Optimalizace a teorie her Podmínky optimality

Martin Bohata

Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz

- Chceme lokálně aproximovat přípustnou množinu nějakou jednodušší množinou.
- Jakým směrem se lze pohnout o malý krok z daného bodu, aniž opustíme přípustnou množinu?

Definice

Nechť $M \subseteq \mathbb{R}^n$ a $x \in M$.

- Vektor $d \in \mathbb{R}^n$ se nazve přípustný směr množiny M v bodě x, jestliže existuje $\delta > 0$ tak, že pro každé $\alpha \in (0, \delta]$ je $x + \alpha d \in M$.
- \bullet Množina $\mathcal{F}(M;x)$ všech přípustných směrů množiny M v bodě x se nazývá kužel přípustných směrů množiny M v bodě x.
- $\mathcal{F}(M;x) \neq \emptyset$.
- Je-li $x \in \operatorname{int}(M)$, pak $\mathcal{F}(M;x) = \mathbb{R}^n$.
- ullet Je-li M konečná (neprázdná), pak $\mathcal{F}(M;x)=\{0\}$ pro každé $x\in M.$

Příklad

- $\textbf{ Je-li } C = B(0;1) \text{ a } \hat{x} = (1,0)^T \text{, pak} \\ \mathcal{F}(C;\hat{x}) = \left\{ \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \in \mathbb{R}^2 \,\middle|\, d_1 < 0 \right\} \bigcup \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$
 - Jakým směrem se pohnout z daného bodu, aby cílová funkce klesala?

Definice

Nechť $D \subseteq \mathbb{R}^n$, $x \in D$ a $f: D \to \mathbb{R}$.

- Vektor $d \in \mathbb{R}^n$ se nazve směr poklesu funkce f v bodě x, jestliže existuje $\delta > 0$ tak, že pro každé $\alpha \in (0, \delta]$ je $f(x + \alpha d) < f(x)$.
- Množina $\mathcal{D}(f;x)$ všech směrů poklesu funkce f v bodě x se nazývá kužel směrů poklesu funkce f v bodě x.
- Definice implicitně obsahuje podmínku $[x, x + \delta d] \subseteq D$.

Tvrzení (Nutná geometrická podmínka lokálního extrému)

Jestliže x je bod lokálního minima funkce $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ na $M\subseteq D$, pak $\mathcal{F}(M;x)\cap\mathcal{D}(f;x)=\emptyset$.

Důkaz: Viz přednáška.

• Implikaci nelze obrátit. Jestliže $f(x_1, x_2) = x_2$,

$$M = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \,\middle|\, x_1^2 + x_2^2 = 1 \right\} \quad \text{a} \quad \hat{x} = \frac{1}{5} \begin{pmatrix} 3 \\ 4 \end{pmatrix},$$

pak

$$\mathcal{F}(M; \hat{x}) \cap \mathcal{D}(f; \hat{x}) = \emptyset.$$

Přesto \hat{x} není bodem lokálního minima. Tím je bod $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$.

• Kužel $\mathcal{D}(f;x)$ je obtížné najít. Pokusíme se proto tento kužel "linearizovat".

Definice

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $x \in \Omega$ a $f \in C^1(\Omega)$.

- Vektor $d \in \mathbb{R}^n$ se nazve silný směr poklesu funkce f v bodě x, jestliže $\langle \nabla f(x), d \rangle < 0$.
- Množina $\mathcal{D}_0(f;x)$ všech silných směrů poklesu funkce f v bodě x se nazývá kužel silných směrů poklesu funkce f v bodě x.
- Kužel $\mathcal{D}_0(f;x)$ je množina všech řešení lineární nerovnice

$$\langle \nabla f(x), d \rangle < 0.$$

• $\mathcal{D}_0(f;x)$ je konvexní kužel.

Tvrzení

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $x \in \Omega$ a $f \in C^1(\Omega)$. Potom platí:

- $② \ \mathcal{D}_0(f;x) \subseteq \mathcal{D}(f;x) \ \text{(tj. jestliže } \langle \nabla f(x), d \rangle < 0, \ \mathsf{pak} \ d \in \mathcal{D}(f;x) \text{)}.$

Důkaz: Viz přednáška.

