

WO9009381

Publication Title:

4-HYDROXYTHIAZOLES AS 5-LIPOXYGENASE INHIBITORS

Abstract:

Courtesy of <http://worldwide.espacenet.com>

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C07D 417/04, 417/14 A61K 31/44	A1	(11) International Publication Number: WO 90/09381 (43) International Publication Date: 23 August 1990 (23.08.90)
(21) International Application Number: PCT/US90/00653 (22) International Filing Date: 2 February 1990 (02.02.90)		(74) Agents: GORMAN, Edward, Hoover, Jr. et al.; Abbott Laboratories, CHAD-0377, AP6D/2, One Abbott Park Road, Abbott Park, IL 60064-3500 (US).
(30) Priority data: 308,177 8 February 1989 (08.02.89) US		(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).
(71) Applicant: ABBOTT LABORATORIES [US/US]; CHAD 0377/AP6D-2, One Abbott Park Road, Abbott Park, IL 60064-3500 (US). (72) Inventors: BROOKS, Dee, W. ; 1127 Kristin Drive, Libertyville, IL 60048 (US). KERDESKY, Francis, A., J. ; 207 Windjammer Lane, Grayslake, IL 60030 (US). HOLMS, James, H. ; 521 Magnolia Street, Gurnee, IL 60031 (US).		Published <i>With international search report.</i>

(54) Title: 4-HYDROXYTHIAZOLES AS 5-LIPOXYGENASE INHIBITORS

(57) Abstract

A composition for the inhibition of lipoxygenase enzymes comprising a pharmaceutically acceptable carrier and a compound of formula (I), wherein R₁ and R₂ are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR₄, SO₂R₄, NR₅R₆, OR₆, COCX₁X₂NR₆R₇, CON(OH)R₆, NR₆COR₄, CR₅(NH₂)CO₂R₅, NHCX₁X₂CO₂R₅, N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆, C(NOH)NHOH and CONHNR₅R₆; R₃ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR₄, COCX₁X₂NR₆R₇, CR₈R₉OR₁₀, CH₂CR₈(OR₁₀)CH₂OR₁₁ and SiR₁₂R₁₃R₁₄; R₄ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR₅, NHCX₁X₂CO₂R₅ and NR₆R₇; R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and (CH₂)_nOR₅ where n is 2-4 and R₅ is as defined above; R₈, R₉, R₁₀ and R₁₁ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and (CH₂)_nOR₅ or at least two of R₈, R₉, R₁₀ and R₁₁ together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R₅ and n are as defined above; R₁₂, R₁₃ and R₁₄ are independently selected from the group consisting of alkyl and aryl; and X₁ and X₂ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MR	Mauritania
BE	Belgium	GA	Gabon	MW	Malawi
BF	Burkina Fasso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
BJ	Benin	IT	Italy	RO	Romania
BR	Brazil	JP	Japan	SD	Sudan
CA	Canada	KP	Democratic People's Republic of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	SN	Senegal
CG	Congo	LI	Liechtenstein	SU	Soviet Union
CH	Switzerland	LK	Sri Lanka	TD	Chad
CM	Cameroon	LJ	Luxembourg	TG	Togo
DE	Germany, Federal Republic of	MC	Monaco	US	United States of America
DK	Denmark				

-1-

4-HYDROXYTHIAZOLES AS 5-LIPOXYGENASE INHIBITORS

Background of the Invention

This invention relates to compounds which
5 inhibit lipoxygenase enzymes. It also relates to
methods of inhibiting lipoxygenase enzymes in human
and animal hosts in need of such treatment.

The lipoxygenases are a family of enzymes
which catalyze the oxygenation of arachidonic acid.
10 The enzyme 5-lipoxygenase converts arachidonic acid
to 5-hydroperoxy-eicosatetraenoic acid (5-HPETE).
This is the first step in the metabolic pathway
yielding 5-hydroxyeicosatetraenoic acid (5-HETE) and
the important class of potent biological mediators,
15 the leukotrienes (LTs). Similarly 12- and
15-lipoxygenase convert arachidonic acid to 12- and
15-HPETE respectively. Biochemical reduction of
12-HPETE leads to 12-HETE, while 15-HPETE is the
precursor of the class of biological agents known as
20 the lipoxins. 12-HETE has been found in high levels
in epidermal tissue of patients with psoriasis.
Lipoxins have recently been shown to stimulate
elastase and superoxide ion release from neutrophils.

A variety of biological effects are
25 associated with these products from lipoxygenase
metabolism of arachidonic acid and they have been
implicated as mediators in various disease states.
For example, the LTs C₄ and D₄ are potent
constrictors of human airways in vitro and aerosol
30 administration of these substances to non-asthmatic
volunteers induces bronchoconstriction. LTB4 and
5-HETE are potent chemotactic factors for
inflammatory cells such as polymorphonuclear
leukocytes. They also have been found in the
35 synovial fluid of rheumatoid arthritic patients.

-2-

- Leukotrienes have been implicated as important mediators in asthma, allergic rhinitis, rheumatoid arthritis, psoriasis, adult respiratory distress syndrome, gout, inflammatory bowel disease, endotoxin shock, Crohn's disease, and ischemia induced myocardial injury. The biological activity of the LTs has been reviewed by Lewis and Austen, J. Clinical Invest. 73, 89, 1984 and by J. Sirois, Adv. Lipid Res., 21, 78, (1985).
- Thus, lipoxygenase enzymes are believed to play an important role in the biosynthesis of mediators of asthma, allergy, arthritis, psoriasis, and inflammation. Agents which block or modulate the activity of lipoxygenase enzymes will likely be useful in the treatment of diseases involving leukotriene pathogenesis. Some examples of 5-lipoxygenase inhibitors known to the art are: AA-861, disclosed in U.S. Patent 4,393,075, issued July 12, 1983, to Terro et al., pyrazolopyridines, disclosed in European Patent Application of Iriburn et al., S. N. 121,806, published October 17, 1984; arachidonyl hydroxamic acid, disclosed in E. J. Corey et al., J. Am. Chem. Soc., 106, 1503 (1984) and European Patent Application of P. H. Nelson, S. N. 104, 468, published April 4, 1984; BW-755C, disclosed in Radmark et al., FEBS Lett., 110, 213, (1980); nordihydroguaiaretic acid, disclosed in Marris et al, Prostaglandins, 19, 371 (1980); Rev-5901, disclosed in Coutts, Meeting Abstract 70, Prostaglandins and Leukotrienes '84; benzoxaprofen, disclosed in J. Walker, Pharm. Pharmacol., 31, 778 (1979), and hydroxamic acids, disclosed in U.S. Patent Nos. 4,608,390 and 4,623,661, issued August 16, and November 18, 1986 respectively.

-3-

Summary of the Invention

The compounds of this invention possess unexpected activity as inhibitors of lipoxygenase enzymes, and reduce the biosynthesis of leukotrienes
 5 B_4 , C_4 , D_4 and E_4 . The compounds and compositions containing these compounds are useful for the treatment of disease states, in mammals, which involve leukotrienes B_4 , C_4 , D_4 and E_4 .

10 The compounds of this invention are of the formula:

wherein R_1 is selected from the group consisting of aryl and substituted derivatives thereof with one or more substituents independently selected from the
 25 group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_3R_6 , OR_6 , $COCX_1X_2NR_6R_7$, $CON(OH)R_6$, NR_6COR_4 , $CR_5(NH_2)CO_2R_5$,
 30 $NHCX_1X_2CO_2R_5$, $N(OH)CONR_5R_6$, $N(OH)COR_4$, $NHCONR_5R_6$, $C(NOH)NHOH$ and $CONHNR_5R_6$;
 R_2 is selected from the group consisting of aryl, substituted derivatives thereof and substituted alkyl with one or more substituents independently selected from the group consisting of
 35

-4-

halogen, alkyl, halosubstituted alkyl, aryl,
arylalkyl, reduced heteroaryl, arylalkoxy, cyano,
nitro, COR₄, SO₂R₄, NR₃R₆, OR₆,
COCX₁X₂NR₆R₇, CON(OH)R₆, NR₆COR₄,
5 CR₅(NH₂)CO₂R₅, NHCX₁X₂CO₂R₅,
N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆,
C(NOH)NHOH and CONHNR₅R₆; and arylalkyl and
substituted derivatives thereof with one or more
10 substituents independently selected from the group
consisting of halogen, alkyl, halosubstituted alkyl,
cyano, nitro, COR₄, SO₂R₄, NR₅R₆ and OR₆;

R₃ is selected from the group consisting
of hydrogen, a pharmaceutically acceptable salt,
COR₄, COCX₁X₂NR₆R₇, CR₈R₉OR₁₀,

15 CH₂CR₈(OR₁₀)CH₂OR₁₁ and SiR₁₂R₁₃R₁₄

R₄ is selected from the group consisting
of hydrogen, alkyl, alkenyl, cycloalkyl,
cycloalkenyl, aryl, arylalkyl, reduced heteroaryl,
reduced heteroarylalkyl, OR₅, NHCX₁X₂CO₂R₅
20 and NR₆R₇;

R₅ is selected from the group consisting
of hydrogen, alkyl, alkenyl, cycloalkyl, aryl,
arylalkyl, reduced heteroaryl, and reduced
heteroarylalkyl;

25 R₆ and R₇ are independently selected
from the group consisting of hydrogen, alkyl,
alkenyl, cycloalkyl, aryl, arylalkyl, reduced
heteroaryl, reduced heteroarylalkyl and
(CH₂)_nOR₅ where n is 2-4 and R₅ is as defined
30 above;

R₈, R₉, R₁₀ and R₁₁ are
independently selected from the group consisting of
hydrogen, alkyl, aryl, arylalkyl and (CH₂)_nOR₅
or at least two of R₈, R₉, R₁₀ and R₁₁
35 together form a ring system containing 5-10 atoms

-5-

wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined above;

5 R_{12}' , R_{13} and R_{14} are independently selected from the group consisting of alkyl and aryl; and

X₁ and X₂ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; provided
 10 that when R_1 is phenyl or substituted phenyl R_2 cannot be substituted alkyl, when R_1 is aryl or substituted aryl R_2 cannot be phenyl, substituted phenyl, $CH(C_6H_5)_2$, $CH(C_6H_5)CO_2Et$ or 2-methylindole and when R_3 is $SiR_{12}R_{13}R_{14}'$,
 15 R_1 and R_2 cannot both be unsubstituted phenyl; and the acid addition salts thereof.

This invention also relates to pharmaceutical compositions and a method of inhibiting lipoxygenase enzymes and related disorders comprising the administration to a host in need of such treatment of a compound of the formula:

30 wherein R_1 and R_2 are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced

-6-

- heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 , OR_6 , $\text{COCX}_1\text{X}_2\text{NR}_6\text{R}_7$, $\text{CON(OH)}\text{R}_6$, NR_6COR_4 , $\text{CR}_5(\text{NH}_2)\text{CO}_2\text{R}_5$, $\text{NHCX}_1\text{X}_2\text{CO}_2\text{R}_5$, $\text{N}(\text{OH})\text{CONR}_5\text{R}_6$, $\text{N}(\text{OH})\text{COR}_4$, $\text{NHCONR}_5\text{R}_6$, $\text{C}(\text{NOH})\text{NHOH}$ and $\text{CONHNR}_5\text{R}_6$;
- 10 R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR_4 , $\text{COCX}_1\text{X}_2\text{NR}_6\text{R}_7$, $\text{CR}_8\text{R}_9\text{OR}_{10}$, $\text{CH}_2\text{CR}_8(\text{OR}_{10})\text{CH}_2\text{OR}_{11}$ and $\text{SiR}_{12}\text{R}_{13}\text{R}_{14}$;
- 15 R_4 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR_5 , $\text{NHCX}_1\text{X}_2\text{CO}_2\text{R}_5$ and NR_6R_7 ;
- 20 R_5 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;
- 25 R_6 and R_7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and $(\text{CH}_2)_n\text{OR}_5$ where n is 2-4 and R_5 is as defined above;
- 30 R_8 , R_9 , R_{10} and R_{11} are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $(\text{CH}_2)_n\text{OR}_5$ or at least two of R_8 , R_9 , R_{10} and R_{11} together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined above;

-7-

R_{12} , R_{13} and R_{14} are independently selected from the group consisting of alkyl and aryl; and

x_1 and x_2 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

Detailed Description of the Invention

10 The present invention provides for compounds which exhibit unexpected activity for lipoxygenase enzyme inhibition, particularly, 5-lipoxygenase, and thereby reduce the biosynthesis of leukotrienes B₄, C₄, D₄, and E₄.

