Chapter 9. Electromagnetic Waves

9.1	Waves in One Dimension		
	9.1.1	The Wave Equation	
	9.1.2	Sinusoidal Waves	
	9.1.3	Boundary Conditions: Reflection and Transmission	
	9.1.4	Polarization	
9.2	Electromagnetic Waves in Vacuum		
	9.2.1	The Wave Equation for E and B	
	9.2.2	Monochromatic Plane Waves	
	9.2.3	Energy and Momentum in Electromagnetic Waves	
9.3	Electro	Electromagnetic Waves in Matter	
	9.3.1	Propagation in Linear Media	
	9.3.2	Reflection and Transmission at Normal Incidence	
	9.3.3	Reflection and Transmission at Oblique Incidence	
9.4	Absorption and Dispersion		
	9.4.1	Electromagnetic Waves in Conductors ,	
	9.4.2	Reflection at a Conducting Surface	
	9.4.3	The Frequency Dependence of Permittivity	
9.5	Guided	Waves	
	9.5.1	Wave Guides	
	9.5.2	TE Waves in a Rectangular Wave Guide	
	9.5.3	The Coaxial Transmission Line	

9.1 Waves in One Dimension

9.1.1 The Wave Equation

What is a "wave?"

Let's start with the simple case: fixed shape, constant speed:

How would you represent such a string object mathematically?

f(z, t) represents the displacement of the string at the point z, at time t.

Given the *initial* shape of the string, $g(z) \equiv f(z, 0)$,

The displacement at point z, at the later time t, is the same as the displacement a distance vt to the left (i.e. at z - vt), back at time t = 0:

$$f(z,t) = f(z - vt, 0) = g(z - vt)$$

 \rightarrow It represents a wave of fixed shape traveling in the +z direction at speed ν .

(Mechanical or Classical) Waves Equation

Why does a stretched string support wave motion?

→ Actually, it follows from Newton's second law.

Consider a stretched string under tension *T*.

The net transverse force on the segment between z and $(z + \Delta z)$ is

$$\Delta F = T \sin \theta' - T \sin \theta$$

If the distortion of the string is not too great, $\sin\theta \sim \tan\theta$.

$$\Delta F \cong T(\tan \theta' - \tan \theta) = T\left(\left.\frac{\partial f}{\partial z}\right|_{z + \Delta z} - \left.\frac{\partial f}{\partial z}\right|_{z}\right) \cong T\frac{\partial^2 f}{\partial z^2} \Delta z$$

If the mass per unit length is μ , Newton's second law says

$$\Delta F = \mu(\Delta z) \frac{\partial^2 f}{\partial t^2} \quad \Longrightarrow \quad \frac{\partial^2 f}{\partial z^2} = \frac{\mu}{T} \frac{\partial^2 f}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

where v (which, as we'll soon see, represents the speed of propagation) is $v = \sqrt{\frac{T}{v}}$

$$\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

 $\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$ \Rightarrow (classical) Wave Equation because it admits as solutions all functions of the form f(z, t) = g(z - vt)

→ (Mechanical or Classical) Waves Equation = Equation of Motion governed by Newton's second law!

Waves Equation

$$f(z,t) = g(z - vt)$$

: All functions that depend on the variables z and t in the special combination u = z - vt, represent waves propagating in the z direction with speed v.

$$\frac{\partial f}{\partial z} = \frac{dg}{du} \frac{\partial u}{\partial z} = \frac{dg}{du}$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} \left(\frac{dg}{du} \right) = \frac{d^2g}{du^2} \frac{\partial u}{\partial z} = \frac{d^2g}{du^2}$$

$$\frac{\partial^2 f}{\partial t^2} = -v \frac{\partial}{\partial t} \left(\frac{dg}{du} \right) = -v \frac{d^2g}{du^2} \frac{\partial u}{\partial t} = v^2 \frac{d^2g}{du^2}$$

$$\frac{d^2g}{du^2} = \frac{\partial^2 f}{\partial z^2}$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

 \rightarrow Therefore, the **Wave Equation** admits as solutions all functions of the form f(z,t) = g(z-vt)

For example, if A and b are constants (with the appropriate units),

$$f_1(z,t) = Ae^{-b(z-vt)^2}, \quad f_2(z,t) = A\sin[b(z-vt)], \quad f_3(z,t) = \frac{A}{b(z-vt)^2+1}$$
 \Rightarrow All represent waves $f_4(z,t) = Ae^{-b(bz^2+vt)}, \quad \text{and} \quad f_5(z,t) = A\sin(bz)\cos(bvt)^3$ \Rightarrow All do not represent waves

