Министерство науки и высшего образования Российской Федерации Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

Ю.С.Белов, И.И.Ерохин

ЛИНЕЙНЫЕ СТРУКТУРЫ НА ЯЗЫКЕ РҮТНОМ

Методические указания к лабораторной работе по дисциплине «Высокоуровневое программирование»

УДК 004.62 ББК 32.972.1 Б435

Методические указания составлены в соответствии с учебным планом КФ МГТУ им. Н.Э. Баумана по направлению подготовки 09.03.04 «Программная инженерия» кафедры «Программного обеспечения ЭВМ, информационные технологии».

Метолические указания рассмотрены и олобрены:

тегоди теские указания рассмотрены и одоорены.	
 Кафедрой «Программного обеспечения ЭВМ, информ протокол № 3 от «24» октября 2018 г. 	ационных технологий» (ИУ4-КФ)
Зав. кафедрой ИУ4-КФ	к.т.н., доцент Ю.Е. Гагарин
- Методической комиссией факультета ИУ-КФ протокол №_	от «» 2019 г.
Председатель методической комиссии факультета ИУ-КФ	к.т.н., доцент М.Ю. Адкин
- Методической комиссией КФ МГТУ им.Н.Э. Баумана протокол № от «»	2019 г.
Председатель методической комиссии КФ МГТУ им.Н.Э. Баумана	д.э.н., профессор О.Л. Перерва
Рецензент: зав. кафедрой ИУ2-КФ	
«Информационные системы и сети», к.т.н., доцент	И.В. Чухраев
Авторы	YO G P
к.фм.н., доцент кафедры ИУ4-КФ асс.кафедры ИУ4-КФ	Ю.С.Белов И.И.Ерохин
ринстони	

Аннотация

Методические указания к выполнению лабораторной работы по «Высокоуровневое программирование» содержат общие сведения о программах линейной структуры, описание типовых алгоритмов работы с основными типами данных, а также описание средств их реализации на языке программирования Python.

Предназначены для студентов 2-го курса бакалавриата КФ МГТУ им. Н.Э. Баумана, обучающихся по направлению подготовки 09.03.04 «Программная инженерия».

- © Калужский филиал МГТУ им. Н.Э. Баумана, 2019 г.
- © Ю.С.Белов, И.И.Ерохин, 2019 г.

ОГЛАВЛЕНИЕ

введение	4
ЦЕЛЬ И ЗАДАЧИ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЕ ВЫПОЛНЕНИЯ	5
КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ИЗУЧЕНИЯ, ИССЛЕДОВАНИЯ	6
КОНСОЛЬНЫЙ ВВОД/ВЫВОД	8
ЛОГИЧЕСКИЕ И АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ	11
ЗАДАЧИ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	18
ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ	24
КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ	44
ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ	45
ОСНОВНАЯ ЛИТЕРАТУРА	46
ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА	46

ВВЕДЕНИЕ

Настоящие методические указания составлены в соответствии с программой проведения лабораторных работ по курсу «Высокоуровневое программирование» на кафедре «Программное обеспечение ЭВМ, информационные технологии» факультета «Информатика и управление» Калужского филиала МГТУ им. Н.Э. Баумана.

Методические указания, ориентированные на студентов 2-го курса направления подготовки 09.03.04 «Программная обеспечение ЭВМ, информационные технологии», содержат сведения об алгоритмах линейной структуры и средствах их реализации на языке Python.

Методические указания составлены для ознакомления студентов с основополагающими понятиями и принципами разработки программ, решение которых предполагает использование алгоритмов линейной структуры. Для выполнения лабораторной работы студенту необходимы минимальные теоретические знания курса алгебры.

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЕ ВЫПОЛНЕНИЯ

Целью выполнения лабораторной работы является формирование практических навыков процедурного программирования, разработки и отладки программ, овладение методами и средствами разработки и оформления технической документации.

Основными задачами выполнения лабораторной работы являются:

- 1. Изучить структуру программы на языке Python.
- 2. Познакомиться с основными типами данных в Python.
- 3. Изучить операторы ввода, вывода и присвоения, логических и арифметических операций.

Результатами работы являются:

- 1. Реализация разработанных алгоритмов на языке программирования Python;
- 2. Подготовленный отчет.

КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ИЗУЧЕНИЯ, ИССЛЕДОВАНИЯ

Руthon представляет популярный высокоуровневый язык программирования, предназначенный для создания приложений различных типов: это и веб-приложения, и игры, и настольные программы, и работа с базами данных. Довольно большое распространение питон получил в области машинного обучения и исследований искусственного интеллекта.

Программа на языке Python состоит из набора инструкций. Каждая инструкция помещается на новую строку. Например:

```
print(2 + 3)
print("Hello")
```

Большую роль в Python играют отступы, так как именно по их величине вложенные инструкции объединяются в блоки. Отступ может быть любым, главное, чтобы в пределах одного вложенного блока отступ был одинаков. Для отступа используйте 4 пробела (или знак табуляции). Наличие "лишнего" отступа приведёт к ошибке в компиляции программы:

```
print(2 + 3)
    print("Hello")
```

Поэтому стоит помещать новые инструкции сначала строки. В этом одно из важных отличий Python от других языков программирования, как С# или Java.

Однако стоит учитывать, что некоторые конструкции языка могут состоять из нескольких строк. Например, условная конструкция if:

```
if 1 < 2:
    print("Hello")</pre>
```

В данном случае если 1 меньше 2, то выводится строка "Hello". И здесь уже должен быть отступ, так как инструкция print("Hello") используется не сама по себе, а как часть условной конструкции if. Python - регистрозависимый язык, поэтому выражения print и Print или PRINT представляют разные выражения. И если вместо метода print для вывода на консоль использовать метод Print, то будет ошибка:

```
Print("Hello World")
```

Комментарии на Python обозначаются решеткой #. Их можно писать как над строкой, так и рядом. Например:

```
# Вывод сообщения на консоль
print("Hello World")
print("Hello World") # Вывод сообщения на консоль
```

КОНСОЛЬНЫЙ ВВОД/ВЫВОД

Консольный вывод

Основной функцией для вывода информации на консоль является функция print(). В качестве аргумента в эту функцию передается строка:

```
print("Hello Python")
```

Если же нам необходимо вывести несколько значений на консоль, то мы можем передать их в функцию print через запятую:

```
print("Full name:", "Tom", "Smith")
```

В итоге все переданные значения склеятся через пробелы в одну строку:

Full name: Tom Smith

Так же в print можно передать <u>математическое</u> выражение:

```
print(6 + 2) # 8
```

На экран будет выводится полученное значение.

Для Python так же характерен форматированный вывод. Существуют спецификаторы. Они аналогичны тем, что используются в других языках программирования. Буква после процента обозначает тип числа. Например, 0.%f означает, что выводится 0 знаков за запятой:

- %d для вывода целого числа
- % для вывода числа с точкой
- %s для вывода строки
- %с для вывода символа
- %е для вывода числа с е

Консольный ввод

Ввод данных с клавиатуры осуществляется с помощью функции input(). После выполнения данной функции программа ожидает ввода данных и после нажатия "Enter" записывает их в переменную или возвращает результат на экран.

Существуют 4 вида ввода в зависимости от типа данных:

```
1. a = int(input())
```

Это означает, что в переменную а будет записано целое число (int - integer). Для работы программы надо будет ввести любое целое число и нажать "Enter". После этого программа начнет работать и выведет введенное число.

```
a=int(input())
print(a)

2. a = float(input())
```

"float" означает ввод действительного числа. При вводе нецелого числа обязательно разделить целую и дробную часть точкой. Например, "34.17"

```
3. a = str(input())
```

"str" означает ввод строки. Например, "qwerty" или "Hello, Python!" (str - string).

```
4. a,b=input().split()
```

Это означает ввод любых двух и более элементов. Скобки после "split" используются для того, чтобы задать, чем будут разделяться переменные (по умолчанию пробел). Например:

```
a,b=input().split('.')
```

С помощью этих функций можно преобразовать действительное число в дробное (при этом число округляется в меньшую сторону), число в строку и так далее:

```
a=float(input())
a=int(a)
print(a)
```

Например, введено число 2.9, но на экране выведется 2, т.к. округление в меньшую сторону.

В математических функциях есть функция <u>round()</u>, позволяющая округлить до заданного знака.

ЛОГИЧЕСКИЕ И АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ

Типы данных

Чтобы совершать <u>арифметические</u> и <u>логические операции</u>, необходимо ознакомиться с основными типами данных.

В Python существует множество различных типов данных, которые подразделяются на категории: числа, последовательности, словари, наборы:

- boolean логическое значение True или False
- int представляет целое число, для хранения которого использует 4 байта в памяти компьютера.
- float представляет число с плавающей точкой, для хранения которого используется 8 байт, например, 1.2 или 34.76
- complex комплексные числа
- str строки, например "hello". В Python 3.х строки представляют набор символов в кодировке Unicode
- bytes последовательность чисел в диапазоне 0-255
- byte array массив байтов, аналогичен bytes с тем отличием, что может изменяться
- list список
- tuple кортеж
- set неупорядоченная коллекция уникальных объектов
- frozen set то же самое, что и set, только не может изменяться (immutable)
- dict словарь, где каждый элемент имеет ключ и значение

Руthon является языком с динамической типизацией. Он определяет тип данных переменной исходя из значения, которое ей присвоено. Так, при присвоении строки в двойных или одинарных кавычках переменная имеет тип str. При присвоении целого числа Руthon автоматически определяет тип переменной как int. Чтобы

определить переменную как объект float, ей присваивается дробное число, в котором разделителем целой и дробной части является точка.

Число с плавающей точкой можно определять в экспоненциальной записи:

```
x = 3.9e3
print(x) # 3900.0
x = 3.9e-3
print(x) # 0.0039
```

Число float может иметь только 18 значимых символов. Так, в данном случае используются только два символа - 3.9. И если число слишком велико или слишком мало, то можно записывать число в подобной нотации, используя экспоненту. Число после экспоненты указывает степень числа 10, на которое надо умножить основное число - 3.9.

При этом в процессе работы программы существует возможность изменить тип переменной, присвоив ей значение другого типа:

```
user_id = "12tomsmith438" # тип str
print(user_id)
user_id = 234 # тип int
print(user_id)
```

С помощью функции type() динамически можно узнать текущий тип переменной:

```
user_id = "12tomsmith438"
print(type(user_id)) # <class 'str'>
user_id = 234
print(type(user_id)) # <class 'int'>
```

Арифметические операции

Python поддерживает все распространенные арифметические операции:

```
print(6 + 2) # сложение двух чисел, результат = 8
print(6 - 2) # вычитание двух чисел, результат = 4
print(6 * 2) # умножение двух чисел, результат = 12
print(7 / 2) # деление двух чисел, результат = 3.5
print(7 // 2) # целочисленное деление, результат = 3
print(6 ** 2) # возведение в степень (второе
значение - показатель степени), результат = 36
print(7 % 2) # деление по модулю, результат = 1
```

Арифметические операции с присвоением

Ряд специальных операций позволяют использовать присвоить результат операции первому операнду:

```
number = 10
number += 5 # присвоение результата сложения
print(number) # результат = 15
number -= 3 # присвоение результата вычитания
print(number) # результат = 12
number *= 4 # присвоение результата умножения
print(number) # pезультат = 48
number /= 6 # присвоение результата деления
print(number) # pезультат = 8
number //= 3 # присвоение результата целочисленного
леления
print(number) \# pesymbtat = 2
number **= 5 # присвоение степени числа
print(number) # pезультат = 32
number %= 7 # присвоение остатка от деления
print(number) # pезультат = 4
```

Для того, чтобы не возникало конфликтов с более сложными математическими операциями, необходимо в программу импортировать библиотеку math. Она позволяет пользователю использовать тригонометрические функции, логарифмы и многое другое.

Функции преобразования чисел

Ряд встроенных функций в Python позволяют работать с числами. В частности, функции int() и float() позволяют привести значение к типу int и float соответственно.

Например, пусть будет следующий код:

```
first_number = "2"
second_number = 3
third number = first number + second number
```

Пользователь считает, что "2" + 3 будет равно 5. Однако этот код сгенерирует исключение, так как первое число на самом деле представляет строку. И чтобы все заработало как надо, необходимо привести строку к числу с помощью функции int():

```
first_number = "2"
second_number = 3
third_number = int(first_number) + second_number
print(third_number) # 5
```

Аналогичным образом действует функция float(), которая преобразует в число с плавающей точкой. Но вообще с дробными числами надо учитывать, что результат операций с ними может быть не совсем точным. Например:

```
first_number = 2.0001
second_number = 5
third_number = first_number / second_number
print(third_number) # 0.40002000000000004
```

В данном случае желательно получить число 0.40002, однако в конце через ряд нулей появляется еще какая-то четверка. Или еще одно выражение:

```
print(2.0001 + 0.1) # 2.100100000000003
```

В этом случае для округления результата возможно использование функции round():

```
first_number = 2.0001
second_number = 0.1
third_number = first_number + second_number
print(round(third number, 4)) # 2.1001
```

Первый параметр функции - округляемое число, а второй - сколько знаков после запятой должно содержать получаемое число. Но можно использовать и форматированный вывод.

