

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 535 529 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 23.07.1997 Bulletin 1997/30
- (21) Application number: 92116338.2
- (22) Date of filing: 24.09.1992

(51) Int. Cl.⁶: **C07D 471/04**, A61K 31/435, C07D 519/00
// (C07D471/04, 221:00, 209:00), (C07D519/00, 487:00, 471:00)

(54) Indole derivatives and anti-ulcer compositions

Indolderivate und antiulcerose Zubereitungen Dérivés d'indole et composition antiulcères

- (84) Designated Contracting States: **DE FR GB IT**
- (30) Priority: 30.09.1991 JP 276333/91
- (43) Date of publication of application: 07.04.1993 Bulletin 1993/14
- (73) Proprietor: NISSHIN FLOUR MILLING CO., LTD. Chuo-ku, Tokyo (JP)
- (72) Inventors:
 - Takahashi, Toshihiro Kawagoe-shi, Saitama-ken (JP)
 - Inoue, Hitoshi Kawagoe-shi, Saitama-ken (JP)
 - Horigome, Masato Tokyo (JP)
 - Momose, Kenichi Urawa-shi, Saitama-ken (JP)
 - Sugita, Masanori
 Sakado-shi, Saitama-ken (JP)

- Katsuyama, Kouichi Sakado-shi, Saitama-ken (JP)
- Suzuki, Chikako
 Fujimi-shi, Saitama-ken (JP)
- Nagai, Shinji
 Ohimachi, Iruma-gun, Saitama-ken (JP)
- Nagase, Masao Kawagoe-shi, Saitama-ken (JP)
- Nakamaru, Koichi
 Fujimi-shi, Saitama-ken (JP)
- (74) Representative: Türk, Gille, Hrabal, Leifert Brucknerstrasse 20 40593 Düsseldorf (DE)
- (56) References cited:
 - · US-A- 2 852 520
 - CHEMICAL ABSTRACTS, vol. 116, 1992, Columbus, Ohio, US; abstract no. 214762n, S. SAKAI ET AL. 'Preparation of ajmalan derivatives as antiulcer agents' page 776;

P₀ 535 529 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

FIELD OF THE INVENTION

This invention relates to new indole derivatives and pharmaceutical compositions comprising them which are useful as antiulcer agents.

BACKGROUND OF THE INVENTION

Known medicaments which have been used as antiulcer agents include H_2 -receptor antagonists representative of which is cimetidine, gastric acid secretion inhibitors such as omeprazole inhibiting proton pump (H⁺, K⁺-ATPase) and medicaments having gastric mucosa protection activity, which are chosen depending on the symptom of patients. However those medicaments are of such disadvantages as generally weak activity and occurrence of side effects. For instance, cimetidine, representative of H_2 -receptor antagonists have encountered the presence of intractable ulcer. Omeprazole has sufferred from the occurrence of carcinoid and the interaction with other drugs including diazepam and phenytoin such as a lowering of hepatic clearance. Thus there is a continuing need for effective antiulcer agents.

US-A-2 852 520 discloses pyridoindole derivatives, which are effective in reducing gastric acidity. JP-A-91 284 686 discloses an indole derivative, which is an antiulcer agent and inhibits H⁺, K⁺-ATPase

The present invention results from efforts to develop new indole derivatives with more improved untillcer effect.

DISCLOSURE OF THE INVENTION

According to the invention, there are provided indole derivatives of formula (I)

25

30

35

40

20

$$\begin{array}{c|c}
 & R \\
 & R_1 & R_2 & R_4
\end{array}$$
(1)

wherein

Y represents H, C₁-C₆ alkyl, C₁-C₆ alkoxy or halogen;

Z represents -CH₂N(R₅)-;

R represents H or $-CH_2CH_2X$ where X represents pyridyl, aralkyloxy or substituted amino of NR_6R_7 where R_6 represents H, C_1 - C_6 alkyl, aralkyl, C_1 - C_6 alkoxycarbonyl, aralkyloxycarbonyl or halogenated C_1 - C_6 alkoxycarbonyl and R_7 represents H, C_1 - C_6 alkyl or aralkyl, or together with R_2 may form a ring of $-(CH_2)_n$ - (n is 1-4) or

50

55

R₁ represents H, C₁-C₆ alkyl, aralkyl or arylsulfonyl;

R₂ represents C₁-C₆ alkyl, hydroxy, C₁-C₆ alkoxy or aralkyloxy;

R₃ represents H, C₁-C₆ alkyl, aralkyl or halogenated C₁-C₆ alkyl;

 R_4 and R_5 may be the same or different and each represents H, C_1 - C_6 alkyl or aralkyl or both may together form a ring of - $(CH_2)_{m^2}$ (m is 3 or 4);

or pharmaceutically acceptable acid addition salts thereof.

Suitable pharmaceutically acceptable acid addition salts of the compounds of formula (I) include acid addition salts formed with organic or inorganic acids such as hydrochlorides, hydrobromides, sulfates, phosphates, acetates, succi-

nates, citrates, tartrates, fumarates and maleates,

There can be cis, trans isomers at the pyrido[3,4-b]indole or pyrido[4,3-b]indole moiety in the compounds of formula (I). Those isomers are also included within the scope of the present invention.

In the definition of formula (I), C_1 - C_6 alkyl represented by Y, R_6 , R_7 , R_1 , R_2 , R_3 , R_4 and R_5 includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and n-hexyl. C_1 - C_6 alkoxy represented by Y and R_2 and the C_1 - C_6 alkoxy portion in R_6 include, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy and n-hexyloxy. Aralkyl represented by R_6 , R_7 , R_1 , R_3 , R_4 and R_5 includes e.g., benzyl and phenethyl and aralkyloxy represented by X and R_2 includes e.g., benzyloxy and phenethyloxy. C_1 - C_6 alkoxycarbonyl represented by R_6 includes e.g., methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl and n-hexyloxycarbonyl. Aralkyloxycarbonyl represented by R_6 includes e.g., $COOCH_2Ph$ and $COOCH_2Ch_2Ph$. Halogenated C_1 - C_6 alkyl represented by R_3 includes e.g., CH_2CF_3 , CH_2CF_3 , and halogenated C_1 - C_6 alkoxycarbonyl represented by R_6 includes e.g., $COOCH_2CH_2CI_3$, $COOCH_2CI_3$

Representative compounds of formula (I) are listed below.

25

35

45

55

4a, 9a-cis-6-(3-Benzyloxy carbonyl-1, 2, 3, 4, 5, 6, 7, 8-octahydro-azecino [5, 4-b] indole-8-yl)-2, 9-dimethyl-1, 2, 3, 4, 4a, 9a-hexahydro-pyrido [3, 4-b] indole,

6-(3-Ethoxycarbonyl-1,2,3,4,5,6,7,8-octahydro-azecino[5,4-b]indole-8-yl)-2-ethyl-9-methyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

6-(3-Benzyloxycarbonyl-1,2,3,4,5,6,7,8-octahydro-azecino [5,4-b] indole-8-yl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydro-pyrido [3,4-b] indole,

6-(3-Ethoxycarbonyl-1,2,3,4,5,6,7,8-octahydro-azecino[5,4-b]indole-8-yl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

6-(3-Ethoxycarbonyl-1,2,3,4,5,6,7,8-octahydro-azecino[5,4-b]indole-8-yl)-2-ethyl-9-(2,2,2-trifluoroethyl)-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

2-Benzyl-6-(3-ethoxycarbonyl-1,2,3,4,5,6,7,8-octahydro-azecino[5,4-b]indole-8-yl)-9-methyl-1,2,3,4,4a,9a-hex-ahydro-pyrido[3,4-b]indole,

9-(3-Ethoxycarbonyl-1,2,3,4,5,6,7,8-octahydro-azecino[5,4-b]indole-8-yl)-12-methyl-1,2,3,4,7,12b-hexahydro-4H-indolo[2,3-a]quinolizine,

2,9-Diethyl-6-(3-(2,2,2-trichloroethoxycarbonyl)-1,2,3,4,5,6,7,8-octahydro-azecino[5,4-b]indole-8-yl)-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

6-(13-Ethoxycarbonyl-6,7,12,13,14,15-hexahydro-benzo[h]azecino[5,4-b]indole-6-yl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

6-(13-Benzyloxycarbonyl-6,7,12,13,14,15-hexahydro-benzo[h]azecino[5,4-b]indole-6-yl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

6-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

40 4a,9a-trans-6-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2,9-dimethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

4a,9a-trans-6-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-1,2,9-trimethyl-1,2,3,4,4a,9a- hexahydro-pyrido[3,4-b]indole,

4a,9a-trans-6-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-1-ethyl-2,9-dimethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

4a,9a-trans-1,9a-trans-6-(3-Ethoxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2,9-diethyl-1-phenethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

4a, 9a-cis-1, 9a-trans-6-(3-Ethoxycarbonyl-1, 2, 4, 5, 6, 7-hexahydro-3H-azonino [5, 4-b] indole-7-yl)-2, 9-diethyl-1-phenethyl-1, 2, 3, 4, 4a, 9a-hexahydro-pyrido [3, 4-b] indole,

1,9a-trans-4a,9a-trans-6-(3-Ethoxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2-ethyl-1-phene-thyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

6-(1-(3-(2-Benzyl(ethoxycarbonyl)aminoethyl)-indole-2-yl)ethyl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

6-(1-(3-(2-Benzyl(benzyloxycarbonyl)aminoethyl)-indole-2-yl)ethyl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydropyrido[3,4-b]indole,

6-(1-(3-(2-Ethyl(benzyloxycarbonyl)aminoethyl)-indole-2-yl)ethyl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

6-(1-(3-(2-Ethyl(ethoxycarbonyl)aminoethyl)-indole-2-yl)ethyl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,

- 2,9-Diethyl-6-(3-(2-dibenzylaminoethyl)-1-tosyl-indole-2-yl)hydroxymethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,
- 2,9-Diethyl-6-(3-(2-dibenzylaminoethyl)-1-methyl-indole-2-yl)hydroxymethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-blindole.
- 5 2,9-Diethyl-6-(3-(2-dibenzylaminoethyl)-1-benzyl-indole-2-yl)hydroxymethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,
 - 2,9-Diethyl-6-(1-methyl-indole-2-yl)hydroxymethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole,
 - 2,9-Diethyl-6-(3-(2-benzyloxyethyl)-1-methyl-indole-2-yl)hydroxymethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-blindole.
- 2,9-Diethyl-6-(3-(2-pyridyl)ethyl)-1-tosyl-indole-2-yl)hydroxymethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole, 2,9-Diethyl-6-(3-(2-benzyloxyethyl)-1-benzyl-indole-2-yl)hydroxymethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole.
 - 2,9-Diethyl-6-(1-(3-(2-methylethylamino)ethyl)-indole-2-yl)ethyl)-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole, 2-Ethyl-6-(3-methyl-1,2,3,4,5,6,7,8-octahydro-azecino[5,4-b]indole-8-yl)-9-methyl-1,2,3,4,4a,9a-hexahydro-
 - pyrido[3,4-b]indole,

15

- 2,9-Diethyl-6-(13-methyl-6,7,12,13,14,15-hexahydro-benzo[h]azecino[5,4-b]indole-6-yl)-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole.
- 9-(3-Methyl-1,2,3,4,5,6,7,8-octahydro-azecino[5,4-b]indole-8-yl)-12-methyl-1,2,3,4,5,
- 12b-hexahydro-4H-indolo[2,3-a]quinolizine,
- 8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-5-ethyl-2,6-dimethyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole,
 - 8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-6-chloro-5-ethyl-2-methyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole,
 - 8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2,5-dimethyl-6-methoxy-
- 25 1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole 4a,9b-cis-8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azon-ino[5,4-b]indole-7-yl)-5-ethyl-2-methyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole,
 - 4a,9b-trans-8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-5-ethyl-2-methyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole,
 - 4a,9b-cis-8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-asonino[5,4-b]indole-7-yl)-5-benzyl-2-methyl-
- 30 1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole,
 - 4a,9b-cis-8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2,5-dimethyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole,
 - 4a,9b-trans-8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2,5-dimethyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole,
- 4a,9b-cis-8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2,5-diethyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole.
 - 4a,9b-trans-8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2,5-diethyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole,
 - 4a,9b-cis-8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2-benzyl-5-ethyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole,
 - 4a,9b-trans-8-(3-Benzyloxycarbonyl-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole-7-yl)-2-benzyl-5-ethyl-1,2,3,4,4a,9b-hexahydro-pyrido[4,3-b]indole.

The compounds of formula (I) can be prepared by condensing the compound of formula (II) with the compound of formula (IV) or the compound of formula (III) with the compound of formula (V) in accordance with known methods, for instance G. Schill et al. method mentioned in Tetrahedron 43 (1987) 3729, ibid 43 (1987) 3747; P. Magnus et al. method mentioned in JCS Chem. Commun. (1989) 518; Sakai et al. method mentioned in Yakugaku Zasshi 97 (3) 309; and D.A. Shirley et al. method mentioned in JACS 75 (1953) 375. Preferred embodiment is shown by the following reactions (1) and (2).

50

15

30

35

40

Reaction (2)

OHC

$$R_3$$
 R_4
 R_1
 (III)
 $(Z = -CH_2N(R_5) -)$

In reaction (1), the compounds of formulas (II) and (IV) are reacted in the presence of an acid catalyst using an alcoholic solvent such as methanol and ethanol. Preferred acids are inorganic acids such as hydrochloric acid. The reaction is usually carried out at a temperature between room temperature and a boiling point of the solvent used.

