

Seminar Algorithms for Big Data

Fast Random Integer Generation in an Interval Based on a paper of the same title by Daniel Lemire

Lukas Geis Supervised by Dr. Manuel Penschuck

29th February 2024 · Algorithm Engineering (Prof. Dr. Ulrich Meyer)

Motivation

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

Shuffling

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Graph Generators

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Graph Generators
- Sampling

Table of Contents

- 1 Preliminaries
 - Formal Definition
 - Operations
 - The Naive Approach
- 2 Unbiased Algorithms
 - The OpenBSD Algorithm
 - The Java Algorithm
 - The Bitmask Algorithm
- 3 Lemire's Algorithm
 - Multiply-And-Shift
 - The Algorithm
- 4 Summary

Formal Definition

Setting:

Formal Definition

Setting:

■ Input: upper bound of interval $n \in \mathbb{N}$

Formal Definition

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

■ Set n = b - a and draw a uniform random integer $x \in [0, n)$

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

- Set n = b a and draw a uniform random integer $x \in [0, n)$
- Return $x + a \in [a, b)$

Operations

Definition (Common Operations)

■ Integer-Division: $x \div y \qquad \coloneqq |x/y|$

- Integer-Division: $x \div y \qquad \coloneqq |x/y|$
- Remainder-Operation: $x \mod y := x (x \div y)y$

- Integer-Division: $x \div y := \lfloor x/y \rfloor$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- Bit-RightShift: $x \gg W := x \div 2^W$

- $x \div y := |x/y|$ ■ Integer-Division:
- $x \mod y \coloneqq x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RIGHTSHIFT:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-And:
$$x \& y$$

- Integer-Division: $x \div y := \lfloor x/y \rfloor$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- Bit-RightShift: $x \gg W := x \div 2^W$
- Bit-LeftShift: $x \ll W := x \cdot 2^W$
- Bitwise-And: $x \& y \to x \mod 2^W := x \& (2^W 1)$

Definition (Common Operations)

- $x \div y := |x/y|$ ■ Integer-Division:
- $x \mod y := x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RightShift:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:
- $x \& y \rightarrow x \mod 2^W := x \& (2^W 1)$ Bitwise-AND:

Definition (Power Remainder)

For $W, n \in \mathbb{N}$, we write \mathcal{R}_n^W for $2^W \mod n$.

The Naive Approach

How do we get random numbers?

How do we get random numbers?

■ Generated by Pseudo-Random-Number-Generators (PRNGs)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

Is the generated number uniform in [0, n)?

The Naive Approach - Bias

Preliminaries

The Naive Approach - Bias

GOETHE UNIVERSITÄT

In general, applying $x \mod n$ to $[0, 2^W)$ yields

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f: [0, 2^W) \to [0, n)$

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f: [0, 2^W) \to [0, n)$ does not generate uniform random integers in one step

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f:[0,2^W)\to [0,n)$ does not generate uniform random integers in one step whenever n does not divide 2^W .

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f: [0, 2^W) \to [0, n)$ does not generate uniform random integers in one step whenever n does not divide 2^W .

Idea: Use rejection sampling to achieve uniformity!

The OpenBSD Algorithm

GOETHE UNIVERSITÄT

■ Shift the rejection interval to the left:

Shift the rejection interval to the left:

■ Shift the rejection interval to the left:

Algorithm:

■ Shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

- Algorithm:
 - Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$

■ Shift the rejection interval to the left:

2^W values		
	n values	n values
$[0,1,\ldots,\mathcal{R}_n^W-1,\overline{\mathcal{R}_n^W},\ldots]$	$(1, n-1, 0, \ldots, \mathcal{R}_n^W - 1)$	$1, \ldots, \mathcal{R}_n^W, \ldots, n-1, 0, \ldots, \mathcal{R}_n^W - 1$
\mathcal{R}_n^W values	$(2^W \cdot$	$(n) \cdot n$ values

- Algorithm:
 - Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
 - Return $x \mod n$

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

lacksquare one for computing \mathcal{R}_n^W

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

- \blacksquare one for computing \mathcal{R}_n^W
- \blacksquare and one for computing $x \mod n$.

