

# Conduite de Projets

Ingénieurs 2° et 3° année

IV b - Modélisation du besoin



# 1 – Modélisation du besoin



Introduction

- Vision Document: exhaustif mais peu détaillé.
  - → Affiner et détailler pour préparer l'analyse et la conception (approche UP).



# **UP vs Agile**

- Expression du besoin en UP
  - UC Model fondamental Nombreux modèles UML
  - Spécifications robustes, enrichies itérativement
  - Approche assez formalisée
- ...en Agile (extrême)
  - Analyses et hypothèses initiales souvent minimalistes.
     Parfois un Vision Document
  - Spécifications minimalistes ou « Modélisation Agile »
  - Très peu de livrables (choix libre de l'équipe)

- Modélisation UP: deux approches complémentaires
  - Modèle de UC: description des processus fonctionnels (interactions entre le S.u.d. et ses acteurs).
     C'est un modèle dynamique.
  - → Débouche sur les UC details (scénarios) et des Supporting Requirements.

- Modèle du Domaine: description des grands concepts d'information manipulés par le métier dans le cadre de l'utilisation du S.u.d.
  - C'est un modèle statique.
- → Débouche sur la rédaction d'un Glossaire puis diagramme de Classes métier.

# 2 – UC Model



#### Elaborer un UC model

- Identifier les UC et les acteurs
- Décrire brièvement les UC et acteurs:
  - très succinct à ce stade, quelques lignes; il ne s'agit que d'avoir une vision à haut niveau, le « brief » du UC.
- Etablir les relations entre UC et entre acteurs: extends, includes, généralisations,...
- Structurer les UC en packages
- Décrire les packages
- Tracer le diagramme de UC

# **Use-Case**

Service rendu par le système à son utilisateur (dans le cadre de son métier)

OU

L'intention de l'utilisateur quand il manipule le système. 66

# **Use-Case**

Il est toujours exprimé sous la forme d'un verbe à l'infinitif traduisant cette intention.

# Identification des UC

- Chaque UC représente une façon d'utiliser le système = définir ce que doit faire le système.
- Le UC doit apporter une valeur ajoutée significative à l'utilisateur et à l'entreprise.
- L'identification des UC requiert donc de connaître en détail les besoins des utilisateurs.
  - Pour cela il faut comprendre le métier, interroger les utilisateurs, ...

# Granularité des UC

- Il est difficile de déterminer la bonne granularité d'un UC:
  - Trop gros: modélisation lourde, difficile de planifier l'implémentation sur un cycle d'itérations courtes.
  - Trop petit: séquence d'actions atomiques → dizaines de UC par système sans vue d'ensemble.
- Le nombre théorique idéal : 15-20 UC significatifs par système ou sous-système.

# Identification et Description des Acteurs

- Utilisateurs du Vision Document = base à l'identifications des acteurs.
- Un même utilisateur peut avoir plusieurs rôles par rapport au système → plusieurs acteurs.
- Les acteurs peuvent être modélisés avec des relations de généralisation/spécialisation.
- On distingue les acteurs humains des acteurs système (systèmes externes au S.u.d. mais interfacés avec celuici).

acteur A

« actor »

Système B

# Identification des Packages

- Les UC sont structurés en packages selon plusieurs critères possibles:
  - Par acteur
  - Par cohérence fonctionnelle

# Erreur classique n°1: représenter la cinématique



### Modélisation incorrecte: représente la cinématique de l'application



# Modélisation correcte: représente les intentions de l'acteur



# Erreur classique n°2: Confondre l'utilisation des données nécessaires à un UC et leur MàJ



Modélisation incorrecte: les données mises à jour par le UC faussement included sont nécessaires, mais pas l'exécution systématique du UC



Modélisation correcte: la mise à jour des données et leur consultation sont désynchronisées





# Exemple complet: étude de cas Share Trip

# 3 – Glossaire



# Modèle du Domaine

- Identifier et décrire les concepts d'informations gérés par le S.u.d.
  - Vocabulaire commun
  - Partage des connaissances

- Favorise la compréhension du métier
  - Nécessaire avant de comprendre le système logiciel

# **Entité Métier**

- Concept global d'information
  - traduit un choix de gestion pertinent pour le domaine considéré

- Eléments manipulés dans le cadre d'une activité professionnelle:
  - Eg: commande, facture, contrat, etc...
- Les entités métier ont des relations entre elles
  - Eg: Une commande donne lieu à une facture

