Engenharia Electrotécnica

Exame Normal de Álgebra Linear (1^0 ano/ 1^0 sem.)

10 de janeiro de 2019 Duração: 2h30

1. Considere o sistema linear
$$\left\{ \begin{array}{lll} x+y+2z-w&=&-1\\ x+y-z+w&=&2\\ 3z-2\beta w&=&\alpha \end{array} \right., \quad \alpha,\beta\in {\rm I\!R}.$$

- [2.5] (a) Discuta o sistema em função dos parâmetros reais α e β .
 - (b) Faça $\alpha = -1$ e $\beta = 2$.
- [1.0] i. Resolva o sistema e indique o respetivo conjunto solução.
- [1.0] ii. Indique, se existirem, duas soluções particulares do sistema.
 - 2. Considere as matrizes $A^{-1} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 2 & 2 \\ 0 & 3 & -2 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 2 & 2 \end{bmatrix}$.
- [1.5] (a) Justifique que B é invertível, usando apenas determinantes.
- [1.5] (b) Calcule $(AB^{-1})^{-1}$.
 - 3. Consider os vectores u = (-k, 1, 1), v = (0, 2k + 1, 0) e w = (1, 1, -1) de \mathbb{R}^3 .
- [2.0] (a) Determine k de modo a que u, v e w sejam linearmente independentes.
 - (b) Faca k = 1.
- [1.5] i. Diga, justificando, se $u, v \in w$ geram \mathbb{R}^3 .
- [1.5] ii. Diga se u é combinação linear de v e w e, em caso afirmativo, escreva a combinação linear.
 - 4. Seja C uma matriz quadrada de ordem 3, com o valor próprio $\lambda = 4$ e tal que $\det(C) = 12$ e $\operatorname{tr}(C) = 8$.
- [1.0] (a) Determine, justificando, os outros valores próprios de C.
- [1.5] (b) Diga, justificando, se a matriz C é diagonalizável.
 - 5. Considere a matriz real $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 5 & 2 \end{bmatrix}$.
- [2.5] (a) Diga, justificando, se a matriz A é diagonalizável?
- [1.0] (b) Determine o polinómio característico da matriz A.
- [1.5] (c) Use o teorema de Cayley-Hamilton para encontrar uma expressão simplificada para $A^4 4A^3 + 3I$.