University of Toronto at Scarborough Department of Computer and Mathematical Sciences

Linear Programming and Optimazation

MATB61 Winter 2020

Assignment #5

You are expected to work on this assignment prior to your tutorial in the week of Feb. 10th, 2019. You may ask questions about this assignment in that tutorial.

```
Midterm Test
Wednesday, February 26<sup>th</sup>, 5 – 7pm
IC130 (Last name A – Y)
IC120 (Last name Z)
```

The midterm test will cover materials in weeks 1-6 lecture notes and assignments 1-6. Textbook: Chapter 1, 2

Note: There is a quiz in the week of **Feb 10**th, based on the assignment 4 (Simplex Method) and/or related material from the lecture in week 4.

The following problems are not to be handed-in.

Textbook: Elementary Linear Programming With Applications B. Kolman & R. Beck, 2nd edition

Reading: Chapter 2 sections 2 & 3

Problems:

Section 2.2 #1 - #9 Section 2.3 #1 - #24 without Big M method

In addition:

Consider the following simplex tableau:

	\mathbf{x}_1	\mathbf{x}_2	X 3	X 4	X5	X6	
X2	-1	1	0	0	b	0	1
X4	-1	0	0	1	-2	1	2
X 3	a	0	1	0	1	1	c
	d	0	0	0	e	2	0

Specify the ranges of values for the parameters a, b, c, d, e that make each of the following statements true. Assume that the original problem was a minimization problem (min $c^T x$ subject to Ax = b; $x \ge 0$) and the initial simplex tableau contained the values c in the top row.

- a) The tableau describes an infeasible basic solution.
- b) The tableau describes an optimal basic feasible solution.
- c) The tableau describes a basic feasible solution, but the problem is unbounded and the simplex algorithm cannot proceed any further.
- d) The tableau describes an optimal basic feasible solution with multiple optimal solutions.
- e) The current basic solution is feasible. At the next iteration, x_5 is the only candidate for entering the basis. And if x_5 enters the basis, x_2 leaves the basis.
- f) The current basic solution is feasible. At the next iteration, a degenerate BFS will occur in the next tableau.