15 The novel compounds of this invention are
those of the formula:

三

wherein R₁ is selected from the group consisting of aryl and substituted derivatives thereof with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR₄, SO₂R₄, NR₃R₆, OR₆, COCX₁X₂NR₆R₇, CON(OH)R₆, NR₆COR₄, CR₅(NH₂)CO₂R₅,

-8-

$\text{NHCX}_1\text{X}_2\text{CO}_2\text{R}_5$, $\text{N}(\text{OH})\text{CONR}_5\text{R}_6$, $\text{N}(\text{OH})\text{COR}_4$,
 $\text{NHCONR}_5\text{R}_6$, $\text{C}(\text{NOH})\text{NHOH}$ and $\text{CONHNR}_5\text{R}_6$;

R_2 is selected from the group consisting
of aryl, substituted derivatives thereof and
5 substituted alkyl with one or more substituents
independently selected from the group consisting of
halogen, alkyl, halosubstituted alkyl, aryl,
arylalkyl, reduced heteroaryl, arylalkoxy, cyano,
nitro, COR_4 , SO_2R_4 , NR_3R_6 , OR_6 ,
10 $\text{COCX}_1\text{X}_2\text{NR}_6\text{R}_7$, $\text{CON}(\text{OH})\text{R}_6$, NR_6COR_4 ,
 $\text{CR}_5(\text{NH}_2)\text{CO}_2\text{R}_5$, $\text{NHCX}_1\text{X}_2\text{CO}_2\text{R}_5$,
 $\text{N}(\text{OH})\text{CONR}_5\text{R}_6$, $\text{N}(\text{OH})\text{COR}_4$, $\text{NHCONR}_5\text{R}_6$,
 $\text{C}(\text{NOH})\text{NHOH}$ and $\text{CONHNR}_5\text{R}_6$; and arylalkyl and
15 substituted derivatives thereof with one or more
substituents independently selected from the group
consisting of halogen, alkyl, halosubstituted alkyl,
cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 and OR_6 ;

R_3 is selected from the group consisting
of hydrogen, a pharmaceutically acceptable salt,
20 COR_4 , $\text{COCX}_1\text{X}_2\text{NR}_6\text{R}_7$, $\text{CR}_8\text{R}_9\text{OR}_{10}$,
 $\text{CH}_2\text{CR}_8(\text{OR}_{10})\text{CH}_2\text{OR}_{11}$ and $\text{SiR}_{12}\text{R}_{13}\text{R}_{14}$

R_4 is selected from the group consisting
of hydrogen, alkyl, alkenyl, cycloalkyl,
cycloalkenyl, aryl, arylalkyl, reduced heteroaryl,
25 reduced heteroarylalkyl, OR_5 , $\text{NHGX}_1\text{X}_2\text{CO}_2\text{R}_5$
and NR_6R_7 ;

R_5 is selected from the group consisting
of hydrogen, alkyl, alkenyl, cycloalkyl, aryl,
arylalkyl, reduced heteroaryl, and reduced
30 heteroarylalkyl;

R_6 and R_7 are independently selected
from the group consisting of hydrogen, alkyl,
alkenyl, cycloalkyl, aryl, arylalkyl, reduced
heteroaryl, reduced heteroarylalkyl and

-9-

$(CH_2)_nOR_5$ where n is 2-4 and R_5 is as defined above;

R_8 , R_9 , R_{10} and R_{11} are independently selected from the group consisting of 5 hydrogen, alkyl, aryl, arylalkyl and $(CH_2)_nOR_5$ or at least two of R_8 , R_9 , R_{10} and R_{11} together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined 10 above;

R_{12} , R_{13} and R_{14} are independently selected from the group consisting of alkyl and aryl; and

15 X_1 and X_2 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; provided that when R_1 is phenyl or substituted phenyl R_2 cannot be substituted alkyl, when R_1 is aryl or substituted aryl R_2 cannot be phenyl, substituted 20 phenyl, $CH(C_6H_5)_2$, $CH(C_6H_5)CO_2Et$ or 2-methylindole and when R_3 is $SiR_{12}R_{13}R_{14}$, R_1 and R_2 cannot both be unsubstituted phenyl; and the acid addition salts thereof.

25 The compounds useful in the method of treatment for inhibition of lipoxygenase enzymes are of the following formula:

35

II

-10-

wherein R₁ and R₂ are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced heteroarylkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR₄,

SO₂R₄, NR₅R₆, OR₆, COCX₁X₂NR₆R₇, CON(OH)R₆, NR₆COR₄, CR₅(NH₂)CO₂R₅, NH CX₁X₂CO₂R₅, N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆, C(NO_H)NHOH and CONHNR₅R₆;

R₃ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR₄, COCX₁X₂NR₆R₇, CR₈R₉OR₁₀, CH₂CR₈(OR₁₀)CH₂OR₁₁ and SiR₁₂R₁₃R₁₄;

R₄ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylkyl, OR₅, NH CX₁X₂CO₂R₅ and NR₆R₇;

R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylkyl;

R₆ and R₇ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylkyl and (CH₂)_nOR₅ where n is 2-4 and R₅ is as defined above;

R₈, R₉, R₁₀ and R₁₁ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and (CH₂)_nOR₅

-11-

or at least two of R_8 , R_9 , R_{10} and R_{11} together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined above;

5 R_{12} , R_{13} and R_{14} are independently selected from the group consisting of alkyl and aryl; and

10 X_1 and X_2 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

15 The compounds of Formula II may also be substituted with one or more substituents as noted above for the compounds of Formula I.

Pharmaceutical compositions which contain compounds of Formula I and a pharmaceutically acceptable carrier are also part of this invention.

Preferred compounds of Formula II that are useful for the inhibition of lipoxygenase enzymes are those where R_1 is aryl, alkyl, or substituted aryl and alkyl, R_2 is aryl or substituted aryl, and R_3 is hydrogen, acyl or a pharmaceutically acceptable salt. Also preferred are those compounds where R_1 is aryl or substituted aryl, R_2 is a substituted alkyl or substituted arylalkyl, and R_3 is hydrogen, acyl or a pharmaceutically acceptable salt. Most preferred are those compounds where R_1 is aryl or substituted aryl and R_2 is aryl or substituted aryl, and R_3 is hydrogen, acyl, or a pharmaceutically acceptable salt.

The term "alkyl" as used herein refers to straight and branched chain radicals having 1 to 12 carbon atoms which may be optionally substituted as herein defined above. Representative of such

-12-

radicals are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and the like.

The term "alkenyl" as used herein refers to straight and branched chain unsaturated radicals having 2 to 12 carbon atoms, which may be optionally substituted as defined above. Representative of such groups are ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, and the like.

The term "carbocyclic" as used herein refers to a monocyclic or polycyclic hydrocarbon containing fused or non-fused ring system which may be optionally substituted as defined above. Representative of such groups are cyclopentyl, cyclohexyl, 2-cyclohexenyl, tetrahydronaphthalene.

Representative examples of the $\text{CR}_8\text{R}_9\text{OR}_{10}$ radical are 1-methoxy cyclohexane, 2-Hydroxy-pyrrol, 1-Methyl- tetrahydrofuran, 2-Oxazole and 1, 2, 4-Oxadiazole.

The terms "cycloalkyl" and "cycloalkenyl" as used herein refer to saturated and unsaturated cyclic or bicyclic radicals having 3 to 12 carbon atoms which may be optionally substituted as defined above. Representative of such groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, 2-chlorocyclohexyl, and the like.

The term "aryl" as used herein refers to mono or polycyclic hydrocarbon group containing fused or nonfused aromatic ring systems which may contain one or more hetero atoms such as O, N or S in the ring system and which may be optionally substituted as defined herein. Representative of such groups are phenyl, naphthyl, biphenyl, triphenyl, pyridinyl, pyrrolyl, pyrimidinyl, furyl, thienyl, indolyl,

-13-

pyrazinyl, isoquinolyl, benzopyranyl, benzofuryl, benzothiophenyl, imidazolyl, carbazolyl, and the like.

The term "aroyle" as used herein refers to the radical aryl-CO- wherein the aryl ring may be 5 optionally substituted as herein before defined.

The term "reduced heteroaryl" as used herein refers to a mono- or polycyclic group comprising fused or non-fused ring systems which contain at least one ring which is non-aromatic in character. 10 The ring system may be fully or partially saturated, may contain one or more heteroatoms such as O, N, or S and may be optionally substituted as herein before defined. Representative of such ring systems are tetrahydrofuran, dihydropyran, indane, 15 2,3-dihydrobenzofuran, piperidine, indane, piperidine, and the like.

The term "alkoxy" as used herein refers to straight and branched chain oxygen ether radicals having 1 to 12 carbon atoms which may be optionally 20 substituted. Representative of such groups are methoxy, ethoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy, tert-butoxy, and the like.

The term "aryloxy" as used herein refers to substituted or unsubstituted aryl ethers which may be 25 optionally substituted as herein before defined. Representative of such groups are 4-acetylphenoxy, phenoxy, 1-naphthoxy, 2-naphthoxy, and the like.

The terms "halo" and "halogen" as used herein refer to radicals derived from the elements 30 fluorine, chlorine, bromine and iodine.

The term "halo-substituted" alkyl, alkenyl or alkinyl refers to a radical as described above substituted with one or more halogens, and which may also be additionally substituted as defined above. 35 Representatives of such groups are chloromethyl,

-14-

trifluoromethyl, 2,2,2-trichloroethyl, 2,2-dichloro, 1-hydroxybutyl, and the like.

All of the alkyl, alkenyl, alkinyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, X_1 and X_2 radicals may in turn be substituted with various groups as defined above. Representatives of this group are 2-chlorophenyl-1-naphthyl, 2,4-dichlorophenyl-4-benzyl and 2-fluoromethyl-cyclohexyl-methyl.

The term "pharmaceutically acceptable salts" refers to the relatively non-toxic, inorganic or organic acid addition salts and alkaline earth metal salts of the compounds of this invention. These salts can be prepared in situ during the final isolation and purification of the compounds, or by separately reacting the free base with a suitable organic or inorganic acid. Representative salts include the hydrochloride, hydrobromide, sulfate, phosphate, nitrate, bisulfate, acetate, oxalate, valerate, oleate, palmitate, stearate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, lauryl sulphate, and the like. Representative alkali or alkaline earth metal sales include sodium, calcium, potassium and magnesium salts, and the like. It will be apparent to those skilled in the art that, depending upon the number of available amino groups for salt formation, the salts of this invention can be per-N-salts.

Certain compounds of this invention may exist in optically active forms. The R and S isomers and mixtures thereof, including racemic mixtures as well as the cis and trans mixtures are contemplated by this invention. Additional assymetric carbon

-15-

atoms may be present in a substituent group such as an alkyl group. All such isomers as well as the mixtures thereof are intended to be included in the invention.

5 The present invention includes one or more of the compounds of Formula II formulated into compositions together with one or more non-toxic pharmaceutically acceptable carriers, adjuvants or vehicles which are collectively referred to herein as
10 carriers, for parenteral injection, for oral administration in solid or liquid form, for rectal administration, and the like.

The compositions can be administered to humans and animals either orally, rectally,
15 parenterally (intravenously, intramuscularly or subcutaneously), intracisternally, intravaginally, intraperitoneally, locally (powders, ointments or drops), or as a buccal or nasal spray.

Compositions suitable for parenteral
20 injection may comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and
25 nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as
30 ethyl oleate. Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.

These compositions may also contain
35 adjuvants such as preserving, wetting, emulsifying,

-16-

and dispensing agents. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.

If desired, and for more effective distribution, the compounds can be incorporated into slow release or targeted delivery systems such as polymer matrices, liposomes, and microspheres. They may be sterilized, for example, by filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.

Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules. In such solid dosage forms, the active compound is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or (a) fillers or extenders, as for example, starches, lactose, sucrose, glucose, mannitol and silicic acid, (b) binders, as for example, carboxymethylcellulose, alignates, gelatin, polyvinylpyrrolidone, sucrose and acacia, (c) humectants, as for example, glycerol, (d) disintegrating agents, as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates and sodium carbonate, (e) solution retarders, as for example paraffin,

-17-

(f) absorption accelerators, as for example, quaternary ammonium compounds, (g) wetting agents, as for example, cetyl alcohol and glycerol monostearate, (h) adsorbents, as for example, kaolin and bentonite, 5 and (i) lubricants, as for example, talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate or mixtures thereof. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents.

10 Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols, and the like.

15 Solid dosage forms such as tablets, dragees, capsules, pills and granules can be prepared with coatings and shells, such as enteric coatings and others well known in this art. They may contain opacifying agents, and can also be of such 20 composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedding compositions which can be used are polymeric substances and waxes.

25 The active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the abovementioned excipients.

30 Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, as for example, ethyl 35 alcohol, isopropyl alcohol, ethyl carbonate, ethyl

-18-

acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil,
5 glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan or mixtures of these substances, and the like.

Besides such inert diluents, the composition can also include adjuvants, such as wetting agents,
10 emulsifying and suspending agents, sweetening, flavoring and perfuming agents.

Suspensions, in addition to the active compounds, may contain suspending agents, as for example, ethoxylated isostearyl alcohols,
15 polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances, and the like.

Compositions for rectal administrations are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax, which are solid at ordinary temperatures but liquid
25 at body temperature and therefore, melt in the rectum or vaginal cavity and release the active component.

Dosage forms for topical administration of a compound of this invention include powders, sprays and inhalants. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers or propellants as may be required. Ophthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of
35 this invention.

-19-

Actual dosage levels of active ingredient in the compositions of the invention may be varied so as to obtain an amount of active ingredient that is effective to obtain a desired therapeutic response
5 for a particular composition and method of administration. The selected dosage level therefore depends upon the desired therapeutic effect, on the route of administration, on the desired duration of treatment and other factors.

10 Total daily dose of the compounds of this invention administered to a host in single or divided doses may be in amounts, for example, of from about 0.001 to about 100 mg/kg body weight daily and preferably 0.01 to 10 mg/kg/day. Dosage unit
15 compositions may contain such amounts of such submultiples thereof as may be used to make up the daily dose. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the body
20 weight, general health, sex, diet, time and route of administration, rates of absorption and excretion, combination with other drugs and the severity of the particular disease being treated.

25

30

35

-20-

Representative Compounds of Formula I and Formula II
are shown in Table I.

