Stochastic Programming Formulation

Seonho Park

1 Sets

```
\mathcal{P}: product IDs, \{0, \dots, 499\}
```

S: scenario IDs, $\{0, \ldots, ns - 1\}$

 $\mathcal{G}\,:\, \text{set of product ID sets,} \, \mathcal{G} := \{\mathcal{G}_j\}_{j=0}^{197}$

 \mathcal{G}_j : product IDs belonging to the substitutability group j, where $j \in \{0, \dots, 197\}$

 \mathcal{P}_c : product IDs that capacity limits are defined

2 Parameters

 d_i : demand of product $i \in \mathcal{P}$

 $\tilde{d}_{i,s}$: demand realization of product $i \in \mathcal{P}$ in scenario $s \in \mathcal{S}$, that is $\tilde{d}_{i,s} := d_i \nu_{i,s}$ where $\nu_{i,s}$ is the sample from the burr12 distribution associated with the product $i \in \mathcal{P}$

ns: the number of scenarios, $ns = |\mathcal{S}|$

 a_i : COGS of product $i \in \mathcal{P}$

 b_i : selling price of product $i \in \mathcal{P}$, which corresponds to margin+COGS

 μ : input parameter, the ratio of aggregated surplus quantities over total (estimated) demand, ranged from 0.1 to 0.5

 c_i : capacity limit of product $i \in \mathcal{P}_c$

3 Variables

 x_i : surplus of product $i \in \mathcal{P}$, nonnegative continuous

 $y_{i,s}$: the amount of demand that cannot be met by the supply of product $i \in \mathcal{P}$ in scenario $s \in \mathcal{S}$, nonnegative continuous

4 Objective Function

$$\max_{x,y} \sum_{i \in \mathcal{P}} \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} b_i(\tilde{d}_{i,s} - y_{i,s}) - \sum_{i \in \mathcal{P}} a_i(x_i + d_i)$$
 (1)

The objective function represents the profit margin. The first term of the profit margin is the expected revenue. It is calculated by selling price b_i multiplied by the amount that is sold, which corresponds to $\tilde{d}_{i,s} - y_{i,s}$ for each scenario. The second term represents the overall cost to produce the products. This profit margin is to be maximized.

5 Constraints

Capacity limit constraint

$$x_i \le d_i c_i, \qquad \forall i \in \mathcal{P}_c$$
 (2)

Total surplus limit constraint

$$\sum_{i \in \mathcal{P}} x_i \le \mu \sum_{i \in \mathcal{P}} d_i \tag{3}$$

Substitutability constraint

$$\sum_{i \in \mathcal{G}_j} x_i + d_i \ge \sum_{i \in \mathcal{G}_j} \tilde{d}_{i,s} - y_{i,s} \qquad \forall s \in \mathcal{S}, \forall \mathcal{G}_j \in \mathcal{G}$$
 (4)