

StudyThinking

卷二 数学物理方程笔记

作者: latalealice

日期: 2024/11/18

目 录

第一章 Fourier Transform	. 1
1.1 definition	. 1
1.2 properties	. 2
1.2.1 linear property	
1.2.2 shift property	
1.2.3 differentiation property	
1.2.4 convolution property	
第二章 Laplace Transform	
2.1 definition	
2.2 properties	
2.2.1 linear property	
2.2.2 shift property	
2.2.3 differentiation property	
2.2.4 convolve property	
第三章 Fundamental Equations of Mathematical Physics	. 5
3.1 wave equation	
3.2 wave equation with a source term	. 5
3.3 heat equation	. 5
3.4 heat equation with a source term	. 5
3.5 classification of second-order partial differential equations	
3.6 simplification of second-order partial differential equations	

第一章 Fourier Transform

1.1 definition

$$F(\lambda) = \mathcal{F}[f(x)] = \int_{-\infty}^{\infty} f(x)e^{-i\lambda x} \, \mathrm{d}x$$

$$f(x) = \mathcal{F}^{-1}[f(x)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda)e^{i\lambda x} \, \mathrm{d}\lambda$$

$$\mathcal{F}[e^{-a|x|}], a > 0$$

$$\mathcal{F}[e^{-a|x|}] = \int_{-\infty}^{\infty} e^{-a|x|}e^{-i\lambda x} \, \mathrm{d}x$$

$$= \int_{-\infty}^{0} e^{ax - i\lambda x} \, \mathrm{d}x + \int_{0}^{\infty} e^{-ax - i\lambda x} \, \mathrm{d}x$$

$$= \frac{1}{a - i\lambda} e^{(a - i\lambda)x}|_{-\infty}^{0} - \frac{1}{a + i\lambda} e^{-(a + i\lambda)x}|_{0}^{\infty}$$

$$= \frac{1}{a - i\lambda} + \frac{1}{a + i\lambda}$$

$$= \frac{2a}{a^{2} + \lambda^{2}}$$

$$\begin{split} *\lim_{t\to\infty} e^{-(\beta+i\lambda)t} &= 0, \beta > 0 \\ \bullet \ \mathcal{F}\!\left[e^{-ax^2}\right], a &> 0 \\ & \mathcal{F}\!\left[e^{-ax^2}\right] = \int_{-\infty}^\infty e^{-ax^2} e^{-i\lambda x} \,\mathrm{d}x \\ &= \int_{-\infty}^\infty e^{-a\left(x+\frac{i\lambda}{2a}\right)^2 - \frac{\lambda^2}{4a}} \,\mathrm{d}x \\ &= e^{-\frac{\lambda^2}{4a}} \int_{-\infty}^\infty e^{-a\left(x+\frac{i\lambda}{2a}\right)^2} \,\mathrm{d}x \\ &= \sqrt{\frac{\pi}{a}} e^{-\frac{\lambda^2}{4a}} \end{split}$$

*Gaussian integral: $\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$

*Gaussian integral:
$$\int_{-\infty}^{\infty} e^{-ax} \, dx = \sqrt{\frac{\pi}{a}}$$
•
$$\mathcal{F}\left[\cos \eta x^{2}\right], \eta > 0$$

$$\mathcal{F}\left[\cos \eta x^{2}\right] = \int_{-\infty}^{\infty} \cos \eta x^{2} e^{-i\lambda x} \, dx$$

$$= \int_{-\infty}^{\infty} \frac{e^{-i\eta x^{2}} + e^{i\eta x^{2}}}{2} e^{-i\lambda x} \, dx$$

$$= \frac{1}{2} \left(\int_{-\infty}^{\infty} e^{i\eta \left(x - \frac{\lambda}{2\eta}\right)^{2} - i\frac{\lambda^{2}}{4\eta}} \, dx + \int_{-\infty}^{\infty} e^{-i\eta \left(x + \frac{\lambda}{2\eta}\right)^{2} + i\frac{\lambda^{2}}{4\eta}} \, dx \right)$$

$$= \frac{1}{2} e^{-i\frac{\lambda^{2}}{4\eta}} \sqrt{\frac{\pi}{\eta}} e^{i\frac{\pi}{4}} + \frac{1}{2} e^{i\frac{\lambda^{2}}{4\eta}} \sqrt{\frac{\pi}{\eta}} e^{-i\frac{\pi}{4}}$$

$$= \frac{1}{2} \sqrt{\frac{\pi}{\eta}} \left[\cos\left(\frac{\lambda^{2}}{4\eta} - \frac{\pi}{4}\right) - i\sin\left(\frac{\lambda^{2}}{4\eta} - \frac{\pi}{4}\right) + \cos\left(\frac{\lambda^{2}}{4\eta} - \frac{\pi}{4}\right) + i\sin\left(\frac{\lambda^{2}}{4\eta} - \frac{\pi}{4}\right) \right]$$

$$= \sqrt{\frac{\pi}{\eta}} \cos\left(\frac{\lambda^{2}}{4\eta} - \frac{\pi}{4}\right)$$

