Structure / modes of operation

- 1. In Active mode transistor operates like an amplifier.
- 2. In **Saturation mode** transistor operates like a switch.
- 3. In **Cutoff mode** no current flows.

Active mode

In active mode the **Emitter-base** junction is forward biased $(V_{BE} > 0)$ and the **collector-base** junction is reverse biased $(V_{CB} > 0)$.

- A higher potential at the p-type vs the n-type causes a forward bias.
 - Current flows from the p-type to the n-type.
- A higher potential at the n-type vs the p-type causes a reverse bias.
 - Current flows from the n-type to the p-type.

Figure 1: Active NPN structure

 i_E is proportional to $e^{rac{V_{BE}}{V_T}}$

$$i_C = I_s e^{\frac{V_{BE}}{V_T}}$$

• i_C is independent of V_{CB}

$$i_B = \frac{i_c}{\beta} = \frac{I_S}{\beta} e^{\frac{V_{BE}}{V_T}}$$

• β is the common-emitter current gain.

$$i_E = i_C + i_B = \frac{\beta + 1}{\beta} * i_C = \frac{\beta + 1}{\beta} I_S e^{\frac{V_{BE}}{V_T}}$$

• α is $\frac{\beta}{\beta+1}$ or β is $\frac{\alpha}{1-\alpha}$ where α is the common-base current gain

In an NPN transistor, The CBJ has a much larger area than EBJ. The CB diode, D_C has a saturation current I_{SC} that is 10 - 100 times larger than I_{SE} . $I_{SE} = \frac{I_S}{\alpha} \approx I_S$

Saturation Mode

If the Collector-base junction V_{BC} is forward biased and the Emitter-base Junction V_{BE} is forward biased, the transistor enters saturation mode.

- For an npn transistor $V_{CB} < -0.4$ or equivelently $V_{BC} > 0.4$
- The ratio $\frac{i_c}{i_b} < \beta$

Know the difference:

- I_{SC} is the base-collector leakage saturation current (A)
- I_{SE} is the base emitter leakage saturation current (A)
- I_S is the transport saturation current (A)

The equations...

1.

$$i_c = I_s e^{\frac{V_{BE}}{V_T}} - I_{SC} e^{\frac{V_{BC}}{V_T}}$$

2.

$$i_B = \left(\frac{I_S}{\beta}\right)e^{\frac{V_{BE}}{V_T}} + I_{SC}e^{\frac{V_{BC}}{V_T}}$$

...can be used to find the ratio $\frac{i_C}{i_B}$ for a saturated transistor.

The ratio decreases as V_{BC} is increased and the transistor is driven deeper into saturation, the ratio $\frac{i_C}{i_B}$ is known as β_{forced} because it can be set to any desired value lower than β by adjusting V_{BC} .

$$V_{CEsat} = V_{BE} - V_{BC}$$

For edge if saturation $V_{CEsat} = 0.3V$, for deep in saturation $V_{CEsat} = 0.2V$

 V_{CE} , Where is i_c zero?

Using the equation $i_c = I_s e^{\frac{V_{BE}}{V_T}} - I_{SC} e^{\frac{V_{BC}}{V_T}}$ we understand that i_C reaches zero at $V_{CE} = V_T ln(\frac{I_{SC}}{I_S})$. This expression is derived algebraically from the previous.

PNP Transistor

In active mode the **Emitter-Base junction** is forward biased $(V_{EB} > 0)$ and the **Collector-Base junction** is negatively biased $(V_{BC} > 0)$

Figure 2: PNP in active reigon

The PNP device is analogous to the NPN device with the exception that V_{BE} is replaced with V_{EB}