Mecânica dos Fluidos Computacional Problema da Cavidade: Modelo Matemático, Método Numérico, Algoritmo, Implementação e Resultados

lury Igreja

Programa de Pós-Graduação em Modelagem Computacional Departamento de Ciência da Computação Universidade Federal de Juiz de Fora iuryigreja@ice.ufjf.br

Definições: vorticidade e função corrente

Supondo um caso bidimensional, onde $\mathbf{u}=(u,v)$, podemos definir a vorticidade como:

$$\omega = \nabla \times \mathbf{u} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$
 (em 2D).

Por outro lado, a função corrente é dada por:

$$u = \frac{\partial \psi}{\partial y}; \qquad v = -\frac{\partial \psi}{\partial x}$$

A partir destas definições, podemos apresentar a seguinte relação:

$$\omega = -\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}\right) = -\Delta \psi$$

Navier-Stokes (Vorticidade/Função Corrente)

Partindo das relações entre ω e ψ com o campo de velocidade é possível reescrever as equações de Navier-Stokes:

$$\frac{\partial \mathbf{u}}{\partial t} - \mu \Delta \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mathbf{0},$$
$$\nabla \cdot \mathbf{u} = 0,$$

como:

$$\frac{\partial \omega}{\partial t} - \mu \Delta \omega + \frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} = 0,$$

para fechar o sistema, incluímos a seguinte equação que relaciona ω com ψ :

$$\omega = -\Delta \psi$$
.

As equações acima formam o sistema de Navier-Stokes escrito nas variáveis vorticidade e função corrente.

Navier-Stokes escrita em função de ω e ψ (derivação)

Tomando o rotacional das equações de Navier-Stokes

$$\begin{cases} \nabla \times \left[\frac{\partial \mathbf{u}}{\partial t} - \mu \Delta \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p \right] = \mathbf{0} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

ou ainda, desmembrando o problema de Navier-Stokes em u e v, temos

$$\nabla \times \begin{cases} \frac{\partial u}{\partial t} - \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial p}{\partial x} = 0, \\ \frac{\partial v}{\partial t} - \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} + \frac{\partial p}{\partial y} = 0, \\ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0. \end{cases}$$

Navier-Stokes escrita em função de ω e ψ (derivação) Assim,

$$-\frac{\partial}{\partial y}\left[\frac{\partial u}{\partial t} - \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + \frac{\partial p}{\partial x}\right] = 0, \quad (1)$$

$$\frac{\partial}{\partial x} \left[\frac{\partial v}{\partial t} - \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} + \frac{\partial p}{\partial y} \right] = 0, \quad (2)$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$
 (3)

Assim, derivando em relação a y a Eq.(1), em relação a x a Eq.(2) e usando a definição da função corrente em (3), obtemos

$$-\frac{\partial}{\partial t}\frac{\partial u}{\partial y} + \mu \left(\frac{\partial^{2}}{\partial x^{2}}\frac{\partial u}{\partial y} - \frac{\partial^{2}}{\partial y^{2}}\frac{\partial u}{\partial y}\right) - \frac{\partial}{\partial y}\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) - \frac{\partial}{\partial x}\frac{\partial p}{\partial y} = 0 \quad (4)$$

$$\frac{\partial}{\partial t}\frac{\partial v}{\partial x} - \mu \left(\frac{\partial^{2}}{\partial x^{2}}\frac{\partial v}{\partial x} + \frac{\partial^{2}}{\partial y^{2}}\frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial x}\left(u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) + \frac{\partial}{\partial y}\frac{\partial p}{\partial x} = 0 \quad (5)$$

$$\frac{\partial}{\partial x}\frac{\partial v}{\partial y} - \frac{\partial}{\partial y}\frac{\partial v}{\partial x} = 0$$

Navier-Stokes escrita em função de ω e ψ (derivação)

Somando (4) com (5)

$$\begin{split} \frac{\partial}{\partial t} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) - \mu \left[\frac{\partial^2}{\partial x^2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{\partial^2}{\partial y^2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right] \\ + \frac{\partial u}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{\partial v}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \\ + u \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + v \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial y} \frac{\partial p}{\partial x} - \frac{\partial}{\partial x} \frac{\partial p}{\partial y} = 0 \end{split}$$