# Identification

- Différentes sources:
  - Interviews des experts du domaine: utilisateurs ou direction
  - Modèle statique établi lors de la réalisation du système existant
  - IHM du système existant
  - Documents opérationnels issus du système existant

Travail des Business Analysts

#### Glossaire

Entités Métier: Décrites dans un Glossaire

- Description textuelle libre. Les informations suivantes peuvent être incluses:
  - Information élémentaires associées
  - Définition précise des informations élémentaires calculées
  - Etats traversés (entités de gestion seulement)
  - Règles de passage d'un état à l'autre (entités de gestion seulement)
  - Liens avec les autres entités

# Glossaire et Modélisation

- Glossaire = travail préparatoire réutilisé en analyse et conception
  - Diagramme de Classes Métier
  - Diagramme d'Etats/Transitions

# 4 – UC Details



# Bordereau d'identification

 Contient des informations générales à tous les scénarios du UC

| Résumé          | Le « brief » du UC (déjà décrit dans le UC model).                  |
|-----------------|---------------------------------------------------------------------|
| Déclenchement   | Les évènements qui vont déclencher l'exécution du UC.               |
| Objectif        | Objectif visé par l'acteur sollicitant le UC.                       |
| Fréquence       |                                                                     |
| d'utilisation   |                                                                     |
| Acteurs         | Distinguer les acteurs primaires et secondaires s'il y a lieu.      |
| Pre conditions  | Etat dans lequel le système doit se trouver avant l'exécution du UC |
| Post conditions | Idem après l'exécution                                              |

# Scénarios

- Chaque UC est ensuite décliné en un ou plusieurs Scénarios:
  - le scénario nominal représente le flot d'évènements qui s'exécute le plus fréquemment.
  - les scénarios alternatifs correspondent à d'autres cas où le UC s'exécute correctement.
  - les exceptions sont des cas où le UC ne s'exécute pas correctement jusqu'au bout.

# Flot d'événements

- Chaque scénario fait l'objet d'une description détaillée:
  - un scénario est une séquence d'actions appelée flot d'évènements
  - ce flot est exprimé textuellement. Il indique ce que fait le système et la façon dont il dialogue avec les acteurs lors de l'exécution du scénario

# Lien avec le Glossaire

- Chaque scénario met forcément en jeu une ou plusieurs entités métier
- Faire apparaitre ces liens entre Glossaire et Flot d'événements
  - Liens hypertexte dans le document

Cf. Exemple de Spécification Fonctionnelle.docx

# Précision / Détails

- Le niveau de détail et la précision requis:
  - dépend du contexte du projet
    - Développement offshore VS Equipe colocalisée
    - √ Complexité du besoin
    - ✓ Besoin de traçabilité (client « polémiste »)
    - ✓ Besoin d'évolutions à court terme

peut donc être extrêmement variable d'un projet à l'autre!



# Exemple de manque de précision

# <u>Version très ambigüe</u> (laisse la place à de multiples interprétations)

| Activity                                                                                                      |
|---------------------------------------------------------------------------------------------------------------|
|                                                                                                               |
| L'agent commercial se rend sur le fiche d'activité détaillée du client.                                       |
| Le système présente la fiche d'activité. Celle-ci contient:  • Le nom du client • Les <i>ventes</i> du client |
| •                                                                                                             |

# Version précise (peut être traduite en requête sql)

| Activity                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                |
| L'agent commercial se rend sur le fiche d'activité détaillée du client.                                                                                                                                                                                        |
| Le système présente la fiche d'activité. Celle-ci contient:  Le libellé court de la raison sociale du client La somme des ventes réalisées auprès du client, sur l'ensemble des produits du catalogue ayant le statut « actif », sur les 3 derniers mois échus |

# 5 – Supporting Requirements

### Portability

Ability to easily move the application to a different hardware platfor, operating system or even datable management system or netwo protocol

#### Personalisation

### Monitorability

Ability to access information on the applications behaviour

individual users to e their view of the (solution (My Yahoo style)

#### Performance

Throughput, system load, capacity, user volume, response times, transit delay, latency. Possibilities for scheduled processing vs real-time.

#### Authorisation

Security requirements to ensure users can access only certain functions within the application (by use case, subsystem, web page, business rule, field level etc.)

