Naval Surface Warfare Center Carderock Division

West Bethesda, MD 20817-5700

NSWCCD-65-TR-1998/23 April 1999

Survivability, Structures, and Materials Directorate Technical Report

Fatigue Strength and Behavior of Ship Structural Details

by

David P. Kihl

19991105 115

Approved for public release; distribution is unlimited.

DEPARTMENT OF THE NAVY

NAVAL SURFACE WARFARE CENTER, CARDEROCK DIVISION 9500 MACARTHUR BOULEVARD WEST BETHESDA MD 20817-5700

> 9110 Ser 65-74 11 May 99

From: Commander, Naval Surface Warfare Center, Carderock Division

To: Commander, Naval Sea Systems Command (SEA 03R3)

Subj: FATIGUE STRENGTH AND BEHAVIOR OF SHIP STRUCTURAL DETAILS

Ref: (a) Program Element 0603563N, Reliability-Based Structural Design, Milestone V1, Subtask HD, Project S2196

Encl: (1) NSWCCD-65-TR-1998/23, Fatigue Strength and Behavior of Ship Structural Details

1. Reference (a) requested the Naval Surface Warfare Center, Carderock Division (NSWCCD) to formulate probability-based design criteria for welded steel structures. Enclosure (1) presents results of an experimental and analytical effort to characterize the fatigue strength of ship structural details.

2. Comments or questions may be referred to Dr. David P. Kihl. Code 653; telephone (301) 227-1956; e-mail, kihl@dt.navy.mil.

J. E. BEACH By direction

Copy to:

COMNAVSEASYSCOM WASHINGTON DC [SEA 03H, 03H3, 03H3 (Engle), 03P, 03P1, 03P1 (Kadala, Nappi, Sieve), 03R, 03R1 (Hough, Webster)]

DTIC FORT BELVOIR VA

NAVSURFWARCEN CARDEROCKDIV BETHESDA MD [Codes 3442 (TIC), 60 (w/o encl), 601, 65, 65R (2), 651, 653 (10), 653 (Kihl), 654, 654 (Melton)]

Naval Surface Warfare Center Carderock Division

West Bethesda, MD 20817-5700

NSWCCD-65-TR-1998/23 April 1999

Survivability, Structures, and Materials Directorate

Technical Report

Fatigue Strength and Behavior of Ship Structural Details

by

David P. Kihl

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 1999	3. REPOR Final	T TYPE AND DATES COVERED		
 4. TITLE AND SUBTITLE Fatigue Strength and Beha 6. AUTHOR(S) David P. Kihl 	avior of Ship Structural Detail	s	5. FUNDING NUMBERS PE 0603563N		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Surface Warfare Center Carderock Division 9500 MacArthur Boulevard West Bethesda, MD 20817-5700			8. PERFORMING ORGANIZATION REPORT NUMBER NSWCCD-65-TR-1998/23		
9. SPONSORING/MONITORING AGEN Commander Naval Sea Systems Comm 2531 Jefferson Davis High Arlington, VA 22242-5160	nand (SEA 03R3)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION/AVAILABILITY STA Approved for public relea	ATEMENT se; distribution is unlimited.		12b. DISTRIBUTION CODE		
This report presents results of an experimental and analytical effort to characterize the fatigue strength of ship structural details. Test results are analyzed and compared with other data and fatigue details from various design codes. The comparisons presented allow one to determine the relative fatigue strength of different details, whether they originate from test data or design codes. The comparisons are made at low fatigue cycle levels, high fatigue cycle levels, 50 percent (mean) probability of failure and 2.3 percent (design) probability of failure. In addition to the comparisons, the fatigue strengths are ranked from weakest to strongest to allow further assessments to be made. The test data generated under this and other efforts are used to compare predicted and experimental fatigue lives where the detail was subjected to variable amplitude loadings.					
14. SUBJECT TERMS Ship structures	structural fatigue r	eliability	15. NUMBER OF PAGES 251 16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CL OF ABSTRAC UNCLASS	T ABSTRACT		

NSN 7540-01-280-5500

Table of Contents

Page
Administrative Information
Acknowledgements
Executive Summary
Introduction
Background
Fatigue Loadings 5
Cumulative Fatigue Damage
Fatigue Damage Approaches
Fatigue Design Codes
Factors Affecting Fatigue Strength
Experimental Effort
Specimen Configurations
Strain Gage Instrumentation
Test Procedures
Test Results
Constant Amplitude
Random Amplitude
Summation Constant
S/N Curve Strength Comparisons
Conclusions and Recommendations
References

Table of Contents (con't)

		Page
Аp	pendix A – Linear Exceedance Curve Approach	A-1
Ap	pendix B- Sensitivity of Fatigue Parameters	B-1
Аp	pendix C – Detailed Geometry of Test Specimens and Components	C-1
Аp	pendix D – Stiffener Splice Component Stress Calculations	D-1
Аp	pendix E – Fatigue Test Results	E-1
Аp	pendix F – Gamma Function and Approximation	F-1
Аp	pendix G – Expected Moments of Useful Probability Distributions	G-1
Ap	pendix H – Histograms of Experimental/Predicted Fatigue Lives	H-1
Аp	pendix I – Fatigue Strength Ratios and Comparisons of S/N Curves	. I-1
Аp	pendix J – Relative Ranking of Welded Structure S/N Curves	. J-1
Ap	pendix K – Thickness and Misalignment Effects on Fatigue Strength	. K- 1
	Figures	
1.	General Configuration of Test Specimens and Components	. 30
2.	Strain Gage Layout and Data for Opening Detail	32
3.	Strain Gage Layout and Data for Bulkhead Penetration Detail	. 33
4.	Strain Gage Layout and Data for Stiffener Splice Detail	. 34
5.	Summation Constant Distribution Based on Average Fatigue Lives	. 35
6.	Summation Constant Distribution Based on Individual Fatigue Data	36

Tables

		rage
1.	Irregularity Factor and Encounter Frequency as a Function of Operational Profile	37
2.	Summary of Fatigue Code Specifics	38
3.	Categorization of Fatigue Code Details and S/N Curves	40
4.	Candidate Details for Characterization	41
5.	Stress Concentration Factors for Test Specimens	42
6.	Conversion Formulas for S/N Curves	43

ADMINISTRATIVE INFORMATION

The work described herein was performed by the Structures and Composites

Department, Code 65, of the Survivability, Structures, and Materials Directorate at the

Naval Surface Warfare Center, Carderock Division (NSWCCD) under the sponsorship of
the Naval Sea Systems Command (SEA 03R3). This report is submitted in partial
fulfillment of Milestone V1, Subtask IID of the Reliability Based Structural Design

Program PE0603563N, Project S2196.

ACKNOWLEDGEMENTS

The author would like to express his gratitude to the following individuals who contributed to this effort; Messrs. M. Sieve and N. Nappi, Jr., from NAVSEA 03P who assisted in selecting the structural details to be evaluated, Mr. D. McDevitt of the Casde Corporation, W. Whitehead of Ingall's Shipbuilding Division, and those in the Facilities and Model Fabrication Department at NSWC/CD for their effort in fabricating the test specimens; T. Laing of NSWCCD (Code 606) and A. Gray (Code 653) for instrumenting the test specimens and assisting in the experimental effort; and those at The George Washington University who also assisted in testing phase.

EXECUTIVE SUMMARY

This document contains data and analyses compiled over the last few years to support formulation of probability-based design criteria for surface ship structures. Specifically, these results pertain to fatigue strength assessment of welded steel structures. It is expected that the information contained in this report will enable a structural engineer to make educated assessments of fatigue life, fatigue strength, or compare the expected fatigue behavior of a joint detail made using one S/N (applied stress versus cycles to failure) curve versus another.

Throughout this document, stress range is assumed to be the most significant parameter affecting fatigue strength. The constant amplitude endurance limit effect is ignored, both from test data and design codes. The agreement between random test data and predictions, based on a single-line S/N curve, is more favorable than when the endurance limit is included in the predictions. The distribution of Miner's cumulative damage summation constant is shown to have an average value of unity. Further, the use of a mean minus two sigma S/N curve is shown to produce a conservative design against fatigue failures.

Comparisons are made to assess the relative fatigue strength among any of the structural details contained within this document, whether the detail is characterized by test data or by a classification category of a design code. Comparisons are made at low fatigue lives (10³ cycles), high fatigue lives (10⁸ cycles), 50% probability of failure (mean), or 2.3% probability of failure (mean minus two sigma). All details are ranked by fatigue strength from weakest to strongest to allow further assessments to be made.

INTRODUCTION

The U.S. Navy is currently formulating probability-based design criteria for surface ship structures. For decades, surface ship design criteria have been based on a deterministic approach that has served the Navy well. Design against failure by fatigue, however, has been implicit, being controlled by the level of primary design stress limitations that are tied to the type of material used in construction.

Fatigue, and other aspects of the ship design process, have been quite successfully addressed in naval ships, due in part to adequate safety margins, quality of workmanship and the use of high-quality steel and aluminum plates and scantlings. The design process, although deterministic, is also empirically based, having been influenced by operational experience, measurements, and test data. Such an approach works well for conventional monohulls but may not necessarily work as well for more contemporary ship design configurations or major structural modifications and operation of existing ships that deviate markedly from past trends and experience.

Ship design has gradually incorporated probability and statistics, especially for environmental loadings and fatigue strength. More recent ship designs and structural modifications have explicitly addressed fatigue, having been designed to survive a given service life within a specified probability of failure. With a more rigorous probabilistic procedure being developed, the need to characterize the strength and probability of failure of various details becomes necessary.

BACKGROUND

Fatigue strength evaluation has historically been approached empirically.

Although research continues at fundamental (and microscopic) levels, the test specimens and configurations used are typically, from a practical structural engineering point of view, less than useful. For structural design applications, especially those that involve welding, fatigue testing of structural details remains the primary source of strength and endurance data. Due to the inherent variability associated with large manually fabricated welded structures, structural testing and statistical analysis comprise the most quantitative approach to fatigue strength at this time. Advances that can readily be applied, tend to come more from experimentally observing behavior under different types of loading or specimen configuration and size, or developing empirical algorithms than from theoretical or "hard science" approaches.

Fatigue strength has become an increasingly important issue with which to contend (SSC, 1998; SSC, 1997). As technology advances, structural designs become more finely optimized. Attempts to reduce weight and cost typically result in decreased amounts of material and lower margins of safety. Actual margins of safety may often be implicite to begin with. Structures are often left in service longer or operated in a different manner from that originally intended. Fatigue is an irrecoverable form of damage, which can initiate cracks prematurely and result in nuisance cracks in secondary structure or lead to more serious situations if they initiate or grow into primary structure.

Once ships are built and outfitted with cabling, piping and ductwork, the outer shell is typically insulated or hidden by false ceilings or walls in manned areas. Periodic

inspections of the outer shell, if performed at all, are difficult. Inspection sites may be physically hard to reach in a large area, especially if the space is poorly lit and cluttered with outfitting. Even if cracks occur, they are likely to avoid detection because they are simply difficult to see.

The naval ship design therefore favors a safelife fatigue approach against crack initiation in ships as opposed to a fail safe damage tolerant approach such as that used to assess assumed crack presence and growth in aircraft. The former approach relies on a comprehensive fatigue analysis to ensure (within appropriate probabilities of occurrence) that the ship can complete its intended mission and service life before the onset of crack initiation. Although conservative, this approach does not rely on period inspection. The later approach relies heavily on inspection, assuming a crack just under the inspection detection capability may exist, grow without inhibiting the performance of the structural member, and be detected and assessed at the next inspection interval.

FATIGUE LOADINGS

Surface ships respond to an active seaway in a relatively narrow frequency band compared to that of the wave heights. Although the bandwidth frequency changes with speed and heading, most ships spend most of their life responding to seaways in a narrow band. Head seas and high speed tend to produce the most narrowband conditions. Whereas following seas and low speed tend to produce the more broadband conditions. Table 1 shows an example of an operational profile, broken down by speed and heading, with the bandwidth for each operating condition reflected by the irregularity factor and

the average encounter frequency. The irregularity factor is the ratio of the average number of peak responses that occur between zero crossings. Irregularity factors of unity indicate narrowband responses, i.e. Rayleigh distributed extrema. As the irregularity factor decreases in magnitude, the process becomes increasingly broadband. Gaussian distributed extrema are obtained when the irregularity factor becomes zero. The encounter frequencies are included in the same format to show the range and magnitude of the wave induced hull girder response frequencies as this typical ship encounters waves.

The bandwidth of the ship response is a fairly important issue. If the operating conditions produced responses that were not narrowband, then the distribution of stress cycles would be difficult to define. Although the ramifications of ignoring the frequency content of the responses have been investigated (Sarkani et al, 1991), this topic remains the basis for future work. The relationship between the statistics of the responses and the distribution of stress cycles remains to be established for the general case. Only in the limiting case of narrowband responses has a direct relationship been established, i.e., Rayleigh distributed stress cycles. The more general case may involve the use of Weibull probability distribution functions, but must be related to Rainflow stress cycles and not simply stress peaks. In the meantime, ship responses are assumed to be Rayleigh distributed for purposes of determining fatigue cycles, calculating fatigue damage and estimating extreme lifetime loads.

Nonetheless, assuming Rayleigh distributed stress cycle responses, lifetime fatigue loadings are typically constructed by breaking the operational profile into cells of constant speed, heading and sea condition (Sikora, 1983). Knowing the time spent in

each of these cells allows one to estimate the number of stress cycles that would occur, the maximum stress level expected to be exceeded once, and the number of cycles expected to exceed a given stress level. By combining the cycles exceeding given values of stress for all the cells making up the operational profile, one can construct a table of stress exceedances associated with many stress levels. Typically, these pairs of data are fit to a Fourier sine series expansion for ease of computation. To develop a lifetime stress histogram for fatigue calculations, the exceedance curve is divided into segments. The difference between cycles exceeded is the applied cycles, and the corresponding stress values are averaged to determine the applied stress. The exceedance curve approach is a spectral method that can be used on many types of ship responses, including bending moments and motions. The exceedance curve approach continues to be the method of choice in fatigue assessments of ship structures (Kihl, 1992).

The shape of the resulting lifetime stress histogram is not unlike that of an exponential distribution. Many times an exponential distribution, or the more general Weibull distribution, is assumed in order to obtain a simple closed form for subsequent fatigue assessments (Munse, 1982). Knowing, or assuming, the number of lifetime cycles and the maximum lifetime stress, allows the determination of the stress level which is expected to be exceeded once in the lifetime of the ship. Knowing these values, the parameters describing the exponential or near-exponential distribution can be defined or assumed. Assuming an exponential lifetime distribution of stress is the same as using a linear exceedance curve. As seen in Appendix A, assuming the lifetime stresses are exponentially distributed can, however, lead to erroneous estimates of fatigue life. Unfortunately the erroneous estimate is not always conservative.

Simplistic approaches (ABS, 1992) offer a quick way to make comparisons or rough estimates of fatigue lives for many ship details. Despite the advantage of a simple expression, a more realistic, accurate, and comprehensive description of lifetime stresses can be produced from the spectral stress exceedance curve method. The uncertainties associated ignoring stress cycles has the potential of rendering a simplistic approach unreliable unless the results are supported by service experience.

The relative importance and effect of variability of the parameters used in a fatigue assessment can many times be unknown or not realized. In an attempt to quantify how these parameters affect the final answer using the exceedance curve approach, a brief sensitivity analysis was performed and is provided in Appendix B. Results of the parametric study indicate that variability in the S/N curve coefficients, the standard deviation, first two coefficients of the exceedance curve and service life produce the most variability in the estimated fatigue life. The results of eliminating the higher exceedance curve coefficients produced little change in the final fatigue life estimate. It should be noted that these trends may not reflect the behavior of all ship types and classes and are only intended to indicate relative importance of parameters.

CUMULATIVE FATIGUE DAMAGE

The concept of cumulative damage considers the gradual irreversible changes that occur as a structure undergoes cyclic operation until the structure can no longer perform satisfactorily. The initial conditions, previously accumulated damage, environment, loading, as well as local and overall geometry, all contribute to the way damage

accumulates in the structure and the rate at which it occurs. The period between which the structure begins cyclic operations and when it can no longer perform satisfactorily, or when failure is said to have occurred, can be expressed in units of applied cycles, or time.

When Palmgren (1924) first studied the wear out of ball bearings, he assumed damage accumulated linearly with the number of revolutions. Miner (1945) later expanded on this idea by assuming that the damage of a fatigue test specimen also accumulated linearly when subjected to a given number of stress cycles. Failure would then occur when the damage reached a critical value; i.e., when the applied cycles reached the cycles to failure, or when the damage summation reached unity. Applying this rationale to two-step and multi-step loadings, the summation of damage fractions was formulated into what we now call Miner's Rule.

Predictions based on Miner's Rule do not always agree with experimental data. Many tests have been conducted using simple block loadings to quantify the appropriate value of the summation constant, or the accuracy of the methodology. Modifications on the linear summation (Frost, 1974) propose a power law relationship between damage and the cycle ratio. Other methods attempted to introduce multiple initiation sites, rotation of constant amplitude stress/life (S/N) curves, or size of imperfections. These alternative methods were developed for block loadings, e.g. considering a few stress levels acting together in some defined sequence. They relied on experimental data to empirically quantify the parameters representing the fatigue behavior. Due to the extremely large number of additional parameters, the cost and effort required to characterize any of these methods under constant amplitude loads would be prohibitive, even for one joint configuration. Additional effort would then be required to apply the

model to random load situations. Random loads must be considered in any ship structure fatigue assessment, since the ship's primary responses are wave induced. Unfortunately, there have not been many tests that used random loadings to evaluate Miner's Rule. The experimental data presented in this report contain both constant and random amplitude data. The random amplitude data are representative of Rayleigh distributed stresses. As such, the summation constant is specifically evaluated. This evaluation will be discussed in greater detail later.

Results, however, indicate the summation constant indeed to be normally distributed about unity when the mean (50% probability of failure) S/N curve is used. When a mean minus two standard deviation (2.3% probability of failure) S/N curve is used, as one would in a design, nearly all of the individual data points fall on the conservative side of the unit summation value. These results indicate successful implementation. However, those few points that fall to the unconservative side are associated with severely deformed or misaligned specimen configurations, indicating a lower probability of failure S/N curve may be more appropriate in such extreme cases.

FATIGUE DAMAGE APPROACHES

There are only a few practical approaches to fatigue crack initiation and fatigue life prediction (Moan, 1997). The differences between these approaches depend primarily on how the experimental fatigue data are generated, characterized and used.

The applicability of each method depends on the complexity of the structure, the state of

stress at the point of interest, the type of loading, the ability to identify stress cycles, and the many subtle internal and external features of the joint detail.

The simplest and most straight forward method of life prediction is the nominal stress approach. In this method, only a coarse level of stress analysis is required of the structure. One only needs to obtain the average "far field" stress applied to the detail of interest. Often times, the stress is determined from section properties or a coarse mesh finite element model. Fatigue data are generated from specimens representing the detail of interest and subjected to the same nominal "far field" stress levels. In so doing, a unique S/N curve for that particular detail is established. The subtle features and details of the specimen, such as weld profiles and material properties are assumed to be inherent and contained in both the test specimen and detail of interest. Fatigue design codes use this method, and generally have a family of S/N curves applicable to different categories of details.

The hot spot approach is just the opposite of the nominal stress approach. The success of this method lies in the determination of the local state of stress at the presumed crack initiation site. The "exact" local geometry, i.e., weld profile and toe geometry need not be modeled precisely, but should reflect the general weld configuration in order to accurately define the local state of stress. Fine mesh finite element models or strain gage readings are typically used to define the state of stress, which is often taken a given (small) distance from the weld toe. In contrast to the nominal stress approach, the fatigue specimen configurations used in the hot spot approach are much simplified, since the detail is accounted for more in the stress analysis than in the test specimen.

The notch stress approach relies heavily on stress concentration factors, nominal stress fields, and the presence of a notch assumed to be located at a crack initiation site.

Typically, a generic S/N curve is used to determine the stress cycles to failure.

Similar to the notch stress approach, the notch strain approach attempts to define the state of strain at a notch, and therefore uses cyclic strain data on simple notched specimens to determine damage. This method is particularly useful in applications that involve elastic and plastic strain levels.

FATIGUE DESIGN CODES

When structures are expected to experience many cycles of stress reversals during their service life, the design must consider the possibility of failure by fatigue damage accumulation. Codes are now available to assist designers in dealing with fatigue by laying out a procedure of calculations and limits on stress levels to follow. In so doing, an adequate fatigue life is incorporated into the design based on the knowledge and experience of those representing that particular industry.

A review and comparison of several design codes was recently undertaken (Moan, 1997) that is applicable to ship structure. Obviously, those codes which apply directly to welded steel structure are of primary importance.

In situations where the consequences of failure are great, or the structure contains few redundant load paths, the codes tend to be conservative and are based on limiting stress levels. These limit stress levels would correspond to essentially infinite fatigue lives. The resulting designs may not be particularly efficient, but are presumed to be

safe. The subject of structural fatigue, its underlying assumptions and empirical basis, is by no means foolproof. Advances are made periodically and eventually find their way into the design codes. Many codes differ because of the structural application, or the way in which the service loadings are applied, or how they can be quantified for analysis. Stress cycle responses to a random environment, such as a ship would experience, can be much more complicated than cyclic one-way loading of a bridge, or the pressure loading of a tank. Applicability between codes of different industries may not always be straightforward, since the codes are based in part on design philosophy.

In comparing design codes, some common traits are evident. All codes use or are based on an S/N curve of the traditional power law form and use Miner's Rule to account for fatigue damage accumulation. Failure is assumed to occur when the Miner's Rule summation constant reaches unity. Tables 2 and 3 are provided to aid in comparing the different codes. In general, there appears to be a consistent approach to fatigue damage accumulation under non-constant amplitude loads. The differences tend to be associated with use of stress concentration factors, factors of safety, cycle counting, or the data base of S/N curves. A later section of this report discusses a comparison of design code S/N curves and S/N curves obtained from this and other recent experimental efforts.

FACTORS AFFECTING FATIGUE STRENGTH

There are many factors that affect the fatigue strength of welded steel connections. Foremost of these is the applied stress range. The formation of high residual stresses in large, welded structures tends to dominate over the effects of applied

mean stress (Dexter, 1993 and 1994). Fabrication quality and preparation of the pieces being joined together are also important. The presence of embedded flaws (porosity and inclusions), and surface flaws, such as weld toe undercut and misalignment, can significantly reduce the fatigue life of an otherwise intact structural detail. Significant life reduction can also be caused by any intentional or unintentional stress concentration. High levels of tensile residual stress due to uneven cooling during welding or forceful alignment during setup of members can also lead to shortened fatigue life; whether new construction or repair. Operation in a corrosive environment, such as seawater, bilge water, or sour crude oil without adequate cathodic or coating protection can also be detrimental. Size and thickness effects are also an important consideration in fatigue (Kihl, 1997; Maddox, 1991). Fatigue tests on large components and/or full thickness specimens tend to fall in the lower portion of the scatter band of smaller specimens.

Fatigue strength improvements can be realized with the use of shot peening and/or weld toe grinding to reduce stress concentrations and introduce compressive residual stresses. Although useful, these measures would only be taken in fatigue critical regions or as a last resort in fixing a fatigue prone structure.

There are other effects that can influence the fatigue behavior of welded structure, but are associated with the interpretation of the S/N curve and the numerical calculation of the fatigue damage. For instance, the constant amplitude S/N curve has an overall sigmoidal shape, with an upper plateau at stresses approaching yield, the usual center portion used in design, and a lower or endurance portion at low stress levels associated with semi-infinite fatigue life. Problems arise when service stress levels are below that of test data used to construct the S/N curve. Random fatigue test results (Kihl et al, 1992)

and Sarkani et al, 1992) support the notion that the constant amplitude S/N endurance limit should be ignored when calculating damage under variable amplitude loadings.

Another problem arises when one determines probability of failure. Probabilities of failure are seldom determined with any rigor. Often, the lack of data leads one to settle for what amounts to the default method of determining S/N curves with a associated probability of failure. That method (ASTM, 1988) consists of performing a regression analysis on the logarithms of the fatigue data and determining the standard deviation of the data from the best fit straight line. The resulting probabilities of this lognormal distribution with constant scatter may very well apply to the data under consideration, or they may not. The point being, that even though this is a fairly accepted practice, the calculated probabilities of failure may not be very accurate. A more rigorous approach would be to establish separate probability distributions (e.g. Weibull or lognormal distribution) at each of several stress levels and connect all the fatigue lives associated with a given probability of failure with an S/N curve. This method would also allow for situations were the scatter is not constant, but increases with decreasing stress.

Finally, test data are generated by cycling specimens or components in load machines until either failure occurs, or the test is suspended without failure. The definition of failure, however, is not always clear. Failure may mean complete separation into two pieces, exceeding a given displacement level, a change in compliance, or a change in correlation coefficient between load and displacement. Whatever the definition of failure during the test, a relationship between that failure and failure in a larger component or full-scale structure must be established. Small specimens may not exhibit much difference between life at first evidence of crack initiation and final failure, where

larger components and structures may exhibit crack initiation and propagation phases as failure approaches. Generally, failure in a test specimen or component is considered to be equivalent to crack initiation in a full-scale structure.

EXPERIMENTAL EFFORT

The focus of this effort was the fabrication and testing of various specimens to reflect the behavior of ship structural details. Fatigue tests were conducted under both constant amplitude and random amplitude loadings. For each type of loading, the configuration could be characterized, and the linear cumulative damage summation constant could be evaluated. The following sections describe the type of configurations characterized, specifics of the tests, data collected, and analyses of the data.

SPECIMEN CONFIGURATIONS

Many different types of structural joint configurations were considered for characterization. Table 4 shows a wide range of possible joint configurations and indicates the ones that were ultimately selected for fatigue life characterization. The configurations ranged in size from small specimens to full-size structural components. They included details such as: insert and doubler plate connections, one-sided welds, aligned and misaligned intersecting plates with partial penetration welds, plates with flame cut edges, opening details, deck to bulkhead plating and stiffener connections, stiffener splices and intersecting plates with full penetration non-load carrying welds with various thickness.

These details were selected to compliment fatigue data obtained from recently completed characterizations (Kihl, 1994a, 1994b) of advanced double hull joint details. These data, together, offer a comprehensive characterization of a wide variety of structural details. Figure 1 shows a general schematic of the test specimens and components. The detailed geometry of these configurations can be found in Appendix C. The newly characterized configurations were all fabricated in a shipyard using high strength low alloy (HSLA-80) steel. The recently generated data on some of the details made of ordinary steel (OS) and high strength (HS) steel are also available and included with the new data for completeness. All specimens were inspected after failure to ensure failure occurred legitimately and not from an unintentional flaw. The large bulkhead penetration details were inspected prior to testing by x-raying the butt weld. Smaller specimens containing butt welds were visually inspected after failure. Finite element models were constructed for each of the small specimen configurations and the opening detail. Table 5 provides a list of stress concentration factors obtained from each of these models. Calculations relating applied load to nominal stress for the spliced stiffener joint detail are provided in Appendix D. The fabrication site, shipyard or NSWCCD, is indicated along with the test results in Appendix E.

STRAIN GAGE INSTRUMENTATION

Only the larger structural components were instrumented with strain gages prior to testing. The larger components included the openings detail, the deck to bulkhead connection (conventional component) and the stiffener splice detail. The number of strain gages varied depending on specimen type. The gage layouts and measurements for

these specimens are shown in Figures 2 through 4. Micro-Measurement strain gage type CEA-06-250UW-350 and M-Bond 200 adhesive were used. Gages were typically placed at weld toes and other areas of high stress concentration. Typically, the strain gages were monitored during the initial installation in order to determine whether or not the test specimens were being loaded evenly when subjected to axial load.

TEST PROCEDURES

The specimen cross sectional area was measured before each test. Applied axial load was then determined by multiplying the desired stress level by the calculated cross sectional area. For the smaller specimens, an average cross sectional area was used. For the deck-to-bulkhead intersection components, average cross sectional areas were calculated above and below the center portion of the component where the simulated bulkhead structure is located, and the minimum cross sectional area was used. Due to the complicated arrangement of the larger opening and stiffener splice components, a nominal cross sectional area was used to calculate the applied load.

All tests were conducted in load control. All specimen were attached to the load machine with hydraulic grips, except for the stiffener splice components which were bolted up to large steel blocks. Prior to the initiation of cycling, the strain gages were monitored while the test components were loaded in steps to their maximum loads. Test specimens without strain gages were not loaded prior to cycling. Cycling continued until the axial compliance of the specimen at least doubled, or the cycle count exceeded twenty million cycles, at which time the test was suspended without failure. Specimens that

failed, usually had developed large cracks. Complete separation would have been expected to occur within a relatively short time.

Loads consisted of both constant amplitude and random amplitude. Both types of loadings had zero mean. The random loadings consisted of a computer simulated sequence of 10,000 endpoints (5,000 cycles) of Rayleigh distributed extrema. The endpoints were connected by haversine curves to produce a continuous waveform of unit RMS. Random loads were produced by multiplying each endpoint of the random load sequence by the product of the desired RMS stress and the average cross sectional area.

TEST RESULTS

Results of the experimental effort were analyzed to produce functional relationships which reflect the fatigue behavior of the joint details. For completeness, data from some recent characterizations have also been included along with the newly generated data. The results of these characterizations are presented in Appendix E.

CONSTANT AMPLITUDE

Random amplitude fatigue test results (Kihl et al, 1992 and Sarkani, et al, 1992) show better agreement with life predictions that use single line constant amplitude S/N curves than those that use bi-linear S/N curves. Constant amplitude fatigue test results were therefore analyzed and fit to a single power law function using linear regression analysis on the logarithms of the applied stress and cycles to failure. This is shown below.

$$N = 10^{\log(A)} S^B$$

The logarithms of cycles to failure were taken as the dependent variables and the logarithms of applied stress were taken to be the independent variables. The scatter in the data about the best fit straight line was quantified by the standard estimate of error, or standard deviation in the log(life) direction, denoted by " σ_{logN} ". This quantity allows one to determine an S/N curve that would be associated with a value other than the 50% probability of failure represented by the best fit S/N curve. Assuming the scatter to be normally distributed, one can select a given probability of failure from the appropriate number of standard deviations above or below the mean S/N curve. For example, one standard deviation below the mean line corresponds to a 15.9% probability of failure, two standard deviations corresponds to 2.3%, and so on. All S/N curves developed in this manner lie parallel to the mean 50% probability of failure S/N curve.

To implement this procedure, the log(A) parameter is adjusted by adding or subtracting the product of the number of standard deviations from the mean and the value of the standard deviation, as shown in the following example for a mean minus two sigma, or 2.3% probability of failure S/N curve. The slope of the S/N curve, B, remains unchanged.

$$\log(A)_{2.3\%} = \log(A)_{50\%} - 2\sigma_{\log N}$$

Note that, since the standard deviation is taken in the log(life) direction, its value is independent of the units of applied stress. The value of log(A) however, does depend

on the units and definition of applied stress, i.e. single amplitude, double amplitude (range), ksi, or Mpa. Table 6 is used to convert between the different notations.

The coefficient of variation (COV) is a useful measure of comparing the dispersion of data sets. The COV is calculated by dividing the standard deviation by the mean value of the data. When applied to the best fit S/N curve from constant amplitude data, the COV is constant at any point along the S/N curve, assuming the standard deviation is constant in log space, which is consistent with the procedure discussed previously. This being the case, it can be shown that the COV and the standard deviation obtained from the S/N curve are related by the following expression.

$$COV = 1 - \frac{1}{10^{\sigma_{\log N}}}$$

The constant amplitude fatigue data, regression analysis results and COV are provided for many detail configurations, including those characterized under this effort, in Appendix E.

RANDOM AMPLITUDE

At least one set of random amplitude test data was generated for each type of structural detail. Often, a detail characterization contained a few such sets, depending on the number of specimens available and the type of material. The experimental data were used for comparison with analytical predictions. The geometric mean of the fatigue lives was calculated for each set and compared with fatigue life estimates using the Rayleigh Approximation Method (Miles, 1954). The Rayleigh Approximation is derived based on

the assumptions that the stresses are Rayleigh distributed, the S/N curve is of the standard power function form (single straight line S/N curve), and that the fatigue damage accumulates according to Miner's Rule.

All these assumptions apply to the types of loading, analyses, and procedures used in this investigation. The Rayleigh Approximation formula is given below.

$$N = \frac{10^{\log(A)}}{\sigma^{-B} 2^{-B/2} \Gamma(1 - B/2)}$$

In this expression, $\log(A)$ and B are the empirical coefficients of the S/N curve, $\Gamma(\bullet)$ is the gamma function and σ is the root mean square (RMS) stress of the zero mean process. The RMS stress can be determined in several ways depending on how the stresses are presented. If the stresses are presented in the frequency domain by a power spectral density curve, then the RMS stress can be determined by taking the square root of the area under the curve. In the time domain, the RMS stress can be determined by first squaring all the values in the time history, then summing all the squared values, dividing by the number of values, and finally taking the square root of the mean squared value. If the stress is defined by a probability function, then the RMS stress can be determined by first calculating the expected value of σ^2 and then taking the square root of that value. Explanations of how expected value calculations are performed can be found in most probability books (e.g., Newland, 1986). The gamma function can be determined using information provided in Appendix F.

Generally, the comparison between the experimental data and analytical results were quite favorable. Unconservative results typically occurred for configurations that

contained built-in imperfections. A more comprehensive assessment is obtained by analyzing the ratio of the experimental to analytical fatigue lives. This is analogous to adjusting the summation constant in the linear cumulative damage procedure to obtain accurate predictions. The random amplitude data can also be found in Appendix E.

Note that expressions for estimating the cycles to failure when the stress are distributed according to other probability distributions can be derived using the moments of probability distributions (Lipson, 1973 and Bogdanoff, 1985) provided in Appendix G. These moments are also useful to evaluate how well simulated sequences of random numbers agree with their theoretical counterparts.

SUMMATION CONSTANT

Whether performing analyses to estimate the fatigue life of ship structure in years or calculating the expected cycles to failure of fatigue test specimens, Miner's summation constant provides a measure of the accuracy of the prediction when compared to actual fatigue failure lives. In this role, it can also provide a convenient means to introduce a factor of safety, or compensate for an otherwise quantified inaccuracy.

However, to strictly assess the accuracy of Miner's Rule, predicted fatigue lives can be compared to experimental fatigue lives. To be consistent, if a mean fatigue S/N curve is used in the predictions, then an average experimental fatigue life should be used in the comparison. The database provided in Appendix E contains both the constant amplitude S/N curve coefficients and results from the random amplitude tests. The random amplitude tests were all conducted using stress histories having Rayleigh

distributed extrema. This being the case, the Rayleigh Approximation equation was used to predict the average fatigue life for each random test condition. The geometric mean of the random amplitude test results was determined for each data set. The assessment was then performed by calculating the ratio of average experimental fatigue life to average predicted fatigue life for each data set. Figure 5 shows the overall distribution and frequency of these ratios. Data and calculated ratios used to generate this curve can be found in Appendix H. The most frequent ratio is unity, and the distribution is somewhat symmetric and centered on this value. This analysis indicates the use of Miner's Rule in fatigue life prediction generally produces accurate results. Non-conservative results, those located below unity, tend to occur for details which contain imperfections and misalignments, or larger components. Conservative estimates, located above unity, tend to occur for better quality and smaller specimen configurations.

To assess how these results would reflect a design situation, the following analysis was also conducted. In the case of a design application, a lower probability of failure S/N curve is used, typically mean minus two standard deviations (2.3% probability of failure), to minimize failure of any structural elements. The Rayleigh Approximation equation was again used to predict fatigue life, but this time using the 2.3% probability of failure S/N curve. Ratios were again calculated, but this time using individual (data point) fatigue lives. Figure 6 shows the ratio distribution now shifts dramatically to the conservative (right) side of unity, reflecting the fact that the vast majority of specimens should not, and do not, fail at their predicted (design) fatigue life. Data used in this plot can also be found in Appendix H. Again, only a few individual

specimens, out of over one hundred, are below unity, indicating that a few failures would have occurred in service.

Overall, the methodology for cumulative damage calculations under random loads tends to work well and provides reasonably accurate fatigue life predictions. Further, the use of this methodology for design, using a mean minus two standard deviation S/N curve tends to perform equally as well.

S/N CURVE STRENGTH COMPARISONS

The variety of S/N curves established from data or from fatigue design codes are not always easy to compare, especially if the slopes of the S/N curves are different. To alleviate this problem and facilitate comparison, the S/N curves used in this report were analyzed in several ways. Using the Rayleigh Approximation method, the RMS stress associated with low cycle fatigue loadings (10³ cycles) and the RMS stress associated with high cycle fatigue loadings (10³ cycles) were calculated for each S/N curve. The RMS stress is used because of terms in the Rayleigh Approximation formula which include the slope of the S/N curve. If all the S/N curve slopes were the same value, i.e., -3, then the ratios could be evaluated simply using stress range from the constant amplitude S/N curves. Since this is not the case, and because the Rayleigh Approximation formula better represents the random service loadings, RMS stress is used to establish the strength ratios.

The ratio of fatigue strengths is calculated by first solving for the RMS stresses from the Rayleigh Approximation formula associated with a given cycle count (10^3 or 10^8 cycles) and given probability of failure (50% or 2.3%) for each constant amplitude

S/N curve. Each RMS stress is then divided by the RMS stress of the S/N curve selected as the baseline (each S/N curve, in turn, is selected as the baseline) to establish the strength ratios. The resulting strength ratios are presented as tables in Appendix I. The unshaded rows correspond to low cycle fatigue ratios and shaded rows correspond to the high-cycle fatigue ratios. This same series of calculations was performed using both the mean S/N curves (50% probability of failure) and, where data permitted, the mean minus two standard deviation S/N curves (2.3% probability of failure). Both test data S/N curves and design code S/N curves were included in these calculations.

Each value in the first column corresponds to a different S/N curve, the strength of which serves as the baseline (denominator in the ratio calculations) for that entire row. To aid in comparing strengths between entries in different tables, e.g. different probabilities of failure, the last row and column correspond to a generic S/N curve.

For example, consider the need to estimate the high cycle fatigue strength ratio between a conventional component (data set #21) at 50% probability of failure and that of a one-inch thick cruciform joint (data set #7) at 2.3% probability of failure. Since different tables are involved, the generic S/N curve is used as an intermediate step. First, look up the strength ratio at 10⁸ cycles for the conventional component (detail #21 column) using the generic S/N curve, "detail" #30 (row), as the baseline on the 50% probability of failure table. The number found has a value of 1.26. This number is the ratio of detail #21 strength at 50% probability of failure and 10⁸ cycles to detail #30 strength at 50% probability of failure and 10⁸ cycles. Next look up the strength ratio at 10⁸ cycles for the generic S/N curve ("detail" #30) using the one-inch thick cruciform (detail #7) as the baseline in the 2.3% probability of failure table. The number found has

a value of 1.7. This number is the ratio of detail #30 strength at 2.3% probability of failure and 10⁸ cycles to detail #7 strength at 2.3% probability of failure and 10⁸ cycles. Since (only) the generic S/N curve has the same strength in both tables (same log(A), B and zero standard deviation, i.e., the RMS stress of detail #30 at 50% equals RMS strength of detail #30 at 2.3%), the product of the two ratios, 2.14, is the ratio of relative strength between the two details at 10⁸ cycles. The conventional component at 50% probability of failure is therefore found to be 2.14 times stronger than the one inch thick cruciform at 2.3% probability of failure under high cycle fatigue conditions. Since the tables also contain S/N curves from design codes, comparing fatigue strength between different codes or between codes and test data S/N curves can be performed in a similar manner.

To provide another means of comparing fatigue strengths of different details and S/N curves, all the strength ratios were ranked from weakest to strongest, using the generic S/N curve for the baseline. The ranking was performed separately for both low-cycle fatigue, high-cycle fatigue, 50% probability of failure and 2.3% probability of failure. Results of the ranking can be found in Appendix J.

There are also occasions when the effect of specimen thickness needs to be considered in the fatigue strength. The method proposed by Maddox (1991) has been shown to work quite well for some of the new test results (Kihl and Sarkani, 1997). The method uses the ratio of old and new thickness and the slope of the S/N curve, and can determine the new value of log(A) associated with the new thickness. An example of this calculation is provided in Appendix K.

Misalignment can also affect fatigue strength. Stress concentration factors associated with plating misalignment (ABS, 1992) can be used to adjust the S/N curve of an "aligned" structural detail in an attempt to account for misaligned plating. This adjustment is performed in much the same way as plating thickness effects. Sample calculations are also provided in Appendix K.

CONCLUSIONS AND RECOMMENDATIONS

The technical issues and experimental work discussed in this report are part of an on-going effort to understand fatigue damage accumulation in welded steel structures and use empirically obtained data and experience to successfully design against failure brought about by fatigue crack initiation. This document reflects current knowledge and understanding of practical fatigue damage accumulation prediction in welded steel structures. It also discusses practice and problems associated with analyzing and applying empirically generated data toward the fatigue assessment/design of surface ship structure.

The data and methodologies contained within offer a complete collection of information that can readily be used by the practicing structural engineer or naval architect in assessing fatigue strength in ship structure or comparing fatigue strength of welded details and design codes. It is recommended that this information be consolidated and expanded appropriately to form fatigue design guidance for surface ship structure.

It is further recommended that efforts be initiated to benchmark the fatigue design methodology by analyzing surface ships that have successfully completed their service

life without fatigue crack initiation. This effort would allow appropriate operational profiles and/or factors of safety to be defined which, when applied, would result in ship designs having adequate fatigue strength.

Future efforts should also include quantifying the fatigue behavior and design of ship structure subjected to axial in-plane and lateral out-of-plane loadings. Such loadings are produced when local secondary hydrostatic loads interact with the primary hull girder bending loads or when the structure subjected to in-plane loads contains out-of-plane deformations.

Figure 1 - General Configuration of Test Specimens and Components

Figure 1 (con't) - General Configuration of Test Specimens and Components

Opening Detail Strain Gage Measurements

Specimen	Stress	Load	Gage	Gage	Gage	Gage	Gage	Failure	Failure
ID	(ksi)	(kips)	#1	#2	#3	#4	#5	Cycles	Site
OPEN17	5	19.38	156	169	210	228	242	9,357,300	ins plt butt weld
OPEN18	5	19.38	161	167	212	215	219	1,469,400	ins plt butt weld
OPEN19	5	19.38	181	176	228	233	236	2,988,900	ins plt butt weld
OPEN20	5	19.38	181	200	224	220	226	2,860,800	ins plt butt weld
OPEN07	7.5	29.06	260	232	331	343	324	452,800	ins plt butt weld
OPEN10	7.5	29.06	236	232	333	321	335	575,500	ins plt butt weld
OPEN11	7.5	29.06	264	237	337	337	334	818,700	ins plt butt weld
OPEN12	7.5	29.06	245	243	336	345	352	1,155,400	ins plt butt weld
OPEN02	10	38.75	384	302	421	488	293	328,000	ins plt butt weld
OPEN04	10	38.75	361	374	463	479	433	198,700	ins plt butt weld
OPEN05	10	38.75	400	427	468	427	457	179,200	ins plt butt weld
OPEN06	10	38.75	299	296	433	437	467	409,900	ins plt butt weld
OPEN01	15	58.13	564	503	681	662	658	47,900	ins plt butt weld
OPEN03	15	58.13	662	489	682	658	718	88,400	top of coaming
OPEN08	15	58.13	464	512	661	685	714	91,200	top of coaming
OPEN09	15	58.13	442	530	728	675	654	68,400	ins plt butt weld
OPEN13	5 rms	77.50	633	709	906	942	955	887,000	ins plt butt weld
OPEN14	5 rms	77.50	688	705	841	900	935	663,200	ins plt butt weld
OPEN15	5 rms	77.50	618	669	882	886	892	708,800	ins plt butt weld
OPEN16	5 rms	77.50	624	626	827	878	857	429,100	ins plt butt weld

Figure 2 - Strain Gage Layout and Data for Opening Detail

Conventional	Component	Strain	Gene	Measurements
CONVENIUMAR	COMBONIEM	Suairi	Gaue	Medonicilicira

Specimen	Stress	Load	Gage	Failure	Failure									
. ID	(ksi)	(kips)	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	Cycles	Site
BHD24	7.5	21.14	247	274	311	262	328	282	271	319	292	304	20,752,200	•
BHD19	8.5	24.74	319	261	302	353	334	337	349	325	309	321		bhd pit dk pit
BHD09	8.5	24.87	286	274	355	354	350	310	326	321	335	340		bhd fig dk fig
BHD36	8.5	23.97	256	265	316	393	319	337	381	358	367	412		bhd pit dk pit
BHD18	8.5	24.07	208	333	337	359	379	385	371	345	338	352		bhd pit dk pit
BHD15	8.5	24.50	306	316	337	349	389	372	406	362	351	378		toe bracket
BHD01	10	29.39	295	254	443	361	395	373	351	406	347	350		bhd flg dk flg
BHD04	10	27.52	273	275	412	373	372	403	357	357	421	368		bhd pit dk pit
BHD20	10	28.38	409	309	357	324	392	429	452	376	380	373	975,600	
BHD21	10	28.21	432	436	332	380	426	399	390	457	426	402	2,303,500	
BHD32	10	28.78	368	327	685	382	406	417	389	366	363	381		bhd pit dk pit
BHD13	15	42.98	479	639	592	591	587	575	631	518	540	572		bhd pit dk pit
BHD41	15	41.94	629	586	610	621	661	666	662	588	611	718		bhd fig dk fig
BHD40	15	41.96	553	550	531	543	604	599	564	603	591	564	975,600	
BHD14	15	43.16	506	496	637	654	641	582	603	553	582	552		bhd pit dk pit
BHD27	15	42.45	489	579	599	535	655	676	615	612	600	614	437,400	
BHD22	20	58.32	772	648	800	709	856	800	777	868	837	805		bhd fig dk fig
BHD10	20	58.18	681	859	758	936	718	781	761	768	735	757	•	bhd pit dk pit
BHD23	20	56.36	749	653	868	786	783	853	811	780	747	738	•	bhd fig dk fig
BHD26	20	54.10	582	477	890	646	781	793	724	733	766	727	156,900	bhd pit dk pit
BHD17	20	55.32	676	605	803	782	756	844	795	758	849	775		toe bracket
BHD16	5 rms	59.28	563	499	1022	854	909	850	799	786	941	848	4,343,200	butt weld
BHD03	5 ms	59.30	706	644	771	927	826	887	857	797	923	874	2,297,100	bhd flg dk flg
BHD101	5 ms	62.43	662	786	842	941	821	855	888	745	788	821	1,812,100	butt weld
BHD102	5 ms	64.19	861	1016	789	788	853	840	796	747	795	836	2,363,100	butt weld
BHD13	5 ms	63.38	788	841	793	883	892	864	854	789	799	804	2,497,400	
BHD05	7 ms	87.10	1081	1077	1056	1230	1294	1342	1239	1078	1092	1358	1,271,900	
BHD02	7 ms	87.19	1039	1062	1170	1318	1326	1315	1333	1248	1194	1272	807,000	
BHD07	7 ms	87.16	991	1160	1272	1229	1363	1372	1324	1263	1242	1246	892,300	bhd pit dk pit

Figure 3 – Strain Gage Layout and Data for Bulkhead Penetration Detail

Stiffener Splice Strain Gage Measurements

Specimen	Stress	Load	Gage	Gage	Gage	Gage	Gage	Gage	Gage	Failure	Failure
ID	(ksi)	(kips)	#1	#2	#3	#4	#5	#6	#7	Cycles	Site
SPLICE05	12	22.74	715	525	610	436	536	694	46	2,717,900 f	g @ gage 1
SPLICE19	12	22.74	537	434	494	419	532	636	51	1,013,000 ff	g @ gage 6
SPLICE17	12	22.74	572	526	687	433	615	567	50	813,200 fl	g @ gage 1 to gage 3
SPLICE08	12	20.69	545	523	626	398	529	535	49	2,193,700 f	g @ gage 1 to gage 3
SPLICE03	15	28.42	782	659	700	558	654	926	61	583,500 f	g @ gage 1 to gage 3
SPLICE06	15	28.42	757	619	741	532	770	820	69		g @ gage 5 to gage 6
SPLICE04	15	28.42	750	687	724	540	821	740	61	946,300 f	g @ gage 1 to gage 3
SPLICE16	15	28.42	657	667	567	562	843	749	56	1,151,600 f	g @ gage 5 to gage 6
SPLICE21	20	37.90	729	936	1258	723	902	885	80	196,800 f	g @ gage 3
SPLICE23	20	37.90	1028	858	992	725	1089	1111	83		g @ gage 5 to gage 6
SPLICE09	20	37.90	831	762	966	703	933	1086	92	396,500 fl	g @ gage 1 to gage 3
SPLICE22	20	37.90	975	770	942	732	1221	1145	84	199,500 f	g @ gage 1 to gage 3
SPLICE12	30	56.84	1712	1344	1514	1120	1568	1489	116	26,600 fl	g @ gage 1 to gage 3
SPLICE30	30	56.84	1734	1380	1449	1104	1506	1373	115	24,100 fl	g @ gage 3
SPLICE24	30 -	56.84	1549	1285	1645	1104	1654	1600	<u>` 111</u>	43,300 fl	g @ gage 5 to gage 6
SPLICE13	30	56.84	1760	1458	1612	1160	1430	1519	91	41,700 fl	g @ gage 1 to gage 3
SPLICE20	7.5 rms	56.84	1515	1294	1306	1120	1535	1528	108	933,000 fi	g @ gage 1
SPLICE14	7.5 rms	56.84	1625	1329	1494	1085	1577	1727	111	581,700 fl	g @ gage 6
SPLICE02	7.5 ms	56.84	1440	1303	1649	1105	1548	1666	114	788,800 fl	g @ gage 1 to gage 3
SPLICE18	7.5 ms	56.84	1500	1317	1370	1123	1628	2484	108	468,500 fl	g @ gage 6
SPLICE11	10 ms	75.80	1975	1724	2078	1535	2328	2102	143	168,200 fl	g @ gage 5 to gage 6
SPLICE07	10 rms	75.80	1745	1485	1723	1398	2193	BADGAG	201	59,200 fl	g @ gage 5 to gage 6
SPLICE15	10 rms	75.80	1943	1642	1958	1509	2135	1878	139	450,700 f	g @ gage 5 to gage 6
SPLICE10	10 rms	75.80	2051	1800	2213	1490	2282	2067	135	292,700 fl	g @ gage 3

Figure 4 – Strain Gage Layout and Data for Stiffener Splice Detail

GMean Histogram

Figure 5 – Summation Constant Distribution Based on Average Fatigue Lives

Individual Histogram

Figure 6 - Summation Constant Distribution Based on Individual Fatigue Data

Table 1 – Irregularity Factor and Encounter Frequency as a Function of Operational Profile

MATRIX OF IRREGULARITY FACTOR vs. OPERATING CONDITION

IRREG	HE 5 1	EAD SE		80	OPERA W SEA	S		RN QI		FOL 5	L SEA		SUM	z
FACTOR	٠	15	25	5	15	25	5	15	25	٥	15	25		<u> </u>
0.0-0.1													0	0.0
0.1-0.2												9	9	0.4
0.2-0.3												44	44	2.1
0.3-0.4												108	108	5.1
0.4-0.5		-										9	9	0.4
0.5-0.6		۲.										3	3	0.2
0.6-0.7			,		4				15			3	22	1.0
0.7-0.8	8				78	23			120	59	2		290	13.7
0.8-0.9	138	142	7	1	93	149			41	117	.29		717	33.9
0.9-1.0	30	34	169	175	1	4	176	176		·	145		910	43.1
·											•		2112	100.0

MATRIX OF AVERAGE ENCOUNTER FREQUENCY vs. OPERATING CONDITION

AVE ENCTR	HE	EAD SE	EAS I	ВС	OPERA		CONDI	TION TRN QT	rr I	FOL	L SEA	ıs .	SUM	*
FREQ	5	15	25	5	15	25	5	15	25	5	15	25		
0.0-0.2								,			3	174	177	8.4
0.2-0.4								176			173	2	351	16.6
0.4-0.6			20	171			176						367	17.4
0.6-0.8	141	22	156	5									324	15.3
0.8-1.0	33	152			107	20			,				312	14.8
1.0-1.2	2	2	,		63	151			74	19			311	14.7
1.2-1.4					4	5			85	143			237	11.2
1.4-1.6	-				2		-		13	12			27	1.3
1.6-1.8									2	2			4	0.2
1.8-2.0									2				2	0.1
					 	•							2112	100.0

(FREQUENCY IN RADIANS/SEC)

Table 2 – Summary of Fatigue Design Code Specifics (from Moan 1997) (Procedures for Fatigue Assessment of Ship Structures)

Class. Soc.	Reference	Brief description of the scope of the document, applicability and when required.
ABS	ABS (1996a and 1996b)	The fatigue strength assessment is performed in three steps: Step 1 is a designer oriented assessment for connections of longitudinal stiffeners to transverse webs and bulkheads. Step 2 is a simplified fatigue analysis for local hull structures. Step 3 is a comprehensive structural analysis based on spectral approach for details found inadequate in Step 2. The procedure is applicable for tankers, bulk carriers and containerships.
BV	BV (1994)	The aim of the procedure is to 'provide the ship designer with relevant information to asses fatigue strength and to define the fatigue design criteria to be applied'.
DNV	DNV (1995)	DNV (1995) General background is given for the rule requirements for fatigue control of ship structures and detailed recommendations for such control. Various levels of fatigue assessment procedures defined include a simplified approach and a direct calculation approach. Its application is required for structural details 'subjected to extensive dynamic loading'.
JD	GL (1997)	Rules for simplified fatigue strength analysis. Its application is required for structures which are 'predominantly subjected to cyclic loads'.
LR	LR (1996)	Three levels are given. Level 1 is based on a comparison of the structural details with recommendations derived from consolidation of available service experience. Levels 2 and 3 are a simplified and full spectral direct calculation procedures. The procedure is developed for double hull oil tankers and bulk carriers and is under development for container and LNG/LPG ships. Mandatory for new oil tankers and bulk carriers over 190 metres in length. Level 1 and 2 are to be applied and Level 3 at the request of the shippowner or the shipbuilder.
NK	NK (1996)	A simplified approach for ship design which has been verified for longitudinal stiffeners. Research work is under conduction for improving and revising the guidance. The procedure is applicable for longitudinal, transverse and local strength members of oil tankers, bulk carriers and container ships.
RINA	RINA (1995)	RINA (1995) Rules for checking of the fatigue strength of ship hull structures by means of a simplified fatigue analysis. Applicable for ship structures which satisfy RINA standards for obtaining the highest class made of normal and/or high strength steels. Its application is required for the special notation FTC by RINA.
Ж	KR (1995)	Guidance for simplified fatigue strength assessment of ship structures at the initial stage.

(A Short Summary of Different Fatigue Assessment Procedures Table 2 (con't) – Summary of Fatigue Design Code Specifics (from Moan 1997) Available for Ship Design)

Class.	1	Loads		Stress anal. guid.	guid.		Fatigue	Fatigue strength	1,1	Corrosion	Safety	Program	Guidance on
Soc.	Basis	Prob.	Shape	nominal	SCF	Nom.	Local ²	mean ³	thick.4	method	factor ⁵	name	details
ABS	Rule	2· 10 ⁻⁸	Weib.	simple	yes	DoE	DoE	noe	spec. case	net ⁷	no	SafeHull	yes
BV	Rule	10.2	Weib.	no	yes	DoE	BoE	yes	25 mm	time ⁹	no ¹⁰	VeriStar	no
DNV	Rule/Direct	10-4	Weib.	simple / FE	yes	ou	own	yes	22 mm	net ¹²	no	Nauticus	yes
GF	Rule	9-01	Lin.	simple	yes	IIW	MII	yes	spec. case	no ¹³	yes ¹⁴	Poseidon	yes (incl. rules)
LR ¹⁵	Simple/spectral approach 16	tral appr	oach 16	simple / FE	yes	ou	own ¹⁷	no	22 mm	net ¹⁸	no	ShipRight	yes (in program)
NK	Direct ¹⁹	10-4	Weib.	租	yes	BS	BS	yes	ou	no ²⁰	yes ²¹	PrimeShip	yes
RINA	Rule	8-01	Lin.	simple	по	WII	MII	yes	ou	no	no	no	yes
KR	Rule	10-4	Weib.	simple	yes	2	DoE	yes	22 mm	true ²²	ou	no	ou

The S-N data sources are given for nominal (Nom.) and local approaches. BS refers to British Standard 5400, IIW to IIW (1996) and DoE to different editions of the ref. "Offshore Installations: Guidance on Design Construction and Certification", Health and Safety Executive (formerly Department of Energy), U.K.

Local approach is the hot spot method in most cases. Comparison of different local approach S-N curves is given in Figure 7.1.
Mean stress correction is applied on the stress range basing on the mean stress or in case of NK (1996) on S-N curve by modifying the slope.

The thickness effect is accounted for by a factor on stress range above the given reference thickness.

Mean minus two standard dediations S-N curves are used in most cases. Additional safety factors to this rule are referred here.

The stresses calculated for net scantlings are multiplied by a factor of 0.95 to reflect a 'mean wasted condition' Not explicitly

Special local approach is used based on a notch stress which is the structural stress multiplied by a weld factor. For a 45° flank angle the weld factor is 1.96. Corrosion is modeled by multiplying the cumulative damage with a correction factor which is a function of corrosion rate and time. 2

Mean minus one, two or three standard deviation S-N curve for non critical, critical or very particular structural members.

Stresses are calculated using net scantlings and S-N curves for corrosive environment. A simple approach is given for partially effective corrosion protection. Special local approach is used based on a notch stress which is the structural stress multiplied by a weld factor. Default value for the weld factor is 1.5. 2

For non-redundant structures and for rounded corners with large radii. Only implicitly for hold frames in bulk carriers. **4** 5

The procedure is available through the use of the ShipRight program. Loads by voyage simulation used in level 2, parametric formulas for ship motions and loads in regular waves. In level 3 direct approach is used. S-N curves are based on parametric formulas of the hot spot SCFs derived from systematic FE-analyses. 9

n level 2 time invariant simulation of thickness reduction due to corrosion is used. In level 3 no corrosion modelling is applied "we approaches defined are a 'combination' and 'design wave' methods.

If considered, in ballast tanks for example, the stresses should be converted to appropriate values and a stress safety factor of 1.1 to 1.3 should be considered. Safety factors are used depending on the importance of the member. Explicite values are not given. For basic joints mean S-N curves are used. True scantlings are applied for stress analysis and S-N curve for corrosive environment. A simple approach is given for partially effective corrosion protection.

Table 3 - Categorization of Fatigue Code Details and S/N Curves

Type of Weld	Code:	ECCS (1985)	BS5400 (1980)	AASHTO (1989)	DNV (1984)	AWS (1976)
Non-welded Details						
Rolled and Extruded products		160	A,B	· A	В	Α
Sheared or gas cut plates		140,125	B,C	Α	С	Α
Bolted Connections		140,36	В	В	n/a	n/a
Concrete reinforcing bars		100	n/a	n/a	n/a	n/a
Welded Built-up Sections						
Continuous Longitudinal Welds		125,(112),100	C,(D)	В	В	В
Intermittent Longitudinal Welds		80,71	E	E	E	Ε
Transverse Butt Welds						
Without Backing Bar		112,(90),80,36	D,(E)	С	С	С
With Backing Bar		71,50	F	n/a	F	n/a
Welded Attachments (non-load carrying	welds)					
Longitudinal Attachments		90,80,71,50,45	F,F2	D,E	F,F2	n/a
Transverse Attachments		80,(71)	(F),E	С	F	С
Welded Connections (load carrying weld	s)					
Cruciform Joints		71,(36)	F,(F2),W	С	F	Ð
Overlapped Welded Joints		63,45	F2,G	E	F2	n/a
Cover Plates on Beams and Pla	te Girders	50,36	G	Ε	G	E
Welds in Shear		80	W,S	F	W	F
Type of Weld	Code:	ECCS	BS5400 (KSL-Stress Ra	AASHTO ange, 2.3% Probal	DNV	AWS
Welded Built-up Sections			(1101 - 011033 110	111gc, 2.070 1 100di	only or runare	,
Continuous Longitudinal Welds		112	D	В	В	В
Continuous Eoriginal World		9.934	9.667	10.081	11.653	11.098
		3	3	3	4	4.159
Transverse Butt Welds		•	-			
Without Backing Bar		90	Ε	С	С	С
		9.648	9.500	9.653	10.692	10.123
		3	3	3	3.5	3.918
Welded Attachments (non-load carrying	weids)					
Transverse Attachments	•	71	F	D	F	С
		9.342	9.287	9.336	9.286	10.123
		3	3	3	3	3.918
Welded Connections (load carrying weld	s)					
Cruciform Joints		. 36	F2	E	F	D
		8.459	9.120	9.031	9.286	9.132
	•	3	3	3	3	3.399

Table 4 - Candidate Details for Characterization

	BASEPLATE	SURFACE WELDS (ATTACHMENTS)	CONNECTION WELDS (LOAD CARRYING)
TYPICAL (IN-PLANE)	 Smooth base material Ground opening Drilled Longitudin Holes/penetrations Transverse carrying file 	 Skip welds Studs/brackets Longitudinal fillet welds Longitudinal butt welds Transverse non-load carrying fillet weld 	• Skip welds • Studs/brackets • Longitudinal fillet welds • Longitudinal butt welds • Transverse non-load ✓ Transverse bulkhead penetration details carrying fillet weld
INTENTIONAL ECCENTRICITY	• Bolted connections • Formed/bent plate (knuckle)	R Doubler plates $(t_d = t_p)$ R Doubler plates $(t_d > t_p)$	■ Insert plates - flush one side ■ Lapped fillet welds • Knuckle - with butt weld ■ Mismatched stiffeners
UNINTENTIONAL ECCENTRICITY	• Damaged/dished plate	 Forced alignment Welding distortion 	/ Mismatched (offset) plates - full penetration Mismatched (offset) plates - partial penetration - Angular mismatch
SURFACE FLAWS	■ Flame cut unreinforced opening	 Transverse fillet weld with undercut Weld start/stop points 	 Transverse butt weld with undercut Surface crack-like defect (EDN)
BURIED FLAWS		• Porosity	 Partial penetration load carrying fillet welds Partial penetration transverse butt welds Porosity, inclusions
FLAW IMPROVED FATTGUE BEHAVIOR		• Contour ground fillet weld • Peened weld	Contour ground butt weld Remove weld crown

NOTES: / INDICATES THAT FATIGUE TEST DATA FOR THESE SPECIMENS EXISTS

INDICATES FATIGUE TEST SPECIMENS

INDICATES POTENTIAL FATIGUE SPECIMEN

Table 5 – Stress Concentration Factors for Test Specimens

Test Specimen Configuration	SCF	В	Log(.	A) (ksi)	Std Dev
_			Ampl.	Range	log(Life)
Flame Cut Edge	n/a	-3.705	10.553	11.668	0.092
HSLA Continuous Cruciform (FP)	2.4 @toe	-3.210	9.559	10.525	0.185
HSLA Discontinuous Cruciform (FP)	2.4 @toe	-3.307	9.601	10.597	0.263
HSLA Discontinuous Cruciform (PP)	2.2@toe 4.0@lop	-2.686	8.272	9.081	0.139
HSLA Misaligned Cruciform (FP)	4.8 @toe	-3.949	9.733	10.922	0.227
HSLA Misaligned Cruciform (PP)	5.6@toe 5.0@lop	-3.349	8.513	9.521	0.208
HSLA Insert Plate (FP)	2.7 @toe	-5.090	12.101	13.633	0.184
HSLA Insert Plate (LOP defect)	n/a	-4.009	9.845	11.051	0.103
HSLA One-Sided Welds	1.3 @butt	-3.298	9.956	10.949	0.307
HSLA Same Thickness Doubler	2.1 @toe	-3.122	9.179	10.119	0.490
HSLA Double Thick Doubler	1.4 @toe	-2.780	8.843	9.680	0.555
HSLA Opening Detail	2.0 @corner	-3.480	8.923	9.971	0.203
HSLA Stiffener Splice	n/a	-4.250	10.843	12.122	0.177
HSLA Bulkhead Penetration	n/a	-3.230	9.427	10.399	0.169

FP - Full Penetration Weld

PP – Partial Penetration Weld

LOP - Lack of Penetration

Table 6 - Conversion Formulas for S/N Curves

nplitude	Stress (MPa)	log(Amr) hita = log(Amm) ki - Blog(2) - Blog(6.89)	$log(A_{mg})_{kll'a} = log(A_{mmp})_{kil} - Blog(2)$	log(Amg), Affra = log(Amg), ksi - Blog(6.89)	. No Change
Double Amplitude	Stress (ksi)	log(Ang) _{ki} = log(Amp) _{ki} - Blog(2)	$log(A_{mp})_{kxi} = log(A_{mp})_{ktro}$ $- Blog(2)$ $+ Blog(6.89)$	No Change	$log(A_{mg})_{kd} = log(A_{mg})_{kga} + Blog(6.89)$
nplitude	Stress (MPa)	log(Amp) Atra = log(Amp) ki - Blog(6.89)	No Change	$log(A_{omp})_{hifra} = log(A_{omp})_{hifra} = log(A_{omp})_{hif}$ + $Blog(2)$ - $Blog(6.89)$	log(Amp), stra log(Amg), stra + Blog(2)
Single Amplitude	Stress (ksi)	No Change	log(Aump) kri = log(Aump) ktira + Blog(6.89)	$log(A_{amp})_{ki} = log(A_{mp})_{ki} + Blog(2)$	$log(A_{omp})_{ksi} = log(A_{omp})_{ksi} = + Blog(2) + Blog(6.89)$
Ţo: ↑		Stress (ksi)	Stress (MPa)	Stress (ksi)	Stress (MPa)
Convert	From:	Single Amplitude		Double Amplitude	

Note: S/N curve is of the power law form and "B" does not change during the transformation of $log(\Lambda)$.

Example:
B = -3

$$\log(A_{mp})_{kij} = 9.0$$

 $\log(A_{mp})_{kij} = 11.515$
 $\log(A_{mp})_{kij} = 9.903$
 $\log(A_{mp})_{kij} = 9.903$

REFERENCES

AASHTO (1989), Standard Specification for Highway Bridges, 14th ed., The American Association of State and Highway Transportation Officials, Washington, D.C.

ABS (1992), American Bureau of Shipping, "Guide for the Fatigue Strength Assessment of Tankers".

ABS (1996a), "Rules for Building and Classing Steel Vessels, Pt.5, Sect.2, A2AA:Guide for Fatigue Strength Assessment of Tankers, and 3AA:dto. For Bulk Carriers", American Bureau of Shipping.

ABS (1996b), "Guide for Dynamic Based Design and Evaluation of Container Carrier Structures, AC: Simplified Method for Fatigue Strength Assessment", American Bureau of Shipping.

ASTM (1988), Procedure E-739, Metals Test Methods and Analytical Procedures, Volume 03.01,"Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data"

AWS (1976),"Welding Handbook", Seventh Edition, Vol. 5.

Bogdanoff, J.L., and F. Kozin (1985), "Probabilistic Models of Cumulative Damage", John Wiley & Sons.

BS5400 (1980), British Standards Institute, BS5400,"Steel, Concrete, and Composite Bridges, Part 10, Code of Practice for Fatigue".

BV (1994), Bureau Veritas, "Fatigue Strength of Welded Ship Structures", NI 393 DSM R00.

DnV (1984), Det Norske Vertitas,"Fatigue Strength Analysis for Mobile Offshore Units", DnV Classification Notes No. 30.2.

DNV (1995),"Fatigue Assessment of Ship Structures", Tech. Rep. DNVC 93-0432, Det Norske Veritas.

Dexter, R.J., etal (1993), "Development of Advanced Double Hull Concepts, Phase I.3a, Structural Failure Modes: Fatigue", Lehigh University Report TDL 91-01, Volume 3a.

Dexter, R.J., and M. Kaczinski (1994),"Large-Scale Fatigue Tests of Advanced Double Hull Weld Joints", The Advanced (uni-directional) Double-Hull Technical Symposium, Gaithersburg, Maryland.

ECCS (1985), European Convention for Constructional Steelwork,"Recommendations for the Fatigue Design of Steel Structures", ECCS-Technical Committee 6 – Fatigue, 1st edn.

Frost, N.E., K.J. Marsh, and L.P. Pook (1974), "Metal Fatigue", Oxford University Press.

GL (1997), "Rules for Classification and Construction. I – Ship Technology. Part I – Seagoing Ships. Chapter 1 – Hull Structures, Section 20 Fatigue Strength", Germanischer Lloyd.

Kihl, D.P. (1992)," A Comparison of Three Fatigue Assessment Procedures for Surface Ship Structures", NSWCCD report, SSPD-93-173-19.

Kihl, D.P. (1994a), "Axial Fatigue Behavior of Advanced Double Hull Combatant Weld Details", The Advanced (uni-directional) Double-Hull Technical Symposium, Gaithersburg, Maryland.

Kihl, D.P. (1994b),"Mean Stress Effects in Steel Weldments Subjected to Constant and Random Amplitude Fatigue Loadings", NSWCCD report, SSM-65-95/11.

Kihl, D.P., and S. Sarkani (1992), "Stochastic Fatigue Damage Accumulation in High Strength Welded Steel Joints", NSWCCD report SSPD-93-173-13.

Kihl, D.P, and S. Sarkani (1997), "Thickness Effects on the Fatigue Strength of Welded Steel Cruciforms", International Journal of Fatigue, Vol. 19, Supp. No. 1, pp. S311-S316.

KR (1995),"Guidance for the Fatigue Assessment of Ship Structures", Korean Register of Shipping.

Lipson, C., and N.J. Sheth (1973), "Statistical Design and Analysis of Engineering Experiments", McGraw-Hill Inc.

LR (1996), "ShipRight FDA. Fatigue Design Assessment Procedure. Structural Detail Design Guide", Lloyd's Register of Shipping.

Maddox, S.J. (1991),"Fatigue Strength of Welded Structures", 2nd edn., Abington Publishing, Cambridge.

Miles, J.W. (1954),"On Structural Fatigue Under Random Loading", *Journal of Aeronautical Science*, 21, 753-762.

Miner, M.A. (1945),"Cumulative Damage in Fatigue", Journal of Applied Mechanics, 12, A159-A164.

Moan, T. and S. Berge (editors) (1997),"Proceedings of the 13th International Ship and Offshore Structures Congress, Volume 1", Elsevier Science.

Munse, W.H., etal (1982), "Fatigue Characterization of Fabricated Ship Details for Design", Ship Structure Committee report #318.

NCHR (1986), "Evaluation of Fatigue Tests and Design Criteria on Welded Details", National Cooperative Highway Research Program Report #286.

Newland, D.E. (1986), "An Introduction to Random Vibrations and Spectral Analysis, 2nd Edition", Longman Inc.

NK (1996), "Guidance for Fatigue Design of Ship Structures", Class NK, Primeship-FD, Nippon Kaiji Kyokai.

Palmgren, A. (1924). "Die Lebensdauer von Kugellagern," Ver. Deut. Ingr., 68, 339-341.

Press, W.H., etal (1992),"Numerical Recipes in Fortran, Second Edition", Cambridge University Press, New York, New York.

RINA (1995), "Rules for the Checking of the Fatigue Strength of Ship Hull Structures", Genova, Italy.

Sarkani, S., etal (1992), "Fatigue of Welded Cruciforms Subjected to Narrowband Loadings", ASCE Journal of Engineering Mechanics, 118 (2), 296-311. Errata: 119(2), 417, Feb. 1993.

Sarkani, S., etal (1991), "Influence of Small Stress Ranges on Stochastic Fatigue of Welded Joints", *Journal of Structural Engineering*, ASCE, 117(6), 1852-1867.

SSC (1997), Ship Structure Committee, Committee on Marine Structures, "Prevention of Fracture in Ship Structure", Marine Board, National Research Council, Report #PFSS95.

SSC (1998), Ship Structures Committee Report, "Fatigue-Resistant Detail Design Guide for Ship Structures", prepared by Fleet Technology Limited, September 1998.

Sikora, J.P., etal, (1983),"A Method for Estimating Lifetime Loads and Fatigue Lives for SWATH and Conventional Monohull Ships", *Naval Engineers Journal*, Vol. 95, No.3.

Appendix A

Linear Exceedance Curve Approach

Linear Exceedance Curve Approach

The exceedance curve approach outlined previously is based on a piecewise analysis of the operational profile. Assuming the extrema of each of the response conditions are Rayleigh distributed, the number of cycles exceeding a given response is cumulatively determined over all the response conditions. Repeating these calculations for several other response values results in a set of response values and corresponding number of cycles exceeding each response value which are fit to a Fourier sine series of the following form.

$$\sigma = E_0 - E_1 \log N + E_2 \sin \left(\frac{\pi \log N}{1}\right) + E_3 \sin \left(\frac{\pi \log N}{2}\right) + E_4 \sin \left(\frac{\pi \log N}{4}\right) + E_5 \sin \left(\frac{\pi \log N}{8}\right)$$

In the following analyses, it is assumed that most of the fatigue damage will come from the cyclic stresses represented by the first two terms of the above function. The feasibility of this assumption was considered in Appendix B, Sensitivity of Fatigue Parameters. Considering only the first two terms renders the exceedance curve a linearly decreasing function from the lifetime maximum value.

$$\sigma = E_0 - E_1 \log N_e$$

A closed form expression for fatigue damage accumulation can be obtained by first taking the derivative of the exceedance curve.

$$\frac{d\sigma}{dN_e} = -\frac{E_1 \log e}{N_e}$$

Solving for N_e from the exceedance curve function, noting that the applied cycles, n, is equal to $-dN_e$, and substituting the cycles to failure from the usual form of the constant amplitude S/N curve, allows the damage to be written as a function of the applied stress, σ .

$$D = \frac{n}{N} = \frac{\sigma^{-B} 10^{\left(\frac{E_0 - \sigma}{E_1}\right)}}{AE_1 \log e} d\sigma$$

The cumulative damage can now be determined by integrating the above equation from zero stress to the maximum lifetime stress, σ_{max} .

$$\sum D = \frac{10^{\frac{E_0}{E_1}}}{AE_1 \log e} \int_{0}^{\sigma_{\text{max}}} \sigma^{-B} 10^{\left(\frac{-\sigma}{E_1}\right)} d\sigma$$

The above equation can be solved for integer values of B, the slope of the constant amplitude S/N curve. Although the integral can be evaluated for any integer value of B, only values pertinent to fatigue analyses, i.e., B=-2, -3, and -4 will be provided.

For B = -2:

$$\sum D = \frac{10^{\frac{E_0}{E_1}}}{AE_1 \log e} \left[-\frac{\sigma_{\max}^2 E_1 10^{\frac{-\sigma_{\max}}{E_1}}}{\ln 10} - \frac{2\sigma_{\max} E_1^2 10^{\frac{-\sigma_{\max}}{E_1}}}{(\ln 10)^2} - \frac{2E_1^3 \left(10^{\frac{-\sigma_{\max}}{E_1}} - 1\right)}{(\ln 10)^3} \right]$$

For B = -3:

$$\sum D = \frac{10^{\frac{E_0}{E_1}}}{AE_1 \log e} \left[-\frac{\sigma_{\max}^3 E_1 10^{\frac{-\sigma_{\max}}{E_1}}}{\ln 10} - \frac{3\sigma_{\max}^2 E_1^2 10^{\frac{-\sigma_{\max}}{E_1}}}{(\ln 10)^2} - \frac{6\sigma_{\max} E_1^3 10^{\frac{-\sigma_{\max}}{E_1}}}{(\ln 10)^3} - \frac{6E_1^4 \left(10^{\frac{-\sigma_{\max}}{E_1}} - 1\right)}{(\ln 10)^4} \right]$$

For B = -4:

$$\sum D = \frac{10^{\frac{E_0}{E_1}}}{AE_1 \log e} \begin{bmatrix} -\frac{\sigma_{\text{max}}^4 E_1 10^{\frac{-\sigma_{\text{max}}}{E_1}}}{\ln 10} - \frac{4\sigma_{\text{max}}^3 E_1^2 10^{\frac{-\sigma_{\text{max}}}{E_1}}}{(\ln 10)^2} - \frac{12\sigma_{\text{max}}^2 E_1^3 10^{\frac{-\sigma_{\text{max}}}{E_1}}}{(\ln 10)^3} \\ -\frac{24\sigma_{\text{max}}^2 E_1^4 10^{\frac{-\sigma_{\text{max}}}{E_1}}}{(\ln 10)^4} - \frac{24E_1^5 \left(10^{\frac{-\sigma_{\text{max}}}{E_1}} - 1\right)}{(\ln 10)^5} \end{bmatrix}$$

Using one of these expressions, the fatigue life can easily be calculated from the equation below.

Fatigue Life =
$$\frac{Service\ Life}{\sum D}$$

As a numerical example, with $A=10^9$, $E_0=24$ ksi and $E_1=3$ ksi, the following damage summations are calculated for each of the S/N curve slopes.

$$B = -2$$
 $\sum D = 0.3395$
 $B = -3$ $\sum D = 1.3270$
 $B = -4$ $\sum D = 6.9152$

If one now considers the lifetime distribution of stresses to be exponentially distributed, the largest stress expected to be exceeded once in 10^8 cycles can be found from the following equation.

$$P[a > S_{\text{max}}] = 1 - \int_{0}^{S_{\text{max}}} \frac{1}{\theta} e^{-\frac{a}{\theta}} d\theta = \frac{1}{10^{8}}$$

From this equation it can be determined that the characteristic life, θ , can be expressed in terms of S_{max} through the following equation.

$$\theta = \frac{S_{\text{max}}}{\ln(10^8)} = \frac{S_{\text{max}}}{18.42068}$$

Now, to determine the number of times (cycles), n_{e} , a fraction of S_{max} , say αS_{max} is exceeded, a methodology similar to that used to find S_{max} yields the following equation.

$$n_e = 10^8 e^{\alpha \ln 10^{-8}}$$

If one now solves this equation for several values of α and takes the base ten logarithm of the exceeded cycles, one finds that the results plot as a linear exceedance curve.

Now, consider a constant amplitude S/N curve of the usual power function form with coefficients log(A) and B, and stresses that are assumed to be exponentially distributed, then the expected damage per cycle can be calculated from the following equation.

$$E[D] = \frac{1}{E[N]} = \frac{\int_{0}^{\infty} \frac{S^{-B}}{\theta} e^{-S/\theta} dS}{A} = \frac{\theta^{-B} \Gamma(1-B)}{A}$$

With the same relationship used before, $\theta = S_{max} / 18.42068$, the total damage expected in 10^8 cycles can therefore be determined.

$$\sum D_{total} = \frac{S_{\text{max}}^{-B} \Gamma(1-B)}{A(18.42068)^{-B}} 10^{8}$$

Evaluating this for a few values of "B", the slope of the S/N curve, and S_{max} equal to 24 ksi yields the following.

$$for \quad B = -2$$
 $\sum D_{total} = 0.3395$ $for \quad B = -3$ $\sum D_{total} = 1.3270$ $for \quad B = -4$ $\sum D_{total} = 6.9156$

Note that these values are essentially the same as calculated before. In reality, S_{max} can never reach a value of infinity, since it would reach its yield strength first. This is reflected in the upper limit of integration of the last integral and produces an incomplete gamma function. This effect, however, is of little consequence for the range of stresses involved in practical ship design and can be ignored.

It should, however, be noted that the use of exponentially distributed lifetime stresses, whether from an exceedance curve approach or from the closed form given above, may lead to erroneous fatigue damage calculations. Consider the following example. Using the following exceedance curve coefficients which were determined from a lifetime loads analysis of a typical ship and typical operational profile, E0=16.529 ksi, E1=2.066 ksi, E2=0.028 ksi, E3=0.119 ksi, E4=0.178 ksi, and E5=0.853 ksi, with log(A)=9.0 and B=-3, results in fatigue damage of 0.545. Using only the first two coefficients (exponentially distributed lifetime stresses) results in less fatigue damage,

0.436. This means that the exponentially based fatigue life is 25% longer than the fatigue life based on the exceedance curve approach, a non-conservative estimate of fatigue life. Similar examples can be presented which illustrate conservative estimates (in some cases very conservative estimates) of exponentially based fatigue life prediction compared to that obtained from the exceedance curve approach.

Since the results of the exponentially distributed lifetime stress approach do not produce consistently conservative fatigue life estimates, this model should be used with discretion. Confident use, however, may be possible if there is adequate service experience to substantiate its results.

Appendix B

Sensitivity of Fatigue Parameters

Sensitivity of Fatigue Parameters

This appendix illustrates the relative sensitivity of the final fatigue life estimate, in terms of percent change in fatigue life produced by a given percent change in each of the input parameters. This type of analysis provides a way of ranking the importance in variability of each input parameter. Sensitivity of parameters used in both the exceedance curve approach and the Rayleigh Approximation equation are considered separately.