•
$$\mathcal{F}[\sin \eta x^2], \eta > 0$$

$$\mathcal{F}[\sin \eta x^2] = \sqrt{\frac{\pi}{\eta}} \sin\left(\frac{\lambda^2}{4\eta} + \frac{\pi}{4}\right)$$

*Euler's formula: $e^{ix} = \cos x + i \sin x$

*Gaussian-like integrals: $\int_{-\infty}^{\infty} e^{\pm i\eta x^2} dx = \sqrt{\frac{\pi}{\eta}} e^{\pm i\frac{\pi}{4}}, \eta > 0$

1.2 properties

1.2.1 linear property

$$\mathcal{F}[\alpha f(x) + \beta g(x)] = \alpha \mathcal{F}[f(x)] + \beta \mathcal{F}[g(x)]$$

1.2.2 shift property

$$\mathcal{F}[f(x-b)] = e^{-i\lambda b} \mathcal{F}[f(x)]$$

1.2.3 differentiation property

$$\begin{split} \mathcal{F}[f'(x)] &= i\lambda \mathcal{F}[f(x)] \\ \mathcal{F}\big[f^{(n)}(x)\big] &= (i\lambda)^n \mathcal{F}[f(x)] \\ \mathcal{F}[xf(x)] &= i\frac{\mathrm{d}}{\mathrm{d}\lambda} \mathcal{F}[f(x)] \\ \mathcal{F}[x^n f(x)] &= i^n \frac{\mathrm{d}}{\mathrm{d}\lambda} \mathcal{F}[f(x)] \end{split}$$

1.2.4 convolution property

$$\begin{split} \mathcal{F}[f(x)*g(x)] &= \mathcal{F}[f(x)] \cdot \mathcal{F}[g(x)] \\ \mathcal{F}[f(x)\cdot g(x)] &= \frac{1}{2\pi} \mathcal{F}[f(x)] * \mathcal{F}[g(x)] \end{split}$$

第二章 Laplace Transform

2.1 definition

• $\mathcal{L}[1]$

$$F(p) = \mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-pt} dt$$

$$\mathcal{L}[1] = \int_0^\infty 1 \cdot e^{-pt} dt$$

$$= -\frac{1}{p}e^{-pt}|_0^\infty$$

$$= \frac{1}{p}$$

• $\mathcal{L}[t]$

$$\mathcal{L}[t] = \int_0^\infty t e^{-pt} dt$$

$$= -\frac{1}{p} t e^{-pt} \Big|_0^\infty + \frac{1}{p} \int_0^\infty e^{-pt} dt$$

$$= \frac{1}{p^2}$$

• $\mathcal{L}[e^{at}]$

$$\mathcal{L}[e^{at}] = \int_0^\infty e^{at} e^{-pt} dt$$
$$= \int_0^\infty e^{-(p-a)t} dt$$
$$= \frac{1}{p-a}$$

• $\mathcal{L}[\cos \omega t]$

$$\mathcal{L}[e^{at}] = \int_0^\infty \cos \omega t e^{-pt} \, \mathrm{d}t$$

$$= -\frac{1}{p} \cos \omega t e^{-pt} \Big|_0^\infty - \frac{\omega}{p} \int_0^\infty \sin \omega t e^{-pt} \, \mathrm{d}t$$

$$= \frac{1}{p} + \frac{\omega}{p^2} \sin \omega t e^{-pt} \Big|_0^\infty - \frac{\omega^2}{p^2} \mathcal{L}[\cos \omega t]$$

$$= \frac{p}{p^2 + \omega^2}$$

• $\mathcal{L}[\sin \omega t]$

$$\mathcal{L}[e^{at}] = \int_0^\infty \sin \omega t e^{-pt} \, \mathrm{d}t$$

$$= \frac{1}{2i} \int_0^\infty (e^{i\omega t} - e^{-i\omega t}) e^{-pt} \, \mathrm{d}t$$

