DIFFERENTIATION

SUPPOSE
$$f: D \rightarrow \mathbb{R}$$
 WHERE $D \subseteq \mathbb{R}^2$ LET

 $\vec{x} = (x_0, y_0)$ BE AN INTERIOR POINT IN D , i.e.

 $B_{\mathbf{r}}(\vec{x}^2) \subseteq D$ FOR SOME $x > 0$. THE PARTIAL

DERIVATIVE OF f W.r.t. x AT (x_0, y_0)

IS

 $\lim_{h \rightarrow 0} f(x_0 + h, y_0) = f(x_0, y_0)$

IF IT EXISTS.

SIMILARLY, THE PARTIAL DERIVATIVE OF f
 $w.r.t$ y AT (x_0, y_0) IS THE LIMIT

 $\lim_{h \rightarrow 0} f(x_0, y_0 + h) = f(x_0, y_0)$
 $h \rightarrow 0$

THE PARTIAL DERIVATIVES ARE DENOTED

 f_x , f_y RESPECTIVELY.

EXAMPLE

 $f(x, y) = \sin(xy)$
 $\frac{\partial f}{\partial x} = f_x(x, y) = \cos(xy) \cdot y$
 $\frac{\partial f}{\partial x} = f_y(x, y) = \cos(xy) \cdot x$

PATHOLOGICAL EXAMPLE

Consider
$$f(x,y) = \frac{xy}{x^2+y^2}$$
 if $(x,y) \neq (0,0)$

$$= 0$$
 IF $(x, y) = (0, 0)$

$$f_{x}(x,y) = \underbrace{Y(x^{2}+Y^{2}) - (xY)(2x)}_{(x^{2}+Y^{2})^{2}} = \underbrace{Y\{Y^{2}-X^{2}\}}_{(x^{2}+Y^{2})^{2}}$$

$$f_y(x,y) = (CALCULATE THIS!) = \frac{X\{X^2-Y^2\}}{(X^2+Y^2)^2}$$

QUESTION: IS & CONTINUOUS AT (0,0)?

WE HAVE SEEN BEFORE THAT IF Y= kx,

$$f(x, y) = \frac{k}{1+k^2}$$
 is a constant, so

f is <u>NOT</u> CONTINUOUS AT (0,0).

BUT
$$f_2(x,0) = 0 \quad \forall x$$

LINEAR MAPS

f:
$$\mathbb{R}^2 \to \mathbb{R}$$
 is a Linear Map if

 $f(x,y) = ax + by$ for some $a,b \in \mathbb{R}$
 $f:\mathbb{R}^3 \to \mathbb{R}$ is linear if

 $f(x,y,z) = ax + by + cz$ for some $a,b,c \in \mathbb{R}$.

Let $f:U \to \mathbb{R}$, for $U \subseteq \mathbb{R}^2$. Let $(x_0,y_0) \in U$

BE AN INTERIOR POINT

Wish to Approximate f in some

Small neighborhood of (x_0,y_0) , by some

Linear Map.

Say f is differentiable at (x_0,y_0) if

There exists a linear map $\Lambda: B_{(x_0,y_0)} \to \mathbb{R}$

(for some $S > 0$) such that:

 $\lim_{(x_0,y_0) \to (x_0,y_0)} \frac{|f(x_0+h_0,y_0+k) - f(x_0,y_0) - \Lambda(h_0,k_0)|}{\sqrt{h^2+k^2}} = 0$

Note that $\sqrt{h^2+k^2} = \|(h_0,k_0)\|$.

