Multiple linear regression model Parameter estimation Hypothesis testing and confidence intervals Model choice and variable selection

Statistics in Geophysics: Linear Regression II

Steffen Unkel

Department of Statistics Ludwig-Maximilians-University Munich, Germany

Model definition

Suppose we have the following model under consideration:

$$y = X\beta + \epsilon$$
,

where $\mathbf{y} = (y_1 \dots, y_n)^{\top}$ is an $n \times 1$ vector of observations on the response, $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)^{\top}$ is a $(k+1) \times 1$ vector of parameters, $\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^{\top}$ is an $n \times 1$ vector of random errors, and \mathbf{X} is the $n \times (k+1)$ design matrix with

$$\mathbf{X} = \left(\begin{array}{cccc} 1 & x_{11} & \cdots & x_{1k} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{array}\right) .$$

Model assumptions

The following assumptions are made:

- $\bullet \ \mathsf{E}(\epsilon) = \mathbf{0}.$
- **3** The design matrix has full column rank, that is, $rank(\mathbf{X}) = k + 1 = p$.
- **1** The normal regression model is obtained if additionally $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

For stochastic covariates these assumptions are to be understood conditionally on ${\bf X}$.

It follows that $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$ and $Cov(\mathbf{y}) = \sigma^2 \mathbf{I}$. In case of assumption 4, we have $\mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$.

Modelling the effects of continuous covariates

- We can fit nonlinear relationships between continuous covariates and the response within the scope of linear models.
- Two simple methods for dealing with nonlinearity:
 - Variable transformation;
 - Polynomial regression.
- Sometimes it is customary to transform the continuous response as well.

Modelling the effects of categorical covariates

- We might want to include a categorical variable with two or more distinct levels.
- In such a case we cannot set up a continuous scale for the categorical variable.
- A remedy is to define new covariates, so-called dummy variables, and estimate a separate effect for each category of the original covariate.
- We can deal with c categories by the introduction of c-1 dummy variables.

Example: Turkey data

	weightp	agew	origin
1	13.3	28	G
2	8.9	20	G
3	15.1	32	G
4	10.4	22	G
5	13.1	29	V
6	12.4	27	V
7	13.2	28	V
8	11.8	26	V
9	11.5	21	W
10	14.2	27	W
11	15.4	29	W
12	13.1	23	W
13	13.8	25	W

Turkey weights in pounds, ages in weeks, and origin (Georgia (G); Virgina (V); Wisconsin (W)), of 13 Thanksgiving turkeys.

Dummy coding for categorical covariates

Given a covariate $x \in \{1, ..., c\}$ with c categories,

• we define the c-1 dummy variables

$$x_{i1} = \left\{ egin{array}{ll} 1 & x_i = 1 \\ 0 & ext{otherwise} \end{array}, \quad \ldots \quad x_{i,c-1} = \left\{ egin{array}{ll} 1 & x_i = c-1 \\ 0 & ext{otherwise} \end{array},
ight.$$

for $i = 1 \dots, n$, and include them as explanatory variables in the regression model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_{i,c-1} x_{i,c-1} + \ldots + \epsilon_i$$
.

• For reasons of identifiability, we omit the dummy variable for category c, where c is the reference category.

Design matrix for the turkey data using dummy coding

> X						
	(Intercept)	agew	${\tt originV}$	originW		
1	1	28	0	0		
2	1	20	0	0		
3	1	32	0	0		
4	1	22	0	0		
5	1	29	1	0		
6	1	27	1	0		
7	1	28	1	0		
8	1	26	1	0		
9	1	21	0	1		
10	1	27	0	1		
11	1	29	0	1		
12	1	23	0	1		
13	1	25	0	1		

Interactions between covariates

- An interaction between predictor variables exists if the effect of a covariate depends on the value of at least one other covariate.
- Consider the following model between a response y and two covariates x_1 and x_2 :

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon ,$$

where the term $\beta_3 x_1 x_2$ is called an interaction between x_1 and x_2 .

• The terms $\beta_1 x_1$ and $\beta_2 x_2$ depend on only one variable and are called main effects

Least squares estimation of regression coefficients

The error sum of squares is

$$\epsilon^{\top} \epsilon = (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})
= \mathbf{y}^{\top} \mathbf{y} - \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}
= \mathbf{y}^{\top} \mathbf{y} - 2 \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{y} + \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} .$$

- The least squares estimator of β is the value $\hat{\beta}$, which minimizes $\epsilon^{\top} \epsilon$.
- Minimizing $\epsilon^{\top}\epsilon$ with respect to β yields

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$$
 ,

which is obtained irrespective of any distribution properties of the errors.

Maximum likelihood estimation of regression coefficients

Assuming normally distributed errors yields the likelihood

$$L(\boldsymbol{eta}, \sigma^2) = rac{1}{\left(2\pi\sigma^2
ight)^{n/2}} \exp\left(-rac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{eta})^{ op}(\mathbf{y} - \mathbf{X}\boldsymbol{eta})
ight).$$

The log-likelihood is given by

$$I(\boldsymbol{eta}, \sigma^2) = -rac{n}{2}\log(2\pi) - rac{n}{2}\log(\sigma^2) - rac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}oldsymbol{eta})^{ op}(\mathbf{y} - \mathbf{X}oldsymbol{eta}).$$

- Maximizing $I(\beta, \sigma^2)$ with respect to β is equivalent to minimizing $(\mathbf{y} \mathbf{X}\beta)^{\top}(\mathbf{y} \mathbf{X}\beta)$, which is the least squares criterion.
- The MLE, $\hat{\boldsymbol{\beta}}_{ML}$, therefore is identical to the least squares estimator.

Fitted values and residuals

• Based on $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$, we can estimate the (conditional) mean of \mathbf{y} by

$$\widehat{\mathsf{E}(\mathbf{y})} = \hat{\mathbf{y}} = \mathbf{X} \hat{\boldsymbol{\beta}}$$
 .

Substituting the least squares estimator further results in

$$\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{H}\mathbf{y}$$
,

where the $n \times n$ matrix **H** is called the hat matrix.

The residuals are

$$\hat{\epsilon} = y - \hat{y} = y - Hy = (I - H)y$$
 .

Estimation of the error variance

• Maximization of the log-likelihood with respect to σ^2 yields

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\top} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$
$$= \frac{1}{n} (\mathbf{y} - \hat{\mathbf{y}})^{\top} (\mathbf{y} - \hat{\mathbf{y}}) = \frac{1}{n} \hat{\boldsymbol{\epsilon}}^{\top} \hat{\boldsymbol{\epsilon}} .$$

Since

$$\mathsf{E}(\hat{\sigma}_{ML}^2) = \frac{n-p}{n} \cdot \sigma^2 \ ,$$

the MLE of σ^2 is biased.

An unbiased estimator is

$$\hat{\sigma}^2 = \frac{1}{n-p} \hat{\epsilon}^{\top} \hat{\epsilon} .$$

Properties of the least squares estimator

For the least squares estimator we have

- $\mathsf{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$.
- $Cov(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$.
- Gauss-Markov Theorem: Among all linear and unbiased estimators $\hat{\boldsymbol{\beta}}^L$, the least squares estimator has minimal variances, implying

$$Var(\hat{\beta}_j) \leq Var(\hat{\beta}_i^L)$$
, $j = 0, ..., k$.

• If $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, then $\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1})$.

ANOVA table for multiple linear regression and R^2

Source	Degrees of freedom	Sum of squares	Mean square	<i>F</i> -value
of variation	(df)	(SS)	(MS)	
Regression	k	SSR	MSR = SSR/k	$\frac{MSR}{\hat{\sigma}^2}$
Residual	n-p=n-(k+1)	SSE	$\hat{\sigma}^2 = \frac{SSE}{n-p}$	
Total	n-1	SST		

The multiple coefficient of determination is still computed as $R^2 = \frac{\text{SSR}}{\text{SST}}$, but is no longer the square of the Pearson correlation between the response and any of the predictor variables.

Interval estimation and tests

- We would like to construct confidence intervals and statistical tests for hypotheses regarding the unknown regression parameters β .
- A requirement for the construction of tests and confidence intervals is the assumption of normally distributed errors.
- However, tests and confidence intervals are relatively robust to mild departures from the normality assumption.
- Moreover, tests and confidence intervals, derived under the assumption of normality, remain valid for large sample size even with non-normal errors.

Hypotheses:

1 General linear hypothesis:

$$H_0: \mathbf{C}\beta = \mathbf{d}$$
 against $H_1: \mathbf{C}\beta \neq \mathbf{d}$,

where **C** is a $r \times p$ matrix with rank(**C**) = $r \le p$ (r linear independent restrictions) and **d** is a $p \times 1$ vector.

2 Test of significance (t-test):

$$H_0: \beta_i = 0$$
 against $H_1: \beta_i \neq 0$.

Hypotheses:

3 Composite test of subvector:

$$H_0: \boldsymbol{\beta}_1 = \mathbf{0}$$
 against $H_1: \boldsymbol{\beta}_1 \neq \mathbf{0}$.

4 Test for significance of regression:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$
 against $H_1: \beta_i \neq 0$ for at least one $j \in \{1, \dots, k\}$.

Test statistics:

1
$$F = \frac{1}{r} (\mathbf{C} \hat{\boldsymbol{\beta}} - \mathbf{d})^{\top} (\hat{\sigma}^2 \mathbf{C} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{C}^{\top})^{-1} (\mathbf{C} \hat{\boldsymbol{\beta}} - \mathbf{d}) \sim F_{r,n-p}$$
.

2
$$t_j = \frac{\hat{\beta}_j}{\hat{\sigma}_{\hat{\beta}_j}} \sim t_{n-p}$$
, where $\hat{\sigma}_{\hat{\beta}_j}$ denotes the standard error of $\hat{\beta}_j$.

$$3 F = \frac{1}{r} (\hat{\beta}_1)^{\top} \widehat{\mathsf{Cov}(\hat{\beta}_1)}^{-1} (\hat{\beta}_1) \sim F_{r,n-p}.$$

4
$$F = \frac{n-p}{k} \frac{SSR}{SSE} = \frac{n-p}{k} \frac{R^2}{1-R^2} \sim F_{k,n-p}$$
.

Critical values:

Reject H_0 in the case of:

1
$$F > F_{r,n-p}(1-\alpha)$$
.

2
$$|t| > t_{n-p}(1 - \alpha/2)$$
.

3
$$F > F_{r,n-p}(1-\alpha)$$
.

4
$$F > F_{k,n-p}(1-\alpha)$$

Confidence intervals and regions for regression coefficients

Confidence interval for β_i :

• A confidence interval for β_i with level $1 - \alpha$ is given by

$$[\hat{\beta}_j - t_{n-p}(1-\alpha/2)\hat{\sigma}_{\hat{\beta}_j}, \hat{\beta}_j + t_{n-p}(1-\alpha/2)\hat{\sigma}_{\hat{\beta}_j}] .$$

Confidence region for subvector β_1 :

• A confidence ellipsoid for $\beta_1 = (\beta_1, \dots, \beta_r)^{\top}$ with level $1 - \alpha$ is given by

$$\left\{\boldsymbol{\beta}_1: \frac{1}{r}(\hat{\boldsymbol{\beta}}_1 - \boldsymbol{\beta}_1)^\top \widehat{\mathsf{Cov}(\hat{\boldsymbol{\beta}}_1)^{-1}} (\hat{\boldsymbol{\beta}}_1 - \boldsymbol{\beta}_1) \leq F_{r,n-p}(1-\alpha)\right\} \ .$$

Prediction intervals

Confidence interval for the (conditional) mean of a future observation:

• A confidence interval for $E(y_0)$ of a future observation y_0 at location \mathbf{x}_0 with level $1 - \alpha$ is given by

$$\mathbf{x}_0^{\top} \hat{\boldsymbol{\beta}} \pm t_{n-p} (1 - \alpha/2) \hat{\sigma} (\mathbf{x}_0^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_0)^{1/2}$$
.

Prediction interval for a future observation:

• A prediction interval for a future observation y_0 at location \mathbf{x}_0 with level $1-\alpha$ is given by

$$\mathbf{x}_0^{\top} \hat{\boldsymbol{\beta}} \pm t_{n-p} (1 - \alpha/2) \hat{\sigma} (1 + \mathbf{x}_0^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_0)^{1/2}$$
.

The corrected coefficient of determination

- We already defined the coefficient of determination, R^2 , as a measure for the goodness-of-fit to the data.
- The use of R^2 is limited, since it will never decrease with the addition of a new covariate into the model.
- The corrected coefficient of determination, R_{adj}^2 , adjusts for this problem, by including a correction term for the number of parameters.
- It is defined by

$$R_{adj}^2 = 1 - \frac{n-1}{n-p}(1-R^2)$$
.

Akaike information criterion

- The Akaike information criterion (AIC) is one of the most widely used criteria for model choice within the scope of likelihood-based inference.
- The AIC is defined by

$$AIC = -2I(\hat{\beta}_{ML}, \sigma_{ML}^2) + 2(p+1)$$
,

where $I(\hat{\beta}_{ML}, \sigma_{ML}^2)$ is the maximum value of the log-likelihood.

• Smaller values of the AIC correspond to a better model fit.

Bayesian information criterion

• The Bayesian information criterion (BIC) is defined by

$$BIC = -2I(\hat{\beta}_{MI}, \sigma_{MI}^2) + \log(n)(p+1)$$
.

- \bullet The BIC multiplied by 1/2 is also known as Schwartz criterion.
- Smaller values of the BIC correspond to a better model fit.
- The BIC penalizes complex models much more than the AIC.

Practical use of model choice criteria

- To select the most promising models from candidate models, we first obtain a preselection of potential models.
- All potential models can now be assessed with the aid of one of the various model choice criteria (AIC, BIC).
- This method is not always practical, since the number of regressor variables and modelling variants can be very large in many applications.
- In this case, we can use the following partially heuristic methods.

Practical use of model choice criteria II

- Complete model selection: In case that the number of predictor variables is not too large, we can determine the best model with the "leaps-and-bounds" algorithm.
- Forward selection:
 - Based on a starting model, forward selection includes one additional variable in every iteration of the algorithm.
 - 2 The variable which offers the greatest reduction of a preselected model choice criterion is chosen.
 - 3 The algorithm terminates if no further reduction is possible.

Practical use of model choice criteria III

- Backward elimination:
 - Backward elimination starts with the full model containing all predictor variables.
 - Subsequently, in every iteration, the covariate which provides the greatest reduction of the model choice criterion is eliminated from the model.
 - 3 The algorithm terminates if no further reduction is possible.
- Stepwise selection: Stepwise selection is a combination of forward selection and backward elimination. In every iteration of the algorithm, a predictor variable may be added to the model or removed from the model.