Answers to Odd-Numbered Exercises

CHAPTER 1

Section 1.1

1. a) Yes, T **b**) Yes. F c) Yes, T d) Yes, F e) No f) No 3. a) Linda is not younger than Sanjay. b) Mei does not make more money than Isabella. c) Moshe is not taller than Monica. **d**) Abby is not richer than Ricardo. **5. a**) Mei does not have an MP3 player. **b)** There is pollution in New Jersey. c) $2 + 1 \neq 3$. d) The summer in Maine is not hot or it is not sunny. 7. a) Steve does not have more than 100 GB free disk space on his laptop. b) Zach does not block emails from Jennifer, or he does not block texts from Jennifer. c) $7 \cdot 11 \cdot 13 \neq 999$. d) Diane did not ride her bike 100 miles on Sunday. 9. a) F b) T c) T d) T e) T 11. a) Sharks have not been spotted near the shore. b) Swimming at the New Jersey shore is allowed, and sharks have been spotted near the shore. c) Swimming at the New Jersey shore is not allowed, or sharks have been spotted near the shore. **d)** If swimming at the New Jersey shore is allowed, then sharks have not been spotted near the shore. e) If sharks have not been spotted near the shore, then swimming at the New Jersey shore is allowed. f) If swimming at the New Jersey shore is not allowed, then sharks have not been spotted near the shore. g) Swimming at the New Jersey shore is allowed if and only if sharks have not been spotted near the shore. h) Swimming at the New Jersey shore is not allowed, and either swimming at the New Jersey shore is allowed or sharks have not been spotted near the shore. (Note that we were able to incorporate the parentheses by using the word "either" in the second half of the sentence.) 13. a) $p \wedge q$ b) $p \wedge \neg q$ c) $\neg p \wedge \neg q$ **d)** $p \lor q$ **e)** $p \to q$ **f)** $(p \lor q) \land (p \to \neg q)$ **g)** $q \leftrightarrow p$ **15. a)** $\neg p$ **b**) $p \land \neg q$ **c**) $p \rightarrow q$ **d**) $\neg p \rightarrow \neg q$ **e**) $p \rightarrow q$ **f**) $q \land \neg p$ **g**) $q \rightarrow p$ **17. a**) $r \wedge \neg p$ **b**) $\neg p \wedge q \wedge r$ **c**) $r \rightarrow (q \leftrightarrow \neg p)$ **d**) $\neg q \land \neg p \land r$ **e**) $(q \rightarrow (\neg r \land \neg p)) \land \neg ((\neg r \land \neg p) \rightarrow q)$ **f**) $(p \wedge r) \rightarrow \neg q$ **19. a**) False **b**) True **c**) True **d**) True 21. a) Exclusive or: You get only one beverage. b) Inclusive or: Long passwords can have any combination of symbols. c) Inclusive or: A student with both courses is even more qualified. d) Either interpretation possible; a traveler might wish to pay with a mixture of the two currencies, or the store may not allow that. 23. a) Inclusive or: It is allowable to take discrete mathematics if you have had calculus or computer science, or both. Exclusive or: It is allowable to take discrete mathematics if you have had calculus or computer science, but not if you have had both. Most likely the inclusive or is intended. b) Inclusive or: You can take the rebate, or you can get a low-interest loan, or you can get both the rebate and a low-interest loan. Exclusive or: You can take the rebate, or you can get a low-interest loan, but you cannot get both the rebate and a low-interest loan. Most likely the exclusive or is intended. c) Inclusive or: You can order two items from col-

umn A and none from column B, or three items from column B and none from column A, or five items including two from column A and three from column B. Exclusive or: You can order two items from column A or three items from column B, but not both. Almost certainly the exclusive or is intended. d) Inclusive or: More than 2 feet of snow or windchill below -100 °F, or both, will close school. Exclusive or: More than 2 feet of snow or windchill below -100 °F, but not both, will close school. Certainly the inclusive or is intended. 25. a) If the wind blows from the northeast, then it snows. **b)** If it stays warm for a week, then the apple trees will bloom. c) If the Pistons win the championship, then they beat the Lakers. d) If you get to the top of Long's Peak, then you must have walked 8 miles. e) If you are world famous, then you will get tenure as a professor. f) If you drive more than 400 miles, then you will need to buy gasoline. g) If your guarantee is good, then you must have bought your CD player less than 90 days ago. h) If the water is not too cold, then Jan will go swimming. i) If people believe in science, then we will have a future. 27. a) You buy an ice cream cone if and only if it is hot outside. b) You win the contest if and only if you hold the only winning ticket. c) You get promoted if and only if you have connections. d) Your mind will decay if and only if you watch television. e) The train runs late if and only if it is a day I take the train. 29. a) Converse: "I will ski tomorrow only if it snows today." Contrapositive: "If I do not ski tomorrow, then it will not have snowed today." Inverse: "If it does not snow today, then I will not ski tomorrow." b) Converse: "If I come to class, then there will be a quiz." Contrapositive: "If I do not come to class, then there will not be a quiz." Inverse: "If there is not going to be a quiz, then I don't come to class." c) Converse: "A positive integer is a prime if it has no divisors other than 1 and itself." Contrapositive: "If a positive integer has a divisor other than 1 and itself, then it is not prime." Inverse: "If a positive integer is not prime, then it has a divisor other than 1 and itself." **31.** a) 2 b) 16 c) 64 d) 16

