Multilinear Regression: Auto dataset

Import notebook functions

```
from notebookfuncs import *
```

Import standard libraries

```
import numpy as np
import pandas as pd

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 1000)
pd.set_option("display.width", 1000)
pd.set_option("display.max.colwidth", None)
import matplotlib.pyplot as plt
from matplotlib.pyplot import subplots
import seaborn as sns
import itertools
```

New imports

```
import statsmodels.api as sm
```

Import statsmodels.objects

```
from statsmodels.stats.outliers_influence import variance_inflation_factor as VIF from statsmodels.stats.outliers_influence import summary_table from statsmodels.stats.anova import anova_lm import statsmodels.formula.api as smf
```

Import ISLP objects

```
import ISLP
from ISLP import models
from ISLP import load_data
from ISLP.models import ModelSpec as MS, summarize, poly
```

Import user functions

```
from userfuncs import *
```

Set level of significance (alpha)

```
LOS_Alpha = 0.01
```

0.01

```
Auto = load_data("Auto")
Auto = Auto.sort_values(by=["year"], ascending=True)
Auto.head()
Auto.columns
```

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'enders')

```
Auto.shape
```

(392, 8)

Auto.describe()

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origi
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.0
mean	23.445918	5.471939	194.411990	104.469388	2977.584184	15.541327	75.979592	1.576
std	7.805007	1.705783	104.644004	38.491160	849.402560	2.758864	3.683737	0.80!
\min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000	1.000
25%	17.000000	4.000000	105.000000	75.000000	2225.250000	13.775000	73.000000	1.000
50%	22.750000	4.000000	151.000000	93.500000	2803.500000	15.500000	76.000000	1.000
75%	29.000000	8.000000	275.750000	126.000000	3614.750000	17.025000	79.000000	2.000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000	3.000

- 9. This question involves the use of multiple linear regression on the Auto data set.
- (a) Produce a scatterplot matrix which includes all of the variables in the data set.

```
pd.plotting.scatter_matrix(Auto, figsize=(14, 14))
```


(b) Compute the matrix of correlations between the variables using the DataFrame.corr() method.

Auto.corr()

	mpg	cylinders	${\it displacement}$	horsepower	weight	acceleration	year	origi
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.580541	0.56!
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.345647	-0.56
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.369855	-0.61
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361	-0.45
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.309120	-0.58
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.290316	0.212
year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	0.290316	1.000000	0.181
origin	0.565209	-0.568932	-0.614535	-0.455171	-0.585005	0.212746	0.181528	1.000

(c) Use the sm.OLS() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summarize() function to print the results. Comment on the output. For instance:

Convert year and origin columns to categorical types

	mpg	cylinders	displacement	horsepower	weight	acceleration
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000
mean	23.445918	5.471939	194.411990	104.469388	2977.584184	15.541327
std	7.805007	1.705783	104.644004	38.491160	849.402560	2.758864
\min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000
25%	17.000000	4.000000	105.000000	75.000000	2225.250000	13.775000
50%	22.750000	4.000000	151.000000	93.500000	2803.500000	15.500000
75%	29.000000	8.000000	275.750000	126.000000	3614.750000	17.025000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000

```
sns.relplot(
   Auto,
   x="year",
   y="weight",
   col="origin",
```

```
hue="cylinders",
   style="cylinders",
   estimator="mean",
   kind="line",
```


The weight of the 8-cylinder American made models show a decline from the highs of 1972. It can also be seen that American made cars are heavier than their European and Japanese counterparts especially in the most common models with 4 cylinders.

```
sns.relplot(
   Auto,
   x="year",
   y="mpg",
   col="origin",
   hue="cylinders",
   style="cylinders",
   estimator="mean",
   kind="line",
```


It can be seen that after the oil shock of 1973 and the regulations and actions taken by the US government, the mileage for American made cars rose across all models. This was, however, matched by the European and Japanese models which were already lighter and more fuel efficient.

Encode categorical variables as dummy variables dropping the first to remove multicollinearity.

```
def categorize_for_oil_shock(row):
    # we add 3 years because it takes approximately that long for car manufacturers to introd
    if row["year"] in (70, 71, 72, 73, 74, 75, 76):
        return 0
    return 1

Auto["oilshock"] = Auto.apply(categorize_for_oil_shock, axis=1)

Auto.boxplot(column="mpg", by=["oilshock", "origin"])
```

Boxplot grouped by ['oilshock', 'origin'] mpg


```
Auto_os = Auto.drop(["year"], axis=1)
Auto_os.columns
```

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'origin', 'weight', 'acceleration', 'origin', 'mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'origin', 'mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'origin', 'mpg', 'mpg',

```
# standardizing dataframes
Auto_os["oilshock"] = Auto_os["oilshock"].astype("category")
Auto_os = Auto_os.apply(standardize)
Auto_os.describe()
```

	mpg	cylinders	displacement	horsepower	weight	acceleration
count	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+02
mean	1.812609e-16	-1.087565e-16	-7.250436e-17	-1.812609e-16	-3.625218e-17	-8.519262e-16
std	1.001278e + 00	1.001278e+00	1.001278e+00	1.001278e + 00	1.001278e+00	1.001278e + 00
\min	-1.853218e+00	-1.451004e+00	-1.209563e+00	-1.520975e+00	-1.608575e + 00	-2.736983e+00

	mpg	cylinders	displacement	horsepower	weight	acceleration
25%	-8.269250e-01	-8.640136e-01	-8.555316e-01	-7.665929e-01	-8.868535e-01	-6.410551e-01
50%	-8.927701e-02	-8.640136e-01	-4.153842e-01	-2.853488e-01	-2.052109e-01	-1.499869e-02
75%	7.125143e-01	1.483947e + 00	7.782764 e-01	5.600800 e-01	7.510927e-01	5.384714e-01
max	2.970359e+00	1.483947e + 00	2.493416e+00	3.265452e + 00	2.549061e+00	3.360262e+00

```
Auto_os = pd.get_dummies(
    Auto_os, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_os.columns
```

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'oilshock

y = Auto_os["mpg"]

```
cols = list(Auto_os.columns)
cols.remove("mpg")
formula = " + ".join(cols)
model = smf.ols(f"mpg ~ {formula}", data=Auto_os)
results = model.fit()
results.summary()
```

Dep. Variable:	mpg	R-squared:	0.808
Model:	OLS	Adj. R-squared:	0.804
Method:	Least Squares	F-statistic:	201.7
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	3.05e-132
Time:	04:09:22	Log-Likelihood:	-232.60
No. Observations:	392	AIC:	483.2
Df Residuals:	383	BIC:	518.9
Df Model:	8		
Covariance Type:	nonrobust		

