```
pip install sklearn
```

Requirement already satisfied: sklearn in c:\users\nishant\anaconda3\ lib\site-packages (0.0)Note: you may need to restart the kernel to use updated packages.

```
Requirement already satisfied: scikit-learn in c:\users\nishant\
anaconda3\lib\site-packages (from sklearn) (0.24.2)
Requirement already satisfied: scipy>=0.19.1 in c:\users\nishant\
anaconda3\lib\site-packages (from scikit-learn->sklearn) (1.7.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\
nishant\anaconda3\lib\site-packages (from scikit-learn->sklearn)
(2.2.0)
Requirement already satisfied: joblib>=0.11 in c:\users\nishant\
anaconda3\lib\site-packages (from scikit-learn->sklearn) (1.1.0)
Requirement already satisfied: numpy>=1.13.3 in c:\users\nishant\
anaconda3\lib\site-packages (from scikit-learn->sklearn) (1.20.3)
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
import sklearn as sk
from sklearn.model selection import train test split
data= pd.read csv(R"C:\Users\Nishant\Downloads\QualityPrediction.csv")
data.head()
   fixed acidity volatile acidity citric acid residual sugar
chlorides \
             7.4
                              0.70
                                           0.00
                                                            1.9
0.076
1
             7.8
                              0.88
                                           0.00
                                                            2.6
0.098
2
             7.8
                              0.76
                                           0.04
                                                            2.3
0.092
            11.2
                              0.28
                                           0.56
                                                            1.9
3
0.075
             7.4
                              0.70
                                           0.00
                                                            1.9
0.076
   free sulfur dioxide total sulfur dioxide density
                                                         pH sulphates
0
                  11.0
                                        34.0
                                               0.9978 3.51
                                                                   0.56
1
                  25.0
                                        67.0
                                               0.9968 3.20
                                                                   0.68
2
                                        54.0
                                               0.9970 3.26
                                                                   0.65
                  15.0
3
                  17.0
                                        60.0
                                                                   0.58
                                               0.9980 3.16
```

25%

50%

3.210000

3.310000

0.550000

0.620000

9.500000

10.200000

5.000000

6.000000

alcoho 0 9. 1 9. 2 9. 3 9. 4 9.	4 5 8 5 8 5 8 6					
data.desc	ribe()					
fi count mean std min 25% 50% 75% max	xed acidit 1599.00000 8.31963 1.74109 4.60000 7.10000 7.90000 9.20000 15.90000	7 0.5 6 0.6 0 0.6 0 0.5 0 0.5	000000 1599. 527821 0. 179060 0. 120000 0. 390000 0. 520000 0.	000000 15 270976 194801 000000 090000 260000	dual sugar 599.000000 2.538806 1.409928 0.900000 1.900000 2.200000 2.600000 15.500000	\
density	\ 99.000000	15 10 1 7 14 21 72	dioxide tota .000000 .874922 .460157 .000000 .000000 .000000	1599.000 46.467 32.895 6.000 22.000 38.000 62.000 289.000	9000 7792 5324 9000 9000	
count 15 mean std min	pH 99.000000 3.311113 0.154386 2.740000	sulphates 1599.000000 0.658149 0.169507 0.330000	alcohol 1599.000000 10.422983 1.065668 8.400000	quality 1599.000000 5.636023 0.807569 3.000000		

```
75%
          3.400000
                        0.730000
                                    11.100000
                                                   6.000000
          4.010000
                        2.000000
                                    14.900000
                                                   8.000000
max
data.isnull().sum()
                         0
fixed acidity
volatile acidity
                         0
citric acid
                         0
residual sugar
                         0
chlorides
                         0
free sulfur dioxide
                         0
total sulfur dioxide
                         0
density
                         0
рН
                         0
sulphates
                         0
alcohol
                         0
                         0
quality
dtype: int64
data['quality'].value_counts()
5
     681
6
     638
7
     199
4
      53
8
      18
3
      10
Name: quality, dtype: int64
sb.countplot(data['quality'])
xlable='quality'
ylable='count'
plt.savefig('bar')
C:\Users\Nishant\anaconda3\lib\site-packages\seaborn\
_decorators.py:36: FutureWarning: Pass the following variable as a
keyword arg: x. From version 0.12, the only valid positional argument
will be `data`, and passing other arguments without an explicit
keyword will result in an error or misinterpretation.
  warnings.warn(
```


data.hist(bins=100, figsize=(50,50),color='red',edgecolor='black') plt.show()

