

CSE 322

Pumping Lemma for Context Free Grammar

Lecture #24

Background Information for the Pumping Lemma for Context-Free Languages

Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form

$$A \rightarrow BC$$

or

where A, B and C are all in V and a is in T, then G is in Chomsky Normal Form (CNF).

Example: (not quite!)

$$A \rightarrow a$$

$$B \rightarrow b$$

Theorem: Let L be a CFL. Then $L - \{\epsilon\}$ is a CFL.

Theorem: Let L be a CFL not containing $\{\epsilon\}$. Then there exists a CNF grammar G such that L = L(G).

Definition: Let T be a tree. Then the <u>height</u> of T, denoted h(T), is defined as follows:

- If T consists of a single vertex then h(T) = 0
- If T consists of a root r and subtrees T_1 , T_2 , ... T_k , then $h(T) = \max_i \{h(T_i)\} + 1$

Lemma: Let G be a CFG in CNF. In addition, let w be a string of terminals where A=>*w and w has a derivation tree T. If T has height $h(T)\ge 1$, then $|w| \le 2^{h(T)-1}$.

Proof: By induction on h(T) (exercise).

Corollary: Let G be a CFG in CNF, and let w be a string in L(G). If $|w| \ge 2^k$, where $k \ge 0$, then any derivation tree for w using G has height at least k+1.

Proof: Follows from the lemma.

Pumping Lemma for Context-Free Languages

Lemma:

Let G = (V, T, P, S) be a CFG in CNF, and let n = $2^{|V|}$. If z is a string in L(G) and $|z| \ge n$, then there exist strings u, v, w, x and y in T* such that z=uvwxy and:

- $|vx| \ge 1$ (i.e., $|v| + |x| \ge 1$, or, non-null)
- $|vwx| \le n$ (the loop in generating this substring)
- uv^iwx^iy is in L(G), for all $i \ge 0$
- Note: u could be of any length, so, vwx is not a prefix
 - unlike that (uv of uvw) in RL pumping lemma

Proof:

Since $|z| \ge n = 2^k$, where k = |V|, it follows from the corollary that any derivation tree for z has height at least k+1.

By definition such a tree contains a path of length at least k+1.

Consider the longest such path in the tree:

t

yield of T is z

Such a path has:

- Length \ge k+1 (i.e., number of edges in the path is \ge k+1)
- At least k+2 nodes
- 1 terminal
- At least k+1 non-terminals

• Since there are only k non-terminals in the grammar, and since k+1 appear on this long path, it follows that some non-terminal (and perhaps many) appears at least twice on this path.

Consider the first non-terminal that is repeated, when traversing the path from the leaf

to the root.

t

Generic Description:

Example:

In this case u = cd and y =f

Cut out the subtree rooted at A:

u

V

S =>* uAy

(1)

Example:

С

Ч

f

S =>* cdAf

Consider the subtree rooted at A:

v x

f a

Cut out the subtree rooted at the first occurrence of A:

y x

f

$$A => * vAx$$

(2)

$$A => * fAg$$

Consider the smallest subtree rooted at A:

Α

а

$$A =>^* w$$
 (3)

$$A => * a$$

Collectively (1), (2) and (3) give us:

since z=uvwxy

In addition, (2) also tells us:

$$S =>^* uAy \tag{1}$$

$$=>^* uv^2Ax^2y \tag{2}$$

$$=>^* uv^2wx^2y \tag{3}$$

More generally:

$$S = * uv^i wx^i y$$
 for all $i > 1$

And also:

$$S =>^* uAy \tag{1}$$

Hence:

$$S =>^* uv^iwx^iy$$
 for all $i>=0$

Consider the statement of the Pumping Lemma:

-What is n?

 $n = 2^k$, where k is the number of non-terminals in the grammar.

-Why is
$$|v| + |x| \ge 1$$
?

V
W
X

Since the height of this subtree is ≥ 2 , the first production is A->V₁V₂. Since no non-terminal derives the empty string (in CNF), either V₁ or V₂ must derive a non-empty v or x. More specifically, if w is generated by V₁, then x contains at least one symbol, and if w is generated by V₂, then v contains at least one symbol.

-Why is |vwx| ≤ n?

Observations:

- The repeated variable was the first repeated variable on the path from the bottom, and therefore (by the pigeon-hole principle) the path from the leaf to the second occurrence of the non-terminal has length at most k+1.
- Since the path was the largest in the entire tree, this path is the longest in the subtree rooted at the second occurrence of the non-terminal. Therefore the subtree has height $\le k+1$. From the lemma, the yield of the subtree has length $\le 2^k=n$. ?

Closure Properties for Context-Free Languages

- **Theorem:** The CFLs are closed with respect to the union, concatenation and Kleene star operations.
- **Proof:** (details left as an exercise) Let L_1 and L_2 be CFLs. By definition there exist CFGs G_1 and G_2 such that $L_1 = L(G_1)$ and $L_2 = L(G_2)$.
 - For union, show how to construct a grammar G_3 such that $L(G_3) = L(G_1) \cup L(G_2)$.
 - For concatenation, show how to construct a grammar G_3 such that $L(G_3) = L(G_1)L(G_2)$.
 - For Kleene star, show how to construct a grammar G_3 such that $L(G_3) = L(G_1)^*$. \square

- Theorem: The CFLs are not closed with respect to intersection.
- **Proof:** (counter example) Let

$$L_1 = \{a^i b^i c^j \mid i, j \ge 1\}$$

and

$$L_2 = \{a^i b^j c^j \mid i, j \ge 1\}$$

Note that both of the above languages are CFLs. If the CFLs were closed with respect to intersection then

$$L_1 \cap L_2$$

would have to be a CFL. But this is equal to:

$${a^ib^ic^i \mid i \geq 0}$$

which is not a CFL. 2

$$\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2}$$

Lemma: Let L_1 and L_2 be subsets of Σ^* . Then

Theorem: The CFLs are not closed with respect to complementation.

Proof: (by contradiction) Suppose that the CFLs were closed with respect to complementation, and let L₁ and L₂ be CFLs. Then:

$$\frac{L_1}{-}$$

$$\overline{L}_2$$
 would be a CFL

$$\overline{L_{\scriptscriptstyle 1}} \cup \overline{L_{\scriptscriptstyle 2}}$$
 would be a CFL

$$\overline{\overline{L_{\!_{1}}} \cup \overline{L_{\!_{2}}}}$$
 would be a CFL

$$\frac{\overline{\overline{L_1} \cup \overline{L_2}}}{\overline{L_1} \cup \overline{L_2}} = \frac{\text{would be a CFL}}{\overline{L_1} \cap \overline{L_2}} = L_1 \cap L_2$$

But by the lemma:

Theorem: Let L be a CFL and let R be a regular language. Then $L \cap R$ is a CFL.

Proof: (exercise – sort of) <a>?

Question: Is $L \cap R$ regular?

Answer: Not always. Let L = $\{a^ib^j \mid i >= 0\}$ and R = $\{a^ib^j \mid i,j >= 0\}$, then $L \cap R = L$ which is not regular.