Представление числа

При обычном определении числовой переменной она получает значение в десятичной системе. Но кроме десятичной в Python доступны двоичные, восьмеричные и шестнадцатеричные системы.

Для определения числа в двоичной системе перед его значением ставится 0 и префикс b:

```
x = 0b101 # 101 в двоичной системе равно 5
```

Для определения числа в восьмеричной системе перед его значением ставится 0 и префикс 0:

```
а = 0011 # 11 в восьмеричной системе равно 9
```

Для определения числа в шестнадцатеричной системе перед его значением ставится 0 и префикс x:

```
y = 0x0a # а в шестнадцатеричной системе равно 10
```

И с числами в других системах измерения также можно проводить арифметические операции:

```
x = 0b101  # 5
y = 0x0a  # 10
z = x + y  # 15
print("{0} in binary {0:08b} in hex {0:02x} in
octal {0:02o}".format(z))
```

Для вывода числа в различных системах исчисления используются функция format, которая вызывается у строки. В эту строку передаются различные форматы. Для двоичной системы "{0:08b}", где число 8 указывает, сколько знаков должно быть в записи числа. Если знаков указано больше, чем требуется для числа, то ненужные позиции заполняются нулями. Для шестнадцатеричной системы применяется формат "{0:02x}". И здесь все аналогично - запись числа состоит из двух знаков, если один знак не нужен, то вместо него вставляется ноль. А для записи в восьмеричной системе используется формат "{0:02o}".

Результат работы: 15 in binary 00001111 in hex 0f in octal 17

Логические операции

В Python имеются следующие логические операторы, аналогичные в других языках программирования:

- and (логическое умножение)
- or (логическое сложение)
- not (логическое отрицание)

Если в одном выражении одновременно используется несколько или даже все логические операторы, то следует учитывать, что они имеют разные приоритеты. Вначале выполняется оператор not, затем оператор and, а в конце оператор or.

ЗАДАЧИ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Рассмотрим выполнение лабораторной работы на примере следующей задачи: даны действительные числа x,y,z. Вычислить:

$$\frac{1 + \sin^{2}(x + y)}{2 + \left| x - \frac{2x}{(1 + x^{2}y^{2})} \right|} + z^{3}$$

$$A = \frac{(x + y)^{2}}{\ln(x^{2} + 1)} - (\cos^{2}x + tgz)$$

$$B = \frac{1 + \sin^{2}(x + y)}{(1 + x^{2}y^{2})}$$

Для начала работы необходимо создать новый файл (название любое, не содержащее кириллицы и знаков) в среде разработки IDLE Pvthon.

Программы (1)

 IDLE (Python GUI)

Рис. 1 Среда разработки на компьютере

Рис.2. Создание нового файла программы

В появившемся окне писать код программы. Запуск осуществляется с помощью кнопки Run в панели.

Рис.3. Поле для ввода кода

Имеется сложное алгебраическое выражение. Для этого нужно подключить библиотеку math. Она помогает избавится от конфликтов, происходящих во время математических операций.

```
import math
```

Затем создается приглашение пользователю ввести заданные числа. Следует использовать методы для ввода числа, в данном случае здесь будет float (по условию):

```
print("Введите x")
x=float(input())
print("Введите y")
y=float(input())
print("Введите z")
z=float(input())
```

Далее перечислен список функций из библиотеки math, необходимых для решения задачи:

- роw(аргумент, степень) – аналог возведения степени;

- $-\sin()\cos()\tan()$ тригонометрические функции;
- log(выражение) десятичный логарифм.

Следует отметить, что при возникновении ошибки желательно писать функции таким образом: math.pow.