Usando a definição de vorticidade $\omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}$, podemos reescrever a equação como segue

$$\frac{\partial \omega}{\partial t} - \mu \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) + \frac{\partial u}{\partial x} \omega + \frac{\partial v}{\partial y} \omega + u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} = 0$$

Navier-Stokes escrita em função de ω e ψ

A partir das relações entre ω e ψ com o campo de velocidade é possível reescrever as equações de Navier-Stokes como:

$$\frac{\partial \omega}{\partial t} - \mu \Delta \omega + \mathbf{u} \cdot \nabla \omega = 0,$$

ou ainda:

$$\frac{\partial \omega}{\partial t} - \mu \Delta \omega + \frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} = 0, \tag{6}$$

para fechar o sistema, incluímos a seguinte equação que relaciona ω com ψ :

$$\omega = -\Delta \psi. \tag{7}$$

As equações (6) e (7) formam o sistema de Navier-Stokes escrito nas variáveis vorticidade e função corrente.

Caso Particular: Problema de Oseen

Um caso particular das equações de Navier-Stokes é o problema de Oseen, onde o campo de velocidade associado ao termo convectivo é conhecido. Neste caso, podemos escrever o problema de Navier-Stokes como:

Dado $\mathbf{u}(\mathbf{x},t)$ e μ , encontrar a vorticidade ω , tal que:

$$\frac{\partial \omega}{\partial t} - \frac{1}{R_e} \Delta \omega + \mathbf{u} \cdot \nabla \omega = 0,$$

mais condições iniciais e de contorno.

 R_e denota o número de Reynolds que por simplicidade pode ser definido como $R_e = \mu^{-1}$.

Solução analítica: Taylor Vortex

Uma solução analítica para o problema de Navier-Stokes transiente é dada por:

$$u = -\cos(\pi x)\sin(\pi y)\exp\left(\frac{-2\pi^2 t}{R_e}\right)$$
$$v = \sin(\pi x)\cos(\pi y)\exp\left(\frac{-2\pi^2 t}{R_e}\right)$$
$$p = -\frac{1}{4}\left(\cos(2\pi x) + \cos(2\pi y)\right)\exp\left(\frac{-4\pi^2 t}{R_e}\right)$$

para este caso, a vorticidade é dada por:

$$\omega = 2\pi \cos(\pi x) \cos(\pi y) \exp\left(\frac{-2\pi^2 t}{R_e}\right)$$

Resultados: $\Omega = [-1, 1]^2$. T = 1 e $R_e = 20$

Problema da cavidade (lid-driven cavity flow)

Dado R_e , encontrar $\omega(x,y)$ e $\psi(x,y)$ em $\Omega=[0,L]\times[0,L]$, tal que

$$\begin{split} -\frac{1}{R_e}\Delta\omega + \frac{\partial\psi}{\partial y}\frac{\partial\omega}{\partial x} - \frac{\partial\psi}{\partial x}\frac{\partial\omega}{\partial y} &= 0 \quad \text{em} \quad \Omega \\ \omega &= -\Delta\psi \quad \text{em} \quad \Omega \end{split}$$

Problema da cavidade – Aplicação (aneurismas)

Figura: https://journals.plos.org/plosone/article/figures?id=10.1371/journal.pone.0113762

Problema da cavidade - método ADI

Como o método ADI é dependente do tempo, então vamos aplicar uma abordagem quasi-estacionária com o intuito de iterativamente alcançar o regime estacionário. Assim, reescrevemos as equações como segue

$$\frac{\partial \omega}{\partial t} - \Delta \omega + R_e \frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} - R_e \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} = 0$$
$$\frac{\partial \psi}{\partial t} - \Delta \psi = \omega$$

Assim, quando $\frac{\partial \omega}{\partial t} \to 0$ e $\frac{\partial \psi}{\partial t} \to 0$ recuperamos o estado estacionário.

