Notes on Context Free Grammars

Geoffrey Matthews

Department of Computer Science Western Washington University

November 6, 2018

Readings

- http://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html
- http://en.wikipedia.org/wiki/Context-free_grammar
- http://en.wikipedia.org/wiki/Context-free_language
- http://en.wikipedia.org/wiki/Parsing
- http://en.wikipedia.org/wiki/Pushdown_automata
- http://en.wikipedia.org/wiki/LR_parser
- ▶ https://parasol.tamu.edu/~rwerger/Courses/434/lec12-sum.pdf
- http://www.cs.sunysb.edu/~cse350/slides/cfg3.pdf

String Substitution

- Start with the string ABBA
- ▶ If we make the substitutions $A \rightarrow a$ and $B \rightarrow b$
- ▶ $ABBA \Rightarrow aBBA \Rightarrow abBA \Rightarrow abbA \Rightarrow abba$
- ► ABBA ⇒* abba
- ▶ If we make the substitutions $A \rightarrow ab$ and $B \rightarrow ba$
- ► ABBA ⇒ abBBA ⇒ abbaBA ⇒ abbabaA ⇒ abbabaab
- ► ABBA ⇒* abbabaab
- ▶ If we make the substitutions $A \rightarrow bab$ and $B \rightarrow bbb$

Formal Grammars

- ► A set of **terminals**, e.g. {the,cat,sat,on,mat}
- \blacktriangleright A set of **nonterminals**, or **variables**, e.g. $\{S, N\}$
- ▶ A special nonterminal, the **start symbol**, e.g. *S*
- ► A set of **production rules**:

$$S \rightarrow \text{the } N \text{ sat on the } N$$

$$N \rightarrow \mathsf{cat}$$

$$N \rightarrow \mathsf{mat}$$

- A derivation is any string we get by starting with the start symbol and repeatedly making a single substitution until we only have terminals.
- ► $S \Rightarrow$ the N sat on the $N \Rightarrow$ the cat sat on the $N \Rightarrow$ the cat sat on the mat
- ▶ $S \Rightarrow$ the N sat on the $N \Rightarrow$ the mat sat on the $N \Rightarrow$ the mat sat on the mat

Vertical bar means "or"

This grammar:

 $S \rightarrow \text{the } N \text{ sat on the } N$

 $\textit{N} \rightarrow \mathsf{cat}$

 $N \rightarrow \mathsf{mat}$

is equivalent to this grammar:

 $S \rightarrow \text{the } N \text{ sat on the } N$

 $N \rightarrow \text{cat} \mid \text{mat}$

Rules can be recursive

```
egin{array}{lll} S & 
ightarrow & S & {
m and} & S \ S & 
ightarrow & {
m the} & N & {
m sat} & {
m on} & {
m the} & N \ N & 
ightarrow & {
m cat} & | & {
m mat} \ \end{array}
```

Context Free Grammar

A context free grammar is a grammar where all the rules are the following form:

$$S \rightarrow w$$

where S is a single nonterminal and w is a string of terminals and nonterminals.

$$S o aS \mid \epsilon$$

$$S \Rightarrow \epsilon$$

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaaaS \Rightarrow aaaaaS$$
 $S \Rightarrow aS \Rightarrow aaaS \Rightarrow aaaaS \Rightarrow aaaaaS \Rightarrow aaaaaa$

$$egin{array}{cccc} S &
ightarrow & Sa \mid \epsilon \ & & & & & & & \\ S &
ightarrow & Sa &
ightarrow & Saaa &
ightarrow & Saaa &
ightarrow & aaaa \ & & & & & & & & \\ S &
ightarrow & Saaa &
ightarrow & Saaaa &
ightarrow & aaaa \ & & & & & & & & & \\ \end{array}$$

$$\begin{array}{ccc} S & \rightarrow & ABC \\ A & \rightarrow & a \\ B & \rightarrow & b \\ C & \rightarrow & c \end{array}$$

$$S \Rightarrow ABC \Rightarrow aBC \Rightarrow abC \Rightarrow abc$$

 $S \Rightarrow ABC \Rightarrow AbC \Rightarrow abC \Rightarrow abc$
 $S \Rightarrow ABC \Rightarrow aBC \Rightarrow aBc \Rightarrow abc$
 $S \Rightarrow ABC \Rightarrow ABc \Rightarrow Abc \Rightarrow abc$

$$S \rightarrow AB \mid A$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow Bb \mid b$$

$$S\Rightarrow A\Rightarrow aA\Rightarrow aaA\Rightarrow aaaA\Rightarrow aaaa$$
 $S\Rightarrow AB\Rightarrow aAB\Rightarrow aaB\Rightarrow aaBb\Rightarrow aaBbb\Rightarrow aabbb$ $S\Rightarrow AB\Rightarrow aAB\Rightarrow aaAB\Rightarrow aaaB\Rightarrow aaaBb\Rightarrow aaaBbb\Rightarrow aaabbb$

Context Free Grammar for Arithmetic Expressions

$$\begin{array}{cccc} E & \rightarrow & T \\ E & \rightarrow & E + E \\ E & \rightarrow & E * E \\ E & \rightarrow & (E) \\ T & \rightarrow & a \\ T & \rightarrow & b \\ T & \rightarrow & T0 \\ T & \rightarrow & T1 \end{array}$$

 $E\Rightarrow E+E\Rightarrow E*E+E\Rightarrow T*E+E\Rightarrow a*E+E\Rightarrow a*T+E\Rightarrow a*D+E\Rightarrow a*D+E\Rightarrow$

Context Free Grammar for Programming Language

```
S \rightarrow \text{ while } E \text{ do } S \mid \text{ if } E \text{ then } S \text{ else } S \mid I := E S \rightarrow \{SL\} L \rightarrow SL; \mid \epsilon E \rightarrow \ldots I \rightarrow \ldots
```

- ► Reference manuals for programming languages usually give the syntax of the language as a CFG.
- ▶ Note that keywords, punctuation, *etc.* can be represented by a regular language.

Derivations

- Start with S
- Find a rule for a nonterminal.
- Replace nonterminal with RHS.
- Until no more nonterminals.

$$S \rightarrow AS \mid \epsilon$$

 $A \rightarrow AA \mid a$

$$S \Rightarrow AS \Rightarrow AAS \Rightarrow AA \Rightarrow Aa \Rightarrow aa$$

Derivations

- Start with S
- Find a rule for a nonterminal.
- Replace nonterminal with RHS.
- Until no more nonterminals.

$$S \rightarrow AS \mid \epsilon$$

 $A \rightarrow AA \mid a$

$$S \Rightarrow AS \Rightarrow AAS \Rightarrow AA \Rightarrow Aa \Rightarrow aa$$

The **language of a grammar** is the set of all sentences for which there exists a derivation.

Derivations

- ▶ If there is more than one possible tree for some sentence, the grammar is **ambiguous**.
- ▶ There are usually many possible derivations, but only one tree.
- Important derivations are leftmost and rightmost.
- Leftmost and rightmost derivations also unique in unambiguous languages.

$$S \rightarrow AS \mid \epsilon$$

 $A \rightarrow AA \mid a$

Leftmost:

$$\underline{S} \Rightarrow \underline{A}S \Rightarrow \underline{A}AS \Rightarrow a\underline{A}S \Rightarrow aa\underline{S} \Rightarrow aa$$
 Proof that this grammar is ambiguous: Rightmost:

$$\underline{S} \Rightarrow A\underline{S} \Rightarrow AA\underline{S} \Rightarrow A\underline{A} \Rightarrow \underline{A}a \Rightarrow aa$$

$$\underline{S} \Rightarrow A\underline{S} \Rightarrow \underline{A} \Rightarrow A\underline{A} \Rightarrow \underline{A}a \Rightarrow aa$$

Parse Tree

CFG problems

- Any regular language.
- $\triangleright a^n b^n$
- $\rightarrow a^n b^{2n}$
- $\rightarrow a^n b^{3n}$
- $\rightarrow a^{4n+5}b^{3n+2}$
- ► aⁿb^maⁿ
- Even length palindromes
- Odd length palindromes
- All palindromes
- ► All strings with the same number of a's and b's
- $\{a^i b^j c^k \mid i \neq j \text{ or } j \neq k\}$

All regular languages are context free languages

Length 1 derivations:

Length 2 derivations:

$$S \rightarrow abS \mid bAc \mid d$$

 $A \rightarrow aA \mid \epsilon$

$$S \Rightarrow abS \Rightarrow ababS$$

 $S \Rightarrow abS \Rightarrow abbAc$ 1. d
 $S \Rightarrow abS \Rightarrow abd$ 2. abd
 $S \Rightarrow bAc \Rightarrow baAc$ 3. bc
 $S \Rightarrow bAc \Rightarrow bc$

Length 3 derivations:

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow abababS$$
 1. d
 $S \Rightarrow abS \Rightarrow ababS \Rightarrow ababbAc$ 2. abd
 $S \Rightarrow abS \Rightarrow ababS \Rightarrow ababbAc$ 3. bc
 $S \Rightarrow abS \mid bAc \mid d$ $S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbaAc$ 4. $ababd$
 $A \Rightarrow aA \mid \epsilon$ $S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbc$ 5. $abbc$
 $S \Rightarrow bAc \Rightarrow baAc \Rightarrow baaAc$ 6. bac
 $S \Rightarrow bAc \Rightarrow baAc \Rightarrow bac$ 7. . . .

Length 3 derivations:

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow abababS \qquad 1. \ d$$

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow ababbAc \qquad 2. \ abd$$

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow ababd \qquad 3. \ bc$$

$$S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbaAc \qquad 4. \ ababd$$

$$A \Rightarrow aA \mid \epsilon \qquad S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbc \qquad 5. \ abbc$$

$$S \Rightarrow bAc \Rightarrow baAc \Rightarrow baAc \Rightarrow bac \qquad 6. \ bac$$

$$S \Rightarrow bAc \Rightarrow bAc \Rightarrow baAc \Rightarrow bac \qquad 7. \dots$$

Given a grammar G, is there an algorithm to find out if $s \in L(G)$?

Length 3 derivations:

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow abababS \qquad 1. \ d$$

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow ababbAc \qquad 2. \ abd$$

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow ababd \qquad 3. \ bc$$

$$S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbAc \qquad 4. \ ababd$$

$$A \Rightarrow aA \mid \epsilon \qquad S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbc \qquad 5. \ abbc$$

$$S \Rightarrow bAc \Rightarrow baAc \Rightarrow baAc \qquad 6. \ bac$$

$$S \Rightarrow bAc \Rightarrow bAc \Rightarrow baAc \Rightarrow bac \qquad 7. \dots$$

Given a grammar G, is there an algorithm to find out if $s \in L(G)$? Almost, but not quite.

Length 3 derivations:

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow abababS \qquad 1. \ d$$

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow ababbAc \qquad 2. \ abd$$

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow ababd \qquad 3. \ bc$$

$$S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbaAc \qquad 4. \ ababd$$

$$A \Rightarrow aA \mid \epsilon \qquad S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbc \qquad 5. \ abbc$$

$$S \Rightarrow bAc \Rightarrow baAc \Rightarrow baAc \Rightarrow bac \qquad 6. \ bac$$

$$S \Rightarrow bAc \Rightarrow bAc \Rightarrow baAc \Rightarrow bac \qquad 7. \dots$$

Given a grammar G, is there an algorithm to find out if $s \in L(G)$?

Almost, but not quite.

We can tell if $s \in L(G)$ but what if $s \notin L(G)$?

Removing ϵ from grammars

$$\begin{array}{ccc} S & \rightarrow & aDaE \\ D & \rightarrow & bD \mid E \\ E & \rightarrow & cE \mid \epsilon \end{array}$$

- ▶ Find all nonterminals N such that $N \Rightarrow^* \epsilon$.
- Make new rules from old by removing one or more of the null nonterminals.
- ▶ Remove all null productions $N \rightarrow \epsilon$.
- ▶ May have to keep $S \to \epsilon$, but only if $\epsilon \in L(S)$.

Removing ϵ from grammars

$$\begin{array}{ccc} S & \rightarrow & aDaE \\ D & \rightarrow & bD \mid E \\ E & \rightarrow & cE \mid \epsilon \end{array}$$

▶ Null nonterminals: *D* and *E*

Original Production	New Productions
S o aDaE	$S ightarrow$ aa $E \mid$ a D a \mid aa
D o bD	D o b
D o E	$D o \epsilon$
E o cE	E o c
$E o \epsilon$	none

Final grammar:

$$S \rightarrow aDaE \mid aaE \mid aDa \mid aa$$

 $D \rightarrow bD \mid b \mid E$
 $E \rightarrow cE \mid c$

Chomsky Normal Form

▶ All rules must be in one of these forms:

$$\begin{array}{ccc} A & \rightarrow & BC \\ A & \rightarrow & a \\ S & \rightarrow & \epsilon \end{array}$$

- ▶ A, B and C are nonterminals, a is a single terminal, and S is the start symbol.
- ▶ The last rule is necessary only if the language contains ϵ .

Converting to Chomsky Normal Form

- 1. Add S_0 , a new start symbol, and the rule $S_0 \rightarrow S$.
 - ▶ Only necessary if *S* is recursive
- 2. Eliminate ϵ rules.
 - Except possibly $S_0 \rightarrow \epsilon$
- 3. Eliminate **unit** rules, $A \rightarrow B$:
 - ▶ Find all rules $B \rightarrow W$, where W is a string longer than one.
 - ▶ Add $A \rightarrow W$ for all of them.
- 4. Fix longer rules:
 - ▶ Replace $A \rightarrow UVWXYZ$ with
 - $\blacktriangleright \ A \rightarrow UA_1, \ A_1 \rightarrow VA_2, \ A_2 \rightarrow WA_3, \ A_3 \rightarrow XA_4, \ A_4 \rightarrow YZ.$
- 5. For each terminal x, add a rule $X \to x$ and replace all terminals in long (length two) strings with the corresponding nonterminals.

Example converting to Chomsky Normal Form

Step 1:
$$S_0 oup S$$
 Step 4: $S_0 oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aSb \mid T$ $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ $S oup aD \mid aB \mid CT \mid c \mid \epsilon$ $S oup aD \mid aB \mid$

 $S \rightarrow aSb \mid T$ $T \rightarrow cT \mid \epsilon$

Note on Eliminating Unit Rules

If we have two mutually recursive unit rules, for example in the following grammar:

$$A \rightarrow B \mid XY \mid UVW$$

 $B \rightarrow A \mid DE \mid FGH$

It doesn't hurt to eliminate both of them, so long as the remainder of the clauses is added to each:

$$A \rightarrow XY \mid UVW \mid DE \mid FGH$$

 $B \rightarrow DE \mid FGH \mid XY \mid UVW$

Any derivation that used the two unit rules, such as

$$A \Rightarrow B \Rightarrow A \Rightarrow B \Rightarrow FGH$$

Can be replaced by a short-circuited version

$$A \Rightarrow FGH$$

What do all trees look like?

- What do all trees look like?
 - Binary trees

- What do all trees look like?
 - Binary trees
- What do all derivations look like?

- What do all trees look like?
 - Binary trees
- What do all derivations look like?
 - ► $S \Rightarrow AB \Rightarrow ABC \Rightarrow ABCD \Rightarrow aBCD \Rightarrow abcD \Rightarrow abcD \Rightarrow abcd$

- What do all trees look like?
 - Binary trees
- What do all derivations look like?
 - ► $S \Rightarrow AB \Rightarrow ABC \Rightarrow ABCD \Rightarrow aBCD \Rightarrow abCD \Rightarrow abcD \Rightarrow abcd$
- How long are the derivations?

