Probability Theory

VI Total variation \sim Skorohod's Theorem

Seongho, Joo

August 7, 2025

Seoul National University

We've considered several modes of convergence of random variables: almost sure convergence, L^p convergence, and convergence in probability.

All of these require information about the *joint* distribution of $\{X, X_n\}$. We are going to turn to some convergence notions that only care about the individual distributions.

We've considered several modes of convergence of random variables: almost sure convergence, L^p convergence, and convergence in probability.

All of these require information about the *joint* distribution of $\{X,X_n\}$. We are going to turn to some convergence notions that only care about the individual distributions. Let $\{\mu_n\}_{n=1}^{\infty}$ be s sequence of probability measures on (S,\mathcal{B}) .

Definition 1

Let μ, ν be probability measures on $(S, \mathcal{B}).$ The *total variation distance* between item is

$$d_{\mathsf{TV}}(\mu, \nu) = \sup_{B \in \mathcal{B}} |\mu(B) - \nu(B)|$$

If X, Y are (S, \mathcal{B}) -valued random variables, we set

$$d_{\mathsf{TV}}(X,Y) = d_{\mathsf{TV}}(\mu_X, \mu_Y) = \sup_{B \in \mathcal{B}} | \mathbb{P}(X \in B) - \mathbb{P}(Y \in B) |$$

Lemma 1 (Scheffé)

If α is a finite measure on (S,\mathcal{B}) such that $\mu,\nu<<\alpha$ with $\,\mathrm{d}\mu=u\,\mathrm{d}\alpha,\,\mathrm{d}\nu=v\,\mathrm{d}\alpha,$ then

$$d_{\mathsf{TV}}(\mu, \nu) = \frac{1}{2} \|u - v\|_{L^{1}(\alpha)}$$

Note: it is always possible to find such $\alpha.$

Corollary 1

 d_{tv} is a complete metric on $\mathsf{Prob}(S,\mathcal{B})$

Proof. Let $\{\mu_n\}_{n=1}^{\infty} \subset \text{Prov}(S, \mathcal{B})$. Fix α such that $d\mu_n = u_n d\alpha$.

- $\blacksquare 0 = d_{\mathsf{TV}}\left(\mu_1, \mu_2\right) \implies u_1 = u_2 \ \alpha a.s. \implies \mu_1 = \mu_2$
- $d_{\text{TV}}(\mu_1, \mu_3) = \frac{1}{2} \|u_1 u_3\| \le \frac{1}{2} (\|u_1 u_2\| + \|u_2 u_3\|) = d_{\text{TV}}(\mu_1, \mu_2) + d_{\text{TV}}(\mu_2, \mu_3)$
- \blacksquare If $\{\mu_n\}_{n=1}^{\infty}$ is a $d_{\mathsf{TV}}\text{-Cauchy}$,

$$\frac{1}{2} \, \|u_n - u_m\|_{L^1(\alpha)} = d_{\mathsf{TV}} \left(\mu_n, \mu_m\right) \to 0 \implies \{u_n\}_{n=1}^\infty \text{ is a Cauchy in } L^1(\alpha)$$

Define
$$\mathrm{d}\mu=u\,\mathrm{d}\alpha,\,d_{\mathrm{TV}}\left(\mu_{m},\mu\right)=\frac{1}{2}\left\|u_{n}-u\right\|_{L^{1}\left(\alpha\right)}\to0$$

Corollary 2

If h is a bounded r.v. on (S,\mathcal{B}) , then $\forall \mu,\nu\in \mathsf{Prob}(S,\mathcal{B})$

$$\left| \int_{S} h \, \mathrm{d}\mu - \int_{S} h \, \mathrm{d}\nu \right| \leq 2d_{\mathsf{TV}} \left(\mu, \nu, \cdot \right) \sup_{S} |h|$$

Moreover, $d_{\mathsf{TV}}\left(\mu,\nu\right) = \frac{1}{2}\sup\left\{\left|\int_S h\,\mathrm{d}\mu - \int_S h\,\mathrm{d}\nu\right| : \sup_S |h| \le 1\right\}$

Total variation works well when S is countable.

