Language & Logic 2017/18

Exercise Class 3 – Solutions Natural Deduction for Propositional Logic

1. The argument is:

$$P, P \to Q : P \land (Q \lor R)$$

Since there is a disjunction in the conclusion, we use the new \vee -introduction inference rule, combined with \rightarrow -elimination (modus ponens) and \wedge -introduction, which you saw previously.

A proof of validity is:

- 2. The argument is:

$$P \to (Q \land R) : P \to Q$$

Since the conclusion is an implication, we use the \rightarrow -introduction rule, with the hypothesis being the antecedent (P) of the implication.

A proof of validity is:

1.	P	Hypothesis	{1}
2.	$P \to (Q \land R)$	Premise	$\{2\}$
3.	$Q \wedge R$	\rightarrow -elimination _{2,1}	$\{1,2\}$
4.	Q	\wedge -elimination ₃	$\{1,2\}$
5.	$P \to Q$	\rightarrow -introduction _{1,4}	$\{2\}$

3. The argument is:

$$P \to (Q \to R) : Q \to (P \to R)$$

Here, there are two nested implications in the conclusion, so we assume first Q, and then P, creating each implication with a separate sub-proof.

A proof of validity is:

1.	Q	Hypothesis	{1}
2.	P	Hypothesis	$\{2\}$
3.	$P \to (Q \to R)$	Premise	$\{3\}$
4.	$Q \to R$	\rightarrow -elimination _{3,2}	$\{2,3\}$
5.	R	\rightarrow -elimination _{4,1}	$\{1,2,3\}$
6.	$P \to R$	\rightarrow -introduction _{2,5}	$\{1,3\}$
7.	$Q \to (P \to R)$	\rightarrow -introduction _{1.6}	{3}

Language & Logic 2017/18

4. The argument is:

$$P \lor (Q \land R), S : (S \land P) \lor Q$$

Since the first premise is a disjunction, this suggests we need to use \vee -elimination. Because the conclusion is also a disjunction, we will need to use \vee -introduction too.

A proof of validity is:

1.	S	Premise	{1}
2.	$P \lor (Q \land R)$	Premise	$\{2\}$
3.	P	Hypothesis	$\{3\}$
4.	$S \wedge P$	\wedge -introduction _{1,3}	$\{1,3\}$
5.	$(S \wedge P) \vee Q$	\vee -introduction ₄	$\{1,3\}$
6.	$Q \wedge R$	Hypothesis	$\{6\}$
7.	Q	\land -elimination ₆	$\{6\}$
8.	$(S \wedge P) \vee Q$	\vee -introduction ₇	$\{6\}$
9.	$(S \wedge P) \vee Q$	\vee -elimination _{2,3,5,6,8}	$\{1,\!2\}$

5. The argument is:

$$Q \to \neg P : \neg (P \land Q)$$

The conclusion is negated, which suggest use of the \neg -introduction rule. To do that, we assume the un-negated form $(P \land Q)$ as a hypothesis, and deduce a contradiction.

A proof of validity is:

1.	$P \wedge Q$	Hypothesis	{1}
2.	P	\land -elimination ₁	{1}
3.	Q	\wedge -elimination ₁	{1}
4.	$Q \to \neg P$	Premise	$\{4\}$
5.	$\neg P$	\rightarrow -elimination _{4,3}	$\{1,\!4\}$
6.	上	\wedge -introduction _{2,5}	$\{1,\!4\}$
7.	$\neg (P \land Q)$	¬-introduction _{1.6}	$\{4\}$

6. The argument is:

$$\neg P \to Q, \ \neg Q : P$$

The conclusion is not negated here but, as hinted, we can use reduction ad absurdum (i.e., \neg -introduction) by assuming the negation of the conclusion and deducing a contradiction.

A proof of validity is:

1.	$\neg P$	Hypothesis	{1}
2.	$\neg P \rightarrow Q$	Premise	{2}
3.	Q	\rightarrow -elimination _{2,1}	$\{1,\!2\}$
4.	$\neg Q$	Premise	$\{4\}$
5.	上	\land -introduction _{3,4}	$\{1,2,4\}$
6.	$\neg \neg P$	\neg -introduction _{1,5}	$\{2,\!4\}$
7.	P	$\neg\neg$ -elimination ₆	$\{2,4\}$

Language & Logic 2017/18

7. The argument is:

$$P \lor Q, P \to R, \neg S \to \neg Q : R \lor S$$

Our starting point is the first premise $P \vee Q$. With some thought, we can see that: (i) if P is true, then R is true; and (ii) if Q is true, then S is true. This means that, if one of P or Q is true, then we know one of R or S is true. So, intuitively, the argument makes sense.

To prove this, we apply the \vee -elimination rule, which allows us to use the $P \vee Q$ premise, by considering it as two separate cases. For the first of the two cases (where P is true), it is easy to show that R is true and, using also \vee -introduction, that $R \vee S$ is true.

For the second of the two cases (where Q is true), we could try something similar, first showing that S must be true, using modus tollens, and then again applying \vee -introduction. However, we do not have modus tollens in our set of inference rules, so we have to infer S in a different way. We can do this in a sub-proof using \neg -introduction, assuming $\neg S$ and then deriving a contradiction.

A proof of validity is:

1.	$P \lor Q$	Premise	{1}
2.	P	Hypothesis	{2}
3.	$P \rightarrow R$	Premise	{3}
4.	R	\rightarrow -elimination _{3,2}	$\{2,3\}$
5.	$R \vee S$	\vee -introduction ₄	$\{2,3\}$
6.	Q	Hypothesis	$\{6\}$
7.	$\neg S$	Hypothesis	$\{7\}$
8.	$\mid \neg S \rightarrow \neg Q$	Premise	{8}
9.	$ \neg Q$	\rightarrow -elimination _{8,7}	$\{7,8\}$
10.		\land -introduction _{6,9}	$\{6,7,8\}$
11.	$\neg \neg S$	\neg -introduction _{7,10}	$\{6,\!8\}$
12.	S	$\neg\neg$ -elimination ₁₁	$\{6,\!8\}$
13.	$R \vee S$	\vee -introduction ₁₂	$\{6,\!8\}$
14.	$R \vee S$	\vee -elimination _{1,2,5,6,13}	$\{1,3,8\}$