TECHNICAL INFORMATION

TABLE OF CONTENTS

1. DESIGNATION OF OPTICAL GLASS TYPES	1
2. OPTICAL PROPERTIES 2.1 Refractive Index 2.2 Dispersion 2.3 Dispersion Formula 2.4 Effect of Temperature on Refractive Index (dn/dt) 2.5 Refractive Indices in UV and IR Ranges 2.6 Internal Transmittance (τ)	1 2 3 5
3. THERMAL PROPERTIES 3.1 Strain Point (StP) 3.2 Annealing Point (AP) 3.3 Softening Point (SP) 3.4 Transformation Temperature (Tg) and Yield Point (At) 3.5 Linear Coefficient of Thermal Expansion (α) 3.6 Thermal Conductivity (k)	5 5 5 6
4. CHEMICAL PROPERTIES 4.1 Water and Acid Resistance 4.2 Surface Test and Weathering Resistance 4.3 ISO Test Method 4.3.1. Acid Resistance (SR) 4.3.2. Phosphate Resistance (PR)	7 7 8 8
5. MECHANICAL PROPERTIES 5.1 Modulus of Elasticity 5.2 Knoop Hardness (Hk) 5.3 Abrasion (Aa) 5.4 Photoelastic Constant (β)	10 10 11.
6. OTHER PROPERTIES 6.1 Bubbles 6.2 Coloring 6.3 Specific Gravity (d)	. 11 . 12
7. GUARANTEES OF QUALITY 7.1 Refractive Index and Abbe-number 7.2 Homogeneity 7.3 Stress Birefringence 7.4 Striae 7.5 Bubbles 7.6 Coloring 7.7 Others	12 . 13 . 14 . 14 . 15
8. FORMS OF SUPPLY 8.1 Raw Glass 8.1.1. Strip Glass 8.1.2. Slab Glass 8.2 Pressings (Reheat Pressings (RP)) 8.3 Cut Blanks 8.4 Saw cut Centerless Ground Cylindrical Blanks 8.5 Moldings 8.6 High Homogeneity Glass 8.7 Fine Gob (FG)	. 15 15 15 . 16 . 16 . 16
9. TABLE OF RECOMMENDED GLASSES	17

1. DESIGNATION OF OPTICAL GLASS TYPES

In the course of Ohara's long history, many types of optical glasses have been developed. In this catalog, you will find 112 glasses which we have selected as our "recommended glass types". Each optical glass has its own properties which are closely connected with the key chemical element contained.

With this in mind, we have developed a new glass type designation system and the new names are used in this catalog.

On the $n_d - \nu_d$ diagram located in the rear of this catalog, you will see we have divided our glasses into groups. For each glass type, we have selected one or two chemical elements contained which are considered the most important and have used the atomic symbols of these for the first two letters of the glass type designation. The third letter of the glass type designation refers to the refractive index of each glass type within its glass group: H, M or L for high, middle, or low. Lastly we assign a one or two digit number to each glass type within a given glass family. Thus each glass type is represented by the above-mentioned three letters plus a one or two digit number.

We are also adding the prefix "S-" to indicate which of the glass types are ECO optical glasses and are environmentally "Safe". These glass types do not contain any lead or arsenic. All of 112 recommended glasses are ECO optical glasses and contain the pre-fix "S-".

For example, the glass type designation for S-BSL 7 is composed as follows:

S-stands for environmentally Safe

B represents Boron, one of the key compositional elements

S represents Silicon, one of the key compositional elements

L indicates a Low index within the BS glass group

7 indicates this is the 7th glass within this glass family

Along with Ohara's glass type designation, the technical data sheets will show the six-digit code for each glass type. In the six-digit code the first three digits represent the refractive index at the helium line (n_d) and the last three digits represent the Abbe number (ν_d) . These six-digit codes are internationally recognized within the optical community.

2. OPTICAL PROPERTIES

2.1 Refractive Index

The refractive indices listed in this catalog were determined to the fifth decimal place for the following 20 lines of the spectrum. The refractive indices for d-line (587.56 nm) and e-line (546.07 nm) were determined to the sixth decimal place.

(Table 1)

Spectral Line Symbol					t	s	A	r	С	C'
Light Source	Hg	Hg	Hg	Hg	Hg	Cs	K	He	н	Cd
Wavelength (nm)	2325.42	1970.09	1529.58	1128.64	1013.98	852.11	768.19	706.52	656.27	643.85

Spectral Line Symbol	He-Ne	D	d	е	F	F´	He-Cd	g	h	i
Light Source	Laser	Na	He	Hg	н	Cd	Laser	Hg	Hg	Hg
Wavelength (nm)	632.8	589.29	587.56	546.07	486.13	479.99	441.57	435.835	404.656	365.015

On the catalog pages, the wavelengths of each line are given in μm units in parentheses under each spectrum line symbol.

2.2 Dispersion

We have indicated $n_{\rm F}-n_{\rm C}$ and $n_{\rm F'}-n_{\rm C'}$ as the main dispersion. Abbe numbers were determined from the following $\nu_{\rm d}$ and $\nu_{\rm e}$ formula and calculated to the second decimal place:

$$u_{d} = \frac{n_{d} - 1}{n_{F} - n_{C}}$$
 $u_{e} = \frac{n_{e} - 1}{n_{F'} - n_{C'}}$

We have also listed 12 partial dispersions $(n_x - n_y)$, 8 relative partial dispersions for the main dispersion $n_F - n_C$ and 4 for $n_{F'} - n_{C'}$.

To make achromatization effective for more than two wavelengths, glasses which have favorable relationships between ν_d and the relative partial dispersion $\theta_{x,y}$ for the wavelengths x and y are required. These may be defined as follows:

$$\theta_{x,y} = \frac{n_x - n_y}{n_F - n_C}$$

For lens design purposes, we have listed figures of main dispersion to the 6th decimal and Abbe number to the 2nd decimal place. As in the past, the main dispersion value to the 5th decimal place and Abbe number value to the 1st decimal place are also presented.

Glass types can be plotted in a graph of $\theta_{x,y}$.vs. ν_d . Normal glass types tend to lie along a straight line between the two points which would be plotted for the two glass types 511605 — NSL7 and 620363 — PBM2. The distance that each glass type lies away from this normal line is called $\Delta\theta_{x,y}$. We give, in our catalog for each glass type, the values for the following five relationships.

$$\begin{array}{lll} \varDelta\theta \text{ C,t} & \varDelta\theta \text{ g,F} \\ \varDelta\theta \text{ C,A'} & \varDelta\theta \text{ i,g} \\ \varDelta\theta \text{ g,d} & \end{array}$$

To show this $\Delta\theta$ relationship, we have included the graph for θ _{x,y} and ν_d .

As a typical way to visualize the relationship between $\theta_{x,y}$ and ν_d for each glass type,the graph for $\theta_{g,F}$ - ν_d is displayed in this catalog.

NSL7 and PBM2 are not among the 112 recommended glass types shown in this catalog. Considering that standard practice for showing anomalous dispersion has used these two glass types, we have decided to keep using these 2 glass types as our normal glass points.

(Table 2)

	$ heta_{\mathrm{C,t}}$	$ heta$ C,A $^{\prime}$	heta g,d	heta g,F	$ heta_{ ext{i,g}}$	$ u_{ m d}$
NSL 7	0.8305	0.3492	1.2391	0.5436	1.2185	60.49
PBM 2	0.7168	0.3198	1.2894	0.5828	1.4214	36.26

2.3 Dispersion Formula

The refractive indices for wavelengths other than those listed in this catalog can be computed from a dispersion formula. As a practical dispersion formula, we have adopted the use of the Sellmeier formula shown below.

$$n^{2}-1 = \frac{A_{1}\lambda^{2}}{\lambda^{2}-B_{1}} + \frac{A_{2}\lambda^{2}}{\lambda^{2}-B_{2}} + \frac{A_{3}\lambda^{2}}{\lambda^{2}-B_{3}}$$

The constants A_1 , A_2 , A_3 , B_1 , B_2 , B_3 were computed by the method of least squares on the basis of refractive indices at standard wavelengths which were measured accurately from several melt samples.

By using this formula, refractive indices for any wavelength between 365 and 2325nm can be calculated to have an accuracy of around \pm 5 x 10⁻⁶. These constants A₁, A₂, A₃, B₁, B₂, B₃ are

listed on the left side of the individual catalog pages. However in some glass types, not all refractive indices in the standard spectral range are listed on the data sheet.

In such cases, the applicable scope of this dispersion formula is limited to the scope where refractive indices are given.

When calculating a respective refractive index, please bear in mind that each wavelength is expressed in μm units.

2.4 Effect of Temperature on Refractive Index (dn/dt)

Refractive index is affected by changes in glass temperature (see Fig. 1). This can be ascertained through the temperature coefficient of refractive index. The temperature coefficient of refractive index is defined as dn/dt from the curve showing the relationship between glass temperature and refractive index. The temperature coefficient of refractive index (for light of a given wavelength) changes with wavelength and temperature (see Fig. 2, 3). Therefore, the Abbe number also changes with temperature (see Fig. 4).

There are two ways of showing the temperature coefficient of refractive index. One is the absolute coefficient (dn/dt absolute) measured under vacuum and the other is the relative coefficient (dn/dt relative) measured at ambient air (101.3 kPa {760 torr} dry air). In this catalog figures of the relative coefficients are listed.

The temperature coefficients of refractive index dn/dt were determined by measuring the refractive index from -40°C to $+80^{\circ}\text{C}$ at wavelengths of 1,013.98nm (t), 643.85nm (C'), 632.8nm (He-Ne laser), 589.29nm (D), 546.07nm (e), 479.99nm (F') and 435.835nm (g). These measurements are shown in the temperature range from -40°C to $+80^{\circ}\text{C}$ in 20°C intervals, and are listed in the lower part of each catalog page.

The absolute temperature coefficient of refractive index (dn/dt absolute) can be calculated by the following formula:

$$\frac{dn}{dt} \text{ absolute} = \frac{dn}{dt} \text{ relative } + n \cdot \frac{dn_{air}}{dt}$$

dn air/dt is the temperature coefficient of refractive index of air listed in Table 3.

(Table 3)

Temperature	dn _{air} /dt (10 ⁻⁶ /°C)									
Range(°C)	t	C'	He-Ne	D	е	F'	g			
−40 ~ −20	- 1.34	- 1.35	- 1.36	- 1.36	- 1.36	- 1.37	- 1.38			
-20 ~ 0	- 1.15	- 1.16	- 1.16	- 1.16	- 1.16	- 1.17	- 1.17			
0 ~ +20	- 0.99	- 1.00	- 1.00	- 1.00	- 1.00	- 1.01	- 1.01			
+20 ~ +40	- 0.86	- 0.87	- 0.87	- 0.87	- 0.87	- 0.88	- 0.88			
+40 ~ +60	- 0.76	- 0.77	- 0.77	- 0.77	- 0.77	- 0.77	- 0.78			
+60 ~ +80	- 0.67	- 0.68	- 0.68	- 0.68	- 0.68	- 0.69	- 0.69			

Fig. 1 Change of refractive index (He) as a function of temperature.

Fig. 2
Temperature coefficient of refractive index(dn/dt relative) as a function of wavelength (temperature range 20°C to 40°C).

Fig. 3 Change of the temperature coefficient of refractive index (dn/dt $_{\rm relative}$)in the temperature range from $-40\,^{\circ}\text{C}$ to $+80\,^{\circ}\text{C}$.

Fig. 4 Change of Abbe number($\nu_{\rm e}$) in the temperature range from –40°C to +80°C.

2.5 The refractive indices in Ultraviolet and the Infrared Range.

The refractive indices in the ultraviolet and the infrared can be measured down to 237.833 nm in the ultraviolet and up to 2,325.42 nm in the infrared.

2.6 Internal Transmittance (τ)

Most types of Ohara optical glass are transparent and colorless because they are made of very pure materials. However, some optical glasses show remarkable absorption of light near the ultraviolet spectral range. For certain glasses with extreme optical properties, such as high refractive index, absorption extends to the visible range. This not only depends on the chemical composition, but also on unavoidable impurities. In this catalog the internal transmittance is given - i.e., reflection losses are eliminated. Glass varies slightly from melt to melt and, therefore, listed are typical values of internal transmittance obtained on 10 mm thick samples chosen from many melts, measured from 280 nm to 2400 nm.

3. THERMAL PROPERTIES

Thermal properties are essential to processing optical glass for annealing, heat treatment and coating. We have listed the strain point, annealing point, softening point, transformation point, yield point and thermal conductivity. The linear coefficient of thermal expansion is given for two temperature ranges.

3.1 Strain Point (StP)

The strain point corresponds to the lowest temperature in the annealing range at which viscous flow of glass will not occur. Viscosity of the glass is $10^{14.5}$ dPa ·s { poise } at this temperature.

The strain point is measured by the Fiber Elongation Method prescribed in JIS-R3103 and ASTM-C336.

3.2 Annealing Point (AP)

The annealing point corresponds to the maximum temperature in the annealing range at which the internal strain of glass will be substantially eliminated. Viscosity of the glass is 10^{13} dPa \cdot s { poise } at this temperature. The annealing point is measured by the Fiber Elongation Method prescribed in ASTM-C336.

3.3 Softening Point (SP)

The softening point is the temperature at which glass deforms under its own weight. Viscosity of the glass is 10^{7.65} dPa· s { poise } at this temperature. The softening point is measured by the Fiber Elongation Method prescribed in JIS-R3104 and ASTM-C338.

3.4 Transformation Temperature (Tg) and Yield Point (At)

The transformation region is that temperature range in which a glass gradually transforms from its solid state into a "plastic" state. This region of transformation is defined as the transformation temperature (Tg).

The transformation temperature can be determined from the thermal expansion curve (Fig. 5). Viscosity coefficient at this temperature is approximately 10¹³ poise.

Yield point (At) is the deformation point temperature on the thermal expansion curve, or the point at which elongation becomes zero.

Fig. 5 Thermal Expansion Curve

3.5 Linear Coefficient of Thermal Expansion (α)

The thermal expansion curve is obtained by measuring a well-annealed glass sample of 4 mm diameter by 50 mm long heated at a rate of 2°C/min in the low temperature range and at a rate of 4°C/min in the high temperature range. From the temperature and elongation of the sample glass, the mean linear coefficient of thermal expansion between -30°C to + 70°C and + 100°C to + 300°C respectively up to 10^{-7} cm/cm°C is determined and is given in the catalog.

3.6 Thermal Conductivity (k)

The thermal conductivity of most optical glasses at room temperature is located between 1.126W/(m•K) which is that of S-BSL 7 and 0.546W/(m•K) which is that of PBH71.

The thermal conductivity is measured in accordance with methods prescribed in JIS-R2618. The thermal conductivity of glass at a temperature of 35° C is listed in the catalog. Accuracy is $\pm 5^{\circ}$.

4. CHEMICAL PROPERTIES

There are some glasses that lack durability. Due to the chemical behavior of the constituents utilized in the composition.

These glasses are influenced by water vapor, acid, gasses, etc., as well as ions in the polishing slurry. Consequently, dimming and staining will occur on the surfaces of these glasses during processing and storage.

Since such phenomena have to do with surface conditions and environment, no single test can be accepted as a criterion of durability under all conditions.

We listed resistance to water and acid by the powder test method and resistance to weather by the surface test method. We have also listed resistance to acid and phosphate, following the test method of ISO8424 and 9689.

4.1 Water Resistance [RW(p)] and Acid Resistance [RA(p)] (Powder Method)

The glass to be tested is crushed to $425\mu m \sim 600\mu m$ grains. A sample of this powder equivalent to the specific gravity in grams is placed on a platinum basket. This is put in a flask of silica glass containing the reagent and boiled for 60 minutes. The sample is then carefully dried and re-weighed to determine the loss of weight (percent) and classified as per Tables 4 and 5.

The reagent used for the water resistance test is distilled water (pH $6.5 \sim 7.5$). 1/100N nitric acid is used for the acid resistance test.

(Table 4) Water Resistance

Class	1	2	3	4	5	6
Loss of wt%	< 0.05	≥ 0.05 < 0.10	≥ 0.10 < 0.25	≥ 0.25 < 0.60	≥ 0.60 < 1.10	≧ 1.10

(Table 5) Acid Rsistance

Class	1	2	3	4	5	6
Loss of wt%	< 0.20	≥ 0.20 < 0.35	≥ 0.35 < 0.65	≥ 0.65 < 1.20	≥ 1.20 < 2.20	≧ 2.20

4.2 Weathering Resistance [W(s)] (Surface Method)

This test is carried out by putting freshly polished glass plates in a chamber at +50°C, 85% humidity for 24 hours. If the glass surface is severely attacked, another 6 hour test is carried out with new pieces. The classification into four groups is then obtained by inspecting the treated surface through a 50x microscope as per Table 6.

(Table 6)

Group	Classification
1	When there is no fading on the glass exposed in the chamber for 24 hours and observed at 6000 luxes.
2	When there is no fading observed on the glass exposed in the chamber for 24 hours at 1500 luxes but fading is observed at 6000 luxes.
3	When fading is observed on the glass exposed in the chamber for 24 hours when inspected at 1500 luxes.
4	When fading is observed on the glass exposed in the chamber for 6 hours when inspected at 1500 luxes.

4.3 ISO Method

4.3.1 Acid Resistance (SR)

Glass samples with dimensions of 30 x 30 x 2 mm are prepared. The surface of these samples are polished to the specified polishing conditions. They are hung by platinum wire into nitric acid solution (pH 0.3) or acetic acid buffer solution (pH 4.6) at 25° C for the length of times specified (10 minutes, 100 minutes, 16 hours or 100 hours).

After this treatment, the loss of mass of the sample is determined using an analytical balance. Calculation of the time $t_{0.1}$ in hours, necessary to etch a surface layer to a depth of $0.1\mu m$ is done using the following formula:

$$t_{0.1} = \frac{t_e \cdot d \cdot S}{(m_1 - m_2) \cdot 100}$$

 $t_{\,0.1}$: the time (h) necessary to etch a surface layer to a depth of $0.1 \mu m$

te : the time (h) for attack in the experiment

d : the specific gravity of the sample
 S : the surface area (cm²) of the sample

 m_1 : the mass (mg) of the sample before the test m_2 : the mass (mg) of the sample after the test

The calculation is carried out by use of the value of the loss of mass which is observed by the minimum test condition (i.e.,test solution and test time) for obtaining a loss of mass greater than 1 mg / sample. If the loss of mass is less than 1 mg / sample after 100 hours exposure to pH 0.3, this value shall be accepted.

The acid resistance class SR is obtained by comparison of the pH of the test solution and the time required for the attack to a depth of 0.1 μ m (h) with time scales given in the classification Table 7.

(Table 7)

Acid resistance class SR	1	2	3	4	Ę	5	51	52	53
pH of the attacking so- lution	0.3	0.3	0.3	0.3	0.3	4.6	4.6	4.6	4.6
Time t 0.1 needed to etch to a depth of 0.1µm (h)	>100	100~ 10	10~ 1	1~ 0.1	< 0.1	>10	10~ 1	1~ 0.1	< 0.1

In addition, changes in the surface of the sample following the treatment are qualitatively evaluated with the naked eye. Additional classification numbers are given according to Table 8.

(Table 8)

Additional Number	Changes in the Surface
.0	No visible changes
.1	Clear, but irregular surface (wavy, pockmarked)
.2	Interference colors (slight selective leaching)
.3	Tenacious thin whitish layer (stronger selective leaching)
.4	Loosely adhering thick layer (Surface crust)

For example, it is indicated that the acid resistance class SR is SR 3.2 for the optical glass which needs 2 hours for the attack to a depth of $0.1 \mu m$ by an attacking solution of pH 0.3 and with interference colors after the attack.

4.3.2. Phosphate Resistance (PR)

Glass samples with dimensions of 30 x 30 x 2 mm are prepared and all surfaces are polished to given specifications. They are hung by platinum wire into aqueous solution containing 0.01 mol I ℓ purified tripolyphosphate at 50°C for specified lengths of time (15 minutes, 1 hour, 4 hours or 16 hours).

After this treatment, the loss of mass of the sample is determined using an analytical balance. Calculation of the time $t_{0.1}$ necessary to etch a surface layer to a depth of 0.1 μ m is made using the same formula which is used for obtaining the acid resistance (SR) in the previous section. In this case, however, the time units are minutes. The calculation is carried out, as a rule, using the value of the loss of mass which is observed under the minimum test conditions (i.e.,test solution and test time for obtaining a loss of mass greater than 1 mg / sample).

The phosphate resistance class PR is obtained by comparison of the time required for the attack to a depth of 0.1 μ m (min) with time scales given in classification Table 9.

(Table 9)

Phosphate Resistance Class PR	1	2	3	4
Time t 0.1 needed to etch to a depth of 0.1 µm (min)	>240	240~60	60~15	<15

Next, changes in the surface of the sample following the treatment are qualitatively evaluated with the naked eye. Additional classification numbers are given in addition to the class number according to Table 8 used for obtaining the acid resistance (SR) in the previous section. For example, it is indicated that the phosphate resistance class is PR 2.0 for optical glass which needs 120 minutes for attack to a depth of $0.1 \mu m$, with no visible changes in the surface after the attack.

5. MECHANICAL PROPERTIES

5.1 Modulus of Elasticity

Young's modulus, Modulus of rigidity and Poisson's ratio are determined by measuring the velocities of the longitudinal and transverse elastic waves in a well annealed rod of size $100 \sim 150 \times 10 \times 10 \text{ mm}$ at room temperature.

Young's modulus (E), Modulus of rigidity (G) and Poisson's ratio (σ) are calculated using the following equations. Accuracy is $\pm 1\%$.

Modulus of rigidity $G = \mathcal{V}_t^2 \cdot \rho$

Young's Modulus $E = \frac{9KG}{3K+G}$

Bulk Modulus $K = v_1^2 \cdot \rho - \frac{4}{3}G$

Poisson's ratio $\sigma = \frac{E}{2G} - 1$

 $\upsilon_{\, \rm t}$: Velocity of longitudinal waves $\upsilon_{\, \rm t}$: Velocity of transverse waves

ho : Density

5.2 Knoop Hardness (Hk)

The indentation hardness of optical glass is determined with the aid of the micro hardness tester. One face of the specimen with the necessary thickness is polished.

The diamond indentor is formed rhombic so that the vertically opposite angle from two axes is 172° 30' and 130° respectively. The load time is 1 5 seconds, the load is 0.98 N.

The glass specimen is indented at 5 places. Knoop hardness can be computed with the following equation:

Knoop hardness $Hk = 1.451 \text{ F/} t^2$

F: Load (N)

t: Length of longer diagonal line (mm)

Table 10 shows how the glasses are classified according to Knoop hardness. Please note the Knoop hardness figures have been rounded to the nearest 5 (e.g. value of 158 is shown as 160.)

(Table 10)

Group	1	2	3	4	5	6	7
Knoop Hardness	<150	≥150 <250	≥250 <350	≥350 <450	≥450 <550	≥550 <650	≧650

5.3 Abrasion (Aa)

A sample of size 30 x 30 x 10 mm is lapped on a 250 mm diameter cast iron flat, rotating at 60 rpm. The test piece is located 80 mm from the center of the flat and is under a 9.8N load. 20 ml of water containing 10 g of aluminous abrasive as the lapping material, with mean grain size $20\mu m(\#800)$, is supplied evenly to the test piece for 5 minutes. The weight loss of the test piece is then measured. The known weight loss of the standard glass is compared according to the following equation:

Glasses showing a higher value are less resistant to abrasion.

5.4 Photoelastic Constant (β)

Optical glass is usually free of strain, but when mechanical or thermal stress is exerted upon it, glass shows birefringence.

Stress F(Pa), optical path difference δ (nm) and thickness of glass d(cm) have the following relationship:

$$\delta = \beta \cdot d \cdot F$$

In this case, proportional constant β is called the photoelastic constant. It is listed in this catalog at a unit of (nm/cm/10⁵Pa).

The photoelastic constant is the material constant which will change by glass type. By using it, optical path difference can be computed from given stress. Internal stress can also be computed from optical path difference.

6. OTHER PROPERTIES

6.1 Bubble & Inclusion

It is most desirable to manufacture bubble-free optical glass, but the existence of bubbles to some extent is inevitable.

Bubbles in optical glass vary in size and number from one glass to another due to the many different compositions and production methods.

Such as the glasses are marked with [B].

The classification of bubble content is established by specifying in mm² the total bubble cross sections existing in $100m\ell$ of glass volume.

Inclusions such as small stones or crystals are treated as bubbles. The bubble classes are shown in Tab.11..

The classification includes all bubbles and inclusions measuring larger than 0.03mm.

(Table 11)

CLASS	1	2	3	4	5
The total cross section of bubbles (mm²/100ml)	< 0.03	≧0.03 <0.1	≧0.1 <0.25	≥0.25 <0.5	≧0.5

6.2 Coloring

Internal transmittance (τ) of optical glass is listed for each glass type. To express absorption, a column labeled "Coloring" is provided in the catalog page.

Coloring can be determined by measuring spectral transmission including reflection losses with 10 mm thick test pieces. The wavelengths corresponding to 80% transmission and 5% transmission are given. For instance, the glass whose transmission is —

80% at wavelength of 404 nm 5% at wavelength of 355 nm

is indicated in the catalog as 40/36 as per Figure 6.

For glass types of S-TIH 53, PBH 71 and LAH78 reflection losses are so large that we used the wavelength corresponding to 70% in place of 80%.

Fig. 6

6.3 Specific Gravity (d)

Specific gravity is the density value of well-annealed glass referenced against pure water at 4°C, with the value shown to the second decimal place.

7. GUARANTEES OF QUALITY

7.1 Refractive Index and Abbe number

Refractive index and Abbe number values of our fine annealed products vary from catalog value by:

 $\begin{array}{lll} \mbox{Refractive index} \ : \ n_d &= \pm 0.0005 \\ \mbox{Abbe number} &: \ \mathcal{V}_d &= \pm 0.8\% \end{array}$

Upon request, we will supply blanks of optical glass to the following tolerances:

 $\begin{array}{lll} \mbox{Refractive index} \ : \ n_d &= \pm 0.0002 \\ \mbox{Abbe number} &: \ \nu_d &= \pm 0.3\% \end{array}$

When special demand exists for specifications with other optical constants than the above, please consult us.

We urge our customers to enjoy the cost savings and benefits of our close index control, melt to melt, over long periods of production. Usually this is done at no extra cost. We normally send certification (melt data) of refractive indices measured at the spectral lines: C, d, F, g and ν_d . On special request, we can supply refractive indices measured at other spectral lines .

The following is the accuracy of standard measurements of refractive index and dispersion for raw glass and normal pressed blanks:

Refractive index = ± 0.00003 Dispersion = ± 0.00002

On request, we shall provide precision measurements of refractive index and dispersion:

Refractive index = ± 0.00001 Dispersion = ± 0.000003

We will report the environmental temperature, humidity and atmospheric pressure of the room where the precision measurement was undertaken. For, "ultraprecision measurements" and measurements at spectral line not described in this catalog, please contact us.

7.2 Homogeneity

It is sometimes necessary to measure the index variation across a blank. In such cases, Ohara pays special attention to each process and can supply high homogeneity "Grade Special A" blanks. Grade Special A is our term for precision annealed high homogeneity (Low Δn) optical glasses. Our Grade Special A glasses are available in the following homogeneity levels:

(Table 12)

Classification	Homogeneity (∆n)
Grade Special A1	±1 X 10 ⁻⁶
Grade Special A2	±2 X 10 ⁻⁶
Grade Special A5	±5 X 10 ⁻⁶
Grade Special A20	±20 X 10 ⁻⁶

Please note that the Grade Special A number indicates Δn in the sixth decimal place. The anneal required must also be specified in terms of birefringence (nm/cm). Generally, low Δn also implies low birefringence from precision annealing. Using phase measuring interferometers, we measure transmitted wavefront of each test piece. Interferograms are supplied for each blanks that is ordered with Grade Special A5 or higher homogeneity.

7.3 Stress Birefringence

Depending on the annealing condition, optical glass retains slight residual strain in most cases. This can be observed as optical birefringence, and measured by optical path differences and specified in nm/cm.

Stress birefringence of a rectangular plate is measured at the middle of the long side where maximum values occur at a point 5% of the width from the edge. A disc is measured at 4 points located 5% from the edge of the diameter. The maximum value of the 4 points is shown as the Birefringence value.

We guarantee the strain according to the grade of anneal as follows:

(Table 13)

Anneal	Birefringence (nm/cm)
Coarse	>10
Fine	≦10
Precision	On Request

On request, we shall supply birefringence data for precision annealed blanks in the form of a "BMC" (Birefringence Measurement Chart).

7.4 Striae

Striae are thread-like veins or cords which are visual indications of abruptly varying density. Striae can also be considered to be a lack of homogeneity caused by incomplete stirring of the molten glass. Some glasses contain components that evaporate during melting, causing layers of varying density, and therefore parallel striae appear.

Striae in glass are detected by means of a striaescope, which consists of a point source of light and a collimating lens. Polished samples are examined at several different angles in the striaescope. They are then compared with the standards and graded. These established standard glasses are of a high order of quality and are certified to U.S. military specification MIL-G-174B.

(Table 14)

Striae Grade	Striae Content Using Striaescope
Α	No visible striae
В	Striae is light and scattered
С	Striae is heavier than Grade B

7.5 Bubbles

Bubble content is determined by taking a sample of glass from each melt. The total bubble cross-section per 100m ℓ of glass volume is measured. See Table 11 of this catalog.

On request, we shall undertake bubble examination with the method and procedures of MIL-G-174B or the customer's own specifications.

7.6 Coloring

Variation of coloring between melts is generally within ± 10 nm.

On special request, we shall report the coloring or the transmission, including reflection losses, of the melt to be supplied by measuring spectral transmission.

7.7 Other

We showed each properties as representative value except for 7.1~1.6. Please contact us when you want to know the other value. In addition, please let us know your preferred specification when you place the orders.

8. FORMS OF SUPPLY

8.1 Raw Glass

8.1.1 Strip Glass

Strips are made by drawing glass out of a continuous flow furnace. Strips are rectangular in shape, have slightly rippled fire-polished surfaces, (unworked) and are flame cut to required lengths. The corners are radiused. Strips are coarse or fine annealed. This is the least expensive form of supply.

8.1.2 Slab Glass

Slabs are blocks or rectangles of raw glass that have been ground on all sides and then polished on two opposite sides for inspection. Generally, slabs are fine annealed.

8.2 Pressings (Reheat Pressings (RP))

Reheat or hand pressings (RP) are blanks formed by manually pressing softened glass. We urge the customer to specify the following:

- 1) Diameter (including grinding stock)
- 2) Center Thickness (including grinding stock)
- 3) Radii of curvature
- 4) Glass quality (striae, bubble, etc.)
- 5) Bevel
- 6) First processing side

Dimensional tolerances are given in Table 15.

(Table 15)

Diameter (mm)	Dimensional Tolerance				
Diameter (mm)	Thickness (mm)	Diameter (mm)			
Less than 18	±0.5	±0.1			
18 ~ 30	± 0.4	±0.15			
30 ~ 50	± 0.4	±0.20			
50 ~ 100	±0.3	±0.30			
100 ~ 150	±0.3	±0.40			
Over 150	± 0.4	±0.50			

8.3 Cut Blanks

Cut discs, cut rectangles, and cut prisms are blanks that are cut or core drilled from annealed strips or slabs. These forms are generally specified when delivery is urgent and quantities are small.

8.4 Saw cut Centerless Ground Cylindrical Blanks

These blanks are cut from a precisely ground rod formed on a centerless grinding machine. This process is very useful for making lenses that:

- 1) Are small in diameter but quite thick.
- 2) Are small in diameter with shallow radii.
- 3) Are such that the precise blank dimension can eliminate lens centering operations.
- 4) Can utilize precision spot blocks.

Diameter range of these blanks is 3 mm to 20 mm and the dimensional tolerances are given in Table 16.

(Table 16)

Diameter	Thickness	Diameter
ø 3 ~ 20 mm	±0.15mm	±0.015mm

Centerless ground blanks can be supplied in any glass type.

8.5 Moldings

Pressing large blanks over 300mm in diameter or of an excessive thickness is difficult. Such large blanks are gravity molded. Blanks made by this method are generally supplied planoplano. However, we can produce large plano-convex or plano-concave moldings.

8.6 High Homogeneity Glass

Ohara utilizes our leading edge technology to provide high homogeneity blanks in various glass types. Interferograms indicating the homogeneity of these blanks are typically provided with each shipment.

8.7 Fine Gob (FG)

We supply small diameter pre-formed "Fine Gobs" suitable for mold pressing into commercial lenses. FG is produced by direct molding of molten glasses

with low softening properties. Shape of standard FG is convex on both sides as shown in the sketch below. Table 17 shows the current supply sizes for FG. When ordering, please specify necessary dimensions such as diameter, center thickness and radius of curvature. Optical properties (refractive indices, Abbe number, etc.) will change depending on thermal conditions during mold pressing.

Refractive indices of FG products will adhere to the values shown in this catalog when FG is heat-treated using the conditions stipulated by Ohara.

(Table-17)

Volume(ml)	0.1	0.2	0.3	0.5	0.7
Diameter(mm)	6.0 ~ 6.5	7.5 ~ 8.5	9.0 ~ 10.0	11.0 ~ 12.5	12.0 ~ 14.5
Central thickness(mm)	4.5 ~ 5.0	5.5 ~ 6.5	6.0 ~ 7.0	7.0 ~ 8.0	7.5 ~ 8.5
R1(mm)	3.0 ~ 4.5	4.5 ~ 5.5	6.0 ~ 7.5	8.5 ~ 11.0	12.0 ~ 17.5
R2(mm)	3.0 ~ 4.5	4.5 ~ 7.0	5.0 ~ 8.5	6.0 ~ 10.0	6.5 ~ 12.0

Figures of R1 and R2 are radius curvatures within the scope of diameter 4 mm.

9.TABLE OF RECOMMENDED GLASSES

On pages 17 and 18 you will find a cross reference guide comparing glass types from Ohara and two other companies.

In these tables we have also shown approximate relative pricing for each Ohara glass type. For the relative pricing we are using a S-BSL7 pressing price as the standard (with a value of 10) and comparing all other glass types to this standard. Please contact us for a more detailed price quotation.

CODE: Along with Ohara's glass type designation, the technical data sheets will show

the six-digit code for each glass type. In the six-digit code the first three digits represent the refractive index at the helium line ($n_{\rm d}$) and the last three digits represent the Abbe number($\nu_{\rm d}$).Three six-digit codes are internationally recognized within the optical community.

NEXT

GLASS TYPE: (G.T.) We have shown Ohara recommended glass types and corresponding glass types from Schott and Hoya.

PRICE RATIO: We are using a S-BSL7 pressing price as the standard (with a value of 10). (P.R.)

CROSS REFERENCE CHART OF RECOMMENDED GLASSES

OHARA		SCHOTT		HOYA		
CODE	G.T.	P.R.	CODE	G.T.	CODE	G.T.
439950	S-FPL53	140	434950	N-FK 56		
456903	S-FPL52	86			457903	FCD 10
487702	S- FSL5	16	487704	N-FK 5	487704	FC 5
497816	S-FPL51	50	497816	N-PK 52	497816	FCD 1
516641	S- BSL7	10	517642	N-BK 7	517642	BSC 7
517524	S-NSL36	15			517522	E-CF 6
518590	S- NSL3	16			518590	E-C 3
522598	S- NSL5	17	522595	N-K 5		
532489	S- TIL6	16	532489	N-LLF 6	532488	E-FEL 6
540595	S-BAL12	17	540597	N-BAK 2		
541472	S- TIL2	16			541472	E-FEL 2
548458	S- TIL1	15	548459	N-LLF 1	548458	E-FEL 1
564607	S-BAL41	15	564608	N-SK 11	564608	BACD 11
567428	S- TIL26	16			567428	E-FL 6
569563	S-BAL14	15	569560	N-BAK 4	569560	BAC 4
571508	S- BAL2	18				
571530	S- BAL3	18				
573578	S-BAL11	17	573575	N-BAK 1		
575415	S- TIL27	16				
581407	S- TIL25	16	581408	N-LF 5	581409	E-FL 5
583464	S- BAM3	17	583466	N-BAF 3		
583594	S-BAL42	16				
589612	S-BAL35	16	589613	N-SK 5	589613	BACD 5
593353	S-FTM16	18			593355	FF 5
596392	S- TIM8	15			596392	E-F 8
603380	S- TIM5	15			603380	E-F 5
603607	S-BSM14	15	603606	N-SK 14	603607	BACD 14
603655	S-PHM53	45				

(OHARA		SCHOTT		НС	YA
CODE	G.T.	P.R.	CODE	G.T.	CODE	G.T.
606437	S- BAM4	17	606437	N-BAF 4		
607568	S- BSM2	16	607567	N-SK 2	607567	BACD 2
613370	S- TIM3	15			613370	E-F 3
613443	S-NBM51	41	613445	N-KZFS4	613444	E-ADF10
613587	S- BSM4	15	613586	N-SK 4	613586	BACD 4
614550	S- BSM9	17				
618498	S-BSM28	21	618498	N-SSK 8		
618634	S-PHM52	33			618634	PCD 4
620363	S- TIM2	15	620364	N-F 2	620363	E-F 2
620603	S-BSM16	15	620603	N-SK 16	620603	BACD 16
622532	S-BSM22	18	622533	N-SSK 2		
623570	S-BSM10	16	623570	N-SK 10	623569	E-BACD 10
623582	S-BSM15	15	623580	N-SK 15	623581	BACD 15
626357	S- TIM1	15			626357	E-F 1
639449	S-BAM12	19				
639554	S-BSM18	15	639554	N-SK 18	639555	BACD 18
640345	S- TIM27	15			640346	E-FD 7
640601	S-BSM81	19	640601	N-LAK21	640602	LACL 60
648338	S- TIM22	14			648338	E-FD 2
649530	S-BSM71	17			649530	E-BACED20
651562	S-LAL54	21	651559	N-LAK22		
652585	S- LAL7	21	652585	N-LAK 7	652584	LAC 7
654397	S- NBH5	41			654396	E-ADF50
658509	S-BSM25	16	658509	N-SSK 5	658509	BACED 5
667330	S- TIM39	16				
667483	S-BAH11	16			667483	BAF 11
670393	S-BAH32	18				
670473	S-BAH10	16	670471	N-BAF10	670472	BAF 10

CODE: Along with Ohara's glass type designation, the technical data sheets will show

the six-digit code for each glass type. In the six-digit code the first three digits represent the refractive index at the helium line ($\!n_{\rm d}\!)$ and the last three digits represent the Abbe number($\nu_{\rm d}). Three six-digit codes are internationally$

recognized within the optical community.

GLASS TYPE: (G.T.) We have shown Ohara recommended glass types and corresponding glass types

from Schott and Hoya.

PRICE RATIO: We are using a S-BSL7 pressing price as the standard (with a value of 10). (P.R.)

CROSS REFERENCE CHART OF RECOMMENDED GLASSES

OHARA		SCH	OTT	НО	ΥA	
CODE	G.T.	P.R.	CODE	G.T.	CODE	G.T.
673321	S-TIM25	15	673323	N-SF 5	673322	E-FD 5
678507	S-LAL56	21				
678553	S-LAL12	22	678552	N-LAK12	678555	LAC 12
689311	S- TIM28	17	689313	N-SF 8	689312	E-FD 8
691548	S- LAL9	22	691547	N-LAK 9	691547	LAC 9
694508	S-LAL58	22				
694532	S-LAL13	22			694533	LAC 13
697485	S-LAM59	21			697485	LAFL 2
697555	S-LAL14	22	697554	N-LAK14	697555	LAC 14
699301	S-TIM35	18	699302	N-SF 15	699301	E-FD 15
700481	S-LAM51	27				
702412	S-BAH27	17			702412	BAFD 7
713539	S- LAL8	23	713538	N-LAK 8	713539	LAC 8
717295	S- TIH1	19	717296	N-SF 1	717295	E-FD 1
717479	S- LAM3	24	717480	N-LAF 3	717480	LAF 3
720347	S- NBH8	46				
720420	S-LAM58	23				
720437	S-LAM52	24				
720460	S-LAM61	23				
720502	S-LAL10	23	720506	N-LAK10	720503	LAC 10
722292	S- TIH18	20				
723380	S-BAH28	17	724381	N-BASF 51	723380	BAFD 8
728285	S- TIH10	19	728285	N-SF 10	728283	E-FD 10
729547	S-LAL18	47	729547	N-LAK34	729547	TAC 8
734515	S-LAL59	28			734511	TAC 4
740283	S- TIH3	19				
741278	S- TIH13	19			741278	E-FD 13
741527	S-LAL61	41			741526	TAC 2

OHARA			SCHOTT		HOYA	
CODE	G.T.	P.R.	CODE	G.T.	CODE	G.T.
743493	S-LAM60	23	743492	N-LAF35	743492	NBF 1
744448	S- LAM2	27	744449	N-LAF 2	744449	LAF 2
750353	S-LAM 7	25	749348	N-LAF 7	750350	E-LAF 7
750353	S-NBH51	35				
755275	S- TIH4	19	755274	N-SF 4	755275	E-FD 4
755523	S-YGH51	56	754524	N-LAK33	755523	TAC 6
757478	S-LAM54	26			757477	NBF 2
762265	S-TIH 14	21	762265	N-SF 14	762266	FD 140
762401	S-LAM55	33				
773496	S-LAH66	36	773496	N-LAF34	773496	TAF 1
785257	S-TIH 11	21			785257	FD 110
785263	S-TIH 23	20	785261	N-SF 56	785261	FDS 30
786442	S-LAH51	29	786441	N-LAF33	786439	NBFD 11
788474	S-LAH64	45	788475	N-LAF21	788475	TAF 4
800422	S-LAH52	29	800423	N-LAF36	800423	NBFD 12
801350	S-LAM66	22	801351	N-LASF 45		
804396	S-LAH63	30			805396	NBFD 3
804466	S-LAH65	49	804465	N-LASF44	804465	TAF 3
805254	S- TIH6	20	805254	N-SF 6	805255	FD 60
806409	S-LAH53	29	806406	N-LASF 43	806407	NBFD 13
808228	S- NPH1	75				
816466	S-LAH59	101			816466	TAF 5
834372	S-LAH60	29	834373	N-LASF40	834373	NBFD 10
835427	S-LAH55	52	835431	N-LASF41	835430	TAFD 5
847238	S- TIH53	23	847238	N-SF 57	847238	FDS 90
883408	S-LAH58	99	881410	N-LASF31	883408	TAFD 30
923189	S- NPH2	83			923209	E-FDS 1
003283	S-LAH79	518				

 n_{e}

S-FPL51

Refractive Index	n _d	1.49700 1.496999	Abbe Number ν _d	81.6 81.54	Dispersion NF-NC	0.00609 0.006095
Refractive	ne	1 498455	Abbe Number ν _e	81 14	Dispersion n F' - n C'	0.006143

R	Refractive Indices				
	λ (μ m)				
n 2325	2.32542	1.47952			
n 1970	1.97009	1.48269			
n 1530	1.52958	1.48610			
n 1129	1.12864	1.48911			
n _t	1.01398	1.49010			
ns	0.85211	1.49183			
n _A ′	0.76819	1.49300			
n _r	0.70652	1.49407			
n_{C}	0.65627	1.49514			
n _C ′	0.64385	1.49543			
n _{He-Ne}	0.6328	1.49571			
n_D	0.58929	1.49694			
n_d	0.58756	1.49700			
n _e	0.54607	1.49845			
n _F	0.48613	1.50123			
n _F ′	0.47999	1.50158			
n _{He-Cd}	0.44157	1.50407			
ng	0.435835	1.50451			
n _h	0.404656	1.50720			
n _i	0.365015	1.51176			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.1035	
$\Delta heta_{ extsf{C,A'}}$	-0.0246	
$arDelta heta_{ extsf{g,d}}$	0.0364	
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0280	
$arDelta heta_{i,g}$	0.1478	

Constants of Dispersion Formula		
A ₁	1.17010505	
A_2	4.75710783•10 ⁻²	
A_3	7.63832445•10 ⁻¹	
B ₁	6.16203924•10 ⁻³	
B ₂	2.63372876•10 ⁻²	
B ₃	1.41882642•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.62		
Remarks				

Partial Dis	persions
n _C –n _t	0.005033
n _C -n _A ′	0.002134
n _d –n _C	0.001863
n _e –n _C	0.003319
n _g –n _d	0.007508
n _g –n _F	0.003276
n _h –n _g	0.002698
n _i –n _g	0.007253
n _C ′–n _t	0.005330
n _e –n _C ′	0.003022
n _F ′–n _e	0.003121
n _i –n _F ′	0.010184

Thermal Propertie	es
Strain Point StP (℃)	
Annealing Point AP $(^{\circ}C)$	
TransformationTemperature Tg (°C)	458
Yield Point At (℃)	489
Softening Point SP (℃)	
Expansion Coefficients $(-30\sim+70^{\circ}\text{C})$	131
α (10 ⁻⁷ /°C) (+100~+300°C)	155
Thermal Conductivity k (W/m·K)	0.780

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	727
Rigidity Modulus G	$(10^8 N/m^2)$	280
Poisson's Ratio	σ	0.299
Knoop Hardness	Hk	350[4]
Abrasion	Aa	449
Photoelastic Consta (nm/cm/10 ⁵ Pa	. 1.)	0.74

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	1
Acid Resistance (Surface) Group SR	52.1
Phosphate Resistance PR	4.0

	Temperature Coefficients of Refractive Index							
Range of Temper	rature		dr	n / dt rela	ative (1	0 ⁻⁶ / ℃)	
(℃)		t	C	He-Ne	D	е	F	g
-40 ~ −2	20	-5.7	-5.5	-5.5	-5.4	-5.4	-5.3	-5.1
−20 ~	0	-5.9	-5.8	-5.7	-5.7	-5.6	-5.5	-5.3
0 ~ 2	20	-6.2	-6.0	-6.0	-5.9	-5.8	-5.7	-5.5
20 ~ 4	40	-6.4	-6.2	-6.2	-6.2	-6.1	-5.9	-5.8
40 ~ 6	60	-6.7	-6.5	-6.5	-6.4	-6.3	-6.1	-6.0
60 ~ 8	30	-6.9	-6.7	-6.7	-6.7	-6.6	-6.4	-6.2

Date Control	LD:
Relative Partia	וטוspersions
$ heta_{C,t}$	0.8258
$ heta_{C,A'}$	0.3501
$ heta_{\sf d,C}$	0.3057
$ heta_{e,C}$	0.5445
$ heta_{ extsf{g,d}}$	1.2318
$ heta_{ extsf{g}, extsf{F}}$	0.5375
$ heta_{h,g}$	0.4427
$ heta_{i,g}$	1.1900
$\theta'_{C',t}$	0.8677
θ' _{e,C'}	0.4919
$ heta^{'}$ F $^{'}$,e	0.5081
$\theta'_{i,F'}$	1.6578

Coloring			
λ 80/λ 5	34/29		

Internal Trar λ (nm) 280	7 10mm
	0.01
290	0.05
300	0.17
310	0.37
320	0.60
330	0.77
340	0.88
350	0.947
360	0.975
370	0.988
380	0.994
390	0.996
400	0.995
420	0.994
440	0.994
460	0.996
480	0.997
500	0.998
550	0.999
600	0.998
650	0.998
700	0.998
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.999
1600	0.999
1800	0.999
2000	0.999
2200	0.997
2400	0.996

S-FPL52

Refractive Index	n _d	1.45600 1.455999	Abbe Number νd	90.3 90.28	Dispersion NF-NC	0.00505 0.005051
Refractive Index	ne	1.457205	Abbe Number $ u_{e}$	89.88	Dispersion $n_{F'} - n_{C'}$	0.005087

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.44074			
n 1970	1.97009	1.44360			
n 1530	1.52958	1.44667			
n 1129	1.12864	1.44933			
n _t	1.01398	1.45019			
n _s	0.85211	1.45167			
n _A ′	0.76819	1.45266			
n _r	0.70652	1.45356			
n _C	0.65627	1.45445			
n _C ′	0.64385	1.45470			
n _{He-Ne}	0.6328	1.45493			
n_D	0.58929	1.45595			
n _d	0.58756	1.45600			
n _e	0.54607	1.45721			
n _F	0.48613	1.45950			
n _F ′	0.47999	1.45978			
n _{He-Cd}	0.44157	1.46184			
n _g	0.435835	1.46220			
n _h	0.404656	1.46441			
n _i	0.365015	1.46813			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.1281			
$\Delta heta_{C,A'}$	-0.0317			
$arDelta heta_{ extsf{g,d}}$	0.0498			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0386			
$\Delta heta_{i,g}$	0.2062			

Constants of Dispersion Formula				
A ₁ 1.06785857				
A_2	3.35857718•10 ⁻²			
A_3	1.10219763			
B ₁	6.99227302•10 ⁻³			
B ₂	-2.07608925•10 ⁻²			
B ₃	2.26496541•10 ²			

Other Properties					
Bubble Quality Group	В	В			
Specific Gravity	d	3.53			
Remarks					

		Tempe	rature Co	efficients o	of Refracti	ive Index			
Range of Ten	nperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(C)		t	C'	He-Ne	D	е	F	g	
-40 ~	-20	-5.0	-4.9	-4.9	-4.8	-4.8	-4.6	-4.5	
-20 ~	0	-5.3	-5.2	-5.2	-5.1	-5.1	-4.9	-4.8	
0 ~	20	-5.6	-5.5	-5.5	-5.4	-5.3	-5.2	-5.1	
20 ~	40	-5.9	-5.8	-5.7	-5.7	-5.6	-5.5	-5.4	
40 ~	60	-6.2	-6.0	-6.0	-6.0	-5.9	-5.8	-5.6	
60 ~	80	-6.4	-6.3	-6.3	-6.3	-6.2	-6.1	-5.9	

Partial Dispersions				
n _C -n _t	0.004254			
n _C –n _A ′	0.001786			
n _d –n _C	0.001550			
n _e –n _C	0.002756			
n _g –n _d	0.006198			
n _g –n _F	0.002697			
n _h –n _g	0.002215			
n _i –n _g	0.005936			
n _C '-n _t	0.004502			
n _e –n _C ′	0.002508			
n _F ′–n _e	0.002579			
n _i –n _F ′	0.008349			

Thermal Properties				
Strain Point	StP	(\mathcal{C})	_	
Annealing Point	ΑP	(\mathcal{C})		
Transformation Temperature	Tg	(\mathcal{C})	445	
Yield Point	At	(\mathcal{C})	473	
Softening Point	SP	(\mathcal{C})	_	
Expansion Coefficients (-30~	+70°C)	133	
$\alpha (10^{-7})^{\circ}C)$ (+1	100~+	-300℃)	158	
Thermal Conductivity	k(W/	m·K)	0.849	

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	717			
Rigidity Modulus G	$(10^8 N/m^2)$	276			
Poisson's Ratio	σ	0.299			
Knoop Hardness	Hk	360[4]			
Abrasion	Aa	447			
Photoelastic Constar (nm/cm/10 ⁵ Pa		0.73			

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	2			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	1			
Acid Resistance (Surface) Group SR	52.0			
Phosphate Resistance PR	4.0			

Relative Partial Dispersions				
$ heta_{C,t}$	0.8422			
$ heta_{C,A'}$	0.3536			
$ heta_{\sf d,C}$	0.3069			
$ heta_{ extsf{e}, extsf{C}}$	0.5456			
$ heta_{ extsf{g,d}}$	1.2271			
$ heta_{ extsf{g}, extsf{F}}$	0.5340			
$ heta_{h,g}$	0.4385			
$ heta_{i,g}$	1.1752			
θ'C',t	0.8850			
θ'e,C'	0.4930			
$ heta^{'}$ F $^{'}$,e	0.5070			
$ heta^{'}_{i,F^{'}}$	1.6412			

Colo	ring
λ 80/λ 5	34/29

Internal Tran	smittance
λ (nm)	τ 10mm
280	
290	0.01
300	0.07
310	0.23
320	0.48
330	0.69
340	0.86
350	0.927
360	0.966
370	0.985
380	0.993
390	0.995
400	0.995
420	0.994
440	0.994
460	0.995
480	0.997
500	0.998
550	0.999
600	0.998
650	0.997
700	0.998
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.998
1600	0.998
1800	0.998
2000	0.998
2200	0.998
2400	0.998

S-FPL53

Refractive Index	n _d	1.43875 1.438750	Abbe Number ν_d	95.0 94.93	Dispersion NF-NC	0.00462 0.004622
Refractive Index	n_{e}	1.439854	Abbe Number $ u_{e}$	94.49	Dispersion $n_{F'} - n_{C'}$	0.004655

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
n2325 2.32542 1.425 n1970 1.97009 1.427 n1530 1.52958 1.430 n1129 1.12864 1.432 nt 1.01398 1.433 ns 0.85211 1.434 nA' 0.76819 1.435 nr 0.70652 1.436 nc 0.65627 1.437	
n1970 1.97009 1.427 n1530 1.52958 1.430 n1129 1.12864 1.432 nt 1.01398 1.433 ns 0.85211 1.434 nA' 0.76819 1.435 nr 0.70652 1.436 nc 0.65627 1.437	
n1530 1.52958 1.430 n1129 1.12864 1.432 nt 1.01398 1.433 ns 0.85211 1.434 nA' 0.76819 1.435 nr 0.70652 1.436 nc 0.65627 1.437	12
n1129 1.12864 1.432 nt 1.01398 1.433 ns 0.85211 1.434 nA' 0.76819 1.435 nr 0.70652 1.436 nC 0.65627 1.437	62
nt 1.01398 1.433 ns 0.85211 1.434 nA' 0.76819 1.435 nr 0.70652 1.436 nc 0.65627 1.437	32
ns 0.85211 1.434 nA' 0.76819 1.435 nr 0.70652 1.436 nc 0.65627 1.437	69
nA' 0.76819 1.435 nr 0.70652 1.436 nc 0.65627 1.437	46
nr 0.70652 1.436 nc 0.65627 1.437	80
n _C 0.65627 1.437	70
0 0.000=.	52
n _C ′ 0.64385 1.437	33
	'56
n _{He-Ne} 0.6328 1.4 3 7	77
n _D 0.58929 1.438	71
n d 0.58756 1.438	75
n _e 0.54607 1.439	85
n _F 0.48613 1.441	95
n _F ′ 0.47999 1.442	21
n _{He-Cd} 0.44157 1.444	10
n g 0.435835 1.444	42
n _h 0.404656 1.446	45
n i 0.365015 1 .449	86

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta$ C,t	-0.1548		
$\Delta heta$ C,A $^{\prime}$	-0.0381		
arDelta hetag,d	0.0598		
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0461		
$arDelta heta_{i,g}$	0.2462		

Constants of Dispersion Formula				
A ₁	9.83532327•10 ⁻¹			
A_2	6.95688140•10 ⁻²			
A_3	1.11409238			
B ₁	4.92234955•10 ⁻³			
B ₂	1.93581091•10 ⁻²			
B ₃	2.64275294•10 ²			

Other Properties				
Bubble Quality Group	В	В		
Specific Gravity	d	3.62		
Remarks				

Temperature Coefficients of Refractive Index								
Range of Tem	perature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(\mathcal{C})		t	C'	He-Ne	D	е	F	g
−40 ~	-20	-5.9	-5.8	-5.8	-5.7	-5.7	-5.6	-5.5
−20 ~	0	-6.2	-6.1	-6.1	-6.1	-6.0	-5.9	-5.8
0 ~	20	-6.5	-6.4	-6.4	-6.4	-6.3	-6.2	-6.1
20 ~	40	-6.9	-6.8	-6.7	-6.7	-6.6	-6.5	-6.4
40 ~	60	-7.2	-7.1	-7.1	-7.0	-7.0	-6.8	-6.7
60 ~	80	-7.5	-7.4	-7.4	-7.3	-7.3	-7.2	-7.0

Partial Dispersions				
n _C –n _t	0.003870			
n _C –n _A ′	0.001631			
n _d –n _C	0.001417			
n _e –n _C	0.002521			
n _g –n _d	0.005673			
n _g –n _F	0.002468			
n _h –n _g	0.002028			
n _i –n _g	0.005437			
n _C ′–n _t	0.004097			
n _e –n _C ′	0.002294			
n _F ′–n _e	0.002361			
n _i –n _F ′	0.007645			

Thermal Properties				
Strain Point	StP	(\mathcal{C})	_	
Annealing Point	ΑP	(\mathcal{C})	_	
Transformation Temperature	Tg	(\mathcal{C})	426	
Yield Point	At	(\mathcal{C})	456	
Softening Point	SP	(\mathcal{C})	_	
Expansion Coefficients (-30~+70°C)			145	
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+	300℃)	169	
Thermal Conductivity $k(W/m\cdot K)$			0.857	
mermal Conductivity r	\ \ V V /	III•K)	0.037	

Mechanical Properties					
Young's Modulus E	$(10^8N/m^2)$	691			
Rigidity Modulus G	$(10^8N/m^2)$	265			
Poisson's Ratio	σ	0.303			
Knoop Hardness	Hk	320[3]			
Abrasion	Aa	451			
Photoelastic Constar (nm/cm/10 ⁵ Pa		0.57			

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	3			
Weathering Resistance (Surface) Group $W(s)$	3			
Acid Resistance (Surface) Group SR	52.3			
Phosphate Resistance PR	4.3			

Relative Partial Dispersions				
$ heta_{C,t}$	0.8373			
$ heta_{C,A'}$	0.3529			
$ heta_{\sf d,C}$	0.3066			
$ heta_{ extsf{e}, extsf{C}}$	0.5454			
$ heta_{ extsf{g,d}}$	1.2274			
$ heta_{ extsf{g}, extsf{F}}$	0.5340			
$ heta_{h,g}$	0.4388			
$ heta_{i,g}$	1.1763			
θ´c΄,t	0.8801			
θ'e,C'	0.4928			
$ heta^{'}$ F $^{'}$,e	0.5072			
$\theta'_{i,F'}$	1.6423			

Colo	ring
λ 80/λ 5	33/29

λ (nm) τ 10mm 280 0.04 290 0.12 300 0.28 310 0.51 320 0.71 330 0.85 340 0.928 350 0.967 360 0.985 370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998 1600 0.998	Internal Transmittance				
280 0.04 290 0.12 300 0.28 310 0.51 320 0.71 330 0.85 340 0.928 350 0.967 360 0.985 370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.997 1000 0.997 1000 0.997 1200 0.998 1400 0.998					
290 0.12 300 0.28 310 0.51 320 0.71 330 0.85 340 0.928 350 0.967 360 0.985 370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 800 0.998 900 0.997 1000 0.997 1000 0.998 1200 0.998 1400 0.998		0.04			
300 0.28 310 0.51 320 0.71 330 0.85 340 0.928 350 0.967 360 0.985 370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998					
310 0.51 320 0.71 330 0.85 340 0.928 350 0.967 360 0.985 370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998		0.28			
320 0.71 330 0.85 340 0.928 350 0.967 360 0.985 370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998		0.51			
340 0.928 350 0.967 360 0.985 370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	320				
350 0.967 360 0.985 370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	330	0.85			
360 0.985 370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	340	0.928			
370 0.992 380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	350	0.967			
380 0.996 390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	360	0.985			
390 0.997 400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	370	0.992			
400 0.996 420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	380	0.996			
420 0.995 440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	390	0.997			
440 0.995 460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	400	0.996			
460 0.996 480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	420				
480 0.997 500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	440	0.995			
500 0.998 550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	460	0.996			
550 0.999 600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	480				
600 0.998 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998					
650 0.997 700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	550				
700 0.998 800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	600				
800 0.998 900 0.997 1000 0.997 1200 0.998 1400 0.998	650				
900 0.997 1000 0.997 1200 0.998 1400 0.998	700				
1000 0.997 1200 0.998 1400 0.998					
1200 0.998 1400 0.998	900				
1400 0.998					
1600 0.998					
1800 0.998					
2000 0.998					
2200 0.997					
2400 0.998	2400	0.998			

S-FSL 5

Refractive Index	n _d	1.48749 1.487490	Abbe Number Vd	70.2 70.23	Dispersion NF-NC	0.00694 0.006941
Refractive Index	n _e	1.489147	Abbe Number $ u_{ m e}$	70.04	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.006984

Refractive Indices					
n 2325	2.32542	1.46227			
n 1970	1.97009	1.46765			
n 1530	1.52958	1.47324			
n 1129	1.12864	1.47778			
n _t	1.01398	1.47915			
n _s	0.85211	1.48138			
n _A ′	0.76819	1.48282			
n _r	0.70652	1.48410			
n _C	0.65627	1.48534			
n _C ′	0.64385	1.48569			
n _{He-Ne}	0.6328	1.48601			
n_D	0.58929	1.48743			
n _d	0.58756	1.48749			
n _e	0.54607	1.48915			
n _F	0.48613	1.49228			
n _F ′	0.47999	1.49267			
n _{He-Cd}	0.44157	1.49548			
ng	0.435835	1.49596			
n _h	0.404656	1.49898			
n _i	0.365015	1.50406			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0162		
$\Delta heta_{C,A'}$	0.0023		
$arDelta heta_{ extsf{g,d}}$	0.0020		
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0022		
$arDelta heta_{i,g}$	0.0299		

Constants of Dispersion Formula				
A ₁	1.17447043			
A_2	1.40056154•10 ⁻²			
A_3	1.19272435			
B ₁	8.41855181•10 ⁻³			
B ₂	-5.81790767•10 ⁻²			
B ₃	1.29599726•10 ²			

Other P	ties	
Bubble Quality Group	В	
Specific Gravity	d	2.46
Remarks		

Partial Dispersions				
n _C –n _t	0.006194			
n _C -n _A ′	0.002522			
n _d –n _C	0.002146			
n _e –n _C	0.003803			
n _g –n _d	0.008474			
n _g –n _F	0.003679			
n _h –n _g	0.003019			
n _i –n _g	0.008099			
n _C ′–n _t	0.006539			
n _e –n _C ′	0.003458			
n _F ′–n _e	0.003526			
n _i –n _F ′	0.011390			

Therr	es		
Strain Point	StP	(℃)	457
Annealing Point	AP	(℃)	491
Transformation Temperati	ue Tg	(℃)	500
Yield Point	At	(℃)	568
Softening Point	SP	(℃)	679
Expansion Coefficients	(-30~	·+70°C)	90
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	95
Thermal Conducti	vity k ((W /m•K)	1.007

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	623
Rigidity Modulus G	$(10^8 N/m^2)$	254
Poisson's Ratio	σ	0.227
Knoop Hardness	Hk	520[5]
Abrasion	Aa	111
Photoelastic Consta (nm/cm/10 ⁵ Pa	/)	2.87

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	3			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	3.0			
Phosphate Resistance PR	2.0			

Temperature Coefficients of Refractive Index								
Range of Temp	oerature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	C'	He-Ne	D	е	F	g
−40 ~	-20	-1.3	-1.2	-1.2	-1.1	-1.1	-0.9	-0.7
−20 ~	0	-1.3	-1.1	-1.1	-1.0	-1.0	-0.8	-0.6
0 ~	20	-1.3	-1.1	-1.0	-0.9	-0.8	-0.6	-0.4
20 ~	40	-1.1	-0.8	-0.8	-0.7	-0.6	-0.4	-0.3
40 ~	60	-1.0	-0.6	-0.6	-0.5	-0.4	-0.2	0.0
60 ~	80	-0.9	-0.4	-0.4	-0.3	-0.2	-0.1	0.2

Deletive Destin	Diamaraiana	
Relative Partial Dispersions		
$ heta_{C,t}$	0.8924	
$ heta_{C,A'}$	0.3633	
$ heta_{\sf d,C}$	0.3092	
$ heta_{ extsf{e}, extsf{C}}$	0.5479	
$ heta_{ extsf{g,d}}$	1.2209	
$ heta_{ extsf{g}, extsf{F}}$	0.5300	
$ heta_{h,g}$	0.4350	
$ heta_{i,g}$	1.1668	
θ΄C΄,t	0.9363	
$\theta'_{e,C'}$	0.4951	
$ heta^{'}$ F $^{'}$,e	0.5049	
$\theta'_{i,F'}$	1.6309	

