| 의사결정 | 토론 | 리뷰 | 공유 |
|------|----|----|----|
|      |    | •  |    |

# ACE향 Si-LiDAR 센서 BM 및 평가 항목

- SPAD <u>센서</u> (Jasper vs Peridot)

| 보고자 | 보고자 S-Task 김성만 연구위원/ 최병수 선임                                   |  |
|-----|---------------------------------------------------------------|--|
| 목 적 | Sony Si-LiDAR BM (Jasper vs Peridot)<br>LiDAR 센서 평가 항목 및 Plan |  |
| 참석자 |                                                               |  |

2022. 5. 30



# 0. 보고 배경



"ACE향 Si-LiDAR 센서 BM 및 평가 항목"을 주제로 ACE 3D 센서 (Jasper vs Peridot) BM 및 센서 동작 이해, SPAD 소자 성능 평가를 바탕으로 LiDAR Calibration 기술 내재화 구축

## 목차 :

- 1. LiDAR 센서 (Jasper vs Peridot) BM
- 2. Jasper vs Peridot 비교
- 3. 신규센서 Peridot SPAD 분석
- 4. 소니 specific SPAD 소자 구조
- 5. LiDAR 성능 주요 지표
- 6. SPAD 소자 & 성능 연계성
- 7. LiDAR 소자 평가 Plan
- 8. Summary

# 1. LiDAR 센서 (Jasper vs Peridot) BM



- □ ACE向 모바일 LiDAR 모듈인 Jasper/ Peridot에 탑재된 Sony Si-SPAD 센서 비교분석
  - Peridot 센서 Chip Size/ Resolution 축소, PDE 개선을 위한 IPA 구조 적용

PDE (Photon Detection Efficiency) IPA (Inverted Pyramid Array)

## Si-LiDAR 모듈 변경 Point



## 센서 변경 Point

|                             | ACE向 Mobile LiDAR 비교           |                                      |  |  |
|-----------------------------|--------------------------------|--------------------------------------|--|--|
| 과제/센서명                      | Jasper (IMX592, Periscope)     | Peridot (IMX591, Granger)            |  |  |
| Sensor Type                 | d-ToF 방식 Si-SPAD 센서            | ←                                    |  |  |
| Sub. Thickness/<br>Material | 150um/ Silicon                 | <b>←</b>                             |  |  |
| Chip Size                   | 4.20×4.09 mm2                  | 2.77×2.45 mm2                        |  |  |
| Resolution                  | 25K 140(H)×180(V)              | 9K, 84(H)×108(V)                     |  |  |
| Pixel Pitch                 | 10.08um                        | ←<br>Direct Bond Interconnect)       |  |  |
| Pixel Structure             | BSI/ Cu-Cu Stacked DBI         | ←                                    |  |  |
|                             | 1W Shield/ (Backside) Full DTI | ←                                    |  |  |
|                             | w/o IPA                        | rench Isolation)<br>w/ IPA (for PDE) |  |  |
| Epi. Thickness              | 7.1um                          | <b>←</b>                             |  |  |
| Microscope<br>View          | SPAD array FDTI Isolation      | SPAD array FDTI Isolation            |  |  |

# 2. Jasper vs Peridot 비교



- □ Jasper (IMX592)/ Peridot (IMX591) Chip 변경 점 (Netdie 2.5배 증가 (17.18mm² → 6.79mm²)의 Low cost ver.)
  - ① Reference SPAD array 위치변경 (SPAD Array 상단 → 외부 배치), ② Ref. SPAD 단순화 (2 → 1종류), ③ PAD size 축소 (141×96 → 96×96 um²)
  - → PAD 배치 변경 (Chip Power Route 변경), 소자 Calibration 변경

### Jasper (IMX592)

# Ref. SPADs SPAD Array 4 년 PAD 배치 PADs 4.20 mm (Area 17.18mm²)

SPAD Pitch: 10.08um Aperture Size (Ref. SPAD) 2.77um, 4.99um





## Peridot (IMX591)











# 2. Jasper vs Peridot 비교



- □ Jasper (IMX592) vs Peridot (IMX591) SPAD의 Microlens, DTI, Reflector 구조의 변경점은 없음
- □ 득이사항 → PDE 성능 개선용 IPA 구조 적용 (Peridot: IMX591)
  - → LiDAR pixel pitch 10um 유지하며, PDE 득성 개선 IPA 구조 도입

### Jasper (IMX592)

# Ref. SPADs SPAD Array 4.20 mm

Cut

Topview) Microlens Array



SPAD Profile



MLA Profile

### Peridot (IMX591)





Topview) Microlens Array





MLA Profile



# 3. 신규센서 Peridot SPAD 분석



□ Peridot (IMX591) SPAD 소자 구조 특징 : BSI, Microlens, IPA, DTI, Cu-Cu Stacked DBI, Reflector etc.

