Nondeterministic Finite Automata

Nondeterministic Finite Automata (NFA)

Alphabet = $\{a\}$

Nondeterministic Finite Automata (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Automata (NFA)

Alphabet =
$$\{a\}$$

All input is consumed

Input cannot be consumed

An NFA accepts a string:

If there is a computation such that:

All the input is consumed

AND

The automata is in a final state

Example

aa is accepted by the NFA:

because this computation accepts aa

Rejection example

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

Input cannot be consumed

Input cannot be consumed

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transitions

(read head does not move)

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

No transition: the automaton hangs

Input cannot be consumed

String aaa is rejected

Language accepted: $L = \{aa\}$

Another NFA Example

Another String

 $\begin{bmatrix} a & b & a & b \end{bmatrix}$

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Remarks:

- The λ symbol never appears on the input tape
- ·Simple automata:

·NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$

 δ : Transition function

 q_0 : Initial state

F: Final states

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\mathcal{S}(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function δ^*

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Formally

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q_j$$

The Language of an NFA $\,M\,$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta^*(q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$a$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, ab) = \{q_2, q_3, \underline{q_0}\} \qquad ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$a$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\} \quad aaba \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$a$$

$$a$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

$$\Rightarrow \notin F$$

$$L(M) = \{\lambda\} \cup \{ab\}^*. \{\lambda, aa\}$$
$$= \{ab\}^*. \{\lambda, aa\}$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta^*(q_0,w_m)=\{q_i,q_j,...,q_k,...\}$$
 and there is some $q_k\in F$ (final state)

$$w \in L(M) \qquad \mathcal{S}^*(q_0, w)$$

$$q_i \qquad \qquad q_k \in F$$

NFAs accept the Regular Languages

Equivalence of Machines

Definition for Automata:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

We will prove:

Languages
accepted
by NFAs
Regular
Languages
Languages

accepted by DFAs

NFAs and DFAs have the same computation power

Step 1

 Languages

 accepted

 by NFAs

 Regular

 Languages

Proof: Every DFA is trivially an NFA

Any language L accepted by a DFA is also accepted by an NFA

Step 2

Languages
accepted
by NFAs
Regular
Languages

Proof: Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

Transition table for NFA M

	a	Ь
q 0	{q1, q2}	Ø
q1	{q1, q2}	{q0}
q 2	Ø	{q0}

DFA M'