Coloring		
λ 80/λ 5	31/28	

Internal Trar	
λ (nm)	τ 10mm
280	0.13
290	0.43
300	0.73
310	0.89
320	0.961
330	0.984
340	0.992
350	0.995
360	0.995
370	0.998
380	0.998
390	0.999
400	0.999
420	0.999
440	0.999
460	0.999
480	0.999
500	0.999
550	0.999
600	0.999
650	0.999
700	0.999
800	0.999
900	0.999
1000	0.998
1200	0.998
1400	0.982
1600	0.992
1800	0.985
2000	0.971
2200	0.88
2400	0.87

S-BSL 7

Refractive Index	n _d	1.51633 1.516330	Abbe Number ν _d	64.1 64.14	Dispersion NF-NC	0.00805 0.008050
Refractive	n _e	1.518251	Abbe Number ν_{e}	63.93	Dispersion $\mathbf{n}_{F'} - \mathbf{n}_{C'}$	0.008107

Refractive Indices		
	λ (μ m)	
n 2325	2.32542	1.48899
n 1970	1.97009	1.49462
n 1530	1.52958	1.50050
n 1129	1.12864	1.50536
n _t	1.01398	1.50686
n _s	0.85211	1.50935
n _A ′	0.76819	1.51097
n _r	0.70652	1.51243
nc	0.65627	1.51386
n _C ′	0.64385	1.51425
n _{He-Ne}	0.6328	1.51462
n_D	0.58929	1.51626
n _d	0.58756	1.51633
n _e	0.54607	1.51825
n _F	0.48613	1.52191
n _F ′	0.47999	1.52236
n _{He-Cd}	0.44157	1.52564
ng	0.435835	1.52621
n _h	0.404656	1.52977
n _i	0.365015	1.53578

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0211	
$\Delta heta_{C,A'}$	0.0044	
$arDelta heta_{ extsf{g,d}}$	-0.0037	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0024	
$\Delta heta_{i,g}$	0.0010	

Constants of Dispersion Formula		
A ₁	1.15150190	
A_2	1.18583612•10 ⁻¹	
A ₃	1.26301359	
B ₁	1.05984130•10 ⁻²	
B ₂	-1.18225190•10 ⁻²	
B ₃	1.29617662•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	2.52	
Remarks			

	_	
Partial Dispersions		
n _C –n _t	0.006993	
n _C -n _A ′	0.002882	
n _d –n _C	0.002475	
n _e –n _C	0.004396	
n _g –n _d	0.009884	
n _g –n _F	0.004309	
n _h –n _g	0.003554	
n _i –n _g	0.009571	
n _C '-n _t	0.007389	
n _e –n _C ′	0.004000	
n _F '–n _e	0.004107	
n _i –n _F ′	0.013427	

Thermal Properties			
Strain Point	StP	(\mathcal{C})	532
Annealing Point	AP	(\mathcal{C})	563
Transformation Temperatu	ne Tg	(\mathcal{C})	576
Yield Point	At	(\mathcal{C})	625
Softening Point	SP	(℃)	718
Expansion Coefficients	(-30~	·+70℃)	72
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	86
Thermal Conductiv	vity k ((W /m•K)	1.130

Mechanical Properties			
Young's Modulus E	$(10^8 N/m^2)$	800	
Rigidity Modulus G	$(10^8 N/m^2)$	332	
Poisson's Ratio	σ	0.205	
Knoop Hardness	Hk	570[6]	
Abrasion	Aa	94	
Photoelastic Consta (nm/cm/10 ⁵ Pa	/)	2.79	

Chemical Properties		
Water Resistance (Powder) Group RW(P)		
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group W (S)	1~2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	2.0	

Temperature Coefficients of Refractive Index								
Range of Tem	perature		dr	n / dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)		t	C	He-Ne	D	е	F	g
−40 ~	-20	2.1	2.3	2.3	2.4	2.5	2.7	3.0
−20 ~	0	2.1	2.4	2.4	2.5	2.6	2.8	3.1
0 ~	20	2.2	2.5	2.5	2.6	2.7	3.0	3.2
20 ~	40	2.2	2.6	2.6	2.7	2.8	3.1	3.3
40 ~	60	2.3	2.6	2.7	2.8	2.9	3.2	3.5
60 ~	80	2.4	2.7	2.7	2.9	3.0	3.3	3.6

Relative Partial Dispersions				
$\theta_{C,t}$	0.8687			
$ heta_{C,A'}$	0.3580			
$ heta_{\sf d,C}$	0.3075			
$ heta_{e,C}$	0.5461			
$ heta_{ extsf{g,d}}$	1.2278			
$ heta_{ extsf{g}, extsf{F}}$	0.5353			
$ heta_{h,g}$	0.4415			
$ heta_{i,g}$	1.1889			
θ´c′,t	0.9114			
θ'e,C'	0.4934			
$ heta^{'}$ F $^{'}$,e	0.5066			
$\theta'_{i,F'}$	1.6562			

Colo	ring
λ 80/λ 5	33/29

Internal Trar	
λ (nm)	au 10mm
280	
290	0.08
300	0.31
310	0.58
320	0.77
330	0.88
340	0.940
350	0.968
360	0.984
370	0.991
380	0.991
390	0.996
400	0.997
420	0.996
440	0.995
460	0.995
480	0.996
500	0.996
550	0.998
600	0.997
650	0.997
700	0.998
800	0.998
900	0.997
1000	0.996
1200	0.995
1400	0.982
1600	0.991
1800	0.980
2000	0.961
2200	0.89
2400	0.85

S-BSM 2

Refractive Index	n _d	1.60738 1.607379	Abbe Number ν_d	56.8 56.81	Dispersion NF-NC	0.01069 0.010691
Refractive	ne	1 609927	Abbe Number ν_{e}	56 53	Dispersion NF' -NC'	0.010790

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.57874			
n 1970	1.97009	1.58374			
n 1530	1.52958	1.58913			
N 1129	1.12864	1.59398			
n _t	1.01398	1.59561			
n _s	0.85211	1.59849			
n _A ′	0.76819	1.60048			
n _r	0.70652	1.60231			
n _C	0.65627	1.60414			
n _C ′	0.64385	1.60466			
n _{He-Ne}	0.6328	1.60514			
n_D	0.58929	1.60728			
n _d	0.58756	1.60738			
n _e	0.54607	1.60993			
n _F	0.48613	1.61483			
n _F ′	0.47999	1.61545			
n _{He-Cd}	0.44157	1.61992			
n _g	0.435835	1.62070			
n_h	0.404656	1.62558			
n _i	0.365015	1.63394			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	-0.0150		
$\Delta heta_{C,A'}$	-0.0022		
$arDelta heta_{ extsf{g,d}}$	-0.0010		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0013		
$arDelta heta_{i,g}$	-0.0105		

Constants of Dispersion Formula				
A_1	8.67168676•10 ⁻¹			
A_2	6.72848343•10 ⁻¹			
A_3	1.18456107			
B ₁	3.69311003•10 ⁻³			
B ₂	1.81652804•10 ⁻²			
B ₃	1.32376147•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.53		
Remarks				

Partial Dispersions				
n _C –n _t	0.008534			
n _C -n _A ′	0.003662			
n _d –n _C	0.003235			
n _e –n _C	0.005783			
n _g –n _d	0.013318			
n _g –n _F	0.005862			
n _h –n _g	0.004885			
n _i –n _g	0.013244			
n _C ′–n _t	0.009048			
n _e –n _C ′	0.005269			
n _F ′–n _e	0.005521			
n _i –n _F ′	0.018493			

Therr	nal P	roperti	es
Strain Point	StP	(\mathcal{C})	612
Annealing Point	AP	(℃)	643
Transformation Temperatu	ne Tg	(℃)	654
Yield Point	At	(℃)	690
Softening Point	SP	(℃)	778
Expansion Coefficients	(-30~	+70°C)	65
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	74
Thermal Conductiv	vity k ((W /m•K)	0.802

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	780				
Rigidity Modulus G	$(10^8 N/m^2)$	309				
Poisson's Ratio	σ	0.264				
Knoop Hardness	Hk	560[6]				
Abrasion	Aa	133				
Photoelastic Constant (nm/cm/10 ⁵ Pa		2.26				

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	2			
Acid Resistance (Surface) Group SR	5.2			
Phosphate Resistance PR	2.2			

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	/ dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)	t	C'	He-Ne	D	е	F	g
−40 ~ −20	3.1	3.5	3.6	3.7	3.8	4.2	4.5
−20 ~ 0	3.2	3.6	3.7	3.8	3.9	4.3	4.7
0 ~ 20	3.3	3.7	3.7	3.9	4.0	4.4	4.8
20 ~ 40	3.4	3.8	3.8	4.0	4.1	4.5	4.9
40 ~ 60	3.4	3.9	3.9	4.1	4.3	4.7	5.1
60 ~ 80	3.5	4.0	4.0	4.2	4.4	4.8	5.2

Relative Partial Dispersions					
$\theta_{C,t}$	0.7982				
$ heta_{C,A'}$	0.3425				
$ heta_{\sf d,C}$	0.3026				
$ heta_{ extsf{e}, extsf{C}}$	0.5409				
$ heta_{ extsf{g,d}}$	1.2457				
$ heta_{ extsf{g}, extsf{F}}$	0.5483				
$ heta_{h,g}$	0.4569				
$ heta_{i,g}$	1.2388				
θ´c′,t	0.8386				
θ'e,C'	0.4883				
$ heta^{'}$ F $^{'}$,e	0.5117				
$ heta^{'}_{i,F^{'}}$	1.7139				

Coloring					
λ 80/λ 5	35/31				

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 0.04 320 0.27 330 0.57 340 0.77 350 0.88 360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.997 1800 0.992 2000 0.984 2200 0.951 2400 0.89		
280 290 300 310 0.04 320 0.27 330 0.57 340 0.77 350 0.88 360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.997 1800 0.992 2000 0.984 2200 0.951	Internal Trar	nsmittance
290 300 310 0.04 320 0.27 330 0.57 340 0.77 350 0.88 360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	λ (nm)	au 10mm
300 310 0.04 320 0.27 330 0.57 340 0.77 350 0.88 360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	280	
310 0.04 320 0.27 330 0.57 340 0.77 350 0.88 360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951		
320 0.27 330 0.57 340 0.77 350 0.88 360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	300	
330 0.57 340 0.77 350 0.88 360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	310	0.04
340 0.77 350 0.88 360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	320	0.27
350 0.88 360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 800 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	330	0.57
360 0.941 370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	340	0.77
370 0.967 380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	350	0.88
380 0.981 390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	360	0.941
390 0.987 400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	370	0.967
400 0.991 420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	380	0.981
420 0.991 440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	390	0.987
440 0.990 460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	400	0.991
460 0.991 480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	420	0.991
480 0.993 500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	440	0.990
500 0.995 550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	460	0.991
550 0.997 600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	480	0.993
600 0.997 650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	500	0.995
650 0.996 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	550	0.997
700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	600	0.997
800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	650	0.996
900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	700	0.998
1000 0.998 1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	800	0.999
1200 0.998 1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	900	0.998
1400 0.994 1600 0.997 1800 0.992 2000 0.984 2200 0.951	1000	0.998
1600 0.997 1800 0.992 2000 0.984 2200 0.951	1200	0.998
1800 0.992 2000 0.984 2200 0.951	1400	0.994
2000 0.984 2200 0.951	1600	0.997
2200 0.951	1800	0.992
	2000	0.984
2400 0.89	2200	0.951
	2400	0.89

S-BSM 4

Refractive Index	n _d	1.61272 1.612716	Abbe Number νd	58.7 58.72	Dispersion NF-NC	0.01043 0.010435
Refractive Index	n _e	1.615204	Abbe Number ν_{e}	58.45	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.010526

Partial Dispersions

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.58338			
n 1970	1.97009	1.58871			
n 1530	1.52958	1.59440			
n 1129	1.12864	1.59941			
n _t	1.01398	1.60107			
n _s	0.85211	1.60396			
n _A ′	0.76819	1.60594			
n _r	0.70652	1.60775			
n _C	0.65627	1.60955			
n _C ′	0.64385	1.61005			
n _{He-Ne}	0.6328	1.61052			
n_D	0.58929	1.61262			
n _d	0.58756	1.61272			
n _e	0.54607	1.61520			
n _F	0.48613	1.61998			
n _F ′	0.47999	1.62058			
n _{He-Cd}	0.44157	1.62491			
n _g	0.435835	1.62567			
n _h	0.404656	1.63039			
n _i	0.365015	1.63845			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0101			
$\Delta heta_{C,A'}$	-0.0012			
$arDelta heta_{ extsf{g,d}}$	-0.0016			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0016			
$arDelta heta_{i,g}$	-0.0088			

Constants of Dispersion Formula				
A ₁	9.62443080•10 ⁻¹			
A_2	5.95939234•10 ⁻¹			
A_3	1.10558352			
B ₁	4.68062141•10 ⁻³			
B ₂	1.78772082•10 ⁻²			
B ₃	1.15896432•10 ²			

Other Properties					
Bubble Quality Group B					
Specific Gravity d 3.57					
Remarks					

i di tidi Dispersions				
n _C –n _t	0.008474			
n _C –n _A ′	0.003609			
n _d –n _C	0.003169			
n _e –n _C	0.005657			
n _g –n _d	0.012952			
n _g –n _F	0.005686			
n _h –n _g	0.004723			
n _i –n _g	0.012778			
n _C ′–n _t	0.008978			
n _e –n _C ′	0.005153			
n _F '–n _e	0.005373			
n _i –n _F ′	0.017869			
The server of Duran audion				

Thermal Properties					
Strain Point	StP	(\mathcal{C})	613		
Annealing Point	AP	(\mathcal{C})	643		
TiansformationTemperatu	re Tg	(\mathcal{C})	660		
Yield Point	At	(\mathcal{C})	694		
Softening Point	SP	(\mathcal{C})	757		
Expansion Coefficients	(-30~	+70°C)	67		
α (10 ⁻⁷ /°C)	(+100~	+300°C)	76		
Thermal Conductiv	vity k (W/m⋅K)	0.836		

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	816
Rigidity Modulus G	$(10^8 N/m^2)$	322
Poisson's Ratio	σ	0.265
Knoop Hardness	Hk	560[6]
Abrasion	Aa	142
Photoelastic Constant (nm/cm/10 ⁵ Pa		1.77

Chemical Properties					
Water Resistance (Powder) Group $RW(P)$	2				
Acid Resistance (Powder) Group RA(P)	4				
Weathering Resistance (Surface) Group $W(s)$	1~2				
Acid Resistance (Surface) Group SR	51.2				
Phosphate Resistance PR	2.2				

Temperature Coefficients of Refractive Index								
Range of Temper	rature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	C´	He-Ne	D	е	F	g
-40 ~ −2	20	1.8	2.0	2.0	2.1	2.2	2.5	2.8
−20 ~	0	1.9	2.1	2.1	2.2	2.3	2.6	2.9
0 ~ 2	20	1.9	2.2	2.2	2.3	2.4	2.8	3.1
20 ~ 4	40	2.0	2.3	2.3	2.4	2.6	2.9	3.2
40 ~ 6	60	2.0	2.3	2.4	2.5	2.7	3.0	3.3
60 ~ 8	30	2.1	2.4	2.5	2.6	2.8	3.1	3.5

Relative Partia	l Dispersions
$\theta_{C,t}$	0.8121
$ heta_{C,A'}$	0.3459
$ heta_{\sf d,C}$	0.3037
$ heta_{e,C}$	0.5421
$ heta_{ extsf{g,d}}$	1.2412
$ heta_{ extsf{g}, extsf{F}}$	0.5449
$ heta_{h,g}$	0.4526
$ heta_{i,g}$	1.2245
θ´c′,t	0.8529
θ'e,C'	0.4895
$ heta^{'}$ F $^{'}$,e	0.5105
$\theta'_{i,F'}$	1.6976

Coloring					
λ 80/λ 5	35/31				

Internal Tran	nsmittance
λ (nm)	au 10mm
280	
290	
300	
310	0.04
320	0.24
330	0.52
340	0.73
350	0.85
360	0.924
370	0.960
380	0.977
390	0.985
400	0.991
420	0.994
440	0.995
460	0.996
480	0.997
500	0.998
550	0.998
600	0.998
650	0.998
700	0.998
800	0.998
900	0.997
1000	0.997
1200	0.997
1400	0.990
1600	0.994
1800	0.985
2000	0.971
2200	0.911
2400	0.82

S-BSM9

Refractive Index	n _d	1.61405 1.614047	Abbe Number νd	55.0 54.99	Dispersion NF-NC	0.01117 0.011167
Refractive	ne	1.616707	Abbe Number ν_{e}	54.70	Dispersion N F' - N C'	0.011274

	Refractive Indi	ces
	λ (μ m)	
n 2325	2.32542	1.58406
n 1970	1.97009	1.58932
n 1530	1.52958	1.59499
n 1129	1.12864	1.60007
n _t	1.01398	1.60177
ns	0.85211	1.60478
n _A ′	0.76819	1.60686
n _r	0.70652	1.60876
n_{C}	0.65627	1.61067
n _C ′	0.64385	1.61121
n _{He-Ne}	0.6328	1.61171
n_D	0.58929	1.61395
n_d	0.58756	1.61405
n _e	0.54607	1.61671
n _F	0.48613	1.62184
n _F ′	0.47999	1.62248
n _{He-Cd}	0.44157	1.62717
ng	0.435835	1.62799
n _h	0.404656	1.63314
n _i	0.365015	1.64200

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"					
$\Delta heta_{ extsf{C,t}}$	-0.0078				
$\Delta heta_{C,A'}$	-0.0007				
$arDelta heta_{ extsf{g,d}}$	-0.0018				
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0017				
$\Delta heta_{i,g}$	-0.0098				

Constants of Dispersion Formula				
A ₁	1.37020077			
A_2	1.89397267•10 ⁻¹			
A_3	1.24202324			
B ₁	7.57631457•10 ⁻³			
B ₂	3.00787515•10 ⁻²			
B ₃	1.31350111•10 ²			

Other Properties					
Bubble Quality Group					
Specific Gravity	d	3.22			
Remarks					

		Tempe	rature Co	efficients c	of Refracti	ive Index		
Range of Tem	perature		dr	ı / <mark>dt</mark> rela	tive (1	0 ⁻⁶ / ℃)	
(\mathcal{C})	(°C) t C' He-Ne D e F' g					g		
−40 ~	-20	2.8	3.2	3.3	3.4	3.5	3.9	4.2
–20 ~	0	2.9	3.3	3.3	3.5	3.6	4.0	4.4
0 ~	20	3.0	3.4	3.4	3.6	3.7	4.1	4.5
20 ~	40	3.0	3.5	3.5	3.6	3.8	4.2	4.6
40 ~	60	3.1	3.6	3.6	3.7	3.9	4.3	4.7
60 ~	80	3.2	3.7	3.7	3.8	4.0	4.4	4.9

Partial Dispersions		
n _C –n _t	0.008899	
n _C –n _A ′	0.003817	
n _d –n _C	0.003374	
n _e –n _C	0.006034	
n _g –n _d	0.013944	
n _g –n _F	0.006151	
n _h –n _g	0.005147	
n _i –n _g	0.014012	
n _C ′–n _t	0.009434	
n _e –n _C ′	0.005499	
n _F ′–n _e	0.005775	
n _i –n _F ′	0.019521	

Therm	al Pro	perties	5
Strain Point	StP	(\mathcal{C})	633
Annealing Point	AP	(\mathcal{C})	662
Transformation Temperatur	e Tg	$(^{\circ}C)$	679
Yield Point	At	(°C)	723
Softening Point	SP	(°C)	797
Expansion Coefficients	(-30~	+70°C)	64
$\alpha (10^{-7})^{\circ}C)$ (+	100~+	300℃)	77
Thermal Conductivity	k(W/	m•K)	0.916

Mechanical Properties		
Young's Modulus E	$(10^8 N/m^2)$	865
Rigidity Modulus G	$(10^8 N/m^2)$	342
Poisson's Ratio	σ	0.264
Knoop Hardness	Hk	560[6]
Abrasion	Aa	124
Photoelastic Constar (nm/cm/10 ⁵ Pa		1.94

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	2	
Acid Resistance (Powder) Group RA(P)	2	
Weathering Resistance (Surface) Group $\mathbf{W}(\mathbf{S})$	2	
Acid Resistance (Surface) Group SR	4.2	
Phosphate Resistance PR	1.0	
-		

Relative Partial Dispersions		
$ heta_{C,t}$	0.7969	
$ heta_{C,A'}$	0.3418	
$ heta_{\sf d,C}$	0.3021	
$ heta_{ extsf{e}, extsf{C}}$	0.5403	
$ heta_{ extsf{g,d}}$	1.2487	
$ heta_{ extsf{g}, extsf{F}}$	0.5508	
$ heta_{h,g}$	0.4609	
$ heta_{i,g}$	1.2548	
θ´c′,t	0.8368	
θ'e,C'	0.4878	
θ F',e	0.5122	
$\theta'_{i,F'}$	1.7315	

Colo	ring
λ 80/λ 5	37/33

Internal Tree	
Internal Tran	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	0.00
330	0.03
340	0.28
350	0.60
360	0.80
370	0.904
380	0.947
390	0.969
400	0.980
420	0.987
440	0.989
460	0.991
480	0.993
500	0.995
550	0.997
600	0.996
650	0.995
700	0.996
800	0.998
900	0.997
1000	0.995
1200	0.996
1400	0.992
1600	0.994
1800	0.989
2000	0.980
2200	0.940
2400	0.88
	NUADA 00 06 07 0

S-BSM10

625568

Refractive Index	n_{d}	1.62280 1.622799	Abbe Number $ u_{ m d}$	57.0 57.05	Dispersion NF-NC	0.01092 0.010916
Refractive Index	n_{e}	1.625401	Abbe Number $ u_{ m e}$	56.78	Dispersion $n_{F'} - n_{C'}$	0.011014

Refractive Indices		
	λ (μ m)	
n 2325	2.32542	1.59271
n 1970	1.97009	1.59809
n 1530	1.52958	1.60386
n 1129	1.12864	1.60898
n _t	1.01398	1.61069
n _s	0.85211	1.61368
n _A ′	0.76819	1.61573
n _r	0.70652	1.61761
n _C	0.65627	1.61949
n _C ′	0.64385	1.62001
n _{He-Ne}	0.6328	1.62051
n_D	0.58929	1.62270
n _d	0.58756	1.62280
n _e	0.54607	1.62540
n _F	0.48613	1.63041
n _F ′	0.47999	1.63103
n _{He-Cd}	0.44157	1.63558
ng	0.435835	1.63637
n _h	0.404656	1.64133
n _i	0.365015	1.64980

Deviation of Rel	Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"	
$\Delta heta_{ extsf{C,t}}$	-0.0082	
$\Delta heta_{C,A'}$	-0.0006	
$arDelta heta_{ extsf{g,d}}$	-0.0031	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0028	
$arDelta heta_{i,g}$	-0.0172	

Constants of Dispersion Formula		
A ₁	9.45443081•10 ⁻¹	
A_2	6.43237376•10 ⁻¹	
A_3	1.17752968	
B ₁	1.57263798•10 ⁻²	
B ₂	1.61924066•10 ⁻³	
B ₃	1.21361748•10 ²	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	3.60
Remarks		

Partial Dispersions		
n _C –n _t	0.008800	
n _C –n _A ′	0.003759	
n _d –n _C	0.003310	
n _e –n _C	0.005912	
n _g –n _d	0.013570	
n _g –n _F	0.005964	
n _h –n _g	0.004960	
n _i –n _g	0.013428	
n _C '-n _t	0.009326	
n _e –n _C ′	0.005386	
n _F ′–n _e	0.005628	
n _i –n _F ′	0.018768	

Therr	nal P	roperti	es
Strain Point	StP	(\mathcal{C})	622
Annealing Point	AP	(℃)	650
TransformationTemperatu	ne Tg	(℃)	668
Yield Point	At	(℃)	709
Softening Point	SP	(℃)	773
Expansion Coefficients	(-30~	+70°C)	65
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	76
Thermal Conducti	vity k ((W /m•K)	0.822

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	835
Rigidity Modulus G	$(10^8 N/m^2)$	330
Poisson's Ratio	σ	0.266
Knoop Hardness	Hk	550[6]
Abrasion	Aa	142
Photoelastic Constant (nm/cm/10 ⁵ Pa		1.88

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	2
Acid Resistance (Powder) Group RA(P)	3
Weathering Resistance (Surface) Group $\mathbf{W}(\mathbf{S})$	2
Acid Resistance (Surface) Group SR	51.2
Phosphate Resistance PR	1.0

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	ı / dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)	t	C´	He-Ne	D	е	F	g
−40 ~ −20	2.0	2.4	2.4	2.5	2.6	3.0	3.3
−20 ~ 0	2.1	2.5	2.5	2.6	2.7	3.1	3.4
0 ~ 20	2.2	2.6	2.6	2.7	2.8	3.2	3.5
20 ~ 40	2.2	2.6	2.7	2.8	2.9	3.3	3.6
40 ~ 60	2.3	2.7	2.8	2.9	3.0	3.4	3.8
60 ~ 80	2.4	2.8	2.8	3.0	3.1	3.5	3.9

Relative Partial Dispersions			
$\theta_{C,t}$	0.8062		
$ heta_{C,A'}$	0.3444		
$ heta_{\sf d,C}$	0.3032		
$ heta_{e,C}$	0.5416		
$ heta_{ extsf{g,d}}$	1.2431		
$ heta_{ extsf{g}, extsf{F}}$	0.5464		
$ heta_{h,g}$	0.4544		
$ heta_{i,g}$	1.2301		
θ´c΄,t	0.8467		
θ' _{e,C'}	0.4890		
$ heta^{'}$ $_{F^{'}}$,e	0.5110		
$\theta'_{i,F'}$	1.7040		

Colo	ring
λ 80/λ 5	35/31

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 0.08 320 0.31 330 0.57 340 0.75 350 0.86 360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.999 1600 0.993 1800 0.985 2000 0.913 2400 0.82 0.82		
280 290 300 310 0.08 320 0.31 330 0.57 340 0.75 350 0.86 360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 650 0.998 650 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	Internal Trar	nsmittance
290 300 310 0.08 320 0.31 330 0.57 340 0.75 350 0.86 360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	,, (,,,,,,	τ 10mm
300 310 0.08 320 0.31 330 0.57 340 0.75 350 0.86 360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913		
310 0.08 320 0.31 330 0.57 340 0.75 350 0.86 360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 650 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913		
320 0.31 330 0.57 340 0.75 350 0.86 360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 650 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1400 0.997 1400 0.993 1800 0.985 2000 0.971 2200 0.913	300	
330 0.57 340 0.75 350 0.86 360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913		0.08
340 0.75 350 0.86 360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 650 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913		
350 0.86 360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	330	0.57
360 0.929 370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 650 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	340	0.75
370 0.962 380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 650 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	350	0.86
380 0.977 390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	360	0.929
390 0.986 400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	370	0.962
400 0.991 420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	380	0.977
420 0.994 440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	390	0.986
440 0.995 460 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1800 0.985 2000 0.913	400	0.991
460 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	420	0.994
480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	440	0.995
500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	460	0.996
550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	480	0.997
600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	500	0.998
650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.913	550	0.998
700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	600	0.998
800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	650	0.997
900 0.998 1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	700	0.998
1000 0.997 1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	800	0.998
1200 0.997 1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	900	0.998
1400 0.990 1600 0.993 1800 0.985 2000 0.971 2200 0.913	1000	0.997
1600 0.993 1800 0.985 2000 0.971 2200 0.913	1200	0.997
1800 0.985 2000 0.971 2200 0.913	1400	0.990
2000 0.971 2200 0.913	1600	0.993
2200 0.913	1800	0.985
	2000	0.971
2400 0.82	2200	0.913
	2400	0.82

S-BSM14

Refractive Index	n _d	1.60311 1.603112	Abbe Number νd	60.7 60.64	Dispersion NF-NC	0.00994 0.009945
Refractive	ne	1.605484	Abbe Number ν_{e}	60.39	Dispersion NF' -NC'	0.010027

n1970 1.97009 1.57880 n1530 1.52958 1.58493 n1129 1.12864 1.59013 nt 1.01398 1.59180 ns 0.85211 1.59463 nA' 0.76819 1.59660 nr 0.70652 1.59838 nC 0.65627 1.60008 nC' 0.64385 1.60056 nHe-Ne 0.6328 1.60103 nD 0.58929 1.60303 nd 0.58756 1.60313 ne 0.54607 1.60548 nF 0.48613 1.61003 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.61543					
N2325 2.32542 1.57300 N1970 1.97009 1.57880 N1530 1.52958 1.5849 N1129 1.12864 1.59013 Nt 1.01398 1.59180 Ns 0.85211 1.59467 NA' 0.76819 1.59660 Nr 0.70652 1.59835 NC 0.65627 1.60008 NC' 0.64385 1.60105 NHe-Ne 0.6328 1.60105 ND 0.58929 1.60302 Nd 0.58756 1.60315 Ne 0.48613 1.61002 NF' 0.47999 1.61059 NHe-Cd 0.44157 1.61470 Ng 0.435835 1.6154*	Refractive Indices				
n1970 1.97009 1.57880 n1530 1.52958 1.58493 n1129 1.12864 1.59013 nt 1.01398 1.59180 ns 0.85211 1.59463 nA' 0.76819 1.59660 nr 0.70652 1.59838 nC 0.65627 1.60008 nC' 0.64385 1.60056 nHe-Ne 0.6328 1.60103 nD 0.58929 1.60303 nd 0.58756 1.60313 ne 0.54607 1.60548 nF 0.48613 1.61003 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.61543		λ (μ m)			
N1530 1.52958 1.5849 N1129 1.12864 1.59013 Nt 1.01398 1.59180 Ns 0.85211 1.59467 NA' 0.76819 1.59660 Nr 0.70652 1.59835 NC 0.65627 1.60008 NC' 0.64385 1.60056 NHe-Ne 0.6328 1.6010 ND 0.58929 1.60302 Nd 0.58756 1.6031 Ne 0.48613 1.61002 NF' 0.47999 1.61059 NHe-Cd 0.44157 1.61470 Ng 0.435835 1.6154*	n 2325	2.32542	1.57300		
N1129 1.12864 1.59013 nt 1.01398 1.59180 ns 0.85211 1.59463 nA' 0.76819 1.59660 nr 0.70652 1.59838 nc 0.65627 1.60008 nC' 0.64385 1.60056 nHe-Ne 0.6328 1.60103 nD 0.58929 1.60302 nd 0.58756 1.60313 ne 0.48613 1.61002 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154*	n 1970	1.97009	1.57880		
nt 1.01398 1.59180 ns 0.85211 1.59467 nA' 0.76819 1.59660 nr 0.70652 1.59838 nC 0.65627 1.60008 nC' 0.64385 1.60103 nD 0.58929 1.60302 nd 0.58756 1.60313 ne 0.54607 1.60548 nF 0.48613 1.61002 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154*	n 1530	1.52958	1.58491		
ns 0.85211 1.59467 nA' 0.76819 1.59660 nr 0.70652 1.59838 nc 0.65627 1.60008 nc' 0.64385 1.60056 nb 0.6328 1.60107 nb 0.58929 1.60302 nd 0.58756 1.60317 ne 0.54607 1.60548 nF 0.48613 1.61002 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.615470	n 1129	1.12864	1.59013		
nA' 0.76819 1.59660 nr 0.70652 1.59835 nC 0.65627 1.60008 nC' 0.64385 1.60056 nHe-Ne 0.6328 1.6010 nD 0.58929 1.60302 nd 0.58756 1.6031 ne 0.54607 1.60548 nF 0.48613 1.61002 nF' 0.47999 1.61058 nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154*	n _t	1.01398	1.59180		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ns	0.85211	1.59467		
nc 0.65627 1.60008 nc' 0.64385 1.60056 nHe-Ne 0.6328 1.60107 nD 0.58929 1.60302 nd 0.58756 1.60317 ne 0.54607 1.60548 nF 0.48613 1.61002 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.615470	n _A ′	0.76819	1.59660		
nc' 0.64385 1.60056 nHe-Ne 0.6328 1.6010 nD 0.58929 1.60302 nd 0.58756 1.6031 ne 0.54607 1.60548 nF 0.48613 1.61002 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154	n _r	0.70652	1.59835		
nHe-Ne 0.6328 1.6010 nD 0.58929 1.60302 nd 0.58756 1.6031 ne 0.54607 1.60548 nF 0.48613 1.61002 nF' 0.47999 1.61058 nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154	n_{C}	0.65627	1.60008		
nD 0.58929 1.60302 nd 0.58756 1.6031 ne 0.54607 1.60548 nF 0.48613 1.61002 nF' 0.47999 1.61058 nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154	n _C ′	0.64385	1.60056		
nd 0.58756 1.6031 ne 0.54607 1.60548 nF 0.48613 1.61002 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154	n _{He-Ne}	0.6328	1.60101		
ne 0.54607 1.60548 nF 0.48613 1.61002 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154*	n_D	0.58929	1.60302		
nF 0.48613 1.61002 nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154	n _d	0.58756	1.60311		
nF' 0.47999 1.61059 nHe-Cd 0.44157 1.61470 ng 0.435835 1.61543	n _e	0.54607	1.60548		
nHe-Cd 0.44157 1.61470 ng 0.435835 1.6154	n _F	0.48613	1.61002		
ng 0.435835 1.6154	n _F ′	0.47999	1.61059		
g 01.100000	n _{He-Cd}	0.44157	1.61470		
	ng	0.435835	1.61541		
n _h 0.404656 1.61987	n _h	0.404656	1.61987		
n i 0.365015 1.6274 5	n _i	0.365015	1.62745		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0009	
$arDelta heta_{C,A'}$	0.0007	
$arDelta heta_{ extsf{g,d}}$	-0.0023	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0019	
$arDelta heta_{i,g}$	-0.0062	

Constants of Dispersion Formula		
A ₁	1.28286270	
A_2	2.47647429•10 ⁻¹	
A_3	1.10383999	
B ₁	1.22902399•10 ⁻²	
B ₂	-6.13142361•10 ⁻³	
B ₃	1.06883378•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.43	
Remarks			

Partial Dispersions			
n _C –n _t	0.008275		
n _C –n _A ′	0.003482		
n _d –n _C	0.003033		
n _e –n _C	0.005405		
n _g –n _d	0.012297		
n _g –n _F	0.005385		
n _h –n _g	0.004461		
n _i –n _g	0.012043		
n _C ′–n _t	0.008758		
n _e –n _C ′	0.004922		
n _F ′–n _e	0.005105		
n _i –n _F ′	0.016863		

Therr	nal P	roperti	es
Strain Point	StP	(\mathcal{C})	614
Annealing Point	AP	(℃)	641
Transformation Temperat.	ne Tg	(℃)	663
Yield Point	At	(℃)	698
Softening Point	SP	(℃)	757
Expansion Coefficients	(-30~	+70°C)	62
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	73
Thermal Conducti	vity k ((W /m•K)	0.891

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	849
Rigidity Modulus G	$(10^8 N/m^2)$	338
Poisson's Ratio	σ	0.257
Knoop Hardness	Hk	570[6]
Abrasion	Aa	131
Photoelastic Constant (nm/cm/10 ⁵ Pa)	. (.)	2.01

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	2			
Acid Resistance (Powder) Group RA(P)	5			
Weathering Resistance (Surface) Group $W(s)$	3			
Acid Resistance (Surface) Group SR	51.2			
Phosphate Resistance PR	2.2			

Temperature Coefficients of Refractive Index								
Range of Temp	perature		dr	n / dt rela	ative (1	0 ⁻⁶ / °C)	
(\mathcal{C})		t	t C' He-Ne D e F' g					
-40 ~	-20	2.5	2.7	2.7	2.8	2.9	3.1	3.4
−20 ~	0	2.5	2.8	2.8	2.9	3.0	3.3	3.5
0 ~	20	2.6	2.9	2.9	3.0	3.1	3.4	3.7
20 ~	40	2.6	2.9	3.0	3.1	3.2	3.5	3.8
40 ~	60	2.7	3.0	3.1	3.2	3.3	3.6	4.0
60 ~	80	2.7	3.1	3.1	3.3	3.4	3.8	4.1

Dalair - Darie	I D'
Relative Partia	Dispersions
$\theta_{C,t}$	0.8321
$ heta_{C,A'}$	0.3501
$ heta_{\sf d,C}$	0.3050
$ heta_{e,C}$	0.5435
$ heta_{ extsf{g,d}}$	1.2365
$ heta_{ extsf{g}, extsf{F}}$	0.5415
$ heta_{h,g}$	0.4486
$ heta_{i,g}$	1.2110
θ´C΄,t	0.8734
θ' _{e,C'}	0.4909
$ heta^{'}$ F $^{'}$,e	0.5091
$\theta'_{i,F'}$	1.6818

Coloring			
λ 80/λ 5	35/30		

Internal Trar	nsmittance
λ (nm)	au 10mm
280	
290	
300	
310	0.17
320	0.45
330	0.68
340	0.82
350	0.906
360	0.948
370	0.968
380	0.980
390	0.987
400	0.991
420	0.994
440	0.994
460	0.995
480	0.996
500	0.997
550	0.998
600	0.998
650	0.998
700	0.998
800	0.999
900	0.998
1000	0.998
1200	0.998
1400	0.990
1600	0.995
1800	0.988
2000	0.976
2200	0.919
2400	0.81

S-BSM15

626579

Refractive Index	n_{d}	1.62299 1.622992	Abbe Number $ u_{ m d} $	58.2 58.16	Dispersion NF-NC	0.01071 0.010711
Refractive Index	ne	1.625545	Abbe Number ν_{e}	57.89	Dispersion $n_{F'} - n_{C'}$	0.010805

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.59236		
n 1970	1.97009	1.59797		
n 1530	1.52958	1.60399		
n 1129	1.12864	1.60927		
n _t	1.01398	1.61100		
n _s	0.85211	1.61399		
n _A ′	0.76819	1.61603		
n _r	0.70652	1.61789		
n _C	0.65627	1.61974		
n _C ′	0.64385	1.62026		
n _{He-Ne}	0.6328	1.62074		
n_D	0.58929	1.62290		
n _d	0.58756	1.62299		
n _e	0.54607	1.62555		
n _F	0.48613	1.63045		
n _F ′	0.47999	1.63106		
n _{He-Cd}	0.44157	1.63552		
ng	0.435835	1.63630		
n _h	0.404656	1.64116		
n _i	0.365015	1.64948		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	-0.0035		
$\Delta heta_{C,A'}$	-0.0001		
$arDelta heta_{ extsf{g,d}}$	-0.0018		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0016		
$arDelta heta_{i,g}$	-0.0069		

Constants of Dispersion Formula				
A ₁	9.53128328•10 ⁻¹			
A_2	6.37613977•10 ⁻¹			
A_3	1.65245647			
B ₁	3.87638985•10 ⁻³			
B ₂	1.85094632•10 ⁻²			
B ₃	1.59442367•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.60		
Remarks				

Partial Dispersions			
n _C –n _t	0.008741		
n _C –n _A ′	0.003709		
n _d –n _C	0.003253		
n _e –n _C	0.005806		
n _g –n _d	0.013304		
n _g –n _F	0.005846		
n _h –n _g	0.004866		
n _i –n _g	0.013186		
n _C '-n _t	0.009259		
n _e –n _C ′	0.005288		
n _F ′–n _e	0.005517		
n _i –n _F ′	0.018420		

Therr	nal P	roperti	es
Strain Point	StP	(℃)	615
Annealing Point	AP	(℃)	639
Transformation Temperatu	ne Tg	(℃)	658
Yield Point	At	(℃)	685
Softening Point	SP	(℃)	746
Expansion Coefficients	(-30~	+70°C)	65
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	78
Thermal Conductiv	vity k ((W /m•K)	0.845

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	854			
Rigidity Modulus G	$(10^8 N/m^2)$	338			
Poisson's Ratio	σ	0.265			
Knoop Hardness	Hk	560[6]			
Abrasion	Aa	133			
Photoelastic Consta (nm/cm/10 ⁵ Pa	. 1.)	1.80			

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	3			
Acid Resistance (Powder) Group RA(P)	5			
Weathering Resistance (Surface) Group $W(s)$	2~3			
Acid Resistance (Surface) Group SR	52.2			
Phosphate Resistance PR	3.2			

Temperature Coefficients of Refractive Index							
Range of Temperature	e	dr	ı / dt rela	ative (1	$0^{-6} / ^{\circ}C$)	
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	1.3	1.6	1.6	1.7	1.8	2.1	2.4
−20 ~ 0	1.4	1.7	1.7	1.8	1.9	2.2	2.5
0 ~ 20	1.4	1.8	1.8	1.9	2.0	2.4	2.7
20 ~ 40	1.5	1.9	1.9	2.0	2.2	2.5	2.8
40 ~ 60	1.6	2.0	2.0	2.1	2.3	2.6	3.0
60 ~ 80	1.6	2.1	2.1	2.2	2.4	2.8	3.1

Relative Partial Dispersions				
$ heta_{C,t}$	0.8161			
$ heta_{C,A'}$	0.3463			
$ heta_{\sf d,C}$	0.3037			
$ heta_{ extsf{e}, extsf{C}}$	0.5421			
$ heta_{ extsf{g,d}}$	1.2421			
$ heta_{ extsf{g}, extsf{F}}$	0.5458			
$ heta_{h,g}$	0.4543			
$ heta_{i,g}$	1.2311			
θ´c΄,t	0.8569			
θ' _{e,C'}	0.4894			
$ heta^{'}$ F $'$,e	0.5106			
θ΄ F΄	1.7048			

Coloring			
λ 80/λ 5	36/32		

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	0.13
340	0.44
350	0.70
360	0.85
370	0.926
380	0.959
390	0.976
400	0.985
420	0.991
440	0.992
460	0.994
480	0.995
500	0.997
550	0.998
600	0.997
650	0.997
700	0.998
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.991
1600	0.994
1800	0.987
2000	0.973
2200	0.918
2400	0.81

S-BSM16

623601

Refractive Index	n_{d}	1.62041 1.620411	Abbe Number ν_{d}	60.3 60.29	Dispersion NF-NC	0.01029 0.010290
Refractive Index	ne	1.622865	Abbe Number ν_{e}	60.03	Dispersion $n_{F'} - n_{C'}$	0.010376

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.58957			
n 1970	1.97009	1.59545			
n 1530	1.52958	1.60168			
n 1129	1.12864	1.60702			
n _t	1.01398	1.60874			
n _s	0.85211	1.61170			
n _A ′	0.76819	1.61368			
n _r	0.70652	1.61549			
nc	0.65627	1.61728			
n _C ′	0.64385	1.61778			
n _{He-Ne}	0.6328	1.61824			
n_D	0.58929	1.62032			
n _d	0.58756	1.62041			
n _e	0.54607	1.62287			
n _F	0.48613	1.62757			
n _F ′	0.47999	1.62815			
n _{He-Cd}	0.44157	1.63241			
ng	0.435835	1.63315			
n_h	0.404656	1.63778			
n _i	0.365015	1.64567			

Deviation of Rel	Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta\theta_{C,t}$ -0.0005					
$\Delta heta_{C,A'}$	0.0004				
$arDelta heta_{ extsf{g,d}}$	-0.0015				
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0012				
$arDelta heta_{i,g}$	-0.0035				

Constants of Dispersion Formula				
A ₁	1.14490383			
A_2	4.39563911•10 ⁻¹			
A_3	1.27688079			
B ₁	1.37034916•10 ⁻²			
B ₂	-1.86514205•10 ⁻³			
B ₃	1.19535585•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.59			
Remarks					

Partial Dispersions					
n _C –n _t	0.008531				
n _C -n _A ′	0.003595				
n _d –n _C	0.003135				
n _e –n _C	0.005589				
n _g –n _d	0.012739				
n _g –n _F	0.005584				
n _h –n _g	0.004632				
n _i –n _g	0.012520				
n _C '-n _t	0.009030				
n _e –n _C ′	0.005090				
n _F ′–n _e	0.005286				
n _i –n _F ′	0.017519				

Thermal Properties						
Strain Point	StP	(℃)	606			
Annealing Point	AP	(℃)	634			
TiansformationTemperati	ue Tg	(℃)	657			
Yield Point	At	(℃)	689			
Softening Point	SP	(℃)	738			
Expansion Coefficients	(-30~	+70°C)	67			
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	76			
Thermal Conducti	vity k	(W /m•K)	0.835			

Mechanic	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	878
Rigidity Modulus G	$(10^8 N/m^2)$	348
Poisson's Ratio	σ	0.262
Knoop Hardness	Hk	570[6]
Abrasion	Aa	146
Photoelastic Constar (nm/cm/10 ⁵ Pa)	. 1.)	1.81

Chemical Properties					
Water Resistance (Powder) Group $RW(P)$	3				
Acid Resistance (Powder) Group RA(P)	5				
Weathering Resistance (Surface) Group $W(s)$	2~3				
Acid Resistance (Surface) Group SR	53.2				
Phosphate Resistance PR	4.2				

Temperature Coefficients of Refractive Index								
Range of Tempe	erature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(\mathcal{C})		t	C	He-Ne	D	е	F	g
-40 ~ -	20	1.2	1.4	1.5	1.6	1.7	1.9	2.2
-20 ~	0	1.2	1.5	1.6	1.7	1.8	2.1	2.3
0 ~	20	1.3	1.6	1.6	1.8	1.9	2.2	2.5
20 ~	40	1.4	1.7	1.7	1.9	2.0	2.3	2.6
40 ~	60	1.4	1.8	1.8	2.0	2.1	2.4	2.7
60 ~	80	1.6	1.9	1.9	2.1	2.2	2.5	2.9

Relative Partial Dispersions					
$\theta_{C,t}$	0.8291				
$ heta_{C,A'}$	0.3494				
$ heta_{\sf d,C}$	0.3047				
$ heta_{e,C}$	0.5431				
$ heta_{ extsf{g,d}}$	1.2380				
$ heta_{ extsf{g}, extsf{F}}$	0.5427				
$ heta_{h,g}$	0.4501				
$ heta_{i,g}$	1.2167				
θ´c′,t	0.8703				
$ heta^{'}_{ ext{e,C}'}$	0.4906				
$ heta^{'}$ $_{F^{'}}$,e	0.5094				
$\theta'_{i,F'}$	1.6884				

Coloring				
λ 80/λ 5	35/31			

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	0.01
320	0.18
330	0.49
340	0.72
350	0.85
360	0.924
370	0.959
380	0.976
390	0.984
400	0.989
420	0.992
440	0.993
460	0.994
480	0.996
500	0.997
550	0.999
600	0.998
650	0.997
700	0.998
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.992
1600	0.995
1800	0.987
2000	0.972
2200	0.911
2400	0.79

S-BSM18

Refractive Index	n _d	1.63854 1.638539	Abbe Number Vd	55.4 55.38	Dispersion NF-NC	0.01153 0.011531
Refractive	ne	1.641287	Abbe Number ν_{e}	55.10	Dispersion n F' - n C'	0.011638

Refractive In $λ$ ($μ$ m) n2325 2.32542 n1970 1.97009 n1530 1.52958	1.60779 1.61314 1.61892
n2325 2.32542 n1970 1.97009	1.61314
n ₁₉₇₀ 1.97009	1.61314
n ₁₅₃₀ 1 52958	1.61892
111000	
n 1129 1.12864	1.62411
n t 1.01398	1.62586
n s 0.85211	1.62896
n _A ′ 0.76819	1.63111
n _r 0.70652	1.63308
n _C 0.65627	1.63505
n c′ 0.64385	1.63560
n _{He-Ne} 0.6328	1.63612
n _D 0.58929	1.63844
n d 0.58756	1.63854
n e 0.54607	1.64129
n _F 0.48613	1.64658
n _F ′ 0.47999	1.64724
n He-Cd 0.44157	1.65207
n _g 0.435835	1.65291
n _h 0.404656	1.65818
n i 0.365015	1.66720

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$ -0.0097			
$\Delta heta_{C,A'}$	-0.0008		
$arDelta heta_{ extsf{g,d}}$	-0.0038		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0035		
$\Delta heta_{i,g}$	-0.0219		

Constants of Dispersion Formula			
A_1	9.27886025•10 ⁻¹		
A_2	7.08858526•10 ⁻¹		
A_3	1.18610897		
B ₁	4.17549199•10 ⁻³		
B ₂	1.84691838•10 ⁻²		
B ₃	1.22210416•10 ²		

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.69	
Remarks			

Temperature Coefficients of Refractive Index							
Range of Temperature $\frac{dn}{dt} = \frac{dn}{dt} = \frac{(10^{-6})^{\circ}C}$							
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	1.8	2.2	2.3	2.4	2.5	2.9	3.2
−20 ~ 0	1.8	2.3	2.3	2.4	2.6	3.0	3.3
0 ~ 20	1.9	2.4	2.4	2.5	2.7	3.1	3.4
20 ~ 40	1.9	2.4	2.5	2.6	2.8	3.2	3.5
40 ~ 60	2.0	2.5	2.5	2.7	2.9	3.3	3.7
60 ~ 80	2.1	2.6	2.6	2.8	2.9	3.4	3.8

Partial Dispersions				
n _C –n _t	0.009188			
n _C –n _A ′	0.003946			
n _d –n _C	0.003488			
n _e –n _C	0.006236			
n _g –n _d	0.014367			
n _g –n _F	0.006324			
n _h –n _g	0.005271			
n _i –n _g	0.014291			
n _C ′–n _t	0.009742			
n _e –n _C ′	0.005682			
n _F ′–n _e	0.005956			
n _i –n _F ′	0.019954			
n _F ′–n _e	0.005956			

Thermal Properties			
Strain Point	StP	(\mathcal{C})	567
Annealing Point	AP	(\mathcal{C})	600
Transformation Temperatu	re Tg	(\mathcal{C})	613
Yield Point	At	(\mathcal{C})	655
Softening Point	SP	(\mathcal{C})	717
Expansion Coefficients	(-30~	+70°C)	70
$\alpha (10^{-7})^{\circ}C)$ (+	-100~+	300℃)	84
Thermal Conductivity	k(W/	m•K)	0.815

Mechani	cal Propertie	es
Young's Modulus E	$(10^8N/m^2)$	885
Rigidity Modulus G	$(10^8 N/m^2)$	349
Poisson's Ratio	σ	0.268
Knoop Hardness	Hk	570[6]
Abrasion	Aa	159
Photoelastic Constar (nm/cm/10 ⁵ Pa		1.79

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	4	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	51.2	
Phosphate Resistance PR	2.0	

Relative Partial Dispersions				
$ heta_{C,t}$	0.7968			
$ heta_{C,A'}$	0.3422			
$ heta_{\sf d,C}$	0.3025			
$ heta_{ extsf{e}, extsf{C}}$	0.5408			
$ heta_{ extsf{g,d}}$	1.2459			
$ heta_{ extsf{g}, extsf{F}}$	0.5484			
$ heta_{h,g}$	0.4571			
$ heta_{i,g}$	1.2394			
$\theta'_{C',t}$	0.8371			
θ'e,C'	0.4882			
θ \acute{F} ,e	0.5118			
$\theta'_{i,F'}$	1.7146			

Coloring			
λ 80/λ 5	36/31		

Internal Tran	smittance
λ (nm)	τ 10mm
280	
290	
300	
310	0.08
320	0.31
330	0.57
340	0.75
350	0.86
360	0.929
370	0.961
380	0.977
390	0.985
400	0.990
420	0.993
440	0.994
460	0.995
480	0.996
500	0.997
550	0.998
600	0.998
650	0.998
700	0.998
800	0.998
900	0.998
1000	0.997
1200	0.997
1400	0.993
1600	0.994
1800	0.986
2000	0.973
2200	0.924
2400	0.84

S-BSM22

Refractive Index	n_{d}	1.62230 1.622296	Abbe Number ν _d	53.2 53.17	Dispersion NF-NC	0.01170 0.011704
Refractive Index	n_{e}	1.625083	Abbe Number $ u_{ m e}$	52.88	Dispersion $n_{F'} - n_{C'}$	0.011821

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.59157				
n 1970	1.97009	1.59687				
n 1530	1.52958	1.60260				
n 1129	1.12864	1.60778				
n _t	1.01398	1.60953				
n _s	0.85211	1.61264				
n _A ′	0.76819	1.61479				
n _r	0.70652	1.61678				
nc	0.65627	1.61877				
n _C ′	0.64385	1.61933				
n _{He-Ne}	0.6328	1.61985				
n_D	0.58929	1.62219				
n _d	0.58756	1.62230				
n _e	0.54607	1.62508				
n _F	0.48613	1.63047				
n _F ′	0.47999	1.63115				
n _{He-Cd}	0.44157	1.63610				
ng	0.435835	1.63696				
n_h	0.404656	1.64241				
n _i	0.365015	1.65185				

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0070				
$\Delta heta_{C,A'}$	-0.0005				
$arDelta heta_{ extsf{g,d}}$	-0.0014				
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0012				
$arDelta heta_{i,g}$	-0.0072				

Consta	Constants of Dispersion Formula					
A ₁	1.44305741					
A_2	1.40786358•10 ⁻¹					
A_3	1.26093951					
B ₁	8.19208910•10 ⁻³					
B ₂	3.56911455•10 ⁻²					
B ₃	1.31959337•10 ²					

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.24			
Remarks					

Partial Dispersions				
n _C –n _t	0.009237			
n _C –n _A ′	0.003977			
n _d –n _C	0.003526			
n _e –n _C	0.006313			
n _g –n _d	0.014664			
n _g –n _F	0.006486			
n _h –n _g	0.005451			
n _i –n _g	0.014894			
n _C '-n _t	0.009796			
n _e –n _C ′	0.005754			
n _F ′–n _e	0.006067			
n _i –n _F ′	0.020704			

Thermal Properties					
Strain Point	StP	(℃)	637		
Annealing Point	AP	(℃)	663		
TiansformationTemperati	ne Tg	(℃)	685		
Yield Point	At	(℃)	726		
Softening Point	SP	(℃)	822		
Expansion Coefficients	(-30~	+70°C)	66		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	76		
Thermal Conducti	vity k ((W /m•K)	0.916		

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	874
Rigidity Modulus G	$(10^8 N/m^2)$	345
Poisson's Ratio	σ	0.265
Knoop Hardness	Hk	580[6]
Abrasion	Aa	120
Photoelastic Consta (nm/cm/10 ⁵ Pa		1.97

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	2			
Weathering Resistance (Surface) Group $W(s)$	2~3			
Acid Resistance (Surface) Group SR	3.2			
Phosphate Resistance PR	1.0			

	Temperature Coefficients of Refractive Index								
Range of Temperature			dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)		t	C	He-Ne	D	е	F	g	
−40 ~ −	-20	3.0	3.4	3.4	3.6	3.7	4.1	4.4	
−20 ~	0	3.0	3.4	3.4	3.6	3.8	4.1	4.5	
0 ~	20	3.1	3.5	3.5	3.6	3.8	4.2	4.6	
20 ~	40	3.1	3.5	3.6	3.7	3.9	4.3	4.8	
40 ~	60	3.1	3.6	3.6	3.7	4.0	4.4	4.9	
60 ~	80	3.1	3.7	3.7	3.8	4.0	4.5	5.0	

Relative Partial Dispersions					
$\theta_{C,t}$	0.7892				
$ heta_{C,A'}$	0.3398				
$ heta_{\sf d,C}$	0.3013				
$ heta_{e,C}$	0.5394				
$ heta_{ extsf{g,d}}$	1.2529				
$ heta_{ extsf{g}, extsf{F}}$	0.5542				
$ heta_{h,g}$	0.4657				
$ heta_{i,g}$	1.2726				
θ´c΄,t	0.8287				
$ heta^{'}_{ ext{e,C}'}$	0.4868				
$ heta^{'}$ F $'$,e	0.5132				
$ heta^{'}_{i,F^{'}}$	1.7515				

Colo	ring
λ 80/λ 5	38/34

λ (nm) 7 10mm 280 290 300 310 320 330 340 0.08 350 0.37 360 0.65 370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993 1600 0.995	Internal Transmittance						
290 300 310 320 330 340 0.08 350 0.37 360 0.65 370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	λ (nm)	τ 10mm					
300 310 320 330 340 0.08 350 0.37 360 0.65 370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	280						
310 320 330 340 0.08 350 0.37 360 0.65 370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	290						
320 330 340 0.08 350 0.37 360 0.65 370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	300						
330 340 0.08 350 0.37 360 0.65 370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	310						
340 0.08 350 0.37 360 0.65 370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	320						
350 0.37 360 0.65 370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	330						
360 0.65 370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	340	0.08					
370 0.81 380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 1000 0.997 1200 0.998 1400 0.993	350	0.37					
380 0.901 390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	360	0.65					
390 0.942 400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.993	370	0.81					
400 0.964 420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	380						
420 0.981 440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	390						
440 0.985 460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	400						
460 0.988 480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	420						
480 0.991 500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	440						
500 0.994 550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	460						
550 0.997 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	480						
600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	500						
650 0.994 700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	550						
700 0.996 800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	600						
800 0.998 900 0.998 1000 0.997 1200 0.998 1400 0.993	650						
900 0.998 1000 0.997 1200 0.998 1400 0.993	700						
1000 0.997 1200 0.998 1400 0.993	800						
1200 0.998 1400 0.993	900						
1400 0.993	1000						
	1200	0.998					
1600 0.995	1400						
	1600						
1800 0.990	1800						
2000 0.980	2000						
2200 0.938	2200						
2400 0.87	2400	0.87					

S-BSM25

Refractive Index	n_{d}	1.65844 1.658441	Abbe Number ν_{d}	50.9 50.88	Dispersion NF-NC	0.01294 0.012942
Refractive Index	n _e	1.661522	Abbe Number $ u_{ m e}$	50.59	Dispersion $n_{F'} - n_{C'}$	0.013076

Refractive Indices						
n 2325	2.32542	1.62613				
n 1970	1.97009	1.63145				
n 1530	1.52958	1.63727				
N 1129	1.12864	1.64264				
n _t	1.01398	1.64450				
n _s	0.85211	1.64785				
n _A ′	0.76819	1.65019				
n _r	0.70652	1.65237				
n _C	0.65627	1.65455				
n _C ′	0.64385	1.65517				
n _{He-Ne}	0.6328	1.65574				
n_D	0.58929	1.65833				
n _d	0.58756	1.65844				
n _e	0.54607	1.66152				
n _F	0.48613	1.66749				
n _F ′	0.47999	1.66824				
n He-Cd 0.44157		1.67373				
n _g	0.435835	1.67469				
n_h	0.404656	1.68074				
n _i	0.365015	1.69121				

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0089			
$\Delta heta_{C,A'}$	-0.0005			
$arDelta heta_{ extsf{g,d}}$	-0.0034			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0031			
$arDelta heta_{i,g}$	-0.0228			

Constants of Dispersion Formula				
A ₁	1.34814257			
A_2	$3.47530319 \cdot 10^{-1}$			
A_3	1.38798368			
B ₁	6.95364366•10 ⁻³			
B ₂	2.77863478•10 ⁻²			
B ₃	1.42138122•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity d 3.50					
Remarks					

Partial Dispersions					
n _C –n _t	0.010049				
n _C –n _A ′	0.004361				
n _d –n _C	0.003888				
n _e –n _C	0.006969				
n _g –n _d	0.016250				
n _g –n _F	0.007196				
n _h –n _g	0.006049				
n _i –n _g	0.016516				
n _C '-n _t	0.010664				
n _e –n _C ′	0.006354				
n _F ′–n _e	0.006722				
n _i –n _F ′	0.022963				

Thermal Properties						
Strain Point	StP	(℃)	605			
Annealing Point	AP	(℃)	630			
Transformation Temperatu	ne Tg	(℃)	638			
Yield Point	At	(℃)	686			
Softening Point	SP	(℃)	760			
Expansion Coefficients	(-30~	·+70°C)	68			
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	82			
Thermal Conductiv	vity k ((W /m•K)	0.891			

Mechanical Properties							
Young's Modulus E (10 ⁸ N/m ²)	951						
Rigidity Modulus G (10 ⁸ N/m ²)	374						
Poisson's Ratio σ	0.272						
Knoop Hardness Hk	560[6]						
Abrasion Aa	123						
Photoelastic Constant $(nm/cm/10^5Pa)$	2.08						

Chemical Properties					
Water Resistance (Powder) Group $RW(P)$	1				
Acid Resistance (Powder) Group RA(P)	3				
Weathering Resistance (Surface) Group $W(s)$	2				
Acid Resistance (Surface) Group SR	5.2				
Phosphate Resistance PR	1.0				

Temperature Coefficients of Refractive Index								
Range of Tempera	ature		dr	/ dt rela	itive (1	0^{-6} / $^{\circ}$ C)	
(℃)		t	C	He-Ne	D	е	F	g
−40 ~ −2	20	3.4	3.8	3.9	4.0	4.2	4.7	5.1
−20 ~	0	3.5	3.9	3.9	4.1	4.3	4.8	5.3
0 ~ 2	20	3.6	4.0	4.0	4.2	4.4	4.9	5.4
20 ~ 4	Ю	3.6	4.1	4.1	4.3	4.5	5.0	5.5
40 ~ 6	0	3.7	4.2	4.2	4.4	4.6	5.1	5.7
60 ~ 8	30	3.8	4.2	4.3	4.5	4.7	5.2	5.8

Relative Partial Dispersions						
$\theta_{C,t}$	0.7765					
$ heta_{C,A'}$	0.3370					
$ heta_{\sf d,C}$	0.3004					
$ heta_{e,C}$	0.5385					
$ heta_{ extsf{g,d}}$	1.2556					
$ heta_{ extsf{g}, extsf{F}}$	0.5560					
$ heta_{h,g}$	0.4674					
$ heta_{i,g}$	1.2762					
θ΄c′,t	0.8155					
$ heta^{'}_{ ext{e,C}'}$	0.4859					
$ heta^{'}$ $_{F^{'}}$,e	0.5141					
$\theta'_{i,F'}$	1.7561					

Coloring			
λ 80/λ 5	38/33		

λ (nm) 7 10mm 280 290 300 310 320 330 330 0.03 340 0.19 350 0.48 360 0.71 370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.995	Internal Transmittance				
290 300 310 320 330 0.03 340 0.19 350 0.48 360 0.71 370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	λ (nm)	τ 10mm			
300 310 320 330 0.03 340 0.19 350 0.48 360 0.71 370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	280				
310 320 330 0.03 340 0.19 350 0.48 360 0.71 370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	290				
320 330 0.03 340 0.19 350 0.48 360 0.71 370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	300				
330 0.03 340 0.19 350 0.48 360 0.71 370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	310				
340 0.19 350 0.48 360 0.71 370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	320				
350 0.48 360 0.71 370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	330	0.03			
360 0.71 370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 700 0.996 800 0.997 900 0.997 1000 0.997 1200 0.997	340	0.19			
370 0.84 380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.997 1200 0.997	350	0.48			
380 0.910 390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 700 0.996 800 0.997 900 0.997 1000 0.997 1200 0.997	360	0.71			
390 0.945 400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996	370	0.84			
400 0.964 420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	380				
420 0.980 440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	390	0.945			
440 0.984 460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.997 1200 0.997	400	0.964			
460 0.988 480 0.991 500 0.994 550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	420	0.980			
480 0.991 500 0.994 550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	440				
500 0.994 550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	460				
550 0.996 600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	480				
600 0.995 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	500				
650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	550				
700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997	600				
800 0.997 900 0.997 1000 0.996 1200 0.997	650				
900 0.997 1000 0.996 1200 0.997	700				
1000 0.996 1200 0.997	800				
1200 0.997	900				
	1000				
1400 0.995	1200	0.997			
	1400				
1600 0.995	1600				
1800 0.989	1800				
2000 0.980	2000				
2200 0.947	2200				
2400 0.87	2400	0.87			

S-BSM28

Refractive Index	n _d	1.61772 1.617722	Abbe Number νd	49.8 49.81	Dispersion NF-NC	0.01240 0.012401
Refractive	n_{e}	1.620671	Abbe Number ν_{e}	49.52	Dispersion $n_{F'} - n_{C'}$	0.012534

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.58652			
n 1970	1.97009	1.59173			
n 1530	1.52958	1.59740			
n 1129	1.12864	1.60260			
n _t	1.01398	1.60439			
ns	0.85211	1.60760			
n _A ′	0.76819	1.60984			
n _r	0.70652	1.61192			
n_{C}	0.65627	1.61401			
n _C ′	0.64385	1.61459			
n _{He-Ne}	0.6328	1.61514			
n_D	0.58929	1.61761			
n_d	0.58756	1.61772			
n _e	0.54607	1.62067			
n _F	0.48613	1.62641			
n _F ′	0.47999	1.62713			
n _{He-Cd}	0.44157	1.63242			
ng	0.435835	1.63335			
n _h	0.404656	1.63924			
n _i	0.365015	1.64953			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0053			
$\Delta heta_{C,A'}$	-0.0003			
$arDelta heta_{ extsf{g,d}}$	-0.0008			
arDelta hetag,F	-0.0006			
$\Delta heta_{ extsf{i,g}}$	-0.0032			

