MA1521 CALCULUS FOR COMPUTING

Wang Fei

matwf@nus.edu.sg

Department of Mathematics Office: S17-06-16 Tel: 6516-2937

	_
Area Problem	lem 3 roblem 7 Revolution 10 by Cylindrical Shells 12 h 17
Volume Problem	
Solids of Revolution	10
Volumes by Cylindrical Shells	12
Arc Length	17
Surface Area of Revolution	20

Chapter 6: Applications of Integration

2 / 25

The Area Problem

- Recall the geometric meaning of definite integral:
 - Let f be a continuous function on [a,b]. Then the (net) area under the curve y=f(x) from a to b is $A=\int_a^b f(x)\,dx$.

- $\Delta A = f(x) \, \Delta x$. Then $\frac{d\dot{A}}{dx} = \lim_{\Delta x \to 0} \frac{\Delta A}{\Delta x} = f(x)$.
 - Therefore, $A = \int_a^b f(x) dx$.

3 / 25

The Area Problem

- In general, suppose f and g are continuous functions such that $f(x) \geq g(x)$ for all $x \in [a,b]$.
 - lacktriangle What is the area of the region bounded by y=f(x) and y=g(x) from a to b?

Examples

■ Find the area of the region bounded above by $y=x^2+1$ and bounded below by y=x from x=0 to x=1.

- $A = \int_0^1 [(x^2 + 1) x] dx = \int_0^1 (x^2 + 1 x) dx.$
 - $A = \left[\frac{x^3}{3} + x \frac{x^2}{2}\right]_{x=0}^{x=1} = \frac{5}{6} 0 = \frac{5}{6}.$

5 / 25

Examples

lacktriangle Find the area of the region enclosed by $y=x^2$ and $y=2x-x^2$.

- Find intersections : Let $x^2 = 2x x^2$. Then x = 0 or x = 1.
 - \bullet So the integral is from 0 to 1.
 - $A = \int_0^1 [(2x x^2) x^2] dx = \left[x^2 \frac{2}{3}x^3 \right]_{x=0}^{x=1} = \frac{1}{3}.$

The Volume Problem

- We now move from 2D to 3D. How to find the volume of a solid?
 - In particular, consider the following:

If the base area is S and the height is h, then the volume is

$$V = Sh$$
.

7 / 25

The Volume of the Unit Sphere

■ What is the volume of the unit sphere?

- - $V = \int_{-1}^{1} \pi (1 x^2) \, dx = \pi \left[x \frac{x^3}{3} \right]_{x = -1}^{x = 1} = \frac{4\pi}{3}.$

The Volume Problem

In general, suppose a solid is put along the x-axis from a to b.

- Let A(x) be the area of the cross-section perpendicular to the x-axis and passing through the point x.
- Then the volume of the solid is $V = \int_a^b A(x) dx$.

9 / 25

Solids of Revolution

- Suppose the solid is obtained by rotating the region under the curve y=f(x) from a to babout the x-axis.
 - For example, $y = \sqrt{x}$ from 0 to 1:

$$A(x)=\pi(\sqrt{x})^2. \text{ Then } V(x)=\int_0^1 A(x)\,dx=\int_0^1 \pi x\,dx=\frac{\pi}{2}.$$

$$\blacksquare \quad A(x)=\pi(f(x))^2, \text{ so } V=\int_a^b \pi(f(x))^2\,dx. \quad \text{Washer method}.$$

Examples

Find the volume of the solid obtained by rotating the region bounded by $y=x^3$, y=8 and x = 0 about the y-axis.

- Integrate along the y-axis: $y = x^3 \Rightarrow x = \sqrt[3]{y}$. $A(y) = \pi(\sqrt[3]{y})^2$.
 - $V = \int_0^8 \pi (\sqrt[3]{y})^2 dy = \int_0^8 \pi y^{2/3} dy = \frac{96}{5}\pi.$

11 / 25

Volumes by Cylindrical Shells

Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y = 2x^2 - x^3$ and y = 0.

6

- $A(y) = \pi(r_2^2 r_1^2) = \cdots = ?$ Let $y' = 4x 3x^2 = 0$. Then x = 4/3. y = 32/27.
 - $V = \int_0^{32/27} A(y) \, dy = \cdots$
 - It seems that we cannot continue using washer method.

Volumes by Cylindrical Shells

Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2x^2-x^3$ and y=0.

13 / 25

Volumes of Cylindrical Shells

- $\blacksquare \quad \text{In general, let f be a continuous function such that $f(x) \geq 0$ for all $x \in [a,b]$, $(0 \leq a < b)$.}$
 - lacktriangle Then the volume of the solid obtained by rotating the region under the curve y=f(x) from a to b about the y-axis is

$$V = \int_a^b 2\pi x \, f(x) \, dx.$$

- This is called the method of cylindrical shells.
- In the previous example, $f(x)=2x^2-x^3$ on [0,2]. Then the volume of the solid obtained by rotating the region under the curve y=f(x), $0 \le x \le 2$ about the y-axis is
 - $V = \int_0^2 2\pi x (2x^2 x^3) \, dx = \pi \left[x^4 \frac{2}{5} x^5 \right]_{x=0}^{x=5} = \frac{16\pi}{5}.$

Examples

Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$.

