Kompetisi Sains Nasional 2021 Tingkat Nasional Jenjang SMA/MA Sederajat Hari Kedua

Muhammad Jilan Wicaksono Wildan Bagus Wicaksono

Updated 18 Nopember 2021

Catatan

Ucapan selamat kepada seluruh peraih medali di Kompetisi Sains Nasional 2021 dan selamat berjuang kembali di pelatnas :D. Ucapan terima kasih kepada Rizky Maulana Hakim dan Kenji Gunawan yang telah membantu mengoreksi dan memberikan saran. Saran, koreksi, maupun kritik lainnya dapat dikirimkan melalui:

• Email: wildanarteji@gmail.com,

• Facebook: Wildan Bagus W

• Instagram: wildan.wicaksono_32

KSN 2021 Matematika SMA/MA Sederajat Hari Kedua

240 menit

- Soal 5. Misalkan $P(x) = x^2 + rx + s$ polinomial dengan koefisien real. Diketahui P(x) mempunyai dua akar real berbeda yang keduanya kurang dari -1 dan selisih akarnya kurang dari 2. Buktikan bahwa P(P(x)) > 0 untuk setiap bilangan real x.
- **Soal 6.** Di papan tulis dituliskan n bilangan asli. Pada setiap langkah kita dapat menghapus dua bilangan a dan b dan menggantinya dengan FPB(a, b) dan KPK(a, b) FPB(a, b). Buktikan semua bilangan dapat dibuat sama sebanyak berhingga langkah.
- Soal 7. Diberikan segitiga ABC dengan lingkaran luarnya ℓ . Titik M berada di dalam segitiga ABC sehingga AM garis bagi $\angle BAC$. Lingkaran dengan jari-jari MB dan pusat M memotong ℓ dan BC berturut-turut di D dan E ($B \neq D$ dan $B \neq E$). Buktikan AP garis bagi $\angle DPE$ jika dan hanya jika $\angle B = 90^{\circ}$.
- **Soal 8.** Di sebuah papan catur berukuran 100×100 , rencananya akan diletakkan papan-papan kecil berukuran 1×3 dan 3×1 sehingga:
 - (i). Setiap petak papan catur besar tertutup oleh paling banyak satu papan kecil.
 - (ii). Keseluruhan papan-papan kecil menutupi seluruh petak besar, kecuali satu buah petak.
 - (iii). Sisi-sisi papan kecil diletakkan sejajar dengan petak-petak papan besar.

Misalkan untuk melakukan instruksi di atas, dibutuhkan H papan berukuran 1×3 dan V papan berukuran 3×1 . Tentukan semua pasangan (H, V) yang mungkin.

Soal 5. Misalkan $P(x) = x^2 + rx + s$ polinomial dengan koefisien real. Diketahui P(x) mempunyai dua akar real berbeda yang keduanya kurang dari -1 dan selisih akarnya kurang dari 2. Buktikan bahwa P(P(x)) > 0 untuk setiap bilangan real x.

Bukti. Disini terdapat dua alternatif.

Alternatif 1.

Misalkan P(x) memiliki akar-akar a dan b, W.L.O.G. a>b dengan -1>a,b dan a-b<2. Kita punya P(x)=(x-a)(x-b). Maka

$$P(P(x)) = ((x-a)(x-b) - a)((x-a)(x-b) - b).$$

Hal ini cukup dengan membuktikan bahwa

$$0 < (x-a)(x-b) - a = x^2 - (a+b)x + (ab-a).$$

Tinjau nilai minimum dari $x^2 - (a+b)x + (ab-a)$ adalah

$$-\frac{\Delta}{4} = -\frac{(-(a+b))^2 - 4(ab-a)}{4} = -\frac{(a-b)^2 + 4a}{4} = -a - \frac{(a-b)^2}{4} > -a - 1 > 0.$$

Maka $x^2 - (a+b)x + (ab-a) > 0$ untuk setiap bilangan real x. Maka P(P(x)) > 0 untuk setiap bilangan real x.

Alternatif 2.

