

Análise de Fourier Dia 1:

Filtragem no Domínio da Frequência **Daniel Teixeira & Rafael Vieira**

CRAb - Grupo de Computação Gráfica

Departamento de Computação

UFC

Sumário

- Histórico
- Fundamentos
- Série de Fourier
- Transformada de Fourier Contínua
- Transformada de Fourier Discreta
- Reconstrução de Imagens
- Amostragem, Alias e Interpolação
- Extensão 2D
- Propriedades:
 - Translação
 - Rotação
 - Periodicidade
 - Espectro de Fourier e Ângulo de Fase
 - Convolução em 2D

0.1 Histórico

- A Série de Fourier teve seus primeiros resquícios em 1807
- Criada e Desenvolvida pelo francês Jean Baptiste Joseph Fourier
- Em 1822, a publica em seu livro "La Théorie Analitique de la Chaleur"
- Idéia inicialmente encontra ceticismo

Fourier, Jean B. J.

- Em 1950, o francês Laurent-Moïse Schwartz ganha a medalha Fields pelo seu trabalho na teoria das distribuições
- A teoria das distribuições expande a teoria da Transformada de Fourier
- Schwartz consegue determinar a classe de funções ideais para a
 Transformada de Fourier A classe Schwartz, em sua homenagem

0.1 Histórico

- Em 1965, os americanos Cooley e Tukey publicam um artigo com um algoritmo para a Transformada de Fourier Rápida FFT, trabalhando no setor de pesquisas da IBM
- O algoritmo de FFT incluindo sua aplicação recursiva foi inventado em 1805 pelo alemão Carl Friedrich Gauss
- Gauss não foi citado por Cooley e Turkey em seu artigo, mas foi descoberto anos mais tarde a cópia
- Hoje, existem inúmeras versões para o algoritmo de FFT:
 - Prime-factor FFT algorithm
 - Bruun's FFT algorithm
 - Rader's FFT algorithm
 - Bluestein's FFT algorithm
- O algoritmo para FFT, que é uma aproximação para a DFT, é implementado em ferramentas como o Matlab e o Octave

Gauss, Johann Carl Friedrich

0.2 Motivação e Aplicações

Motivação:

Aumenta o seu poder de análise sobre funções, analisamos uma função sobre dois domínios distintos o espaço e a freqüência

Certos atributos de um fenômeno físico ou digital podem ser analisados com mais exatidão no domínio da frequência

Aplicações:

- Desenvolvedores de Circuitos
- Edição de Som
- Engenharia
- Espectrografia
- Cristalografia
- Comunicação e Sinais Digitais
- Teoria do Calor
- Processamento de Imagens

Foundations of Vision, Brian Wendell Departamento de Psicologia, Stanford Aumente a frequência das linhas até ver verde.

1.1 Fundamentos: Números Complexos

Os números complexos são uma extensão dos números reais. E portanto podem ser escritos da seguinte forma:

A parte imaginária possui um componente j, tal que:

$$j = \sqrt{-1} \tag{1}$$

Todo complexo possui seu conjugado de forma que:

$$C = R + jI \tag{2}$$

$$C^* = R - jI \tag{3}$$

1.2 Fundamentos: Complexos: Forma Polar

Os complexos podem ser expressos também em coordenadas polares:

$$C = |C|e^{j\theta} \tag{4}$$

Em que, temos o módulo ou norma definida por:

$$|C| = \sqrt{R^2 + I^2} \quad em \quad que \quad R, I \in \Re$$
 (5)

E o ângulo definido por:

$$\theta = \operatorname{atan}\left(\frac{I}{B}\right) \tag{6}$$

1.3 Fundamentos: Complexos: Gráfico

Os complexos não podem ser representados no plano Cartesiano a não ser pelas suas normas.

Plano Complexo ou Plano de Argand

Plano Cartesiano, usando as normas ao quadrado dos Complexos (O espectro de energia: Power Spectrum)

1.4 Fundamentos: Fórmula de Euler

Fórmula de Euler:

$$e^{j\theta} = \cos\theta + j\sin\theta$$

(7)

Como consequência temos que:

$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

(8)

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

beldade da matemática:

(9)

E a identidade de Euler, considerada uma Euler, Leonhard Paul

$$e^{j\pi} + 1 = 0$$

1.5 Fundamentos: Função de Impulso

Função Delta de Dirac ou Impulso pode ser encarada como um distribuição, tal qual definida por Schwartz:

$$\delta(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ \infty & \text{if } x = 0. \end{cases}$$
 (11)

Dirac, Paul

1.6 Fundamentos: Função de Impulso - Propriedades

$$\int_{-\infty}^{\infty} \delta(x)dx = 1 \tag{12}$$

$$\int_{-\infty}^{\infty} \delta(x)f(x)dx = f(0)$$

(13)

f(x) é uma função qualquer

$$\int_{-\infty}^{\infty} \delta(x - x_0) f(x) dx = f(x_0)$$

(14)

Demonstração:

$$p_{1/n}(x) = \begin{cases} n/2 & \text{if } |x| \le 1/n \\ 0 & \text{if } |x| > 1/n. \end{cases}$$

(15)

FIGURE 3.14. Limiting definition of the impulse function.