Problema da cavidade - método ADI (função corrente - ψ)

$$\frac{\psi_{i,j}^{n+1/2} - \psi_{i,j}^n}{\Delta t/2} - \frac{\psi_{i+1,j}^{n+1/2} - 2\psi_{i,j}^{n+1/2} + \psi_{i-1,j}^{n+1/2}}{\Delta x^2} = \omega_{i,j}^n + \frac{\psi_{i,j+1}^n - 2\psi_{i,j}^n + \psi_{i,j-1}^n}{\Delta y^2},$$

$$\frac{\psi_{i,j}^{n+1} - \psi_{i,j}^{n+1/2}}{\Delta t/2} - \frac{\psi_{i,j+1}^{n+1} - 2\psi_{i,j}^{n+1} + \psi_{i,j-1}^{n+1}}{\Delta y^2} = \omega_{i,j}^n + \frac{\psi_{i+1,j}^{n+1/2} - 2\psi_{i,j}^{n+1/2} + \psi_{i-1,j}^{n+1/2}}{\Delta x^2}.$$

Tomando $\Delta x = \Delta y = h$ e $\sigma = \frac{\Delta t}{2h^2}$, reescrevemos as equações acima como

$$(1+2\sigma)\psi_{i,j}^{n+1/2} - \sigma(\psi_{i+1,j}^{n+1/2} + \psi_{i-1,j}^{n+1/2}) = \frac{\Delta t}{2}\omega_{i,j}^{n} + (1-2\sigma)\psi_{i,j}^{n} + \sigma(\psi_{i,j+1}^{n} + \psi_{i,j-1}^{n}),$$

$$\begin{split} (1+2\sigma)\psi_{i,j}^{n+1} - \sigma(\psi_{i,j+1}^{n+1} + \psi_{i,j-1}^{n+1}) &= \frac{\Delta t}{2}\omega_{i,j}^n + (1-2\sigma)\psi_{i,j}^{n+1/2} \\ &+ \sigma(\psi_{i+1,j}^{n+1/2} + \psi_{i-1,j}^{n+1/2}). \end{split}$$

Problema da cavidade - método ADI (vorticidade - ω)

$$\frac{\omega_{i,j}^{n+1/2} - \omega_{i,j}^n}{\Delta t/2} = \frac{\omega_{i+1,j}^{n+1/2} - 2\omega_{i,j}^{n+1/2} + \omega_{i-1,j}^{n+1/2}}{\Delta x^2}$$

 $-R_e\left(\frac{\psi_{i+1,j}^{n+1}-\psi_{i-1,j}^{n+1}}{2\Delta x}\right)\left(\frac{\omega_{i,j+1}^{n+1}-\omega_{i,j-1}^{n+1}}{2\Delta u}\right)$

 $-R_e\left(\frac{\psi_{i,j+1}^{n+1} - \psi_{i,j-1}^{n+1}}{2\Delta y}\right) \left(\frac{\omega_{i+1,j}^{n+1/2} - \omega_{i-1,j}^{n+1/2}}{2\Delta x}\right)$

 $=\frac{\omega_{i+1,j}^{n+1/2}-2\omega_{i,j}^{n+1/2}+\omega_{i-1,j}^{n+1/2}}{\omega_{i+1,j}^{n+1/2}+\omega_{i-1,j}^{n+1/2}}$

 $= \frac{\omega_{i,j+1}^n - 2\omega_{i,j}^n + \omega_{i,j-1}^n}{\Delta u^2} + R_e \left(\frac{\psi_{i+1,j}^{n+1} - \psi_{i-1,j}^{n+1}}{2\Delta x}\right) \left(\frac{\omega_{i,j+1}^n - \omega_{i,j-1}^n}{2\Delta y}\right)$

15 / 31

$$\frac{\omega_{i,j} - \omega_{i,j}}{\Delta t/2} - \frac{\omega_{i+1,j} - 2\omega_{i,j} + \omega_{i-1,j}}{\Delta x^2}$$

$$+ R \left(\psi_{i,j+1}^{n+1} - \psi_{i,j-1}^{n+1} \right) \left(\omega_{i+1,j}^{n+1/2} \right)$$

 $\frac{\omega_{i,j}^{n+1} - \omega_{i,j}^{n+1/2}}{\Delta t/2} - \frac{\omega_{i,j+1}^{n+1} - 2\omega_{i,j}^{n+1} + \omega_{i,j-1}^{n+1}}{\Delta \omega_{i,j}^{2}}$

$$\frac{\Delta t/2}{\Delta t/2} = \frac{\omega_{i+1,j} - 2\omega_{i,j} + \omega_{i-1,j}}{\Delta x^2} + R_e \left(\frac{\psi_{i,j+1}^{n+1} - \psi_{i,j-1}^{n+1}}{2\Delta y}\right) \left(\frac{\omega_{i+1,j}^{n+1/2} - \omega_{i-1,j}^{n+1/2}}{2\Delta x}\right)$$

