PRÁCTICA 2

ESTUDIO DE LAS CARACTERÍSTICAS PRINCIPALES DE LAS ANTENAS UTILIZADAS EN SISTEMAS DE RADIOCOMUNICACIÓN

Nombres: Yuting Chen

Jorge Merino Moreno Jean Fernando Sellán Arias

Antenas lineales

Dipolo lambda/2 PV

Dipolo lambda/2 acortado PV (fa=0.055)

Dipolo lambda/2 acortado PH (fa=0.055)

Dipolo doblado lambda/2 PH

La primera antena se obtiene utilizando d1=dipole('Length', HDP, 'Width', WDP, 'Tilt',0,'TiltAxis', [1 0 0]); que es la función que se nos proporciona para simularla.

Para la segunda se le aplica a a longitud el factor de acortamiento del 55% (0.055) (siempre alrededor del 5%) utilizando la misma función.

Para la tercera, se le cambia la polarización a la segunda.

Para la cuarta, se utiliza la función proporcionada para el dipolo doblado.

	DP λ/2 PV	DP λ/2 PV	DP λ/2 PH	DP λ/2 PH	DATASHEET
		ACORTADO	ACORTADO	DOBLADO	
D	2,16dBi	2,11dBi	2,11dBi	2,17dBi	OdBd
HPBW_az	360º	360º	78º	78º	80º
SLL_az	No tiene sentido calcular SLL al no tener lóbulos		0	0	-
FBR_az	0	0	0	0	7dB
HPBW_el	76º	78º	360⁰	360º	200⁰
SLL_el	0	0	No tiene sentido calcular SLL al no tener lóbulos		-
FBR_el	0	0	0	0	7dB
Z	89,54 + 42.91i	72.45 + 0.59i	72.45 + 0.59i	2.87e+02 + 2.63i	50 Ohms
BW	6.12%	6.12%	7.11%	6.66%	20.48%
XPD	No se pide	77dB	No se pide	37dB	

USOS: Se utilizan principalmente para transmitir señales de TV, FM y para comunicaciones militares

Antena Yagi

Yagi 1

Yagi optimizada 1

Yagi optimizada 2

La yagi 1 es la que nos da la práctica para meterla en Matlab tal cual.

La optimizada 1 se obtiene con la función de optimización de la misma en Matlab: Y6_OPT=design(yagiUda,f);

Y la optimizada 2 la podemos hacer de dos maneras: cambiando un poco los parámetros de la primera o directamente metiendo las medidas proporcionadas en la práctica. En nuestro caso hemos metido los parámetros proporcionados por la práctica ya que ambos métodos dan resultados muy similares.

	Y6	Y6_OPT	Y6_OPT2	DATASHEET
D	7.75dBi	10,2dBi	10,7dBi	12,2dBi
HPBW_az	68º	48º	50º	43º
SLL_az	8.85dB	7.63dB	25.69dB	18dB
FBR_az	8.8dB	7.63dB	18.16dB	22dB
HPBW_el	96º	56º	62º	50º
SLL_el	7.54dB	7.63dB	11.11dB	10.5dB
FBR_el	9.36dB	7.63dB	18.16dB	23dB
Z	24.6215	1.6305e+02 -	2.1375e+02 +	50 Ohmn
	+17.9104i	9.7773e+00i	2.0968e+01i	
BW	0.96%	1.64%	4.58%	8%
XPD	No se pide	68,4	46.8dB	

USOS: operadores de radio aficionados y civiles, equipo de comunicación militar, dispositivos de radar de corto alcance y receptores de televisiones VHF y UHF TV.

Antena de parche

Parche

Como se puede observar en la gráfica, las pérdidas de retorno son prácticamente nulas y se nos exige un mínimo de 15 dB. Es decir, todo lo que llega es devuelto, por tanto, no se comporta como una antena y no tiene sentido sacar sus parámetros.

Parche optimizado 1

Parche optimizado 2

En esta antena debemos simular primero la que nos dan y, posteriormente, optimizarla con las siguientes alimentaciones: [0,005 0]; [0,01 0]; [0,015 0]. De estas nos quedamos la reactancia que más próxima este a 0 en valor absoluto. Nos quedamos con 0.01, que nos da una reactancia de 1.84i (las otras son 12.96i, 10.07i, y -9.23i).

Después, se procede a la optimización con el ancho y el largo del parche buscando nuevamente el valor de reactancia más próximo a 0. Nos quedamos con Lp1=0.48*landa y Wp=0.5*landa

Nos vamos quedando con las que menor reactancia en valor absoluto tenga Primero, se cambia las alimentaciones del parche

XF1=0	Z=0.19 + 12.96i
XF2=0.005	Z=0.73 + 10.07i
XF3=0.01	Z=2.33 + 1.84i
XF4=0.015	Z=4.39 - 9.23i

Después, la longitud el parche

Lp=0.5* λ	Z= 4.39 - 9.23i
Lp1=0.48*λ	Z= 55.41 + 1.83i
Lp2=0.49* λ	Z= 8.07 - 7.10i

Por último, la anchura del parche

Wp=0.5* λ	Z= 55.41 + 1.83i
Wp1=0.48* λ	Z= 9.57 - 9.53i
Wp2=0.52* λ	Z= 8.89 - 6.76i

	PARCHE	PARCHE_OPT	PARCHE_OPT2	DATASHEET
D	4,66 dBi	9.82dBi	4,14dBi	8dBi
HPBW_az	55º	64º	60º	75º
SLL_az	OdB	17.57dB	21.1dB	10dB
FBR_az	13dB	17.57dB	21.1dB	28dB
HPBW_el	42º	60º	64º	65º
SLL_el	10,7dB	17.57dB	18,6dB	9dB
FBR_el	13dB	17.57dB	21.12dB	18dB
Z	0,19 + 12.96j	55.41 + 1.83j	44,80 – 7.13j	50 Ohms
BW	3.91%	4%	4.08%	4.16%
XPD	No se pide	29.8dB	55,54dB	

USOS: aviación, satélites, aplicaciones en misiles, dispositivos móviles y microondas.

Antena de bocina y parabólica

Como nos la piden a **6GHz** tomamos los valores de **transmisión** de la primera antena y para la segunda los que nos dan a **6 GHz**.

Ambas se sacan de las funciones que nos dan en la práctica para su respectiva simulación

Antena de bocina

Antena parabólica

	BOCINA	PARABÓLICA	DATASHEET_1	DATASHEET_2
D	15,5dBi	21,9dBi	42dBi	29dBi
HPBW_az	30º	9º	1.3º	5,5⁰
SLL_az	21.8dB	13.3dB	45.5dB	40dB
FBR_az	21.8dB	29.03dB	45.5dB	45dB
HPBW_el	28º	9.2º	1.3º	5,5⁰
SLL_el	11.1dB	18.77dB	45.5dB	40dB
FBR_el	21.8dB	30.03dB	45.5dB	45dB
Z	No se pide	No se pide	No la dan	50 Ohms
BW	No se pide	No se pide	14.58%	26%
XPD	53dB	10.89dB	30 dB	25dB

USOS: Las parabólicas se utilizan, mayormente, en la recepción de señales de TV, radio o internet desde satélites.

Las de parche se usan como alimentadoras de las parabólicas.