Preparación para el examen El último tango en París

José Cuevas Barrientos

26 de junio de 2025

Problema

Sea G un grupo finito y sean ρ_1, ρ_2 dos representaciones complejas con caracteres asociados χ_1, χ_2 resp. Recordando que el tensor de dos representaciones da otra representación, pruebe que el caracter de $\rho_1 \otimes \rho_2$ es $\chi(g) = \chi_1(g)\chi_2(g)$.

Solución (producto de caracteres)

En efecto, sea $\rho_1\colon G\curvearrowright \mathbb{C}^n=\colon V$ y $\rho_2\colon G\curvearrowright \mathbb{C}^m=\colon W$, donde en ambos fijamos las bases \boldsymbol{e}_i y \boldsymbol{e}_j' canónicas (con $1\leq i\leq n$ y $1\leq j\leq m$). Escribamos la matriz de $\rho_1(g)$ y $\rho_2(g)$ como $[a_{i,j}]_{i,j}^n$ y $[b_{u,v}]_{u,v}^m$ resp.

Solución (producto de caracteres)

En efecto, sea $\rho_1\colon G\curvearrowright \mathbb{C}^n=:V$ y $\rho_2\colon G\curvearrowright \mathbb{C}^m=:W$, donde en ambos fijamos las bases \boldsymbol{e}_i y \boldsymbol{e}_j' canónicas (con $1\leq i\leq n$ y $1\leq j\leq m$). Escribamos la matriz de $\rho_1(g)$ y $\rho_2(g)$ como $[a_{i,j}]_{i,j}^n$ y $[b_{u,v}]_{u,v}^m$ resp. Entonces en $V^{\rho_1}\otimes W^{\rho_2}$ tomamos la base ordenada $(\boldsymbol{e}_i\otimes \boldsymbol{e}_j':1\leq i\leq n,\ 1\leq j\leq m)$, y en ella, la matriz de $\rho_1(g)\otimes\rho_2(g)$ es $[a_{(i,u)}b_{(j,v)}]_{(i,j),(u,v)}$, por lo que su traza es

Solución (producto de caracteres)

En efecto, sea $\rho_1\colon G\curvearrowright \mathbb{C}^n=: V$ y $\rho_2\colon G\curvearrowright \mathbb{C}^m=: W$, donde en ambos fijamos las bases \boldsymbol{e}_i y \boldsymbol{e}_j' canónicas (con $1\leq i\leq n$ y $1\leq j\leq m$). Escribamos la matriz de $\rho_1(g)$ y $\rho_2(g)$ como $[a_{i,j}]_{i,j}^n$ y $[b_{u,v}]_{u,v}^m$ resp. Entonces en $V^{\rho_1}\otimes W^{\rho_2}$ tomamos la base ordenada $(\boldsymbol{e}_i\otimes \boldsymbol{e}_j':1\leq i\leq n,\ 1\leq j\leq m)$, y en ella, la matriz de $\rho_1(g)\otimes\rho_2(g)$ es $[a_{(i,u)}b_{(j,v)}]_{(i,j),(u,v)}$, por lo que su traza es

$$\chi(g) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,i} b_{j,j} = \left(\sum_{i=1}^{n} a_{i,i}\right) \cdot \left(\sum_{j=1}^{m} b_{j,j}\right) = \chi_1(g) \chi_2(g).$$

Problema

Sea S_n el grupo simétrico en n letras. Defina en $\mathrm{GL}_n(\mathbb{C})$ la **representación por permutaciones** dada por $\rho_{\sigma}(\mathbf{v}) = (v_j)_{\sigma(j)}^n$ para una permutación $\sigma \in S_n$.

Problema

Sea S_n el grupo simétrico en n letras. Defina en $\mathrm{GL}_n(\mathbb{C})$ la **representación por permutaciones** dada por $\rho_{\sigma}(\mathbf{v}) = (v_j)_{\sigma(j)}^n$ para una permutación $\sigma \in S_n$.

Problema

Sea S_n el grupo simétrico en n letras. Defina en $\mathrm{GL}_n(\mathbb{C})$ la **representación por permutaciones** dada por $\rho_\sigma(\mathbf{v}) = (v_j)_{\sigma(j)}^n$ para una permutación $\sigma \in S_n$. Pruebe que admite una subrepresentación de dimensión 1 (equivalentemente, vea que hay un vector no nulo \mathbf{v} fijo por todo S_n), cuyo complemento ortogonal $\langle \mathbf{v} \rangle^\perp$, llamada **representación estándar**, es irreducible.