Lemma 2

If S is countable, and $\mu, \nu \in \text{Prov}(S, \mathcal{B})$, then

$$d_{\mathsf{TV}}\left(\mu,\nu\right) = \frac{1}{2} \sum_{k \in S} |\mu(\{k\}) - \nu(k)|$$

 $\implies \mu_n \to \mu \ \ \text{in TV} \ \ \text{if and only if} \ \mu_n(\{k\}) \to \mu(\{k\}) \quad \forall k \in S$

Example $\nu_{\lambda} = \mathsf{Poisson}(\lambda)$

$$d_{\mathsf{TV}}\left(\nu_{\lambda},\nu_{\eta}\right) = \frac{1}{2} \sum_{k=0}^{\infty} \left| e^{\lambda} \frac{\lambda^{k}}{k!} - e^{-\eta} \frac{\eta^{k}}{k!} \right| \leq |\lambda - \eta|$$

Example $d_{\text{TV}}\left(\mu_p, \nu_p\right) = p(1 - e^{-p})$

Law of Rare Events

Theorem 1 (The Law of Rare Events)

Let $\{X_j\}_{j=1}^\infty$ be independent, $X_j=\text{Bernoulli}(p_j)$. Set $S_n=X_1+\cdots+X_n$. Let $N=\text{Poisson}(p_1+\cdots+p_n)$ Then,

$$d_{\mathsf{TV}}\left(S_n, N\right) \le \sum_{j=1}^n p_j^2$$

Lemma 3 (Sub-additivity of TV distance)

Let $\{\mu_j, \nu_j\}_{j=1}^n$ be probability measures on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ Then,

$$d_{\mathsf{TV}}(\mu_1 * \mu_2 \dots \mu_n, \nu_1 * \nu_2 \dots * \nu_n) \le \sum_{j=1}^n d_{\mathsf{TV}}(\mu_j, \nu_j)$$

Coupling

Given probability measure μ, ν on (S, \mathcal{B}) , a coupling is a pair (X, Y) of random variables on a common probability space, taking values in (S, \mathcal{B}) , such that $\mu_X = \mu, \mu_Y = \nu$

Example: $\mu \otimes \nu$ is a independent coupling of μ, ν .

Lemma 4 (Coupling Estimate)

If (X,Y) is any coupling of the Borel probability measures μ,ν , then $d_{\mathsf{TV}}\left(\mu,\nu\right) \leq \mathbb{P}(X \neq Y)$

TV distance is somewhat too Strong!

In non-discrete settings, total variation convergence is usually too much to ask.

• Let $a_n \in \mathbb{R}, a_n \to a$.

$$d_{\mathsf{TV}}\left(\delta_{a_n}, \delta_a\right) = \sup_{B} \left|\delta_{a_n}(B) - \delta(B)\right| \ge 1 \text{ i.o.}$$

 \bullet A discrete approximation of Unif([0,1]), $\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{k/n}$

$$d_{\mathsf{TV}}\left(\mu_n,\mathsf{Unif}[0,1]\right) = 1$$

TV distance is somewhat too Strong!

In non-discrete settings, total variation convergence is usually too much to ask.

• Let $a_n \in \mathbb{R}, a_n \to a$.

$$d_{\mathsf{TV}}\left(\delta_{a_n}, \delta_a\right) = \sup_{\mathcal{D}} |\delta_{a_n}(B) - \delta(B)| \ge 1 \text{ i.o.}$$

 \bullet A discrete approximation of Unif([0,1]), $\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{k/n}$

$$d_{\mathsf{TV}}\left(\mu_n,\mathsf{Unif}[0,1]\right) = 1$$

Definition 2

Let S be a metric space, $\mu_n, \mu \in \text{Prob}(S, \mathcal{B}(S))$.

Say μ_n converges weakly to μ , $\mu_n \underset{w}{\rightarrow} \mu$, if $\int f \, \mathrm{d}\mu_n \to \int f \, \mathrm{d}\mu \ \forall f \in C_b(S)$

Example: If $a_n \to a$, then $\int f d\delta_{a_n} = f(a_n) \to f(a) = \int f d\delta_a \ \forall f \in C_b$

Weak Convergence

Proposition 1

If
$$d_{\text{TV}}(\mu_n, \mu) \to 0$$
, then $\mu_n \xrightarrow{w} \mu$

Proof. Directly followed by Corollary 2.