	\mathbf{coef}	std er	${f r}$ ${f t}$	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
Intercept	-0.4186	0.041	-10.263	0.000	-0.499	-0.338
${ m oilshock}[{ m T.1}]$	0.6363	0.048	13.204	0.000	0.542	0.731
cylinders	-0.1382	0.073	-1.885	0.060	-0.282	0.006
${f displacement}$	0.2845	0.107	2.659	0.008	0.074	0.495
horsepower	-0.2213	0.069	-3.192	0.002	-0.358	-0.085
\mathbf{weight}	-0.5923	0.073	-8.085	0.000	-0.736	-0.448
acceleration	0.0053	0.036	0.146	0.884	-0.066	0.076
$origin_Europe$	0.3038	0.076	4.015	0.000	0.155	0.453
origin_Japan	0.3819	0.074	5.156	0.000	0.236	0.528
Omnibus:	2	0.039	Durbin-W	atson:	1.33	81
Prob(Omni	ibus): (0.000	Jarque-Be	ra (JB):	27.58	83
Skew:	(0.413	Prob(JB):		1.02e	-06
Kurtosis:	4	4.004	Cond. No	•	11.9	9

Notes:

- i. Is there a relationship between the predictors and the response? Use the anova_lm() function from statsmodels to answer this question.
- ii. Which predictors appear to have a statistically significant relationship to the response?
- iii. What does the coefficient for the year variable suggest?

anova_lm(results)

	df	sum_sq	mean_sq	F	PR(>F)
oilshock	1.0	106.483141	106.483141	542.347509	2.293307e-75
cylinders	1.0	170.845795	170.845795	870.163964	1.267122e-100
displacement	1.0	11.934469	11.934469	60.785485	6.078862e-14
horsepower	1.0	3.951021	3.951021	20.123619	9.610639 e-06
weight	1.0	17.796189	17.796189	90.640818	1.988543e-19
acceleration	1.0	0.009116	0.009116	0.046430	8.295108 e-01
origin_Europe	1.0	0.564108	0.564108	2.873155	9.088094e-02
origin_Japan	1.0	5.218909	5.218909	26.581317	4.058867e-07
Residual	383.0	75.197253	0.196337	NaN	NaN

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

There seems to be a statistical relationship between all of the predictors and the response variable, mpg, except for acceleration.

Even though some of the categorical variables are insignificant, even if one of the levels is significant, it is advisable to retain them all in the model.

https://stats.stackexchange.com/questions/24298/can-i-ignore-coefficients-for-non-significant-levels-of-factors-in-a-linear-mode

Note: Year has been converted to a categorical variable oilshock to better capture the effects of the oil shock of 1973 on the mileage.

(d) Produce some of diagnostic plots of the linear regression fit as described in the lab. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

Before producing the diagnostic plots, let's first test for collinearity using correlation matrix and variance inflation factors.

Auto_os.corr(numeric_only=True)

	mpg	cylinders	displacement	horsepower	weight	acceleration	origin_Europe
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.244313
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.352324
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.371633
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.284948
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.293841
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.208298
origin_Europe	0.244313	-0.352324	-0.371633	-0.284948	-0.293841	0.208298	1.000000
$origin_Japan$	0.451454	-0.404209	-0.440825	-0.321936	-0.447929	0.115020	-0.230157

vifdf = calculate_VIFs("mpg ~ " + " + ".join(Auto_os.columns) + " - mpg", Auto_os)
vifdf

	VIF
Feature	
oilshock[T.1]	1.149269
cylinders	10.737464

	VIF
Feature	
displacement	22.861475
horsepower	9.594564
weight	10.715246
acceleration	2.614133
origin_Europe	1.639338
$origin_Japan$	1.762590

```
identify_highest_VIF_feature(vifdf)
```

We find the highest VIF in this model is displacement with a VIF of 22.861474853464927 Hence, we drop displacement from the model to be fitted.

('displacement', 22.861474853464927)

```
vifdf = calculate_VIFs(
    "mpg ~ " + " + ".join(Auto_os.columns) + " - mpg - displacement", Auto_os
)
vifdf
```

	VIF
Feature	
oilshock[T.1]	1.139339
cylinders	6.190903
horsepower	8.641303
weight	9.024884
acceleration	2.591157
origin_Europe	1.450726
origin_Japan	1.591434

identify_highest_VIF_feature(vifdf)

No variables are significantly collinear.

Linear Regression for mpg \sim cylinders + horsepower + weight + acceleration + oilshock + origin_Europe + origin_Japan

```
cols = list(Auto_os.columns)
cols.remove("mpg")
cols.remove("displacement")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_os)
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.805
Model:	OLS	Adj. R-squared:	0.801
Method:	Least Squares	F-statistic:	225.9
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	6.41e-132
Time:	04:09:23	Log-Likelihood:	-236.18
No. Observations:	392	AIC:	488.4
Df Residuals:	384	BIC:	520.1
	_		

Df Model: 7
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.3890	0.040	-9.837	0.000	-0.467	-0.311
oilshock[T.1] cylinders	0.6243 -0.0113	0.048 0.056	12.911 -0.202	0.000 0.840	0.529 -0.122	0.719 0.099
horsepower	-0.1632	0.066	-2.461	0.014	-0.294	-0.033
weight	-0.5149	0.068	-7.599	0.000	-0.648	-0.382
acceleration	-0.0038	0.036	-0.103	0.918	-0.075	0.068
origin_Europe	0.2356	0.072	3.283	0.001	0.095	0.377
origin_Japan	0.3205	0.071	4.518	0.000	0.181	0.460
Omnibus:	=======	25.646	======= Durbin-W	======== atson:	========	1.305
Prob(Omnibus):		0.000	Jarque-B	era (JB):		40.287
Skew:		0.456	Prob(JB)	:	1.	79e-09

4.278 Cond. No.

Notes:

Kurtosis:

7.67

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. df sum_sq mean_sq F PR(>F)

