Student nr.: Side 1 av 7

Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500

Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442.

Hjelpemidler: Alle kalkulatortyper tillatt. Alle trykte og håndskrevne hjelpemidler tillatt. **Rubrikksvar**: Alle svar skal avgis i angitte svar-ruter. Ikke legg ved ekstra ark som svar. **Krav**: Det kreves "bestått" både på de ordinære og på de øvingsrelaterte spørsmål.

Husk: Fyll inn rubrikken "Student nr." øverst på alle ark.

Oppgave 1. (18%)

- a) Er høyden på et 2-3-tre med n dataposter $\Theta(\log_3 n)$?
- b) Er Dijkstras algoritme basert på Dynamisk Programmering?
- c) Er Kruskals algoritme en grådighetsalgoritme som alltid gir beste løsning?
- d) Er antallet ordninger ved topologisk sortering av en vilkårlig graf G(V,E) $\mathbf{O}(|V|!)$?
- e) Er antallet ordninger ved topologisk sortering av en vilkårlig graf G(V,E) $\mathbf{O}(|E|!)$?
- f) Er Quicksort $\Omega(n \cdot \log n)$?
- g) Bør "sortering ved innsetting" brukes i forbindelse med Quicksort?
- h) Kan maks-flyt-algoritmen brukes til å finne ut om en sammenhengende graf G har en bro?
- i) Er Huffmans algoritme aktuell i forbindelse med fletting (Merge) av m > 2 sorterte lister?

Svar: (Stryk "Ja" eller "Nei". Begrunnelsen må fylles ut. Hvert delsvar teller 2%)

Begrunnelse: Høyden er i intervallet $[\log_3 n, \log_2 n]$.
Idet $\log_2 n = \text{konst} \cdot \log_3 n$, er høyden $\theta(\log_3 n) = \theta(\log_2 n) = \theta(\log_q n)$
Begrunnelse: {d[i]} forbedres rekursivt.
Dijkstras algoritme bruker både dynamisk programmering og grådighet.
Begrunnelse: Det henvises til bevis i kompendiet, basert på at "nei" gir
selvmotsigelse.
Begrunnelse: Antall mulige ordninger av $ V $ noder er $ V $!.
Begrunnelse (Moteksempel): I en graf med kun 1 avhengighet vil vi ha
$E ! = 1! = 1$, men dette tallet begrenser ikke de $V !$ mulige ordninger.
(Antar at $ V $ er mye større enn $ E $.)

Student nr.:	Side 2 av 7
Student III	Siue 2 av 1

f) Ja/ nei	Begrunnelse: Støttes av en generell sats: Alle sorteringsalgoritmer basert på sammenligninger er $\Omega(n \cdot \log n)$.
g) Ja/ nei	Begrunnelse: Alt bør sorteres ved innsetting når de sorterte intervallene er blitt korte ($\leq 10\pm$).
h) Ja/ nei	Begrunnelse: Alle kanter gis flytkapasitet 1, og en kjører alle-til-alle−flytmaks for å dekke alle kilde-sluk–kombinasjoner. Maks flyt=1 ⇔ bro.
i) Ja/ nei	Begrunnelse: De til enhver tid 2 korteste listene flettes. Fletterekkefølgen gis av Huffmans algoritme med "listelengde" som vekt.

Oppgave 2. (20%)

Vi definerer problemet P(A,n,k,b) slik: Finn, om mulig, et utvalg av k (>1) verdier i $A = \{a_1,a_2,...,a_n\}$ som er slik at summen av disse k verdiene er lik b. Alle verdiene er heltall.

(a) Skisser en algoritme Q som løser problemet P(A,n,k,b) i $O(n^{k-1} \log n)$ tid.

Svar: 4%

- 1. Sorter A
- 2. For hver av i alt $O(n^{k-1})$ utvalg av k-1 a-verdier: Finn den k-te verdien ved binærsøk i sortert A

Totalt $\mathbf{O}(n \log n) + \mathbf{O}(n^{k-1}) \cdot \mathbf{O}(\log n) = \mathbf{O}(n^{k-1} \log n)$

(b) Skisser en mer effektiv algoritme R som løser problemet P(A,n,k,b) i $O(n^{k-1})$ tid når k>2.

Svar: 4%

- 1. Sorter A
- 2. For hver av i alt $O(n^{k-2})$ utvalg av elementer av k-2 a-verdier:

Finn de 2 siste verdiene ved å søke igjennom A lineært fra hver side (tidligere Eksamensoppgave) for, om mulig, å finne "restverdien" som en sum av disse to Verdiene.

(Lineærsøk: Hvis summen er for stor – drop høyeste element; for liten – dropp minste.)