Constants of Dispersion Formula			
A_1	1.43822841		
A_2	1.28100017•10 ⁻¹		
A_3	1.34355530		
B ₁	8.59779750•10 ⁻³		
B ₂	4.08617854•10 ⁻²		
B ₃	1.43709890•10 ²		

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.23		
Remarks				

Partial Dispersions				
n _C –n _t	0.009612			
n _C -n _A ′	0.004166			
n _d –n _C	0.003717			
n _e –n _C	0.006666			
n _g –n _d	0.015632			
n _g –n _F	0.006948			
n _h –n _g	0.005882			
n _i –n _g	0.016179			
n _C '-n _t	0.010200			
n _e –n _C ′	0.006078			
n _F ′–n _e	0.006456			
n _i –n _F ′	0.022406			

Thermal Properties				
Strain Point	StP	(\mathcal{C})	530	
Annealing Point	AP	(\mathcal{C})	559	
TransformationTemperati	ne Tg	(\mathcal{C})	578	
Yield Point	At	(\mathcal{C})	618	
Softening Point	SP	(\mathcal{C})	680	
Expansion Coefficients	(-30~	+70°C)	84	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	96	
Thermal Conducti	vity k	(W /m•K)	0.878	

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	853
Rigidity Modulus G	$(10^8 N/m^2)$	339
Poisson's Ratio	σ	0.258
Knoop Hardness	Hk	540[5]
Abrasion	Aa	168
Photoelastic Constan (nm/cm/10 ⁵ Pa)	. (.)	2.05

Chemical Properties					
Water Resistance (Powder) Group $RW(P)$	3				
Acid Resistance (Powder) Group RA(P)	4				
Weathering Resistance (Surface) Group $W(s)$	3				
Acid Resistance (Surface) Group SR	51.2				
Phosphate Resistance PR	3.0				

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	0.5	0.9	1.0	1.1	1.3	1.7	2.1
−20 ~ 0	0.6	1.0	1.0	1.2	1.4	1.8	2.3
0 ~ 20	0.7	1.1	1.1	1.2	1.5	1.9	2.4
20 ~ 40	0.7	1.1	1.2	1.3	1.5	2.0	2.5
40 ~ 60	0.8	1.2	1.2	1.4	1.6	2.1	2.6
60 ~ 80	0.8	1.3	1.3	1.5	1.7	2.2	2.8

Relative Partial Dispersions		
$\theta_{C,t}$	0.7751	
$ heta_{C,A'}$	0.3359	
$ heta_{\sf d,C}$	0.2997	
$ heta_{ extsf{e}, extsf{C}}$	0.5375	
$ heta_{ extsf{g,d}}$	1.2605	
$ heta_{ extsf{g}, extsf{F}}$	0.5603	
$ heta_{h,g}$	0.4743	
$ heta_{i,g}$	1.3047	
θ´c′,t	0.8138	
$\theta'_{e,C'}$	0.4849	
$ heta^{'}$ F $^{'}$,e	0.5151	
$ heta^{\prime}_{i,F^{\prime}}$	1.7876	

Coloring			
λ 80/λ 5	39/34		

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	0.02
350	0.24
360	0.54
370	0.74
380	0.85
390	0.918
400	0.950
420	0.975
440	0.982
460	0.987
480	0.990
500	0.993
550	0.997
600	0.996
650	0.996
700	0.997
800	0.997
900	0.997
1000	0.996
1200	0.996
1400	0.994
1600	0.995
1800	0.988
2000	0.978
2200	0.944
2400	0.88

S-BSM71

Refractive Index	n_{d}	1.64850 1.648498	Abbe Number $ u_{ m d}$	53.0 53.02	Dispersion NF-NC	0.01223 0.012231
Refractive Index	ne	1.651410	Abbe Number $ u_{ m e}$	52.73	Dispersion $n_{F'} - n_{C'}$	0.012353

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.61657	
n 1970	1.97009	1.62205	
n 1530	1.52958	1.62799	
n 1129	1.12864	1.63336	
n _t	1.01398	1.63518	
n _s	0.85211	1.63842	
n _A ′	0.76819	1.64067	
n _r	0.70652	1.64274	
nc	0.65627	1.64482	
n _C ′	0.64385	1.64540	
n _{He-Ne}	0.6328	1.64595	
n_D	0.58929	1.64839	
n_d	0.58756	1.64850	
n _e	0.54607	1.65141	
n _F	0.48613	1.65705	
n _F ′	0.47999	1.65775	
n _{He-Cd}	0.44157	1.66293	
ng	0.435835	1.66383	
n _h	0.404656	1.66954	
n _i	0.365015	1.67943	

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.0080	
$\Delta heta_{C,A'}$	-0.0008	
$arDelta heta_{ extsf{g,d}}$	-0.0010	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0010	
$arDelta heta_{i,g}$	-0.0057	

Constants of Dispersion Formula		
A ₁	1.50847885	
A_2	1.58099826•10 ⁻¹	
A_3	1.36815368	
B ₁	8.12769076•10 ⁻³	
B ₂	3.54200898•10 ⁻²	
B ₃	1.36110038•10 ²	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	3.74
Remarks		

Partial Dispersions		
n _C –n _t	0.009631	
n _C -n _A ′	0.004150	
n _d –n _C	0.003683	
n _e –n _C	0.006595	
n _g –n _d	0.015333	
n _g –n _F	0.006785	
n _h –n _g	0.005706	
n _i –n _g	0.015599	
n _C ′–n _t	0.010215	
n _e –n _C ′	0.006011	
n _F ′–n _e	0.006342	
n _i –n _F ′	0.021678	

Thermal Properties			
Strain Point	StP	(℃)	607
Annealing Point	AP	(℃)	635
Transformation Temperat.	ne Tg	(℃)	651
Yield Point	At	(℃)	687
Softening Point	SP	(℃)	737
Expansion Coefficients	(-30~	+70°C)	71
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	83
Thermal Conducti	vity k ((W /m•K)	0.773

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	862
Rigidity Modulus G	$(10^8 N/m^2)$	339
Poisson's Ratio	σ	0.273
Knoop Hardness	Hk	560[6]
Abrasion	Aa	173
Photoelastic Constan (nm/cm/10 ⁵ Pa)	. (.)	1.81

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	5	
Weathering Resistance (Surface) Group $W(s)$	2~3	
Acid Resistance (Surface) Group SR	53.2	
Phosphate Resistance PR	4.0	

Temperature Coefficients of Refractive Index								
Range of Tempera	ature		dr	ı / dt rela	ative (1	0 ⁻⁶ / ℃)	
(℃)		t	C	He-Ne	D	е	F	g
−40 ~ −2	20	1.3	1.5	1.6	1.7	1.8	2.1	2.6
−20 ~	0	1.2	1.6	1.6	1.8	1.9	2.3	2.7
0 ~ 2	20	1.3	1.8	1.8	1.9	2.1	2.5	3.0
20 ~ 4	-0	1.4	2.0	2.0	2.1	2.3	2.8	3.2
40 ~ 6	0	1.5	2.2	2.2	2.4	2.6	3.1	3.5
60 ~ 8	80	1.6	2.5	2.5	2.7	2.9	3.5	3.9

Relative Partial Dispersions				
$ heta_{C,t}$	0.7874			
$ heta_{C,A'}$	0.3393			
$ heta_{\sf d,C}$	0.3011			
$ heta_{e,C}$	0.5392			
$ heta_{ extsf{g,d}}$	1.2536			
$ heta_{ extsf{g}, extsf{F}}$	0.5547			
$ heta_{h,g}$	0.4665			
$ heta_{i,g}$	1.2754			
θ´c′,t	0.8269			
θ' _{e,C'}	0.4866			
$ heta^{'}$ F $'$,e	0.5134			
$\theta'_{i,F'}$	1.7549			

Coloring				
λ 80/λ 5	38/34			

λ (nm) 7 10mm 280 290 300 310 320 330 340 0.15 350 0.47 360 0.72 370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1800 0.985 2000 0.972 2200 0.925	Internal Transmittance				
290 300 310 320 330 340 0.15 350 0.47 360 0.72 370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	λ (nm)	τ 10mm			
300 310 320 330 340 0.15 350 0.47 360 0.72 370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.997 650 0.998 900 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1600 0.993 1600 0.993 1800 0.993	280				
310 320 330 340 0.15 350 0.47 360 0.72 370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 800 0.998 900 0.998 900 0.998 1000 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	290				
320 330 340 0.15 350 0.47 360 0.72 370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	300				
330 340 0.15 350 0.47 360 0.72 370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	310				
340 0.15 350 0.47 360 0.72 370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	320				
350 0.47 360 0.72 370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 800 0.998 900 0.998 900 0.998 1000 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	330				
360 0.72 370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	340	0.15			
370 0.86 380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	350	0.47			
380 0.926 390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	360	0.72			
390 0.958 400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	370	0.86			
400 0.973 420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	380	0.926			
420 0.985 440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	390	0.958			
440 0.988 460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	400	0.973			
460 0.990 480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	420	0.985			
480 0.993 500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	440	0.988			
500 0.995 550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	460	0.990			
550 0.998 600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	480	0.993			
600 0.997 650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	500				
650 0.996 700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.925	550				
700 0.997 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	600	0.997			
800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	650	0.996			
900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	700	0.997			
1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	800	0.998			
1200 0.997 1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	900	0.998			
1400 0.993 1600 0.993 1800 0.985 2000 0.972 2200 0.925	1000	0.997			
1600 0.993 1800 0.985 2000 0.972 2200 0.925	1200	0.997			
1800 0.985 2000 0.972 2200 0.925	1400				
2000 0.972 2200 0.925	1600				
2200 0.925	1800	0.985			
	2000				
	2200				
2400 0.82	2400	0.82			

S-BSM81

Refractive Index	n_{d}	1.64000 1.639999	Abbe Number ν _d	60.1 60.08	Dispersion NF-NC	0.01065 0.010653
Refractive Index	n_{e}	1.642540	Abbe Number $ u_{ m e}$	59.88	Dispersion $n_{F'} - n_{C'}$	0.010730

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.60385		
n 1970	1.97009	1.61138		
n 1530	1.52958	1.61917		
n 1129	1.12864	1.62555		
n _t	1.01398	1.62752		
n _s	0.85211	1.63078		
n _A ′	0.76819	1.63293		
n _r	0.70652	1.63484		
nc	0.65627	1.63673		
n _C ′	0.64385	1.63725		
n _{He-Ne}	0.6328	1.63774		
n_D	0.58929	1.63990		
n _d	0.58756	1.64000		
n _e	0.54607	1.64254		
n _F	0.48613	1.64738		
n _F ′	0.47999	1.64798		
n _{He-Cd}	0.44157	1.65235		
ng	0.435835	1.65310		
n_h	0.404656	1.65783		
n _i	0.365015	1.66586		

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0359				
$\Delta heta_{C,A'}$	0.0082				
$arDelta heta_{ extsf{g,d}}$	-0.0100				
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0073				
$\Delta \theta_{\rm i,g}$ -0.0240					

Constants of Dispersion Formula				
A ₁	9.96356844•10 ⁻¹			
A_2	6.51392837•10 ⁻¹			
A ₃	1.22432622			
B ₁	1.44821587•10 ⁻²			
B ₂	1.54826389•10 ⁻³			
B ₃	8.99818604•10 ¹			

Other Properties			
Bubble Quality Group	В		
Specific Gravity d 3.06			
Remarks			

Partial Dispersions				
n _C –n _t	0.009210			
n _C –n _A ′	0.003802			
n _d –n _C	0.003271			
n _e –n _C	0.005812			
n _g –n _d	0.013103			
n _g –n _F	0.005721			
n _h –n _g	0.004730			
n _i –n _g	0.012761			
n _C ′–n _t	0.009734			
n _e –n _C ′	0.005288			
n _F ′–n _e	0.005442			
n _i –n _F ′	0.017881			

Therr	Thermal Properties				
Strain Point	StP	(℃)	604		
Annealing Point	AP	(℃)	624		
TiansformationTemperatu	ne Tg	(℃)	653		
Yield Point	At	(℃)	679		
Softening Point	SP	(℃)	721		
Expansion Coefficients	(-30~	+70°C)	58		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	72		
Thermal Conductiv	vity k ((W /m•K)	1.001		

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	1057			
Rigidity Modulus G	$(10^8 N/m^2)$	416			
Poisson's Ratio	σ	0.271			
Knoop Hardness	Hk	660[7]			
Abrasion	Aa	84			
Photoelastic Consta (nm/cm/10 ⁵ Pa	· 1.)	2.00			

Chemical Properties				
Water Resistance (Powder) Group RW(P)	4			
Acid Resistance (Powder) Group RA(P)	5			
Weathering Resistance (Surface) Group $W(s)$	3			
Acid Resistance (Surface) Group SR	53.0			
Phosphate Resistance PR	4.0			

Temperature Coefficients of Refractive Index								
Range of Temp	oerature		dr	n / dt rela	itive (1	0 ⁻⁶ / ℃)	
(℃)		t	C´	He-Ne	D	е	F	g
-40 ~ ·	-20	2.8	3.1	3.1	3.3	3.3	3.6	3.8
−20 ~	0	2.9	3.2	3.2	3.4	3.5	3.7	4.0
0 ~	20	3.0	3.3	3.4	3.5	3.6	3.9	4.2
20 ~	40	3.2	3.5	3.5	3.6	3.7	4.0	4.3
40 ~	60	3.2	3.6	3.6	3.7	3.9	4.2	4.5
60 ~	80	3.2	3.7	3.7	3.8	4.0	4.4	4.7

Relative Partial Dispersions					
$ heta_{C,t}$	0.8645				
$ heta_{C,A'}$	0.3569				
$ heta_{\sf d,C}$	0.3070				
$ heta_{e,C}$	0.5456				
$ heta_{ extsf{g,d}}$	1.2300				
$ heta_{ extsf{g}, extsf{F}}$	0.5370				
$ heta_{h,g}$	0.4440				
$ heta_{i,g}$	1.1979				
θ´C΄,t	0.9072				
θ' _{e,C'}	0.4928				
$ heta^{'}$ F $'$,e	0.5072				
$\theta'_{i,F'}$	1.6664				

Coloring					
λ 80/λ 5	37/30				

λ (nm) 7 10mm 280 290 0.01 300 0.03 310 0.10 320 0.21 330 0.38 340 0.56 350 0.71 360 0.82 370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 550 0.995 650 0.995 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961 0.961	Internal Trar	nsmittance
290 0.01 300 0.03 310 0.10 320 0.21 330 0.38 340 0.56 350 0.71 360 0.82 370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961		
300 0.03 310 0.10 320 0.21 330 0.38 340 0.56 350 0.71 360 0.82 370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	280	
310 0.10 320 0.21 330 0.38 340 0.56 350 0.71 360 0.82 370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	290	0.01
320 0.21 330 0.38 340 0.56 350 0.71 360 0.82 370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 500 0.995 550 0.995 600 0.995 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	300	0.03
330 0.38 340 0.56 350 0.71 360 0.82 370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	310	
340 0.56 350 0.71 360 0.82 370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	320	0.21
350 0.71 360 0.82 370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	330	0.38
360 0.82 370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 600 0.995 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	340	0.56
370 0.89 380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	350	0.71
380 0.934 390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	360	0.82
390 0.957 400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	370	0.89
400 0.970 420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	380	0.934
420 0.981 440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	390	0.957
440 0.985 460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	400	0.970
460 0.989 480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	420	0.981
480 0.992 500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	440	
500 0.995 550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	460	0.989
550 0.995 600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	480	0.992
600 0.992 650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	500	
650 0.993 700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	550	
700 0.995 800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	600	
800 0.997 900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	650	0.993
900 0.997 1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	700	
1000 0.996 1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	800	0.997
1200 0.996 1400 0.993 1600 0.994 1800 0.985 2000 0.961	900	0.997
1400 0.993 1600 0.994 1800 0.985 2000 0.961	1000	0.996
1600 0.994 1800 0.985 2000 0.961	1200	0.996
1800 0.985 2000 0.961	1400	
2000 0.961	1600	
	1800	
2200 0.87	2000	0.961
	2200	0.87
2400 0.61	2400	0.61

S-NSL 3

Refractive Index	n_{d}	1.51823 1.518229	Abbe Number ν _d	59.0 58.90	Dispersion NF-NC	0.00879 0.008798
Refractive Index	n_{e}	1.520326	Abbe Number $ u_{ m e}$	58.63	Dispersion $n_{F'} - n_{C'}$	0.008875

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.49273				
n 1970	1.97009	1.49747				
n 1530	1.52958	1.50252				
N 1129	1.12864	1.50692				
n _t	1.01398	1.50835				
n _s	0.85211	1.51083				
n _A ′	0.76819	1.51250				
n _r	0.70652	1.51403				
n _C	0.65627	1.51556				
n _C ′	0.64385	1.51598				
n _{He-Ne}	0.6328	1.51638				
n_D	0.58929	1.51815				
n _d	0.58756	1.51823				
n _e	0.54607	1.52033				
n _F	0.48613	1.52435				
n _F ′	0.47999	1.52486				
n _{He-Cd}	0.44157	1.52852				
n _g	0.435835	1.52915				
n_h	0.404656	1.53315				
n _i	0.365015	1.53999				

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0040			
$\Delta heta_{ extsf{C}, extsf{A}'}$	-0.0004			
$arDelta heta_{ extsf{g,d}}$	-0.0005			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0005			
$arDelta heta_{i,g}$	-0.0006			

Constants of Dispersion Formula				
A ₁	8.82514764•10 ⁻¹			
A_2	3.89271907•10 ⁻¹			
A ₃	1.10693448			
B ₁	4.64504582•10 ⁻³			
B ₂	2.00551397•10 ⁻²			
B ₃	1.36234339•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	2.48			
Remarks					

Partial Dispersions				
n _C -n _t	0.007206			
n _C –n _A ′	0.003052			
n _d –n _C	0.002673			
n _e –n _C	0.004770			
n _g –n _d	0.010926			
n _g –n _F	0.004801			
n _h –n _g	0.003996			
n _i –n _g	0.010832			
n _C '-n _t	0.007631			
n _e –n _C ′	0.004345			
n _F ′–n _e	0.004530			
n _i –n _F ′	0.015131			

Thermal Properties					
Strain Point	StP	(℃)	455		
Annealing Point	AP	(℃)	492		
Transformation Temperat.	ne Tg	(℃)	500		
Yield Point	At	(℃)	553		
Softening Point	SP	(℃)	668		
Expansion Coefficients	(-30~	+70°C)	90		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	110		
Thermal Conducti	vity k ((W /m•K)	1.026		

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	700		
Rigidity Modulus G	$(10^8 N/m^2)$	288		
Poisson's Ratio	σ	0.217		
Knoop Hardness	Hk	510[5]		
Abrasion	Aa	111		
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.60		

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	3	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $\mathbf{W}(\mathbf{S})$	1	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

Temperature Coefficients of Refractive Index								
Range of Tempo	erature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	t C' He-Ne D e F' g			g		
-40 ~ -	-20	0.3	0.6	0.6	0.7	0.8	1.1	1.4
-20 ~	0	0.3	0.6	0.6	0.7	0.8	1.1	1.4
0 ~	20	0.3	0.6	0.6	0.7	0.9	1.2	1.5
20 ~	40	0.3	0.6	0.6	0.7	0.9	1.2	1.6
40 ~	60	0.3	0.6	0.7	0.8	0.9	1.3	1.6
60 ~	80	0.3	0.6	0.7	0.8	1.0	1.3	1.7

Relative Partial Dispersions			
$ heta_{C,t}$	0.8190		
$ heta_{C,A'}$	0.3469		
$ heta_{\sf d,C}$	0.3038		
$ heta_{ extsf{e}, extsf{C}}$	0.5422		
$ heta_{ extsf{g,d}}$	1.2419		
$ heta_{ extsf{g}, extsf{F}}$	0.5457		
$ heta_{h,g}$	0.4542		
$ heta_{i,g}$	1.2312		
θ´c΄,t	0.8598		
$ heta^{'}_{ ext{e,C}'}$	0.4896		
$ heta^{'}$ F $'$,e	0.5104		
$ heta^{'}_{i,F^{'}}$	1.7049		

Coloring				
λ 80/λ 5	34/31			

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	0.15
330	0.53
340	0.80
350	0.924
360	0.968
370	0.984
380	0.990
390	0.995
400	0.997
420	0.997
440	0.997
460	0.997
480	0.998
500	0.998
550	0.999
600	0.999
650	0.998
700	0.998
800	0.998
900	0.998
1000	0.997
1200	0.997
1400	0.992
1600	0.991
1800	0.968
2000	0.930
2200	0.86
2400	0.81

S-NSL 5

Refractive Index	n _d	1.52249 1.522494	Abbe Number νd	59.8 59.84	Dispersion NF-NC	0.00874 0.008732
Refractive Index	n _e	1.524576	Abbe Number $ u_{e}$	59.58	Dispersion $n_{F'} - n_{C'}$	0.008805

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.49592	
n 1970	1.97009	1.50104	
n 1530	1.52958	1.50646	
n 1129	1.12864	1.51108	
n _t	1.01398	1.51256	
n _s	0.85211	1.51509	
n _A ′	0.76819	1.51678	
n _r	0.70652	1.51831	
nc	0.65627	1.51983	
n _C ′	0.64385	1.52026	
n _{He-Ne}	0.6328	1.52065	
n_D	0.58929	1.52242	
n _d	0.58756	1.52249	
n _e	0.54607	1.52458	
n _F	0.48613	1.52857	
n _F ′	0.47999	1.52906	
n _{He-Cd}	0.44157	1.53269	
ng	0.435835	1.53332	
n_h	0.404656	1.53727	
n _i	0.365015	1.54403	

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0052	
$\Delta heta_{C,A'}$	0.0013	
$arDelta heta_{ extsf{g,d}}$	-0.0011	
$arDelta heta_{ extsf{g}, extsf{F}}$	$\theta_{g,F}$ -0.0007	
$\Delta \theta_{i,g}$ 0.0032		

Constants of Dispersion Formula		
A ₁	1.04574577	
A_2	2.39613026•10 ⁻¹	
A_3	1.15906850	
B ₁	5.85232280•10 ⁻³	
B ₂	2.36858752•10 ⁻²	
B ₃	1.31329061•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	2.49	
Remarks			

Partial Dispersions		
n _C –n _t	0.007270	
n _C –n _A ′	0.003054	
n _d –n _C	0.002660	
n _e –n _C	0.004742	
n _g –n _d	0.010822	
n _g –n _F	0.004750	
n _h –n _g	0.003952	
n _i –n _g	0.010715	
n _C '-n _t	0.007694	
n _e –n _C ′	0.004318	
n _F ′–n _e	0.004487	
n _i –n _F ′	0.014968	

Therr	nal P	roperti	es
Strain Point	StP	(℃)	502
Annealing Point	AP	(℃)	536
TransformationTemperatu	re Tg	(℃)	548
Yield Point	At	(℃)	596
Softening Point	SP	(℃)	700
Expansion Coefficients	(-30~	+70°C)	82
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	95
Thermal Conductiv	vity k ((W /m•K)	1.058

Mechanic	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	691
Rigidity Modulus G	$(10^8 N/m^2)$	303
Poisson's Ratio	σ	0.140
Knoop Hardness	Hk	540[5]
Abrasion	Aa	114
Photoelastic Constar (nm/cm/10 ⁵ Pa	· 1.)	2.67

Chemical Properties		
Water Resistance (Powder) Group RW(P)		
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	1~2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

	Temperature Coefficients of Refractive Index							
Range of Temp	oerature		dr	n / dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)		t	C´	He-Ne	D	е	F	g
−40 ~ ·	-20	1.0	1.1	1.2	1.2	1.4	1.6	1.9
−20 ~	0	1.0	1.2	1.2	1.3	1.4	1.7	2.0
0 ~	20	1.0	1.2	1.3	1.4	1.5	1.8	2.1
20 ~	40	1.0	1.3	1.3	1.4	1.6	1.9	2.2
40 ~	60	1.0	1.4	1.4	1.5	1.6	2.0	2.3
60 ~	80	1.1	1.4	1.4	1.5	1.7	2.0	2.4

Daladina Dadia	l Diamanaiana				
Relative Partia	Relative Partial Dispersions				
$ heta_{C,t}$	0.8326				
$ heta_{C,A'}$	0.3497				
$ heta_{\sf d,C}$	0.3046				
$ heta_{e,C}$	0.5431				
$ heta_{ extsf{g,d}}$	1.2393				
$ heta_{ extsf{g}, extsf{F}}$	0.5440				
$ heta_{h,g}$	0.4526				
$ heta_{i,g}$	1.2271				
$\theta'_{C',t}$	0.8738				
θ' _{e,C'}	0.4904				
$ heta^{'}$ F $^{'}$,e	0.5096				
$\theta'_{i,F'}$	1.6999				

Colo	ring
λ 80/λ 5	35/32

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 0.04 330 0.32 340 0.67 350 0.86 360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 650 0.998 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.86 2400 0.81		
280 290 300 310 320 0.04 330 0.32 340 0.67 350 0.86 360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	Internal Trar	nsmittance
290 300 310 320 0.04 330 0.32 340 0.67 350 0.86 360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	,, (,,,,,,	τ 10mm
300 310 320 0.04 330 0.32 340 0.67 350 0.86 360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86		
310 320 0.04 330 0.32 340 0.67 350 0.86 360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86		
320 0.04 330 0.32 340 0.67 350 0.86 360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 650 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	300	
330 0.32 340 0.67 350 0.86 360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86		
340 0.67 350 0.86 360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	320	0.04
350 0.86 360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	330	0.32
360 0.941 370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	340	0.67
370 0.972 380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	350	0.86
380 0.984 390 0.992 400 0.995 420 0.996 440 0.996 460 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	360	0.941
390 0.992 400 0.995 420 0.996 440 0.996 460 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	370	0.972
400 0.995 420 0.996 440 0.996 460 0.997 500 0.998 550 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	380	0.984
420 0.996 440 0.996 460 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	390	0.992
440 0.996 460 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	400	0.995
460 0.996 480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	420	0.996
480 0.997 500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	440	0.996
500 0.998 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	460	0.996
550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	480	0.997
600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	500	0.998
650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	550	0.998
700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	600	0.998
800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	650	0.997
900 0.998 1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	700	0.998
1000 0.998 1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	800	0.998
1200 0.997 1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	900	0.998
1400 0.988 1600 0.992 1800 0.972 2000 0.939 2200 0.86	1000	0.998
1600 0.992 1800 0.972 2000 0.939 2200 0.86	1200	0.997
1800 0.972 2000 0.939 2200 0.86	1400	0.988
2000 0.939 2200 0.86	1600	0.992
2200 0.86	1800	0.972
	2000	0.939
2400 0.81	2200	0.86
	2400	0.81

S-NSL36

Refractive Index	n _d	1.51742 1.517417	Abbe Number νd	52.4 52.43	Dispersion NF-NC	0.00987 0.009869
Refractive	n _e	1.519765	Abbe Number ν_{e}	52.14	Dispersion n F' - n C'	0.009968

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.49004			
n 1970	1.97009	1.49501			
n 1530	1.52958	1.50033			
N 1129	1.12864	1.50501			
n _t	1.01398	1.50656			
n _s	0.85211	1.50924			
n _A ′	0.76819	1.51108			
n _r	0.70652	1.51276			
n _C	0.65627	1.51444			
n _C ′	0.64385	1.51492			
n _{He-Ne}	0.6328	1.51536			
n_D	0.58929	1.51733			
n _d	0.58756	1.51742			
n _e	0.54607	1.51976			
n _F	0.48613	1.52431			
n _F ′	0.47999	1.52488			
n _{He-Cd}	0.44157	1.52907			
n _g	0.435835	1.52980			
n_h	0.404656	1.53444			
n _i	0.365015	1.54252			

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0065		
$arDelta heta_{C,A'}$	0.0016		
$arDelta heta_{ extsf{g,d}}$	-0.0007		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0002		
$arDelta heta_{i,g}$	0.0024		

Consta	Constants of Dispersion Formula		
A ₁	1.09666153		
A_2	1.68990073•10 ⁻¹		
A_3	1.20580827		
B ₁	6.67491123•10 ⁻³		
B ₂	3.36095450•10 ⁻²		
B ₃	1.41668738•10 ²		

Other Properties			
Bubble Quality Group	В	В	
Specific Gravity	d	2.46	
Remarks			

Partial Dispersions			
n _C –n _t	0.007887		
n _C –n _A ′	0.003365		
n _d –n _C	0.002973		
n _e –n _C	0.005321		
n _g –n _d	0.012387		
n _g –n _F	0.005491		
n _h –n _g	0.004635		
n _i –n _g	0.012715		
n _C '-n _t	0.008359		
n _e –n _C ′	0.004849		
n _F ′–n _e	0.005119		
n _i –n _F ′	0.017635		

Thermal Properties			
Strain Point	StP	(℃)	429
Annealing Point	AP	(℃)	465
Tiansformation Temperati	ne Tg	(℃)	464
Yield Point	At	(℃)	522
Softening Point	SP	(℃)	655
Expansion Coefficients	(-30~	+70°C)	80
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	93
Thermal Conducti	vity k ((W /m•K)	1.089

Mechanica	al Proper	ties
Young's Modulus E ($10^8 N/m^2$	640
Rigidity Modulus G ($10^8 N/m^2$	281
Poisson's Ratio	σ	0.139
Knoop Hardness	Hk	480[5]
Abrasion	Aa	103
Photoelastic Constant (nm/cm/10 ⁵ Pa)	β	2.82

Chemical Properties			
Water Resistance (Powder) Group $RW(P)$	1		
Acid Resistance (Powder) Group RA(P)	1		
Weathering Resistance (Surface) Group $W(s)$	1		
Acid Resistance (Surface) Group SR	1.0		
Phosphate Resistance PR	1.0		

Temperature Coefficients of Refractive Index								
Range of Temp	erature		dr	n / dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)		t	t C' He-Ne D e F' g			g		
-40 ~ ·	-20	1.8	2.2	2.2	2.3	2.5	2.8	3.2
-20 ~	0	1.8	2.2	2.2	2.3	2.5	2.9	3.3
0 ~	20	1.8	2.2	2.3	2.4	2.6	2.9	3.3
20 ~	40	1.9	2.3	2.3	2.4	2.6	3.0	3.4
40 ~	60	1.9	2.3	2.3	2.5	2.7	3.1	3.5
60 ~	80	1.9	2.3	2.3	2.5	2.7	3.1	3.6

Relative Partial Dispersions		
$ heta_{C,t}$	0.7992	
$ heta_{C,A'}$	0.3410	
$ heta_{\sf d,C}$	0.3012	
$ heta_{ extsf{e}, extsf{C}}$	0.5392	
$ heta_{ extsf{g,d}}$	1.2551	
$ heta_{ extsf{g}, extsf{F}}$	0.5564	
$ heta_{h,g}$	0.4697	
$ heta_{i,g}$	1.2884	
θ´c΄,t	0.8386	
θ' _{e,C'}	0.4865	
$ heta^{'}$ F $'$,e	0.5135	
$\theta'_{i,F'}$	1.7692	

Coloring			
λ 80/λ 5	36/34		

Internal Tran	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	0.18
350	0.57
360	0.81
370	0.917
380	0.960
390	0.980
400	0.989
420	0.995
440	0.996
460	0.997
480	0.998
500	0.998
550	0.999
600	0.999
650	0.998
700	0.998
800	0.999
900	0.998
1000	0.998
1200	0.998
1400	0.996
1600	0.994
1800	0.978
2000	0.950
2200	0.89
2400	0.86

Refractive Index	n _d	1.57099 1.570989	Abbe Number Vd	50.8 50.80	Dispersion NF-NC	0.01124 0.011240
Refractive Index	n _e	1.573663	Abbe Number $ u_{e}$	50.50	Dispersion $n_{F'} - n_{C'}$	0.011359

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.54240		
n 1970	1.97009	1.54721		
n 1530	1.52958	1.55244		
n 1129	1.12864	1.55722		
n _t	1.01398	1.55886		
n _s	0.85211	1.56179		
n _A ′	0.76819	1.56383		
n _r	0.70652	1.56572		
nc	0.65627	1.56762		
n _C ′	0.64385	1.56815		
n _{He-Ne}	0.6328	1.56865		
n_D	0.58929	1.57089		
n _d	0.58756	1.57099		
n _e	0.54607	1.57366		
n _F	0.48613	1.57886		
n _F ′	0.47999	1.57951		
n _{He-Cd}	0.44157	1.58430		
ng	0.435835	1.58514		
n_h	0.404656	1.59045		
n _i	0.365015	1.59972		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.0063	
$\Delta heta_{ extsf{C}, extsf{A}'}$	-0.0005	
$arDelta heta_{ extsf{g,d}}$	-0.0005	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0005	
$\Delta heta_{i,g}$	-0.0024	

Constants of Dispersion Formula		
A_1	1.30923813	
A_2	1.14137353•10 ⁻¹	
A_3	1.17882259	
B ₁	8.38873953•10 ⁻³	
B ₂	3.99436485•10 ⁻²	
B ₃	1.40257892•10 ²	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	2.89
Remarks		

Partial Dispersions		
n _C –n _t	0.008753	
n _C –n _A ′	0.003787	
n _d –n _C	0.003373	
n _e –n _C	0.006047	
n _g –n _d	0.014148	
n _g –n _F	0.006281	
n _h –n _g	0.005308	
n _i –n _g	0.014580	
n _C '-n _t	0.009286	
n _e –n _C ′	0.005514	
n _F ′–n _e	0.005845	
n _i –n _F ′	0.020209	

Thermal Properties				
Strain Point	StP	(℃)	492	
Annealing Point	AP	(℃)	525	
TiansformationTemperati	ue Tg	(℃)	540	
Yield Point	At	(℃)	582	
Softening Point	SP	(℃)	663	
Expansion Coefficients	(-30~	+70°C)	91	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	109	
Thermal Conducti	vity k ((W /m•K)	0.901	

Mechanio	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	727
Rigidity Modulus G	$(10^8 N/m^2)$	292
Poisson's Ratio	σ	0.245
Knoop Hardness	Hk	510[5]
Abrasion	Aa	163
Photoelastic Constan (nm/cm/10 ⁵ Pa)		2.32

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	3			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index								
Range of Temp	erature		dn / dt relative $(10^{-6} / ^{\circ}C)$					
(℃)		t					g	
−40 ~ −	-20	-0.7	-0.3	-0.3	-0.2	0.0	0.4	0.7
−20 ~	0	-0.7	-0.3	-0.3	-0.1	0.0	0.4	0.8
0 ~	20	-0.6	-0.2	-0.2	-0.1	0.1	0.5	0.9
20 ~	40	-0.6	-0.2	-0.2	0.0	0.2	0.6	1.1
40 ~	60	-0.6	-0.1	-0.1	0.1	0.2	0.7	1.2
60 ~	80	-0.5	-0.1	-0.1	0.1	0.3	0.8	1.3

Relative Partial Dispersions				
$\theta_{C,t}$	0.7787			
$ heta_{C,A'}$	0.3369			
$ heta_{\sf d,C}$	0.3001			
$ heta_{e,C}$	0.5380			
$ heta_{ extsf{g,d}}$	1.2587			
$ heta_{ extsf{g}, extsf{F}}$	0.5588			
$ heta_{h,g}$	0.4722			
$ heta_{i,g}$	1.2972			
θ´c΄,t	0.8175			
$ heta^{'}_{ ext{e,C}'}$	0.4854			
$ heta^{'}$ F $'$,e	0.5146			
$\theta'_{i,F'}$	1.7791			

Coloring			
λ 80/λ 5	37/34		

Internal Trar	omittonoo
λ (nm)	T 10mm
280	C TOTTITI
290	
300	
310	
320	
330	
340	0.10
350	0.47
360	0.76
370	0.89
380	0.947
390	0.971
400	0.983
420	0.992
440	0.993
460	0.995
480	0.996
500	0.997
550	0.998
600	0.998
650	0.998
700	0.998
800	0.998
900	0.998
1000	0.997
1200	0.997
1400	0.992
1600	0.992
1800	0.976
2000	0.951
2200	0.89
2400	0.84

Refractive Index	n _d	1.57135 1.571351	Abbe Number νd	53.0 52.95	Dispersion NF-NC	0.01079 0.010790
Refractive Index	ne	1.573920	Abbe Number ν_{e}	52.65	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.010900

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.54361		
n 1970	1.97009	1.54831		
n 1530	1.52958	1.55341		
n 1129	1.12864	1.55806		
n _t	1.01398	1.55965		
n _s	0.85211	1.56248		
n _A ′	0.76819	1.56445		
n _r	0.70652	1.56627		
n _C	0.65627	1.56810		
n _C ′	0.64385	1.56862		
n _{He-Ne}	0.6328	1.56910		
n_D	0.58929	1.57126		
n _d	0.58756	1.57135		
n _e	0.54607	1.57392		
n _F	0.48613	1.57889		
n _F ′	0.47999	1.57952		
n _{He-Cd}	0.44157	1.58409		
n _g	0.435835	1.58489		
n _h	0.404656	1.58993		
n _i	0.365015	1.59867		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$				
$\Delta heta_{C,A'}$	-0.0015			
$arDelta heta_{ extsf{g,d}}$	-0.0003			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0005			
$arDelta heta_{i,g}$	-0.0041			

Constants of Dispersion Formula				
A ₁	1.29366890			
A_2	1.32440252•10 ⁻¹			
A_3	1.10197293			
B ₁	8.00367962•10 ⁻³			
B ₂	3.54711196•10 ⁻²			
B ₃	1.34517431•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.98		
Remarks				

Partial Dispersions				
n _C –n _t	0.008456			
n _C –n _A ′	0.003653			
n _d –n _C	0.003246			
n _e –n _C	0.005815			
n _g –n _d	0.013536			
n _g –n _F	0.005992			
n _h –n _g	0.005041			
n _i –n _g	0.013784			
n _C '-n _t	0.008970			
n _e –n _C ′	0.005301			
n _F ′–n _e	0.005599			
n _i –n _F ′	0.019152			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	483		
Annealing Point	AP	(\mathcal{C})	516		
Transformation Temperati	ne Tg	(\mathcal{C})	531		
Yield Point	At	(\mathcal{C})	573		
Softening Point	SP	(\mathcal{C})	652		
Expansion Coefficients	(-30~	+70°C)	95		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	111		
Thermal Conducti	vity k	(W /m•K)	0.864		

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	719
Rigidity Modulus G	$(10^8 N/m^2)$	288
Poisson's Ratio	σ	0.249
Knoop Hardness	Hk	510[5]
Abrasion	Aa	172
Photoelastic Constar (nm/cm/10 ⁵ Pa	· 1.)	2.18

Chemical Properties				
Water Resistance (Powder) Group RW(P)				
Acid Resistance (Powder) Group RA(P)	3			
Weathering Resistance (Surface) Group $W(s)$	2			
Acid Resistance (Surface) Group SR	1.2			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index								
Range of Tem	perature		dr	n / dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)		t	C'	He-Ne	D	е	F	g
−40 ~	-20	-1.0	-0.8	-0.7	-0.6	-0.5	-0.1	0.2
−20 ~	0	-1.0	-0.7	-0.7	-0.6	-0.4	-0.1	0.3
0 ~	20	-1.0	-0.7	-0.7	-0.6	-0.4	0.0	0.4
20 ~	40	-1.0	-0.7	-0.6	-0.5	-0.3	0.1	0.5
40 ~	60	-1.0	-0.7	-0.6	-0.5	-0.3	0.1	0.5
60 ~	80	-1.0	-0.6	-0.6	-0.4	-0.2	0.2	0.6

Relative Partial Dispersions				
$ heta_{C,t}$	0.7837			
$ heta_{C,A'}$	0.3386			
$ heta_{\sf d,C}$	0.3008			
$ heta_{ extsf{e}, extsf{C}}$	0.5389			
$ heta_{ extsf{g,d}}$	1.2545			
$ heta_{ extsf{g}, extsf{F}}$	0.5553			
$ heta_{h,g}$	0.4672			
$ heta_{i,g}$	1.2775			
θ΄c′,t	0.8229			
θ' _{e,C'}	0.4863			
$ heta^{'}$ $_{F^{'}}$,e	0.5137			
$\theta'_{i,F'}$	1.7571			

Coloring				
λ 80/λ 5	36/33			

Internal Trai	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	0.01
340	0.26
350	0.63
360	0.84
370	0.928
380	0.963
390	0.979
400	0.988
420	0.994
440	0.994
460	0.995
480	0.996
500	0.997
550	0.998
600	0.998
650	0.998
700	0.998
800	0.998
900	0.998
1000	0.997
1200	0.996
1400	0.991
1600	0.990
1800	0.972
2000	0.945
2200	0.88
2400	0.83

Refractive Index	n _d	1.57250 1.572501	Abbe Number νd	57.8 57.74	Dispersion NF-NC	0.00991 0.009915
Refractive Index	n _e	1.574864	Abbe Number ν_{e}	57.47	Dispersion $n_{F'} - n_{C'}$	0.010002

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.54394			
n 1970	1.97009	1.54922			
n 1530	1.52958	1.55486			
n 1129	1.12864	1.55978			
n _t	1.01398	1.56139			
n _s	0.85211	1.56417			
n _A ′	0.76819	1.56605			
n _r	0.70652	1.56778			
nc	0.65627	1.56949			
n _C ′	0.64385	1.56997			
n _{He-Ne}	0.6328	1.57042			
n_D	0.58929	1.57241			
n _d	0.58756	1.57250			
n _e	0.54607	1.57486			
n _F	0.48613	1.57940			
n _F ′	0.47999	1.57997			
n _{He-Cd}	0.44157	1.58410			
ng	0.435835	1.58481			
n _h	0.404656	1.58932			
n _i	0.365015	1.59701			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"						
$\Delta heta_{ extsf{C,t}}$	$\theta_{C,t}$ -0.0004					
$arDelta heta_{C,A'}$	0.0006					
$\Delta heta_{ extsf{g,d}}$ -0.0029						
$\Delta \theta_{\text{g,F}}$ -0.0024						
$arDelta heta_{i,g}$	-0.0113					

Constants of Dispersion Formula					
A ₁ 8.21314256•10 ⁻¹					
A_2	6.12586478•10 ⁻¹				
A_3	1.24859637				
B ₁	3.51436131•10 ⁻³				
B ₂	1.79762375•10 ⁻²				
B ₃	1.33456670•10 ²				

Other Properties					
Bubble Quality Group	В				
Specific Gravity d 3.02					
Remarks					

Partial Dispersions				
n _C –n _t	0.008103			
n _C -n _A ′	0.003436			
n _d –n _C	0.003012			
n _e –n _C	0.005375			
n _g –n _d	0.012313			
n _g –n _F	0.005410			
n _h –n _g	0.004502			
n _i –n _g	0.012197			
n _C ′–n _t	0.008582			
n _e –n _C ′	0.004896			
n _F ′–n _e	0.005106			
n _i –n _F ′	0.017041			

Thermal Properties						
Strain Point	StP	(\mathcal{C})	498			
Annealing Point	AP	(\mathcal{C})	534			
TiansformationTemperat.	ne Tg	(\mathcal{C})	548			
Yield Point	At	(\mathcal{C})	593			
Softening Point	SP	(\mathcal{C})	670			
Expansion Coefficients	(-30~	∕+70°C)	66			
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	80			
Thermal Conducti	vity k	(W /m•K)	0.974			

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	819				
Rigidity Modulus G	$(10^8 N/m^2)$	331				
Poisson's Ratio	σ	0.237				
Knoop Hardness	Hk	590[6]				
Abrasion	Aa	109				
Photoelastic Constar (nm/cm/10 ⁵ Pa	. ()	2.42				

Chemical Properties				
Water Resistance (Powder) Group RW(P)	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	2~3			
Acid Resistance (Surface) Group SR	2.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	n / dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)	t	C'	He-Ne	D	е	F	g
−40 ~ −20	3.0	3.4 3.5 3.6 3.7 4.0					4.3
−20 ~ 0	3.1	3.5	3.5	3.7	3.8	4.1	4.4
0 ~ 20	3.2	3.6	3.6 3.6 3.7 3.9				4.6
20 ~ 40	3.2	3.6 3.7 3.8 4.0 4.3 4.					
40 ~ 60	3.3	3.7	3.7	3.9	4.0	4.4	4.8
60 ~ 80	3.3	3.8	3.8	3.9	4.1	4.5	4.9

Relative Partial Dispersions					
$ heta_{C,t}$	0.8172				
$ heta_{C,A'}$	0.3465				
$ heta_{\sf d,C}$	0.3038				
$ heta_{e,C}$	0.5421				
$ heta_{ extsf{g,d}}$	1.2419				
$ heta_{ extsf{g}, extsf{F}}$	0.5456				
$ heta_{h,g}$	0.4541				
$ heta_{i,g}$	1.2302				
θ'c',t	0.8580				
θ' _{e,C'}	0.4895				
$ heta^{'}$ F $'$,e	0.5105				
θ' Ε'	1 7038				

Colo	ring
λ 80/λ 5	35/32

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 0.01 330 0.24 340 0.61 350 0.84 360 0.932 370 0.967 380 0.982 390 0.993 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 500 0.998 500 0.999 600 0.999 600 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.998 1600 0.995 1800 0.988 2000 0.979 2200 0.929		
280 290 300 310 320 0.01 330 0.24 340 0.61 350 0.84 360 0.932 370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929		
290 300 310 320 0.01 330 0.24 340 0.61 350 0.84 360 0.932 370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	7. ()	τ 10mm
300 310 320 0.01 330 0.24 340 0.61 350 0.84 360 0.932 370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	280	
310 320 0.01 330 0.24 340 0.61 350 0.84 360 0.932 370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929		
320 0.01 330 0.24 340 0.61 350 0.84 360 0.932 370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	300	
330 0.24 340 0.61 350 0.84 360 0.932 370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	310	
340 0.61 350 0.84 360 0.932 370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	320	
350 0.84 360 0.932 370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	330	0.24
360 0.932 370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	340	0.61
370 0.967 380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1400 0.998 1600 0.995 1800 0.988 2000 0.979 2200 0.929	350	0.84
380 0.982 390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	360	0.932
390 0.989 400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	370	0.967
400 0.993 420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	380	0.982
420 0.995 440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	390	0.989
440 0.996 460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	400	0.993
460 0.997 480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	420	0.995
480 0.998 500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.988 1600 0.995 1800 0.988 2000 0.979 2200 0.929	440	0.996
500 0.998 550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	460	0.997
550 0.999 600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	480	0.998
600 0.999 650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.988 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	500	0.998
650 0.998 700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.988 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	550	0.999
700 0.999 800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	600	0.999
800 0.999 900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	650	0.998
900 0.999 1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	700	0.999
1000 0.998 1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	800	0.999
1200 0.998 1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	900	0.999
1400 0.989 1600 0.995 1800 0.988 2000 0.979 2200 0.929	1000	0.998
1600 0.995 1800 0.988 2000 0.979 2200 0.929	1200	0.998
1800 0.988 2000 0.979 2200 0.929	1400	0.989
2000 0.979 2200 0.929	1600	0.995
2200 0.929	1800	0.988
	2000	0.979
	2200	0.929
2.00	2400	0.89

Refractive Index	n_{d}	1.53996 1.539956	Abbe Number ν_d	59.5 59.46	Dispersion NF-NC	0.00908 0.009081
Refractive Index	n_{e}	1.542121	Abbe Number ν_{e}	59.20	Dispersion $n_{F'} - n_{C'}$	0.009158

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.51358		
n 1970	1.97009	1.51848		
n 1530	1.52958	1.52370		
N 1129	1.12864	1.52825		
n _t	1.01398	1.52974		
n _s	0.85211	1.53230		
n _A ′	0.76819	1.53404		
n _r	0.70652	1.53562		
n _C	0.65627	1.53719		
n _C ′	0.64385	1.53763		
n _{He-Ne}	0.6328	1.53804		
n_D	0.58929	1.53988		
n _d	0.58756	1.53996		
n _e	0.54607	1.54212		
n _F	0.48613	1.54627		
n _F ′	0.47999	1.54679		
n _{He-Cd}	0.44157	1.55056		
n _g	0.435835	1.55122		
n _h	0.404656	1.55532		
n _i	0.365015	1.56232		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta\theta_{\mathrm{C,t}}$ -0.0046		
$\Delta heta_{ extsf{C}, extsf{A}'}$	-0.0005	
$arDelta heta_{ extsf{g,d}}$	-0.0012	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0012	
$arDelta heta_{i,g}$	-0.0040	

Constants of Dispersion Formula		
A ₁	7.14605258•10 ⁻¹	
A_2	6.21993289•10 ⁻¹	
A_3	1.22537681	
B ₁	3.01763913•10 ⁻³	
B ₂	1.66505450•10 ⁻²	
B ₃	1.43506314•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.75		
Remarks				

Partial Dispersions			
n _C –n _t	0.007456		
n _C –n _A ′	0.003156		
n _d –n _C	0.002762		
n _e –n _C	0.004927		
n _g –n _d	0.011260		
n _g –n _F	0.004941		
n _h –n _g	0.004105		
n _i –n _g	0.011107		
n _C '-n _t	0.007896		
n _e –n _C ′	0.004487		
n _F ′–n _e	0.004671		
n _i –n _F ′	0.015531		

Thermal Properties				
Strain Point	StP	(\mathcal{C})	432	
Annealing Point	AP	(℃)	468	
TiansformationTemperat.	ne Tg	(℃)	478	
Yield Point	At	(℃)	527	
Softening Point	SP	(\mathcal{C})	624	
Expansion Coefficients	(-30~	+70°C)	86	
α (10 ⁻⁷ /°C)	(+100~	~+300℃)	102	
Thermal Conducti	vity k ((W /m•K)	0.982	

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	710
Rigidity Modulus G	$(10^8 N/m^2)$	306
Poisson's Ratio	σ	0.161
Knoop Hardness	Hk	520[5]
Abrasion	Aa	105
Photoelastic Consta (nm/cm/10 ⁵ Pa	/)	2.60

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	2	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	1	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	2.0	

Temperature Coefficients of Refractive Index								
Range of Tem	perature		dr	/ dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)		t	C'	He-Ne	D	е	F	g
−40 ~	-20	1.4	1.7	1.8	1.8	2.0	2.3	2.6
−20 ~	0	1.4	1.7	1.8	1.9	2.0	2.3	2.6
0 ~	20	1.4	1.7	1.8	1.9	2.0	2.3	2.7
20 ~	40	1.4	1.7	1.8	1.9	2.0	2.4	2.7
40 ~	60	1.4	1.7	1.8	1.9	2.1	2.4	2.8
60 ~	80	1.4	1.8	1.8	1.9	2.1	2.4	2.8

Date of the Design	LD:	
Relative Partial Dispersions		
$\theta_{C,t}$	0.8211	
$ heta_{C,A'}$	0.3475	
$ heta_{\sf d,C}$	0.3042	
$ heta_{e,C}$	0.5426	
$ heta_{ extsf{g,d}}$	1.2400	
$ heta_{ extsf{g}, extsf{F}}$	0.5441	
$ heta_{h,g}$	0.4520	
$ heta_{i,g}$	1.2231	
θ´c´,t	0.8622	
θ' _{e,C'}	0.4900	
$ heta^{'}$ F $^{'}$,e	0.5100	
$\theta'_{i,F'}$	1.6959	

Coloring				
λ 80/λ 5	34/30			

Internal Tra	nsmittance
λ (nm)	τ 10mm
280	
290	
300	0.02
310	0.23
320	0.57
330	0.80
340	0.914
350	0.959
360	0.979
370	0.989
380	0.992
390	0.995
400	0.997
420	0.997
440	0.997
460	0.997
480	0.998
500	0.999
550	0.999
600	0.999
650	0.998
700	0.999
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.993
1600	0.995
1800	0.983
2000	0.966
2200	0.920
2400	0.89

Refractive Index	n _d	1.56883 1.568832	Abbe Number νd	56.3 56.36	Dispersion NF-NC	0.01010 0.010092
Refractive Index	n _e	1.571237	Abbe Number $ u_{ m e}$	56.09	Dispersion $n_{F'} - n_{C'}$	0.010185

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.54050			
n 1970	1.97009	1.54565			
n 1530	1.52958	1.55116			
n 1129	1.12864	1.55601			
n _t	1.01398	1.55761			
ns	0.85211	1.56040			
n _A ′	0.76819	1.56230			
n _r	0.70652	1.56404			
n_{C}	0.65627	1.56577			
n _C ′	0.64385	1.56626			
n _{He-Ne}	0.6328	1.56671			
n_D	0.58929	1.56874			
n _d	0.58756	1.56883			
n _e	0.54607	1.57124			
n _F	0.48613	1.57587			
n _F ′	0.47999	1.57645			
n _{He-Cd}	0.44157	1.58067			
ng	0.435835	1.58141			
n _h	0.404656	1.58604			
n _i	0.365015	1.59400			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0021			
$\Delta heta_{C,A'}$	0.0002			
$arDelta heta_{ extsf{g,d}}$	-0.0018			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0014			
$\Delta heta_{ extsf{i,g}}$	-0.0051			

Constants of Dispersion Formula				
A ₁	1.27553696			
A_2	1.46083393•10 ⁻¹			
A_3	1.16754699			
B ₁	7.49692359•10 ⁻³			
B ₂	3.10421530•10 ⁻²			
B ₃	1.28947092•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	2.89			
Remarks					

Partial Dispersions					
n _C –n _t	0.008164				
n _C –n _A ′	0.003476				
n _d –n _C	0.003057				
n _e –n _C	0.005462				
n _g –n _d	0.012574				
n _g –n _F	0.005539				
n _h –n _g	0.004629				
n _i –n _g	0.012595				
n _C '-n _t	0.008650				
n _e –n _C ′	0.004976				
n _F ′–n _e	0.005209				
n _i –n _F ′	0.017555				

Thermal Properties					
Strain Point	StP	(℃)	533		
Annealing Point	AP	(℃)	562		
Transformation Temperatu	ne Tg	(℃)	580		
Yield Point	At	(℃)	622		
Softening Point	SP	(℃)	700		
Expansion Coefficients	(-30~	·+70°C)	80		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	93		
Thermal Conductiv	vity k ((W /m•K)	0.967		

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	811
Rigidity Modulus G	$(10^8 N/m^2)$	327
Poisson's Ratio	σ	0.240
Knoop Hardness	Hk	570[6]
Abrasion	Aa	134
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.32

Chemical Properties				
Chemical Properti	62			
Water Resistance (Powder) Group $RW(P)$	3			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	2~3			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	2.0			

Temperature Coefficients of Refractive Index								
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)	t	C'	He-Ne	D	е	F	g	
−40 ~ −20	1.2	1.5	1.5	1.6	1.8	2.1	2.4	
−20 ~ 0	1.2	1.5	1.6	1.7	1.8	2.2	2.5	
0 ~ 20	1.3	1.6	1.6	1.7	1.9	2.2	2.6	
20 ~ 40	1.3	1.7	1.7	1.8	2.0	2.3	2.7	
40 ~ 60	1.4	1.7	1.8	1.8	2.0	2.4	2.8	
60 ~ 80	1.4	1.8	1.8	1.9	2.1	2.5	2.9	

Relative Partial Dispersions					
$\theta_{C,t}$	0.8090				
$ heta_{C,A'}$	0.3444				
$ heta_{\sf d,C}$	0.3029				
$ heta_{ extsf{e}, extsf{C}}$	0.5412				
$ heta_{ extsf{g,d}}$	1.2459				
$ heta_{ extsf{g}, extsf{F}}$	0.5489				
$ heta_{h,g}$	0.4587				
$ heta_{i,g}$	1.2480				
θ΄C΄,t	0.8493				
θ' _{e,C'}	0.4886				
$ heta^{'}$ F $^{'}$,e	0.5114				
$ heta^{'}_{i,F^{'}}$	1.7236				

Coloring					
λ 80/λ 5	36/33				

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 330 330 0.09 340 0.44 350 0.74 360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914 2400 0.86		
280 290 300 310 320 330 0.09 340 0.44 350 0.74 360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.998 650 0.998 800 0.998 800 0.998 900 0.998 1000 0.998 1000 0.998 1000 0.997 1200 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.993 1800 0.993	Internal Trar	nsmittance
290 300 310 320 330 0.09 340 0.44 350 0.74 360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	,, (,,,,,,	τ 10mm
300 310 320 330 0.09 340 0.44 350 0.74 360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.998 650 0.998 800 0.998 800 0.998 800 0.998 900 0.998 1000 0.998 1000 0.997 1200 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.993 1800 0.993 1800 0.993		
310 320 330 0.09 340 0.44 350 0.74 360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914		
320 330 0.09 340 0.44 350 0.74 360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	300	
330 0.09 340 0.44 350 0.74 360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914		
340 0.44 350 0.74 360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	320	
350 0.74 360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	330	0.09
360 0.88 370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	340	0.44
370 0.946 380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	350	0.74
380 0.970 390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 800 0.998 900 0.998 1000 0.998 1000 0.997 1200 0.997 1400 0.997 1400 0.989 1600 0.993 1800 0.993 1800 0.983 2000 0.967 2200 0.914	360	0.88
390 0.983 400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	370	0.946
400 0.989 420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	380	0.970
420 0.992 440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	390	0.983
440 0.993 460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	400	0.989
460 0.994 480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	420	0.992
480 0.995 500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	440	0.993
500 0.997 550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	460	0.994
550 0.998 600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	480	0.995
600 0.998 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	500	0.997
650 0.997 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	550	0.998
700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	600	0.998
800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	650	0.997
900 0.998 1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	700	0.998
1000 0.997 1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	800	0.998
1200 0.997 1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	900	0.998
1400 0.989 1600 0.993 1800 0.983 2000 0.967 2200 0.914	1000	0.997
1600 0.993 1800 0.983 2000 0.967 2200 0.914	1200	0.997
1800 0.983 2000 0.967 2200 0.914	1400	0.989
2000 0.967 2200 0.914	1600	0.993
2200 0.914	1800	0.983
	2000	0.967
2400 0.86	2200	0.914
	2400	0.86

Refractive Index	n _d	1.58913 1.589130	Abbe Number νd	61.2 61.14	Dispersion NF-NC	0.00963 0.009636
Refractive	ne	1.591429	Abbe Number ν_{e}	60.88	Dispersion n F' - n C'	0 009714

Refractive Indices							
λ (μ m)							
n 2325	2.32542	1.55959					
n 1970	1.97009	1.56531					
n 1530	1.52958	1.57134					
n 1129	1.12864	1.57648					
n _t	1.01398	1.57813					
n _s	0.85211	1.58093					
n _A ′	0.76819	1.58280					
n _r	0.70652	1.58450					
n _C	0.65627	1.58619					
n _C ′	0.64385	1.58666					
n _{He-Ne}	0.6328	1.58710					
n_D	0.58929	1.58904					
n _d	0.58756	1.58913					
n _e	0.54607	1.59143					
n _F	0.48613	1.59582					
n _F ′	0.47999	1.59637					
n _{He-Cd}	0.44157	1.60034					
ng	0.435835	1.60103					
n _h	0.404656	1.60535					
n _i	0.365015	1.61268					

Deviation of Rel	ative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0030				
$\Delta heta_{C,A'}$	0.0012				
$arDelta heta_{ extsf{g,d}}$	-0.0024				
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0018				
$\Delta heta_{i,g}$	-0.0044				

Consta	Constants of Dispersion Formula					
A ₁	9.41357273•10 ⁻¹					
A_2	5.46174895•10 ⁻¹					
A_3	1.16168917					
B ₁	1.40333996•10 ⁻²					
B ₂	9.06635683•10 ⁻⁴					
B ₃	1.14163758•10 ²					

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.31			
Remarks					

Partial Dispersions				
n _C –n _t	0.008061			
n _C –n _A ′	0.003384			
n _d –n _C	0.002942			
n _e –n _C	0.005241			
n _g –n _d	0.011904			
n _g –n _F	0.005210			
n _h –n _g	0.004314			
n _i –n _g	0.011647			
n _C ′–n _t	0.008530			
n _e –n _C ′	0.004772			
n _F ′–n _e	0.004942			
n _i –n _F ′	0.016310			

Therr	nal P	roperti	es
Strain Point	StP	(℃)	619
Annealing Point	AP	(℃)	646
Transformation Temperatu	ne Tg	(℃)	669
Yield Point	At	(℃)	709
Softening Point	SP	(℃)	768
Expansion Coefficients	(-30~	+70°C)	57
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	67
Thermal Conductiv	vity k ((W /m•K)	0.915

Mechanio	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	832
Rigidity Modulus G	$(10^8 N/m^2)$	333
Poisson's Ratio	σ	0.250
Knoop Hardness	Hk	590[6]
Abrasion	Aa	115
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.15

Chemical Properties					
Water Resistance (Powder) Group $RW(P)$	2				
Acid Resistance (Powder) Group RA(P)	4				
Weathering Resistance (Surface) Group $W(s)$	2~3				
Acid Resistance (Surface) Group SR	4.2				
Phosphate Resistance PR	1.0				

	Temperature Coefficients of Refractive Index							
Range of Temp	erature		dr	n / dt rela	ative (1	0 ⁻⁶ / °C)	
(\mathcal{C})		t	C´	He-Ne	D	е	F	g
-40 ~ -	-20	2.9	3.1	3.1	3.3	3.4	3.6	3.9
−20 ~	0	3.0	3.3	3.3	3.4	3.5	3.8	4.1
0 ~	20	3.2	3.5	3.5	3.6	3.7	4.0	4.3
20 ~	40	3.3	3.6	3.6	3.8	3.9	4.2	4.5
40 ~	60	3.5	3.8	3.8	3.9	4.1	4.4	4.7
60 ~	80	3.6	3.9	4.0	4.1	4.2	4.5	4.9

Relative Partia	Relative Partial Dispersions					
$\theta_{C,t}$	0.8366					
$ heta_{C,A'}$	0.3512					
$ heta_{\sf d,C}$	0.3053					
$ heta_{e,C}$	0.5439					
$ heta_{ extsf{g,d}}$	1.2354					
$ heta_{ extsf{g}, extsf{F}}$	0.5407					
$ heta_{h,g}$	0.4477					
$ heta_{i,g}$	1.2087					
θ´c´,t	0.8781					
θ'e,C'	0.4912					
$ heta^{'}$ F $^{'}$,e	0.5088					
$ heta^{'}_{i,F^{'}}$	1.6790					

Coloring				
λ 80/λ 5	35/30			

Internal Trai	nsmittance
λ (nm)	τ 10mm
280	
290	
300	0.01
310	0.16
320	0.43
330	0.67
340	0.82
350	0.904
360	0.949
370	0.972
380	0.983
390	0.989
400	0.993
420	0.995
440	0.995
460	0.996
480	0.997
500	0.998
550	0.999
600	0.998
650	0.998
700	0.999
800	0.999
900	0.998
1000	0.998
1200	0.998
1400	0.984
1600	0.994
1800	0.987
2000	0.972
2200	0.89
2400	0.80

Refractive Index	n _d	1.56384 1.563839	Abbe Number Vd	60.7 60.67	Dispersion NF-NC	0.00929 0.009294
Refractive	ne	1 566056	Abbe Number ν _e	60 42	Dispersion N F' - N C'	0 009369

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.53530			
n 1970	1.97009	1.54083			
n 1530	1.52958	1.54667			
n 1129	1.12864	1.55164			
n _t	1.01398	1.55322			
ns	0.85211	1.55593			
$n_{A^{'}}$	0.76819	1.55774			
n _r	0.70652	1.55938			
n_{C}	0.65627	1.56100			
n _C ′	0.64385	1.56145			
n _{He-Ne}	0.6328	1.56188			
n_D	0.58929	1.56376			
n_d	0.58756	1.56384			
n _e	0.54607	1.56606			
n _F	0.48613	1.57029			
n _F ′	0.47999	1.57082			
n _{He-Cd}	0.44157	1.57465			
ng	0.435835	1.57532			
n _h	0.404656	1.57947			
n _i	0.365015	1.58652			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0057		
$\Delta heta_{C,A'}$	0.0019		
$arDelta heta_{ extsf{g,d}}$	-0.0038		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0031		
$arDelta heta_{i,g}$	-0.0111		

