Matrix times Vector: Google PageRank

Ranking the importance of a webpage

- The priority of a Google search result will depend on many conditions such as relevance.
- Another condition is the pagerank, a measure of how important or authoritative a web page is.
- Invented by Larry Page and Sergey Brin while they were graduate students at Stanford.
- These slides gives some idea what's going on, but see references for actual details of what pagerank really does.

A small internet

PAGE1

Link to PAGE2
Link to PAGE3

PAGE2

Link to PAGE1

PAGE3

Link to PAGE2 Link to PAGE4 PAGE4

Link to PAGE2 Link to PAGE3 Link to PAGE5 PAGE5

Link to PAGE4

A small internet

A random web surfer is on page 3

Picks a link at random: 50% page 2, 50% page 4

A directed graph

Graph information in matrix form

$$H = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 1/3 & 0 \\ 1/2 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 1/2 & 0 & 1 \\ 0 & 0 & 0 & 1/3 & 0 \end{pmatrix}$$

Using the matrix to surf

Represent the surfer's position by a probability vector. For example start on page1.

$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Multiply by H to get new probabilities.

$$Hx = \begin{pmatrix} 0 \\ .5 \\ .5 \\ 0 \\ 0 \end{pmatrix}$$

Keep going.

Where do we end up?

- The final value of x[i] is page i's pagerank.
- Math explanation: it's the eigenvector of H with eigenvalue 1 with entries scaled to sum to one.
- We are doing the power method to compute the largest eigenvalue.

$$x = \begin{pmatrix} .30 \\ .30 \\ .20 \\ .15 \\ .05 \end{pmatrix}$$

Questions?

- Does the result depend on the starting vector?
- Does this process always converge?
- References:
 - Sergey Brin and Lawrence Page, The anatomy of a large-scale hypertextual Websearch engine, Computer Networks and ISDN Systems 33 (1998), 107–117.
 - Amy N. Langville and Carl D. Meyer, Google's PageRank and beyond, Princeton University Press, 2006.
 - Google's PageRank: The Math Behind the Search Engine. Rebecca S. Wills. Department of Mathematics. North Carolina State University.
 - How Google Finds Your Needle in the Web's Haystack, AMS, David Austin, Grand Valley State University

A dangling node:

Dangling node fix

The random surfer, on arriving at page with no outgoing links, chooses any internet page at random.

$$S = H + Dnode = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 1/3 & 0 \\ 1/2 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 & 1/5 \\ 0 & 0 & 0 & 0 & 1/5 \\ 0 & 0 & 0 & 0 & 1/5 \\ 0 & 0 & 0 & 0 & 1/5 \end{pmatrix}$$

Note multiplication of vector by second matrix can be easily computed: rank one update.

$$y = (Dnode)x \Leftrightarrow y_i = (1/5)x_5$$

Disconnected internet

Combining the last 2

What about this?

Add a damping factor

- With some probability q, the surfer doesn't follow a link but picks any page at random.
- We model this by changing matrix

$$G = (1 - q)S + qB$$

$$B = \begin{pmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{pmatrix}$$
 Each entry in B is 1/n

Add a damping factor

$$B = \begin{pmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{pmatrix} \qquad G = (1-q)S + qB$$

Note again multiplication of vector by second matrix can be easily computed: rank one update.

$$y = qBx \Leftrightarrow y_i = q(1/5)\sum_i x_i = q/5$$

Matrix times Vector: Implementations

MatVec Problem: Compute product of matrix (*m x n*) and vector (*n x 1*)

Compute

$$y = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{m-1} \end{pmatrix} = Ax$$

Given

$$A = \begin{pmatrix} a_{0,0} & a_{0,1} & \cdot & \cdot & a_{0,n-1} \\ a_{1,0} & a_{1,1} & & & \\ \cdot & & \cdot & & \\ a_{m-1,0} & & & a_{m-1,n-1} \end{pmatrix}$$

$$x = \begin{pmatrix} x_0 \\ x_1 \\ \\ x_{n-1} \end{pmatrix}$$

MatVec: Serial Code (2D array)

```
for (i=0; i < m; i++)
{
    y[i] = 0.0
    for(j=0; j < n; j++)
        y[i] += A[i][j] * x[j];
}</pre>
```

