

Data: 04 de Maio 2021 (18h30)

Duração: 1h30 (+5' tol. + 10' subm.)Docentes: Hugo Terças e Pedro Cosme

Mecânica Analítica

MEFT 2020/21

TESTE I

Justifique cuidadosamente as suas respostas e apresente todos os cálculos que efectuar.

Questão 1. [10 val] Problema de três corpos restrito — Comece por considerar um sistema de duas massas que, interagindo graviticamente, descrevem órbitas circulares em torno do seu baricentro (centro de massa) com frequência angular Ω . Suponha agora que, num determinado momento, se introduz um terceiro corpo de massa $m \ll M_1, M_2$. Neste tipo de problema a três corpos é conveniente estudarmos o sistema num referencial em rotação (dito referencial sinódico) centrado no baricentro (vamos considerá-lo próximo de M_1) e em que o eixo X é dirigido para a segunda massa M_2 tal como ilustrado na figura.

a) [2 val] Argumente que o Langrangeano para a massa m pode ser escrito, nas coordenadas do referencial inercial (x, y), como

$$L(x, \dot{x}, y, \dot{y}, z, \dot{z}) = \frac{1}{2}m\left[\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right] - m\phi(x\cos\Omega t - y\sin\Omega t, x\sin\Omega t + y\cos\Omega t, z)$$

No referencial inercial a energia cinética da massa m é somente a devida à sua translação pelo que $T=\frac{1}{2}m(\dot{x}^2+\dot{y}^2+\dot{z}^2)$. Quanto ao potencial gravítico, este é gerado pelas massas M_1 e M_2 , em repouso no referencial sinódico, portanto o potencial é função das coordenadas (X,Y,Z) contudo, estas relacionam-se com as coordenadas inerciais segundo uma rotação de ângulo Ωt , i. e.

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \cos \Omega t & -\sin \Omega t & 0 \\ \sin \Omega t & \cos \Omega t & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix},$$

o que justifica a forma do Lagrangeano apresentado.

b) [2 val] Relembre o teorema de Nöther. Num sistema invariante para transformações

$$Q_i(\epsilon, t) = q_i(t) + \epsilon \eta_i(t), \quad \tau(\epsilon, t) = t + \epsilon \psi(t).$$

a quantidade

$$\mathcal{J}(q_i, \dot{q}_i) = \frac{\partial L}{\partial \dot{q}_i} (\dot{q}_i \psi - \eta_i) - \psi L$$

é conservada. Recorrendo ao teorema de Nöther e sabendo que sistema em análise é invariante para translações no tempo ($\psi(t)=1$) e rotações no plano xy em simultâneo. Mostre que o Integral de Jacobi,

$$C_J = \frac{m}{2} \left[\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right] + m\phi - m\Omega(x\dot{y} - y\dot{x}) = E - \Omega L_z,$$

é uma quantidade conservada. Disserte sobre a existência, ou não, de outras quantidades conservadas, abordando a conexão entre as invariancias de translação temporal e a rotação neste sistema.

As translações no tempo ψ estão já definidas no enunciado, relembremos que o gerador para as rotações no plano segundo um ângulo infinitésimal θ é dado pela matriz

$$\begin{bmatrix} 1 & -\theta \\ \theta & 1 \end{bmatrix},$$

ora neste sistema uma translação temporal $\psi(t)=1$ implica $\theta=\Omega$ portanto os geradores da rotação são:

$$\eta_x = -\Omega y \in \eta_y = \Omega x.$$

Desta forma a carga de Nöther é

$$\begin{split} \mathcal{J} &= \frac{\partial L}{\partial \dot{x}} \left(\dot{x} - \eta_x \right) + \frac{\partial L}{\partial \dot{y}} \left(\dot{y} - \eta_y \right) + \frac{\partial L}{\partial \dot{z}} \left(\dot{z} \right) - L \\ &= m \dot{x} \left(\dot{x} + \Omega y \right) + m \dot{y} \left(\dot{y} - \Omega x \right) + m \dot{z}^2 - L \\ &= \frac{m}{2} \left[\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right] + m \phi - m \Omega (x \dot{y} - y \dot{x}) = E - \Omega L_z \equiv C_J \end{split}$$

De notar que, embora a energia não se converve, uma vez que o Lagrangeano depende explicitamente do tempo, nem o momento angular, pois não é possível escrevê-lo em coordenadas polares onde se identificasse um ângulo como variável cíclica. A sua combinação linear que se traduz no integral de Jacobi é conservada, não existindo outros integrais de movimento. Como se pode constatar recorrendo ao teorema de Nöther a conservação de C_J depende do facto da rotação dos corpos principais implicar uma translação no tempo e vice versa. Como as transformações não podem ocoarrer isoladamente então as suas cargas de Nöther usuais (energia e momento angular) não são conservadas. Somente a combinação de ambas quantidades resulta num integral de movimento.

c) [1 val] Mostre que no referencial sinódico o Lagrangeno se escreve:

$$L(X, \dot{X}, Y, \dot{Y}, Z, \dot{Z}) = \frac{1}{2}m\left[(\dot{X} - \Omega Y)^2 + (\dot{Y} + \Omega X)^2 + \dot{Z}^2\right] - m\phi(X, Y, Z).$$

(Suqestão: Utilize as transformações de velocidades para referenciais em rotação.)

A rotação que relaciona os referenciais inercial e sinódico é dada por

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \cos \Omega t & -\sin \Omega t & 0 \\ \sin \Omega t & \cos \Omega t & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

o que permite concluir que o potencial é agora simplesmente escrito como

$$\phi(x\cos\Omega t - y\sin\Omega t, x\sin\Omega t + y\cos\Omega t, z) = \phi(X, Y, Z)$$

Adicionalmente, num referencial inercial a velocidade \vec{v} pode ser escrita como $\vec{v} = \vec{V} + \vec{\Omega} \times \vec{L}$, onde \vec{V} corresponde à velocidade no referencial em rotação. De onde se conclui que:

Portanto, substituindo directamente no Lagrangeano, obtem-se

$$L = \frac{1}{2}m\left[\dot{x}^{2} + \dot{y}^{2} + \dot{z}^{2}\right] - m\phi(x\cos\Omega t - y\sin\Omega t, x\sin\Omega t + y\cos\Omega t, z) = \frac{1}{2}m\left[(\dot{X} - \Omega Y)^{2} + (\dot{Y} + \Omega X)^{2} + \dot{Z}^{2}\right] - m\phi(X, Y, Z).$$

d) [3 val] Determinar analiticamente os pontos de equilíbrio deste sistema (os famosos cinco pontos de Lagrange) é uma tarefa complicada. Procuremos dois deles num regime em que $M_2 \ll M_1$, na proximidade da massa secundária. Em unidades normalizadas ($G=1,\ M_1=1-\mu$ e $M_2=\mu$), a distância entre as massas M_1 e M_2 é igual a um. Pode demonstar-se que, em termos de novas coordenadas auxiliares definidas a partir do corpo secundário, $\xi=X-(1+\mu)$ e $\eta=Y$ (que resultam de definir $X_1=-\mu$ e $X_2=1+\mu$), as equações de movimento podem ser aproximadas pelas equações de Hill,

$$\ddot{\xi} - 2\dot{\eta} = \frac{\partial U_{\rm H}}{\partial \xi},$$
$$\ddot{\eta} + 2\dot{\xi} = \frac{\partial U_{\rm H}}{\partial \eta},$$

com
$$U_{\rm H} = \frac{3}{2}\xi^2 + \frac{\mu}{\sqrt{\xi^2 + \eta^2}}.$$

- (i) Determine os pontos de equilíbrio do pseudo-potencial de Hill com $\eta=0$ e $\xi\neq0$. Estes são os pontos de Lagrange L_1 e L_2 .
- (ii) Obtenha a matriz Hessiana de $U_{\rm H}$ e mostre que os pontos L_1 e L_2 são pontos de sela.

