Student Name: Instructor: Mustafa Altun

**Student ID:** 

Date: 24/03/2014

## EHB322E Digital Electronic Circuits MIDTERM I

Duration: 120 Minutes Grading: 1) 30%, 2) 30%, 2) 40%

Exam is in closed-notes and closed-books format; calculators are allowed For your answers please use the space provided in the exam sheet

GOOD LUCK!

1) Consider a pseudo NMOS inverter shown below. Use the following equations for your calculations.

Saturation region current-voltage equation:  $I_D = \frac{1}{2} k'_{p,n} \frac{W}{L} (V_{GS} - V_{T0p,n})^2$ 

Linear region current-voltage equation:  $I_D = \frac{1}{2} k'_{p,n} \frac{W}{L} \left[ 2(V_{GS} - V_{T0p,n})V_{DS} - V_{DS}^2 \right]$ 

*Transistor parameters:*  $k_p' = \mu_p c_{ox} = 55 \text{uA/V}^2$ ,  $k_n' = \mu_n c_{ox} = 100 \text{uA/V}^2$ ,  $V_{TN} = 1 \text{V}$ ,  $V_{TP} = -1 \text{V}$ ,  $W_N = 12 \text{u}$ ,  $L_P = 1 \text{u}$ ,  $L_N = 1 \text{u}$ .



Pseudo NMOS Inverter

- a) Find the value of  $W_P$  if  $V_{OL} = 0.25V$ .
- b) Find the static power consumption of the inverter for  $V_{in}=0$ V and  $V_{in}=5$ V.
- c) Derive an expression of the **output capacitor** in terms of  $C_{GS}$  and  $C_{GD}$  capacitors.

2) Consider a circuit with three CMOS inverters and three outputs shown below. A capacitor of 8fF is connected to the output-2; A capacitor of 4fF is connected to the output-3. A signal switching from high to low is applied to the input.

*Transistor parameters:*  $c_{ox}=1$  fF/um2,  $\tau_n=\tau_p=1$ ps,  $W_{N1}=5$ u,  $W_{P2}=6$ u,  $W_{P3}=4$ u,  $L_{N1}=L_{P1}=L_{N2}=L_{P2}=L_{N3}=L_{P3}=1$ u.



Digital circuit with three CMOS inverters

Propagation delays of an inverter are formulized as follows.  $C_L$  represents the load capacitor of the inverter. Neglect  $C_{GD}$  capacitors in your calculations.

$$t_{PHL} = (C_L/C_N) \tau_n$$
  $C_N = c_{ox} W_N L_N$   
 $t_{PLH} = (C_L/C_P) \tau_p$   $C_P = c_{ox} W_P L_P$ 

If the total propagation delay is 2ps at output-1, 4ps at output-2, and 4ps at output-3,

- a) Find the value of  $W_{N2}$  and  $W_{N3}$ .
- **b)** Find the value of  $W_{P1}$ .

- 3) For a specific technology and a specific supply voltage, a CMOS inverter with parameters  $W_P=1u$ ,  $W_N=1u$ ,  $L_P=1u$ ,  $L_N=1u$ , and a load capacitor of 1 fF has  $t_{PHL}=1$ ns and  $t_{PLH}=2$ ns. Considering the same technology and the supply voltage,
  - a) Implement  $f = x_1(x_2 + x_3) + \overline{x}_1 x_4$  with a **CMOS circuit**. How many PMOS and NMOS transistors do you use?
  - **b)** Select W<sub>P</sub>=4u for all PMOS transistors and W<sub>N</sub>=2u for all NMOS transistors of your CMOS circuit. Find the **worst case (largest)**  $t_{PHL}$  and  $t_{PLH}$  values if a load capacitor of 2 fF is connected to the output.
  - c) Select W<sub>P</sub>=4u for all PMOS transistors and W<sub>N</sub>=2u for all NMOS transistors of your CMOS circuit. Find the **best case** (**smallest**)  $t_{PHL}$  and  $t_{PLH}$  values if a load capacitor of 2 fF is connected to the output.