- Implikace v nelze obrátit. Uvažme například funkci f(x)=1. Pak f'(x)d=0 pro každé $d\in\mathbb{R}$, ale $\mathcal{D}(f;x)=\emptyset$.
- Inkluze v ② nelze obrátit. Uvažme například funkci $f(x)=x^3$. Ta má v 0 směr poklesu d=-1, ale $d\notin \mathcal{D}_0(f;0)$.

Věta (Fermatova věta)

Nechť $\Omega\subseteq\mathbb{R}^n$ je otevřená množina, $M\subseteq\Omega$ a $\hat{x}\in M$ je bodem lokálního minima funkce $f\in C^1(\Omega)$ na M. Potom platí:

- ② Jestliže $\hat{x} \in \operatorname{int}(M)$, pak $\nabla f(\hat{x}) = 0$.

Důkaz: Viz přednáška.

- Podmínka (a tedy také nulovost gradientu v bodě (a) je nutná, nikoli postačující.
- Jaké dodatečné požadavky zajistí, aby podmínka byla postačující pro existenci lokálního minima v bodě \hat{x} ?

Věta (O nutných a postačujících podmínkách pro konvexní úlohu)

Nechť $\Omega\subseteq\mathbb{R}^n$ je otevřená množina, $f\in C^1(\Omega)$ je konvexní na $C\subseteq\Omega$ a $\hat{x}\in C.$ Potom platí:

- $\textbf{0} \ \hat{x} \in \operatorname{argmin}_{x \in C} f(x) \ \textit{právě tehdy, když} \ \mathcal{F}(C; \hat{x}) \cap \mathcal{D}_0(f; \hat{x}) = \emptyset.$
- ② Předpokládejme, že $\hat{x} \in \text{int } (C)$. Pak $\hat{x} \in \operatorname{argmin}_{x \in C} f(x)$ právě tehdy, když $\nabla f(\hat{x}) = 0$.

Důkaz: Viz přednáška.

Příklad

Je dána funkce

$$f(x_1, x_2) = x_1^2 + 3x_2^2 - 2x_1x_2 + x_1 - 2x_2.$$

Funkce f je ryze konvexní. Jediným bodem minima funkce f je $\frac{1}{4} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Věta (O podmínkách optimality 2. řádu)

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $M \subseteq \Omega$, $\hat{x} \in \text{int}(M)$ a $f \in C^2(\Omega)$. Potom platí:

- Jestliže \hat{x} je bod lokálního minima funkce f na M, pak $\nabla^2 f(\hat{x})$ je pozitivně semidefinitní.
- ② Jestliže $\nabla f(\hat{x}) = 0$ a $\nabla^2 f(\hat{x})$ je pozitivně definitní, pak \hat{x} je bod ostrého lokálního minima.

Důkaz: Vynecháváme.

- Pokud $\hat{x} \in \text{int}(M)$ je bodem ostrého lokálního minima, pak nutně neplatí, že $\nabla^2 f(\hat{x})$ je pozitivně definitní (viz $f(x) = x^4$ a $\hat{x} = 0$).
- Analogie druhého tvrzení z předchozí věty pro semidefinitní matice neplatí (viz $f(x)=x^3$ a $\hat{x}=0$).

Příklad

Je dána funkce

$$f(x_1, x_2) = \frac{1}{3}x_1^3 + \frac{1}{2}x_2^2 + x_1x_2 + 2x_2.$$

Podezřelé body z lokálního extrému jsou

$$u = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$
 a $v = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$.

- ullet Bod u je bodem ostrého lokálního minima.
- Bod v není bodem lokálního minima ani maxima, neboť v tomto bodě není splněna nutná podmínka druhého řádu pro funkci f ani pro funkci -f.

• Jak popsat informaci obsaženou v $\mathcal{F}(M;\hat{x})$ pomocí jednodušeji konstruovatelného kuželu?

Definice

Ať g_1,\ldots,g_k jsou reálné funkce definované na množině $\Omega\subseteq\mathbb{R}^n$, $M=\{x\in\Omega\,|\,g_1(x)\leq 0,\ldots,g_k(x)\leq 0\}$ a $x\in M$.