- What do all trees look like?
 - Binary trees
- What do all derivations look like?
 - ► $S \Rightarrow AB \Rightarrow ABC \Rightarrow ABCD \Rightarrow aBCD \Rightarrow abCD \Rightarrow abcD \Rightarrow abcd$
- How long are the derivations?
 - ▶ 2n-1

Consequences of Chomsky Normal Form

- What do all trees look like?
 - Binary trees
- What do all derivations look like?
 - ► $S \Rightarrow AB \Rightarrow ABC \Rightarrow ABCD \Rightarrow aBCD \Rightarrow abCD \Rightarrow abcD \Rightarrow abcd$
- How long are the derivations?
 - ▶ 2n-1
- ▶ Any derivation of a string of length n must take 2n 1 steps.
- ▶ To find a parse we can search all derivations of this length.
- Guaranteed to say "yes" or "no" in a finite amount of time.

Greibach Normal Form

All rules must be in one of these forms:

$$A \rightarrow aB_1B_2...B_n$$

 $S \rightarrow \epsilon$

- ▶ $B_1B_2...B_n$ is a (possibly empty) string of nonterminals.
- ▶ The last rule is needed only if the language contains ϵ .
- ▶ There can be no left recursion.
- What do the trees look like?
- How long are the derivations?

Converting to Greibach Normal Form

- 1. Add S_0 , a new start symbol, and the rule $S_0 \rightarrow S$.
- 2. Eliminate **unit** rules, $A \rightarrow B$.
- Remove left recursion.
- 4. Eliminate ϵ rules.
- 5. Make substitutions as needed.
 - ► Can be very difficult and explode to many rules.

Consequences of Greibach Normal Form

- ▶ All derivations of a string of length *n* have *n* steps.
- ▶ There are only finitely many derivations of length *n* or less.
- ➤ To find a parse we can exhaustively search all derivations of length n or less.
- ▶ There exists an **effective procedure** to find a parse for a CFL.

▶ If a tree has maximum branching factor *b* and is of height *h*, what is the maximum number of leaves?

▶ If a tree has maximum branching factor *b* and is of height *h*, what is the maximum number of leaves?

▶ If a tree has maximum branching factor *b* and is of height *h*, what is the maximum number of leaves?

b

▶ If there are n symbols in a grammar, and the maximum length of a rule's RHS is b, and a parsed string is longer than b^n , what does that say about the height of the parse tree?

▶ If a tree has maximum branching factor *b* and is of height *h*, what is the maximum number of leaves?

b

▶ If there are n symbols in a grammar, and the maximum length of a rule's RHS is b, and a parsed string is longer than b^n , what does that say about the height of the parse tree?

▶ If a tree has maximum branching factor *b* and is of height *h*, what is the maximum number of leaves?

b

▶ If there are n symbols in a grammar, and the maximum length of a rule's RHS is b, and a parsed string is longer than b^n , what does that say about the height of the parse tree?

What does the pigeonhole principle say about a tree where each node in the tree is labeled with a symbol from the grammar, but the height of the tree is greater than the number of symbols?

▶ If a tree has maximum branching factor *b* and is of height *h*, what is the maximum number of leaves?

b

▶ If there are n symbols in a grammar, and the maximum length of a rule's RHS is b, and a parsed string is longer than b^n , what does that say about the height of the parse tree?

What does the pigeonhole principle say about a tree where each node in the tree is labeled with a symbol from the grammar, but the height of the tree is greater than the number of symbols?

There must be a path with a repeated symbol.

$$A_j = A_k$$

uxz uvxyz uvvxyyz uvvvxyyyz uvⁱxyⁱz

▶ If a CFL is infinite, it must have recursion in it somewhere:

$$S \rightarrow uNy$$

 $N \rightarrow vNx \mid w$

▶ This means derivations like this are possible:

$$S \Rightarrow uNy \Rightarrow uvNxy \Rightarrow uvvNxxy \Rightarrow ... \Rightarrow uv^4Nx^4y \Rightarrow uv^4wx^4y$$

▶ If a CFL is infinite, it must have recursion in it somewhere:

$$S \rightarrow uNy$$

 $N \rightarrow vNx \mid w$

▶ This means derivations like this are possible:

$$S \Rightarrow uNy \Rightarrow uvNxy \Rightarrow uvvNxxy \Rightarrow \ldots \Rightarrow uv^4Nx^4y \Rightarrow uv^4wx^4y$$

▶ Similar arguments can be made for indirect recursion.

Theorem

If a language L is context-free, then there exists some $p \ge 1$ such that any string s in L with $|s| \ge p$ can be written as

$$s = abcde$$

such that

- 1. $|bd| \ge 1$
- 2. $|bcd| \leq p$
- 3. $ab^n cd^n e$ is in L for all $n \ge 0$

Proof that $L = 0^n 1^n 2^n$ is not CF

- ▶ Suppose *L* is CF, then *p* exists as in the theorem.
- ▶ $0^p 1^p 2^p \in L$ by definition.
- From theorem, $0^p 1^p 2^p = abcde$ and $ab^n cd^n e \in L$ for all n, but we don't know which parts are where.
- ► Case 1: *b* or *d* contains two different digits.
 - ▶ Then ab^2cd^2e must have digitss out of numerical order.
 - ▶ Then $ab^2cd^2e \notin L$, contradiction.
- ► Case 2: *b* and *d* each contain only one kind of digit.
 - ▶ Then ab^2cd^2e contains more of 1 or 2 kinds of digit.
 - ▶ Then there can't be the same number for all 3 kinds of digits.
 - ▶ Then $ab^2cd^2e \notin L$, contradiction.

Pumping Lemma exercises (some are hard)

Show that each of the following languages is not CF.

- \triangleright 1ⁿ where n is prime
- ▶ 1^m where $m = n^2$
- ▶ $0^{\ell}1^{m}2^{n}$ where $\ell < m < n$
- ▶ $0^n 1^n 2^i$ where $i \le n$
- ww where $w \in (0+1)^*$
- $\triangleright 0^n 1^n 2^n$

CF Languages are closed under union, product, and closure

- ▶ Let S_1 and S_2 be the start symbols for L_1 and L_2 .
- ▶ A grammar for $L_1 \cup L_2$ can be constructed starting with

$$S \to S_1 \mid S_2$$

 \blacktriangleright A grammar for L_1L_2 can be constructed starting with

$$S \rightarrow S_1 S_2$$

▶ A grammar for L_1^* can be constructed starting with

$$S \rightarrow S_1 S \mid \epsilon$$

CF languages are NOT closed under complement

- ▶ $L = a^{\ell}b^{m}c^{n}$ where either $\ell \neq m$ or $m \neq n$ is CF
 - (exercise)
- ▶ The complement of *L* is $a^n b^n c^n$, which is not CF
 - (see previous)

CF languages are NOT closed under intersection

- $L_1 = a^m b^m c^n \text{ is CF}$
 - (exercise)
- $L_2 = a^m b^n c^n$ is CF
 - (exercise)
- ▶ $L_1 \cap L_2 = a^n b^n c^n$, which is not CF
 - (see previous)

The intersection of a CF language and a regular language is CF

- Given a PDA for one and a DFSA for the other:
- Create a new PDA with states that are the cross product of the states of the two machines.
- ▶ As input is processed, run both machines in parallel.
- Accept if both accept.

