Mining database of multiple graphs

Graph notations

- G = (V, E) graph
- $V = \{v_1, \dots, v_n\} = \text{set}$ of vertices or nodes
- |V| = number of nodes
- node label $l(v_i)$
- $\mathbf{E} = \{e_1, \dots, e_m\} = \text{set}$ of edges, $e_i = (v, u)$, $v, u \in V$
- $|\mathbf{E}|$ = number of edges

Now we assume that edges undirected and don't have labels

Graph isomorphism of unlabelled graphs

Two unlabelled graphs $G_1 = (V, E)$ and $G_2 = (U, F)$ are isomorphic or matching if there is an edge-preserving bijection $f : V \to U$ such that for any $v_1, v_2 \in V$: $(v_1, v_2) \in E \Leftrightarrow (f(v_1), f(v_2)) \in F$.

Matching can be presented as $\mathcal{M} = \{(v, u) \mid v \in V, u \in U, u = f(v)\}$

Graph isomorphism of labelled graphs

Two labelled graphs $G_1 = (V, E)$ and $G_2 = (U, F)$ are isomorphic, if there is an edge- and label-preserving bijection $f : V \to U$ such that

- (i) Corresponding nodes have same labels: $\forall v \in \mathbf{V}$ and $f(v) \in \mathbf{U} \ l(v) = l(f(v))$.
- (ii) An edge between matched nodes exists in G_1 iff the corresponding edge exists in G_2 : $\forall v_1, v_2 \in \mathbf{V}$: $(v_1, v_2) \in \mathbf{E} \Leftrightarrow (f(v_1), f(v_2)) \in \mathbf{F}$.

Note: no polynomial time algorithms are known (except special cases)

There can be many matchings!

Two matchings for molecules 1 and 2. Totally 4!=24 matchings!

$$\mathcal{M} = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}\$$
 $\mathcal{M} = \{(1,1), (2,2), (3,4), (4,3), (5,5)\}\$

$$\mathcal{M} = \{(1,1), (2,2), (3,4), (4,3), (5,5)\}$$

Image source: Aggarwal Fig. 17.2

Subgraph isomorphism

Does a certain query graph G_q match a part of another graph G?

Query graph $G_q = (V, E)$ is a subgraph isomporphism of G = (U, F), if there is an injection $f : V \to U$ such that

- (i) For all $v \in V$ there is $f(v) \in U$ such that l(v) = l(f(v)); and
- (ii) For any $v_1, v_2 \in V$: $(v_1, v_2) \in E \Leftrightarrow (f(v_1), f(v_2)) \in F$.

Notes: 1) Usually it is required that the graphs are connected.

2) Sometimes a weaker condition suffices for (ii):

if
$$(v_1, v_2) \in \mathbf{E} \Rightarrow (f(v_1), f(v_2)) \in \mathbf{F}$$

Subgraph isomorphism: example

Algorithm: see Aggarwal Ch 17.2.1

Image source: Aggarwal Fig. 17.3

Maximum common subgraph (MCG)

Problem: Given G_1 and G_2 , find $G_0 = (V_0, E_0)$ such that

- (i) G_0 is a subgraph isomorphism of both G_1 and G_2 and
- (ii) $|V_0|$ is as large as possible.

- + useful for comparing graphs
 - distances between graphs
 - frequent subgraph discovery
- NP-hard problem (like subgraph isomorphism)

Algorithm for $MCG(G_1, G_2)$

```
function MCG(\mathbf{G}_1, \mathbf{G}_2, \mathcal{M}, \mathcal{M}_{best})
/* Create candidates for matching node pairs */
C = \{(v, u) \mid v \in \mathbf{V}, u \in \mathbf{U}, l(v) = l(u), (v, u) \notin \mathcal{M}\}
Prune C
/* Recursion: */
for all (v, u) \in C
    if valid(\mathcal{M}, (v, u))
                                                         // is (u, v) a valid extension?
        \mathcal{M}_{best} = MCG(\mathbf{G}1, \mathbf{G}2, \mathcal{M} \cup (v, u), \mathcal{M}_{best})
if (|\mathcal{M}| > |\mathcal{M}_{best}|)
    return M
else return \mathcal{M}_{best}
```

 $G_1 = (V, E), G_2 = (U, F)$ Call: $MCG(G_1, G_2, \emptyset, \emptyset)$

Algorithm: valid extensions

valid(\mathcal{M} , (v, u)) **if** $(\exists u_2 \in \mathbf{U} : ((u, u_2) \in F) \&\&((v_2, u_2) \in \mathcal{M}) \&\&((v, v_2) \notin E))$ **or** $(\exists v_2 \in \mathbf{V} : ((v, v_2) \in E) \&\&((v_2, u_2) \in \mathcal{M}) \&\&((u, u_2) \notin F))$ return 0 **else** return 1

E.g., $\mathcal{M} = \{(1,1),(2,2),(3,3),(6,5)\}.$ (4,4) is invalid extension – why? Is there any valid extension?

