Chapitre 2 : Séries numériques

Séries et sommes d'une série

Définition : Soit (u_n) une suite dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

On considère $\forall N \in \mathbb{N}, S_N = \sum_{n=0}^N u_n \in \mathbb{K}.$

On a donc une suite $(S_N)_{N\in\mathbb{N}}$ associée à la suite $(u_n)_{n\in\mathbb{N}}$.

Définition: On appelle série de terme général u_n que l'on note $\sum_{n>0} u_n$ la suite $(S_N)_{N\in\mathbb{N}}$.

- 💬 Note de rédaction : Les deux définitions précédentes gagneraient à être fusionnées.
- \bigcirc Vocabulaire : On dit que (S_N) est la suite des sommes partielles de la série.
- **1** Remarque: (S_N) correspond aux N+1 premiers termes de la suite.

Correspondance suite - série

Raisonnement : Par définition une série est une suite. Expliquons comment une suite peut-être vue comme une

Si (u_n) est une suite, considérons la série de terme général $v_n = u_n - u_{n-1} \forall n \in \mathbb{N}$ (avec la convention $v_0 = u_0$). Ainsi, $u_n = \sum_{k=0}^n v_k$.

 $oldsymbol{0}$ Remarque : Cependant la série associée à une suite (u_n) va s'étudier en tant que telle (que série) grâce à u_n .

Opérations sur les séries

Propriété: Opérations sur les séries (admise)

Soient $\sum_{n\geq 0}u_n$ et $\sum_{n\geq 0}v_n$ deux séries. Alors, pour tout $\lambda\in\mathbb{K}$:

- Somme : $\sum_{n\geq 0}(u_n+v_n)=\sum_{n\geq 0}u_n+\sum_{n\geq 0}v_n$ définie comme (S_N+S_N')
- Produit par un scalaire : $\sum_{n\geq 0} \lambda u_n = \lambda \sum_{n\geq 0} u_n$ définie comme (λS_N)
- **?** Exemple: Si $u_n=0, \forall n\in\mathbb{N}$, alors $\sum_{n>0}u_n=0$ est la série nulle.

Troncature d'une série

Définition : Si (u_n) est une suite définie pour $n \geq n_0 \mid n_0 \in \mathbb{N}$. On peut considérer la série $\sum_{n \geq n_0} u_n$ où $u_0=u_1=...=u_{n_0-1}=0$, ou bien on peut écrire $\sum_{n\geq n_0}u_n$. Si $\sum_{n\geq 0}u_n$ est une série de terme général u_n , une **troncature** de la série est $\sum_{n\geq n_0}u_n$. C'est la suite (S_N) où $S_N = \sum_{n=n_0}^N u_n.$

- Note de rédaction : Cette définition pourraît être synthétisée.
- Exemple :

- · la série nulle
- la série géométrique de raison $q\in\mathbb{C}^*$: $\sum_{n\geq 0}q^n$ de terme général q^n ;
- la série harmonique : $\sum_{n\geq 1} \frac{1}{n}$ de terme général $\frac{1}{n}$;
- la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}$.

Il Convergence d'une série

A Définitions et nature d'une série

Définition : Soit $\sum_{n\geq 0} u_n$ une série.

On dit que la série converge, si la suite (S_N) converge, et on note S la limite de S_N .

S s'appelle la somme de la série.

Dans ce cas, on écrit : $\sum_{n=0}^{\infty} u_n = S \in \mathbb{R}$ (c'est une "somme infinie", un objet-limite).

- igoplus extstyle exts
- **X** Attention **X** Si S n'existe pas, alors on écrit **jamais** la notation avec ∞
- De Vocabulaire : La convergence ou la divergence d'une série s'appelle la nature de la série.

Proposition : Stabilité de la limite par troncature (admis)

La nature d'une série n'est pas modifée par troncature.

Preuve:

🗭 Note de rédaction : Indication : les premiers termes n'influencent pas la convergence.

B Quelques applications...

© Exemple :

• Si (u_n) est nulle à partir d'un rang N_0 alors la série $\sum_{n\geq 0} u_n$ est converge, et $\sum_{n=0}^{\infty} u_n = \sum_{n=0}^{N_0} u_n$.

• Série géométrique $\sum_{n\geq 0}q^n$:

On considère la suite des sommes partielles (S_N) où $S_N=\sum_{n=0}^N q^n$ = $\frac{1-q^{N+1}}{1-q}$ avec $q\neq 1$. On a plusieurs cas :

- Si |q| < 1, $q^{N+1} \xrightarrow[N \to \infty]{} 0$ donc $S_N \xrightarrow[N \to \infty]{} \frac{1}{1-q} \Leftrightarrow \sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$. La série $\sum_{n>0} q^n$ converge et on arrive à trouver S!
- Si |q| > 1, alors $\sum_{n>0} q^n$ diverge.
- Si q=1, alors $\sum_{n\geq 0}q^n=N+1\Rightarrow \sum_{n\geq 0}q^n$ diverge.
- $\sum_{n>1} log(1+1/n)$:

On a $\forall N \geq 1, S_N = \sum_{n=1}^N log(\frac{n+1}{n}) = log(N+1)$ (télescopage). Or $log(N+1) \xrightarrow[N \to \infty]{} +\infty$, donc la série $\sum_{n\geq 1} log(1+1/n)$ diverge.

