Analyse de Données

CTD 1: Analyse en Composantes Principales

Méthode d'analyse multidimensionnelle

Tableau individus/variables

	Archi	Prog. Impérative	Proba	Stats	EDP	Anglais	Sport
Bastien	10	12	18	17	17	15	14
Damien	19	6	17	11	4	7	4
Thibault	9	16	17	14	15	14	17
Sonia	18	18	8	10	8	12	13

Méthode d'analyse multidimensionnelle

Représenter 7 notes pour 4 élèves

	Archi	Prog. Impérative	Proba	Stats	EDP	Anglais	Sport
Bastien	10	12	18	17	17	15	14
Damien	19	6	17	11	4	7	4
Thibault	9	16	17	14	15	14	17
Sonia	18	18	8	10	8	12	13

Représenter 7 notes pour 4 élèves

• 5D : revenu, espérance de vie, nombre d'habitants, continent, année

 5D : revenu, espérance de vie, nombre d'habitants, continent, année : gapminder.org

Enquêtes : très consommatrices d'ACP

Pensez-vous que le QR code est facile à utiliser ?	Tout à fait d'accord	Plutôt d'ac- cord	Modérément en accord	Neutre	Modérément en désaccord	Plutôt en dé- saccord	Tout à fait en désaccord
Apprendre à utiliser le QR code serait fa- cile pour moi							
De mon point de vue il est facile d'obtenir le QR code pour faire ce dont j'ai besoin							
Mon interaction avec le QR code est claire et compréhensible							
Il serait facile pour moi de devenir habile afin d'utiliser le QR code							
Je trouve le QR code facile à utiliser							
Je trouve le QR code flexible pour interagir avec							

• Exemple de données en 12D

	Janv	Févr	Mars	Avri	Mai	Juin	juil	Août	Sept	Octo	Nove	Déce	Lati	Long
Bordeaux	5.6	6.6	10.3	12.8	15.8	19.3	20.9	21	18.6	13.8	9.1	6.2	44.5	-0.34
Brest	6.1	5.8	7.8	9.2	11.6	14.4	15.6	16	14.7	12	9	7	48.24	-4.29
Clermont	2.6	3.7	7.5	10.3	13.8	17.3	19.4	19.1	16.2	11.2	6.6	3.6	45.47	3.05
Grenoble	1.5	3.2	7.7	10.6	14.5	17.8	20.1	19.5	16.7	11.4	6.5	2.3	45.1	5.43
Lille	2.4	2.9	6	8.9	12.4	15.3	17.1	17.1	14.7	10.4	6.1	3.5	50.38	3.04
Lyon	2.1	3.3	7.7	10.9	14.9	18.5	20.7	20.1	16.9	11.4	6.7	3.1	45.45	4.51
Marseille	5.5	6.6	10	13	16.8	20.8	23.3	22.8	19.9	15	10.2	6.9	43.18	5.24
Montpellier	5.6	6.7	9.9	12.8	16.2	20.1	22.7	22.3	19.3	14.6	10	6.5	43.36	3.53
Nantes	5	5.3	8.4	10.8	13.9	17.2	18.8	18.6	16.4	12.2	8.2	5.5	47.13	-1.33
Nice	7.5	8.5	10.8	13.3	16.7	20.1	22.7	22.5	20.3	16	11.5	8.2	43.42	7.15
Paris	3.4	4.1	7.6	10.7	14.3	17.5	19.1	18.7	16	11.4	7.1	4.3	48.52	2.2
Rennes	4.8	5.3	7.9	10.1	13.1	16.2	17.9	17.8	15.7	11.6	7.8	5.4	48.05	-1.41
Strasbourg	0.4	1.5	5.6	9.8	14	17.2	19	18.3	15.1	9.5	4.9	1.3	48.35	7.45
Toulouse	4.7	5.6	9.2	11.6	14.9	18.7	20.9	20.9	18.3	13.3	8.6	5.5	43.36	1.26
Vichy	2.4	3.4	7.1	9.9	13.6	17.1	19.3	18.8	16	11	6.6	3.4	46.08	3.26

Visualisation = projection en 2D

Vol d'oiseaux en V

- Données stockées dans une matrice X
- n individus, p variables

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_i^T \\ \vdots \\ \mathbf{x}_n^T \end{pmatrix} = \begin{pmatrix} \vdots \\ \cdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$$

Droite d'inertie maximale

Droite d'inertie maximale

Trouver u tel que : $\sum_{i} \frac{1}{I} OH_{i}^{2}$ maximum

Exercice

On compte le nombre de cerveaux endormis en séances de TP à deux moments différents de la journée : 7h45-9h45 et 10h-12h.

