CSC373

Week 5: Dynamic Programming (contd) Network Flow (start)

Recap

- Dynamic Programming Basics
 - > Optimal substructure property
 - > Bellman equation
 - > Top-down (memoization) vs bottom-up implementations
- Dynamic Programming Examples
 - Weighted interval scheduling
 - Knapsack problem
 - Single-source shortest paths
 - > Chain matrix product

This Lecture

- Some more DP
 - > Traveling salesman problem (TSP)
- Start of network flow
 - > Problem statement
 - > Ford-Fulkerson algorithm
 - > Running time
 - > Correctness

Input

- \triangleright Complete directed graph G = (V, E)
- > $d_{i,j}$ = distance from node i to node j

Output

- > Minimum distance which needs to be traveled to start from some node v, visit every other node exactly once, and come back to v
 - That is, the minimum cost of a Hamiltonian cycle

Approach

- > Let's start at node $v_1 = 1$
 - It's a cycle, so the starting point does not matter
- \triangleright Want to visit the other nodes in some order, say v_2, \dots, v_n
- > Total distance is $d_{1,v_2}+d_{v_2,v_3}+\cdots+d_{v_{n-1},v_n}+d_{v_n,1}$
 - Want to minimize this distance

Naïve solution

- > Check all possible orderings
- $> (n-1)! = \Theta\left(\sqrt{n} \cdot \left(\frac{n}{e}\right)^n\right)$ (Stirling's approximation)

DP Approach

- \triangleright Consider v_n (the last node before returning to $v_1 = 1$)
 - \circ If $v_n = c$
 - Find the optimal order of visiting nodes {2, ..., n} that ends at c
 - Need to keep track of the subset of nodes to be visited and the end node
- > OPT[S, c] = minimum total travel distance when starting at 1, visiting each node in S exactly once, and ending at $c \in S$
- Answer to the original problem:
 - $\label{eq:continuous} \circ \min_{c \in \mathcal{S}} \mathit{OPT}[\mathit{S}, c] + d_{c,1} \text{, where } \mathit{S} = \{2, \dots, n\}$

- DP Approach
 - \blacktriangleright To compute OPT[S,c], we can condition over the vertex visited right before c in the optimal trip
- Bellman equation

$$OPT[S,c] = \min_{m \in S \setminus \{c\}} \left(OPT[S \setminus \{c\}, m] + d_{m,c} \right)$$

Final solution =
$$\min_{c \in \{2, \dots, n\}} \left(OPT[\{2, \dots, n\}, c] + d_{c,1} \right)$$

- Time: $O(n \cdot 2^n)$ calls, O(n) time per call $\Rightarrow O(n^2 \cdot 2^n)$
 - \triangleright Much better than the naïve solution which has $(^n/_e)^n$

Bellman equation

$$OPT[S,c] = \min_{m \in S \setminus \{c\}} \left(OPT[S \setminus \{c\}, m] + d_{m,c} \right)$$
 Final solution
$$= \min_{c \in \{2, \dots, n\}} OPT[\{2, \dots, n\}, c] + d_{c,1}$$

- Space complexity: $O(n \cdot 2^n)$
 - > But computing the optimal solution with |S| = k only requires storing the optimal solutions with |S| = k 1
- Question:
 - Using this observation, how much can we reduce the space complexity?

DP Concluding Remarks

- High-level steps in designing a DP algorithm
 - > Focus on a single decision in optimal solution
 - Typically, the first/last decision
 - > For each possible way of making that decision...
 - [Optimal substructure] Write the optimal solution of the problem in terms of the optimal solutions to subproblems
 - Generalize the problem...
 - ...by looking at the type of subproblems needed
 - \circ E.g., in the weighted interval scheduling problem, we realize that we need to solve the problem for prefixes (i.e. either for jobs 1, ..., j-1 or 1, ..., p[j])
 - Write the Bellman equation, cover your base cases
 - Think about optimizing the running time/space using tricks
 - Often easier in the bottom-up implementation

Input

- \rightarrow A directed graph G = (V, E)
- \triangleright Edge capacities $c: E \to \mathbb{R}_{\geq 0}$
- Source node s, target node t

