tb_cocotb.v

AUTHORS

JAY CONVERTINO

DATES

2024/12/11

INFORMATION

Brief

Test bench wrapper for cocotb

License MIT

Copyright 2024 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

tb cocotb

```
module tb_cocotb #(
parameter
BUS_WIDTH
=
1,
parameter
WEIGHT
=
1
) ( input aclk, input arstn, output [(BUS_WIDTH*8)-1:0] m_axis_tdata, output
```

Test bench for axis moving average. This will run a file through the system and write its output. These can then be compared to check for errors. If the files are identical, no errors. A FST file will be written.

Parameters

BUS_WIDTH Width of the bus input/output

parameter

WEIGHT Divisor for moving average, rounded to the highest power of two.

parameter

Ports

aclk Clock for AXIS

arstn Negative reset for AXIS

m_axis_tdata Output data

m_axis_tvalid When active high the output data is valid

m_axis_tready When set active high the output device is ready for data.

s_axis_tdata Input data

s_axis_tvalid When set active high the input data is valid

s_axis_tready When active high the device is ready for input data.

INSTANTIATED MODULES

dut

```
axis_moving_average #(

BUS_WIDTH(BUS_WIDTH),

.

WEIGHT(WEIGHT)
) dut ( .aclk(aclk), .arstn(arstn), .m_axis_tdata(m_axis_tdata), .m_axis_tva
```

Device under test, axis_moving_average