Chapter-11 Limits, Continuity and Differentiability

EE24BTECH11051 - Prajwal

I. Subjective Problems

- 1) Let f(x) be a function satisfying the condition f(-x) = f(x) for real x.If f'(0) exists, find its value. (1987 - 2 Marks)
- 2) Find the values of a and b so that the function

$$f(x) = \begin{cases} x + a\sqrt{2}\sin x & \text{if } 0 \le x < 4\\ 2x\cot x + b & \text{if } \frac{\pi}{4} \le x \le \frac{\pi}{2}\\ a\cos 2x - b\sin x & \text{if } \frac{\pi}{2} < x \le \pi \end{cases}$$

is continuous for $0 \le x \le \pi$. (1989 -2 Marks)

3) Draw a graph of the function y = [x] + |1 - y| $x|, -1 \le x \le 3$. Determine the points, if any, where this function is not differentiable. (1989)

4) Let
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} &, x < 0 \\ a &, x = 0 \end{cases}$$

$$\frac{\sqrt{x}}{\sqrt{16 + \sqrt{x} - 4}} &, x > 0$$

the function is continuous at x = 0. (1990 - 4 Marks)

- 5) A function $f: R \to R$ satisfies the equation f(x + y) = f(x)f(y) for all x,y in R and $f(x) \neq 0$ for any x in R. Let the function be differentiable at x = 0 and f'(0) = 2. Show that f'(x) = 2f(x) for all x in R. Hence, determine (1990 - 4 Marks) f(x).

6) Find
$$\lim_{x\to 0} \{\tan(\frac{\pi}{4} + x)\} \frac{1}{x}$$
 (1993 - 2 Marks)

7) Let $f(x) = \begin{cases} \{1 + |\sin x|\} \frac{a}{|\sin x|} & ; -\frac{\pi}{6} < x < 0 \\ b & ; x = 0 \end{cases}$

Petermine a and besuch that $f(x)$ is continuous

Determine a and b such that f(x) is continuous (1994 - 4 Marks)

8) Let $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$ for real x and y. If f'(0) exists and equals -1 and f(0) = 1, find (1995 - 5 Marks) f(2).

9) Determine the values of x for which the following function fails to be continuous or diffferentiable:

$$f(x) = \begin{cases} 1 - x, & x < 1\\ (1 - x)(2 - x), & 1 \le x \le 2\\ 3 - x, & x > 2 \end{cases}$$
Justify your answer.
$$(1667 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x)(1 - x)(1 - x)(1 - x)(1 - x) = (1667 - x)(1 - x) = (1667 - x)(1 -$$

(1667 - 5 Marks)

- 10) Let $f(x), x \ge 0$, be a non-negative continuous function, and let $F(x) = \int_0^x f(t) dt$, $x \ge 0$. If for some $c > 0, f(x) \le cF(x)$ for all $x \ge 0$, then show that f(x) = 0 for all $x \ge 0$. (2001 - 5 Marks)
- 11) Let $\alpha \in R$. Prove that a function $f; R \to R$ is differentiable at α if and only if there is a function $g: R \rightarrow R$ is differentiable at continuous at α and satisfies $f(x)-f(\alpha)=g(x)(x-\alpha)$ α) for all $x \in R$. (1995 - 5 Marks)
- 12) Let $f(x) = \begin{cases} x + a & \text{if } x < 0 \\ |x + a| & \text{if } x \ge 0 \end{cases}$ and $g(x) = \begin{cases} x + 1 & \text{if } x < 0 \\ (x 1)^2 + b & \text{if } x \text{ } geq0, \end{cases}$ where a and b are non-negative real numbers. Determine the composite function $(g \circ f)(x)$ is continuous for all real x, determine the values of a and b. Further, for these values of a and b, is gof is differentiable at x = 0? Justify your answer. (2002 - 5 Marks)
- 13) If a function $[-2a, 2a] \rightarrow R$ is an function such that f(x) = f(2a - x) for $x \in [a, 2a]$ and the left hand derivatives at x = a is 0 then find the left hand derivative at x = -a. (2003 - 2 Marks)
- 14) $f'(0) = \lim_{n \to \infty} n f(\frac{1}{n})$ and f(0) = 0. Using this $\lim_{x\to\infty} \left((n+1) \frac{2}{\pi} \cos^{-1}(\frac{1}{n}) - n \right) , |\cos^{-1}\frac{1}{n}| < \frac{\pi}{2}$ (2004 - 2 Marks)
- 15) If $|c| \le \frac{1}{2}$ and f(x) is a differentiable function

at
$$x = 0$$
 given by
$$f(x) = \begin{cases} b \sin^{-1}\left(\frac{c+x}{2}\right), & -\frac{1}{2} < x < 0\\ \frac{1}{2}, & x = 0\\ \frac{e^{\frac{ax}{2}} - 1}{x}, & 0 < x < \frac{1}{2} \end{cases}$$
Find the value of 'a' and prove that $b^2 = 4 - c^2$. (2004 - 4 Marks)

$$f(x) = \begin{cases} \frac{1}{2} & , x = 0\\ \frac{e^{\frac{ax}{2}} - 1}{x} & , 0 < x < \frac{1}{2} \end{cases}$$