Our problems multiply

2. (10 points) We will consider a neural network with a slightly unusual structure. Let the input x be $d \times 1$ and let the weights be represented as $k \times 1 \times d$ vectors, $W^{(1)}, \ldots, W^{(k)}$. Then the final output is

$$\hat{y} = \prod_{i=1}^k \sigma(W^{(i)}x) = \sigma(W^{(1)}x) \times \cdots \times \sigma(W^{(k)}x) .$$

Define $a^{(j)} = \sigma(W^{(j)}x)$.

(a) What is $\partial L(\hat{y}, y)/\partial a^{(j)}$ for some j? Since we have not specified the loss function, you can express your answer in terms of $\partial L(\hat{y}, y)/\partial \hat{y}$.

(b) What are the dimensions of $\partial a^{(j)}/\partial W^{(j)}$?

(c) What is $\partial a^{(j)}/\partial W^{(j)}$? (Recall that $d\sigma(v)/dv = \sigma(v)(1-\sigma(v))$.)

Name: _____