CSE 201: Data Structures and Algorithms

Lecture 8:Trees
Dr. Vidhya Balasubramanian

CSE 201: Data Structures and Algorithms

Non Linear Data Structures

Represent relationships more richer than "before" and "after"

in sequences

- Examples
 - Trees
 - Hash Table
 - Dictionaries
 - Skip Lists

Basic Concept

- Root: Primary category, starting point etc
- Children: Subcategory, descendants etc

http://ridge.icu.ac.jp/gen-ed/classif-gifs/animal-class-example.gif

CSE 201: Data Structures and Algorithms

Applications/Scenarios Trees Model

- Trees capture situations where branching happens
- Hierarchies
 - Captures types subtype relationships
 - e.g Family trees or hierarchies
 - Animal or Plant Taxonomies
- Decisions
 - Root denotes the primary start point, and every branch leads to an alternate decision
- Organization into ranges
 - Each child represents one range

Trees: Basic Definitions

- Tree is an abstract model of a hierarchical structure
- A tree T is a set of nodes storing elements in a parent-child relationship with the following properties
 - T has special node r called the "root" which has no parent node
 - Each node v of T different from r has a unique parent node
 - If u is the parent node, v is the *child* of u
 - Two nodes that are children of the same parent are siblings

Trees: Basic Definitions

- External node: node that has no children
 - Also called *leaf* node
- Internal node has one or more children
- Subtree of T rooted at a node v is the tree consisting of all the descendents of v in T (including v)
- Ancestor of a node is
 - Node itself or
 - ancestor of the parent of the node
 - v is descendent of u if u is ancestor of v

Trees: Basic Definition

- Depth of a node
 - length of the path to the root
 - Indicates the level of the node
 - Depth of the root is 0, and is at level 0
- Height of a node
 - length of the longest downward path to a leaf from that node
 - Height of the tree is the height of the root
 - Equal to the depth of the deepest node in the tree
 - If depth of the deepest node is 3, height is 3

Trees: Basic Definitions

Exercise

- Consider the tree given in figure
 - Which node is the root
 - List the internal nodes
 - How many descendents does node
 C have
 - How many ancestors does node J and node G have
 - Which nodes are in the subtree rooted at D
 - What is the height of the tree
 - What is the depth of node F

Amrita School of Engineering Amrita Vishwa Vidyapeetham

http://lh4.ggpht.com/_1SkE gLzvHUY/SwgZ9Mqv0jI/ AAAAAAAAAARk/BSN_Z s-ANYI/s400/1.JPG

Ordered Trees

- A tree is ordered if there is a linear ordering defined for the children of each node
 - Each child of a node can be identified as the first, second, third etc
 - Usually done by arranging siblings left to right
- Ordered trees represent the linear order relationship between siblings
 - e.g in exercise : Children of node H can be ordered as follows
 - I, J, K

Binary Trees

- Ordered tree in which every node atmost two children
- Tree is proper if
 - Each node has either zero or two children
 - ie every internal node has exactly two children
 - Also known as full binary tree
- Each child is labeled as left child or right child
- Subtrees
 - Left subtree rooted at a left child
 - Right subtree rooted at a right child

Binary trees

Src: web.cecs.pdx.edu

CSE 201: Data Structures and Algorithms

Binary Trees: Types

- Rooted Binary Tree
 - tree with a root node in which every node has at most two children.
- Full Binary Tree (Proper or strictly binary tree)
- Perfect Binary tree
 - full binary tree in which all leaves are at the same depth and in which every parent has two children
- Balanced Binary tree
 - depth of the two subtrees of every node differ by 1 or less

Binary Trees

- Complete Binary Trees
 - A complete binary tree has a restricted shape obtained by starting at the root and filling the tree by levels from left to right
 - all levels except possibly level d-1 are completely full

Src: Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis

CSE 201: Data Structures and Algorithms

- Stores values at nodes, and are defined relative to the neighboring node
 - Relationships satisfy the parent child relationship
- Accessor Functions
 - root(): returns the root of the tree
 - parent(v): returns the parent of the node v; returns error if v is root.
 - children(v): returns an iterator of the children of node v
 - children can be stored in an array or list
 - For instance left child is at index 0, right at index 1

- Query Functions
 - isInternal(v): Test whether node v is internal; output is Boolean
 - isExternal(v): Test whether node v is external; output is Boolean
 - isRoot(v): Test whether node v is a root: output is Boolean
- Update Methods
 - swapElements(v, w): swap elements stored at nodes v and w
 - replaceElement(v, e): replace the element at node v with element e

CSE 201: Data Structures and Algorithms

- Generic methods:
 - Size()
 - isEmpty()
 - elements(): returns an iterator of all elements stored at the nodes of the tree
 - nodes(): return an iterator of all nodes of the tree

