

Lista 6 – Teoria da Complexidade

INFORMAÇÕES DOCENTE						
CURSO:	DISCIPLINA:		MANHÃ	TARDE	NOITE	PERÍODO/SALA:
ENGENHARIA DE SOFTWARE	FUNDAMENTOS DE PROJETO E ANÁLISE DE ALGORITMOS	TURNO			х	5º
PROFESSOR (A): João Paulo Carneiro Aramuni						

Lista 6

Teoria da Complexidade - Algoritmos Polinomiais e Exponenciais

- 1) Explique a diferença entre algoritmos com complexidade polinomial e algoritmos com complexidade exponencial. Dê exemplos de cada um.
- 2) Por que algoritmos exponenciais são considerados inviáveis para problemas de grande escala? Dê um exemplo prático que ilustre essa inviabilidade.
- 3) Um algoritmo com complexidade $O(n^3)$ é sempre mais rápido que um com complexidade $O(2^n)$? Justifique com base na análise assintótica e em cenários reais.
- 4) Como a escolha entre um algoritmo polinomial e um exponencial pode impactar o desempenho de um sistema em produção?
- 5) Existem casos em que vale a pena usar um algoritmo exponencial? Em que situações essa escolha seria justificável?

Teoria da Complexidade - Algoritmos Determinísticos e Não Determinísticos

- 6) Defina algoritmos determinísticos e não determinísticos. Qual a principal diferença conceitual entre eles?
- 7) Como funcionaria um "algoritmo não determinístico" na prática, dado que computadores são determinísticos por natureza?
- 8) Explique como o conceito de não determinismo é utilizado na definição da classe NP.
- 9) Compare a eficiência e previsibilidade de algoritmos determinísticos e não determinísticos. Quando é preferível usar um ou outro?

10) O que é uma máquina de Turing não determinística e como ela é usada para definir problemas na classe NP?

Teoria da Complexidade - Classes P, NP, NP-Completo e NP-Difícil

- 11) Explique o que caracteriza as classes P e NP. Como elas se relacionam entre si?
- 12) O que significa um problema ser NP-Completo? Qual a importância desse conceito na computação?
- 13) Dê um exemplo de problema NP-Difícil e explique por que ele se enquadra nessa categoria.
- 14) A questão "P = NP?" é um dos grandes problemas abertos da ciência da computação. Explique por que essa pergunta é tão importante.
- 15) Como a redução polinomial é usada para provar que um problema é NP-Completo? Dê um exemplo de uso dessa técnica.

Pergunta extra

Como o conhecimento em Teoria da Complexidade pode ajudar um engenheiro de software na prática do desenvolvimento de sistemas?