Table I

5	<u>Compound</u>	<u>R₁</u>	<u>R₂</u>	<u>R₃</u>
	1	methyl	2-pyridyl	H
	2	methyl	3-pyridyl	H
	3	methyl	4-pyridyl	H
10	4	methyl	3-quinolinyl	H
	5	methyl	2-furanyl	H
	6	methyl	2-(6-methoxybenzothiazolyl)	H
	7	methyl	2-thiophenyl	H
	8	methyl	4-pyrazolyl	H
15	9	methyl	4-fluorophenyl	H
	10	methyl	4-bromophenyl	H
	11	methyl	4-chlorophenyl	H
	12	methyl	4-nitrophenyl	H
	13	methyl	4-C ₆ H ₄ -CO ₂ CH ₂ CH ₂ C ₆ H ₅	H
20	14	methyl	4-C ₆ H ₄ -CONH ₂	H
	15	methyl	4-C ₆ H ₄ -C ₆ H ₅	H
	16	methyl	4-C ₆ H ₄ -CF ₃	H
	17	methyl	4-C ₆ H ₄ -CO ₂ CH ₃	H
	18	methyl	4-C ₆ H ₄ -COCH ₃	H
25	19	methyl	4-C ₆ H ₄ -CO ₂ H	H
	20	methyl	4-C ₆ H ₄ -CN	H
	21	methyl	4-C ₆ H ₄ -CSNH ₂	H
	22	methyl	4-C ₆ H ₄ -SCF ₃	H
	23	methyl	4-C ₆ H ₄ -CO ₂ CH ₂ CH ₃	H
30	24	methyl	2-fluorophenyl	H
	25	methyl	3-fluorophenyl	H
	26	methyl	3-bromophenyl	H

-21-

	<u>Compound</u>	<u>R₁</u>	<u>R₂</u>	<u>R₃</u>
5	27	methyl	3,5-bis-trifluoromethylphenyl	H
	28	methyl	3,5-dinitrophenyl	H
	29	methyl	2-chloro-3-methylphenyl	H
	30	phenyl	4-C ₆ H ₄ -CO ₂ H	H
	31	methyl	phenyl	H
10	32	methyl	4-methoxyphenyl	H
	33	methyl	4-methylphenyl	H
	34	phenyl	phenyl	H
	35	-CH ₂ CH ₃	phenyl	H
15	36	-(CH ₂) ₂ CH ₃	phenyl	H
	37	-(CH ₂) ₃ CH ₃	phenyl	H
	38	-(CH ₂) ₂ C ₆ H ₅	phenyl	H
	39	-CH ₂ CO ₂ CH ₃	phenyl	H
	40	-CH ₂ CON(OH)CH ₃	phenyl	H
20	41	phenyl	3-pyridyl	H
	42	phenyl	4-pyridyl	H
	43	phenyl	4-methoxyphenyl	H
	44	phenyl	4-biphenyl	H
	45	phenyl	methyl	H
25	46	phenyl	4-methylphenyl	H
	47	phenyl	4-fluorophenyl	H
	48	phenyl	4-ethoxyphenyl	H
	49	phenyl	-(CH ₂) ₄ CH ₃	H
	50	phenyl	phenyl	-OCCH ₃
30	51	phenyl	phenyl	-OC(CH ₂) ₄ CH ₃

-22-

	<u>Compound</u>	<u>R₁</u>	<u>R₂</u>	<u>R₃</u>
5				
	52	phenyl	phenyl	-CO(CH ₃) ₃
	53	phenyl	phenyl	-CO(CH ₂) ₂ CO ₂ CH ₂ CH ₃
	54	-(CH ₂) ₂ CH ₃	phenyl	-COOCH ₂ CH ₃
	55	-(CH ₂) ₂ CH ₃	phenyl	-CONHCH ₂
10	56	-(CH ₂) ₂ CH ₃	phenyl	-COCH ₆ H ₅
	57	-(CH ₂) ₂ CH ₃	phenyl	-CONHC(CH ₃) ₃
	58	-(CH ₂) ₂ CH ₃	phenyl	-CONHC ₆ H ₅
	59	-(CH ₂) ₂ CH ₃	phenyl	-COCH ₃
	60	methyl	4-C ₆ H ₄ -CO ₂ CH ₃	-COCH ₃
15	61	methyl	6-methoxybenzothiazoyl	-COCH ₃
	62	phenyl	4-methylphenyl	-COCH ₃
	63	phenyl	4-ethoxyphenyl	-COCH ₃
	64	methyl	4-C ₆ H ₄ -CO ₂ (CH ₂) ₂ -C ₆ H ₅	-COCH ₃
	66	methyl	4-C ₆ H ₄ -CO ₂ H	-COCH ₃
20	67	(CH ₂) ₃ CH ₃	phenyl	-COCH ₃
	68	(CH ₂) ₂ CH ₃	(CH ₂) ₄ CH ₃	-COCH ₃

25

30

35

-23-

Other representative compounds which are useful in the methods of this invention for the inhibition of lipoxygenase enzymes are shown in Table II below.

5

Table II

	<u>R₁</u>	<u>R₂</u>	<u>R₃</u>
10	methyl 4-methylphenyl $\text{CO}_2\text{CH}_2\text{CH}_3$ phenyl 4-methylphenyl methyl methyl	benzyl 4-chlorophenyl 2-furanyl 4-chlorophenyl phenyl 6-methylbenzothiazole benzothiazole	H H H H H H
15	methyl		H
20	$3-\text{C}_6\text{H}_4-\text{NHCOCH}_3$ 	phenyl	H
25	4-C ₆ H ₄ -COCH ₃ 4-nitrophenyl 4-chlorophenyl $-(\text{CH}_2)_2\text{CH}_3$ $-(\text{CH}_2)_3\text{CH}_3$ $-\text{CH}_2\text{CO}_2\text{CH}_2\text{CH}_3$ methyl	methyl methyl methyl 2,6 dichlorophenyl 2,6-dichlorophenyl 2,6-dichlorophenyl 2-benzimidazolyl	H H H H
30	methyl methyl methyl methyl phenyl	2-benzothiazole 5-hydroxy-2-benzothiazole 2-naphthylthiazole 1-piperidinyl 1-piperidinyl 1-piperidinyl	H H H H
35	4-methylphenyl		

-24-

	<u>R₁</u>	<u>R₂</u>	<u>R₃</u>
	phenyl	4-methyl-1-piperidinyl	H
	4-isopropylphenyl	4-methyl-1-piperidinyl	H
5	4-methoxyphenyl	4-methyl-1-piperidinyl	H
	4-fluorophenyl	4-methyl-1-piperidinyl	H
	2-chlorophenyl	4-methyl-1-piperidinyl	H
	phenyl	4-propyl-1-piperidinyl	H
	phenyl	4-(2-propene)-1-piperidinyl	H
10	phenyl	4-(2-hydroxypropyl)-1-piperidinyl	H
	4-fluorophenyl		H
15	4-fluorophenyl		H
	methyl		H
20	2-quinolinyl	phenyl	H
	4-methyl-2-quinolinyl	phenyl	H
	4-methoxy-2-quinolinyl	phenyl	H
	3-bromo-2-quinolinyl	phenyl	H
	1-isoquinolinyl	phenyl	H
25		methyl	H
	4-fluorophenyl	1-pyrrolidinyl	H
	4-methylphenyl	4-methyl-1-piperidinyl	H
30	phenyl		H
	phenyl		H

-25-

	<u>R₁</u>	<u>R₂</u>	<u>R₃</u>
5	phenyl	CH ₂ CONH ₂	H
	phenyl	CH ₂ SO ₂ C ₆ H ₅	H
	phenyl	CH ₂ COC ₆ H ₅	H
	phenyl	CH(C ₆ H ₅) ₂	H
10	phenyl		H
	phenyl	CH ₂ CN	H
	phenyl	CH(C ₆ H ₅)CO ₂ CH ₂ CH ₃	H
	phenyl	2-chlorophenyl	-COCH ₃
	phenyl	phenyl	-COCH ₃
15	phenyl	4-chlorophenyl	-COCH ₃
	4-methylphenyl	phenyl	-COCH ₃
		2-furanyl	CO ₂ C ₆ H ₅
		phenyl	CO ₂ C ₆ H ₅
	4-methylphenyl	4-chlorophenyl	-COCH ₃
20	4-chlorophenyl	phenyl	-COCH ₃
	methyl	4-acetyl-5-methyl-2-thiazole	-COCH ₃
	methyl	4-pyridyl	-CH ₂ CHOHCH ₂ NHC(CH ₃) ₃
	phenyl	methyl	-COCH ₃
	methyl	(CH ₂) ₂ CH ₂ OH	H
25	methyl	(CH ₂) ₂ CHOHCH ₃	H
	phenyl	CH ₂ CH ₂ OH	H
	phenyl	CH ₂ OH	H
	phenyl	CH ₂ OCH ₂ CH ₃	H
	methyl	CH ₂ OCH ₂ CH ₂ OCH ₃	H
30	methyl	(CH ₂) ₂ C ₆ H ₅	H
	methyl	CH(CH ₃)C ₆ H ₅	H
	methyl		H
35	phenyl		H

-26-

	<u>R₁</u>	<u>R₂</u>	<u>R₃</u>
5	methyl		H
10	methyl		H
15	phenyl		H
20	methyl	(CH ₂) ₂ CH ₂ NH ₂	H
	methyl	(CH ₂) ₂ CH ₂ N(CH ₂ CH ₃) ₂	H
	methyl	(CH ₂) ₃ CH(NH ₂)CO ₂ H	H
	phenyl	(CH ₂) ₃ CH(NH ₂)CO ₂ H	H
	phenyl	CH ₂ CHNH ₂ CO ₂ H	H
	methyl	(CH ₂) ₃ C(CH ₃)(NH ₂)CO ₂ H	H
	methyl	CH ₂ C(CH ₃)(NH ₂)CO ₂ H	H
	methyl	4-C ₆ H ₄ -CH ₂ NH ₂	H
	methyl	CH=CH-CH ₂ N(CH ₂ CH ₃) ₂	H
25	methyl		H
30	methyl	(CH ₂) ₃ NHCONH ₂	H
	methyl	CH(CH ₃)NHCONH ₂	H
	methyl	CH(CH ₃)N(OH)CONH ₂	H
	methyl	CH(CH ₃)N(OH)COCH ₃	H
	methyl	CH(CH ₃)C(NO _H)NHOH	H
	methyl	CH(CH ₃)CONHNH ₂	H
	methyl	CH(CH ₃)CONHNHC ₆ H ₅	H
	methyl	CH(CH ₃)CON(OH)CH ₃	H
35	phenyl	CH(CH ₃)CON(OH)CH ₃	H

-27-

	<u>R₁</u>	<u>R₂</u>	<u>R₃</u>
	phenyl	CH(CH ₃)N(OH)CONH ₂	H
5	phenyl	CH(CH ₃)-N	H
	methyl	(CH ₂) ₃ NHCH ₂ CO ₂ CH ₃	H
10	methyl	(CH ₂) ₃ -N	H
	methyl	4-C ₆ H ₄ -CH(NH ₂)CO ₂ H	H
	methyl	4-C ₆ H ₄ -CHNHCONH ₂	H
	methyl	4-C ₆ H ₄ -CH(CH ₃)-NHCONH ₂	H
15	methyl	4-C ₆ H ₄ -CH(CH ₃)-N(OH)CONH ₂	H
	methyl	4-C ₆ H ₄ -CH(CH ₃)-N(OH)COCH ₃	H
	methyl	4-C ₆ H ₄ -CONHCH ₂ CH ₂ N(CH ₂ CH ₃) ₂	H
	methyl	4-C ₆ H ₄ -CONHCH(CH ₃)CO ₂ H	H
20	methyl	4-C ₆ H ₅ -	H
	methyl	2-benzofuranyl	H
	methyl	1-methyl-2-indolyl	H
25	methyl		H
	methyl	2-benzoxazole	H
	phenyl	5-methyl-2-thiophenyl	H
30	phenyl		H
	methyl		H
35	phenyl	phenyl	-CH ₂ OCH ₂ CH ₂ OCH ₃
	phenyl	phenyl	-COCH ₂ NH ₂

-28-

	<u>R₁</u>	<u>R₂</u>	<u>R₃</u>
5	phenyl	methyl	-COCH(CH ₃)NH ₂
	methyl	phenyl	-COCH(C ₆ H ₅)NH ₂
	phenyl	CH ₂ CH(NCOCH ₃)CO ₂ CH ₃	-COCH ₃
	methyl	phenyl	-CH ₂ N(CH ₂ CH ₃) ₂
	methyl	phenyl	-CH(CH ₃)OCH ₃
10	phenyl	phenyl	
	phenyl	phenyl	-Si(CH ₃) ₂ C ₆ H ₅
	phenyl	phenyl	-Si(CH ₃) ₂ C(CH ₃) ₃
	phenyl	phenyl	-CH ₂ CHOHCH ₂ OH
	phenyl	phenyl	
15	phenyl	phenyl	
	phenyl	phenyl	
20			
25			
30			
35			

-29-

The compounds of Table II and many other compounds having lipoxygenase inhibiting activity are included in Formula II. While many of these compounds are old and are disclosed in the following 5 list of references, none are taught to possess lipoxygenase inhibiting activity.

1. M. Ferrey, A. Robert, and A. Foucaud, Synthesis, 261(1976).
- 10 2. F. Duro, Gazz. Chim. Ital., 93, 215(1963); Chem. Abstr., 59, 2793.
3. P.O. Shvaika, V.N. Artemov, S.N. Baranov, Zh. Org. Khim., 1, 1968(1971).
4. T. Matsuda, N. Honjo, M. Yamazaki, and Y. Goto, Chem. Pharm. Bull., 25, 3270(1977).
- 15 5. K. Popov-Pergal, M. Pergal, and D. Jeremic, Bull. Sci. Cons. Acad. Sci. Arts RSF Yougosl., Sect. A, 21, 197(1976); Chem. Abstr., 86, 170347m.
6. Fr. Demande FR 2164520, 7 Sep 1973; Chem. Abstr., 80, 27244w.
- 20 7. Ger. Offen. DE 2711330, 22 Sep 1977; Chem. Abstr., 88, 68680.
8. N. Susuki, and T. Goto, Agr. Biol. Chem., 36, 2213 (1972).
- 25 9. G. Satzinger, Justus Liebigs Ann. Chem. 473(1978).
10. Ger. Offen. DE 2252070, 10 May 1973 to J.A. Edwards, Syntex US Appl. 193, 172. Chem. Abstr., 79, 32036p.
11. E.P. Nesynov, M.M. Besporzvannaya, and P.S. Pel'kis, Khim. Geterotsikl. Soedinenii, 11, 1487 (1973). Chem. Abstr., 80, 82785.
- 30 12. S.H. Dandegaonkar and J.B. Patil, J. Shivaji Univ., 1, 159(1974). Chem. Abstr., 86, 106454s.