In reaction (2), the compound of formula (V) is converted with butyl lithium or the like to the 2-lithioindole derivative which is then reacted with the compound of formula (III). The reaction is preferably carried out at a temperature in the range of -70°C to room temperature using an inert solvent such as tetrahydrofuran and ether.

If R_6 is formate in the compounds of formula (I) prepared in reactions (1) and (2), R_6 can be converted to alkyl by reduction of the formate with a reducing agent such as lithium aluminum hydride. If R2 is hydroxy, R2 can be converted to alkoxy or aralkyloxy by a conventional alkylation process.

The compounds of formulas (II) and (III) used in the invention can be prepared by a variety of methods. As shown in the following reaction scheme, those methods include the process of alkylating tetrahydro-β-carboline or tetrahydroγ-carboline derivatives of formula (VI), reducing the indole nucleus to the compound of formula (IX) and alkylating it to the compound of formula (II); the process of dialkylating the compound of formula (VI) to the compound of formula (VIII) followed by reduction of the indole nucleus; and the process of reductively alkylating the compound of formula (VII) to the compound of formula (II). The reduction or reductive alkylation of the indole nucleus employed in the invention is carried out according to A. J. Elliot et al. method described in Tetrahedron Lett. 23, 1983 (1982), W. M. Welch et al. method described in J. Med. Chem. 29, 2093 (1986) or B. E. Maryanoff et al. method described in JOC, 43, 2733 (1978). In an alkylation of the compounds of formulas (VI) and (IX), some known methods may be applied, for example the reaction with halogenated alkyl or aralkyl such as alkyliodide or benzyl chloride using a variety of bases such as sodium carbonate, diisopropylamine, sodium hydride or the like in an inert solvent such as dimethylformamide, dimethylsulfoxide, tetrahydrofuran, ethanol, methanol or the like. The compounds of formula (III) can be prepared by formylating the compounds of formula (II) as prepared above by Vilsmeier's method.

Further, the compounds of formula (IV) wherein R_2 and R_7 form together a ring can be synthesized, for example, by ring opening reaction of the indoloquinolizine or indoloindoline derivatives according to Sakai et al. method described in Chem. Pharm. Bull. 28, 2527 (1980). The compounds of formula (V) can be synthesized by known alkylation, arylsulfonylation or the like from the starting material such as tryptamine, tryptophol or the like.

The compounds of formula (I) and their pharmaceutically acceptable salts exert an anti-secretory effect by inhibition of H⁺/K⁺ ATPase.

50

55

Thus the invention also provides a pharmaceutical composition which comprises as an active ingredient an effective amount of the compounds of formula (I) or pharmaceutically acceptable acid addition salts thereof. Such composition may be formulated in conventional manner using one or more pharmaceutically acceptable carriers and/or excipients.

The compounds of formula (I) and their pharmaceutically acceptable salts inhibit exogenously and endogenously stimulated gastric acid secretion and are useful as an antiulcer agent in the treatment of gastrointestinal diseases such as gastric and duodenal ulcers, gastritis, reflux esophagitis and Zollinger-Ellison Syndrome.

The compounds of the invention can usually be administered orally or parenterally in the form of various pharmaceutical preparations. For oral administration, the pharmaceutical compositions may take the form of solid preparations

including tablets such as sugar-coated tablets, capsules such soft and hard capsules and liquid preparations such as solutions, emulsions or suspensions. For parenteral administration, the compositions may take the form of injections. Such solid preparations can be prepared by conventional means with pharmaceutically acceptable excipients such as binding agents, fillers, lubricants, disintegrants or wetting agents. Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents, emulsifying agents, non-aqueous vehicles and preservatives. The preparations may also contain buffer salts, flavoring, coloring and sweetening agents if desired.

The active ingredient is contained in the formulation in an amount of 0.1-100% by weight, suitably 1-50% by weight in the case of formulations for oral administration and 0.2-20% by weight in the case of formulations for injection based on the weight of the formulation.

Route and dosage of administration for the compounds of the invention are not specifically limited and are appropriately chosen depending upon form of the formulation, age and sex of the patient, severity of the disease and other factors. Daily dosage of the active ingredient is 1 mg to 2000 mg.

The invention is further illustrated by the following non-limitative examples, before which the referential examples are given for illustrating the synthesis of the starting materials used in the preparation of the present compounds.

Referential Example 1

Synthesis of Compound (II)

(1) 4a,9a-trans-2,9-Dimethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole

1,2,3,4-Tetrahydro-β-carboline (2.35 g) and NaH (60% nujol, 1.20 g) were added to anhydrous DMF and stirred at room temperature for 30 minutes. To the ice-cooled reaction solution was added methyl iodide (1.7 ml) and the reaction solution was stirred overnight. After removal of DMF by evaporation, the residue was mixed with water and extracted with chloroform. The extract was washed with water and dried over sodium sulfate. The crude product was purified by column chromatography on silica gel. Eluates with 5% methanol/chloroform afforded 1.6 g of 2,9-dimethyl-1,2,3,4-tet-rahydro-β-carboline.

After addition of BF_3 ethyl ether complex (3.0 ml) to a solution of $NaBH_4$ (0.91 g) in THF under ice-cooling, 2,9-dimethyl-1,2,3,4-tetrahydro- β -carboline (0.8 g) as prepared above was added and the mixture was stirred for 30 minutes. Water was added to decompose excess borane, then trifluoroacetic acid (10 ml) was added and the mixture was stirred overnight at room temperature. The reaction solution was placed into an aqueous NaOH solution to make it basic, extracted with chloroform and dried over sodium sulfate. The crude product was purified by column chromatography on silica gel. Eluates with 10% methanol/chloroform afforded 0.69 g of the oily title compound.

PMR (CDCl₃, δ) 1.71-1.81(1H, m), 2.14-2.27(3H, m), 2.43-2.49(4H, m), 2. 69-2.72(4H m), 3.03(1H, d, J=11.7Hz), 3.28(1H, dd, J=9.7, 2.9Hz), 6.64(1H, d, J=7Hz), 6.78(1H, t, J=7Hz), 7.05-7.18(2H, m)

(2) 4a,9a-cis-2,9-Dimethyl-1,2,3,4,4a,9a-hexahydro-β-pyrido[3,4-b]indole

2,9-Dimethyl-1,2,3,4-tetrahydro- β -carboline (0.8 g) obtained in (1) was dissolved in trifluoroacetic acid, NaBH₄ (1.06 g) was added under ice-cooling and the mixture was stirred overnight. The reaction solution was placed into an aqueous NaOH solution to make it basic, extracted with chloroform and dried over sodium sulfate. The crude product was purified by column chromatography on silica gel. Eluates with 10% methanol/chloroform gave 0.57 g of the oily title compound.

PMR (CDCl₃, δ) 1.64-1.71(1H, m), 1.87-1.91(1H, m), 2.07(1H, dt, J=8.0, 2. 9Hz), 2.28-2.30(1H, m) 2.31(3H, s), 2.58-2.63(1H, m), 2.76(3H, s), 2.91-3.00(2H, m), 3.21-3.25(1H, m), 6.55(1H, d, J=7Hz), 6.72(1H t, J=7Hz), 7.06-7.12(2H, m)

(3) 2-Ethyl-9-(2,2,2-trifluoroethyl)-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole (1) and 2-ethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole (2)

Ethyl iodide (2.4 ml) was added to a solution of 1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole (5.17 g) and sodium hydrogencarbonate (3.0 g) in 50 ml of acetonitrile and the solution was stirred at 70°C over a bath for 3 hrs. After removal of the solvent by evaporation, water (60 ml) was added and the solution was extracted with chloroform. The extract was washed with brine and dried over magnesium sulfate. Purification of the crude product by silica gel column chromatography and crystallization from ethyl acetate of the eluates with methanol/chloroform (1/4) gave 1.5 g of 2-ethyl-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole.

30

20

40

35

NaBH₄ (1.51 g) was added under ice-cooling to a solution of 2-ethyl-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole (1.60 g) in 50 ml of trifluoroacetic acid. The solution was stirred at room temperature for 3 hrs and the solvent was evaporated off. The residue was neutralized with ammonia, extracted with chloroform, washed with brine and dried over magnesium sulfate.

The crude product was purified by column chromatography on silica gel. Eluates with methanol/chloroform (1/5) gave 0.68 g of 2-ethyl-9-(2,2,2-trifluoroethyl)-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole (1) as an oily product and then 1.16 g of 2-ethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole (2).

- (1) PMR (CDCl₃, δ) 1.08(3H, t, J=7.2Hz), 1.90(2H, m), 2.3-2.6(6H, m), 3.20 (1H, dd, J=12.6, 5.7Hz), 3.70(3H, m), 6.55(1H, d, J=7.6Hz), 6.77(1H, t, J=7.4Hz), 7.10(2H, m)
- (2) PMR (CDCl₃, δ) 1.09(3H, t, J=7.2Hz), 2.00(2H, m), 2.2-2.6(6H, m), 3.20 (1H, dd, J=12.6, 6.9Hz), 3.88(1H, dd, J=13.1, 6.8Hz), 6.67(1H, d, J=7.4Hz), 6. 76(1H, t, J=7.5Hz), 7.10(2H, m)
- (4) 2,9-Diethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole

5

10

15

30

35

40

45

50

55

NaBH₄ (1.08 g) was added under ice-cooling to a solution of 2-ethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole (1.16 g) in 40 ml of acetic acid. After stirring the solution at room temperature for 4 hrs, additional NaBH₄ (0.54 g) was added and the mixture was stirred for 3 hrs. After removal of acetic acid by evaporation, the residue was neutralized with ammonia, extracted with ethyl acetate, washed with brine and dried over magnesium sulfate. The solvent was evaporated off, thereby affording 1.26 g of the title compound as a pale yellow oil.

PMR (CDCl₃, δ) 1.11(6H, m), 1.7-2.5(7H, m), 2.65(1H, dd, J=12.2, 5.4Hz), 3.12(2H, m), 3.39(1H, m), 3.64(1H, m), 6.47(1H, d, J=7.3Hz), 6.66(1H, t, J=7.4Hz), 7.05(2H, m)

(5) The following compounds (II) were synthesized from the corresponding 1,2,3,4-tetrahydro-β-carboline using the manners mentioned in (1)-(4).

		Appear- ance M.P.	PMR (CDC1 ₃ , δ)
5	NEt NEt	Oil	1.69(1H, m), 1.89(1H, m), 2.12(1H, dt, J= 3.4, 12.8Hz), 2.32(1H, dd, J=12.7, 3.9 Hz), 2.45(2H, q, J=6.8Hz), 2.65(1H, m),
10	Мe		2.75(3H, s), 3.00(2H, m), 3.37(1H, m), 6.53(1H, d, J=7.9Hz), 6.70(1H, t, J=7.4 Hz), 7.10(2H, m)
15	NCH ₂ Ph	Oíl	1.83(2H, m), 2.25(1H, m), 2.37(1H, dd, J=12.7, 3.9Hz), 2.60(1H, m), 2.63(3H, s), 2.80(1H, dd, J=12.7, 4.4Hz), 3.05(1H, m), 3.25(1H, m), 3.49(1H, d, J=13.2Hz),
20 25			3. 64(1H, d, J=13. 1Hz), 6. 52(1H, d, J=7. 8 Hz), 6. 70(1H, t, J=7. 3Hz), 7. 10(2H, m), 7. 30(5H, m)
30	N N N N N N N N N N N N N N N N N N N	90−93℃	1. 2-2. 2(11H, m), 2. 81(1H, dt, J=11. 3, 3. 4Hz), 2. 91(3H, s), 3. 05(3H, m), 6. 63 (1H, d, J=7. 8Hz), 6. 73(1H, t, J=7. 3Hz), 7. 05(2H, m)
35	II NWe	Oil	1. 43(3H, d, J=6. 3Hz), 1. 78-1. 90(1H, m), 2. 20-2. 30(1H, m), 2. 39(3H, s), 2. 88
40	Же ^Н Не		(3H, s), 2.4-2.5(3H, m), 2.7(1H, m), 3.05-3.12(1H, m), 6.66(1H, d, J=7Hz), 6.80(1H, t, J=7Hz), 7.04-7.17(2H, m)

	Compound	Appear- ance	PMR (CDC1 ₃ , δ)
10	H NMe Ne Et	Oil	1. 02(3H, t, J=7. 5Hz), 1. 76-1. 86(1H, m), 1. 94-1. 98(2H, m), 2. 19-2. 23(1H, m), 2. 34(3H, s), 2. 44-2. 51(2H, m), 2. 67-2. 77(2H, m), 2. 88(3H, s), 6. 66(1H, d, J=7 Hz), 6. 79(1H, t, J=7Hz), 7. 05(1H, d, J=7 Hz), 7. 14(1H, t, J=7Hz)
20 25	H NEt	Oil	1. 08(3H, t, J=7. Hz), 1. 66-1. 85(1H, m), 1. 90-1. 99(1H, m), 2. 07-2. 17(1H, m), 2. 23-2. 27(1H, m), 2. 50-2. 94(7H, m), 3. 13-3. 29(2H, m), 6. 73(1H, d, J=7Hz), 6. 80(1H, t, J=7Hz), 7. 04-7. 33(7H, m)
<i>30</i>	H NEt Et II Ph	Oil	1. 06(3H, t, J=7. Hz), 1. 13(3H, t, J=7Hz), 1. 64-1. 74(1H, m), 1. 82-2. 06(3H, m), 2. 62-3. 13(8H, m), 3. 16-3. 26(3H, m), 6. 57(1H, d, J=7Hz), 6. 71(1H, t, J=7Hz), 7. 02-7. 30(7H, m)
40 45	H NEt Et II Ph	Oil	1. 11(3H, t, J=7. Hz), 1. 16(3H, t, J=7IIz), 1. 68—1. 87(1H, m), 2. 05—2. 22(3H, m), 2. 64—3. 05(8H, m), 3. 18—3. 29(2H, m), 3. 37—3. 47(1H, m), 6. 61(1H, d, J=7Hz), 6. 76(1H, t, J=7Hz), 7. 04(1H, d, J=7Hz), 7. 11(1H, t, J=7Hz), 7. 18—7. 32(5H, m)

