Gaussian Process for the estimation of theory uncertainties

Jesús Urtasun Elizari

Italian Physical Society - Milan, September 2020

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

Outline

- QCD in a nutshell
 - The Standard Model & strong interactions
 - Parton Distribution Functions
 - Factorization theorem
- Machine Learning
 - Motivation for Machine Learning
 - Neural Networks & general strategy
- Gaussian Process and theory uncertainties
 - The NNPDF methodology
 - Operator implementation in TensorFlow
 - Results & Conclusions

The Standard Model

Quantum Field Theory describing physics at the TeV scale

- Fermions composing matter
- Bosons mediating interactions
- Scalar Higgs generating mass

Explore the strong interactions

How to explore proton's inner structure?

- Point-like projectile on the object → DIS
- Smash the two objects → LHC physics

"A way to analyze high energy collisions is to consider any hadron as a composition of point-like constituents \longrightarrow partons" R.Feynman, 1969

Parton Distribution Functions

- Hadrons made of partonic objects non perturbative physics
- Interactions take place only at partonic level

Parton Distribution Functions: probability distribution of finding a particular parton (u, d, ..., g) carrying a fraction x of the proton's momentum

Factorization theorem

Observables in hadronic events $\longrightarrow \sigma$ is hard to compute

Factorize the problem \longrightarrow Convolute the PDFs with the partonic $\hat{\sigma}_{ij}$

$$\sigma = \int_0^1 dx_1 dx_2 f_{\alpha}(x_1, \mu_F) * f_{\beta}(x_2, \mu_F) * \hat{\sigma}_{\alpha\beta}(\alpha_s(\mu_R), \mu_F)$$

- Partonic $\hat{\sigma}$ can be computed as perturbative series in α_s
- ullet PDFs absorb the non perturbative effects, evaluated at μ_F

What PDFs look like

- Each parton has a different PDF u(x), d(x), ..., g(x)
- PDFs are not predicted, and can not be measured
- PDFs are extracted from data

Machine learning

What is Machine Learning?

- A subset of Artificial Intelligence (AI) algorithms
- Used to solve complex tasks like classification and regression
- Rely on comparison with data → Learning

The N3PDF project

Fitting a PDF

Factorize the problem \longrightarrow Convolute the PDFs with the partonic $\hat{\sigma}_{ij}$

$$\sigma = \int_0^1 dx_1 dx_2 f_{\alpha}(x_1, \mu_F) * f_{\beta}(x_2, \mu_F) * \hat{\sigma}_{\alpha\beta}(\alpha_s(\mu_R), \mu_F)$$

- Partonic $\hat{\sigma}_{\alpha\beta}$ is computed perturbatively. Hadronic σ is measured.
- Use a Neural Networks to generate (fit) the PDFs
- Generate a vector of observables σ_N to be compared with data

$$\sigma_{N} = \sum_{i,j,\alpha,\beta} f_{\alpha}(x_{i}) f_{\beta}(x_{j}) \hat{\sigma}_{Nij\alpha\beta}$$

The N3PDF project

General structure of n3fit

Xgrid

- **Q** Build a NN to compute σ_{pred} observables from a grid x_i
- ② Compute χ^2 loss function by comparing with data
- **3** Update values of PDF \longrightarrow Fit

Results

Learning a physical quantity

- Combination of different kernels leads to better fit
- Excellent numerical agreement up to N3LO

When there is not theory prediction to compare to, use GP approach to estimate theory uncertainty

Summary & Conclusions

- OPDFs are required to have accurate predictions in high energy physics
- ML provides a new way of determine the PDFs
- Operator implementation leads to memory saving by taking full control on the computation

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.