En efecto, es fácil notar que el vector $\mathbf{v}:=(1,1,\ldots,1)\in\mathbb{C}^n$ está fijo por todo S_n

En efecto, es fácil notar que el vector $\mathbf{v} := (1, 1, \dots, 1) \in \mathbb{C}^n$ está fijo por todo S_n (alternativamente, el lector podría haber expandido las condiciones para ver que todo vector fijo por S_n debe ser un múltiplo escalar de éste).

En efecto, es fácil notar que el vector $\mathbf{v}:=(1,1,\ldots,1)\in\mathbb{C}^n$ está fijo por todo S_n (alternativamente, el lector podría haber expandido las condiciones para ver que todo vector fijo por S_n debe ser un múltiplo escalar de éste). Luego calculamos el producto interno del caracter permutación χ_{perm} , que deviese dar 2. Para ello, note que $\chi_{\mathrm{perm}}(\sigma)^2$ es la traza de la acción de permutación en $\mathbb{C}^n\otimes\mathbb{C}^n$, así que

En efecto, es fácil notar que el vector $\mathbf{v} := (1, 1, \dots, 1) \in \mathbb{C}^n$ está fijo por todo S_n (alternativamente, el lector podría haber expandido las condiciones para ver que todo vector fijo por S_n debe ser un múltiplo escalar de éste).

Luego calculamos el producto interno del caracter permutación χ_{perm} , que deviese dar 2. Para ello, note que $\chi_{\mathrm{perm}}(\sigma)^2$ es la traza de la acción de permutación en $\mathbb{C}^n \otimes \mathbb{C}^n$, así que

$$(\chi_{\mathrm{perm}}, \chi_{\mathrm{perm}}) = \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{a,b}^n \delta_{\sigma a,a} \delta_{\sigma b,b},$$

En efecto, es fácil notar que el vector $\mathbf{v} := (1, 1, \dots, 1) \in \mathbb{C}^n$ está fijo por todo S_n (alternativamente, el lector podría haber expandido las condiciones para ver que todo vector fijo por S_n debe ser un múltiplo escalar de éste).

Luego calculamos el producto interno del caracter permutación χ_{perm} , que deviese dar 2. Para ello, note que $\chi_{\mathrm{perm}}(\sigma)^2$ es la traza de la acción de permutación en $\mathbb{C}^n \otimes \mathbb{C}^n$, así que

$$(\chi_{\mathrm{perm}}, \chi_{\mathrm{perm}}) = \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{a,b}^n \delta_{\sigma a,a} \delta_{\sigma b,b},$$

intercambiamos las sumatorias y notamos que $\delta_{\sigma a,a}\delta_{\sigma b,b}=1$ syss σ estabiliza al par ordenado (a,b).

En efecto, es fácil notar que el vector $\mathbf{v} := (1, 1, \dots, 1) \in \mathbb{C}^n$ está fijo por todo S_n (alternativamente, el lector podría haber expandido las condiciones para ver que todo vector fijo por S_n debe ser un múltiplo escalar de éste).

Luego calculamos el producto interno del caracter permutación χ_{perm} , que deviese dar 2. Para ello, note que $\chi_{\mathrm{perm}}(\sigma)^2$ es la traza de la acción de permutación en $\mathbb{C}^n \otimes \mathbb{C}^n$, así que

$$(\chi_{\mathrm{perm}}, \chi_{\mathrm{perm}}) = \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{a,b}^n \delta_{\sigma a,a} \delta_{\sigma b,b},$$

intercambiamos las sumatorias y notamos que $\delta_{\sigma a,a}\delta_{\sigma b,b}=1$ syss σ estabiliza al par ordenado (a,b). Si $a\neq b$ habrán (n-2)! de esas permutaciones y, sino habrán (n-1)! de ellas, por lo que

En efecto, es fácil notar que el vector $\mathbf{v} := (1, 1, \dots, 1) \in \mathbb{C}^n$ está fijo por todo S_n (alternativamente, el lector podría haber expandido las condiciones para ver que todo vector fijo por S_n debe ser un múltiplo escalar de éste).