33.	a)	p	$\neg p$	$p \wedge \neg p$
		T	F	F
		F	T	F

b) <i>p</i>	$\neg p$	$p \vee \neg p$
T	F	T
F	T	T

c) <i>p</i>	\boldsymbol{q}	$\neg q$	$p \vee \neg q$	$(p \vee \neg q) \to q$
T	T	F	T	T
T	F	T	T	F
F	T	F	F	T
F	F	T	T	F

d) <i>p</i>	\boldsymbol{q}	$p \lor q$	$p \wedge q$	$(p \lor q) \to (p \land q)$
T	T	T	T	T
T	F	T	F	F
F	T	T	F	F
F	F	F	F	T

e)						$(p \to q) \leftrightarrow (\neg q \to \neg p)$
p	\boldsymbol{q}	$p \rightarrow q$	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$	$(\neg q \rightarrow \neg p)$
T	T	T	F	F	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	T	Т

f)				$(p \rightarrow q) \rightarrow$
p	\boldsymbol{q}	$p \rightarrow q$	$q \rightarrow p$	$(q \rightarrow p)$
Т	T	T	T	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

35. For parts (a), (b), (c), (d), and (f) we have this table.

p	q	$(p \lor q) \to (p \oplus q)$	$(p \oplus q) \to (p \land q)$	$(p \lor q) \oplus (p \land q)$	$(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$	$(p \oplus q) \to (p \oplus \neg q)$
T	T	F	T	F	T	T
T	F	T	F	T	T	F
F	T	T	F	T	T	F
F	F	T	T	F	T	T

For part (e) we have this table.

p	q	r	$\neg p$	$\neg r$	$p \leftrightarrow q$	$\neg p \leftrightarrow \neg r$	$(p \leftrightarrow q) \oplus (\neg p \leftrightarrow \neg r)$
T	T	T	F	F	T	T	F
T	T	F	F	T	T	F	T
T	F	T	F	F	F	Т	T
T	F	F	F	T	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	T	F	T	T
F	F	T	T	F	T	F	T
F	F	F	T	T	T	T	F

37.	37.				$(p \rightarrow q) \lor$	$(p \rightarrow q) \wedge$	$(p \leftrightarrow q) \lor$	$(\neg p \leftrightarrow \neg q) \leftrightarrow$
	p	\boldsymbol{q}	$p \rightarrow \neg q$	$\neg p \leftrightarrow q$	$(\neg p \rightarrow q)$	$(\neg p \rightarrow q)$	$(\neg p \leftrightarrow q)$	$(p \leftrightarrow q)$
	T	T	F	F	T	T	T	T
	T	F	T	T	T	F	T	T
	F	T	T	T	T	T	T	T
	F	F	T	F	T	F	T	T

39.					$(p \rightarrow q) \vee$	$(p \rightarrow q) \wedge$	$(p \leftrightarrow q) \vee$	$(\neg p \leftrightarrow \neg q) \leftrightarrow$
p	\boldsymbol{q}	r	$p \to (\neg q \lor r)$	$\neg p \rightarrow (q \rightarrow r)$	$(\neg p \rightarrow r)$	$(\neg p \rightarrow r)$	$(\neg q \leftrightarrow r)$	$(q \leftrightarrow r)$
T	T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T	F
T	F	T	T	T	T	F	T	T
T	F	F	T	T	T	F	F	F
F	T	T	T	T	T	T	F	F
F	T	F	T	F	T	F	T	T
F	F	T	T	T	T	T	T	F
F	F	F	Т	Т	T	F	T	T

_{41.} —						(n (n) ()
	~				** / \ 0	$(p \leftrightarrow q) \leftrightarrow$
p	\boldsymbol{q}	r	S	$p \leftrightarrow q$	$r \leftrightarrow s$	$(r \leftrightarrow s)$
T	T	T	T	T	T	T
T	T	T	F	T	F	F
T	T	F	T	T	F	F
T	T	F	F	T	T	T
T	F	T	T	F	T	F
T	F	T	F	F	F	T
T	F	F	T	F	F	T
T	F	F	F	F	T	F
F	T	T	T	F	T	F
F	T	T	F	F	F	Т
F	T	F	T	F	F	Т
F	T	F	F	F	Т	F
F	F	T	T	Т	Т	Т
F	F	T	F	Т	F	F
F	F	F	T	Т	F	F
F	F	F	F	Т	T	T