Pushdown automata

Tape drives

Deterministic pushdown automata

Definition 3.5.1 A deterministic pushdown automaton is a 5-tuple $M = (\Sigma, \Gamma, Q, \delta, q)$ where

- 1. Σ is a finite set, called the *tape alphabet*; the blank symbol \square is not in Σ .
- 2. Γ is a finite set, called the *stack alphabet*; this alphabet contains the special symbol \$.
- 3. *Q* is a finite set, whose elements are called *states*.
- 4. q is an element of Q, called the *start state*.
- 5. δ is the *transition function*, which is a function

$$\delta: Q \times \big(\Sigma \cup \{\square\}\big) \times \Gamma \to Q \times \{N,R\} \times \Gamma^*$$

Given a state, a tape letter, and the top letter on the stack, (r, a, A), δ determines the next state, whether or not to move the tape head, and the replacement for A on the stack:

$$\delta(r, a, A) = (r', \sigma, w)$$

Computation and Termination

Start: The automaton is in start state q, the tape head is at the leftmost symbol of the input string $a_1a_2...a_n$, and the stack contains only the special symbol \$.

Computation: The state, input and the stack are transformed, step by step, by following the transition function δ .

Termination: The PDA terminates when the stack becomes empty.

Acceptance: The PDA accepts $a_1a_2...a_n$ if

1. the automaton terminates on this input, and

2. at the time of termination, the tape head is immediately to the right of a_n .

Properly nested parentheses

$qa\$ \to qR\S	because of the a, S is pushed onto the stack
$qaS \rightarrow qRSS$	because of the a, S is pushed onto the stack
$qbS \to qR\epsilon$	because of the b , the top element is popped
	from the stack
$qb\$ \to qN\epsilon$	the number of bs read is larger than the number
	of as read; the stack is made empty (hence,
	the computation terminates before the entire
	string has been read), and the input string is rejected
$q\Box\$ \to qN\epsilon$	the entire input string has been read; the stack is
	made empty, and the input string is accepted
$q\Box S \to qNS$	the entire input string has been read, it contains
	more as than bs ; no changes are made (thus, the
	automaton does not terminate), and the input string
	is rejected

$0^{n}1^{n}$

$q_00\$ \rightarrow q_0R\S	push S onto the stack
$q_0 0S \rightarrow q_0 RSS$	push S onto the stack
$q_01\$ \rightarrow q_0N\$$	first symbol in the input is 1; loop forever
$q_0 1S \to q_1 R\epsilon$	first 1 is encountered
$q_0 \square \$ \to q_0 N \epsilon$	input string is empty; accept
$q_0 \square S \to q_0 NS$	input only consists of 0s; loop forever
$q_10\$ \rightarrow q_1N\$$	0 to the right of 1; loop forever
$q_1 0S \rightarrow q_1 NS$	0 to the right of 1; loop forever
$q_11\$ \rightarrow q_1N\$$	too many 1s; loop forever
$q_1 1S \to q_1 R\epsilon$	pop top symbol from the stack
$q_1 \square \$ \to q_1 N \epsilon$	accept
$q_1 \square S \to q_1 NS$	too many 0s; loop forever

b in the middle

```
qa\$ \rightarrow qR\$S
                    push S onto the stack
qaS \rightarrow qRSS
                    push S onto the stack
ab\$ \rightarrow a'R\$
                    reached the middle
ab\$ \rightarrow aR\$S
                    did not reach the middle; push S onto the stack
qbS \rightarrow q'RS
                    reached the middle
qbS \rightarrow qRSS
                    did not reach the middle; push S onto the stack
q\square\$ \to qN\$
                    loop forever
q\Box S \rightarrow qNS
                    loop forever
a'a\$ \rightarrow a'N\epsilon
                    stack is empty; terminate, but reject, because
                    the entire input string has not been read
q'aS \rightarrow q'R\epsilon
                    pop top symbol from stack
q'b\$ \to q'N\epsilon
                    stack is empty; terminate, but reject, because
                    the entire input string has not been read
a'bS \rightarrow a'R\epsilon
                    pop top symbol from stack
g' \square \$ \rightarrow g' N \epsilon
                    accept
a'\Box S \rightarrow a'NS
                    loop forever
```