Machine Leoning (MU

Machine learning had grown up as a sub-field of AI or ortifical intellipence.

- machine learn to do it by itself

Two main types of Mc ore 1- supervised Learning 2-Unsupervised Learning

applications are most table agrangments and innovation

Supervised Learning

input output label

* Learns from being given "right answer" -> labeled data

input (x)	ontbut (a)	Application
email	3pam?(0/1)	spom filtering
anglo	text transcripts	speech recognition
English	Sporish,	machine troulation
adiuse ins	Click ? (0/1)	online advertising

remember of the state of the st

· Regression: Predict a number infinitely many possible

- egrise gare tahminde bulunuur.
- · Verlere Warak en Wygun Gizstl Segerch algoritme eldredmek
- · Classification: Predict categories smell number of possible outputs.
- + Only two values o or 1 -, tomor by hyu; with hugh

Johnstondumenn regressords forks: Jintlandumenn 2,1,2 gibl kritik Jinth elegi cikh elmen du orcak 2.5, 1.7 gibl eredekt tim elen Jayllan Systmemendin

Unsupervised learning

Find something interesting in Unlabelled data.

- An unsupervised learning algorithm to two different clusters

HAMIT

* Data only comes with inputs x, but not output labelies.

* Alporthm har to find structure in the data

I Clustering: Group similar data points together.

trier to automotically group them into clusters.

1 +124311 C+ W

2- Anomaly detection; find unusual data points.

-) Financial sistende dolardincille tespiti.

3 - Dimensionality reduction: Compress data using fewer numbers.

- Take by dataset and compress it to a much smaller but a-set while losing as little information as possible.

Gialen dogwe pre o boutaki evin

"right onswer",

Training set: ev figation signerabilities with model training set the egither booler model missionin evint tohimin edin.

Hughue, Cer - 100 (
$$x^{(1)}$$
, $y^{(1)}$) = ($x^{(1)}$, $y^{(1)}$) ont ($x^{(1)}$)

feature - model -, prediction (estimated y)

How to represent f?

Dimensionality reductionia

to part sin

detection;

-) line prk. dohe fasis ve toles obuquian bu kullonitr.

VOIGHIE Univoriak linear regression

$$\hat{y}^{(i)} = f_{\omega,b}(x^{(i)})$$

$$f_{\omega,b}(x^{(i)}) = x_1 x^{(i)} + b$$

cost function: Squared error Ost function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - g^{(i)})^2$$

ME number of training examples

W/P -> bacometer

Cost function intuition (setge)

Minimize TLW.b)

Simplified full = WX

minimize T(w)

Jerual care: minimize J(w,b)

- Choose who minimite T(w)

k) deperturing toggithen w departs sequent linear regressions upon bir cost fortugen tuliantis olluna.

1612-0115x+100

- Mich assime official

Gradient Descent

J(W,b) -> ktigtithmek istedigimit out fink.

by for linear regression or any function

min J(W1, X/2 ..., Wn, b)

Outlinei =

(C=d, C=w taz) diw ance ntim trotz,

· leep changing wis to reduce J(wib)

· Until we settle at or near a minimum

-) cost fine may have more than I min

your ason infl

Who stands as

Fradient desnect algorithm

d -> Learning rate (OCD(1)

-) Jokus asagi ne todar borile. :

adm atacagimisi bontrol eda. :

admlar borok.

-) Repeat until convergence.

-> Simultaneously update w and b.

Simultoneous update:

tmp. w= w- a 2 J(W16)

tmp-b= b- A.2 T(WIb)

W= tmp-W

b=tmp-b

- · Dy T(W,b) -, derivative, you belief.
- . 19-1 learning rak
- a very small s adm de est biest -
 - -, Gradient descent be slow
- a too last agu cox pirk
 - 610dieni descent may overshoot, never reach
 - MININM.
 - -) Fail + oneige, diverge

W= W-Q. & J(W)

WZW

- local min noktasindojiona) dericii anoline w degenini degistimes,

+ Hear a local min,
- perivative becomes smaller.
- Update steps become smaller

(a reach in nimum without decreasing learning rate,

- Linear regression

full (XI= XIX +b)

- Cost function

- Gradient des cent alpham.

"Batch" gradient descent

Batch: Each step of gradient descent user