

Studiengang IN, IT (B. Sc.) Wintersemester 2020/21

Probe-Klausur Computerarithmetik und Rechenverfahren

Aufgabensteller: Martin Weiß	Name:
Prüfungstermin: real: XX.YY.ZZZZ	
Arbeitszeit: 90 Minuten	Vorname:
Erlaubte Hilfsmittel:	
Kurzskript,	Studiengruppe:
2 handgeschriebene Seiten,	8 arr
Formelsammlung,	Matrikel-Nr.:
kein Taschenrechner	
	Anzahl Zusatzblätter:
	Platznummer:

4

5

6

Note

3

Hinweise:

Aufgabe

Punkte

- Diese Prüfung besteht aus 6 Aufgaben.
- Alle Angabenblätter sind abzugeben.
- Bearbeiten Sie die Aufgaben bitte auf den Angabenblättern (auch Rückseite benutzen). Bei Abgabe von Zusatzblättern, bitte ihre Anzahl auf der Angabe vermerken.
- Ergebnisse sind zu begründen und durch die entsprechenden Rechenschritte nachzuweisen, sofern nicht anders angegeben.
- Schreiben Sie mit einem nichtradierbaren Stift (z.B. Kugelschreiber, Füllfeder).

Probe-Klausur CR WiSe 2020/21 Seite 1

Aufgabe 1 (4 + 6 Punkte)

Gegeben seien Matrizen $A, B \in \mathbb{R}^{3 \times 3}$, die Inverse B^{-1} , und ein Vektor $b \in \mathbb{R}^3$:

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 4 & -3 \\ -4 & 22 & -18 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & -3 & 4 \\ 1 & 3 & -3 \end{bmatrix}, \qquad B^{-1} = \begin{bmatrix} 3 & 0 & -2 \\ -1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 7 \\ -10 \\ -66 \end{bmatrix}$$

a) Berechnen Sie die LR-Zerlegung von A und lösen Sie damit Ax = b. Wenn Sie die LR-Zerlegung nicht bestimmen können, verwenden Sie die (falschen) Matrizen

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -18 & 4 & 1 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 4 & 28 \\ 0 & -2 & -8 \\ 0 & 0 & 4 \end{bmatrix}$$

- b) Geben Sie die Norm und Kondition von *B* bzgl. der ∞-Norm an.
- c) Mit welcher relativen Genauigkeit bzgl. der ∞ -Norm muss b gemessen werden, damit das Gleichungssystem Bx = b mit relativer Genauigkeit von 4% gelöst werden kann? Wenn Sie b) nicht lösen konnten, verwenden Sie $\kappa_{\infty}(B) = 20$.

Aufgabe 2 (7 + 3 Punkte)

Die Fließkommazahlen nach IEEE 754-Standard mit einfacher Genauigkeit x_1, x_2 seien in Variablen float x1, x2; gespeichert. Ihre Werte sind als Bitmuster gegeben:

Variable	Byte 1	Byte 2	Byte 3	Byte 4
x1	01000010	01100110	00000000	00000000
x2	01100111	01000000	00000000	00000000

Welchen Wert als bit-Muster haben die Variablen y1, y2, y3, nachdem folgende Anweisungen durchlaufen wurden? Stellen, die mit * markiert sind, müssen Sie nicht angeben.

```
float y1 = x1 / (-128.0);
float y2 = x2 * x2;
float y3 = -8.25;
```

	Byte 1]	3y	te	2		Byte 3	Byte 4	
y1															******	******
у2															******	******
уЗ															******	******

Aufgabe 3 (10 Punkte)

[Eine komplett lineare Aufgabe ist in der Probeklausur vom SoSe 2018.]

Der Zerfall von radioaktivem Material kann mit dem Exponentialgesetz $M(t) = M_0 \cdot \exp(-\alpha \cdot t)$ beschrieben werden mit einer vom Material abhängigen Konstante; dabei ist M_0 die Menge Material [g] zur Zeit t = 0 (Anfang der Beobachtung), t die Zeit [Jahre]. Über eine weitere Konstante γ ergibt sich die Radioaktivität [Tera-Bequerel] als $A(t) = \gamma \cdot M(t)$. Die Konstanten betragen $\alpha_K = 0.1315, \gamma_K = 44$ für Kobalt 60, und $\alpha_C = 0.023, \gamma_C = 3.215$ für Cäsium 137.

