Optimization, Auto-Differentiation, and Tomlab

May 8, 2017

Derivatives and Numerical Methods

There are two general types of algorithms for optimizers/solvers/etc.:

- Derivative-free:
 - e.g. Simplex and Nelder-Mead. This is Matlab's fminsearch
 - Also, "costly global function" optimization
 - Avoid at all costs (though sometimes don't have a choice)

2 Derivatives

- Pretty much every other algorithm, especially for large number of variables/constraints
- Including global optimization techniques (which use derivatives locally)

Key derivatives to calculate are:

- Gradient of objective
- Hessian of objective (nonlinear least squares and some algorithms only use gradient)
- lacobian of constraints

Calculating Derivatives

How to calculate derivatives for the objective and constraints?

- Calculate by hand
 - Sometimes, though not always, the most accurate and fastest option
 - But algebra is error prone for non-trivial setups
 - (note: many optimizers have a way to check your analytical derivatives)
- 2 Finite-differences:

$$\partial_{x_i} f(x_1, \dots x_N) \approx \frac{f(x_1, \dots x_i + \Delta, \dots x_N) - f(x_1, \dots x_i, \dots x_N)}{\Delta}$$

- \blacksquare Evaluates function at least N extra times to get a gradient
- $\ \blacksquare \ \#$ evaluations for Jacobians with M constraints even worse
- Large Δ is numerically stable but inaccurate, small Δ is unstable
- Avoid like the plague! (and is what matlab does out of the box)
- 3 Auto-differentiation
 - Not a form of finite-differences or numeric differentiation
 - Essentially analytical. Repeated use of the chain-rule
 - \blacksquare Does not work for every function, but only evaluates $f(\cdot)$ once if it works

Auto-differentiation (adapted from Wikipedia)

- Remember the chain rule: $rac{dy}{dx} = rac{dy}{dw} rac{dw}{dx}$
- Consider functions composed of calculations with fundamental operations (with known analytical derivatives)
- For example, consider function: $f(x_1, x_2) = x_1x_2 + \sin(x_1)$

Operations to compute value	Operations to compute $\frac{df(x_1,x_2)}{dx_1}$
$w_1 = x_1$	$\frac{dw_1}{dx_1} = 1$ (seed)
$w_2 = x_2$	$\left rac{dw_2^2}{dx_1} = 0 \right $ (seed)
$w_3 = w_1 \cdot w_2$	$\frac{dw_3}{dx_1} = w_2 \cdot \frac{dw_1}{dx_1} + w_1 \cdot \frac{dw_2}{dx_1}$
$w_4 = \sin w_1$	$\frac{dw_4}{dx} = \cos w_1 \cdot \frac{dw_1}{dx}$
$w_5 = w_3 + w_4$	$\frac{dx_1}{dx_1} = \frac{dw_3}{dx_1} + \frac{dw_4}{dx_1}$

lacktriangleright Generalizes to multiple variables. AD takes source code and generates the derivatives at the same time (i.e. doesn't increase with # variables)

Implementations of AD

- A field unto itself. Do not implement directly
- Implementation is language dependent. Two approaches:
 - Source code transformation: utility (outside of the language itself)
 reads in the code for your function, and generates a function which
 calculates value and derivative. Rerun if you change your code
 - Operator Overloading: Takes your existing functions, and passes variables that act like numbers, but are actually recording and tracing the chain rule steps/etc. Can be magical, or infuriating
- Implementation depends on the language:
 - Fortran: usually needs SCT. Many choices: e.g. http://tapenade.inria.fr:8080/tapenade/index.jsp
 - Python: https://github.com/LowinData/pyautodiff and https://pythonhosted.org/algopy/
 - C++: overloading http://www.fadbad.com/fadbad.html,...
 - R: https:
 - //cran.r-project.org/web/packages/madness/index.html
 - Matlab: open source SCT (e.g. AdiMat) not very good. Use Tomlab/MAD instead, coupled with the Tomlab optimizer.

Getting Derivatives Directly in Tomlab

```
%Example function
f = Q(x) 3*x + exp(x);
%Evaluating function
x_val = 2.1;
f(x val)
%Evaluating with derivative at x val
x = fmad(x_val, 1); %Seed, since <math>dx/dx = 1
f_val = f(x)
%Extract (both calculated at same time)
getvalue(f_val)
getderivs(f_val)
```

Black Magic? Is it Always so Easy?

- Auto-differentiation works seamlessly for functions composed of an arbitrarily complicated graph of simple functions
 - Just need analytical derivatives for the lowest-level functions
 - Functions of vector and matrices are no problem at all. In fact, the field was designed for large numbers of variables/constraints and sparsity
- Can you call other functions (with operator overloading)?
 - Depends on how they were written. Often no problem at all
 - If the functions assume arguments are numbers, there can be problems
 - Sometimes can fix the underlying code to make more generic (example)
- Verboten: Iterations and fixed-points within a function
 - e.g. it can't differentiate an optimization step within a function
 - However, many algorithms can be re-written without nesting (e.g. nested fixed-point vs. MPEC for discrete-choice estimation)
 - Possible that simulation could be embedded (e.g. mixed-logit)...

Keep Functions Generic

- Remember, MAD replaces arguments with things that look like variables
- Keep variables generic, don't overwrite with other types
- Some internal matlab functions do this sort of thing

```
madinitglobals; "Need to run for auto-differentiation to work
x_val = 2.1;
x = fmad(x_val, 1); %Seed, since <math>dx/dx = 1
%Extract (both calculated at same time)
f_val = f_func(x)
function y = f_{inc}(x)
        %x = 1; %Don't do this!!!!!!
        %y = zeros(1,1) %Don't do this!!!!!
        %y(1) = x.^2; %careful not to preallocate as double
        y = x.^2; "This leaves x, y generic
end
```

Missing Function (with Analytical Derivative)

- See MAD manual, http://tomopt.com/docs/TOMLAB_MAD.pdf
- See Adding Functions to the fmad Class
- Example, normcdf isn't there, could add something like (untested):

```
function y=normcdf(x)
    y = x; %Needs to copy
    y.value= normcdf(x.value); %Evaluate given double
    y.deriv = normpdf(x.value) .* x.deriv; %Note chain rule
end
```

Adding a New Function

What if I know the derivative of a function which isn't there?

Sparsity

Bla...