

Graphs without even holes or diamonds

Ton Kloks*

No Institute Given

Abstract. An even hole is an induced chordless cycle of even length at least four. A diamond is an induced subgraph isomorphic to $K_4 - e$. We show that graphs without even holes and without diamonds can be decomposed via clique-separators into graphs that have uniformly bounded cliquewidth.

1 Introduction

We consider undirected graphs without loops or multiple edges.

Definition 1. A chord in a cycle is an edge connecting two vertices of the cycle that are not adjacent in the cycle. A cycle is chordless if it has no chord. A hole is a chordless cycle of length at least four. A graph is chordal if it has no holes.

Similarly, a chordless path in a graph G is a set of vertices P such that $G[P]$ is a path. A hole is even if it has even length. A diamond is an induced $K_4 - e$. In this paper we consider graphs without even holes and diamonds.

Graphs without even holes were studied in [1,8,9,10,11,14,15]. These graphs can be recognized in polynomial time [8,11]. It was shown that every graph without even holes has a *bisimplicial extreme*, that is a vertex whose neighborhood is the union of two cliques [9]. Graphs without diamonds nor even holes were first studied in [21]. We showed in [21] that every graph without diamonds and without even holes has a *simplicial extreme*, that is a vertex which is either simplicial or which has degree 2.

Cliquewidth was introduced by Courcelle and Olariu in [12]. For integer k we define the following k -composers:

1. For $i \in \{1, \dots, k\}$, $i(x)$ creates a vertex x with label i .
2. For distinct $i, j \in \{1, \dots, k\}$, let $\eta_{i,j}$ be the operation which adds all edges joining vertices with label i to vertices with label j .
3. For $i, j \in \{1, \dots, k\}$, let $\rho_{i \rightarrow j}$ be the operation which relabels every vertex with label i with the label j .
4. The operation $G \oplus H$ creates the graph which is the disjoint union of two labeled graphs G and H .

Definition 2. A graph G has cliquewidth k if G can be constructed via a series of k -composers.

* During this research this coauthor was a guest of the School of Computing, University of Leeds, Leeds LS2 9JT, UK.

The corresponding graph-decomposition is called a k -expression. Courcelle showed that those problems that can be formulated in monadic second-order logic without quantification over subsets of edges, can be solved efficiently for graphs of bounded cliquewidth (see [13]). For these algorithms a k -expression is a necessary ingredient. However, this obstacle was taken away with the introduction of rankwidth. The graph classes for which the parameters cliquewidth and rankwidth are bounded coincide: It was shown in [25,27] that $rw \leq cw \leq 2^{rw+1} - 1$. An algorithm that computes a rank-decomposition-tree for a graph of bounded rankwidth was obtained in [18,19]. This algorithm runs in $O(n^3)$ time. Interestingly, it is still unknown whether CLIQUEWIDTH is fixed-parameter tractable (see, e.g., [17]). Computing cliquewidth is NP-complete [16]. The NP-completeness of RANKWIDTH seems to follow from arguments given in [19].

In this paper we show that graphs without even holes and without diamonds can be decomposed via clique separators into graphs which have a uniform bound on the cliquewidth. It easily follows that graphs in this class can be recognized in $O(n^3)$ time. This result was anticipated by [15]. That paper shows that planar graphs without even holes have uniformly bounded treewidth.

2 Birdcages and links

For two sets A and B we write $A + B$ for $A \cup B$ and $A - B$ for $A \setminus B$. For a set A and an element x we also write $A + x$ instead of $A + \{x\}$. For a vertex x we write $N(x)$ for the set of its neighbors and we write $N[x] = x + N(x)$ for its *closed* neighborhood. For a subset S of vertices we write $N(S) = \bigcup_{x \in S} N(x) - S$ and we write $N[S] = N(S) + S$. For a subset S of vertices of a graph G we write $G[S]$ for the subgraph of G induced by S . For a graph $G = (V, E)$ and a subset S of its vertices we write $G - S$ for the graph $G[V - S]$. If S consists of a single vertex x we also write $G - x$ instead of $G - \{x\}$.

Let \mathcal{G} be the class of graphs without even holes and without diamonds.

Definition 3. A simplicial is a vertex whose neighborhood induces a clique. A simplicial extreme is a vertex which either is simplicial, or has degree two.

Lemma 1 ([21]). Every graph which has no even holes nor diamonds is either a clique or has two simplicial extremes that are not adjacent.

