SQL o NoSQL Un cuento de dos paradigmas

¡Hola!

Mi nombre es **Victoria Perez Mola** y estoy acá porque me gusta hablar de **bases de datos**.

CONTENIDOS

BASES DE DATOS

BASES DE DATOS RELACIONALES

BASES DE DATOS NO RELACIONALES

CONTENIDOS

RELACIONALES VS NO RELACIONALES

Bases de datos

Empecemos con lo básico

"Una base de datos es una colección de datos **persistentes** utilizados por las aplicaciones de una empresa."

-C.J. Date

TIPOS DE BASES DE DATOS Classifica

Depending upon the usage requirements,

- 1. Centralised database.
- Distributed database.
- 3. Personal database.
- 4. End-user database.
- 5. Commerci
- 6. NoSQL da
- 7. Operation
- 8. Relational
- 9. Cloud data
- 10. Object-ori
- 11. Graph dat

Different types of Database

B4004A L1

Types of **DATABASE**

01

One way to cl

banking, man

An in-mer

An active

A cloud da

time is crit

provide ac

browser a

Data ware

access to

data ware

A deductive

A distribut

A docume

An ember

End-user

maintenar

them are

DBMSs, p

application

databases

A federate

Sometime

· A graph d

· An array [

In a hyper

A knowled

A mobile of
 Operation

demograp

parts inve

A parallel

representi

large amo

Distributed Database

It comprises of at least two documents situated in various destinations either on a similar system or on unique systems.

02

Centralized Database

A centralized database framework is a framework that keeps the information in one single database at one single place.

03

Personal Database

Information is gathered and stored on PCs, which is in small quantity and can easily manageable.

04

Relational Database

It is described by a set of tables from where data can be accessed. Relational database can store a large amount of information in a set of tables, which are linked to each other.

05

Operational Database

An operational database is utilized to store and manage a huge amount of data in real time.

06

Hierarchical Database

In hierarchical database model, data is organized in a tree structure that links a number of different elements to one parent record.

07

Cloud Database

It is deployed and delivered through a cloud platform like Platformas-a-Service (PaaS) that permits the organizations & their applications to store and mange information from the cloud.

08

Object Oriented Database

It is a group of object-oriented programming and relational database, that is organized around object rather than actions and logic.

09

NoSQL Database

NoSQL database is used to efficiently manage and analyze a large set of distributed data that may stored at several virtual servers.

cument-text, statistical, or base structure or interface backed-up by non-volatile

oth inside and outside the

e remotely, "in the cloud",

such as market research to not converted from internal managing data so as to n

riented, or semi structure tware that requires access

re collections of documen

It is handled as a single e system), and provides to may refer to a less integral an atomic commit protocos, and properties to represent the system.

ually large) multi-dimensing, another piece of text, ncyclopedias, where users lge management, providing

ically process relatively hi mation such as salary, be ting and financial dealings oading data, building inde

DatabaseTown.com

VA DE NUEVO... TIPOS DE BASES DE DATOS

Relacionales

SQL

No Relacionales

NoSQL

ADMINISTRACIÓN DE BASES DE DATOS (DBMS)

- Permite el almacenamiento, modificación y extracción de la información de una base de datos
- Provee aspectos de seguridad: accesos y auditoría
- Otorga capacidad de reinicio y de recuperación ante accidentes y errores
- Asegura la integridad de datos

Bases de datos Relacionales

(y SQL)

02

BASES DE DATOS RELACIONALES

- Creadas en los años 60
- Datos estructurados
- Conjunto (set) de tablas: columnas y filas
- Relaciones entre tablas

Name	City	Age
Maria	Seattle	20
Luis	Toronto	25
Martin	Berlin	22

Name	Date	Payment
Maria	11/01/2019	Card
Maria	11/02/2019	Card
Luis	12/02/2019	Paypal
Maria	11/03/2019	Card

SQL (Structured Query Language)

- Aparece en los años 70
- Estandarizado por ANSI
- Variaciones de acuerdo a los fabricantes

SELECT field FROM table WHERE ROWNUM <= 10

SELECT field FROM table LIMIT 10;

SELECT field FROM table FETCH FIRST 10 ROW ONLY

Bases de datos No Relacionales (NoSQL)

NoSQL

- Aparece en los años 90
- Auge en el año 2010: "web scale"
- No es necesario saber de antemano que es y cómo se va almacenar la información
- Depende principalmente del fabricante
- Diferentes categorías / subtipos

Document

Graph

Key-Value

Wide-Column

{	
"user":{	
"id":"14	3",
"name":":	improgrammer",
"city":"	lew York"
}	
}	

1	Fruit	A Foo	B Baz	
2	City	E DC	DIPLA	G FLD
3	State	AINZ	clcr	

SCYLLA

Relacionales vs NoSQL

Distribución de tipos de Bases de datos en el mercado

Bases de datos comerciales más usadas

Source: scalegrid.io

Bases de datos Open source más usadas

Relacionales vs NoSQL

Relacional

- Requiere definir un esquema estructurado
- Un lenguaje unico, habilidades transferibles
- Múltiples herramientas de reporting
- Soporta ACID
- Gran comunidad de soporte
- Necesita más manejo de escalabilidad.
- Puede tener problemas de performance con Big data

