STAT 431 — Applied Bayesian Analysis — Fall 2022

Exam

October 13, 2022

Full Name:	Ke	ID/Email:
I dil I tallic.		

- This is a 75 minute exam. There are 6 problems for everyone, and one additional problem for the graduate section only.
- The exam is worth a total of 45 points for the undergraduate section and 55 points for the graduate section.
- You may use your own personal notes and a standard scientific calculator. (You may not share these items with anyone else.) No other aids or devices are permitted!
- Write all answers in the spaces provided. If you require more space to write your answer, you may use the back side of the page.
- You are not allowed to communicate with anyone except the instructor or proctors before you submit this exam.

PDF = probability density function

PMF = probability mass function

MAP = maximum a posteriori

HPD = highest posterior density

PPD = posterior predictive distribution

- 1. The residential populations of Champaign, Urbana, and Savoy are approximately 90,000, 38,000, and 9,000, respectively.
 - (a) What is the probability that a randomly selected resident of Champaign-Urbana-Savoy lives in Champaign? In Urbana? In Savoy? [3 pts

$$P(c) = \frac{90000}{90000 + 38000 + 9000} = \frac{90000}{137000} = \frac{90}{137} \approx 0.657$$

$$P(u) = \frac{38000}{137000} = \frac{38}{137} \approx 0.277$$

$$P(s) = \frac{9000}{137000} = \frac{9}{137} \approx 0.066$$

- (b) The home ownership rate (percentage of residents who live in their own home) is approximately 45% for Champaign, 35% for Urbana, and 55% for Savoy.
 - (i) What is the probability that a randomly selected resident from Champaign-Urbana-Savoy (taken together) lives in their own home? [4 pts]

$$P(H) = P(H|C) P(C) + P(H|U) P(U) + P(H|S) P(S)$$

$$= 0.45 \cdot \frac{90}{137} + 0.35 \cdot \frac{38}{137} + 0.55 \cdot \frac{9}{137}$$

$$\approx 0.429$$

(ii) Consider a randomly selected resident from Champaign-Urbana-Savoy (taken together) who lives in their own home. What is the probability that the resident lives in Savoy? [3 pts]

$$P(S|H) = \frac{P(H|S)P(S)}{P(H)}$$

$$\approx \frac{0.55 \cdot \frac{9}{137}}{0.429} \approx 0.084$$

$$\theta^{(1)}, \ \theta^{(2)}, \dots, \theta^{(10000)}$$

which is used to form an approximation

$$\frac{1}{10000} \sum_{s=1}^{10000} \theta^{(s)}$$

(a) Write out the **integral** (with respect to θ) that is being approximated.

$$\int_{-\infty}^{\infty} \theta p(\theta|x) d\theta$$

(b) If the **sample variance** of the simulation sample is 25, compute the **Monte Carlo error**. [3 pts]

$$\frac{\sqrt{25}}{\sqrt{10000}} = \frac{5}{100} = 0.05$$

(c) Name a different type of method that might produce an approximation without using any random simulation. [1 pt]

- 3. A continuous parameter θ , which can have any positive scalar value, has Jeffreys' prior density proportional to $1/\sqrt{\theta}$ (for $\theta > 0$).
 - (a) Write a specific function of θ that is proportional to the (expected) Fisher information $I(\theta)$. [2 pts]

(b) Is this Jeffreys' prior proper? Using calculus, precisely explain why it is or is not.

For
$$u > 0$$
, $\int_{0}^{u} \sqrt{\sqrt{\theta}} d\theta = \left[2\sqrt{\theta}\right]_{0}^{u}$ [3 pts]
$$= 2\sqrt{u} \longrightarrow \infty \text{ as } u \to \infty$$
So it is not proper.