On a
$$\forall N \geq 1, S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N (\frac{1}{n} - \frac{1}{n+1}) = 1 - \frac{1}{N+1}$$
 (télescopage). Or $1 - \frac{1}{N+1} \xrightarrow[N \to \infty]{} 1$, donc la série $\sum_{n \geq 1} \frac{1}{n(n+1)}$ converge et $\sum_{n=1}^\infty \frac{1}{n(n+1)} = 1$.

- Important, démontré plus tard : $\sum_{n\geq 1}\frac{1}{n}$ (série harmonique) diverge.
- $\sum_{n\geq 1} \frac{(-1)^n}{n}$ converge. (idée : montrer que S_N converge en montant $A_N=S_{2N}$ et $B_N=S_{2N+1}$ sont adjacentes)
- **X** Attention **X** Ces six exemples sont à connaître et comprendre parfaitement.
- **Application**: Étudier la convergence de la série géométrique pour |q|=1 et q=-1 $(q\in\mathbb{C})$.

Propriétés des séries convergentes

Propriété : Convergence de la combinaison linéaire (admise)

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries convergentes. Alors $\forall \lambda, \mu \in \mathbb{K}: \sum_{n\geq 0} (\lambda u_n + \mu v_n) = \lambda \sum_{n\geq 0} u_n + \mu \sum_{n\geq 0} v_n$, cette série converge (vers la combinaison linéaire des limites).

1 Remarque: En d'autres termes, la somme de deux séries convergentes est une série $\sum_{n\geq 0}(u_n+v_n)$ qui converge.

Preuve:

La suite de sommes partielles associée à $\sum_{n\geq }(u_n+v_n)$ est $\sum_{n=0}^N(u_n+v_n)=\sum_{n=0}^N(u_n)+\sum_{n=0}^N(v_n)$ Comme $\sum_{n=0}^N(u_n)$ et $\sum_{n=0}^N(v_n)$ sont convergentes, on a $\sum_{n=0}^N(u_n+v_n)$ est convergente et sa limite est $\sum_{n=0}^\infty(u_n+v_n)=\sum_{n=0}^\infty(u_n)+\sum_{n=0}^\infty(v_n)$.

 \P Exemple: Retour: Divergence de la série harmonique $\sum_{n\geq 1}rac{1}{n}$

But : minorer $\sum_{n\geq 1}^{N} \frac{1}{n} \forall N \in \mathbb{N}$.

$$n \le t \in \mathbb{R} \le n+1 \Rightarrow \frac{1}{n+1} \le \frac{1}{t} \le \frac{1}{n}$$

But : minorer $\sum_{n\geq 1}^{N} \frac{1}{n} \forall N \in \mathbb{N}$. $n \leq t \in \mathbb{R} \leq n+1 \Rightarrow \frac{1}{n+1} \leq \frac{1}{t} \leq \frac{1}{n}$ Intégrons entre n et $n+1: \int_{n}^{n+1} \frac{1}{t} dt \leq \frac{1}{n}$ Donc en sommant : $\sum_{n=1}^{N} \int_{n}^{n+1} \frac{1}{t} dt \leq \sum_{n=1}^{N} \frac{1}{n}$ donc par Chasles : $\int_{1}^{N+1} \frac{1}{t} dt \leq \sum_{n=1}^{N} \frac{1}{n} \forall n \in \mathbb{N}$ Or $\int_{1}^{N+1} \frac{1}{t} dt = \ln(N+1) \xrightarrow[N \to \infty]{N \to \infty} + \infty$ donc $\sum_{n=1}^{N} \frac{1}{n} \xrightarrow[N \to \infty]{N \to \infty} + \infty$.

Donc la série harmonique diverge.

Propriété : Divergence de la combinaison linéaire (admise)

Soient $\sum_{n\geq 0} u_n$ une série convergente et $\sum_{n\geq 0} v_n$ une série divergente. Alors $\sum_{n>0}^{-} (u_n + v_n)$ diverge.

Preuve:

$$\sum_{n=0}^{N} (u_n + v_n) = \sum_{n=0}^{N} (u_n) + \sum_{n=0}^{N} (v_n)$$

 $\begin{array}{l} \sum_{n=0}^N (u_n+v_n) = \sum_{n=0}^N (u_n) + \sum_{n=0}^N (v_n) \\ \text{Comme } \sum_{n=0}^N (u_n) \text{ est convergente et } \sum_{n=0}^N (v_n) \text{ est divergente, on a } \sum_{n=0}^N (u_n+v_n) \text{ est divergente.} \end{array}$

X Attention X Quand on considère deux séries divergentes, la situation est à étudier au cas par cas.