43. The first clause is true if and only if at least one of p, q, and r is true. The second clause is true if and only if at least one of the three variables is false. Therefore, the entire statement is true if and only if there is at least one T and one F among the truth values of the variables, in other words, that they don't all have the same truth value. 45. $\left(\bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^{n} (\neg p_i \vee \neg p_j)\right) \wedge$ $\left(\bigvee_{i=1}^{n} p_i\right)$ 47. **a)** Bitwise *OR* is 111 1111; bitwise *AND* is 000 0000; bitwise *XOR* is 111 1111. **b)** Bitwise *OR* is 1111 1010; bitwise *AND* is 1010 0000; bitwise *XOR* is 0101 1010. c) Bitwise *OR* is 10 0111 1001; bitwise *AND* is 00 0100 0000; bitwise XOR is 10 0011 1001. **d**) Bitwise OR is 11 1111 1111; bitwise AND is 00 0000 0000; bitwise XOR is 11 1111 1111. **49.** 0.2. 0.6 **51.** 0.8. 0.6 **53.** a) The 99th statement is true and the rest are false. **b)** Statements 1 through 50 are all true and statements 51 through 100 are all false. c) This cannot happen; it is a paradox, showing that these cannot be statements.

Section 1.2

1. $e \to a$ **3.** $g \to (r \land (\neg m) \land (\neg b))$ **5.** $e \to (a \land (b \lor p) \land r)$ **7.** a) $q \rightarrow p$ b) $q \land \neg p$ c) $q \rightarrow p$ d) $\neg q \rightarrow \neg p$ **9.** Not consistent 11. Consistent 13. NEW AND JERSEY AND BEACHES, (JERSEY AND BEACHES) NOT NEW 15. "ETHIOPIAN RESTAURANTS" AND ("NEW YORK" OR "NEW JERSEY") 17. a) Queen cannot say this. b) Queen can say this, but one cannot determine location of treasure. c) Queen can say this; treasure is in Trunk 1. d) Queen cannot say this. 19. "If I were to ask you whether the right branch leads to the ruins, would you answer yes?" 21. If the first professor did not want coffee, then he would know that the answer to the hostess's question was "no." Therefore the hostess and the remaining professors know that the first professor did want coffee. Similarly, the second professor must want coffee. When the third professor said "no," the hostess knows that the third professor does

not want coffee. 23. A is a knight and B is a knave. 25. A is a knight and B is a knight. 27. A is a knave and B is a knight. 29. A is the knight, B is the spy, C is the knave. 31. A is the knight, B is the spy, C is the knave. 33. Any of the three can be the knight, any can be the spy, any can be the knave. 35. No solutions 37. In order of decreasing salary: Fred, Maggie, Janice 39. The detective can determine that the butler and cook are lying but cannot determine whether the gardener is telling the truth or whether the handyman is telling the truth. 41. The Japanese man owns the zebra, and the Norwegian drinks water. 43. One honest, 49 corrupt 45. a) $\neg (p \land (q \lor \neg r))$ **b**) $((\neg p) \land (\neg q)) \lor (p \land r)$

Section 1.3

1. The equivalences follow by showing that the appropriate pairs of columns of this table agree.

p	$p \wedge T$	$p \vee F$	$p \wedge \mathbf{F}$	$p \vee T$	$p \lor p$	$p \wedge p$
T	T	T	F	Т	T	T
F	F	F	F	T	F	F

3. a) p	q	$p \lor q$	$q \lor p$	b) <i>p</i>	q	$p \wedge q$	$q \wedge p$
T	T	T	T	T	Т	T	T
T	F	T	T	T	F	F	F
F	T	T	T	F	T	F	F
F	F	F	F	F	F	F	F

							$(p \land q) \lor$
p	\boldsymbol{q}	r	$q \lor r$	$p \land (q \lor r)$	$p \wedge q$	$p \wedge r$	$(p \wedge r)$
T	T	T	T	T	Т	T	T
T	T	F	T	T	Т	F	T
T	F	T	T	T	F	T	T
T	F	F	F	F	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

7. a) Jan is not rich, or Jan is not happy. b) Carlos will not bicycle tomorrow, and Carlos will not run tomorrow. c) Mei does not walk to class, and Mei does not take the bus to class. d) Ibrahim is not smart, or Ibrahim is not hard working. **9.** a) $\neg p \lor \neg q$ b) $(p \land \neg q) \lor r$ c) $\neg p \lor \neg q$