Final Team Report for HC System: A Novel GWAPs Disaster Monitoring System

Team: Hotpot

Changkun Ou: <11406972>

Yifei Zhan: <Matrikelnummer>

Zhe Li: <11194275>

July 3, 2017

CONTENTS

1	Introduction	3
	1.1 Related information on the topic field	. :
	1.2 Purpose of HC system	. :
	1.3 Human contribution to the system	
2	Functionality of a novel HC system	
	2.1 Functionality as seen by a user	
	2.2 Functionality as seen by a stakeholder	
	2.3 Incentivization concept	
	2.3.1 Task Generator	
	2.3.2 Player Rating Model	
	2.3.3 Disaster Level Evaluation Model	
	2.3.4 Data Persistence	•
3	System Design and UI Elements	
	3.1 System Architectures	
	3.2 Algorithm for Data Aggregation	

	3.3	Technologies used for implementation	8
	3.4	Front End	8
	3.5	Back End	8
	3.6	User Interfaces of the system	8
		Summary	
4	Sys	tem Evaluation and Success Criteria	10
	4.1	Limitation of the System	10
	4.2	Evaluation and success criteria	10
		4.2.1 Model Evaluation	10
		4.2.2 Issues on Social Aspects	10
		4.2.3 Issues on Ethical Aspects	10
5	Fut	ure Works	11
	5.1	Possible extensions of the HC system	11
		Thoughts on interaction with other HC system	

ABSTRACT Abstract test

1 Introduction

Introduction cite test [4]

The contribution of this report are as follows:

- a novel Human Computation system based on Game with Purpose for Disaster Monitoring;
- XXX
- 1.1 Related information on the topic field
 - 1.2 Purpose of HC system
 - 1.3 Human contribution to the system

2 FUNCTIONALITY OF A NOVEL HC SYSTEM

2.1 Functionality as seen by a user

A player can finish infinity Round tasks, a Round task contains N tagging tasks, the player tagging task is to:

- Select a Region Of Interests(ROI) upon the presented satellite image;
- Tag the ROI from a provided tag list or input their own tag, the provided tag list contains: T_1, T_2, T_n , other(input needed)

Note that:

- A ROI is a sub-rectangle-window of a image;
- Multiple selections;
- Anyone can directly participant without registration, but system records an ID

2.2 Functionality as seen by a stakeholder

2.3 INCENTIVIZATION CONCEPT

2.3.1 TASK GENERATOR

A task generator combines images from satellite and Result DB:

- Split a certain monitoring area image to pieces of images;
- Mix images from Result DB and pack as a Tagging Task which to be assigned to player.

2.3.2 PLAYER RATING MODEL

Players input vector:

(anonymous_id, image, event_time, ROI, tag_list)

Model output:

(anonymous_id, trust_value)

Note that:

- (anonymous_id, image, event_time, ROI) is the primary key of the input vector;
- A player can generate multiple vectors to rating system even for same image;
- The event_time is the capture time of the satellite image.

Figure 2.1: Weight Definition Visualization

For a certain image img at time t, Rating: player $i \rightarrow$ player j:

$$w_{ij} = \sum_{\text{ROI} \in \text{ROIs}} \frac{\text{ROI}(i,j)}{\text{ROI}(i)} \times \frac{Cov(\text{tags}(i), \text{tags}(j))}{\text{var}(\text{tags}(i)) \text{var}(\text{tags}(j))} \geq 0$$

Normalized Adjacency Matrix:

$$A = (\frac{w_{ij}}{\sum_{j} w_{ij}})$$

Obviously, A is **irreducible, real, non-negative, column-stochastic, and diagonal element being positive,** then eigenvalue of A is the player trust value.

When a new player tagging task need to be rated,

- which means we need introduce a new node to the graph
- need calculate the trust value of new graph
- let *t* is the trust value of new player
- if $t \ge mean(old_eigenvalues)$, then it is a reliable player, otherwise drop it.

