Networking

- Inter-processes communication across machines enables new applications
- Starting in 1960s machines could talk directly to each other over a telephone line using modems
- Connecting multiple machines to a shared network required the development of routers
- Network communication is an expected service of modern OSes

How do processes communicate over a shared network?

First ARPANET router, 1969.

Key Concepts

- Protocols
 - Devices on the network need to speak the same language
- Layering
 - Multiple layers of protocols/interfaces to deal with different aspects (levels of abstraction)
 - Key to managing complexity
- Resource Allocation
 - Similar to OS (single machine) resource allocation problem
 - Limited buffer memory, bandwidth, paths, etc.
 - Unlike single machine allocation, decisions must now be made across multiple machines, distributed and centralized algorithms possible
- Naming
 - How to name networked devices?
 - How to locate a device by its name?

Applications

- Most people know about the Internet (a computer network) through applications
 - World Wide Web
 - Email
 - Online Social Network
 - Streaming Audio Video
 - File Sharing
 - Instant Messaging
 - · ...

Example of an application

A multimedia application including video-conferencing

Application Level Protocols

- Application-level protocol is a shared language between distributed processes of a particular application
 - WWW (world wide web)
 - HTTP (hypertext transfer protocol)
 - Used for viewing and sending data to web sites
 - Email
 - SMTP (simple mail transfer protocol)
 - Used for transmitting email
 - DNS (domain name service)
 - DNS protocol
 - Used for looking up the server address of a domain name
 - SSH (Secure Shell)
 - SHS protocol
 - Used to securely control a shell on a remote machine
- May be different programs participating in an application
 - For example: Putty on Windows connecting to OpenSSH server on Linux

Application Protocol Example

- Applications may require multiple protocols, for example, a browser connecting to a web server shown below
- URL
 - Uniform resource locater
 - http://www.cs.princeton.edu/~llp/index.html
- HTTP
 - Hyper Text Transfer Protocol
- TCP
 - Transmission Control Protocol
- 17 messages for one URL request
 - 6 to find the IP (Internet Protocol) address
 - 3 for connection establishment of TCP
 - 4 for HTTP request and acknowledgement
 - Request: I got your request and I will send the data
 - Reply: Here is the data you requested; I got the data
 - 4 messages for tearing down TCP connection

Connectivity

- (a) Point-to-point
- (b) Multiple access

- Connectivity terminology
 - Nodes computers, devices, routers...
 - Link physical connection between nodes
 - Point-to-point 2 nodes on 1 link
 - Multiple access multiple nodes on 1 link
 - Scale designed to support growth to an arbitrarily large size

Cost-Effective Resource Sharing

Multiplexing multiple logical flows over a single physical link

- Resource: links and nodes
- How to share a link?
 - Multiplexing
 - De-multiplexing
 - Synchronous Time-division Multiplexing
 - Time slots/data transmitted in predetermined slots

Cost-Effective Resource Sharing

A switch multiplexing packets from multiple sources onto one shared link

- FDM: Frequency Division Multiplexing
- Statistical Multiplexing
 - Data is transmitted based on demand of each flow.
 - Packets are small units of data (think of them as jobs)
 - Routers forward packets based on policies (just like scheduler policies): FIFO, Round-Robin, Priority (e.g, Quality-of-Service (QoS))
 - Need to deal with congestion – how to avoid one router getting more traffic than it can handle?

Connectivity (cont.)

Switched Network

- Terminology (contd.)
 - Packet, message block of data being communicated
 - Switches nodes with multiple links that forward data/packets from one link to another
 - Switched Network switches provide connectivity across a network by forwarding data between links
 - Circuit Switched physically connect two links
 - Packet Switched repeat a packet of data from one link to another
 - Store-and-forward incoming packets are buffered (e.g., FIFO queue) and forwarded

Connectivity (cont.)

Switched Network

Interconnection of networks

- Terminology (contd.)
 - Cloud abstract view of a network
 - Hosts Computers/devices connected to the network
 - Router/gateway forwards data between networks
 - Routing forwarding of data over a path from one host to another
 - Host-to-host connectivity two hosts have a route between them
 - Address a number that describes the location of a host or router
 - Unicast/broadcast/multicast unicast is routing a message to one host, broadcast is forwarding a message to all hosts

Connectivity (cont.)

Switched Network - LAN

Interconnection of networks - WAN

- Terminology (contd.)
 - LAN (local area network) connects computers within a limited area, uses switches
 - WAN (wide area network) extends over a large geographic area, uses routers

