

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

- 1 Fullstendige kvadrater
 - Hva er fullstendige kvadrater?
 - Lage fullstendige kvadrater
 - Faktorisere andregradsuttrykk

2 Andregradslikninger med to ledd

3 Andregradsformelen

Definisjon

Et uttrykk er et fullstendig kvadrat dersom det kan faktoriseres ved hjelp av første eller andre kvadratsetning.

Definisjon

Et uttrykk er et fullstendig kvadrat dersom det kan faktoriseres ved hjelp av første eller andre kvadratsetning.

Eksempler:

Uttrykket $x^2 + 10x + 25$ er et fullstendig kvadrat, siden $x^2 + 10x + 25 = (x + 5)^2$.

Definisjon

Et uttrykk er et fullstendig kvadrat dersom det kan faktoriseres ved hjelp av første eller andre kvadratsetning.

Eksempler:

- Uttrykket $x^2 + 10x + 25$ er et fullstendig kvadrat, siden $x^2 + 10x + 25 = (x + 5)^2$.
- Uttrykket $x^2 x + \frac{1}{4}$ er et fullstendig kvadrat, siden $x^2 x + \frac{1}{4} = (x \frac{1}{2})^2$.

Definisjon

Et uttrykk er et fullstendig kvadrat dersom det kan faktoriseres ved hjelp av første eller andre kvadratsetning.

Eksempler:

- Uttrykket $x^2 + 10x + 25$ er et fullstendig kvadrat, siden $x^2 + 10x + 25 = (x + 5)^2$.
- Uttrykket $x^2 x + \frac{1}{4}$ er et fullstendig kvadrat, siden $x^2 x + \frac{1}{4} = (x \frac{1}{2})^2$.
- Uttrykket $x^2 5x + 6$ er ikke et fullstendig kvadrat.

Forste og andre kvadratsetning er

$$(x + y)^2 = x^2 + 2yx + y^2$$

 $(x - y)^2 = x^2 - 2yx + y^2$.

Forste og andre kvadratsetning er

$$(x + y)^{2} = x^{2} + 2yx + y^{2}$$
$$(x - y)^{2} = x^{2} - 2yx + y^{2}.$$

Så for at $x^2 + bx + c$ skal kunne skrives om ved hjelp av første eller andre kvadratsetning, må $b = \pm 2y$ og $c = y^2$.

Forste og andre kvadratsetning er

$$(x + y)^{2} = x^{2} + 2yx + y^{2}$$
$$(x - y)^{2} = x^{2} - 2yx + y^{2}.$$

- Så for at $x^2 + bx + c$ skal kunne skrives om ved hjelp av første eller andre kvadratsetning, må $b = \pm 2y$ og $c = y^2$.
- Det vil si at vi må ha $c = \left(\frac{b}{2}\right)^2$.

Forste og andre kvadratsetning er

$$(x + y)^{2} = x^{2} + 2yx + y^{2}$$
$$(x - y)^{2} = x^{2} - 2yx + y^{2}.$$

- Så for at $x^2 + bx + c$ skal kunne skrives om ved hjelp av første eller andre kvadratsetning, må $b = \pm 2y$ og $c = y^2$.
- Det vil si at vi må ha $c = \left(\frac{b}{2}\right)^2$.

Regel

Uttrykket $x^2 + bx + c$ er et fullstendig kvadrat hvis og bare hvis

$$c=\left(\frac{b}{2}\right)^2$$
.

■ Vi vil sjekke om $x^2 - 14x + 49$ er et fullstendig kvadrat.

- Vi vil sjekke om $x^2 14x + 49$ er et fullstendig kvadrat.
- Siden det er minus i midterste ledd, skal vi bruke andre kvadratsetning.

- Vi vil sjekke om $x^2 14x + 49$ er et fullstendig kvadrat.
- Siden det er minus i midterste ledd, skal vi bruke andre kvadratsetning.
- Siden midterste ledd er 14x får vi $\frac{b}{2} = \frac{14}{2} = 7$.

- Vi vil sjekke om $x^2 14x + 49$ er et fullstendig kvadrat.
- Siden det er minus i midterste ledd, skal vi bruke andre kvadratsetning.
- Siden midterste ledd er 14x får vi $\frac{b}{2} = \frac{14}{2} = 7$.
- Sjekker at siste ledd er $\left(\frac{b}{2}\right)^2$:

$$7^2 = 49$$
.

- Vi vil sjekke om $x^2 14x + 49$ er et fullstendig kvadrat.
- Siden det er minus i midterste ledd, skal vi bruke andre kvadratsetning.
- Siden midterste ledd er 14x får vi $\frac{b}{2} = \frac{14}{2} = 7$.
- Sjekker at siste ledd er $\left(\frac{b}{2}\right)^2$:

$$7^2 = 49$$
.