The exceedance curve approach is used for the basis of the first analysis. The exceedance curve is represented by a Fourier sine series with coefficients E0 through E5 defining the tensile stresses and coefficients F0 through F5 defining the compressive stresses. The parameter, SW, represents the stress produced by the still water bending moment.

$$\sigma_{tens} = SW + E_0 - E_1 \log N + E_2 \sin \left(\frac{\pi \log N}{1}\right) + E_3 \sin \left(\frac{\pi \log N}{2}\right) + E_4 \sin \left(\frac{\pi \log N}{4}\right) + E_5 \sin \left(\frac{\pi \log N}{8}\right)$$

$$\sigma_{comp} = -SW - F_0 + F_1 \log N - F_2 \sin\left(\frac{\pi \log N}{1}\right) - F_3 \sin\left(\frac{\pi \log N}{2}\right)$$
$$-F_4 \sin\left(\frac{\pi \log N}{4}\right) - F_5 \sin\left(\frac{\pi \log N}{8}\right)$$

By separating the exceedance curve into many blocks, the average maximum stress, minimum stress and number of applied cycles contained within each block can be determined. This example also considers mean stress effects, which are accounted for by the Modified Goodman correction using the ultimate tensile stress, S_{ult}.

$$S_{eq} = \frac{S_{amp}}{\left(1 - \frac{S_{mean}}{S_{ult}}\right)}$$

The other variables include the service life, "Serv Life", which is represented by the exceedance curve stresses, and the scale factor, SF, which is simply used to scale the stress magnitudes to reflect changes in section modulus. The S/N curve is represented by four parameters; log(A) and B, which are the life intercept and slope parameters of the mean S/N curve; and STD and #STD, which are the standard deviation in the log(life) and the number of standard deviations from mean curve that define the probability of failure.

The sensitivity analysis was performed by changing the value of each parameter, in turn, by a given percent and then calculating the corresponding percent change in fatigue life, holding all other parameters at their nominal (zero percent change) value.

Although more than one parameter could have been varied at a time, the effect of varying only one parameter was considered.

The results are then plotted on a graph, with the percent change in the parameter on the abscissa and the percent change in the fatigue life on the ordinate axis. Input data for this analysis are located at the top of Table B-1. Results of the exceedance curve parameter sensitivity analysis are located in Table B-2 and shown plotted in Figures B-1 through B-3.

Those parameters that produce a large change in fatigue life are the most important and exhibit larger slopes than the other parameters. The S/N curve coefficients, log(A) and B, the first two coefficients of the stress exceedance curve, E_0 , E_1 , F_0 , F_1 , and the scale factor, SF, are found to produce the most change in fatigue life per percent change in the parameter value. Standard deviation, STD, and service life,

Serv. Life, exhibit the next highest change in fatigue life per percent change in parameter value. The remaining parameters exhibit very little change in fatigue life per percent change in the parameter value.

The sensitivity of parameters used in the Rayleigh Approximation formula was considered next. The Rayleigh Approximation formula, given below, uses four parameters to estimate fatigue life in cycles, N; the S/N curve coefficients, log(A) and B, the standard deviation of the S/N curve to produce other than mean (50%) probability of failure, and the RMS stress, σ , which defines the Rayleigh distribution of stresses.

$$N = \frac{10^{\log(A)}}{2^{-B/2} \sigma^{-B} \Gamma(1 - B/2)}$$

The analysis was performed the same as that described for the exceedance curve approach, with the results plotted in a similar manner. Input parameters for this analysis are also included in Table B-1. Results are provided in Table B-3 and shown plotted in Figure B-4. Results again show the S/N curve coefficients and the RMS stress to be the most sensitive parameters, producing the highest percent change in fatigue life per percent change in parameter value. The S/N curve standard deviation STD was found to produce the lowest percent change in fatigue life per percent change in parameter value.

It should be noted that these results are only intended to indicate the sensitivity of the parameters used in fatigue life estimation. The actual values would change depending on the input values of the parameters, but the general trends shown here are expected to be indicative of most typical cases.

Figure B-1 - Sensitivity of Exceedance Curve Fatigue Parameters (1st set of parameters)

Figure B-2 - Sensitivity of Exceedance Curve Fatigue Parameters (2nd set of parameters)

Figure B-3 - Sensitivity of Exceedance Curve Fatigue Parameters (3rd set of parameters)

Figure B-4 - Sensitivity of Rayleigh Approximation Fatigue Parameters

Table B-1 - Initial Parameter Values used in Sensitivity Analysis

STD	0.2	RMS	5 ksi
# STD	2	Sult	100 ksi
log(A)	9	Scale Fctr	1
В	-3	Serv Life	30 yrs
SW	7.7893 ksi		
E0	23.2826 ksi	F0	33.0991 ksi
E1	2.9103 ksi	F1	4.1374 ksi
E2	0.0012 ksi	F2	-0.0019 ksi
E3	0.014 ksi	F3	0.1176 ksi
E4	0.0072 ksi	F4	0.2729 ksi
E5	0.6559 ksi	F5	0.3878 ksi

Table B-2 - Sensitivity of Exceedance Curve Fatigue Parameters

%Diff	STD	log(A)	В	Sult	SF	Serv. Life	
-10	9.65		68.7	-2.46	40.25	-10	
-8	7.65	-80.95	52.28	-1.93	30.72	-8	
-6	5.68	-71.16	37.3	-1.42	22.01	-6	
-4	3.75	-56.35	23.67	-0.93	14.04	-4	
-2	1.86	-33.93	11.26	-0.45	6.72	-2	
0	. 0	0	0	0	0	0	
2	-1.83	51.36	-10.22	0.44	-6.19	2	
4	-3.62	129.09	-19.47	0.86	-11.89	4	
6	-5.38	246.74	-27.84	1.27	-17.16		
8	-7.1	424.81	-35.41	1.66	-22.02	8	
10	-8.8	694.33	-42.23	2.04	-26.53	10	
0/ D:ff	C	· 	E1	E2	E3	E4	E5
%Diff	Sw	E0		0	-0.02		1.04
-10	2.53	112.26		0	-0.02		0.83
-8	2.02	84.39		0	-0.02		0.62
-6	1.51	58.87		0	-0.01		0.42
-4	1.01	36.31	-23.2	0	0.01	0.01	0.42
-2	0.5	16.77	-12.26	0	0	0	0.21
0	0	0		0	0	0	-0.21
2	-0.5	-14.4	13.67	0	0.01	0.01	-0.41
4	-1	-26.73		0	0.01	0.01	-0.62
6	-1.5	-37.27		0	0.01		-0.82
8	-1.99	-46.24 52.05		0	0.02		-1.03
10	-2.49	-53.85	82.26	U	0.02	0.02	-1.00
%Diff	F0	F1	F2	F3	F4	F5	
-10	141.38	-58.17	0	-0.2	-0.58	0.54	
-8	112.9	-50.16	0	-0.16	-0.46	0.43	
-6	79.74	-4 0.53	0	-0.12	-0.35	0.32	
-4	48.66	-29.07	0	-0.08	-0.23	0.22	
-2	22.02	-15.61	0	-0.04	-0.12	0.11	
0	0	0	0	0	0	0	
2	-18.1	17.93	0	0.04	0.12	-0.11	
4	-32.92	38.33	0	0.08	0.23	-0.21	
6	-44.96	60.62	0	0.12	0.35	-0.32	
8	-54.68	82.86	0	0.16	0.46	-0.43	
10	-62.5	100.89	0	0.2	0.58	-0.54	

Table B-3 - Sensitivity of Rayleigh Approximation Fatigue Parameters

%Diff	STD	log(A)	В	RMS
-10	9.65	-87.41	98.7	37.17
-8	7.65	-80.95	73.36	28.42
-6	5.68	-71.16	51.19	20.4
4	3.75	-56.35	31.79	13.03
-2	1.86	-33.93	14.82	6.25
0	0	0	0	0
2	-1.83	51.36	-12.95	-5.77
4	-3.62	129.09	-24.25	-11.1
6	-5.38	246.74	-34.12	-16.04
8	-7.1	424.81	-42.72	-20.62
10	-8.8	694.33	-50.23	-24.87

Appendix C

Detailed Geometry of Test Specimens and Components

Small Fatigue Test Specimens

Large Fatigue Test
Components

Bulkhead Penetration

Cruciform Test Specimens HSLA-80 (BENDING)

- Notes:
 Twin are welding is to be sequenced to balance disortion.
 Initial welding passes (#1) are to be back ground or back gouged, depending on baseplate thickness, before depostion of additional passes.
 Total number of passes is to be based on baseplate thickness, wire diameter, and welding parameters.

relative size.

C-11

Appendix D

Stiffener Splice Component Stress Calculations

Stiffener Splice Component Stress Calculations

Consider the following member with externally applied axial loads and end moments. The entire member is assumed to be symmetric about "D".

The problem is to determine the stress at "C" in terms of the geometry and externally applied loads. To proceed, the member and loads shown above are separated into three free body diagrams.

is taken and set equal to zero.

$$\sum M_B = 0$$
$$M_E = M_C - Pe$$

Considering the first free body diagram, the rotation of end "B" can be calculated from the section properties and applied moments.

$$\theta_B = \int_0^a \frac{M_E}{EI} dx = \frac{M_E a}{EI_E}$$

Likewise, the rotation at the end "C" of the middle free body diagram can be calculated assuming linearly changing section properties and lines of action.

$$\theta_{C} = \frac{M_{E}a}{EI_{E}} + \int_{0}^{b} \frac{M_{E} + Pe(x/b)}{E(I_{C} - I_{E})x/b + I_{E}} dx$$

$$\theta_{C} = \frac{M_{E}}{E} \left[\frac{a}{I_{E}} + \frac{b}{(I_{C} - I_{E})} \log \left(\frac{I_{C}}{I_{E}} \right) \right] + \frac{Peb}{E(I_{C} - I_{E})} \left[1 + \frac{I_{E}}{(I_{C} - I_{E})} \log \left(\frac{I_{E}}{I_{C}} \right) \right]$$

The rotation at the end "C" of the third free body diagram can also be calculated.

$$\theta_C = -\frac{M_c c}{EI_c}$$

Setting the rotations at "C" equal to each other to satisfy continuity yields the following.

$$M_C = \frac{Pe\left(a + \frac{b(\log(\gamma) - 1)}{(\gamma - 1)} - \frac{b\log(1/\gamma)}{(\gamma - 1)^2}\right)}{\left(a + \frac{b\log(\gamma)}{(\gamma - 1)} + \frac{c}{\gamma}\right)}$$

For the geometry of the stiffener splice detail, the stress in the flange of the midlength section is related to the applied axial load, P, by the following equation.

$$\sigma = \frac{P}{A} + \frac{M_C C_{f \mid g}}{I_C}$$
$$\sigma_{ksi} = 0.5277 P_{kips}$$

Appendix E

Fatigue Test Results

Fatigue Test Results

The following pages contain the results of many fatigue tests performed on a variety of welded structural details. The information contained in each set includes an abbreviated description of each detail, type of steel, type of loading, nominal thickness, fabricator and configuration. Also included in each set is a detail number that helps to distinguish details from one another in other tables in this report. The constant amplitude fatigue data, applied stress amplitude and cycles to failure, are presented along with statistics obtained from the regression analysis and a plot of the resulting S/N curve with data superimposed; data not used in the regression analysis are also listed. Results of tests conducted under random narrowband (Rayleigh distributed) loadings are included along with a figure of the test specimen showing the general size and configuration.

The following commentary provides a brief description of each test specimen detail. Detail #1 is a small cruciform shaped specimen, made of HSLA-80 steel, fabricated in a shipyard and tested under three point bending loads. The fillet welds are full penetration and the long piece of the specimen is continuous.

Details #2, #4, #6 and #7 are all continuous cruciform configurations of 1/4", 7/16", 3/4" and 1" thick HSLA-80 steel, respectively. They were fabricated in a shipyard. All specimens were tested under axial loads. The fillet welds are full penetration, but non-load carrying. Details #12 and #15 are similar, except that they were fabricated at NSWCCD of 1/2" thick high strength (HS) and ordinary strength (OS) steel, respectively.

Detail #3 is also a continuous cruciform, and identical to detail #4, except that fabrication was performed at NSWCCD. Detail #5 is therefore a combination of Detail #3 and Detail #4 data.

Detail #8 is a discontinuous cruciform, having load carrying full penetration fillet welds. Specimens were fabricated from 7/16" thick HSLA-80 plate at NSWCCD. Specimens were tested under axial load. Details #13 and #16 are similar, except that they were fabricated from 1/2" HS and OS steel plate, respectively, at NSWCCD. Detail #10

is also a discontinuous cruciform configuration, but with load carrying *partial* penetration fillet welds. Specimens were fabricated from 1/2" thick HSLA-80 steel at NSWCCD.

Detail #9 is a misaligned discontinuous cruciform. The loaded member is offset by half the thickness (1/4"). The specimens were fabricated at NSWCCD from 3/4" thick HSLA-80 steel plate machined down to 1/2" thickness. Fillet welds are all full penetration and load carrying. Details #14 and #17 are similar, except that they are fabricated from HS and OS steel plate, respectively. Detail #11 is also a misaligned discontinuous cruciform configuration, but with load carrying *partial* penetration fillet welds. Specimens were similarly fabricated at NSWCCD from 3/4" thick HSLA-80 steel, machined down to 1/2", and offset by 1/4".

Detail #18 is a large-scale "conventional" component representing the intersection of longitudinal deck plating and stiffener, with transverse bulkhead plating and stiffener. The deck plate contains a transverse, full-penetration butt weld. The bulkhead stiffener lands on toe brackets, and the deck stiffener contains lapped watertight collars where it penetrates the bulkhead plating. Plating and stiffener webs were made of 3/16" thick steel and the stiffener flanges were made of 1/4" thick steel. The type of steel (HS or HSLA-80) and the fabricator (shipyard or NSWCCD) are indicated with the data. Loads were applied axially through the calculated neutral axis. Loadings for this set of data were all "tension-only" at approximately R=0. Detail #19 was similar, except that the bulkhead stiffener is sniped back away from the deck stiffener and the watertight collars were flush instead of lapped. Detail #20 was similar to Detail 18, except the deck stiffener was discontinuous at the bulkhead plate and therefore no watertight collars were present. All Detail #19 and #20 specimens were made of HSLA-80 steel and loaded axially at approximately R=0. Detail #21 components were identical to the Detail #18 components. All were fabricated in a shipyard from HSLA-80 steel and loaded under fully reversed loadings. Dimensions of this component can be found in Appendix C. Each component was instrumented with strain gages that were monitored prior to testing.

Detail #22 represented a full-scale stiffener splice detail. Due to the shift in neutral axis, the relationship between applied load and resulting stress is contained in Appendix D. These components were fabricated in a shipyard from HSLA-80 steel and

axially loaded. Dimensions of this component can be found in Appendix C. Each component was instrumented with strain gages that were monitored prior to testing.

Detail #23 represents a large-scale reinforced opening detail. The opening is reinforced with coaming, which contains a butt weld, and heavier plating around the corners of the openings than at the center. These details were fabricated at NSWCCD from HSLA-80 steel. Dimensions can be found in Appendix C. Due to the complexity of the detail, applied axial load was based on the far field stress away from the opening. Each specimen was instrumented with strain gages that were monitored prior to testing.

Detail #24 was simply configured from 1/2" HSLA-80 baseplate that was flame-cut at NSWCCD into large "dog-bone" shaped specimens. No welding was applied to any of these specimens. Specimens were subjected to fully reversed axial load.

Detail #25 represents an insert plate, where 1/4" thick HSLA-80 plate is welded between two pieces of 1/2" thick HSLA-80 plate, maintaining a flush surface on one side. The welds were all full-penetration, however, examination of the first specimens tested revealed lack of penetration at the root of the weld. A new batch of "good weld" specimens was fabricated and designated Detail #25. The "poor weld" data were designated as Detail #26. Applied load was determined based on axial stress in the thinner plate. Specimens were fabricated at NSWCCD and subjected to fully reversed axial load.

Detail #27 represented a one-sided weld configuration with a permanent backing bar. Specimens were fabricated at NSWCCD from 1/2" thick HSLA-80 plate.

Specimens were subjected to fully reversed axial load.

Detail #28 represented a doubler plate having the same thickness as the plate to which it was attached. The welds were initiated and terminated along the short edge of the doubler plate, transverse to the applied load. Detail #29 was similar to Detail #28, except that the doubler plate was twice the thickness of the plate to which it was attached. Both types of details were fabricated at NSWCCD from 1/2" HSLA-80 plate (and 1" thick HSLA-80 plate for the double thickness doubler specimen). Specimens were subjected to fully reversed axial load.

Data Index

Specimen #	Detail	Page
1	Bending HSLA Syd 7/16"	E-7
2	HSLA Continuous Cruciform Syd 1/4"	E-9
3	HSLA Continuous Cruciform Lab 7/16"	E-11
4	HSLA Continuous Cruciform Syd 7/16"	E-13
5	HSLA Continuous Cruciform Lab + Syd 7/16"	E-15
6	HSLA Continuous Cruciform Syd 3/4"	E-17
7	HSLA Continuous Cruciform Syd 1"	E-19
8	HSLA Discontinuous Cruciform Lab 7/16"	E-21
9	HSLA Misaligned Cruciform Lab 1/2"	E-23
10	HSLA Discont. Cruciform Partial Penetration 1/2"	E-25
11	HSLA Misaligned Cruciform Partial Penetration 1/2"	E-27
12	HS Continuous Cruciform Lab 1/2"	E-29
13	HS Discontinuous Cruciform Lab 1/2"	E-31
14	HS Misaligned Cruciform Lab 1/2"	E-33
15	OS Continuous Cruciform Syd 1/2"	E-35
16	OS Discontinuous Cruciform Lab 1/2"	E-37
17	OS Misaligned Cruciform Lab 1/2"	E-39
18	Conventional Struc. Comp. (Approx. R = 0)	E-41
19	Sniped Structural Comp. (Approx. R = 0)	E-43
20	Intercostal Components (Approx. R = 0)	E-45
21	HSLA Conventional Components	E-47
22	HSLA Stiffener Splice R = 1	E-49
23	HSLA Opening Detail R = -1	E-51
24	HSLA Flame Cut Edge Specimen R = -1	E-53
25	HSLA Insert Plate Specimen R = -1	E-55
26	HSLA Insert Plate Poor Weld Specimen R = -1	E-57
27	HSLA One-Sided Weld Specimen R = -1	E-59
28	HSLA Single Thickness Doubler Spec. R = -1	E-61
29	HSLA Double Thickness Doubler Spec. R = -1	E-63

		#1 Bending HS	SLA SYD 7/16"		
Steel Type: Loading: Thickness: Fabricator: Configuration:	HSLA-80 Bending R=-1 7/16" Shipyard		· .		
Stress	Fatigue				
Amplitude	Life	#1 BI	ENDING HSLA SY	YD 7/16"	
(KSI)	(Cycles)	100			
60	20,300	इं			
60	52,500	STRESS AMPLITUDE (KSI)			
60	44,100	5	***	\	
60	97,100	<u> </u>			
45	79,600	A AM			
45	138,000	ESS			
45	126,000	STR			
45	67,200	10			
30	264,800	1.00E+03	1.00E+04 1.00E+0		0E+07 1.00E+08
30	340,800		FATIGUE	LIFE (CYCLES)	
30	720,700				
30	4,360,800		- : 0	1	
20	19,849,400		Regression O		13.617
20	15,125,600		Intercept	log(Aamp)	15.161
				log(Arng)	
			Slope		-5.130
			Std Err of Y Es	st ·	0.378
			COV		0.581
Constant amp	litude data not u	used	R Squared	· ·	0.852
			No. of Observ		14
Stress	Fatigue		Degrees of Front	eedom	12
Amplitude	Life	Comments			
(KSI)	(Cycles)				
					,
20	20,000,000				
20	20,000,000				
12	2,609,900	Suspended			

				· · · · · · · · · · · · · · · · · · ·	
Random Fatio	ue Data (Narrov	vband. Zero Me	ean)		
_					
RMS	Fatigue	Geometric		1	. /
Stress	Life	Mean			33/4"
(KSI)	(Cycles)	(KSI)		6	/
10	6,969,900				
10	11,699,400		/		
10	1,603,100			7/16"	13", 18"
10	8,291,000	5,737,700			
15	726,200		_ •	5	
15	2,085,400				
15	1,028,600				
15	759,100	1,042,800			
22.5	172,000				
22.5	113,900				
22.5	221,900				
22.5	88,400	140,000			
Random Fatig	ue Data (Narrov	wband, with Me	an)		
RMS	Mean	Fatigue	Geometric		
Stress	Stress	Life	Mean		
(KSI)	(KSI)	(Cycles)	(KSI)		
15	15	794,200			
15	15	600,300			
15	15	512,000			
15	15	1,254,400	743,900		
15	60	218,100			
15	60	258,100			
15	60	252,900			
15	60	345,000	264,700		
	1				

	1	#2 HSLA CON	ITINUOUS CRI	JCIFORM SYD	1/4"
Steel Type:	HSLA-80				
Loading:	Axial R= -1				
Thickness:	1/4"				
Fabricator:	Shipyard				
Configuration:	Cruciform, cont	tinuous, non-lo	pad carrying fill	et welds	
Stress	Fatigue			NEODIA OVO 4/4	•
Amplitude	Life	#2 HSLA CO	NTINUOUS CRUC	SIFURM STU 1/4	
(KSI)	(Cycles)	100			
12	3,470,700				
12	1,243,700	STRESS AMPLITUDE (KSI)	•		
12	1,288,500	<u> </u>			
12	10,697,300	10		******	•
15	348,000	W S			
15	237,100	SS			
15	764,700				
15	582,700	" ₁			
30	167,500	1.00E+03	1.00E+04 1.00E+	05 1.00E+06 1.	00E+07 1.00E+08
30	123,300		FATIGUE	E LIFE (CYCLES)	
30	47,100		<u>,</u>		
30	61,600				
45	4,130		Regression O		
45	7,390		Intercept	log(Aamp)	10.714
45	8,160			log(Arng)	11.944
45	7,510		Slope		-4.087
			Std Err of Y E	st	0.350
			COV		0.554
			R Squared		0.892
			No. of Observ		16
			Degrees of Fr	eedom	14

٤				
, , , , , , , , , , , , , , , , , , , 	D 4 (N)			
andom Fatig	gue Data (Narrov	voand, Zero Me	an)	
RMS	Fatigue	Geometric		
Stress	Life	Mean		
(KSI)	(Cycles)	(KSI)		
4	6,216,900	(1.1.1)		
4	6,386,100	6,300,900		
5	2,628,100			
5	2,028,400			
5	3,087,800			
5	3,908,200	2,832,100		
10	228,800	·		
10	519,200			4
10	531,200			· ·
10	858,100	482,400		<u> </u>
15	53,400			
15	35,200			
15	35,100			
15	46,000	41,700		
				
		, , , , , , , , , , , , , , , , , , , ,		

		#3 HSLA CO	NTINUOUS CR	UCIFORM LAB	7/16"
Steel Type:	HSLA-80				
Loading:	Axial R= -1				
Thickness:	7/16"				
Fabricator:	NSWC				
Configuration:	Cruciform, con	tinuous, non-	load carrying fill	et welds	
Stress	Fatigue				
Amplitude	Life	#3 HSLA C	CONTINUOUS CRU	ICIFORM LAB 7/1	16"
(KSI)	(Cycles)	100.0			
45	14,500	_ ==			
45	14,800	STRESS AMPLITUDE (KSI) 0.01			
45	16,300				
45	23,200	10.0		7 7854	
45	18,000	AMI			
30	66,500	ESS			
30	61,900	T E			
30	70,600	1.0			
30	82,800	•	1.00E+04 1.00E	+05 1.00E+06 1	.00E+07 1.00E+08
30	79,100		FATIGU	JE LIFE (CYCLES)	
15	572,000				·
15	779,500				
15	515,000		Regression O		0.550
15	229,200		Intercept	log(Aamp)	9.559
15	1,071,600			log(Arng)	10.525
12	775,600		Slope	<u>l.</u>	-3.210
12	3,732,900		Std Err of Y E	st	0.185
12	1,118,600		COV		0.346
12	810,800		R Squared	<u> </u>	0.947
12	1,392,000		No. of Observ		20
			Degrees of Fr	eedom	18

			D				
Random Fatio	gue Data (Narrov	vband, Zero Me	ean)				
RMS	Fatigue	Geometric					_
Stress	Life	Mean				2	
(KSI)	(Cycles)	(KSI)					
4	16,113,100				11		
4	24,154,300						
4	50,539,400						
4	4,407,800	17,159,600			dl ,	人	
5	2,685,000				مرسالا	$\langle \ \rangle$	
5	5,496,200			- k _{2"}		//	v.
5	7,863,200			_ :	7 2"		."
5	4,240,000	4,709,700		7/6		μ	f
7.5	1,504,200						<u> </u>
7.5	1,111,300						
7.5	1,178,100				1	احرب	
7.5	1,216,300	1,244,100			33/4	}	
10	488,000						
10	686,700						
10	901,700						
10	463,000	611,600					
15	93,600						
15	112,600						
15	128,000						•
15	141,200	117,500					
22.5	13,200						
22.5	13,000						
22.5	14,300						
22.5	17,300	14,400					

		#4 H	SLA	CON	UOUNITI	S CRI	JCIFORM S	YD 7/16"
		<u> </u>						
Steel Type:	HSLA-80	ļ			 			
Loading:	Axial R= -1							
Thickness:	7/16"	ļ <u>.</u>						
Fabricator:	Shipyard							
Configuration:	Cruciform, con	ıtinuo	us,	non-le	oad carry	ing fille	et welds	
Stress	Fatigue							
Amplitude	Life		#4	I HSLA	CONTINU	Jous C	RUCIFORM S	YD 7/16"
(KSI)	(Cycles)		100 -					
12	3,754,600	_						
12	2,073,800	STRESS AMPLITUDE (KSI)						
12	1,262,100						+	
12	1,586,500	5	10 -				9 300	
15	1,346,500	AMP	10 -					
15	487,100	SS						
15	512,600	I I						
15	1,206,900	S	1.					
30	54,800		1.00	E+03	1.00E+04	1.00E+	05 1.00E+06	1.00E+07 1.00E+08
30	19,600					FATIGU	E LIFE (CYCLES)	
30	80,600							
30	41,400							
45	9,230				Regress	ion O	utput:	
45	16,430				Intercep	<u>t </u>	log(Aamp)	10.432
45	11,310						log(Arng)	11.592
45	18,660				Slope			-3.855
					Std Err o	of Y Es	st	0.210
					COV			0.383
					R Squar	ed		0.953
					No. of O	bserva	ations	16
				•	Degrees	of Fre	edom	14

Random Fatig	ue Data (Narrov	vband. Zero M	ean)	
		,		
RMS	Fatigue	Geometric		
Stress	Life	Mean		
(KSI)	(Cycles)	(KSI)		
4	18,229,100			
4	7,236,000	11,485,000		
5	4,002,000			
5	5,829,700			
5	5,102,600			
5	4,578,400	4,831,800	3"	
10	474,500			
10	283,100		7/4"——	
10	315,300			
10	821,000	431,800		
15	93,000		33/4	
15	63,900		317	
15	53,600			
15	103,400	75,800		
				M A
L				

		#5 H	SLA CO	NTINUOUS CF	RUCIFORM LAE	3+SYD 7/16"
Steel Type:	HSLA-80					
Loading:	Axial R= -1					
Thickness:	7/16"					
Fabricator:	Shipyard & NS	SWC				
Configuration		itinuo	us, non-	load carrying fi	llet welds	
Stress	Fatigue					
Amplitude	Life		#5 HSL	A CONTINUOUS	CRUCIFORM LAB	+SYD
(KSI)	(Cycles)		100	7/1	6"	
12	3,754,600	_	· ** *			
12	2,073,800	\$ S				
12	1,262,100	罩				
12	1,586,500	5	10		* ****	
15	1,346,500	AMP				
15	487,100	4 -				
15	512,600					
15	1,206,900	S	1			
30	54,800		1.00E+03	1.00E+04 1.00E	+05 1.00E+06 1.	00E+07 1.00E+08
30	19,600			FATIG	JE LIFE (CYCLES)	
30	80,600	Ì				
30	41,400					
45	9,230			Regression (Output:	
45	16,430			Intercept	log(Aamp)	9.947
45	11,310				log(Arng)	10.999
45	18,660			Slope		-3.496
12	775,600			Std Err of Y	Est	0.205
12	3,732,900			COV		0.376
12	1,118,600			R Squared		0.942
12	810,800			No. of Obser		36
12	1,392,000			Degrees of F	reedom	34
15	572,000					e
15	779,500					
15	515,000					
15	229,200					
15	1,071,600					
30	66,500				·	
30	61,900		//			
30	70,600					
30	82,800					
30	79,100					
45	14,500					<u> </u>
45	14,800					
45	16,300					
45	23,200					
45	18,000					

						7
dom Fatig	gue Data (Narrov	vband, Zero Me	ean)			
RMS	Fatigue	Geometric				1
Stress	Life	Mean				/ ↑
(KSI)	(Cycles)	(KSI)		_ <		
4	18,229,100			_		
4	7,236,000			_		
4	16,113,100					
4	24,154,300					
4	50,539,400					
4	4,407,800	15,010,000		W 211		
5	4,002,000			123	* 2 H	
5	5,829,700			7,"	- 1	14"
5	5,102,600			- 7/6		<u></u>
5	4,578,400	•	***************************************	_		
5	2,685,000			_ (33/4	
5	5,496,200		,	_ ·	37/4	· 1
5	7,863,200					
5	4,240,000	4,770,300				
7.5	1,504,200					
7.5	1,111,300					
7.5	1,178,100					
7.5	1,216,300	1,244,100				
10	474,500					
10	283,100					
10	315,300					
10	821,000					
10	488,000					
10	686,700					
10	901,700					
10	463,000	513,900				
15	93,000				·	
15	63,900	,				
15	53,600					
15	103,400					
15	93,600					
15	112,600					
15	128,000					
15	141,200	94,300				
22.5	13,200					
22.5	13,000					
22.5	14,300					
22.5	17,300	14,400				
		•				
						>

		#6 H	SLA	COI	JOUNITA	JS CRI	JCIFORM S'	YD	3/4"	
					 			_		
Steel Type:	HSLA-80							_		
Loading:	Axial R= -1				<u> </u>			_		
Thickness:	3/4"									
Fabricator:	Shipyard				<u></u>					
Configuration:	Cruciform, con	tinuo	us,	non-l	oad carry	ing fill	et welds			
					CONTINU	ious c	RUCIFORM SY	/D [•]	2//!	
			#6	HSLA	CONTINU	JOUS C	RUCIFORIVI 3 I	υ,	J/ -4	
Stress	Fatigue		100							
Amplitude	Life	हि								
(KSI)	(Cycles)	ž.						Ш	# -	
12	1,013,600				 			₩		
12	625,200	7	10					Ш		
12	652,500	AM						*		
12	322,100	ESS								
15	213,600	STRESS AMPLITUDE (KSI)						H		
15	190,800		1							
15	141,100		1.00	E+03	1.00E+04	1.00E+0	05 1.00E+06	1.0	00E+07	1.00E+08
15	145,000					FATIGUE	LIFE (CYCLES)			
30	36,700									
30	26,200									
30	24,300				Regres					
30	30,100				Intercep	ot	log(Aamp)			9.057
							log(Arng)			10.000
			,		Slope					-3.134
					Std Err	of YE	st			0.173
					COV					0.328
					R Squa					0.919
					No. of C	Observ	ations			12
					Degree	s of Fro	eedom			10

							
*. *							
ndom Fatig	ue Data (Narrov	vband, Zero M	ean)				
					·····		
RMS	Fatigue	Geometric					
Stress	Life	Mean				a	1
(KSI)	(Cycles)	(KSI)					
4	3,359,800						-
4	2,862,900			·			
4	2,412,900						
4	3,905,700	3,085,600			11 ,	人	
5	1,381,800			_ (1	()	
5	1,253,000				7K	//	
5	1,289,100			1 2	1 2"		
5	1,306,600	1,306,800			الم ع	/	<i>4</i> ~
10	148,100				4[<u> </u>
10	138,000			· ·			٠.
10	133,000			 :		الد	
10	179,300	148,600			33/4	≱ . j	

		#7 HSLA COI	NTINUOUS CRI	JCIFORM SYD	1"
Steel Type:	HSLA-80				
Loading:	Axial R= -1				
Thickness:	1"				
Fabricator:	Shipyard				
Configuration:	Cruciform, con	tinuous, non-l	oad carrying fill	et welds	
	·	#7	7 HSLA CONTINU	OUS CRUCIFORM	// SYD 1"
Stress	Fatigue	100			
Amplitude	Life				
(KSI)	* (Cycles)				
12	332,600		 		
12	246,900	Id 10			
12	226,800	STRESS AMPLITUDE (KSI)			
12	342,200	RES			
15	112,800				
15	167,100	1.00E+03	1.00E+04 1.00E+		00E+07 1.00E+08
15	157,200		FATIGUE	LIFE (CYCLES)	
15	150,500			<u> </u>	
30	22,200				
30	23,700		Regression O		0.000
30	24,700	,	Intercept	log(Aamp)	8.389
30	20,600			log(Arng)	9.211
			Slope		-2.732
			Std Err of Y E	st	0.068
			COV		0.145
			R Squared	<u></u>	0.982
			No. of Observ		12 10
			Degrees of Fr	eeaom	10

			····		
indom Fatig	jue Data (Narrov	vband, Zero M	ean)		
RMS	Estigue	Coomotrio			
	Fatigue	Geometric			
Stress	Life	Mean			
(KSI)	(Cycles)	(KSI)		_	
4	2,801,800		·	_	ł
4	2,361,500			_	
4	2,912,000				
4	2,007,800	2,493,900		_ ノ	
5	1,174,900			$\overline{\ }$	
5	903,000			- 13	K.
. 5	830,600			- 2	
5	1,046,600	980,000		_ ,,	2.4
10	148,100	,		- ' 🎤	
10	144,200			- [
-10	164,300			- {	
10	134,600	147,400		<u> </u>	33/4
		,			<u> </u>
	 				
	 				
	1				· · · · · · · · · · · · · · · · · · ·
	<u> </u>				

		#8 HSLA DISC	ONTINUOUS	CRUCIFORM L	AB 7/16"
Steel Type:	HSLA-80				
Loading:	Axial R= -1				
Thickness:	7/16"				
Fabricator:	NSWC				
Configuration:	Cruciform, disc	continuous, loa	d carrying fillet	welds	
		#8 HSL	A DISCONT. CR	UCIFORM LAB 7/	16"
Stress	Fatigue	100			::====================================
Amplitude	Life				
(KSI)	(Cycles)	STRESS AMPLITUDE (KSI)			
15	276,500	9		\	
15	1,011,300	10			000
15	744,100	AME TO THE			
15	227,300	SS			
15	479,400	I K			
30	192,800				
30	33,400	1.00E+03	1.00E+04 1.00E+0	5 1.00E+06 1.0	0E+07 1.00E+08
30	82,100		FATIGUE	LIFE (CYCLES)	
30	33,200				
30	78,400				
45	17,500		Regression O		
45	15,300		Intercept	log(Aamp)	9.601
45	11,100			log(Arng)	10.597
45	7,190		Slope		-3.306
45	9,830		Std Err of Y Es	st	0.263
			COV		0.454
			R Squared		0.876
Constant amp	olitude data not i	used	No. of Observ		15
			Degrees of Fr	eedom	13
Stress	Fatigue				
Amplitude	Life	Comments			
(KSI)	(Cycles)				
10	17,625,500	Suspended			
10	1,382,400		-		
10	1,455,900				
10	22,166,000				
10	10,841,600	Suspended		·	

andom Fatigi	ue Data (Narrov	vband, Zero M	ean)			
			······································			
RMS	Fatigue	Geometric			,	
Stress	Life	Mean	·			\
(KSI)	(Cycles)	(KSI)		-	//	
5	2,558,800				T	
5	3,008,200			_		
5	3,184,200			- 1		
5	17,960,800	4,580,500		- ノ		$A \mid -$
7.5	793,300					\bigcirc
7.5	1,972,100			- 2"	\sim	
7.5	2,563,100			- 1-2	2"	14"
7.5	1,120,900	1,456,000		_ 7/6" ~	- "	1 /4
10	177,500			_ "	-	-
10	965,200			_		/
10	425,400				230	_
10	383,100	408,800		_ i	33/4"	· · —
15	108,100	•			···	
15	82,400					
15	140,700					
15	101,700	106,300	_			
22.5	15,200	······································			··	
22.5	17,000					
22.5	17,500					
22.5	14,200	15,900				

		#9 HSLA MIS/	ALIGNED CRU	CIFORM LAB 1	/2"
0. 1.	1101 4 00				
Steel Type:	HSLA-80				
Loading:	Axial R= -1				
Thickness:	1/2"				
Fabricator:	NSWC			1.1-	
Configuration	: Cruciform, mis	aligned, load o	arrying fillet we	eias	
Stress	Fatigue				
Amplitude	Life	#9 HSLA I	MISALIGNED CRU	JCIFORM LAB 1/	2"
(KSI)	(Cycles)	100			
10	1,472,900				
10	792,100	<u> </u>			
10	344,500	ğ 🗐			
10	283,900	STRESS AMPLITUDE (KSI)			
15	170,700	AME			•
15	237,600	SS			
15	104,900	I II			
15	70,500	1 " 1		<u> </u>	
30	9,020	1.00E+03	1.00E+04 1.00E+0	05 1.00E+06 1.0	00E+07 1.00E+08
30	7,930		FATIGUE	LIFE (CYCLES)	
30	5,970				
30	8,350				
			Regression Ou	utput:	
			Intercept	log(Aamp)	9.733
				log(Arng)	10.922
			Siope		-3.949
				log(Arng)	-3.949 0.227
			Slope	log(Arng)	-3.949
Constant amp	litude data not	used	Slope Std Err of Y Es	log(Arng)	-3.949 0.227 0.407 0.934
Constant amp	olitude data not	used	Slope Std Err of Y Es	log(Arng)	-3.949 0.227 0.407 0.934 12
Constant amp	olitude data not e		Slope Std Err of Y Es COV R Squared	log(Arng) st ations	-3.949 0.227 0.407 0.934
		used	Slope Std Err of Y Es COV R Squared No. of Observa	log(Arng) st ations	-3.949 0.227 0.407 0.934 12
Stress	Fatigue		Slope Std Err of Y Es COV R Squared No. of Observa	log(Arng) st ations	-3.949 0.227 0.407 0.934 12
Stress Amplitude	Fatigue Life (Cycles)		Slope Std Err of Y Es COV R Squared No. of Observa	log(Arng) st ations	-3.949 0.227 0.407 0.934 12
Stress Amplitude (KSI)	Fatigue Life (Cycles) 20,041,600	Comments	Slope Std Err of Y Es COV R Squared No. of Observa	log(Arng) st ations	-3.949 0.227 0.407 0.934 12
Stress Amplitude (KSI) 7.5	Fatigue Life (Cycles) 20,041,600	Comments Suspended Suspended	Slope Std Err of Y Es COV R Squared No. of Observa	log(Arng) st ations	-3.949 0.227 0.407 0.934 12

					····		
			··				
andom Fatigu	ie Data (Narrov	vband, Zero M	ean)			····· ·	
RMS	Fatigue	Geometric		· · · · · · · · · · · · · · · · · · ·			1
Stress	Life	Mean				^	1
(KSI)	(Cycles)	(KSI)		- 1/			
5 5	1,639,300			— 34" \	11	1	.
5	1,147,100						,,
5	458,100			1/1°	1/	13/4	.
5	598,100	847,200		_ '2>	4	义	
				_	XX		>
				¼".	1	1	
					2"		14"
				<u> </u>			
					11,		
				<u> </u>		334	
							<u> </u>
					· · · · ·		
							ļ

	#10 HSLA DIS	CONT	. CRUC	FORM	PARTIA	L PENETR	ATIO	N 1/2"
Steel Type:	HSLA-80							
Loading:	Axial R= -1							
Thickness:	1/2"							
Fabricator:	NSWC							
Configuration:	Cruciform, disc	continu	ious, pai	rtial per	netration	load carryii	ng fille	et welds
Stress	Fatigue							
Amplitude	Life	#	10 HSLA	DISCON	IT. CRUC	. PART. PENI	ET. 1/2	
(KSI)	(Cycles)	10	00					
5	2,264,200	- Fig						
5	2,018,500	STRESS AMPLITUDE (KSI)					 	
5	3,495,700	9					+	
5	2,994,900	F	10					
7.5	749,800	AM						-
7.5	655,400	ESS						
7.5	638,100	STR				 		
7.5	1,147,700	"	1					
10	477,900	1	.00E+03	1.00E+04	1.00E+0		1.00E+	·07 1.00E+08
10	173,100				FATIGUE	LIFE (CYCLES)		
10	586,900							
10	399,900							
15	130,700				ssion O			0.070
15	131,100			Interce	<u>ept</u>	log(Aamp)		8.272
15	177,000				· · · · · · · · · · · · · · · · · · ·	log(Arng)		9.081
15	112,600			Slope				-2.686
				1	r of YE	st	_	0.139
				COV				0.274
				R Squ				0.929
					Observ			16
				Degre	es of Fr	eedom		14

Random Fatigi	ue Data (Narrov	vband, Zero M	ean)	
RMS	Fatigue	Geometric		_
Stress	Life	Mean		
(KSI)	(Cycles)	(KSI)		_
5	1,351,500	(1(01)		-
5	594,500			-
5	1,208,400			-
5	737,100	919800		⁻
				_ 2"
				_ 1
				_ 1/2"
				_ 1
				_

	#11 HSLA MIS	ALIG	NED CR	UCIFORM PAR	TIAL PENETR	ATION 1/2"
Steel Type:	HSLA-80					
Loading:	Axial R= -1					
Thickness:	1/2"					
Fabricator:	NSWC					
Configuration:	Cruciform, miss	aligne	ed, partia	I penetration lo	ad carrying fille	et welds
Stress	Fatigue					
Amplitude	Life	#1	I1 HSLA N	IISALIGNED CRU	IC. PART. PENET	. 1/2"
(KSI)	(Cycles)		100			
5	1,476,500	≅				
5	624,600	الآ				
5	3,149,600	STRESS AMPLITUDE (KSI)		 	- 	
5	1,645,500	7	10		••	
7.5	414,300	AM				
7.5	763,800	ESS				
7.5	349,800	STR				
7.5	190,700		1			
10	182,500		1.00E+03	1.00E+04 1.00E+		00E+07 1.00E+08
10	77,400			FATIGU	E LIFE (CYCLES)	
10	260,600				-	
10	127,800					
15	37,200			Regression O		
15	46,500			Intercept	log(Aamp)	8.513
15	37,200				log(Arng)	9.521
15	29,700			Slope		-3.349
				Std Err of Y E	st	0.208
				COV		0.380
				R Squared		0.900
				No. of Observ		16
				Degrees of Fr	eedom	14

dom Fatig	ue Data (Narrov	vband, Zero M	ean)			
					· · · · · · · · · · · · · · · · · · ·	
RMS	Fatigue	Geometric	·			·
Stress	Life	Mean				1
(KSI)	(Cycles)	(KSI)		<		
5	136,300			34"	1	
5	153,200					,\
5	263,600				13/	·
5	248,400	192,300		_ 1/2>16		\
			·····			اھ
				_ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
				_ 74	F2	
				[]	3	.14
						<u> </u>
•					23/4	11 1 9 10 1 <u> </u>
					514	

			~ ····································		***	

		#12 F	IS CONT	INUOUS CRU	CIFORM LAB 1	/2"
Steel Type:	HS					
Loading:	Axial R= -1					
Thickness:	1/2"					
Fabricator:	NSWC					
Configuration:	Cruciform, con	tinuou	us, non-lo	pad carrying fil	let welds	
Stress	Fatigue		#42 L	IS CONTINUOUS	CRUCIFORM LA	3 1/2"
Amplitude	Life		#121	10 001111110000	· • • • • • • • • • • • • • • • • • • •	
(KSI)	(Cycles)		100			
15	546900					
15	1,435,800] <u> </u>				
15	1,810,700		1			 - -
15	693,700	7	10			60
15	499,700	STRESS AMPLITUDE (KSI)				
30	66,500	SS				
30	90,600	IR				
30	52,400		1			
30	80,200		1.00E+03	1.00E+04 1.00E+	05 1.00E+06 1.0	0E+07 1.00E+08
30	82,200			FATIGU	E LIFE (CYCLES)	
45	5,600					
45	6,500					
45	4,420			Regression O		
45	5,340			Intercept	log(Aamp)	11.289
45	6,220				log(Arng)	12.639
				Slope		-4.486
				Std Err of Y E	st	0.218
				COV		0.395
				R Squared		0.950
				No. of Observ		15
				Degrees of Fr	reedom	13
0		used				
Constant amp	olitude data not	useu				
Stress	Fatigue					
Amplitude	Life	Cor	nments			
(KSI)	(Cycles)					
10	20,572,200	Runo	out			
10	20,106,700					
10	20,031,600	Runc	out			
10	20,071,600					
10	26,215,600	Runc	out			

			- 1				
Random Fatio	ue Data (Narro)	wband, Zero Me	ean)				
	,		,				
RMS	Fatigue	Geometric					
Stress	Life	Mean				à	1
(KSI)	(Cycles)	(KSI)					
5	5,413,400		1			1.	
5	7,069,300					1	
5	4,354,300						
5	12,315,000	6,730,500		الر		ノ	:
7.5	2,132,400			C	///		
7.5	1,254,300			7	<	//	
7.5	2,518,300		·	-41			ا ——— نر
7.5	1,392,500	1,750,000	· ½	<u>" </u>	- 1	14	∤` 1.
10	403,400	-,,		11	<u>r</u>		<u>v — </u>
10	518,900						
10	452,500		 ;	U	33h	7	
10	706,100	508,500			r 33/4	ł ·	
		330,000					
							-
Constant Amp	litude Fatique D)ata (Non-zero	Mean)				
Constant Amp	litude Fatigue D	Data (Non-zero	Mean)				
Stress	Mean	Fatigue	Geometric				
Stress Amplitude	Mean Stress	Fatigue Life	Geometric Mean				
Stress Amplitude (KSI)	Mean Stress (KSI)	Fatigue Life (Cycles)	Geometric				
Stress Amplitude (KSI) 10	Mean Stress (KSI)	Fatigue Life (Cycles) 1,715,600	Geometric Mean				
Stress Amplitude (KSI) 10 10	Mean Stress (KSI) 10	Fatigue Life (Cycles) 1,715,600 2,948,900	Geometric Mean				
Stress Amplitude (KSI) 10 10	Mean Stress (KSI) 10 10	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800	Geometric Mean (KSI)				
Stress Amplitude (KSI) 10 10 10	Mean Stress (KSI) 10 10 10	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000	Geometric Mean				
Stress Amplitude (KSI) 10 10 10 10	Mean Stress (KSI) 10 10 10 10 20	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300	Geometric Mean (KSI)				
Stress Amplitude (KSI) 10 10 10 10 10 10	Mean Stress (KSI) 10 10 10 20 20	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100	Geometric Mean (KSI)				
Stress Amplitude (KSI) 10 10 10 10 10 10 10	Mean Stress (KSI) 10 10 10 20 20 20	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100 7,042,800	Geometric Mean (KSI)				
Stress Amplitude (KSI) 10 10 10 10 10 10 10 10 10	Mean Stress (KSI) 10 10 10 10 20 20 20 20	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100 7,042,800 5,542,700	Geometric Mean (KSI)				
Stress Amplitude (KSI) 10 10 10 10 10 10 10 10 15	Mean Stress (KSI) 10 10 10 20 20 20 20 20 15	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100 7,042,800 5,542,700 680,400	Geometric Mean (KSI)				
Stress Amplitude (KSI) 10 10 10 10 10 10 10 10 15 15	Mean Stress (KSI) 10 10 10 10 20 20 20 20 15 15	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100 7,042,800 5,542,700 680,400 638,800	Geometric Mean (KSI)				
Stress Amplitude (KSI) 10 10 10 10 10 10 15 15	Mean Stress (KSI) 10 10 10 20 20 20 20 15 15 15	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100 7,042,800 5,542,700 680,400 638,800 341,700	Geometric Mean (KSI) 2,902,100				
Stress Amplitude (KSI) 10 10 10 10 10 10 10 15 15 15	Mean Stress (KSI) 10 10 10 10 20 20 20 20 15 15 15 15	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100 7,042,800 5,542,700 680,400 638,800 341,700 325,100	Geometric Mean (KSI)				
Stress Amplitude (KSI) 10 10 10 10 10 10 10 15 15 15 15	Mean Stress (KSI) 10 10 10 10 20 20 20 20 15 15 15 15 30	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100 7,042,800 5,542,700 680,400 638,800 341,700 325,100 606,900	Geometric Mean (KSI) 2,902,100				
Stress Amplitude (KSI) 10 10 10 10 10 10 10 15 15 15 15 15	Mean Stress (KSI) 10 10 10 10 20 20 20 20 15 15 15 15 30 30	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100 7,042,800 5,542,700 680,400 638,800 341,700 325,100 606,900 564,600	Geometric Mean (KSI) 2,902,100				
Stress Amplitude (KSI) 10 10 10 10 10 10 10 15 15 15 15	Mean Stress (KSI) 10 10 10 10 20 20 20 20 15 15 15 15 30	Fatigue Life (Cycles) 1,715,600 2,948,900 1,446,800 9,691,000 1,290,300 862,100 7,042,800 5,542,700 680,400 638,800 341,700 325,100 606,900	Geometric Mean (KSI) 2,902,100				

<u> </u>		#13 HS DISCO	ONTINUOUS C	RUCIFORM LA	AB 1/2"
Steel Type:	HS				
Loading:	Axial R= -1				
Thickness:	1/2"				
Fabricator:	NSWC				
Configuration:	Cruciform, disc	continuous, noi	n-load carrying	fillet welds	
Stress	Fatigue				
Amplitude	Life	#13 HS DIS	CONTINUOUS C	RUCIFORM LAB	1/2"
(KSI)	(Cycles)	100			
15	614,400				
15	417,300	j ž			
15	208,700		 		
15	575,600	10			
15	196,900	STRESS AMPLITUDE (KSI)			
30	115,500	ESS			
30	46,500	<u> </u>			
30	93,900] " 1 — —			<u> </u>
30	48,600	1.00E+03	1.00E+04 1.00E+		0E+07 1.00E+08
30	40,100		FATIGUE	LIFE (CYCLES)	
45	15,200				
45	5,600				
45	5,440	<u> </u>	Regression O		9 9 4 9
45	6,860		Intercept	log(Aamp)	9.648
45	7,410			log(Arng)	10.677
			Slope		-3.417
			Std Err of Y E	St	0.252
			COV		0.440
			R Squared	4:	0.892
			No. of Observ		15 13
			Degrees of Fr	eedom	13
	<u> </u>				
Constant amp	litude data not	usea			
Stress	Fatigue				
Amplitude	Life	Comments			
(KSI)	(Cycles)				
10	22,627,400	Runout			
10	894,900				
10	20,076,000				
10	20,245,800	Runout			
10	305,900		-		

landom Fatig	ue Data (Narro	wband, Zero M	lean)	
RMS	Fatigue	Geometric		
Stress	Life	Mean		
(KSI)	(Cycles)	(KSI)		
5	20,009,900			
5	4,763,600			
5	11,667,700			
5	3,888,300	8,109,300		
7.5	1,555,600			
7.5	776,700			
7.5	854,200			2
7.5	3,581,300	1,386,600		1/2"
10	545,300			7
10	193,200		***************************************	
10	587,400			
10	408,100	398,600		
			T1.111	
			·	
			- T	
			<u></u>	

		#14 HS MISAL	IGNED CRUC	IFORM LAB 1/2	2"
Steel Type:	HS				
Loading:	Axial R= -1				
Thickness:	1/2"				
Fabricator:	NSWC				
Configuration	: Cruciform, mis	aligned, load c	arrying fillet we	elds	
Stress	Fatigue	"44110 11	HOALIONED COL	ICIFORM LAB 1/2	
Amplitude	Life	#14 HS IV	IISALIGNED CRU	CIFORIN LAB 1/2	
(KSI)	(Cycles)	100			
10	2,483,500	इ 🗎			
10	2,171,300	ı ş			
10	4,360,400	STRESS AMPLITUDE (KSI)		!~{ 	
10	5,415,000	5 10			
15	139,400	We I			
15	228,000	SS			
15	283,600	<u> </u>	 		
15	163,000	, ,			
30	3,250	1.00E+03	1.00E+04 1.00E+0	05 1.00E+06 1.0	0E+07 1.00E+08
30	2,390		FATIGUI	E LIFE (CYCLES)	
30	2,670				
30	2,990		,		
			Regression O	utput:	
			Intercept	log(Aamp)	12.902
				log(Arng)	14.833
			Slope		-6.416
			Std Err of Y E	st	0.142
			COV		0.280
Constant amp	olitude data not i	used	R Squared		0.990
			No. of Observ	ations	12
Stress	Fatigue		Degrees of Fr	eedom	10
Amplitude	Life	Comments			
(KSI)	(Cycles)				
7.5	21,635,000	Runout			
7.5	1,063,300				
				1	1
7.5	20,023,100	Runout			

		· · · · · · · · · · · · · · · · · · ·		
andom Fatig	ue Data (Narrov	vband, Zero M	ean)	
RMS	Fatigue	Geometric		-
Stress	Life	Mean		
(KSI)	(Cycles)	(KSI)		
5	902,700			_ 3
5	1,148,000			(.7
5	556,700			
5	841,000	834,600		_ 1/2
				_
				_ 1/1
		·		
		FA		
				·
			v. M. 4.	
			·	

		#15 OS CONT	INUOUS CRU	CIFORM LAB 1	/2"
Steel Type: Loading:	OS Axial R= -1				
Thickness:	1/2"				
Fabricator:	NSWC				
	Cruciform, con	tinuous, non-lo	ad carrying fille	et welds	
Stress	Fatigue				
Amplitude	Life	#15 OS C	ONTINUOUS CR	UCIFORM LAB 1/	2"
(KSI)	(Cycles)	100			
15	478,900				
15	382,800	STRESS AMPLITUDE (KSI)			
15	1,591,900				
15	597,700	10			9 9
15	1,377,500	NA I			
30	53,700	ESS			
30	43,600	R			
30	27,900	, ,			
30	64,100	•	1.00E+04 1.00E+0		00E+07 1.00E+08
30	57,200		FATIGUE	LIFE (CYCLES)	
			Regression O	ıtnı ıt:	
			Intercept	log(Aamp)	10.566
			intercept	log(Arng)	11.766
			Slope	109(74119)	-3.987
			Std Err of Y Es	st	0.221
			COV		0.399
Constant amn	litude data not i	used	R Squared		0.902
Ooriotant anna			No. of Observa	ations	10
Stress	Fatigue		Degrees of Fre	eedom	8
Amplitude	Life	Comments			
(KSI)	(Cycles)				
10	4,769,000				
10	20,000,000	Runout			
10	8,905,200				
10	20,010,000				
10	20,000,000				

I					
Random Fatigu	ue Data (Narrov	vband, Zero Me	ean)		
RMS	Fatigue	Geometric	,		1
Stress	Life	Mean			/ ¶ ———
(KSI)	(Cycles)	(KSI)			
5	11,189,200				
5	5,488,200				
5	2,868,200				
5	9,242,400	6,351,900		ノ	
7.5	669,200				>
7.5	1,330,800			2	
7.5	924,300			2".	.11
7.5	792,600	898,700	- V	2	/4
10	414,300				- X
10	762,400				
10	231,300			33/4	
10	358,100	402,200		× 314	1
Constant Amp	litude Fatigue D	ata (Non-zero	Mean)		
Stress	Mean	Fatigue	Geometric		
Amplitude	Stress	Life	Mean		
(KSI)	(KSI)	(Cycles)	(KSI)		
10	10	1,231,200			
10	10	897,700			
10	10	2,259,200			
10	10	4,465,700	1,827,400		-
10	20	5,975,100			
10	20	1,630,100	·		
10	20	2,547,300			
10	20	4,221,800	3,199,100		
15	15	444,000			
15	15	344,000			
15	15	350,500			
15	15	481,200	400,600		

		#16 OS DIS	CONTINUOUS	CDUCIEODM	LAD 4/01
		#10 03 013	CONTINUOUS	CRUCIFORM	LAB 1/2"
Steel Type:	os				
Loading:	Axial R= -1				
Thickness:	1/2"				
Fabricator:	NSWC				
	n: Cruciform, dis	scontinuous la	ad carrying fille	et wolds	
		Torking dec, it	Jaa Carrying IIII	Ct Weigs	
Stress	Fatigue				
Amplitude	Life	#16 OS D	ISCONTINUOUS	CRUCIFORM LA	R 1/2"
(KSI)	(Cycles)				D 1/2
15	1,628,000	= 100 E			
15	247,400	\$ ===			
15	279,900				
15	975,100	-4 -		*	
15	666,700	W "			9
30	103,200	SS			
30	24,800	TRE			
30	31,900	1 ° 1			
30	34,200	1.00E+03	1.00E+04 1.00E+	+05 1.00E+06 1.	00E+07 1.00E+08
30	59,200	1	FATIGU	E LIFE (CYCLES)	
			Regression O	utput:	
			Intercept	log(Aamp)	10.185
				log(Arng)	11.314
			Slope		-3.752
			Std Err of Y E	st	0.304
01			COV		0.503
Jonstant ampl	itude data not ι	used	R Squared		0.812
Chur	F= 1:		No. of Observ		10
Stress	Fatigue		Degrees of Front	eedom	8
Amplitude	Life	Comments			
(KSI)	(Cycles)				
10	17,969,400				•
10	20,784,100	Runout			
10	580,500				
10	1,865,900				
10	7,489,500				

			ř
dom Esticu	e Data (Narrow	band Zero Me	an)
Idom Faugu	e Data (Narrow	Darre, Estate	
RMS	Fatigue	Geometric	
Stress	Life	Mean	
(KSI)	(Cycles)	(KSI)	
7.5	1,777,800		
7.5	504,300		
7.5	1,187,300		
7.5	1,409,900	1106800	
10	201,300		
10	107,000		<u> </u>
10	164,000		
10	319,300	183300	
			:
			**
andom Amp	itude Fatigue D	ata not used	•
2,100,111			1
	1		
RMS	Fatigue		
RMS Stress	Fatigue Life	Comments	
Stress	Life (Cycles)		
	Life (Cycles) 20,155,000	Runout	
Stress (KSI)	Life (Cycles) 20,155,000 3,061,600	Runout	
Stress (KSI) 5	Life (Cycles) 20,155,000 3,061,600 4,508,400	Runout	
Stress (KSI) 5	Life (Cycles) 20,155,000 3,061,600	Runout	
Stress (KSI) 5 5	Life (Cycles) 20,155,000 3,061,600 4,508,400	Runout	

		#17 C	S MISAL	IGNED CRUC	IFORM LAB 1/2	2"
Steel Type:	OS					
Loading:	Axial R= -1	1_1/17				
Thickness:	1/2"					
Fabricator:	NSWC					
	Cruciform, mis	aligne	d, load c	arrying fillet we	elds	
		<u> </u>	·			
Stress	Fatigue					
Amplitude	Life		#17 OS N	ISALIGNED CRU	JCIFORM LAB 1/2	2"
(KSI)	(Cycles)		100			
10	538,200		"			
10	212,900	H 10				
10	417,700			 		
10	404,300	Ž	10			
15	61,900	AME			000	
15	83,900	SS				
15	76,700	TR				
15	68,200	,	1			
20	17,500		1.00E+03	1.00E+04 1.00E+0	05 1.00E+06 1.0	00E+07 1.00E+08
20	12,400			FATIGUE	E LIFE (CYCLES)	
20	8,750					
20	10,100					
				Regression O		
				Intercept	log(Aamp)	10.541
					log(Arng)	12.023
	·			Slope		-4.924
				Std Err of Y E	st	0.149
				COV		0.290
Constant amp	litude data not i	used		R Squared		0.953
				No. of Observ		12
Stress	Fatigue			Degrees of Fr	eedom	10
Amplitude	Life	Cor	nments			
(KSI)	(Cycles)					
7.5	907,800					
7.5	1,374,600					•
7.5	2,074,400					
7.5	20,000,000	Runo	ut			

				
Random Fatig	ue Data (Narrov	vband, Zero M	ean)	
RMS	Fatigue	Geometric		
Stress	Life	Mean		
(KSI)	(Cycles)	(KSI)		
5	1,407,500		3/4	
5	1,214,200			
5	776,200		13/4	
5	1,515,000	1,190,600		
····			14	" ———
				:
			33/4	
				
-				
			· · · · · · · · · · · · · · · · · · ·	
W				
		······································		
· · · · · · · · · · · · · · · · · · ·				
· · · · · ·				
				·

- 1			
Random Fatigu	ue Data (Narrow	band, Zero Me	an)
RMS	Fatigue	Geometric	
Stress	Life	Mean	
(KSI)	(Cycles)	(KSI)	
5	3,267,500	(100)	
5	2,099,200		
5	4,435,000	- /	······
5	2,617,100	2,987,100	
	2,017,100	2,307,100	
			
Donden Edia	ue Data (Narrow	مراك المسامل	
Kandom Faugi	Je Data (Narrow	band, with ivies	in)
5140	14		
RMS	Mean	Fatigue	Geometric
Stress	Stress	Life	Mean
(KSI)	(KSI)	(Cycles)	(KSI)
5	7.8	3,265,000	
5	7.8	1,554,200	
5	7.8	2,268,200	
5	7.8	2,141,400	2,228,100
7	7.8	935,000	
7	7.8	973,000	
7	7.8	1,111,700	
7	7.8	757,300	935,500
	7.0	137,300	
	i k	الما	,14"
		6"	×′"
			\geq —
		4) K	
			1/6"
		35" _	
		/ 33	
	L		
		- 1117	

		#19 SNIPED :	STRUCTURA	L COMP. (APP	ROX R=0)
Steel Type:	HSLA				
Loading:	Axial R=0				
Thickness:	N/A				
Fabricator:	NSWC				
Configuration	Sniped stiffene	er/bulkhead joi	nt component		-
Stress	Fatigue				
Amplitude	Life				
(KSI)	(Cycles)				
6.975	5,910,270		100		
7.835	3,081,810				
9.09	1,214,120				
13.045	281,970				
16.665	188,790				
			·		
Constant amp	olitude data not i	used			
Stress	Fatigue				
Amplitude	Life	Comments			
(KSI)	(Cycles)				
5.66	14,180,800	Failed at End	сар		
6.095	50,704,840	Suspended			
4.755	22,441,780	Suspended			
			Regression		
			Intercept	log(Aamp)	10.058
				log(Arng)	11.267
	·		Slope		-4.016
			Std Err of Y	Est	0.139
			COV		0.274
			R Squared		0.965
			No. of Obse	rvations	5
			Degrees of I		3

	·	#20 INTERCO	STAL COMPO	NENTS (APPR	OX R=0)
Steel Type: Loading: Thickness: Fabricator: Configuration: Stress Amplitude (KSI) 16.6 13 11.1	HSLA Axial R=0 N/A NSWC Intercoastal co Fatigue Life (Cycles) 43,000 129,270 346,100	emponent #		NENTS (APPR	
9.05 7.8 6.95 6.1 5.65 4.75	676,920 1,602,640 1,235,010 2,353,530 5,521,190 7,838,300	STRESS AMPLIT	1.00E+04 1.00E+0 FATIGUE	5 1.00E+06 1.00E LIFE (CYCLES)	E+07 1.00E+08
			Regression O Intercept Slope Std Err of Y E COV R Squared	log(Aamp) log(Arng)	9.699 10.930 -4.088 0.120 0.242 0.977
			No. of Observ Degrees of Fr		9 7

		#21 HSLA COI	NVENTIONAL	COMPONENT	S R=-1
Steel Type:	HSLA				
Loading:	Axial R=-1				
Thickness:	N/A				
Fabricator:	NSWC				
Configuration:	Conventional	stiffener/bulkhe	ad joint compo	nent	
Stress	Fatigue			TIONAL COMP P	- 4
Amplitude	Life	#21	HSLA CONVEN	TIONAL COMP R	 1
(KSI)	(Cycles)	100			
8.5	3,397,800				
8.5	2,049,800				
8.5	2,422,300		 - - - -	<u> </u>	
8.5	2,094,000	10			
8.5	3,755,300	is a			
10	1,912,300	3 =====			
10	2,026,100	API H	 - - - - 		
10	975,600	1			
10	2,303,500	1.00E+03	1.00E+04 1.00E+0	05 1.00E+06 1.0	00E+07 1.00E+08
10	1,513,000		FATIGUE	LIFE (CYCLES)	
15	510,800				<u> </u>
15	496,000				
15	115,200		Regression O		2.42=
15	520,900		Intercept	log(Aamp)	9.427
15	437,400			log(Arng)	10.399
20	184,000		Slope		-3.230
20	211,300		Std Err of Y Es	st	0.169
20	156,900		COV		0.323
20	154,400		R Squared	<u></u>	0.896
20	216,200		No. of Observa		20
			Degrees of Front	eedom 	18
Constant amo	olitude data not i	used	,		
Stress	Fatigue				
Amplitude	Life	Comments			
(KSI)	(Cycles)				
7.5	20,752,200	Suspended			

Random Fatig	ue Data (Narroy	vband, Zero Me	ean)		
RMS	Fatigue	Geometric		<u> </u>	
Stress	Life	Mean		164	
(KSI)	(Cycles)	(KSI)			
5	1,812,100				
5	2,363,100			115	المشسسعسا
5	2,497,400				
5	4,343,200			35"	'
5	2,297,100	2,544,700	\sim	1111	
7	1,271,900				
7	807,000				
7	892,300	971,100			

		#22 H	HSL/	STI	FFENER SPLI	CE R=-1	
Steel Type:	HSLA						
Loading:	Axial R=-1						
Thickness:	N/A						
Fabricator:	NSWC						
Configuration:	Stiffener Splice	e					
Stress	Fatigue				#22 LIGI A STIFE	ENER SPLICES	
Amplitude	Life				#22 110LA 0111 1	LIVER OF LIGHT	
(KSI)	(Cycles)		100 -				
12	813,200	_					
12	2,193,700	STRESS AMPLITUDE (KSI)					
12	2,717,900	띰					
12	1,013,000]]				1	
15	583,500	MPL	10 -				
15	776,200	SA					
15	946,300	ES		\dashv			
15	1,151,600	STF					
20	396,500		1				
20	187,800		1.00	E+03	1.00E+04 1.00E+	05 1.00E+06 1.0	0E+07 1.00E+08
20	196,800				FATIGUE	LIFE (CYCLES)	
20	199,500				· · · · · · · · · · · · · · · · · · ·		
30	41,700						
30	43,300				Regression O		
30	24,100				Intercept	log(Aamp)	10.843
30	26,600					log(Arng)	12.122
					Slope		-4.250
					Std Err of Y E	st	0.177
					COV		0.335
					R Squared		0.936
					No. of Observ	ations	16
					Degrees of Fr	eedom	14

Random Fatig	ue Data (Narrov	vband, Zero Me	ean)
RMS	Fatigue	Geometric	
Stress	Life	Mean	3"
(KSI)	(Cycles)	(KSI)	
7.5	933,000		<6"> √2"
7.5	581,700		
7.5	788,800		20"
7.5	468,500	669,200	
10	168,200		
10	59,200		
10	450,700		3" 8" "3"
10	292,700	190,400	3" 8" 14" - 731,"
			20" 20"
			20
		.,	3" ←7½"→

		#23 H	HSLA OP	ENING DETAIL	R=-1	
Steel Type: Loading: Thickness: Fabricator: Configuration: Stress Amplitude (KSI)	HSLA Axial R=-1 N/A NSWC Opening Detai Fatigue Life (Cycles)				- R=-1	
5 5 5 7.5 7.5 7.5 7.5 10 10	9,357,300 1,469,400 2,988,900 2,860,800 452,800 575,500 818,700 1,155,400 328,000 198,700 179,200 409,900	STRESS AMPLITUDE (KSI)	100 10 1.00E+03	1.00E+04 1.00E+0 FATIGUE	5 1.00E+06 1.00E	E+07 1.00E+08
15 15 15 15 15	88,400 47,900 91,200 68,400			Regression Of Intercept Slope Std Err of Y Est COV R Squared No. of Observe Degrees of Free	log(Aamp) log(Arng) st ations	8.923 9.971 -3.480 0.203 0.374 0.910 16

	T	<u> </u>			· · · · · · · · · · · · · · · · · · ·
					
Random Fatigi	ue Data (Narrov	vband, Zero M	ean)		
				-73/4"->	
RMS	Fatigue	Geometric		-174	£312
Stress	Life	Mean	11		
(KSI)	(Cycles)	(KSI)			
5	887,000				
5	663,200				
5	708,800		· L	> 127 A	
5	429,100	650,400	5	" \ 1/2"	
		•	22"		
			10		
		··-·		1/4"	
					-5 1/2"
			<u> </u>		
				<u> </u>	
· · · · · · · · · · · · · · · · · · ·					

		· · · · · · · · · · · · · · · · · · ·			
L					

		#24 HSLA FLA	AME CUT EDG	E SPECIMEN F	₹=-1
Steel Type:	HSLA				
Loading:	Axial R=-1				
Thickness:	1/2"				
Fabricator:	NSWC				
Configuration:	Flame Cut Edg	je			
Stress	Fatigue				
Amplitude	Life	#24	HSLA FLAME C	UT EDGE SPECI	MEN
(KSI)	(Cycles)				
15	2,171,900	100			
15	1,652,600				
15	1,435,800) ji	 - - - 		
20	672,400			-	φ
20	605,800	₫ 10			
20	422,800	§			
20	426,000	ESS			
30	88,200	¥ 	+		
30	86,600				
30	125,400	1.00E+03	1.00E+04 1.00E+0	05 1.00E+06 1.00	E+07 1.00E+08
30	133,600		FATIGUE	LIFE (CYCLES)	
45	32,300				
45	26,700				·
45	26,100		Regression O		
45	32,300		Intercept	log(Aamp)	10.553
				log(Arng)	11.668
			Slope		-3.705
			Std Err of Y E	st	0.092
			COV		0.191
Constant amp	litude data not i	used	R Squared		0.983
•			No. of Observ		15
Stress	Fatigue		Degrees of Fr	eedom	13
Amplitude	Life	Comments			
(KSI)	(Cycles)				
15	20,438,000	Runout			

	Г	I	
andom Estic	us Data (Norma	hand Zara M	
andom Fatigi	ue Data (Narrov	voand, Zero M	ean)
RMS	Ections	Coometrie	*******
	Fatigue	Geometric	
Stress	Life	Mean	
(KSI)	(Cycles)	(KSI)	
10	760,900		
10	843,100		
10	780,200		· · · · · · · · · · · · · · · · · · ·
10	741,300	780,500	
			· · · · · · · · · · · · · · · · · · ·
	· ·		
			
		, , , , , , , , , , , , , , , , , , , 	
	-		
		····	

	T.	#25 HQI A INC	ERT PLATE SI	PECIMEN R=-1	
		HZO NOLA INO	LITT LATE OF		
Steel Type:	HSLA				
Loading:	Axial R=-1				
Thickness:	1/4" to 1/2"	<u> </u>			
Fabricator:	NSWC				
	Insert Plate Sp	ecimen			
oornigaration.	l l				
Stress	Fatigue			DI ATE ODECIMI	ENI
Amplitude	Life	#2	5 HSLA INSERI	PLATE SPECIMI	=IV
(KSI)	(Cycles)				
10	11,112,700	<u>_</u> 100 □ ■			
15	3,660,500				
15	1,101,700	STRESS AMPLITUDE (KSI)	 		
15	756,500	E			
15	1,466,700	₫ ¹⁰			
20	203,400	S E			
20	345,800	KES:			
20	208,100				
20	210,700				1005:00
30	47,000	1.00E+03	1.00E+04 1.00E+0	·	E+07 1.00E+08
30	48,200		FATIGUE	LIFE (CYCLES)	
30	42,400				
30	34,900				
			Regression O		40.404
			Intercept	log(Aamp)	12.101
				log(Arng)	13.633
			Slope		-5.090
			Std Err of Y E	st	0.184
			COV		0.345
Constant amp	litude data not i	used	R Squared		0.951
			No. of Observ		13
Stress	Fatigue		Degrees of Fr	eedom	11
Amplitude	Life	Comments			
(KSI)	(Cycles)				
10	20,164,200				
10	20,234,200				
10	21,119,600	Runout			

						
						
D 1 F - C -	5-1-41					
Random Fatigu	ue Data (Narrov	vband, Zero M	ean)			
RMS	Fatigue	Geometric	r		7 ()
Stress	Life	Mean			1 1	
(KSI)	(Cycles)	(KSI)	·		-1111	
7.5	1,218,200				51/2"	+/2"
7.5	783,200					
7.5	1,410,200				- * , h	<u> </u>
7.5	2,618,200	1,370,000	· ·		3" →	= 1/4"
						*
					一) _e —
						
					51/2"	·
					5/2	
) :::			
					<u></u>	J
			<u> </u>	₹ 33/4"→		
·						
						
			L			

		#26 HSLA	INSERT PLATE P	OOR WELD SE	PECIMEN R=-
Steel Type:	HSLA				
Loading:	Axial R=-1				
Thickness:	1/4" to 1/2"				
Fabricator:	NSWC				
Configuration:	Insert Plate Po	or Weld Sp	ecimen		
Stress	Fatigue		#26 HSLA INSERT	DI ATE BOOD WI	=ı n
Amplitude	Life		#20 MOLA INSERT	PLATE FOOR WI	
(KSI)	(Cycles)	100 -			
10	606,300				
10	761,000	(KS			
15	173,400	DE			
15	107,800	E.			
30	6,770	₩ 10			
30	10,260	STRESS AMPLITUDE (KSI)			
		SES -			
		STI			
		1 📙			
		1.00E+			E+07 1.00E+08
			FATIGUE	LIFE (CYCLES)	
			Regression O	utput:	
			Intercept	log(Aamp)	9.845
			3.33.2.2	log(Arng)	11.051
			Slope		-4.009
			Std Err of Y E	st	0.103
			COV		0.211
			R Squared		0.989
			No. of Observ	rations	6
			Degrees of Fr	eedom	4

				_		
Random Fatio	ue Data (Narrov	whand Zero M	ean)	-		
random radg	de Bala (14a1104	VDaria, Zero IVI	cai i)			***************************************
RMS	Fatigue	Geometric				
Stress	Life	Mean	<u>[</u>		\uparrow	
(KSI)	(Cycles)	(KSI)			4. 3	
5	803,100	()			5%"	
5	1,243,200				->	-1/2"
5	977,100				-\ ,	ł ———
5	1,093,600	1,016,300			3" -	= 1/4"
					_*	
			. [Î	
					5½"	
					<u>_v_</u> l	J
				_ 3¾"	1	
						·

				 	· ·	
				-		
					.,	
						
				+		
L			L			L

		#27 H	HSL/	10 A	E-SIDED WEL	D SPECIMEN	R=-1
Steel Type: Loading: Thickness: Fabricator: Configuration: Stress Amplitude (KSI) 10 10 10 10 15 15 15 15	HSLA Axial R=-1 1/2" NSWC One-Sided We Eatigue Life (Cycles) 5,379,800 2,539,900 3,424,500 5,027,800 751,100 639,900 1,677,600 690,500 10,342,600	STRESS AMPLITUDE (KSI)			With Backing E		R=-1
30	143,100		1.00	E+03	1.00E+04 1.00E+	05 1.00E+06 1.00	E+07 1.00E+08
30	80,200				FATIGUE	LIFE (CYCLES)	
30	68,600					T	i -
30	247,000						
45	39,800				Regression O		0.070
45	18,800				Intercept	log(Aamp)	9.956
45	35,500					log(Arng)	10.949
45	33,400				Slope		-3.298
					Std Err of Y E	St	0.307
					COV		0.507
					R Squared		0.890
					No. of Observ		17
	·				Degrees of Fr	eedom	15

· · · · · · · · · · · · · · · · · · ·						
andom Fatig	ue Data (Narrov	vband, Zero M	ean)			
RMS	Fatigue	Geometric				
Stress	Life	Mean	_	I		ŀ
(KSI)	(Cycles)	(KSI)	_			П
10	633,400		_	33/4"	<u>, </u>	
10	1,548,200			J 74	-	-> - 1/2"
10	751,000					
10	655,700	833,600			TAC NELO are side only	
_					- at side unit	
			- 14" F		2'	, ,
			- 'j'		_	
			-			
			-			11
•			- +	11		
			-			
			_	ı		1
-						
	·					1
						†
		<u> </u>				
						+
			<u> </u>			

		#28 HSLA SIN	IGLE THICKNE	SS DOUBLER	SPEC. R=-1
Steel Type: Loading: Thickness: Fabricator: Configuration:	HSLA Axial R=-1 1/2" NSWC Single Thickne	ess Doubler Sp	ecimen		
Stress Amplitude (KSI) 15 15 15 20 20 20 20 30 30 30 30 30	Fatigue Life (Cycles) 149,500 108,300 1,098,200 1,346,900 128,700 49,600 99,900 94,200 26,100 16,200 30,000	STRESS AMPLITUDE (KSI) 100 100 100	1.00E+04 1.00E+0	OS 1.00E+06 1.000	
			Regression O	utput: iog(Aamp) log(Arng)	9.179 10.119
Constant amp	litude data not u	used	Slope Std Err of Y Es COV R Squared	st	-3.122 0.490 0.676 0.421
Stress Amplitude	Fatigue Life	Comments	No. of Observe Degrees of Front Property of Control of		9
(KSI) 15	(Cycles) 4,394,300	Suspended Suspended			
10 10 10	20,000,000 20,000,000	Suspended Suspended			
10	20,000,000	Suspended			

		T				
Random Fatig	ue Data (Narrov	vband, Zero M	ean)			
RMS	Fatigue	Geometric			1	n
Stress	Life	Mean			1	
(KSI)	(Cycles)	(KSI)				
7.5	3,100,200					
7.5	762,600				1	
7.5	271,700					
7.5	180,200	583,300			14" 6"	
					·	111
					-	> K-1/2
					1 -	XI
				+2"→		→ k-½"
				K ~ 7		
					<u>\dagger</u>	U
				-33/4"-		

		#29 HSLA DOU	JBLE THICKNI	ESS DOUBLER	SPEC. R=-1
Steel Type:	HSLA				
Loading:	Axial R=-1				
Thickness:	1/2"				
Fabricator:	NSWC				
Configuration:	Double Thickne	ess Doubler Sp	ecimen		
<u> </u>					
Stress	Fatigue				
Amplitude	Life	#29	DOUBLE THIC	KNESS DOUBLE	:R
(KSI)	(Cycles)	·			
15	120,200	100			
15	864,100	ÎS H			
15	164,900		 ••• 	 	
15	290,600	STRESS AMPLITUDE (KSI)			
20	1,014,400	⊒ 10 □			00
20	126,100	A P			
20	50,700	ES			
20	1,294,500	STR	++		
30	19,200	1 1			
30	23,600	1.00E+03	1.00E+04 1.00E+0	5 1.00E+06 1.00E	+07 1.00E+08
30	263,500		FATIGUE I	LIFE (CYCLES)	. 4
30	27,900				
			Regression O		0.042
			Intercept	log(Aamp)	8.843
				log(Arng)	9.680
			Slope		-2.780 0.555
			Std Err of Y Es	ST	0.555 0.722
			COV		
Constant amp	litude data not ı	used	R Squared	-4:	0.314
			No. of Observ		12 10
Stress	Fatigue		Degrees of Front	eeaom	10
Amplitude	Life	Comments			
(KSI)	(Cycles)				
10		Suspended			
10		Suspended			
10		Suspended			
10		Suspended			
30	215700	Failed in Grip			

ndom Fatig	ue Data (Narrov	vband, Zero Me	ean)
DMC	Fations	Coometrie	
RMS	Fatigue	Geometric	
Stress	Life	Mean	
(KSI)	(Cycles)	(KSI)	
7.5	408,100		
7.5	418,100		
7.5	211,700	330,600	
			V V
			£-374″ -
· · · · · · · · · · · · · · · · · · ·			
			·
·····			
			
•			

Appendix F

Gamma Function Properties and Approximations

Gamma Function Properties and Approximations

Gamma functions occur frequently in the analytical study of fatigue strength and maximum lifetime loads. The gamma function is a complete integral of the form given below.

$$\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$$

For integer values of the argument, "z", the gamma function can easily be calculated as follows.

$$\Gamma(z) = (z-1)!$$

In addition, knowing that $\Gamma(1/2) = \sqrt{\pi}$ and the recurrence relationship given below allows one to evaluate the gamma function at intervals halfway between integer values.

$$\Gamma(z+1) = z\Gamma(z) = z(z-1)!$$

The gamma function typically occurs in fatigue or loads analysis where the argument of the gamma function is a function of the slope of the S/N curve, B, or a parameter of a probability distribution, e.g., the slope parameter, β , of the Weibull distribution. Using the expressions above, a problem involving gamma functions can at least be bounded and perhaps even interpolated between integer and half integer argument values to provide a quick solution.

