8) APPLICAZIONI DELLA TEORIA DEL CONSUMATORE: SCELTE INTERTEMPORALI

8.1) Se
$$K_t = 12000 \text{ e } i = 0.05$$
 $\Rightarrow M_{t+1} = 12000 \cdot (1 + 0.05) = 12600$
Se $M_{t+1} = 100 \text{ e } i = 0.1$ $\Rightarrow K_t = \frac{100}{1+0.1} = 90.91$
Se $M_{t+1} = 100 \text{ e } i = 0.05$ $\Rightarrow K_t = \frac{100}{1+0.05} = 95.24$

8.2) c)
$$M = 1000 \cdot (1 + 0.05)^6 = 1340$$

8.3) Se
$$p_1=1$$
 e $\gamma=0.025$ $\rightarrow p_2=p_1\cdot(1+\gamma)=1\cdot(1+0.025)=1.025$ Se $i=0.066$ $\rightarrow r=\frac{1+i}{1+\gamma}-1=\frac{1+0.066}{1+0.025}-1=0.04=4\%$ Con il calcolo approssimativo si ottiene $r=i-\gamma=0.066-0.025=0.041=4.1\%$

8.4) Se
$$K_t = 2000$$
 e $M_{t+1} = 2150$ $\Rightarrow i = \frac{M_{t+1}}{K_t} - 1 = \frac{2150}{2000} - 1 = 0,075 = 7,5\%$
Se $\gamma = 0,05$ $\Rightarrow r = \frac{1+i}{1+\gamma} - 1 = \frac{1+0,075}{1+0,05} - 1 = 0,024 = 2,4\%$

8.5) c)
$$i = \left[\left(\frac{15000}{12000} \right)^{\frac{1}{3}} - 1 \right] = 0,0772 = 7,72\%$$

8.6) c)
$$r = \frac{1+i}{1+\gamma} - 1 = \frac{1+0,075}{1+0,025} - 1 = 0,0488 = 4,88\%$$

$$1000 \cdot (1+0.05)^{10} + 1000 \cdot (1+0.05)^{9} + 1000 \cdot (1+0.05)^{8} + 1000 \cdot (1+0.05)^{7} + 1000 \cdot (1+0.05)^{6} + 1000 \cdot (1+0.05)^{5} + 1000 \cdot (1+0.05)^{4} + 1000 \cdot (1+0.05)^{3} + 1000 \cdot (1+0.05)^{2} + 1000 \cdot (1+0.05) = 13206.79$$

<u>Valore investimento B</u>:

$$2000 \cdot (1+0.05)^5 + 2000 \cdot (1+0.05)^4 + 2000 \cdot (1+0.05)^3 + 2000 \cdot (1+0.05)^2 + 2000 \cdot (1+0.05)^3 + 200$$

- 8.8) a) Il vincolo di bilancio intertemporale (attualizzato) è $\frac{55}{1,1} + 190 = \frac{c_2}{1,1} + c_1$ che, riscritto esplicitando c_2 , diventa $c_2 = 55 + 190(1,1) c_1(1,1)$
 - b) $SMSI = -\frac{2c_2}{c_1}$
 - c) $(c_1^*, c_2^*) = (160, 88)$

Livello di risparmio nel primo periodo: $s_1 = R_1 - c_1 = 190 - 160 = 30$ Quindi nel secondo periodo il consumatore potrà spendere $R_2 + s_1(1+i) = 55 + 33 = 88$

- 8.9) a) $(c_1^*, c_2^*) = (83.3, 87.5)$ Livello di risparmio nel primo periodo: $s_1 = R_1 - c_1 = 100 - 83.3 = 16.7$ Quindi nel secondo periodo il consumatore potrà spendere: $R_2 + s_1(1+i) = 70 + 16.7 \cdot (1.05) = 87.5$
 - b) $(c_1^*, c_2^*) = (81.8, 90)$
 - c) L'aumento del tasso di interesse da 5% a 10% provoca un aumento del risparmio da 16,7 a (100 -81,8) = 18,2.
- 8.10) a) $(c_1^*, c_2^*) = (50, 120)$ Il consumatore è un risparmiatore nel primo periodo $(s_1 = 50)$. Quindi nel secondo periodo il consumatore potrà spendere $R_2 + s_1(1+i) = 60 + 60 = 120$
 - b) $(c_1^*, c_2^*) = (51.5, 113.3)$ Il risparmio diminuisce da 50 a 48.5.
 - c) $c_1^* = 33,33 + \frac{20}{(1+i)}$; $c_2^* = 66,66 \cdot (1+i) + 40$

Dalle due funzioni si nota che il consumo corrente (c_1) è funzione decrescente del tasso di interesse: se aumenta (diminuisce) il tasso di interesse, il consumo corrente diminuisce (aumenta). Al contrario, il consumo futuro (c_2) è funzione crescente del tasso di interesse: se aumenta (diminuisce) il tasso di interesse, il consumo futuro aumenta (diminuisce).

