ONTOLOGY GENERATION WITH METACOGNITIVE PROMPTING IN LARGE LANGUAGE MODELS

Miguel Ceriani¹, Anna Sofia Lippolis^{1,2} Andrea Giovanni Nuzzolese^{1,2} Sara Zuppiroli^{1,2}
¹Institute for Cognitive Sciences and Technologies, CNR ² University of Bologna

MOTIVATION

- Ontology engineering is complex and labor-intensive
- There is a need for intelligent automation **LLMs** can help with
- Metacognitive prompting improves performance over CoT, asking the LLM to consider its own reasoning process
- This can reduce errors and enhance logical consistency

CONTRIBUTIONS

- A method to test the effectiveness of Metacognitive Prompting and its application in automated ontology generation
- A framework to incorporate LLMassisted ontology generation into the eXtreme Design methodology
- A qualitative and quantitative evaluation of this framework

RESULTS

Ontometrics	Case1	Case2	Case3	Case4	Reference Ontology
	No pattern	Pattern	No pattern	Pattern	
	No MP	No MP	MP	\mathbf{MP}	
Axioms count	49	119	64	118	108
Logical axioms count	26	74	36	76	56
Class count	14	17	14	21	31
Object property count	8	11	8	14	5
Data property count	0	2	3	2	0
Properties count	8	13	11	16	5
Individual count	1	19	0	11	0
DL expressivity	ALCROI	AL(D)	ALC(D)	ALCI(D)	SRI

	Case1	Case2	Case3	Case4
Axiom type	No pat-	Pattern	No pat-	Pattern
	tern		tern	
	No MP	No MP	\mathbf{MP}	\mathbf{MP}
owl:Ontology	Yes	Yes	Yes	Yes
owl:Class	Yes	Yes	Yes	Yes
owl:ObjectProperty	Yes	Yes	Yes	Yes
owl:DatatypeProperty	No	No	Yes	Yes
rdfs:domain	Yes	Yes	Yes	Yes
rdfs:range	Yes	Yes	Yes	Yes
rdfs:subClassOf	Yes	Yes	Yes	Yes
rdfs:subPropertyOf	No	No	No	No
owl:disjointWith	No	No	Yes	Yes
owl:equivalentClass	Yes	No	Yes	No
owl:Restriction	Yes	No	Yes	Yes
owl:imports	No	Yes	No	Yes

- Classes and properties are successfully identified
- Richer formalization with MP, along with a set of different types of axiom types
- A larger number of axioms when a pattern is used
- A higher number of classes and object properties
- Low cost and time

1. Domain and CQ definition

- Use case of the African
 Wildlife Ontology
 - → broad domain
 - → covered by Ontology

Design Patterns

• Comprehensive: 14 CQs

3. Procedure and prompt design

ODP selection

METHODOLOGY

- allows structured knowledge adaptation for new scenarios
- From the ODP website
- Selected 8 ODPs to be dynamically inputted to the prompt: AgentRole, AcquaticResources, Classificati on, ClimaticZone, Collection Entity, PartOf, Linnaean Taxonomy, SpeciesEat

4 Evaluation measures definition

- qualitative ontology engineer evaluation
- quantitative: Ontometrics and OOPS!Ontology Pitfall Scanner

5. Testing

- GPT-4 Turbo API as backbone model
- Temperature 0, other parameters as default
- Four iterations (generic with CQs, generic with CQs and ODPs, CQs and MP, CQs with MP and ODPs) with a division of CQs in batches

LIMITATIONS

1. Absence of property hierarchical relationships

- 2. Lack of annotations and inverse relationships
- 3. With patterns, untyped class and different naming conventions are found
- 4. Data properties less common with patterns
- 5.LLMS: generated ontologies exhibit numerous intrinsic an domain-related issues; pairing of classes and properties problems
- 6.LLMs' context limit

