Economics 103 – Statistics for Economists

Francis J. DiTraglia

University of Pennsylvania

Lecture 22

Last Time

Walked through steps of hypothesis testing in a simple example.

Today

- Relationship between hypothesis testing and CIs
- ► More examples of hypothesis tests

- There is a very close relationship between CIs and hypothesis tests against a two-sided alternative.
- I'll illustrate this using a generic version of the example from last class but the relationship holds in general.

Suppose $X_1, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2)$

Test H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$ at significance level α

- ▶ Test Statistic: $T_n = \sqrt{n}(\bar{X}_n \mu_0)/S \sim t(n-1)$ under H_0
- ▶ Decision Rule: Reject H_0 if $|T_n| > qt(1 \alpha/2, df = n 1)$

Suppose $X_1, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2)$

Test H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$ at significance level α

- ▶ Test Statistic: $T_n = \sqrt{n}(\bar{X}_n \mu_0)/S \sim t(n-1)$ under H_0
- ▶ Decision Rule: Reject H_0 if $|T_n| > qt(1 \alpha/2, df = n 1)$

$$100 \times (1 - \alpha)\%$$
 CI for μ

$$\bar{X}_n \pm \operatorname{qt}(1-\alpha/2,\operatorname{df}=n-1)\frac{S}{\sqrt{n}}$$

$$c = \operatorname{qt}(1 - \alpha/2, \operatorname{df} = n - 1)$$

Decision Rule: Reject H_0 if

$$\left|\frac{\bar{X}_n - \mu_0}{S/\sqrt{n}}\right| > c \iff$$

$$c = \operatorname{qt}(1 - \alpha/2, \operatorname{df} = n - 1)$$

Decision Rule: Reject H_0 if

$$\left|\frac{\bar{X}_n - \mu_0}{S/\sqrt{n}}\right| > c \quad \iff \quad \left(\frac{\bar{X}_n - \mu_0}{S/\sqrt{n}} > c \quad \mathsf{OR} \quad \frac{\bar{X}_n - \mu_0}{S/\sqrt{n}} < -c\right)$$

$$c = \operatorname{qt}(1 - \alpha/2, \operatorname{df} = n - 1)$$

Decision Rule: Reject H_0 if

$$\left|\frac{\bar{X}_n - \mu_0}{S/\sqrt{n}}\right| > c \quad \iff \quad \left(\frac{\bar{X}_n - \mu_0}{S/\sqrt{n}} > c \quad \mathsf{OR} \quad \frac{\bar{X}_n - \mu_0}{S/\sqrt{n}} < -c\right)$$

Equivalent to: Don't Reject H₀ provided

$$-c \leq \frac{\bar{X}_n - \mu_0}{S/\sqrt{n}} \leq c$$

$$c = \operatorname{qt}(1 - \alpha/2, \operatorname{df} = n - 1)$$

Decision Rule: Reject H_0 if

$$\left|\frac{\bar{X}_n - \mu_0}{S/\sqrt{n}}\right| > c \quad \iff \quad \left(\frac{\bar{X}_n - \mu_0}{S/\sqrt{n}} > c \quad \mathsf{OR} \quad \frac{\bar{X}_n - \mu_0}{S/\sqrt{n}} < -c\right)$$

Equivalent to: Don't Reject H₀ provided

$$-c \le \frac{\bar{X}_n - \mu_0}{S/\sqrt{n}} \le c$$

$$\bar{X}_n - c \times \frac{S}{\sqrt{n}} \le \mu_0 \le \bar{X}_n + c \times \frac{S}{\sqrt{n}}$$

What does this mean?

Two-sided Test \iff Checking if $\mu_0 \in CI$

A two-sided test of H_0 : $\mu=\mu_0$ against H_1 : $\mu\neq\mu_0$ at significance level α is equivalent to checking whether μ_0 lies inside the corresponding $100\times(1-\alpha)\%$ confidence interval for μ .

What does this mean?

Two-sided Test \iff Checking if $\mu_0 \in CI$

A two-sided test of H_0 : $\mu=\mu_0$ against H_1 : $\mu\neq\mu_0$ at significance level α is equivalent to checking whether μ_0 lies inside the corresponding $100\times(1-\alpha)\%$ confidence interval for μ .

"Inverting" Two-sided Test to get a CI

Collect all the values μ_0 such that we cannot reject H_0 : $\mu=\mu_0$ against the two-sided alternative. The result is *precisely* a $100 \times (1-\alpha)\%$ CI for μ .

The Anchoring Experiment

The Anchoring Experiment

Shown a "random" number and then asked what proportion of UN member states are located in Africa.