-30-

13. Eur. Pat. Appl. EP 153709A2, 4 Sep 1985, Chem. Abstr., 104, 148630s.
14. K.T. Potts, K.G. Bordeaux, W.R. Kuehnling, and R.L. Salsbury, J. Org. Chem., 50, 1666(1985).
- 5 15. Japanese Patent No. 11256'66; Chem. Abstr., 65, 13716f.
16. H. Behringer and D. Weber, Annalen, 682, 201(1965).
17. A. Robert, M. Ferrey, and A. Foucaud, Tetrahedron Lett., 16, 1377(1975).
- 10 18. I.V. Smolanka, S.M. Khripak, and V.I. Staninets, Ukr. Khim. Zh., 32 202 (1966); Chem. Abstr., 64, 15863.
19. W. Reeve and E.R. Barron, J. Org. Chem., 40, 1917 (1975).
- 15 20. P. Chabrier and S. Renard, Compt. Rend., 226, 582 (1948).
21. Belgian Patent No. 623714; Chem. Abstr., 60, 9299.
22. U.S. Patent No. 3,418,331; Chem. Abstr., 70, 57824.
- 20 23. S.C. Mutha and R. Ketcham, J. Org. Chem., 34, 2053 (1969).
24. I. Ito, S. Murakami, and K. Tanabe, Yakugaku Zasshi, 86, 300(1966); Chem. Abstr., 65, 3852F.
- 25 25. German Patent No. 2611089; Chem. Abstr., 86, 43693.
26. Hungarian Patent Nos. 133776, 133971, and 133972; Chem. Abstr., 43, 3851.
27. R. Bally, Acta. Crystallogr., B29, 2635(1973).
- 30 28. French Patent No. 2164520; Chem. Abstr., 80, 27244.
29. German Patent No. 2064307; Chem. Abstr., 77, 101576.

-31-

30. J. Metzger, H. Larive, R. Dennilauler, R. Baralle, and C. Gaurat, Bull. Soc. Chim. France, 11, 2857(1964); Chem. Abstr., 62, 9263.
- 5 31. U.S. Patent No. 3850947; Chem. Abstr., 82, 72978.
32. C. Broquet and A. Tohoukarine, Compt. Rend., C-262, 1017(1966); Chem. Abstr., 64, 19590.
33. German Patent No. 2413937. Chem. Abstr., 82, 4239.
- 10 34. K.T. Potts, J. Baum, s. Datta and E. Houghton, J. Org. Chem., 41, 813(1976).
35. U.S. Patent No. 3438992; Chem. Abstr., 71, 61386.
36. K.A. Jensen and I. Crossland, Acta. Chem. Scand., 17, 144(1963).
- 15 37. French Patent No. 2067436; Chem. Abstr., 77, 5473.
38. Ger. Offen. DE 2541720, 8 Apr 1976; Chem. Abstr., 85, 78112n.
39. Eur. Pat. Appl. EP 97323 A2, 4 Jan 1984; Chem. Abstr., 100, 139093j.
- 20 40. Fr. Demande FR 2045672, 9 Apr. 1971; Chem. Abstr., 76, 3860k.
41. Fr. FR 2046114, 5 Mar 1971; Chem. Abstr., 75, 151800k.
42. Fr. FR 1449800, 19 Aug. 1966; Chem. Abstr., 66, 105907s.
- 25 43. Jpn. Kokai Tokkyo Koho JP 61/171480 A2 [86/171480], 2 Aug. 1986; Chem. Abstr., 106, 5019e.
44. Fr. FR 1604530, 7 Jan. 1972; Chem. Abstr., 79, 32038r.
- 30 45. Ger. Offen. DE 1915564, 13 Nov. 1969; Chem. Abstr., 72, 68226v.
46. U.S. Patent No 4208327, 17 Jun. 1980; Chem. Abstr., 94, 30804y.

-32-

47. S.H. Dandegaonkar and J.B. Patil, J. Shivaji Univ., 7, 159(1974); Chem. Abstr., 86, 106454s.
48. I. Kopka, Tetrahedron Lett., 29, 3765 (1988).

5

10

15

20

25

30

35

-33-

Synthesis of the Compounds of the Invention

The 4-hydroxythiazole compounds of this invention can be prepared by reaction schemes I - III below. While more than one reaction scheme may be used to make many of the 4-hydroxythiazole compounds of this invention, the examples are grouped according to the preferred synthetic scheme. The compounds produced by the examples following Scheme I are preferably made according to Scheme I and so on.

4-Hydroxythiazoles of general Formula I may be prepared by the reaction sequence outlined in Scheme I. The meanings of R_1 and R_2 correspond to the definitions provided above. The reaction of nitriles with alpha-mercaptopropanoic acid derivatives at high temperature for several hours provides the 4-hydroxythiazoles. Where groups R_1 and R_2 contain functionality which would ordinarily interfere with the desired reaction to form the thiazole system, conventional procedures to block the potentially interfering functionality followed by deblocking after thiazole formation may be utilized by those skilled in the art.

Scheme I

25

30

35

-34-

Example 1

2-(2-Pyridyl)-4-hydroxy-5-methylthiazole

5 Pyridine (2 g, 0.025 mol) was added to a mixture of thiolactic acid (10.6 g, 0.1 mol) and 2-cyanopyridine (10.4 g, 0.1 mol) at 23°C under an argon atmosphere. The reaction mixture was then heated at 100°C and maintained for 2 hours. After
10 cooling, the precipitate was collected and washed with absolute ethanol. Recrystallization from methanol afforded the product (14 g, 73%).

mp 230°C (MeOH)

15 ^1H NMR (60 MHz, DMSO-d₆): delta 2.25 (s, 3H), 7.32-7.67 (m, 1H), 8.00-8.30 (m, 1H), 8.54-8.70 (m, 1H), 8.98-9.10 (m, 1H), 10.55 (s, 1H).

Mass Spectrum: 192 (M⁺)

Anal. Calc'd. for C₉H₈N₂OS: C, 56.25; H, 4.17; N, 14.58.

20 Found: C, 56.26; H, 4.18; N, 14.77.

Example 2

2-(3-Pyridyl)-4-hydroxy-5-methylthiazole

25

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 3-cyanopyridine was used instead of 2-cyanopyridine.

30 mp 201-202°C (MeOH)

1¹H NMR (60MHz, DMSO-d₆): delta 2.25 (s, 3H), 7.35-7.62 (m, 24), 8.05-8.35 (m, 2H), 10.45 (s, 1H).
Mass Spectrum: 192 (M⁺).

Anal. Calc'd. for C₉H₈N₂OS: C, 56.25; H, 4.17;
35 N, 14.58.

-35-

Found: C, 56.09; H, 4.17; N, 14.39.

Example 3

5 2-(4-Pyridyl)-4-hydroxy-5-methylthiazole
10 The title compound was prepared according to
the method of Scheme I in a manner analogous to
Example 1 except 4-cyanopyridine was used instead of
2-cyanopyridine.

mp 223-224°C (EtOH)
¹H NMR (60 MHz, DMSO-d₆): delta 2.28 (s, 3H),
7.67-7.84 (m, 2H), 8.67-8.85 (m, 2H), 10.65 (s, 1H).
Mass Spectrum: 192 (M⁺).
15 Anal. Calc'd. for C₉H₈N₂OS: C, 56.25; H, 4.17;
N, 14.58.
Found: C, 56.37; H, 4.19; N, 14.33.

Example 4

20 2-(3-Quinolinyl)-4-hydroxy-5-methylthiazole

25 The title compound was prepared according to
the method of Scheme I in a manner analogous to
Example 1 except 3-quinolinecarbonitrile was used
instead of 2-cyanopyridine.

mp 279-280°C (EtOH)
¹H NMR (300 MHz, DMSO-d₆): delta 2.28 (s, 3H),
7.75-7.82 (m, 1H), 7.60-7.68 (m, 1H), 8.02-8.06 (s,
30 1H), 8.10-8.15 (m, 1H), 8.69-8.72 (m, 1H) 9.32-9.35
(m, 1H), 10.55 (s, 1H).
Mass Spectrum: 242 (M⁺).
Anal. Calc'd. for C₁₃H₁₀N₂O₅: C, 64.46;
H, 4.13; N, 11.57.
35 Found: C, 64.76; H, 4.13; N, 11.48.

-36-

Example 5

2-(2-Furyl)-4-hydroxy-5-methylthiazole

5 The title compound was prepared according to
the method of Scheme I in a manner analogous to
Example 1 except 2-cyanofuran was used instead of
2-cyanopyridine.

mp 173-174°C (EtOH)

10 ^1H NMR (300 MHz, DMSO-d₆): delta 2.21 (s, 3H),
6.64-6.68 (m, 1H), 6.86-6.89 (m, 1H), 7.78-7.82 (m,
1H), 10.46 (s, 1H).

Mass Spectrum: 181 (M⁺)

Anal. Calc'd. for C₈H₇NO₂S: C, 53.03; H, 3.87;
N, 7.73.

Found: C, 53.13; H, 3.88; N, 7.63.

Example 6

20 2-[2-(6-Methoxybenzothiazolyl)]-4-hydroxy-5-
methylthiazole

25 The title compound was prepared according to
the method of Scheme I in a manner analogous to
Example I except 2-cyano 6-methoxybenzothiazole was
used instead of 2-cyanopyridine.

mp 249-250°C (EtOH)

30 ^1H NMR (300 MHz, DMSO-d₆): delta 2.28 (s, 3H),
3.86 (s, 3H), 7.11-7.17 (m, 1H), 7.68-7.72 (m, 1H),
7.90-7.96 (m, 1H), 10.11 (s, 1H).

Mass Spectrum: 278 (M⁺)

Anal. Calc'd. for C₁₂H₁₀N₂O₂S₂: C, 51.80;
H, 3.60; N, 10.07.

Found: C, 51.65; H, 3.60; N, 10.27.

-37-

Example 7

2-(2-Thienyl)-4-hydroxy-5-methylthiazole

5 The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 2-thiophenecarbonitrile was used instead of 2-cyanopyridine.

mp 152-153°C (EtOH)

10 ^1H NMR (60 MHz, DMSO-d₆): delta 2.16 (s, 3H), 7.08-7.28 (m, 1H), 7.50-7.75 (m, 2H), 10.32 (s, 1H). Mass Spectrum: 197 (M⁺)

Anal. Calc'd. for C₈H₇NOS₂: C, 48.73; H, 3.55; N, 7.11.

15 Found: C, 48.62; H, 3.56; N, 7.24.

Example 8

2-(4-Pyrazolyl)-4-hydroxy-5-methylthiazole

20 The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-cyanopyrazole was used instead of 2-cyanopyridine.

25 mp 124-125°C (EtOH)

^1H NMR (60 MHz, DMSO-d₆): delta 2.16 (s, 3H), 8.00 (s 1H) 8.35 (s, 1H) 9.02 (s, 1H).

Mass Spectrum: 181 (M⁺)

Anal. Calc'd. for C₇H₇N₃OS: C, 46.41; H, 3.87; N, 23.20.

Found: C, 46.32; H, 3.87; N, 23.35.

Example 9

35 2-(4-Fluorophenyl)-4-hydroxy-5-methylthiazole

-38-

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-fluorobenzonitrile was used instead of 2-cyanopyridine.

5 mp 173-174°C (EtOH)

^1H NMR (60 MHz, DMSO-d₆): delta 2.20 (s, 3H), 7.16-8.00 (m, 4H), 10.0 (s, 1H).

Mass Spectrum: 209 (M⁺)

Anal. Calc'd. for C₁₀H₈FNOS: C, 57.42; H, 3.83;
10 N, 6.70.

Found: C, 57.30; H, 3.84; N, 6.72.

Example 10

15 2-(4-Bromophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-bromobenzonitrile was used instead of 2-cyanopyridine.

20 mp 206-207°C (EtOH)

^1H NMR (60 MHz, DMSO-d₆): delta 2.25 (s, 3H), 7.50-7.90 (m, 4H), 10.32 (s, 1H)

Mass Spectrum: 269 (M⁺)

25 Anal. Calc'd. for C₁₀H₈BrNOS: C, 44.61; H, 2.97;
N, 5.20.

Found: C, 44.38; H, 2.99; N, 5.32.

Example 11

30

2-(4-Chlorophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-chlorobenzonitrile was used

-39-

instead of 2-cyanopyridine.

mp 198-199°C (EtOH)

¹H NMR (300 MHz, DMSO-d₆): delta 2.23 (s, 3H), 7.48-7.54 (m, 2H), 7.75-7.83 (m, 2H), 10.40 (br s, 1H).

Mass Spectrum: 225 (M⁺)

Anal. Calc'd. for C₁₀H₈ClNOS: C, 53.93; H, 3.60; N, 6.21.

Found: C, 54.06; H, 3.62; N, 6.22.

10

Example 12

2-(4-Nitrophenyl)-4-hydroxy-5-methylthiazole

15 The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-nitrobenzonitrile was used instead of 2-cyanopyridine.

mp 244-248°C (EtOH)

20 ¹H NMR (60 MHz, DMSO-d₆) 10.41 (br s, 1H).

