Aula 08 – Classes de Complexidade Adicionais

Prof. Eduardo Zambon

Departamento de Informática (DI) Centro Tecnológico (CT) Universidade Federal do Espírito Santo (Ufes)

Algoritmos e Fundamentos da Teoria de Computação (ToCE)

Engenharia de Computação

Introdução

- Aula anterior: Problemas NP-complete clássicos e suas reduções.
- Estes slides: Quais são as demais classes existentes (mais comuns)?
- Objetivos: Apresentar o conceito de complexidade de espaço e a classe P-Space.

Referências

Chapter 17 – Additional Complexity Classes

T. Sudkamp

Chapter 8 – Space Complexity

M. Sipser

Chapter 7 – Summary

A. Maheshwari

- Classe P: linguagens decidíveis em tempo polinomial determinístico.
- Classe NP: linguagens decidíveis em tempo polinomial não-determinístico.
- P = NP: pergunta mais importante da computação teórica.
- Classes \mathcal{P} e \mathcal{NPC} são subconjuntos não vazios de \mathcal{NP} .
- Qual é a relação entre essas duas classes?
- Se \mathcal{P} e \mathcal{NPC} possuem uma interseção $\Rightarrow \mathcal{P} = \mathcal{NP}$.
- Se $\mathcal{P} \neq \mathcal{NP} \Rightarrow \mathcal{P}$ e \mathcal{NPC} são disjuntos.

Inclusões das classes \mathcal{P} e \mathcal{NPC} se $\mathcal{P} \neq \mathcal{NP}$:

- Pergunta imediata: existem linguagens na área cinza?
- Outra forma de se perguntar a mesma coisa: (assumindo que $\mathcal{P} \cap \mathcal{NPC} = \emptyset$,) $\mathcal{P} \cup \mathcal{NPC} = \mathcal{NP}$?
- \blacksquare \mathcal{NPI} : classe de problemas NP-intermediate (em cinza).

- Qualquer problema em NPI não é NP-hard.
- Por quê?
- ⇒ Porque se fosse então o problema seria NP-complete.
- A conclusão é que os problemas em \mathcal{NPI} não são considerados tão difíceis como os em \mathcal{NPC} .
- Mas esse problemas também não estão em \mathcal{P} e portanto podem ser vistos como mais difíceis do que os em \mathcal{P} .
- Isso justifica o nome intermediate.

Teorema 17.1.1 (Ladner, 1975)

Se $P \neq \mathcal{NP}$, então \mathcal{NPI} não é vazio.

Problemas candidatos a estarem em \mathcal{NPI} : fatoração de inteiros, isomorfismo de grafos.

- $L \subseteq \Sigma^*$: linguagem sobre um alfabeto Σ .
- $\overline{L} = \Sigma^* L$: complemento da linguagem L.
- Uma classe \mathcal{C} é fechada sob complementação se $L \in \mathcal{C} \Rightarrow \overline{L} \in \mathcal{C}$.
- Classe P é fechada sob complementação.
- Qualquer DTM que decide L em tempo polinomial pode ser modificada para decidir L com o mesmo limite de tempo.
- Basta inverter os estados de aceite e rejeição da TM.

- Em NTMs decidir sobre o complemento não é tão simples.
- Solução padrão por NTM: guess-and-check.
- SAT: uma fórmula é satisfatível?
 - Sim: existe pelo menos uma atribuição que satisfaz.
 - Não: não existe nenhuma atribuição que satisfaz.
 - NTM "adivinha" de forma não-determinística uma atribuição e testa se a fórmula é verdadeira.
 - Sabidamente em \mathcal{NP} .
- Complemento de SAT: uma fórmula é insatisfatível?
 - Sim: não existe nenhuma atribuição que satisfaz.
 - Não: existe pelo menos uma atribuição que satisfaz.
 - Aqui não basta "adivinhar" uma única atribuição para responder positivamente à pergunta.
 - Não se sabe se o complemento de SAT está em \mathcal{NP} .

- co- $\mathcal{NP} = \{\overline{\mathsf{L}} \mid \mathsf{L} \in \mathcal{NP}\}$: classe dos complementos das linguagens \mathcal{NP} .
- Não se sabe se $\operatorname{co-}\mathcal{NP} = \mathcal{NP}$.
- Responder não a essa pergunta é equivalente a responder que $\mathcal{P} \neq \mathcal{NP}$.

Teorema 17.1.2 (Sudkamp)

Se co- $\mathcal{NP} \neq \mathcal{NP}$, então $\mathcal{P} \neq \mathcal{NP}$.

- $\blacksquare \mathcal{P}$ é fechada sob complementação.
- Se \mathcal{NP} não for, então as classes não podem ser iguais.

- Teorema anterior provê outra forma de responder à questão se $\mathcal{P} = \mathcal{NP}$.
- Basta achar uma linguagem $L \in \mathcal{NP}$ com $\overline{L} \notin \mathcal{NP}$.
- Por outro lado, se co-NP = NP nada se pode afirmar sobre a relação entre $P \in NP$.
- Inclusões se $\mathcal{P} \neq \mathcal{NP}$ e co- $\mathcal{NP} \neq \mathcal{NP}$:

Complexidade de Espaço

Definição 17.2.1 (Sudkamp)

A complexidade de espaço de uma TM M é a função $sc_M: \mathbb{N} \to \mathbb{N}$ aonde $sc_M(n)$ é o número máximo de posições da fita que são lidas por uma computação de M iniciada com uma string de entrada de tamanho n.

