1.Importing Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

2.Imporing Dataset

```
In [2]: df = pd.read_csv("Titanic-Dataset.csv")
```

In [3]: df.head()

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark€
0	1	0	3	Braund, Mr. Owen Harris	ma l e	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	ma l e	35.0	0	0	373450	8.0500	NaN	
4												•

In [4]: df.shape

Out[4]: (891, 12)

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype					
0	PassengerId	891 non-null	int64					
1	Survived	891 non-null	int64					
2	Pclass	891 non-null	int64					
3	Name	891 non-null	object					
4	Sex	891 non-null	object					
5	Age	714 non-null	float64					
6	SibSp	891 non-null	int64					
7	Parch	891 non-null	int64					
8	Ticket	891 non-null	object					
9	Fare	891 non-null	float64					
10	Cabin	204 non-null	object					
11	Embarked	889 non-null	object					
dtyp	dtypes: float64(2), int64(5), object(5)							

memory usage: 83.7+ KB

In [6]: df.describe()

Out[6]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [7]: #Dropping the unwanted columns from the dataset df.drop(['Name','SibSp','Parch','Ticket'],axis=1,inplace=True) df.head()

Out[7]:

	PassengerId	Survived	Pclass	Sex	Age	Fare	Cabin	Embarked
0	1	0	3	ma l e	22.0	7.2500	NaN	S
1	2	1	1	female	38.0	71.2833	C85	С
2	3	1	3	female	26.0	7.9250	NaN	S
3	4	1	1	female	35.0	53.1000	C123	S
4	5	0	3	male	35.0	8.0500	NaN	S

C:\Users\shaik\AppData\Local\Temp\ipykernel_21200\2438084875.py:1: FutureWarning: The d efault value of numeric_only in DataFrame.corr is deprecated. In a future version, it w ill default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corr = df.corr()

Out[8]:

	PassengerId	Survived	Pclass	Age	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	0.012658
Survived	- 0.005007	1.000000	-0.338481	-0.077221	0.257307
Pclass	- 0.035144	-0.338481	1.000000	-0.369226	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	0.096067
Fare	0.012658	0.257307	-0.549500	0.096067	1.000000

In [9]: plt.subplots(figsize=(20,15))
sns.heatmap(corr,annot=True)

Out[9]: <Axes: >

3. Checking for Null Values

```
In [10]:
          df.isnull().any()
Out[10]: PassengerId
                           False
          Survived
                           False
          Pclass
                           False
          Sex
                           False
          Age
                             True
          Fare
                            False
          Cabin
                             True
          Embarked
                             True
          dtype: bool
          df.isnull().sum()
In [11]:
Out[11]: PassengerId
                              0
          Survived
                              0
          Pclass
                              0
          Sex
                              0
                           177
          Age
          Fare
                              0
          Cabin
                           687
          Embarked
                              2
          dtype: int64
In [12]:
          df.dropna()
Out[12]:
                Passengerld Survived Pclass
                                                                       Cabin Embarked
                                               Sex Age
                                                            Fare
             1
                          2
                                   1
                                             female
                                                    38.0 71.2833
                                                                         C85
                                                                                     С
                                                                                     S
             3
                          4
                                   1
                                             female
                                                    35.0 53.1000
                                                                        C123
                          7
                                   0
                                                                                     S
             6
                                              male
                                                    54.0 51.8625
                                                                         E46
                                                                                     S
            10
                         11
                                   1
                                                     4.0
                                                        16.7000
                                                                          G6
                                             female
                         12
                                   1
                                                    58.0
                                                         26.5500
                                                                        C103
                                                                                     S
            11
                                             female
                         ...
           871
                        872
                                   1
                                             female 47.0 52.5542
                                                                         D35
                                                                                     S
           872
                        873
                                   0
                                               male 33.0
                                                          5.0000 B51 B53 B55
                                                                                     S
           879
                                   1
                                                                                     С
                        880
                                             female 56.0 83.1583
                                                                         C50
           887
                        888
                                   1
                                             female 19.0 30.0000
                                                                         B42
                                                                                     S
           889
                        890
                                              male 26.0 30.0000
                                                                        C148
                                                                                     С
          183 rows × 8 columns
In [13]:
          df.shape
```

