Microeconomía I (EC301)-I semestre de 2014 Clase #7 - La utilidad

Andrés M. Castaño

Ingeniería Comercial Universidad Católica del Norte Septiembre 22 de 2014

Introducción

- El problema de cuantificar la utilidad ⇒ Dio paso a las preferencias.
- Las preferencias son el fundamento para analizar la elección, la utilidad es una forma de describirlas.
- ¿Qué es una función de utilidad?

$$(x_1,x_2)\succ(y_1,y_2)$$

si y sólo si

$$u(x_1, x_2) > u(y_1, y_2)$$

• Utilidad ordinal vs utilidad cardinal.

Importa el orden no la magnitud

Cesta	U_1	U_2	U_3
Α	3	17	- 1
В	2	10	-2
С	1	0,002	-3

- No hay una sola manera de asignar utilidades.
- Transformaciones monótonas: $u_1 > u_2 \Longrightarrow f(u_1) > f(u_2)$
- En general las transformaciones monótonas pueden ser:
 - ightharpoonup Multiplicación por un número positivo $\Longrightarrow f(u)=3u$
 - Suma de cualquier número $\Longrightarrow f(u) = u + 17$
 - ightharpoonup Elevación a una potencia impar $\Longrightarrow f(u)=u^3$

- No hay una sola manera de asignar utilidades.
- Transformaciones monótonas: $u_1 > u_2 \Longrightarrow f(u_1) > f(u_2)$
- En general las transformaciones monótonas pueden ser:
 - Multiplicación por un número positivo $\Longrightarrow f(u)=3u$
 - Suma de cualquier número $\Longrightarrow f(u) = u + 17$
 - Elevación a una potencia impar $\Longrightarrow f(u)=u^3$

• Tasa de variación de $f(u) \Longrightarrow V$ ariación que experimenta f entre dos valores de u, dividida por la variación de u.

$$\frac{\Delta f}{\Delta u} = \frac{f(u_2) - f(u_1)}{u_2 - u_1}$$

- Si f(u) es una transformación monótona de una función de utilidad que representa las preferencias \succeq , entonces $f(u(x_1,x_2))$ también es una función de utilidad que representa las mismas preferencias ¿por qué?:
 - ▶ Decir que $u(x_1, x_2)$ representa las preferencias (\succeq) significa que $u(x_1, x_2) > u(x_1, x_2)$ si v solo si $(x_1, x_2) \succeq (x_1, x_2)$
 - Pero si f(u) es una transformación monotona, $u(x_1,x_2) > u(y_1,y_2)$, si y solo si $f(u(x_1,x_2)) \succ f(u(y_1,y_2))$
 - ▶ Por lo tanto, $f(u(x_1, x_2)) \succ f(u(y_1, y_2))$, si y sólo si
 - $(x_1,x_2)\succ (y_1,y_2)$, por lo que f(u) representa las preferencias \succeq de la misma forma que $u(x_1,x_2)$

• Tasa de variación de $f(u) \Longrightarrow V$ ariación que experimenta f entre dos valores de u, dividida por la variación de u.

$$\frac{\Delta f}{\Delta u} = \frac{f(u_2) - f(u_1)}{u_2 - u_1}$$

- Si f(u) es una transformación monótona de una función de utilidad que representa las preferencias \succeq , entonces $f(u(x_1,x_2))$ también es una función de utilidad que representa las mismas preferencias ¿por qué?:
 - ▶ Decir que $u(x_1, x_2)$ representa las preferencias (\succeq) significa que $u(x_1, x_2) > u(y_1, y_2)$, si y solo si $(x_1, x_2) \succ (y_1, y_2)$
 - ▶ Pero si f(u) es una transformación monótona, $u(x_1,x_2) > u(y_1,y_2)$, si y solo si $f(u(x_1,x_2)) \succ f(u(y_1,y_2))$
 - ▶ Por lo tanto, $f(u(x_1,x_2)) \succ f(u(y_1,y_2))$, si y sólo si $(x_1,x_2) \succ (y_1,y_2)$, por lo que f(u) representa las preferencias \succeq de la misma forma que $u(x_1,x_2)$

Construcción de una función de utilidad \Longrightarrow de la utilidad a las curvas de indiferencia

- Si se excluyen los casos con preferencias in-transitivas, se puede encontrar siempre una función de utilidad para representar dichas preferencias.
- Si tenemos $u(x_1,x_2)$ se pueden trazar curvas de indiferencia. Se debe dibujar todos los puntos (x_1,x_2) , de tal manera que $u(x_1,x_2)$ sea una constante \Longrightarrow Lo habíamos explicado como curva de nivel.

Construcción de una función de utilidad ⇒ de la utilidad a las curvas de indiferencia

- Si se excluyen los casos con preferencias in-transitivas, se puede encontrar siempre una función de utilidad para representar dichas preferencias.
- Si tenemos $u(x_1,x_2)$ se pueden trazar curvas de indiferencia. Se debe dibujar todos los puntos (x_1,x_2) , de tal manera que $u(x_1,x_2)$ sea una constante \Longrightarrow Lo habíamos explicado como curva de nivel.

Construcción de una función de utilidad

Ejemplo

- Suponga $u(x_1,x_2)=x_1*x_2$ ¿Cómo son las curvas de indiferencia?
- Suponga la función de utilidad $v(x_1,x_2)=x_1^2*x_2^2$ ¿Cómo son las curvas de indiferencia?

