Lecture 12: NFXP

Dynamic Programming

Thomas Jørgensen

Overviev (1987)

0 15 1

An Empirical Moo of Harold Zurcher

Outline for today

- General formulation of discrete-choice problem
- 2 Focus on Rust (1987) model

An Empirical Moo of Harold Zurcher

Outline

① Overview of Rust (1987)

@ General Framework

3 An Empirical Model of Harold Zurcher

C-----1F------

An Empirical Mo of Harold Zurche

Overview of Rust (1987)

- The economic question: For how long one should continue to operate and maintain a bus before it is optimal to replace or rebuild the engine?
- **The model:** The optimal replacement decision is the solution to a dynamic optimization problem that formalizes the trade-off between two conflicting objectives:
 - minimizing maintenance and replacement costs versus minimizing unexpected engine failures
 - (the productivity/efficiency of a machine declines over time, but replacing a machine is costly).
- Empirical question: Did the decision maker (the superintendent of maintenance, Harold Zurcher) behave according to the optimal replacement rule implied by the theory model?

• **Structural estimation:** Using data on *monthly mileage and engine replacements* for a sample of GMC busses, Rust estimate the structural parameters in the engine replacement model using NFXP

General Framework

An Empirical Moo of Harold Zurcher

Overview of Rust (1987)

This is a path-breaking paper that introduces a methodology to estimate a single-agent dynamic discrete choice models.

Main contributions

- 1 Development and implementation of *Nested Fixed Point Algorithm*
 - Formulation of assumptions, that makes dynamic discrete choice models tractable.
 - 2 Bottom-up approach
 - S An illustrative application in a simple model of engine replacement.
 - 4 The first researcher to obtain ML estimates of discrete choice dynamic programming models

Policy experiments:

- How does changes in replacement cost affect
- the distribution of mileage
- the demand for engines

General Framework

An Empirical Moo of Harold Zurcher

Outline

① Overview of Rust (1987)

2 General Framework

3 An Empirical Model of Harold Zurcher

General Framework

An Empirical Moo of Harold Zurcher

General Behavioral Framework

The decision maker chooses a sequence of discrete actions to maximize expected discounted utility over a finite horizon

$$V_{\theta}\left(s_{t}\right) = \sup_{\Pi} \mathbb{E}\left[\sum_{j=0}^{\infty} \beta^{j} U\left(s_{t+j}, d_{t+j}; \theta_{1}\right) | s_{t}, d_{t}\right]$$

where

- $\Pi = (d_t, d_{t+1}, ...,), d_t \in C(x_t) = \{1, 2, ..., J\}$
- State-transitions, $s_t = (x_t, \varepsilon_t)$: $p(x_{t+1}, \varepsilon_{t+1} | x_t, \varepsilon_t, d_t, \theta_2, \theta_3)$
- $\beta \in (0,1)$ is the discount factor
- $U(s_t, d_t; \theta_1)$ is a choice and state specific utility function
- \mathbb{E} summarizes expectations of future states given s_t and d_t
- $\theta = (\beta, \theta_1, \theta_2, \theta_3)$
- $T=\infty$

General Framework

An Empirical Mo of Harold Zurche

Rust's Assumptions (now standard!)

Assumption (CI)

State variables, $s_t = (x_t, \varepsilon_t)$ obeys a (conditional independent) controlled Markov process with probability density

$$p(x_{t+1}, \varepsilon_{t+1}|x_t, \varepsilon_t, d_t, \theta_2, \theta_3) = q(\varepsilon_{t+1}|x_{t+1}, \theta_3)p(x_{t+1}|x_t, d_t, \theta_2)$$

Assumption (AS (additive separability))

$$U(s_t,d) = u(x_t,d;\theta_1) + \varepsilon_t(d)$$

Assumption (XV)

The unobserved state variables, ε_t are assumed to be multivariate iid. extreme value distributed (i.e. Gumbel)

Object of interest: $\theta = (\beta, \theta_1, \theta_2, \theta_3)$

The vector of structural parameters to be estimated.

