Assignment 2

Step 1) Data Selection

• SQL queries:

CREATE TABLE TX A2 INITIAL AS

SELECT MESHHEADING, COUNT(DISTINCT TERM) AS NUMBER_OF_TERMS, COUNT(DISTINCT DMUSER.ML330_SODA_MSH.PMID) AS NUMBER_OF_ABSTRACTS

FROM DMUSER.ML330_SODA_MSH, DMUSER.ML330_SODA_NWD

WHERE DMUSER.ML330_SODA_MSH.PMID = DMUSER.ML330_SODA_NWD.PMID GROUP BY MESHHEADING;

• Result:

		NUMBER_OF_TERMS	NUMBER_OF_ABSTRACTS
1	Heart Diseases	67713	25000
2	Lung Neoplasms	89205	25000

For category 'Heart Diseases', there are 67713 distinct terms and 25000 abstracts.

For category 'Lung Neoplasms', there are 89205 distinct terms and 25000 abstracts.

There are some overlapping terms between the two categories.

Step 2) Preprocessing

• How many words are there with no vocabulary changes or pruning?

SELECT COUNT(DISTINCT TERM)

FROM DMUSER.ML330_SODA_NWD;

Before any preprocessing, the total number of distinct terms of both categories is 126848.

• How many lower case words are there?

SELECT COUNT(DISTINCT TERM)

FROM DMUSER.ML330_SODA_NWD

WHERE TERM = LOWER(TERM);

There are 83383 terms in lowercase.

SELECT COUNT(DISTINCT LOWER(TERM))

FROM DMUSER.ML330_SODA_NWD;

The total number of distinct terms when converting to lowercase is 114881.

• How many words are there after removing stop words?

I imported stop word list from http://www.lextek.com/manuals/onix/stopwords2.html, and created a table named TX_A2_STOPWORDS. The list contains 571 words.

SELECT COUNT(DISTINCT LOWER(TERM))

FROM DMUSER.ML330 SODA NWD, TX A2 STOPWORDS

WHERE LOWER(TERM) = TX_A2_STOPWORDS.STOPWORD;

There are 490 words of the terms can be regarded as stop words. So after removing stop words, there are 114881-490=114391 distinct words in lower case.

• Select distinct terms in lowercase without stopwords

CREATE TABLE TX_A2_DISTINCT_LOWER_NOSTOP AS

SELECT DISTINCT LOWER(TERM) AS DISTINCTTERM

FROM DMUSER.ML330_SODA_NWD;

DELETE FROM TX_A2_DISTINCT_LOWER_NOSTOP

WHERE DISTINCTTERM IN (SELECT DISTINCTTERM

FROM TX_A2_DISTINCT_LOWER_NOSTOP, TX_A2_STOPWORDS

WHERE DISTINCTTERM = STOPWORD);

SELECT COUNT(*)

FROM TX_A2_DISTINCT_LOWER_NOSTOP;

- Identify and remove terms that appear in few abstracts or in most abstracts
- (1) Remove terms that appear less than 11 times.

CREATE TABLE TX_A2_DF AS

SELECT DISTINCTTERM, COUNT(DISTINCT DMUSER.ML330_SODA_NWD.PMID) AS ABSTRACTNUMBER

FROM TX_A2_DISTINCT_LOWER_NOSTOP, DMUSER.ML330_SODA_NWD

WHERE TX_A2_DISTINCT_LOWER_NOSTOP.DISTINCTTERM LOWER(DMUSER.ML330_SODA_NWD.TERM)

GROUP BY DISTINCTTERM

HAVING COUNT(DISTINCT DMUSER.ML330_SODA_NWD.PMID)>10

ORDER BY COUNT(DISTINCT DMUSER.ML330_SODA_NWD.PMID) DESC;

(2) Remove terms that are integers less than 50 and have appeared many times in different abstracts.

Remove some special meaningless words such as "'s".