BSI (Backside Illumination)

DBI (Direct Bond Interconnect)



# 4. 소니 specific SPAD 소자 구조



□ 소니 LiDAR 센서는 Single-Ended SPAD 구조 (Stack용 PDE 개선), Single-/ Double-Ended SPAD 특장점 비교



# 5. LiDAR 성능 주요 지표 I



□ SPAD 소자 지표 (BV, DCR, PDP, PDE, AP) : LiDAR 특성 및 Calibration 인자

PDP (Photon Detection Probability)
PDE (Photon Detection Efficiency)

|                             | T BE (Filotoff Beteation Emotions)                                                       |                                                                                                                                            |                                                                                                                                                                            |                                                                                                           |
|-----------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 평가항목                        | BV (Breakdown Voltage)                                                                   | DCR (Dark Count Rate)                                                                                                                      | PDP (PDE = PDP x Fill Factor)                                                                                                                                              | AP (After-pulsing) Probability                                                                            |
| Unit                        | [V]                                                                                      | [cps] or [Hz]                                                                                                                              | [%]                                                                                                                                                                        | [%]                                                                                                       |
| Define/<br>Key Factor       | • Avalanche BV효과에 의한 항복 역전압<br>• PN Junction Profile에 의해 BV 결정                           | <ul> <li>Dark 조건에서 Thermal 또는 Bias에 의해 1초 동안 발생되는 신호 Pulse 수</li> <li>BBT, TAT에 의해 유발         BBT (Band-to-Band Tunneling)     </li> </ul> | <ul> <li>Illumination 조건에서 Photon에 의해 1초<br/>동안 발생되는 Pulse 수를 통해 계산</li> <li>입사된 Photon 수 대비 생성된 신호수의<br/>비율로 정의</li> <li>Pulse[cps] - DCR[cps]<br/># of Photon</li> </ul> | <ul> <li>신호 발생 후 후속으로 특정 Delay를 가지고 발생되는 원치 않는 신호</li> <li>Silicon 내 Junction의 Deep Trap에 의해유발</li> </ul> |
| Measurement                 | <ul> <li>Diode의 IV Test (역 전압)으로 평가</li> <li>또는 SPAD 인가 전압 조정을 통해 출력을 확인하여 유추</li> </ul> | TAT (Trap-Assisted Tunneling)  • 디지털 오실로스코프로 SPAD 과도응답<br>확인을 통한 평가  • 또는 센서 ROIC의 Counter 출력 값 확인                                         | ←                                                                                                                                                                          | • 발생된 Pulse 신호 간 시간 간격에 대한<br>Histogram을 통해 평가                                                            |
| Result &<br>Analysis Factor | ### 10-12 ####################################                                           | • Temp., V <sub>EX</sub> 에 증가에 따라 DCR이 Exponential 하게 증가하는 관계이기                                                                            | • # of Photon의 기준에 따른 분류 PDP (Active Area 기준)                                                                                                                              | • Junction 내 Deep Trap이 많을 수록 AP Probability 증가하며, 센서공정의                                                  |
|                             | 평가 요소 중 하나임                                                                              | 때문에 DCR 평가 시 조건 확인이 필<br>수임                                                                                                                | PDE (Pixel Area 기준)  • V <sub>EX</sub> 증가에 따라 PDP (PDE) 가 증가 경향                                                                                                            | Quality에 의존                                                                                               |