Output

> Maximum "flow" from s to t

Assumptions

- > No edges enter s
- > No edges leave t
- Edge capacity c(e) is a nonnegative integer
 - \circ Later, we'll see what happens when c(e) can be a rational or irrational number

Flow

- ➤ An s-t flow is a function $f: E \to \mathbb{R}_{\geq 0}$
- \succ Intuitively, f(e) is the "amount of material" carried on edge e

- Constraints on flow *f*
 - 1. Respecting capacities

$$\forall e \in E : 0 \le f(e) \le c(e)$$

2. Flow conservation

$$\forall v \in V \setminus \{s, t\} : \sum_{e \text{ entering } v} f(e) = \sum_{e \text{ leaving } v} f(e)$$

Flow in = flow out at every node other than s and t

- $f^{in}(v) = \sum_{e \text{ entering } v} f(e)$
- $f^{out}(v) = \sum_{e \text{ leaving } v} f(e)$
- Value of flow f is $v(f) = f^{out}(s) = f^{in}(t)$
 - ightharpoonup Q: Why is $f^{out}(s) = f^{in}(t)$?
- Restating the problem:
 - \succ Given a directed graph G=(V,E) with edge capacities $c\colon E\to\mathbb{R}_{\geq 0}$, find a flow f^* with the maximum value.

A natural greedy approach

- 1. Start from zero flow (f(e) = 0 for each e).
- 2. While there exists an s-t path P in G such that f(e) < c(e) for each $e \in P$
 - a. Find any such path P
 - b. Compute $\Delta = \min_{e \in P} (c(e) f(e))$
 - c. Increase the flow on each edge $e \in P$ by Δ
- Note
 - Capacity and flow conservation constraints remain satisfied

flow network G and flow f 0/4 0/4 0/6 0/6 0/9 0/9 0/9 0/9 0/9 0/9 0/9 0/9 0/9 0/9 0/9

ending flow value = 16

but max-flow value = 19

- Q: Why does the simple greedy approach fail?
- A: Because once it increases the flow on an edge, it is not allowed to decrease it ever in the future.
- Need a way to "reverse" bad decisions

Reversing Bad Decisions

Suppose we start by sending 20 units of flow along this path

20/20 0/10 20/30 t But the optimal configuration requires 10 fewer units of flow on $u \rightarrow v$

Reversing Bad Decisions

We can essentially send a "reverse" flow of 10 units along $v \rightarrow u$

So now we get this optimal flow

Residual Graph

- Suppose the current flow is f
- Define the residual graph G_f of flow f
 - $\succ G_f$ has the same vertices as G
 - For each edge e = (u, v) in G, G_f has at most two edges
 - Forward edge e = (u, v) with capacity c(e) f(e)
 - We can send this much additional flow on e
 - Reverse edge $e^{rev} = (v, u)$ with capacity f(e)
 - The maximum "reverse" flow we can send is the maximum amount by which we can reduce flow on e, which is f(e)
 - \circ We only really add edges of capacity > 0

Residual Graph

• Example!

Residual graph G_f

Augmenting Paths

- Let P be an s-t path in the residual graph G_f
- Let bottleneck(P, f) be the smallest capacity across all edges in P
- "Augment" flow f by "sending" bottleneck(P, f) units of flow along P
 - What does it mean to send x units of flow along P?
 - \triangleright For each forward edge $e \in P$, increase the flow on e by x
 - \triangleright For each reverse edge $e^{rev} \in P$, decrease the flow on e by x

Residual Graph

• Example!

Residual graph G_f

Path $P \rightarrow \text{send flow} = \text{bottleneck} = 10$

Residual Graph

• Example!

New flow *f*

New residual graph G_f

No s-t path because no outgoing edge from s

Augmenting Paths

- Let's argue that the new flow is a valid flow
- Capacity constraints (easy):
 - > If we increase flow on e, we can do so by at most the capacity of forward edge e in G_f , which is c(e) f(e)
 - \circ So, the new flow can be at most f(e) + (c(e) f(e)) = c(e)
 - > If we decrease flow on e, we can do so by at most the capacity of reverse edge e^{rev} in G_f , which is f(e)
 - \circ So, the new flow is at least f(e) f(e) = 0