Proposition 2

If
$$X_n, X: (\Omega, \mathcal{F}, \mathbb{P}) \to (S, \mathcal{B}(S))$$
 and $X_n \xrightarrow{\mathbb{P}} X$, then $X_n \xrightarrow{w} X$.

Proof. First, we prove the following lemma.

Lemma 5

If
$$X_n \xrightarrow{\mathbb{P}} X$$
 and $g \in C(S)$, then $g(X_n) \xrightarrow{\mathbb{P}} g(X)$.

Proof. For $\varepsilon, \delta > 0$, let $B_{\varepsilon,\delta}(g) = \{x \in S : \exists y \in S \ d(x,y) < \delta, |g(x) - g(y)| \ge \varepsilon\}$ Continuity of g means that, for fixed $\varepsilon > 0$, $B_{\varepsilon,\delta}(g) \downarrow \emptyset$ as $\delta \downarrow 0$. Note that $\{|g(x_n) - g(X)| \ge \varepsilon\} \subseteq \{d(X_n, X) \ge \delta\} \cup \{X \in B_{\varepsilon,\delta}(G)\}$

$$\implies \mathbb{P}(|g(X_n) - g(X)| \geq \varepsilon) \leq \mathbb{P}(d(X_n, X) \geq \delta) + \underbrace{\mathbb{P}(X \in B_{\varepsilon, \delta}(g))}_{\mu_X(B_{\varepsilon, \delta}(g)) \to 0 \text{ as } \delta \downarrow 0}$$

Weak Convergence

Let $f \in C_b(S)$. Then

$$\int f \, \mathrm{d}\mu_{X_n} = \mathbb{E} f(X_n)$$

By the lemma, $X_n \xrightarrow{\mathbb{P}} X \implies f(X_n) \xrightarrow{\mathbb{P}} f(X)$ and note that $|f(X_n)| \leq M$

By dominated convergence theorem, $f(X_n) \to f(X)$ in L^1 . $\mathbb{E} f(X_n) \to \mathbb{E} f(X) = \int f \, \mathrm{d} \mu_X$

Corollary 3

If $X_n \to X$ a.s., or if $X_n \to X$ in L^p , then $X_n \xrightarrow{w} X$.

Definition 3

Let μ be a Borel measure on metric space S. An event $B\in\mathcal{B}(S)$ is a continuity set for μ if

$$\mu(\partial A)=0,\quad \partial A=\bar A\setminus \operatorname{int}(A)$$

Example. $(-\infty,a]$ is not a continuity set for δ_a .

Example. If $\mu \in \text{Prov}(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and F_{μ} is continuous, then all intervals are continuity sets for μ

Conditions for Weak convergence

Theorem 2 (Portmanteau)

Let S be a complete, separable metric space. Let $\mu_n, \mu \in \text{Prob}(S, \mathcal{B}(S))$. TFAE:

- $\exists \ \limsup_{n \to \infty} \mu_n(F) \leq \mu(F) \quad \forall \ \mathsf{closed} \ F \subseteq S$
- $\text{ } \liminf_{n \to \infty} \mu_N(G) \geq \mu(G) \quad \forall \text{ } \text{open } G \subseteq S$
- $\mbox{5} \ \mu_n(A) \to \mu(A) \quad \forall \mu- \ \mbox{continuity sets} \ A \in \mathcal{B}(S)$

Weak convergence for \mathbb{R}^d

Theorem 3

Let $\mu_n, \mu \in \operatorname{Prob}(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Then $\mu_n \xrightarrow{w} \mu$ if and only if $\int_{\mathbb{R}^d} f \, \mathrm{d} \mu_n \to \int_{\mathbb{R}^d} f \, \mathrm{d} \mu \quad \forall f \in C_c(\mathbb{R}^d) \dots (\dagger)$

Lemma 6

If \dagger holds true, then $\lim_{R\uparrow\infty}\inf_n\mu_n(\bar{B}_R)=1$

Proof for Theorem.