Gamma functions corresponding to the first several integer and half integer argument values are provided for this purpose.

$$\Gamma(1/2) = \sqrt{\pi} \qquad \Gamma(1) = 1$$

$$\Gamma(3/2) = 1/2\sqrt{\pi} \qquad \Gamma(2) = 1$$

$$\Gamma(5/2) = 3/4\sqrt{\pi} \qquad \Gamma(3) = 2$$

$$\Gamma(7/2) = 15/8\sqrt{\pi} \qquad \Gamma(4) = 6$$

$$\Gamma(9/2) = 105/16\sqrt{\pi} \qquad \Gamma(5) = 24$$

$$\Gamma(11/2) = 945/32\sqrt{\pi} \qquad \Gamma(6) = 120$$

$$\Gamma(13/2) = 10395/64\sqrt{\pi} \qquad \Gamma(7) = 720$$

For problems involving evaluation and accuracy at other intermediate arguments, the best approach is to use readily available computer subroutines (Press, 1992). Aside from that, very accurate polynomial approximations are also available, but only apply directly to arguments between values of one and two. Recurrence relations must be used to evaluate the gamma functions at other values.

If nothing else is available, a rough estimate can be made using the following approximation. A comparison of this approximation with the computer subroutine values is given in Figures F-1 and F-2.

$$0 < z \le 1 \qquad \Gamma(z) \approx (0.875 + |(z - 0.5)^{3}|)/z$$

$$1 < z \le 2 \qquad \Gamma(z) \approx 0.875 + |(z - 1.5)^{3}|$$

$$2 < z < 6 \qquad \Gamma(z) \approx 2.63e^{(1-z)}(z - 1)^{(z-1/2)}$$

$$z \ge 6 \qquad \Gamma(z) \approx (\text{int } eger(z - 1))!$$

Appendix G

Expected Moments of Useful Probability Distributions

Expected Moments of Useful Probability Distributions

Probability distributions are used to represent the frequency of occurrence of many natural phenomena. Many of these distributions are interrelated. For example, the random process of wave elevation is generally considered to be represented by the Gaussian probability distribution. The extrema, or peaks and valleys, of a Gaussian distribution are represented by the S.O. Rice distribution. The S.O. Rice distribution has two limiting states, depending on the frequency content of the Gaussian random process. In the case of an extremely narrowband Gaussian process, the S.O. Rice distribution degenerates into the Rayleigh probability distribution. In the case of an extremely broadband Gaussian process, the S.O. Rice distribution degenerates into the Gaussian probability distribution.

Ship primary loadings, and therefore stresses, are often represented by the Weibull probability distribution, or one of its special forms; the exponential or Rayleigh distributions. The exponential distribution is sometimes used to represent a lifetime distribution of stress, while the Rayleigh distribution is often used to represent short distributions of stress. Knowing the distribution of stress, allows one to calculate the expected fatigue life of random stresses. The expected cycles to failure is calculated as a function of the parameters of the constant amplitude S/N curve. The fatigue life calculated is determined from the "m"th moment of the stress probability distribution, where "m" is the negative inverse slope of the S/N curve.

Moments of probability distributions are also very useful when simulating time histories or sequences of random numbers which follow a particular distribution. The accuracy of the simulation can be evaluated by comparing the first several moments of the simulated sequence to the theoretical moments.

The following expressions summarize the expected moments of probability distributions of those typically used in fatigue and maximum value calculations. Gaussian Probability Density Function with zero mean and standard deviation, $\sigma_{\rm Y}$

$$p(Y) = \frac{e^{(\frac{-Y^2}{2\sigma_Y^2})}}{\sqrt{2\pi} \sigma_Y} \qquad -\infty < Y < \infty$$

Moment of Gaussian Distribution

$$E[Y^{j}] = \frac{2^{j/2}}{\sqrt{\pi}} \sigma_{Y}^{j} \Gamma(\frac{j+1}{2}) \quad for \quad j \quad even$$

$$= 0 \qquad for \quad j \quad odd$$

First ten moments of Gaussian Distribution

$$E[Y^{1}] = 0$$

$$E[Y^{2}] = \sigma_{Y}^{2}$$

$$E[Y^{3}] = 0$$

$$E[Y^{4}] = 3\sigma_{Y}^{4}$$

$$E[Y^{5}] = 0$$

$$E[Y^{6}] = 15\sigma_{Y}^{6}$$

$$E[Y^{7}] = 0$$

$$E[Y^{8}] = 105\sigma_{Y}^{8}$$

$$E[Y^{9}] = 0$$

$$E[Y^{10}] = 945\sigma_{Y}^{10}$$

Rayleigh Probability Density Function with parameter C. Sometimes C is specified as the RMS value, $\boldsymbol{\sigma}$

$$p(Z) = \frac{Z}{C^2} e^{(\frac{-Z^2}{2C^2})}$$
 $0 < Z < \infty$

Moments of Rayleigh Distribution

$$E[Z^{j}] = 2^{j/2} C^{j} \Gamma(\frac{j}{2} + 1)$$

First ten moments of Rayleigh Distribution

$$E[Z^{1}] = \sqrt{\pi/2}C$$

$$E[Z^{2}] = 2C^{2}$$

$$E[Z^{3}] = 3\sqrt{\pi/2}C^{3}$$

$$E[Z^{4}] = 8C^{4}$$

$$E[Z^{5}] = 15\sqrt{\pi/2}C^{5}$$

$$E[Z^{6}] = 48C^{6}$$

$$E[Z^{7}] = 105\sqrt{\pi/2}C^{7}$$

$$E[Z^{8}] = 384C^{8}$$

$$E[Z^{9}] = 945\sqrt{\pi/2}C^{9}$$

$$E[Z^{10}] = 3840C^{10}$$

Exponential Probability Distribution

$$p(Z) = \frac{1}{\theta} e^{-\frac{Z}{\theta}}$$

Moments of the Exponential Distribution

$$E[Z^n] = \theta^n \Gamma(n+1)$$

First ten moments of the Exponential Distribution

$$E[Z] = \theta$$

$$E[Z^{2}] = 2\theta^{2}$$

$$E[Z^{3}] = 6\theta^{3}$$

$$E[Z^{4}] = 24\theta^{4}$$

$$E[Z^{5}] = 120\theta^{5}$$

$$E[Z^{6}] = 720\theta^{6}$$

$$E[Z^{7}] = 5040\theta^{7}$$

$$E[Z^{8}] = 40320\theta^{8}$$

$$E[Z^{9}] = 362880\theta^{9}$$

$$E[Z^{10}] = 3628800\theta^{10}$$

S.O. Rice Probability Density Function with parameters σ and α , the RMS value and irregularity factor, respectively.

$$p(P) = \sqrt{\frac{(1-\alpha^2)}{2\pi\sigma_X^2}} e^{\left(\frac{-P^2}{2\sigma_X^2(1-\alpha^2)}\right)} + \frac{\alpha P}{2\sigma_X^2} \left[1 + erf\left(\frac{\alpha P}{\sigma_X \sqrt{2-2\alpha^2}}\right)\right] e^{\left(\frac{-P^2}{2\sigma_X^2}\right)} \qquad -\infty < P < \infty$$

Moments of the S.O. Rice Distribution

$$E[P^{j}] = \frac{j! 2^{j/2}}{\sqrt{\pi}} \sigma_{X}^{j} \sum_{n=0}^{j} \frac{\Gamma\left(\frac{j-n+1}{2}\right) \Gamma\left(1+\frac{n}{2}\right) (1-\alpha^{2})^{\frac{1}{2}(j-n)} \alpha^{n} \left(\frac{1+(-1)^{(j-n)}}{2}\right)}{(j-n)! n!}$$

First ten moments of the S.O. Rice Distribution

$$E[P^{1}] = \sqrt{\frac{\pi}{2}} (\alpha) \sigma_{X}$$

$$E[P^{2}] = (1 + \alpha^{2}) \sigma_{X}^{2}$$

$$E[P^{3}] = \sqrt{\frac{\pi}{2}} (3\alpha) \sigma_{X}^{3}$$

$$E[P^{4}] = (3 + 6\alpha^{2} - \alpha^{4}) \sigma_{X}^{4}$$

$$E[P^{5}] = \sqrt{\frac{\pi}{2}} (15\alpha) \sigma_{X}^{5}$$

$$E[P^{6}] = 3(5 + 15\alpha^{2} - 5\alpha^{4} + \alpha^{6}) \sigma_{X}^{6}$$

$$E[P^{7}] = \sqrt{\frac{\pi}{2}} (105\alpha) \sigma_{X}^{7}$$

$$E[P^{8}] = 3(35 + 140\alpha^{2} - 70\alpha^{4} + 28\alpha^{6} - 5\alpha^{8}) \sigma_{X}^{8}$$

$$E[P^{9}] = \sqrt{\frac{\pi}{2}} (945\alpha) \sigma_{X}^{9}$$

$$E[P^{10}] = 15(63 + 315\alpha^{2} - 210\alpha^{4} + 126\alpha^{6} - 45\alpha^{8} + 7\alpha^{10}) \sigma_{X}^{10}$$

The two parameter Weibull probability distribution

$$p(x) = \frac{\beta}{\theta} \left(\frac{x}{\theta} \right)^{\beta - 1} e^{-\left(\frac{x}{\theta} \right)^{\beta}} \qquad 0 < x < \infty$$

Moments of the two parameter Weibull distribution

$$E(x^n) = \theta^n \Gamma(1 + \frac{n}{\beta})$$

First ten moments of the two parameter Weibull distribution

$$E[x] = \theta \Gamma(1+1/\beta)$$

$$E[x^{2}] = \theta^{2}\Gamma(1+2/\beta)$$

$$E[x^{3}] = \theta^{3}\Gamma(1+3/\beta)$$

$$E[x^{4}] = \theta^{4}\Gamma(1+4/\beta)$$

$$E[x^{5}] = \theta^{5}\Gamma(1+5/\beta)$$

$$E[x^{6}] = \theta^{6}\Gamma(1+6/\beta)$$

$$E[x^{7}] = \theta^{7}\Gamma(1+7/\beta)$$

$$E[x^{8}] = \theta^{8}\Gamma(1+8/\beta)$$

$$E[x^{9}] = \theta^{9}\Gamma(1+9/\beta)$$

$$E[x^{10}] = \theta^{10}\Gamma(1+10/\beta)$$

The three parameter Weibull distribution

$$p(P) = \left(\frac{\beta}{\theta - X_o}\right) \left(\frac{P - X_o}{\theta - X_o}\right)^{\beta - 1} e^{-\left(\frac{P - X_o}{\theta - X_o}\right)^{\beta}}$$

Moments of a three parameter Weibull distribution

$$E[P^{n}] = (\theta - X_{o})^{n} \Gamma\left(\frac{n}{\beta} + 1\right) + n(\theta - X_{o})^{n-1} \Gamma\left(\frac{n-1}{\beta}\right) X_{o} + \frac{n(n-1)}{2!} (\theta - X_{o})^{n-2} \Gamma\left(\frac{n-2}{\beta} + 1\right) X_{o}^{2} + \frac{n(n-1)(n-2)}{3!} (\theta - X_{o})^{n-3} \Gamma\left(\frac{n-3}{\beta} + 1\right) X_{o}^{3} + \dots + n(\theta - X_{o}) \Gamma\left(\frac{1}{\beta} + 1\right) X_{o}^{n-1} + X_{o}^{n}$$

First ten moments of the three parameter Weibull distribution

$$E[P] = (\theta - X_o) \Gamma(1/\beta + 1) + X_o$$

$$E[P^{2}] = (\theta - X_{o})^{2} \Gamma(2/\beta + 1) + 2(\theta - X_{o}) \Gamma(1/\beta + 1) X_{o} + X_{o}^{2}$$

$$E[P^{3}] = (\theta - X_{o})^{3} \Gamma(3/\beta + 1) + 3(\theta - X_{o})^{2} \Gamma(2/\beta + 1) X_{o} + 3(\theta - X_{o}) \Gamma(1/\beta + 1) X_{o}^{2} + X_{o}^{3}$$

$$E[P^{4}] = (\theta - X_{o})^{4} \Gamma(4/\beta + 1) + 4(\theta - X_{o})^{3} \Gamma(3/\beta + 1) X_{o} + 6(\theta - X_{o})^{2} \Gamma(2/\beta + 1) X_{o}^{2} + 4(\theta - X_{o}) \Gamma(1/\beta + 1) X_{o}^{3} + X_{o}^{4}$$

$$E[P^{5}] = (\theta - X_{o})^{5} \Gamma(5/\beta + 1) + 5(\theta - X_{o})^{4} \Gamma(4/\beta + 1) X_{o} + 10(\theta - X_{o})^{3} \Gamma(3/\beta + 1) X_{o}^{2} + 10(\theta - X_{o})^{2} \Gamma(2/\beta + 1) X_{o}^{3} + 5(\theta - X_{o}) \Gamma(1/\beta + 1) X_{o}^{4} + X_{o}^{5}$$

$$E[P^{6}] = (\theta - X_{o})^{6} \Gamma(6/\beta + 1) + 6(\theta - X_{o})^{5} \Gamma(5/\beta + 1) X_{o} + 15(\theta - X_{o})^{4} \Gamma(4/\beta + 1) X_{o}^{2} + 20(\theta - X_{o})^{3} \Gamma(3/\beta + 1) X_{o}^{3} + 15(\theta - X_{o})^{2} \Gamma(2/\beta + 1) X_{o}^{4} + 6(\theta - X_{o}) \Gamma(1/\beta + 1) X_{o}^{5} + X_{o}^{6}$$

$$E[P^{7}] = (\theta - X_{o})^{7} \Gamma(7/\beta + 1) + 7(\theta - X_{o})^{6} \Gamma(6/\beta + 1) X_{o} + 21(\theta - X_{o})^{5} \Gamma(5/\beta + 1) X_{o}^{2} + 35(\theta - X_{o})^{4} \Gamma(4/\beta + 1) X_{o}^{3} + 35(\theta - X_{o})^{3} \Gamma(3/\beta + 1) X_{o}^{4} + 21(\theta - X_{o})^{2} \Gamma(2/\beta + 1) X_{o}^{5} + 7(\theta - X_{o}) \Gamma(1/\beta + 1) X_{o}^{6} + X_{o}^{7}$$

$$\begin{split} E[P^8] &= (\theta - X_o)^8 \Gamma(8/\beta + 1) + 8(\theta - X_o)^7 \Gamma(7/\beta + 1) X_o + 28(\theta - X_o)^6 \Gamma(6/\beta + 1) X_o^2 + \\ & 56(\theta - X_o)^5 \Gamma(5/\beta + 1) X_o^3 + 70(\theta - X_o)^4 \Gamma(4/\beta + 1) X_o^4 + 56(\theta - X_o)^3 \Gamma(3/\beta + 1) X_o^5 + \\ & 28(\theta - X_o)^2 \Gamma(2/\beta + 1) X_o^6 + 8(\theta - X_o) \Gamma(1/\beta + 1) X_o^7 + X_o^8 \end{split}$$

$$E[P^{9}] = (\theta - X_{o})^{9} \Gamma(9/\beta + 1) + 9(\theta - X_{o})^{8} \Gamma(8/\beta + 1) X_{o} + 36(\theta - X_{o})^{7} \Gamma(7/\beta + 1) X_{o}^{2} + 84(\theta - X_{o})^{6} \Gamma(6/\beta + 1) X_{o}^{3} + 126(\theta - X_{o})^{5} \Gamma(5/\beta + 1) X_{o}^{4} + 126(\theta - X_{o})^{4} \Gamma(4/\beta + 1) X_{o}^{5} + 84(\theta - X_{o})^{3} \Gamma(3/\beta + 1) X_{o}^{6} + 36(\theta - X_{o})^{2} \Gamma(2/\beta + 1) X_{o}^{7} + 9(\theta - X_{o}) \Gamma(1/\beta + 1) X_{o}^{8} + X_{o}^{9}$$

$$\begin{split} E[P^{10}] &= (\theta - X_o)^{10} \Gamma(10/\beta + 1) + 10(\theta - X_o)^9 \Gamma(9/\beta + 1) X_o + 45(\theta - X_o)^8 \Gamma(8/\beta + 1) X_o^2 + \\ &\quad 120(\theta - X_o)^7 \Gamma(7/\beta + 1) X_o^3 + 210(\theta - X_o)^6 \Gamma(6/\beta + 1) X_o^4 + 252(\theta - X_o)^5 \Gamma(5/\beta + 1) X_o^5 + \\ &\quad 210(\theta - X_o)^4 \Gamma(4/\beta + 1) X_o^6 + 120(\theta - X_o)^3 \Gamma(3/\beta + 1) X_o^7 + 45(\theta - X_o)^2 \Gamma(2/\beta + 1) X_o^8 + \\ &\quad 10(\theta - X_o) \Gamma(1/\beta + 1) X_o^9 + X_o^{10} \end{split}$$

Appendix H

Histograms of Experimental/Predicted Fatigue Lives

Histograms of Experimental/Predicted Fatigue Lives

Fatigue data are typically generated under constant amplitude loadings and then used with a fatigue damage accumulation model to predict fatigue behavior under service loadings. Service loadings are typically non-constant amplitude. Loadings for ship structure are actually random, but tend to be Rayleigh distributed in many cases. For this reason, the fatigue data generated under this effort were tested under constant amplitude loadings and variable amplitude loadings that were Rayleigh distributed as described in the main text of this report. The Rayleigh Approximation formula therefore offers the best means to predict the variable amplitude loadings based on the S/N curve generated from the constant amplitude fatigue tests. Data used in these analyses can be found in Appendix E.

Histograms were produced from ratios of the experimental fatigue lives divided by predicted fatigue lives. The predicted lives were determined using the Rayleigh Approximation formula. Two separate histograms were generated. The purpose of the first histogram, shown in Figure H-1, is to show how well the experimental data are predicted by the Rayleigh Approximation formula; essentially assessing the accuracy of Miner's Rule. For this case, the predictions are made using the 50% probability of failure (mean) constant amplitude S/N curve. As mentioned previously, only single line S/N curves are used, ignoring any constant amplitude endurance limit effects. Also, for this first case, the experimental data are represented by the geometric mean of the individual data points. Data used to construct the first histogram can be found in Table H-1.

The purpose of the second histogram, shown in Figure H-2, is to show how well a design S/N curve performs in avoiding fatigue failures. The design S/N curve in this case

is represented by a mean minus two sigma S/N curve (2.3% probability of failure). For this second case, the predicted fatigue life estimates were made using the Rayleigh Approximation formula with the mean minus two sigma S/N curve. The experimental data were used as is; i.e., individual data points were used instead of representing them by a geometric mean value. Data used to construct the second histogram can be found in Table H-2.

Note that the data from detail set #5 (HSLA Continuous Cruciform Lab + Shipyard 7/16") was not included in either analysis because they had already been included separately in data sets #3 and #4. The first histogram, with predictions made using the mean S/N curve and experimental lives represented by the geometric mean, shows the most frequently occurring ratio is unity, and the distribution of ratios is somewhat symmetric and centered on this value. This analysis indicates the use of Miner's Rule in fatigue life prediction generally produces accurate results. Nonconservative results, those located below unity, tend to occur for details which contain imperfections and misalignments or larger components. Conservative estimates, located above unity, tend to occur for better quality and smaller sized specimen configurations.

The second histogram, with predictions made using a mean minus two sigma S/N curve and individual experimental data points, shows that the ratio distribution shifts significantly to the conservative (right) side of unity. This reflects the fact that most of the specimens should not, and do not, fail at their predicted (design) fatigue life. Again, only a few individual specimens, out of over one hundred, are below unity indicating that a few failures would have occurred in service.

Overall, the methodology for cumulative damage calculations under random loads tends to work well and provides reasonably accurate fatigue life predictions. Further, the use of this methodology for design, using a mean minus two standard deviation S/N curve tends to perform equally as well.

Data Index

<u>Histogram</u>	<u>Page</u>
GMean	H-6
Individual	H-8

	RMS	Act/Pred	Act/Pred
Configuration	Stress	Mean	Mean-2S
	(ksi)	Ratio	Ratio
#1 HSLA Bending 7/16"	10	0.40	2.25
"	15	0.58	3.28
	22.5	0.62	3.53
#2 HSLA 1/4" SYD	5	0.34	1.69
#2110011111	10	0.98	4.90
	15	0.44	2.22
#3 HSLA Continuous Cruciform	5	0.99	2.33
#3 TISEA CONTINUOUS CICUMENT	7.5	0.97	2.26
	10	1.20	2.80
	15	0.84	1.98
#4 HSLA 7/16" SYD	5	0.63	1.66
#4 H3LA //10 31B	10	0.81	2.14
	15	0.68	1.80
#6 HSLA 3/4" SYD	4	0.86	1.90
#6 H5LA 3/4 51D	5	0.73	1.62
	10	0.73	1.62
#7 LIQLA 4# CVD	4	1.41	1.93
#7 HSLA 1" SYD	5	1.02	1.39
	10	1.02	1.39
WO LIGHT Discounting of Counting	5	1.10	3.70
#8 HSLA Discontinuous Cruciform	7.5	1.34	4.50
	10	0.97	3.27
	15	0.97	3.25
	5	0.69	1.97
#9 HSLA Misaligned Cruciform	5	L	
#10 HSLA Partial Penetration Disc. Crucifor	5	0.63	1.63
#11 HSLA Misaligned Partial Penetration Cr	5	0.53	1.55
#12 HS Continuous Cruciform	7.5		2.48
	10	0.96	2.62
	7.5		
#13 HS Discontinuous Cruciform	10		
	5	0.23	<u> </u>
#14 HS Misaligned Cruciform	5	0.23	+
#15 OS Continuous Cruciform	7.5	·	
			i
	10		<u> </u>
#16 OS Discontinuous Cruciform	7.5	1	
	10		
#17 OS Misaligned Cruciform	5		
#18 HSLA & HS Conv. Components R=0	5		
#21 HSLA Conv. Components R=-1	5		
#22 HSLA Stiffener Splice	7.5		+
	10		
#23 HSLA Opening Detail	5	J	1
#24 HSLA Flame Cut Edge	10		
#25 HSLA Insert Plate "Good Weld"	7.5		
#26 HSLA Insert Plate "Poor Weld"	5		
#27 HSLA One-Sided Welds	10		
#28 HSLA Single Thickness Doubler	7.5		
#29 HSLA Double Thickness Doubler	7.5	0.42	5.36

	RMS	Act/Pred	Act/Pred
Configuration	Stress	Mean	Mean-2S
Oo/mgu.uuov	(ksi)	Ratio	Ratio
#1 HSLA Bending 7/16"	10	0.48	2.74
#1110D (Bonding 1)	10	0.81	4.60
	10	0.11	0.63
	10	0.57	3.26
	15	0.40	2.28
	15	1.15	6.56
	15	0.57	3.23
	15	0.42	2.39
	22.5	0.76	4.33
	22.5	0.50	2.87
	22.5	0.98	5.59
	22.5	0.39	2.23
#2 HSLA 1/4" SYD	5	0.31	1.57
#2 (10D x ii) - 1	5	0.24	1.21
	5	0.37	1.85
	5	0.47	2.34
	10	0.46	2.32
	10	1.05	5.27
	10	1.08	5.39
	10	1.74	8.71
	15	0.57	2.84
	15	0.37	i
	15	0.37	1.87
	15	0.49	2.45
#3 HSLA Continuous Cruciform	5	0.57	
	5	1.16	
	5	1.66	
	5	0.90	
	7.5	1.17	1
	7.5	0.86	
	7.5		
` '	7.5	0.94	1
	10	0.95	
	10	1.34	
	10	1.76	
	10	0.90	
	15	0.67	
	15	0.81	1.90

	RMS	Act/Pred	Act/Pred
Configuration	Stress	Mean	Mean-2S
	(ksi)	Ratio	Ratio
	15	0.92	2.15
	15	1.01	2.38
#4 HSLA 7/16" SYD	5	0.52	1.37
	5	0.76	2.00
	5	0.67	1.75
	5	0.60	1.57
	10	0.90	2.35
	10	0.53	1.40
	10	0.59	1.56
	10	1.55	4.07
	15	0.84	2.20
	15	0.58	1.51
	15	0.48	1.27
	15	0.93	2.45
#6 HSLA 3/4" SYD	4	0.94	2.07
	4	0.80	1.77
	4	0.67	1.49
	4	1.09	2.41
	5	0.78	1.72
	5	0.70	1.56
	5	0.72	1.60
	5	0.73	1.62
	10	0.73	1.61
	10	0.68	1.50
	10	0.66	1.45
	10	0.88	1.95
#7 HSLA 1" SYD	4	1.58	2.16
	4	1.33	1.82
·	4	1.64	2.25
	4	1.13	1.55
	5	1.22	1.67
	5	0.94	1.28
	5	0.86	1.18
i	5	1.09	1.49
	10	1.02	1.40
	10	1.00	1.36
	10	1.13	1.55
	10	0.93	1.27

	RMS	Act/Pred	Act/Pred
Configuration	Stress	Mean	Mean-2S
	(ksi)	Ratio	Ratio
#8 HSLA Discontinuous Cruciform	5	0.62	2.07
	5	0.72	2.43
	5	0.77	2.57
	5	4.32	14.51
	7.5	0.73	2.45
	7.5	1.81	6.09
	7.5	2.36	7.91
	7.5	1.03	3.46
	10	0.42	1.42
	10	2.30	7.72
	10	1.01	3.40
	10	0.91	3.06
	15	0.98	3.31
	15	0.75	2.52
	15	1.28	4.30
	15	0.93	3.11
#9 HSLA Misaligned Cruciform	5	1.34	3.81
	5	0.94	2.67
	5	0.37	
	5	0.49	1.39
#10 HSLA Partial Penetration Disc. Crucifor	5	1.66	
	5	0.73	
	5	1.48	 _
	5	0.90	
#11 HSLA Misaligned Partial Penetration Cr	5	0.44	1.16
	5	0.50	
	5	0.86	
	5	0.81	2.11
#12 HS Continuous Cruciform	5	0.46	
	5	0.59	
	5	0.37	
	5	1.04	
	7.5	1.11	
	7.5	0.65	
	7.5	1.31	<u> </u>
	7.5	0.72	
	10	0.76	
	10	0.98	2.67

	RMS	Act/Pred	Act/Pred
Configuration	Stress	Mean	Mean-2S
	(ksi)	Ratio	Ratio
	10	0.85	2.33
	10	1.33	3.63
#13 HS Discontinuous Cruciform	7.5	1.74	5.55
	7.5	0.87	2.77
	7.5	0.95	3.05
	7.5	4.00	12.77
	10	1.63	5.20
	10	0.58	1.84
	10	1.75	5.60
	10	1.22	3.89
#14 HS Misaligned Cruciform	5	0.25	0.48
	5	0.32	0.61
	5	0.15	0.30
	5	0.23	0.45
#15 OS Continuous Cruciform	5	1.47	4.08
	5	0.72	2.00
	5	0.38	1.04
	5	1.22	3.37
	7.5	0.44	1.23
	7.5	0.88	2.44
	7.5	0.61	1.70
	7.5	0.53	1.45
	10	0.86	2.39
	10	1.59	4.40
	10	0.48	1.34
	10	0.75	
#16 OS Discontinuous Cruciform	7.5	1.46	5.94
	7.5	0.42	1.68
	7.5	0.98	3.96
	7.5	1.16	4.71
	10	0.49	1.98
	10	0.26	1.05
	10	0.40	1.61
	10	0.77	3.14
#17 OS Misaligned Cruciform	5	1.97	3.91
	5	1.70	3.37
	5	1.08	2.15
	5	2.12	4.20

	RMS	Act/Pred	Act/Pred
Configuration	Stress	Mean	Mean-2S
Jonigan	(ksi)	Ratio	Ratio
#18 HSLA & HS Conv. Components R=0	5	1.83	5.01
#TO TIOLE (& TIO GOILL)	5	1.17	3.22
	5	2.48	6.80
	5	1.46	4.02
#21 HSLA Conv. Components R=-1	5	0.54	1.18
"21102	5	0.71	1.54
	5	0.75	1.63
	5	1.30	2.84
	5	0.69	1.50
	7	1.13	2.46
	7	0.72	1.56
·	7	0.79	1.73
#22 HSLA Stiffener Splice	7.5	0.69	1.56
	7.5	0.43	0.97
	7.5	0.58	1.32
	7.5	0.35	0.78
	10	0.42	0.95
	10	0.15	
	10	1.13	
	10	0.73	
#23 HSLA Opening Detail	5	1.53	
•	5	1.14	2.91
	5	1.22	3.11
	5	0.74	<u> </u>
#24 HSLA Flame Cut Edge	10	0.68	
	10	0.76	
	10		
	10	0.67	<u>i — — — — — — — — — — — — — — — — — — —</u>
#25 HSLA Insert Plate "Good Weld"	7.5	0.56	
	7.5	0.36	
	7.5	0.65	
	7.5		·
#26 HSLA Insert Plate "Poor Weld"	5	0.59	
	5	0.91	<u> </u>
	5	0.71	L
	5	0.80	
#27 HSLA One-Sided Welds	10		
	10	1.58	6.51

	RMS	Act/Pred	Act/Pred
Configuration	Stress	Mean	Mean-2S
	(ksi)	Ratio	Ratio
	10	0.77	3.16
	10	0.67	2.76
#28 HSLA Single Thickness Doubler	7.5	4.54	43.36
	7.5	1.12	10.67
	7.5	0.40	3.80
	7.5	0.26	2.52
#29 HSLA Double Thickness Doubler	7.5	0.51	6.61
	7.5	0.53	6.78
	7.5	0.27	3.43

Appendix I

Fatigue Strength Ratio Comparisons of S/N Curves

Fatigue Strength Ratio Comparisons of S/N Curves

This appendix serves two purposes. First, it allows one to compare the fatigue strength between any two structural details or design code categories, given the two parameters defining the constant amplitude S/N curve for each detail. Second, it allows one to select alternative details from a ranked list of fatigue strengths. Both purposes consider fatigue strengths in low cycle (10³) and high cycle (10⁸) regimes and at 50% (mean) and 2.3 % (mean minus two standard deviations) probabilities of failure.

The fatigue strength ratios between any to details are determined by substituting the appropriate S/N curve parameters and desired cycle count into the Rayleigh Approximation equation and solving for the root mean squared (rms) stress.

$$\sigma = \left(\frac{10^{\log(A)}}{2^{-B/2}\Gamma(1 - B/2)}\right)^{-1/B}$$

This is repeated for the other detail or category of interest; then the ratio of the two strengths is calculated. The baseline, or detail used as the denominator in the rms stress ratio calculation is listed in the first column of each ratio table. The detail or category to compare to the baseline is listed in the first row of each ratio table. To compare the strengths of two details in different tables, intermediate ratios, using the generic S/N curve (contained in each table), must be determined.

Only single line S/N curves are used. Design codes that employ bi-linear S/N curve formulations are considered to be represented only by the first initial linear portion, ignoring the second portion associated with endurance limit effects.

The ratio of fatigue strengths calculated by the Rayleigh Approximation formula is used instead of simply determining the stresses from the S/N curves because many of the details have S/N curve slopes of other than negative three. This being the case, the Rayleigh Approximation formula better reflects the fatigue strength of the details under random (service) loads because the Gamma function is included. When the two details have exactly the same S/N curve slope, the same results would be obtained using the S/N curve directly, or the Rayleigh Approximation formula.

The tables are organized as follows. Fatigue strength ratios associated with the NSWC test results are provided first for 50% probability of failure, and then for 2.3%

probability of failure. Ratios associated with the Ship Structure Committee (SSC) data (Munse, 1982) is next, first for 50% probability of failure and then for 2.3% probability of failure. The Munse SSC document did not report values of standard deviation for a few details #39, #40, #54, #57, #65, and #67. Without the standard deviation, the S/N curve coefficients associated with a 2.3% probability of failure could not be determined. To alleviate this problem, an average standard deviation value of 0.62, calculated from all the other details, was used. Finally, tables associated with the various design codes are presented, first for 50% probability of failure and then for 2.3% probability of failure. The standard deviations for the AASHTO S/N curves were obtained from a National Cooperative Highway Research report (NCHR, 1986).

Data Index

Data	Page
Test Specimen RMS Fatigue Strength Ratios Associated with a 50%	I-5
Probability of Failure	
Test Specimen RMS Fatigue Strength Ratios Associated with a 2.3%	I-8
Probability of Failure	
SSC-318 (Munse Test Specimen Data) RMS Fatigue Strength Ratios	I-11
Associated with a 50% Probability of Failure	
SSC-318 (Munse Test Specimen Data) RMS Fatigue Strength Ratios	I-25
Associated with a 2.3% Probability of Failure	
Design Code RMS Fatigue Strength Ratios Associated with a 50%	I-39
Probability of Failure	
Design Code RMS Fatigue Strength Ratios Associated with a 2.3%	1-42
Probability of Failure	

.		200	COC VOC	OCAMO	α	STO DEV	CITAG	ā	PMS FATIG	TREN	GTH RATIC	O (MEAN: 5	50% PRORA	PROBABILITY OF	FAIL LIRE)		-
·		_	(ksi)	(ksi)			e	¥	#2	E S		#2	9	ــــــــــــــــــــــــــــــــــــــ	#8	6#	#10
	#1 HSLA 7/16" bending, shipyard	, shipyard	13.617	15.161	-5.130	0.378	10^3 cyc	-	0.7	1	0.79	0.93	0.84	0.95	96.0	0.47	
			.,,	,,,,,	1,007	0300	10^8 cyc	- [9 •	0.28	0.37	0.32	0.5	0.13	0.28	0.24	0.12
4	HSLA 1/4 , continuous cruc., snipyard	us cruc., snipyard	10.7	# 6.	,	- 1	10.8 cyc	2.52	-	.75	. 0.	0.82	0.51	. 9. 8.	0.7	9.0	0.31
£	HSLA 7/16", continuous cruciform	ious cruciform	9.559	10.525	-3.210	0.185	10^3 cyc	0.93	0.65	-	0.73	0.86		0.89	0.89	0.43	
			40,400	44.500	2000	0.00	10^8 cyc	3.55	4.	- 76 7	1.33	1.15		4.0	9. t	20.0	5.0
1	HSLA 7/16", continuous cruc.	ious cruc, snipyard	10.432	780.11	-3.633	0.210	10/8 cvc	2.67	9. 6.	0.75		0.87	9.5	98.0	0.74	49.0	
¥	HSLA 7/16", continuous cruc.,	ious cruc., lab & syd	9.947	10.999	-3.496	0.205	10^3 cyc	1.08	0.76	1.16	0.85	-		1 03	2.8	0.5	5.
:				10			10^8 cyc	3.08	1.22	0.87	1.15	- ;	0.62	4.	0.88	47.0	•
¥	HSLA 3/4", continuous cruc., shipyard	ous cruc., shipyard	9.057	10.000	6. 134	0.172	10^3 cyc	1.19	1.97	1.28	0.93	. 6		9.0	1.38	9.19	
4.	HSLA 1", continuous cruc., sh	s cruc., shipyard	8.389	9.211	-2 732	0.068	10^3 cyc	1.05	0.74	1.13	0.82	0.97	0.88	-	1.01	0.49	0.98
;							10^8 cyc	7.51	2.98	2.12	2.81	2.44	151	- 6	5.09	1.79	
¥	HSLA discontinuous cruciform	s cruciform	9.601	10.597	-3.307	0.263	10^3 cyc	2.04	0.73	1 12	0.82	1.16	0.88	0.99		9.0	2 0
\$	HSLA misalianed cruciform	uciform	9.733	10.922	-3.949	0.227	10^3 cyc	2.14	1.51	2.31	1.68	•	1.8	2.04	2.05	-	
i							10^8 cyc	4.19	1.86	1.18	1.57	•	0.84	0.58	1.17	-	
#10	HSLA non-full pene	HSLA non-full penetration disc cruciform	8.272	9.081	-2.686	0.139	10^3 cyc	1.07	0.75	1.15	20.0	0.99	6.0	•	1.02	6.5	
#11	HSI A missioned narial name	artial penetration welds	8 513	9 521	.3 349	0.208	10/3 cyc	2.34	1.65	2.52	28.		_	2.23	2.25	8	
=		-	2				10^8 cyc	7.72	3.07	2.17	2.89		_	1.03	2.15	2 6	
#12	HS continuous cruciform	iform	11.289	12.639	-4.486	0.218	10^3 cyc	1.6	1.13	1.72	1.26			1.53	1.53	0.75	
		- Consideration	0.540	10.877	2 447	0.353	10^8 cyc	2.21	0.88	0.62	8.0	1.09	4.0	1 13	1.13	0.55	
2	The spont with the sp		5	2			10/8 cyc	36.	1.45	102	1.36	_	_	0.48	<u>6</u>	0.87	
#14	HS misaligned cruciform	iform	12.902	14.833	-6.416	0.142	10^3 cyc	3.61	27	3.89	2.84	334	- 8 G	3.45	3.47	1.69	
			40 566	44 700	2 007	200	10-8 cyc	7.23	0.92	5.5 8.5 8.0	9 6		•		2.5	0.00	
e H			0000	3	9	77.0	10/8 cyc	2.62		0.74	0.98	_	_		0.73	0.63	
#16	OS discontinuous cruciform	nciform	10,185	11.314	-3.752	0.304	10^3 cyc	1.3	0.92	4.	1.02	_	1.09	1.24	1.25	0.61	
			1				10^8 cyc	2.97	1.18	0.84	1.11	0.98	0.6		0.83	2.7	
#17	OS misaligned cruciform	ciform	10.541	12.023	-4.924	0.149	10^3 cyc	3.41	1.49	105	2.58	121	0.75	0.5	1.04	0.89	
#18	HSLA & HS conventional cor	ntional components	9.192	10.174	-3.263	0.214	10^3 cyc	1.3	0.92	4.1	1.02	_	_	1.24	1.25	0.61	
							10^8 cyc	4.71	1.87	1.33	1.76	1.53	0.95	. 0.83	£.	1.12	
#10	HSLA SNIPED COMP	AM.	10.058	/97.11	4.010	20	10/8 cyc	3.55	4 4	2.03	133	1.15	0.72	0.47	66.0	0.85	
#20	HSLA INTERCOASTAL	STAL	9.699	10.930	-4.088	0.120	10^3 cyc	2.52	1.77	2.71	1.98	2.33	_		2.42	1.18	
							10^8 cyc	4.46	1.7	1.26	1.67	_	_	0.59	1.24	1.07	
#21	HSLA CONV CMP R=-1	R=-1	9.427	10.399	-3.230	0.169	10^3 cyc		1.0	1.13	1.83	_	_	_	<u> </u>	9 6	
#22	#22 HSLA Stiffener Splice	80	10.843	12.122	4.250	0.177	10^3 cyc	1.58	1.1	171	1.24	1.46			1.52	0.74	
							10^8 cyc	2.52	-	0.71	0.94		_		0.7	9.6	
#23	HSLA Opening Detail	tail	8.923	9.971	-3.480	0.203	10^3 cyc	2.08		2.24	1.63	_	_	66. 86.	18 2	1 44	
#2#	HSI A Flame cut edue	doe	10.553	11,668	-3.705	0.092	10°3 cvc	0.97	0.69	1.05	0.77	 8.0	0.82		46.0	0.46	
		D					10^8 cyc	2.31							0.64	0.55	
#25	HSLA Insert Plate "Good We	"Good Weld"	12.101	13.633	-5.090	0.184	10^3 cyc		1.34	2.08	1.5	_	9.1	1.82	25.03	0.89	
#28	HSt.A Insert Plate "Poor Wel	"Poor Weld"	9.845	11.051	4.009	0.103	10°3 cyc	2.14	-	2.3		1.98		202	2.05	-	
							10^8 cyc		1.59	1.13				0.53	Ξ.	96.0	
#27	HSLA one sided welds	reids	9.956	10.949	-3.298	0.307	10^3 cyc	0.8	0.57	0.87	0.63	7.00	0.66	0.77	0.77	0.38	
#28	HSLA single thickness doubl	ness doubler welds	9.179	10.119	-3.122	0.490	10^3 cyc	1.07	0.75	1.15	0.84	1 0.95	0.9		1.02	0.5	
							10^8 cyc	4.52		1.27	1.6	4.	7 0.91	9.0	1.26	1.08	
#58	HSLA double thickness doubler	rness doubler welds	80.00 50.00	8.680	-2.780	0.555	10^3 cyc	5.21	2.07	1.47	96.	1.66	1.05	0.69	1.45	1.24	
#30	Generic S/N Curve		000	0000			ı		i -	-				-			

	BASELINI	BASELINE CONFIGURATION	LOG(Aamp)	LOG(Arng	m	STD DEV	RATIO	S.	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	STRENGT	H RATIO (I	MEAN: 509	% PROBABIL	LITY OF FA	ILURE)	-	
7			(ksi)	(ksi)			(0)	#11	#12	#13	#14	#15	#16	#17	#18	#19	#20
F		HSLA //16" bending, shipyard	13.617	15.161	-5.130	0.378	10^3 cyc	0.43	0.63	0.85	0.28	0.73	0.77	0.29	0.77	0.52	0.4
#2	HSLA 1/4	HSLA 1/4", continuous cruc., shipyard	10.714	11.944	4.087	0.350	10^3 cyc	0.61	0.89 -	12/	9.0	9 6	8. C	0.27	60.21	0.28	0.22
						7	10^8 cyc	0.33	1.14	690	100	98.0	0.85	0.67	5.0	2.5	9 6
¥	HSLA 7/1	HSLA 7/16", continuous cruciform	9.559	10.525	-3.210	0.185	10^3 cyc	0.4	0.58	0.79	0.26	0.67	0.71	0.27	0.71	0.49	0.37
777	0		+				10^8 cyc	0.46	1.61	0.98	75	1.35	1.2	0.95	0.75	 -	9.0
1	AJSH AJSH	HOLA (716, continuous cruc, snipyard	10.432	11.592	-3.855	0.210	10^3 cyc	20.0	0.8	8 6	0.35	0.92	0.98	0.37	0.98	0.67	0.51
£	HSLA 7/1	HSLA 7/16", continuous cruc., lab & syd	yd 9.947	10.999	-3.496	0.205	10^3 cyc	0.46	0.68	0.0	03	0.78	9.0	0.0	0.57	0.75	900
						ī	10^8 cyc	0.4	4.	0.85	¥.	1.18	2	0.82	990	0.87	69.0
¥	HSLA 3/4'	HSLA 3/4", continuous cruc., shipyard	9.057 .	10.000	.3.134 48.	0.172	10^3 cyc	0.51	0.74	1.01	0.33	0.86	0.91	0.35	0.91	0.62	0.47
#1	100	Lie A 1" Continues on the continues of t	000	7,70	t c	П	10^8 cyc	0.64	2.25	98.	2.16	1.89	1.67	1.33	9.	4	1.11
¥;	5	continuous cruc., snipyard	8.389	L12.6	-7.732	0.068	10^3 cyc	0.45	0.66	0.89	0.29	0.76	0.81	0.31	8.0	0.55	0.42
#	HSLA disc	HSLA discontinuous cruciform	9.601	10.597	-3.307	0.263	10/3 cvc	0.45	0.65	0.00	0.20	0.26	2.3 B C	2.0	0 G	7.77	9 7
						7	10^8 cyc	0.47	.63	66.0	5.5	1.37	12.5	96.0	0.76	5 5	80
	HSLA mis	HSLA misaligned cruciform	9.733	10.922	-3.949	0.227	10^3 cyc	0.91	1.34	1.81	0.59	1.55	1.65	0.63	1.64	1.12	0.85
	4.0		+			Ī	10^8 cyc	0.54	6.	1.15	1.82	1.6	<u>+</u>	1.12	0.89	1.18	0.94
#10	HSLA non	HSLA non-full penetration disc cuciform	m 8.272	9.081	-2.686	0.139	10^3 cyc	0.46	0.67	6.0	0.3	0.77	0.82	0.31	0.82	0.56	0.42
#77	HOI A mis	HOL A mission bearing A INH	olde 0 543	0 624	0700	Γ	10^8 cyc	8.	3.73	2.26	3.57	3.14	2.77	2.2	1.75	2.32	<u>8</u>
	5	angree paren perenauori	1	9.02	5.043	0.200	10'3 cyc		1.45 2.5		0.65	7.1	60 6	0.69	æ ;	1.23	0.93
#12		HS continuous cruciform	11.289	12.639	-4.486	0.218	10^3 cvc	0 68	. .	1.35	0.30	1.83	2.2	8 6	8 6	7.7	5 . 0
						7	10^8 cyc	0.29	_	0.61	96	9.	0.74	65.0	0.47	0.62	0.49
#13	HS discon	HS discontinuous cruciform	9.648	10.677	-3.417	0.252	10^3 cyc	0.5	0.74	_	0.33	0.86	0.91	0.35	0.91	0.62	0.47
77	300		000	,			10^8 cyc	0.47	1.65	-	1.58	1.39	1.23	0.97	0.77	1.02	0.82
*	Sillse	gried cruciform	72,902	14.833	-6.416	0.142	10^3 cyc	1.54	2.26	90.0	ᆕ,	2.62	2.78	90.	2.77	6.9	1.43
#15	OS contin	OS continuous cruciform	10.566	11.766	-3.987	0.221	10/3 cvc	0.50	9.0	20.0	- ac	8.0	5 G	79.0	94.0	0.63	0.52
						7	10^8 cyc	9.9	1.19	0.72	2.1	_	88.0	t 0	95.0	0.74	0.59
#10	OS discon	OS discontinuous cruciform	10.185	11.314	-3.752	0.304	10^3 cyc	0.56	0.81		0.36	0.94	-	0.38		0.68	0.52
#47	ilosim 30	The state of the s	77.507	0000	100	Г	10^8 cyc	0.38	8	0.81	1.29	1.13	-	0.79	0.63	0.83	99.0
#		duen cancioni	140.01	12.023	4.924	0.149	10~3 cyc	94.	2.13	2.89	0.94	2.48	2.62	-	2.62	1.79	1.35
#18	HSLA & H	HSLA & HS conventional components	9.192	10.174	-3.263	0.214	10^3 cyc	0.56	0.81	3 -	0.36	54.0	87.	0.38		50.L 89.C	5 C
						7	10^8 cyc	0.61	2.13	1.29	20.0	1.8	1.59	128	-,-	1.32	1.05
#10	HSLA SN	HSLA SNIPED COMP	10.058	11.267	4.016	0.139	10^3 cyc	0.81	1.19	1.61	0.53	1.38	1.47	0.56	1.46	=	0.76
#20	HSI A INT	HSI A INTERCOASTAL	0 600	10 030	900 7	0 420	10^8 cyc	0.46	1.61 1.61	0.98	7. 2	38.	7 7	0.95	0.75	-	8.0
			2000	200.00	7.00		10.8 cyc	- C) c. c	2 5	<u>9</u>	28.7	<u>.</u>	4 6	28.5	35.	
#51	HSLA CO	HSLA CONV CMP R=-1	9.427	10.399	-3.230	0.169	10^3 cyc	0.45	0.66	0.89	0.29	0.76	0.81	0.31	0.81	0.55	0.42
CC#	2 V 1011	201-0 - Carrier	4,000	00,00			10^8 cyc	0.51	1.78	1.08	1.71	1.5	1.33	1.05	0.84	1.1	0.88
***	5	diei Spiice	10.843	12.122	4.250	0.1//	10^3 cyc	0.68	0.99	1.34	4.0	1.15	1.22	0.46	1.21	0.83	0.63
#23	HSLA Ope	HSLA Opening Detail	8.923	9.971	-3.480	0.203	10^3 cyc	0.89		1.76	0.58	1.51	1.6	0.67	4.0	1.09	0 0
707	Č					l i	10^8 cyc	0.78	2.73	1.66	2.62	23	2.03	1.61	1.28	1.7	1.35
174	5	noch riame cut edge	10.553	11.008	3.705	0.092	10~3 cyc	0.42	0.61	0.83	0.27	0.71	0.75	0.29	0.75	0.51	0.39
#25	HSLA Inse	HSLA Insert Plate "Good Weld"	12.101	13.633	-5.090	0.184	10.3 cvc	0.81	1.05	1.61	0 53	1.39	1 47	0.55	0.49 1.46	0.65 -	0.52
						1	10^8 cyc	0.25	0.88	0.53	98.0	0.74	0.65	0.52	0.41	0.55	9 9
#26	HSLA Inse	HSLA Insert Plate "Poor Weld"	9.845	11.051	4.009	0.103	10^3 cyc	0.91	<u>¥</u>	1.81	0.59	1.55	1.64	0.63	1.64	1.12	0.85
#27	HSI A one	HSLA one sided welds	9 9 9	10 040	3 208	0.307	10/8 cyc	0.52	<u> </u>	+. e	1.74	1.53	1.35	1.07	0.85	. 5	6.0
			36.5	20.01	067.0		10/8 cyc	, c	2.5	0.08	1 22	10.58	79.0	0.24	0.62	0.42	0.32
#28	HSLA sing	HSLA single thickness doubler welds	9.179	10.119	-3.122	0.490	10^3 cyc	0.46	0.67	6.0	0.3	0.78	0.82	0.31	0.82	0.56	0.42
90#	100		-	0000	0		10^8 cyc	0.59	2.05	1.24	8.	1.73	1.52	12	96.0	1.27	1.0
67#	DO WIND	HSLA double thickness doubler welds	8.843	9.680	-2.780	0.555	10^3 cyc	0.33	0.49 36	0.66	0.22	0.57	9.0	0.23	0.6	0.41	0.31
£30	Generic S/N Curve	/N Curve	9.000	9.903	-3.000	0000	10/3 cvc	0.43	0.63	0.85	0.28	25.0	0.75	5 C	17.0	.4. 53	7.7
						7	10^8 cyc	0.64	2.24	1.36	2.15	.89	1.67	25.	.05	98.	1. 1.

	BASELINE CONFIGURATION	LOG(Aamp) LOG(Amg	OG(Amg	8	STD DEV	RATIO		FATIGUE (STRENGTH	RATIO (M	EAN, 50%	PROBABIL	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	URE)		
HSLA.YIR's bending, shipperd			(ksi)		i	8	#21	#22	#23	#24	#25	#26	#27	#28	#28	#30
High Air Continuous crue, shippard 10,714 11,944 4,087 0,355 10,099	bending, shipyard	13.617	15.161	-5.130	\neg	10^3 cyc	0.95	0.63	0.48	1.03	0.52	0.47	1.25	0.94 0.04	0.19	0.99
High A first continuous cruciform 9,556 10,525 3,210 0,185 10°0 cp. 0.89 1.0 °0 cp. 0.85 1.0°0 cp. 0.85	continuous cruc., shipyard	10.714	11.944	4.087	_	10^3 cyc	1.35	6.0	0.68	1.46	0.74	99.0	1.77	1.33	1.82	4.
HSLA 70°C continuous crucicim 9.556 10.555 3.210 0.185 10°C pc 0.88 0.145 0.89 0.145 0.1					7	10^8 cyc	0.64	-	0.42	1.09	1.3	0.63	6.0	0.56	0.48	0.51
HSLA 7/16', Confinuous crue, shipyard 10.432 11.582 3.855 0.210 10.75 pp. 1.05 pp.	continuous cruciform	9.559	10.525	-3.210	0.185	10^3 cyc	0.88	0.59	0.45	0.95	0.49	0.43	1.16	0.87	1.19	0.92
HSLA 710° confinuous cruc, labb & ayd 9.47 10.895 3.466 0.206 10°5 of 10	1	007.07	201	2000	0700	10^8 cyc	6.5	1.41		¥ .	2 6	88.0	/7.1	D 0	0.04 6.08	0.7
HSLA July Continuous crue, shippard 9.947 10.999 3.4466 0.205 10.93 yr 10.99 yr 1	continuous cruc., snipyara	10.432	786.11	2.00	0.210	10.3 cyc	17.0	, c	4	<u>.</u> 6	1.38	0.67	96	62.0	5.0	0.50
HSLA 3tr confinuous crue, shippard 3.057 10.000 3.154 0.172 10.9 spc 138 197 198	continuous cruc. lab & svd	9.947	10.999	-3.496	0.205	10^3 cvc	138	890	0.52	1.	0.57	0.51	1.35	19	1.38	1.07
HSLA 344" confinuous cruc, shipyard 8,057 10,000 3,134 0,172 10°4 0°7 128 10°4 0°7 0°7 128 10°4 0°7 128 10°4 0°7 128 10°4 0°7 128 10°4 0°7 128 10°4 0°7 0°7 128 10°4 0°7 128 10°4 0°7 128 10°4 0°7 128 10°4 0°7 0°7 128 10°4 0°7 0°7 0°7 0°7 0°7 0°7 0°7 0°7 0°7 0°7						10^8 cyc	0.78	1.22	0.51	1.33	1.59	0.77	7	0.68	0.59	0.62
HSLA fir. confinuous crucir, shipyard 8389 9.211 2.732 0.0688 10°3 oc 150 150 150 150 150 150 150 150 150 150	continuous cruc., shipyard	9.057	10.000	-3.134	0.172	10^3 cyc	1.13	0.75	0.57	1.22	0.62	0.56	84.	<u>-</u> ;	1.52	1.18
HSLA discontinuous cruciform 9 001 10 0507 0 260 10 00 00 00 00 00 00 00 00 00 00 00 00	provide one entities	280	0 211	2 732	8900	10'8 cyc	8	/8.C	0.82	5.75	2.30	97.0	2.6	2 0	28.5	- 5
HSLA discontinuous cruciform 9.601 10.597 3.307 0.265 10.9 syc 0.99 0.69 0.	מונות מוניים	9000	4	Ž,	3	10^8 cyc	- 6.	2.98	125	3.25	3.87	88.5	2.69	8.6	4	152
HSI.A misaligned cruciform	ntinuous cruciform	9.601	10.597	-3.307	0.263	10^3 cyc	0.99	99.0	0.5	1.07	0.55	0.49	1.3	96.0	1.33	9.
HSLA misaligned cruciform 8,733 10,922 3,349 0,227 10'0 syc 10.6						10^8 cyc	0.91	1.43	90	1.55	1.85	6.0	1.29	0.79	69.0	0.72
HSLA non-full penetration disc cruciform 8.272 9.081 2.886 0.133 10°3 cyc 10°0 cyc	igned cruciform	9.733	10.922	-3.949	0.227	10^3 cyc	2.8	1.35	1.03	2.5	1.12	- Y	2.67	2.01	2.74	2.13
HSLA misaligned cuciform 12.902 10.556 11.756 0.203 10.73 cpc 1.22 1.14 1.1289 1.2539 0.203 10.73 cpc 1.22 1.14 1.1289 1.2539 0.203 10.73 cpc 1.12 1.14 1.1289 1.2539 0.214 10.73 cpc 0.252 1.14 1.1289 0.214 0.74 0.75 cpc 0.15 0.75	ull penetration disc concitorm	8 272	9.081	-2 686	0 139	10^3 cvc	8 8	0.67	0.51	60	0.56	50	33		137	8
HSLA misaligned pardial penetration weids 8.513 9.521 3.349 0.208 10.3 9°C 123 148 1		4		3	3	10^8 cyc	8	3.27	.36	3.56	4.24	2.05	29.	.82	1.58	1.66
HS continuous cruciform 11289 12.639 4.486 0.218 1073 cyc 1.28 3.07 144 145 cyc 1.28 1073 cyc 1.28 1	igned partial penetration welds	8.513	9.521	-3.349	0.208	10^3 cyc	2.23	1.48	1.13	2.4	1.23	Ξ	26.2	2.19	က	2.32
HS continuous cruciform						10^8 cyc	8.	3.07	1.28 1.28	334	3.98	1.93 1.93	2.76	1.7	1.48 0.0	92.5
HS discontinuous cruciform 9,848 10,677 3,477 0,282 10,73 cyc 1,12 0,75 cyc 0,75	ous cruciform	11.289	12.639	4.486	0.218	10^3 cyc	1.52	1.01	0.77	4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	28.0	0.75	96.0	0.T 0.A9	2.05	0.45
HSIA sinferer Splice HSIA sinferer Splice HSIA single thickness doubler weids HSIA single thickness double metro single thickness do	minis chiciform	9 648	10.677	-3.417	0.252	10/3 cyc	1.12	0.75	0.57	121	0.62	0.55	1.47	-	1.51	1.17
HSLA convention						10^8 cyc	0.92	4	90	1.57	1.87	0.91		0.8	0.7	0.73
OS continuous cruciform 10.566 11.766 3.987 0.221 10% 8 cyc 0.57 1.04 OS discontinuous cruciform 10.185 11.314 -3.752 0.304 10% 8 cyc 0.67 1.04 OS misaligned cruciform 10.185 11.314 -3.752 0.304 10% 8 cyc 0.67 1.04 OS misaligned cruciform 10.541 12.023 -4.924 0.149 10% 9 cyc 0.75 1.16 HSLA SIMPED COMP 10.068 11.267 -4.016 0.139 10% 3 cyc 1.21 1.87 HSLA SIMPED COMP 10.068 11.267 -4.016 0.139 10% 3 cyc 1.21 1.21 HSLA SIMPED COMP 10.068 11.267 -4.016 0.139 10% 3 cyc 1.21 1.21 HSLA SIMPED COMP 10.068 11.267 -4.016 0.139 10% 3 cyc 1.21 1.21 HSLA SIMPED COMP 10.068 11.267 -4.016 0.139 10% 3 cyc 1.21 1.21 HSLA CONV CMP PC	ned cruciform	12.902	14.833	-6.416	0.142	10^3 cyc	3.44	2.28	1.74	3.71	1.89	1.69	4.5	3.38	4.62	3.59
OS discontinuous cuciform		40.566	44 766	2 007	1000	10^8 cyc	0.59	0.91 78.0	98.0		91.1	20 C	1 22	1 20	4 4	1 37
OS missilgned cruciform 10.185 11.314 3.752 0.304 10.73 c/c 12.41 0.82 OS missilgned cruciform 10.541 12.023 4.924 0.149 10.73 c/c 0.75 1.18 HSLA SMIPED COMP 10.056 11.267 4.924 10.174 -3.283 0.214 10.73 c/c 12.4 0.82 HSLA SMIPED COMP 10.056 11.267 4.016 0.130 10.73 c/c 12.4 1.87 HSLA SMIPED COMP 10.056 11.267 4.016 0.130 10.73 c/c 1.13 1.41 HSLA SMIFTEN COMP 10.056 10.830 4.088 0.120 10.73 c/c 1.13 1.77 HSLA CONV CMP R=-1 9.427 10.399 3.230 0.169 10.73 c/c 1.13 1.17 HSLA SMIFTEN SQUARE 9.427 10.399 3.230 0.177 10.73 c/c 1.13 1.14 HSLA SMIFTEN SQUARE 10.843 1.2.12 4.250 0.177 10.73 c/c 1.13 1.14	ous croanelli	200	3	-0.30/	0.22	10^8 cyc	0.67	9	54.0	1.1	1.35	0.65	0.94	0.58	0.5	0.53
OS missilgned cruciform 10.541 12.023 4.924 0.149 10°8 cyc 0.75 1.18 10°8 cyc 0.35 1.48 10°8 cyc 0.35 1.48 10°8 cyc 0.35 1.48 10°8 cyc 0.35 1.48 10°8 cyc 1.24 0.82 1.41	nuous cruciform	10.185	11.314	-3.752	0.304	10^3 cyc	1.24	0.82	0.63	1.33	0.68	0.61	1.62	1.22	1.66	1.29
NST			000 01	,		10^8 cyc	0.75	1.18	0.49	128	5.53 E	0.74	9. 1.06	0.66	0.57	0.6
HSLA & HS conventional components 9,192 10,174 3,263 0,214 10/3 cyc 1,24 0,82 12 187 198 cyc 181 12 187 198 cyc 181 12 187 198 cyc 181 12 198 cyc 181 198 cyc 181 198 cyc 181 198 cyc 19	ned cruciform	10.541	12.023	4.924	D. 148	10^3 cyc	3.24 0.95	1.49	62	162	. 68	. 0 8 6	4 5	0.83 83	0.72	0.76
HSLA SNIPED COMP 10.058 11.267 4.016 0.139 10.9 cyc 1.81 1.2 1.87 1.95 cyc 1.81 1.2 1.81 1.2 1.95 cyc 1.81 1.95 cyc 1.81 1.95 cyc 1.81 1.95 cyc	conventional components	9.192	10.174	-3.263	0.214	10^3 cyc	1.24	0.82	0.63	<u>¥</u>	0.68	0.61	1.62	1.22	1.67	1.29
HSLA SNIPED COMP 10.056 11.267 4.016 0.139 10°3 cyc 1.81 1.2 HSLA INTERCOASTAL 9.699 10.930 4.088 0.120 10°3 cyc 1.13 1.77 HSLA CONV CMP R=-1 9.427 10.399 3.230 0.169 10°3 cyc 1.13 1.77 HSLA CONV CMP R=-1 9.427 10.399 3.230 0.169 10°3 cyc 1.13 1.77 HSLA CONV CMP R=-1 9.427 10.399 3.230 0.169 10°3 cyc 1.51 1.06 HSLA CONV CMP R=-1 9.427 10.399 3.230 0.169 10°3 cyc 1.51 1.06 HSLA CONV CMP R=-1 9.427 10.399 3.230 10°3 cyc 1.55 1.06 HSLA CONV CMP R=-1 9.427 10.399 3.39 10°3 cyc 1.55 1.06 HSLA CONV CMP R=-1 9.427 10.399 3.39 10°3 cyc 1.55 1.06 HSLA CONV CMP R=-1 9.427 10.399 3.39 10°3 cyc 1.25 1.06 HSLA CONV CMP R=-1 9.427 10.399 3.39 10°3 cyc 1.25 1.06 HSLA CONV CMP R=-1 9.427 10.399 3.399 3.30 10°3 cyc 1.25 1.06 HSLA CONV CMP R=-1 9.427 10.399 3.3299 0.307 10°3 cyc 1.25 1.06 HSLA GOND Rest Conblet welds 8.843 9.680 3.3299 0.307 10°3 cyc 1.32 1.06 HSLA double thickness doublet welds 8.843 9.680 3.300 10°3 cyc 1.32 1.36 1.06 cyc 1.32 1.36 1.06 cyc 1.32 1.36 1.30						10^8 cyc	7	1.87	0.78	20.5	2.42	1.18	1.68	<u>5</u>	6.0	0.95
HSLA INTERCOASTAL 9699 10.930 4.088 0.120 10.3 cyc 1.13 177	ED COMP	10.058	11.267	4.016	0.139	10^3 cyc	1.81	1 1 2	0.92	68. 4	- 8		1.27	97.0	2.44	1.89
HSLA CONV CMP R=-1	RCOASTAL	669.6	10.930	4.088	0.120	10^3 cyc	2.4	1.59	121	2.58	1.32	1.18	3.14	2.36	3.22	2.5
HSIA CONV CMP R=-1 9.427 10.339 3.230 0.169 10°3 cyc 1 0.66 HSIA CONV CMP R=-1 10.843 12.122 4.260 0.177 10°3 cyc 1.51 HSIA Opening Detail 8.923 9.971 3.480 0.203 10°3 cyc 1.58 1.18 HSIA Opening Detail 10.553 11.668 3.705 0.092 10°3 cyc 1.58 1.39 1.31 HSIA Flame out edge 10.553 11.668 3.705 0.092 10°3 cyc 1.58 1.39 1.31 HSIA Insert Plate "Good Weld" 12.101 13.633 5.090 0.164 10°3 cyc 1.59 1.31 HSIA insert Plate "Poor Weld" 9.845 11.051 4.009 0.103 10°3 cyc 1.59 1.35 HSIA double thickness doubler welds 9.179 10.119 3.122 0.490 10°3 cyc 0.77 1.11 HSIA double thickness doubler welds 8.843 9.680 2.780 0.655 10°3 cyc 0.74 1.18 HSIA double thickness doubler welds 9.000 9.903 3.000 0.000 10°3 cyc 0.74 0.75 0.74 0.75 0.74 0.74 0.75 0.74 0.75						10^8 cyc	1.13	1.77	0.74	1.93	2.3	+ ;	9.7	0.80	0.86	0.0
HSLA Sufficient Splice 10.843 12.122 4.250 0.177 10°6 cyc 1.51 1 HSLA Opening Detail 8.923 9.977 3.480 0.203 10°8 cyc 1.58 1.13 HSLA Flame cut edge 10.553 11.668 3.705 0.092 10°8 cyc 1.53 2.39 HSLA Flame cut edge 10.563 11.668 3.705 0.092 10°8 cyc 0.89 0.62 HSLA Flame cut edge 12.101 13.633 -5.090 0.164 10°8 cyc 0.59 0.32 HSLA Insert Plate "Good Weld" 12.101 13.633 -5.090 0.164 10°9 cyc 0.59 0.77 HSLA insert Plate "Poor Weld" 9.845 11.051 4.009 0.103 10°3 cyc 0.30 1.35 HSLA insert Plate "Poor Weld" 9.845 11.051 4.009 0.103 10°3 cyc 0.71 1.11 HSLA double thickness doubler welds 9.179 10.119 3.122 0.490 10°3 cyc 0.74 1.11	IV CMP R=-1	9.42/	10.399	-3.230	691.0	10^3 cyc		9.0	0.65	2 -	203	0.98	ر ا	0.87	0.76	0.79
HSLA Opening Detail 8.923 9.971 3.480 0.203 10^8 cyc 1.98 1.31 10^8 cyc 1.98 1.32 1.32 1.32 1.34 10^8 cyc 1.35 1.3	aner Splice	10.843	12.122	4.250	0.177	10^3 cyc	1.51	-	0.76	1.62	0.83	0.74	1.97	1.48	2.03	1.57
HSIA Opening Detail 8.923 9.971 3.480 0.203 1073 cyc 1.39 1.31 HSIA Flame out edge 10.563 11.668 3.705 0.092 1078 cyc 1.39 0.62 HSIA Insert Plate "Good Weld" 12.107 13.633 -5.090 0.184 1078 cyc 0.59 0.82 HSIA Insert Plate "Good Weld" 12.107 13.633 -5.090 0.184 1078 cyc 0.49 0.77 HSIA one sided welds 9.845 11.051 4.009 0.103 1073 cyc 1.36 HSIA one sided welds 9.856 10.349 3.2298 0.307 1073 cyc 0.77 HSIA double thickness doubler welds 9.179 10.119 3.122 0.490 0.73 1.11 HSIA double thickness doubler welds 8.843 9.680 2.7780 1078 cyc 1.35 1.8 HSIA double thickness doubler welds 9.000 9.903 3.000 0.050 1074 cyc 0.674 0.64 Generic SIN Curve 9.000 9.903						10^8 cyc	9.0	- }	0.42	1.09	5.	0.63	6.0	0.56	9.0	0.51
HSLA Flame out edge 10.553 11.668 3.705 0.092 10.73 cyc 0.93 0.62 HSLA Insert Plate TGood Weld** 12.101 13.633 -5.090 0.184 10.96 cyc 0.59 0.92 HSLA Insert Plate TGood Weld** 9.845 11.051 4.009 0.103 10.95 cyc 0.49 0.77 HSLA one sided welds 9.845 11.051 4.009 0.103 10.93 cyc 1.36 HSLA one sided welds 9.856 10.349 3.298 0.307 10.93 cyc 0.76 0.51 HSLA single thickness doubler welds 9.179 10.119 3.122 0.490 0.73 1.11 HSLA double thickness doubler welds 8.843 9.680 2.7780 0.765 1.07 0.74 Generic SIN Curve 9.000 9.903 3.000 0.000 10.73 cyc 0.64 Ansactory 0.000 10.73 cyc 0.74 0.94	ning Detail	8.923	9.9/1	3.480	0.203	10^3 cyc		1.39	- -	2.13	S &	15.	2.16	8.5	1.16	1.22
HSIA Insert Plate Tood Weld" 12.101 13.533 5.090 0.184 10*9 cyc 0.55 0.992 HSIA Insert Plate Tood Weld" 9.845 11.051 4.009 0.103 10*9 cyc 1.82 1.21 HSIA one sided welds 9.956 10.949 3.3299 0.307 10*9 cyc 1.02 1.59 HSIA double thickness doubler welds 9.107 10.119 3.122 0.490 10*3 cyc 1.02 1.59 HSIA double thickness doubler welds 8.843 9.880 2.780 0.555 10*9 cyc 1.32 2.07 Generic SIN Curve 9.000 9.903 3.000 0.000 10*3 cyc 0.94	ne cut edge	10.553	11.668	-3.705	0.092	10^3 cyc	0.93	0.62	0.47	-	0.51	0.46	1.21	0.91	1.25	0.97
HSI.A Insert Plate "Good Weld" 12.101 13.633 5.090 0.184 103 cyc 182 1.21 HSI.A Insert Plate "Poor Weld" 9.845 11.051 4.009 0.103 10*0 cyc 0.49 0.77 HSI.A one stided welds 9.956 10.949 3.2399 0.307 10*0 cyc 0.75 1.10 HSI.A one stided welds 9.179 10.119 3.122 0.490 10*0 cyc 0.75 1.11 HSI.A double thickness doubler welds 8.843 9.680 2.779 0.655 10*0 cyc 1.32 2.07 Generic SN Curve 9.000 9.903 3.000 0.000 10*0 cyc 0.96 0.64						10^8 cyc	0.59	0.92	0.38	· -	1.19	0.58	0.83	0.51	4.	0.47
HSIA Insert Plate "Poor Weld" 9.845 11.051 4.009 0.103 10°5 cyc 2.03 1.36 HSIA one stided welds 9.956 10.949 -3.299 0.307 10°8 cyc 1.02 1.59 HSIA one stided welds 9.179 10.119 -3.122 0.490 10°3 cyc 1.71 1.11 HSIA double thickness doubler welds 8.843 9.680 -2.780 0.655 10°3 cyc 1.15 1.8 HSIA double thickness doubler welds 8.843 9.680 -2.780 0.655 10°3 cyc 1.35 1.8 Generic SIN Curve 9.000 9.903 -3.000 0.000 10°3 cyc 0.64 0.64	rt Plate "Good Weld"	12.101	13.633	-2.090	0.184	10^3 cyc	1.82	1.21	0.92	98.		0.89	2.38	0.43	44.0	1.89
HSLA one sided welds 9.956 10.949 3.298 0.307 10°3 cyc 1.02 1.59 0.51 14SLA single thickness doubler welds 8.843 9.680 2.780 0.656 10°3 cyc 1.15 1.8 14SLA double thickness doubler welds 8.843 9.680 2.780 0.656 10°3 cyc 1.15 1.8 14SLA double thickness doubler welds 8.843 9.680 2.780 0.656 10°3 cyc 1.32 2.07 Generic SIN Curve 9.000 9.903 3.000 0.000 10°3 cyc 0.96 0.64 0.64	rt Plate "Poor Weld"	9.845	11.051	4.009	0.103	10°3 cyc	2.03	1.35	1.03	2.19	1.12	-	2.66	7	2.74	2.12
HSLA one sided welds 9.956 10.949 3.7298 0.307 10°3 cyc 0.76 0.51 HSLA single thickness doubler welds 9.179 10.119 3.122 0.490 10°3 cyc 1.21 1.11 HSLA double thickness doubler welds 8.843 9.680 2.730 0.655 10°3 cyc 1.15 1.8 HSLA double thickness doubler welds 8.843 9.680 2.730 0.655 10°3 cyc 0.96 0.74 0.49 Ceneric SIN Curve 9.000 9.903 3.000 0.000 10°3 cyc 0.96 0.64 0.64						10^8 cyc	1.02	1.59	99.0	1.73	5.08	T .	1.43	0.89	0.77	0.81
HSLA single thickness doubler welds 9.179 10.119 3.122 0.490 10°3 cyc 1.02 0.67 HSLA double thickness doubler welds 8.843 9.680 2.780 0.555 10°3 cyc 1.15 1.8 HSLA double thickness doubler welds 8.843 9.680 2.780 0.555 10°3 cyc 0.74 0.49 Generic SIN Curve 9.000 9.903 3.000 0.000 10°3 cyc 0.96 0.64	sided welds	908.6	10.949	-3.298	0.30/	10~3 cyc	0.76	111	96.0	121	2 4Z	0.38		0.70	5.05	0.56
HSLA double thickness doubler welds 8843 9.680 2.780 0.555 10°3 cyc 0.74 0.49 10°3 cyc 0.74 0.49 10°3 cyc 0.74 0.49 10°3 cyc 0.56 0.56 10°3 cyc 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	le thickness doubler welds	9.179	10.119	-3.122	0.490	10^3 cyc	1.02	0.67	0.51	109	0.56	0.5	1.33	=	1.37	1.06
HSI.A double thickness doubler weids 8.843 9.680 2.780 0.555 10^3 cyc 0.74 0.49 10.9						10^8 cyc	1.15	8.	0.75	8	2.33	1.13	1.62	- <u>[</u>	0.87	0.91
Generic S/N Curve 9,000 9,903 3,000 0,000 10*3 0,000 0.000 10*3 0,000 0.	ble thickness doubler welds	8.843	9.680	-2.780	0.555	10^3 cyc	0.74	0.49	0.38	0.8	0.41 88	0.37	1.87	1.15	- -	0.78
10AB cur 1.05	N Curve	9.000	9.903	3.000	0.000	10^3 cyc	96:0	0.64	0.48	1.03	0.53	0.47	1.25	0.94	1.29	-
10.1						10^8 cyc	1.26	1.97	0.82	2.14	2.55	124	177	=	0.95	

Test Specim	en RMS Fa	Test Specimen RMS Fatigue Strength Ratio	s Associate	os Associated with a 2.3% Probability of Failure	% Probabili	ty of Failure				-					-			
	+	-								+	+							
αī	ASELINE	BASELINE CONFIGURATION		LOG(Aamp I	LOG(Amg	æ	STD DEV	RATIO	RMS	AS FATIGUE	E STRENGTH RATI	⊥ O!	(MEAN-2S;	; 2.3% PRC	2.3% PROBABILITY	OF FAILURE	RE)	
	- 0			(ks)	- 1			6)	#	#2	#3	_ i	\$#	¥	2#	*	6#	#10
Ě	1	norw //10 bending, snipyard		12.861	14.405	-5.130	0.378	10^3 cyc	_,	0.67	1.16	0.86	0.99 5.0	0.92	1.19	0.93	0.5	4 6 5 5
#2 #	SLA 1/4", c	HSLA 1/4", continuous cruc., shi	hipyard	10.014	11.244	-4.087	0.350	10^3 cyc	.5.	-	1.74	1.29	1.49	1.38	1.79	4.	0.76	1.56
T	SI A 7/16"	HSI A 7/16" continuous considerm		0 180	10 155	3 240	185	10^8 cyc	2.66	- 2	0.8 1	1.09	0.92	0.58	4.0	0.72	0.68	0.36
1				3	3	2	3	10^8 cyc	3.3	1.24	-,-	1.35	1.15	0.72	0.55	0.0 0.0	0.85	9.0
4	SLA 7/16".	HSLA 7/16", continuous cruc., sh	shipyard	10.012	11.172	-3.855	0.210	10^3 cyc	1.18	0.78	1.35	-	1.16	1.07	1.39	1.09	0.59	1.21
	CI A 7/46"		7	2000	002	0	100	10^8 cyc	2.45	0.92	0.74	- 7	0.85	0.54	0.41	99.0	0.63	0.33
	۵./ ۲۵.	HOLA 1/10, CONTINUOUS CIUC, 18	ab & syd	9.53/	10.589	-3.436	0.205	10^3 cyc	1.01	0.67	1.17	0.87		0.92	1.2	96.0	0.51	4 %
¥	SLA 3/4", c	HSLA 3/4", continuous cruc., shi	hipyard	8.713	9.656	-3.134	0.172	10^3 cyc	1.09	0.73	1.27	0.94	1.08	3	1.3	1.02	0.55	1.13
-								10^8 cyc	4.55	1.71	1.38	1.86	1.58	· - ·	0.76	1.23	1.17	0.61
#	SLA 1".	HSLA 1", continuous cruc., shipy	oyard	8.253	9.075	-2.732	0.068	10^3 cyc	0.84	0.56	0.97	0.72	0.83	0.77	Ξ,	0.78	0.42	0.87
¥	SLA discor	HSLA discontinuous cruciform		9.075	10.071	-3 307	0.263	10^3 cyc	104	0.70	28.1	C4.0	20.5	25.0	- ac 1	3.	4 2	1 61
	-							10^8 cyc	3.69	1.39	1.12	1.51	1.28	0.8	0.61	-	0.95	0.5
£ 6#	SLA misali	HSLA misaligned cruciform		9.279	10.468	-3.949	0.227		1.99	1.32	2.31	1.71	1.97	1.82	2.37	1.86	=	2.06
2	CI A non 6.	The state of the s	1	1001	0000	000	0070	10^8 cyc	3.89	46 46		1.59	1.35	0.85	0.65	20.	-	0.52
T	אינוסון אַן	north non-ruii penegauon disc c	Cuchom	400.	8.803	-7.080	0.138	10^3 cyc	7.43	90.0	1.12	0.83	96.0	0.88	1.15	0.0	0.49	
#	SLA misali	HSLA misaligned partial penetration welds	tion welds	8.097	9.105	-3.349	0.208	10/3 cvc	2 22	48	2.58	19	2.2	2 2	2.65	2.07	1.5	- 6
								10^8 cyc	7.32	2.75	2.22	2.99	2.54	1.61	122	1.98	1.88	0.98
#12 H	Scontinuo	HS continuous cruciform		10.853	12.203	-4.486	0.218	10^3 cyc	1.42	0.95	1.65	1.22	14.1	1.31	1.7	1.33	0.72	1.48
i i	Specialis	HS discontinuous cauciform		0 144	40 473	2 447	0.050	10^8 cyc	1.97	0.74	0.6	8.5	0.68	0.43	0.33	0.53	0.51	0.26
-	8			<u> </u>	2	1	0.402	10^8 cyc	3.64	1.37	<u> </u>	1.49	127	9 6	0.61	- 66	800	2.0
#14 H	S misaligne	HS misaligned cruciform		12.618	14.549	-8.416	0.142	10^3 cyc	2.85	1.9	3.31	2.45	2.83	2.61	3.4	2.86	1.43	2.95
- 1								10^8 cyc	1.82	0.68	0.55	0.74	0.63	0.4	0.3	0.49	0.47	0.24
#12	S continuo	OS continuous cruciform		10.124	11.324	-3.987	0.221	10^3 cyc	1.27	0.84	1.47	1.09	1.26	1.16	1.51	1.18	4 6	.3
#16	S discontin	OS discontinuous cruciform		9.577	10.706	-3.752	0.304	10/3 cyc	1.35	6.0	1.56	1.16	1.33	1.23	1.61	1 28	0.68	1 39
								10^8 cyc	3.07	1.15	0.93	1.25	1.07	29.0	0.51	0.83	0.79	0.41
#17 0	S misalign	OS misaligned cruciform		10.243	11.725	4.924	0.149	10^3 cyc	2.79	1.86	3.24	2.4	2.77	2.58	3.33	2.61	4.	2.89
# 27	SIARHS	HSI A & HS conventional compo	onente	8 764	9 746	-3.263	0.214	10'8 cyc	3.07	1.15	0.93	1.25	1.07	0.67	0.51	0.83	0.79	0.41
		2.1			2		1170	10^8 cyc	4.53	1.	1.37	1.85	85.	-	0.76	123	1.17	0.61
#19	HSLA SNIPED COMP	ED COMP		9.780	10.989	-4.016	0.139		1.59	8	1.85	1.37	1.58	1.46	1.9	1.49	8.0	1.65
¥20	SI A INTER	HSI A INTERCOASTAL		9 450	10 690	A 088	0 120	10'8 cyc	2.97	1.12	0.9 ag	1.21	1.03	0.65	0.49	9.0	0.78	4.0
								10^8 cyc	3.64	1.37	-	1.49	1.26	8.0	0.61	66.0	9.0	0.49
#21	ISLA CON	HSLA CONV CMP R=-1		9.089	10.061	-3.230	0.169	10^3 cyc	0.95	0.63	<u>-1</u>	0.82	0.95	0.87	1.1	0.89	0.48	0.99
#22 H	HSLA Stiffener Splice	ner Solice		10.489	11.768	4 250	0.177	10^3 cyc	137	4 G	S 6	1.46	1.24	1 25	0.59	1.28	0.92	0.48
	H							10^8 cyc	2.17	0.82	99.0	0.89	0.76	0.48	0.36	0.59	0.56	0.29
#23 H	#23 HSLA Opening Detail	ing Detail		8.517	9.565	-3.480	0.203	10^3 cyc	1.94	1.29	2.25	99.	1.92	1.78	2.32	<u>£</u> (0.98	2.01
#24 H	HSLA Flame cut edge	cut edge		10.369	11.484	-3.705	0.092	10 ⁻³ cyc	0.78	0.52	6.0	0.67	0.77	0.71	0.93	0.73	0.39	0.87
		Ç						10^8 cyc	1.85	0.69	0.56	0.75	0.64	0.41	0.31	0.5	0.47	0.25
	Tack Insert	HOLA Insert Plate Good Weld		35.12	13.205	-5.080	D. 184	10^8 cyc	1.8 8.1.8) O.C	80 70 70	1.38	1.59	1.47	1.92	1.5	0.81	1.66
#5e	ISLA Insert	HSLA Insert Plate "Poor Weld"		9.639	10.845	4.009	0.103	10^3 cyc	1.71	1.14	1.99	1.47	1.7	1.57	2.05	1.6	0.86	1.78
100	- 4	NO. A SEC. OF SEC.		0,00	100.00	000	1000	10^8 cyc	3.21	1.21	0.97	1.31	1.12	0.7	0.53	0.87	0.83	0.43
	200	Mena Wena		3.542	0.335	-3.230	0.30	10^3 cyc	30.8	C.59	20.1	2,75	1 0.87	9.0	5.0	0.82	4 0 0	0.91
#28 H	SLA single	HSLA single thickness doubler w	welds	8.199	9.139	-3.122	0.490	10^3 cyc	1.57	9.	1.82	<u>8</u>	3.55	4.	1.87	1.46	0.79	1.62
000	100		4	1 100	010	000	100	10^8 cyc	6.63	2.49	2.01	2.71	2.31	94.	<u>+</u>	89.	171	0.89
	TSCA double	HSLA double mickness doubler	welds	(38)	8.5/0	-2.780	0.555	10^3 cyc	4. 6	0.93	1.62	2. 6	1.38	1.28	1.67	1.3	0.7	1.45
#30	Generic S/N Curve	Curve		9.000	9.903	-3.000	0.000	10^3 cyc	0.72	0.48	0.83	0.62	0.71	99.0	0.88	0.67	0.38	0.74
	1							10^8 cyc	3.53	1.33	1.07	1.44	1.23	0.77	0.59	96.0	0.91	0.47