Vi har derfor

$$x^2 - 14x + 49 = (x - 7)^2$$
.

■ Vi vil sjekke om $x^2 + 10x + 20$ er et fullstendig kvadrat.

- Vi vil sjekke om $x^2 + 10x + 20$ er et fullstendig kvadrat.
- Siden det er pluss i midterste ledd, skal vi bruke første kvadratsetning.

- Vi vil sjekke om $x^2 + 10x + 20$ er et fullstendig kvadrat.
- Siden det er pluss i midterste ledd, skal vi bruke første kvadratsetning.
- Siden midterste ledd er 10x får vi $\frac{b}{2} = \frac{10}{2} = 5$.

- Vi vil sjekke om $x^2 + 10x + 20$ er et fullstendig kvadrat.
- Siden det er pluss i midterste ledd, skal vi bruke første kvadratsetning.
- Siden midterste ledd er 10x får vi $\frac{b}{2} = \frac{10}{2} = 5$.
- Sjekker om siste ledd er $\left(\frac{b}{2}\right)^2$:

$$5^2 = 25.$$

- Vi vil sjekke om $x^2 + 10x + 20$ er et fullstendig kvadrat.
- Siden det er pluss i midterste ledd, skal vi bruke første kvadratsetning.
- Siden midterste ledd er 10x får vi $\frac{b}{2} = \frac{10}{2} = 5$.
- Sjekker om siste ledd er $\left(\frac{b}{2}\right)^2$:

$$5^2 = 25.$$

■ Siden $20 \neq 25$ er $x^2 + 10x + 20$ ikke et fullstendig kvadrat.

- 1 Fullstendige kvadrater
 - Hva er fullstendige kvadrater?
 - Lage fullstendige kvadrater
 - Faktorisere andregradsuttrykk

2 Andregradslikninger med to ledd

3 Andregradsformelen

Når vi har et uttrykk som ikke er et fullstendig kvadrat, kan vi lage oss et fullstendig kvadrat ved å legge til og trekke fra det riktige tallet.

Når vi har et uttrykk som ikke er et fullstendig kvadrat, kan vi lage oss et fullstendig kvadrat ved å legge til og trekke fra det riktige tallet.

Eksempel

Vi så nettopp at $x^2 + 10x + 20$ ikke var et fullstendig kvadrat, siden siste leddet burde vært 25. Vi får:

$$x^2 + 10x + 20 = x^2 + 10x + 25 - 25 + 20$$

Når vi har et uttrykk som ikke er et fullstendig kvadrat, kan vi lage oss et fullstendig kvadrat ved å legge til og trekke fra det riktige tallet.

Eksempel

Vi så nettopp at $x^2 + 10x + 20$ ikke var et fullstendig kvadrat, siden siste leddet burde vært 25. Vi får:

$$x^{2} + 10x + 20 = x^{2} + 10x + 25 - 25 + 20$$

= $(x + 5)^{2} - 25 + 20$

Når vi har et uttrykk som ikke er et fullstendig kvadrat, kan vi lage oss et fullstendig kvadrat ved å legge til og trekke fra det riktige tallet.

Eksempel

Vi så nettopp at $x^2 + 10x + 20$ ikke var et fullstendig kvadrat, siden siste leddet burde vært 25. Vi får:

$$x^{2} + 10x + 20 = x^{2} + 10x + 25 - 25 + 20$$
$$= (x+5)^{2} - 25 + 20$$
$$= (x+5)^{2} - 5$$

Eksempler

■ Vi vil lage fullstendig kvadrat fra $x^2 + 2x - 3$:

$$x^2 + 2x - 3$$

Eksempler

Vi vil lage fullstendig kvadrat fra $x^2 + 2x - 3$:

$$x^2 + 2x - 3 = x^2 + 2x + 1 - 1 - 3$$

Eksempler

■ Vi vil lage fullstendig kvadrat fra $x^2 + 2x - 3$:

$$x^{2} + 2x - 3 = x^{2} + 2x + 1 - 1 - 3$$

= $(x + 1)^{2} - 4$

Eksempler

Vi vil lage fullstendig kvadrat fra $x^2 + 2x - 3$:

$$x^{2} + 2x - 3 = x^{2} + 2x + 1 - 1 - 3$$

= $(x + 1)^{2} - 4$

■ Vi vil lage fullstendig kvadrat fra $x^2 - 6x + 2$:

$$x^2 - 6x + 2$$

Eksempler

Vi vil lage fullstendig kvadrat fra $x^2 + 2x - 3$:

$$x^{2} + 2x - 3 = x^{2} + 2x + 1 - 1 - 3$$

= $(x + 1)^{2} - 4$

■ Vi vil lage fullstendig kvadrat fra $x^2 - 6x + 2$:

$$x^2 - 6x + 2 = x^2 - 6x + 9 - 9 + 2$$

Eksempler

■ Vi vil lage fullstendig kvadrat fra $x^2 + 2x - 3$:

$$x^{2} + 2x - 3 = x^{2} + 2x + 1 - 1 - 3$$

= $(x + 1)^{2} - 4$

■ Vi vil lage fullstendig kvadrat fra $x^2 - 6x + 2$:

$$x^{2} - 6x + 2 = x^{2} - 6x + 9 - 9 + 2$$

= $(x - 3)^{2} - 7$

- 1 Fullstendige kvadrater
 - Hva er fullstendige kvadrater?
 - Lage fullstendige kvadrater
 - Faktorisere andregradsuttrykk

