

Using Sentinel Profiles for Drug Characterization: Clustering and connectivity

Lev Litichevskiy

NEU PROTEOMICS CAPSTONE MODULE | MAY 12, 2017

Profiles can be subtle

Vemurafenib in 6 cell lines (3 replicates)

- Vemurafenib doesn't look remarkably different in a particular cell line
- But we know that it should...

P100

Biology of vemurafenib

A375 has a BRAF V600E mutation

V600E mutation in BRAF protein makes it constitutively active

Vemurafenib selectively binds to V600E form of BRAF protein

What can we learn by looking at individual analytes?

RPS6KA3, S369

"May be phosphorylated at Thr-365 and Ser-369 by MAPK1/ERK2 and MAPK3/ERK1."

AHNAK, S3426

N/A!

PhosphoSitePlus®

In vivo Characterization

Methods used to characterize site in vivo:

Disease tissue studied:

Relevant cell line - cell type - tissue:

lung cancer (12), B cell lymphoma (11), non-Hodgkin's lymphoma (11), ovarian cancer (5), multiple myeloma (11), melanoma skin cancer (3) 293 (epithelial) [AT1 (human), transfection] (14), 293T (epithelial) (2), A549 (pulmonary) (8), AML-193 (monocyte) (11), breast (1, 5), BT-20 (breast cell) (12), BT-549 (breast cell) (12), Calu 6 (pulmonary) (12), CMK (megakaryoblast) (11), CTS (myeloid) (11), DOHH2 ('B lymphocyte, precursor') (11), H2009 (pulmonary) (12), H2077 (pulmonary) (12), H2887 (pulmonary) (12), H322 (pulmonary) (12), H322M (pulmonary) (12), HCC1937 (breast cell) (12), HCC2279 (pulmonary) (12), HCC366 (pulmonary) (12), HCC78 (pulmonary) (12), HEL (erythroid) (11), HeLa (cervical) (4, 16, 17), HeLa S3 (cervical) (15), HOP62 (pulmonary) (12), Jurkat (T lymphocyte) (9, 18), K562 (erythroid) (10), Kasumi-1 (myeloid) (11), KG-1 (myeloid) (11, 13), liver (7), LOU-NH91 (squamous) (12), MCF-7 (breast cell) (12), MDA-MB231 (breast cell) (12), MDA-MB468 (breast cell) (12), MV4-11 (macrophage) (11), NCI-H157 (pulmonary) (12), NCI-H1648 (pulmonary) (12), NCI-H1666 (pulmonary) (12), NCI-H2172 (pulmonary) (12), NCI-H460 (pulmonary) (12), OPM-2 (plasma cell) (11), ovary (5), P31/FUJ (erythroid) (11), RL ('B lymphocyte, precursor') (11), RPMI-8226 (plasma cell) (11), SH-SY5Y (neural crest) (6), SH-SY5Y (neural crest) [LRRK2 (human), transfection, overexpression of LRRK2(G2019S)] (6), SU-DHL-6 (B lymphocyte) (11), U266 (plasma cell) (11), WM239A (epidermal) (3)

breast cancer (5, 12), breast ductal carcinoma (5), HER2 positive breast cancer (1), luminal A breast cancer (1), luminal B breast cancer (1), breast cancer, surrounding tissue (1), breast cancer, triple negative (1, 5), cervical cancer (15), cervical adenocarcinoma (15), leukemia (13), acute myelogenous leukemia (13), acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) (11), acute megakaryoblastic leukemia (MZ) (11), acute monoblastic leukemia (MSa) or acute monocytic leukemia (M5b) (11), acute myeloblastic leukemia, with granulocytic maturation (M2) (11), acute myeloblastic leukemia, without maturation (M1) (11), lung cancer (12), non-small cell

mass spectrometry (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)

VPRBP, S1000

Treatments

nocodazole (15)

A profile is a vector in high dimensional space

Our vectors have 96 dimensions

"We measured value *a* for analyte *x* when we treated with drug V."

"We measured value *a* for analyte *x* and value *b* for analyte *y* when we treated with drug V."

"We measured these 96 values for these 96 analytes for drug V."

How can we compare vectors?

Examples of similarity metrics

Euclidean distance

Pearson correlation

Exactly cosine similarity if vectors are centered

Spearman correlation

Values first converted to ranks

Pearson or Spearman?

Spearman tolerates outlier values

Pearson v. Spearman on real data

Typically we get similar results

Vemurafenib, A375, Replicate 2

Pearson correlation: 0.65 Spearman correlation: 0.66

Pearson correlation: -0.03 Spearman correlation: 0.07

Similarity matrix for vemurafenib

Appears that A375 samples stand out

Pearson correlation

Spearman correlation

Hierarchical clustering

Uses similarities to visualize structure in data

Clustering allows us to see more clearly that A375 is in its own cluster.

Similarity metric: Spearman

Linkage method: Average

Two shortcomings of clustering

We address them with connectivity

- 1. We still need to deal with replicates
- 2. How do we know if a particular correlation is significant?

