0.1 Topological vector space

Definition 0.1.1. A topological vector space V over a topological field \mathbb{F} is a topological abelian group such that scalar multiplication $\mathbb{F} \times V \to V$ is continuous

Definition 0.1.2. A **norm** on a group G is $G \xrightarrow{\parallel\parallel} \mathbb{R}_{\geq 0}$ such that $\|g\| = 0 \Leftrightarrow g = \mathrm{id}, \|g^{-1}\| = \|g\|, \|gh\| \leq \|g\|\|h\|$

A norm on a rng R is a normed abelian group such that $||rs|| \le ||r|| ||s||$

A norm on a vector space V over a normed field is a normed abelian group such that $||kv|| \le |k|||v||$

Definition 0.1.3. A Banach space is a complete normed vector space

Definition 0.1.4. Y is a topological vector space, T is a set, $\mathcal{G} \subseteq \mathcal{P}(T)$ is a directed set by inclusion, \mathcal{N} is a local base around $0 \in Y$. The **topology of uniform convergence** on sets in \mathcal{G} or \mathcal{G} **topology** is the unique translation invariant topology given by basis

$$U(G,N) = \left\{ f \in Y^T \middle| G \in \mathcal{G}, N \in \mathcal{N}, f(G) \subseteq N \right\}$$

Example 0.1.5. \mathcal{G} is the set of compact subspaces, Y is a metric space

0.2 Arzela-Ascoli theorem

Definition 0.2.1. Let X, Y be a topological spaces, a family of continuous functions $A \subseteq Y^X$ is equicontinuous at $x \in X$, if for any open neighborhood V of y = f(x), there is an open neighborhood U of x such that $f(U) \subseteq V, \forall f \in A$

Theorem 0.2.3. Let X be a topological space and Y be a complete metric space, $A \subseteq Y^X$ be a family of equicontinuous functions (meaning pointwise equicontinuous). If X is compact, and $A_x := \{f(x)|f \in A\} \subseteq Y$ is relatively compact for any $x \in A$, then A is relatively compact in Y^X . If X is separable with S being a countable dense subset, and A_x is relatively compact for any $x \in S$, then any sequence $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ converges uniformly on any compact subset of X

0.3 Baire category theorem

Definition 0.3.1. A topological space X is a **Baire space** if for any countable open dense subsets $\{U_i\}$, $\bigcap_{i=1}^{\infty} U_i$ is also dense

Baire category theorem

Theorem 0.3.2 (Baire category theorem). Every complete metric space X is a Baire space

Proof. Let $\{U_i\}$ be a countable open dense subsets, suppose $\bigcap_{i=1}^{\infty} U_i$ is not dense, then the complement of its closure is open nonempty, suppose $B(\underline{x},r)$ is in the complement of the closure, since U_1 is dense, $U_1 \cap B(x,r) \neq \emptyset$, then there exists $\overline{B(x_1,r_1)} \subseteq U_1 \cap B(x,r)$, similarly, we can find $\overline{B(x_n,r_n)} \subseteq U_n \cap B(x_{n-1},r_{n-1})$, and we can also assume $r_i \to 0$, thus $x_i \to y \in X$ since X is complete, but $y \in B(x,r) \cap \bigcap_{i=1}^{\infty} U_i = \emptyset$ which is a contradiction

0.4 Distribution

Definition 0.4.1. $U \subseteq \mathbb{R}^n$ open, $\mathscr{D}(U) = C_c^{\infty}(U)$ is the **test function space**, $\{\phi_i\} \subseteq \mathscr{D}(U)$ converges if there exists $K \subseteq U$ compact such that $\operatorname{supp} \phi_i \subseteq K$ and $\partial^{\alpha} \phi_i$ converges uniformly

0.5Banach algebra

Definition 0.5.1. A **Banach algebra** is an associative algebra A which is a complete normed rng such that $||rs|| \le ||r|| ||s||$. A is **unital** if A is a ring with identity element having norm 1

Definition 0.5.2. A *-algebra is a Banach algebra over \mathbb{C} such that there is an antilinear involution $*: A \to A$, such that $(xy)^* = y^*x^*$. A is a C^* -algebra if $||x^*x|| = ||x^*|| ||x||$