Out[13]: (891, 8)

```
In [14]: df['Age'].fillna(0)
Out[14]: 0
                 22.0
          1
                 38.0
          2
                 26.0
                 35.0
          3
          4
                 35.0
                 . . .
          886
                 27.0
          887
                 19.0
          888
                  0.0
          889
                 26.0
          890
                 32.0
          Name: Age, Length: 891, dtype: float64
In [15]: df['Age'].ffill()
Out[15]: 0
                 22.0
          1
                 38.0
          2
                 26.0
          3
                 35.0
          4
                 35.0
                 . . .
          886
                 27.0
          887
                 19.0
          888
                 19.0
          889
                 26.0
          890
                 32.0
          Name: Age, Length: 891, dtype: float64
In [16]: df['Age'].bfill()
Out[16]: 0
                 22.0
                 38.0
          1
          2
                 26.0
          3
                 35.0
                 35.0
          886
                 27.0
          887
                 19.0
          888
                 26.0
          889
                 26.0
          890
                 32.0
          Name: Age, Length: 891, dtype: float64
```

```
df['Age'].fillna(df['Age'].median(),inplace = True)
In [17]:
         df['Age']
Out[17]: 0
                 22.0
                 38.0
          1
                 26.0
          2
          3
                 35.0
          4
                 35.0
          886
                 27.0
          887
                 19.0
          888
                 28.0
          889
                 26.0
         890
                 32.0
         Name: Age, Length: 891, dtype: float64
In [18]: df.isnull().sum()
Out[18]: PassengerId
                           0
          Survived
                           0
          Pclass
                           0
         Sex
                           0
                           0
         Age
                           0
          Fare
         Cabin
                         687
          Embarked
                           2
         dtype: int64
In [19]: df[['Cabin','Embarked']].head()
Out[19]:
             Cabin Embarked
          0
              NaN
                          S
          1
              C85
                          С
              NaN
                          S
              C123
                          S
                          S
              NaN
In [20]:
         df[['Cabin','Embarked']].isnull().sum()
Out[20]: Cabin
                      687
          Embarked
                        2
          dtype: int64
In [21]: df['Embarked'].value_counts()
Out[21]: S
               644
         C
               168
                77
         Name: Embarked, dtype: int64
In [22]: | df['Embarked'] = df['Embarked'].fillna(df['Embarked'].value_counts().index[0])
```

```
In [23]: df['Embarked'].isnull().sum()
         df['Embarked'].value_counts()
Out[23]: S
               646
         C
               168
         Q
               77
         Name: Embarked, dtype: int64
In [24]: df['Cabin'] = df['Cabin'].fillna('Unknown')
         df['Cabin'].value_counts()
         df['Cabin'].isnull().sum()
Out[24]: 0
In [25]: df.Cabin.nunique()
Out[25]: 148
In [26]: |df.Cabin.value_counts()
Out[26]: Unknown
                         687
         C23 C25 C27
                           4
         G6
                           4
         B96 B98
                           4
         C22 C26
                           3
         E34
                           1
         C7
                           1
         C54
                           1
         E36
                           1
         C148
                           1
         Name: Cabin, Length: 148, dtype: int64
In [27]: df.isnull().sum()
Out[27]: PassengerId
                         0
         Survived
                         0
         Pclass
                         0
         Sex
                         0
         Age
                         0
         Fare
                         0
         Cabin
                         0
         Embarked
         dtype: int64
```

4.Data Visualization

```
In [28]: sns.countplot(x='Survived',data=df,hue = 'Sex')
```

Out[28]: <Axes: xlabel='Survived', ylabel='count'>


```
In [29]: sns.countplot(x='Survived',data=df,hue = 'Pclass')
```

Out[29]: <Axes: xlabel='Survived', ylabel='count'>

In [30]: df['Age'].dropna().plot.hist(bins=30)

Out[30]: <Axes: ylabel='Frequency'>

In [31]: sns.distplot(df['Fare'])

C:\Users\shaik\AppData\Local\Temp\ipykernel 21200\3425841524.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['Fare'])

Out[31]: <Axes: xlabel='Fare', ylabel='Density'>

In [32]: df['Fare'].hist(bins=40,figsize=(10,4))

Out[32]: <Axes: >

In [33]: sns.heatmap(corr,annot=True)

Out[33]: <Axes: >

5.Outlier Detection

In [34]: df.describe()

Out[34]:

	Passengerld	Survived	Pclass	Age	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.361582	32.204208
std	257.353842	0.486592	0.836071	13.019697	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	512.329200

In [35]: sns.boxplot(df.Age)

Out[35]: <Axes: >


```
In [36]: q1 = df.Age.quantile(0.25)
    q3 = df.Age.quantile(0.75)
    IQR = q3 - q1
    IQR
```

Out[36]: 13.0

```
upper_limit = q3 + 3*IQR
In [37]:
         lower limit = q1 - 3*IQR
         print(upper limit)
         print(lower_limit)
         74.0
          -17.0
In [38]: df = df[df.Age<upper_limit]</pre>
In [39]: sns.boxplot(df.Age)
Out[39]: <Axes: >
           70
           60
           50
           40
           30
           20
           10
            0
                                                0
In [40]: #Removing outliers using z_score method
         from scipy import stats
         Age_zscore = stats.zscore(df.Age)
In [41]:
         Age_zscore
Out[41]: 0
                -0.565499
          1
                 0.681741
          2
                -0.253689
          3
                 0.447883
          4
                 0.447883
         886
                -0.175737
         887
                -0.799357
         888
                -0.097784
         889
                -0.253689
         890
                 0.214026
         Name: Age, Length: 889, dtype: float64
```

```
In [42]: df_z=df[np.abs(Age_zscore)<=3]</pre>
```

