

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC161518

1 of 46 Page:

FCC Radio Test Report FCC ID: 2AILG-F18

Original Grant

Report No. TB-FCC161518

NJY Science & Technology Co., Ltd **Applicant**

Equipment Under Test (EUT)

Tablet PC **EUT Name**

F18 Model No.

F19, F20, F22, F23, F25, F26, F28, F29 Serial Model No.

DT NO.I **Brand Name**

Receipt Date 2018-08-16

2018-08-16 to 2018-08-24 **Test Date**

Issue Date 2018-08-29

FCC Part 15: 2017, Subpart C(15.247) **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Engineer

Engineer

Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

TOBY

Report No.: TB-FCC161518

Page: 2 of 46

Contents

COI	N1EN15	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Da5ta	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	19
	6.5 Test Data	
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	
	8.2 Test Setup	21
	8.3 Test Procedure	21

Page: 3 of 46

8.4 EUT Operating Condition	21
8.5 Test Data	21
POWER SPECTRAL DENSITY TEST	22
9.1 Test Standard and Limit	
9.2 Test Setup	22
9.3 Test Procedure	22
9.4 EUT Operating Condition	22
9.5 Test Data	22
ANTENNA REQUIREMENT	23
10.1 Standard Requirement	23
10.2 Antenna Connected Construction	23
10.3 Result	
ACHMENT A CONDUCTED EMISSION TEST DATA	24
ACHMENT B RADIATED EMISSION TEST DATA	28
ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	36
	POWER SPECTRAL DENSITY TEST 9.1 Test Standard and Limit 9.2 Test Setup 9.3 Test Procedure 9.4 EUT Operating Condition 9.5 Test Data ANTENNA REQUIREMENT 10.1 Standard Requirement 10.2 Antenna Connected Construction 10.3 Result ACHMENT A CONDUCTED EMISSION TEST DATA ACHMENT B RADIATED EMISSION TEST DATA

Page: 4 of 46

Revision History

Report No.	Version	Description	Issued Date
TB-FCC161518	Rev.01	Initial issue of report	2018-08-29
WOOD!	101		TO THE
	1000		
a Company	CO WOLL		Com
De la Contraction de la Contra	The same	(O)33	The state of the s
The same	33	OBI TODA	TO THE
	(LOB)		
TO THE REAL PROPERTY.		The same of the sa	1 103
000			TO DO
a min		CODE CODE	The state of the s
		CODE OF	
Contract of	33	TODAY TODAY	OF THE

Page: 5 of 46

1. General Information about EUT

1.1 Client Information

Applicant	1	NJY Science & Technology Co., Ltd				
Address	:	#202 JiaDa R&D Building Lobby B, 5 Songpingshan Road, Shenzhen, China				
Manufacturer	4	JJY Science & Technology Co., Ltd				
Address	:	#202 JiaDa R&D Building Lobby B, 5 Songpingshan Road, Shenzhen, China				

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Smart Watch			
Models No.	F	F18, F19, F20, F22, F23, F25, F26, F28, F29			
Model Difference		All models are in the same PCB layout interior structure and electrical circuits, The only difference is appearance color.			
		Operation Frequency:	Bluetooth 4.2(BLE): 2402MHz~2480MHz		
		Number of Channel:	Bluetooth 4.2(BLE): 40 channels see note(3)		
Product		RF Output Power:	BLE:-0.238 dBm		
Description	ď	Antenna Gain:	3.2dBi Ceramic Antenna		
		Modulation Type:	GFSK		
		Bit Rate of Transmitter:	1Mbps(GFSK)		
Power Supply	1		DC Voltage Supply from USB Line. DC Voltage supplied by Li-ion battery.		
Power Rating	:	DC 5V 0.5A by USB Line DC 3.7V by 350mAh Li-	е		
Software : N/A					
Hardware Version		: _{N/A}			
Connecting I/O Port(S)		Please refer to the User's Manual			

Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v04.