Example 0.5.3. X is locally compact, $C_0(X)$ are the continuous functions vanishes at infinity, then $C_0(X)$ is a Banach algebra with the supremum norm, $C_0(X)$ is unital if X is compact with 1 being the identity. $C_0(X)$ is a C^* -algebra with complex conjugation as the involution

Definition 0.5.4. A is a unital Banach algebra over \mathbb{R} , \mathbb{C} , $e^x = \sum_{k=1}^{\infty} \frac{x^k}{k!}$ defines the **exponential**

$$\|e^x\| = \left\|\sum_{k=0}^{\infty} \frac{x^k}{k!}\right\| \le \sum_{k=0}^{\infty} \left\|\frac{x^k}{k!}\right\| \le \sum_{k=0}^{\infty} \frac{\|x\|^k}{k!} = e^{\|x\|}$$

The logarithm $\log x = \sum_{k=1}^{\infty} \frac{(-1)^{x+1}(x-1)^k}{k}$ is defined on ||x-1|| < 1

Lemma 0.5.5. e^x and $\log x$ are inverses to each other locally

Proposition 0.5.6. A is a Banach algebra, linear map $D: A \to A$ is a derivation iff e^{tD} is a group of automorphisms

Lie product formula

Theorem 0.5.7 (Lie product formula). $e^{A+B} = \lim_{n \to \infty} \left(e^{\frac{A}{n}} e^{\frac{B}{n}} \right)^n$

Theorem 0.5.8 (Lie commutator formula). $e^{[A,B]} = \lim_{n \to \infty} \left[e^{\frac{A}{n}}, e^{\frac{B}{n}} \right]^{n^2}$, the left and right [,] are Lie bracket and commutator

Lemma 0.5.9. If [X, [X, Y]] = 0, then $e^X e^Y = e^{X+Y+\frac{1}{2}[X,Y]}$

Proof. Let $A(t) = e^{tX}e^{tY}e^{-\frac{t^2}{2}[X,Y]}$, $B(t) = e^{t(X+Y)}$, then A(0) = B(0), B'(t) = B(t)(X+Y)and

$$A'(t) = e^{tX}Xe^{tY}e^{-\frac{t^2}{2}[X,Y]} + e^{tX}e^{tY}Ye^{-\frac{t^2}{2}[X,Y]} - e^{tX}e^{tY}t[X,Y]e^{-\frac{t^2}{2}[X,Y]}$$

Since [X, [X, Y]] = 0, [Y, [X, Y]] = -[Y, [Y, X]] = 0

$$e^{-tY}Xe^{tY} = Ad_{e^{-tY}}(X) = e^{ad_{-tY}}(X) = X + t[X, Y]$$

$$A'(t) = e^{tX}e^{tY}(X+Y)e^{-\frac{t^2}{2}[X,Y]} = e^{tX}e^{tY}e^{-\frac{t^2}{2}[X,Y]}(X+Y) = A(t)(X+Y)$$

Thus A(t), B(t) satisfies the same ODE and initial condition, $A(t) = B(t) \Rightarrow e^X e^Y = A(1) =$ $B(1) = e^{X+Y+\frac{1}{2}[X,Y]}$

Theorem 0.5.10 (Backer-Campbell-Hausdorff formula). $e^X e^Y = e^Z$ around 0, where Z =

$$X + \int_0^1 \psi(e^{ad_X}e^{tad_Y})dt(Y)$$
 and

$$\psi(x) = \frac{x \log x}{x - 1}$$

$$\frac{y = 1 - x}{x} \frac{(1 - y) \log(1 - y)}{-y}$$

$$= (1 - y) \sum_{n=1}^{\infty} \frac{y^{n-1}}{n}$$

$$= \sum_{n=1}^{\infty} \frac{y^{n-1}}{n} - \sum_{n=1}^{\infty} \frac{y^{n}}{n}$$

$$= 1 + \sum_{n=1}^{\infty} \left(\frac{y^{n}}{n+1} - \frac{y^{n}}{n}\right)$$

$$= 1 - \sum_{n=1}^{\infty} \frac{(1 - x)^{n}}{n(n+1)}$$

The first few terms are

$$e^X e^Y = e^{X+Y+\frac{1}{2}[X,Y]+\frac{1}{12}[X,[X,Y]]+\frac{1}{12}[Y,[Y,X]]+\cdots}$$