"Hi" Group – Shown 65 (
$$n_{Hi} = 46$$
)

Sample Mean: 30.7, Sample Variance: 253

"Lo" Group – Shown 10 (
$$n_{Lo} = 43$$
)

Sample Mean: 17.1, Sample Variance: 86

Fairly large samples here, so we'll proceed via the CLT...

In words, what is our null hypothesis?

- (a) There is a *positive* anchoring effect: seeing a higher random number makes people report a higher answer.
- (b) There is a *negative* anchoring effect: seeing a lower random number makes people report a lower answer.
- (c) There is an anchoring effect: it could be positive or negative.
- (d) There is no anchoring effect: people aren't influenced by seeing a random number before answering.

In symbols, what is our null hypothesis?

- (a) $\mu_{Lo} < \mu_{Hi}$
- (b) $\mu_{Lo} = \mu_{Hi}$
- (c) $\mu_{Lo} > \mu_{Hi}$
- (d) $\mu_{Lo} \neq \mu_{Hi}$

In symbols, what is our null hypothesis?

- (a) $\mu_{Lo} < \mu_{Hi}$
- (b) $\mu_{Lo} = \mu_{Hi}$
- (c) $\mu_{Lo} > \mu_{Hi}$
- (d) $\mu_{Lo} \neq \mu_{Hi}$

 $\mu_{Lo} = \mu_{Hi}$ is equivalent to $\mu_{Hi} - \mu_{Lo} = 0!$

Anchoring Experiment

Under the null, what should we expect to be true about the values taken on by \bar{X}_{Lo} and \bar{X}_{Hi} ?

- (a) They should be similar in value.
- (b) \bar{X}_{Lo} should be the smaller of the two.
- (c) \bar{X}_{Hi} should be the smaller of the two.
- (d) They should be different. We don't know which will be larger.

What is our Test Statistic?

Sampling Distribution

$$\frac{\left(\bar{X}_{\textit{H}i} - \bar{X}_{\textit{Lo}}\right) - \left(\mu_{\textit{H}i} - \mu_{\textit{Lo}}\right)}{\sqrt{\frac{S_{\textit{H}i}^2}{n_{\textit{H}i}} + \frac{S_{\textit{Lo}}^2}{n_{\textit{Lo}}}}} \approx \textit{N}(0, 1)$$

Test Statistic: Impose the Null

Under
$$H_0$$
: $\mu_{Lo} = \mu_{Hi}$
$$T_n = \frac{\bar{X}_{Hi} - \bar{X}_{Lo}}{\sqrt{\frac{S_{Hi}^2}{n_{Hi}} + \frac{S_{Lo}^2}{n_{Lo}}}} \approx N(0,1)$$

What is our Test Statistic?

$$\bar{X}_{Hi} = 30.7, \ s_{Hi}^2 = 253, \ n_{Hi} = 46$$

 $\bar{X}_{Lo} = 17.1, \ s_{Lo}^2 = 86, \ n_{Lo} = 43$

Under H_0 : $\mu_{Lo} = \mu_{Hi}$

$$T_n = rac{ar{X}_{Hi} - ar{X}_{Lo}}{\sqrt{rac{S_{Hi}^2}{n_{Hi}} + rac{S_{Lo}^2}{n_{Lo}}}} pprox N(0,1)$$

Plugging in Our Data

$$T_n = \frac{\bar{X}_{Hi} - \bar{X}_{Lo}}{\sqrt{\frac{S_{Hi}^2}{n_{Hi}} + \frac{S_{Lo}^2}{n_{Lo}}}} \approx 5$$

Anchoring Experiment Example

Approximately what critical value should we use to test H_0 : $\mu_{Lo}=\mu_{Hi}$ against the two-sided alternative at the 5% significance level?

Anchoring Experiment Example

Approximately what critical value should we use to test H_0 : $\mu_{Lo} = \mu_{Hi}$ against the two-sided alternative at the 5% significance level?

α	0.10	0.05	0.01
qnorm(1-lpha)	1.28	1.64	2.33
$\mathtt{qnorm}(\mathtt{1}-lpha/\mathtt{2})$	1.64	1.96	2.58

... Approximately 2

Anchoring Experiment Example

Which of these commands would give us the p-value of our test of H_0 : $\mu_{Lo} = \mu$ against H_1 : $\mu_{Lo} < \mu_{Hi}$ at significance level α ?

- (a) qnorm(1 α)
- (b) qnorm(1 $\alpha/2$)
- (c) 1 pnorm(5)
- (d) 2 * (1 pnorm(5))

P-values for H_0 : $\mu_{Lo} = \mu_{Hi}$

We plug in the value of the test statistic that we observed: 5

Against
$$H_1$$
: $\mu_{Lo} < \mu_{Hi}$
1 - pnorm(5) < 0.0000

Against
$$H_1$$
: $\mu_{Lo} \neq \mu_{Hi}$

$$2 * (1 - pnorm(5)) < 0.0000$$

If the null is true (the two population means are equal) it would be extremely unlikely to observe a test statistic as large as this!

