

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR

Department of Computer Science and Engineering

M. Tech Programming Lab 2019

Exercise Sheet

Note:

- (1) All the problems are to be implemented in Python. The exercises are to be done individually.
- (2) The submission date is the last lab day for the exercise. The number of labs for each exercise is mentioned alongside.
 - 1. (10 points, Labs 1) Write a python script that can find w_0 and w_1 for an arbitrary dataset of number of hours studied versus rank of a students as $\{(x_n, y_n)\}$ pairs. Find the linear model, $y = w^T x$, that minimizes the squared loss. Derive the optimal parameter value, w, for the total training loss: $L = {}^{N}_{n=1}(y_n w^T x_n)^2$. Using the model predict the rank for the number of hours studied. Load the data stored in the file syntheticdata.mat. Fit a 4^{th} order polynomial function $f(x; w) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$ to this data. What do you notice about w_2 and w_4 ? Fit a function $f(x; w) = w_0 + w_1 x + w_2 \sin(x^2 a)$ to this data, assuming a and b are b fixed in some sensible range. Show a least square fit using this model. What do you notice about w_1 and w_2 . Comment about generalization and overfitting.