Ensembles

Sans rentrer dans les détails, on appelle **ensemble** une collection d'objets. Ces objets sont appelés les **éléments** de l'ensemble.

1 Appartenance et inclusion

Définition 1.1

L'ensemble qui ne contient aucun élément est appelé **ensemble vide** et est noté \emptyset . Un ensemble à un élément est appelé un **singleton**, un ensemble à deux éléments est une **paire**.

Définition 1.2 Appartenance

On dit que x appartient à un ensemble E si x est un élément de E et on note alors $x \in E$.

Décrire un ensemble

- Un ensemble est dit défini **en extension** lorsqu'il est défini par l'énumération de ses éléments. Par exemple, A = {1, 3, 5, 7}.
- Un ensemble est dit défini **en compréhension** lorsqu'il est défini par une propriété caractéristique de ses éléments. Par exemple, l'ensemble des entiers naturels pairs est $\{n \in \mathbb{N} \mid \exists k, n = 2k\}$. Autrement dit, l'ensemble des entiers naturels pairs est l'ensemble des entiers n pour lesquels il existe un entier naturel k tel que n = 2k.
- Un ensemble peut être défini à l'aide d'un autre ensemble. Par exemple, l'ensemble des entiers naturels pairs peut se noter {2k, k ∈ N}. Autrement dit, l'ensemble des entiers naturels pairs est l'ensemble des entiers de la forme 2k lorsque k parcourt N.

REMARQUE. De manière plus concise, l'ensemble des entiers naturels pairs se note aussi 2N.

ATTENTION! Quand on décrit un ensemble en compréhension, on donne d'abord les éléments puis la condition qu'ils vérifient. Par exemple, la notation $\{n = 2k\}$ pour désigner l'ensemble des entiers naturels pairs n'a **AUCUN SENS**. Au mieux pourrait-on voir cet «ensemble» comme un ensemble d'équations.

Exemple 1.1

L'ensemble des fonctions de \mathbb{R} dans \mathbb{R} 1-périodiques peut se noter $\{f \in \mathbb{R}^{\mathbb{R}} \mid \forall x \in \mathbb{R}, \ f(x+1) = f(x)\}$. Là encore, des notations du style $\{f(x+1) = f(x)\}$ ou $\{f(x+1) = f(x), \ x \in \mathbb{R}\}$ ou encore $\{\forall x \in \mathbb{R}, \ f(x+1) = f(x)\}$ n'ont **AUCUN SENS**.

Définition 1.3 Inclusion

On dit qu'un ensemble E est **inclus** dans un ensemble F si tout élément de E est un élément de F et on note alors $E \subset F$. De manière plus concise,

$$(E \subset F) \iff (\forall x, x \in E \implies x \in F)$$

Exemple 1.2

On a la suite d'inclusion bien connue : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

ATTENTION! Attention à ne pas confondre appartenance et inclusion.

- On a bien $0 \in \mathbb{N}$ mais $0 \not\subset \mathbb{N}$. Néanmoins, $\{0\} \subset \mathbb{N}$.
- On a bien $\{-1, 0, 1\} \subset \mathbb{Z}$ mais $\{-1, 0, 1\} \notin \mathbb{Z}$.

Un élément peut appartenir à un ensemble mais ne peut pas être inclus dans un ensemble. Un ensemble peut être inclus dans un ensemble mais ne peut pas appartenir à un ensemble (à moins qu'il s'agisse d'un ensemble d'ensembles ...).

Définition 1.4 Partie

On appelle partie d'un ensemble E tout ensemble F inclus dans E. L'ensemble des parties de E se note $\mathcal{P}(E)$.

Exercice 1.1

Énumérer les parties de l'ensemble {1, 2, 3}.

Définition 1.5 Egalité

On dit que deux ensembles E et F sont **égaux** si tout élément de E est un élément de F et réciproquement. On note alors E = F. De manière plus concise,

$$(E = F) \iff (\forall x, x \in E \iff x \in F)$$

Proposition 1.1

Soient E et F deux ensembles alors E = F si et seulement si $E \subset F$ et $F \subset E$.

Méthode Inclusion et égalité en pratique

- Pour montrer que E ⊂ F, on montre que tout élément de E est un élément de F. On rédige donc de la manière suivante :
 - «Soit $x \in E$. Montrons que $x \in F$ ».
- Pour montrer que E = F, on peut soit montrer que x ∈ E si et seulement si x ∈ F en raisonnant par équivalence, soit procéder par **double inclusion** en montrant que E ⊂ F et F ⊂ E. Dans ce cas, la rédaction se fait en deux étapes :
 - «Soit x ∈ E. Montrons que x ∈ F».
 - «Soit x ∈ F. Montrons que x ∈ E».

On peut également raisonner directement sur les ensembles sans considérer les éléments.

Exercice 1.2 Médiatrice

Soient A et B deux points du plan. Montrer que l'ensemble des points du plan équidistants de A et B est la droite orthogonale au segment [AB] en son milieu.

Exercice 1.3

Soient A = $\{(x, y) \in \mathbb{R}^2, 2x - y = 1\}$ et B = $\{(t + 1, 2t + 1), t \in \mathbb{R}\}$. Montrer que A = B.

2 Opérations sur les ensembles

Définition 2.1 Intersection, union

Soient A et B deux ensembles.

 On appelle intersection de A et B l'ensemble noté A ∩ B des éléments qui sont à la fois dans A et dans B. De manière plus concise,

$$(x \in A \cap B) \iff (x \in A \text{ ET } x \in B)$$

• On appelle **union** de A et B l'ensemble noté A∪B des éléments qui sont dans A ou dans B. De manière plus concise,

$$(x \in A \cup B) \iff (x \in A \text{ ou } x \in B)$$

Définition 2.2 Intersection et union d'une famille d'ensembles

Ces définitions se généralisent à plus de deux ensembles. En effet, soit $(A_i)_{i \in I}$ une famille d'ensembles.

• On appelle **intersection** des A_i , notée $\bigcap_{i \in I} A_i$ l'ensemble des éléments qui sont dans **tous** les A_i . De manière plus concise,

$$x \in \bigcap_{i \in I} A_i \iff (\forall i \in I, x \in A_i)$$

• On appelle **union** des A_i , notée $\bigcup_{i \in I} A_i$ l'ensemble des éléments qui sont dans **au moins un** des A_i . De manière plus concise,

$$x \in \bigcup_{i \in I} A_i \iff (\exists i \in I, x \in A_i)$$

Exercice 2.1

$$\text{Montrer que } \bigcup_{n \in \mathbb{N}^*} \left[0, 1 - \frac{1}{n}\right] = [0, 1[\text{ et que } \bigcap_{n \in \mathbb{N}^*} \left[0, 1 + \frac{1}{n}\right] = [0, 1].$$

Proposition 2.1 Distributivité de l'intersection et de l'union l'une sur l'autre

Soient A, B, C trois ensembles. Alors

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 et $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Cette propriété se généralise à une famille infinie d'ensembles :

$$A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$$
 et $A \cup \left(\bigcap_{i \in I} B_i\right) = \bigcap_{i \in I} (A \cup B_i)$

Définition 2.3 Différence, complémentaire

Soient A et B deux parties d'un ensemble E.

• On appelle différence de B dans A, notée A \ B, l'ensemble des éléments de A qui ne sont pas des éléments de B. De manière plus concise,

$$x \in A \setminus B \iff (x \in A \text{ ET } x \notin B)$$

• On appelle complémentaire de A dans E l'ensemble $E \setminus A$ et on le note $C_E A$, ou A^c ou \bar{A} s'il n'y a pas d'ambiguïté sur l'ensemble de référence E. De manière plus concise,

$$x \in \bar{A} \iff x \notin A$$

REMARQUE.

- Soit $A \in \mathcal{P}(E)$. Alors $A \cap \bar{A} = \emptyset$ et $A \cup \bar{A} = E$.
- Soit $(A, B) \in \mathcal{P}(E)^2$. Alors $A \setminus B = A \cap \overline{B}$.

Proposition 2.2

Soient A et B deux parties d'un ensemble E. Alors

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 et $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Là aussi, ces propriétés se généralisent à des familles d'ensembles. Soient $(A_i)_{i \in I}$ une famille d'ensembles. Alors

$$\overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i} \quad \text{et} \quad \overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \overline{A_i}$$

Remarque. Si on traduit en français:

- le complémentaire de l'intersection est l'union des complémentaires ;
- le complémentaire de l'union est l'intersection des complémentaires.

Lien entre logique et ensembles

Logique	Ensembles	Lien
Implication	Inclusion	$(A \subset B) \iff (x \in A \implies x \in B)$
Équivalence	Égalité	$(A = B) \iff (x \in A \iff x \in B)$
Conjonction	Intersection	$x \in A \cap B \iff (x \in A \text{ ET } x \in B)$
Disjonction	Union	$x \in A \cup B \iff (x \in A \text{ ou } x \in B)$
Négation	Complémentaire	$x \in \overline{A} \iff x \notin A \iff \text{NON}(x \in A)$

Définition 2.4 Partition

Soient E un ensemble et $(A_i)_{i \in I}$ une famille de parties de E. On dit que cette famille est une **partition** de E si

- (i) $\forall i \in I, A_i \neq \emptyset$;
- (ii) $\bigcup_{i \in I} A_i = E$;
- (iii) les A_i sont deux à deux disjoints i.e. $\forall (i,j) \in I^2, i \neq j \implies A_i \cap A_j = \emptyset$.

Exemple 2.1

 $2\mathbb{Z}$ et $2\mathbb{Z} + 1$ forment une partition de \mathbb{Z} .

3 Produit cartésien

Définition 3.1 Produit cartésien

Soient $E_1, E_2, \dots E_n$ n ensembles. On appelle **produit cartésien** des ensembles E_i , noté $E_1 \times E_2 \times \dots \times E_n$ l'ensemble des n-uplets (x_1, x_2, \dots, x_n) où $x_i \in E_i$ pour $1 \le i \le n$. Si $E_1 = E_2 = \dots = E_n = E$, le produit cartésien se note E^n .

Exemple 3.1

 \mathbb{R}^2 est l'ensemble des couples (x, y) où $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

Définition 3.2 n-uplet

On appelle *n*-uplet tout élément d'un produit cartésien de *n* ensembles. Un 2-uplet s'appelle aussi un **couple**, un 3-uplet un **triplet**, etc....

Remarque. L'ensemble des n-uplets d'éléments d'un ensemble E est tout simplement E^n .

Remarque. Dans une proposition avec quantificateurs,

- $\forall x \in E, \forall y \in F$ signifie la même chose que $\forall (x, y) \in E \times F$;
- $\exists x \in E, \exists y \in F$ signifie la même chose que $\exists (x, y) \in E \times F$

Exercice 3.1

Soit A, B $\in \mathcal{P}(E)$. Exprimer $C_{E^2}A \times B$ en fonction de E, A^c et B^c .