Problema da cavidade - método ADI (vorticidade - ω)

Tomando
$$\Delta x = \Delta y = h$$
, $\sigma = \frac{\Delta t}{2h^2}$,

$$\rho_x = R_e \left(\frac{\psi_{i+1,j}^{n+1} - \psi_{i-1,j}^{n+1}}{4} \right) \quad \text{e} \quad \rho_y = R_e \left(\frac{\psi_{i,j+1}^{n+1} - \psi_{i,j-1}^{n+1}}{4} \right)$$

$$(1+2\sigma)\omega_{i,j}^{n+1/2} + \sigma(\rho_y - 1)\omega_{i+1,j}^{n+1/2} - \sigma(\rho_y + 1)\omega_{i-1,j}^{n+1/2}$$

= $(1-2\sigma)\omega_{i,j}^n + \sigma(\rho_x + 1)\omega_{i,j+1}^n + \sigma(1-\rho_x)\omega_{i,j-1}^n$,

$$(1+2\sigma)\omega_{i,j}^{n+1} - \sigma(\rho_x+1)\omega_{i,j+1}^{n+1} + \sigma(\rho_x-1)\omega_{i,j-1}^{n+1}$$

= $(1-2\sigma)\omega_{i,j}^{n+1/2} + \sigma(1-\rho_y)\omega_{i+1,j}^{n+1/2} + \sigma(1+\rho_y)\omega_{i-1,j}^{n+1/2}$.

Problema da cavidade - condições de contorno¹

Discretizando o domínio $\Omega,$ temos que para cada contorno seja respeitada a relação

superior:

$$\omega_{i,J} = -\frac{\partial^2 \psi}{\partial y^2} \bigg|_{i,J}$$

inferior:

$$\omega_{i,0} = -\frac{\partial^2 \psi}{\partial y^2} \bigg|_{i,0}$$

esquerdo:

$$\omega_{0,j} = -\frac{\partial^2 \psi}{\partial x^2} \bigg|_{0,j}$$

direito:

$$\omega_{I,j} = -\frac{\partial^2 \psi}{\partial x^2} \bigg|_{I,i}$$

¹A definição das condições de contorno é extremamente importante, pois afeta diretamente a estabilidade e a precisão da solução.

Problema da cavidade - condições de contorno

Considerando a expansão de Taylor para aproximar a derivada de segunda ordem, como, por exemplo, para o contorno superior, obtemos

$$\psi_{i,J-1} = \psi_{i,J} - \Delta y \frac{\partial \psi}{\partial y} \bigg|_{i,J} + \frac{\Delta y^2}{2!} \frac{\partial^2 \psi}{\partial y^2} \bigg|_{i,J},$$

recordando que $\frac{\partial \psi}{\partial y} = u$, temos que

$$-\frac{\partial^2 \psi}{\partial y^2}\bigg|_{i,J} = 2\frac{\psi_{i,J} - \psi_{i,J-1}}{\Delta y^2} - \frac{2}{\Delta y}u_{i,J}.$$

Assim,

$$\omega_{i,J} = 2 \frac{\psi_{i,J} - \psi_{i,J-1}}{\Delta y^2} - \frac{2}{\Delta y} u_{i,J}.$$

Problema da cavidade - condições de contorno

Dessa forma, podemos reescrever as condições para cada contorno, como segue

superior:

$$\omega_{i,J} = 2\frac{\psi_{i,J} - \psi_{i,J-1}}{\Delta y^2} - \frac{2}{\Delta y}u_{i,J},$$

inferior:

$$\omega_{i,0} = 2\frac{\psi_{i,1} - \psi_{i,0}}{\Delta y^2} - \frac{2}{\Delta y}u_{i,0},$$

esquerdo:

$$\omega_{1,j} = 2\frac{\psi_{1,j} - \psi_{0,j}}{\Delta x^2} - \frac{2}{\Delta x} v_{0,j},$$

direito:

$$\omega_{I,j} = 2 \frac{\psi_{I,j} - \psi_{I-1,j}}{\Delta x^2} - \frac{2}{\Delta x} v_{I,j}.$$