© Exemple : Considérons $\sum_{n\geq 1}u_n$ avec $u_n=1\forall n\in\mathbb{N}$ et $\sum_{n\geq 1}v_n$ avec $v_n=-1\forall n\in\mathbb{N}$. D'une part $\sum_{n\geq 1}u_n$ diverge, et $\sum_{n\geq 1}v_n$ diverge aussi. Mais $\sum_{n\geq 1}(u_n+v_n)=\sum_{n\geq 1}0=0$ converge.

Mais si on considère $v_n = u_n$, alors $\sum_{n \ge 1} (u_n + v_n) = \sum_{n \ge 1} 2u_n$ diverge.

X Attention **X** Source d'erreur classique : Si $\sum_{n\geq 0} u_n + v_n$ est convergente, **a** priori on ne peut pas écrire que $\sum_{n=0}^{\infty}u_n+v_n=\sum_{n=0}^{\infty}u_n+\sum_{n=0}^{\infty}v_n$ car les séries de termes généraux u_n et v_n peuvent être divergentes (il faut donc vérifier leur convergence).

Proposition: (admis)

Soit $\sum_{n\geq 0}u_n$ une série numérique où $u_n\in\mathbb{C}\ \forall n\in\mathbb{N}.$ On a $\sum_{n\geq 0}u_n$ converge \Leftrightarrow les suites $(Re(u_n))$ et $(Im(u_n))$ sont convergentes.

Application : Montrer la proposition précédente.

Indication pour la preuve:

écrire $u_n = Re(u_n) + iIm(u_n)$ et utiliser la propriété sur les combinaisons linéaires.

Théorème : Lien entre convergence et limite des termes

Si $\sum_{n\geq 0} u_n$ converge, alors $u_n \xrightarrow[n\to\infty]{} 0$.

Preuve:

Considérons (S_N) la suite des sommes partielles associée à $\sum_{n\geq 0} u_n$.

On a $S_{N+1} - S_N = u_{N+1} \ \forall N \in \mathbb{N}$.

Or $\sum_{n>0} u_n$ converge \Rightarrow (S_N) converge. Donc $\lim_{N\to\infty} S_N - \lim_{N\to\infty} S_{N+1} = 0 \Rightarrow \lim_{N\to\infty} u_N = 0$.

X Attention X La réciproque est fausse. Par exemple la série harmonique $\sum_{n\geq 1}\frac{1}{n}$ diverge mais $\frac{1}{n}$ $\longrightarrow 0$.

Process Vocabulaire: Si $u_n \nrightarrow 0$, on dit que la série $\sum_{n>0} u_n$ diverge grossièrement.

Reste d'une série

Définition : On suppose que $\sum_{n>0}u_n$ converge. On note $S=\sum_{n=0}^\infty u_n$ sa somme et (S_N) la suite des sommes partielles.

Le **reste** de la série au rang N est $R_N = S - S_N = \sum_{n=N+1}^{\infty} u_n$.

Proposition: Comportement du reste

Si $\sum_{n\geq 0} u_n$ converge, alors $R_N \xrightarrow[N\to\infty]{} 0$.

Preuve:

Par définition, $R_N = S - S_N$. Or $S_N \xrightarrow[N \to \infty]{} S$. Donc $R_N \xrightarrow[N \to \infty]{} 0$.

Série absolument convergente (ACV)

Critère de Cauchy pour les séries numériques

Ce qui a été fait dans le Chapitre 1 - Suites de Cauchy sur les suites réelles reste valable si on considère des suites complexes.

Définition : On dit que la série $\sum_{n>0} u_n$ vérifie le **critère de Cauchy** si :

$$\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall N \geq N_\varepsilon, \forall p \in \mathbb{N}, |\sum_{k=N}^{N+p} u_k| < \varepsilon$$

Proposition : Convergence et critère de Cauchy

 $\sum_{n\geq 0} u_n$ vérifie le critère de Cauchy $\Leftrightarrow \sum_{n\geq 0} u_n$ converge.

Preuve: (par équivalence)

 $\sum_{n\geq 0}u_n$ converge $\Leftrightarrow (S_N)$ converge $\Leftrightarrow (S_N)$ est une suite de Cauchy (car l'espace est complet) $\Leftrightarrow orall arepsilon > 0, \exists N_arepsilon \in S_N$ $\mathbb{N}, \forall N \geq N_{\varepsilon}, \forall p \in \mathbb{N}, |S_{N+p} - S_N| < \varepsilon \Leftrightarrow \forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall N \geq N_{\varepsilon}, \forall p \in \mathbb{N}, |\sum_{n=N}^{N+p} u_n| < \varepsilon$

Remarque : Autre preuve de la divergence de la série harmonique :

Soit $\varepsilon=1/2$. Pour tout $N\in\mathbb{N}$, on peut choisir p=N et on a : $|\sum_{k=N}^{2N}\frac{1}{k}|\geq\sum_{k=N}^{2N}\frac{1}{2N}=\frac{1}{2}$. Donc la série harmonique ne vérifie pas le critère de Cauchy, donc elle diverge.

