

6 V_O

5 GND

High Speed Optocoupler, 5 MBd, 1 kV/µs dV/dt

Features

- Data Rate 5.0 MBits/s (2.5 MBit/s over Temperature)
- Isolation Test Voltage, 5300 V RMS for 1.0 s
- TTL, LSTTL and CMOS Compatible
- Internal Shield for Very High Common Mode Transient Immunity
- Wide Supply Voltage Range (4.5 to 15 V)
- Low Input Current (1.6 mA to 5.0 mA)
- Three State Output (SFH6700/ 19)
- Totem Pole Output (SFH6701/02/11/12)
- Open Collector Output (SFH6705)
- Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Agency Approvals

- UL1577, File No. E52744 System Code H or J, **Double Protection**
- DIN EN 60747-5-2 (VDE0884) DIN EN 60747-5-5 pending Available with Option 1

Applications

Industrial Control Replace Pulse Transformers Routine Logic Interfacing Motion/Power Control High Speed Line Receiver Microprocessor System Interfaces Computer Peripheral Interfaces

Description

The SFH67xx high speed optocoupler series consists of a GaAlAs infrared emitting diode, optically coupled with an integrated photo detector. The detector incorporates a Schmitt-Trigger stage for improved noise immunity. Using the Enable input, the output can switched to the high ohmic state, which is necessary for data bus applications. A Faraday shield provides a

common mode transient immunity of 1000 V/µ at $V_{CM} = 50 \text{ V for SFH6700/ } 01/02/05 \text{ and } 2500 \text{ V/}\mu \text{ at}$ $V_{CM} = 400 \text{ V for SFH6711/ } 12/ 19.$

NC 4

-60 Vo

5 GND

C [3

The SFH67xx uses an industry standard DIP-8 package. With standard lead bending, creepage distance and clearance of \geq 7.0 mm with lead bending options 6, 7, and $9 \ge 8$ mm are achieved.

Document Number 83683 www.vishay.com Rev. 1.5, 15-Apr-05

Vishay Semiconductors

Order Information

Part	Remarks
SFH6700	Three State Output, DIP-8
SFH6701	Totem Pole Output, DIP-8
SFH6702	Totem Pole Output, DIP-8
SFH6705	Open Collector Output, DIP-8
SFH6711	Totem Pole Output, DIP-8
SFH6712	Totem Pole Output, DIP-8
SFH6719	Three State Output, DIP-8
SFH6700-X009	Three State Output, SMD-8 (option 9)
SFH6701-X006	Totem Pole Output, DIP-8 400 mil (option 6)
SFH6701-X007	Totem Pole Output, SMD-8 (option 7)
SFH6701-X009	Totem Pole Output, SMD-8 (option 9)
SFH6705-X006	Open Collector Output, DIP-8 400 mil (option 6)
SFH6705-X007	Open Collector Output, SMD-8 (option 7)
SFH6711-X007	Totem Pole Output, SMD-8 (option 7)

For additional information on the available options refer to Option Information.

Truth Table (Positive Logic)

	IR Diode	Enable	Output
SFH6700	on	Н	Z
	off	Н	Z
SFH6719	on	L	Н
	off	L	L
SFH6701	on		Н
	off		L
SFH6702	on		Н
	off		L
SFH6705	on		Н
	off		L
SFH6711	on		Н
	off		L
SFH6712	on		Н
	off		L

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

Input

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V_{R}	3.0	V
DC Forward current		I _F	10	mA
Surge forward current	t ≤ 1.0 μs	I _{FSM}	1.0	Α
Power dissipation		P _{diss}	20	mW

www.vishay.com

Document Number 83683

Rev. 1.5, 15-Apr-05

Output

Parameter	Test condition	Symbol	Value	Unit
Supply voltage		V _{CC}	- 0.5 to + 15	V
Three state enable voltage (SFH6700/19 only)		V _{EN}	- 0.5 to + 15	V
Output voltage		V _O	- 0.5 to + 15	V
Average output current		I _O	25	mA
Power dissipation		P _{diss}	100	mW

Coupler

Parameter	Test condition	Symbol	Value	Unit
Storage temperature range		T _{stg}	- 55 to + 125	°C
Ambient temperature range		T _{amb}	+ 85	°C
Lead soldering temperature	t = 10 s	T _{sld}	260	°C
Isolation test voltage		V _{ISO}	5300	V _{RMS}
Pollution degree			2.0	
Creepage distance and clearance	Standard lead bending		7.0	mm
	Options 6, 7, 9		8.0	mm
Comparative tracking index per DIN IEC 112/VDE 0303, part 1			175	
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C	R _{IO}	10 ¹²	Ω
	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	10 ¹¹	Ω

Figure 1. Schematics

Vishay Semiconductors

Recommended Operating Conditions

A 0.1 μF bypass capacitor connected between pins 5 and 8 must be used.