Problema da cavidade - condições de contorno

Como $\psi=0$ nos contornos $(\psi_{i,J},\,\psi_{i,0},\,\psi_{0,j},\,\psi_{I,j})$ e somente a componente u da velocidade no contorno superior é diferente de zero. Então, adotando $u_{i,J}=1$ e $\Delta x=\Delta y=h$, podemos reescrever as equações como

superior:

$$\omega_{i,J} = -2\frac{\psi_{i,J-1}}{h^2} - \frac{2}{h},$$

inferior:

$$\omega_{i,0} = -2\frac{\psi_{i,1}}{h^2},$$

esquerdo:

$$\omega_{0,j} = -2 \frac{\psi_{1,j}}{h^2},$$

direito:

$$\omega_{I,j} = -2 \frac{\psi_{I-1,j}}{h^2}.$$

Problema da cavidade - método ADI (estratégia de solução)

- (1) Dada a condição inicial $\psi_{i,j}^0 = \omega_{i,j}^0 = 0$;
- (2) Dada a solução do passo anterior, resolver a equação da função corrente pelo método ADI impondo $\psi=0$ nos contornos;
- (3) Dada a solução da função corrente, resolver a equação da vorticidade pelo método ADI impondo as devidas condições de contorno para ω ;
- (4) Verificar a convergência adotando o seguinte critério:

$$\max(\|R_{\psi}^{n+1}\|_{\infty}, \|R_{\omega}^{n+1}\|_{\infty}) \le 10^{-6}$$

onde

$$||R_{\psi}^{n+1}||_{\infty} = \max_{1 \le i \le I-1: \ 1 \ge j \le J-1} |R_{\psi}^{n+1}(i,j)|$$

е

$$\|R_{\omega}^{n+1}\|_{\infty} = \max_{1 < i < I-1; \ 1 < j < J-1} |R_{\omega}^{n+1}(i,j)|$$

Se o critério for atingido finaliza o processo iterativo, do contrário retorna para (2).

Problema da cavidade - método ADI (critério de parada)

Definindo os resíduos associados a função corrente

$$R_{\psi}^{n+1}(i,j) = \frac{\psi_{i+1,j}^{n+1} - 2\psi_{i,j}^{n+1} + \psi_{i-1,j}^{n+1}}{\Delta x^2} + \frac{\psi_{i,j+1}^{n+1} - 2\psi_{i,j}^{n+1} + \psi_{i,j-1}^{n+1}}{\Delta y^2} + \omega_{i,j}^{n+1}$$

e a vorticidade

$$R_{\omega}^{n+1}(i,j) = \frac{1}{R_e} \frac{\omega_{i,j+1}^{n+1} - 2\omega_{i,j}^{n+1} + \omega_{i,j-1}^{n+1}}{\Delta x^2} + \frac{1}{R_e} \frac{\omega_{i+1,j}^{n+1} - 2\omega_{i,j}^{n+1} + \omega_{i-1,j}^{n+1}}{\Delta y^2} - \left(\frac{\psi_{i,j+1}^{n+1} - \psi_{i,j-1}^{n+1}}{2\Delta y}\right) \left(\frac{\omega_{i+1,j}^{n+1} - \omega_{i-1,j}^{n+1}}{2\Delta x}\right) + \left(\frac{\psi_{i+1,j}^{n+1} - \psi_{i-1,j}^{n+1}}{2\Delta x}\right) \left(\frac{\omega_{i,j+1}^{n+1} - \omega_{i,j-1}^{n+1}}{2\Delta y}\right)$$

A magnitude desses resíduos indica a convergência da solução para o estado estacionário. Uma vez que estes resíduos tendem a zero a solução tende ao caso estacionário.

Problema da cavidade - Resultados numéricos

Os resultados da Tabela a seguir foram gerados levando em consideração **o maior valor absoluto** obtido pela função corrente ψ no domínio. No mesmo ponto, dado pelas coordenadas do maior ψ , identifica-se o valor da vorticidade ω .

malha	Δt	ψ	ω	x	y
32×32	$h^2/10$	0.069855	1.502680	0.5625	0.6250
64×64	$h^2/2$	0.105220	1.874321	0.5313	0.5781
128×128	h^2	0.115466	2.018654	0.5313	0.5703
256×256	h^2	0.118074	2.055531	0.5313	0.5664
512×512	$h^2/2$	0.118722	2.064764	0.5313	0.5645

Tabela: Resultados para $R_e = 1000$

Os resultados demonstram uma boa precisão se comparados com a tabela do próximo slide.

Problema da cavidade – Tabela de referência $R_e = 1000$

Table I. Comparison of the properties of the primary vortex; the maximum streamfunction value, the vorticity value and the location of the centre, for Re = 1000.

Reference	No	Grid	Spatial accuracy	ψ	ω	x	у
Present		401 × 401	Δh^2	0.118585	2.062761	0.5300	0.5650
Present		513×513	Δh^2	0.118722	2.064765	0.5313	0.5645
Present		601×601	Δh^2	0.118781	2.065530	0.5300	0.5650
Present		Extrapolated	Δh^6	0.118942	2.067213	_	_
Barragy and Carey	Reference [2]	257×257	p=8	0.118930		_	_
Botella and Peyret	Reference [6]	N = 128	N = 128	0.1189366	2.067750	0.5308	0.5652
Botella and Peyret	Reference [6]	N = 160	N = 160	0.1189366	2.067753	0.5308	0.5652
Schreiber and Keller	Reference [26]	100×100	Δh^2	0.11315	1.9863	_	_
Schreiber and Keller	Reference [26]	121×121	Δh^2	0.11492	2.0112	_	_
Schreiber and Keller	Reference [26]	141×141	Δh^2	0.11603	2.0268	0.52857	0.56429
Schreiber and Keller	Reference [26]	Extrapolated	Δh^6	0.11894	2.0677	_	_
Wright and Gaskell	Reference [34]	1024×1024	Δh^2	0.118821	2.06337	0.5308	0.5659
Nishida and Satofuka	Reference [22]	129×129	Δh^8	0.119004	2.068546	0.5313	0.5625
Benjamin and Denny	Reference [5]	101×101	Δh^2	0.1175	2.044	_	_
Benjamin and Denny	Reference [5]	Extrapolated	High order	0.1193	2.078	_	_
Li et al.	Reference [18]	129×129	Δh^4	0.118448	2.05876	0.5313	0.5625
Ghia et al.	Reference [12]	129×129	Δh^2	0.117929	2.04968	0.5313	0.5625
Bruneau and Jouron	Reference [7]	256×256	Δh^2	0.1163	_	0.5313	0.5586
Goyon	Reference [13]	129×129	Δh^2	0.1157	_	0.5312	0.5625
Vanka	Reference [31]	321×321	Δh^2	0.1173	_	0.5438	0.5625
Gupta	Reference [15]	41×41	Δh^4	0.111492	2.02763	0.525	0.575
Hou et al.	Reference [17]	256×256	Δh^2	0.1178	2.0760	0.5333	0.5647
Liao and Zhu	Reference [20]	129×129	Δh^2	0.1160	2.0234	0.5313	0.5625
Grigoriev and Dargush		_	_	0.11925	_	0.531	0.566

Problema da cavidade - Resultados numéricos

O próximo estudo foi realizado comparando o valor obtido pela aproximação do campo de velocidade com os valores tabelados dados em $Ghia\ et\ al.^2$

Os campos de velocidade foram obtidos através da seguinte relação:

$$u = \frac{\partial \psi}{\partial y} = \frac{\psi_{i,j+1} - \psi_{i,j}}{h}$$
$$v = -\frac{\partial \psi}{\partial x} = -\frac{\psi_{i+1,j} - \psi_{i,j}}{h}$$

Os resultados a seguir foram gerados adotando malhas de 256×256 elementos e $\Delta t = \frac{h^2}{2}.$

²http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413. 9651&rep=rep1&type=pdf

