Uni Id: N17385760 Net9d: 18477

Jone Work 3 Theoretical:

A) Theoretical questions:

AI) Hough Transform : Parametrization

The Standard Parametrization of a line y-mox+bos
with mo and bo Slope and intercept, has not become
the Standard Parametrization for the Hough transform
for finding lines.

- Explain why this oftion did become a popular
- and its representation of lines.

Answer) y = mox + bo.

Mo and be are the Parameters.

Mo -> Slope, bo -> Intercept-

The reason, why this option did not be come a popular choice is be cause of Slope (mo) farameter. The range of Slope (an be from to).

How to even divide this range was a big problem.

Problems with the (m.b) Space:

A2) Show that the polar depresentation of a line, x (os 0 + ysin 0 = C, represents a Cosine function in Parameter Space with axes 0 and C. (Remember that general Cosine function is given as
y-a (os (x-s), with a - ampoinde and s= phase swift.
Answer) $y = mx + c$ $y = -tan x$
C \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Normal form: g = x Cos + y Sin +
$(x,y) = \overline{x}$: β_{oint} (o-ordinate) $(\beta,\theta) = \overline{a}$: β_{oint} (o-ordinate)
Y
(x,y)
D. Daluch

$$\times \times \Rightarrow C_1 = a \cos(\Theta - \frac{\pi}{2})$$

Representation of line Com

Intersection: (e, O): Parametrisation of line turough Trand Xh.

)ate:/_/	Page	No
----------	------	----

A4) Noisy line Stauchures

Given points forming a line but it's location compted by poise (see below), how would poise effort the clustering of Curues in Hough Space? asnot Could You do to still find a freak associated parameters that assued supresent the misy line?

"Norsy-line"

Image Space.

In parameter space, we can see that the Sinusoide does not intersect at one point and some of them age even outliers.

But, if we still want to detect the was, we can make use of discretisation of faron-

Date: / / Page No

eter Spale o 9f we have a Voting spale we can choose the Cell Sizo, we can choose a read AD, to Experience with many intersecting lines, that do not intersect fromperly.

(OS - Curves in Parameter Space intersect-

Cells (AC, AO) Collect all intersecting Curves

Each Cell Can be incremented by curves.

A5) Hough Transform for Ellipses: We have learned that the Hough transform for circles requires three Parameters, two for the center and one for the radius, thus spanning a 3-D Parameter space. Now let us find ellipses in Standard form. would Generalized Hough Transfirm (GHT). as discussed in the course using R-tables for Creating a template seventually offer a Solution? Sketch with drawing and short Explanation o What about finding ellipses in different orientation giventre GHT? Answer) $(x-x_0)^2 + (y-y_0)^2 = 1$ 5) Here, Hough transform Siequire four parameters. This puts a heavy load on memory use and computational effort, but the a Clu Mulated Votes will Start to Storead out in high- amensional space and become sparse : 9t hecomes more difficult to detect meaningful local maxima

Date:/ /Page No
in high - dimensional spaces with sparse Votes.
Procedure for Hough transform (Edupse)
for X :- Xmin Stepdx to Xmardo
for y= Jonin Stepdy to Jonax do
$dx = p(x + \Delta, y) - p(x, y);$
Q(y = P(x, y+a) - P(x,y);
for a = amin Stepda until amar do
for each in for b = bonin Step ob 400'1 domar do
Parameter space (for 0 = Amin Step do 4061 Amax do
(a, b, θ) begin
Angle - arctan (dy) - Q - X E = tan (angle)
E= tan Cangle)
dx = Sign X(dx, dy) aaz
$\int \frac{1+b^2}{a^2 \xi^2}$
dy = Sign y (dx, dy) b2
$\frac{\sqrt{1+a^2}}{6^2}$
The Cardy :
Rotate by Theta (dx, dy):
$\chi_{o} = \chi + d\chi_{o}$
θο = y + dy; A (xo, yo, θ, a, b) = A(xo, yo, θ, a, b) +1
End
and and
Get 20 and you and update accumulator A [a]++
yer or

High-dimensional Space can be reduced by
Curuna metuoco
noteching of majoring votes for constant
Center only, tollowed by a Search for
pixel Clusters in the image that Sahisfied
tue elipse equation. With multi-pass
techniques, dine dimensional space com be
La desar da tu la aliana asia and Sub chamb
broken in to low-dimensional Subspaces.
For Eg: One 2-Dimensional Space for (xo, yo)
Another 2- Dimensional Space For (9, b) and
a one- Dimensional space for O.
Breaking down Voting forcers
in to subspaces, will decrease the Trabustness
af the algoritems