Design and Analysis of Algorithms

L17: Topological Sorting

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

• Text book 1: Sec 5.1-5.3 - Levitin

Topological Sort Example

- Show the dependency graph in the order of wearing man's cloths
 - Blazer (Coat)
 - Brief
 - Hat
 - Shirt (tucked-in)
 - Sweater
 - Tie
 - Trouser
 - Socks
 - Shoes
 - Vest

Topological Sort Example

Directed Acyclic Graph (dag)

- dag: A directed graph with no (direct) cycles
- Useful in cases where pre-requisite contraints exists that define some dependency
- Topological sorting:
 - Ordering of vertices such that for every (directed) edge, the starting vertex of the edge is listed before the ending vertex.
 - pre-requisite courses for higher order courses
 - version control
 - Being a dag is a necessary condition for topological sorting to be possible.

Examples: dag and non-dag

Topological Sort: DFS Based

- DFS-based algorithm for topological sorting
 - Perform DFS traversal,
 - Note down the order vertices are popped off the traversal stack
 - Reverse order solves topological sorting problem
 - Back edges encountered? → NOT a dag!

DFS Algo - Topo Sort

```
proc DFS(v)
   mark[v] \leftarrow 1 /* visiting
   for each vertex w \in adjacency(v) do
      if mark[w] == 0 /* explore unvisited vertex */
         BFS (w) /* node v is pushed on stack */
      if mark[w] == 1 /* a back edge, and hence cycle */
          exit("graph has cycle")
   mark[v] ← 2 /* v is popped from stack, mark it visited */
   topo[v] = order-
/* initialization *
order ← N /* reverse ordering */
for each vertex \forall \in V do
   mark[v] \leftarrow 0 /* unvisited */;
   topo[v]=0 /* order */
for each vertex v \in V where v has no incident edges do
   DFS (\vee) /* start from a some root */
```

DFS Based Topological Sort-dag

DFS Based Topological Sort-dag

Analysis: DFS based Topo Sort

- When a vertex v is popped off the stack
 - no vertex u with an edge (u, v) can be among vertices popped off the stack before v.
 - Otherwise, (u, v) would be a back edge'
 - Thus, any such vertex u will be listed after v.
- Time complexity
 - Same as that of DFS algorithm
 - ○ (| V | + | E |)

Topo Sort: Decrease and Conquer

- Given the diagraph (dag)
 - Identify a source (vertex with no incoming edges)
 - remove this source from the diagraph
 - If there are multiple such sources
 - Take any one at random
 - Repeat the process in remaining diagraph
- The order in which vertices are removed
 - provides a solution to the topological sorting
- If no source (without any incoming edges) is found
 - then solution does not exists
 - there is a cycle and topological sorting can't be done

Topo sort (D&C)-dag

topo[e]:2

Topo sort (D&C)-dag

Topo sort (D&C)-dag

topo[f]:6

topo[g]:7

topo[h]:8

 $\begin{pmatrix} h \end{pmatrix}$

Topological sorting of vertices a:1, e:2, b:3, c:4, d:5, f:6, g:7, h:8

Topo sort (D&C)-cyclic graph

topo[e]:2

Topo sort (D&C)-cyclic graph

topo[b]:3

topo[f]:4

Topo sort (D&C)-cyclic graph

No source can be found i.e. there is no vertex with no incoming edges.

Thus, given graph is cyclic

Topo sort (D&C)-Algo

```
• Algo: toposortdc (v, G)
  – i/p: v is with in degree 0; o/p: topo order of v
  topo[v]=order++
  if nodes in G == 1
     return
  For each edge v→w in G
     remove v→w from G
  Find a vertex w \in G such that in degree [w] is 0
     /* if no such vertex w, then graph is cyclic
  toposortdc (w,G)
/* main */
order=1
find v \in G such that indegree of v is 0
toposortdc (v,G)
```

Topo sort (D&C)-Implementation

Topo sort (D&C)-Implementation

Topo sort (D&C)-Complexity

- Scanning a list of edges to build
 - Adjancey list: (| E |)
 - Indegree list: \bigcirc (| E |)
 - Queue of zero Indegree: (| V |)
- With each iteration of removing front of Q
 - Indegree list is changed
 - node is added to end of Queue of zero indegree
- All the work done in all iterations
 - $\bigcirc (|E|)$ for changing indegree
 - $\bigcirc (| \lor |)$ for updating Queue of zero indegree
- Total time complexity: (| ∨ | + | E |)

Summary

- Topological order
- Directed acyclic graph
- Directed cyclic graph
- Edge types:
 - Tree edges
 - Forward/cross edges
 - Back edges
- Topo sort using DFS
 - **Time complexity:** \bigcirc (| \lor | + | \lor |)
- Topo sort using node removal
 - **Time complexity:** (| ∨ | + | E |)