Weak convergence for \mathbb{R}^d

Corollary 4

Let
$$\mu_n, \mu \in \operatorname{Prob}(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$$
. Then $\mu_n \xrightarrow{w} \mu$ if and only if
$$\int_{\mathbb{R}^d} f \, \mathrm{d}\mu_n \to \int_{\mathbb{R}^d} f \, \mathrm{d}\mu \quad \forall f \in C_c^\infty(\mathbb{R}^d)$$

For any function $F:S\to T$ between topological spaces,

$$Cont(F) := \{x \in S : F \text{ is continuous at } x\}, \, \mathsf{Disc}(F) := S \setminus \mathsf{Cont}(F)$$

Recall that every probability measure on $\ensuremath{\mathbb{R}}$ is a Stieltjes measure.

Weak convergence for \mathbb{R}^d

Corollary 4

Let $\mu_n, \mu \in \operatorname{Prob}(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)$. Then $\mu_n \xrightarrow{w} \mu$ if and only if $\int_{\mathbb{R}^d} f \, \mathrm{d}\mu_n \to \int_{\mathbb{R}^d} f \, \mathrm{d}\mu \quad \forall f \in C_c^\infty(\mathbb{R}^d)$

For any function $F:S \to T$ between topological spaces,

$$\mathsf{Cont}(F) := \{x \in S : F \text{ is continuous at } x\}, \, \mathsf{Disc}(F) := S \setminus \mathsf{Cont}(F)$$

Recall that every probability measure on $\ensuremath{\mathbb{R}}$ is a Stieltjes measure.

Theorem 4

Let $\mu, \mu \in \operatorname{Prob}(\mathbb{R})$. Set $F_n(T) = \mu_n(-\infty, t], F(t) = \mu(-\infty, t].$ Then $\mu_n \xrightarrow{w} \mu$ if and only if $F_n(t) \to F(t) \quad \forall t \in \operatorname{Cont}(F)$

Consider $\mu_n = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_n \in \operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$. Does μ_n have a limit in some sense? If $f \in C_c(\mathbb{R}), f(x) = 0 \ \forall |x| \geq M, \ \int f \ \mathrm{d}\mu_n = \frac{1}{2}f(0), n \geq m$ Note: $\mu_n \not\stackrel{\mathcal{H}}{\longrightarrow} \frac{1}{2}\delta_0$. In fact, $\{\mu_n\}_{n=1}^\infty$ possesses no weakly convergent subsequence.

What's going on?

Consider $\mu_n=\frac{1}{2}\delta_0+\frac{1}{2}\delta_n\in \operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$. Does μ_n have a limit in some sense? If $f\in C_c(\mathbb{R}), f(x)=0 \ \forall |x|\geq M, \ \int f \ \mathrm{d}\mu_n=\frac{1}{2}f(0), n\geq m$

Note: $\mu_n \not\stackrel{\mu}{\longrightarrow} \frac{1}{2} \delta_0$. In fact, $\{\mu_n\}_{n=1}^{\infty}$ possesses no weakly convergent subsequence. What's going on?

Definition 4 (Vague convergence)

Let μ_n, μ be Borel measures on \mathbb{R}^d . Say μ_n converges vaguely to μ , $\mu_n \to \mu$, if $\int_{\mathbb{R}^d} f \,\mathrm{d}\mu_n \to \int_{\mathbb{R}^d} f \,\mathrm{d}\mu \, \forall f \in C_c(\mathbb{R}^d)$

It is possible to lose mass, but not gain it under vague convergence.

Consider $\mu_n=\frac{1}{2}\delta_0+\frac{1}{2}\delta_n\in \operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$. Does μ_n have a limit in some sense? If $f\in C_c(\mathbb{R}), f(x)=0 \ \forall |x|\geq M, \ \int f \ \mathrm{d}\mu_n=\frac{1}{2}f(0), n\geq m$

Note: $\mu_n \not\stackrel{p}{\longrightarrow} \frac{1}{2} \delta_0$. In fact, $\{\mu_n\}_{n=1}^{\infty}$ possesses no weakly convergent subsequence. What's going on?