	Compound	Appear- ance	PMR (CDC1 ₃ , δ)
10	N Me Ne Ne	Oil	6.74(3H, s), 3.81(3H, s), 3.25(1H, m), 3.13(1H, m), 2.94(3H, s), 2.73(1H, m), 2.60(1H, m), 2.24(4H, m), 2.05(1H, m), 1.92(1H, m), 1.76(1H, t, J=11.2Hz)
20	NMe C1 Et	Oil	7. 03(1H, d, J=7. 8Hz), 6. 92(1H, d, J=6. 8 Hz), 6. 61(1H, t, J=7. 8Hz), 3. 92(1H, m), 3. 58(1H, m), 3. 30(1H, m), 3. 23(1H, m), 2. 66(1H, m), 2. 56(1H, m), 2. 30—2. 15 (4H, m), 2. 05(1H, m), 1. 93(1H, m), 1. 82 (1H, t-like, J=10. 8Hz), 1. 08(3H, t, J=7. 3 Hz)
30			
35	NMe Ne Et	Oil	6. 91(1H, d, J=6. 8Hz), 6. 86(1H, d, J=6. 3 Hz), 6. 65(1H, t, J=7. 8Hz), 3. 59-3. 49 (2H, m), 3. 26(2H, m), 2. 66(1H, m), 2. 56 (1H, m), 2. 36(3H, s), 2. 28-2. 10(4H, m), 2. 00(2H, m), 1. 85(1H, t-like, J=11. 2Hz)
40			2. 00(211, m), 1. 00(111, t=11ke, 1=11. 2112)
4 5	H NMe Et II	Oil	7. 14—7. 04(2H, m), 6. 66(1H, t, J=7. 0Hz), 6. 51(1H, d, J=8. 0Hz), 3. 56—3. 46(1H, m), 3. 29(1H, sex, J=7. 0Hz), 3. 22—3. 04(2H, m), 2. 74—2. 66(1H, m), 2. 56—2. 48(1H, m), 2. 26—2. 16(4H, m), 1. 96—1. 86(3H, m), 2. 60—1. 86(3H, m), 3. 22—3. 04(2H, m), 3. 24—2. 66(1H, m), 3. 256—2. 48(1H, m), 3. 26—2. 16(4H, m), 3. 36—1. 86(3H, m), 3. 36—3. 86(3H, m), 3. 36(3H,
			m), 1.08(3H, t, J=7.0Nz)

	Compound	Appear-	PMR (CDC1 ₃ , δ)
5	H Nu	Oil	7. 38(2H, d, J=6. OHz), 7. 32(2H, t, J=8.0
10	CH ₂ H		Hz), 7.28-7.18(1H, m), 7.09(1H, d, J=7.0Hz), 7.03(1H, t, J=7.0Hz), 6.70(1H, t, J=7.5Hz), 6.43(1H, d, J=8.0Hz), 4.24
15 20			(2H, dd, J=15. 0, 6. OHz), 3. 58—3. 50(1H, m), 3. 30—3. 20(1H, m), 2. 80—2. 70(1H, m), 2. 56—2. 46(1H, m), 2. 30—2. 20(4H, m), 2. 06—1. 84(3H, m)
25	H NMe	Oil	7. 12(1H, t, J=7.5Hz), 7. 08(1H, d, J=7.5 Hz), 6. 72(1H, t, J=7.5Hz), 6. 57(1H, d, J=
30	Me H		8. OHz), 3. 26-3. 14(2H, m), 2. 76-2. 70 (1H, m), 2. 69(3H, s), 2. 62-2. 54(1H, m), 2. 25(3H, s), 2. 24-2. 14(1H, m), 2. 06- 1. 80(3H, m)
35			
40	NMe NH Me	Oil	7. 14(1H, t, J=7. 0Hz), 7. 03(1H, d, J=7. 5 Hz), 6. 67(1H, t, J=7. 5Hz), 6. 63(1H, d, J=8. 0Hz), 3. 45(1H, dd, J=11. 0, 3. 5Hz), 3. 06(1H, d, J=12. 0Hz), 2. 89(1H, t, J=11. 0
45			IIz), 2.71(3H, s), 2.42(3H, s), 2.42— 2.34(1H, m), 2.24—2.00(3H, m), 1.90— 1.80(1H, m)

	Compound	Appear- ance	PMR (CDC1 ₃ , δ)
10	H NEt Et H	Oil	7. 16-7. 04(2H. m), 6. 65(1H, t, J=7. 5Hz), 6. 51(1H, d, J=8. 0Hz), 3. 56-3. 50(1H, m), 3. 29(quintet, 1H, J=7. 5Hz), 3. 20-3. 04 (2H, m), 2. 80-2. 74(1H, m), 2. 66-2. 60 (1H, m), 2. 36(2H, q, J=7. 0Hz), 2. 24-2. 16(1H, m), 2. 04-1. 84(3H, m), 1. 08
20			(6H, t, J=7.5Hz)
25	H NEt	Oil	7. 11(1H, t, J=8. 0Hz), 7. 06(1H, d, J=7. 0 Hz), 6. 72(1H, t, J=7. 0Hz), 6. 60(1H, d, J=8. 0Hz), 3. 54(1H, d, J=7. 5Hz), 3. 32—3. 18(3H, m), 2. 83(1H, t, J=13. 0Hz), 2. 71
30 35			(1H, t, J=8.0Hz), 2.64-2.50(2H, m), 2.20-2.00(3H, m), 2.57(1H, q, d, J=7.0, 3.0Hz), 1.16(3H, t, J=7.5Hz), 1.11(3H, t, J=7.5Hz)
40		Oil	7.36-7.20(5H, m), 7.08(1H, t, J=8.0Hz),
40	N NCH ₂ Ph Et II	OII	6. 98(1H, d, J=7. 5Hz), 6. 63(1H, t, J=7. 5 Hz), 6. 51(1H, d, J=7. 0Hz), 3. 56—3. 50 (1H, m), 3. 44(2H, s), 3. 25(sex, 1H, J=
45			7. OHz), 3. 20-3. 04(2H, m), 2. 76-2. 66 (1H, m), 2. 62-2. 54(1H, m), 2. 30-2. 20 (1H, m), 2. 00-1. 84(3H, m), 1. 07(3H, t,
50			J=7.5Hz)

	Compound	Appear- ance	PMR (CDC1 ₃ , δ)
5 10 15	H NCH ₂ Ph	Oil	7. 40—7. 18(5H, m), 7. 08(1H, t, J=7. 5Hz), 6. 97(1H, d, J=7. 5Hz), 6. 68(1H, t, J=8. 0 Hz), 6. 58(1H, d, J=8. 0Hz), 3. 66(2H, s), 3. 30—3. 10(2H, m), 3. 06(1H, d, J=12. 0 Hz), 2. 86(1H, t, J=11. 0Hz), 2. 76—2. 62(1H, m), 2. 24—2. 08(2H, m), 2. 04—1. 76(3H, m), 1. 09(3H, t, J=7. 0Hz)

Referential Example 2

20

35

40

45

50

55

Synthesis of 6-formyl-2,9-diethyl-1,2,3,4,4a,9a-tetrahydro-pyrido[3,4-b]indole (III)

Phosphorus oxychloride (0.56 ml) was added under ice-cooling to DMF (10 ml) and the solution was stirred for one hour. Then a solution of 2,9-diethyl-1,2,3,4,4a,9a-tetrahydro-pyrido[3,4-b]indole (1.15 g) in DMF (10 ml) was added and the mixture was stirred at room temperature for 5 hrs. The reaction solution was poured into an aqueous sodium hydrogencarbonate solution to neutralize and extracted with ethyl acetate. The extract was washed with water and brine and dried over magnesium sulfate. The crude product was purified by column chromatography on silica gel. Eluates with 3% methanol/chloroform gave 1.07 g of the oily title compound.

PMR (CDCl₃, δ) 1.09(3H, t, J=7.3Hz), 1.19(3H, t, J=7.3Hz), 1.88(1H, m), 2.00 (1H, m), 2.3-2.6(6H, m), 3.21(2H, m), 3.46(1H, m), 3.84(1H, q, J=6.3Hz), 6.46 (1H, d, J=8.3Hz), 7.57(2H, m), 9.69(1H, s)

Referential Example 3

Synthesis of Compound (IV)

(1) 8-Ethoxy-3-ethoxycarbonyl-1,2,3,4,5,6,7,8-octahydro-azecino[5,4-b]indole

To chloroform (115 ml) were added indoloquinolizine (1.12 g), sodium carbonate (2,49 g), EtOH (3.22 g) and ethyl chloroformate (1.63 g) and the mixture was stirred at room temperature for 7 hrs. The insoluble material was filtered off, the filtrate was washed with water and the brine, dried over magnesium sulfate, and the solvent was evaporated off.

Purification of the crude product by silica gel column chromatography and recrystallization from n-hexane of the eluates with chloroform/ethyl acetate (20/1) afforded 1.25 g of the title compound.

M.P. 137-139°C 5 PMR (CDCl₃, δ) 0.6-2.19(12H, m), 2.42-4.60(11H, m). 7.02-7.25(2H, m), 7.36(1H, d, J=7Hz), 7.51(1H, d, J=7Hz), 8.38(1H, brs)

(2) The following compounds were prepared from the corresponding starting materials in a similar manner as mentioned above.

$$\begin{array}{c|c}
 & R_6 \\
 & R_7 \\
 & Et0
\end{array}$$
(IV)

10	R ₂ , R ₇	R ₆	Appear- ance M.P.	PMR (CDC1 ₃ , δ)
15	-(CH ₂) ₄ -	CO₂CH₂Ph	Amorphous solid	1. 15(3H, t, J=6.8Hz), 1. 41(3H, m), 1. 73(1H, m), 2. 05(1H, m), 2. 90(2H, m), 3. 05—3. 70(5H, m), 3. 97(1H, m), 4. 40(1H, m), 4. 75(1H, m), 5. 15(2H, m), 7. 00—7. 25(3H, m), 7. 35(5H, m), 7. 50(1H, m), 8. 35(1H, brs)
25 30	-(CH ₂) ₄ -	CO ₂ CH ₂ CCl ₃	Amorphous solid	1. 43(3H, m), 1. 75(1H, m), 2. 05(1H, m), 2. 7-3. 1(4H, m), 3. 20(2H, s), 3. 25-3. 7(3H, m), 4. 0-4. 3(2H, m), 4. 39(1H, m), 4. 65(1H, d, J=11. 4Hz), 4. 8(1H, d, J=11. 4Hz), 4. 99(1H, d, J=14. 9Hz), 7. 05-7. 25(2H, m), 7. 35(1H, d, J=6. 9Hz), 7. 52(1H, d, J=6. 9Hz), 8. 35(1H, brs)
35 40	-(CH ₂) ₃ -	CO ₂ Et	167−171℃	0. 72-0. 88(1H, m), 1. 17(3H, t, J=7 Hz), 1. 35(3H, t, J=7Hz), 1. 70-1. 85 (1H, m), 2. 07-2. 24(1H, m), 2. 45-2. 67(2H, m), 2. 90-3. 20(2H, m), 3. 36-3. 50(2H, m), 3. 89-4. 41(4H, m),
45				4.65-4.74(1H, m), 7.08-7.23(2H, m), 7.32-7.40(1H, m), 7.55(1H, t, J= 8Hz), 8.21, 8.28(each 0.5H, brs)

