2D Object Detection With Convolutional Neural Networks

Course 3, Module 4, Lesson 2

Learning Objectives

- Learn to build standard single stage architecture for 2D object detection
- Learn common neural network design choices for performing 2D object detection using the proposed architecture

The Object Detection Problem

ConvNets For 2D Object Detection

The Feature Extractor

The Feature Extractor

- Feature extractors are the most computationally expensive component of the 2D object detector
- The output of feature extractors usually has much lower width and height than those of the input image, but much greater depth
- Very active area of research, with new extractors proposed on regular basis
- Most common extractors are: VGG, ResNet, and Inception

VGG Feature Extractor

- Alternating convolutional and pooling layers
- All convolutional layers are of size 3x3xK, with stride 1 and 1 zero-padding
- All pooling layers use the max function, and are of size 2x2, with stride 2 and no padding

VGG Feature Extractor

• CohrohutobuntilangeravertopfustizerapeaxK, with stride 1 and

$$\begin{array}{l}
\mathbf{1}_{\circ} \mathbf{IP}_{out} = \mathbf{P}_{out}^{\mathbf{W}_{in}} \mathbf{P}_{out}^{\mathbf{Y}_{out}} + 1 \\
\mathbf{0}_{out} = \mathbf{P}_{out}^{\mathbf{W}_{in}} \mathbf{P}_{out}^{\mathbf{Y}_{out}} + 1 = \mathbf{P}_{in}^{\mathbf{W}_{in}} \mathbf{P}_{out}^{\mathbf{Y}_{out}} + 1 = \mathbf{W}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{K}_{s}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - 3 + 2 \times 1} \\
\mathbf{0}_{out} = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} \\
\mathbf{0}_{out} = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} \\
\mathbf{0}_{out} = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} \\
\mathbf{0}_{out} = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} + 1 = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2 \times P} \\
\mathbf{0}_{out} = \mathbf{H}_{in}^{\mathbf{H}_{in} - m + 2$$

- All pooling layers use the max function, and are of size 2x2, with stride 2 and no padding.
 - $OW_{out} = \frac{W_{in} m}{S} + 1 = \frac{W_{in} 2}{2} + 1 = \frac{W_{in}}{2}$ $OH_{out} = \frac{H_{in} m}{S} + 1 = \frac{H_{in} 2}{2} + 1 = \frac{H_{in}}{2}$ $OD_{out} = D_{in}$

The Feature Extractor

	Image	Conv1	Conv2	Conv3	Conv4	Conv5
Width	M	M/2	M/4	M/8	M/16	M/32
Height	N	N/2	N/4	N/8	N/16	N/32
Depth	3	64	128	256	512	512

Output Volume Shape

Prior/Anchor Bounding Boxes

Prior/Anchor Bounding Boxes

Prior/Anchor Bounding Boxes

Using Anchor Boxes

k Anchor Boxes Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015 3x3xD*convolution 1 x 1 x D* Per-Anchor

M x N x D Feature Map

Feature Vector

Output Layers

Classification VS Regression Heads

Output handling

Summary

- 2D object detectors can be performed using convolutional neural networks
- Usually, anchor boxes are used as priors for the neural network to shift around to achieve object classification and localization

Next: Training vs Inference