การคำนวณจำนวนฟิโบนักซีโดยใช้การยกกำลังเมทริกซ์อย่างรวดเร็ว

0, 1, 1, 2, 3, 5, 8, ... เป็นลำดับของจำนวนฟิโบนักซี ($F_0=0,\,F_1=1,\,F_2=1,\,...$) วิธีหนึ่งในการหา F_n คือคำนวณ $\begin{bmatrix}0&1\\1&1\end{bmatrix}^n$ ได้ผลเป็นเมทริกซ์ขนาด 2×2 มี F_n ที่มุมขวาบนของเมทริกซ์ เช่น $\begin{bmatrix}0&1\\1&1\end{bmatrix}^3=\begin{bmatrix}1&2\\2&3\end{bmatrix}$, $\begin{bmatrix}0&1\\1&1\end{bmatrix}^4=\begin{bmatrix}2&3\\3&5\end{bmatrix}$ ถ้าคิดดูดี ๆ จะพบว่าการหาด้วยวิธีข้างต้นนี้คือการหาค่ายกกำลัง ซึ่งเราก็ไม่น่าหาแบบค่อยๆ คูณไปทีละครั้ง คือถ้า A เป็น เมทริกซ์ การหา A^{10} ก็ไม่น่าใช้วิธีที่เริ่มด้วยเมทริกซ์เอกลักษณ์ $I=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ แล้วคูณด้วย A ไป 10 ครั้ง น่าจะใช้วิธีการ หา A^5 แล้วจับมาคูณกับตัวเอง ก็จะได้ A^{10} เหมือนกับที่เรียนเรื่อง power mod นั่นคือ

$$A^{n} = \begin{cases} I & n = 0\\ \left(A^{\lfloor n/2 \rfloor}\right)^{2} & n \text{ is even} \\ A\left(A^{\lfloor n/2 \rfloor}\right)^{2} & n \text{ is odd} \end{cases}$$

จงเขียนฟังก์ชัน **fib (n, k)** เพื่อคำนวณ F_n % **k** ด้วยวิธีข้างต้นนี้ โดยใช้ คำสั่งใช้ numpy เพื่อการคูณเมทริกซ์ (หมายเหตุ : หลังการคูณเมทริกซ์ทุกครั้ง ให้นำผลที่ได้มา % k numpy จะทำ % k แบบ element-wise ในเมทริกซ์)

ข้อมูลนำเข้า

จำนวนเต็ม 2 ค่า \mathbf{n} กับ \mathbf{k} ($\mathbf{0} \leq \mathbf{n} \leq \mathbf{1000000000000}$, $\mathbf{0} \leq \mathbf{k} \leq \mathbf{100000}$)

ข้อมูลส่งออก

แสดงค่า F_n % ${f k}$

ตัวอย่าง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
0 10	0
1 10	1
2 10	1
89 10	9
11111 111	55
111111111 111	76
1234567890 1234	162
1000000000000 999	600