Cognome: Nome:	Matricola:	
	I STUDI DELLA CALABRIA n in Ingegneria Informatica	
T	Algoritmi e Strutture Dati TRACCIA A ella prova: 60 minuti)	
Esercizio 1		
	ppresenta <i>alberi binari</i> in cui la parte informativa di e in tale classe siano implementati i seguenti metodi:	
public interface AlberoBinario{ /* restituisce il sottoalbero destro dell'albero public AlberoBinario destro();	o corrente, la complessità temporale è $ heta(1)^*/$	
/* restituisce il sottoalbero sinistro dell'alber public AlberoBinario sinistro();	ro corrente, la complessità temporale è $ heta(1)^*/$	
/* restituisce il valore memorizzato nella rad public int val(); }	lice dell'albero, la complessità temporale è $ heta(1)^*/$	
Si deve realizzare un metodo ricorsivo public static boolean verifica(Alberoli che restituisce true se e solo se esiste un nodo nel sottoalbero radicato in n hanno lo stesso y	non foglia n di a tale che tutti i nodi foglia che appai	ono
	spaziale del metodo nel caso migliore e peggiore ed il caso peggiore per la complessità tempora	
Caso Migliore: 1. Complessità temporale: θ() 2. Complessità spaziale: θ()	Caso Peggiore: 1. Complessità temporale: θ() 2. Complessità spaziale: θ()	
Commenti:		

Esercizio 2

Dire quali delle seguenti affermazioni sono vere e quali false.

V	F	Affermazione
		La complessità intrinseca del problema della ricerca di un elemento in un array
		ordinato di n elementi è $\Omega(n)$
		Un grafo connesso contenente un ciclo di <i>m</i> archi ammette almeno <i>m</i> alberi
		ricoprenti.
		In un grafo orientato non contenente cicli, esiste almeno un nodo con grado di
3		entrata uguale a 0.
		La complessità di accedere all'elemento con priorità massima in una coda di priorità
		realizzata tramite heap è $\theta(\log n)$, essendo n il numero di elementi nella coda
		Sia G un grafo non orientato e ciclico composto da n nodi. Il numero di archi di G è
		maggiore di o uguale a n.
		L'algoritmo di <i>Prim</i> , preso in input un grafo pesato <i>G</i> , restituisce un albero
		ricoprente A tale che, per ogni coppia di nodi u , v , il cammino in A tra u e v è il
		cammino minimo tra u e v in G .
		Il problema della ricerca del minimo elemento in un array ordinato ha complessità
/		intrinseca $\Omega(n)$, dove n è il numero di elementi nell'array.
8		La complessità dell'algoritmo di $Floyd \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	in input.	
9		Nel caso peggiore, ricercare un elemento in un albero AVL con <i>n</i> nodi ha
	complessità $O(\log n)$	
10		Sia dato un algoritmo A risolutore del problema P. Se la complessità di A è $\Omega(f(n))$
		allora la complessità intrinseca di P è $\Omega(f(n))$.

Esercizio 3

reso un generico algoritmo divide et impera che ad ogni passo suddivide l'istanza corrente in 2 sottostanze dello stesso problema, ciascuna di dimensione $n/3$ (dove $n \notin la$ dimensione dell'istanza in same), si ricavi la complessità dell'algoritmo supponendo che al netto delle chiamate ricorsive la ingola chiamata abbia complessità $b*n$, dove b è una costante.
