5 questions

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's recall (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.85			
------	--	--	--

2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which are the two?

A human expert on the application domain
can confidently predict \boldsymbol{y} when given only the features \boldsymbol{x}
(or more generally, if we have some way to be confident
that \boldsymbol{x} contains sufficient information to predict \boldsymbol{y}
accurately).
The classes are not too skewed.
When we are willing to include high
order polynomial features of x (such as x_1^2 , x_2^2 ,
x_1x_2 , etc.).
Our learning algorithm is able to

Our learning algorithm is able to represent fairly complex functions (for example, if we train a neural network or other model with a large

number of parameters).

3. Suppos	se you have trained a logistic regression classifier which is outputing $h_ heta(x).$
	otly, you predict 1 if $h_ heta(x) \geq ext{threshold}$, and predict 0 if $h_ heta(x) < ext{threshold}$, where currently the old is set to 0.5.
Suppo	se you increase the threshold to 0.7. Which of the following are true? Check all that apply.
	The classifier is likely to now have higher precision.
	The classifier is likely to now have higher recall.
	The classifier is likely to have unchanged precision and recall, and
	thus the same F_1 score.
	The classifier is likely to have unchanged precision and recall, but
	higher accuracy.
4. Suppo	se you are working on a spam classifier, where spam
emails	are positive examples ($y=1$) and non-spam emails are
negativ	ve examples ($y=0$). You have a training set of emails
in whic	ch 99% of the emails are non-spam and the other 1% is
spam.	Which of the following statements are true? Check all
that ap	oply.
	If you always predict non-spam (output
	y=0), your classifier will have an accuracy of
	99%.
	If you always predict spam (output $y=1$),
	your classifier will have a recall of 100% and precision
	of 1%.
	If you always predict spam (output $y=1$),
	your classifier will have a recall of 0% and precision
	of 99%.
	If you always predict non-spam (output
	$y{=}0$), your classifier will have a recall of
	0%.
5. Which	of the following statements are true? Check all that apply.
	If your model is underfitting the
	training set, then obtaining more data is likely to
	help.
	The "error analysis" process of manually

examining the examples which your algorithm got wrong

Submit Quiz
negative.
for predicting whether an example is positive or
classifier, you must use 0.5 as your threshold
After training a logistic regression
your first version of a learning algorithm.
collecting a large amount of data before building
It is a good idea to spend a lot of time
data.
makes it unlikely for model to overfit the training
Using a very large training set
performance.
developing new features) to improve your algorithm's
can help suggest what are good steps to take (e.g.,

4/5 questions correct

Quiz passed!

Continue Course (/learn/machine-learning/lecture/sHfVT/optimization-objective)

Back to Week 6 (/learn/machine-learning/home/week/6)

Be Recognized for Your Achievements. "Course Certificates give you the recognition you need to get the job, the material gives you the skills to do the job. It makes you look more valuable because you are more valuable." - Peter B., USA, Software Developer

Showcase Your Accomplishment! Earn Your Course Certificate! US\$49 USD > (/certificate/machine-learning)

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's recall (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

3.

Suppose you have trained a logistic regression classifier which is outputing $h_{\theta}(x)$.

Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x) < \text{threshold}$, where currently the threshold is set to 0.5.

Suppose you **increase** the threshold to 0.7. Which of the following are true? Check all that apply.

4

Suppose you are working on a spam classifier, where spam emails are positive examples (y=1) and non-spam emails are negative examples (y=0). You have a training set of emails in which 99% of the emails are non-spam and the other 1% is spam. Which of the following statements are true? Check all that apply.

5

Which of the following statements are true? Check all that apply.

4/5 questions correct

Quiz passed!

Continue Course (/learn/machine-learning/lecture/sHfVT/optimization-objective)

Back to Week 6 (/learn/machine-learning/home/week/6)

Be Recognized for Your Achievements. "Course Certificates give you the recognition you need to get the job, the material gives you the skills to do the job. It makes you look more valuable because you are more valuable." - Peter B., USA, Software Developer

Showcase Your Accomplishment! Earn Your Course Certificate! US\$49 USD > (/certificate/machine-learning)

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's precision (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.

Currently, you predict 1 if $h_{ heta}(x) \geq ext{threshold}$, and predict 0 if $h_{ heta}(x) lt ext{threshold}$, where currently the threshold is set to 0.5.

Suppose you **decrease** the threshold to 0.1. Which of the following are true? Check all that apply.

Suppose you are working on a spam classifier, where spam emails are positive examples (y=1) and non-spam emails are negative examples (y = 0). You have a training set of emails in which 99% of the emails are non-spam and the other 1% is spam. Which of the following statements are true? Check all

5.

that apply.

Which of the following statements are true? Check all that apply.

5 questions

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's precision (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.85					
------	--	--	--	--	--

2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

- We train a learning algorithm with a large number of parameters (that is able to learn/represent fairly complex functions).
- The features x contain sufficient information to predict y accurately. (For example, one way to verify this is if a human expert on the domain can confidently predict y when given only x).
- We train a learning algorithm with a small number of parameters (that is thus unlikely to overfit).