Definition 4. Let C_1 and C_2 be cliques. Consider all chordless paths from a vertex of C_1 to a vertex of C_2 which does not use any other vertex of C_1 or C_2 . If the lengths of all those paths have the same parity, then this collection of chordless paths is called a C_1, C_2 -link.

In this section we analyze the structure of links. Our basic building blocks are birdcages.

Definition 5. A birdcage is a graph with a specified clique F , called the floor, and a specified vertex $h \notin F$, called the hook, and a collection of paths \mathcal{P} , one from each vertex in F to h , such that

- (a) all paths in \mathcal{P} have odd length or all paths in \mathcal{P} have even length, and
- (b) either at most one path in \mathcal{P} has length one or all paths in \mathcal{P} have length one.

We consider two ways to connect two birdcages.

Definition 6. Let $B_i = (F_i, h_i)$, $i = 1, 2$ be two birdcages. A join of B_1 and B_2 is the graph obtained either by adding all edges between the floor or the hook of B_1 and the floor or the hook of B_2 , or by identifying the two hooks h_1 and h_2 . In case $|F_1| = |F_2|$ and if exactly one of B_1 and B_2 is a clique, then we also call the vertex-by-vertex identification of F_1 and F_2 a join. In case $|F_1| = |F_2| = 2$ and if for $i = 1, 2$ there exists exactly one vertex $x_i \in F_i$ which is adjacent to h_i , then we also call the identification of F_1 and F_2 such that x_1 and x_2 are identified, a join.

Definition 7. Let $B = (F, h)$ be a birdcage. Let h^* be a fixed neighbor of h such that h and h^* have no neighbors in common. The edge (h, h^*) is called the skew-edge of B .

Definition 8. Let $B_i = (F_i, h_i)$, $i = 1, 2$ be two birdcages each with a skew-edge (h_i, h_i^*) . A skew-join of B_1 and B_2 is the graph obtained by identifying each of h_i and h_i^* with one of h_{3-i} and h_{3-i}^* . Let $B_1 = (F_1, h_1)$ be a birdcage and let $B_2 = (F_2, h_2)$ be a birdcage with a skew-edge (h_2, h_2^*) . The identification of h_1 with one of h_2, h_2^* , and also the join of h_1 or F_1 with one of h_2 and h_2^* , is called a skew-join.

We consider one more operation.

Definition 9. Let $B = (F, h)$ be a birdcage and let L be a link from a vertex to a clique. Assume that the length of L has the same parity as the lengths of the paths connecting h with F in B . A replacement is the operation of substituting one h, F -path in B by L . The clique of L is joined to the other vertices of F .

We call a birdcage in which some paths have been replaced by links again a birdcage.

Theorem 1. There exists a natural number t such that every link has cliquewidth at most t .

Proof. Consider a link L between two nonadjacent vertices x and y . Assume first that x has at least two nonadjacent neighbors. Between any pair of cliques C_1 and C_2 in $N(x)$ all chordless paths must be odd thus the induced C_1, C_2 -paths in L form a C_1, C_2 -link. Note that y is not in any of these induced sublinks since that implies an even hole. Let L^* be the subgraph of L induced by these sublinks. We prove that L^* induces a birdcage with hook x and some separating floor F . The floor F separates L^* from a link from F to y . Consider the component C of $L - L^*$ that contains y . We first show that $N(C)$ is a clique. Let a and b be nonadjacent vertices in $N(C)$. Since an a, b -path with internal vertices in C cannot connect two vertices that are in a link, a and b must be two nonadjacent vertices in a birdcage. However, by induction this implies that there is a link (either between

two cliques in $N(x)$ or from a clique in $N(x)$ to y) which contains a birdcage with two ends of the same type $\in \{\text{hook, floor}\}$, which is a contradiction. The chordless paths from y to any of the cliques in $N(x)$ induce a link. By induction, either there exists a join between two cliques $N(C)$ and $N(L^*)$ and two links between $N(C)$ and x and $N(L^*)$ and y or there exists a skew-edge (a, b) . The skew-edge connects three links; two to $N(x)$ and one to y . Note however that such a skew-join is only possible in case $N(x)$ is a clique (see below) since otherwise there would exist an even hole.

