

Udacity Artificial Intelligence Nanodegree, July 2017

Project 3: Implement a Planning Search

The **goal** of this project is to build a planning search agent that finds the optimal shipping routes for an air cargo transport system. This is a classical planning problem.

The project includes basic code skeletons for the classes and functions needed, but students must complete the missing pieces described below.

There are four parts to this project. In **Part 1**, we implement non-heuristics planning methods and run *uninformed* planning searches on the Air Cargo planning problems using Breadth First Search, Depth First Search, and Uniform Cost Search. In **Part 2**, we run *informed* searches using heuristics such as 'level sum' and a relaxed plan that 'ignores preconditions.' The results of these two approaches are analyzed in **Part 3**.

Part 4 is a short research paper highlighting important historic milestones in the development of AI planning techniques.

Part 1: Planning Problems

TODO - Implement methods and functions in my_air_cargo_problems.py

• 1.a AirCargoProblem.get_actions method including load_actions and unload_actions sub-functions

TODO: Create concrete action objects based on the domain action schema for: Load, Unload, and Fly. A concrete action is a specific literal action that does not include variables as with the schema. For example, the action schema Load(c, p, a) can represent the concrete actions Load(C1, P1, SF0) or Load(C2, P2, JFK). The actions for the planning problem must be concrete because the problems in forward search and planning graphs must use propositional logic.

My Solution: The source code for my solution can be found here. Below is a snippet showing the implementation of the Load action.

```
def load_actions():
            """Create all concrete Load actions and return a list
            :return: list of Action objects
            loads = []
            for a in self.airports:
                for p in self.planes:
                    for c in self.cargos:
                        # preconditions - make sure cargo and plane are At airport
                        precond_pos = [
                            expr("At({}, {})".format(c, a)),
                            expr("At({}, {})".format(p, a)),
                        ]
                        precond_neg = []
                        # positive action - put cargo In plane
                        effect_add = [expr("In({}, {})".format(c, p))]
                        # negative action - remove cargo At airport
                        effect_rem = [expr("At({}, {}))".format(c, a))]
                        load = Action(expr("Load({}, {}, {}))".format(c, p, a)),
                                         [precond_pos, precond_neg],
                                         [effect_add, effect_rem])
                        loads.append(load)
            return loads
```

- 1.b AirCargoProblem.actions method (link to my code)
- 1.c AirCargoProblem.result method (link to my code)
- 1.d air_cargo_p2 function (link to my code)
- 1.e air_cargo_p3 function (link to my code and snippet below)

```
def air cargo p3():
    ''' Problem 3 Definition:
    Init(At(C1, SF0) Λ At(C2, JFK) Λ At(C3, ATL) Λ At(C4, ORD)
        Λ At(P1, SF0) Λ At(P2, JFK)
        Λ Cargo(C1) Λ Cargo(C2) Λ Cargo(C3) Λ Cargo(C4)
        Λ Plane(P1) Λ Plane(P2)
        Λ Airport(JFK) Λ Airport(SFO) Λ Airport(ATL) Λ Airport(ORD))
    Goal(At(C1, JFK) \( \Lambda\) At(C3, JFK) \( \Lambda\) At(C2, SFO) \( \Lambda\) At(C4, SFO))
    cargos = ['C1', 'C2', 'C3', 'C4']
    planes = ['P1', 'P2']
    airports = ['ATL', 'JFK', 'ORD', 'SFO']
    pos = [
            expr('At(C1, SF0)'),
            expr('At(C2, JFK)'),
            expr('At(C3, ATL)'),
            expr('At(C4, ORD)'),
            expr('At(P1, SF0)'),
            expr('At(P2, JFK)'),
    neg = [
            expr('At(C1, ATL)'),
            expr('At(C1, JFK)'),
            expr('At(C1, ORD)'),
            expr('In(C1, P1)'),
            expr('In(C1, P2)'),
            expr('At(C2, ATL)'),
            expr('At(C2, ORD)'),
            expr('At(C2, SF0)'),
            expr('In(C2, P1)'),
            expr('In(C2, P2)'),
            expr('At(C3, JFK)'),
```

```
expr('At(C3, ORD)'),
        expr('At(C3, SF0)'),
        expr('In(C3, P1)'),
        expr('In(C3, P2)'),
        expr('At(C4, ATL)'),
        expr('At(C4, JFK)'),
        expr('At(C4, SF0)'),
        expr('In(C4, P1)'),
        expr('In(C4, P2)'),
        expr('At(P1, ATL)'),
        expr('At(P1, JFK)'),
        expr('At(P1, ORD)'),
        expr('At(P2, ATL)'),
        expr('At(P2, ORD)'),
        expr('At(P2, SF0)'),
init = FluentState(pos, neg)
goal = [
        expr('At(C1, JFK)'),
        expr('At(C2, SF0)'),
        expr('At(C3, JFK)'),
        expr('At(C4, SF0)'),
return AirCargoProblem(cargos, planes, airports, init, goal)
```

