Universidade Federal de Juiz de Fora Departamento de Ciência da Computação DCC059 - Teoria dos Grafos Semestre 2016-3

Cobertura de Vértices Ponderados

Helder Linhares Bertoldo dos Reis

Professor: Stênio Sã Rosário F. Soares

Relatório do trabalho final de Teoria dos Grafos, parte integrante da avaliação da disciplina.

Juiz de Fora

Agosto de 2016

Sumário

Т	Intr	odução	1			
2	Metodologia utilizada					
	2.1	Estruturas de dados utilizadas	1			
	2.2	Abordagens algorítmicas usadas na solução	1			
		2.2.1 Algoritmo Construtivo Guloso	1			
		2.2.2 Algoritmo Construtivo Guloso Randomizado	2			
		2.2.3 Algoritmo Construtivo Guloso Randomizado Reativo	2			
3	Exp	erimentos computacionais	3			
	3.1	Instâncias	4			
	3.2	Experimento 1	4			
	3.3	Experimento 2	5			
	3.4	Experimento 3	5			
4	Con	paração de Resultados	6			
5	Conclusões					
Α	Ref	erências	8			

Resumo

O Problema da Cobertura de Vértices Ponderado (PCVP) é um problema NP-Difícil com grande interesse prático. Muitos problema reais podem ser relacionados ao PCVP, por exemplo, instalação de equipamentos para monitoramento de vias e posicionamento de replicadores para distribuição de sinais digitais. Este trabalho busca tratar do problema utilizando de 3 abordagens heurísticas: Algoritmo Construtivo Guloso, Algoritmo Construtivo Guloso Randomizado e Algoritmo Construtivo Guloso Randomizado e Reativo. Ao final realizar uma análise dos resultados obtidos com os resultados encontrados na literatura, encontrados na biblioteca BHOSLIB.

1 Introdução

 Dados um grafo G e uma função de ponderação dos vértices de G, o problema de cobertura com vértices ponderados ou capacitados em G consiste em encontrar um subconjunto de vértices de G que constituam uma cobertura de vértices em G e, para todos os vértices da cobertura, a soma de seus pesos seja mínima.

2 Metodologia utilizada

Dado que o problema encontra-se na categoria NP-Difícil, foi necessária a utilização de heurísticas construtivas gulosas para a solução do mesmo. Para aperfeiçoar a abordagem gulosa, foi desenvolvido dois algoritmos derivados: Construtivo Guloso Randomizado e Construtivo Guloso Randomizado Reativo.

2.1 Estruturas de dados utilizadas

Para o desenvolvimento do algoritmo foram utilizadas as seguintes Estruturas de Dados implementadas em C++ 11:

- Tabela Hash
- Vector
- List
- MultiSet
- Pair

2.2 Abordagens algorítmicas usadas na solução

2.2.1 Algoritmo Construtivo Guloso

Para a abordagem construtiva gulosa, a heurística ordena em ordem crescente os vértices de acordo com a função critério: Peso do Vértice dividido pelo seu Grau. Após a ordenação, utiliza sempre o vértice de menor custo, até que todas as arestas

Algoritmo 1: Algoritmo Construtivo Guloso

Entrada: uma instância do problema;

Saída: uma solução sub-ótima;

início

Enquanto todas arestas não estiverem cobertas faca

ordene vértices segundo função critério;

adicione primeiro vértice ao conjunto solução do problema;

marcar arestas adjacentes ao vértice como cobertas;

fim-enquanto

fim

2.2.2 Algoritmo Construtivo Guloso Randomizado

No algoritmo construtivo guloso randomizado, a heurística ordena em ordem crescente os vértices de acordo com a função critério: Peso do Vértice dividido pelo seu Grau. Após a ordenação, seleciona aleatoriamente um vértice dentro da faixa de menor custo limitada pelo alfa utilizado(Para os testes foram utilizados 3 valores para alfa: 0.15, 0.25 e 0.35). Repetindo o processo até que todas as arestas estejam cobertas.