First, we compute similarity

	A1	A2	A3	B1	B2	В3	C1	C2	C3
A1	1	.91	.83	.34	.39	.62	.43	.51	.58
A2	.91	1	.74	.24	.31	.40	.57	.61	.52
A3	.83	.74	1	.50	.46	.27	.39	.38	.71
B1	.34	.24	.50	1	.88	.72	40	31	64
B2	.39	.31	.46	.88	1	.79	39	71	21
В3	.62	.40	.27	.72	.79	1	.11	04	10
C1	.43	.57	.39	40	39	.11	1	.43	.55
C2	.51	.61	.38	31	71	04	.43	1	.70
C3	.58	.52	.71	64	21	10	.55	.70	1

Consider a given pair of drugs:

Targets

- Query = drug A
- Target = drug B

Queries

	A1	A2	А3	B1	B2	ВЗ	C1	C2	C3
A1	1	.91	.83	.34	.39	.62	.43	.51	.58
A2	.91	1	.74	.24	.31	.40	.57	.61	.52
A3	.83	.74	1	.50	.46	.27	.39	.38	.71
B1	.34	.24	.50	1	.88	.72	40	31	64
B2	.39	.31	.46	.88	1	.79	39	71	21
В3	.62	.40	.27	.72	.79	1	.11	04	10
C1	.43	.57	.39	40	39	.11	1	.43	.55
C2	.51	.61	.38	31	71	04	.43	1	.70
C3	.58	.52	.71	64	21	10	.55	.70	1

Extract test and background distributions

Queries

	A1	A2	А3	B1	B2	ВЗ	C1	C2	C3
A1	1	.91	.83	.34	.39	.62	.43	.51	.58
A2	.91	1	.74	.24	.31	.40	.57	.61	.52
A3	.83	.74	1	.50	.46	.27	.39	.38	.71
B1	.34	.24	.50	1	.88	.72	40	31	64
B2	.39	.31	.46	.88	1	.79	39	71	21
В3	.62	.40	.27	.72	.79	1	.11	04	10
C1	.43	.57	.39	40	39	.11	1	.43	.55
C2	.51	.61	.38	31	71	04	.43	1	.70
C3	.58	.52	.71	64	21	10	.55	.70	1

Targets

Compare test and background distributions

Test

Spearman correlation

Background

Compare 2 distributions using Kolmogorov-Smirnov two-sample (KS) test

 Test statistic ranges from 0 to 1

Add sign to result of KS test

- This is called the *connectivity score*
- Ranges from -1 to 1

Connectivity matrix for vemurafenib

Very clear that A375 stands out

SummaryWhy we find connectivity useful

- 1. Collapses replicates
- 2. Compares similarities (Spearman correlations) to a background, which helps evaluate significance

BONUS: Connectivity allows comparison across assays

- e.g. Global chromatin profiling (GCP) measures 59 features of chromatin modifications
- e.g. L1000 measures gene expression for ~1000 genes

Network visualizations

Can see second-order connections

Undirected graphs

- 1. Symmetrize connections
- 2. Pick a threshold; throw out connections below threshold
- Keep connections related to a query of interest
- 4. Keep also connections also between first-order connections

(5) Biological applications of connectivity

1. Compounds with the same annotated mechanism of action (MoA) generally have high connectivity to each other

2. Vemurafenib connects to Mek inhibitors in only A375 cells

3. Pazopanib has different connectivities in NPCs

Pazopanib

	NPC		
	Z	Drug	Mechanism of Action
	Ť	Pazopanib	PDGFR, VEGFR (and c-KIT, FGFR) inhibitor
		TG101348	Jak/Stat inhibitor
		staurosporine	Kinase inhibitor; general
		Nilotinib	Multikinase inhibitor (Bcr-Abl)
		UNC-0646	G9A inhibitor
		methylstat	Lysine demethylase inhibitor
		zebularine	DNA methyltransferase inhibitor
		tacrolimus	Calcineurin inhibitor
		SP600125	Jnk inhibitor
		LY-294002	PI3K inhibitor
*		SCH 900776	Cell cycle inhibitor
		bafilomycin A1	Inhibitor of the vacuolar-type H+-ATPase
		JQ1-S	BRD inhibitor
		Tofacitinib	Jak/Stat inhibitor
		BIX-01294	G9A inhibitor
*		Dinaciclib	Cell cycle inhibitor
*		SMER-3	E3 ligase inhibitor
*		C646	Acetyltransferase inhibitor
		trichostatin A	HDAC inhibitor
*		niclosamide	Jak/Stat inhibitor

4. Strongest connections in P100

- Aggregated across cell lines
- 0.5% cutoff

5. Connecting perturbations to baseline states

GCP performed on 804 cell lines

Example GCP features			
H3K4me0			
H3K4me1			
H3K4me2			
H3K4ac1			
H3K18ub1K23ac0			
H3K27me1K36me3			
H3K27me3K36me2			
H3K27ac1K36me0			

804 cancer cell lines

540 perturbations

EZH2 mutants connect to EZH2 inhibition

Two clusters of NSD2 mutants

Negative connections to perturbations suggest therapeutics

https://software.broadinstitute.org/morpheus/

Questions?

Lev Litichevskiy lev@broadinstitute.org

Acknowledgements

PCCSE

Amanda Creech

Xiaodong Lu

Desiree Davison

Adam Officer

Shawn Egri

Jake Jaffe

Katherine DeRuff

Malvina Papanastasiou

Ryan Peckner

Sebastian Vaca

Appendix

Profiles show expected effects

Staurosporine and okadaic acid have widespread effects

Median normalized log2 fold changes

Similarity between biological replicates is high

Why a compound-specific background?

Theoretically allows us to find more nuanced connections

In reality, the compoundspecific background is similar to the global background

Example: connectivity between compounds A and B

