Lecture Notes in Computer Science 1843 Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer Berlin

Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Singapore Tokyo

Computer Vision – ECCV 2000

6th European Conference on Computer Vision Dublin, Ireland, June 26 – July 1, 2000 Proceedings, Part II

Series Editors

Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornell University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

David Vernon 5 Edwin Court, Glenageary, Co. Dublin, Ireland E-mail: vernon@ieee.org

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Computer vision: proceedings / ECCV 2000, 6th European Conference on

Computer Vision Dublin, Ireland, June 26 - July 1, 2000. David

Vernon (ed.). - Berlin; Heidelberg; New York; Barcelona; Hong Kong;

London; Milan; Paris; Singapore; Tokyo: Springer

Pt. 2. - (2000)

(Lecture notes in computer science; Vol. 1843)

ISBN 3-540-67686-4

CR Subject Classification (1998): I.4, I.3.5, I.5, I.2.9-10

ISSN 0302-9743 ISBN 3-540-67686-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group. © Springer-Verlag Berlin Heidelberg 2000 Printed in Germany

Typesetting: Camera-ready by author

Printed on acid-free paper SPIN 10722044 06/3142 5 4 3 2 1 0

Preface

Ten years ago, the inaugural European Conference on Computer Vision was held in Antibes, France. Since then, ECCV has been held biennially under the auspices of the European Vision Society at venues around Europe. This year, the privilege of organizing ECCV 2000 falls to Ireland and it is a signal honour for us to host what has become one of the most important events in the calendar of the Computer Vision community.

ECCV is a single-track conference comprising the highest quality, previously unpublished, contributed papers on new and original research in computer vision. This year, 266 papers were submitted and, following a rigourous double-blind review process, with each paper being reviewed by three referees, 116 papers were selected by the Programme Committee for presentation at the conference.

The venue for ECCV 2000 is the University of Dublin, Trinity College. Founded in 1592, it is Ireland's oldest university and has a proud tradition of scholarship in the Arts, Humanities, and Sciences, alike. The Trinity campus, set in the heart of Dublin, is an an oasis of tranquility and its beautiful squares, elegant buildings, and tree-lined playing-fields provide the perfect setting for any conference.

The organization of ECCV 2000 would not have been possible without the support of many people. In particular, I wish to thank the Department of Computer Science, Trinity College, and its Head, Professor J. G. Byrne, for hosting the Conference Secretariat. Gerry Lacey, Damian Gordon, Niall Winters, and Mary Murray provided unstinting help and assistance whenever it was needed. Sarah Campbell and Tony Dempsey in Trinity's Accommodation Office were a continuous source of guidance and advice. I am also indebted to Michael Nowlan and his staff in Trinity's Information Systems Services for hosting the ECCV 2000 web-site. I am grateful too to the staff of Springer-Verlag for always being available to assist with the production of these Proceedings. There are many others whose help – and forbearance – I would like to acknowledge: my thanks to all.

Support came in other forms too, and it is a pleasure to record here the kind generosity of The University of Freiburg, MV Technology Ltd., and Captec Ltd., who sponsored prizes for Best Paper awards.

Finally, a word about conferences. The technical excellence of the scientific programme is undoubtedly the most important facet of ECCV. But there are other facets to an enjoyable and productive conference, facets which should engender conviviality, discourse, and interaction; my one wish is that all delegates will leave Ireland with great memories, many new friends, and inspirational ideas for future research.

Conference Chair

D. Vernon

Conference Board

H. Burkhardt

B. Buxton

R. Cipolla

J.-O. Eklundh

O. Faugeras

B. Neumann

G. Sandini

University of Freiburg, Germany
University College London, United Kingdom
University of Cambridge, United Kingdom
KTH, Stockholm, Sweden
INRIA, Sophia Antipolis, France
University of Hamburg, Germany
University of Genova, Italy