Proof. The Riemann sum $\sum_{k=0}^{m-1} \frac{1}{m} e^{-\frac{kx}{m}}$ converges to $\int_0^1 e^{-tx} dt = \frac{1-e^{-x}}{x}$, thus $\lim_{m \to \infty} \sum_{k=0}^{m-1} e^{-\frac{kX}{m}} = \frac{1-e^{-X}}{x}$, we have

$$\begin{split} \frac{d}{dt}\bigg|_{t=0}e^{X+tY} &= \frac{d}{dt}\bigg|_{t=0}\left(e^{\frac{X}{m}}e^{\frac{tY}{m}}\right)^{m} \\ &= \lim_{m \to \infty}\frac{d}{dt}\bigg|_{t=0}\left(e^{\frac{X}{m}}e^{\frac{tY}{m}}\right)^{m} \\ &= \lim_{m \to \infty}\sum_{k=0}^{m-1}e^{\frac{kX}{m}}\frac{Y}{m}e^{\frac{(m-k)X}{m}} \\ &= \lim_{m \to \infty}\sum_{k=0}^{m-1}\frac{1}{m}e^{\frac{kX}{m}}Ye^{-\frac{kX}{m}}e^{X} \\ &= \left(\lim_{m \to \infty}\sum_{k=0}^{m-1}\frac{1}{m}e^{\frac{kadX}{m}}\right)(Y)e^{X} \\ &= \frac{e^{ad_X}-1}{ad_X}(Y)e^{X} \end{split}$$

Let
$$e^{Z(t)} = e^X e^{tY}$$
, $\frac{d}{dt} e^{Z(t)} = \frac{d}{dt} (e^X e^{tY}) = e^X e^{tY} Y = e^{Z(t)} Y$, but $\frac{d}{dt} e^{Z(t)} = \frac{d}{ds} \Big|_{s=t} e^{Z(s)} = \frac{d}{ds} \Big|_{s=t} e^{Z(t)+Z'(t)(s-t)} = \frac{e^{ad_{Z(t)}}-1}{ad_{Z(t)}} (Z'(t)) e^{Z(t)}$, hence $\frac{e^{ad_{Z(t)}}-1}{ad_{Z(t)}} (Z'(t)) = e^{Z(t)} Y e^{-Z(t)} = A d_{e^{Z(t)}} (Y) = e^{ad_{Z(t)}} e^{ad_{Z(t)}} (Y)$, since $e^{ad_{Z(t)}} = A d_{e^{Z(t)}} = A d_{e^{X}e^{tY}} = e^{ad_{X}} e^{tad_{Y}}$

$$Z = Z(1)$$

$$= Z(0) + \int_{0}^{1} \frac{ad_{Z(t)} e^{ad_{Z(t)}}}{1 - e^{-ad_{Z(t)}}} (Y) dt$$

$$= X + \int_{0}^{1} \frac{e^{ad_{X}} e^{tad_{Y}} \log(e^{ad_{X}} e^{tad_{Y}})}{e^{ad_{X}} e^{tad_{Y}} - 1} dt(Y)$$

0.6 Stone-Weierstrass theorem

Definition 0.6.1. $\mathcal{F} = \{f_i\}$ is a family of functions on X, \mathcal{F} separates points in X if for any $x \neq y \in X$, some f_i separates x, y

Theorem 0.6.2. X is compact Hausdorff, $A \subseteq C(X, \mathbb{R})$ is a unital subalgebra. A is dense in $C(X, \mathbb{R})$ with the topology of uniform convergence iff A separates points $S \subseteq C(X, \mathbb{C})$ is a unital *-algebra that separating points, then S is dense in $C(X, \mathbb{C})$