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 46

(2) Antenna information provided by the applicant.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Page: 7 of 46

1.4 Description of Support Units

Equipment Information							
Name Model FCC ID/VOC Manufacturer Used "√"							
ADAPTER	1		1	√			
Cable Information							
Number	Shielded Type	Ferrite Core	Length	Note			
Cable 1	NO	NO	0.6M	True and the			

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For (Conducted Test
Final Test Mode	Description
Mode 1	TX Mode

For Radiated Test			
Final Test Mode	Description		
Mode 2	TX Mode		
Mode 3	TX Mode (Channel 00/20/39)		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 46

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	Com Port Debug Tool.exe		
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy:	±4.60 dB
Radiated Effission	9kHz to 30 MHz	±4.00 db
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy:	±4.20 dB
Naulaleu Elliissiuli	Above 1000MHz	±4.20 UD

Page: 9 of 46

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 46

2. Test Summary

Standard Section			Tuel avec a set	Damari
FCC IC		Test Item	Judgment	Remark
15.203		Antenna Requirement	PASS	N/A
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A

Note: N/A is an abbreviation for Not Applicable.

Page: 11 of 46

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conduct	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
IVI I OMEI SEIISUI	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018

Page: 12 of 46

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Transport (MIN)	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 46

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Da5ta

Please refer to the Attachment A.

Page: 14 of 46

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.247(d)

5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Met	ers(at 3m)
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 15 of 46

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 46

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 46

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 46

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance Me	eters(at 3m)
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

Page: 19 of 46

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 20 of 46

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC P	art 15 Subpart C(15.247)/F	RSS-247
Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 46

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)(3)

8.1.2 Test Limit

FCC Par	t 15 Subpart C(15.247)/RS	S-247
Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 46

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FC	CC Part 15 Subpart C(15.2	47)
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 46

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 3.2dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a Ceramic Antenna. It complies with the standard requirement.

Antenna Type	
⊠Permanent attached antenna	
Unique connector antenna	The same
☐Professional installation antenna	Of The same

Page: 24 of 46

Page: 25 of 46

Page: 26 of 46

Page: 27 of 46

Temperatu	ıre:	25℃		Relativ	ve Humidi	ty: 55	%
Test Volta	ge:	AC 240V	Carrier .		MILL		J Am
Terminal:		Neutral		THE PARTY		MAIN	9
Test Mode):	BLE TX 2	402 Mode			63	
Remark:		Only wors	e case is rep	orted	100	1	ARTIC
90.0 dBuV							op.
							QP: — AVG: —
-							
					_		
		•					
40							
money	Marian	v x /	×				
	N. M. W.		JAN MANAGAMAN	<i>\</i>	$M \sim M$	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Au.
MANN	hampayan	May John May 1	" A A A A			a h A o bolowia	Parallina organization of the Control of the Contro
		Jan Jan	"AL ANI MILLY TO VIEW	VVV	7 N A A A A A	WWww	ywww.e.
10							
0.150		0.5	(MI	Hz)	5		30.000
							30.000
0.150	Freq	Readi	ng Correc	t Measure		Over	30.000
	Freq	Readi	ing Correct Facto	t Measure	e-	Over	30.000
0.150		Readi Leve	ng Correct Facto	t Measure r ment	E- Limit		
0.150 No. Mk.	MHz	Readi Leve dBu\	ing Correct Facto dB 5 9.58	t Measure r ment dBuV	E- Limit	dB	Detector
0.150 No. Mk.	MHz	Readi Leve dBu\ 0 12.2	ing Correct Facto / dB 5 9.58 6 9.58	t Measure r ment dBuV 21.83	57.18	dB -35.35	Detector QP
0.150 No. Mk.	0.434 0.434 0.566	Readi Leve dBu\ 0 12.2 0 2.2 0 12.9	ing Correct Facto dB 5 9.58 6 9.58 0 9.58	t Measure ment dBuV 21.83 11.84 22.48	57.18 47.18 56.00	dB -35.35 -35.34 -33.52	Detector QP AVG QP
0.150 No. Mk. 1 2 3 4	0.434 0.434 0.566 0.566	Readi Leve dBu\ 0 12.2 0 2.2 0 12.9 0 2.6	Correct Facto / dB 5 9.58 6 9.58 0 9.58 5 9.58	Measure ment dBuV 21.83 11.84 22.48 12.23	57.18 47.18 56.00 46.00	dB -35.35 -35.34 -33.52 -33.77	Detector QP AVG QP AVG
No. Mk. 1 2 3 4 5 *	0.434 0.434 0.566 0.566 0.698	Readii Leve dBu\ 0 12.2 0 2.2 0 12.9 0 2.6 0 18.5	Ing Correct Facto / dB 5 9.58 6 9.58 0 9.58 5 9.58 0 9.59	21.83 11.84 22.48 12.23 28.09	57.18 47.18 56.00 46.00	dB -35.35 -35.34 -33.52 -33.77 -27.91	Detector QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 *	0.434 0.434 0.566 0.566 0.698	Readi Leve dBu\ 0 12.2 0 2.2 0 12.9 0 2.6 0 18.5 0 7.2	Ing Correct Facto / dB	21.83 11.84 22.48 12.23 28.09 16.88	57.18 47.18 56.00 46.00 46.00	dB -35.35 -35.34 -33.52 -33.77 -27.91 -29.12	Detector QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 *	0.434 0.434 0.566 0.566 0.698 0.698	Readi Leve dBu\ 0 12.2 0 2.2 0 12.9 0 2.6 0 18.5 0 7.2 0 12.8	Ing Correct Facto / dB	21.83 11.84 22.48 12.23 28.09 16.88	57.18 47.18 56.00 46.00 56.00 56.00	dB -35.35 -35.34 -33.52 -33.77 -27.91 -29.12 -33.61	Detector QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 *	0.434 0.434 0.566 0.566 0.698	Readi Leve dBu\ 0 12.2 0 2.2 0 12.9 0 2.6 0 18.5 0 7.2 0 12.8	Ing Correct Facto / dB 5 9.58 6 9.58 0 9.58 5 9.58 0 9.59 9 9.59 0 9.59	21.83 11.84 22.48 12.23 28.09 16.88 22.39	57.18 47.18 56.00 46.00 56.00 56.00	dB -35.35 -35.34 -33.52 -33.77 -27.91 -29.12	Detector QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 * 6 7	0.434 0.434 0.566 0.566 0.698 0.698	Readii Leve dBu\ 0 12.2 0 2.2 0 12.9 0 2.6 0 18.5 0 7.2 0 12.8 0 2.4	Ing Correct Facto / dB	21.83 11.84 22.48 12.23 28.09 16.88 22.39	57.18 47.18 56.00 46.00 56.00 46.00	dB -35.35 -35.34 -33.52 -33.77 -27.91 -29.12 -33.61	Detector QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 * 6 7 8	0.434 0.434 0.566 0.566 0.698 0.698 1.182	Readii Leve dBu\ 0 12.2 0 2.2 0 12.9 0 2.6 0 18.5 0 7.2 0 12.8 0 2.4 0 10.7	Ing Correct Facto / dB	21.83 11.84 22.48 12.23 28.09 16.88 22.39	57.18 47.18 56.00 46.00 56.00 46.00 56.00	dB -35.35 -35.34 -33.52 -33.77 -27.91 -29.12 -33.61 -33.97	Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 * 6 7 8	0.434 0.434 0.566 0.566 0.698 0.698 1.182 1.182	Readii Leve dBu\ 0 12.2 0 2.2 0 12.9 0 18.5 0 7.2 0 12.8 0 2.4 0 10.7	Ing Correct Facto 7 dB 5 9.58 6 9.58 0 9.58 0 9.59 9 9.59 0 9.59 4 9.59 7 9.61 2 9.61	t Measure ment dBuV 21.83 11.84 22.48 12.23 28.09 16.88 22.39 12.03 20.38 10.93	57.18 47.18 56.00 46.00 56.00 46.00 56.00 46.00	dB -35.35 -35.34 -33.52 -33.77 -27.91 -29.12 -33.61 -33.97 -35.62	Detector QP AVG QP AVG QP AVG QP AVG