Luego calculamos el producto interno del caracter permutación χ_{perm} , que deviese dar 2. Para ello, note que $\chi_{\mathrm{perm}}(\sigma)^2$ es la traza de la acción de permutación en $\mathbb{C}^n \otimes \mathbb{C}^n$, así que

$$(\chi_{\mathrm{perm}}, \chi_{\mathrm{perm}}) = \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{a,b}^n \delta_{\sigma a,a} \delta_{\sigma b,b},$$

intercambiamos las sumatorias y notamos que $\delta_{\sigma a,a}\delta_{\sigma b,b}=1$ syss σ estabiliza al par ordenado (a,b). Si $a\neq b$ habrán (n-2)! de esas permutaciones y, sino habrán (n-1)! de ellas, por lo que

$$egin{aligned} \left(\chi_{\mathrm{perm}},\chi_{\mathrm{perm}}
ight) &= rac{1}{n!} \left(\sum_{a
eq b}^{n} \mathrm{Stab}(a,b) + \sum_{c=1}^{n} \mathrm{Stab}(c)
ight) \ &= rac{1}{n!} \left((n-2)! \cdot (n^2-n) + (n-1)! \cdot n\right) = 2. \end{aligned}$$

Problema

Calcular la tabla de caracteres de A_4 .

Solución: Como hay homomorfismo de grupos $A_4 \hookrightarrow S_4$, toda representación de S_4 se restringe a una de A_4 .

Problema

Calcular la tabla de caracteres de A_4 .

Solución: Como hay homomorfismo de grupos $A_4 \hookrightarrow S_4$, toda representación de S_4 se restringe a una de A_4 .

Problema

Calcular la tabla de caracteres de A_4 .

Solución: Como hay homomorfismo de grupos $A_4 \hookrightarrow S_4$, toda representación de S_4 se restringe a una de A_4 .

En particular, el caracter ψ de la restricción de la representación estándar es irreducible porque:

Problema

Calcular la tabla de caracteres de A_4 .

Solución: Como hay homomorfismo de grupos $A_4 \hookrightarrow S_4$, toda representación de S_4 se restringe a una de A_4 .

En particular, el caracter ψ de la restricción de la representación estándar es irreducible porque: a) se verifica que $(\psi,\psi)=1$ (latero, pero funciona);

Problema

Calcular la tabla de caracteres de A_4 .

Solución: Como hay homomorfismo de grupos $A_4 \hookrightarrow S_4$, toda representación de S_4 se restringe a una de A_4 .

En particular, el caracter ψ de la restricción de la representación estándar es irreducible porque: a) se verifica que $(\psi,\psi)=1$ (latero, pero funciona); b) si ψ fuera reducible, habría otro subespacio fijo de dimensión 1, pero la acción por permutación $A_4 \curvearrowright \{1,2,3,4\}$ es transitiva.

(I) Clases de conjugación: Primero calculamos las clases de A_4 que son las siguientes:

$$\{1\}, \qquad \{x := (12)(34), (13)(24), (14)(23)\},$$
$$\{y := (123), (134), (142), (243)\}, \qquad \{y^2 = (132), (143), (124), (234)\}$$

Así deducimos que hay cuatro representaciones irreducibles.

(I) Clases de conjugación: Primero calculamos las clases de A_4 que son las siguientes:

$$\{1\}, \qquad \{x := (12)(34), (13)(24), (14)(23)\},$$

$$\{y := (123), (134), (142), (243)\}, \qquad \{y^2 = (132), (143), (124), (234)\}$$

Así deducimos que hay cuatro representaciones irreducibles.

(II) Podemos deducir la dimensión de las representaciones restantes por cor. $5.16\,$

$$|A_4| = 12 = \chi_0(1)^2 + \psi(1)^2 + \chi_1(1)^1 + \chi_2(1)^2 = 1 + 9 + \chi_1(1)^1 + \chi_2(1)^2,$$

lo que nos da que hay dos representaciones de dimensión 1.