```
oilshock
               1.0 106.483141 106.483141 533.906720 1.149811e-74
cylinders
               1.0 170.845795 170.845795 856.621225 7.985118e-100
horsepower
              1.0 12.927972 12.927972 64.820882 1.039468e-14
weight
               1.0 20.649905 20.649905 103.538670
                                                    1.085729e-21
              1.0 0.003626 0.003626 0.018183
acceleration
                                                    8.928058e-01
origin_Europe
              1.0 0.432514 0.432514 2.168627
                                                    1.416711e-01
origin_Japan
             1.0 4.071523 4.071523 20.414626
                                                    8.312108e-06
Residual
             384.0 76.585524
                               0.199441
                                               \mathtt{NaN}
```

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is acceleration with a p-value of 0.917 Using the backward methodology, we suggest dropping acceleration from the new model

Linear Regression after dropping acceleration. The model now is mpg \sim cylinders + horsepower + weight + oilshock + origin_Europe + origin_Japan

OLS Regression Results

______ Dep. Variable: R-squared: 0.805 mpg Model: OLS Adj. R-squared: 0.802 Least Squares F-statistic: Method: 264.3 Date: Sat, 28 Sep 2024 Prob (F-statistic): 3.80e-133 Time: 04:09:23 Log-Likelihood: -236.19No. Observations: 392 AIC: 486.4 Df Residuals: 385 BIC: 514.2 Df Model: 6 Covariance Type: nonrobust

==========	========		=======	========		
	coef	std err	t	P> t	[0.025	0.975]
Intercept oilshock[T.1] cylinders horsepower weight	-0.3889 0.6245 -0.0105 -0.1585 -0.5182	0.039 0.048 0.055 0.048 0.060	-9.849 12.935 -0.189 -3.285 -8.704	0.000 0.000 0.850 0.001 0.000	-0.467 0.530 -0.120 -0.253 -0.635	-0.311 0.719 0.099 -0.064 -0.401
origin_Europe origin_Japan 	0.2352 0.3202	0.072 0.071	3.287 4.524	0.001 0.000	0.095 0.181 	0.376 0.459
Omnibus: Prob(Omnibus): Skew: Kurtosis:		25.330 0.000 0.454 4.263	Durbin-W Jarque-B Prob(JB) Cond. No	era (JB): :	2	1.305 39.508 .64e-09 6.84

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	mean_sq	F	PR(>F)
oilshock	1.0	106.483141	106.483141	535.282217	7.450502e-75
cylinders	1.0	170.845795	170.845795	858.828126	4.453195e-100
horsepower	1.0	12.927972	12.927972	64.987879	9.610211e-15
weight	1.0	20.649905	20.649905	103.805416	9.634452e-22
origin_Europe	1.0	0.434982	0.434982	2.186618	1.400323e-01
origin_Japan	1.0	4.070552	4.070552	20.462339	8.111817e-06
Residual	385.0	76.587654	0.198929	NaN	NaN

Linear Regression after dropping cylinders. The model now is mpg ${\scriptstyle\sim}$ horsepower + weight + oilshock + origin_Europe + origin_Japan

)

OLS Regression Results

=========		:========				
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	OLS : Least Squares Sat, 28 Sep 2024 04:09:23 servations: 392 iduals: 386 el: 5			d: quared: tic: statistic):	0.805 0.802 317.9 2.06e-134 -236.21 484.4 508.2	
=========		std err				
oilshock[T.1] horsepower weight origin_Europe origin_Japan	-0.1613 -0.5245 0.2386 0.3222	0.048 0.046 0.050 0.069 0.070	-10.576 3.448 4.611	0.000 0.001 0.000 0.001 0.000	-0.622 0.103 0.185	0.720 -0.071 -0.427 0.375 0.460
Omnibus: Prob(Omnibus): Skew: Kurtosis:		24.971 0.000 0.453 4.239	Durbin-Wa Jarque-Be Prob(JB): Cond. No	atson: era (JB): :		1.304 38.456 46e-09 5.60

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	mean_sq	F	PR(>F)
oilshock	1.0	106.483141	106.483141	536.622900	4.863116e-75
horsepower	1.0	165.048555	165.048555	831.763917	2.445119e-98
weight	1.0	39.079210	39.079210	196.940090	1.939884e-36
origin_Europe	1.0	0.574647	0.574647	2.895939	8.960825e-02
origin_Japan	1.0	4.219706	4.219706	21.265252	5.446537e-06
Residual	386.0	76.594741	0.198432	NaN	NaN

We can now try and plot the diagnostics for the model.

```
TSS = np.sum((y - np.mean(y)) ** 2)
TSS
RSS = np.sum((y - results.fittedvalues) ** 2)
RSS
RSE = np.sqrt(RSS / results.df_model)
display("RSE " + str(RSE))
display("R-squared adjusted : " + str(results.rsquared_adj))
display("F-statistic : " + str(results.fvalue))
```

'RSE 3.9139428061794668'

'R-squared adjusted : 0.8020742313429469'

'F-statistic : 317.8976193276657'

display_residuals_plot(results)

There is some evidence of non-linearity and heteroskedasticity from the residuals plot above.

(e) Fit some models with interactions as described in the lab. Do any interactions appear to be statistically significant?

```
formula = " + ".join(cols)
formula += " + " + "horsepower: weight"
results = perform_analysis("mpg", formula, Auto_os)
```

Dep. Variable:	mpg	R-squared:	0.847
Model:	OLS	Adj. R-squared:	0.845
Method:	Least Squares	F-statistic:	355.8
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	1.15e-153
Time:	04:09:24	Log-Likelihood:	-187.98
No. Observations:	392	AIC:	390.0
Df Residuals:	385	BIC:	417.8

Df Model: 6
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.5631	0.038	-14.715	0.000	-0.638	-0.488
oilshock[T.1]	0.6508	0.043	15.243	0.000	0.567	0.735
horsepower	-0.3723	0.045	-8.185	0.000	-0.462	-0.283
weight	-0.4926	0.044	-11.192	0.000	-0.579	-0.406
origin_Europe	0.1565	0.062	2.535	0.012	0.035	0.278
origin_Japan	0.2061	0.063	3.278	0.001	0.082	0.330
horsepower:weight	0.2300	0.022	10.364	0.000	0.186	0.274

 Omnibus:
 27.116
 Durbin-Watson:
 1.364

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 45.242

 Skew:
 0.457
 Prob(JB):
 1.50e-10

 Kurtosis:
 4.390
 Cond. No.
 7.09

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

df sum_sq mean_sq F PR(>F)
oilshock 1.0 106.483141 106.483141 684.553356 1.927144e-87
horsepower 1.0 165.048555 165.048555 1061.055689 1.099814e-112