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Supply voltage			V _{CC}	4.5		15	V
Enable voltage high		SFH6700	V _{EH}	2.0		15	V
		SFH6719	V_{EH}	2.0		15	V
Enable voltage low		SFH6700	V _{EL}	0		0.8	V
		SFH6719	V_{EL}	0		0.8	V
Forward input current			I _{Fon}	1.6 ⁽¹⁾		5.0	mA
			I _{Foff}			0.1	mA
Operating temperature			T _A	- 40		85	°C
Output pull-up resistor		SFH6705	R_{L}	350		4	kΩ
Fan Output	$R_L = 1.0 \text{ k}\Omega$	SFH6705	N			16	LS TTL
							Loads

⁽¹⁾ We recommended using a 2.2 mA to permit at least 20 % CTR degradation guard band.

Electrical Characteristics

- 40 °C \leq T_{amb} \leq 85 °C; 4.5 V \leq V_{CC} \leq 15 V; 1.6 mA \leq I_{Fon} \leq 5.0 mA; 2.0 \leq V_{EH} \leq 15 V; 0 \leq V_{EL} \leq 0.8 V; 0 mA \leq I_{Foff} \leq 0.1 mA; Typical values: T_{amb} = 25 °C; V_{CC} = 5.0 V; I_{Fon} = 3.0 mA unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Input

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 5.0 mA	V _F		1.6	1.75	V
	I _F = 5.0 mA,	V _F			1.8	V
Input current hysteresis	$V_{CC} = 5.0 \text{ V}, I_{HYS} = I_{Fon} - I_{Fon}$	I _{HYS}		0.1		mA
Reverse current	V _R = 3.0 V	I _R		0.5	10	μΑ
Capacitance	V _R = 0 V, f = 1.0 MHz;	C _O		60		pF
Thermal resistance		R _{thja}		700		K/W

Document Number 83683 www.vishay.com Rev. 1.5, 15-Apr-05

Output

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Logic low output voltage	I _{OL} = 6.4 mA	V _{OL}			0.5	V
Logic high output voltage (except SFH6705)	$I_{OH} = 2.6 \text{ mA}, V_{OH} = V_{CC}-1.8 \text{ V}$		2.4			V
Output leakage current (V _{OUT} >V _{CC}) (except SFH6705)	$V_O = 5.5 \text{ V}, V_{CC} = 4.5 \text{ V},$ $I_F = 5.0 \text{ mA}$	Гонн		0.5	100	μА
	$V_O = 15 \text{ V}, V_{CC} = 4.5 \text{ V},$ $I_F = 5.0 \text{ mA}$	I _{OHH}		1.0	500	μΑ
Output leakage current (SFH705 only)	$V_O = 5.5 \text{ V}, V_{CC} = 5.5 \text{ V},$ $I_F = 5.0 \text{ mA}$	I _{OHH}		0.5	100	μА
	V _O = 15 V, V _{CC} = 15 V, I _F = 5.0 mA	I _{OHH}		1.0	500	μА
Logic high enable voltage (SFH6700/19 only)		V _{EH}	2.0			V
Logic low enable voltage (SFH6700/19 only)		V _{EL}			0.8	V
Logic high enable current (SFH6700/19 only)	V _{EN} = 2.7 V	I _{EH}			20	μΑ
	V _{EN} = 5.5 V	I _{EH}			100	μΑ
	V _{EN} = 15 V	I _{EH}		0.001	250	μΑ
Logic low enable current (SFH6700/19 only)	V _{EN} = 0.4 V	I _{EL}	- 320	- 50		μА
High impedance state output current (SFH6700/19 only)	$V_O = 0.4 \text{ V}, V_{EN} = 2.0 \text{ V},$ $I_F = 5.0 \text{ mA}$	I _{OZL}	- 20			μА
	$V_O = 2.4 \text{ V}, V_{EN} = 2.0 \text{ V},$ $I_F = 0 \text{ mA}$	l _{ozh}			20	μА
	$V_O = 5.5 \text{ V}, V_{EN} = 2.0 \text{ V},$ $I_F = 0 \text{ mA}$	l _{OZH}			100	μА
		I _{OZH}		0.001	500	μΑ
Logic low supply current	$V_{CC} = 5.5 \text{ V}, I_F = 0$	I _{CCL}		3.7	6.0	mA
	$V_{CC} = 15 \text{ V}, I_F = 0$	I _{CCL}		4.1	6.5	mA
Logic high supply current	$V_{CC} = 5.5 \text{ V}, I_F = 5.0 \text{ mA}$	I _{CCH}		3.4	4.0	mA
	$V_{CC} = 15V, I_F = 5.0 \text{ mA}$	Іссн		3.7	5.0	mA
Logic low short circuit output current ²⁾	$V_O = V_{CC} = 5.5 \text{ V}, I_F = 0$	I _{OSL}	25			mA
	$V_{O} = V_{CC} = 15 \text{ V}, I_{F} = 0$	I _{OSL}	40			mA
Logic high short circuit output current ²⁾	$V_{CC} = 5.5 \text{ V}, V_{O} = 0 \text{ V},$ $I_{F} = 5.0 \text{ mA}$	l _{OSL}			- 10	mA
	$V_{CC} = 15 \text{ V}, \ V_{O} = 0 \text{ V},$ $I_{F} = 5.0 \text{ mA}$	I _{OSL}			- 25	mA
Thermal resistance		R _{thja}		300		K/W