2 Andregradslikninger med to ledd

3 Andregradsformelen

I eksempelet $x^2 + 2x - 3 = (x + 1)^2 - 4$ ser vi at $4 = 2^2$.

- I eksempelet $x^2 + 2x 3 = (x + 1)^2 4$ ser vi at $4 = 2^2$.
- Uttrykket $(x + 1)^2 2^2$ kan skrives om ved hjelp av konjugatsetningen til

$$(x+1)^2 - 2^2$$

- I eksempelet $x^2 + 2x 3 = (x + 1)^2 4$ ser vi at $4 = 2^2$.
- Uttrykket $(x + 1)^2 2^2$ kan skrives om ved hjelp av konjugatsetningen til

$$(x+1)^2 - 2^2 = ((x+1) + 2)((x+1) - 2)$$

- I eksempelet $x^2 + 2x 3 = (x + 1)^2 4$ ser vi at $4 = 2^2$.
- Uttrykket $(x + 1)^2 2^2$ kan skrives om ved hjelp av konjugatsetningen til

$$(x+1)^2 - 2^2 = ((x+1) + 2)((x+1) - 2) = (x+3)(x-1).$$

- I eksempelet $x^2 + 2x 3 = (x + 1)^2 4$ ser vi at $4 = 2^2$.
- Uttrykket $(x + 1)^2 2^2$ kan skrives om ved hjelp av konjugatsetningen til

$$(x+1)^2 - 2^2 = ((x+1) + 2)((x+1) - 2) = (x+3)(x-1).$$

Så $x^2 + 2x - 3 = (x + 3)(x - 1)$, og vi har faktorisert uttrykket.

- I eksempelet $x^2 + 2x 3 = (x + 1)^2 4$ ser vi at $4 = 2^2$.
- Uttrykket $(x + 1)^2 2^2$ kan skrives om ved hjelp av konjugatsetningen til

$$(x+1)^2 - 2^2 = ((x+1) + 2)((x+1) - 2) = (x+3)(x-1).$$

- Så $x^2 + 2x 3 = (x + 3)(x 1)$, og vi har faktorisert uttrykket.
- Dette kan vi alltid gjøre så lenge ekstraleddet vi får etter å ha fullført kvadratet er negativt.

- I eksempelet $x^2 + 2x 3 = (x + 1)^2 4$ ser vi at $4 = 2^2$.
- Uttrykket $(x+1)^2 2^2$ kan skrives om ved hjelp av konjugatsetningen til

$$(x+1)^2 - 2^2 = ((x+1) + 2)((x+1) - 2) = (x+3)(x-1).$$

- Så $x^2 + 2x 3 = (x + 3)(x 1)$, og vi har faktorisert uttrykket.
- Dette kan vi alltid gjøre så lenge ekstraleddet vi får etter å ha fullført kvadratet er negativt.
- Eksempel: Vi har

$$x^2 - 6x + 2$$

- I eksempelet $x^2 + 2x 3 = (x + 1)^2 4$ ser vi at $4 = 2^2$.
- Uttrykket $(x + 1)^2 2^2$ kan skrives om ved hjelp av konjugatsetningen til

$$(x+1)^2 - 2^2 = ((x+1) + 2)((x+1) - 2) = (x+3)(x-1).$$

- Så $x^2 + 2x 3 = (x + 3)(x 1)$, og vi har faktorisert uttrykket.
- Dette kan vi alltid gjøre så lenge ekstraleddet vi får etter å ha fullført kvadratet er negativt.
- Eksempel: Vi har

$$x^2 - 6x + 2 = (x - 3)^2 - 7$$

- I eksempelet $x^2 + 2x 3 = (x + 1)^2 4$ ser vi at $4 = 2^2$.
- Uttrykket $(x + 1)^2 2^2$ kan skrives om ved hjelp av konjugatsetningen til

$$(x+1)^2 - 2^2 = ((x+1) + 2)((x+1) - 2) = (x+3)(x-1).$$

- Så $x^2 + 2x 3 = (x + 3)(x 1)$, og vi har faktorisert uttrykket.
- Dette kan vi alltid gjøre så lenge ekstraleddet vi får etter å ha fullført kvadratet er negativt.
- Eksempel: Vi har

