Algebraische Topologie II ff

Ingo Skupin

1. August 2017

9 Homologische Algebra

(9.4) Proposition. Sei G eine abelsche Gruppe und

$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

eine exakte Sequenz abelscher Gruppen. Dann is auch die induzierte Sequenz

$$\operatorname{Hom}(A,G) \xleftarrow{f^*} \operatorname{Hom}(B,G) \xleftarrow{g^*} \operatorname{Hom}(C,G) \longleftarrow 0$$

exakt. Hom(-,G) ist links-exakt.

Beweis. (i) Exaktheit bei $\operatorname{Hom}(C,G)$. Zeige g^* ist injektiv. Sei $\varphi \in \operatorname{Hom}(C,G)$ mit $g^*(\varphi) = \varphi \circ g = 0$.

$$B \xrightarrow{g} C$$

$$\downarrow 0 \qquad \downarrow \varphi \qquad \Longrightarrow \varphi = 0$$

$$G$$

- (ii) Exaktheit bei Hom(B, G):
 - (a) im $g^* \subseteq \ker f^*$, also $f^* \circ g^* = 0$. Aber $f^* \circ g^* = (g \circ f)^* = 0^* = 0$.
 - (b) $\ker f^* \subseteq \operatorname{im} g^* \colon \operatorname{Sei} \varphi \colon B \to G \in \ker f^*, \ 0 = f^*(\varphi) = \varphi \circ f.$

$$B \xrightarrow{g} C$$

$$\downarrow^{\phi} \xrightarrow{\pi} \overline{g} \uparrow$$

$$G \xleftarrow{\overline{\varphi}} B/\ker g$$

Dann ist $\ker g = \operatorname{im} f \subseteq \ker \varphi$ und daraus folgt die eindeutige Existenz eines $\overline{\varphi} \colon B/\ker g \to G$ mit $\overline{\varphi} \circ \pi = \varphi$.

Ebenso induziert g einen Morphismus $\overline{g} \colon B/\ker g \to C$ mit $\overline{g} \circ \pi = g$. Außerdem ist \overline{g} injektiv und surjektiv, also ein Isomorphismus und somit

$$\varphi = \overline{\varphi} \circ \pi = \overline{\varphi} \circ \overline{g}^{-1} \circ g = g^*(\overline{\varphi} \circ \overline{g}^{-1}).$$

(9.5) Kommentar. Man sagt, dass der kontravariante Funktor Hom(-,G)=:F linksexakt ist. Beachte, dass F allerdings i.A. nicht exakte Sequenzen

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

in exakte Sequenzen überführt.

$$0 \longleftarrow \left[\operatorname{Hom}(A,G) \right] \longleftarrow \left[\operatorname{Hom}(B,G) \leftarrow g^* \right] - \operatorname{Hom}(C,G) \longleftarrow 0$$

ist also i.A. nicht exakt.

(9.6) Erinnerung. eine exakte Sequenz abelscher Gruppen

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{\theta} \overset{id_C}{C} \longrightarrow 0$$

mit $g \circ r = id_C$ spaltet. Äquivalent:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

mit $l \circ f = id_A$.

In diesem Fall gilt $B \cong A \oplus C$.

(9.7) **Zusatz**. Ist

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

exakt und spaltet, so ist auch

$$0 \longleftarrow \operatorname{Hom}(A,G) \leftarrow \underset{f^*}{\longleftarrow} \operatorname{Hom}(B,G) \leftarrow \underset{g^*}{\longleftarrow} \operatorname{Hom}(C,G) \leftarrow 0 \tag{*}$$

exakt und spaltet.

Beweis. ist $l: B \to A$ linksinvers zu f, $l \circ f = id_A$, so ist $id_{\text{Hom}(A,G)} = id_A^* = (l \circ f)^* = f^* \circ l^*$, also ist f^* surjektiv. Außerdem ist nun l^* offenbar rechtsinvers zu f^* , also eine Spaltung von (*).

(9.8) Definition. Sei A eine abelsche Gruppe. Dann heißt eine kure exakte Sequenz

$$0 \longrightarrow R \xrightarrow{\alpha} F \xrightarrow{\beta} F \longrightarrow 0$$

eine freie Auflösung, wenn F eine frei abelsche Gruppe ist.

- (9.9) Kommentar. Als Untergruppe (vie α) von F ist R selbst eine frei abelsche Gruppe. Ist $(e_i)_{i\in I}$ eine Basis von F, so ist $\varepsilon = (\beta(e_i))_{i\in I}$ ein Erzeugendensystem von A. Und ist $(r_j)_{j\in J}$ eine Basis von R, so erzeugt $(\alpha(r_j))_{j\in J}$ die Relationen von ε (Relationen auf ε : $f \in F$ mit $\beta(f) = 0$).
- (9.10) Beispiel. 1. ist A selbst frei, s okann man F = A und $\beta = id_A$ wählen (dann R = (0)).

3

2. Ist $A = \mathbb{Z}_4$, so ist

$$0 \longrightarrow \mathbb{Z} \stackrel{\cdot 2}{\longrightarrow} \mathbb{Z} \stackrel{\pi}{\longrightarrow} \mathbb{Z}_2 \longrightarrow 0$$

eine freie Auflösung.

3. Ist A beliebig, so betrachte A als menge und setze $F = \mathbb{F}(A)$ und $\pi \colon F \to A$ der Homorphismus, der auf der Basis $(i(a))_{a \in A}$ durch $\pi(i(a)) = a$ gegeben ist. Natürlich ist dann $\pi(2 \cdot a) = \pi(1 \cdot (2a)) = 2a$ und $\pi(0_A) = \pi(0_{\mathbb{F}(A)}) = 0_A$. Ist $R = \ker \pi$ und $j \colon R \hookrightarrow F$ die Inklusion, so ist

$$0 \longrightarrow R \stackrel{j}{\longrightarrow} F \stackrel{\pi}{\longrightarrow} A \longrightarrow 0$$

offenbar exakt (weil π surjektiv ist). Das ist die Standardauflösung S(A) von A:

$$S(A): 0 \longrightarrow R \stackrel{j}{\longrightarrow} F \stackrel{\pi}{\longrightarrow} A \longrightarrow 0$$

Ist

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

exakt, so ist

$$? \longleftarrow \operatorname{Hom}(A,G) \xleftarrow{f^*} \operatorname{Hom}(B,G) \xleftarrow{g^*} \operatorname{Hom}(C,G) \longleftarrow 0 \tag{*}$$

ist exakt, aber f^* i.A. nicht surjektiv. Naheliegend könnte man (*) mit

$$\operatorname{coker} f^* := \operatorname{Hom}(A, G)/\operatorname{im} f^*$$

und

$$\nu \colon \operatorname{Hom}/A, G) \to \operatorname{coker} f^*$$

fortsetzen, was aber so aussieht, dass es von zu vielen Wahlen abhängt.

(9.11) **Definition.** Seien A und G abelsche Gruppen und S(A) die Standardauflösung von A. Dann nennt man

$$\operatorname{Ext}(A,G) := \operatorname{coker} i^* = \operatorname{Hom}(R,g)/\operatorname{im} i^*,$$
$$i^* : \operatorname{Hom}(F,G) \to \operatorname{Hom}(R,G)$$

das Extensionsprodukt (kurz: Ext-Produkt) von A und G.