$12n_{0561} \ (K12n_{0561})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 19514643174787u^{34} - 4572969237385u^{33} + \dots + 35208391096192b - 115134997157437, \\ &- 44181034772241u^{34} - 93208096612611u^{33} + \dots + 176041955480960a - 34686663928811, \\ &u^{35} + u^{34} + \dots - 4u - 5 \rangle \\ I_2^u &= \langle -u^2a - u^2 + b + a, \ u^3a - 2u^2a + u^3 + a^2 - au + 2a - 1, \ u^4 - u^2 + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 43 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle 1.95 \times 10^{13} u^{34} - 4.57 \times 10^{12} u^{33} + \dots + 3.52 \times 10^{13} b - 1.15 \times 10^{14}, \ -4.42 \times 10^{13} u^{34} - 9.32 \times 10^{13} u^{33} + \dots + 1.76 \times 10^{14} a - 3.47 \times 10^{13}, \ u^{35} + u^{34} + \dots - 4u - 5 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.250969u^{34} + 0.529465u^{33} + \dots + 2.80218u + 0.197036 \\ -0.554261u^{34} + 0.129883u^{33} + \dots + 0.868164u + 3.27010 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.791772u^{34} + 0.423142u^{33} + \dots + 3.34243u - 2.71039 \\ -0.523385u^{34} + 0.0869282u^{33} + \dots + 0.937584u + 2.29735 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.805230u^{34} + 0.399582u^{33} + \dots + 1.93402u - 3.07306 \\ -0.554261u^{34} + 0.129883u^{33} + \dots + 0.868164u + 3.27010 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.472936u^{34} + 0.0799123u^{33} + \dots + 0.438637u + 2.87741 \\ -0.556115u^{34} - 0.173472u^{33} + \dots - 2.34087u + 2.38011 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.816166u^{34} + 0.145199u^{33} + \dots + 1.79451u + 3.42292 \\ -1.06658u^{34} - 0.102045u^{33} + \dots + 3.07330u + 6.87995 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.601350u^{34} + 0.306853u^{33} + \dots + 2.54938u - 1.70567 \\ -0.455033u^{34} + 0.135445u^{33} + \dots + 0.580899u + 2.30784 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.528222u^{34} + 0.0504600u^{33} + \dots - 1.61488u + 4.49023 \\ 0.662513u^{34} + 0.0170577u^{33} + \dots + 1.34187u - 2.86220 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{35} + 21u^{34} + \dots - 74u + 25$
c_2, c_6	$u^{35} - u^{34} + \dots - 4u + 5$
<i>c</i> 3	$u^{35} - 5u^{34} + \dots + 296u + 28$
c_4, c_9	$u^{35} - u^{34} + \dots - 16u + 4$
c_5, c_{10}, c_{11}	$u^{35} + u^{34} + \dots - 6u + 1$
	$u^{35} - 3u^{34} + \dots + 6720u - 1472$
c ₈	$u^{35} - 3u^{34} + \dots + 6u + 5$
c_{12}	$u^{35} + 3u^{34} + \dots + 12u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{35} - 9y^{34} + \dots + 39626y - 625$
c_2, c_6	$y^{35} - 21y^{34} + \dots - 74y - 25$
<i>c</i> ₃	$y^{35} - 57y^{34} + \dots - 32784y - 784$
c_4, c_9	$y^{35} + 43y^{34} + \dots + 184y - 16$
c_5, c_{10}, c_{11}	$y^{35} + 39y^{34} + \dots + 34y - 1$
