CSE160: Computer Networks

Lecture #03 - Bits and Bandwidth

2020-09-03

Professor Alberto E. Cerpa

Last Time ...

Protocols, layering and reference models

Application		"Chrome"	
Presentation		HTTP	
Session			
Transport	─	TCP	
Network		IP	
Link		Eth own of	
Physical		Ethernet	

Sample Protocol Stack

This Lecture

 Focus: <u>How do we send a</u> <u>message across a wire?</u>

- The physical / link layers:
 - 1. Model of a link
 - 2. Different kinds of media, signals
 - 3. Encoding bits with signals
 - 4. Fundamental Limits

Application
Presentation
Session
Transport
Network
Data Link
Physical

Scope of the Physical Layer

- Concerns how signals are used to transfer message bits over a link
 - Wires etc. carry <u>analog signals</u>
 - We want to send <u>digital bits</u>

1. Simple Link Model

- Abstract model is typically all we will need
 - What goes in comes out altered by the model
- We'll end with an abstraction of a physical channel
 - Rate (or bandwidth, capacity, speed) in bits/seconds
 - Delay in seconds, related to length
- Other parameters that are important:
 - The kind and frequency of errors
 - Whether the media is broadcast or not

Message Latency

How long does it take to send a message?

- Latency is the delay to send a message over a link
 - Transmission delay = message (bits) / rate (bps)
 - Time to put M-bit message "on the wire" (M/R seconds)
 - Propagation delay = length / speed of light in media
 - Time for bits to propagate across the wire (D seconds)
- Combining the two terms we have: L = M/R + D
- Later we will see queuing delay ...

Relationships

- Latency (sec) =
 - Transmit (sec) + Propagation (sec) + Queue (sec)
- Transmit Time (sec) =
 - Message Size (bits) / Bandwidth (bits/sec)= M/R seconds
- Propagation Delay (sec) =
 - Length (mts) / Speed of signals (mts/sec) =L/(2/3c) = D seconds

Metric Units

The main prefixes we use:

Prefix	Exp.	Prefix	Exp.
K(ilo)	10 ³	m(illi)	10-3
M(ega)	106	μ(micro)	10 ⁻⁶
G(iga)	109	n(ano)	10-9

- Use powers of 10 for rates, 2 for storage
 - $1 \text{ Kbps} = 1,000 \text{ bps}, 1 \text{ KB} = 2^{10} = 1024 \text{ bytes}$
 - $-1 \text{ Mbps} = 1,000,000 \text{ bps}, 1 \text{ MB} = 2^{20} = 1,048,576 \text{ bytes}$

"B" is for bytes, "b" is for bits, 1B = 8b

One-way Latency

- "Dialup" with a telephone modem:
 - -D = 10ms, R = 56Kbps, M = 1024 bytes
 - Latency = $(1024 \times 8)/(56 \times 1,000)$ sec + 10ms = 153ms!
- Cross-country with T3 (45Mbps) line:
 - -D = 50 ms, R = 45 Mbps, M = 1024 bytes
 - Latency = $(1024 \times 8) / (45 \times 1,000,000)$ sec 50ms = 50ms!
- Either a slow link or long wire makes for large latency
 - Often, one delay components dominates

Latency and RTT

- Latency is typically the one way delay over a link
 - Arrival Time Departure Time

- The round trip time (RTT) is twice the one way delay
 - Measure of how long to signal and get a response

Throughput

- Measure of system's ability to "pump out" data
 - NOT the same as bandwidth
- Throughput = Transfer Size / Transfer Time
 - Eg, "I transferred 1000 bytes in 1 second on a 100Mb/s link"
 - BW?
 - Throughput?
- Transfer Time = SUM OF
 - Time to get started shipping the bits
 - Time to ship the bits
 - Time to get stopped shipping the bits
- Throughput includes all protocols overheads

Messages Occupy "Space" On the Wire

- Consider a 1b/s network.
 - How much space does 1 byte take?
- Suppose latency is 16 seconds.
 - How many bits can the network "store"
 - This is the BANDWIDTH-DELAY product
 - Measure of "data in flight."
 - 1b/s * 16s = 16b
- Tells us how much data can be sent before a receiver sees any of it.
 - Twice B.D. tells us how much data we could send before hearing back from the receiver something related to the first bit sent.
- SELLA CONTROL OF THE PROPERTY OF THE PROPERTY

– Implications?

