به نام خدا

دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر

سیگنال و سیستم تمرین سری ۱

استاد: صدف صالح كليبر

مهرماه ۱۳۹٦

سؤال ١

برای شکل موج x(t) زیر تابع $y(t)=\int_0^t x(au)d au$ را محاسبه و رسم کنید (ضربهها منفی و مقدار ۱ دارند).

y(t) پیست

سؤال ٢

انتگرال های زیر را محاسبه کنید:

a.
$$\int_{-\infty}^{+\infty} f(t+1)\delta(t+1)dt$$

$$b.\int_{-\infty}^{+\infty} e^{-\omega T} \delta(t) dt$$

c.
$$\int_{-\infty}^{+\infty} f(t)(\delta(t-1) + \delta(t+1)dt)$$

d.
$$\int_{-\infty}^{+\infty} f(\tau)(\delta(t-\tau) + \delta(t-2)d\tau$$

سؤال ٣

خواص زیر را برای تابع ضربه ثابت کنید:

a.
$$\delta(at) = \frac{1}{a}\delta(t), a > 0$$

b.
$$f(t)\delta'(t) = f(0)\delta'(t) - f'^{(0)}\delta(t)$$

سؤال ٤

به ازای $z = \frac{1}{2}e^{j\pi/4}$ مبارت های زیر را محاسبه کنید:

- a. Re(z)
- b. Im(z)
- c. |z|
- d. *∢z*
- e. z*
- f. $z+z^*$

سؤال ٥

الف) فرض کنید $z=re^{j\theta}$ ، توابع زیر را در مختصات قطبی مشخص کنید (اندازه و زاویه در مختصات قطبی را تعیین کنید).

- a. *z**
- $b. z^2$
- c. jz
- d. zz*
- e. $\frac{z}{z^*}$
- $f.\frac{1}{z}$

ب) بردارهای مربوط به جواب های قسمت قبل را در صفحه مختلط به ازای $r=rac{2}{3}$, $heta=\pi/6$ رسم کنید.

سؤال ٦

برای سیگنالهای گسسته زمان زیر، بخش های الف-د را انجام دهید:

$$x[n] = \begin{cases} 0 & n \le 0 \\ 3^{-n} & n > 0 \end{cases}$$
 , $x[n] = \cos(n\frac{\pi}{2})$

الف) سیگنالها را به صورت تابعی از n رسم کنید.

ب)انرژی سیگنالها ($\sum_{n=-\infty}^{n=+\infty}|x[n]|^2$) را محاسبه کنید.

ج) توان متوسط سيگنالها $\sum_{N \to \infty}^{n=+N} \sum_{n=-N}^{n=+N} |x[n]|^2$ را محاسبه كنيد.

د) کمترین مقدار ممکن L را چنان بیابید که نامساوی $|x[n]| \leq L$ به ازای هر L برقرار شود.

سؤال ٧

برای هر یک از سیگنالهای زیر، در ابتدا مشخص کنید که متناوب هستند یا نه، در صورتی که متناوب بودند، دوره تناوب پایه، فرکانس پایه را به rad/sec و Hz محاسبه کنید.

a.
$$x[n] = \sin\left(n\frac{\pi}{3}\right) + \cos\left(n\frac{\pi}{2}\right)$$

$$b.x[n] = n$$

c.
$$x[n] = 1$$

$$d.x[n] = \cos(\frac{\pi}{8}n^2)$$

$$e.x(t)=\sin(2t)$$

$$f.x(t) = e^{j\pi t}$$

g.
$$x(t) = e^{(3+j\pi)t}$$