مادة الرياضيات

شعبة العلوم الرياضية أ و ب

<u>المعامل: 9</u>

متحان وطني تجريبي لنيل شهادة الباكالوريا سنة 2018

مدة الإنجاز: 4 ساعات

Exercice 1 (2,5 points)

Soit x et y deux réels on pose x Ty = xy - 3(x + y) + 12

- 1) a) Démontrer que la loi T et commutative et associative et admet un élément neutre dans \mathbb{R} . (0,5 pt)
 - b) Déterminer les éléments symétriques dans (\mathbb{R}, T) . (0.5 pt)
- 2) posons $G = \mathbb{R} \setminus \{3\}$
 - a) Démontrer que G est une partie stable dans (\mathbb{R}, T) . (0.25 pt)
 - b) Démontrer que (G, T) est un groupe commutative . (0.5 pt)
- 3) On considère l'application φ de G vers \mathbb{R}^* définie par $\varphi(x) = x 3$

Démontrer que φ est une morphisme bijective de (G,T) vers (\mathbb{R}^*,\times) . (0,75 pt)

Exercice 2 (3 points)

1. a. Quel est le reste de la division euclidienne de 6^{10} par 11 ? Justifier. (0,25 pt)

b. Quel est le reste de la division euclidienne de 6⁴ par 5 ? Justifier. (0,25 pt)

c. En déduire que $6^{40} \equiv 1[11]$ et que $6^{40} \equiv 1[5]$. (0,25 pt)

d. Démontrer que $6^{40} - 1$ est divisible par 55. (0,25 pt)

2. Dans cette question x et y désignent des entiers relatifs.

a. Montrer que l'équation (E) 65x - 40y = 1 n'a pas de solution. (0,25 pt)

b. Montrer que l'équation (E') 17x - 40y = 1 admet au moins une solution. (0,25 pt)

c. Déterminer à l'aide de l'algorithme d'Euclide un couple d'entiers relatifs solution de l'équation (E'). (0.5 pt)

d. Résoudre l'équation (E'). (0.25 pt)

e- En déduire qu'il existe un unique naturel x_0 inférieur à 40 tel que $17x_0 \equiv 1[40]$. (0,25 pt)

3. Pour tout entier naturel a, démontrer que si $a^{17} \equiv b[55]$ et si $a^{40} \equiv 1[55]$, alors $b^{33} \equiv a[55]$. (0,5 pt)

Exercice 3 (3 points)

Le plan complexe est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$

1) Calculer $(1+3i)^2$ (0,25pt)

2) Résoudre dans l'ensemble \mathbb{C} des nombre complexes l'équation (E) : $z^2 - (1 - i)z - 2i + 2 = 0$. (0,75 pt)

3) Soit $P(z) = z^3 + (-5 + i)z^2 + (6 - 6i)z + 8i - 8$

a)Vérifier que 4 est une solution de P. (0,25 pt)

b) Vérifier que $P(z) = (z - 4)(z^2 - (1 - i)z - 2i + 2)$. (0,25 pt)

c) Résoudre dans \mathbb{C} l'équation P(z) = 0. (0,25 pt)

4) Dans Le plan complexe muni d'un repère orthonormé $(0, \vec{u}, \vec{v})$ on considère les points A, B et C d'affixes respectives

 $z_A = 4 \text{ et } z_B = 1 + i \text{ } et z_C = -2i$

a) Montrer que le triangle ABC est rectangle et isocèle. (0,75 pt)

b) Déterminer l'affixe du point D tel que ABDC est un carré. (0,5 pt)

Exercice 4 (11,5 points)

Pour tout entier n supérieur ou égal à 2 on considère la fonction f_n définie sur]0; $+\infty$ [par $f_n(x) = \frac{1 + n \ln x}{x^2}$.

Partie A

- I. Etude des fonctions f_n
- 1. Calculer $f'_n(x)$ et montrer que l'on peut écrire le résultat sous la forme d'un quotient dont le numérateur est $n-2-2n\ln x$. (0,5pt)
- 2. Résoudre l'équation $f'_n(x) = 0$. Etudier le signe de $f'_n(x)$. (0,5 pt)
- 3. Déterminer les limites de f_n en $+\infty$ et en 0. (0,5 pt)
- 4. Etablir le tableau de variation de f_n et calculer sa valeur maximale en fonction de n. (0,5 pt)
- II. Représentation graphique de quelques fonctions f_n .

Le plan est rapporté à un repère orthonormé $(O; \vec{i}, \vec{j})$ d'unité graphique 5 cm. On note (C_n) la courbe représentative de f_n dans ce repère.

- 1. Tracer (C_2) et (C_3) . (2 pts)
- 2. Calculer $f_{n+1}(x) f_n(x)$. Cette différence est-elle dépendante de l'entier n. (0,25 pt)
- 3. Expliquer comment il est possible de construire la courbe de (C_4) à l'aide de (C_2) et (C_3) . (0,5 pt)
- 4. Tracer (C_4) : (1 pt)

Partie B: Calculs d'aires

- 1. Calculer à l'aide d'une intégration par parties, l'intégrale $I = \int_{1}^{e} \frac{\ln x}{x^2} dx$. (0,5 pt)
- 2. En déduire l'aire en unités d'aire du domaine plan limité par les courbes (C_n) et (C_{n+1}) et les droites d'équations x = 1 et x = e. (0.25 pt)
- 3. On note A_n l'aire en unités d'aire du domaine plan limité par la courbe (C_n) , l'axe des abscisses et les droites d'équations x = 1 et x = e. Calculer A_2 . Déterminer la nature de la suite (A_n) en précisant l'interprétation géométrique de sa raison. Exprimer A_n en fonction de n.

Partie C: Etude sur l'intervalle]1; $+\infty$ [de l'équation $f_n(x) = 1$

Dans toute la suite on prendra $n \geq 3$.

1. Vérifier que pour tout n, $e^{\frac{n-2}{2n}} > 1$ et $f_n\left(e^{\frac{n-2}{2n}}\right) > 1$ et en déduire que l'équation $f_n(x) = 1$ n'a pas de solution sur

l'intervalle
$$\left[1; e^{\frac{n-2}{2n}}\right[$$
. (1 pt)

- 2. On pose pour $t \ge 1$, $\varphi(t) = \frac{\ln t}{t}$. Etudier les variations de φ . (0,5 pt)
- En déduire que pour tout t appartenant à]1; $+\infty$ [, $\varphi(t) \le \frac{1}{\rho}$, puis que pour tout $n \ge 3$, $f_n(n) < 1$. (0,5 pt)
- 3. Montrer que l'équation $f_n(x) = 1$ a exactement une solution α_n sur $\left[e^{\frac{n-2}{2n}}, n \right]$. (0,5 pt)
- 4. Combien l'équation $f_n(x) = 1$ a-t-elle de solutions sur $]0; +\infty[$? (0,5 pt)
- 5. Calculer $f_n(\sqrt{n})$ et montrer que pour tout $n \ge e^2$, $f_n(\sqrt{n}) > 1$. (0,5 pt)
- 6. En déduire que pour $n \ge 8$ on a $\sqrt{n} < \alpha_n < n$ et donner la limite de la suite (α_n). (0,5 pt)