2007年第8期 19

赛题新解

2005 年全国联赛加试第二题的另解

徐一博

(南开大学 2006 级数学试点班 360070)

题目 设
$$a,b,c,x,y,z>0$$
 满足 $cy + bz = a$, $az + cx = b$, $bx + ay = c$. 求函数

$$f(x,y,z) = \frac{x^2}{1+x} + \frac{y^2}{1+y} + \frac{z^2}{1+z}$$

的最小值.

将 x,y,z 用 a,b,c 表示 ,于是 ,以 a,b,c 为边长可构成一个锐角 ABC ,且

$$x = \cos A$$
, $y = \cos B$, $z = \cos C$.

问题转化为:求

$$f(A, B, C) = \frac{\cos^2 A}{1 + \cos A} + \frac{\cos^2 B}{1 + \cos B} + \frac{\cos^2 C}{1 + \cos C}$$

的最小值.

解法 1:猜想 $A = B = C = \frac{1}{3}$ 时,

$$f(A,B,C) = \frac{1}{2}$$
为最小值.

下面用调整法寻找突破口.

设
$$B + C = B + C$$
 ,则
$$B - B = C - C$$
.
$$\Leftrightarrow u = \sin \frac{C + C}{2}, v = \sin \frac{B + B}{2},$$

$$M = (1 + \cos B)(1 + \cos B)(1 + \cos C)(1 + \cos C).$$
则 $f(A, B, C) - f(A, B, C)$

$$= (\cos B - \cos B) \left[\frac{1}{(1 + \cos B)(1 + \cos B)} - 1 \right] + \left(\cos C - \cos C \right) \left[\frac{1}{(1 + \cos C)(1 + \cos C)} - 1 \right]$$

$$= 2\sin \frac{B - B}{2} \left[-\frac{\sin \frac{B + B}{2}}{(1 + \cos B)(1 + \cos B)} + \right]$$

$$\frac{\sin\frac{C+C}{2}}{(1+\cos C)(1+\cos C)} + \frac{\sin\frac{B+B}{2} - \sin\frac{C+C}{2}}{\sin\frac{B+B}{2} - \sin\frac{C+C}{2}} = \frac{2\sin\frac{B-B}{2}}{M} \left[\sin\frac{C+C}{2} \left(\cos\frac{B+B}{2} + \cos\frac{B-B}{2} \right)^{2} - \frac{2\sin\frac{B+B}{2}}{M} \left(\sin\frac{B+B}{2} - \sin\frac{C+C}{2} \right) \right] + \frac{2\sin\frac{B-B}{2}}{M} \left[u(1-v^{2}) - v(1-u^{2}) + \frac{2\cos\frac{B-B}{2}}{M} \left(u-v \right) \left(\cos^{2}\frac{B-B}{2} - M \right) \right] = \frac{2\sin\frac{B+B}{2}}{M} \left[(u-v)(1+uv+\cos^{2}\frac{B-B}{2} - M) + \frac{2\cos\frac{B-B}{2}}{M} \sin\frac{C+C-B-B}{2} - M \right] = \frac{4\sin\frac{B-B}{2}}{2} \sin\frac{C+C-B-B}{2} + \frac{B-B}{2} - \frac{B-B$$

$$\cos^{2}\frac{B-B}{2}-M + 2\cos\frac{B-B}{2}\cos\frac{C+C-B-B}{4} .$$

$$i\vec{c}\cos\frac{B+C}{2}\left(1+\sin\frac{B+B}{2}\sin\frac{C+C}{2}+\cos^{2}\frac{B-B}{2}-M\right) + 2\cos\frac{B-B}{2}\cos\frac{C+C-B-B}{4} .$$

要使式 恒不小于 0,对于一种特定调 整(如 使 $\frac{1}{M}\sin\frac{B-B}{2}\sin\frac{C+C-B-B}{4}$ 符号不变, 此时只要求,当 B、 C在特定范围内变动 时,式 的符号一定.

由抽屉原理, A、B、C中必有二者 在[0,]或[-, -]内. 为了运用前面的调整 结果,先求出可能的 . 不妨令 B = B =C = C = .并使式 = 0.则 $\cos [1 + \sin^2 + 1 - (1 + \cos)^4] + 2 = 0$ $(\cos +1)^2 (\cos^3 +2\cos^2 +2\cos -2) = 0.$ 所以, $\cos > \frac{1}{2}$, $< \frac{1}{3}$,且 $\cos (1 + \cos)^2 = 2 - \cos$. 那么.

$$1 + \sin \frac{B+B}{2} \sin \frac{C+C}{2} + \cos^2 \frac{B-B}{2} - M = 0,$$

则式 0 显然成立.

