

Программа профессиональной переподготовки «Технологии искусственного интеллекта, визуализации и анализа данных»

Задача классификации

- **Классификация** заключается в присваивании объектам меток классов. Метка класса представляет собой дискретное, неупорядоченное значение, которое может пониматься как *принадлежность к группе объектов*.
 - Бинарная классификация: $Y = \{-1,1\}$
 - Многоклассовая классификация: $Y = \{0, 1, 2, ..., n\}$

Задача бинарной классификации

• Модель линейной регрессии:

$$\alpha(x) = \omega_0 + \sum_{j=1}^d x_j \omega_j$$

Линейный классификатор:

$$lpha(x) = \mathrm{sign}(\omega_0 + \sum_{j=1}^d x_j \omega_j)$$
 $lpha(x) = \mathrm{sign}(\langle \omega, x \rangle)$ $lpha(x) = \mathrm{sign}(\langle \omega, x \rangle - t), t - \mathsf{порог}$

 $sign(x) = \begin{cases} 1, & x > 0; \\ 0, & x = 0; \\ -1, & x < 0. \end{cases}$

Что делать если 0?

Будем считать, что это отказ от классификации.

Геометрический смысл

- Уравнение гиперплоскости $\langle \omega, x \rangle = 0$ Знак $\langle \omega, x \rangle$ показывает с какой стороны объект x находится относительно гиперплоскости:
- $> \langle \omega, x \rangle > 0$ объект находится «справа»
- $> \langle \omega, x \rangle < 0$ объект находится «слева»
- $\triangleright \langle \omega, x \rangle = 0$ объект лежит на гиперплоскости

Отступ

- $\frac{|\langle \omega, x \rangle|}{\|\omega\|}$ расстояние от точки до гиперплоскости.
- Чем больше $\langle \omega, x \rangle$ тем дальше объект от гиперплоскости.
- Отступ (margin) $M_i = y_i \langle \omega, x_i \rangle$ определяет корректность классификатора: положительный отступ соответствует правильному ответу, а отрицательный неправильному.
- Чем больше $|M_i|$ тем больше модель уверенна в $\neg \circ$ ответе.

Обучение классификатора

• Хотим увеличить долю правильных ответов алгоритма:

$$Q(\alpha, X) = \frac{1}{n} \sum_{i=1}^{n} [\alpha(x_i) = y_i] \rightarrow \max_{\omega}$$

• Или уменьшить долю неправильных ответов:

$$Q(\alpha, X) = \frac{1}{n} \sum_{i=1}^{n} [\alpha(x_i) \neq y_i] \rightarrow \min_{\omega}$$

Но возникает много проблем: нельзя использовать градиентные методы, может быть много глобальных минимумов.

• Модифицируем:

$$Q(\alpha, X) = \frac{1}{n} \sum_{i=1}^{n} [M_i < 0] \rightarrow \min_{\omega}$$

$$L(M) = [M < 0]$$

Отрицательный отступ на i-м объекте означает неправильный ответ алгоритма.

Обучение классификатора

Оценка сверху $L(M) \leq \tilde{L}(M)$

- $\tilde{L}(M) = \log(1 + e^{-M})$ (логистическая функция потерь используется в логистической регрессии)
- $\tilde{L}(M) = (1-M)_+ = \max(0, 1-M)$ (кусочно-линейная функция потерь используется методом опорных векторов)
- $\tilde{L}(M) = (-M)_+ = \max(0, -M)$ (тоже кусочно-линейная и соответствует персептрону Розенблатта)
- $\tilde{L}(M) = e^{-M}$ (экспоненциальная функция потерь используется в алгоритмах бустинга)
- $\tilde{L}(M) = \frac{2}{1+e^M}$ (сигмоидальная функция потерь)

Многоклассовая классификация

• Один против всех (one-vs.-rest). Строим k классификаторов, каждый из которых должен отличать k-й класс от всех остальных. Итоговый классификатор будет выдавать класс, соответствующий самому уверенному из бинарных.

Это яблоко? Нет. Это медведь? Нет. Это конфета? Да.

https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html

Многоклассовая классификация

• Один против одного (one-vs.-one). Строим бинарные классификаторы, способные отличать пару классов. Итоговый классификатор выбирает ответ по наибольшему количеству голосов.

https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html