Consideraciones prácticas Lección 17

Dr. Pablo Alvarado Moya

CE5506 Introducción al reconocimiento de patrones Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre, 2019

Contenido

- Motivación
- Diagnósticos para depuración
- Análisis de error

Motivación

- Con herramientas probabilísticas como las revisadas, si dos personas intentan aplicar el mismo algoritmo a los mismos datos, con frecuencia una persona lo va a poder configurar bien y otra no.
- Objetivo ahora es enfocar la atención a los puntos claves para hacer funcionar los algoritmos.
- Estos son reglas empíricas y por tanto debatibles
- Algunas reglas son de aplicación y no tendrán sentido en investigación

Ideas clave

- Diagnósticos para depurar algoritmos de aprendizaje
- 2 Análisis de error y análisis ablativo
- Oómo iniciar con problemas de aprendizaje automático
 - Optimización (estadística) prematura

Depuración de algoritmos de aprendizaje

Caso de estudio

- Supongamos que queremos construir un filtro anti-spam
- Usted eligió un conjunto pequeño de 100 palabras como características, en vez de usar 50 000 palabras
- Usando regresión logística Bayesiana con descenso de gradiente, obtuvo un 20 % de error de prueba (muy alto)

$$\max_{\underline{\theta}} \sum_{i=1}^{m} \log p(y^{(i)} | \underline{\mathbf{x}}^{(i)}, \underline{\theta}) - \lambda \|\underline{\theta}\|^{2}$$

• ¿Qué sigue?

Posibles mejoras

- Mejorar el algoritmo de distintas formas:
 - Buscar más datos de entrenamiento
 - 2 Reducir el conjunto de características
 - Probar usando más características
 - Probar nuevas características "más poderosas"
 - Usar más iteraciones en el descenso de gradiente
 - Usar otros métodos de optimización (Newton, gradientes conjugados)
 - **1** Usar otro parámetro de regularización λ
 - Probar SVM
- Probar arbitrariamente consume tiempo
- Es un asunto de suerte llegar a corregir el problema
- Cada una de las mejoras ataca distintos problemas
- Podemos diagnosticar problemas sistemáticamente y dar solución eficientemente

Estrategia recomendada

- ¡No busque mejorar algoritmo aleatoriamente!
- Mejor estrategia:
 - Ejecute diagnósticos para detectar el problema
 - Corrija el problema

Ejemplo de diagnóstico

- El error de prueba de la regresión logística Bayesiana de 20 % es excesivamente alto.
- Supongamos que usted sospecha:
 - Sobreajuste (alta varianza)
 - Muy pocas características para clasificar spam (alto sesgo)
- ¿Cómo detectamos si es alta varianza o alto sesgo?

Ejemplo de diagnóstico

- El error de prueba de la regresión logística Bayesiana de 20 % es excesivamente alto.
- Supongamos que usted sospecha:
 - Sobreajuste (alta varianza)
 - Muy pocas características para clasificar spam (alto sesgo)
- ¿Cómo detectamos si es alta varianza o alto sesgo?
- Alta varianza: error de entrenamiento mucho más bajo que error de prueba
- Alto sesgo: error de entrenamiento también será alto

Diagnóstico de alta varianza

Comportamiento típico de aprendizaje con alta varianza

- El error de prueba baja conforme m crece
- El error de entrenamiento sube conforme m crece
- Esto sugiere que el aumentar *m* ayuda
- Característica es la brecha fuerte entre ambos tipos de error

Diagnóstico de alto sesgo

• Comportamiento típico de aprendizaje con alto sesgo

- Curva del error de entrenamiento se estanca en valor alto
- Brecha entre ambos tipos de error es baja

Corrige:

- Más datos de entrenamiento
- Reducir # de características
- Más características
- Características "más poderosas"
- Más iteraciones en optimizador
- Otros métodos de optimización
- $oldsymbol{0}$ Parámetro de regularización λ
- Usar otro clasificador

Corrige:

- Más datos de entrenamiento
- Reducir # de características
- Más características
- Características "más poderosas"
- Más iteraciones en optimizador
- Otros métodos de optimización
- $oldsymbol{0}$ Parámetro de regularización λ
- Usar otro clasificador

alta varianza

Corrige:

- Más datos de entrenamiento
- 2 Reducir # de características
- Más características
- Características "más poderosas"
- Más iteraciones en optimizador
- Otros métodos de optimización
- $m{0}$ Parámetro de regularización λ
- Usar otro clasificador

alta varianza

alta varianza

- Más datos de entrenamiento
- 2 Reducir # de características
- Más características
- Características "más poderosas"
- Más iteraciones en optimizador
- Otros métodos de optimización
- $m{0}$ Parámetro de regularización λ
- Usar otro clasificador