4	BASELINE CONTIGORATION		B)	1				•				-				
		(ksi)	(ksi)	00,	000	9	_	#12	#13	#14	#15	41b) L#	0	# 20	070
#	HSLA 7/16" bending, shipyard	12.861	14.405	5.130	0.378	10~3 cyc	54.0 54.0) o	0.80	0 C	2.0	4 8	0.33	0.0	46.0	0.27
9	100 A 174" confirmation allowers	10.014	11 244	4 087	0.350	10/3 cvc	0.68	105	1.27	0.53	1.19	1.12	0.54	12.	96.0	0.73
	and the continuous same and the					10^8 cyc	98.0	1.35	0.73	1.46	+-	0.87	0.87	0.59	6.0	0.73
#	HSLA 7/16", continuous cruciform	9.189	10.155	-3.210	0.185	10^3 cyc	0.39	9.0	0.73	0.3	0.68	0.64	0.31	69.0	0.54	0.42
						10^8 cyc	0.45	1.68	0.91	<u>8</u> .	1.37	8. 8	8 .	0.73	÷.	0.91
#	HSLA 7/16", continuous cruc., shipyard	10.012	11.172	-3.855	0.210	10^3 cyc	0.52	0.82	0.99	0.41	0.92	0.87	0.42	58.0	2 6	0.07
		100	00.07	67.0	9000	10% cyc	50.03	4 2) O O	C 2. C	20.1	8.0	5 C	, a	0.63	0.0
¥	HSLA 7/16", continuous cruc., lab & syd	9.53/	10.589	2.480	CUZ.U	10°3 cyc	5.0	- 44	9 6	, c. c.	9 5	2 6	8 8	8	2 0 0 0	27.0
-	100	0 743	9990	2 124	0.472	10/3 0/0	90.0	2 2	0.0	98.0	9. 6	0.09	68.0	0.87	690	0.53
¥	HSLA 3/4, continuous cruc., snipyaru	ò	3	5	7	10^8 cvc	0.62	232	125	2.51	1.89	148	1.49	-	1.53	1.25
4,7	HSLA 1" continuous cruc., shipyard	8.253	9.075	-2.732	0.068	10^3 cyc	0.38	0.59	0.71	0.29	99.0	0.62	0.3	0.67	0.53	0.41
į						10^8 cyc	0.82	3.05	1.65	33	2.49	8	8.	1.32	2.02	1.65
8 #	HSLA discontinuous cruciform	9.075	10.071	-3.307	0.263	10^3 cyc	0.48	0.75	0.91	0.38	0.85	0.8	0.38	0.85	0.67	0.52
						10^8 cyc	0.5	1.88	<u>5</u>	2.03	.53	7.	77	0.81	4 2	1.01
ŧ	HSLA misaligned cruciform	9.279	10.468	-3.949	0.227	10^3 cyc	0.83	e .	1.68	0.7	1.57	84.	0.7	80.0	5 5	10.97
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7007	000	909 0	450	10~8 cyc	50.00	D 00	2 2	2 2	20.0	0.72	0.35	2 2	190	0.47
#10	HSLA non-full penetration disc cructorin	188.7	0.000	77.000	5	10.3 cyc	5 5	3.78	20.0	9	908	2.42	2.42	29	2.51	202
***	No. A missioned partial paration walds	8 097	9 105	-3 349	0 208	10^3 cvc	-	92.	1.88	0.78	1.75	1.65	0.8	1.77	1.39	1.08
•		+				10^8 cvc	- -	3.72	2.01	4.03	3.04	2.39	2.39	1.62	2.47	2.01
#12	HS continuous cruciform	10.853	12.203	4.486	0.218	10^3 cyc	0.64	_	1.21	0.5	1.13	1.06	0.51	1.14	6.0	0.69
						10^8 cyc	0.27	-	0.54	1.08	0.82	0.64	9.0	0.43	99.0	0.54
#13	HS discontinuous cruciform	9.144	10.173	-3.417	0.252	10^3 cyc	0.53	0.83	-	0.41	0.93	0.88	0.42	96.0	0.74	0.58
			9	955	97.0	10^8 cyc	0.5	85	- ;	N 7	1.51	1.19	E	9.0	2 2	- 05
#14	HS misaligned cructorm	12.518	4.04B	6 4 0	0.142	10/8 cyc	0.25	260	- 10		0.75	5.0	65.0	0	0.61	0.5
#15	OS contioners concidem	10.124	11.324	-3.987	0.221	10.3 cyc	0.57	0.89	1.07	0. 4	=	0.94	0.45	1.0	0.8	0.62
2						10^8 cyc	0.33	1.23	99.0	1.33	·	0.79	0.79	0.53	0.81	0.66
#16	OS discontinuous cruciform	9.577	10.706	-3.752	0.304	10^3 cyc	0.61	0.94	4. 6	0.47	8 5	- ,	0.48	1.07	0.85	0.66
		70.07	44 705	7007	. 0	10'8 cyc	24.0 1 ac 4	8 8	2 0	90.0	2 6	20.0	- =	2 2 2	175	
#1	OS misaligned cruciomi	10.243	27.1	1.36.1	r i	10/8 cyc	0.42	8.	8.	1.69	1.27	-	-	0.68	1.03	0.84
#18	HSLA & HS conventional components	8.764	9.746	-3.263	0.214	10^3 cyc	0.57	0.88	1.06	0.44	0.99	0.93	0.45	-	0.79	0.61
						10^8 cyc	0.62	2.31	1.25	2.49	8.8	84.	1.48	- [53	1.25
#18	HSLA SNIPED COMP	9.780	10.989	4.016	0.139	10^3 cyc	0.72	1.12	08.0 08.0	0.30 1.30	2 2	0.97	0.97	0.65	-,-	0.82
#20	HSI A INTERCOASTAL	9.459	10.690	4.088	0.120	10^3 cyc	0.93	4	1.74	0.72	1.62	1.53	0.74	2 6.	1.29	
						10^8 cyc	0.5	1.85	-	8	1.51	1.19	9.19	9.0	123	
#21	HSLA CONV CMP R=-1	9.089	10.061	-3.230	0.169	10^3 cyc	0.43	0.67	0.81	0.3 8 8	0.75	1.0	4 6	0 70	0.7	0.0
00	College College	40.480	41 76B	4 250	0.177	10/3 6/0	0.62	96	1.16	0.48	8	5 6	0.49	1.09	0.86	99.0
77#	1	201	3			10^8 cyc	0.3	Ξ	9.0	17	6.0	0.71	0.71	0.48	0.73	9.0
#23	HSLA Opening Detail	8.517	9.565	-3.480	0.203	10^3 cyc	0.87	1.36	20.	0.68	1.53	4 8	0.69	<u> </u>	1.22	90.0
		0000	777	207.0	0	10~8 cyc	0.7	2.80	4. C	5.05 7.00	2.5 2.8.4	8 6	280	0.62	0.49	. 0
#24	HSLA Flame cut edge	10.309	404	╁	0.092	10^8 cyc	0.35	0.95	0.51	20	0.77	90	9.0	0.41	0.62	0.51
#25	HSLA Insert Plate "Good Weld"	11.733	13.265	-5.090	0.184	10^3 cyc	0.72	1.13	1.36	0.56	1.27	1.19	0.58	1.28	1.01	0.7
	1					10^8 cyc	0.22	0.83	0.45	60	0.68	0.53	0.53	0.36	0.55	0.45
#26	HSLA Insert Plate "Poor Weld"	6.639	10.845	4.009	0.103	10^3 cyc	0.77	1.2	1.45	0.6	1.35	1.27	0.61	1.37	80.1	28.0
101	LOI A case of decidents	0 340	10 235	3 29R	0.307	10.0 cyc	4.0	290	0.00	0.31	0.69	0.65	0.31	0.7	0.55	0.43
/7#	. 1			╁		7	0.42	1.55	0.84	1.68	1.27	-	-	0.67	1.03	0.84
#28	HSLA single thickness doubler welds	8.199	9.139	-3.122	0.490	\neg	0.71	[]	1.33	0.55	1.24	1.16	0.56	1.25	0.98	0.4
9		7 793	0 670	2 780	25.5	10% cyc	16.0	9.3/ 8.0	1.82	3.63	111	2 2	0.5	5	0.88	0.68
67±	HSLA double uncaviess double! weids	3	5	3	3	7	1.27	4.73	2.56	5.12	3.86	3.03	3.04	2.05	3.14	2.5
#30	Generic S/N Curve	000.6	9.903	-3.000	0.000	r	0.32	0.5	0.61	0.25	0.57	0.53	0.26	0.57	0.45	03
	•									-						

8	BASELINE CONFIGURATION	LOG(Aamp LOG(Amg	LOG(Amg	_	STD DEV	RATIO	RMS	FATIGUE	STRENGT	RATIO (M	EAN-2S: 2	RMS FATIGUE STRENGTH RATIO (MEAN-2S; 2.3% PROBABILITY OF FAILURE	BILITY OF	: FAILURE)		
	1011 1 11011	(ksi)	(ksi)			6	#21	#22	#23	#24	#25	#26	#27	#28	#29	#30
#:	HSLA //16 Derding, snipyard	12.801	14.405	-5.130	0.378	10^3 cyc	1.05	0.73	0.52	1.28	0.62	0.58	41.1	0.64	0.72	6 8 8 8
¥	HSLA 1/4", continuous cruc., shipyard	10.014	11.244	4.087	0.350	10^3 cyc	1.58	<u>-</u>	0.77	1.93	0.93	0.88	1.7	96.0	1.08	2.09
						10^8 cyc	0.75	1.22	0.47	1.44	1.63	0.83	0.87	0.4	0.29	0.75
¥	HSLA 7/16", continuous cruciform	9.189	10.155	-3.210	0.185	10^3 cyc	6.0	0.63	44.0	<u>.</u> t	0.54	9.0	0.98	0.55	0.62	1.2
7	HSLA 7/16" continuous cruc shiovard	10 012	11 172	-3 855	0.210	10v3 cvc	1 22	28.0	9 C	ر ار	20.0	50.C	5. 5. 5. 5.	0.0	S 6	58.5
			*	3	2	10^8 cyc	0.69	1.13	4.	. £	5.0	0.76	8.0	0.37	0.26	0.69
¥	HSLA 7/16", continuous cruc. lab & syd	9.537	10.589	-3.496	0.205	10^3 cyc	1.06	0.74	0.52	1.29	0.63	0.59	1.15	0.64	0.72	14.
						10^8 cyc	0.81	1.32	0.51	1.56	1.76	6.0	0.94	0.43	0.31	0.82
9#	HSLA 3/4", continuous cruc., shipyard	8.713	9.656	-3.134	0.172	10^3 cyc	4.1	0.8	0.56	4.	0.68	0.64	1.24	0.7	0.78	1.52
1 2#	HSLA 1" continuous conc. shinyard	8 253	9.075	2 723	800	10/3 cyc	87.1	7. 2	6.0	74.7	67.7	24.5	94.0	0.69	9. 9. 0	1.29
-		3	2	3	3	10/8 cyc	89.	2.76	1.07	3.25	3.67	1.87	96	60	9.0	1.17
¥	HSLA discontinuous cruciform	9.075	10.071	-3.307	0.263	10 ⁿ³ cyc	1.12	0.78	0.55	1.38	0.67	0.62	1.22	99.0	0.77	1.49
:		1				10^8 cyc	1.03	1.7	99.0	7	2.26	1.15	1.21	0.56	4.0	1.05
D	HSLA misaligned cruciform	9.279	10.468	-3.949	0.227	10^3 cyc	2.09	1.45	1.02	2.55	1.24	1.16	2.26	1.27	1.42	2.77
#10 H	HSLA non-full penetration disc cruciform	7.994	8.803	-2.686	0.139	10/3 c/c	10.		0.09	1 24	0.30	2.0	7.	0.08	24.0	. 5
1						10^8 cyc	2.08	3.42	1.32	60.4	4.55	2.32	2.43	1.12	0.8	2.11
# -	HSLA misaligned partial penetration welds	8.097	9.105	-3.349	0.208	10^3 cyc	2.33	1.63	1.15	2.85	1.38	1.3	2.53	1.42	1.59	3.09
, c	The continue of the continue o	40.062	40.000	7 406	070	10^8 cyc	2.05	3.37	6. 5	3.97	4.48	2.28	2.4	7 3	0.79 0.79	2.07
T		20.00	12.203	\$ 2	0.210	10'3 cyc	0.55	6	0, C	2 6	1.89	0.83	7.07	. E. C.	20.7	98.0
#13 H	HS discontinuous cruciform	9.144	10.173	-3.417	0.252	10^3 cyc	1.24	0.87	0.61	1.52	0.74	69.0	1.35	0.75	0.85	1.65
						10^8 cyc	1.02	1.68	0.65	1.97	2.23	1.13	1.19	0.55	0.39	1.03
#14 T	HS misaligned cruciform	12.618	14.549	-6.416	0.142	10^3 cyc	2.99	2.09	1.47	3.66	1.78	99:1	3.25	1.82	2.04	3.97
#15	omegicines anomeinase 3O	70,	14 904	2007	7000	Tura cyc	0.51	9.0	25.0	96.0	1.1	76.0	9.7	0.27	0.2	0.51
1		10.124	11.324	20.30	0.22	10.3 cyc	3.6	28.5	0.65	3 5	1.47	0.75	27.0	. S	. S. C.	7.7
#16 0	OS discontinuous cruciform	9.577	10.706	-3.752	0.304	10^3 cyc	1.41	0.99	0.69	1.73	0.84	0.79	1.53	0.86	96.0	1.88
						10^8 cyc	0.86	1.41	0.55	1.66	1.88	96:0	- -	0.46	0.33	0.87
#17 0	OS misaligned cruciform	10.243	11.725	4.924	0.149	10^3 cyc	2.93	2.04	4	3.58	1.74	1.63	3.18	1.78	0	3.89
*18	HSLA & HS conventional components	8 764	9 746	-3.263	0 214	10^8 cyc	0.86	1.41	0.55	8. <u>5</u>	1.88	0.96	- 7	0.46	0.33	0.87
						10/8 cvc	127	200	. 180	2.46	2.78	141	64	890	640	128
#19 H	HSLA SNIPED COMP	9.780	10.989	4.016	0.139	10^3 cyc	1.67	1.17	0.82	2.04	0.99	0.93	1.8.	1.02	1.14	2.22
T	TO COULT !	9	0000			10^8 cyc	0.83	1.37	0.53	1.61	1.82	0.92	0.97	0.45	0.32	0.84
#20	HSLAINIERCOASIAL	9.408	10.690	4.088	0.720	10^3 cyc	2.16	1.5	1.06	1 07	1.28	1.2	2.34	1.31	1.47	5.86
#21 H	HSLA CONV CMP R=-1	9.089	10.061	-3.230	0.169	10^3 cyc	-	0.7	0.49	122	0.59	0.56	1.09	0.61	0.68	3 8
						10^8 cyc	-	2.	0.63	1.93	2.18	1.1	1.17	0.54	0.38	1.01
#25	HSLA Stiffener Splice	10.489	11.768	4.250	0.177	10^3 cyc	1.43	=,	0.7	1.75	0.85	0.8	1.56	0.87	0.98	6.1
#23	HSLA Opening Detail	8.517	9.565	-3.480	0.203	10^3 cyc	2.03	1.42	8.7	2.49	. 5 . 5 . 5	1.13	2.21	1.24	1 39	22.0
						10^8 cyc	1.58	2.58	-	3.04	3.44	1.75	18. 48.	0.85	9.0	1.59
#24	HSLA Flame cut edge	10.369	11.484	-3.705	0.092	10^3 cyc	0.82	0.57	4.0	- ,	0.49	0.45	0.89	0.5	0.56	1.09
#25 H	HSLA Insert Plate "Good Weld"	11.733	13,265	-5.090	0.184	10^3 cvc	1.68	1.18	0.83	2.06	<u>.</u>	0.08	1 83	2 2	1 2 7	0.52
						10^8 cyc	0.46	0.75	0.29	0.88	_	0.51	0.53	0.25	0.18	0.46
#56	HSLA Insert Plate "Poor Weld"	9.639	10.845	4.009	0.103	10^3 cyc	80 0	1.26	0.88	2.5	1.07	- ,	1.95	1.09	1.23	2.39
#27 H	HSLA one sided welds	9.342	10.335	-3 29R	0.307	10'0 cyc	9.0	84.0	0.57	4.6	78.0	- 5		84.0	4 6	C. 97
!			3		3	10^8 cyc	0.86	4.	0.54	1.65	1.87	0.95	-,-	8.0	0.33	0.87
#28	HSLA single thickness doubler welds	8.199	9.139	-3.122	0.490	10^3 cyc	1.64	1.15	0.81	2.01	0.98	0.91	1.78	=	1.12	2.18
50#	HS! A double thickness doubler welds	7 733	8 570	2 780	0.555	10^8 cyc	1.86	3.05	1.18	3.59	90.4	2.07	2.17	- 6	0.71	1.88
7	אבומאס מפטווסטות שפותים	3	0.00	75.700	0.000	10~3 cyc 10^8 cyc	2.61	1.uz 4.28	1.66	5.04	0.87	2.9	3.05	0.89	- -	2.64
#30	Generic S/N Curve	9.000	9.903	-3.000	0.000	10^3 cyc	0.75	0.53	0.37	0.92	0.45	0.42	0.82	0.46	0.51	-
				1		10^8 cyc	0.88	1.62	0.63	1.91	2.16	1.1	1.16	0.53	0.38	1

	BASELINE CONFIGURATION	GURATION	LOG(Aamp	LOG(Amg)	∞	STD DEV	RATIO	RMS	FATIGUE	RMS FATIGUE STRENGTH RATIO	H RATIO ((MEAN; 50%	4 PROBAB	PROBABILITY OF FAILURE	(AILURE)		
#38	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	(ksi) 13.566	(ksi) 15.830	-7.520	0.93	10^3 cvc	**	¥ =	\$.	# * 	* 2	8 6,	#1 8	82 **		#10 2.72
40.7	6		:			!	10^8 cyc	2.07	2	2.49	2.19	. 89.	1.92	1.37	1.48	1.26	0.37
ž	990:20	Plate Penetration: Axial	10.180	11.570	4.619	0.66	10^3 cyc	2.02	0.67	0.69	2.63	2.41	1.69	1.24	1.16	1.25	19.
#38	SSC:20(S)	Plate Penetration: Shear	12.695	14.730	-6.759	0.83	10^3 cyc	3.01	•	1.02	3.92	3.6	2.51	1.85	1.73	1.87	0.58 2.45
* 39	SSC:21(1/4"WELD)) Plate Penetration: Bending	22.432	26.720	-14.245	0.62	10^8 cyc 10^3 cyc	2.22 4.67	1.55	1.59	2.35	5.58	3.9	1.47	1.56 2.69	13 28 29	3.0
40	SSC:21(3/8"WELD)) Plate Penetration; Bending	20.826	25.490	-15.494	0.82	10^8 cyc	4 5	1.35	1.69	- 4 6 5	4.1	6.13	0.83	0.9	0.85	0.25
#	SSC:21(S)		14 766	90	1		10^8 cyc	2.23	2.15	2.68	2.38	1.8.	2.07	1.47	1.57	1.35	6 6 6
; ;			3	10.900	000.7-	3	10~3 cyc	1.38	1.31	1.64	2.78 1.44	2.54	1.77	1.31	- 6 27 8 8	1.32	1.73
# #	SSC:22	Tee with Stud Attachment: Bndg	9.093	10.040	-3.147	0.32	10^3 cyc	0.75	0.25	0.26	0.98	8.5	0.63	0.48	0.43	0.47	0.61
##3	SSC:23	Tee with Transv. Channel Attchmnt:Bndg	8.981	9.840	-3.187	0.13	10^3 cyc	0.87	0.29	0.29	1.13 5.13	1.04	3.63 0.72	0.53	2.76 0.5	2.37	0.7
‡	SSC:24	Tee with Short Cvr Plt Attchmnt: Bndg	8.981	9.940	-3.187	0.13	10^8 cyc 10^3 cyc	4.3 0.87	4.14 0.29	5.17	1.13	3.49	3.99	2.85	3.03	2.81	0.78
#45	SSC:25	emoliture Counting County	42 666	200	6	i	10^8 cyc	4.3	7	5.17	4.58	3.49	3.99	2.85	3.03	2.61	0.78
			999	9.76	080:7-	0.78	10~3 cyc	1.78	1.71	2.14	1.88	3.12 14.2	2.18 1.65	1.18	1.5	1.62	2.13 0.33
1	SSC:Z5A	Plate with Transv. Side Attachment	16.906	19.470	-8.518	0.91	10^3 cyc	2.07	0.69	7.0	2.69	2.47	1.73	1.27	- 1	1.28	1.68
*	SSC:25B	Plt w/ Transv. Side Attchmnt and Brace	13.053	15.150	-6.966	0.63	10 ⁴³ cyc	2.98	66.0	10.1	3.88	3.56	2.5 4.9	1.83	1.72	1.85	2.42
#48	SSC:26	Welded Cover Plate	9.122	10.130	-3.348	0.61	10^8 cyc	2, 0 8 8 8	2.0 2.0	2.51	2.21	1.69	9. 5	1.38	1.47	1.28	0.38
**	26.533	Control of the second of the s					10^8 cyc	4.09	3.5	4.92	¥ 4	3.32	3.8	2.7.2	2.38 2.88	2.48	0.74
	13:000	Course Lapped Flate Wall Flug Weids	6.453	9.400	-3.146	0.58	10^3 cyc	1.2	6 0.4 4 0.4	7 52	1.56	ر د د د د	- 4	0.74	0.69	0.74	0.98
#20	SSC:27(S)	Double Lapped Pit w/ Plug Weids: Shear	10.471	12.060	-5.277	0.54	10^3 cyc	7.8	98.0	0.98	3.77	3.46	2.42	1.78	1.67	 8.	2.36
#51	SSC:28	Baseplate with Circular Hole	15.078	17.410	-7.746	0.81	10~8 cyc 10^3 cyc	2.37	3.32 0.78	4.14 4.08	3.65 3.08	2.8	3.2	2.28 1.46	2,42	2.09	0.62
#52	SSC:30	Long Figite Plate Attchmet: Axial	8 919	0.870	.3 150	;	10^8 cyc	7.0	1.35	1.69	1.48	#	£.	0.93	0.99	0.85	0.25
#E29	40E:USS						10^8 cyc	4.46	7	5.36	£.73	3.62	4.14	2.85	3.14	2.7	0.81
2	AUC. Jee	Long Finne Plate Attenmnt: Bridg	9.566	10.580	-3.368	0.10	10^3 cyc	9.74	0.25	0.25	0.97	0.89	0.62	940	0.43	0.46	9.0
¥2#	SSC:31	Out-of-Plane Fig Side Attchmnt: Bridg	9.361	10.670	-4.348	0.62	10^3 cyc	2.45	0.81	0.83	3.18	2.83	202	1.5	1.4.	5.5	1.99
#22	SSC:31A	Lapped Fing Side Attchmnt: Bndg	9.091	10.130	-3.453	77 0	10^8 cyc	4.64 4.64	4.47	5.57	F. 5	3.77	6.3	3.07	3.27	2.81	98.0
93	ACC:030						10^8 cyc	4.32	4.16 8.16	5.19	4.57	3.5	Ş 4	2.85	3 5 5 5	2.61	0.93
2	33C.35A	in-Plane Side Auchmin to Flange: Bindg	9.566	10.830	4.200	0.43	10*3 cyc	1.93	9.64	0.65	2.5	2.3	1.61	1.18	1. 5	1.19	1.56
#21	SSC:32B	Abrupt Change in Flange Width: Bridg	8.646	9.710	-3.533	0.62	10^3 cyc	1.69	999	0.57	52	2.02	, , ,	7.05 10.05	2.07 0.97	1.05	1.38
#28	SSC:33	Lapped Flatbar to Plt w/ Full Wrap: Axial	8.758	9.860	-3.660	0.50	10^8 cyc 10^3 cyc	5.8 1.81	5.68 0.6	7.09 0.61	6.25 2.35	4.79 2.18	5.47	3.8	5.45	3.57	1.07
#28	SSC:33(S)	anned Elather to D# w/ Euit Mren-Sheer	97 97	60	90		10^8 cyc	5.63	5.43	6.77	5.97	4.57	5.23	3.73	3.97	3.41	1.02
	(2)	reproduction to the Vial Width Siles	604.00	080.8	-10.366		10*3 cyc 10*8 cyc	1.95	1.59 88.1	1.63 2.35	6.24 2.07	5.73	7 81	2.95	2.76	2.97 1.18	3.9
9	SSC:35	Butt Weld with Backing Bar	9.604	10.750	-3.808	0.28	10^3 cyc	1.26	0.42	0.43	1.64	1.51	1.05	0.78	0.73	0.78	8
#81	SSC:36	Skip Welded Plates with Rathole	13.053	15.150	-6.966	0.63	10^3 cyc	2.98	6.6	10.	3.88	3.56	2.48	2 <u>5</u>	1.72	1.85	2.42
#62	SSC:36A	Skip Welded Plates	11.326	12.880	-5.163	0.46	10^8 cyc 10^3 cyc	2.09 1.83	2.07 0.61	2.51 0.62	2.21 2.38	1.69 2.19	1.94 53	1.38	1.47	1.26	0.38
#63	SSC:38	Stiffener Plate Penetration: Bndg	9.128	10.170	-3.462	0.36	10^8 cyc	2.28	225	2.74	2.42	1.85	2.12	1.51	1.61	86.	0.41
#84	(3/8/3	Sittle and a state of the state			! !		10^8 cyc	7	4.07	5.07	4.47	3.43	3.92	2.79	2.97	2.58	0.76
}	(a)ac-200	Curenci Ttale Periodalion, Ollear	14.312	17.390	-10.225	0.88	10^3 cyc 10^8 cyc	3.08	2.48 2.88	3.69	3.26	8.89 7.5	6.21 2.85	4.57	4.28	19.4	6.05
#65	SSC:40	Stiffener Intersection: Bending	8.648	9.710	-3.533	0.62	10^3 cyc	1.69	0.56	0.57	22	202	<u>+</u>	1.04	0.97	50.	1.38
98#	SSC:42	Bending of Long Attachment	14.785	16.980	-7.358	0.83	10^3 cyc	5.8 2.12	5.68 0.7	0.72	6.25 2.76	2.54 2.54	5.47	3.8 13.9	4.15 22.15	3.57	1.07
#67	SSC:46	Long. Welds on Support Gussets: Axial	9.361	10.670	348	0.62	10^8 cyc	1.38	£ 5	1 6	# ;	Ξ.	1.26 5.26	6.0	96.0	0.82	0.25
9	0	i			2		10^8 cyc	4.6	4.47	5.57	5.4 1.81	3.77	4.3	3.07	3.27	1.52 2.81	- 98 9.84
ě		i ransv. Stiffnr Pene. Fig Unspprid: Bridg	9.781	10.930	-3.818	0.07	10^3 cyc	1.15	0.38	0.39	1.49	1.37	980	0.71	99.0	0.71	0.83
89 #	SSC:52(V)	Transv. Stiffnr Pene. Fig Supported: Bnd	10.023	11.240	-4.042	0.19		1.27	0.42	0.43	1.66	1.52	1.08	2.08 0.78	0.73	0.79 0.79	1.04
#10	Generic S/N Curve		9.000	9.903	-3.000	0.00	10^3 cyc	0.64	0.21	2.0 22.0	3.12 0.83	2.39 0.77	2.74 0.54	1.95 0.39	2.08 0.37	1.79 0.4	0.53
							10^8 cyc	3.88	3.85	4 Ø	4.23	3.24	3.71	2.64	2.81	2.42	0.72

	BASELINE CONFIGURATION	URATION	LOG(Aamp 1	LOG(Amg)	85	STD DEV	RATIO	RMS	FATIGUE	STRENG	RMS FATIGUE STRENGTH RATIO (MEAN;		50% PROBABILITY OF FAILURE	LITY OF F	AILURE)	,	5
ŧ	SSC-1(all steple)	Basses Basses Basses	(ksi) 13.825	(ksi) 15,550	-5.729	0.75	10 ⁴³ cyc	# 0.62	1.1	813 0.78	0.7	0.28	0.37	0.3	80		2.5
•	000. I(all 3100k)						10*8 cyc	0.61	0.39	0.38	0.89	0.64	9.0	0.91	0.63	8.0	0.65
¥	SSC:1M	Baseptate Mild Steel	21.679	25.380	-12.229	0.71	10^3 cyc	1.87	3.37	2.28	2.1	0.85	1.1	0.0	2.42	1.63	2.16
2	SSC:1H	Baseolate HSLA Steel	27.389	32.040	-15.449	0.91	10*3 cyc	8. 58	3.28	2.23	5.05	0.83	1.08	0.88	2.38		1.7
2							10^8 cyc	0.5	0.33	0.3	0.74	0.53	9.0	0.75	0.53		9.54
#	SSC:10	Baseplate Q & T Steel	13.345	14.910	-5.199	0.68	10/3 cyc	0.48	0.88	0.56	9.00	9.0	0.28	88.0	0.62 0.62		0.93
£	SSC:1(F)	Baseplate Flame Cut	12.334	13.780	4.805	0.60	10^3 cyc	0.52	0.83	0.83	0.58	0.24	0.31	0.25	0.67		9.6
\$	6:088	Rolled Ream Rending	13 999	15.820	-6.048	9.0	10^8 cyc	0.75	2. 4. 3. 4.	9 6	0.83	9 5	, 1	0.36	98.0		0.85
2	9						10^8 cyc	0.65	0.42	0.38	98.0	0.69	0.65	0.98	99.0		7.0
# 1	SSC:3	Longitudinal Seam	13.010	14.800	-5.946	0.63	10^3 cyc	1.01	1.81	1.23	1.13	0.46	9.0	1.37	0.95 5.0		0.98
8 #	SSC:3(G)	Ground Long. Seam	13.602	15.520	-6.370	0.74	10^3 cyc	1.08	8. 5	1.32	12	0.49	9.0	0.52	1.39	96.0	1.24
9	SSC:4	Long, Fillet Weld Bridg	12.515	14.220	-5.863	0.61	10^3 cyc	§ -	5 6 8	1.22	1.5	0.46	0.59	0.48	1.29		1.15
1			9	9	2 2 2 4 8	•	10^8 cyc	- š	0.65	0.59	1.48	2.05	0.99	1.5	2,8		7.07
E	e:Das		86.6	000.8	3.270	ř	10^8 cyc	3,35	2.17	88.	4.95	3.53	3.32	5.01	3.49		3.58
#	SSC:6	Dbl I-Bm Bndg	12.515	14.220	-5.663	0.61	10^3 cyc		£. 6	22.5	1.12	9.46	0.59	0.48	1.29 1.29	1.32	1.15
#12	SSC:7B	i-Bm w/vrt Web Stiff Bndg	10.095	11.230	-3.771	0.53	10^3 cyc	95.0	-	0.68	0.62	0.25	0.33	0.27	0.72		96
į		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	700	44 480	4 173	2	10/8 cyc	1 5	- 1	0.91	2.28	1.63	1.53	2.31			2.65
2	Sac. I	2000 HILL 10 GBA 10/M HIGH	100	3		3	10^8 cyc	1.69	Ξ	-	5.5	1.78	1.67	2.53	1.78		1.81
# 4	SSC:8	Bolted Double Lap	14.469	16.440	-6.549	0.81	10^3 cyc	0.89 0.88	5. 4	1.09		7.0	0.53	0.43 1.04	0.71		0.72
#15	SSC:9	Riveted Single Lap	16.687	19.590	-9.643	0.90	10^3 cyc	2.19	3.85	2.68	2.46	-	-	8	2.83		2.53
;		And the second second second second	44 345	16 830	7.680	ä	10^8 cyc	0.95	9 6	9.0	4 . 0	- 22	8.	2.42	0.85 8.00 8.00 8.00		1.01
2	MOL:Jose	Dull West Axial, Mild Steel	5	200	605.1	3	10^8 cyc	1.0	0.65	0.8	1.49	98	-	1.51	1.05		90.
#17	SSC:10H	Butt Weld Axial:HSLA Steel	22.068	25.920	-12.795	98.0	10^3 cyc	2.08	3.73	2.54	2.33	0.95	1.23		2.68		2.39
*18	SSC:100	Butt Weld Axial:Q&T Steel	12.108	13.650	-5.124	97.0	10^3 cyc	0.77	1.39	0.95	0.87	0.35	0.46	0.37	-		0.89
			;	900	,	č	10^8 cyc	98.5	0.62	0.57	7.5	2.0	0.95	1.43	- 9		5. 5 5. 5
# *	SSC:10(G)	Butt Weld Axial:Ground	14./84	16.830	PET./-	Š.	10*8 cyc	0.76	0.48	0.45	1.12	0.8	0.75	1.13	0.79		0.81
#20	SSC:10A	Butt Weld Bridg	12.494	14.140	-5.468	0.79	10^3 cyc	0.87	1.58	90.5	0.98	÷ 8	0.51	0.42	1.12	97.0	
#21	SSC:11	I-Bm Butt Weld Bndg	12.035	13.770	-5.765	0.68	10^3 cyc	1.3	2.35	1.6	8 4	0.59	0.73	0.63	1.69	12	. 5.
		·			,	;	10^8 cyc	1.28	0.82	0.74	8. 4	1.33	1.25	1.88	<u>.</u>	99.	35
#22	SSC:12	Tee Siffin Tapered Fig Thickness Bridg		069.11	986.4	2	10.8 cyc	1.68	8 6	0.99	2.48	1.7	. . .	2.51	1.75	222	3 = 1
#23	SSC:12(G)	Tee Stffnr Tapered Fig Thickness Bndg	12.415	14.120	-5.663	0.60	10^3 cyc	9. 5	1.87	1.27	1.17	0.47	0.62	6.5	1.35	0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	- - -
#24	SSC:13	Tee Stiffener Taped Fig Width Bndg	10.847	12.120	4.229	0.45	10^3 cyc	190	g -	0.75	0.68	0.28	0.38	0.29	0.79	0.53	0.7
į	77.000	Injust amorphisms of animal	1	90 91	7 430	č	10^8 cyc	2 5	0.79	0.72	5. 5.7	1.28	2 2	1.82	1.27	2 2	2 6
C7#	<u>+</u>		•			5	10^8 cyc	0.86	0.56	0.51	1.27	0.91	0.85	1.28	0.0	1.13	0.92
#28	SSC:15	Loaded Edge Attachment Plate	9.586	10.830	4.200	0.43	10^3 cyc	2.42	1.57	8 5	3.58	0.54 2.55	2.4	3.62	2.53	3.2	2.59
#27	SSC:16	Partial Pen. Butt Weld	10.626	12.020	4.631	0.58	10^3 cyc	5	28.	1.24	4.1	0.46	9.0	0.49	1.31	0.88	7.
#28	SSC:18(G)	Partial Pen. Butt Weld: Ground	13.455	15.550	-6.960	0.95	10^3 cyc	1.6.1	5.8	1.97	1.81	0.74	0.95	0.78	2.08	2	1.86
Ġ		City Astronomy Add Colors Add Colors Astronomy Astronomy	390 0	10 200	3 736	25.0	10^8 cyc	1.1	0.72	0.65	1.63	1.17	1.09 5.53	1.85	1.15	1.46 7.7	1.18
#28	SSC:1/	Lapped Angle to Plate Attention. Axial		0.390	9	6.5	10^8 cyc	2.54	<u> </u>	1.5	3.75	2.67	2.51	3.79	787	3.35	2.71
#30	SSC:17(S)	Lapped Angle to Plate Attchmnt:Shear	13.937	16.280	-7.782	0.65	10^3 cyc	7. 5	3.77	2.56	2.35	0.98	1.24	5.5	2.71	1.82	2.4 2.4
#31	SSC:17A	Lapped Channel to Plate Attchmnt:Axial	1 9.097	10.140	-3.465	0.39	10^3 cyc	0.72	1.29	88.5	.0.8	0.33	0,43	0.35	0.83	0.63	0.83
#32	SSC:17A(S)	Lapped Channel to Plate Attchmnt:Shear	ar 13,937	16,280	-7.782	0.85	10^3 cyc	2 2	3.77	2.58	2.35	0.96	1.24	1.0	2.71	1.82	2.41
				90.07	4 007	200	10^8 cyc	1.21	0.78	0.71	1.78	1.27	1.19	1.8	1.26 7.	1.59	1.29
25		Lapped Flatbar to Plate Attention Axia	9	10.200	70.4		10^8 cyc		2.07	8.5	4.58	3.27	3.07	4.6	3.24	Ŧ	3.32
# 75	SSC:18(S)	Lapped Flatbar to Piate Attchmnt:Shear	r 15.241	18.020	-9.233	0.75	10^3 cyc	2.68	4.82	3.28	3.01	1.22	1.58	1.29	3.48	1.61	3.08
#35	SSC:19	Lapped Flatbar End Weld Only: Axial	12.941	15.190	-7.472	0.93	10^3 cyc	548	4.42		2.76	1.12	1.45	1.18	3.17	2.13	2.83
							10~8 cyc	ů.	D.W.	B 0 0	7	1.30	Đ.	9	<u> </u>	9	5

	BASELINE CONFIGURATION	SURATION	LOG(Aamp	OG(Aamp LOG(Amg)	ω.	STD DEV	RATIO	RMS	FATIGU	STRENG	TH RATIO (MEAN; 50°	% PROBAE	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	AILURE)		
#36	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	(KSI) 13.568	(ksi) 15.830	-7.520	0.93	10^3 cyc	#11 2.07	#12 3.73	#13 2.54	#14 2.33	#15 0.94	#16 1.23	#17	#18 2.68	#19 1.8	#20 2.39
#37	SSC:20	Plate Penetration: Avial	10.180	11 570	4 810	88 0	10^8 cyc	1.28	0.81	0.74	1.85	1.32	1.24	1.88	1.3	1.66	8:
			3	2	e F	B	10^8 cyc	88.	1.29	1.1	2.93	2.08	1.97	2.97	2.07	2.62	2.12
#38 82	SSC:20(S)	Plate Penetration: Shear	12.695	14.730	-6.759	0.93	10^3 cyc	1.87	3.36	2.28	5.7	0.85	Ξ,	6.0	2.41	1.62	2.15
#38	SSC:21(1/4"WELD)	Plate Penetration: Bending	22.432	26.720	-14.245	0.62	10^3 cyc	2.2	5.21	3.54	3.25	2 2 2	17.	5, 7,	3.74	2.52	3.33
1	SSC:21(3/8"WELD)	Plate Penetration: Bending	20.826	25.490	-15.484	0.62	10^3 cyc	8.	8.8 193	e G	5.5	2.23	2.9	1.27	6.33	4.78 4.28	5.0.0 2.0.0
ž	SSC:21(S)	Plate Penetration: Shear	14.785	16.980	-7.358	0.83	10^8 cyc 10^3 cyc	5. 5. 5.	2.37	1.61	6. 4. 8. 84	0.6	1.34	2.02 0.63	1 7	1.78	4.5
#	SSC:22	Tee with Stud Attachment: Bodo	9.083	10.040	-3.147	0.32	10^8 cyc	0.82	0.53	0.49	2 5	0.87	0.82	123	98.0	60.7	0.88
! ;							10^8 cyc	2.37	1.5	4.	3.51	2.5	2.35	3.55	2.47	3.13	2.5
1	SSC:23		8.981	9.940	-3.187	0.13	10^3 cyc 10^8 cyc	2.64	1.69	8 7 8 7	3.85	0.24	0.32	0.26 3.9	0.69	3.47	0.62
#	SSC:24	Tee with Short Cvr Pit Attchmnt:Bndg	8.981	9.940	-3.187	0.13	10^3 cyc	9.54	0.97	99.0	9.0	0.24	0.32	0.26	0.69	0.47	0.62
#12	SSC:25	Continuous Cruciform	13.656	15.790	-7.090	0.78	10^8 cyc	1.62	1,69 2.92	2. 8.	3.85 1.82	0.74	2.58 0.96	3.9 0.78	2.72	\$ 5	1.87
#18	SSC:25A	Plate with Transv. Side Attachment	16.906	19.470	-8.518	0.91	10^8 cyc 10^3 cyc	1.08	2.31	1.57	 8: 1 :	1.14	1.07 0.76	1.61 0.62	1.12 1.88	2 1. 24. 21.	1.15
447	SSC:25B	Pit w/ Transv. Side Attchmnt and Brace	13.053	15.150	989	0.63	10^8 cyc 10^3 cyc	1,85	3.33	0.38 2.26	0.98 7.08	0.68 18.0	0.64 0.99	0.97	0.68	98.0	2.13
97	90.0	Total Control of the Party of t		707		ě	10^8 cyc	1.28	0.82	0.75	1.87	1.33	1.25	1.89	1.32	1.67	1.35
Î	27.755	Wedded Cover Figure	77.8	10.130	-5.340	6 .9	10~3 cyc	2.48		1.47	3.68 3.68	0.28 2.61	0.38 2.46	0.29 3.71	0.79 2.59	3.27	2.65
*	SSC:27	Double Lapped Plate with Plug Welds	8.453	9.400	-3.148	0.58	10^3 cyc	3.79	- 2 8 8	0.91	0.84 5.8	7 S	9.44	0.36	98.0	0.65	0.86
#20	SSC:27(S)	Double Lapped Pit w/ Plug Welds: Shear	10.471	12.060	-5.277	9.54	10^3 cyc	1.8	3.23	77	2.02	0.82	96.	0.87	2.32	.58	2.07
#21	SSC:28	Baseptate with Circular Hole	15.078	17.410	-7.746	0.81	10^3 cyc	7. 14.	2. 3.	5 5 .	3.08 1.65	2.2 0.67	0.87	3.12 0.71	2.18 1.9	1.28	1.69
#52	SSC:30	Long Finite Plate Attchmut: Axial	8.918	9.870	-3 159	0.33	10/8 cyc	0.85	0.55	0.5	1.28	9.0	4.6	1.27	0.89	1.12	0.91
#63	408:088	One Einka Dieta Allehmat: Dade	0 500	40 500	800		10^8 cyc	27	1.75	8.5	* 5	2.85	2.68	4	2.82	3.57	2.89
3			3	0000	-3.300	9	10^8 cyc	18.	1.19	8 6	2.72	2 7	1.82	2.75	9.0	2.43	1.97
# 2 #	SSC:31	Out-of-Plane Fig Side Attchmnt: Bndg	9.361	10.670	4.348	0.62	10^3 cyc	1.52	2.73	1.86	1.71	0.69	0.0	0.73	96.5	1.32	1.75
#22	SSC:31A	Lapped Fing Side Attchmnt: Bndg	9.091	10.130	-3.453	4.0	10^3 cyc	0.7	2 82	0.87	0.8	0.32	0.42	9.3	0.92	0.62	0.82
#28	SSC:32A	In-Plane Side Attchmnt to Flange: Bndg	9.566	10.830	4.200	0.43	10^8 cyc 10^3 cyc	1.19	1.69 2.15	1.55	3. 1 .	2.78	2.59	3.91	2.73	3.45	1.37
467	ACF-CIRE	Abried Chance in Flance Midth-Bode	979	0,74	, ,	6		2.42	1.57	1.43	3.58	2.55	2.4	3.62	2.53	3.2	2.59
		Rein-ingen after the afternation		2	200	20.0		3.57	2.32	2.11	5.28	3.77	3.54	5.34	3.73	4.72	3.82
10 10 10 10 10 10 10 10 10 10 10 10 10 1	SSC:33	Lapped Flatbar to Pit w/ Full Wrap:Axai	8.758	9.860	-3.860	0.50	10^3 cyc	3.41	2.02	1.37	£ 2	3.8	0.66	9.54	1.45	0.97	1.29
#28	SSC:33(S)	Lapped Flatbar to Pit w/ Full Wrap.Shear	16.469	19.590	-10.368	0.81		2.97	5.35	36.	8	8 6	5.7	; 2	38.5	2.59	3.42
09#	SSC:35	Butt Weld with Backing Bar	9.604	10.750	-3.808	0.28		0.78	; ;	0.96	0.88	5 8	0.46	0.38	<u>5</u> 5	0.68 88.00	0.9
19#	SSC:36	Skip Welded Plates with Rathole	13.053	15.150	-6.966	0.63	10^8 cyc 10^3 cyc	2.11 1.85	3.33	1.25 2.26	3.11 2.08	27 28	2.09	3.15	2.2	2.78	2.28
#62	SSC:36A	Skip Weded Plates	11 12R	12 880	5 183	970	10^8 cyc	8 5	0.82	0.75	1.87	1.33	1.25	1.89	1.32	1.67	1.35
					3	È		1.38	5 e	0.82	5 <u>6</u>	1.46	1.37	2.07	*	1.82	. 5
20	SSC:38	Stiffener Plate Penetration: Bndg	9.128	10.170	-3.462	0.38	10^3 cyc	2.56	5. 1. 8. 8.	0.86	3.78	0.32	0.42	0.34 58.5	0.91	0.61	0.81
#84	SSC:38(S)	Stiffener Plate Penetration: Shear	14.312	17.390	-10.225	0.88	10^3 cyc	1.61	8.29	5.64	5.18	77 5	2.73	223	98.5	5 5	5.31
#85	SSC:40	Stiffener Intersection: Bending	8.646	9.710	-3.533	0.62	10^3 cyc	50.	8 8	1.28	1.18	0.48 84.0	0.62	0.5	1.35	0.91	1.29
99#	SSC:42	Bending of Long Attachment	14.765	16.980	-7.358	0.83	10^8 cyc 10^3 cyc	3.57 1.32	2.32	2.1 1.61	5.28 1.48	3.77	3.54	5.34 0.63	3.73 1.7	1.72	3.82
#67	SSC:46	Long, Welds on Support Gussets: Axial	9.361	10.670	4348	0.62	10^8 cyc	0.82	0.53	0.49	1.22	0.87	0.82	1.23	98.9	9.5	0.88
89	550.5100	Transu Stiffer Dane Ely Licenard Bada	784	000 01		,	10^8 cyc	2.81	28.5	1.66	4.15	2.88	2.78	4.2	2.93	3.71	30.
		Rain condition & constant	00	20.0	5.0	ò	10^8 cyc	. 6.	1.23	1.12	2.81	0.32	1.88	2 2	1.98	2.51	2.03
# 69	SSC:52(V)	Transv. Stiffnr Pene. Fig Supported: Bnd	10.023	11.240	4.042	0.19	10^3 cyc	0.78	1.42	0.97	0.89	0.38	0.47	0.38	1.02	69.0	6.9
#10	Generic S/N Curve		9.000	9.903	-3.000	0.00	10^3 cyc	7.5	0.72	6.6	0.45	9.18	0.24	0.10	5.5	0.35	9.4
							200	74.7	ē	2	00.7	66.7	t 7	3.02	707	3.18	AC.2

BASELINE CONFIGURATION SSC:1(all steets) Baseplate		_	.OG(Aamp (ksl) 13.825	LOG(Aamp LOG(Amg) (ks) (ks) 13.825 15.550	B -5.729	STD DEV 0.75		#21 0.48	S FATIGUE #22 0.66	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE #22 #23 #24 #25 #28 #27 #28 1 0.38 0.66 0.6 1.02 0.44 0.52 0.61 0.38	HRATIO (#24 1.02	MEAN; 509 #25 0.44	6 PROBAB #26 0.52	LITY OF F #27 0.61	*AILURE) #28 0.38	#29 0.7	#30 0.3
SSC:1M Baseplate Mild Steel 21.879 25.360 -12.229	21.679 25.360	25.360		-12.229		0.71	10^8 cyc	0.48 4.48	92.79	0.58	3.07	1.7	0.25	0.38	0.55	0.24	0.5
Baseciate HSI A Steel 27 389 32 040	27.389 32.040	32.040		15.449		5	10^8 cyc	0.5	0.37	9.5	0.52	2.5	97.	0.3	0.57	0.25	0.52
Basenlate O. & T. Steel 13 345 14 910	13.345 14.910	14 910		60		8	10^8 cyc	4 6	6.3	8 6	14.5	0.59	7 7	0.32	940	2 2	24.5
Bacarlota Flore C.t 12 224 12 780	12 134 13 780	13 780		96		8	10^8 cyc	0.45	7 2	0.55	0.47	0.67	75	8.0	0.52	0.23	4.6
							10^8 cyc	0.59	4	0.72	0.61	0.87	0.31	0.47	0.68	0.29	0.62
Kolled I-Bearn Bending 13,999 15,820	13.899 15.820	15.820		6.045		9.0	10^3 cyc 10^8 cyc	0.57	0.79	0.71 0.63	2 2	0.53	0.82	0.73 14.03	0.46	2 2 3 8	0.35
SSC:3 Longitudinal Seam 13.010 14.800 -5.948	13.010 14.800	14.800		-5.948		0.63	10^3 cyc	0.77	1.08	0.97	1.65	0.72	48.0	0.88	0.62	1.14	0.48
SSC:3(G) Ground Long. Seam 13.802 , 15.520 -6.370	13.602 , 15.520	15.520	·	-6.370		0.74	10^3 cyc	0.83	3.5	5.0	<u> </u>	72.0	8.0	90.5	0.67	1.2	0.51
SSC:4 Long. Fillet Weld Bndg 12.515 14.220 -5.663	12.515 14.220	14.220		-5.863		0.61	10^3 cyc	0.08	1.07		1.64	0.72	0.36 8.4	0.54 0.99	0.78	1.134	0.48
Cvr P# on l-Bm Fin Bndo	Pir on I-Bin Fin Bodo 8 863 9 9650	9.650		-3.278		870	10^8 cyc	0.79	9.0	0.96	0.82	1.16	0.41	0.63	0.9	0.39	0.83
							10^8 cyc	2.66	8.	3.21	2.75	3.9	1.38	2.7	3.03	1.32	2.78
SSC:8 Dbl l-Bm Bndg 12.515 14.220 -5.663	12.515 14.220 -5.663	14.220 -5.663	-5.663			0.61	10^3 cyc	0.73	1.07	96 G	29. 28. 28.	0.72	9. C	0.00 0.00 0.00 0.00	0.62	1.13	0.48 8.50
SSC:78 I-Bm w/vrt Web Stiff Bndg 10.095 11.230 -3.771	10.095 11.230 -3.771	11.230 -3.771	-3.771			0.53	10^3 cyc	0.43	0.59	0.53	0.91		0.47	0.55	35	0.63	0.27
SSC:7P I-Bm w/vrl Web St Prin Stress 10.204 11.460 4.172	10.204 11.460 -4.172	11.460 -4.172	4.17:			0.51	10^8 cyc 10^3 cyc	2 2 2 3 3	0.92	0.79	1.27	6.59 6.59	0.0 4.00	0.97	1.4	0.61	0.39
	:	:		:				1.34	1.9	1.62	1.39	1.97	0.7	1.08	1.53	0.67	2
SSC:8 Botted Double Lap 14.469 16.440 -6.549	14.469 16.440	16.440		9.548		9.	10^3 cyc	89 G	0.95	0.86 85.65	- 6	9.0	0.75	88.0	0.55	- 20	0. 2. 8
SSC:9 Riveted Single Lap 16.687 19.590 -9.643	16.687 19.590	19.590		-9.643		8.0	10^3 cyc	1.68	2.35	2.11	3.6	1.57	20	2.16	1.36	2 47	1.05
Buth Wold Aviolatin Chan	14 245	16.630		7 680		8	10^8 cyc	0.75	0.56	0.91	0.78	Ξ,	0.39	0.59	98.0	0.37	0.79
מינו אבטים ליינטים פופסו ויינטים פופסו היינטים פופסו	ו אנפון לרכיבו	00000		807		9	10.8 cyc	. e.	90	0.97	0.83	1.5	2 2	0.63		. 0	9
SSC:10H Buft Weld Axial:HSLA Steel 22.068 25.920 -12.795	Weld Axial:HSLA Steel 22.068 25.920 -12.795	25.920 -12.795	-12.795		_	98	10^3 cyc	1.59	222	1.99	3.4	1.49	1.74	2.05	1.29	2.34	0.99
SSC:10Q Butt Weld Axiat:Q&T Steel 12.108 13.650 -5.124	12.108 13.650 -5.124	13.650 -5.124	-5.124			9.76	10.3 cyc	0.59	0.83	0.74	1.27	9.0	0.65	0.78	0.48	0.87	0.37
Control Address Control of the Contr	207.44	46.030		6		3		0.76	0.57	0.92	0.79	1.12	7 .0	9.0	0.87	0.38	9.0
66C:10(G) Butt Weld Axial:Ground 14.764 16.930 -7.130	14.764 16.930	16.930		-7.130		*	10^3 cyc	98.0	0.45	0.73	1.89	0.83	96.0	0.47	0.71	- C	0.55
SSC:10A Buft Weld Bridg 12.494 14.140 -5.468	12.494 14.140	14.140	-	-5.468		0.78	10^3 cyc	0.67	0.83	0.83	1.42	0.62	0.73	98	0.54	0.98	0.41
SSC:11 I-Bm Butt Weld Bridg 12,035 13,770 -5,765	12.035 13.770	13.770		-5.765		0.68	10*3 cyc	9.74	0.56	1.25	2.14	1.09 1.09	0.38	0.59	0.85	1.47	0.78
• : : : : : : : : : : : : : : : : : : :	·						10^8 cyc	-	0.75	1.21	1.0	1.47	0.52	0.79	7	0.5	2
SSC:12 Tee Stiffnr Tapered Fig Thickness Bndg 10.366 11.690 -4.398	Tapered Fig Thickness Bndg 10.366 11.690	11.690		4.388		0.43	10^3 cyc	0.72		0.8	1.53	0.67	0.78	0.92	0.58	1.05	0.45
SSC:12(G) Tee Stiffur Tapered Fig Thickness Bndg 12.415 14.120 -5.863	Tapered Fig Thickness Bndg 12.415 14.120	14,120		-5.663		0.60	10^3 cyc	8	Ξ	<u>-</u>	7	0.75	0.87	8	0.65	1.1	0.5
000.10 Tag Ciffmon Tanad Els Midth Bads 40 847 478 4790	Ones Torond Etc. 1864th Bods 40.040			,		,	10^8 cyc	0.83	0.82	- 8	98.0	121	0.43	9.65	20.0	5.4	98.0
166 Suitellet Tabed Fig Vitati Bildig 10.047	ellet Lapeu rig vykuri bikdg 10.047 12.120	12.120		877. T		ç	10.3 cyc	0.97	0.72	1.17	- -	4 5	0.5	9.0	1.1	9.0	, t
SSC:14 Disc. Cruciform Axial 14.721 18.960 -7.439	14.721 16.960	16.960		-7.438		0.91	10^3 cyc	1.07	64.5	¥ 5	2.29		1.17	1.38	0.86	1.57	0.67
SSC:15 Loaded Edge Attachment Plate 9.566 10.830 -4.200	9.566 10.830	10.830		-4.200		0.43	10.3 cyc	0.9	1.28	1.15	. 8.	98.0		1.18	0.78		0.57
And the local control of the l	909 07	900		700			10^8 cyc	1.83	‡	2.33	1.99	2.82	- ;	1.52	2.19	98.0	2.01
Talual Fell, Dull West 10,020	0.920 12.020	12.020		3		6	10^8 cyc	1.27	0.95	1.53		1.88	99.		5 1	63	1.32
SSC:16(G) Partial Pen. Butt Weld: Ground 13.455 15.550 -6.960	13.455 15.550	15.550	·	-6.960		0.95	10^3 cyc	1.24	1.72	1.55	2.65	1.16	1.35	1.59	 .	1.82	0.77
SSC:17 Lapped Angle to Plate Attchmnt:Axial 9.265 10.390 -3.736	9.265 10.390 -3.738	10.390 -3.736	-3.736			0.34	10^8 cyc	88.0	0.08 0.95	9.0	16.0	- 5 - 28 - 78	0.46 74	0.69 0.89	- 55	4 -	0.92
				}			10^8 cyc	2.01	5.5	2.43	7 09	2.85	50.	5.5	2.29	-	2.1
SSC:17(S) Lapped Angle to Plate Attchmnt:Shear 13,937 16,280 -7,782	13.937 16.280 -7.782	16.280 -7.782	-7.782		_	0.65	10^3 cyc	1.61	2.24	2.01	3.44	1.5	1.76	2.07	1.3	2.38	-
SSC-17A I anned Channel to Plate Attribunt: 4 via 9 097 10 140 -3 485	9 007 10 140 -3 485	10.140 -3.485	-3.485			92.0	10^8 cyc	98.0	0.72	1.16	0.99	7 5	0.5	0.76	1.09	9,48	- ;
בפונים- ביינים אינים אינים אינים אינים אינים ביינים	CO4:02	10.140	200			9	10^8 cyc	2.08	. 25	2.51	2.15	, e	3 8	. 20	2.38	2 CO	2.17
SSC:17A(S) Lapped Channel to Plate Attchmnt:Shear 13.937 16.280 -7.782	13.937 16.280	16.280	•	-7.782		9.65	10^3 cyc	1.61	2.24	2.01	3.4	1.5	1.76	2.07	.5	2.36	-
SSC:18 Langed Flathar to Plate Attribmot: Avial 9 048 10 280 -4 027	athar to Plate Attchmot: Axial 9 048 10 280	10.280	-	4 027		0.85	10^8 cyc	86.5	0.72	9 -	0.99	1.4	0.5	0.78	1.09	0.48	1 20
		204				3	10'8 cyc	2.48	1.85	2.98	2.55	3.61	1.28	2	2.81	5 2	2.57
SSC:18(S) Lapped Flatbar to Plate Attchmnt:Shear 15.241 18.020 -9.233	atbar to Plate Attchmnt:Shear 15.241 18.020	18.020	•	-9.233		0.75	10 ⁴³ cyc	2.05	2.86	2.57	4.39	1.92	2.24	2.64	1.66	3.02	1.28
SSC:19 Lapped Flatbar End Weld Only: Axial 12,941 15,190 -7,472	12.941 15.190	15.190		-7.472		0.93	10°3 cyc	1.88	2.63	2.36	4.03	787	2.08	2.42	1.52	2.77	5 -
				:			10^8 cyc	6	0.89	=	124	1.75	0.62	ğ	98	0.59	1.25

	BASELINE CONFIGURATION	-	LOG(Aamp	LOG(Amg)	60	STD DEV	RATIO	RM	S FATIGU	E STRENG	THRATIO	(MEAN; 50	% PROBAE	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	FAILURE)		
#36	SSC:19(S)	Lapped Flatbar End Weld Only; Shear	(ksi) 13.566	(ksi) 15,830	-7.520	0.93	10^3 cyc	#21	#22	#23 1.89	#24	#25	#26 174	#27 2.04	#28 1 28	#29	430 *
1							10^8 cyc	-	0.75	121	1.03	94.	0.52	0.79	7	0.5	9
#31	SSC:20	Plate Penetration: Axial	10.180	11,570	-4.619	99.0	10^3 cyc	98.0	1.34	7 5	2.05	6.6	50.5	1.24	0.78	1.41	9.0
#38	SSC:20(S)	Plate Penetration: Shear	12.695	14.730	-6.759	0.93	10^3 cyc	1.53	2 7	2.1	3.08	134	1.57	1.84	1.16	2.1	0.89
62#	SSC:21(1/4"WELD)) Plate Penetration: Bending	22.432	26.720	-14,245	0.62	10^8 cyc 10^3 cyc	1.07 2.22	3.1 8.1	1.29	1.1	2.58 2.08	0.55	0.84 2.86	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	0.53 3.28	1.11
9	SSC:21(3/8"WELD)	Plate Penetration: Rending	20.828	25.490	15.404	68.0	10^8 cyc	0.68	0.5	0.82	0.7	0.99	0.35	0.53	0.77	46.0	0.71
			2			100	10^8 cyc	1.07	0.8	5.5	1.5	1.57	99.0	0.85	1.25	0.53	1.15
1	SSC:21(S)	Plate Penetration: Shear	14.765	16.980	-7.358	0.83	10^3 cyc	1.01	- 9	1.28	2.18	96.0	1.5	£.13	0.82	1.48	0.63
#42	SSC:22	Tee with Stud Attachment: Bndg	9.093	10.040	-3.147	0.32	10^3 cyc	0.36	0.5	0.45	0.73	0.33	6.0	0.46	0.29	0.53	0.22
#43	SSC:23	Tee with Transv. Channel Attchmnt:Bndg	8.981	9.840	-3.187	0.13	10~8 cyc 10^3 cyc	1.88 1.41	0.57	2.28 0.52	1.95 0.88	2.76 0.39	0.98 0.45	1.49 0.53	2.15 0.33	9.0 9.0	1.97
**	880.34	Tee with Short Car D# Attended to	8 081	0.00	4 4 8 7	5	10^8 cyc	2.07	1.55	2.5	2.14	3.04	1.08	1.63	2.38	1.03	2.18
i	1	Ballo The Date of	o o	r i	ĝ	2	10.8 cyc	2.07	1.55	2.5	2.14	3.05	1.08	1.63	2.36	1.03	2.16
#42	SSC:25	Continuous Craciform	13.656	15.790	-7.090	0.78	10^3 cyc	1.24	1.73	1.56	2.66	1.18	1.36	1.6	1 0 97	1.83	0.77
#46	SSC:25A	Plate with Transv. Side Attachment	16.906	19.470	-8.518	0.91	10^3 cyc	96.0	1.37	2 5	7.5	28.5	1.08	1.27	8.0	1 5	0.61
74	SSC:25B	Pit w/ Transv. Side Attchmnt and Brace	13.053	15.150	-6.966	0.63	10^3 cyc	1.42	1.98	1.78	3.03	1.33	1.55	1.82	1.15	2.08	98.0
#48	SSC:26	Welded Cover Plate	9.122	10.130	-3.348	0.61	10^8 cyc 10^3 cyc	0.47	0.75	1.21	9 -	74.0	0.52	0.79	1.14	0.5	1.05
449	SSC:27	Double anned Plate with Plun Welfe	8.453	040	3.146	85	10^8 cyc	1.97	4.	2.38	25	2.89	1.02	1.55	2.24	88.0	208
		R	3		2	2	10.8 cyc	3.0	5.28	3.64	3.12	4.4	1.56	2.37	3.43	1.49	3.14
#20 #	SSC:27(S)	Double Lapped Pft w/ Plug Welds: Shear	10.471	12.060	-5.277	0.54	10^3 cyc	1.38	1.92	5.73	2.95	1.29	1.51	1.7	1.1	2.02	0.86
#21	SSC:28	Baseplate with Circular Hole	15.078	17.410	-7 746	0.81	10^3 cyc	£.	15	Ę.	241	1.05	1.23	1.45	0.91	1.65	0.7
#52	. SSC:30	Long Finite Plate Attchmnt: Axial	8.919	9.870	-3.159	0.31	10~8 cyc 10^3 cyc	0.41	0.58	0.82	0.7	0.39	0.35 0.45	0.53	0.33	9.0	0.74
#53	SSC:304	Long Finite Plate Attchmnt: Budo	955	10.580	23.768	5	10^8 cyc	2.15	1.61	2.6	2.22	3.15	1.12	1.69	2.45	1.07	224
		7				2	10^8 cyc	1.46	-	1.7	5.5	2.15	0.76	1.15	1.67	0.73	1.53
1	SSC:31	Out-of-Plane Fig Side Attchmnt: Bndg	9.361	10.670	4.348	0.62	10^3 cyc	1.16	1.62	2.7	2.49	1.09	1.27	1.5	\$ Z	7.7	0.72
#22	SSC:31A	Lapped Fing Side Attchmnt: Bndg	9.091	10.130	-3.453	44.0	10^3 cyc	0.55	0.78	0.68	1.1	0.51	90	0.7	4	0.8	9.9
#26	SSC:32A	In-Plane Side Attchmnt to Flange: Bndg	9.566	10.830	4.200	0.43	10~8 cyc 10^3 cyc	2:08 0:91	8 2	1.15	2.15 1.86	3.04 98.0	1.08 1.08	1.64 1.18	0.74	<u>5</u> 2	2.17
#57	SSC:32B	Abriot Change in Flance Width Bridge	8 846	9 710	.3 533	0.63	10^8 cyc	1.93	<u>‡</u> ;	2.33	1.99	2.82	- 8	1.52	2.19	0.96	2.01
	60.040						10^8 cyc	2.84	2.13	3.43	2.94	4.16	1.47	2.24	3.23	7	2.98
9	880.33	Lapped Flatbar to Pit W/ Full Wrap:Axial	8.75g	8.860	-3.860	0.50	10^3 cyc 10^8 cyc	0.86 2.71	202	3.28	1.84 2.81	3.97	26. 1. 26. 1.	1.11 2.14	3.08	8 5	0.53
#28	SSC:33(S)	Lapped Flatbar to Pit w/ Full Wrap:Shear	16.469	19.590	-10.368	0.81	10^3 cyc	2.28	3.18	2.86	4.87	2.13	2.49	2.83	2.5	3.35	1.42
#80	SSC:35	Butt Weld with Backing Bar	9.604	10.750	-3.808	0.28	10^3 cyc	9.0	0.84	0.75	1.28	0.58 0.58	0.66	0.77	94.0	0.88	0.37
¥	SSC:36	Skip Welded Plates with Rathole	13.053	15.150	-6.966	0.63	10~8 cyc 10^3 cyc	1.67	1.25	1.78	3.03	1.33	1.55	1.32	1.15	0.83 2.08	1.75
#62	SSC:36A	Skip Welded Plates	11.326	12.880	-5 163	0.46	10^8 cyc	1 0 87	0.75	1.2	2. 2	1.47	0.52	0.79	1.14	0.5	1.05
							10^8 cyc	7	0.82	1.33	7	1.0	0.57	0.87	1.25	0.54	1.15
2	86.386	Stiffener Plate Penetration: Bridg	9.128	0.1.01	-3.462	0.38	10*3 cyc 10*8 cyc	2.03	1.52	0.67 2.45	2. 1. 5	2.98 2.98	0.59 1.06	0.69 1.6	2.31	1.01	2.12
*	SSC:38(S)	Stiffener Plate Penetration: Shear	14.312	17.380	-10.225	0.88	10^3 cyc	3.54	1.93	7.0	7.56	3.31	3.87	4.55	2.86	5.19	2.2
#65	SSC:40	Stiffener Intersection: Bending	8.646	9.710	-3.533	0.62	10 ⁴³ cyc	0.8	112	1.0	1.72	0.75	0.88	1.03	0.65	1.18	0.5
99#	SSC:42	Bending of Long Attachment	14.765	16.980	-7.358	0.83	10^3 cyc	10.	1.41	1.28	2.2.	0.94 5.48	<u> </u>	1.3	3.23 0.82	2 2	2.96
#67	SSC:46	Long. Welds on Support Gussets: Axial	9.361	10.670	4.348	0.62	10*3 cyc	- 653 - 163	1.62	1.46	2.49	0.0 1.09	1.27	0.52 1.5	0.75	0.33 1.71	0.68
89#	SSC:51(V)	Transv. Stiffnr Pene. Fig Unspprtd: Bndg	9.781	10.930	-3.818	0.07	10^8 cyc 10^3 cyc	2.23	1.67	2.7	2.31	3.27	1.16	1.76	2.5 4.0	1,1 0.8	2.33
9	000:088	Trancy Stiffer Dane Bly Supported Bad	10 033	4, 24,	57	,	10^8 cyc	1.51	1.13	1.82	1.56	221	0.78	1.19	1.72	0.75	1.58
ě	990:35(4)		10.023	11.240	4.042		10^3 cyc 10^8 cyc	1.42	2. 6. 2. 8.	1.71	1,47	2.08	0.66	1.12	0.49 1.62	0.89	0.38
#10	Generic S/N Curve		9.000	9.903	-3.000	0.00	10^3 cyc 10^8 cyc	1.92	0.43 4.43	0.38	1.98	0.29	0.33	0.39	0.25	0.45	0.19
										i	:	i		:	i i	<u> </u>	į

	BASELINE CONFIGURATION		LOG(Aamp LOG(Amg)	LOG(Amg)	80	STD DEV	RATIO	RMS	RMS FATIGUE	STRENG	STRENGTH RATIO (MEAN;	AEAN; 50%	50% PROBABILITY OF FAILURE	LITY OF FA	_		9
1	Calcula Hayb. Co.	460000000000000000000000000000000000000	(ksi)	(KSI)	6.729	0.75	10 ^{A3} cvc	. 98 O	93	946	220	0.25				0.21	0.13
Ę	SSC:1(Bil Steets)	paschare	2.050	2		3	10^8 cyc	0.23	0.5	0.2	0.5	9	94.0	0.31	0.45		0.45
#2	SSC:1M	Baseplate Mild Steel	21.679	25.360	-12.229	0.71	10^3 cyc	5.6	0.89	1.38	7.0	9.78	8.0	1.48 6.53	- 5	0.65	0.38
			24 200	670	45 440	ě	10°8 cyc	0.24	0.52	7 0.7	0.52	2 42		1.48	3 6		37
*	SSC:1H	Baseplate HSLA Steel	805.12	32.040	B + 10	Ē,	10/8 cyc	0.19	0.42	0.16	14.	95.0	8	0.25	0.38		0.37
1	SSC:10	Baseplate Q & T Steel	13.345	14.910	-5.199	0.68	10^3 cyc	99.0	0.23	0.35	0.18	0.19	0.23	938	97.0	0.16	2.5
ž,	SSC:1(F)	Baseplate Flame Cut	12.334	13.780	-4.805	0.60	10^3 cyc	0.72	0.25	0.38	0.19	0.21	0.25	0.41	0.28		0.1
}		: (,		Š	10^8 cyc	0.29	0.62	0.24	0.61	9.0	0.59	0.38	0.56		0.55
£	SSC:Z	Koled I-beam bending	3.988	13.020	9	Š	10.8 cyc	0.25	. 45	0.23	0.53	0.43	0.52	0.33	0.49		0.48
*	SSC:3	Longitudinal Seam	13.010	14.800	-5.946	0.63	10^3 cyc	4.4	0.48	4.0	0.38	14.0	0.49	8.0	0.54 8		0.21 8.0
*	SSC:3(G)	Ground Long. Seam	13.602	15.520	-6.370	0.74	10^3 cyc	1.5	0.51	0.79	4	4	0.52	0.86	0.58		77
,			40.646	200	6 5 5 5	ă	10^8 cyc	0.33	0.71	0.28	0.7	0.57	99.0	6.43	0.0 20.0		0.64
*	SSC	Long. Fillet Weld Bridg	616.21	14.220	-9.003	9.0	10-8 cyc	0.38	0.83	0.32	0.82	0.67	0.8	0.5	0.74		0.74
#10	SSC:5	Cvr Pit on I-Bm Flg Bndg	8.663	9.650	-3.278	0.48	10^3 cyc	8.5	0.38	0.56	0.28	0.31	0.37	0.61	0.41	3.93	0.16 2.48
#11	SSC:8	DM I-8m Bndg	12.515	14.220	-5.683	0.61	10^3 cyc	139	64	0.74	0.37	0.41	0.48	80	35.0		7 5
1	92:33	new men and and and and and and and and and an	10 095	11,230	-3.771	0.53	10^8 cyc	0.38	0.83	0.32	0.82	0.23	0.27	5 4	6.0		0.14
¥	990.76				;		10v8 cyc	0.59	1.28	0.5	1.28	1.03	1.23	0.78	1.15		1.1
#13	SSC:7P	I-Bm w/vrt Web St Prin Stress	10.204	11.460	4.172	0.51	10^3 cyc	1.14	0.39	0.65	0.31	0.33	0.39	0.65	4.6		1.25
#	SSC:8	Bolted Double Lap	14.469	16.440	-6.549	0.81	10^3 cyc	1.24	0.42	0.68	0.33	0.36	0.43	0.71	0.48		0.18
į	Ġ	on I alonio bata il O	16 887	10 500	-0 R43	8	10^8 cyc	8 5 8 5	0.56	0.22	0.55	0.45	8	1.75	5.7 7.1		0.45
# 12	8:389	Miveled Single Lab	00.00		2	5	10^8 cyc	0.36	0.79	0.31	0.78	0.63	97.0	0.48	0.71		0.7
#18	SSC:10M	Butt Weld Axial:Mild Steel	14.345	16.630	-7.589	0.88	10^3 cyc	2.35	0.8	1.25	0.63	0.69	0.82	1.35	0.91		0.35
#17	SSC:10H	Butt Weld Axial:HSLA Steel	22.068	25.920	-12.795	96.0	10^3 cyc	2.89	0.99	1.53	0.78	0.85	-	8	1,1		0.42
			,	9		9	10^8 cyc	9.5	0.55	0.22	0.55	5 6	0.53	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.5		0.5
#13e	SSC:100	Buff Weld Axial: U.S. Sieel	12.100	13.030	-0.12	9	10^8 cyc	0.37	8.0	0.31	0.79	190	0.78	0.48	0.71		0.71
#18	SSC:10(G)	Butt Weld Axial:Ground	14.784	18.930	-7.130	0.94	10^3 cyc	9.7	0.55	0.85	0.43	0.47	0.55	0.85	0.62		0.23
#50	SSC:10A	Butt Weld Bridg	12.494	14.140	-5.468	0.79	10*3 cyc	12.1		0.64	0.32	0.35	0.42	0.69	0.47		0.18
	77	Apro MyM #10 110	12 035	43 770	787. Z.	89.0	10^8 cyc	0.36	6.78	6. 0 8. 0	0.77	0.62	0.74	7.0	0.7		0.69
#5,	SSC:11	Lem Bun wend bridg	5.033	2	-9.793	80.0	10^8 cyc	84.	9 5	0.4	1.03	98.	-	0.63	3		0.93
#22	SSC:12	Tee Stiffnr Tapered Flg Thickness Bndg	10.388	11.690	-4.398	0.43	10^3 cyc	1.3	39 5	0.69	0.35 1.38	0.38 1.12	0.45 1.34	0.75	1.25	1.97	1.18
#23	SSC:12(G)	Tee Stiffnr Tapered Fig Thickness Bndg	12.415	14.120	-5.863	0.60	10^3 cyc	1.45	0.5	0.77	0.39	0.42	0.5	0.83	9.56		0.21
•		Tee Sifferer Tened Ely Width Bride	10.847	12 120	4 229	970	10^8 cyc	0.65	0.86	0.34	0.85	0.69	0.83	0.52	0.78 0.33		0.12
*7#	2.500	A Dodge Dollar Da		i		<u>:</u> ;	10^8 cyc	0.47	5.	0.39	-	0.81	0.97	0.61	0.91		6.0
#25	SSC:14	Disc. Cruciform Axial	14.721	16.960	-7.439	0.91	10^3 cyc	- 0 33	0.67	1.03 0.28	0.52	0.57	0.68	0.43	20.0	 1.04	0.64
#26	SSC:15	Loaded Edge Attachment Plate	9.566	10.830	-4.200	0.43	10^3 cyc	99.	0.57	0.88	0.45	0.49	0.58	0.95	6.9	0.41	0.24
10#	SSC:16	Partial Pen. Butt Weld	10.626	12.020	4.631	0.58		1.41	2. 6 8. 6 8. 6	0.75	0.38		. 6	0.81	0.54	0.35	0.21
			,	,	0	ě	10^8 cyc	19.0	1.32	0.51	£.3	9. 8.	1.27	8. ç	1.19 8.0	1.87	
#28	SSC:16(G)	Partial Pen. Butt Weld: Ground	13.433	19.330	P P	6.0	10.8 cyc	0.42	0.92	0.36	6.9	0.74	0.88	0.56	0.82	1 3	0.82
#28	SSC:17	Lapped Angle to Plate Attchmnt:Axial	9.265	10.390	-3.736	0.34	10^3 cyc	124	0.42	0.65	0.33	98.0	0.43 0.00	0.71	9.46 8.68	0.31	0.7 8.5 8.8 8.8
#30	SSC:17(S)	Lapped Angle to Plate Attchmnt:Shear	13.937	16.280	-7.782	0.65	10^3 cyc	2.92	; - ·	1.5	0.78	0.85	10.0	1.67	1.12	0.72	0.43
Ş	850:178	i social Channel to Dista Attehnnt Axial	2 097	10 140	-3.465	0.39	10^8 cyc	9,48	- 45	0.39	0.99	0.29	0.35	0.57	0.39	0.25	0.0
2							10^8 cyc	- !	2.17	98.0	2.14	1.74	2.08	1.32	1.94	3.07	1.8
#35	SSC:17A(S)	Lapped Channel to Plate Attchmnt:Shear	13.937	16.280	-7.782	0.65	10^3 cyc	2.85 0.46		1.54 0.39	0.78	0.85	0.96 0.96	0.67	21.T 0.9	1.42	0.80
#33	SSC:18	Lapped Flatbar to Plate Attchmnt:Axial	9.048	10.260	4.027	0.65	10^3 cyc	1.89	0.65		0.51	2.07	0.66	1.08	2.31	3.647	23
#34	SSC:18(S)	Lapped Flatbar to Plate Attchmnt:Shear	15.241	18.020	-9.233	0.75	10^3 cyc	3.72	1.28	1.97		1.09	1.29	2.14	54.5	0.92	0.55
#35	SSC:19	Lapped Flatbar End Weld Only: Axial	12.941	15.190	-7.472	0.93	10~3 cyc	3.42	<u>.</u>	1.81	0.82	-	1.18	8.	1.32	0.85	8.0
		:					10^8 cyc	0.57	1.25	0.48	1.23	-	2	0.78	1.12	1.76	-