NoSQL

- Permite la persistencia de cualquier dato en el "documento"
- Facilita la escalabilidad
- Excelente performance con big data
- Soporte limitado de joins
- Comunidad pequeña
- No hay un lenguaje estructurado
- Pocas herramientas de reporting
- Los datos están desnormalizados, necesitando cambios en masa
- Poco soporte de ACID

Propiedades ACID

Relacionales vs No relacionales


```
"articles": [
     "title": "title of the article",
     "articleID": 1,
     "body": "body of the artricle",
     "author": "Isaac Asimov",
     "comments": [
           "username": "Fritz",
           "join date": "1/4/2014".
            "commentid": 1.
            "body": "this is a great article",
            "replies": [
                    "username": "Freddy",
                    "join date": "11/12/2013",
                    "commentid": 2,
                    "body": "seriously? it's rubbish"
            "username": "Stark",
            "join date": "19/06/2011",
            "commentid": 3.
            "body": "I don't agree with the conclusion"
```

SQL vs MongoDB vs neo4j (Cypher)

SELECT TOP 10 field FROM table

db.yourCollectionName.f
ind().sort({\$natural:-1}
}).limit(10);

MATCH (n)
RETURN n.name
ORDER BY n.name
LIMIT 10

SQL vs MongoDB


```
{ customer_id : 1,
    first_name : "Mark",
    last_name : "Smith",
    city : "San Francisco",
    phones: [ {
        type : "work",
        number: "1-800-555-1212"
    },
    { type : "home",
        number: "1-800-555-1313",
        DNC: true
    },
    { type : "home",
        number: "1-800-555-1414",
        DNC: true
}
```


SQL vs Couchbase (N1QL)

SELECT name, author FROM books

name	author	
Ender's Game	Orson Scott Card	
Foundation	Isaac Asimov	
Neuromancer	William Gibson	
Consider Phlebas	Iain M. Banks	
Revelation Space	Alastair Reynolds	

SELECT name, author FROM books

Requerimientos de selección

Relacional

- Bases de datos de mediana a grande escala
- Concurrencia relativamente baja
- ACID es un necesidad
- Hay necesidades de escalar verticalmente
- Los datos están altamente relacionados
- Amplia variedad de datos
- Grandes necesidades de reportes complejos

NoSQL

- Bases de datos de gran escala
- Alta concurrencia
- ACID puede ser relegado
- No hay necesidad de un esquema estático
- Hay necesidad de escalar horizontalmente
- Se busca libertad de cambios durante el desarrollo

Usos más comunes

Relacional

- Contabilidad, finanzas
- Sistemas bancarios
- Sistemas de manejo de transacciones

NoSQL

- Aplicaciones móviles
- Análisis en tiempo real
- Administración de contenido
- Personalizaciones
- loT apps

Caso de uso #1 05

Ebay: de Oracle a Couchbase

RELACIONAL SALE MAL

- Los costos de las licencias de Oracle, hardware, y el soporte hacían que la escalación sea demasiado costosa.
- Las prestaciones ACID de Oracle impactaron en la performance de una aplicación de e-commerce
- Oracle carecía de funciones nativas de fragmentación y replicación

COUCHBASE AL RESCATE

Ebay implementó Couchbase en 2014.

Resultados

- Escalabilidad horizontal y el alto rendimiento de lectura/escritura Alta capacidad de respuesta, incluso al aumentar los usuarios
- Consultas de baja latencia conscientes de la ubicación Mayor rendimiento
- Fragmentación automática y replicación de datos —— Alta disponibilidad Esquema flexible —— Agilidad de desarrollo

Características clave

- N1QL: el poder de SQL y la flexibilidad de JSON
- Base de datos en memoria
- Replicación entre centros de datos

Caso de uso #2

Flexcoin and Poloniex: from MongoDB to nothing

FLEXCOIN: NoSQL SALE MAL

 Sitio de intercambio de Bitcoins cerrado en Marzo 2014

 Una falla en el código permitía la transferencia entre usuarios de flexcoin

 Se enviaron miles de solicitudes simultáneas, hasta que la cuenta estuvo con saldo en descubierto antes de que los balances se actualizarán.

POLONIEX: NoSQL SALE MAL

 Sitio de intercambio de Bitcoins atacado en Marzo 2014

Vulnerabilidad en el código de las extracciones

 Se hicieron varios retiros simultáneos que resultaron exitosos a pesar de que ya no había fondos reales

Conclusiones 06

A veces las necesidades de un negocio no son compatibles en cuanto a datos.

Para eso existe persistencia

políglota.

GRACIAS

@victoriapm

@victoriaperezmola

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik