Final Exam Reference Sheet

Set operations and functions

Definition 1. The *empty set* \emptyset is the set that contains no elements.

Definition 2. The union of A and B is

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

Definition 3. The *intersection* of A and B is

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$$

Definition 4. We say that A and B are disjoint when $A \cap B = \emptyset$.

Definition 5. We say that A is a *subset* of B if

$$\forall x: (x \in A \to x \in B).$$

In this case, we write $A \subseteq B$.

Definition 6. The difference of A and B is

$$B \backslash A = \{ x \in B \mid x \notin A \}.$$

Definition 7. The symmetric difference of A and B is $A \Delta B = A \backslash B \cup B \backslash A$.

Definition 8. If $A \subseteq B$, then the *complement* of A in B is $A^c = B \setminus A$.

Definition 9. The *composition* of $f: A \to B$ and $g: B \to C$ is

$$g \circ f : A \to C$$

 $x \mapsto g(f(x)).$

Injective and surjective functions

Definition 10. The function $f: A \to B$ is said to be *injective* if f(x) = f(y) implies x = y.

Definition 11. The function $f: A \to B$ is called *surjective* when for every $y \in B$ there is an $x \in A$ with f(x) = y.

Definition 12. We say that $f: A \to B$ is *bijective* when it is both injective and surjective.

Definition 13. The restriction of $f: A \to B$ to S is the function

$$f|_S: S \to B$$

 $x \mapsto f(x).$

1

Limits

Definition 14. We say that $f(x) \to \infty$ as $x \to \infty$, or that $\lim_{x \to \infty} f(x) = \infty$, when

$$\forall M > 0 : \exists N > 0 : \forall x > N : f(x) > M.$$

In this case, we write $\lim_{x \to \infty} f(x) = \infty$.

Definition 15. Fix $L \in \mathbb{R}$. We say that $f(x) \to L$ as $x \to \infty$, or that $\lim_{x \to \infty} f(x) = L$, when

$$\forall \epsilon > 0 : \exists N > 0 : \forall x > N : |f(x) - L| < \epsilon.$$

Definition 16. Fix $x_0 \in \mathbb{R}$. We say that $f(x) \to \infty$ as $x \to x_0$, or that $\lim_{x \to x_0} f(x) = \infty$, when

$$\forall M > 0 : \exists \delta > 0 : \forall x \in \mathbb{R} : |x - x_0| < \delta \implies f(x) > M.$$

Definition 17. Fix $x_0 \in \mathbb{R}$ and $L \in \mathbb{R}$. We say that $f(x) \to L$ as $x \to x_0$, or that $\lim_{x \to \infty} f(x) = L$, when

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall x \in \mathbb{R} : |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$$

Relations

Definition 18. The Cartesian product of A and B is the set of ordered pairs

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Definition 19. A relation from A to B is a subset $R \subseteq A \times B$.

Definition 20. The *domain* of $R \subseteq A \times B$ is the subset

$$Dom R = \{a \in A \mid \exists b \in B : aRb\},\$$

and the range is

$$\operatorname{Rng} R = \{ b \in B \mid \exists a \in A : aRb \}.$$

Definition 21. A function from A to B is a relation $f \subseteq A \times B$ such that

$$\forall a \in A : \exists! \, b \in B : (a, b) \in f.$$

We usually write $(a, b) \in f$ as f(a) = b.

Definition 22. If $R \subseteq A \times B$ is a relation from A to B, then the *inverse* of R is the relation $R^{-1} \subseteq B \times A$ given by

$$bR^{-1}a \iff aRb.$$

Definition 23. If R is a relation from A to B, and if S is a relation from B to C, then the *composition* of R and S is

$$S \circ R = \{(a, c) \mid \exists b \in B : aRb \land bSc\}.$$

Equivalence relations and partial orders

Definition 24. We say that the relation R on A is

- reflexive when $\forall a \in A : aRa$
- transitive when $\forall a, b, c \in A : (aRb \land bRc) \implies aRc$

- symmetric when $\forall a, b \in A : aRb \implies bRa$
- antisymmetric when $\forall a, b \in A : (aRb \land bRa) \implies a = b$

Definition 25. The relation R on A is

- an equivalence relation when it is reflexive, transitive, and symmetric;
- a partial order when it is reflexive, transitive, and antisymmetric.

Definition 26. A set A equipped with a partial order R is called a partially ordered set or a poset.