Constants of Dispersion Formula			
A ₁	1.24344200		
A_2	1.66301104•10 ⁻¹		
A_3	1.10586114		
B ₁	1.16396708•10 ⁻²		
B ₂	-8.90464938•10 ⁻³		
B ₃	1.14111220•10 ²		

Other Properties			
Bubble Quality Group			
Specific Gravity	d	2.78	
Remarks			

Partial Dispersions			
n _C –n _t	0.007779		
n _C –n _A ′	0.003265		
n _d –n _C	0.002838		
n _e –n _C	0.005055		
n _g –n _d	0.011477		
n _g –n _F	0.005021		
n _h –n _g	0.004155		
n _i –n _g	0.011208		
n _C '-n _t	0.008231		
n _e –n _C ′	0.004603		
n _F ′–n _e	0.004766		
n _i –n _F ′	0.015702		

Therr	mal Pi	roperti	es
Strain Point	StP	(\mathcal{C})	486
Annealing Point	AP	(\mathcal{C})	521
TiansformationTemperati	ue Tg	(\mathcal{C})	541
Yield Point	At	(\mathcal{C})	577
Softening Point	SP	(℃)	644
Expansion Coefficients	(−30~	+70°C)	75
α (10 ⁻⁷ /°C)	(+100~	+300°C)	91
Thermal Conducti	vity k (W /m•K)	1.043

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	890				
Rigidity Modulus G	$(10^8 N/m^2)$	358				
Poisson's Ratio	σ	0.242				
Knoop Hardness	Hk	600[6]				
Abrasion	Aa	122				
Photoelastic Constant (nm/cm/10 ⁵ Pa)	. 13	2.32				

01 1 1 1 1 1 1 1 1				
Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	3			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	2~3			
Acid Resistance (Surface) Group SR	51.2			
Phosphate Resistance PR	3.0			

Temperature Coefficients of Refractive Index							
Range of Temperature	e	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	2.1	2.3	2.3	2.4	2.5	2.8	3.0
−20 ~ 0	2.1	2.3	2.3	2.4	2.6	2.9	3.2
0 ~ 20	2.1	2.4	2.4	2.5	2.7	3.0	3.3
20 ~ 40	2.1	2.5	2.5	2.6	2.7	3.1	3.4
40 ~ 60	2.2	2.5	2.5	2.7	2.8	3.2	3.5
60 ~ 80	2.2	2.6	2.6	2.7	2.9	3.2	3.6

Relative Partial Dispersions		
$\theta_{C,t}$	0.8370	
$ heta_{C,A'}$	0.3513	
$ heta_{\sf d,C}$	0.3054	
$ heta_{e,C}$	0.5439	
$ heta_{ extsf{g,d}}$	1.2349	
$ heta_{ extsf{g}, extsf{F}}$	0.5402	
$ heta_{h,g}$	0.4471	
$ heta_{i,g}$	1.2059	
θ´c′,t	0.8785	
θ'e,C'	0.4913	
$ heta^{'}$ F $^{'}$,e	0.5087	
$\theta'_{i,F'}$	1.6760	

Coloring		
λ 80/λ 5	35/30	

Internal Trar	
λ (nm)	au 10mm
280	
290	
300	0.05
310	0.25
320	0.51
330	0.72
340	0.85
350	0.925
360	0.960
370	0.978
380	0.985
390	0.990
400	0.993
420	0.994
440	0.994
460	0.995
480	0.997
500	0.998
550	0.999
600	0.998
650	0.997
700	0.998
800	0.998
900	0.998
1000	0.997
1200	0.997
1400	0.987
1600	0.993
1800	0.984
2000	0.971
2200	0.908
2400	0.83

Refractive Index	n _d	1.58313 1.583126	Abbe Number ν _d	59.4 59.38	Dispersion NF-NC	0.00982 0.009821
Refractive	ne	1.585468	Abbe Number ν_{e}	59.11	Dispersion $n_{F'} - n_{C'}$	0.009905

Refractive Indices		
	λ (μ m)	
n 2325	2.32542	1.55463
n 1970	1.97009	1.55992
n 1530	1.52958	1.56557
n 1129	1.12864	1.57048
n _t	1.01398	1.57208
ns	0.85211	1.57485
n _A ′	0.76819	1.57673
n _r	0.70652	1.57844
n_{C}	0.65627	1.58014
n _C ′	0.64385	1.58061
n _{He-Ne}	0.6328	1.58106
n_D	0.58929	1.58304
n _d	0.58756	1.58313
n _e	0.54607	1.58547
n _F	0.48613	1.58996
n _F ′	0.47999	1.59052
n _{He-Cd}	0.44157	1.59459
ng	0.435835	1.59530
n _h	0.404656	1.59972
n _i	0.365015	1.60724

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.0050	
$\Delta heta_{ extsf{C}, extsf{A}'}$	-0.0004	
$arDelta heta_{ extsf{g,d}}$	-0.0021	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0020	
$arDelta heta_{i,g}$	-0.0114	

Constants of Dispersion Formula		
A_1	1.39570615	
A_2	7.18505070•10 ⁻²	
A_3	1.27129267	
B ₁	1.12218843•10 ⁻²	
B ₂	-2.52117422•10 ⁻²	
B ₃	1.34497860•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.19	
Remarks			

Partial Dispersions		
n _C –n _t	0.008056	
n _C –n _A ′	0.003413	
n _d –n _C	0.002987	
n _e –n _C	0.005329	
n _g –n _d	0.012171	
n _g –n _F	0.005337	
n _h –n _g	0.004424	
n _i –n _g	0.011946	
n _C '-n _t	0.008531	
n _e –n _C ′	0.004854	
n _F ′–n _e	0.005051	
n _i –n _F ′	0.016724	

Thermal Properties			
Strain Point	StP	(℃)	503
Annealing Point	AP	(℃)	534
Transformation Temperat.	ne Tg	(℃)	550
Yield Point	At	(℃)	588
Softening Point	SP	(℃)	672
Expansion Coefficients	(-30~	+70°C)	66
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	76
Thermal Conducti	vity k ((W /m•K)	0.974

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	847
Rigidity Modulus G	$(10^8 N/m^2)$	340
Poisson's Ratio	σ	0.246
Knoop Hardness	Hk	570[6]
Abrasion	Aa	117
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.20

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	2	
Weathering Resistance (Surface) Group $W(s)$	1~2	
Acid Resistance (Surface) Group SR	1.2	
Phosphate Resistance PR	1.0	

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	ı / dt rela	itive (1	0 ⁻⁶ / °C)	
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	2.9	3.2	3.2	3.3	3.5	3.8	4.0
−20 ~ 0	2.9	3.3	3.3	3.4	3.5	3.8	4.1
0 ~ 20	3.0	3.3	3.3	3.4	3.6	3.9	4.2
20 ~ 40	3.0	3.4	3.4	3.5	3.7	4.0	4.3
40 ~ 60	3.0	3.4	3.4	3.6	3.7	4.1	4.4
60 ~ 80	3.1	3.5	3.5	3.7	3.8	4.2	4.5

Relative Partial Dispersions				
$\theta_{C,t}$	0.8203			
$ heta_{C,A'}$	0.3475			
$ heta_{\sf d,C}$	0.3041			
$ heta_{ extsf{e}, extsf{C}}$	0.5426			
$ heta_{ extsf{g,d}}$	1.2393			
$ heta_{ extsf{g}, extsf{F}}$	0.5434			
$ heta_{h,g}$	0.4505			
$ heta_{i,g}$	1.2164			
θ´c′,t	0.8613			
θ'e,C'	0.4901			
$ heta^{'}$ F $^{'}$,e	0.5099			
$ heta^{'}_{i,F^{'}}$	1.6884			

Colo	ring
λ 80/λ 5	34/29

Internal Tra	nsmittance
λ (nm)	τ 10mm
280	
290	0.03
300	0.15
310	0.36
320	0.58
330	0.75
340	0.86
350	0.932
360	0.964
370	0.979
380	0.986
390	0.991
400	0.993
420	0.995
440	0.995
460	0.996
480	0.997
500	0.998
550	0.999
600	0.998
650	0.998
700	0.998
800	0.998
900	0.997
1000	0.997
1200	0.997
1400	0.987
1600	0.994
1800	0.985
2000	0.973
2200	0.917
2400	0.86

S-BAM3

Refractive Index	n_{d}	1.58267 1.582673	Abbe Number $ u_{ m d}$	46.4 46.42	Dispersion NF-NC	0.01255 0.012551
Refractive Index	n_{e}	1.585655	Abbe Number $ u_{e}$	46.13	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.012696

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.55175		
n 1970	1.97009	1.55685		
n 1530	1.52958	1.56242		
n 1129	1.12864	1.56755		
n _t	1.01398	1.56932		
n _s	0.85211	1.57251		
n _A ′	0.76819	1.57475		
n _r	0.70652	1.57683		
nc	0.65627	1.57893		
n _C ′	0.64385	1.57952		
n _{He-Ne}	0.6328	1.58007		
n_D	0.58929	1.58256		
n _d	0.58756	1.58267		
n _e	0.54607	1.58565		
n _F	0.48613	1.59148		
n _F ′	0.47999	1.59222		
n _{He-Cd}	0.44157	1.59764		
ng	0.435835	1.59860		
n _h	0.404656	1.60469		
n _i	0.365015	1.61551		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0009		
$\Delta heta_{ extsf{C,A'}}$	0.0009		
$arDelta heta_{ extsf{g,d}}$	0.0006		
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0007		
$arDelta heta_{i,g}$	0.0112		

Constants of Dispersion Formula				
A_1	1.36955358			
A_2	8.53825867•10 ⁻²			
A_3	1.16159771			
B ₁	9.41331434•10 ⁻³			
B ₂	5.04359027•10 ⁻²			
B ₃	1.30548899•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.75		
Remarks				

Partial Dispersions				
n _C –n _t	0.009607			
n _C -n _A ′	0.004179			
n _d –n _C	0.003743			
n _e –n _C	0.006725			
n _g –n _d	0.015926			
n _g –n _F	0.007118			
n _h –n _g	0.006087			
n _i –n _g	0.016912			
n _C ′–n _t	0.010198			
n _e –n _C ′	0.006134			
n _F ′–n _e	0.006562			
n _i –n _F ′	0.023294			

Thermal Properties				
Strain Point	StP	(\mathcal{C})	519	
Annealing Point	AP	(\mathcal{C})	549	
TiansformationTemperati	ne Tg	(\mathcal{C})	572	
Yield Point	At	(\mathcal{C})	614	
Softening Point	SP	(\mathcal{C})	688	
Expansion Coefficients	(-30~	∕+70°C)	85	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	100	
Thermal Conducti	vity k	(W /m•K)	0.965	

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	771			
Rigidity Modulus G	$(10^8 N/m^2)$	311			
Poisson's Ratio	σ	0.242			
Knoop Hardness	Hk	520[5]			
Abrasion	Aa	155			
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.63			

Chemical Properties				
Water Resistance (Powder) Group RW(P)				
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	2			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C´	He-Ne	D	е	F	g
−40 ~ −20	0.2	0.8	0.8	0.9	1.2	1.6	2.0
−20 ~ 0	0.4	0.8	0.9	1.0	1.2	1.7	2.2
0 ~ 20	0.4	0.9	0.9	1.1	1.3	1.8	2.3
20 ~ 40	0.5	1.0	1.0	1.2	1.4	1.9	2.5
40 ~ 60	0.6	1.1	1.1	1.3	1.5	2.0	2.6
60 ~ 80	0.5	1.1	1.2	1.4	1.6	2.2	2.8

Relative Partial Dispersions					
$\theta_{C,t}$	0.7654				
$ heta_{C,A'}$	0.3330				
$ heta_{\sf d,C}$	0.2982				
$ heta_{ extsf{e}, extsf{C}}$	0.5358				
$ heta_{ extsf{g,d}}$	1.2689				
$ heta_{ extsf{g}, extsf{F}}$	0.5671				
$ heta_{h,g}$	0.4850				
$ heta_{i,g}$	1.3475				
θ΄C΄,t	0.8032				
θ' _{e,C'}	0.4831				
$ heta^{'}$ F $^{'}$,e	0.5169				
$\theta'_{i,F'}$	1.8348				

Coloring				
λ 80/λ 5	38/35			

Internal Trar	1
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	0.11
360	0.44
370	0.71
380	0.85
390	0.920
400	0.954
420	0.979
440	0.986
460	0.989
480	0.992
500	0.994
550	0.997
600	0.997
650	0.996
700	0.997
800	0.998
900	0.998
1000	0.998
1200	0.997
1400	0.991
1600	0.993
1800	0.981
2000	0.964
2200	0.911
2400	0.87

S-BAM 4

Refractive Index	n _d	1.60562 1.605620	Abbe Number νd	43.7 43.70	Dispersion NF-NC	0.01385 0.013857
Refractive	ne	1.608909	Abbe Number ν_{e}	43.41	Dispersion $n_{F'} - n_{C'}$	0.014026

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.57351			
n 1970	1.97009	1.57850			
n 1530	1.52958	1.58402			
n 1129	1.12864	1.58926			
n _t	1.01398	1.59113			
ns	0.85211	1.59453			
n _A ′	0.76819	1.59695			
n _r	0.70652	1.59921			
n_{C}	0.65627	1.60151			
n _C ′	0.64385	1.60215			
n _{He-Ne}	0.6328	1.60276			
n_D	0.58929	1.60550			
n _d	0.58756	1.60562			
n _e	0.54607	1.60891			
n _F	0.48613	1.61536			
n _F ′	0.47999	1.61618			
n _{He-Cd}	0.44157	1.62222			
ng	0.435835	1.62329			
n _h	0.404656	1.63010			
n _i	0.365015	1.64228			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0026			
$\Delta heta_{C,A'}$	0.0001			
$arDelta heta_{ extsf{g,d}}$	0.0012			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0013			
$arDelta heta_{i,g}$	0.0115			

Constants of Dispersion Formula				
A ₁	1.41059317			
A_2	1.11201306•10 ⁻¹			
A_3	1.34148939			
B ₁	9.63312192•10 ⁻³			
B ₂	4.98778210•10 ⁻²			
B ₃	1.52237696•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.91		
Remarks				

Partial Dispersions				
n _C –n _t	0.010380			
n _C –n _A ′	0.004557			
n _d –n _C	0.004113			
n _e –n _C	0.007402			
n _g –n _d	0.017671			
n _g –n _F	0.007927			
n _h –n _g	0.006811			
n _i –n _g	0.018992			
n _C '-n _t	0.011028			
n _e –n _C ′	0.006754			
n _F ′–n _e	0.007272			
n _i –n _F ′	0.026102			

Thermal Properties					
Strain Point	StP	(℃)	548		
Annealing Point	AP	(℃)	577		
TiansformationTemperatu	ne Tg	(℃)	599		
Yield Point	At	(℃)	641		
Softening Point	SP	(℃)	722		
Expansion Coefficients	(-30~	+70°C)	84		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	97		
Thermal Conductiv	vity k ((W /m•K)	0.931		

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	762
Rigidity Modulus G	$(10^8 N/m^2)$	306
Poisson's Ratio	σ	0.244
Knoop Hardness	Hk	520[5]
Abrasion	Aa	151
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.41

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	2	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	1~2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

Temperature Coefficients of Refractive Index							
Range of Temperatur	е	dr	ı / dt rela	ative (1	0 ⁻⁶ / ℃)	
(℃)	t	t C' He-Ne D e F' g				g	
−40 ~ −20	0.6	1.0	1.0	1.2	1.4	1.9	2.4
−20 ~ 0	0.7	1.1	1.1	1.3	1.5	2.0	2.6
0 ~ 20	0.7	1.1	1.2	1.3	1.6	2.1	2.7
20 ~ 40	0.8	1.2	1.2	1.4	1.7	2.2	2.9
40 ~ 60	0.8	1.3	1.3	1.5	1.8	2.4	3.0
60 ~ 80	0.9	1.4	1.4	1.6	1.9	2.5	3.2

Deletine Destin	I Diamanaiana
Relative Partia	
$ heta_{C,t}$	0.7491
$ heta_{C,A'}$	0.3289
$ heta_{\sf d,C}$	0.2968
$ heta_{e,C}$	0.5342
$ heta_{ extsf{g,d}}$	1.2752
$ heta_{ extsf{g}, extsf{F}}$	0.5721
$ heta_{h,g}$	0.4915
$ heta_{i,g}$	1.3706
θ´C΄,t	0.7863
θ' _{e,C'}	0.4815
$ heta^{'}$ F $^{'}$,e	0.5185
$\theta'_{i,F'}$	1.8610

Coloring			
λ 80/λ 5	38/35		

Internal Tree	amittan a a
Internal Tran λ (nm)	τ 10mm
280	i Tollilli
290	
300	
310	
320	
330	
340	
350	0.06
360	0.41
370	0.72
380	0.72
390	0.938
400	0.965
420	0.986
440	0.991
460	0.991
480	0.993
500	0.995
550	0.998
600	0.997
650	0.996
700	0.997
800	0.999
900	0.998
1000	0.998
1200	0.998
1400	0.995
1600	0.994
1800	0.980
2000	0.962
2200	0.919
2400	0.89

S-BAM12

Refractive Index	n _d	1.63930 1.639300	Abbe Number νd	44.9 44.87	Dispersion NF-NC	0.01424 0.014247
Refractive	ne	1.642684	Abbe Number ν_{e}	44 59	Dispersion n F' - n C'	0 014414

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.60480		
n 1970	1.97009	1.61040		
n 1530	1.52958	1.61653		
n 1129	1.12864	1.62223		
n _t	1.01398	1.62422		
n _s	0.85211	1.62781		
n _A ′	0.76819	1.63033		
n _r	0.70652	1.63268		
n _C	0.65627	1.63506		
n _C ′	0.64385	1.63573		
n _{He-Ne}	0.6328	1.63635		
n_D	0.58929	1.63917		
n _d	0.58756	1.63930		
n _e	0.54607	1.64268		
n _F	0.48613	1.64930		
n _F ′	0.47999	1.65014		
n _{He-Cd}	0.44157	1.65631		
ng	0.435835	1.65740		
n _h	0.404656	1.66433		
n _i	0.365015	1.67665		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0034		
$\Delta heta_{ extsf{C,A'}}$	0.0014		
$arDelta heta_{ extsf{g,d}}$	-0.0010		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0006		
$arDelta heta_{i,g}$	0.0014		

Constants of Dispersion Formula		
A ₁	1.50161605	
A_2	1.26987445•10 ⁻¹	
A_3	1.43544052	
B ₁	9.40761826•10 ⁻³	
B ₂	4.72602195•10 ⁻²	
B ₃	1.41666499•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.18	
Remarks			

$\begin{array}{cccc} n_{C}-n_{t} & 0.010836 \\ n_{C}-n_{A'} & 0.004725 \\ n_{d}-n_{C} & 0.004243 \\ n_{e}-n_{C} & 0.007627 \\ n_{g}-n_{d} & 0.018101 \\ n_{g}-n_{F} & 0.008097 \\ n_{h}-n_{g} & 0.006929 \\ n_{i}-n_{g} & 0.019244 \\ n_{C'}-n_{t} & 0.011505 \\ \end{array}$	Partial Dispersions		
$\begin{array}{cccc} n_d \!\!-\!\! n_C & 0.004243 \\ n_e \!\!-\!\! n_C & 0.007627 \\ n_g \!\!-\!\! n_d & 0.018101 \\ n_g \!\!-\!\! n_F & 0.008097 \\ n_h \!\!-\!\! n_g & 0.006929 \\ n_i \!\!-\!\! n_g & 0.019244 \\ n_C' \!\!-\!\! n_t & 0.011505 \end{array}$	n _C –n _t	0.010836	
$\begin{array}{ccc} n_{e}\text{-}n_{C} & 0.007627 \\ n_{g}\text{-}n_{d} & 0.018101 \\ n_{g}\text{-}n_{F} & 0.008097 \\ n_{h}\text{-}n_{g} & 0.006929 \\ n_{i}\text{-}n_{g} & 0.019244 \\ n_{C}\text{'}\text{-}n_{t} & 0.011505 \\ \end{array}$	n _C –n _A ′	0.004725	
$\begin{array}{cccc} n_g \!\!-\!\! n_d & 0.018101 \\ n_g \!\!-\!\! n_F & 0.008097 \\ n_h \!\!-\!\! n_g & 0.006929 \\ n_i \!\!-\!\! n_g & 0.019244 \\ n_C' \!\!-\!\! n_t & 0.011505 \end{array}$	n _d –n _C	0.004243	
$\begin{array}{ccc} n_g \!$	n _e –n _C	0.007627	
n _h –n _g 0.006929 n _i –n _g 0.019244 n _C ′–n _t 0.011505	n _g –n _d	0.018101	
n _i -n _g 0.019244 n _C '-n _t 0.011505	n _g –n _F	0.008097	
n _C '-n _t 0.011505	n _h –n _g	0.006929	
	n _i –n _g	0.019244	
n n _{e′} 0.000000	n _C '-n _t	0.011505	
116-11C 0.006928	n _e –n _C ′	0.006958	
n _F '-n _e 0.007456	n _F ′–n _e	0.007456	
n _i –n _F ′ 0.026505	n _i –n _F ′	0.026505	

Thermal Properties				
Strain Point	StP	(℃)	565	
Annealing Point	AP	(℃)	592	
Transformation Temperatu	ne Tg	(℃)	608	
Yield Point	At	(℃)	645	
Softening Point	SP	(℃)	717	
Expansion Coefficients	(-30~	+70°C)	76	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	91	
Thermal Conductiv	vity k ((W /m•K)	0.954	

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	904
Rigidity Modulus G	$(10^8 N/m^2)$	361
Poisson's Ratio	σ	0.253
Knoop Hardness	Hk	550[6]
Abrasion	Aa	144
Photoelastic Consta (nm/cm/10 ⁵ Pa	. 13	2.30

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	2	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	3.2	
Phosphate Resistance PR	1.0	

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C'	He-Ne	D	е	F	g
−40 ~ −20	2.3	2.6	2.7	2.8	3.0	3.5	4.1
−20 ~ 0	2.3	2.7	2.7	2.9	3.1	3.6	4.2
0 ~ 20	2.3	2.7	2.8	3.0	3.2	3.7	4.3
20 ~ 40	2.4	2.8	2.8	3.0	3.3	3.8	4.5
40 ~ 60	2.4	2.8	2.9	3.1	3.3	3.9	4.6
60 ~ 80	2.4	2.9	2.9	3.1	3.4	4.0	4.7

5111 5 11				
Relative Partial Dispersions				
$ heta_{C,t}$	0.7606			
$ heta_{C,A'}$	0.3316			
$ heta_{\sf d,C}$	0.2978			
$ heta_{e,C}$	0.5353			
$ heta_{ extsf{g,d}}$	1.2705			
$ heta_{ extsf{g}, extsf{F}}$	0.5683			
$ heta_{h,g}$	0.4863			
$ heta_{i,g}$	1.3507			
θ´c´,t	0.7982			
θ'e,C'	0.4827			
$ heta^{'}$ F $^{'}$,e	0.5173			
$\theta'_{i,F'}$	1.8388			

Coloring				
λ 80/λ 5	39/35			

Internal Trar	1
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	0.13
360	0.49
370	0.75
380	0.87
390	0.928
400	0.955
420	0.977
440	0.983
460	0.987
480	0.990
500	0.993
550	0.997
600	0.996
650	0.996
700	0.997
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.992
1600	0.995
1800	0.987
2000	0.976
2200	0.932
2400	0.86

S-BAH10

Refractive Index	n _d	1.67003 1.670029	Abbe Number νd	47.3 47.23	Dispersion NF-NC	0.01418 0.014186
Refractive	n _e	1 673402	Abbe Number ν_{e}	46 94	Dispersion n F' - n C'	0.014345

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.63546		
n 1970	1.97009	1.64108		
n 1530	1.52958	1.64722		
n 1129	1.12864	1.65293		
n _t	1.01398	1.65492		
n _s	0.85211	1.65852		
n _A ′	0.76819	1.66105		
n _r	0.70652	1.66341		
nc	0.65627	1.66579		
n _C ′	0.64385	1.66646		
n _{He-Ne}	0.6328	1.66709		
n_D	0.58929	1.66990		
n _d	0.58756	1.67003		
n _e	0.54607	1.67340		
n _F	0.48613	1.67997		
n _F ′	0.47999	1.68080		
n _{He-Cd}	0.44157	1.68689		
ng	0.435835	1.68796		
n_h	0.404656	1.69473		
n _i	0.365015	1.70663		

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.0023		
$\Delta heta_{ extsf{C}, extsf{A}'}$	0.0007		
$arDelta heta_{ extsf{g,d}}$	-0.0028		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0024		
$\Delta heta_{i,g}$	-0.0134		

Constants of Dispersion Formula		
A ₁	1.59034337	
A_2	1.38464579•10 ⁻¹	
A_3	1.21988043	
B ₁	9.32734340•10 ⁻³	
B ₂	4.27498654•10 ⁻²	
B ₃	1.19251777•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.48	
Remarks			

Partial Dispersions				
n _C –n _t	0.010866			
n _C –n _A ′	0.004735			
n _d –n _C	0.004241			
n _e –n _C	0.007614			
n _g –n _d	0.017928			
n _g –n _F	0.007983			
n _h –n _g	0.006774			
n _i –n _g	0.018670			
n _C '-n _t	0.011535			
n _e –n _C ′	0.006945			
n _F ′–n _e	0.007400			
n _i –n _F ′	0.025825			

Thermal Properties				
Strain Point	StP	(℃)	584	
Annealing Point	AP	(℃)	612	
TiansformationTemperati	ue Tg	(℃)	623	
Yield Point	At	(℃)	669	
Softening Point	SP	(℃)	734	
Expansion Coefficients	(-30~	+70°C)	68	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	80	
Thermal Conducti	vity k	(W /m•K)	0.902	

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	962
Rigidity Modulus G	$(10^8 N/m^2)$	378
Poisson's Ratio	σ	0.273
Knoop Hardness	Hk	560[6]
Abrasion	Aa	127
Photoelastic Constan (nm/cm/10 ⁵ Pa)	· 1.)	2.12

Chemical Properties			
Water Resistance (Powder) Group $RW(P)$	1		
Acid Resistance (Powder) Group RA(P)	4		
Weathering Resistance (Surface) Group $W(s)$	2		
Acid Resistance (Surface) Group SR	51.2		
Phosphate Resistance PR	1.0		

Temperature Coefficients of Refractive Index								
Range of Temper	rature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	t C' He-Ne D e F' g				g	
-40 ~ −2	20	3.4	3.9	3.9	4.1	4.3	4.8	5.3
−20 ~	0	3.5	3.9	4.0	4.1	4.4	4.9	5.5
0 ~ 2	20	3.5	4.0	4.1	4.2	4.5	5.0	5.6
20 ~ 4	40	3.6	4.1	4.1	4.3	4.6	5.2	5.7
40 ~ 6	60	3.6	4.2	4.2	4.4	4.7	5.3	5.9
60 ~ 8	30	3.7	4.2	4.3	4.5	4.8	5.4	6.0

Relative Partial Dispersions			
$\theta_{C,t}$	0.7660		
$ heta_{C,A'}$	0.3338		
$ heta_{\sf d,C}$	0.2990		
$ heta_{e,C}$	0.5367		
$ heta_{ extsf{g,d}}$	1.2638		
$ heta_{ extsf{g}, extsf{F}}$	0.5627		
$ heta_{h,g}$	0.4775		
$ heta_{i,g}$	1.3161		
θ´c′,t	0.8041		
θ'e,C'	0.4841		
$ heta^{'}$ F $^{'}$,e	0.5159		
$\theta'_{i,F'}$	1.8003		

Coloring		
λ 80/λ 5	39/34	

	•
Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	0.01
340	0.01
350	0.19
360	0.48
370	0.70
380	0.83
390	0.902
400	0.939
420	0.969
440	0.979
460	0.984
480	0.989
500	0.993
550	0.997
600	0.996
650	0.996
700	0.997
800	0.998
900	0.997
1000	0.997
1200	0.998
1400	0.996
1600	0.996
1800	0.991
2000	0.981
2200	0.949
2400	0.85

S-BAH11

Refractive Index	n _d	1.66672 1.666718	Abbe Number ν_{d}	48.3 48.32	Dispersion NF-NC	0.01380 0.013797
Refractive	ne	1 670000	Abbe Number Ve	48.04	Dispersion NF' —NC'	0 0130/8

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.63328			
n 1970	1.97009	1.63866			
n 1530	1.52958	1.64456			
n 1129	1.12864	1.65008			
n _t	1.01398	1.65201			
ns	0.85211	1.65551			
n _A ′	0.76819	1.65798			
n _r	0.70652	1.66027			
n _C	0.65627	1.66259			
n _C ′	0.64385	1.66324			
n _{He-Ne}	0.6328	1.66385			
n_D	0.58929	1.66660			
n _d	0.58756	1.66672			
n _e	0.54607	1.67000			
n _F	0.48613	1.67639			
n _F ′	0.47999	1.67719			
n _{He-Cd}	0.44157	1.68309			
ng	0.435835	1.68412			
n _h	0.404656	1.69067			
n _i	0.365015	1.70213			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta \theta_{\mathrm{C,t}}$ -0.0069		
$arDelta heta_{C,A'}$	-0.0002	
$arDelta heta_{ extsf{g,d}}$	-0.0027	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0024	
$\Delta heta_{i,g}$	-0.0156	

Constants of Dispersion Formula		
A ₁	1.57138860	
A_2	1.47869313•10 ⁻¹	
A ₃	1.28092846	
B ₁	9.10807936•10 ⁻³	
B ₂	4.02401684•10 ⁻²	
B ₃	1.30399367•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.59	
Remarks			

Partial Dispersions			
n _C –n _t	0.010576		
n _C –n _A ′	0.004611		
n _d –n _C	0.004129		
n _e –n _C	0.007411		
n _g –n _d	0.017407		
n _g –n _F	0.007739		
n _h –n _g	0.006549		
n _i –n _g	0.018002		
n _C '-n _t	0.011228		
n _e –n _C ′	0.006759		
n _F ′–n _e	0.007189		
n _i –n _F ′	0.024938		

Thermal Properties					
Strain Point	StP	(℃)	593		
Annealing Point	AP	(℃)	617		
TiansformationTemperati	ue Tg	(℃)	629		
Yield Point	At	(℃)	675		
Softening Point	SP	(℃)	738		
Expansion Coefficients	(-30~	+70°C)	69		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	82		
Thermal Conducti	vity k ((W /m•K)	0.858		

Mechanical Proper	ties
Young's Modulus E (10 ⁸ N/m ²)	929
Rigidity Modulus G (10 ⁸ N/m ²)	365
Poisson's Ratio σ	0.274
Knoop Hardness Hk	560[6]
Abrasion Aa	154
Photoelastic Constant $(nm/cm/10^5Pa)$	2.06

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	3			
Acid Resistance (Surface) Group SR	52.2			
Phosphate Resistance PR	2.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	ı / dt rela	ative (1	0 ⁻⁶ / ℃)	
(℃)	t	t C' He-Ne D e F' g					
−40 ~ −20	3.3	3.7	3.7	3.9	4.1	4.6	5.1
−20 ~ 0	3.3	3.8	3.8	4.0	4.2	4.7	5.2
0 ~ 20	3.3	3.8	3.9	4.1	4.3	4.8	5.4
20 ~ 40	3.3	3.9	3.9	4.1	4.4	4.9	5.5
40 ~ 60	3.4	4.0	4.0	4.2	4.5	5.0	5.6
60 ~ 80	3.4	4.0	4.1	4.3	4.6	5.1	5.8

Relative Partial Dispersions				
$\theta_{C,t}$	0.7665			
$ heta_{C,A'}$	0.3342			
$ heta_{\sf d,C}$	0.2993			
$ heta_{ extsf{e}, extsf{C}}$	0.5371			
$ heta_{ extsf{g,d}}$	1.2617			
$ heta_{ extsf{g}, extsf{F}}$	0.5609			
$ heta_{h,g}$	0.4747			
$ heta_{i,g}$	1.3048			
$\theta'_{C',t}$	0.8050			
θ'e,C'	0.4846			
$ heta^{'}$ F $^{'}$,e	0.5154			
$ heta^{'}_{i,F^{'}}$	1.7879			

Coloring			
λ 80/λ 5	39/34		

Internal Trar	amittanaa
λ (nm)	τ 10mm
280	i Tollilli
290	
300	
310	
320	
330	
340	0.04
350	0.27
360	0.56
370	0.75
380	0.75
390	0.922
400	0.952
420	0.932
440	0.982
460	0.987
480	0.991
500	0.994
550	0.997
600	0.995
650	0.995
700	0.996
800	0.997
900	0.997
1000	0.997
1200	0.998
1400	0.994
1600	0.995
1800	0.988
2000	0.976
2200	0.936
2400	0.84

S-BAH27

Refractive Index	n _d	1.70154 1.701536	Abbe Number νd	41.2 41.24	Dispersion NF-NC	0.01701 0.017012
Refractive Index	n _e	1.705571	Abbe Number $ u_{e}$	40.95	Dispersion NF' -NC'	0.017228

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.66253		
n 1970	1.97009	1.66858		
n 1530	1.52958	1.67526		
n 1129	1.12864	1.68160		
n _t	1.01398	1.68386		
ns	0.85211	1.68800		
n _A ′	0.76819	1.69094		
n _r	0.70652	1.69370		
n_{C}	0.65627	1.69650		
n _C ′	0.64385	1.69729		
n _{He-Ne}	0.6328	1.69804		
n_D	0.58929	1.70139		
n _d	0.58756	1.70154		
n _e	0.54607	1.70557		
n _F	0.48613	1.71351		
n _F ′	0.47999	1.71452		
n _{He-Cd}	0.44157	1.72200		
ng	0.435835	1.72332		
n _h	0.404656	1.73180		
n _i	0.365015	1.74712		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0029		
$\Delta heta_{ extsf{C}, extsf{A}'}$	0.0011		
$arDelta heta_{ extsf{g,d}}$	0.0016		
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0018		
$arDelta heta_{i,g}$	0.0191		

Constants of Dispersion Formula				
A ₁	1.68939052			
A_2	1.33081013•10 ⁻¹			
A_3	1.41165515			
B ₁	1.03598193•10 ⁻²			
B ₂	5.33982239•10 ⁻²			
B ₃	1.26515503•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.67		
Remarks				

Partial Dispersions				
n _C –n _t	0.012641			
n _C –n _A ′	0.005561			
n _d –n _C	0.005033			
n _e –n _C	0.009068			
n _g –n _d	0.021787			
n _g –n _F	0.009808			
n _h –n _g	0.008480			
n _i –n _g	0.023797			
n _C '-n _t	0.013433			
n _e –n _C ′	0.008276			
n _F ′–n _e	0.008952			
n _i –n _F ′	0.032597			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	611		
Annealing Point	AP	(℃)	636		
TiansformationTemperati	ne Tg	(℃)	647		
Yield Point	At	(℃)	682		
Softening Point	SP	(\mathcal{C})	749		
Expansion Coefficients	(-30~	+70°C)	64		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	75		
Thermal Conducti	vity k ((W /m•K)	0.869		

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	936
Rigidity Modulus G	$(10^8 N/m^2)$	368
Poisson's Ratio	σ	0.272
Knoop Hardness	Hk	580[6]
Abrasion	Aa	129
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.18

Chemical Properties			
Water Resistance (Powder) Group $RW(P)$	1		
Acid Resistance (Powder) Group RA(P)	3		
Weathering Resistance (Surface) Group $W(s)$	2		
Acid Resistance (Surface) Group SR	4.0		
Phosphate Resistance PR	1.0		

Temperature Coefficients of Refractive Index								
Range of Temp	erature	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)		t	C	He-Ne	D	е	F	g
−40 ~ −	-20	3.2	3.7	3.7	4.0	4.2	4.8	5.5
−20 ~	0	3.3	3.8	3.9	4.1	4.4	5.0	5.7
0 ~	20	3.4	4.0	4.0	4.2	4.5	5.2	5.9
20 ~	40	3.5	4.1	4.1	4.4	4.7	5.4	6.2
40 ~	60	3.5	4.2	4.3	4.5	4.8	5.6	6.4
60 ~	80	3.7	4.4	4.4	4.6	5.0	5.8	6.6

Relative Partial Dispersions				
$\theta_{C,t}$	0.7431			
$ heta_{C,A'}$	0.3269			
$ heta_{\sf d,C}$	0.2958			
$ heta_{e,C}$	0.5330			
$ heta_{ extsf{g,d}}$	1.2807			
$ heta_{ extsf{g}, extsf{F}}$	0.5765			
$ heta_{h,g}$	0.4985			
$ heta_{i,g}$	1.3988			
θ´C΄,t	0.7797			
θ' _{e,C'}	0.4804			
$ heta^{'}$ F $^{'}$,e	0.5196			
$ heta^{'}_{i,F^{'}}$	1.8921			

Coloring				
λ 80/λ 5	41/35			

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	0.16
370	0.47
380	0.70
390	0.83
400	0.89
420	0.955
440	0.971
460	0.979
480	0.985
500	0.989
550	0.995
600	0.994
650	0.994
700	0.996
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.993
1600	0.994
1800	0.987
2000	0.974
2200	0.921
2400	0.81

S-BAH28

Refractive Index	n _d	1.72342 1.723420	Abbe Number νd	38.0 37.95	Dispersion NF-NC	0.01906 0.019060
Refractive	ne	1 727935	Abbe Number ν_{e}	37 68	Dispersion n F' - n C'	0.019320

Partial Dispersions

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.68198			
n 1970	1.97009	1.68808			
n 1530	1.52958	1.69490			
N 1129	1.12864	1.70154			
n _t	1.01398	1.70396			
n _s	0.85211	1.70844			
n _A ′	0.76819	1.71167			
n _r	0.70652	1.71471			
n _C	0.65627	1.71782			
n _C ′	0.64385	1.71870			
n _{He-Ne}	0.6328	1.71952			
n_D	0.58929	1.72325			
n _d	0.58756	1.72342			
n _e	0.54607	1.72794			
n _F	0.48613	1.73688			
n _F ′	0.47999	1.73802			
n _{He-Cd}	0.44157	1.74649			
n _g	0.435835	1.74800			
n_h	0.404656	1.75769			
n _i	0.365015	_			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta \theta_{\mathrm{C,t}}$ 0.0023				
$\Delta \theta_{\mathrm{C,A'}}$ 0.0006				
$arDelta heta_{ extsf{g,d}}$	0.0037			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0035			
$arDelta heta_{i,g}$	<u>—</u>			

Constants of Dispersion Formula				
A ₁	1.69493484			
A_2	1.92890298•10 ⁻¹			
A ₃	1.56385948			
B ₁	1.02723190•10 ⁻²			
B ₂	5.21187640•10 ⁻²			
B ₃	1.37818035•10 ²			

Other Properties					
Bubble Quality Group B					
Specific Gravity	d	3.67			
Remarks					

n _C –n _t	0.013857
n _C –n _A ′	0.006146
n _d –n _C	0.005604
n _e –n _C	0.010119
n _g –n _d	0.024580
n _g –n _F	0.011124
n _h –n _g	0.009689
n _i –n _g	
n _C '-n _t	0.014736
n _e –n _C ′	0.009240
n _F ′–n _e	0.010080
n _i –n _F ′	_

Thermal Properties					
Strain Point	StP	(℃)	599		
Annealing Point	AP	(℃)	626		
TiansformationTemperatu	ne Tg	(℃)	643		
Yield Point	At	(℃)	676		
Softening Point	SP	(℃)	739		
Expansion Coefficients	(-30~	+70°C)	66		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	73		
Thermal Conductiv	vity k ((W /m•K)	0.889		

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	911				
Rigidity Modulus G	$(10^8 N/m^2)$	375				
Poisson's Ratio	σ	0.213				
Knoop Hardness	Hk	600[6]				
Abrasion	Aa	138				
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.31				

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	3			
Weathering Resistance (Surface) Group $\mathbf{W}(s)$	1~2			
Acid Resistance (Surface) Group SR	4.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperatu	re	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	3.8	4.5	4.5	4.8	5.1	5.8	6.6
−20 ~ 0	3.9	4.6	4.7	4.9	5.3	6.0	6.9
0 ~ 20	4.0	4.8	4.8	5.1	5.4	6.2	7.1
20 ~ 40	4.1	4.9	5.0	5.2	5.6	6.5	7.4
40 ~ 60	4.2	5.1	5.1	5.4	5.8	6.7	7.7
60 ~ 80	4.3	5.2	5.3	5.6	6.0	6.9	7.9

Relative Partial Dispersions				
$\theta_{C,t}$	0.7270			
$ heta_{C,A'}$	0.3225			
$ heta_{\sf d,C}$	0.2940			
$ heta_{e,C}$	0.5309			
$ heta_{ extsf{g,d}}$	1.2896			
$ heta_{ extsf{g}, extsf{F}}$	0.5836			
$ heta_{h,g}$	0.5083			
$ heta_{i,g}$	<u>—</u>			
θ´c′,t	0.7627			
θ'e,C'	0.4783			
$ heta^{'}$ F $^{'}$,e	0.5217			
$\theta'_{i,F'}$	_			

Coloring					
λ 80/λ 5	42/36				

Internal 1	ransmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	0.06
370	0.32
380	0.58
390	0.75
400	0.85
420	0.934
440	0.963
460	0.975
480	0.982
500	0.987
550	0.994
600	0.995
650	0.995
700	0.996
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.994
1600	0.995
1800	0.990
2000	0.979
2200	0.938
2400	0.84

S-BAH32

Refractive Index	n_{d}	1.66998 1.669979	Abbe Number ν _d	39.3 39.27	Dispersion NF-NC	0.01706 0.017061
Refractive Index	n _e	1.674022	Abbe Number ν_{e}	38.99	Dispersion $n_{F'} - n_{C'}$	0.017287

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.63134		
n 1970	1.97009	1.63728		
n 1530	1.52958	1.64386		
n 1129	1.12864	1.65013		
n _t	1.01398	1.65237		
n _s	0.85211	1.65648		
n _A ′	0.76819	1.65941		
n _r	0.70652	1.66216		
nc	0.65627	1.66495		
n _C ′	0.64385	1.66574		
n _{He-Ne}	0.6328	1.66648		
n_D	0.58929	1.66983		
n _d	0.58756	1.66998		
n _e	0.54607	1.67402		
n _F	0.48613	1.68201		
n _F ′	0.47999	1.68303		
n _{He-Cd}	0.44157	1.69059		
ng	0.435835	1.69193		
n _h	0.404656	1.70056		
n _i	0.365015	1.71630		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$ 0.0063			
$\Delta heta_{C,A'}$	0.0013		
$arDelta heta_{ extsf{g,d}}$	0.0034		
$\Delta heta$ g,F	0.0035		
$\Delta heta_{i,g}$	0.0322		

Constants of Dispersion Formula			
A ₁	1.58023630		
A_2	1.37504632•10 ⁻¹		
A ₃	1.60603298		
B ₁	1.03578062•10 ⁻²		
B ₂	5.48393088•10 ⁻²		
B ₃	1.47982885•10 ²		

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.26		
Remarks				

	Temperature Coefficients of Refractive Index							
Range of Temperature $\frac{dn}{dt} = \frac{10^{-6}}{C}$								
(℃))	t	C´	He-Ne	D	е	F	g
-40 ~	-20	3.7	4.3	4.3	4.6	4.8	5.4	6.2
-20 ~	0	3.7	4.4	4.4	4.7	4.9	5.6	6.4
0 ~	20	3.7	4.4	4.5	4.7	5.0	5.7	6.5
20 ~	40	3.8	4.5	4.6	4.8	5.1	5.9	6.7
40 ~	60	3.8	4.6	4.7	4.9	5.3	6.0	6.9
60 ~	80	3 8	4 7	4.8	5.0	5.4	6.2	7 1

Partial Dispersions			
n _C –n _t	0.012577		
n _C -n _A ′	0.005542		
n _d –n _C	0.005030		
n _e –n _C	0.009073		
n _g –n _d	0.021950		
n _g –n _F	0.009919		
n _h –n _g	0.008632		
n _i –n _g	0.024370		
n _C '-n _t	0.013368		
n _e –n _C ′	0.008282		
n _F ′–n _e	0.009005		
n _i –n _F ′	0.033272		
n _C '-n _t n _e -n _C ' n _F '-n _e	0.013368 0.008282 0.009005		

Thermal Properties				
Strain Point	StP	(\mathcal{C})	546	
Annealing Point	AP	(\mathcal{C})	563	
Transformation Temperatur	re Tg	(\mathcal{C})	608	
Yield Point	At	(\mathcal{C})	657	
Softening Point	SP	(℃)	726	
Expansion Coefficients	69			
α (10 ⁻⁷ /°C) (+	100~+	300℃)	78	
Thermal Conductivity	k(W/	m•K)	0.921	

Mechanical Properties				
Young's Modulus E	$(10^8N/m^2)$	904		
Rigidity Modulus G	$(10^8 N/m^2)$	359		
Poisson's Ratio	σ	0.260		
Knoop Hardness	Hk	580[6]		
Abrasion	Aa	138		
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.74		

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	1~2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

Relative Partial Dispersions				
$ heta_{C,t}$	0.7372			
$ heta_{C,A'}$	0.3248			
$ heta_{\sf d,C}$	0.2948			
$ heta_{ extsf{e}, extsf{C}}$	0.5318			
$ heta_{ extsf{g,d}}$	1.2866			
$ heta_{ extsf{g}, extsf{F}}$	0.5814			
$ heta_{h,g}$	0.5059			
$ heta_{i,g}$	1.4284			
θ΄C΄,t	0.7733			
θ'e,C'	0.4791			
$ heta$ \dot{F} ,e	0.5209			
$\theta'_{i,F'}$	1.9247			

Coloring				
λ 80/ λ 5	40/36			

	_
Internal Tran	
λ (nm)	7 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	0.16
370	0.51
380	0.74
390	0.85
400	0.910
420	0.955
440	0.971
460	0.978
480	0.984
500	0.988
550	0.994
600	0.994
650	0.994
700	0.996
800	0.998
900	0.997
1000	0.997
1200	0.996
1400	0.992
1600	0.993
1800	0.988
2000	0.980
2200	0.948
2400	0.88

S-PHM52

620630 n n_F-n_C 0.00975

Refractive Index	n_{d}	1.61800 1.618000	Abbe Number <i>V</i> d	63.4 63.33	Dispersion NF-NC	0.00975 0.009758
Refractive Index	n _e	1.620327	Abbe Number $ u_{ m e}$	63.02	Dispersion $n_{F'} - n_{C'}$	0.009844

Refractive Indices						
λ (μ m)						
n 2325	2.32542	1.59108				
n 1970	1.97009	1.59587				
n 1530	1.52958	1.60103				
n 1129	1.12864	1.60561				
n _t	1.01398	1.60714				
n _s	0.85211	1.60983				
n _A ′	0.76819	1.61167				
n _r	0.70652	1.61335				
nc	0.65627	1.61504				
n _C ′	0.64385	1.61551				
n _{He-Ne}	0.6328	1.61595				
n_D	0.58929	1.61791				
n_d	0.58756	1.61800				
n _e	0.54607	1.62033				
n _F	0.48613	1.62479				
n _F ′	0.47999	1.62535				
n _{He-Cd}	0.44157	1.62940				
ng	0.435835	1.63010				
n _h	0.404656	1.63451				
n _i	0.365015	1.64199				

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta\theta_{\mathrm{C,t}}$ -0.0349					
$\Delta heta_{ extsf{C,A'}}$	-0.0072				
$arDelta heta_{ extsf{g,d}}$	0.0071				
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0051				
$arDelta heta_{i,g}$	0.0239				

Consta	Constants of Dispersion Formula				
A ₁	1.09966550				
A_2	4.78125422•10 ⁻¹				
A_3	1.13214074				
B ₁	1.32718559•10 ⁻²				
B ₂	-6.01649685•10 ⁻⁴				
B ₃	1.30595472•10 ²				

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.67			
Remarks					

Partial Dispersions				
n _C –n _t	0.007893			
n _C –n _A ′	0.003370			
n _d –n _C	0.002964			
n _e –n _C	0.005291			
n _g –n _d	0.012103			
n _g –n _F	0.005309			
n _h –n _g	0.004403			
n _i –n _g	0.011891			
n _C '-n _t	0.008364			
n _e –n _C ′	0.004820			
n _F ′–n _e	0.005024			
n _i –n _F ′	0.016643			

Thermal Properties				
Strain Point	StP	(℃)	_	
Annealing Point	AP	(℃)	_	
TiansformationTemperatu	ne Tg	(℃)	587	
Yield Point	At	(℃)	617	
Softening Point	SP	(℃)	_	
Expansion Coefficients	(-30~	+70°C)	101	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	120	
Thermal Conductiv	vity k ((W /m•K)	0.599	

Mechanio	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	715
Rigidity Modulus G	$(10^8 N/m^2)$	277
Poisson's Ratio	σ	0.292
Knoop Hardness	Hk	390[4]
Abrasion	Aa	434
Photoelastic Constar (nm/cm/10 ⁵ Pa)	. 1.)	1.00

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	2			
Acid Resistance (Powder) Group RA(P)	5			
Weathering Resistance (Surface) Group $W(s)$	2			
Acid Resistance (Surface) Group SR	5.0			
Phosphate Resistance PR	4.0			

	Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)		t	C	He-Ne	D	е	F [′]	g
−40 ~	-20	-3.7	-3.6	-3.6	-3.6	-3.4	-3.2	-3.0
−20 ~	0	-3.8	-3.7	-3.7	-3.6	-3.5	-3.2	-3.0
0 ~	20	-4.0	-3.7	-3.7	-3.6	-3.5	-3.2	-3.0
20 ~	40	-4.1	-3.7	-3.7	-3.6	-3.5	-3.2	-3.0
40 ~	60	-4.2	-3.8	-3.8	-3.6	-3.5	-3.2	-3.0
60 ~	80	-4.2	-3.8	-3.8	-3.7	-3.6	-3.3	-3.0

Relative Partial Dispersions				
$\theta_{C,t}$	0.8089			
$ heta_{C,A'}$	0.3454			
$ heta_{\sf d,C}$	0.3038			
$ heta_{e,C}$	0.5422			
$ heta_{ extsf{g,d}}$	1.2403			
$ heta_{ extsf{g}, extsf{F}}$	0.5441			
$ heta_{h,g}$	0.4512			
$ heta_{i,g}$	1.2186			
θ'c',t	0.8497			
$ heta^{'}_{ ext{e,C}'}$	0.4896			
$ heta^{'}$ $_{F^{'}}$,e	0.5104			
θ' Ε'	1 6907			

Coloring				
λ 80/λ 5	37/33			

	_
Internal Tran	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	0.05
340	0.25
350	0.51
360	0.72
370	0.85
380	0.923
390	0.957
400	0.974
420	0.986
440	0.990
460	0.992
480	0.994
500	0.996
550	0.998
600	0.998
650	0.998
700	0.998
800	0.997
900	0.996
1000	0.996
1200	0.996
1400	0.996
1600	0.991
1800	0.979
2000	0.961
2200	0.926
2400	0.89

S-PHM53

Refractive Index	n _d	1.60300 1.603001	Abbe Number νd	65.5 65.44	Dispersion NF-NC	0.00921 0.009215
Refractive	ne	1 605200	Abbe Number ν_{e}	65 15	Dispersion n F' - n C'	0.009289

Refractive Indices					
	λ (μ m)				
n 2325	2.32542 1.575				
n 1970	1.97009	1.58092			
n 1530	1.52958	1.58634			
n 1129	1.12864	1.59103			
n _t	1.01398	1.59256			
n _s	0.85211	1.59519			
n _A ′	0.76819	1.59697			
n _r	0.70652	1.59858			
n _C	0.65627	1.60019			
n _C ′	0.64385	1.60064			
n _{He-Ne}	0.6328	1.60106			
n_D	0.58929	1.60292			
n _d	0.58756	1.60300			
n _e	0.54607	1.60520			
n _F	0.48613	1.60940			
n _F ′	0.47999	1.60993			
n _{He-Cd}	0.44157	1.61372			
n _g	0.435835	1.61438			
n _h	0.404656	1.61850			
n _i	0.365015	1.62547			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0257			
$arDelta heta_{C,A'}$	-0.0054			
$arDelta heta_{ extsf{g,d}}$	0.0061			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0045			
$\Delta heta_{i,g}$	0.0265			

Constants of Dispersion Formula				
A_1	1.09775423			
A_2	4.34816432•10 ⁻¹			
A_3	1.13894976			
B ₁	1.23369400•10 ⁻²			
B ₂	$-3.72522903 \cdot 10^{-4}$			
B ₃	1.24276984•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.51		
Remarks				

Partial Dispersions				
n _C –n _t	0.007630			
n _C –n _A ′	0.003223			
n _d –n _C	0.002812			
n _e –n _C	0.005011			
n _g –n _d	0.011380			
n _g –n _F	0.004977			
n _h –n _g	0.004114			
n _i –n _g	0.011090			
n _C '-n _t	0.008078			
n _e –n _C ′	0.004563			
n _F ′–n _e	0.004726			
n _i –n _F ′	0.015545			

Therr	nal Pi	roperti	es
Strain Point	StP	(\mathcal{C})	
Annealing Point	AP	(\mathcal{C})	
Transformation Temperatu	re Tg	(\mathcal{C})	610
Yield Point	At	(\mathcal{C})	644
Softening Point	SP	(\mathcal{C})	681
Expansion Coefficients	(-30~	+70°C)	93
α (10 ⁻⁷ /°C)	(+100~	+300°C)	109
Thermal Conductiv	vity k (W/m·K)	0.615

Mechanio	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	708
Rigidity Modulus G	$(10^8 N/m^2)$	275
Poisson's Ratio	σ	0.285
Knoop Hardness	Hk	390[4]
Abrasion	Aa	378
Photoelastic Constar (nm/cm/10 ⁵ Pa)	· 1.)	1.21

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	5			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	51.0			
Phosphate Resistance PR	4.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	t C' He-Ne D e F' g			g		
−40 ~ −20	-3.1	-2.8	-2.8	-2.7	-2.6	-2.4	-2.2
−20 ~ 0	-3.0	-2.8	-2.8	-2.7	-2.6	-2.4	-2.1
0 ~ 20	-3.0	-2.7	-2.7	-2.6	-2.5	-2.3	-2.0
20 ~ 40	-2.9	-2.6	-2.6	-2.5	-2.4	-2.1	-1.9
40 ~ 60	-2.9	-2.5	-2.5	-2.4	-2.2	-1.9	-1.7
60 ~ 80	-2.7	-2.3	-2.3	-2.2	-2.0	-1.7	-1.5

Relative Partia	Relative Partial Dispersions				
$ heta_{C,t}$	0.8280				
$ heta_{C,A'}$	0.3498				
$ heta_{\sf d,C}$	0.3052				
$ heta_{e,C}$	0.5438				
$ heta_{ extsf{g,d}}$	1.2349				
$ heta_{ extsf{g}, extsf{F}}$	0.5401				
$ heta_{h,g}$	0.4464				
$ heta_{i,g}$	1.2035				
θ´c′,t	0.8696				
θ'e,C'	0.4912				
$ heta^{'}$ F $^{'}$,e	0.5088				
$\theta'_{i,F'}$	1.6735				

Coloring					
λ 80 / λ 5 37/32					

Internal Tr	ransmittance
λ (nm)	τ 10mm
280	
290	
300	
310	0.03
320	0.10
330	0.25
340	0.45
350	0.64
360	0.78
370	0.88
380	0.935
390	0.963
400	0.977
420	0.986
440	0.987
460	0.989
480	0.992
500	0.994
550	0.998
600	0.997
650	0.996
700	0.996
800	0.997
900	0.997
1000	0.996
1200	0.997
1400	0.993
1600	0.987
1800	0.967
2000	0.941
2200	0.87
2400	0.83
	· · ·

Refractive Index	n _d	1.54814 1.548141	Abbe Number νd	45.8 45.79	Dispersion NF-NC	0.01197 0.011972
Refractive Index	ne	1.550984	Abbe Number $ u_{ m e}$	45.49	Dispersion $n_{F'} - n_{C'}$	0.012112

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.51797			
n 1970	1.97009	1.52307			
n 1530	1.52958	1.52861			
n 1129	1.12864	1.53365			
n _t	1.01398	1.53537			
n _s	0.85211	1.53844			
n _A ′	0.76819	1.54058			
n _r	0.70652	1.54257			
nc	0.65627	1.54457			
n _C ′	0.64385	1.54514			
n _{He-Ne}	0.6328	1.54566			
n_D	0.58929	1.54804			
n _d	0.58756	1.54814			
n _e	0.54607	1.55098			
n _F	0.48613	1.55654			
n _F ′	0.47999	1.55725			
n _{He-Cd}	0.44157	1.56244			
ng	0.435835	1.56335			
n _h	0.404656	1.56918			
n _i	0.365015	1.57959			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0071			
$\Delta heta_{C,A'}$	0.0017			
$arDelta heta_{ extsf{g,d}}$	0.0009			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0012			
$arDelta heta_{i,g}$	0.0146			

Constants of Dispersion Formula				
A_1	1.25088944			
A_2	9.97973327•10 ⁻²			
A_3	1.20583504			
B ₁	8.83921279•10 ⁻³			
B ₂	4.82685052•10 ⁻²			
B ₃	1.37414953•10 ²			

Other Properties					
Bubble Quality Group	В	В			
Specific Gravity	d	2.54			
Remarks					

Partial Dispersions				
n _C –n _t	0.009202			
n _C –n _A ′	0.003988			
n _d –n _C	0.003569			
n _e –n _C	0.006412			
n _g –n _d	0.015210			
n _g –n _F	0.006807			
n _h –n _g	0.005833			
n _i –n _g	0.016236			
n _C '-n _t	0.009765			
n _e –n _C ′	0.005849			
n _F ′–n _e	0.006263			
n _i –n _F ′	0.022340			

Thermal Properties					
Strain Point	StP	(℃)	452		
Annealing Point	AP	(℃)	487		
TiansformationTemperat.	ne Tg	(℃)	501		
Yield Point	At	(℃)	542		
Softening Point	SP	(℃)	654		
Expansion Coefficients	(-30~	+70°C)	86		
α (10 ⁻⁷ /°C)	(+100~	≻+300°C)	101		
Thermal Conducti	vity k ((W /m•K)	1.039		

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	705				
Rigidity Modulus G	$(10^8 N/m^2)$	288				
Poisson's Ratio	σ	0.222				
Knoop Hardness	Hk	490[5]				
Abrasion	Aa	128				
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.68				

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	3			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

	Temperature Coefficients of Refractive Index							
Range of Tem	perature		dr	ı / dt rela	itive (1	0 ⁻⁶ / °C)	
(\mathcal{C})		t	C	He-Ne	D	е	F	g
−40 ~	-20	1.1	1.5	1.5	1.7	1.9	2.3	2.8
−20 ~	0	1.1	1.5	1.6	1.7	1.9	2.4	2.9
0 ~	20	1.1	1.5	1.6	1.7	2.0	2.4	3.0
20 ~	40	1.1	1.6	1.6	1.8	2.0	2.5	3.1
40 ~	60	1.1	1.6	1.6	1.8	2.0	2.6	3.1
60 ~	80	1.1	1.6	1.6	1.8	2.1	2.6	3.2

Relative Partial Dispersions		
$\theta_{C,t}$	0.7686	
$ heta_{C,A'}$	0.3331	
$ heta_{\sf d,C}$	0.2981	
$ heta_{e,C}$	0.5356	
$ heta_{ extsf{g,d}}$	1.2705	
$ heta_{ extsf{g}, extsf{F}}$	0.5686	
$ heta_{h,g}$	0.4872	
$ heta_{i,g}$	1.3562	
θ´c΄,t	0.8062	
θ' _{e,C'}	0.4829	
$ heta^{'}$ $_{F^{'}}$,e	0.5171	
$\theta'_{i,F'}$	1.8445	

Coloring		
λ 80/λ 5	37/34	

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	0.01
350	0.29
360	0.69
370	0.87
380	0.944
390	0.972
400	0.984
420	0.992
440	0.994
460	0.995
480	0.996
500	0.997
550	0.998
600	0.998
650	0.998
700	0.998
800	0.998
900	0.998
1000	0.997
1200	0.997
1400	0.996
1600	0.993
1800	0.977
2000	0.948
2200	0.89
2400	0.85

Refractive Index	n _d	1.54072 1.540720	Abbe Number νd	47.2 47.23	Dispersion NF-NC	0.01145 0.011449
Refractive	ne	1.543440	Abbe Number ν_{e}	46.94	Dispersion n F' - n C'	0.011577

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.51118	
n 1970	1.97009	1.51626	
n 1530	1.52958	1.52176	
n 1129	1.12864	1.52672	
n _t	1.01398	1.52841	
n _s	0.85211	1.53139	
n _A ′	0.76819	1.53346	
n _r	0.70652	1.53537	
n _C	0.65627	1.53730	
n _C ′	0.64385	1.53784	
n _{He-Ne}	0.6328	1.53835	
n_D	0.58929	1.54062	
n _d	0.58756	1.54072	
n _e	0.54607	1.54344	
n _F	0.48613	1.54875	
n _F ′	0.47999	1.54942	
n _{He-Cd}	0.44157	1.55435	
ng	0.435835	1.55522	
n _h	0.404656	1.56074	
n _i	0.365015	1.57052	

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0083	
$arDelta heta_{C,A'}$	0.0022	
$arDelta heta_{ extsf{g,d}}$	-0.0005	
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0000	
$\Delta heta_{i,g}$	0.0076	

Constants of Dispersion Formula		
A ₁	1.23401499	
A_2	9.59796833•10 ⁻²	
A_3	1.20503991	
B ₁	8.69507801•10 ⁻³	
B ₂	4.65611429•10 ⁻²	
B ₃	1.37953301•10 ²	

Other Properties			
Bubble Quality Group	В	В	
Specific Gravity	d	2.52	
Remarks			

Partial Dispersions		
n _C –n _t	0.008891	
n _C –n _A ′	0.003839	
n _d –n _C	0.003423	
n _e –n _C	0.006143	
n _g –n _d	0.014496	
n _g –n _F	0.006470	
n _h –n _g	0.005521	
n _i –n _g	0.015308	
n _C '-n _t	0.009432	
n _e –n _C ′	0.005602	
n _F ′–n _e	0.005975	
n _i –n _F ′	0.021109	

Thermal Properties			
Strain Point	StP	(℃)	448
Annealing Point	AP	(℃)	484
TiansformationTemperat.	ne Tg	(℃)	496
Yield Point	At	(℃)	538
Softening Point	SP	(℃)	658
Expansion Coefficients	(-30~	+70°C)	82
α (10 ⁻⁷ /°C)	(+100~	≻+300°C)	98
Thermal Conducti	vity k ((W /m•K)	1.051

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	699
Rigidity Modulus G	$(10^8 N/m^2)$	286
Poisson's Ratio	σ	0.220
Knoop Hardness	Hk	500[5]
Abrasion	Aa	121
Photoelastic Constar (nm/cm/10 ⁵ Pa	· 1.)	2.74

Chemical Properties		
Water Resistance (Powder) Group RW(P)	3	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

Temperature Coefficients of Refractive Index								
Range of Temp	erature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	C'	He-Ne	D	е	F	g
-40 ~ ·	-20	1.3	1.7	1.7	1.9	2.0	2.5	2.9
−20 ~	0	1.3	1.7	1.8	1.9	2.1	2.6	3.0
0 ~	20	1.4	1.8	1.8	2.0	2.2	2.6	3.1
20 ~	40	1.5	1.9	1.9	2.1	2.3	2.7	3.3
40 ~	60	1.5	1.9	1.9	2.1	2.3	2.8	3.4
60 ~	80	1.5	2.0	2.0	2.2	2.4	2.9	3.5

Relative Partial Dispersions				
$\theta_{\mathrm{C,t}}$	0.7766			
$ heta_{C,A'}$	0.3353			
$ heta_{\sf d,C}$	0.2990			
$ heta_{e,C}$	0.5366			
$ heta_{ extsf{g,d}}$	1.2661			
$ heta_{ extsf{g}, extsf{F}}$	0.5651			
$ heta_{h,g}$	0.4822			
$ heta_{i,g}$	1.3371			
θ´c′,t	0.8147			
θ' _{e,C'}	0.4839			
$ heta^{'}$ F $^{'}$,e	0.5161			
$\theta'_{i,F'}$	1.8234			

