

(19)

Russian Agency for Patents and Trademarks

(11) Publication number: RU 2083798 Cl

(46) Date of publication: 19970710

(21) Application number: 95100927

(22) Date of filing: 19950117

(51) Int. Cl: E21B33/12

(71) Applicant: Tovarishchestvo s ogranichennoj otvetstvennost'ju "LOKS"

(72) Inventor: Fatkullin R.Kh., Abdurakhmanov G.S., Vakula Ja.V., Zajnulin A.G., Fatkullin R.Kh., Abdurakhmanov G.S., Vakula Ja.V., Zajnulin A.G..

(73) Proprietor: Tovarishchestvo s ogranichennoj otvetstvennost'ju "LOKS"

(54) METHOD FOR SEPARATING BEDS IN WELL BY SHAPED BLOCKING UNIT

(57) Abstract:

FIELD: oil and gas industry. SUBSTANCE: this is used when difficult conditions occur in drilling holes. Method ensures higher reliability and tightness in isolation of beds. According to method, pipes are specifically profiled so that to make them longitudinally corrugated. Ends of pipes are left cylindrical without corrugations. Sections of profiled parts adjacent to cylindrical ends are upset to diameter of circumference described around them which is by 2-3% is less than diameter of circumference described around middle part of pipes. Made over perimeter of upset sections are endless rims and they are of height at which diameter of circumference described around them is close to diameter of circumference described around middle part of pipes. Then, corrugations are filled with sealing compound. Pipes are screwed together and blocking unit is lowered down to required level of well. EFFECT: high efficiency. 6 dwge

BEST AVAILABLE COPY

(21) Application number: 95100927

(22) Date of filing: 19950117

(51) Int. Cl: E21B33/12

(56) References cited:

Нефтяное хозяйство, N 4, 1982, с. 26 - 28. Авторское свидетельство СССР N 907220, кл. Е 21 В 33/12, 1982.

(71) Applicant: Товарищество с ограниченной ответственностью "ЛОКС"

(72) Inventor: Фаткуллин Р.Х., Абдрахманов Г.С., Вакула Я.В., Зайнуллин А.Г., Фаткуллин Р.Х., Абдрахманов Г.С., Вакула Я.В., Зайнуллин А.Г.,

(73) Proprietor: Товарищество с ограниченной ответственностью "ЛОКС"

(54) СПОСОБ РАЗОБЩЕНИЯ ПЛАСТОВ В СКВАЖИНЕ ПРОФИЛЬНЫМ ПЕРЕКРЫВАТЕЛЕМ

(57) Abstract:

Использование: в нефтегазодобывающей промышленности, в частности в технологии изоляции зон осложнения при бурении скважин с помощью профильных перекрываемателей. Обеспечивает повышение надежности и герметичности разобщения пластов. Сущность изобретения: по способу осуществляют профилирование труб, для этого на трубах образуют продольные гофры. Концы труб оставляют с цилиндрическими концами. Участки профильных частей, прилегающих к цилиндрическим концам, осаживают до диаметра описанной вокруг них окружности на 2-3% меньшего диаметра окружности, описанной вокруг средней части труб. По периметру осаженных участков выполняют замкнутые ободья. Они имеют высоту, при которой диаметр описанной вокруг них окружности приближен к диаметру окружности, описанной вокруг средней части труб. Затем гофры заполняют герметиком. Трубы свинчивают и осуществляют спуск перекрываемателя в необходимый интервал скважины. 6 ил.

Description [Описание изобретения]:

Изобретение относится к нефтегазодобывающей промышленности, в частности к технологии изоляции зон осложнения бурения скважин с помощью профильных перекрываемателей.

Известен способ разобщения пластов в скважине профильным перекрываемателем, включающий профилирование составляющих его обсадных труб с образованием продольных гофр (складок) и цилиндрических концов, заполнение впадин гор герметиков, свинчивание спрофилированных труб, спуск перекрываемателя в необходимый интервал скважины, радиальное расширение его до диаметра скважины и развалицовывание (1).

Недостатком этого способа является то, что при расширении перекрываемателя давлением изнутри выпуклые части гофр при упирании в стенку скважины препятствуют распространению герметика вокруг перекрываемателя, вследствие чего он выдавливается в продольных направлениях по впадинам гофр, оставляя разгерметизированные участки, в результате чего не обеспечивается герметичность и надежность разобщения пластов.

Известна попытка устранить этот недостаток путем установки на концах перекрываемателя цилиндрических пакеров, в которых уплотнительный элемент размещен в наружной кольцевой проточке патрубка (патент США п 5083608 от 28.01.92 г. кл. 166-55).

Однако при развалицовывании пакеров до плотного прижатия их стенок к стенке скважины нарушалась целостность патрубков и уплотнительных элементов из-за чрезмерной деформации их, что также не обеспечивало необходимых надежности и герметичности разобщения пластов.

Наиболее близким к предлагаемому по количеству совпадающих существенных признаков является способ разобщения пластов в скважине профильным перекрываемателем, включающий профилирование составляющих его труб с образованием продольных гофр (складок) и цилиндрических концов, осаждение этих концов труб до диаметра описанной окружности их профильной части, заполнение впадин гофр (складок) герметиком, свинчивание труб и спуск перекрываемателя в необходимый интервал скважины, радиальное расширение перекрываемателя до диаметра скважины в интервале его установки и развалицовывания (2).

Этот способ имеет те же недостатки, которые отмечены при критике аналога (1), поскольку вопрос герметизации затрубного пространства в обоих случаях решается закладкой герметика в складки гофр.

Цель изобретения повышение надежности и герметичности разобщения пластов.

Указанная цель достигается тем, что в описываемом способе, включающем профилирование составляющих его труб с образованием продольных гофр (складок) и цилиндрических концов, осаждение этих концов труб до диаметра описанной окружности их профильной части, заполнение складок гофр герметиком, свинчивание труб и спуск перекрываемателя в необходимый интервал скважины, радиальное расширение перекрываемателя внутренним давлением до диаметра скважины в интервале его установки и развалицовывания, согласно изобретению, участки профильных частей концевых труб перекрываемателя, прилегающие к их цилиндрическим концам, перед свинчиванием труб осаживают до диаметра описанной вокруг них окружности на 2-3% меньшего по сравнению с диаметром окружности, описанной вокруг их средней части, и по периметру осаженных профильных участков выполняют замкнутые ободья (рубцы) с высотой, при которой диаметр окружности, описанной вокруг этих ободьев (рубцов), приблизительно равен диаметру окружности, описанной вокруг средней профильной части труб.

При проведении патентного поиска не обнаружены способы изоляции пластов профильными перекрываемателями с указанной совокупностью признаков. Следовательно, данное техническое решение соответствует критерию патентоспособности "Новизна", а "промышленная применимость" его очевидна.

Проверка изобретательского уровня не выявила технических решений, содержащих указанные отличительные признаки. Следовательно, данное изобретение соответствует и третьему критерию патентоспособности "Изобретательский уровень".

На фиг. 1 показан профильный перекрываематель, позиционированный в интервале его установки в скважине; на фиг. 2 профильный перекрываематель, установленный в скважине; на фиг. 3 сечение по А-А на фиг. 1; на фиг. 4 процесс профилирования трубы с одновременным осаждением ее цилиндрических концов и калиброванием профильной части; на фиг. 5 осаждение концевых участков профильной части концевых труб перекрываемателя; на фиг. 6 концевая труба перекрываемателя с укрепленными на ней ободьями (рубцами).

Способ осуществляют следующим образом. Входящие в компоновку перекрывателя 1 (фиг. 1) трубы 2 (фиг. 4) профилируют известным способом с помощью протяжного механизма (не показан) и устройства для профилирования 3, оставляя концы 4 цилиндрическими. Одновременно с профилированием с помощью фильтры 5 концы 4 осаживают до диаметра D_1 , равного диаметру D_2 окружности, описанной вокруг профильной части трубы 2, и спрофилированную часть ее калибруют. В результате профилирования трубы 2 образуются две продольные гофры (складки) 6 с выпуклостями 7 и впадинами 8 (фиг. 3).

Затем прилегающие к цилиндрическим концам 4 участки 9 профильных труб 2, предназначенных для установки на концах перекрывателя 1, с помощью фильтры 10 (фиг. 5) дополнительно осаживают до диаметра D_3 , описанной вокруг этих участков 9 окружности на 2-3% меньшего по сравнению с диаметром D_2 - окружности, описанной вокруг их средней части после ее калибрования. Протяженность участков 9 определяют с учетом общей длины перекрывателя, диаметра скважины и состояния стенок в интервале его установки. На практике она варьируется в пределах 1-2 м. Пределы дополнительного осаживания участков 9 труб 2 обосновываются тем, что осадка менее 2% не даст желательного результата, а при осадке более 3% произойдет чрезмерное уменьшение радиуса изгиба впадин 8 гофр 6, вследствие чего в местах изгиба стенок труб будет происходить перенапряжение металла с образованием микротрещин, что при последующем радиальном расширении перекрывателя может привести к нарушению целостности его стенки.

Далее по периметру участков 9 с интервалом примерно 200-300 мм выполняют замкнутые рубцы (ободья) 11 (фиг. 1, 3, 6), например, при варной проволоки, шин и т.п. При этом высота рубцов (ободьев) 11 принимается такой, при которой диаметр D_4 , описанной вокруг них окружности приблизительно равен диаметру D_2 окружности, описанной вокруг средней профильной части труб 2 после их калибрования. Таким образом, после выполнения указанных выше операций диаметры D_1 цилиндрических концов труб 2 и диаметры D_2 и D_4 описанных окружностей вокруг средней профильной части труб 2 и рубцов (ободьев) 11 приблизительно равны.

Затем подготовленные указанным образом трубы 2 свинчивают между собой, располагая при этом трубы с ободьями (рубцами) 11 по концам перекрывателя 1, который потом на колонне бурильных труб спускают в необходимый интервал скважины (фиг. 1). При этом в складки (впадины) 8 гофр 6 закладывают герметик 12, например, мастику ЛТ-1 и т.п. (фиг. 2). В позиционированном в зоне установки перекрывателе 1 закачкой жидкости создают давление, необходимое для его радиального расширения до прижатия его стенки к стенке скважины. При этом нижний конец перекрывателя снабжают башмаком 13 с клапаном (не показан). Далее колонну бурильных труб отсоединяют от перекрывателя и, подняв ее из скважины и присоединив к ней разводы, снова спускают в скважину. Затем вращением колонны разводы выворачивают перекрыватель 1, прижимая его стенки еще более плотнее к стенке скважины с одновременным калиброванием его проходного канала 14 (фиг. 2). При этом рубцы (ободья) 11, врезаясь частично в стенку скважины, образуют замкнутые полости 15, которые при раздаче осаженных участков 9 перекрывателя 1 заполняются герметиком 12 по всей окружности, образуя уплотнения в виде колец. В свою очередь рубцы (ободья) 11, упираясь в стенку скважины, дополнительно уплотняют затрубное пространство скважины на участках 9 перекрывателя 1. В целом обеспечивается надежное разобщение пластов в скважине.

Claims [Формула изобретения]:

Способ разобщения пластов в скважине профильным перекрываемателем, включающий профилирование составляющих его труб с образованием продольных гофр и цилиндрических концов, осаживание этих концов труб до диаметра описанной окружности их профильной части, заполнение впадин гофр герметиком, свинчивание труб и спуск перекрываемателя в необходимый интервал скважины, радиальное расширение перекрываемателя до диаметра скважины в интервале его установки и развалицовывание, отличающийся тем, что участки профильных частей концевых труб перекрываемателя, прилегающие к цилиндрическим их концам, перед свинчиванием труб осаживаются до диаметра описанной вокруг них окружности, на 2-3% меньшего по сравнению с диаметром окружности, описанной вокруг их средней части, и по периметру осаженных профильных участков выполняют замкнутые ободья с высотой, при которой диаметр описанной вокруг них окружности приближен к диаметру окружности, описанной вокруг средней профильной части труб.

Drawing(s) [Чертежи]:

Фиг.1

Фиг. 2

A-A

Фиг.3

Фиг.4

**(54) METHOD FOR ISOLATING FORMATIONS IN WELL BY USE OF
BLOCKING DEVICE**

(57) Abstract:

Use: The present invention relates to oil and gas production; in particular, it relates to a method for isolating troublesome zones with shaped blocking devices in the course of drilling wells. The method improves the formation isolation reliability. **Substance of invention:** Pipes are shaped and longitudinally corrugated. The pipe ends are left cylindrical. The shaped sections adjacent to the cylindrical ends are upset to the diameter of a circle circumscribed around these sections, which diameter is 2 to 3% smaller than that of a circle circumscribed around the middle section of the pipes. Closed ribs are spaced over the entire perimeter of the upset sections. The rib height is selected so that the diameter of a circle circumscribed around the rims be close to that of a circle circumscribed around the middle shaped section of the pipes. Thereupon, the corrugations are filled with sealing compound. The pipes are screwed together, whereupon the blocking device is lowered into the well and positioned in the troublesome interval. 6 dwgs

Description:

The invention relates to oil and gas production, and in particular it relates to a method for isolating troublesome zones with shaped blocking devices when drilling wells.

A known method for isolating formations in a well with the use of a shaped blocking device consists in shaping casing pipes, to be used as the blocking device components by longitudinally corrugating these pipes while leaving their ends cylindrical, filling the corrugation grooves with sealing compound, screwing the shaped pipes together, lowering the blocking device to the troublesome internal in the well, radially enlarging this device to the well diameter and expanding the blocking device (1).

The drawback to this method is that when the blocking device is being enlarged by an internal pressure the corrugation ridges abutting against the well walls prevent the spreading of the sealing compound around the blocking device; because of this sealing compound is longitudinally squeezed out along the corrugation grooves with the result that some areas are not sealed and, consequently, the formations are not reliably isolated.

An attempt was made to eliminate this drawback by fitting the ends of the blocking device with cylindrical packers, the packing element of which is located in the outer annular recess in the connecting branch (US Patent No. 5083608 of 1.28.92, cl. 165-55).

However, when packers were expanded until their walls were tightly pressed against the well walls the packers were excessively deformed and, consequently, their connecting branches and packing elements were damaged, owing to which the requisite reliability of formation isolation was not obtained, either.

Closest to the proposed method in the number of coinciding essential features is the method for isolating formations in the well with the use of a shaped blocking device, which method consists in shaping the blocking device component pipes so that they are longitudinally corrugated and their ends are left cylindrical, upsetting these ends to the diameter of a circle circumscribed around the shaped sections of the pipes, filling the corrugation grooves with sealing compound, screwing the pipes together, lowering the blocking device into the well until it is positioned in the troublesome interval, radially enlarging this device to the well diameter in this interval and additionally expanding the blocking device (2).

This method has the same drawback as the analog (1) since in both cases the string-borehole annulus is sealed off by filling sealing compound into the corrugation grooves.

The object of the present invention is to improve the formation isolation reliability.

This object is achieved as follows. In the proposed method consisting in shaping the blocking device component pipes so that they are longitudinally corrugated and their ends are left cylindrical, upsetting these ends to the diameter of a circle circumscribed around the shaped sections of the pipes, filling the corrugation grooves with sealing compound,

screwing the pipes together, lowering the blocking device into the well until it is positioned in the troublesome interval, radially enlarging this device by means of an internal pressure to the well diameter in this interval and expanding the blocking device the shaped sections of the blocking device end pipes, which are adjacent to their cylindrical ends, are upset before screwing the pipes together to the diameter of a circle circumscribed around these sections, which diameter is 2 to 3% smaller than the diameter of a circle circumscribed around the middle section of the pipes and closed ribs are spaced over the entire perimeter of the upset sections, the rib height being selected so that the diameter of a circle circumscribed around the ribs be close to that of a circle circumscribed around the middle shaped section of the pipes.

No methods for isolating formations by means of shaped blocking devices with the above combination of features have been identified in the course of the patent search. Therefore, the proposed method meets the novelty criterion of patentability, and its industrial applicability is evident.

No designs having the above distinctive features have been identified during the inventive level check. Therefore, the present invention meets the third—inventive level—criterion of patentability.

Fig. 1 shows the shaped blocking device positioned in the troublesome interval in a well, Fig. 2 shows the shaped blocking device mounted in a well, Fig. 3 is a section A-A in Fig. 1, Fig. 4 illustrates a pipe shaping process consisting in the simultaneous upsetting of the cylindrical ends of the pipe and sizing of its shaped section, Fig. 5 illustrates the process of upsetting the end portions of the shaped sections of the blocking device, and Fig. 6 shows the blocking device end pipe with ribs fixed thereon.

The proposed method is as follows. Component pipes 2 (Fig. 4) of blocking device 1 (Fig. 1) are shaped by a known method with the use of a drawing mechanism (not shown) and a shaping device 3 so that pipe ends 4 are left cylindrical. While shaping the pipes their ends 4 are upset by means of die 5 to the diameter Δ_1 , which is equal to the diameter Δ_2 of a circle circumscribed around the shaped section of the pipe 2 and the shaped section is sized. The pipe shaping process produces two longitudinal corrugations consisting of ridges 7 and grooves 8 (Fig. 3).

Then, sections 9 of the shaped pipes 2, which are adjacent to the cylindrical ends and which are to be located at the ends of the blocking device 1, are additionally upset by means of die 10 (Fig. 5) to the diameter Δ_3 of a circle circumscribed around the sections 9, whose diameter is 2 to 3% smaller than the diameter Δ_2 of a circle circumscribed around the middle section of the pipes after its sizing. The length of the sections 9 is determined taking into account the total length of the blocking device, the well diameter and the condition of the well walls in the zone where the blocking device is to be installed. In practice it varies within 1 to 2 m. The selected range of upsetting the sections 9 of the pipes 2 is based on the fact that their upsetting to a diameter which is smaller than the diameter Δ_2 by less than 2% does not yield the desired result and their upsetting to a diameter which is smaller than the diameter Δ_2 by more than 3% will

excessively reduce the radius of the bend of the grooves 8 of the corrugations 6; consequently, overstresses will develop at the pipe wall bending points with the resulting formation of microcracks, which may cause damage to the blocking device walls during the subsequent radial enlargement of the blocking device.

Following this, closed ribs 11 (Figs. 1, 3 and 6) made of wire, busbars and the like are spaced over the entire perimeter of the sections 9 at about 200 to 300 mm intervals. The rib height is selected so that the diameter Δ_4 of a circle circumscribed around the ribs be approximately equal to the diameter Δ_2 of a circle circumscribed around the middle shaped section of the pipes 2 after its sizing. Thus, after performing the above operations the diameters Δ_1 of the cylindrical ends of the pipes 2 and the diameters Δ_2 and Δ_4 of circles circumscribed around the middle shaped section of the pipes 2 and the ribs are approximately equal.

Thereupon, the pipes prepared in the manner described above are screwed together so that the pipes carrying the ribs 11 are located at the ends of the blocking device 1 which is then connected to a drill string and the string is lowered into the well so that the blocking device is positioned in the troublesome interval in the well. Sealing compound 12, for instance, mastic ЛТ-1 or the like, is filled into the grooves 8 of the corrugations 6. Once the blocking device 1 is positioned as required a pressure needed for its radial expansion until its walls are forced against the well walls is developed inside the blocking device. The bottom end of the blocking device is fitted with shoe 13 carrying a valve (not shown). Following this, the drill string is disconnected from the blocking device and lifted out of the well, whereupon an expander is connected to the drill string which is lowered into the well again. Then, the drill string is imparted rotation with the result that the blocking device is expanded so that its walls are pressed even more tightly against the well walls and, at the same time, its flow channel 14 (Fig. 2) is sized. The ribs cut into the well walls forming closed spaces 15, and when the upset sections 9 of the blocking device 1 are expanded these spaces are filled with sealing compound around the entire circumference with the result that annular seals are formed. In their turn, the ribs 11 abutting against the well walls additionally seal off the string-borehole annulus over the sections 9 of the blocking device 1. On the whole, a reliable isolation of the formations in the well is ensured.

Claims:

A method for isolating formations in a well by use of a shaped blocking device, which consists in shaping the blocking device component pipes so that they are longitudinally corrugated and their ends are left cylindrical, upsetting these ends to the diameter of a circle circumscribed around the shaped sections of the pipes, filling the corrugation grooves with sealing compound, screwing the pipes together, lowering the blocking device until it is positioned in the troublesome interval, radially enlarging this device to the well diameter in this interval and expanding the blocking device and wherein the shaped sections of the blocking device end pipes, which are adjacent to their cylindrical ends, are upset before screwing the pipes together to the diameter of a circle circumscribed around these sections, which diameter is 2 to 3% smaller than the diameter of a circle circumscribed around the middle section of the pipes and closed ribs are spaced over the entire perimeter of the upset sections, the rib height being selected so that the diameter of a circle circumscribed around the ribs be close to that of a circle circumscribed around the middle shaped section of the pipes.

Drawings:

[see source for figure]

Fig. 1

[see source for figure]

Fig. 2

[see source for figure]

Fig. 3

Fig. 4

[see source for figure]

Fig. 5

Fig. 6

TRANSPERFECT TRANSLATIONS

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Russian to English:

RU2016345 C1
RU2039214 C1
RU2056201 C1
RU2064357 C1
RU2068940 C1
RU2068943 C1
RU2079633 C1
RU2083798 C1
RU2091655 C1
RU2095179 C1
RU2105128 C1
RU2108445 C1
RU21444128 C1
SU1041671 A
SU1051222 A
SU1086118 A
SU1158400 A
SU1212575 A
SU1250637 A1
SU1295799 A1
SU1411434 A1
SU1430498 A1
SU1432190 A1
SU 1601330 A1
SU 001627663 A
SU 1659621 A1
SU 1663179 A2
SU 1663180 A1
SU 1677225 A1
SU 1677248 A1
SU 1686123 A1
SU 001710694 A
SU 001745873 A1
SU 001810482 A1
SU 001818459 A1
350833
SU 607950
SU 612004
620582
641070
853089
832049
WO 95/03476

Page 2
TransPerfect Translations
Affidavit Of Accuracy
Russian to English Patent Translations

Kim Stewart

Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
23rd day of January 2002.

Maria A. Serna

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.