			-15	2	5657
			16	carcinoma	5331
62 respon	nse	3127	17	significant	5270
-63 's		3125	18	cases	5228
64 level	3	3081	-19	1	5222

(3) The word that appears most among all the abstracts is 'lung'. It appears 17566 times in different abstracts. However, there are 50,000 abstracts in all. So there is no need to remove words which appear so many times.

1	lung	17566
2	patients	16473
3	cancer	13690
4	results	11788
5	disease	10648

SELECT COUNT(*)

FROM TX_A2_DF;

The number of terms after step 2 is 14531.

Step 3) Transformations

3.1) Term Frequency (tf) * Inverse Document Frequency (idf)

• SQL queries for computing tf*idf:

CREATE TABLE TX_A2_TF AS

SELECT DISTINCTTERM, PMID, COUNT(LOWER(DMUSER.ML330_SODA_NWD.TERM)) AS TERMNUMBER

FROM DMUSER.ML330_SODA_NWD, TX_A2_DF

WHERE LOWER(DMUSER.ML330_SODA_NWD.TERM) = $TX_A2_DF.DISTINCTTERM$ GROUP BY DISTINCTTERM, PMID ORDER BY COUNT(LOWER(DMUSER.ML330_SODA_NWD.TERM)) DESC;

SELECT COUNT(DISTINCT DISTINCTTERM)

FROM TX_A2_TF;

CREATE TABLE TX_A2_TFIDF AS

SELECT TX_A2_TF.DISTINCTTERM, PMID, TERMNUMBER * (LOG(2,50000)-LOG(2,ABSTRACTNUMBER)+1) AS TFIDF

FROM TX_A2_DF, TX_A2_TF

WHERE TX_A2_TF.DISTINCTTERM = TX_A2_DF.DISTINCTTERM

ORDER BY TERMNUMBER * (LOG(2,50000)-LOG(2,ABSTRACTNUMBER)+1) DESC;

SELECT COUNT(*)

FROM TX_A2_TFIDF;

CREATE TABLE TX_A2_TFIDF_TOP AS

SELECT DISTINCT DISTINCTTERM, MAX(TFIDF) AS MAXTFIDF

FROM TX_A2_TFIDF

GROUP BY DISTINCTTERM

ORDER BY MAX(TFIDF) DESC;

• Select top 100/200/500 terms with highest values of tf*idf.

SELECT DISTINCTTERM

FROM TX A2 TFIDF TOP

WHERE ROWNUM<=100; or 200 or 500

3.2) Information Gain

• Probability of Pr(t)

CREATE TABLE TX A2 DF PR1 AS

SELECT DISTINCTTERM, ABSTRACTNUMBER/50000 AS PR1

FROM TX_A2_DF;

Probability of Pr(Lung Neoplasms|t)

CREATE TABLE TX_A2_DF_LUNGNUMBER AS

SELECT TX_A2_DF.DISTINCTTERM, COUNT(DISTINCT DMUSER.ML330_SODA_NWD.PMID) AS LUNGNUMBER

FROM TX A2 DF, DMUSER.ML330 SODA MSH, DMUSER.ML330 SODA NWD

WHERE $TX_A2_DF.DISTINCTTERM = LOWER(DMUSER.ML330_SODA_NWD.TERM)$ AND DMUSER.ML330_SODA_NWD.PMID = DMUSER.ML330_SODA_MSH.PMID

AND DMUSER.ML330_SODA_MSH.MESHHEADING = 'Lung Neoplasms'

GROUP BY TX A2 DF.DISTINCTTERM

ORDER BY LUNGNUMBER DESC;

CREATE TABLE TX_A2_DF_NUM_PR2 AS

SELECT TX_A2_DF.DISTINCTTERM, TX_A2_DF_LUNGNUMBER.LUNGNUMBER AS LUNGNUMBER

FROM TX_A2_DF_LUNGNUMBER

RIGHT OUTER JOIN TX_A2_DF

ON TX_A2_DF.DISTINCTTERM = TX_A2_DF_LUNGNUMBER.DISTINCTTERM;

