

Gene - Disease Association Prediction

Sistemas Inteligentes para a Bioinformática Professor Miguel Rocha

Carlos Gomes (pg51681) Diogo Esteves (pg2893) Joana Lopes (pg53498) Tiago Miranda (pg54437)

Overview

PROBLEM

DATA EXPLORATION AND PRE-PROCESSING

MACHINE LEARNING TASK

DEEP LEARNING TASK

Gene-Disease Association (GDA)

The study of **gene-disease associations is a crucial step in understanding the etiology of diseases**. Identifying the link between genes and diseases makes it possible to understand the disease's cause better and develop strategies to combat it. [1]

GDA quantify the relation among a pair of gene-disease and is one of the core concepts of DisGeNET platform that are integrated on TDC.

DisGeNET is a discovery platform containing one of the largest publicly available collections of genes and variants associated to human diseases. [2]

Using machine learning accurately can contribute to new discoveries and bring numerous therapeutic opportunities.

Task Description

Regression. Given the disease description and the amino acid sequence of the gene, predict their association.

GDA dataset: 52,476 gene-disease pairs (7 399 unique genes, 7095 unique diseases)

Exploratory analysis: gene and disease frequency

These results indicate that there are **genes with greater involvement in multiple pathological conditions**. The high frequency of these genes may be a result of their **participation in fundamental biological processes**, such as cell cycle regulation, apoptosis or immune response.

This gene encodes a **multifunctional proinflammatory cytokine** that belongs to the **Tumor Necrosis Factor** superfamily.

This cytokine is involved in the regulation of a wide spectrum of biological processes and has been implicated in a variety of diseases. [3]

```
Diseases associated with the TNF gene:

Disease_Label

Adenocarcinoma

Albuminuria

Alzheimer's Disease

Anemia

Refractory anemias

Anemia, Sickle Cell

Anorexia

Anthracosis

Anxiety Disorders

Arthritis, Infectious
```

Exploratory analysis: gene and disease frequency

There is a clear pattern of highly frequent diseases in the dataset, led by conditions such as **malignant neoplasm of the breast** with 911 associations and **schizophrenia** with 729 associations.

The list is dominated by **neoplasms** such as breast, prostate and liver cancer, as well as the condition schizophrenia.

Exploratory analysis: pairs gene-disease score

Exploratory analysis: pairs gene-disease score

Highly associated pairs can guide drug development, help identify biomarkers for early diagnosis and contribute to personalizing treatments.

The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. [4]

With cholesterol as its substrate, this protein functions as a **cholesterol efflux pump in the cellular lipid removal pathway**. Mutations in both alleles of this gene cause **Tangier disease** and **familial high-density lipoprotein (HDL) deficiency**. [5]

Exploratory analysis: Y distribution

The target variable does not follow a normal distribution, with a clear concentration of pairs in scores between 0.3 and 0.4, indicate a low strength of association.

Based on the analysis of outliers using the interquartile range, **5475 outliers** were identified. In the context of our problem, these outliers represent gene-disease pairs where a given gene contributes significantly to a given disease.

Pre-processing task

✓ Transformation of the "Disease" Column (Textual Descriptions of Diseases): generate embeddings through **BioBERT** model [6]

Pre-training of BioBERT Pre-training Corpora **BioBERT Pre-training** Publimed 4.5B words PMC 13.5B words Weight Initialization from Devlin et al. Pre-trained BioBERT with biomedical domain corpora Fine-tuning of BioBERT Task-Specific Datasets **BioBERT Fine-tuning** the adult renal failure cause .. Named Entity Recognition NCBI disease, BC2GM, ... 0 0 Variants in the @GENE\$ region **Relation Extraction** contribute to @DISEASE\$ susceptibility. EU-ADR, ChemProt, ... True **Question Answering** What does mTOR stands for? mammalian target of rapamycin BioASQ 5b, BioASQ 6b, ...

✓ Transformation of the "Gene" Column (Amino Acid Sequences): generate embeddings through **k-mers + Word2Vec** [7]

Pre-processing task

- ✓ Conversion of the Disease_Embedding and Seq_Embedding columns from strings to numerical arrays.
- ✓ Feature integration: Combining generated features into a unified dataset.
- ✓ Data cleaning and normalization: **Handling missing values** and **scaling numerical features**.
- ✓ **Dataset splitting** dividing the data into training (60%), validation (20%), and test (20%) sets.

Train shape: (31485, 2), Validation shape: (10495, 2), Test shape: (10496, 2)

Unsupervised Learning

 After applying PCA, the original embeddings with 868 dimensions were reduced to 181 principal components, preserving 95% of the explained variance. ■ T-SNE proved to be a **better choice for visualizing** the data.

Machine Learning task: main results

	Linear Regression		Ridge Regression		DecisionTreeRegressor			RandomForestRegressor 			Suport Vector Regressor			
Hyperparameters	Def.	Def.	Def.	Def.	Randomized SearchCV	Def.	Def.	Randomized SearchCV	Def.	Def.	Randomized SearchCV	Def.	Def.	Randomized SearchCV
Reduced data by PCA	Yes	No	Yes	No	No	Yes	No	No	Yes	No	No	Yes	No	No
MSE	0,028	0,025	0,028	0,025	0,025	0,056	0,044	0,281	0,026	0,023	0,023	0,026	0,028	0,025
R-squared	0,229	0,306	0,229	0,306	0,311	-0,561	- 0,239	0,214	0,274	0,353	0,356	0,284	0,213	0,294

- ✓ Better performance of the models when using the **original data** (without applying PCA);
- ✓ Better performance of the models when using RandomizedSearchCV for hiperparameter optimization.