What should we conclude?

Which Exam is Harder?

Student	Exam 1	Exam 2	Difference
1	57.1	60.7	3.6
:	:	:	:
71	78.6	82.9	4.3
Sample Mean:	79.6	81.4	1.8
Sample Var.	117	151	124
Sample Corr.	0.54		

Again, large sample size here so we'll use CLT.

One-Sample Hypothesis Test Using Differences

Let $D_i = X_i - Y_i$ be (Midterm 2 Score - Midterm 1 Score) for student i

Null Hypothesis

 H_{0} : $\mu_{1}=\mu_{2}$, i.e. both exams were of the same difficulty

Two-Sided Alternative

 H_1 : $\mu_1 \neq \mu_2$, i.e. one exam was harder than the other

One-Sided Alternative

 H_1 : $\mu_2 > \mu_1$, i.e. the second exam was easier

Decision Rules

Let $D_i = X_i - Y_i$ be (Midterm 2 Score - Midterm 1 Score) for student i

Test Statistic

$$\frac{\bar{D}_n}{\widehat{SE}(\bar{D}_n)} = \frac{1.8}{\sqrt{124/71}} \approx 1.36$$

Two-Sided Alternative

Reject H_0 : $\mu_1 = \mu_2$ in favor of H_1 : $\mu_1 \neq \mu_2$ if $|\bar{D}_n|$ is sufficiently large.

One-Sided Alternative

Reject H_0 : $\mu_1 = \mu_2$ in favor of H_1 : $\mu_2 > \mu_1$ if \bar{D}_n is sufficiently large.

Reject against *Two-sided* Alternative with $\alpha = 0.1$?

$$\frac{\bar{D}_n}{\widehat{SE}(\bar{D}_n)} = \frac{1.8}{\sqrt{124/71}} \approx 1.36$$

α	0.10	0.05	0.01
$\mathtt{qnorm}(1-lpha)$	1.28	1.64	2.33
$\mathtt{qnorm}(\mathtt{1}-lpha/\mathtt{2})$	1.64	1.96	2.58

- (a) Reject
- (b) Fail to Reject
- (c) Not Sure

Reject against *One-sided* Alternative with $\alpha = 0.1$?

$$\frac{\bar{D}_n}{\widehat{SE}(\bar{D}_n)} = \frac{1.8}{\sqrt{124/71}} \approx 1.36$$

α	0.10	0.05	0.01
$\mathtt{qnorm}(1-lpha)$	1.28	1.64	2.33
$\mathtt{qnorm}(1-\alpha/2)$	1.64	1.96	2.58

- (a) Reject
- (b) Fail to Reject
- (c) Not Sure

P-Values for the Test of H_0 : $\mu_1 = \mu_2$

$$\frac{\bar{D}_n}{\widehat{SE}(\bar{D}_n)} = \frac{1.8}{\sqrt{124/71}} \approx 1.36$$

One-Sided H_1 : $\mu_2 > \mu_1$

1 - pnorm(1.36) = pnorm(-1.36) ≈ 0.09

Two-Sided H_1 : $\mu_1 \neq \mu_2$

 $2 * (1 - pnorm(1.36)) = 2 * pnorm(-1.36) \approx 0.18$

Tests for Proportions

Basic Idea

The population *can't be* normal (it's Bernoulli) so we use the CLT to get approximate sampling distributions (c.f. Lecture 18).

But there's a small twist!

Bernoulli RV only has a *single* unknown parameter \implies we know *more* about the population under H_0 in a proportions problem than in the other testing examples we've examined...

For best results, always fully impose the null.

Tests for Proportions: One-Sample Example

From Pew Polling Data

54% of a random sample of 771 registered voters correctly identified 2012 presidential candidate Mitt Romney as Pro-Life.

Sampling Model

$$X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)$$

Sample Statistic

Sample Proportion:
$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Suppose I wanted to test H_0 : p = 0.5

Tests for Proportions: One Sample Example

Under H_0 : p = 0.5 what is the standard error of \hat{p} ?

- (a) 1
- (b) $\sqrt{\widehat{p}(1-\widehat{p})/n}$
- (c) σ/\sqrt{n}
- (d) $1/(2\sqrt{n})$
- (e) p(1-p)

Tests for Proportions: One Sample Example

Under H_0 : p = 0.5 what is the standard error of \hat{p} ?