Overvier

General Framework

An Empirical Mode of Harold Zurcher

The Dynamic Programming Problem

• Under AS, the optimal decision solves the following DP problem

$$V_{\theta}(x_t, \varepsilon_t) = \max_{d \in C(x_t)} u(x_t, d, \theta_1) + \varepsilon_t(d) + \beta \mathbb{E}[V_{\theta}(x_{t+1}, \varepsilon_{t+1}) | x_t, \varepsilon_t, d]$$

Overviev (1987)

General Framework

An Empirical Moo of Harold Zurcher

The Dynamic Programming Problem

• Under AS, the optimal decision solves the following DP problem

$$V_{\theta}(x_t, \varepsilon_t) = \max_{d \in C(x_t)} u(x_t, d, \theta_1) + \varepsilon_t(d) + \beta \mathbb{E}[V_{\theta}(x_{t+1}, \varepsilon_{t+1}) | x_t, \varepsilon_t, d]$$

- Under (CI) and (XV) we can integrate out the unobserved state variables in **closed form** [lecture 5].
- The unknown function, EV_{θ} , no longer depends on ε_t :

$$EV_{\theta}\left(x,d\right) = \Gamma_{\theta}(EV_{\theta})\left(x,d\right)$$

$$= \int_{y} \ln \left[\sum_{d' \in D(y)} \exp\left[u(y,d';\theta_{1}) + \beta EV_{\theta}\left(y,d'\right)\right] \right] p\left(dy|x,d,\theta_{2}\right)$$

$$\log \sup$$

- Reduced state-space + closed-form for part of the integral!
- Γ_{θ} is a *contraction mapping* with unique fixed point EV_{θ} , i.e. $\|\Gamma(EV) \Gamma(W)\| \le \beta \|EV W\|$ [Theorem from lecture 4]

Overview (1987)

C

An Empirical Model of Harold Zurcher

Outline

① Overview of Rust (1987)

2 General Framework

3 An Empirical Model of Harold Zurcher

Zurcher's Bus Engine Replacement Problem

An Empirical Model of Harold Zurcher

- Choice set: Binary choice set, $C(x_t) = \{0, 1\}$. Each bus comes in for repair once a month and Zurcher chooses between ordinary maintenance $(d_t = 0)$ and overhaul/engine replacement $(d_t = 1)$.
- State variables: (Harold Zurcher observes)
 - x_t : mileage at time t since last engine overhaul If engine is replaced, state of bus regenerates to $x_t = 0$.
 - $\varepsilon_t = (\varepsilon_t(d_t = 0), \varepsilon_t(d_t = 1))$: other variable (unobs. to us)

C

An Empirical Model of Harold Zurcher

Zurcher's Bus Engine Replacement Problem

- Choice set: Binary choice set, $C(x_t) = \{0, 1\}$. Each bus comes in for repair once a month and Zurcher chooses between ordinary maintenance $(d_t = 0)$ and overhaul/engine replacement $(d_t = 1)$.
- State variables: (Harold Zurcher observes)
 - x_t : mileage at time t since last engine overhaul If engine is replaced, state of bus regenerates to $x_t = 0$.
 - $\varepsilon_t = (\varepsilon_t(d_t = 0), \varepsilon_t(d_t = 1))$: other variable (unobs. to us)
- Utility function:

$$u(x_t, d, \theta_1) + \varepsilon_t(d_t) = \begin{cases} -RC - c(0, \theta_1) + \varepsilon_t(1) & \text{if } d_t = 1\\ -c(x_t, \theta_1) + \varepsilon_t(0) & \text{if } d_t = 0 \end{cases}$$
(1)

• State variables process: x_t (mileage since last replacement)

$$p(x_{t+1}|x_t, d_t, \theta_2) = \begin{cases} g(x_{t+1} - 0, \theta_2) & \text{if } d_t = 1\\ g(x_{t+1} - x_t, \theta_2) & \text{if } d_t = 0 \end{cases}$$
 (2)

Likelihood Function

An Empirical Model of Harold Zurcher

Under assumption (CI) the likelihood function ℓ^f has the particular simple form

$$\ell^{f}(x_{1},...x_{T},d_{1},...d_{r}|x_{0},d_{0},\theta) = \prod_{t=1}^{T} P(d_{t}|x_{t},\theta) p(x_{t}|x_{t-1},d_{t-1},\theta_{2})$$

where $P(d_t|x_t,\theta)$ is the *choice probability* given the observable state variable, x_t .

