知识精炼(二)

主讲人:邓哲也

给出一个 n, 求:

$$\sum_{i=1}^{n} n \bmod i$$

 $n \leq 10^9$

观察一下 n = 10

i	n mod i
1	0
2	0
3	1
4	2
5	0
6	4 3
7	3
8	2
9	1
10	0

观察一下 n = 11

i	n mod i	
1	0	
2	1	
3	2	
4	3	
5	1	
6	5	
7	4	
8	3	
9	2	
10	1	
11	0	

注意到 n mod i

= n - i * floor(n / i)

i	n / i	n mod i
1	11	0
2	5	1
3	3	2
4	2	3
5	2	1
6	1	5
7	1	4
8	1	3
9	1	2
10	1	1
11	1	0

n / i 的值可以分为连续的若干段。

可以证明只会有

0(sqrt(n)) 段。

当 n / i = d 时,

 $i \in [n/(d+1)+1, n/d]$

i	n / i	n mod i
1	11	0
2	5	1
3	3	2
4	2	3
5	2	1
6	1	5
7	1	4
8	1	3
9	1	2
10	1	1
11	1	0

那么对于相同的 n/i 这段连续的值可以一起算 n-i*floor(n/i) 是一个公差为 floor(n/i) 的等差数列。

时间复杂度 0(sqrt(n))

i	n / i	n mod i
1	11	0
2	5	1
3	3	2
4	2	3
5	2	1
6	1	5
7	1	4
8	1	3
9	1	2
10	1	1
11	1	0

下节课再见