1.7 Fundamentos: Trem de Impulsos(função de amostragem ou combinação de Dirac)

Uma combinação de Dirac é uma distribuição de Schwartz periódica construída a partir de funções delta Dirac

$$s_{\Delta T}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT) \tag{16}$$

T é o período k varia de menos infinito a infinito

1.8 Fundamentos: Convolução

$$f(t) \star h(t) = \int_{-\infty}^{\infty} f(\tau)h(t-\tau)d\tau \tag{17}$$

f(t) e h(t) são duas funções quaisquer

"Gira e Desliza"

1.9 Fundamentos: Teorema da Convolução

O teorema determina que uma filtragem no domínio da frequência é equivalente a uma convolução no domínio do tempo e vice-versa.

$$f(t)h(t) \Leftrightarrow F(\mu) \star H(\mu)$$
 (18)

$$f(t) \star h(t) \Leftrightarrow F(\mu)H(\mu)$$
 (19)

h(t) e f(t) são duas funções quaisquer

F(u) é a transformada de Fourier de f(t) H(u) é a transformada de Fourier de h(t)

^{*} Prova na página 210 do livro-texto.

桥

1.10 Fundamentos: Exemplo de Convolução 1D e Discreta

Convolution

Inverte-se w(x) e a desloca para alinhar-se com o 1º ponto de f(x), neste caso 0:

$$w(0) = 1$$
 $w(-0) = 1$ $f(0)=0$ $f(4)=0$
 $w(1) = 2$ $w(-1) = 2$ $f(1)=0$ $f(5)=0$
 $w(2) = 3$ $w(-2) = 3$ $f(2)=0$ $f(6)=0$
 $w(3) = 2$ $w(-3) = 2$ $f(3)=1$ $f(7)=0$
 $w(4) = 8$ $w(-4) = 8$ $f(8)=0$

g(x) é produto da convolução de w(x) e f(x):

$$g(2) = w(2-0)*f(0) + w(2-1)*f(1) + w(2-2)*f(2) + w(2-3)*f(3) + w(2-4)*f(4) = 2$$

Full convolution result
0 0 0 1 2 3 2 8 0 0 0 0 (o)

Cropped convolution result

1.11 Fundamentos:

Teorema de Nyquist (ou Teorema da Amostragem)

A reconstrução de uma função contínua limitada em [-B,B] é realizável desde que o número de amostras neste intervalo seja maior que 2*B.

Isto é:

fs > 2*B

Nyquist, Harry Theodor

fs é a quantidade de amostras por segundo.

1.12 Fundamentos: Funções Pares e Impares

função par

$$s(-t) = s(t) \tag{23}$$

Exemplos: cosseno, |x|, x2

função ímpar

$$s(-t) = -s(t) \tag{24}$$

Exemplos: seno, x3, 1/x

1.13 Fundamentos: Trigonometria

$$cos^2A + sen^2A = 1$$

$$cos(t) = cos(t + 2\pi)$$

$$sen(t) = sen(t + 2\pi)$$

cosseno e seno são funções periódicas

1.14 Fundamentos: Funções Periódicas

Um função é dita periódica, se:

$$f(t) = f(t + nT), \ n \in Z \tag{20}$$

$$f(t) = f(t+T), n = 1$$
 (21)

T é o período da função

Exemplos: sinc, seno e cosseno

Relação entre período(T) e freqüência (f)

$$f = \frac{1}{T} \tag{22}$$

桥

\$1.15 Fundamentos:Oscilador Harmônico Simples

O movimento de um OHS pode ser representado por uma senóide

$$F=-kx$$

$$F=ma, \, 2^{\rm o} \, \, {\rm lei} \, \, {\rm de} \, \, {\rm Newton}$$

$$ma=-kx$$

$$m\frac{d^2x}{dt^2} = -kx, \quad se \quad w^2 = \frac{k}{m}$$

$$\frac{d^2x}{dt^2} = -w^2x$$

As únicas funções nos reais cujas derivadas segundas são elas próprias invertidas são o seno e o cosseno.

$$x = A\sin(n\theta + \alpha)$$

1.16 Fundamentos: Oscilador Harmônico Simples

O movimento de um OHS pode ser representado por uma senóide

$$x = A\sin(n\theta + \alpha) \tag{26}$$

A: amplitude

n: frequência

α: ângulo de fase

Vejamos os três conceitos isoladamente e como atuam na função.

1.17 Fundamentos: Amplitude

Determina a magnitude de oscilação da função ou sinal:

$$x = A\sin(n\theta + \alpha) \tag{26}$$

4sen(x)

1.18 Fundamentos: Freqüência

Determina o número de repetições de um sinal ou função em um intervalo dado:

$$x = A\sin(n\theta + \alpha)$$

(26)

sen(x)

sen(2x)

1.19 Fundamentos: Ângulo de Fase

Determina um ângulo de início e fim para a emissão do sinal, isto é, um deslocamento na medição no sinal.

$$x = A\sin(n\theta + \alpha) \tag{26}$$

1.20 Fundamentos: Somatórios de funções periódicas

Somatórios de senóides e cossenóides:

sen(2x) + sen(4x) + sen(6x)

sen(2x) + sen(4x) + sen(6x) + cos(x)

cos(x) + cos(3x) + cos(5x)

25

2. Série de Fourier

Somatório de OHS:

$$f(t) = \sum_{n=1}^{N} A_n \sin(n\theta t + \alpha_n)$$
 (27)