Mass Spectrum: 236 (M⁺)

Anal. Calc'd. for C₁₀H₈N₂O₃S: C, 50.85; H, 3.39; N, 11.86.

Found: C, 50.78; H, 3.41; N, 11.77.

25

Example 13

2-(4-Carbo-2-phenethoxyphenyl)-4-hydroxy-5-methylthiazole

30

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-(carbo-2-phenethoxy) benzonitrile was used instead of 2-cyanopyridine.

35 mp 251-252°C (EtOH)

-40-

^1H NMR (60 MHz, DMSO-d₆): delta 2.25 (s, 3H), 3.08 (t, 2H, J=7Hz), 4.55 (t, 2H J=7Hz), 7.32-7.50 (m, 5H), 7.95-8.05 (m, 4H), 10.35 (br s, 1H).

Mass Spectrum: 339 (M⁺)

5 Anal. Calc'd. for C₁₉H₁₇NO₃S: C, 67.24; H, 5.05; N, 4.13.
Found: C, 67.00; H, 4.99; N, 4.00.

Example 14

10

2-(4-Benzamido)-4-hydroxy-5-methylthiazole

The title compound was prepared according to
the method of Scheme I in a manner analogous to
15 Example 1 except 4-cyanobenzamide was used instead of
2-cyanopyridine.

mp 274-277°C (dec.) (EtOH)

^1H NMR (60 MHz, DMSO-d₆): delta 2.21 (s, 3H), 7.30-8.10 (m, 5H), 10.15 (br s, 1H)

20 Mass Spectrum: 234 (M⁺)

Anal. Calc'd. for C₁₁H₁₀N₂O₂S: C, 56.40; H, 4.30; N, 11.96.

Found: C, 56.37; H, 4.33; N, 11.81.

25

Example 15

2-(4-Biphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to
30 the method of Scheme I in a manner analogous to
Example 1 except 4-biphenylcarbonitrile was used
instead of 2-cyanopyridine.

mp 265-266°C (EtOH)

^1H NMR (60 MHz, DMSO, d₆): delta 2.16 (s, 3H),
35 7.32-8.00 (m, 9H), 10.25 (s, 1H).

-41-

Mass Spectrum: 267 (M^+)

Anal. Calc'd. for $C_{16}H_{13}NOS$: C, 71.91; H, 4.87; N, 5.24.

Found: C, 72.12; H, 4.87; N, 5.36.

5

Example 16

2-(4-Trifluoromethylphenyl)-4-hydroxy-5-methylthiazole

10 The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-trifluoromethylbenzonitrile was used instead of 2-cyanopyridine.

mp 232-233°C (EtOH)

15 1H NMR (60 MHz, DMSO-d₆): delta 2.20 (s, 3H), 7.66-8.10 (m, 4H), 10.50 (s, 1H).

Mass Spectrum: 259 (M^+)

Anal. Calc'd. for $C_{11}H_8F_3NOS$: C, 50.96; H, 3.09; N, 5.41.

20 Found: C, 50.77; H, 3.08; N, 5.27.

Example 17

2-(4-Carbomethoxyphenyl)-4-hydroxy-5-methylthiazole

25

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except methyl 4-cyanobenzoate was used instead of 2-cyanopyridine.

30 mp 219-220°C (EtOH)

1H NMR (60 MHz, DMSO-d₆): delta 2.35 (s, 3H), 3.80 (s, 3H), 7.85-8.15 (m, 4H), 10.41 (br s, 1H).

Mass Spectrum: 249 (M^+)

Anal. Calc'd. for $C_{12}H_{11}NO_3S$: C, 57.83; H, 4.42; N, 5.62.

-42-

Found: C, 57.95; H, 4.39; N, 5.49.

Example 18

5 2-(4-Acetylphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-acetylbenzonitrile was used
10 instead of 2-cyanopyridine.

mp 219-220°C (EtOH)

^1H NMR (60 MHz, DMSO-d₆): delta 2.25 (s, 3H),
2.59 (s, 3H), 7.89-7.95 (m, 2H), 8.0-8.06 (m, 2H),
10.50 (s, 1H).

15 Mass Spectrum: 233 (M⁺)

Anal. Calc'd. for C₁₂H₁₁NO₂S: C, 61.86;
H, 4.72; N, 9.72.

Found: C, 61.80; H, 4.72; N, 9.80.

20 Example 19

2-(4-Carboxyphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to
25 the method of Scheme I in a manner analogous to Example 1 except 4-carboxybenzonitrile was used instead of 2-cyanopyridine.

mp 276°C dec. (EtOH)

^1H NMR (300 MHz, DMSO-d₆): delta 2.25 (s, 3H),
30 7.88-7.94 (m, 2H), 7.98-8.04 (m, 2H), 10.49 (br s,
1H), 12.07 (br s, 1H).

Mass Spectrum: 235 (M⁺)

Anal. Calc'd. for C₁₁H₉NO₃S: C, 56.17;
H, 3.83; N, 5.96.

35 Found: C, 56.29; H, 3.83; N, 5.88.

-43-

Example 20

2-(4-Cyanophenyl)-4-hydroxy-5-methylthiazole

5 The title compound was prepared according to
the method of Scheme I in a manner analogous to
Example 1 except 4-cyanobenzonitrile was used instead
of 2-cyanopyridine.

mp 220-221°C (EtOH)
10 ^1H NMR (60 MHz, DMSO-d₆): delta 2.26 (s, 3H),
7.85-8.10 (m, 4H), 10.55 (br s, 1H).
Mass Spectrum: 216 (M⁺)
Anal. Calc'd. for C₁₁H₈N₂OS: C, 61.11;
H, 3.70; N, 12.96.
15 Found: C, 61.22; H, 3.72; N, 12.82.

Example 21

2-(4-Thiobenzamido)-4-hydroxy-5-methylthiazole

20 The title compound was prepared according to
the method of Scheme I in a manner analogous to
Example 1 except 4-cyanothiobenzamide was used
instead of 2-cyanopyridine.

25 mp 256-257°C (EtOH)
1 ^1H NMR (60 MHz, DMSO-d₆): delta 2.20 (s, 3H),
6.65 (s, 2H), 7.32-7.66 (m, 2H), 7.85-8.10 (m, 2H).
Mass Spectrum: 270 (M⁺)
Anal. Calc'd. for C₁₀H₁₀N₂O₃S₂: C, 44.44;
30 H, 3.70; N, 10.37.
Found: C, 44.27; H, 3.73; N, 10.42.

-44-

Example 22

2-(4-Thiotrifluoromethylphenyl)-4-hydroxy-5-methylthiazole

5

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-thiotrifluoromethylbenzonitrile was used instead of 2-cyanopyridine.

10 mp 178-179°C (EtOH)

^1H NMR (60 MHz, DMSO-d₆): delta 2.18 (s, 3H), 3.32 (br s, 1H), 7.66-8.05 (m, 4H), 9.75 (br s, 1H).

Mass Spectrum: 291 (M⁺)

15 Anal. Calc'd. for C₁₁H₈F₃NOS₂: C, 45.36; H, 2.75; N, 4.81.

Found: C, 45.26; H, 2.74; N, 4.79.

Example 23

20

2-(4-Carboethoxyphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-carboethoxybenzonitrile was used instead of 2-cyanopyridine.

mp 207-208°C (EtOH)

^1H NMR (60 MHz, DMSO-d₆): delta 1.25 (t, 3H, J=7Hz), 2.35 (s, 3H), 4.32 (q, 2H, J=7Hz), 7.85-8.15 (m, 4H), 10.41 (br s, 1H).

Mass Spectrum: 263 (M⁺)

Anal. Calc'd. for C₁₃H₁₃NO₃S: C, 59.32; H, 4.94; N, 5.32.

Found: C, 59.27; H, 4.96; N, 5.29.

35

-45-

Example 24

2-(2-Fluorophenyl)-4-hydroxy-5-methylthiazole

5 The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 2-fluorobenzonitrile was used instead of 2-cyanopyridine.

mp 159-160°C (EtOH)

10 ^1H NMR (300 MHz, DMSO-d₆): delta 2.25 (s, 3H), 7.30-7.51 (m, 4H), 8.05-8.15 (m, 1H), 10.43 (br s, 1H).

Mass Spectrum: 209 (M⁺)

Anal. Calc'd. for C₁₀H₈FNOS: C, 57.42; H, 3.83; N, 6.70.

15 Found: C, 57.29; H, 3.81; N, 6.68.

Example 25

20 2-(3-Fluorophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 3-fluorobenzonitrile was used instead of 2-cyanopyridine.

mp 162-163°C (EtOH)

^1H NMR (300 MHz, DMSO-d₆): delta 2.25 (s, 3H), 7.23-7.31 (m, 1H), 7.48-7.66 (m, 3H), 10.45 (s, 1H).

Mass Spectrum: 209 (M⁺)

30 Anal. Calc'd. for C₁₀H₈FNOS: C, 57.42; H, 3.83; N, 6.70.

Found: C, 57.48; H, 3.84; N, 6.72.

-46-

Example 26

2-(3-Bromophenyl)-4-hydroxy-5-methylthiazole

5 The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 3-bromobenzonitrile was used instead of 2-cyanopyridine.

10 mp 148-149°C (EtOH)
10 ¹H NMR (60 MHz, DMSO-d₆): delta 2.21 (s, 3H), 7.32-8.02 (m, 4H), 10.35 (s, 1H).
Mass Spectrum: 269 (M⁺)

Anal. Calc'd. for C₁₀H₈BrNOS: C, 44.61; H, 2.97; N, 5.20.

15 Found: C, 44.60; H, 2.98; N, 5.25.

Example 27

20 2-(3,5-bis-trifluoromethylphenyl)-4-hydroxy-5-methylthiazole

25 The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 3,5-bis-trifluoromethylbenzonitrile was used instead of 2-cyanopyridine.

mp 182-183°C (EtOH)
180 ¹H NMR (300 MHz, DMSO-d₆): delta 2.29 (s, 3H), 8.12 (s, 1H), 8.30 (s, 2H), 10.65 (s, 1H).
Mass Spectrum: 327 (M⁺)
30 Anal. Calc'd. for C₁₂H₇F₆NOS: C, 44.04; H, 2.14; N, 4.28.
Found: C, 44.23; H, 2.16; N, 4.31.

-47-

Example 28

2-(3,5-Dinitrophenyl)-4-hydroxy-5-methylthiazole

5 The title compound was prepared according to
the method of Scheme I in a manner analogous to
example 1 except 3,5-dinitrobenzonitrile was used
instead of 2-cyanopyridine.

mp 247-248°C (EtOH)

10 ^1H NMR (60 MHz, DMSO-d₆): delta 2.21 (s, 3H),
8.65 (s, 3H), 9.45 (br s, 1H).

Mass Spectrum: 281 (M^+)

Anal. Calc'd. for C₁₀H₇N₃O₅S: C, 42.70;
H, 2.49; N, 14.95.

15 Found: C, 42.62; H, 2.48; N, 14.82.

Example 29

2-(2-Chloro-3-methylphenyl)-4-hydroxy-5-methylthiazole

20 The title compound was prepared according to
the method of Scheme I in a manner analogous to
Example 1 except 2-chloro-3-methylbenzonitrile was
used instead of 2-cyanopyridine.

25 mp 183-184°C (EtOH)

1 ^1H NMR (60 MHz, DMSO-d₆): delta 2.20
(s, 3H), 2.35 (s, 3H), 7-407-86 (m, 3H), 10.32 (s, 1H).

Mass Spectrum: 239 (M^+)

Anal. Calc'd. for C₁₁H₁₀ClNOS: C, 55.11;

30 H, 4.84; N, 5.85.

Found: C, 55.31; H, 4.86; N, 5.86.

-48-

Example 30

2-(4-Carboxyphenyl)-4-hydroxy-5-phenylthiazole

5 The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except thiomandelic acid and 4-cyanobenzoic acid were used instead of thiolactic acid and 2-cyanopyridine respectively.

10 mp 300°C dec. (EtOH)

^1H NMR (60 MHz, DMSO-d₆): delta 7.32-8.15 (m, 9H), 11.32 (br s, 1H).

Mass Spectrum: 297 (M⁺)

Anal. Calc'd. for C₁₆H₁₁NO₃S: C, 64.65;
15 H, 3.70; N, 4.71.

Found: C, 64.74; H, 3.71; N, 4.58.

4-Hydroxythiazoles of general Formula I are also prepared by the reaction sequence outlined in Scheme II. The meanings of R₁ and R₂ correspond 20 to the definitions provided above. The reaction of an alpha-haloester with an appropriately substituted thioamide in toluene at high temperature for several hours provides the 4-hydroxythiazoles. Where groups R₁ and R₂ contain functionality which would 25 ordinarily interfere with the desired reaction to form the thiazole system, conventional procedures to block the potentially interfering functionality followed by deblocking after thiazole formation may be utilized by those skilled in the art.

30

-49-

Scheme II

5

10

Example 31**2-Phenyl-4-hydroxy-5-methylthiazole**

15 Ethyl bromopropionate (3.96 g, 21.87 mmol) was added dropwise to a solution of thiobenzamide (3.00 g, 21.87 mM) and pyridine (7 ml, 87.48 mmol) in toluene (200 ml) at 23°C. The reaction mixture was heated to 80°C and maintained for 2 hours and allowed to cool 20 to 23°C. The precipitate was collected and recrystallized from ethanol to afford 3.3 g (81%) of product.

mp 192-193°C (EtOH)

25 ^1H NMR (300 MHz, DMSO-d₆): delta 2.20 (s, 3H), 7.32-7.55 (m, 3H), 7.75-7.82 (m, 2H), 10.31 (s, 1H). Mass Spectrum: 191 (M⁺)

Anal. Calc'd for C₁₀H₉NOS: C, 62.83; H, 4.71; N, 7.33.