Ejemplo

- Suponga $u(x_1, x_2) = x_1 * x_2$ ¿Cómo son las curvas de indiferencia?
- Suponga la función de utilidad $v(x_1, x_2) = x_1^2 * x_2^2$ ¿Cómo son las curvas de indiferencia?

Ejemplo

Figura 4.3. Las curvas de indiferencia. Las curvas de indiferencia $k = x_1 x_2$, correspondientes a diferentes valores k.

De las curvas de indiferencia a la función de utilidad (Dos formas)

- Matemáticamente

 Dadas las curvas de indiferencia, se debe encontrar una función que sea constante a lo largo de cada una.
- Dada una descripción de las preferencias ⇒ Qué intenta maximizar el individuo.

De las curvas de indiferencia a la función de utilidad (Dos formas)

- Matemáticamente

 Dadas las curvas de indiferencia, se debe encontrar una función que sea constante a lo largo de cada una.
- ◆ Dada una descripción de las preferencias ⇒ Qué intenta maximizar el individuo.

Cómo obtener funciones de utilidad para distinto tipo de preferencias

Substitutos perfectos:

$$u(x_1, x_2) = ax_1 + bx_2$$

Complementarios perfectos:

$$u(x_1, x_2) = \min(ax_1, bx_2)$$

Preferencias Cobb-Douglas
 ⇒ ejemplo natural de preferencias regulares

$$u(x_1, x_2) = x_1^c x_2^c$$

Cómo obtener funciones de utilidad para distinto tipo de preferencias

Substitutos perfectos:

$$u(x_1, x_2) = ax_1 + bx_2$$

Complementarios perfectos:

$$u(x_1, x_2) = min(ax_1, bx_2)$$

Preferencias Cobb-Douglas
 ⇒ ejemplo natural de preferencias regulares

$$u(x_1, x_2) = x_1^c x_2^c$$

Cómo obtener funciones de utilidad para distinto tipo de preferencias

Substitutos perfectos:

$$u(x_1, x_2) = ax_1 + bx_2$$

Complementarios perfectos:

$$u(x_1, x_2) = \min(ax_1, bx_2)$$

ullet Preferencias Cobb-Douglas \Longrightarrow ejemplo natural de preferencias regulares

$$u(x_1, x_2) = x_1^c x_2^d$$

Figura 4.5. Las curvas de indiferencia Cobb-Douglas. La parte A muestra el caso en que c = 1/2, d = 1/2 y la parte B muestra el caso en el que c = 1/5, d = 4/5.

Ejemplos de transformaciones monótonas con la función Cobb-Douglas

• Transformación logarítmica: $v(x_1,x_2) = ln(x_1^c x_2^d)$

$$v(x_1, x_2) = ln(x_1^c x_2^d)$$
$$= c * lnx_1 + d * lnx_2$$

Ejemplos de transformaciones monótonas con la función Cobb-Douglas

• Ahora suponga : $v(x_1, x_2) = x_1^c x_2^d$, si elevamos la utilidad a la potencia $\frac{1}{c+d}$, se obtiene:

$$=x_1^{\frac{c}{c+d}}x_2^{\frac{d}{c+d}}$$

 Esto implica que siempre se puede tener una transformación monótona de la función de utilidad Cobb-Douglas en la que los exponentes sumen uno

Utilidad marginal

Utilidad marginal:

$$UM_1 = \frac{\Delta U}{\Delta x_1} = \frac{u(x_1 + \Delta x_1, x_2) - u(x_1, x_2)}{\Delta x_1}$$
$$UM_2 = \frac{\Delta U}{\Delta x_2} = \frac{u(x_1, x_2 + \Delta x_2) - u(x_1, x_2)}{\Delta x_2}$$

 La utilidad marginal como número sólo sirve para representar la forma en que los individuos ordenan la cesta de bienes. Depende de la función de utilidad específica.

Utilidad marginal y la RMS

• Partiendo de la función de utilidad $u(x_1, x_2)$

$$UM_1\Delta x_1 + UM_2\Delta x_2 = \Delta U = 0$$

$$RMS = \frac{\Delta x_2}{\Delta x_1} = -\frac{UM_1}{UM_2}$$

- La función de utilidad y la de utilidad marginal no son únicas, cualquier transformación monótona proporciona una función de utilidad igualmente válida.
- Las transformaciones monótonas alteran las utilidades marginales, pero no la RMS.

Derivando la RMS

• Considerando una variación (dx_1, dx_2) que mantenga constante la utilidad:

$$du = \frac{\partial u(x_1, x_2)}{\partial x_1} dx_1 + \frac{\partial u(x_1, x_2)}{\partial x_2} dx_2 = 0$$

debemos llegar a:

$$RMS = \frac{dx_2}{dx_1} = -\frac{UM_1}{UM_2}$$

$$RMS = \frac{\Delta x_2}{\Delta x_1} = -\frac{UM_1}{UM_2}$$

Ejercicio #1

Obtenga la RMS para la siguiente función Cobb-Douglas:

$$u(x_1, x_2) = x_1^c x_2^d$$

Debería llegar a:

$$RMS = -\frac{c * x_2}{d * x_1}$$

Ejercicio #2

 Anteriormente dijimos que una transformación monótona puede afectar las utilidades marginales, pero no la RMS. Demuestre que la siguiente transformación logarítmica es monótona:

$$u(x_1, x_2) = ln(x_1^c x_2^d)$$

Se debería llegar a la misma RMS del ejercicio número 1 ?