(I) Clases de conjugación: Primero calculamos las clases de A_4 que son las siguientes:

$$\{1\}, \qquad \{x := (12)(34), (13)(24), (14)(23)\},$$

$$\{y := (123), (134), (142), (243)\}, \qquad \{y^2 = (132), (143), (124), (234)\}$$

Así deducimos que hay cuatro representaciones irreducibles.

(II) Podemos deducir la dimensión de las representaciones restantes por cor. $5.16\,$

$$|A_4| = 12 = \chi_0(1)^2 + \psi(1)^2 + \chi_1(1)^1 + \chi_2(1)^2 = 1 + 9 + \chi_1(1)^1 + \chi_2(1)^2,$$

lo que nos da que hay dos representaciones de dimensión 1.

(III) Como $x^2 = 1$, entonces $\chi_j(x) = \pm 1$.

(1) Clases de conjugación: Primero calculamos las clases de A_4 que son las siguientes:

$$\{1\}, \qquad \{x := (12)(34), (13)(24), (14)(23)\},$$

$$\{y := (123), (134), (142), (243)\}, \qquad \{y^2 = (132), (143), (124), (234)\}$$

Así deducimos que hay cuatro representaciones irreducibles.

(II) Podemos deducir la dimensión de las representaciones restantes por cor. $5.16\,$

$$|A_4| = 12 = \chi_0(1)^2 + \psi(1)^2 + \chi_1(1)^1 + \chi_2(1)^2 = 1 + 9 + \chi_1(1)^1 + \chi_2(1)^2,$$

lo que nos da que hay dos representaciones de dimensión 1.

(III) Como $x^2 = 1$, entonces $\chi_j(x) = \pm 1$.

(I) Clases de conjugación: Primero calculamos las clases de A_4 que son las siguientes:

$$\{1\}, \qquad \{x := (12)(34), (13)(24), (14)(23)\},$$

$$\{y := (123), (134), (142), (243)\}, \qquad \{y^2 = (132), (143), (124), (234)\}$$

Así deducimos que hay cuatro representaciones irreducibles.

(II) Podemos deducir la dimensión de las representaciones restantes por cor. $5.16\,$

$$|A_4| = 12 = \chi_0(1)^2 + \psi(1)^2 + \chi_1(1)^1 + \chi_2(1)^2 = 1 + 9 + \chi_1(1)^1 + \chi_2(1)^2,$$

lo que nos da que hay dos representaciones de dimensión 1.

(III) Como $x^2 = 1$, entonces $\chi_j(x) = \pm 1$. Pero (12)(34) \cdot (13)(24) = (14)(23), así que $\chi_j(x) = 1$.

(I) Clases de conjugación: Primero calculamos las clases de A_4 que son las siguientes:

$$\{1\}, \qquad \{x := (12)(34), (13)(24), (14)(23)\},$$

$$\{y := (123), (134), (142), (243)\}, \qquad \{y^2 = (132), (143), (124), (234)\}$$

Así deducimos que hay cuatro representaciones irreducibles.

(II) Podemos deducir la dimensión de las representaciones restantes por cor. $5.16\,$

$$|A_4| = 12 = \chi_0(1)^2 + \psi(1)^2 + \chi_1(1)^1 + \chi_2(1)^2 = 1 + 9 + \chi_1(1)^1 + \chi_2(1)^2,$$

lo que nos da que hay dos representaciones de dimensión 1.

(III) Como $x^2=1$, entonces $\chi_j(x)=\pm 1$. Pero (12)(34) · (13)(24) = (14)(23), así que $\chi_j(x)=1$. Como $y^3=1$, entonces $\chi_j(y)=\omega^2$, donde $\omega=\zeta_3$ es la raíz cúbica primitiva de la unidad; como $\chi_j(y)\neq 1$, se completa la tabla:

(I) Clases de conjugación: Primero calculamos las clases de A_4 que son las siguientes:

$$\{1\}, \qquad \{x := (12)(34), (13)(24), (14)(23)\},$$

$$\{y := (123), (134), (142), (243)\}, \qquad \{y^2 = (132), (143), (124), (234)\}$$

Así deducimos que hay cuatro representaciones irreducibles.

(II) Podemos deducir la dimensión de las representaciones restantes por cor. $5.16\,$

$$|A_4| = 12 = \chi_0(1)^2 + \psi(1)^2 + \chi_1(1)^1 + \chi_2(1)^2 = 1 + 9 + \chi_1(1)^1 + \chi_2(1)^2,$$

lo que nos da que hay dos representaciones de dimensión 1.

(III) Como $x^2=1$, entonces $\chi_j(x)=\pm 1$. Pero $(12)(34)\cdot (13)(24)=(14)(23)$, así que $\chi_j(x)=1$. Como $y^3=1$, entonces $\chi_j(y)=\omega^2$, donde $\omega=\zeta_3$ es la raíz cúbica primitiva de la unidad; como $\chi_j(y)\neq 1$, se completa la tabla:

	1	X	У	y^2
χ_0	1	1	1	1
χ_1	1	1	ω	ω^2
χ_0 χ_1 χ_2	1	1	ω^2	ω
ψ	3	-1	0	0

Problema

Determine cuál de los siguientes es el grupo de Galois del cuerpo de escisión (sobre $\mathbb Q$) del polinomio x^5-x+1 (que puede asumir irreducible):

Problema

Determine cuál de los siguientes es el grupo de Galois del cuerpo de escisión (sobre $\mathbb Q$) del polinomio x^5-x+1 (que puede asumir irreducible):

(a) C_5 .

Problema

Determine cuál de los siguientes es el grupo de Galois del cuerpo de escisión (sobre \mathbb{Q}) del polinomio x^5-x+1 (que puede asumir irreducible):

- (a) C_5 .
- (b) D_5 .

Problema

Determine cuál de los siguientes es el grupo de Galois del cuerpo de escisión (sobre $\mathbb Q$) del polinomio x^5-x+1 (que puede asumir irreducible):

- (a) C_5 .
- (b) D_5 .
- (c) S_5 .

Problema

Determine cuál de los siguientes es el grupo de Galois del cuerpo de escisión (sobre $\mathbb Q$) del polinomio x^5-x+1 (que puede asumir irreducible):

- (a) C_5 .
- (b) D_5 .
- (c) S_5 .

Problema

Determine cuál de los siguientes es el grupo de Galois del cuerpo de escisión (sobre $\mathbb Q$) del polinomio x^5-x+1 (que puede asumir irreducible):

- (a) C_5 .
- (b) D_5 .
- (c) S_5 .

Como pista, emplee el siguiente resultado:

Teorema

El discriminante de un polinomio irreducible f de grado n es un cuadrado syss $\operatorname{Gal}(\operatorname{Split}_{\mathbb{Q}}(f)/\mathbb{Q}) \subseteq A_n$.

Solución 1 (calcular Galois)

Empleamos el resultado y calculamos el discriminante, es decir, el siguiente determinante:

Solución 1 (calcular Galois)

Empleamos el resultado y calculamos el discriminante, es decir, el siguiente determinante:

Solución 1 (calcular Galois)

Empleamos el resultado y calculamos el discriminante, es decir, el siguiente determinante:

$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 5 & 0 \\ -1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 5 \\ 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \end{vmatrix}$$

(Horror, lo sé.)

Lo cuál da 2869 y vemos que $50^2=2500$, por lo que es fácil comprobar que no es un cuadrado perfecto (a ensayo y error, vea que $53^2=2809$ y $54^2=2916$).

Solución 1 (calcular Galois)

Empleamos el resultado y calculamos el discriminante, es decir, el siguiente determinante:

$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 5 & 0 \\ -1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 5 \\ 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \end{vmatrix}$$

(Horror, lo sé.)

Lo cuál da 2869 y vemos que $50^2=2500$, por lo que es fácil comprobar que no es un cuadrado perfecto (a ensayo y error, vea que $53^2=2809$ y $54^2=2916$). Finalmente, note que $D_5 \leq S_5$ mediante $r \mapsto (12345) \in A_5$ y $s \mapsto (25)(34) \in A_5$, así que $D_5 \leq A_5$. Por lo que, el grupo de Galois es el **simétrico** S_5 .

Solución 2 (calcular Galois)

Calculamos las raíces reales notando que la derivada es $5x^4-1$ la cual tiene raíces $\pm \sqrt[5]{1/5}$.

Solución 2 (calcular Galois)

Calculamos las raíces reales notando que la derivada es $5x^4-1$ la cual tiene raíces $\pm \sqrt[5]{1/5}$. Así, hay dos cambios de signo, por lo que hay tres raíces reales y **dos complejas**.

