Welcome to the tidyverse

Why R?

It's powerful

It's universal

It's free!

Let's analyze some data!

andhs.co/survey

andhs.co/seacen1

Your turn

Do you understand the data?

What can you conclude from this analysis?

What other questions arise as a result of this analysis?

Applied data science

R for Data Science, free online!

Applied data science

ImportGet data from Google Sheets

Tidy
Look at the first 5 rows
(no tidying necessary)

Transform
Calculate Apple
ownership percentage

VisualizeMake a graph

ModelBuild linear regression model

Communicate
Publish the result as HTML
through R Markdown

The tidyverse

The tidyverse

Transform data with dplyr

Your turn #0: Load data

- 1. Run the setup chunk
- 2. Take a look at the gapminder data

01:00

gapminder

```
## # A tibble: 1,704 × 6
                 continent
                           year lifeExp
##
     country
                                            pop gdpPercap
     <fct>
                <fct>
                                  <dbl>
##
                          <int>
                                           <int>
                                                    <dbl>
##
   1 Afghanistan Asia
                           1952 28.8 8425333
                                                     779.
   2 Afghanistan Asia
                           1957 30.3 9240934
                                                     821.
##
   3 Afghanistan Asia
                           1962
##
                                   32.0 10267083
                                                     853.
##
   4 Afghanistan Asia
                           1967
                                                     836.
                                   34.0 11537966
##
   5 Afghanistan Asia
                           1972
                                   36.1 13079460
                                                     740.
##
   6 Afghanistan Asia
                                   38.4 14880372
                                                     786.
                           1977
   7 Afghanistan Asia
##
                           1982
                                   39.9 12881816
                                                     978.
   8 Afghanistan Asia
##
                           1987
                                   40.8 13867957
                                                     852.
##
   9 Afghanistan Asia
                           1992
                                   41.7 16317921
                                                     649.
  10 Afghanistan Asia
                           1997
                                   41.8 22227415
                                                     635.
  # ... with 1,694 more rows
```

The tidyverse

The tidyverse

dplyr: verbs for manipulating data

Extract rows with filter()

Extract columns with select()

Arrange/sort rows with arrange()

Make new columns with mutate()

Make group summaries with
group_by() %>% summarize()

filter()

filter()

Extract rows that meet some sort of test

```
filter(.data = DATA, ...)
```

- **DATA** = Data frame to transform
- ... = One or more tests

 filter() returns each row for which
 the test is TRUE

filter(.data = gapminder, country == "Denmark")

country	continent	year
Afghanistan	Asia	1952
Afghanistan	Asia	1957
Afghanistan	Asia	1962
Afghanistan	Asia	1967
Afghanistan	Asia	1972
•••	•••	•••

country	continent	year
Denmark	Europe	1952
Denmark	Europe	1957
Denmark	Europe	1962
Denmark	Europe	1967
Denmark	Europe	1972
Denmark	Europe	1977

filter()

One = sets an argument

Two == tests if equal returns TRUE or FALSE)

Logical tests

Test	Meaning	Test	Meaning
x < y	Less than	x %in% y	In (group membership)
x > y	Greater than	is.na(x)	Is missing
==	Equal to	!is.na(x)	Is not missing
x <= y	Less than or equal to		
x >= y	Greater than or equal to		
x != y	Not equal to		

Your turn #1: Filtering

Use filter() and logical tests to show...

- 1. The data for Canada
- 2. All data for countries in Oceania
- 3. Rows where the life expectancy is greater than 82

03:00

```
filter(gapminder, country == "Canada")
filter(gapminder, continent == "Oceania")
filter(gapminder, lifeExp > 82)
```

Common mistakes

Using = instead of ==

Quote use

filter() with multiple conditions

Extract rows that meet every test

```
filter(gapminder, country == "Denmark", year > 2000)
```

filter(gapminder, country == "Denmark", year > 2000)

country	continent	year
Afghanistan	Asia	1952
Afghanistan	Asia	1957
Afghanistan	Asia	1962
Afghanistan	Asia	1967
Afghanistan	Asia	1972
•••	•••	•••

country	continent	year
Denmark	Europe	2002
Denmark	Europe	2007

Boolean operators

Operator	Meaning
a & b	and
a b	or
!a	not

Default is "and"

These do the same thing:

```
filter(gapminder, country == "Denmark", year > 2000)
filter(gapminder, country == "Denmark" & year > 2000)
```

Your turn #2: Filtering

Use filter() and Boolean logical tests to show...