Augmenting Paths

- Let's argue that the new flow is a valid flow
- Flow conservation (a bit trickier):
 - Each node on the path (except s and t) has exactly two incident edges
 - Both forward / both reverse ⇒ one is incoming, one is outgoing
 - Flow increased on both or decreased on both
 - One forward, one reverse ⇒ both incoming / both outgoing
 - Flow increased on one but decreased on the other
 - o In each case, net flow remains 0 Edge directions as in G

Ford-Fulkerson Algorithm

```
MaxFlow(G):
  // initialize:
  Set f(e) = 0 for all e in G
  // while there is an s-t path in G_f:
  While P = \text{FindPath}(s, t, \text{Residual}(G, f)) != \text{None}:
    f = Augment(f, P)
    UpdateResidual(G, f)
  FndWhile
  Return f
```

Ford-Fulkerson Algorithm

Running time:

- > #Augmentations:
 - At every step, flow and capacities remain integers
 - For path P in G_f , bottleneck(P, f) > 0 implies bottleneck $(P, f) \ge 1$
 - Each augmentation increases flow by at least 1
 - \circ Max flow (hence max #augmentations) is at most $\mathcal{C} = \sum_{e \text{ leaving } s} c(e)$
- > Time to perform an augmentation:
 - \circ G_f has n vertices and at most 2m edges
 - \circ Finding P, computing bottleneck(P, f), updating G_f
 - O(m+n) time
- ▶ Total time: $O((m+n) \cdot C)$

Ford-Fulkerson Algorithm

- Total time: $O((m+n) \cdot C)$
 - This is pseudo-polynomial time, but NOT polynomial time
 - > The value of C can be exponentially large in the input length (the number of bits required to write down the edge capacities)
- Q: Can we convert this to polynomial time?

Ford-Fulkerson Algorithm

- Q: Can we convert this to polynomial time?
 - \triangleright Not if we choose an *arbitrary* path in G_f at each step
 - > In the graph below, we might end up repeatedly sending 1 unit of flow across $a \rightarrow b$ and then reversing it
 - Takes *X* steps, which can be exponential in the input length

Ford-Fulkerson Algorithm

- Ways to achieve polynomial time
 - > Find the maximum bottleneck capacity augmenting path
 - \circ Runs in $O(m^2 \cdot \log C)$ operations
 - "Weakly polynomial time"
 - > Find the shortest augmenting path using BFS
 - Edmonds-Karp algorithm
 - \circ Runs in $O(nm^2)$ operations
 - "Strongly polynomial time"
 - o Can be found in CLRS

> ...

Max Flow Problem

- Race to reduce the running time
 - > 1972: $O(n m^2)$ Edmonds-Karp
 - > 1980: $O(n m \log^2 n)$ Galil-Namaad
 - > 1983: $O(n m \log n)$ Sleator-Tarjan
 - > 1986: $O(n m \log(n^2/m))$ Goldberg-Tarjan
 - > 1992: $O(n m + n^{2+\epsilon})$ King-Rao-Tarjan
 - > 1996: $O\left(n \, m \frac{\log n}{\log \, m /_{n \log n}}\right)$ King-Rao-Tarjan
 - \circ Note: These are O(n m) when $m = \omega(n)$
 - > 2013: O(n m) Orlin
 - o Breakthrough!
 - > 2021: $O((m+n^{1.5}) \cdot \log X)$, where $X = \max$ edge capacity
 - Breakthrough based on very heavy techniques!

Back to Ford-Fulkerson

• We argued that the algorithm must terminate, and must terminate in $O((m+n) \cdot C)$ time

• But we didn't argue correctness yet, i.e., the algorithm must terminate with the optimal flow

Recall: Ford-Fulkerson

```
MaxFlow(G):
  // initialize:
  Set f(e) = 0 for all e in G
  // while there is an s-t path in G_f:
  While P = \text{FindPath}(s, t, \text{Residual}(G, f)) != \text{None}:
    f = Augment(f, P)
    UpdateResidual(G, f)
  FndWhile
  Return f
```

Recall: Notation

- f = flow, s = source, t = target
- f^{out} , f^{in}
 - > For a node u: $f^{out}(u)$, $f^{in}(u)$ = total flow out of and into u
 - \rightarrow For a set of nodes $X: f^{out}(X)$, $f^{in}(X)$ defined similarly