Coloring					
λ 80/λ 5	37/34				

Internal Trar	1
λ (nm)	au 10mm
280	
290	
300	
310	
320	
330	
340	0.04
350	0.32
360	0.66
370	0.84
380	0.925
390	0.962
400	0.979
420	0.990
440	0.994
460	0.995
480	0.996
500	0.997
550	0.998
600	0.998
650	0.997
700	0.998
800	0.999
900	0.998
1000	0.997
1200	0.997
1400	0.997
1600	0.995
1800	0.987
2000	0.970
2200	0.942
2400	0.917

Refractive Index	n _d	1.53172 1.531717	Abbe Number νd	48.9 48.84	Dispersion NF-NC	0.01088 0.010887
Refractive	ne	1 534304	Abbe Number ν_{e}	48 55	Dispersion n F' - n C'	0.011006

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.50292			
n 1970	1.97009	1.50797			
n 1530	1.52958	1.51342			
n 1129	1.12864	1.51829			
n _t	1.01398	1.51993			
n _s	0.85211	1.52280			
n _A ′	0.76819	1.52479			
n _r	0.70652	1.52662			
n _C	0.65627	1.52846			
n _C ′	0.64385	1.52897			
n _{He-Ne}	0.6328	1.52946			
n_D	0.58929	1.53162			
n _d	0.58756	1.53172			
n _e	0.54607	1.53430			
n _F	0.48613	1.53934			
n _F ′	0.47999	1.53998			
n _{He-Cd}	0.44157	1.54465			
ng	0.435835	1.54547			
n _h	0.404656	1.55069			
n _i	0.365015	1.55989			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0076			
$\Delta heta_{C,A'}$	0.0017			
$arDelta heta_{ extsf{g,d}}$	0.0002			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0007			
$arDelta heta_{i,g}$	0.0082			

Constants of Dispersion Formula			
A ₁	1.17701777		
A_2	1.27958030•10 ⁻¹		
A_3	1.34740124		
B ₁	7.71087686•10 ⁻³		
B ₂	4.11325328•10 ⁻²		
B ₃	1.54531692•10 ²		

Other Properties				
Bubble Quality Group	В	В		
Specific Gravity	d	2.50		
Remarks				

Partial Dispersions				
n _C –n _t	0.008529			
n _C -n _A ′	0.003667			
n _d –n _C	0.003261			
n _e –n _C	0.005848			
n _g –n _d	0.013756			
n _g –n _F	0.006130			
n _h –n _g	0.005216			
n _i –n _g	0.014418			
n _C '-n _t	0.009045			
n _e –n _C ′	0.005332			
n _F '–n _e	0.005674			
n _i –n _F ′	0.019913			

Thermal Properties				
Strain Point	StP	(℃)	438	
Annealing Point	AP	(℃)	468	
Tiansformation Temperati	ue Tg	(℃)	479	
Yield Point	At	(℃)	528	
Softening Point	SP	(℃)	648	
Expansion Coefficients	(-30~	+70°C)	82	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	96	
Thermal Conducti	vity k ((W /m•K)	1.059	
Thermal Conducti	vity k ((W /m•K)	1.059	

Mechanical Properties					
Young's Modulus E (1	$0^{8}N/m^{2}$	648			
Rigidity Modulus G (1	$0^{8}N/m^{2}$	283			
Poisson's Ratio	σ	0.146			
Knoop Hardness	Hk	490[5]			
Abrasion	Aa	114			
Photoelastic Constant (nm/cm/10 ⁵ Pa)	β	2.81			

Chamical Dranartica					
Chemical Properties					
Water Resistance (Powder) Group $RW(P)$	3				
Acid Resistance (Powder) Group RA(P)	1				
Weathering Resistance (Surface) Group $W(s)$	2~3				
Acid Resistance (Surface) Group SR	1.0				
Phosphate Resistance PR	1.0				

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	t C' He-Ne D e F' g					
−40 ~ −20	1.4	1.8	1.8	1.9	2.2	2.5	3.0
−20 ~ 0	1.4	1.8	1.8	1.9	2.2	2.6	3.0
0 ~ 20	1.4	1.8	1.8	1.9	2.2	2.6	3.1
20 ~ 40	1.4	1.8	1.8	1.9	2.2	2.7	3.1
40 ~ 60	1.4	1.8	1.9	1.9	2.2	2.7	3.2
60 ~ 80	1.4	1.8	1.9	1.9	2.2	2.7	3.3

Relative Partial Dispersions				
$\theta_{C,t}$	0.7834			
$ heta_{C,A'}$	0.3368			
$ heta_{\sf d,C}$	0.2995			
$ heta_{ extsf{e}, extsf{C}}$	0.5372			
$ heta_{ extsf{g,d}}$	1.2635			
$ heta_{ extsf{g}, extsf{F}}$	0.5631			
$ heta_{h,g}$	0.4791			
$ heta_{i,g}$	1.3243			
θ´c´,t	0.8218			
θ' _{e,C'}	0.4845			
$ heta^{'}$ F $^{'}$,e	0.5155			
$\theta'_{i,F'}$	1.8093			

Coloring					
λ 80/λ 5	37/34				

Internal Trar	1
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	0.07
350	0.44
360	0.74
370	0.88
380	0.948
390	0.973
400	0.985
420	0.990
440	0.989
460	0.990
480	0.991
500	0.993
550	0.994
600	0.994
650	0.992
700	0.996
800	0.998
900	0.997
1000	0.997
1200	0.996
1400	0.995
1600	0.993
1800	0.977
2000	0.947
2200	0.89
2400	0.85

Refractive Index	n _d	1.58144 1.581439	Abbe Number νd	40.7 40.75	Dispersion NF-NC	0.01427 0.014270
Refractive Index	n _e	1.584822	Abbe Number $ u_{e}$	40.47	Dispersion $n_{F'} - n_{C'}$	0.014451

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.54741			
n 1970	1.97009	1.55292			
n 1530	1.52958	1.55895			
n 1129	1.12864	1.56456			
n _t	1.01398	1.56651			
n _s	0.85211	1.57005			
n _A ′	0.76819	1.57254			
n _r	0.70652	1.57486			
n_{C}	0.65627	1.57722			
n _C ′	0.64385	1.57788			
n _{He-Ne}	0.6328	1.57850			
n_D	0.58929	1.58131			
n_d	0.58756	1.58144			
n _e	0.54607	1.58482			
n _F	0.48613	1.59149			
n _F ′	0.47999	1.59233			
n _{He-Cd}	0.44157	1.59861			
ng	0.435835	1.59973			
n _h	0.404656	1.60687			
n _i	0.365015	1.61979			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$				
$\Delta heta_{C,A'}$	0.0027			
$arDelta heta_{ extsf{g,d}}$	0.0014			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0019			
$\Delta heta_{i,g}$	0.0224			

Constants of Dispersion Formula				
A ₁	1.32122534			
A_2	1.23824976•10 ⁻¹			
A_3	1.43685254			
B ₁	9.52091436•10 ⁻³			
B ₂	5.16062665•10 ⁻²			
B ₃	1.49064883•10 ²			

Other Properties				
Bubble Quality Group B				
Specific Gravity d 2.59				
Remarks				

Partial Dispersions				
n _C –n _t	0.010703			
n _C –n _A ′	0.004679			
n _d –n _C	0.004223			
n _e –n _C	0.007606			
n _g –n _d	0.018287			
n _g –n _F	0.008240			
n _h –n _g	0.007140			
n _i –n _g	0.020066			
n _C '-n _t	0.011368			
n _e –n _C ′	0.006941			
n _F ′–n _e	0.007510			
n _i –n _F ′	0.027460			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	536		
Annealing Point	AP	(℃)	564		
TiansformationTemperat.	ne Tg	(℃)	588		
Yield Point	At	(℃)	630		
Softening Point	SP	(℃)	715		
Expansion Coefficients	(-30~	·+70°C)	74		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	88		
Thermal Conducti	vity k ((W /m•K)	1.054		

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	753		
Rigidity Modulus G	$(10^8 N/m^2)$	309		
Poisson's Ratio	σ	0.220		
Knoop Hardness	Hk	540[5]		
Abrasion	Aa	117		
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.84		

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	2	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $\mathbf{W}(\mathbf{S})$	1~2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	+ O' II-N- D - E'				g	
−40 ~ −20	2.4	3.0	3.0	3.2	3.4	4.0	4.6
−20 ~ 0	2.5	3.0	3.1	3.3	3.5	4.1	4.7
0 ~ 20	2.6	3.1	3.2	3.4	3.6	4.2	4.9
20 ~ 40	2.7	3.2	3.3	3.5	3.7	4.4	5.1
40 ~ 60	2.7	3.3	3.3	3.5	3.8	4.5	5.2
60 ~ 80	2.8	3.4	3.4	3.6	3.9	4.6	5.4

Relative Partial Dispersions			
$\theta_{C,t}$	0.7500		
$ heta_{C,A'}$	0.3279		
$ heta_{\sf d,C}$	0.2959		
$ heta_{e,C}$	0.5330		
$ heta_{ extsf{g,d}}$	1.2815		
$ heta_{ extsf{g}, extsf{F}}$	0.5774		
$ heta_{h,g}$	0.5004		
$ heta_{i,g}$	1.4062		
θ´C΄,t	0.7867		
$ heta^{'}_{ ext{e,C}'}$	0.4803		
$ heta^{'}$ $_{F^{'}}$,e	0.5197		
θ' Ε'	1 9002		

Coloring				
λ 80/λ 5	38/35			

Internal T	ransmittance
λ (nm)	au 10mm
280	
290	
300	
310	
320	
330	
340	
350	0.01
360	0.28
370	0.65
380	0.85
390	0.929
400	0.964
420	0.986
440	0.991
460	0.993
480	0.994
500	0.995
550	0.998
600	0.998
650	0.997
700	0.998
800	0.999
900	0.999
1000	0.998
1200	0.998
1400	0.994
1600	0.994
1800	0.981
2000	0.963
2200	0.911
2400	0.89

Refractive Index	n _d	1.56732 1.567322	Abbe Number Vd	42.8 42.82	Dispersion NF-NC	0.01325 0.013250
Refractive Index	ne	1.570466	Abbe Number ν_{e}	42.54	Dispersion $n_{F'} - n_{C'}$	0.013411

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.53493	
n 1970	1.97009	1.54028	
n 1530	1.52958	1.54611	
n 1129	1.12864	1.55148	
n _t	1.01398	1.55333	
n _s	0.85211	1.55667	
n _A ′	0.76819	1.55901	
n _r	0.70652	1.56119	
nc	0.65627	1.56339	
n _C ′	0.64385	1.56401	
n _{He-Ne}	0.6328	1.56459	
n_D	0.58929	1.56721	
n _d	0.58756	1.56732	
n _e	0.54607	1.57047	
n _F	0.48613	1.57664	
n _F ′	0.47999	1.57742	
n _{He-Cd}	0.44157	1.58321	
ng	0.435835	1.58423	
n _h	0.404656	1.59077	
n _i	0.365015	1.60256	

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0113		
$\Delta heta_{C,A'}$	0.0027		
$arDelta heta_{ extsf{g,d}}$	0.0002		
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0009		
$arDelta heta_{i,g}$	0.0168		

Constants of Dispersion Formula		
A ₁	1.31066488	
A_2	9.41903094•10 ⁻²	
A ₃	1.23292644	
B ₁	9.68897812•10 ⁻³	
B ₂	5.27763106•10 ⁻²	
B ₃	1.33296422•10 ²	

Other Properties			
Bubble Quality Group	В	В	
Specific Gravity	d	2.57	
Remarks			

Partial Dis	persions
n _C –n _t	0.010055
n _C -n _A ′	0.004379
n _d –n _C	0.003936
n _e –n _C	0.007080
n _g –n _d	0.016907
n _g –n _F	0.007593
n _h –n _g	0.006546
n _i –n _g	0.018329
n _C '-n _t	0.010676
n _e –n _C ′	0.006459
n _F ′–n _e	0.006952
n _i –n _F ′	0.025140

Thermal Properties				
Strain Point	StP	(℃)	495	
Annealing Point	AP	(℃)	533	
TiansformationTemperat.	ne Tg	(℃)	552	
Yield Point	At	(℃)	599	
Softening Point	SP	(℃)	694	
Expansion Coefficients	(-30~	+70°C)	79	
α (10 ⁻⁷ /°C)	(+100~	≻+300°C)	90	
Thermal Conducti	vity k ((W /m•K)	1.054	

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	739
Rigidity Modulus G	$(10^8 N/m^2)$	302
Poisson's Ratio	σ	0.222
Knoop Hardness	Hk	500[5]
Abrasion	Aa	123
Photoelastic Constant (nm/cm/10 ⁵ Pa	. 1.)	2.75

Chemical Properties		
Water Resistance (Powder) Group RW(P)	1	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	1	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

	Temperature Coefficients of Refractive Index							
Range of Temp	erature		dr	n / dt rela	itive (1	0 ⁻⁶ / ℃)	
(℃)		t	C´	He-Ne	D	е	F	g
-40 ~ ·	-20	2.0	2.4	2.4	2.6	2.8	3.3	3.9
–20 ~	0	2.0	2.5	2.5	2.7	2.9	3.4	4.0
0 ~	20	2.0	2.6	2.6	2.8	3.0	3.5	4.2
20 ~	40	2.0	2.6	2.7	2.8	3.1	3.6	4.3
40 ~	60	2.1	2.7	2.7	2.9	3.2	3.7	4.4
60 ~	80	2.2	2.8	2.8	3.0	3.3	3.8	4.6

Relative Partial Dispersions				
$\theta_{C,t}$	0.7589			
$ heta_{C,A'}$	0.3305			
$ heta_{\sf d,C}$	0.2971			
$ heta_{e,C}$	0.5343			
$ heta_{ extsf{g,d}}$	1.2760			
$ heta_{ extsf{g}, extsf{F}}$	0.5731			
$ heta_{h,g}$	0.4940			
$ heta_{i,g}$	1.3833			
$\theta_{i,g}$ $\theta'_{C',t}$	0.7961			
$ heta^{'}_{ ext{e,C}'}$	0.4816			
$ heta^{'}$ $_{F^{'}}$,e	0.5184			
θίε΄	1 8746			

Colo	ring
λ 80/λ 5	38/35

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	0.07
360	0.44
370	0.74
380	0.88
390	0.945
400	0.971
420	0.989
440	0.993
460	0.995
480	0.995
500	0.997
550	0.998
600	0.998
650	0.997
700	0.998
800	0.999
900	0.998
1000	0.998
1200	0.998
1400	0.995
1600	0.993
1800	0.977
2000	0.950
2200	0.89
2400	0.86

Refractive Index	n_{d}	1.57501 1.575006	Abbe Number ν_d	41.5 41.50	Dispersion NF-NC	0.01386 0.013854
Refractive Index	n_{e}	1.578291	Abbe Number ν_{e}	41.22	Dispersion $n_{F'} - n_{C'}$	0.014028

n1970 1.97009 1.54707 n1530 1.52958 1.55304 n1129 1.12864 1.55855 nt 1.01398 1.56047 ns 0.85211 1.56392 nA' 0.76819 1.56635 nr 0.70652 1.56861 nc 0.65627 1.57090 nC' 0.64385 1.57155 nHe-Ne 0.6328 1.57216 nD 0.58929 1.57488 nd 0.58756 1.57501 ne 0.54607 1.57829 nF 0.48613 1.58476 nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275						
n2325 2.32542 1.54162 n1970 1.97009 1.54707 n1530 1.52958 1.55304 n1129 1.12864 1.55855 nt 1.01398 1.56047 ns 0.85211 1.56392 nA' 0.76819 1.56635 nr 0.70652 1.56861 nC 0.65627 1.57090 nC' 0.64385 1.57155 nHe-Ne 0.6328 1.57216 nD 0.58929 1.57488 nd 0.58756 1.57501 ne 0.54607 1.57829 nF 0.48613 1.58476 nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275	Refractive Indices					
n1970 1.97009 1.54707 n1530 1.52958 1.55304 n1129 1.12864 1.55855 nt 1.01398 1.56047 ns 0.85211 1.56392 nA' 0.76819 1.56635 nr 0.70652 1.56861 nc 0.65627 1.57090 nC' 0.64385 1.57155 nHe-Ne 0.6328 1.57216 nD 0.58929 1.57488 nd 0.58756 1.57501 ne 0.54607 1.57829 nF 0.48613 1.58476 nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275		λ (μ m)				
N1530 1.52958 1.55304 N1129 1.12864 1.55855 Nt 1.01398 1.56047 Ns 0.85211 1.56392 Na' 0.76819 1.56635 Nc 0.65627 1.57090 Nc' 0.64385 1.57155 NHe-Ne 0.6328 1.57216 ND 0.58929 1.57488 Nd 0.58756 1.57501 Ne 0.46607 1.57829 NF 0.48613 1.58476 NHe-Cd 0.44157 1.59167 Ng 0.435835 1.59275	n 2325	2.32542	1.54162			
N1129 1.12864 1.55855 nt 1.01398 1.56047 ns 0.85211 1.56392 nA' 0.76819 1.56635 nr 0.70652 1.56861 nc 0.65627 1.57090 nc' 0.64385 1.57155 nHe-Ne 0.6328 1.57216 nD 0.58929 1.57488 nd 0.58756 1.57501 ne 0.4607 1.57829 nF 0.48613 1.58476 nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275	n 1970	1.97009	1.54707			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n 1530	1.52958	1.55304			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n 1129	1.12864	1.55855			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n _t	1.01398	1.56047			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ns	0.85211	1.56392			
nc 0.65627 1.57090 nc' 0.64385 1.57155 nHe-Ne 0.6328 1.57216 nD 0.58929 1.57488 nd 0.58756 1.57501 ne 0.54607 1.57829 nF 0.48613 1.58476 nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275	n _A ′	0.76819	1.56635			
nc' 0.64385 1.57155 n _{He-Ne} 0.6328 1.57216 n _D 0.58929 1.57488 n _d 0.58756 1.57501 n _e 0.54607 1.57829 n _F 0.48613 1.58476 n _F ' 0.47999 1.58558 n _{He-Cd} 0.44157 1.59167 n _g 0.435835 1.59275	n _r	0.70652	1.56861			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n_{C}	0.65627	1.57090			
nD 0.58929 1.57488 nd 0.58756 1.57501 ne 0.54607 1.57829 nF 0.48613 1.58476 nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275	n _C ′	0.64385	1.57155			
nd 0.58756 1.57501 ne 0.54607 1.57829 nF 0.48613 1.58476 nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275	n _{He-Ne}	0.6328	1.57216			
ne 0.54607 1.57829 nF 0.48613 1.58476 nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275	n_D	0.58929	1.57488			
nF 0.48613 1.58476 nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275	n _d	0.58756	1.57501			
nF' 0.47999 1.58558 nHe-Cd 0.44157 1.59167 ng 0.435835 1.59275	n _e	0.54607	1.57829			
n _{He-Cd} 0.44157 1.59167 n _g 0.435835 1.59275	n _F	0.48613	1.58476			
n _g 0.435835 1.59275	n _F ′	0.47999	1.58558			
g 000000	n _{He-Cd}	0.44157	1.59167			
n _h 0.404656 1.5996 6	ng	0.435835	1.59275			
	n _h	0.404656	1.59966			
n i 0.365015 1.61218	n _i	0.365015	1.61218			

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0117		
$\Delta heta_{C,A'}$	0.0024		
$arDelta heta_{ extsf{g,d}}$	0.0019		
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0024		
$arDelta heta_{i,g}$	0.0257		

Constants of Dispersion Formula			
A_1	1.31433154		
A_2	1.12300168•10 ⁻¹		
A_3	1.41390100		
B ₁	9.50404477•10 ⁻³		
B ₂	5.24112772•10 ⁻²		
B ₃	1.48429972•10 ²		

Other Properties				
Bubble Quality Group	В	В		
Specific Gravity	d	2.58		
Remarks				

Partial Dispersions			
n _C –n _t	0.010433		
n _C –n _A ′	0.004553		
n _d –n _C	0.004104		
n _e –n _C	0.007389		
n _g –n _d	0.017739		
n _g –n _F	0.007989		
n _h –n _g	0.006918		
n _i –n _g	0.019440		
n _C '-n _t	0.011080		
n _e –n _C ′	0.006742		
n _F ′–n _e	0.007286		
n _i –n _F ′	0.026608		

Thermal Properties				
Strain Point	StP	(℃)	511	
Annealing Point	AP	(℃)	547	
TiansformationTemperat.	ne Tg	(℃)	562	
Yield Point	At	(℃)	599	
Softening Point	SP	(℃)	700	
Expansion Coefficients	(-30~	+70°C)	74	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	89	
Thermal Conducti	vity k ((W /m•K)	1.070	

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	749		
Rigidity Modulus G	$(10^8 N/m^2)$	308		
Poisson's Ratio	σ	0.217		
Knoop Hardness	Hk	540[5]		
Abrasion	Aa	120		
Photoelastic Consta (nm/cm/10 ⁵ Pa	. 1.)	2.81		

Chemical Properties			
Water Resistance (Powder) Group RW(P)	1		
Acid Resistance (Powder) Group RA(P)	1		
Weathering Resistance (Surface) Group $W(s)$	2		
Acid Resistance (Surface) Group SR	1.0		
Phosphate Resistance PR	1.0		

Temperature Coefficients of Refractive Index								
Range of Tem	perature		dr	n / dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)		t	t O' III-NI- D - E'				g	
−40 ~	-20	2.4	2.9	3.0	3.1	3.3	3.9	4.5
−20 ~	0	2.4	2.9	3.0	3.2	3.4	4.0	4.6
0 ~	20	2.5	3.0	3.0	3.2	3.5	4.0	4.7
20 ~	40	2.5	3.0	3.1	3.3	3.5	4.1	4.8
40 ~	60	2.5	3.0	3.1	3.3	3.6	4.2	4.9
60 ~	80	2.5	3.1	3.1	3.3	3.6	4.3	5.0

Relative Partial Dispersions			
$ heta_{C,t}$	0.7531		
$ heta_{C,A'}$	0.3286		
$ heta_{\sf d,C}$	0.2962		
$ heta_{e,C}$	0.5333		
$ heta_{ extsf{g,d}}$	1.2804		
$ heta_{ extsf{g}, extsf{F}}$	0.5767		
$ heta_{h,g}$	0.4994		
$ heta_{i,g}$	1.4032		
θ´C΄,t	0.7898		
θ' _{e,C'}	0.4806		
$ heta^{'}$ F $^{'}$,e	0.5194		
$ heta^{'}_{i,F^{'}}$	1.8968		

Coloring		
λ 80/λ 5	38/35	

Internal Trar	1
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	0.05
360	0.44
370	0.78
380	0.913
390	0.961
400	0.979
420	0.990
440	0.993
460	0.994
480	0.995
500	0.996
550	0.998
600	0.998
650	0.998
700	0.998
800	0.999
900	0.999
1000	0.998
1200	0.998
1400	0.994
1600	0.993
1800	0.978
2000	0.955
2200	0.89
2400	0.87

S-TIM 1

Refractive Index	n _d	1.62588 1.625882	Abbe Number Vd	35.7 35.70	Dispersion NF-NC	0.01754 0.017532
Refractive Index	ne	1.630031	Abbe Number ν_{e}	35.43	Dispersion $n_{F'} - n_{C'}$	0.017780

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.58769		
n 1970	1.97009	1.59337		
n 1530	1.52958	1.59970		
n 1129	1.12864	1.60583		
n _t	1.01398	1.60805		
n _s	0.85211	1.61216		
n _A ′	0.76819	1.61511		
n _r	0.70652	1.61790		
nc	0.65627	1.62074		
n _C ′	0.64385	1.62155		
n _{He-Ne}	0.6328	1.62231		
n_D	0.58929	1.62573		
n _d	0.58756	1.62588		
n _e	0.54607	1.63003		
n _F	0.48613	1.63828		
n _F ′	0.47999	1.63933		
n _{He-Cd}	0.44157	1.64720		
ng	0.435835	1.64861		
n_h	0.404656	1.65769		
n _i	0.365015	1.67454		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0098	
$arDelta heta_{C,A'}$	0.0019	
$arDelta heta_{ extsf{g,d}}$	0.0056	
$\Delta heta$ g,F	0.0056	
$\Delta heta_{i,g}$	0.0530	

Constants of Dispersion Formula		
A_1	1.44963830	
A_2	1.22986408•10 ⁻¹	
A_3	1.38066723	
B ₁	1.12094282•10 ⁻²	
B ₂	5.96265770•10 ⁻²	
B ₃	1.38178326•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	2.71	
Remarks			

Partial Dispersions			
n _C –n _t	0.012693		
n _C –n _A ′	0.005628		
n _d –n _C	0.005139		
n _e –n _C	0.009288		
n _g –n _d	0.022725		
n _g –n _F	0.010332		
n _h –n _g	0.009086		
n _i –n _g	0.025932		
n _C '-n _t	0.013499		
n _e –n _C ′	0.008482		
n _F ′–n _e	0.009298		
n _i –n _F ′	0.035210		

Thern	nal P	roperti	es
Strain Point	StP	(℃)	544
Annealing Point	AP	(℃)	571
TransformationTemperatu	re Tg	(℃)	602
Yield Point	At	(℃)	630
Softening Point	SP	(℃)	699
Expansion Coefficients	(-30~	+70°C)	81
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	96
Thermal Conductiv	vity k ((W /m•K)	1.043

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	786
Rigidity Modulus G	$(10^8 N/m^2)$	319
Poisson's Ratio	σ	0.234
Knoop Hardness	Hk	530[5]
Abrasion	Aa	136
Photoelastic Constant (nm/cm/10 ⁵ Pa		2.82

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	t C' He-Ne D e F' g				g	
−40 ~ −20	1.4	2.1	2.1	2.3	2.6	3.3	4.1
−20 ~ 0	1.5	2.2	2.2	2.4	2.7	3.5	4.3
0 ~ 20	1.6	2.3	2.3	2.6	2.9	3.6	4.5
20 ~ 40	1.7	2.4	2.4	2.7	3.0	3.8	4.7
40 ~ 60	1.8	2.5	2.5	2.8	3.1	3.9	4.9
60 ~ 80	1.9	2.6	2.6	2.9	3.2	4.1	5.1

Dolotivo Dortio	l Dianaraiana
Relative Partia	
$\theta_{C,t}$	0.7240
$ heta_{C,A'}$	0.3210
$ heta_{\sf d,C}$	0.2931
$ heta_{ extsf{e}, extsf{C}}$	0.5298
$ heta_{ extsf{g,d}}$	1.2962
$ heta_{ extsf{g}, extsf{F}}$	0.5893
$ heta_{h,g}$	0.5183
$ heta_{i,g}$	1.4791
θ´c′,t	0.7592
θ'e,C'	0.4771
$ heta^{'}$ F $^{'}$,e	0.5229
$\theta'_{i,F'}$	1.9803

Colo	ring
λ 80/λ 5	39/36

	ransmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	0.09
370	0.47
380	0.76
390	0.89
400	0.945
420	0.977
440	0.984
460	0.987
480	0.990
500	0.992
550	0.997
600	0.997
650	0.996
700	0.997
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.993
1600	0.993
1800	0.980
2000	0.965
2200	0.917
2400	0.89

S-TIM 2

Refractive Index	n_{d}	1.62004 1.620041	Abbe Number ν_d	36.3 36.26	Dispersion NF-NC	0.01710 0.017099
Refractive Index	n_{e}	1.624088	Abbe Number ν_{e}	35.99	Dispersion $n_{F'} - n_{C'}$	0.017339

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.58240		
n 1970	1.97009	1.58806		
n 1530	1.52958	1.59435		
n 1129	1.12864	1.60041		
n _t	1.01398	1.60260		
n _s	0.85211	1.60663		
n _A ′	0.76819	1.60952		
n _r	0.70652	1.61225		
n _C	0.65627	1.61502		
n _C ′	0.64385	1.61581		
n _{He-Ne}	0.6328	1.61655		
n_D	0.58929	1.61989		
n _d	0.58756	1.62004		
n _e	0.54607	1.62409		
n _F	0.48613	1.63212		
n _F ′	0.47999	1.63315		
n _{He-Cd}	0.44157	1.64081		
n _g	0.435835	1.64218		
n _h	0.404656	1.65100		
n _i	0.365015	1.66728		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0099		
$\Delta heta_{C,A'}$	0.0019		
$arDelta heta_{ extsf{g,d}}$	0.0051		
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0051		
$arDelta heta_{i,g}$	0.0468		

Constants of Dispersion Formula				
A ₁	1.42193846			
A_2	1.33827968•10 ⁻¹			
A_3	1.45060574			
B ₁	1.07291511•10 ⁻²			
B ₂	5.72587546•10 ⁻²			
B ₃	1.45381805•10 ²			

Other P	roper	ties
Bubble Quality Group	В	
Specific Gravity	d	2.69
Remarks		

Partial Dispersions				
n _C –n _t	0.012426			
n _C –n _A ′	0.005500			
n _d –n _C	0.005017			
n _e –n _C	0.009064			
n _g –n _d	0.022135			
n _g –n _F	0.010053			
n _h –n _g	0.008822			
n _i –n _g	0.025105			
n _C ′–n _t	0.013213			
n _e –n _C ′	0.008277			
n _F ′–n _e	0.009062			
n _i –n _F ′	0.034131			

Thermal Properties					
Strain Point	StP	(℃)	551		
Annealing Point	AP	(℃)	576		
TiansformationTemperati	ue Tg	(℃)	598		
Yield Point	At	(℃)	634		
Softening Point	SP	(℃)	703		
Expansion Coefficients	(-30~	+70°C)	81		
α (10 ⁻⁷ /°C)	(+100~	+300°C)	95		
Thermal Conducti	vity k (W /m•K)	1.394		

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	776
Rigidity Modulus G	$(10^8 N/m^2)$	315
Poisson's Ratio	σ	0.230
Knoop Hardness	Hk	550[6]
Abrasion	Aa	150
Photoelastic Constar (nm/cm/10 ⁵ Pa	· 1.)	2.86

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $W(s)$	2
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

Temperature Coefficients of Refractive Index								
Range of Tempera	ature	dn / dt relative $(10^{-6})^{\circ}$ C)						
(℃)		t	C	He-Ne	D	е	F	g
−40 ~ −2	0.	1.7	2.3	2.3	2.5	2.8	3.4	4.2
−20 ~	0	1.8	2.3	2.4	2.6	2.9	3.6	4.4
0 ~ 2	0.	1.8	2.4	2.5	2.7	3.0	3.7	4.6
20 ~ 4	0	1.9	2.5	2.6	2.8	3.1	3.9	4.8
40 ~ 6	0	1.9	2.6	2.6	2.9	3.2	4.1	5.0
60 ~ 8	0	2.0	2.7	2.7	3.0	3.4	4.2	5.2

Relative Partial Dispersions				
$ heta_{C,t}$	0.7267			
$ heta_{C,A'}$	0.3217			
$ heta_{\sf d,C}$	0.2934			
$ heta_{e,C}$	0.5301			
$ heta_{ extsf{g,d}}$	1.2945			
$ heta_{ extsf{g}, extsf{F}}$	0.5879			
$ heta_{h,g}$	0.5159			
$ heta_{i,g}$	1.4682			
θ´C΄,t	0.7620			
θ' _{e,C'}	0.4774			
$ heta^{'}$ F $^{'}$,e	0.5226			
$ heta^{'}_{i,F^{'}}$	1.9685			

Colo	ring
λ 80/λ 5	39/36

λ (nm) τ 10mm 280 290 300 310 320 330 340 350 360 0.08 370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995	Internal Tra	nsmittance
280 290 300 310 310 320 330 340 350 360 0.08 370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 600 0.997 650 0.997 650 0.997 800 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995		
290 300 310 320 330 340 350 360 0.08 370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 650 0.996 700 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995		
300 310 320 330 340 350 360 0.08 370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.997 650 0.997 800 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995		
310 320 330 340 350 360 0.08 370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995		
320 330 340 350 360 0.08 370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.997 650 0.997 800 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995		
330 340 350 360 0.08 370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995		
340 350 360 0.08 370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995		
360 0.08 370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	340	
370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	350	
370 0.44 380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	360	0.08
380 0.73 390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995		
390 0.87 400 0.942 420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.995 1600 0.995		
420 0.978 440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	390	
440 0.987 460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	400	0.942
460 0.990 480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	420	0.978
480 0.992 500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995	440	0.987
500 0.994 550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	460	0.990
550 0.997 600 0.997 650 0.996 700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	480	0.992
600 0.997 650 0.996 700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995	500	0.994
650 0.996 700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	550	0.997
700 0.997 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	600	0.997
800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	650	0.996
900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995	700	0.997
1000 0.999 1200 0.999 1400 0.995 1600 0.995	800	0.999
1200 0.999 1400 0.995 1600 0.995	900	0.999
1400 0.995 1600 0.995		0.999
1600 0.995	1200	0.999
	1400	
1800 0.984	1600	
	1800	0.984
2000 0.971		
2200 0.930		
2400 0.914	2400	0.914

S-TIM3

Refractive Index	n _d	1.61293 1.612929	Abbe Number νd	37.0 37.00	Dispersion NF-NC	0.01657 0.016564
Refractive Index	n _e	1.616851	Abbe Number $ u_{ m e}$	36.73	Dispersion $n_{F'} - n_{C'}$	0.016792

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.57589			
n 1970	1.97009	1.58154			
n 1530	1.52958	1.58781			
N 1129	1.12864	1.59381			
n _t	1.01398	1.59595			
n _s	0.85211	1.59990			
n _A ′	0.76819	1.60272			
n _r	0.70652	1.60537			
n _C	0.65627	1.60806			
n _C ′	0.64385	1.60883			
n _{He-Ne}	0.6328	1.60954			
n_D	0.58929	1.61278			
n _d	0.58756	1.61293			
n _e	0.54607	1.61685			
n _F	0.48613	1.62463			
n _F ′	0.47999	1.62562			
n _{He-Cd}	0.44157	1.63302			
n _g	0.435835	1.63434			
n_h	0.404656	1.64284			
n _i	0.365015	1.65850			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0107			
$\Delta heta_{C,A'}$	0.0021			
$arDelta heta_{ extsf{g,d}}$	0.0045			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0046			
$\Delta heta_{i,g}$	0.0438			

Constants of Dispersion Formula					
A ₁ 1.40691144					
A_2	1.28369745•10 ⁻¹				
A_3	1.51826191				
B ₁	1.05633641•10 ⁻²				
B ₂	5.68483105•10 ⁻²				
B ₃	1.52107924•10 ²				

Other Properties					
Bubble Quality Group B					
Specific Gravity	d	2.67			
Remarks					

Partial Dispersions				
n _C –n _t	0.012109			
n _C –n _A ′	0.005347			
n _d –n _C	0.004867			
n _e –n _C	0.008789			
n _g –n _d	0.021407			
n _g –n _F	0.009710			
n _h –n _g	0.008506			
n _i –n _g	0.024167			
n _C '-n _t	0.012873			
n _e –n _C ′	0.008025			
n _F ′–n _e	0.008767			
n _i –n _F ′	0.032885			

Thermal Properties						
Strain Point	StP	(℃)	548			
Annealing Point	AP	(℃)	577			
TiansformationTemperat.	ne Tg	(℃)	597			
Yield Point	At	(℃)	633			
Softening Point	SP	(℃)	708			
Expansion Coefficients	(-30~	+70°C)	77			
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	91			
Thermal Conducti	vity k ((W /m•K)	1.044			

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	779
Rigidity Modulus G	$(10^8 N/m^2)$	317
Poisson's Ratio	σ	0.229
Knoop Hardness	Hk	510[5]
Abrasion	Aa	129
Photoelastic Constan (nm/cm/10 ⁵ Pa)	. (.)	2.91

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature	:	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C´	He-Ne	D	е	F	g
−40 ~ −20	1.8	2.4	2.5	2.7	3.0	3.6	4.3
−20 ~ 0	1.8	2.5	2.6	2.8	3.1	3.8	4.5
0 ~ 20	2.0	2.6	2.7	3.0	3.2	3.9	4.7
20 ~ 40	2.1	2.8	2.8	3.1	3.4	4.1	5.0
40 ~ 60	2.2	2.9	2.9	3.2	3.5	4.3	5.2
60 ~ 80	2.3	3.0	3.0	3.3	3.6	4.4	5.4

Relative Partial Dispersions					
$\theta_{C,t}$	0.7310				
$ heta_{C,A'}$	0.3228				
$ heta_{\sf d,C}$	0.2938				
$ heta_{e,C}$	0.5306				
$ heta_{ extsf{g,d}}$	1.2924				
$ heta_{ extsf{g}, extsf{F}}$	0.5862				
$ heta_{h,g}$	0.5135				
$ heta_{i,g}$	1.4590				
θ´c′,t	0.7666				
θ'e,C'	0.4779				
$ heta^{'}$ F $^{'}$,e	0.5221				
$ heta^{'}_{i,F^{'}}$	1.9584				

Colo	ring
λ 80/λ 5	39/36

Internal Trar	1
λ (nm)	au 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	0.13
370	0.53
380	0.79
390	0.907
400	0.950
420	0.976
440	0.984
460	0.986
480	0.989
500	0.992
550	0.996
600	0.996
650	0.995
700	0.997
800	0.999
900	0.998
1000	0.996
1200	0.996
1400	0.994
1600	0.994
1800	0.983
2000	0.971
2200	0.929
2400	0.913

S-TIM 5

Refractive Index	n _d	1.60342 1.603420	Abbe Number ν _d	38.0 38.03	Dispersion NF-NC	0.01587 0.015868
Refractive	n_{e}	1.607179	Abbe Number ν_{e}	37.76	Dispersion $\mathbf{n}_{F'} - \mathbf{n}_{C'}$	0.016082

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.56753		
n 1970	1.97009	1.57306		
n 1530	1.52958	1.57918		
n 1129	1.12864	1.58500		
n _t	1.01398	1.58708		
ns	0.85211	1.59089		
n _A ′	0.76819	1.59360		
n _r	0.70652	1.59615		
n_{C}	0.65627	1.59875		
n _C ′	0.64385	1.59948		
n _{He-Ne}	0.6328	1.60017		
n_D	0.58929	1.60328		
n _d	0.58756	1.60342		
n _e	0.54607	1.60718		
n _F	0.48613	1.61462		
n _F ′	0.47999	1.61556		
n _{He-Cd}	0.44157	1.62262		
ng	0.435835	1.62388		
n _h	0.404656	1.63196		
n _i	0.365015	1.64676		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0102	
$\Delta heta_{C,A'}$	0.0022	
$arDelta heta_{ extsf{g,d}}$	0.0034	
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0036	
$arDelta heta_{i,g}$	0.0353	

Constants of Dispersion Formula		
A_1	1.38531342	
A_2	1.22372945•10 ⁻¹	
A_3	1.40508326	
B ₁	1.04074567•10 ⁻²	
B ₂	5.57440088•10 ⁻²	
B ₃	1.44878733•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.63		
Remarks				

Partial Dispersions		
n _C –n _t	0.011667	
n _C –n _A ′	0.005143	
n _d –n _C	0.004672	
n _e –n _C	0.008431	
n _g –n _d	0.020455	
n _g –n _F	0.009259	
n _h –n _g	0.008081	
n _i –n _g	0.022880	
n _C '-n _t	0.012401	
n _e –n _C ′	0.007697	
n _F ′–n _e	0.008385	
n _i –n _F ′	0.031191	

Therr	nal P	roperti	es
Strain Point	StP	(℃)	535
Annealing Point	AP	(℃)	565
Transformation Temperatu	ne Tg	(℃)	588
Yield Point	At	(℃)	624
Softening Point	SP	(℃)	700
Expansion Coefficients	(-30~	+70°C)	83
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	96
Thermal Conductiv	vity k ((W /m•K)	1.040

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	763		
Rigidity Modulus G	$(10^8 N/m^2)$	309		
Poisson's Ratio	σ	0.233		
Knoop Hardness	Hk	540[5]		
Abrasion	Aa	128		
Photoelastic Constant (nm/cm/10 ⁵ Pa		2.84		

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	2	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	1~2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.2	

Te	Temperature Coefficients of Refractive Index						
Range of Temperature		dr	ı / dt rela	itive (1	0^{-6} / $^{\circ}$ C)	
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	1.4	1.9	1.9	2.1	2.4	3.0	3.7
−20 ~ 0	1.4	2.0	2.1	2.3	2.5	3.2	3.9
0 ~ 20	1.4	2.1	2.2	2.4	2.7	3.4	4.1
20 ~ 40	1.6	2.3	2.3	2.5	2.8	3.6	4.4
40 ~ 60	1.7	2.4	2.4	2.7	3.0	3.7	4.6
60 ~ 80	1.7	2.5	2.6	2.8	3.1	3.9	4.8

Relative Partial Dispersions			
$\theta_{C,t}$	0.7353		
$ heta_{C,A'}$	0.3241		
$ heta_{\sf d,C}$	0.2944		
$ heta_{e,C}$	0.5313		
$ heta_{ extsf{g,d}}$	1.2891		
$ heta_{ extsf{g}, extsf{F}}$	0.5835		
$ heta_{h,g}$	0.5093		
$ heta_{i,g}$	1.4419		
θ´c′,t	0.7711		
θ' _{e,C'}	0.4786		
$ heta^{'}$ $_{F^{'}}$,e	0.5214		
$ heta^{\prime}_{i,F^{\prime}}$	1.9395		

Coloring				
λ 80/λ 5	39/35			

Internal Trar	1
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	0.19
370	0.60
380	0.84
390	0.931
400	0.963
420	0.984
440	0.989
460	0.991
480	0.993
500	0.995
550	0.997
600	0.997
650	0.997
700	0.997
800	0.999
900	0.998
1000	0.998
1200	0.998
1400	0.994
1600	0.994
1800	0.982
2000	0.966
2200	0.923
2400	0.902

Refractive Index	n _d	1.59551 1.595509	Abbe Number νd	39.2 39.24	Dispersion NF-NC	0.01518 0.015176
Refractive	ne	1.599106	Abbe Number ν_{e}	38 97	Dispersion n F' - n C'	0.015375

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.56075			
n 1970	1.97009	1.56615			
n 1530	1.52958	1.57212			
n 1129	1.12864	1.57778			
n _t	1.01398	1.57980			
n _s	0.85211	1.58347			
n _A ′	0.76819	1.58609			
n _r	0.70652	1.58854			
nc	0.65627	1.59103			
n _C ′	0.64385	1.59173			
n _{He-Ne}	0.6328	1.59240			
n_D	0.58929	1.59538			
n _d	0.58756	1.59551			
n _e	0.54607	1.59911			
n _F	0.48613	1.60621			
n _F ′	0.47999	1.60711			
n _{He-Cd}	0.44157	1.61382			
ng	0.435835	1.61501			
n _h	0.404656	1.62267			
n _i	0.365015	1.63661			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0094		
$arDelta heta_{C,A'}$	0.0022		
$arDelta heta_{ extsf{g,d}}$	0.0020		
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0023		
$\Delta heta_{i,g}$	0.0269		

Constants of Dispersion Formula				
A ₁	1.37262713			
A_2	1.12636276•10 ⁻¹			
A_3	1.39786421			
B ₁	1.03220068•10 ⁻²			
B ₂	5.50195044•10 ⁻²			
B ₃	1.47735609•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.63		
Remarks				

Partial Dispersions				
n _C –n _t	0.011234			
n _C –n _A ′	0.004942			
n _d –n _C	0.004479			
n _e –n _C	0.008076			
n _g –n _d	0.019504			
n _g –n _F	0.008807			
n _h –n _g	0.007657			
n _i –n _g	0.021600			
n _C '-n _t	0.011938			
n _e –n _C ′	0.007372			
n _F ′–n _e	0.008003			
n _i –n _F ′	0.029504			

Therr	nal P	roperti	es
Strain Point	StP	(℃)	529
Annealing Point	AP	(℃)	560
Transformation Temperatu	re Tg	(℃)	585
Yield Point	At	(℃)	610
Softening Point	SP	(℃)	695
Expansion Coefficients	(-30~	+70°C)	84
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	104
Thermal Conductiv	vity k ((W /m•K)	1.034

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	750
Rigidity Modulus G	$(10^8 N/m^2)$	305
Poisson's Ratio	σ	0.231
Knoop Hardness	Hk	530[5]
Abrasion	Aa	133
Photoelastic Constant (nm/cm/10 ⁵ Pa	. 1.)	2.79

01 1 15 11	
Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	2
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $\mathbf{W}(s)$	2~3
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}C)$					
(℃)	t	C'	He-Ne	D	е	F	g
−40 ~ −20	1.3	1.7	1.7	1.9	2.2	2.8	3.4
−20 ~ 0	1.3	1.8	1.8	2.0	2.3	2.9	3.5
0 ~ 20	1.3	1.8	1.9	2.1	2.3	3.0	3.7
20 ~ 40	1.4	1.9	1.9	2.1	2.4	3.1	3.8
40 ~ 60	1.4	1.9	2.0	2.2	2.5	3.2	4.0
60 ~ 80	1.5	2.0	2.0	2.3	2.6	3.3	4.1

Deletive Pertial Dispersions				
Relative Partial Dispersions				
$ heta_{C,t}$	0.7402			
$ heta_{C,A'}$	0.3256			
$ heta_{\sf d,C}$	0.2951			
$ heta_{ extsf{e}, extsf{C}}$	0.5322			
$ heta_{ extsf{g,d}}$	1.2852			
$ heta_{ extsf{g}, extsf{F}}$	0.5803			
$ heta_{h,g}$	0.5045			
$ heta_{i,g}$	1.4233			
θ´c′,t	0.7765			
θ' _{e,C'}	0.4795			
$ heta^{'}$ F $^{'}$,e	0.5205			
$\theta'_{i,F'}$	1.9190			

Coloring				
λ 80/λ 5 38/35				

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	0.02
360	0.27
370	0.64
380	0.84
390	0.928
400	0.962
420	0.982
440	0.988
460	0.990
480	0.992
500	0.994
550	0.997
600	0.997
650	0.996
700	0.997
800	0.998
900	0.997
1000	0.996
1200	0.996
1400	0.994
1600	0.993
1800	0.983
2000	0.968
2200	0.935
2400	0.915

652335

Refractive Index	n_{d}	1.64769 1.647689	Abbe Number ν_{d}	33.8 33.79	Dispersion NF-NC	0.01916 0.019167
Refractive Index	ne	1.652221	Abbe Number ν_{e}	33.53	Dispersion $n_{F'} - n_{C'}$	0.019451

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.60753			
n 1970	1.97009	1.61325			
n 1530	1.52958	1.61971			
N 1129	1.12864	1.62609			
n _t	1.01398	1.62844			
n _s	0.85211	1.63283			
n _A ′	0.76819	1.63600			
n _r	0.70652	1.63901			
n _C	0.65627	1.64210			
n _C ′	0.64385	1.64297			
n _{He-Ne}	0.6328	1.64379			
n_D	0.58929	1.64752			
n _d	0.58756	1.64769			
n _e	0.54607	1.65222			
n _F	0.48613	1.66126			
n _F ′	0.47999	1.66242			
n _{He-Cd}	0.44157	1.67109			
n _g	0.435835	1.67265			
n_h	0.404656	1.68269			
n _i	0.365015 —				

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0074			
$\Delta heta_{C,A'}$	0.0010			
$arDelta heta_{ extsf{g,d}}$	0.0075			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0070			
$\Delta heta_{i,g}$	<u>—</u>			

Constants of Dispersion Formula				
A ₁	1.44222294			
A_2	1.94432265•10 ⁻¹			
A_3	1.74092482			
B ₁	1.04249404•10 ⁻²			
B ₂	5.50235257•10 ⁻²			
B ₃	1.69710769•10 ²			

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	2.79	
Remarks			

Partial Dispersions			
n _C –n _t	0.013658		
n _C –n _A ′	0.006092		
n _d –n _C	0.005593		
n _e –n _C	0.010125		
n _g –n _d	0.024956		
n _g –n _F	0.011382		
n _h –n _g	0.010042		
n _i –n _g			
n _C '-n _t	0.014533		
n _e –n _C ′	0.009250		
n _F ′–n _e	0.010201		
n _i –n _F ′	_		

Therr	nal P	roperti	es
Strain Point	StP	(℃)	545
Annealing Point	AP	(℃)	572
TiansformationTemperatu	ne Tg	(℃)	593
Yield Point	At	(℃)	624
Softening Point	SP	(℃)	692
Expansion Coefficients	(-30~	+70°C)	83
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	98
Thermal Conductiv	vity k ((W /m•K)	1.024

Mechanical Properties					
Young's Modulus E (10 ⁸ N/m ²	798				
Rigidity Modulus G (10 ⁸ N/m ²	322				
Poisson's Ratio σ	0.238				
Knoop Hardness Hk	560[6]				
Abrasion Aa	149				
Photoelastic Constant β (nm/cm/10 ⁵ Pa)	2.82				

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	2
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $W(s)$	1~2
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	/ dt rela	itive (1	0^{-6} / $^{\circ}$ C)	
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	0.8	1.5	1.6	1.8	2.1	2.9	3.7
−20 ~ 0	1.0	1.7	1.7	1.9	2.3	3.1	4.0
0 ~ 20	1.1	1.8	1.8	2.1	2.4	3.3	4.3
20 ~ 40	1.1	1.9	2.0	2.3	2.6	3.5	4.5
40 ~ 60	1.3	2.1	2.1	2.4	2.8	3.7	4.8
60 ~ 80	1.4	2.2	2.3	2.6	2.9	3.9	5.0

Relative Partial Dispersions				
$ heta_{C,t}$	0.7126			
$ heta_{C,A'}$	0.3178			
$ heta_{\sf d,C}$	0.2918			
$ heta_{e,C}$	0.5283			
$ heta_{ extsf{g,d}}$	1.3020			
$ heta_{ extsf{g}, extsf{F}}$	0.5938			
$ heta_{h,g}$	0.5239			
$ heta_{i,g}$				
θ´c´,t	0.7472			
θ' _{e,C'}	0.4756			
$ heta^{'}$ F $^{'}$,e	0.5244			
$ heta^{'}_{i,F^{'}}$				

Coloring				
λ 80/λ 5	40/36			

Internal Trai	nsmittance
λ (nm)	7 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	0.04
370	0.37
380	0.70
390	0.86
400	0.928
420	0.970
440	0.981
460	0.986
480	0.989
500	0.991
550	0.996
600	0.996
650	0.995
700	0.996
800	0.998
900	0.997
1000	0.997
1200	0.996
1400	0.993
1600	0.991
1800	0.981
2000	0.970
2200	0.934
2400	0.916
	!

S-TIM25

Refractive Index	n _d	1.67270 1.672700	Abbe Number ν _d	32.1 32.10	Dispersion NF-NC	0.02095 0.020957
Refractive	ne	1.677651	Abbe Number ν_{e}	31.84	Dispersion $n_{F'} - n_{C'}$	0.021280

Refractive Indices					
	$\lambda (\mu m)$				
n 2325	2.32542	1.62988			
n 1970	1.97009	1.63583			
n 1530	1.52958	1.64258			
n 1129	1.12864	1.64933			
n _t	1.01398	1.65184			
n _s	0.85211	1.65656			
n _A ′	0.76819	1.66000			
n _r	0.70652	1.66326			
nc	0.65627	1.66661			
n _C ′	0.64385	1.66756			
n _{He-Ne}	0.6328	1.66846			
n_D	0.58929	1.67252			
n _d	0.58756	1.67270			
n _e	0.54607	1.67765			
n _F	0.48613	1.68756			
n _F ′	0.47999	1.68884			
n _{He-Cd}	0.44157	1.69840			
ng	0.435835	1.70011			
n_h	0.404656	1.71126			
n _i	0.365015	_			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0073			
$\Delta heta_{C,A'}$	0.0007			
$arDelta heta_{ extsf{g,d}}$	0.0101			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0093			
$arDelta heta_{i,g}$	<u>—</u>			

Constants of Dispersion Formula				
A ₁	1.50659233			
A_2	2.04786135•10 ⁻¹			
A_3	1.92036668			
B ₁	1.09501562•10 ⁻²			
B ₂	5.74980285•10 ⁻²			
B ₃	1.78128535•10 ²			

Other P	ties	
Bubble Quality Group	В	
Specific Gravity	d	2.91
Remarks		

Partial Dispersions				
n _C -n _t	0.014766			
n _C –n _A ′	0.006611			
n _d –n _C	0.006093			
n _e –n _C	0.011044			
n _g –n _d	0.027414			
n _g –n _F	0.012550			
n _h –n _g	0.011144			
n _i –n _g				
n _C '-n _t	0.015718			
n _e –n _C ′	0.010092			
n _F ′–n _e	0.011188			
n _i –n _F ′	_			

Therr	nal P	roperti	es
Strain Point	StP	(\mathcal{C})	556
Annealing Point	AP	(℃)	585
TransformationTemperatu	ne Tg	(℃)	608
Yield Point	At	(℃)	640
Softening Point	SP	(℃)	700
Expansion Coefficients	(-30~	+70°C)	79
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	95
Thermal Conducti	vity k ((W /m•K)	1.046

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	841
Rigidity Modulus G	$(10^8 N/m^2)$	340
Poisson's Ratio	σ	0.236
Knoop Hardness	Hk	570[6]
Abrasion	Aa	140
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.81

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $W(s)$	2
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.2

Temperature Coefficients of Refractive Index								
Range of Tem	perature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	C'	He-Ne	D	е	F	g
−40 ~	-20	1.5	2.2	2.3	2.6	2.9	3.7	4.7
-20 ~	0	1.7	2.4	2.4	2.7	3.0	3.9	5.0
0 ~	20	1.7	2.5	2.5	2.8	3.2	4.1	5.2
20 ~	40	1.7	2.6	2.7	2.9	3.4	4.4	5.5
40 ~	60	1.8	2.7	2.8	3.1	3.6	4.6	5.8
60 ~	80	1.9	2.8	2.9	3.3	3.7	4.8	6.1

Relative Partial Dispersions		
$ heta_{C,t}$	0.7046	
$ heta_{C,A'}$	0.3155	
$ heta_{\sf d,C}$	0.2907	
$ heta_{e,C}$	0.5270	
$ heta_{ extsf{g,d}}$	1.3081	
$ heta_{ extsf{g}, extsf{F}}$	0.5988	
$ heta_{h,g}$	0.5318	
$ heta_{i,g}$		
θ´C΄,t	0.7386	
θ' _{e,C'}	0.4742	
$ heta^{'}$ F $^{'}$,e	0.5258	
θ' Ε'		

Coloring			
λ 80/λ 5	40/36		

Internal Transmittance		
280 290 300 310 310 320 330 340 350 360 0.01 370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.996 800 0.999 900 0.998 1200 0.998 1200 0.998 1400 0.995 1600 0.995 1600 0.995 1600 0.995 1800 0.995		nsmittance
290 300 310 320 330 340 350 360 0.01 370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	,, (,,,,,,	τ 10mm
300 310 320 330 340 350 360 0.01 370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.995 600 0.996 650 0.995 700 0.996 800 0.998 1200 0.998 1400 0.998 1400 0.995 1600 0.995 1600 0.995 1800 0.995 1800 0.995 1800 0.995		
310 320 330 340 350 360 0.01 370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944		
320 330 340 350 360 0.01 370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.996 800 0.998 1000 0.998 1200 0.998 1400 0.998 1400 0.995 1600 0.995 1600 0.995 1800 0.995 1800 0.995 1800 0.995		
330 340 350 360 0.01 370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.998 1000 0.998 1200 0.998 1400 0.995 1600 0.995 1600 0.995 1600 0.995 1800 0.995 1800 0.995		
340 350 360 0.01 370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.995 600 0.996 650 0.995 700 0.996 800 0.998 1000 0.998 1200 0.998 1400 0.998 1400 0.995 1600 0.995 1800 0.995 1800 0.995 1800 0.995		
350 360 0.01 370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1200 0.998 1400 0.995 1600 0.995 1600 0.995 1800 0.995 1800 0.995 1800 0.995		
360 0.01 370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1800 0.987 2000 0.977 2200 0.944		
370 0.24 380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.944		
380 0.60 390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	360	0.01
390 0.80 400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	370	0.24
400 0.89 420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.944	380	0.60
420 0.957 440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.944	390	0.80
440 0.974 460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1800 0.987 2000 0.944	400	
460 0.981 480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1800 0.987 2000 0.977 2200 0.944	420	0.957
480 0.986 500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.995 1800 0.987 2000 0.944	440	0.974
500 0.989 550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	460	0.981
550 0.995 600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.944	480	0.986
600 0.996 650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	500	0.989
650 0.995 700 0.996 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	550	0.995
700 0.996 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	600	0.996
800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	650	0.995
900 0.998 1000 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	700	0.996
1000 0.998 1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	800	0.999
1200 0.998 1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	900	0.998
1400 0.995 1600 0.995 1800 0.987 2000 0.977 2200 0.944	1000	0.998
1600 0.995 1800 0.987 2000 0.977 2200 0.944	1200	0.998
1800 0.987 2000 0.977 2200 0.944	1400	0.995
2000 0.977 2200 0.944	1600	0.995
2200 0.944	1800	0.987
	2000	0.977
2400 0.930	2200	0.944
	2400	0.930

644342

Refractive Index	n_{d}	1.63980 1.639799	Abbe Number ν _d	34.5 34.46	Dispersion NF-NC	0.01856 0.018564
Refractive Index	n_{e}	1.644189	Abbe Number $ u_{ m e}$	34.20	Dispersion $n_{F'} - n_{C'}$	0.018835

Partial Dispersions

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.60036	
n 1970	1.97009	1.60608	
n 1530	1.52958	1.61249	
N 1129	1.12864	1.61878	
n _t	1.01398	1.62108	
n _s	0.85211	1.62537	
n _A ′	0.76819	1.62846	
n _r	0.70652	1.63138	
n _C	0.65627	1.63438	
n _C ′	0.64385	1.63522	
n _{He-Ne}	0.6328	1.63602	
n_D	0.58929	1.63964	
n _d	0.58756	1.63980	
n _e	0.54607	1.64419	
n _F	0.48613	1.65294	
n _F ′	0.47999	1.65406	
n _{He-Cd}	0.44157	1.66244	
n _g	0.435835	1.66393	
n_h	0.404656	1.67361	
n _i	0.365015	_	

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0076	
$\Delta heta_{ extsf{C,A'}}$	0.0011	
$arDelta heta_{ extsf{g,d}}$	0.0069	
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0065	
$arDelta heta_{i,g}$	<u>—</u>	

Constants of Dispersion Formula		
A ₁	1.41680470	
A_2	1.96785057•10 ⁻¹	
A_3	1.68001322	
B ₁	1.00732158•10 ⁻²	
B ₂	5.37616908•10 ⁻²	
B ₃	1.64672436•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	2.76	
Remarks			

n _C –n _t	0.013292
n _C –n _A ′	0.005916
n _d –n _C	0.005424
n _e –n _C	0.009814
n _g –n _d	0.024134
n _g –n _F	0.010994
n _h –n _g	0.009680
n _i –n _g	
n _C '-n _t	0.014141
n _e -n _C ′	0.008965
n _F ′–n _e	0.009870
n _i –n _F ′	_

Thermal Properties			
Strain Point	StP	(\mathcal{C})	543
Annealing Point	AP	(℃)	572
TransformationTemperati	ne Tg	(\mathcal{C})	594
Yield Point	At	(\mathcal{C})	629
Softening Point	SP	(\mathcal{C})	696
Expansion Coefficients	(-30~	+70°C)	80
α (10 ⁻⁷ /°C)	(+100~	+300°C)	99
Thermal Conducti	vity k (W /m•K)	1.035

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	793
Rigidity Modulus G	$(10^8 N/m^2)$	321
Poisson's Ratio	σ	0.236
Knoop Hardness	Hk	560[6]
Abrasion	Aa	141
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.83

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

	Temperature Coefficients of Refractive Index							
Range of Temperature			dr	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$				
(℃)		t C' He-Ne D e F'				g		
−40 ~	-20	1.2	1.9	1.9	2.2	2.5	3.2	4.0
-20 ~	0	1.3	2.0	2.0	2.3	2.6	3.3	4.2
0 ~	20	1.3	2.1	2.1	2.4	2.7	3.5	4.4
20 ~	40	1.4	2.1	2.2	2.5	2.8	3.7	4.6
40 ~	60	1.4	2.2	2.3	2.6	2.9	3.8	4.8
60 ~	80	1.5	2.3	2.4	2.7	3.0	4.0	5.1

Relative Partial Dispersions				
$\theta_{C,t}$	0.7160			
$ heta_{C,A'}$	0.3187			
$ heta_{\sf d,C}$	0.2922			
$ heta_{e,C}$	0.5287			
$ heta_{ extsf{g,d}}$	1.3000			
$ heta_{ extsf{g}, extsf{F}}$	0.5922			
$ heta_{h,g}$	0.5214			
$ heta_{i,g}$	—			
θ'c',t	0.7508			
$ heta^{'}_{ ext{e,C}'}$	0.4760			
$ heta^{'}$ $_{F^{'}}$,e	0.5240			
$ heta^{\prime}_{i,F^{\prime}}$	_			

Coloring				
λ 80/λ 5	39/36			

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	0.05
370	0.41
380	0.73
390	0.87
400	0.935
420	0.973
440	0.983
460	0.987
480	0.990
500	0.992
550	0.997
600	0.997
650	0.996
700	0.997
800	0.999
900	0.998
1000	0.998
1200	0.998
1400	0.995
1600	0.994
1800	0.984
2000	0.973
2200	0.936
2400	0.919

694308

Refractive Index	n_{d}	1.68893 1.688931	Abbe Number νd	31.1 31.07	Dispersion NF-NC	0.02217 0.022170
Refractive Index	n _e	1.694167	Abbe Number ν_{e}	30.83	Dispersion $n_{F'} - n_{C'}$	0.022516

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.64463			
n 1970	1.97009	1.65062			
n 1530	1.52958	1.65745			
n 1129	1.12864	1.66438			
n _t	1.01398	1.66699			
n _s	0.85211	1.67192			
n _A ′	0.76819	1.67553			
n _r	0.70652	1.67896			
n _C	0.65627	1.68250			
n _C ′	0.64385	1.68350			
n _{He-Ne}	0.6328	1.68445			
n_D	0.58929	1.68874			
n _d	0.58756	1.68893			
n _e	0.54607	1.69417			
n _F	0.48613	1.70467			
n _F ′	0.47999	1.70602			
n _{He-Cd}	0.44157	1.71615			
ng	0.435835	1.71797			
n _h	0.404656	1.72981			
n _i	0.365015	_			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0071			
$\Delta heta_{ extsf{C,A'}}$	0.0007			
$arDelta heta_{ extsf{g,d}}$	0.0099			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0092			
$\Delta heta_{ extsf{i}, extsf{g}}$ —				

Constants of Dispersion Formula				
A ₁	1.54270810			
A_2	2.17113891•10 ⁻¹			
A_3	1.81904459			
B ₁	1.13925005•10 ⁻²			
B ₂	5.79224572•10 ⁻²			
B ₃	1.67697189•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.98		
Remarks				

Partial Dis	persions
n _C –n _t	0.015507
n _C –n _A ′	0.006966
n _d –n _C	0.006436
n _e –n _C	0.011672
n _g –n _d	0.029044
n _g –n _F	0.013310
n _h –n _g	0.011834
n _i –n _g	_
n _C '-n _t	0.016512
n _e –n _C ′	0.010667
n _F ′–n _e	0.011849
n _i –n _F ′	_

Thermal Properties				
Strain Point	StP	(℃)	560	
Annealing Point	AP	(℃)	588	
TiansformationTemperatu	ne Tg	(\mathcal{C})	611	
Yield Point	At	(℃)	637	
Softening Point	SP	(℃)	701	
Expansion Coefficients	(-30~	+70°C)	82	
α (10 ⁻⁷ /°C)	(+100~	+300°C)	98	
Thermal Conductiv	vity k (W /m•K)	1.006	

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	855				
Rigidity Modulus G	$(10^8 N/m^2)$	344				
Poisson's Ratio	σ	0.242				
Knoop Hardness	Hk	550[6]				
Abrasion	Aa	155				
Photoelastic Constar (nm/cm/10 ⁵ Pa	. 13	2.77				