	R ₂ , R ₇	R ₆	Appearance M.P.	PNR (CDC1 ₃ , δ)
5 10 15	-(CH ₂) ₃ -	CO₂CH₂Ph	198−201°C	0.72-0.87(1H, m), 1.11(3H, dd, J= 14.1, 7.3Hz), 1.29-1.42(1H, m), 1.68-1.80(1H, m), 2.04-2.21(1H, m), 2.49-2.70(2H, m), 2.93-3.36 (4H, m), 3.96-4.18(2H, m), 4.56- 4.65(1H, m), 5.12-5.17(1H, m), 5.30 -5.39(1H, m), 7.11-7.19(2H, m), 7.31-7.57(7H, m), 8.10, 8.16(each 0.5H, brs)
20	CH ₂ CH ₂ -	CO₂Et	Amorphous solid	1. 13(3H, brt), 1. 24(3H, t, J=6.8Hz), 2. 92(3H, m), 3. 21(2H, m), 3. 47(3H, m), 3. 70-4. 20(3H, m), 4. 68(1H, m), 4. 85(1H, m), 6. 90-7. 41(8H, m), 8. 19 (1H, brs)
25 _	CH ₂ CH ₂ -	CO₂CH₂Ph	Amorphous solid	1. 21(3H, t, J=7. 8Hz), 2. 60-3. 60(8H, m), 3. 65-4. 20(2H, m), 4. 75(2H, m), 5. 15(1H, m), 6. 80-7. 20(6H, m), 7. 30 (7H, m), 8. 15(1H, brs)
	We, -CH₂Ph	CO ₂ Et	Oil	1. 15(3H, t, J=6.9Hz), 1. 30(3H, m), 1. 48(3H, d, J=6.4Hz), 2. 87(2H, m), 3. 32(4H, m), 4. 0-4.8(5H, m), 7. 0-7. 5(9H, m), 8. 38(1H, brs)
40	Me, -Cll₂Ph	CO₂CH₂Ph	Oil	1. 10(3H, m), 1. 3-1. 5(3H, m), 2. 80 (1H, m), 2. 95(1H, m), 3. 15(1H, m), 3. 2-3. 6(3H, m), 4. 3-4. 7(2H, m), 5. 23(2H, s), 6. 90-7. 50(14H, m), 8. 10(1H, m)
45	Me, Et	CO₂CH₂Ph	Oil	1. 05-1. 35(9H, m), 1. 54(3H, d, J=6. 9 Hz), 3. 00(2H, m), 3. 1-3. 5(6H, m), 4. 19(2H, m), 4. 80(1H, m), 7. 15(2H, m), 7. 36(1H, d, J=7. 3Hz), 7. 60(1H,
50				m), 8.51(1II, brs)

Referential Example 4

Synthesis of Compound (V)

(1) 1-Tosyl-N, N-dibenzyl-tryptamine

N,N-dibenzyl-tryptamine (1.70 g) and tetra-n-butyl ammonium hydrogensulfate (0.17 g) in benzene (5 ml) were added to 50% aqueous NaOH solution (5 ml) and tosyl chloride (1.43 g) and the mixture was stirred at room temperature for 2 hrs. The organic layer was separated, washed with water and then brine and dried over magnesium sulfate. The solvent was evaporated off. Crystallization from acetone/hexane afforded 1.83 g of the title compound.

M.P. 116-118°C

PMR (CDCl₃, δ) 2.30(3H, s), 2.76(2H,m), 2.83(2H, t, J=7.3Hz), 3.64(4H, s), 7.05-7.35(16H,m), 7.71(2H,m), 7.93(1H, d, J=8.3Hz)

15

(2) 3-(2-(2-pyridyl)ethyl)-1-tosyl-indole

In a similar manner, the title compound was prepared from the corresponding starting material.

PMR (CDCl₃, δ) 2.33(3H, s) 3.14(4H,m), 7.04(1H, d, J=7.8Hz), 7.1-7.3(6H, m), 7.49(1H, d, J=7.8Hz), 7.54(1H, td, J=7.8, 1.9Hz), 7.67(2H, d, J=8.3Hz), 7.96(1H, d, J=8.3Hz), 8.57(1H, dd, J=4.9, 0.9Hz)

(3) 1-Methyl-N,N-dibenzyl-tryptamine

N,N-dibenzyl-tryptamine (1.72 g) was added to an anhydrous DMF solution containing 0.24 g of NaH (60% nujol) and the mixture was stirred for 15 minutes. Methyl iodide (0.31 ml) was added and the mixture was stirred for one hour. Water was added and the solvent was evaporated off. The residue to which water was added was extracted with IPE, the extract was washed with water and the brine and dried over magnesium sulfate. The crude product was purified by column chromatography on silica gel. Eluates with ethyl acetate/hexane (1/9) afforded 1.58 g of the oily title compound.

30

PMR (CDCl₃, δ) 2.79(2H, dd, J=10.3, 7.3Hz), 2.95(2H, dd, J=10.3, 6.9Hz), 3. 69(7H, s), 6.72(1H, s), 7.01(1H, m), 7.2-7.4(13H, m)

35

(4) In a similar manner, the following compounds were prepared from the corresponding starting materials.

45

40

50

$$X$$

$$(V)$$

10	R_1	X	Appear- ance	PMR (CDC1 ₃ , δ)
70	-CH ₂ Ph	-N(CH ₂ Ph) ₂	Oil	2.81(2H, dd, J=8.3, 5.9Hz), 2.98(2H, t, J=
15				7. 3Hz), 3. 67(4H, s), 5. 22(2H, s), 6. 83(1H, s), 7. 01(1H, t, J=7. 8Hz), 7. 10(3H, m), 7. 25 (11H, m), 7. 37(4H, m)
20			·]	
	-CH ₂ Ph	-OCH₂Ph	Oil	3. 10(2H, t, J=6. 9Hz), 3. 78(2H, t, J=7. 3Hz),
25				4.55(2H, s), 5.26(2H, s), 6.97(1H, s), 7.10 -7.20(4H, m), 7.20-7.35(9H, m), 7.60(1H, d, J=7.8Hz)
30				
35	-Же	-0CH₂Ph	Oil	3. 08(2H, t, J=7. 3Hz), 3. 73(3H, s), 3. 76(2H, t, J=7. 3Hz), 4. 56(2H, s), 6. 90(1H, s), 7. 09 (1H, t, J=7. 8Hz), 7. 15—7. 35(7H, m), 7. 58 (1H, d, J=8. 3Hz)
40				

45 Example 1

4a, 9a-cis-6-(3-Benzyloxycarbonyl-1, 2, 4, 5, 6, 7-hexahydro-3H-azonino [5, 4-b] indole-7-yl)-2, 9-dimethyl-1, 2, 3, 4, 4a, 9a-hexahydro-pyrido [3, 4-b] indole

55

50

$$\begin{array}{c|c}
 & H \\
 & N \\
 & N \\
 & M \\
 & H
\end{array}$$

$$\begin{array}{c}
 & H \\
 & N \\
 & M \\
 & H
\end{array}$$

3-Benzyloxycarbonyl-7-ethoxy-1,2,4,5,6,7-hexahydro-3H-azonino[5,4-b]indole (1.1 g) and 4a,9a-cis-2,9-dimethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole (0.55 g) were heated at reflux in an ethanol solution containing 1.5% HCl. After two hours, the reaction solution was treated with sodium hydrogencarbonate to make it basic, extracted with chloroform, dried over anhydrous sodium sulfate and the solvent was evaporated off. The crude product was purified by column chromatography on silica gel. Eluates with 5% methanol/chloroform gave 1.49 g of the title compound.

Amorphous solid

PMR (CDCl₃, δ) 0.98-1.18(1H, m), 1.37-1.92(4H, m), 1.99-2.39(6H, m), 2. 58-3.38(11H, m), 4.00-4.22(2H, m), 4.34-4.49(1H, m), 5.02-5.37(2H, m), 6.45-6.59(1H, m), 6.82-7.60(11H, m)

35 Examples 2-33

In a similar manner, the following compounds were prepared from the corresponding starting materials.

. 5			, 2.29(1H, 71(3H, m), 91(1H, m), 07(4H, m),	, m), 2.3—), 4.10(1H, п)	, 2.25(2H, m), 3.35— 0(1H, dd, J=
10		٥)	(, m), 1.60(2H, m), 2.06(4H, m), 2.29(1H, 0Hz), 2.45(2H, q, J=7.4Hz), 2.71(3H, m), 3.20(4H, m), 3.75(2H, m), 3.91(1H, m), 6.48(1H, m), 6.82(1H, brs), 7.07(4H, m),	3. 5—4. 0(3H, m) 6. 8—7. 5(12H,), 2.05(2H, m) 2.9—3.5(7H, 15(2H, m), 6.4 7.05(4H, m), 7
15	(1)	PMR (CDC1s,	m), 1.60(2H, m Hz), 2.45(2H,20(4H, m), 3.48(1H, m), 6.	.7—1.4(4H, m) —3.5(6H, m), , 6.40(1H, m),	л), 1.85(2H, m , 2.65(2H, m), .92(1H, m), 4. 6.80(1H, brs),
20			0.9—1.3(10H, m), 1.60(2H, m), 2.06(4H, m), 2.29(1H, dd, J=12.0, 4.0Hz), 2.45(2H, q, J=7.4Hz), 2.71(3H, m), 2.91(2H, m), 3.20(4H, m), 3.75(2H, m), 3.91(1H, m), 4.15(2H, m), 6.48(1H, m), 6.82(1H, brs), 7.07(4H, m), 7.50(2H, m)	1.12(6H, m), 1.7—1.4(4H, m), 2.3—1.8(5H, m), 2.3— 2.8(6H, m), 2.9—3.5(6H, m), 3.5—4.0(3H, m), 4.10(1H, m), 5.10(2H, m), 6.40(1H, m), 6.8—7.5(12H, m)	0.9-1.3(10H, m), 1.85(2H, m), 2.05(2H, m), 2.25(2H, m), 2.40(4H, m), 2.65(2H, m), 2.9-3.5(7H, m), 3.35-3.50(3H, m), 3.92(1H, m), 4.15(2H, m), 6.40(1H, dd, J=12.6, 6.9Hz), 6.80(1H, brs), 7.05(4H, m), 7.50(2H, m)
30	N R .	Appearance	Amor- phous solid	Amor- phous solid	Amor- phous solid
35	H R2	A	Me Me	O NEt	O NEt
40		Re	CO ₂ Et	CO ₂ CH ₂ Ph	CO2Et
45		R2, R7	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -
50		Example No.	2	က	4

5		1. 0—1. 3(8H, m), 1. 58(4H, m), 2. 05(2H, m), 2. 2—2. 6 (4H, m), 2. 9—3. 4(6H, m), 3. 71(4H, m), 4. 12(2H, m), 6. 49(1H, m), 6. 85(1H, m), 7. 05(4H, m), 7. 40(2H, m)	1.0(3H, brt), 1.29(2H, m), 1.4—1.9(4H, m), 2.11(3H, m), 2.32(1H, m), 2.61(3H, s), 2.89(1H, m), 3.20(6H, m), 3.48(1H, d, J=14.9Hz), 3.62(1H, d, J=14.9Hz), 3.80(2H, m), 3.92(1H, m), 4.15(2H, m), 6.46(1H, m), 6.8—7.2 (5H, m), 7.2—7.6(7H, m)	1.0(3H, brt), 1.21(2H, m), 1.4—2.3(15H, m), 2.79(1H, m), 2.88(3H, m), 2.95(2H, m), 3.05—3.35(4H, m), 3.75 (2H, m), 3.90(1H, m), 4.15(2H, m), 6.55(1H, m), 6.80 (1H, brs), 7.05(4H, m), 7.49(2H, m)	1.10(6H, m), 1.8-4.2(24H, m), 4.70(2H, m), 4.90(1H, d, J=6.3Hz), 6.40(2H, m), 6.80(1H, m), 6.95(1H, m), 7.08 (2H, m), 7.18(1H, m), 7.51(1H, m)
10	6)	1. 0—1. 3(8H, m), 1. 58(4H, m), 2. 05(2H, m), 2. 2. (4H, m), 2. 9—3. 4(6H, m), 3. 71(4H, m), 4. 12(2H, m), 6. 85(1H, m), 7. 05(4H, m), 7. 40(2H, m)	1.0(3H, brt), 1.29(2H, m), 1.4-1.9(4H, m), 2.11(3H, m), 2.32(1H, m), 2.61(3H, s), 2.89(1H, m), 3.20(6H, m), 3.48(1H, d, J=14.9Hz), 3.62(1H, d, J=14.9Hz), 3.80(2H, m), 3.92(1H, m), 4.15(2H, m), 6.46(1H, m), 6.8-7.5(5H, m), 7.2-7.6(7H, m)	1.0(3H, brt), 1.21(2H, m), 1.4—2.3(15H, m), 2.79m), 2.88(3H, m), 2.95(2H, m), 3.05—3.35(4H, m), (2H, m), 3.90(1H, m), 4.15(2H, m), 6.55(1H, m), (1H, brs), 7.05(4H, m), 7.49(2H, m)	1.10(6H,m), 1.8-4.2(24H,m), 4.70(2H,m), 4.90(1H,d, J=6.3Hz), 6.40(2H,m), 6.80(1H,m), 6.95(1H,m), 7.08 (2H,m), 7.18(1H,m), 7.51(1H,m)
15	PMR (CDC1,	1.58(4H, m) 4(6H, m), 3. (1H, m), 7.0E	29(2H, m), 1, 2. 61(3H, s), 3Hz), 3. 62(1, 4. 15(2H, m) (7H, m)	21(2H, m), 1. 2.95(2H, m), , m), 4.15(2 H, m), 7.49(2	-4.2(24H, m), 2H, m), 6.80(m), 7.51(1H,
20	Q.	-1.3(8H, m), m), 2.9-3. (1H, m), 6.85	1.0(3H, brt), 1.29(2H, m), 2.32(1H, m), 2.61(3) 3.48(1H, d, J=14, 9Hz), 3.92(1H, m), 4.15(6H, m), 7.2-7.6(7H, m)	1.0(3H, brt), 1.21(2H, m), 1.4—2 m), 2.88(3H, m), 2.95(2H, m), 3.0 (2H, m), 3.90(1H, m), 4.15(2H, m) (1H, brs), 7.05(4H, m), 7.49(2H, m)	(6H, m), 1.8- 3Hz), 6.40(2 n), 7.18(1H,
25		1. 0- (4H, 6. 49)	1.0(() m), 2 3.48() m), m), (5H, n)	1.0((m), 2 (2H, 1) (1H, 1)	1.10(J=6. 3 (2H, n
30	Appear- ance	Amor- phous solid	Amor- phous solid	Amor- phous solid	Amor- phous solid
35	А	CH ₂ CF ₃	Me CH ₂ Ph	M N N N N N N N N N N N N N N N N N N N	O N NEt
40	Re	CO2Et	CO ₂ Et	CO ₂ Et	CO2CH2CC13
45	R2, R7	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -
50	Example No.	က	9	-	∞

