GIST 4302/5302: Spatial Analysis and Modeling

Guofeng Cao www.gis.ttu.edu/starlab

Department of Geosciences Texas Tech University guofeng.cao@ttu.edu

Spring 2017

Course Outlines

Map Projection

- Elements in map projection
 - ▶ datum
 - ► developable surface
 - ► projection
- Distortions
 - ▶ distance
 - ► shape
 - ▶ area
 - ▶ direction
- how to choose map projections?
 - depending on purposes, you may need to preserve a certain spatial property - most commonly shape or area - to achieve that purpose

Lab

• Lab 1: ArcMap and map projection questions

Characteristics of spatial data

- spatial (auto/cross-)correlation (spatial context or spatial pattern in different context)
- spatial heterogeneity
 - ► Simpson paradox in a spatial setting
- fractal behaviors
 - ► scale issues
 - ► measuring the length of coastline of Maine
 - ► travel traces of 'ants' vs. 'elephant'

Data types

- spatial point pattern
- areal data
- geostatistical data
- network data

Representation of spatial data

Representations of spatial data (i.e., spatial database basics)

- object-based
 - ► geometric primitives: points, lines and polygons
 - ► convex hull, Voronoi diagram, Delaunay triangulation
 - ► primitive operations: point-in-polygon, buffer
 - spatial guery and spatial join
 - ► data structures for spatial data
 - spaghetti models
 - NAA
- field-based
 - ► points
 - ► contours
 - ► raster/lattice
 - ► triangulation (Delaunay triangulation)

Labs

- Lab 2: Find what's inside
- Lab 3: Find what's nearby
- Lab 4: Raster spatial analysis
- Lab 5: Model builder
- Lab 6: Geocoding

Contents in Exam II start from here

Basic Probability and Statistics

Statistical tools

- histogram
- mean, median, variance
- z-score
- covariance, correlation coefficient
- p-value
- QQ-plot, box-plot

Pitfalls of spatial data

- MAUP
 - ► zone effect
 - ► scale effect
- Ecological fallacy

Spatial Point Pattern Analysis

Geographic distribution

- mean center, median center
- standard distance, standard ellipsoid distance

Point pattern analysis methods

- 1st order
 - ► Quadrat methods
 - ► Density estimation
- 2nd order
 - ► nearest neighbour distance
 - ► distance functions K,G,F

Hypothesis testing of CSR

- CSR: complete spatial randomness
- Hypothesis testing
 - ► Monte Caro test

Lab

- Lab 7: Point Pattern Analysis
- Homework assignment

Areal data and spatial autocorrelation

Basics

- Spatial neighbourhood
- Spatial weight matrix

Measuring spatial autocorrelation

- Joint count
- Moran's / and Moran's / scatter plot
- Hypothesis testing
 - ► permutation test

Lab

- Lab 8-a: Getting started with GeoDa
- Lab 8-b: Exploratory analysis using GeoDa

Spatial regression

- Spatial autoregression vs. Correlation
- Diagnostic of spatial dependence (autocorrelation)
- Consequences of ignoring spatial dependence (or spatial effects)
- Spatial econometrics approaches
 - ► Lag model
 - ► Error model

Representation of spatial fields

- Scalar fields vs. vector fields
- Countours
- Lattice
- TIN

Derivatives of spatial fields

- Gradient
- Slope/Aspect

Spatial interpolation

- Deterministic interpolator
 - ► Nearest neighours
 - ► Natural neighours
 - ► Trend surface
 - ► IDW
 - ► Spatial splines
 - ► Triangulation
- Stochastic interpolator
 - ► Kriging family of methods

Advantage of Kriging methods over the deterministic methods

Geostatistics

Kriging

- Semivariogram, covariogram
 - ► Range, nugget, sill
 - ► Empirical semivariogram and theoretical semivariogram models
- Kriging
- Procedures to conduct kriging
- Advantages of Kriging over determistic methods, such as IDW

Lab

- Lab 9-a: Spatial interpolation
- Lab 9-b: Kriging

Labs and software

Lab topics

- Map projection
- Find what's inside
- Find what's nearby
- Raster spatial analysis
- Model builder
- Geocoding
- Point pattern analysis
- Exploratory analysis (Moran's I)
- Spatial interpolation
- Kriging

Software

- ArcMap
 - Arctoolbox: 3D analytst, spatial analysis, spatial statistics, geostatistics
- GeoDa (open-source)
- OpenStreetMap (mapathon)

Project report due: May 12th this Friday

- Print it out and return to TA
- upload your project materials, including presentation, datasets and results to your folder on Techshare

Exam format

- May 16th, 1:30-4pm, Science 234
- open books and open notes, but access to any digital devices (e.g, phones, tables, computers) are not allowed
- multiple choices plus writing questions

New class available at Fall

- Geog 5330: Applied Spatial and Spatiotemporal Data Analysis
- Graduate level class

Map links

- http://www.gis.ttu.edu/gist4302/links.html
- @ttugis, @guofengcao

Thank you, any questions/comments