$$\frac{\partial U_{\rm H}}{\partial \eta} = -\eta \frac{\mu}{(\xi^2 + \eta^2)^{3/2}} = 0 \Rightarrow \eta = 0$$

$$\frac{\partial U_{\rm H}}{\partial \xi} = \xi \left(3 - \frac{\mu}{(\xi^2 + \eta^2)^{3/2}} \right) = 0$$

impondo $\eta=0$ e procurando apenas as soluções em que $\xi\neq0$

$$3 - \frac{\mu}{(\xi_0^2)^{3/2}} = 0 \Rightarrow |\xi_0| = \sqrt[3]{\frac{\mu}{3}}$$

ou seja os pontos de equilibro são $(\xi, \eta) = (\pm \sqrt[3]{\mu/3}, 0)$. A matriz Hessiana é

$$\frac{\partial^2 U_{\rm H}}{\partial q_i \partial q_j} = \begin{bmatrix} 3 + 3\xi^2 \frac{\mu}{(\xi^2 + \eta^2)^{5/2}} - \frac{\mu}{(\xi^2 + \eta^2)^{3/2}} & 3\eta\xi \frac{\mu}{(\xi^2 + \eta^2)^{5/2}} \\ 3\eta\xi \frac{\mu}{(\xi^2 + \eta^2)^{5/2}} & 3\eta^2 \frac{\mu}{(\xi^2 + \eta^2)^{5/2}} - \frac{\mu}{(\xi^2 + \eta^2)^{3/2}} \end{bmatrix}$$

que nos pontos de equilíbrio se reduz a

$$\left. \frac{\partial^2 U_{\rm H}}{\partial q_i \partial q_j} \right|_0 = \begin{bmatrix} 9 & 0 \\ 0 & -3 \end{bmatrix}$$

uma vez que o determinante da Hessiana é < 0 os pontos de equilíbrio são pontos de sela.

e) [2 val] Determine as frequências próprias da aproximação de Hill fazendo uma perturbação em torno dos pontos de Lagrange, $\xi = \xi_0 + \xi'$ e $\eta = 0 + \eta'$, sabendo que, na vizinhança de ambos os pontos L₁ e L₂, se tem

$$\left. \frac{\partial U_{\rm H}}{\partial \xi} \right|_0 \simeq 9\xi' \quad {\rm e} \quad \left. \frac{\partial U_{\rm H}}{\partial \eta} \right|_0 \simeq 3\eta'.$$

Comente o resultado à luz da alínea anterior.

Procurando soluções da forma $\xi' = Ae^{-i\omega t}$, $\eta' = Be^{-i\omega t}$ e recorrendo às aproximações dadas no enunciado podemos escrever o sistema em torno dos pontos de equilíbrio como

$$\begin{bmatrix} \omega^2 + 9 & -2i\omega \\ 2i\omega & \omega^2 + 3 \end{bmatrix} \begin{bmatrix} Ae^{-i\omega t} \\ Be^{-i\omega t} \end{bmatrix} = 0$$

para termos soluções não triviais o determinantes deste sistema terá que se anular, o que leva à equação secular

$$(\omega^2 + 9)(\omega^2 + 3) - 4\omega^2 = 0 \iff \omega^4 + 8\omega^2 + 27 = 0.$$

Esta equação biquadrada tem soluções complexas dadas por $\omega^2 = -4 \pm i \sqrt{11}$. Ou seja, as frequencias próprias do sistema são números complexos, com parte real (associada a movimento oscilatório) e parte imaginária (responsável pelo crescimento/atenuação). Com efeito, as frequências próprias encontradas possuem partes imaginárias quer positivas qer negativas, o que está de acordo com o que se obteve anteriormente, um ponto de sela é precisamento um ponto onde se tem atração e repulsão em simultâneo segundo direcções distintas. Notem ainda, que existe ainda parte real das frequências e por isso a órbita de uma partícula em torno dos pontos L_1 e L_2 tenderá a espiralar.