- Množina $\mathcal{I}\left((g_i)_{i=1}^k;x\right):=\{i\in\{1,\ldots,k\}\,|\,g_i(x)=0\}$ se nazývá indexová množina aktivních omezení v bodě x.
- Jestliže $i \in \mathcal{I}\left((g_i)_{i=1}^k;x\right)$, pak $g_i(x) \leq 0$ se nazve aktivní omezení (ve tvaru nerovnosti) v bodě x.
- Jestliže $i \notin \mathcal{I}\left((g_i)_{i=1}^k; x\right)$, pak $g_i(x) \leq 0$ se nazve neaktivní omezení (ve tvaru nerovnosti) v bodě x.

Definice

Nechť $\Omega\subseteq\mathbb{R}^n$ je otevřená množina, $g_1,\ldots,g_k\in C^1(\Omega)$, $x\in M$ a $M=\{x\in\Omega\,|\,g_1(x)\leq 0,\ldots,g_k(x)\leq 0\}$. Definujeme množinu

$$\mathcal{G}\left((g_i)_{i=1}^k;x\right) := \left\{d \in \mathbb{R}^n \,\middle|\, \langle \nabla g_i(x), d \rangle \leq 0 \,\,\forall i \in \mathcal{I}\left((g_i)_{i=1}^k;x\right)\right\}$$
$$= \bigcap_{i \in \mathcal{I}\left((g_i)_{i=1}^k;x\right)} \left\{d \in \mathbb{R}^n \,\middle|\, \langle \nabla g_i(x), d \rangle \leq 0\right\}.$$

- $\mathcal{G}\left((g_i)_{i=1}^k;x\right)$ je uzavřený konvexní kužel obsahující 0.
- $\mathcal{G}\left((g_i)_{i=1}^k;x\right)$ (a také $\mathcal{I}\left((g_i)_{i=1}^k;x\right)$) závisí na popisu množiny M. Naproti tomu $\mathcal{F}(M;x)$ je geometrický koncept (tj. nezávisí na konkrétním popisu množiny M).

Příklad

Je dána množina

$$M = \{(x_1, x_2)^T \in \mathbb{R}^2 \mid x_2 - x_1^3 \le 0, -x_2 \le 0\}$$

a bod $\hat{x}=(0,0)^T$. Označme $g_1(x_1,x_2)=x_2-x_1^3$ a $g_2(x_1,x_2)=-x_2$. Pak

$$\mathcal{F}(M; \hat{x}) = \left\{ \begin{pmatrix} d_1 \\ 0 \end{pmatrix} \middle| d_1 \ge 0 \right\},$$

$$\mathcal{G}((g_1, g_2), \hat{x}) = \left\{ \begin{pmatrix} d_1 \\ 0 \end{pmatrix} \middle| d_1 \in \mathbb{R} \right\}.$$

Vidíme, že $\mathcal{F}(M;\hat{x})\subsetneq\mathcal{G}\left((g_1,g_2),\hat{x}\right)$. Položme $g_3(x_1,x_2)=-x_1-x_2$. Pak

$$M = \{(x_1, x_2)^T \in \mathbb{R}^2 \mid g_i(x_1, x_2) \le 0 \ \forall i \in \{1, 2, 3\} \},$$

$$\mathcal{G}((g_1, g_2, g_3), \hat{x}) = \mathcal{F}(M; \hat{x}).$$

- Úmluva: Nemůže-li dojít k nedorozumění, budeme psát jen $\mathcal{I}(x)$ a $\mathcal{G}(x)$ místo $\mathcal{I}\left((g_i)_{i=1}^k;x\right)$ a $\mathcal{G}\left((g_i)_{i=1}^k;x\right)$.
- Lze ukázat, že $\mathcal{F}(M;x)\subseteq\mathcal{G}(x)$. Jak jsme viděli v předchozím příkladě, rovnost obecně nenastává.
- Lze podmínku optimality $\mathcal{F}(M;\hat{x}) \cap \mathcal{D}_0(f;\hat{x}) = \emptyset$ nahradit podmínkou $\mathcal{G}(\hat{x}) \cap \mathcal{D}_0(f;\hat{x}) = \emptyset$?

