Designing, Understanding, and Operating Complex Human-Machine Systems

Steve Chien

Jet Propulsion Laboratory
California Institute of Technology

Risks from Complex Interactions & Tight Coupling

You are here.

From Normal Accidents: Living with High-Risk Technologies, by Charles Perrow, 1984.

Challenges of Deep Space Missions

- Uncertain, hazardous environments
 - in situ science observations
 - need for autonomous operation
- Relatively long distances from Earth
 - long round-trip light-time delays
 - low data communication rates
 - infrequent communication

ballute

planetary orbiter

hydrobot in Europa ocean

Martian rover

PINTER

At orbit of Pluto it will take ~10 hours to send a command from Earth and receive acknowledgement!

DELS

AU = Astronomical Unit = mean Earth-Sun distance

Recent Disasters

Clementine

 error in low-level software wrote onto a memorymapped I/O address that fired thrusters continuously, spacecraft spun out of control

Ariane 5

 software reused from Ariane 4 failed because larger numeric value exceeded range of its digital representation; inertial reference system shut down, launcher veered off course

Mars Climate Orbiter

 unit error in transferring navigation data, trajectory was too low, spacecraft burned up in atmosphere

Mars Polar Lander

 latent effect of an earlier spurious signal from a contact sensor prematurely aborted engine firing, spacecraft fell to surface

Motivating Examples

- Io Volcano Observer video
- Europa Cryobot video

Mars Robotic Outpost

Self-organizing societies of adapting exploration agents

What is being done now?

- Uplink
 - Visualization of Plans/Schedules

- Downlink
 - Visualization of large correlated datasets of spacecraft telemetry

ASPEN Planner Displaying 1 Sol Rover Operations Plan

Planned Activities

Affected States and Resources

DITOPS-Visage

courtesy of

Robotics Institute, Carnegie Mellon University and MAYA Design Group

The date with the largest difference between needed and available life capacity is four. The amount of non-PAX cargo of needed capacity on C4 exceeds the amount of non-PAX cargo by the amount of 177.8 tons of cargo.

More traditional schedule displays

activity & resource centered

But also animations and visualization of activities

and data

Outliner

ARMY 22MD.M (Numes

TRAUTINO

MALOJAROSTAVEC

BORODINO 🜌

Issues

- How do we compute/visualize aggregate behavior?
 - What is the rover swarm doing?
 - Is the state of the subsystem OK, not is each individual sensor within nominal!
- How do we visualize flexibility and/or uncertainty?
- How do we represent a range of behaviors (discrete alternatives)?
- How do we visualize a region of the state space?
- How do we visualize bottlenecks?
- How do we visualize interactions?

Detection Results on Individual Signals

- Test performed on F-15 Hydraulic System
 - "Iron Bird" flight hardware-in-loop test
 - Eight pressure sensors at 200 Hz
- Plot shows deviation of each signal measured at each sample
- Report is made at every sample regardless of confidence level

Nominal data result

Time (Samples)

Anomalous Data result

CHANNELS CHANNELS

Prognostic Assessment

- Simulation of complete aircraft hydraulic system over 25 flights
 - Model included 74 pressure sensors and actuator commands / position sensors
- Degradation changed on day-to-day basis
- Persistent deviation tracked

0% Deg.

First Accelerated Partial IncreasedCriticaComplete Indication Degradation RepaiDegradationallure Failure 7%

2% Deg.

9% Dea. 14%

Conclusions

- Designing, Operating, Analyzing Complex Autonomous Systems is a growing challenge for space exploration systems
 - Future missions will have increased autonomy
 - Future Spacecraft will be more complex
 - Future missions will need to have more advanced techniques to visualize these behavior regimes in order to understand:
 - At design time that a design will perform properly?
 - During Operations to understand the spacecraft state and what the spacecraft has done?
 - During operations to understand what the spacecraft is doing and will do?