

Sidste kapitel (kapitel 5)

- Vi introducerede simple redskaber til for en given betaling at beregne
 - En betaling på tidspunkt 0 med ækvivalent værdi → nutidsværdi
 - En betaling på tidspunkt t med ækvivalent værdi → fremtidsværdi
- Vi udledte den basale nutidsværdiligning:

$$PV = \frac{FV_t}{(1+r)^t}$$

• Vi kan altså "flytte" en given betaling frem og tilbage i tid:

$$X kr. i 2015$$

$$= X \cdot (1+r)^3 kr. i 2018$$

$$= \frac{X}{(1+r)^2} kr. i 2013$$

Introduktion

- Kapitel 6 i lærebogen: "Discounted Cash Flows and Valuation"
- Anvend de udledte formler på betalingsrækker → fx hvad er nutidsværdien af tre betalinger der falder på forskellige tidspunkter?
- Finde særlige regneregler for betalingsrækker der er konstante over tid, fx:
 - Hvad er nutidsværdien af en betaling på 1.000 kr per måned i al fremtid ("perpetuity")
 - Hvad er den årlige ydelse på et fastforrentet lån på 1 million kroner der skal betales ned over ti år ("annuitet")?
- Finde særlige regneregler for betalingsrækker der har en konstant vækstrate, fx.
 - Hvad er nutidsværdien af en uendelig betalingsrække der starter på 1.000 kr. næste år og derefter vokser med 5% om året i al fremtid?

Fremtidsværdi af en betalingsrække

 Fremtidsværdien af en betalingsrække kan findes som summen af fremtidsværdierne af hver enkelt betaling

Nutidsværdi af en betalingsrække

 Nutidsværdien af en betalingsrække kan findes som summen af nutidsværdierne af hver enkelt betaling

Betalingsrækker

- Beregn nutidsværdi eller fremtidsværdi af en betalingsrække i "two easy steps"
- 1. Flyt alle betalingerne til samme tidspunkt ved hjælp af den basale nutidsværdiligning
 - Tidspunkt 0 → nutidsværdi
 - Tidspunkt t > 0 → fremtidsværdi
- 2. Summer beløbene

Perpetuitet

- En perpetuitet er en uendelig række af lige store betalinger → her kan nutidsværdien ikke findes som summen af nutidsværdierne af hver enkelt betaling
- Fx preferred shares er en særlig slags værdipapirer som er en mellemting ("hybrid") mellem gæld og egenkapital
 - Fast dividende (ligesom gæld / i modsætning til egenkapital)
 - Ingen udløbstid (ligesom egenkapital / i modsætning til gæld)

Perpetuitet

- Hvad er nutidsværdien af en uendelig række af årlige betalinger på 1.000 kr. ved en rente på 5%?
- **Intuition**: nutidsværdien er det beløb X som jeg skulle have stående i banken fast for at få en årlig rentebetaling på 1.000 kr.

$$X \cdot 0.05 = 1.000 \Rightarrow X = \frac{1.000}{0.05} = 20.000$$

 Generel formel: nutidsværdien af en uendelig række af betalinger på C ved renten r er givet ved følgende formel:

$$PV = \frac{C}{r}$$

Perpetuitetsformel

- Betrag en uendelig række af betalinger på C
- Ved diskonteringsrenten r er nutidsværdien givet ved

$$PV = \frac{C}{(1+r)^1} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \cdots$$
 (1)

• Multiplicer begge sider med (1 + r)

$$(1+r) \cdot PV = C + \frac{C}{(1+r)^1} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \cdots$$
 (2)

Ved at trække (1) fra (2) fås

$$r \cdot PV = C \Leftrightarrow PV = \frac{C}{r}$$

- Hvad er nutidsværdien af en preferred share med en pålydende værdi på 100 kroner og en fast dividende på 3% hvis renten er 5%?
- Giver det mening at nutidsværdien er forskellig fra den pålydende værdi?

- Aktien giver en uendelig række af betalinger på 3 kr.
- Nutidsværdien af denne række er givet ved

$$PV = \frac{3}{0.05} = 60 \ kr.$$

- Aktiens markedspris bør være 60 kroner (kurs 60)
- → Ved denne pris svarer det årlige afkast på 3 kroner præcis til diskonteringsrenten på 5%.
- · Meget mere om dette i fagets finansieringsdel

Annuitet

- En annuitet er en række af lige store årlige betalinger over en endelig tidsperiode
- Fx et huslån har typisk form som et annuitetslån, som tilbagebetales med faste årlige ydelser over fx 30 år
- Med lange rækker er det upraktisk at finde nutidsværdien som summen af nutidsværdierne af hver enkelt betaling
- Generel formel: nutidsværdien af en række af t årlige betalinger på C ved renten r er givet ved følgende formel:

$$PV = \frac{C}{r} - \frac{C}{r \cdot (1+r)^t}$$

• Eksempel: nutidsværdien af en årlig betaling på 100 kr. over 10 år ved renten 3% er:

$$PV = \frac{100}{0.03} - \frac{100}{0.03 \cdot (1 + 0.03)^{10}} \approx 853 \ kr.$$

Hvordan skal vi forstå annuitetsformlen?

Hvordan skal vi forstå annuitetsformlen?

Hvordan skal vi forstå annuitetsformlen?

• **PV2:** Simpel anvendelse af formlen for en perpetuitet giver

$$PV2 = \frac{100}{0.03} \approx 3.333$$

- **PV3:** Betalingerne fra år 11 og fremefter kan opfattes som en perpetuitet der starter i år 10
- Fremtidsværdien i år 10 af denne række er dermed blot givet ved $\frac{100}{0,03}$
- Nutidsværdien fås ved anvendelse af den basale nutidsværdiligning

$$PV3 = \frac{100}{0.03} \cdot \frac{1}{(1+0.03)^{10}} \approx 2.480$$

Alt i alt fås altså:

$$PV1 = PV2 - PV3 = \frac{100}{0.03} - \frac{100}{0.03} \cdot \frac{1}{(1+0.03)^{10}} \approx 853 \ kr.$$

- En fraskilt far betaler et årligt børnebidrag på 25.000 kr. Barnet er lige fyldt 3 år så der resterer 15 årlige betalinger. Faren betaler en rente i banken på 8%.
- Moren tilbyder at de slår en streg over de årlige børnebidrag mod at faren i stedet betaler hende et engangsbeløb på kr. 250.000.
- Hvad bør faren svare?
- Forudsæt at han udelukkende er interesseret i at slippe så billigt som muligt

• Børnebidragene udgør en annuitet hvis nutidsværdi kan beregnes som

$$PV = \frac{C}{r} - \frac{C}{r \cdot (1+r)^t}$$

$$= \frac{25.000}{0.08} - \frac{25.000}{0.08 \cdot (1+0.08)^{15}}$$

$$= 321.500 - 98.513$$

$$= 213.987$$

 De løbende børnebidrag har en lavere nutidsværdi end engangsbetalingen - faren bør sige nej til forslaget

Timing

- Formlerne for annuitet og perpetuitet antager at betalingsrækken starter én periode ude i fremtiden
- Fx første betaling falder 1/3-2014 → formlerne giver nutidsværdien per 1/3-2013

 Hvis betalingsrækken udover de fremtidige betalinger omfatter en straksbetaling kan denne umiddelbart lægges til nutidsværdien af de fremtidige betalinger

 Et værdipapir giver en betaling på 10 kroner d. 1/6-2018 og en betaling på 10 kroner d. 1/6 i alle efterfølgende år. Den 1/6-2018 er nutidsværdien af den uendelige betalingsrække 210 kroner, hvis diskonteringsrenten er 5%.

- Udsagnet er korrekt.
- Nutidsværdien af den uendelige betalingsrække, der starter d. 1/6 2019, er ifølge perpetuitetsformlen lig 200 kr.
- Nutidsværdien af den uendelige betalingsrække, hvor første betaling falder straks, er dermed 210 kroner.

- Hvad er nutidsværdien af en række af 25 årlige betalinger på hver 1.000 kroner hvor første betaling falder om 3 år?
- Renten er 5%

• Ved simpel anvendelse af annuitetsformlen får vi fremtidsværdien om 2 år:

$$FV_{t=2} = \frac{1.000}{0.05} - \frac{1.000}{0.05 \cdot (1 + 0.05)^{25}} \approx 14.093 \ kr.$$

 For at få nutidsværdien må beløbet tilbagediskonteres to perioder:

$$PV = \frac{FV_{t=2}}{(1+0.05)^2} \approx 12.784 \ kr.$$

Find antal betalinger

- Ligesom den basale nutidsværdiligning har annuitetsformlen fire variable → givet viden om tre kan den fjerde findes
- Fx: Hvor mange år tager det at afdrage et lån på 100.000 kr. hvis ydelsen er 10.000 kr. om året og renten er 7%?

$$PV = \frac{C}{r} - \frac{C}{r \cdot (1+r)^t}$$

$$100.000 = \frac{10.000}{0.07} - \frac{10.000}{0.07 \cdot (1+0.07)^t}$$

$$(1.07)^t = 3.333$$

• Kan løses algebraisk (ved at tage log på begge sider) eller med "goal seek" i Excel $\rightarrow t \approx 18~{\rm å}r$

 Hvor meget er den implicitte rente hvis et lån på 100.000 kr. afrages med en årlig ydelse på 10.000 kr. om året over 14 år?

• Brug annuitetsformlen:

$$PV = \frac{C}{r} - \frac{C}{r \cdot (1+r)^{t}}$$

$$100.000 = \frac{10.000}{r} - \frac{10.000}{r \cdot (1+r)^{14}}$$

$$10 = \frac{1}{r} - \frac{1}{r \cdot (1+r)^{14}}$$

• Kan ikke løses algebraisk \rightarrow "goal seek" i Excel giver løsningen r $\approx 4.8\%$

Konstant voksende perpetuitet

- I nogle tilfælde har betalingerne i en række en (tilnærmelsesvist) konstant vækstrate
- Fx dividenderne udbetalt af en virksomhed vokser over tid som følge af virksomhedens ekspansion (og inflation)
- Nutidsværdien af en uendelig række af betalinger startende på C og derved voksende med vækstraten g ved renten r er givet ved følgende formel:

$$PV = \frac{C}{r - g}$$

Konstant voksende perpetuitet

Eksempel

• Betaling i første periode : C = 100

• Rente : r = 5%

• Vækst i betaling : g = 2%

$$PV = \frac{100}{0.05 - 0.02} = \frac{100}{0.03} \approx 3.333$$

Perpetuitetsformel med vækst

- Betrag en uendelig række af betalinger startende på $\mathcal C$ og voksende med raten g:
- Ved diskonteringsrenten r er nutidsværdien givet ved

$$PV = \frac{C}{(1+r)^1} + \frac{C \cdot (1+g)}{(1+r)^2} + \frac{C \cdot (1+g)^2}{(1+r)^3} + \cdots$$
 (1)

• Multiplicer begge sider med $\frac{1+r}{1+g}$

$$\frac{1+r}{1+g} \cdot PV = \frac{C}{(1+g)} + \frac{C}{(1+r)} + \frac{C \cdot (1+g)}{(1+r)^2} + \frac{C \cdot (1+g)^2}{(1+r)^3} + \cdots$$
 (2)

• Ved at trække (1) fra (2) fås

$$\frac{1+r}{1+g} \cdot PV - PV = \frac{C}{1+g}$$

· ...hvilket efter lidt omskrivninger giver os formlen

- En virksomhed annoncerer at den det følgende år vil udbetale en dividende på 5 kr. per aktie og det forventes at virksomhedens dividender i al fremtid vil vokse med 7 pct. om året
- Hvad er nutidsværdien af rækken af dividender hvis diskonteringsrenten er 5 pct.?

• Formlen er kun defineret for r > g. Hvis betalingerne i en uendelig række vokser hurtigere end diskonteringsrenten, er dens nutidsværdi uendelig stor

Opsummering

- Nutidsværdier af betalingsrækker
- Særlige regneregler for betalingsrækker der er konstante over tid:
 - Perpetuiteter → uendelige betalingsrækker
 - Annuiteter → endelige betalingsrækker
- Særlige regneregler for betalingsrækker med konstant vækstrate
- Bemærk: Vi har sprunget noget af materialet omkring finansieringsproblemer (effektiv rente) over → det kommer vi tilbage til når vi har gjort anlægsinvesteringerne færdig