Définitions et propriétés В

Définition : On dit que la série $\sum_{n>0} u_n$ est absolument convergente (ACV) si la série $\sum_{n>0} |u_n|$ converge.

Théorème : Série ACV et convergence

Série ACV \Rightarrow série convergente et $|\sum_{n=0}^{\infty} u_n| \leq \sum_{n=0}^{\infty} |u_n|$.

Preuve:

Soit $\sum_{n\geq 0} u_n$ une série ACV. Donc $\sum_{n\geq 0} |u_n|$ converge.

Donc $\sum_{n\geq 0}|u_n|$ vérifie le critère de Cauchy : $\forall \varepsilon>0, \exists N_\varepsilon\in\mathbb{N}, \forall N\geq N_\varepsilon, \forall p\in\mathbb{N}, |\sum_{k=N+1}^{N+p}|u_k||<\varepsilon$

 $\begin{array}{l} \sum_{k=0}^{N-p} |u_k| \leq \sum_{k=N+1}^{N+p} |u_k| \leq \sum_{k=N+1}^{N+p} |u_k| < \varepsilon \\ \text{Ainsi } \forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall N \geq N_\varepsilon, \forall p \in \mathbb{N}, |\sum_{k=N}^{N+p} u_k| < \varepsilon \\ \text{Page } \sum_{k=N}^{N-p} |u_k| \leq \varepsilon \end{array}$

Donc $\sum_{n>0} u_n$ vérifie le critère de Cauchy.

Donc $\sum_{n>0} u_n$ converge et on a $|\sum_{n=0}^N u_n| \le \sum_{n=0}^N |u_n| \implies |\sum_{n=0}^\infty u_n| \le \sum_{n=0}^\infty |u_n|$.

X Attention **X** La réciproque est fausse.

Exemple: La série $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ est convergente, mais elle n'est pas absolument convergente car $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

Convergence absolue d'une série IV

Note de rédaction : Correspond à II. dans le plan de cours du prof.

Séries à termes positifs

Théorème:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{R}^+ .

Alors la série $\sum_{n\geq 0} u_n$ ($u_n\geq 0$) converge \Leftrightarrow la suite (S_N) des sommes partielles est bornée.

En effet, $S_{N+1} - S_N = u_{N+1} \ge 0$ donc (S_N) est croissante (à termes positifs).

Ainsi (S_N) converge $\Leftrightarrow (S_N)$ est bornée (théorème de convergence monotone).

Or $\sum_{n\geq 0} u_n$ converge $\Leftrightarrow (S_N)$ converge.

Donc $\sum_{n>0} u_n$ converge $\Leftrightarrow (S_N)$ est bornée.

1 Remarque : Si (S_N) n'est pas bornée, alors $S_N \xrightarrow[N \to \infty]{} +\infty$. On tolère la notation $\sum_{n=0}^{\infty} u_n = +\infty$.

Application : Application du théorème.

Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries à termes positifs. Montrons que la série $\sum_{n\geq 0} \sqrt{u_n v_n}$ converge. En effet, utilisons l'inégalité de Cauchy-Schwarz.

$$\forall N \in \mathbb{N}, \sum_{n=0}^{N} \sqrt{u_n v_n} \le \sqrt{\sum_{n=0}^{N} u_n} \sqrt{\sum_{n=0}^{N} v_n}.$$

Or les deux termes de droite sont bornés, donc $\forall N \in \mathbb{N}, \sum_{n=0}^{N} \sqrt{u_n v_n}$ est bornée.

Donc $\sum_{n>0} \sqrt{u_n v_n}$ converge.

Autre preuve (sans Cauchy-Schwarz):

$$(a-b)^2 \ge 0 \Leftrightarrow ab \le \frac{a^2+b^2}{2} \forall a, b \in \mathbb{R}$$

Latter precise (sails Catterly-Schwarz):
$$(a-b)^2 \geq 0 \Leftrightarrow ab \leq \frac{a^2+b^2}{2} \forall a,b \in \mathbb{R}.$$
 Donc
$$\sum_{n=0}^{N} \sqrt{u_n v_n} \leq \frac{1}{2} (\sum_{n=0}^{N} u_n + \sum_{n=0}^{N} v_n).$$

Or les deux termes de droite sont bornés, donc $\forall N \in \mathbb{N}, \sum_{n=0}^{N} \sqrt{u_n v_n}$ est bornée.

Donc $\sum_{n>0} \sqrt{u_n v_n}$ converge.

Note de rédaction : On a pas encore abordé Cauchy-Schwarz.

Proposition:

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries convergentes (pas forcément à termes positifs mais réels). Si $u_n\leq v_n \forall n\in\mathbb{N}$, alors $\sum_{n=0}^\infty u_n\leq \sum_{n=0}^\infty v_n$.

Preuve:

On considère la série à termes positifs $\sum_{n\geq 0}(v_n-u_n)$. C'est une série convergente.

