

Adam Baniuszewicz

nr albumu: 33816 kierunek studiów: Teleinformatyka forma studiów: studia stacjonarne specjalność: Sieci teleinformatyczne i systemy mobilne

ALGORYTMY POLECEŃ MENTALNYCH W INTERFEJSACH MÓZG-KOMPUTER

ALGORITHMS OF MENTAL COMMANDS IN BRAIN-COMPUTER INTERFACES

Praca dyplomowa magisterska napisana pod kierunkiem:

dr. inż. Roberta Krupińskiego

Katedra Przetwarzania Sygnałów i Inżynierii Multimedialnej

Data wydania tematu pracy: 01.11.2018 r.

Data złożenia pracy: TODO r.

OŚWIADCZENIE AUTORA PRACY DYPLOMOWEJ

Oświadczam, że praca magisterska pn.

"Algorytmy poleceń mentalnych w interfejsach mózg-komputer" napisana pod kierunkiem:

dr. inż. Roberta Krupińskiego

jest w całości moim samodzielnym autorskim opracowaniem sporządzonym przy wykorzystaniu wykazanej w pracy literatury przedmiotu i materiałów źródłowych.

Złożona w dziekanacie Wydziału Elektrycznego treść mojej pracy dyplomowej w formie elektronicznej jest zgodna z treścią w formie pisemnej.

Oświadczam ponadto, że złożona w dziekanacie praca dyplomowa ani jej fragmenty nie były wcześniej przedmiotem procedur procesu dyplomowania związanych z uzyskaniem tytułu zawodowego w uczelniach wyższych.

podpis dyplomanta

Szczecin, dn. TODO r.

Streszczenie pracy

TODO

Słowa kluczowe

BCI, Elektroencefalografia

Abstract

TODO

Keywords

BCI, Electroencephalography

Spis treści

W	ykaz v	vażniejs	szych oznaczeń i skrótów	6
W	prowa	dzenie		. 7
1.			viązań BCI	
	1.1.	-	je interfejsów	
			Inwazyjne	
			Nieinwazyjne	
	1.2.	Rodzaj	je rejestrowanych sygnałów	
		1.2.1.	EEG	. 9
		1.2.2.	EMG	. 9
		1.2.3.	ECG	. 9
		1.2.4.	EOG	. 9
	1.3.	Charak	kterystyka wybranych urządzeń komercyjnych	. 9
		1.3.1.	Emotiv Insight	. 9
		1.3.2.	Emotiv EPOC+	. 12
		1.3.3.	Muse 2	. 12
			MindWave Mobile 2	
		1.3.5.	OpenBCI Ultracortex Mark IV	. 12
2.	Prze	gląd do:	stępnych rozwiązań	. 15
3.	Anali	iza istni	iejących algorytmów ekstrakcji cech	. 17
4.	Proje	kt syst	emu	. 19
5.	Bada	ınia opr	racowanego systemu	. 21
Za	kończ	zenie .		. 22
Bi	bliogr	afia		. 23
Sp	is tab	el		. 24
Sp	is rys	unków		. 25
Sn	ie kor	lów źró	dłowych	26

Wykaz ważniejszych oznaczeń i skrótów

BCI Brain-computer interface — Interfejs mózg-komputer

ECG ElektrokardiografiaEEG Elektroencefalografia

EMG ElektromiografiaEOG Elektrookulografia

Wprowadzenie

TODO

Cel pracy

TODO

Zakres pracy

TODO

Analiza rozwiązań BCI

1.1. Rodzaje interfejsów

- 1.1.1. Inwazyjne
- 1.1.2. Nieinwazyjne

1.2. Rodzaje rejestrowanych sygnałów

- 1.2.1. EEG
- 1.2.2. EMG
- 1.2.3. ECG
- 1.2.4. EOG

1.3. Charakterystyka wybranych urządzeń komercyjnych

1.3.1. Emotiv Insight

Insight (patrz rysunek 1.1 na następnej stronie) jest produktem wprowadzonym na rynek w roku 2015 przez firmę Emotiv przy wsparciu crowdfundingu na portalu kickstarter. Jest produktem do użytku codziennego, głównie za sprawą minimalistycznego designu oraz braku konieczności stosowania żelów przewodzących, przeznaczonym do mniej precyzyjnych zastosowań. Jest wyposażony w pięć czujników właściwych oraz dwa referencyjne. Lokalizacja czujników została przedstawiona na rysunku 1.2 na stronie 11. Parametry urządzenia zostały zestawione w tabeli 1.1 na stronie 12.

