Vector Subspaces

Definition: Vector Subspace

Let E be a vector space over a scalar field \mathbb{F} and let $E'\subseteq E$. To say that E' is a *subspace* of E means that E' is also a vector space using the same scalar field and operations as E.

To say that E' is a proper subspace of E means that E' is a subspace of E; however, $E' \neq E$.

Theorem: Subspace Test

Let E be a vector space over a scalar field \mathbb{F} and let $E' \subseteq E$:

 $E' \text{ is a subspace of } E \iff \forall \, \vec{x}, \vec{y} \in E' \text{ and } \forall \, \alpha, \beta \in \mathbb{F}, \, \alpha \vec{x} + \beta \vec{y} \in E'.$

Proof

 \implies Assume E' is a subspace of E.

Assume $\vec{x}, \vec{y} \in E'$ and $\alpha, \beta \in \mathbb{F}$. By closure, $\alpha \vec{x} \in E'$ and $\beta \vec{y} \in E'$.

 \therefore by closure, $\alpha \vec{x} + \beta \vec{y} \in E'$.

 \iff Assume $\forall \vec{x}, \vec{y} \in E'$ and $\forall \alpha, \beta \in \mathbb{F}, \alpha \vec{x} + \beta \vec{y} \in E'$.

Since $E' \subseteq E$, E' inherits most of the necessary properties from E; only closure and $\exists \vec{z} \in E', \vec{x} + \vec{z} = \vec{y}$ need to be proven.

Assume $\vec{x}, \vec{y} \in E'$

$$1\vec{x} + 1\vec{y} = \vec{x} + \vec{y} \in E'$$

 $\therefore E'$ is closed under vector addition.

Assume $\alpha \in \mathbb{F}$.

$$\alpha \vec{x} + 0 \vec{y} = \alpha \vec{x} \in E'$$

 $\therefore E'$ is closed under scalar multiplication.

By closure, $\exists \, \vec{z} \in E', (-1)\vec{x} + 1\vec{y} = (-\vec{x}) + \vec{y} = \vec{z}$:

$$\vec{x} + ((-\vec{x}) + \vec{y}) = \vec{x} + \vec{z}$$

$$(\vec{x} + (-\vec{x})) + \vec{y} = \vec{x} + \vec{z}$$

$$\vec{0} + \vec{y} = \vec{x} + \vec{z}$$

$$\vec{y} + \vec{0} = \vec{x} + \vec{z}$$

$$\vec{y} = \vec{x} + \vec{z}$$

Examples

Let Ω be an open subset of \mathbb{R} or \mathbb{C} . The following are all subspaces of \mathcal{F} , the vector space of complex-valued functions on Ω :

- 1). $C(\Omega) =$ the space of all continuous functions on Ω .
- 2). $C^k(\Omega) =$ the space of all functions with continuous partial derivatives of order up to and including k on Ω .
- 3). C^{∞} = the space of all infinitely-differentiable functions on Ω .
- 4). $C^{\omega}=$ the space of all analytic functions (i.e., functions that have a power series representation) on Ω .
- 5). $P(\Omega) =$ the space of all polynomial functions in n variables on Ω .

Note that:

$$C^0(\Omega) \supset C^1(\Omega) \supset C^2(\Omega) \supset \ldots \supset C^{\infty}(\Omega) \supset C^{\omega}(\Omega)$$

Also note that:

$$P(\Omega) \subseteq C^{\omega}(\Omega)$$

Theorem

Let E_1 and E_2 be two vector spaces over a scalar field \mathbb{F} :

 $E_1 \cap E_2$ is a subspace of both E_1 and E_2 .

Proof

 $E_1 \cap E_2 \subseteq E_1$ and $E_1 \cap E_2 \subseteq E_2$.

Assume $\alpha, \beta \in \mathbb{F}$.

Assume $\vec{x}, \vec{y} \in E \cap E'$.

 $\vec{x}, \vec{y} \in E_1$ and $\vec{x}, \vec{y} \in E_2$.

By closure, $\alpha \vec{x} + \beta \vec{y} \in E_1$ and $\alpha \vec{x} + \beta \vec{y} \in E_2$,

 $\alpha \vec{x} + \beta \vec{y} \in E_1 \cap E_2$

 \therefore by the subspace test, $E_1 \cap E_2$ is a subspace of both E_1 and E_2 .

Theorem

Let E_1 and E_2 be subspaces of a vector space E such that $E_1 \subseteq E_2$:

 E_1 is a subspace of E_2 .

Proof

$$E_1 = E_1 \cap E_2$$

But by previous theorem, $E_1 \cap E_2$ is a subspace of E_2 .

 $\therefore E_1$ is a subspace of E_2 .

Example

 $P(\Omega)$ and $C^{\omega}(\Omega)$ are subspaces of $C^{\infty}(\Omega).$

$$P(\Omega) \subset C^{\omega}(\Omega).$$

 $\therefore P(\Omega)$ is a subspace of $C^{\omega}(\Omega)$.