Definition 27. The quotient map associated to a set A with equivalence relation \sim is the function

$$q: A \to A/\sim$$

 $a \mapsto [a].$

Number systems

Definition 28. The *complex numbers* $(\mathbb{C}, +, \times)$ comprise

- 1. the set $\mathbb{C} = \mathbb{R}^2$,
- 2. the binary operation

$$+: \mathbb{C}^2 \longrightarrow \mathbb{C}$$

 $((a,b),(a',b')) \longmapsto (a+a',b+b'),$

3. the binary operation

$$\times: \mathbb{C}^2 \longrightarrow \mathbb{C}$$

 $((a,b),(a',b')) \longmapsto (aa'-bb',ab'+a'b).$

Definition 29. The rational numbers $(\mathbb{Q}, +, \times)$ consist of

- 1. the set $\mathbb{Q} = \{(p,q) \in \mathbb{Z}^2 \mid q \neq 0\} / \sim$,
- 2. the binary operation

$$+: \mathbb{Q}^2 \longrightarrow \mathbb{Q}$$
$$([(p,q)], [(p',q')]) \longmapsto [(pq'+p'q, qq')],$$

3. the binary operation

$$\times: \mathbb{Q}^2 \longrightarrow \mathbb{Q}$$
$$([(p,q),(p',q')]) \longmapsto [(pp',qq')].$$

Definition 30. The *integers* $(\mathbb{Z}, +, \times)$ consist of

- i. the set $\mathbb{Z} = \mathbb{N}^2$,
- ii. the binary operation

$$+: \quad \mathbb{Z}^2 \longrightarrow \quad \mathbb{Z}$$
$$((m,n),(m',n')) \longmapsto (m+m',n+n'),$$

iii. the binary operation

$$\times: \qquad \mathbb{Z}^2 \longrightarrow \qquad \mathbb{Z}$$
$$((m,n),(m',n')) \longmapsto (mm'+nn',mn'+m'n).$$

Algebraic structures with one binary operation

Definition 31. A binary operation on A is a function

$$*: A \times A \rightarrow A.$$

Definition 32. A magma (A, *) is a set A equipped with a binary operation $*: A \times A \rightarrow A$.

Definition 33. We say that * is

• commutative when

$$\forall a, b \in A : a * b = b * a$$

• associative when

$$\forall a, b, c \in A : (a * b) * c = a * (b * c)$$

Definition 34. We say that (A, *) is a *semigroup* when * is associative. If * is additionally commutative, then (A, *) is called a *commutative semigroup*.

Definition 35. We say that $e \in A$ is an *identity element* for $*: A \times A \rightarrow A$ when

$$\forall a \in A : a * e = a = e * a.$$

Definition 36. A semigroup (A, *) that admits an identity element $e \in A$ is called a *monoid*.

Definition 37. Fix an element $a \in A$. If $b \in A$ satisfies

$$a * b = e = b * a$$

then b is called an *inverse element* of a, and we write $b = a^{-1}$.

Definition 38. A semigroup (A, *) is called a *group* when every $a \in A$ has an inverse $a^{-1} \in A$.

Definition 39. A group (A, *) is an abelian group when * is commutative.

Algebraic structures with multiple binary operations

Definition 40. A ring $(R, +, \cdot)$ comprises a set R and two binary operations $+, \cdot : R \times R \to R$, such that

- i. (R, +) is an abelian group,
- ii. (R, \cdot) is a monoid,
- iii. the operation \cdot distributes over +, that is, for all $a, b, c \in R$,

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$

Definition 41. A zero divisor in a commutative ring $(A, +, \cdot)$ is an element $a \in A$ for which there exists a nonzero $b \in A$ with ab = 0.

Definition 42. A commutative ring $(R, +, \cdot)$ is called an *integral domain* when

- i. it does not contain any nonzero zero divisor,
- ii. $0 \neq 1$.

Definition 43. An integral domain $(R, +, \cdot)$ is called a *field* when every nonzero element $a \in R \setminus \{0\}$ has a multiplicative inverse $a^{-1} \in R$,

Definition 44. A k-vector space $(V, +, \cdot)$ comprises a set V together with operations

$$+: V \times V \to V$$

and

$$\cdot: k \times V \to V$$

such that

- i. (V, +) is an abelian group
- ii. $scalar\ multiplication \cdot and\ vector\ addition + satisfy$

$$1 \cdot u = u$$
$$(a+b) \cdot u = (a \cdot u) + (b \cdot u)$$
$$a \cdot (b \cdot u) = (a \cdot b) \cdot u$$
$$a \cdot (u+v) = (a \cdot u) + (a \cdot v)$$

Definition 45. An R-module $(V, +, \cdot)$ comprises a set V together with operations

$$+: V \times V \to V$$

and

$$\cdot: k \times V \to V$$

that together satisfy the familiar vector space conditions.

