Doble Grado en Informática y Matemáticas

Ejercicios de Cálculo I

1. Sean A y B conjuntos no vacíos y mayorados de números reales positivos. Prueba que el conjunto

$$C = \{ab - c^2 : a \in A, b \in B, c \in B\}$$

está mayorado y calcula su supremo.

- 2. Supongamos que $\{x_{2n}\} \to a$ y $\{x_{2n-1}\} \to b$, donde $a, b \in \mathbb{R}$ con $a \neq b$. Prueba que los únicos valores de adherencia de $\{x_n\}$ son a y b.
- 3. Sea $\{x_n\}$ una sucesión y supongamos que hay dos sucesiones parciales $\{x_{\sigma(n)}\}$ y $\{x_{s(n)}\}$ que convergen a un mismo número x y tales que $\sigma(\mathbb{N}) \cup s(\mathbb{N}) = \mathbb{N}$. Prueba que $\{x_n\}$ converge a x.
- 4. Sean $\{x_n\}$ y $\{y_n\}$ successiones acotadas tales que $x_n \ge 0$ e $y_n \ge 0$ para todo $n \in \mathbb{N}$. Prueba que

$$\underline{\lim}\{x_n\}\underline{\lim}\{y_n\}\leqslant\underline{\lim}\{x_ny_n\}\leqslant\overline{\lim}\{x_n\}\underline{\lim}\{y_n\}\leqslant\overline{\lim}\{x_ny_n\}\leqslant\overline{\lim}\{x_n\}\overline{\lim}\{y_n\}.$$

Prueba con ejemplos que estas desigualdades pueden ser estrictas.

5. Prueba que los límites superior e inferior de una sucesión acotada de números reales son valores de adherencia de dicha sucesión y que cualquier otro valor de adherencia está comprendido entre ellos. Deduce que si lím $\{x_n\} = x > 0$, entonces

$$\underline{\lim}\{x_ny_n\} = x\underline{\lim}\{y_n\}, \quad \overline{\lim}\{x_ny_n\} = x\overline{\lim}\{y_n\}.$$

6. Calcula los límites de las sucesiones:

a)
$$x_n = \frac{\frac{2}{1} + \frac{3^2}{2} + \frac{4^3}{3^2} + \dots + \frac{(n+1)^n}{n^{n-1}}}{n^2}$$
.

b)
$$x_n = \log\left(1 + \frac{1}{n}\right) \sqrt[n]{n!}$$
.

- 7. Estudia la continuidad de la función $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = xE(1/x) si $x \neq 0$, f(0) = 1.
- 8. Sean $f, g : \mathbb{R} \to \mathbb{R}$ funciones continuas. Se define $h : \mathbb{R} \to \mathbb{R}$ por:

$$h(x) = \begin{cases} f(x), & \text{si } x \in \mathbb{Q}; \\ g(x), & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Estudia la continuidad de h.

- 9. Sea $f:[a,b]\to\mathbb{R}$ continua y definamos $Z=\{x\in[a,b]:f(x)=0\}$. Supuesto que $Z\neq\emptyset$, prueba que Z tiene máximo y mínimo. ¿Es cierto dicho resultado para una función continua en un intervalo abierto?
- 10. Sea $f:[a,b] \to \mathbb{R}$ una función continua tal que f(a) < 0, f(b) < 0 y f(c) > 0 para algún $c \in]a,b[$. Prueba que hay dos números u,v verificando que a < u < v < b, f(u) = f(v) = 0 y f(x) > 0 para todo $x \in]u,v[$.

11. Calcula, haciendo uso del teorema del valor intermedio, el conjunto imagen f(]-1,1]) de la función $f:]-1,1] \to \mathbb{R}$ dada por:

$$f(x) = \sqrt{\frac{1-x}{\sqrt{1+x}}} \qquad (x \in]-1,1]).$$

Calcula también f[-1/2, 1/2].

12. Sea f una función continua, acotada y estrictamente creciente en un intervalo abierto I. Sea $\alpha = \inf f(I), \beta = \sup f(I)$. Prueba que $f(|a, b|) = |\alpha, \beta|$.

Modifica el resultado anterior si no se supone que f esté acotada en I.

- 13. Sea $f:[a,b] \to \mathbb{R}$ una función creciente verificando que a < f(x) < b para todo $x \in [a,b]$. Definamos $x_1 = a$ y $x_{n+1} = f(x_n)$ para todo $n \in \mathbb{N}$. Prueba que $\{x_n\}$ converge a un punto $\beta \in]a,b]$ tal que $\beta = \sup f([a,\beta[)])$. Además, $\beta \leqslant f(\beta)$. Si suponemos que f es continua, entonces $\beta = f(\beta).$
- 14. Estudia, según los valores de $\alpha > 0$, la convergencia absoluta y la convergencia de las series:

a)
$$\sum_{n>1} (-1)^{n+1} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

a)
$$\sum_{n \ge 1} (-1)^{n+1} \log \left(1 + \frac{1}{n^{\alpha}} \right)$$
 b) $\sum_{n \ge 1} \frac{3^n n!}{(3+\alpha) \cdot (6+\alpha) \cdot (9+\alpha) \dots (3n+\alpha)}$

15. Estudia la convergencia absoluta y la convergencia de las siguientes series.

a)
$$\sum_{n>1} \frac{5^n n!}{\sqrt[4]{n} \ 9 \cdot 14 \cdot 19 \cdots (4+5n)}$$

a)
$$\sum_{n\geqslant 1} \frac{5^n n!}{\sqrt[4]{n} \ 9 \cdot 14 \cdot 19 \cdots (4+5n)};$$
 b) $\sum_{n\geqslant 1} (-1)^{n+1} \frac{1}{n+1-\sqrt{n+1}}$