In case $N(x)$ is a clique, we obtain a similar decomposition, except that in this case y can be a vertex of L^* , which in this case is defined as follows. When $N(x)$ is a clique we consider the subgraph L^* induced by chordless paths between different vertices of $N(x)$, with internal vertices in $L - N[x]$. The structure is proved by induction on $|N(x)|$. Note that a skew-connection between L^* and $L - L^*$ is only possible in case $N(x)$ is a clique.

The induced subgraph L^* is a *bag*. It follows that L can be decomposed into a tree of bags glued together along clique cutsets either via joins or via skew-joins.

Consider the *cross-edges* in an x, y -link L for nonadjacent vertices x and y : Assume two vertices a and b are adjacent but the edge is not an edge of L . Then a and b are contained in a birdcage, since one cannot be on a chordless x, y -path of the other. It follows that there exists a birdcage $B = (F, h)$ with a vertex $a \in F$ adjacent to h , and the vertex a is adjacent to some cliques in the other (replaced) h, F -paths. By induction on the induced link-structures, the chordless paths from a to either x or y must form a link. This implies that if a is adjacent to two vertices in different paths of a birdcage $B' = (F', h')$ then a is also adjacent to h' . Note also that for each birdcage B^* there is at most one vertex a (adjacent to the hook of B^*) which has crossing edges to paths of B^* . This proves that these birdcages with their cross-edges can be described by a bounded cliquewidth expression.

By the recursive definition, this proves the theorem. \square

3 Link-extensions

In this section we extend links in a recursive way. Consider two nonadjacent vertices a and b in an x, y -link L induced by the collection of chordless x, y -paths in a graph $G \in \mathcal{G}$. Assume there exists a chordless a, b -path with internal vertices $\notin L$. Then a and b must be vertices of a birdcage, since they cannot both lie on a common chordless x, y -path. Thus there exists a birdcage $B = (F, h)$ with a vertex $a \in F$ which is adjacent to h . There are (extended) links, “cross-links,” from a to cliques or skew-joins in the other replaced paths in B . These cross-links act as the cross-edges introduced in the proof of Theorem 1, except that the cross-links can also go to skew-edges. Note that if a has links to cliques or skew-joins in different paths of some birdcage B' then a must also be adjacent to the hook of B' . Furthermore, for each constituent birdcage B^* in L there is at most one vertex a with links to paths of B^* .

Theorem 2. *There exists a number t such that every graph $G \in \mathcal{G}$ without clique-separators has cliquewidth t .*

Proof. Assume G is not a clique. We proved in [21] that G has a vertex ω with two nonadjacent neighbors x and y . The collection of chordless x, y -paths forms an x, y -link in $G - \omega$. Let L^* be the extension of L in $G - \omega$. By definition of a link-extension, and since there are no clique-separators, $G - \omega = L^*$. \square

4 Cliquewidth of (even-hole,diamond)-free graphs

Definition 10. A splitgraph is a graph $H = H(C, I, E)$ with a partition of the vertices in a clique C and an independent set I .

Lemma 2 ([3,22]). *Cliquewidth is unbounded for splitgraphs.*

Definition 11. A birdcage-split is a graph which can be constructed from a splitgraph $H = H(C, I, E)$ by replacing all edges incident with every vertex $x \in I$ either by an even or an odd > 1 -length path.

Thus a birdcage-split H consists of a clique C and a collection \mathcal{F} of subsets of C and an independent set \mathcal{H} of hooks. Each hook forms a birdcage in H with floor $F \in \mathcal{F}$.

Let \mathcal{BS} be the class of birdcage-splits.

Lemma 3. *Birdcage-splits do not have even holes or diamonds.*

Proof. Every hole is contained in a birdcage, thus it is odd. Since all paths in birdcages have length more than one, there is no diamond. \square

Lemma 4. *For every natural number t there exists a graph in \mathcal{BS} with cliquewidth more than t .*

Proof. Let $G = G(C, I, E)$ be a splitgraph and let G^* be the birdcage-split obtained from G by subdividing every edge (x, y) with $x \in C$ and $y \in I$ by a single vertex. Let z be a subdivision vertex of G^* and consider a local complementation at z . If $x \in C$ and $y \in I$ are the two neighbors of z then this adds the edge (x, y) to G^* . Let \hat{G} be the graph obtained from G^* by doing a local complementation at every subdivision vertex. Then G is an induced subgraph of \hat{G} , that is, G is a vertex-minor of G^* . This implies that the rankwidth of G^* is at least the rankwidth of G [26]. By Lemma 2 this proves the claim. \square

Theorem 3. *There exists a natural number t such that every $G \in \mathcal{G}$ either has a clique-separator or has cliquewidth at most t .*

Proof. Links and link-extensions can be generated by a recursive function of bounded width. The graph can be decomposed by clique-separators into these link-extensions. \square

Recall that a decomposition by clique separators can be obtained in $O(n^3)$ time [34].

