

DOCTORATE THESIS MONITORING COMMITTEE PERIODIC EVALUATION REPORT

Student's						
Institute Registered		Graduate School of Natural and Applied Sciences				
Department		Mathematics (English)				
Program		PhD				
Student ID Number		13565006				
Full Name		Sümeyra BEDİR				
TMC meeting place-date		25.05.2017				
Periodic Evaluation Term						
Periodic Evaluation Number						
THESIS TITLE		Vectorial Cyclic Codes And Their Structure				
Does the content correspond to the Thesis proposal?		☐ YES ☐ NO				
EVALUATION OF THE THESIS STUDY		□ Successful □ Unsuccessful □ by unanimious votes □ by majority of votes				
THESIS MONITORING COMMITTEE MEMBERS						
	Appellation, Full Name		Department/ University	Date- Signature		
Thesis Advisor	Prof. Dr. Bayram Ali ERSOY		Department of Mathematics/ Yıldız Technical University			
Committee Member	Prof. Dr. A. Göksel AĞARGÜN		Department of Mathematics/ Yıldız Technical University			
Committee Member	Prof. Dr. Ünsal TEKİR		Department of Mathematics/ Marmara University			

Additional Document: Student's Report

NOTE: The thesis committee members who have additional personal remarks may specify them with a report.

PROPOSAL FOR OUTLINE OF THE THESIS

CHAPTER 1

INTRODUCTION	#
1.1 Literature Review	
1.2 Objective of the Thesis	
1.3 Hypothesis	#
CHAPTER 2	
LINEAR CODES OVER FINITE FIELDS	#
2.1 Cyclic Codes	
2.2 Constacyclic Codes	
2.3 Pseudo-cyclic Codes	
2.2.1 Quasi Pseudo-cyclic Codes	
2.2.2 Dual Codes for Pseudo-cyclic Codes	#
CHAPTER 3	
LINEAR CODES OVER FINITE CHAIN RINGS	#
3.1 Linear Codes as Invariant Submodules	#
3.2 Pseudo-cyclic Codes over Finite Chain Rings	#
3.2.1 <u>Pseudo-cyclic Quaternary Codes</u>	
3.2.2 Pseudo-cyclic Codes over some Galois Rings	#
CHAPTER 4	
PSEUDO-CYCLIC CONSTRUCTION ON CODES OVER MATRIX SPACES	#
4.1 Matrix Spaces, Rank Metric and Term Rank Metric	#
4.2 Linear Codes over Rank Metric/Term Rank Metric Spaces	#
4.2.1 <u>Pseudo-cyclic Construction</u>	#
CHAPTER 5	
PSEUDO-CYCLIC CODES OVER SKEW POLYNOMIAL RINGS	#
5.1 Skew Polynomial Rings and Codes over Skew Polynomial Rings	
5.2 Pseudo-cyclic Codes over Skew Polynomial Rings	
5.2.1 Quasi-Pseudo-cyclic Codes over Skew Polynomial Rings	#
RESULTS AND DISCUSSION	#
DEEEDENICES	#

Skew Polynomial Rings

- The theory of noncommutative polynomial rings was first introduced by Oystein Ore (1933), Nathan Jacobson (1943) and Bernard R. McDonald (1974).
- Let F be a finite field with characteristic p and let θ be an automorphism of F with $|\langle \theta \rangle| = m$. If K is the fixed subfield of F under θ , then [F:K] = m.

Example. Consider $F_4=\{0,1,\alpha,\alpha^2\}$ with the Frobenius automorphism $\theta\colon F_4\to F_4$ where $\theta(\alpha)=\alpha^2$. We have $\theta(0)=0,\theta(1)=1,\theta(\alpha)=\alpha^2,\theta(\alpha^2)=\alpha$. Therefore $|\langle\theta\rangle|=2$ and F_2 is the fixed subfield of F_4 under θ .