* Right outer join is critical with null values for future computation of probability

CREATE TABLE TX_A2_DF_PR2 AS

SELECT TX A2 DF.DISTINCTTERM, LUNGNUMBER/ABSTRACTNUMBER AS PR2

FROM TX_A2_DF, TX_A2_DF_NUM_PR2

WHERE TX_A2_DF.DISTINCTTERM = TX_A2_DF_NUM_PR2.DISTINCTTERM;

• Probability of Pr(Heart Diseases|t)

CREATE TABLE TX_A2_DF_HEARTNUMBER AS

SELECT TX_A2_DF.DISTINCTTERM, COUNT(DISTINCT DMUSER.ML330_SODA_NWD.PMID) AS HEARTNUMBER

FROM TX_A2_DF, DMUSER.ML330_SODA_MSH, DMUSER.ML330_SODA_NWD

WHERE TX_A2_DF.DISTINCTTERM = LOWER(DMUSER.ML330_SODA_NWD.TERM) AND DMUSER.ML330_SODA_NWD.PMID = DMUSER.ML330_SODA_MSH.PMID

AND DMUSER.ML330_SODA_MSH.MESHHEADING = 'Heart Diseases'

GROUP BY TX A2 DF.DISTINCTTERM

ORDER BY HEARTNUMBER DESC;

CREATE TABLE TX A2 DF NUM PR3 AS

SELECT TX_A2_DF.DISTINCTTERM, TX_A2_DF_HEARTNUMBER.HEARTNUMBER AS HEARTNUMBER

FROM TX A2 DF HEARTNUMBER

RIGHT OUTER JOIN TX A2 DF

ON TX A2 DF.DISTINCTTERM = TX A2 DF HEARTNUMBER.DISTINCTTERM;

CREATE TABLE TX_A2_DF_PR3 AS

SELECT TX A2 DF.DISTINCTTERM, HEARTNUMBER/ABSTRACTNUMBER AS PR3

FROM TX_A2_DF, TX_A2_DF_NUM_PR3

WHERE TX_A2_DF.DISTINCTTERM = TX_A2_DF_NUM_PR3.DISTINCTTERM;

• Probability of Pr(not t)

CREATE TABLE TX_A2_DF_PR4 AS

SELECT DISTINCTTERM, 1 - ABSTRACTNUMBER/50000 AS PR4

FROM TX_A2_DF;

• Probability of Pr(Lung Neoplasma|not t)

CREATE TABLE TX_A2_DF_PR5 AS

SELECT TX_A2_DF.DISTINCTTERM, (25000-NVL(LUNGNUMBER,0))/(50000-ABSTRACTNUMBER) AS PR5

FROM TX_A2_DF, TX_A2_DF_NUM_PR2

WHERE TX_A2_DF.DISTINCTTERM = TX_A2_DF_NUM_PR2.DISTINCTTERM;

• Probability of Pr(Heart Diseases|not t)

CREATE TABLE TX_A2_DF_PR6 AS

SELECT TX_A2_DF.DISTINCTTERM, (25000-NVL(HEARTNUMBER,0))/(50000-ABSTRACTNUMBER) AS PR6

FROM TX_A2_DF, TX_A2_DF_NUM_PR3

WHERE TX_A2_DF.DISTINCTTERM = TX_A2_DF_NUM_PR3.DISTINCTTERM;

• Compute IG of each term

CREATE TABLE TX_A2_IG AS

SELECT TX_A2_DF_PR1.DISTINCTTERM, (PR1*(NVL(PR2,0)*LOG(2,NVL(PR2,1)) + NVL(PR3,0)*LOG(2,NVL(PR3,1))) + PR4*(PR5*LOG(2,PR5) + PR6*LOG(2,PR6))) AS IG