IF M, I ARE LINEAR AND SATISFY THE PREVIOUS LIMIT, THEN $\Lambda(h,k) = \Gamma(h,k)$ Y (h,k). (IF f is DIFFERENTIABLE AT (x,y) THERE IS A UNIQUE LINEAR MAP APPROXIMATING f). G (h,k) SKETCH OF PROOF: 1 SATISFIES : $\lim \left| \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-\Lambda(h,k)}{f(x_0+h,y_0+k)-f(x_0,y_0)-\Lambda(h,k)} \right| = 0$ $(h,k) \rightarrow (0,0)$ $\frac{\left|f(x_0+h,y_0+k)-f(x_0,y_0)-\Gamma(h,k)\right|}{2}=0$ lim (h,k)-/90) $|\Lambda(h,k) - \Gamma(h,k)| \ge |\Lambda(h,k) - \Lambda(h,k)| + |\Lambda(h,k) - \Gamma(h,k)|$ (h,k)->(0,0) $\lim_{(h,k)\to(0,0)}\frac{\Lambda(h,k)-\Gamma(h,k)}{\sqrt{h^2+h^2}}=0$ \Rightarrow $\wedge(h,k) = \Gamma(h,k)$ (EXERCISE !) (WRITE $\Lambda(h,k) = ah + bk$, $\Gamma(h,k) = ch + dk$, SIMPLIFY ETC.) WE SHALL NOW DENOTE THE DERIVATIVE OF f AT (xo, yo), BY Df (xo, yo).

BASIC OBSERVATIONS

P IF f:1R2 → IR IS CONSTANT, THEN IT IS DIFFERENTIABLE AND ITS DERIVATIVE = 0. IF f(x,y) = ax + by, THEN f is DIFFERENTIABLE AND ITS DERIVATIVE IS $(Df(\alpha,\beta))(h,k) = \alpha h + bk \forall (h,k)$ IF f: R2 → R IS DIFFERENTIABLE AT (X6, Y0) & g:R→R IS DIFFERENTIABLE AT f(xo, yo), THEN gof is DIFF. AT (Xo, Yo) AND $D(g \circ f(x_0, y_0)) = g'(f(x_0, y_0)) \cdot Df(x_0, y_0)$ (CHAIN RULE) f, g: 1R2 → 1R, ARE DIFFERENTIABLE AT (x0, Y0) THEN $D(f\pm g)(x_0,y_0) = Df(x_0,y_0) \pm Dg(x_0,y_0)$ $D(\lambda f)(x_0, y_0) = \lambda D f(x_0, y_0) (\lambda f R)$ $D(fg)(x_0,y_0) = Df(x_0,y_0) \cdot g(x_0,y_0)$ + f(x0, y0) Dg(x0, y0) (PRODUCT RULE).

EXAMPLES

$$f(x,y) = xy$$
.

> \(x, y)

CLAIM: (Df(a,b))(x,y) = bx + ay.

Walt:
$$\lim_{(h,k)\to(0,0)} \left| f(a+h,b+k) - f(a,b) - \Lambda(h,k) \right| = 0$$

$$|f(a+h,b+k)-f(a,b)-N(h,k)|=(a+h)(b+k)-ab-bh$$

$$=|hk|$$

$$\frac{1}{\sqrt{h^2+k^2}} \leq \frac{1}{\sqrt{2hk!}} \Rightarrow \lim_{(h,k)\to yy} \frac{|hk|}{\sqrt{h^2+k^2}} \leq \frac{\sqrt{|hk|}}{\sqrt{2}} \Rightarrow 0$$
As $(h,k)\to (0,0)$

THIS COMPLETES THE PROOF.

ANOTHER WAY TO 'LOOK' AT LINEAR MAPS:

 $\Lambda(x,y) = ax + by$. This Λ May BE

IDENTIFIED BY (a,b) E IR2.

SO, Df(a,b) MAY BE INTERPRETED TO MEAN SOME ELEMENT (d,B) &R.

Suppose
$$f: D \rightarrow \mathbb{R}$$
 ($D \subseteq \mathbb{R}^2$) Is

DIFFERENTIABLE AT (x_0, y_0) . THEN f is

ALSO CONTINUOUS AT (x_0, y_0) .