Found: C, 62.92; H, 4.71; N, 7.18.

30

Example 32**2-(4-Methoxyphenyl)-4-hydroxy-5-methylthiazole**

35 The title compound was prepared according to

-50-

the method of Scheme II in a manner analogous to Example 31 except 4-methoxythiobenzamide was used instead of thiobenzamide.

mp 149-150.5°C (EtOH)

5 ^1H NMR (300 MHz, DMSO-d₆): delta 2.18 (s, 3H), 7.0-7.20 (m, 2H), 7.67-7.97 (m, 2H), 10.41 (br s, 1H).

Mass Spectrum: 221 (M⁺)

Anal. Calc'd for C₁₁H₁₁NO₂S: C, 59.72; H, 4.97; N, 6.33.
10 Found: C, 59.86; H, 4.99; N, 6.22.

Example 33

15 2-(4-Methylphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except 4-methylthiobenzamide was used instead of thiobenzamide.

20 mp 172-174°C (EtOH)

^1H NMR (60 MHz, DMSO-d₆): delta 2.15 (s, 3H), 2.25 (s, 3H), 7.15-7.35 (m, 2H), 7.55-7.85 (m, 2H), 9.82 (s, 1H).

25 Mass Spectrum: 205 (M⁺)

Anal. Calc'd for C₁₁H₁₁NOS: C, 64.36; H, 5.40; N, 6.82.

Found: C, 64.15; H, 5.38; N, 6.71.

30

Example 34

2-Phenyl-4-hydroxy-5-phenylthiazole

The title compound was prepared according to
35 the method of Scheme II in a manner analogous to

-51-

Example 31 except chlorophenylacetylchloride was used instead of ethyl 2-bromopropionate.

mp 212-213°C (EtOH)

5 ^1H NMR (300 MHz, CDCl_3): delta 7.22-7.30 (m, 2H), 7.38-7.53 (m, 4H), 7.82-7.87 (m, 2H), 7.92-8.00 (m, 2H).

Mass Spectrum: 253 (M^+)

Anal. Calc'd for $\text{C}_{15}\text{H}_{11}\text{NOS}$: C, 71.15; H, 4.35; N, 5.53.

10 Found: C, 71.22; H, 4.33; N, 5.44.

Example 35

2-Phenyl-4-hydroxy-5-ethylthiazole

15

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except methyl 2-bromobutyrate was used instead of ethyl 2-bromopropionate.

20 mp 175-177°C dec. (MeOH)

^1H NMR (300 MHz, DMSO-d_6): delta 1.18 (t, 3H, $J=7\text{Hz}$), 2.66 (q, 2H, $J=7\text{Hz}$), 7.40-7.50 (m, 3H), 7.75-7.85 (m, 2H), 9.52 (br s, 1H).

Mass Spectrum: 205 (M^+)

25 Anal. Calc'd for $\text{C}_{11}\text{H}_{11}\text{NOS}$: C, 64.39; H, 5.36; N, 6.83.

Found: C, 64.28; H, 5.38; N, 6.97.

Example 36

30

2-Phenyl-4-hydroxy-5-propylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except ethyl 2-bromovalerate was used

-52-

instead of ethyl 2-bromopropionate.

mp 86-87°C (EtOH)

¹H NMR (300 MHz, DMSO-d₆): delta 0.92
5 (t, 3H, J=7Hz), 1.50-1.65 (m, 2H), 2.62 (t, 2H,
(s, 1H).

Mass Spectrum: 219 (M⁺)

Anal. Calc'd for C₁₂H₁₃NOS: C, 65.75; H, 5.94;
N, 6.39.

10 Found: C, 65.71; H, 5.95; N, 6.41.

Example 37

2-Phenyl-4-hydroxy-5-butylthiazole

15

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except ethyl 2-bromohexanoate was used instead of ethyl 2-bromopropionate.

20 mp 69-71°C (EtOH)

¹H NMR (300 MHz, DMSO-d₆): delta 0.90
(t, 3H, J=7Hz), 1.28-1.41 (m, 2H), 1.48-1.60 (m, 2H),
2.63 (t, 2H, J=7Hz), 7.40-7.50 (m, 3H), 7.82-7.85 (m,
2H), 10.35 (s, 1H).

25 Mass Spectrum: 233 (M⁺)

Anal. Calc'd for C₁₃H₁₅NOS: C, 66.92; H, 6.48;
N, 6.00.

Found: C, 66.32; H, 6.47; N, 5.83.

30

Example 38

2-Phenyl-4-hydroxy-5-phenethylthiazole

35 The title compound was prepared according to the method of Scheme II in a manner analogous to

-53-

Example 31 except ethyl 3-phenyl-2-bromobutyrate was used instead of ethyl 2-bromopropionate.

mp 127-128°C (EtOH)

5 ^1H NMR (60 MHz, DMSO-d₆): delta 2.88 (s 4H), 7.21-7.90 (m, 10H), 9.84 (br s, 1H).

Mass Spectrum: 281(M⁺)

Anal. Calc'd for C₁₇H₁₅NOS: C, 72.60; H, 5.34; N, 4.98.

Found: C, 72.66; H, 5.35; N, 4.97.

10

Example 39

2-Phenyl-4-hydroxy-5-(methylcarbomethoxy)-thiazole

15 The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except ethyl bromosuccinate was used instead of ethyl 2-bromopropionate.

mp 114-116°C (EtOH)

20 ^1H NMR (300 MHz, DMSO-d₆): delta 3.65 (s 2H), 3.80 (s, 3H), 7.35-7.55 (m, 3H), 7.72-7.89 (m, 2H), 10.50 (s, 1H).

Mass Spectrum: 249 (M⁺)

Anal. Calc'd for C₁₂H₁₁NO₃S: C, 57.83; H, 4.42; N, 5.62.

25 Found: C, 57.90; H, 4.42; N, 5.64.

Example 40

30 2-Phenyl-4-hydroxy-5-methylhydroxymino-carbonylmethylthiazole

35 The title compound was prepared from the acid chloride of Example 39 using methylhydroxylamine.

-54-

mp 156-157°C (Ether)
¹H NMR (300 MHz, DMSO-d₆): delta 3.12 (s, 3H),
3.80 (s, 2H), 7.38-7.52 (m, 3H), 7.75-7.86 (m, 2H),
10.10 (br s, 1H), 10.51 (s, 1H).

5 Mass Spectrum: 264 (M⁺)

Anal. Calc'd for C₁₂H₁₂N₂O₃S: C, 54.54;
H, 4.55; N, 10.61.

Found: C, 54.28; H, 4.55; N, 10.47.

10

Example 41

2-(3-Pyridyl)-4-hydroxy-5-phenylthiazole

The title compound was prepared according to
15 the method of Scheme II in a manner analogous to
Example 31 except thioisonicotinamide was used
instead of ethyl 2-bromopropionate.

mp 273-276°C (EtOH)

1¹H NMR (300 MHz, DMSO-d₆): delta 7.20-7.30
20 (m, 1H), 7.35-7.48 (m 2H), 7.52-7.80 (m, 3H),
8.25-8.40 (m, 1H), 8.63-8.80 (m, 1H), 9.01-9.15 (m,
1H), 10.20 (br s, 1H).

Mass Spectrum: 254 (M⁺)

Anal. Calc'd for C₁₄H₁₀N₂OS: C, 66.14;
25 H, 3.94; N, 11.02.

Found: C, 66.32; H, 3.94; N, 11.22.

Example 42

30 2-(4-Pyridyl)-4-hydroxy-5-phenylthiazole

The title compound was prepared according to
the method of Scheme II in a manner analogous to
Example 31 except 4-thioamidopyridine was used
35 instead of thiobenzamide and 2-chloro-2-phenylacetyl

-55-

chloride was used instead of 2-bromopropionate.

mp 280°C dec. (EtOH)

¹H NMR (60 MHz, DMSO-d₆): delta 7.15-7.95
(m, 9H), 8.55 (br s, 1H).

5 Mass Spectrum: 254 (M⁺)

Anal. Calc'd for C₁₄H₁₀N₂OS: C, 66.14; H,
3.94; N, 11.02.

Found: C, 66.27; H, 3.95; N, 11.18.

10

Example 43

2-(4-Methoxyphenyl)-4-hydroxy-5-phenylthiazole

15 The title compound was prepared according to
the method of Scheme II in a manner analogous to
Example 31 except 4-methoxythiobenzamide was used
instead of thiobenzamide and 2-chloro-2-phenylacetyl
chloride was used instead of 2-bromopropionate.

mp 218-221°C (EtOH)

20 ¹H NMR (60 MHz, DMSO-d₆): delta 3.84 (s, 3H),
7.0-8.0 (m 9H), 11.05 (br s, 1H).

Mass Spectrum: 283 (M⁺)

Anal. Calc'd for C₁₆H₁₃NO₂S: C, 67.84;
H, 4.95; N, 4.96.

25 Found: C, 67.73; H, 4.96; N, 4.91.

Example 44

2-Biphenyl-4-hydroxy-5-phenylthiazole

30

The title compound was prepared according to
the method of Scheme II in a manner analogous to
Example 31 except 4-phenylthiobenzamide was used
instead of thiobenzamide and 2-chloro-2-phenylacetyl
chloride was used instead of 2-bromopropionate.

-56-

mp 242-243°C (EtOH)

¹H NMR (60 MHz, DMSO-d₆): delta 7.15-8.05 (m, 14H), 11.25 (br s, 1H),
Mass Spectrum: 329 (M⁺)

5 Anal. Calc'd for C₂₁H₁₅NOS: C, 76.57; H, 4.59;
N, 4.25.

Found: C, 76.75; H, 4.58; N, 4.08.

Example 45

10

2-Methyl-4-hydroxy-5-phenylthiazole

The title compound was prepared according to
the method of Scheme II in a manner analogous to
15 Example 31 except methylthioamide was used instead of
thiobenzamide and 2-chloro-2-phenylacetyl chloride
was used instead of 2-bromopropionate.

mp 208-211°C (EtOH)

1¹H NMR (300 MHz, DMSO-d₆): delta 2.56 (s, 3H),
20 7.13-7.20 (m, 1H), 7.30-7.40 (m 2H), 7.59-7.65 (m,
4H), 8.50 (br s, 1H).

Mass spectrum: 191 (M⁺)

Anal. Calc'd for C₁₀H₉NOS: C, 62.80; H, 4.74;
N, 7.32.
25 Found: C, 62.90; H, 4.76; N, 7.41.

Example 46

2-(4-Methylphenyl)-4-hydroxy-5-phenylthiazole

30

The title compound was prepared according to
the method of Scheme II in a manner analogous to
Example 31 except 4-methylthiobenzamide was used
instead of thiobenzamide and 2-chloro-2-phenylacetyl
chloride was used instead of 2-bromopropionate.

-57-

mp 252-255°C (EtOH)
¹H NMR (60 MHz, DMSO-d₆): delta 2.32 (s, 3H),
7.20-7.95 (m, 9H), 10.75 (br s, 1H).

Mass Spectrum: 267 (M⁺)

5 Anal. Calc'd for C₁₆H₁₃NOS: C, 71.88; H, 4.90;
N, 5.24.
Found: C, 72.01; H, 4.86; N, 5.21.

Example 47

10

2-(4-Fluorophenyl)-4-hydroxy-5-phenylthiazole

The title compound was prepared according to
the method of Scheme II in a manner analogous to
15 Example 31 except 4-fluorothiobenzamide was used
instead of thiobenzamide and 2-chloro-2-phenylacetyl
chloride was used instead of 2-bromopropionate.

mp 231-233°C (EtOH)

1¹H NMR (60 MHz, DMSO-d₆): delta 7.20-8.05 (m,
20 9H), 11.10 (br s, 1H).

Mass Spectrum: 271 (M⁺)

Anal. Calc'd for C₁₅H₁₀FNOS: C, 66.41; H, 3.72;
N, 5.16.

Found: C, 66.61; H, 3.82; N, 5.28.

25

Example 48

2-(4-Ethoxyphenyl)-4-hydroxy-5-phenylthiazole

30 The title compound was prepared according to
the method of Scheme II in a manner analogous to
Example 31 except 4-ethoxythiobenzamide was used
instead of thiobenzamide and 2-chloro-2-phenylacetyl
chloride was used instead of 2-bromopropionate.

35 mp 214-216°C (EtOH)

-58-

¹H NMR (60 MHz, DMSO-d₆): delta 1.55 (t, J=7Hz, 3H), 4.35 (q, J=7Hz, 2H), 7.15-8.25 (m, 9H), 10.50 (br s, 1H).

Mass Spectrum: 297 (M⁺)

5 Anal. Calc'd for C₁₇H₁₅NO₂S: C, 68.66; H, 5.37; N, 4.98.
Found: C, 68.46; H, 5.27; N, 4.80.

Example 49

10

2-Pentyl-4-hydroxy-5-phenylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to
15 Example 31 except thiohexanamide was used instead of thiobenzamide and 2-chloro-2-phenylacetyl chloride was used instead of 2-bromopropionate.

mp 128-130°C (Acetone)

17
1H NMR (300 MHz, DMSO-d₆): delta 0.88 (t, 3H, J=7Hz), 1.22-1.40 (m, 4H), 1.65-1.75 (m, 4H), 2.85 (t, 2H, J=7Hz), 7.10-7.20 (m, 1H), 7.30-7.40 (m, 2H), 7.58-7.65 (m, 2H).

Mass Spectrum: 247 (M⁺)

Anal. Calc'd for C₁₄H₁₇NOS: C, 68.02; H, 6.88;
25 N, 5.66.

Found: C, 67.88; H, 6.90; N, 5.69.