Solución 2 (calcular Galois)

Calculamos las raíces reales notando que la derivada es $5x^4-1$ la cual tiene raíces $\pm \sqrt[5]{1/5}$. Así, hay dos cambios de signo, por lo que hay tres raíces reales y **dos complejas**. Finalmente, el grupo de Galois G contiene un 5-ciclo por el teorema de Cauchy, y contiene a una trasposición dada por la conjugación compleja, así que (como 5 es **primo**), tiene que darse que $G\cong S_5$.

Problema

Sea L/K una extensión de Galois con $\operatorname{Gal}(L/K) \cong C_2 \times C_{12}$. ¿Cuántas extensiones intermedias $K \subset F \subset L$ tiene tales que [F:K]=4? ¿Cuántas de estas son de Galois?

Problema

Sea L/K una extensión de Galois con $\operatorname{Gal}(L/K) \cong C_2 \times C_{12}$. ¿Cuántas extensiones intermedias $K \subset F \subset L$ tiene tales que [F:K]=4? ¿Cuántas de estas son de Galois?

Problema

Sea L/K una extensión de Galois con $\operatorname{Gal}(L/K) \cong C_2 \times C_{12}$. ¿Cuántas extensiones intermedias $K \subset F \subset L$ tiene tales que [F:K]=4? ¿Cuántas de estas son de Galois?

Solución: Por conexión de Galois, contar extensiones intermedias de grado 4 es contar subgrupos $H \le C_2 \times C_{12} =: G$ tales que [G:H] = 4.

Problema

Sea L/K una extensión de Galois con $\operatorname{Gal}(L/K) \cong C_2 \times C_{12}$. ¿Cuántas extensiones intermedias $K \subset F \subset L$ tiene tales que [F:K]=4? ¿Cuántas de estas son de Galois?

Solución: Por conexión de Galois, contar extensiones intermedias de grado 4 es contar subgrupos $H \le C_2 \times C_{12} =: G$ tales que [G:H] = 4.

Problema

Sea L/K una extensión de Galois con $\operatorname{Gal}(L/K) \cong C_2 \times C_{12}$. ¿Cuántas extensiones intermedias $K \subset F \subset L$ tiene tales que [F:K]=4? ¿Cuántas de estas son de Galois?

Solución: Por conexión de Galois, contar extensiones intermedias de grado 4 es contar subgrupos $H \leq C_2 \times C_{12} =: G$ tales que [G:H] = 4.

En un producto, un subgrupo **no** es un producto de subgrupos (e.g., el

generado por (1,1) en $C_2 \times C_{12}$). No obstante, sea H como antes, vemos que |H| = 24/4 = 6, por lo que H contiene un elemento de orden 3 (teorema de Cauchy).

Problema

Sea L/K una extensión de Galois con $\operatorname{Gal}(L/K) \cong C_2 \times C_{12}$. ¿Cuántas extensiones intermedias $K \subset F \subset L$ tiene tales que [F:K]=4? ¿Cuántas de estas son de Galois?

Solución: Por conexión de Galois, contar extensiones intermedias de grado 4 es contar subgrupos $H \leq C_2 \times C_{12} =: G$ tales que [G:H] = 4.

En un producto, un subgrupo **no** es un producto de subgrupos (e.g., el generado por (1,1) en $C_2 \times C_{12}$). No obstante, sea H como antes, vemos que |H|=24/4=6, por lo que H contiene un elemento de orden 3 (teorema de Cauchy). Por teorema chino del resto $C_{12}\cong C_4\times C_3$, con lo que es fácil verificar que los únicos elementos de $C_2\times C_4\times C_3$ de orden 3 son $(0,0,\pm 1)$; así que $H\geq 0\times 0\times C_3$. Por correspondencia, podemos bajar a contar $H'\leq C_2\times C_4$ (mediante la proyección) de índice 4 o, equivalentemente, de orden 2.

Problema

Sea L/K una extensión de Galois con $\operatorname{Gal}(L/K) \cong C_2 \times C_{12}$. ¿Cuántas extensiones intermedias $K \subset F \subset L$ tiene tales que [F:K]=4? ¿Cuántas de estas son de Galois?

