מרצה: רון ליפשיץ מתרגל: נועם רימוק

תרגיל בית 9

שאלה 1 – מגן מגנטי כדורי

בין שתי קליפות כדוריות קונצנטריות בעלות רדיוסים a < b, הנמצאות בשדה מגנטי חיצוני בין שתי קליפות כדוריות קונצנטריות בעלות $\mathbf{B} = B_0 \hat{\mathbf{z}}$

- א. מצאו את השדה המגנטי בתוך הקליפה הפנימית (r < a), באמצעות הפוטנציאל המגנטי הסקלרי האפקטיבי φ_M , על ידי הפרדת משתנים כדורית. הנחיה: שימו לב לתנאי השפה על השדה H במעבר בין תווך לתווך.
- ב. הראו שכאשר $\mu\gg 1$ השדה המגנטי בתוך הקליפה הפנימית פרופורציוני בגודלו ל $\frac{B_0}{\mu}$. עבור חומרים עם פרמאביליות גבוהה, המערכת הזו משמשת כמגן מגנטי לרכיבים שבתוך הקליפה הפנימית.

שאלה 2 – שדות לינרד-ויכרט

א. בתרגול מצאנו את השדה החשמלי של מטען q שנע במהירות קבועה β. השתמשו בתוצאה זו כדי להראות שהשדה המגנטי הוא

$$\mathbf{B} = \frac{q(1-\beta^2)}{R^2(1-\beta^2\sin^2\theta)^{\frac{3}{2}}}\mathbf{\beta} \times \hat{\mathbf{n}}$$

. β ו- \mathbf{R} כאשר θ הזווית בין

מצאו את הגודל של השדה המגנטי באמצעות R, R, ב-R, נתון, עבור איזו θ נקבל מקסימום של גודל השדה המגנטי? מה יקרה של גודל השדה המגנטי ועבור איזו θ נקבל מינימום של גודל השדה המגנטי? מה יקרה בגבול R

- $\mathbf{E}_a = -rac{q}{c^2} \Big[rac{R^2}{R^3} \mathbf{a}_T\Big]_{ret}$ ב. הראו כי שדה התאוצה החשמלי של מטען q שנע בקו ישר הוא: \mathbf{R} בזמן בזמן t_{ret} , כאשר \mathbf{R} רכיב התאוצה המאונך ל- \mathbf{R} . בטאו את \mathbf{E}_a באמצעות \mathbf{R} בזמן בזמן \mathbf{R} לבין הישר עליו המטען נע. \mathbf{R}
 - ${f r}_e(t) = L(\cos \omega t \, \hat{f x} + \sin \omega t \, \hat{f y})$ מטען e מבצע מסלול הנתון ע"י הביטוי לפוטנציאלים הסקלרי והוקטורי על ציר z בכל זמן, ולשדות החשמלי והמגנטי על ציר z בכל זמן.

שאלה 3 – לולאה עם זרם משתנה

J(t)=kt בתיל המתואר בשרטוט זורם זרם שתלוי בזמן בתיל כפי כאשר k קבוע בעל יחידות מתאימות. כיוון הזרם בתיל כפי שבשרטוט. המרכז של שני חצאי המעגלים הוא $\mathbf{0}$. מהו השדה החשמלי בנקודה $\mathbf{0}$ בכל זמן $\mathbf{0}$?

שאלה 4 – הטענת מישור

 σ נטען כולו בצפיפות מטען משטחית אחידה t=0 בזמן t=0

- א. מצאו את הפוטנציאל $arphi_{ret}(\mathbf{r},t)$ בכל המרחב והזמן.
- ב. בגלל שאין צפיפות זרם בבעיה, הפוטנציאל הוקטורי ${\bf A}_{ret}$ מתאפס. מכיוון שהארבע פוטנציאל מחושב בכיול לורנץ ${\bf 0}={\partial \varphi_{ret}\over \partial t}=0$. הראו שזה לא מתקיים עבור הפוטנציאל שמצאנו בסעיף א'. איך זה יכול להיות? איפה הטעות בטיעון שנכתב בסעיף זה?