Série de Fourier Real:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(2\pi nt) + b_n \sin(2\pi nt))$$
 (28)

Série de Fourier Complexa:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{j\frac{2\pi n}{T}t}$$
(29)

Coeficientes de Fourier:

$$c_n = \frac{1}{T} \int_{T/2}^{T/2} f(t) e^{-j\frac{2\pi n}{T}t} dt$$
 (30)

É capaz de representar funções periódicas

2.1 Exemplo de SF

$$f(x) = \begin{cases} 1 & \text{se } 0 \le x < 1/2 \\ -1 & \text{se } 1/2 \le x < 1. \end{cases}$$

- 1°) Determine os coeficientes da Série de Fourier
- 2°) Verifique o comportamento da Série para n°s Pares e Ímpares
- 3º) Adicione os números conjugados
- 4°) Obtenha a SF da função

$$f(x) = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{2k+1} \sin(2\pi(2k+1)x)$$

2.2 Gráfico de SF

SF de coeficientes k em [0,2]

0.5

SF de coeficientes k em [0,15]

3. Transformada de Fourier Contínua

É capaz de representar funções não periódicas.

Se tornamos o período infinitamente grande, os coeficientes desaparecem:

$$T \to \infty \Rightarrow c_n \to 0$$

Solução: multiplique os coeficientes de Fourier por T
 Para $T \to \infty$

$$Tc_n = T \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-j\frac{2\pi n}{T}t} dt$$

E substituíndo $s=\frac{n}{T}$, temos a Transformada de Fourier Contínua:

$$F(s) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi st}dt \tag{31}$$

E sua inversa:

$$f(t) = \int_{-\infty}^{\infty} F(s)e^{j2\pi st}ds \tag{32}$$

3.1 Exemplo de CFT

A função quadrado, também chamada de Filtro Ideal de Baixa Freqüência, pode ser definida como:

f(t) = A, tal que -W/2 <= t <= W/2.

A transformada de Fourier desta função, F(u), é obtida como segue:

$$F(\mu) = \int_{-\infty}^{\infty} f(t) e^{-j2\pi\mu t} dt = \int_{-W/2}^{W/2} A e^{-j2\pi\mu t} dt$$

$$= \frac{-A}{j2\pi\mu} \Big[e^{-j2\pi\mu t} \Big]_{-W/2}^{W/2} = \frac{-A}{j2\pi\mu} \Big[e^{-j\pi\mu W} - e^{j\pi\mu W} \Big]$$

$$= \frac{A}{j2\pi\mu} \Big[e^{j\pi\mu W} - e^{-j\pi\mu W} \Big]$$

$$= AW \frac{\sin(\pi\mu W)}{(\pi\mu W)}$$

3.2 Gráfico de CFT

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{(\pi x)} \tag{33}$$

"É justo dizer que muitos Engenheiros Elétricos vêem a função sinc em seus sonhos" - prof Brad Osgood

4. Transformada de Fourier Discreta

Amostragem de uma função usando o trem de impulsos:

$$\tilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} f(n\Delta T)\delta(t - n\Delta T)$$

Calculamos a Transformada de Fourier desta amostragem:

$$\tilde{F}(\mu) = \int_{-\infty}^{\infty} \tilde{f}(t)e^{-j2\pi\mu t}dt$$

Por substituição e isolando constantes:

$$\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(n\Delta T) \delta(t-n\Delta T) e^{-j2\pi\mu t} dt$$

$$\sum_{n=-\infty}^{\infty} f(n\Delta T) \int_{-\infty}^{\infty} \delta(t - n\Delta T) e^{-j2\pi\mu t} dt$$

Aplicando a propriedade de sifting da função Delta dirac:

$$\sum_{n=-\infty}^{\infty} f(n\Delta T)e^{-j2\pi\mu n\Delta T}$$

Concluindo:

$$\tilde{F}(\mu) = \sum_{n=-\infty}^{\infty} f_n e^{-j2\pi\mu n\Delta T}$$

(35)

4.1 Exemplo de DFT

Transformada de Fourier:

$$F(0) = \sum_{x=0}^{3} f(x) = [f(0) + f(1) + f(2) + f(3)]$$
$$= 1 + 2 + 4 + 4 = 11$$

$$F(1) = \sum_{x=0}^{3} f(x) e^{-j2\pi(1)x/4}$$

$$= 1e^{0} + 2e^{-j\pi/2} + 4e^{-j\pi} + 4e^{-j3\pi/2} = -3 + 2i$$

Inversa da Transformada de Fourier:

$$f(0) = \frac{1}{4} \sum_{u=0}^{3} F(u) e^{j2\pi u(0)}$$

$$= \frac{1}{4} \sum_{u=0}^{3} F(u)$$

$$= \frac{1}{4} [11 - 3 + 2j - 1 - 3 - 2j]$$

$$= \frac{1}{4} [4] = 1$$

Inversa

gráfico da função original

Todos os pontos da

amostragem são usados

para calcular cada ponto de

sua Transformada e de sua

33

4.2 Gráfico de DFT

Função original

Transformada da função

5. Reconstrução de Imagens

Os pontos de uma transformada são obtidos através de interpolação entre todos os pontos da amostragem da função.