Best hyperparameters founded

n_estimators: 150 min_samples_splitt: 5 min_samples_leaf: 2 max_features: sqrt max_depth: 30 bootstrap: True

Most promising model

Machine Learning task: main results

✓ **Gene ID**: 23237

Activity regulated cytoskeleton associated protein [8]

Potential role in vulnerability to addiction [9]

Targeting Acr may represent a new mechanism for preventing relapses related to chronic alcoholism [10]

Deep Learning task: model metrics

	Dense NN	LSTM (v3)	LSTM Improved	Autoenco der	Conv1D
Validation Loss (MSE)	0.02	0.035	0.04	0.05	0.03
Train Loss (MSE)	0.015	0.033	0.037	0.045	0.02
Overfitting (val_loss - train_loss)	0.005	0.002	0.003	0.005	0.01
Generalization	High	Moderate	Moderate	Low	High
Stability	Stable	Slight Oscillation s	Unstable	Unstable	Stable
Validation Loss (MSE)	0.02	0.035	0.04	0.05	0.03

Better performances of the trained models;

Deep Learning task: model evaluation

	Dense NN	Conv1D	LSTM (v3)	LSTM (improved)	Autoencoder	
Main Characteristics	General-purpose feedforward network, suited for non- sequential data.	Specialized for sequential data, effective for local patterns in time series. Sequential network, capable of capturing long-term dependencies.		Incorporates Batch Normalization for more stable learning.	Learns compressed representations of data for reconstruction tasks.	
Architecture	3 Dense layers (256 → 128 → 64) with Batch Normalization and Dropout.	2 Conv1D layers (64, 128 filters), MaxPooling1D, Flatten layer.	2 LSTM layers (32 → 16 units), Dense output layer.	2 LSTM layers with BatchNorm, followed by Dense (8 units).	Encoder (Dense 128 → 64), Decoder (Dense 128 → original dim).	
Regularization	Dropout (30%/20%)	Dropout (30%) Dropout (20%/10%)		Dropout (20%/10%)	BatchNorm, Sigmoid output	
Validation Loss	0.02	0.03	0.035	0.04	0.05	
Best Features	Effective for non- sequential data like embeddings	Ideal for sequential features in embeddings	Best of the 4 models for capturing gene-disease temporal relationships	Improves temporal dependencies with added stability	Best for dimensionality reduction in large datasets	
Notes	Performs well with tabular data from gene-disease associations, good generalization	Stable loss; captures local patterns in sequential embeddings	Handles long-term dependencies in sequential embeddings	Overfitting observed; Used BatchNorm to help stabilize learning	Good for compressing embeddings but struggles with generalization	

[✓] Better performance – Dense NN, Conv1D

Future Work

- Final notebook adjustments.
- Optimize DL models, exploring a multimodal approach.

References

- [1] Opap, K., & Mulder, N. (2017). Recent advances in predicting gene-disease associations. F1000Research, 6, 578. https://doi.org/10.12688/f1000research.10788.1
- [2] Therapeutics Data Commons. (2024). TDC. https://tdcommons.ai/
- [3] TNF tumor necrosis factor [Homo sapiens (human)] Gene NCBI. (n.d.). Www.ncbi.nlm.nih.gov. https://www.ncbi.nlm.nih.gov/gene/7124
- [4] ABCA1 ATP binding cassette subfamily A member 1 [Homo sapiens (human)] Gene NCBI. (2020). Nih.gov. https://www.ncbi.nlm.nih.gov/gene/19
- [5] Koseki, M., Yamashita, S., Ogura, M., Ishigaki, Y., Ono, K., Tsukamoto, K., Hori, M., Matsuki, K., Yokoyama, S., & Harada-Shiba, M. (2021). Current Diagnosis and Management of Tangier Disease. *Journal of Atherosclerosis and Thrombosis*, 28(8), 802–810. https://doi.org/10.5551/jat.rv17053
- [6] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2019). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. *Bioinformatics*, 36(4). https://doi.org/10.1093/bioinformatics/btz682
- [7] Yang, K. K., Wu, Z., Bedbrook, C. N., & Arnold, F. H. (2018). Learned protein embeddings for machine learning. Bioinformatics, 34(15), 2642–2648.
 https://doi.org/10.1093/bioinformatics/bty178
- [8] ARC activity regulated cytoskeleton associated protein [Homo sapiens (human)] Gene NCBI. (2025). Nih.gov. https://www.ncbi.nlm.nih.gov/gene/23237
- [9] Penrod, R. D., Thomsen, M., Taniguchi, M., Guo, Y., Cowan, C. W., & Smith, L. N. (2020). The activity-regulated cytoskeleton-associated protein, Arc/Arg3.1, influences mouse cocaine self-administration. Pharmacology, Biochemistry, and Behavior, 188, 172818. https://doi.org/10.1016/j.pbb.2019.172818
- [10] Pagano, R., Salamian, A., Zielinski, J., Beroun, A., Nalberczak-Skóra, M., Skonieczna, E., Cały, A., Tay, N., Banaschewski, T., Desrivières, S., Grigis, A., Garavan, H., Heinz, A., Brühl, R., Martinot, J.-L., Martinot, M.-L. P., Artiges, E., Nees, F., Orfanos, D. P., & Poustka, L. (2022). Arc controls alcohol cue relapse by a central amygdala mechanism. Molecular Psychiatry. https://doi.org/10.1038/s41380-022-01849-4