Programme Committee

L. Alvarez University of Las Palmas, Spain INRIA, Sophia Antipolis, France N. Ayache R. Basri Weizmann Institute, Israel M. Black Xerox Palo Alto Research Center, USA A. Blake Microsoft Research, United Kingdom IRISA/INRIA, Rennes, France P. Bouthemy M. Brady University of Oxford, United Kingdom H. Buxton University of Sussex, United Kingdom S. Carlsson KTH, Stockholm, Sweden H. Christensen KTH, Stockholm, Sweden L. Cohen Université Paris IX Dauphine, France J. Crowlev INRIA, Rhône-Alpes, France R. Deriche INRIA, Sophia Antipolis, France M. Dhome Blaise Pascal University, France W. Enkelmann IITB, Karlsruhe, Germany W. Förstner University of Bonn, Germany D. Forsyth University of California, Berkeley, USA EPFL, Switzerland P. Fua G. Granlund Linköping University, Sweden R. Hartley General Electric, USA D. Hogg Leeds University, United Kingdom P. Johansen DIKU, Denmark H. Knutsson Linköping University, Sweden M. Kunt EPFL. Switzerland KTH, Stockholm, Sweden T. Lindeberg J. Malik University of California, Berkeley, USA University of Reading, United Kingdom S. Maybank R. Mohr Xerox Research Centre Europe D. Murray Oxford University, United Kingdom

P. Perona	California Institute of Technology, USA
	& University of Padova, Italy
L. Quan	INRIA, Rhône-Alpes, France
J. Santos-Victor	Instituto Superior Técnico, Lisbon, Portugal
A. Shashua	The Hebrew University of Jerusalem, Israel
G. Sparr	Lund University, Sweden
R. Szeliski	Microsoft Research, USA
C. Taylor	Manchester University, United Kingdom
B. ter Haar Romeny	University Medical Center, Utrecht, The Netherlands
M. Tistarelli	University of Genova, Italy
B. Triggs	INRIA, Rhône-Alpes, France
A. Verri	University of Genova, Italy
L. van Gool	Katholiek University, Leuven, Belgium
J. Villanueva	Autonomous University of Barcelona, Spain
D. Weinshall	The Hebrew University of Jerusalem, Israel
A. Zisserman	University of Oxford, United Kingdom
S. Zucker	Yale University, USA

Additional Referees

J. Andersen K. Astrom J. August S. Balcisov R. Baldrich C. Barillot K. Barnard A. Bernardino X. Binefa J. Bioucas Dias A. Broadhurst P. Bonton J. Costeira A. Criminisi L. de Agapito E. Dam P. Deléglise H. Delingette D. Demirdjian E. Di Berarnardo A. R. Dick T. W. Drummond A. Fitzgibbon D. Fleet L. Florack O. Fogh A. Frangi

J. Gaspar

A. Gasteratos

J. Goldberger

L. Goncalves

V. Govindu

N. Gracias

P. Gros

A. S. Georghiades

E. Grossmann E. Grosso S. Haker D. Hall H. Haussecker E. Hayman K. Henriksen L. Herda A. Heyden R. Horaud P. Huggins F. Jurie C. Kervrann J.-T. Lapresté I. Laptev J.-M. Lavest B. Lamirov T. Leung M. Lillholm F. Lumbreras J. MacCormick J. Maciel G. Malandain R. Manzotti E. Marchand J. Marques E. Martí J. Martnez E. Mémin P.R. Mendonca G. Metta M. E. Munich M. Nielsen J.-M. Odobez N. Olsen

S. Olsen T. Pajdla F. Panerai K. Pedersen X. Pennec P. Pérez R. Plaenkers J. P. W. Pluim J. Puzicha S. Remy M. Richetin J. Rittscher G. Rives R. Rosenholtz J. Saludes F. Schaffalitzky J. Serrat C. Silva C. Sminchisescu Y. Song J. Staal P. Sturm J. Sullivan T. Thórhallsson R. Torre B. van Ginneken M. Vanrell X. Varona F. Vergnenegre T. Vetter M. Vincze J. Vitrià Y. Weiss M. Welling

Contents of Volume II

Active, Real-Time, & Robot Vision
Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking
Real-Time Tracking of Multiple Articulated Structures in Multiple Views . 20 $\it T.\ Drummond,\ R.\ Cipolla$
Pedestrian Detection from a Moving Vehicle
Vision-Based Guidance and Control of Robots in Projective Space 50 A. Ruf, R. Horaud
Segmentation & Grouping I
A General Method for Unsupervised Segmentation of Images Using a Multiscale Approach
$ \begin{tabular}{ll} Image Segmentation by Nonparametric Clustering Based on the Kolmogorov-Smirnov Distance$
Euclidean Group Invariant Computation of Stochastic Completion Fields Using Shiftable-Twistable Functions
Active, Real-Time, & Robot Vision / Segmentation & Grouping / Vision Systems Engineering & Evaluation
Bootstrap Initialization of Nonparametric Texture Models for Tracking 119 K. Toyama, Y. Wu
Quasi-Random Sampling for Condensation
Tracking Discontinuous Motion Using Bayesian Inference
Direction Control for an Active Docking Behaviour Based on the Rotational Component of Log-Polar Optic Flow