5		0.75(3H, m), 1.15(6H, m), 1.6-2.1(4H, m), 2.2-2.6 (6H, m), 2.70(2H, m), 2.9-3.3(3H, m), 3.3-3.5(3H, m), 3.5-3.9(2H, m), 4.0-4.6(3H, m), 6.50(1H, m), 6.8- 7.3(10H, m), 7.40(1H, m)	1.11(6H, m), 1.96(2H, m), 2.15-2.60(6H, m), 2.70(2H, m), 3.10(3H, m), 3.40(3H, m), 3.68(3H, m), 4.43(2H, m), 4.7-5.2(2H, m), 6.49(2H, m), 6.65(1H, t, J=8.6Hz), 6.8	1.11(6H, m), 1.45(1H, m), 1.7-2.0(3H, m), 2.05-2.35 (3H, m), 2.40(4H, m), 2.70(1H, m), 2.85(2H, m), 2.9-3.2(3H, m), 3.2-3.5(2H, m), 3.62(1H, m), 4.0-4.2(2H, m), 4.40(1H, m), 5.10(1H, m), 5.28(1H, m), 6.40(1H, m), 6.8-7.05(2H, m), 7.05-7.25(4H, m), 7.25(3H, m), 7.4 (1H, m), 7.55(2H, m)
10	٥)	6-2.1(4H, u 3(3H, m), 3.3 H, m), 6.50(1	5-2.60(6H, 3.68(3H, m), 6.65(1H, t, J	.—2.0(3H, m) H, m), 2.85(3 3.62(1H, m), 5.28(1H, m), (4H, m), 7.2
15	PMR (CDC13,	.5(6H, m), 1. m), 2.9—3. 3 4.0—4.6(3 (1H, m)	3(2H, m), 2. 1 3. 40(3H, m), 6. 49(2H, m), 36(2H, m)	5(1H, m), 1.7 , m), 2.70(1 3.5(2H, m), 3 5.10(1H, m), 7.05—7.25 m)
20	<u>H</u>	0.75(3H, m), 1.15(6H, m), 1.6-2.1(4H, m), 2.2-2.6 (6H, m), 2.70(2H, m), 2.9-3.3(3H, m), 3.3-3.5(3H, m), 3.5-3.9(2H, m), 4.0-4.6(3H, m), 6.50(1H, m), 6.8-7.3(10H, m), 7.40(1H, m)	1.11(6H, m), 1.96(2H, m), 2.15-2.60(6H, m), 2.70(2H, m), 3.10(3H, m), 3.40(3H, m), 3.68(3H, m), 4.43(2H, m), 4.7-5.2(2H, m), 6.49(2H, m), 6.65(1H, t, J=8.6Hz), 6.8	1.11(6H, m), 1.45(1H, m), 1.7-2.0(3H, m), 2.05-2.35 (3H, m), 2.40(4H, m), 2.70(1H, m), 2.85(2H, m), 2.9-3.2(3H, m), 3.2-3.5(2H, m), 3.62(1H, m), 4.0-4.2(2H, m), 4.40(1H, m), 5.10(1H, m), 5.28(1H, m), 6.40(1H, m), 6.8-7.05(2H, m), 7.05-7.25(4H, m), 7.25(3H, m), 7.4 (1H, m), 7.55(2H, m)
25		0. 7 (6H, 3. 5.	1. 1. m). 4. 7-	1. 1. (3H, 3. 2. (a), (1H,
	Appear- ance	Amor- phous solid	Amor- phous solid	Amor- phous solid
<i>35</i>	Ø	Et NEt	Et Et	© Rt NEt
40	Re	CO ₂ Et	CO ₂ CH ₂ Ph	CO₂CH₂Ph ·
45	R2, R7	-CH ₂	-CH ₂ CH ₂ -	-(CH ₂) ₃ -
50	Example No.	o o	10	11

5		37—1. 82(1H, 2. 98—3. 40 1. m), 5. 05— (12H, m)), 1.7—1.9 I,m), 4.36— 3.68(1H,m),	(0-2. 20(6H, 3. 38(2H, m), ((1H, t, J=7. 8 I, m)	10—2. 35(4H, 4. 34—4. 49 I, m), 7. 47—
10	(۶)	4(1H, m), 1.6 2.92(6H, m), 39—4.46(1H, m), 6.84—7.6(1. 52(2. 5H, m .00—4. 20(2H m), 6. 48—((11H, m)	3(1H, m), 1.7 H, m), 3.01— (2H, m), 6.61 95—7.68(11F	5(1H, m), 1.9 -4.30(4H, m), 82—7.35(10F
15	PWR (CDC13, d	, 1.20—1.3. H, m), 2.69— 18(2H, m), 4. —6.63(1H, m)	m), 1.39— 38(17H, m), 4 5—5.42(2H, 6.98—7.57	1. 38—1. 53 2. 36— 2. 90(9 5. 05— 5. 33 13. 7Hz), 6.), 1.70—1.8 H, m), 3.89— 32(1H, m), 6.
20	ď	1.00-1.15(1H, m), 1.20-1.34(1H, m), 1.67-1.82(1H, m), 2.05-2.47(9H, m), 2.69-2.92(6H, m), 2.98-3.40(4H, m), 4.00-4.18(2H, m), 4.39-4.46(1H, m), 5.05-5.35(2H, m), 6.57-6.63(1H, m), 6.84-7.6(12H, m)	0.99—1.13(2.5H,m), 1.39—1.52(2.5H,m), 1.7—1.9 (1H,m), 2.02—3.58(17H,m), 4.00—4.20(2H,m), 4.36— 4.43(1H,m), 5.05—5.42(2H,m), 6.48—6.68(1H,m), 6.78—6.89(1H,m), 6.98—7.57(11H,m)	0.99-1.10(4H, m), 1.38-1.53(1H, m), 1.70-2.20(6H, m), 2.33(3H, s), 2.36-2.90(9H, m), 3.01-3.38(2H, m), 4.35-4.41(1H, m), 5.05-5.33(2H, m), 6.61(1H, t, J=7.8Hz), 6.83(1H, d, J=13.7Hz), 6.95-7.68(11H, m)	0.95-1.54(12H, m), 1.70-1.85(1H, m), 1.90-2.35(4H, m), 2.48-3.50(15H, m), 3.89-4.30(4H, m), 4.34-4.49 (1H, m), 6.48-6.62(1H, m), 6.82-7.35(10H, m), 7.47-7.69(2H, m)
25		1.00 m), (4H, r	0.99- (1H, ¹⁰ 4.43 6.78-	0.99- п), 2 4.35- Hz),	0.95- m), 2 (1H, n
	Appear- ance	Amor- phous solid	Amor- phous solid	Amor- phous solid	Amor- phous solid
35	A	H NA NA NA HE H	N.W.e. H. W.W.e.	N NWe	O N H i Ph
40	R	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ Et
45	R2, R7	-(CH ₂) ₈ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) _s -
50	Example No.	12	13	14	15

5		1. 0-1. 31(12H, m), 1. 36-1. 48(1H, m), 1. 57-1. 71(1H, m), 1. 76-2. 30(5H, m), 2. 53-3. 36(15H, m), 3. 88-4. 28 (4H, m), 4. 32-4. 44(1H, m), 6. 47-6. 56(1H, m), 6. 83-7. 30(10H, m), 7. 45-7. 62(2H, m)	0.95-1.52(9H, m), 1.60-2.33(5H, m), 2.40-3.39(13H, m), 3.75-4.30(5H, m), 4.33-4.58(1H, m), 6.60-6.72 (1H, m), 6.87-7.31(10H, m), 7.39-7.60(2H, m)	1.30(3H, m), 1.60(3H, d, J=6.8Hz), 1.72 5(1H, m), 2.23(1H, m), 2.41(4H, m), 2.65 3-3.2(4H, m), 3.36(2H, m), 3.61(1H, m), 4.3-4.6(3H, m), 6.40(1H, m), 6.90(1H, m), 7.19(3H, m), 7.25(3H, m), 7.3-7.6(2H, m)
10	6)	8(1H, m), 1. 3.36(15H, m) 7.47—6.56(1	(5H, m), 2.4 -4.58(1H, m) ?.39—7.60(2	60(3H, d, J=(H, m), 2.41(36(2H, m), 6.40(1H, m), 3(3H, m), 7.3
15	PWR (CDC13,	, 1.36-1.4 H, m), 2.53- 44(1H, m), 6 5-7.62(2H, 1	. 1.60-2.33 H.m.), 4.33- 31(10H,m.), 7	m). 1.30(3H, m), 1.60(3H, d, J=6.8Hz), 1.7 1.85(1H, m), 2.23(1H, m), 2.41(4H, m), 2.6 2.8-3.2(4H, m), 3.36(2H, m), 3.61(1H, m) n), 4.3-4.6(3H, m), 6.40(1H, m), 6.90(1H, m) n), 7.19(3H, m), 7.25(3H, m), 7.3-7.6(2H, m)
20	a .	1. 0-1. 31(12H, m), 1. 36-1. 48 m), 1. 76-2. 30(5H, m), 2. 53-3 (4H, m), 4. 32-4. 44(1H, m), 6. 7. 30(10H, m), 7. 45-7. 62(2H, m)	0.95-1.52(9H, m), 1.60-2.33(5H, m), 2.40-3 m), 3.75-4.30(5H, m), 4.33-4.58(1H, m), 6. (1H, m), 6.87-7.31(10H, m), 7.39-7.60(2H, m)	1.8 2.8 二,
<i>25</i>		1.0— m), 1 (4H, r	0.95- m), 3 (1H, n	1. 10(6H (1H, m), (1H, m), 4. 22(3H, 7. 03(3H,
30	Appear- ance	Amor- phous solid	Amor- phous solid	Amor- phous solid
35	4	H H H H Ph	H H H Ph	O NEt
40	Re	CO ₂ Et	CO ₂ Et	. CO ₂ Et
45	R2, R7	-(CH ₂) ₃ -	-(CH ₂) ₃ -	Me, -CH ₂ Ph
50	Example No.	16	17	18

5	8)	1. 09(6H, m), 1. 47(2H, d, J=7. 4Hz), 1. 60(1H, d, J=7. 4Hz), 1. 70(2H, m), 1. 85(1H, m), 2. 20(1H, m), 2. 40(4H, m), 2. 61(1H, m), 2. 75-3.15(4H, m), 3. 2-3.5(3H, m), 3. 60 (1H, m), 4. 3-4.5(2H, m), 5. 23(2H, s), 6. 39(1H, m), 6. 89(1H, m), 7. 03(2H, m), 7. 1-7.6 (13H, m)	1.10(9H, m), 1.5—1.9(7H, m), 2.22(1H, m), 2.40(4H, m), 2.65(1H, m), 2.8—3.2(4H, m), 3.2—3.5(4H, m), 3.61 (1H, m), 5.16(2H, s), 6.40(1H, m), 6.85(1H, m), 6.95 (1H, m), 7.05(2H, m), 7.22(2H, m), 7.36(5H, m), 7.61 (1H, m)	1.0—1.2(9H, m), 1.28(3H, t, J=7.3Hz), 1.65(3H, d, J=7.3 Hz), 1.7—2.0(2H, m), 2.2—2.5(5H, m), 2.70(2H, m), 2.9—3.5(8H, m), 3.63(1H, m), 4.17(2H, q, J=6.8Hz), 4.39(1H, m), 6.41(1H, m), 6.9—7.2(4H, m), 7.23(1H, m), 7.5—7.7(2H, m)
15	PMR (CDC13, d	(2H, d, J=7.4H 35(1H, m), 2. 5-3.15(4H, m) 5(2H, m), 5. 89(1H, m),	-1.9(7H, m), 2.22(1 3-3.2(4H, m), 3.2.3 1,s), 6.40(1H, m), 1.1, 1.2(2H, m), 1.22(2H, m), 1.22(2H	1. 28(3H, t, J= 2H, m), 2. 2—; 3. 63(1H, m); (1H, m), 6. 9—
20	μ,	1. 09(6H, m), 1. 47(2H, d, J=7. 4Hz), 1. 60(1H), 1. 70(2H, m), 1. 85(1H, m), 2. 20(1H, m), 2. 61(1H, m), 2. 75-3. 15(4H, m), 3. 2-3. 5(1H, m), 4. 3-4. 5(2H, m), 5. 23(2H, s), 6. 80(1H, m), 6. 89(1H, m), 7. 03(2H, m) (13H, m)	1.10(9H, m), 1.5—1.9(7H, m), 2.22(1 2.65(1H, m), 2.8—3.2(4H, m), 3.2 (1H, m), 5.16(2H, s), 6.40(1H, m), (1H, m), 7.05(2H, m), 7.22(2H, m), (1H, m)	1. 0—1. 2(9H, m), Hz), 1. 7—2. 0(5 2. 9—3. 5(8H, m), 4. 39(1H, m), 6. 41 7. 5—7. 7(2H, m)
25				
	Appear- ance	Amor- phous solid	Amor- phous solid	Amor- phous solid
35	æ	O N NEt	O NET	Et NEt
40	R	-CO ₂ CH ₂ Ph	-CO ₂ CH ₂ Ph	CO ₂ Et
45	R2, R7	Me, -CH ₂ Ph	Me, Et	We, Et
50	Example No.	19	20	21

5		7. 78—7. 45(2H, m), 7. 40(1H, m), 7. 33—7. 13(5H, m), 7. 09(2H, m), 6. 82—6. 65(2H, m), 5. 37—5. 19(1H, m), 5. 11(1H, m), 4. 35(1H, m), 4. 20—3. 92(2H, m), 3. 50(2H, m), 3. 38—3. 10(3H, m), 3. 05(1H, m), 2. 80(2H, m), 2. 65—2. 40(2H, m), 2. 38—1. 85(12H, m), 1. 42(1H, m), 1. 02(4H, m)	7. 32—7. 13(5H, m), 1, m), 5. 32(1H, m), 92(1H, m), 3. 57(1H, , 2. 58(2H, m), 2. 31 1. 42(1H, m), 1. 09	.—7.12(5H, m), 7.09 6.55(1H, m), 5.31, 2, J=12.7, 4.4Hz), 99(2H, m), 3.71(3H, 2.82(2H, m), 2.72 H, m), 1.44(1H, m),
15	PMR (CDC13, 8)	7. 78—7. 45(2H, m), 7. 40(1H, m), 7. 33—7. 13(5H, m), 7. 09(2H, m), 6. 82—6. 65(2H, m), 5. 37—5. 19(1H, m), 5. 11(1H, m), 4. 35(1H, m), 4. 20—3. 92(2H, m), 3. 50(2H, m), 3. 38—3. 10(3H, m), 3. 05(1H, m), 2. 80(2H, m), 2. 65-2. 40(2H, m), 2. 38—1. 85(12H, m), 1. 42(1H, m), 1. 02(4H, m)	7.60-7.44(2H, m), 7.40(1H, m), 7.32-7.13(5H, m), 7.10(2H, m), 6.90(1H, m), 6.70(1H, m), 5.32(1H, m), 5.09(1H, m), 4.39-4.00(2H, m), 3.92(1H, m), 3.57(11m), 8.36-2.94(3H, m), 2.80(2H, m), 2.58(2H, m), 2.4(2H, m)	7.6-7.5(2H, m), 7.40(1H, m), 7.31-7.12(5H, m), 7.(1H, m), 6.71, 6.63(1H, each s), 6.55(1H, m), 5.31 5.26(1H, each dd, J=12.2, 4.9Hz, J=12.7, 4.4Hz) 5.10(1H, m), 4.40(1H, m), 4.17-3.99(2H, m), 3.71(3Hm), 3.34-3.04(4H, m), 2.92(3H, m), 2.82(2H, m), 2.7(1H, m), 2.61(1H, m), 2.30-1.63(9H, m), 1.44(1H, m), 1.04(1H, m)
20		7. 78—7. 45(2H, 7. 09(2H, m), 6. 5. 11(1H, m), 4. 5 m), 3. 38—3. 10(2, 40(2H, m), 2. 38	7.60-7.44(2H, m), 7.4 7.10(2H, m), 6.90(1H, n) 5.09(1H, m), 4.39-4.00 m), 3.36-2.94(3H, m), -2.11(6H, m), 2.11-1	7.6-7.5(2H, m), (1H, m), 6.71, 5.26(1H, each 5.10(1H, m), 4.4 m), 3.34-3.04(1H, m), 2.61(1H, m)
30	Appear- ance	Amor- phous solid	Amor- phous solid	Amor- phous solid
35	A	N.N. N.N. W. B. E. T. N. W.	C1 Et	Ne Ne
40	Re	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph
45	R2, R7	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -
50	Example No.	22	23	24

5		7. 64—7. 44(2H, m), 7. 42—7. 36(1H, m), 7. 36—7. 24(2H, m), 7. 24—7. 16(3H, m), 7. 16—7. 04(2H, m), 7. 04—6. 86 (3H, m), 6. 50—6. 42(1H, m), 5. 36—5. 04(2H, m), 4. 46—4. 28(1H, m), 4. 20—3. 92(2H, m), 3. 92—3. 80(1H, m), 3. 76—3. 66(1H, m), 3. 58—3. 48(1H, m), 3. 20—2. 95(5H, m), 2. 38—1. 75(10H, m), 1. 50—1. 34(1H, m), 1. 16—0. 82	7.70-7.45(2H, m), 7.45-7.21(4H, m), 7.21-6.95(6H, m), 6.95-6.65(2H, m), 6.62-6.42(1H, m), 5.36-5.02 (2H, m), 4.45-4.30(1H, m), 4.20-3.97(2H, m), 3.56-2.95(6H, m), 2.45-1.78(11H, m), 1.55-1.34(1H, m), 1.16-0.95(4H, m)	7.77—7.44(3H, m), 7.42—7.16(11H, m), 7.16—7.04(2H, m), 6.91(2H, t, J=12.0Hz), 6.35(1H, t, J=7.0Hz), 5.32—5.06(2H, m), 4.44—4.28(2H, m), 4.18—3.94(2H, m), 3.54—3.46(1H, m), 3.36—2.94(3H, m), 2.46—1.80(6H, m), 1.52—1.10(5H, m), 1.10—0.80(2H, m)
10	l3, 6)	-7. 36(1H, m), . 16—7. 04(2H), .), 5. 36—5. 0 (2H, m), 3. 93 -3. 48(1H, m), 1. 50—1. 34(1H)	-7.21(4H, m), 1.62-6.42(1H), 1), 4.20-3.9	-7.16(11H, m), 6.35(1H, t, 7.3(2H, m), 4.11 -2.94(3H, m), 52—1.10(5H, m),
20	PMR (CDC13,	(2H, m), 7.42-7.16(3H, m), 7.50-6.42(1H, m), 4.20-3.92(1H, m), 3.58-1.75(10H, m), 1.20-1.	(2H, m), 7.45-6.65(2H, m), 6 45-4.30(1H, m , 2.45-1.78	(3H, m), 7.42- H, t, J=12.0Hz),), 4.44-4.28 (1H, m), 3.36- 1.80(6H, m), 1
25				
	Appear- ance	Amor- phous solid	Amor- phous solid	Amor- phous solid
35	ď	H NMe	H NWe	CH ₂ H
40	Re	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph
45	R2, R7	-(CH ₂) ₃ -	-(CH ₂) _s -	-(CH ₂) ₃ -
50	Example No.	25	92	27

5		7. 34—7. 24(3H, n), 6. 52(1H, t, 30(1H, m), 4. 20 6(2H, t, J=13. 5 m), 2. 32—2. 04 (1H, m), 1. 52—	6. 52—6. 44(1H, m), 4. 20—3. 96 (1H, m), 3. 24— -2. 34(2H, m), 1. 90—1. 76(1H,	6.82(2H, s), 6.52—6.60(1H, m), 5.11(1H, t, J=2.0Hz), 4.44—4.32 (2H, m), 3.45—3.23(2H, m), 3.22— 2.75(3H, m), 2.71(3H, d, J=4.0Hz), 2.40(3H, s), 2.18—2.03(4H, m),
10	8)	38(2H, m), ' -6. 85(4H, r 4. 46-4. 3 3H, m), 2. 8 -2. 48(1H, r)	4(11H, m), 4 -4. 32(1H, r) 3. 36-3. 24 4. m), 2. 60- 30(3H, m), 20(3H, m), 200(3H, m), 200(3H, m), 200(3H, m), 200(3H, m), 30(3H, m), 30(3H	1, s), 6.52- , t, J=2.0Hz 3.45-3.23- m), 2.71(3
15	PMR (CDC13,	7. 42—7. 3 H, m), 7. 12- 5. 06(2H, m), 35—3. 05(3H, m), 2. 64 88(2H, m), 2. 64	7. 42-6.8 H, m), 4. 46-50(1H, m), 3 8-2. 60(3H, m), 2. 04-1.3	1), 6.82(21)), 5.11(1H) 95(2H, m), 2:—2.75(3H, 1)), 2.40(3H)
20	P	7. 58-7. 46(2H, m), 7. 42-7. 38(2H, m), 7. 34-7. 24(3H, m), 7. 24-7. 16(2H, m), 7. 12-6. 85(4H, m), 6. 52(1H, t, J=8. 0Hz), 5. 36-5. 06(2H, m), 4. 46-4. 30(1H, m), 4. 20-3. 95(2H, m), 3. 35-3. 05(3H, m), 2. 86(2H, t, J=13. 5 Hz), 2. 76-2. 64(3H, m), 2. 64-2. 48(1H, m), 2. 32-2. 04(6H, m), 2. 04-1. 88(2H, m), 1. 84-1. 75(1H, m), 1. 52-1. 34(1H, m), 1. 14-0. 96(1H, m)	7. 60—7. 46(2H, m), 7. 42—6. 84(11H, m), 6. 52—6. 44(1H, m), 5. 36—5. 06(2H, m), 4. 46—4. 32(1H, m), 4. 20—3. 96(2H, m), 3. 60—3. 50(1H, m), 3. 36—3. 24(1H, m), 3. 24—3. 02(4H, m), 2. 88—2. 60(3H, m), 2. 60—2. 34(2H, m), 2. 34—2. 04(2H, m), 2. 04—1. 90(3H, m), 1. 90—1. 76(1H, m), 1. 52—1. 36(1H, m), 1. 16—0. 96(7H, m)	7.55-7.00(11H, m), 6.82(2H, s), 6.52-6.60(1H, m), 5.32-5.18(1H, m), 5.11(1H, t, J=2.0Hz), 4.44-4.32 (1H, m), 4.20-3.95(2H, m), 3.45-3.23(2H, m), 3.22-3.00(2H, m), 2.92-2.75(3H, m), 2.71(3H, d, J=4.0Hz), 2.42-2.20(1H, m), 2.40(3H, s), 2.18-2.03(4H, m), 1.94-1.78(1H, m)
<i>25</i>	i			
	Appear- ance	Amor- phous solid	Amor- phous solid	Amor- phous solid
30 35	A	H NWe	Et H	H H H H H H H H H H H H H H H H H H H
40	Re	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph
4 5	R2, R7	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -
50	Example No.	78	29	30

5		→ 5. 18(1H, m), 4. 24— 00(5H, m), i—1. 96(4H, 1. 20—0. 96	43(1H, t, J= 0Hz), 4.44 36(3H, m), 1-2.40(4H, 1.14-0.86	?-6.70(1H, 5.16-5.04 m), 3.70- 50(3H, m), I-1.34(1H,
10	٥)	7. 60— 6. 76(13H, m), 6. 60— 6. 46(1H, m), 5. 36— 5. 18(1H, m), 5. 10(1H, t, J=12. 0Hz), 4. 46—4. 34(1H, m), 4. 24—3. 96(2H, m), 3. 54—3. 44(1H, m), 3. 38—3. 00(5H, m), 2. 90—2. 46(5H, m), 2. 36—2. 24(1H, m), 2. 24—1. 96(4H, m), 1. 94—1. 76(1H, m), 1. 54—1. 36(1H, m), 1. 20—0. 96(7H, m)	7. 60-7. 40(2H, m), 7. 40-6. 48(16H, m), 6. 43(1H, t, J=7.5Hz), 5. 34-5. 14(1H, m), 5. 08(1H, t, J=6. 0Hz), 4. 44-4. 24(1H, m), 4. 16-3. 88(2H, m), 3. 58-3. 36(3H, m), 3. 36-3. 18(1H, m), 3. 18-2. 94(3H, m), 2. 90-2. 40(4H, m), 2. 40-1. 76(6H, m), 1. 46-1. 30(1H, m), 1. 14-0. 86(4H, m)	7. 60-7. 44(2H, m), 7. 44-6. 84(15H, m), 6. 82-6. 70(1H, m), 6. 60-6. 40(1H, m), 5. 36-5. 16(1H, m), 5. 16-5. 04 (1H, m), 4. 44-4. 26(1H, m), 4. 18-3. 92(2H, m), 3. 70-3. 36(3H, m), 3. 36-2. 96(5H, m), 2. 94-2. 50(3H, m), 2. 40-1. 96(4H, m), 1. 96-1. 60(2H, m), 1. 50-1. 34(1H, m), 1. 16-0. 94(4H, m)
15	PMR (CDC13, 8	, 6.60-6.41 12.0Hz), 4. 1-3.44(1H, r 2.36-2.24 I, m), 1.54-	, 7.40—6.4 [4(1H, m), 5. [6—3.88(2H, 3.18—2.94 3.11 46—	7.44—6.84 1, m), 5.36— 26(1H, m), 4. 3—2.96(5H, 1 1.96—1.6C
20	P	.6.76(13H, m) .10(1H, t, J= 2H, m), 3.54 .2.46(5H, m), .94—1.76(1H))	-7.40(2H, m)), 5.34—5.7 4(1H, m), 4.1 -3.18(1H, m), 40—1.76(6H)	7. 60-7. 44(2H, m), 7. m), 6. 60-6. 40(1H, m) (1H, m), 4. 44-4. 26(7 3. 36(3H, m), 3. 36-2 2. 40-1. 96(4H, m), 1. m), 1. 16-0. 94(4H, m)
<i>25</i>		7.60— 1.5.3.96(2.90— 1).1.	7. 60- 7. 5Hz) -4. 24 3. 36- n), 2.	7.60— m), 6. (114, m. 3.36 (2.40—
20	Appear- ance	Amor- phous solid	Amor- phous solid	Amor- phous solid
30		NET	H. C. C. B. P. F.	CH ₂ Ph
35	A	Et H	O	O D T
40	Re	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph	CO ₂ CH ₂ Ph
45	R2, R7	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -
50	Example No.	31	33	ဗ္ဗ

Example 34

2,9-Diethyl-6-(3-(2-dibenzylaminoethyl)-1-tosyl-indole-2-yl)hydroxymethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole

10

15

5

20

25

30

2.18 ml of n-BuLi (15% hexane) were added under ice-cooling to a solution of 1-tosyl-N,N-dibenzyltryptamine (1.72 g) in anhydrous THF, which was cooled with dry ice-acetone. 6-Formyl-2,9-dimethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole (0.6 g) was added and the mixture stirred for 4 hrs. Methanol was added and the solvent was removed by evaporation from the reaction solution. The residue to which water was added was extracted with ethyl acetate. The ethyl acetate layer was washed with water and then brine, dried over magnesium sulfate. The crude product was purified by column chromatography on silica gel.

