Flashlamp Annealing for Improved Ferroelectric Junctions

Master's Degree Project

Theodor Blom

Lund University

Project Duration: 12 months, 60 hp

August 18, 2021

Mattias Borg

Division of Nano Electronics,
Department of Electrical and Informations Technology,
Faculty of Engineering, LTH,
Lund University

Rainer Timm

Division of Synchrotron Radiation, Department of Physics, Faculty of Science, Lund University

CONTENTS

Contents

1	Introduction	1			
2	Semiconductors and Ferroelectrics				
	2.1 III-V Semiconductors	1			
	2.2 Ferroelectricity				
	2.3 HfZrO ₂	1			
	2.3.1 TiN-capping?	1			
	2.4 Energyband Theory and Leakage Mechanics	1			
	2.5 FTJs	1			
3	Fabrication	1			
	3.1 Processing Methods	1			
	3.1.1 ALD	2			
	3.1.2 Sputtering	2			
	3.1.3 Flashlamp Annealing	2			
	3.1.4 Thermal Evaporation	2			
	3.2 Sample Fabrication Process	2			
4	Electrical Charcterization	2			
	4.1 PUND and Endurance	2			
	4.2 CV	2			
5	Results and Analysis	2			
6	Conclussion				
7	References				

Abstract

Abstract here!

1 Introduction

Mål: Introducera området och ge en överblick.[1]

2 Semiconductors and Ferroelectrics

Mål: Klargöra varför III-V (utgå från Si) och FE är intressant. Varför gör vi detta? Vad är applikationerna!

2.1 III-V Semiconductors

Mål: Redogör för varför III-V är intressant.

2.2 Ferroelectricity

Mål: Basics of FE; Kristallstrukturer, Polarisation, Domäner och PE-kurvor.

2.3 HfZrO₂

Mål: Redogör för FE-HfO₂ och beskriv hur Zr kommer in i bilden.

2.3.1 TiN-capping?

Mål: Ta upp varför vi använder TiN. Ta upp W?

2.4 Energyband Theory and Leakage Mechanics

Mål: Redogör för hur energibanden ser ut med Semiconductor-Insulator-Metal-cap och gå igenom de olika tunnelsätten.

2.5 FTJs

Mål: Sammanställ allt genom att beskriva hur FTJer funkar och fördelarna med dem.

3 Fabrication

Mål: Redogör för hela processen på LNL.

3.1 Processing Methods

Mål: Redogör för dem mest intressanta/relevanta metoderna. Kanske bara ALD och FLA?

- 3.1.1 ALD
- 3.1.2 Sputtering
- 3.1.3 Flashlamp Annealing
- 3.1.4 Thermal Evaporation
- 3.2 Sample Fabrication Process

Mål: Redogör för hela min process.

4 Electrical Charcterization

Mål: Redogör för metoderna på E-huset.

4.1 PUND and Endurance

4.2 CV

5 Results and Analysis

Mål: Presentera serierna i en rimlig ordning och dra slutsatser från varje serie.

Tre steg: 1. FlashInt och Temperatur 2. FlashNum vid olika FlashInt 3. Utforska olika kompositioner (laminat och superlattice)

Fokus på frågeställingar!

- Utforska möjligheten kring FLA
- Hur bra devices kan vi göra? PUND och Endurance
- Fokus på interface defects genom CV!

6 Conclussion

Mål: Wrap it up. Lägg fram de främsta resultaten/ideerna och ge tips på hur man kan undersöka vidare.

7 References

[1] R. Atle, "Development of ferroelectric hafnium oxide for negative capacitance field effect transistors," LUP Student Papers, 2019.