Выражения в Python выглядят так:

```
A= ((1+pow(math.sin(x+y),2))/(2+abs(x-2*x/(1+pow(x*y,2)))))+z**3
B=pow(x+y,2)/math.log(pow(x,2)+1)-pow(math.cos(x),2)+math.tan(z)
```

Далее выводятся полученные выражения на экран. Для корректного вывода используется форматирование:

```
print("A= ","%.2f" % A)
print("B= ","%.2f" % B)
```

Итоговый код:

```
import math
print("BBeдите x")
x=float(input())
print("BBeдите y")
y=float(input())
print("BBeдите z")
z=float(input())
A=((1+pow(math.sin(x+y),2))/(2+abs(x-2*x/(1+pow(x*y,2)))))+z**3
B=pow(x+y,2)/math.log(pow(x,2)+1)-
pow(math.cos(x),2)+math.tan(z)
print("A= ","%.2f" % A)
print("B= ","%.2f" % B)
```

Результат работы: Введите х

2 Введите у 4

```
Введите z
5
A=125,27;
B=18,81
```

Следующая задача посвящена операциям деления. Условие таково: написать программу для определения числа, получаемого выписыванием в обратном порядке цифр заданного трехзначного числа.

Здесь снова необходим импорт математической библиотеки

```
import math
```

Приглашение ввести трехзначное целое число, <u>используя методы</u> ввода:

```
print("BBeдите трехзначное число")
olddig=int(input())
```

Далее записывается выражение, позволяющее записать цифры в обратном порядке:

```
newdig = (olddig%10)*100+((olddig%100)/10)*10+olddig/100 # первая цифра - это единица, она записывается на место сотни, т.е. старое число делится на 10, его остаток умножается на 100. Аналогично делаются остальные.
```

Далее полученное значение выводится на экран:

```
print("Число, получившееся в результате
преобразования ","%.0f" % newdig)

Итоговый код:
import math
print("Введите трехзначное число")
```

```
olddig=int(input())
newdig =(olddig%10)*100+((olddig%100)/10)*10+olddig/100
print("Число, получившееся в результате
преобразования ","%.0f" % newdig)
```

Результат работы: Введите трехзначное число 234

Число, получившееся в результате преобразования 432

На примере следующей задачи будут рассмотрены логические операции. Условие: точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и

FALSE - если не принадлежит.

Снова надо подключить библиотеку math.

import math

Вводимые координаты х и у будут действительными числами:

```
x=float(input())
print("Введите у")
y=float(input())
```

Далее следует использовать знания из области математики и составить логическое выражение для определения точки, находящейся в заданной фигуре:

```
isinarea=bool(((x+y>=3) and (pow(x,2)+pow(y,2)<=9) and (x >=0)) or ((-x+y<=-3) and (pow(x,2)+pow(y,2)<=9) and (x>=0)))
```

Полученный результат выводится на экран:

```
print(isinarea)
```

Итоговый код:

```
import math
print("BBEQUTE x")
x=float(input())
print("BBEQUTE y")
y=float(input())
isinarea=bool(((x+y>=3) and(pow(x,2)+pow(y,2)<=9) and(x
>=0))or((-x+y<=-
3) and(pow(x,2)+pow(y,2)<=9) and(x>=0)))
print(isinarea)
```

Результат работы: Введите х

0

Введите у

1

true

ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

Вариант 1

Задача 1.Даны целое число n, действительные числа x, y. Вычислить:

$$A = \sqrt{\frac{x + y}{\ln x^{2}}}n;$$

$$B = e^{-|y|} + \frac{1}{x^{2}\sqrt{n}};$$

$$C = \frac{arctg \frac{x}{n} + |x^{3}\sqrt{ny}|}{n}$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Даны целые числа m и n. Определить являются ли они делителями значения суммы первой и предпоследней цифры заданного целого четырехзначного числа.

Задача 1. Даны действительные числа x, y, z. Вычислить:

$$A = \frac{1 + \sin^{2}(x + y)}{2 + \left| x - \frac{2x}{(1 + x^{2}y^{2})} \right|} + z^{3}$$

$$A = \frac{(x + y)^{2}}{\ln(x^{2+1})} - (\cos^{2}x + tgz)$$

$$B = \frac{(x + y)^{2}}{\ln(x^{2+1})} - (\cos^{2}x + tgz)$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Дано действительное число а.Написать программу, печатающую число сотен в целой части значения выражения: $17*a^3/(a+1)^2$.