MatVec: Serial Code (1D array)

```
for (i=0; i < m; i++)
{
    y[i] = 0.0
    for(j=0; j < n; j++)
        y[i] += A[i*n+j] * x[j];
}</pre>
```

$$A = \begin{pmatrix} a_{0,0} & a_{0,1} & \dots & a_{0,n-1} & a_{1,0} & a_{1,1} & \dots & a_{1,n-1} & \dots & a_{m-2,n-1} & a_{m-1,0} & a_{m-1,1} & \dots & a_{m-1,n-1} \end{pmatrix}$$

Sparse MatVec

- A <u>sparse</u> matrix has many fewer non-zero elements than m*n
- The MatVec on the previous slide is a appropriate for <u>dense</u> matrices
- For sparse matrix we would like to avoid
 - Unnecessary multiplications by zero elements
 - Unnecessary storage of zero elements

Many applications give rise to sparse linear systems

https://en.wikipedia.org/wiki/Scale-free_network

SUNTANS grid

May have n=10⁷

Nonzeros=6n Dense Storage=n²

http://www.stanford.edu/~fringer/research.html

Coordinate (COO) List Form Storage

- Store only the non-zeros and their row and column indices.
- MATLAB

Compressed Sparse Row (CSR) Storage

- One array A stores the non zero elements in the same order as the previous 1D array option. Its size is the number of nonzeros nnz.
- One integer array iA stores the starting index for each row in the array A. Its size is the number of rows plus one m+1. Last entry is nnz.
- One integer array jA stores the column index for each entry in A. Its size is the number of nonzeros nnz.

CSR example

$$H = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 1/3 & 0 \\ 1/2 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 1/2 & 0 & 1 \\ 0 & 0 & 0 & 1/3 & 0 \end{pmatrix}$$

$$A = \begin{bmatrix} 1.0 & 0.5 & 0.5 & .33 & 0.5 & .33 & 0.5 & 1.0 & .33 \end{bmatrix}$$

 $iA = \begin{bmatrix} 0 & 1 & 4 & 6 & 8 & 9 \end{bmatrix}$
 $jA = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 & 3 & 2 & 4 & 3 \end{bmatrix}$

CSR example

$$H = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 1/3 & 0 \\ 1/2 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 1/2 & 0 & 1 \\ 0 & 0 & 0 & 1/3 & 0 \end{pmatrix}$$

Row 1 Stored between at indices iA[1]=1 to iA[2]-1=3

$$A = \begin{bmatrix} 1.0 & 0.5 & 0.5 & .33 & 0.5 & 1.0 & .33 \end{bmatrix}$$

 $iA = \begin{bmatrix} 0 & 1 & 4 & 6 & 8 & 9 \end{bmatrix}$
 $jA = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 & 3 & 2 & 4 & 3 \end{bmatrix}$

CSR example

$$H = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 1/3 & 0 \\ 1/2 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 1/2 & 0 & 1 \\ 0 & 0 & 0 & 1/3 & 0 \end{pmatrix}$$

Row 2 Column 0

Access entry: A[iA[2]]=A[4]=.5

$$A = \begin{bmatrix} 1.0 & 0.5 & 0.5 & .33 & 0.5 & 1.0 & .33 \end{bmatrix}$$

 $iA = \begin{bmatrix} 0 & 1 & 4 & 6 & 8 & 9 \end{bmatrix}$
 $jA = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 & 3 & 2 & 4 & 3 \end{bmatrix}$

Access column number: jA[iA[2]]=jA[4]=0

CSR example: More at

https://en.wikipedia.org/wiki/Sparse_matrix

$$H = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 1/3 & 0 \\ 1/2 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 1/2 & 0 & 1 \\ 0 & 0 & 0 & 1/3 & 0 \end{pmatrix}$$

Row 2 Column 0

Access entry: A[iA[2]]=A[4]=.5

$$A = \begin{bmatrix} 1.0 & 0.5 & 0.5 & .33 & 0.5 & 1.0 & .33 \end{bmatrix}$$

 $iA = \begin{bmatrix} 0 & 1 & 4 & 6 & 8 & 9 \end{bmatrix}$
 $jA = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 & 3 & 2 & 4 & 3 \end{bmatrix}$

Access column number: jA[iA[2]]=jA[4]=0

MatVec: Serial Code (CSR)

```
for (i=0; i < m; i++)
{
    y[i] = 0.0
    for(k=iA(i); k < iA(i+1); k++)
        y[i] += A[k] * x[jA[k]];
}</pre>
```

Parallel Thinking Assignment

- Compute pagerank in parallel.
- Main operation y=Hx
- How to parallelize with dense H?
- How to parallelize with sparse H?
- Under what conditions would you expect possible difficulties with load balancing?