Uma baixa taxa de amostragem pode levar a conclusões errôneas

35

6. Amostragem

Transformada de Fourier

Alta taxa de amostragem

Taxa de amostragem crítica

Baixa taxa de amostragem

6. Amostragem

Extração de um período usando filtro ideal:

Alta taxa de amostragem

Baixa taxa de amostragem (Alias)

7. Aliasing

Erro de amostragem. Jaggies é o nome popular dos artefatos gerados por aliasing.

Em um sistema digital 96x48, imagens de mesma dimensão com quadrados:

16x16, 6x6, AxA e BxB em que A < 1 e B < 0.5.

8. Interpolação

Pontos amostrais

Interpolação Linear

Interpolação pelo vizinho mais próximo

Interpolação Polinomial

9. Padrões Moiré

Padrões criados por sobreposição de outros padrões na imagem

Imagens gerando padrão moiré

Padrão moiré em Imagem de jornal

10. Extensão para 2D

Em Processamento Digital de Imagens trabalhamos com 2 Dimensões. Precisamos, portanto, de novas definições.

Todas as definições que vimos até agora podem ser expandidas facilmente para o domínio 2D sem perca de generalidade.

A imagem em si é vista como uma função de período M x N (M é a largura e N é a altura da imagem)

10.1.1 CFT 2D

Transformada de Fourier Contínua 2D:

$$F(\mu,\nu) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t,z)e^{-j2\pi(\mu t + \nu z)}dtdz$$
 (37)

Inversa da Transformada de Fourier Contínua 2D:

$$f(t,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\mu,\nu) e^{j2\pi(\mu t + \nu z)} d\mu d\nu \tag{38}$$

10.1.2 Exemplo de CFT 2D

Transformada 2D da função quadrado ou filtro ideal:

$$F(\mu,\nu) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t,z) e^{-j2\pi(\mu t + \nu z)} dt dz$$

$$F(\mu,\nu) = \int_{-T/2}^{T/2} \int_{-Z/2}^{Z/2} A e^{-j2\pi(\mu t + \nu z)} dt dz$$

$$F(\mu,\nu) = ATZ \frac{\sin(\pi\mu T)}{(\pi\mu T)} \frac{\sin(\pi\nu Z)}{(\pi\nu Z)}$$

10.1.3 Gráfico de CFT 2D

桥

10.2 Impulso 2D

Impulso 2D Contínuo:

$$\delta(x,y) = \begin{cases} \infty & \text{se } x = y = 0. \\ 0 & \text{em c.c.} \end{cases}$$
 (39)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x, y) dx dy = 1 \tag{40}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x, y) f(x, y) dx dy = f(0, 0)$$
(41)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x - x_0, y - y_0) f(x, y) dx dy = f(x_0, y_0)$$
 (42)

Impulso 2D Discreto:

$$\delta(x,y) = \begin{cases} 1 & \text{se } x = y = 0. \\ 0 & \text{em c.c.} \end{cases}$$
 (43)

$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \delta(x, y) = 1 \tag{44}$$

$$\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} \delta(x,y) f(x,y) = f(0,0)$$

$$\tag{45}$$

$$\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \delta(x - x_0, y - y_0) f(x, y) = f(x_0, y_0)$$
 (46)

带

10.3 Trem de Impulsos 2D

$$s_{\Delta T \Delta Z}(x, y) = \sum_{m = -\infty}^{\infty} \sum_{n = -\infty}^{\infty} \delta(x - m\Delta T, y - n\Delta Z)$$
 (47)

10.4 Co

10.4 Convolução 2D

Convolução Discreta 1D:

$$f(x) \star h(x) = \sum_{m=0}^{M-1} f(m)h(x-m)$$
 (48)

Convolução Discreta 2D:

$$f(x,y) \star h(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$$
 (49)

Teorema da Convolução 2D:

$$f(x,y) \star h(x,y) \Leftrightarrow F(\mu,\nu)H(\mu,\nu)$$
 (50)

Se temos duas imagens f(x,y) e h(x,y) de dimensões A X B e C X D, então para reduzir o erro por convolução, precisamos preencher com zeros e redimensionar f e h para P X Q:

$$P \ge A + C - 1 \tag{51}$$

$$Q \ge B + D - 1 \tag{52}$$

$$f_p(x,y) = \begin{cases} f(x,y) & 0 \le x \le A - 1 \text{ e } 0 \le y \le B - 1. \\ 0 & A \le x \le P \text{ ou } B \le y \le Q \end{cases}$$

$$\begin{cases} h(x,y) & 0 < x < C - 1 \text{ e } 0 < y < D - 1. \end{cases}$$

$$h_p(x,y) = \begin{cases} h(x,y) & 0 \le x \le C - 1 \text{ e } 0 \le y \le D - 1. \\ 0 & C \le x \le P \text{ ou } D \le y \le Q \end{cases}$$

Para um imagem f(x,y) de dimensões M x N, em que M é a largura e N é a altura, as transformadas podem ser obtidas por:

Transformada de Fourier Discreta 2D:

$$F(\mu,\nu) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(\mu x/M + \nu y/N)}$$
(53)

Inversa da Transformada de Fourier Discreta 2D:

$$f(x,y) = \frac{1}{MN} \sum_{\mu=0}^{M-1} \sum_{\nu=0}^{N-1} F(\mu,\nu) e^{j2\pi(\mu x/M + \nu y/N)}$$
 (54)

