

The Effects of Casimir Interactions in Experiments on Gravitationally Induced Enganglement

1957 – Chapel Hill, North Carolina

Gravitationally induced entanglement as a "proof" of quantum gravity?

Non-Classical Gravity

Non-Classical Gravity

= non-LOCC interactions mediated by gravity

[L. Lami et. al, Phys. Rev. X 14, 021022 (2023)]

Experimental setup

Distance between cat-states $A^{(i)}$ and $B^{(j)}$

$$H = -\frac{GM_AM_B}{|\hat{L}|}$$

Gravitational coupling:
$$H = -\frac{GM_AM_B}{\left|\hat{L}\right|}$$
 with $\hat{L}\left|\psi_A^{(i)}\psi_B^{(j)}\right\rangle = 2L^{(ij)}\left|\psi_A^{(i)}\psi_B^{(j)}\right\rangle$

Entanglement dynamics

$$E_N \approx \log_2(1 + |\sin \Delta \phi|)$$

where

$$\Delta \phi = \frac{GM_AM_B(\Delta x)^2}{8\hbar L^3}$$

$$t_{\text{max,orthogonal}} = \frac{4\pi L^3 \hbar}{GM_A M_B (\Delta x)^2}$$

"Parallel" configuration:

"Orthogonal" configuration:

$$\frac{M^2(\Delta x)^2}{L^3} t \gtrsim \frac{\hbar}{G}$$

What is possible today?

Molecules with 4×10^{-23} kg and $\Delta x = 500$ nm [Y. Y. Fein et.al, Nature Physics 15, 1242–1245 (2019)]

How small can we make L?

$$V_{\text{Gravity}} \sim -\frac{G M_A M_B}{L}$$

$$V_{\text{Casimir}} \sim -\frac{23 \, \hbar c}{4\pi L^7} \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 2}\right)^2 R^6$$

[T. Emig et.al, Phys. Rev. Lett. 99, 170403 (2007)]

Conducting **Faraday-Shield** required for $L \lesssim 100 \ \mu \mathrm{m}$

Casimir Interactions: Particles ↔ Shield

Proximity-Force-Approximation (**PFA**) for $L \approx R$:

$$E_{\text{PFA}} = -\frac{\hbar c \pi^3}{720} \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 1} \right) \varphi(\varepsilon_r) \frac{R}{\mathcal{L}^2}$$

Large separation limit (LSL) for $L/R \gg 1$:

$$E_{\rm LSL} = -\frac{3}{8}\frac{\hbar c}{\pi}\bigg(\frac{\varepsilon_r-1}{\varepsilon_r+2}\bigg)\frac{R^3}{L^4} \qquad \text{[T. Emig, J. Stat. Mech. P04007 (2008)]}$$

Trapping the particles close to the shield

WKB-Approximation:

$$n(E_0) \approx \frac{1}{\hbar\pi} \int_{x_0}^{x_2} \mathrm{d}x \sqrt{2m(E_0 - V(x))} < \bar{n}$$

→ Trapping close to the shield should not be a problem!

The general problem...

All variations are gaussian distributed around $\langle X \rangle = 0$ and standard deviation ΔX , where $X \in \{\theta_A, \theta_B, L_A, L_B\}$

Loss of entanglement

Parameters:

Orientation	Particle size		Т	Δx
	Radius R	Mass M	- L	Δx
Parallel	$10\mu\mathrm{m}$	$\approx 10^{-11} \mathrm{kg}$	$2P - 20 \mu m$	100 nm
$(\alpha = \beta = 0)$	$= 10^{-5} \mathrm{m}$	$=5\times10^{-4}m_p$	$2R = 20\mu\mathrm{m}$	100 11111

Logarithmic negativiy (analytical):

$$E_N = \max\{0, \log_2[e^{-\gamma}(\cosh\gamma + |\sin\phi|)]\}$$

with
$$\gamma \sim \left[\xi (\Delta \theta)^2 + \zeta (\Delta L)^2\right] t^2$$

$$\phi = \frac{GM^2(\Delta x)^2 t}{8\hbar L^3} \left[\sin \alpha \sin \beta - \frac{1}{2}\cos \alpha \cos \beta\right]$$

Which orientation is the most stable?