$$= \frac{1}{2i} \int_0^\infty (e^{-(p-i\omega)t} - e^{-(p+i\omega)t}) \, \mathrm{d}t$$

$$= \frac{1}{2i} \left(\frac{1}{p-i\omega} - \frac{1}{p+i\omega}\right)$$

$$= \frac{\omega}{p^2 + \omega^2}$$

• $\mathcal{L}[\cosh \omega t]$

$$\begin{split} \mathcal{L}[\cosh \omega t] &= \int_0^\infty \cosh \omega t e^{-pt} \, \mathrm{d}t \\ &= \frac{1}{2} \int_0^\infty \left(e^{-(p-\omega)t} + e^{-(p+\omega)t} \right) \mathrm{d}t \\ &= \frac{1}{2} \left(\frac{1}{p-\omega} + \frac{1}{p+\omega} \right) \\ &= \frac{p}{p^2 - \omega^2} \end{split}$$

• $\mathcal{L}[\sinh \omega t]$

$$\mathcal{L}[\sinh \omega t] = \frac{\omega}{p^2 - \omega^2}$$

2.2 properties

2.2.1 linear property

$$\mathcal{L}[\alpha f(t) + \beta g(t)] = \alpha \mathcal{L}[f(t)] + \beta \mathcal{L}[g(t)]$$

2.2.2 shift property

$$\mathcal{L}[e^{at}f(t)] = F(p-a)$$

2.2.3 differentiation property

$$\begin{split} \mathcal{L}[f'(t)] &= p\mathcal{L}[f(t)] - f(0) \\ \mathcal{L}\left[f^{(n)}(t)\right] &= p^n F(p) - p^{n-1} f(0) - \ldots - p f^{(n-2)}(0) - f^{(n-1)}(0) \\ \mathcal{L}[tf(t)] &= -\frac{\mathrm{d}}{\mathrm{d}p} F(p) \\ \mathcal{L}[t^n f(t)] &= (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}p^n} F(p) \end{split}$$

2.2.4 convolve property

$$f(t) * g(t) = \int_0^t f(t)g(t - \tau) d\tau$$
$$\mathcal{L}[f(t) * g(t)] = F(p) \cdot G(p)$$

第三章 Fundamental Equations of Mathematical Physics

3.1 wave equation

$$\begin{split} u_{tt} &= a^2 u_{xx} \\ u_{tt} &= a^2 \big(u_{xx} + u_{yy}\big) \\ u_{tt} &= a^2 \big(u_{xx} + + u_{yy} + u_{zz}\big) \end{split}$$

3.2 wave equation with a source term

$$\begin{split} u_{tt} &= a^2 u_{xx} + f(x,t) \\ u_{tt} &= a^2 \big(u_{xx} + u_{yy}\big) + f(x,y,t) \\ u_{tt} &= a^2 \big(u_{xx} + + u_{yy} + u_{zz}\big) + f(x,y,z,t) \end{split}$$

3.3 heat equation

$$\begin{split} u_t &= a^2 u_{xx} \\ u_t &= a^2 \big(u_{xx} + u_{yy} \big) \\ u_t &= a^2 \big(u_{xx} + + u_{yy} + u_{zz} \big) \end{split}$$

3.4 heat equation with a source term

$$\begin{split} u_t &= a^2 u_{xx} + f(x,t) \\ u_t &= a^2 \big(u_{xx} + u_{yy} \big) + f(x,y,t) \\ u_t &= a^2 \big(u_{xx} + + u_{yy} + u_{zz} \big) + f(x,y,z,t) \end{split}$$

3.5 classification of second-order partial differential equations

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = g$$

*A, B, C, D, E, F and G are functions of x and y, but not of u.

$$\Delta = B^2 - AC$$

 $\Delta > 0$ (hyperbolic equation)

$$u_{xy} = [\cdot \cdot \cdot], u_{xx} - u_{yy} = [\cdot \cdot \cdot]$$

 $\Delta = 0$ (parabolic equation)

$$u_{xx} = [\cdot \cdot \cdot], u_{yy} = [\cdot \cdot \cdot]$$

 $\Delta < 0$ (elliptic equation)

$$u_{xx}+u_{yy}=[\cdot\cdot\cdot]$$

* $[\cdot\cdot\cdot]$ represents all terms that do not contain second-order partial derivatives.

3.6 simplification of second-order partial differential equations