	BASELINE CONFIGURATION		LOG(Aamp	LOG(Amg)	8	STD DEV	≥	RMS	FATIGUE	STRENG	H RATIO (MEAN; 50	% PROBA	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	=AILURE)		
#38	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	(KSI) 13.568	(KSI) 15.830	-7.520	0.93	10^3 cvc	#31 2.88	#32 0.99	#33 153	#34	#35	#3e	#37	#38 -	#39	#40 0.42
,		:	:	;			10^8 cyc	0.48	1.04	0.4	1.03	0.84	-	0.63	0.83	1.47	0.93
2	92C:20	Plate Penetration: Axial	10.180	11.570	4.619	99.0	10^3 cyc	1.74	9.0	0.92	0.47	0.51	9.0		0.67	0.43	97.5
#38	SSC:20(S)	Plate Penetration: Shear	12.695	14.730	-6.759	0.93	10^3 cyc	2.6	0.89	1.38	0.7	0.78	0.9	- 64.	-	0.6	0.38
#38	SSC:21(1/4"WELD)	Plate Penetration: Bending	22.432	26.720	-14.245	0.62	10^8 cyc 10^3 cyc	4.03	1.38	2.43 2.13	. 5	0.89 1.18	1.07	2.31	1.55	1.58	0.58
440	SSC:21(3/8"WELD)	Plate Penetration: Bending	20.826	25.490	-15,494	0.62	10^8 cyc	0.33 6.82	2.34	3.61	1.83	0.57	0.68	0.43	0.63	- 8	0.63
***	000:34(6)		107.11	9			10^8 cyc	0.52	1.12	4	Ŧ.	0.0	1.08	0.68	-	1.58	
i	(2)14:222	and relief and relief	2	0.800	0007	200	10^8 cyc	0.32	0.63	0.97	9.0	0.55	9 0	1.05	0.61	0.97	0.27
#75	SSC:22	Tee with Stud Attachment: Bndg	9.093	10.040	-3.147	0.32	10^3 cyc	0.65	0.22	0.34	0.17	0.19	0.23	0.37	0.25	0.16	5
#43	SSC:23	Tee with Transv. Channel Attchmnt:Bndg	8.981	9.940	-3.187	0.13	10^3 cyc	0.75	0.28	0.0	0.2	0.22	0.26	0.45 54	0.29	0.19	0.1
‡	SSC:24	Tee with Short Cvr Pit Attchmrt:Bnda	8.981	9.940	-3.187	0.13	10^8 cyc	1 0 75	2.18	0.84	2.14	1.74	2.08	1.31	4.94	3.06	1.83
•	;					!	10^8 cyc	-	2.18	98.0	2.14	1.7	2.08	1.3	1.94	3.08	. 8
4	SSC:25	Continuous Cruciform	13.656	15.790	-7.090	0.78	10^3 cyc	2.25	0.77	1.19	0.61	0.68	0.78	1.29	0.87	0.56	0.33
*	SSC:25A	Plate with Transv. Side Attachment	16.906	19.470	-8.518	0.91	10^3 cyc	1.78	0.61	0.95	0.48	0.52	0.62	1.02	0.69	44.0	97.0
*	SSC:25B	Pit w/ Transv. Side Attchmnt and Brace	13.053	15.150	-6.966	0.63	10^3 cyc	2.57	0.88	1.38	0.68	0.75	0.89	1.48	0.99	0.6	98.0
#448	SSC:28	Welded Cover Plate	0 122	10 130	3 348		10^8 cyc	0.48	1.05	0.41	2 6	4 6	£.9	9.0	9.0	1.49	0.94
			!	2		5	10^8 cyc	0.85	2.06	80	2.03	1.65	1.98	1.25	1.85	2.84	1.84
#	SSC:27	Double Lapped Plate with Plug Welds	8.453	9.400	-3.146	0.58	10^3 cyc	4.4	0.36	0.55	0.28	0.3	0.36	0.58	4.6	0.26	0.15
#20	SSC:27(S)	Double Lapped Plt w/ Plug Welds: Shear	10.471	12.060	-5.277	0.54	10^3 cyc	5.5	0.86	135	0.67	0.73	0.87	£.	98.0 98.0	0.62	0.37
#21	SSC:28	Baseplate with Circular Hole	15.078	17.410	-7.746	0.81	10^8 cyc	9.0	1.73	1.08	1.71	1.39	1.86	1.05	1.55	2.45	25. 5
į		i			2		10^8 cyc	0.33	7.	0.27	0.7	0.57	0.68	0.43	0.63	5	99
76#	SSC:30	Long Finite Plate Attchmnt: Axial	8.919	9.870	-3.159	0.31	10^3 cyc	0.75	0.26	4.0	0.5	0.22	0.26	0.43	0.29	0.19	<u>.</u>
#23	SSC:30A	Long Finite Plate Attchmrt: Bndg	9.586	10.580	-3.368	0.10	10^3 cyc	0.64	0.22	0.34	0.17	0.19	0.22	0.37	0.25	0.18	0.09
*	SSC:31	Out-of-Plane Flg Side Attchmnt: Bndg	9.361	10.670	4.348	0.62	10^3 cyc	2.11	1.53	0.59	1.51	1.23	1.47	0.93	1.37	2.16	8.5
!							10^8 cyc	1.08	2.33	0.91	53	1.87	2.24	4	5 6	3.3	2.08
\$2	SSC:31A	Lapped Fing Side Attchmrt: Bndg	9.091	10.130	-3.453	4.0	10^3 cyc	0.99	0.34	0.52	0.27	0.29	9.34	0.57	0.38	0.25	0.15
95 #	SSC:32A	in-Plane Side Attchmnt to Flange: Bndg	9,566	10.830	-4.200	0.43	10^3 cyc	1.88	0.57	0.88	0.45	0.49	0.58	0.95	0.64	0.4	0.24
#57	SSC:32B	Abrupt Change in Flange Width:Budo	8.646	9.710	-3.533	0.62	10^8 cyc	0.83	2.03	0.78	1.98 05.0	1.61	1.93	27 2	8. C	2.85	8,5
9	66.00						10^8 cyc	1.37	2.86	1.15	2.83	2.38	2.85	1.8	2.86	4.2	2.65
e E	2000	Lapped Figure to Fit W/ Fur Wrap. Axia	0./30	98.8	-3.660	0.50	10^3 cyc	8 5	0.53	0.83	0.42	0.48	5.5	0.89	9.0	0.39	0.23
#28	SSC:33(S)	Lapped Fiatbar to Pit w/ Full Wrap; Shear	16.469	19.590	-10.368	0.81	10^3 cyc	5	2	2.19	7	12	1.43	2.37	1.58	1.03	9.6
9#	SSC:35	Butt Weld with Backing Bar	9.604	10.750	-3.808	0.28	10~8 cyc 10^3 cyc	5.09 5.09	0.37	0.38	0.97	0.79	0.94	0.62	0.88	1.39	0.88
188	98.088	Skin Waded Distor with Bethole	13 063	45 455	900	6	10^8 cyc	0.81	1.75	99.0	1.73	7	1.68	90.	1.57	2.48	85
			2	2	g P	8.0	10^8 cyc	0.48	1.05	. 0. 5. 1.	2 2 3		.0.1 10.1	0.648	9 6 6 6	4 6	, d
#62	SSC:36A	Skip Welded Plates	11.326	12.880	-5.163	0.46	10^3 cyc	1.58	0.54	0.84	0.42	0.46	0.55	0.91	19.0	0.39	0.23
#63	SSC:38	Stiffener Plate Penetration: Bndg	9.128	10.170	-3.462	0.36	10^3 cyc	0.98	0.33	0.52	0.28	0.29	94	0.56	0.38	0.24	0.14
#9#	SSC:38(S)	Stiffener Plate Penetration: Shear	14.312	17.390	-10.225	0.88	10^8 cyc 10^3 cyc	0.98 6.41	2:12 2:2	3.4	2.09 1.72	1.7	2 2	1.29 3.68	1.9	1.59	- 0 - 89 - 89
#8.5.5	08:030	Cifferent Intermedian Danding	9700	9	9	9	10^8 cyc	12.0	1.54	9.0	1.53	1.24	1.48	0.84	1.38	2.19	1.38
2	24.000	Surience intersection: Bending	0.040	2.	-3.533	0.62	10^3 cyc	1.46	2.98	1.15	0.39	2.43	2.85	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.	85. c	0.38	2.5
#66	SSC:42	Bending of Long Attachment	14.785	16.980	-7.358	0.83	10^3 cyc	1.83	0.63	0.97	0.49	25.0	9.0	1.05	0.7	5.6	0.27
467	SSC:46	Long. Welds on Support Gussets: Axial	9.361	10.670	-4.348	0.62	10^3 cyc	2.11	0.72	1.12	0.57	0.62	5. 5.	121	0.81	0.52	0.3
89#	SSC:51(V)	Transv. Stiffnr Pene. Fig Unspprtd: Bndg	9.781	10.930	-3.818	0.07	10^8 cyc 10^3 cyc	1.08 0.99	2.33 0.34	0.91	0.27	1.87 0.29	0.34	1.42	2.08 0.38	3.3 0.25	2.08 0.15
69#	SSC:52(V)	Transv. Stiffnr Pene. Fig Supported: Bnd	10.023	11.240	-4.042	0.19	10^8 cyc 10^3 cyc	1.1	1.58 0.38	0.58	1.56 0.29	0.32	1.51	0.96 9.83	1.41	2.23	1.4 1.4 1.6
#70	Generic S/N Curve		000 6	603	3 000	8	10^8 cyc	0.68	1.48	0.58	1.48	1.18	1.42	9.0	1.33	2.7	1.32
			;	;		;	10^8 cyc	0.83	2.07	97.0	2.6	1.67	1.83	12	4. 8.	2.84	7.5

	BASELINE CONFIGURATION		LOG(Aamp LOG(Amg)	LOG(Amg)	8	STD DEV	RATIO	RMS	FATIGUE	STRENGT	H RATIO (MEAN; 50%	PROBAB	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	AILURE)	•	ş
¥	SSC:1(all steels)	Baseplate	(ka) 13.825	15.550	-5.729	0.75	10^3 cyc	- - -	1.33	1.15	1.15	0.38	0.48		. 20.	83	5 5 5
•	(10^8 cyc	0.73	0.28	0.23	0.23	95.0	0.93	_	0.24	91.0	0.29
¥	SSC:1M	Baseplate Mild Steel	21.679	25.360	-12.229	0.71	10^3 cyc	1.42	10.4	3.49	3.48	9:18	1.46 1.46	Ē.	3.08	2.52	2,5
\$	117.000	100 × 100 ×	77.500	270	46.440	č	10^8 cyc	9.78		0.24	7.	8 5	6.97	6 6		7.0	3 5
2	HI:DSS	pasebate usch steel	800.77	36.040	P		10.3 cyc	0.61	2.0	0.19	0.19	0.47	0.78	9 0	0.2	0.13	0.24
*	SSC:10	Baseplate Q & T Steel	13.345	14.910	-5,199	0.88	10^3 cyc	0.38	1.02	0.89	0.89	0.29	0.37	0.28	0.78	0.64	0.27
;	£) 7 000		200.04	10 700	900	9	10^8 cyc	69.0	0.24	2 2	27.5	0.53	98.0	9 45	0.23	0.15	0.27
2	ssc:1(F)		£007	13.700	600	0.00	10^8 cyc	0.9 10.0	0.31	0.29	0.29	0.69	1.15	0.59	0.3	7.0	0.36
#	SSC:2	Rolled I-Beam Bending	13.999	15.820	-6.048	9.0	10^3 cyc	0.56	1.59	1.38	1.38	0.46	0.58	4.0	2, 5	- ;	14.0
£	SSC3	Longitudinal Seam	13.010	14.800	-5.946	0.63	10^3 cyc	0.78	2.16	1.88	6 50 1 68 1 68	0.62	0.79	0.55	8 8	1.35	5.0
i					!		10^8 cyc	Ξ	0.39	0.35	0.35	0.85	-	0.72	0.37	0.24	4
89 #	SSC:3(G)	Ground Long. Seam	13.602	15.520	-6.370	0.74	10*3 cyc	0.82	2.31	2.0	2.0	99.0	26.5	0.58	1.77	1.45	9.0
6	SSC:4	Long. Fillet Weld Bndg	12.515	14.220	-5.663	0.61	10^3 cyc	0.76	2.14	1.86	1.86	0.62	0.78	0.54	1.6	1.34	0.56
,	9.000		6 563	0 60	970.0	97.0	10^8 cyc	1.21	0.42	0.38	0.38	0.93	1.54	0.78	4.0	9.56	84.0
₽	6.000			2		}	10^8 cyc	8 9	-	128	1.28	3.1	5.18	2.65	35.	98.0	1.61
Ŧ.	SSC:6	Dbl f-Bm Bndg	12.515	14.220	-5.663	0.61	10^3 cyc	0.76	2.14	99.5	1.86	0.62	0.78	75.0	<u>2</u> . 2	4.3	9.58
#12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	10.095	11.230	-3.771	0.53	10*3 cyc	0.42	1.19	 	8 5	0.34	0.43	0.0	0.91	0.75	0.3
				:		į	10^8 cyc	1.87	0.65	0.59	0.59	1.43	2.37	2	0.62	0.41	0.74
#13	SSC:7P	I-Bm w/vrt Web St Prin Stress	10.204	11.480	4.172	0.51	10^3 cyc 10^8 cyc	2.05	0.71	1.52	1.52	1.57	2.6	3 7	. O	0.45	
#	SSC:8	Botted Double Lap	14.469	16.440	-6.549	0.81	10^3 cyc	0.68	1.91	1.66	98	0.55	0.69	0.48	1.47	12	0.5
1	6	or I ofocial before	18.887	10 500	0.843	8	10^8 cyc	0.82	0.29	0.28	0.28	0.63	<u> </u>	25. 5.	0.27	0.18 2.95	0.32
<u>n</u>	B. J. C. C.	אואפוסר כווולום רשל	900	8.5	3	9	10/8 cyc	1.15	0	0.36	98.0	0.88	1.48	0.75	0.38	0.25	0.45
#18	SSC:10M	Butt Weld Axial: Mild Steel	14.345	16.630	-7.589	0.88		1.28	3.62	3.15	3.15	2.0	1.32	16.0	2.78	2.27	9.0
7.	HOT: COO	But Weld Avial:HSI A Steel	22 DAR	25 920	-12 795	8	10^8 cyc	2 2	4.45	3.87	3.87	28	6. 5	1.8	3.42	2.79	5 5
.	5					3	10^8 cyc	0.81	0.28	0.28	0.26	0.62	1.03	0.53	0.27	0.18	0.32
#18	SSC:100	Butt Weld Axial:Q&T Steel	12.108	13.650	-5.124	0.78	10^3 cyc	0.59	99.7	4.5	4.5	8,0	9.0	0. 6 2. 8	1.27	4. S	0.43
#10	SSC:10(G)	Butt Weld Axial:Ground	14.784	16.930	-7.130	0.94	10^3 cyc	0.87	2.46	2.14	2.14	0.7	0.0	0.62	1.89	1.55	9.0
4		770	707 67	27.77	. 489	97.0	10^8 cyc	0.92	0.32	6.29	0.29	7. 5	1.17	9.5	9.3	0.5	0.38
#Z0		Bant Weld Sing	# N T	<u> </u>	0.400	8	10.5 cyc	1.13	0.39	0.36	0.36	0.87	4.	0.74	0.38	0.25	0.45
#21	SSC:11	i-Bm Butt Weld Bndg	12.035	13.770	-5.785	0.68	10^3 cyc	0.99	2.79	2.43	2.43	8.0	20.5	0.71	2.15	1.75	0.73
#22	SSC:12	Tee Stiffer Tapered Fig Thickness Bndg	10.366	11.690	4.398	0.43	10^3 cyc	5.0 E. C.		1,7	1.7	0.58	0.73	0.51	1.5	128 138	0.52
		, ,					10^8 cyc	2.04	0.71	9.0	9.0	1.56	2.59	1.33	89.0	77.	0.81
#53	SSC:12(G)	Tee Stiffir Tapered Fig Thickness Bndg	12.415	14.120	-5.663	0.60	10^3 cyc	1.26	2 4	4 6	3 0	9.0	1.6	0.98	0.42	0.27	0.5
#24	SSC:13	Tee Stiffener Taped Fig Width Bndg	10.847	12.120	-4.229	0.45	10^3 cyc	0.48	1.31	1.1	1.1	0.38	0.48	0.33	- :	0.82	70
C	41:355	Disc Country Axial	14.721	16 960	-7.439	0.81	10^8 cyc	÷ 5	2.99	2.8	2.6	0.86	60.	0.75	2.29	1.87	0.58
2						-	10^8 cyc	2	98	0.33	0.33	0.8	1.32	0.68	0.35	0.23	4
#56	SSC:15	Loaded Edge Attachment Plate	8.588	10.830	-4.200	54.0	10^3 cyc	2.91	2.36	0.83	2 6	2.25	3.73	1.92	98.0	9. 9	1.16
#27	SSC:16	Partial Pen. Butt Weld	10.626	12.020	4.631	0.58	10 ⁴³ cyc	0.77	2.17	1.89	1.89	0.83	0.79	0.55	1.67	1.36	95.0
#28	SSC:16(G)	Partial Pen. Butt Weld: Ground	13.455	15.550	-6.980	0.95	10^3 cyc	1.23	3.46	30.	3.01	-	1.26	0.87	2.65	2.17	6.0
\$		leined Amelia to Dieta Attohumi Aviel	285	10 300	3 73R	2	10^8 cyc	1.34	0.47	0.42	0.42	1.03	1.7	0.87	0.45	0.29	0.53
87 #		Lapped Aligie to Flate Attentional	8	2	,	5	10^8 cyc	3.08	1.07	0.97	0.97	2.35	3.0	8	20	0.67	2
#30	SSC:17(S)	Lapped Angle to Plate Attchmrt:Shear	13.937	16.280	-7.782	0.65	10^3 cyc	1.59	6.48	3.9	3.9	1.29	1.63	1.13	3.45	2.82	1.17
#31	SSC:17A	Lapped Channel to Plate Attchmnt:Axial	9.097	10.140	-3.465	0.39	10^3 cyc	0.55	2.	\$	<u> </u>	4 5	0.58	0.39	£. £	0.97	4. 5
#35	SSC:17A(S)	Lapped Channel to Plate Attchmnt:Shear	13.937	16.280	-7.782	0.65	10^3 cyc	1.59	9	3.9	3.9	1.29	1.63	1.13	3.45	2.82	17
#33	sSC:18	Lapped Flatbar to Plate Attchmnt:Axial	9.048	10.260	-4.027	0.65	10^3 cyc	1.03	2.9	2.53	2.53	0.84	8 8	6.73	523	1.62	0.76
#3	SSC:18(S)	Lapped Flatbar to Piate Attchmnt:Shear	15.241	18.020	-9.233	0.75	10^3 cyc	2.03	5.74	. 4 . 8	. 4. 8.99	1.65	2.08	1.45	3 4	3.6	4. 6
#35	SSC:19	Lapped Flatbar End Weld Only: Axial	12.941	15.190	-7.472	0.93	10*8 cyc 10*3 cyc	1.46	5.26	4.57	4.57	1.52	8. E.	1.33	4. 9.	3.3	1.37
							10^8 cyc	1.82	0.63	0.58	0.58	1.39	2.31	1.18	0.61	0 .4	0.72

	BASELINE CONFIGURATION	IGURATION	1 OG (Asmo	(00/4/20)	a	VEC CTS	Ç	i	i i						:		
4		1	(ksi)		3			## 1.14	12.27	TAND TATISCIE DIRENGIN TATIC (MEAN, 50% PROBABILITY OF FAILURE, #42 #43 #45 #45 #46 #47 #48	# 74 5 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(MEAN; 50'	* PROBA!	#17 OF	FAILURE)	648	#20
2	990.18(3)	Lapped Flatbar End Weld Only: Shear	13.566	15.830	-7.520	0.93	10^3 cyc	1.57	4.5	3.86	3.86	1.28	1.62	1.12	3.41	2.78	1.15
#37	SSC:20	Plate Penetration: Axial	10.180	11.570	-4.819	99.0	10^3 cyc	0.95	2.68	2.33	2.33	0.77	1.93 0.98	0.89	2.08 2.08	0.33	0.6
#38	SSC:20(S)	Plate Penetration: Shear	12 695	14 730	A 750	6	10^8 cyc	2.41	0.84	0.76	0.78	1.84	3.06	1.57	0.8	0.52	0.95
\$	ő	i			3	3	10^8 cyc	2.63	0.57	3.46 0.52	3.48 0.52	5. T	2.07	8	3.07	2.51 0.35	- 0 9 9
e E			22.432	28.720	-14.245	0.62	10^3 cyc	2.2 1.03	6.21 2.25	5.39	5.39	1.79	2.28	1.57	7.7	3.89	1.61
4	SSC:21(3/8"WELD)) Plate Penetration: Bending	20.826	25.490	-15.494	0.62	10^3 cyc	3.72	10.5	9.13	9.13	3.02	3.82	2.65	8 0	0.27 6.58	2.73
#	SSC:21(S)	Plate Penetration: Shear	14.765	16.980	-7.358	0.83	10~8 cyc	<u>.</u>	0.57	0.52	0.52 2.45	1.25	2.08	1.07	9.5	0.38	0.65
CT#		Tee with Stud Attachment: Bade	6	9	,		10^8 cyc		0.35	0.32	0.32	0.77	1.27	0.65	0.33	27.0	9 0
Ė		ree with Stod Attachinish. Ding	8.083	10.040	-3.147	0.32	10^3 cyc	0.35		0.87	0.87	0.29	0.36	0.25	0.77	0.63	0.26
*	SSC:23	Tee with Transv. Channel Attchmnt:Bndg	8.981	9.940	-3.187	0.13	10^3 cyc	17	1.15	-	-	0.33	0.42	0.29	0.88 88.0	0.72	0.3
#	SSC:24	Tee with Short Cvr Pit Attchmnt: Bndg	8.981	9.940	-3.187	0.13	10^8 cyc	3.18	1.1			2.42	4. E. 5	5.06	1.05	69.0	1.25
#45	380:08	andining andinipad	900	100	,	į	10^8 cyc	3.16	7	-	-	2.42	10.4	2.08	1.05	0.69	2 5
}			13.030	15.790	080.7-	0.78	10^3 cyc 10^8 cyc	<u> </u>	3.47	3.02	3.02		1.26 8.6	0.88	2.67	2.18	8.0
#48	SSC:25A	Plate with Transv. Side Attachment	16.906	19.470	-8.518	0.91	10^3 cyc	0.97	2.75	2.39	2.39	0.79		0.69	211	27.	7.0
#47	SSC:25B	Pit w/ Transv. Side Attchmnt and Brace	13.053	15.150	-6.966	0.63	10^3 cyc	4	3.96	3.4	3.44	1.1	<u> </u>		3.04	2.48	1.03
#18	SSC:26	Welded Cover Plate	9.122	10.130	-3.348		10^8 cyc 10^3 cyc	1.53	0.53	0.49	0.49	1.17	1.95	- 5	0.51	0.33	0.61
677	SSC:27	Double I spreed Plate with Divin Medic	6 463	9	,		10^8 cyc	3.01	1.05	0.95	0.95	2.3	3.82	8.		0.65	1.19
		organ Russian and American	2	9.8	2 ?	8 6 7	10~3 cyc	.59 .59	6. 1 .		1.39	3.52	5.83	3.5	2 2		1.41
*20	SSC:27(S)	Double Lapped Pit w/ Plug Welds: Shear	10.471	12.060	-5.277	0.54	10^3 cyc	1.38	3.85	3.35	3.35	<u>+</u>	7	0.97	2.98	2.41	-
#21	SSC:28	Baseplate with Circular Hote	15.078	17.410	-7.746	0.81	10^3 cyc	1.12	3.15	2.73	2.73	2 6	3.21	1.65 0.70	2 2 2 3 3	0.55	- 6
#52	080:30	Long Einite Plate Atrohunt: Asial	6	620	9	ě	10^8 cyc	1.03	0.36	0.33	0.33	0.79	<u>E</u>	0.67	7.	0.22	
!		Ford 1 will be trace Strongille. Sold	D D O	20.0	-3.13B	0.31	10~3 cyc	3.28	1.16	- 2	- 5	0.33	0.42	0.29	68.0	0.72	0.3
#23	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.566	10.580	-3.368	0.10	10^3 cyc	0.35	0.99	98.	98.	0.28	0.36	0.25	0.76	0.62	0.26
*27	SSC:31	Out-of-Plane Fig Side Attchmnt: Bndg	9.361	10.670	4.348	0 63	10/8 cyc	2.23	9.78	0.71	17.0	1.2	2.84	1.48	97.0	0.49	0.88
,					•	70.0	10^8 cyc	3.41	1.18	2.03 1.08	2.09 2.08	2. 6. 2. 6. 2. 6. 1	4.33	2.22	2.5 1.3	2.04	0.85
e H	SSC31A	Lapped Fing Side Attchmnt: Bndg *	9.091	10.130	-3.453	0.44	10^3 cyc	25.5	1.52	1.32	1.32	4.0	0.55	0.38	1.17	96.0	4.
#28	SSC:32A	In-Plane Side Attchmnt to Flange: Bndg	9.586	10.830	4.200	0.43	10^3 cyc	0.81	2.58	2.22	2.22	0.74	4.02 0.93	2.07	5. 6. 58.	0.68	1.25 0.66
#57	SSC:32B	Abrupt Change in Flange Width: Bindo	8.646	9.710	-3 533	0 62	10^8 cyc	2.8	1.02	0.93	0.83	2.25	3.73	1.92	86.0	9.0	1.16
***	66:033							4.33	1.51	1.37	1.37	3.32	5.5	2.83	2 3	- d	1.71
2	66.366	Lapped Flatbar to Pr W/ Full Wrap;Axial	8.758	9.860	-3.680	0.50	10^3 cyc	0.85	7.7	5.08	2.08	0.69	0.87	0.61	3	1.51	0.62
#28	SSC:33(S)	Lapped Flatbar to Plt w/ Full Wrap:Shear	16.469	19.590	-10.368	0.81	10^3 cyc	5.28	6.37	5.54	5.54	3.17 1.83	5.25 2.32	1.61	1.38 4.89	3.99	<u> </u>
9	SSC:35	Butt Weld with Backing Bar	9.604	10.750	-3.808	0.28	10^8 cyc	1.43	1.68	0.45	0.45	<u>- 5</u>	1.82	96.0	9.48	0.31	0.57
# 19	98:088	Sign Wedler District and China	49.053	4			10^8 cyc	2.58	0.89	0.81	0.81	1.86	3.24	1.67	0.85	0.56	10.1
			200	2	9 9 9	200	10~3 cyc 10^8 cyc	1.53	3.96 0.53	2. 0. 4. 6.	4 0 4 0	7 1.	<u>4</u> 8		9. G	6. 5 8. 5	5.03
#62	SSC:36A	Skip Wekled Plates	11.326	12.880	-5.163	97.0	10^3 cyc	0.88	2.43	2.11	17.5	0.7	88.0	0.61	1.87	1.52	0.63
#63	SSC:38	Stiffener Plate Penetration: Bndg	9.128	10.170	-3.462	98.0	10^3 cyc	0.53	1.5	1.3	1.31	0.43	0.55	0.38	1.15	9. 9. 8. 48.	0.39
#9#	SSC:38(S)	Stiffener Plate Penetration: Shear	14.312	17.390	-10.225	0.88	10^8 cyc 10^3 cyc	3.5 3.5	1.08 9.88	0.98 8.59	8.59 5.59	2.37	3.94	2.02	1.03	0.67	52.1
#65	SSC:40	Stiffener Intersection: Bending	8 648	0 710	1 623	é	10^8 cyc	2.26	0.79	0.71	0.71	1.73	2.87	1.47	0.75	0.49	0.89
			2	2	2000	70.0	10*3 cyc	, 4	1.51	1.37	1.95	3.32	0.82 5.5	0.57	5.7	<u>+</u> 5	0.58
2	SSC:42	Bending of Long Attachment	14.785	16.980	-7.358	0.83	10^3 cyc		2.82	2.45	2.45	0.81	50.	0.71	2.17	1.77	0.73
#67	SSC:46	Long, Welds on Support Gussets: Axial	9.361	10.670	-4.348	0.62	10^3 cyc	1.15	3.25	2.83	2.83	0.94	1.18	0.83	2.5	2 2	0.85
#68	SSC:51(V)	Transv. Stiffnr Pene. Fig Unspprtd: Bndg	9.781	10.930	-3.818	0.07	10^8 cyc 10^3 cyc	3.41 0.54	1.18 1.52	1.08 1.32	1.32	2.61 4.61	4.33 0.55	2.22	1.13	4.0 98	1.35
89#	SSC:52(V)	Transv. Stiffnr Pene, Fig Supported: Bnd	10.023	11.240	-4 042	910	10^8 cyc	2.31	9.0	0.73	0.73	1.78	2.93	1.5	0.77	0.5	0.91
#20	č				!		10^8 cyc	2.17	0.75	0.69	0.69	1.66	2.75	£ 1	0.72	0.47	0.86
:			000.9	9.903	-3.000	0.00	10^3 cyc 10^8 cyc	0.3 2.93	1.02	0.74	0.74	2.25	0.31 3.73	1.91	0.65	0.53	0.22 1.16

_	BASELINE CONFIGURATION		LOG(Aamp	LOG(Amg)	•	STD DEV	RATIO	RMS	FATIGUE	STRENGT	RMS FATIGUE STRENGTH RATIO (MEAN;	ି ହି	50% PROBABI	ABILITY OF FA	FAILURE)		
;	11000		(ksi)	(ksi)	5 730	32.0	6	#21	52	#23 - 34			29	157 0 50		50	0.0
¥	SSC:1(all steels)	Pasepiare	13.023	00000	-5.72	2	10/8 cvc	0.72	2 2	933	22.0		0.25	0.17	91.0		0.29
¥	SSC:1M	Baseplate Mid Steel	21.679	25.360	-12.229	0.71	10 ⁴ 3 cyc	1.28	3.47	90.4	1.23		1.57	1.79	1.67		2.39
ş	17.00	ests A ISH etalogood	27 380	32 040	-15 449	19	10^8 cyc	1.74	3.23	6 6 8 8	0.22		53.6	9.18	1.63	0.53	2.33
2						į	10^8 cyc	0.59	0.19	0.27	0.18		0.21	0.14	0.15	0.43	0.24
1	SSC:1Q	Baseplate Q & T Steel	13.345	14.910	-5.189	0.68	10^3 cyc	0.32	0.88 2.2	5.03	0.31	0.67	0.24	0.45	0.43		0.61
\$	SSC:1(F)	Baseplate Flame Cut	12.334	13.780	-4.805	0.80	10^3 cyc	0.35	96.0	1.13	20	0.73	0.43	0.49	97		99.
\$	6.080	Dollad Libour Bandin	13 000	15.820	8 048	28	10^8 cyc	0.88	0.28		0.27	1 0 2	0.31	200	0.22		0.35
R	1						10^8 cyc	0.77	0.24	0.35	0.23	0.25	0.27	0.18	0.19		0.34
# 1	SSC:3	Longitudinal Seam	13.010	14.800	-5.946	0.63	10^3 cyc	0.69	1.87	2.19 0.5	930	0.35	0.0 38.0	0.98 0.28	0.27		0.43
₩	SSC:3(G)	Ground Long. Seam	13.602	15.520	-6.370	9.74	10^3 cyc	0.73	~ 5	2.34	0.77	1.52	0.0	1.03	96.0	0.36	1.38
9	SSC:4	Long. Fillet Weld Bndg	12.515	14.220	-5.663	0.61	10% cyc	99.0	1.85	2.17	99.0	1. 1.4.1	9.0	56.0	0.89		1.28
1				0	0		10^8 cyc	1.18	0.37	0.54	0.36	0.38	14.0	0.28	0.29		0.47
#10	SSC:5	CV Pit on I-Bit Fig Bridg	90.0	000	9.710	•	10^8 cyc	3.94	1.24	28.	1.1	1 28	1.38	9.5	0.98		1.59
#	8SC:6	Dbl I-Bm Bndg	12.515	14.220	-5.663	0.61	10^3 cyc	0.68	1.85	2.17	98.0	1.41	20.0	0.95	0.89		1.28
#12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	10.095	11.230	-3.771	0.53	10°3 cyc	0.38	1.03	1.2	0.37	0.78	0.47	0.53	9.0		0.71
!				;	Ş	č	10^8 cyc	1.81	0.57	9.0	0.55	0.59	9.0	0.43	54.0		0.73
#13	SSC:7P	I-Bm w/vrt web St Pnn Stress	10.204	11.460	7/1/7	(c.)	10.3 cyc		0.63	0.92	0.0	0.65	0.7	0.47	5.0		8.0
#14	SSC:8	Bolted Double Lap	14.469	16.440	-6.549	0.81	10^3 cyc	0.61	1.65	1.93	0.59	1.25	0.75	0.85	0.79	0.3	1.1
4	g. G	ne Lebrary	16 687	19 590	.9 643	08.0	10^8 cyc	6.0	4.07	4.76	4 4	90.0	2.28	2.09 2.09	2 6	0.57	2.8
<u> </u>	B. 1000		3		,	3	10^8 cyc	1.12	0.35	0.51	94	0.36	0.39	0.27	0.28	9.0	0.45
#16	SSC:10M	Buft Weld Axial: Mild Steel	14.345	16.630	-7.589	0.88	10 ⁴³ cyc	5.5	3.13	3.67	1.5 E &	2.38	1.42	1.6	1.51	0.57	2.18
417	SSC:10H	Butt Weld Axial:HSLA Steel	22.068	25.920	-12.795	96.0	10°3 cyc	÷	3.65	15.	1.37	2.82	1.7	1.98	1.85	0.7	2.85
:						į	10^8 cyc	0.79	0.25	98.0	0.24	0.26	0.28	0.19	0.2	0.57	0.32
# 19	SSC:100	Butt Weld Axial:Q&T Steel	12.108	13.650	-5.124	0.76	10^3 cyc	0.53	0.35	0.52	0.0	0.37	69.0	0.27	0.28	6.2	0.45
#19	SSC:10(G)	Butt Weld Axial:Ground	14.784	16.930	-7.130	0.94	10^3 cyc	0.78	2.13	2.5	0.78	1.62	98.0	Ξ;	1.03	0.39	1.47
Ş	401:000	Sport Book	12 494	14 140	-5.488	0.79	10*3 cyc	0.89	1.61	1.89	0.27	1.22	0.31	0.83	27.0	67.0	8 1
2	5	200		!	;		10^8 cyc	F	0.35	0.51	0.33	0.38	0.39	0.26	0.27	0.79	9.44
#21	SSC:11	I-Bm Butt Weld Bndg	12.035	13.770	-5.785	0.68	10^3 cyc	0.89	2.42	2.83	0.86 0.85	1.83	6.0	1.24 2.58	1.16	2 8	1.67
2 2#	SSC:12	Tee Stiffnr Tapered Flg Thickness Bndg	10.366	11.690	4.398	0.43	10*3 cyc	9.0	1.73	2.03	0.62	1.32	0.78	0.89	0.83	0.31	7
			27.00		600	9	10^8 cyc	1.97	0.62	0.91	9.0	30.	0.69	0.47	0.49	1.42 2.5 2.5	8.0
#53	SSC:12(G)	Tee Siffin Tapered Fig. Inckness Bridg	12.415	14.120	-0.003	0.00	10*3 cyc	27	0.39	0.57	0.37	8	0.43	0.29	0.3	88.0	0.49
# 2 #	SSC:13	Tee Stiffener Taped Fig Width Bndg	10.847	12.120	4.229	0.45	10^3 cyc	0.42	1.13	1.32	7 5	0.88	0.51	0.58	45.0	5.5	0.78
#25	SSC:14	Disc. Cruciform Axial	14.721	16.960	-7,439	0.91	10^3 cyc	0.95	2.58	88	0.82	96.	1.5	1.33	1.24	0.47	1.78
	: !			9	,	9	10^8 cyc	5.9	0.32	0.47	0.31	0.33	0.35	0.24	0.25	6.73	4.0
9Z#	SSC:15	Loaded Edge Attachment Plate	000.8	10.930	3	2	10/8 cyc	2.85	0.0	1.32	0.86	0.93		0.68	0.71	2.05	1.15
#27	SSC:16	Partial Pen. Butt Weld	10.626	12.020	4.631	0.58	10 ⁴³ cyc	0.69	1.88	2.2	0.67	1.43	0.85	0.97	0.9	0.34	1.3
#28	SSC:16(G)	Partial Pen. Butt Weld: Ground	13.455	15.550	-6.960	0.95	10^3 cyc	<u>-</u>	2.99	3.5	98	2.27	1.35	25	-	0.54	2.08
2	200:47	I second Angle to Diste Attchmst:Avial	9 265	10.390	-3 736	98	10^8 cyc	£. 9	1.65	93	0.39	1.25	0.46	0.31	0.32	0.93	1.13
274	1.000						10^8 cyc	2.98	96.0	1.38	0.9	0.97	1.05	0.71	0.74	2.14	1.2
#30	SSC:17(S)	Lapped Angle to Plate Attchmrt:Shear	13.937	16.280	-7.782	0.85	10^3 cyc	5.5	3.89	4.55 0.65	1.38	2.95	1.76	0.34	1.87	1.02	2.68
#31	SSC:17A	Lapped Channel to Plate Attchmnt:Axial	9.097	10.140	-3.485	0.39	10^3 cyc	0.49	1.33	1.56	0.47	5.	9.0	0.69	9.0	0.24	0.92
*33	SSC:174(S)	apped Channel to Plate Attchmnt:Shear	13.937	16.280	-7.782	0.65	10^3 cyc	1.43	3.89	4.55	1.38	2.85	. 7	5 6	1.87	70	2.68
	(2)						10^8 cyc	1.42	0.45	0.05	0.43	0.46	0.5	¥.0	0.35	1.02	0.57
# 33	SSC:18	Lapped Flatbar to Plate Attchmnt: Axial	9.048	10.280	4.027	0.65	10*3 cyc 10*8 cyc	3.65	1.15	1.68	1.1	1.19	1.28	0.87	0.91	2.82	1
*	SSC:18(S)	Lapped Flatbar to Plate Attchmnt:Shear	15.241	18.020	-9.233	0.75	10^3 cyc	1.82	4.97	5.81	1.78	3.77	2.24	2.55	2.39	9.5	3.42
#35	SSC:19	Lapped Flatbar End Weld Only: Axial	12.941	15.190	-7.472	0.93	10.3 cyc	1.67	4.55	5.33	1.62	3.45	2.06	2.34	2.19	0.83	3.14
		;					10^8 cyc	1.77	0.56	0.82	0.53	0.57	0.62	0.42	0.44	1.27	0.71

	BASELINE CONFIGURATION	GURATION	LOG(Aamp	LOG(Amg)	ω	STD DEV	RATIO	S.	IS FATIGU	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF	IH RATIO	MEAN; 50%	6 PROBAB	ILITY OF F	FAILURE)		
#38	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	(KSI)	(KSI)	-7 520	0 83	10 ^{A3} Cyc	#51	#52	#53	#5 4	#55 2 04	#56	#57	#58	#59	#80
							10^8 cyc	1.48	9.0	880	645	9 6	0.52	0.35	0.37	5 6	0.6
#37	SSC:20	Plate Penetration: Axial	10.180	11.570	-4.619	99.0	10^3 cyc	0.85	2.32	2.72	0.82	1.76	1.05	1.19	1.12	0.42	1.6
#38	SSC:20(S)	Plate Penetration: Shear	12.695	14.730	-8.759	0.93	10^8 cyc	1 27	3.48	1.08	2.7	0.78	0.82	0.56	0.58	1.68	96.0
		i					10^8 cyc	1.58	0.5	0.73	0.48	0.5	0.55	0.38	0.39	1.1	9.0
#38	SSC:21(1/4"WELD)) Plate Penetration: Bending	22.432	28.720	-14.245	0.62	10^3 cyc	1.97	5.37	6.29	19.5	4.07	2.43	2.76	2.58	0.97	3.7
#40	SSC:21(3/8"WELD)) Plate Penetration: Bending	20.828	25.490	-15.494	0.62	10^3 cyc	3.34	908	10.64	3.23	6.89	4.1	4.67	4.37	1.65	6.26
ž	SSC:21(S)	Plate Penetration: Shear	14.785	18.980	-7.358	0.83	10^8 cyc	6.5	0.5	0.73 8	0.48	0.52	0.58	0.38	4.	7 3	0.64
					2	3	10^8 cyc	0.97	8	54.0	0.29	0.32	, ,	0.23	0.24	0.7	0.39
#75	SSC:22	Tee with Stud Attachment: Bndg	9.093	10.040	-3,147	0.32	10^3 cyc	0.32	0.87	5.5	0.31	99.0	0.39	0.45	0.42	0.16	9.0
#43	SSC:23	Tee with Transv. Channel Attchmnt:Bndg	8.981	9.940	-3.187	0.13	10^3 cyc	0.37	8-	1.17	0.35	0.78	0.80	0.51	0.48	0.18	0.69
***	76-555	Today Or On Other Control of the con	400	000	7 187	;	10^8 cyc	3.06	96.0	1,42	0.93	- [1.08	0.73	0.76	2.2	1.24
ŧ	930.24	tee will shou ou ra Augunn: bhag	0.80	7.84C	, 18 18	2.0	10~3 cyc	3.08	- 8	1.1	0.35	0.78 -	0.45	0.51	84.0	0.18	0.69
*	SSC:25	Continuous Cruciform	13.658	15.790	-7.090	0.78	10^3 cyc	Ξ.	3.01	3.52	1.07	2.28	98	1.55	1.45	0.55	2.07
#46	SSC:25A	Plate with Transv. Side Attachment	16.906	19.470	-8.518	0.91	10*3 cyc	0.87	2.38	2.79	0.38	1.8	4.0	5.2	0.32	0.91	10.51
4.47	960.088	Div of Tennes, Side Attachment by #G	43.063	46 450	900	9	10^8 cyc	0.76	0.24	0.35	0.23	0.25	0.27	0.18	0.19	0.55	0.31
Í	2000	THE WAY THE STATE OF THE PROPERTY OF THE PROPE	200.51	9.130	9	6.03	10.3 cyc	6 6	0.47	690	0.45	2.6	1.55	1.76 0.35	1.65	0.62	5.38
** 8 7	SSC:26	Welded Cover Plate	9.122	10.130	-3.348	0.61	10^3 cyc	0.41	1.13	1.32	4.0	0.85	0.51	0.58	0.54	0.2	0.78
4	SSC:27	Double Lapped Plate with Plug Welds	8.453	9.400	-3.148	0.58	10^8 cyc	2.92	1.38	1.35	0.88	6. 6. 6. 6.	20.0	0.69	0.73	2.1	1.18
								4.45	7	2.08	1.35	5	1.56	8.	- E	3.5	8,1
#20	SSC:27(S)	Double Lapped Pit w/ Plug Welds: Shear	10.471	12.060	-5.277	0.54	10^3 cyc	1.22	3.33	3.9	1.18	2.53	1.51	1.7	1.6	9.0	2.3
#21	SSC:28	Baseplate with Circular Hole	15.078	17.410	-7.746	0.81	10^3 cyc	, , ,	272	3.13	0.74	2.08	0.00 1.00 1.23	0.58	19.0	1.78	0.89
ţ	000			į		;	10^8 cyc	- !	0.31	0.46	0.3	0.33	0.35	0.24	0.25	0.72	•
70#	990:30	Long Fine Plate Attenmit: Axial	8. 8.	0/8/6	-3.158	0.31	10^3 cyc	3.18		1.17	96.0 88.0	9.78	0.45	0.51	0.48 0.70	0.18	0.69
#23	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.566	10.580	-3.368	0.10	10^3 cyc	0.31	0.85	-	0.3	0.65	0.39	4	0.41	0.15	0.59
8	SSC:31	Out-of-Plane Fig Side Attchmot: Bodo	9.361	10.670	4 348	0,63	10^8 cyc	2.17	0.68	- ;	99.	0.7	0.78	0.52	45.0	8.5	0.87
		A	3			100	10^8 cyc	3.5	7 7	1.53		1.08	1.18	0.79	. 5 . 5 . 5 . 5 . 5	2.38	¥ 5
#22	SSC:31A	Lapped Fing Side Attchmnt: Bndg	9.091	10.130	-3.453	0.44	10^3 cyc	0.48	1.32	7. 5	0.47		9.0	0.68	0.63	0.24	0.94
#28	SSC:32A	In-Plane Side Attchmnt to Flange: Bndg	9.566	10.830	4.200	0.43		0.0	2.21	2.58	0.79	- 88	9: -	1,13	1.08	7 6	52.
*57	SSC-328	About Chance in Classe Worth-Bode	8 848	4,4	630	9	10^8 cyc	2.85	6.6	1.32	0.86	0.83	- 5	99.0	0.71	2.05	1.15
ì	3	Solidhi Ciaige al Fiaige Walli.Dilog	e o	9.7.10	2000	707		4.2	. 25	1 7	1.27	137	1.47		40.5	3.02	5 2
#28	SSC:33	Lapped Flatbar to Pft w/ Full Wrap:Axial	8.758	9.860	-3.860	0.50		0.76	2.08	2.43	0.74	1.58	0.94	1.07	-	0.38	1.43
#28	SSC:33(S)	Lapped Flatbar to Pit w/ Full Wrap;Shear	16.469	19,590	-10.368	0.81	10*3 cyc	2 0.	. 23	1.85 6.45	<u>-</u> 2	1.33	1.41	0.95	- 4 - 4	2.89	1.82
Ş								1.39	4	9.0	0.42	0.45	0.49	0.33	0.35	-	95.0
ē	88C:388	Buff Weld with Backing Bar	9.604	10.750	-3.808	0.28	10^3 cyc	0.53 2.48	1.45	1.7	0.52	1.1	0.68	0.75	0.7	0.26	•
#81	SSC:36	Skip Welded Plates with Rathole	13.053	15.150	-6.986	0.63	10^3 cyc	1.28	3.43	4.0	12	2.6	1.55	1.78	1.65	0.62	2.36
#62	SSC:36A	Skip Welded Plates	11.326	12.880	-5.163	0.46	10^3 cyc	0.77	2.1	2.46	0.45	0.48 1.59	0.52	0.35	1 01	1.07	9.0
#63	96:000	Chill and Distriction Control of the Control	9	67	ç	ć	10^8 cyc	1.62	0.51	0.75	0.49	0.53	0.57	0.39	0.4	1.17	0.66
2	95.55		9. IZ0	5	-3.402	05.0	10^3 cyc	30.5	1.3 0.95	1.52	9 6	0.99	0.59	0.67	0.63	0.24 18	6.0
*	SSC:38(S)	Stiffener Plate Penetration: Shear	14.312	17.390	-10.225	0.88	10^3 cyc	3.7	8.55	10.01	3.04	6.48	3.87	7	£.	1.55	5.89
#65	SSC:40	Stiffener Intersection: Bending	8.646	9.710	-3.533	0.62	10^3 cyc	2.75 2.75	- 6. - 6.	2.28	0.69	1.47	0.88	0.52	0.95	1.57	1.34
888	CF:Job	Deading of Land Attended	307.11	10000	90	Ş	10^8 cyc	4.2	1.32	1 .9	1.27	1.37	1.47	-	1.05	3.02	1.7
2	1	Delining of Long Angulingin	£./65	0.800	-1.330	9		0.97	2.44 0.3	0.45	0.87	1.85	1.1	9 73	1.17	4.0	68. 68. 68.
#67	SSC:46	Long. Welds on Support Gussets: Axial	9.361	10.870	4.348	0.62	10^3 cyc	1.03	2.82	3.3		2.14	1.27	1.45	1.35	0.51	26
88	SSC:51(V)	Transv. Stiffnr Pene. Fig Unspprtd: Bndg	9.781	10.930	-3.818	0.07		0.48	1.32	5 Z	0.47	80. T	9.6	0.68	0.63	0.24	0.91
69#	SSC:52(V)	Transv. Stiffnr Pene. Flg Supported: Bnd	10.023	11.240	-4.042	0.19	10~8 cyc 10^3 cyc	0.54	1.46	1.73	0.68	1.11	0.78 0.66	0.53	0.56	1.61	8 5
#20	Generic S/N Curve		000	0 000	9,000	ć	10^8 cyc	2.1	9.0	0.97	9. G	99.0	0.74	0.5	0.52	1.51	0.85
:			;	;	****	3	10^8 cyc	28.	0.89	1.31	0.86	0.93	5. .	0.98	0.71	2.05	1.15

	BASELINE CONFIGURATION		LOG(Aamp LOG(Amg)	LOG(Amg)	€	STD DEV	RATIO	RMS	FATIGUE	STRENGT	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	AEAN; 50%	PROBABI	LITY OF F/	_	-	۶
ī	SSC-1(all steels)	Baseplate	13.825	15.550	-5.729	0.75	10^3 cyc	16.0	0.55	0.88	0.13	0.59	0.47		0.87	0.78	1.56
:	(1)					i	10^8 cyc	0.48	4.	0.24	0.33	0.17	0.73				0.25
#	SSC:1M	Baseplate Mild Steel	21.679	25.360	-12.229	0.71	10^3 cyc	<u>5</u> 5		2.67	4.0	£. 5	- 6 24.5	2 2	2.63		- K
1	19000	ineso HOI & Clear	27 180	32 040	15 449	á	10.8 cyc	6 6	9 5	2.8	7	7.	1.39	7 2	2.57		5.5
2	E .:)	issis Clou sindsond	900	2		3	10^8 cyc	8	0.38	0.2	0.27	0.14	0.61	0.18	0.27	0.28	0.21
#	SSC:10	Baseplate Q & T Steel	13.345	14.910	-5.199	0.68	10^3 cyc	0.28	0.42	9.0	5.5	0.45	98	6.3	0.67		2.5
¥	(j) 1:000	Recenter Flame Cut	12.334	13.780	-4.805	0.80	10 ⁴³ ove	97.0	9	7.7		0 0 0 0	0.39	9.34	5.7.0		1.3
2	(4)						10^8 cyc	0.59	0.54	0.29	7	0.21	16.0	0.27	0.39		0.31
¥	SSC:2	Rolled I-Beam Bending	13.999	15.820	6.048	90	10^3 cyc	4.0	0.65	96.0	0.35	0.78	92.0	0.23	# # #		0.27
**	SSC:3	Longitudinal Seam	13.010	14.800	-5.948	0.63	10^3 cyc	0.55	0.89	<u>+</u>	0.22	98.0	0.77	99.0	1.42		2.53
						į	10^8 cyc	0.72	99.0	98.5	0.49	9.58	- 5	0.33	÷ ;		0.38
¥	SSC:3(G)	Ground Long. Seam	13.602	15.520	-6.370	0.74	10^3 cyc	0.58 0.68	0.95	, 50 10 10 10 10 10 10 10 10 10 10 10 10 10	0.48	0.24	7 70		0.45		98.0
#	SSC:4	Long. Fillet Weld Bndg	12.515	14.220	-5.663	0.61	10^3 cyc	35	0.88	1.42	0.22	0.85	97.0	0.66	7		2.51
			683	0	3 278	870	10^8 cyc	0.79	0.72	0.39	9.54	0.28	1.21	0.36 0.5	1 07	0.56	1.82
*	6.558		3	3	2	}	10^8 cyc	2.65	2.42	13	6 0	96.0	4.08	1.18	1.76		1.38
#	85C:6	DM I-Bm Bndg	12.515	14.220	-5.683	0.61	10^3 cyc	9.54	0.88	1.42	2 2	0.95	0.78	8 8			2.5
#12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	10.095	11.230	-3.771	0.53	10-3 cyc	6.0	0.49	0.79	0.12	0.53	0.42	0.37	0.78		7
! !	!		40.00	11 400	1	4	10*8 cyc	27.5	1.12	9.0	0.83	0.43	1.87	0.55	0.61 1.61	98.0	9.0
*	SSC:7P	FBIR WAIT WED ST PIN SHESS	10.20	204	Ť	5	10.8 cyc	8	12	99.0	. 6.0	0.47	2.05	9.0	0.89	0.95	0.7
#14	SSC:8	Botted Double Lap	14.489	16.440	-6.549	0.81	10^3 cyc	0.48	0.79	1.27	0.19	0.85	0.68	0.59	1.25	1.13	2.24
**	9.08	Control Since	16 887	19.590	-9.643	08.0	10^3 cyc	1.19	6.6	3.13	9 9	2.08	1.67	; ;	3.08	2.78	5.51
n k		מיינים כווימים רמי	3		2	}	10^8 cyc	0.75	0.69	0.37	0.51	0.27	1.15	0.34	0.5	0.53	0.39
*18	SSC:10M	Butt Weld Axial: Mild Steel	14.345	16.630	-7.589	0.88	10^3 cyc	0.9 F	1.49	2.41	0.37	1.61	2 2	- S	2.38 0.53	2.14	6.25
£17	SSC:10H	Butt Weld Axial:HSLA Steel	22.088	25.920	-12.795	98.0	10/3 cyc	5 2	1.83	88	0.45	1.98	1.58	1.37	2.92	2.63	5.22
:				;	;	į	10^8 cyc	0.53	0.48	97.	0.36	6.19	0.81	0.24	0.35	0.37	0.28
* 18	SSC:10Q	Butt Weld Axial:Q&T Steel	12.108	13.650	-5.124	0.78	10*3 cyc	0.42	0.68	0.38	0.51	0.27	1.16	. 3	9.0	5.5	0
#19	SSC:10(G)	Butt Weld Axial: Ground	14.784	16.930	-7.130	0.94	10^3 cyc	0.62	1.0	7	0.25	Ξ	0.87	0.78	1.62	1.46	2.89
i i		ched New state	10 404	14.140	.5 4RR	0.70	10^8 cyc	9.0	0.55	1 24	0.41	200	0.82	0.57	<u> </u>	<u> </u>	2.3
02#	20C:10A	Rain Cast III				2	10*8 cyc	0.74	0.68	0.37	0.5	0.28	1.13	0.33	0.49	0.52	0.39
#21	SSC:11	I-Sm Butt Weld Bndg	12.035	13.770	-5.765	0.68	10^3 cyc	7.0	1.15	99. 98. 98.	0.28	1.24	0.90 53	98.0	1.63		3.28
#22	SSC:12	Tee Stiffnr Tapered Fig Thickness Bndg	10.366	11.690	4.398	0.43	10^3 cyc	0.51	0.82	1.33	0.2	0.89	0.71	0.62	1.32	1.18	2.35
				,	2002	9	10^8 cyc	£ 33	2 2	0.66	9.5	7.0	2. c	9.0	6.88 4.68	2 2 2 3 3 5	0.69
#53	SSC:12(G)	Tee Stifnr Tapered Fig Thickness Bridg	12.415	14.120	200.0	9	10% cyc	0.82	0.75	0.41	95.0	0.29	1.28	0.37	0.55	0.58	0.43
#24	SSC:13	Tee Stiffener Taped Fig Width Bndg	10.847	12.120	4.229	0.45	10^3 cyc	0.33	9.54	0.87	0.13	0.58	0.46	2.5	0.86	0.77	£ 5
30	1000	Disc Cuciforn Axial	14.721	16.960	-7.439	0.91	10^3 cyc	0.75	1,23	9 6	80	1.33	8	0.85	8	1.76	3.5
C7#							10^8 cyc	89.0	0.62	0.34	0.48	0.24	2 2	0.34	0.45	0.48	0.35
#28	SSC:15	Loaded Edge Attachment Plate	900	10.030	-	2	10% cyc	1.92	1.75	0.95		0.68	2.84	98	8	1.38	· -
#27	SSC:16	Partial Pen. Butt Weld	10.626	12.020	-4.631	0.58	10 ⁴³ cyc	0.55	0.89	1.44	0.22	0.97	7.0	0.67	1.43	1.28	2.55
#28	SSC:16(G)	Partial Pen, Butt Weld; Ground	13.455	15.550	980	0.95		0.87	1.42	2.3	0.35	15.	123	1.08	2.27	204	4.06
				9				0.87	9.0	0.43	0.59	0.31	2 6	0.39	0.58	0.62	0.48 84.6
#58	SSC:17	Lapped Angle to Piate Attchmint. Axial	C97'A	10.390	5/3		10*8 cyc	6 5	48.	0.99	1.36	0.73	3.08	0.9	1.33	1.42	5
#30	SSC:17(S)	Lapped Angle to Plate Attchmnt:Shear	13.937	16.280	-7.782	0.65	10^3 cyc	1.13	1.85	2.99	0.45	7 7	1.58	1.38	2.95	2.65	5.27
#31	SSC:17A	Lapped Channel to Plate Attchmnt:Axial	9.097	10.140	-3,465	0.39	10/3 cyc	0.39	0.63	20.5	0.18	0.69	0.55	74.0	5.5	16.0	£ 5
2	·	I amed Channel to Plate Attrhunt-Shear	13.937	16.280	-7.782	0.65	10 ⁴³ cyc	1.13	8. 6.	2.98	0.45		1.59	1.38	2.85	2.65	5.27
				900	1007		10^8 cyc	0.95	0.87	74.0	0.65	0.34	1.46	0.43	0.63	0.67	3.44
#33	SSC:18	Lapped Fiatbar to Plate Attenuint. Axial		10.200	1707		10/8 cyc	2.45	2.25	<u>1</u>	1.67	0.87	3.76	12	1.63	1.74	1.28
**	SSC:18(S)	Lapped Flatbar to Plate Attchmnt:Shear	15.241	18.020	-9.233	0.75	10^3 cyc	1.45	2.36	3.82	0.58	2.55	2.03	1.78	3.77 0.64	3.39 0.68	6.73 0.5
#35	SSC:19	Lapped Flatbar End Weld Only: Axial	12.941	15.190	-7.472	0.93	10^3 cyc	1.33	2.17	3.5	0.53	25.3	1.87	1.62	3.45	3.1	6.17
							10°8 cyc	1.18	J.08	RG:0	(8.0 (8.0	0.42	1.62	20.5	ž	Š	70.0

	BASELINE CONFIGURATION		LOG(Aamp	LOG(Amg)	60	STD DEV	RATIO	RMS	FATIGUE	STRENG	H RATIO (MEAN; 509	PROBAB	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	_		
#38	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	(ksi) 13.588	(ksl) 15 830	.7 520	8	⊕	#61 1	#62	#63	#64	#85	#66	#67		69#	670
!				200	75.7	5	10'8 cyc	0.89	2 6	6.90	0.67	3.96	1.57	96.0	2.5	2.62	5.21
#37	SSC:20	Piate Penetration: Axial	10.180	11.570	-4.619	0.68	10^3 cyc	0.68	2	1.78	0.27	1.19	0.95	0.82	1.76	1.59	3.15
*38	SSC:20(S)	Plate Penetration: Shear	12.695	14.730	-6.759	69.0	10^8 cyc	1.57	1.44	0.78	7.07	0.56	2.41	1.0	7.0	<u>.</u>	0.82
4							10^8 cyc	8	0.87	0.53	0.72	0.38	1.63	0.48	0.75	0.75	999
Ž	SSC.Z1(1/4 WELD)	Plate Penetration: Bending	22.432	26.720	-14.245	0.62	10^3 cyc	1.57	2.55	4.13 23.33	0.63	2.78	225	<u>19.</u>	4.07	3.67	7.28
*	SSC:21(3/8"WELD)	Plate Penetration: Bending	20.826	25.490	-15.494	0.62	10^3 cyc	2.65	4.32	6.98	9.	4.67	3.72	3.23	6.80	6.2	12.32
*	SSC:21(S)	Plate Penetration: Shear	14.765	16.980	-7,358	0.83	10 ⁴³ cyc	1.07	0.98	0.53 88 88	0.75 0.75	0.38	<u>5</u> -	0.48 7.48	0.71	0.76	0.58
277	880:33	Too with Stud Attachment: Bads	600	9	į	ć	10^8 cyc	0.65	9.0	0.32	4	0.23	- ;	0.29	0.43	0.46	8
		Spile . Disagning the spile in	60.6	0.0	į	0.32	10*3 cyc	1.88	1 22	0.67	1.0	0.45 8.6	0.35	0.3 8	0.66 2,24	0.59	1.17
#	SSC:23	Tee with Transv. Channel Attchmnt:Bndg	8.981	9.940	-3.187	0.13	10^3 cyc	0.29	74.0	0.77	0.12	0.51	0.41	0.35	0.75	0.68	1.35
#	SSC:24	Tee with Short Cvr Plt Attchmnt:Bndg	8.981	9.940	-3.187	0.13	10°3 cyc	9 67.0 0.79	0.47	0.77	0.12	0.5	9.16	0.93	1.37	1.46 0.68	1.08
#45	SSC:25	Continuous Carciform	13.858	15 700	2000	97.0	10^8 cyc	2.08	1.89	1.02	4.1	0.73	3.16	0.93	1.37	97.	8
				3	200	9	10.8 cyc	0.85	0.78	0.42	0.58	0.3	<u> </u>	0.38	0.57	5.02 0.6	0.45
1		Plate with Transv. Side Attachment	18.908	19.470	-8.518	0.91	10^3 cyc	0.69	1.13	1.83	0.28	1.22	0.97	0.85	1.8	1.62	3.23
#47	SSC:25B	Pft w/ Transv. Side Attchmnt and Brace	13.053	15.150	-6.966	0.63	10^3 cyc	-	1.63	2.63	4.0	1.78	5 T	1.25	5 8 87	2.34	4.85
**	SSC:26	Welded Cover Plate	9 122	10 130	3 348		10^8 cyc	- :	0.92	0.49	0.68	0.35	1.53	0.45	0.67	17.0	0.52
!			1	2	2	2	10% cyc	. 98. 88.	1.8 1.8	0.97	1.33	69.0 68.0	6 6 6	9.0	1,3	1.39	1.53
# 5	SSC:27	Double Lapped Plate with Plug Welds	8.453	9.400	-3.146	0.58	10^3 cyc	7 . °	0.66	8.	0.18	0.71	0.57	0.49	50.5	98.0	1.87
#20	SSC:27(S)	Double Lapped Plt w/ Plug Welds: Shear	10.471	12.060	-5.277	0.54	10°3 cyc	0.97	1.58	2.56	0.39	5 T.	1.36 1.36	5 5 6	2.53	2.12 2.27	1.57
#21	SSC:28	Baseplate with Circular Hole	15.078	17.410	7.48		10^8 cyc	1.65	5.5	0.82	1.12	0.58	2.53	0.74	7. 8	1.17	0.86
					2	5	10'8 cyc	0.67	0.62	0.33	0.46	0.24	2.5	0.3	0.70 0.45	1.86 0.48	3.69
#25	SSC:30	Long Finite Plate Attchmnt: Axial	8.919	9.870	-3.159	0.31		0.29	0.48	0.77	0.12	0.51	0.41	0.36	9.78	99.0	1.36
#23	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.586	10.580	-3.368	0.10		0.25	0.41	98.	<u> </u>	0.4	0.35	0.3	0.65	0.58	5 4
#24	\$SC:31	Out-of-Plane Flo Side Attchmot: Bodo	9381	10.670	872.9	680	10^8 cyc	9 5	1.33	0.72	0.99	0.52	2.23	99.	0.97	5.03	9.76
			3		,	20.0	10-8 cyc	2.22	2.03	5 T	1.51	0.79	3.41		1.48	1.92	3.82 1.16
c e	SSC:31A	Lapped Fing Side Attchmnt: Bndg	9.091	10.130	-3.453	4.0	10^3 cyc	0.38	0.63	<u>-</u> 5	0.15	99.0	0.54	0.47	- 5	6.0	1.79
#28	SSC:32A	In-Plane Side Attchmnt to Flange: Bndg	9.566	10.830	4.200	0.43		0.65	1.05	1.7	0.26	1.15	0.91	0.79	1.68 86.	를 <u>한</u>	
#57	SSC:32B	Abrupt Change in Flange Width: Bndg	8.646	9.710	-3.533	0.62	10^8 cyc	1.82	1.75	0.85	1.3 2.3	0.68	2.94	98.0	1.28	1.38 1.38	- 5
4		the state of the s						2.83	2.59	*	1.82		4.33	1.27	88	2	£ 5
2		Capped Figures to PR W/ Full Wildp:AXIB	6.75g	8.860	3,660	0:50	10^3 cyc 10^8 cyc	2.7	0.99	1.33	0.24	1.07	0.85	0.74	1.58	7 5	2.82
#28	SSC:33(S) 1	Lapped Flatbar to Plt w/ Full Wrap. Shear	16.469	19.590	-10.368	0.81		19:1	2.62	4.24	79.0	2.84	2.28	8	5 2	3.76	7
9#	SSC:35	Butt Weld with Backing Bar	9.604	10.750	-3.808	0.28	10^3 cyc	0.42	6 6 8 8	1.12	0.63	0.33	0.59	0.52	0.62 1.1	8 8 8 8 8	1.97
\$	SSC:36	Skip Welded Plates with Rathole	13.053	15.150	988	0.63	10^8 cyc	1.67	1.53	0.82	1.13	0.59 1.78	2.58	0.75	1.11	5. 5 5. 5 5. 5	0.87
Ş	***************************************		:					-	0.92	0.48	0.68	0.35	1.53	5.	0.67	2.7	0.52
Ž	C05:055		11.326	12.880	÷.163	0.46	10^3 cyc 10^8 cyc	1.09		1.62 0.54	0.25	1.08 0.39	0.86 1.68	0.75	1.59	1.4	2.85
#83	SSC:38	Stiffener Plate Penetration: Bndg	9.128	10.170	-3.462	0.36	10^3 cyc	0.38	0.62		0.15	0.67	0.53	0.48	66.0	0.89	1.78
#8#	SSC:38(S)	Stiffener Plate Penetration: Shear	14.312	17.390	-10.225	0.88	10^3 cyc	2.49	4.07	6.57	<u>.</u> -	4.4	3.5	3.05	6.48	5.84	5.5
#65	SSC:40	Stiffener Intersection; Bending	8.646	9.710	-3.533	0.62	10^8 cyc	1.47	1.35	0.73	- 2	0.52	2.28	99.0	0.98	2.5	0.77
9							10^8 cyc	2.83	2.59	<u>+</u>	1.92		£.33	1.27	1.88	3 0	4.7 4.8 4.8
2		Bending of Long Attachment	14.765	16.980	-7.358	0.83	10^3 cyc	0.71	9.18	1.88	0.29	1.26 2.26		0.87	1.85	1.67	3.31
#67	SSC:46	Long. Welds on Support Gussets: Axial	9.361	10.670	4.348	0.62	10^3 cyc	0.82	1.34	2.16	0.33	1.45	1.15	-	2.1	1.92	3.82
#68	SSC:51(V) 1	Transv. Stiffnr Pene. Flg Unspprid: Bndg	9.781	10.930	-3.818	0.07	10*3 cyc	0.38 86.0	0.63	<u> </u>	0.15	0.68	F 35	0.47	1.48	1.57 0.9	1.16
89#	SSC:52(V) T	Transv. Stiffnr Pene. Flg Supported: Bnd	10.023	11.240	-4.042	0.19	10^8 cyc 10^3 cyc	1.5 0.43	1.38	1.13	1.02	0.53	2.31	0.68	- =	8	0.78
#70	Generic S/N Curve		6	600	6	8		1 5	1.29	0.7	98.0	0.5	2.17	0.64	0.84	-	0.74
:			200	9.000	200	3	10~8 cyc	1.97	1.75	0.95	9.0° 1.3	0.38	0.3 2.93	0.26	0.58 1.27	1.35	

	BASELINE CONFIGURATION	URATION	LOG(Aamp)	LOG(Amg)	•	STD DEV	RATIO	RMS	FATIGU	ESTRENG	THRATIO	(MEAN-2S)	2.3% PRC	DBABILITY	RMS FATIGUE STRENGTH RATIO (MEAN-28; 2.3% PROBABILITY OF FAILURE)	Û	
#38	SSC:19(S)	I soped Flather End Weld Onty: Sheer	(ksi)	(ksi)	7 530	6	e	¥ ?	* 5	ا	# .	\$	¥	*1	*	8	#10
			3		20.	3	10^8 cyc	2.2	2.7	3.38	2.12	1.67	2.09	5 7	. t.	1.35	2.45
#37	SSC:20	Plate Penetration: Axial	8.860	10.250	4.619	980	10^3 cyc	2.14	6.9	5	2.78	2.62	8	14.	<u> </u>	1.47	1.62
#38	SSC:20(S)	Plate Penetration: Shear	10.835	12.870	-8.759	0.83	10^8 cyc 10^3 cyc	3.46 3.11	4 4	1.47	3.67	3.82	3.61 2.91	2.57	2.61	2.33	0.58
#38	SSC:21(1/4"WELD)	Plate F	21.192	25.480	-14.245	0.67	10/8 cyc	2.28	3.08	3.83	2.42	1.9	2.38	1.7	2,5	75.5	0.3
							10^8 cyc	2 60	1.27	1.57	ş -	0.78	. 0 . 8 . 8 . 8	6.7 0.7	0.71	6.9 0.63	8. 9 1. 0
‡	SSC:21(3/8"WELD)	Plate Penetration: Bending	19.586	24.250	-15.494	0.62	10^3 cyc	6.2 147	2.41	2.46	6.77	6.39	1.87	3.59	3.2	3.59	3.94
‡	SSC:21(S)	Plate Penetration: Shear	13.105	15.320	-7.358	0.83	10^3 cyc	1.85	0.9	0.92	2.54	7.7	. 83	1.35	: 2	1.35	1.48
#42	SSC:22	Tee with Stud Attachment: Bndg	8.453	9.400	-3.147	0.32	10^8 cyc 10^3 cyc	1.25 0.68	0.3	2.1 0.31	0.88	0.8 1.05	0.62 0.82	0.83	9.0 14.0	0.84 0.45	0.21
*	880:33	Tee with Transv Channel Attchmot:Bodo	8 724	0		,	10^8 cyc	3.42	19.4	5.73	3.63	2.86	3.57	2.54	2.58	2.31	0.58
		Something of the state of the s	97.0	90.6	9	2	10~8 cyc	2.84	3.83	4.76	3.01	2.37	2. 5. 2. 56 4. 66	0.39 2.11	0.35 2.14	1.91	0.43 0.43
#	SSC:24	Tee with Short Cvr Pit Attchmnt:Bndg	8.721	9.680	-3.187	0.13	10^3 cyc	0.57	0.28	0.27	0.74	0.7	0.54	0.39	0.35	0.38	0.43
#45	SSC:25	Continuous Cruciform	12.096	14.230	-7.090	0.78	10*3 cyc	2.38	 1.1	1.12	3.09	2.37	2.23 23.88	2.1 1.64	2.14 1.46	<u>e</u> <u>ş</u>	0.48 1.8
#	SSC:25A	Plate with Transv. Side Attachment	15.086	17.650	-8.518	180	10^8 cyc	1.62	2.18	2.7	1.7	1.35	1.68	12	2 :	1.09	0.27
7	0000						10^8 cyc	98.0	- 178	1.61	1.02	0.8	<u>-</u>	0.71	0.72	0.65	0.16
Ì	SSC:25B	Pit w/ I ransv. Side Attchmnt and Brace	11.793	13.890	986	0.63	10^3 cyc	2.48	1.15	1.17	3.22	3.04	2.32	7.7	1.52	1,7	1.87
#148	SSC:26	Welded Cover Plate	7.902	8.910	-3.348	0.61	10^3 cyc	12.5	0.57	0.59	<u> </u>	1.53	1.16	98.0	P. 0	0.86	0.94
674	SSC:27	Double I speed Plate with Plus Welds	7 293	8 240	3118	8	10^8 cyc	5.19	6.98	8.68	5.49	4.33	5.4	3.85	3.91	3.49	0.87
				!	}	3	10/8 cyc	<u>•</u>	10.78	13.39	8.48	6.68 89.9	8.33	. z	8 8	. S	1.35
* 20	SSC:27(S)	Double Lapped Pit w/ Plug Welds: Shear	9.391	10.980	-5.277	0.54	10^3 cyc		1.18	1,2	3.3	3.12	2.38	1.75	1.56	1.75	1.92
#21	SSC:28	Baseplate with Circular Hole	13.458	15.790	-7.746	0.81	10*3 cyc	2.1 2.1	0.97	0.89	2.73	2.52	1.97	1.45	1.29	2.03	1.59
#62	06:088	ono Einko Dieta Attohund: Avial	900	9		č	10^8 cyc	1.24	1.68	2.08	1.32	1.04	5.1	0.82	0.94	0.84	0.21
!			94.	25.0		5.0	10'8 cyc	3.84	5.17	6.43 5.43	4.07	3.2	ò. •	0.52 2.85	2.89	0.52 2.59	0.57
#23	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.366	10.380	-3.368	0.10	10 ⁴³ cyc	0.47	0.22	0.22	0.61	0.57	0.44	0.32	0.29	0.32	0.35
₹ *	SSC:31	Out-of-Plane Fig Side Attchmnt: Bndg	8.121	9.430	4.348	0.62	10~3 cyc	1.91 2.59	1.2	3.19	3.36	3.18	- 2 - 2 - 2 - 3 - 3	1.42	<u> </u>	1.29	0.32
207	470.000		į	;			10^8 cyc	4.9	6.59	8.2	5.19	4.08	5.2	3.63	3.69	3.3	0.82
2	X15:300	Lapped Fing Side Auchmit: Bridg	112.8	9.250	-3.453	4	10^3 cyc	1.13	0.52	0.53	4.4	1.39	9. T	0.78	0.69	0.78	0.85
#28	SSC:32A	in-Plane Side Attchmnt to Flange: Bndg	8.706	9.970	4.200	0.43	10^3 cyc	1.69	0.78	9.0	22	2.07	1.58	5 1.	9.	1.18	1.28
#87	SSC:32B	Abrupt Change in Flange Width: Bndg	7.406	8.470	-3.533	0.62	10^8 cyc	3.51	5.73 88	5.87	3.72	2.83	3.65	2.6	2.64	2.38	0.59
#Z#	66:033	in the second se	,			! ;		7.24	9.76	12.13	7.68	6.05	75.	5.38	5.48	86.	122
ê	55.55	Lapped Flatbal to Pit W/ Full Wrap. Axial	8c/.	9.860	-3.660	0.50	10*3 cyc	- 8 - 8 - 8 - 8 - 8	0.86	0.88 88.0	2. 4. 24. 2	2.28	7.5	1.28	 	1.28	£.6
#28	SSC:33(S)	Lapped Flatbar to Plt w/ Full Wrap:Shear	14.849	17.970	-10.368	0.81	10^3 cyc	3.76	7	1.78	6.89	4.62	3.52	5.6	2.32	2.6	2.85
9#	SSC:35	Butt Weld with Backing Bar	9.044	10.190	-3.808	0.28	10^8 cyc 10^3 cyc	1.53	2.08	2.56	1.62	7 2 2 2 3	1.50	1.14	1.15	1.03	9,50
#W.	98:088	Object Worlday Diefer with Dethols	44 700	60	000			2.67	3.6	4.47	2.83	2.23	2.78	1.98	2.01	.	0.45
į			2	3.080	99	3	10-3 cyc	1.73	2.33	2.9	2 2	3.04	2.32 1.8	- 1 - 7 - 7	1.52		1.87
7 #85	SSC:36A	Skip Welded Plates	10.406	11.960	-5.163	0.46	10^3 cyc	1.51	6.7	0.71	8. 6	1.85	14.	5.	0.93	2	7.
#83	SSC:38	Stiffener Plate Penetration: Bndg	8.408	9.450	-3.462	0.36	10^3 cyc	<u>-</u>	. 6 8 8 9	0.47	 8. E.	1. 2.	. 9. 8. 9.	0.69	0.62	0.69	0.78
#8#	SSC:38(S)	Stiffener Plate Penetration: Shear	12.552	15.830	-10.225	0.88	10^8 cyc	3.73 6.05	5.02 2.8	6.24 2.86	3.85	3.11	3.88	2.77	2.81	2.51	0.63
101	07.000	3.10	;	į	;		10^8 cyc	2.5	3.37	4. 10	2.65	2.08	2.6	88.	1.88	69	0.42
Ê	990.40	Statener Intersection: Bending	7.406	8.470	-3.533	0.62	10^3 cyc	2.08	96.0	0.98	2.7	2.55	1.95	1.43	1.28	1.43	75.5
99#	SSC:42	Bending of Long Attachment	13.105	15.320	-7.358	0.83	10^3 cyc	56.7	6.0	0.92	25.5	7	18.	1.35	1.2	1.35	<u> </u>
#67	SSC:46	Long. Welds on Support Gussets; Axial	8.121	9.430	4.348	0.62	10^3 cyc	2.58	<u>6</u> 7	2 2	3.36	3.18	2.42	1.78	1.59	1.78	1.98
#68	SSC:51(V)	Transv. Stiffnr Pene. Flg Unspprtd: Bndg	9.641	10.790	-3.818	0.07	10^8 cyc 10^3 cyc	4.9 0.68	6.59 0.32	8.2 0.32	5.19 0.89	4.09 4.09 4.09	5.4	3.63	3.69	3.3	0.82
69	SSC:52(A)	Transv Stiffer Pene Flo Supported: Brids	0.843	10 880	,	,	10^8 cyc	1.87	2.52	3.13	1.98	1.58	1.85	1.39	1.4	1.26	0.31
			2	20.00	7	<u> </u>		7 7	2.7	3.35	2.13	1.08 1.67	2.09	9.0 6.0	0.53	1.35	98.0
#470 #	Generic S/N Curve		9.000	9.903	-3.000	0.0	10^3 cyc	0.35	0.16	0.17	0.46	0.43	0.33	0.24	0.22	0.24	0.27
								ē i	1.	90.0	76.7	70.1	07.7	70.1	8	*	0.37

	BASELINE CONFIGURATION		LOG(Aamp) LOG(Amg)	LOG(Amg)	•	STD DEV	2	RMS	FATIGUE	STRENGT	H RATIO (MEAN-2S;	2.3% PRC	RMS FATIGUE STRENGTH RATIO (MEAN-2S; 2.3% PROBABILITY OF FAILURE)	OF FAILURE		Ş
¥	SSC:1(all steels)	Baseolate	(KSI) 12.325	14,050	-5.729	0.75	10^3 cvc	• 680	1.07	0.79	0.72	15.0 15.0	0.39	0.39	47.0	25	0.67
	(2000)				i		10^8 cyc	0.67	0.38	0.37	0.93	0.78	9.0	1.17	0.58	_	0.61
¥	SSC:1M	Baseplate Mild Steel	20.259	23.940	-12.229	0.71	10^3 cyc	1.49	2.3	1.7	1.55	0.73	0.85	0.83	9.	1.16	1.45
\$	77.000	1000 A	95	000	45 440	č	10/8 cyc		0.28	0.28	9.0	0.56	6	0.87	0.43	0.58	4. 4. 4.
2	E		60.04	77.00		5	10^8 cyc	8	22	22	0.55	0.45	0.38	0.7	0.35	0.48	0.38
1	SSC:10	Baseplate Q & T Steel	11.985	13.550	-5,199	0.68	10^3 cyc	0.53	0.82	19:0	0.55	97.0	0.3	0.3	0.57	17.0	0.52
¥	SSC:1(F)	Baseplate Flame Cut	11.134	12.580	4,805	0.60	10^3 cyc	\$ 95 5 0	0.87	0.0	0.59	0.27	0.32	0.31	9.0	0.4	0.55
!		- :		;	;	;	10^8 cyc	0.81	0.45	0.45	£.	0.91	0.77	7:	0.7	0.95	0.73
*	SSC:2	Rolled I-Beam Bending	12.719	14.540	6.048	0.64	10^3 cyc	0.74	1.14	0.0 38.0	0.77	0.36	0.42	1.12	0.78	0.57	0.72
**	SSC:3	Longitudinal Seam	11.750	13.540	-5.948	0.63	10^3 cyc	-	1.55	1	9	0.49	0.57	0.58	1.07	0.78	0.97
*	(5)8-088	meas odd brugg	12.122	14.040	-6.370	9.74	10^8 cyc	2 5	L 23	5.5 5.0 8.0	5 1	20.0	0.87	1.58	17.6	7.07	1 09
2	(5)5:555		<u>!</u>				10^8 cyc	0.89	0.5	0.49	123	<u>1</u> .9	0.85	1.55	0.77	1.08	0.81
£	SSC:4	Long. Fillet Weld Bndg	11.295	13.000	-5.683	0.61	10^3 cyc	-•	1.55	4.4	2 :	0.49	0.57	0.56	1.07	0.78	0.97
#10	SSC:5	Cvr Pit on I-Bm Fig Bndg	7.703	8.690	-3.278	0.48	10^3 cyc	16:0	1.43	1.04	0.95	4		0.51	0.98	0.71	68.0
#	800	Obi - Bm Brida	11.295	13.000	-5.683	0.61	10^8 cyc 10^3 cyc	-	1.55	2.2.1 1.14	8. 1 .	0.49	3.82	8 95 9 95	1.07	0.78	3.62
; ;				,	į	Ş	10^8 cyc	- 5	92.0	0.55	1.37	1.13	0.95	1.74	0.87	1.18	6.0
*	SSC:/B	-Bm W/vrt Web Stiff Bridg	E.033	0.170	į	0.53	10~3 cyc	1.79		0.0	2.4	2.02	1.	3.12	1.55	2.12	1.62
#13	SSC:7P	I-Bm w/vrt Web St Prin Stress	9.184	10.440	4.172	0.51	10^3 cyc	0.87	5.5		6.9	0.43	6.5	0.49	3 . 5	0.68	0.85
# 4	SSC:8	Bolted Double Lap	12.849	14.820	-6.549	0.81	10^3 cyc	96.0	2	- 5	, ,	0.47	0.55	5.0	8 8	0.75	0.93
;	0		.00	17 700	9	8	10^8 cyc	6.73	0.41	4.0	- ;	0.82	0.68	1.27	0.63	98.0	990
e C	R:Jee	Kiveled Single Lap	000	2	9	9	10.5 cyc	0.89	0.49	0.48	1.22		0.85	25	14.0	50.1	8.0
#16	SSC:10M	Butt Weld Axial: Mild Steel	12.585	14.870	-7.589	0.88	10^3 cyc	1.76	2.72	2.01	1.83	0.86		0.98	8 5	1.37	1.71
#17	SSC:10H	Butt Weld Axial:HSLA Steel	20.148	24.000	-12.795	96.0	10^3 cyc	1.78	2.76	2.04	8.	0.87	1.02	70.	1.91	3.5	1.74
			:	;	;		10^8 cyc	0.58	0.32	0.32	0.79	0.65	0.55	- 5	0.5	0.68	0.52
# 18	SSC:100	Butt Weld Axial: Q&T Steel	10.588	12.130	-5.124	0.76	10^3 cyc	0.93	1 9	10.0	1.59	1.3	53	2.01		1.37	10.0
#18	SSC:10(G)	Butt Weld Axial:Ground	12.904	15.050	-7.130	0.94	10^3 cyc	1.29	1.99	1.47	13	0.63	0.73	0.72	1.38		1.25
#20	SSC:10A	Butt Weld Bridg	10.914	12.560	-5.468	0.79	10*3 cyc	. 6 8 8 8	1.59	1.18	1.07	0.5	0.59	0.58	2.5	- 9.0	e -
							10^8 cyc	Ξ	0.62	0.61	1.52	1.25	97.	1.92	98.0	1.3	- 5
#51	SSC:11	-Bm Butt Weld Bndg	10.675	12.410	-5.785	0.68	10^3 cyc	1.32	2 7	0.73 8.73	£ £	1.49	1.26	2.29		8 8:	1.19
#22	SSC:12	Tee Stifnr Tapered Fig Thickness Bndg	9.506	10.830	4.398	0.43	10^3 cyc	0.89	1.38	1.02	0.93	44.0	0.51	97.0	96.	0.7	0.87
#23	SSC:12(G)	Tee Stiffnr Tapered Fig Thickness Bndg	11.215	12.920	-5.663	09.0	10^3 cyc	5 50	8.5	1.18	1.08	0.5	0.59	0.58	<u>.</u> E	9.0	-
ŝ	660:43	obed the Mitth Body	0 047	11 220	4 220	945	10^8 cyc	1.03	0.58	0.57	1.42	1.16	0.89	2 2	0.89	1.2	0.93
*7	2	And the same of th				2	10^8 cyc	1.2	0.67	0.67	99.	8.	1.15	2.7	1.05	1.43	108
#25	SSC:14	Disc. Cruciform Axial	12.901	15.140	-7.439	0.91	10^3 cyc	4. 6. 58	23	1,7 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	8 8	0.73	0.85	0.83	1.6 0.79	7. 19 80 80	0.83
#26	SSC:15	Loaded Edge Attachment Plate	8.706	9.970	4.200	0.43	10^3 cyc	1.18	. 6	1.33	1.21	0.57	98.0	0.65	1.25	16.0	1.13
#27	SSC:18	Partial Pen. Buft Weld	9.466	10.860	4.831	0.58	10^3 cyc	8 T. (7.1	2, 25	1.15	9.50	0.63	0.62	1.18	0.85	10.1
#28	SSC:16(G)	Partial Pen. Butt Weld: Ground	11.555	13.650	-6.960	0.95	10~8 cyc 10^3 cyc	2 2	2.85	2. 5 2. 1.	1.92	6.0	6. 59.	1.03	1.97	1.43	1.79
ç		India A decree do the Anna Change of an anna A decree of	9	0 740	9 736	200		1.28	7.0	0.7	1.73	1.42	7 7	2.19	60.5	1.49	4.14
A7#	2000	Lapped Angle to Flate Attollinit. Attal	0000	2	2	5	10^8 cyc	2.35	<u> </u>	1.3	3 23	787	224	80.	2.03	27.7	2.12
#30	SSC:17(S)	Lapped Angle to Plate Attchmrt:Shear	12.837	14.980	-7.782	0.65	10^3 cyc	8. 6 8. 8	0.9	2.15	8 4	0.91	1.07	1.05	2.01	1.46	1.82
#31	SSC:17A	Lapped Channel to Plate Attchmnt:Axial	8.317	9.360	-3.465	0.39	10^3 cyc	0.74	1. 6	20.	0.77	9.38	0.42	4.9	0.78	3.16	0.71
#32	SSC:17A(S)	Lapped Channel to Plate Attchmnt:Shear	12.637	14.980	-7.782	0.65	10^3 cyc	8.8	5.8	2.15	8: 5	2.5	70.5	1.05	20.5	4.	1.82
#33	SSC:18	Lapped Flatbar to Plate Attchmnt:Axial	7.748	8.960	4.027	0.65	10^3 cyc	1.74	5.89	8.5	£ 5. 5	0.85	9.8	0.97	8.5	5.1	99.
*	SSC:18(S)	Lapped Flatbar to Plate Attchmnt:Shear	13.741	16.520	-9.233	0.75	10^3 cyc	2.37	3.67	27.5	2.42	1.15	1.35	1.33	254	20.0	23
#35	SSC:19	Lapped Flatbar End Weld Only: Axial	11.081	13.330	-7.472	0.93	10^8 cyc	2.65	\$ T	3.05	2.77	128	3 2	. 6 6.	28.5	7.78 7.08	2.58
							10^8 cyc	1.62	6:0	0.0	2.23	1.83	1,55	2.82	7	1.92	1.47

