Geometry Manifolds Qualifying Exam Spring 1996

Work out problem 1 and then choose 4 (and only 4) additional problems among the remaining ones. State each problem on a new sheet of paper. **Do not turn in more than 4 additional problems**. A space always means a topological space below.

This one is required!

- 1. Answer the following questions and give a brief explanation or counterexample:
 - i) (a) Give 2 non-diffeomorphic examples of orientable connected 2-dimensional compact smooth manifolds.
 - (b) Give an example of a non-orientable connected 2-dimensional compact smooth manifold.
 - ii) What is the dimension of the total space of the exterior bundle $\Lambda^2(M)$ if M is a smooth 5-manifold?
 - iii) Consider the 1-form $\omega=(x^2+y^2-1)dx$ on \mathbb{R}^2 . Let D be the standard unit disk, $D=\{(x,y)|x^2+y^2\leq 1\}$. Find $\int_D d\omega$.
 - iv) Let $S^3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1 \}$ be the unit sphere in \mathbb{R}^4 .
 - (a) What is the fundamental group of S^3 ?
 - (b) What is the fundamental group of $S^3 \setminus \{(0,0,0,1)\}$?
 - (c) What is the fundamental group of $S^3 \setminus \{(0,0,0,1),(0,0,0,-1)\}$?
 - v) Let *M* be a compact **connected** *n*-dimensional smooth manifold. Is there a nowhere vanishing *n*-form on *M*? What if *M* is also **simply connected**?
 - vi) Let θ be a closed 5-form on \mathbb{R}^6 . Is θ exact?
 - vii) Describe in detail the flows of the vector field $X=(x^2+y^2-1)\frac{\partial}{\partial z}$ on \mathbb{R}^3 .
 - viii) Let $\gamma(t)$ be an integral curve of a complete vector field X on a smooth manifold M. Suppose that $\gamma(t_0) = 0$ for some t_0 . What can you say about $\gamma(t)$?

Choose 4 problems from below:

2. Let ω be the 2-form on $\mathbb{R}^3 \setminus \{(0,0,0)\}$ given by the formula

$$\omega = \frac{x_1 dx_2 \wedge dx_3 - x_2 dx_1 \wedge dx_3 + x_3 dx_1 \wedge dx_2}{(x_1^2 + x_2^2 + x_3^2)^{\frac{3}{2}}}.$$

Show that ω is closed but not exact. (Hint: Consider the restriction to the unit sphere $S^2 \subset \mathbb{R}^3$.)

- **3.** Compute the de Rham cohomology of S^2 .
- **4.** What is the fundamental group of
 - i) $\mathbb{R}P^2$ (real projective space)?
 - ii) the 2-sphere S^2 with 3 distinct points removed?

Use generators and relations if you like.

5. Denote by $S^1 = \{e^{it} \in \mathbb{C} | t \in \mathbb{R}\} \subset \mathbb{C}$ the unit circle and $\mathbb{T} = S^1 \times S^1$ the 2-torus. Fix any real number $\alpha \in \mathbb{R}$ and let $\varphi_\alpha : \mathbb{R} \to \mathbb{T}$ be the map defined by

$$\varphi_{\alpha}(t) = (e^{2\pi i t}, e^{2\pi i \alpha t}).$$

Show that the image $\varphi_{\alpha}(\mathbb{R}) \subset \mathbb{T}$ is either compact or dense in \mathbb{T} .

- **6.** Let M be a compact smooth n-dimensional oriented manifold without boundary. Show that for any (n-1)- form ω on M, there is $p \in M$ such that $d\omega(p) = 0$.
- 7. Let $f: S^n \to S^n$ be a smooth map such that f(x) = f(-x). Show that the degree of f is even.