- Definição acima serve para qualquer tipo de máquina.
- No caso de máquinas multi-faixa ou multi-fita, basta somar todas as posições lidas.
- No caso de NTMs, o máximo é tomado sobre todas as possíveis computações para cada string de tamanho n.
- Como uma TM M pode parar antes de consumir toda a entrada, é possível que $sc_{M}(n) < n$.

Relações entre Complexidades de Tempo e Espaço

- A complexidade de tempo de uma TM pode ser usada para se obter um limite superior da complexidade de espaço.
- O número de posições que uma cabeça da TM pode ler durante uma computação é limitado pelo número de transições.

Teorema 17.3.1 (Sudkamp)

Seja M uma TM com complexidade de tempo $tc_{M}(n) = f(n)$. Então $sc_{M}(n) \le f(n) + 1$.

- O número máximo de posições lidas ocorre quando M anda para a direita em todas as transições.
- Nesse caso, $sc_M(n) = f(n) + 1$.

Relações entre Complexidades de Tempo e Espaço

- Obter um limite para a complexidade de tempo a partir da complexidade de espaço é mais difícil.
- Tempo não pode ser reusado, mas espaço sim.
- Uma máquina pode ler um pedaço da fita várias vezes!

Teorema 17.3.2 (Sudkamp)

Seja M uma DTM com complexidade de espaço $sc_M(n) = s(n)$. Então $tc_M(n) \le m \cdot s(n) \cdot t^{s(n)}$, onde m é o número de estados de M e t o tamanho do alfabeto da fita.

Para uma entrada de tamanho n, a complexidade de espaço restringe a computação de M a no máximo s(n) posições da fita.

Relações entre Complexidades de Tempo e Espaço

- Limitar a computação a um segmento finito da fita permite contar o número de configurações distintas de M.
- A fita pode ter qualquer dos t símbolos em cada posição, gerando $t^{s(n)}$ possibilidades.
- Existem s(n) · t^{s(n)} combinações de configurações da fita e posições da cabeça.
- Para qualquer uma das combinações acima, a TM pode estar em um dos m estados.
- Portanto, o total de configurações distintas é $m \cdot s(n) \cdot t^{s(n)}$.
- Uma repetição de uma configuração por uma DTM indica um loop.
- Como M precisa parar para todas as entradas (pré-condição para complexidade de tempo), a computação deve parar antes de m · s(n) · t^{s(n)} transições.

- Uma linguagem L é decidível em espaço polinomial se existe uma TM M que decide L com $sc_M \in O(n^r)$, onde r é um natural independente de n.
- P-Space: classe de linguagens decidíveis em espaço polinomial por DTM.
- NP-Space: classe de linguagens decidíveis em espaço polinomial por NTM.
- É imediato ver que \mathcal{P} -Space $\subseteq \mathcal{NP}$ -Space.
- Mas e \mathcal{NP} -Space $\subseteq \mathcal{P}$ -Space?
- Ao contrário da pergunta equivalente para tempo, sabe-se a resposta para a pergunta acima.
- Teorema a seguir mostra que \mathcal{P} -Space = \mathcal{NP} -Space.
- A diferença fundamental entre complexidade de tempo e espaço é que espaço pode ser reutilizado durante uma computação.

Teorema 17.4.2 (Savitch, 1970)

Seja M uma NTM com $sc_M = s(n)$. Então L(M) é aceita por uma DTM M' com $sc_{M'} \in O(s(n)^2)$.

Devido ao limite superior de tempo dado pelo Teorema 17.3.2, temos que $\mathcal{NP} \subseteq \mathcal{P}$ -Space. Relação suposta entre as classes:

Definição 17.5.1 (Sudkamp)

- Uma linguagem Q é dita P-Space hard se para toda linguagem L ∈ P-Space, L é redutível a Q em tempo polinomial.
- Uma linguagem P-Space hard que também está em P-Space é dita P-Space complete.

É essencial notar que a redução da definição acima tem uma restrição de tempo e não de espaço. Isso leva a este teorema.

Teorema 17.5.2 (Sudkamp)

Seja Q uma linguagem *P*-Space complete. Então

- 1 Se Q está em \mathcal{P} , \mathcal{P} -Space = \mathcal{P} .
- 2 Se Q está em \mathcal{NP} , \mathcal{P} -Space = \mathcal{NP} .

REG

Input: Expressão regular α sobre alfabeto Σ .

Output: sim; se $\alpha \neq \Sigma^*$

não; caso contrário.

- O problema REG é P-Space complete.
- Devido à inclusão de \mathcal{NP} em \mathcal{P} -Space, todo problema \mathcal{P} -Space complete também é NP-hard.
- Portanto, REG é um exemplo de um problema NP-hard para o qual não existe uma solução em tempo polinomial não-determinístico.

REG2

Input: Expressão regular com quadrados α sobre

alfabeto Σ .

Output: sim; se $\alpha \neq \Sigma^*$

não; caso contrário.

- O problema REG2 não está em P-Space.
- A linguagem L_{REG2} é decidível mas requer espaço que cresce exponencialmente com a entrada.
- **Ex-** \mathcal{P} -Space: classe de problemas decidíveis por TM em espaço $O(2^{p(n)})$, onde p(n) é um polinômio.
- **Ex-** \mathcal{P} -**Space** é um superconjunto estrito de \mathcal{P} -**Space**, \mathcal{NP} e \mathcal{P} .

Complexity Zoo

Muitas outras classes em:

http://complexityzoo.uwaterloo.ca/

Aula 08 – Classes de Complexidade Adicionais

Prof. Eduardo Zambon

Departamento de Informática (DI) Centro Tecnológico (CT) Universidade Federal do Espírito Santo (Ufes)

Algoritmos e Fundamentos da Teoria de Computação (ToCE)

Engenharia de Computação