2.3.3 DISASTER LEVEL EVALUATION MODEL

Query input:

(time) or (area_id) / (area_id, time)

Model output:

(area_id, time, disaster_level)

Note that:

- All results are evaluated from reliable tasks
- Evaluation Model generated by all reliable history

Now we have trusted results, each area has its tagging history. For an area at time t, define disaster level as follows:

$$v_{area} = \frac{\sum_{\mathsf{tag} \in \mathsf{tags}} w_{tag} \times \#(\mathsf{tag})}{\sum_{area \in areas} \sum_{\mathsf{tag} \in \mathsf{tags}} w_{tag} \times \#(\mathsf{tag})}$$

where w_{tag} is pre-defined weight by system, #(tag) is the occur number of a tag. Return value:

- disaster region: $\cup_{ROI \in ROIs} ROI$
- disaster level: v_{area}

2.3.4 Data Persistence

Trusted DB Fields:

```
Г
2
                 "anonymous_id": number,
                 "tasks": [
                          "image": image_path,
                          "at_time": time,
                          "ROI": [
8
                               {
                                    "latitude": number,
                                    "longitude": number,
11
                                    "tags": [tag1, tag2, ...]
12
13
                          ]
14
                      }
15
16
                 "trust_value": number
17
            }
18
       ]
19
20
```

Listing 1: Trusted Database Field

Result DB Fields:

```
{
                                                      "latitude": number,
longitude": number,
"tags": [tag1, tag2, ...]
10
11
12
                                               }
                                       ],
"disaster_level": number
14
15
                                }
16
                         ]
17
                  }
18
           ]
19
```

Listing 2: Results Database Field

3 System Design and UI Elements

3.1 System Architectures

Figure 3.1: System Design Overview

3.2 Algorithm for Data Aggregation

3.3 TECHNOLOGIES USED FOR IMPLEMENTATION

For a prototype, we decided to use the following framework to implement everthing:

- Polymer
- Node.js
- MongoDB

3.4 FRONT END

3.5 BACK END

3.6 User Interfaces of the system

3.7 SUMMARY

- Task Generator combines trusted results assign to players;
- Always treat player as new player, but integrated as old player if exists;

- Use ROI matching rate as graph edge weight, eigenvalue as trust value of player;
- Disaster Evaluation use pre-defined weight, then defined the disaster level

4 System Evaluation and Success Criteria

- 4.1 LIMITATION OF THE SYSTEM
- 4.2 EVALUATION AND SUCCESS CRITERIA
 - 4.2.1 MODEL EVALUATION
 - 4.2.2 ISSUES ON SOCIAL ASPECTS
 - 4.2.3 ISSUES ON ETHICAL ASPECTS

5 FUTURE WORKS

In this report, we present a disaster monitoring system, which aggregate human tagging input based on Network Analysis.

- 5.1 Possible extensions of the HC system
- 5.2 Thoughts on interaction with other HC system

REFERENCES

- [1] Shivani Agarwal. Ranking Methods in Machine Learning A Tutorial Introduction. *SIAM International Conference on Data Mining*, 2010.
- [2] Phillip Bonacich and Paulette Lloyd. Eigenvector-like measures of centrality for asymmetric relations. *Social Networks*, 23(3):191–201, 2001.
- [3] François Bry. Human Computation and Economics. (March):1–12, 2012.
- [4] François Bry. Human Computation-Enabled Network Analysis for a Systemic Credit Risk Rating. *Handbook of Human Computation*, pages 1–31, 2013.
- [5] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender. Learning to rank using gradient descent. *Proceedings of the 22nd international conference on Machine learning ICML '05*, pages 89–96, 2005.
- [6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank. *Proceedings of the 24th international conference on Machine learning ICML '07*, pages 129–136, 2007.
- [7] European Commission. Syria crisis. Forced Migration Review, (March):3, 2016.
- [8] Kevin Fran, Marco Saerens, and Pierre Dupont. Classification in Graphs using Discriminative Random Walks.
- [9] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The Eigentrust algorithm for reputation management in P2P networks. *Proceedings of the twelfth international conference on World Wide Web WWW '03*, page 640, 2003.
- [10] Edith Law and Luis Von Ahn. Input-Agreement: A New Mechanism for Collecting Data Using Human Computation Games. *Proc. SIGCHI Conference on Human Factors in Computing Systems*, pages 1–10, 2009.
- [11] Brian Mcfee and Gert Lanckriet. Metric Learning to Rank. Icml, pages 775–782, 2010.
- [12] Yukikazu NAKAMOTO. A Short Introduction to Learning to Rank. *IEICE Transactions on Information and Systems*, E94-D(1):1–2, 2011.
- [13] Luis von Ahn and Laura Dabbish. Designing games with a purpose. *Communications of the ACM*, 51(8):57, 2008.
- [14] LI Yong-Jun and DAI Ya-Fei. Research on Trust Mechanism for Peer-to-Peer Network. *Chinese Journal of Computers*, 33(3):390–405, 2010.