- How to estimate the transition probability, $p(x_t|x_{t-1}, d_{t-1}, \theta_2)$?
 - Can be estimated non-parametrically or by NLS
- How to compute the choice probability, $P(d_t|x_t,\theta)$?
 - Need to solve dynamic programming problem [next]

0 15

An Empirical Model of Harold Zurcher

Conditional Choice Probabilities

• Under the extreme value assumption **choice probabilities** are multinomial logistic

$$P(d|x,\theta) = \frac{\exp\left\{u\left(x,d,\theta_{1}\right) + \beta EV_{\theta}\left(x,d\right)\right\}}{\sum_{j \in C(y)} \exp\left\{u\left(x,j,\theta_{1}\right) + \beta EV_{\theta}\left(x,j\right)\right\}}$$
(3)

• The expected value function is given by the unique **fixed point** to the contraction mapping Γ_{θ} , defined by

$$EV_{\theta}(x,d) = \Gamma_{\theta}(EV_{\theta})(x,d)$$

$$= \int_{y} \ln \left[\sum_{d' \in D(y)} \exp \left[u(y,d';\theta_{1}) + \beta EV_{\theta}(y,d') \right] \right]$$

$$\times p(dy|x,d,\theta_{2})$$

$$(4)$$

 Structural Estimation: Rust's Nested Fixed Point Algorithm (NFXP) (1987) General Framework An Empirical Model

of Harold Zurcher

Structural Estimation: The Nested Fixed Point Algorithm

NFXP solves the optimization problem, where $L(\theta, EV_{\theta}) = \ell^f$, $\max_{\alpha} L(\theta, EV_{\theta})$

2. Outer loop (Hill-climbing algorithm):

- Likelihood function $L(\theta, EV_{\theta})$ is maximized w.r.t. θ
- Quasi-Newton algorithm: Usually BHHH, BFGS or a combination.
- Each evaluation of $L(\theta, EV_{\theta})$ requires solution of EV_{θ}

1. **Inner loop (fixed point algorithm):** The implicit function EV_{θ} defined by $EV_{\theta} = \Gamma(EV_{\theta})$ is solved by:

- Successive Approximations (SA): VFI
- Newton-Kantorovich (NK) Iterations: Policy iteration

MATLAB implementation of the likelihood

```
An Empirical Model
            function [f,g,h]=ll(data, mp, pnames, theta, ap)
of Harold Zurcher
              global ev0:
              % update model parameters
              mp=vec2struct(theta, pnames, mp);
              % Update u, du and P evaluated in grid points
              dc=0.001*mp.grid;
              cost=mp.c*0.001*mp.grid;
              P = zurcher.statetransition(mp.p, mp.n);
         10
         11
              % Solve model
              bellman= @(ev) zurcher.bellman(ev, P, cost, mp);
         12
         13
              [ev0, pk, dev]=solve.polv(bellman, ev0, ap, mp.beta);
         14
              % Evaluate log-likelihood regarding replacement choice
         15
              lp=pk(data.x);
         16
              logl=log(lp+(1-2*lp).*(data.d));
         17
         18
              % add on log-likelihood for mileage process
         19
              p=[mp.p; 1-sum(mp.p)];
         20
              logl=logl + log(p(1+ data.dx1));
         21
              % Objective function (negative mean log likleihood)
              f=mean(-log1):
```

- An Empirical Model of Harold Zurcher
- Harold Zurcher's Maintenance records of 162 busses
 - Monthly observations of mileage on each bus (odometer reading)
 - Data on maintenance operations
- Routine, periodic maintenance (e.g. brake adjustments)
- **2** Replacement or repair at time of failure
- 3 Major engine overhaul and/or replacement

Rust focus on 3)

