K-MEANS CLUSTERING APMA4903 TALK

Anji Zhao

9 November 2015

OUTLINE

Introduction

K-MEANS AND LLOYD'S ALGORITHM

GAUSSIAN MIXTURE MODELS

APPLICATION: CLUSTERING WEATHER DATA

FUTURE

REFERENCES

- ▶ H. Daumé, A Course in Machine Learning, 2015.
- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer, 2013.
- ▶ D. Hsu, Lecture Slides, COMS 4771 Elementary Machine Learning, Columbia University, 2015.
- D. Arthur, S. Vassilvitskii, "k-means++: The Advantages of Careful Seeding", SODA '07 Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 1027-1035, 2007.
- ▶ S. D. Roy, G. Lotan, "Detecting geo-spatial weather clusters using dynamic heuristic subspaces", *Information Reuse and Integration (IRI), 2014 IEEE 15th International Conference on,* 811-818, 2014.
- Wikipedia, "k-means clustering", https://en.wikipedia.org/wiki/K-means_clustering.

Unsupervised Learning

goal: find hidden structure behind unlabeled data

examples:

- partitioning data into clusters
- dimensionality reduction

no direct measure of success

CLUSTERING

partition a dataset into groups of "similar" data points

some types of clustering:

- centroid-based (k-means)
- connectivity-based (hierarchical clustering)
- distribution-based

K-MEANS CLUSTERING

The Problem:

- ▶ input: n points $x_1, x_2, ..., x_n \in \mathbb{R}^d$, $k \in \mathbb{N}$
- ▶ output: k centers $c_1, c_2, ..., c_k \in \mathbb{R}^d$ and (optionally) n cluster assignments $z_1, z_2, ..., z_n \in \{1, 2, ..., k\}$
- ▶ objective: choose $c_1, c_2, ..., c_k \in \mathbb{R}^d$ to minimize the within-cluster sum of squares:

$$SSE(\mathbf{x}, \mathbf{c}) = \sum_{i=1}^{n} \min_{j \in \{1, 2, ..., k\}} ||\mathbf{x}_{i} - \mathbf{c}_{j}||^{2}$$

▶ the k-means problem is NP-hard

LLOYD'S ALGORITHM

- also known as the k-means algorithm or Lloyd-Forgy algorithm
- iterative greedy algorithm which converges to a local optimum
- pseudocode:

CONVERGENCE

For any set of n points $x_1, x_2, ..., x_n \in \mathbb{R}^d$ and number of clusters $k \in \mathbb{N}$, Lloyd's algorithm converges in a finite number of iterations.

$$SSE(\boldsymbol{x}, \boldsymbol{c}) = \sum_{i=1}^{n} \min_{j \in \{1, 2, ..., k\}} ||\boldsymbol{x}_i - \boldsymbol{c}_j||^2$$

$$= \sum_{j=1}^{k} \sum_{i: z_i = k} ||\boldsymbol{x}_i - \boldsymbol{c}_j||^2$$
where $z_i = argmin_k ||\boldsymbol{c}_k - \boldsymbol{x}_i||$

"Convergence" = SSE stops changing

quick proof on board

DRAWBACKS OF LLOYD'S ALGORITHM

- converges to a local, not global minimum
- arbitrarily bad clusters depending on initialization
- ▶ yields poor results when *k* is chosen incorrectly

K-Means++ Algorithm

- proposed in 2007 by David Arthur and Sergei Vassilvitskii
- a method of choosing initial points to obtain more accurate clusterings than standard k-means
- ▶ algorithm:
 - choose one center c_1 uniformly at random from $x_1, x_2, ..., x_n$
 - until we have k centers, choose center c_i from the dataset, picking x with probability $\frac{D(x)^2}{\sum_x D(x)^2}$, where D(x) is the distance from x to the closest center we have already chosen.
 - using these initial centers, proceed with the standard k-means algorithm
- guarantees $E[\phi] \le 8(\ln k + 2)\phi_{OPT}$

GAUSSIAN MIXTURE MODELS

- Model dataset by a mixture of k probability distributions, where the jth component is a Gaussian distribution with μ_j and Σ_j , j=1,2,...,k.
- ▶ Formally: $(X, Y) \sim P_{\theta}$, a distribution over $\mathbb{R}^d \times [k]$, where:
 - $Y \sim \pi$
 - \blacktriangleright $X|Y = j \sim N(\mu_j, \Sigma_j)$
- $ightharpoonup P_{\theta}$ has parameters $\theta = (\pi_1, \mu_1, \Sigma_1, ..., \pi_k, \mu_k, \Sigma_k)$
- Modeling assumption: our data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times [k]$ is an iid sample from P, but we only know $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$.
- Gaussian mixture model:

$$m{X} \sim \sum_{j=1}^k \pi_j m{N}(m{\mu}_j, \Sigma_j)$$

Gaussian Mixtures in \mathbb{R}^1 and \mathbb{R}^2

Observed sample points

GAUSSIAN PROBABILITY DENSITIES

▶ in one dimension $(x \in \mathbb{R}^1)$:

$$p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

▶ in *d* dimensions $(x \in \mathbb{R}^d)$:

$$p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

▶ for a mixture of k Gaussians in d dimensions $(x \in \mathbb{R}^d)$:

$$p(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{j=1}^{k} \pi_{j} \frac{1}{\sqrt{(2\pi)^{d} det(\boldsymbol{\Sigma}_{j})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{j})^{T} \boldsymbol{\Sigma}_{j}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{j})\right)$$

SOFT CLUSTERING

- instead of assigning each point to one component (as in k-means), we find the probability that the point belongs to each component
- suppose we are given the parameters of a Gaussian mixture model, and $(\boldsymbol{X},Y)\sim P_{\theta}$
- ▶ let $\Phi \in \{0,1\}^k$ be the vector of assignment variables, where $\Phi_j = \mathbb{1}\{Y = j\}$
- ▶ soft assignment of a data point x to component j:

$$E_{\theta}[\Phi_{j}|\mathbf{X} = \mathbf{x}] = Pr_{\theta}[Y = j|\mathbf{X} = \mathbf{x}]$$

$$= \frac{Pr_{\theta}[Y = j] \cdot Pr_{\theta}[\mathbf{X} = \mathbf{x}|Y = j]}{Pr_{\theta}[\mathbf{X} = \mathbf{x}]}$$

$$= \frac{\pi_{j} \cdot \sqrt{det(\Sigma_{j}^{-1})} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{j})^{T} \Sigma_{j}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{j})\right)}{\sum_{i=1}^{k} \left(\pi_{i} \cdot \sqrt{det(\Sigma_{i}^{-1})} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i})\right)\right)}$$

MAXIMUM LIKELIHOOD ESTIMATOR

Maxmimum Likelihood Estimation is a method used to estimate the parameters of a model, given a set of data points.

The MLE for a model P is

$$\theta_{ML} = argmax_{\theta} \prod_{i=1}^{n} p(\mathbf{x}_i; \theta)$$

We can try to use the MLE to estimate the parameters of a Gaussian mixture, but we get...

$$egin{aligned} oldsymbol{ heta}_{ML} &= argmax_{oldsymbol{ heta}} \sum_{i=1}^{n} \ln p(oldsymbol{x}_i, oldsymbol{ heta}) \ &= argmax_{oldsymbol{ heta}} \sum_{i=1}^{n} \ln \left(...
ight) \end{aligned}$$

EXPECTATION-MAXIMIZATION IDEA

Iterative local optimization method for estimating parameters. Given labeled data $(\mathbf{x}_1, \phi_1), (\mathbf{x}_2, \phi_2), ..., (\mathbf{x}_n, \phi_n) \in \mathbb{R}^d \times \{0, 1\}^k$, the "complete log-likelihood" of $\theta = (\pi_1, \mu_1, \Sigma_1, ..., \pi_k, \mu_k, \Sigma_k)$ is

$$\sum_{i=1}^{n} \sum_{j=1}^{k} \phi_{i,j} \ln \left(\pi_j \cdot \sqrt{\det(\Sigma_j^{-1})} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_j)^T \Sigma_j^{-1} (\mathbf{x} - \boldsymbol{\mu}_j) \right) \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} \phi_{i,j} \left(\ln \pi_j + \frac{1}{2} \ln \det(\Sigma_j^{-1}) - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_j)^T \Sigma_j^{-1} (\mathbf{x} - \boldsymbol{\mu}_j) \right)$$

(can also use soft assignments $w_{i,j} = E_{\theta}[\phi_{i,j}|\mathbf{X} = \mathbf{x}_i]$ instead of $\phi_{i,j}$)

E-M ALGORITHM

Algorithm:

- ▶ initialize $\theta = (\pi_1, \mu_1, \Sigma_1, ..., \pi_k, \mu_k, \Sigma_k)$
- ▶ E step: calculate the expectation of the unknown labels / soft assignments given the parameters θ :
 - $w_{i,j} = E_{\theta}[\phi_{i,j}|\mathbf{X} = \mathbf{x}_i], \ \forall i \in \{1, 2, ..., n\}, j \in \{1, 2, ..., k\}$
- ► M step: maximize the expected complete log-likelihood w.r.t. each parameter

GAUSSIAN MIXTURE MODELS VS. K-MEANS

- ▶ k-means is a special case of GMM where we restrict $\Sigma_i = I \ \forall i \in [k]$ and $\pi_i = \pi_i \ \forall i, j \in [k]$
- ▶ in k-means we use hard assignment in the E-step
- ▶ k-means converges faster, but GMM is more flexible

APPLICATION: CLUSTERING WEATHER DATA

» REMEMBER TO VOTE!

Clear skies with temps dipping into 15C. Do you like this weather? If yes, retweet! If not, favorite -- sorry, I mean "like."

APPLICATION: CLUSTERING WEATHER DATA

Weather Data distribution at 12PM, Feb 16, 2011, in Stamford, CT.

- A. The original data
- B. Two clusters using typical k-means
- C. Three clusters after heuristic splits and rounding

Image by Roy, Lotan

FUTURE & QUESTIONS

Current Areas of Research:

- improving performance of existing clustering algorithms
- handling high-dimensional data
- specific applications to different fields