Questão 2. [10 val] Rola, $mas\ n\~ao\ deslizes!$ — Considere um disco de massa m_d e raio R, com momento de inércia I em relação ao seu centro de massa. O disco rola, sem deslizar, sobre a superfície horizontal e encontra-se ligado a uma barra de massa m através de uma mola. Esta, por sua vez, também se encontra ligada à origem através de uma mola e considera-se que mantém sempre a sua posição vertical, conforme representado na figura ao lado. Assumimos que as molas são iguais, de constante elástica k e comprimento natural ℓ , e designemos x_1 e x_2 as posições da barra e do centro de massa do disco, respectivamente.

a) [2 val] Mostre que o Lagrangeano do sistema é dado por,

$$L(x_1, \dot{x}_1, x_2, \dot{x}_2) = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}\mathcal{M}\dot{x}_2^2 - \frac{1}{2}k\left(x_1 - \ell\right)^2 - \frac{1}{2}k\left(x_2 - x_1 - \ell\right)^2,$$

determinando explicitamente a constante \mathcal{M} . Que quantidade(s) se conserva(m)?

Como sempre, começamos por notar que L=T-V, onde $V=V_{\mathrm{mola}_1}+V_{\mathrm{mola}_2}=\frac{1}{2}k(x_1-\ell)^2+\frac{1}{2}k\left(x_2-x_1-\ell\right)^2$. A energia cinética é dada por,

$$T = T_1 + T_2 + T_{\text{rot}} = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m_d\dot{x}_2^2 + \frac{1}{2}I\dot{\varphi}^2,$$

onde φ é o ângulo que descreve a rotação do disco em torno do seu eixo de simetria. Uma vez que o disco rola sem deslizar, $\dot{x}_2 = R\dot{\varphi}$, pelo que

$$T = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}\left(m_d + \frac{I}{R^2}\right)\dot{x}_2^2,$$

onde se identifica que $\mathcal{M} = m_d + I/R^2$.

b) [2 val] Determine o(s) ponto(s) de equilíbrio e classifique-os quanto às sua estabilidade.

Como vimos na alínea anterior, $V = \frac{1}{2}k(x_1 - \ell)^2 + \frac{1}{2}k(x_2 - x_1 - \ell)^2$. A condição de equilíbrio é dada por

$$\frac{\partial V}{\partial x_1}\Big|_{0} = 0 \quad \wedge \quad \frac{\partial V}{\partial x_2}\Big|_{0} = 0,$$

que correspondem às condições $k(x_{1,0}-\ell)-k(x_{2,0}-x_{1,0}-\ell)=0$ e $k(x_{2,0}-x_{1,0}-\ell)=0$, que conduzem ao resultado óbvio

$$\vec{x}_0 = (x_{1,0}, x_{2,0}) = (\ell, 2\ell).$$

A matriz Hessiana é

$$\frac{\partial^2 V}{\partial x_1 \partial x_2} \bigg|_0 = \begin{bmatrix} 2k & -k \\ -k & k \end{bmatrix},$$

de determinante $k^2>0$ e traço 3k>0 sendo, portanto, definida positiva. O ponto \vec{x}_0 é um ponto de equilíbrio estável.

c) [2 val] Recorra ao formalismo das pequenas oscilações para mostrar que as frequências próprias de vibração do sistema são dadas por

$$\frac{\omega^2}{\omega_0^2} = \frac{1 + 2\eta \pm \sqrt{1 + 4\eta^2}}{2\eta},$$

onde $\omega_0^2 = k/m$ e $\eta = \mathcal{M}/m$. Discuta fisicamente os modos próprios (não precisa calcular os vectores próprios).

Recorrendo ao formalismo das pequenas oscilações, procuramos a solução da seguinte equação secular

$$\det\left(\mathbf{V} - \omega^2 \mathbf{T}\right) = 0,$$

onde as matrizes V e T são retiras imediatamente das alíneas a) e b),

$$\mathbf{V} = \begin{bmatrix} 2k & -k \\ -k & k \end{bmatrix}, \quad \mathbf{T} = \begin{bmatrix} m & 0 \\ 0 & \mathcal{M} \end{bmatrix} \Rightarrow \det(\mathbf{V} - \omega^2 \mathbf{T}) = \det \begin{bmatrix} 2\omega_0^2 - \omega^2 & -\omega_0^2 \\ -\omega_0^2 & \omega_0^2 - \eta\omega^2 \end{bmatrix} = 0,$$

onde $\eta=\mathcal{M}/m$ e $\omega_0^2=k/m$. O polinómio característico do sistema é $(2\omega_0^2-\omega^2)(\omega_0^2-\eta\omega^2)-\omega_0^4=0$, cujas raízes são

$$\omega_{\pm}^2 = \omega_0^2 \frac{\left(1 + 2\eta \pm \sqrt{(1 + 2\eta)^2 - 4\eta}\right)}{2\eta},$$

que, após expansão do radical, coincidem com as descritas no enunciado. À frequência de menor valor ($\omega = \omega_{-}$) corresponde ao movimento em que o disco e a barra oscilam em fase; pelo contrário, o movimento oscilatório acontece em oposição de fase para a frequência de maior valor ($\omega = \omega_{+}$).