Propriedades da Transformada de Fourier Discreta 2D

1. Relações Entre Intervalo Espacial e de Frequência

- Supondo f(t,z) uma função contínua de uma amostra de uma imagem f(x,y) de tamanho MxN
- ΔT e ΔZ é a distância entre as amostras

1. Relações Entre Intervalo Espacial e de Frequência

 A distância entre as amostras no domínio de frequência são inversamente proporcionais à distância espacial e o numero de amostras

$$\Delta u = \frac{1}{(M \Delta T)}$$

$$\Delta v = \frac{1}{(N \Delta Z)}$$

2. Translação e Rotação

Propriedades da Translação:

$$f(x,y)e^{j2\Pi(u_0x/M+v_0y/N)} \Leftrightarrow F(u-u_0,v-v_0)$$

$$f(x-x_0, y-y_0) \Leftrightarrow F(u, v) e^{-j2\Pi(x_0u/M+y_0v/N)}$$

Multiplicando f(x,y) pelo exponencial, teríamos uma deslocação da origem da TFD para (u0,v0).

Multiplicando F(u,v) pelo exponencial negativo, teríamos uma deslocação da origem da f(x,y) para (x0,y0).

2. Translação e Rotação

$$f(x-x_0, y-y_0) \Leftrightarrow ?$$

$$F(f(x-x_0,y-y_0)) = \sum_{(x=0)}^{(M-1)} \sum_{(y=0)}^{(N-1)} f(x-x_0,y-y_0) e^{-j2\Pi(xu/M+yv/N)}$$

Fazendo $a=x-x_0$ e $b=y-y_0$ $x=a+x_0$ e $y=b+y_0$

$$F(f(x-x_0,y-y_0)) = \sum_{(a=0)}^{(M-1)} \sum_{(b=0)}^{(N-1)} f(a,b) e^{-j2\Pi(ua/M+vb/N)} e^{-j2\Pi(ux_0/M+vy_0/N)}$$

$$f(x-x_0,y-y_0) \Leftrightarrow F(u,v)e^{-j2\Pi(x_0u/M+y_0v/N)}$$

2. Translação e Rotação

- A Translação não tem efeito na magnitude(espectro) de F(u,v)
- Usando coordenadas polares:

$$x = rcos\Theta$$
 $y=rsen\Theta$
 $u = wcos\phi$ $v=wsen\phi$

$$f(r,\Theta+\Theta_0) \Leftrightarrow F(w,\varphi+\Theta_0)$$

- Rotacionando f(x,y) em Θ, rotaciona F(u,v) no mesmo ângulo
- Rotacionando F(u,v) rotaciona f(x,y) no mesmo ângulo

 Como a Transformada de Fourier
 2D é sempre periódica na direção u e v:

$$F(u,v)=F(u+K_1M,v)=F(u,v+K_2N)=F(u+K_1M,v+K_2N)$$

$$f(x,y)=f(x+K_1M,y)=f(x,y+K_2N)=f(x+K_1M,y+K_2N)$$

Onde K1 e K2 são inteiros

桥

3. Periodicidade

Pela Transformada 1D:

 Vamos deslocar a origem para o ponto M/2, ou seja, u₀=M/2

$$f(x)e^{j2\Pi(u_0x/M)} \Leftrightarrow F(u-u_0)$$
$$e^{j\Pi x} = (-1)^x$$

 Agora F(0) está no centro do intervalo [0,M-1]

$$f(x)(-1)^x \Leftrightarrow F(u-M/2)$$

- Pela Transformada 2D:
- Vamos deslocar a origem para o ponto (M/2,N/2), ou seja, (u0,v0)=(M/2,N/2)

$$f(x,y)e^{j2\Pi(u_0x/M+v_0y/N)} \Leftrightarrow F(u-u_0,v-v_0)$$

$$e^{j\Pi(x+y)} = (-1)^{(x+y)}$$

$$f(x,y)(-1)^{(x+y)} \Leftrightarrow F(u-M/2,v-N/2)$$

 Agora F(0,0) está no centro do intervalo [0,M-1],[0,N-1]

No caso de 2D:

59

- Qualquer função real ou complexa, w(x,y), pode ser escrita como um somatório de uma parte Par e Ímpar (cada qual pode ser real ou complexa)
 - $-w(x,y) = w_p(x,y) + w_i(x,y)$

Onde:

$$w_p(x,y) \equiv \frac{(w(x,y)+w(-x,-y))}{2}$$
 $w_i(x,y) \equiv \frac{(w(x,y)-w(-x,-y))}{2}$

- Substituindo na formula vemos que:
 - $w_p(x,y) = w_p(-x,-y)$
 - $-w_i(x,y) = -w_i(-x,-y)$
- Funções Pares são chamadas
 Simétricas e funções Ímpares são chamadas Anti simétricas
- Todos os índices da TFD e da sua inversa são positivos(em relação ao ponto central da sequência)

- Para evitar os termos negativos:
 - wp(x,y) = wp(M-x,N-y)
 - wi(x,y) = -wi(M-x,N-y)
- · O produto de 2 funções pares é par.
- O produto de 2 funções ímpares é par.
- O produto de 1 função par e 1 ímpar é ímpar.
- Na adição o único meio de uma função ser ímpar é o resultado ser 0

$$\sum_{(x=0)}^{(M-1)} \sum_{(y=0)}^{(N-1)} w_p(x,y) w_i(x,y) = 0$$

Exemplo em 1D:

```
-f = \{ f(0) f(1) f(2) f(3) \} M=4

- = \{ 2 1 1 1 \}
```

- Condição para ser Par: f(x)=f(M-x), logo:
 - -f(0)=f(4), f(2)=f(2), f(1)=f(3), f(3)=f(1)
 - f(4) está fora da área examinada
 - Para os outros ponto é válida a condição, logo, f é Par