- Find the lower and upper limit of integral:
 - $x = x^2 \Rightarrow x = 0$ or x = 1. The integral is from 0 to 1.
- $\begin{array}{ll} \bullet & V = \int 2\pi \mathrm{radius} \cdot \mathrm{height} \, dx. \\ \bullet & V = \int_0^1 2\pi x (x-x^2) \, dx = 2\pi \left[\frac{x^3}{3} \frac{x^4}{4}\right]_{x=0}^{x=1} = \frac{\pi}{6}. \end{array}$

15 / 25

Examples

Use cylindrical shell method to find the volume of the solid obtained by rotating the region under the curve $y = \sqrt{x}$ from 0 to 1 about the x-axis.

• $V = \int_0^1 2\pi \underbrace{y} \cdot \underbrace{(1-y^2)} dy = \pi \left[y^2 - \frac{1}{2} y^4 \right]_{y=0}^{y=1} = \frac{\pi}{2}.$

The Arc Length

- \blacksquare A function f called **smooth** if f' is continuous.
 - ◆ How to measure the arc length of a smooth curve?

• The arc length of the curve y = f(x) from x = a to x = b is

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx.$$

17 / 25

Example

 \blacksquare Find the length of the arc of $y=\sqrt{x}$ from (0,0) to (1,1).

• Use
$$u = \sqrt{x}$$
 $(x > 0)$. Then $u^2 = x$.
$$\int \sqrt{1 + \frac{1}{4x}} \, dx = \int \sqrt{1 + \frac{1}{4u^2}} \, 2u \, du = \int \sqrt{1 + 4u^2} \, du.$$

Recall
$$\int \sqrt{1+x^2} \, dx = \frac{x\sqrt{1+x^2}}{2} + \frac{\ln(x+\sqrt{x^2+1})}{2} + C.$$

$$\int \sqrt{1+4u^2} \, du = \frac{1}{2}u\sqrt{1+4u^2} + \frac{1}{4}\ln(2u+\sqrt{1+4u^2}) + C.$$

$$\int \sqrt{1 + \frac{1}{4x}} \, dx = \frac{1}{2} \sqrt{x(1 + 4x)} + \frac{1}{4} \ln(2\sqrt{x} + \sqrt{1 + 4x}) + C.$$

Example

$$\begin{split} L &= \lim_{a \to 0^+} \int_a^1 \sqrt{1 + \frac{1}{4x}} \, dx \\ &= \lim_{a \to 0^+} \left[\frac{1}{2} \sqrt{x(1 + 4x)} + \frac{1}{4} \ln(2\sqrt{x} + \sqrt{1 + 4x}) \right]_{x=a}^{x=1} \\ &= \frac{1}{2} \sqrt{5} + \frac{1}{4} \ln(2 + \sqrt{5}). \end{split}$$

$$\frac{dL}{dy} = \lim_{\Delta y \to 0} \frac{\Delta L}{\Delta y} = \lim_{\Delta y \to 0} \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta y}$$
$$= \lim_{\Delta y \to 0} \sqrt{\left(\frac{\Delta x}{\Delta y}\right)^2 + 1} = \sqrt{\left(\frac{dx}{dy}\right)^2 + 1}.$$

• $L = \int_0^1 \sqrt{(2y)^2 + 1} \, dy = \dots = \frac{\sqrt{5}}{2} + \frac{1}{4} \ln(2 + \sqrt{5}).$

19 / 25

Surface Area of Revolution

- lacktriangle Let's now consider the surface area problem of a 3D object.
 - ◆ For example, what is the surface area of the **unit sphere**?

• The surface of the unit sphere can be viewed as the rotation of the curve $y = \sqrt{1 - x^2}$ about the x-axis.

Surface area of a Cone

- **Question**: How to evaluate the surface area of revolution?
 - ◆ What is the surface area of a **cone**?

- $\frac{\text{Area of the Wedge}}{\text{Length of the Arc}} = \frac{\text{Area of the circle}}{\text{Length of the circle}}.$ $\frac{A}{2\pi R} = \frac{\pi L^2}{2\pi L} = \frac{L}{2} \Rightarrow \boxed{A = \pi RL}$

21 / 25

Frustum of a cone

■ What is the surface area of a **frustum of a cone**?

- $= \pi(R \Delta L + r \Delta L) = \pi(R + r) \Delta L.$

Surface Area of Revolution

■ We now approximate the surface by the frustums of a cone:

23 / 25

Surface Area of Revolution

Let f be a smooth function such that $f(x) \ge 0$ on [a,b]. Then the area of the surface obtained by rotating the curve y = f(x), $a \le x \le b$, about the x-axis is

$$A = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx.$$

- In particular, recall that the surface of the unit sphere is obtained by rotating $y=\sqrt{1-x^2}$, $-1\leq x\leq 1$, about the x-axis.
 - $f'(x) = -\frac{x}{\sqrt{1-x^2}} \Rightarrow \sqrt{1+(f'(x))^2} = \frac{1}{\sqrt{1-x^2}}$.
 - $A = \int_{-1}^{1} 2\pi \sqrt{1 x^2} \frac{1}{\sqrt{1 x^2}} dx = \int_{-1}^{1} 2\pi dx = 4\pi.$
 - Therefore, the surface area of the unit sphere is 4π .

Example

Find the area of the surface generated by rotating the curve $y=e^x$, $0 \le x \le 1$, about the x-axis.

 $A = \int_0^1 2\pi \, e^x \sqrt{1 + ((e^x)')^2} \, dx = 2\pi \int_0^1 e^x \sqrt{1 + (e^x)^2} \, dx$ $= 2\pi \int_1^e \sqrt{1 + u^2} \, du = \pi \left(u \sqrt{1 + u^2} + \ln(u + \sqrt{1 + u^2}) \right) \Big|_{u=1}^{u=e} = \cdots .$