On a $\sum_{n=0}^{\infty}(v_n-u_n)\geq 0$. Or $\sum_{n\geq 0}v_n$ et $\sum_{n\geq 0}u_n$ sont convergentes.

Donc on peut écrire :
$$\sum_{n=0}^{\infty}v_n-\sum_{n=0}^{\infty}u_n=\sum_{n=0}^{\infty}(v_n-u_n)\geq 0$$
. Donc $\sum_{n=0}^{\infty}u_n\leq\sum_{n=0}^{\infty}v_n$.

Critère de comparaison

Tout cela est fait pour des séries à termes positifs.

Théorème : Critère de comparaison ("Hyper important")

Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries à termes positifs.

Supposons que $\forall n \in \mathbb{N}, 0 \leq u_n \leq v_n$.

- Si $\sum_{n>0} v_n$ converge, alors $\sum_{n>0} u_n$ converge.
- Si $\sum_{n\geq 0} u_n$ diverge, alors $\sum_{n\geq 0} v_n$ diverge.

Preuve:

- On a $\forall N \in \mathbb{N}, 0 \leq \sum_{n=0}^N u_n \leq \sum_{n=0}^N v_n$. Or $\sum_{n\geq 0} v_n$ converge, donc la suite des sommes partielles $(\sum_{n=0}^N v_n)$ est bornée. Donc la suite des sommes partielles $(\sum_{n=0}^{N} u_n)$ est bornée et donc $\sum_{n>0} u_n$ converge.
- Comme $\sum_{n>0} u_n$ diverge, la suite des sommes partielles $(\sum_{n=0}^N u_n)$ n'est pas bornée. Et comme $\forall N \in \mathbb{N}, 0 \leq \sum_{n=0}^N u_n \leq \sum_{n=0}^N v_n$, la suite des sommes partielles $(\sum_{n=0}^N v_n)$ n'est pas bornée. Et donc par le théorème de convergence des séries à termes positifs on a que $\sum_{n\geq 0} v_n$ diverge.

Corollaire:

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries à termes positifs. $\exists n_0 \in \mathbb{N}, \forall n\geq n_0, \frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$.

$$\exists n_0 \in \mathbb{N}, \forall n \geq n_0, \frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}.$$

- Si $\sum_{n\geq 0} v_n$ converge, alors $\sum_{n\geq 0} u_n$ converge.
- Si $\sum_{n\geq 0} u_n$ diverge, alors $\sum_{n\geq 0} v_n$ diverge.

Preuve:

$$\begin{array}{l} \frac{u_{n+1}}{u_n} \times \frac{u_n}{u_{n-1}} \times \ldots \times \frac{u_{n_0+1}}{u_{n_0}} \leq \frac{v_{n+1}}{v_n} \times \frac{v_n}{v_{n-1}} \times \ldots \times \frac{v_{n_0+1}}{v_{n_0}} \\ \Rightarrow \frac{u_{n+1}}{u_{n_0}} \leq \frac{v_{n+1}}{v_{n_0}} \Rightarrow u_{n+1} \leq k v_{n+1} \text{ avec } k = \frac{u_{n_0}}{v_{n_0}} \in \mathbb{R}_+^* \end{array}$$

- On suppose que $\sum_{n\geq 0} v_n$ converge.

Donc $\sum_{n\geq 0} kv_n$ converge. Donc par le théorème précédent, comme $\forall n\geq n_0, 0\leq u_n\leq kv_n$, on a que $\sum_{n\geq 0} u_n$ converge.

- (non démontré en cours)
- Application : applications aux séries absolument convergentes

Proposition:

Soit $\sum_{n\geq 0} u_n$ une série à termes réels.

Définissons $u_n^+ = \max(u_n, 0) \ge 0$ et $u_n^- = \max(-u_n, 0) \ge 0$.

On a $\sum_{n>0} u_n$ est ACV.

 $\sum_{n\geq 0} |u_n|$ converge $\Leftrightarrow \sum_{n\geq 0} u_n^+$ et $\sum_{n\geq 0} u_n^-$ convergent.

Preuve:

 \Rightarrow / On a $\forall n \in \mathbb{N}0 \leq u_n^+ \leq |u_n|$ et $0 \leq u_n^- \leq |u_n|$. Donc par le théorème de comparaison, $\sum_{n \geq 0} u_n^+$ et $\sum_{n \geq 0} u_n^-$ convergent.

 \Leftarrow / On remarque que $|u_n| = u_n^+ + u_n^-$.

Si $\sum_{n\geq 0} u_n^+$ et $\sum_{n\geq 0} u_n^-$ convergent, alors $\sum_{n\geq 0} |u_n|$ converge $\Rightarrow \sum_{n\geq 0} u_n$ est ACV.

Proposition:

Soit $\sum_{n\geq 0} u_n$ une série à termes complexes. On a $\sum_{n\geq 0} u_n$ est ACV $\Leftrightarrow \sum_{n\geq 0} Re(u_n)$ et $\sum_{n\geq 0} Im(u_n)$ sont ACV.