Corollary 1. *Graphs in \mathcal{G} can be recognized in $O(n^3)$ time.*

5 Remarks on geodetic graphs

Geodetic graphs were introduced by Ore.

Definition 12 ([4,24]). A graph is geodetic if for every pair of vertices the shortest path between them is unique.

Note that a graph is geodetic if and only if for every vertex x , every vertex $y \in N_k(x)$ ¹ is adjacent to exactly one vertex in $N_{k-1}(x)$, $k \geq 2$; see [28]. This settles the recognition problem. It follows from the definition that geodetic graphs have no induced diamond and no induced C_4 .

One partial characterization of geodetic graphs of diameter two appeared in [32]. See also [2,33,36]. These contain the Moore graphs of diameter two, i.e., the 5-cycle, the Petersen graph and the Hoffman-Singleton graph.² Note that the Petersen graph has an induced C_6 . It can be shown (see [20,32,30,5] and [6, Theorem 1.17.1]) that, if G is a geodetic graph of diameter two then either

- (i) G contains a universal vertex,³ or
- (ii) G is strongly regular, or
- (iii) G has exactly two vertex degrees $k_1 > k_2$. Let X_i be the set of vertices with degree k_i . Then X_2 is an independent set. Every maximal clique that contains a vertex of X_1 and X_2 has size two. Every maximal clique contained in X_1 has size $k_1 - k_2 + 2$. Furthermore, $n = k_1 k_2 + 1$.

Plesník [29] and Stemple [33] show that a geodetic graph G is homomorphic to K_n if and only if there exists a function f which assigns a nonnegative integer to every vertex of K_n such that an edge (x, y) in K_n has $f(x) + f(y)$ extra vertices in G . See [7, Section 7.3] for various constructions of geodetic graphs. A characterization of planar geodetic graphs appeared in [31,35].

6 Acknowledgements

Ton Kloks thanks his coauthors and the School of Computing of the University of Leeds for the pleasant collaboration.

References

1. Addario-Berry, L., M. Chudnovsky, F. Havet, B. Reed, and P. Seymour, Bisimplicial vertices in even-hole-free graphs. Manuscript 2006.

¹ As usual, $N_k(x) = \{y \mid d(x, y) = k\}$.

² The only other possible degree that a Moore graph can have (thus with diameter 2 and girth 5) is 57. The existence of such a graph is unsettled [23]. The smallest unsettled case for a strongly regular graph with $\mu = 1$ has parameters $(n, k, \lambda, \mu) = (400, 21, 2, 1)$ [6].

³ In this case G is a collection of cliques sharing one universal vertex.