Misalkan -a, -b akar-akar dari P(x) dengan a > b. Maka P(x) = (x + a)(x + b) dan b + 2 > a > b > 1. Sehingga P(x) + a > P(x) + b. Andaikan ada x_0 sehingga $P(P(x_0)) \le 0$. Maka

$$(P(x_0) + a) (P(x_0) + b) \le 0.$$

Maka haruslah

$$P(x_0) + a \ge 0 \ge P(x_0) + b \implies a \ge -P(x_0) \ge b.$$

Kita punya

$$-b-2 < -a < P(x_0) < -b < -1 \implies P(x_0) + 1 < 0.$$

Tinjau polinom $Q(x) = P(x) + 1 = x^2 + (a+b)x + (ab+1)$ yang mana memiliki titik minimum ketika $x = -\frac{a+b}{2}$, dengan nilai

$$Q\left(-\frac{a+b}{2}\right) = \frac{a^2 + b^2 + 2ab}{4} - \frac{a^2 + b^2 + 2ab}{2} + ab + 1$$
$$= -\frac{a^2 + b^2 + 2ab}{4} + \frac{4ab + 4}{4}$$
$$= \frac{-(a-b)^2 + 4}{4}$$

yang mana bernilai positif, mengingat

$$b+2>a>b \implies 2>a-b>0 \implies 4>(a-b)^2 \implies \frac{4-(a-b)^2}{4}>0.$$

Sehingga tidak ada bilangan real x yang memenuhi $P(x) + 1 \le 0$. Kontradiksi. Jadi, P(P(x)) > 0 untuk setiap bilangan real x.

Soal 6. Di papan tulis dituliskan n bilangan asli. Pada setiap langkah kita dapat menghapus dua bilangan a dan b dan menggantinya dengan FPB(a, b) dan KPK(a, b) - FPB(a, b). Buktikan semua bilangan dapat dibuat sama sebanyak berhingga langkah.

Bukti. Disini terdapat dua alternatif.

Alternatif 1.

Untuk n=1, maka tidak perlu melakukan langkah apapun dan selesai. Kita tinjau untuk $n\geq 2$. Akan kita gunakan fakta-fakta berikut:

- (i). Jika $a \mid b$, maka $FPB(a, b) = a \operatorname{dan} KPK(a, b) = b$.
- (ii). Jika FPB(a, b) = d, maka a = dx dan b = dy dengan d, x, y bilangan asli dan FPB(x, y) = 1. Kita punya KPK(x, y) = dxy.

Kita gunakan algoritma berikut: Jika $a \neq b$, maka kita dapat menghapus kedua bilangan tersebut dan ganti FPB(a, b) dan KPK(a, b) – FPB(a, b). Jika a = b, maka kedua bilangan tersebut tidak perlu dioperasikan.

Akan kita buktikan dengan induksi. Jika n=2, misalkan bilangan asli tersebut adalah a_1 dan a_2 . Misalkan pula FPB $(a_1,a_2)=d$, dari (ii), maka $a_1=db_1$ dan $a_2=db_2$ dengan d, b_1 , b_2 bilangan asli serta FPB $(b_1,b_2)=1$. Maka bilangan di papan menjadi d dan db_1b_2 . Jelas $d \mid db_1b_2$. Dari (i), bilangan di papan menjadi d dan $d(b_1b_2-1)$. Lakukan sebanyak b_1b_2-1 kali hingga menjadi d dan d dalam berhingga langkah, maka untuk n=2 benar.

Asumsikan untuk suatu n=k, maka kita dapat membuat bilangan a_1, a_2, \dots, a_k menjadi sama dalam berhingga langkah. Untuk n=k+1, misalkan bilangan-bilangan tersebut adalah $a_1, a_2, \dots, a_k, a_{k+1}$. Dari hipotesis induksi, kita dapat membuat bilangan-bilangan a_1, a_2, \dots, a_k menjadi sama dalam berhingga, katakan x. Maka tersisa bilangan

$$\underbrace{x, \quad x, \quad \cdots, \quad x}_{\text{sebanyak } k}, \quad a_{k+1}.$$

