

Recommendations Worth a Million An Introduction to Clustering

15.071x – The Analytics Edge

Netflix

- Online DVD rental and streaming video service
- More than 40 million subscribers worldwide
- \$3.6 billion in revenue

 Key aspect is being able to offer customers accurate movie recommendations based on a customer's own preferences and viewing history

The Netflix Prize

- From 2006 2009 Netflix ran a contest asking the public to submit algorithms to predict user ratings for movies
- Training data set of $\sim 100,000,000$ ratings and test data set of $\sim 3,000,000$ ratings were provided
- Offered a grand prize of \$1,000,000 USD to the team who could beat Netflix's own algorithm, Cinematch, by more than 10%, measured in RMSE

Contest Rules

- If the grand prize was not yet reached, progress prizes of \$50,000 USD per year would be awarded for the best result so far, as long as it had >1% improvement over the previous year.
- Teams must submit code and a description of the algorithm to be awarded any prizes
- If any team met the 10% improvement goal, last call would be issued and 30 days would remain for all teams to submit their best algorithm.

Initial Results

- The contest went live on October 2, 2006
- By October 8, a team submitted an algorithm that beat Cinematch
- By October 15, there were three teams with algorithms beating Cinematch
- One of these solutions beat Cinematch by >1%, qualifying for a progress prize

Progress During the Contest

- By June 2007, over 20,000 teams had registered from over 150 countries
- The 2007 progress prize went to team BellKor, with an 8.43% improvement on Cinematch
- In the following year, several teams from across the world joined forces

Competition Intensifies

- The 2008 progress prize went to team BellKor which contained researchers from the original BellKor team as well as the team BigChaos
- This was the last progress prize because another 1% improvement would reach the grand prize goal of 10%

Last Call Announced

• On June 26, 2009, the team BellKor's Pragmatic Chaos submitted a 10.05% improvement over Cinematch

Predicting the Best User Ratings

- Netflix was willing to pay over \$1M for the best user rating algorithm, which shows how critical the recommendation system was to their business
- What data could be used to predict user ratings?
- Every movie in Netflix's database has the ranking from all users who have ranked that movie
- We also know facts about the movie itself: actors, director, genre classifications, year released, etc.

Using Other Users' Rankings

	Men in Black	Apollo 13	Top Gun	Terminator
Amy	5	4	5	4
Bob	3		2	5
Carl		5	4	4
Dan	4	2		

- Consider suggesting to Carl that he watch "Men in Black", since Amy rated it highly and Carl and Amy seem to have similar preferences
- This technique is called **Collaborative Filtering**

Using Movie Information

- We saw that Amy liked"Men In Black"
 - It was directed by Barry Sonnenfeld
 - Classified in the genres of action, adventure, sci-fi and comedy
 - It stars actor Will Smith

- Consider recommending to Amy:
 - Barry Sonnenfeld's movie "Get Shorty"
 - "Jurassic Park", which is in the genres of action, adventure, and sci-fi
 - Will Smith's movie "Hitch"

This technique is called **Content Filtering**

Strengths and Weaknesses

- Collaborative Filtering Systems
 - Can accurately suggest complex items without understanding the nature of the items
 - Requires a lot of data about the user to make accurate recommendations
 - Millions of items need lots of computing power
- Content Filtering
 - Requires very little data to get started
 - Can be limited in scope

Hybrid Recommendation Systems

- Netflix uses both collaborative and content filtering
- For example, consider a collaborative filtering approach where we determine that Amy and Carl have similar preferences.
- We could then do content filtering, where we would find that "Terminator", which both Amy and Carl liked, is classified in almost the same set of genres as "Starship Troopers"
- Recommend "Starship Troopers" to both Amy and Carl, even though neither of them have seen it before

MovieLens Data

- www.movielens.org is a movie recommendation website run by the GroupLens Research Lab at the University of Minnesota
- They collect user preferences about movies and do collaborative filtering to make recommendations
- We will use their movie database to do content filtering using a technique called clustering

MovieLens Item Dataset

· Movies in the dataset are categorized as belonging to different genres

- (Unknown) Action
- Adventure
- Animation
- Children's

- Comedy Crime
- Documentary
- Drama
- Fantasy

- Film Noir Horror
- Musical
- Mystery
- Romance

- Sci-Fi
- Thriller
- War

- Western
- Each movie may belong to many genres
- · Can we systematically find groups of movies with similar sets of genres?

