

中山大学理工学院 2012 学年 1 学期期末 11 级微电子 2+2 模拟电子技术 试卷(A)

年级	专业	姓名	学号

老师姓名:

考试成绩:

1. Assuming all diodes are ideal, draw the output waveform for each rectifier circuit. (10%)

Input waveform	Rectifier configurations	Output Waveforms
	$v_{l} \stackrel{+}{} v_{D} \stackrel{-}{} v_{O}$ $i_{D} \qquad R \stackrel{+}{} v_{O}$ \vdots	
V_p	"off" + "on" - v ₀ + R + "off" "off" "off"	
(b)	$\begin{array}{c c} i_D \\ \downarrow \\ D \\ i_C \\ \downarrow \\ \downarrow$	

2. Fill in the blank areas (10%)

- 3. (15%) A BJT cascade amplifier is shown below. Assuming $V_{BE(on)}$ is 0.7 V,
 - 1. Calculate the dc bias voltages, collector current and voltage gain of each stage
 - 2. Calculate the overall ac voltage gain.

- 4. A single-stage amplifier with N-type enhancement MOSFET is shown below. (10%)
 - (1) Draw the DC equivalent circuit.
 - (2) List the equations to decide I_D and V_{DS} of NMOSFET M_0 if I-V relationship of M_0 is given as $I_{D0} = \frac{1}{2} \mu_n C_{OX} \frac{W}{L} (V_{GS} V_{TH})^2 (1 + \lambda V_{DS})$. Ignore channel length modulation effect in this step.
 - (3) Draw the AC equivalent circuit based on small-signal modeling of M_0 . Write the expression of overall voltage gain (v_o/v_i) . Channel length modulation effect should be included in this step.

5. Fill in the blank areas (10%)

Logic circuit	Truth table				Function
<i>B</i>	4%				1%
NMOS		A	В	Y	
A O PMOS		0	0		
$\overline{B} \circ \overline{\hspace{1cm}}$		0	1		
AO		1	0		
D B		1	1		
4%				1	1%
		Α	В	Y	
		0	0	0	
		0	1	0	
		1	0	0	
		1	1	1	

- 6. Comparator circuits analysis (10%)
 - (1) Explain the function of the circuit shown below. What will be happened if V_i is very noisy?

(2) Explain the function of Schmitt Trigger shown below. Why the hysteresis operation is introduced in this configuration?

- 7. Op-Amp application circuits (20%)
- (1) Find the relationship between V_1 and V_o (5%)

- (2) For the instrumentation amplifier circuit shown below, $R = 5 \text{ k}\Omega$, $R_P = 500 \Omega$, and all operaional amplifiers are ideal. (15%)
 - a. Find the relationship between V_1, V_2 and V_{o2}
 - b. Find the relationship between V_1, V_2 and V_{o1}
 - c. Find the relationship between V_{o1} , V_{o2} and V_o
 - d. Find the value of V_o if $V_2 = 10$ V and $V_1 = 5$ V

- 8. Feedback types and feedback circuit analysis (15%)
- (1) Fill in the blank areas

(-)						
Feedback configurations	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$V_{s} = \frac{V_{o}}{V_{i}}$ $V_{f} = \beta V_{o}$ $\beta = \frac{V_{f}}{V_{o}}$				
Feedback type						
Close-loop gain						
Close-loop R_{in}						
Close-loop Rout						

- (2) A CMOS circuit with negative feedback configuration is shown below. Assuming the amplifier is ideal and all enhancement MOSFTEs are working in saturation mode.
 - a. Find the values of I_1 and I_2
 - b. Comments on the circuit function
 - c. What is the feedback type?