The Java Algorithm

The Java Algorithm

GOETHE UNIVERSITÄT

The Java Algorithm

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

 \blacksquare Map every number to the next-smallest multiple of n

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
 - (2) Return r if $x r \le 2^W n$ else goto (1)

The Java Algorithm - Efficiency

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

The Java Algorithm - Efficiency

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

Efficiency

The Java Algorithm - Efficiency

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

Efficiency

■ At least one integer division operation

GOETHE UNIVERSITÄT

The Java Algorithm - Efficiency

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds

The Java Algorithm - Efficiency

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}_n^W$

The Java Algorithm - Efficiency

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}_n^W$
- Happens with probability $\frac{2^W \mathcal{R}_n^W}{2^W} > \frac{1}{2}$

The Java Algorithm - Efficiency

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}_n^W$
- \blacksquare Happens with probability $\frac{2^W-\mathcal{R}_n^W}{2^W}>\frac{1}{2}$
- Expected number of integer division operations is $\frac{2^W}{2^W \mathcal{R}_n^W} < 2$

The Bitmask Algorithm - Representation

The Bitmask Algorithm - Representation

GOETHE UNIVERSITÄT

 \blacksquare Consider the binary representation of n:

GOETHE UNIVERSITÄT

The Bitmask Algorithm - Representation

 \blacksquare Consider the binary representation of n:

The Bitmask Algorithm - Representation

 \blacksquare Consider the binary representation of n:

$$n \quad \xrightarrow{\text{binary}} \quad \underbrace{0, \dots, 0}_{\text{only 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}^{2^{l \log_2 n}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}^{2^1}$$

■ Every number $x \le n$ only needs the last $\lfloor \log_2 n \rfloor + 1$ bits

The Bitmask Algorithm - Representation

 \blacksquare Consider the binary representation of n:

$$n \quad \xrightarrow{\text{binary}} \quad \underbrace{0, \dots, 0}_{\text{only 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}^{2^{W-1}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}^{2^1}$$

- Every number $x \le n$ only needs the last $\lfloor \log_2 n \rfloor + 1$ bits
- Get these bits with a bitwise-AND with

$$2^{\lfloor \log_2 n \rfloor + 1} - 1 \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\text{only 0's}}, \underbrace{\frac{2^{\lfloor \log_2 n \rfloor}}{1, 1, \dots, 1}, \frac{2^1}{1}}_{\text{only 1's}}, \underbrace{\frac{2^0}{1, \dots, 0}}_{\text{only 1's}}$$

Unbiased Algorithms

The Bitmask Algorithm - Mask

GOETHE UNIVERSITÄT

■ How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?

Unbiased Algorithms

The Bitmask Algorithm - Mask

GOETHE UNIVERSITÄT

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- \blacksquare Count the number ℓ of leading 0's in n!

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{cries of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

$$\bullet \lfloor \log_2 n \rfloor = W - \ell - 1$$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0}_{\ell \text{ 0's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

Algorithm:

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0}_{\ell \text{ 1}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0}_{\ell \text{ 1}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0}_{\ell \text{ 1}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
 - (3) Return b if b < n else goto (2)

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

GOETHE UNIVERSITÄT

The Bitmask Algorithm - Efficiency

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Efficiency

 \bullet b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} - 1 < 2n$

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Efficiency

■ b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} - 1 < 2n$ success probability at least $\approx \frac{1}{2}$

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation
- No integer division at all

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation
- No integer division at all
- Computation of leading 0's requires clz instruction/algorithm

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation
- No integer division at all
- Computation of leading 0's requires clz instruction/algorithm
- Roughly as expensive as a div instruction

Lemire's Algorithm

■ Map rand() to [0,n) divisionless with $(rand() \cdot n) \gg W$:

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$({\tt rand()}\cdot n)\gg W$$

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$(\mathtt{rand()} \cdot n) \div 2^W$$

■ Map rand() to [0,n) divisionless with $(rand() \cdot n) \gg W$:

$$(\underbrace{\mathtt{rand()}}_{\in [0,2^W)} \cdot n) \div 2^W$$

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{\left(\mathtt{rand}\left(\right)\cdot n\right)}_{\in\left[0,n\cdot2^{W}\right)}\div2^{W}$$

■ Map rand() to [0,n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{\left(\mathtt{rand}\left(\right)\cdot n\right)}_{\in\left[0,n\cdot2^{W}\right)}\div2^{W}$$

$$n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$$

■ Map rand() to [0,n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n)}_{\in [0,n\cdot 2^W)} \div 2^W$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

■ Map rand() to [0,n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

■ Map rand() to [0,n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

■ Mapping is deterministic!