Why Clustering?

- "Unsupervised" learning
 - Goal is to segment the data into similar groups instead of prediction
- Can also cluster data into "similar" groups and then build a predictive model for each group
 - Be careful not to overfit your model!
 This works best with large datasets

Types of Clustering Methods

- There are many different algorithms for clustering
 - Differ in what makes a cluster and how to find them
- We will cover
 - Hierarchical
 - K-means in the next lecture

Distance Between Points

- · Need to define distance between two data points
 - Most popular is "Euclidean distance"
 - Distance between points i and j is

$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ik} - x_{jk})^2}$$

where k is the number of independent variables

Distance Example

- The movie "Toy Story" is categorized as Animation, Comedy, and Children's

- The movie "Batman Forever" is categorized as Action, Adventure, Comedy, and Crime

Distance Between Points

- Toy Story: (0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0)
- Batman Forever: (0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0)

$$d = \sqrt{(0-0)^2 + (0-1)^2 + (0-1)^2 + (1-0)^2 + \dots}$$

$$= \sqrt{5}$$

- Other popular distance metrics:
 - Manhattan Distance
 - Sum of absolute values instead of squares
 - Maximum Coordinate Distance
 - Only consider measurement for which data points deviate the most

Distance Between Clusters

- Minimum Distance
 - Distance between clusters is the distance between points that are the closest

Distance Between Clusters

- Maximum Distance
 - Distance between clusters is the distance between points that are the farthest

Distance Between Clusters

- Centroid Distance
 - Distance between centroids of clusters
 - Centroid is point that has the average of all data points in each component

Normalize Data

- Distance is highly influenced by scale of variables, so customary to normalize first
- In our movie dataset, all genre variables are on the same scale and so normalization is not necessary
- However, if we included a variable such as "Box Office Revenue," we would need to normalize.

• Start with each data point in its own cluster

Display Cluster Process

Select Clusters

Meaningful Clusters?

• Look at statistics (mean, min, max, . . .) for each cluster and each variable

• See if the clusters have a feature in common that was not used in the clustering (like an outcome)

Beyond Movies: Mass Personalization

• "If I have 3 million customers on the web, I should have 3 million stores on the web"

– Jeff Bezos, CEO of Amazon.com

- Recommendation systems build models about users' preferences to personalize the user experience
- Help users find items they might not have searched for:
 - A new favorite band
 - An old friend who uses the same social media network
 - A book or song they are likely to enjoy

Cornerstone of these Top Businesses

Recommendation Method Used

- Collaborative Filtering
 - Amazon.com
 - Last.fm
 - Spotify
 - Facebook
 - LinkedIn
 - Google News
 - MySpace
 - Netflix

- Content Filtering
 - Pandora
 - IMDB
 - Rotten Tomatoes
 - Jinni
 - Rovi Corporation
 - See This Next
 - MovieLens
 - Netflix

The Netflix Prize: The Final 30 Days

- 29 days after last call was announced, on July 25, 2009, the team The Ensemble submitted a 10.09% improvement
- When Netflix stopped accepting submissions the next day, BellKor's Pragmatic Chaos had submitted a 10.09% improvement solution and The Ensemble had submitted a 10.10% improvement solution
- Netflix would now test the algorithms on a private test set and announce the winners

Winners are Declared!

• On September 18, 2009, a winning team was

announced

• BellKor's Pragmatic Chaos won the competition and the \$1,000,000 grand prize

The Edge of Recommendation Systems

- In today's digital age, businesses often have hundreds of thousands of items to offer their customers
- Excellent recommendation systems can make or break these businesses
- Clustering algorithms, which are tailored to find similar customers or similar items, form the backbone of many of these recommendation systems