Linear Least square fit - introductory example

Example: Precise muon track fits for possible discovery $Z^* \to \mu^+ \mu^-$

Linear Track fit

- Necessary conditions for linear least square fit:
 - Measurements with gaussian uncertainties
 - Linear model, here: $y = a_0 + a_1x + a_2x^2$
- Fit construction:

$$- \chi^2 = \sum_{i} \frac{\left[y_i - (a_0 + a_1 x + a_2 x^2) \right]^2}{\sigma_i^2}$$

- Determine a_0, a_1, a_2 by finding χ^2 total minimum (normal equations)
- Check consistency
 - $-\chi^2$ and fit probability
 - Outlier rejection
- Detailed error analysis
 - Parameter errors and correlations (error ellipses), track trajectory error band
 - Momentum calculation (error propagation)
- Possible Extensions:
 - Apply constraint fits to both tracks, e.g. $p_t(\mu^+) = p_t(\mu^-) \rightarrow \text{covered in session on extended fits}$
 - Analysis of obtained $\mu^+\mu^-$ mass spectrum containing background and possible signal events \rightarrow covered in session on non-linear least square fits

Overview of Linear least square fit section

Part I	Part II	Part III
 Reminder of χ²-fit method Linear χ²-fit examples (Constant, straight line, parabola, etc.) Fit of a constant (averaging measurements) One single measurement: χ²min and χ²min + 1, Hesse matrix Exercise: Two measurements: perform fit by adding χ²-parabolas Averaging many measurements, results Exercise: Compare weighted vs unweighted average 	 χ²-fit-quality test: Example: χ² of two measurements and known true value χ²-function for n degrees of freedom and χ²-fit probability Exercise: plot and study features of the χ²-function vs n using the parameterised function New: Generate 1000 random experiments with n degrees of freedom and obtain χ² and χ²-fit probability distributions χ² for two measurements with unknown true value New exercise: Track position measurement in test beam using 10 detector layers, in each detector 99% chance for signal hit and 1% for random noise hit → Generate 1000 tracks and corresponding hits and obtain χ², χ²-fit probability and measured parameter distributions. Try to reject outliers: Method 1: reject track fits with small χ²-fit probability, Method 2: iterative, repeat track-fit and downweight outliers Exercise: Outlier rejection, case world average of mw, study how the rejection of certain measurements change the average and the χ²-fit probability New exercise: Upscaling of errors a la PDG to obtain reasonable χ² New exercise: Pulls of single measurements to the average 	 General form of linear χ² Solution by normal equations Normal equation solution for straight line fit Exercise: Learn qualitative features of straight line fits, e.g. importance of lever arm Exercise: Straight line fit and detailed error analysis (error ellipse, trajectory error band) New exercise: Coordinate transformation such that the coordinate center is in the middle of the points → study the effect on the parameter errors and correlation New exercise: Add a very precise point at the origin of the track such that the p₀ parameter is basically fixed. Repeat the trackfit and study the effect on the slope and error Exercise: Parabola track fit, complete analysis: fit, outlier-rejection, parameter errors/correlation, trajectory uncertainty, momentum calculation