- 1. [3 pts] Remember that for the trace operation $tr(v \cdot v^{\mathsf{T}}) = \sum_i v_i^2 = v^{\mathsf{T}} v$, and if a square matrix P is orthonormal then $P^{\mathsf{T}}P = I$ (the identity). Given that $v = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}^{\mathsf{T}}$, and R is an orthonormal matrix, what is $tr(Rvv^{\mathsf{T}}R^{\mathsf{T}})$ equal to?
- 2. [3 pts] Given that the A_{12} , A_{21} and $A_{22} \in \mathbb{R}^{3\times 3}$ are invertible, and b_1 , b_2 , x_1 , $x_2 \in \mathbb{R}^3$, then solve for x_1 and x_2 from

$$\begin{bmatrix} 0 & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

3. [4 pts] Consider the function $f(x) = \sum_{i=1}^{N} a_i \cdot \ln(x_i)$ where $a = [a_1 \dots a_N]^{\mathsf{T}}$ is a constant vector, and the function $\rho(x)$ which is the sigmoid function applied elementwise to x, i.e., $\rho(x) = [\sigma(x_1) \cdots \sigma(x_N)]^{\mathsf{T}}$, where $\sigma(u) = \frac{1}{1+e^{-u}}$. Derive an expression for $\nabla_x f(\rho(x))$ in vector form (i.e., without summations).

Hint: Remember that $\sigma'(u) = \sigma(u) \cdot (1 - \sigma(u))$.

Answer

- 1. By definition the expression is equal to $(Rv)^{T}(Rv) = v^{T}R^{T}Rv = v^{T}v = 5$
- 2. From the first set of questions $x_2 = A_{12}^{-1}b_1$, by substituting into the second equation we get $x_1 = A_{21}^{-1}(b_2 A_{22}A_{12}^{-1}b_1)$.
- 3. Let us define $F(x) = f(\rho(x))$. By chain rule we have

$$\frac{\partial F}{\partial x_k}(x) = \sum_i a_i \cdot \left(\frac{1}{\sigma(x_i)}\right) \cdot \sigma(x_i) \cdot \left(1 - \sigma(x_i)\right) \cdot \frac{\partial x_i}{\partial x_k} = a_k \cdot (1 - \sigma(x_k))$$

So,

$$\nabla_{x} F(x) = A \cdot (1 - \rho(x))$$

where A = diag(a).