General Framework

An Empirical Model of Harold Zurcher

Estimated Hazard Functions

General Frameworl

An Empirical Model of Harold Zurcher

Specification Search

TABLE VIII
SUMMARY OF SPECIFICATION SEARCH^a

		Bus Group	
Cost Function	1, 2, 3	4	1, 2, 3, 4
Cubic	Model 1	Model 9	Model 17
$c(x, \theta_1) = \theta_{11}x + \theta_{12}x^2 + \theta_{13}x^3$	-131.063	-162.885	-296.515
	-131.177	-162.988	-296.411
quadratic	Model 2	Model 10	Model 18
$c(x, \theta_1) = \theta_{11}x + \theta_{12}x^2$	-131.326	-163.402	-297.939
	-131.534	-163.771	-299.328
linear	Model 3	Model 11	Model 19
$c(x, \theta_1) = \theta_{11}x$	-132.389	-163.584	-300.250
	-134.747	-165.458	-306.641
square root	Model 4	Model 12	Model 20
$c(x, \theta_1) = \theta_{11}\sqrt{x}$	-132.104	-163.395	-299.314
	-133.472	-164.143	-302.703
power	Model 5 ^b	Model 13b	Model 21 ^b
$c(x, \theta_1) = \theta_{11} x^{\theta_{12}}$	N.C.	N.C.	N.C.
	N.C.	N.C.	N.C.
hyperbolic	Model 6	Model 14	Model 22
$c(x, \theta_1) = \theta_{11}/(91-x)$	-133.408	-165.423	-305.605
,	-138.894	-174.023	-325.700
mixed	Model 7	Model 15	Model 23
$c(x, \theta_1) = \theta_{11}/(91-x) + \theta_{12}\sqrt{x}$	-131.418	-163.375	-298.866
	-131.612	-164.048	-301.064
nonparametric	Model 8	Model 16	Model 24
$c(x, \theta_1)$ any function	-110.832	-138.556	-261.641
	-110.832	-138.556	-261.641

^a First entry in each box is (partial) log likelihood value ℓ^2 in equation (5.2)) at β = .9999. Second entry is partial log likelihood value at β = 0.

Conoral Framewor

An Empirical Model of Harold Zurcher

Structural Estimates, n=90

TABLE IX STRUCTURAL ESTIMATES FOR COST FUNCTION $e(x,\theta_1)=.001\theta_{11}x$ Fixed Point Dimension = 90 (Standard errors in parentheses)

Parameter		Data Sample			Heterogeneity Test	
Discount Factor	Estimates/ Log-Likelihood	Groups 1, 2, 3 3864 Observations	Group 4 4292 Observations	Groups 1, 2, 3, 4 8156 Observations	LR Statistic (df = 4)	Marginal Significance Level
$\beta = .9999$ RC θ_{11}	RC	11.7270 (2.602)	10.0750 (1.582)	9.7558 (1.227)	85.46	1.2E-17
	θ.,	4.8259 (1.792)	2.2930 (0.639)	2.6275 (0.618)		
	θ_{30}	.3010 (.0074)	.3919 (.0075)	.3489 (.0052)		
	θ_{31}	.6884 (.0075)	.5953 (.0075)	.6394 (.0053)		
	LL	-2708.366	-3304.155	-6055.250		
$\beta = 0 \qquad \qquad \begin{array}{c} RC \\ \theta_{11} \\ \theta_{30} \\ \theta_{31} \\ LL \end{array}$	RC	8.2985 (1.0417)	7.6358 (0.7197)	7.3055 (0.5067)	89.73	1.5E-18
	θ_{11}	109.9031 (26.163)	71.5133 (13.778)	70.2769 (10.750)		
	θ_{30}	.3010 (.0074)	.3919 (.0075)	.3488 (.0052)		
		.6884 (.0075)	.5953 (.0075)	.6394 (.0053)		
	-2710.746	-3306.028	-6061.641			
Myopia test: LR Statistic	4.760	3.746	12.782			
	(df=1)					
$\beta = 0 \text{ vs. } \beta = .9999$	Marginal	0.0292	0.0529	0.0035		
	Significance					
	Level					

General Framewor

An Empirical Model of Harold Zurcher

Structural Estimates, n=175

TABLE X STRUCTURAL ESTIMATES FOR COST FUNCTION $c(x,\theta_1)=.001\theta_{11}x$ Fixed Point Dimension = 175 (Standard errors in parentheses)

θ_{11} θ_{30} θ_{31} θ_{32} θ_{33} LL RC θ_{11}	Groups 1, 2, 3 3864 Observations 11.7257 (2.597) 2.4569 (.9122) .0937 (.0047) .4475 (.0080) .4459 (.0080) .0127 (.0018) -3993.991 8.2969 (1.0477)	Group 4 4292 Observations 10.896 (1.581) 1.1732 (0.327) 1.191 (.0050) .5762 (.0075) .2868 (.0069) .0158 (.0019) -4495.135 7.6423 (.7204)	Groups 1, 2, 3, 4 8156 Observations 9.7687 (1,226) 1,3428 (0,315) 1,0071 (,0034) 5,152 (,0053) 3,621 (,0053) 0,143 (,0013) -8607.889 7,3113 (0,5073)	LR Statistic (df = 6) 237.53	
$ \theta_{11} \\ \theta_{30} \\ \theta_{31} \\ \theta_{32} \\ \theta_{33} \\ LL $	2.4569 (.9122) .0937 (.0047) .4475 (.0080) .4459 (.0080) .0127 (.0018) -3993.991 8.2969 (1.0477)	1.1732 (0.327) .1191 (.0050) .5762 (.0075) .2868 (.0069) .0158 (.0019) -4495.135	1.3428 (0.315) .1071 (.0034) .5152 (.0055) .3621 (.0053) .0143 (.0013) -8607.889		1.89E – 44
θ_{30} θ_{31} θ_{32} θ_{33} LL RC θ_{11}	.0937 (.0047) .4475 (.0080) .4459 (.0080) .0127 (.0018) -3993.991 8.2969 (1.0477)	.1191 (.0050) .5762 (.0075) .2868 (.0069) .0158 (.0019) -4495.135	.1071 (.0034) .5152 (.0055) .3621 (.0053) .0143 (.0013) -8607.889	241 78	
θ_{30} θ_{31} θ_{32} θ_{33} LL RC θ_{11}	.4475 (.0080) .4459 (.0080) .0127 (.0018) -3993.991 8.2969 (1.0477)	.5762 (.0075) .2868 (.0069) .0158 (.0019) -4495.135	.5152 (.0055) .3621 (.0053) .0143 (.0013) -8607.889	241 78	
θ_{31} θ_{32} θ_{33} LL RC θ_{11}	.4459 (.0080) .0127 (.0018) -3993.991 8.2969 (1.0477)	.2868 (.0069) .0158 (.0019) -4495.135	.3621 (.0053) .0143 (.0013) -8607.889	241.78	
$\theta_{32} \\ \theta_{33} \\ LL \\ RC \\ \theta_{11}$.0127 (.0018) -3993.991 8.2969 (1.0477)	.0158 (.0019) -4495.135	.0143 (.0013) -8607.889	241 78	
θ_{33} LL RC θ_{11}	-3993.991 8.2969 (1.0477)	-4495.135	-8607.889	241 78	
LL RC θ ₁₁	8.2969 (1.0477)			241.78	
θ_{11}		7.6423 (.7204)	7 3113 (0 5073)	241.78	
				2-1.70	2.34E - 4
	56.1656 (13.4205)	36.6692 (7.0675)	36.0175 (5.5145)		
θ_{30}	.0937 (.0047)	.1191 (.0050)	.1070 (.0034)		
θ_{31}	.4475 (.0080)	.5762 (.0075)	.5152 (.0055)		
θ_{32}	.4459 (.0080)	.2868 (.0069)	.3622 (.0053)		
θ_{33}	.0127 (.0018)	.0158 (.0019)	.0143 (.0143)		
LL	-3996.353	-4496.997	-8614.238		
LR	4.724	3.724	12.698		
atistic					
f = 1					
arginal	0.0297	0.0536	.00037		
ificance					
	θ_{33} LL LR atistic $f = 1$) arginal	θ_{33} .0127 (.0018) LL -3996.353 LR 4.724 atistic f=1 1 arginal 0.0297 ificance	θ_{13} .0127 (0018) .0158 (0019) LL -3996.353 -4496.997 LR 4.724 3.724 atistic $f'=1$) rginal 0.0297 0.0536 ificance	θ_{13}^{\prime} 0.127 (0.018) 0.158 (0.019) 0.143 (0.143) LL -3996.353 -4496.997 -8614.238 LR 4.724 3.724 12.698 atistic $f^{\prime}=1$) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	θ_{13}^{\prime} 0127 (0018)0158 (.0019)0143 (.0143)

