

BIOLOGY Chapter 10

GENÉTICA MENDELIANA

GENÉTICA

Ciencia biológica que estudia los mecanismos de la herencia y las variaciones

Herencia

Es la transmisión de características físicas de generación en generación

CONCEPTOS BÁSICOS

GEN

Unidad hereditaria que controla cada carácter en los seres vivos.

ALELO

Cada una de las alternativas que puede tener un gen de un carácter.

Puede ser:

dominante o recesivo.

DOMINANTEA, B, C... ZRECESIVOa, b, c... z

LOCUS y LOCI

Lugar donde está localizado un gen. El plural de locus es "loci".

HELICO | THEORY

Conjunto de los genes que existen en el núcleo celular de cada individuo.

GENOTIP

HOMOCIGOTO O PURO		HETEROCIGOT O O HÍBRIDO
DOMINANTE	RECESIVO	
AA	aa	Aa

FENOTIP

La expresión del genotipo. Es la manifestación externa del genotipo. El fenotipo es el resultado de la interacción entre el genotipo y el ambiente.

P: Generación parental

F1: Primera generación Filial

F2: Segunda generación Filial

GENÉTICA MENDELIANA

Gregor Johann Mendel (1822-1884) Considerado el padre de la genética

Modelo de estudio:

Planta de guisante *Pisum* sativum

*amplia gama de variedades *ciclo de vida corto *fáciles de analizar *puede autopolinizarse *Da abundante

descendencia)

Floración axial o terminal

Las 7 diferencias en un carácter estudiadas por Mendel

Tallo largo o corto

I. PRIMERA LEY DE MENDEL:

⋄ LEY DE LA SEGREGACIÓN DE LOS ALELOS

Al cruzar dos líneas puras que poseen variación de un mismo carácter, en la primera generación F1, todos los descendientes exhibirán la variación dominante; y al cruzar los híbridos de la F1 entre si, la variación dominante se presentará en la proporción de 3:1 con respecto al recesivo

GENOTIPO	FENOTIPO
100% Aa (Heterocigotos o Híbridos)	100% Amarillas

GENOTIPO	FENOTIPO	
1AA, 2Aa, 1aa	3 Amarillas 1 Verde	

F2:

Proporción Genotípica: 1:2:1

Proporción Fenotípica: 3:1

II. SEGUNDA LEY DE MENDEL LEY DE LA DISTRIBUCIÓN O SEGREGACIÓN INDEPENDIENTE DE LOS ALELOS

Al cruzar dos individuos que difieren en dos o mas caracteres, estos se transmiten como si estuvieran aislados unos de otros, de tal manera que en la segunda generación los genes se recombinan en todas las formas posibles.

AaBb AaBb				
	AB	Ab	аВ	ab
АВ	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	رون Aabb
аВ	AaBB	AaBb	aaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb

PROPORCIÓN FENOTÍPICA de F2

9 Amarillos lisos3 Amarillos rugosos3 Verdes lisos1 Verdes rugosos

II. SEGUNDA LEY DE MENDEL:

***LEY DE LA DISTRIBUCIÓN O SEGREGACIÓN INDEPENDIENTE DE LOS ALELOS**

Al cruzar dos individuos que difieren en dos o mas caracteres, estos se transmiten como si estuvieran aislados unos de otros, de tal manera que en la segunda generación los genes se recombinan en todas las formas posibles.

BIOLOGY

HELICOPRÁTICA

1. Resuelva.

Progenitores:

Cruce de híbridos

¿Cuántos heterocigotos se obtiene del cruce?

	A	a
A	AA	Aa
a	Aa	aa

Sustentación

SE OBTIENEN 2

HETEROCIGOTOS

Complete el cuadro de Punnet.

¿Cuántos homocigotos dominantes se obtiene en el cruce?

	A	a
a	Aa	aa
a	AA	aa

3. ¿Qué es un gen?

Sustentación

Segmento de ADN, factor de la herencia

4. ¿Qué es un alelo?

Sustentación

Variaciones de un gen

5. Si un conejo blanco (recesivo) se cruza con un conejo negro heterocigote, ¿cuántos conejitos saldrán de color blanco?

Sustentación

	Α	а
а	Aa	aa
а	Aa	aa

A= Negro a= blanco Aa x aa

2 negros y 2 blancos

¿Cuál es el genotipo del siguiente cruce?

$$P = AA \times aa$$

	A	A
a	Aa	Aa
a	Aa	Aa

¿cuál es el porcentaje de híbridos en la descendencia?

Sustentación

100% Aa

 Mencione cinco características observables de tu compañero de carpeta. (Observe y anote su fenotipo).

Sustentación

- **>** _____
- > _____
- >
- > _____
- > _____

 En genética, el cruce entre dos organismos heterocigotos para un carácter con dominancia completa se puede representar como

 $Rr \times Rr$

¿Qué representa el símbolo r?

- I. Un gen alelo.
- Un fenotipo que desaparece en la descendencia.
- III. Una secuencia de ADN que ocupa el mismo locus que R, en uno de los cromosomas homólogos.

Sustentación

- I. r representa a un alelo recesivo.
- II. El fenotipo recesivo no desaparece en un cruce de monohíbridos.
- III. R ocupará el mismo locus en uno de los homólogos, porque es una variación recesiva del alelo R.