- 1. Canada before 1970
- 2. Countries where life expectancy in 2007 is below 50
- 3. Countries where life expectancy in 2007 is below 50 and are not in Africa

04:00

```
filter(gapminder, country == "Canada", year < 1970)

filter(gapminder, year == 2007, lifeExp < 50)

filter(gapminder, year == 2007, lifeExp < 50, continent != "Africa")</pre>
```

Common mistakes

Collapsing multiple tests into one

```
filter(gapminder, 1960 < year < 1980)

filter(gapminder,
     year > 1960, year < 1980)</pre>
```

Using multiple tests instead of %in%

Common syntax

Every dplyr verb function follows the same pattern

First argument is a data frame; returns a data frame

```
VERB (DATA, ...)
```

- **VERB** = dplyr function/verb
- **DATA** = Data frame to transform
- ... = Stuff the verb does

mutate()

Create new columns

```
mutate(.data, ...)
```

- **DATA** = Data frame to transform
- ... = Columns to make

mutate(gapminder, gdp = gdpPercap * pop)

country	year	gdpPercap	pop
Afghanistan	1952	779.4453145	8425333
Afghanistan	1957	820.8530296	9240934
Afghanistan	1962	853.10071	10267083
Afghanistan	1967	836.1971382	11537966
Afghanistan	1972	739.9811058	13079460
•••	•••	•••	•••

country	year	•••	gdp
Afghanistan	1952	•••	6567086330
Afghanistan	1957	•••	7585448670
Afghanistan	1962	•••	8758855797
Afghanistan	1967	•••	9648014150
Afghanistan	1972	•••	9678553274
Afghanistan	1977	•••	11697659231

country	year	gdpPercap	pop
Afghanistan	1952	779.4453145	8425333
Afghanistan	1957	820.8530296	9240934
Afghanistan	1962	853.10071	10267083
Afghanistan	1967	836.1971382	11537966
Afghanistan	1972	739.9811058	13079460
•••	•••	•••	•••

country	year	•••	gdp	pop_mil
Afghanistan	1952	•••	6567086330	8
Afghanistan	1957	•••	7585448670	9
Afghanistan	1962	•••	8758855797	10
Afghanistan	1967	•••	9648014150	12
Afghanistan	1972	•••	9678553274	13
Afghanistan	1977	•••	11697659231	15

ifelse()

Do conditional tests within mutate()

- **TEST** = A logical test
- **VALUE_IF_TRUE** = What happens if test is true
- **VALUE_IF_FALSE** = What happens if test is false

Your turn #3: Mutating

Use mutate() to...

- 1. Add an africa column that is TRUE if the country is on the African continent
- 2. Add a column for logged GDP per capita (hint: use log())
- 3. Add an africa_asia column that says "Africa or Asia" if the country is in Africa or Asia, and "Not Africa or Asia" if it's not

```
mutate(gapminder, africa = ifelse(continent == "Africa",
                                  TRUE, FALSE))
mutate(gapminder, log_gdpPercap = log(gdpPercap))
mutate(gapminder,
       africa_asia =
         ifelse(continent %in% c("Africa", "Asia"),
                "Africa or Asia",
                "Not Africa or Asia"))
```

Make a dataset for just 2002 and calculate logged GDP per capita

Solution 1: Intermediate variables

Make a dataset for just 2002 and calculate logged GDP per capita

Solution 2: Nested functions

Make a dataset for just 2002 and calculate logged GDP per capita

Solution 3: Pipes!

