ASSIGNMENT

Unit-1

Q1: Convert the following Mealy machine to Moore machine.

Q2: Convert the given Moore machine into its equivalent Mealy machine.

Q3: Difference between NFA and DFA. Also specify their transition function.

Q4: Convert the given NFA to DFA.

Q5: Convert the given NFA to DFA.

Q6: Minimize the given DFA-

Unit-2

Q7: Write the regular expression for the language containing the string in which every 0 is immediately followed by 11.

Q8: Write the regular expression for the language containing the string over {a, b} in which there should be at least two occurrences of b's between any two occurrences of a's.

Q9: Find out whether the language $L = \{a^nb^n \mid n \ge 1\}$ is regular or not using Pumping lemma.

Q10: Construct a ε -NFA for the following regular expression.

(0+1)*(00+11)(0+1)*

Q11: Find regular expression for the following DFA using Arden's Theorem-

Q12: Find regular expression for the following DFA using Arden's Theorem-

UNIT-3

Q13: Construct a CFG over {a,b} generating a language consisting of equal number of a's and b's.

Q14: Construct a CFG over $\{0,1\}$ for the regular expression $(0+1)^*$

Q15: Define ambiguous grammar. Show that the following grammar is ambiguous

S- >aSbS|bSaS|E by taking any input string.

Q16: Let G be the grammar

 $A \rightarrow AA$

 $A \rightarrow (A)$

 $A \rightarrow a$

For the string "a(a)aa" find

i) leftmost derivation, ii) parse tree, and iii) Is the grammar ambiguous?

Q17: Convert the following CFG to CNF(Chomsky normal form):

 $S \rightarrow ASA \mid aB$

 $A \rightarrow B \mid S$

 $B \rightarrow b \mid \epsilon$

Q18: Convert the following grammar to GNF (Greibach Normal Form):

 $S \rightarrow CA|BB$

 $B \rightarrow b|SB$

 $C \rightarrow b$

 $A \rightarrow a$

UNIT-4

Q19: Find out whether the language $L = \{x^ny^nz^n \mid n \ge 1\}$ is context free or not using Pumping Lemma.

Q20: State the closure properties of Context Free Languages.

Q21: State and prove the Decision properties of Context- Free Languages.

Q22: Design a PDA that accepts $L = \{ ww^R \mid w = (a+b)^* \}$

Q23: Design a PDA to accept the set of strings with twice as many 0's as 1's.

Q24: Construct PDA for the given CFG, and test whether 010⁴ is acceptable by this PDA.

 $S \rightarrow 0BB$

 $B \rightarrow 0S \mid 1S \mid 0$

Q25: Construct the PDA equivalent to the given CFG with the following productions

 $S \rightarrow A$, $A \rightarrow BC$, $B \rightarrow ba$, $C \rightarrow ac$

UNIT-5

Q26: Discuss the Chomsky hierarchy of languages with example.

Q27: What is an undecidable problem, Discuss? Does the Post correspondence problem with two lists x=(001,0011,111,101) and y=(01,111,111,010) has a solution?

Q28: State the Post Correspondence Problem of Turing Machine. Find the solution for the correspondence system given below:

A = (b, bab3, ba) and B = (b3, ba, a). The input set is $\Sigma = \{0, 1\}$.

Q29: Design a TM for the language $L = \{0^n1^n2^n\}$ where $n \ge 1$

Q30: Design a Turing machine that Reverses the given string {abb}.