongs to class NP and any other problem in NP can be reduced to this problem by an algorithm running in polynomial time
- Class NP-hard: Problem is at least as hard as any other problem in NPcomplete but solution cannot necessarily be verified within polynomial time

- P is different from NP-hard
- Not known whether P is different from NP

For now: Use of approximation algorithms and metaheuristics