Application : Montrer la proposition précédente.

Domination, convergence et équivalence

• Rappel: Soient (u_n) et (v_n) deux suites.

- $u_n = O(v_n)$ ssi $\exists M > 0, |u_n| \leq M|v_n|$ au voisinage de l'infini (n assez grand) $\Leftrightarrow |\frac{u_n}{v_n}|$ est bornée.
- $u_n = o(v_n)$ ssi $\frac{u_n}{v_n} \xrightarrow[n \to \infty]{} 0$. $(u_n \text{ est n\'egligeable devant } v_n)$
- $u_n = o(v_n) \Rightarrow u_n = O(v_n)$
- $u_n \sim v_n$ ssi $\frac{u_n}{v_n} \xrightarrow[n \to \infty]{} 1$. $(u_n \text{ est équivalent à } v_n)$

Proposition: (admis)

Soient $\sum_{n\geq 0}u_n$ et $\sum_{n\geq 0}v_n$ deux séries à termes positifs. On suppose $u_n=O_{+\infty}(v_n)$.

- Si $\sum_{n\geq 0} v_n$ converge, alors $\sum_{n\geq 0} u_n$ converge.
- Si $\sum_{n\geq 0} u_n$ diverge, alors $\sum_{n\geq 0} v_n$ diverge.

Indication pour la preuve:

Il suffit de remarquer que $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} Mv_n$ sont de même nature ; et M est tel que $u_n\leq Mv_n$

X Attention **X** Si on sait que $\sum_{n\geq 0} v_n$ alors pour montrer que $\sum_{n\geq 0} u_n$ converge, il suffit de montrer que $u_n=0$

(en réalité il faudrait montrer grand O, mais $o \Rightarrow O$ donc c'est plus fort et plus simple à montrer)

Corollaire: (admis)

Soit $\sum_{n\geq 0} u_n$ une série à terme général dans $\mathbb C$ et soit $\sum_{n\geq 0} v_n$ une série à terme général positif tel que $\sum_{n\geq 0} v_n$

Si $u_n = O_{+\infty}(v_n)$, alors $\sum_{n>0} u_n$ converge absolument (ACV).

Application : Montrer le corollaire précédent.

Théorème: "Hyper² important"

Soit $\sum_{n\geq 0} u_n$ une série à terme général dans $\mathbb C$ et soit $\sum_{n\geq 0} v_n$ une série à termes positifs.

On suppose $u_n \sim_{+\infty} v_n$.

(on pourrait mettre une constante)

On a:

- Si $\sum_{n\geq 0} v_n$ converge alors $\sum_{n\geq 0} u_n$ converge absolument (ACV).
- Si $\sum_{n\geq 0} v_n$ diverge alors $\sum_{n\geq 0} u_n$ diverge.

1 Remarque : Si $u_n \geq 0$ alors $\sum_{n \geq 0} u_n$ et $\sum_{n \geq 0} v_n$ sont de même nature.

Séries de références

Série de Riemann

Théorème:

Soit $\alpha \in \mathbb{R}$. Soit la série $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$, dite série de Riemann.

Preuve:

On a vu que pour $\alpha = 1$, la série diverge (série harmonique).

- Si $\alpha \leq 1, \frac{1}{n^{\alpha}} \geq \frac{1}{n}$. Donc par le théorème de comparaison, $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ diverge.
- \Leftarrow / Supposons $\alpha > 1$.

Considérons la série $\sum_{n>1} u_n$ de terme général $u_n = \frac{1}{n^{\alpha-1}} - \frac{1}{(n+1)^{\alpha-1}}$.

Observation 1: $\forall N \in \mathbb{N}^*, \sum_{n=1}^N u_n = 1 - \frac{1}{(N+1)^{\alpha-1}} \text{ donc } \sum_{n\geq 1} u_n \text{ converge (car } \alpha-1>0).$ (téléscopage)

Observation 2 : Déterminons un équivalent de u_n .

$$\begin{array}{l} \text{Observation 2: Determinons un equivalent de u_n.} \\ u_n = \frac{1}{n^{\alpha-1}} - \frac{1}{(n+1)^{\alpha-1}} = \frac{1}{n^{\alpha-1}} \big(1 - \big(\frac{n}{n+1}\big)^{\alpha-1}\big). \\ \text{On a } \big(\frac{n}{n+1}\big)^{\alpha-1} = \big(\frac{n+1-1}{n+1}\big)^{\alpha-1} = \big(1 - \frac{1}{n+1}\big)^{\alpha-1} = 1 - \frac{\alpha-1}{n} + o_{+\infty}\big(\frac{1}{n}\big) \text{ (DL ordre 1).} \\ \Rightarrow 1 - \big(\frac{n}{n+1}\big)^{\alpha-1} = \frac{\alpha-1}{n} + o_{+\infty}\big(\frac{1}{n}\big) \sim_{+\infty} \frac{\alpha-1}{n}. \\ \text{Donc } u_n \sim_{+\infty} \frac{1}{n^{\alpha-1}} \times \frac{\alpha-1}{n} = \frac{\alpha-1}{n^{\alpha}} > 0. \end{array}$$

