Autómatas y Lenguajes Formales, 2022-1 Tarea 4

Noé Salomón Hernández S. Alan Ernesto Arteaga Vázquez

Fecha de entrega: miércoles 17 de noviembre

Nota 1: La tarea se entrega por equipos de dos integrantes.

Nota 2: El puntaje máximo de esta tarea es 11 pts.

- 1. (3 pts.) Demuestre usando el lema del bombeo que los siguientes lenguajes no son regulares:
 - $\{a^n \mid n \text{ es un cuadrado perfecto}\},$
 - $\{w \in \{a,b\}^* \mid n_a(w) < 2 n_b(w)\}$, donde la función $n_{\sigma}(w)$ calcula el número de veces que el símbolo $\sigma \in \{a,b\}$ figura en la cadena w.
- 2. (2 pts.) Utilizando el teorema de Myhill-Nerode demuestre que el lenguaje $L = \{ww \mid w \in \{0,1\}^*\}$ no es regular.
- 3. (1 pt.) Encuentre un ejemplo de un lenguaje $L\subseteq\{a,b\}^*$ tal que L no puede ser aceptado por un AF, pero L^* sí.
- 4. (2 pts.) Determine si las siguientes proposiciones son *verdaderas* o *falsas*, dé una breve prueba o exhiba un contraejemplo.
 - Si $L = L_1L_2$ y L es regular, entonces L_1 y L_2 deben de ser ambos regulares.
 - $L = \{a^i b^j \mid i+j \geq 4\}$ es regular. Dé un AFD, AFN, AFN- ε o una expresión regular para mostrar que L es regular, o pruebe que no es regular.
- 5. (2 pts.) Dé gramáticas libres de contexto para cada uno de los siguientes lenguajes sobre el alfabeto $\Sigma = \{a, b\}$
 - a) $L = \{ w \in \Sigma^* \mid w \text{ tiene más } a \text{'s que } b \text{'s} \}$
 - b) $L = \{w \# x \mid w^{\mathcal{R}} \text{ es una subcadena de } x \text{ con } w, x \in \{a, b\}^*\}$
- 6. (1 pt.) Describa el lenguaje (subconjunto de $\{a,b\}^*$) que es generado por la gramática libre de contexto siguiente:

$$S \rightarrow aSa \mid bSb \mid aAb \mid bAa$$
 $A \rightarrow aAa \mid bAb \mid a \mid b \mid \varepsilon$