```
weight
                   1.0
                         39.079210
                                    39.079210
                                                251.230425
                                                            6.522402e-44
origin_Europe
                   1.0 0.574647 0.574647
                                                 3.694260 5.533771e-02
                                                            3.109409e-07
origin_Japan
                   1.0 4.219706
                                     4.219706
                                                27.127429
horsepower:weight
                   1.0 16.707504
                                    16.707504
                                                107.408348
                                                            2.313061e-22
Residual
                         59.887237
                                                                    {\tt NaN}
                 385.0
                                     0.155551
                                                      {\tt NaN}
```

Dep. Variable: R-squared: 0.861 mpg Model: OLS Adj. R-squared: 0.858 Method: Least Squares F-statistic: 297.5 Date: Sat, 28 Sep 2024 Prob (F-statistic): 3.50e-159 Time: 04:09:24 Log-Likelihood: -168.92No. Observations: 392 AIC: 355.8 BIC: Df Residuals: 383 391.6

Df Model: 8
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.5350	0.037	-14.531	0.000	-0.607	-0.463
oilshock[T.1]	0.5913	0.042	14.071	0.000	0.509	0.674
horsepower	-0.2801	0.051	-5.456	0.000	-0.381	-0.179
oilshock[T.1]:horsepower	-0.2276	0.088	-2.598	0.010	-0.400	-0.055
weight	-0.4591	0.050	-9.226	0.000	-0.557	-0.361
oilshock[T.1]:weight	-0.0963	0.082	-1.181	0.238	-0.257	0.064
origin_Europe	0.1804	0.059	3.039	0.003	0.064	0.297
origin_Japan	0.1929	0.060	3.209	0.001	0.075	0.311

horsepower:weight		0.1715	0.023	7.403 (0.000	0.126	0.217
Omnibus:		23.934	Durbin-Wats	on:	 :	 1.456	
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	43	3.610	
Skew:		0.377	<pre>Prob(JB):</pre>		3.39	9e-10	
Kurtosis:		4.450	Cond. No.			11.3	
Notes:							
[1] Standard Errors	255111110	that the cou	ariance matr	iv of the err	core is co	rrectly o	specified
[1] Standard Errors	df	sum_sq		r or the err		R(>F)	specified.
oilshock	1.0		- -	750.563317			
horsepower	1.0	165.048555		1163.370934			
oilshock:horsepower	1.0						
weight	1.0						
oilshock:weight	1.0	0.468549					
origin_Europe	1.0						
origin_Lurope origin_Japan	1.0						
-	1.0						
horsepower:weight					0.50791		
Residual	383.0	54.336579	0.141871	NaN		NaN	
formula = " + ".joir	n(cols)						
formula += " + " + '	'oilshoo	ck: horsepowe	r"				
formula += " + " + "	origin_	Europe: hors	epower"				
formula += " + " + "	origin_	Japan: horse	power"				
formula += " + " + '	origin_	Europe: weig	ht"				

formula += " + " + "origin_Japan: weight"
formula += " + " + "oilshock: weight"
formula += " + " + "oilshock: horsepower"

origin_interactions = results

results = perform_analysis("mpg", formula, Auto_os)

Dep. Variable: mpg R-squared: 0.855 Adj. R-squared: Model: OLS 0.851 Method: Least Squares F-statistic: 204.1 Date: Prob (F-statistic): Sat, 28 Sep 2024 6.22e-152 Time: 04:09:24 Log-Likelihood: -177.44No. Observations: 392 AIC: 378.9 Df Residuals: 380 BIC: 426.5 Df Model: 11

Covariance	Type:	nonrobust
Covariance	Type.	HOIII ODUS (

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.4245	0.035	-12.121	0.000	-0.493	-0.356
oilshock[T.1]	0.5690	0.044	13.054	0.000	0.483	0.655
horsepower	-0.0708	0.048	-1.470	0.142	-0.166	0.024
oilshock[T.1]:horsepower	-0.1615	0.096	-1.687	0.092	-0.350	0.027
weight	-0.4713	0.054	-8.712	0.000	-0.578	-0.365
oilshock[T.1]:weight	-0.2333	0.087	-2.694	0.007	-0.404	-0.063
origin_Europe	0.0297	0.082	0.363	0.717	-0.131	0.191
origin_Japan	-0.0010	0.131	-0.007	0.994	-0.259	0.257
origin_Europe:horsepower	-0.5852	0.130	-4.515	0.000	-0.840	-0.330
origin_Japan:horsepower	-0.2801	0.204	-1.370	0.172	-0.682	0.122
origin_Europe:weight	0.1640	0.120	1.370	0.171	-0.071	0.399
origin_Japan:weight	-0.1326	0.245	-0.541 	0.589	-0.614	0.349
Omnibus:	20.717	Durbin-W	atson:		1.585	
Prob(Omnibus):	0.000	Jarque-B	era (JB):		32.838	
Skew:	0.373	Prob(JB)	:	7	.40e-08	
Kurtosis:	4.205	Cond. No	•		25.3	

Notes:

[1]	Standard	Errors	${\tt assume}$	that	the	covariance	${\tt matrix}$	of	the	errors	is	correctly specified	•
				1.0						-		DD (+ E1)	

	df	sum_sq	mean_sq	F	PR(>F)
oilshock	1.0	106.483141	106.483141	712.972849	3.365342e-89
horsepower	1.0	165.048555	165.048555	1105.105820	1.586816e-114
oilshock:horsepower	1.0	19.155472	19.155472	128.258155	8.134152e-26
weight	1.0	35.071635	35.071635	234.827067	1.302452e-41
oilshock:weight	1.0	0.468549	0.468549	3.137234	7.732495e-02
origin_Europe	1.0	0.971997	0.971997	6.508146	1.112920e-02
origin_Japan	1.0	2.687942	2.687942	17.997494	2.781984e-05
origin_Europe:horsepower	1.0	3.024522	3.024522	20.251113	9.040705e-06
origin_Japan:horsepower	1.0	1.977640	1.977640	13.241566	3.116551e-04
origin_Europe:weight	1.0	0.313437	0.313437	2.098659	1.482531e-01
origin_Japan:weight	1.0	0.043767	0.043767	0.293050	5.885897e-01
Residual	380.0	56.753344	0.149351	NaN	NaN

- From the above analysis, we can see that there is no significant interaction between origin and weight.
- So we can omit them from the model.

```
formula = " + ".join(cols)
formula += " + " + "oilshock: horsepower"
formula += " + " + "origin_Europe: horsepower"
formula += " + " + "origin_Japan: horsepower"
formula += " + " + "oilshock: weight"
formula += " + " + "oilshock: horsepower"
results = perform_analysis("mpg", formula, Auto_os)
origin_interactions = results
```

============			==========
Dep. Variable:	mpg	R-squared:	0.854
Model:	OLS	Adj. R-squared:	0.851
Method:	Least Squares	F-statistic:	248.9
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	8.18e-154
Time:	04:09:24	Log-Likelihood:	-178.67
No. Observations:	392	AIC:	377.3
Df Residuals:	382	BIC:	417.1
Df Model:	9		
	_		

Covariance Type: nonrobust

J1						
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.4296	0.034	-12.650	0.000	-0.496	-0.363
oilshock[T.1]	0.5693	0.043	13.280	0.000	0.485	0.654
horsepower	-0.0797	0.047	-1.689	0.092	-0.172	0.013
oilshock[T.1]:horsepower	-0.1958	0.092	-2.133	0.034	-0.376	-0.015
weight	-0.4571	0.051	-8.947	0.000	-0.558	-0.357
oilshock[T.1]:weight	-0.2019	0.084	-2.408	0.016	-0.367	-0.037
origin_Europe	0.0044	0.080	0.055	0.956	-0.153	0.162
origin_Japan	0.0750	0.084	0.892	0.373	-0.090	0.240
origin_Europe:horsepower	-0.4667	0.096	-4.884	0.000	-0.655	-0.279
origin_Japan:horsepower	-0.3682	0.101	-3.637	0.000	-0.567	-0.169
Omnibus:	20.114	====== Durbin-W	atson:		1.577	
<pre>Prob(Omnibus):</pre>	0.000	Jarque-B	Bera (JB):		31.613	
Skew:	0.366	Prob(JB)	:	1	37e-07	
Kurtosis:	4.183	Cond. No			10.2	

4.183 Cond. No. Kurtosis: 10.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
oilshock	1.0	106.483141	106.483141	712.242504	2.550768e-89
horsepower	1.0	165.048555	165.048555	1103.973788	9.879451e-115
oilshock:horsepower	1.0	19.155472	19.155472	128.126771	8.220841e-26
weight	1.0	35.071635	35.071635	234.586518	1.270254e-41
oilshock:weight	1.0	0.468549	0.468549	3.134021	7.747196e-02
origin_Europe	1.0	0.971997	0.971997	6.501479	1.116822e-02
origin_Japan	1.0	2.687942	2.687942	17.979058	2.804561e-05
origin_Europe:horsepower	1.0	3.024522	3.024522	20.230368	9.121050e-06
origin_Japan:horsepower	1.0	1.977640	1.977640	13.228002	3.136339e-04
Residual	382.0	57.110548	0.149504	NaN	NaN

• From the above analysis, it is evident that with the interaction between origin and horsepower, the interaction between oilshock and weight and horsepower is insignificant. We can drop these from the model as well.

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.852
Model:	OLS	Adj. R-squared:	0.849
Method:	Least Squares	F-statistic:	275.8
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	8.41e-154
Time:	04:09:24	Log-Likelihood:	-181.63
No. Observations:	392	AIC:	381.3
Df Residuals:	383	BIC:	417.0
Df Model:	8		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.4267	0.034	-12.495	0.000	-0.494	-0.360
oilshock[T.1]	0.5628	0.043	13.073	0.000	0.478	0.647
horsepower	-0.0265	0.042	-0.633	0.527	-0.109	0.056
oilshock[T.1]:horsepower	-0.3804	0.051	-7.497	0.000	-0.480	-0.281
weight	-0.5231	0.043	-12.051	0.000	-0.608	-0.438
origin_Europe	0.0041	0.081	0.051	0.959	-0.155	0.163
origin_Japan	0.0877	0.084	1.039	0.299	-0.078	0.254
origin_Europe:horsepower	-0.4423	0.096	-4.626	0.000	-0.630	-0.254
origin_Japan:horsepower	-0.3589	0.102	-3.526	0.000	-0.559	-0.159
Omnibus:	19.159	====== Durbin-W	atson:		1.576	
Prob(Omnibus):	0.000	Jarque-B	era (JB):		29.046	
Skew:	0.362	Prob(JB)	:	4	1.93e-07	
Kurtosis:	4.119	Cond. No			9.30	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
oilshock	1.0	106.483141	106.483141	703.425918	9.826044e-89
horsepower	1.0	165.048555	165.048555	1090.308104	4.259700e-114
oilshock:horsepower	1.0	19.155472	19.155472	126.540737	1.468876e-25
weight	1.0	35.071635	35.071635	231.682658	2.992243e-41
origin_Europe	1.0	0.792887	0.792887	5.237801	2.264506e-02
origin_Japan	1.0	2.840217	2.840217	18.762427	1.893486e-05
origin_Europe:horsepower	1.0	2.748574	2.748574	18.157033	2.563625e-05
origin_Japan:horsepower	1.0	1.881783	1.881783	12.431031	4.733982e-04
Residual	383.0	57.977737	0.151378	NaN	NaN

display_residuals_plot(results)

anova_lm(simple_model, numeric_interactions, oilshock_interactions, origin_interactions)

	df_{resid}	ssr	$\mathrm{df}\mathrm{_diff}$	ss_diff	F	Pr(>F)
0	386.0	76.594741	0.0	NaN	NaN	NaN
1	385.0	59.887237	1.0	16.707504	110.369506	7.218441e-23
2	383.0	54.336579	2.0	5.550658	18.333780	2.489897e-08
3	383.0	57.977737	-0.0	-3.641158	\inf	NaN

pd.DataFrame(models)

```
name model

0 simple_model mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan

1 numeric_interactions mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower + weight + oilshock + origin_Europe + origin_Japan + oilshock
```

(f) Try a few different transformations of the variables, such as log(X), \sqrt{X} , X2. Comment on your findings.

OLS Regression Results

=======================================			
Dep. Variable:	mpg	R-squared:	0.848
Model:	OLS	Adj. R-squared:	0.846
Method:	Least Squares	F-statistic:	306.8
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	5.75e-153
Time:	04:09:25	Log-Likelihood:	-186.58
No. Observations:	392	AIC:	389.2
Df Residuals:	384	BIC:	420.9
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std er	r t	P> t	[0.025	0.975]
Intercept	-0.6020	0.04	0 -15.072	0.000	-0.681	-0.524
oilshock[T.1]	0.6580	0.04	3 15.334	0.000	0.574	0.742
horsepower	-0.3798	0.05	4 -7.058	0.000	-0.486	-0.274
weight	-0.5069	0.05	0 -10.044	0.000	-0.606	-0.408
origin_Europe	0.1436	0.06	2 2.324	0.021	0.022	0.265
origin_Japan	0.1959	0.06	4 3.047	0.002	0.069	0.322
<pre>I(horsepower ** 2)</pre>	0.0976	0.02	1 4.667	0.000	0.056	0.139
I(weight ** 2)	0.1413	0.02	6 5.382	0.000	0.090	0.193
	=======	26.672	======== Durbin-Watso	:======= on :	 . 1	=== 394
Prob(Omnibus):		0.000	Jarque-Bera			435
Skew:		0.436	Prob(JB):		8.26e	-11
Kurtosis:		4.443	Cond. No.		1	0.5

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
oilshock	1.0	106.483141	106.483141	687.677177	1.332036e-87
horsepower	1.0	165.048555	165.048555	1065.897602	7.775452e-113
weight	1.0	39.079210	39.079210	252.376864	4.864770e-44
origin_Europe	1.0	0.574647	0.574647	3.711118	5.478894e-02
origin_Japan	1.0	4.219706	4.219706	27.251220	2.932534e-07
<pre>I(horsepower ** 2)</pre>	1.0	12.648520	12.648520	81.685220	7.946432e-18
I(weight ** 2)	1.0	4.485871	4.485871	28.970134	1.281966e-07
Residual	384.0	59.460351	0.154845	NaN	NaN

display_residuals_plot(results)

anova_lm(simple_model, squared_transformations)

df_{resid}	ssr	df_diff	ss_diff	F	Pr(>F)
386.0 384.0	76.594741 59.460351	0.0	NaN 17 134391	NaN 55 327677	NaN 7.681995e-22

pd.DataFrame(models)

	name	model
0	$simple_model$	$\label{eq:mpg-constraint} \operatorname{mpg} \sim \operatorname{horsepower} + \operatorname{weight} + \operatorname{oilshock} + \operatorname{origin_Europe} + \operatorname{origin_Japan}$
1	$numeric_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower$
2	$oilshock_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower$
3	$origin_interactions$	mpg ~ horsepower + weight + oilshock + origin_Europe + origin_Japan + oils
4	$squared_transformation$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + I(horsepower)$

- Since we've standardized the variables, we cannot run log or square root transformations on the negative valued columns.
- We can reload the data and run the log and sqrt transformations on the original unstandardized data.