The %>% operator (pipe) takes an object on the left and passes it as the first argument of the function on the right

```
gapminder %>% filter(_, country == "Canada")
```

These do the same thing!

```
filter(gapminder, country == "Canada")
gapminder %>% filter(country == "Canada")
```

Make a dataset for just 2002 and calculate logged GDP per capita

Solution 3: Pipes!

```
gapminder %>%
  filter(year == 2002) %>%
  mutate(log_gdpPercap = log(gdpPercap))
```

%>%

```
leave_house(get_dressed(get_out_of_bed(wake_up(me, time =
"8:00"), side = "correct"), pants = TRUE, shirt = TRUE), car
= TRUE, bike = FALSE)
me %>%
 wake_up(time = "8:00") %>%
  get_out_of_bed(side = "correct") %>%
  get_dressed(pants = TRUE, shirt = TRUE) %>%
  leave_house(car = TRUE, bike = FALSE)
```

summarize()

Compute a table of summaries

gapminder %>% summarize(mean_life = mean(lifeExp))

country	continent	year	lifeExp
Afghanistan	Asia	1952	28.801
Afghanistan	Asia	1957	30.332
Afghanistan	Asia	1962	31.997
Afghanistan	Asia	1967	34.02
•••	•••	•••	•••

mean_	_life
59.47	<i>'</i> 444

summarize()

country	continent	year	lifeExp
Afghanistan	Asia	1952	28.801
Afghanistan	Asia	1957	30.332
Afghanistan	Asia	1962	31.997
Afghanistan	Asia	1967	34.02
Afghanistan	Asia	1972	36.088
•••	•••	•••	•••

mean_	life	min_	_life
59.47	444	23	.599

Your turn #4: Summarizing

Use summarize() to calculate...

- 1. The first (minimum) year in the dataset
- 2. The last (maximum) year in the dataset
- 3. The number of rows in the dataset (use the cheatsheet)
- 4. The number of distinct countries in the dataset (use the cheatsheet)

first	last	num_rows	num_unique
1952	2007	1704	142

Your turn #5: Summarizing

Use filter() and summarize() to calculate
(1) the number of unique countries and
(2) the median life expectancy on the
African continent in 2007

n_countries med_le

52 52.9265

group_by()

Put rows into groups based on values in a column

```
gapminder %>% group_by(continent)
```

Nothing happens by itself!

Powerful when combined with summarize()

```
gapminder %>%
  group_by(continent) %>%
  summarize(n_countries = n_distinct(country))
```

continent	n_countries
Africa	52
Americas	25
Asia	33
Europe	30
Oceania	2

pollution %>%

summarize(mean = mean(amount), sum = sum(amount), n = n())

city	particle_size	amount
New York	Large	23
New York	Small	14
London	Large	22
London	Small	16
Beijing	Large	121
Beijing	Small	56

mean	sum	n
42	252	6

```
pollution %>%
  group_by(city) %>%
  summarize(mean = mean(amount), sum = sum(amount), n = n())
```

city	particle_size	amount
New York	Large	23
New York	Small	14
London	Large	22
London	Small	16
Beijing	Large	121
Beijing	Small	56

city	mean	sum	n
Beijing	88.5	177	2
London	19.0	38	2
New York	18.5	37	2

```
pollution %>%
group_by(particle_size) %>%
summarize(mean = mean(amount), sum = sum(amount), n = n())
```

city	particle_size	amount
New York	Large	23
New York	Small	14
London	Large	22
London	Small	16
Beijing	Large	121
Beijing	Small	56

particle_size	mean	sum	n
Large	55.33333	166	3
Small	28.66667	86	3

Your turn #6: Grouping and summarizing

Find the minimum, maximum, and median life expectancy for each continent

Find the minimum, maximum, and median life expectancy for each continent in 2007 only

dplyr: verbs for manipulating data

Extract rows with filter()

Extract columns with select()

Arrange/sort rows with arrange()

Make group summaries with

Make new columns with mutate()

group_by() %>% summarize()

The tidyverse

