

On Bursty Multi-Pair Two-Way Relay Channels

Speaker: Shih-Chun Lin (NTUST, Taiwan)

Jointly work with I-Hsiang Wang (NTU, Taiwan)

Date: 2015/1/20

Outline

- Introduction
 - Multi-pair two-way relay channels
 - Bursty interference
 - Burstness state information (delayed/instantaneous)
- Capacity region of two-pair symmetric case
 - Binary expansion model
 - Gaussian model (bounded gap)
- Conclusion

Multi-Pair Two-Way Relay Channel

 Multiple pairs of users exchange their messages within their own pairs, with the help of a shared relay

Bursty interference

Uncoordinated frequency hopping

Time

- Bursty data traffic with energy saving receiver
- Shadowing

Mathematical model

Burstness State Information

Delayed State Information

- Terminal user : $X_{A_1}[t] \stackrel{f}{=} (w_{A_1}, Y_{A_1}^{t-1}, S_1^{t-1}, S_2^{t-1})$

- Relay : $X_R[t] \stackrel{\text{f}}{=} (Y_R^{t-1}, S_1^{t-1}, S_2^{t-1})$

Instantaneous State Information

- Terminal user : $X_{A_1}[t] \stackrel{\text{f}}{=} (w_{A_1}, Y_{A_1}^{t-1}, S_1^N, S_2^t)$

- Relay : $X_R[t] \stackrel{\text{f}}{=} (Y_R^{t-1}, S_1^t, S_2^t)$

Related works

- Non-bursty multihop relay network
 - Two-pair two-way relay channel
 [A. Sezgin, A.S. Avestimehr, M.A. Khajehnejad, and B. Hassibi TIT 12]
 - General multicast relay network
 [S.-H. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung TIT 11]
 [A. S. Avestimehr, S. Diggavi and D. Tse TIT 11]
- One-hop bursty interference channel
 - Degraded message set approach
 [N. Khude, V. Prabhakaran and P. Viswanath, ISIT 09]
 - With output feedback
 [I.-H. Wang, C. Suh, S. Diggavi and P. Viswanath, ISIT 13]
 - Binary expansion model with burstness state feedback
 [A. Vahid, M. A. Maddah-Ali, and A. S. Avestimehr, TIT to appear]

Contributions

 Identify capacity region to within a bounded gap in a two-pair, symmetric setting (both delayed and instantaneous state information)

- Decomposition of outer and inner bounds
 - Uplink :

Outer-bound : Cooperation

Inner-bound: Compute and forward with

joint lattice decoding

– Downlink :

Outer-bound: Degraded channel argument

Inner-bound: 3-Phase retransmission (delayed)

Superposition coding (instantaneous)

Decomposition: outer-bounds

erasure prob. ${\cal P}$

- DoF outer-bounds with delayed burstness state information
 - Uplink (A₁&A₂ cooperation)

$$d_1 + d_2 \le 2p(1-p) + p^2,$$

$$d_1 \le p,$$

$$d_2 \le p$$

Downlink (Degraded channel argument)

$$\frac{d_1}{p} + \frac{d_2}{p(2-p)} \le 1,$$

$$\frac{d_1}{p(2-p)} + \frac{d_2}{p} \le 1,$$

Decomposition: inner-bounds

Uplink phase:
 Relay decodes XOR

$$\Sigma_1 = w_{A_1} \oplus w_{B_1}$$
$$\Sigma_2 = w_{A_2} \oplus w_{B_2}$$

Downlink :

 3-Phase retransmission in
 [Georgiadis & Tassiulas 09]

$$\Sigma_1$$
 Σ_2 erased $\Sigma_1 \oplus \Sigma_2$

Receiver side information

$$\Sigma_1 - w_{B_1} = w_{A_1}$$

DoF region: union of uplink and downlink

Binary expansion model

Capacity region (Symmetric)

Delayed, $(n_{A1}, n_{A2}) = (n_{B1}, n_{B2}) = (3,2)$

- Uplink :
 Relay decodes
 independent XOR
 of each layer
- Downlink :

Gaussian uplink: bounded gap schemes

Compute and forward with jointly lattice decoding

[c.f. SIC in Sezgin TIT 12]

Instantaneous state information : on/off power allocation

Downlink: from binary to Gaussian

3-Phase retransmission:

– How to re-transmit erased **bits** in Gaussian channel?

How to incorporate superposition coding?

Binary 3-Phase retransmission scheme

Retransmission in Gaussian model

 Phase 3 : Send erased symbols (2-Rx joint sourcechannel coding problem)

• Node B_1 decodes Σ_1 by total Np+Np(1-p) symbols

Superposition with delayed state information

 3-Phase retransmission in Gaussian model

 Σ_1 Σ_2 Erased symbols

– Phase 1 : transmit Σ_1

– Phase 2 : transmit Σ_2 and Σ_1

Phase 3 : B₁ has better reconstruction

Superposition with delayed state information

Phase 2: To superimpose x₁ and x₂

Solved by Lattice strategies

• Phase 3: Compressing by successive refinement

Gaussian downlink: bounded gap schemes

 $|h_{R1}| = 2$, $|h_{R2}| = 1$, Tx SNR=10dB

- Delayed: Proposed scheme has bounded gap to outer bounds
- Instantaneous: conventional superposition coding +on/off power allocation

Extensions

- Different burstness state $(S_1^{ul}(t), S_1^{dl}(t))$ at uplink and downlink
- More than two user pairs
- Different state for each user $(S_1(t), S_2(t), S_3(t), S_4(t))$: Shadowing

Conclusion

- Bursty interference is a more general and practical model for future communication system
- Capacity region to within a bounded gap in a bursty two-pair two-way relay channel in symmetric setting was identified

Thank you!

