MINH HỌA ĐẠI CƯƠNG VỀ ĐỒ THỊ

Cạnh $\alpha = \overline{ab} = \overline{ba}$

Vòng $\alpha = \overline{aa}$

Các vòng $\frac{1}{aa}$, $\frac{2}{aa}$

Các cạnh song song $\frac{1}{ab}$, $\frac{2}{ab}$, $\frac{3}{ab}$

a là một đỉnh cô lập trong đồ thị

a là một đỉnh treo của đồ thị có cạnh treo \overline{ab}

G có đúng 4 đỉnh a, b, c, d và có đúng 2 cạnh \overline{ab} , \overline{cd} .

H có đúng 5 đỉnh a, b, c, d, e và có đúng 4 cạnh \overline{ae} , \overline{eb} , \overline{ce} , \overline{ed} .

K có đúng 5 đỉnh a, b, c, d, e và 6 cạnh \overline{ab} , \overline{cd} , \overline{ae} , \overline{eb} , \overline{ce} , \overline{ed} .

Ta có $\Gamma(a) = \{ a, b, x, y \}, \Gamma(z) = \emptyset \text{ và } \Gamma(y) = \{ a, c, x \}.$

 $G \rightarrow G'$: xóa đỉnh a và xóa các cạnh \overline{ab} , \overline{ac} , \overline{ax} , \overline{ay} (đi qua a), các cạnh \overline{yy} , \overline{xy} .

 $G \rightarrow G$ ": xóa các cạnh \overline{ax} , \overline{bb} , $\frac{2}{cx}$ và $\frac{1}{xy}$.

G' là một đồ thị con (mà không là đồ thị con khung) của G [G' không chứa đỉnh a của G]. G" là một đồ thị con khung của G (G" chứa tất cả các đỉnh của G).

$$a \leftarrow \longrightarrow b$$

$$d(a) = 1 \text{ và } d(b) = 1$$

$$d(a) = 1 + 1 = 2$$

 $2\mid \mathbf{E}\mid = \sum_{\mathbf{v}\in V}d(\mathbf{v}) = \sum_{\mathbf{v}\in V}[d(\mathbf{v})\mid \mathring{\mathbf{e}}] + \sum_{\mathbf{v}\in V}[d(\mathbf{v})\mid \mathring{\mathbf{chan}}] . \text{ Ta có } \sum_{\mathbf{v}\in V}d(\mathbf{v})\mid \mathring{\mathbf{va}} \sum_{\mathbf{v}\in V}[d(\mathbf{v})\mid \mathring{\mathbf{chan}}] \text{ dều chẵn nên}$

 $\sum_{v \in V} [d(v) \text{ lẻ}]$ cũng chẵn. Suy ra số lượng các đỉnh bậc lẻ của G cũng chẵn (vì tổng của một số lượng lẻ các bậc lẻ sẽ là số nguyên lẻ).

Cạnh $\overline{v_i e_i v_{i+1}}$ (chọn đúng cạnh muốn chọn)

Cạnh $\overline{v_i e_i v_{i+1}} \equiv \overline{v_i v_{i+1}}$ (cạnh duy nhất)

Dường (P): $\overline{v_1 e_1 v_2 e_2 v_3 e_3 v_4 ... v_{k-1} e_{k-1} v_k e_k v_{k+1}} \equiv \overline{v_{k+1} e_k v_k e_{k-1} v_{k-1} ... v_4 e_3 v_3 e_2 v_2 e_1 v_1} \equiv \overline{v_1 v_2 e_2 v_3 v_4 ... v_{k-1} e_{k-1} v_k v_{k+1}}$ (viết gọn)

Đường (Q) trong đơn đồ thị : $\overline{v_1v_2v_3v_4...v_{k-1}v_kv_{k+1}} \equiv \overline{v_{k+1}v_kv_{k-1}...v_4v_3v_2v_1}$ (không cần gọi tên các cạnh).

Chu trình (C) trong đơn đồ thị : $\overline{v_1v_2v_3v_4...v_{k-1}v_kv_1} \equiv \overline{v_1v_kv_{k-1}...v_4v_3v_2v_1}$ (có thể khởi đầu từ đỉnh tùy ý).

 $\text{ Dặt } \alpha = \frac{1}{ab}, \ \beta = \overline{bh}, \ \gamma = \frac{2}{hc}, \ \delta = \overline{cd}, \ \epsilon = \overline{dd}, \ \omega = \overline{cb}, \ \rho = \frac{2}{aj}, \ \theta = \overline{hi}, \ \mu = \frac{1}{ij}, \ \nu = \frac{2}{ba}, \ \sigma = \overline{jb}.$

Đường sơ cấp (P_1) : $\overline{a\alpha b\beta h\gamma c\delta d} \equiv \overline{d\delta c\gamma h\beta b\alpha a} \equiv \overline{a\alpha bh\gamma cd}$ có $L(P_1) = 4$.

Đường đơn (P_2) : $\overline{a\alpha b\beta h\gamma c\delta d\varepsilon d} \equiv \overline{a\alpha bh\gamma cdd}$ có $L(P_2) = 5$.

Đường (P_3) : $\overline{a\alpha b\beta h\gamma c\omega b\alpha a\rho j}\equiv \overline{a\alpha bh\gamma cb\alpha a\rho j}$ có $L(P_3)=6$.

Chu trình sơ cấp (C_1) : $\overline{a\alpha b\beta h\theta i\mu j\rho a} \equiv \overline{a\rho j\mu i\theta h\beta b\alpha a} \equiv \overline{hi\mu j\rho a\alpha bh}$ có $L(C_1) = 5$.

Chu trình đơn (C_2) : $\overline{a\alpha b\beta h\theta i\mu j\sigma bva}\equiv \overline{a\alpha bh i\mu jbva}$ có $L(C_2)=6$.