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	2			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	1.3	1.9	2.0	2.2	2.6	3.4	4.5
−20 ~ 0	1.3	2.0	2.1	2.3	2.7	3.6	4.7
0 ~ 20	1.3	2.1	2.2	2.5	2.9	3.8	5.0
20 ~ 40	1.4	2.2	2.3	2.6	3.0	4.0	5.2
40 ~ 60	1.4	2.3	2.4	2.7	3.1	4.2	5.5
60 ~ 80	1.4	2.4	2.5	2.8	3.3	4.4	5.7

Relative Partial Dispersions				
$\theta_{C,t}$	0.6995			
$ heta_{C,A'}$	0.3142			
$ heta_{\sf d,C}$	0.2903			
$ heta_{e,C}$	0.5265			
$ heta_{ extsf{g,d}}$	1.3101			
$ heta_{ extsf{g}, extsf{F}}$	0.6004			
$ heta_{h,g}$	0.5338			
$ heta_{i,g}$	_			
θ´c′,t	0.7333			
$ heta^{'}_{ ext{e,C}'}$	0.4738			
$ heta^{'}$ $_{F^{'}}$,e	0.5262			
$\theta'_{i,F'}$	_			

Coloring					
λ 80/λ 5	41/36				

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 330 340 350 360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 700 0.995 650 0.994 700 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961 2400 0.948		
280 290 300 310 310 320 330 340 350 360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.995 800 0.998 900 0.998 1200 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983		
290 300 310 320 330 340 350 360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	, (,,,,,,	τ 10mm
300 310 320 330 340 350 360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.995 800 0.998 1000 0.998 1200 0.998 1400 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983		
310 320 330 340 350 360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	290	
320 330 340 350 360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.995 800 0.998 1000 0.998 1200 0.998 1400 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983	300	
330 340 350 360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.995 800 0.998 1000 0.998 1200 0.998 1400 0.998 1400 0.996 1600 0.996 1800 0.983 2200 0.983	310	
340 350 360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	320	
350 360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	330	
360 0.01 370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	340	
370 0.23 380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	350	
380 0.58 390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	360	0.01
390 0.79 400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	370	0.23
400 0.88 420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	380	0.58
420 0.951 440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	390	0.79
440 0.970 460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	400	0.88
460 0.978 480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1800 0.989 2000 0.983 2200 0.961	420	0.951
480 0.983 500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	440	0.970
500 0.987 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	460	0.978
550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	480	0.983
600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	500	0.987
650 0.994 700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	550	0.994
700 0.995 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	600	0.995
800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	650	0.994
900 0.998 1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	700	0.995
1000 0.998 1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	800	0.998
1200 0.998 1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	900	0.998
1400 0.996 1600 0.996 1800 0.989 2000 0.983 2200 0.961	1000	0.998
1600 0.996 1800 0.989 2000 0.983 2200 0.961	1200	0.998
1800 0.989 2000 0.983 2200 0.961	1400	0.996
2000 0.983 2200 0.961	1600	0.996
2200 0.961	1800	0.989
	2000	0.983
	2200	0.961
	2400	0.948

704299

Refractive Index	n_{d}	1.69895 1.698947	Abbe Number Vd	30.1 30.13	Dispersion NF-NC	0.02320 0.023199
Refractive Index	n _e	1.704424	Abbe Number ν_{e}	29.89	Dispersion $n_{F'} - n_{C'}$	0.023567

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.65283			
n 1970	1.97009	1.65905			
n 1530	1.52958	1.66615			
n 1129	1.12864	1.67335			
n _t	1.01398	1.67606			
ns	0.85211	1.68120			
n _A ′	0.76819	1.68496			
n _r	0.70652	1.68854			
n _C	0.65627	1.69222			
n _C ′	0.64385	1.69327			
n _{He-Ne}	0.6328	1.69426			
n_D	0.58929	1.69875			
n _d	0.58756	1.69895			
n _e	0.54607	1.70442			
n _F	0.48613	1.71542			
n _F ′	0.47999	1.71684			
n _{He-Cd}	0.44157	1.72750			
ng	0.435835	1.72941			
n _h	0.404656	1.74189			
n _i	0.365015	_			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0086			
$\Delta heta_{C,A'}$	0.0008			
$arDelta heta_{ extsf{g,d}}$	0.0111			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0103			
$\Delta heta_{i,g}$				

Constants of Dispersion Formula				
A ₁	1.55849775			
A_2	2.30767007•10 ⁻¹			
A ₃	1.84436099			
B ₁	1.15367235•10 ⁻²			
B ₂	5.86095947•10 ⁻²			
B ₃	1.62981888•10 ²			

Other Properties					
Bubble Quality Group B					
Specific Gravity d 2.96					
Remarks					

Partial Dispersions				
0.016161				
0.007266				
0.006722				
0.012199				
0.030465				
0.013988				
0.012478				
0.017210				
0.011150				
0.012417				
_				

Thermal Properties					
Strain Point	StP	(℃)	579		
Annealing Point	AP	(℃)	603		
Transformation Temperati	ue Tg	(℃)	622		
Yield Point	At	(℃)	648		
Softening Point	SP	(℃)	716		
Expansion Coefficients	(-30~	+70°C)	75		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	89		
Thermal Conducti	vity k ((W /m•K)	1.049		

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	875			
Rigidity Modulus G	$(10^8 N/m^2)$	353			
Poisson's Ratio	σ	0.238			
Knoop Hardness	Hk	500[5]			
Abrasion	Aa	136			
Photoelastic Constant (nm/cm/10 ⁵ Pa		3.04			

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $W(s)$	1~2
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

	Temperature Coefficients of Refractive Index							
Range of Tempe	erature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	C	He-Ne	D	е	F	g
-40 ~ -	20	2.0	2.8	2.8	3.1	3.5	4.4	5.5
-20 ~	0	2.1	2.9	3.0	3.3	3.7	4.6	5.8
0 ~	20	2.1	3.0	3.1	3.4	3.8	4.9	6.1
20 ~	40	2.3	3.2	3.2	3.6	4.0	5.1	6.4
40 ~	60	2.4	3.3	3.4	3.7	4.2	5.3	6.7
60 ~	80	2.4	3.4	3.5	3.9	4.4	5.6	7.0

Relative Partial Dispersions				
$\theta_{C,t}$	0.6966			
$ heta_{C,A'}$	0.3132			
$ heta_{\sf d,C}$	0.2898			
$ heta_{e,C}$	0.5258			
$ heta_{ extsf{g,d}}$	1.3132			
$ heta_{ extsf{g}, extsf{F}}$	0.6030			
$ heta_{h,g}$	0.5379			
$ heta_{i,g}$				
$\theta'_{C',t}$	0.7303			
θ'e,C'	0.4731			
$ heta^{'}$ $_{F^{'}}$,e	0.5269			
$ heta^{'}_{i,F^{'}}$				

Coloring					
λ 80/λ 5	41/37				

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 330 340 350 360 370 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 650 0.993 700 0.995 800 0.999 1000 0.999 1200 0.999 1400 0.995 1800 0.988 2000 0.942 2400 0.931		
280 290 300 310 310 320 330 340 350 360 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.995 800 0.995 800 0.999 1000 0.999 1200 0.999 1400 0.995 1800 0.998 2000 0.988	Internal Trar	nsmittance
290 300 310 320 330 340 350 360 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1400 0.995 1800 0.988 2000 0.980 2200 0.942	,, (,,,,,,	τ 10mm
300 310 320 330 340 350 360 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1200 0.999 1400 0.999 1400 0.995 1800 0.998 2000 0.988		
310 320 330 340 350 360 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1400 0.995 1800 0.988 2000 0.980 2200 0.942		
320 330 340 350 360 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.998 2000 0.988 2000 0.988	300	
330 340 350 360 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.995 800 0.995 800 0.998 900 0.999 1200 0.999 1400 0.995 1800 0.995 1800 0.998 2000 0.988		
340 350 360 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1400 0.995 1800 0.988 2000 0.980 2200 0.942		
350 360 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.998 2000 0.988	330	
360 370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1400 0.995 1800 0.988 2000 0.980 2200 0.942	340	
370 0.14 380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1400 0.995 1800 0.988 2000 0.942	350	
380 0.48 390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1400 0.995 1800 0.988 2000 0.980 2200 0.942	360	
390 0.72 400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1400 0.995 1800 0.988 2000 0.980 2200 0.942	370	0.14
400 0.84 420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1400 0.995 1800 0.988 2000 0.980 2200 0.942	380	0.48
420 0.939 440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.942	390	0.72
440 0.964 460 0.974 480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1800 0.988 2000 0.980 2200 0.942	400	0.84
460 0.974 480 0.981 500 0.986 550 0.994 600 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	420	
480 0.981 500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	440	
500 0.986 550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	460	0.974
550 0.994 600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	480	0.981
600 0.994 650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	500	
650 0.993 700 0.995 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	550	
700 0.995 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	600	0.994
800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	650	0.993
900 0.999 1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	700	0.995
1000 0.999 1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	800	0.998
1200 0.999 1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	900	
1400 0.995 1600 0.995 1800 0.988 2000 0.980 2200 0.942	1000	
1600 0.995 1800 0.988 2000 0.980 2200 0.942	1200	0.999
1800 0.988 2000 0.980 2200 0.942	1400	
2000 0.980 2200 0.942	1600	0.995
2200 0.942	1800	0.988
	2000	0.980
2400 0.931	2200	0.942
	2400	0.931

S-TIM39

Refractive Index	n _d	1.66680 1.666800	Abbe Number νd	33.0 33.05	Dispersion NF-NC	0.02018 0.020173
Refractive	n_{e}	1 671568	Abbe Number ν_{e}	32 80	Dispersion $n_{F'} - n_{C'}$	0 020477

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.62567		
n 1970	1.97009	1.63132		
n 1530	1.52958	1.63776		
n 1129	1.12864	1.64425		
n _t	1.01398	1.64667		
ns	0.85211	1.65123		
n _A ′	0.76819	1.65454		
n _r	0.70652	1.65769		
n _C	0.65627	1.66092		
n _C ′	0.64385	1.66184		
n _{He-Ne}	0.6328	1.66271		
n_D	0.58929	1.66662		
n _d	0.58756	1.66680		
n _e	0.54607	1.67157		
n _F	0.48613	1.68110		
n _F ′	0.47999	1.68232		
n _{He-Cd}	0.44157	1.69148		
ng	0.435835	1.69311		
n _h	0.404656	1.70373		
n _i	0.365015	_		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0048	
$\Delta heta_{C,A'}$	0.0004	
$arDelta heta_{ extsf{g,d}}$	0.0084	
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0077	
$\Delta heta_{i,g}$	$\Delta heta_{ ext{i,g}}$ —	

Constants of Dispersion Formula		
A ₁	1.47008105	
A_2	2.24752746•10 ⁻¹	
A ₃	2.44968592	
B ₁	1.02900432•10 ⁻²	
B ₂	5.41276904•10 ⁻²	
B ₃	2.37434940•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.92		
Remarks				

Partial Dis	persions
n _C –n _t	0.014252
n _C -n _A ′	0.006381
n _d –n _C	0.005875
n _e –n _C	0.010643
n _g –n _d	0.026315
n _g –n _F	0.012017
n _h –n _g	0.010616
n _i –n _g	
n _C ′–n _t	0.015170
n _e –n _C ′	0.009725
n _F ′–n _e	0.010752
n _i –n _F ′	_

Therr	nal P	roperti	es
Strain Point	StP	(℃)	544
Annealing Point	AP	(℃)	569
Transformation Temperatu	ne Tg	(℃)	591
Yield Point	At	(℃)	621
Softening Point	SP	(℃)	682
Expansion Coefficients	(-30~	+70°C)	87
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	104
Thermal Conductiv	vity k ((W /m•K)	0.988

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	817
Rigidity Modulus G	$(10^8 N/m^2)$	328
Poisson's Ratio	σ	0.246
Knoop Hardness	Hk	550[6]
Abrasion	Aa	160
Photoelastic Constant (nm/cm/10 ⁵ Pa		2.64

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	3
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $W(s)$	1~2
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

	Temperature Coefficients of Refractive Index							
Range of Tem	perature		dr	ı / dt rela	ative (1	0 ^{−6} / ℃)	
(℃)		t	C´	He-Ne	D	е	F [′]	g
−40 ~	-20	0.4	1.1	1.2	1.3	1.7	2.5	3.4
-20 ~	0	0.5	1.3	1.3	1.4	1.8	2.7	3.6
0 ~	20	0.7	1.4	1.4	1.5	2.0	2.8	3.9
20 ~	40	0.7	1.5	1.5	1.7	2.1	3.0	4.1
40 ~	60	0.8	1.5	1.5	1.8	2.2	3.2	4.3
60 ~	80	0.8	1.6	1.6	1.9	2.3	3.3	4.5

Relative Partial Dispersions			
$\theta_{C,t}$	0.7065		
$ heta_{C,A'}$	0.3163		
$ heta_{\sf d,C}$	0.2912		
$ heta_{ extsf{e}, extsf{C}}$	0.5276		
$ heta_{ extsf{g,d}}$	1.3045		
$ heta_{ extsf{g}, extsf{F}}$	0.5957		
$ heta_{h,g}$	0.5262		
$ heta_{i,g}$	_		
θ´C΄,t	0.7408		
θ' _{e,C'}	0.4749		
$ heta^{'}$ F $^{'}$,e	0.5251		
θίε΄			

Colo	ring
λ 80/λ 5	40/36

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 330 340 350 360 0.03 370 0.33 380 0.66 390 0.82 400 0.962 440 0.973 460 0.980 480 0.985 500 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.998 1800 0.983 2000 0.9971 2200 0.937 2400 0.913		
280 290 300 310 320 330 340 350 360 0.03 370 0.33 380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1200 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998		nsmittance
290 300 310 320 330 340 350 360 0.03 370 0.33 380 0.66 390 0.82 400 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	λ (nm)	τ 10mm
300 310 320 330 340 350 360 0.03 370 0.33 380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1200 0.998 1200 0.998 1400 0.998 1400 0.995 1600 0.998 1800 0.998 1200 0.998		
310 320 330 340 350 360 0.03 370 0.33 380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937		
320 330 340 350 360 0.03 370 0.33 380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1200 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.995 1600 0.998 1800 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998	300	
330 340 350 360 0.03 370 0.33 380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.998 1200 0.998 1400 0.998 1400 0.998 1400 0.995 1600 0.998 1800 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1400 0.998 1800 0.998	310	
340 350 360 0.03 370 0.33 380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	320	
350 360 0.03 370 0.33 380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.995 800 0.995 800 0.998 900 0.998 1200 0.998 1400 0.998 1400 0.998 1800 0.998 1400 0.995 1600 0.994 1800 0.998	330	
360 0.03 370 0.33 380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	340	
370 0.33 380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	350	
380 0.66 390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	360	0.03
390 0.82 400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	370	0.33
400 0.906 420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	380	0.66
420 0.962 440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	390	0.82
440 0.973 460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	400	0.906
460 0.980 480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	420	
480 0.985 500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	440	
500 0.989 550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	460	0.980
550 0.994 600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	480	0.985
600 0.995 650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	500	
650 0.994 700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.937	550	
700 0.995 800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	600	0.995
800 0.998 900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	650	0.994
900 0.999 1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	700	0.995
1000 0.998 1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	800	
1200 0.998 1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	900	
1400 0.995 1600 0.994 1800 0.983 2000 0.971 2200 0.937	1000	0.998
1600 0.994 1800 0.983 2000 0.971 2200 0.937	1200	
1800 0.983 2000 0.971 2200 0.937	1400	
2000 0.971 2200 0.937	1600	
2200 0.937	1800	0.983
	2000	
2400 0.913	2200	
	2400	0.913

Refractive Index	n _d	1.71736 1.717362	Abbe Number ν_d	29.5 29.52	Dispersion NF-NC	0.02430 0.024303
Refractive Index	ne	1.723098	Abbe Number ν_{e}	29.28	Dispersion NF' -NC'	0.024694

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.67018		
n 1970	1.97009	1.67636		
n 1530	1.52958	1.68344		
n 1129	1.12864	1.69075		
n _t	1.01398	1.69353		
n _s	0.85211	1.69885		
n _A ′	0.76819	1.70275		
n _r	0.70652	1.70649		
nc	0.65627	1.71033		
n _C ′	0.64385	1.71143		
n _{He-Ne}	0.6328	1.71246		
n_D	0.58929	1.71715		
n_d	0.58756	1.71736		
n _e	0.54607	1.72310		
n _F	0.48613	1.73463		
n _F ′	0.47999	1.73612		
n _{He-Cd}	0.44157	1.74732		
ng	0.435835	1.74933		
n_h	0.404656	1.76247		
n _i	0.365015	_		

Deviation of Re	Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0060		
$\Delta heta_{C,A'}$	0.0003		
$arDelta heta_{ extsf{g,d}}$	0.0121		
$\Delta heta$ g,F	0.0110		
$\Delta heta_{i,g}$			

Constants of Dispersion Formula		
A ₁	1.60326759	
A_2	2.42980935•10 ⁻¹	
A_3	1.81313592	
B ₁	1.18019139•10 ⁻²	
B ₂	5.91363658•10 ⁻²	
B ₃	1.61218747•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.06		
Remarks				

	Temperature Coefficients of Refractive Index							
Range of Temperature (°C)			dr	n / dt rela	itive (1	0 ^{−6} / °C)	
		t	C	He-Ne	D	е	F	g
−40 ~	-20		3.2	3.3	3.6	4.0	5.1	6.2
-20 ~	0		3.4	3.5	3.8	4.3	5.4	6.7
0 ~	20		3.7	3.7	4.1	4.6	5.7	7.1
20 ~	40		3.9	4.0	4.3	4.8	6.0	7.5
40 ~	60		4.1	4.2	4.6	5.1	6.4	7.9
60 ~	80		43	11	<i>1</i> 8	53	6.7	83

Partial Dispersions			
n _C –n _t	0.016798		
n _C –n _A ′	0.007579		
n _d –n _C	0.007030		
n _e –n _C	0.012766		
n _g –n _d	0.031970		
n _g –n _F	0.014697		
n _h –n _g	0.013136		
n _i –n _g			
n _C ′–n _t	0.017894		
n _e –n _C ′	0.011670		
n _F ′–n _e	0.013024		
n _i –n _F ′	_		

Thermal Properties				
Strain Point	StP	(\mathcal{C})	569	
Annealing Point	ΑP	(\mathcal{C})	597	
Transformation Temperature	g Tg	(\mathcal{C})	622	
Yield Point	At	(\mathcal{C})	653	
Softening Point	SP	(\mathcal{C})	703	
Expansion Coefficients (-30~+70°C)			82	
α (10 ⁻⁷ /°C) (+	100~+	300℃)	96	
Thermal Conductivity $k(W/m \cdot K)$			1.018	

Mechani	cal Propertie	es
Young's Modulus E	$(10^8 N/m^2)$	884
Rigidity Modulus G	$(10^8 N/m^2)$	355
Poisson's Ratio	σ	0.247
Knoop Hardness	Hk	550[6]
Abrasion	Aa	161
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.85

Chemical Propertie	s
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $W(s)$	1
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

Relative Partial	Dispersions
$ heta_{C,t}$	0.6912
$ heta_{C,A'}$	0.3119
$ heta_{\sf d,C}$	0.2893
$ heta_{ extsf{e}, extsf{C}}$	0.5253
$ heta_{ extsf{g,d}}$	1.3155
$ heta_{ extsf{g}, extsf{F}}$	0.6047
$ heta_{h,g}$	0.5405
$ heta_{i,g}$	
$\theta'_{C',t}$	0.7246
θ'e,C'	0.4726
$ heta^{'}$ F $^{'}$,e	0.5274
$\theta'_{i,F'}$	_

Colo	ring
λ 80/λ 5	41/36

Internal Transmitts λ (nm) 280 290 300 310 320	ance τ 10mm
280 290 300 310	7 10mm
290 300 310	
300 310	
310	
320	
330	
340	
350	
360	
370	0.19
380	0.56
390	0.78
400	0.88
420	0.952
440	0.971
460	0.978
480	0.982
500	0.987
550	0.994
600	0.994
650	0.991
700	0.993
800	0.998
900	0.999
1000	0.998
1200	0.998
1400	0.996
1600	0.995
1800	0.988
2000	0.981
2200	0.957
2400	0.941

Refractive Index	n _d	1.74000 1.739998	Abbe Number νd	28.3 28.30	Dispersion NF-NC	0.02616 0.026152
Refractive	n _e	1.746167	Abbe Number ν_{e}	28.07	Dispersion $n_{F'} - n_{C'}$	0.026584

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.69065			
n 1970	1.97009	1.69685			
n 1530	1.52958	1.70405			
n 1129	1.12864	1.71162			
n _t	1.01398	1.71455			
ns	0.85211	1.72018			
n _A ′	0.76819	1.72434			
n _r	0.70652	1.72833			
n_{C}	0.65627	1.73245			
n _C ′	0.64385	1.73363			
n _{He-Ne}	0.6328	1.73474			
n_D	0.58929	1.73977			
n _d	0.58756	1.74000			
n _e	0.54607	1.74617			
n _F	0.48613	1.75861			
n _F ′	0.47999	1.76021			
n _{He-Cd}	0.44157	1.77232			
ng	0.435835	1.77450			
n _h	0.404656	1.78876			
n _i	0.365015	_			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0051			
$\Delta heta_{C,A'}$	-0.0001			
arDelta hetag,d	0.0135			
$\varDelta heta$ g,F	0.0122			
$\varDelta heta_{i,g}$	_			

Constants of Dispersion Formula				
A ₁	1.64797648			
A_2	2.67261917•10 ⁻¹			
A_3	2.19772845			
B ₁	1.21917693•10 ⁻²			
B ₂	5.97893039•10 ⁻²			
B ₃	1.92158340•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.11			
Remarks					

Bubble Quality Grou	ρВ		٧	eathering Resistan	ce (Surface) Group	W(S)
Specific Gravity	d	3.1	1 /	cid Resistance (Surface) Group	SR
Remarks			F	hosphate l	Resistance	PR
	Temp	erature Coe	efficients	of Refracti	ive Index	
Range of Temperature		dn	/ dt rel	ative (1	0 ⁻⁶ / °C)
(\mathcal{C})	t	C'	He-Ne	D	е	F

Partial Dispersions				
n _C –n _t	0.017900			
n _C -n _A ′	0.008108			
n _d –n _C	0.007545			
n _e –n _C	0.013714			
n _g –n _d	0.034504			
n _g –n _F	0.015897			
n _h –n _g	0.014254			
n _i –n _g				
n _C ′–n _t	0.019075			
n _e –n _C ′	0.012539			
n _F ′–n _e	0.014045			
n _i –n _F ′	_			

Therm	al Pro	perties	3
Strain Point	StP	(\mathcal{C})	566
Annealing Point	ΑP	(\mathcal{C})	591
Transformation Temperature	e Tg	(\mathcal{C})	615
Yield Point	At	(\mathcal{C})	644
Softening Point	SP	(\mathcal{C})	723
Expansion Coefficients	(-30~	+70°C)	85
α (10 ⁻⁷ /°C) (+	100~+	300℃)	100
Thermal Conductivity	k(W/	m•K)	1.027

Mechani	ical Propertion	es
Young's Modulus E	$(10^8 N/m^2)$	908
Rigidity Modulus G	$(10^8 N/m^2)$	362
Poisson's Ratio	σ	0.254
Knoop Hardness	Hk	560[6]
Abrasion	Aa	165
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.81

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	ı / dt rela	itive (1	0 ⁻⁶ / ℃)	
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	0.6	1.5	1.6	1.9	2.3	3.4	4.6
−20 ~ 0	0.9	1.7	1.7	2.1	2.5	3.6	4.9
0 ~ 20	0.9	1.8	1.9	2.2	2.7	3.8	5.2
20 ~ 40	0.9	1.9	2.0	2.4	2.8	4.1	5.5
40 ~ 60	1.0	2.0	2.1	2.5	3.0	4.3	5.9
60 ~ 80	1.2	2.2	2.2	2.7	3.2	4.5	6.2

Relative Partial Dispersions				
$ heta_{C,t}$	0.6845			
$ heta_{C,A'}$	0.3100			
$ heta_{\sf d,C}$	0.2885			
$ heta_{ extsf{e}, extsf{C}}$	0.5244			
$ heta_{ extsf{g,d}}$	1.3194			
$ heta_{ extsf{g}, extsf{F}}$	0.6079			
$ heta_{h,g}$	0.5450			
$ heta_{i,g}$	_			
θ´c′,t	0.7175			
θ'e,C'	0.4717			
$ heta^{'}$ F $^{'}$,e	0.5283			
θ' i,F'	_			

Coloring				
λ 80/λ 5	42/36			

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	
370	0.16
380	0.51
390	0.74
400	0.85
420	0.940
440	0.964
460	0.975
480	0.981
500	0.986
550	0.994
600	0.994
650	0.993
700	0.995
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.997
1600	0.996
1800	0.988
2000	0.980
2200	0.955
2400	0.933

Refractive Index	n _d	1.75520 1.755199	Abbe Number νd	27.5 27.51	Dispersion NF-NC	0.02745 0.027450
Refractive Index	n _e	1.761671	Abbe Number $ u_{ m e}$	27.29	Dispersion $n_{F'} - n_{C'}$	0.027911

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.70430		
n 1970	1.97009	1.71054		
n 1530	1.52958	1.71784		
n 1129	1.12864	1.72561		
n _t	1.01398	1.72864		
n _s	0.85211	1.73448		
n _A ′	0.76819	1.73882		
n _r	0.70652	1.74299		
nc	0.65627	1.74730		
n _C ′	0.64385	1.74853		
n _{He-Ne}	0.6328	1.74968		
n_D	0.58929	1.75496		
n _d	0.58756	1.75520		
n _e	0.54607	1.76167		
n _F	0.48613	1.77475		
n _F ′	0.47999	1.77644		
n _{He-Cd}	0.44157	1.78920		
ng	0.435835	1.79150		
n_h	0.404656	1.80656		
n _i	0.365015	_		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"					
$\Delta heta_{ extsf{C,t}}$					
$\Delta heta_{C,A'}$	-0.0005				
$arDelta heta_{ extsf{g,d}}$	0.0147				
arDelta hetag,F	0.0133				
$\Delta \theta_{\rm i,g}$ —					

Constants of Dispersion Formula					
A ₁ 1.66755531					
A_2	2.94411865•10 ⁻¹				
A_3	2.49422119				
B ₁	1.22052137•10 ⁻²				
B ₂	5.97775329•10 ⁻²				
B ₃	2.14869618•10 ²				

Other Properties					
Bubble Quality Group	В				
Specific Gravity d 3.15					
Remarks					

Partial Dispersions				
n _C –n _t	0.018659			
n _C –n _A ′	0.008473			
n _d –n _C	0.007904			
n _e –n _C	0.014376			
n _g –n _d	0.036298			
n _g –n _F	0.016752			
n _h –n _g	0.015059			
n _i –n _g				
n _C '-n _t	0.019889			
n _e –n _C ′	0.013146			
n _F ′–n _e	0.014765			
n _i –n _F ′	_			

Therr	nal P	roperti	es
Strain Point	StP	(℃)	565
Annealing Point	AP	(℃)	591
Transformation Temperatu	ne Tg	(℃)	613
Yield Point	At	(℃)	640
Softening Point	SP	(℃)	694
Expansion Coefficients	(-30~	+70°C)	85
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	100
Thermal Conductiv	vity k ((W /m•K)	1.010

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	919
Rigidity Modulus G	$(10^8 N/m^2)$	367
Poisson's Ratio	σ	0.254
Knoop Hardness	Hk	570[6]
Abrasion	Aa	168
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.76

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	2
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $\mathbf{W}(\mathbf{S})$	1~2
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

	Temperature Coefficients of Refractive Index							
Range of Temp	oerature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	C	He-Ne	D	е	F	g
-40 ~ ·	-20	0.5	1.2	1.2	1.6	2.0	3.1	4.4
−20 ~	0	0.6	1.3	1.4	1.8	2.2	3.3	4.7
0 ~	20	0.6	1.4	1.5	1.9	2.4	3.6	5.1
20 ~	40	0.7	1.6	1.7	2.1	2.6	3.9	5.4
40 ~	60	0.7	1.7	1.8	2.3	2.7	4.1	5.8
60 ~	80	0.7	1.8	1.9	2.4	2.9	4.4	6.1

Relative Partial Dispersions				
$\theta_{\mathrm{C,t}}$	0.6797			
$\theta_{C,A'}$	0.3087			
$ heta_{\sf d,C}$	0.2879			
$ heta_{e,C}$	0.5237			
$ heta_{ extsf{g,d}}$	1.3223			
$ heta_{ extsf{g}, extsf{F}}$	0.6103			
$ heta_{h,g}$	0.5486			
$ heta_{i,g}$	_			
θ´c΄,t	0.7126			
θ' _{e,C'}	0.4710			
$ heta^{'}$ F $^{'}$,e	0.5290			
$ heta^{\prime}_{i,F^{\prime}}$	_			

Coloring				
λ 80/λ 5	42/37			

Internal Trar	1
λ (nm)	au 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	
370	0.12
380	0.45
390	0.70
400	0.82
420	0.929
440	0.962
460	0.973
480	0.980
500	0.986
550	0.995
600	0.994
650	0.993
700	0.995
800	0.999
900	0.999
1000	0.999
1200	0.997
1400	0.995
1600	0.994
1800	0.987
2000	0.981
2200	0.961
2400	0.942

Refractive Index	n _d	1.80518 1.805181	Abbe Number ν _d	25.4 25.42	Dispersion NF-NC	0.03166 0.031669
Refractive	ne	1.812641	Abbe Number ν_{e}	25.22	Dispersion n F′ - n C′	0.032223

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.74917		
n 1970	1.97009	1.75558		
n 1530	1.52958	1.76321		
n 1129	1.12864	1.77160		
n _t	1.01398	1.77495		
ns	0.85211	1.78151		
n _A ′	0.76819	1.78643		
n _r	0.70652	1.79118		
n _C	0.65627	1.79611		
n _C ′	0.64385	1.79752		
n _{He-Ne}	0.6328	1.79885		
n_D	0.58929	1.80491		
n _d	0.58756	1.80518		
n _e	0.54607	1.81264		
n _F	0.48613	1.82777		
n _F ′	0.47999	1.82974		
n _{He-Cd}	0.44157	1.84460		
n _g	0.435835	1.84729		
n _h	0.404656	1.86494		
n _i	0.365015	_		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0021	
$\Delta heta_{ extsf{C,A'}}$	-0.0012	
$arDelta heta_{ extsf{g,d}}$	0.0176	
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0158	
$arDelta heta_{i,g}$	<u>—</u>	

Constants of Dispersion Formula		
A ₁	1.77227611	
A_2	3.45691250•10 ⁻¹	
A_3	2.40788501	
B ₁	1.31182633•10 ⁻²	
B ₂	6.14479619•10 ⁻²	
B ₃	2.00753254•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.37		
Remarks				

Partial Dispersions		
n _C –n _t	0.021155	
n _C –n _A ′	0.009673	
n _d –n _C	0.009075	
n _e –n _C	0.016535	
n _g –n _d	0.042105	
n _g –n _F	0.019511	
n _h –n _g	0.017653	
n _i –n _g	_	
n _C '-n _t	0.022564	
n _e –n _C ′	0.015126	
n _F ′–n _e	0.017097	
n _i –n _F ′	_	

Thermal Properties				
Strain Point	StP	(℃)	571	
Annealing Point	AP	(℃)	587	
TiansformationTemperat.	ne Tg	(℃)	604	
Yield Point	At	(℃)	630	
Softening Point	SP	(℃)	690	
Expansion Coefficients	(-30~	+70°C)	89	
α (10 ⁻⁷ /°C)	(+100~	≻+300°C)	107	
Thermal Conducti	vity k ((W /m•K)	1.011	

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	931
Rigidity Modulus G	$(10^8 N/m^2)$	369
Poisson's Ratio	σ	0.261
Knoop Hardness	Hk	540[5]
Abrasion	Aa	191
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.81

Chemical Properties			
Water Resistance (Powder) Group $RW(P)$	1		
Acid Resistance (Powder) Group RA(P)	1		
Weathering Resistance (Surface) Group $\mathbf{W}(s)$	1~2		
Acid Resistance (Surface) Group SR	1.0		
Phosphate Resistance PR	1.0		

Temperature Coefficients of Refractive Index							
Range of Temperatur	е	dr	n / dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)	t	C'	He-Ne	D	е	F	g
−40 ~ −20	-0.6	0.3	0.4	0.7	1.3	2.6	4.1
−20 ~ 0	-0.6	0.4	0.5	0.9	1.5	2.8	4.4
0 ~ 20	-0.5	0.5	0.6	1.0	1.6	3.0	4.8
20 ~ 40	-0.4	0.7	0.8	1.2	1.8	3.3	5.1
40 ~ 60	-0.4	0.8	0.9	1.3	2.0	3.5	5.5
60 ~ 80	-0.3	0.9	1.0	1.5	2.1	3.8	5.8

Relative Partial Dispersions			
$\theta_{C,t}$	0.6680		
$ heta_{C,A'}$	0.3054		
$ heta_{\sf d,C}$	0.2866		
$ heta_{e,C}$	0.5221		
$ heta_{ extsf{g,d}}$	1.3295		
$ heta_{ extsf{g}, extsf{F}}$	0.6161		
$ heta_{h,g}$	0.5574		
$ heta_{i,g}$	_		
θ´c′,t	0.7002		
$ heta^{'}_{ ext{e,C}'}$	0.4694		
$ heta^{'}$ $_{F^{'}}$,e	0.5306		
θ' Ε'			

Coloring				
λ 80/λ 5	44/37			

Internal Transmittance		
280 290 300 310 310 320 330 340 350 360 370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 1000 0.998 1200 0.998 1400 0.998 1400 0.995 1800 0.998 2200 0.978	_	nsmittance
290 300 310 320 330 340 350 360 370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	,, (,	τ 10mm
300 310 320 330 340 350 360 370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1200 0.998 1400 0.998 1200 0.998 1400 0.995 1800 0.995 1800 0.995 1800 0.995		
310 320 330 340 350 360 370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958		
320 330 340 350 360 370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 1000 0.998 1200 0.998 1400 0.998 1400 0.995 1800 0.998 2200 0.978		
330 340 350 360 370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 1000 0.998 1200 0.998 1400 0.998 1400 0.995 1800 0.998 2200 0.986		
340 350 360 370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1200 0.998 1200 0.998 1400 0.995 1800 0.995 1800 0.995 1800 0.995		
350 360 370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.995 1800 0.995 1800 0.998		
360 370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958		
370 0.12 380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.958		
380 0.48 390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	360	
390 0.70 400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	370	0.12
400 0.82 420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.958	380	0.48
420 0.919 440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.958	390	0.70
440 0.955 460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.958	400	
460 0.970 480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.958	420	0.919
480 0.978 500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	440	0.955
500 0.984 550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	460	0.970
550 0.993 600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.958	480	0.978
600 0.995 650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	500	0.984
650 0.994 700 0.996 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.958	550	0.993
700 0.996 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.958	600	0.995
800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	650	0.994
900 0.998 1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	700	0.996
1000 0.998 1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	800	0.998
1200 0.998 1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	900	0.998
1400 0.997 1600 0.995 1800 0.986 2000 0.978 2200 0.958	1000	0.998
1600 0.995 1800 0.986 2000 0.978 2200 0.958	1200	0.998
1800 0.986 2000 0.978 2200 0.958	1400	0.997
2000 0.978 2200 0.958	1600	
2200 0.958	1800	0.986
	2000	0.978
2400 0.928	2200	0.958
	2400	0.928

Refractive Index	n _d	1.72825 1.728250	Abbe Number ν_d	28.5 28.46	Dispersion NF-NC	0.02559 0.025588
Refractive Index	n _e	1.734286	Abbe Number $ u_{ m e}$	28.23	Dispersion $n_{F'} - n_{C'}$	0.026009

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.67934				
n 1970	1.97009	1.68562				
n 1530	1.52958	1.69286				
n 1129	1.12864	1.70040				
n _t	1.01398	1.70330				
n _s	0.85211	1.70884				
n _A ′	0.76819	1.71292				
n _r	0.70652	1.71683				
nc	0.65627	1.72086				
n _C ′	0.64385	1.72202				
n _{He-Ne}	0.6328	1.72310				
n_D	0.58929	1.72803				
n _d	0.58756	1.72825				
n _e	0.54607	1.73429				
n _F	0.48613	1.74645				
n _F ′	0.47999	1.74802				
n _{He-Cd}	0.44157	1.75987				
n _g	0.435835	1.76200				
n _h	0.404656	1.77595				
n _i	0.365015	_				

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"					
$\Delta heta_{ extsf{C,t}}$	0.0064					
$\Delta heta_{C,A'}$	0.0002					
$arDelta heta_{ extsf{g,d}}$	0.0135					
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0123					
$arDelta heta_{i,g}$						

Constants of Dispersion Formula					
A ₁	1.61549392				
A_2	2.62433239•10 ⁻¹				
A_3	2.09426189				
B ₁	1.19830897•10 ⁻²				
B ₂	5.96510240•10 ⁻²				
B_3	1.81657554•10 ²				

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.06			
Remarks					

Partial Dispersions					
n _C –n _t	0.017568				
n _C -n _A ′	0.007944				
n _d –n _C	0.007385				
n _e –n _C	0.013421				
n _g –n _d	0.033752				
n _g –n _F	0.015549				
n _h –n _g	0.013943				
n _i –n _g					
n _C ′–n _t	0.018718				
n _e –n _C ′	0.012271				
n _F ′–n _e	0.013738				
n _i –n _F ′	_				

Thermal Properties					
Strain Point	StP	(℃)	569		
Annealing Point	AP	(℃)	596		
Transformation Temperatu	ne Tg	(℃)	617		
Yield Point	At	(℃)	642		
Softening Point	SP	(℃)	703		
Expansion Coefficients	(-30~	+70°C)	80		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	97		
Thermal Conductiv	vity k ((W /m•K)	1.043		

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1024
Rigidity Modulus G	$(10^8 N/m^2)$	412
Poisson's Ratio	σ	0.243
Knoop Hardness	Hk	570[6]
Abrasion	Aa	133
Photoelastic Constar (nm/cm/10 ⁵ Pa	· 1.)	2.88

Chemical Properties				
Water Resistance (Powder) Group RW(P)				
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index								
Range of Temperature			dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	C´	He-Ne	D	е	F	g
−40 ~	-20	1.1	2.0	2.1	2.3	2.8	3.8	5.0
−20 ~	0	1.3	2.1	2.2	2.5	3.0	4.0	5.3
0 ~	20	1.4	2.3	2.3	2.7	3.1	4.3	5.7
20 ~	40	1.5	2.4	2.5	2.8	3.3	4.5	6.0
40 ~	60	1.5	2.5	2.6	3.0	3.5	4.8	6.3
60 ~	80	1.5	2.6	2.7	3.1	3.7	5.0	6.6

Relative Partial Dispersions					
$\theta_{C,t}$	0.6866				
$ heta_{C,A'}$	0.3105				
$ heta_{\sf d,C}$	0.2886				
$ heta_{e,C}$	0.5245				
$ heta_{ extsf{g,d}}$	1.3191				
$ heta_{ extsf{g}, extsf{F}}$	0.6077				
$ heta_{h,g}$	0.5449				
$ heta_{i,g}$	_				
θ´c′,t	0.7197				
θ'e,C'	0.4718				
θ´F΄,e	0.5282				
$\theta'_{i,F'}$	_				

Coloring					
λ 80/λ 5 42/37					

Internal Tra	_
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	
370	0.09
380	0.41
390	0.67
400	0.81
420	0.931
440	0.963
460	0.975
480	0.982
500	0.987
550	0.994
600	0.995
650	0.993
700	0.994
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.994
1600	0.993
1800	0.985
2000	0.977
2200	0.947
2400	0.929
	+

Refractive Index	n _d	1.78472 1.784723	Abbe Number νd	25.7 25.68	Dispersion NF-NC	0.03056 0.030554
Refractive Index	ne	1.791920	Abbe Number $ u_{e}$	25.47	Dispersion $n_{F'} - n_{C'}$	0.031088

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.72998			
n 1970	1.97009	1.73639			
n 1530	1.52958	1.74397			
n 1129	1.12864	1.75222			
n _t	1.01398	1.75549			
n _s	0.85211	1.76186			
n _A ′	0.76819	1.76662			
n _r	0.70652	1.77121			
n _C	0.65627	1.77596			
n _C ′	0.64385	1.77733			
n _{He-Ne}	0.6328	1.77861			
n_D	0.58929	1.78446			
n _d	0.58756	1.78472			
n _e	0.54607	1.79192			
n _F	0.48613	1.80652			
n _F ′	0.47999	1.80841			
n _{He-Cd}	0.44157	1.82275			
ng	0.435835	1.82534			
n _h	0.404656	1.84239			
n _i	0.365015	_			

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0030			
$\Delta heta_{C,A'}$	-0.0011			
$arDelta heta_{ extsf{g,d}}$	0.0181			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0162			
$arDelta heta_{i,g}$	<u>—</u>			

Constants of Dispersion Formula				
A ₁	1.72677471			
A_2	3.24568628•10 ⁻¹			
A ₃	2.65816809			
B ₁	1.29369958•10 ⁻²			
B ₂	6.18255245•10 ⁻²			
B ₃	2.21904637•10 ²			

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.24	
Remarks			

	Temperature Coefficients of Refractive Index							
Range of Tem	nperature		dr	ı / <mark>dt</mark> rela	itive (1	0 ⁻⁶ / ℃)	
(℃))	t	C´	He-Ne	D	е	F	g
-40 ~	-20	-0.3	0.5	0.6	0.9	1.4	2.6	4.1
-20 ~	0	-0.2	0.7	0.7	1.1	1.6	2.9	4.5
0 ~	20	-0.1	0.8	0.9	1.3	1.9	3.2	4.9
20 ~	40	0.0	1.0	1.1	1.5	2.1	3.5	5.3
40 ~	60	0.0	1.1	1.2	1.7	2.3	3.8	5.7
60 ~	80	0.1	1.3	1.4	1.9	2.5	4.1	6.1

Partial Dispersions			
n _C –n _t	0.020476		
n _C –n _A ′	0.009346		
n _d –n _C	0.008758		
n _e –n _C	0.015955		
n _g –n _d	0.040621		
n _g –n _F	0.018825		
n _h –n _g	0.017044		
n _i –n _g			
n _C ′–n _t	0.021836		
n _e –n _C ′	0.014595		
n _F ′–n _e	0.016493		
n _i –n _F ′			

Thermal Properties				
Strain Point	StP	(℃)	569	
Annealing Point	AP	(℃)	588	
Transformation Temperati	ue Tg	(℃)	602	
Yield Point	At	(℃)	633	
Softening Point	SP	(℃)	686	
Expansion Coefficients	(-30~	+70°C)	89	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	103	
Thermal Conducti	vity k ((W /m•K)	1.017	

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	912
Rigidity Modulus G	$(10^8 N/m^2)$	363
Poisson's Ratio	σ	0.255
Knoop Hardness	Hk	550[6]
Abrasion	Aa	147
Photoelastic Constant (nm/cm/10 ⁵ Pa	· 1.)	2.81

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $W(s)$	1
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

Relative Partial Dispersions				
$\theta_{C,t}$	0.6702			
$\theta_{C,A'}$	0.3059			
$ heta_{\sf d,C}$	0.2866			
$ heta_{e,C}$	0.5222			
$ heta_{ extsf{g,d}}$	1.3295			
$ heta_{ extsf{g}, extsf{F}}$	0.6161			
$ heta_{h,g}$	0.5578			
$ heta_{i,g}$	_			
θ´c΄,t	0.7024			
θ' _{e,C'}	0.4695			
$ heta^{'}$ F $^{'}$,e	0.5305			
$ heta^{'}_{i,F^{'}}$	_			

Coloring			
λ 80/λ 5	43/37		

Internal Transmittance					
λ (nm)	T 10mm				
280	• 1011111				
290					
300					
310					
320					
330					
340					
350					
360					
370	0.08				
380	0.40				
390	0.66				
400	0.80				
420	0.915				
440	0.948				
460	0.964				
480	0.973				
500	0.980				
550	0.992				
600	0.992				
650	0.990				
700	0.992				
800	0.998				
900	0.998				
1000	0.999				
1200	0.999				
1400	0.997				
1600	0.996				
1800	0.989				
2000	0.982				
2200	0.964				
2400	0.942				
	-				

Refractive Index	n _d	1.74077 1.740769	Abbe Number Vd	27.8 27.79	Dispersion NF-NC	0.02666 0.026657
Refractive Index	ne	1.747055	Abbe Number $ u_{e}$	27.56	Dispersion $n_{F'} - n_{C'}$	0.027102

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.69062			
n 1970	1.97009	1.69693			
n 1530	1.52958	1.70425			
n 1129	1.12864	1.71193			
n _t	1.01398	1.71490			
n _s	0.85211	1.72062			
n _A ′	0.76819	1.72485			
n _r	0.70652	1.72890			
n _C	0.65627	1.73309			
n _C ′	0.64385	1.73428			
n _{He-Ne}	0.6328	1.73541			
n_D	0.58929	1.74054			
n _d	0.58756	1.74077			
n _e	0.54607	1.74705			
n _F	0.48613	1.75975			
n _F ′	0.47999	1.76139			
n _{He-Cd}	0.44157	1.77376			
n _g	0.435835	1.77599			
n _h	0.404656	1.79059			
ni	0.365015 —				

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta\theta_{\mathrm{C,t}}$ 0.0051				
$arDelta heta_{C,A'}$	$\Delta\theta_{\mathrm{C,A'}}$ -0.0002			
$\Delta heta_{ extsf{g,d}}$ 0.0144				
$\Delta heta_{ exttt{g,F}}$ 0.0130				
$arDelta heta_{i,g}$				

Constants of Dispersion Formula			
A ₁	1.62224674		
A_2	2.93844589•10 ⁻¹		
A ₃	1.99225164		
B ₁	1.18368386•10 ⁻²		
B ₂	5.90208025•10 ⁻²		
B ₃	1.71959976•10 ²		

Other Properties					
Bubble Quality Group B					
Specific Gravity	d	3.10			
Remarks					

Partial Dispersions				
n _C –n _t	0.018185			
n _C –n _A ′	0.008244			
n _d –n _C	0.007680			
n _e –n _C	0.013966			
n _g –n _d	0.035225			
n _g –n _F	0.016248			
n _h –n _g	0.014593			
n _i –n _g				
n _C '-n _t	0.019380			
n _e –n _C ′	0.012771			
n _F ′–n _e	0.014331			
n _i –n _F ′	_			

Thermal Properties						
Strain Point	StP	(\mathcal{C})	573			
Annealing Point	AP	(℃)	595			
Transformation Temperat.	ne Tg	(℃)	616			
Yield Point	At	(℃)	642			
Softening Point	SP	(℃)	700			
Expansion Coefficients	(-30~	·+70°C)	83			
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	96			
Thermal Conducti	vity k ((W /m•K)	1.034			

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	899			
Rigidity Modulus G	$(10^8 N/m^2)$	360			
Poisson's Ratio	σ	0.249			
Knoop Hardness	Hk	510[5]			
Abrasion	Aa	148			
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.83			

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C'	He-Ne	D	е	F	g
−40 ~ −20	1.0	1.8	1.8	2.1	2.6	3.6	4.9
−20 ~ 0	1.0	1.9	1.9	2.3	2.7	3.9	5.2
0 ~ 20	1.1	2.0	2.1	2.4	2.9	4.1	5.5
20 ~ 40	1.1	2.1	2.2	2.5	3.0	4.3	5.8
40 ~ 60	1.2	2.2	2.3	2.7	3.2	4.5	6.1
60 ~ 80	1.3	2.3	2.4	2.8	3.4	4.7	6.4

Relative Partial Dispersions		
$ heta_{C,t}$	0.6822	
$ heta_{C,A'}$	0.3093	
$ heta_{\sf d,C}$	0.2881	
$ heta_{e,C}$	0.5239	
$ heta_{ extsf{g,d}}$	1.3214	
$ heta_{ extsf{g}, extsf{F}}$	0.6095	
$ heta_{h,g}$	0.5474	
$ heta_{i,g}$		
θ'c',t	0.7151	
$ heta'_{e,C'}$	0.4712	
$ heta^{'}$ F $^{'}$,e	0.5288	
$ heta^{'}_{i,F^{'}}$	_	

Coloring			
λ 80/λ 5	42/37		

Internal Trar	1
λ (nm)	au 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	
370	0.08
380	0.38
390	0.64
400	0.80
420	0.921
440	0.957
460	0.970
480	0.978
500	0.984
550	0.993
600	0.993
650	0.991
700	0.994
800	0.997
900	0.998
1000	0.997
1200	0.998
1400	0.994
1600	0.993
1800	0.983
2000	0.974
2200	0.944
2400	0.920

Refractive Index	n _d	1.76182 1.761821	Abbe Number ν _d	26.5 26.52	Dispersion NF-NC	0.02873 0.028729
Refractive	n_{e}	1.768591	Abbe Number ν_{e}	26.30	Dispersion $n_{F'} - n_{C'}$	0.029221

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.70916	
n 1970	1.97009	1.71554	
n 1530	1.52958	1.72302	
n 1129	1.12864	1.73102	
n _t	1.01398	1.73415	
n _s	0.85211	1.74022	
n _A ′	0.76819	1.74474	
n _r	0.70652	1.74908	
n _C	0.65627	1.75357	
n _C ′	0.64385	1.75485	
n _{He-Ne}	0.6328	1.75606	
n_D	0.58929	1.76157	
n _d	0.58756	1.76182	
n _e	0.54607	1.76859	
n _F	0.48613	1.78230	
n _F ′	0.47999	1.78407	
n _{He-Cd}	0.44157	1.79750	
ng	0.435835	1.79992	
n _h	0.404656	1.81584	
n _i	0.365015	_	

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0046	
$\Delta heta_{ extsf{C,A'}}$	-0.0006	
$arDelta heta_{ extsf{g,d}}$	0.0167	
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0150	
$arDelta heta_{i,g}$	<u>—</u>	

Constants of Dispersion Formula		
A ₁	1.68915108	
A_2	2.90462024•10 ⁻¹	
A_3	2.37971516	
B ₁	1.28202514•10 ⁻²	
B ₂	6.18090841•10 ⁻²	
B ₃	2.01094352•10 ²	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	3.17
Remarks		

Partial Dispersions		
n _C –n _t	0.019413	
n _C –n _A ′	0.008831	
n _d –n _C	0.008254	
n _e –n _C	0.015024	
n _g –n _d	0.038102	
n _g –n _F	0.017627	
n _h –n _g	0.015917	
n _i –n _g		
n _C '-n _t	0.020697	
n _e –n _C ′	0.013740	
n _F ′–n _e	0.015481	
n _i –n _F ′		

Therr	nal P	roperti	es
Strain Point	StP	(\mathcal{C})	565
Annealing Point	AP	(℃)	590
Transformation Temperatu	ne Tg	(℃)	609
Yield Point	At	(℃)	634
Softening Point	SP	(℃)	693
Expansion Coefficients	(-30~	·+70°C)	87
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	100
Thermal Conductiv	vity k ((W /m•K)	1.027

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	888
Rigidity Modulus G	$(10^8 N/m^2)$	354
Poisson's Ratio	σ	0.254
Knoop Hardness	Hk	550[6]
Abrasion	Aa	163
Photoelastic Constant (nm/cm/10 ⁵ Pa)	β	2.86

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

Temperature Coefficients of Refractive Index								
Range of Tem	perature	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)		t	C´	He-Ne	D	е	F	g
−40 ~	-20	0.2	0.9	1.0	1.4	1.8	2.9	4.3
−20 ~	0	0.3	1.1	1.2	1.6	2.0	3.2	4.7
0 ~	20	0.4	1.2	1.3	1.7	2.2	3.5	5.1
20 ~	40	0.5	1.4	1.5	2.0	2.4	3.8	5.5
40 ~	60	0.6	1.6	1.7	2.2	2.7	4.1	5.9
60 ~	80	0.7	1.7	1.8	2.4	2.9	4.4	6.2

Relative Partial Dispersions				
$ heta_{C,t}$	0.6757			
$ heta_{C,A'}$	0.3074			
$ heta_{\sf d,C}$	0.2873			
$ heta_{ extsf{e}, extsf{C}}$	0.5230			
$ heta_{ extsf{g,d}}$	1.3263			
$ heta_{ extsf{g}, extsf{F}}$	0.6136			
$ heta_{h,g}$	0.5540			
$ heta_{i,g}$	_			
$\theta'_{C',t}$	0.7083			
θ'e,C'	0.4702			
$ heta^{'}$ F $^{'}$,e	0.5298			
$\theta'_{i,F'}$	_			

Coloring				
λ 80/λ 5	42/37			

280 290 300	10mm
290 300	
300	
310	
320	
330	
340	
350	
360	
).10
).43
).70
).84
420 0).934
	0.960
).971
7.7).977
).983
	0.993
	0.993
	0.990
7.7).992
).997
).999
).999
).999
).997
).996
).988
).982
).961
2400 0).942

Refractive Index	n_{d}	1.72151 1.721507	Abbe Number ν_d	29.2 29.23	Dispersion NF-NC	0.02468 0.024683
Refractive Index	n_{e}	1.727331	Abbe Number ν_{e}	29.00	Dispersion $n_{F'} - n_{C'}$	0.025081

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.67384			
n 1970	1.97009	1.68002			
n 1530	1.52958	1.68715			
N 1129	1.12864	1.69453			
n _t	1.01398	1.69734			
n _s	0.85211	1.70272			
n _A ′	0.76819	1.70668			
n _r	0.70652	1.71047			
n _C	0.65627	1.71437			
n _C ′	0.64385	1.71548			
n _{He-Ne}	0.6328	1.71653			
n_D	0.58929	1.72129			
n _d	0.58756	1.72151			
n _e	0.54607	1.72733			
n _F	0.48613	1.73905			
n _F ′	0.47999	1.74057			
n _{He-Cd}	0.44157	1.75195			
n _g	0.435835	1.75399			
n_h	0.404656	1.76735			
n _i	0.365015	_			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0061			
$\Delta heta_{ extsf{C,A'}}$	0.0001			
$arDelta heta_{ extsf{g,d}}$	0.0122			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0111			
$arDelta heta_{i,g}$	_			

Constants of Dispersion Formula				
A ₁	1.59921608			
A_2	2.59532164•10 ⁻¹			
A ₃	2.12454543			
B ₁	1.16469304•10 ⁻²			
B ₂	5.84824883•10 ⁻²			
B ₃	1.86927779•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.07		
Remarks				

Partial Dispersions				
n _C –n _t	0.017028			
n _C -n _A ′	0.007687			
n _d –n _C	0.007136			
n _e –n _C	0.012960			
n _g –n _d	0.032488			
n _g –n _F	0.014941			
n _h –n _g	0.013358			
n _i –n _g	_			
n _C '-n _t	0.018141			
n _e –n _C ′	0.011847			
n _F ′–n _e	0.013234			
n _i –n _F ′	_			

Thermal Properties				
Strain Point	StP	(\mathcal{C})	570	
Annealing Point	AP	(℃)	596	
TiansformationTemperati	ue Tg	(℃)	616	
Yield Point	At	(℃)	644	
Softening Point	SP	(℃)	703	
Expansion Coefficients	(-30~	+70°C)	83	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	98	
Thermal Conducti	vity k ((W /m•K)	1.029	

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	891				
Rigidity Modulus G	$(10^8 N/m^2)$	357				
Poisson's Ratio	σ	0.248				
Knoop Hardness	Hk	560[6]				
Abrasion	Aa	154				
Photoelastic Constar (nm/cm/10 ⁵ Pa	. ()	2.87				

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	1.1	1.8	1.8	2.2	2.5	3.5	4.7
−20 ~ 0	1.2	1.9	2.0	2.3	2.7	3.8	5.0
0 ~ 20	1.3	2.0	2.2	2.5	2.9	4.0	5.3
20 ~ 40	1.4	2.2	2.3	2.7	3.1	4.3	5.7
40 ~ 60	1.5	2.3	2.5	2.8	3.3	4.5	6.0
60 ~ 80	1.6	2.4	2.6	3.0	3.5	4.8	6.3

Relative Partial Dispersions				
$\theta_{\mathrm{C,t}}$	0.6899			
$\theta_{C,A'}$	0.3114			
$ heta_{\sf d,C}$	0.2891			
$ heta_{ extsf{e}, extsf{C}}$	0.5251			
$ heta_{ extsf{g,d}}$	1.3162			
$ heta_{ extsf{g}, extsf{F}}$	0.6053			
$ heta_{h,g}$	0.5412			
$ heta_{i,g}$	_			
θ´c΄,t	0.7233			
$ heta^{'}_{ ext{e,C}'}$	0.4723			
$ heta^{'}$ $_{F^{'}}$,e	0.5277			
$\theta'_{i,F'}$				

Coloring				
λ 80/λ 5	41/36			

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	
370	0.18
380	0.54
390	0.77
400	0.87
420	0.951
440	0.971
460	0.979
480	0.984
500	0.988
550	0.995
600	0.995
650	0.993
700	0.995
800	0.998
900	0.999
1000	0.999
1200	0.999
1400	0.996
1600	0.995
1800	0.986
2000	0.978
2200	0.948
2400	0.928

Refractive Index	n _d	1.78470 1.784696	Abbe Number Vd	26.3 26.29	Dispersion NF-NC	0.02984 0.029847
Refractive Index	n _e	1.791730	Abbe Number $ u_{ m e}$	26.08	Dispersion $n_{F'} - n_{C'}$	0.030359

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.73102			
n 1970	1.97009	1.73732			
n 1530	1.52958	1.74475			
n 1129	1.12864	1.75284			
n _t	1.01398	1.75605			
ns	0.85211	1.76230			
n _A ′	0.76819	1.76697			
n _r	0.70652	1.77147			
n _C	0.65627	1.77613			
n _C ′	0.64385	1.77746			
n _{He-Ne}	0.6328	1.77871			
n_D	0.58929	1.78444			
n _d	0.58756	1.78470			
n _e	0.54607	1.79173			
n _F	0.48613	1.80597			
n _F ′	0.47999	1.80782			
n _{He-Cd}	0.44157	1.82176			
ng	0.435835	1.82428			
n _h	0.404656	1.84081			
n _i	0.365015	_			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0026			
$\Delta heta_{ extsf{C,A'}}$	-0.0009			
$arDelta heta_{ extsf{g,d}}$	0.0163			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0146			
$arDelta heta_{i,g}$				

Constants of Dispersion Formula				
A ₁	1.73986485			
A_2	3.13894918•10 ⁻¹			
A_3	2.31093206			
B ₁	1.29441300•10 ⁻²			
B ₂	6.12116868•10 ⁻²			
B ₃	1.97420482•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.30		
Remarks				

Partial Dispersions				
n _C -n _t	0.020074			
n _C –n _A ′	0.009156			
n _d –n _C	0.008571			
n _e –n _C	0.015605			
n _g –n _d	0.039588			
n _g –n _F	0.018312			
n _h –n _g	0.016524			
n _i –n _g				
n _C '-n _t	0.021407			
n _e –n _C ′	0.014272			
n _F ′–n _e	0.016087			
n _i –n _F ′	_			

Thermal Properties					
Strain Point	StP	(℃)	561		
Annealing Point	AP	(℃)	586		
Transformation Temperat.	ne Tg	(℃)	604		
Yield Point	At	(℃)	635		
Softening Point	SP	(℃)	684		
Expansion Coefficients	(-30~	+70°C)	88		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	106		
Thermal Conducti	vity k ((W /m•K)	0.992		

Mechanical Properties								
Young's Modulus E	$(10^8 N/m^2)$	922						
Rigidity Modulus G	$(10^8 N/m^2)$	366						
Poisson's Ratio	σ	0.260						
Knoop Hardness	Hk	540 [5]						
Abrasion	Aa	180						
Photoelastic Constar (nm/cm/10 ⁵ Pa	· 1.)	2.69						

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	2
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $\mathbf{W}(s)$	2
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

	Temperature Coefficients of Refractive Index							
Range of Ten	nperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃))	t	C	He-Ne	D	е	F	g
−40 ~	-20	-0.3	0.5	0.6	1.0	1.4	2.6	4.1
-20 ~	0	-0.2	0.7	0.7	1.1	1.6	2.9	4.4
0 ~	20	-0.1	0.8	0.9	1.3	1.8	3.1	4.8
20 ~	40	-0.1	0.9	1.0	1.4	2.0	3.4	5.1
40 ~	60	0.0	1.0	1.1	1.5	2.2	3.7	5.5
60 ~	80	0.1	1.2	1.2	1.7	2.3	3.9	5.8

Relative Partia	l Dispersions
$\theta_{\mathrm{C,t}}$	0.6726
$\theta_{C,A'}$	0.3068
$ heta_{\sf d,C}$	0.2872
$ heta_{e,C}$	0.5228
$ heta_{ extsf{g,d}}$	1.3264
$ heta_{ extsf{g}, extsf{F}}$	0.6135
$ heta_{h,g}$	0.5536
$ heta_{i,g}$	_
$\theta'_{C',t}$	0.7051
θ' _{e,C'}	0.4701
$ heta^{'}$ F $^{'}$,e	0.5299
$ heta^{'}_{i,F^{'}}$	_

Coloring				
λ 80/λ 5	43/37			

Internal Transmittance		
280 290 300 310 310 320 330 340 350 360 370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.998 1200 0.996 1800 0.996 1800 0.998 2000 0.988 2000 0.981 2200 0.962	_	ınsmittance
290 300 310 320 330 340 350 360 370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.999 650 0.991 700 0.993 800 0.998 900 0.998 1200 0.999 1400 0.996 1800 0.988 2000 0.981 2200 0.962	,, ,,,,,,	τ 10mm
300 310 320 330 340 350 360 370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.998 1200 0.996 1800 0.998 2000 0.981 2200 0.962		
310 320 330 340 350 360 370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.996 1800 0.988 2000 0.981 2200 0.962		
320 330 340 350 360 370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.998 1200 0.996 1800 0.998 2000 0.988 2000 0.981 2200 0.962		
330 340 350 360 370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.998 1200 0.996 1800 0.998 2000 0.981 2200 0.962		
340 350 360 370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.998 1200 0.996 1800 0.988 2000 0.981 2200 0.962		
350 360 370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.998 1200 0.996 1800 0.988 2000 0.981 2200 0.962	330	
360 370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.998 1800 0.988 2000 0.981 2200 0.962		
370 0.12 380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962		
380 0.44 390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.998 1200 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	360	
390 0.67 400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1200 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	370	0.12
400 0.80 420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	380	0.44
420 0.906 440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	390	0.67
440 0.947 460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	400	0.80
460 0.962 480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	420	
480 0.972 500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	440	
500 0.979 550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	460	0.962
550 0.992 600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.962	480	0.972
600 0.992 650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	500	0.979
650 0.991 700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	550	0.992
700 0.993 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	600	0.992
800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.962	650	0.991
900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	700	0.993
1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	800	0.998
1200 0.999 1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	900	0.998
1400 0.997 1600 0.996 1800 0.988 2000 0.981 2200 0.962	1000	0.998
1600 0.996 1800 0.988 2000 0.981 2200 0.962	1200	0.999
1800 0.988 2000 0.981 2200 0.962	1400	0.997
2000 0.981 2200 0.962	1600	0.996
2200 0.962	1800	0.988
	2000	0.981
2400 0 937	2200	0.962
2.00	2400	0.937

Refractive Index	n _d	1.84666 1.846660	Abbe Number νd	23.8 23.78	Dispersion NF-NC	0.03561 0.035608
Refractive	ne	1.855041	Abbe Number ν_{e}	23.59	Dispersion n F' - n C'	0.036247

	Refractive Indices					
	λ (μ m)					
n 2325	2.32542	1.78519				
n 1970	1.97009	1.79199				
n 1530	1.52958	1.80013				
n 1129	1.12864	1.80925				
n _t	1.01398	1.81294				
ns	0.85211	1.82021				
n _A ′	0.76819	1.82568				
n _r	0.70652	1.83098				
n _C	0.65627	1.83649				
n _C ′	0.64385	1.83807				
n _{He-Ne}	0.6328	1.83956				
n_D	0.58929	1.84635				
n _d	0.58756	1.84666				
n _e	0.54607	1.85504				
n _F	0.48613	1.87210				
n _F ′	0.47999	1.87431				
n _{He-Cd}	0.44157	1.89114				
ng	0.435835	1.89419				
n _h	0.404656	1.91429				
n _i	0.365015	_				