Next to distances

Distances based on maximum common subgraphs

- Let's assume graph size = number of nodes, i.e., for G = (V, E) notate |G| = |V|
- Let $MCS(G_1, G_2)$ =maximum common subgraph of G_1 and G_2 and $|MCS(G_1, G_2)|$ =its size

1. Unnormalized non-matching measure:

$$U(\mathbf{G}_1, \mathbf{G}_2) = |\mathbf{G}_1| + |\mathbf{G}_2| - 2 \cdot |MCS(\mathbf{G}_1, \mathbf{G}_2)|$$

- = number on non-matching nodes
- Problem: what if graphs have very different sizes?

Normalized MCS distances

2. Union-normalized distance $Udist \in [0, 1]$

$$Udist(\mathbf{G}_1, \mathbf{G}_2) = 1 - \frac{|MCS(\mathbf{G}_1, \mathbf{G}_2)|}{|\mathbf{G}_1| + |\mathbf{G}_2| - |MCS(\mathbf{G}_1, \mathbf{G}_2)|}$$

- = number of non-matching nodes normalized by union size
- 3. Max-normalized distance $Mdist \in [0, 1]$

$$Mdist(\mathbf{G}_1, \mathbf{G}_2) = 1 - \frac{|MCS(\mathbf{G}_1, \mathbf{G}_2)|}{\max\{|\mathbf{G}_1|, |\mathbf{G}_2|\}}$$

metric

MCS distances can be computed efficiently only for small graphs!

Graph edit distance

What is the minimum cost of edit operations to transform G_1 to G_2 ?

- (i) node insertion
- (ii) node deletion (deletes also incident edges)
- (iii) edge insertion
- (iv) edge deletion
 - (v) label substitution of nodes
 - application-specific costs
 - may be exponentially many possible edit paths!
 - NP-hard

Graph edit distance: example

Image source: Aggarwal Fig. 17.6

Transformation-based distances

Idea: Transform graphs into a new space where distances are easier to calculate

- a) Type transport using frequent subgraphs
- b) Topological descriptors
- c) Kernel similarity

Type transport using frequent subgraphs

 f_i = number of times ith subgraph occurs in Gor binary or tf-idf presentation

involves an NP-hard subproblem

Topological descriptors

Idea: calculate different kinds of indices from graphs ⇒ new numerical features ⇒ Use distances for numerical data

- structural information lost
- utility domain-specific (e.g., good in chemical domain)
- e.g., Wiener index:

$$W(\mathbf{G}) = \sum_{v,u \in \mathbf{V}} d(v,u)$$

d(v, u)=length of shortest path from v to u

more in Aggarwal Ch 17.3.2

Kernel similarity

Idea:

- Assume transformation Φ such that similarity of G_1 and G_2 can be measured by $\Phi(G_1) \cdot \Phi(G_2)$
- Design kernel function K such that $K(\mathbf{G}_1, \mathbf{G}_2) = \Phi(\mathbf{G}_1) \cdot \Phi(\mathbf{G}_2)$ and use it as a similarity measure (without transformation)
- e.g. shortest path kernel $(O(n^4))$ and random walk kernel $(O(n^6))$
- practical for small graphs
- more in Aggarwal Ch 17.3.3

Next to frequent subgraph discovery

Frequent subgraph discovery: Motivation

Image source: https://slideplayer.com/slide/5894097/

Frequent subgraph discovery

Task: Given graph database, search frequent subgraphs given threshold \min_{fr} .