	BASELINE CONFIGURATION	URATION	LOG(Aamp)	LOG(Amg)	Ф	STD DEV	RATIO	RM	FATIGUE	STRENG.	TH RATIO	MEAN-2S;	2.3% PRO	BABILITY	RMS FATIGUE STRENGTH RATIO (MEAN-2S; 2.3% PROBABILITY OF FAILURE)	Q	
#36	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	(ksi) 11.706	(ksi) 13.970	-7.520	0.93	10^3 cvc	#11 2.23	#12 3.45	#13 2.55	#14 233	#15	#18	#17	#18 20	#19	#20
1	0000						10^8 cyc	1.35	0.75	0.75	1.85	1.52	129	2.35	1.17	. 6	1.22
2	88C:20	Plate Penetration: Axial	8.860	10.250	4.619	99.0	10^3 cyc	1.47	2.28	1.69	1.54	0.72	0.84	0.82	1.58	1.15	1.43
#38	SSC:20(S)	Plate Penetration: Shear	10.835	12.870	-6.759	0.93	10^3 cyc	2.13	3,31	2.45	3.2	2.63	2 2 2	8 7	2.02	2.78	2. 2. 1. 2.
#38	SSC:21(1/4"WELD)	Plate Penetration: Rending	24 102	76.480	340.74	ç	10^8 cyc	1.54	98.0	0.85	2.12	1.74	5	2.68	1.33	1.82	1.39
			761:17	79.400	C#7.41-	70.0	10*3 cyc	2.16 0.63	3.33 0.35	2.47	2.25	27.0	1.23 8.6	<u>5</u> :	2.31	1.68	2.08
40	SSC:21(3/8"WELD)	Plate Penetration: Bending	19.586	24.250	-15.494	0.62	10^3 cyc	3.59	5.55	£.	3.74	1.75	2.04	2.01	3.85	2.79	3.48
#	SSC:21(S)	Plate Penetration: Shear	13.105	15.320	-7.358	0.83	10^3 cyc	1.35	2.08	. 5. 5.	8 =	0.66	20.0	0.75	0.85	1.17	0.89
#42	SSC:22	Tee with Stud Attachment: Bodo	8 463	9		ć	10^8 cyc	9.0	0.47	0.47	1.18	0.85	9.0	1.47	0.73	-	0.76
!					į	0.35	10^8 cyc	2.31	7 67	1.28	3.17	2.6	0.28 2.0	0.25 0.25	0.48 0.48	0.35	4 8
‡	SSC:23	Tee with Transv. Channel Attchmnt:Bndg	8.721	9.680	-3.187	0.13	10^3 cyc	0.39	0.61	0.45	0.41	0.19	0.22	0.22	0.42	0.31	0.38
1	SSC:24	Tee with Short Cvr Pit Attchmnt:Bndg	8.721	9.680	-3.187	0.13	10*3 cyc	0.39	0.61	0.45 80.5	2.63	2.16 0.19	1.83	3.33	2. 0 2. 0	2.26	1.73
#45	SSC:25	Continuous Conciform	12 098	14 230	7 000	92.0	10^8 cyc	<u>1.9</u>	1.07	8.5	2.63	2.16	1.83	3.33	1.68	2.28	1.73
			3	7.430	90.7-	9	10~8 cyc	9. 6.	0.61	0.6	- 1	0.8	6 7	0.92	1.76 1.76	1.27	1.59
Ž.	SSC:Z5A	Plate with Transv. Side Attachment	15.086	17.650	-8.518	0.91	10^3 cyc	1.28	1.98	£. 6	1.33	0.62	0.73	0.72	1.37	66.0	1.24
#47	SSC:25B	Pit w/ Transv. Side Attchmnt and Brace	11.793	13.890	-6.966	0.63	10/3 cyc	1.7	7.8	1.95	1.78	0.63	0.97	0.98	1.83 1.83	1.33	2.0 1.86
**	\$SC:26	Welded Cover Plate	7.902	8.910	-3 348	0.61	10*8 cyc	1.17	0.65	9.0	9.0	1.32	£ 5	2.03	5.9	1.38	9.6
4	10000			: :		;	10^8 cyc	3.49	1.95	1.93	8.4	3.94	3.33	6.07	3.02	4.13	3.16
Ë	22000	Double Lapped Plate With Plug Weids	7.283	8.240	-3.146	0.58	10^3 cyc	1.06 5.05	<u>3</u> "	1.21	<u> </u>	0.52	9.6	0.59	1.1	0.82	1.03
#20	SSC:27(S)	Double Lapped Ptt w/ Plug Welds: Shear	9.391	10.980	-5.277	0.54	10^3 cyc	1.75	2.71	2.01	1.83	0.85	t ←	0.98	1.88	1.36	1.7
*	SSC:28	Baseplate with Circular Hole	13.458	15.790	.7 746	0.81	10^8 cyc	2.03	1.13	1.13	2.79	2.29	¥. 5	3.54	1.78	7,7	2
Ş	00:000							0.84	0.47	9.48	1.15	96.	0.0	94.	0.73 0.73	0.99	0.76
Ž	00000	Long Filline Flate All Cillinit: Axial	887.8	8.250	-3.159	0.31	10^3 cyc	0.52	8 3	0.59	5.0	0.25	0.29	0.29	0.55	4.0	0.5
#23	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.386	10.380	-3.368	0.10	10^3 cyc	0.32	0.5	0.37	0.34	0.16	0.18	0.18	2.3	0.25	0.3
\$	SSC:31	Out-of-Plane Fig Side Attchmnt: Bndg	8.121	9.430	4.348	0.62	10^8 cyc	78 28	0.72 2.78		T: 1	1.45	2. E	2.24	. .	1.52	1.16
45.5	46:000	The Court of the C	i	į		;	10^6 cyc	3.3	18.	1.82	4.53	3.72	3.15	5.73	2.85	8.6	2.98
3			117.0	8.250	-3.453	0.44	10^3 cyc	0.78 8.88	<u>5</u> 5	68.0	9.0	3.33	4.5	4.0	0.83	0.61	9.76
#26	SSC:3ZA	In-Plane Side Attchmnt to Flange: Bndg	8.706	9.970	4.200	0.43	10^3 cyc	1.18	8 2	1.33	1.21	0.57	0.86	0.65	1.25	0.91	1.13
#27	SSC:32B	Abrupt Change in Flange Width:Bndg	7.406	8.470	-3.533	0.62	10 ⁴³ cyc	1.43	22.2	2	3.25 1.49	0.7	2.25 0.82	8	2.02 1.54	1.11	2.14
#28	SSC:33	Lapped Flatbar to Pit w/ Full Wrap: Axial	7.758	8 860	-3 660	50	10^8 cyc	88.4	2.72	2.7	6.7	5.5	98.4	8.49	7	5.77	5
į			1		300	8	10^8 cyc	3.8	2.17	2.16	5.35	4.39 4.39	3.72	6.77	3.37	- 19	3.52
B C	SSC:33(S)	Lapped Flatbar to Pit w/ Full Wrap:Shear	14.849	17.970	-10.368	0.81	10^3 cyc	2.6	£.04	2.97	2.71	8.5	1.48	1.45	2.78	2.02	2.52
#80	SSC:35	Butt Weld with Backing Bar	9.044	10.190	-3.808	0.28	10^3 cyc	0.67	8	0.77	0.7	0.33	0.38	0.37	0.72	0.52	0.65
#61	SSC:36	Skip Welded Plates with Rathole	11.793	13.890	-6.966	0.63	10*3 cyc	1.71	2.64	1.95	1.78	2.03 0.83	1.72 0.97	3.†3 0.96	8.5	2.13	1.63
#62	SSC:38A	Skip Welded Plates	10.406	11 960	-5 163	870	10^8 cyc	7.7	0.65	0.65	9. 5	1.32	Ξ.	2.03	5.5	1.38	8
463	Č						10^8 cyc	127	7.	0.7	1.7	1.43	1.21	2.2	<u> </u>	.5.	1.15
}		Chicago Field Fellelidiol. Difug	9.4.0	A.430	-3.462	96.0	10^3 cyc	0.69 2.51	7.07	0.79	3.45	9.34	0.39	0.38	0.74	0.54	0.67
*	SSC:38(S)	Stiffener Plate Penetration: Shear	12.552	15.630	-10.225	0.88	10^3 cyc	4.17	6.45	4.78	4.35	2.03	2.38	2.34	4.47	3.25	9.4
#65	SSC:40	Stiffener Intersection: Bending	7.406	8.470	-3.533	0.62	10*8 cyc	1.69	9.0	0.93 4.03	2.31	1.9 7		2.83	1.46	8 :	2, 5
88	680.43	o de la companya de l	107.07	,		!	10^8 cyc	4.88	2.72	2.7	6.7	5.5	8.8	8. 4. 0	2	5.71	. 4. 14.1
}	24.000	Denting of Long Anachment	13.105	15.320	-7.358	0.83	10^3 cyc	1.35	2.08	1.54	<u>+</u> +	9.0	0.77	0.75	4.5	1.05	1.31
#81	SSC:48	Long. Welds on Support Gussets: Axial	8.121	9.430	-4.348	0.62	10^3 cyc	1.78	2.78	2.04	1.86	0.87	1.02	-	1.91	1.39	1.73
99#	SSC:51(V)	Transv. Stiffnr Pene. Flg Unspprid: Bndg	9.641	10.790	-3.818	0.07	10^3 cyc	0.47	0.73	0.54	0.49	3.72 0.23	3.15 0.27	5.73 0.26	0.51	3.9 0.37	2.98 0.46
69#	SSC:52(V)	Transv. Stiffnr Pene. Fig Supported: Bndg	9.643	10.860	4.042	0.19	10^3 cyc	1.26 0.6	0.92	0.7	1.73 0.62	1.42 0.29	0.3 2.4	2.19 0.33	- 0.0 - 0.0 - 0.0	1.49 0.46	1.14
#20	Generic S/N Curve		9.000	8.903	-3.000	0.0	10^8 cyc	1.35	0.75	0.75	1.85	1.52	1.29	2.35	1.17	9. 5	2.2
							10^8 cyc	1.47	0.82	0.81	2.02	1.86	=	2.58	127	1.74	1.33

	BASELINE CONFIGURATION	_	LOG(Aamp) LOG(Amg)	LOG(Amg)	•	STD DEV	RATIO		FATIGUE	STRENGT	H RATIO (MEAN-2S;	2.3% PRO	BABILITY	RMS FATIGUE STRENGTH RATIO (MEAN-28; 2.3% PROBABILITY OF FAILURE)		ş
;	Calculation Hardware	d Spiroton Spiroton	(ksi)	(KSI)	5 729	0.75	10 ⁴³ cvc	#21 0	0.77	0.67	1.14	0.46	65.0	0.63	0.37	3	0.37
.	SSC:1(all steels)	Deservices	14.353	2	3	2	10^8 cyc	0.51	0.42	0.65	0.56	0.73	0.29	0.39	0.53		0.62
¥	SSC:1M	Baseplate Mild Steel	20.259	23.940	-12.229	0.71	10^3 cyc	1.09	1.67	4:	2.48	- ;	1.28	1.36	18.0	£.5	0.79
	;		92	000	4,10	č	10^8 cyc	0.38	5.31	0. + 84 +	- -	9.54	1 25	0.29	9. S	2.2	9 6
2	SSC:1H	paseblate usch steel	800°C7	30.660		ē,	10^8 cyc	0.31	0.25	0.39	0.33	4	0.17	0.23	0.32		0.37
#	SSC:10	Baseplate Q & T Steet	11.985	13.550	-5.199	0.68	10^3 cyc	0.39	0.59	0.51	0.87	0.36	97.0	0.48	0.29	9.6	0.28
¥	SSC:1(F)	Baseplate Flame Cut	11.134	12.580	4.805	0.60	10*3 cyc	0.4.0	0.63	0.54	0.93	0.38	0.48	0.51	0.0		0.3
2	<u>}</u>			:	;	;	10^8 cyc	0.61	0.5	0.78	0.67	99.0	¥ 6	74.0	20.5	9,34	0.75
*	SSC:2	Rolled I-Beam Bending	12.719	14.540	-6.048	9.0	10^3 cyc	4, 6	0.82	0.71	2.2	0.48	0.63	0.37	0.51		8°0
*	SSC:3	Longitudinal Seam	11.750	13.540	-5.946	0.63	10^3 cyc	0.73	1.12	0.97	1.65	0.67	0.86	0.91	0.54		0.53
			9	9,0	6		10^8 cyc	9.69	0.57	88.0	0.75	66.0	98.0	53	0.72		8.0
¥	SSC:3(G)	Ground Long. Seam	12.122	14.040	6.370	*	10~3 cyc	0.68	0.58	0.87	0.74	0.97	0.38	0.52	0.7		0.83
£	\$SC:4	Long. Fillet Weld Bndg	11,295	13.000	-5.663	0.61	10^3 cyc	0.73	1.12	0.97	1.65	0.67	0.86	0.91	95.0		0.53
•	\$:088	Cyr Pit on LBm Fig Bodo	7.703	8.690	-3.278	0.48	10^8 cyc 10^3 cyc	0.76	1.02 1.02	0.97	1.5	1.09	0.42	0.58 0.83	0.49		0.49 8.49
2					0	č	10^8 cyc	3.03	2.49	3.87	3.31	8.36	1.69	2.31	3.17		3.71
-	SSCIB	Doi l-Bri Bridg	CR7.11	13.00	-3.003	9	10^8 cyc	0.76	0.82	0.97	0.83	1.08	24.	0.58	0.79	0.43	0.83
#12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	9.035	10.170	-3.77	0.53	10^3 cyc	0.47	0.72	0.63	1.07	1 95	92.0	0.59	1.42		£ 5
#13	SSC:7P	I-Bm w/wrt Web St Prin Stress	9.184	10.440	4.172	0.51	10^3 cyc	9.	98	0.85	<u> </u>	0.59	0.75	8	0.47		74.0
ì			12 840	44.820	9.540	8	10^8 cyc	1.37	1.13	1.75	2. 5. 5. 8.	1.97	0.76	1.05	0.52	1.17	0.51
į.	SSC:8	Dollar Donna Cal	20.3	290.4	Ì	3	10^8 cyc	0.55	0.45	0.7	9.0	0.79	0.31	0.42	0.58	0.31	0.68
#15	SSC:9	Riveted Single Lap	14.887	17.790	-9.643	0.90	10^3 cyc	5 5	23	6.8	3.39	1.38	78 8 5	1.87	1.1	2,5	- 2
#18	SSC:10M	Butt Weld Axial: Mild Steel	12.585	14.870	-7.589	98.0	10*3 cyc	1.28	1.97	1.7	2.9	1.18	1.5	1.6	0.95	2.14	8
			,	8		8	10^8 cyc	0.78	0.65	1.02	0.87	1 :	4 5	0.61	0.83	0.45	0.97
#17	SSC:10H	Butt Weld Axial: HSLA Steel	20.148	24.000	-12./95	8	10'3 cyc	0.44	9.36	0.58	0.48	0.63	0.24	0.33	9.0	0.25	0.53
#18	SSC:10Q	Butt Weld Axial:Q&T Steel	10.588	12.130	-5.124	0.78	10^3 cyc	0.68	2.5	6.0	£. 8	0.63	9 6	0.85	0.51	1.13	0.5
# 0	SSC:10(G)	Butt Weld Axial: Ground	12.904	15.050	-7.130	0.94	10°3 cyc	0.0	4.	124	2.12	0.86	<u>;</u> -	1.17	0.7	95.	0.69
			1004	13 680	5 488	0 70	10^8 cyc	9.0	0.53	0.82	1.7	0.92	98.0	0. 0. 9. 0.	0.56	0.36	0.78
#20	SSCIUA	Cord new mid	5	7.30	2	ì	10^8 cyc		0.69	1.07	0.92	1.2	0.47	0.0	0.88	0.47	1.03
#21	SSC:11	I-Bm Butt Weld Bndg	10.675	12.410	-5.785	0.68	10^3 cyc		1.53	1.32	2.25	0.82	7.1	124	1.05	0.56 86.0	1.22
#22	SSC:12	Tee Stiffnr Tapered Flg Thickness Bndg	9.506	10.830	-4.398	0.43	10^3 cyc	0.65	-	0.87	1.47	90	0.77	19.0	0.49	1.09	0.48
Ş	•	Tee Stffer Teneral Fir Thickness Buds	11 215	12 920	-5 683	080	10^8 cyc	22.0	1.18	1.55	1.33	0.69	0.68		0.56	1.26	0.55
67#		2 1000						0.78	0.64	-	0.85	1.13	9.4	9.0	0.82	4	98.0
#24	SSC:13	Tee Stiffener Taped Fig Width Bndg	9.947	11.220	4.228	0.45	10^3 cyc	0. 0. 44. 0.	0.75	1.17		1.32	0.52	0.55 0.7	98.0	0.51	1.12
#25	SSC:14	Disc. Cruciform Axial	12.901	15.140	-7.438	0.91		1.09	1.67	4.8	2. 4 6 6		1.28	1.36	0.81	1.81	6.0 6.0
#28	SSC:15	Loaded Edge Attachment Plate	8.706	9.970	4.200	0.43	10*3 cyc	0.85	1.3	1.13	1.92	0.78	-	1.08	0.63	1.42	0.62
ŝ		Partial Pen Butt Weld	9.466	10.860	-4.631	0.58	10^8 cyc	1.79 0.8	1.47	2.29 1.08	1.8	0.74	- ¥	1.37	1.87	5 7	0.59
1							10^8 cyc	1.31	1.08	1.67	1.43	1.88	0.73	- 5	1.37	0.74	8.5
#28	SSC:16(G)	Partial Pen. Butt Weld: Ground	11.555	13.650	98.9	0.85	10^3 cyc 10^6 cyc	0.86	0.78 2.08	2 2	5 6	1.37	0.53	0.73		0.5	1.17
#28	SSC:17	Lapped Angle to Plate Attchmnt:Axial	8.585	9.710	-3.736	0.34	10^3 cyc	9.6	0.92	0.8	38.	0.55	 	0.75	0.45	~ -	4.0
#30	SSC:17(S)	Lapped Angle to Plate Attchmnt:Shear	12.637	14.980	-7.782	0.65	10^3 cyc	1.37	2.7	1.82	3.09	8 5	9.5	7.	1.02	2.28	
		Lapped Channel to Plate Attchmnt:Axial	8.317	9.360	-3.485	0.39	10^8 cyc 10^3 cyc	0. 5 1. 5 1. 5 1. 5 1. 5 1. 5 1. 5 1. 5 1	0.67	0.7.0	1.21	0.49	0.63	0.62	0.83	0.89	0.39
į			!			;	10^8 cyc	2.02	8.	2.59	2.21	2.91	5.5	3. 5	2.5	+ ;	2.48
#35	Ø	Lapped Channel to Plate Attchmnt:Shear	12.637	14.980	-1.782	9	10*3 cyc	0.82	0.67	1.04	0.69	<u> </u>	6.6	0.62	0.85	0.46	
#33	SSC:18	Lapped Flatbar to Plate Attchmnt:Axial	7.748	8.960	-4.027	0.85	10^3 cyc	3.01	1.95 2.48	3.85	3.29	4.33	1.49	2.3	3.15	1.69	3.68
*3	SSC:18(S)	Lapped Flatbar to Plate Attchmnt:Shear	13.741	16.520	-9.233	0.75	10^3 cyc	1.73	2.65	2.3	3.91	1.59	2.04	2.16	1.29	2.88	1.28
#35	SSC:19	Lapped Flatbar End Weld Only: Axial	11.081	13.330	-7.472	0.93	10*3 cyc	1 2	2.97	2.57	4.37	1.78	2.28	2.41	4	3.23	-
		:					10^8 cyc	1.23	<u>5</u>	1.57	1.34	1.71	0.69	5 6.0	1.29	0.89	0

	BASELINE CONFIGURATION	SURATION	LOG(Aamp)	LOG(Amg)	c c	STD DEV	3	RMS	FATIGUE	STRENG	TH RATIO	MEAN-2S	2.3% PR(RMS FATIGUE STRENGTH RATIO (MEAN-2S; 2.3% PROBABILITY OF FAILURE)	OF FAILUR	ũ	
#38	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	(ksi)	(ksi) 13.970	-7 520	60.0	9	#21	#22	#23	#24	#25	#26	#27	#28	#29	#30
,						3	10^8 cyc	2 2	. 49.	1.3	1.12	1.47	0.57	0.78	70,1	0.58	1.25
2	88C:20	Plate Penetration: Axial	8.860	10.250	4.619	99.0	10^3 cyc	8 5	1.65	1.43	2.43	0.99	1.27	1.34	0.8	1.79	0.79
#38	SSC:20(S)	Plate Penetration: Shear	10.835	12.870	-6.759	0.93	10.3 cyc	1.57	2.4	2.03	3.53	N +	0.95 1.84	1.35	1.85	0.99	2.16
#36	SSC:21(1/4"WELD)	Plate Penetration: Bending	21.192	25.480	-14 245	690	10^8 cyc	1.17	98.0	64.5	1.28	1.68	0.65	0.89	2	99.0	<u>5</u>
,			!		!		10^8 cyc	84.0	0.38	0.61	0.52	0.69	0.27	0.37	0.5	0.27	0.59
1	SSC:21(3/8-WELD)	Plate	19.586	24.250	-15.484	0.62	10^3 cyc	2.62	10.4	3.47	5.92	2.41	3.08	3.28	1.95	4.36	1.91
‡	SSC:21(S)	Plate Penetration: Shear	13.105	15.320	-7.358	0.83	10^3 cyc	0.89	1.51	8. L	2.22	6.0	1.16	1.23	0.73	1.64	0.92
#42	SSC:22	Tee with Stud Attachment: Bndg	8.453	9.400	-3.147	0.32	10^8 cyc	9.0	0.53	0.82	7.0	0.85	0.36	0.49	0.67	0.38	0.78
,	0						10^8 cyc	1.75	4	223	1.91	2.51	0.98	1.33	1.83	0.98	2.14
ž	820:53	lee with Transv. Channel Attchmrt:Bndg	8.721	9.680	-3.187	0.13	10^3 cyc	0.29	4 5	0.38	0.65	0.26	9.3	0.36	0.21	0.48	0.21
‡	SSC:24	Tee with Short Cvr Pft Attchmat:Bndg	8.721	9.680	-3.187	0.13	10^3 cyc	0.29	4	0.38	0.65	0.28	0.34	0.36	25. 1.20	0.48	0.21
#45	SSC:25	Continuous Cruciform	12.096	14,230	-7.090	0.78	10^8 cyc	1.45 5.	1.19 83	1.85	1.58	2.08	0.81	1.1	1.52	0.82	1.78
97#	490:088						10^8 cyc	0.82	0.68	50.	9.0	1.19	0.46	0.63	0.86	0.48	- 6. - 6.
ì	V	Tiato Will Hallsy, Stud Attachinent	15.080	069.71	8.518	6.9	10^3 cyc 10^8 cyc	0.93	£ 2	1.24	2.11	0.86	1.1	1.16	9.69	1.55	0.68
7	SSC:25B	Pit w/ Transv. Side Attchmnt and Brace	11.793	13.890	-6.966	0.63	10 ⁴³ cyc	1.25	19.1	1.65	2.82	1.1	1.47	1.55	0.93	2.08	0.91
1	SSC:26	Welded Cover Plate	7.902	8.910	-3.348	0.61	10^3 cyc	0.63	98.0	0.83	1.41	0.57	0.74	0.68	0.93	1.04	1.08
67#	SSC:27	Double Lapped Plate with Plus Welds	7 293	8 240	3 146	9	10^8 cyc	2.65	2.18	3.38	2.89	3.81	1.48	2.02	2.77	1.48	3.24
		R	3		į	9	10/8 cyc	60.4	3.36	27.5	. 4 6	5.87	2.28	3,12	0.58	1.29 2.3	0.57
00	SSC:Z7(S)	Double Lapped Pit w/ Plug Welds: Shear	9.391	10.980	-5.277	0.54	10^3 cyc	1.28	8.5	1.7	2.89	1.18	1.51	1.59	0.95	2.13	0.93
#21	SSC:28	Baseplate with Circular Hole	13.458	15.780	-7.748	0.81	10^3 cyc	8	1.62	1.87	2.39	0.97	1.24	1.18	1.61 0.78	1.76	1.89 0.77
#52	SSC:30	Long Finite Plate Attchmot: Axial	8 288	9.250	.3 150		10^8 cyc	79.0	0.52	0.81	0.69	0.91	0.35	0.48	99.0	0.36	0.78
ţ					;	3	10^8 cyc	1.96	1.61	2.5	2.14	2.82	60.	1.5	2.05	1.1	0.28
20	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.386	10.380	-3.368	0.10	10^3 cyc	0.24	0.36	0.31	0.53	6.22	0.28	0.29	0.17	0.39	0.17
#24	SSC:31	Out-of-Plane Fig Side Attchmnt: Bndg	8.121	9.430	4.348	0.62	10^3 cyc	1.3	9 7	57.	. 2 . 3 . 3 . 3	<u> </u>	1.53	1.62	0.97	2.17	0.95
#25	SSC:31A	Lapped Fina Side Attchmat: Bado	8 211	9.250	-3.463	7	10^8 cyc	2.5	5.08	3.19	2.73	3.59	1	F	2.61	4.	3.08
Ş					2	ţ	10^8 cyc	2.17	1.78	2.73	2.37	3.12	1.21	1.65	2.27	6. 2. 2.	2.65
8	SSC:3SS	In-Plane Side Attchmit to Flange: Bridg	8.706	9.810	4 .200	0.43	10^3 cyc	0.85	5.5	1.13	26.5	0.78		90.	0.63	27.	0.62
#21	SSC:32B	Abrupt Change in Fiange Width:Bridg	7.408	8.470	-3.533	0.62	10^3 cyc	50.	9	1.39	2.36	98.0	1.23	5 -	0.78	7.	0.76
#28	SSC:33	Lapped Flatbar to Ptt w/ Full Wrap: Axial	7.758	8.860	-3.660	0.50	10^8 cyc 10^3 cyc	3.7	20. 24. C.	1.73	2.5	5.32	2.08	2.82	3.87	2.08	4.53
#28	SSC:33(S)	Lanced Flathar to Pft w/ Full Wran-Shear	14 840	47 070	10.300	3	10^8 cyc	2.85	2.43	3.77	3.23	4.25	1.65	2.25	3.09	8	3.61
					10.300	9	10^8 cyc	0.78	0.64	F	0.85	21.1	2 2	2.38 0.8	1.41	3.16 44.0	0.98
9	SSC:35	Butt Weld with Backing Bar	9.044	10.180	-3.808	0.28	10^3 cyc	0.49	0.75	0.65	7 5	0.45	0.57	0.61	0.36	18.0	98.
1 9	SSC:38	Skip Welded Plates with Rathole	11.793	13.890	-8.966	0.63	10^3 cyc	52	1.91	1.65	2.82	<u>+</u>	1.47	5.	0.93	2.08	0.91
#62	SSC:36A	Skip Welded Plates	10.406	11.960	-5.163	0.46	10^8 cyc 10^3 cyc	0.89	0.73 1.16	5. E.	1.72	1.27 0.7	0.49 0.89	0.68 0.95	0.93 0.56	1.27	1.08 0.56
#63	SSC:38	Stiffener Plate Penetration: Bndg	8.408	9.450	-3.462	90.3	10^8 cyc 10^3 cyc	0.98 0.5	0.79 0.73	1.23 0.67	 1.05 1.1	1.38	0.59 \$8.00	0.73	1 0.37	0.54 0.54	1.18
\$	SSC:38(S)	Stiffener Plate Penetration: Shear	12.552	15.630	-10.225	0.88	10^8 cyc	4.9 3.05	1.57	2.43	2.08	2.74	80.5	1.45	1.99	1.07	2.33
#82	SSC:40	Stiffener Intersection Bending	408	6 470	696	6	10^8 cyc	128	50 ;	1.63	1.39	1.84	0.7	0.97	<u></u>	0.72	1.58
			8	0.40	-0.000	70.0		5. E	9. 7	1.38 7.3	2.38	8. c	1.23 8.53	1.3	0.78	7.7	0.76
99	SSC:42	Bending of Long Attachment	13.105	15.320	-7.358	0.83	10^3 cyc	0.99	1.5	5.5	222	8 8	9 1.18	1.23	0.73	9.7	0.72
#87	SSC:46	Long. Welds on Support Gussets: Axial	8.121	9.430	4.348	0.62		1.3	3 ~	1.73	2.94	1.2	1.53	1.62	0.97	2.17	0.95
89#	SSC:51(V)	Transv. Stiffnr Pene. Fig Unspprtd: Bndg	9.641	10.790	-3.818	0.07	10^8 cyc	0.34	0.53	3.18 0.48	2.73 0.78	3.59 0.32	7 7	1.94 0.43	2.61 0.26	1.41	3.0 8 0.25
89#	SSC:52(V)	Transv. Stiffnr Pene. Fig Supported: Bndg	9.643	10.860	4.042	0.19	10^8 cyc	0.95 44.0	0.78 0.67	0.58 22.88		5. 4.	0.53	0.73	0.32	0.54	1.17 0.32
#10	Generic S/N Curve		9.000	9.803	-3.000	0.00	10^8 cyc 10^3 cyc	1.02 0.18	0.84	1.3 1.33	1.12 9.4	0.16	0.57	0.78	1.07	0.58	1.25
							10^8 cyc	1.12	0.92	54.	12	9.	0.62	0.85	1.17	0.63	1.37

	BASELINE CONFIGURATION	URATION	LOG(Aamp) LOG(Amg)	LOG(Amg)	σ.	STD DEV	/ RATIO		RMS FATIGUE	STRENGT	H RATIO (I	MEAN-2S;	2.3% PROE	BABILITY C	STRENGTH RATIO (MEAN-2S: 2.3% PROBABILITY OF FAILURE)		ş
¥	SSC-1(all steels)	Baseolate	12.325	14.050	-5.729	0.75	10^3 cvc	260	0.37	2	0.28	92.0	0.31	770	0.32	32	6.0
Ē	(400) (400)					•	10^8 cyc	0.25	0.62	0.17	0.62	0.42	0.5	0.29	4	8	0.68
#	SSC:1M	Baseplate Mild Steel	20.259	23.940	-12.229	0.71	10^3 cyc	2.03	0.79	98.0	0.63	0.58	0.67	5.5	0.7	0.69	0.42
ş	37.000	Section of Science of	25 5.80	30.220	15.440	6	10^8 cyc	0.18	0.46	5.5	9,0	0.31	0.37	2.0	0.32		15.0
2	2000	Dasaplate Total Steel	E00:07	30.420		,	10/8 cyc	0.15	0.37	5 5	0.37	0.25	6.0	0.17	97	9 9	4
#	SSC:10	Baseplate Q & T Steel	11.985	13.550	-5.199	0.68	10^3 cyc	0.72	0.28	0.31	0.22	7.0	0.24	0.36	0.25		0.15
¥	SSC:1(F)	Baseplate Flame Cut	11.134	12.580	-4.805	0.60	10*3 cyc	92.0	0.3 0.3	0.32	0.24	0.21	0.25	0.38	0.26		0.16
\$	0	Solding Doors Design	45 740	44 640	970	200	10^8 cyc	6.0	0.75	6.5	0.75	9.5	9.5	0.35	0.52		0.82
£	2300		E	r F	ę P	Š	10.8 cyc	0.24	9.0	0.16	9.0	0.4	0.48	0.28	0.42	1.02	0.65
**	SSC:3	Longitudinal Seam	11.750	13.540	-5.946	0.63	10 ⁴³ cyc	1.36	0.53	0.58	0.42	0.38	0.45	89.0	0.47		0.28
**	SSC:3(G)	Ground Long. Seam	12.122	14.040	-6.370	97.0	10^3 cyc	1.52	9.0	0.64	0.47	0.42	0.5	0.78	0.52		0.31
			:	:		į	10^8 cyc	0.33	0.83	0.23	0.83	0.55	99.0	0.38	0.58		0.91
00 ##	\$5C: 4	Long. Fillet Weld Bridg	11.295	13,000	-5.663	0.61	10^3 cyc	92.3	0.53	0.57	0. 0 2. 5 5. 5	0.38	0.45	99.0	0.47		1 0 28
#10	SSC:5	Cvr Pit on I-Bm Fig Bndg	7.703	8.690	-3.278	0.48	10^3 cyc	12.	6 6	0.52	0.38	7.	14.0	0.62	0.43	0.42	0.25
ŧ	SSC:6	. Obi I-Bm Bridg	11.295	13.000	-5.663	0.61	. 10~8 cyc 10^3 cyc	5. 5. 5.	3.7 0.53	1.01 0.57	0.42	0.38	0.45	0.68	0.47		0.28 0.28
				,	į		10^8 cyc	0.37	0.83	0.25	0.93	0.62	0.74	0.43	0.65		5.0
#12	SSC:/B	FBM W/VIT VVED SUR BROOK	8.033	20.0	?	6.53	10.3 cyc	0.67	. . 8	0.45	1.98	1.1	1.33	0.77	1.16		1.82
#13	SSC:7P	I-Bm w/wt Web St Prin Stress	9.184	10.440	-4.172	0.51	10°3 cyc	1.19	0.47	0.5	0.37	0.33	0.39	0.59	0.4		0.24
*14	SSC:B	Bolted Double Lap	12.849	14.820	6.549	0.81	10*3 cyc	5.5	0.51	0.55	0.0	0.36	. O.	0.85	0.45		0.27
			. !			;	10^8 cyc	0.27	0.68	0.18	0.67	0.45	0.54	0.31	0.47		9.74
# 15	880:9	Riveted Single Lap	14.887	17.790	-9.643	0.90	10*3 cyc	2.78	_ G	5.18	0.87	0.75	0.92	8. C	9 8		\c.0
#16	SSC:10M	Butt Weld Axial: Mild Steel	12.585	14.870	-7.589	0.88	10^3 cyc	2.38	8.0	5.0	0.74	0.86	0.78	1.19	0.82		0.49
ţ	10000	Land A 1911-label A Maria and	97 77	900	42 705	8	10^8 cyc	0.39	0.97	9 5	0.97	0.65	0.78	5 6	99.0		8. 5
*	Page: Ida	Dail Web Addi. D.C. Steel	¥0. 140	7.000	14.183	S	10.8 cyc	2 2	0.53	2.0	0.53	0.35	64.3	0.25	0.37		0.58
#18	SSC:100	Butt Weld Axial:Q&T Steel	10.588	12.130	-5.124	0.76	10^3 cyc	1.27	0.5	4 6	0.39	0.35	0.42 24.0	0.63	4,5		0.26
#19	SSC:10(G)	Butt Weld Axial:Ground	12.904	15.050	-7.130	96.0	10*3 cyc	1.75	0.69	0.74	0.5	0.48	0.58	0.67	9.0		0.36
į			,,,,	65	9		10^8 cyc	0.32	0.78	0.21	0.78	0.52	0.63	98.	0.55		98.0
0Z#	SOC:US	Braid Days Mind	<u> </u>	16.30	90	Š	10% cyc	0.41	1.03	0.28	1.05	0.68	0.82	0.47	0.72		1.12
#51	SSC:11	I-Bm Butt Weld Bndg	10.675	12.410	-5.765	0.68	10^3 cyc	1.88	0.73	0.79	0.58	0.52	0.61	0.83	20.0		0.38
#25	SSC:12	Tee Stiffur Tapered Fig Thickness Bndg	9.506	10.830	-4.398	0.43	10-3 cyc	1.22	0.48	0.51	0.38	9.0	4.0	0.6	0.45 24.00		0.25
			,	•	600	9	10^8 cyc	9.0	1.49	7 6	1.48	0.99	1.19	0.69	7.0		1.62
#53	SSC:12(G)	lee Stimr Lapered Fig Trickness Bridg	C12.11	12.920	-5.003	0.00	10*8 cyc	0.39	96.0	92.0	98.0	9.0	0.76	4.0	0.67		1.05
#54	SSC:13	Tee Stiffener Taped Fig Width Bndg	9.947	11.220	4.229	0.45	10^3 cyc	0.82	0.32	0.35	0.26	0.23	0.27	14.0	0.28	0.28	0.17
\$2	SSC:14	Disc. Cruciform Axial	12.901	15.140	-7.439	0.91	10^3 cyc	2 69	2.0	98.0	0.63	0.58	0.67	1.01	0.7		1 2
				0.00			10^8 cyc	75.0	0.85	0.23	0.85	0.57	99.0	0.39	9.0		0.93
97 **	SSC:15	Loaded Edge Attachment Plate	8/.6	D/8.6	4.200	? 5	10~3 cyc	0.89 0.89	2.19	9.0	2.19	1.46	1.75	1.0	1.53		238
#27	SSC:18	Partial Pen. Butt Weld	9.466	10.860	-4.631	0.58	10^3 cyc	1.49	0.59	0.63	0.46	0.41	0.49	0.75	0.51	0.51	0.31
#28	SSC:16(G)	Partial Pen. Butt Weld: Ground	11.555	13.650	-6.960	0.95	10^3 cyc	2.51	0.98	.8	0.78	0.69	0.83	1.25	0.86		0.51
Ş	11.000	injust terminal about a stand become I	9 595	0 7 10	3 738	2	10^8 cyc	0.47	1.17	0.32	1.17	0.78	0.93	45.0	0.82		1.28
R7#	1000			2	3	5	10^8 cyc	0.88	2.18	0.59	2.17	1.45	1.74	5	1.52		2.38
#30	SSC:17(S)	Lapped Angle to Plate Attchmrt:Shear	12.637	14.980	-7.782	0.65	10^3 cyc	2.55		1.08	0.79	0.71	28.0 28.0	1.27	0.88		0.52
#3	SSC:17A	Lapped Channel to Plate Attchmnt:Axial	8.317	9.360	-3.465	0.39	10^3 cyc		0.39	0.42	0.31	0.28	0.33	0.5	0.34	4.0 4.0 5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	0.2
#35	SSC:17A(S)	Lapped Channel to Plate Attchmnt:Shear	r 12.637	14.980	-7.782	0.65	10^3 cyc	2.55	-	1.08	0.78	0.71	9.0	127	0.88	0.87	0.52
#33	SSC:18	Lapped Flatbar to Plate Attchmnt:Axial	7.748	8.960	-4.027	0.65	10^3 cyc	2.38	0.83	, - ·	5.73	99.5	0.76	5 1.	5.6.	. 19.0	8 9 9
#34	SSC:18(S)	Lapped Flatbar to Plate Attchmnt:Shear	13.741	16.520	-8.233	0.75	10^3 cyc	3.22	1.26	1.36	3.00 1	0.89	8	19:	1.11	7 7	99.
#35	SSC:19	Lapped Flatbar End Weld Only: Axial	11.081	13.330	-7.472	0.93	10^8 cyc 10^3 cyc	3.61	- 5	1.53	1.12	0.67	1.19	0.48 8.1	1.24	1.23	0.74
							10^8 cyc	0.61	1.5	0.4	1.5	-	7	0.7	1.05	2.58	1.64

	BASELINE CONFIGURATION	SURATION	LOG(Aamp)	LOG(Amg)	œ	STD DEV	RATIO	RMS	FATIGUE	STRENG	H RATIO (MEAN-2S;	2.3% PR(DBABILITY	RMS FATIGUE STRENGTH RATIO (MEAN-2S; 2.3% PROBABILITY OF FAILURE)	Û	
#36	SSC:18(S)	Lapped Flatbar End Weld Only: Shear	(ksi) 11,706	(ksi) 13.970	-7.520	0.83	0,3 €yc	#31 50 50 50	#32	#33	#34	#35	* 36	#37 2	*38 *	#38	#40 20
!		· · · · · · · · · · · · · · · · · · ·					10^8 cyc	0.51	1.25	9.34	1.25	0.83		0.58	0.88	2.13	1.37
#37	SSC:20	Plate Penetration: Axial	8.860	10.250	4.619	99.0	10^3 cyc	2 17	0.79	0.85	0.62	0.56	99.0		0.69	0.68	0.41
#38	SSC:20(S)	Plate Penetration: Shear	10.835	12.870	-6.759	0.83	10^3 cyc	2.9	1.1	1.23	0.0	0.0	0.96	1.45	<u>.</u> -	5.0 6.0 8.0 8.0	0.6
#38	SSC:21(1/4"WELD)	Plate Penetration: Bending	21.192	25.480	-14.245	0.62	10^8 cyc 10^3 cyc	0.58 2.93	5. t. 5. t.	0.38	0.91	0.95	1.14	99.0	10.1	2,43	1.58 0.6
*	SSC:21(3/8"WELD)	Plate Penetration: Bending	19.586	24.250	-15 494	0.62	10^8 cyc	0.24	0.59	0.18 8	0.59	0.39	0.47	0.27	14.0	- 5	9.0
	3770000						10^8 cyc	0.37	0.92	0.25	0.91	0.61	0.73	0.0	0.84	8 %	- -
Ī	(e)17:20ee	Plate Penetration: Shear	13.105	15.320	-7.358	0.83	10^3 cyc	1.83 25	0.72	0.78	0.57	0.51	9.0	0.91	0.63	0.63	0.38
#42	SSC:22	Tee with Stud Attachment: Bndg	8.453	9.400	-3.147	0.32	10^3 cyc	0.62	0.24	0.28	0.19	0.17	0.2	0.3	0.23	0.23	0.85 0.13
#43	SSC:23	Tee with Transv. Channel Attchmnt; Bndg	8.721	9.680	-3.187	0.13	10^8 cyc	9.0 9.86	2.14	0.58 0.58	2.13	2.5 2.5 7.5	1.71	0.99	5.5	3.64	2.33
ì	70.000						10^8 cyc	0.72	1.78	0.48	1.7	1.18	42	0.82	1.24	3.02	1.94
i	2000	I ee win Short CVT Pit Attchmit:Bridg	8.721	9.680	-3.187	0.13	10^3 cyc	25.0	0.21	0.23	0.17	0.15	0. 18 19 19	0.27	0.18	0.18	0.11
#45	SSC:25	Continuous Cruciform	12.096	14.230	-7.090	0.78	10^3 cyc	2.23	78.0	9.0	69.0	0.62	5.7.0	1.1	0.76	0.78	9.0
#46	SSC:25A	Plate with Transv. Side Attachment	15.086	17.650	-8.518	0.91	10^3 cyc	1.74	99.	0.74	5.9	0.48	0.57	0.47	0.71 0.6	1.72 0.59	1.1
#47	SSC:25B	Pit w/ Transv. Side Attchmnt and Brace	11.783	13.890	-6.966	0.63	10^8 cyc 10^3 cyc	0.24 2.32	0.9	0.16 0.98	0.72	5 8	0.48	0.28	0.42	1.02	0.65
97	90.00			;	:		10^8 cyc	0.44	1.08	0.29	1.08	0.72	0.86	0.5	0.78	18	1.18
î	87.766	DIRIC COASE LIRIG	708.7	9.9 DE	946	0.61	10^3 cyc 10^8 cyc	1.16 1.31	3.24 3.24	0.49 0.88	9.36 3.23	0.32 2.15	2.59	0.58	2.27	5.52	0.24
4	SSC:27	Double Lapped Plate with Pfug Welds	7.293	8.240	-3.148	0.58	10^3 cyc	± 5	0.57	0.61	0.45	4.0	0.47	0.72	0.49	0.49	0.3
#20	SSC:27(S)	Double Lapped Plt w/ Plug Welds: Shear	9.391	10.980	-5.277	0.54	10^3 cyc	2.38	0.83	2 2	0.74	5.35 0.68	3.80 0.79	1.19	3.5 0.82	0.81	5.46 0.49
#21	SSC:28	Baseplate with Circular Hole	13.458	15.790	-7.746	0.81	10^8 cyc	0.76	1.89	0.51	1.68	1.25	1.51	0.87	1.32	3.21	2.08
\$	08:0:30	l one Finite Dista Attchmet: Aviet	900	900	4	,	10^8 cyc	0.31	0.78	0.21	0.78	0.52	0.62	0.36	9.5	1.32	0.85
! !				207.0	2	5	10^8 cyc	0.97	2.2	0.65	2.38	1.58	1.91	1.11	1.68	6.24 9.08	0.14 2.62
2	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.366	10.380	-3.368	0.10	10^3 cyc	4.0	0.17	0.19	4.0	0.12	40.0	0.22	0.15	0.15	0.09
¥\$	SSC:31	Out-of-Plane Fig Side Attchmnt: Bndg	8.121	9.430	4.348	0.62	10^3 cyc	2.43	0.95	1.03	0.75	0.67	0.8	1.21	0.83	0.0 83.0	5.0
#52	SSC:31A	Lapped Fing Side Attchmnt: Bndg	8.211	9.250	-3.453	0.44	10~3 cyc	7 8	3.06	0.83	3.05	203	2.0 4.5 5.0	± 5	2.14 4.5 4.5	5.21	3.34
92	ASC:328	In-Plane Side Attchmot to Flance: Bods	202	0200	7	5	10^8 cyc	1.07	2.65	0.72	2.65	1.76	2.12	1.23	1.88	4.52	2.8
}			8	2 2 2	007: †		10~3 cyc 10^8 cyc	0.89	0.62 2.19	0.67 0.6	0. 5 6 0. 6 0.	4 6	1.75	1.01	1.53	9.54	0.32
# 21	SSC:32B	Abrupt Change in Flange Width:Bndg	7.406	8.470	-3.533	0.62	10^3 cyc	1.95	0.76	0.82	9.0	9.54	9.0	0.97	0.67	0.08	0
#28	SSC:33	Lapped Flatbar to Pit w/ Full Wrap:Axial	7.758	8.860	-3.660	0.50		7.	0.68	0.74	0.54	0.48	0.57	0.87	3.17 0.6	0.59	4.96 96.0
#28	SSC:33(S)	Lapped Flatbar to Plt w/ Full Wrap:Shear	14.849	17.970	-10.368	0.81	10^8 cyc	3.53	3.81	0.98	3.61	2.4	2.89	1.67	2.53	6.15	3.85
e e	200	Death Moth Month of the Control						0.39	96.0	0.26	0.85	9.0	0.76	4	79.0	1.63	1.04
2	200	BO BUYUN MINI DECVINO	# O	9	-3.608	0.28	10^3 cyc 10^8 cyc	0.67	0.36 1.67	0.45	0.28	0.25	1.33	0.45	0.31	0.31	0.19
#	SSC:36	Skip Welded Plates with Rathole	11.793	13.890	-6.966	0.63	10^3 cyc	2.32	0.91	0.98	0.72	9.0	0.77	1.16	0	0.79	0.48
#62	SSC:36A	Skip Welded Plates	10.406	11.960	-5.163	0.48	10^3 cyc	1.42	8.5	9.0	. 6 4	0.39	0.4	0.71	0.49	0.48	0.29
#63	SSC:38	Stiffener Plate Penetration: Bndg	8.408	9.450	-3.462	0.38	10^8 cyc 10^3 cyc	0.94	1.18 0.37	0.32	1.17 0.29	0.78	9.0	0.54	0.82	0.32	0.19 0.19
#64	SSC:38(S)	Stiffener Plate Penetration: Shear	12.552	15.630	-10.225	0.88	10^8 cyc 10^3 cyc	0.94 5.68	2.33	0.63	2.33	1.55	1.86	1.08	1.63	3.97	2.54
*84	CF:000		7		ç		10^8 cyc	0.63	1.56	0.42	8	9	1.25	0.72	8 6	2.88	1.7
2	2		3	0.4	50.05	79.0	10~3 cyc	. 5 . 5 . 5	0.76 4.53	1.23	6.6	9.0°	9 8 8	0.87	9.47	9.04	7 8
# 2 0	SSC:42	Bending of Long Attachment	13.105	15.320	-7.358	0.83	10^3 cyc	1.83	0.72	0.78	0.57	20.5	8.8	0.9	0.63	0.63	88.9
#67	SSC:46	Long. Welds on Support Gussets: Axial	8.121	9.430	-4.348	0.62		2.43	0.95	1.03	0.75	0.67	0.8	12.5	0.83	0.83	0.85 0.5
#68	SSC:51(V)	Transv. Stiffnr Pene. Fig Unspprtd: Bndg	9.641	10.790	-3.818	0.07	10^8 cyc	1.24	3.0 6 0.25	0.83	9. 2. 2.	2.03 0.18	2.4 0.2 14	0.32	2.14 0.22	5.21 0.22	3.34 0.13
69#	SSC:52(V)	Transv. Stiffnr Pene. Fig Supported: Bndg	9.643	10.860	4.042	0.19	10^8 cyc 10^3 cyc	0.47	1.17 0.32	0.34	1.17	0.78	0.93	0.54 0.54	0.82	1.99 0.28	1.27
0/#	Generic S/N Curve		9.000	9.903	-3.000	00.0	10^8 cyc	0.51	1.25	0.34	1.25	0.83	- 5	0.58	98.0	2.13	1.37
							10^8 cyc	0.55	1.37	0.37	1.38	0.91	1.08	0.63	98:0	2.33	1.49

	BASELINE CONFIGURATION		LOG(Aamp) LOG(Amg)	LOG(Amg)	ø	STD DEV	RATIO	RMS	FATIGUE	RMS_FATIGUE STRENGTH RATIO (MEAN-28; 2.3% PROBABILITY OF FAILURE)	I RATIO (I	WEAN-2S;	2.3% PROE	SABILITY C	P FAILURE	ត	Ş
¥	SSC:1(all steels)	Baseplate	(KSI) 12.325	14.050	-5.729	0.75	ŀ	0.51	1.52	1.75	. 75	0.42	0.54	*;	0.81	0.65	0.38
9		ing Child Children	90.00	22 040	1000			9.0	0.29	0.35	0.35	0.62	<u>5</u> ;	0.58	0.19	0.12	0.33
‡	SSC:1M	Baseplate Mrd Steel	RC7.07	73.840	-12.229	c S		0.59	3.28 0.22	3.78 0.28	0.78	97	7.0	0.43	4.0	60.0	0.25
¥	SSC:1H	Baseplate HSLA Steel	25.569	30.220	-15.449	0.91		1.08	3.21	3.7	3.7	0.89	7	0.85	1.7	1.38	0.83
i	0	Joseph T. S. C. adminstrated	11 085	13 550	4 100	88.0		84.0	0.17	6.21	0.21	0.37	0.62	¥ 5	0.12	0.07	2 6
ŧ	31.000		2	2	;	3	10^8 cyc	0.75	0.28	0.33	33	92.0	98	25.0	0.18	. 27	0.3
¥	SSC:1(F)	Baseplate Flame Cut	11.134	12.580	4.805	0.60	10^3 cyc	0.42	1.24	24.5	1.42	9.3 7.3	4.	0.33	99.0	0.53	0.32
*	SSC:2	Rolled I-Beam Bending	12.719	14.540	8.048	0.64	10^3 cyc	0.55	1.62	1.87	1.87	0.45	99.0	0.43	98.0	0.69	0.42
}							10^8 cyc	0.77	0.28	9.34	0.34	0.59	-	0.55	0.10	0.12	0.32
#1	SSC:3	Longitudinal Seam	11.750	13.540	-5.948	0.63	10*3 cyc	0.74	3 5	2.53	2.53	0.61	0.78 1.4	0.59	1.17	9 0 0	0.57
*	SSC:3(G)	Ground Long. Seam	12.122	14.040	-6.370	0.74	10^3 cyc	.83	2.47	2.84	284	0.68	0.88	99.0	1.3	90	9.0
*	¥:DSS	Long Fillet Weld Bodo	11.295	13.000	-5.883	0.61	10^8 cyc	0.74	0.39	2.53	2.53	0.82	1.38	0.77	0.28	0.94	5 7
2							10^8 cyc	1.18	0.43	0.52	0.52	0.85	1.55	0.88	0.29	0.19	0.49
# 9	SSC:5	Cvr Pit on I-8m Fig Bndg	7.703	8.690	-3.278	0.48	10^3 cyc 10^8 cyc	0.68 4.74	1.73	2.3	2.31 2.08	9 99 9 98	6.19	3.43 5.43	8 5.	0.74	1.97
£	SSC:6	Dbi I-8m Bridg	11.295	13.000	-5.063	0.61	10^3 cyc	0.74	22	2.53	2.53	0.6	0.78	0.59	1.17	9.0 2.0	0.57
#12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	9.035	10.170	-3.771	0.53	10^3 cyc	0.48	1.42	2	1.6	0.39	0.51	0.38	0.78	0.61	0.37
#13	SSC:7P	LBm w/vrt Web St Prin Stress	9.184	10.440	4.172	0.51	10^8 cyc 10^3 cyc	2.13 0.65	0.78 1.93	2.24 2.24	2 2 2 3 4 7	1.65 0.53	2.77	1.54 0.51	1.02	0.33	0.8
;			9	41.030	3	č	10^8 cyc	2.14	0.78	3, 3	9.0	86.6	2.79	1.55	0.52	5.34	98.0
*	SSC:8	Boned Double Lap	12.048	14.020	n n o	5	10/3 cyc	0.0	0.32	0.38	0.38	0.67	1.13	0.90	0.21	9.1	0.38
#15	SSC:9	Riveted Single Lap	14.887	17.790	-9.643	0.90	10^3 cyc	1.52	4.52	5.2	5.2	57.5	1.61	7.5	2.4	2.5	1.1
#16	SSC:10M	Butt Weld Axial: Mild Steel	12.585	14.870	-7.589	0.88	10^3 cyc	5 t	3.87	4.45	4.45	1.07	3.6	1.03	202	. . 8	-
447	HOLLOW	But Weld Axial HSI A Steel	20 148	24 000	-12 795	98	10^8 cyc	1 12 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	9.45	6.55	6.55	6 8 6 6	1.62	9.0	2 0.3	0.10	0.52
•							10^8 cyc	0.68	0.25	0.3	0.3	0.53	0.89	0.49	0.18	0.11	0.28
#	SSC:100	Butt Weld Axial: Q&T Steel	10.588	12.130	5.124	0.78	10^3 cyc	0.69	2.06	2.37	2.37	1.06	0.73	0.55	0.33	0.88	0.53
#18	SSC:10(G)	Butt Weld Axial:Ground	12.904	15.050	-7.130	0.84	10^3 cyc	0.85	2.83	3.26	3.28	0.78	5	0.75	1.5	121	0.73
# 20	SSC:10A	Butt Weld Bndg	10.914	12.560	-5.468	0.79	10~8 cyc	0.76	2.27	2.61	2.61	0.63	. 19. 18.	0.0	1.2	0.97	0.59
			2000	,	900	9	10^8 cyc	<u> </u>	0.48	0.58	0.58	1.02	7.5	0.95	0.32	0.21	75.0
#2	SSC:11	Sping pleave that ma-	10.073	0.410	-9.705	0.00	10.8 cyc	8:	0.57	0.69	0.69	1.21	70.0	1.13	0.38	0.24	0.65
#22	SSC:12	Tee Stffnr Tapered Fig Thickness Bndg	9.508	10.830	4.398	0.43	10^3 cyc	99.0	1.97	2.27	2.27	0.55	0.7	0.52	2 6	9.0	0.51
#23	SSC:12(G)	Tee Stiffnr Tapered Fig Thickness Bndg	11.215	12.920	-5.663	0.60	10^3 cyc	0.77	2.28	2.62	2.62	0.63	0.81	9.0	121	0.97	0.59
#24	SSC:13	Tee Stiffener Taped Fig Width Bndg	9.947	11.220	-4.229	0.45	10^8 cyc 10^3 cyc	2. 2. 2.	2 5	2. 5. 2. 5.		0.95	0.47	0.88 0.36	0.3	0.19	0.35
Ş		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	45 440	7	č	10*8 cyc	1.43	0.52	0.63	0.83	F 5	1.87	5.03	0.35	0.22	0.59
Si H	\$1.088	USC. CIUCIOIII ANI	12:30	<u>.</u>	PC+: -	ē.	10^8 cyc	1.09	0.4 4.0	0.48	0.48		1.42	0.79	0.26	0.17	0.45
# 58	SSC:15	Loaded Edge Attachment Plate	8.708	9.970	4.200	0.43	10^3 cyc	98.0	2.56	2.95	2.85	0.71	9.68	0.68 0.00	9.38 8.89	= 3	99 -
#27	SSC:16	Partial Pen. Butt Weld	9.486	10.860	4.631	0.58	10^3 cyc	0.82	2.42	2.78	2.3	79.0	0.86	9.	1.28	2 8	0.83
#28	SSC:16(G)	Partial Pen. Butt Weld: Ground	11.555	13.650	-6.960	0.95	10^3 cyc	1.37	8	4.67	4.87	1.12	4	80.	2.15	1.74	1.05
#23		I anned Ande to Plate Attchmot Axial	8.585	9.710	-3.736	0.34	10^8 cyc	1.5	1.81	0.68 80.0	9.08	1.16 0.5	1.95	1.08	98.0	0.23	0.62
ì				: ;			10^8 cyc	2.78	1.02	1.23	1,23	2.16	3.63	2.01	0.67	4	1.15
#30	SSC:17(S)	Lapped Angle to Plate Attchmnt:Shear	12.637	14.980	-7.782	0.65	10^3 cyc	5 5 8 8 8	6.13 0.47	9.75 0.56	0.56	0.99	1.67	0.92	2.18 0.31	0.2	1.07
#3	SSC:17A	Lapped Channel to Plate Attchmnt:Axial	8.317	9.360	-3.465	0.39	10^3 cyc	3.18	1.62	386	1.86	0.45	0.58	0.43	0.86	0.69	0.42
#32	SSC:17A(S)	Lapped Channel to Plate Attchmnt:Shear	12.637	14.980	-7.782	0.65	10^3 cyc	8 8	1.13	4.75	4.75	7	1.47	7	2.19	1.77	70.
#33	SSC:18	Lapped Flatbar to Piate Attchmnt:Axial	7.748	8.960	4.027	0.65	10^8 cyc 10^3 cyc	2 2 2 3 3 3	3.83	0.5 4. 5. ±	0.56 4.41	1.06	1.36	1.02	2.03	1.84	0.53
#34	SSC:18(S)	Lapped Flatbar to Plate Attchmnt: Shear	13.741	16.520	-9.233	0.75	10^8 cyc 10^3 cyc	1.78 1.78	5.73 52.23	2.07 6.01	2:04 6:04	3.65 24.5	6.14 1.85	4. 8. 4. 8.	2.7	2.2	2. 5. 2. 5.
ş		sound Clather Bad Med Onto	11 081	43 330	.7 479	6	10^8 cyc	1.28	0.47	0.56	0.58	0.89	1.67	0.93	0.31	0 0	0.53
Ž				200		\$	10^8 cyc	1.92	0.7	0.85	0.85	40	2.51	38	0.48	18	0.8

	BASELINE CONFIGURATION	GURATION	LOG(Aamp)	LOG(Aamp) LOG(Amg)	00	STD DEV	V RATIO	RMS	S FATIGU	RMS FATIGUE STRENGTH RATIO (MEAN-2S;	TH RATIO	(MEAN-2S;	2.3% PRC	DBABILITY	OF FAILUR	Q	
#38	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	(KSI) 11.706	(ksl) 13.970	-7.520	0.83	10^3 cyc	1.86	#42 4.91	*43 5,85	#44 5.65	#45 1.38	#16 7.7	#46 #47 #48 #49	#48	# c	#50
427	06:000			;			10^8 cyc	1.6	0.59	0.71	0.71	12.	2.09	9.	0.39	0.25	99.0
Ž	330.20	riate Penetration: Axial	8.860	10.250	4.619	99.0	10^3 cyc	1.09 87.0	3.25	3.73	3.73	6.0	1.15	0.86	1.72	1.38	0.84
#38	SSC:20(S)	Plate Penetration: Shear	10.835	12.870	-8.759	0.93	10^3 cyc	1.59	4.72	5.52	5.43	1.3	3.61	7 2	0.67	0.43	. 5
#38	SSC:21(1/4"WELD)) Plate Penetration: Bending	21.182	25.480	-14.245	0.62	10^8 cyc	1.83	0.67	5.48	0.8	4.5	2.38	1.32	4.0	629	0.76
*	COC. 24 (2) (2) (2)		;				10^8 cyc	0.75	0.27	0.33	0.33	0.58	0.98	0.54	2.55 0.18	2.03 0.12	23.0
Î	SSC.Z.(SIG WELD		18.586	24.250	-15.494	0.62	10^3 cyc	2.68	6.7	80.0	8.08	2.18	2.81	12.5	4.19	3.39	5.05
#	SSC:21(S)	Plate Penetration: Shear	13.105	15.320	-7.358	0.83	10^3 cyc	-	2.97	3.42	3.42	0.82	50.1	0.78	1.57	1.27	0.49
#42	SSC:22	Tee with Stud Attachment: Bndg	8.453	9.400	-3.147	0.32	10^8 cyc 10^3 cyc	- 35	0.37	1.15	1.15	0.78	5.1 8.0	0.72	0.24	0.16	14.0
#43	SSC:23	Tee with Transv. Channel Attribuda	8 773	000	,	9	10^8 cyc	2.73	-	1,2	7	2.12	3.57	1.88	0.66	0.43	1.13
		Something Street, Change Street, Blick Stree	0.72	9.080	-3.18/	0.13	10^3 cyc	0.29 2.27	0.83			0.24	0.31	0.23	0.48	0.37	0.23
Ĭ	SSC:24	Tee with Short Cvr Pit Attchmnt:Bndg	8.721	9.680	-3.187	0.13	10^3 cyc	0.29	0.87	. 🖵	_	0.24	0.31	0.23	0.48	0.37	0.23
#	SSC:25	Continuous Cruciform	12.096	14.230	-7.090	0.78	10^3 cyc	1.22	3.61	4.15	4.15	1.78 -	2.98 1.28	2. 0 2. 86	1.91	0.38	8 6
*	SSC:25A	Plate with Transv. Side Attachment	15.086	17.650	-8.518	0.91	10^8 cyc	1.29	0.47	0.57	0.57	- 6	1.68	0.83	0.31	0.2	5.0
77	SSC:25B	P# w/ Transv Side Attchmet and Brace	44 703	72	9		10^8 cyc	0.77	0.28	0.3	0.34	0.59		0.55	0.19	0.12	0.32
			2	13.680	9	200	10~3 cyc	1.38	3.78	4.33 0.61	4.33	2 5	表 -		£.88	1.61	0.97
Î	920.76	Weided Cover Plate	7.902	8.910	-3.348	0.61	10^3 cyc	0.84	1.89	2.17	2.17	0.52	0.67	0.5	-	0.81	0.49
1	SSC:27	Double Lapped Plate with Plug Welds	7.293	8.240	-3.146	0.58	10^3 cyc	0.79	2.33	2.69	2.69	0.65	0.83	0.62	124	0.65	1.72 0.6
#20	SSC:27(S)	Double Lapped Pft w/ Plug Welds: Shear	9.391	10.980	-5.277	95.0	10^8 cyc	6.39	2.34	2.82	2.82	4.95	8.33	4.62	45.5	- ;	2.65
*	86:088	de la companya de la	,				10^8 cyc	2.41	0.88	80.	98	1.87	3.15	3 7.	0.58	0.38	
		Dasephate with Circular Fore	13.456	15.780	-7.746	9.0	10 ⁴³ cyc	1.07	3.19 0.38	3.67	3.67	0.88	1.13	0.85	1.69	1.37	0.83
#25	SSC:30	Long Finite Plate Attchmnt: Axial	8.299	9.250	-3.159	0.31	10^3 cyc	0.38	1.4	1.31	1.31	0.32	3 4	0.3	9.0	0.49	0.29
#23	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.366	10.380	-3.368	0.10	10^3 cyc	3.07	1.12	1.35	1.35	2.38	4 7	27.5	0.74	0.48	1.27
75#	SSC:31	Out-of-Blane Fin Side Attribunt: Bada		6			10^8 cyc	1.52	0.56	0.67	0.67	1.	1.99	<u>.</u>	0.30	0.24	0.63
		Polo minor and Burgins and	0.121	0.430	4.540	0.62	10~3 cyc	3.92	3.93	172	4.52	9. 2.09	* ;	2.5	2.08	1.68	2 5
9 **	SSC:31A	Lapped Fing Side Attchmnt: Bndg	8.211	9.250	-3.453	4.0	10^3 cyc	0.58	1.72	1.97	1.97	0.48	0.61	9.48	6.9	0.73	4
#28	SSC:32A	in-Plane Side Attchmnt to Flange: Bndg	8.706	9.970	4.200	0.43	10~3 cyc	3.38 0.88	2.56	2.95	2.85	2.63	4.42 0.91	2.45	0.82	0.53	14.
#57	SSC:32B	Abrupt Change in Flance Width: Budo	7.408	8.470	.3 533	6	10^8 cyc	2.8	1.02	1.23	123	2.17	3.66	2.02	0.68	0.44	1.18
*	26.030						10^8 cyc	5.78	2.12	2.55	2.55	4.49	7.55	9.04 9.18	1.67	0.91	0.82 2.4
2	25.55	Lapped Flatbal (O Pit W/ Full Wrap:Axia)	1.738	8.860	-3.660	0.50	10^3 cyc	0.85	2.82	3.25	3.25	0.78	- ;	0.75	1.5	1.21	0.73
#28	SSC:33(S)	Lapped Fiatbar to Pit w/ Full Wrap:Shear	14.849	17.970	-10.368	0.81	10^3 cyc	1.93	5.72	6.58	6.58	3.58 1.58	5 8 8 8	1.52	1.12 3.03	0.72	1.92
09#	SSC:35	Butt Weld with Backing Bar	9.044	10.190	-3.808	0.28	10^8 cyc 10^3 cyc	<u>5</u> 5	1.47	0.54 69	0.54 1.09	0.95	1.6	0.88	0.3	0.19	0.51
£	SSC:36	Skip Welded Plates with Rathole	11.793	13 890	96	0.83	10^8 cyc	2.13	0.78	76.0	78.0	1.65	2.78	7	0.52	0.33	0.88
#82	49E:088	sold behow ride	9			} ;	10^8 cyc	1.38	0.51	0.61	0.61	6.	¥ 5		0.33	1.61 0.22	0.97
9		0000	8	B	-0.103 -0.103	8	10^3 cyc 10^8 cyc	1.5	0.55	2.64 0.68	2.64 0.66	0.64 1.16	0.81 1.86	0.61	1.22 38	0.98	0.59
ç ŧ	885.388	Stiffener Plate Penetration: Bndg	8.408	9.450	-3.462	0.36	10 ⁴³ cyc	0.51	1.52	1.75	1.75	0.42	5.0	0	0.81	0.65	0.39
#	SSC:38(S)	Stiffener Plate Penetration: Shear	12.552	15.630	-10.225	0.88	10/3 cyc	3.1	9. 6 9. 13	10.58	10.58	2.55	3.89	2.15 2.44	0.72 4.87	3.94	1.24 2.38
#65	SSC:40	Stiffener Intersection: Bending	7.408	8.470	-3,533	0.62	10^8 cyc 10^3 cyc	2 8	3.16 3.16	0.88 3.63	0.88 3.63	1.55	2.61	1.44	0.48	0.31	0.83
99#	SSC:42	Bending of Long Attachment	13.105	15.320	-7.358	0.83	10^8 cyc 10^3 cyc	5.78	2.12	3.47	2.55	6.49	7.55	4.16	7.	6.9	7
487	SSC:46	Long Works on Support Custate: Avial	4	9	,	;	10^8 cyc	-	0.37	4	4	0.78	5.5	0.72	0.24	5.0	5 6
		Corp. sector of coppor Guesdas. Addi	0.161	0.430	4.348	0.62	10^3 cyc	3.91	3.93	4.52	4.52	97.0	4.4	2.5	2.08	1.68	2.5
89 #	SSC:51(V)	Transv. Stiffnr Pene. Fig Unspprtd: Bndg	9.641	10.790	-3.818	0.07	10^3 cyc	0.35	9 5	1.19	1 2 5	6,29	0.37	0.28	0.55	5 5	1.62 0.27
69	SSC:52(V)	Transv. Stiffnr Pene. Fig Supported: Bndg	8.643	10.860	-4.042	0.19	10^3 cyc	4.	1.32	5.5 15.5	1.51	0.36	0.47	1.08 0.35	0.36	0.56	0.34
#10	Generic S/N Curve		9.000	9.903	-3.000	0.00	10^3 cyc	0.18 81.0	0.53	0.0	0.71	1.24 0.15	2.09 0.19	0.16 41.0	0.39	0.25	0.68
							10^8 cyc	1.75	9.0	0.77	0.77	1.35	2.28	1.26	0.42	0.27	0.72

	BASELINE CONFIGURATION	_	LOG(Aamp) LOG(Amg)	LOG(Amg)	. 60	STD DEV	RATIO	RMS	FATIGUE	STRENGT	H RATIO (A	EAN-2S;	2.3% PRO	RMS FATIGUE STRENGTH RATIO (MEAN-2S; 2.3% PROBABILITY OF FAILURE)	OF FAILURE	6	
ŧ	CSC-1/all etenie)	<u> </u>	(ksi)	(ksi)	-5 720	0.75	10 ^{4,3} (3)	#51	#52 1.34	#53	# BE 0	55	#56 0.59	#57 0.48	#58 0.54	627	103
•	(2002)					•	10^8 cyc	0.8	0.28	0.52	0.2	0.24	0.29	0.1	0.17	0.65	0.37
¥	SSC:1M	Baseplate Mild Steet	20.259	23.940	-12.229	0.71	10^3 cyc	50.5	2.89	4.63	28.0	1.97	1.28	20.5	1.18	0.57	2.23
£3	SSC:1H	Baseplate HSLA Steel	25.569	30.220	-15.449	0.91	10 ⁴³ cyc	5	2.83	4.53	0.82	1.87	1.25	1.02		0.56	2.18
: :		: : :	;	9			10^8 cyc	0.48	0.18	0.31	0.12	41.0	0.17	0.08	5.5	0.39	0.22
ī	SSC:1Q	Baseplate Q & S(66)	C88.LL	13.550	28. c	89.0	10% cyc	0.3/	0.25	0.40 0.40	0,19	0.22	0.27	0.13	0.45	0.0	0.35
## \$2	SSC:1(F)	Baseplate Flame Cut	11.134	12.580	4.805	0.60	10^3 cyc	0.39	9.5	1.75	0.31	0.72	97.0	0.39	4.0	27.0	9.0
*	\$\$C:2	Rolled I-Beam Bending	12.719	14.540	-6.048	0.64	10^3 cyc	0.51	1.43	2.28	0.4	0.95	0.63	0.51	0.57	0.28	} =
ş	6:00	mea Centraly	11 750	13 540	970 5	6	10^8 cyc	0.77	0.25	3.13	0.2	0.23	0.27	0.13	0.17	0.63	0.38
ì	996.9		3	25.5	1	3	10^8 cyc	1.08	0.35	0.7	0.28	0.32	9.3	0.19	550	0.88	0.5
₩	SSC:3(G)	Ground Long. Seam	12.122	14.040	-6.370	0.74	10^3 cyc	7.0	2.17	3.48	0.63	<u> </u>	98.5	0.78	0.87	0.43	1.68
*	SSC:4	Long. Fillet Weld Bndg	11.295	13.000	-5.663	0.61	10^3 cyc	0.69	1.84	E	0.58	1.28	0.86	0.7	0.78	0.39	5.5
. 01#	3:08S	Cvr Pit on I-Bm Flo Bridge	7.703	8.690	-3.278	0.48	10^8 cyc	1.19 0.63	0.39	0.78 2.83	0.3	1.17	0.42	0.2	0.28	0.95	6.58 8.58
			,	9		č	10^8 cyc	4.77	1.55	3.11	12.5	7.5	1.69	0.82	50.5	3.88	7,73
	SSCG	Boug Ha-I Ign	CR7:LI	13.000	-0.003	6.0	10.8 cyc	1.19	0.39	0.78	0.3	0.35	0.42	70	92.0	0.97	0.58
#12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	9.035	10.170	-3.771	0.53	10^3 cyc	0.45	1.25	2.01	92.3	0.83	0.56	0.45	0.5	0.25	0.97
#13	SSC:7P	I-Bm w/vrt Web St Prin Stress	9.184	10.440	4.172	0.51		90	69.	2.72	64.	27.5	0.75	0.61	0.68	8	. E.
*	8000	Botted Double Lap	12.849	14.820	6.549	0.81	10~3 cyc	0.68 0.68	1.86	2.98	5. 45.	1.23	0.82	0.37	0.75	0.37	1.43
			;				-	0.87	0.28	0.57	0.22	0.25	6.3	0.15	0.19	17.0	4.0
#13	SSC:8	Riveted Single Lap	14.887	17.790	9.643	8.0	10~3 cyc	2 6	8 7	8. G 0. G	0.27	4 F	0,38	5.0	0.23	9 9	0.40
#16	SSC:10M	Butt Weld Axial:Mild Steel	12.585	14.870	-7.589	0.88	10^3 cyc	1.21	3.4	5.46	0.98	2.28	1.51	1.23	1.37	99.0	2.63
#17	SSC:10H	Butt Weld Axiat:HSLA Steel	20.148	24.000	-12.795	98.0	10^8 cyc	23 23	3.46	5.55	0.32	2.29	1.53	1.25	1.39	0.69	2.67
i							10^8 cyc	0.69	0.22	0.45	0.17	0.2	0.24	0.12	0.15	0.56	0.32
#18	SSC:100	Butt Weld Axial:Q&T Steel	10.588	12.130	-5.124	0.76	10^3 cyc	0.64 1.38	1.81	o o	0.52	- 0 7 7	0. 0.	0.24	0.73	1.12	4 4
#19	SSC:10(G)	Butt Weld Axial:Ground	12.904	15.050	-7.130	0.84	10^3 cyc	0.89	2.48	•	0.72	1.65	7	6.0	- 5	0.5	1.92
£29	SSC-10A	Butt Weld Bodg	10.914	12.560	-5.468	0.79	10*8 cyc	10.0	1.99	32 6	8 8	1,32	88.0	0.72	80	0.45	15.
ì	1 1000				100		10^8 cyc	1.32	0.43	0.88	0.34	0.39	0.47	0.23	0.28	1.07	9.6
	SSCIL	Pur part Med Bridg	10.073	12.410	-0./05	0.00	10^8 cyc	1.57	0.51	8 5	0	0.46	95.0	0.27	, 5	1.28	0.73
#22	SSC:12	Tee Stffnr Tapered Fig Thickness Bndg	9.506	10.830	-4.398	0.43	10^3 cyc	0.62	1.73	2.78	0.5	5. 58	0.77	0.62	0.7	2. c 2. c 2. c	£. 8
#23	SSC:12(G)	Tee Stiffnr Tapered Fig Thickness Bndg	11.215	12.920	-5.863	0.60	10^3 cyc	0.71	7 7	3.21	0.58	3 8	0.89	0.72	0.8	8	7
#2#	SSC:13	Tee Stiffener Taped Fig Width Bndg	9.947	11.220	4.229	0.45	10^8 cyc 10^3 cyc	1.23 0.42	<u> </u>	8.0 88.1	0.34	0.36	0.52 0.52	0.21 0.42	0.27	- 53	0.97
				;		į	10^8 cyc	7.	0.47	80	0.37	0.42	0.51	0.25	0.31	1.1	0.67
#52p	\$SC:14	Disc. Cructom Axial	12.80	15.140	RS#: /-	5		3.1	0.35	0.71	0.28	0.32	0.39	. 0 2 3	0.24	0.89	0.51
# 58	SSC:15	Loaded Edge Attachment Plate	8.708	9.870	4.200	0.43		282	2.28	3.62	0.65	0.83		0.0	9.0	2.29	1.3
#27	SSC:16	Partial Pen. Butt Weld	9.486	10.860	4.831	0.58	10^3 cyc	0.78	2.13	3.42	0.62	<u>+</u>	9.5	0.77	98.0	0.42	40.0
#28	SSC:16(G)	Partial Pen. Butt Weld: Ground	11,555	13.650	-6.960	0.95		1.27	3.57	5.73	1.03	2.37	1.58	1.28	4	2.5	2.78
£	SSC:17	I soced Acole to Plate Attchmot:Axial	8.585	9.710	-3.736	0.34	10^8 cyc	1.51	1.59	0.98 2.56	0.38	5 5 8	0.53	0.28	0.32	- 8 8 8	2. 5.
						3	10^8 cyc	2.8	6.6	1.83	17.0	0.82	8.0	0.48	9.0	5.28	5.
00 #	SSC:17(S)	Lapped Angle to Plate Attchmit:Shear	12.63/	14.880	-1.782	0.65	10~3 cyc	1.29	0.42	, o	0.33	0.38	0.48	0.22	0.28	1.05	9.0
#31	SSC:17A	Lapped Channel to Plate Attchmnt: Axial	8.317	9.360	-3.465	0.39	10^3 cyc	3.19	27.5	2.29	2.0	9.0	0.63	0.55	0.57	0.28	1.1
#35	SSC:17A(S)	Lapped Channel to Plate Attchmnt:Shear	12.637	14.980	-7.782	0.65	10^3 cyc	2 5	3.63	5.83	1.05	2.4	1.61	1.3	1.48	0.72	5.0
#33	SSC:18	Lapped Flatbar to Plate Attchmnt:Axial	7.748	8.960	-4.027	0.65	10^3 cyc	77	3.37		0.97	523	6.6	2.5	8. 8.	0.67	5.8
#3*	SSC:18(S)	Lapped Flatbar to Plate Attchmnt:Shear	13.741	16.520	-9.233	0.75	10^3 cyc	1.64	. 4 9. 65	7.37	1.33	3.5	2 2	1.85	28.	6.9	3.55
#32	SSC:19	Lapped Flatbar End Weld Only: Axial	11.081	13.330	-7.472	0.93	10^8 cyc 10^3 cyc	1.29	5.12	0.84 8.25	1.49	3.4	2.28	1.85	2.07	E 2	3.97
:		,					10^8 cyc	1.94	0.63	1.28	0.48	0.57	0.69	0.33	0.42	1.57	6.0

