The elements on the main diagonal of \mathcal{H}_1 are in general not yet monic polynomials, they are monic only modulo $J^{\delta+1}$. But according to Krull's theorem they can be made monic by multiplying the rows of \mathcal{H}_1 with suitable invertible polynomials which are congruent to e modulo $J^{\delta+1}$. The resulting matrix will clearly be equivalent to \mathcal{H} , it will satisfy properties (5)-(7), and $\mathcal{H}' \equiv \mathcal{D} + L(\text{mod }J^{\delta+1})$, i.e., by (11) and (12) it will have property (10). The first part of the Theorem is now established.

Remark. If one writes out the product $\mathcal{X}_1 = (E - Q_{\emptyset}) \, \mathcal{K}(E - Q_r)$ in detail it is easy to see that the element in the upper left corner of \mathcal{H}_1 remains the same as in \mathcal{H} . Consequently, it is possible to construct for matrices \mathcal{H} satisfying (4)-(7) an equivalent matrix \mathcal{H}' satisfying (4)-(8) and such that $K'_{11} = K_{11}$.

Now assume that we have a matrix (4) satisfying properties (5)-(8). On its main diagonal we collect the polynomials of degree zero and change the order of the entries to obtain

$$\mathcal{K} = \text{Diag}\left(e, \ldots, e, \begin{pmatrix} K_{11} \ldots K_{1r} \\ \ldots & \ldots \\ K_{r1} \ldots K_{rr} \end{pmatrix}\right),$$

where

$$\deg K_{ii}(x) = m_i > 0, \ \sum_{i=1}^r m_i = m, \ \deg K_{ii}(x) < m_{ii} = \min\{m_i, m_i\}.$$

Assume that

$$K_{ii}(x) = x^{m_i} - \sum_{s=0}^{m_i-1} K_{ii}^{(s)} x^s, \quad K_{ij}(x) = \sum_{s=0}^{m_{ij}-1} K_{ij}^{(s)} \cdot x^s.$$

Consider a matrix A ∈ R_m of the form

$$A = \begin{pmatrix} A_{11} & \dots & A_{1r} \\ \dots & & \dots \\ A_{51} & \dots & A_{5r} \end{pmatrix},$$

where

$$A_{ii} = \begin{cases} 0 & e & 0 & \dots & 0 \\ 0 & 0 & e & \dots & \dots \\ & & \ddots & & & \ddots \\ \vdots & & & \ddots & & \ddots \\ 0 & 0 & \dots & 0 & e \\ K_{ii}^{(0)} & \dots & K_{ii}^{(m_i-1)} \end{cases}, \qquad A_{ij} = \begin{pmatrix} 0 & \dots & 0 \\ \dots & & \dots & 0 \\ 0 & \dots & & 0 \\ K_{ij}^{(0)} & \dots & K_{ij}^{(m_i-1)} & \dots & 0 \end{pmatrix}.$$

We claim that $(xE-A) \sim \mathcal{H}(x)$. The chain of elementary operations which transform xE-A into $\mathcal{H}(x)$ consists of successive reductions of each block $xE-A_{ii}$ to the form Diag(e, ..., e, $K_{ii}(x)$) and subsequent obvious elementary operations. To fix our ideas we illustrate this in the case r=2. Then

$$xE-A = \begin{pmatrix} x & -e & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & x & -e & \dots & 0 & \dots & \dots & \dots \\ 0 & x & & -e & 0 & \dots & 0 \\ -K_{11}^{(0)} & \dots & -K_{11}^{(m_{1}-2)} x - K_{11}^{(m_{1}-1)} & K_{12}^{(0)} & \dots & K_{12}^{(m_{12}-1)} & \dots & 0 \\ 0 & \dots & 0 & x & -e & 0 & \dots & 0 \\ \dots & & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & x & -e & 0 \\ K_{21}^{(0)} & \dots & K_{21}^{(m_{21}-1)} & -K_{22}^{(0)} & \dots -K_{22}^{(m_{2}-2} x - K_{22}^{(m_{2}-1)} \end{pmatrix}.$$

To column $m_1 - 1$ of the matrix xE - A we add column m_1 multiplied by x, then add to column $m_1 - 2$ column $m_1 - 1$ multiplied by x and so on until finally one adds to column 1 column 2