Exemplo em 1D:

$$-g = \{g(0)g(1)g(2)g(3)\}$$
 M=4
- = \{ 0 -1 0 1 \}

Condição para ser Ímpar:

```
g(x)=-g(M-x), logo:

-g(0)=-g(4), g(2)=-g(2)

-g(1)=-g(3), g(3)=-g(1)
```

- g(4) está fora da área examinada
- Para os outros ponto é válida a condição, logo, g é Ímpar

- Nas funções Ímpares o termo central é sempre
 0
- No caso de 2D:
 - A função é Ímpar
 - Ao adicionar um linha e coluna de zeros iremos ter um resultado nem Par nem Ímpar
 - Máscara de Sobel

- O Conjugado Simétrico de uma função <u>real</u>, f(x,y), será:
 - $-F^*(u,v)=F(-u,-v)$
- O Conjugado Anti Simétrico de uma função imaginária, f(x,y), será:
 - $-F^*(-u,-v) = -F(u,v)$

$$F^{*}(u,v) = \left[\sum_{(x=0)}^{(M-1)} \sum_{(y=0)}^{(N-1)} f(x,y) e^{-j2\Pi(ux/M+vy/N)}\right]^{*}$$

$$F^{*}(u,v) = \sum_{(x=0)}^{(M-1)} \sum_{(y=0)}^{(N-1)} f^{*}(x,y) e^{j2\Pi(ux/M+vy/N)}$$

$$F^{*}(u,v) = \sum_{(x=0)}^{(M-1)} \sum_{(y=0)}^{(N-1)} f(x,y) e^{-j2\Pi((-u)x/M + (-v)y/N)}$$

$$F^*(u,v)=F(-u,-v)$$

	Spatial Domain [†]		Frequency Domain [†]
1)	f(x, y) real	⇔	$F^*(u,v) = F(-u,-v)$
2)	f(x, y) imaginary	\Leftrightarrow	$F^*(-u,-v) = -F(u,v)$
3)	f(x, y) real	\Leftrightarrow	R(u, v) even; $I(u, v)$ odd
4)	f(x, y) imaginary	\Leftrightarrow	R(u, v) odd; $I(u, v)$ even
5)	f(-x, -y) real	\Leftrightarrow	$F^*(u, v)$ complex
6)	f(-x, -y) complex	\Leftrightarrow	F(-u, -v) complex
7)	$f^*(x, y)$ complex	\Leftrightarrow	$F^*(-u-v)$ complex
8)	f(x, y) real and even	\Leftrightarrow	F(u, v) real and even
9)	f(x, y) real and odd	\Leftrightarrow	F(u, v) imaginary and odd
10)	f(x, y) imaginary and even	\Leftrightarrow	F(u, v) imaginary and even
11)	f(x, y) imaginary and odd	\Leftrightarrow	F(u, v) real and odd
12)	f(x, y) complex and even	\Leftrightarrow	F(u, v) complex and even
13)	f(x, y) complex and odd	\Leftrightarrow	F(u, v) complex and odd

5. Exemplo das Propriedades:

Propert	f(x)		F(u)
3	{1 2 3 4}	\Leftrightarrow	$\{(10)(-2+2j)(-2)(-2-2j)\}$
4	j{1 2 3 4}	⇔	$\{(2.5j)(.55j)(5j)(55j)\}$
8	{2 1 1 1}	\Leftrightarrow	{(5) (1) (1) (1)}
8	$\{0 -1 \ 0 \ 1\}$	\Leftrightarrow	$\{(0)(2j)(0)(-2j)\}$
10	j{2 1 1 1}	\Leftrightarrow	$\{(5j)(j)(j)(j)\}$
11	$j\{0 -1 \ 0 \ 1\}$	\Leftrightarrow	$\{(0)(-2)(0)(2)\}$
12	$\{(4+4j)(3+2j)(0+2j)(3+2j)\}$	\Leftrightarrow	$\{(10 + 10j) (4 + 2j) (-2 + 2j) (4 + 2j)\}$
13	$\{(0+0j)(1+1j)(0+0j)(-1-j)\}$	\Leftrightarrow	$\{(0+0j)(2-2j)(0+0j)(-2+2j)\}$

- Na propriedade 3:
 - Parte real: {10 -2 -2 -2} par
 - Parte imaginária: { 0 2 0 -2} ímpar

桥

5. Exemplo das Propriedades:

Propriedade 6:

$$\Im\{f(-x,-y)\} = \sum_{(x=0)}^{(M-1)} \sum_{(y=0)}^{(N-1)} f(-x,-y)e^{-j2\Pi(ux/M+vy/N)}$$