Problema da cavidade – Resultados numéricos

Results for u-velocity along Vertical Line through Geometric Center of Cavity

129- grid		Re									
pt. no.	У	100	400	1000	3200	5000	7500	10,000			
129	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000			
126	0.9766	0.84123	0.75837	0.65928	0.53236	0.48223	0.47244	0.47221			
125	0.9688	0.78871	0.68439	0.57492	0.48296	0.46120	0.47048	0.47783			
124	0.9609	0.73722	0.61756	0.51117	0.46547	0.45992	0.47323	0.48070			
123	0.9531	0.68717	0.55892	0.46604	0.46101	0.46036	0.47167	0.47804			
110	0.8516	0.23151	0.29093	0.33304	0.34682	0.33556	0.34228	0.34635			
95	0.7344	0.00332	0.16256	0.18719	0.19791	0.20087	0.20591	0.20673			
80	0.6172	-0.13641	0.02135	0.05702	0.07156	0.08183	0.08342	0.08344			
65	0.5000	-0.20581	-0.11477	-0.06080	-0.04272	-0.03039	-0.03800	0.03111			
59	0.4531	-0.21090	-0.17119	-0.10648	-0.86636	-0.07404	-0.07503	-0.07540			
37	0.2813	-0.15662	-0.32726	-0.27805	-0.24427	-0.22855	-0.23176	-0.23186			
23	0.1719	-0.10150	-0.24299	-0.38289	-0.34323	-0.33050	-0.32393	-0.32709			
14	0.1016	-0.06434	-0.14612	-0.29730	-0.41933	-0.40435	-0.38324	-0.38000			
10	0.0703	-0.04775	-0.10338	-0.22220	-0.37827	-0.43643	-0.43025	-0.41657			
9	0.0625	-0.04192	-0.09266	-0.20196	-0.35344	-0.42901	-0.43590	-0.42537			
8	0.0547	-0.03717	-0.08186	-0.18109	-0.32407	-0.41165	-0.43154	-0.42735			
1	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			

Figura: Resultados componente u da velocidade Ghia et al.³ em x = 0.5.

³http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.

Problema da cavidade – Resultados numéricos

Results for v-Velocity along Horizontal Line through Geometric Center of Cavity

129- grid		Re									
pt. no.	x	100	400	1000	3200	5000	7500	10,000			
129	1.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			
125	0.9688	-0.05906	-0.12146	-0.21388	-0.39017	-0.49774	-0.53858	-0.54302			
124	0.9609	-0.07391	-0.15663	-0.27669	-0.47425	-0.55069	-0.55216	-0.52987			
123	0.9531	-0.08864	-0.19254	-0.33714	-0.52357	-0.55408	-0.52347	-0.49099			
122	0.9453	-0.10313	-0.22847	-0.39188	-0.54053	-0.52876	-0.48590	-0.45863			
117	0.9063	-0.16914	-0.23827	-0.51550	-0.44307	-0.41442	-0.41050	-0.41496			
111	0.8594	-0.22445	-0.44993	-0.42665	-0.37401	-0.36214	-0.36213	-0.36737			
104	0.8047	-0.24533	-0.38598	-0.31966	-0.31184	-0.30018	-0.30448	-0.30719			
65	0.5000	0.05454	0.05186	0.02526	0.00999	0.00945	0.00824	0.0083			
31	0.2344	0.17527	0.30174	0.32235	0.28188	0.27280	0.27348	0.27224			
30	0.2266	0.17507	0.30203	0.33075	0.29030	0.28066	0.28117	0.28003			
21	0.1563	0.16077	0.28124	0.37095	0.37119	0.35368	0.35060	0.35070			
13	0.0938	0.12317	0.22965	0.32627	0.42768	0.42951	0.41824	0.4148			
11	0.0781	0.10890	0.20920	0.30353	0.41906	0.43648	0.43564	0.43124			
10	0.0703	0.10091	0.19713	0.29012	0.40917	0.43329	0.44030	0.4373			
9	0.0625	0.09233	0.18360	0.27485	0.39560	0.42447	0.43979	0.4398			
1	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			

Figura: Resultados componente v da velocidade *Ghia et al.*⁴ em y = 0.5.

⁴http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.

Problema da cavidade - Resultados numéricos

Figura: comparação da componente u da velocidade com *Ghia et al.* em x=0.5 adotando $R_e=1000$.

Problema da cavidade - Resultados numéricos

Figura: comparação da componente v da velocidade com *Ghia et al.* em y=0.5 adotando $R_e=1000$.

Problema da cavidade – Funcão corrente ψ

$$R_e = 5000$$
 $R_e = 7500$

Problema da cavidade – Vorticidade ω

 $R_e = 5000$ $R_e = 7500$