- (a) 1
- (b) $\sqrt{\widehat{p}(1-\widehat{p})/n}$
- (c) σ/\sqrt{n}
- (d) $1/(2\sqrt{n})$
- (e) p(1-p)

$$p = 0.5 \implies \sqrt{0.5(1 - 0.5)/n} = 1/(2\sqrt{n})$$

Under the null we know the SE! Don't have to estimate it!

One-Sample Test for a Population Proportion

Sampling Model

 $X_1, \ldots, X_n \sim \mathsf{iid} \; \mathsf{Bernoulli}(p)$

Null Hypothesis

 H_0 : $p = Known Constant <math>p_0$

Test Statistic

$$T_n = \frac{p - p_0}{\sqrt{p_0(1 - p_0)/n}} \approx N(0, 1)$$
 under H_0 provided n is large

One-Sample Example H_0 : p = 0.5

54% of a random sample of 771 registered voters knew Mitt Romney is Pro-Life.

$$T_n = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = 2\sqrt{771}(0.54 - 0.5)$$
$$= 0.08 \times \sqrt{771} \approx 2.2$$

One-Sided p-value

1 - pnorm(2.2) ≈ 0.014

Two-Sided p-value

 $2 * (1 - pnorm(2.2)) \approx 0.028$

Tests for Proportions: Two-Sample Example

From Pew Polling Data

53% of a random sample of 238 Democrats correctly identified Mitt Romney as Pro-Life versus 61% of 239 Republicans.

Sampling Model

Republicans: $X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)$ independent of

Democrats: $Y_1, \ldots, Y_m \sim \text{iid Bernoulli}(q)$

Sample Statistics

Sample Proportions:
$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $\hat{q} = \frac{1}{m} \sum_{i=1}^{m} Y_i$

Suppose I wanted to test H_0 : p = q

A More Efficient Estimator of the SE Under H_0

Don't Forget!

Standard Error (SE) means "std. dev. of sampling distribution" so you should know how to prove that that:

$$SE(\widehat{p}-\widehat{q})=\sqrt{rac{p(1-p)}{n}+rac{q(1-q)}{m}}$$

Under H_0 : p = q

Don't know values of p and q: only that they are equal.

A More Efficient Estimator of the SE Under H_0

One Possible Estimate

$$\widehat{SE} = \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n} + \frac{\widehat{q}(1-\widehat{q})}{m}}$$

A Better Estimate Under H₀

$$\widehat{SE}_{Pooled} = \sqrt{\widehat{\pi}(1-\widehat{\pi})\left(\frac{1}{n}+\frac{1}{m}\right)}$$
 where $\widehat{\pi} = \frac{n\widehat{p}+m\widehat{q}}{n+m}$

Why Pool?

If p=q, the two populations are the same. This means we can get a more precise estimate of the common population proportion by pooling. More data = Lower Variance \implies better estimated SE.

Two-Sample Test for Proportions

Sampling Model

 $X_1, \ldots, X_n \sim \text{iid Bernoulli}(p) \text{ indep. of } Y_1, \ldots, Y_m \sim \text{iid Bernoulli}(q)$

Sample Statistics

Sample Proportions:
$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $\hat{q} = \frac{1}{m} \sum_{i=1}^{m} Y_i$

Null Hypothesis

$$H_0: p = q \quad \Leftarrow$$
 i.e. $p - q = 0$

Pooled Estimator of SE under H_0

$$\widehat{\pi} = \frac{n\widehat{p} + m\widehat{q}}{n + m}, \quad \widehat{SE}_{Pooled} = \sqrt{\widehat{\pi}(1 - \widehat{\pi})(1/n + 1/m)}$$

Test Statistic

Test Statistic
$$T_n = \frac{\widehat{p} - \widehat{q}}{\widehat{SE}_{Pooled}} \approx N(0, 1) \text{ under } H_0 \text{ provided } n \text{ and } m \text{ are large}$$

Two-Sample Example H_0 : p = q

53% of 238 Democrats knew Romney is Pro-Life vs. 61% of 239 Republicans

$$\widehat{\pi} = \frac{n\widehat{p} + m\widehat{q}}{n + m} = \frac{239 \times 0.61 + 238 \times 0.53}{239 + 238} \approx 0.57$$

$$\widehat{SE}_{Pooled} = \sqrt{\widehat{\pi}(1-\widehat{\pi})(1/n+1/m)} = \sqrt{0.57 \times 0.43(1/239+1/238)}$$

$$\approx 0.045$$

$$T_n = \frac{\widehat{p} - \widehat{q}}{\widehat{SE}_{Pooled}} = \frac{0.61 - 0.53}{0.045} \approx 1.78$$

One-Sided P-Value

1 - pnorm(1.78) ≈ 0.04

Two-Sided P-Value

 $2 * (1 - pnorm(1.78)) \approx 0.08$