Misalkan FPB $(x, a_{k+1}) = d$, dari (ii), tulis x = dp dan $a_{k+1} = dq$ dengan d, p, q bilangan asli dan FPB(p, q) = 1. Pilih salah satu x dan operasikan dengan a_{k+1} dengan menggunakan (i), maka menjadi

$$\underbrace{dp, dp, \cdots, dp}_{\text{sebanyak } k-1}, d, d(pq-1).$$

Operasikan d dan masing-masing dp sebanyak p-1 kali (berdasarkan (i)), maka menjadi

$$\underbrace{d, \quad d, \quad \cdots, \quad d}_{\text{sebanyak } k-1}, \quad d, \quad d(pq-1).$$

Operasikan d dengan d(pq-1) sebanyak pq-2 kali, maka di papan menjadi sama semua, yaitu

$$\underbrace{d, \quad d, \quad \cdots, \quad d}_{\text{sebanyak } k+1}$$

yang jelas dalam berhingga langkah. Maka untuk n=k+1 juga benar sehingga menurut induksi terbukti untuk sebarang bilangan asli n.

Alternatif 2.

Misalkan bilangan tersebut adalah x_1, x_2, \dots, x_n . Perhatikan:

- (i). Jika ada i sehingga $x_i = 1$, dapat dipilih x_i dan $x_j \neq 1$ dan diganti menjadi $(x_i, x_j) \rightarrow (x_i, x_j 1)$. Lakukan langkah ini sebanyak $x_j 1$ kali maka kedua bilangan itu akan menjadi (1, 1).
- (ii). Jika ada i, j sehingga $x_i \mid x_j, x_i \neq x_j$. Misal $x_j = x_i \cdot k$. Pilih (x_i, x_j) , hapus dan ganti menjadi $(x_i, x_i(k-1))$. Lakukan langkah ini sebanyak (k-1) kali, maka kedua bilangan itu akan menjadi (x_i, x_i) .
- (iii). Jika ada x_i, x_j dengan $x_i \neq x_j$, tulis $x_i = dy_i$ dan $x_j = dy_j$ dengan d, y_i, y_j bilangan asli serta FPB $(y_i, y_j) = 1$. Pilih (x_i, x_j) , hapus dan menjadi $(d, d(y_i y_j 1))$ dan menurut (ii) akan menjadi (d, d).

Perhatikan bahwa FPB(a, b, c) = FPB(FPB(a, b), c). Sekarang, secara berurutan pilih pasangan berikut dan lakukan langkah yang diperbolehkan:

$$(x_1, x_2) \to (\text{FPB}(x_1, x_2), y_1)$$

 $(\text{FPB}(x_1, x_2), x_3) \to (\text{FPB}(x_1, x_2, x_3), y_2)$
 $(\text{FPB}(x_1, x_2, x_3), x_4) \to (\text{FPB}(x_1, x_2, x_3, x_4), y_4)$
 \vdots
 $(\text{FPB}(x_1, x_2, \dots, x_{n-1}), x_n) \to (\text{FPB}(x_1, x_2, \dots, x_n), y_{n-1})$

dengan

$$y_i = \text{KPK}(\text{FPB}(x_1, x_2, \dots, x_i), x_{i+1}) - \text{FPB}(x_1, x_2, \dots, x_{i+1}).$$

Jelas bahwa $z_n = \text{FPB}(x_1, x_2, \dots, x_n)$ membagi y_i untuk setiap $1 \le i \le n-1$. Maka berdasarkan (2), pilih (x_n, y_i) akan menjadi (z_n, z_n) untuk setiap $1 \le i \le n-1$ sehingga semua bilangan akan bernilai sama, yaitu $z_n = \text{FPB}(x_1, x_2, \dots, x_n)$.

Soal 7. Diberikan segitiga ABC dengan lingkaran luarnya ℓ . Titik M berada di dalam segitiga ABC sehingga AM garis bagi $\angle BAC$. Lingkaran dengan jari-jari MB dan pusat M memotong ℓ dan BC berturut-turut di D dan E ($B \neq D$ dan $B \neq E$). Buktikan AP garis bagi $\angle DPE$ jika dan hanya jika $\angle B = 90^{\circ}$.

Bukti. Dari syarat soal, panjang $AB \neq AC$ karena jika AB = AC akan berakibat B = D.