Příklad

$$\label{eq:continuous} \begin{split} \text{minimalizujte} & \ x_1 + x_2 \\ \text{za podmínek} & \ x_2 - x_1^3 \leq 0, \\ & -x_2 < 0. \end{split}$$

Bod
$$\hat{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 je (jediné) řešení, avšak $\mathcal{G}(\hat{x}) \cap \mathcal{D}_0(f;\hat{x}) \neq \emptyset$.

 Kužel $\mathcal{G}(x)$ je obecně příliš veliký. Nutné klást dodatečnou podmínku.

Věta (O nutných KKT podmínkách)

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $f,g_1,\ldots,g_k \in C^1(\Omega)$,

$$M = \{ x \in \Omega \, | \, g_1(x) \le 0, \dots, g_k(x) \le 0 \}$$

a $\hat{x} \in M$. Jestliže $\overline{\mathcal{F}(M;\hat{x})} = \mathcal{G}(\hat{x})$ a \hat{x} je bod lokálního minima f na M, pak existuje $(\mu_1,\ldots,\mu_k)^T \in \mathbb{R}^k$ tak, že

$$\begin{split} \nabla f(\hat{x}) + \sum_{i=1}^k \mu_i \nabla g_i(\hat{x}) &= 0, \\ \mu_i g_i(\hat{x}) &= 0 \quad \textit{pro všechna } i \in \{1, \dots, k\}, \\ \mu_i &\geq 0 \quad \textit{pro všechna } i \in \{1, \dots, k\}. \end{split}$$

Důkaz: Viz přednáška.

Terminologie:

Podmínky

(P1)
$$\nabla f(\hat{x}) + \sum_{i=1}^{k} \mu_i \nabla g_i(\hat{x}) = 0$$
, (P2) $\mu_i g_i(\hat{x}) = 0$,

(P3)
$$\mu_i > 0$$
,

se souhrně nazývají KKT podmínky.

- Podmínka (P1) se nazývá podmínka stacionarity.
- Podmínka (P2) se nazývá podmínka komplementarity.
- Koeficienty $\mu_1, \ldots, \mu_k \in \mathbb{R}$ splňující KKT podmínky se nazývají KKT multiplikátory (Lagrangeovy multiplikátory) v bodě \hat{x} .
- Bod \hat{x} se nazve KKT bod, existuje-li vektor $(\mu_1, \dots, \mu_k)^T$ KKT multiplikátorů v bodě \hat{x} .

• Geometrická interpretace KKT podmínek: Gradienty funkcí z aktivních omezení (funkcí $g_i, i \in \mathcal{I}(\hat{x})$) v bodě \hat{x} generují kužel, ve kterém leží $-\nabla f(\hat{x})$.

Příklad

$$\label{eq:continuous_section} \begin{split} & \text{minimalizujte} \ \ x_1 + x_2 \\ & \text{za podmínek} \ \ x_1, x_2 \geq 0. \end{split}$$

Lze ukázat, že

$$\overline{\mathcal{F}(\mathbb{R}^2_+;x)} = \mathcal{G}(x)$$

pro každé $x \in \mathbb{R}^2_+$. Bod $\hat{x} = 0$ je jediný KKT bod a jedná se o bod minima.

• Předpoklad $\overline{\mathcal{F}(M;\hat{x})} = \mathcal{G}(\hat{x})$ je jednou z tzv. podmínek regularity. Nahradíme-li $\overline{\mathcal{F}(M;\hat{x})} = \mathcal{G}(\hat{x})$ ve větě O nutných KKT podmínkách jakoukoli jinou podmínkou regularity, zůstane věta stále v platnosti.

Definice

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $g_1, \dots, g_k \in C^1(\Omega)$ a

$$M = \{x \in \Omega \mid g_1(x) \le 0, \dots, g_k(x) \le 0\}.$$

Řekneme, že $(g_i)_{i=1}^k$ splňuje

(APR) Afinní podmínku regularity, jestliže g_1, \ldots, g_k jsou afinní;

(SPR) Slaterovu podmínku regularity, jestliže g_1, \ldots, g_k jsou konvexní na Ω a existuje $x \in \Omega$ tak, že pro každé $i \in \{1, \ldots, k\}$ je $g_i(x) < 0$;

(PLN) Podmínku lineární nezávislosti v $\hat{x} \in M$, jestliže $\{\nabla g_i(\hat{x}) \,|\, i \in \mathcal{I}(\hat{x})\}$ je lineárně nezávislá množina vektorů;

 $(\overline{\mathsf{ZPR}})$ Zangwillovu podmínku regularity v $\hat{x} \in M$, jestliže $\overline{\mathcal{F}(M;\hat{x})} = \mathcal{G}(\hat{x}).$

Platí:

- Každá z podmínek (APR) a (SPR) implikuje (ZPR) pro každé $\hat{x} \in M$.
- Podmínka (PLN) implikuje (ZPR).