data.corrwith(data.quality).plot.bar(
 figsize=(20,20),title='Correlation with
quality',fontsize='30',rot='45',grid=True)
plt.savefig('same1')

sb.set(style='white')
corr=data.corr()

corr.head

<pre><bound method="" ndfra<="" pre=""></bound></pre>	fi	fixed acidity		
volatile acidity (citric acid \			
fixed acidity	1.000000	-0.256131	0.671703	
volatile acidity	-0.256131	1.000000	-0.552496	
citric acid	0.671703	-0.552496	1.000000	
residual sugar	0.114777	0.001918	0.143577	
chlorides	0.093705	0.061298	0.203823	
free sulfur dioxide	e -0.153794	-0.010504	-0.060978	

total sulfur dioxide density pH sulphates alcohol quality	-0.113181 0.668047 -0.682978 0.183006 -0.061668 0.124052	0.07647 0.02202 0.23493 -0.26098 -0.20228 -0.39055	0.364947 7 -0.541904 7 0.312770 8 0.109903
diavida \	residual sugar	chlorides fre	e sulfur
<pre>dioxide \ fixed acidity</pre>	0.114777	0.093705	-0.153794
volatile acidity	0.001918	0.061298	-0.010504
citric acid	0.143577	0.203823	-0.060978
residual sugar	1.000000	0.055610	0.187049
chlorides	0.055610	1.000000	0.005562
free sulfur dioxide	0.187049	0.005562	1.000000
total sulfur dioxide	0.203028	0.047400	0.667666
density	0.355283	0.200632	-0.021946
рН	-0.085652	-0.265026	0.070377
sulphates	0.005527	0.371260	0.051658
alcohol	0.042075	-0.221141	-0.069408
quality	0.013732	-0.128907	-0.050656
	total sulfur di	oxide density	рН
<pre>sulphates \ fixed acidity</pre>		,	-0.682978
0.183006 volatile acidity			0.234937 -
0.260987 citric acid	0.0		-0.541904
0.312770 residual sugar	0.2	03028 0.355283	-0.085652
0.005527 chlorides	0.0	47400 0.200632	-0.265026
0.371260 free sulfur dioxide	0.6	67666 -0.021946	0.070377
0.051658 total sulfur dioxide	1.0	00000 0.071269	-0.066495

```
0.042947
                                  0.071269 1.000000 -0.341699
density
0.148506
На
                                 -0.066495 -0.341699 1.000000
0.196648
sulphates
                                  0.042947 0.148506 -0.196648
1.000000
alcohol
                                 -0.205654 -0.496180 0.205633
0.093595
                                 -0.185100 -0.174919 -0.057731
quality
0.251397
                       alcohol
                                 quality
fixed acidity
                     -0.061668 0.124052
volatile acidity
                     -0.202288 -0.390558
citric acid
                      0.109903 0.226373
residual sugar
                      0.042075
                                0.013732
chlorides
                     -0.221141 -0.128907
free sulfur dioxide
                     -0.069408 -0.050656
total sulfur dioxide -0.205654 -0.185100
                     -0.496180 -0.174919
density
                      0.205633 -0.057731
Hq
sulphates
                      0.093595 0.251397
alcohol
                      1.000000 0.476166
quality
                      0.476166 \quad 1.000000 >
plt.figure(figsize=(10,7))
sb.heatmap(data.corr(), annot=True,center=1)
plt.title('Correlation of Data', size=20, color='white')
plt.savefig('same')
```


data.corr()['quality'].sort_values()

```
volatile acidity
                        -0.390558
total sulfur dioxide
                        -0.185100
density
                        -0.174919
chlorides
                        -0.128907
На
                        -0.057731
free sulfur dioxide
                        -0.050656
residual sugar
                         0.013732
fixed acidity
                         0.124052
citric acid
                         0.226373
sulphates
                         0.251397
alcohol
                         0.476166
quality
                         1.000000
Name: quality, dtype: float64
```

sb.barplot(data['quality'],data['alcohol'],edgecolor='black')
plt.savefig('sample')