否则 ,令
$$t = \cos \frac{B-B}{2}$$
 [0,1]. 于是 ,
式 $\cos [1+\sin^2 + \cos^2 \frac{B-B}{2} - (\cos \frac{C+C}{2} + \cos \frac{B-B}{2})^2$.
 $(\cos \frac{B+B}{2} + \cos \frac{B-B}{2})^2$] +

$$2\cos^{2}\frac{B-B}{2}$$

$$\cos (1+\sin^{2}) + (\cos +2) t^{2} - \cos (\cos +t)^{4}$$

$$= y(t).$$
求导可知 $y(t)$ 在 $[0,1]$ 上递减.则
式 $\cos [2+\sin^{2} - (1+\cos)^{4}] + 2 = 0.$
故式 $0,$

$$f(A,B,C) f\left(A,\frac{-A}{2},\frac{-A}{2}\right) \frac{1}{2}.$$
(2) 对于 B , C $[0,]$,不妨设 B , C , $B = C$, $C = C$

其中, C = -A -,以上借用了(1).

综上,式 的最小值为 $\frac{1}{2}$.

解法 2: 先证明一个引理.

引理 设 f(x) 是定义在[a,b]上连续 严格上凸函数 ,则 $F(x_1, x_2) = f(x_1) + f(x_2)$ 的最值为

$$F_{\text{max}} = 2f\left(\frac{x_1 + x_2}{2}\right)$$
,
 $F_{\text{min}} = f(a) + f(x_1 + x_2 - a)$
或 $F_{\text{min}} = f(b) + f(x_1 + x_2 - b)$.
其中, $x_1 + x_2$ 为定值。
引理的证明:当 $a < x_1$ $x_2 < b$ 时,对 > 0 充分小,有

2007 年第 8 期 21

$$F(x_1 - ..., x_2 + ...) - F(x_1 ..., x_2)$$

 $= f(x_1 - ...) + f(x_2 + ...) - f(x_1) - f(x_2).$
令 $x_1 = x_1 - ..., x_2 = x_2 + ..., h = x_2 - ..., h$
0. 存在 $= \frac{1}{1 + h}$ [0,1],使
 $x_2 = x_1 + (1 - ...) x_2 ..., x_1 = ..., x_2 + (1 - ...) x_1$,
其中, 0.
当 $= 1$,即 $x_1 = x_2$ 时,由 $f(x)$ 上凸,有
 $2f(x_1) > f(x_1) + f(x_2).$
则 $F(x_1 ..., x_2) < F(x_1 ..., x_2).$
对 $= (0,1)$,由 $f(x)$ 上凸,有
 $= f(x_2) = f(x_1 + (1 - ...) x_2)$
 $= f(x_1) + (1 - ...) f(x_2)$,
 $= f(x_2) + (1 - ...) f(x_1)$,
则 $= f(x_2) + (1 - ...) f(x_1)$,
则 $= f(x_1 ..., x_2) < F(x_1 ..., x_2)$,即
 $= F(x_1 ..., x_2) < F(x_1 ..., x_2)$,

所以, F_{\min} 为 $f(a) + f(x_1 + x_2 - a)$ 与 $f(b) + f(x_1 + x_2 - b)$ 中有意义的一个,而 F_{\max} 为琴生不等式结果.

下面证明原题.

对
$$g(x) = \frac{\cos^2 x}{1 + \cos x}$$
 求二次导后发现,
$$g(x) \div (0, \frac{\pi}{2})$$
 内先严格上凸后严格下凸,分 界角为 . 而 $A \times B \times C$ 中必有二角在

[0,]或 $[0, \frac{1}{2}]$ 内.

(1) 若
$$B = C = \frac{-A}{2}$$
,则

$$f(A, B, C) = f(A, \frac{-A}{2}, \frac{-A}{2})$$

为关于 A 的一元函数,此时,易得

$$f(A, \frac{-A}{2}, \frac{-A}{2}) = \frac{1}{2},$$

仅在 $A = \frac{1}{3}$ 时取;

(2)若 B、 C [,-],由琴生不等 式得

$$f(A, B, C)$$
 $f(A, \frac{B+C}{2}, \frac{B+C}{2})$
= $f(A, \frac{-A}{2}, \frac{-A}{2})$ $\frac{1}{2}$;

(3) 若 B C在[0,]内,由引理与(2) 知

$$f(A,B,C)$$
 $f(A, , -A-)$
 $f(\frac{-C}{2}, \frac{-C}{2}, C)$ $\frac{1}{2},$

其中, C = -A -

综上知
$$f(A, B, C)_{min} = f(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = \frac{1}{2}$$
.

编者注:此文中的解法 2 是我们收到的最早的正确解法.

敬告读者

- 1.由《中等数学》编辑部编辑的《2005—2006 国内外数学竞赛套题及精解》正在发售。定价:18元,单本订阅:23元(含邮挂费),11本以上不收邮费,41本以上请直接与编辑部联系。
- **2.**《中等数学》2007年第6期是针对全国高中数学联赛出版的训练题专集,每本定价3元,邮寄加收30%,欢迎订阅。
- **3.** 现在编辑部有 2007 年合订本上册与部分 2005、2006 年合订本下册,每册 27 元(含邮挂费)。

地址:天津市河西区卫津路241号《中等数学》编辑部

电话:022 - 23542233 邮编:300074

本刊编辑部