A Differential Geometry Basics Cheat Sheet

By Nick Konz

This is designed to be a quick, yet rigorous introduction/reference to the basic principles found within differential geometry, covering only the bare minimum of topics needed.

Largely adapted from Spivak's A Comprehensive Introduction to Differential Geometry, 3rd Edition and Mendelson's Introduction to Topology, 3rd Edition

1 Prerequisite Knowledge

We only assume basic knowledge of continuity and differentiability in the context of functions and topology. Here, \forall means "for all" or "for each", and \exists means "there exists".

1.1 Some Basic Topology

Definition 1.1. Neighborhood. Let $a \in \mathbb{R}^n, \delta > 0$. The δ -neighborhood of a is the set

$$U(a,\delta) = \left\{ x \in \mathbb{R}^n : ||x - a|| < \delta \right\}. \tag{1}$$

Definition 1.2. *Metric Space.* Let X be some nonempty set and d be the mapping/function $d: X \times X \to \mathbb{R}$. The pair (X, d) is a **metric space** if, $\forall x, y, z \in X$,

- 1. $d(x,y) \ge 0$
- 2. d(x,y) = 0 if and only if (iff) x = y
- 3. d(x, y) = d(y, x)
- 4. $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

Definition 1.3. Topological Space. Let X be a nonempty set and \mathcal{J} be a collection of subsets of X. (X, \mathcal{J}) is a **topological space** if

- 1. $X \in \mathcal{J}$
- 2. $\varnothing \in \mathcal{J}$, where \varnothing is the empty set
- 3. If $O_1, O_2, \ldots, O_n \in \mathcal{J}$, then $\bigcap_{i=1}^n O_i \in \mathcal{J}$
- 4. If $\forall \alpha \in I, O_{\alpha} \in \mathcal{J}$, then $\bigcup_{\alpha \in I} O_{\alpha} \in \mathcal{J}$ (*I* is some *indexing set*).

We label X as the **underlying set**, \mathcal{J} as the **topology** on X, and members of \mathcal{J} as **open sets**.

Remark. Topological and metric spaces (X, \mathcal{J}) and (X, d), respectively, are sometimes notated simply as X.

Definition 1.4. Homeomorphism. Let (X, \mathcal{J}) and (Y, \mathcal{K}) be topological spaces. (X, \mathcal{J}) and (Y, \mathcal{K}) are **homeomorphic** if \exists inverse functions, or **homeomorphisms**, $f: X \to Y$ and $g: Y \to X$ such that f, g are continuous.

1.2 Some Linear Algebra

Definition 1.5. Vector Space. A vector space V is a set, or space, that is closed under addition and scalar multiplication, i.e. the result of performing these operations on some element(s) of V is itself an element of V. We define elements of a vector space as vectors.

Definition 1.6. Basis. A basis for a vector space V is a set of linearly independent vectors (i.e. none of the basis vectors can be written as linear combinations of the others) that span V (i.e. any element of V can be written as a linear combination of the basis vectors). In other words, the basis vectors define a "coordinate system" for V.

Remark. You can convert vectors written in one basis to another via *change-of-basis* matrices (or functions in the case of infinite-dimensional vectors).

2 Manifolds

Definition 2.1. *Manifold.* A **manifold** is a metric space M such that if $x \in M$, \exists some neighborhood U of x and some $n \in \{0, 1, 2...\}$ such that U is homeomorphic to \mathbb{R}^n . If \exists such an n that is the same $\forall x \in M$, we say that M is n-dimensional, which can be notated as M^n .

Remark. Think of a manifold as being a surface that is locally Euclidean.

Definition 2.2. C^{∞} -related Homeomorphisms. Let M be some manifold, and let U, V be open subsets of M. Two homeomorphisms $x: U \to x(U) \subset \mathbb{R}^n$ and

Definition 1.4. Homeomorphism. Let (X, \mathcal{J}) and $y: V \to y(V) \subset \mathbb{R}^n$ (for some n) are \mathbb{C}^{∞} -related if (Y, \mathcal{K}) be topological spaces. (X, \mathcal{J}) and (Y, \mathcal{K}) are the maps

$$y \circ x^{-1} : x(U \cap V) \to y(U \cap V) \tag{2}$$

$$x \circ y^{-1} : y(U \cap V) \to x(U \cap V) \tag{3}$$

are infinitely differentiable, or C^{∞} .

Definition 2.3. Atlas. A family of mutually C^{∞} related homeomorphisms whose domains cover M (i.e. their union equals M) is an **atlas** of M.