Part 2: Domain-Independent Heuristics

TODO - Implement heuristic method in my_air_cargo_problems.py

• 2.a AirCargoProblem.h_ignore_preconditions method (link to my code)

TODO - Implement a Planning Graph with automatic heuristics in my_planning_graph.py

• 2.b PlanningGraph.add_action_level method (link to my code)

Add action A level to the planning graph as described in the Russell-Norvig text

- 1. determine what actions to add and create those PgNode_a objects
- 2. connect the nodes to the previous S literal level

For example, the A0 level will iterate through all possible actions for the problem and add a PgNode_a to a_levels[0] set if all prerequisite literals for the action hold in S0. This can be accomplished by testing to see if a proposed PgNode_a has prenodes that are a subset of the previous S level. Once an action node is added, it MUST be connected to the S node instances in the appropriate s_level set.

My solution:

```
def add_action_level(self, level):
    """ add an A (action) level to the Planning Graph

:param level: int
    the level number alternates S0, A0, S1, A1, S2, .... etc the level number is also used as the index for the node set lists self.a_levels[] and self.s_levels[]
:return:
```

```
adds A nodes to the current level in self.a_levels[level]
# Create empty set in level to store actions
self.a_levels.append(set())
# Loop through actions and determine which ones to add
for action in self.all_actions:
    # Create an action node
   node_a = PgNode_a(action)
    # For the action node to be reachable, its preconditions must be
    # satisfied by (i.e. a subset of) the previous state level
    level_s = self.s_levels[level]
    if node_a.prenodes.issubset(level_s):
        # Connect nodes to the previous S literal level
        for node_s in level_s:
            # Add action node as child of the S-node
            node_s.children.add(node_a)
            # Set S-node as the parent
            node_a.parents.add(node_s)
        # Add A-node to current level
        self.a_levels[level].add(node_a)
```

(link to my code for the remaining methods below)

- 2.c PlanningGraph.add_literal_level method
- 2.d PlanningGraph.inconsistent_effects_mutex method
- 2.e PlanningGraph.interference_mutex method
- 2.f PlanningGraph.competing_needs_mutex method
- 2.g PlanningGraph.negation_mutex method
- 2.h PlanningGraph.inconsistent_support_mutex method
- 2.i PlanningGraph.h_levelsum method

Part 3: Written Analysis

TODOs:

- Provide an optimal plan for Problems 1, 2, and 3.
- Compare and contrast non-heuristic search result metrics (optimality, time elapsed, number of node expansions) for Problems 1, 2, and 3. Include breadth-first, depth-first, and at least one other uninformed non-heuristic search in your comparison; Your third choice of non-heuristic search may be skipped for Problem 3 if it takes longer than 10 minutes to run, but a note in this case should be included.
- Compare and contrast heuristic search result metrics using A* with the "ignore preconditions" and "level-sum" heuristics for Problems 1, 2, and 3.
- What was the best heuristic used in these problems? Was it better than non-heuristic search planning methods for all problems? Why or why not?
- Provide tables or other visual aids as needed for clarity in your discussion.

Problem 1

Below are the initial goal and state for Problem 1. This problem is relatively simple as it only involves 2 cargos, 2 airplanes, and 2 airports.

Here are the results from all the searches that I performed, including both uninformed and heuristic searches.

	Search Method	Optimal	Plan Length	Expansions	Goal Tests	New Nodes	Time (sec)
Problem 1	1. breadth_first_search	Yes	6	43	56	180	0.041
	2. breadth_first_tree_search	Yes	6	1458	1459	5960	1.220
	3. depth_first_graph_search	No	12	12	13	48	0.010
	4. depth_limited_search	No	50	101	271	414	0.112
	5. uniform_cost_search	Yes	6	55	57	224	0.043
	6. recursive_best_first_search h_1	Yes	6	4229	4230	17029	3.603
	7. greedy_best_first_graph_search h_1	Yes	6	7	9	28	0.009
	8. astar_search h_1	Yes	6	55	57	224	0.049
	9. astar_search h_ignore_preconditions	Yes	6	41	43	170	0.036
	10. astar_search h_pg_levelsum	Yes	6	11	13	50	1.138
	averages		11	601	621	2433	0.626