FROM TX_A2_DF_PR1, TX_A2_DF_PR2, TX_A2_DF_PR3, TX_A2_DF_PR4, TX_A2_DF_PR5, TX_A2_DF_PR6

WHERE $TX_A2_DF_PR1.DISTINCTTERM = TX_A2_DF_PR2.DISTINCTTERM$ AND $TX_A2_DF_PR2.DISTINCTTERM = TX_A2_DF_PR3.DISTINCTTERM$

AND $TX_A2_DF_PR3.DISTINCTTERM = TX_A2_DF_PR4.DISTINCTTERM$ AND $TX_A2_DF_PR4.DISTINCTTERM = TX_A2_DF_PR5.DISTINCTTERM$

AND TX_A2_DF_PR5.DISTINCTTERM = TX_A2_DF_PR6.DISTINCTTERM

ORDER BY IG DESC;

• Select top 100/200/500 terms with highest values of Information Gain.

SELECT DISTINCTTERM

FROM TX_A2_IG

WHERE ROWNUM<=100; or 200 or 500

3.3) Create tables for classification

Create 6 tables with 100, 200 and 500 terms for tf*idf and for information gain respectively.

• Table1: Top 100 terms for tf*idf

CREATE TABLE TX_A2_C1 AS

SELECT TX A2 FEATURES1.*, DMUSER.ML330 SODA MSH.MESHHEADING

FROM TX A2 FEATURES1

JOIN DMUSER.ML330_SODA_MSH

ON TX A2 FEATURES1.PMID = DMUSER.ML330 SODA MSH.PMID;

	⊕ PMID	∯ MG_M	♦ ANP	∜ TGF_BETA	∯ TOPOTECAN		∯ DОТ	∯ ANG
1	35194	0	0	0	0	0	0	0
2	36578	0	0	0	0	0	0	0
3	36744	0	0	0	0	0	0	0
4	37740	0	0	0	0	0	0	0
5	38426	0	0	0	0	0	0	0

• Table2: Top 200 terms for tf*idf

CREATE TABLE TX_A2_C2 AS

SELECT TX_A2_FEATURES2.*, DMUSER.ML330_SODA_MSH.MESHHEADING FROM TX_A2_FEATURES2

JOIN DMUSER.ML330_SODA_MSH

ON TX_A2_FEATURES2.PMID = DMUSER.ML330_SODA_MSH.PMID;

• Table3: Top 500 terms for tf*idf

CREATE TABLE TX A2 C3 AS

SELECT TX A2 FEATURES3.*, DMUSER.ML330 SODA MSH.MESHHEADING

FROM TX_A2_FEATURES3

JOIN DMUSER.ML330_SODA_MSH

ON TX_A2_FEATURES3.PMID = DMUSER.ML330_SODA_MSH.PMID;

• Table4: Top 100 terms for Information Gain

CREATE TABLE TX_A2_C4 AS

SELECT TX_A2_FEATURES4.*, DMUSER.ML330_SODA_MSH.MESHHEADING

FROM TX_A2_FEATURES4

JOIN DMUSER.ML330_SODA_MSH

ON TX_A2_FEATURES4.PMID = DMUSER.ML330_SODA_MSH.PMID;

	∲ PMID	∯ LUNG		♦ HEART		∜ CELL	∜ TUMOR
1	56439	0	1	0	0	0	3
2	56980	2	1	0	0	0	1
3	56986	0	0	0	0	0	10
4	56987	4	3	0	0	3	0
5	57472	0	0	0	0	0	0

• Table5: Top 200 terms for Information Gain

CREATE TABLE TX A2 C5 AS

SELECT TX A2 FEATURES5.*, DMUSER.ML330 SODA MSH.MESHHEADING

FROM TX_A2_FEATURES5

JOIN DMUSER.ML330_SODA_MSH

ON TX_A2_FEATURES5.PMID = DMUSER.ML330_SODA_MSH.PMID;