	$y^{35} - 31y^{34} + \dots + 22678016y - 2166784$
c ₈	$y^{35} + 39y^{34} + \dots + 126y - 25$
c_{12}	$y^{35} + 51y^{34} + \dots + 154y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.203911 + 0.973360I		
a = -0.519106 + 0.963683I	-1.43478 - 6.20512I	-1.86669 + 2.78198I
b = -0.26045 - 1.53546I		
u = -0.203911 - 0.973360I		
a = -0.519106 - 0.963683I	-1.43478 + 6.20512I	-1.86669 - 2.78198I
b = -0.26045 + 1.53546I		
u = 0.066320 + 0.984954I		
a = -0.448541 - 0.317717I	-8.19601 + 2.49744I	-5.06408 - 2.60195I
b = -0.750046 + 0.533829I		
u = 0.066320 - 0.984954I		
a = -0.448541 + 0.317717I	-8.19601 - 2.49744I	-5.06408 + 2.60195I
b = -0.750046 - 0.533829I		
u = 0.801249 + 0.559810I		
a = 1.36028 - 1.03030I	8.83899 - 2.24678I	4.64462 + 3.81835I
b = 0.01451 + 1.59501I		
u = 0.801249 - 0.559810I		
a = 1.36028 + 1.03030I	8.83899 + 2.24678I	4.64462 - 3.81835I
b = 0.01451 - 1.59501I		
u = 1.014440 + 0.137733I		
a = -1.44237 + 0.41096I	-2.29834 - 0.76813I	-7.21756 - 0.78239I
b = -0.391237 + 0.679863I		
u = 1.014440 - 0.137733I		
a = -1.44237 - 0.41096I	-2.29834 + 0.76813I	-7.21756 + 0.78239I
b = -0.391237 - 0.679863I		
u = 0.910408 + 0.541398I		
a = -0.378721 + 0.991836I	-1.75949 - 2.05479I	-11.09061 + 3.13209I
b = -0.212665 - 0.039123I		
u = 0.910408 - 0.541398I		
a = -0.378721 - 0.991836I	-1.75949 + 2.05479I	-11.09061 - 3.13209I
b = -0.212665 + 0.039123I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.922478 + 0.127300I		
a = -1.96495 + 0.18361I	5.90539 + 0.64255I	-5.75392 + 0.64646I
b = -0.05491 + 1.64507I		
u = -0.922478 - 0.127300I		
a = -1.96495 - 0.18361I	5.90539 - 0.64255I	-5.75392 - 0.64646I
b = -0.05491 - 1.64507I		
u = -0.812370 + 0.424392I		
a = 0.773162 + 0.362489I	1.05382 + 1.86722I	3.18128 - 4.59075I
b = 0.109550 - 0.685718I		
u = -0.812370 - 0.424392I		
a = 0.773162 - 0.362489I	1.05382 - 1.86722I	3.18128 + 4.59075I
b = 0.109550 + 0.685718I		
u = 0.912261		
a = 1.05610	-1.34236	-8.12570
b = 0.463900		
u = -0.842169 + 0.777146I		
a = -0.89892 - 1.28817I	3.07114 + 2.89052I	-2.21100 - 2.95071I
b = -0.050273 + 1.397230I		
u = -0.842169 - 0.777146I		
a = -0.89892 + 1.28817I	3.07114 - 2.89052I	-2.21100 + 2.95071I
b = -0.050273 - 1.397230I		
u = -1.137850 + 0.335834I		
a = -1.53286 + 0.05803I	-3.27817 + 4.26600I	-8.05552 - 6.74990I
b = -0.587577 + 0.359881I		
u = -1.137850 - 0.335834I		
a = -1.53286 - 0.05803I	-3.27817 - 4.26600I	-8.05552 + 6.74990I
b = -0.587577 - 0.359881I		
u = -1.152990 + 0.388555I		
a = 0.878906 - 1.034180I	2.24498 + 1.33286I	-3.24945 - 0.69819I
b = 0.002872 - 1.337860I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.152990 - 0.388555I		
a = 0.878906 + 1.034180I	2.24498 - 1.33286I	-3.24945 + 0.69819I
b = 0.002872 + 1.337860I		
u = 0.098226 + 0.753815I		
a = 0.468379 + 0.420561I	5.88674 + 2.52249I	1.23506 - 2.87985I
b = 0.09057 - 1.46639I		
u = 0.098226 - 0.753815I		
a = 0.468379 - 0.420561I	5.88674 - 2.52249I	1.23506 + 2.87985I
b = 0.09057 + 1.46639I		
u = 1.194500 + 0.470305I		
a = -1.80401 - 0.60694I	2.66330 - 7.05772I	-2.51905 + 5.88692I
b = -0.19201 - 1.46324I		
u = 1.194500 - 0.470305I		
a = -1.80401 + 0.60694I	2.66330 + 7.05772I	-2.51905 - 5.88692I
b = -0.19201 + 1.46324I		
u = 1.330550 + 0.340353I		
a = 0.175592 - 0.683458I	-6.45071 + 1.73894I	-5.86337 - 0.49500I
b = 0.33732 - 1.47223I		
u = 1.330550 - 0.340353I		
a = 0.175592 + 0.683458I	-6.45071 - 1.73894I	-5.86337 + 0.49500I
b = 0.33732 + 1.47223I		
u = -1.252450 + 0.585255I		
a = 1.89880 + 0.08113I	-4.64525 + 11.83980I	-4.29756 - 5.89282I
b = 0.27080 - 1.59119I		
u = -1.252450 - 0.585255I		
a = 1.89880 - 0.08113I	-4.64525 - 11.83980I	-4.29756 + 5.89282I
b = 0.27080 + 1.59119I		
u = -1.326130 + 0.448294I		
a = 0.903307 + 0.583518I	-12.58030 + 2.55008I	-8.43526 - 0.60252I
b = 0.842224 + 0.446428I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.326130 - 0.448294I		
a = 0.903307 - 0.583518I	-12.58030 - 2.55008I	-8.43526 + 0.60252I
b = 0.842224 - 0.446428I		
u = 1.297550 + 0.525631I		
a = 1.45281 - 0.36988I	-11.9977 - 7.9047I	-7.36295 + 5.50788I
b = 0.780540 + 0.640043I		
u = 1.297550 - 0.525631I		
a = 1.45281 + 0.36988I	-11.9977 + 7.9047I	-7.36295 - 5.50788I
b = 0.780540 - 0.640043I		
u = -0.019019 + 0.438455I		
a = 0.850181 + 0.183537I	-0.204022 - 1.109310I	-3.01108 + 6.25704I
b = 0.318829 + 0.391878I		
u = -0.019019 - 0.438455I		
a = 0.850181 - 0.183537I	-0.204022 + 1.109310I	-3.01108 - 6.25704I
b = 0.318829 - 0.391878I		

II. $I_2^u = \langle -u^2a - u^2 + b + a, \ u^3a - 2u^2a + u^3 + a^2 - au + 2a - 1, \ u^4 - u^2 + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ u^{2}a + u^{2} - a \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3}a - u^{2}a + u^{3} - au + 2a \\ -u^{3}a + u^{2}a + u^{2} - a - u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2}a - u^{2} + 2a \\ u^{2}a + u^{2} - a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3}a + u^{2}a + u^{3} - au - u^{2} - 2u + 1 \\ -u^{3} + au + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{3}a + 2u^{2}a + u^{3} - 2au - u^{2} - 2u + 2 \\ -2u^{3} + 2au + u^{2} - a + 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + a + 1 \\ u^{2}a + 2u^{2} - a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3}a + u^{3} + au + u^{2} - a - u - 1 \\ -u^{2}a - u^{3} - u^{2} + a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - u + 1)^4$
c_2, c_6, c_8	$(u^4 - u^2 + 1)^2$
c_3	$u^8 + 4u^7 + 16u^6 + 34u^5 + 57u^4 + 62u^3 + 46u^2 + 20u + 4$
c_4, c_9	$(u^2+1)^4$
c_5, c_{10}, c_{11}	$(u^4 + 3u^2 + 1)^2$
c_7	$u^8 - 8u^7 + 25u^6 - 38u^5 + 33u^4 - 28u^3 + 28u^2 - 16u + 4$
c_{12}	$(u^2 + u - 1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^2 + y + 1)^4$
c_2, c_6, c_8	$(y^2 - y + 1)^4$
c_3	$y^{8} + 16y^{7} + 98y^{6} + 264y^{5} + 353y^{4} + 168y^{3} + 92y^{2} - 32y + 16$
c_4, c_9	$(y+1)^8$
c_5, c_{10}, c_{11}	$(y^2 + 3y + 1)^4$
	$y^8 - 14y^7 + 83y^6 - 186y^5 + 113y^4 + 48y^3 + 152y^2 - 32y + 16$
c_{12}	$(y^2 - 3y + 1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = 0.901259 + 0.057008I	7.23771 - 2.02988I	-2.00000 + 3.46410I
b = 1.61803I		
u = 0.866025 + 0.500000I		
a = -1.03523 + 1.17504I	-0.65797 - 2.02988I	-2.00000 + 3.46410I
b = -0.618034I		
u = 0.866025 - 0.500000I		
a = 0.901259 - 0.057008I	7.23771 + 2.02988I	-2.00000 - 3.46410I
b = -1.61803I		
u = 0.866025 - 0.500000I		
a = -1.03523 - 1.17504I	-0.65797 + 2.02988I	-2.00000 - 3.46410I
b = 0.618034I		
u = -0.866025 + 0.500000I		
a = 0.035233 - 0.557008I	-0.65797 + 2.02988I	-2.00000 - 3.46410I
b = -0.618034I		
u = -0.866025 + 0.500000I		
a = -1.90126 - 1.67504I	7.23771 + 2.02988I	-2.00000 - 3.46410I
b = 1.61803I		
u = -0.866025 - 0.500000I		
a = 0.035233 + 0.557008I	-0.65797 - 2.02988I	-2.00000 + 3.46410I
b = 0.618034I		
u = -0.866025 - 0.500000I		
a = -1.90126 + 1.67504I	7.23771 - 2.02988I	-2.00000 + 3.46410I
b = -1.61803I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^4)(u^{35} + 21u^{34} + \dots - 74u + 25)$
c_2, c_6	$((u^4 - u^2 + 1)^2)(u^{35} - u^{34} + \dots - 4u + 5)$
<i>c</i> ₃	$(u^8 + 4u^7 + 16u^6 + 34u^5 + 57u^4 + 62u^3 + 46u^2 + 20u + 4)$ $\cdot (u^{35} - 5u^{34} + \dots + 296u + 28)$
c_4, c_9	$((u^2+1)^4)(u^{35}-u^{34}+\cdots-16u+4)$
c_5, c_{10}, c_{11}	$((u^4 + 3u^2 + 1)^2)(u^{35} + u^{34} + \dots - 6u + 1)$
C ₇	$(u^8 - 8u^7 + 25u^6 - 38u^5 + 33u^4 - 28u^3 + 28u^2 - 16u + 4)$ $\cdot (u^{35} - 3u^{34} + \dots + 6720u - 1472)$
c_8	$((u^4 - u^2 + 1)^2)(u^{35} - 3u^{34} + \dots + 6u + 5)$
c_{12}	$((u^2 + u - 1)^4)(u^{35} + 3u^{34} + \dots + 12u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^4)(y^{35} - 9y^{34} + \dots + 39626y - 625)$
c_{2}, c_{6}	$((y^2 - y + 1)^4)(y^{35} - 21y^{34} + \dots - 74y - 25)$
c_3	$(y^8 + 16y^7 + 98y^6 + 264y^5 + 353y^4 + 168y^3 + 92y^2 - 32y + 16)$ $\cdot (y^{35} - 57y^{34} + \dots - 32784y - 784)$
c_4, c_9	$((y+1)^8)(y^{35} + 43y^{34} + \dots + 184y - 16)$
c_5, c_{10}, c_{11}	$((y^2 + 3y + 1)^4)(y^{35} + 39y^{34} + \dots + 34y - 1)$
<i>c</i> ₇	$(y^8 - 14y^7 + 83y^6 - 186y^5 + 113y^4 + 48y^3 + 152y^2 - 32y + 16)$ $\cdot (y^{35} - 31y^{34} + \dots + 22678016y - 2166784)$
c ₈	$((y^2 - y + 1)^4)(y^{35} + 39y^{34} + \dots + 126y - 25)$
c_{12}	$((y^2 - 3y + 1)^4)(y^{35} + 51y^{34} + \dots + 154y - 1)$