```
Auto = load_data("Auto")
Auto = Auto.sort_values(by=["year"], ascending=True)
Auto.columns
```

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'e

```
print("Minimums:")
print(Auto.min())
print("Maximums:")
print(Auto.max())
```

Minimums:

mpg	9.0
cylinders	3.0
displacement	68.0
horsepower	46.0
weight	1613.0
acceleration	8.0
year	70.0
origin	1.0
dtype: float64	
Maximums:	
mpg	46.6
cylinders	8.0
displacement	455.0

```
horsepower 230.0 weight 5140.0 acceleration 24.8 year 82.0 origin 3.0 dtype: float64
```

- From the above, we can see that the values for displacement, horsepower and weight are quite large.
- Hence, we log or square root transform only these variables.

Now let's categorize the variables

Log Transformed Model

```
Auto_log = Auto.copy(deep=True)
Auto_log["log_displacement"] = np.log(Auto_log["displacement"])
```

```
Auto_log["log_displacement"] = np.log(Auto_log["horsepower"])
Auto_log["log_weight"] = np.log(Auto_log["weight"])
Auto_log = Auto_log.drop(
    columns=[
        "displacement",
        "weight",
        "horsepower",
        "year",
    ]
)
Auto_log.columns
```

Index(['mpg', 'cylinders', 'acceleration', 'origin', 'oilshock', 'log_displacement', 'log_ho

Auto_log.corr(numeric_only=True)

	mpg	cylinders	acceleration	oilshock	$log_displacement$	log_horsepower	log
mpg	1.000000	-0.777618	0.423329	0.521192	-0.828453	-0.817517	-0.
cylinders	-0.777618	1.000000	-0.504683	-0.273703	0.942814	0.843204	0.8
acceleration	0.423329	-0.504683	1.000000	0.195892	-0.497107	-0.698328	-0.
oilshock	0.521192	-0.273703	0.195892	1.000000	-0.268161	-0.299037	-0.
$log_displacement$	-0.828453	0.942814	-0.497107	-0.268161	1.000000	0.872149	0.9
$\log_horsepower$	-0.817517	0.843204	-0.698328	-0.299037	0.872149	1.000000	0.8
\log _weight	-0.844194	0.884303	-0.401563	-0.250520	0.942850	0.873956	1.0

```
Auto_log = pd.get_dummies(
    Auto_log, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_log.columns
```

Index(['mpg', 'cylinders', 'acceleration', 'oilshock', 'log_displacement', 'log_horsepower',

```
cols = list(Auto_log.columns)
cols.remove("mpg")
```

```
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_log)
vifdf
```

	VIF
Feature	
cylinders	9.828626
acceleration	3.304749
oilshock	1.147770
$log_displacement$	25.969595
$\log_horsepower$	11.414709
\log _weight	16.146573
origin_Europe	1.876698
origin_Japan	2.097688

identify_highest_VIF_feature(vifdf)

We find the highest VIF in this model is $log_displacement$ with a VIF of 25.96959512578754 Hence, we drop $log_displacement$ from the model to be fitted.

('log_displacement', 25.96959512578754)

```
cols.remove("log_displacement")
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_log)
vifdf
```

	VIF
Feature	
cylinders	5.535070
acceleration	3.179336
oilshock	1.142791
$log_horsepower$	11.411764
log_weight	10.608718
origin_Europe	1.451961
origin_Japan	1.652749

```
identify_highest_VIF_feature(vifdf)
```

We find the highest VIF in this model is log_horsepower with a VIF of 11.411764499222897 Hence, we drop log_horsepower from the model to be fitted.

('log_horsepower', 11.411764499222897)

```
cols.remove("log_horsepower")
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_log)
vifdf
```

	VIF
Feature	
cylinders	5.517868
acceleration	1.377517
oilshock	1.118666
log_weight	5.014899
origin Europe	1.451265

	VIF
Feature	
origin_Japan	1.608682

identify_highest_VIF_feature(vifdf)

No variables are significantly collinear.

```
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_log)
```

OLS Regression Results

===========	=======	========				======
Model: Method: Date: Date: Sat, 28 Sep 2024 Time: No. Observations: Df Residuals: 385		-	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.823 0.821 299.3 1.36e-141 -1021.3 2057. 2084.	
Covariance Type	:	nonrobust				
===========	=======	========	=======			========
	coef	std err	t	P> t	[0.025	0.975]
acceleration	1.3692 1.5602	0.230 0.071 0.355 1.331 0.531	-14.211 2.578 2.956	0.955 0.012 0.000	-0.440 0.041 4.434	0.465 0.320 5.828 -16.299
Omnibus: Prob(Omnibus): Skew: Kurtosis:	======	30.158 0.000 0.493 4.484	Durbin-Wa	era (JB):		1.253 51.811 5.62e-12 1.08e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.08e+03. This might indicate that there are strong multicollinearity or other numerical problems.

	df	sum_sq	mean_sq	F	PR(>F)
cylinders	1.0	14403.083079	14403.083079	1318.559127	2.133814e-126
acceleration	1.0	30.471304	30.471304	2.789557	9.569322e-02
oilshock	1.0	2422.051542	2422.051542	221.731566	6.308582e-40
log_weight	1.0	2639.878573	2639.878573	241.672978	1.215817e-42
origin_Europe	1.0	22.569818	22.569818	2.066199	1.514086e-01
origin_Japan	1.0	95.449335	95.449335	8.738101	3.308129e-03
Residual	385.0	4205.489819	10.923350	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is cylinders with a p-value of 0.9554479. Using the backward methodology, we suggest dropping cylinders from the new model

```
cols.remove("cylinders")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_log)
```

OLS Regression Results

=============			==========
Dep. Variable:	mpg	R-squared:	0.823
Model:	OLS	Adj. R-squared:	0.821
Method:	Least Squares	F-statistic:	360.0
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	6.83e-143
Time:	04:09:28	Log-Likelihood:	-1021.3
No. Observations:	392	AIC:	2055.
Df Residuals:	386	BIC:	2078.

Df Model: 5
Covariance Type: nonrobust

===========	========	=======	========			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	167.8689	7.032	23.870	0.000	154.042	181.696
acceleration	0.1792	0.067	2.673	0.008	0.047	0.311
oilshock	5.1289	0.352	14.574	0.000	4.437	5.821
log_weight	-18.8571	0.820	-22.992	0.000	-20.470	-17.245
origin_Europe	1.3628	0.518	2.631	0.009	0.344	2.381
origin_Japan	1.5576	0.525	2.967	0.003	0.525	2.590

 Omnibus:
 30.308
 Durbin-Watson:
 1.253

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 52.282

 Skew:
 0.493
 Prob(JB):
 4.44e-12

 Kurtosis:
 4.492
 Cond. No.
 751.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
df
                        sum_sq
                                mean_sq
                                                  F
                                                           PR(>F)
             1.0 4268.531557 4268.531557 391.783092 1.076057e-60
acceleration
oilshock
              1.0 4757.627552 4757.627552 436.674301 2.076230e-65
              1.0 10466.602734 10466.602734 960.667136 8.818191e-107
log_weight
origin_Europe 1.0
                     24.823504
                                 24.823504 2.278402 1.320051e-01
                                             8.800637
                                                      3.198611e-03
origin_Japan
             1.0
                     95.884166
                                 95.884166
Residual
            386.0 4205.523957
                                10.895140
                                                              NaN
                                                 NaN
```

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

No variables are statistically insignificant.

The model mpg ~ acceleration + oilshock + log_weight + origin_Europe + origin_Japan cannot be

pd.DataFrame(models)

	name	model
0	simple_model	$\operatorname{mpg} \sim \operatorname{horsepower} + \operatorname{weight} + \operatorname{oilshock} + \operatorname{origin_Europe} + \operatorname{origin_Japan}$
1	$numeric_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower$
2	$oilshock_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower$
3	$origin_interactions$	$\mathrm{mpg} \sim \mathrm{horsepower} + \mathrm{weight} + \mathrm{oilshock} + \mathrm{origin_Europe} + \mathrm{origin_Japan} + \mathrm{oils}$
4	$squared_transformation$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + I(harmonic formula for the formula for$
5	$\log_{transformation}$	$\label{eq:mpg-acceleration} \operatorname{mpg} \sim \operatorname{acceleration} + \operatorname{oilshock} + \operatorname{log_weight} + \operatorname{origin_Europe} + \operatorname{origin_Japan}$

Square Root Transformed Model

```
Auto_sqrt = Auto.copy(deep=True)

Auto_sqrt["sqrt_displacement"] = np.sqrt(Auto_sqrt["displacement"])
Auto_sqrt["sqrt_horsepower"] = np.sqrt(Auto_sqrt["horsepower"])
Auto_sqrt["sqrt_weight"] = np.sqrt(Auto_sqrt["weight"])
Auto_sqrt = Auto_sqrt.drop(
    columns=[
        "displacement",
        "weight",
        "horsepower",
        "year",
    ]
)
Auto_sqrt.columns
```

Index(['mpg', 'cylinders', 'acceleration', 'origin', 'oilshock', 'sqrt_displacement', 'sqrt_l

```
Auto_sqrt.corr(numeric_only=True)
```

	mpg	cylinders	acceleration	oilshock	$sqrt_displacement$	${\bf sqrt_horsepower}$
mpg	1.000000	-0.777618	0.423329	0.521192	-0.821331	-0.802311
cylinders	-0.777618	1.000000	-0.504683	-0.273703	0.953208	0.849266
acceleration	0.423329	-0.504683	1.000000	0.195892	-0.521812	-0.696702
oilshock	0.521192	-0.273703	0.195892	1.000000	-0.284587	-0.306247
sqrt_displacement	-0.821331	0.953208	-0.521812	-0.284587	1.000000	0.886470
sqrt_horsepower	-0.802311	0.849266	-0.696702	-0.306247	0.886470	1.000000
$sqrt_weight$	-0.840095	0.893465	-0.409829	-0.260664	0.939868	0.872045

```
Auto_sqrt = pd.get_dummies(
    Auto_sqrt, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_sqrt.columns
```

Index(['mpg', 'cylinders', 'acceleration', 'oilshock', 'sqrt_displacement', 'sqrt_horsepower

```
cols = list(Auto_sqrt.columns)
cols.remove("mpg")
```

```
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_sqrt)
vifdf
```

	VIF
Feature	
cylinders	11.465746
acceleration	3.010771
oilshock	1.151324
$sqrt_displacement$	27.042946
$sqrt_horsepower$	10.615281
$sqrt_weight$	13.450552
origin_Europe	1.774827
origin_Japan	1.944729

identify_highest_VIF_feature(vifdf)

We find the highest VIF in this model is $sqrt_displacement$ with a VIF of 27.042946454149405 Hence, we drop $sqrt_displacement$ from the model to be fitted.

('sqrt_displacement', 27.042946454149405)

```
cols.remove("sqrt_displacement")
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_sqrt)
vifdf
```

VIF
5.974510
2.934605
1.141428
10.446261
9.963350
1.450840
1.623907

identify_highest_VIF_feature(vifdf)

We find the highest VIF in this model is sqrt_horsepower with a VIF of 10.446261176837464 Hence, we drop sqrt_horsepower from the model to be fitted.

