Окружность Аполлония

Oкружность Aполлония ω_A неравнобедренного треугольника ABC — это геометрическое место точек M, для которых MB:MC=AB:AC. Аналогично определяются окружности Аполлония ω_B и ω_C . ω — описанная окружность треугольника ABC.

- 1. Диаметр ω_A основания внутренней и внешней биссектрис угла A, центр ω_A лежит на касательной к ω в точке A, радикальная ось ω_A и ω симедиана, проведённая из вершины A. Ну и да, поймите, что это значит, что $\omega_A \perp \omega$.
- **2.** Точка, изогонально сопряжённая точке Торричелли, принадлежит всем трём окружностям Аполлония.
- 3. Обозначим точку пересечения касательной, проведённой в точке A к описанной окружности треугольника ABC, и стороны BC через A'. Угадайте, что такое точки B' и C'. Докажите, что прямая A'B'C' перпендикулярна прямой OL, где O центр описанной окружности ABC, а L его точка Лемуана.
- 4. Точки пересечения окружностей Аполлония будем называть точками Аполлония P и Q (считая, что их две). Докажите, что педальные треугольники этих и только этих точек правильные треугольники.
- **5.** Докажите, что если пересечь прямые AP, BP и CP вторично с ω в точках A', B' и C', то получится правильный треугольник A'B'C'.
 - **6.** Даны точки A_1 , A_2 , A_3 , A_4 общего положения такие, что

$$A_1 A_2 \cdot A_3 A_4 = A_1 A_3 \cdot A_2 A_4 = A_1 A_4 \cdot A_2 A_3.$$

Обозначим через O_i центр описанной окружности треугольника A_{jkl} , где $\{i,j,k,l\}=\{1,2,3,4\}$. Докажите, что прямые A_iO_i пересекаются в одной точке или параллельны.

7. В треугольнике ABC AL_a и AM_a — внутренняя и внешняя биссектрисы угла A. Пусть ω_a — окружность, симметричная описанной окружности треугольника AL_aM_a относительно середины BC. Окружность ω_b определена аналогично. Докажите, что ω_a и ω_b касаются тогда и только тогда, когда треугольник ABC прямоугольный.