Задача 1.Даны действительные числа a, b, целое число c. Вычислить:

$$X = \frac{2\cos(b-1/6)}{1/2 + \sin^2 a};$$

$$1 + \frac{c^2}{3 + \frac{\ln(c^2+1)}{5}}.$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3. Дано целое число k, действительное число x. Написать программу, определяющую количество десятков в округленном

$$\frac{k+x}{\sqrt{|x|}}$$
 значении выражения: $\frac{k+x}{\sqrt{|x|}}$ *k²

Задача 1.Даны целые числа k, l, действительное число x. Вычислить:

$$A = \frac{k + \frac{l}{k^2 + \left| \frac{x^2}{k + l^3 / 3} \right|}}{B^{-\frac{1}{2}}};$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Написать программу вычисления суммы цифр заданного четырехзначного целого числа.

Задача 1.Даны действительные числа a, b, целое число k. Вычислить:

$$X = \frac{\ln^3 \left| \frac{a+b}{3} \right| + \sqrt{k^2 + 4}}{3};$$

$$Y = \sin a^2 + \sin^2 a - e^{(a+b)^2};$$

$$Z = \frac{tg\left(\frac{a}{b}\right) + \sqrt{|a| + 1}}{\sin(ka)^2 + 4.2} + 3.25\ln|5 - 3a|.$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Дано действительное число а.Написать программу, печатающую число сотен в целой части значения выражения: $17*a^3/(a+1)^2$.

Задача 1.Даны целые числа i, k, действительное число a. Вычислить:

$$(1+i)\frac{a+k/(i^{2}+4)}{e^{-k-2}+\frac{1}{(a^{2}+4)}};$$

$$X = \frac{1+\cos(k-2)}{\frac{a^{4}}{2}+\sin^{2}i};$$

$$Y = \frac{1+\cos(k-2)}{2}$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Дано целое двузначное число к. Написать программу для

вычисления
$$R = \frac{m}{m^2 + 1}$$
, где m

- число, получаемое из заданного двузначного числа k выписыванием каждой цифры два раза. (Например: 23-2233, 80 - 8800).

Задача 1.Даны целое число n, действительные числа x, y. Вычислить:

$$A = \frac{3 + e^{n-1}}{1 + x^{2} |y - tg|^{y} / x};$$

$$B = \frac{1 + |y - x| + \frac{y - x^{2}}{n} + \frac{|y - x|^{3}}{3}}{3}.$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Найти остаток от деления значения выражения c=k*(a-b) на 5.

Задача 1. Даны целые числа і, і, 1. Вычислить:

$$\mathbf{A} = \frac{\sqrt{|i-1|+|i-4|/|k|}}{1+\frac{i^2}{2}+\frac{k^2}{4}}$$

$$B = i^{(arctg(k+l) + e^{-i+3})}$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Дано целое число а и действительное число т.Написать программу для вычисления последней цифры в записи целой части

выражения
$$\frac{a+m}{25} + \sqrt{a}$$

Задача 1. Даны целое число ки действительное число а. Вычислить:

$$X = \frac{a^{2} + |k|}{\sqrt{12.7 + \sin a^{2}}};$$

$$Y = e^{-\frac{1}{a} + tgk^{2}};$$

$$Z = \frac{1}{7} + \sqrt{\frac{a}{k^{2}} + \ln \frac{a}{3}}$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит заштрихованной области и FALSE - если не принадлежит.

Задача 3.Дано натуральное число п.Вычислить сумму квадрата этого числа и квадратов цифр этого числа.

Задача 1.Даны целые числа a, b, действительное число c. Вычислить:

$$X = \frac{e^{\frac{a}{b+c}} + \sqrt{a^2 + b^2} - \frac{1}{c^3 + ab}}{\sin a + \sqrt{\cos b^2} - tg\frac{a}{b}};$$

$$Y = \frac{\sin a + \sqrt{\cos b^2} - tg\frac{a}{b}}{\sin a}$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача З.Дано действительное число а.Написать программу для определения третьей цифры с конца в записи целой части выражения

$$\sqrt{|a^2 + \sin a|} + a^2$$

Задача 1. Даны действительные числа s, t, r. Вычислить:

$$P = \frac{\sin s^{2} + \sin^{2} s}{\sqrt{t^{2} + r^{2}}} - \frac{16}{tgs};$$

$$Q = \frac{\sqrt{\sin^{2} t} + \ln|t^{2} + r^{3} s|}{t}.$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Дано целое число k, действительное число x.Вычислить произведение трех младших цифр в записи округленного значения выражения $x^k + k^2$.

