Лекция 9

Ilya Yaroshevskiy

12 апреля 2021 г.

Содержание

1 Формула Грима 1

• $\gamma:[a,b]\to\mathbb{R}^m$

$$\int_a^b f ds \quad \int_a^b \langle F, \gamma' \rangle dt = \int_a^b \langle F, \frac{\gamma'}{|\gamma'|} \rangle ds$$

Мера на кривой — гладкре 1-мерное многообразие, γ — параметризация. Эта мера — образ меры Лебега в \mathbb{R}^1 с весом $|\gamma'|$ — интеграл I рода. Общий случай: Интеграл II рода по (m-1)-мерной поверхности в \mathbb{R}^m . F — векторное поле

$$\int \langle F, n_0 \rangle dS_{m-1} \quad |\Phi_u' \times \Phi_v'| - \sec$$

Мера Лебега на k-мерном многообразии в \mathbb{R}^m . $\Phi:O\subset\mathbb{R}^k\to\mathbb{R}^m$. Φ'_1,\ldots,Φ'_k , тогда λ_k (Паралеллепипед (Φ'_1,\ldots,Φ'_k)) — вес

1 Формула Грима

Теорема 1.1.

- $D \subset \mathbb{R}^2$ компактное, связное, односвязное, ограниченное
- D ограничено кусочно гладкой кривой ∂D
- Пусть граница области D ∂D ориентированна, согласована с ориентацией D (против часовой стрелки) обозначим ∂D^+
- \bullet (P,Q) гладкое векторное поле в окрестности D

Тогда

$$\iint_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dx dy = \int_{\partial D^{+}} P dx + Q dy$$

Доказательство. Ограничимся случаем D — 'криволинейный 4-х угольник'

 ∂D — состоит из путей $\gamma_1, \dots, \gamma_4$, где γ_2, γ_4 — вертикальные отрезки (возможно вырожденнные), γ_1, γ_3 — гладкие кривые(можно считать, что это графики функций $\varphi_1(x), \varphi_3(x)$). Аналогично можно Исправить . Проверим, что:

$$-\iint_{D} \frac{\partial P}{\partial y} \, dx \, dy = \int_{\partial D^{+}} P \, dx + Q \, dy$$

Левая часть:

$$-\int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{3}(x)} \frac{\partial P}{\partial y} dy = -\int_{a}^{b} P(x, \varphi_{3}(x)) - P(x, \varphi_{1}(x)) dx$$

Правая часть:

$$\int_{\gamma_1} + \underbrace{\int_{\gamma_2}}_{0} + \int_{\gamma_3} + \underbrace{\int_{\gamma_4}}_{0} =$$

$$= \int_a^b P(x, \varphi_1(x)) dx - \int_a^b P(x, \varphi_3(x)) dx$$

Примечание. Теорема верна для любой области D с кусочно гладкой границей, которую можно разрезать на криволинейные 4-х угольнинки

Теорема 1.2 (Формула Стокса).

- Ω простое гладкое двумерное многообразие в \mathbb{R}^3 (двустороннее)
- n_0 сторона Ω
- $\partial\Omega$ кусочно гладкая кривая
- $\partial\Omega^+$ ориентированная кривая с согласованной ориентацией.
- (P,Q,R) гладкое векторное поле в окрестности Ω

Тогла

$$\int_{\Omega^{+}} P \, dx + Q \, dy + R \, dz = \iint_{\Omega} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \, dy \, dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \, dz \, dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy$$

Доказательство. Ограничимся случаем $\Omega \in C^2$. Достаточно?:

$$\int_{\partial\Omega^{+}} P dx = \iint_{\Omega} \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial y} dx dy$$
$$\Phi = (x(u, v), y(u, v), z(u, v))$$

dx dy = -dy dx, dx dx = 0

 $dP dx + dQ dy + dR dz = (P'_x dx + P'_y dy + P'_z dz) dx + \dots$

$$\int_{\partial\Omega^{+}} P \, dx = \int_{L^{+}} P \cdot \left(\frac{\partial x}{\partial u} \, du + \frac{\partial x}{\partial v} \, dv \right) \tag{1}$$

Параметризируем: $\gamma:[a,b]\to\mathbb{R}^2,\,\gamma=(u(t),v(t))$ — параметризируем L^+

$$\int_{\partial\Omega^{+}} P \, dx = \int_{a}^{b} P\left(\frac{\partial dx}{\partial u}u' + \frac{\partial x}{\partial v}v'\right) dt \tag{2}$$

 $\Phi\circ\gamma$ — парметризируем $\partial\Omega^+,\,(\Phi\circ\gamma)'=\Phi'\cdot\gamma'$

$$2 = \int_{a}^{b} P \cdot \frac{\partial x}{\partial u} \, du + P \cdot \frac{\partial x}{\partial v} \, dv$$

$$1 = \iint_G \frac{\partial}{\partial u} \left(P \frac{\partial x}{\partial b} \right) - \frac{\partial}{\partial v} \left(P \frac{\partial x}{\partial u} \right) du dv =$$

$$= \iint_G (P'_x \cdot x'_u + P'_y \cdot y'_u + P'_z \cdot z'_u) x'_v + p \cdot x''_{uv} - (P'_x \cdot x'_v + P'_y \cdot y'_v + P'_z \cdot z'_v) x'_u - P \cdot x''_{uv} du dv =$$

$$= \iint_G \frac{\partial P}{\partial z} (z'_u x'_v - z'_v x'_u) - \frac{\partial P}{\partial y} (x'_u y'_v - x'_v y'_u) = \iint_G \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial x} dx dy$$

• $L^p(X,\mu)$, $1 \le p \le +\infty$

$$\left(\int_X |f|^p dx\right)^{\frac{1}{p}}$$
 — сходится

• $p = \infty$: $\operatorname{ess\,sup} |f| < +\infty$

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$

Теорема 1.3.

• $\mu E < +\infty$, $1 \le s < r \le +\infty$

Тогда

1.
$$L^r(E,\mu) \subset L^s(E,\mu)$$

2.
$$||f||_s \le \frac{1}{s} - \frac{1}{r} \cdot ||f||_r$$

Доказательство.

1. Следует из 2)

2.
$$r = \infty$$

$$\left(\int |f|^s \, d\mu\right)^{\frac{1}{s}} \le \operatorname{ess\,sup}|f| \cdot \mu E^{\frac{1}{s}}$$

 $r < +\infty$ $p := \frac{r}{s}, q = \frac{r}{r-s}$

$$||f||_{s}^{s} = \int_{E} |f|^{s} d\mu = \int_{E} |f|^{s} \cdot 1 d\mu \le \left(\int_{E} |f|^{s \cdot \frac{r}{s}} d\mu \right)^{\frac{s}{r}} \cdot \left(\int_{E} 1^{\frac{r}{r-s}} d\mu \right)^{\frac{r-s}{r}} \le$$

$$\le ||f||_{r}^{s} \mu E^{1-\frac{s}{r}}$$

Следствие 1.3.1.

• $\mu E < +\infty$

- $1 \le s < r \le +\infty$
- $f_n \xrightarrow[L^r]{} f$

<u>Тогда</u> $f_n \xrightarrow{I_s} f$

Доказательство.

$$||f_n - f||_s \le \mu E^{\frac{1}{r} - \frac{1}{r}} \cdot ||f_n - f||_r \to 0$$

Теорема 1.4 (о сходимости в L^p и по мере).

- $1 \le p < +\infty$
- $f_n \in L^p(X,\mu)$

Тогда

1.
$$f \in L^p$$
, $f_n \to f$ b $L^p \implies f_n \underset{\mu}{\Longrightarrow} f$

2.
$$f \underset{\mu}{\Longrightarrow} f$$
 либо $f_n \to f, \, |f_n| \le g, \, g \in L^p$ Тогда $f \in L^p$ и $f_n \to f$ в L^p

Доказательство.

1. $X_n(\varepsilon) := X(|f_n - f| \ge \varepsilon)$

$$\mu X_n(\varepsilon) = \int_{X_n(\varepsilon)} 1 d\mu \le \frac{1}{\varepsilon^p} \int_{X_n(\varepsilon)} |f_n - f|^p d\mu \le \frac{1}{\varepsilon^p} ||f_n - f||_p^p \to 0$$

2. $f_n \Rightarrow f$, $\exists n_k \ f_{n_k} \to f$ почти везде $\Longrightarrow |f| \leq g$ почти везде $|f_n - f|^p \leq (2g)^p - \text{суммируема}$ (так как $g \in L^p$) $\|f_n - f\|_p^p$ Доделать

• Фундаментальная последовательность: $\forall \varepsilon > 0 \ \exists N \ \forall k, n > N \quad \|f_n - f_k\| < \varepsilon, \text{ r.e. } \|f_n - f_k\| \xrightarrow[n,k \to +\infty]{} 0$

• $f_n \to f \implies f_n$ — фундаментальная $\|f_n - f_k\| \le \underbrace{\|f_n - f\|}_{\to 0} + \underbrace{\|f - f_k\|}_{\to 0}$

• C(k) — пространство непрерывных функций на компакте K $\|f\| = \max_K |f|$, утверждение: C(K) — полное

Задача 1. $L^{\infty}(X,\mu)$ — полное

Теорема 1.5.

- $L^p(X,\mu)$ полное
- $1 \le p < +\infty$

$$\varepsilon = \frac{1}{2} \exists N_1 \ \forall n_1, k > N \quad ||f_{n_1} - f_k||_p < \frac{1}{2}$$

Возьмем один такой n_1 и зафиксируем:

$$\varepsilon = \frac{1}{4} \exists N_2 > n_1 \ \forall n_2, k > N_2 \quad ||f_{n_2} - f_k||_p < \frac{1}{4}$$

Повторим это действие. Получим последовательность (n_k) :

$$\sum_{k} \|f_{n_{k+1}} - f_{n_k}\|_p < 1$$

Рассмотрим ряд:

$$S(x) = \sum_{k} |f_{n_{k+1}}(x) - f_{n_k}(x)| \quad S(x) \in [0, +\infty]$$

 S_N — частичные суммы ряда S

$$||S_N||_p \le \sum_{k=1}^N ||f_{n_{k+1}} - f_{n_k}||_p 1$$

, т.е. $\int_X S_N^p < 1$, по теореме Фату: $\int_X S^p \, d\mu < 1$, т.е. S^p — суммируема $\implies S$ — почти везде конечна

$$f(x) = f_{n_1}(x) + \sum_{k=1}^{+\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$$

— его частичные суммы — это $f_{n_{N+1}}(x)$, т.е. схоимость этого ряда почти везде означает, что $f_{n_k} \to f$ почти везде. Проверим, что $\|f_n - f\|_p \to 0$

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \quad ||f_n - f_m||_p < \varepsilon$$

Берем $m = n_k > N$

$$||f_n - f_{n_k}||_p^p = \int_X |f_n - f_{n_k}|^p d\mu < \varepsilon^p$$

это выполняется при всех больших k. По теореме Фату:

$$\int_X |f_n - f|^p d\mu < \varepsilon^p$$

, r.e. $||f_n - f|| < \varepsilon$

Определение. Y — метрическое пространство, $A \subset Y$, A — (всюду) плотно в Y

$$\forall y in Y \ \forall U(y) \ \exists a \in A : \ a \in U(y)$$

 $\Pi puмер. \mathbb{Q}$ плотно в \mathbb{R}

Лемма 1.

- (X,\mathfrak{A},μ)
- $1 \le p \le +\infty$

Mножество ступенчатых функций (из L^p) плотно в L^p

Примечание. $\varphi \in L^p$ — ступенчатая $\implies (\varphi \neq 0) < +\infty$

Доказательство.

 $p=\infty$ $f\in L^{\infty}$, изменив f на множестве C меры 0, считаем, что $|f|\leq \|f\|_{\infty}$. Тогда существуют ступенчатые $0\leq \varphi_n \Rightarrow f^+,\ 0\leq \psi_n \Rightarrow f^-$. Тогда сколько угодно близко к f можно найти ступенчатую фкицию вида $\varphi_n+\psi_n$

 $p<+\infty$ Пусть $f\geq 0$. $\exists \varphi_n\geq 0$ — ступенчатая: $\varphi_n\uparrow f$

$$\|\varphi_n - f\|_p^p = \int_Y |\varphi_n - f|^p \to 0$$

, по теореме Лебега. f — любого знака: берем f^+, f^-, \dots

Определение. $f: \mathbb{R}^m \to \mathbb{R}$ — финитная, если $\exists B(0,r): f \equiv 0$ вне B(0,r). $C_0(\mathbb{R}^m)$ — непрерывные финитные функции. $\forall p \geq 1$ $C_0(\mathbb{R}^m) \subset L^p(\mathbb{R}^m, \lambda_m)$

Определение. Топологическое пространство X — **нормальное**, если

- 1. Точки X замкнутые множества
- 2. $\forall F_1, F_2 \subset X$ замкнутые, $\exists U(F_1), U(F_2)$ открытые и $U(F_1) \cap U(F_2) = \emptyset$

Задача 2. R^m — нормальное