Here is the optimal plan (6 steps total), and presumably the two sets of actions could be executed in parallel.

```
Load(C1, P1, SF0)
Fly(P1, SF0, JFK)
Unload(C1, P1, JFK)
```

```
Load(C2, P2, JFK)
Fly(P2, JFK, SF0)
Unload(C2, P2, SF0)
```

Given the results above, the <code>greedy_best_first_graph_search h_1</code> method is the best choice. While there are several search methods which produce an optimal plan, the <code>greedy_best_first</code> does it more efficiently than the others. As highlighted during the lectures, The Greedy Best First approach is a regressive search method that works by expanding nodes closest to the goal first and therefore minimizes the number of fluents it needs to process. This strategy is likely to work better when the state space is small and there is a relatively small number of nodes close to the goal. But, as the state space increases, this approach might not be efficient or even yield an optimal path.

We can see that <code>breadth_first_search</code> (BFS) also finds the right solution. As discussed in the lectures, BFS always expands the shallowest unexpanded node, but the number of expansions can become unwieldy in deeper search trees, since the number of expansions increases exponentially with each level of tree depth. So, while BFS is a viable option for this simple problem, it becomes less viable as the problem complexity—and therefore the search space—increases.

That said, BFS does expand fewer nodes than uniform_cost_search (UCS). This is because UCS keeps searching to make sure there isn't another shorter path, while BFS halts its search once an optimal path is discovered. Again, both methods become less efficient as the state space increases, but they're both complete in that they'll always yield an optimal path (given enough time, and assuming the search tree is finite). The results indicate that for simple problems like this, non-heuristic methods like breadth_first_search and uniform_cost_search are viable options. They provide reasonable efficiency and yield optimal paths without the added complexity of a heuristic.

Among the heuristic methods, it's worth noting that all of them produced optimal paths, with

A*_ignore_preconditions being the most time efficient. But, given the small search space, it's hard to tell (at this point) which of the heuristic search methods will perform best as the Air Cargo plans increase in complexity.

Problem 2

Below are the initial goal and state for Problem 2. This problem is slightly more complex as it now involves 3 cargos, 3 airplanes, and 3 airports.

Here are the results from all the searches that I performed, including both uninformed and heuristic searches. Although, note that some of the searches did not finish in the allotted 10-minute timeframe.

	Search Method	Optimal	Plan Length	Expansions	Goal Tests	New Nodes	Time (sec)
Problem 2	1. breadth_first_search	Yes	9	3343	4609	30509	16.799
	2. breadth_first_tree_search		timeout				
	3. depth_first_graph_search	No	575	582	583	5211	3.728
	4. depth_limited_search		timeout				
	5. uniform_cost_search	Yes	9	4761	4763	43206	15.701
	6. recursive_best_first_search h_1		timeout				
	7. greedy_best_first_graph_search h_1	Yes	9	550	552	4950	1.733
	8. astar_search h_1	Yes	9	4761	4763	43206	15.490
	9. astar_search h_ignore_preconditions	Yes	9	1450	1452	13303	4.681
	10. astar_search h_pg_levelsum	100,750	timeout		100000000	7,569901,5110	
	averages		103	2575	2787	23398	9.689

Here is the optimal plan (9 steps total), and presumably the three sets of actions could be done in parallel.

```
Load(C3, P3, ATL)
Fly(P3, ATL, SF0)
Unload(C3, P3, SF0)
```

```
Load(C2, P2, JFK)
Fly(P2, JFK, SF0)
Unload(C2, P2, SF0)
```

```
Load(C1, P1, SF0)
Fly(P1, SF0, JFK)
Unload(C1, P1, JFK)
```

Once again, greedy_best_first is the recommeded algorithm since it produces an optimal path with the greatest efficiency. What's more, the gain in efficiency is now much more noticable compared to breadth_first_search and uniform_cost_search. The added complexity of Problem 2 (adding 1 cargo, 1 plane, and 1 airport) results in a higher number of nodes and longer execution times, making these uninformed search methods less viable.

In fact, the added complexity of this problem caused four of the search algorithms to timeout, including two heuristic and two non-heuristic methods. This demonstrates how important the size of the search space is when choosing and configuring a planning algorithm. Specifically, at this stage it's now clear that the A*_levelsum algorithm is too inefficent to be useful moving forward. It's worth noting that Level Sum was able to find an optimal path for Problem 1, and it's more efficient than A*_ignore_preconditions with regards to number of node expansions (because it's always traversing along the shortest path). But, the time required for A*_levelsum to estimate each path becomes impractically long given the additional complexity in Problem 2. As you can see from the table, among the heuristic strategies, Level Sum takes the longest amount of time to execute despite having the fewest number of expansions.