Corrige:

alta varianza

alta varianza

alto sesgo

Más datos de entrenamiento

Reducir # de características

Más características

Características "más poderosas"

Más iteraciones en optimizador

Otros métodos de optimización

 $oldsymbol{0}$ Parámetro de regularización λ

Usar otro clasificador

Corrige:

alta varianza

alta varianza

alto sesgo

alto sesgo

Otros diagnósticos

- El diagnóstico de sesgo contra varianza es bastante común
- Otros problemas requieren de ingenio para contruir diagnósticos a la medida que detecten el problema
- Otro ejemplo:
 - Regresión logística Bayesiana tiene 2 % de error en spam y 2 % de error en no-spam (error muy alto para no spam)
 - SVM con kernel lineal tiene un 10 % de error en spam y un 0,01 % de error en no-spam (desempeño aceptable)
 - Usted quiere usar regresión logística por ser más eficiente
- ¿Qué se puede hacer?

• ¿El algoritmo de optimización está convergiendo?

- ¿El algoritmo de optimización está convergiendo?
- ¿Estamos optimizando la función correcta?

- ¿El algoritmo de optimización está convergiendo?
- ¿Estamos optimizando la función correcta?
- En regresión logística Bayesiana, ¿Es el regularizador λ correcto?

$$\max_{\underline{\theta}} J(\underline{\theta}) = \max_{\underline{\theta}} \sum_{i=1}^{m} \ln p(y^{(i)} | \underline{\mathbf{x}}^{(i)}, \underline{\theta}) - \lambda \|\underline{\theta}\|^{2}$$

- ¿El algoritmo de optimización está convergiendo?
- ¿Estamos optimizando la función correcta?
- En regresión logística Bayesiana, ¿Es el regularizador λ correcto?
- En SVM ¿usamos el C correcto?

$$\begin{split} \min_{\underline{\mathbf{w}},b} & \|\underline{\mathbf{w}}\|^2 + C \sum_{i=1}^m \xi_i \\ \text{sujeto a } y^{(i)} & (\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(i)} + b) \geq 1 - \xi_i \end{split}$$

- En el caso que estamos estudiando: SVM es mejor que regresión logística Bayesiana (BLR)
- Queremos usar la regresión logística Bayesiana
- ullet Sea ${m heta}_{SVM}$ los parámetros que aprendió SVM
- Sea $\underline{\theta}_{BLR}$ los parámetros que aprendió BLR
- Nos interésa la exactitud ponderada (weighted accuracy):

$$a(\underline{\theta}) = \max_{\underline{\theta}} \sum_{i} \underline{\mathbf{w}}^{(i)} 1 \left\{ h_{\underline{\theta}}(\underline{\mathbf{x}}^{(i)}) = y^{(i)} \right\}$$

ullet Como ${m heta}_{SVM}$ es mejor que ${m heta}_{BLR}$ entonces ${\it a}({m heta}_{SVM}) > {\it a}({m heta}_{BLR})$

 Como SVM y BLR optimizan funciones distintas, definamos una medida objetivo común a maximizar basada en BLR, por ejemplo:

$$\bar{J}(\underline{\theta}) = \sum_{i=1}^{m} \ln \rho(y^{(i)}|\underline{\mathbf{x}}^{(i)},\underline{\theta})$$

• (encontrar un planteo común $\bar{J}(\underline{\theta})$ a ambos métodos es complejo)

Diagnóstico: función objetivo u optimización

- Caso 1: $a(\underline{\theta}_{SVM}) > a(\underline{\theta}_{BLR}) \\ \overline{J}(\underline{\theta}_{SVM}) > \overline{J}(\underline{\theta}_{BLR})$ Como BLR maximiza $\overline{J}(\underline{\theta})$, entonces problema en algoritmo de optimización, que no pudo encontrar un buen $\underline{\theta}_{BLR}$
- Caso 2: $\frac{a(\underline{\theta}_{SVM}) > a(\underline{\theta}_{BLR})}{\bar{J}(\underline{\theta}_{SVM}) \leq \bar{J}(\underline{\theta}_{BLR})}$

El algoritmo de optimización encontró un buen valor de $\bar{J}(\underline{\theta})$ pero no parece ser la mejor opción, así que el problema es la función objetivo que no refleja el verdadero objetivo a optimizar

Más datos de entrenamiento

Reducir # de características

Más características

Características "más poderosas"

Más iteraciones en optimizador

Otros métodos de optimización

 $m{0}$ Parámetro de regularización λ

Usar otro clasificador

Corrige:

alta varianza

alta varianza

alto sesgo

alto sesgo

- Más datos de entrenamiento
- Reducir # de características
- Más características
- Características "más poderosas"
- Más iteraciones en optimizador
- Otros métodos de optimización
- lacktriangle Parámetro de regularización λ
- Usar otro clasificador