Příklad

minimalizujte
$$(x_1+1)^2+(x_2+1)^2$$
 za podmínek $x_1+x_2\leq 0,$
$$-x_1\leq 0,$$

$$-x_2\leq 0.$$

Je splněna afinní podmínka regularity. V každém bodě přípustné množiny jsou tak KKT podmínky nutnými podmínkami optimality.

Příklad

minimalizujte
$$x_1$$
 za podmínek $x_1^2+(x_2-1)^2\leq 1,$
$$x_1^2+(x_2+1)^2\leq 1.$$

Bod $(0,0)^T$ je jediný přípustný bod, ale není to KKT bod. Splnění některé z podmínek regularity je tedy nutné i v případě konvexních úloh!

Věta (O postačujících KKT podmínkách)

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $f,g_1,\ldots,g_k \in C^1(\Omega)$ jsou konvexní funkce na $C=\{x\in\Omega\,|\,g_1(x)\leq 0,\ldots,g_k(x)\leq 0\}$. Jestliže $\hat{x}\in C$ je KKT bod, pak \hat{x} je bod minima funkce f na C.

Důkaz: Viz přednáška.

Příklad

$$\label{eq:continuous} \begin{array}{ll} \mbox{minimalizujte} & 2x_1^2 + x_2^2 \\ \mbox{za podmínek} & x_1^2 + x_2^2 \leq 1, \\ & -x_1 \leq 0. \end{array}$$

Je splněna Slaterova podmínka regularity a všechny funkce vystupující v optimalizační úloze jsou spojitě diferencovatelné a konvexní (na \mathbb{R}^2). Tedy KKT podmínky jsou nutné a postačující podmínky optimality.

Lze ukázat, že $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ je jediný bod minima.

Omezení ve tvaru rovnosti a nerovnosti

Předpokládejme, že $\Omega\subseteq\mathbb{R}^n$ je neprázdná otevřená množina a $f,g_1,\ldots,g_k,h_1,\ldots,h_l\in C^1(\Omega)$. Je dána úloha

```
minimalizujte f(x) za podmínek g_i(x) \leq 0 pro každé i \in \{1,\dots,k\}, h_j(x) = 0 pro každé j \in \{1,\dots,l\}, x \in \Omega.
```

- Rovnice $h_1(x)=0,\ldots,h_l(x)=0$ lze zapsat pomocí nerovnic $h_1(x)\leq 0,-h_1(x)\leq 0,\ldots,h_l(x)\leq 0,-h_l(x)\leq 0,$ a tím problém převedeme na optimalizační úlohu obsahující jen omezení ve tvaru nerovnosti.
- V případě nelineárních funkcí h_1,\ldots,h_l ale není kužel $\mathcal{F}(M;x)$ přiliš použitelný (běžně $\mathcal{F}(M;x)=\{0\}$). V takovém případě je nutné vybudovat obecnější teorii.

Omezení ve tvaru rovnosti a nerovnosti

Časté jsou ale úlohy, kdy f je navíc konvexní na přípustné množině a $g_1,\dots,g_k,h_1,\dots,h_l$ jsou afinní. Pak

minimalizujte
$$f(x)$$
 za podmínek $g_i(x) \leq 0$ pro každé $i \in \{1,\dots,k\},$
$$h_j(x) \leq 0 \quad \text{pro každé } j \in \{1,\dots,l\},$$

$$-h_j(x) \leq 0 \quad \text{pro každé } j \in \{1,\dots,l\},$$

$$x \in \Omega.$$

je konvexní úloha a KKT podmínky jsou nutné a postačující v každém bodě přípustné množiny (je splněna afinní podmínka regularity).