Page: 28 of 46

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25℃		CIND.	Relative Hun	nidity:	55%	FA.
Test Voltage:	DC 3.7\	1				DAIL.	and the same
Ant. Pol.	Horizon	tal		Land			67
Test Mode:	BLE TX 2402 Mode Only worse case is reported						
Remark:	Only wo	rse case is	s reported	MAD	_	Miller	
80.0 dBuV/m							
					(RF)FCC 1	5C 3M Radiatio	
30				2 3 1 X X			4 ⁵ 6
who	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hanny of	Mywyyy		Mynn M	white the same	
		441					
-20							
	60 60 70	80	(MHz)	300	400 5	00 600 700	1000.0
	F	Reading	Correct	Measure-			
No. Mk.	req.	Level	Factor	ment	Limit	Over	
I	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 203	.5226	40.62	-19.77	20.85	43.50	-22.65	QP
2 * 291	.0360	40.46	-16.37	24.09	46.00	-21.91	QP
3 312	.1792	39.85	-15.80	24.05	46.00	-21.95	QP
4 798	.9796	28.26	-5.55	22.71	46.00	-23.29	QP
5 827	.4932	29.24	-5.52	23.72	46.00	-22.28	QP
6 925	.7563	26.86	-3.59	23.27	46.00	-22.73	QP
	x:Over limit	!:over margin	-				

Page: 29 of 46

remi	peratur	e: 2	5°C				Relative Hu	umidity	/ :	55%	6	A	W.
Test	Voltage): C	C 3	.7V	EN	TAD T		11177			à		
Ant.	Pol.	V	ertic	al	103		28		GU				
Test	Mode:	В	BLE	TX 24	402 N	1ode 1		3				M	
Rem	ark:	C	only	wors	e cas	e is reported				1	1		
80.0	dBuV/m												
									(RF)FCC	15C 3I			
											Margir	n -6 dB	H
-													+
30					-	2 3						45	6
	1 X					Ž 3		A	мЛ	Norm	Man		~ ,₹~
W	\sqrt{V}	Ame a	h			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M_{NM}	March	۷۷٬	V Landous			
	4	~ ~ ~ ~ ~ ~	M	WW	(May/My)	Λ /	W. W.						
													+
-20 30 0	nnn 4n	50	60 7	70		(MHz)		300	400	500	600 Z	nn	1000 0
-20 30.0	000 40	50	60 7	70		(MHz)		300	400	500	600 7	00	1000.0
30.0				Re	adin	g Correct	Measure	e-				00	1000.0
30.0	000 40 D. Mk.	Fred	٦.	Re	evel	g Correct Factor	ment	e- Liı	mit	0	ver		
30.0	o. Mk.	Fred	1 -	Re-	evel BuV	g Correct Factor	ment dBuV/m	e- Lii	mit BuV/m	0	ver dB	De	etecto
30.0 No). Mk.	Fred MHz 36.766	31	Rea Le	evel BuV 8.12	g Correct Factor dB/m -17.59	ment dBuV/m 20.53	e- Liı de	mit BuV/m 0.00	-1	over dB 19.47	De	etecto QP
30.0). Mk.	Fred	31	Rea Le	evel BuV	g Correct Factor	ment dBuV/m	e- Liı de	mit BuV/m	-1	ver dB	De	etecto
30.0 No). Mk. *	Fred MHz 36.766	a. 61	Red Le d	evel BuV 8.12	g Correct Factor dB/m -17.59	ment dBuV/m 20.53	e- Liı dE 4	mit BuV/m 0.00	-1 -2	over dB 19.47	De	etecto QP
No.0	* :	Fred MHz 36.766	35	Red d 38 44	BuV 8.12 4.86	g Correct Factor dB/m -17.59 -21.81	ment dBuV/m 20.53 23.05	e- Lii dE 44 43	mit 8uV/m 0.00 3.50	-1 -2 -2	over dB 19.47	De	etecto QP QP
No.0	* : 1	Fred MHz 36.766 46.37 61.47	35 38 28	Red Le d 38 44 43 36	evel BuV 8.12 4.86 3.02 0.02	g Correct Factor dB/m -17.59 -21.81 -20.83 -5.53	ment dBuV/m 20.53 23.05 22.19 24.49	e- Lii n dE 44 44 44	mit 0.00 3.50 3.50 6.00	-1 -2 -2	over dB 19.47 20.45 21.31	De 7	QP QP QP QP
No.0	* : 1	Fred MHz 36.766 46.37	35 38 28 70	Red Le d 38 44 43 30 29	evel BuV 8.12 4.86 3.02	g Correct Factor dB/m -17.59 -21.81 -20.83	ment dBuV/m 20.53 23.05 22.19	e- Lii 1 dE 41 41 41 41	mit 8uV/m 0.00 3.50 3.50	-1 -2 -2 -2 -2	over dB 19.47 20.45 21.31	De 7	etecto QP QP QP