Deviation of Re	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$ 0.0032					
$\Delta\theta_{\text{C,A}'}$ -0.0012					
$\Delta heta_{ extsf{g,d}}$ 0.0195					
$\Delta heta_{ extsf{g}, extsf{F}}$ 0.0175					
$arDelta heta_{i,g}$					

Consta	Constants of Dispersion Formula					
A ₁	1.87904886					
A_2	3.69719775•10 ⁻¹					
A ₃	2.33730863					
B ₁	1.44121770•10 ⁻²					
B ₂	6.38817990•10 ⁻²					
B ₃	1.82668180•10 ²					

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.54			
Remarks					

		Tempe	rature Co	efficients o	of Refracti	ve Index		
Range of Tem	nperature		dr	n / dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)	(°C) t C' He-Ne D e F' g					g		
-40 ~	-20	-0.8	0.4	0.4	0.9	1.4	2.8	4.5
-20 ~	0	-0.8	0.5	0.6	1.0	1.6	3.1	5.0
0 ~	20	-0.7	0.6	0.7	1.2	1.8	3.4	5.4
20 ~	40	-0.7	0.7	0.8	1.3	2.0	3.7	5.8
40 ~	60	-0.6	0.9	1.0	1.5	2.2	4.0	6.2
60 ~	80	-0.6	1.0	1.1	1.6	2.4	4.3	6.6

Partial Dispersions		
n _C –n _t	0.023550	
n _C –n _A ′	0.010806	
n _d –n _C	0.010172	
n _e –n _C	0.018553	
n _g –n _d	0.047529	
n _g –n _F	0.022093	
n _h –n _g	0.020105	
n _i –n _g		
n _C ′–n _t	0.025128	
n _e –n _C ′	0.016975	
n _F ′–n _e	0.019272	
n _i –n _F ′	_	

Therm	al Pro	perties	5
Strain Point	StP	(\mathcal{C})	576
Annealing Point	ΑP	(\mathcal{C})	596
Transformation Temperature	e Tg	$(^{\circ}\mathbb{C})$	624
Yield Point	At	$(^{\circ}\mathbb{C})$	658
Softening Point	SP	(\mathcal{C})	692
Expansion Coefficients	(-30~	+70°C)	88
$\alpha (10^{-7})^{\circ}C)$ (+	100~+	-300℃)	104
Thermal Conductivity	k(W/	m·K)	1.000

Mechani	ical Propertie	es
Young's Modulus E	$(10^8 N/m^2)$	960
Rigidity Modulus G	$(10^8 N/m^2)$	379
Poisson's Ratio	σ	0.266
Knoop Hardness	Hk	520[5]
Abrasion	Aa	170
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.81

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	1	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

Relative Partial Dispersions		
$ heta_{C,t}$	0.6614	
$ heta_{C,A'}$	0.3035	
$ heta_{\sf d,C}$	0.2857	
$ heta_{e,C}$	0.5210	
$ heta_{ extsf{g,d}}$	1.3348	
$ heta_{ extsf{g}, extsf{F}}$	0.6205	
$ heta_{h,g}$	0.5646	
$ heta_{i,g}$		
θ´c′,t	0.6932	
θ' _{e,C'}	0.4683	
$ heta^{'}$ F $^{'}$,e	0.5317	
$\theta'_{i,F'}$		

Coloring			
λ70/λ5	42/37		

Internal Tran	smittance
λ (nm)	au 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	
370	0.06
380	0.35
390	0.61
400	0.75
420	0.87
440	0.927
460	0.948
480	0.961
500	0.971
550	0.987
600	0.989
650	0.985
700	0.989
800	0.997
900	0.998
1000	0.999
1200	0.999
1400	0.998
1600	0.997
1800	0.991
2000	0.986
2200	0.974
2400	0.955

Refractive Index	n _d	1.65160 1.651597	Abbe Number ν _d	58.5 58.55	Dispersion NF-NC	0.01113 0.011129
Refractive	ne	1.654251	Abbe Number ν_{e}	58.31	Dispersion $n_{F'} - n_{C'}$	0.011221

Refractive Indices		
	λ (μ m)	
n 2325	2.32542	1.61850
n 1970	1.97009	1.62479
n 1530	1.52958	1.63144
n 1129	1.12864	1.63715
n _t	1.01398	1.63900
ns	0.85211	1.64218
n _A ′	0.76819	1.64432
n _r	0.70652	1.64627
n_{C}	0.65627	1.64821
n _C ′	0.64385	1.64875
n _{He-Ne}	0.6328	1.64925
n_D	0.58929	1.65150
n _d	0.58756	1.65160
n _e	0.54607	1.65425
n _F	0.48613	1.65934
n _F ′	0.47999	1.65997
n _{He-Cd}	0.44157	1.66457
ng	0.435835	1.66537
n _h	0.404656	1.67038
n _i	0.365015	1.67892

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0056	
$\Delta heta_{C,A'}$	0.0022	
$arDelta heta_{ extsf{g,d}}$	-0.0052	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0042	
$arDelta heta_{i,g}$	-0.0179	

Constants of Dispersion Formula		
A_1	9.16121247•10 ⁻¹	
A_2	7.65948319•10 ⁻¹	
A_3	1.27745023	
B ₁	3.95889743•10 ⁻³	
B ₂	1.67547425•10 ⁻²	
B ₃	1.10762706•10 ²	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	3.73
Remarks		

Partial Dispersions			
n _C –n _t	0.009204		
n _C -n _A ′	0.003884		
n _d –n _C	0.003390		
n _e –n _C	0.006044		
n _g –n _d	0.013777		
n _g –n _F	0.006038		
n _h –n _g	0.005010		
n _i –n _g	0.013542		
n _C '-n _t	0.009744		
n _e –n _C ′	0.005504		
n _F ′–n _e	0.005717		
n _i –n _F ′	0.018948		

Thermal Properties				
Strain Point	StP	(\mathcal{C})	582	
Annealing Point	AP	(℃)	603	
TiansformationTemperat.	ne Tg	(℃)	617	
Yield Point	At	(℃)	658	
Softening Point	SP	(℃)	694	
Expansion Coefficients	(-30~	+70°C)	67	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	81	
Thermal Conducti	vity k	(W /m•K)	0.825	

Mechanic	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	958
Rigidity Modulus G	$(10^8 N/m^2)$	377
Poisson's Ratio	σ	0.271
Knoop Hardness	Hk	560[6]
Abrasion	Aa	136
Photoelastic Constar (nm/cm/10 ⁵ Pa		1.72

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	3			
Acid Resistance (Powder) Group RA(P)	5			
Weathering Resistance (Surface) Group $W(s)$	2~3			
Acid Resistance (Surface) Group SR	53.0			
Phosphate Resistance PR	4.0			

Temperature Coefficients of Refractive Index							
Range of Temperature)	dr	n / dt rela	itive (1	0 ⁻⁶ / °C)	
(℃)	t	C'	He-Ne	D	е	F	g
−40 ~ −20	1.5	1.8	1.8	1.9	2.0	2.3	2.6
−20 ~ 0	1.5	1.8	1.9	2.0	2.1	2.4	2.7
0 ~ 20	1.6	1.9	2.0	2.1	2.2	2.5	2.8
20 ~ 40	1.8	2.0	2.0	2.2	2.3	2.6	3.0
40 ~ 60	1.8	2.1	2.1	2.3	2.4	2.8	3.1
60 ~ 80	1.8	2.2	2.2	2.4	2.5	2.9	3.2

Relative Partia	Relative Partial Dispersions		
$\theta_{C,t}$	0.8270		
$ heta_{C,A'}$	0.3490		
$ heta_{\sf d,C}$	0.3046		
$ heta_{ extsf{e}, extsf{C}}$	0.5431		
$ heta_{ extsf{g,d}}$	1.2379		
$ heta_{ extsf{g}, extsf{F}}$	0.5425		
$ heta_{h,g}$	0.4502		
$ heta_{i,g}$	1.2168		
θ´c´,t	0.8684		
θ'e,C'	0.4905		
$ heta^{'}$ F $^{'}$,e	0.5095		
$\theta'_{i,F'}$	1.6886		

Colo	ring
λ 80/λ 5	35/28

Internal Tra	nsmittance
λ (nm)	7 10mm
280	0.09
290	0.22
300	0.38
310	0.55
320	0.69
330	0.80
340	0.88
350	0.929
360	0.957
370	0.974
380	0.984
390	0.990
400	0.992
420	0.994
440	0.995
460	0.996
480	0.997
500	0.998
550	0.999
600	0.998
650	0.998
700	0.998
800	0.999
900	0.998
1000	0.998
1200	0.997
1400	0.991
1600	0.993
1800	0.984
2000	0.968
2200	0.903
2400	0.74

Refractive Index	n _d	1.71300 1.712995	Abbe Number Vd	53.9 53.87	Dispersion NF-NC	0.01324 0.013236
Refractive Index	ne	1.716150	Abbe Number $ u_{e}$	53.64	Dispersion $n_{F'} - n_{C'}$	0.013352

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.67418		
n 1970	1.97009	1.68155		
n 1530	1.52958	1.68930		
n 1129	1.12864	1.69597		
n _t	1.01398	1.69813		
ns	0.85211	1.70186		
$n_{A^{'}}$	0.76819	1.70438		
n _r	0.70652	1.70669		
n_{C}	0.65627	1.70897		
n _C ′	0.64385	1.70961		
n _{He-Ne}	0.6328	1.71021		
n_D	0.58929	1.71288		
n_d	0.58756	1.71300		
n _e	0.54607	1.71615		
n _F	0.48613	1.72221		
n _F ′	0.47999	1.72297		
n _{He-Cd}	0.44157	1.72848		
ng	0.435835	1.72943		
n _h	0.404656	1.73545		
n _i	0.365015	1.74575		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0200	
$\Delta heta_{C,A'}$	0.0057	
$arDelta heta_{ extsf{g,d}}$	-0.0107	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0084	
$\Delta heta_{ extsf{i,g}}$	-0.0416	

Constants of Dispersion Formula		
A ₁	1.30663291	
A_2	5.71377253•10 ⁻¹	
A_3	1.24303605	
B ₁	6.11862448•10 ⁻³	
B ₂	2.12721470•10 ⁻²	
B ₃	9.06285686•10 ¹	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.79	
Remarks			

Partial Dispersions				
n _C -n _t	0.010846			
n _C –n _A ′	0.004591			
n _d –n _C	0.004021			
n _e –n _C	0.007176			
n _g –n _d	0.016440			
n _g –n _F	0.007225			
n _h –n _g	0.006016			
n _i –n _g	0.016311			
n _C '-n _t	0.011486			
n _e –n _C ′	0.006536			
n _F ′–n _e	0.006816			
n _i –n _F ′	0.022780			

Therr	nal P	roperti	es
Strain Point	StP	(℃)	590
Annealing Point	AP	(℃)	617
Transformation Temperati	ue Tg	(℃)	643
Yield Point	At	(℃)	668
Softening Point	SP	(℃)	698
Expansion Coefficients	(-30~	+70°C)	61
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	74
Thermal Conducti	vity k ((W /m•K)	0.894

Mechanic	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1140
Rigidity Modulus G	$(10^8 N/m^2)$	442
Poisson's Ratio	σ	0.289
Knoop Hardness	Hk	660[7]
Abrasion	Aa	81
Photoelastic Constar (nm/cm/10 ⁵ Pa	· //	1.75

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	2			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	3			
Acid Resistance (Surface) Group SR	52.0			
Phosphate Resistance PR	3.0			

Temperature Coefficients of Refractive Index								
Range of Tem	perature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	t C' He-Ne D e F' g					
−40 ~	-20	3.3	3.6	3.6	3.8	4.0	4.3	4.7
-20 ~	0	3.4	3.7	3.8	3.9	4.1	4.5	4.9
0 ~	20	3.5	3.9	3.9	4.0	4.2	4.6	5.0
20 ~	40	3.6	4.0	4.0	4.1	4.3	4.8	5.2
40 ~	60	3.6	4.1	4.1	4.3	4.5	4.9	5.4
60 ~	80	3.7	4.2	4.2	4.4	4.6	5.1	5.5

Relative Partial Dispersions				
$ heta_{C,t}$	0.8194			
$ heta_{C,A'}$	0.3469			
$ heta_{\sf d,C}$	0.3038			
$ heta_{ extsf{e}, extsf{C}}$	0.5422			
$ heta_{ extsf{g,d}}$	1.2421			
$ heta_{ extsf{g}, extsf{F}}$	0.5459			
$ heta_{h,g}$	0.4545			
$ heta_{i,g}$	1.2323			
θ´C΄,t	0.8602			
θ' _{e,C'}	0.4895			
$ heta^{'}$ F $^{'}$,e	0.5105			
θίε΄	1 7061			

Colo	ring
λ 80/λ 5	38/30

Internal Trar	
λ (nm)	τ 10mm
280	
290	0.03
300	0.07
310	0.15
320	0.28
330	0.44
340	0.60
350	0.74
360	0.84
370	0.905
380	0.944
390	0.965
400	0.977
420	0.988
440	0.991
460	0.994
480	0.996
500	0.997
550	0.998
600	0.996
650	0.997
700	0.997
800	0.998
900	0.997
1000	0.997
1200	0.997
1400	0.991
1600	0.991
1800	0.981
2000	0.955
2200	0.87
2400	0.62

Refractive Index	n _d	1.69100 1.691002	Abbe Number νd	54.8 54.82	Dispersion NF-NC	0.01260 0.012605
Refractive	ne	1.694007	Abbe Number ν_{e}	54.59	Dispersion $n_{F'} - n_{C'}$	0.012714

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.65343		
n 1970	1.97009	1.66064		
n 1530	1.52958	1.66822		
n 1129	1.12864	1.67470		
n _t	1.01398	1.67678		
ns	0.85211	1.68037		
n _A ′	0.76819	1.68279		
n _r	0.70652	1.68499		
n_{C}	0.65627	1.68717		
n _C ′	0.64385	1.68778		
n _{He-Ne}	0.6328	1.68835		
n_D	0.58929	1.69089		
n _d	0.58756	1.69100		
n _e	0.54607	1.69401		
n _F	0.48613	1.69977		
n _F ′	0.47999	1.70049		
n _{He-Cd}	0.44157	1.70573		
ng	0.435835	1.70664		
n _h	0.404656	1.71236		
n _i	0.365015	1.72212		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0199	
$arDelta heta_{C,A'}$	0.0055	
$arDelta heta_{ extsf{g,d}}$	-0.0101	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0079	
$\Delta heta_{i,g}$	-0.0382	

Constants of Dispersion Formula				
A ₁	1.16195687			
A_2	6.44860099•10 ⁻¹			
A_3	1.25062221			
B ₁	1.59659509•10 ⁻²			
B ₂	5.05502467•10 ⁻⁴			
B ₃	9.38284169•10 ¹			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.63		
Remarks				

Partial Dispersions				
n _C –n _t	0.010384			
n _C -n _A ′	0.004384			
n _d –n _C	0.003833			
n _e –n _C	0.006838			
n _g –n _d	0.015640			
n _g –n _F	0.006868			
n _h –n _g	0.005714			
n _i –n _g	0.015476			
n _C ′–n _t	0.010994			
n _e –n _C ′	0.006228			
n _F ′–n _e	0.006486			
n _i –n _F ′	0.021625			

Thermal Properties				
Strain Point	StP	(\mathcal{C})	606	
Annealing Point	AP	(\mathcal{C})	630	
Transformation Temperatu	ne Tg	(\mathcal{C})	653	
Yield Point	At	(\mathcal{C})	679	
Softening Point	SP	(\mathcal{C})	707	
Expansion Coefficients	(-30~	+70°C)	61	
α (10 ⁻⁷ /°C)	(+100~	+300°C)	74	
Thermal Conductiv	vity k (W/m⋅K)	0.895	
Tricimal Conducti	vity it	• •/111 14/	0.000	

Mechanic	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1075
Rigidity Modulus G	$(10^8 N/m^2)$	418
Poisson's Ratio	σ	0.287
Knoop Hardness	Hk	660[7]
Abrasion	Aa	88
Photoelastic Constar (nm/cm/10 ⁵ Pa	. ()	1.85

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	2
Acid Resistance (Powder) Group RA(P)	5
Weathering Resistance (Surface) Group $\mathbf{W}(s)$	2
Acid Resistance (Surface) Group SR	52.0
Phosphate Resistance PR	4.0

Temperature Coefficients of Refractive Index								
Range of Temperature	e	dr	ı / dt rela	ative (1	0 ⁻⁶ / °C)		
(℃)	t	C	He-Ne	D	е	F	g	
−40 ~ −20	3.4	3.8	3.8	3.9	4.1	4.4	4.8	
−20 ~ 0	3.4	3.8	3.8	4.0	4.1	4.5	4.9	
0 ~ 20	3.5	3.9	3.9	4.0	4.2	4.6	5.0	
20 ~ 40	3.5	3.9	3.9	4.1	4.3	4.7	5.1	
40 ~ 60	3.6	4.0	4.0	4.2	4.3	4.8	5.2	
60 ~ 80	3.7	4.0	4.0	4.2	4.4	4.8	5.3	

Relative Partia	l Dispersions
$\theta_{C,t}$	0.8238
$ heta_{C,A'}$	0.3478
$ heta_{\sf d,C}$	0.3041
$ heta_{e,C}$	0.5425
$ heta_{ extsf{g,d}}$	1.2408
$ heta_{ extsf{g}, extsf{F}}$	0.5449
$ heta_{h,g}$	0.4533
$ heta_{i,g}$	1.2278
$\theta'_{C',t}$	0.8647
θ'e,C'	0.4899
$ heta^{'}$ $_{F^{'}}$,e	0.5101
$\theta'_{i,F'}$	1.7009

Colo	ring
λ 80/λ 5	38/30

λ (nm) 7 10mm 280 290 0.01 300 0.04 310 0.11 320 0.22 330 0.38 340 0.55 350 0.70 360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89 2400 0.66 0.66	Internal Trar	nsmittance
280 290 0.01 300 0.04 310 0.11 320 0.22 330 0.38 340 0.55 350 0.70 360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89		
290 0.01 300 0.04 310 0.11 320 0.22 330 0.38 340 0.55 350 0.70 360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89		
300 0.04 310 0.11 320 0.22 330 0.38 340 0.55 350 0.70 360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89		0.01
310 0.11 320 0.22 330 0.38 340 0.55 350 0.70 360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89		
320 0.22 330 0.38 340 0.55 350 0.70 360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89		
330 0.38 340 0.55 350 0.70 360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89		
340 0.55 350 0.70 360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89		
350 0.70 360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89		
360 0.82 370 0.89 380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89		0.70
380 0.936 390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.89		0.82
390 0.960 400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89	370	0.89
400 0.973 420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.89	380	0.936
420 0.985 440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.89	390	0.960
440 0.988 460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.89	400	0.973
460 0.992 480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89	420	0.985
480 0.994 500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1600 0.992 1800 0.984 2000 0.963 2200 0.89	440	0.988
500 0.995 550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1800 0.984 2000 0.963 2200 0.89	460	0.992
550 0.997 600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1600 0.992 1800 0.984 2000 0.89	480	0.994
600 0.996 650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1600 0.992 1800 0.984 2000 0.963 2200 0.89	500	
650 0.997 700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1600 0.992 1800 0.984 2000 0.963 2200 0.89	550	
700 0.998 800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1600 0.992 1800 0.984 2000 0.963 2200 0.89	600	
800 0.998 900 0.997 1000 0.996 1200 0.996 1400 0.992 1600 0.992 1800 0.984 2000 0.963 2200 0.89	650	
900 0.997 1000 0.996 1200 0.996 1400 0.992 1600 0.992 1800 0.984 2000 0.963 2200 0.89	700	
1000 0.996 1200 0.996 1400 0.992 1600 0.992 1800 0.984 2000 0.963 2200 0.89		
1200 0.996 1400 0.992 1600 0.992 1800 0.984 2000 0.963 2200 0.89		
1400 0.992 1600 0.992 1800 0.984 2000 0.963 2200 0.89	1000	
1600 0.992 1800 0.984 2000 0.963 2200 0.89		
1800 0.984 2000 0.963 2200 0.89		
2000 0.963 2200 0.89		
2200 0.89		
2400 0.66		
	2400	0.66

Refractive Index	n _d	1.72000 1.719995	Abbe Number Vd	50.2 50.23	Dispersion NF-NC	0.01433 0.014334
Refractive Index	n _e	1.723409	Abbe Number $ u_{e}$	49.98	Dispersion $n_{F'} - n_{C'}$	0.014474

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.68159			
n 1970	1.97009	1.68841			
n 1530	1.52958	1.69567			
n 1129	1.12864	1.70213			
n _t	1.01398	1.70430			
n _s	0.85211	1.70814			
n _A ′	0.76819	1.71079			
n _r	0.70652	1.71323			
n _C	0.65627	1.71567			
n _C ′	0.64385	1.71636			
n _{He-Ne}	0.6328	1.71700			
n_D	0.58929	1.71987			
n _d	0.58756	1.72000			
n _e	0.54607	1.72341			
n _F	0.48613	1.73000			
n _F ′	0.47999	1.73083			
n _{He-Cd}	0.44157	1.73686			
n _g	0.435835	1.73792			
n _h	0.404656	1.74455			
ni	0.365015	1.75597			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$ 0.0107			
$\Delta \theta_{\text{C,A'}}$ 0.0040			
$\Delta heta_{ extsf{g,d}}$ -0.0100			
$\Delta \theta_{\text{g,F}}$ -0.0081			
$\Delta heta_{i,g}$	-0.0451		

Constants of Dispersion Formula				
A ₁ 1.52812575				
A_2	3.67965267•10 ⁻¹			
A_3	1.11751784			
B ₁	7.76817644•10 ⁻³			
B ₂	2.72026548•10 ⁻²			
B ₃	8.88697400•10 ¹			

Other Properties					
Bubble Quality Group B					
Specific Gravity	d	3.86			
Remarks					

Partial Dispersions				
n _C –n _t	0.011368			
n _C –n _A ′	0.004885			
n _d –n _C	0.004325			
n _e –n _C	0.007739			
n _g –n _d	0.017923			
n _g –n _F	0.007914			
n _h –n _g	0.006628			
n _i –n _g	0.018051			
n _C '-n _t	0.012054			
n _e –n _C ′	0.007053			
n _F ′–n _e	0.007421			
n _i –n _F ′	0.025139			

Therr	es		
Strain Point	StP	(℃)	582
Annealing Point	AP	(℃)	600
TransformationTemperati	ne Tg	(℃)	624
Yield Point	At	(℃)	657
Softening Point	SP	(℃)	692
Expansion Coefficients	(-30~	+70°C)	61
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	76
Thermal Conducti	vity k ((W /m•K)	0.850

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1061
Rigidity Modulus G	$(10^8 N/m^2)$	410
Poisson's Ratio	σ	0.294
Knoop Hardness	Hk	650[7]
Abrasion	Aa	86
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.17

Chemical Properti	ies
Water Resistance (Powder) Group RW(P)	1
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	2
Acid Resistance (Surface) Group SR	52.2
Phosphate Resistance PR	3.0

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C´	He-Ne	D	е	F [′]	g
−40 ~ −20	4.4	5.0	5.0	5.1	5.4	5.8	6.3
−20 ~ 0	4.5	5.0	5.1	5.2	5.5	5.9	6.4
0 ~ 20	4.5	5.1	5.2	5.3	5.5	6.0	6.5
20 ~ 40	4.6	5.2	5.2	5.4	5.6	6.1	6.7
40 ~ 60	4.6	5.2	5.3	5.5	5.7	6.3	6.8
60 ~ 80	4.6	5.3	5.4	5.5	5.8	6.4	6.9

Relative Partial Dispersions				
$ heta_{C,t}$	0.7931			
$ heta_{C,A'}$	0.3408			
$ heta_{\sf d,C}$	0.3017			
$ heta_{ extsf{e}, extsf{C}}$	0.5399			
$ heta_{ extsf{g,d}}$	1.2504			
$ heta_{ extsf{g}, extsf{F}}$	0.5521			
$ heta_{h,g}$	0.4624			
$ heta_{i,g}$	1.2593			
θ´C΄,t	0.8328			
θ' _{e,C'}	0.4873			
$ heta^{'}$ F $^{'}$,e	0.5127			
θίε΄	1 7368			

Coloring				
λ 80/λ 5	38/31			

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	0.07
320	0.22
330	0.40
340	0.58
350	0.72
360	0.83
370	0.89
380	0.937
390	0.959
400	0.972
420	0.983
440	0.988
460	0.991
480	0.994
500	0.996
550	0.998
600	0.997
650	0.998
700	0.998
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.997
1600	0.996
1800	0.990
2000	0.971
2200	0.922
2400	0.71

Refractive Index	n _d	1.67790 1.677900	Abbe Number Vd	55.3 55.34	Dispersion NF-NC	0.01225 0.012250
Refractive Index	n _e	1.680820	Abbe Number $ u_{ m e}$	55.08	Dispersion $n_{F'} - n_{C'}$	0.012361

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.64414		
n 1970	1.97009	1.65021		
n 1530	1.52958	1.65669		
n 1129	1.12864	1.66242		
n _t	1.01398	1.66433		
ns	0.85211	1.66768		
n _A ′	0.76819	1.66998		
n _r	0.70652	1.67208		
n_{C}	0.65627	1.67419		
n _C ′	0.64385	1.67478		
n _{He-Ne}	0.6328	1.67533		
n_D	0.58929	1.67779		
n _d	0.58756	1.67790		
n _e	0.54607	1.68082		
n _F	0.48613	1.68644		
n _F ′	0.47999	1.68714		
n _{He-Cd}	0.44157	1.69225		
ng	0.435835	1.69314		
n _h	0.404656	1.69872		
n _i	0.365015	1.70826		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.0018	
$\Delta heta_{C,A'}$	0.0008	
$arDelta heta_{ extsf{g,d}}$	-0.0056	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0047	
$\Delta heta_{i,g}$	-0.0274	

Constants of Dispersion Formula		
A ₁	9.92053895•10 ⁻¹	
A_2	7.71377731•10 ⁻¹	
A ₃	1.18296264	
B ₁	1.67095063•10 ⁻²	
B ₂	2.36750156•10 ⁻³	
B ₃	1.05901080•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	4.01		
Remarks				

Partial Dispersions			
n _C -n _t	0.009855		
n _C –n _A ′	0.004212		
n _d –n _C	0.003712		
n _e –n _C	0.006632		
n _g –n _d	0.015241		
n _g –n _F	0.006703		
n _h –n _g	0.005580		
n _i –n _g	0.015119		
n _C '-n _t	0.010445		
n _e –n _C ′	0.006042		
n _F ′–n _e	0.006319		
n _i –n _F ′	0.021121		

Thermal Properties				
Strain Point	StP	(\mathcal{C})	604	
Annealing Point	AP	(℃)	630	
Transformation Temperat.	ne Tg	(℃)	652	
Yield Point	At	(℃)	679	
Softening Point	SP	(℃)	716	
Expansion Coefficients	(-30~	+70°C)	72	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	86	
Thermal Conducti	vity k ((W /m•K)	0.717	

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	910
Rigidity Modulus G	$(10^8 N/m^2)$	354
Poisson's Ratio	σ	0.284
Knoop Hardness	Hk	560[6]
Abrasion	Aa	166
Photoelastic Constan (nm/cm/10 ⁵ Pa)	· 1.)	1.61

Chemical Properties			
Water Resistance (Powder) Group $RW(P)$	3		
Acid Resistance (Powder) Group RA(P)	5		
Weathering Resistance (Surface) Group $W(s)$	2		
Acid Resistance (Surface) Group SR	53.0		
Phosphate Resistance PR	4.2		

	Temperature Coefficients of Refractive Index							
Range of Temp	oerature		dr	ı / dt rela	itive (1	0 ⁻⁶ / °C)	
(℃)		t	C´	He-Ne	D	е	F	g
-40 ~ ·	-20	0.4	0.6	0.7	0.8	0.9	1.2	1.5
−20 ~	0	0.5	0.7	0.7	0.8	1.0	1.3	1.7
0 ~	20	0.5	0.8	0.8	0.9	1.1	1.4	1.8
20 ~	40	0.5	0.8	0.9	1.0	1.1	1.5	1.9
40 ~	60	0.5	0.9	0.9	1.1	1.2	1.6	2.0
60 ~	80	0.6	1.0	1.0	1.1	1.3	1.7	2.1

Relative Partial Dispersions				
$ heta_{C,t}$	0.8045			
$ heta_{C,A'}$	0.3438			
$ heta_{\sf d,C}$	0.3030			
$ heta_{ extsf{e}, extsf{C}}$	0.5414			
$ heta_{ extsf{g,d}}$	1.2442			
$ heta_{ extsf{g}, extsf{F}}$	0.5472			
$ heta_{h,g}$	0.4555			
$ heta_{i,g}$	1.2342			
θ´C΄,t	0.8450			
θ' _{e,C'}	0.4888			
θ´F΄,e	0.5112			
A' E'	1 7087			

Coloring				
λ 80/λ 5	36/28			

	•••
Internal Trar	
λ (nm)	τ 10mm
280	0.06
290	0.15
300	0.29
310	0.45
320	0.61
330	0.73
340	0.83
350	0.89
360	0.938
370	0.962
380	0.976
390	0.984
400	0.988
420	0.992
440	0.994
460	0.995
480	0.997
500	0.998
550	0.999
600	0.998
650	0.998
700	0.998
800	0.999
900	0.997
1000	0.996
1200	0.996
1400	0.991
1600	0.991
1800	0.981
2000	0.963
2200	0.901
2400	0.73

Refractive Index	n _d	1.69350 1.693501	Abbe Number νd	53.2 53.21	Dispersion NF-NC	0.01303 0.013034
Refractive	ne	1.696607	Abbe Number ν_{e}	52 97	Dispersion n F' - n C'	0.013152

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.65605			
n 1970	1.97009	1.66304			
n 1530	1.52958	1.67044			
n 1129	1.12864	1.67685			
n _t	1.01398	1.67894			
ns	0.85211	1.68258			
n _A ′	0.76819	1.68504			
n _r	0.70652	1.68730			
n_{C}	0.65627	1.68955			
n _C ′	0.64385	1.69018			
n _{He-Ne}	0.6328	1.69076			
n_D	0.58929	1.69339			
n _d	0.58756	1.69350			
n _e	0.54607	1.69661			
n _F	0.48613	1.70258			
n _F ′	0.47999	1.70333			
n _{He-Cd}	0.44157	1.70877			
ng	0.435835	1.70972			
n _h	0.404656	1.71566			
n _i	0.365015	1.72585			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0173			
$\Delta heta_{ extsf{C,A'}}$	0.0051			
$arDelta heta_{ extsf{g,d}}$	-0.0102			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0081			
$arDelta heta_{i,g}$	-0.0417			

Constants of Dispersion Formula					
A ₁	9.80071267•10 ⁻¹				
A_2	8.32904776•10 ⁻¹				
A_3	1.28111995				
B ₁	3.89123698•10 ⁻³				
B ₂	1.89164592•10 ⁻²				
B ₃	9.89052676•10 ¹				

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.60			
Remarks					

Partial Dispersions					
n _C –n _t	0.010604				
n _C –n _A ′	0.004503				
n _d –n _C	0.003953				
n _e –n _C	0.007059				
n _g –n _d	0.016214				
n _g –n _F	0.007133				
n _h –n _g	0.005947				
n _i –n _g	0.016134				
n _C '-n _t	0.011232				
n _e –n _C ′	0.006431				
n _F ′–n _e	0.006721				
n _i –n _F ′	0.022521				

Thermal Properties					
Strain Point	StP	(℃)	591		
Annealing Point	AP	(℃)	616		
Transformation Temperat.	ne Tg	(℃)	641		
Yield Point	At	(℃)	666		
Softening Point	SP	(℃)	701		
Expansion Coefficients	(-30~	·+70°C)	57		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	72		
Thermal Conducti	vity k ((W /m•K)	0.893		

Mechanic	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1073
Rigidity Modulus G	$(10^8 N/m^2)$	416
Poisson's Ratio	σ	0.290
Knoop Hardness	Hk	650[7]
Abrasion	Aa	87
Photoelastic Constar (nm/cm/10 ⁵ Pa	. ()	2.13

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	5			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	52.0			
Phosphate Resistance PR	3.0			

Т	Temperature Coefficients of Refractive Index							
Range of Temperature)	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)	t	C'	He-Ne	D	е	F	g	
−40 ~ −20	4.6	4.8	4.8	4.9	5.1	5.5	5.9	
−20 ~ 0	4.7	4.9	5.0	5.1	5.3	5.7	6.1	
0 ~ 20	4.8	5.1	5.1	5.3	5.5	5.9	6.4	
20 ~ 40	4.9	5.3	5.3	5.5	5.7	6.1	6.6	
40 ~ 60	5.0	5.4	5.5	5.6	5.8	6.3	6.8	
60 ~ 80	5.1	5.6	5.6	5.8	6.0	6.5	7.0	

Polotivo Portio	Deletive Deutiel Dieneveiene				
Relative Partial Dispersions					
$\theta_{C,t}$	0.8136				
$ heta_{C,A'}$	0.3455				
$ heta_{\sf d,C}$	0.3033				
$ heta_{e,C}$	0.5416				
$ heta_{ extsf{g,d}}$	1.2440				
$ heta_{ extsf{g}, extsf{F}}$	0.5473				
$ heta_{h,g}$	0.4563				
$ heta_{i,g}$	1.2378				
$\theta'_{C',t}$	0.8540				
θ' _{e,C'}	0.4890				
$ heta^{'}$ F $^{'}$,e	0.5110				
$\theta'_{i,F'}$	1.7124				

Coloring				
λ 80/λ 5	38/31			

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	0.01
300	0.03
310	0.08
320	0.19
330	0.34
340	0.52
350	0.68
360	0.80
370	0.88
380	0.932
390	0.958
400	0.972
420	0.986
440	0.990
460	0.993
480	0.995
500	0.996
550	0.997
600	0.995
650	0.995
700	0.996
800	0.997
900	0.996
1000	0.995
1200	0.995
1400	0.990
1600	0.990
1800	0.981
2000	0.958
2200	0.88
2400	0.66

Refractive Index	n _d	1.69680 1.696797	Abbe Number Vd	55.5 55.53	Dispersion NF-NC	0.01255 0.012548
Refractive Index	ne	1.699788	Abbe Number $ u_{e}$	55.31	Dispersion NF' -NC'	0.012653

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.65820				
n 1970	1.97009	1.66578				
n 1530	1.52958	1.67369				
n 1129	1.12864	1.68039				
n _t	1.01398	1.68252				
ns	0.85211	1.68615				
$n_{A^{'}}$	0.76819	1.68858				
n _r	0.70652	1.69079				
n_{C}	0.65627	1.69297				
n _C ′	0.64385	1.69358				
n _{He-Ne}	0.6328	1.69415				
n_D	0.58929	1.69669				
n_d	0.58756	1.69680				
n _e	0.54607	1.69979				
n _F	0.48613	1.70552				
n _F ′	0.47999	1.70624				
n _{He-Cd}	0.44157	1.71144				
ng	0.435835	1.71234				
n _h	0.404656	1.71800				
n _i	0.365015	1.72767				

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0258			
$arDelta heta_{C,A'}$	0.0066			
$arDelta heta_{ extsf{g,d}}$	-0.0107			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0082			
$arDelta heta_{i,g}$	-0.0381			

Constants of Dispersion Formula				
A_1	1.23720970			
A_2	5.89722623•10 ⁻¹			
A_3	1.31921880			
B ₁	1.53551320•10 ⁻²			
B ₂	-3.07896250•10 ⁻⁴			
B ₃	9.37202947•10 ¹			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.70		
Remarks				

Partial Dispersions				
n _C –n _t	0.010452			
n _C -n _A ′	0.004389			
n _d –n _C	0.003823			
n _e –n _C	0.006814			
n _g –n _d	0.015543			
n _g –n _F	0.006818			
n _h –n _g	0.005665			
n _i –n _g	0.015333			
n _C ′–n _t	0.011061			
n _e –n _C ′	0.006205			
n _F ′–n _e	0.006448			
n _i –n _F ′	0.021437			

Thermal Properties					
Strain Point	StP	(℃)			
Annealing Point	AP	(℃)			
TiansformationTemperatu	ne Tg	(℃)	650		
Yield Point	At	(℃)	668		
Softening Point	SP	(℃)	700		
Expansion Coefficients	(-30~	+70°C)	57		
α (10 ⁻⁷ /°C)	(+100~	+300°C)	71		
Thermal Conductiv	vity k (W /m•K)	0.908		

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	1118			
Rigidity Modulus G	$(10^8 N/m^2)$	435			
Poisson's Ratio	σ	0.284			
Knoop Hardness	Hk	660[7]			
Abrasion	Aa	81			
Photoelastic Consta (nm/cm/10 ⁵ Pa		1.86			

Chemical Properties					
Water Resistance (Powder) Group RW(P)	1				
Acid Resistance (Powder) Group RA(P)	5				
Weathering Resistance (Surface) Group $W(s)$	1~2				
Acid Resistance (Surface) Group SR	52.2				
Phosphate Resistance PR	3.0				

Temperature Coefficients of Refractive Index							
Range of Temperatu	ıre	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	t C' He-Ne D e F' g				g	
−40 ~ −20	3.5	3.7	3.8	3.9	4.0	4.2	4.7
−20 ~ C	3.4	3.7	3.8	3.9	4.0	4.3	4.7
0 ~ 20	3.4	3.7	3.8	4.0	4.1	4.4	4.8
20 ~ 40	3.4	3.8	3.9	4.1	4.2	4.6	4.9
40 ~ 60	3.5	4.0	4.0	4.2	4.3	4.8	5.1
60 ~ 80	3.7	4.2	4.2	4.4	4.5	5.0	5.4

Relative Partial Dispersions					
$ heta_{C,t}$	0.8330				
$ heta_{C,A'}$	0.3498				
$ heta_{\sf d,C}$	0.3047				
$ heta_{e,C}$	0.5430				
$ heta_{ extsf{g,d}}$	1.2387				
$ heta_{ extsf{g}, extsf{F}}$	0.5434				
$ heta_{h,g}$	0.4515				
$ heta_{i,g}$	1.2219				
θ´c΄,t	0.8742				
θ' _{e,C'}	0.4904				
$ heta^{'}$ F $^{'}$,e	0.5096				
$\theta'_{i,F'}$	1.6942				

Coloring			
λ 80/λ 5	37/29		

Internal Trar	
λ (nm)	au 10mm
280	0.03
290	0.07
300	0.15
310	0.27
320	0.41
330	0.56
340	0.70
350	0.81
360	0.88
370	0.931
380	0.959
390	0.974
400	0.982
420	0.990
440	0.993
460	0.995
480	0.997
500	0.998
550	0.998
600	0.997
650	0.997
700	0.998
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.991
1600	0.992
1800	0.982
2000	0.954
2200	0.86
2400	0.59

Refractive Index	n _d	1.72916 1.729157	Abbe Number Vd	54.7 54.68	Dispersion NF-NC	0.01334 0.013335
Refractive Index	ne	1.732336	Abbe Number $ u_{e}$	54.45	Dispersion $n_{F'} - n_{C'}$	0.013449

R	Refractive Indices						
	λ (μ m)						
n 2325	2.32542	1.68936					
n 1970	1.97009	1.69701					
n 1530	1.52958	1.70504					
N 1129	1.12864	1.71190					
n _t	1.01398	1.71411					
n _s	0.85211	1.71790					
n _A ′	0.76819	1.72046					
n _r	0.70652	1.72279					
n _C	0.65627	1.72510					
n _C ′	0.64385	1.72575					
n _{He-Ne}	0.6328	1.72635					
n_D	0.58929	1.72904					
n _d	0.58756	1.72916					
n _e	0.54607	1.73234					
n _F	0.48613	1.73844					
n _F ′	0.47999	1.73920					
n _{He-Cd}	0.44157	1.74473					
n _g	0.435835	1.74570					
n_h	0.404656	1.75173					
n _i	0.365015	1.76203					

Deviation of Relative Partial Dispersions $\Delta \theta$ from "Normal"					
$\Delta heta_{ extsf{C,t}}$					
$\Delta heta_{C,A'}$	0.0058				
$\Delta heta_{ extsf{g,d}}$ -0.0109					
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0086				
$arDelta heta_{i,g}$	-0.0422				

Constants of Dispersion Formula				
A_1	1.50276318			
A_2	4.30224497•10 ⁻¹			
A_3	1.34726060			
B ₁	1.45462356•10 ⁻²			
B ₂	-3.32784153•10 ⁻³			
B ₃	9.33508342•10 ¹			

Other P	ties	
Bubble Quality Group	В	
Specific Gravity	d	4.18
Remarks		

Partial Dispersions				
n _C –n _t	0.010994			
n _C -n _A ′	0.004641			
n _d –n _C	0.004056			
n _e –n _C	0.007235			
n _g –n _d	0.016539			
n _g –n _F	0.007260			
n _h –n _g	0.006035			
n _i –n _g	0.016335			
n _C '-n _t	0.011640			
n _e –n _C ′	0.006589			
n _F ′–n _e	0.006860			
n _i –n _F ′	0.022835			

Thermal Properties						
Strain Point	StP	(\mathcal{C})	632			
Annealing Point	AP	(℃)	655			
TiansformationTemperat.	ne Tg	(℃)	685			
Yield Point	At	(℃)	699			
Softening Point	SP	(℃)	731			
Expansion Coefficients	(-30~	+70°C)	59			
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	69			
Thermal Conducti	vity k ((W /m•K)	0.871			

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1204
Rigidity Modulus G	$(10^8 N/m^2)$	467
Poisson's Ratio	σ	0.289
Knoop Hardness	Hk	720[7]
Abrasion	Aa	70
Photoelastic Consta (nm/cm/10 ⁵ Pa	. 13	1.58

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	1
Acid Resistance (Surface) Group SR	51.2
Phosphate Resistance PR	2.0

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20		3.8		3.9	4.1	4.5	4.8
−20 ~ 0		3.8		3.9	4.1	4.5	4.9
0 ~ 20		3.8		4.0	4.2	4.6	4.9
20 ~ 40		3.9		4.1	4.3	4.7	5.1
40 ~ 60		4.0		4.2	4.4	4.9	5.3
60 ~ 80		4.2		4.4	4.6	5.1	5.5

Relative Partial Dispersions		
$ heta_{C,t}$	0.8244	
$ heta_{C,A'}$	0.3480	
$ heta_{\sf d,C}$	0.3042	
$ heta_{e,C}$	0.5426	
$ heta_{ extsf{g,d}}$	1.2403	
$ heta_{ extsf{g}, extsf{F}}$	0.5444	
$ heta_{h,g}$	0.4526	
$ heta_{i,g}$	1.2250	
θ´C΄,t	0.8655	
θ' _{e,C'}	0.4899	
θ´F΄,e	0.5101	
$\theta'_{i,F'}$	1.6979	

Coloring			
λ 80/λ 5 37/29			

Internal Tra	nsmittance
λ (nm)	τ 10mm
280	0.04
290	0.21
300	0.30
310	0.32
320	0.55
330	0.68
340	0.78
350	0.86
360	0.912
370	0.946
380	0.967
390	0.978
400	0.984
420	0.991
440	0.994
460	0.996
480	0.997
500	0.998
550	0.999
600	0.998
650	0.999
700	0.999
800	0.998
900	0.998
1000	0.997
1200	0.996
1400	0.991
1600	0.991
1800	0.982
2000	0.956
2200	0.87
2400	0.60

654559

Refractive Index	n_{d}	1.65100 1.650996	Abbe Number $ u_{ m d}$	56.2 56.16	Dispersion NF-NC	0.01159 0.011591
Refractive Index	n _e	1.653758	Abbe Number $ u_{ m e}$	55.89	Dispersion $n_{F'} - n_{C'}$	0.011697

Refractive Indices		
	λ (μ m)	
n 2325	2.32542	1.61893
n 1970	1.97009	1.62472
n 1530	1.52958	1.63089
n 1129	1.12864	1.63634
n _t	1.01398	1.63815
n _s	0.85211	1.64133
n _A ′	0.76819	1.64350
n _r	0.70652	1.64549
n _C	0.65627	1.64749
n _C ′	0.64385	1.64804
n _{He-Ne}	0.6328	1.64856
n_D	0.58929	1.65089
n _d	0.58756	1.65100
n _e	0.54607	1.65376
n _F	0.48613	1.65908
n _F ′	0.47999	1.65974
n _{He-Cd}	0.44157	1.66459
ng	0.435835	1.66543
n _h	0.404656	1.67073
n _i	0.365015	1.67982

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.0053	
$\Delta heta_{ extsf{C}, extsf{A}'}$	-0.0001	
$arDelta heta_{ extsf{g,d}}$	-0.0028	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0024	
$arDelta heta_{i,g}$	-0.0134	

Constants of Dispersion Formula		
A ₁	1.41910189	
A_2	2.58416881•10 ⁻¹	
A_3	1.07385537	
B ₁	7.26647428•10 ⁻³	
B ₂	2.63842499•10 ⁻²	
B ₃	1.02555463•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.82	
Remarks			

Partial Dispersions		
n _C –n _t	0.009330	
n _C -n _A ′	0.003985	
n _d –n _C	0.003511	
n _e –n _C	0.006273	
n _g –n _d	0.014434	
n _g –n _F	0.006354	
n _h –n _g	0.005299	
n _i –n _g	0.014389	
n _C ′–n _t	0.009888	
n _e –n _C ′	0.005715	
n _F ′–n _e	0.005982	
n _i –n _F ′	0.020079	

Thermal Properties			
Strain Point	StP	(℃)	604
Annealing Point	AP	(℃)	631
Transformation Temperati	ue Tg	(℃)	651
Yield Point	At	(℃)	675
Softening Point	SP	(℃)	723
Expansion Coefficients	(-30~	+70°C)	71
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	83
Thermal Conducti	vity k ((W /m•K)	0.761

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	877
Rigidity Modulus G	$(10^8 N/m^2)$	343
Poisson's Ratio	σ	0.277
Knoop Hardness	Hk	530[5]
Abrasion	Aa	171
Photoelastic Consta (nm/cm/10 ⁵ Pa	/)	1.66

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	3	
Acid Resistance (Powder) Group RA(P)	5	
Weathering Resistance (Surface) Group $\mathbf{W}(s)$	3	
Acid Resistance (Surface) Group SR	53.0	
Phosphate Resistance PR	4.2	

Temperature Coefficients of Refractive Index								
Range of Tempe	rature		dr	/ dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)		t	C	He-Ne	D	е	F	g
-40 ~ −2	20	0.6	0.8	0.8	0.9	1.0	1.4	1.7
−20 ~	0	0.7	0.9	0.9	1.0	1.2	1.5	1.8
0 ~ 2	20	0.7	1.0	1.0	1.1	1.3	1.6	1.9
20 ~ 4	40	0.7	1.1	1.1	1.2	1.4	1.7	2.1
40 ~ (60	0.8	1.2	1.2	1.3	1.5	1.8	2.2
60 ~ 8	80	0.9	1.3	1.3	1.4	1.6	2.0	2.4

Relative Partial Dispersions				
$\theta_{C,t}$	0.8049			
$ heta_{C,A'}$	0.3438			
$ heta_{\sf d,C}$	0.3029			
$ heta_{e,C}$	0.5412			
$ heta_{ extsf{g,d}}$	1.2453			
$ heta_{ extsf{g}, extsf{F}}$	0.5482			
$ heta_{h,g}$	0.4572			
$ heta_{i,g}$	1.2414			
θ´c΄,t	0.8453			
$ heta^{'}_{ ext{e,C}'}$	0.4886			
$ heta^{'}$ $_{F^{'}}$,e	0.5114			
$\theta'_{i,F'}$	1.7166			

Coloring			
λ 80/λ 5	37/33		

λ (nm) 7 10mm 280 290 300 310 320 330 330 0.13 340 0.44 350 0.71 360 0.85 370 0.919 380 0.953 390 0.970 400 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 1000 0.998 1000 0.998 1200 0.998 1400 0.993 1800 0.985 2000 0.969	Internal Transmittance				
290 300 310 320 330 0.13 340 0.44 350 0.71 360 0.85 370 0.919 380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 800 0.999 900 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	λ (nm)	τ 10mm			
300 310 320 330 0.13 340 0.44 350 0.71 360 0.85 370 0.919 380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	280				
310 320 330 0.13 340 0.44 350 0.71 360 0.85 370 0.919 380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	290				
320 330 0.13 340 0.44 350 0.71 360 0.85 370 0.919 380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	300				
330 0.13 340 0.44 350 0.71 360 0.85 370 0.919 380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	310				
340 0.44 350 0.71 360 0.85 370 0.919 380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	320				
350 0.71 360 0.85 370 0.919 380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	330	0.13			
360 0.85 370 0.919 380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	340	0.44			
370 0.919 380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	350	0.71			
380 0.953 390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	360	0.85			
390 0.970 400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	370	0.919			
400 0.980 420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 700 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	380	0.953			
420 0.988 440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	390	0.970			
440 0.991 460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	400	0.980			
460 0.993 480 0.995 500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	420	0.988			
480 0.995 500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	440				
500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	460	0.993			
550 0.999 600 0.998 650 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	480	0.995			
600 0.998 650 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	500				
650 0.998 700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	550				
700 0.999 800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	600	0.998			
800 0.999 900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	650	0.998			
900 0.998 1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	700	0.999			
1000 0.998 1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	800	0.999			
1200 0.998 1400 0.993 1600 0.993 1800 0.985 2000 0.969	900	0.998			
1400 0.993 1600 0.993 1800 0.985 2000 0.969	1000	0.998			
1600 0.993 1800 0.985 2000 0.969	1200	0.998			
1800 0.985 2000 0.969	1400				
2000 0.969	1600				
	1800				
	2000	0.969			
2200 0.913	2200	0.913			
2400 0.78	2400	0.78			

681505

Refractive Index	n_{d}	1.67790 1.677898	Abbe Number ν_d	50.7 50.72	Dispersion NF-NC	0.01336 0.013365
Refractive Index	n_{e}	1.681080	Abbe Number ν_{e}	50.44	Dispersion $n_{F'} - n_{C'}$	0.013502

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.64400			
n 1970	1.97009	1.64968			
n 1530	1.52958	1.65585			
N 1129	1.12864	1.66151			
n _t	1.01398	1.66346			
n _s	0.85211	1.66694			
n _A ′	0.76819	1.66937			
n _r	0.70652	1.67162			
n _C	0.65627	1.67388			
n _C ′	0.64385	1.67452			
n _{He-Ne}	0.6328	1.67511			
n_D	0.58929	1.67778			
n _d	0.58756	1.67790			
n _e	0.54607	1.68108			
n _F	0.48613	1.68724			
n _F ′	0.47999	1.68802			
n _{He-Cd}	0.44157	1.69368			
ng	0.435835	1.69467			
n_h	0.404656	1.70092			
n _i	0.365015	1.71174			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta\theta_{\mathrm{C,t}}$ -0.0047				
$arDelta heta_{C,A'}$	0.0004			
$arDelta heta_{ extsf{g,d}}$	-0.0043			
$\Delta \theta_{ exttt{g,F}}$ -0.0037				
$arDelta heta_{i,g}$	-0.0232			

Constants of Dispersion Formula				
A ₁	1.54052000			
A_2	2.17748704•10 ⁻¹			
A_3	1.30456122			
B ₁	8.26765101•10 ⁻³			
B ₂	3.28533726•10 ⁻²			
B ₃	1.24527479•10 ²			

Other Properties			
Bubble Quality Group	В		
Specific Gravity d 3.85			
Remarks			

Partial Dispersions				
n _C –n _t	0.010425			
n _C -n _A ′	0.004514			
n _d –n _C	0.004018			
n _e –n _C	0.007200			
n _g –n _d	0.016774			
n _g –n _F	0.007427			
n _h –n _g	0.006246			
n _i –n _g	0.017068			
n _C '-n _t	0.011061			
n _e –n _C ′	0.006564			
n _F ′–n _e	0.006938			
n _i –n _F ′	0.023722			

Thermal Properties				
Strain Point	StP	(℃)	615	
Annealing Point	AP	(℃)	645	
Transformation Temperatu	ne Tg	(℃)	661	
Yield Point	At	(℃)	693	
Softening Point	SP	(℃)	761	
Expansion Coefficients	(-30~	·+70°C)	66	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	76	
Thermal Conductiv	vity k ((W /m•K)	0.778	

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	911			
Rigidity Modulus G	$(10^8 N/m^2)$	356			
Poisson's Ratio	σ	0.280			
Knoop Hardness	Hk	540[5]			
Abrasion	Aa	147			
Photoelastic Constant (nm/cm/10 ⁵ Pa		1.92			

Chemical Properties					
Water Resistance (Powder) Group $RW(P)$	1				
Acid Resistance (Powder) Group RA(P)	4				
Weathering Resistance (Surface) Group $\mathbf{W}(s)$	2~3				
Acid Resistance (Surface) Group SR	51.0				
Phosphate Resistance PR	2.0				

Temperature Coefficients of Refractive Index								
Range of Tem	perature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	C´	He-Ne	D	е	F	g
−40 ~	-20	2.8	3.2	3.2	3.3	3.6	4.0	4.4
−20 ~	0	2.9	3.3	3.4	3.5	3.7	4.1	4.6
0 ~	20	3.0	3.4	3.5	3.6	3.8	4.3	4.8
20 ~	40	3.1	3.5	3.6	3.7	4.0	4.4	4.9
40 ~	60	3.2	3.6	3.7	3.8	4.1	4.6	5.1
60 ~	80	3.3	3.8	3.8	4.0	4.2	4.7	5.3

Relative Partial Dispersions					
$ heta_{C,t}$	0.7800				
$ heta_{C,A'}$	0.3377				
$ heta_{\sf d,C}$	0.3006				
$ heta_{e,C}$	0.5387				
$ heta_{ extsf{g,d}}$	1.2551				
$ heta_{ extsf{g}, extsf{F}}$	0.5557				
$ heta_{h,g}$	0.4673				
$ heta_{i,g}$	1.2771				
θ´c′,t	0.8192				
θ' _{e,C'}	0.4862				
$ heta^{'}$ F $^{'}$,e	0.5138				
$ heta^{'}_{i,F^{'}}$	1.7569				

Coloring				
λ 80 / λ 5 38/33				

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 330 330 0.01 340 0.18 350 0.51 360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1200 0.997 1400 0.993 1800 0.986 2000 0.973 2200 0.928 2400 0.81		
280 290 300 310 320 330 0.01 340 0.18 350 0.51 360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 650 0.997 700 0.998 800 0.998 800 0.999 900 0.998 1000 0.998 1200 0.998 1200 0.998 1200 0.997 1400 0.993 1800 0.993 1800 0.993 1800 0.993		
290 300 310 320 330 0.01 340 0.18 350 0.51 360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	, ()	τ 10mm
300 310 320 330 0.01 340 0.18 350 0.51 360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1800 0.986 2000 0.973 2200 0.928		
310 320 330 0.01 340 0.18 350 0.51 360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1800 0.986 2000 0.973 2200 0.928	290	
320 330 0.01 340 0.18 350 0.51 360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1800 0.986 2000 0.973 2200 0.928	300	
330 0.01 340 0.18 350 0.51 360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	310	
340 0.18 350 0.51 360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	320	
350 0.51 360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	330	
360 0.74 370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	340	
370 0.86 380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	350	
380 0.928 390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	360	0.74
390 0.958 400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	370	0.86
400 0.975 420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	380	0.928
420 0.986 440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	390	0.958
440 0.990 460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	400	0.975
460 0.993 480 0.995 500 0.997 550 0.998 600 0.997 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	420	0.986
480 0.995 500 0.997 550 0.998 600 0.997 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	440	0.990
500 0.997 550 0.998 600 0.997 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	460	0.993
550 0.998 600 0.997 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	480	0.995
600 0.997 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.928	500	0.997
650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.928	550	0.998
700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	600	0.997
800 0.999 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	650	0.997
900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	700	0.998
1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	800	0.999
1200 0.997 1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	900	0.998
1400 0.993 1600 0.993 1800 0.986 2000 0.973 2200 0.928	1000	0.998
1600 0.993 1800 0.986 2000 0.973 2200 0.928	1200	0.997
1800 0.986 2000 0.973 2200 0.928	1400	0.993
2000 0.973 2200 0.928	1600	0.993
2200 0.928	1800	0.986
	2000	0.973
2400 0.81	2200	0.928
00	2400	0.81

Refractive Index	n _d	1.69350 1.693495	Abbe Number Vd	50.8 50.81	Dispersion NF-NC	0.01365 0.013649
Refractive Index	n _e	1.696745	Abbe Number ν_{e}	50.53	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.013789

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.65998			
n 1970	1.97009	1.66538			
n 1530	1.52958	1.67133			
n 1129	1.12864	1.67689			
n _t	1.01398	1.67883			
n _s	0.85211	1.68233			
n _A ′	0.76819	1.68480			
n _r	0.70652	1.68709			
n _C	0.65627	1.68939			
n _C ′	0.64385	1.69004			
n _{He-Ne}	0.6328	1.69065			
n_D	0.58929	1.69337			
n _d	0.58756	1.69350			
n _e	0.54607	1.69675			
n _F	0.48613	1.70304			
n _F ′	0.47999	1.70383			
n _{He-Cd}	0.44157	1.70960			
n _g	0.435835	1.71061			
n _h	0.404656	1.71696			
n _i	0.365015	1.72788			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0111			
$arDelta heta_{C,A'}$	-0.0008			
$arDelta heta_{ extsf{g,d}}$	-0.0051			
$\Delta heta$ g,F	-0.0047			
$\Delta heta_{i,g}$	-0.0347			

Constants of Dispersion Formula				
A ₁	1.06368789			
A_2	7.44939067•10 ⁻¹			
A_3	1.59178942			
B ₁	1.85199640•10 ⁻²			
B ₂	1.16295862•10 ⁻³			
B ₃	1.56636025•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	4.03			
Remarks					

Partial Dispersions				
n _C –n _t	0.010565			
n _C -n _A ′	0.004596			
n _d –n _C	0.004102			
n _e –n _C	0.007352			
n _g –n _d	0.017117			
n _g –n _F	0.007570			
n _h –n _g	0.006343			
n _i –n _g	0.017264			
n _C '-n _t	0.011214			
n _e –n _C ′	0.006703			
n _F ′–n _e	0.007086			
n _i –n _F ′	0.024045			

Thermal Properties						
Strain Point	StP	(℃)	633			
Annealing Point	AP	(℃)	659			
Transformation Temperatu	ne Tg	(℃)	676			
Yield Point	At	(℃)	718			
Softening Point	SP	(℃)	770			
Expansion Coefficients	(-30~	+70°C)	75			
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	86			
Thermal Conductiv	vity k ((W /m•K)	0.728			

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	928
Rigidity Modulus G	$(10^8 N/m^2)$	361
Poisson's Ratio	σ	0.285
Knoop Hardness	Hk	580[6]
Abrasion	Aa	167
Photoelastic Consta (nm/cm/10 ⁵ Pa		1.70

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	4	
Weathering Resistance (Surface) Group $W(s)$	3	
Acid Resistance (Surface) Group SR	52.2	
Phosphate Resistance PR	2.2	

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	t C' He-Ne D e F' g				g	
−40 ~ −20		2.0	2.1	2.2	2.4	2.9	3.3
−20 ~ 0		2.1	2.1	2.3	2.4	2.9	3.4
0 ~ 20		2.1	2.1	2.3	2.5	2.9	3.4
20 ~ 40		2.1	2.1	2.3	2.5	3.0	3.5
40 ~ 60		2.1	2.1	2.3	2.5	3.0	3.5
60 ~ 80		2.1	2.1	2.3	2.6	3.1	3.6

Relative Partial Dispersions		
$\theta_{C,t}$	0.7740	
$ heta_{C,A'}$	0.3367	
$ heta_{\sf d,C}$	0.3005	
$ heta_{ extsf{e}, extsf{C}}$	0.5386	
$ heta_{ extsf{g,d}}$	1.2541	
$ heta_{ extsf{g}, extsf{F}}$	0.5546	
$ heta_{h,g}$	0.4647	
$ heta_{i,g}$	1.2649	
θ´c′,t	0.8133	
θ' _{e,C'}	0.4861	
$ heta^{'}$ F $^{'}$,e	0.5139	
$ heta^{'}_{i,F^{'}}$	1.7438	

Coloring			
λ 80/λ 5	37/32		

Internal Trar	nsmittance
λ (nm)	au 10mm
280	
290	
300	
310	
320	0.02
330	0.22
340	0.53
350	0.75
360	0.87
370	0.935
380	0.962
390	0.977
400	0.986
420	0.991
440	0.992
460	0.994
480	0.996
500	0.997
550	0.998
600	0.997
650	0.997
700	0.998
800	0.999
900	0.998
1000	0.998
1200	0.999
1400	0.997
1600	0.996
1800	0.989
2000	0.977
2200	0.942
2400	0.84

Refractive Index	n _d	1.73400 1.733997	Abbe Number νd	51.5 51.47	Dispersion NF-NC	0.01426 0.014261
Refractive Index	ne	1.737395	Abbe Number $ u_{e}$	51.24	Dispersion $n_{F'} - n_{C'}$	0.014392

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.69393		
n 1970	1.97009	1.70130		
n 1530	1.52958	1.70911		
n 1129	1.12864	1.71593		
n _t	1.01398	1.71817		
n _s	0.85211	1.72210		
n _A ′	0.76819	1.72477		
n _r	0.70652	1.72723		
n _C	0.65627	1.72968		
n _C ′	0.64385	1.73036		
n _{He-Ne}	0.6328	1.73101		
n_D	0.58929	1.73387		
n _d	0.58756	1.73400		
n _e	0.54607	1.73739		
n _F	0.48613	1.74394		
n _F ′	0.47999	1.74476		
n _{He-Cd}	0.44157	1.75072		
n _g	0.435835	1.75176		
n _h	0.404656	1.75829		
n _i	0.365015	1.76950		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0185			
$arDelta heta_{C,A'}$	0.0056			
$arDelta heta_{ extsf{g,d}}$	-0.0120			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0096			
$arDelta heta_{i,g}$	-0.0505			

Constants of Dispersion Formula		
A_1	1.13962742	
A_2	8.05227838•10 ⁻¹	
A_3	1.29488061	
B ₁	4.93294862•10 ⁻³	
B ₂	2.02479960•10 ⁻²	
B ₃	9.34746507•10 ¹	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	4.04	
Remarks			

Partial Dispersions		
n _C –n _t	0.011504	
n _C –n _A ′	0.004905	
n _d –n _C	0.004318	
n _e –n _C	0.007716	
n _g –n _d	0.017767	
n _g –n _F	0.007824	
n _h –n _g	0.006531	
n _i –n _g	0.017734	
n _C '-n _t	0.012190	
n _e –n _C ′	0.007030	
n _F ′–n _e	0.007362	
n _i –n _F ′	0.024741	

Thermal Properties				
Strain Point	StP	(\mathcal{C})	591	
Annealing Point	AP	(\mathcal{C})	620	
Transformation Temperat.	ne Tg	(\mathcal{C})	635	
Yield Point	At	(\mathcal{C})	663	
Softening Point	SP	(℃)	696	
Expansion Coefficients	(-30~	+70°C)	55	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	68	
Thermal Conducti	vity k	(W /m•K)	0.863	

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1137
Rigidity Modulus G	$(10^8 N/m^2)$	440
Poisson's Ratio	σ	0.293
Knoop Hardness	Hk	700[7]
Abrasion	Aa	77
Photoelastic Constant (nm/cm/10 ⁵ Pa		1.87

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	4	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	52.0	
Phosphate Resistance PR	2.0	

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	/ dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20		5.0		5.2	5.4	5.8	6.3
−20 ~ 0		5.2		5.4	5.6	6.0	6.5
0 ~ 20		5.5		5.7	5.9	6.3	6.8
20 ~ 40		5.7		6.0	6.2	6.7	7.2
40 ~ 60		6.1		6.3	6.5	7.1	7.6
60 ~ 80		6.4		6.7	6.9	7.5	8.0