Conoral Framouros

An Empirical Model of Harold Zurcher

Estimating parameters, bustypes 1,2,3,4 (model 19)

Output from run_busdata.m

Structural Estimation using busdata from Rust(1987)

Beta = 0.99990 n = 175.00000

Sample size = 8156.00000

Param.		Estimates	s.e.	t-stat
RC		9.7498	1.2249	7.9596
С		1.3385	0.3143	4.2589
р	(1)	0.1070	0.0034	31.2107
p	(2)	0.5152	0.0055	93.0556
p	(3)	0.3622	0.0053	68.0405
p	(4)	0.0143	0.0013	10.8946
р	(5)	0.0009	0.0003	2.6469

log-likelihood = -8607.89002
runtime (seconds) = 0.36119

General Frameworl

An Empirical Model of Harold Zurcher

Infinite Horizon "Speed Up tricks"

- Solving the fixed-point problem by VFI or "successive approximations" can be quite slow if β is close to 1.
 - The convergence rate of VFI is linear with a scale equal to β
- There are some ideas and tricks to speed up the solution:
- Newton-Kantorovich Iterations
- MPEC
- 3 Nested Pseudo Likelihood (NPL): Next time

General Framework

An Empirical Model of Harold Zurcher

1: Newton-Kantorovich Iterations (1/3)

- Everything is in Function space (Banach), but very similar to what we already know
- Recall the Bellman operator

$$EV(x,d) = \Gamma(EV)(x,d)$$

• We can write this as

$$\underbrace{(I-\Gamma)EV}_{"f(x)"}=0$$

General Framewor

An Empirical Model of Harold Zurcher

1: Newton-Kantorovich Iterations (1/3)

- Everything is in Function space (Banach), but very similar to what we already know
- Recall the Bellman operator

$$EV(x,d) = \Gamma(EV)(x,d)$$

• We can write this as

$$\underbrace{(I-\Gamma)EV}_{"f(x)"}=0$$

• We can then use Newtons method to solve for a zero:

$$\underbrace{EV^{k+1}}_{"x^{k+1"}} = \underbrace{EV^k}_{"x^{k"}} - \underbrace{(I - \Gamma')^{-1}(I - \Gamma)EV^k}_{"f'(x^k)^{-1"}}$$

• Where Γ' is the **Fréchet derivative** of the operator Γ .

General Framewor

An Empirical Model of Harold Zurcher

1: Newton-Kantorovich Iterations (2/3)

• The Fréchet derivative

- In terms of its finite-dimensional approximation, Γ'_{θ} takes the form of an $N \times N$ matrix equal to the partial derivatives of the $N \times 1$ vector $\Gamma_{\theta}(EV_{\theta})$ with respect to the $N \times 1$ vector EV_{θ}
- Γ'_{θ} is simply β times the transition probability matrix for the controlled process $\{d_t, x_t\}$
- · Recall that we have

$$EV(x,d) = \int_{y} \ln \left[\sum_{d' \in D(y)} \exp \left[u(y,d') + \beta EV(y,d') \right] \right] \times p(dy|x,d)$$

$$\approx \sum_{x'} p(x'|x,d) \sum_{d'} P(d'|x') \left[u(x',d') + \beta EV(x',d') \right]$$

such that the (k, j)-element of the derivative matrix:

$$\Gamma_{(k)}(x_{(j)}, d)' = "\frac{\partial \Gamma(EV) \left(x_{(j)}, d\right)}{\partial EV_{(k)}}"$$

$$= \beta \sum_{x'} \mathbf{1}_{\{x'=k\}} p\left(x'|x_{(j)}, d\right) \sum_{d'} P\left(d'|x'\right)$$