Homomorphisms

Definition 46. A homomorphism $f: X \to Y$ is called a

i. monomorphism if

$$\forall (g, g': Z \to X) : (f \circ g = f \circ g') \implies g = g',$$

that is, f is left-cancellative,

ii. epimorphism if

$$\exists (h: Y \to X): (h \circ f = h' \circ f) \implies h = h',$$

that is, f is right-cancellative,

iii. isomorphism if

$$\exists (k: Y \to X) : (f \circ k = \mathrm{id}_Y) \land (k \circ f = \mathrm{id}_X),$$

that is, f has an inverse k.

Definition 47. i. A homomorphism $f: X \to X$ is called an *endomorphism*.

ii. An isomorphism $f: X \to X$ is called an automorphism.

Definition 48. We say that X and Y are *isomorphic* if there exists an isomorphism $f: X \xrightarrow{\sim} Y$.

Definition 49. A group homomorphism from (G,\cdot) to (H,*) is a function $f:G\to H$ such that

$$\forall g, g' \in G : f(g \cdot g') = f(g) * f(g').$$

Definition 50. A ring homomorphism from $(R, +, \cdot)$ to $(S, \oplus, *)$ is a function $f: R \to S$ such that for all $r, r' \in R$,

i.
$$f(r+r') = f(r) \oplus f(r')$$
,

ii.
$$f(r \cdot r') = f(r) * f(r')$$
,

iii.
$$f(1_R) = 1_S$$
.

Definition 51. A field homomorphism is a ring homomorphism between fields.

Definition 52. A monotone map of posets from (A, \leq) to (B, \preccurlyeq) is a function $f: A \to B$ such that

$$\forall a, a' \in A : a < a' \implies f(a) \leq f(a').$$

An order embedding is an injective monotone map, and an order isomorphism is a bijective monotone map.

Definition 53. A linear map of k-vector spaces from U to V is a function $f: U \to V$ such that

i.
$$f(u+u') = f(u) + f(u')$$
 for all $u, u' \in U$, and

ii.
$$f(su) = sf(u)$$
 for all $u \in U$ and $s \in k$.

Metric spaces

Definition 54. A metric on X is a function

$$d: X \times X \to \mathbb{R}_{>0}$$

satisfying

i.
$$d(x,y) = 0$$
 if and only if $x = y$,

ii.
$$d(x, y) = d(y, x)$$
,

iii.
$$d(x, z) \le d(x, y) + d(y, z)$$
 (triangle inequality).

The pair (X, d) is called a *metric space*.

Definition 55. A norm on a vector space V is a function

$$\|\cdot\|:V\to\mathbb{R}_{>0}$$

such that

i.
$$||v|| = 0$$
 if and only if $v = 0$,

ii.
$$||sv|| = |s| ||v||$$
,

iii.
$$||u+v|| \le ||u|| + ||v||$$
 (triangle inequality).

The pair $(V, \|\cdot\|)$ is called a normed vector space.

Definition 56. Let $(x_i)_i$ be a sequence in (X,d) and fix $x \in X$. We say that $(x_i)_i$ converges to x if

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} : \forall n \ge N : d(x_n, x) \le \epsilon.$$

In this case, we write $x_i \to x$ or $\lim_{i \to \infty} x_i = x$ and we say that x is the $\lim_{i \to \infty} t$ of $(x_i)_i$.

Definition 57. If the sequence $(x_i)_i$ does not converge to any point $x \in X$, then $(x_i)_i$ is said to diverge.

Continuous functions

Definition 58. A function $f: X \to Y$ is continuous at $x \in X$ when

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall y \in X : d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \epsilon.$$

Definition 59. We say that $f: X \to Y$ is *continuous* if it is continuous at every $x \in X$.

Cardinality

Definition 60. Two sets A and B are equivalent (or in one-to-one correspondence) if there exists a bijection from A to B. In this case, we write $A \approx B$.

Definition 61. The *cardinality* of a finite set $A = \{a_1, \ldots, a_k\}$ is the number $k \in \mathbb{N}$ of elements in A.

Definition 62. We write

|A| = |B| when \exists bijection $f: A \xrightarrow{\sim} B$,

 $|A| \leq |B|$ when \exists injection $f: A \hookrightarrow B$,

|A| < |B| when $|A| \le |B|$ and $|A| \ne |B|$.