Page: 30 of 46

Above 1GHz

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	3 10	011			
Ant. Pol.	Horizontal					
Test Mode:	BLE Mode TX 2402 MHz					
Remark:	No report for the emission was prescribed limit.	hich more than 10 dB	below the			
			l l			

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.586	44.98	14.43	59.41	74.00	-14.59	peak
2	*	4803.922	31.26	14.43	45.69	54.00	-8.31	AVG

Page: 31 of 46

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2402 MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.582	43.34	14.44	57.78	74.00	-16.22	peak
2	*	4804.582	28.87	14.44	43.31	54.00	-10.69	AVG

Page: 32 of 46

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	BLE Mode TX 2442 MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4883.344	29.22	14.91	44.13	54.00	-9.87	AVG
2		4883.464	43.47	14.91	58.38	74.00	-15.62	peak

Page: 33 of 46

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	THUE				
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2442 MHz	BLE Mode TX 2442 MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4880.656	43.13	14.90	58.03	74.00	-15.97	peak
2	*	4883.500	29.25	14.91	44.16	54.00	-9.84	AVG

Page: 34 of 46

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	BLE Mode TX 2480 MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. Mk	. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.552	29.42	15.40	44.82	54.00	-9.18	AVG
2		4961.416	43.86	15.40	59.26	74.00	-14.74	peak

Page: 35 of 46

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	Militia	- Lu-
Ant. Pol.	Vertical		133
Test Mode:	BLE Mode TX 2480 MHz		
Remark:	No report for the emission v prescribed limit.	which more than 10 dB	below the
100 0 dB.3//m	·		

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4958.668	43.08	15.39	58.47	74.00	-15.53	peak
2	*	4958.668	29.22	15.39	44.61	54.00	-9.39	AVG

Page: 36 of 46

Attachment C-- Restricted Bands Requirement Test Data

(1) Radiation Test

Page: 37 of 46

Page: 38 of 46

Page: 39 of 46

Report No.: TB-FCC161518 40 of 46

(2) Conducted Test

Page: 41 of 46

Attachment D-- Bandwidth Test Data

25℃		Relative Humidity:	55%			
DC 3.7V						
BLE TX Mode						
ncy	6dB Bandwidth	99% Bandwidth	Limit			
	(kHz)	(kHz)	(kHz)			
	725.6	1084.1				
	718.9	1083.0	>=500			
	717.2	1080.7				
	DC 3	DC 3.7V BLE TX Mode ncy 6dB Bandwidth (kHz) 725.6 718.9	DC 3.7V BLE TX Mode ncy 6dB Bandwidth (kHz) (kHz) 725.6 1084.1 718.9 1083.0			

BLE Mode

2402 MHz

Page: 42 of 46

Page: 43 of 46

Attachment E-- Peak Output Power Test Data

		-					
Temperature:	25℃		Relative Humidity:	55%			
Test Voltage:	DC 3.7V	N. S. L.		THE PARTY OF THE P			
Test Mode:	BLE TX Mode						
Channel frequency (MHz)		Test Result (dBm)		Limit (dBm)			
2402	2402 -0.238		.238	30			
2442		-0	.432				
2480		-1	.020				
		BLE	Mode				
		240	2 MHz				

Page: 44 of 46

45 of 46 Page:

Attachment F-- Power Spectral Density Test Data

Temperature:	25℃		Relative Humidity:		55%			
Test Voltage:	DC 3.7V							
Test Mode:	BLE TX Mode							
Channel Frequency		Power Density		Lim	it	Result		
(MHz)		(dBm)		(dBn	(dBm)			
2402		-15.3	05					
2442		-15.4	87	8	8 P.			
2480		-16.087						
		RIFM	ode					

BLE Mode

2402 MHz

Page: 46 of 46

----END OF REPORT-----