Properties of a Binary Tree

- The number of nodes n in a perfect binary tree can be found as follows
 - $-n = 2^{h+1} 1$ where *h* is height of the tree
 - In figure $n = 2^{3+1} 1 = 16 1 = 15$
- The number of nodes n in a binary tree of height h is
 - at least n=h+1 (2h+1 for a proper binary tree) and
 - See figure
 - atmost $n = 2^{h+1}$ -1 (in a perfect binary tree)

CSE 201: Data Structures and Algorithms

https://interactivepython.org

Properties of a Binary tree

- Number of leaves in a perfect binary tree
 - $-L = 2^h$, where h is height of the tree
 - Therefore n = 2L-1
- Number of internal nodes in a complete binary tree of n nodes
 - |*n*/2|

Algorithms

- For any non-empty binary tree with n_0 leaf nodes and n_2 nodes of degree 2,
 - $n_0 = n_2 + 1$
- h≤(n-1)/2, and ≤ number of internal nodes
- $h \ge \log_2 L$, and $h \ge \log_2 (n + 1) 1$

Properties of Binary Trees

- Full Binary Tree Theorem
 - The number of leaves in a non-empty full binary tree is one more than the number of internal nodes
 - Proof: Use induction
 - Base Cases:
 - The non-empty tree with zero internal nodes has one leaf node.
 - A full binary tree with one internal node has two leaf nodes.
 - Thus, the theorem holds for the base cases ie for n = 0 and n = 1

Full Binary Tree Theorem Proof

- Induction Hypothesis
 - Assume that, any full binary tree T containing n 1 internal nodes has n leaves
- Induction Step
 - Given T with n internal nodes, select an internal node u whose children are both leaf nodes
 - Remove both children of u, making it a leaf node, and let the resulting tree be T'
 - T' has n-1 internal nodes, and by the theorem, n leaves
 - Restore the children of , hence resulting in T with n internal nodes
 - Since T' has n, leaves, adding 2 makes it n+2
 - However node u which was earlier counted as leaf, now is an internal node
- Thus, tree T has n + 1 leaf nodes and n internal nodes. Hence proved Amrita School of Engineering Amrita Vishwa Vidyapeetham

More Properties

- Theorem:
 - The number of empty subtrees in a non-empty binary tree is one more than the number of nodes in the tree.
- Proof
 - every node in binary tree T has two children, for a total of 2n children in a tree of n nodes
 - Every node except the root node has one parent, for a total of n 1 nodes with parents
 - there are n 1 non-empty children
 - Of the 2n children, the remaining n+1 children must be empty
 - Can also be proved using the Full Binary Tree Theorem

Algorithms on Trees

- Depth is recursively defined
 - If v is the root, depth of v is 0
 - Otherwise, depth of v is one plus depth of parent of v
- Algorithm depth(T,v):

```
if T.isRoot(v) then
  return 0
else
  return 1+depth(T,T.parent(v))
```

- Running time:
 - O(1+ d_v), where is d_v depth of node v in T
 - Worst case O(n)

CSE 201: Data Structures and Algorithms

Algorithms on Trees

- Height is also recursively defined
 - If v is an external node, height of v is 0
 - Otherwise, height of v is one plus height of child of v
- Algorithm height(T,v): //for tree

for each v in T.nodes() do

if T.isExternal(v) then $h = \max(h, \text{depth}(T, v))$

return h

Running time:

 $O(n+\sum_{e\in E}(1+d_v))$,where is d_v depth of node v in T

Worst case O(n²)

CSE 201: Data Structures and Algorithms

Algorithms on Trees

```
    Algorithm height2(T,v):

            if T.isExternal(v) then
            return 0
            else
            h = 0
            for each w in T.children(v) do
            h = max(h,height2(T,w))
            return 1+h
```

Running time:

 $O(\sum_{v \in T} (1+c_v))$, where is c_v is order of computation of function children(v) Worst case O(n)

 $\sum_{v \in T} (c_v) = n-1$ ie each node, except root is a child of another node

CSE 201: Data Structures and Algorithms

Exercise: Properties of Binary trees

- Draw a binary tree with height 4 and maximum number of external nodes
 - What is the minimum number of external nodes for a binary tree with height h. Justify
 - What is the maximum number of external nodes for a binary tree with height h. Justify
 - Let T be a binary tree with height h and n nodes. Show that
 - $\log(n+1)-1 \le h \le (n-1)/2$
 - For which values of n and h can the above lower and upper bounds on h be attained with equality

Tree Traversal

- A traversal of a tree T is a systematic way of visiting or accessing all the nodes of T
- Types of Traversals
 - Preorder traversal
 - Node is visited before its descendents
 - Postorder traversal
 - Node is visited after its descendents
 - Inorder Traversal
 - node is visited after its left subtree and before its right subtree

Preorder Traversal

- First node accessed/visited is the root or parent
- Then nodes of the left subtree are visited (in preorder) before any node of the right subtree
- Algorithm preorder(T,v)

visit(v)

for each child w of v **do** preorder(T,w)

- For example shown
 - ABDCEGFHI

Postorder Traversal

- First node is visited after its descendants
- Used commonly compute space used by files in a directory and its subdirectories
- Algorithm postorder(T,v)
 for each child w of v do
 postorder(T,w)
 visit(v)
- For example shown
 - DBGEHIFCA

Inorder Traversal

- First visit the left child (including its entire subtree)
- Then visit the node, and finally visit the right child (including its entire

subtree)

```
    Algorithm inorder(T,v)
        if isInternal (v)
        inOrder (leftChild (v))
        visit(v)
        if isInternal (v)
        inOrder (rightChild (v))
```

- For example shown
 - BDAGECHFI

B C F F G H 1

Exercise

Show the different traversals on the following trees

Exercise

- Draw a binary tree T such that
 - Each internal node of T stores a single character
 - A preorder traversal of T yields EXAMFUN
 - An inorder traversal of T yields MAFXUEN

Application: Binary Expression Tree

- Arithmetic expression can be represented by a binary tree
 - External nodes are variables or constants
 - Internal nodes are operators

 Its value is defined by applying its operation to the value of its children

Src: public.arnau-sanchez.com

Src: commons.wikimedia.org
CSE 201: Data Structures and
Algorithms
Amrita Vishwa Vidyapeetham

Printing Arithmetic Expressions

- Uses specialization of inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree
- Algorithm printExpression(v)

```
if isInternal (v)
    print("(")
    inOrder (leftChild (v))
print(v.element ())
if isInternal (v)
    inOrder (rightChild (v))
    print (")")
```


((2*(a-1))+(3*b))
Src: goodrich notes

Amrita School of Engineering Amrita Vishwa Vidyapeetham

CSE 201: Data Structures and Algorithms

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - if an internal node is visited, combine the values of the subtrees
- Algorithm evalExpr(v)
 if isExternal (v) return v.element ()
 else

 $x \leftarrow \text{evalExpr(leftChild (v))}$

 $y \leftarrow evalExpr(rightChild(v))$

 $\Diamond \leftarrow$ operator stored at v return x \Diamond y

Src: math.hws.edu

Exercise

Print and evaluate the expressions represented by the following trees

CSE 201: Data Structures and Algorithms

Euler Tour Traversal

- An Euler tour is a trail in a tree which visits every edge exactly once
 - If it is undirected, it visits once is each direction
 - Walk around T from root towards left child viewing edges of T as being walls that we always keep to our left
- Walk around the tree and visit each node three times:
 - on the left (preorder ie before Euler tour of v's left subtree)
 - from below (inorder ie between Euler's tour of both subtrees)
 - on the right (postorder ie after Euler tour of v's right subtree)

http://cs.nyu.edu/~gottlie b/courses/2008-09fall/compilers/lectures/di agrams/euler-tour.png

Euler Tour Traversal

Algorithm EulerTour(T, v)

```
visitLeft(T,v)
if T.hasLeft(v)
        eulerTour(T, leftChild(v))
visitBelow(T,v)
if T.hasRight(v)
        eulerTour(T, rightChild(v))
```


visitRight(*T*,*v*)

Data Structure for Trees: Linked Representation

- Node represented as follows (Method 1)
 - Element
 - Parent node
 - Sequence of children nodes

CSE 201: Data Structures and Algorithms

Amrita School of Engineering Amrita Vishwa Vidyapeetham

Src: Goodrich notes

Linked Representation

- Node represented as follows (Method 2)
 - Element
 - Parent node
 - Left Child Node
 - Right Child Node

CSE 201: Data Structures and Algorithms

Amrita School of Engineering Amrita Vishwa Vidyapeetham Src: Goodrich notes

Vector based representation

- Based on number nodes
- For each node v, p(v) defined as follows
 - If v is the root, p(v) = 1
 - If v is left child of node u, then p(v) = 2p(u)
 - If v is right child of node u, then p(v) = 2p(u) + 1
- Numbering function p is the "level numbering" of the nodes in a binary T
 - Numbers in each level increase from left to right
 - Numbers can be skipped

Vector based representation

- The different functions can be computed using arithmetic operations
- Extendible array representations can be used to manage the size

Src: www.cse.hut.fi

- leftChild(v):
 - Return left child of v
 - Error if v is external node
- rightChild(v):
 - Return right child of v
 - Error if v is external node
- sibling(v)
 - Return sibling of node v
 - Error if v is the root

Insertion and Deletion

- Insertion: InsertAfter(node A)
 - A is an internal node
 - Let node B be child of A
 - A assigns its child to the new node and the new node assigns its parent to A.
 - New node assigns its child to B and B assigns its parent as the new node
 - A is an external node
 - A assigns the new node as one of its children
 - The new node assigns node A as its parent.

CSE 201: Data Algorithms

Deletion

- Delete(node A)
 - A is an external node

- set the corresponding child of A's parent to null
- A has one child
 - set the parent of A's child to A's parent
 - set the child of A's parent to A's child.
- A has two children
 - Usually not recommended
 - Involves more complex operations