





DEAKIN Worldly Google Trends TULIP.

Deep learning trends at Google Words • SIGMOD 2016, Jeff Dean Growing Use of Deep Learning at Google A TULIP....

What is Deep Learning? · Fast answer: - Fast answer: multilayer perceptron (aka deep neural networks) of the 1980s rebranded in 2006. - But early nets go stuck at 1-2 hidden layers. · Slow answer: - distributed representation, multiple steps of computation, modelling the compositionality of the world, a better prior, advances in compute, data & optimization, neural architectures, etc.





Deep Works

ImageNet Classification Error (Top 5)

15

16

17

19

2012 (Marchae) 2013 (2P) 2014 (YOG) 2014 (Googlablet) 2013 (Pleablet) Today (Googlablet-44)

TULP Cander Channel Canadage of Intelligent Pagement

Modern Data Science (S. L.)

Deep Works

Special structure

10 layers

10

The Best of Machine Learning

• Strong/flexible priors:

- Good features: Feature engineering

- Data structure: HMM, CRF, MRF, Bayesian nets

- Model structure; VC-dimension, regularization, sparsity:

• SVM, compressed sensing

- Manifold assumption, class/region separation:

• Metric + semi-supervised learning

- Factors of variation: PCA, ICA, FA

• Uncertainty quantification:

- Bayesian, ensemble: RF, GBM

• Sharing statistical strength:

- model reuse: transfer learning, domain adaption, multitask learning, lifelong learning

Universality Theorem

 Shallow network can represent any function.
 Given enough hidden neurons, Any continuous function *f*: *R*<sup>N</sup> → *R*<sup>M</sup> can be realized by a network with one hidden layer

 However, using deep structure is more effective.

Reference for the reason:
http://neuralnetworksanddeeplearning.com/chapt.litml.

10 11









Modularization

• Deep → Modularization

• Each basic classifier can have sufficient training examples.

Basic Classifier

Long or short?

Classifiers for the attributes

| Classifier |



16 17













21 22 23

10/11/23







24 25 26







27 28 29

10/11/23









Fully Connected Feedforward Network Using parallel computing techniques to speed up matrix operation



33 34 35































Backpropagation — Forward pass  $y_{\text{pakin}}$ Compute  $\partial z/\partial w$  for all parameters  $x_1$   $y_1$   $y_2$   $z = x_1w_1 + x_2w_2 + b$ The value of the input connected by the weight

TULL Performant fundamental Modern Data Science (G. Li)

Solve Data Science (G. Li)

51











Backpropagation – Backward passential Compute  $\partial l/\partial z$  for all activation function inputs z Case 1. Output Layer

57











Backpropagation – Summary

Forward Pass

Backward Pass  $\frac{\partial z}{\partial z} = a$   $\frac{\partial z}{\partial z} = a$ For all w

63

This Week's Readings

• Deep Learning: Theoretical Motivations (Yoshua Bengio)

- http://videolectures.net/deeplearning2015\_bengio\_theoretical\_motivations/

• Connections between physics and deep learning

- https://www.youtube.com/watch?v=5MdSE-N0bxs

• Why Deep Learning Works: Perspectives from Theoretical Chemistry

- https://www.youtube.com/watch?v=klbKHIPbxiU



64