('sqrt_horsepower', 10.446261176837464)

```
cols.remove("sqrt_horsepower")
vifdf = calculate_VIFs("mpg ~ " + " + ".join(cols), Auto_sqrt)
vifdf
```

	VIF
Feature	
cylinders	5.907717
acceleration	1.377206
oilshock	1.119726
$sqrt_weight$	5.331435
origin_Europe	1.446456
origin_Japan	1.581460

```
identify_highest_VIF_feature(vifdf)
```

No variables are significantly collinear.

```
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_sqrt)
```

OLS Regression Results

Dep. Variable: R-squared: mpg 0.814 Model: OLS Adj. R-squared: 0.811 Method: Least Squares F-statistic: 281.0 Date: Sat, 28 Sep 2024 Prob (F-statistic): 2.76e-137 Time: 04:09:30 Log-Likelihood: -1031.4No. Observations: AIC: 2077. 392 Df Residuals: 385 BIC: 2105. Df Model: 6 Covariance Type: nonrobust

==========	========		=======		========	
	coef	std err	t	P> t	[0.025	0.975]
Intercept	54.3622	2.396	22.687	0.000	49.651	59.073
cylinders	0.0148	0.244	0.061	0.952	-0.466	0.495
acceleration	0.1748	0.073	2.395	0.017	0.031	0.318
oilshock	5.0506	0.364	13.873	0.000	4.335	5.766
sqrt_weight	-0.6785	0.052	-13.130	0.000	-0.780	-0.577
origin_Europe	1.5511	0.544	2.851	0.005	0.481	2.621
origin_Japan	1.9033	0.537	3.544	0.000	0.847	2.959
Omnibus:	=======	25.773	 Durbin-V	======== Vatson:	=======	1.269
<pre>Prob(Omnibus):</pre>		0.000	Jarque-E	Bera (JB):		41.514
Skew:		0.449	Prob(JB)):	9	9.67e-10
Kurtosis:		4.317	Cond. No).		803.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
cylinders	1.0	14403.083079	14403.083079	1252.209748	4.496819e-123
acceleration	1.0	30.471304	30.471304	2.649187	1.044209e-01
oilshock	1.0	2422.051542	2422.051542	210.574120	2.284075e-38
sqrt_weight	1.0	2365.801178	2365.801178	205.683691	1.125346e-37
origin_Europe	1.0	24.780703	24.780703	2.154444	1.429743e-01
origin_Japan	1.0	144.484455	144.484455	12.561536	4.421781e-04
Residual	385.0	4428.321210	11.502133	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is cylinders with a p-value of 0.951625. Using the backward methodology, we suggest dropping cylinders from the new model

```
cols.remove("cylinders")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_sqrt)
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.814
Model:	OLS	Adj. R-squared:	0.812

Method:	Least Squares	F-statistic:	338.0
Date:	Sat, 28 Sep 2024	Prob (F-statistic):	1.43e-138
Time:	04:09:30	Log-Likelihood:	-1031.4
No. Observations:	392	AIC:	2075.
Df Residuals:	386	BIC:	2099.

Df Model: 5
Covariance Type: nonrobust

=======================================						
	coef	std err	t	P> t	[0.025	0.975]
Intercept	54.3324	2.342	23.198	0.000	49.728	58.937
acceleration	0.1733	0.069	2.512	0.012	0.038	0.309
oilshock	5.0486	0.362	13.946	0.000	4.337	5.760
sqrt_weight	-0.6760	0.031	-21.968	0.000	-0.737	-0.616
origin_Europe	1.5438	0.530	2.913	0.004	0.502	2.586
origin_Japan	1.8999	0.534	3.561	0.000	0.851	2.949
=======================================			=======	========	========	
Omnibus:		25.925	Durbin-W	atson:		1.269
<pre>Prob(Omnibus):</pre>		0.000	Jarque-B	Bera (JB):		41.952
Skew:		0.450	Prob(JB)	:	7	.77e-10
Kurtosis:		4.326	Cond. No			783.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	mean_sq	F	PR(>F)
acceleration	1.0	4268.531557	4268.531557	372.068179	1.546709e-58
oilshock	1.0	4757.627552	4757.627552	414.700418	3.906846e-63
sqrt_weight	1.0	10191.062423	10191.062423	888.307839	3.798699e-102
origin_Europe	1.0	27.910362	27.910362	2.432817	1.196386e-01
origin_Japan	1.0	145.497978	145.497978	12.682387	4.152294e-04
Residual	386.0	4428.363596	11.472445	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is acceleration with a p-value of 0.012. Using the backward methodology, we suggest dropping acceleration from the new model

```
cols.remove("acceleration")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_sqrt)
```

```
______
Dep. Variable:
                                    R-squared:
                                                                   0.811
                               mpg
Model:
                               OLS
                                    Adj. R-squared:
                                                                   0.809
Method:
                    Least Squares
                                    F-statistic:
                                                                   415.3
                                    Prob (F-statistic):
Date:
                   Sat, 28 Sep 2024
                                                          1.50e-138
                          04:09:31
Time:
                                    Log-Likelihood:
                                                                -1034.6
No. Observations:
                                    AIC:
                               392
                                                                   2079.
Df Residuals:
                               387
                                    BIC:
                                                                   2099.
Df Model:
Covariance Type:
                         nonrobust
______
                                              P>|t| [0.025
                         std err
                                    t
                  coef
                                                                    0.975
______
                         1.75333.2300.0000.36214.2440.000
                                                        54.819
              58.2668
                                                                    61.714
Intercept
oilshock
              5.1556
                                                         4.444
                                                                    5.867

      0.029
      -23.759
      0.000
      -0.758

      0.532
      3.108
      0.002
      0.607

      0.536
      3.405
      0.001
      0.772

      sqrt_weight
      -0.6999
      0.029

      origin_Europe
      1.6530
      0.532

      origin_Japan
      1.8263
      0.536

                                                                   -0.642
                                                                    2.699
                                                                    2.881
______
Omnibus:
                            31.883
                                    Durbin-Watson:
                                                                  1.241
Prob(Omnibus):
                                                                60.472
                             0.000
                                    Jarque-Bera (JB):
Skew:
                             0.483 Prob(JB):
                                                               7.39e-14
Kurtosis:
                             4.664 Cond. No.
                                                                   574.
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
F
                                                             PR(>F)
               df
                        sum_sq
                                   mean_sq
oilshock
              1.0
                    6470.207217
                                6470.207217
                                             556.341155 7.004177e-77
              1.0 12674.256790 12674.256790 1089.796728 1.354903e-114
sqrt_weight
origin_Europe 1.0 38.907051
                                38.907051
                                             3.345425 6.816142e-02
origin_Japan 1.0 134.840521 134.840521 11.594270 7.307851e-04
Residual
            387.0 4500.781890
                                11.629927
                                                  \mathtt{NaN}
                                                                NaN
```

pd.DataFrame(models)

	name	model
0	simple_model	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan$
1	$numeric_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower$
2	$oilshock_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + horsepower$
3	$origin_interactions$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + oilshock$
4	$squared_transformation$	$mpg \sim horsepower + weight + oilshock + origin_Europe + origin_Japan + I(horsepower)$
5	$\log_{transformation}$	$mpg \sim acceleration + oilshock + log_weight + origin_Europe + origin_Japan$
6	$sqrt_transformation$	$mpg \sim oilshock + sqrt_weight + origin_Europe + origin_Japan$

allDone()

<IPython.lib.display.Audio object>