Course	18CSC203I	Course	COMPUTER ORGANIZATION AND ARCHITECTURE	Course	-	Professional Core	L	Т	P	С	
Code	16C3C2U3J	Name	COMPUTER ORGANIZATION AND ARCHITECTURE	Category	٥	Projessional Core	3	0	2	4	

Pre-requisite Courses	Co-requisite Courses	Nil	Progressive Courses	18CSC207J
Course Offering Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil	

Course Learning Rationale	The purpose of learning this course is to:	I	Learni	ng	
(CLR):	7			0	
CLR-1 : Utilize the functional units	CLR-1: Utilize the functional units of a computer				
CLR-2: Analyze the functions of art	LR-2: Analyze the functions of arithmetic Units like adders, multipliers etc.				
CLR-3: Understand the concepts of	Pipelining and basic processing units		cy	ent	
CLR-4: Study about parallel process	ing and performance considerations.	1g	ien	me	
CLR-5: Have a detailed study on In	put-Output organization and Memory Systems.	Thinking	Proficien	Attainm	
CLR-6: Simulate simple fundamental units like half adder, full adder etc					
		F	Ъ	cted.	
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	ve	Expecte (%)	Expect	
CLO-1: Identify the computer hardu	are and how software interacts with computer hardware	2	80	70	
CLO-2: Apply Boolean algebra as r	elated to designing computer logic, through simple combinational and sequential logic circuits	3	85	75	
CLO-3: Analyze the detailed operation of Basic Processing units and the performance of Pipelining					
CLO-4: Analyze concepts of parallelism and multi-core processors.					
CLO-5: Identify the memory technologies, input-output systems and evaluate the performance of memory system					
CLO-6: Identify the computer hardn	are, software and its interactions	3	85	75	

g		Program Learning Outcomes (PLO)													
3	1 2 3 4 5 6 7 8 9 10 11 12 13 14										14	15			
(%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO – 3
70	Н	Н	-	-	-	-	-	-	M	L	-	M	-	-	-
75	Н	Н	Н	-	Н	-	-	-	M	L	-	M	-	-	-
70	Н	Н	Н	Н	-	-	-	-	M	L	1	M	1	1	-
80	Н	1	1	Н	-	1	-	-	M	L	1	M	1	1	-
75	Н	-	Н	Н	-	-	-	-	M	L	-	M	-	-	-
75	Н	Н	Н	Н	Н	-	-	-	M	L	-	M	-	-	-

	ration nour)	15	15	15	15	15
S-1	SLO-1	Functional Units of a computer	Addition and subtraction of Signed numbers	Fundamental concepts of basic processing unit	Parallelism	Memory systems -Basic Concepts
3-1	SLO-2	Operational concepts	Problem solving	Performing ALU operation	Need, types of Parallelism	Memory hierarchy
6.2	SLO-1	Bus structures	Design of fast adders	Execution of complete instruction, Branch instruction	applications of Parallelism	Memory technologies
S-2	SLO-2	Memory locations and addresses	Ripple carry adder and Carry look ahead adder	Multiple bus organization	Parallelism in Software	RAM, Semiconductor RAM
S-3	SLO-1	Memory operations	Multiplication of positive numbers	Hardwired control	Instruction level parallelism	ROM, Types
	SLO-2	Memory operations	Problem Solving	Generation of control signals	Data level parallelism	Speed,size cost
S	SLO-1	Lab 1: To recognize various components of PC-Input Output systems	Lab4:Study of TASM	Lab-7: Design of Half Adder	Lab-10: Study of Array Multiplier	Lab-13: Study of Carry Save Multiplication
4-5	SLO-2	Processing and Memor y units	Addition and Subtraction of 8-bit number	Design of Full Adder	Design of Array Multiplier	Program to carry out Carry Save Multiplication
	SLO-1	Instructions, Instruction sequencing	Signed operand multiplication	Micro-programmed control-	Challenges in parallel processing	Cache memory
S-6	SLO-2	Addressing modes	Problem solving	Microinstruction	Architectures of Parallel Systems - Flynn's classification	Mapping Functions