(Merknad: Total kompleksitet er $\mathbf{O}(n \log n) + \mathbf{O}(n^{k-2}) \cdot \mathbf{O}(n)$. For $k \le 2$ blir dette $\mathbf{O}(n \log n)$.)

Student nr.:	Side 3 av 7

(c) Hvordan vil du løse problemet P(A,n,k,b) når n > 100 og k = n-3?

Svar: 5%

Beregn $S=\Sigma a_i$, og løs, dersom b < S, problemet P(A,n,3,S-b). Svaret blir da de andre verdiene (det vil si A-P). Dette problemet har (naturligvis) samme tidskompleksitet som P(A,n,3,b).

(d) For hvilke verdier av k vil du anta at P(A,n,k,b) krever mest tid for å bli løst? (Begrunn.)

Svar: 4%

k = n/2. Det henger sammen med at binomialkoeffisienten er "størst midt på," dvs. at "n over m" er størst når $m = \lceil n/2 \rceil$.

Vi definerer nå problemet P'(A,n,b) slik: Finn, om mulig, et utvalg av inntil n verdier i $A = \{a_1, a_2, ..., a_n\}$ som er slik at summen av disse verdiene er lik b. Alle verdiene er heltall.

(e) Hvilken metode vil du foreslå for å løse problemet P'? Angi metodens tidskompleksitet.

Svar: 3%

Dette er ryggsekkproblemet. Løst med dynamisk programmering er kjøretiden $\mathbf{O}(nb)$, ved utfylling av en $n \times b$ -tabell.

Oppgave 3. (8%)

Student Lurvik hevder å ha utviklet en ny datastruktur for prioritetskøer som støtter operasjonene Insert (Queue, element), FindMaximum (Queue) og DeleteMaximum (Queue). Lurvik påstår at alle disse 3 operasjonene kun krever O(1) tid. (a) Det er ingen grunn til å tro på Lurvik. Hvorfor ikke?

Svar: 8%

n stk. Insert-operasjoner, etterfulgt av n stk. (FindMaximum, DeleteMaximum) ville gitt en generell $\mathbf{O}(n)$ -algoritme for sortering, i strid både med $\mathbf{\Omega}(n \cdot \log n)$ -grensen og alle kjente metoder.

Student nr.: Side 4 av 7

Oppgave 4. (21%)

Vi skal her se på et problem som skal løses ved hjelp av Dynamisk Programmering:

Problem P(S, n): Gitt en sekvens $S = \langle s_1, s_2, ..., s_n \rangle$ bestående av n heltall. Finn lengden L_n av den lengste subsekvensen S^{\bullet} i S som er slik at verdiene i S^{\bullet} er stigende. Verdiene i S^{\bullet} må ikke nødvendigvis være naboer i S.

Merk at det her kun spørres etter lengden L_n av den (en av de) lengste subsekvensen(e) i S.

Eksempel (n=9):

 $S = \langle 9, 5, 2, 8, 7, 3, 1, 6, 4 \rangle$. Her er $L_n = 3$. Subsekvensen S^{\bullet} består da av enten $\langle 2, 3, 4 \rangle$ eller $\langle 2, 3, 6 \rangle$.

(a) Beskriv kort hvordan vi kan finne L_n ved dynamisk programmering.

Svar: 5%

 $L_i = \max\{L_i\} + (1 \text{ hvis og bare hvis } s_i < s_i), \text{ hvor } 0 < j < i.$

Dvs.:

 L_i er løsningen på $P(S_i, i)$, hvor S_i er et prefiks av S med lengde i.

(b) Finn tidskompleksiteten til metoden foreslått i (a)

Svar: 4% Dobbel løkke, dvs. $\mathbf{O}(n^2)$

(c) Forklar kort hvordan du kan finne selve sekvensen S^{\bullet} ved å føye ekstra informasjon til løsningen foreslått i (a). Bruk gjerne det oppgitte eksempelet for å illustrere ideene.

Svar: 4%

Føy til $\{P_i\}$ der P_i peker til nærmeste lavere *S*-indeks i den lengste sekvensen som ender i s_i . Følg så kjeden tilbake fra s_n .

(d) Hva blir tidkompleksiteten i (c)?

Svar: 4% Ingen forandring, dvs. $O(n^2)$

(e) Foreslå en praktisk sammenheng der problemet P(S,n) er av interesse.

Svar: 4% Dukker opp i forbindelse med mønstergjenkjenning i permutasjoner. (Andre gode forslag premieres).

