

Samarjeet Saurabh & Santhosh Talluri

Objective

- Dbjective: The aim of this case study is to apply Exploratory Data Analysis (EDA) techniques to a real-world problem, uncover meaningful insights, and present them in a business-focused manner through a presentation.
- Benefits of the Case Study:
 - Provides an understanding of how EDA is utilized in addressing real-world business challenges.
 - Develops a foundational knowledge of risk analytics within the banking and financial services sectors.
 - Demonstrates how data is leveraged to minimize financial losses when lending to clients.
 - Enhances comprehension of data visualization and the appropriate use of charts for real world data analysis.

Problem Statement

 Find out the driving factors of loan default from given loan data to minimize financial loss and improve lending business.

Approach

- Data Understanding: Load and read the data
- Data clean up and preparation process: Delete null columns and duplicate data, fixing null values, correcting data types and removing outliers.
- Draw Insights: conduct univariate analysis, bivariate analysis and summarize.

Understanding Data

Loading the DATA ¶

# Printing the data(first 5 rows) loan_data.head()														
	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade		num_tl_90g_dpd_24m	num_tl_op_past_12m	р
0	1077501	1296599	5000	5000	4975.0	36 months	10.65%	162.87	В	B2	(et)	NaN	NaN	
1	1077430	1314167	2500	2500	2500.0	60 months	15.27%	59,83	С	C4		NaN	NaN	
2	1077175	1313524	2400	2400	2400.0	36 months	15.96%	84.33	С	C5		NaN	NaN	
3	1076863	1277178	10000	10000	10000.0	36 months	13.49%	339.31	С	C1		NaN	NaN	
4	1075358	1311748	3000	3000	3000.0	60 months	12.69%	67.79	В	B5	ini	NaN	NaN	

Displaying first 5 header rows for quick understanding

Understanding Data

Understanding Data

```
# Columns in the dataframe
print(loan_data.columns)
Index(['id', 'member_id', 'loan_amnt', 'funded_amnt', 'funded_amnt_inv
       'term', 'int_rate', 'installment', 'grade', 'sub_grade',
       'num_tl_90g_dpd_24m', 'num_tl_op_past_12m', 'pct_tl_nvr_dlq',
      'percent_bc_gt_75', 'pub_rec_bankruptcies', 'tax_liens',
      'tot_hi_cred_lim', 'total_bal_ex_mort', 'total_bc_limit' Analysing data set for cleaning
      'total_il_high_credit_limit'],
      dtype='object', length=111)
```

Basic information about the data

```
## Number of rows and columns
print('Number of Columns:',loan data.shape[1])
print('Number of Rows:',loan_data.shape[0])
## Number of missing values
print('Number of missing values:',loan_data.isnull().sum().sum())
## Number of unique values
print('Number of unique values:',loan_data.nunique().sum())
## Number of duplicates
print('Number of duplicates:',loan_data.duplicated().sum())
Number of Columns: 111
Number of Rows: 39717
Number of missing values: 2263366
Number of unique values: 416800
Number of duplicates: 0
```

Observations:

- No duplicate values
- Null value columns are present

```
# checking null values in data set
print(loan_data.isnull().sum())
member id
loan amnt
funded amnt
funded_amnt_inv
tax liens
tot hi cred lim
total_bal_ex_mort
total bc limit
                              39717
total_il_high_credit_limit
Length: 111, dtype: int64
# Checking null values percetange in descending order in given data set.
print((loan data,isnull().sum()/loan data.shape[0]*100).round(2).sort values(ascending=False))
verification status joint 100.0
annual_inc_joint
                            100.0
mo_sin_old_rev_tl_op
                            100.0
mo_sin_old_il_acct
                            100.0
bc_util
                             100.0
deling amnt
policy_code
earliest or line
delinq_2yrs
Length: 111, dtype: float64
```

Data Clean UP

Data Clean Up

Checking for missing values across the dataframe

print(loan data.isnull().sum().sort values(ascending=False))

```
emp_length
 pub_rec_bankruptcies
 revol util
 title
                           11
## Fill null with Unknown to emp_length
loan_data["emp_length"].fillna("Unknown", inplace=True)
# Check emp Length count
loan_data.emp_length.value_counts()
emp_length
10+ years
             8879
< 1 year
             4583
2 years
             4388
3 years
             4095
             3436
4 years
5 years
             3240
1 year
             2229
6 years
             1773
7 years
             1479
B years
9 years
             1258
Unknown
Name: count, dtype: int64
## Fill null with Unknown to pub_rec_bankruptcies
loan data["pub_rec_bankruptcies"].fillna("Unknown", inplace=True)
loan_data.pub_rec_bankruptcies.value_counts()
 pub_rec_bankruptcies
```

37339

1674

697

Name: count, dtype: int64

1.0

Unknown

```
# Checking "revol_util" after removing null values, so we can handle missing values in original data
loan_data.revol_util=loan_data.revol_util.apply(lambda x:str(x).replace('%','')).astype('float').round(2)
print(loan_data['revol_util'].describe())
print(loan_data['revol_util'].median())
         39667.000000
           48.832152
           28.332634
            0.000000
25%
           25.400000
50%
           49.300000
           72.488888
           99,988888
Name: revol_util, dtype: float64
# Variation between mean and median is very close to each, so filling null values with the mean value.
loan_data['revol_util'].fillna("48.83%")
         83.7
         9.4
         98.5
         21.0
```