The Construction of 3 Dimensional Models Using an Active Vision System 182 P. Armstrong, J. Antonis
Significantly Different Textures: A Computational Model of Pre-attentive Texture Segmentation
Calibrating Parameters of Cost Functionals
Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach
Level Lines as Global Minimizers of Energy Functionals in Image Segmentation
A Probabilistic Interpretation of the Saliency Network
Layer Extraction with a Bayesian Model of Shapes
Model-Based Initialisation for Segmentation
Statistical Foreground Modelling for Object Localisation
Nautical Scene Segmentation Using Variable Size Image Windows and Feature Space Reclustering
A Probabilistic Background Model for Tracking
On the Performance Characterisation of Image Segmentation Algorithms: A Case Study
Statistical Significance as an Aid to System Performance Evaluation 366 P. Tu, R. Hartley
Segmentation & Grouping II
New Algorithms for Controlling Active Contours Shape and Topology 381 H. Delingette, J. Montagnat

Motion Segmentation by Tracking Edge Information over Multiple Frames 396 P. Smith, T. Drummond, R. Cipolla
Data-Driven Extraction of Curved Intersection Lanemarks from Road Traffic Image Sequences
Tracking and Characterization of Highly Deformable Cloud Structures 428 C. Papin, P. Bouthemy, É. Mémin, G. Rochard
Calibration
A Unifying Theory for Central Panoramic Systems and Practical Applications
Binocular Self-Alignment and Calibration from Planar Scenes
The Rôle of Self-Calibration in Euclidean Reconstruction from Two Rotating and Zooming Cameras
Hand-Eye Calibration from Image Derivatives
Medical Image Understanding
Multimodal Elastic Matching of Brain Images
A Physically-Based Statistical Deformable Model for Brain Image Analysis 528 C. Nikou, F. Heitz, JP. Armspach, G. Bueno
Minimal Paths in 3D Images and Application to Virtual Endoscopy 543 T. Deschamps, L. Cohen
Calibration / Medical Image Understanding / Visual Motion
Kruppa Equation Revisited: Its Renormalization and Degeneracy
Registration with a Moving Zoom Lens Camera for Augmented Reality Applications
Calibration of a Moving Camera Using a Planar Pattern: Optimal Computation, Reliability Evaluation, and Stabilization by Model Selection 595 C. Matsunaga, K. Kanatani

Multi-view Constraints between Collineations: Application to Self-Calibration from Unknown Planar Structures
Stereo Autocalibration from One Plane
Can We Calibrate a Camera Using an Image of a Flat, Textureless Lambertian Surface?
Underwater Camera Calibration
On Weighting and Choosing Constraints for Optimally Reconstructing the Geometry of Image Triplets
Computation of the Mid-Sagittal Plane in 3D Medical Images of the Brain 685 S. Prima, S. Ourselin, N. Ayache
Stochastic Tracking of 3D Human Figures Using 2D Image Motion 702 H. Sidenbladh, M. Black, D. Fleet
Monocular Perception of Biological Motion - Clutter and Partial Occlusion 719 Y. Song, L. Goncalves, P. Perona
3-D Motion and Structure from 2-D Motion Causally Integrated over Time: Implementation
Non-parametric Model for Background Subtraction
Qualitative Spatiotemporal Analysis Using an Oriented Energy Representation
Regularised Range Flow
Visual Encoding of Tilt from Optic Flow: Psychophysics and Computational Modelling
Visual Motion
IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus

Egomotion Estimation Using Quadruples of Collinear Image Points 83- $M.\ Lourakis$	4
Geometric Driven Optical Flow Estimation and Segmentation for 3D Reconstruction	9
Camera Pose Estimation and Reconstruction from Image Profiles under Circular Motion	4
Author Index875	9

