

Fundamentals of Logic Design

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

Unit 2

——Boolean Algebra

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

2.3 逻辑函数的表示方法

逻辑函数的表示方法——逻辑表达式

1. 逻辑表达式(布尔表达式)

逻辑函数的表示方法——逻辑图

F = AB + AB

2. 逻辑图

■ 每个表达式都直接对应一个逻辑电路图

3. 真值表

真值表

A	В	F
0	0	1
0	1	0
1	0	0
1	1	1

■ n 个输入变量有 2ⁿ 种取值组合

如果两个逻辑表达式的真值表相等,则这两个逻辑 表达式相等.

$$AB'+C = (A+C)(B'+C)$$

ABC	AB' + C	(A + C)(B' + C)
0 0 0	0	0
0 0 1	1	1
0 1 0	0	0
0 1 1	1	1
1 0 0	1	1
1 0 1	1	1
1 1 0	0	0
1 1 1	1	1

适用情况:逻辑 表达式简单,逻 辑变量较少

由真值表可以直接写出两种标准形式的逻辑表达式

- 标准与或式(最小项表达式: and-or)
- 标准或与式(最大项表达式: or-and)

真值表

Α	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1 🇸
1	0	0	0
1	0	1	1 🇸
1	1	0	1 🏑
1	1	1	1 🏑

① 写出标准与或式(乘积之和) 关注表中输出值为1的所有输入取值组合

$F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

输入取值组合中

1——原变量

0——反变量

真值表

A	В	C	F
0	0	0	0 🗸
0	0	1	0 🇸
0	1	0	0 🇸
0	1	1	1
1	0	0	0 🇸
1	0	1	1
1	1	0	1
1	1	1	1

① 写出标准或与式(和之积)

关注表中输出值为0的所有输入取值组合

$$F=(A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (\overline{A}+B+C)$$

输入取值组合中

0——原变量

1——反变量

2.3 逻辑函数的表示方法