	7h45-9h45	10h-12h
TP 1	6	2
TP 2	5	3
TP 3	6	1
TP 4	4	3
TP 5	4	1

1. Calculer la matrice de variance-covariance Σ . Y a-t-il une dépendance sur le taux de cerveaux endormis entre 7h45-9h45 et 10h-12h? Expliquer la réponse.

2. Calculer les composantes principales de ce jeu de données.

3. Représenter sur un même graphe les données et les composantes principales.

Données brutes

	Janv	Févr	Mars	Avri	Mai	Juin	juil	Août	Sept	Octo	Nove	Déce	Lati	Long
Bordeaux	5.6	6.6	10.3	12.8	15.8	19.3	20.9	21	18.6	13.8	9.1	6.2	44.5	-0.34
Brest	6.1	5.8	7.8	9.2	11.6	14.4	15.6	16	14.7	12	9	7	48.24	-4.29
Clermont	2.6	3.7	7.5	10.3	13.8	17.3	19.4	19.1	16.2	11.2	6.6	3.6	45.47	3.05
Grenoble	1.5	3.2	7.7	10.6	14.5	17.8	20.1	19.5	16.7	11.4	6.5	2.3	45.1	5.43
Lille	2.4	2.9	6	8.9	12.4	15.3	17.1	17.1	14.7	10.4	6.1	3.5	50.38	3.04
Lyon	2.1	3.3	7.7	10.9	14.9	18.5	20.7	20.1	16.9	11.4	6.7	3.1	45.45	4.51
Marseille	5.5	6.6	10	13	16.8	20.8	23.3	22.8	19.9	15	10.2	6.9	43.18	5.24
Montpellier	5.6	6.7	9.9	12.8	16.2	20.1	22.7	22.3	19.3	14.6	10	6.5	43.36	3.53
Nantes	5	5.3	8.4	10.8	13.9	17.2	18.8	18.6	16.4	12.2	8.2	5.5	47.13	-1.33
Nice	7.5	8.5	10.8	13.3	16.7	20.1	22.7	22.5	20.3	16	11.5	8.2	43.42	7.15
Paris	3.4	4.1	7.6	10.7	14.3	17.5	19.1	18.7	16	11.4	7.1	4.3	48.52	2.2
Rennes	4.8	5.3	7.9	10.1	13.1	16.2	17.9	17.8	15.7	11.6	7.8	5.4	48.05	-1.41
Strasbourg	0.4	1.5	5.6	9.8	14	17.2	19	18.3	15.1	9.5	4.9	1.3	48.35	7.45
Toulouse	4.7	5.6	9.2	11.6	14.9	18.7	20.9	20.9	18.3	13.3	8.6	5.5	43.36	1.26
Vichy	2.4	3.4	7.1	9.9	13.6	17.1	19.3	18.8	16	11	6.6	3.4	46.08	3.26