Corrige:

alta varianza

alta varianza

alto sesgo

alto sesgo

algoritmo de optimización

algoritmo de optimización

función objetivo

función objetivo

Más diagnósticos

- Con frecuencia es necesario idear diagnósticos propios para encontrar problemas
- Aun si un algoritmo de aprendizaje funciona bien, es importante correr diagnósticos para
 - Para comprender el problema de aplicación. Si se trabaja en un problema de aprendizaje automático por varios meses/años, es valioso comprender qué funciona y qué no
 - Para publicar (tesis, artículos, patentes, etc.)
 Diagnósticos y análisis de errores revelan detalles del problema para justificar resultados científicos
 - Para poder argumentar ante usuarios/clientes Es importante las razones por las cuales un algoritmo seleccionado funciona para poder justificar su uso
- Una de las buenas prácticas es el análisis de error: cuáles son las fuentes de error

Análisis de error

- Sistemas reales compuestos por varios subsistemas
- Reconocimiento de caras:
 - Captura de imágenes
 - Preprocesamiento (fondo)
 - O Detección de caras
 - Segmentación de ojos
 - Segmentación de nariz
 - Segmentación de boca
 - Clasificador

Análisis de error

Sistemas reales compuestos por varios subsistemas

```
Reconocimiento de caras: (total 85 %)
1 Captura de imágenes
2 Preprocesamiento (fondo)
3 Detección de caras
4 Segmentación de ojos
5 Segmentación de nariz
6 Segmentación de boca
7 Clasificador
100 %
```

• ¿Cuánto error es atribuible a cada sección? (inserte datos "perfectos" para evaluar cada componente)

- Análisis de error: intenta explicar diferencia entre desempeño actual y desempeño perfecto
- Análisis ablativo: intenta explicar diferencia entre una desempeño de una línea base (mala) y desempeño actual
- Ejemplo: usted contruye un filtro anti-spam
- Con solo regresión logística se alcanza un 94 % de error
- Con varias características buenas y regresión logística 99,9 %
 - Corrección ortográfica
 - Características del emisor
 - 3 Características del encabezado
 - Características de parser del correo
 - Parser del Javascript
 - O Características de imágenes embebidas
- ¿Cuánto ayuda cada característica de esas?

- Elimine componentes uno a la vez para observar deterioro
 - Sistema completo
 - 2 Corrección ortográfica
 - Características del emisor
 - Características del encabezado
 - Car. parser del texto
 - Parser del Javascript
 - Car. imágenes embebidas

• Elimine componentes uno a la vez para observar deterioro

1	Sistema completo	99,9 %
2	Corrección ortográfica	99,0%
3	Características del emisor	98,9 %
4	Características del encabezado	98,9 %
5	Car. parser del texto	95 %
6	Parser del Javascript	94,5 %
7	Car. imágenes embebidas	94 %

• Elimine componentes uno a la vez para observar deterioro

1	Sistema completo	99,9 %
2	Corrección ortográfica	99,0%
3	Características del emisor	98,9%
4	Características del encabezado	98,9%
5	Car. parser del texto	95 %
6	Parser del Javascript	94,5%
7	Car. imágenes embebidas	94 %

• Conclusión: el parser del texto del correo brinda mayor mejora

Estrategias de diseño

¿Cómo comenzar con un problema?

Hay dos estrategias fundamentalmente:

- Diseño cuidadoso
 - Invierta tiempo diseñando las características adecuadas, recolectando datos apropiados y diseñando la arquitectura algorítmica apropiada
 - Implemente y ojalá todo funcione
 - Ventaja: Algoritmos bien diseñados. Posíblemente se encuentre un algoritmo nuevo elegante que aporte a la investigación
- Construya rápido y ajuste
 - Implemente algo rápido (quick-and-dirty)
 - Aplique análisis de error y diagnósticos para corregir problemas
 - Ventaja: Usualmente lo lleva a una aplicación funcional más rápido

Optimización estadística prematura

- Con frecuencia no se sabe qué módulos del sistema son críticos
- La única forma de verificar eso es implementando todo y luego optimizar
- (no aplica si el interés es investigación)
- ¡Evite la optimización (estadística) prematura!

Resumen

- Inversión de tiempo en diagnósiticos es siempre buena
- Usualmente se deja a su ingenio encontrar los diagnósiticos adecuados
- Análisis ablativo y de error permiten identificar módulos críticos
- Hay dos estrategias para aplicar los algoritmos de aprendizaje:
 - Diseño cuidadoso y luego implementación (riesgo de optimización prematura)
 - Prototipo rápido, diagnósitico y ajuste

Resumen

- Motivación
- Diagnósticos para depuración
- Análisis de error

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2017-2019 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica