2. Suppose  $n \geq 2$  and m are positive integers. There are m identical coins to be distributed among n persons.

We describe a procedure called UNFAIR to divide the coins. The first person comes along and an integer x is picked uniformly at random from  $\{0,1,2,\ldots,m\}$ . Then, the first person takes x coins and goes home. In general, when the ith person comes along (where i < n), and there are r coins left, an integer y is picked uniformly at random from  $\{0,1,2,\ldots,r\}$  and the ith person goes home with y coins. The nth (last) person just takes whatever that is left.

Define  $X_i$  to be the number of coins the *i*th person takes.

(a) Compute  $E[X_1]$ , the expected number of coins the first person receives.

$$\lim_{m \to 1} \sum_{i=0}^{m} i = \frac{1}{m+1} \cdot \frac{1}{2} m(m+1) = \frac{m}{2}$$

(b) Suppose  $n \geq 3$ . Given that the first person receives x coins, what is the expected number of coins the second person receives? (Compute  $E[X_2|X_1=x]$ .)

Remaining no. of wins = 
$$m-x$$
  

$$E[X_2 | X_1 = x] = \frac{m-x}{2}$$

(c) Assume  $n \geq 3$ . Compute  $E[X_2]$ .

$$E[X_2] = \sum_{x} Pr[X_1 = x] \cdot E[X_2 | X_1 = x]$$

$$= \frac{m - E[X_1]}{2} = \frac{m}{4}$$

(d) For general  $i \le n$ , compute  $E[X_i]$ .

If i < n,  $E[X_i] = \frac{M}{a}$ . i = n,  $E[X_n]_2 = m - \sum_{i=1}^{n-1} E[X_i] = \frac{M}{2^{n-1}}$ 



We next consider another procedure called FAIR. First, compute the set S of all NON- negative integer solutions to the equation  $x_1 + x_2 + x_3 + \ldots + x_n = m$ , where each  $x_i \ge 0$ . A solution  $(x_1, x_2, \dots, x_n)$  is picked uniformly at random from S, and for each  $1 \le i \le n$ , the *i*th person receives  $x_i$  coins.

(a) What is the size of S?

$$\frac{(m+n-1)!}{(m-1)!} = \binom{m+n-1}{m} = \binom{m+n-1}{n-1}$$

(b) Suppose  $X_1$  is the number of coins received by the first person. What is the probability that  $X_1 = k$ , where  $0 \le k \le m$ ? Express your answer in terms of n, m and k.  $S_k = \{ \overrightarrow{x} \in S : x_i = k \}$ 

$$|S_k| = \frac{(m-k+n-2)!}{(m-k)!(n-2)!} = \frac{(m-k-k-2)!}{(m-k)!(n-2)!} = \frac{|S_k|}{|S_k|}$$

(c) Prove that for all positive integers  $n \geq 2$  and  $m \geq 1$ ,

$$\sum_{k=0}^{m} k \cdot \binom{m+n-k-2}{n-2} = \frac{m}{n} \cdot \binom{m+n-1}{m}.$$

$$\sum_{k=0}^{m} k \cdot P(X_i = k) = \frac{m}{n}$$

$$B = \sum_{i=1}^{n} X_{i} \qquad E[B] = \sum_{i=1}^{n} E[X_{i}] = np$$

$$E[X_{i}] = p \qquad X_{i} = \begin{cases} 1 & \text{wp. } P \\ 0 & \text{wp. } 1-p \end{cases}$$

var(B) = E[B] 3. Let B = Bin(n, p), i.e., flipping n biased coins, each having heads with probability p. Compute  $E[B^2]$ . -E[B]

(For general  $k \geq 2$ , how to compute  $E[B^k]$ ?)

$$E[B^{3}] = \sum_{k=0}^{n} \Re (\binom{n}{k}) \cdot p^{k} (\binom{n}{k})^{n-k}$$

$$= E[\sum_{i=1}^{n} X_{i} \cdot \sum_{j=1}^{n} X_{j}].$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_{i}X_{j}].$$

$$= N \cdot P + (N^{2} - N) \cdot P^{2}$$

$$var(B) = E[B^2] - E[B]^2$$
  
=  $np + n^2p^2 - np^2 - (np)^2$   
=  $np(1-p) = npq$ ,  $g=1-p$ 

 $E[B_3] = \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} E[X_i X_j X_k]$ 

Case (1) 1=1 E[X:X] = E[X:J = P]Care (2) (=) E[XiX]]= E[X:) E[X] indep = PZ

Dall diffaut

Moment generaling function.

Grun v.s. B, 
$$\varphi(t) = E[e^{tB}]$$
  $\varphi(0) = 1$ 
 $\varphi'(t) = E[\frac{d}{dt}e^{tB}] = E[B \cdot e^{tB}], \quad \varphi'(0) = E[B]$ 
 $\varphi''(t) = E[B^2 e^{tB}], \quad \varphi''(0) = E[B^2]$ 
 $\varphi''(0) = E[B^k].$ 

$$\varphi(t) = E[e^{t(X_1 + \dots + X_n)}] = E[e^{tX_1}, e^{tX_2}, \dots, e^{tX_n}]$$

$$= \prod_{i=1}^n E[e^{tX_i}]$$

\_ + Y: \

 $E[e^{tx}] = (1-p) \cdot e^{t} + p \cdot e^{t} = pe^{t} + (1-p).$   $V_{B}(t) = (pe^{t} + (1-p))^{n}$   $V'(t) = n \cdot (pe^{t} + 1-p)^{n-1} \cdot pe^{t} = np \cdot e^{t} \cdot (pe^{t} + 1-p)^{n-1}$   $V''(t) = np \cdot e^{t} \cdot (pe^{t} + 1-p)^{n-1} + e^{t} \cdot (n-1) \cdot (pe^{t} + (-p))^{n-1} \cdot pe^{t} \cdot e^{t} \cdot (n-1) \cdot (pe^{t} + 1-p)^{n-1} + pe^{t} \cdot (n-1) \cdot (pe^{t} + 1-p)^{n-1} \cdot pe^{t} \cdot e^{t} \cdot (pe^{t} + 1-p)^{n-1} + pe^{t} \cdot (n-1) \cdot (pe^{t} + 1-p)^{n-1} \cdot e^{t} \cdot e^{$