Lagrange.

Se aplica para intervalos uniformes y no uniformes.

$$g(x) = \sum y_i \frac{x - x_i}{x_i - x_j}$$

$$j=x \qquad x_i - x_j$$

$$i \neq x$$

$$g(x) = y_1 \left(\frac{x - x_2}{x_1 - x_2} \right) \left(\frac{x - x_4}{x_1 - x_2} \right) \left(\frac{x - x_4}{x_1 - x_4} \right)$$

$$+ y_2 \frac{\left(\frac{x - x_1}{x_1} \right) \left(\frac{x - x_3}{x_2 - x_4} \right) \left(\frac{x - x_4}{x_2 - x_1} \right) \left(\frac{x - x_2}{x_2 - x_4} \right)}{\left(\frac{x - x_1}{x_3 - x_2} \right) \left(\frac{x - x_4}{x_3 - x_4} \right)}$$

$$+ y_3 \frac{\left(\frac{x - x_1}{x_1} \right) \left(\frac{x - x_2}{x_2 - x_4} \right) \left(\frac{x - x_4}{x_3 - x_4} \right)}{\left(\frac{x - x_1}{x_1 - x_2} \right) \left(\frac{x - x_4}{x_3 - x_4} \right)}$$

$$+ y_4 \frac{\left(\frac{x - x_1}{x_1} \right) \left(\frac{x - x_2}{x_2 - x_4} \right) \left(\frac{x - x_3}{x_3 - x_4} \right)}{\left(\frac{x - x_1}{x_1 - x_2} \right) \left(\frac{x - x_3}{x_3 - x_4} \right)}$$

$$+ y_n$$

Esta ecuación es equivalente a la serie de potencias que se determinan resolviendo la ecuación lineal.

Desventajas:

- 1) La cantidad de cálculos necesarios para la interpolación es grande.
- 2) La interpolación para otro valor "x" requiere la misma cantidad de cálculos adicionales, ya que no se puede utilizar partes de la aplicación previa.
- 3) Cuando el número de datos tiene que incrementarse o decrementarse, no se pueden utilizar los resultados en los cálculos previos.
- 4) La evaluación de error no es fácil.

LAGRANGE

Ejemplo. - Obtener g(x) para x = 2.4

Xi	y i
2.2	2.54
2.5	2.82
2.8	3.21
3.1	3.32
3.4	3.41

Xi		y i
x_1 2.2	y 1	2.54
x_2 2.5	y ₂	2.82
x ₃ 2.8	y 3	3.21
x ₄ 3.1	y 4	3.32
x_5 3.4	y 5	3.41