²⁾ Output short circuit time ≤ 10ms.

Coupler

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Capacitance (input-output)	f = 1.0 MHz, pins 1-4 and 5-8 shorted together	C _{IO}		0.6		pF
Isolation resistance	$V_{IO} = 500 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}$	R _{IO}	10 ¹²			Ω
	$V_{IO} = 500 \text{ V}, T_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	10 ¹¹			Ω

Document Number 83683 www.vishay.com

Vishay Semiconductors

Switching Characteristics

0 °C \leq T_{amb} \leq 85 °C; 4.5 V \leq V_{CC} \leq 15 V; 1.6 mA \leq I_{Fon} \leq 5.0 mA; 2.0 \leq V_{EH} \leq 15 V (SFH6700/19); 0 \leq V_{EL} \leq 0.8 V (SFH6700/19); 0 mA \leq I_{Foff} \leq 0.1 mA Typical values: T_{amb} = 25 °C; V_{CC} = 5.0 V; I_{Fon} = 3.0 mA unless otherwise specified. (3)

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Propagation delay time to logic low output level, SFH6700/01/ 02/11/12/19	Without peaking capacitor	t _{PHL}		120		ns
	With peaking capacitor	t _{PHL}		115	300	ns
		t _{PLH}		125		ns
		t _{PLH}		90	300	ns
Output enable time to logic high (SFH6700/19)		t _{PZH}		20		ns
Output enable time to logic low (SFH6700/19)		t _{PZL}		25		ns
Output disable time from logic low (SFH6700/19)		t _{PLZ}		50		ns
Output rise time	10 % to 90 %	t _r		40		ns
Output fall time	90 % to 10 %	t _f		10		ns

⁽³⁾ A 0.1 $_{
m L}$ F bypass capacitor connected between pins 5 and 8 must be used

Typical values: T_{amb} = 25 °C, V_{CC} = 5.0 V; I_{Fon} = 3.0 mA; R_L = 390 Ω unless otherwise specified ⁽³⁾

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Propagation delay time to logic low output level	Without peaking capacitor	SFH6705	t _{PHL}		115		ns
	With peaking capacitor	SFH6705	t _{PHL}		105	300	ns
	Without peaking capacitor	SFH6705	t _{PLH}		125		ns
	With peaking capacitor	SFH6705	t _{PLH}		90	300	ns
Output rise time	10 % to 90 %		t _r		25		ns
	90 % to 10 %		t _r		4		ns

Common Mode Transient Immunity

 T_{amb} = 25 °C, V_{CC} = 5.0 V ⁽⁴⁾

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Logic High Common Mode Transient Immunity	$ V_{CM} = 50 \text{ V}, I_F = 1.6 \text{ mA}$	SFH6700	CM _H (4)	1000			V/μs
,		SFH6701	CM _H ⁽⁴⁾	1000			V/μs
		SFH6702	CM _H (4)	1000			V/μs
		SFH6705	CM _H (4)	1000			V/μs
	$ V_{CM} = 400 \text{ V}, I_F = 1.6 \text{ mA}$	SFH6711	CM _H (4)	2500			V/μs
		SFH6712	CM _H (4)	2500			V/μs
		SFH6719	CM _H (4)	2500			V/μs
Logic Low Common Mode Transient Immunity	$ V_{CM} = 50V, I_F = 0 \text{ mA}$	SFH6700	CM _L (4)	1000			V/μs
	$ V_{CM} = 50 \text{ V}, I_F = 0 \text{ mA}$	SFH6701	CM _L (4)	1000			V/μs
		SFH6702	CM _L (4)	1000			V/μs
		SFH6705	CM _L (4)	1000			V/μs
	$ V_{CM} = 400 \text{ V}, I_F = 0 \text{ mA}$	SFH6711	CM _L (4)	2500			V/μs
		SFH6712	CM _L (4)	2500			V/μs
		SFH6719	CM _L (4)	2500			V/μs

