Problem of Uncalibrated Stereo

Shree K. Nayar Columbia University

Topic: Uncalibrated Stereo, Module: Reconstruction II

First Principles of Computer Vision

Compute 3D structure of static scene from two arbitrary views

Instrinsics (f_x, f_y, o_x, o_y) are known for both views/cameras.

Compute 3D structure of static scene from two arbitrary views

Instrinsics (f_x, f_y, o_x, o_y) are known for both views/cameras.

1. Assume Camera Matrix K is known for each camera

- \bigcirc 1. Assume Camera Matrix K is known for each camera
 - 2. Find a few Reliable Corresponding Points

Initial Correspondence

Find a set of corresponding features (at least 8) in left and right images (e.g. using SIFT or hand-picked).

Left image

 $(u_l^{(1)}, v_l^{(1)})$

:

 $o(u_l^{(m)}, v_l^{(m)})$

Right image

 $(u_r^{(1)}, v_r^{(1)})$

÷

 $(\boldsymbol{u}_r^{(m)}, \boldsymbol{v}_r^{(m)})$

- 1. Assume Camera Matrix K is known for each camera
- 2. Find a few Reliable Corresponding Points
 - 3. Find Relative Camera Position t and Orientation R

- \bigcirc 1. Assume Camera Matrix K is known for each camera
- 2. Find a few Reliable Corresponding Points
 - 3. Find Relative Camera Position $t_{\mathbb{R}}$ and Orientation R

- 1. Assume Camera Matrix K is known for each camera
- 2. Find a few Reliable Corresponding Points
 - 3. Find Relative Camera Position t and Orientation R

- \bigcirc 1. Assume Camera Matrix K is known for each camera
- 2. Find a few Reliable Corresponding Points
 - 3. Find Relative Camera Position t and Orientation R
 - 4. Find Dense Correspondence

- \bigcirc 1. Assume Camera Matrix K is known for each camera
- 2. Find a few Reliable Corresponding Points
 - 3. Find Relative Camera Position t and Orientation R
 - 4. Find Dense Correspondence