Algoritmo 2: Algoritmo Construtivo Guloso Randomizado

Entrada: uma instância do problema e o coeficiente \leftarrow ;

Saída: uma solução sub-ótima;

início

Enquanto todas arestas não estiverem cobertas faca

LC ← ordene vértices segundo função critério;

 $N \leftarrow \alpha * Grau do Grafo;$

selecione aleatoriamente um vértice dentro das N primeiras posições de LC adicione o vértice ao conjunto solução do problema;

marcar arestas adjacentes ao vértice como cobertas;

fim-enquanto

 $_{\rm fim}$

2.2.3 Algoritmo Construtivo Guloso Randomizado Reativo

A abordagem reativa se baseia no algoritmo construtivo guloso randomizado, porém a heurística realiza ajustes baseados em cálculos de probabilidade para encontrar o melhor alfa para solucionar o problema. Para isso foram utilizados 10 valores a serem testados como alfa: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50. Inicialmente todos os alfas tem a mesma probabilidade de serem escolhidos, porém

após um bloco de testes é realizado um ajuste na probabilidade de escolha do alfa a ser testado de forma a privilegiar os valores de que obtém melhores resultados.

Algoritmo 3: Algoritmo Construtivo Guloso Randomizado Reativo

```
Entrada: uma instância do problema, número de iterações e número de bloco-iterações;
Saída: uma solução sub-ótima;
início
    melhorSolução \leftarrow \infty;
    A = \{\alpha 1, \alpha 2, ..., \alpha N\};
    pi = 1/N, i=1,...,N;
    soma = \{ \};
    qtdeUso = \{ \};;
    Enquanto iteração < número de iterações faca
        Selectionar aleatoriamente \alpha = \alpha 1 usando as probabilidades pi, 1/N, i=1,...,N;
        solução \leftarrow AlgoritmoConstrutivoGulosoRandomizado(\alpha);
        if solução < melhorSolução then
            melhorSolução ← solução;
        end
        soma[indice \alpha] \leftarrow soma + \sum pesos da solução;
        qtdeUso[indice \alpha]++;
        if iteração \% bloco-iteração == 0 then
            atualize probabilidades com base na relação soma e qtdeUso;
        \mathbf{end}
    fim-enquanto
fim
```

3 Experimentos computacionais

Dados para os experimentos:

Notebook Acer

Processador: Intel Core I3 de 1.7 GHz

Memória RAM: 4 Gb

Sistema Operacional: Elementary OS Loki 64 bits.

Compilador: GCC 5.4

Linguagem: C++ 11

3.1 Instâncias

Para os testes foram utilizadas as seguintes instâncias, obtidas do site turing.cs.hbg.psu.edu. Deve se observar que a literatura disponibiliza resultados apenas para o problema da cobertura de vértices não ponderados, com isso foi necessário ponderar todos os vértices com valor igual.

	Tabela 1: Instâncias			
Instâncias	N° de Vértices	Nº de Arestas		
Frb30-15-3	450	17809		
Frb30-15-4	450	17831		
Frb35-17-2	595	27847		
${ m Frb}40$ -19-3	760	41095		
$\operatorname{Frb45-21-1}$	945	59186		
Frb45-21-4	945	58549		
Frb50-23-5	1150	80035		
Frb53-24-1	1272	94227		
Frb56-25-2	1400	109401		
Frb59-26-3	1534	126082		

3.2 Experimento 1

No primeiro experimento com as instâncias foi executado teste utilizando o Algoritmo Construtivo Guloso e o resultado obtido pode ser observado a seguir:

Tabela 2: Resultados- Algoritmo Construtivo Guloso Instâncias Vértices Arestas CMC Literatura CMC Algoritmo Tempo(s)

				_	- \ /
Frb30-15-3	450	17809	420	429	0.19
Frb30-15-4	450	17831	420	429	0.17
Frb35-17-2	595	27847	560	570	0.28
Frb40-19-3	760	41095	720	733	0.45
Frb45-21-1	945	59186	900	913	0.72
Frb45-21-4	945	58549	900	913	0.73
Frb50-23-5	1150	58549	1100	1118	1.04
Frb53-24-1	1272	94227	1219	1240	1.27
Frb 56 - 25 - 2	1400	109401	1344	1365	1.52
Frb59-26-3	1534	126082	1475	1501	1.83

^{*}CMC = Cobertura de Menor Custo

3.3 Experimento 2

Para o segundo experimento as instâncias foram submetidas a testes utilizando o Algoritmo Construtivo Guloso Randomizado, com sementes aleatórias variando entre 1 e 30 e utilizando 3 valores para Alfa (0.1, 0.2 e 0.3). Os resultados podem ser observados na tabela abaixo:

