

la moyenne des erreurs

$$\frac{1}{m}\sum erreur$$

Erreur quadratique moyenne

$$MSE = \frac{1}{m} \sum (y_{vrai} - y_{pred})^2$$

Erreur absolue moyenne

$$MAE = \frac{1}{m} \sum |y_{vrai} - y_{pred}|$$

$$MAE = \frac{1}{m} \sum |y_{vrai} - y_{pred}|$$

$$MSE = \frac{1}{m} \sum (y_{vrai} - y_{pred})^2$$

$$MAE = \frac{1}{m} \sum |y_{vrai} - y_{pred}| \qquad |1-1| = 0$$

$$|1 - 1| = 0$$

$$MSE = \frac{1}{m} \sum (y_{vrai} - y_{pred})^2$$
 $(1-1)^2 = 0$

$$(1-1)^2=0$$

$$MAE = \frac{1}{m} \sum |y_{vrai} - y_{pred}| \qquad |1-2| = 1$$

$$|1 - 2| = 1$$

$$MSE = \frac{1}{m} \sum (y_{vrai} - y_{pred})^2 | (1-2)^2 = 1$$

$$(1-2)^2=1$$

$$MAE = \frac{1}{m} \sum |y_{vrai} - y_{pred}| \qquad |1 - 3| = 2$$

$$|1 - 3| = 2$$

$$MSE = \frac{1}{m} \sum (y_{vrai} - y_{pred})^2 \left[(1-3)^2 = 4 \right]$$

$$(1-3)^2 = 4$$

$$MAE = \frac{1}{m} \sum |y_{vrai} - y_{pred}| \qquad |1-4| = 3$$

$$|1 - 4| = 3$$

$$MSE = \frac{1}{m} \sum (y_{vrai} - y_{pred})^2 | (1-4)^2 = 9$$

$$(1-4)^2=9$$

$$\sum (erreurs)^2 \neq \left(\sum erreurs\right)^2$$

 $MSE \neq (MAE)^2$

$$MAE = \frac{1}{m} \sum |y_{vrai} - y_{pred}| \qquad \frac{4+0}{2} = 2$$

$$\frac{4+0}{2}=2$$

$$MSE = \frac{1}{m} \sum (y_{vrai} - y_{pred})^2 \left[\frac{4^2 + 0^2}{2} = 8 \right]$$

$$\frac{4^2+0^2}{2}=8$$

$$MAE = \frac{1}{m} \sum |y_{vrai} - y_{pred}| \qquad \frac{4+0}{2} = 2$$

$$MSE = \frac{1}{m} \sum_{i} (y_{vrai} - y_{pred})^{2} \left[\frac{4^{2} + 0^{2}}{2} = 8 \right]$$

$$RMSE = \sqrt{\frac{1}{m} \sum (y_{vrai} - y_{pred})^2} \sqrt{\frac{4^2 + 0^2}{2}} = 2.8$$

La RMSE retourne l'erreur à son échelle initiale, ce qui est plus compréhensible.

$$\frac{4+0}{2} = 2$$

$$\frac{4^2+0^2}{2}=8$$

Mean Absolute Error

$$\frac{4+0}{2}=2$$

Root Mean Squared Error

$$\sqrt{\frac{4^2+0^2}{2}}=2.8$$

Quand utiliser la MSE plutôt que la MAE ?

Mean Absolute Error

l'importance d'une erreur est linéaire avec son amplitude

Root Mean Squared Error

l'importance d'une erreur est exponentielle avec son amplitude

	Erreur 1	Erreur 2	MAE	MSE
Modèle A	10	0	5	
MANAPOLE	6	5	5.5	

Erreur 2	MAE	MSE
0	5	
5	5.5	

Est-ce vraiment une bonne chose de choisir le modèle A ? Il peut être très dangereux....

		Erreur 1	Erreur 2	MAE	MSE
	maayhta	10	0	5	7
	Modèle B	6	5	5.5	5.52

Une erreur de 10 mètres, c'est 100 fois plus grave qu'une erreur de 1 mètre.

la MSE pénalise beaucoup plus les grandes erreurs que la MAE.

Quand utiliser la MSE plutôt que la MAE ?

 $MSE \rightarrow \text{vous accordez une grande importance aux grandes erreurs.}$

MAE → l'importance d'une erreur est linéaire avec son amplitude. Si le Dataset contient des valeurs aberrantes (outliers).

Median Absolute Error = 2

MEDIAN ABSOLUTE ERROR

Il existe aussi la Median Absolute Error.

Très peu sensible aux grandes erreurs.

$$MAE = median\{|y_{vrai} - y_{pred}|\}$$

Attention quand vous l'utilisez....

Median Absolute Error = 2

AU FINAL...

MAE, MSE, RMSE, Médiane...

Il semble que chaque mesure est des **avantages** et des **inconvénients**... Du coup, laquelle choisir ?

→ Utilisez les toutes!

Vous récolterez ainsi beaucoup plus d'information!

COEFFICIENT DE DETERMINATION R2

$$R2 = 1 - \frac{\sum (y_{vrai} - y_{pred})^2}{\sum (y_{vrai} - \overline{y_{vrai}})^2}$$

$$variance$$

Évalue la **performance** du modèle **par rapport** au **niveau de variation** présent dans les données.

Évalue la **performance** du modèle **par rapport** au **niveau de variation** présent dans les données.

$$\begin{array}{c}
R2 = 1 - & \begin{array}{c}
erreurs \\
variance \\
0
\end{array}$$

erreurs « variance

$$R2 = 1 - 1$$

$$R2 = 0$$

$$R2 = 1 - 2$$

$$R2 = -1$$

Quelle formule peut sauver ce piéton?

MAE

MSE

$$\left| \frac{1}{m} \right| y_{vrai} - y_{pred}$$

$$\frac{1}{m} \sum (y_{vrai} - y_{pred})^2$$