- Por causa de Periodicidade:
 - f(-x, -y) = f(M-x, N-y)
 - Fazendo: m=M-x e n=N-y

$$\Im\{f(-x,-y)\} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-j2\Pi(u(M-m)/M+v(N-n)/N)}$$

$$\Im\{f(-x,-y)\} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-j2\Pi(u(M)/M+v(N)/N)} * e^{-j2\Pi(u(-m)/M+v(-n)/N)}$$

$$e^{j\Pi*(-2(u(M)/M+v(N)/N))} = (-1)^{-2(u+v)} = 1$$

5. Exemplo das Propriedades:

$$\Im(f(-x,-y)) = \sum_{(m=0)}^{(M-1)} \sum_{(n=0)}^{(N-1)} f(m,n) e^{j2\Pi(um/M+vn/N)}$$

$$\Im(f(-x,-y))=F(-u,-v)$$

6. Espectro de Fourier e Ângulo de Fase

 Como a Transformada de Fourier é Complexa em geral, nós podemos expressar ela na forma polar:

$$F(u,v)=|F(u,v)|e^{j\phi(u,v)}$$

Onde a Magnitude é:

$$|F(u,v)| = (R^2(u,v) + I^2(u,v))^{1/2}$$

• A Magnitude é também chamada de de Espectro de Fourier ou Espectro da Frequência

O Ângulo Fase é:

$$\phi(u,v) = \arctan \left[\frac{I(u,v)}{R(u,v)} \right]$$

• O arctan tem que ser computado nos quatro quadrantes para obtermos ângulos entre $[-\pi,\pi]$

• Ex: $atan(1/1)=45^{\circ}$, $atan(-1/-1)=45^{\circ}$, porém atan2(-1,-1)=135°

$$\operatorname{atan2}(y,x) = \begin{cases} \varphi \cdot \operatorname{sgn}(y) & x > 0\\ \frac{\pi}{2} \cdot \operatorname{sgn}(y) & x = 0\\ (\pi - \varphi) \cdot \operatorname{sgn}(y) & x < 0 \end{cases}$$

$$\operatorname{atan2}(0, x) = \begin{cases} 0 & x > 0 \\ \operatorname{undefined} & x = 0 \\ \pi & x < 0 \end{cases}$$

 Por ultimo a Intensidade do Espectro:

$$P(u,v)=|F(u,v)|^2=R^2(u,v)+I^2(u,v)$$

 A transformada de uma função real é o conjugado simétrico. Isso é, o Espectro é simétricamente par em relação a origem

$$|F(u,v)| = |F(-u,-v)|$$

 Ângulo Fase é simetricamente ímpar em relação a origem:

$$\phi(u,v) = -\phi(-u,-v)$$

Sabendo que:

$$F(0,0) = \sum_{(x=0)}^{(M-1)} \sum_{(y=0)}^{(N-1)} f(x,y)$$

$$e^{-j2\Pi(ux/M+vy/N)} = e^{-j2\Pi(0x/M+0y/N)} = e^{-j2\Pi(0)} = 1$$

Fazendo pela média de f(x,y):

$$F(0,0) = MN \frac{1}{MN} \sum_{(x=0)}^{(M-1)} \sum_{(y=0)}^{(N-1)} f(x,y)$$
$$F(0,0) = MN \overline{f}(x,y)$$

$$|F(0,0)| = MN |\overline{f}(x,y)|$$

- F(0,0) é chamado de Componente DC da transformada
- DC significa direct current

Espectro de uma imagem:

 Para centralizar o espectro basta multiplicar a imagem por:

 Para aumentar os detalhes da imagem, vamos aplicar a Transformação log:

$$(1+\log|F(u,v)|)$$

- O Espectro é insensível a Translações na imagem
- Se a imagem for Rotacionada em um dado ângulo, o Espectro será rotacionado no mesmo angulo

Arrays dos Ângulos Fase:

Imagem original

Imagem transladada

Imagem rotacionada

- Os componentes do Espectro da transformada determinam as amplitudes da senóides que combinam para formar a imagem
- Uma pequena amplitude implica numa baixa senóide presente na imagem
- Uma a grande amplitude implica num destaque na senóide de frequência na imagem

- Imagem normal
- Ângulo Fase da imagem
- Usando somente o ângulo fase na inversa da fórmula:

$$F(u,v)=|F(u,v)|e^{j\phi(u,v)}\Rightarrow e^{j\phi(u,v)}$$

$$F(u,v)=|F(u,v)|e^{j\phi(u,v)}\Rightarrow |F(u,v)|$$

- Usando somente o Espectro na inversa da fórmula:
- Usando o Espectro do retângulo e o Ângulo Fase da mulher na inversa da fórmula
- Usando o Espectro da mulher e o Ângulo Fase do retângulo na inversa da fórmula

7. Sumário das Propriedades da Transforma Discreta 2D de Fourier

Name	Expression(s)	
1) Discrete Fourier transform (DFT) of $f(x, y)$	$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$	
2) Inverse discrete Fourier transform (IDFT) of $F(u, v)$	$f(x, y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j2\pi(ux/M + vy/N)}$	
3) Polar representation	$F(u, v) = F(u, v) e^{i\phi(u,v)}$	
4) Spectrum	$ F(u, v) = [R^2(u, v) + I^2(u, v)]^{1/2}$ R = Real(F); I = Imag(F)	
5) Phase angle	$\phi(u, v) = \tan^{-1} \left[\frac{I(u, v)}{R(u, v)} \right]$	
6) Power spectrum	$P(u,v) = F(u,v) ^2$	Ì
7) Average value	$\overline{f}(x, y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) = \frac{1}{MN} F(0, 0)$	