#### Maintainability

Amount of effort required to maintain (and enhance) application/solution in production

#### Localisation

Support for multiple languages on entry/query screens in data fields; on reports; multi-byte character requirements and units of measure or currencies

# **Exprimer TOUT le besoin**

Exprimer complètement le besoin = spécifier à la fois:

- Les besoins fonctionnels = scénarios = actions de l'utilisateur et la façon dont le système lui permet d'atteindre l'objectif du UC
- Les besoins non fonctionnels (BNF) = propriétés supplémentaires du système, très impactants, mais non directement liées à l'objectif du UC

# Model « Hub of wheel » (A.Cockburn)



- Les scénarios constituent le cœur du besoin
- De nombreux types de besoins s'ajoutent aux scénarios



# **Exemples simples de BNF**

- Contrainte de performance
  - Temps de réponses
- Besoin de fiabilité
  - Stress / Accès simultanés
  - Haute disponibilité
- Apparence globale des IHM
- □ Formats Contrôles + Messages d'erreur

# **Impact des BNF**



 Les Besoins non Fonctionnels constituent des contraintes du S.u.d.

- Répondre à ces contraintes nécessite la réalisation de work items qui peuvent être:
  - Très coûteux (AT à dimensionnner en conséquence, optimisation du code, nécessité de développer d'autres composants, etc...)
  - Très impactants sur la qualité du produit, voire critiques donc incontournables

# Exemples



Performance (temps traitement)
 Une application chargée de détecter le franchissement d'un seuil de température sur un réacteur nucléaire. L'alarme doit impérativement se déclencher en moins de 10 ms.

Fiabilité/Performance (accès simultanés)
Un site de VPC doit être capable de supporter une charge démultipliée autour de Noël et rester toujours accessible sans dégrader ses performances.

# Zoom sur la Volumétrie



- Etablie sur la base d'hypothèses réalistes sur l'activité de l'entreprise (actuelle et/ou cible)
  - Parts de marchés
  - Nombre de clients
  - Nombre de produits vendus
  - Nombre de sites de production
  - • •
- On en déduit
  - Le nombre de ventes/commandes par an
  - Le nombre de transports de marchandises
  - Le nombre d'accès simultanés au site

. . .

# ING 3

# Exemple simplifié

- Un distributeur de dispositifs médicaux possède 20.000 produits dans son catalogue
- Il vise un marché de 8.000 clients (établissements de santé)
- On suppose que chaque client va passer en moyenne une commande par mois, portant sur 1% du catalogue
  - Chaque mois on enregistre 8 x (20/100) = 1,6
    Millions de transactions de vente.
  - → L'historique sur 5 ans contient 96 M de records

NB: pour plus de réalisme il faudrait tenir compte de la typologie des clients (gros/petits) et de celle des produits (ABC)

# **Volumétrie** $\rightarrow$ **Contraintes**



- La volumétrie impacte:
  - La performance du S.u.d. : temps de réponse
  - La fiabilité du S.u.d. : nb accès simultanés possibles/scalabilité
  - Les choix liées aux bases de données, à leur mode de stockage, à leur type de traitement

- Pour tester ces contraintes et faire des démos probantes il faut simuler l'activité
  - générer des Mocks sur les flux et les tables
  - selon des volumes et distribution de données réalistes



- Les besoins non fonctionnels sont parfois appelés Supporting Requirements ou « Besoins opérationnels ».
- Ils peuvent également être classés selon le modèle « FURPS+ »



# **FURPS (1/2)**



# Functionality

Fonctionnalités basiques non représentées dans le "UC detail". Exemples: login, sécurité, impressions, log, etc...

# Usability

Facilité d'utilisation (ex : "...approprié pour des utilisateurs non experts de..."), besoin d'aide en ligne, de didacticiel, contraintes d'ergonomie.

# Reliability

Capacité du système à fonctionner en conditions de stress, disponibilité (ex : le système sera disponible 24/7), heures limites des traitements batch, tolérance de pannes, recoverability, modes de fonctionnement dégradé admissibles...

# **FURPS (2/2)**



Performance :

Temps de réponse, volumétrie (ex : « ...2000 accès simultanés... »), fréquence d'utilisation, ...

Supportability:

Facilité de maintenance du système (ex : "...toutes les données seront accessibles via des tables administrateur et modifiables sans recompilation..."), évolutivité, scalabilité, compatibilité, exigences d'installation, niveau de support, ...