 $\pi/4$

 $\pi/2$

Superposition orientation α / rad

 $3\pi/4$

 $\pi \pi/2$

-0.01

 $\pi/2$

+0.01

Stability improvements for other parameters

Orientation	Particle size		Т	Δx
	Radius R	Mass M^{a}	L	Δx
Parallel	$10\mu\mathrm{m}$	$\approx 10^{-11}\mathrm{kg}$	$2R = 20 \mu\mathrm{m}$	100 nm
$(\alpha = \beta = 0)$	$= 10^{-5} \mathrm{m}$	$=5\times10^{-4}m_p$	$2R - 20 \mu\mathrm{m}$	100 11111

Particle-shield separation:

$$\Delta\theta_{\rm crit} \sim L^2$$

$$\Delta\theta_{\rm crit} \sim \frac{(L-R)^3}{L^3}$$

Stability improvements for other parameters

Orientation	Particle size		T	Δx
		Mass M^{a}	L	Δx
Parallel	$10\mu\mathrm{m}$	$\approx 10^{-11} \mathrm{kg}$	$2P - 20 \mu m$	100 nm
$(\alpha = \beta = 0)$	$= 10^{-5} \mathrm{m}$	$=5\times10^{-4}m_p$	$2R = 20\mu\mathrm{m}$	10011111

Particle size / particle mass:

Spatial superposition extension:

Optimization?

 $\frac{M^2(\Delta x)^2}{L^3}t \gtrsim \frac{\hbar}{G}$

The largest possible allowed setup variations $\max \Delta heta_{
m crit}$ and $\max \Delta L_{
m crit}$

- Increase L as $\Delta\theta_{\rm crit} \propto L^2$
- Increase mass M
- Increase superposition size Δx
- Maybe parallel orientation?

Shortest coherence time $\min t_{\max}$ \leftrightarrow fastest entanglement rate

- Decrease L as $t_{\text{max}} \propto L^3$
- Increase mass M
- Increase superposition size Δx

Consider experimental limitations

 $\Gamma_{\text{Entanglement}} > \Gamma_{\text{Decoherence}}$

- Limited generation of spatially delocalized states $(M \cdot \Delta x)$
- Entanglement rate larger than decoherence rates

The size of the shield

Prientation -	Particle size		T	Δx
	Radius R	Mass M^{a}	L	Δx
Parallel	$10\mu\mathrm{m}$	$\approx 10^{-11} \mathrm{kg}$	$2P - 20 \mu m$	100 nm
$\alpha = \beta = 0)$	$= 10^{-5} \mathrm{m}$	$=5\times10^{-4}m_p$	$2R = 20\mu\mathrm{m}$	100 11111

Gravitational entanglement rate:

$$\Gamma_{\text{Gravity}} = \frac{\mathrm{d}}{\mathrm{d}t} E_N \bigg|_{t=0} = \frac{G\pi^2 R^6 \rho_{\text{Silica}}^2 (\Delta x)^2}{9\hbar L^3 \log 2} > \Gamma_{\text{All other interactions}}$$

$\Gamma_{\text{Gravity}} > \Gamma_{\text{Coulom}b}$

- \rightarrow Required thickness: $d \ge 10 \text{ nm}$ at 4 K
- → Required radius: $r_s \ge 60$ cm!!

$\Gamma_{\text{Gravity}} > \Gamma_{\text{Casimir}}$

- \rightarrow Required thickness: $d \ge 0.04 \text{ nm}$ at 4 K
- \rightarrow Required radius: $r_s \gtrsim R + \frac{\Delta x}{2} \approx 10 \ \mu \text{m}$

Vibrational modes

Physical round plate with thickness d and radius r_s

~ zeros of the Bessel functions J_{ν} and I_{ν}

Vibrational frequency: $\omega \propto \frac{d}{r_s^2} \sqrt{\frac{E}{12 \rho (1 - v^2)}}$

Parameters:

$$\frac{\frac{\text{Shield size}}{d}}{\frac{100\,\text{nm}}{100\,\text{nm}}} \xrightarrow{\text{1 cm}} \frac{\omega_{(1,0)} \approx 11.0\,\text{s}^{-1}}{\omega_{(7,6)} \approx 1018\,\text{s}^{-1}}$$

Vibrational energy $\hbar\omega\ll k_BT$

→ Thousands of modes are all occupied simultaneously!

Entanglement dynamics with thermal shield

$$H = \sum_{\substack{m \in \{(k,l)\}\\k \geq 1, l \geq 0}} \left\{ \hbar \omega_{m} \left(a_{m}^{\dagger} a_{m} + \frac{1}{2} \right) + g_{A,m,\text{Casimir}}^{(1)} \left(a_{m} + a_{m}^{\dagger} \right) \left| \psi_{A}^{(1)} \right\rangle \left\langle \psi_{A}^{(1)} \right| + g_{A,m,\text{Casimir}}^{(2)} \left(a_{m} + a_{m}^{\dagger} \right) \left| \psi_{A}^{(2)} \right\rangle \left\langle \psi_{A}^{(2)} \right| + g_{B,m,\text{Casimir}}^{(2)} \left(a_{m} + a_{m}^{\dagger} \right) \left| \psi_{B}^{(2)} \right\rangle \left\langle \psi_{B}^{(2)} \right| + g_{B,m,\text{Casimir}}^{(2)} \left(a_{m} + a_{m}^{\dagger} \right) \left| \psi_{B}^{(2)} \right\rangle \left\langle \psi_{B}^{(2)} \right| \right\} + g_{\text{Gravity}}^{(1,1)} \left| \psi_{A}^{(1)} \psi_{B}^{(1)} \right\rangle \left\langle \psi_{A}^{(1)} \psi_{B}^{(1)} \right| + g_{\text{Gravity}}^{(2,1)} \left| \psi_{A}^{(2)} \psi_{B}^{(2)} \right\rangle \left\langle \psi_{A}^{(2)} \psi_{B}^{(2)} \right| + g_{\text{Gravity}}^{(2,1)} \left| \psi_{A}^{(2)} \psi_{B}^{(2)} \right\rangle \left\langle \psi_{A}^{(2)} \psi_{B}^{(2)} \right| + g_{\text{Gravity}}^{(2,1)} \left| \psi_{A}^{(2)} \psi_{B}^{(2)} \right\rangle \left\langle \psi_{A}^{(2)} \psi_{A}^{(2)} \psi_{B}^{(2)} \right\rangle \left\langle \psi_{A}^{(2)} \psi_{B}^{(2)} \right\rangle \left\langle \psi_{A}^{(2)} \psi_{B}^{(2)} \right\rangle \left\langle$$

Independent of the thermal shield

$$|\psi_{\text{particle}}\rangle = \frac{1}{2} \left(\left| \psi_A^{(1)} \right\rangle + \left| \psi_A^{(2)} \right\rangle \right) \otimes \left(\left| \psi_B^{(1)} \right\rangle + \left| \psi_B^{(2)} \right\rangle \right)$$
Initial state:
$$\rho_0 = \rho_{\text{particles}} \otimes \left(\bigotimes_{m \in \{(k,l)\}} \rho_{\text{th},m} \right)$$

Entanglement dynamics with thermal shield

Decoherence due to interactions with the shield:

Time t / t_{max}

Effect of all infinitely many other modes: $\sim 1.7 \times 10^{-11} \%$

For the first 50 modes:

Effect of the shield radius

$$\gamma \sim \sum_{m} \frac{1}{\hbar^2 \omega_m^2} |g_{Casimir}|^2 \sin^2\left(\frac{\omega_m}{2}t\right) \left[\bar{n}_m + \frac{1}{2}\right]$$

since $\omega \propto \frac{1}{r_s^2}$ and $\gamma \propto \frac{1}{\omega^4}$: strong dependence on the shields radius

For the first 50 modes at $r_s=5~\mathrm{mm}$:

Advantages of **small shields** (and thus uncharged particles):

- Fast vibrations result in smaller amplitudes
- Fast vibrations average out over time → no effective vibrations

Entanglement for larger separations L

Outlook – A new and precise method for measuring Casimir interactions

Thermally vibrating shield

Levitated atoms/molecules, nano-particles, ...

- Measure dephasing of a single particle in spatial superposition
- Coupling strength dependent on the Casimir interaction
- Casimir interactions are already being studied with levitated particles [Z. Xu, arXiv:2403.06051, (2024)]

Differences to current methods:

- Easy change of materials (conductor, dielectric, ...)
- Easily adjustable separation L
- Should be measurable for atoms or small molecules with current technologies

Thanks 😂