S-7	SLO-1	Problem solving	Fast multiplication- Bit pair recoding of Multipliers	Micro-program Sequencing	SISD,SIMD	Replacement Algorithms
5-7	SLO-2	Introduction to Microprocessor	Problem Solving	Micro instruction with Next address field	MIMD, MISD	Problem Solving
	SLO-1	Introduction to Assembly language	Carry Save Addition of summands	Basic concepts of pipelining	Hardware multithreading	Virtual Memory
S-8	SLO-2	Writing of assembly language programming	Problem Solving	Pipeline Performance	Coarse Grain parallelism, Fine Grain parallelism	Performance considerations of various memories
S 9-10	SLO-1 SLO-2	Lab-2:To understand how different components of PC are connected to work properly Assembling of System Components	Lab 5: Addition of 16-bit number Subtraction of 16-bit number	Lab-8: Study of Ripple Carry Adder Design of Ripple Carry Adder	Lab-11: Study of Booth Algorithm	Lab-14: Understanding Processing unit Design of primitive processing unit
S-11	SLO-1	ARM Processor: The thumb instruction set	Integer division – Restoring Division	Pipeline Hazards-Data hazards	Uni-processor and Multiprocessors	Input Output Organization
5-11	SLO-2	Processor and CPU cores	Solving Problems	Methods to overcome Data hazards	Multi-core processors	Need for Input output devices
	SLO-1	Instruction Encoding format	Non Restoring Division	Instruction Hazards	Multi-core processors	Memory mapped IO
S-12	SLO-2	Memory load and Store instruction in ARM	Solving Problems	Hazards on conditional and Unconditional Branching	Memory in Multiprocessor Systems	Program controlled IO
S-13	SLO-1	Basics of IO operations.	Floating point numbers and operations	Control hazards	Cache Coherency in Multiprocessor Systems	Interrupts-Hardware, Enabling and Disabling Interrupts
3-13	SLO-2	Basics of IO operations.	Solving Problems	Influence of hazards on instruction sets	MESI protocol for Multiprocessor Systems	Handling multiple Devices
S 14-15	SLO-1 SLO-2	Lab -3To understand how different components of PC are connected to work properly Disassembling of System Components	Lab-6: Multiplication of 8-bit number Factorial of a given number	Lab-9: Study of Carry Look-ahead Adder Design of Carry Look-ahead Adder	Lab-12: Program to carry out Booth Algorithm	Lab-15: Understanding Pipeline concepts Design of basic pipeline.

Learning	
Resources	

- 1. Carl Hamacher, ZvonkoV ranesic, SafwatZaky, Computer Organization, 5th ed., McGraw-Hill, 2015
- 2. Kai Hwang, Faye A. Briggs, Computer Architecture and Parallel Processing", 3rd ed., McGraw Hill, 2016
- 3. Ghosh T. K., Computer Organization and Architecture, 3rd ed., Tata McGraw-Hill, 2011
- 4. P. Hayes, Computer Architecture and Organization, 3rd ed., McGraw Hill, 2015.

- William Stallings, Computer Organization and Architecture Designing for Performance, 10th ed., Pearson Education, 2015
- David A. Patterson and John L. Hennessy Computer Organization and Design A Hardware software interface, 5th ed., Morgan Kaufmann, 2014

Learning As	Learning Assessment											
	Bloom's			Final Examination (50% weightage)								
	Level of	CLA -	1 (10%)	CLA -	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	Piliai Exalimiauo	1 (5070 weightage)	
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 1	Understand	2070	2070	15/0	1570	1570	1570	1370	1570	1370	15/0	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	1 50/	
Level 5	Create	1070	1070	1570	1570	1570	1570	1570	1570	1570	20%	
	Total	100	% 100 %			100	100 %				-	

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers						•				
Experts from Industry			Experts	from Higher	Technical Ins	titutions			Internal Experts	
1. T. V. Sankar, HCL Technol	ogies Ltd, Chennai, sankar_t@	bcl.com	1. Prof. 2	A.P. Shanthi, 2	ANNA Univer	sity Chennai,	a.p.shanthi@	cs.annauniv.edu	1.Dr. V. Ganapathy, SRN	IIST

	2. Dr. C. Malathy, SRMIST
	3. Mrs M.S.Abirami, SRMIST