d) [2 val] Usando o métodos dos multiplicadores de Lagrange, mostre que (o módulo) da força de ligação que assegura a condição de não-delizamento é

$$Q_x^{\lambda} = \frac{Im}{R^2 \mathcal{M}} \omega_0^2 \left(x_1 - x_2 + \ell \right).$$

Neste caso, promovemos φ a grau de liberdade sobre a condição de constrangimento $\dot{x}_2 = R\dot{\varphi}$, cuja integração fornece a ligação $f(x_2,\varphi) = x_2 - R\varphi + c$, onde c é uma constante (inócua) de integração. O Lagrangeano relevante vem

$$L^{\lambda}(x_1, \dot{x}_1, x_2, \dot{x}_2, \varphi, \dot{\varphi}) = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m_d\dot{x}_2^2 + \frac{1}{2}I\dot{\varphi}^2 - V(x_1, x_2) - \lambda f(x_2, \varphi).$$

Das equações de Euler-Lagrange para x_2 e $\dot{\varphi}$ (não vale a pena perder tempo com a equação para x_1), obtemos

$$m_d\ddot{x}_2 + k(x_2 - x_1 - \ell) + \lambda = 0, \quad \wedge \quad I\ddot{\varphi} - R\lambda = 0.$$

Impondo, agora, a condição de não-deslizamento $\ddot{\varphi}=\ddot{x}_2/R$ na segunda equação, temos $I\ddot{x}_2-R^2\lambda=0$. Igualando as duas equações, obtemos

$$-kI(x_2 - x_1 - \ell) = (I + m_d R^2)\lambda.$$

Dividindo tudo por \mathbb{R}^2 , e usando m para fazer eliminar k ($k=m\omega_0$), obtemos o resultado pretendido.

e) [2 val] Considere agora a situação onde a mola mais à esquerda é removida (i.e. assuma que a barra apenas se encontra ligada ao disco). Construa o problema do potencial central equivalente definindo $\xi = x_2 - x_1$ e $X = (mx_1 + \mathcal{M}x_2)/(m + \mathcal{M})$, mostrando que existe uma quantidade nova que agora é conservada. Conclua mostrando que, caso o sistema parta do repouso, a velocidade angular do disco é dada por

$$\dot{\varphi} = -\frac{m}{\mathcal{M}} \frac{\dot{x}_1}{R}.$$

Retirando a primeira mora, o sistema fica reduzido a um problema de potencial central, onde a coordenada ξ e X definem as coordenadas relativas e de centro-de-massa, respectivamente. Este argumento basta para, sem demais contas, escrevermos

$$L(X,\xi) = \frac{1}{2}M\dot{X}^2 + \frac{1}{2}\mu\dot{\xi}^2 - V(\xi),$$

onde $M=m+\mathcal{M}$ e $\mu=m\mathcal{M}/(m+\mathcal{M})$. Neste novo problema, X é coordenada cíclica e, portanto

$$\frac{\partial L}{\partial X} = 0 \implies \frac{\partial L}{\partial \dot{X}} = M\dot{X} = c,$$

o que implica, naturalmente que $\dot{X}=c$. Bom, agora falta apenas perceber que, partindo do repouso, se tem c=0. Substituindo,

$$\dot{X} = 0 \Leftrightarrow m\dot{x}_1 + \mathcal{M}\dot{x}_2 = x \Leftrightarrow m\dot{x}_1 + \mathcal{M}R\dot{\varphi} = 0,$$

onde a última equivalência resulta da condição de não-deslizamento. Já viram como as coisas são simples quando se pensa como um Físico?