Elektroenergetika 3 - Tepelná část

Test v1.1

Jméno a Příjmení	2 body):	

1 Zeď (16 bodů)

Teplota na začátku zdi je $T_1 = 20$ °C, teplota na konci zdi je $T_2 = -10$ °C. Plocha průřezu zdi je S = 10 m². Uvažujme dvouvrstvou zeď složenou z cihly (c) a izolace (i). Parametry cihly jsou:

- $\lambda_c = 0.80 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$,
- $d_c = 30 \text{ cm}$.

Parametry izolace jsou:

- $\lambda_i = 0.05 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$,
- $d_i = 4$ cm.

Uvažujte, že izolace je na konci zdi (z venčí). Zanedbejte součinitele přestupu tepla na začátku a na konci zdi.

- a) Nakreslete tepelné schéma a vypočítejte:
 - Celkový tepený odpor $R_{\vartheta,\Sigma}$ (m² · K · W⁻¹),
 - Celkový absolutní tepelný odpor $R_{\vartheta A,\Sigma}$ (K·W⁻¹),
 - Součinitel prostupu tepla $U_{\vartheta,\Sigma}$ (W·m⁻²·K⁻¹),
 - Prostup tepla $U_{\vartheta A,\Sigma}$ (W·K⁻¹),
 - Měrný tepelný tok \dot{q} (W·m⁻²),
 - Tepelný tok \dot{Q} (W).
- b) Vypočítejte teplotní spády v cihle ΔT_c a v izolaci ΔT_i a nakreslete graf závislosti teploty na ose x pro případ izolace z venčí a pro případ izolace zevnitř.

2 Symetrizace (16 bodů)

Mějme 3 fázovou nesymetrickou zátěž nazančenou na obrázku:

Parametry:

- U = 400 V,
- $\cos(\varphi) = 0.85$,
- $P_{1,2} = 20 \text{ kW}$, induktivní,
- $P_{1,3} = 35$ kW, kapacitní,
- $P_{2,3} = 44$ kW, kapacitní.

Proveďte výpočet symetrizačních admitancí $Y_{s,1,2},\,Y_{s,1,3}$ a $Y_{s,2,3}$ a nakreslete schéma zapojení symetrizačních admitancí.

3 Teoretická otázka (16 bodů)

Popište výhody a nevýhody přidání izolace zdi z vnější a vnitřní strany.