• Table6: Top 500 terms for Information Gain

CREATE TABLE TX_A2_C6 AS

SELECT TX_A2_FEATURES6.*, DMUSER.ML330_SODA_MSH.MESHHEADING

FROM TX_A2_FEATURES6

JOIN DMUSER.ML330_SODA_MSH

ON TX_A2_FEATURES6.PMID = DMUSER.ML330_SODA_MSH.PMID;

Step 4) Data Mining

Use the oracle data miner to create two classifiers (a decision tree and naïve bayes) for the 6 tables of feature sets. The screenshot below is an example.

Step 5) Interpretation

1. Table of top 100 terms for tf*idf

• Accuracy and confusion matrix of decision trees

Average Accuracy: 53.4149
Overall Accuracy: 53.4149
Total Cost: 18,580

	Heart Diseases	Lung Neoplasms	Total	Correct %	Cost
Heart Diseases	9,876	95	9,971	99.0472	190
Lung Neoplasms	9,195	776	9,971	7.7826	18,390
Total	19,071	871	19,942		
Correct %	51.7854	89.093			
Cost	18,390	190			

• Accuracy and confusion matrix of naïve bayes

Average Accuracy: 54.3927
Overall Accuracy: 54.3927

	Heart Diseases	Lung Neoplasms	Total	Correct %	Cost
Heart Diseases	9,867	104	9,971	98.957	
Lung Neoplasms	8,991	980	9,971	9.8285	
Total	18,858	1,084	19,942		
Correct %	52.3226	90.4059			
Cost					

2. Table of top 200 terms for tf*idf

• Accuracy and confusion matrix of decision trees

Average Accuracy: 53.9214
Overall Accuracy: 53.9214

Overall Accuracy: 53.9214 Total Cost: 18,378

	Heart Diseases	Lung Neoplasms	Total	Correct %	Cost
Heart Diseases	9,917	54	9,971	99.4584	108
Lung Neoplasms	9,135	836	9,971	8.3843	18,270
Total	19,052	890	19,942		
Correct %	52.0523	93.9326			
Cost	18,270	108			

• Accuracy and confusion matrix of naïve bayes

Heart Diseases Lung Neoplasms Total Correct % Heart Diseases 9,753 218 9,971 97.8137 Lung Neoplasms 8,258 1,713 9,971 17.1798 Total 18,011 1,931 19,942 Correct % 54.1502 88.7105

Average Accuracy: 57.4967

Overall Accuracy: 57.4967

3. Table of top 500 terms for tf*idf

• Accuracy and confusion matrix of decision trees

Heart Diseases Lung Neoplasms Total Correct % Cost Heart Diseases 1,795 8,176 9,971 18.0022 16,352 Lung Neoplasms 52 9,919 9,971 99.4785 104 Average Accuracy: 58.7403 Total 19,942 1,847 18,095 Overall Accuracy: 58.7403 Correct % 97.1846 54.8162 Total Cost: 104 16,352 16,456 Cost

• Accuracy and confusion matrix of naïve bayes

		Heart Diseases	Lung Neoplasms	Total	Correct %	Cost
	Heart Diseases	9,666	305	9,971	96.9411	
	Lung Neoplasms	7,093	2,878	9,971	28.8637	
	Total	16,759	3,183	19,942		
Average Accuracy: 62.9024	Correct %	57.6765	90.4178			
Overall Accuracy: 62.9024	Cost					

4. Table of top 100 terms for Information Gain

• Accuracy and confusion matrix of decision trees

Heart Diseases Lung Neoplasms | Total | Correct % Cost 9,971 97.924 Heart Diseases 9,764 207 414 Lung Neoplasms 1,636 8,335 9,971 83.5924 3,272 Average Accuracy: 90.7582 Total 11,400 8,542 19,942 Overall Accuracy: 90.7582 85.6491 97.5767 Correct % 414 Total Cost: 3,686 Cost 3,272