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

- Mapping is deterministic!
- \blacksquare Mapping can not be uniform for all n!

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

GOETHE UNIVERSITÄT

The Algorithm - Intervals

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{\text{oth interval mapped to 0 by }\gg W}^{n\cdot 2^W}_{\text{values}}\underbrace{values}_{\substack{i^{\text{th interval mapped to }n-1\text{ by }\gg W}}^{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\substack{(n-1)^{\text{th interval mapped to }n-1\text{ by }\gg W}}$$

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{\text{th interval mapped to 0 by }\gg W}^{n\cdot 2^W}_{\text{values}}\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{th interval mapped to }n-1\text{ by }\gg W}^{\text{th interval mapped to }n-1\text{ by }\gg W}$$

■ Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{0^{\text{th interval}},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to 0 by }\gg W}}_{\text{limiterval mapped to i by }\gg W}\underbrace{(n-1)^{\text{th interval}}_{\text{mapped to $n-1$ by }\gg W}}_{\text{limiterval mapped to $n-1$ by }\gg W}$$

- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1) \cdot 2^W - (i \cdot 2^W + \mathcal{R}_n^W) = 2^W - \mathcal{R}_n^W$$

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{\text{th interval mapped to 0 by }\gg W},\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{\text{th interval mapped to }i\text{ by }\gg W},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to }n-1\text{ by }\gg W},\dots,\underbrace{(n-1)^{\text{th interval mapped to }n-1\text{ by }\gg W}_{\text{mapped to }n-1\text{ by }\gg W}$$

- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1) \cdot 2^W - (i \cdot 2^W + \mathcal{R}_n^W) = 2^W - \mathcal{R}_n^W$$

which is divisible by n

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{0^{\text{th interval}},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to }0\text{ by }\gg W}}^{n\cdot 2^W\text{ values}},\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to }i\text{ by }\gg W},\underbrace{(n-1)^{\text{th interval}}_{\text{mapped to }n-1\text{ by }\gg W}}$$

- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1)\cdot 2^W - \left(i\cdot 2^W + \mathcal{R}_n^W\right) = 2^W - \mathcal{R}_n^W$$

which is divisible by n

■ Every restricted i^{th} interval has $\frac{2^W - \mathcal{R}_n^W}{n} = \lfloor \frac{2^W}{n} \rfloor$ multiples of n

GOETHE UNIVERSITÄT

The Algorithm - Intervals

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{\text{th interval mapped to 0 by }\gg W},\underbrace{i^{\text{th interval mapped to }i^{\text{th interval mapped to }i^{\text{th interval mapped to }n-1\text{ by }\gg W}}_{\text{mapped to }i^{\text{th interval mapped to }n-1\text{ by }\gg W}}$$

- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1) \cdot 2^W - (i \cdot 2^W + \mathcal{R}_n^W) = 2^W - \mathcal{R}_n^W$$

which is divisible by n

- Every restricted i^{th} interval has $\frac{2^W \mathcal{R}_n^W}{n} = \lfloor \frac{2^W}{n} \rfloor$ multiples of n
- \blacksquare We can make Multiply-And-Shift uniform by only accepting multiples of n in restricted intervals

When do we reject $x := rand() \cdot n$?

GOETHE UNIVERSITÄT

The Algorithm - Rejection

When do we reject $x := rand() \cdot n$?

• $x \in [i \cdot 2^W, i \cdot 2^W + \mathcal{R}_n^W)$ for some i < n

When do we reject $x := rand() \cdot n$?

- $x \in [i \cdot 2^W, i \cdot 2^W + \mathcal{R}_n^W)$ for some i < n
- Applying $x \mod 2^W$ to any i^{th} interval yields

When do we reject $x := rand() \cdot n$?

- $x \in [i \cdot 2^W, i \cdot 2^W + \mathcal{R}_n^W)$ for some i < n
- Applying $x \mod 2^W$ to any i^{th} interval yields

When do we reject $x := rand() \cdot n$?