- Search idea: utilize monotonicity of frequency!
- If G_1 is a subgraph of G_2 , then $fr(G_1) \ge fr(G_2)$
- similar algorithms than for frequent itemsets, but more complex
- two variants: size of graph may refer to a) number of nodes b) number of edges
 - ⇒ how new candidates are generated

GraphApriori algorithm

 \mathcal{F}_i = frequent subgraphs of size i, C_i = candidates

- $\mathcal{F}_1 = \{ \mathbf{G} \mid \text{where } |\mathbf{G}| = 1, P(\mathbf{G}) \ge \min_{fr} \}; i = 1$
- while $\mathcal{F}_i \neq \emptyset$
 - ullet generate candidates C_{i+1} from \mathcal{F}_i
 - prune $G \in C_{i+1}$ if G has a subgraph G' such that |G'| = i and $G' \notin \mathcal{F}_i$ (=monotonicity criterion)
 - count frequencies $fr(\mathbf{G})$, $\mathbf{G} \in C_{i+1}$
 - set $\mathcal{F}_{i+1} = \{ \mathbf{G} \in C_{i+1} \mid P(\mathbf{G}) \geq \min_{fr} \}$
 - i = i + 1
- return $\cup_i \mathcal{F}_i$

GraphApriori: Candidate generation

For all
$$G_1, G_2 \in \mathcal{F}_i$$
, $|G_1| = |G_2| = i$

- 1. determine if G_1 and G_2 have a common subgraph G_0 of size i-1
 - may be many isomorphic matchings \Rightarrow many alternative $G_0s!$
- 2. for each G_0 create candidate graphs of size i + 1
 - node-based: include all common + 2 non-matching nodes (with extra edge or not)
 - edge-based: include all i-1 common edges and 2 unique edges (with extra node or not)
- same subgraphs may be generated multiple times ⇒ redundancy checking

Example of node-based join

Image source: Aggarwal Fig. 17.12

Example of edge-based join

Image source: Aggarwal Fig. 17.13

Why this is heavy?

- number of candidate patterns may be huge!
- subgraph isomorphism to identify pairs of subgraphs for joining
- graph isomorphism for redundancy checking
- subgraph isomorphism for monotonicity pruning
- subgraph isomorphism for frequency counting

Easier if

- many unique node labels
- only small subgraphs are searched
- edge-based join is used (usually less candidates)

Next to graph clustering

Distance-based clustering methods

Common approaches:

- 1. *K*-medoids (needs just a distance function)
- 2. Spectral and other graph-based methods
 - construct a nearest neighbour/similarity graph of graph objects
 - cluster nodes of the new graph

Remember: graph distance measures very expensive to compute! → suitable for smaller graphs

Methods based on frequent subgraphs

Approach 1. Type transport: graphs → multidimensional

involves an NP-hard subproblem

 f_i = number of times ith subgraph occurs in Gor binary or tf-idf representation

Methods based on frequent subgraphs

Approach 2. XProj: cluster representatives = sets of frequent subgraphs

- Initialization: Create K random clusters C_1, \ldots, C_K
- for all C_i : \mathcal{F}_i = set of frequent subgraphs (of a given size) from C_i
- repeat until convergence:
 - assign each G_j to C_i where $sim(G_j, \mathcal{F}_i)$ largest
 - for all C_i determine new \mathcal{F}_i

 $sim(G_j, \mathcal{F}_i)$ = fraction of frequent graphs in \mathcal{F}_i that occur in G_j

Summary

Overview of social network analysis

Emphasis:

- Properties of social networks
- Important analysis tasks
- Useful measures and solution principles

More on course CS-E5740 Complex Networks

I Introduction: Types of social networks

- online networks (Twitter, LinkedIn, Facebook)
- indirect communication networks (telecommunications, email, chat messages)
- media sharing sites (Youtube, Instagram, Tiktok)
- interaction networks in professional communities (e.g., citation networks between researchers)
- networks recorded in observational studies (e.g., interactions in a class room, between animals)
- + many more! but not always data

Presentation as a graph G = (V, E)

- V set of nodes corresponding to actors
 - may have labels or content (attributes, documents)
- E set of edges corresponding to links
 - undirected (friendship) or directed ("following")
 - may have weights w_{ij}

Example by Zardi et al. (2014) node attributes: city and education edge weight = number of exchanged messages

Basic properties

Analysis tasks

- Social influence analysis (influential nodes and influence spread)
- Community detection (graph clustering)
- Link prediction (predict future links between nodes)
- Collective classification (predict missing node labels)

Il Social influence analysis

Which nodes have most influence? How influence (information, ideas, opinions) spreads?

A valuable advertising channel!