3. Suppo	se you have trained a logistic regression classifier which is outputing $h_{ heta}(x).$
	itly, you predict 1 if $h_ heta(x) \geq ext{threshold}$, and predict 0 if $h_ heta(x)lt$ threshold, where currently the old is set to 0.5.
Suppo	se you decrease the threshold to 0.1. Which of the following are true? Check all that apply.
	The classifier is likely to now have higher precision.
	The classifier is likely to have unchanged precision and recall, but
	higher accuracy.
	The classifier is likely to now have higher recall.
	The classifier is likely to have unchanged precision and recall, but
_	lower accuracy.
4	
4. Suppo	se you are working on a spam classifier, where spam
emails	are positive examples ($y=1$) and non-spam emails are
negativ	ve examples ($y=0$). You have a training set of emails
in whic	th 99% of the emails are non-spam and the other 1% is
spam.	Which of the following statements are true? Check all
that ap	oply.
	If you always predict non-spam (output
	$y{=}0$), your classifier will have an accuracy of
	99%.
	If you always predict spam (output $y=1$),
	your classifier will have a recall of 100% and precision
	of 1%.
	If you always predict spam (output $y=1$),
	If you always predict spam (output $y=1$), your classifier will have a recall of 0% and precision
	your classifier will have a recall of 0% and precision
	your classifier will have a recall of 0% and precision of 99%.

If your model is underfitting the
training set, then obtaining more data is likely to
help.
It is a good idea to spend a lot of time
collecting a large amount of data before building
your first version of a learning algorithm.
Using a very large training set
makes it unlikely for model to overfit the training
data.
The "error analysis" process of manually
examining the examples which your algorithm got wrong
can help suggest what are good steps to take (e.g.,
developing new features) to improve your algorithm's
performance.
Culturate O. :
Submit Quiz

5 questions

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's recall (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.85				
------	--	--	--	--

2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

- Our learning algorithm is able to represent fairly complex functions (for example, if we train a neural network or other model with a large number of parameters).
- A human expert on the application domain can confidently predict y when given only the features x (or more generally, if we have some way to be confident that x contains sufficient information to predict y accurately).
- The classes are not too skewed.

3. Suppos	3. Suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.				
Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x) < \text{threshold}$, where currently the threshold is set to 0.5.					
Suppose you increase the threshold to 0.9. Which of thefollowing are true? Check all that apply.					
	The classifier is likely to have unchanged precision and recall, and				
	thus the same F_1 score.				
	The classifier is likely to now have higher precision.				
	The classifier is likely to now have higher recall.				
_	The classifier is likely to have unchanged precision and recall, but				
	higher accuracy.				
4.					
	se you are working on a spam classifier, where spam				
emails are positive examples ($y=1$) and non-spam emails are					
negative examples ($y=0$). You have a training set of emails					
in which 99% of the emails are non-spam and the other 1% is					
spam.	Which of the following statements are true? Check all				
that ap	pply.				
	If you always predict spam (output $y=1$),				
	your classifier will have a recall of 0% and precision				
	of 99%.				
	If you always predict spam (output $y=1$),				
	your classifier will have a recall of 100% and precision				
	of 1%.				
	If you always predict non-spam (output				
	$y{=}0$), your classifier will have a recall of				
	0%.				
	If you always predict non-spam (output				
	$y{=}0$), your classifier will have an accuracy of				
	99%.				
5.					
Which of the following statements are true? Check all that apply.					
	Using a very large training set				
	makes it unlikely for model to overfit the training				
	data.				
	The "error analysis" process of manually				

examining the examples which your algorithm got wrong

can help suggest what are good steps to take (e.g.,
developing new features) to improve your algorithm's
performance.
It is a good idea to spend a lot of time
collecting a large amount of data before building
your first version of a learning algorithm.
If your model is underfitting the
training set, then obtaining more data is likely to
help.
After training a logistic regression
classifier, you must use 0.5 as your threshold
for predicting whether an example is positive or
negative.
Submit Quiz

5/5 questions correct

Quiz passed!

Continue Course (/learn/machine-learning/lecture/sHfVT/optimization-objective)

Back to Week 6 (/learn/machine-learning/home/week/6)

Be Recognized for Your Achievements. "Course Certificates give you the recognition you need to get the job, the material gives you the skills to do the job. It makes you look more valuable because you are more valuable." - Peter B., USA, Software Developer

Showcase Your Accomplishment! Earn Your Course Certificate! US\$49 USD > (/certificate/machine-learning)

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's recall (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

3.

Suppose you have trained a logistic regression classifier which is outputing $h_{\theta}(x)$.

Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x) < \text{threshold}$, where currently the threshold is set to 0.5.

Suppose you **increase** the threshold to 0.9. Which of thefollowing are true? Check all that apply.

4

Suppose you are working on a spam classifier, where spam emails are positive examples (y=1) and non-spam emails are negative examples (y=0). You have a training set of emails in which 99% of the emails are non-spam and the other 1% is spam. Which of the following statements are true? Check all that apply.

5

Which of the following statements are true? Check all that apply.