Definition 2.4. Chart/Coordinate System. A chart or coordinate system for some manifold M is a homeomorphism x from some open $U \in M$ to an open subset of \mathbb{R}^n , denoted (x, U). A chart of M is a member of some atlas of M.

Remark. Charts/coordinate systems (x, U) create a way of assigning coordinates to points on U, and are sometimes notated simply with x.

Definition 2.5. Differentiable Manifold. A differentiable, smooth or C^{∞} manifold is a pair (M, A), where M is some manifold, and A is some maximal atlas for M, i.e. the union of all possible atlases of M.

Remark. To summarize, a manifold is essentially a space that can be covered with coordinate charts, which are invertible, continuous mappings to some subset of \mathbb{R}^n . If the mapping between any pair of overlapping charts is differentiable, then the manifold itself is differentiable.

3 The Tangent Bundle

Definition 3.1. Tangent Space of \mathbb{R}^n . Consider some point $v \in \mathbb{R}^n$, drawn as an arrow with a "reference point" of some $p \in \mathbb{R}^n$; this arrow from p to p + v is denoted (p, v). The set of all such (p, v) is the **tangent space** $T\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n$ of \mathbb{R}^n . Elements of $T\mathbb{R}^n$ are **tangent vectors** of \mathbb{R}^n .

Definition 3.2. Projection Map on \mathbb{R}^n . The **projection map** $\pi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ recovers the first member of any pair $(p, v) \in T\mathbb{R}^n$, and is defined as

$$\pi(p, v) = p. \tag{4}$$

Remark. The projection map can be thought of as mapping any tangent vector to "where it's at"/"where it comes from".

Definition 3.3. Fiber of \mathbb{R}^n . For some $p \in \mathbb{R}^n$, the set $\{(p,v): v \in \mathbb{R}^n\}$ formed by $\pi^{-1}(p)$ is defined as the **fiber** over p.

Remark. The fiber $\pi^{-1}(p)$ can be pictured as all arrows that start at p. The name "fiber" is also intuitive: imagine a cylindrical hairbrush; $\pi(p,v)$ takes any point v on some bristle on the brush and maps it to the root p of that bristle. Such a fiber also forms a vector space, which will come up later.

Definition 3.4. Directional Derivative Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable map (for some n, m). The **directional derivative** Df(p)(v) (the derivative of f along $v \in \mathbb{R}^n$, at $p \in \mathbb{R}^n$) is defined by

$$Df(p)(v) = \lim_{h \to 0} \frac{f(p+hv) - f(p)}{h}.$$
 (5)

Definition 3.5. Pushforward Operator for \mathbb{R}^n . Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable map.. The **pushforward operator** $f_*: T\mathbb{R}^n \to T\mathbb{R}^m$ is defined by

$$f_* = \bigcup_{p \in \mathbb{R}^n} f_{*p},\tag{6}$$

where f_{*p} is the mapping that takes some $(p, v) \in T\mathbb{R}^n$ to $Df(p)(v)|_{f(p)} \in T\mathbb{R}^m$.

Remark. In other words, the pushforward operator f_* takes a directional derivative operator (tangent vector) from within one tangent space $T\mathbb{R}^n$ to a directional derivative operator within another tangent space $T\mathbb{R}^m$, all dependent on the function $f: \mathbb{R}^n \to \mathbb{R}^m$. As such, $\pi \circ f_* = f \circ \pi$.

Definition 3.6. Tangent Space on a Manifold.

Definition 3.7. Vector Bundle. An n-dimensional vector bundle is a five-tuple $\xi = (E, \pi, B, \oplus, \odot)$, where

- 1. E is the total space
- 2. B is the base space
- 3. $\pi: E \to B$ is a continuous map onto B
- 4. \oplus and \odot are operators defined to be analogous to addition and scalar multiplication, such that each fiber $\pi^{-1}(p)$ $(p \in E)$ is an *n*-dimensional vector space over \mathbb{R} .

Remark. Vector bundles, or bundles for short, are usually just notated $\pi: E \to B$, as the inclusion of \oplus and \odot to form the fiber vector spaces is treated as implicit.

Definition 3.8. Tangent Bundle. The **tangent bundle** TM of a manifold M is the (disjoint) union of all tangent spaces on M, i.e.

$$TM = \bigcup_{p \in M} T_p M,\tag{7}$$

and is a type of vector bundle, defined with $\pi:TM\to M$