# 5. LiDAR 성능 주요 지표 II



□ SPAD 소자 지표 (Emission, Dead time, Jitter, Xtalk) : LiDAR 특성 및 Calibration 인자

| 평가항목                        | (Light) Emission                                                                                                                 | Dead Time                                                                                                                  | Jitter                                                                                                                           | Xtalk                                                                              |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Unit                        | -                                                                                                                                | [us] or [ns]                                                                                                               | [ps]                                                                                                                             | [%]                                                                                |
| Define/<br>Key Factor       | <ul> <li>Junction의 Active 영역에서 Avalanche 에<br/>의한 Breakdown이 정상적이나,<br/>Edge 영역에서 Premature Breakdown 발<br/>생 여부를 판별</li> </ul>  | <ul> <li>하나의 신호가 검출되고 다음 광자를 검출하기 위해 필요한 시간</li> <li>Recovery Time 이라고도 지칭함</li> </ul>                                     | • 검출된 신호를 전기신호로 발생시키는<br>과정에서 발생하는 시간지연                                                                                          | • 하나의 SPAD에 입사된 광이 인접한 다<br>른 SPAD에 영향을 주는 비율                                      |
| Measurement                 | • SPAD에 역전압을 인가한 상태에서<br>Emission Test를 통해 확인                                                                                    | <ul> <li>SPAD 구성 물질, 회로에 의존하며, 측정을 위한 회로 설계 필요</li> <li>High Bandwidth의 오실로스코프를 통해 측정</li> </ul>                           | <b>←</b>                                                                                                                         | • 인접한 SPAD에 Optical Blocking 층을 형<br>성하고, 인접한 SPAD 신호를 통해<br>Cross Talk 평가함        |
| Result &<br>Analysis Factor | Emission 발생영역 Active  • Emission 발생영역을 통해 Active/ Edge Breakdown 판별 • Active 영역 Breakdown일 경우 원형, Edge 영역 Breakdown일 경우 도넛모 양을 띰 | Vop Rq Vop Photon Arrival Pead Time SPAD Install Proceedings recharge  • 수(십) [ns] 수준이며 SPAD의 Active 면적과 주변 회로의 R,C 성분에 의존 | Timing Jitter  1.0E-01 1.0E-02 1.0E-03 2.3E-09 Time /s  • 수(십) [ps] 수준으로 SPAD의 동작속도에 영향 • V <sub>EX</sub> 증가에 따라 Jitter 는 감소 경향성 | * Cross Talk은 Electrical/ Optical 성분으로 나뉨 * SPAD 간 Isolation 기술로 Cross Talk 감소 경향성 |

# 6. SPAD 소자 & 성능 연계성



□ Peridot (iMX591) 센서 구조 및 SPAD 센서 성능 연계성

PDE (Photon Detection Efficiency)

### Microlens 영역

■ 관련 성능 : <u>PDP(E)</u>

- Fill Factor는 100%로 PDP와 PDE가 동일 하며, PDP(E) 증가를 위해 Microlens는 Junction에 집광 역할

DCR (Dark Count Rate)

### Silicon 영역

■ 관련 성능 : DCR, PDP(E)

- Silicon Quality가 DCR에 영향을 주며, NIR 940nm 영역대의 PDP(E) 증가를 위해 Silicon Epi. 두께는 모바일 센서에 비해 7.1um 로 상 대적으로 두꺼움

### Reflector 영역

■ 관련 성능 : PDP(E)

- NIR 940nm 파장대역에서의 광은 Silicon 투과 율이 높기 때문에 투과된 광을 수집하기 위한 기술이며 PDP(E) 향상을 위한 역할

# Peridot (IMX591) SPAD Pixel Profile



IPA (Inverted Pyramid Array)

### IPA surface 영역

■ 관련 성능 : PDP(E)

- PDP(E) 향상을 위해 NIR 940nm 파장대의 광경로를 길게 가지고 가기 위한 구조

DTI (Deep Trench Isolation)

### DTI interface 영역

■ 관련 성능 : DCR, PDP(E), Xtalk

- 인접 SPAD로 광이동을 막아 Cross Talk 감소 와 PDE 향상에 대한 역할이며, Etch 공정에 따 른 Damage 가 DCR에 영향을 주어 Hole Accumulation으로 DCR 감소 기술이 필요

> BV (Breakdown Voltage) AP (Afterpulse)

### <u>Junction 영역</u>

■ 관련 성능 : <u>BV, DCR, PDP(E), AP,</u> Emission, Dead Time, Jitter

- PN Junction의 Profile에 의해 BV, DCR, PDP, Emission 성능에 영향을 주고 물질/ 공정/ 회로에 따라 AP, Dead Time, Jitter 성능에 영향

# 7. LiDAR 소자 평가 Plan



- □ LiDAR Calibration 기술 및 LiDAR 기술 내제화를 위한 SPAD 소자 평가 System 구축
  - SPAD 소자 평가 (KIST 산연 추진/ 연구소 평가 환경 구축)
  - 4x4 array LiDAR (Skhynix 센서, 평가 ~3Q), Compound LiDAR (Amber 센서, 평가 ~4/Q), 소니 차량 LiDAR (평가 ~4/Q) 진행중



# 7. Summary



# 요약 :

- Jasper (IMX592) vs Peridot (IMX591) 비교로 ACE향 Si-LiDAR 센서 변경 점 파악
- Peridot의 소니 specific SPAD 소자 구조의 특이점 분석
- SPAD 소자 성능 평가 항목 List-up
- SPAD 구조 및 성능과의 상관관계 분석

# 계획:

- SPAD 성능 평가를 위한 LGIT 내 환경 구축
- 성능 평가를 바탕으로 LiDAR Calibration 기술 내재화
- LiDAR 센서 평가 plan

(4x4 array @SKhynix → Si-LiDAR (@소니 IMX459) → Compound-LiDAR (@Amber) 영역확대)



# **EOD**