Задача 1.Даны целые числа n, k, действительное число a. Вычислить:

D=
$$\frac{\ln^{2}(a\sqrt{|n|}) - \sin\left(\frac{12k^{3}}{|a+n|}\right)}{\sin a^{2} + e^{-a+n} + 6.3}$$

$$F = \frac{\sin a^{2} + e^{-a+n} + 6.3}{arctg2.6 + |a-n|}$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Дано действительное число х.Написать программу для определения первой цифры дробной части в записи значения выражения $\sqrt{|x|+3*x^2}+3,2$.

Задача 1. Даны целое k, действительные числа a, b. Вычислить:

$$x = \frac{\sqrt{|a^{2} + b^{k}|} + \sin^{2}\left(\frac{a}{b} - 1\right)}{1 + 3.23\ln^{2}\left(\frac{a^{2} - \sin b}{\tan k}\right)} x = \frac{\sqrt{|a^{2} + b^{k}|} + \sin^{2}\left(\frac{a}{b} - 1\right)}{1 + 3.23\ln^{2}\left(\frac{a^{2} - \sin b}{\tan k}\right)},$$

$$y = \frac{a + \sin^{2}|b + 1|}{\cos a} - 2e^{|a + 1|} + 4.25$$

$$y = \frac{a + \sin^{2}|b + 1|}{\cos a} - 2e^{|a + 1|} + 4.25$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая используя логическое выражение выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Найти разность первой цифры дробной части и второй цифры с конца целой части значения выражения $\frac{a+12.55b}{c-187a}.$

Задача 1.Даны целые числа а, b, с.Вычислить:

$$D = \frac{arctga^{2} + \left(a^{2} + \frac{b^{2}}{4}\right)}{\sqrt[3]{25.6753c} + \cos^{2}(a+b) + \frac{c+|a|}{\sqrt{25.6753a}}};$$

$$F = \frac{1}{25.6753} + \cos^{2}(a+b) + \frac{c+|a|}{\sqrt{25.6753a}}.$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Даны целые числа m,b.Написать программу для вычисления суммы цифр целой части значения выражения m² / b² - $\sqrt{|m/b|}$.

Задача 1.Даны целые числа n, k, действительные число a,b. Вычислить:

$$X = \frac{1+a}{|\pi^{2}+b^{2}|} - \frac{1}{tg^{2}(\pi+b)} - 16k^{2},$$

$$Y = \sqrt[7]{\frac{e^{-b\pi}+b}{4\pi n}},$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Даны действительные числа a, b. Найти сумму последней цифры целой части числа a и первой цифры дробной части числа b.

Задача 1.Даны целое число k., действительные числа x, y, z. Вычислить:

$$A = \frac{\sin x^{k} + \sqrt[3]{tg \frac{y}{z+1}}}{\left(e^{k-y} + 2.34(x-3)^{2}\right)^{2}} + \sqrt{|x-y|}$$

$$B = \frac{arctg^{2} \left| \frac{x-z}{x+z} \right| + 3}{1 + 3}$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача З.Даны два целых четырехзначных числа. Найти сумму последних двух цифр первого числа и произведение первых двух цифр второго числа.

Задача 1.Даны целое число n, действительные числа i,j,k. Вычислить:

$$D = tg^{2}(i-k)^{n} + \sqrt{\frac{i+k}{j^{2}+k^{2}}};$$

$$\frac{|i+k^{2}| - \sqrt{i^{2}k^{2}(|i|+|k|)+1}}{n\sin^{2}(i+k^{2})};$$

$$\cos^{3}(i^{2}+3) + tg^{2}(\frac{k}{j}+1) + 756.3$$

$$R = tg^{2}(i-k)^{n} + tg^{2}(\frac{k}{j}+1) + 756.3$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит v области и FALSE - если не принадлежит.

Задача 3.Проверить кратно ли 6 третья цифра от конца в записи целого положительного четырехзначного числа.

Задача 1.Даны целые числа n, k, действительные числа x,y. Вычислить:

$$\mathbf{A} = \frac{\frac{n + tg^{2}k}{x^{4} + y/2} + \sqrt{\frac{x + y}{\sin^{2}(n + k)}} + \frac{45.673}{\sqrt[5]{|x|} + 1}}{\frac{k^{2} - y^{2}}{\cos(1.25 - 3n)} - \ln^{3}\left(\frac{tgx + 2}{e^{k} - 1}\right)},$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Присвоить целой переменной d первую цифру из дробной части положительного числа x.