Tabela 3: Resultados- Algoritmo Construtivo Guloso Randomizado

${\rm Instâncias}$	Vértices	Arestas	CMC Literatura	CMC Algoritmo	Alfa	Semente	Tempo(s)
Frb30-15-3	450	17809	420	428	0.15	12	15.75
Frb30-15-4	450	17831	420	428	0.15	5	15.64
Frb35-17-2	595	27847	560	570	0.15	2	26.83
Frb40-19-3	760	41095	720	733	0.15	8	43.35
Frb45-21-1	945	59186	900	915	0.25	5	67.61
Frb45-21-4	945	58549	900	913	0.15	3	67.12
Frb50-23-5	1150	58549	1100	1116	0.15	2	98.31
Frb53-24-1	1272	94227	1219	1240	0.15	5	120.80
Frb56-25-2	1400	109401	1344	1364	0.15	27	146.71
Frb59-26-3	1534	126082	1475	1500	0.15	7	175.03

^{*}CMC = Cobertura de Menor Custo

3.4 Experimento 3

O terceiro experimento as instâncias foram submetidas a testes utilizando o Algoritmo Construtivo Guloso Randomizado Reativo, utilizando 10 valores para Alfa (0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50). Os resultados podem ser observados na tabela abaixo:

Tabela 4: Resultados- Algoritmo Construtivo Guloso Randomizado Reativo Instâncias Vértices CMC Literatura CMC Algoritmo Arestas Alfa Tempo(s)Frb30-15-3 450 420427 0.0535.1917809Frb30-15-4 450178314204280.0535.05Frb35-17-2 60.58595 27847560 5680.05Frb 40-19-376041095720 730 0.1598.09 Frb45-21-1 94559186 900 913 0.05153.11 Frb45-21-494558549 900 912 0.10151.30 Frb50-23-5 0.05222.521150 58549 1100 1115 Frb53-24-1 127294227 1219 1239 0.10272.96 Frb56-25-2 1400 109401 1344 1362 0.10330.70Frb59-26-3 1534 126082 1475 1498 0.10397.58

4 Comparação de Resultados

Desvio Percentual dos algoritmos em comparação ao melhor resultado dentre as 3 heurísticas.

Tabela 5: Desvios Percentuais do Algoritmo

Instâncias	Melhor Solução	DP Guloso (%)	DP Randomizado (%)	DP Reativo (%)
Frb30-15-3	427	0,47	0,23	0,00
Frb30-15-4	428	0,23	0,00	0,00
Frb35-17-2	568	$0,\!35$	$0,\!35$	0,00
Frb40-19-3	730	0,41	0,41	0,00
Frb45-21-1	913	0,00	$0,\!22$	0,00
Frb45-21-4	912	0,11	0,11	0,00
Frb 50-23-5	1115	0,27	0,09	0,00
Frb 53-24-1	1239	0,08	0,08	0,00
Frb 56-25-2	1362	$0,\!22$	0,15	0,00
Frb59-26-3	1498	0,20	0,13	0,00

^{*}DP = Desvio Percentual

^{*}CMC = Cobertura de Menor Custo

Desvio Percentual dos Algoritmos em relação aos melhores valores encontrados na Literatura.

Tabela 6: Desvios Percentuais do Algoritmo em Relação à Literatura

Instâncias	Melhor Solução	DP Guloso (%)	DP Randomizado (%)	DP Reativo (%)
Frb30-15-3	420	2,14	1,90	1,67
Frb30-15-4	420	2,14	1,90	1,90
Frb35-17-2	560	1,79	1,79	1,43
Frb40-19-3	720	1,81	1,81	1,39
Frb45-21-1	900	1,44	1,67	1,44
Frb45-21-4	900	1,44	1,44	1,33
Frb50-23-5	1100	1,64	1,45	1,36
Frb53-24-1	1219	1,72	1,72	1,64
Frb56-25-2	1344	1,56	1,49	1,34
Frb59-26-3	1475	1,76	1,69	1,56

^{*}DP = Desvio Percentual

5 Conclusões

Pode ser observado que o Algoritmo Construtivo Guloso obtém um resultado de cobertura de menor custo aproximado e satisfatório, porém abordagens complementares como a variação Randomizada e a Reativa são capazes de obter soluções ainda melhores, embora estes exijam tempo maior de processamento, estes ainda estão dentro de um limite aceitável.

Deve ser destacada a heurística Reativa que é capaz de encontrar os melhores valores para alfa e caso ela seja incrementada com algoritmos de aperfeiçoamento como busca local se torna uma excelente ferramenta para obter uma solução sub-ótima para esse tipo de problema que não tem solução em tempo polinomial.

Outro fator a ser considerado é o tempo reduzido na execução dos algoritmos. Isso se deve à implementação do grafo utilizando tabela hash.

A Referências

Wikipedia-Cobertura de Vértices, acesso em 02 de Dezembro de 2016 turing.cs.hbg.psu.edu, acesso em 02 de Dezembro de 2016