- 16. Explica si las siguientes afirmaciones son ciertas o falsas. Cuando sean ciertas indica el resultado de teoría que lo justifica o proporciona una prueba y, cuando sean falsas indica un contraejemplo.
 - a) Toda función definida en un intervalo cuya imagen es un intervalo es continua.
 - b) Si f es una función estrictamente monótona y definida en un intervalo entonces su función inversa f^{-1} es continua.
 - c) Si $f: I \to \mathbb{R}$ es una función inyectiva, I es un intervalo y J = f(I) es un intervalo entonces su función inversa f^{-1} es continua en J.
 - d) Hay una función $f:[0,1]\to\mathbb{R}$ que es continua y verifica que f([0,1])=[2,3[.
 - e) Toda función polinómica o se anula en algún punto o alcanza un máximo o un mínimo absolutos en \mathbb{R} .
 - f) Si f es continua en a y g es discontinua en a entonces f+g puede ser continua o discontinua
 - g) Si f y g son discontinuas en a entonces fg es discontinua en a.
 - h) Una función f es continua en a si, y sólo si, |f| es continua en a.
 - i) Si una función f está definida en un intervalo [a,b] y toma todos los valores comprendidos entre f(a) y f(b), entonces es continua en [a, b].
 - j) Si una sucesión monótona $\{x_n\}$ tiene una sucesión parcial convergente entonces $\{x_n\}$ es convergente.
 - k) Una sucesión no está mayorada si, y sólo si, tiene alguna sucesión parcial positivamente divergente.
 - l) Si $\{x_n\}$ es una sucesión estrictamente creciente tal que $\{x_{n+1}-x_n\}\to 0$, entonces $\{x_n\}$ es convergente.

- *m*) Supongamos que $\{x_{3n}\}$, $\{x_{3n+1}\}$, $\{x_{3n+2}\}$ convergen a un mismo número α . Entonces $\{x_n\}$ converge a α .
- n) Si la serie $\sum_{n\geq 1} |a_{n+1}-a_n|$ es convergente entonces $\{a_n\}$ es convergente.
- \tilde{n}) Si $f,g:\mathbb{R}\to\mathbb{R}$ son funciones continuas tales que f(x)=g(x) para todo $x\in\mathbb{Q}$, entonces f(x)=g(x) para todo $x\in\mathbb{R}$.
- o) Si $f:[0,1]\to\mathbb{R}$ es continua y f(x)>0 para todo $x\in[0,1]$ entonces existe $\alpha>0$ tal que $f(x)>\alpha$ para todo $x\in[0,1]$.
- p) Toda sucesión estrictamente creciente verifica la condición de Cauchy.
- 17. Explica si las siguientes afirmaciones son ciertas o falsas. Cuando sean ciertas indica el resultado de teoría que lo justifica o proporciona una prueba y, cuando sean falsas indica un contraejemplo.
 - a) Toda serie mayorada es convergente.
 - b) Si un conjunto no vacío de números reales no tiene supremo tampoco tiene máximo.
 - c) Hay un conjunto $A \subseteq \mathbb{R}$ que no es vacío y cuyo conjunto de minorantes es un intervalo del tipo $]-\infty,a[.$
 - d) Hay una función $f:[0,1]\to\mathbb{R}$ que es continua y verifica que f([0,1])=[2,3[.
 - e) Toda función continua en un intervalo alcanza en algún punto de dicho intervalo un valor mínimo.
 - f) Toda función $f: A \to \mathbb{R}$, inyectiva en A y cuya imagen es un intervalo, es continua.
 - g) Si un conjunto de números reales no tiene máximo entonces tiene supremo.
 - h) Existe una sucesión acotada de números reales $\{x_n\}$ que verifica que $|x_n x_m| \ge 10^{-10}$ siempre que $n \ne m$.
 - i) Toda serie convergente es una sucesión acotada.
 - j) Si $\{x_n\}$ es una sucesión acotada de números reales, entonces $\{x_n\}$ tiene la siguiente propiedad: para cada $\delta > 0$, pueden encontrarse $m, n \in \mathbb{N}$, con $m \neq n$, tales que $|x_n x_m| < \delta$.
 - k) Una sucesión que no tiene ninguna sucesión parcial convergente tampoco tiene ninguna sucesión parcial acotada.
 - l) Sea A un conjunto de números reales no vacío y mayorado y $\beta = \sup A$. Dado $\varepsilon > 0$ existe algún $a \in A$ tal que $\beta \varepsilon < a < \beta$.
 - m) Toda sucesión tiene una sucesión parcial convergente o una sucesión parcial divergente.
 - n) Toda función polinómica o se anula en algún punto o alcanza un máximo o un mínimo absolutos en \mathbb{R} .
 - \tilde{n}) Una sucesión no acotada no puede tener una sucesión parcial convergente.
 - o) Si $f: \mathbb{R} \to \mathbb{R}$ es continua y verifica que $f(\mathbb{R}) \subset \mathbb{Q}$ entonces f es constante.
 - $p) \ \ \text{Si} \ x_n \leqslant y_n \ \text{para todo} \ n \in \mathbb{N} \ \text{y} \ \sum_{n\geqslant 1} y_n \ \text{es convergente, entonces} \ \sum_{n\geqslant 1} x_n \ \text{también es convergente.}$ te.