(Mechanical or Classical) Waves Equation $\frac{\partial^2 f}{\partial x^2} = \frac{1}{100} \frac{\partial^2 f}{\partial x^2}$

$$\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

Problem 9.1 By explicit differentiation, check that the functions f_1 , f_2 , and f_3 satisfy the wave equation. Show that f_4 and f_5 do not.

$$f_{1}(z,t) = Ae^{-b(z-vt)^{2}} \qquad \frac{\partial f_{1}}{\partial z} = -2Ab(z-vt)e^{-b(z-vt)^{2}} \qquad \frac{\partial^{2} f_{1}}{\partial z^{2}} = -2Ab\left[e^{-b(z-vt)^{2}} - 2b(z-vt)^{2}e^{-b(z-vt)^{2}}\right]$$

$$\frac{\partial f_{1}}{\partial t} = 2Abv(z-vt)e^{-b(z-vt)^{2}} \qquad \frac{\partial^{2} f_{1}}{\partial t^{2}} = 2Abv\left[-ve^{-b(z-vt)^{2}} + 2bv(z-vt)^{2}e^{-b(z-vt)^{2}}\right]$$

$$f_{2}(z,t) = A\sin[b(z-vt)] \qquad \frac{\partial f_{2}}{\partial z} = Ab\cos[b(z-vt)] \qquad \frac{\partial^{2} f_{2}}{\partial z^{2}} = -Ab^{2}\sin[b(z-vt)] \qquad \frac{\partial^{2} f_{2}}{\partial t^{2}} = v^{2}\frac{\partial^{2} f_{2}}{\partial z^{2}}$$

$$\frac{\partial f_{2}}{\partial t} = -Abv\cos[b(z-vt)] \qquad \frac{\partial^{2} f_{2}}{\partial t^{2}} = -Ab^{2}v^{2}\sin[b(z-vt)] \qquad \frac{\partial^{2} f_{2}}{\partial t^{2}} = v^{2}\frac{\partial^{2} f_{2}}{\partial z^{2}}$$

$$f_{3}(z,t) = \frac{A}{b(z-vt)^{2}+1} \qquad \frac{\partial f_{3}}{\partial z} = \frac{-2Ab(z-vt)}{[b(z-vt)^{2}+1]^{2}}; \quad \frac{\partial^{2} f_{3}}{\partial z^{2}} = \frac{-2Ab}{[b(z-vt)^{2}+1]^{2}} + \frac{8Ab^{2}(z-vt)^{2}}{[b(z-vt)^{2}+1]^{3}}$$

$$\frac{\partial^{2} f_{3}}{\partial t^{2}} = v^{2}\frac{\partial^{2} f_{3}}{\partial z^{2}}$$

$$\frac{\partial^{2} f_{3}}{\partial t^{2}} = v^{2}\frac{\partial^{2} f_{3}}{\partial z^{2}}$$

$$f_4(z,t) = Ae^{-b(bz^2+vt)} \qquad \frac{\partial f_4}{\partial z} = -2Ab^2ze^{-b(bz^2+vt)} \qquad \frac{\partial^2 f_4}{\partial z^2} = -2Ab^2\left[e^{-b(bz^2+vt)} - 2b^2z^2e^{-b(bz^2+vt)}\right] \qquad \frac{\partial^2 f_4}{\partial t^2} \neq v^2\frac{\partial^2 f_4}{\partial z^2}$$

$$\frac{\partial f_4}{\partial t} = -Abve^{-b(bz^2+vt)} \qquad \frac{\partial^2 f_4}{\partial t^2} = Ab^2v^2e^{-b(bz^2+vt)}$$

$$f_5(z,t) = A\sin(bz)\cos(bvt)^3 \qquad \frac{\partial f_5}{\partial z} = Ab\cos(bz)\cos(bvt)^3 \qquad \frac{\partial^2 f_5}{\partial z^2} = -Ab^2\sin(bz)\cos(bvt)^3$$

$$\frac{\partial^2 f_5}{\partial z^2} = -Ab^2\sin(bz)\sin(bvt)^3 \qquad \frac{\partial^2 f_5}{\partial z^2} \neq v^2\frac{\partial^2 f_5}{\partial z^2}$$

$$\frac{\partial f_5}{\partial t} = -3Ab^3v^3t^2\sin(bz)\sin(bvt)^3 \qquad \frac{\partial^2 f_5}{\partial t^2} = -6Ab^3v^3t\sin(bz)\sin(bvt)^3 - 9Ab^6v^6t^4\sin(bz)\cos(bvt)^3$$

(Mechanical or Classical) Waves Equation $\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$

Problem 9.2 Show that the standing wave $f(z, t) = A \sin(kz) \cos(kvt)$ satisfies the wave equation, and express it as the sum of a wave traveling to the left and a wave traveling to the right.

$$f(z,t) = g(z - vt) + h(z + vt)$$

$$f(z,t) = A\sin(kz)\cos(kvt)$$

$$\frac{\partial^2 f}{\partial t^2} = v^2 \frac{\partial^2 f}{\partial z^2}$$

By using the trig identity $\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$

$$f(z,t) = A\sin(kz)\cos(kvt)$$

→ the sum of a wave traveling to the left and a wave traveling to the right.

9.1.2 Sinusoidal Waves

(i) Terminology: Of all possible wave forms, the sinusoidal one is

$$f(z,t) = A\cos[k(z-vt) + \delta]$$
 (At time $t = 0$)

A is the amplitude of the wave

→ it is positive, and represents the maximum displacement from equilibrium.

The argument of the cosine, $\phi = k(z-vt) + \delta$, is called the phase

- $\rightarrow \delta$ is the phase constant
 - \rightarrow Obviously, you can add any integer multiple of 2π to δ without changing f(z, t)
 - \rightarrow Ordinarily, one uses a value in the range $0 \le \delta \le 2p$

k is the wave number

$$\Rightarrow$$
 it is related to the **wavelength** λ by the equation \Rightarrow $\lambda = \frac{2\pi}{k}$

One full cycle in a time period
$$\rightarrow \phi = kvT = 2\pi \rightarrow T = \frac{2\pi}{kv}$$

Frequency
$$v$$
 (number of oscillations per unit time) $\Rightarrow v = \frac{1}{T} = \frac{kv}{2\pi} = \frac{v}{\lambda}$

Angular frequency ω , the number of radians swept out per unit time $\rightarrow \omega = 2\pi v = kv$

$$f(z,t) = A\cos(kz - \omega t + \delta)$$
 \rightarrow A sinusoidal waves in terms of k and ω

Sinusoidal Waves
$$f(z,t) = A\cos[k(z-vt)+\delta]$$
 $f(z,t) = A\cos(kz-\omega t + \delta)$

(ii) Complex notation

In view of Euler's formula, $e^{i\theta} = \cos \theta + i \sin \theta$

$$f(z,t) = A\cos(kz - \omega t + \delta) \longrightarrow f(z,t) = \text{Re}[Ae^{i(kz - \omega t + \delta)}]$$

Complex wave function:

$$\tilde{f}(z,t) \equiv \tilde{A}e^{i(kz-\omega t)}$$
 $\tilde{A} \equiv Ae^{i\delta}$ \Rightarrow Complex amplitude

- \rightarrow The actual wave function is the real part: $f(z,t) = \text{Re}[\tilde{f}(z,t)]$
- → The advantage of the complex notation is that exponentials are much easier to manipulate than sines and cosines.

Example 9.1 Suppose you want to combine two sinusoidal waves:

$$f_3 = f_1 + f_2 = \text{Re}(\tilde{f}_1) + \text{Re}(\tilde{f}_2) = \text{Re}(\tilde{f}_1 + \tilde{f}_2) = \text{Re}(\tilde{f}_3)$$

In particular, if they have the same frequency and wave number, you just add the (complex) amplitudes.

$$\tilde{f}_3 = \tilde{A}_1 e^{i(kz - \omega t)} + \tilde{A}_2 e^{i(kz - \omega t)} = \tilde{A}_3 e^{i(kz - \omega t)}$$

- \rightarrow Then take the real part $\rightarrow f_3(z,t) = A_3 \cos(kz \omega t + \delta_3)$
- → The combined wave still has the same frequency and wavelength.
- → Without using the complex notation, you will find yourself looking up trig identities and slogging through nasty algebra.

Sinusoidal Waves
$$\tilde{f}(z,t) \equiv \tilde{A}e^{i(kz-\omega t)}$$
 $f(z,t) = \text{Re}[\tilde{f}(z,t)] = A\cos(kz - \omega t + \delta)$

(iii) Linear combinations of sinusoidal waves

Any wave can be expressed as a linear combination of sinusoidal ones:

$$\tilde{f}(z,t) = \int_{-\infty}^{\infty} \tilde{A}(k)e^{i(kz-\omega t)} dk$$
 (Fourier transformation)

- → k includes negative values
- \rightarrow This does not mean that λ and ω are negative: wavelength and frequency are *always* positive.
- → k to run through negative values in order to represent waves going in both directions.

Note the point that any wave can be written as a linear combination of sinusoidal waves,

- → therefore if you know how sinusoidal waves behave, you know in principle how any wave behaves.
- → So from now on, we shall confine our attention to sinusoidal waves.

9.1.3 Boundary conditions: Reflection and Transmission

What happens depends a lot on how the string is *attached* at the end.

→ that is, how the wave propagation depends on the specific boundary conditions.

Suppose, for instance, that the string is simply tied onto a second string with different mass at z = 0.

 $(\rightarrow$ Assume the wave velocities v_1 and v_2 are different)

The incident wave
$$\rightarrow \tilde{f}_I(z,t) = \tilde{A}_I e^{i(k_1 z - \omega t)}, \quad (z < 0)$$

The reflected wave
$$\rightarrow \tilde{f}_R(z,t) = \tilde{A}_R e^{i(-k_1 z - \omega t)}, \quad (z < 0)$$

The reflected wave
$$\rightarrow \tilde{f}_T(z,t) = \tilde{A}_T e^{i(k_2 z - \omega t)}, \quad (z > 0)$$

(a) Incident pulse

All parts of the system are oscillating at the same frequency ω (a frequency determined by the person who is shaking the string)

Since the wave velocities are different in the two strings,
→ the wavelengths and wave numbers are also different:

$$\frac{\lambda_1}{\lambda_2} = \frac{k_2}{k_1} = \frac{v_1}{v_2}$$

(b) Reflected and transmitted pulses

Boundary conditions: Reflection and Transmission

For a sinusoidal incident wave, then, the net disturbance of the string is:

$$\tilde{f}(z,t) = \begin{cases} \tilde{A}_I e^{i(k_1 z - \omega t)} + \tilde{A}_R e^{i(-k_1 z - \omega t)}, & \text{for } z < 0, \\ \\ \tilde{A}_T e^{i(k_2 z - \omega t)}, & \text{for } z > 0. \end{cases}$$

At the join (z = 0),

the displacement and slope just slightly to the left $(z = 0^{-})$ must equal those slightly to the right $(z = 0^{+})$, or else there would be a break between the two strings.

Mathematically, f(z, t) is continuous at z = 0: $\longrightarrow f(0^-, t) = f(0^+, t)$

Knot

Discontinuous slope; force on knot

the derivative of f must also be continuous: $\longrightarrow \frac{\partial f}{\partial z}\Big|_{0^-} = \frac{\partial f}{\partial z}\Big|_{0^+}$

Continuous slope; no force on knot

Boundary conditions: Reflection and Transmission

$$\frac{v_1}{z} \qquad \tilde{f}(z,t) = \begin{cases}
\tilde{A}_I e^{i(k_1 z - \omega t)} + \tilde{A}_R e^{i(-k_1 z - \omega t)}, & \text{for } z < 0, \\
\tilde{A}_T e^{i(k_2 z - \omega t)}, & \text{for } z > 0.
\end{cases}$$

$$f(0^-,t) = f(0^+,t) \qquad \frac{\partial f}{\partial z}\Big|_{0^-} = \left. \frac{\partial f}{\partial z} \right|_{0^+} \qquad \qquad \Rightarrow \quad \tilde{f}(0^-,t) = \left. \tilde{f}(0^+,t), \quad \left. \frac{\partial \tilde{f}}{\partial z} \right|_{0^-} = \left. \frac{\partial \tilde{f}}{\partial z} \right|_{0^+}$$

These boundary conditions apply directly to the *real* wave function f(z, t).

- → But since the imaginary part differs from the real part only in the replacement of cosine by sine,
- → it follows that the complex wave function obeys the same rules:

$$\tilde{f}(0^{-},t) = \tilde{f}(0^{+},t), \quad \frac{\partial \tilde{f}}{\partial z}\Big|_{0^{-}} = \frac{\partial \tilde{f}}{\partial z}\Big|_{0^{+}} \longrightarrow \tilde{A}_{I} + \tilde{A}_{R} = \tilde{A}_{T}, \quad k_{1}(\tilde{A}_{I} - \tilde{A}_{R}) = k_{2}\tilde{A}_{T}$$

$$\longrightarrow \tilde{A}_{R} = \left(\frac{k_{1} - k_{2}}{k_{1} + k_{2}}\right)\tilde{A}_{I}, \quad \tilde{A}_{T} = \left(\frac{2k_{1}}{k_{1} + k_{2}}\right)\tilde{A}_{I}$$

$$\frac{k_{2}}{k_{1}} = \frac{v_{1}}{v_{2}} \longrightarrow \tilde{A}_{R} = \left(\frac{v_{2} - v_{1}}{v_{2} + v_{1}}\right)\tilde{A}_{I}, \quad \tilde{A}_{T} = \left(\frac{2v_{2}}{v_{2} + v_{1}}\right)\tilde{A}_{I}$$

The real amplitudes and phases, then, are related by \longrightarrow $A_R e^{i\delta_R} = \left(\frac{v_2 - v_1}{v_2 + v_1}\right) A_I e^{i\delta_I}, \quad A_T e^{i\delta_T} = \left(\frac{2v_2}{v_2 + v_1}\right) A_I e^{i\delta_I}$

If the second string is lighter than the first, $(\mu_2 < \mu_1$, so that $v_2 > v_1$), \rightarrow all three waves have the same phase angle

$$(\delta_R = \delta_T = \delta_I) \longrightarrow A_R = \left(\frac{v_2 - v_1}{v_2 + v_1}\right) A_I, \quad A_T = \left(\frac{2v_2}{v_2 + v_1}\right) A_I$$

If the second string is heavier than the first, $(v_2 < v_1)$ \rightarrow the reflected 'Nave is out of phase by 180°

$$(\delta_R + \pi = \delta_T = \delta_I) \longrightarrow A_R = \left(\frac{v_1 - v_2}{v_2 + v_1}\right) A_I \text{ and } A_T = \left(\frac{2v_2}{v_2 + v_1}\right) A_I$$

In particular, if the second string is *infinitely* massive, \longrightarrow $A_R = A_I$ and $A_T = 0$

Boundary conditions: $f(0^-, t) = f(0^+, t)$ $\frac{\partial f}{\partial z}\Big|_{0^-} = \frac{\partial f}{\partial z}\Big|_{0^+}$

$$f(0^-, t) = f(0^+, t)$$

$$\left.\frac{\partial f}{\partial z}\right|_{0^{-}}=\left.\frac{\partial f}{\partial z}\right|_{0^{+}}$$

Problem 9.5 Suppose you send an incident wave of specified shape, $g_I(z - v_I t)$, down string number 1. It gives rise to a reflected wave, $h_R(z + v_1 t)$, and a transmitted wave, $g_T(z - v_2 t)$. By imposing the boundary conditions, find h_R and g_T .

$$g_{I}(z-v_{1}t) \longrightarrow \frac{v_{1}}{z} g_{T}(z-v_{2}t)$$

$$f(0^-, t) = f(0^+, t)$$

$$\frac{\partial f}{\partial z}\Big|_{O_{-}} = \frac{\partial f}{\partial z}\Big|_{O_{+}} \qquad \frac{\partial g_{I}}{\partial z} = -\frac{1}{v_{1}}\frac{\partial g_{I}}{\partial t} \qquad \frac{\partial h_{R}}{\partial z} = \frac{1}{v_{1}}\frac{\partial h_{R}}{\partial t} \qquad \frac{\partial g_{T}}{\partial z} = -\frac{1}{v_{2}}\frac{\partial g_{T}}{\partial t}$$

 $g_I(z,t)$, $g_T(z,t)$, and $h_R(z,t)$ are each functions of a single variable u (in the first case $u = z - v_1 t$, in the second $u = z - v_2 t$, and in the third $u = z + v_1 t$)

9.1.4 Polarization

Transverse Waves: the displacement is perpendicular to the direction of propagation

Longitudinal Waves: the displacement is along the direction of propagation

Transverse waves occur in two independent states of polarization

Vertical polarization:

$$\tilde{\mathbf{f}}_v(z,t) = \tilde{A}e^{i(kz-\omega t)}\,\hat{\mathbf{x}}.$$

Horizontal polarization: $\tilde{\mathbf{f}}_h(z,t) = \tilde{A}e^{i(kz-\omega t)}\,\hat{\mathbf{y}}$

Any other Polarization: $\tilde{\mathbf{f}}(z,t) = \tilde{A}e^{i(kz-\omega t)}\,\hat{\mathbf{n}}$

$$\tilde{\mathbf{f}}(z,t) = \tilde{A}e^{i(kz-\omega t)}\,\hat{\mathbf{n}}.$$

Polarization Vector:
$$\hat{\mathbf{n}} = \cos \theta \, \hat{\mathbf{x}} + \sin \theta \, \hat{\mathbf{y}}$$

$$\hat{\mathbf{n}} \cdot \hat{\mathbf{z}} =$$

Any transverse wave can be considered a superposition of two waves: one horizontally polarized, the other vertically:

$$\tilde{\mathbf{f}}(z,t) = (\tilde{A}\cos\theta)e^{i(kz-\omega t)}\,\hat{\mathbf{x}} + (\tilde{A}\sin\theta)e^{i(kz-\omega t)}\,\hat{\mathbf{y}}$$