Chu trình (C_3) : $\overline{a\alpha b\omega c\gamma h\theta i\mu j\sigma b\alpha a} \equiv \overline{a\alpha bc\gamma hi\mu jb\alpha a}$ có $L(C_3) = 7$.

G có đúng một chu trình sơ cấp là abcda (có độ dài 4).

H có đúng 3 chu trình sơ cấp là \overline{xyzx} , \overline{xtzx} (đều có độ dài 3) và \overline{xyztx} (có độ dài 4).

G xóa đỉnh f (rời rạc)

G xóa đỉnh g (rời rạc)

G xóa đỉnh h (rời rạc)

G xóa cạnh \overline{ah} (trở nên rời rạc)

G xóa cạnh \overline{fg} (trở nên rời rạc)

Nếu G xóa một đỉnh bất kỳ (khác f, g và h) hoặc xóa một cạnh bất kỳ (khác \overline{ah} và \overline{fg}) thì vẫn liên thông. Do đó G có đúng 3 đỉnh khớp là f, g, h và có đúng 2 cầu là \overline{ah} và \overline{fg} .

G xóa đỉnh c nhưng vẫn liên thông

G xóa cạnh \overline{fd} nhưng vẫn liên thông

H xóa a và e (rời rạc)

H xóa \overline{ag} , \overline{fg} và \overline{eg} (rời rạc) K xóa c, d và f (rời rạc) K xóa \overline{ab} , \overline{ag} và \overline{ah} (rời rạc) Do đó $v(G) = \varepsilon(G) = 2$, v(H) = 2, $\varepsilon(H) = 3$ và $v(K) = \varepsilon(K) = 3$.

Phân biệt \overline{ab} , \overline{ba}

Phân biệt \overline{cd} , $\frac{1}{dc}$, $\frac{2}{dc}$

Phân biệt $\frac{1}{aa}$, $\frac{2}{aa}$

Phân biệt $\frac{1}{aa}$, $\frac{2}{aa}$

G' = (V', E')

G'' = (V, E'')

 $G \rightarrow G'$: xóa đỉnh a và xóa các cạnh \overline{ab} , \overline{ca} , \overline{xa} , \overline{ay} (đi qua a), các cạnh \overline{yy} , \overline{yx} , \overline{cx} .

 $G \rightarrow G$ ": xóa các cạnh \overline{bb} , \overline{xa} , \overline{yx} và \overline{cx} .

G' là một đồ thị con (mà không là đồ thị con khung) của G [G' không chứa đỉnh a của G]. G" là một đồ thị con khung của G (G" chứa tất cả các đỉnh của G).

$$v_i \leftarrow \underbrace{e_j}_{a_{ij} = 1} \qquad v_k \qquad v_i \leftarrow \underbrace{e_j}_{a_{ij} = -1}$$

$$\begin{array}{ccc} \bullet & v_k \bullet & & \\ v_i & & a_{ij} = 0 & & \end{array}$$

Đặt $\alpha = \overline{ab}$, $\beta = \overline{bh}$, $\gamma = \frac{2}{hc}$, $\delta = \overline{cd}$, $\epsilon = \overline{dd}$, $\omega = \overline{cb}$, $\rho = \overline{aj}$, $\theta = \overline{hi}$, $\mu = \frac{1}{ij}$, $\nu = \overline{ba}$, $\sigma = \overline{jb}$ và $\lambda = \overline{ja}$.

Đường sơ cấp (P_1) : $\overline{a\alpha b\beta h\gamma c\delta d} \equiv \overline{abh\gamma cd}$ có $L(P_1) = 4$.

Đường đơn (P_2) : $\overline{a\alpha b\beta h\gamma c\delta d\varepsilon d} \equiv \overline{abh\gamma cdd}$ có $L(P_2) = 5$.

 $\text{Du\`ong }(P_3): \ \overline{a\alpha b\beta h\gamma c\omega bva\alpha bva\rho j} \ \equiv \ \overline{abh\gamma cbabaj} \ \ \underline{\equiv} \text{c\'o} \ \ L(P_3) = 8.$

Chu trình sơ cấp (C_1) : $\overline{a\alpha b\beta h\theta i\mu j\lambda a} \equiv \overline{h\theta i\mu j\lambda a\alpha b\beta h} \equiv \overline{abh i\mu ja} \equiv \overline{hi\mu jabh}$ có $L(C_1) = 5$.

Chu trình đơn (C_2) : $\overline{a\alpha b\beta h\theta i\mu j\sigma bva} \equiv \overline{abhi\mu jba}$ có $L(C_2) = 6$.

Chu trình (C_3) : $\overline{a\alpha b\beta h\theta i\mu j\lambda a\alpha bva}\equiv \overline{abhi\mu jaba}$ có $L(C_3)=7$.

G có một chu trình sơ cấp là \overline{abcda} và H có 2 chu trình sơ cấp là \overline{xyzx} và \overline{xtzx} .

G không có chu trình sơ cấp độ dài 3 và H có 2 chu trình sơ cấp độ dài 3 là \overline{xyzx} và \overline{xtzx} .

G có chu trình sơ cấp độ dài 4 là abcda và H không có chu trình sơ cấp độ dài 4).

M liên thông mạnh vì giữa hai đỉnh khác nhau bất kỳ của M, luôn có đường nối từ đỉnh này đến đỉnh kia theo cả hai chiều (chẳng hạn giữa a và c có các đường nối \overline{abdc} và \overline{ca} lần lượt nối từ a đến c và nối từ c đến a). N không liên thông mạnh vì không có đường nối từ y đến x (mặc dù có đường nối \overline{xy} từ x đến y). Do đó M và N không đẳng cấu với nhau.