4. For each part below, CIRCLE the ONE BEST answer.	[1 pt each]
(a) A model for (scalar) data Y has (scalar) parameter θ . Which of these representations are prior mean?	esents a
$\mathrm{E}(Y\mid\theta)$ $\mathrm{E}(Y)$ $\mathrm{E}(\theta\mid Y)$	
(b) In the general expression $\operatorname{Prob}(M \mid D) \propto \operatorname{Prob}(D \mid M) \operatorname{Prob}(M)$, the proposition constant may depend on both neither	portionality
(c) In contrast to the Bayesian perspective, the usual frequentist perspective parameter in a data model as	_
random and unobserved fixed and unknown fixed and known random a	and observed
(d) Which names a conjugate distribution family for the parameter θ in the of $Y \mid \theta \sim \text{Binomial}(10, \theta)$?	lata model
$\stackrel{ ext{beta}}{ ext{beta}}$ uniform both neither	
(e) Let θ be a scalar parameter in a Bayesian model for data $Y = y$. If $I(\theta < \text{indicator function of the event that } \theta < 0.5$, which of the following equals $E(I(\theta < 0.5) \mid y)$?	0.5) is the
$E(\theta \mid \boldsymbol{y}) - 0.5$ the posterior median of θ $Prob(\theta < 0.5 \mid \boldsymbol{y})$ none of	f these
(f) A posterior predictive distribution cannot be	
continuous discrete either continuous or discrete none of these is	correct
(g) If $(0.2, 0.7)$ is an exact 95% HPD posterior credible interval for a scalar p that has posterior PDF $p(\theta \mid y)$, which must be true?	heta arameter $ heta$
$\int_{-\infty}^{0.2} p(\theta \mid \boldsymbol{y}) d\theta = 0.025 \qquad \left(\int_{0.2}^{0.7} p(\theta \mid \boldsymbol{y}) d\theta = 0.95 \right) \text{both of these} \text{neith}$	her of these
(h) Which is a conjugate prior family for a rate parameter in a Poisson rate normal beta inverse gamma gamma	model?
5. List one way in which sensitivity analysis and posterior predictive check similar, and also one way in which they differ.	king are [2 pts]
Both are meant to assess suitability a prior. (or several priors).	r of
But sensitivity analysis assesses ho inference varies as the prior chan	W
inference varies as the prior chan	nges,
while posterior predictive checking	assesses
how well a (single) prior serves to	Ó
predict the observed data.	

6. The Gamma(α, β) distribution with shape $\alpha > 0$ and rate (reciprocal scale) $\beta > 0$ has mean α/β , variance α/β^2 , and PDF

$$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \qquad x > 0.$$

Consider a model for (observed) data Y=y>0 that has one parameter $\theta>0$ and a **likelihood** proportional to

$$\theta^5 y^4 e^{-\theta y}$$

(a) Fully demonstrate (using Bayes' rule) that $Gamma(\alpha, \beta)$ distributions form a **conjugate** prior family for θ , and express the posterior's shape and rate in terms of the prior's shape α_0 and rate β_0 (and anything else needed). [7 pts]

(b) Assuming a Gamma(α_0, β_0) prior, express the **posterior mean** of θ as a **weighted** average of its **prior mean** and a statistic $\hat{\theta}$ that depends only on y (and not on α_0 or β_0). (Remember, weights sum to 1.) Also, what is the expression for $\hat{\theta}$? [4 pts]

$$E(\theta|y) = \frac{\alpha_0 + 5}{\beta_0 + y} = \frac{\alpha_0}{\beta_0 + y} + \frac{5}{\beta_0 + y}$$

$$= \frac{\beta_0}{\beta_0 + y} \cdot \frac{\alpha_0}{\beta_0} + \frac{y}{\beta_0 + y} \cdot \frac{5}{y} \cdot \frac{5}{y}$$

$$= \frac{\beta_0}{\beta_0 + y} \cdot \frac{\alpha_0}{\beta_0 + y} \cdot \frac{5}{y} \cdot \frac$$

(c) What choices of α_0 and/or β_0 apparently make the prior less informative? Why?

Less informative for smaller Bo and correspondingly smaller Ko.

For example, in that case $E(\theta | y) \approx \hat{\theta}$ (less affected by prior mean)

GRADUATE SECTION ONLY

7. The exponential distribution with mean $\theta > 0$ has PDF

$$f(y \mid \theta) = \frac{1}{\theta} e^{-y/\theta}, \quad y > 0$$

In a supply of a certain machine component, 80% of the components are genuine, and the remaining 20% are counterfeit. The lifetime of a genuine component is exponentially distributed with a mean of 4 years, while the lifetime of a counterfeit component is exponentially distributed with a mean of only 1 year.

(a) Let θ be 4 for a genuine component and 1 for a counterfeit component. Express the **PMF** of θ for a randomly chosen component. [2 pts]

$$\pi(\theta) = \begin{cases} 0.2, & \theta = 1 \\ 0.8, & \theta = 4 \\ 0, & o.w. \end{cases}$$

(b) Express the marginal PDF of the lifetime Y of a randomly chosen component as a **mixture density** m(y). [Note: This mixture density is for Y, not θ .] [4 pts]

$$m(y) = \sum_{\theta} f(y|\theta) \pi(\theta)$$

$$= \pi(\theta=1) f(y|\theta=1) + \pi(\theta=4) f(y|\theta=4)$$

$$= 0.2 \cdot e^{-y} + 0.8 \cdot \frac{1}{4} e^{-y/4} (y>0)$$

(c) A randomly chosen component was observed to have a lifetime of only 0.5 years.

Compute the (conditional) probability that it was genuine. [4 pts]

$$P(\theta=4|y=0.5) = \frac{f(y=0.5|\theta=4) \pi(\theta=4)}{m(y=0.5)}$$

$$= \frac{\frac{1}{4}e^{-0.5/4} \cdot 0.8}{0.2 e^{-0.5} + 0.8 \cdot \frac{1}{4}e^{-0.5/4}} = \frac{1}{1+e^{-0.375}}$$

$$\approx 0.593$$