$$x^2 - 6x + 2 = (x - 3)^2 - 7 = (x - 3)^2 - \sqrt{7}^2$$

- I eksempelet $x^2 + 2x 3 = (x + 1)^2 4$ ser vi at $4 = 2^2$.
- Uttrykket $(x + 1)^2 2^2$ kan skrives om ved hjelp av konjugatsetningen til

$$(x+1)^2 - 2^2 = ((x+1) + 2)((x+1) - 2) = (x+3)(x-1).$$

- Så $x^2 + 2x 3 = (x + 3)(x 1)$, og vi har faktorisert uttrykket.
- Dette kan vi alltid gjøre så lenge ekstraleddet vi får etter å ha fullført kvadratet er negativt.
- Eksempel: Vi har

$$x^{2} - 6x + 2 = (x - 3)^{2} - 7 = (x - 3)^{2} - \sqrt{7}^{2}$$
$$= \left(x - 3 + \sqrt{7}\right)\left(x - 3 - \sqrt{7}\right)$$

Oppgave

Faktoriser $x^2 - 5x + 6$.

Oppgave

Faktoriser $x^2 - 5x + 6$.

Vi fullfører først kvadratet:

$$x^2 - 5x + 6$$

Oppgave

Faktoriser $x^2 - 5x + 6$.

Vi fullfører først kvadratet:

$$x^2 - 5x + 6 = x^2 - 2 \cdot 2, 5 \cdot x + 6, 25 - 6, 25 + 6$$

Oppgave

Faktoriser $x^2 - 5x + 6$.

Vi fullfører først kvadratet:

$$x^2 - 5x + 6 = x^2 - 2 \cdot 2.5 \cdot x + 6.25 - 6.25 + 6 = (x - 2.5)^2 - 0.25.$$

Oppgave

Faktoriser $x^2 - 5x + 6$.

Vi fullfører først kvadratet:

$$x^2 - 5x + 6 = x^2 - 2 \cdot 2.5 \cdot x + 6.25 - 6.25 + 6 = (x - 2.5)^2 - 0.25.$$

$$(x-2.5)^2-0.25$$

Oppgave

Faktoriser $x^2 - 5x + 6$.

Vi fullfører først kvadratet:

$$x^2 - 5x + 6 = x^2 - 2 \cdot 2.5 \cdot x + 6.25 - 6.25 + 6 = (x - 2.5)^2 - 0.25.$$

$$(x-2.5)^2-0.25=(x-2.5)^2-\sqrt{0.25}^2$$

Oppgave

Faktoriser $x^2 - 5x + 6$.

Vi fullfører først kvadratet:

$$x^2 - 5x + 6 = x^2 - 2 \cdot 2.5 \cdot x + 6.25 - 6.25 + 6 = (x - 2.5)^2 - 0.25.$$

$$(x-2.5)^2-0.25=(x-2.5)^2-\sqrt{0.25}^2$$
 = $(x-2.5)^2-0.5^2$

Oppgave

Faktoriser $x^2 - 5x + 6$.

Vi fullfører først kvadratet:

$$x^2 - 5x + 6 = x^2 - 2 \cdot 2.5 \cdot x + 6.25 - 6.25 + 6 = (x - 2.5)^2 - 0.25.$$

$$(x-2,5)^2 - 0,25 = (x-2,5)^2 - \sqrt{0,25}^2 = (x-2,5)^2 - 0,5^2$$

= $(x-2,5+0,5)(x-2,5-0,5)$

Oppgave

Faktoriser $x^2 - 5x + 6$.

Vi fullfører først kvadratet:

$$x^2 - 5x + 6 = x^2 - 2 \cdot 2.5 \cdot x + 6.25 - 6.25 + 6 = (x - 2.5)^2 - 0.25.$$

$$(x-2,5)^2 - 0.25 = (x-2,5)^2 - \sqrt{0.25}^2 = (x-2,5)^2 - 0.5^2$$

= $(x-2,5+0.5)(x-2,5-0.5) = (x-2)(x-3)$.

Oppgave

Faktoriser $x^2 - 5x + 6$.

Vi fullfører først kvadratet:

$$x^2 - 5x + 6 = x^2 - 2 \cdot 2.5 \cdot x + 6.25 - 6.25 + 6 = (x - 2.5)^2 - 0.25.$$

Vi bruker så konjugatsetningen:

$$(x-2.5)^2 - 0.25 = (x-2.5)^2 - \sqrt{0.25}^2 = (x-2.5)^2 - 0.5^2$$

= $(x-2.5+0.5)(x-2.5-0.5) = (x-2)(x-3)$.

Så $x^2 - 5x + 6 = (x - 2)(x - 3)$. Vi kan gange ut for å se at det stemmer.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET