

Fuzzy Logic for Image Processing

« What men really want is not knowledge but certainty. » Bertrand Russel

Application to image processing

- Segmentation of colour images
- Based on clustering techniques
 - Partition of a population (collection of data described by a set of features)
 - Assignment of each sample (data) to a cluster
- Some classical algorithms:
 - HCM (Hard C-Means ; not based on fuzzy logic);
 - 2. FCM (Fuzzy C-Means);
 - PCM (Possibilistic C-Means);
 - 4. Davé's algorithm.

A basic approach

- C-Means algorithm = a clustering method (1967).
- Aim:
 - Partition of a population (collection of data described by a set of features)
 - Assignment of each sample (data) to a cluster
- C-Means algorithm is not a fuzzy logic-based method.

C-means algorithm

- Principle of the C-means algorithm
 - Partition of a population (collection of data described by a set of features e.g. their colors)
 - □ Assignment without ambiguity (∈ or ∉) of each sample (data) to a cluster

Algorithm:

- 1. Ramdom selection of *c* samples: **centroïds.**
- Assignment of every sample at the closest centroid (using a distance). Constitution of the clusters.
- Calculation of new centroïds: we take the mean, component by component, for all the samples of a cluster.
- Back to step #2 until stabilization of the borders between the clusters.

C-means: step #1

C-means: final step

Method of C-means

- Drawbacks:
 - Sensitive to the initialization
 - Problems when considering non-digital variables (required to possess a measure of distance)
 - Translation in numerical values
 - Construction of matrices of distances
 - Problem of the choice of the number of centroids c
 - Problem of the choice of the normalization in the calculation of the distance (the same weight for every component)
 - Weighting factors, normalization, aggregation

- Generalization of the C-means algorithm
 - Fuzzy partition of the data
 - Membership functions to the clusters
- Problematic: find a fuzzy partition and the centers of the associated clusters which better represents the structure of the data.
 - Use of a criterion allowing to ensure the strong association within the cluster and a weak association outside the cluster.
 - a performance index

Principle

Basic elements of the method

- Simple (simplified) representation of the clusters
 - □ Defining the centroïds (*i.e* centroïd = center of gravity of a data point cluster).
 - A centroïd is considered as a prototype of the cluster.
- Computation of the membership degree to each cluster
 - Based on the distance between the data point and the centroïd of the considered cluster.

Updating of the current partition if necessary

RGB color space

Principle

More a point is close to a centroïd, greater is its membership degree to the corresponding cluster.

So:

- Compute the distance between each point and each centroïd.
- Assign each point to the closer cluster.
- Reevaluate the new partition (in particular centroïd position).
- To do while the partition is not stable.

Algorithm

- Initial conditions :
 - Giving the number of desired clusters.
 - an initial (random) partition of the data.
 - Choose the fuzzy number m (obviously equal to 2).
- Repeat until the stop condition is true
- 1. Computation of the *membership degrees* for each data to each cluster with respect to the *current centroïds*.
- Assignment of every data at the closest centroid using a distance measure (labelling).
- Updating of the clusters and computation of the associated centroid.
- 4. Evaluation of the new partition
 - Using the performance index to qualify the obtained partition and compare to the previous one.
 - If the performance index is better than the previous one then the new partition becomes the current partition.
- 5. If Number of iterations is Max or performance index does not decrease anymore then the stop condition is true.

Fuzzy pseudo-partition

Set of non-empty fuzzy subsets $\{A_1,A_2,\ldots,A_c\}$ Set of data (vector of k components): $X=\{x_1,\ldots,x_n\}$ $\forall x_j \in X=\{x_1,\ldots,x_n\}, \sum\limits_{i=1}^c \mu_{A_i}(x_j)=1$

Fuzzy C-partition

□ A fuzzy c-partition (c>0) of X is a family of c fuzzy subsets such as:

$$P = \{A_1, A_2, \dots, A_c\}$$

$$\forall x_j \in X = \{x_1, \dots, x_n\}, \sum_{i=1}^c \mu_{A_i}(x_j) = 1$$

$$\forall i \in \{1, 2, \dots, c\}, \forall j \in \{1, 2, \dots, n\} \quad \mu_{A_i}(x_j) \in [0; 1] \quad 0 < \sum_{j=1}^n \mu_{A_i}(x_j) < n$$

Let be $X = \{x_1, x_2, \dots, x_n\}$ a set of data.

Each x_j can be a vector of features, i.e. $x_j = \left\{x_{j,1}, x_{j,2}, \dots, x_{j,k}\right\}^t$.

Let $P = \{A_1, A_2, \dots, A_c\}$ a fuzzy partition of the data set.

The centroïds (prototypes) $\nu_1, \nu_2, \dots, \nu_c$ associated to the fuzzy partition are computed as it follows:

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum\limits_{j=1}^n u_{ij}^m . x_j}{\sum\limits_{j=1}^n u_{ij}^m}$$

with $m \in \mathbb{R}, m > 1$, influence of the membership degrees (typically, m = 2).

U : matrix of the membership degrees of dimension $c \times n$

 ν_i : center of the fuzzy cluster A_i

- weighted mean of the data in A_i
- The weight of data x_j is the mth power of its membership degree to A_i .

Computation of the membership degrees:

$$\forall i \in \{1, 2, \dots, c\}, \quad u_{ij} = \left[\sum_{k=1}^{c} \left(\frac{d^2(x_j, \nu_i)}{d^2(x_j, \nu_k)}\right)^{\frac{2}{m-1}}\right]^{-1}$$

Performance index of a fuzzy partition

Performance index of P:

$$J_{FCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[\mu_{A_i}(x_j) \right]^m ||x_j - \nu_i||^2 = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[u_{ij} \right]^m . d_{ij}^2$$

 $\|\|$: norm on \mathbb{R}^k Lower is J(P), better is P.

- The index of performance is an objective function. Its aim is to optimize the data partition in *c* clusters.
- The algorithm is iterative. Several iterations are made until obtaining a stable partition of the data (minimization of $J_{FCM}(P)$).

Algorithme du FCM :

- 1. Choisir le nombre de classes : c // Information à priori, algorithme supervisé.
- 2. Initialise la matrice de partition U, ainsi que les centres c_k (initialisation aléatoire);
- 3. Faire évoluer la matrice de partition et les centres suivant les deux équations :
 - (1) $u_{ik} = \mathbf{1} \ I \ \left(\sum_{j=1,c} \left(d_{ik} \ / \ d_{ij} \right)^{(2/(m-1))} \right)$, // mise à jour des degrés d'appartenances, où : $d_{ij} = ||x_i c_j||$,
 - (2) $c_k = (\sum_i (u_{ik})^m \cdot x_i) / (\sum_i (u_{ik})^m)$, // mise à jours des centres.
- 4. Test d'arrêt : $|J^{(t+1)}-J^{(t)}| < seuil$.

Some comments

- FCM algorithm minimizes a weighted sum of the squared distances between vectors to group together and the centers of the clusters.
- The membership degree of any element (vector) to a given cluster has to be all the more raised that the vector is a typical element of the cluster.
- Gustafson and Keller have proposed a modified version of FCM for nonspherical distributions of data.

Image

RGB color space

Each region of the segmented images is represented by the color of the centroïd of the corresponding cluster.

RGB color space

Image

Segmented image

Noisy Image

RGB color space

Noisy Image

Segmented image

HCM (Hard C-Means)

Some steps backward

Let be $X = \{x_1, x_2, \dots, x_n\}$ a set of data.

Each x_j can be a vector of features, i.e. $x_j = \left\{x_{j,1}, x_{j,2}, \dots, x_{j,k}\right\}^t$.

Let $P = \{A_1, A_2, \dots, A_c\}$ a partition of the data set.

The centroïds (prototypes) $\nu_1, \nu_2, \dots, \nu_c$ associated to the fuzzy partition are computed as it follows:

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum_{j=1}^n u_{ij}^m . x_j}{\sum_{j=1}^n u_{ij}^m}$$

HCM (Hard C-Means)

Some steps backward

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum_{j=1}^{m} \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum_{j=1}^{n} \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum_{j=1}^{m} u_{ij}^m . x_j}{\sum_{j=1}^{n} u_{ij}^m}$$

Computation of the membership degrees:

$$\forall i \in \{1,2,\ldots,c\}, \forall j \in \{1,2,\ldots,n\} \quad u_{ij} = \left\{ \begin{array}{l} 1 \text{ iif } d^2(x_j,\nu_i) < d^2(x_j,\nu_k) & \forall k \neq i \\ 0 \text{ otherwise} \end{array} \right.$$

Hard assignment: $x_j \in A_i$ or $x_j \notin A_i$

HCM (Hard C-Means)

Performance index

Performance index of P:

$$J_{HCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[u_{ij} \right]^{m} ||x_{j} - \nu_{i}||^{2} = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[u_{ij} \right]^{m} .d_{ij}^{2}$$

 $\| \|$: norm on \mathbb{R}^k

m=1

Lower is J(P), better is P.

- The index of performance is an objective function. Its aim is to optimize the data partition in *c* clusters.
- The algorithm is iterative. Several iterations are made until obtaining a stable partition of the data (minimization of $J_{FCM}(P)$).

Introduction

PCM (Possibilistic C-Means) is a variant of the FCM algorithm [Krishnapuram & Keller].

Aim: to be more robust in presence of noise.

Comments:

- The PCM algorithm aims to overcome the relative behaviour of the membership degrees provided in FCM: a vector is « shared » between the different clusters.
- Krishnapuram and Keller replace the notion of membership by the notion of typicality.
- ■The result of a clustering should describe the absolute relationship between a vector and each of the c clusters independently of the relationship between the vector and the (c-1) other clusters .

Details

- The membership degrees given by PCM are not relative degrees, they are absolute values reflecting the strength with which each vector belongs to all the clusters.
- The elimination of the interferences between the different prototypes needs to define a new objective function (performance index) for the optimization of the partition.
- Remark: only one of the membership degrees of a vector to be classified has to be not equal to zero.

Let be $X = \{x_1, x_2, \dots, x_n\}$ a set of data.

Each x_j can be a vector of features, i.e. $x_j = \left\{x_{j,1}, x_{j,2}, \dots, x_{j,k}\right\}^t$.

Let $P = \{A_1, A_2, \dots, A_c\}$ a fuzzy partition of the data set.

The centroïds (prototypes) $\nu_1, \nu_2, \dots, \nu_c$ associated to the fuzzy partition are computed as it follows:

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum\limits_{j=1}^n u_{ij}^m . x_j}{\sum\limits_{j=1}^n u_{ij}^m}$$

with $m \in \mathbb{R}, m > 1$, influence of the membership degrees (typically, m = 2).

U : matrix of the membership degrees of dimension $c \times n$

 ν_i : center of the fuzzy cluster A_i

- weighted mean of the data in A_i
- The weight of data x_i is the mth power of its membership degree to A_i .

Formulas

$$P = \{A_1, A_2, \dots, A_c\}$$

$$\forall x_j \in X = \{x_1, \dots, x_n\}, \sum_{i=1}^c \mu_{A_i}(x_j) = \sum_{i=1}^c u_{ij} = 1$$

$$\forall i \in \{1, 2, \dots, c\}, \forall j \in \{1, 2, \dots, n\} \quad \mu_{A_i}(x_j) \in [0; 1]$$

$$\forall i \in \{1, 2, \dots, c\}, \forall j \in \{1, 2, \dots, n\}$$

$$\begin{cases} 0 < \sum_{j=1}^n u_{ij} < n \\ \max_i u_{ij} > 0 \end{cases}$$

Performance index

Performance index of P:

$$J_{PCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[u_{ij} \right]^{m} \|x_{j} - \nu_{i}\|^{2} + \sum_{i=1}^{c} \eta_{i} \sum_{j=1}^{n} \left[1 - u_{ij} \right]^{m}$$
$$J_{PCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[u_{ij} \right]^{m} .d_{ij}^{2} + \sum_{i=1}^{c} \eta_{i} \sum_{j=1}^{n} \left[1 - u_{ij} \right]^{m}$$

A penality term which avoids the trivial solution $u_{ij} = 0 \quad \forall i \text{ and } \forall j$

 η_i : squared distance between the center of the cluster A_i and the set of vector having a membership degree to this cluster equal to 0.5

The membership degree of a vector to a specific cluster only depends on the distance to the cluster (degree of typicality). It allows to detect absurd data (outliers).

34

Performance index

Performance index of P:

$$J_{PCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[u_{ij} \right]^{m} . d_{ij}^{2} + \sum_{i=1}^{c} \eta_{i} \sum_{j=1}^{n} \left[1 - u_{ij} \right]^{m}$$

In practice:
$$\eta_i = \frac{\sum\limits_{j=1}^n u_{ij}^m.d_{ij}^2}{\sum\limits_{j=1}^n u_{ij}^m}$$

Also:
$$\eta_i = \frac{\sum\limits_{x_j \in (\Pi_i)_{\alpha}} d_{ij}^2}{|(\Pi_i)_{\alpha}|}$$
 with $(\Pi_i)_{\alpha}$ an α -cut of Π_i

Computation of the membership degrees:

$$\forall i \in \{1, 2, \dots, c\}, \forall j \in \{1, 2, \dots, n\} \quad u_{ij} = \frac{1}{1 + \left(\frac{d^2(x_j, \nu_i)}{\eta_i}\right)^{\frac{1}{m-1}}} = \frac{1}{1 + \left(\frac{d^2_{ij}}{\eta_i}\right)^{\frac{1}{m-1}}}$$

RGB color space

Each region of the segmented images is represented by the color of the centroïd of the corresponding cluster.

Noisy Image

RGB color space

Noisy Image

Segmented image

Let be $X = \{x_1, x_2, \dots, x_n\}$ a set of data.

Each x_j can be a vector of features, i.e. $x_j = \left\{x_{j,1}, x_{j,2}, \dots, x_{j,k}\right\}^t$.

Let $P = \{A_1, A_2, \dots, A_c\}$ a fuzzy partition of the data set.

The centroïds (prototypes) $\nu_1, \nu_2, \dots, \nu_c$ associated to the fuzzy partition are computed as it follows:

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum\limits_{j=1}^n u_{ij}^m . x_j}{\sum\limits_{j=1}^n u_{ij}^m}$$

with $m \in \mathbb{R}, m > 1$, influence of the membership degrees (typically, m = 2).

U: matrix of the membership degrees of dimension $c \times n$

 ν_i : center of the fuzzy cluster A_i

- weighted mean of the data in A_i
- The weight of data x_j is the mth power of its membership degree to A_i .

Introduction of a "noisy" cluster (rejection option):

$$\forall j \in \{1, 2, \dots, n\}$$
 $u_{\star j} = 1 - \sum_{i=1}^{c} u_{ij}$

The cluster of noise (rejection) allows to collect outliers (absurd data) which seem to be different compared with « normal » data.

Performance index

Performance index of P:

$$J_{Dav}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[u_{ij} \right]^{m} ||x_{j} - \nu_{i}||^{2} + \sum_{j=1}^{n} \delta^{2} \left(1 - \sum_{i=1}^{c} u_{ij} \right)^{m}$$

 δ : a fixed distance of the cluster of noise to all the vectors.

 δ allows to control the ratio of outliers (absurd data).

$$\delta^2 = \lambda \cdot \frac{\sum_{i=1}^{c} \sum_{j=1}^{n} \left[d_{ij} \right]^2}{n \cdot c}$$

 δ^2 has to be updated at each iteration.

This is the end of this part!