Données centrées réduites

	Janv	Févr	Mars	Avri	Mai	Juin	juil	Août	Sept	Octo	Nove	Déce	Lati	Long
Bordeaux	0.84	0.98	1.40	1.33	0.94	0.85	0.52	0.74	0.90	0.84	0.67	0.72	44.5	-0.34
Brest	1.10	0.54	-0.29	-1.30	-1.95	-1.98	-2.06	-1.83	-1.28	-0.18	0.62	1.14	48.24	-4.29
Clermont	-0.71	-0.63	-0.50	-0.50	-0.44	-0.31	-0.21	-0.24	-0.44	-0.63	-0.76	-0.66	45.47	3.05
Grenoble	-1.28	-0.90	-0.36	-0.28	0.05	-0.02	0.13	-0.03	-0.16	-0.52	-0.82	-1.35	45.1	5.43
Lille	-0.81	-1.07	-1.51	-1.52	-1.40	-1.46	-1.33	-1.27	-1.28	-1.09	-1.05	-0.71	50.38	3.04
Lyon	-0.97	-0.85	-0.36	-0.06	0.32	0.38	0.42	0.27	-0.05	-0.52	-0.70	-0.92	45.45	4.51
Marseille	0.79	0.98	1.20	1.48	1.63	1.71	1.69	1.66	1.63	1.52	1.30	1.09	43.18	5.24
Montpellier	0.84	1.03	1.13	1.33	1.22	1.31	1.39	1.41	1.30	1.29	1.19	0.87	43.36	3.53
Nantes	0.53	0.26	0.11	-0.13	-0.37	-0.37	-0.50	-0.50	-0.33	-0.07	0.16	0.35	47.13	-1.33
Nice	1.82	2.03	1.74	1.70	1.56	1.31	1.39	1.51	1.86	2.08	2.05	1.77	43.42	7.15
Paris	-0.30	-0.41	-0.43	-0.20	-0.09	-0.19	-0.36	-0.45	-0.55	-0.52	-0.47	-0.29	48.52	2.2
Rennes	0.43	0.26	-0.23	-0.64	-0.92	-0.94	-0.94	-0.91	-0.72	-0.41	-0.07	0.29	48.05	-1.41
Strasbourg	-1.84	-1.85	-1.78	-0.86	-0.30	-0.37	-0.41	-0.65	-1.06	-1.60	-1.74	-1.87	48.35	7.45
Toulouse	0.37	0.42	0.65	0.45	0.32	0.50	0.52	0.69	0.74	0.55	0.39	0.35	43.36	1.26
Vichy	-0.81	-0.79	-0.77	-0.79	-0.57	-0.42	-0.26	-0.39	-0.55	-0.75	-0.76	-0.76	46.08	3.26

ACP sur les données centrées réduites

Cercle de corrélation

Cercle de corrélation

Cercle de corrélation

	janv	févr	nove	déce	moy	ampli
Bordeaux	5.6	6.6	9.1	6.2	13.33	15.4
Brest	6.1	5.8	9.0	7.0	10.77	10.2
Clermont	2.6	3.7	6.6	3.6	10.94	16.8
Grenoble	1.5	3.2	6.5	2.3	10.98	18.6
Lille	2.4	2.9	6.1	3.5	9.73	14.7
Lyon	2.1	3.3	6.7	3.1	11.36	18.6
Marseille	5.5	6.6	10.2	6.9	14.23	17.8
Montpellier	5.6	6.7	10.0	6.5	13.89	17.1
Nantes	5.0	5.3	8.2	5.5	11.69	13.8
Nice	7.5	8.5	11.5	8.2	14.84	15.2
Paris	3.4	4.1	7.1	4.3	11.18	15.7
Rennes	4.8	5.3	7.8	5.4	11.13	13.1
Strasbourg	.4	1.5	4.9	1.3	9.72	18.6
Toulouse	4.7	5.6	8.6	5.5	12.68	16.2
Vichy	2.4	3.4	6.6	3.4	10.72	16.9

F1	F2
3.12	-0.11
-2.27	-4.09
-1.73	0.59
-1.53	1.69
-4.22	-0.6
-0.83	1.79
4.83	0.83
4.15	0.44
-0.28	-1.11
6.01	-0.79
-1.24	0.16
-1.44	-1.67
-4.11	2.17
1.74	0.14
-2.2	0.58

Matrice de corrélation

	janv.	févr	mars	avn	mai	juin	jul	août	sept	octo	nove	déce
janvier	1.00											
février	.97	1.00										
mars	84	93	1.00									
avril	61	.76	.92	1.00								
mai	36	55	.77	.95	1.00							
juin	34	52	.76	94	.99	1.00						
juillet	.30	49	72	.91	.98	.99	1.00					
août	41	59	80	.95	.98	.99	99	1.00				
septembre	.60	.76	.91	.98	.94	.94	.93	.97	1.00			
octobre	.85	.94	.97	.91	77	.76	.74	.81	.93	1.00		
novembre	.95	.99	.93	.78	.59	.57	.55	.64	.80	.96	1.00	
décembre	.99	.97	.83	62	.38	36	32	.43	62	.87	.96	1.00