Problem A. 学飞机

Input file: learn.in
Output file: learn.out
Time limit: 1000ms
Memory limit: 512MB

这个暑假,海航班的严登泰ydt去了广西学习飞机驾驶。

他需要完成 n 个模块的学习,模块编号为 1 到 n 。有 k 个主题,主题编号 1 k 。每个主题,ydt都是从0开始学起。如果学习完一个模块,会增加每个主题中的知识。为了完成第 i 个模块的学习,对于每个主题 j,ydt 都至少需要学习 $r_{i,j}$ 个主题 j 的知识。

简述题意: 记ydt学习了主题 j 中的 p_j 个知识。初始, $p_j=0$ 。如果对于每个 j ,都有 $p_j\geq r_{i,j}$,那么ydt就完成了模块i的学习。完成模块 i 的学习后,对于每个主题j, p_j 都会增加 $u_{i,j}$ 。

ydt可以以任意顺序完成模块的学习,但每个模块只会完成一次。请帮ydt计算他最多能完成多少个模块。

Input

第一行两个正整数 n 和 k。

接下来 n 行,每行包含 k 个整数, $r_{i,1},r_{i,2},...,r_{i,k}$,表示每个模块需要的知识数量。

再接下来 n 行,每行包含 k 个整数, $u_{i,1},u_{i,2},...,u_{i,k}$ 。

Output

一行一个整数。

Constraints

对于所有数据 $1 \le n, k, \le 10^6$, $n \times k \le 10^6$, $0 \le u_{i,j}, r_{i,j} \le 10^9$ 。

对于所有数据 $1 \le n, k, \le 10^6$, $n \times k \le 10^6$, $0 \le u_{i,j}, r_{i,j} \le 10^9$ 。

子任务1(12分), n=1

子任务2(28分), $1 \le n, k \le 100$

子任务3(21分),k=1

子任务4(39分), 无其他限制。

learn.in	learn.out
3 3	1
0 0 0	
7 9 2	
7 8 9	
7 8 2	
7 7 7	
8 10 9	
4 3	4
5 1 0	
0 1 5	
0 0 0	
7 7 7	
0 5 6	
1 1 1	
8 2 0	
8 1 4	
5 5	4
14 11 15 7 15	
0 0 0 0 0	
9 9 14 2 13	
4 3 6 1 0	
2 4 7 0 0	
5 5 0 0 13	
4 4 7 1 0	
4 1 0 2 1	
2 5 0 2 1	
4 0 7 2 12	

Explanations

样例1中,ydt只能完成模块1,这之后,每个主题分别获得7、8、2个知识,但再也不能完成其他模块。

样例2中,以3,1,2,4的顺序完成模块。初始p=0,0,0,完成模块3,p=8,2,0,完成模块1,p=8,7,6,完成模块2,p=9,8,7,完成模块4。

样例3中,按模块2,4,5,3的顺序。

Problem B. 造飞机

Input file: make.in
Output file: make.out
Time limit: 2000ms
Memory limit: 512MB

自从进入海航班以后,ydt就放下了OI。在学习开飞机之余,他参加了航模比赛,在文子健老师的指导下造出了模型机。

文老师开了一家有 n 台机器的工厂,机器编号 1 到 n。每台机器会运行一天,并且每个时刻最多只有一台机器在运行。ydt需要完成 m 个任务。任务 i 由两个正整数 l_i, r_i 表示($l_i \le r_i$)。

为了完成任务 i, ydt需要按顺序运行机器 l_i , l_i+1 , ..., r_i 。一旦某台机器运行结束,下一台机器会立刻开始,中间没有停顿。一旦任务 i 完成,ydt会立刻开始执行任务 i+1,直到完成 m 个任务。

为了满足安全规范,工厂有一个安全值 s。如果一台机器在过去s天内没有运行过,在他运行前,就需要检查。特别地,每台机器第一次运行的时候不需要检查。

请对于 q 个不同的安全值, 分别计算需要检查多少次。

Input

第一行 3 个正整数 n, m, q。

接下来 m 行, 每行两个整数 l_i, r_i 。

接下来一行宝行 q 个数,表示不同的安全值 $s_1, s_2, ..., s_q$ 。

Output

一行, q个整数。

Constraints

对于所有数据 $1 \le n, m, q \le 2 * 10^5$, $1 \le l_i, r_i \le n$, $0 \le s_i \le 10^{12}$ 。

子任务1(11分), $1 \le n, m, q \le 200$

子任务2(18分), $1 \le n, m, \le 2000$

子任务3(22分), $l_i=1$

子任务4(26分), $m \leq 2000$

子任务5(23分), 无其他限制。

make.in	make.out
5 3 7	3 2 2 2 1 0 0
1 3	
3 5	
2 3	
0 1 2 3 4 5 6	
6 6 7	15 14 12 9 5 0 0
1 6	
1 5	
1 4	
1 3	
1 2	
1 1	
1 2 3 4 5 6 7	

Explanations

样例1中, 机器执行顺序为 1,2,3,3,4,5,2,3。

在第4天, 离机器3上一次运行间隔了0天; 在第7天, 离机器2上次运行间隔了4天; 在第8天, 离机器3上次运行间隔了3天。

如果安全值为0,需要在第7天检查机器2,需要在第4、第8天检查机器3。

如果安全值为2,需要再第7天检查机器2,需要在第8天检查机器3。

Problem C. 开飞机

Input file: fly.in
Output file: fly.out
Time limit: 1000ms
Memory limit: 512MB

经过了漫长的学习以及制造,ydt终于可以开飞机啦!

