Companion to Information Security

Zubair Abid (20171076)

April 2020

Contents

1	Intr	oduction	6
	1.1	What is Information Security about?	6
	1.2	The Language of Cryptography	6
	1.3		6
	1.4		6
2	The	Origins of Modern Cryptography	6
	2.1	The Caesar Cipher	6
	2.2	Shift Ciphers	6
	2.3		6
	2.4	Polyalphabetic Substitution Cipher	6
	2.5		6
	2.6		6
	2.7		6
	2.8	Kerckhoff's Principle	6
	2.9	Requirements for an unbreakable cipher	6
	2.10		6
	2.11	One time pad	6
3	Mat	hematical Background	6
	3.1	<u> </u>	6
	3.2		6
	3.3		6
	3.4		6
	3.5		6
	3.6		6
	3.7		6
	3.8	Rings	6
	3.9	9	6
	3.10		6
			6
			6
			6

Ŀ	\mathbf{Cry}	ptographic Concepts
	4.1	Adversary
	4.2	Birthday Attack
	4.3	Bit-commitment
	4.4	CBCMAC
	4.5	CCA Security
	4.6	Channel
	4.7	Chosen Ciphertext Attack (CCA)
	4.8	Chosen Plaintext Attack (CPA)
	4.9	Cipher
	4.10	Cipher Block Chaining (CBC)
		Ciphertext-only security
		Collision Resistance
	4.13	CPA Security
	4.14	Decisional Diffie-Helman (DDH) Assumption
		Decryption
		Diffie-Helman Key Exchange
	4.17	Digital Signature
		Discrete Logarithm Problem
		Encryption Schemes
	4.20	Entropy
		Expectation
	4.22	Feistel Structures
	4.23	General Access Structure
		Hard-core predicate
		Hash and Sign paradigm
		Hash Functions
		Heuristic Security
	4.28	Interactive Digital Signature
		Interactive Proofs
	4.30	Least and most significant bit
	4.31	Message Authentication Codes (MAC)
	4.32	Modes of Operation of Encryption
		Negligible Functions
	4.34	Nonce
	4.35	Oblivious Transfer
		One-way Functions
	4.37	Oracle Function
	4.38	Output Feedback Mode (OFB)
	4.39	Perfect Secrecy
		PKCS v1.5
	4.41	Probabilistic Encryption
	4.42	Probabilistic Polynomial Turing Machine (PPTM)
	4.43	Provably secure RSA: RSA-OAEP
		Private Key
		Pseudo-random generators

	4.46	Pseudo-random functions
	4.47	Pseudo-random permutations
	4.48	Public Key
		Public Key Cryptography
	4.50	Random Oracle Model
	4.51	Randomized Counter Mode (RCM)
	4.52	RSA
	4.53	Secret Sharing
	4.54	Secure Channel Capacity
	4.55	Secure Two-Channel Communication
	4.56	Symmetric Key Cryptography
	4.57	Trapdoor one-way Functions
	4.58	Trusted Third Party
	4.59	Zero Knowledge Proofs (ZKP)
5	The	orems and Schemes
	5.1	Defining Schemes for Cryptography
	5.2	Shannon's theory of Perfect Secrecy
	5.3	One-time pads are perfectly secret $\dots \dots \dots$
	5.4	Every perfectly secret scheme is isomorphic to the one-time pad . $$
	5.5	Perfectly secret schemes need —m— sized key
	5.6	Relaxations to Perfect Secrecy
	5.7	Existence of one-way functions implies P!=NP
	5.8	Ciphertext-only security exists iff one way functions exist
	5.9	Arbitrary expansion pseudo-random generators exist iff one way
		functions exist
		Using the Discrete Logarithm Problem as a one way function $$. $$
		MSB of DLP is a hardcore predicate
		No deterministic scheme is CPA-secure
		Pseudo-random functions exist iff Pseufo-random generators exist $$
		CPA-secure encryption schemes can be built from OWFs
		Data Encryption Standard (DES)
		Advanced Encryption Standard (AES)
		Merkle-Damgard transform
		Designing a MAC from Pseudo-random functions
		Using MAC to build a CCA-secure scheme
	5.20	Collision-resistant hash functions
		Designing hash functions from DLP
		Diffie-Helman Key Exchange
		El-Gamal Public Key Cryptography
	5.24	RSA Public Key Cryptography
		Textbook RSA is not CPA-secure
		Constructing a digital signature from RSA
		Constructing a bit-commitment scheme from one-way permutations 6
	5.28	Oblivious transfer problem
	5 20	Rit-commitment scheme using oblivious transfer

	5.30	Bit-commitment is NP-Complete	6
	5.31	Building an interactive digital signature based on DLP	6
	5.32	Building a digital signature based on DLP	6
		Shamir's Secret Sharing scheme	6
	5.34	Decentralised ledgers using OWFs	6
_			
3		able Cryptographers	6
	6.1	Al-Khalil ibn Ahmad al-Farahidi	6
	6.2	Augustus the Younger	6
	6.3	Ibn 'Adlan	6
	6.4	Francesco I Gonzaga	6
	6.5	Ibn al-Durayhim	6
	6.6	Ahmad al-Qalqashandi	6
	6.7	Ibn Wahshiyya	6
	6.8	Giovanni Battista della Porta	6
	6.9	Étienne Bazeries	6
		Friedrich Kasiski	6
		Charles Babbage	6
		Auguste Kerckhoffs	6
		Elizebeth Smith Friedman	6
		Jack Good	6
		Nigel de Grey	6
	6.16	Alan Turing	6
	6.17	William Thomas Tutte	6
		Gottfried Köthe	6
		Helmut Grunsky	6
		Oswald Teichmüller	6
		Claude Shannon	6
		Ross Anderson	6
		Paulo S. L. M. Barreto	6
	6.24	George Blakley	6
	6.25	Don Coppersmith	6
		Joan Daemen	6
		Horst Feistel	6
	6.28	Ralph Merkle	6
		Bart Preneel	6
		Vincent Rijmen	6
		Ronald L. Rivest	6
		Adi Shamir	6
		Leonard Adleman	6
		Whitfield Diffie	6
		Martin Hellman	6
	6.36	Clifford Cocks	6
	6.37	Taher Elgamal	6
	6.38	Shafi Goldwasser	6
	6.39	Alfred Menezes	6

	6.40 Victor Miller
	6.41 David Naccache
	6.42 Pascal Paillier
	6.43 Michael O. Rabin
	6.44 Moti Yung
	6.45 Niels Ferguson
	6.46 Mitsuru Matsui
	6.47 David Wagner
	6.48 Alex Biryukov
	6.49 Gilles Brassard
	6.50 Oded Goldreich
	6.51 Oded Regev
	6.52 Phillip Rogaway
	6.53 Srinathan Kannan
	6.54 Amit Deshpande
	6.55 Satya Lokam
	6.56 Manoj M. Prabhakaran
7	The influence of Cryptography
	7.1 Secure end-to-end communication on the internet
	7.1.1 Banking Activities
	7.1.2 Military Use
	7.1.3 Secure corporate communication
	7.2 Application on Data Integrity
	7.3 Blockchains
	7.4 Cryptocurrencies
	7.5 Techniques from cryptography are used in other fields
8	Final Perspectives
	8.1 Cryptography is Fascinating, Fantastic, and Fundamental
	8.2 Cryptographic thinking
	8.3 Research Areas in Cryptography