Perform transformation from three-phase (abc) signal to dq0 rotating reference frame or the inverse

Library

Control and Measurements/Transformations

Description

The abc to dq0 block performs a Park transformation in a rotating reference frame.

The dq0 to abc block performs an inverse Park transformation.

The block supports the two conventions used in the literature for Park transformation:

- Rotating frame aligned with A axis at t = 0. This type of Park transformation is also known as the cosinus-based Park transformation.
- Rotating frame aligned 90 degrees behind A axis. This type of Park transformation is also known as the sinus-based Park transformation. Use it in SimPowerSystems models of three-phase synchronous and asynchronous machines.

Deduce the dq0 components from abc signals by performing an abc to $\alpha\beta0$ Clarke transformation in a fixed reference frame. Then perform an $\alpha\beta0$ to dq0 transformation in a rotating reference frame, that is, $-(\omega.t)$ rotation on the space vector Us = $u\alpha + j \cdot u\beta$.

The abc-to-dq0 transformation depends on the dq frame alignment at t = 0. The position of the rotating frame is given by ω .t (where ω represents the dq frame rotation speed).

When the rotating frame is aligned with A axis, the following relations are obtained:

$$\begin{split} U_s &= u_d + j \cdot u_q = (u_a + j \cdot u_\beta) \cdot e^{-j\omega t} = \frac{2}{3} \cdot \left(u_a + u_b \cdot e^{\frac{j2\pi}{3}} + u_c \cdot e^{\frac{j2\pi}{3}} \right) \cdot e^{-j\omega t} \\ u_0 &= \frac{1}{3} \left(u_a + u_b + u_c \right) \\ \begin{bmatrix} u_d \\ u_q \\ u_0 \end{bmatrix} &= \frac{2}{3} \begin{bmatrix} \cos(\omega t) & \cos\left(\omega t - \frac{2\pi}{3}\right) & \cos\left(\omega t + \frac{2\pi}{3}\right) \\ -\sin(\omega t) & -\sin\left(\omega t - \frac{2\pi}{3}\right) & -\sin\left(\omega t - \frac{2\pi}{3}\right) \end{bmatrix} \begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix} \end{split}$$

$$\begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix} = \begin{bmatrix} \cos(\omega t) & -\sin(\omega t) & 1 \\ \cos\left(\omega t - \frac{2\pi}{3}\right) & -\sin\left(\omega t - \frac{2\pi}{3}\right) & 1 \\ \cos\left(\omega t + \frac{2\pi}{3}\right) & -\sin\left(\omega t - \frac{2\pi}{3}\right) & 1 \end{bmatrix} \begin{bmatrix} u_d \\ u_q \\ u_0 \end{bmatrix}$$

When the rotating frame is aligned 90 degrees behind A axis, the following relations are obtained:

$$U_s = u_d + j \cdot u_q = (u_\alpha + j \cdot u_\beta) \cdot e^{-j\left(\omega t - \frac{\pi}{2}\right)}$$

$$\begin{bmatrix} u_d \\ u_q \\ u_0 \end{bmatrix} = \begin{bmatrix} \sin(\omega t) & -\cos(\omega t) & 0 \\ \cos(\omega t) & \sin(\omega t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix}$$

Inverse transformation is given by

$$\begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix} = \begin{bmatrix} \sin(\omega t) & \cos(\omega t) & 1 \\ \sin\left(\omega t - \frac{2\pi}{3}\right) & \cos\left(\omega t - \frac{2\pi}{3}\right) & 1 \\ \sin\left(\omega t + \frac{2\pi}{3}\right) & \cos\left(\omega t + \frac{2\pi}{3}\right) & 1 \end{bmatrix} \begin{bmatrix} u_d \\ u_q \\ u_0 \end{bmatrix}$$

Dialog Box and Parameters

Rotating frame alignment (at wt=0)

Select the alignment of rotating frame a t = 0 of the d-q-0 components of a three-phase balanced signal:

$$u_a = \sin(\omega t); \quad u_b = \sin\left(\omega t - \frac{2\pi}{3}\right); \quad u_c = \sin\left(\omega t + \frac{2\pi}{3}\right)$$

(positive-sequence magnitude = 1.0 pu; phase angle = 0 degree)

When you select Aligned with phase A axis, the d-q-0 components are d = 0, q = -1, and zero = 0.

When you select 90 degrees behind phase A axis, the d-q-0 components are d = 1, q = 0, and zero = 0.

Inputs and Outputs

abc

The vectorized abc signal.

dq0

The vectorized dq0 signal.

wt

The angular position of the dq rotating frame, in radians.

Example

The power Transformations example shows various uses of blocks performing Clarke and Park transformations.

Introduced in R2013a