Definition. (B.R. McDonald, 1974) The set of skew polynomials

$$F[x;\theta] = \{a_0 + a_1x + \dots + a_nx^n : a_i \in F\}$$

becomes a ring with the usual polynomial addition and the multiplication defined below;

$$(ax^i) * (bx^j) = a\theta^i(b)x^{i+j}$$

Example. Let $F_4 = \{0,1,\alpha,\alpha^2\}$ with the Frobenius automorphism $\theta: F_4 \to F_4$ where $\theta(\alpha) = \alpha^2$.

$$(\alpha x) * (\alpha^2 x) = \alpha \theta(\alpha^2) x^2 = \alpha \alpha x^2 = \alpha^2 x^2$$

$$(\alpha^2 x) * (\alpha x) = \alpha^2 \theta(\alpha) x^2 = \alpha^2 \alpha^2 x^2 = \alpha x^2$$

Note that, $F_4[x; \theta]$ is a noncommutative ring.

Important Notes on Skew Polynomial Rings

- Skew polynomial rings are noncommutative and non UFD.
- Right division algorithm holds in skew polynomial rings.
- Every right/left ideal of $F[x; \theta]$ is a principal ideal.
- I is a two sided ideal of $F[x; \theta]$, if there exist polynomials $f, g \in F[x; \theta]$ such that $I = f * F_4[x; \theta]$ and $I = F_4[x; \theta] * g$.
- If $|\langle \theta \rangle| = m$ and K is the fixed subfield of F under θ , the center of $F[x; \theta]$ is defined as $Z(F[x; \theta]) = \{a_0 + a_1 x^m + \dots + a_r x^{mr} : a_i \in K\}.$
- Any two sided ideal of $F[x; \theta]$ is generated by a polynomial in $Z(F[x; \theta])$.

Skew Cyclic Codes

Definition. (Boucher et al., 2007) Let F be a finite field with automorphism θ . A subspace C of F^n is considered as a skew cyclic code if for any vector $c = (c_0, c_1, \cdots, c_{n-1}) \in C$, $(\theta(c_{n-1}), \theta(c_0), \cdots, \theta(c_{n-2})) \in C$.

Skew Pseudo-Cyclic Codes

Definition. Let F be a finite field with automorphism θ , and let τ_v be a pseudo-cyclic shift defined on F^n . A subspace C of F^n is considered as a skew pseudo-cyclic code, if for any $c=(c_0,c_1,\cdots,c_{n-1})\in C$, $(\theta\circ\tau_v(c_{n-1}),\theta\circ\tau_v(c_0),\cdots,\theta\circ\tau_v(c_{n-2}))\in C$.

Quasi-cyclic Codes

Theorem. Let C be a 1-generator quasi-cyclic code. Then C is generated by an element $g(x) = (p_1(x)g_1(x), \cdots, p_r(x)g_r(x))$ where $p_i(x), g_i(x) \in F[x]/\langle (x^{m_i}-1)\rangle$ and $g_i(x)|x^{m_i}-1 \ \forall i.$ Let $h_i(x)=(x^{m_i}-1)/g_i(x)$ and $gcd(p_i(x),h_i(x))=1 \ \forall i.$ Then, $dim\mathcal{C}=\deg(lcm(h_1(x),\cdots,h_r(x)))$ and $d(\mathcal{C})\geq \sum_i d(\langle g_i(x)\rangle).$

Quasi-pseudo-cyclic Codes

Theorem. Let C be a 1-generator quasi pseudocyclic code. Then C is generated by an element $g(x) = (p_1(x)g_1(x), \cdots, p_r(x)g_r(x))$ where $p_i(x), g_i(x) \in F[x]/\langle f_i(x) \rangle$ and $g_i(x)|f_i(x) \ \forall i$. Let $h_i(x) = f_i(x)/g_i(x)$ and $gcd(p_i(x), h_i(x)) = 1 \ \forall i$. Then, $dimC = deg(lcm(h_1(x), \cdots, h_r(x)))$ and $d(C) \geq \sum_i d(\langle g_i(x) \rangle)$.

Skew Quasi-pseudo-cyclic Codes

Theorem. Let C be a 1-generator skew quasi pseudocyclic code over . Then C is generated by an element $g(x) = (p_1(x)g_1(x), \cdots, p_r(x)g_r(x))$ where $p_i(x), g_i(x) \in F[x;\theta]/\langle f_i(x)\rangle$ and $g_i(x)$ is a right divisor of $f_i(x)$ $\forall i$. Let $h_i(x) = f_i(x)/g_i(x)$ and $rgcd(p_i(x), h_i(x)) = 1$ $\forall i$. If $f_i(x) \in Z(F[x;\theta])$, then $dim\mathcal{C} = \deg(llcm(h_1(x), \cdots, h_r(x)))$ and $d(\mathcal{C}) \geq \sum_i d(\langle g_i(x)\rangle)$.