- 8.11) b)
- 8.12) a) Vincolo di bilancio intertemporale proposta X: $c_2 = 226400 1,04 \cdot c_1$

L'intercetta sull'asse x corrisponde al $VAR = 160\ 000 + \frac{60\ 000}{1,04} = 217\ 692,31$. L'intercetta sull'asse y corrisponde al $VCR = (1,04*160\ 000) + 60\ 000 = 226\ 400$.

Il punto dei redditi è un paniere il cui consumo non prevede trasferimenti intertemporali della ricchezza. In corrispondenza di tale paniere, il consumo nell'anno 1 è uguale al reddito a disposizione nell'anno 1 e il consumo nell'anno 2 è uguale al reddito a disposizione nell'anno 2. Quindi, tutti i panieri che si trovano a destra del punto dei redditi sono panieri in cui il consumo nell'anno 1 è maggiore del reddito a disposizione nell'anno 1 e sono quindi panieri che per venir consumati richiedono indebitamento. Viceversa vale per i panieri a sinistra del punto dei redditi.

b) Vincolo di bilancio intertemporale proposta Y: $c_2 = 225\,400 - 1,04 \cdot c_1$

L'offerta da parte dell'impresa X è più vantaggiosa dell'offerta da parte dell'impresa Y: la regione ammissibile nel primo caso è maggiore rispetto a quella del secondo caso. Piermauro quindi sceglierà la proposta dell'impresa X.

- c) $(c_1^*, c_2^*) = (145\ 128,21, 75\ 466,67)$
- 8.13) Se i = 4,99%, il consumatore né risparmia né prende a prestito, mentre se i > 4,99% il consumatore risparmia.
- 8.14) d)
- 8.15) i = 10.5%
- 8.16) Il consumatore deve risparmiare $s_1 = 200$.
- 8.17) Poiché il SMSI è costante, il consumo nel periodo 1 e il consumo nel periodo 2 sono perfetti sostituti. Poiché |SMSI| < |1+i|, il consumatore posticiperà tutto il consumo al secondo periodo. Pertanto Il suo piano di consumo ottimo sarà $(c_1^*, c_2^*) = (0, 230)$.
- 8.18) Se nel periodo corrente Fiorella risparmia, cioè se $c_1 < R_1 = 1000$, il vincolo di bilancio è $c_2 = 1550 1,05c_1$. Se nel periodo corrente Fiorella prende a prestito, cioè se $c_1 > R_1 = 1000$, il vincolo di bilancio è $c_2 = 1600 1,1c_1$. Il vincolo di bilancio intertemporale è quindi una spezzata con angolo nel punto dei redditi (1000, 500). $\{c_2 = 1550 1,05c_1 \quad se \quad c_1 \leq 1000 \\ \{c_2 = 1600 1,1c_1 \quad se \quad c_1 \geq 1000 \}$

Occorre verificare se vi siano soluzioni valide su ciascuno dei due vincoli.

$$\begin{cases} -\frac{c_2}{c_1} = -1,05 \\ c_2 = 1550 - 1,05c_1 \end{cases} \rightarrow \begin{cases} c_1^* = 738,1 \\ c_2^* = 775 \end{cases}$$

Questa è una soluzione valida. In questo caso, il risparmio nel periodo corrente ammonta a $s_1 = 261,9$

$$\begin{cases} -\frac{c_2}{c_1} = -1.1 \\ c_2 = 1600 - 1.1c_1 \end{cases} \rightarrow \begin{cases} c_1^* = 727.27 \\ c_2^* = 800 \end{cases}$$

Questa non è una soluzione valida (si trova nell'intervallo in cui questa parte del vincolo non è definita), poiché si trova all'esterno della regione ammissibile ed è quindi un paniere non ottenibile.

La scelta ottima di consumo e risparmio di Fiorella è quindi $c_1^*=738,1$; $c_2^*=775$; $s_1^*=261,9$.

- 8.19) a)
- 8.20) c)
- 8.21) $(c_1^*, c_2^*) = (117, 3, 129)$