Constraints

- ightharpoonup Capacity: $0 \le f(e) \le c(e)$
- Flow conservation: $f^{out}(u) = f^{in}(u)$ for all $u \neq s, t$
- $v(f) = f^{out}(s) = f^{in}(t)$ = value of the flow

Cuts and Cut Capacities

- (A, B) is an s-t cut if it is a partition of vertex set V (i.e., $A \cup B = V$, $A \cap B = \emptyset$) with $s \in A$ and $t \in B$
- Its capacity, denoted cap(A, B), is the sum of capacities of edges leaving A

• Theorem: For any flow f and any s-t cut (A, B),

$$v(f) = f^{out}(A) - f^{in}(A)$$

 Proof (on the board): Just take a sum of the flow conservation constraint over all nodes in A

• Theorem: For any flow f and any s-t cut (A, B),

$$v(f) \le cap(A, B)$$

Proof:

$$v(f) = f^{out}(A) - f^{in}(A)$$

$$\leq f^{out}(A)$$

$$= \sum_{e \text{ leaving } A} f(e)$$

$$\leq \sum_{e \text{ leaving } A} c(e)$$

$$= cap(A, B)$$

• Theorem: For any flow f and any s-t cut (A, B),

$$v(f) \le cap(A, B)$$

- Hence, $\max_{f} v(f) \le \min_{(A,B)} cap(A,B)$
 - \rightarrow Max value of any flow \leq min capacity of any s-t cut
- We will now prove:
 - > Value of flow generated by Ford-Fulkerson = capacity of <u>some</u> cut
- Implications
 - > 1) Max flow = min cut
 - > 2) Ford-Fulkerson generates max flow.

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \rightarrow f = flow returned by Ford-Fulkerson
 - $\rightarrow A^*$ = nodes reachable from s in G_f
 - $\rightarrow B^*$ = remaining nodes $V \setminus A^*$
 - \succ Note: We look at the residual graph G_f , but define the cut in G

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \triangleright Claim: (A^*, B^*) is a valid cut
 - $\circ s \in A^*$ by definition
 - o $t \in B^*$ because when Ford-Fulkerson terminates, there are no s-t paths in G_f , so $t \notin A^*$

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - ▶ Blue edges = edges going out of A^* in G
 - ightharpoonup Red edges = edges coming into A^* in G

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \triangleright Each blue edge (u, v) must be saturated
 - \circ Otherwise G_f would have its forward edge (u, v) and then $v \in A^*$
 - \triangleright Each red edge (v, u) must have zero flow
 - o Otherwise G_f would have its reverse edge (u, v) and then $v \in A^*$

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
 - \Rightarrow Each blue edge (u, v) must be saturated $\Rightarrow f^{out}(A^*) = cap(A^*, B^*)$
 - \rightarrow Each red edge (v, u) must have zero flow $\Rightarrow f^{in}(A^*) = 0$
 - > So $v(f) = f^{out}(A^*) f^{in}(A^*) = cap(A^*, B^*) \blacksquare$

Max Flow - Min Cut

- Max Flow-Min Cut Theorem:
 In any graph, the value of the maximum flow is equal to the capacity of the minimum cut.
- Our proof already gives an algorithm to find a min cut
 - > Run Ford-Fulkerson to find a max flow f
 - \triangleright Construct its residual graph G_f
 - ightarrow Let $A^*=$ set of all nodes reachable from s in G_f
 - Easy to compute using BFS
 - \rightarrow Then $(A^*, V \setminus A^*)$ is a min cut

Poll

Question

- There is a network G with positive integer edge capacities.
- You run Ford-Fulkerson.
- It finds an augmenting path with bottleneck capacity 1, and after that iteration, it terminates with a final flow value of 1.
- Which of the following statement(s) must be correct about G?
- (a) G has a single s-t path.
- (b) G has an edge e such that all s-t paths go through e.
- (c) The minimum cut capacity in G is greater than 1.
- (d) The minimum cut capacity in G is less than 1.

Why Study Flow Networks?

- Unlike divide-and-conquer, greedy, or DP, this doesn't seem like an algorithmic framework
 - > It seems more like a single problem
- Turns out that many problems can be reduced to this versatile single problem
- Next lecture!