Akan kita gunakan lemma berikut.

Lemma (1)

Diberikan segitiga XYZ dan suatu titik P terletak pada busur YZ yang tidak mengandung X. Maka XP garis bagi $\angle YXZ$ jika dan hanya jika PY=PZ.

Bukti. Jika XP garis bagi $\angle YXZ$ dan karena XYZP siklis, maka

$$\angle YZP = \angle YXP = \angle ZXP = \angle ZYP \implies PY = PZ.$$

Jika PY = PZ dan karena XYZP siklis, maka

$$\angle PXZ = \angle PYZ = \angle PZY = \angle PXY \implies PX$$
 garis bagi $\angle YXZ$.

Lemma terbukti.

Untuk $\angle B = 90^\circ$. Tinjau P titik tengah busur BC, maka PB = PC. Dari lemma (1), maka AP garis bagi $\angle BAC$. Misalkan $\angle DEM = \angle EDM = \alpha$ (karena panjang DM = ME) sehingga $\angle DME = 180^\circ - 2\alpha$. Maka

$$\angle DBE = \frac{1}{2} \cdot \text{mayor} \angle DME = 180^{\circ} - \frac{1}{2} \angle DME = 90^{\circ} + \alpha.$$

Maka $\angle DBA = \alpha$. Karena ADBP siklis, maka

$$\angle DPM = \angle DPA = \angle DBA = \alpha = \angle MED \implies \angle DPM = \angle MED.$$

Maka DMEP siklis. Karena panjang DM = ME, dari lemma maka AP garis bagi $\angle DPE$. Untuk AP garis bagi $\angle DPE$ dan **asumsikan** $PD \neq PE$. Misalkan lingkaran luar $\triangle DPE$ memotong AP di M'. Dari lemma (1), maka DM' = M'E. Namun, MD = ME dan juga M terletak di AP. Maka haruslah M = M' sehingga kita simpulkan MDEP siklis. Misalkan $\angle DBA = \alpha$. Kita punya

$$\angle ABE = \angle DBE - \angle DBA$$

= $\frac{1}{2} \cdot \text{mayor} \angle DME - \alpha$
= $180^{\circ} - \frac{1}{2} \angle DME - \alpha$.

Tinjau karena ADBP siklis dan DMEP siklis, kita punya

$$\angle MDE = \angle MED = \angle MPD = \angle APD = \angle ABD = \alpha$$
.

Maka $\angle DME = 180^{\circ} - 2\alpha$ dan kita punya

$$\angle ABC = \angle ABE = 180^{\circ} - \frac{1}{2} \angle DME - \alpha = 90^{\circ}.$$

Maka terbukti.

Jadi, terbukti bahwa AP garis bagi $\angle DPE$ jika dan hanya jika $\angle B = 90^{\circ}$.

Komentar. Awalnya, penulis cukup curiga jika PD=PE, pembuktian arah kiri ke kanan tidak dapat terjadi. Karena solusi diatas terjadi jika panjang $PD\neq PE$. Penulis juga menggunakan geogebra untuk mendapatkan konfigurasi yang diminta dan terjadi kontradiksi, yaitu kondisi $\angle B=90^\circ$ tidak selalu terpenuhi untuk arah kiri ke kanan. Salah satu konfigurasi yang penulis temukan adalah sebagai berikut.

Soal 8. Di sebuah papan catur berukuran 100×100 , rencananya akan diletakkan papan-papan kecil berukuran 1×3 dan 3×1 sehingga:

- (i). Setiap petak papan catur besar tertutup oleh paling banyak satu papan kecil.
- (ii). Keseluruhan papan-papan kecil menutupi seluruh petak besar, kecuali satu buah petak.
- (iii). Sisi-sisi papan kecil diletakkan sejajar dengan petak-petak papan besar.

Misalkan untuk melakukan instruksi di atas, dibutuhkan H papan berukuran 1×3 dan V papan berukuran 3×1 . Tentukan semua pasangan (H, V) yang mungkin.

Solusi. Jawabannya adalah $(H, V) = (3H_1, 3V_1)$ dengan $H_1, V_1 \ge 11$ dan $H_1 + V_1 = 1111$. Warnai papan besar sesuai ilustrasi berikut dan lanjutkan hingga 100×100 .