Solución: Por conexión de Galois, contar extensiones intermedias de grado 4 es contar subgrupos $H \leq C_2 \times C_{12} =: G$ tales que [G:H] = 4.

En un producto, un subgrupo **no** es un producto de subgrupos (e.g., el generado por (1,1) en $C_2 \times C_{12}$). No obstante, sea H como antes, vemos que |H|=24/4=6, por lo que H contiene un elemento de orden 3 (teorema de Cauchy). Por teorema chino del resto $C_{12}\cong C_4\times C_3$, con lo que es fácil verificar que los únicos elementos de $C_2\times C_4\times C_3$ de orden 3 son $(0,0,\pm 1)$; así que $H\geq 0\times 0\times C_3$. Por correspondencia, podemos bajar a contar $H'\leq C_2\times C_4$ (mediante la proyección) de índice 4 o, equivalentemente, de orden 2. Como H' tiene orden 2, solamente está generado por un elemento de orden 2. Hay tres de ellos: (1,0), (0,2) y (1,2).

Problema

Sea L/K una extensión de Galois con $\operatorname{Gal}(L/K) \cong C_2 \times C_{12}$. ¿Cuántas extensiones intermedias $K \subset F \subset L$ tiene tales que [F:K]=4? ¿Cuántas de estas son de Galois?

Solución: Por conexión de Galois, contar extensiones intermedias de grado 4 es contar subgrupos $H \le C_2 \times C_{12} =: G$ tales que [G:H] = 4.

En un producto, un subgrupo **no** es un producto de subgrupos (e.g., el generado por (1,1) en $C_2 \times C_{12}$). No obstante, sea H como antes, vemos que |H|=24/4=6, por lo que H contiene un elemento de orden 3 (teorema de Cauchy). Por teorema chino del resto $C_{12}\cong C_4\times C_3$, con lo que es fácil verificar que los únicos elementos de $C_2\times C_4\times C_3$ de orden 3 son $(0,0,\pm 1)$; así que $H\geq 0\times 0\times C_3$. Por correspondencia, podemos bajar a contar $H'\leq C_2\times C_4$ (mediante la proyección) de índice 4 o, equivalentemente, de orden 2. Como H' tiene orden 2, solamente está generado por un elemento de orden 2.

Como H' tiene orden 2, solamente está generado por un elemento de orden 2 Hay tres de ellos: (1,0), (0,2) y (1,2).

Finalmente, todas ellas son extensiones de Galois puesto que todo subgrupo de un grupo abeliano es normal.

Problema

Problema

Diremos que un anillo conmutativo A es **absolutamente plano** si todo A-módulo es plano.

1. Pruebe que todo cuerpo es absolutamente plano.

Problema

- 1. Pruebe que todo cuerpo es absolutamente plano.
- 2. ¿Será que todo anillo absolutamente plano es un cuerpo?

Problema

- 1. Pruebe que todo cuerpo es absolutamente plano.
- 2. ¿Será que todo anillo absolutamente plano es un cuerpo?

Problema

- 1. Pruebe que todo cuerpo es absolutamente plano.
- 2. ¿Será que todo anillo absolutamente plano es un cuerpo? PISTA: considere el caso de anillos *booleanos* (i.e., donde $x^2 = x$ para todo $x \in A$).
- 3. ¿Será que todo anillo local absolutamente plano es un cuerpo?

1. En efecto, sobre un cuerpo todo módulo (= espacio vectorial) es **libre** (i.e., posee base), y sabemos que todo módulo libre es plano.

- 1. En efecto, sobre un cuerpo todo módulo (= espacio vectorial) es **libre** (i.e., posee base), y sabemos que todo módulo libre es plano.
- 2. No. En particular, podemos tomar un producto de cuerpos.

- 1. En efecto, sobre un cuerpo todo módulo (= espacio vectorial) es **libre** (i.e., posee base), y sabemos que todo módulo libre es plano.
- 2. No. En particular, podemos tomar un producto de cuerpos.

- 1. En efecto, sobre un cuerpo todo módulo (= espacio vectorial) es **libre** (i.e., posee base), y sabemos que todo módulo libre es plano.
- 2. No. En particular, podemos tomar un producto de cuerpos. Por ejemplo, podemos considerar el anillo booleano $\prod_{s \in S} \mathbb{F}_2$ (donde S es un conjunto cualquiera).

- 1. En efecto, sobre un cuerpo todo módulo (= espacio vectorial) es **libre** (i.e., posee base), y sabemos que todo módulo libre es plano.
- 2. No. En particular, podemos tomar un producto de cuerpos. Por ejemplo, podemos considerar el anillo booleano $\prod_{s \in S} \mathbb{F}_2$ (donde S es un conjunto cualquiera).

Para ver que cualquier anillo booleano A es absolutamente plano, note que un A-módulo M es plano syss cada $M_{\mathfrak{p}}$ es plano sobre $A_{\mathfrak{p}}$, donde \mathfrak{p} recorre los ideales primos (ver ayudantía).

- 1. En efecto, sobre un cuerpo todo módulo (= espacio vectorial) es **libre** (i.e., posee base), y sabemos que todo módulo libre es plano.
- 2. No. En particular, podemos tomar un producto de cuerpos. Por ejemplo, podemos considerar el anillo booleano $\prod_{s \in S} \mathbb{F}_2$ (donde S es un conjunto cualquiera).

Para ver que cualquier anillo booleano A es absolutamente plano, note que un A-módulo M es plano syss cada $M_{\mathfrak{p}}$ es plano sobre $A_{\mathfrak{p}}$, donde \mathfrak{p} recorre los ideales primos (ver ayudantía).

Ahora bien, A_p también es booleano y es local. Por la interrogación, un anillo local solo tiene por idempotentes al 0 y al 1, por lo que, $A_p = \{0,1\} = \mathbb{F}_2$ es un cuerpo. Así, M_p debe ser plano y M también.

4 D > 4 P > 4 B > 4 B > 9 Q P

3. Sea $x \in A$ arbitrario. El A-módulo A/(x) es plano y, por tanto, tenemos el siguiente diagrama conmutativo:

$$(x) \otimes_A A \xrightarrow{1 \otimes \pi} (x) \otimes_A A/(x) = (x)/(x^2)$$

$$\downarrow^{\alpha}$$

$$A \xrightarrow{\qquad \qquad } A/(x)$$

3. Sea $x \in A$ arbitrario. El A-módulo A/(x) es plano y, por tanto, tenemos el siguiente diagrama conmutativo:

$$(x) \otimes_A A \xrightarrow{1 \otimes \pi} (x) \otimes_A A/(x) = (x)/(x^2)$$

$$\downarrow \qquad \qquad \downarrow^{\alpha}$$

$$A \xrightarrow{\qquad \qquad } A/(x)$$

Como la composición es cero y α es inyectivo, por planitud, $1\otimes\pi=0$, por lo que $(x)=(x^2)$.

3. Sea $x \in A$ arbitrario. El A-módulo A/(x) es plano y, por tanto, tenemos el siguiente diagrama conmutativo:

$$(x) \otimes_A A \xrightarrow{1 \otimes \pi} (x) \otimes_A A/(x) = (x)/(x^2)$$

$$\downarrow \qquad \qquad \downarrow^{\alpha}$$

$$A \xrightarrow{\qquad \qquad } A/(x)$$

Como la composición es cero y α es inyectivo, por planitud, $1 \otimes \pi = 0$, por lo que $(x) = (x^2)$.

Así, $x = ax^2$ y e := ax es idempotente, pues $e^2 = a \cdot ax^2 = ax = e$.

3. Sea $x \in A$ arbitrario. El A-módulo A/(x) es plano y, por tanto, tenemos el siguiente diagrama conmutativo:

$$(x) \otimes_A A \xrightarrow{1 \otimes \pi} (x) \otimes_A A/(x) = (x)/(x^2)$$

$$\downarrow \qquad \qquad \downarrow^{\alpha}$$

$$A \xrightarrow{\qquad \qquad } A/(x)$$

Como la composición es cero y α es inyectivo, por planitud, $1 \otimes \pi = 0$, por lo que $(x) = (x^2)$.

Así, $x = ax^2$ y e := ax es idempotente, pues $e^2 = a \cdot ax^2 = ax = e$. Pero un anillo local solo tiene por idempotentes al 0 y al 1, por lo que x es nulo o una unidad.