Suppose $Df(x_0, y_0) = \Lambda$, where $\Lambda(h, k) = dh + pk$

WANT: $\lim_{(h,k)\rightarrow(0,0)} \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-dh-pk}{\sqrt{h^2+k^2}} = 0$

KNON: $\lim_{(h,k)\rightarrow(0,0)} \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-dh-pk}{\sqrt{h^2+k^2}} = 0$

IN OTHER WORDS,

 $f(x_0+h,y_0+k)-f(x_0,y_0) = dh + pk + E(h,k) / h^2+k^2$

FOR SOME $E: (-6,8)\times(-6,8) \rightarrow \mathbb{R}$ S.T. $\lim_{(h,k)\rightarrow(0,0)} E(h,k) = 0$

TAKE

 $\lim_{(h,k)\rightarrow(0,0)} ON BOTH SIDES$.

 $(h,k)\rightarrow(0,0)$
 $f(x,y) = xy$
 $\frac{\partial f}{\partial x} = y$; $\frac{\partial f}{\partial y} = x$
 $\Lambda = Df(a,b)$, So $\Lambda(X,Y) = bX + aY$
 $\frac{\partial f}{\partial x} (a,b) = b$, $\frac{\partial f}{\partial y} (a,b) = a$
 $\Rightarrow \Lambda = \left(\frac{\partial f}{\partial x} (a,b), \frac{\partial f}{\partial y} (a,b)\right)$.

DIFFERENTIABILITY CRITERION

SUPPOSE $f: V \rightarrow \mathbb{R}$, $V \subseteq \mathbb{R}^{\vee}$, AND $(X_0, Y_0) \in V$ (INTERIOR) SUPPOSE fr AND fy EXIST AT ALL POINTS IN B((x0, y0), x) FOR SOME Y70. fz, fy ARE CONTINUOUS AT (xo, Yo) THEN & IS DIFFERENTIABLE AT (20, 40) AND $(Df(a,b))(x,y) = f_x(a,b) \times + f_y(a,b) Y.$ PROOF: LET (h,k) & B((0,0), r). USE MUT ON 21-> f(x,y.) & y +> f(x.+h, y) $f(x+h, y_0) - f(x_0, y_0) = h f_x(3, y_0)$ $f(x_0+h,y_0+k) - f(x_0+h,y_0) = kf_y(x_0+h,y)$ 3 LIES BETWEEN XO & XOTH YOURS BETWEEN YO & YOHK WHERE NOTE THAT M ALSO DEPENDS ON h! HENCE, $f(x_0+h, y_0+k) - f(x_0, y_0) = h f_{\chi}(\xi, y_0) + k f_{\chi}(x_0+h, y)$

LET
$$\epsilon(h,k) = h(f_{R}(S,y_{0}) - f_{R}(x_{0},y_{0}))$$
 $+ k(f_{Y}(x_{0}+h,\eta) - f_{Y}(x_{0},y_{0}))$

THEN BY CONTINUITY OF f_{R} , f_{Y} AT (X_{0},Y_{0}) ,

 $\epsilon(h,k) \rightarrow 0$ AS $(h,k) \rightarrow (0,0)$.

THIS IS A SUFFICIENT CONDITION ONLY.

FOR EXAMPLE,

 $f(x,y) = (x^{2}+y^{2}) \sin\left(\frac{1}{x^{2}+y^{2}}\right) (x,y) \neq (0,0)$
 $f(0,0) = 0$.

We have Seen that f is Differentiable AT $(0,0)$. However

 $f_{R}(x,y) = 2x \sin\left(\frac{1}{x^{2}+y^{2}}\right) + \frac{\log\left(\frac{1}{x^{2}+y^{2}}\right) - \frac{-2x}{(x^{2}+y^{2})}}{k^{2}+y^{2}}$

AND $f_{R}(x,y)$ IS NOT BOUNDED

IN A NEIGHBORHOOD OF $(0,0)$.