Práctico 3 - Repaso Matemática Discreta I – Año 2021/1 FAMAF

- (1) Sea p primo positivo. Probar que (p, (p-1)!) = 1.
- (2) Demostrar que $\forall n \in \mathbb{Z}$, n > 2, existe p primo tal que n . (Ayuda: pensar qué primos dividen a <math>n! 1.)
- (3) Dado un entero a > 0 fijo, caracterizar aquellos números que al dividirlos por a tienen cociente igual al resto.
- (4) Probar que si (a, 4) = 2 y (b, 4) = 2 entonces (a + b, 4) = 4.
- (5) Probar que si a, b son coprimos entonces (a + b, a b) = 1 ó 2.
- (6) Completar y demostrar:
 - a) Si $a \in \mathbb{Z}$, entonces $[a, a] = \dots$
 - b) Si $a, b \in \mathbb{Z}$, [a, b] = b si y sólo si ...
 - c) (a, b) = [a, b] si y sólo si ...
- (7) Probar que si d es un divisor común de a y b, entonces $\frac{[a,b]}{d} = \left[\frac{a}{d}, \frac{b}{d}\right]$.
- (8) Probar que (a + b, [a, b]) = (a, b).
- (9) Probar que si (a, b) = 1 y n + 2 es un número primo, entonces $(a + b, a^2 + b^2 nab) = 1$ ó n + 2.
- (10) Si $a \cdot b$ es un cuadrado y a y b son coprimos, probar que a y b son cuadrados.
- (11) Probar que $\sqrt{6}$ es irracional.
- (12) Hallar el menor múltiplo de 168 que es un cuadrado.
- (13) Probar que el producto de dos enteros consecutivos no nulos no es un cuadrado. (Ayuda: usar el Teorema Fundamental de la Aritmética).
- (14) ¿Existen enteros m y n tales que:

a)
$$m^4 = 27$$
?

b)
$$m^2 = 12n^2$$
?

c)
$$m^3 = 47n^3$$
?

- (15) Sean *a* y *b* enteros coprimos. Probar que
 - a) $(a \cdot c, b) = (b, c)$, para todo entero c.
 - *b)* a^m y b^n son coprimos, para todo $m, n \in \mathbb{N}$.
 - c) a + b y $a \cdot b$ son coprimos.

- (16) ¿Cuál es la mayor potencia de 3 que divide a 100!? ¿En cuántos ceros termina el desarrollo decimal de 100!?
- (17) Determinar todos los $p \in \mathbb{N}$ tales que

$$p$$
, $p + 2$, $p + 6$, $p + 8$, $p + 12$, $p + 14$

sean todos primos.

- (18) Sea $\{f_n\}_{n\in\mathbb{N}}$ la sucesión de Fibonacci, definida recursivamente por: $f_1=1$, $f_2=1$, $f_{n+1}=f_n+f_{n-1}$, $n\geq 2$. Probar que:
 - a) f_{3n} es par $\forall n \in \mathbb{N}$.
 - b) f_{3n+1} y f_{3n+2} son impares $\forall n \in \mathbb{N}$.
 - c) $f_{n+m} = f_m f_{n+1} + f_{m-1} f_n \ \forall n, m \in \mathbb{N}, m \ge 2.$
 - $d)\ f_n\mid f_{nk}\ \forall k\in\mathbb{N}.$
 - e) $f_{n+1}f_{n-1} f_n^2 = (-1)^n \ \forall n \ge 2.$
 - $f(f_{n+1}, f_n) = 1 \ \forall n \in \mathbb{N}.$