7. Sumário das Propriedades da Transforma Discreta 2D de Fourier

Name	Expression(s)
8) Periodicity (k ₁ and k ₂ are integers)	$F(u, v) = F(u + k_1 M, v) = F(u, v + k_2 N)$ = $F(u + k_1 M, v + k_2 N)$
	$f(x, y) = f(x + k_1 M, y) = f(x, y + k_2 N)$ = $f(x + k_1 M, y + k_2 N)$
9) Convolution	$f(x, y) \star h(x, y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) h(x - m, y - n)$
10) Correlation	$f(x, y) \approx h(x, y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^{\circ}(m, n) h(x + m, y + n)$
11) Separability	The 2-D DFT can be computed by computing 1-D DFT transforms along the rows (columns) of the image, followed by 1-D transforms along the columns (rows) of the result. See Section 4.11.1.
12) Obtaining the inverse Fourier transform using a forward transform algorithm.	$MNf^*(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u, v) e^{-j2\pi(ux/M + vy/N)}$ This equation indicates that inputting $F^*(u, v)$ into an algorithm that computes the forward transform (right side of above equation) yields $MNf^*(x, y)$. Taking the complex conjugate and dividing by MN gives the desired inverse. See Section 4.11.2.

7. Sumário das Propriedades da Transforma Discreta 2D de Fourier

Name	DFT Pairs
Symmetry properties	Ver Tabela da Propriedades de Simetria
2) Linearity	$af_1(x, y) + bf_2(x, y) \Leftrightarrow aF_1(u, v) + bF_2(u, v)$
3) Translation (general)	$f(x, y)e^{j2\pi(u_0x/M+v_0y/N)} \Leftrightarrow F(u - u_0, v - v_0)$ $f(x - x_0, y - y_0) \Leftrightarrow F(u, v)e^{-j2\pi(ux_0/M+vy_0/N)}$
4) Translation to center of the frequency rectangle, (M/2, N/2)	$f(x, y)(-1)^{x+y} \Leftrightarrow F(u - M/2, v - N/2)$ $f(x - M/2, y - N/2) \Leftrightarrow F(u, v)(-1)^{u+v}$
i) Rotation	$f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0)$ $x = r \cos \theta y = r \sin \theta u = \omega \cos \varphi v = \omega \sin \varphi$
6) Convolution theorem [†]	$f(x, y) \star h(x, y) \Leftrightarrow F(u, v)H(u, v)$ $f(x, y)h(x, y) \Leftrightarrow F(u, v) \star H(u, v)$

7. Sumário das Propriedades da Transforma Discreta 2D de Fourier

	Name	DFT Pairs
7)	Correlation theorem [†]	$f(x, y) \stackrel{\wedge}{\simeq} h(x, y) \Leftrightarrow F^{*}(u, v) H(u, v)$ $f^{\circ}(x, y) h(x, y) \Leftrightarrow F(u, v) \stackrel{\wedge}{\simeq} H(u, v)$
8)	Discrete unit impulse	$\delta(x, y) \Leftrightarrow 1$
9)	Rectangle	$rect[a, b] \Leftrightarrow ab \frac{\sin(\pi ua)}{(\pi ua)} \frac{\sin(\pi vb)}{(\pi vb)} e^{-j\pi(ua+vb)}$
10)	Sine	$\sin(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$
		$j\frac{1}{2}\Big[\delta(u+Mu_0,v+Nv_0)-\delta(u-Mu_0,v-Nv_0)\Big]$
11)	Cosine	$\cos(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$
		$\frac{1}{2} \left[\delta(u + Mu_0, v + Nv_0) + \delta(u - Mu_0, v - Nv_0) \right]$
dend	oted as before by t	transform pairs are derivable only for continuous variables, and z for spatial variables and by μ and ν for frequency can be used for DFT work by sampling the continuous forms.
	Differentiation (The expressions	$\left(\frac{\partial}{\partial t}\right)^m \left(\frac{\partial}{\partial z}\right)^n f(t,z) \Longleftrightarrow (j2\pi\mu)^m (j2\pi\nu)^n F(\mu,\nu)$
	on the right assume that $f(\pm \infty, \pm \infty) = 0$	$\frac{\partial^m f(t,z)}{\partial t^m} \Leftrightarrow (j2\pi\mu)^m F(\mu,\nu); \frac{\partial^n f(t,z)}{\partial z^n} \Leftrightarrow (j2\pi\nu)^n F(\mu,\nu)$
12)	Gaussian	$A2\pi\sigma^2 e^{-2\pi^2\sigma^2(r^2+z^2)} \Leftrightarrow Ae^{-(\mu^2+\nu^2)/2\sigma^2}$ (A is a constant)

Referências Bibliográficas

- Weaver, Joseph Applications of Discrete and Continuous Fourier Analysis - 1983
- Osgood, Brad Lectures Notes for the Fourier Transforms and Applications
- Sodré, Ulysses Transformadas de Fourier 2003
- Gonzalez, Rafael & Woods, Richards Digital Image Processing - 2008
- Wikipédia

Próxima aula

- · Bases da filtragem no domínio da frequência
- Suzavização de imagens empregando filtro de domínio da frequência
- Realce de imagens empregando filtro de domínio da frequência
- Filtragem seletiva
- Detalhes de implementação