40 Amorphous solid

PMR (CDCl₃, δ) 1.10(6H, m), 1.65-1.95(3H, m), 2.24(3H, s), 2.40(4H, m), 2.60(4H, m), 2.82(1H, m), 2.99(1H, m), 3.10(1H, m), 3.32(1H, m), 3.50(2H, m), 3.60(3H, m), 4.90(1H, m), 6.30(1H, m), 6.55(1H, m), 7.3-7.1(16H, m), 7.43(2H, m), 8.08(1H, m)

45 Examples 35-40

In a similar manner, the following compounds were prepared from the corresponding starting materials.

Eluates with 3% methanol/chloroform gave 1.15 g of the title compound.

50

5	i
1	0
1	5
2	0
2	25
3	0
3	35
4	10
4	15
5	ю

$ \begin{array}{c} (I) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	PMR (CDC1 _s , δ)	Amorphous 1.10(6H, m), 1.86(1H, m), 2.00(1H, m), 2.22(1H, m), 2.30—2.60 solid (5H, m), 2.69(2H, m), 2.91(1H, m), 2.95—3.25(3H, m), 3.35(1H, m), 3.45(3H, s), 3.63(5H, m), 6.03(1H, s), 6.35(1H, m), 6.86—7.01(2H, m), 7.10—7.35(14H, m), 7.56(1H, m)	Amorphous 1.10(6H, m), 1.65(4H, m), 2.10(2H, m), 2.25-2.58(5H, m), 2.76 solid (2H, m), 2.92(3H, m), 3.05(1H, m), 3.30(1H, m), 3.50-3.71(5H, m), 5.45(2H, m), 6.25(1H, m), 6.75-7.10(5H, m), 7.15-7.35 (8H, m), 7.35(8H, m), 7.55(1H, m)	Amorphous 1.10(6H, m), 1.78(1H, m), 1.90(1H, m), 2.25(1H, m), 2.41(4H, solid m), 2.62(1H, m), 3.08(1H, m), 3.12(1H, m), 3.40(1H, m), 3.60 (3H, s), 3.70(1H, m), 5.94(1H, s), 6.40(2H, m), 7.07(3H, m), 7.19(1H, t, J=7.8Hz), 7.26(1H, m), 7.57(1H, d, J=7.8Hz)
R - N - N - N - N - N - N - N - N - N -	Appearance	Amorphous solid	Amorphous solid	Amorphous
(O)	R1	Же	-CH₂Ph	0 ⊃e
	R	-CH ₂ CH ₂ N(CH ₂ Ph) ₂	-CH ₂ CH ₂ N(CH ₂ Ph) ₂	æ
	<u>~</u>	35	36	37

5		1.10(6H, m), 1.3—1.5(2H, m), 1.72(3H, m), 1.90(1H, m), 2.25 (1H, m), 2.42(3H, m), 2.65(1H, m), 3.00—3.15(2H, m), 3.35(1H, m), 3.55(3H, s), 3.68(2H, m), 5.27(1H, dq, J=11.2, 1.5Hz), 5.71(1H, d, J=17.6Hz), 6.40(2H, m), 6.90—7.10(2H, m), 7.19 (1H, m), 7.26(7H, m), 7.94(1H, d, J=7.8Hz)	1.06(6H, m), 1.4—1.9(7H, m), 2.15(1H, m), 2.35(4H, m), 2.60 (1H, m), 2.90(1H, m), 3.05(1H, m), 3.30(1H, m), 3.58(1H, m), 5.1—5.8(4H, m), 6.30(2H, m), 6.65(1H, m), 6.80(2H, m), 6.9— 7.2(8H, m), 7.32(3H, m), 7.70(1H, m)	1.10(6H, m), 1.7-2.0(3H, m), 2.25(3H, s), 2.40(5H, m), 2.60 (1H, m), 3.05(5H, m), 3.30(2H, m), 6.28-6.45(2H, m), 6.60(1H, m), 6.85-7.10(5H, m), 7.20(1H, m), 7.28(1H, m), 7.45(4H, m), 8.10(1H, m), 8.39(1H, m)
10		(3H, m), 1.90 00-3.15(2H, 7(1H, dq, J=1 6.90-7.10 8Hz)	(1H, m), 2.35 3.30(1H, m), 1H, m), 6.80	(3H, s), 2. 40 28— 6. 45(2H, 7. 28(1H, m),
15	ls, 8)	2H, m), 1.72 35(1H, m), 3. (2H, m), 5.2 6.40(2H, m), 34(1H, d, J=7.	(H, m), 2.15(.05(1H, m), H, m), 6.65(3H, m), 2.25(30(2H, m), 6. 7.20(1H, m),
20	PMR (CDC13, 5)	1. 10(6H, m), 1. 3—1. 5(2H, m), 1. 72(3H, m) (1H, m), 2. 42(3H, m), 2. 65(1H, m), 3. 00— m), 3. 55(3H, s), 3. 68(2H, m), 5. 27(1H, 5. 71(1H, d, J=17.6Hz), 6. 40(2H, m), 6. 9 (1H, m), 7. 26(7H, m), 7. 94(1H, d, J=7.8Hz)	1. 06(6H, m), 1. 4—1. 9(7H, m), 2. 15(1H, m), 2. 90(1H, m), 3. 05(1H, m), 5. 1—5. 8(4H, m), 6. 30(2H, m), 6. 657. 2(8H, m), 7. 32(3H, m), 7. 70(1H, m)	1.10(6H, m), 1.7—2.0(3 (1H, m), 3.05(5H, m), 3.3 (m), 6.85—7.10(5H, m), 8.10(1H, m), 8.39(1H, m)
25	·	1.10(6H, m) (1H, m), 2.4 m), 3.55(3 5.71(1H, d,		
35	Appearance	Amorphous solid	Amorphous solid	-S02-CO-We Amorphous solid
40	R,	Же	-CH2Ph	-802-(O)-We
45	R	-CH ₂ CH ₂ OCH ₂ Ph	-CH ₂ CH ₂ OCH ₂ Ph	-CH ₂ CH ₂
50	Š.	38	38	40

Example 41

5

20

25

35

40

45

50

55

2,9-Diethyl-6-(1-(3-(2-methylethylamino)ethyl)-indole-2-yl)-ethyl)-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole

Lithium aluminium hydride (0.11 g) was added under ice-cooling to a solution of the compound prepared in Example 21 (0.76 g) in THF and the solution was heated at reflux for 5 hrs. Unreacted lithium aluminium hydride was decomposed with water and 15% aqueous NaOh solution. After filtration, the crude product was purified by column chromatography on silica gel. Eluates with 10% methanol/chloroform gave 0.40 g of the title compound.

Amorphous solid

PMR (CDCl₃, δ) 1.10(9H, m), 1.64(3H, d, J=6.9Hz), 1.85(2H, m), 2.1-2.8(13H, m), 2.98(3H, m), 3.11(1H, m), 3.35(1H, m), 3.62(1H, m), 4.49(1H, m), 6.40(1H, m), 6.90(2H, m), 7.07(2H, m), 7.20(1H, m), 7.5-7.7(2H, m)

30 Examples 42-44

In a similar manner, the following compounds were prepared from the corresponding starting materials.

PMR (CDCL ₃ , δ)	Amorphous 1.13(3H, t, J=6.3Hz), 1.3-1.9(7H, m), 1.9-2.35(8H, m), solid 2.45(2H, q, J=6.3Hz), 2.5-2.8(4H, m), 2.8-3.1(5H, m), 3.19 (2H, m), 4.50(1H, m), 6.45(1H, t, J=8.6Hz), 6.85-7.25(5H, m), 7.53(2H, m)	Amorphous 1.15(6H, m), 1.85(4H, m), 2.25(2H, m), 2.45(4H, m), 2.55(1H, solid m), 2.81(2H, m), 2.9-3.5(6H, m), 3.6-4.0(4H, m), 4.95 (1H, m), 6.50(1H, m), 6.68(1H, m), 6.85-7.35(8H, m), 7.56 (2H, m)	Amorphous 1.3-2.3(19H, m), 2.5-3.2(11H, m), 3.42(3H, s), 4.50(1H, solid m), 6.50(1H, m), 6.80-7.25(5H, m), 7.53(1H, m), 7.65 (1H, m)
Appear- ance	Amorphous solid	Amorphous	Amorphous solid
R ₃ R ₄ , R ₅	H, Et	H, Et	-(CH ₂) ₄ -
R3	¥e	면 +	Же
R2, R7	-(CH ₂) ₄ -	-CH ₂ CH ₂ -	-(CH ₂) ₄ -
Example No.	42	43	44

Example 45

5

25

30

35

6-(Benzyloxy-(3-(2-(N,N-dibenzylamino)ethyl)-1-methyl-indole-2-yl)-methyl)-2,9-diethyl-1,2,3,4,4a,9a-hexahydro-pyrido[3,4-b]indole

The compound prepared in Example 35 (0.25 g) and NaH (60% nujol, 0.03 g) were added under ice-cooling to anhydrous DMF solution, then benzyl bromide (0.05 ml) was added and the mixture was stirred at room temperature for 3 hrs. The reaction solution with the addition of water was extracted with ethyl acetate, washed with water and then brine and dried over magnesium sulfate. The crude product was purified by column chromatography on silica gel. Eluates with 3% methanol/chloroform gave 0.20 g of the title compound.

Amorphous solid

PMR (CDCl₃, δ) 0.88(3H, t, J=6.8Hz), 1.10(3H, t, J=7.4Hz), 1.25(5H, m), 1.60 (6H, m), 2.45(3H, m), 2.70(1H, m), 3.11(1H, m), 3.35(1H, m), 3.45(3H, s), 3.6 -3.7(5H, m), 5.69(1H, s), 6.33(1H, m), 6.90(1H, m), 7.1-7.4(20H, m)

Further, the following illustrates the H⁺/K⁺ ATPase inhibitory activity assay and pharmaceutical preparations of the present compounds.

H⁺/K⁺ ATPase Inhibitory Activity Assay

The inhibitory activity was determined in the following manner using H⁺/K⁺ ATPase prepared from the stomach of pig.

H⁺/K⁺ ATPase dilute solution (100 μ l, 50 μ g as protein) was added to PIPES-tris (pH 6.2) buffer solution (440 μ l) containing 4 mM magnesium chloride and 20 mM potassium chloride. Further, 0.1% ethanol solution of nigericin (5 μ l) was added. To the solution was added dimethyl sulfoxide (5 μ l) and the mixture was incubated at 37°C for 30 minutes. Then 10 mM PIPES-tris buffer solution (450 μ l) containing 4 mM ATP disodium was added to initiate the reaction. 30 minutes later, 50% trichloroacetic acid (1 μ l) was added to cease the reaction. The amount of phosphorus released in this reaction was determined by a color development determination at 800 nm according to D. Lebel, G. Poirier et al. method (Anal. Biochem. 85, 86-89, 1978), at which the reading of the absorbance is taken as C1. On the other hand, a similar determination was carried out in the absence of potassium chloride, at which the reading of the absorbance is taken as C2. The inhibitory activity was determined by a similar procedure as in the above reaction, but adding 5 μ l of a dimethyl sulfoxide solution containing 1 to 20 mg/ml of the inhibiting substance (test compound), instead of dimethyl sulfoxide. In that case, the readings of the absorbance in the presence and absence of potassium chloride are taken as T1 and T2, respectively.

% Inhibition (I) of the inhibiting substance (test compound) is calculated by the following equation.

$$I = [(C1 - C2) - (T1 - T2)] \times 100/(C1 - C2)$$

55

Test Compound	H ⁺ /K ⁺ ATPase % Inhibi- tion
Example 1	54.9% (10 μg/ml)
Example 4	84 % (20 μg/ml)
Example 10	98.4% (5 μg/ml)
Example 11	97.5% (10 μg/ml)
Example 19	92.5% (10 μg/ml)
Example 34	80.8% (10 μg/ml)
Example 39	78.8% (10 μg/ml)
Example 40	24.4% (10 μg/ml)
Example 45	65.7% (10 μg/ml)

The pharmaceutical preparations of the present compounds are shown below.

