Control Automático I 2023

Trabajo Práctico 9: Compensación de Sistemas Discretos

Ejercicio 1:

Cuando D(z) = 1 el sistema de la figura posee un margen de fase de aproximadamente 30° . Diseñar un compensador para incrementarlo a aproximadamente 50° .

Ejercicio 2:

Para el sistema sin compensar del problema anterior con T = 0, 1 seg. el margen de fase es aproximadamente 50° .

- a) Incremente la ganancia de la planta tal que se obtenga $K_{\nu} = 4$, es decir un error de estado estacionario a la rampa de 0,25. Luego encuentre el nuevo margen de fase.
- b) Diseñe un compensador tal que el sistema tenga un margen de fase de 50° con $K_{\nu}=4$. ¿Qué opciones encuentra?

Ejercicio 3:

En el sistema de control de temperatura de la práctica anterior (ejercicio 7):

- a) Encontrar el porcentaje de error para una entrada constante (con D(z) = 1).
- b) Sea D(z) = K, una ganancia pura. Encontrar el valor de K que da un 2% de error a una entrada escalón. ¿Es el sistema estable para este valor de K?
- c) Diseñe un compensador para el sistema obtenido en el inciso b) conserve las características de error de estado estacionario.

Ejercicio 4:

Considere el control de temperatura del problema anterior. Diseñe un compensador PI que lleve el margen de fase a 45° y el margen de ganancia a un valor mayor que 8 dB. Encontrar el error de estado estacionario al escalón del sistema compensado.

Ejercicio 5:

Considere el sistema del Ejercicio 1. Diseñe un controlador PID para lograr un margen de fase de 60°.

Control Automático I 2023

Ejercicio 6:

Para el Ejercicio 5 de la práctica anterior:

a) Con D(z) = 1, encontrar el error de estado estacionario a una rampa de entrada 0,004t la cual aproxima al ángulo del sol en grados.

b) Diseñe un controlador PI tal que el sistema presente un margen de fase de 50°. Encontrar el error de estado estacionario a la rampa especificada anteriormente.

Ejercicio 7:

La red de adelanto dada por: $G(s) = \frac{4(s+1)}{(s+2)}$ tiene alrededor de 20° de avance de fase en $\omega_c = 1,6$ rad/seg. Hallar una representación aproximada de esta red en el dominio muestreado para T = 0,25 seg., usando:

- a) El método de Euler.
- b) Diferencias hacia atrás.
- c) Aproximación de Tustin.
- d) Aproximación de Tustin con prewarping usando $\omega_1 = \omega_c$ como frecuencia de prewarping.
- e) Retenedor de orden cero.

Evaluar el efecto que produce la modificación del periodo T en las aproximaciones anteriores. Saque conclusiones.

Ejercicio 8:

Un controlador PI está dado por la función de transferencia $G(s) = K\left(1 + \frac{1}{sT_i}\right)$. Aplicar la aproximación bilineal sobre esta expresión para encontrar su representación de tiempo discreto. ¿Aparece aquí el ZOH(s)?

Ejercicio 9:

Obtenga la ecuación recursiva de un PID usando la aproximación adecuada para cada uno de los términos de la transferencia en *s*.

Ejercicio 10:

Para el control de azimuth (ángulo horizontal) de un radar que sigue la transferencia: $G(s) = \frac{1}{s(s+1)(0,5s+1)}$, se quiere construir un servomecanismo de manera de lograr un $MF = 55^{\circ}$ sin modificar las características de baja frecuencia.

- a) Diseñe el compensador sabiendo que el conjunto ZOH-Planta presenta el MF deseado en ω_1 = 0,36 y la ganancia a esa frecuencia es de 8 dB (en el plano W).
- b) El compensador es implementado sobre un microprocesador que usa palabras de 8 bits sin signo (punto binario a la izquierda) para representar la mantisa de los coeficientes (ej: $0.75 \rightarrow 11000000 = 2^{-1} + 2^{-2}$). Haga el Bode en ω_w del compensador diseñado y del implementado.
- c) Busque una explicación en el plano *z* para lo que ocurre en b). ¿Qué problema acarrea y cómo lo solucionaría?

Control Automático I 2023

Ejercicio 11:

Considere el sistema de tanques de la figura. La función de transferencia que relaciona el flujo que ingresa el primer tanque con el nivel en el segundo tanque es:

Asuma las siguientes especificaciones para el sistema a lazo cerrado:

- Error de estado estacionario nulo a un escalón de referencia
- Frecuencia de cruce de ganancia 0,025 rad/seg.
- Margen de fase de aproximadamente 50°
- a) Diseñe un controlador PI tal que se satisfagan todas las especificaciones.
- b) Determine los polos y ceros del sistema en lazo cerrado.
- c) Elija una adecuada frecuencia de muestreo y aproxime el controlador de tiempo continuo obtenido, empleando el método de Tustin con prewarping. Utilice como frecuencia de prewarping la frecuencia de cruce de ganancia especificada.