 $^{^{(4)}}$ CM_H is the maximum slew rate of a common mode voltage V_{CM} at which the output voltage remains at logic high level ($V_{O} > 2.0 \text{ V}$) CM_L is the maximum slew rate of a common mode voltage V_{CM} at which the output voltage remains at logic high level ($V_O < 0.8 \text{ V}$)

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

Figure 2. Permissible Total Power Dissipation vs. Temperature

Figure 3. Typical Input Diode Forward Current vs. Forward Voltage

Vishay Semiconductors

isfh6700_04

Figure 4. Typical Forward Input Voltage vs. Temperature

isfh6700_07

Figure 7. Typical Supply Current vs. Temperature

isfh6700_05

Figure 5. Typical Output Voltage vs. Forward Input Current (except SFH6705)

isfh6700_08

Figure 8. Typical Output Leakage Current vs. Temperature

isfh6700_06

Figure 6. Typical Output Forward Voltage vs. Forward Input Current (only SFH6705)

isfh6700_09

Figure 9. Typical Low Level Output Current vs. Temperature

isfh6700_10

Figure 10. Typical Low Level Output Voltage vs. Temperature

isfh6700 24

Figure 13. Typical Propagation Delay to Logic High vs. Temperature (except SFH6705)

isfh6700_11

Figure 11. Typical High Level Output Current vs. Temperature (except SFH6705

isfh6700_14

Figure 14. Typical Propagation Delay to Logic LOw vs.
Temperature (except SFH6705)

isfh6700_12

Figure 12. Typical Rise, Fall Time vs. Temperature (except SFH6705)

isfh6700_15

Figure 15. Typical Propagation Delays to Logic High vs. Temperature (except SFH6705)

Vishay Semiconductors

isfh6700_16

Figure 16. Typical Propagation Delay to Logic Low vs.
Temperature

isfh6700_19

Figure 19. Typical Propagation Delays to Logic High vs.
Temperature

isfh6700_17

Figure 17. Typical Propagation Delays to Logic High vs.
Temperature

isfh6700_20

Figure 20. Typical propagation delays to Logic Low vs. temperature (except SFH6705)

isfh6700_18

Figure 18. Typical Propagation Delays to Logic Low vs.Temperature

isfh6700_21

Figure 21. Typical Logic Low Enable Propagation Delays vs. Temperature (only SFH6700/11)

tPHL - Propagation Delay - ns $V_{CC} = 5 V$ 140 $R_L = 350 - 4 \text{ k}\Omega$ 130 $I_F = 5 \text{ mA}$ 120 110 $I_F = 3 \text{ mA}$ 100 I_F = 1.6 mA 90 80 70 -60 40 100 T_A - Temperature - °C

isfh6700_22

Figure 22. Typical Logic High Enable Propagation Delays vs. Temperature (only SFH6700/11)

isfh6700_2

Figure 25. Typical Propagation Delays to Low Level vs. Temperature (only SFH6705)

sfh6700_23

Figure 23. Typical Propagation Delays vs. Pulse Input Current (only SFH6705)

isfh6700_26

Figure 26. Typical Rise, Fall Time vs. Temperature (only SFH6705)

isfh6700_24

Figure 24. Typical Propagation Delays to High Level vs. Temperature (only SFH6705)

Document Number 83683 Rev. 1.5, 15-Apr-05

Figure 27. Test Circuit for $t_{\mbox{\scriptsize PLH}},\,t_{\mbox{\scriptsize PHL}},\,t_{\mbox{\scriptsize r}}$ and $t_{\mbox{\scriptsize f}}$

The Probe and Jig Capacitances are included in C1 and C2

Figure 28. Test Circuit for t_{PLH} , t_{PHL} , t_{r} and - SFH6705

isth6700_27

Figure 29. Test Circuit for $t_{\mbox{\scriptsize PHZ}},\,t_{\mbox{\scriptsize PZH}},\,t_{\mbox{\scriptsize PLZ}}$ and $t_{\mbox{\scriptsize PZL}}\mbox{-SFH6700/19}$

Figure 30. Test Circuit for Common Mode Transient Immunity and Typical Waveforms-SFH6700/01/02/11/12/19

Document Number 83683 www.vishay.com 13

Figure 31. Test Circuit for Common Mode Transient Immunity and Typical Waveforms-SFH6705

Package Dimensions in Inches (mm)

www.vishay.com Document Number 83683

14 Rev. 1.5, 15-Apr-05

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

www.vishay.com Document Number 83683 Rev. 1.5, 15-Apr-05

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05