Perhatikan bahwa akan ada papan kecil berwarna merah sebanyak 3400, berwarna biru sebanyak 3300, berwarna hijau sebanyak 3300. Perhatikan pula bahwa setiap papan 1×3 akan selalu menutupi satu petak warna merah, satu petak warna biru, dan satu petak warna hijau. Sedangkan, papan 3×1 akan menutupi tiga petak merah, tiga petak warna biru, atau tiga petak warna hijau. Misalkan secara berurutan banyaknya ada x, y, dan z. Perhatikan bahwa x + y + z = V. Maka

$$H + 3x \le 3400$$
, $H + 3y \le 3300$, $H + 3z \le 3300$.

Tinjau juga $H + 3x \ge H + 3y \equiv H + 3y \pmod{3}$. Maka satu petak kosong berwarna merah. Maka H + 3x = 3399, H + 3y = 3300, H + 3z = 3300. Kita punya

$$99 = (H + 3x) - (H + 3y) = 3x - 3y \implies x = y + 33 \ge 33.$$

Maka $V = x + y + z \ge 33$. Tinjau bahwa $H + 3x = 3399 \equiv 0 \pmod 3$, maka $H \equiv 0 \pmod 3$. Perhatikan bahwa

$$3H + 3V = 9999 \iff H + V = 3333 \equiv 0 \pmod{3} \implies V \equiv 0 \pmod{3}.$$

Sekarang, warnai papan besar sesuai ilustrasi berikut.

Lanjutkan hingga 100×100 . Perhatikan ada 3400 petak berwarna merah, 3300 petak berwarna hijau, dan 3300 petak berwarna biru. Perhatikan pula setiap papan kecil 1×3 menutupi tiga petak berwarna merah, tiga petak berwarna biru, atau tiga petak berwarna hijau. Misalkan secara berurutan sebanyak k, l, dan m. Sedangkan, setiap papan kecil 3×1 akan menutupi satu petak berwarna merah, satu petak berwarna biru, dan satu petak berwarna hijau. Maka H = k + l + m dan

$$V + 3k = 3400 - k_0$$
, $V + 3l = 330 - l_0$, $V + 3m = 3300 - m_0$

dengan $k_0 + l_0 + m_0 = 1$ dan $k_0, l_0, m_0 \ge 0$. Tinjau

$$V + 3k \equiv V + 3l \equiv V + 3m \pmod{3}$$
$$1 - k_0 \equiv -l_0 \equiv -m_0 \pmod{3}$$
$$\implies k_0 - 1 = l_0 = m_0.$$

Maka $k_0 = 1 \text{ dan } l_0 = m_0 = 0.$ Maka

$$V + 3k = 3399$$
, $V + 3l = 3300$, $V + 3m = 3300$.

Kita punya 99 = $3k - 3l \iff k = l + 33 \ge 33$ dan $H = k + l + m \ge 33$.

Sekarang, akan dibuktikan bahwa pasangan $(H, V) = (3H_1, 3V_1)$ dan $H_1, V_1 \ge 11$ serta $H_1 + V_1 = 1111$ memenuhi.

Pertama, pilih kotak pojok kanan atas untuk dikosongi. Baris pertama isi dengan 33 papan 1×3 dan kolom terakhir isi dengan 33 papan 3×1 . Kemudian, bagi 99×99 petak yang tersisa menjadi 1089 petak sedang 3×3 , pilih $(H_1 - 33)$ petak sedang masing-masing diisi tiga petak kecil 1×3 . Sisanya ada $(V_1 - 33)$ petak sedang masing-masing diisi dengan tiga petak kecil 3×1 . Terbukti papan besar dapat diisi dengan $3H_1$ petak 1×3 dan $3V_1$ petak 3×1 , dengan $H_1, V_1 \geq 11$ dan $H_1 + V_1 = 1111$.

Jadi,
$$(H, V)$$
 yang memenuhi adalah $(H, V) = (3H_1, 3V_1) \wedge H_1, V_1 \geq 11 \wedge H_1 + V_1 = 1111$.