4-Hydroxythiazole derivatives of general Formula I may also be prepared directly from the parent 4-hydroxythiazole. In many cases the group
30 R₃ is a metabolically cleavable group. When the group R₃ is removed by metabolic processes, the group R₃ can be substituted with a hydrogen, another group, or a salt which yields an active enzyme inhibitor. Examples of metabolically
35 cleavable groups for R₃ include COR₄ and

-59-

CONR_5R_6 wherein R_4 , R_5 and R_6 are as before defined.

Scheme III

5

10

15

Example 50

15

2-Phenyl-4-acetoxy-5-phenylthiazole

The title compound was prepared by reacting the compound of Example 34 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 101-103°C (EtOAc/hexane)

^1H NMR (300 MHz, DMSO-d_6): delta 2.40 (s, 3H), 7.38-7.62 (m, 8H), 7.86-7.96 (m, 2H).

Mass Spectrum: 295 (M^+)

Anal. Calc'd for $\text{C}_{17}\text{H}_{13}\text{NO}_2\text{S}$: C, 69.15; H, 4.40; N, 4.75.

Found: C, 69.18; H, 4.41; N, 4.77.

30

Example 51

2-Phenyl-4-hexaoxy-5-phenylthiazole

The title compound was prepared by reacting the compound of Example 34 with one equivalent of

-60-

hexanoyl chloride in methylene chloride at 23°C for 5 hours.

mp 70-72°C (EtOH)

5 ^1H NMR (300 MHz, CDCl_3): delta 0.90 (t, 3H, $J=7\text{Hz}$), 1.23-1.40 (m, 4H), 1.65-1.80 (m, 2H), 2.61 (t, 2H, $J=7\text{Hz}$), 7.28-7.58 (m, 8H), 7.88-7.96 (m, 2H).
Mass Spectrum: 351 (M^+)
Anal. Calc'd for $C_{21}\text{H}_{21}\text{NO}_2\text{S}$: C, 71.77; H, 6.02; N, 3.99.
10 Found: C, 71.54; H, 5.95; N, 3.96.

Example 52

2-Phenyl-4-trimethylacetoxy-5-phenylthiazole

15 The title compound was prepared by reacting the compound of Example 34 with one equivalent of pivaloyl chloride and 4-dimethylaminopyridine in methylene chloride at 23°C for 2 hours.

20 mp 134-136°C (EtOAc/hexane)
 ^1H NMR (300 MHz, CDCl_3): delta 1.38 (s, 9H), 7.40 (m, 6H), 7.56 (m, 2H), 7.92 (m, 2H).
Mass Spectrum: 337 (M^+)
Anal. Calc'd for $C_{20}\text{H}_{19}\text{NO}_2\text{S}$: C, 71.22; H, 5.64; N, 4.15.
25 Found: C, 71.30; H, 5.64; N, 4.14.

Example 53

30 2-Phenyl-4-ethyl succinylloxy-5-phenylthiazole

The title compound was prepared by reacting the compound of Example 34 with one equivalent of ethyl succinyl chloride and 4-dimethylaminopyridine 35 in methylene chloride at 23°C for 10 hours.

-61-

mp 55-58°C (EtOAc/hexane)
¹H NMR (300 MHz, CDCl₃): delta 1.25 (g, J=7Hz, 3H), 2.73 (t, J=7Hz, 2H), 2.98 (t, J=7Hz, 2H), 4.15 (q, J=7Hz, 2H), 7.45 (m, 6H), 7.55 (m, 2H), 7.92 (m, 2H).

5

Mass Spectrum: 381 (M⁺)

Anal. Calc'd for C₂₁H₁₉NO₄S: C, 66.14; H, 4.99; N, 3.67.

Found: C, 66.33; H, 4.99; N, 3.73.

10

Example 54

2-Phenyl-[4-(carboethoxy)oxy]-5-propylthiazole

15 The title compound was prepared by reacting the compound of Example 36 with one equivalent of ethyl chloroformate and pyridine in toluene at 23°C for 2 hours to afford a colorless oil.

20 ¹H NMR (300 MHz, CDCl₃): delta 1.00 (t, 3H, J=7Hz), 1.40 (t, 3H, J=7Hz), 1.62-1.76 (m, 2H), 2.69 (t, 2H, J=7Hz), 4.35 (q, 2H, J=7Hz), 7.40 (m, 3H), 7.87 (m, 2H).

25 Mass Spectrum: 291 (M⁺)
Anal. Calc'd for C₁₅H₁₇NO₃S: C, 61.83; H, 5.88; N, 4.81.

Found: C, 61.78; H, 5.98; N, 4.65.

Example 55

2-Phenyl-4-(N-methylcarbamyl)oxy-5-propylthiazole

The title compound was prepared by reacting Example 36 with one equivalent of methyl isocyanate and triethylamine in benzene at 23°C for 20 hours.

35 mp 55-58°C (toluene)

-62-

¹H NMR (60 MHz, CDCl₃): delta 0.90 (t, 3H, J=7Hz), 1.67 (m, 2H), 2.66 (t, 2H, J=7Hz), 2.85 (d, 3H, J=7Hz), 5.50 (br s, 1H), 7.75 (m, 2H), 7.40 (m, 3H).

5 Mass Spectrum: 276 (M⁺)

Anal. Calc'd for C₁₄H₁₆N₂O₂S: C, 60.85; H, 5.84; N, 10.14.

Found: C, 60.55; H, 5.85; N, 10.08.

10

Example 56

2-Phenyl-[4-(benzoyl)oxy]-5-propylthiazole

The title compound was prepared by reacting
15 the compound of Example 36 with one equivalent of benzylchloroformate in toluene at 23°C for 6 hours.

mp 62-64°C (toluene)

¹H NMR (60 MHz, DMSO-d₆): delta 7.15-8.05 (m, 14H), 11.25 (br s, 1H).

20 Mass Spectrum: 329 (M⁺)

Anal. Calc'd for C₂₁H₁₅NOS: C, 76.57; H, 4.59; N, 4.25.

Found: C, 76.75; H, 4.58; N, 4.08.

25

Example 57

2-Phenyl-4-(N-t-butylcarbamyl)oxy-5-propylthiazole

The title compound was prepared by reacting
30 the compound of Example 36 with one equivalent of t-butyl isocyanate and triethylamine in benzene at 23°C for 20 hours.

mp 97-98°C (benzene)

¹H NMR (300 MHz, CDCl₃): delta 0.89 (t, 3H,

35 J=7Hz), 1.21-1.45 (m, 2H), 0.99 (s, 9H), 2.55 (t, 2H,

-63-

$J=7\text{Hz}$), 7.05-7.10 (m, 1H), 7.30-7.60 (m, 4H).

Mass Spectrum: 318 (M^+)

Anal. Calc'd for $C_{17}H_{22}N_2O_2S$: C, 64.15;
H, 6.92; N, 8.80.

5 Found: C, 64.37; H, 7.01; N, 8.62.

Example 58

2-Phenyl-4-(N-phenylcarbamyl)oxy-5-propylthiazole

10

The title compound was prepared by reacting the compound of Example 36 with one equivalent of phenyl isocyanate in benzene at 23°C for 20 hours.

mp 104-105°C (Ether)

15 ^1H NMR (300 MHz, CDCl_3): delta 0.99

(t, 3H, $J=7\text{Hz}$), 1.58-1.63 (m, 2H), 2.61 (t, 2H, $J=7\text{Hz}$), 7.05-7.16 (m, 1H), 7.30-7.50 (m, 8H), 7.80-7.90 (m, 2H).

Mass Spectrum: 338 (M^+)

20 Anal. Calc'd for $C_{19}H_{18}N_2O_2S$: C, 67.43;
H, 5.36; N, 8.28.

Found: C, 67.45; H, 5.40; N, 8.28.

Example 59

25

2-Phenyl-4-acetoxy-5-propylthiazole

The title compound was prepared by reacting the compound of Example 36 with one equivalent of 30 acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours. The product was a colorless oil.

^1H NMR (300 MHz, DMSO-d_6): delta 0.90 (t, 3H, $J=\text{Hz}$), 1.50-1.65 (m, 2H), 2.28 (s, 3H), 2.62 (t, 2H, $J=7\text{Hz}$), 7.35-7.55 (m, 3H), 7.75-7.83 (m, 2H).

-64-

Mass Spectrum: 261 (M^+)

Anal. Calc'd for $C_{14}H_{15}NO_2S$: C, 64.37; H, 5.75; N, 5.36.

Found: C, 64.39; H, 5.75; N, 5.39.

5

Example 60

2-(4-Carbomethoxyphenyl)-4-acetoxy-5-methylthiazole

10 The title compound was prepared by reacting the compound of Example 17 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 124-125°C (EtOH)

15 1H NMR (60 MHz, $CDCl_3$): delta 2.40 (s, 3H), 2.32 (s, 3H), 3.90 (s, 3H), 7.84-8.32 (m, 4H).

Mass Spectrum: 291 (M^+)

Anal. Calc'd for $C_{14}H_{13}NO_4S$: C, 57.73; H, 4.47; N, 4.81.

20 Found: C, 57.69; H, 4.48; N, 4.83.

Example 61

2-[2-(6-Methoxy)benzothiazoyl]-4-acetoxy-5-methylthiazole

25 The title compound was prepared by reacting the compound of Example 6 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 183-184°C (EtOH)

1 1H NMR (60 MHz, $CDCl_3$): delta 2.30 (s, 3H), 2.33 (s, 3H), 3.85 (s, 3H), 7.0-7.5 (m, 2H), 7.80-8.00 (m, 1H).

35 Mass Spectrum: 320 (M^+)

-65-

Anal. Calc'd for C₁₄H₁₂N₂O₃S₂: C, 52.50;
H, 4.27; N, 8.75.
Found: C, 52.45; H, 3.75; N, 8.77.

5

Example 62

2-(4-Methylphenyl)-4-acetoxy-5-phenylthiazole

10 The title compound was prepared by reacting
the compound of Example 46 with one equivalent of
acetic anhydride and pyridine in methylene chloride
at 23°C for 10 hours.

mp 122-125°C (EtOH)

15 ¹H NMR (60 MHz, CDCl₃): delta 2.20 (s, 3H), 2.30
(s, 3H), 7.207.95 (m, 9H).

Mass Spectrum: 267 (M⁺)

Anal. Calc'd for C₁₈H₁₅NO₂S: C, 69.88;
H, 4.89; N, 4.53.

Found: C, 70.02; H, 4.90; N, 4.27.

20

Example 63

2-(4-Ethoxyphenyl)-4-acetoxy-5-phenyl-thiazole

25 The title compound was prepared by reacting
Example 48 with one equivalent of acetic anhydride
and pyridine in methylene chloride at 23°C for 10
hours.

mp 149-150°C (EtOH)

30 ¹H NMR (60 MHz, CDCl₃): delta 1.50 (t, 3H,
J=7Hz), 2.25 (s, 3H), 4.25 (q, 2H, J=7Hz), 6.90-7.70
(m, 9H).

Mass Spectrum: 339 (M⁺)

Anal. Calc'd for C₁₉H₁₇NO₃S: C, 67.24; H, 5.05
N, 4.13.

-66-

Found: C, 67.17; H, 5.03; N, 3.98.

Example 64

5 2-(4-Carbo-2-phenethoxyphenyl)-4-acetoxy-5-methylthiazole

10 The title compound was prepared by reacting the compound of Example 13 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 109-111°C (EtOH)

15 ^1H NMR (60 MHz, CDCl_3): delta 2.10 (s, 3H), 2.20 (s, 3H), 3.05 (t, 2H, $J=7\text{Hz}$), 4.60 (t, 2H, $J=7\text{Hz}$), 7.25-7.50 (m, 5H) 7.808.15 (m, 4H).

Mass Spectrum: 383 (M^+)

Anal. Calc'd for $C_{21}\text{H}_{19}\text{NO}_4\text{S}$: C, 66.12; H, 5.02; N, 3.67.

Found: C, 66.27; H, 5.04; N, 3.69.

20

Example 65

2-Biphenyl-4-acetoxy-5-phenylthiazole

25 The title compound was prepared by reacting the compound of Example 44 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 146-147°C (EtOH)

30 ^1H NMR (60 MHz, CDCl_3): delta 2.30 (s, 3H), 7.30-8.05 (m, 14H).

Mass Spectrum: 371 (M^+)

Anal. Calc'd for $C_{23}\text{H}_{17}\text{NO}_2\text{S}$: C, 74.37; H, 4.61; N, 3.77.

35 Found: C, 74.16; H, 4.60; N, 3.69.

-67-

Example 66

2-(4-Carboxyphenyl)-4-acetoxy-5-methylthiazole

5 The title compound was prepared by reacting the compound of Example 19 with one equivalent of acetic anhydride and two equivalents of pyridine in methylene chloride at 23°C for 10 hours.

mp 227-230°C (EtOH)

10 ^1H NMR (60 MHz, CDCl_3): delta 2.30 (s, 3H), 2.32 (s, 3H), 7.84-8.20 (m, 4H).

Mass Spectrum: 277 (M^+)

Anal. Calc'd for $\text{C}_{13}\text{H}_{11}\text{NO}_4\text{S}$: C, 56.31; H, 4.00; N, 5.05.

15 Found: C, 56.11; H, 4.04; N, 5.03.

Example 67

2-Phenyl-4-acetoxy-5-butylthiazole

20

The title compound was prepared by reacting the compound of Example 37 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours. The product was a colorless
25 oil.

^1H NMR (60 MHz, CDCl_3): delta 0.85 (t, 3H, J=7Hz), 1.0-1.65 (m, 4H), 2.20 (s, 3H), 2.55 (t, 2H, J=7Hz), 7.32-7.50 (m, 3H), 7.80-8.00 (m, 2H).

Mass Spectrum: 275 (M^+)

30 Anal. Calc'd for $\text{C}_{15}\text{H}_{17}\text{NO}_2\text{S}$: C, 65.43; H, 6.22; N, 5.09.

Found: C, 65.44; H, 6.18; N, 4.97.