In [43]: sns.boxplot(df_z['Age'])

Out[43]: <Axes: >

Out[44]: <Axes: >


```
In [45]:
         q1=df.Fare.quantile(0.25)
         q3=df.Fare.quantile(0.75)
In [46]: q1,q3
Out[46]: (7.925, 31.0)
In [47]: IQR = q3-q1
In [48]: upper_limit=q3+1.5*IQR
In [49]: df = df[df['Fare']<upper_limit]</pre>
In [50]:
         sns.boxplot(df['Fare'])
Out[50]: <Axes: >
           60
           50
           40
           30
           20
           10
            0
```

6. Splitting dependant and independant variables

```
In [51]: df.drop('Cabin',axis=1,inplace=True)
```

```
df.head()
In [52]:
Out[52]:
             Passengerld Survived Pclass
                                           Sex Age
                                                        Fare Embarked
           0
                       1
                                0
                                       3
                                           male
                                                22.0
                                                      7.2500
                                                                    S
           2
                       3
                                                                    S
                                                26.0
                                                      7.9250
                                1
                                       3
                                         female
           3
                       4
                                                35.0
                                                     53.1000
                                                                    S
                                1
                                       1
                                         female
                       5
                                                35.0
                                                                    S
                                0
                                       3
                                           male
                                                      8.0500
                                           male
                                                28.0
                                                      8.4583
                                                                    Q
In [53]:
          df.shape
Out[53]: (773, 7)
In [54]: x=df.iloc[:,2:]
          y=df.iloc[:,1:2]
In [55]: x.shape
Out[55]: (773, 5)
In [56]: y.shape
Out[56]: (773, 1)
          7.Encoding
 In [ ]:
In [57]: from sklearn.preprocessing import LabelEncoder
          le=LabelEncoder()
         x['Sex']=le.fit_transform(x['Sex'])
In [58]:
In [59]:
          x.head()
Out[59]:
             Pclass Sex Age
                                 Fare Embarked
           0
                  3
                       1 22.0
                               7.2500
                                             S
           2
                  3
                       0 26.0
                               7.9250
                                              S
           3
                  1
                       0 35.0 53.1000
                                              S
                                             S
                  3
                         35.0
                               8.0500
```

3

1 28.0

In [60]: x['Embarked']=le.fit_transform(x['Embarked'])

8.4583

Q

5

```
In [61]: x.head()
```

Out[61]:

	Pclass	Sex	Age	Fare	Embarked
0	3	1	22.0	7.2500	2
2	3	0	26.0	7.9250	2
3	1	0	35.0	53.1000	2
4	3	1	35.0	8.0500	2
5	3	1	28.0	8.4583	1

```
In [62]: print(le.classes_)
```

['C' 'Q' 'S']

```
In [63]: print(dict(zip(le.classes_,range(len(le.classes_)))))
```

{'C': 0, 'Q': 1, 'S': 2}

8. Feature Scaling

```
In [64]: from sklearn.preprocessing import MinMaxScaler
ms=MinMaxScaler()
```

```
In [65]: x_scaled=pd.DataFrame(ms.fit_transform(x),columns=x.columns)
    x_scaled.head()
```

Out[65]:

	Pclass	Sex	Age	Fare	Embarked
0	1.0	1.0	0.305752	0.111538	1.0
1	1.0	0.0	0.362426	0.121923	1.0
2	0.0	0.0	0.489940	0.816923	1.0
3	1.0	1.0	0.489940	0.123846	1.0
4	1.0	1.0	0.390762	0.130128	0.5

9. Splitting the data into train and test

```
In [66]: from sklearn.model_selection import train_test_split
    x_train,y_train,x_test,y_test = train_test_split(x_scaled,y,test_size=0.2,random_state=0)
```

```
In [67]: x_train.shape,y_train.shape,x_test.shape,y_test.shape
```

```
Out[67]: ((618, 5), (155, 5), (618, 1), (155, 1))
```

In [68]: x_train.head()

Out[68]:

	Pclass	Sex	Age	Fare	Embarked
768	0.5	1.0	0.376594	0.200000	1.0
419	1.0	1.0	0.702465	0.123846	1.0
118	1.0	1.0	0.277416	0.108462	1.0
252	1.0	1.0	0.263247	0.123846	1.0
157	1.0	1.0	0.291584	0.121923	1.0

In [69]: y_train.head()

Out[69]:

		Pclass	Sex	Age	Fare	Embarked
3	69	1.0	1.0	0.390762	0.119231	0.5
6	28	1.0	1.0	0.277416	0.133269	1.0
4	01	1.0	1.0	0.390762	0.123846	1.0
	14	0.5	0.0	0.773307	0.246154	1.0
54	49	0.0	1.0	0.390762	0.000000	1.0

In []: