# **Executive Summary**

Emma Wang (06648801), wangj422@wfu.edu, 12/09/2022

# **Problem Statement**

This is a report produced for a major financial institution. Our main task is to build machine learning models to predict the "loan status", more specifically, we need to predict which loans are more likely to default. Due to the requirement of this task, our model needs to be both explainable and possess powerful predictability.

# **Key Findings**

- If the most recent month LC pulled credit for this loan is Sep-2016, the possibility of default will be much higher. It is also the most powerful predictor.
- Among all the false negatives that we found, many of them have a very high annual income. Based on the results, these annual income records are more likely to be fake.
- 60-month term loan, a very low last payment amount, and a higher interest rate will potentially result in a higher probability of default.
- Inactive accounts, i.e., the ones with a long time period without payment, will be more likely to be involved in default.

# Result of the model

We built and trained three powerful machine learning models and their performance are summarized as follows. Typically, we will investigate the accuracy, AUC, precision, and recall. AUC is the metric that represents how well the model can classify true and false, a higher AUC means this model can distinguish exciting projects better. Accuracy represents that among all records, how many were identified correctly. The recall represents among all the exciting projects, how many of those are successfully found by our model. Finally, precision represents that among all the records that we predicted as true, how many of them are actually true.

Therefore, based on the table below, we will choose the XGBoost model as our final model as it has the highest AUC, accuracy, precision, and recall. It can predict almost 98% of the total records correctly. Of all the loans that it predicted to default,

95% of them will default eventually. Among all default loans, it can successfully identify 91% of them.

|              | Accuracy | Log loss | AUC    | Precision | Recall | F1     |
|--------------|----------|----------|--------|-----------|--------|--------|
| Training NN  | 0.9606   | 0.3607   | 0.9826 | 0.8950    | 0.8336 | 0.8632 |
| Testing NN   | 0.9579   | 0.3625   | 0.9790 | 0.8920    | 0.8225 | 0.8575 |
| Training XGB | 1.0000   | 0.0012   | 1.0000 | 1.0000    | 1.0000 | 1.0000 |
| Testing XGB  | 0.9786   | 0.0820   | 0.9937 | 0.9497    | 0.9088 | 0.9288 |
| Training RF  | 1.0000   | 0.0499   | 1.0000 | 1.0000    | 1.0000 | 1.0000 |
| Testing RF   | 0.9569   | 0.1524   | 0.9842 | 0.9401    | 0.7679 | 0.8453 |

# **Recommendations**

- Operating at a 5% FNR threshold will bring us \$1,083,911 potential savings if we use the XGBoost model to predict loan status. And we will keep the percentage of predicting a defaulted loan as current below 5%.
- Investigate annual income, especially those exceptionally high; investigate the accounts which suddenly implement activities after a long-time silence.
- Launch more financial products, with adopting a relatively lower interest rate and 36-month term, to reduce the probability of default.

# Detailed Analysis Emma Wang (06648801), wangj422@wfu.edu, 12/09/2022

# **Table of Contents**

| Files & Field Summary                                | 5  |
|------------------------------------------------------|----|
| Files Summary                                        | 5  |
| Fields Summary                                       | 5  |
| Data Cleaning & Preliminary Transformation           | 6  |
| Exploratory Analysis                                 | 7  |
| Explore the Target                                   | 7  |
| Explore Categorical Variables                        | 7  |
| Explore Numeric Variables                            | 9  |
| Explore Correlations                                 | 12 |
| Detect Anomaly                                       | 14 |
| Global Anomaly Rules                                 | 14 |
| Local Anomaly Rules                                  | 14 |
| Model Building & Training                            | 16 |
| Data Preparation & Transformation                    | 16 |
| Derive new variables                                 | 16 |
| Model Training                                       | 16 |
| Recipe                                               | 17 |
| Random Forest                                        | 18 |
| Hyperparameter Tuning                                | 18 |
| Model Performance                                    |    |
| Operating Range                                      | 18 |
| Potential Savings (in Every 1000 Loan Applications): | 19 |
| DALEX, SHAPLEY, and VIP                              | 20 |
| Partial Dependence Plots                             | 21 |
| Local Explanation: Top TP FP FN Records              | 22 |
| XGBoost                                              | 24 |
| Hyperparameter Tuning                                | 24 |
| Model Performance                                    | 24 |
| Operating Range                                      | 25 |
| Potential Savings (in Every 1000 Loan Applications): |    |
| DALEX, SHAPLEY, and VIP                              | 26 |

| Partial Dependence Plots                             | 27 |
|------------------------------------------------------|----|
| Local Explanation: Top TP FP FN Records              | 28 |
| Neural Network                                       | 30 |
| Hyperparameter Tuning                                | 30 |
| Model Performance                                    | 30 |
| Operating Range                                      | 31 |
| Potential Savings (in Every 1000 Loan Applications): | 32 |
| DALEX, SHAPLEY, and VIP                              | 32 |
| Partial Dependence Plots                             | 33 |
| Local Explanation: Top 10 TP FP FN Records           | 34 |
| Model Comparing                                      | 36 |
| Metrics and Generating Predictions                   | 36 |
|                                                      |    |

# Files & Field Summary

# **Files Summary**

The imported original file summary is shown below, from which we can get the most basic information about our training file and prediction file:

| File Name        | Record | Column | Numeric | Character |
|------------------|--------|--------|---------|-----------|
|                  | Count  | Count  | Columns | Columns   |
| Loan_train.csv   | 29777  | 52     | 29      | 23        |
| Loan_holdout.csv | 12761  | 51     | 29      | 22        |

## **Fields Summary**

The training dataset's categorical fields summary is shown below, from which we can get the number of missing values, the number of distinct values, and the complete rate, which is 1 minus the missing rate:

| Name                | Feature Type | # Missing | Complete Rate | # Distinct |
|---------------------|--------------|-----------|---------------|------------|
| term                | Categorical  | 3         | 0.99989925    | 2          |
| int_rate            | Categorical  | 3         | 0.99989925    | 390        |
| grade               | Categorical  | 3         | 0.99989925    | 7          |
| sub_grade           | Categorical  | 3         | 0.99989925    | 35         |
| emp_title           | Categorical  | 1817      | 0.93897975    | 22143      |
| emp_length          | Categorical  | 3         | 0.99989925    | 12         |
| home_ownership      | Categorical  | 3         | 0.99989925    | 5          |
| verification_status | Categorical  | 3         | 0.99989925    | 3          |
| issue_d             | Timestamp    | 3         | 0.99989925    | 55         |
| loan_status         | Categorical  | 0         | 1.00000000    | 2          |
| pymnt_plan          | Categorical  | 3         | 0.99989925    | 2          |
| url                 | Categorical  | 3         | 0.99989925    | 29774      |
| desc                | Categorical  | 9432      | 0.68324546    | 20310      |
| purpose             | Categorical  | 3         | 0.99989925    | 14         |
| title               | Categorical  | 13        | 0.99956342    | 15200      |
| zip_code            | Categorical  | 3         | 0.99989925    | 819        |
| addr_state          | Categorical  | 3         | 0.99989925    | 50         |
| earliest_cr_line    | Timestamp    | 23        | 0.99922759    | 516        |
| revol_util          | Categorical  | 67        | 0.99774994    | 1094       |
| last_pymnt_d        | Timestamp    | 67        | 0.99774994    | 106        |
| next_pymnt_d        | Timestamp    | 27425     | 0.07898714    | 96         |
| last_credit_pull_d  | Timestamp    | 5         | 0.99983209    | 109        |
| application_type    | Categorical  | 3         | 0.99989925    | 1          |

The training dataset's numeric fields summary is shown below, from which we can get the number of missing values, some statistical results, and the complete rate, which is 1 minus the missing rate:

| Name        | Feature Type | #       | Complete | Mean      | Min   | Max     |
|-------------|--------------|---------|----------|-----------|-------|---------|
|             |              | Missing | Rate     |           |       |         |
| id          | ID           | 3       | 0.99     | 663006.18 | 54734 | 1077501 |
| member_id   | ID           | 3       | 0.99     | 823568.14 | 70473 | 1314167 |
| loan_amnt   | Numeric      | 3       | 0.99     | 11109.43  | 500   | 35000   |
| funded_amnt | Numeric      | 3       | 0.99     | 10843.63  | 500   | 35000   |

| funded_amnt_inv            | Numeric | 3     | 0.99 | 10149.65 | 0     | 35000    |
|----------------------------|---------|-------|------|----------|-------|----------|
| installment                | Numeric | 3     | 0.99 | 323.80   | 15.67 | 1305.19  |
| annual_inc                 | Numeric | 4     | 0.99 | 69201.23 | 2000  | 6000000  |
| dti                        | Numeric | 3     | 0.99 | 13.38    | 0     | 29.99    |
| delinq_2yrs                | Numeric | 23    | 0.99 | 0.15     | 0     | 13       |
| fico_range_low             | Numeric | 3     | 0.99 | 713.05   | 610   | 825      |
| fico_range_high            | Numeric | 3     | 0.99 | 717.05   | 614   | 829      |
| inq_last_6mths             | Numeric | 23    | 0.99 | 1.08     | 0     | 33       |
| mths_since_last_delinq     | Numeric | 18907 | 0.36 | 34.71    | 0     | 120      |
| mths_since_last_record     | Numeric | 27208 | 0.09 | 59.22    | 0     | 129      |
| open_acc                   | Numeric | 23    | 0.99 | 9.34     | 1     | 47       |
| pub_rec                    | Numeric | 23    | 0.99 | 0.05     | 0     | 5        |
| revol_bal                  | Numeric | 3     | 0.99 | 14310.00 | 0     | 1207359  |
| total_acc                  | Numeric | 23    | 0.99 | 22.08    | 1     | 81       |
| out_prncp                  | Numeric | 3     | 0.99 | 11.79    | 0     | 3126.61  |
| out_prncp_inv              | Numeric | 3     | 0.99 | 11.76    | 0     | 3123.44  |
| total_rec_late_fee         | Numeric | 3     | 0.99 | 1.50     | 0     | 180.20   |
| last_pymnt_amnt            | Numeric | 3     | 0.99 | 2615.41  | 0     | 36115.20 |
| collections_12_mths_ex_med | Numeric | 104   | 0.99 | 0.00     | 0     | 0        |
| policy_code                | Numeric | 3     | 0.99 | 1.00     | 1     | 1        |
| acc_now_delinq             | Numeric | 23    | 0.99 | 0.00013  | 0     | 1        |
| chargeoff_within_12_mths   | Numeric | 104   | 0.99 | 0.00     | 0     | 0        |
| delinq_amnt                | Numeric | 23    | 0.99 | 0.20     | 0     | 6053     |
| pub_rec_bankruptcies       | Numeric | 966   | 0.97 | 0.04     | 0     | 2        |
| tax_liens                  | Numeric | 79    | 0.99 | 0.00003  | 0     | 1        |

