

the SSTr. In our Case, we have 3 sets of Dothogonal untrants that would completely partition the SSTr.

Now the ANOVA table

			AA MAA M	
Source	97	55	ms	F-start
Trialment Vpartitions	3 (1-1)	SSTE	MST8	->(0/
V partitions	M. A			msu C
4		2261	MSCI	MSG ~ F, I (J-1)
Chesical	price	5562	M56_	ms12 ~ F, I (J-1)
		1717		M(1)
4	71	1 5563	m5 63	(msE~ F, I (J-1)
-	11111			

Ans to the Rues 03

Cantrast Tiet

$$= -3.17$$

Hypothesis Ho: (MITM2)-(M3+M4)=0 Ha: (M,+Mz) - (M3+H4) 70 WE Know 2-247°. where MSE = SSE = 63.99 (given) Whave natotal no of observations from all populations = 24 2 (i = (i)+ (i)+(-1)+(-1)=4 and 2 - (18.65) + 1(17.95) + (-1)20.95 + (-1)(18.82)where, yo = 40

- (1) = -4.341 21 24-4 20 Using R, critical value at 220.05 Teritical/2=0.05 = +2.086 12.086 Since Tstat < Tintical 08 -4.341 <-2.086 . We rect Null hypotheris Ho · (M,+M2) - (M3+My) = 0 Means of fluid 12 is smaller than fluid 3 & 4.

Ans to the Ques 4 C= (H,+My)- (M2+M3) and the contract in 3 is G= (M+H2)-(M3+M4) To check whether the contrasts are or thogonal or not we need to sortisty 2 Gdi = 0 : 24d1 = 1x1=1 2622=-1X1=-1 26332-1X-1=1 4 Lydy = 1 X-1 = -· 34di = 1-1+1-1=0 . The Contrast's are orthogonal.

	Ans to the Ruce 5
	about uronught 1p) g. 8 Subrig
	LSD test with 22005
	For population 1 & population 2
	100 10000000000000000000000000000000000
1	ESD, X; EX, Surges and was long
	MSE (n; tnj)
-	$\sqrt{MS12(n_i, n_j)}$
7	
19.	= T_1-1 × ms=(1+1)
	0 : 10 16 (0 5 (0 10 10 10 10 10 10 10 10 10 10 10 10 10
3	=) 13.65-17.95 = Tox (3.1995 (+++)
307	20 / 13 (6)
1	=) 0.7= Tox 1.033
7	2) 17 = 60
	-1 2.7 - 2.436 × 1.033 = 2.155
137-1	-) v. + = a voe
111	=) 0.7 = 2.036 × 1.033 = 2.155 wing R
	·
	: 0.7 < 2.155 (fail to right Ho)
	Similarly For population 1 & population 3
+	-2.3 00 +2.3 > 2.155 (seject Ho)

because -2.3 (difforme in mean of D & (3)) will be same as (3) & (i) but positive. Similarly for population (1) I population (4) -0.17 <2.155 (fail to reject Ho) Difference in means for pop (1) & (2) > fail to reject Ho " 1 Pop (1) L(3) -> reject Ho " " Popy (1) S (4) - fail tosejut Ho : Mean difference between population (1) Spopulation (3) pairs of thirds significantly differ in mean is life time. 1 / 2,155 (tail to 82)-Ut His