- 1. Measures for evaluating which nodes are influential:
 - centrality of a node in an undirected graph
 - prestige of a node in a directed graph
- 2. Influence propagation or diffusion models
 - given influence weights on edges and a model to evaluate total influence of a set of nodes
 - determine a set of seed nodes such that spread of influence is maximal

Measures for the centrality of node v

Degree centrality: $C_D(v) = \frac{Degree(v)}{n-1}$

Closeness centrality: $C_C(v) = \frac{1}{avg_{u \in V, u \neq v} \{Dist(v, u)\}} = \frac{n-1}{\sum_{u \in V, u \neq v} Dist(v, u)}$

Betweenness centrality: $C_B(v) = \frac{\sum_{u,w \in V, u \neq w} \frac{\#\{\text{shortest-paths(u,w) through } v\}}{\#\{\text{shortest-paths(u,w)}\}}}{\binom{n}{2}}$

Note: $C_c(v)$ may be calculated such $v \neq u$, $v \neq w$. Image: Aggarwal Fig. 19.1

III Community detection: cluster the graph

Given G = (V, E). Each edge (v_i, v_j) has weight w_{ij}

• if cost c_{ij} , transform, e.g. by $w_{ij} = \frac{1}{c_{ij}} (c_{ij} \neq 0)$

Common objective: Cluster V into groups $V_1, ..., V_K$ such that the edge-cut cost

$$cost(\mathbf{V}_1, \dots, \mathbf{V}_k) = \sum_{(v_i, v_j) \in E, v_i \in \mathbf{V}_p, v_j \in \mathbf{V}_q, p \neq q} w_{ij}$$

is minimal.

- many variants and extra constraints!
- in general NP-hard problem, but polynomially solvable, if $\forall i, j : w_{ij} = 1, K = 2$ and no balancing requirements

Example

Clustering based on both structural and content-based features

Image source: Zardi et al.: A Multi-agent homophily-based approach for community detection in social networks, ICTAI 2014

MDM course Aalto 2023 - p.9/16

Some community detection methods

- 1. Spectral clustering
- 2. Kerninghan-Lin: balanced 2-way partitioning
 - at each iteration, test a set of possible swap sequences and choose the one with greatest improvement

Step #	Vertex pair	Cost reduction	Cut cost
0	-	0	5
1	{d, g}	3	2
2	{c, f}	1	1
3	{b, h}	-2	3
4	{a, e∫	-2	5

Image source: Chang 2004

3. Girwan-Newman algorithm

- remove "bridge edges" until K connected components remain
- edges with high betweenness: large proportion of shortest paths go through them

Image source: Namtirtha et al. 2023

4. METIS algorithm

- Coarsen the graph by combining tightly interconnected nodes and parallel edges
- 2. Partition the coarsened representation (easier)
- 3. Refine partitioning when expanding graphs back

Image source: Aggarwal Fig. 19.6

IV Link prediction and node similarity

Utilize especially structural features!

Approaches:

- 1. Evaluate potential connections with **node similarity measures**
 - + easy and fast to compute
- 2. Learn a classifier for predicting links or their absence
 - + more accurate
 - computationally more expensive
- 3. Use missing value estimation methods (like matrix factorization)

Neighbourhood-based node similarity measures

(a) Many common neighbors between Alice and Bob

(normalized) number of common neighbours

- not good, if number of common neighbours small
- $Jaccard(v_i, v_j) = \frac{|S_i \cap S_j|}{|S_i \cup S_j|}$
- AdamicAdar(v_i, v_j) = $\sum_{v_k \in S_i \cap S_j} \frac{1}{\log(|S_k|)}$

 $S_i = \{v_k \mid v_k \text{ neighbour of } v_i\}$

Image source: Aggarwal Fig. 19.12

Walk-based node similarity measures

Is Alice more similar to Bob or Jim?

(b) Many indirect connections between Alice and Bob

- Personalized PageRank with teleportation to v_i
- SimRank
- Katz measure

$$Katz(v_i, v_j) = \sum_{t=0}^{\infty} \beta^t \cdot n_{ij}^{(t)}$$

 $n_{ij}^{(t)}$ = number of walks of length t between v_i and v_j

 β < 1 discount factor (punishes long walks)

Image sources

- Chang (2004): Unit 4: Circuit partitioning (lecture slides). EDA course, National Taiwan University.
 http://cc.ee.ntu.edu.tw/~ywchang/Courses/EDA04/lec4.pdf
- Namtirtha et al. (2023): Placement Strategies for Water Quality Sensors Using Complex Network Theory for Continuous and Intermittent Water Distribution Systems. Water Resources Research 59(7), doi:10.1029/2022WR033112.
- Zardi et al. (2014): A Multi-agent homophily-based approach for community detection in social networks, IEEE 26th Int. Conf. Tools with Artificial Intelligence, doi: 10.1109/ICTAI.2014.81.