General Framework

An Empirical Model of Harold Zurcher

1: Newton-Kantorovich Iterations (3/3)

• The convergence rate:

- We solve $[I \Gamma](EV_{\theta}) = 0$ using Newtons method $||EV_{k+1} EV|| \le A||EV_k EV||^2$
- quadratic convergence around fixed point, EV

An Empirical Model of Harold Zurcher

- The convergence rate:
 - We solve $[I \Gamma](EV_{\theta}) = 0$ using Newtons method $||EV_{k+1} EV|| < A||EV_k EV||^2$
 - quadratic convergence around fixed point, EV
- Not global convergence:
 - The method only works well within a "pool of attraction", however
 - Use a poly-algorithm that starts with VFI then switch to NK
- When to switch to Newton-Kantorovich?
 - Recall from VFI: $tol_k = ||EV_{k+1} EV_k|| < \beta ||EV_k EV||$
 - Relative tolerance tol_{k+1}/tol_k approach β
 - Switch to Newton whenever tol_{k+1}/tol_k is sufficiently close to β

General Frameworl

An Empirical Model of Harold Zurcher

John's pocket guide

Overvier (1987)

C

An Empirical Model of Harold Zurcher

2: MPEC, Su and Judd (2012) (1/2)

• NFXP solves the *unconstrained* optimization problem

$$\max_{\theta} L(\theta, EV_{\theta})$$

- Outer loop: Likelihood function $L(\theta, EV_{\theta})$ is maximized w.r.t. θ
- **Inner loop:** The implicit function EV_{θ} defined by $EV_{\theta} = \Gamma(EV_{\theta})$ is solved by VFI and NK
- MPEC solves the constrained optimization problem

$$\max_{\theta, EV} L(\theta, EV) \text{ subject to } EV = \Gamma_{\theta}(EV)$$

using general-purpose constrained optimization solvers such as KNITRO

Constraint is

$$EV(x,d) = \sum_{x'} p\left(x'|x,d;\theta\right) \sum_{d'} P\left(d'|x';\theta\right) \left[u(x',d';\theta) + \beta EV\left(x',d'\right)\right]$$

2: MPEC: ECTA comment (2/2)

An Empirical Model of Harold Zurcher

	Converged	CPU Time	# of Major	# of Func.	# of Bellm.	# of N-K
β	(out of 1250)	(in sec.)	Iter.	Eval.	Iter.	Iter.
		M	PEC-Matla	ab		
0.975	1247	1.677	60.9	69.9		
0.985	1249	1.648	62.9	70.1		
0.995	1249	1.783	67.4	74.0		
0.999	1249	1.849	72.2	78.4		
0.9995	1250	1.967	74.8	81.5		
0.9999	1248	2.117	79.7	87.5		
		M	PEC-AMP	L'L		
0.975	1246	0.054	9.3	12.1		
0.985	1217	0.078	16.1	44.1		
0.995	1206	0.080	17.4	49.3		
0.999	1248	0.055	9.9	12.6		
0.9995	1250	0.056	9.9	11.2		
0.9999	1249	0.060	11.1	13.1		
		1	NFXP-NK			
0.975	1250	0.068	11.4	13.9	155.7	51.3
0.985	1250	0.066	10.5	12.9	146.7	50.9
0.995	1250	0.069	9.9	12.6	145.5	55.1
0.999	1250	0.069	9.4	12.5	141.9	57.1
0.9995	1250	0.078	9.4	12.5	142.6	57.5
0.9999	1250	0.070	9.4	12.6	142.4	57.7

(1987)

of Harold Zurcher

Until next time

- General Framework

 An Empirical Model
 - Ensure that you understand:
 Discrete choice problems
 - 2 infinite horizon speed tricks. Especially Newton-Kontorowich
 - Next time: Nested Pseudo Likelihood (NPL) "Swapping the nested fixed point": another way to reduce estimation time!