On a deux séries à termes positifs $\sum_{n>1}u_n$ et $\sum_{n>1}rac{\alpha-1}{n^{\alpha}}$ qui sont de même nature car équivalentes ($u_n\sim_{+\infty}$ $\frac{\alpha-1}{n^{\alpha}}).$ On en déduit que $\sum_{n\geq 1}\frac{\alpha-1}{n^{\alpha}}$ converge pour $\alpha>1$ par le théorème sur les équivalents. De plus la nature d'une série n'est pas modifiée quand le terme général est multiplié par un scalaire non nul. Donc $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ est de même nature que $\sum_{n\geq 1}\frac{\alpha-1}{n^{\alpha}}$. Donc $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ converge.

★ Attention ★ Démonstration probablement en question de cours au partiel/CC:)

Règles de comparaisons avec les séries de Riemann :

Soient $\sum u_n$ une série de terme général dans \mathbb{C} .

- 1. Si $u_n \sim_{+\infty} k \frac{1}{n^{\alpha}}$ avec $k \in \mathbb{C}^*$.
 - Si $\alpha>1$ alors $\sum_{n\geq 1}u_n$ converge absolument (ACV).
 - Si $\alpha \leq 1$ alors $\sum_{n \geq 1} u_n$ diverge.
- 2. Si $\exists \alpha>1, n^{\alpha}|u_n|$ bornée (i.e. $u_n=O(\frac{1}{n^{\alpha}})$), alors $\sum u_n$ converge absolument (ACV). Il suffit de montrer que $u_n=o(\frac{1}{n^{\alpha}})$
- 3. On se restreint à $u_n \in \mathbb{R}$. Si $\exists \alpha \leq 1, n^{\alpha}u_n \xrightarrow[n \to \infty]{} +\infty$, alors $\sum u_n$ diverge.

 $oldsymbol{0}$ Remarque : Penser u_n à terme réel positif et $k \in \mathbb{R}_+^*$ pour la compréhension. (suffisant pour la compréhension et la plupart des exercices)

Application: Montrer les règles de comparaison avec les séries de Riemann.

Application: Etudier la nature de la série de terme général $u_n = \sqrt{n^2 + n + 1} - \sqrt[3]{n^3 + an^2 + bn + c}$ avec $a, b, c \in \mathbb{R}$.

Série géométrique

① Rappel : La série $\sum_{n\geq 0}q^n$ converge $\Leftrightarrow |q|<1$ et dans ce cas $\sum_{n=0}^{\infty}q^n=rac{1}{1-q}$.

Preuve:
$$\Leftarrow \operatorname{Si} |q| < 1$$
, alors $S_N = \sum_{n=0}^N q^n = \frac{1-q^{N+1}}{1-q} \xrightarrow[N \to \infty]{} \frac{1}{1-q}$.

 \Rightarrow Si $|q| \ge 1$, alors $q^n \ne 0$ donc la série diverge (grossièrement).

Règle de Cauchy:

Soit $\sum_{n\geq 0} u_n$ une série à terme général dans $\mathbb C.$

On suppose que $\lim_{n\to\infty} |u_n|^{\frac{1}{n}} = l$ (existe et égale à $l \in [0,+\infty]$, $+\infty$ autorisé).

- 1. Si l < 1, alors $\sum_{n > 0} u_n$ converge absolument (ACV).
- 2. Si l > 1, alors $\sum_{n>0} u_n$ diverge.
- 3. Si l=1, on ne peut rien conclure.

Remarque : Comprendre la règle précédente dans le cas réel, terme positif.

Preuve:

1. Si l < 1, prenons $\varepsilon > 0$ tel que $l + \varepsilon < 1$.

$$\text{Or } |u_n|^{\frac{1}{n}} \xrightarrow[n \to \infty]{} l \text{, donc } \exists N \in \mathbb{N}, \forall n \geq N, |u_n|^{\frac{1}{n}} \leq l + \varepsilon.$$

Donc
$$|u_n| \leq (l+\varepsilon)^n$$
 pour $n \geq N$.

Or la série de terme général $(l+\varepsilon)^n$ est une série géométrique de raison $l+\varepsilon<1$, donc elle converge. Donc $\sum_{n\geq 0} u_n$ converge.

- 2. Laissée à la douce appréciation du lecteur.
- 3. Trouvons une série $\sum_{n\geq 0} u_n$ où $|u_n|^{\frac{1}{n}}\xrightarrow[n\to\infty]{} 1$ et où on ne peut rien conclure sur la nature de la série.

Si on prend
$$u_n=\frac{1}{n^{\alpha}}=e^{-\alpha\ln(n)},$$
 on a bien $u_n^{\frac{1}{n}}=e^{-\alpha\frac{\ln(n)}{n}}\xrightarrow{n\to\infty}1\forall\alpha.$

Or on a convergence pour $\alpha > 1$ et divergence pour $\alpha \le 1$, on ne peut rien conclure.