## **Data Cleaning & Preliminary Transformation**

#### • Exclude Some Variables

- Exclude variables with a missing rate above 30%, i.e., a complete rate below 70%.
- Exclude variables with high cardinality (over 10,000 unique levels), especially the ones representing IDs.
- Exclude variables with only one unique value, like application type and policy code.

#### • Deal with Date Variables

- 1. Mutate "issue\_d", "earliest\_cr\_line", "last\_pymnt\_d", "last\_credit\_pull\_d" as date-type variables.
- 2. Calculate the time difference in weeks or years between the current date and those dates mentioned above.
- 3. Name them as "issue\_w", "earliest\_cr\_line\_y", "last\_pymnt\_w", "last\_credit\_pull\_w", respectively.
- 4. Remove "issue d", "earliest cr line", "last pymnt d", "last credit pull d".
- Mutate some categorical variables into numeric variables because it makes more sense, like interest rate.
- Mutate the response "loan status" into a factor.
- There are 3 records that lack all attributes except a loan status, remove them.
- After removing, there are 29774 records and 38 variables left.

# **Exploratory Analysis**

#### **Explore the Target**

In all 29774 records in the training set, the number of default cases is 4477, which means the default rate is 15%.

| Loan Status | N     | PCT    |
|-------------|-------|--------|
| Current     | 25297 | 0.8496 |
| Default     | 4477  | 0.1504 |



#### **Explore Categorical Variables**

The important statistics of categorical variables are shown below in a table:

| Columns             | # Missing | Complete Rate | Min | Max | # Distinct |
|---------------------|-----------|---------------|-----|-----|------------|
| term                | 0         | 1.0000        | 9   | 9   | 2          |
| grade               | 0         | 1.0000        | 1   | 1   | 7          |
| sub_grade           | 0         | 1.0000        | 2   | 2   | 35         |
| emp_length          | 0         | 1.0000        | 3   | 9   | 12         |
| home_ownership      | 0         | 1.0000        | 3   | 8   | 5          |
| verification_status | 0         | 1.0000        | 8   | 15  | 3          |
| pymnt_plan          | 0         | 1.0000        | 1   | 1   | 2          |
| purpose             | 0         | 1.0000        | 3   | 18  | 14         |
| zip_code            | 0         | 1.0000        | 5   | 5   | 819        |
| addr_state          | 0         | 1.0000        | 2   | 2   | 50         |

The stacked bar charts of categorical variables are shown below, from which we can see the default rate within each category. Therefore, this is a useful tool to help us decide which variables are useful to detect on default, i.e., the screening process.

#### We present the bar charts together with our screening results.

First, from the 6 charts below, we can see the percentage of default within different categories is different. Therefore, these variables can be seen as useful predictors when we build machine learning models.



In the 4 charts below, the default rate within each category is more evenly distributed, i.e., not much different among different categories. They are less likely to be significant when predicting default.





#### **Explore Numeric Variables**

The important statistics of numeric variables are shown below in a table:

| Column              | Count | # miss | # dist | Mean     | max       | min     | std        |
|---------------------|-------|--------|--------|----------|-----------|---------|------------|
| Acc_now_delinq      | 29774 | 20     | 3      | 0.00013  | 1.00      | 0.00    | 0.01159    |
| Annual_inc          | 29774 | 1      | 4287   | 69201.23 | 6000000.0 | 2000.00 | 66566.415  |
| Delinq_2yrs         | 29774 | 20     | 12     | 0.1550   | 13.00     | 0.00    | 0.52414    |
| Delinq_amnt         | 29774 | 20     | 4      | 0.2043   | 6053.00   | 0.00    | 35.0915    |
| Dti                 | 29774 | 0      | 2846   | 13.384   | 29.99     | 0.00    | 6.7390     |
| Fico_range_high     | 29774 | 0      | 43     | 717.05   | 829.00    | 614.00  | 36.3101    |
| Fico_range_low      | 29774 | 0      | 43     | 713.05   | 825.00    | 610.00  | 36.3101    |
| Funded_amnt         | 29774 | 0      | 981    | 10843.64 | 35000.00  | 500.00  | 7147.0522  |
| Funded_amnt_inv     | 29774 | 0      | 6862   | 10149.66 | 35000.00  | 0.00    | 7130.8560  |
| Inq_last_6mths      | 29774 | 20     | 28     | 1.0841   | 33.00     | 0.00    | 1.542828   |
| installment         | 29774 | 0      | 13255  | 323.808  | 1305.19   | 15.67   | 209.7716   |
| Int_rate            | 29774 | 0      | 390    | 12.166   | 24.11     | 5.42    | 3.716096   |
| Last_pymnt_amnt     | 29774 | 0      | 26903  | 2615.405 | 36115.2   | 0       | 4373.69960 |
| Loan_amnt           | 29774 | 0      | 827    | 11109.43 | 35000     | 500     | 7404.6523  |
| Open_acc            | 29774 | 20     | 45     | 9.33901  | 47        | 1       | 4.51317    |
| Out_prncp           | 29774 | 0      | 383    | 11.79629 | 3126.61   | 0       | 123.5276   |
| Out_prncp_inv       | 29774 | 0      | 384    | 11.76432 | 3123.44   | 0       | 123.2313   |
| Pub_rec             | 29774 | 20     | 7      | 0.05855  | 5         | 0       | 0.2479     |
| Pub_rec_bankrupcies | 29774 | 963    | 4      | 0.04533  | 2         | 0       | 0.2090     |
| Revol_bal           | 29774 | 0      | 18399  | 14310.00 | 1207359   | 0       | 22696.5458 |
| Revol_util          | 29774 | 64     | 1095   | 49.0854  | 119       | 0       | 28.327     |
| Tax_liens           | 29774 | 76     | 3      | 0.000034 | 1         | 0       | 0.00580    |
| Total_acc           | 29774 | 20     | 79     | 22.08278 | 81        | 1       | 11.58967   |
| Total_rec_late_fee  | 29774 | 0      | 1604   | 1.50478  | 180.2     | 0       | 7.7227     |
| Earliest_cr_line_y  | 29774 | 20     | 53     | 25.19789 | 53        | -46     | 7.41998    |
| Issue_w             | 29774 | 0      | 55     | 633.8805 | 807.0195  | 572.162 | 52.748     |
| Last_credit_pull_w  | 29774 | 2      | 110    | 406.285  | 811.4481  | 324.162 | 97.410     |
| Last_pymnt_w        | 29774 | 64     | 107    | 507.134  | 780.8767  | 324.162 | 84.399     |

The stacked histogram charts of numeric variables are shown below, from which we can see the distribution of default rate and how it changes as the distribution of variables changes. Therefore, this is a useful tool to help us decide which variables are useful to detect on default.

#### We present the histogram charts together with our screening results.

First, from the 6 charts below, we can see the percentage of default within different categories is different. Therefore, these variables can be seen as useful

# predictors when we build machine learning models.





From the charts below, as the numbers on the x-axis increase, the percentage of default doesn't appear a clear pattern, instead, it stays relatively stable. Therefore, these variables are less likely useful.





# **Explore Correlations**

The correlation matrix of numeric variables and the target is shown below.

Clearly, "out\_prncp" and "out\_prncp\_inv", "funded\_amnt" and "funded\_amnt\_inv" are highly correlated, since the latter ones are the transformations of the former ones. "loan\_amnt", "funded\_amnt", and "installment" are highly correlated. The two boundaries range the borrower's FICO at loan origination belongs to are negatively correlated with the interest rate.

As for the target variable, "int\_rate", and "total\_rec\_late" are positively related to the status of the loan, while "fico\_range\_high" and "fico\_range\_low" are negatively

#### related to it.



# **Detect Anomaly**

## **Global Anomaly Rules**

This is a tree visualization that can be used to detect anomalies and study their attributes. From what we can see, there are mainly 3 nodes containing the majority of all detected anomalies.



IF out\_prncp\_inv >= 1602 & installment >= 975 THEN Anomaly coverage 0%

IF out\_prncp\_inv >= 1602 & installment < 975 & delinq\_2yrs >= 0.5 THEN Anomaly coverage 0%

IF out\_prncp\_inv < 1602 & last\_pymnt\_amnt >= 25714 & revol\_bal >= 79777 THEN Anomaly coverage 0%

# **Local Anomaly Rules**

Below is 8 smaller trees that can explain how 8 anomalies were found separately.





| Rule                                                | Cover |
|-----------------------------------------------------|-------|
| IF out_prncp >= 1909 & int_rate >= 23               | 0%    |
| IF out_prncp >= 1167 & revol_bal < 2589             | 0%    |
| IF last_pymnt_amnt is 29024 to 29153                | 0%    |
| IF out_prncp >= 1741 & revol_bal >= 64267           | 0%    |
| IF out_prncp_inv >= 1602 & delinq_2yrs >= 0.5       | 0%    |
| IF last_pymnt_amnt >= 34537 & annual_inc >= 446500  | 0%    |
| IF last_pymnt_amnt is 25714 to 25765                | 0%    |
| IF total_rec_late_fee >= 108 & annual_inc >= 229750 | 0%    |

# **Model Building & Training**

## **Data Preparation & Transformation**

- Randomly split data into 70/30, as training set and testing set, respectively.
- Split the training data into 10 folds.
- Mutate response into a factor.
- Feature Engines Setting:
  - o Impute missing values with the median (numeric) or assign them to a new category called "unknown" (categorical).
  - o Scale numeric variables.
  - o Dummy code categorical variables.
  - o Create a new level for categorical variables.
  - o Order, and assign an integer to each unique level to high cardinality variables

#### **Derive new variables**

No extra derivations except what was mentioned before (repeat here again):

- 1. Mutate "issue\_d", "earliest\_cr\_line", "last\_pymnt\_d", "last\_credit\_pull\_d" as date-type variables.
- 2. Calculate the time difference in weeks or years between the current date and those dates mentioned above.
- 3. Name them as "issue\_w", "earliest\_cr\_line\_y", "last\_pymnt\_w", "last\_credit\_pull\_w", respectively.
- 4. Remove "issue d", "earliest cr line", "last pymnt d", "last credit pull d".
- Mutate some categorical variables into numeric variables because it makes more sense, like interest rate.

What is worth noticing is that the original data file has a mistaken format, which caused the mdy() function to mutate some of the years of "earliest\_cr\_line" incorrectly (mistake 1968 as 2068). Again, this is because of the format of original data, instead of coding techniques. However, this variable will be mutated the same way when making predictions, and luckily, this variable contributes almost nothing both before and after the mutation, according to my trials.

#### **Model Training**

| Variable            | Role                  |
|---------------------|-----------------------|
| Loan_status         | Response              |
| term                | Categorical predictor |
| grade               | Categorical predictor |
| sub_grade           | Categorical predictor |
| emp_length          | Categorical predictor |
| home_ownership      | Categorical predictor |
| verification_status | Categorical predictor |
| pymnt_plan          | Categorical predictor |
| purpose             | Categorical predictor |
| zip_code            | Categorical predictor |
| addr_state          | Categorical predictor |
| Acc_now_delinq      | Numeric predictor     |

| Annual_inc          | Numeric predictor |
|---------------------|-------------------|
| Delinq_2yrs         | Numeric predictor |
| Delinq_amnt         | Numeric predictor |
| Dti                 | Numeric predictor |
| Fico_range_high     | Numeric predictor |
| Fico_range_low      | Numeric predictor |
| Funded_amnt         | Numeric predictor |
| Funded_amnt_inv     | Numeric predictor |
| Inq_last_6mths      | Numeric predictor |
| installment         | Numeric predictor |
| Int_rate            | Numeric predictor |
| Last_pymnt_amnt     | Numeric predictor |
| Loan_amnt           | Numeric predictor |
| Open_acc            | Numeric predictor |
| Out_prncp           | Numeric predictor |
| Out_prncp_inv       | Numeric predictor |
| Pub_rec             | Numeric predictor |
| Pub_rec_bankrupcies | Numeric predictor |
| Revol_bal           | Numeric predictor |
| Revol_util          | Numeric predictor |
| Tax_liens           | Numeric predictor |
| Total_acc           | Numeric predictor |
| Total_rec_late_fee  | Numeric predictor |
| Earliest_cr_line_y  | Numeric predictor |
| Issue_w             | Numeric predictor |
| Last_credit_pull_w  | Numeric predictor |
| Last_pymnt_w        | Numeric predictor |

# Recipe

```
the_recipe <- recipe(loan_status ~ ., data = train )%>%
   step_impute_median(all_numeric_predictors()) %>%
   step_scale(all_numeric_predictors()) %>%
   step_novel(all_nominal_predictors()) %>%
   step_unknown(all_nominal_predictors()) %>%
   step_integer(sub_grade, zip_code, addr_state) %>%
   step_dummy(all_nominal_predictors())

the_bake <- bake(the_recipe %>% prep(), train )

skim(the_bake)
```

# **Random Forest**

## **Hyperparameter Tuning**

We used K-fold Validation and split the training data into 10 folds, and we use the Bayes tuning method to tune hyperparameters.

#### • Tuning Performance

From the chart below, we can see that the optimal min\_n is around 3 while the optimal number of trees is above 1000, as the accuracy and AUC both reached the highest in these charts.



- Bayes tune result:
  - $\circ$  Trees = 1251
  - $\circ$  Min\_n = 2

#### **Model Performance**



|          | Accuracy | Log loss | AUC    | Precision | Recall | F1     |
|----------|----------|----------|--------|-----------|--------|--------|
| Training | 1.0000   | 0.0499   | 1.0000 | 1.0000    | 1.0000 | 1.0000 |
| Testing  | 0.9569   | 0.1524   | 0.9842 | 0.9401    | 0.7679 | 0.8453 |

# **Operating Range**

## ROC and Distribution of the probability of default

The desired operating level is at **5% FNR**. At this level, we will incorrectly define 5% positives as negatives, i.e., 5% default as current. The desired operating level

is marked as a red v-line, while other common thresholds are marked as gray v-lines.



#### **Operation Chart (precision/recall/FPR/FNR/Threshold)**

| FNR  | Threshold | FPR   | Recall | Precision |
|------|-----------|-------|--------|-----------|
|      |           |       | (TPR)  |           |
| 0.01 | 0.070     | 0.302 | 0.981  | 0.380     |
| 0.02 | 0.121     | 0.159 | 0.979  | 0.530     |
| 0.03 | 0.154     | 0.116 | 0.970  | 0.605     |
| 0.04 | 0.193     | 0.086 | 0.961  | 0.666     |
| 0.05 | 0.216     | 0.074 | 0.950  | 0.699     |
| 0.06 | 0.241     | 0.063 | 0.940  | 0.730     |
| 0.07 | 0.263     | 0.054 | 0.931  | 0.758     |
| 0.08 | 0.287     | 0.045 | 0.921  | 0.787     |
| 0.09 | 0.311     | 0.040 | 0.910  | 0.812     |
| 0.10 | 0.329     | 0.033 | 0.900  | 0.829     |

- Given the context, we choose an FNR at 5%. It means we will accept 5% of the loans which will default as current.
- To achieve this FNR rate, when the predicted default rate is higher than 0.216, we will classify it as default; and we will detect it as current when the predicted default rate is below 0.216.
- At this FNR rate, the FPR is 0.074, which means we will define 7.4% of the current loan as default.
- The recall/TPR is 0.950, which means we will successfully identify 95% of the total default loans.
- The precision will be 0.699, which means among all the loans we defined as the default, 69.9% of them will actually default.

#### **Potential Savings (in Every 1000 Loan Applications):**

Accept all loan applications (nowadays): 1000 \* 0.15 \* mean (loan amount)

Operating at 5% FNR: (5% will be the default, 7.4% current loan will be rejected and lose interest income): 1000\*0.05\*mean (loan amount) + 1000\*0.074\*mean (interest rate) \* mean (loan amount)

Potential Savings = \$1,010,923

#### DALEX, SHAPLEY, and VIP

We used 3 methods to interpret the model from a global perspective, VIP, DALEX breakdown, and SHAPLEY, and we used the highest prediction probability to build DALEX and SHAPLEY chart.

According to the charts below, "last\_pymnt\_w", "last\_pymnt\_amnt", "last\_credit\_pull\_w", "term", and "int\_rate" are important predictors to detect default.



# **Partial Dependence Plots**

We selected top variables from the global explanations above to draw partial dependence plots, in order to study the interaction between one specific predictor and the response.

From the charts below we can see that, when "last\_pymnt\_amnt" or "issue\_w" is very low, when "last\_credit\_pull\_w" is very small or big, the probability that this loan will be default is higher. Besides, a higher "last\_pymnt\_w" will result a higher probability.

60-months term and a lower grade (F or G) will also result a higher default probability.



#### **Local Explanation: Top TP FP FN Records**

#### **Top 9 TP Records**

We have the results of the Top 10 true positive records but we only display 9 of them for a better viewing.

Among those records, there are some similarities: "last\_credit\_pull\_d" contributes the most, and the value of it is all "Sep-2016". Besides, "total\_rec\_late\_fee" and "last\_pymnt\_amnt" contributes a lot as well. Most of them has a lower "last pymnt amnt", usually higher than \$300 but lower than \$500.



#### **Top 9 FR Records**

We have the results of the Top 10 false positive records but we only display 9 of them for a better viewing.

Among those records, there are some similarities: "last\_credit\_pull\_d" contributes the most, and all these records have the same value "Sep-2016". Besides, "int\_rate" and "last\_pymnt\_amnt" contributes a lot as well. The "int\_rate" of all those records are around 20%, and the "last\_pymnt\_amnt" is usually relatively low, around \$500.





#### **Top 9 FN Records**

We have the results of the Top 10 false negative records, but we only display 9 of them for a better viewing.

Among those records, there are some similarities: "last\_credit\_pull\_d" and "last\_pymnt\_amnt" contributes the most. The "last\_pymnt\_amnt" is either very high (above \$1000), or every low (below \$300).

and the value of it is all "Sep-2016". Besides, "total\_rec\_late\_fee" and "last\_pymnt\_amnt" contributes a lot as well. Most of them has a lower "last\_pymnt\_amnt", usually higher than \$300 but lower than \$500. Their "int\_rate" are all lower than other records, usually below 10%.



# **XGBoost**

## **Hyperparameter Tuning**

We used K-fold Validation and split the training data into 10 folds, and we use the Bayes tuning method to tune hyperparameters.

#### • Tuning Performance

From the chart below, we can see that the optimal learn\_rate is between 0.01 to 0.1, while the optimal number of trees is above 500, the optimal tree\_depth is about 10, as the accuracy and AUC both reached the highest in these charts.



- Bayes tune result:
  - $\circ$  Trees = 1821
  - o Tree\_depth = 10
  - $\circ$  Learn\_rate = 0.03225007

#### **Model Performance**



|          | Accuracy | Log loss | AUC    | Precision | Recall | F1     |
|----------|----------|----------|--------|-----------|--------|--------|
| Training | 1.0000   | 0.0012   | 1.0000 | 1.0000    | 1.0000 | 1.0000 |
| Testing  | 0.9786   | 0.0820   | 0.9937 | 0.9497    | 0.9088 | 0.9288 |

#### **Operating Range**

#### **ROC** and Distribution of the probability of default

The desired operating level is at **5% FNR**. At this level, we will incorrectly define 5% positives as negatives, i.e., 5% default as current. The desired operating level is marked as a red v-line, while other common thresholds are marked as gray v-lines.