A More Realistic Example

Fiber at home, cross country

$$BD = 50ms * 45Mbps = 2.25 * 10^6 = 280KB$$

- That's quite a lot of data in the network
 - Like a small novel

2. Types of Media

- Media propagate <u>signals</u> that carry <u>bits</u> of information
- We'll look at some common types:
 - Wires
 - Fiber (fiber optic cables)
 - Wireless

Wires – Twisted Pair

- Very common, used in LANs and telephone lines
 - Four twisted pairs
 - Twists reduce radiated signal
 - Category 5e or 6 (bandwidth and insertion loss)
 - Unshielded (UTP) or Shielded (STP)

Wires - Coaxial Cable

Also common. Better shielding for better performance

"QUAD-SHIELDED CABLE"

Other kinds of wires too: e.g., electrical power

Fiber

- Long, thin, pure strand of glass
 - light propagated with total internal reflection
 - enormous bandwidth available (terabits)
 - Multi-mode allows many different paths, limited by dispersion
 - Chromatic dispersion if multiple frequencies

Light source (LED, laser)

Light detector (photodiode)

Wireless

- Sender radiates signal over a region
 - In many directions, unlike a wire, to potentially many receivers
 - Nearby signals (same freq.) <u>interfere</u> at a receiver; need to coordinate use

UNITED

STATES

FREQUENCY

ALLOCATIONS

THE RADIO SPECTRUM

BOOM	ETMILE	DESCRIPTION
Postary.	PUED	State Little
Bernster	Table	Tal-Capital with fever case retires

Wireless (2)

 Microwave, e.g., 3G, and unlicensed (ISM – Industrial, Scientific and Medical) frequencies, e.g. WiFi, are widely used for computer networking

3. Signals

- Analog signals encode digital bits
- We want to know what happens as signals propagate over media

Frequency Representation

 A signal over time can be represented by its frequency components (called Fourier analysis)

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Effect of Less Bandwidth

 Fewer frequencies (=less bandwidth) degrades signal (less rapid transitions)

Which one is good for data communication?

Signals over a Wire

- What happens to a signal as it passes over a wire?
 - 1. The signal is delayed (propagates at 2/3 c)
 - 2. The signal is attenuated (goes for m to km)
 - 3. Frequencies above a cutoff are highly attenuated
 - 4. Noise is added to the signal (later, causes errors)

EE: Bandwidth = width of frequency band, measured in Hz

CS: Bandwidth = information carrying capacity, in bits/sec

Signals over a Wire (2)

Example:

4: Noise:

Signals over Fiber

- Light propagates with very low lows in three very wide frequency bands
 - Use a carrier to send information

Signals over Wireless

 Signals transmitted on a carrier frequency, like fiber (more later)

Signals over Wireless (2)

 Travel at speed of light, spread out and attenuate faster than 1/dist²

Signals over Wireless (3)

Multiple signals on the same frequency interfere at a receiver

D sees = strong C + weak A, B

Signals over Wireless (4)

 Interference leads to notion of <u>spatial reuse</u> (of same frequency)

Signals over a Wireless (5)

- Various other effects too!
 - Wireless propagation is complex, depends on environment

- Some key effects are highly frequency dependent,
 - E.g., <u>multipath</u> at microwave frequencies

 More on this later when discussing Medium Access Control

Wireless Multipath

- Signals bounce off objects and take multiple paths
 - Some frequencies attenuated at receiver, varies with location
 - Messes up signal; handled with sophisticated methods

Modulation

 Generate analog waveform (e.g., voltage) from digital data at transmitter and sample to recover at receiver

- We send/recover symbols that are mapped to bits
 - Signal transition rate = baud rate vs bit rate
- This is baseband transmission ... for more details you need a signals course!

Simple Modulation

- What is the simplest encoding?
 - Use high voltage for 1, zero voltage for zero
 - What is the problem?
- To solve DC bias, NRZ (Non-return to zero)
 - Use high/low voltages, e.g., high=1, low=0
 - Use +/- voltages, e.g., +5V = 1, -5V = 0

- Variation, NRZI (NRZ, invert on 1)
 - Use transition for 1s, no transition for 0s
 - How do we sample a long sequence of 0s?