Application: Etudier la nature de la série de terme général $u_n = \cosh(\frac{1}{n})^{-n^3}$.

Règle de d'Alembert :

Soit $\sum u_n$ une série à terme général dans $\mathbb C$. On suppose que $\lim_{n \to \infty} |\frac{u_{n+1}}{u_n}| = l$ (existe et égale à $l \in [0,+\infty]$, $+\infty$ autorisé).

- 1. Si l < 1, alors $\sum_{n \geq 0} u_n$ converge absolument (ACV).
- 2. Si l > 1, alors $\sum_{n>0} u_n$ diverge.
- 3. Si l=1, on ne peut rien conclure.

Preuve:

 $\begin{array}{l} \text{1. Si } l<1, \text{ prenons } \varepsilon>0 \text{ tel que } l+\varepsilon<1. \\ \text{Or } |\frac{u_{n+1}}{u_n}| \xrightarrow[n \to \infty]{} l, \text{ donc } \exists N \in \mathbb{N}, \forall n \geq N, |\frac{u_{n+1}}{u_n}| \leq l+\varepsilon. \\ \text{Posons } q=l+\varepsilon<1. \\ \text{Ainsi, } |\frac{u_{n+1}}{u_n}| \leq \frac{q^{n+1}}{q^n} \text{ pour } n \geq N. \end{array}$

On a une comparaison du type $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. On a vu que dans ce cas, $sumb_n$ converge $\Rightarrow \sum a_n$ converge.

Or $\sum q^n$ converge (série géométrique de raison q < 1) donc $\sum u_n$ converge (ACV).

- 2. Comme $\lim_{n\to\infty}|\frac{u_{n+1}}{u_n}|=l>1, \exists N\in\mathbb{N}, \forall n\geq N, |\frac{u_{n+1}}{u_n}|\geq 1\Rightarrow |u_n|$ est minorée par n assez grand. Donc $\sum u_n$ diverge.
- 3. Prendre $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$. On a bien $\frac{(n+1)^{\alpha}}{n} \xrightarrow[n\to\infty]{} 1$ et la nature dépend de α .
- **Application**: Etudier la nature de la série de terme général $u_n = \frac{n!}{n^n}$.

Dote de rédaction : On a évoqué en cours la formule de Stirling pour la culture, mais elle est hors programme : $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$.

Proposition: Comparaison des règles de d'Alembert et de Cauchy

Soit $\sum u_n$ une série à terme général positif ou nul. On suppose que $\frac{u_{n+1}}{u_n}\xrightarrow[n\to\infty]{}l\in[0,+\infty].$

Alors $u_n^{\frac{1}{n}} \xrightarrow[n \to \infty]{} l$.

Preuve:

On suppose $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l, l>0, l\neq +\infty$.

On a $\forall l_1, 0 < l_1 < l, \sum_{n \geq 0} \frac{l_1^n}{u_n}$ converge par la règle de d'Alembert. En effet, $\frac{l_1^{n+1}}{u_{n+1}} \times \frac{u_n}{l_1^n} = l_1 \times \frac{u_n}{u_{n+1}} \xrightarrow[n \to \infty]{} \frac{l_1}{l} < 1.$ Par convergence de la série on a que $\frac{l_1^n}{u_n} \xrightarrow[n \to \infty]{} 0.$

À partir d'un certain rang, $\frac{l_1^n}{u_n} \leq 1 \Rightarrow l_1^n \leq u_n \Rightarrow l_1 \leq u_n^{\frac{1}{n}}$.

On a $\forall l_2, 0 < l < l_2, \sum_{n \geq 0} \frac{u_n}{l_n^n}$ converge par la règle de d'Alembert.

À partir d'un certain rang (même argument que pour l_1), $u_n \leq l_2^n \Rightarrow u_n^{\frac{1}{n}} \leq l_2$.

Donc $l_1 \le u_n^{\frac{1}{n}} \le l_2$, $\forall l_1 < l < l_2$ pour un n assez grand.

On fait tendre n vers ∞ puis l_1 et l_2 vers l et on en déduit que $u_n^{\frac{1}{n}} \xrightarrow[n \to \infty]{} l$.

X Attention **X** La réciproque est fausse.

Exemple: Contre-exemple.

Soit 0 < a < b. Posons :

$$u_n = \begin{cases} a^p b^p & \text{si n = 2p} \\ a^{p+1} b^p & \text{si n = 2p + 1} \end{cases}$$

On a $u_n^{\frac{1}{n}}\xrightarrow[n\to\infty]{}ab$ (peu importe la parité de n). Mais $\frac{u_{n+1}}{u_n}$ dépend de la parité de n.

Remarque: Donc on préfère la règle de d'Alembert à celle de Cauchy. Mais si la règle d'Alembert ne donne rien, la règle de Cauchy ne donnera rien non plus.

Séries semi-convergentes