Contents of Volume I

Recognition & Modelling 1
Non-linear Bayesian Image Modelling
Unsupervised Learning of Models for Recognition
Learning Over Multiple Temporal Scales in Image Databases
Colour Image Retrieval and Object Recognition Using the Multimodal Neighbourhood Signature
Stereoscopic Vision
Approximate N-View Stereo
A Minimal Set of Constraints for the Trifocal Tensor
Intrinsic Images for Dense Stereo Matching with Occlusions
Recognition & Modelling / Stereoscopic Vision / Texture, Shading, & Colour
Local Scale Selection for Gaussian Based Description Techniques
Anti-Faces for Detection
Combining Elastic and Statistical Models of Appearance Variation
Object Recognition Using Coloured Receptive Fields
Learning Similarity for Texture Image Retrieval

Parametric View-Synthesis
Least Committment Graph Matching by Evolutionary Optimisation 203 $R.\ Myers,\ E.\ Hancock$
Predicting Disparity Windows for Real-Time Stereo
On the Estimation of the Fundamental Matrix: A Convex Approach to Constrained Least-Squares
Velocity-Guided Tracking of Deformable Contours in Three Dimensional Space
Model Based Pose Estimator Using Linear-Programming
Measuring the Self-Consistency of Stereo Algorithms
Log-polar Stereo for Anthropomorphic Robots
Contour-Based Correspondence for Stereo
Color and Scale: The Spatial Structure of Color Images
Constrained Dichromatic Colour Constancy
Objective Colour from Multispectral Imaging
Colour by Correlation in a Three-Dimensional Colour Space
Improvements to Gamut Mapping Colour Constancy Algorithms 390 $K.\ Barnard$
Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns
Adapting Spectral Scale for Shape from Texture

Recognition & Modelling II
Learning to Recognize 3D Objects with SNoW
Region-Based Object Recognition Using Shape-from-Shading 455 $P.\ Worthington,\ E.\ Hancock$
Recognizing Walking People
A Probabilistic Sensor for the Perception and Recognition of Activities 487 O. Chomat, J. Martin, J. Crowley
Structure from Motion I
Homography Tensors: On Algebraic Entities that Represent Three Views of Static or Moving Planar Points
Plane + Parallax, Tensors and Factorization
Factorization with Uncertainty
Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications
Shape
Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals
Level Sets and Distance Functions
Divergence-Based Medial Surfaces
Structure from Motion / Shape / Image Features
3D Reconstruction from Tangent-of-Sight Measurements of a Moving Object Seen from a Moving Camera
A Six Point Solution for Structure and Motion

Reconstruction from Uncalibrated Sequences with a Hierarchy of Trifocal Tensors
D. Nistér
Characterizing Depth Distortion due to Calibration Uncertainty
On Calibration and Reconstruction from Planar Curves 678 J. Kaminski, A. Shashua
How Does CONDENSATION Behave with a Finite Number of Samples? 695 ${\it O.~King,~D.~Forsyth}$
On the Structure and Properties of the Quadrifocal Tensor
Geotensity Constraint for 3D Surface Reconstruction under Multiple Light Sources
Noise-Resistant Affine Skeletons of Planar Curves
Shape and Radiance Estimation from the Information-Divergence of Blurred Images
Surface Matching with Large Deformations and Arbitrary Topology: A Geodesic Distance Evolution Scheme on a 3-Manifold
Duals, Invariants, and the Recognition of Smooth Objects from their Occluding Contours
On Utilising Template and Feature-Based Correspondence in Multi-view Appearance Models
Wide Baseline Point Matching Using Affine Invariants Computed from Intensity Profiles
Determining Correspondences for Statistical Models of Appearance 829 $K.\ Walker,\ T.\ Cootes,\ C.\ Taylor$
Approximation and Processing of Intensity Images with Discontinuity- Preserving Adaptive Triangular Meshes

Scale Dependent Differential Geometry for the Measurement of Center Line and Diameter in 3D Curvilinear Structures
Fast Selective Detection of Rotational Symmetries Using Normalized Inhibition
Structure from Motion II
Multibody Structure and Motion: 3-D Reconstruction of Independently Moving Objects
Integrating Local Affine into Global Projective Images in the Joint Image Space
Ambiguous Configurations for 3-View Projective Reconstruction 922 $R.\ Hartley$
On the Reprojection of 3D and 2D Scenes Without Explicit Model Selection
Author Index951