Rysunek 1.1. Hełm Emotiv Insight

Źródło: www.emotiv.com

Firma Emotiv dostarcza do swoich rozwiązań API¹ o nazwie Cortex. Stanowi on podstawę do budowania aplikacji wykorzystujących pobrane z hełmów strumienie danych dzięki wykorzystaniu JSON oraz WebSocket[1]. Cortex ułatwia tworzenie gier, aplikacji oraz rejestrowania danych do późniejszego ich wykorzystania do badań.

Cortex jest wrapperem SDK² firmy EMOTIV. Zapewnia on, w zależności od rodzaju zakupionej licencji, dostęp do różnych strumieni danych z hełmów. Jest kompatybilny z systemami Mac OS oraz Windows. Umożliwia programowanie w językach Java, C#, C++, Python, Ruby, JavaScript (Node.js) oraz PHP.

Licencja Cortex jest dostępna w trzech planach:

Darmowa

- · Mental Commands API,
- Performance Metrics API (do 0,1 Hz),
- · Frequency Bands API,
- · Facial Expressions API,
- Motion data API,
- nielimitowana ilość sesji na 3 urządzeniach.

¹API (ang. application programming interface) – Interfejs programistyczny aplikacji.

²SDK (*ang.* software development kit) – Zestaw narzędzi dla programistów niezbędny w tworzeniu aplikacji korzystających z danej biblioteki.

Rysunek 1.2. Rozmieszczenie sensorów w hełmie Emotiv Insight Źródło: www.emotiv.com

Niekomercyjna pro - \$55-99/miesiąc

- · Wszystkie API z licencji darmowej,
- · Raw EEG API,
- · oprogramowanie EmotivPRO,
- nielimitowana ilość sesji na 3 urządzeniach.

Komercyjna

- · Performance Metrics API o wysokiej rozdzielczości,
- · konfigurowanie API pod swoje potrzeby,
- tworzenie komercyjnych rozwiązań.

Oprogramowanie EmotivPRO, dostępne w licencjach niekomercyjnej pro oraz komercyjnej, stanowi wsparcie dla badań wykorzystujących EEG. Pozwala ono na akwizycję oraz prezentację strumieni danych w czasie zbliżonym do rzeczywistego, zapisywanie sesji w chmurze oraz szybką analizę wbudowanym algorytmem FFT³, bez konieczności eksportu danych.

Tabela 1.1. Parametry Emotiv Insight

Źródło: Na podstawie [2]

llość kanałów	5 (+2 referencyjne)
Umiejscowienie elektrod	AF3, AF4, T7, T8, Pz
Czujniki referencyjne	DMS/DRL
Rozdzielczość	14 bitów na kanał
Rozdzielczość LSB	0,51 μV @ 14 bit
Rodzaj czujników	Semi-dry polymer
Detekcja ruchu	9-osiowy czujnik (3x żyroskop, 3x akcelerometr, 3x magnetometr)
Łączność	Bezprzewodowa 2,4GHz/Bluetooth 4.0
Zasilanie	Li-Pol 480 mAh, do 8 godzin pracy

1.3.2. Emotiv EPOC+

1.3.3. Muse 2

1.3.4. MindWave Mobile 2

1.3.5. OpenBCI Ultracortex Mark IV

³FFT (*ang.* Fast Fourier Transform) – Szybka transformacja Fouriera.

Rysunek 1.3. Hełm Emotiv EPOC+

Źródło: www.emotiv.com

Rysunek 1.4. Rozmieszczenie sensorów w hełmie Emotiv EPOC+

Źródło: www.emotiv.com

Przegląd dostępnych rozwiązań

Analiza istniejących algorytmów ekstrakcji cech

Projekt systemu

Badania opracowanego systemu

Zakończenie

TODO

Bibliografia

- [1] EMOTIV: Develop with emotiv, URL: https://www.emotiv.com/developer/(dostęp: 08.04.2019).
- [2] EMOTIV: Headsets comparison chart, URL: https://www.emotiv.com/comparison/(dostęp: 04.04.2019).

Spis tabel

1.1.	Parametry	/ Emotiv Insigh	F		_									_	_	_	_	_	_			 •	12
	i didilicti j	LINDUV INSIGN		•	•	•			•	•	•	•	•			•					•	 -	

Spis rysunków

1.1.	Hełm Emotiv Insight	10
1.2.	Rozmieszczenie sensorów w hełmie Emotiv Insight	11
1.3.	Hełm Emotiv EPOC+	13
1.4.	Rozmieszczenie sensorów w hełmie Emotiv EPOC+	13

Spis kodów źródłowych