Security Functions

Before we jump into security concepts, let us familiarize ourselves with the mathematical background required for it.

Set X is a collection of elements. Here, $X=\{1,2,3\}$ is one such example. A collection of integers is also a set.

Given two sets, $m{X}$ and $m{Y}$, we define a function $m{f}$ that maps every element in $m{X}$ to precisely $m{1}$ element in $m{Y}$

If $X=\{1,2,3\}$ and $Y=\{lpha,eta,\gamma,\delta\}$, the function f will return:

$$f(1) = lpha$$
, $f(2) = \gamma$ and $f(3) = \delta$.

Let us define a function $f_1(x)=x_r$, where $x\in X$ and $x_r\in Y$. Here, x_r is defined as the remainder of x when divided by 11.

Your task is to complete the function that takes the input x and $returns\ x_r$

Constraints

$$1 \le x \le 1000$$