18) Regression and Classification Trees

Vitor Kamada

March 2019

Reference

Tables, Graphics, and Figures from:

1) Hastie et al. (2017): Ch 9.2

2) James et al. (2017): Ch 8.1, 8.3.1, and 8.3.2

Hitters Data

$$e^{5.11}\cong\$165K,\ e^{6}\cong\$402K,\ e^{6.74}\cong\$845K$$

Vitor Kamada ECO 7100 Econometrics I March 2019 3 / 26

Three-Region Partition

$$R_3 = \{X | Years \ge 4.5, Hits \ge 117.5\}$$

$$R_2 = \{X | Years \ge 4.5, Hits < 117.5\}$$

OLS vs Trees (Impurity Measure)

$$f(x) = \beta_0 + \sum_{j=1}^p \beta_j x_j$$

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{x_i \in R_m} y_i$$

$$Q_m(T) = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i - \hat{c}_m)^2$$

Vitor Kamada ECO 7100 Econometrics I March 2019 5/26

Top-down Greedy (Recursive Binary Splitting)

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

$$R_1(j,s) = \{X|X_j < s\}$$

 $R_2(j,s) = \{X|X_j \geq s\}$

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Vitor Kamada ECO 7100 Econometrics I March 2019

No Recursive Binary Splitting vs Recursive Binary Splitting

 X_1

Tree and Perspective Plot

Cost Complexity Pruning (Weakest Link Pruning)

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

|T| = # of terminal nodes of the tree

Vitor Kamada ECO 7100 Econometrics I March 2019

Unpruned Tree (Top-down Greedy Splitting)

Six-Fold Cross-Validation for Pruning Tree

Training Error Rate, Gini Index, and Entropy

$$\hat{p}_{mk} = rac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k)$$
 $E = 1 - \max_k (\hat{p}_{mk})$
 $G = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk})$

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} log \hat{p}_{mk}$$

Vitor Kamada ECO 7100 Econometrics I March 2019 12 / 26

Gini Index and Entropy are more sensitive to changes in the node probabilities

Heart Data Set

303 patients

AHD: Yes for heart disease based on an angiographic test

Thal: Thallium stress test, nuclear imaging shows how blood flows into heart

ChestPain: angina, atypical angina, non-anginal pain, and asymptomatic

RestECG: Electrocardiograms

Heart Data: Unpruned Tree

Normal < |Thal:a| < Fixed or Reversible Defects

15/26

Vitor Kamada ECO 7100 Econometrics I March 2019

Pruned Tree (Minimal Cross-Validation Error)

Linear vs Non-linear True Decision Boundary

library(ISLR); library(stargazer); stargazer(Carseats)

Statistic	N	Mean	St. Dev.	Min	Max
Sales	400	7.496	2.824	0.000	16.270
CompPrice	400	124.975	15.335	77	175
Income	400	68.657	27.986	21	120
Advertising	400	6.635	6.650	0	29
Population	400	264.840	147.376	10	509
Price	400	115.795	23.677	24	191
Age	400	53.322	16.200	25	80
Education	400	13.900	2.621	10	18

library(tree); High=ifelse(Sales<=8,"No","Yes")</pre>

```
\label{lem:carseats} \begin{split} & \mathsf{Carseats} \!\!=\!\! \mathsf{data}.\mathsf{frame}(\mathsf{Carseats},\mathsf{High}) \\ & \mathsf{tree}.\mathsf{carseats} \!\!=\!\! \mathsf{tree}(\mathsf{High}_{\sim}.\!\!-\!\! \mathsf{Sales},\!\mathsf{Carseats}); \\ & \mathsf{summary}(\mathsf{tree}.\mathsf{carseats}) \end{split}
```

```
Classification tree:

tree(formula = High ~ . - Sales, data = Carseats)

Variables actually used in tree construction:

[1] "ShelveLoc" "Price" "Income" "CompPrice"

[5] "Population" "Advertising" "Age" "US"

Number of terminal nodes: 27

Residual mean deviance: 0.4575 = 170.7 / 373

Misclassification error rate: 0.09 = 36 / 400
```

$$\frac{-2\sum\sum_{m_k}n_{mk}\log\hat{p}_{mk}}{n-|T_0|} = \frac{170.7}{400-27} = 0.45$$

plot(tree.carseats); text(tree.carseats,pretty=0)


```
node), split, n, deviance, yval, (yprob)
      * denotes terminal node
 1) root 400 541.500 No ( 0.59000 0.41000 )
    2) ShelveLoc: Bad, Medium 315 390.600 No ( 0.68889 0.31111 )
     4) Price < 92.5 46 56.530 Yes ( 0.30435 0.69565 )
        8) Income < 57 10 12.220 No ( 0.70000 0.30000 )
        16) CompPrice < 110.5 5 0.000 No ( 1.00000 0.00000 ) *
        17) CompPrice > 110.5 5 6.730 Yes ( 0.40000 0.60000 ) *
        9) Income > 57 36 35.470 Yes ( 0.19444 0.80556 )
        18) Population < 207.5 16 21.170 Yes ( 0.37500 0.62500 ) *
        19) Population > 207.5 20 7.941 Yes ( 0.05000 0.95000 ) *
      5) Price > 92.5 269 299.800 No ( 0.75465 0.24535 )
       10) Advertising < 13.5 224 213.200 No ( 0.81696 0.18304 )</p>
         20) CompPrice < 124.5 96 44.890 No ( 0.93750 0.06250 )
          40) Price < 106.5 38 33.150 No ( 0.84211 0.15789 )
             80) Population < 177 12  16.300 No ( 0.58333 0.41667 )
              160) Income < 60.5 6 0.000 No ( 1.00000 0.00000 ) *
             161) Income > 60.5 6 5.407 Yes ( 0.16667 0.83333 ) *
             81) Population > 177 26 8.477 No ( 0.96154 0.03846 ) *
          41) Price > 106.5 58  0.000 No ( 1.00000 0.00000 ) *
                                            ◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)
```

set.seed(2); train=sample(1:nrow(Carseats), 200)

```
Carseats.test=Carseats[-train,]
High.test=High[-train]
tree.carseats=tree(High~.-Sales,Carseats,subset=train)
tree.pred=predict(tree.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
```

$$\frac{86+57}{200} = 71.5\%$$

set.seed(3); cv.carseats=cv.tree(tree.carseats, FUN=prune.misclass); par(mfrow=c(1,2))

plot(cv.carseats\$size,cv.carseats\$dev,type="b")
plot(cv.carseats\$k,cv.carseats\$dev,type="b")

prune.carseats=prune.misclass(tree.carseats,best=9)

plot(prune.carseats)
text(prune.carseats,pretty=0)

tree.pred=predict(prune.carseats, Carseats.test,type="class")

table(tree.pred, High.test)

$$\frac{94+60}{200} = 77\%$$

25/26

Vitor Kamada ECO 7100 Econometrics I March 2019

prune.carseats=prune.misclass(tree.carseats,best=15)

```
tree.pred=predict(prune.carseats,
Carseats.test,type="class")
table(tree.pred,High.test)
```

$$\frac{86+62}{200} = 74\%$$