Student nr.: Side 5 av 7

Oppgave 5. (8%)

Vi skal i denne oppgaven se på et praktisk problem knyttet til et rettet nettverk G=(V,E). Kantene i E representerer vannførende kanaler, hver med en spesifisert kapasitet c kubikkmeter pr. sekund. Kanalene møtes i noder som ikke har noen kapasitetsbeskrankning. Kantene har i tillegg en parameter InTown som har verdien True dersom kanten ligger i tettbebyggelsen, False ellers.

(Vi antar at en eventuell oversvømmelse bare vil forekomme i én kanal, dvs. vi ser bare på hvor oversvømmelsen starter.)

(a) Hvilken metode vil du bruke for å finne ut om en det er mulig at en oversvømmelse rammer en av kanalene i tettbygd strøk?

Svar: 4% (Retning kan være helning – naturlig å anta DAG.) Bruk Maks-flyt-algoritmen (Ford Fulkerson). Kanter med uendelig kapasitet fra en virtuell kilde S til noder med utgående åpne kanaler (tilsig, nedbør). Tilsvarende fra noder med fritt avløp til et virtuelt sluk T (hav etc.). Maks-flyt fra S til T gir et snitt. Mulig oversvømmelse hvis man har minst én InTown i dette snittet. Snittet trenger ikke være entydig – det er naturlig å anta at man velger det som er nærmest S.

(b) Hvordan vil du finne ut om en oversvømmelse garantert vil ramme et tettbygd strøk?

Svar: 4% Samme modell som i (a) gir *garantert* oversvømmelse dersom samtlige kanter i snittet også er *InTown*.

Oppgave 6, Øvingsrelaterte oppgaver. (25%)

(a) Kjør Partition på tallene: 13, 7, 11, 4, 6, 2, 0, 32, 29.

Bruk tallet 13 som pivot-element. Vis høyre og venstre partisjoneringsindeks per steg (i,j).

Svar: 4% (Partisjonerings-indeksene vises ved understrekning. Tallene er allerede partisjonerte – derfor ingen "swapping")

1 2 3 4 5 6 7 8 9 1: [13, 7, 11, 4, 6, 2, 0, 32, 29] 5: [0, 7, 11, 4, 6, 2, 13, 32, 29]

2: [<u>13</u>, 7, 11, 4, 6, 2, 0, <u>32</u>, 29] **6**: [0, 7, 11, <u>4</u>, 6, 2, <u>13</u>, 32, 29]

3: [<u>13</u>, 7, 11, 4, 6, 2, <u>0</u>, 32, 29] **7**: [0, 7, 11, 4, <u>6</u>, 2, <u>13</u>, 32, 29]

4: [0, <u>7</u>, 11, 4, 6, 2, <u>13</u>, 32, 29] **8**: [0, 7, 11, 4, 6, <u>2</u>, <u>13</u>, 32, 29]

(b) Hva ville vært optimalt pivot-element generelt sett når Partition blir brukt i Quicksort?

Svar: 2% Medianen

Student nr.: Side 6 av 7

(c) Bruk Dijkstras algoritme til å finne korteste vei fra node 1 til de andre nodene i grafen over. Fyll inn verdier for avstandsfunksjonen d (for hvert steg i algoritmen) i tabellen under:

Svar: (8%)

Steg	Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7
1	0	2	3	∞	∞	∞	∞
2	0	2	3	9	∞	∞	∞
3	0	2	3	9	8	12	∞
4	0	2	3	9	8	12	∞
5	0	2	3	9	8	12	12
6	0	2	3	9	8	12	12
7	0	2	3	9	8	12	12

Student nr.: Side 7 av 7

(d) Finn minste spenntre i grafen over, ved bruk av Prims algoritme. Fyll inn nodepar (fra-node – til-node) for kantene du legger til i hvert steg i tabellen under:

Svar: 6%

Steg	Fra-node	Til-node
1	1	2
2	2	3
3	3	5
4	5	6
5	6	7
6	7	8
7	7	4
8		

(e) Hva blir summen av kantene i det minimale spenntreet?

Svar: 2% 18

(f) Kan man ha et største spenntre? Hvordan vil du evt. finne det, og hva blir tidskompleksiteten? Svar: 3%

Å finne et største spenntre er ekvivalent med å finne et minste spenntre. Hvis k er den største kant-vekten, kan alle kant-vektene k_i settes til $k-k_i$ og man kan så kjøre for eksempel Prims algoritme på den omformede grafen. (Eventuelt kan man gjøre om algoritmen til å plukke ut den største kanten hver gang istedenfor den minste). Kjøretiden er som for å finne minste spenntre:

 $\mathbf{O}(|E| \log |V|)$

Det er generelt bedre å endre datasettet enn å endre algoritmen.

Student nr.: Side 8 av 7