## Intégration de la diapause au modèle

Ce document explique comment la diapause a été introduite dans le modèle.

1. On commence par estimer l'aire sous la canopée d'un manguier. On dispose de sept périmètres de manguiers mésurés sur le terrain : 14.7, 14, 14.3, 15.2, 13.3, 12.5 et 15.8 mètres. L'aire sous la canopée d'un manguier est donnée par

$$A_m = \frac{1}{7} \sum_{i=1}^{7} \frac{P_i^2}{2\pi},$$

ce qui donne ici 16.1  $m^2$ . Il y a 30 arbres par sous-bloc, cela fait donc 483  $m^2$  d'aire sous la canopée dans chaque sous-bloc.

2. Les données de l'article de Amouroux et al. [2014] montrent qu'il y a en moyenne 32.33 individus qui émergent de diapause par  $m^2$  et par an. Cela fait donc 15615 individus qui émergent de diapause chaque année par sous-bloc. Et donc 7807 femelles.

À titre de comparaison, il y a eu approximativement 53615 larves dans l'enherbement ras en 2017, 21097 dans le paillage synthétique et 53858 dans l'enherbement haut.

3. Des données de Amouroux et al. [2014], on récupère aussi la densité de sortie empirique des individus diapausants. Ils sortent sur 12 jours comme le montre la figure 1.



Figure 1 – Proportion des individus en diapause qui sortent chaque jour

- **4.** Identifier la date de début d'émergence des diapausantes. Il semblait y avoir un seuil vers 20.5°C. Pour l'année 2017, le seuil est atteint au 15ème jour, à savoir le 2 août.
- 5. À partir de là, il ne reste plus qu'à l'implémenter dans le modèle en rajoutant une variable stock à calibrer autour de 15615. Il faut veiller à séparer  $\mu_{\rm MS}^1$  de  $\mu_{\rm MS}^2$  et d'appliquer le sex-ratio à tous les individus qui sortent du sol.

## Résultats

La calibration de la variable **stock** s'est faite autour de 15615, en prenant une marge d'environ 30%. Pour être plus précis, on a choisi l'intervalle [10900; 20300]. Le modèle avec diapause, une probabilité de pupaison ajustée sur les températures sur la quinzaine donne les résultats visibles sur la figure 2.



FIGURE 2 – Proportion des individus en diapause qui sortent chaque jour

Les paramètres utilisés sont

$$\gamma$$
  $p_m$   $\mu_{\rm ER}$   $\mu_{\rm EH}$   $k$  stock  $0.048$   $0.986$   $0.815$   $0.167$   $0.150$   $6147$ 

La fin de saison n'est toujours pas prise en compte dans la mesure où le phénomène qui la régit nous est pour l'instant inconnu.

## Références

P. Amouroux, F. Normand, H. Delatte, A. Roques, and S. Nibouche. Diapause incidence and duration in the pest mango blossom gall midge, *Procontarinia mangiferae* (Felt), on Reunion Island. *Bulletin of entomological research*, 104(5):661–670, 2014.