C:\Users\Nishant\anaconda3\lib\site-packages\seaborn\
 _decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an

explicit keyword will result in an error or misinterpretation.
 warnings.warn(


```
data['quality']= data.quality.apply(lambda x:1if x>=7 else 0)
data['quality'].value_counts()
0
     1382
      217
Name: quality, dtype: int64
x=data.drop('quality',axis=1)
y=data['quality']
x.head()
   fixed acidity volatile acidity citric acid residual sugar
chlorides \
                               0.70
             7.4
                                             0.00
                                                              1.9
0.076
             7.8
                               0.88
                                             0.00
                                                              2.6
1
0.098
2
             7.8
                               0.76
                                             0.04
                                                              2.3
0.092
            11.2
                               0.28
                                             0.56
                                                              1.9
0.075
             7.4
                               0.70
                                             0.00
                                                              1.9
0.076
```

free sulfur dioxide total sulfur dioxide density pH sulphates

```
0
                   11.0
                                          34.0
                                                  0.9978 3.51
                                                                      0.56
1
                   25.0
                                          67.0
                                                 0.9968 3.20
                                                                      0.68
2
                                          54.0
                                                  0.9970 3.26
                   15.0
                                                                      0.65
3
                   17.0
                                          60.0
                                                 0.9980 3.16
                                                                      0.58
                                          34.0
4
                   11.0
                                                 0.9978 3.51
                                                                      0.56
   alcohol
0
       9.4
       9.8
1
2
       9.8
3
       9.8
4
       9.4
y.head()
0
     0
1
     0
2
     0
3
     0
4
Name: quality, dtype: int64
x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=0.3,random_state=0)
print('x_train',x_train.shape)
print('y_train',y_train.shape)
print('x_test',x_test.shape)
print('y_test',y_test.shape)
x_train (1119, 11)
v train (1119,)
x_test (480, 11)
y_test (480,)
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
from sklearn import tree
decision tree = tree.DecisionTreeClassifier()
decision_tree.fit(x_train,y_train)
decision_tree_pred = decision_tree.predict(x_test)
decision_tree_acc= accuracy_score(y_test,decision_tree_pred)
print("Test accuracy: {:2f}%".format(decision tree acc*100))
```

Test accuracy: 88.333333%

```
print(classification_report(y_test, decision_tree_pred))
plt.savefig('CM1')
```

	precision	recall	f1-score	support
0 1	0.97 0.46	0.90 0.74	0.93 0.57	430 50
accuracy macro avg weighted avg	0.72 0.91	0.82 0.88	0.88 0.75 0.89	480 480 480

<Figure size 432x288 with 0 Axes>

```
from sklearn.metrics import confusion_matrix
import random
import itertools
from sklearn.metrics import ConfusionMatrixDisplay
```

```
cm = confusion_matrix(y_test,decision_tree_pred)
disp= ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
print('True Negative: ',cm[0][0])
print('False Negative: ',cm[1][0])
print('True Positive: ',cm[1][1])
print('False Positive: ',cm[0][1])
plt.savefig('CM')
```

True Negative: 387
False Negative: 13
True Positive: 37
False Positive: 43


```
from sklearn.ensemble import RandomForestClassifier
randforest=RandomForestClassifier()
randforest.fit(x_train, y_train)
randforest_pred=randforest.predict(x_test)
randforest_acc=accuracy_score(randforest_pred,y_test)
print('Test accuracy:{:.2f}%'.format(randforest_acc*100))
```

Test accuracy:91.67%

print(classification report(y test, randforest pred))

	precision	recall	f1-score	support
0 1	0.95 0.60	0.95 0.60	0.95 0.60	430 50
accuracy macro avg weighted avg	0.78 0.92	0.78 0.92	0.92 0.78 0.92	480 480 480

```
cm = confusion_matrix(y_test,randforest_pred)
disp= ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
print('True Negative: ',cm[0][0])
print('False Negative: ',cm[1][0])
print('True Positive: ',cm[1][1])
print('False Positive: ',cm[0][1])
```

True Negative: 410
False Negative: 20
True Positive: 30
False Positive: 20

False Positive:

24


```
from sklearn import neighbors
from sklearn.metrics import mean squared error
from sklearn.neighbors import KNeighborsClassifier
kclassifier=KNeighborsClassifier()
kclassifier.fit(x_train, y_train)
kclassifier pred=kclassifier.predict(x test)
kclassifier_acc=accuracy_score(kclassifier_pred,y_test)
print('Test accuracy:{:.2f}%'.format(kclassifier acc*100))
Test accuracy:87.71%
cm = confusion_matrix(y_test,kclassifier_pred)
disp= ConfusionMatrixDisplay(confusion matrix=cm)
disp.plot()
print('True Negative: ',cm[0][0])
print('False Negative: ',cm[1][0])
print('True Positive: ',cm[1][1])
print('False Positive: ',cm[0][1])
True Negative:
                 406
False Negative: 35
True Positive:
                 15
```


