Se tienen 0.2 moles de un gas ideal diatómico ($\gamma = \frac{7}{5}$) que realizan un ciclo como el que sigue:

- -AB: El gas se expande isotérmicamente hasta duplicar su volumen. Parte de una temperatura inicial de 227°C y una presión de 1 Mpa
- -BC: El gas se expande adiabáticamente hasta alcanzar una temperatura de 27°C.
- -CD: El gas se comprime isotérmicamente.
- -DA: El gas se comprime adiabáticamente hasta su temperatura inicial.
 - a) Calcule la presión y el volumen en los puntos A, B, C, y D. Realice el diagrama PV.
 - b) Calcule Q, W y ΔU para todo el ciclo y en total. ¿En qué tramos el sistema está entregando calor y en cuáles absorbiendo?
 - c) Determine la eficiencia mediante los resultados del ítem anterior. Comparar con el ciclo de Carnot.

QUE ASUNIR QUE EL CICLO ES REVERSIBLE

IMPA = 9,87 ATM

	P(ATM)	V(L)	TIK
A	9,87	0,83	500
В	4,94	1,66	500
C	0,84	5,88	300
D	1,66	2,96	300

$$V_A = \frac{mRT_A}{P_A} = \frac{0.2 \times 0.082 \times 500}{9.87} = 0.831$$

$$P_B = \frac{c_1 RT_B}{V_B} = \frac{c_1 2 \times c_1 0.82 \times 500}{1,66} = 4,94 \text{ ATM}$$

$$\frac{P_{B}V_{B}^{8}}{Io} = P_{C}V_{C}^{8} = \left(\frac{mRT_{C}}{V_{C}}\right)V_{C}^{8} = mRT_{C}V_{C}$$

$$V_{C} = \frac{10}{mRT_{C}} = 5.88 L$$

$$P_{A}V_{A}^{\delta} = P_{D}V_{D}^{\delta} = mRT_{D}V_{D}^{\delta-1} \rightarrow V_{D} = \sqrt{\frac{7.6}{mRT_{D}}} = 2.96L \rightarrow P_{D} = \frac{7.6}{V_{D}^{\delta}} = 1.66 \text{ ATM}$$

6)

		DO (ATIVE)	Q(ATML)	WATH
54	AB	0	5,69	5,69
	BC	-8,2	0	8,2
	CD	0	-3,38	-3,38
	DA	8,2	0	-8,2
			* 2	- 10

WT = (5,69 + 8,2 -3,38-8,2) ATML = 2,31 MTML , Q70 = 5,69 ATML

c) Magnina termica (W70) - E= WT = 2,31. 0,4.7 ES CHA MAQUINA DE CARNOT Maquima de Carmot - ECARNOT = 1 - To = 0,4