Ein Behälter mit radioaktivem Abfall enthält eine unbekannte Menge Cäsium 137 und Kobalt 60. Über mehrere Jahre wurde die Gesamt-Radioaktivität des Fasses gemessen:

- a) Stellen Sie ein lineares Regressionsmodell auf, mit dem die Menge Cäsium 137 und Kobalt 60 zur Zeit t=0 ermittelt werden kann. Benennen Sie insbesondere Ihre Variablen. Geben Sie die Matrixform an. Schreiben Sie dabei α_K usw. als Variablen, nicht die numerischen Werte. Sie sollen das Ausgleichsproblem **nicht** lösen.
- b) Auf fernen Planeten gibt es Vorkommen eines stabilen Isotops des Elements 115 Moscovium mit genau denselben Konstanten wie Caesium 137, $\alpha_M = \alpha_C$, $\gamma_M = \gamma_C$. Zum Antrieb von Raumschiffen verwendet man eine Mischung von Caesium 137 und diesem radioaktivem Moscovium. Über mehrere Jahre wurde die Gesamt-Radioaktivität eines Treibstoffbehälters gemessen, dabei ergab sich genau dieselbe Tabelle wie oben.

Können Sie mit Ihrem Modell die Mengen Cäsium 137 und Moscovium zur Zeit t=0 ermitteln?

c) Jemand behauptet: Das Modell ist nichtlinear in den α 's. Wenn man den Logarithmus verwendet, kann man auf andere Variablen wechseln, und könnte sogar die Zerfallskonstanten aus den Daten ermitteln.

Was sagen Sie dazu?

Aufgabe 4 (4 + 6 Punkte)

- a) Für das Bundesland Bayern soll aus den Corona-Daten der 71 Landkreise ein Mittelwert gebildet werden. Die Variablen inzidenz und bevoelkerung enthalten als Spaltenvektoren die 7-Tage-Inzidenz pro 100000 Einwohner I_l , und die Bevölkerungszahl B_l für die Landkreise $l=1,\ldots,71$. Die mittlere Inzidenz I ergibt sich gemäß $I=\frac{1}{\sum_{l=1}^{71}B_l}\sum_{l=1}^{71}I_l\cdot B_l$. Geben Sie dafür einen möglichst einfachen MATLAB-Ausdruck ohne Schleifen an.
- b) Die Funktion plotBezier soll gemäß der Formel

$$B(\lambda) = \sum_{k=0}^{n} {n \choose k} \cdot \lambda^{k} (1 - \lambda)^{n-k} P_{k}, \ \lambda \in [0, 1]$$

eine Bezier-Kurve zu Punkten $P_0, \ldots, P_n \in \mathbb{R}^2$ zeichnen, die spaltenweise in der Matrix P übergeben werden. Weiter sollen die Punkte P_i mit einem Kreuz markiert werden, siehe die Kommandos mit zugehöriger Ausgabe rechts.

Die Implementierung enthält Fehler – nicht nur Syntaxfehler. Markieren Sie die Fehler, erklären Sie jeweils das Problem, und geben Sie eine korrekte Version an. (Die MATLAB-Funktion nchoosek berechnet den Binomialkoeffizienten.)

Aufgabe 5 (9 + 4 Punkte)

a) Prüfen Sie, ob die Funktionen die Voraussetzungen des Banachschen Fixpunktsatzes erfüllen.

$$f_1: \mathbb{R} \to \mathbb{R}, \quad f_1(x) = \sin(x)$$

 $f_2: \mathbb{R} \to \mathbb{R}, \quad f_2(x) = \frac{1}{2}\sin(x) + 100$
 $f_3: (-\infty, 0] \to [99, 101], \quad f_3(x) = \frac{1}{2}\sin(x) + 100$

b) Geben Sie die Newton-Iteration und die Sekanten-Iteration an für die Lösung der nichtlinearen Gleichung $x+x^2-\frac{1}{3}\cos(x)=7$

Aufgabe 6 (4 + 6 Punkte)

a) Berechnen Sie die Jacobi-Matrix von $f_1: \mathbb{R}^2 \to \mathbb{R}^2$,

$$f_1(x_1, x_2) = \begin{bmatrix} x_1^2 + x_2^2 - 2 \\ e^{x_1 - 1} + x_2^3 - 2 \end{bmatrix}$$

b) Berechnen Sie die Hesse-Matrix von $f_2: \mathbb{R}^2 \to \mathbb{R}$,

$$f_2(x_1,x_2) = x_1 \cdot \ln(1+x_2^2)$$