Definition 4 (Vague convergence)

Let μ_n, μ be Borel measures on \mathbb{R}^d . Say μ_n converges vaguely to μ , $\mu_n \underset{v}{\to} \mu$, if $\int_{\mathbb{R}^d} f \,\mathrm{d}\mu_n \to \int_{\mathbb{R}^d} f \,\mathrm{d}\mu \, \forall f \in C_c(\mathbb{R}^d)$

It is possible to lose mass, but not gain it under vague convergence.

Definition 5 (Tightness)

A family $\Lambda\subseteq\operatorname{Prob}(S,\mathcal{B}\left(\left(\right)S\right))$ is called tight if $\varepsilon>0,\exists K_{\varepsilon}\subseteq S$ compact s.t. $\mu(K_{\varepsilon})\geq1-\varepsilon\;\forall\mu\in\Lambda$

Note. Weakly convergent sequence of probability measures on \mathbb{R}^d are tight. **Example.** $\mu_n=\frac{1}{2}\delta_0+\frac{1}{2}\delta_n,~\{\mu_n\}_{n=1}^\infty$ is not tight.

Theorem 5

If $\mu_n \in \operatorname{Prov}(\mathbb{R}^d, \mathcal{B}\left(\mathbb{R}^d\right))$ and $\mu_n \underset{v}{\to} \mu$ for some Borel measure, then $\mu(\mathbb{R}^d) = 1$ if and only if $\{\mu_n\}_{n=1}^\infty$ is tight.

Vague convergence on \mathbb{R}

Proposition 3

Let $\mu_n \in \operatorname{Prov}(\mathbb{R},\mathcal{B}\left(\mathbb{R}\right))$, and let μ be a finite Borel measure on \mathbb{R} . Let $F_n(t) = \mu_n(-\infty t], F(t) = \mu(-\infty,t]$. Then $\mu_n \underset{v}{\to} \mu$ if and only if $F_n(b) - F_n(a) \to F(b) - F(a) \quad \forall a,b,\in\operatorname{Cont}(F)$

Prokhorov's Compactness Theorem

Some sequences of probability measures have no weakly convergent subsequences. The one and only obstruction is tightness.

Theorem 6 (Prokhorov) Let S be a separable metric space. If $\{\mu_n\}_{n=1}^{\infty}$ \subset $\operatorname{Prov}(S,\mathcal{B}\left(S\right)),\exists$ vaguely convergent subsequence $\{\mu_{n_k}\}_{k=1}^{\infty}$

Corollary 5

If $\{\mu_n\}_{n=1}^\infty$ is also tight, then \exists weakly convergent subsequence $\{\mu_{n_k}\}_{k=1}^\infty$ whose limit μ is a probability measure.

Proof for Theorem

Connection between weak convergence and a.s. convergence

Theorem 7 (Skorohod)

Let S be a separable metric space, and $\mu_n, \mu \in \operatorname{Prob}(S, \mathcal{B}(S))$. If $\mu_n \stackrel{w}{\longrightarrow} \mu$, then there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and random variables $Y_n, Y: (\Omega, \mathcal{F}) \to (S, \mathcal{B}(S))$ with $Y_n^* \mathbb{P} = \mu_{Y_n} = \mu_n$, $Y^* \mathbb{P} = \mu_Y = \mu$, and $Y_n \to Y$ a.s.

Connection between weak convergence and a.s. convergence

Theorem 7 (Skorohod)

Let S be a separable metric space, and $\mu_n, \mu \in \operatorname{Prob}(S, \mathcal{B}(S))$. If $\mu_n \stackrel{w}{\longrightarrow} \mu$, then there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and random variables $Y_n, Y: (\Omega, \mathcal{F}) \to (S, \mathcal{B}(S))$ with $Y_n^* \mathbb{P} = \mu_{Y_n} = \mu_n$, $Y^* \mathbb{P} = \mu_Y = \mu$, and $Y_n \to Y$ a.s.

Corollary 6 (Continuous mapping theorem)

Let $F:\mathbb{R}\to\mathbb{R}$ be Borel measurable. Let $X_n\stackrel{w}{\longrightarrow} X$, and suppose $\mathbb{P}(X\in\mathsf{Disc}(f))=0$. Then $f(X_n)\stackrel{w}{\longrightarrow} f(X)$. If in addition f is bounded, then $\mathbb{E}\,f(X_n)\to\mathbb{E}\,f(X)$