• Accuracy and confusion matrix of naïve bayes

Heart Diseases Lung Neoplasms Correct % Total Cost Heart Diseases 9,837 134 9,971 98.6561 Lung Neoplasms 1,637 8,334 9,971 83.5824 Total 11,474 8,468 19,942 Correct % 85.733 98.4176 Cost

Average Accuracy: 91.1192 Overall Accuracy: 91.1192

5. Table of top 200 terms for Information Gain

• Accuracy and confusion matrix of decision trees

			Heart Diseases	Lung Neoplasms	Total	Correct %	Cost
		Heart Diseases	9,764	207	9,971	97.924	414
		Lung Neoplasms	1,636	8,335	9,971	83.5924	3,272
Average Accuracy:	90.7582	Total	11,400	8,542	19,942		
Overall Accuracy:	90.7582	Correct %	85.6491	97.5767			
Total Cost:	3,686	Cost	3,272	414			

Accuracy and confusion matrix of naïve bayes

		Heart Diseases	Lung Neoplasms	Total	Correct %	Cost
	Heart Diseases	9,829	142	9,971	98.5759	
	Lung Neoplasms	1,746	8,225	9,971	82.4892	
	Total	11,575	8,367	19,942		
Average Accuracy: 90.5325	Correct %	84.9158	98.3029			
Overall Accuracy: 90.5325	Cost					

6. Table of top 500 terms for Information Gain

• Accuracy and confusion matrix of decision trees

			Heart Diseases	Lung Neoplasms	Total	Correct %	Cost
		Heart Diseases	9,764	207	9,971	97.924	414
		Lung Neoplasms	1,636	8,335	9,971	83.5924	3,272
Average Accuracy:	90.7582	Total	11,400	8,542	19,942		
Overall Accuracy:	90.7582	Correct %	85.6491	97.5767			
Total Cost:	3,686	Cost	3,272	414			

Accuracy and confusion matrix of naïve bayes

		Heart Diseases	Lung Neoplasms	Total	Correct %	Cost
Average Accuracy: 87.6642 Overall Accuracy: 87.6642	Heart Diseases	9,786	185	9,971	98.1446	
	Lung Neoplasms	2,275	7,696	9,971	77.1838	
	Total	12,061	7,881	19,942		
	Correct %	81.1376	97.6526			
	Cost					

7. Findings from the above results

In general, performances of text classification of feature sets based on tf*idf selection method are much worse than those of feature sets based on Information Gain. The overall accuracy of tf*idf feature sets is about 50% to 65%, while the overall accuracy of Information Gain feature sets is about 90%. So information gain feature selection method is more effective for this text classification project.

Discrepancies of accuracy between decision trees and naïve bayes are not obvious for the same table (source data). For top 100/200/500 terms based on tf*idf and top 100 terms based on information gain, the performances of naïve bayes are a little bit better than decision trees.

For tf*idf feature sets, as the number of terms increases, the accuracy of both decision trees and naïve bayes increase. As can be seen in the confusion matrix, the accuracy of 'Heart Diseases' is much higher than 'Lung Neoplasms'. However, there is a reverse for the accuracy of decision trees with 500 terms based on tf*idf, which shows that the performance of identification of 'Lung Neoplasms' is much better than the other.

For information gain feature sets, as the number of terms increases, there is no difference between the accuracy of decision trees. Decision trees have the same performance on all the three tables based on information gain regardless of the number of terms. On the other hand, however, as the number of terms rises, the accuracy of naïve bayes declines for feature sets based on information gain.

As the number of terms increase, the model of decision trees become more sophisticated with more braches. After taking a look at the selected terms that played an important role for text classification, I find that top terms selected by information gain look more reasonable and anticipated, while top terms selected by tf*idf seem surprised to me.