Pharmaceutical Preparation 1 - Tablets (one tablet)

Compound of Example 11	10 mg
Lactose	67 mg
Crystalline cellulose	15 mg
Corn starch	7 mg
Magnesium stearate	1 mg

Each ingredient was uniformly blended to prepare powders for direct compression. The powders were formulated by a rotary tableting machine into tablets each 6 mm in diameter and weighing 100 mg.

Pharmaceutical Preparation 2 - Granules (one divided form)

A.	Compound of Example 11	10 mg
	Lactose	90 mg
	Corn starch	50 mg
	Crystalline cellulose	50 mg
B.	Hydroxypropylcellulose	10 mg
	Ethanol	9 mg

The ingredients of A were uniformly blended and the solution of B was added. The mixture was kneaded and granulated by extrusion granulation. The granules were dried in a drier at 50° C and then sieved into the grain size between 297 and 1460 μ m. 200 mg of the granules were packed into a unit dosage form.

Pharmaceutical Preparation 3 - Syrups

-

10

15

Compound of Example 11	1.000 g
Refined sugar	30.000 g
D-sorbitol 70 W/V%	25.000 g
Ethyl p-hydroxybenzoate	0.030 g
Propyl p-hydroxybenzoate	0.015 g
Flavor	0.200 g
Glycerol	0.150 g
96% Ethanol	0.500 g
Distilled water	ad lib

20

The compound, refined sugar, D-sorbitol, ethyl p-hydroxybenzoate and propyl p-hydroxybenzoate were dissolved in 60 ml of warmed water. After cooling, a solution of flavor dissolved in glycerol and ethanol was added. The whole mixture was diluted with water to balance 100 ml.

Pharmaceutical Preparation 4 - Injections

30

Compound of Example 11	1 mg
Sodium chloride	10 mg
Distilled water	ad lib

35

40

The compound and sodium chloride were dissolved in distilled water to balance 1.0 ml.

Pharmaceutical Preparation 5 - Suppositories

45

Compound of Example 11	2 g
Polyethylene glycol 4000	20 g
Glycerol	78 g

50

Polyethylene glycol 4000 was added to a solution of the compound in glycerol. The mixture was warmed and poured into a suppository mold and then cooled to give suppositories, each weighing 1.5 g.

Claims

55

1. A compound of formula (I)

$$\begin{array}{c|c}
 & R \\
 & R_1 & R_2 & R_4
\end{array}$$
(1)

wherein

5

10

15

20

25

30

35

45

50

55

Y represents H, C₁-C₆ alkyl, C₁-C₆ alkoxy or halogen;

Z represents -CH₂N(R₅)-;

R represents H or ${}^{-}$ CH₂CH₂X where X represents pyridyl, aralkyloxy or substituted amino of NR₆R₇ where R₆ represents H, C₁-C₆ alkyl, aralkyl, C₁-C₆ alkoxycarbonyl, aralkyloxycarbonyl or halogenated C₁-C₆ alkoxycarbonyl and R₇ represents H, C₁-C₆ alkyl or aralkyl, or together with R₂ may form a ring of -(CH₂)_n- (n is 1-4) or

R₁ represents H, C₁-C₆ alkyl, aralkyl or arylsulfonyl;

R₂ represents C₁-C₆ alkyl, hydroxy, C₁-C₆ alkoxy or aralkyloxy;

R₃ represents H, C₁-C₆ alkyl, aralkyl or halogenated C₁-C₆ alkyl;

 R_4 and R_5 may be the same or different and each represents H, C_1 - C_6 alkyl or aralkyl or both may together form a ring of -(CH_2)_m- (m is 3 or 4);

or pharmaceutically acceptable acid addition salts thereof.

- 2. A compound of claim 1 wherein R represents -CH₂CH₂NR₆R₇ where R₆ and R₇ each independently represent C₁-C₄ alkoxycarbonyl, benzyloxycarbonyl or halogenated C₁-C₄ alkoxycarbonyl.
- A compound of claim 1 wherein R represents H or -CH₂CH₂NR₆R₇ where R₆ represents C₁-C₄ alkyl, benzyl, C₁-C₄ alkoxycarbonyl, benzyloxycarbonyl or halogenated C₁-C₄ alkoxycarbonyl and R₇ together with R₂ forms a ring of -(CH₂)₃-, -(CH₂)₄- or

- 4. A compound of claim 1 wherein R represents -CH₂CH₂X where X represents pyridyl or benzyloxy.
- 5. A compound of cliam 1 wherein Z represents -CH₂N(R₅)- where R₅ represents C₁-C₄ alkyl or benzyl, or R₅ together with R₄ forms a ring of -(CH₂)₄-.
- 6. A compound of claim 1 wherein R₁ represents H, C₁-C₄ alkyl, benzyl or p-C₁-C₄ alkylphenylsulfonyl.
- 7. A compound of claim 1 wherein R₂ represents C₁-C₄ alkyl, hydroxy or benzyloxy.

- 8. A compound of claim 1 wherein Y represents H, C₁-C₄ alkyl, C₁-C₄ alkoxy or Cl.
- 9. A compound of claim 1 wherein R₃ represents C₁-C₄ alkyl, benzyl or halogenated C₁-C₄ alkyl.
- 10. A pharmaceutical composition which comprises as an active ingredient an effective amount of a compound of formula (I) as defined in any one of claims 1 to 9 or a pharmaceutically acceptable acid addition salt thereof and a pharmaceutically acceptable carrier.
 - 11. A pharmaceutical composition of claim 10 for use as an antiulcer agent.

Patentansprüche

10

15

20

30

35

40

45

1. Verbindung der Formel (I)

 $\begin{array}{c|c}
 & R_1 & R_2 & R_4 \\
\hline
 & R_1 & R_2 & R_4
\end{array}$

25 wobei

Y H, C₁-C₆ Alkyl, C₁-C₆ Alkoxy oder Halogen darstellt;

Z -CH2CH2N(R5)- darstellt;

R H oder - CH_2CH_2X darstellt, wobei X Pyridyl, Aralkyloxy oder substituiertes Amino NR_6R_7 bedeutet, wobei R_6H , C_1 - C_6 Alkyl,

Aralkyl, C_1 - C_6 Alkoxycarbonyl, Aralkyloxycarbonyl oder halogeniertes C_1 - C_6 Alkoxycarbonyl darstellen und R_7 H, C_1 - C_6 Alkyl oder Aralkyl darstellt, oder gemeinsam mit R_2 einen Ring aus -(CH_2)_n - (n ist 1 bis 4) oder

bilden kann;

R₁ H, C₁-C₆ Alkyl, Aralkyl oder Arylsulfonyl darstellt;

R₂ C₁-C₆ Alkyl, Hydroxy, C₁-C₆ Alkoxy oder Aralkyloxy darstellt;

R₃ H, C₁-C₆ Alkyl, Aralkyl oder halogeniertes C₁-C₆ Alkyl darstellt;

 R_4 und R_5 gleich oder verschieden sein können und jeweils H, C_1 - C_6 Alkyl oder Aralkyl darstellen oder beide gemeinsam einen Ring aus -(CH_2)_m- bilden können (m ist 3 oder 4);

oder pharmazeutisch verträgliche Säureadditionssalze.

- 2. Verbindung nach Anspruch 1, wobei R - $CH_2CH_2NR_6R_7$ darstellt, wobei R_6 und R_7 unabhängig voneinander C_1 - C_4 Alkyl, Benzyl,
 - C₁-C₄ Alkoxycarbonyl, Benzyloxycarbonyl oder halogeniertes C₁-C₄ Alkoxycarbonyl darstellen.
- 3. Verbindung nach Anspruch 1, wobei R H oder -CH₂CH₂NR₆R₇ darstellt, wobei R₆ C₁-C₄ Alkyl, Benzyl, C₁-C₄ Alkoxycarbonyl, Benzyloxycarbonyl oder halogeniertes C₁-C₄ Alkoxycarbonyl und R₇ gemeinsam mit R₂ einen Ring aus -(CH₂)₃-, -(CH₂)₄- oder

55

darstellt.

5

20

25

30

35

40

45

50

- 10 4. Verbindung nach Anspruch 1, wobei R CH₂CH₂X darstellt, wobei X Pyridyl oder Benzyloxy darstellt.
 - 5. Verbindung nach Anspruch 1, wobei Z -CH₂N(R₅)- darstellt, wobei R₅ C₁-C₄ Alkyl oder Benzyl darstellt, oder R₅ gemeinsam mit R₄ einen Ring aus -(CH₂)₄ bildet.
- 15 6. Verbindung nach Anspruch 1, wobei R₁ H, C₁-C₄ Alkyl, Benzyl oder p-C₁-C₄ Alkylphenylsulfonyl darstellt.
 - 7. Verbindung nach Anspruch 1, wobei R₂ C₁-C₄ Alkyl, Hydroxy oder Benzyloxy darstellt.
 - 8. Verbindung nach Anspruch 1, wobei Y H, C₁-C₄ Alkyl, C₁-C₄ Alkoxy oder Cl darstellt.
 - 9. Verbindung nach Anspruch 1, wobei R₃ C₁-C₄ Alkyl, Benzyl oder halogeniertes C₁-C₄ Alkyl darstellt.
 - 10. Pharmazeutische Zusammensetzung, die als aktiven Bestandteil eine wirksame Menge einer Verbindung der Formel (I) wie in einem der Ansprüche 1 bis 9 definiert oder ein pharmazeutisch verträgliches Säureadditionssalz davon und einen pharmazeutisch verträglichen Träger umfaßt.
 - 11. Pharmazeutische Zusammensetzung nach Anspruch 10 zur Verwendung als Anti-Ulcus-Mittel.

Revendications

1. Composé de formule (I) :

$$\begin{array}{c|c}
 & R \\
 & R_1 \\
 & R_2
\end{array}$$

$$\begin{array}{c|c}
 & R_1 \\
 & R_2
\end{array}$$

dans laquelle

- Y représente H, un groupe alkyle en C₁-C₆, alkoxy en C₁-C₆ ou un atome d'halogène ;
- Z représente - $CH_2N(R_5)$ -;
- R représente H ou -CH₂CH₂X, X représentant un groupe pyridyle, aralkyloxy ou amino substitué de formule NR₆R₇, dans laquelle R₆ représente H, un groupe alkyle en C₁-C₆, aralkyle, (alkoxy en C₁-C₆)carbonyle, aralkyloxycarbonyle ou (alkoxy en C₁-C₆)carbonyle halogéné, et R₇ représente H, un groupe alkyle en C₁-C₆ ou aralkyle, ou il peut former ensemble avec R₂ un cycle -(CH₂)_n- (n variant de 1 à 4) ou un groupe

R₁ représente H, un groupe alkyle en C₁-C₆, aralkyle ou arylsulfonyle ;

15

20

45

50

- R₂ représente un groupe alkyle en C₁-C₆, hydroxy, alkoxy en C₁-C₆ ou aralkyloxy;
- R₃ représente H, un groupe alkyle en C₁-C₆, aralkyle ou alkyle en C₁-C₆ halogéné;
- R₄ et R₅ peuvent être identiques ou différents, et ils représentent chacun H, un groupe alkyle en C₁-C₆ ou aralkyle, ou ils peuvent former ensemble tous les deux un cycle -(CH₂)_m- (m est égal à 3 ou 4) ; ou leurs sels d'addition avec un acide pharmaceutiquement acceptable.
- Composé selon la revendication 1, dans lequel R représente -CH₂CH₂NR₆R₇, R₆ et R₇ représentant indépendamment chacun un troupe alkyle en C₁-C₄, benzyle, (alkoxy en C₁-C₄)carbonyle, benzyloxycarbonyle ou (alkoxy en C₁-C₄)carbonyle halogéné.
 - 3. Composé selon la revendication 1, dans lequel R représente H ou -CH₂CH₂NR₆R₇, R₆ représentant un groupe alkyle en C₁-C₄, benzyle, (alkoxy en C₁-C₄)carbonyle, benzyloxycarbonyle ou (alkoxy en C₁-C₄)carbonyle halogéné, et R₇ forme ensemble avec R₂ un cycle -(CH₂)₃-, -(CH₂)₄- ou

- Composé selon la revendication 1, dans lequel R représente -CH₂CH₂X, X représentant un groupe pyridyle ou benzyloxy.
 - 5. Composé selon la revendication 1, dans lequel Z représente -CH₂N(R₅)-, R₅ représentant un groupe alkyle en C₁-C₄ ou benzyle, ou R₅ forme ensemble avec R₄ un cycle -(CH₂)₄-.
- 30 6. Composé selon la revendication 1, dans lequel R₁ représente H, un groupe alkyle en C₁-C₄, benzyle ou p-(alkyl en C₁-C₄)phénylsulfonyle.
 - 7. Composé selon la revendication 1, dans lequel R₂ représente un groupe alkyle en C₁-C₄, hydroxy ou benzyloxy.
- 85 8. Composé selon la revendication 1, dans lequel Y représente H, un groupe alkyle en C₁-C₄, alkoxy en C₁-C₄ ou CI.
 - Composé selon la revendication 1, dans lequel R₃ représente un groupe alkyle en C₁-C₄, benzyle ou alkyle en C₁-C₄ halogéné.
- 40 10. Composition pharmaceutique, comprenant comme ingrédient actif une quantité efficace d'un composé de formule (l) tel que défini dans l'une quelconque des revendications 1 à 9, ou un sel d'addition avec un acide pharmaceutiquement acceptable de celui-ci et un véhicule pharmaceutiquement acceptable.
 - 11. Composition pharmaceutique selon la revendication 10, destinée à être utilisée comme agent antiulcératif.