DEFINITION. These provide us with a way of estimating the amount a function changes as a result of a small change in input values. The equation

Date: Term 1, Fall '23 Notes: A.L. Maagma

$$\triangle y \approx dy$$

can and will only be considered if Δx is "close enough". The approximation of the equation becomes better as Δx becomes smaller.

NOTE. We equate $\triangle x = dx$.

The Differentials

1

1.1 The Differential of the Independent Variable

DEFINITION. If the function f is defined by the equation y = f(x), then the differential of y, denoted by dy, is given by

$$dy = f'(x)dx \longrightarrow f'(x) = \frac{dy}{dx}$$

where x is any number in the domain of f' and $\triangle x$ is an arbitrary increment of x.

EXAMPLE 1.1. Find dy for $y = (x^3 + 5x - 1)^{2023}$.

$$f'(x) = 2023(x^3 + 5x - 1)^{2022}(3x^2 + 5)$$

$$\therefore dy = 2023(x^3 + 5x - 1)(3x^2 + 5)dx$$

EXAMPLE 1.2. Find the differential dy of the function $y = 4x^2 + x + 3$.

$$(8x+1)dx$$

EXAMPLE 1.3. Find the differential dy of the function $y = \cos(x)$.

$$dy = -\sin(x)dx$$

EXAMPLE 1.4. Compare the values of $\triangle y$ and dy if $y = f(x) = x^3 + x^2 - 2x + 1$ and x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

$$x = 2 x + \triangle x = 2.05$$

$$\Rightarrow \triangle x = 0.05 = dx$$

$$\triangle y = f(x + \triangle x) - f(x)$$

$$= f(2.05) - f(2)$$

$$= [(2.05)^3 + (2.05)^2 + 2(2.05) + 1] - [2^3 + 2^2 - 2.2 + 1]$$

$$\triangle y = 0.7176$$

$$dy = f'(x)dx$$

$$= (3x^2 + 2x - 2)dx$$

$$= (3.2^2 + 2.2 - 2)(0.05)$$

$$dy = 0.7$$

NOTE. The final equation utilized our solution at $x=2, \Delta x=dx=0.05$. Observe that the approximation of $\Delta y \approx dy$ becomes better as Δx becomes smaller.

Practice Exercises

- 1. Find dy and $\triangle y$ for the given values of x and $\triangle x$.
 - 1.1. $y = x^2$, x = 2, and $\triangle x = 0.5$
 - 1.2. $y = x^3$, x = 2, and $\triangle x = 0.5$
 - 1.3. $y = \sqrt[3]{x}$, x = 8, and $\triangle x = 1$
 - 1.4. $y = \sqrt{x}, x = 4, \text{ and } \triangle x = 1$
- 2. Find (a) $\triangle y$; (b) dy; (c) $\triangle y dy$.
 - 2.1. $y = x^2 3x$, x = 2, and $\triangle x = 0.03$
 - 2.2. $y = x^2 3x$, x = -1, and $\triangle x = 0.02$
 - 2.3. $y = \frac{1}{x}$, x = -2, and $\triangle x = -0.1$
 - 2.4. $y = \frac{1}{x}$, x = 3, and $\triangle x = -0.2$
 - 2.5. $y = x^3 + 1$, x = 1, and $\triangle x = -0.5$
 - 2.6. $y = x^3 + 1$, x = -1, and $\triangle x = 0.1$
- 3. Find dy.
 - 3.1. $y = (3x^2 2x + 1)^3$
 - 3.2. $y = \frac{3x}{x^2+2}$
 - 3.3. $y = x^2\sqrt{2x+3}$
 - 3.4. $y = \sqrt{4 x^2}$
 - 3.5. $y = \frac{2 + \cos x}{2 \sin x}$
 - 3.6. $y = \tan^2 x \sec^2 x$
- 4. Solve the following problems.
 - 4.1. The measurement of an edge of a cube is found to be 15 cm with a possible error of 0.01 cm. Use differentials to find the approximate error in computing from this measurement: (a) the volume; (b) the area of one of the faces.
 - 4.2. An open cylindrical tank is to have an outside coating of thickness 2 cm. If the inner radius is 6 m and the altitude is 10 m, find by differentials the approximate amount of coating material to be used.
 - 4.3. A burn on a person's skin is in the shape of a circle. Use differentials to find the approximate decrease in the area of the burn when the radius decreases from 1 cm to 0.8 cm.
 - 4.4. A tumor in a person's body is spherical in shape. Use differentials to find the approximate increase in the volume of the tumor when the radius increases from 1.5 cm to 1.6 cm.

3

Answer Key

- 1. Find dy and $\triangle y$ for the given values of x and $\triangle x$.
 - 1.1. dy = 2, $\triangle y = 2.25$
 - 1.2. dy = 6, $\triangle y = 7.625$
 - 1.3. $dy = \frac{1}{12} \approx 0.083, \, \Delta y = \sqrt[3]{9} 2 \approx 0.080$
 - 1.4. dy = 0.25, $\triangle y = \sqrt{5} \sqrt{4} \approx 0.236$
- 2. Find (a) $\triangle y$; (b) dy; (c) $\triangle y dy$.
 - 2.1. (a) 0.0309, (b) 0.03, (c) 0.0009
 - 2.2. (a) -0.0996, (b) -0.1, (c) 0.0004
 - 2.3. (a) $\frac{1}{42} \approx 0.0238$, (b) $\frac{1}{40} = 0.025$, (c) $-\frac{1}{840} \approx -0.0012$
 - 2.4. (a) $\frac{1}{42}\approx 0.0238,$ (b) $\frac{1}{45}=0.022,$ (c) $frac1630\approx -0.0016$
 - 2.5. (a) -0.875, (b) -1.5, (c) 0.625
 - 2.6. (a) 0.271, (b) 0.3, (c) -0.029
- 3. Find dy.
 - 3.1. $dy = 3(3x^2 2x + 1)^2(6x 2)dx$
 - 3.2. $dy = \frac{3(2-x^2)}{(x^2+2)^2}dx$
 - 3.3. $dy = \frac{x(5x+6)}{(2x+3)^{1/2}}dx$
 - 3.4. $dy = \frac{-x}{\sqrt{4-x^2}} dx$
 - 3.5. $dy = \frac{1 2\sin x + 2\cos x}{(2 \sin x)^2} dx$
 - 3.6. $dy = 2 \tan x \sec^2 x (2 \tan^2 x + 1) dx$
- 4. Solve the following problems.
 - 4.1. (a) $6.75cm^3$, (b) $0.3cm^2$
 - 4.2. $\frac{12}{5}\pi m^3$
 - 4.3. $0.4\pi cm^2$
 - 4.4. $0.9\pi cm^3$