Missing values Treatment

- Emp_length filled with Unknown.
- pub_rec_bankruptcies filled with Unknown
- revol_util filled with mean

Data Clean Up

```
### converting data type to few columns.
loan_data.int_rate=loan_data.int_rate.apply(lambda x:str(x).replace('%','')).astype('float').round(2)
loan_data.revol_util=loan_data.revol_util.apply(lambda x:str(x).replace('%','')).astype('float').round(2)
loan_data['annual_inc'] = loan_data['annual_inc'].apply(lambda x: f"(x:.0f)").astype(int)
loan_data.term=loan_data.term.apply(lambda x: int(x.replace(' months',''))).astype(int)
loan_data.head(5)
         id loan_amnt term int_rate installment grade sub_grade emp_length home_ownership annual_inc ... addr_state
                                                                                                                          dti delinq_2yrs earliest_cr_line inq
0 1077501
                               10.65
                                          162.87
                                                                                         RENT
                                                                                                    24000 ....
                                                                                                                     AZ 27.65
                                                                                                                                                  Jan-85
                 5000
                         36
                                                                     10+ years
1 1077430
                         60
                               15.27
                                           59.83
                                                                                         RENT
                                                                                                    30000 ...
                                                                                                                    GA 1.00
                                                                                                                                                  Apr-99
                 2500
                                                                      < 1 year
2 1077175
                 2400
                         36
                               15.96
                                           84.33
                                                                     10+ years
                                                                                         RENT
                                                                                                    12252 ...
                                                                                                                     IL 8.72
                                                                                                                                                 Nov-01
3 1076863
                               13.49
                                                                     10+ years
                                                                                                    49200 ...
                                                                                                                     CA 20.00
                                                                                                                                                  Feb-96
                                                                                         RENT
                                                                                                                    OR 17.94
                                                                                                                                        0
4 1075358
                 3000
                               12.69
                                                                        1 year
                                                                                                    800000 ....
                                                                                                                                                  Jan-96
5 rows × 25 columns
```

Data Type conversion

- int_rate and revol_util columns converted to Float
- annual_inc and term converted to int

Data Clean UP

!!: # Univariate analysis on "annual_inc" after treating outliers print(loan_data['annual_inc'].describe())

Outliers treatment

- As observed from the box plot annual_inc shows an exponential increase around the 99th percentile.
- Removed above the 99th percentile values.

Univariate Analysis

Loan Amount

- Most of the borrowers taken loan amounts between 5500
 15000
- 99-95 percentile of loan amounts are below 30000

Term

• 36 months term borrowers are more

Interest Rate

- As interest rate increases from 14% number of borrowers are less.
- Majority of the borrowers intrest rate is between 9.25 to 14.59

Univariate Analysis

Installment

- Most of the instalments are in between 167 to 430
- lowest installment is 15 and highest installment is 1305
- high installment borrowers are few and low installment borrowers are high

Annual Income

- 50000 thousand annual income borrowers are more with compare to other income borrowers.
- Most of the borrowers income is in between 4000 to 81000

DTI

- Average debt to income ratio is 13.37
- Most of the borrowers debt to income ration is in between 8.27 to 18.64

Categorical Univariate Analysis

- B grade borrowers are more
- Rent borrowers are more
- 47% borrowers are taken loans for Debt consolidation
- 14.2% borrowers are defaulters

Bivariate analysis

- Charged Off borrowers median compared to fully paid borrowers is high and risk is associated with higher loan amounts.
- Charged of 75th quartile is higher, require proper risk analysis for high loan amounts.
- As loan rate increasing from 14.5 number of applications are decreasing.
- Most of the borrowers interest rates are between 9.25 to 14.59
- Fully paid customers interest rates are low with compare to defaulters.
- If interest rate is high then there is probability to default loan
- Most of the borrowers salary is 60000
- Less salary borrowers are becoming defaulters and avg salary of charged off borrowers is less than fully paid borrowers
- Defaulted loan DTI is more when compared with fully paid loans.
- If the dti is more then there is chance to default loan.

Bivariate analysis

- 10+ years employee borrowers are high.
- 1 year to 9 years as experience increase number of borrowers are decreasing
- Rent and mortgage borrowers are more defaulters.

Bivariate analysis

Insights

• Chances of the loan being Charged Off increase as DTI increases.

Segment analysis

- Till loan amount less than 20% of annual income, loan charge off is low
- Loan amounts percentage of annual income increases loan charge off rate increase.

Key variables impacting Loan status

- DTI
- Interest Rates
- Loan Term
- Employment Length
- Home ownership
- Purpose
- Loan Grade

Summary

- Debt-to-income ratio (DTI) is positively correlated with loan default, higher DTI ratios increase the risk of default.
- ► Higher interest loans are likely to be charged off compared to fully paid loans, this is a potential risk associated with higher interest rates.
- The length of the loan term is increasing the defaulters, longer-term loans having higher default rates compared to shorter-term loans.
- Employment length increases likelihood of loan default decrease, longer employment tenure might reduce the risk of default.
- Home owner ship exhibiting lower default rates compared to rent and mortgage borrowers.
- Loan purpose impacts default rates, loans for debt consolidation having relatively lower default rates compared to others.
- Higher-grade loans are lower default rates.

Conclusion

- Using EDA techniques analysed given data set thoroughly.
- Identified key attributes which influence loan status to default.
- Loan amount, debt to income ratio, employment length and borrower behaviour are key factors which will impact loan status
- In future to mitigate and reduce financial risk lender requires more attention on high loan amount and high DTI applicants.