Code Snippet and an example of Skew quasi-pseudo-cyclic codes

```
R1<t>:=PolynomialRing(GF(2));
p:=t^2+t+1;
F<a> := ext< GF(2) | p >;
R2<y> := PolynomialRing(F);
R<X>:=TwistedPolynomials(F:q:= 2); // teta maps a to a^t
teta:= hom< F -> F | a^2 >;
n1:=29;
V1:=VectorSpace(F,n1);
g1v:=V1!g1s; // coefficient vector for g1
g1:=R!g1s; // g1 as a skew polynomail
h1:=R!h1s; // h1 as a skew polynomial
f1:=h1*g1;
f1s:=ElementToSequence(f1);
//p1
p1s:=[1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0];
p1:=R!p1s;
q1,r1:=Quotrem(p1*g1,f1); "r1=", r1; u1s:=ElementToSequence(r1) cat [0:x in [1..n1-1-Degree(r1)]];
//p2
p2s:=[1,0,1,0,0,0,0,0];
p2:=R!p2s;
q2,r2:=Quotrem(p2*g1,f1); "r2=",r2; u2s:=ElementToSequence(r2) cat [0:x in [1..n1-1-Degree(r2)]];
T1:=CompanionMatrix(R2!f1s);
"T1=",T1;
// 1st part
G1:=Matrix(F,n1,n1,[]);
G1[1]:=V1!u1s;
for i in [1..n1-1] do
G1[i+1]:=(V1!([teta(G1[i,j]): j in [1..n1]]))*T1;
end for;
"G1=",G1;
MinimumDistance(LinearCode(EchelonForm(G1)));
// 2nd part
G2:=Matrix(F,n1,n1,[]);
G2[1]:=V1!u2s;
for i in [1..n1-1] do
G2[i+1]:=(V1!([teta(G2[i,j]): j in [1..n1]]))*T1;
end for;
"G2=",G2;
MinimumDistance(LinearCode(G2));
G:=HorizontalJoin(G1,G2);G;
C:=LinearCode(G); C;
MinimumDistance(C);
```

1st Part;

$$f1 = X^{29} + X^{28} + X^{27} + a^2 X^{26} + X^{25} + X^{24} + X^{23} + a^2 X^{22} + X^{21} + a^2 X^{20} + aX^{19} + X^{18} + a^2 X^{17} + a^2 X^{15} + a^2 X^{14} + aX^{13} + X^{12} + a^2 X^{11} + a^2 X^{10} + X^9 + a^2 X^8 + aX^5 + X^4 + X^3 + X^2 + a^2$$

$$g1 = X^{14} + X^{13} + X^{12} + aX^{11} + X^{10} + X^{9} + X^{8} + aX^{7} + X^{6} + aX^{5} +$$

$$a^{2}X^{4} + a^{2}X^{2} + aX + a^{2}$$

$$h1 = X^{15} + X^{4} + aX^{2} + X + 1$$

$$p1 = X^{12} + X^{8} + X^{4} + 1$$

$$f1 = h1 * g1, rgcd(p1, h1) = 1,$$

$$p1 * g1 mod f1 = X^{26} + X^{25} + X^{24} + aX^{23} + X^{18} + aX^{17} +$$

$$a^{2}X^{16} + aX^{14} + a^{2}X^{10} + X^{9} + X^{8} + aX^{7} + aX^{6} +$$

$$a^{2}X^{2} + aX + a^{2}$$

1st Part → [29,15,8] code

2nd Part; f1, g1, h1 same with part 1

$$p2 = X^{2} + 1$$

$$p2 * g1 mod f1 = X^{16} + X^{15} + a^{2}X^{13} + a^{2}X^{11} + a^{2}X^{9} + aX^{6} + aX^{5} + aX^{3} + aX + a^{2}$$

2nd Part \rightarrow [29,15,8] code

 $C1|C2 \rightarrow [58,15,23]$ code