0.1 Additional anomalies

To account for additional anomalies that our model could potentially recover we consider the discount function, δ , derived in each of the cases. For this purpose δ is a function of the problem parameters, including the payments, Δx_a and Δx_b , so that a decision maker would have been indifferent between a and b given the same parameters exactly, but with payment $\delta \Delta x_b$ instead of Δx_b in option b.

- Case A: $\delta = \frac{\Delta x_a}{\Delta x_b}$
- Case B: $\delta = \frac{\Delta x_a e^{rD}}{\Delta x_b}$
- Case C: $\delta = \frac{H+D}{H} \frac{\Delta x_a}{\Delta x_b}$

• Case D:
$$\delta = \frac{x(t_0)e^{r(H+D)}}{\Delta x_b} \left[\left(1 + \frac{\Delta x_a}{x(t_0)e^{rH}} \right)^{\frac{H+D}{H}} - 1 \right]$$

In particular, we are interested in two so-called anomalies that are relevant of the several discussed by ? – the "sign effect" and the "magnitude effect". The sign effect means that gains are discounted more than losses. In other words, that if Δx_a and Δx_b are positive, δ should be higher than for $-\Delta x_a$ and $-\Delta x_b$. It is clear that for cases A, B and C, such a reflection with respect to zero makes no difference to the value of δ . For Case D it does, as we will soon see.

The magnitude effect means that large payments are discounted at a lower rate than lower payments. This means that if we consider payments Δx_a and Δx_b and $\kappa \Delta x_a$ and $\kappa \Delta x_b$, for some factor $\kappa > 1$, than δ will be lower in the latter case. Again, the magnitude effect is not predicted in cases A, B and C, where a multiplication of Δx_a and Δx_b by a common factor makes no difference to δ . However, it does make a difference to δ in case D.

The sign effect in case D The discount function is

$$\delta(D; H; r; x(t_0); \Delta x_a; \Delta x_b) = \frac{x(t_0) e^{r(H+D)}}{\Delta x_b} \left[\left(1 + \frac{\Delta x_a}{x(t_0) e^{rH}} \right)^{\frac{H+D}{H}} - 1 \right], \quad (0.1)$$

and the question of whether this recovers the "sign effect", as described by ?, is whether

$$\delta^{+} \equiv \delta\left(D; H; r; x\left(t_{0}\right); \Delta x_{a}; \Delta x_{b}\right) = \delta\left(D; H; r; x\left(t_{0}\right); -\Delta x_{a}; -\Delta x_{b}\right) \equiv \delta^{-} \tag{0.2}$$

or not? It is possible that for positive payments $\delta^+ > \delta^-$, *i.e.*, the "sign effect" is recovered.

To show it, let us look at the ratio

$$\frac{\delta^{+}}{\delta^{-}} = -1 \cdot \frac{\left(1 + \frac{\Delta x_{a}}{x(t_{0})e^{rH}}\right)^{\frac{H+D}{H}} - 1}{\left(1 + \frac{-\Delta x_{a}}{x(t_{0})e^{rH}}\right)^{\frac{H+D}{H}} - 1}.$$
(0.3)

It is easy to see that the numerator is positive, assuming positive payments and positive horizon and delay. Assuming $1 + \frac{-\Delta x_a}{x(t_0)e^{rH}}$ is positive, i.e. $\Delta x_a < x(t_0)e^{rH}$, so that the earlier payment is not too high, then the denominator is clearly negative and smaller in size than the numerator. Thus, $\frac{\delta^+}{\delta^-}$ is positive and larger than 1, and we get the sign effect.

Let us look at a simple numerical example. We assume H=1 day, D=1 day, $x(t_0)=\$10$ and r=10%/day in case D. With these parameters, a growth-optimal decision maker will be indifferent between an early payment of \$1 and a later payment of \$2.31. However, she will also be indifferent between an early loss of \$1 and a later loss of \$2.11. In other words, the gain is discounted more than a loss.

The magnitude effect in case D The discount function is

$$\delta(D; H; r; x(t_0); \Delta x_a; \Delta x_b) = \frac{x(t_0) e^{r(H+D)}}{\Delta x_b} \left[\left(1 + \frac{\Delta x_a}{x(t_0) e^{rH}} \right)^{\frac{H+D}{H}} - 1 \right], \quad (0.4)$$

and the question of whether this recovers the "magnitude effect", as described by ?, is whether

$$\delta \equiv \delta(D; H; r; x(t_0); \Delta x_a; \Delta x_b) = \delta(D; H; r; x(t_0); \kappa \Delta x_a; \kappa \Delta x_b) \equiv \delta^{\kappa}$$
 (0.5)

or not, for $\kappa > 1$? If $\delta > \delta^{\kappa}$, then the "magnitude effect" is recovered.

Let us look at the ratio

$$\frac{\delta}{\delta^{\kappa}} = \kappa \cdot \frac{\left[\left(1 + \frac{\Delta x_a}{x(t_0)e^{rH}} \right)^{\frac{H+D}{H}} - 1 \right]}{\left[\left(1 + \frac{\kappa \Delta x_a}{x(t_0)e^{rH}} \right)^{\frac{H+D}{H}} - 1 \right]} \stackrel{?}{>} 1. \tag{0.6}$$

In the small payment limit, i.e. $\frac{\Delta x_a}{x(t_0)e^{rH}} \ll 1$ (and $\frac{\kappa \Delta x_a}{x(t_0)e^{rH}} \ll 1$), we easily get $\frac{\delta}{\delta^{\kappa}} \approx 1$. So, in practical terms, the magnitude effect is not recovered by growth-optimality.