-68-

Example 68

2-Pentyl-4-acetoxy-5-propylthiazole

- 5 The title compound was prepared by reacting
the compound of Example 49 with one equivalent of
acetic anhydride and pyridine in methylene chloride
at 23°C for 10 hours. The product was a colorless
oil.
- 10 ^1H NMR (300 MHz, CDCl_3): delta 0.90 (t, 3H,
 $J=7\text{Hz}$), 0.95 (t, 3H, $J=7\text{Hz}$), 1.30-1.41 (m, 4H),
1.54-1.81 (m, 4H), 2.55 (t, 2H, $J=7\text{Hz}$), 2.87 (t, 2H,
 $J=7\text{Hz}$), 2.30 (s, 3H).
Mass Spectrum: 255 (M^+)
- 15 Anal. Calc'd for $\text{C}_{13}\text{H}_{21}\text{NO}_2\text{S}$: C, 61.14;
H, 8.29; N, 5.48.
Found: C, 60.97; H, 8.24; N, 5.45.

5-Lipoxygenase IC₅₀ Determination

- 20 The compounds of this invention are potent
inhibitors of 5-lipoxygenase. An assay to determine
5-lipoxygenase activity was performed in incubations
containing various concentrations of the test
25 compound and the 20,000 X g supernatant from 7.5 X
 10^6 homogenized RBL-1 cells in a manner similar to
that reported by Dyer et al., Fed. Proc., Fed. Am.
Soc. Exp. Biol. 1984, 43, 1462A. Reactions were
initiated by the addition of radiolabeled arachidonic
30 acid and terminated by acidification and ether
extraction. Reaction products were separated from
nonconventional substrate by thin layer chromatography
and measured by liquid scintillation spectroscopy.
Inhibition of 5-lipoxygenase activity was calculated
35 as the ratio of the amounts of product formed in the

-69-

presence and absence of inhibitor. IC₅₀ values were computed as the 50% intercept from linear regression analysis of plots of percentage inhibition versus log concentration of the compound and are
5 shown in Table 3.

10

15

20

25

30

35

-70-

Table 3

In Vitro Inhibitory Potencies of Compounds of this
 5 Invention Against 5-lipoxygenase from RBL-1
 20,000xg Supernatant

	<u>Example</u>	<u>IC₅₀ (μM) (95% CL)</u>
10	6	0.89 (0.71-1.1)
	9	0.35 (0.28-0.43)
	10	0.51 (0.50-0.51)
	11	0.57 (0.52-0.63)
	13	0.98 (0.78-1.30)
	17	0.88 (0.65-1.1)
	18	0.90 (0.66-1.2)
15	20	0.70 (0.58-0.83)
	23	0.71 (0.60-0.85)
	24	0.50 (0.43-0.59)
	25	0.66 (0.56-0.76)
	26	0.48 (0.39-0.63)
	29	0.82 (0.76-0.89)
	31	0.96 (0.8-1.1)
20	33	0.63 (0.62-0.64)
	34	0.53 (0.52-0.55)
	35	0.83 (0.73-0.92)
	36	0.58 (0.55-0.62)
	38	0.69 (0.62-0.78)
	53	0.75 (0.69-0.80)
	54	0.91 (0.83-0.99)
25	60	0.69 (0.64-0.73)
	67	0.95 (0.81-1.1)
	<u>Example</u>	<u>% Inhibition at μM Conc.</u>
30	41	83% at 0.3
	43	88% at 0.3
	46	91% at 0.4
	47	82% at 0.4
	48	77% at 0.4
	50	88% at 0.4
	62	93% at 0.5
	65	82% at 0.75
	68	79% at 1

- 71 -

What is claimed is:

1. A compound of the formula:

wherein R_1 is selected from the group consisting of aryl and substituted derivatives thereof with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_3R_6 , OR_6 , $COCX_1X_2NR_6R_7$, $CON(OH)R_6$, NR_6COR_4 , $CR_5(NH_2)CO_2R_5$, $NHCX_1X_2CO_2R_5$, $N(OH)CONR_5R_6$, $N(OH)COR_4$, $NHCONR_5R_6$, $C(NOHOH)NHOH$ and $CONHNR_5R_6$;

R_2 is selected from the group consisting of aryl, substituted derivatives thereof and substituted alkyl with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_3R_6 , OR_6 , $COCX_1$, $X_2NR_6R_7$, $CON(OH)R_6$, NR_6COR_4 , $CR_5(NH_2)CO_2R_5$, $NHCX_1X_2CO_2R_5$, $N(OH)CONR_5R_6$, $N(OH)COR_4$, $NHCONR_5R_6$, $C(NOHOH)NHOH$ and $CONHNR_5R_6$; and arylalkyl and substituted derivatives thereof with one or more substituents independently selected from the group consisting of halogen, alkyl,

-72-

halosubstituted alkyl, cyano, nitro, COR₄, SO₂R₄, NR₅R₆ and OR₆;

R₃ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR₄, COCX₁X₂NR₆R₇, CR₈R₉OR₁₀, CH₂CR₈(OR₁₀)CH₂OR₁₁ and SiR₁₂R₁₃R₁₄

R₄ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR₅, NHCX₁X₂CO₂R₅ and NR₆R₇;

R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

R₆ and R₇ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and (CH₂)_nOR₅ where n is 2-4 and R₅ is as defined above;

R₈, R₉, R₁₀ and R₁₁ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and (CH₂)_nOR₅ or at least two of R₈, R₉, R₁₀ and R₁₁ together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R₅ and n are as defined above;

R₁₂, R₁₃ and R₁₄ are independently selected from the group consisting of alkyl and aryl; and

X₁ and X₂ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; provided

-73-

that when R_1 is phenyl or substituted phenyl R_2 cannot be substituted alkyl, when R_1 is aryl or substituted aryl R_2 cannot be phenyl, substituted phenyl, $CH(C_6H_5)_2$, $CH(C_6H_5)CO_2Et$ or 2-methylindole and when R_3 is $SiR_{12}R_{13}R_{14}$, R_1 and R_2 cannot both be unsubstituted phenyl; and the acid addition salts thereof.

2. A compound as in Claim 1 wherein R_1 is aryl or a substituted derivative thereof with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 and OR_6 ; and

R_2 is arylalkyl or a substituted derivative thereof.

3. A compound according to Claim 1 wherein R_1 is selected from the group consisting of radicals derived from benzene, thiophene, pyridine, furan, benzothiophene, indole, quinoline and substituted derivatives thereof with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 and OR_6 ; and

R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt and COR_4 .

4. A compound as in Claim 1 wherein R_1 is a radical derived from thiophene, pyridine, furan or benzothiophene;

R_2 is a radical derived from benzene or pyridine or a substituted derivative thereof with one or more substituents independently selected from the

-74-

group consisting of halogen, alkyl, halosubstituted alkyl, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 and OR_6 ; and

R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt and COR_4 .

5. A composition for the inhibition of lipoxygenase enzymes comprising a pharmaceutically acceptable carrier and a compound of the formula:

wherein R_1 and R_2 are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 , OR_6 , $\text{COCX}_1\text{X}_2\text{NR}_6\text{R}_7$, $\text{CON}(\text{OH})\text{R}_6$, NR_6COR_4 , $\text{CR}_5(\text{NH}_2)\text{CO}_2\text{R}_5$, $\text{NHCX}_1\text{X}_2\text{CO}_2\text{R}_5$, $\text{N}(\text{OH})\text{CONR}_5\text{R}_6$, $\text{N}(\text{OH})\text{COR}_4$, $\text{NHCONR}_5\text{R}_6$, $\text{C}(\text{NOH})\text{NHOH}$ and $\text{CONHNR}_5\text{R}_6$;

R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR_4 , $\text{COCX}_1\text{X}_2\text{NR}_6\text{R}_7$, $\text{CR}_8\text{R}_9\text{OR}_{10}$,

-75-

$\text{CH}_2\text{CR}_8(\text{OR}_{10})\text{CH}_2\text{OR}_{11}$ and $\text{SiR}_{12}\text{R}_{13}\text{R}_{14}$;

R_4 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR_5 , $\text{NHCX}_1\text{X}_2\text{CO}_2\text{R}_5$ and NR_6R_7 ;

R_5 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

R_6 and R_7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and $(\text{CH}_2)_n\text{OR}_5$ where n is 2-4 and R_5 is as defined above;

R_8 , R_9 , R_{10} and R_{11} are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $(\text{CH}_2)_n\text{OR}_5$ or at least two of R_8 , R_9 , R_{10} and R_{11} together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined above;

R_{12} , R_{13} and R_{14} are independently selected from the group consisting of alkyl and aryl; and

X_1 and X_2 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

6. A method for the inhibition of lipoxygenase enzymes comprising administering to a mammal in need

-76-

of such treatment an effective amount of a compound of the formula:

wherein R_1 and R_2 are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 , OR_6 , $COCX_1X_2NR_6R_7$, $CON(OH)R_6$, NR_6COR_4 , $CR_5(NH_2)CO_2R_5$, $NHCX_1X_2CO_2R_5$, $N(OH)CONR_5R_6$, $N(OH)COR_4$, $NHCONR_5R_6$, C(NO_H)NHOH AND CONHNR₅R₆;

R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR_4 , $COCX_1X_2NR_6R_7$, $CR_8R_9OR_{10}$, $CH_2CR_8(OR_{10})CH_2OR_{11}$ and $SiR_{12}R_{13}R_{14}$;

R_4 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR_5 , $NHCX_1X_2CO_2R_5$ and NR_6R_7 ;

R_5 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl,

-77-

arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

R₆ and R₇ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and (CH₂)_nOR₅ where n is 2-4 and R₅ is as defined above;

R₈, R₉, R₁₀ and R₁₁ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and (CH₂)_nOR₅ or at least two of R₈, R₉, R₁₀ and R₁₁ together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R₅ and n are as defined above;

R₁₂, R₁₃ and R₁₄ are independently selected from the group consisting of alkyl and aryl; and

X₁ and X₂ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

7. A method for treating asthma, allergic rhinitis, rheumatoid arthritis, gout, adult respiratory distress syndrome, Chrohn's disease, inflammatory bowel disease, psoriasis, endotoxin shock, or ischemia-induced myocardial injury in a human and lower animal in need of such treatment, comprising administering to such human or lower animal a therapeutically effective amount of a compound of the formula:

wherein R_1 and R_2 are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 , OR_6 , $\text{COCX}_1\text{X}_2\text{NR}_6\text{R}_7$, $\text{CON}(\text{OH})\text{R}_6$, NR_6COR_4 , $\text{CR}_5(\text{NH}_2)\text{CO}_2\text{R}_5$, $\text{NHCX}_1\text{X}_2\text{CO}_2\text{R}_5$, $\text{N}(\text{OH})\text{CONR}_5\text{R}_6$, $\text{N}(\text{OH})\text{COR}_4$, $\text{NHCONR}_5\text{R}_6$, $\text{C}(\text{NOH})\text{NHOH}$ and $\text{CONHNR}_5\text{R}_6$;

R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR_4 , $\text{COCX}_1\text{X}_2\text{NR}_6\text{R}_7$, $\text{CR}_8\text{R}_9\text{OR}_{10}$, $\text{CH}_2\text{CR}_8(\text{OR}_{10})\text{CH}_2\text{OR}_{11}$ and $\text{SiR}_{12}\text{R}_{13}\text{R}_{14}$;

R_4 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR_5 , $\text{NHCX}_1\text{X}_2\text{CO}_2\text{R}_5$ and NR_6R_7 ;

R_5 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

-79-

R_6 and R_7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and $(CH_2)_nOR_5$ where n is 2-4 and R_5 is as defined above;

R_8 , R_9 , R_{10} and R_{11} are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $(CH_2)_nOR_5$ or at least two of R_8 , R_9 , R_{10} and R_{11} together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined above;

R_{12} , R_{13} and R_{14} are independently selected from the group consisting of alkyl and aryl; and

X_1 and X_2 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US90/00653

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC(5): C07D 417/04; C07D 417/14; A61K 31/44

U.S. CL.: 546/280; 548/182; 544/333; 514/342; 369, 367, 256

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
U.S. CL.	546/280; 548/182; 544/333 514/342; 369; 367; 256

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT ⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X	U.S., A, 4,735,957 TAKAYA ET AL. 05 APRIL 1988 (05-04-88) See entire document	1-7
X	EP, A, 0,097,323 WITKOWSKI ET AL. 04 JANUARY 1984 (04-01-84)	1-7

- Special categories of cited documents: ¹⁰
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

Date of Mailing of this International Search Report

20 APRIL 1990

22 MAY 1990

International Searching Authority

Signature of Authorized Officer

ISA/US

ALAN L. ROTMAN

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers . because they relate to subject matter ¹² not required to be searched by this Authority, namely:

2. Claim numbers . because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out ¹³, specifically:

3. Claim numbers . because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING²

This International Searching Authority found multiple inventions in this international application as follows:

Claims 1-7 in-part wherein R1 and R2 are thieryl, furanyl, carbocyclic-aryl, benzothienyl, indolyl, pyrrolyl or pyrimidyl directly attached to thiazole ring or indirectly attached through an alkylene chain as provided in claim one except that said hetero rings are not directly
(continued on attached page)

- (continued on attached page)

 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.
 2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:
 3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers: 1-7 in-part

[invite payment](#)

- The additional search fees were accompanied by applicant's protest.
 No protest accompanied the payment of additional fees.

OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

SUPPLEMENTAL SHEET CON'T

or indirectly substituted by aryl, heteroaryl or arylalkyl moieties; R₃ is as claimed as set forth in claim 1 provided that said term R₃ is not directly or indirectly substituted by aryl, arylalkyl or heteroaryl.