Clock Recovery

- How do we distinguish consecutive 0s or 1s?
- If we sample at the wrong time we get garbage
- If Tx and Rx have exact clocks no problem
 - But in practice they drift slowly
- This is the Clock Recovery problem
- Possible solutions:
 - Send separate clock signal
 - Expensive
 - Keep messages short
 - Limits data rate
 - Embed clock signal in data signal
 - Other codes

Manchester Coding

- Make transition in the middle of every bit period
 - Low-to-high is 0; high-to-low is 1
 - Signal rate is twice the bit rate
 - Used on 10 Mbps Ethernet
- Advantage:
 - self-clocking: clock is embedded in signal, and we re-sync with a phase-locked loop (PLL) every bit
- Disadvantage:
- STATE OF STA

50% efficiency

Coding Examples

4B/5B and 8B/10B Codes

- We want transitions *and* efficiency... how?
- Solution: map data bits (which may lack transitions) into code bits (which are guaranteed to have them)
- 4B/5B code:
 - $-0000 \rightarrow 11110,0001 \rightarrow 01001,...1111 \rightarrow 11101$
 - Never more than three consecutive 0s back-to-back using NRZI or other codes (e.g. MLT-3)
 - 80% efficiency (used in 100Mbps Ethernet and FDDI)
 - Message bits: 1111 0000 0001

- 8B/10B encoding used for 1GB Ethernet (with NRZ)
 - never more than 5 consecutive 0s or 1s (clock recovery)
 - diff. bw counts of 1s/0s every 20 bits < 2 (DC-balance)

Cerpa, Fall 2020 © UCM

Passband Modulation

- What we have seen so far is <u>baseband</u> modulation for wires
 - Signal is sent directly on a wire
- These signals do not propagate well on fiber / wireless
 - Need to send at higher frequencies
- Passband modulation carries a signal by modulating a carrier

Passband Modulation (2)

 Carrier is simply a signal oscillating at a desired frequency:

- We can modulate it by changing:
 - Amplitude, frequency, or phase

Passband Modulation (3)

NRZ signal of bits

Amplitude shift keying

Frequency shift keying

Phase shift keying

4. Fundamental Limits

- How rapidly can we send information over a link?
 - Nyquist limit (~1924)
 - Shannon capacity (1948)

 Practical systems are devised to approach these limits

Key Channel Properties

- The bandwidth (B), signal strength (S), and noise strength (N)
 - All measured at the receiver
 - B limits the rate of transitions
 - S and N limit how many signal levels we can distinguish

Nyquist Limit

- The maximum symbol rate is 2B
 - Symbol is a waveform that it's used to represent information (bits)
 - It may represent 1 bit, more than 1bit if you have multiple signal levels

1010101010101010101

 Thus if there are V signal levels, ignoring noise, the maximum bit rate is:

 $R = 2B \log_2 V \text{ bits/sec}$

Claude Shannon (1916-2001)

- Father of information theory
 - "A Mathematical Theory of Communication",
 1948
- Fundamental contributions to digital computers, security, and communications

Credit: Courtesy MIT Museum

Electromechanical mouse that "solves" mazes!

Shannon Limit

- How many levels we can distinguish depends on S/N
 - Or SNR, the <u>Signal-to-Noise Ratio</u>
 - Note noise is random, hence some errors
- SNR given on a log-scale in deciBels:
 - $-SNR_{dB} = 10log_{10}(S/N)$

S/N	dB
1000	30
100	20
10	10
2	3

Shannon Limit (2)

 Shannon limit is for capacity (C), the maximum information carrying rate of the channel:

$$C = B log_2(1 + S/N) bits/sec$$

- Shannon showed that you can send information up to that rate, but not higher
- Revolutionary at the time: there were many errors in the channels and the only way to cope with them was increasing signal strength
- Shannon showed us that there might be coding schemes that would allow us to transmit the signal

Putting it all together – DSL

- DSL (Digital Subscriber Line, see §2.1.1) is widely used for broadband; many variants offer 10s of Mbps
- Reuses twisted pair telephone line to the home; it has up to ~2 MHz of bandwidth but uses only the lowest ~4 kHz

DSL (2)

- DSL uses passband modulation
 - Separate bands for upstream and downstream (larger)
 - Modulation called QAM varies both amplitude and phase
 - High SNR, up to 15 bits/symbol, low SNR only 1 bit/symbol

Wired/Wireless Perspective

- Wires, and Fiber:
 - Engineer link to have requisite SNR and B
 - Can fix data rate

Engineer SNR for data rate

- Wireless
 - Given B, but SNR varies greatly, e.g. up to 60 dB! (that's 1M times)
 - Can't design for worst case, must adapt data rate

Adapt data rate to SNR

Key Concepts

- We typically model links in terms of bandwidth and delay, from which we can calculate message latency
- Different media have different properties that affect their performance as links
- We need to encode bits into signals so that we can recover them at the other end of the channel
- Passband modulation allows us to transmit baseline signals in other higher frequencies for fiber and wireless
- Shannon showed us the limit of what is possible to transmit on any channel