	BASELINE CONFIGURATION	URATION	LOG(Aamp)	LOG(Amg)	ω.	STD DEV	/ RATIO	RMS	RMS FATIGUE	STRENGI	'H RATIO ((MEAN-2S;	2.3% PRO	OBABILITY	r OF FAILURE)	ũ	
#38	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	11.706	(KSI) 13.970	-7.520	0.93	10^3 cyc	#51 1.54	#52 4.32	#53 6.93	#54 1.25	#55 2.88	#56 1.82		#58 174	#59 0.86	75 V
#37	SSC:20	Plate Penefration: Axial	9.860	10.250	4.810	88.0	10^8 cyc	£ 5	0.52	1.05	0.41	0.47	0.57	0.28	0.35	1.34	0.75
			200	067.01	<u> </u>	8	10*3 cyc	2.78	2.83 0.8	1.81	0.71	1.89 0.82	0.99	0.03	1.15 0.6	2.28	2.2
86 #	SSC:20(S)	Plate Penetration: Shear	10.835	12.870	-6.759	0.93	10^3 cyc	84.	4.15	9.66	2 ;	2.75	1.84	1.5	1.67	0.83	3.21
#39	SSC:21(1/4"WELD)	Plate Penetration: Bending	21.192	25.480	-14.245	0.62	10^3 cyc	4.69	2. 1. 8.	6.7	12.	2.77	1.85	0.32 1.5	4.0 4.88	0.83	3.22
440	SSC:21(3/8"WELD)	Plate Penetration: Bending	19.586	24.250	-15.494	0.62	10*3 cyc	2.78	6.95	11.15	0.18 2.01	4.6 22	3.08	0.13 2.5	0.16 2.8	1.38	5.37
ž	SSC:21(S)	Plate Penetration: Shear	13,105	15.320	-7.358	0.83	10^8 cyc	1.18 0.93	0.38	0.77	0.3	0.35	0.42	0.5	0.25	98.0	0.55
24	SSC:33	Tee with Stud Attechment: Bods	9	9	;	8	10^8 cyc	1.0	0.33	0.66	0.28	0.29	0.38	0.17	22	0.82	0.47
į	77.000	Sold Stad Stad Stadelling III.	0.40	9.40	-6.14/	0.32	10^3 cyc	2.75	0.88 0.88	- 2	0.25	0.58	0.39	0.32	0.35	0.17	0.68
1	SSC:23	Tee with Transv. Channel Attchmnt:Bndg	8.721	9.680	-3.187	0.13	10^3 cyc	0.27	0.78	123	0.23	5.5	25.0	0.28	0.31	0.15	0.58
#	SSC:24	Tee with Short Cvr Pit Attchmnt:Bndg	8.721	9.680	-3.187	0.13	10^3 cyc	0.27	0.76	12	0.58	0.51	0.0 2.0 3.0	0.38	0.49	1.86 0.15	0.59 0.59
#15	SSC:25	Continuous Cruciform	12.096	14,230	-7.090	0.78	10^8 cyc	2.28	2.7	1.48	0.58	0.67	0.81	0.39	0.49	1.86	90.
4	*10.000					2	10^8 cyc	<u>.</u>	0.42	0.85	0.33	0.38	0.48	0.22	0.28	1.05	2.45 0.6
Î	V67:000	riate with Hansy, orde Attachment	15.086	17.650	-6.518	0.91	10^3 cyc	0.88	2.48	3.97	0.72	4 6	1.1	0.89	- 5	9.49	1.91
#	SSC:25B	Pit w/ Transv. Side Attchmnt and Brace	11.793	13.890	-6.966	0.63	10^3 cyc	1.18	3.31	5.31	98.0	2.19	7	1.19	1.33	99.0	2.55
#48	SSC:26	Welded Cover Plate	7.902	8.910	-3.348	0.61		0.59	1.66	2.86	0.33	. :	0.74	0.24	0.3	1.13 0.33	1.28
#49	SSC:27	Double Lapped Plate with Plug Weids	7.293	8.240	-3.146	0.58	10^8 cyc	4.17 7.17	1.35	2.72	6. 8. 8.	1.22	1.48 24 24	0.72	6.0	3.39	2 .
9	(9)10:555	Control of the state of the sta	6				<u> </u>	6.43	2.08	4.19	1.63	88.	2.28	; <u>-</u>	1.38 8.	5.22	2.99
2	(6) 77.000	Double Lapped Fit W. Fing Welds: Shear	E SE	10.980	-5.277	40.0	10^3 cyc	- 5 - 5 - 5 - 7	3.4	5.45	0.88	2.25	1.51	2 5	1.37	0.68	2.62
#21	SSC:28	Baseplate with Circular Hole	13.458	15.790	-7.748	0.81	10^3 cyc	-	2.8	4. 5.	0.81	1.86	1.24	1.01	1.13	0.56	2.13
#52	SSC:30	Long Finite Plate Attchmnt: Axial	8.289	9.250	-3.159	0.31	10^8 cyc	0.36	0.32	0.65 1.6	0.25	0.29	0.35	0.17	27.0	0.81	0.47
*	A06:308	I one Einite Diete Attahmet. Bude	900	0000	9	,	10^8 cyc	3.09	-	2.01	0.78	0.9	1.09	0.53	98.0	2.51	‡
}		Cold Talks Ties Auditing Bing	9.300	10.380	305.5	0.10	10^3 cyc 10^8 cyc	1.53	0.62		0.18 0.39	0.45	0.28	0.22	0.25	0.12	0.48
3	SSC:31	Out-of-Plane Fig Side Attchmnt: Bndg	8.121	8.430	4.348	0.62	10^3 cyc	1.23	3.46	35.5	-	2.28	1.53	124	1.39	0.69	2.67
#22	SSC:31A	Lapped Fing Side Attchmnt: Bndg	8.211	9.250	-3.453	44.0	10~3 cyc	# # 6 6 7	1.5	2.57	- 4	1.15	1.4	0.68	0.85	3.2	1.83
95#	SSC:32A	In-Plane Side Attchmnt to Flange: Bridge	8.706	9.970	4 200	670	10^8 cyc	3.41	1.1	2.23	0.87	- 5	1.21	0.59	0.73	2.77	1.59
#E7	000.000						10^8 cyc	2.82	16.0	1.84	0.72	0.83		0.48	0.61	2.29	1.3
2	990:358	Abdupt Change in Plange Width: Bhdg	7.408	8.470	-3.533	0.62	10^3 cyc 10^8 cyc	0.88 5.82	2.78 1.89	3.8	1.48	<u> </u>	2.08		1.12	0.55	2.14
#28	SSC:33	Lapped Flatbar to Pit w/ Full Wrap:Axial	7.758	8.860	-3.660	0.50	10 ⁴³ cyc	0.88	2.48	3.98	0.72	2	1	0.69	3-	0.49	1.92
#28	SSC:33(S)	Lapped Flatbar to Plt w/ Full Wrap: Shear	14.849	17.970	-10.368	0.81	10~8 cyc 10^3 cyc	1.79	5.03 5.03	3.03 8.07	1.18	3.38 8.55	1.65 2.23	8. F	2.03	3.78	2.16 3.88
09#	SSC:35	Butt Weld with Backing Bar	9.044	10.190	-3 808	82	10^8 cyc	1.23	4.6	8.0	0.31	98.0	4.0	0.21	0.26	- 8	0.57
¥	96:000	Chi Ministed Distant	5				10^8 cyc	2.15	0.7	7	0.55	0.63	0.76	0.37	0.46	1.74	
•		CAP TOTAL TIEROS WIST NATIONAL	2	3.080	9	200	10^3 cyc	1.39	3.31 0.45	5.3	96.0 32.0	2.18 0.41	1.47	1.19	1.33	0.66	2.55
#25	SSC:36A	Skip Welded Plates	10.406	11.960	-5.183	0.48	10^3 cyc	0.72	2.02	3.24	0.58	2 3	0.89	0.73	0.81	*	1.56
#63	SSC:38	Stiffener Plate Penetration: Bndg	8.408	9.450	-3.462	0.38	10^3 cyc	0.48	1.34	2.14	0.39	0.89	0.59	0.48	0.54	0.25	1.03
#84	SSC:38(S)	Stiffener Plate Penetration: Shear	12.552	15.630	-10.225	0.88	10^8 cyc 10^3 cyc	3.88	0.97 8.09	1.95	0.76 2.34	0.88 5.38	5.08 8.58	0.51	3.28	2.44	1.4 8.24
\$85	SSC:40	Stiffener Intersection: Rending	7 408	470	636	6	10^8 cyc	2.01	0.65	1.31	0.51	0.59	0.71	0.35	0.43	1.63	9.
	! i		3	2	2000	70.0	10^8 cyc	5.82	1.89	4 0 0	9.0	<u> </u>	1.23 2.06		1.12	0.55	2.14 4.14
98#	SSC:42	Bending of Long Attachment	13.105	15.320	-7.358	0.83	10^3 cyc	0.93	2.61	4.19	0.76	1.73	1.16	96.0	50.1	0.52	2.02
#87	SSC:46	Long. Welds on Support Gussets: Axial	8.121	9.430	4.348	0.62	10^3 cyc	1.23	3.46	2. 2. 4. 2.	6.4	2.28	1.53	1.24	1.39	0.82	2.67
89	SSC:51(V)	Transv. Stiffnr Pene. Flg Unspprtd: Bndg	9.641	10.790	-3.818	0.07	10^8 cyc 10^3 cyc	3.94 0.33	1.28 0.91	1.46	0.28	1.15	- 3	0.68	0.85	3.2	1.83
89#	SSC:52(V)	Transv. Stiffnr Pene. Fla Supported: Brida	8.643	10.880	4 042	9	10^8 cyc	5.5	0.49	96.0	0.38	4:	0.53	0.26	0.32	1.22	0.7
1					!	2	10^8 cyc	1.61	0.52	8 5	3.4	0.47	0.57	0.28	0.35	1.3	0.75
•	Generic S/N Curve		000	8.803	-3.000	8	10^3 cyc 10^8 cyc	1.76	0.47	1.15	0.45	0.34	0.21	0.17	0.19 85.0	0.08	0.36
							1, 1, 1	:	į	:	ř	5	70.0	?	C.30	2	79.0

	BASELINE CONFIGURATION		LOG(Aamp) LOG(Amg)	LOG(Amg)	æ	STD DEV	RATIO	RMS	FATIGUE	STRENGT	H RATIO (I	MEAN-2S;	2.3% PRC	BABILITY (RMS FATIGUE STRENGTH RATIO (MEAN-2S; 2.3% PROBABILITY OF FAILURE)	-	9
¥	SSC:1(all steels)	Baseolate	12.325	14.050	-5.729	0.75	10^3 cyc	3	990	-	0.17	0.48	0.51	0.39	1.48	2	2.85
							10^8 cyc	0.58	0.53	0.27	*	0.14	9 .0	0.2	0.54	0.5	0.46
¥	SSC:1M	Baseplate Mild Steel	20.259	23.940	-12.229	0.71	10^3 cyc	0.87	54.5	2.16	98.9	5 2 3	Ξ.	4 6	3.16	2.48	6.15
	1		000	000	,	2	10^8 cyc	0.43	0.39	0.5	6.0	5.5	0.59	5 5	*	0.3	4 6
¥	SSC:1H	Baseplate HSLA Steel	50°02	30.220	4.0	5	10.3 cyc	0.03	5 0	0.16	0.33	5 6	0.48	0.12	0.32	0.3	0.27
7	SSC:10	Baseplate Q & T Steel	11.985	13.550	-5.199	99.0	10^3 cyc	0.31	0.51	0.77	0.13	0.37	0.39	0.3	1.13	0.89	2.19
							10^8 cyc	0.54	0.5	0.25	0.38	0.13	0.75	0.19	0.51	0.47	6.43
\$	SSC:1(F)	Baseplate Flame Cut	11.13	12.580	4.805	0.60	10^3 cyc	0.33	9.0	5.6	0.13	0.38	0. 0 24. 8	0.31	0 2. 19	9.0	2.32
¥	SSC2	Rolled I-Beam Bending	12.719	14.540	6.048	9.0	10^3 cyc	0.43	2.7	1.07	0. 85	0.51	0.55	4	1.58	_	3.04
2							10^8 cyc	0.55	0.51	0.28	0.38	0.13	0.77	0.2	0.51	-	4.0
#1	SSC:3	Longitudinal Seam	11.750	13.540	-5.948	0.63	10^3 cyc	0.59	9.0	5 5 5 8	2 2	0.7	1.08	9.20	2.12		0.62
\$	SSC:3(G)	Ground Long. Seam	12.122	14.040	-6.370	0.74	10^3 cyc	99.0	8	1.62	0.27	0.78	0.83	0.63	2.38		4.62
:							10^8 cyc	0.77	0.71	0.38	0.53	0.18	1.08	0.27	0.71		0.61
2	SSC:4	Long. Fillet Weld Bndg	11.295	13.000	-5.683	0.61	10^3 cyc	0.59	98.0	5 5	0.24	2.0	0.74	95.5	2.12		4. C
#10	SSC:5	Cvr Pit on I-Bm Fig Bridg	7.703	8.690	-3.278	0.48	10% cyc	0.53	0.88	1.32	0.22	9.0	0.68	0.51	1.93	1.53	3.76
į	;			,	600	6	10^8 cyc	3.43	3.16	1.59	2.37	0.82	7.7	1.21	 5 5		2.73
Ē	e coses		CR7:1	3.69	2000	5	10.8 cyc	0.88	0.79	6.0	0.59	0.0	1.18	0.3	0.79		0.88
#12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	9.035	10.170	-3.771	0.53	10^3 cyc	0.38	0.62	9.0	0.15	0.45	0.48	0.36	1.37		2.67
#13	SSC:7P	1-Bo w/wt Web St Prin Stress	9.184	10.440	4.172	0.51	10*8 cyc	. S	0.84	1.27	0.25	0.61	0.65		58.		3.6
2							10^8 cyc	1.55	1.43	0.72	1.07	0.37	2.14	0.55	4:		1.23
#14	SSC:8	Botted Double Lap	12.849	14.820	-6.549	0.81	10^3 cyc	0.58	0.92	239	200	0.67	0.71	9.00	0.03		0.0 40 60 60
#15	SSC:9	Riveted Single Lap	14.887	17.790	-9.643	0.90	10^3 cyc	7	1.97	2.98	0.48	1.	1.52	1.15	4.36		8.47
:						;	10% cyc	0.78	0.7	0.35	0.53	0.18	1.05	0.27	7.0	98.0	9.6
#18	SSC:10M	Butt Weld Axial: Mild Steel	12.585	14.870	-7.589	0.88	10 ⁴³ cyc	50.0	1.69 28.6	2.55	0.42	2.5	1 2	9.0	3.73 0.83	0 78	6.7
#17	SSC:10H	Butt Weld Axial: HSLA Steel	20.148	24.000	-12.795	96.0	10^3 cyc	1.05	1.72	2.59	0.43	1.25	1.33	-	3.79	2.99	7.37
	:		;	,		i	10^8 cyc	0.49	0.45	0.23	9.34	0.12	0.68	0.12	9.48	5	0.30 0.00
# 20	SSC:100	Buft Weld Axial:Q&T Steel	10.588	12.130	-5.1Z 4	9.78	10/8 cyc	6.00 0.00	0.9 1.0	. o	0.69	0.24	1.37	0.35	0.92	8.0	0.78
#18	SSC:10(G)	Butt Weld Axial: Ground	12.904	15.050	-7.130	0.94	10^3 cyc	0.75	1.24	8.	0.31	6.0	0.95	0.72	2.73	2.15	5.31
Ş	401:000	7 - N	40.04	12 580	5.488	0 70	10^3 cyc	0.72	0.67	9,0	0.5	72.0	0.76	0.58	2.18	1.72	4.25
2. *	990.108	ford was upo	10.5	200		5	10^8 cyc	0.95	0.87	0.44	99.0	0.23	1.31	8	0.88	0.82	0.75
#51	SSC:11	I-Bm Butt Weld Bndg	10.675	12.410	-5.785	0.68	10^3 cyc	80 5	£ 5	1.98	0.33	0.95	Ę.	7.0	2.9	5.29	5.64
#22	SSC:12	Tee Stiffur Tapered Fig Thickness Bndg	9.508	10.830	4.398	0.43	10^3 cyc	0.52	98.0	1.3	0.21	0.62	8.0	0.5	6.	3.5	3.69
			:			;	10^8 cyc	1.37	1.27	9.0	0.95	0.33	5. 5.	0.49	1.27	<u>.</u>	90.
#53	SSC:12(G)	Tee Siffin Tapered Fig Thickness Bndg	11.215	12.920	-5.863	0.60	10*3 cyc	9.0	9 6	6.1.0	0.63	0.72	2.2	0.3	0.82	. 7.0	0.7
#24	SSC:13	Tee Stiffener Taped Fig Width Bndg	9.947	11.220	4.229	0.45	10 ⁴³ cyc	0.38	0.58	0.88	0.15	0.42	0.45	9.34	1.29	2.02	2.5
1	77.000	Conditions Acid	13	15 140	7.430	5	10~8 cyc	5 6	6.5	5 C	2 6	5 5	2 =	200	6 E	2.0	6.15
67#	<u>+</u>		9	2			10^8 cyc	0.79	0.72	0.37	0.54	0.19	8	0.28	0.73	0.68	0.62
#28	SSC:15	Loaded Edge Attachment Plate	8.706	9.970	7.200	0.43	10^3 cyc	0.68	1.12	5 2 3	0.28	0.81	0.86 8 4	0.65	1.88	1.95	4 -
#27	SSC:16	Partial Pen. Butt Weld	9.466	10.860	4.631	0.58	10^3 cyc	8	8	1.59	0.26	0.77	0.82	0.62	2.33	2	3
9	()	Daniel Dan Det Minist	11 666	43 BEO	8	9	10^8 cyc	84.	1,38	0.69	8.5	0.35 20 0.25	2.05	0.52	3.81	3.08	71.1
97#	99C: 10(G)	rainal rell. Duk vyekt. Glodin	3	200	2	3	10^8 cyc	8	-	0.5	0.75	0.26	5.	0.38	-	0.93	98.0
#28	SSC:17	Lapped Angle to Plate Attchmnt:Axial	8.585	9.710	-3.738	0.34	10^3 cyc	8 6	0.79	1.19	0.5	0.57	0.61	0.46	1.75	1.38	3.39
0E#	SSC:17(S)	Lapped Angle to Plate Attchmnt:Shear	12.637	14.980	-7.782	0.65	10^3 cyc	7	e	2.72	0.45	F. 5	1.39	1.05	3.98	3.14	7
Ş	860:178	Days of Channel to Dista Attchmet. Avial	8 347	9.380	3.485	0.39	10^8 cyc	0.92	0.85	0.43	9.0	0.22	1.28	0.33	0.86 1.56	1.23	3.03
2		rapped citations of the property of			3		10^8 cyc	2.29	2.11	8	1.58	0.55	3.18	0.81	2.12	1.98	1.8
#35	SSC:17A(S)	Lapped Channel to Plate Attchmnt:Shear	12.637	14.980	-7.782	0.65	10^3 cyc	1.1	1.8 285	2.72	0.45	1.31	1.39	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	88 98 6 98	3.14	0.73
#33	SSC:18	Lapped Flatbar to Plate Attchmnt:Axial	7.748	8.960	4.027	0.65	10^3 cyc	1.02	1.67	2.52	0.42	2 2	1.29	0.97	3.69	2.9	7.18
¥	SSC:18(S)	Lapped Flatbar to Plate Attchmnt:Shear	13.741	16.520	-9.233	0.75	10^3 cyc	1.39	2.28	3.44	0.57	1.65	1.78	1.33	5.03	3.97	9.78
\$		Laise Charles and		43 330	7.473	6	10^8 cyc	0.93	0.85	0.43	9.0	0.22	1.28	0.33	0.8 8.6 8.6	2 3	0.73
\$ S	SSC:18	Lapped Fiatoar Enu vven Villy, rwai	1.00	5.0.0	16.	Š	10^8 cyc	1.39	1.28	0.65	98.0	0.33	1.82	0.49	1.29	17	1

	BASELINE CONFIGURATION	URATION	LOG(Aamp)	LOG(Amg)	8	STD DEV	RATIO	RMS	FATIGUE	STRENG.	IH RATIO	MEAN-2S;	2.3% PRC	BABILITY	OF FAILUR	ũ	
#38	SSC:18(S)	Lapped Flatbar End Weld Only: Shear	(KSI)	(ksi)	069 77	6	9 2 2 3 8	*	#62	#63	#8 4	#65	98#	# 67	#89 	69#	#70
:			3			3	10^8 cyc	. 1.	101	5.5	0.00	0.28	8 5	67.0	107	, ,	2.6
#37	SSC:20	Plate Penetration: Axial	8.860	10.250	4.619	0.66	10^3 cyc	0.86	1.42	2.14	0.35	1.03	1.09	0.83	3.13	2.47	8.08
#38	SSC:20(S)	Plate Penetration: Shear	10.835	12.870	-6.759	0.93	10^8 cyc 10^3 cyc	1.25	- 8 8 8	3,11	1.38	0.48	2.78	0.71	1.85 4.55	3.59	1.58
#39	SSC:21(1/4"WELD)	Plate Penetration: Bending	21.192	25.480	-14 245	0.62	10^8 cyc	1.32	2,5	0.6	16.0	0.32	8,	0.47	2 1.22 0.61 0.91 0.32 1.83 0.47 1.22 1.14	7. 5	8.5
					2	8	10^8 cyc	0.54	0.5	0.25	0.38	0.13	0.75	0.19	0.5	0.47	0.43
*	SSC:21(3/8"WELD)	Plate Penetration: Bending	18.586	24.250	-15.494	0.62	10^3 cyc	2.1	3.45	5.2	0.86	2.5	2.68	2.01	7.81	6.01	14.81
ž	SSC:21(S)	Plate Penetration: Shear	13.105	15.320	-7.358	0.83	10^3 cyc	0.79	1.29	1.85	0.32	96.0	-	0.76	2.88	2.28	5.58
#45	SSC:22	Tee with Stud Attachment: Bndg	8.453	9.400	-3.147	0.32	10^8 cyc	0.72	0.67	7. S	0.5	0.17	- 2	0.28	0.67	0.82	0.57
•			į				10^8 cyc	1.98	1.82	0.92	1.37	0.47	2.73	0.7	1.83	1.7	1.57
Î	82058	iee wan Transv. Channel Attchmnt:Bndg	8.721	9.680	-3.187	0.13	10^3 cyc	0.23 18.3	0.38	0.57	0.09	0.28	0.29	0.22	0.84 5.5	0.86	1.63
ž	SSC:24	Tee with Short Cvr Pft Attchmnt:Bndg	8.721	9.680	-3.187	0.13	10^3 cyc	0.23	0.38	0.57	0.09	0.28	0.29	0.22	0.84	0.68	. 8.
#45	SSC:25	Continuous Cruciform	12.096	14.230	-7.090	0.78	10^8 cyc	# 8 8	1.51	0.76	4.5 4.5	0.39	2.27	0.58	1.52	1.42	£.5
•		:	;			!	10^8 cyc	0.93	0.86	0.43	0.65	0.22	7 2	0.33	0.86	0.81	0.74
Ĭ	SSCIZSA	Plate with I ransv. Side Attachment	15.086	17.650	-8.518	0.9	10^3 cyc	0.75	1.23	1.85	0.31	0.89	0.95	0.72	2.71	2.14	5.27
#47	SSC:25B	Plt w/ Transv. Side Attchmnt and Brace	11.793	13.890	-6.966	0.63	10^3 cyc	-	9	2.48	0.41	1.18	1.27	98.	3.62	2.86	7.05
#48	SSC:26	Wekled Cover Plate	7.902	8.910	-3.348	0.61	10/3 cyc	- 50	0.92	1.24	0.69	0.24	38	0.35	0.93	0.86	0.79
4	10.000				;		10^8 cyc	2.99	2.76	1.38	2.07	0.72	÷	1.08	2.78	2.59	2.37
ì	2200	County Lapted Flate Will Flag Wells	SR7.	0.240	9	0.58	10~3 cyc	0.62	1.02	2.5	3.25	4.1	9.78	0.59	2.25	1.7	3.66
#20	SSC:27(S)	Double Lapped Pit w/ Plug Welds: Shear	9.391	10.980	-5.277	0.54	10^3 cyc	1.03	1.68	2.54	0.42	123	1.3	0.98	3.72	2.83	7.23
#21	SSC:28	Baseplate with Circular Hole	13.458	15.790	-7.746	0.81	10*8 cyc	1.74	9. 5.	2.1	121	1 0 1	2.41	9.62	1.62	1.51	1.38
4	6.000	and the state of t	6	6	,	į		0.72	99.0	0.33	0.5	0.17	66.0	0.25	0.67	0.62	0.57
Ž	900	Long Phine Plate Attollinit. Axial	687.0	007.8	6 T.	5.0	10~3 cyc	2.22	20.5	1.03	0.12	8.0 8.0 8.0	0.38	0.29	 	86.5	2.13 4.78
#23	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.366	10.380	-3.368	0.10		0.19	0.31	0.47	0.08	0.22	0.24	0.18	0.68	0.54	1.33
\$2	SSC:31	Out-of-Plane Fla Side Attchmnt: Bridge	8.121	9.430	348	0.62		<u> </u>	<u> </u>	0.51	0.78	0.28	1.52	0.39	1.02	0.95	0.87
			į	}	2			2.83	2.6	1.31	8.	99.0	3.91		2.62	2 4 4 4	2.24
2	SSC:31A	Lapped Fing Side Attchmit: Bindg	8.211	9.250	-3.453	0.44	10^3 cyc	0.46	0.75	1.13	0.19	9.54	0.58	4 5	1.65	1.3	3.21
#29	SSC:32A	In-Plane Side Attchmnt to Flange: Bndg	8.706	9.970	4.200	0.43		0.68	1.12	1.89	0.28	0.81	0.86	0.65	247	1.95	. 4 8:4
#57	SSC:32B	Abrupt Change in Flange Width: Bndg	7.406	8.470	-3.533	0.62	10^8 cyc	20.0	8. 5.	9. c	7 8	6.48	2.8 2.8	0.72	8 5	1.75	7.6 6.4
97	2000	I control of the second of the	1	6				4.18	3.85	3	2.8	-	5.78	84.	3.88	3.62	3.31
e L	220.33	Capped Fiatbar to Prt W/ Full Wrap:Axia	867.7	9.860	-3.660	0.50	10^3 cyc	3.34	3.07	8. F	23.3	68.0	0.95	0.72	2.72	2.14	5.29 2.85
#28	SSC:33(S)	Lapped Flatbar to Pit w/ Full Wrap.Shear	14.849	17.970	-10.368	0.81		1.52	2.49	3.76	0.62	1.6	1.93	1.48	5.51	4.3	10.71
9	SSC:35	Butt Weld with Backing Bar	9.044	10.190	-3.808	0.28	10*3 cyc	9 6 9 6 9 6	0.64	0.97	0.16	0.47	2.5	0.37	1.42	0.76 1.12	2.76
19	SSC:38	Skip Wekled Plates with Rathole	11.793	13 890	988	63	10^8 cyc	1.54	1.42	0.72	1.07	0.37	2.13	0.55	54.5	1.33	122
į							10^8 cyc	. 🕶	0.92	0.46	0.69	0.24	1.38	0.35	0.93	0.88	0.79
70#	99C:36A	Skip Weided Plates	10.406	11.960	-5.163	9.46	10^3 cyc 10^8 cyc	0.61 1.09		1.51	0.25	0.73	1.5	0.58	2.21	1.74	4.3 0.86
#63	SSC:38	Stiffener Plate Penetration: Bndg	8.408	9.450	-3.462	0.38	10^3 cyc	7	9.0	-	0.17	0.48	0.51	0.39	1.48	1.15	2.85
#64	SSC:38(S)	Stiffener Plate Penetration: Shear	12.552	15.630	-10.225	98.0	10^3 cyc	2.13	5 2 5	6.05	•	2.91	3.1	0.76 2.34	8.86	6.99 6.99	1.71
#65	SSC:40	Stiffener Intersection: Bending	7.408	8 470	3 633	64.0	10^8 cyc	4.5	1.33	0.67	- ;	0.35	8	0.51	¥.5	1.25	1.1
		n	3			70.0		4.18	3.85	. 1. 19.6	2.8		5.78	2. 48 8. 88	3.88 88.	3.62	9.8
99#	SSC:42	Bending of Long Attachment	13.105	15.320	-7.358	0.83	10^3 cyc	0.79	1.29	1.95	0.32	0.94		97.0	2.86	2.28	92.5
#67	SSC:46	Long. Welds on Support Gussets: Axial	8.121	9.430	-4.348	0.62		10.	<u> </u>	2.59	0.43	1.24	1.32	7	3.78	2.99	7.38
#68	SSC:51(V)	Transv. Stiffnr Pene. Fig Unspprtd: Bndg	9.641	10.790	-3.818	0.07	10^3 cyc	0.28	0.45	0.68	6. T.	0.33	3.91 0.35	0.28	2.62 1	2.0 14.0	7 7 1 8 7
#69	SSC:52(V)	Transv. Stiffnr Pene. Fig Supported: Bndg	9.643	10.860	4.042	0.18	10^8 cyc 10^3 cyc	1.08 0.35	0.99	0.5	0.75	0.28	6.40 4.40	0.38	1.27	0.93	0.85
#70	Separation S/N Crista		0	600	,	8	10^8 cyc	1.16	1.07	9.54	8.0	0.28	9	0.41	1.07	-	0.85
! :			9.00	i a	3.05	3.0	10^8 cyc	1.26	1.16	0.59	0.00	0.17	1.75	0.14	1.17	1.09	

NSWCCD-65-TR-1998/23

BASELINE CONFIGURATION	FIGURATION	LOG(Aamp) LOG(Amg)	LOG(Amg)	(00	STD DEV	RATIO	1 1	FATIGUE	STRENGT	HRATIO (M	EAN; 50% I	PROBABIL	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	URE)		
		(ksi)	(ksi)	-		0	¥	#2	£	#	\$	9#	#1	82 #	£	#10
AASHTO S/N CURVE: A	JRVE: A	9.94	10.843	-3.000	0.221	10^3 cyc	_	0.7	4	0.37	0.29	0.25	0.29	0.38	0.45	0.52
					- [10^8 cyc	-	0.7	4	0.37	0.29	0.25	0.29	0.38	0.42	0.52
#2 AASHTO S/N CURVE: B	JRVE: B	9.471	10.374	-3.000	0.147	10^3 cyc	1.43	_	0.63	0.53	0.42	0.36	0.42	0.54	0.61	0.75
						10^8 cyc	1.43	-	0.63	0.53	0.42	0.36	0.42	0.54	0.61	0.75
#3 AASHTO S/N CURVE: C	JRVE: C	8.875	9.778	-3.000	0.063	10 ⁴³ cyc	2.26	85.	-	0.84	99.0	0.57	9.0	98.0	0.96	1.19
						10^8 cyc	2.26	.58	-	0.84	99.0	0.57	99.0	0.86	96 0	1.19
#4 AASHTO S/N CURVE: D	JRVE: D	8.648	9.551	-3.000	0.108	10^3 cyc	2.7	1.88	1.19	-	0.78	0.68	0.79	1.02	1.1	4.
-						10^8 cyc	2.7	1.88	1.19	_	0.78	0.68	0.79	1.02	1.1	14.
#5 AASHTO S/N CURVE: E	JRVE: E	8.329	9.232	-3.000	0.101	10^3 cyc	3.44	2.4	1.52	1.28	-	0.87	1.01	<u>ნ</u> .	1.46	1.81
						10^8 cyc	3.44	2.4	1.52	1.28	-	0.87	10.	. 65.	1.46	1.81
#6 BS5400 S/N CURVE: W	RVE: W	8.150	9.054	-3.000	0.184	10^3 cyc	3.95	2.76	1.74	1.47	1.15	_	1.16	1.49	1.67	2.07
!						10^8 cyc	3.95	2.76	1.74	1.47	1.15	-	1.16	1.49	1.67	2.07
#7 BS5400 S/N CURVE: G	RVE: G	8.338	9.241	-3.000	0.179	10^3 cyc	3.42	5.39	1.51	1.27	66.0	0.87	*-	1.29	1.45	1.79
						10^8 cyc	3.42	2.39	1.51	1.27	66.0	0.87	-	1.29	1.45	1.79
#8 BS5400 S/N CURVE: F2	RVE: F2	8.672	9.575	-3.000	0.228	10^3 cyc	2.65	1.85	1.17	96.0	0.77	0.67	0.77	-	1.12	1.39
:						10^8 cyc	2.65	1.85	1.17	0.98	0.77	0.67	0.77	-	1.12	1.39
#9 BS5400 S/N CURVE: F	RVE: F	8.820	9.723	-3.000	0.218	10^3 cyc	2.36	1.65	5.	0.88	69.0	9.0	69.0	0.89	_	1.24
i i						10^8 cyc	2.36	1.65	2	0.88	69.0	9.0	0.69	0.89	-	1.2
#10 BS5400 S/N CURVE: E	RVE: E	660.6	10.003	-3.000	0.251	10^3 cyc	1.91	1.33	0.84	0.71	0.55	0.48	0.56	0.72	0.81	
						10^8 cyc	1.91	1.33	0.84	0.71	0.55	0.48	0.56	0.72	0.81	
#11 BS5400 S/N CURVE: D	RVE: D	9.183	10.086	-3.000	0.210	10^3 cyc	1.79	1.25	0.79	99.0	0.52	0.45	0.52	99.0	0.76	60
						10^8 cyc	1.79	1.25	0.79	99.0	0.52	0.45	0.52	0.68	0.76	9.0
#12 BS5400 S/N CURVE: C	RVE: C	10.046	11.100	-3.500	0.204	10 ⁴³ cyc	2.08	1.45	0.92	0.77	9.0	0.53	0.61	0.79	0.88	1.09
						10^8 cyc	1.2	0.84	0.53	0.45	0.35	6.0	0.35	0.45	0.51	0.63
#13 BS5400 S/N CURVE: B	RVE: B	10.812	12.016	4.000	0.182	10^3 cyc	2.48	1.73	69.	0.92	0.72	0.63	0.73	96.0	1.05	
7						10^8 cyc	0.95	99.0	0.42	0.35	0.28	0.24	0.28	0.36	4.0	0.5
#14 BS5400 S/N CURVE:	RVE: S	14.214	16.623	-8.000	0.504	10^3 cyc	11.04	> '	/8.4	90.4	3.27	2.73	3.23	7. 4	79.4	., .
1						10^8 cyc		0.7	0. 4 4 6	0.37	0.29	0.25	0.29	90.0	24.0	50.5
#15 DnV S/N CURVE: B	10 E	10.813	12.01/	4.000	0.182	Tors cyc	24.2	S).	B) C	0.92	27.0	2 2	7/7	9.0	5 5	
7-2/ CAI C 10/6. C	ن	10.047	11 100	3 500	0.204	10.9 cyc		1.45	2 0 0	0.77	9 0	0.53	0.20	62.0	88	3 5
) i	10.01	3	200	2	10/8 cvc	12	0.84	0.53	0.45	0.35	03	0.35	0.45	0.51	0.63
#17 Dov S/N CLIBVE D	Ci	9.183	10.086	-3 000	0.210	10^3 cvc	1.79	1.25	0.79	0.66	0.52	0.45	0.52	0.68	0.76	0.94
						10^8 cyc	1.79	1.25	0.79	99.0	0.52	0.45	0.52	0.68	0.76	0.94
#18 DnV S/N CURVE: E	w ij	60.6	10.002	-3.000	0.251	10^3 cyc	1.91	1.33	0.84	0.71	0.55	0.48	0.56	0.72	0.81	
						10^8 cyc	1.91	1.33	0.84	0.71	0.55	0.48	0.56	0.72	0.81	
#19 DnV S/N CURVE: F	ı.	8.819	9.722	-3.000	0.218	10^3 cyc	2.36	1.65	1.04	0.88	0.69	9.0	0.69	0.89	_	•
						10^8 cyc	2.36	1.65	2 .	0.88	0.69	9.0	0.69	0.89 -	- ;	
#20 DnV S/N CURVE: F2	E: F2	8.672	9.575	-3.000	0.228	10^3 cyc	2.65	1.85	1.17	0.98	0.77	0.67	0.7	- ,	1.12	
		1000	000	0000	017.0	10°8 cyc	2.65	 	7.1	0.98). O	0.67) ·		21.1	
#21 DNV S/N CORVE G	פ	0.550	9.230	3	8 5	10.3 cyc	54.5	86.5		12.1		70.0		3 6	 	
Day CALCIDYE W	W-74	8 148	9.052	3,000	0 185	1043 CVC	200	2.75	17.	1.47	- 12	5	- 12	, <u>r</u>	1.67	•
ANDO NIO AID	i	2		2	3	10^8 cvc	96.6	2.76	1,75	1.47	1.15	-	1.16	. 6	1.67	2.07
#23 DrV S/N CURVE	Æ.T	9.243	10.146	-3.000	0.248	10 ⁴³ cvc	1.71	1.19	0.75	0.63	0.5	0.43	0.5	0.65	0.72	
I						10^8 cyc	1.71	1.19	0.75	0.63	0.5	0.43	0.5	0.65	0.72	
#24 Generic S/N Curve	IIVe	9.000	9.903	-3.000	0000	10^3 cvc	2.06	1.44	190	0.78	90	0.52	90	0.78	0.87	
•		1			-		1	:	;	;	5	1		:		

NSWCCD-65-TR-1998/23

BASELINE CONFIGURATION	LOG(Aamp) LOG(Amg)	G(Amg)	В	STD DEV	RATIO	RMS	FATIGUE	STRENGT	H RATIO (A	1EAN; 50%	PROBABIL	RMS FATIGUE STRENGTH RATIO (MEAN; 50% PROBABILITY OF FAILURE)	URE		
:	(ksi)	ì		,	0	#17	#12	#13	#14	#15	#16	#17	#18	#19	#20
#1 AASHTO S/N CURVE: A	+	10.843	-3.000	0.221	10^3 cyc	0.56	0.48	4.0	0.09	0.4	0.48	0.56	0.52	0.42	0.38
#2 AASHTO S/N CURVE: B	1 147	10 374	000	0 447	10/8 cyc	0.56	0.83	30.5		6. 8.	0.83 0.83	0.56	0.52	0.42	0.38
Ī	+	1	200	7	10^8 cvc	0 6	0. t	5.7	2	5.08 5.4	5 6	χο α Ο C	0.0	0.61	20.0
#3 AASHTO S/N CURVE: C	8,875	9.778	-3.000	0.063	10^3 cyc	1.27	1.09	0.91	0.21		109	127	1.19	96	0.04
					10^8 cyc	1.27	1.88	2.38	2.26	2.39	1.89	1.27	1.19	96.0	0.86
#4 AASHTO S/N CURVE: D	8.648	9.551	-3.000	0.108	10^3 cyc	1.51	1.3	1.09	0.24	1.09	1.3	1.51	14.	1.14	1.02
# SANCE OF THE PARTY OF THE PAR	+	+			10^8 cyc	1.5	2.24	2.84	2.69	2.84	2.24	1.51	1.4	1.14	1.02
#2 AADD O'N CORVE. E	8.329	9.232	-3.000	0.101	10^3 cyc	1.93	1.66	1.39	0.31	1.39	1.66	1.93	1.8.	1.46	1.3
#6 BS5400 S/N CLIRVE: W	8 150	0.054	3000	707	10^8 cyc	1.93	2.87	3.62	3.43	3.63	2.87	1.93	1.81	1.46	6.
:	-	<u>:</u>	3	9	- 0.5 cyc	2.2.5	. c	S	92.0	1.59	9.5	2.21	2.07	1.67	64.
#7 BS5400 S/N CURVE: G	8.338	9.241	-3.000	0.179	10^3 cyc	1.91	1.64	1,38	0.31	1.38	3.29	191	2.07	1.67	20 0
					10^8 cyc	1.91	2.85	3.6	3.41	3.6	2.85	19	1.79	1.45	1.29
#8 BS5400 S/N CURVE: F2	8.672	9.575	-3.000	0.228	10^3 cyc	1.48	1.27	1.07	0.24	1.07	1.27	1.48	1.39	1.12	-
	\dashv	-			10^8 cyc	1.48	2.2	2.79	2.64	2.79	2.2	1.48	1.39	1.12	_
#9 BS5400 S/N CURVE: F	8.820	9.723	3.000	0.218	10^3 cyc	1.32	1.1	0.95	0.21	0.95	1.14	1.32	1.24	_	0.89
#10 BS5400 S/N CURVE: F	9000	10.003	000	0 264	10~8 cyc	1.32	76.0	2.49	2.38	2.49 1.49	1.97	1.32	1.24	- -	0.89
	+	-	3	7	10v8 cvc	5.0	1.59	2.0		2.0	1.92	.0.L		 	0.72
#11 BS5400 S/N CURVE: D	9.183 10	10.086	-3.000	0.210	10^3 cyc	-	0.86	0.72	0.16	0.72	0.86	5	760	0.0	0.68
	H	-			10^8 cyc	-	1.49	1.88	1.78	88.	1.49		960	0.76	0.68
#12 BS5400 S/N CURVE: C	10.046	11.100	-3.500	0.204	10^3 cyc	1.16	_	0.84	0.19	0.84	-	1.16	1.09	0.88	0.79
	\dashv	-		Γ	10^8 cyc	0.67	· -	1.27	7.	1.27	_	0.67	0.63	0.51	0.45
#13 BS5400 S/N CURVE: B	10.812 1;	12.016	4.000	0.182	10^3 cyc	1.39	1.19	-	0.22	_	1.19	1.39	<u></u>	1.05	0.94
#14 Besand SM CLIBVE: 8	44.044	-	000		10^8 cyc	0.53	0.79	- -	0.95	-]	0.79	0.53	0.5	4.0	0.36
T	-		-8.000	0.504	TOWS Cyc	6.17	5.31	34.45	₹,	4.45	5.31	6.17	5.79	4.67	4.17
#15 DnV S/N CURVE: B	10.813	12.017	4.000	0.182	10^3 cvc	9.7	2 6	3 -	0 22	<u> </u>	20.0	0.5 0.5 0.5	5.5	24.2	0.30
	-	-		7	10^8 cyc	0.53	0.79	-	0.95		0.79	 0.53	. 0	8 0	0.36
#16 DnV S/N CURVE: C	10.047 1	11.100	-3.500	0.204	10^3 cyc	1.16	_	0.84	0.19	0.84	-	1.16	1.09	0.88	0.79
	-	-		ÌΓ	10^8 cyc	0.67	_	1.26	1.2	1.27	-	0.67	0.63	0.51	0.45
#1/ DIN S/N CORVE: D	9.183	10.086	-3.000	0.210	10^3 cyc	-	98.0	0.72	0.16	0.72	0.86	_	0.94	0.76	0.68
#18 DnV S/N CURVE: F	9 099	10 000	000	0 254	10^8 cyc	- 5	64. 64.	7 3 4 7 88 7	1.78	- 1.88 1.88	1.49 0.69	- <u>į</u>	0.94	0.76	0.68
İ		-		٦`	10^8 cyc	107	1.59	207		20.0	2.92 59	2 6		20.00	2 2 2
#19 DnV S/N CURVE: F	8.819	9.722	-3.000	0.218	10^3 cyc	1.32	1.1	0.95	0.21	0.95	4.1	1.32	1.24	-	0.89
	-	+		- [10^8 cyc	1.32	1.97	2.49	2.36	2.49	1.97	1.32	1.24	-	0.89
#20 DNV S/N CURVE: F2	8.672 9	9.575	-3.000	0.228	10^3 cyc	1.48	1.27	1.07	0.24	1.07	1.27	1.48	1.39	1.12	-
#21 Day S/N CLIBVE: G	300 0	0000	000	0110	10^8 cyc	1.48 0.00	2.5	2.79	2.64	2.79	2.2	48	1.39	1.12	-
1	+	÷	200.0		10.3 cyc	26.1	 	1.38	0.31	1.38	1.65	1.92	60	1.45	<u>6. 6</u>
#22 DnV S/N CURVE: W	8.148	9.052	-3.000	0 185	10.0 cyc	25.1	2.03 0	20.0	24.5	3.61 	2.85	1.92	 	24.1 54.1	
		+-		-	10^8 cyc	2.21	3.29	4.17	3.95	71.4	3.29	227	207	79.	. r.
#23 DnV S/N CURVE: T	9.243 10	10.146	-3.000	0.248	10^3 cyc	0.95	0.82	69.0	0.15	69.0	0.82	0.95	0.9	0.72	0.65
*C#	+	-			10^8 cyc	0.95	1.42	€ .	1.7	1.8	1.42	0.95	6.0	0.72	0.65
	000.8	206.8	-3.000	0.000	10^3 cyc	1.15	0.99	0.83	0.0	0.83	0.99	1.15	80.	0.87	0.78
								7	3	7.1.7		2	3	0.0	0.70

NSWCCD-65-TR-1998/23

ò	BASELINE CONFIGURATION	(B)	(A)			-			-	707	_	
		(ksi)	(ksi)			8	#21	#22	#23	#24		1
₩	AASHTO S/N CURVE: A	9:940	10.843	-3.000	0.221	10^3 cyc	0.29	0.25	0.59	0.49		
T						10^8 cyc	0.29	0.25	0.59	0.49		
47 C#	AASHTO S/N CURVE: B	9.471	10.374	-3.000	0.147	10^3 cyc	0.42	0.36	0.84	0.7		
					İ	10^8 cyc	0.42	0.36	0.84	0.7		
₩3	AASHTO S/N CLIRVE: C	8.875	9.778	-3.000	0.063	10^3 cyc	99.0	0.57	1.33	7.		
1						10^8 cyc	99.0	0.57	1.33			
Ψ.	AASHTO S/N CLIRVE: D	8.648	9.551	-3.000	0.108	10^3 cyc	0.79	0.68	1.58	1.31		
						10^8 cvc	0.79	99.0	1.58	1.31		
¥5.	AACHTO S/N CLIBVE: E	8 329	9.232	-3.000	0.101	10 ⁴³ cvc	7	0.87	2.02	1.67		
						10^8 cyc	-	0.87	2.02	1.67		
9	BOSADO CAN CURVE W	8 150	9.054	-3 000	0.184	10^3 cvc	1.15	-	2.31	1.92		_
						10^8 cvc	1.15	-	2.31	1.92		:
	DEEACO SAN CLIBAE: G	8 338	9 241	-3 000	0 179	10^3 cvc	_	0.86	2	1.66		
						10^8 cvc		0.86	7	1.66		
0#	BSEACO SAN CLIBVE: E2	8 672	9 575	-3 000	0.228	10 ⁴³ cvc	0.77	0.67	1.55	1.29		
	SOCIAL CONTRACTOR					10^8 cyc	72.0	290	1.55	1.29		
9	BOSEGOO SAN CLIBVE: E	8 820	9 723	3 000	0.218	10/3 cvc	69'0	0.6	138	1.15		-
Ţ	SOSTON COLVET.		3			10^8 cvc	69.0	9.0	1.38	1.15		
0	DOCEANO CAN CLIDIVE: E	900 9	10.003	-3 000	0.251	10^3 cvc	0.56	0.48	1.12	0.93		
	SOCIAL COLVE: E		0			10A8 CVC	0.56	0.48	11	0.93		
0	Decease (N. C. 19)/6: D	0 183	10.086	3,000	0.240	10^3 cyc	0.52	0.45	105	0.87		_
1	SOSTON CONVE. D	3	2	3		10^8 cyc	0.52	0.45	105	0.87		
1	DOCEAND CATEROVE: C	10.046	11 100	3.500	0.204	10^3 cvc	0.61	0.53	1.22	101		-
71#	SSS400 SIN CORVE. C	2	3	3	5	10^8 cvc	0.35	03	0.7	0.58		
	DEE400 CALCI 10\7E- D	10.812	12.016	4 000	0.182	1043 cvc	0.72	0.63	1.45	121		_
2	Society Colver. D					10^8 cvc	0.28	0.24	0.56	0.46		_
414	BS5400 S/N CLIRVE: S	14.214	16.623	-8.000	0.504	10 ⁴³ cyc	3.22	2.79	6.46	5.36		
	0.0000000000000000000000000000000000000					10^8 cyc	0.29	0.25	0.59	0.49		
#15	Day S/N CURVE: B	10.813	12.017	4.000	0.182	10 ⁴³ cyc	0.72	0.63	1.45	1.2		
i						10^8 cyc	0.28	0.24	0.56	0.46		
#16	Day S/N CURVE: C	10.047	1.18	-3.500	0.204	10^3 cyc	0.61	0.53	1.22	1.01		
Т						10^8 cyc	0.35	0.3	0.7	0.58		-
#17	DnV S/N CURVE: D	9.183	10.086	-3.000	0.210	10^3 cyc	0.52	0.45	1.05	0.87		
						10^8 cyc	0.52	0.45	1.05	0.87		
#18	DnV S/N CURVE: E	600.6	10.002	-3.000	0.251	10^3 cyc	0.56	0.48	1.12	0.93		
						10^8 cyc	0.56	0.48	1.12	0.93		
#19	DnV S/N CURVE: F	8.819	9.722	-3.000	0.218	10^3 cyc	69.0	9.0	1.38	1.15		
Г						10^8 cyc	69.0	9.0	1.38	1.15		-
#20	DnV S/N CURVE: F2	8.672	9.575	-3.000	0.228	10 ⁴³ cyc	0.77	0.67	1.55	1.29		
						10^8 cyc	0.77	0.67	1.55	1.29		-
#21	DnV S/N CURVE: G	8.335	9.238	-3.000	0.179	10^3 cyc	_	0.87	2.01	1.67		1
						10^8 cyc	-	0.87	2.01	1.67		+
#22	DnV S/N CURVE: W	8.148	9.052	-3.000	0.185	10^3 cyc	1.15	_	2.32	1.92		+
						10^8 cyc	1.15	-	2.32	1.92		-
#23	DnV S/N CURVE: T	9.243	10.146	-3.000	0.248	10 ³ cyc	0.5	0.43	_	0.83		-
Ī						10^8 cyc	0.5	0.43	_	0.83		
#24	Generic S/N Curve	9.000	9.903	-3.000	0.00	10^3 cyc	9.0	0.52	1.21			
					L						_	

Associated with a 2.3% Probability of Falture LOG(Aemp LOG(Anng) B STÖ DEV ((s1) (s2) 2.000 7.757
10.081
8.750 9.853 -3.000
9.336
8.128 9.031 -3.000
6.085
+
+
8.384 9.287
+
+
+
+
13.205 15.614
10.449 11.653
9.639 10.692
8.764 9.567
8.597 9.500
8.383 9.286
8.216 9.120
7.976 8.879
7.779 8.682
8.746 9.649
9.495 10.398
9.322 10.225
9.173 10.076
9.031 9.934
8.881 9.784
8 744 9.648
8.592 9.495
8.439 9.342
Н
Н
+
7.983 8.886
7.841 8.744
H
H
H
+

Γ	#30	0.5	0.64	9 6	0.88	5.	4.43	1.86	8 5	9. 5	8	1.12		0.88	0.97	0.56	0.42	0.48	1.09	0.97	8 8		1.17	1.17	1.33	1.6	1.87	0.89	0.57	0.57	0.64	0.71	8.0	0.89	;	1.12	1.27	43	1.6	1.8	1.78	1.09	222
RE)	62#	0.56	0.72	0.72	127	127	£ 6	5.09	1.8	e . r	5.5	3 2	27.5	86.0	00. 00.	0.63	0.47	4.5	0.47	1.09	0.98	1.12	1.12	1.32	1.5	1.8	2.	- 99	0.56	0.00	0.72	800	6.0	<u>-</u>	12.5	8 8	1.43	9	1.79	1.79 2	2.24	2.24	2.49
OF FAILURE	#28	0.62	0.8	8 <u>T</u>	1.1	Ŧ	87.	2.32	2.32	2 8	8	64.	2, 2,	60.	121	1.36	0.52	0.59	0.52	121	60.	124	1.27	1.67	1.67	2 2	2.33	1.11	0.62	0.71	8.0	68.0		= 2	, 53 <u>5</u>	•	1.58	1.78	1.89	2.22	2.22	2.76	2.76
	#27	0.7	0.89	1.24	1.24	85	~ ~	2.61	2.24	2.24	1.87	2	7 7	<u> </u>	135	1.52	0.58	0.67	0.58	1.35	2 2 2	3 7	<u> </u>	26. 78.	1.87	2.25	2.61	1.24	0.7	8 6	6.0	- 2	1.12	55.7	<u> </u>	1.58	1.78	77	2.24	2.24	2.79	3.1	3.1
2.3% PROBABILITY	#26	0.78	, -	1.38	1.38	1.77	223	2.91	2.5	2.5	208	8.	8 8	1.37	1.54	1.7	0.65	0.74	0.65	1.51	1.37	99	8.1. 88.1.	1.83	2.51	2.51	28.7	1.39	0.78	0.89	1 2	1.12	1.25	33	8 5	1.76	1.98	223	2.49	2.49	3.11	3.11	3.46
AEAN-2S;	#25	0.87	1.12	1.12	1.55	1.98	52 52	3.26	2.8	2.8	234	2.05	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	<u>6</u>	. 68	1.9	0.73	83	0.73 E.	1.69	53	7.	2.06	2.34	2.34	3.27	3.27	1.56	0.88	- 2	1.12	125	7. 2	8 5	5.75	1.97	222	2.5	2.79	3.12	3.12	3.49	3.88
HRATIO (#24	 .	1.28	1 2	1.77	2.26	7.88 7.88	3.72	3.2	3.2	2.67	235	66 68	5.5	93.5	2.12 2.17	0.83	95	0.83	1.93	1.75	66	2.35	2.35	3.21	3.21	3.73	1.78	- 4	7 F 28	1.28	£ 1.	1.6	1.78	~ [2.25	2.54	2.86	3.19	3.56	3.56	3.98	1.43
STRENGT		92.0	27.0	1 1	1.27	1.27		77	- 8:	6. <u>1.</u>	5.15	132	5 5	6.0	8 6	1.22	5.0	3 3	4 7	1.09	66.0	27	1.32	1.5	2. E.	1.81	-1.7	- 1	0.56	0.64	0.72	8.0	6.0		1.13	127	£ 5	19.	<u> </u>	7	2.24	2.24 2.49	2.49
FATIGUE (22	0.27	1 to 0	74.0	0.47	0.61	0.77	- ,	- 98	0.86	0.71	0.63	0.53	0.47	0.52	0.3	0.22	0.28	0.22	0.52	0.47	0.53	0.53	0.63	0.72	980	1 9 1	0.48	0.37	0.34	0.34	0.38	0.43	0.48	25.0	9.0	9.08	0.77	0.86	0.95	1.07	1.07	0.39
RMS	#21	0.34	4.0	0.55	0.55	0.7	68.0	5.1	2-	0.83	0.83	0.73	0.62	0.55	90	0.35	3.27	0.3	0.26	0.35	0.55	0.62	0.62	0.73	0.83	1.16	1.18	0.55	0.34	0.36	0.4	0.44	0.5	0.55	0.62	20	0.79	0.89	66.0	1.11	1.1	1.38	1.38
RATIO	6		10^3 cyc	0.3 cyc	10^8 cyc 10^3 cyc	10^8 cyc	0.3 cyc	1043 cyc	0/3 c/c	0^8 cyc	10^8 cyc	O'8 cyc	0^3 cyc	DA3 cyc	0v3 cyc	0^8 cyc	0^8 cyc	0/8 cyc	0^8 cyc	0^3 cyc 0^8 cyc	043 cyc	0^3 cyc	0^3 cyc	O'8 cyc	0^8 cyc 0^3 cyc	Ova cyc	0^8 cyc	0^8 cyc	DAB cyc	0^8 cyc	0^8 cyc 0^3 cyc	0^8 cyc	0*8 cyc 0*3 cyc	0^8 cyc	0/8 cyc	0^8 cyc	0^3 cyc 0^8 cyc	0^3 cyc	0^3 cyc	0/3 cyc	0^8 cyc	0^8 cyc 0^3 cyc	0^8 cyc
STD DEV	9	8/2	8/L	n/a	g/2	de		0.184	0.179	0.228	0.218		0.251	0.210	0.204	0.182	0.504		2	0.204	0.210	0.251	0.218	0.228	0.179	0.185	0.248	n/a	n/a	1/a	8/2	E/a	E/U	, e	90		- F	8/8	n/a	2/2	Z.	2/a	0.000
8	3 000	2.000	-3.000	-3 000	-3.000	2000	2000	-3.000	-3.000	-3.000	-3 000		-3.000	-3.000	-3.500	-4.000	-8.000	80	3	-3.500	3.000	-3.000	-3.000	-3.000	-3.000	-3.000	3.000	-3.000	-3.000	-3.000	-3.000	-3.000	-3.000	-3,000	900		-3.000	3.000	-3.000	-3.000	-3.000	-3.000	-
LOG(Arng)	(ksi)	10.402	10.081	9.653	9.336	0 034	600	8.685	8.883	9.120	9.287		9.500	29.6	10.691	11.651	15.614	11 653		10.692	9.667	9.500	9.286	9.120	8.879	8.682	9.649	10.398	10.225	10.076	9.934	9.784	9.648	9.495	0.342		9.184	9.031	8.886	8.744	8.598	8.459	+
LOG(Aamp L	(ksi)	200	9.178	8.750	8.433	8 128	2 1 20	7.782	7.980	8.217	8.384		/BG 28/	8.764	9.638	10.447	13.205	H	H	9.038	8.764	8.597	8.383	8.216	926.7	7.779	8.746	9.495	9.322		9.031	8.881	8.744	8.592	8 439		8.281	8.128	7.983	7.841	7.695	7.556	9.000
ğ		Ŧ			-			1					-			-	-	H							-	1	-	9	165	6	6	8	-		ec.		•	œ	7			7	0
No	-	-	H	\parallel		+		+			-					\parallel	+		$\frac{1}{1}$	-		$\parallel \parallel$	H				+	434	380	339	304	1.12	244	217	193		<u> </u>	152	38	22	60	86	
FIGURATI	RVE. A	-	JRVE: B	JRVE: C	JRVE: D	RVF		RVE: W	RVE: G	RVE: F2	RVE: F	1	Ye E	RVE: D	RVE: C	RVE: B	RVE: S	α		ا د		ш	u.	F2	9	8	- L	CURVE	S/N CURVE.	CURVE	CURVE	CURVE	CURVE	CURVE	CURVE		CURVE	CURVE:	CURVE	CURVE	CURVE	CURVE	9
BASELINE CONFIGURATION	AASHTO S/N CURVE: A	5	TO S/N CURVE:	TO S/N CURVE	AASHTO S/N CURVE: D	AASHTO S/N CURVE: F		BS5400 S/N CURVE	BSS400 S/N CURVE	BSS400 S/N CURVE:	BS5400 S/N CURVE	000000	00 8/8 00	BS5400 S/N CURVE	BSS400 S/N CURVE	BS5400 S/N CURVE:	BS5400 S/N CURVE	Day SAN CHRVE		Onv Silv Corve	DnV S/N CURVE	S/N CURVE:	DnV S/N CURVE: F	DnV S/N CURVE: F2	DnV S/N CURVE:	DnV S/N CURVE: W	DnV S/N CURVE: T	EUROCODE S/N CURVE: 434	EUROCODE SAN	EUROCODE S/N CURVE: 339	EUROCODE S/N CURVE: 304	EUROCODE SIN CURVE: 271	EUROCODE S/N CURVE: 244	EUROCODE S/N CURVE: 217	EUROCODE S/N CURVE 193		EUROCODE S/N CURVE: 171	EUROCODE S/N CURVE: 152	EUROCODE S/N CURVE: 136	EUROCODE S/N CURVE: 122	EUROCODE S/N CURVE: 109	EUROCODE S/N CURVE	Generic S/N Curve
BASE	1	T	AASHTO :	AASHTO			1	7	11			:-			TT						i	B DnV S/N	11		T			1								1		-		1 1	- 1	-	,
	*	ŧ .	¥	¥	1	₹		¥	*	*	*	1	*	¥	#12	#13	*	1	777	•	*	#18	#19	¥20	#21	#22	#23	#24	¥ 25	#26	#27	#28	#28	#30	ž		#35	£33	£	#35	#36	#37	#38

Appendix J

Ranking of Fatigue Strength Ratios

Ranking of Fatigue Strength Ratios

The fatigue strength ratios determined in Appendix I are useful to compare one given detail strength against another, whether the strength parameters originated from test data or design codes. However, it is sometimes useful to compare strengths of details to determine how they fit within details defined by a family of S/N curves typically contained in design codes. To accommodate this need, specific strength ratios were taken from the previous appendix and sorted to produce a ranking of fatigue strength ratios from weakest to strongest.

The relative ranking of the experimental and design code fatigue strengths was performed using the tables of RMS strength ratios associated first with a 50% (mean) probability of failure, and then with a 2.3% (mean minus two sigma) probability of failure. At each probability of failure, relative fatigue strengths were considered in the low cycle regime (10³ cycles) and in the high cycle regime (108 cycles). The fatigue strengths used in the rankings were established by using the appropriate S/N curve coefficients of the experimental or design code detail, substituting the coefficients into the Rayleigh Approximation formula, and determining the RMS stress associated with the desired cycle count. Fatigue strength ratios were then calculated using the generic S/N curve parameters as the baseline.

The results of these rankings are contained in this appendix are organized in the following manner. Tables J-1, J-2 and J-3 contain the mean (50% probability of failure) strength ratios unsorted, sorted at 10³ cycles and sorted at 10⁸ cycles, respectively. Similarly, Tables J-4, J-5 and J-6 contain the mean minus two sigma (2.3% probability of

failure) strength ratios unsorted, sorted at 10³ cycles and sorted at 10⁸ cycles, respectively.

As a specific application example of this information the body of test data provided in Appendix E is compared with the AASHTO design curve categories using the strength ratios corresponding to the four different combinations of cycle count (10³ or 10⁸) and probability of failure (50% and 2.3%). Results of this comparison are provided in Table J-7. Table J-8 provides a slightly different perspective, categorizing the NSWCCD details by description rather than purely analytical ranking. Although the general trends are evident with the more severe details falling into the lower categories, there is not a consistent match in every case. There are many reasons for such disparity, including differences in specimen size and thickness (AASHTO based on large thick bridge girder type specimens and the NSWCCD data based on relatively smaller and thinner specimens), the fact that the AASHTO S/N curves are forced to have a slope of – 3.0, as well as effects of material, quality and fabrication procedure. Such items should be kept in mind when comparing any fatigue data or S/N curves.

As a final, but cursory comparison, NSWCCD test data from Appendix E are plotted over each family of the design code (mean minus two sigma) S/N curves, as shown in Figures J-1 through J-4. Although no attempt has been made to identify each individual data point with a specimen configuration, the test data has been segregated into "valid" data points (actual failures used to calculate S/N curves) and data points that exist, but were not used in analyses (runouts and specimen failures contained within stress levels which also contain runouts). Since the design code S/N curves represent 2.3% probability of failure, test data falling above a particular curve could be represented

by that curve. From these plots, the most severe S/N curve from any of the design codes can be identified that encompasses all the NSWCCD data. For example, it can be seen that most of the data (regardless of actual configuration) can be represented by an AASHTO category E detail, and that all the test data (regardless of configuration) can be represented by a category E' detail. Category E details include welded steel configurations that contain load-carrying attachments, weld terminations and interruptions, misalignments and weld defects. Category E' details contain slightly more severe attributes of Category E configurations.

Data Index

J	Data	Page
Figure J-1	NSWC Fatigue Data vs AASHTO (m-2s)	J-6
Figure J-2	NSWC Fatigue Data vs BS5400 (m-2s)	J-7
Figure J-3	NSWC Fatigue Data vs DnV (m-2s)	J-8
Figure J-4	NSWC Fatigue Data vs Eurocode (m-2s)	J-9
Table J-1	Mean Strength Ratios Unsorted	J-10
Table J-2	Mean Strength Ratios Sorted at 10 ³ Cycles	J-13
Table J-3	Mean Strength Ratios Sorted at 10 ⁸ Cycles	J-16
Table J-4	Mean Minus 2 Sigma Strength Ratios Unsorted	J-19
Table J-5	Mean Minus 2 Sigma Strength Ratios Sorted at 10 ³ Cycles	J-22
Table J-6	Mean Minus 2 Sigma Strength Ratios Sorted at 108 Cycles	J-25
Table J-7	Comparison of NSWCCD Data with AASHTO Curves	J-28
Table J-8	Categorization of NSWCCD Details with AASHTO Categories	J-29

Figure J-1 - NSWC Fatigue Data vs AASHTO (m-2s)

NSWC Fatigue Data vs BS5400 (M-2S)

Figure J-2 - NSWC Fatigue Data vs BS5400 (m-2s)

Figure J-3 - NSWC Fatigue Data vs DnV (m-2s)

Figure J-4 - NSWC Fatigue Data vs Eurocode (m-2s)

Table J-1 – Mean Strength Ratios Unsorted

		BASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamp) LOG(Amg)	.OG(Arng)	80	STD DEV 10 ⁴³ cyc		10^8 cyc
	NSWC #1	HSLA 7/16" bending, shipyard	Full penetration non-load carrying welds	13.617	15.161	-5.130	0.378	1.01	4.95
	NSWC #2	HSLA 1/4", continuous cruc., shipyard	Full penetration non-load carrying welds	10.714	11.944	-4.087	0.350	0.71	1.97
	NSWC #3	HSLA 7/16", continuous cruciform	Full penetration non-load carrying welds	9.559	10.525	-3.210	0.185	1.09	1.4
	NSWC #4		Full penetration non-load carrying welds	10.432	11.592	-3.855	0.210	0.79	1.85
	NSWC #5	HSLA 7/16", continuous cruc., lab & syd	Full penetration non-load carrying welds	9.947	10.999	-3.496	0.205	0.93	1.61
	NSWC #6	HSLA 3/4", continuous cruc., shipyard	Full penetration non-load carrying welds	9.057	10.000	-3.134	0.172	0.85	-
	NSWC #7	HSLA 1", continuous cruc., shipyard	Full penetration non-load carrying welds	8.389	9.211	-2.732	0.068	96.0	99.0
	NSWC #8	HSLA discontinuous cruciform	Full penetration load carrying welds	9.601	10.597	-3.307	0.263	0.97	1.38
	NSWC #8	HSLA misaligned cruciform	Half thickness misalignment, full penetration	9.733	10.922	-3.949	0.227	0.47	1.18
	NSWC #10	HSLA non-full penetration disc cruciform	Partial penetration load carrying welds	8.272	9.081	-2.686	0.139	0.94	9.0
	NSWC #11	HSLA misaligned partial penetration welds	Half thickness misalignment, partial penetration	8.513	9.521	-3.349	0.208	0.43	0.64
	NSWC #12	HS continuous cruciform	Full penetration non-load carrying welds	11.289	12.639	-4.486	0.218	0.63	2.24
	NSWC #13	HS discontinuous cruciform	Full penetration load carrying welds	9.648	10.677	-3.417	0.252	0.85	1.36
	NSWC #14	HS misaligned cruciform	Half thickness misalignment, full penetration	12.902	14.833	-6.416	0.142	0.28	2.15
	NSWC #15	OS continuous cruciform	Full penetration non-load carrying welds	10.566	11.766	-3.987	0.221	0.73	1.89
	NSWC #16	OS discontinuous cruciform	Full penetration load carrying welds	10.185	11.314	-3.752	0.304	0.77	1.67
	NSWC #17	OS misaligned cruciform	Half thickness misalignment, full penetration	10.541	12.023	4.924	0.149	0.3	1.32
	NSWC #18	HSLA & HS conventional components	Continuous bulkhead penetration, R=0	9.192	10.174	-3.263	0.214	0.77	1.05
	NSWC #19	HSLA SNIPED COMP	Cont. bhd penetration with sniped bhd stiffener, R=0	10.058	11.267	4.016	0.139	0.53	1.39
	NSWC #20	HSLA INTERCOASTAL	Discontinuous bulkhead penetration, R=0	669.6	10.930	4.088	0.120	0.4	1.1
	NSWC #21	HSLA CONV CMP R=-1	Continuous bulkhead penetration	9.427	10.399	-3.230	0.169	0.96	1.26
J-	NSWC #22	HSLA Stiffener Splice	Stiffener transition detail	10.843	12.122	-4.250	0.177	0.64	1.97
1(NSWC #23	HSLA Opening Detail	Reinforced opening detail	8.923	9.971	-3.480	0.203	0.48	0.82
)	NSWC #24	HSLA Flame cut edge	Flame cut edge	10.553	11.668	-3.705	0.092	1.03	2.14
	NSWC #25	HSLA Insert Plate "Good Weld"	Half thickness insert plate	12.101	13.633	-5.090	0.184	0.53	2.55
	NSWC #26	HSLA Insert Plate "Poor Weld"	Lack of fusion defects in weld	9.845	11.051	4.009	0.103	0.47	1.24
	NSWC #27	HSLA one sided welds	Permanent backing bar, one sided weld	9:626	10.949	-3.298	0.307	1.25	1.77
	NSWC #28	HSLA single thickness doubler welds	Doubler plate, same thickness doubler	9.179	10.119	-3.122	0.490	0.94	1.1
	NSWC #29	HSLA double thickness doubler welds	Doubler plate, twice thickness doubler	8.843	9.680	-2.780	0.555	1.29	0.95
	AASHTO #1		Baseplate dressed edges	9.940	10.843	-3.000	0.221	2.06	2.06
	AASHTO #2		Continuous Longitudinal Welds	9.471	10.374	-3.000	0.147	1.44	1.44
	AASHTO #3		Transverse NDE full penetration butt welds	8.875	9.778	-3.000	0.063	0.91	0.91
	AASHTO #4		Non-NDE full penetration butt welds, attachments	8.648	9.551	-3.000	0.108	0.76	0.76
	AASHTO #5	-	Weld terminations and overlaps	8.329	9.232	-3.000	0.101	9.0	9.0
	BS5400 #1		Weld throat based stresses	8.150	9.054	-3.000	0.184	0.52	0.52
	BS5400 #2	BS5400 S/N CURVE: G	Flange attachments close to edge, undercut	8.338	9.241	-3.000	0.179	9.0	9.0
	BS5400 #3	BS5400 S/N CURVE: F2	Transverse fillet welds at high SCF areas	8.672	9.575	-3.000	0.228	0.78	0.78
	BS5400 #4	BS5400 S/N CURVE: F	Backing strip welds & flange attachments	8.820	9.723	-3.000	0.218	0.87	0.87
	BS5400 #5	BS5400 S/N CURVE: E	Butts in unequal thickness & width, web brackets	600.6	10.003	-3.000	0.251	1.08	1.08
	BS5400 #6		Transverse butt welds and start/stop in long	9.183	10.086	-3.000	0.210	1.15	1.15
	BS5400 #7		Flame-cut edges and longitudinal welds	10.046	11.100	-3.500	0.204	0.99	1.71
		BS5400 S/N CURVE: B	Parent plate, as welded	10.812	12.016	-4.000	0.182	0.83	2.17
	BS5400 #9		Shear connectors in concrete	14.214	16.623	-8.000	0.504	0.19	2.05
	DNV #1	DnV S/N CURVE: B	base plate or dressed welds	10.813	12.017	-4.000	0.182	0.83	2.17
	DNV #2	DnV S/N CURVE: C	Flame cut edge or cont. butt & fillet welds	10.047	11.100	-3.500	0.204	0.99	1.71

;	BASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamp) LOG(Amg))G(Amg)		STD DEV 10^3 cyc	·	10^8 cyc
DNV #3	DNV S/N CURVE: U	Buff & fillet welds with start/stop positions	9.183	10.086	-3.000	0.210	<u>.</u>	2
DNV #4	DnV S/N CURVE: E	Butts in unequal thickness & width, dressed welds	60.6	10.002	-3.000	0.251	1.08	1.08
DNV #5	DnV S/N CURVE: F	Backing strip welds & short flange attachments	8.819	9.722	-3.000	0.218	0.87	0.87
DNV #6	DnV S/N CURVE: F2	Butts in unequal width plates, long attachments	8.672	9.575	-3.000	0.228	0.78	0.78
DNV #7	DnV S/N CURVE: G	Flange attachments close to edge, undercut	8.335	9.238	-3.000	0.179	9.0	9.0
DNV #8	DnV S/N CURVE: W	Partial penetration load carrying welds	8.148	9.052	-3.000	0.185	0.52	0.52
6# ANO	DnV S/N CURVE: T	Tubular joints	9.243	10.146	-3.000	0.248	1.21	1.21
SSC #1	SSC:1(ail steels)	Baseplate	13.825	15.550	-5.729	0.750	0.64	3.99
SSC #2	SSC:1M	Baseplate Mild Steel	21.679	25.360	-12.229	0.710	0.21	3.85
SSC #3	SSC:1H	Baseplate HSLA Steei	27.389	32.040	-15.449	0.910	0.22	8.4
SSC #4	SSC:1Q	Baseplate Q & T Steel	13.345	14.910	-5.199	0.680	0.83	4.23
SSC #2	SSC:1(F)	Baseplate Flame Cut	12.334	13.780	-4.805	0.600	0.77	3.24
SSC #6	SSC:2	Rolled I-Beam Bending	13.999	15.820	-6.048	0.640	0.54	3.71
SSC #7	SSC:3	Longitudinal Seam	13.010	14.800	-5.946	0.630	0.39	2.64
SSC #8	SSC:3(G)	Ground Long. Seam	13.602	15.520	-6.370	0.740	0.37	2.81
SSC #8	SSC:4	Long. Fillet Weld Bndg	12.515	14.220	-5.663	0.610	0.4	2.42
SSC #10	SSC:5	Cvr Plt on I-Bm Flg Bndg	8.663	9.650	-3.278	0.480	0.52	0.72
SSC #11	SSC:6	Dbi I-Bm Bndg	12.515	14.220	-5.663	0.610	9.4	2.42
SSC #12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	10.095	11.230	-3.771	0.530	0.72	1.57
SSC #13	SSC:7P	I-Bm w/vrt Web St Prin Stress	10.204	11.460	4.172	0.510	0.49	1.43
SSC #14	SSC:8	Bolted Double Lap	14.469	16.440	-6.549	0.810	0.45	3.58
SSC #15	SSC:9	Riveted Single Lap	16.687	19.590	-9.643	0.900	0.18	2.55
SSC #16	SSC:10M	Butt Weld Axial:Mild Steel	14.345	16.630	-7.589	0.880	0.24	2.4
SSC #17	SSC:10H	Butt Weld Axial: HSLA Steel	22.068	25.920	-12.795	0.960	0.19	3.62
SSC #18	SSC:10Q	Butt Weld Axial:Q&T Steel	12.108	13.650	-5.124	0.760	0.51	2.52
SSC #19	SSC:10(G)	Butt Weld Axial: Ground	14.784	16.930	-7.130	0.940	0.35	3.19
SSC #20	SSC:10A	Butt Weld Bndg	12.494	14.140	-5.468	0.790	0.46	2.59
SSC #21	SSC:11	I-Bm Butt Weld Bndg	12.035	13.770	-5.765	0.680	0.31	1.92
SSC #22	SSC:12	Tee Stffnr Tapered Flg Thickness Bndg	10.366	11.690	-4.398	0.430	0.43	1.44
SSC #23	SSC:12(G)	Tee Stffnr Tapered Flg Thickness Bndg	12.415	14.120	-5.663	0.600	0.38	2.32
SSC #24	SSC:13	Tee Stiffener Taped Flg Width Bndg	10.847	12.120	-4.229	0.450	0.65	1.99
SSC #25	SSC:14	Disc. Cruciform Axial	14.721	16.960	-7.439	0.910	0.29	2.82
SSC #26	SSC:15	Loaded Edge Attachment Plate	9.566	10.830	4.200	0.430	0.33	-
SSC #27	SSC:16	Partial Pen. Butt Weld	10.626	12.020	4.631	0.580	0.39	1.52
SSC #28	SSC:16(G)	Partial Pen. Butt Weld: Ground	13.455	15.550	-6.960	0.950	0.25	2.19
SSC #29	SSC:17	Lapped Angle to Plate Attchmnt:Axial	9.265	10.390	-3.736	0.340	0.45	0.95
SSC #30	SSC:17(S)	Lapped Angle to Plate Attchmnt: Shear	13.937	16.280	-7.782	0.650	0.19	2.01
SSC #31	SSC:17A	Lapped Channel to Plate Attchmnt: Axial	6.097	10.140	-3.465	0.390	0.55	0.93
SSC #32	SSC:17A(S)	Lapped Channel to Plate Attchmnt: Shear	13.937	16.280	-7.782	0.650	0.19	2.01
SSC #33	SSC:18	Lapped Flatbar to Plate Attchmnt: Axial	9.048	10.260	-4.027	0.650	0.29	0.78
SSC #34	SSC:18(S)	Lapped Flatbar to Plate Attchmnt: Shear	15.241	18.020	-9.233	0.750	0.15	1.98
SSC #35	SSC:19	Lapped Flatbar End Weld Only: Axial	12.941	15.190	-7.472	0.930	0.16	1.61
SSC #36	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	13.566	15.830	-7.520	0.930	0.19	1.93
SSC #37	SSC:20	Plate Penetration: Axial	10.180	11.570	-4.619	0.660	0.32	1.22
SSC #38	SSC:20(S)	Plate Penetration: Shear	12.695	14.730	-6.759	0.930	0.21	1.8
SSC #39	SSC:21(1/4"WELD)	Plate Penetration: Bending	22.432	26.720	-14.245	0.620	0.14	2.84

Table J-1 - Mean Strength Ratios Unsorted (cont.)

am S a aam S a					
	S (S	- www.	S	v (S	ω Θ S :
	v (S	v (8)	, (S	a (S	√ Ø S
	A (S)	(S)	(S)	(S)	√ (Ø. S
	(S	(S	(S	(S)	⊙ > ∶

:	BASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamp) LOG(Arng	OG(Arng		STD DEV 10^3 cyc		10^8 cyc
SSC #40	SSC:Z1(3/8"WELD)	Plate Penetration: Bending	50.826	25.490	-15.484	0.620	0.08	6/.
SSC #64	SSC:38(S)	Stiffener Plate Penetration: Shear	14.312	17.390	-10.225	0.880	0.0	1 .3
SSC #29	SSC:33(S)	Lapped Flatbar to Pit w/ Full Wrap:Shear	16.469	19.590	-10.368	0.810	0.13	2.05
SSC #39	SSC:21(1/4"WELD)	Plate Penetration: Bending	22.432	26.720	-14.245	0.620	0.14	2.84
SSC #34	SSC:18(S)	Lapped Flatbar to Plate Attchmnt: Shear	15.241	18.020	-9.233	0.750	0.15	1.98
SSC #35	SSC:19	Lapped Flatbar End Weld Only: Axial	12.941	15.190	-7.472	0.930	0.16	1.61
	SSC:9	Riveted Single Lap	16.687	19.590	-9.643	0.900	0.18	2.55
₽2	BS5400 S/N CURVE: S	Shear connectors in concrete	14.214	16.623	-8.000	0.504	0.19	2.05
SSC #17	SSC:10H	Butt Weld Axial: HSLA Steel	22.068	25.920	-12.795	0.960	0.19	3.62
SSC #30	SSC:17(S)	Lapped Angle to Plate Attchmnt:Shear	13.937	16.280	-7.782	0.650	0.19	2.01
SSC #32	SSC:17A(S)	Lapped Channel to Plate Attchmnt: Shear	13.937	16.280	-7.782	0.650	0.19	2.01
SSC #36	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	13.566	15.830	-7.520	0.930	0.19	1.93
SSC #2	SSC:1M	Baseplate Mild Steel	21.679	25.360	-12.229	0.710	0.21	3.85
SSC #38	SSC:20(S)	Plate Penetration: Shear	12.695	14.730	-6.759	0.930	0.21	1.8
SSC #3	SSC:1H	Baseplate HSLA Steel	27.389	32.040	-15.449	0.910	0.22	8.4
SSC #47	SSC:25B	Plt w/ Transv. Side Attchmnt and Brace	13.053	15.150	-6.966	0.630	0.22	1.91
SSC #50	SSC:27(S)	Double Lapped Pit w/ Plug Welds: Shear	10.471	12.060	-5.277	0.540	0.22	1.16
SSC #61	SSC:36	Skip Welded Plates with Rathole	13.053	15.150	-6.966	0.630	0.22	1.91
SSC #16	SSC:10M	Butt Weld Axial: Mild Steel	14.345	16.630	-7.589	0.880	0.24	2.4
SSC #28	SSC:16(G)	Partial Pen. Butt Weld: Ground	13.455	15.550	-6.960	0.950	0.25	2.19
SSC #45	SSC:25	Continuous Cruciform	13.656	15.790	-7.090	0.780	0.25	2.25
SSC #54	SSC:31	Out-of-Plane Flg Side Attchmnt: Bndg	9.361	10.670	4.348	0.620	0.26	0.86
SSC #67	SSC:46	Long. Welds on Support Gussets: Axial	9.361	10.670	4.348	0.620	0.26	0.86
SSC #51	SSC:28	Baseplate with Circular Hole	15.078	17.410	-7.746	0.810	0.27	2.84
NSWC #14	HS misaligned cruciform	Half thickness misalignment, full penetration	12.902	14.833	-6.416	0.142	0.28	2.15
SSC #25	SSC:14	Disc. Cruciform Axial	14.721	16.960	-7.439	0.910	0.29	2.82
SSC #33	SSC:18	Lapped Flatbar to Plate Attchmnt: Axial	9.048	10.260	-4.027	0.650	0.29	0.78
NSWC #17	OS misaligned cruciform	Half thickness misalignment, full penetration	10.541	12.023	-4.924	0.149	0.3	1.32
SSC #41	SSC:21(S)	Plate Penetration: Shear	14.765	16.980	-7.358	0.830	0.3	2.93
SSC #66	SSC:42	Bending of Long Attachment	14.765	16.980	-7.358	0.830	0.3	2.93
SSC #21	SSC:11	I-Bm Butt Weld Bndg	12.035	13.770	-5.765	0.680	0.31	1.92
SSC #46	SSC:25A	Plate with Transv. Side Attachment	16.906	19.470	-8.518	0.910	0.31	3.73
SSC #37	SSC:20	Plate Penetration: Axial	10.180	11.570	4.619	0.660	0.32	1.22
SSC #26	SSC:15	Loaded Edge Attachment Piate	9.566	10.830	4.200	0.430	0.33	-
SSC #56	SSC:32A	In-Plane Side Attchmnt to Flange: Bndg	9.566	10.830	4.200	0.430	0.33	-
SSC #19	SSC:10(G)	Butt Weld Axial: Ground	14.784	16.930	-7.130	0.940	0.35	3.19
SSC #58	SSC:33	Lapped Flatbar to Plt w/ Full Wrap: Axial	8.758	9.860	-3.660	0.500	0.35	0.71
SSC #62	SSC:36A	Skip Welded Plates	11.326	12.880	-5.163	0.460	0.35	1.75
SSC #8	SSC:3(G)	Ground Long. Seam	13.602	15.520	-6.370	0.740	0.37	2.81
SSC #23	SSC:12(G)	Tee Stffnr Tapered Flg Thickness Bndg	12.415	14.120	-5.663	0.600	0.38	2.32
SSC #57	SSC:32B	Abrupt Change in Flange Width:Bndg	8.646	9.710	-3.533	0.620	0.38	0.68
SSC #65	SSC:40	Stiffener Intersection: Bending	8.646	9.710	-3.533	0.620	0.38	99.0
SSC #7	SSC:3	Longitudinal Seam	13.010	14.800	-5.946	0.630	0.39	2.64
SSC #27	SSC:16	Partial Pen. Butt Weld	10.626	12.020	-4.631	0.580	0.39	1.52
NSWC #20	HSLA INTERCOASTAL	Discontinuous bulkhead penetration, R=0	669.6	10.930	-4.088	0.120	0.4	1.11

Table J-2 – Mean Strength Ratios Sorted at 10^3 Cycles (cont.)

		BASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamo) LOG(Amo)	OG(Ama)	co co	STD DEV 1	10^3 cvc ,	10^8 cvc
٠,	SSC #8	SSC:4	₽	12.515	14.220	663		4	2.42
٠,	SSC #11	SSC:6	Dbl I-Bm Bndg	12.515	14.220	-5.663	0.610	0.4	2.42
_	NSWC #11	HSLA misaligned partial penetration welds	Half thickness misalignment, partial penetration	8.513	9.521	-3.349	0.208	0.43	0.64
-,	SSC #22	SSC:12	Tee Stffnr Tapered Flg Thickness Bndg	10.366	11.690	4.398	0.430	0.43	1.44
-,	SSC #14	SSC:8	Bolted Double Lap	14.469	16.440	-6.549	0.810	0.45	3.58
	SSC #29	SSC:17	Lapped Angle to Plate Attchmnt: Axial	9.265	10.390	-3.736	0.340	0.45	0.95
-,	SSC #20	SSC:10A	Butt Weld Bndg	12.494	14.140	-5.468	0.790	0.46	2.59
_	NSWC #8	HSLA misaligned cruciform	Haif thickness misalignment, full penetration	9.733	10.922	-3.949	0.227	0.47	1.18
_	NSWC #26	HSLA Insert Plate "Poor Weld"	Lack of fusion defects in weld	9.845	11.051	4.009	0.103	0.47	1.24
_	NSWC #23	HSLA Opening Detail	Reinforced opening detail	8.923	9.971	-3.480	0.203	0.48	0.82
••	SSC #13	SSC:7P	I-Bm w/vrt Web St Prin Stress	10.204	11.460	-4.172	0.510	0.49	1.43
	SSC #69	SSC:52(V)	Transv. Stiffnr Pene. Flg Supported: Bndg	10.023	11.240	4.042	0.190	0.5	1.35
	SSC #18	SSC:10Q	Butt Weld Axial: Q&T Steel	12.108	13.650	-5.124	0.760	0.51	2.52
	SSC #60	SSC:35	Butt Weld with Backing Bar	9.604	10.750	-3.808	0.280	0.51	1.15
_	BS5400 #1	BS5400 S/N CURVE: W	Weld throat based stresses	8.150	9.054	-3.000	0.184	0.52	0.52
_	DNV #8	DnV S/N CURVE: W	Partial penetration load carrying welds	8.148	9.052	-3.000	0.185	0.52	0.52
	SSC #10	SSC:5	Cvr Plt on I-Bm Flg Bndg	8.663	9.650	-3.278	0.480	0.52	0.72
_	NSWC #19	HSLA SNIPED COMP	Cont. bhd penetration with sniped bhd stiffener, R=0	10.058	11.267	4.016	0.139	0.53	1.39
_	NSWC #25	HSLA insert Plate "Good Weld"	Half thickness insert plate	12.101	13.633	-5.090	0.184	0.53	2.55
	SSC #49	SSC:27	Double Lapped Plate with Plug Welds	8.453	9.400	-3.146	0.580	0.53	0.64
T	SSC #6	SSC:2	Rolled I-Beam Bending	13.999	15.820	-6.048	0.640	0.54	3.71
1.4	SSC #31	SSC:17A	Lapped Channel to Plate Attchmnt: Axial	9.097	10.140	-3.465	0.390	0.55	0.93
	SSC #55	SSC:31A	Lapped Fing Side Attchmnt: Bndg	9.091	10.130	-3.453	0.440	0.56	0.93
	SSC #68	SSC:51(V)	Transv. Stiffnr Pene. Flg Unspprtd: Bndg	9.781	10.930	-3.818	0.070	0.56	1.27
	SSC #63		Stiffener Plate Penetration: Bndg	9.128	10.170	-3.462	0.360	0.57	0.95
`	AASHTO #5		Weld terminations and overlaps	8.329	9.232	-3,000	0.101	9.0	9.0
'	BS5400 #2	BS5400 S/N CURVE: G	Flange attachments close to edge, undercut	8.338	9.241	-3.000	0.179	9.0	9.0
- '	DNV #7	DnV S/N CURVE: G	Flange attachments close to edge, undercut	8.335	9.238	-3.000	0.179	9.0	9.0
	NSWC #12	HS continuous cruciform	Full penetration non-load carrying welds	11.289	12.639	4.486	0.218	0.63	2.24
	NSWC #22	HSLA Stiffener Splice	Stiffener transition detail	10.843	12.122	-4.250	0.177	0.64	1.97
·• '	SSC #1	SSC:1(all steels)	Baseplate	13.825	15.550	-5.729	0.750	0.64	3.99
	SSC #24	SSC:13	Tee Stiffener Taped Flg Width Bndg	10.847	12.120	-4.229	0.450	0.65	1.99
	SSC #48	SSC:26	Welded Cover Plate	9.122	10.130	-3.348	0.610	0.65	0.98
	NSWC #2	HSLA 1/4", continuous cruc., shipyard	Full penetration non-load carrying welds	10.714	11.944	-4.087	0.350	0.71	1.97
	SSC #12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	10.095	11.230	-3.771	0.530	0.72	1.57
	NSWC #15	OS continuous cruciform	Full penetration non-load carrying welds	10.566	11.766	-3.987	0.221	0.73	1.89
-•	SSC #43	SSC:23	Tee with Transv. Channel Attchmnt: Bndg	8.981	9.940	-3.187	0.130	0.74	0.93
	SSC #44	SSC:24	Tee with Short Cvr Plt Attchmnt:Bndg	8.981	9.940	-3.187	0.130	0.74	0.93
	SSC #52		Long Finite Plate Attchmnt: Axial	8.919	9.870	-3.159	0.310	0.74	0.89
	AASHTO #4		Non-NDE full penetration butt welds, attachments	8.648	9.551	-3.000	0.108	0.76	0.76
	NSWC #16	OS discontinuous cruciform	Full penetration load carrying welds	10.185	11.314	-3.752	0.304	0.77	1.67
	NSWC #18	HSLA & HS conventional components	Continuous bulkhead penetration, R=0	9.192	10.174	-3.263	0.214	0.77	1.05
	SSC #5	SSC:1(F)	Baseplate Flame Cut	12.334	13.780	-4.805	0.600	0.77	3.24
_	BS5400 #3	BS5400 S/N CURVE: F2	Transverse fillet welds at high SCF areas	8.672	9.575	-3.000	0.228	0.78	0.78
_	DNV #6	DnV S/N CURVE: F2	Butts in unequal width plates, long attachments	8.672	9.575	-3.000	0.228	0.78	0.78
_	NSWC #4	HSLA 7/16", continuous cruc., shipyard	Full penetration non-load carrying welds	10.432	11.592	-3.855	0.210	0.79	1.85

Table J-2 – Mean Strength Ratios Sorted at 10³ Cycles (cont.)

yc 10^8 cyc	0.83 2.17	0.83 2.17	0.83 4.23	0.85 1	0.85 1.36	0.85 1.02	0.86 1.31	0.87 0.87	0.87 0.87	0.91 0.91	0.93 1.61	0.94 0.6	0.94 1.1	99.0 96.0	0.96 1.26	0.97 1.38		0.99 1.71	-	1.01 4.95		1.08 1.08	_	1.09 1.4	1.15 1.15		1.21 1.21	1.25 1.77	1.29 0.95	1.44 1.44	
STD DEV 10 ⁴³ cyc	0.182		0.680	0.172	0.252	0.320	0.100	0.218	0.218	0.063	0.205	0.139	0.490	0.068	0.169	0.263	0.204	0.204	0.00	0.378	0.092	0.251	0.251	0.185	0.210	0.210	0.248	0.307	0.555	0.147	, , ,
6	4.000	4.000	-5.199	-3.134	-3.417	-3.147	-3.368	-3.000	-3.000	-3.000	-3.496	-2.686	-3.122	-2.732	-3.230	-3.307	-3.500	-3.500	-3.000	-5.130	-3.705	-3.000	-3.000	-3.210	-3.000	-3.000	-3.000	-3.298	-2.780	-3.000	
OG(Arng)	12.016	12.017	14.910	10.000	10.677	10.040	10.580	9.723	9.722	9.778	10.999	9.081	10.119	9.211	10.399	10.597	11.100	11.100	9.903	15.161	11.668	10.003	10.002	10.525	10.086	10.086	10.146	10.949	9.680	10.374	(, (, , , , , , , , , , , , , , , , ,
LOG(Aamp) LOG(Arng)	10.812	10.813	13.345	9.057	9.648	9.093	9:266	8.820	8.819	8.875	9.947	8.272	9.179	8.389	9.427	9.601	10.046	10.047	9.000	13.617	10.553	660.6	660'6	9.559	9.183	9.183	9.243	9.956	8.843	9.471	
BRIEF DESCRIPTION	Parent plate, as welded	base plate or dressed welds	Baseplate Q & T Steel	Full penetration non-load carrying welds	Full penetration load carrying welds	Tee with Stud Attachment: Bndg	Long Finite Plate Attchmnt: Bndg	Backing strip welds & flange attachments	Backing strip welds & short flange attachments	Transverse NDE full penetration butt welds	Full penetration non-load carrying welds	Partial penetration load carrying welds	Doubler plate, same thickness doubler	Full penetration non-load carrying welds	Continuous bulkhead penetration	Full penetration load carrying welds	Flame-cut edges and longitudinal welds	Flame cut edge or cont. butt & fillet welds		Full penetration non-load carrying welds	Flame cut edge	Butts in unequal thickness & width, web brackets	Butts in unequal thickness & width, dressed welds	Full penetration non-load carrying welds	Transverse butt welds and start/stop in long	Butt & fillet welds with start/stop positions	Tubular joints	Permanent backing bar, one sided weld	Doubler plate, twice thickness doubler	Continuous Longitudinal Welds	•
BASELINE CONFIGURATION	BS5400 S/N CURVE: B	DnV S/N CURVE: B	SSC:10	HSLA 3/4", continuous cruc., shipyard	HS discontinuous cruciform	SSC:22	SSC:30A	BS5400 S/N CURVE: F	DnV S/N CURVE: F	_		HSLA non-full penetration disc cruciform	HSLA single thickness doubler welds	HSLA 1", continuous cruc., shipyard	HSLA CONV CMP R=-1	HSLA discontinuous cruciform	BS5400 S/N CURVE: C	DnV S/N CURVE: C	Generic S/N Curve	HSLA 7/16" bending, shipyard	HSLA Flame cut edge	BS5400 S/N CURVE: E	DnV S/N CURVE: E	HSLA 7/16", continuous cruciform	BS5400 S/N CURVE: D	DnV S/N CURVE: D	DnV S/N CURVE: T	HSLA one sided welds		AASHTO #2 AASHTO S/N CURVE: B	
	BS5400 #8	DNV #1	SSC #4	NSWC #6	NSWC #13	SSC #42	SSC #53	BS5400 #4	DNV #5	AASHTO #3	NSWC #5	NSWC #10	NSWC #28	NSWC #7	NSWC #21	NSWC #8	BS5400 #7	DNV #2	GENERIC	NSWC #1	NSWC #24	BS5400 #5	DNV #4	NSWC #3	BS5400 #6	DNV #3	DNV #9	NSWC #27	NSWC #29	AASHTO #2	

Table J-3 – Mean Strength Ratios Sorted at 108 Cycles

Č	3	BASELINE CONFIGURATION	CRIPTION	LOG(Aamp) LOG(Arng	OG(Arng		STD DEV	10^3 cyc	10^8 cyc
BS5400 #1	# 00	BS5400 S/N CURVE: W	Weld throat based stresses	8.150	9.054	-3.000	0.184	0.52	0.52
DNV #8	Ω	DnV S/N CURVE: W	Partial penetration load carrying welds	8.148	9.052	-3.000	0.185	0.52	0.52
NSWC #10	0 #10		Partial penetration load carrying welds	8.272	9.081	-2.686	0.139	0.94	0.6
AASHI	AASHTO #5		Weld terminations and overlaps	8.329	9.232	-3.000	0.101	9.0	0.6
BS5400 #2	00 #2	BS5400 S/N CURVE: G	Flange attachments close to edge, undercut	8.338	9.241	-3.000	0.179	9.0	9.0
L# ANG	<u>*</u>	DnV S/N CURVE: G	Flange attachments close to edge, undercut	8.335	9.238	-3.000	0.179	9.0	9.0
NSWC #11	#1	HSLA misaligned partial penetration welds	Half thickness misalignment, partial penetration	8.513	9.521	-3.349	0.208	0.43	0.64
SSC #49	43	SSC:27	Double Lapped Plate with Plug Welds	8.453	9.400	-3.146	0.580	0.53	0.64
NSWC #7	2#2	HSLA 1", continuous cruc., shipyard	Full penetration non-toad carrying welds	8.389	9.211	-2.732	0.068	96.0	99.0
SSC #57	127	SSC:32B	Abrupt Change in Flange Width: Bndg	8.646	9.710	-3.533	0.620	0.38	0.68
SSC #65	592	SSC:40	Stiffener Intersection: Bending	8.646	9.710	-3.533	0.620	0.38	0.68
SSC #58	128	SSC:33	Lapped Flatbar to Plt w/ Full Wrap: Axial	8.758	9.860	-3.660	0.500	0.35	0.71
SSC #10	10		Cvr Pit on I-Bm Fig Bndg	8.663	9.650	-3.278	0.480	0.52	0.72
AASHIO #4	10	-	Non-NDE full penetration butt welds, attachments	8.648	9.551	-3.000	0.108	0.76	0.76
BS5400 #3	£# 90 90	BS5400 S/N CURVE: F2	Transverse fillet welds at high SCF areas	8.672	9.575	-3.000	0.228	0.78	0.78
S# ANO	g !	DNV S/N CURVE: F2	Butts in unequal width plates, long attachments	8.672	9.575	-3.000	0.228	0.78	0.78
SSC #33	£33	SSC:18	Lapped Flatbar to Plate Attchmnt: Axial	9.048	10.260	4.027	0.650	0.29	0.78
NSWC #23	2 #23	HSLA Opening Detail	Reinforced opening detail	8.923	9.971	-3.480	0.203	0.48	0.82
SSC #54	‡ 54	SSC:31	Out-of-Plane Flg Side Attchmnt: Bndg	9.361	10.670	4.348	0.620	0.26	0.86
	467	SSC:46	Long. Welds on Support Gussets: Axial	9.361	10.670	-4.348	0.620	0.26	0.86
P# 0025400 #1	% #	BS5400 S/N CURVE: F	Backing strip welds & flange attachments	8.820	9.723	-3.000	0.218	0.87	0.87
	£	DnV S/N CURVE: F	Backing strip welds & short flange attachments	8.819	9.722	-3.000	0.218	0.87	0.87
SSC #52	#52 		Long Finite Plate Attchmnt: Axial	8.919	9.870	-3.159	0.310	0.74	0.89
AASHTO #3	10 #3	-	Transverse NDE full penetration butt welds	8.875	9.778	-3.000	0.063	0.91	0.91
SSC #31	£ 53	SSC:17A	Lapped Channel to Plate Attchmnt: Axial	9.097	10.140	-3.465	0.390	0.55	0.93
SSC #43	£3:	SSC:23	Tee with Transv. Channel Attchmnt: Bndg	8.981	9.940	-3.187	0.130	0.74	0.93
SSC #44	4	SSC:24	Tee with Short Cvr Plt Attchmnt: Bndg	8.981	9.940	-3.187	0.130	0.74	0.93
SSC #55	125	SSC:31A	Lapped Fing Side Attchmnt: Bndg	9.091	10.130	-3.453	0.440	0.56	0.93
NSWC #29	£29	HSLA double thickness doubler welds	Doubler plate, twice thickness doubler	8.843	9.680	-2.780	0.555	1.29	0.95
SSC #29	529	SSC:17	Lapped Angle to Plate Attchmnt: Axial	9.265	10.390	-3.736	0.340	0.45	0.95
SSC #63	,	SSC:38	Stiffener Plate Penetration: Bndg	9.128	10.170	-3.462	0.360	0.57	0.95
SSC #48	178	SSC:26	Welded Cover Plate	9.122	10.130	-3.348	0.610	0.65	0.98
NSWC #6	9 #	HSLA 3/4", continuous cruc., shipyard	Full penetration non-load carrying welds	9.057	10.000	-3.134	0.172	0.85	-
SSC #26	±26	SSC:15	Loaded Edge Attachment Plate	9.566	10.830	-4.200	0.430	0.33	-
SSC #56	±26	SSC:32A	In-Plane Side Attchmnt to Flange: Bndg	9.566	10.830	4.200	0.430	0.33	-
GENERIC	SIC	Generic S/N Curve		9.000	9.903	-3.000	0.000	-	-
SSC #42	1 2	SSC:22	Tee with Stud Attachment: Bndg	9.093	10.040	-3.147	0.320	0.85	1.02
NSWC #18	2 #18	HSLA & HS conventional components	Continuous bulkhead penetration, R=0	9.192	10.174	-3.263	0.214	0.77	1.05
BS5400 #5	90 #2	BS5400 S/N CURVE: E	Butts in unequal thickness & width, web brackets	660.6	10.003	-3.000	0.251	1.08	1.08
DNV #4	1	DnV S/N CURVE: E	Butts in unequal thickness & width, dressed welds	660.6	10.002	-3.000	0.251	1.08	1.08
NSWC #28	2 #28	HSLA single thickness doubler welds	Doubler plate, same thickness doubler	9.179	10.119	-3.122	0.490	0.94	
NSWC #20	2 #20	HSLA INTERCOASTAL	Discontinuous bulkhead penetration, R=0	9.699	10.930	-4.088	0.120	0.4	1.11
BS5400 #6	9# 00	BS5400 S/N CURVE: D	Transverse butt welds and start/stop in long	9.183	10.086	-3.000	0.210	1.15	1.15
E# AND	£3	DnV S/N CURVE: D	Butt & fillet welds with start/stop positions	9.183	10.086	-3.000	0.210	1.15	1.15
SSC #60	9	SSC:35	Butt Weld with Backing Bar	9.604	10.750	-3.808	0.280	0.51	1.15

Table J-3 – Mean Strength Ratios Sorted at 108 Cycles (cont.)

	BASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamp) LOG(Arng)	0G(Amg)	B STI	STD DEV 10 ⁴³ cyc	Ŋ	10^8 cyc 1.16
220 #20	SSC:Z/(S)	Couple Lapped Fit W. Fing Weins. Orient	7 7 7	1000	070	7000	0.47	ά,
NSWC #9	HSLA misaligned cruciform	Talk that is interest misalignment, full peneualion	9.733	10.322	-3.000	0.248	12.	121
6# ANG	DNV S/N CURVE: 1	Plate Denetration: Avial	10.180	11.570	4 619	0 990	0.32	1.22
NCM/ #26	SSC.20 HSI A Insert Plate "Poor Weld"	l ack of fusion defects in weld	9,845	11.051	4.009	0.103	0.47	1.24
NSWC #21	HSI A CONV CMP R=-1	Continuous bulkhead penetration	9.427	10.399	-3.230	0.169	96.0	1.26
SSC #68	SSC:51(V)	Transv. Stiffnr Pene. Flg Unspprtd: Bndg	9.781	10.930	-3.818	0.070	0.56	1.27
SSC #64	SSC:38(S)	Stiffener Plate Penetration: Shear	14.312	17.390	-10.225	0.880	60.0	1 .3
SSC #53	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.566	10.580	-3.368	0.100	98.0	1.31
NSWC #17	OS misalioned cruciform	Half thickness misalignment, full penetration	10.541	12.023	4.924	0.149	0.3	1.32
SSC #69	SSC:52(V)	Transv. Stiffnr Pene. Flg Supported: Bndg	10.023	11.240	4.042	0.190	0.5	1.35
NSWC #13	HS discontinuous cruciform	Full penetration load carrying welds	9.648	10.677	-3.417	0.252	0.85	1.36
NSWC #8	HSLA discontinuous cruciform	Full penetration load carrying welds	9.601	10.597	-3.307	0.263	0.97	1.38
NSWC #19	HSLA SNIPED COMP	Cont. bhd penetration with sniped bhd stiffener, R=0	10.058	11.267	-4.016	0.139	0.53	1.39
NSWC #3	HSLA 7/16", continuous cruciform	Full penetration non-load carrying welds	9.559	10.525	-3.210	0.185	1.09	4.
SSC #13	SSC:7P	I-Bm w/vrt Web St Prin Stress	10.204	11.460	4.172	0.510	0.49	1.43
AASHTO #2		Continuous Longitudinal Welds	9.471	10.374	-3.000	0.147	4.	1.44
SSC #22		Tee Stffnr Tapered Flg Thickness Bndg	10.366	11.690	-4.398	0.430	0.43	1.44
SSC #27	SSC:16	Partial Pen. Butt Weld	10.626	12.020	4.631	0.580	0.39	1.52
SSC #12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	10.095	11.230	-3.771	0.530	0.72	1.57
NSWC #5	HSLA 7/16", continuous cruc., lab & syd	Full penetration non-load carrying welds	9.947	10.999	-3.496	0.205	0.93	1.61
SSC #35	SSC:19	Lapped Flatbar End Weld Only: Axial	12.941	15.190	-7.472	0.930	0.16	1.61
NSWC #16	OS discontinuous cruciform	Full penetration load carrying welds	10.185	11.314	-3.752	0.304	0.77	1.67
BS5400 #7	BS5400 S/N CURVE: C	Flame-cut edges and longitudinal welds	10.046	11.100	-3.500	0.204	66.0	1.71
DNV #2	DnV S/N CURVE: C	Flame cut edge or cont. butt & fillet welds	10.047	11.100	-3.500	0.204	0.99	1.7
SSC #62	SSC:36A	Skip Welded Plates	11.326	12.880	-5.163	0.460	0.35	1.75
NSWC #27	HSLA one sided welds	Permanent backing bar, one sided weld	9.956	10.949	-3.298	0.307	1.25	1.77
SSC #40	SSC:21(3/8"WELD)	Plate Penetration: Bending	20.826	25.490	-15.494	0.620	0.08	1.79
SSC #38	SSC:20(S)	Plate Penetration: Shear	12.695	14.730	-6.759	0.930	0.21	6 .
NSWC #4	HSLA 7/16", continuous cruc., shipyard	Full penetration non-load carrying welds	10.432	11.592	-3.855	0.210	0.79	1.85
NSWC #15	OS continuous cruciform	Full penetration non-load carrying welds	10.566	11.766	-3.987	0.221	0.73	1.89
SSC #47	SSC:25B	Plt w/ Transv. Side Attchmnt and Brace	13.053	15.150	-6.966	0.630	0.22	1.91
SSC #61	SSC:36	Skip Welded Plates with Rathole	13.053	15.150	-6.966	0.630	0.22	1.91
SSC #21	SSC:11	I-Bm Butt Weld Bndg	12.035	13.770	-5.765	0.680	0.31	1.92
SSC #36	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	13.566	15.830	-7.520	0.930	0.19	1.93
NSWC #2	HSLA 1/4", continuous cruc., shipyard	Full penetration non-load carrying welds	10.714	11.944	4.087	0.350	0.71	1.97
NSWC #22	HSLA Stiffener Splice	Stiffener transition detail	10.843	12.122	4.250	0.177	0.64	1.97
SSC #34	SSC:18(S)	Lapped Flatbar to Plate Attchmnt: Shear	15.241	18.020	-9.233	0.750	0.15	1.98
SSC #24	SSC:13	Tee Stiffener Taped Fig Width Bndg	10.847	12.120	-4.229	0.450	0.65	1.99
SSC #30	SSC:17(S)	Lapped Angle to Plate Attchmnt: Shear	13.937	16.280	-7.782	0.650	0.19	2.01
SSC #32	SSC:17A(S)	Lapped Channel to Plate Attchmnt: Shear	13.937	16.280	-7.782	0.650	0.19	2.01
BS5400 #9	BS5400 S/N CURVE: S	Shear connectors in concrete	14.214	16.623	-8.000	0.504	0.19	2.05
SSC #28	SSC:33(S)	Lapped Flatbar to Plt w/ Full Wrap:Shear	16.469	19.590	-10.368	0.810	0.13	2.05
AASHTO #1	1 AASHTO S/N CURVE: A	Baseplate dressed edges	9.940	10.843	-3.000	0.221	5.06	5.06
NSWC #24	HSLA Flame cut edge	Flame cut edge	10.553	11.668	-3.705	0.092	1.03	2.14
NSWC #14	HS misaligned cruciform	Half thickness misalignment, full penetration	12.902	14.833	-6.416	0.142	0.28	2.15

Table J-3 – Mean Strength Ratios Sorted at 10^8 Cycles (cont.)

	97.007.00	BASELINE CONTIGURATION	BRIEF DESCRIPTION	LOG(Aamp) LOG(Arng	OG(Arng	s B	STD DEV 10 ⁴³ cyc		10^8 cyc
	D23400#0	BSS400 S/N CURVE: B	Parent plate, as welded	10.812	12.016	-4.000	0.182	0.83	2.17
	CNV #1	DNV S/N CURVE: B	base plate or dressed welds	10.813	12.017	4.000	0.182	0.83	2.17
	SSC #28	SSC:16(G)	Partial Pen. Butt Weld: Ground	13.455	15.550	-6.960	0.950	0.25	2.19
	NSWC #12	HS continuous cruciform	Full penetration non-load carrying welds	11.289	12.639	-4.486	0.218	0.63	2.24
	SSC #45	SSC:25	Continuous Cruciform	13.656	15.790	-7.090	0.780	0.25	2.25
	SSC #23	SSC:12(G)	Tee Stffnr Tapered Flg Thickness Bndg	12.415	14.120	-5.663	0.600	0.38	2.32
	SSC #16	SSC:10M	Butt Weld Axial: Mild Steel	14.345	16.630	-7.589	0.880	0.24	2.4
	SSC #8	SSC:4	Long. Fillet Weld Bndg	12.515	14.220	-5.663	0.610	0.4	2.42
	SSC #11	SSC:6	Dbl I-Bm Bndg	12.515	14.220	-5.663	0.610	0.4	2.42
	SSC #18	SSC:10Q	Butt Weld Axial:Q&T Steel	12.108	13.650	-5.124	0.760	0.51	2.52
	NSWC #25	HSLA Insert Plate "Good Weld"	Half thickness insert plate	12.101	13.633	-5.090	0.184	0.53	2.55
	SSC #15	SSC:9	Riveted Single Lap	16.687	19.590	-9.643	0.900	0.18	2.55
	SSC #20	SSC:10A	Butt Weld Bndg	12.494	14.140	-5.468	0.790	0.46	2.59
	SSC #7	SSC:3	Longitudinal Seam	13.010	14.800	-5.946	0.630	0.39	2.64
	SSC #8	SSC:3(G)	Ground Long. Seam	13.602	15.520	-6.370	0.740	0.37	2.81
	SSC #25	SSC:14	Disc. Cruciform Axial	14.721	16.960	-7.439	0.910	0.29	2.82
	SSC #39	SSC:21(1/4"WELD)	Plate Penetration: Bending	22.432	26.720	-14.245	0.620	0.14	2.84
	SSC #51	SSC:28	Baseplate with Circular Hole	15.078	17.410	-7.746	0.810	0.27	2.84
	SSC #41	SSC:21(S)	Plate Penetration: Shear	14.765	16.980	-7.358	0.830	0.3	2.93
J	SSC #66	SSC:42	Bending of Long Attachment	14.765	16.980	-7.358	0.830	0.3	2.93
-1	SSC #19	SSC:10(G)	Butt Weld Axial: Ground	14.784	16.930	-7.130	0.940	0.35	3.19
8	SSC #5	SSC:1(F)	Baseplate Flame Cut	12.334	13.780	4.805	0.600	0.77	3.24
	SSC #14	SSC:8	Bolted Double Lap	14.469	16.440	-6.549	0.810	0.45	3.58
	SSC #17	SSC:10H	Butt Weld Axial: HSLA Steel	22.068	25.920	-12.795	0.960	0.19	3.62
	SSC #6	SSC:2	Rolled I-Beam Bending	13.999	15.820	-6.048	0.640	0.54	3.71
	SSC #46	SSC:25A	Plate with Transv. Side Attachment	16.906	19.470	-8.518	0.910	0.31	3.73
	SSC #2	SSC:1M	Baseplate Mild Steel	21.679	25.360	-12.229	0.710	0.21	3.85
	SSC #1	SSC:1(all steels)	Baseplate	13.825	15.550	-5.729	0.750	0.64	3.99
	SSC #4	SSC:10	Baseplate Q & T Steel	13.345	14.910	-5.199	0.680	0.83	4.23
	SSC #3	SSC:1H	Baseplate HSLA Steel	27.389	32.040	-15.449	0.910	0.22	4.8
	NSWC #1	HSLA 7/16" bending, shipyard	Full penetration non-load carrying welds	13.617	15.161	-5.130	0.378	1.01	4.95

Table J-4 – Mean Minus 2 Sigma Strength Ratios Unsorted

	BASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamp) LOG(Amg)	OG(Arng)		STD DEV 10'	10^3 cyc 10^	10^8 cyc
NSWC #1	HSLA 7/16" bending, shipyard	Full penetration non-load carrying welds	12.861	14.405	-5.130	0.378	0.72	3.53
NSWC #2	HSLA 1/4" continuous cruc. shipvard	Full penetration non-load carrying welds	10.014	11.244	4.087	0.350	0.48	1.33
NSWC #3	HSLA 7/16", continuous cruciform	Full penetration non-load carrying welds	9.189	10.155	-3.210	0.185	0.83	1.07
NSWC #4	HSLA 7/16", continuous cruc., shipyard	Full penetration non-load carrying welds	10.012	11.172	-3.855	0.210	0.62	1.44
NSWC #5	HSLA 7/16", continuous cruc., lab & syd	Full penetration non-load carrying welds	9.537	10.589	-3.496	0.205	0.71	1.23
NSWC #6	HSLA 3/4", continuous cruc., shipyard	Full penetration non-load carrying welds	8.713	9.656	-3.134	0.172	99.0	0.77
NSWC #7	HSLA 1", continuous cruc., shipyard	Full penetration non-load carrying welds	8.253	9.075	-2.732	0.068	98.0	0.59
NSWC #8	HSLA discontinuous cruciform	Full penetration load carrying welds	9.075	10.071	-3.307	0.263	0.67	96.0
NSWC #8	HSLA misaligned cruciform	Half thickness misalignment, full penetration	9.279	10.468	-3.949	0.227	0.36	0.91
NSWC #10	HSLA non-full penetration disc cruciform	Partial penetration load carrying welds	7.994	8.803	-2.686	0.139	0.74	0.47
NSWC #11	HSLA misaligned partial penetration welds	Half thickness misalignment, partial penetration	8.097	9.105	-3.349	0.208	0.32	0.48
NSWC #12	HS continuous cruciform	Full penetration non-load carrying welds	10.853	12.203	4.486	0.218	0.50	1.79
NSWC #13	HS discontinuous cruciform	Full penetration load carrying welds	9.144	10.173	-3.417	0.252	0.61	0.97
NSWC #14	HS misaligned cruciform	Half thickness misalignment, full penetration	12.618	14.549	-6.416	0.142	0.25	1.94
NSWC #15	OS continuous cruciform	Full penetration non-load carrying welds	10.124	11.324	-3.987	0.221	0.57	1.46
NSWC #16	OS discontinuous cruciform	Full penetration load carrying welds	9.577	10.706	-3.752	0.304	0.53	1.15
NSWC #17	OS misaligned cruciform	Half thickness misalignment, full penetration	10.243	11.725	-4.924	0.149	0.26	1.15
NSWC #18	HSLA & HS conventional components	Continuous bulkhead penetration, R=0	8.764	9.746	-3.263	0.214	0.57	0.78
NSWC #19	HSLA SNIPED COMP	Cont. bhd penetration with sniped bhd stiffener, R=0	9.780	10.989	4.016	0.139	0.45	1.19
NSWC #20	HSLA INTERCOASTAL	Discontinuous bulkhead penetration, R=0	9.459	10.690	-4.088	0.120	0.35	0.97
NSWC #21	HSLA CONV CMP R=-1	Continuous bulkhead penetration	9.089	10.061	-3.230	0.169	0.75	0.99
NSWC #22	HSLA Stiffener Splice	Stiffener transition detail	10.489	11.768	-4.250	0.177	0.53	1.62
NSWC #23	HSLA Opening Detail	Reinforced opening detail	8.517	9.565	-3.480	0.203	0.37	0.63
NSWC #24	HSLA Flame cut edge	Flame cut edge	10.369	11.484	-3.705	0.092	0.92	1.91
NSWC #25	HSLA Insert Plate "Good Weld"	Half thickness insert plate	11.733	13.265	-5.090	0.184	0.45	2.16
NSWC #26	HSLA Insert Plate "Poor Weld"	Lack of fusion defects in weld	9.639	10.845	4.009	0.103	0.42	1.10
NSWC #27	HSLA one sided welds	Permanent backing bar, one sided weld	9.342	10.335	-3.298	0.307	0.82	1.16
NSWC #28	HSLA single thickness doubler welds	Doubler plate, same thickness doubler	8.199	9.139	-3.122	0.490	0.46	0.53
NSWC #29	HSLA double thickness doubler welds	Doubler plate, twice thickness doubler	7.733	8.570	-2.780	0.555	0.51	0.38
AASHTO #1	-	Baseplate dressed edges	9.499	10.402	-3.000	0.221	1.47	1.47
AASHTO #2	2 AASHTO S/N CURVE: B	Continuous Longitudinal Welds	9.178	10.081	-3.000	0.147	1.15	1.15
AASHTO #3	_	Transverse NDE full penetration butt welds	8.750	9.653	-3.000	0.063	0.83	0.83
AASHTO #4		Non-NDE full penetration butt welds, attachments	8.433	9.336	-3.000	0.108	0.65	0.65
AASHTO #5	-	Weld terminations and overlaps	8.128	9.031	-3.000	0.101	0.51	0.51
BS5400 #1	BS5400 S/N CURVE: W	Weld throat based stresses	7.782	8.685	-3.000	0.184	0.39	0.39
BS5400 #2	BS5400 S/N CURVE: G	Flange attachments close to edge, undercut	7.980	8.883	-3.000	0.179	0.46	0.46
BS5400 #3	BS5400 S/N CURVE: F2	Transverse fillet welds at high SCF areas	8.217	9.120	-3.000	0.228	0.55	0.55
BS5400 #4	BS5400 S/N CURVE: F	Backing strip welds & flange attachments	8.384	9.287	-3.000	0.218	0.62	0.62
BS5400 #5	BS5400 S/N CURVE: E	Butts in unequal thickness & width, web brackets	8.597	9.500	-3.000	0.251	0.73	0.73
BS5400 #6	BS5400 S/N CURVE: D	Transverse butt welds and start/stop in long	8.764	9.667	-3.000	0.210	0.83	0.83
BS5400 #7	BS5400 S/N CURVE: C	Flame-cut edges and longitudinal welds	9.638	10.691	-3.500	0.204	0.76	1.31
BS5400 #8	BS5400 S/N CURVE: B	Parent plate, as welded	10.447	11.651	4.000	0.182	0.67	1.76
BS5400 #9	BS5400 S/N CURVE: S	Shear connectors in concrete	13.205	15.614	-8.000	0.504	0.14	1.53
DNV #1	DnV S/N CURVE: B	base plate or dressed welds	10.449	11.653	4.000	0.182	0.67	1.76
DNV #2	DnV S/N CURVE: C	Flame cut edge or cont. butt & fillet welds	9.639	10.692	-3.500	0.204	0.76	1.31

Table J-4 – Mean Minus 2 Sigma Strength Ratios Unsorted (cont.)

707
ose to edge, undercut
ose to edge, undercut i carrying welds
ğğ
riange attachments crose to edge, undercut Partial penetration load carrying welds Tubular ioints
o ≷ ⊦
DIN S/N CURVE: W
SIN CURVE: W

Table J-4 – Mean Minus 2 Sigma Strength Ratios Unsorted (cont.)

	RASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamo) LOG(Ama))G(Ama)	8	STD DEV 10 ⁴³ cvc		10^8 cvc
85C #26	SSC-15	Loaded Edge Attachment Plate	8.706	9.970	200	0.430	_	0.62
SSC #27	550:16	Partial Pen Butt Weld	9.466	10.860	-4.631	0.580	0.22	0.85
SSC #28	SSC:16(G)	Partial Pen. Butt Weld: Ground	11.555	13.650	-6.960	0.950	0.13	1.17
02# 000	SSC:17(C)	I apped Apple to Plate Attchmot Axial	8.585	9.710	-3.736	0.340	0.29	0.63
SSC #30	SSC:17(S)	Lapped Angle to Plate Attchmnt: Shear	12.637	14.980	-7.782	0.650	0.13	1.37
SSC #31	SSC:17A	Lapped Channel to Plate Attchmnt: Axial	8.317	9.360	-3.465	0.390	0.33	0.55
SSC #32	SSC:17A(S)	Lapped Channel to Plate Attchmnt: Shear	12.637	14.980	-7.782	0.650	0.13	1.37
SSC #33	SSC:18	Lapped Flatbar to Plate Attchmnt. Axial	7.748	8.960	4.027	0.650	0.14	0.37
SSC #34	SSC:18(S)	Lapped Flatbar to Plate Attchmnt: Shear	13.741	16.520	-9.233	0.750	0.1	1.36
SSC #35	SSC:19	Lapped Flatbar End Weld Only: Axial	11.081	13.330	-7.472	0.930	0.09	0.91
SSC #36	SSC:19(S)	Lapped Flatbar End Weld Only. Shear	11.706	13.970	-7.520	0.930	0.11	1.09
SSC #37	SSC:20	Plate Penetration: Axial	8.860	10.250	4.619	0.660	0.16	0.63
SSC #38	SSC:20(S)	Plate Penetration: Shear	10.835	12.870	-6.759	0.930	0.11	96.0
SSC #39	SSC:21(1/4"WELD)	Plate Penetration: Bending	21.192	25.480	-14.245	0.620	0.11	2.33
SSC #40	SSC:21(3/8"WELD)	Plate Penetration: Bending	19.586	24.250	-15.494	0.620	0.07	1.49
SSC #41	SSC:21(S)	Plate Penetration: Shear	13.105	15.320	-7.358	0.830	0.18	1.75
SSC #42	SSC:22	Tee with Stud Attachment: Bndg	8.453	9.400	-3.147	0.320	0.53	0.64
SSC #43	SSC:23	Tee with Transv. Channel Attchmnt: Bndg	8.721	9.680	-3.187	0.130	0.61	0.77
SSC #44	SSC:24	Tee with Short Cvr Plt Attchmnt: Bndg	8.721	9.680	-3.187	0.130	0.61	0.77
SSC #45	SSC:25	Continuous Cruciform	12.096	14.230	-7.090	0.780	0.15	1.35
SSC #46	SSC:25A	Plate with Transv. Side Attachment	15.086	17.650	-8.518	0.910	0.19	2.28
SSC #47	SSC:25B	Plt w/ Transv. Side Attchmnt and Brace	11.793	13.890	996.9-	0.630	0.14	1.26
SSC #48	SSC:26	Welded Cover Plate	7.902	8.910	-3.348	0.610	0.28	0.42
SSC #49	SSC:27	Double Lapped Plate with Plug Welds	7.293	8.240	-3.146	0.580	0.23	0.27
SSC #50	SSC:27(S)	Double Lapped Plt w/ Plug Welds: Shear	9.391	10.980	-5.277	0.540	0.14	0.72
SSC #51	SSC:28	Baseplate with Circular Hole	13.458	15.790	-7.746	0.810	0.17	1.76
SSC #52	SSC:30	Long Finite Plate Attchmnt: Axial	8.299	9.250	-3.159	0.310	0.47	0.57
SSC #53	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.366	10.380	-3.368	0.100	0.75	1.15
SSC #54	SSC:31	Out-of-Plane Flg Side Attchmnt: Bndg	8.121	9.430	-4.348	0.620	0.14	0.45
SSC #55	SSC:31A	Lapped Fing Side Attchmnt: Bndg	8.211	9.250	-3.453	0.440	0.31	0.51
SSC #56	SSC:32A	In-Plane Side Attchmnt to Flange: Bndg	8.706	9.970	4.200	0.430	0.21	0.62
SSC #57	SSC:32B	Abrupt Change in Flange Width: Bndg	7.406	8.470	-3.533	0.620	0.17	0.3
SSC #58	SSC:33	Lapped Flatbar to Plt w/ Full Wrap: Axial	7.758	8.860	-3.660	0.500	0.19	0.38
SSC #59	SSC:33(S)	Lapped Flatbar to Plt w/ Full Wrap: Shear	14.849	17.970	-10.368	0.810	0.09	1.43
SSC #60	SSC:35	Butt Weld with Backing Bar	9.044	10.190	-3.808	0.280	0.36	0.82
SSC #61	SSC:36	Skip Welded Plates with Rathole	11.793	13.890	-6.966	0.630	0.14	1.26
SSC #62	SSC:36A	Skip Welded Plates	10.406	11.960	-5.163	0.460	0.23	1.16
SSC #63	SSC:38	Stiffener Plate Penetration: Bndg	8.408	9.450	-3.462	0.360	0.35	0.59
SSC #64	SSC:38(S)	Stiffener Plate Penetration: Shear	12.552	15.630	-10.225	0.880	90.0	0.87
SSC #65	SSC:40	Stiffener Intersection: Bending	7.406	8.470	-3.533	0.620	0.17	0.3
SSC #66	SSC:42	Bending of Long Attachment	13.105	15.320	-7.358	0.830	0.18	1.75
SSC #67	SSC:46	Long. Welds on Support Gussets: Axial	8.121	9.430	-4.348	0.620	0.14	0.45
SSC #68	SSC:51(V)	Transv. Stiffnr Pene. Flg Unspprtd: Bndg	9.641	10.790	-3.818	0.070	0.51	1.17
SSC #69	SSC:52(V)	Transv. Stiffnr Pene. Flg Supported: Bndg	9.643	10.860	-4.042	0.190	0.41	1.09
GENERIC	Generic S/N Curve		9.000	9.903	-3.000	0.00	-	~

Table J-5 – Mean Minus 2 Sigma Strength Ratios Sorted at 10^3 Cycles

Table J-5 – Mean Minus 2 Sigma Strength Ratios Sorted at 10^3 Cycles (cont.)

10^8 cyc	1.33	1.94	2.02	1.15	1.27	0.37	0.92	0.81	0.42	0.63	0.51	0.48	0.33	2.28	0.55	0.97	2.19	0.59	0.91	0.82	0.63	0.37	0.82	0.39	0.39	1.22	0.41	1.09	1.10	1.82	1.19	2.16	0.53	0.46	0.46	0.46	2.32	0.57	1.33	1.79	0.38	0.51	0.51	1.17	1.15	1.62
	0.24	0.25	0.25	0.26	0.26	0.27	0.27	0.28	0.28	0.29	0.31	0.32	0.33	0.33	0.33	0.35	0.35	0.35	0.36	0.36	0.37	0.37	0.37	0.39	0.39	0 . 4	0.41	0.41	0.42	0.43	0.45	0.45	0.46	0.46	0.46	0.46	0.46	0.47	0.48	0.50	0.51	0.51	0.51	0.51	0.53	0.53
STD DEV 10*3 cyc	0.790	0.142	0.810	0.149	0.760	0.480	0.430	0.510	0.610	0.340	0.440	0.208	n/a	0.640	0.390	0.120	0.750	0.360	0.227	0.280	0.203	n/a	0.530	0.184	0.185	0.450	n/a	0.190	0.103	0.600	0.139	0.184	0.490	0.179	0.179	n/a	0.680	0.310	0.350	0.218	0.555	0.101	n/a	0.070	0.304	0.177
	-5.468	-6.416	-6.549	4.924	-5.124	-3.278	4.398	-4.172	-3.348	-3.736	-3.453	-3.349	-3.000	-6.048	-3.465	4.088	-5.729	-3.462	-3.949	-3.808	-3.480	-3.000	-3.771	-3.000	-3.000	4.229	-3.000	4.042	4.009	4.805	4.016	-5.090	-3.122	-3.000	-3.000	-3.000	-5.199	-3.159	4.087	-4.486	-2.780	-3.000	-3.000	-3.818	-3.752	4.250
3(Arng)	12.560	14.549	14.820	11.725	12.130	8.690	10.830	10.440	8.910	9.710	9.250	9.105	8.459	14.540	9.360	10.690	14.050	9.450	10.468	10.190	9.565	8.598	10.170	8.685	8.682	11.220	8.744	10.860	10.845	12.580	10.989	13.265	9.139	8.883	8.879	8.886	13.550	9.250	11.244	12.203	8.570	9.031	9.031	10.790	10.706	11.768
LOG(Aamp) LOG(Amg)	10.914	12.618	12.849	10.243	10.588	7.703	9.506	9.184	7.902	8.585	8.211	8.097	7.556	12.719	8.317	9.459	12.325	8.408	9.279	9.044	8.517	7.695	9.035	7.782	7.779	9.947	7.841	9.643	9.639	11.134	9.780	11.733	8.199	7.980	7.976	7.983	11.985	8.299	10.014	10.853	7.733	8.128	8.128	9.641	9.577	10.489
BRIEF DESCRIPTION	Butt Weld Bndg	Half thickness misalignment, full penetration	Bolted Double Lap	Half thickness misalignment, full penetration	Butt Weld Axial Q&T Steel	Cvr PIt on I-Bm Flg Bndg	Tee Stffnr Tapered Flg Thickness Bndg	I-Bm w/vrt Web St Prin Stress	Welded Cover Plate	Lapped Angle to Plate Attchmnt: Axial	Lapped Fing Side Attchmnt: Bndg	Half thickness misalignment, partial penetration	threaded connections, thick cover plates	Rolled I-Beam Bending	Lapped Channel to Plate Attchmnt: Axial	Discontinuous bulkhead penetration, R=0	Baseplate	Stiffener Plate Penetration: Bndg	Half thickness misalignment, full penetration	Butt Weid with Backing Bar	Reinforced opening detail	Circular hollow welded connections w/ intermediate pit	I-Bm w/vrt Web Stiff Bndg	Weld throat based stresses	Partial penetration load carrying welds	Tee Stiffener Taped Flg Width Bndg	Overlapped welds,	Transv. Stiffnr Pene. Flg Supported: Bndg	Lack of fusion defects in weld	Baseplate Flame Cut	Cont. bhd penetration with sniped bhd stiffener, R=0	Half thickness insert plate	Doubler plate, same thickness doubler	Flange attachments close to edge, undercut	Flange attachments close to edge, undercut	Long attachments, thin cover plates	Baseplate Q & T Steel	Long Finite Plate Attchmnt: Axial	Full penetration non-load carrying welds	Full penetration non-load carrying welds	Doubler plate, twice thickness doubler	Weld terminations and overlaps	Rect. hollow welded connections	Transv. Stiffnr Pene. Flg Unspprtd: Bndg	Full penetration load carrying welds	Stiffener transition detail
BASELINE CONFIGURATION	SSC:10A	HS misaligned cruciform	SSC:8	OS misaligned cruciform	SSC:10Q	SSC:5	SSC:12	SSC:7P	SSC:26	SSC:17	SSC:31A	HSLA misalioned partial penetration welds		SSC:2	SSC:17A	HSLA INTERCOASTAL	SSC:1(all steels)	SSC:38	HSLA misaligned cruciform	SSC:35	HSLA Opening Detail	EUROCODE S/N CURVE: 109 (40)	SSC:7B	BS5400 S/N CURVE: W	DnV S/N CURVE: W	SSC:13	EUROCODE S/N CURVE: 122 (45)	SSC:52(V)	HSLA Insert Plate "Poor Weld"	SSC:1(F)	HSLA SNIPED COMP	HSLA Insert Plate "Good Weld"	HSLA single thickness doubler welds	BS5400 S/N CURVE: G	DnV S/N CURVE: G	EUROCODE S/N CURVE: 136 (50)	SSC:1Q	SSC:30	HSLA 1/4", continuous cruc., shipyard	HS continuous cruciform	HSLA double thickness doubler welds			SSC:51(V)	OS discontinuous cruciform	HSLA Stiffener Splice
	SSC #20	NSWC #14	SSC #14	NSWC #17	SSC #18	SSC #10	SSC #22	SSC #13	SSC #48	SSC #29	SSC #55	NSWC #11	EURO #14	SSC #6	SSC #31	NSWC #20	SSC #1	SSC #63	NSWC #9	SSC #60	NSWC #23	EURO #13	SSC #12	BS5400 #1	DNV #8	SSC #24	EURO #12	SSC #69	NSWC #26	SSC #5	NSWC #19	NSWC #25	NSWC #28	BS5400 #2	DNV #7	EURO #11	SSC #4	SSC #52	NSWC #2	NSWC #12	NSWC #29	AASHTO #5	EURO #10	SSC #68	NSWC #16	NSWC #22

Table J-5 – Mean Minus 2 Sigma Strength Ratios Sorted at 10^3 Cycles (cont.)

:	BASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamp) LOG(Amg	OG(Amg		STD DEV 1		10^8 cyc
SSC #42	SSC:22	Tee with Stud Attachment: Bndg	8.453	9.400	-3.147	0.320	0.53	0.64
BS5400 #3	BS5400 S/N CURVE: F2	Transverse fillet welds at high SCF areas	8.217	9.120	-3.000	0.228	0.55	0.55
DNV #6	DnV S/N CURVE: F2	Butts in unequal width plates, long attachments	8.216	9.120	-3.000	0.228	0.55	0.55
NSWC #15	OS continuous cruciform	Full penetration non-load carrying welds	10.124	11.324	-3.987	0.221	0.57	1.46
NSWC #18		Continuous bulkhead penetration, R=0	8.764	9.746	-3.263	0.214	0.57	0.78
EURO#9	EUROCODE S/N CURVE: 171 (63)	Overlapped welds,	8.281	9.184	-3.000	n/a	0.58	0.58
NSWC #13		Full penetration load carrying welds	9.144	10.173	-3.417	0.252	0.61	0.97
SSC #43	SSC:23	Tee with Transv. Channel Attchmnt: Bndg	8.721	9.680	-3.187	0.130	0.61	0.77
SSC #44	SSC:24	Tee with Short Cvr Plt Attchmnt:Bndg	8.721	9.680	-3.187	0.130	0.61	0.77
NSWC #4	HSLA 7/16", continuous cruc., shipyard	Full penetration non-load carrying welds	10.012	11.172	-3.855	0.210	0.62	1.44
BS5400 #4	BS5400 S/N CURVE: F	Backing strip welds & flange attachments	8.384	9.287	-3.000	0.218	0.62	0.62
DNV #5		Backing strip welds & short flange attachments	8.383	9.286	-3.000	0.218	0.62	0.62
AASHTO #4		Non-NDE full penetration butt welds, attachments	8.433	9.336	-3.000	0.108	0.65	0.65
EURO #8	EUROCODE S/N CURVE: 193 (71)	Weld terminations, backing bar, thick trans. attchmt	8.439	9.342	-3.000	n/a	0.65	0.65
NSWC #6	HSLA 3/4", continuous cruc., shipyard	Full penetration non-load carrying welds	8.713	9.656	-3.134	0.172	99.0	0.77
NSWC #8	HSLA discontinuous cruciform	Full penetration load carrying welds	9.075	10.01	-3.307	0.263	0.67	96.0
BS5400 #8	BS5400 S/N CURVE: B	Parent plate, as welded	10.447	11.651	4.000	0.182	0.67	1.76
DNV#1	DnV S/N CURVE: B	base plate or dressed welds	10.449	11.653	4.000	0.182	0.67	1.76
NSWC #2	HSLA 7/16", continuous cruc., lab & syd	Full penetration non-load carrying welds	9.537	10.589	-3.496	0.205	0.71	1.23
NSWC #1	HSLA 7/16" bending, shipyard	Full penetration non-load carrying welds	12.861	14.405	-5.130	0.378	0.72	3.53
BS5400 #5	BS5400 S/N CURVE: E	Butts in unequal thickness & width, web brackets	8.597	9.500	-3.000	0.251	0.73	0.73
DNV#4	DnV S/N CURVE: E	Butts in unequal thickness & width, dressed welds	8.597	9.500	-3.000	0.251	0.73	0.73
EURO #7		Intermittent long. Welds, short thin attachments	8.592	9.495	-3.000	n/a	0.73	0.73
NSWC #10		Partial penetration load carrying welds	7.994	8.803	-2.686	0.139	0.74	0.47
NSWC #21	HSLA CONV CMP R=-1	Continuous bulkhead penetration	680'6	10.061	-3.230	0.169	0.75	0.99
SSC #53	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.366	10.380	-3.368	0.100	0.75	1.15
BS5400 #7	BS5400 S/N CURVE: C	Flame-cut edges and longitudinal welds	9.638	10.691	-3.500	0.204	0.76	1.31
DNV #2	DnV S/N CURVE: C	Flame cut edge or cont. butt & fillet welds	9.639	10.692	-3.500	0.204	0.76	1.31
NSWC #27	HSLA one sided welds	Permanent backing bar, one sided weld	9.342	10.335	-3.298	0.307	0.82	1.16
6# ANO	DnV S/N CURVE: T	Tubular joints	8.746	9.649	-3.000	0.248	0.82	0.82
EURO #6	EUROCODE S/N CURVE: 244 (90)	Tapered width & thickness, as-welded	8.744	9.648	-3.000	n/a	0.82	0.82
NSWC #3		Full penetration non-load carrying welds	9.189	10.155	-3.210	0.185	0.83	1.07
AASHTO #3		Transverse NDE full penetration butt welds	8.750	9.653	-3.000	0.063	0.83	0.83
BS5400 #6	BS5400 S/N CURVE: D	Transverse butt welds and start/stop in long	8.764	9.667	-3.000	0.210	0.83	0.83
DNV#3	DnV S/N CURVE: D	Butt & fillet welds with start/stop positions	8.764	9.667	-3.000	0.210	0.83	0.83
NSWC #7	HSLA 1", continuous cruc., shipyard	Full penetration non-load carrying welds	8.253	9.075	-2.732	0.068	0.86	0.59
EURO #5	EUROCODE S/N CURVE: 271 (100)	Manual butt & fillet welds and repairs	8.881	9.784	-3.000	n/a	0.91	0.91
NSWC #24	HSLA Flame cut edge	Flame cut edge	10.369	11.484	-3.705	0.092	0.92	1.91
GENERIC	Generic S/N Curve		9.000	9.903	-3.000	0.000		-
EURO#4	EUROCODE S/N CURVE: 304 (112)	Cont. long. fillet welds with start/stop, tapered ground	9.031	9.934	-3.000	n/a	1.02	1.02
EURO #3	EUROCODE S/N CURVE: 339 (125)	Flame cut edge, cont. long. fillet welds	9.173	10.076	-3.000	n/a	1.14	1.14
AASHTO #2	-	Continuous Longitudinal Welds	9.178	10.081	-3.000	0.147	1.15	1.15
EURO #2	EUROCODE S/N CURVE: 380 (140)	Dressed cut edge, bolted connections	9.322	10.225	-3.000	n/a	1.28	1.28
EURO #1	EUROCODE S/N CURVE: 434 (160)	Baseplate	9.495	10.398	-3.000	n/a	1.46	1.46
AASHTO #1	1 AASHTO S/N CURVE: A	Baseplate dressed edges	9.499	10.402	-3.000	0.221	1.47	1.47

Table J-6 – Mean Minus 2 Sigma Strength Ratios Sorted at 108 Cycles

BASELINE CONFIGURATION SSC:27
Abrupt Change in Flange Width: Bndg
!
threaded connections, thick cover plates
Circular hollow welded connections w/ intermediate plt
Lapped Flatbar to Plate Attchmnt: Axial
Doubler plate, twice thickness doubler
Lapped Flatbar to Pit w/ Full Wrap: Axial
Weld throat based stresses
Partial penetration load carrying welds
Overlapped welds,
Out of Blane Fla Side Attchmat: Bada
Long Welds on Support Gussets: Axial
Flance attachments close to edge, undercut
Flance attachments close to edge, undercut
Long attachments, thin cover plates
Partial penetration load carrying welds
Half thickness misalignment, partial penetration
Weld terminations and overlaps
Rect. hollow welded connections
Lapped Fing Side Attchmnt: Bndg
Doubler plate, same thickness doubler
Transverse fillet welds at high SCF areas
Butts in unequal width plates, long attachments
Lapped Channel to Plate Attchmnt: Axial
Overlapped welds,
Full penetration non-load carrying welds Stiffener Plate Penetration: F
Backing strip welds & flance attachments
Backing strip welds & short flange attachments
,
In-Plane Side Attchmnt to Flange: Bndg
Reinforced opening detail
Lapped Angle to Plate Attchmnt: Axial
Tee with Stud Attachment: Bndg
Non-NDE full penetration butt welds, attachments
Weld terminations, backing bar, thick trans. attchmt
Double Lapped Pit w/ Plug Welds: Shear
Butts in unequal thickness & width, web brackets
Butts in unequal thickness & width, dressed welds
intermittent long. Welds, short thin attachments

Table J-6 – Mean Minus 2 Sigma Strength Ratios Sorted at 10^8 Cycles (cont.)

	BASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamp) LOG(Arnd)	OG(Ama)	ď	STD DEV 40	1043 6401	10^8 cvc
NSWC #6	HSLA 3/4", continuous cruc., shipyard	Full penetration non-load carrying welds	8.713	9.656	.3.134	0.172	g	77.0
SSC #43	SSC:23	Tee with Transv. Channel Attchmnt: Bndo	8 721	9.680	-3 187	0.130	9 0	0.77
SSC #44	SSC:24	Tee with Short Cvr Plt Attchmnt: Bnda	8.721	9.680	-3.187	0.130	0.61	0.77
NSWC #18	HSLA & HS conventional components	Continuous bulkhead penetration, R=0	8.764	9.746	-3.263	0.214	0.57	0.78
SSC #13	SSC:7P	I-Bm w/vrt Web St Prin Stress	9.184	10.440	4.172	0.510	0.28	0.81
6# ANG		Tubular joints	8.746	9.649	-3.000	0.248	0.82	0.82
EURO #6	EUROCODE S/N CURVE: 244 (90)	Tapered width & thickness, as-welded	8.744	9.648	-3.000	n/a	0.82	0.82
SSC #12	SSC:7B	I-Bm w/vrt Web Stiff Bndg	9.035	10.170	-3.771	0.530	0.37	0.82
SSC #60		Butt Weld with Backing Bar	9.044	10.190	-3.808	0.280	0.36	0.82
AASHTO #3	-	Transverse NDE full penetration butt welds	8.750	9.653	-3.000	0.063	0.83	0.83
BS5400 #6	BS5400 S/N CURVE: D	Transverse butt welds and start/stop in long	8.764	9.667	-3.000	0.210	0.83	0.83
DNV#3	DnV S/N CURVE: D	Butt & fillet welds with start/stop positions	8.764	9.667	-3.000	0.210	0.83	0.83
SSC #27	SSC:16	Partial Pen. Butt Weld	9.466	10.860	-4.631	0.580	0.22	0.85
SSC #64	SSC:38(S)	Stiffener Plate Penetration: Shear	12.552	15.630	-10.225	0.880	90.0	0.87
NSWC #8		Half thickness misalignment, full penetration	9.279	10.468	-3.949	0.227	0.36	0.91
EURO #5	EUROCODE S/N CURVE: 271 (100)	Manual butt & fillet welds and repairs	8.881	9.784	-3.000	n/a	0.91	0.91
SSC #35	SSC:19	Lapped Flatbar End Weld Only: Axial	11.081	13.330	-7.472	0.930	0.09	0.91
SSC #22	SSC:12	Tee Stffnr Tapered Flg Thickness Bndg	9.506	10.830	4.398	0.430	0.27	0.92
NSWC #8	HSLA discontinuous cruciform	Full penetration load carrying welds	9.075	10.071	-3.307	0.263	0.67	96.0
SSC #38	SSC:20(S)	Plate Penetration: Shear	10.835	12.870	-6.759	0.930	0.11	96.0
NSWC #13	HS discontinuous cruciform	Full penetration load carrying welds	9.144	10.173	-3.417	0.252	0.61	0.97
NSWC #20	HSLA INTERCOASTAL	Discontinuous bulkhead penetration, R=0	9.459	10.690	4.088	0.120	0.35	0.97
NSWC #21	HSLA CONV CMP R=-1	Continuous bulkhead penetration	9.089	10.061	-3.230	0.169	0.75	0.99
GENERIC	Generic S/N Curve		9.000	9.903	-3.000	000.0	_	
EURO #4	EUROCODE S/N CURVE: 304 (112)	Cont. long. fillet welds with start/stop, tapered ground	9.031	9.934	-3.000	n/a	1.02	1.02
NSWC #3	HSLA 7/16", continuous cruciform	Full penetration non-load carrying welds	9.189	10.155	-3.210	0.185	0.83	1.07
SSC #36	SSC:19(S)	Lapped Flatbar End Weld Only: Shear	11.706	13.970	-7.520	0.930	0.11	1.09
SSC #69	SSC:52(V)	Transv. Stiffnr Pene. Flg Supported: Bndg	9.643	10.860	4.042	0.190	0.41	1.09
NSWC #26	HSLA Insert Plate "Poor Weld"	Lack of fusion defects in weld	9.639	10.845	4.009	0.103	0.42	1.10
SSC #21	SSC:11	I-Bm Butt Weld Bndg	10.675	12.410	-5.765	0.680	0.18	1.12
EURO #3	EUROCODE S/N CURVE: 339 (125)	Flame cut edge, cont. long. fillet welds	9.173	10.076	-3.000	n/a	1.14	1.14
NSWC #16	OS discontinuous cruciform	Full penetration load carrying welds	9.577	10.706	-3.752	0.304	0.53	1.15
NSWC #17		Half thickness misalignment, full penetration	10.243	11.725	4.924	0.149	0.26	1.15
AASHTO #2	-	Continuous Longitudinal Welds	9.178	10.081	-3.000	0.147	1.15	1.15
SSC #53	SSC:30A	Long Finite Plate Attchmnt: Bndg	9.366	10.380	-3.368	0.100	0.75	1.15
NSWC #27	HSLA one sided welds	Permanent backing bar, one sided weld	9.342	10.335	-3.298	0.307	0.82	1.16
SSC #62	SSC:36A	Skip Welded Plates	10.406	11.960	-5.163	0.460	0.23	1.16
SSC #28	SSC:16(G)	Partial Pen. Butt Weld: Ground	11.555	13.650	-6.960	0.950	0.13	1.17
SSC #68	SSC:51(V)	Transv. Stiffnr Pene. Flg Unspprtd: Bndg	9.641	10.790	-3.818	0.070	0.51	1.17
NSWC #19	HSLA SNIPED COMP	Cont. bhd penetration with sniped bhd stiffener, R=0	9.780	10.989	-4.016	0.139	0.45	1.19
SSC #24	SSC:13	Tee Stiffener Taped Flg Width Bndg	9.947	11.220	4.229	0.450	0.4	1.22
NSWC #5	HSLA 7/16", continuous cruc., lab & syd	Full penetration non-load carrying welds	9.537	10.589	-3.496	0.205	0.71	1.23
SSC #47	SSC:25B	Plt w/ Transv. Side Attchmnt and Brace	11.793	13.890	-6.966	0.630	0.14	1.26
SSC #61	SSC:36	Skip Welded Plates with Rathole	11.793	13.890	-6.966	0.630	0.14	1.26
SSC #18	SSC:10Q	Butt Weld Axial:Q&T Steel	10.588	12.130	-5.124	0.760	0.26	1.27
EURO #2	EUROCODE S/N CURVE: 380 (140)	Dressed cut edge, bolted connections	9.322	10.225	-3.000	n/a	1.28	1.28

Table J-6 – Mean Minus 2 Sigma Strength Ratios Sorted at 10^8 Cycles (cont.)

	BASELINE CONFIGURATION	BRIEF DESCRIPTION	LOG(Aamp) LOG(Amg)G(Arng	B STI	STD DEV 10 ⁴³ cyc		10^8 cyc
BS5400 #7	BS5400 S/N CURVE: C	Flame-cut edges and longitudinal welds	9.638	10.691	-3.500	0.204	0.76	1.31
D02420	SCOTO CHRYF. C	Flame cut edge or cont. butt & fillet welds	9.639	10.692	-3.500	0.204	0.76	1.31
NSWC #2	HSI A 1/4" continuous cruc shiovard	Full penetration non-load carrying welds	10.014	11.244	-4.087	0.350	0.48	1.33
250 #20	SSC:10A	Butt Weld Bridg	10.914	12.560	-5.468	0.790	0.24	1.33
SSC #45	SSC:25	Continuous Cruciform	12.096	14.230	-7.090	0.780	0.15	1.35
SSC #34	SSC:18(S)	Lapped Flatbar to Plate Attchmnt: Shear	13.741	16.520	-9.233	0.750	0.1	1.36
000 000 #30	SSC:17(S)	Lapped Angle to Plate Attchmnt: Shear	12.637	14.980	-7.782	0.650	0.13	1.37
CCC #33	SSC:17A(S)	Lapped Channel to Plate Attchmnt: Shear	12.637	14.980	-7.782	0.650	0.13	1.37
SSC #32	(S)(C)(S)		12.585	14.870	-7.589	0.880	0.14	4.
000 # CV	SSC:12(6)	Tee Stffnr Tapered Fla Thickness Bnda	11.215	12.920	-5.663	0.600	0.23	1.43
000 000 459	SSC:33(S)	Lapped Flatbar to Pit w/ Full Wrap: Shear	14.849	17.970	-10.368	0.810	60.0	1.43
NSWC #4	HSI A 7/16" continuous cruc shipvard	Full penetration non-load carrying welds	10.012	11.172	-3.855	0.210	0.62	1.44
NSWC #15	OS continuous cruciform	Full penetration non-load carrying welds	10.124	11.324	-3.987	0.221	0.57	1.46
FURO #1	FUROCODE S/N CURVE: 434 (160)	Baseplate	9.495	10.398	-3.000	n/a	1.46	1.46
AASHTO #1	AASHTO S/N CURVE: A	Baseplate dressed edges	9.499	10.402	-3.000	0.221	1.47	1.47
0 # USS	880.4	Long. Fillet Weld Bndg	11.295	13.000	-5.663	0.610	0.24	1.47
SSC #11	8,000	Dbl I-Bm Bndg	11.295	13.000	-5.663	0.610	0.24	1.47
SSC #40	SSC:21(3/8"WELD)	Plate Penetration: Bending	19.586	24.250	-15.494	0.620	0.07	1.49
BS5400 #9	BS5400 S/N CURVE: S	Shear connectors in concrete	13.205	15.614	-8.000	0.504	0.14	1.53
SSC #25	SSC:14	Disc. Cruciform Axial	12.901	15.140	-7.439	0.910	0.16	9.1
NSWC #22	HSI A Stiffener Splice	Stiffener transition detail	10.489	11.768	4.250	0.177	0.53	1.62
SSC #7	SSC3	Longitudinal Seam	11.750	13.540	-5.946	0.630	0.24	1.62
SSC #8	SSC:3(G)	Ground Long. Seam	12.122	14.040	-6.370	0.740	0.22	1.65
SSC #15	(SSC)	Riveted Single Lap	14.887	17.790	-9.643	0.900	0.12	1.66
SSC #19	SSC:10(G)	Butt Weld Axial: Ground	12.904	15.050	-7.130	0.940	0.19	1.74
SSC #41	SSC:21(S)	Plate Penetration: Shear	13.105	15.320	-7.358	0.830	0.18	1.75
SSC #66	SSC:42	Bending of Long Attachment	13.105	15.320	-7.358	0.830	0.18	1.75
BS5400 #8	BS5400 S/N CURVE: B	Parent plate, as welded	10.447	11.651	4.000	0.182	0.67	1.76
DNV #1	DnV S/N CURVE: B	base plate or dressed welds	10.449	11.653	-4.000	0.182	0.67	1.76
SSC #51	SSC:28	Baseplate with Circular Hole	13.458	15.790	-7.746	0.810	0.17	1.76
NSWC #12	HS continuous cruciform	Full penetration non-load carrying welds	10.853	12.203	4.486	0.218	0.50	1.79
SSC #5	SSC:1(F)	Baseplate Flame Cut	11.134	12.580	-4.805	0.600	0.43	1.82
NSWC #24	HSLA Flame cut edge	Flame cut edge	10.369	11.484	-3.705	0.092	0.92	1.91
NSWC #14	HS misaligned cruciform	Half thickness misalignment, full penetration	12.618	14.549	-6.416	0.142	0.25	1.94
SSC #14	SSC:8	Boited Double Lap	12.849	14.820	-6.549	0.810	0.25	2.02
NSWC #25	HSLA Insert Plate "Good Weld"	Half thickness insert plate	11.733	13.265	-5.090	0.184	0.45	2.16
SSC #1	SSC:1(all steels)	Baseplate	12.325	14.050	-5.729	0.750	0.35	2.19
SSC #6	SSC:2	Rolled I-Beam Bending	12.719	14.540	-6.048	0.640	0.33	2.28
SSC #46	SSC:25A	Plate with Transv. Side Attachment	15.086	17.650	-8.518	0.910	0.19	2.28
SSC #4	SSC:10	Baseplate Q & T Steel	11.985	13.550	-5.199	0.680	0.46	2.32
SSC #39	SSC:21(1/4"WELD)	Plate Penetration: Bending	21.192	25.480	-14.245	0.620	0.11	2.33
SSC #17	SSC:10H	Butt Weld Axial: HSLA Steel	20.148	24.000	-12.795	0.960	0.14	2.56
SSC #2	SSC:1M	Baseplate Mild Steel	20.259	23.940	-12.229	0.710	0.16	2.94
NSWC #1	HSLA 7/16" bending, shipyard	Full penetration non-load carrying welds	12.861	14.405	-5.130	0.378	0.72	3.53
SSC #3	SSC:1H	Baseplate HSLA Steel	25.569	30.220	-15.449	0.910	0.17	3.66

Table J-7 - Comparison of NSWCCD Data with AASHTO Curves

AASHTO Category	Mean 10^3	Mean 10^8	Mean-2S 10^3	Mean-2S 10^8
		#1 CC Bending #25 Insert (Good) #12 HS CC #14 HS MC		#1 CC Bending #25 Insert (Good) #14 HS MC #24 Flame Cut #12 HS CC
Α	А	#24 Flame Cut A #22 Siff Splice #2 1/4" CC Syd #15 OS CC #4 HSLA CC Syd #27 One-sided Weld #16 OS DC #5 HSLA CC N&Syd	Α	#22 Stiff Splice A #15 OS CC #4 HSLA CC Syd #2 1/4" CC Syd #5 HSLA CC N&Syd #19 Sniped Comp #27 One-sided Weld
В	В	B #3 HSLA CC #19 Sniped Comp	B	В
	#29 Double T Doubler #27 One-sided Weld #3 HSLA CC #24 Flame Cut #1 CC Bending #8 HSLA DC #21 HSLA Comp R=-1 #7 HSLA 1" Syd #28 Single T Doubler #10 HSLA PP DC	#8 HSLA DC #13 HS DC #17 OS MC #21 HSLA Comp R=-1 #26 Insert (Poor) #9 HSLA MC #20 Intercostal Comp #28 Single T Doubler #18 HSLA & HS Comp #6 HSLA 3/4" Syd	#24 Flame Cut	#17 OS MC #16 OS DC #26 Insert (Poor) #3 HSLA CC #21 HSLA Comp R=-1 #20 Intercostal Comp #13 HS DC #8 HSLA DC
С	#5 HSLA CC N&Syd C	#29 Double T Doubler C	#7 HSLA 1" Syd C	#9 HSLA MC C
D	#13 HS DC #6 HSLA 3/4" Syd #4 HSLA CC Syd #18 HSLA & HS Comp #16 OS DC D	#23 Opening Detail D	#3 HSLA CC #27 One-sided Weld #21 HSLA Comp R=-1 #10 HSLA PP DC #1 CC Bending #5 HSLA CC N&Syd #8 HSLA DC #6 HSLA 3/4" Syd D #4 HSLA CC Syd #13 HS DC	#18 HSLA & HS Comp #6 HSLA 3/4" Syd D
E	#15 OS CC #2 1/4" CC Syd #22 Stiff Splice #12 HS CC	#7 HSLA 1" Syd #11 HSLA PP MC E	#18 HSLA & HS Comp #15 OS CC #22 Stiff Splice #16 OS DC E	#23 Opening Detail #7 HSLA 1" Syd #28 Single T Doubler E
E'	#25 Insert (Good) #19 Sniped Comp #23 Opening Detail #26 Insert (Poor) #9 HSLA MC #11 HSLA PP MC #20 Intercostal Comp #17 OS MC #14 HS MC	#10 HSLA PP DC	#29 Double T Doubler #12 HS CC #2 1/4" CC Syd #28 Single T Doubler #25 Insert (Good) #19 Sniped Comp #26 Insert (Poor) #23 Opening Detail E' #9 HSLA MC #20 Intercostal Comp #11 HSLA PP MC #17 OS MC #14 HS MC	#11 HSLA PP MC #10 HSLA PP DC #29 Double T Doubler E'

Table J-8 - Categorization of NSWCCD Details with AASHTO Categories

Detail	Category	NSWCCD
Base metal, rolled shapes, machined ground flame cut edges	Α	
Continuous longitudinal fillet welds Flush ground butt welds	В	
Transverse butt welds (inspected) uninspected butt welds with permanent backing ba	C D ur D	#27
Transverse butt joint with plates of unequal thickness and		
transition >= 2.5:1 transition < 2.5:1	C D	#22 #25
Non-load carrying attachment shorter than 2" between 2" and 4" long longer than 4" and < 1" thic longer than 4" and >= 1" th		#18,#21 #28 #29
Cruciform joint loaded member continuou loaded member discontinu		#2, #3, #4, #5, #6, #7,#12,#15 #8,#13,#16,#20
Flame cut edge	С	#24
Transverse frame or floor at shell or deck	D	#19
Rat hole < 4" long >= 4" long	D E	
Load carrying attachment < 1" thick <1" thick >= 1" thick	E E'	·.
Weld terminations/interuptions intermittent welds weld overlaps welds with defects misalignments	E E E	#23 #10,#26 #9,#11,#14,#17

Appendix K

Thickness and Misalignment Effects on Fatigue Strength

Thickness and Misalignment Effects on Fatigue Strength

Values of thickness and out-of-plane misalignment can often be different for actual structures than they are for test specimens used to generate the fatigue design S/N curve. One way to account for these effects is to adjust the S/N curve to reflect the change in stress concentration.

Thickness effects can be addressed through the use of the following formula (Maddox, 1991). This formula was evaluated (Kihl et al, 1997) and found to account for the change in fatigue strength reasonably well.

$$\frac{S}{S_{ref}} = \sqrt[4]{\frac{t_{ref}}{t}}$$

If the thickness of a particular detail is different from the thickness of the detail tested, the effect of this change on fatigue strength can be quantified using the following example as a guide. Consider the conventional component data at R=-1, Detail #21, and the effect of increasing the thickness by a factor of three. The nominal thicknesses of the test components ranged from 3/16" for the plate and web to 1/4" for the flange. If these thicknesses were increased by a factor of three, the equation above become

$$\frac{S}{S_{ref}} = \sqrt[4]{\frac{t}{3t}} = \sqrt[4]{\frac{1}{3}} = 0.76$$

$$S_{ref} = 1.316S$$

The mean minus two sigma S/N curve for the "thin" (reference) components is of the following form with log(A)=9.089 and B=-3.230 in terms of stress amplitude in ksi.

$$N = 10^{9.089} S_{ref}^{-3.230}$$

Therefore, the mean minus two sigma S/N curve, in terms of stress amplitude, for the "thick" components would be

$$N = 10^{9.089} (1.316 S_{ref}^{-3.230})$$
$$= 10^{8.704} S^{-3.230}$$

The generic S/N curve is defined by coefficients log(A)=9.000 and B=-3, in terms of stress amplitude. The Rayleigh Approximation equation is rewritten in terms of the RMS stress, σ , so the fatigue strength corresponding to a given number of cycles can be determined.

$$N = \frac{10^{\log(A)}}{2^{-B/2}\sigma^{-B}\Gamma(1 - B/2)}$$
or
$$\sigma = \left(\frac{10^{\log(A)}}{2^{-B/2}\Gamma(1 - B/2)N}\right)^{-1/B}$$

Substituting both the "thick" component S/N curve coefficients and the generic (baseline) S/N curve coefficients into the Rayleigh Approximation equation results in fatigue strength ratios of 0.572 (a 24% decrease from 0.753 for the "thin" case) at 10³ cycles and 0.752 (a 24% decrease from 0.990 for the "thin" case) at 10⁸ cycles.

It is interesting to compare these results with the S/N curves from one of the design codes. For example, the "thin" components would be classified as an AASHTO

Category D detail in the low cycle regime, and a Category C detail in the high cycle regime. However, the "thick" components now reduce the fatigue strength to the point where they now are classified as a Category E detail in the low cycle regime, and a Category D in the high cycle regime.

Fatigue strength reductions due to simple misalignments can also be determined in much the same way as the changes in thickness. Stress concentration factors for misalignments in full penetration butt and cruciform welds can be determined from the following equation (Maddox, 1991).

$$SCF = 1 + \frac{6e}{t_1} \left[\frac{1}{1 + \left(\frac{t_2}{t_1}\right)^{1.5}} \right]$$

In this equation, "e" represents the eccentricity due to the misalignment and is measured between the mid-fibers of each plate; " t_1 " is the thickness of the thinner plate, and " t_2 " is the thickness of the thicker plate. It should be noted that another form of this equation is also available (ABS, 1991), but the form given above is slightly more conservative in that it results in a slightly higher stress concentration factor.

If one considers the effect of equal thickness plates welded together, but offset by half the thickness, the stress concentration factor can be determined as 2.5. An aligned specimen (Detail #8) with the following mean S/N curve (log(A)=9.601 and B=-3.307) in terms of stress amplitude could be modified to account for the effect of the misalignment considered above.

$$N = 10^{9.601} S^{-3.307}$$

Applying the stress concentration factor due to the misalignment results in the following S/N curve.

$$N = 10^{9.601} (2.5S)^{-3.307} = 10^{8.285} S^{-3.307}$$

The same stress, S, applied to the misaligned joint could now be analyzed using the modified S/N curve (log(A)=8.285 and B=-3.307). The coefficients obtained above, when substituted into the Rayleigh Approximation formula, result in fatigue strength ratios (again using the generic S/N curve as a baseline for comparison) of 0.39 for the low cycle (10³ cycle) regime and 0.55 for the high cycle (10⁸ cycle) regime. Detail #9, a cruciform shaped joint actually misaligned by half the thickness and tested, had produced fatigue strength ratios of 0.47 for low cycle and 1.18 for high cycle. Although application of the SCF formula above produces a similar fatigue strength ratio in the low cycle regime, the predictions are quite conservative in the high cycle regime. Similar results are obtained using data from Details #13, #14, #16 and #17. The fatigue behavior is not entirely accounted for by simply applying a stress concentration factor. In reality, both S/N curve coefficients appear to be affected by the misalignment. A misalignment correction algorithm better than that given above has not yet been established, however the one provided at least appears to be conservative, if not accurate, when applied to available test data.