#### **Operation Chart (precision/recall/FPR/FNR/Threshold)**

| FNR  | Threshold | FPR   | Recall (TPR) | Precision |
|------|-----------|-------|--------------|-----------|
| 0.01 | 0.001     | 0.145 | 0.991        | 0.590     |
| 0.02 | 0.004     | 0.068 | 0.979        | 0.729     |
| 0.03 | 0.010     | 0.042 | 0.970        | 0.811     |
| 0.04 | 0.026     | 0.029 | 0.959        | 0.859     |
| 0.05 | 0.054     | 0.020 | 0.951        | 0.890     |
| 0.06 | 0.119     | 0.017 | 0.939        | 0.915     |
| 0.07 | 0.232     | 0.010 | 0.929        | 0.934     |
| 0.08 | 0.346     | 0.010 | 0.921        | 0.941     |
| 0.09 | 0.494     | 0.010 | 0.909        | 0.949     |
| 0.10 | 0.652     | 0.010 | 0.900        | 0.957     |

- Given the context, we choose an FNR at 5%. It means we will accept 5% of the loans which will default as current.
- To achieve this FNR rate, when the predicted default rate is higher than 0.054, we will classify it as default; and we will detect it as current when the predicted default rate is below 0.054.
- At this FNR rate, the FPR is 0.020, which means we will define 2% of the current loan as default.
- The recall/TPR is 0.951, which means we will successfully identify 95.1% of the total default loans.

• The precision will be 0.890, which means among all the loans we defined as the default, 89% of them will actually default.

# **Potential Savings (in Every 1000 Loan Applications):**

Accept all loan applications (nowadays): 1000 \* 0.15 \* mean (loan amount)

Operating at 5% FNR: (5% will be the default, 7.4% current loan will be rejected and lose interest income): 1000\*0.05\*mean (loan amount) + 1000\*0.02\*mean (interest rate) \* mean (loan amount)

Potential Savings = \$1,083,911

#### DALEX, SHAPLEY, and VIP

We used 3 methods to interpret the model from a global perspective, VIP, DALEX breakdown, and SHAPLEY, and we used the highest prediction probability to build DALEX and SHAPLEY chart.

According to the charts below, "last\_pymnt\_w", "last\_pymnt\_amnt", "last\_credit\_pull\_w", "term", and "total\_rec\_late\_fee" are important predictors to detect default.





# **Partial Dependence Plots**

We selected top variables from the global explanations above to draw partial dependence plots, in order to study the interaction between one specific predictor and the response.

From the charts below we can see that, when "last\_pymnt\_amnt" is very low, when "last\_credit\_pull\_w" is very small or big, the probability that this loan will be default is higher. Besides, a higher "last\_pymnt\_w" or "int\_rate" will result a higher probability. What's more, a lower "dti" will also result in a higher probability of default.





# **Local Explanation: Top TP FP FN Records**

#### **Top 9 TP Records**

We have the results of the Top 10 true positive records but we only display 9 of them for a better viewing.

Among those records, lots of them have the same "last\_credit\_pull\_d" which is "Sep-2016". When "term" is on the board, it's usually 60-months term. Their "last\_pymnt\_amnt" is below \$500.



#### **Top 9 FP Records**

We have the results of the Top 10 false positive records but we only display 9 of them for a better viewing.

Among those records, lots of them have the same "last\_credit\_pull\_d" which is "Sep-2016". When "term" is on the board, it's usually 60-months term. Their "last pymnt amnt" is below \$300.



#### **Top 9 FN Records**

We have the results of the Top 10 false negative records but we only display 9 of them for a better viewing.

Among those records, lots of them have a higher "int\_rate" which is between 15% and 20%. If the "term" appears, it's usually 36-months.



# **Neural Network**

# **Hyperparameter Tuning**

We used K-fold Validation and split the training data into 10 folds, and we use the Bayes tuning method to tune hyperparameters.

#### • Tuning Performance

From the chart below, we can see that the optimal hidden\_unit is around 4, while the optimal penalty is between 0.0001 and 0.1, and the optimal epochs is around 250, as the accuracy and AUC both reached the highest in these charts.



- Bayes tune result:
  - Hidden\_units = 4
  - $\circ$  Penalty = 0.592135
  - $\circ$  Epochs = 250

#### **Model Performance**



|          | Accuracy | Log loss | AUC    | Precision | Recall | F1     |
|----------|----------|----------|--------|-----------|--------|--------|
| Training | 0.9606   | 0.3607   | 0.9826 | 0.8950    | 0.8336 | 0.8632 |
| Testing  | 0.9579   | 0.3625   | 0.9790 | 0.8920    | 0.8225 | 0.8575 |

#### **Operating Range**

#### ROC and Distribution of the probability of default

The desired operating level is at **5% FNR**. At this level, we will incorrectly define 5% positives as negatives, i.e., 5% default as current. The desired operating level is marked as a red v-line, while other common thresholds are marked as gray v-lines.



#### **Operation Chart (precision/recall/FPR/FNR/Threshold)**

| FNR  | Threshold | FPR   | Recall | Precision |
|------|-----------|-------|--------|-----------|
|      |           |       | (TPR)  |           |
| 0.01 | 0.271     | 0.454 | 0.992  | 0.286     |
| 0.02 | 0.278     | 0.232 | 0.980  | 0.438     |
| 0.03 | 0.285     | 0.166 | 0.971  | 0.522     |
| 0.04 | 0.294     | 0.116 | 0.961  | 0.595     |
| 0.05 | 0.309     | 0.078 | 0.950  | 0.694     |
| 0.06 | 0.322     | 0.059 | 0.940  | 0.745     |
| 0.07 | 0.334     | 0.047 | 0.931  | 0.782     |
| 0.08 | 0.348     | 0.040 | 0.920  | 0.811     |
| 0.09 | 0.358     | 0.036 | 0.908  | 0.824     |
| 0.10 | 0.371     | 0.030 | 0.900  | 0.833     |

- Given the context, we choose an FNR at 5%. It means we will accept 5% of the loans which will default as current.
- To achieve this FNR rate, when the predicted default rate is higher than 0.309, we will classify it as default; and we will detect it as current when the predicted default rate is below 0.309
- At this FNR rate, the FPR is 0.078, which means we will define 7.8% of the current loan as default.
- The recall/TPR is 0.950, which means we will successfully identify 95% of the total default loans.

• The precision will be 0.694, which means among all the loans we defined as the default, 69.4% of them will default.

# **Potential Savings (in Every 1000 Loan Applications):**

Accept all loan applications (nowadays): 1000 \* 0.15 \* mean (loan amount)

Operating at 5% FNR: (5% will be the default, 7.4% current loan will be rejected and lose interest income): 1000\*0.05\*mean (loan amount) + 1000 \* 0.078 \* mean (interest rate) \* mean (loan amount)

Potential Savings = \$1,005,517

# DALEX, SHAPLEY, and VIP

We used 3 methods to interpret the model from a global perspective, VIP, DALEX breakdown, and SHAPLEY, and we used the highest prediction probability to build DALEX and SHAPLEY chart.

According to the charts below, "last\_pymnt\_w", "last\_pymnt\_amnt", "last\_credit\_pull\_w", "term", and "total\_rec\_late\_fee" are important predictors to detect default.





## **Partial Dependence Plots**

We selected top variables from the global explanations above to draw partial dependence plots, in order to study the interaction between one specific predictor and the response.

From the charts below we can see that, when "last\_pymnt\_w", "int\_rate" affect the response in a positive way, while "fico\_range\_low" and "issue\_w" affect the response in a negative way. "last\_credit\_pull\_w" affect the response in a "U-shape" way. Same as the result from random forest, 60-months term tends to generate a higher possibility of default.





# **Local Explanation: Top 10 TP FP FN Records**

#### **Top 9 TP Records**

We have the results of the Top 10 true positive records but we only display 9 of them for a better viewing.

Among those records, lots of them have the same "last\_credit\_pull\_d" which is "Sep-2016". When "term" is on the board, it's usually 60-months term. Their "last pymnt amnt" is below \$300.



#### **Top 10 FR Records**

We have the results of the Top 10 false positive records but we only display 9 of them for a better viewing.

Among those records, lots of them have the same "last\_credit\_pull\_d" which is "Sep-2016". They all have a low "last\_pymnt amnt".



#### **Top 9 FN Records**

We have the results of the Top 10 false negative records but we only display 9 of them for a better viewing.

Among those records, some of them have a higher "annual\_inc", above \$84,000, or \$200,000. Lots of them have an interest rate between 15% to 20%.



# **Model Comparing**

# **Metrics and Generating Predictions**

|              | Accuracy | Log loss | AUC    | Precision | Recall | F1     |
|--------------|----------|----------|--------|-----------|--------|--------|
| Training NN  | 0.9606   | 0.3607   | 0.9826 | 0.8950    | 0.8336 | 0.8632 |
| Testing NN   | 0.9579   | 0.3625   | 0.9790 | 0.8920    | 0.8225 | 0.8575 |
| Training XGB | 1.0000   | 0.0012   | 1.0000 | 1.0000    | 1.0000 | 1.0000 |
| Testing XGB  | 0.9786   | 0.0820   | 0.9937 | 0.9497    | 0.9088 | 0.9288 |
| Training RF  | 1.0000   | 0.0499   | 1.0000 | 1.0000    | 1.0000 | 1.0000 |
| Testing RF   | 0.9569   | 0.1524   | 0.9842 | 0.9401    | 0.7679 | 0.8453 |

Basing on the metrics above, we choose XGB as our final model and generate predictions.

```
holdout_score <- predict(xgb_wflow, holdout, type = "prob") %>%
  bind_cols(predict(xgb_wflow, holdout, type = "class")) %>%
  bind_cols(., holdout) %>%
  select(id, .pred_class, .pred_default) %>%
  write_csv("Prediction_EmmaWang.csv")

head(holdout_score)
```