"飞机,启动!"

ydt可以在 n 个区域里开飞机。对于第 i 个区域,有一个最低的飞行高度限制 a_i 。

因为风速条件以及缺乏经验,ydt只能在特定的区域间穿行。他能在特定的 m 对区域间双向穿行, u_j 与 v_j 间(j=1,2,...,m)。

初始,ydt在区域 1,高度 0。他想从区域 1 飞到区域 n,并且降落至高度 0。在一分钟内,ydt可以选择保持在当前区域或者飞行到其他区域;同一分钟内,他的高度可以增加1,降低1,或者不变。(如果一分钟内选择从 u 飞到 v,那么到达 v 时,高度要大于等于 a_v ,u,v只能选择一对可以穿行的区域)。问他最快需要多少时间降落到区域 n。

Input

第一行两个整数 n 和 m。

接下来 n 个整数 $a_1, a_2, ..., a_n$ 。

接下来 m 行,每行两个整数 u 和 v。

Output

一行一个整数。

Constraints

对于所有的数据, $1 \le n \le 200000, 1 \le m \le 400000, 0 \le a_i \le 10^8, a_1 = a_n = 0, 1 \le u_i, v_i \le n, u_i \ne v_i$

子任务1(22分), $m=n-1, u_i=i, v_i=i+1$

子任务2(10分), $n \leq 2000$, $m \leq 4000$, $a_i \leq 2000$

子任务3(31分), $n \le 2000$, $m \le 4000$

子任务4(37分), 无其他限制。

fly.in	fly.out
3 2	4
0 2 0	
1 2	
2 3	
11 12	5
0 0 0 0 0 0 2 2 1 5 0	
1 2	
2 3	
3 4	
4 5	
5 6	
6 11	
1 7	
7 8	
8 9	
9 11	
1 10	
10 11	

Explanations

样例1中,第一分钟,保持在区域 1, 高度调整到 1。第二分钟,从区域1飞到区域2, 高度调整到2。第三分钟,从区域2飞到区域3, 高度调整到1。第四分钟,保持在区域3, 高度调整到0, 降落。

在样例2中,第一分钟,保持在区域1,高度调整到1。第二分钟,从区域1飞到区域7,高度调整到2。第三分钟,从区域7飞到区域8,高度维持在2。第四分钟,从区域8飞到区域9,高度调整到1。第五分钟,从区域9飞到区域11,高度调整到0,降落。

省实、铁一、华附, 2023年9月26日 8:00-12:00

Problem D. 隐身飞机

Input file: hide.in
Output file: hide.out
Time limit: 1500ms
Memory limit: 512MB

有 n 架飞机排成一行,编号 1 到 n。

ydt 要给其中的一些飞机安装隐形战衣。有m台机器,第i台机器可以给第 l_i 到 r_i 架飞机都安装隐形战衣。现在有q个询问,问能否启动某些机器,使得q4分区间 q_i 4分区,架飞机都安装隐形战衣。

Input

第一行3个整数 n, m, q。

接下来 m 行, 每行两个整数 l_i, r_i 。

接下来 q 行, 每行两个整数 u_i, v_i 。

Output

q 行,每行一个回答 YES 或者 NO。

Constraints

对于所有数据, $1 \le n, m, q \le 500000, 1 \le l_i \le r_i \le n, 1 \le u_j \le v_j \le n$ 。

子任务1(3分), $1 \le n, m, q \le 200$

子任务2(6分), $1 \le n, m, q \le 2000$

子任务3(15分), $1 \le n \le 2000$

子任务4(20分), $u_i = 1$

子任务5(36分), $1 \le n, m, q \le 100000$

子任务6(20分), 无其他限制。

hide.in	hide.out
6 2 3	NO
1 2	YES
3 4	NO
1 3	
1 4	
1 5	
10 10 10	NO
6 9	NO
6 7	YES
1 6	NO
10 10	YES
5 9	NO
3 9	NO
2 10	NO
5 7	NO
9 10	YES
5 10	
7 8	
4 7	
1 6	
2 7	
3 9	
7 7	
2 9	
4 9	
6 6	
5 7	

Explanations

样例1中,无法只给战机1,2,3穿上隐形战衣。

启动机器1和机器2,战机1,2,3,4都能穿上隐形战衣。

无法只给战机1,2,3,4,5穿上隐形战衣。