2. Bandelt, H. J. and H. M. Mulder, Interval-regular graphs of diameter two, *Discrete Mathematics* **50** (1984), pp. 117–134.
3. Boliac, R. and V. L. Lozin, On the clique-width of graphs in hereditary classes, *Proceedings 13th ISAAC 2002*, Springer-Verlag LNCS 2518 (2002), pp. 44–54.
4. Bosák, J., Geodetic graphs, *Combinatorica* **1** (1978), pp. 151–172.
5. Blokhuis, A. and A. E. Brouwer, Geodetic graphs of diameter two, *Geometriae Didicata* **25** (1988), pp. 527–533.
6. Brouwer, A. E., A. M. Cohen, and A. Neumaier, *Distance-regular graphs*, Springer, Heidelberg, 1989.
7. Buckley, F. and F. Harary, *Distance in graphs*, Addison-Wesley, 1990.
8. Chudnovsky, M., K.-i. Kawarabayashi, and P. Seymour, Detecting even holes, *Journal of Graph Theory* **48** (2005), pp. 85–111.
9. Chudnovsky, M. and P. Seymour, Excluding induced subgraphs, *Surveys in Combinatorics*, London Math. Soc. Lecture Note Series 346 (2007), pp. 99–119.
10. Conforti, M., G. Cornuéjols, A. Kapoor, and K. Vušković, Even-hole-free graphs part I: decomposition theorem, *Journal of Graph Theory* **39** (2002), pp. 6–49.
11. Conforti, M., G. Cornuéjols, A. Kapoor, and K. Vušković, Even-hole-free graphs part II: recognition algorithm, *Journal of Graph Theory* **40** (2002), pp. 238–266.
12. Courcelle, B. and S. Olariu, Upper bounds to the cliquewidth of graphs, *Discrete Applied Mathematics* **101** (2000), pp. 77–114.
13. Courcelle, B. and S.-i. Oum, Vertex minors, monadic second-order logic, and a conjecture by Seese, *Journal of Combinatorial Theory, Series B* **97** (2007), pp. 91–126.
14. Da Silva, M., *Even-hole-free graphs*, PhD-thesis, School of Computing, University of Leeds, 2008.
15. Da Silva, A. A., A. Silva, C. Linhares-Sales, Even-hole-free planar graphs have bounded treewidth, *Electronic Notes in Discrete Mathematics* **30** (2008), pp. 129–134.
16. Fellows, M. R., F. A. Rosamund, U. Rotics, and S. Szeider, Clique-width minimization is NP-hard, *Proceedings 38th STOC 2006*, pp. 354–362.
17. Flüm, J. and M. Grohe, *Parameterized complexity theory*, Springer-Verlag, 2006.
18. Hliněný, P., A parametrized algorithm for matroid branchwidth, *SIAM Journal on Computing* **35** (2005), pp. 259–277.
19. Hliněný, P. and S.-i. Oum, Finding branch-decompositions and rank-decompositions, *Proceedings 15th ESA 2007*, Springer-Verlag LNCS 4698 (2007), pp. 163–174.
20. Kantor, W. M., Moore geometries and rank 3 groups having $\mu = 1$, *The Quarterly Journal of Mathematics* **28** (1977), pp. 309–328.
21. Kloks, T., H. Müller, and K. Vušković, Even-hole-free graphs that do not contain diamonds: a structure theorem and its consequences. Manuscript 2007.
22. Makowsky, J. A. and U. Rotics, On the clique-width of graphs with few P_4 's, *International Journal of Foundations of Computer Science* **10** (1999), pp. 329–348.
23. Miller, M. and J. Širáň, Moore graphs and beyond: a survey of the degree/diameter problem, *The Electronic Journal of Combinatorics* (2005), #DS14.
24. Ore, O., *Theory of graphs*, American Mathematical Society, Colloquium Publications Vol. 38, Providence, RI (1962).
25. Oum, S.-i., *Graphs of bounded rank-width*, PhD Thesis, Princeton University, 2005.
26. Oum, S.-i., Rank-width and vertex-minors, *Journal of Combinatorial Theory, Series B* **95** (2005), pp. 79–100.
27. Oum, S.-i. and P. Seymour, Approximating clique-width and branch-width, *Journal of Combinatorial Theory, Series B* **96** (2006), pp. 514–528.
28. Parthasarathy, K. R. and N. Srinivasan, Some general constructions of geodetic blocks, *Journal of Combinatorial Theory, Series B* **33** (1982), pp. 121–136.

29. Plesník, J., Two constructions of geodetic graphs, *Math. Slovaca* **27** (1977), pp. 65–77.
30. Scapellato, R., Geodetic graphs of diameter two and some related structures, *Journal of Combinatorial Theory, Series B* **44** (1986), pp. 218–229.
31. Stemple, J. G. and M. E. Watkins, On planar geodetic graphs, *Journal of Combinatorial Theory* **4** (1968), pp. 101–117.
32. Stemple, J. G., Geodetic graphs of diameter 2, *Journal of Combinatorial Theory, Series B* **17** (1974), pp. 266–280.
33. Stemple, J. G., Geodetic graphs homeomorphic to a complete graph, *Annals of New York Academy of Sciences*, **319** (1979), pp. 512–517.
34. Tarjan, R. E., Decomposition by clique separators, *Discrete Mathematics* **55** (1985), pp. 221–232.
35. Watkins, M., Characterizations of planar geodetic graphs, *Journal of Combinatorial Theory* **2** (1967), pp. 102–103.
36. Zelinka, B., Geodetic graphs of diameter two, *Czechoslovak Mathematical Journal* **25** (1975), pp. 148–153.