- 1. Find the smallest relation containing the relation  $\{(1, 2), (1, 4), (3, 3), (4, 1)\}$  that is
  - a) reflexive and transitive.
  - **b**) symmetric and transitive.
  - c) reflexive, symmetric, and transitive.

- 2. Which of these relations on {0, 1, 2, 3} are equivalence relations? Determine the properties of an equivalence relation that the others lack.
  - a)  $\{(0,0), (1,1), (2,2), (3,3)\}$
  - **b)**  $\{(0,0), (0,2), (2,0), (2,2), (2,3), (3,2), (3,3)\}$
  - c)  $\{(0,0), (1,1), (1,2), (2,1), (2,2), (3,3)\}$
  - **d**)  $\{(0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
  - **e**) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)}

- 3. Which of these relations on the set of all functions from **Z** to **Z** are equivalence relations? Determine the properties of an equivalence relation that the others lack.
  - **a**)  $\{(f,g) \mid f(1) = g(1)\}$
  - **b)**  $\{(f,g) \mid f(0) = g(0) \text{ or } f(1) = g(1)\}$
  - c)  $\{(f, g) | f(x) g(x) = 1 \text{ for all } x \in \mathbb{Z}\}$
  - **d**)  $\{(f,g) \mid \text{ for some } C \in \mathbb{Z}, \text{ for all } x \in \mathbb{Z}, f(x) \mathbb{Z}\}$ g(x) = C
  - e)  $\{(f,g) \mid f(0) = g(1) \text{ and } f(1) = g(0)\}$

- 4. Which of these collections of subsets are partitions of {1, 2, 3, 4, 5, 6}?
  - **a)** {1, 2}, {2, 3, 4}, {4, 5, 6}
  - **b**) {1}, {2, 3, 6}, {4}, {5}
  - **c)** {2, 4, 6}, {1, 3, 5} **d)** {1, 4, 5}, {2, 6}

5. Determine whether the relation with the directed graph shown is an equivalence relation.









Show that the relation R on the set of all bit strings such that sRt if and only if s and t contain the same number of 1s is an equivalence relation.

- 7. Which of these relations on {0, 1, 2, 3} are partial orderings? Determine the properties of a partial ordering that the others lack.
  - **a**)  $\{(0,0), (1,1), (2,2), (3,3)\}$
  - **b**) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}
  - $\mathbf{c)} \ \{(0,0),(1,1),(1,2),(2,2),(3,3)\}$
  - **d**)  $\{(0,0), (1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$
  - **e**) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)}
- 8. Is (S, R) a poset if S is the set of all people in the world and  $(a, b) \in R$ , where a and b are people, if
  - a) a is taller than b?
  - **b)** a is not taller than b?
  - c) a = b or a is an ancestor of b?
  - **d)** a and b have a common friend?

9. Find an ordering of the tasks of a software project if the Hasse diagram for the tasks of the project is as shown.



10. Determine whether the posets with these Hasse diagrams are lattices.