The data also reveals the primary deficiency of depth_first_search (DFS) in that it searches down the tree and only stops searching once a path is found. DFS usually traverses just a fraction of the total tree branches, and therefore often won't find the optimal path. In this case, the path length DFS yields is 575 steps compared to the optimal path of 9. Nonetheless, the DFS approach can still be useful because it can efficiently search deep trees (as long as they're not infinitely deep) with fewer expansions than BFS or UCS. Since DFS explores deep instead of wide, it

avoids the exponential increase in nodes that BFS and UCS must traverse. So, DFS can be an efficient way to find a path, but obviously it's not a good method for finding the best path.

Problem 3

Below are the initial goal and state for Problem 3. This problem is the most complex since it now involves 4 cargos and 4 airports, but only 2 airplanes are available to haul everything.

```
Init(At(C1, SF0) \( \lambda \) At(C2, JFK) \( \lambda \) At(C3, ATL) \( \lambda \) At(C4, ORD)
\( \lambda \) At(P1, SF0) \( \lambda \) At(P2, JFK)
\( \lambda \) Cargo(C1) \( \lambda \) Cargo(C2) \( \lambda \) Cargo(C4)
\( \lambda \) Plane(P1) \( \lambda \) Plane(P2)
\( \lambda \) Airport(JFK) \( \lambda \) Airport(SF0) \( \lambda \) Airport(ATL) \( \lambda \) Airport(ORD))

Goal(At(C1, JFK) \( \lambda \) At(C3, JFK) \( \lambda \) At(C2, SF0) \( \lambda \) At(C4, SF0))
```

Here are the results from all the searches that I performed, including both uninformed and heuristic searches. Although, note that some of the searches did not finish in the allotted 10-minute timeframe.

	Search Method	Optimal	Plan Length	Expansions	Goal Tests	New Nodes	Time (sec)
Problem 3	1. breadth_first_search	Yes	12	14491	17947	128184	131.447
	2. breadth_first_tree_search		timeout				
	3. depth_first_graph_search	No	1878	1948	1949	16253	26.679
	4. depth_limited_search		timeout				
	5. uniform_cost_search	Yes	12	17783	17785	155920	64.016
	6. recursive_best_first_search h_1		timeout				
	7. greedy_best_first_graph_search h_1	No	22	4031	4033	35794	15.866
	8. astar_search h_1	Yes	12	17783	17785	155920	62.893
	9. astar_search h_ignore_preconditions	Yes	12	5003	5005	44586	19.119
	10. astar_search h_pg_levelsum		timeout				
	averages		325	10173	10751	89443	53.337

Here is the optimal plan (12 steps total), and presumably the two sets of actions could be performed in parallel.

```
Load(C1, P1, SF0)
Fly(P1, SF0, ATL)
Load(C3, P1, ATL)
Fly(P1, ATL, JFK)
Unload(C3, P1, JFK)
Unload(C1, P1, JFK)
```

```
Load(C2, P2, JFK)
Fly(P2, JFK, ORD)
Load(C4, P2, ORD)
Fly(P2, ORD, SFO)
Unload(C4, P2, SFO)
Unload(C2, P2, SFO)
```

Once again, we see that the larger state space causes the same four algorithms to timeout:

breadth_first_tree_search , depth_limited_search , recursive_best_first_search_h_1 , and A*_h_pg_levelsum .

And, it appears that the added complexity now prevents the greedy_best_first method from producing an optimal path.

By this point, we see an interesting pattern emerge: the uniform_cost_search and A*_search_h_1 algorithms perform almost exactly the same across all three problems. This makes sense given the lecture discussion on how both of these methods are based on cost. Uniform Cost Search (UCS) focuses on the lowest path cost and will always find an optimal solution (unless it gets stuck in an infinite loop). A* heuristic search expands the node with the lowest cost function, adding nodes concentrically from the start node. And, since h_1 is (intentionally) not configured as a real heuristic search, A*_search_h_1 is equivalent to UCS in this case. Regardless, as the problem space expands, neither of these algorithms is very efficient.

With all that said, A*_ignore_preconditions is the recommended algorithm since it yields an optimal path with the greatest efficiency. This approach avoids the efficiency pitfalls of Level Sum by utilizing a relaxed plan heuristic in which all of the preconditions are ignored. And, based on the results, we can now see that using this type of informed search algorithm with a well-crafted heuristic is the best overall strategy.

Part 4: Research Review

Instructions

Read up on important historical developments in the field of AI planning and search. Write a one-page report on three of these developments, highlighting the relationships between the developments and their impact on the field of AI as a whole.

My Research Review

Here is a link to a PDF version of my research review.

© 2017 GitHub, Inc. Terms Privacy Security Status Help

Contact GitHub API Training Shop Blog About