- $\mathbf{x} \in [i \cdot 2^W, i \cdot 2^W + \mathcal{R}_n^W)$ for some i < n
- Applying $x \mod 2^W$ to any i^{th} interval yields

$$\underbrace{\frac{2^W \text{ values}}{0,1,\dots,\mathcal{R}_n^W-1}}_{\text{rejected part}},\underbrace{\mathcal{R}_n^W,\dots,n,\dots,2^W-1}_{\text{restricted }i^{\text{th}} \text{ interval}}$$

• We reject x if x mod $2^W < \mathcal{R}_n^W$

The Algorithm - Sketch

$$\mathbf{1} \ \overline{\mathcal{R}_n^W \leftarrow 2^W \bmod n}$$

/* Compute rejection threshold */

GOETHE UNIVERSITÄT

The Algorithm - Sketch

 $\mathbf{1} \ \overline{\mathcal{R}_n^W \leftarrow 2^W \bmod n}$

/* Compute rejection threshold */

 $\mathbf{2}$ while true do

The Algorithm - Sketch

$$\mathbf{1} \ \overline{\mathcal{R}_n^W \leftarrow 2^W \bmod n}$$

/* Compute rejection threshold */

 $\mathbf{2}$ while true do

$$x \leftarrow \mathtt{rand}()$$


```
1 \overline{\mathcal{R}_n^W} \leftarrow 2^W \mod n /* Compute rejection threshold */
2 while true do
3 | x \leftarrow \text{rand}()
4 | m \leftarrow x \cdot n /* Use 2W bits for representation */
```

GOETHE UNIVERSITÄT

```
1 \overline{\mathcal{R}_n^W} \leftarrow 2^W \mod n /* Compute rejection threshold */
2 while true do
3 | x \leftarrow \text{rand}()
4 | m \leftarrow x \cdot n /* Use 2W bits for representation */
1 | l \leftarrow m \ \& \ (2^W - 1) /* m \mod 2^W */
```


GOETHE UNIVERSITÄT

```
 \begin{array}{|c|c|c|c|c|c|c|c|c|}\hline R_n^W \leftarrow 2^W \bmod n & /* \text{ Compute rejection threshold } */ \\ \hline \textbf{2 while } \textit{true } \textbf{do} \\ \hline \textbf{3} & x \leftarrow \text{rand()} \\ \hline \textbf{4} & m \leftarrow x \cdot n & /* \text{ Use } 2W \text{ bits for representation } */ \\ \hline \textbf{5} & l \leftarrow m & (2^W - 1) & /* & m \bmod 2^W & */ \\ \hline \textbf{6} & \textbf{if } l \geq \mathcal{R}_n^W \textbf{ then} & /* & \texttt{Apply rejection rule } */ \\ \hline \textbf{7} & | & \textbf{return } m \gg W \\ \hline \end{array}
```


GOETHE UNIVERSITÄT

Consider the first iteration of the loop:

Consider the first iteration of the loop:

■ We reject x if $l < \mathcal{R}_n^W$

Consider the first iteration of the loop:

• We reject x if $l < \mathcal{R}_n^W \longrightarrow$ we need to compute \mathcal{R}_n^W beforehand

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do **not** need to know \mathcal{R}_n^W

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do not need to know \mathcal{R}_n^W

We can alter the first iteration of the loop:

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do not need to know \mathcal{R}_n^W

We can alter the first iteration of the loop:

• We do not compute \mathcal{R}_n^W beforehand

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do not need to know \mathcal{R}_n^W

We can alter the first iteration of the loop:

- We do not compute \mathcal{R}_n^W beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}_n^W

GOETHE UNIVERSITÄT

The Algorithm - Avoiding Division

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do not need to know \mathcal{R}_n^W

We can alter the first iteration of the loop:

- We do not compute \mathcal{R}_n^W beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}_n^W
- If not, we compute \mathcal{R}_n^W and proceed as before

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do not need to know \mathcal{R}_n^W

We can alter the first iteration of the loop:

- We do not compute \mathcal{R}_n^W beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}_n^W
- If not, we compute \mathcal{R}_n^W and proceed as before

With what probability do we need to compute \mathcal{R}_n^W :

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do not need to know \mathcal{R}_n^W

We can alter the first iteration of the loop:

- We do not compute \mathcal{R}_n^W beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}_n^W
- If not, we compute \mathcal{R}_n^W and proceed as before

With what probability do we need to compute \mathcal{R}_n^W :

• We assume x to be uniform in $[0, 2^W)$

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do not need to know \mathcal{R}_n^W

We can alter the first iteration of the loop:

- We do not compute \mathcal{R}_n^W beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}_n^W
- If not, we compute \mathcal{R}_n^W and proceed as before

With what probability do we need to compute \mathcal{R}_n^W :

• We assume x to be uniform in $[0, 2^W)$ \longrightarrow l is also uniform in $[0, 2^W)$

GOETHE UNIVERSITÄT

The Algorithm - Avoiding Division

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W$ \longrightarrow we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do not need to know \mathcal{R}_n^W

We can alter the first iteration of the loop:

- We do not compute \mathcal{R}_n^W beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}_n^W
- If not, we compute \mathcal{R}_n^W and proceed as before

With what probability do we need to compute \mathcal{R}_n^W :

- We assume x to be uniform in $[0, 2^W)$ \longrightarrow l is also uniform in $[0, 2^W)$
- We compute \mathcal{R}_n^W if l < n

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}_n^W \longrightarrow$ we need to compute \mathcal{R}_n^W beforehand
- But we know $\mathcal{R}_n^W < n$ \longrightarrow if $l \ge n$ we do not need to know \mathcal{R}_n^W

We can alter the first iteration of the loop:

- We do not compute \mathcal{R}_n^W beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}_n^W
- If not, we compute \mathcal{R}_n^W and proceed as before

With what probability do we need to compute \mathcal{R}_n^W :

- We assume x to be uniform in $[0,2^W)$ \longrightarrow l is also uniform in $[0,2^W)$
- We compute \mathcal{R}_n^W if l < n happens with probability $\frac{n}{2^W}$

1 $x \leftarrow \text{rand}()$

- 1 $x \leftarrow \text{rand}()$
- $2 m \leftarrow x \cdot n$

/* Use 2W bits for representation */


```
1 x \leftarrow \text{rand()}
```

$$2 m \leftarrow x \cdot n$$

3
$$l \leftarrow m \& (2^W - 1)$$

/* Use
$$2W$$
 bits for representation */ /* $m \mod 2^W$ */

10 return $m \gg W$


```
1 x \leftarrow \text{rand}()
                                                    /* Use 2W bits for representation */
2 m \leftarrow x \cdot n
                                                                                  /* m \mod 2^W */
3 l \leftarrow m \& (2^W - 1)
4 if l < n then
                                                                 /* Possibly skip division */
\mathbf{5} \mid \mathcal{R}_n^W \leftarrow 2^W \bmod n
                                                          /* Compute rejection threshold */
10 return m \gg W
```



```
1 x \leftarrow \text{rand}()
                                                  /* Use 2W bits for representation */
2 m \leftarrow x \cdot n
3 l \leftarrow m \& (2^W - 1)
                                                                             /* m \mod 2^W */
4 if l < n then
                                                             /* Possibly skip division */
    \mathcal{R}_n^W \leftarrow 2^W \mod n
                                                       /* Compute rejection threshold */
    while l < \mathcal{R}_n^W do
                                                                /* Apply rejection rule */
10 return m\gg W
```



```
1 x \leftarrow \text{rand}()
                                                                    /* Use 2W bits for representation */
 \mathbf{2} \ m \leftarrow x \cdot n
3 l \leftarrow m \& (2^W - 1)
                                                                                                          /* m \mod 2^W */
 4 if l < n then
                                                                                     /* Possibly skip division */
      \mathcal{R}_n^W \leftarrow 2^W \mod n
                                                                            /* Compute rejection threshold */
      while l < \mathcal{R}_n^W do
                                                                                        /* Apply rejection rule */
 \begin{array}{c|c} \mathbf{7} & x \leftarrow \texttt{rand()} \\ \mathbf{8} & m \leftarrow x \cdot n \\ \mathbf{9} & l \leftarrow m & (2^W - 1) \end{array} 
10 return m\gg W
```


Summary

expected number of integer division operations maximum number of Unbiased? integer division operations

	integer division	maximum number of integer division	Unbiased?
	operations	operations	
Modulo Reduction	1	1	X

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	Х
Multiply-and-Shift	0	0	X

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	1

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	×
OpenBSD	2	2	✓
Java	$rac{2^W}{2^W-\mathcal{R}_n^W}$	∞	✓

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	✓
Java	$rac{2^W}{2^W-\mathcal{R}_n^W}$	∞	✓
Bitmask	0	0	✓

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	Х
Multiply-and-Shift	0	0	×
OpenBSD	2	2	✓
Java	$rac{2^W}{2^W-\mathcal{R}_N^W}$	∞	✓
Bitmask	0	0	✓
Lemire	$rac{n}{2^W}$	1	\checkmark