Задача 1.Даны действительные числа a, b, целые числа i, j. Вычислить:

$$C = \frac{e^{|a-b|} + \sqrt{\frac{i^2 + j^2}{|a-b|} - \sin^3(|i| + \sqrt{|b|})}}{\sin^2(\sin a + \cos^2(b+1)) + 3j} + 4.2$$

$$D = \frac{\ln^2(\sin a + \cos^2(b+1)) + 3j}{1 + tg^2(a+b)} + 4.2$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3.Найти остаток от деления значения выражения c=k(a+b) на 4.

Задача 1.Даны действительные числа $a,\ b,\$ целое число k. Вычислить:

$$X = \frac{\ln^3 \left| \frac{a+b}{3} \right| + \sqrt{k^2 + 4}}{3}$$
;

$$Y = \sin a^2 + \sin^2 a - e^{(a+b)^2};$$

$$\frac{tg\left(\frac{a}{b}\right) + \sqrt{|a| + 1}}{\sin(ka)^2 + 4.2} + 3.25\ln|5 - 3a|$$

$$Z = \frac{\sin(ka)^2 + 4.2}{\sin(ka)^2 + 4.2} + 3.25\ln|5 - 3a|$$

Задача 2.Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение, выводит TRUE, если точка принадлежит закрашенной области и FALSE - если не принадлежит.

Задача 3. Найти целую часть от деления на 7 целой части значения

$$\frac{\sqrt{|-ax+c|}}{\ln|x+c^2|}$$
выражения

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Расскажите об <u>особенностях</u> кода на Python.
- 2. Как можно расположить комментарии в программе?
- 3. Для чего нужны спецификаторы? Перечислите их.
- 4. Опишите консольный ввод Python. Приведите примеры ввода.
- 5. Расскажите об операторах деления. В чем их отличия?
- 6. Зачем нужны арифметические операции с присваиванием? Приведите примеры.
- 7. Для чего предназначена функция type()?
- 8. Как работает преобразование типов?
- 9. Напишите программу для арифметических операций чисел в разных системах счисления.
- 10. Запишите на языке Python законы де Моргана и составьте для них таблицы истинности.

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

На выполнение лабораторной работы отводится 2 академических часа: 1 час на выполнение и сдачу лабораторной работы и 1 час на подготовку отчета. Отчет на защиту предоставляется в печатном виде.

Порядок выполнения:

- 1. Изучить теоретический материал.
- 2. Получить вариант у преподавателя.
- 3. Разработать программы согласно варианту.
- 4. Выполнить тестирование программы.
- 5. Продемонстрировать работу программы преподавателю.
- 6. Оформить отчет.
- 7. Защитить выполненную работу у преподавателя.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Буйначев, С.К. Основы программирования на языке Python: учебное пособие / С.К. Буйначев, Н.Ю. Боклаг; Министерство образования и науки Российской Федерации, Уральский федеральный университет им. первого Президента России Б. Н. Ельцина. Екатеринбург: Издательство Уральского университета, 2014. 92 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=275962
- 2. Саммерфилд, М. Python на практике [Электронный ресурс] : учебное пособие / М. Саммерфилд ; пер. с англ. Слинкин А.А.. Электрон. дан. Москва: ДМК Пресс, 2014. 338 с. Режим доступа: https://e.lanbook.com/book/66480

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 3. Сузи, Р.А. Язык программирования Python: курс / Р.А. Сузи. 2-е изд., испр. Москва: Интернет-Университет Информационных Технологий, 2007. 327 с. (Основы информационных технологий). Режим доступа: http://biblioclub.ru/index.php?page=book&id=233288
- И.А. 4. Хахаев. Практикум ПО алгоритмизации на Python : курс / программированию И.А. Хахаев. -Национальный 2-е изл., исправ. Москва: Открытый Университет «ИНТУИТ», 2016. - 179 с. – Режим доступа: http://biblioclub.ru/index.php?page=book&id=429256

Электронные ресурсы:

- 5. Электронно-библиотечная система http://biblioclub.ru/
- 6. Электронно-библиотечная система http://e.lanbook.com
- 7. Сайт о программировании https://metanit.com/