Relative Partial Dispersions				
$\theta_{C,t}$	0.8067			
$ heta_{C,A'}$	0.3439			
$ heta_{\sf d,C}$	0.3028			
$ heta_{ extsf{e}, extsf{C}}$	0.5411			
$ heta_{ extsf{g,d}}$	1.2458			
$ heta_{ extsf{g}, extsf{F}}$	0.5486			
$ heta_{h,g}$	0.4580			
$ heta_{i,g}$	1.2435			
θ´c΄,t	0.8470			
$ heta^{'}_{ ext{e,C}'}$	0.4885			
$ heta^{'}$ $_{F^{'}}$,e	0.5115			
θίε΄	1.7191			

Colo	ring
λ 80/λ 5	37/29

Internal Trar	nsmittance
λ (nm)	7 10mm
280	0.02
290	0.11
300	0.20
310	0.34
320	0.48
330	0.62
340	0.74
350	0.83
360	0.89
370	0.934
380	0.959
390	0.973
400	0.982
420	0.990
440	0.993
460	0.995
480	0.997
500	0.998
550	0.999
600	0.998
650	0.998
700	0.998
800	0.999
900	0.998
1000	0.997
1200	0.997
1400	0.994
1600	0.994
1800	0.986
2000	0.964
2200	0.905
2400	0.65

Refractive Index	n _d	1.74100 1.740999	Abbe Number Vd	52.7 52.64	Dispersion NF-NC	0.01407 0.014078
Refractive Index	n_{e}	1.744354	Abbe Number ν_{e}	52.41	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.014203

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.70016		
n 1970	1.97009	1.70787		
n 1530	1.52958	1.71598		
N 1129	1.12864	1.72297		
n _t	1.01398	1.72525		
n _s	0.85211	1.72918		
n _A ′	0.76819	1.73186		
n _r	0.70652	1.73430		
n _C	0.65627	1.73673		
n _C ′	0.64385	1.73741		
n _{He-Ne}	0.6328	1.73804		
n_D	0.58929	1.74087		
n _d	0.58756	1.74100		
n _e	0.54607	1.74435		
n _F	0.48613	1.75080		
n _F ′	0.47999	1.75161		
n _{He-Cd}	0.44157	1.75748		
n _g	0.435835	1.75850		
n_h	0.404656	1.76491		
n _i	0.365015	1.77589		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from " Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0218			
$arDelta heta_{C,A'}$	0.0063			
$arDelta heta_{ extsf{g,d}}$	-0.0122			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0096			
$arDelta heta_{i,g}$	-0.0487			

Constants of Dispersion Formula		
A ₁	1.11073292	
A_2	8.59347773•10 ⁻¹	
A ₃	1.26707433	
B ₁	4.64181248•10 ⁻³	
B ₂	1.92989261•10 ⁻²	
B ₃	8.73917698•10 ¹	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	4.04	
Remarks			

Partial Dis	persions
n _C –n _t	0.011481
n _C -n _A ′	0.004871
n _d –n _C	0.004272
n _e –n _C	0.007627
n _g –n _d	0.017502
n _g –n _F	0.007696
n _h –n _g	0.006413
n _i –n _g	0.017393
n _C '-n _t	0.012160
n _e –n _C ′	0.006948
n _F '-n _e	0.007255
n _i –n _F ′	0.024285

Therr	nal P	roperti	es
Strain Point	StP	(℃)	631
Annealing Point	AP	(℃)	646
Transformation Temperatu	ne Tg	(℃)	653
Yield Point	At	(℃)	688
Softening Point	SP	(℃)	724
Expansion Coefficients	(-30~	+70°C)	57
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	70
Thermal Conductiv	vity k ((W /m•K)	0.861

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1190
Rigidity Modulus G	$(10^8 N/m^2)$	461
Poisson's Ratio	σ	0.291
Knoop Hardness	Hk	720[7]
Abrasion	Aa	65
Photoelastic Consta (nm/cm/10 ⁵ Pa	/)	1.55

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	1~2
Acid Resistance (Surface) Group SR	51.0
Phosphate Resistance PR	2.0

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	ı / dt rela	ative (1	0 ⁻⁶ / ℃)	
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	3.3	3.7	3.7	3.9	4.0	4.4	4.8
−20 ~ 0	3.4	3.8	3.9	4.0	4.2	4.6	5.0
0 ~ 20	3.5	3.9	4.0	4.1	4.3	4.7	5.1
20 ~ 40	3.6	4.1	4.1	4.2	4.4	4.9	5.3
40 ~ 60	3.7	4.2	4.2	4.4	4.6	5.0	5.5
60 ~ 80	3.8	4.3	4.3	4.5	4.7	5.2	5.6

Relative Partia	l Dispersions
$ heta_{C,t}$	0.8155
$ heta_{C,A'}$	0.3460
$ heta_{\sf d,C}$	0.3035
$ heta_{ extsf{e}, extsf{C}}$	0.5418
$ heta_{ extsf{g,d}}$	1.2432
$ heta_{ extsf{g}, extsf{F}}$	0.5467
$ heta_{h,g}$	0.4555
$ heta_{i,g}$	1.2355
θ´c΄,t	0.8562
θ' _{e,C'}	0.4892
$ heta^{'}$ F $'$,e	0.5108
θ΄ F΄	1.7099

Colo	ring
λ 80/λ 5	37/29

λ (nm) T 10mm 280 290 0.02 300 0.07 310 0.15 320 0.27 330 0.43 340 0.59 350 0.72 360 0.82 370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1000 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.985 2000 0.959 2200 0.88 2400 0.62 0.62	Internal Trar	smittance
280 290 0.02 300 0.07 310 0.15 320 0.27 330 0.43 340 0.59 350 0.72 360 0.82 370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 650 0.997 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1800 0.985 2000 0.959 2200 0.88	_	
300 0.07 310 0.15 320 0.27 330 0.43 340 0.59 350 0.72 360 0.82 370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.998 1400 0.994 1800 0.985 2000 0.959 2200 0.88	280	
300 0.07 310 0.15 320 0.27 330 0.43 340 0.59 350 0.72 360 0.82 370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1800 0.985 2000 0.959 2200 0.88	290	0.02
320 0.27 330 0.43 340 0.59 350 0.72 360 0.82 370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.997 600 0.997 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.998 1400 0.994 1800 0.985 2000 0.959 2200 0.88	300	
320 0.27 330 0.43 340 0.59 350 0.72 360 0.82 370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.997 600 0.997 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.998 1400 0.994 1800 0.985 2000 0.959 2200 0.88	310	0.15
340 0.59 350 0.72 360 0.82 370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	320	
350 0.72 360 0.82 370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1800 0.985 2000 0.959 2200 0.88	330	0.43
360 0.82 370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 700 0.998 800 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	340	0.59
370 0.89 380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.998 1400 0.994 1800 0.985 2000 0.959 2200 0.88	350	0.72
380 0.935 390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 700 0.998 800 0.998 900 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	360	0.82
390 0.958 400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	370	0.89
400 0.971 420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.998 1400 0.994 1800 0.985 2000 0.959 2200 0.88	380	0.935
420 0.982 440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 1000 0.998 1200 0.998 1400 0.994 1800 0.985 2000 0.959 2200 0.88	390	0.958
440 0.988 460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 900 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	400	0.971
460 0.991 480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	420	0.982
480 0.994 500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	440	0.988
500 0.996 550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88		0.991
550 0.997 600 0.997 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	480	0.994
600 0.997 650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88		0.996
650 0.997 700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	550	0.997
700 0.998 800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	600	0.997
800 0.998 900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	650	0.997
900 0.998 1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	700	0.998
1000 0.998 1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	800	0.998
1200 0.998 1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	900	0.998
1400 0.994 1600 0.994 1800 0.985 2000 0.959 2200 0.88	1000	0.998
1600 0.994 1800 0.985 2000 0.959 2200 0.88	1200	0.998
1800 0.985 2000 0.959 2200 0.88	1400	
2000 0.959 2200 0.88	1600	
2200 0.88	1800	0.985
		0.959
2400 0.62		
	2400	0.62

Refractive Index	n _d	1.74400 1.743997	Abbe Number νd	44.8 44.78	Dispersion NF-NC	0.01661 0.016613
Refractive Index	ne	1.747946	Abbe Number $ u_{e}$	44.50	Dispersion $n_{F'} - n_{C'}$	0.016806

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.70597		
n 1970	1.97009	1.71177		
n 1530	1.52958	1.71820		
n 1129	1.12864	1.72436		
n _t	1.01398	1.72658		
ns	0.85211	1.73065		
$n_{A^{'}}$	0.76819	1.73356		
n _r	0.70652	1.73629		
n_{C}	0.65627	1.73905		
n _C ′	0.64385	1.73983		
n _{He-Ne}	0.6328	1.74056		
n_D	0.58929	1.74385		
n_d	0.58756	1.74400		
n _e	0.54607	1.74795		
n _F	0.48613	1.75566		
n _F ′	0.47999	1.75663		
n _{He-Cd}	0.44157	1.76380		
ng	0.435835	1.76506		
n _h	0.404656	1.77304		
n _i	0.365015	1.78708		

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.0061		
$arDelta heta_{C,A'}$	0.0002		
$arDelta heta_{ extsf{g,d}}$	-0.0041		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0035		
$arDelta heta_{i,g}$	-0.0242		

Constants of Dispersion Formula		
A_1	1.77130000	
A_2	1.95814230•10 ⁻¹	
A_3	1.19487834	
B ₁	9.76652444•10 ⁻³	
B ₂	4.12718628•10 ⁻²	
B ₃	1.10458122•10 ²	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	4.32
Remarks		

Partial Dispersions			
n _C –n _t	0.012472		
n _C -n _A ′	0.005488		
n _d –n _C	0.004949		
n _e –n _C	0.008898		
n _g –n _d	0.021058		
n _g –n _F	0.009394		
n _h –n _g	0.007986		
n _i –n _g	0.022027		
n _C '-n _t	0.013252		
n _e –n _C ′	0.008118		
n _F ′–n _e	0.008688		
n _i –n _F ′	0.030448		

Thern	nal P	roperti	es
Strain Point	StP	(℃)	590
Annealing Point	AP	(℃)	617
TransformationTemperatu	re Tg	(℃)	633
Yield Point	At	(℃)	670
Softening Point	SP	(℃)	711
Expansion Coefficients	(-30~	+70°C)	74
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	87
Thermal Conductiv	vity k ((W /m•K)	0.698

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	935
Rigidity Modulus G	$(10^8 N/m^2)$	361
Poisson's Ratio	σ	0.295
Knoop Hardness	Hk	560[6]
Abrasion	Aa	158
Photoelastic Consta (nm/cm/10 ⁵ Pa	/)	1.72

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	2~3			
Acid Resistance (Surface) Group SR	52.2			
Phosphate Resistance PR	3.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	t C' He-Ne D e F' g					
−40 ~ −20	1.9	2.5	2.5	2.7	3.0	3.5	4.1
−20 ~ 0	2.0	2.6	2.6	2.8	3.1	3.7	4.3
0 ~ 20	2.0	2.6	2.7	2.9	3.2	3.8	4.5
20 ~ 40	2.1	2.7	2.8	3.0	3.3	3.9	4.6
40 ~ 60	2.2	2.8	2.8	3.1	3.4	4.1	4.8
60 ~ 80	2.2	2.9	2.9	3.2	3.5	4.2	4.9

Relative Partial Dispersions				
$\theta_{C,t}$	0.7507			
$ heta_{C,A'}$	0.3303			
$ heta_{\sf d,C}$	0.2979			
$ heta_{e,C}$	0.5356			
$ heta_{ extsf{g,d}}$	1.2676			
$ heta_{ extsf{g}, extsf{F}}$	0.5655			
$ heta_{h,g}$	0.4807			
$ heta_{i,g}$	1.3259			
$\theta_{i,g}$ $\theta'_{C',t}$	0.7885			
$ heta^{'}_{ ext{e,C}'}$	0.4830			
$ heta^{'}$ $_{F^{'}}$,e	0.5170			
θ' Ε'	1 8117			

Colo	ring
λ 80/λ 5	39/34

Internal Trar	nemittanco
λ (nm)	T 10mm
280	£ TOTTITI
290	
300	
310	
320	
330	
340	0.04
350	0.29
360	0.59
370	0.78
380	0.78
390	0.925
400	0.950
420	0.930
440	0.983
460	0.987
480	0.992
500	0.995
550	0.997
600	0.997
650	0.997
700	0.998
800	0.999
900	0.997
1000	0.997
1200	0.999
1400	0.997
1600	0.996
1800	0.988
2000	0.971
2200	0.928
2400	0.928
2400	0.73

Refractive Index	n _d	1.71700 1.717004	Abbe Number Vd	47.9 47.92	Dispersion NF-NC	0.01496 0.014961
Refractive Index	ne	1.720563	Abbe Number ν_{e}	47.64	Dispersion $n_{F'} - n_{C'}$	0.015124

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.68133	
n 1970	1.97009	1.68699	
n 1530	1.52958	1.69320	
n 1129	1.12864	1.69905	
n _t	1.01398	1.70111	
n _s	0.85211	1.70488	
n _A ′	0.76819	1.70754	
n _r	0.70652	1.71002	
n _C	0.65627	1.71253	
n _C ′	0.64385	1.71323	
n _{He-Ne}	0.6328	1.71390	
n_D	0.58929	1.71687	
n _d	0.58756	1.71700	
n _e	0.54607	1.72056	
n _F	0.48613	1.72749	
n _F ′	0.47999	1.72836	
n _{He-Cd}	0.44157	1.73475	
ng	0.435835	1.73587	
n _h	0.404656	1.74296	
n _i	0.365015	1.75531	

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	$\Delta\theta_{\mathrm{C,t}}$ -0.0086		
$arDelta heta_{C,A'}$	-0.0004		
$arDelta heta_{ extsf{g,d}}$	-0.0039		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0034		
$arDelta heta_{i,g}$	-0.0249		

Consta	Constants of Dispersion Formula				
A ₁	1.64258713				
A_2	2.39634610•10 ⁻¹				
A_3	1.22483026				
B ₁	8.68246020•10 ⁻³				
B ₂	3.51226242•10 ⁻²				
B ₃	1.16604369•10 ²				

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	4.25		
Remarks				

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Partial Dispersions				
$\begin{array}{cccc} n_{d} - n_{C} & 0.004476 \\ n_{e} - n_{C} & 0.008035 \\ n_{g} - n_{d} & 0.018871 \\ n_{g} - n_{F} & 0.008386 \\ n_{h} - n_{g} & 0.007085 \\ n_{i} - n_{g} & 0.019433 \\ n_{C} - n_{t} & 0.012120 \\ n_{e} - n_{C} & 0.007328 \\ n_{F} - n_{e} & 0.007796 \\ \end{array}$	n _C –n _t	0.011413			
$\begin{array}{cccc} n_e - n_C & 0.008035 \\ n_g - n_d & 0.018871 \\ n_g - n_F & 0.008386 \\ n_h - n_g & 0.007085 \\ n_i - n_g & 0.019433 \\ n_C - n_t & 0.012120 \\ n_e - n_C & 0.007328 \\ n_F - n_e & 0.007796 \\ \end{array}$	n _C -n _A ′	0.004990			
$\begin{array}{cccc} n_g - n_d & 0.018871 \\ n_g - n_F & 0.008386 \\ n_h - n_g & 0.007085 \\ n_i - n_g & 0.019433 \\ n_{C}' - n_t & 0.012120 \\ n_e - n_{C}' & 0.007328 \\ n_{F}' - n_e & 0.007796 \end{array}$	n _d –n _C	0.004476			
$\begin{array}{cccc} n_g - n_F & 0.008386 \\ n_h - n_g & 0.007085 \\ n_i - n_g & 0.019433 \\ n_{C}' - n_t & 0.012120 \\ n_e - n_{C}' & 0.007328 \\ n_{F}' - n_e & 0.007796 \\ \end{array}$	n _e –n _C	0.008035			
$\begin{array}{ccc} n_h \!\!-\!\! n_g & 0.007085 \\ n_i \!\!-\!\! n_g & 0.019433 \\ n_C' \!\!-\!\! n_t & 0.012120 \\ n_e \!\!-\!\! n_{C'} & 0.007328 \\ n_{F'} \!\!-\!\! n_e & 0.007796 \end{array}$	n _g –n _d	0.018871			
n _i -n _g 0.019433 n _C '-n _t 0.012120 n _e -n _C ' 0.007328 n _F '-n _e 0.007796	n _g –n _F	0.008386			
nc′-nt 0.012120 ne-nc′ 0.007328 nF′-ne 0.007796	n _h –n _g	0.007085			
ne-nc' 0.007328 nF'-ne 0.007796	n _i –n _g	0.019433			
n _F '-n _e 0.007796	n _C '-n _t	0.012120			
., .,	n _e –n _C ′	0.007328			
n _i –n _F ′ 0.026949	n _F ′–n _e	0.007796			
	n _i –n _F ′	0.026949			

Therr	nal P	roperti	es
Strain Point	StP	(\mathcal{C})	588
Annealing Point	AP	(\mathcal{C})	614
TiansformationTemperatu	ne Tg	(℃)	630
Yield Point	At	(℃)	661
Softening Point	SP	(℃)	701
Expansion Coefficients	(-30~	+70°C)	80
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	94
Thermal Conductiv	vity k ((W /m•K)	0.655

Mechanical Proper	ties
Young's Modulus E (10 ⁸ N/m ²)	868
Rigidity Modulus G (10 ⁸ N/m ²)	335
Poisson's Ratio σ	0.294
Knoop Hardness Hk	510[5]
Abrasion Aa	202
Photoelastic Constant $(nm/cm/10^5Pa)$	1.51

Chemical Properti	ies
Water Resistance (Powder) Group RW(P)	
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	2
Acid Resistance (Surface) Group SR	53.2
Phosphate Resistance PR	4.2

	Temperature Coefficients of Refractive Index							
Range of Tem	perature		dr	n / dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)		t	C´	He-Ne	D	е	F	g
−40 ~	-20	-0.8	-0.5	-0.5	-0.3	-0.1	0.3	0.8
-20 ~	0	-0.8	-0.4	-0.4	-0.3	0.0	0.4	0.9
0 ~	20	-0.8	-0.4	-0.4	-0.2	0.0	0.5	1.0
20 ~	40	-0.8	-0.4	-0.3	-0.2	0.1	0.6	1.1
40 ~	60	-0.8	-0.3	-0.3	-0.1	0.1	0.7	1.2
60 ~	80	-0.8	-0.3	-0.3	-0.1	0.2	0.7	1.3

Relative Partia	Relative Partial Dispersions				
$ heta_{C,t}$	0.7629				
$ heta_{C,A'}$	0.3335				
$ heta_{\sf d,C}$	0.2992				
$ heta_{e,C}$	0.5371				
$ heta_{ extsf{g,d}}$	1.2613				
$ heta_{ extsf{g}, extsf{F}}$	0.5605				
$ heta_{h,g}$	0.4736				
$ heta_{i,g}$	1.2989				
θ´C΄,t	0.8014				
θ' _{e,C'}	0.4845				
$ heta^{'}$ F $'$,e	0.5155				
$\theta'_{i,F'}$	1.7819				

Coloring				
λ 80/λ 5	38/34			

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 330 340 0.10 350 0.41 360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.997 800 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920 2400 0.77		
280 290 300 310 310 320 330 340 0.10 350 0.41 360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 700 0.996 650 700 0.997 800 0.997 1000 0.997 1200 0.997 1200 0.996 1400 0.996 1400 0.996 1400 0.992 1800 0.992	Internal Trar	nsmittance
290 300 310 320 330 340 0.10 350 0.41 360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	,, (,,,,,,	τ 10mm
300 310 320 330 340 0.10 350 0.41 360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 700 0.996 700 0.997 800 0.997 1000 0.997 1200 0.997 1200 0.996 1400 0.996 1400 0.992 1800 0.992 1800 0.983 2000 0.966 2200 0.920		
310 320 330 340 0.10 350 0.41 360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920		
320 330 340 0.10 350 0.41 360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920		
330 340 0.10 350 0.41 360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920		
340 0.10 350 0.41 360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920		
350 0.41 360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	330	
360 0.69 370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920		
370 0.83 380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920		
380 0.916 390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920		
390 0.951 400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920		
400 0.968 420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	380	0.916
420 0.982 440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.920	390	0.951
440 0.987 460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.920	400	
460 0.990 480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.997 800 0.997 1000 0.997 1200 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	420	
480 0.993 500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	440	
500 0.995 550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	460	
550 0.997 600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.920	480	0.993
600 0.996 650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	500	
650 0.996 700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	550	
700 0.997 800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	600	0.996
800 0.999 900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	650	
900 0.997 1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	700	0.997
1000 0.997 1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	800	
1200 0.996 1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	900	
1400 0.994 1600 0.992 1800 0.983 2000 0.966 2200 0.920	1000	
1600 0.992 1800 0.983 2000 0.966 2200 0.920	1200	
1800 0.983 2000 0.966 2200 0.920	1400	
2000 0.966 2200 0.920	1600	
2200 0.920	1800	0.983
	2000	0.966
2400 0.77	2200	
	2400	0.77

Refractive Index	n _d	1.74950 1.749497	Abbe Number Vd	35.3 35.28	Dispersion NF-NC	0.02124 0.021243
Refractive Index	n _e	1.754527	Abbe Number ν_{e}	35.02	Dispersion $n_{F'} - n_{C'}$	0.021544

	Refractive Indices					
	λ (μ m)					
n 2325	2.32542	1.70583				
n 1970	1.97009	1.71184				
n 1530	1.52958	1.71866				
n 1129	1.12864	1.72553				
n _t	1.01398	1.72811				
ns	0.85211	1.73296				
n _A ′	0.76819	1.73649				
n _r	0.70652	1.73984				
n_{C}	0.65627	1.74328				
n _C ′	0.64385	1.74425				
n _{He-Ne}	0.6328	1.74517				
n_D	0.58929	1.74931				
n _d	0.58756	1.74950				
n _e	0.54607	1.75453				
n _F	0.48613	1.76452				
n _F ′	0.47999	1.76579				
n _{He-Cd}	0.44157	1.77530				
ng	0.435835	1.77699				
n_h	0.404656	1.78787				
n _i	0.365015	_				

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$ 0.0018				
$\Delta heta_{ extsf{C,A'}}$ 0.0007				
$\Delta heta_{ extsf{g,d}}$ 0.0026				
$\Delta heta_{ exttt{g,F}}$ 0.0025				
$\Delta heta_{i,g}$ —				

Constants of Dispersion Formula				
A ₁	1.71014712			
A_2	2.56943292•10 ⁻¹			
A_3	1.63986271			
B ₁	1.05161080•10 ⁻²			
B ₂	5.02809636•10 ⁻²			
B ₃	1.46181217•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.81		
Remarks				

4.4

4.5

4.6

4.6

Range of Temperature (\mathcal{C})

−40 ~ **−20**

0

20

40

60

80

-20 ~

0 ~

20 ~

40 ~

60 ~

5.3

5.5

5.6

5.7

5.6

5.8

6.0

6.2

6.0

6.2

6.3

6.5

6.9

7.1

7.3

7.5

8.0

8.2

8.4

8.7

5.3

5.4

5.5

5.6

6943	3292•10 ⁻		Photoelastic (β	2.53
3986	3271		(nm/cm/10 ⁵ Pa)			
)5161	080•10	-2				
2809	9636•10 ⁻	-2				
16181	217•10 ²	2	С	hemical P	roperties	S
		W	ater Resistance	(Powder) Group	RW(P)	1
ropert	ies	А	cid Resistance (Powder) Group	RA(P)	1
В		W	Weathering Resistance (Surface) Group W (S)			1
d	3.8	1 A	Acid Resistance (Surface) Group SR			1.0
Phosphate Re				Resistance	PR	1.0
Temperature Coefficients of Refractive Index						
dn / dt relative $(10^{-6} / ^{\circ}C)$						
t	C´	He-Ne	D	е	F	g
4.2	5.0	5.1	5.3	5.7	6.5	7.5
4.4	5.2	5.2	5.5	5.9	6.7	7.7
			1			

Partial Dispersions				
n _C –n _t	0.015167			
n _C -n _A ′	0.006783			
n _d –n _C	0.006222			
n _e –n _C	0.011252			
n _g –n _d	0.027489			
n _g –n _F	0.012468			
n _h –n _g	0.010884			
n _i –n _g				
n _C ′–n _t	0.016141			
n _e –n _C ′	0.010278			
n _F ′–n _e	0.011266			
n _i –n _F ′	_			

Thermal Properties				
Strain Point	StP	(\mathcal{C})	583	
Annealing Point	AP	(\mathcal{C})	615	
Transformation Temperatur	e Tg	(\mathcal{C})	628	
Yield Point	At	(°C)	673	
Softening Point	SP	(°C)	739	
Expansion Coefficients	(-30~	+70°C)	67	
α (10 ⁻⁷ /°C) (+	100~+	300℃)	79	
Thermal Conductivity	k(W/	m•K)	0.871	

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	970			
Rigidity Modulus G	$(10^8 N/m^2)$	381			
Poisson's Ratio	σ	0.273			
Knoop Hardness	Hk	560[6]			
Abrasion	Aa	147			
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.53			

Relative Partial Dispersions				
$\theta_{C,t}$	0.7140			
$ heta_{C,A'}$	0.3193			
$ heta_{\sf d,C}$	0.2929			
$ heta_{ extsf{e}, extsf{C}}$	0.5297			
$ heta_{ extsf{g,d}}$	1.2940			
$ heta_{ extsf{g}, extsf{F}}$	0.5869			
$ heta_{h,g}$	0.5124			
$ heta_{i,g}$	—			
$\theta'_{C',t}$	0.7492			
$\theta'_{e,C'}$	0.4771			
$ heta^{'}$ F $^{'}$,e	0.5229			
$\theta'_{i,F'}$	_			

Coloring				
λ 80/λ 5	42/36			

Internal Trar	amittanaa
λ (nm)	T 10mm
280	C TOTTITI
290	
300	
310	
320	
330	
340	
350	
360	0.08
370	0.34
380	0.59
390	0.75
400	0.84
420	0.935
440	0.965
460	0.977
480	0.984
500	0.989
550	0.996
600	0.997
650	0.998
700	0.998
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.996
1600	0.996
1800	0.990
2000	0.982
2200	0.950
2400	0.88
_	

Refractive Index	n _d	1.70000 1.699998	Abbe Number νd	48.1 48.08	Dispersion NF-NC	0.01456 0.014559
Refractive Index	n_{e}	1.703462	Abbe Number ν_{e}	47.80	Dispersion $n_{F'} - n_{C'}$	0.014717

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.66451		
n 1970	1.97009	1.67024		
n 1530	1.52958	1.67652		
n 1129	1.12864	1.68239		
n _t	1.01398	1.68444		
n _s	0.85211	1.68815		
n _A ′	0.76819	1.69076		
n _r	0.70652	1.69319		
n _C	0.65627	1.69564		
n _C ′	0.64385	1.69633		
n _{He-Ne}	0.6328	1.69697		
n_D	0.58929	1.69987		
n _d	0.58756	1.70000		
n _e	0.54607	1.70346		
n _F	0.48613	1.71020		
n _F ′	0.47999	1.71104		
n _{He-Cd}	0.44157	1.71725		
n _g	0.435835	1.71834		
n _h	0.404656	1.72522		
n _i	0.365015	1.73721		

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta \theta_{\text{C,t}}$ -0.0034					
$\Delta \theta_{\text{C,A}'}$ 0.0008					
$\Delta \theta_{ exttt{g,d}}$ -0.0049					
$\Delta heta$ g,F	-0.0041				
$arDelta heta_{i,g}$	-0.0262				

Constants of Dispersion Formula					
A ₁ 1.63847200					
A_2	1.88330533•10 ⁻¹				
A_3	1.47502357				
B ₁	9.04853452•10 ⁻³				
B ₂	3.72740173•10 ⁻²				
B ₃	1.37770050•10 ²				

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.79		
Remarks				

Partial Dispersions				
n _C -n _t	0.011194			
n _C –n _A ′	0.004876			
n _d –n _C	0.004362			
n _e –n _C	0.007826			
n _g –n _d	0.018344			
n _g –n _F	0.008147			
n _h –n _g	0.006879			
n _i –n _g	0.018871			
n _C '-n _t	0.011883			
n _e –n _C ′	0.007137			
n _F ′–n _e	0.007580			
n _i –n _F ′	0.026171			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	597		
Annealing Point	AP	(℃)	624		
TiansformationTemperatu	ne Tg	(℃)	640		
Yield Point	At	(℃)	680		
Softening Point	SP	(℃)	736		
Expansion Coefficients	(-30~	+70°C)	71		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	80		
Thermal Conductiv	vity k ((W /m•K)	0.867		

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	1007				
Rigidity Modulus G	$(10^8 N/m^2)$	394				
Poisson's Ratio	σ	0.278				
Knoop Hardness	Hk	570[6]				
Abrasion	Aa	140				
Photoelastic Consta (nm/cm/10 ⁵ Pa		1.71				

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	2			
Acid Resistance (Surface) Group SR	51.2			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C'	He-Ne	D	е	F	g
−40 ~ −20	2.4	2.8	2.8	2.9	3.2	3.6	4.1
−20 ~ 0	2.4	2.8	2.9	3.0	3.3	3.7	4.3
0 ~ 20	2.5	2.9	2.9	3.1	3.3	3.8	4.4
20 ~ 40	2.5	3.0	3.0	3.2	3.4	3.9	4.5
40 ~ 60	2.6	3.0	3.0	3.3	3.5	4.0	4.6
60 ~ 80	2.6	3.1	3.1	3.4	3.6	4.1	4.7

Relative Partial Dispersions				
$ heta_{C,t}$	0.7689			
$ heta_{C,A'}$	0.3349			
$ heta_{\sf d,C}$	0.2996			
$ heta_{ extsf{e}, extsf{C}}$	0.5375			
$ heta_{ extsf{g,d}}$	1.2600			
$ heta_{ extsf{g}, extsf{F}}$	0.5596			
$ heta_{h,g}$	0.4725			
$ heta_{i,g}$	1.2962			
θ'c',t	0.8074			
θ' _{e,C'}	0.4849			
$ heta^{'}$ F $^{'}$,e	0.5151			
θ' Ε'	1 7783			

Coloring				
λ 80/λ 5	39/34			

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	0.14
350	0.45
360	0.70
370	0.84
380	0.914
390	0.948
400	0.966
420	0.980
440	0.985
460	0.989
480	0.992
500	0.995
550	0.997
600	0.996
650	0.996
700	0.997
800	0.997
900	0.997
1000	0.996
1200	0.996
1400	0.995
1600	0.995
1800	0.989
2000	0.980
2200	0.951
2400	0.85

Refractive Index	n _d	1.72000 1.720000	Abbe Number Vd	43.7 43.69	Dispersion NF-NC	0.01648 0.016480
Refractive Index	n _e	1.723914	Abbe Number ν_{e}	43.40	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.016679

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.68281		
n 1970	1.97009	1.68840		
n 1530	1.52958	1.69463		
n 1129	1.12864	1.70065		
n _t	1.01398	1.70282		
ns	0.85211	1.70683		
$n_{A^{'}}$	0.76819	1.70969		
n _r	0.70652	1.71238		
n_{C}	0.65627	1.71511		
n _C ′	0.64385	1.71588		
n _{He-Ne}	0.6328	1.71660		
n_D	0.58929	1.71986		
n_d	0.58756	1.72000		
n _e	0.54607	1.72391		
n _F	0.48613	1.73159		
n _F ′	0.47999	1.73256		
n _{He-Cd}	0.44157	1.73972		
ng	0.435835	1.74098		
n _h	0.404656	1.74901		
n _i	0.365015	1.76328		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.0063	
$\Delta heta_{C,A'}$	-0.0002	
$arDelta heta_{ extsf{g,d}}$	-0.0011	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0009	
$\Delta heta_{i,g}$	-0.0059	

Constants of Dispersion Formula		
A ₁	1.73442942	
A_2	1.51553910•10 ⁻¹	
A_3	1.46225433	
B ₁	1.00690928•10 ⁻²	
B ₂	4.70634701•10 ⁻²	
B ₃	1.40084396•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.95		
Remarks				

persions
0.012285
0.005415
0.004895
0.008809
0.020977
0.009392
0.008035
0.022303
0.013056
0.008038
0.008641
0.030725

Thermal Properties				
Strain Point	StP	(℃)	604	
Annealing Point	AP	(℃)	632	
Transformation Temperati	ne Tg	(\mathcal{C})	644	
Yield Point	At	(\mathcal{C})	685	
Softening Point	SP	(℃)	743	
Expansion Coefficients	(-30~	+70°C)	77	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	88	
Thermal Conducti	vity k	(W /m•K)	0.801	

Mechanic	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	957
Rigidity Modulus G	$(10^8 N/m^2)$	374
Poisson's Ratio	σ	0.278
Knoop Hardness	Hk	530[5]
Abrasion	Aa	160
Photoelastic Constar (nm/cm/10 ⁵ Pa	. (.)	1.53

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	2
Acid Resistance (Surface) Group SR	51.2
Phosphate Resistance PR	1.2

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	/ dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)	t	C'	He-Ne	D	е	F	g
−40 ~ −20	1.1	1.6	1.6	1.8	2.0	2.6	3.2
−20 ~ 0	1.1	1.6	1.7	1.9	2.1	2.7	3.3
0 ~ 20	1.1	1.7	1.8	2.0	2.2	2.8	3.5
20 ~ 40	1.1	1.8	1.8	2.0	2.3	3.0	3.6
40 ~ 60	1.2	1.9	1.9	2.1	2.4	3.1	3.8
60 ~ 80	1.2	1.9	2.0	2.2	2.5	3.2	3.9

Relative Partial Dispersions			
$\theta_{C,t}$	0.7454		
$ heta_{C,A'}$	0.3286		
$ heta_{\sf d,C}$	0.2970		
$ heta_{ extsf{e}, extsf{C}}$	0.5345		
$ heta_{ extsf{g,d}}$	1.2729		
$ heta_{ extsf{g}, extsf{F}}$	0.5699		
$ heta_{h,g}$	0.4876		
$ heta_{i,g}$	1.3533		
θ´c΄,t	0.7828		
θ' _{e,C'}	0.4819		
$ heta^{'}$ F $'$,e	0.5181		
$\theta'_{i,F'}$	1.8421		

Coloring			
λ 80/λ 5	40/35		

Internal Tran λ (nm) 280 290	τ 10mm
280	
300	
310	
320	
330	
340	
350	0.10
360	0.39
370	0.65
380	0.80
390	0.88
400	0.930
420	0.965
440	0.977
460	0.984
480	0.988
500	0.992
550	0.996
600	0.996
650	0.995
700	0.997
800	0.998
900	0.997
1000	0.997
1200	0.998
1400	0.997
1600	0.996
1800	0.990
2000	0.979
2200	0.947
2400	0.85

Refractive Index	n_{d}	1.75700 1.756998	Abbe Number <i>V</i> d	47.8 47.82	Dispersion NF-NC	0.01583 0.015830
Refractive Index	n _e	1.760765	Abbe Number $ u_{ m e}$	47.57	Dispersion $n_{F'} - n_{C'}$	0.015991

Refractive Indices					
	$\lambda (\mu m)$				
n 2325	2.32542	1.71415			
n 1970	1.97009	1.72188			
n 1530	1.52958	1.73007			
n 1129	1.12864	1.73729			
n _t	1.01398	1.73970			
ns	0.85211	1.74394			
n _A ′	0.76819	1.74686			
n _r	0.70652	1.74954			
n_{C}	0.65627	1.75223			
n _C ′	0.64385	1.75299			
n _{He-Ne}	0.6328	1.75370			
n_D	0.58929	1.75686			
n _d	0.58756	1.75700			
n _e	0.54607	1.76076			
n _F	0.48613	1.76806			
n _F ′	0.47999	1.76898			
n _{He-Cd}	0.44157	1.77570			
ng	0.435835	1.77687			
n _h	0.404656	1.78431			
n _i	0.365015	1.79726			
	0.365015	1.79726			

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0205				
$\Delta heta_{C,A'}$	0.0058				
$arDelta heta_{ extsf{g,d}}$	-0.0098				
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0076				
$arDelta heta_{i,g}$	-0.0367				

Constants of Dispersion Formula				
A ₁	1.84213306			
A_2	1.75468631•10 ⁻¹			
A_3	1.25750878			
B ₁	9.43993220•10 ⁻³			
B ₂	3.95281122•10 ⁻²			
B ₃	8.65463013•10 ¹			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	4.08		
Remarks				

Partial Dispersions				
n _C –n _t	0.012530			
n _C –n _A ′	0.005376			
n _d –n _C	0.004764			
n _e –n _C	0.008531			
n _g –n _d	0.019876			
n _g –n _F	0.008810			
n _h –n _g	0.007433			
n _i –n _g	0.020388			
n _C '-n _t	0.013285			
n _e –n _C ′	0.007776			
n _F ′–n _e	0.008215			
n _i –n _F ′	0.028282			

Thermal Properties				
Strain Point	StP	(\mathcal{C})	614	
Annealing Point	AP	(℃)	637	
Transformation Temperat.	ne Tg	(℃)	664	
Yield Point	At	(℃)	687	
Softening Point	SP	(℃)	721	
Expansion Coefficients	(-30~	+70°C)	57	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	69	
Thermal Conducti	vity k ((W /m•K)	0.891	

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	1172				
Rigidity Modulus G	$(10^8 N/m^2)$	454				
Poisson's Ratio	σ	0.292				
Knoop Hardness	Hk	700[7]				
Abrasion	Aa	62				
Photoelastic Constar (nm/cm/10 ⁵ Pa	. (.)	1.70				

Chemical Properties				
Water Resistance (Powder) Group RW(P)	1			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	51.0			
Phosphate Resistance PR	2.0			

Temperature Coefficients of Refractive Index								
Range of Temperature	:	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)	t	C'	He-Ne	D	е	F	g	
−40 ~ −20	3.8	4.2	4.3	4.4	4.7	5.1	5.6	
−20 ~ 0	4.0	4.4	4.5	4.7	4.9	5.4	5.9	
0 ~ 20	4.2	4.7	4.7	4.9	5.1	5.6	6.2	
20 ~ 40	4.4	4.9	4.9	5.1	5.3	5.9	6.4	
40 ~ 60	4.5	5.1	5.1	5.3	5.6	6.1	6.7	
60 ~ 80	4.7	5.3	5.3	5.5	5.8	6.4	7.0	

Relative Partial Dispersions				
$ heta_{C,t}$	0.7915			
$ heta_{C,A'}$	0.3396			
$ heta_{\sf d,C}$	0.3009			
$ heta_{e,C}$	0.5389			
$ heta_{ extsf{g,d}}$	1.2556			
$ heta_{ extsf{g}, extsf{F}}$	0.5565			
$ heta_{h,g}$	0.4696			
$ heta_{i,g}$	1.2879			
θ´C΄,t	0.8308			
θ' _{e,C'}	0.4863			
$ heta^{'}$ F $^{'}$,e	0.5137			
A' E'	1 7686			

Coloring					
λ 80/ λ 5	39/34				

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 330 340 0.05 350 0.33 360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87 2400 0.62		
280 290 300 310 320 330 340 0.05 350 0.33 360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87		nsmittance
290 300 310 320 330 340 0.05 350 0.33 360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	, ()	τ 10mm
300 310 320 330 340 0.05 350 0.33 360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87		
310 320 330 340 0.05 350 0.33 360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	290	
320 330 340 0.05 350 0.33 360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87	300	
330 340 0.05 350 0.33 360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87		
340 0.05 350 0.33 360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87	320	
350 0.33 360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87	330	
360 0.65 370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87	340	
370 0.82 380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87	350	
380 0.909 390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	360	
390 0.945 400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87	370	0.82
400 0.963 420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87	380	0.909
420 0.979 440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1800 0.981 2000 0.954 2200 0.87	390	0.945
440 0.985 460 0.990 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87		0.963
460 0.990 480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	420	0.979
480 0.993 500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	440	0.985
500 0.995 550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	460	0.990
550 0.997 600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	480	0.993
600 0.997 650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	500	0.995
650 0.998 700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	550	0.997
700 0.998 800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	600	0.997
800 0.999 900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	650	0.998
900 0.998 1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	700	0.998
1000 0.997 1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	800	0.999
1200 0.997 1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	900	
1400 0.991 1600 0.991 1800 0.981 2000 0.954 2200 0.87	1000	
1600 0.991 1800 0.981 2000 0.954 2200 0.87	1200	
1800 0.981 2000 0.954 2200 0.87	1400	
2000 0.954 2200 0.87	1600	
2200 0.87	1800	
	2000	0.954
2400 0.62	2200	
	2400	0.62

Refractive Index	n _d	1.76200 1.762001	Abbe Number ν _d	40.1 40.10	Dispersion NF-NC	0.01900 0.019003
Refractive Index	ne	1.766509	Abbe Number $ u_{e}$	39.82	Dispersion $n_{F'} - n_{C'}$	0.019247

Re	efractive Ind	icae
	Jii aoti vo ii id	1003
	λ (μ m)	
n 2325	2.32542	1.72020
n 1970	1.97009	1.72640
n 1530	1.52958	1.73328
n 1129	1.12864	1.73998
n _t	1.01398	1.74242
ns	0.85211	1.74695
n _A ′	0.76819	1.75020
n _r	0.70652	1.75327
n _C	0.65627	1.75639
n _C ′	0.64385	1.75727
n _{He-Ne}	0.6328	1.75810
n_D	0.58929	1.76183
n _d	0.58756	1.76200
n _e	0.54607	1.76651
n _F	0.48613	1.77539
n _F ′	0.47999	1.77652
n _{He-Cd}	0.44157	1.78487
ng	0.435835	1.78634
n _h	0.404656	1.79580
ni	0.365015	1.81280

Deviation of Rel	ative Partial Dispersions $\varDelta heta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	-0.0002			
$\Delta heta_{C,A'}$	0.0008			
$arDelta heta_{ extsf{g,d}}$	-0.0004			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0001			
$arDelta heta_{i,g}$	0.0031			

Constants of Dispersion Formula				
A ₁	1.85412979			
A_2	1.65450323•10 ⁻¹			
A_3	1.27255422			
B ₁	1.08438152•10 ⁻²			
B ₂	5.14050980•10 ⁻²			
B ₃	1.09986837•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	4.22		
Remarks				

Partial Dispersions				
n _C –n _t	0.013960			
n _C –n _A ′	0.006182			
n _d –n _C	0.005616			
n _e –n _C	0.010124			
n _g –n _d	0.024342			
n _g –n _F	0.010955			
n _h –n _g	0.009453			
n _i –n _g	0.026457			
n _C '-n _t	0.014843			
n _e –n _C ′	0.009241			
n _F ′–n _e	0.010006			
n _i –n _F ′	0.036285			

Thermal Properties					
Strain Point	StP	(℃)	589		
Annealing Point	AP	(℃)	617		
Transformation Temperat.	ne Tg	(℃)	632		
Yield Point	At	(℃)	662		
Softening Point	SP	(℃)	709		
Expansion Coefficients	(-30~	·+70°C)	71		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	84		
Thermal Conducti	vity k ((W /m•K)	0.741		

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	967			
Rigidity Modulus G	$(10^8 N/m^2)$	374			
Poisson's Ratio	σ	0.292			
Knoop Hardness	Hk	550[6]			
Abrasion	Aa	145			
Photoelastic Constat (nm/cm/10 ⁵ Pa	· 1.)	1.88			

Chemical Properties					
Water Resistance (Powder) Group RW(P)	1				
Acid Resistance (Powder) Group RA(P)	4				
Weathering Resistance (Surface) Group $W(s)$	2				
Acid Resistance (Surface) Group SR	51.2				
Phosphate Resistance PR	1.0				

	Temperature Coefficients of Refractive Index						
Range of Temperatu	ıre	dr	n / dt rela	ative (1	0 ⁻⁶ / ℃)	
(℃)	t	C	He-Ne	D	е	F [′]	g
−40 ~ −20	2.5	3.1	3.1	3.3	3.6	4.3	5.1
−20 ~ 0	2.6	3.2	3.2	3.5	3.8	4.5	5.3
0 ~ 20	2.6	3.3	3.3	3.6	3.9	4.7	5.5
20 ~ 40	2.7	3.4	3.4	3.7	4.0	4.8	5.7
40 ~ 60	2.8	3.5	3.5	3.8	4.2	5.0	5.9
60 ~ 80	2.8	3.6	3.6	3.9	4.3	5.2	6.1

Relative Partial Dispersions					
$ heta_{C,t}$	0.7346				
$ heta_{C,A'}$	0.3253				
$ heta_{\sf d,C}$	0.2955				
$ heta_{ extsf{e}, extsf{C}}$	0.5328				
$ heta_{ extsf{g,d}}$	1.2810				
$ heta_{ extsf{g}, extsf{F}}$	0.5765				
$ heta_{h,g}$	0.4974				
$ heta_{i,g}$	1.3923				
θ´C΄,t	0.7712				
θ' _{e,C'}	0.4801				
$ heta^{'}$ F $^{'}$,e	0.5199				
$\theta'_{i,F'}$	1.8852				

Coloring			
λ 80/λ 5	40/35		

Internal Trar	l .
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	0.06
360	0.37
370	0.67
380	0.82
390	0.89
400	0.932
420	0.963
440	0.976
460	0.984
480	0.989
500	0.993
550	0.997
600	0.997
650	0.997
700	0.998
800	0.999
900	0.998
1000	0.998
1200	0.998
1400	0.995
1600	0.994
1800	0.986
2000	0.970
2200	0.923
2400	0.78

Refractive Index	n _d	1.72000 1.720000	Abbe Number Vd	42.0 41.98	Dispersion NF-NC	0.01715 0.017152
Refractive Index	n _e	1.724072	Abbe Number $ u_{ m e}$	41.69	Dispersion $n_{F'} - n_{C'}$	0.017366

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.68205		
n 1970	1.97009	1.68764		
n 1530	1.52958	1.69390		
n 1129	1.12864	1.70001		
n _t	1.01398	1.70224		
ns	0.85211	1.70636		
n _A ′	0.76819	1.70931		
n _r	0.70652	1.71209		
n_{C}	0.65627	1.71492		
n _C ′	0.64385	1.71572		
n _{He-Ne}	0.6328	1.71647		
n_D	0.58929	1.71985		
n _d	0.58756	1.72000		
n _e	0.54607	1.72407		
n _F	0.48613	1.73207		
n _F ′	0.47999	1.73308		
n _{He-Cd}	0.44157	1.74058		
ng	0.435835	1.74190		
n _h	0.404656	1.75033		
n _i	0.365015	1.76538		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"		
$\Delta heta_{C,t}$	-0.0043	
$\Delta heta_{C,A'}$	0.0001	
$\varDelta heta$ g,d	-0.0008	
arDelta hetag,F	-0.0006	
$arDelta heta_{i,g}$	-0.0043	

Constants of Dispersion Formula		
A ₁	1.70984856	
A_2	1.73342897•10 ⁻¹	
A_3	1.64833565	
B ₁	1.00852127•10 ⁻²	
B ₂	4.70890831•10 ⁻²	
B ₃	1.57468520•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	4.00	
Remarks			

3.6

3.6

3.7

4.3

4.4

4.5

4.3

4.5

4.6

4.6

4.7

4.8

Range of Temperature (\mathcal{C})

−40 ~ **−20**

0

20

40

60

80

–20 ~

0 ~

20 ~

40 ~

60 ~

70890	1831•10°	.2				
57468520•10 ² Chemical Propert			roperties	5		
		W	ater Resistance	(Powder) Group	RW(P)	1
Propert	ies	Ac	id Resistance (Powder) Group	RA(P)	2
В		We	eathering Resistan	ce (Surface) Group	W(S)	1
d	4.0	O Ac	id Resistance (Surface) Group	SR	3.2
		Р	Phosphate Resistance PR			1.0
Temperature Coefficients of Refractive Index						
	dr	/ dt rela	ative (1	0 ^{−6} / °C)	
t	C	He-Ne	D	е	F	g
3.3	3.9	3.9	4.1	4.4	5.0	5.7
3.4	4.0	4.0	4.3	4.6	5.2	5.9
3.4	4.1	4.2	4.4	4.7	5.4	6.1

4.9

5.0

5.2

5.6

5.7

5.9

6.3

6.5

6.8

Partial Dispersions			
0.012680			
0.005606			
0.005081			
0.009153			
0.021898			
0.009827			
0.008436			
0.023484			
0.013479			
0.008354			
0.009012			
0.032298			

Thermal Properties			
Strain Point	StP	(\mathcal{C})	632
Annealing Point	ΑP	(\mathcal{C})	658
Transformation Temperature	e Tg	(\mathcal{C})	681
Yield Point	At	(\mathcal{C})	726
Softening Point	SP	(\mathcal{C})	791
Expansion Coefficients	(-30~	+70°C)	66
α (10 ⁻⁷ /°C) (+	100~+	300℃)	77
Thermal Conductivity	k(W/	m•K)	0.771

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	919		
Rigidity Modulus G	$(10^8 N/m^2)$	359		
Poisson's Ratio	σ	0.279		
Knoop Hardness	Hk	560[6]		
Abrasion	Aa	151		
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.03		

Relative Partial Dispersions			
$ heta_{C,t}$	0.7393		
$ heta_{C,A'}$	0.3268		
$ heta_{\sf d,C}$	0.2962		
$ heta_{ extsf{e}, extsf{C}}$	0.5336		
$ heta_{ extsf{g,d}}$	1.2767		
$ heta_{ extsf{g}, extsf{F}}$	0.5729		
$ heta_{h,g}$	0.4918		
$ heta_{i,g}$	1.3692		
θ΄C΄,t	0.7762		
$\theta'_{e,C'}$	0.4811		
$ heta^{'}$ F $^{'}$,e	0.5189		
$\theta'_{i,F'}$	1.8598		

Colo	ring
λ 80/λ 5	41/35

λ (nm) 280 290	τ 10mm
280 290	
290	
300	
310	
320	
330	
340	
350	0.04
360	0.27
370	0.55
380	0.74
390	0.85
400	0.911
420	0.960
440	0.976
460	0.983
480	0.988
500	0.991
550	0.996
600	0.996
650	0.995
700	0.997
800	0.998
900	0.998
1000	0.998
1200	0.999
1400	0.997
1600	0.997
1800	0.992
2000	0.984
2200	0.956
2400	0.89

Refractive Index	n _d	1.69700 1.697002	Abbe Number νd	48.5 48.52	Dispersion NF-NC	0.01436 0.014366
Refractive	n _e	1.700421	Abbe Number ν _e	48 24	Dispersion n F' - n C'	0.014521

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.66174			
n 1970	1.97009	1.66748			
n 1530	1.52958	1.67376			
n 1129	1.12864	1.67959			
n _t	1.01398	1.68163			
n _s	0.85211	1.68530			
n _A ′	0.76819	1.68788			
n _r	0.70652	1.69028			
n _C	0.65627	1.69270			
n _C ′	0.64385	1.69338			
n _{He-Ne}	0.6328	1.69401			
n_D	0.58929	1.69688			
n_d	0.58756	1.69700			
n _e	0.54607	1.70042			
n _F	0.48613	1.70706			
n _F ′	0.47999	1.70790			
n _{He-Cd}	0.44157	1.71402			
ng	0.435835	1.71509			
n_h	0.404656	1.72187			
n _i	0.365015	1.73366			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	-0.0037		
$\Delta heta_{C,A'}$	0.0007		
$arDelta heta_{ extsf{g,d}}$	-0.0047		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0041		
$arDelta heta_{i,g}$	-0.0261		

Constants of Dispersion Formula			
A ₁	1.63056133		
A_2	1.86994897•10 ⁻¹		
A ₃	1.30014289		
B ₁	8.99690705•10 ⁻³		
B ₂	3.68011993•10 ⁻²		
B ₃	1.22239544•10 ²		

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.77		
Remarks				

Partial Dispersions				
n _C –n _t	0.011071			
n _C –n _A ′	0.004818			
n _d –n _C	0.004306			
n _e –n _C	0.007725			
n _g –n _d	0.018089			
n _g –n _F	0.008029			
n _h –n _g	0.006774			
n _i –n _g	0.018569			
n _C '-n _t	0.011751			
n _e –n _C ′	0.007045			
n _F ′–n _e	0.007476			
n _i –n _F ′	0.025763			

Thermal Properties						
Strain Point	StP	(℃)	594			
Annealing Point	AP	(℃)	623			
Transformation Temperati	ure Tg	(℃)	634			
Yield Point	At	(℃)	678			
Softening Point	SP	(℃)	735			
Expansion Coefficients	(-30~	+70°C)	71			
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	83			
Thermal Conducti	vity k ((W /m•K)	0.847			

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1006
Rigidity Modulus G	$(10^8 N/m^2)$	394
Poisson's Ratio	σ	0.277
Knoop Hardness	Hk	600[6]
Abrasion	Aa	142
Photoelastic Consta (nm/cm/10 ⁵ Pa		1.69

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	3			
Acid Resistance (Surface) Group SR	5.2			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index							
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20		2.7	2.7	2.9	3.1	3.5	4.0
−20 ~ 0		2.8	2.8	3.0	3.2	3.7	4.2
0 ~ 20		2.9	2.9	3.1	3.3	3.8	4.3
20 ~ 40		3.0	3.0	3.2	3.4	3.9	4.5
40 ~ 60		3.1	3.1	3.3	3.5	4.1	4.6
60 ~ 80		3.1	3.2	3.4	3.6	4.2	4.8

Relative Partial Dispersions		
$\theta_{C,t}$	0.7706	
$ heta_{C,A'}$	0.3354	
$ heta_{\sf d,C}$	0.2997	
$ heta_{e,C}$	0.5377	
$ heta_{ extsf{g,d}}$	1.2592	
$ heta_{ extsf{g}, extsf{F}}$	0.5589	
$ heta_{h,g}$	0.4715	
$ heta_{i,g}$	1.2926	
θ´c′,t	0.8092	
θ'e,C'	0.4852	
$ heta^{'}$ F $^{'}$,e	0.5148	
$\theta'_{i,F'}$	1.7742	

Coloring			
λ 80/λ 5	38/33		

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	0.14
350	0.47
360	0.73
370	0.86
380	0.923
390	0.954
400	0.969
420	0.982
440	0.986
460	0.989
480	0.992
500	0.995
550	0.997
600	0.996
650	0.995
700	0.997
800	0.998
900	0.998
1000	0.998
1200	0.998
1400	0.996
1600	0.996
1800	0.991
2000	0.982
2200	0.952
2400	0.85

Refractive Index	n _d	1.74320 1.743198	Abbe Number Vd	49.3 49.34	Dispersion NF-NC	0.01507 0.015063
Refractive Index	ne	1.746784	Abbe Number $ u_{e}$	49.10	Dispersion $n_{F'} - n_{C'}$	0.015210

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.70181	
n 1970	1.97009	1.70932	
n 1530	1.52958	1.71730	
n 1129	1.12864	1.72431	
n _t	1.01398	1.72663	
ns	0.85211	1.73071	
$n_{A^{'}}$	0.76819	1.73351	
n _r	0.70652	1.73608	
n_{C}	0.65627	1.73865	
n _C ′	0.64385	1.73937	
n _{He-Ne}	0.6328	1.74005	
n_D	0.58929	1.74306	
n_d	0.58756	1.74320	
n _e	0.54607	1.74678	
n _F	0.48613	1.75372	
n _F ′	0.47999	1.75458	
n _{He-Cd}	0.44157	1.76094	
ng	0.435835	1.76205	
n _h	0.404656	1.76904	
n _i	0.365015	1.78113	

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0197	
$\Delta heta_{C,A'}$	0.0057	
$arDelta heta_{ extsf{g,d}}$	-0.0109	
arDelta hetag,F	-0.0085	
$\Delta heta_{ extsf{i,g}}$	-0.0450	

Constants of Dispersion Formula		
A_1	1.60673056	
A_2	3.66415640•10 ⁻¹	
A_3	1.31761804	
B ₁	7.75046140•10 ⁻³	
B ₂	2.89967611•10 ⁻²	
B ₃	9.30720709•10 ¹	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	4.06	
Remarks			

Partial Dispersions		
n _C –n _t	0.012019	
n _C –n _A ′	0.005143	
n _d –n _C	0.004545	
n _e –n _C	0.008131	
n _g –n _d	0.018849	
n _g –n _F	0.008331	
n _h –n _g	0.006993	
n _i –n _g	0.019083	
n _C '-n _t	0.012740	
n _e –n _C ′	0.007410	
n _F ′–n _e	0.007800	
n _i –n _F ′	0.026546	

Thermal Properties			
Strain Point	StP	(\mathcal{C})	594
Annealing Point	AP	(℃)	615
TiansformationTemperat.	ne Tg	(℃)	643
Yield Point	At	(℃)	658
Softening Point	SP	(\mathcal{C})	693
Expansion Coefficients	(-30~	+70°C)	54
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	66
Thermal Conducti	vity k ((W /m•K)	0.845

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1132
Rigidity Modulus G	$(10^8 N/m^2)$	438
Poisson's Ratio	σ	0.294
Knoop Hardness	Hk	730[7]
Abrasion	Aa	71
Photoelastic Constan (nm/cm/10 ⁵ Pa)		1.90

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	4	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	52.0	
Phosphate Resistance PR	2.0	

Temperature Coefficients of Refractive Index								
Range of Temperat	ure	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)	t	C	He-Ne	D	е	F	g	
−40 ~ −20	5.3	5.7	5.7	5.9	6.1	6.6	7.1	
−20 ~ (5.4	5.8	5.9	6.1	6.3	6.8	7.3	
0 ~ 20	5.5	6.0	6.0	6.2	6.4	7.0	7.5	
20 ~ 40	5.6	6.1	6.2	6.4	6.6	7.2	7.7	
40 ~ 60	5.7	6.3	6.3	6.5	6.8	7.4	7.9	
60 ~ 80	5.9	6.5	6.5	6.6	7.0	7.5	8.1	

Relative Partial Dispersions						
$ heta_{C,t}$	0.7979					
$ heta_{C,A'}$	0.3414					
$ heta_{\sf d,C}$	0.3017					
$ heta_{ extsf{e}, extsf{C}}$	0.5398					
$ heta_{ extsf{g,d}}$	1.2513					
$ heta_{ extsf{g}, extsf{F}}$	0.5531					
$ heta_{h,g}$	0.4643					
$ heta_{i,g}$	1.2669					
θ΄c′,t	0.8376					
θ' _{e,C'}	0.4872					
$ heta^{'}$ F $^{'}$,e	0.5128					
$\theta'_{i,F'}$	1.7453					

Coloring					
λ 80/λ 5	38/33				

Internal T	ransmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	0.03
340	0.29
350	0.60
360	0.79
370	0.89
380	0.937
390	0.961
400	0.974
420	0.985
440	0.990
460	0.993
480	0.995
500	0.997
550	0.998
600	0.997
650	0.998
700	0.998
800	0.998
900	0.998
1000	0.997
1200	0.997
1400	0.991
1600	0.991
1800	0.980
2000	0.953
2200	0.87
2400	0.62

Refractive Index	n _d	1.72000 1.720002	Abbe Number Vd	46.0 46.02	Dispersion NF-NC	0.01564 0.015644
Refractive Index	n _e	1.723721	Abbe Number ν_{e}	45.75	Dispersion $n_{F'} - n_{C'}$	0.015820

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.68252				
n 1970	1.97009	1.68854				
n 1530	1.52958	1.69511				
n 1129	1.12864	1.70126				
n _t	1.01398	1.70342				
ns	0.85211	1.70735				
n _A ′	0.76819	1.71012				
n _r	0.70652	1.71271				
n_{C}	0.65627	1.71533				
n _C ′	0.64385	1.71607				
n _{He-Ne}	0.6328	1.71676				
n_D	0.58929	1.71986				
n _d	0.58756	1.72000				
n _e	0.54607	1.72372				
n _F	0.48613	1.73097				
n _F ′	0.47999	1.73189				
n _{He-Cd}	0.44157	1.73861				
ng	0.435835	1.73979				
n _h	0.404656	1.74727				
n _i	0.365015	1.76042				

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"						
$\Delta heta_{ extsf{C,t}}$	-0.0013					
$\Delta heta_{C,A'}$	0.0012					
$arDelta heta_{ extsf{g,d}}$	-0.0043					
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0035					
$arDelta heta_{i,g}$	-0.0206					

Constants of Dispersion Formula				
A ₁	1.73883330			
A_2	1.50937430•10 ⁻¹			
A_3	1.12118445			
B ₁	9.80244105•10 ⁻³			
B ₂	4.33179685•10 ⁻²			
B ₃	1.01214625•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	4.10			
Remarks					

Temperature Coefficients of Refractive Index								
Range of Tempe	rature		dr	ı / <mark>dt</mark> rela	ıtive (1	0 ⁻⁶ / ℃)	
(℃)		t	C	He-Ne	D	е	F	g
-40 ~ <i>-</i>	20	2.9	3.5	3.5	3.7	3.9	4.5	5.1
–20 ~	0	3.0	3.6	3.7	3.9	4.1	4.7	5.3
0 ~	20	3.2	3.8	3.8	4.0	4.3	4.8	5.5
20 ~	40	3.2	3.9	3.9	4.1	4.4	5.0	5.7
40 ~	60	3.3	4.0	4.1	4.3	4.6	5.2	5.9
60 ~	80	3 4	4 2	4 2	4 4	4 7	5 4	6 1

Partial Dispersions						
0.011910						
0.005206						
0.004672						
0.008391						
0.019787						
0.008815						
0.007485						
0.020636						
0.012647						
0.007654						
0.008166						
0.028538						

Thermal Properties					
Strain Point	StP	(\mathcal{C})	585		
Annealing Point	AP	(\mathcal{C})	602		
Transformation Temperatur	e Tg	(\mathcal{C})	629		
Yield Point	At	(\mathcal{C})	665		
Softening Point	SP	(\mathcal{C})	713		
Expansion Coefficients	(-30~	+70°C)	66		
α (10 ⁻⁷ /°C) (+	100~+	300℃)	80		
Thermal Conductivity	k(W/	m•K)	0.732		

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	937		
Rigidity Modulus G	$(10^8 N/m^2)$	363		
Poisson's Ratio	σ	0.290		
Knoop Hardness	Hk	560[6]		
Abrasion	Aa	144		
Photoelastic Constant (nm/cm/10 ⁵ Pa)	β	1.99		

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	5	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	52.2	
Phosphate Resistance PR	2.2	

Relative Partial Dispersions			
$ heta_{C,t}$	0.7613		
$ heta_{C,A'}$	0.3328		
$ heta_{\sf d,C}$	0.2986		
$ heta_{ extsf{e}, extsf{C}}$	0.5364		
$ heta_{ extsf{g,d}}$	1.2648		
$ heta_{ extsf{g}, extsf{F}}$	0.5635		
$ heta_{h,g}$	0.4785		
$ heta_{i,g}$	1.3191		
θ´c′,t	0.7994		
θ'e,C'	0.4838		
$ heta^{'}$ F $^{'}$,e	0.5162		
$\theta'_{i,F'}$	1.8039		

Colo	ring
λ 80/λ 5	39/34

Internal Transmittance				
λ (nm)	τ 10mm			
280				
290				
300				
310				
320				
330				
340	0.03			
350	0.26			
360	0.56			
370	0.75			
380	0.86			
390	0.914			
400	0.943			
420	0.969			
440	0.979			
460	0.985			
480	0.989			
500	0.993			
550	0.997			
600	0.996			
650	0.997			
700	0.997			
800	0.998			
900	0.999			
1000	0.998			
1200	0.999			
1400	0.997			
1600	0.997			
1800	0.991			
2000	0.978			
2200	0.942			
2400	0.80			

Refractive Index	n _d	1.80100 1.800999	Abbe Number νd	35.0 34.97	Dispersion NF-NC	0.02291 0.022907
Refractive	n_{e}	1.806423	Abbe Number ν_{e}	34.72	Dispersion n F′ - n C′	0.023227

Refractive In λ (μm) n2325 2.32542	1.75094
n 2325 2.32542	
n 4070 1 07000	
n 1970 1.97009	1.75842
n 1530 1.52958	1.76672
n 1129 1.12864	1.77475
n t 1.01398	1.77766
n s 0.85211	1.78304
n _A ' 0.76819	1.78691
n _r 0.70652	1.79055
n _C 0.65627	1.79427
n c' 0.64385	1.79533
n _{He-Ne} 0.6328	1.79632
n _D 0.58929	1.80080
n _d 0.58756	1.80100
n e 0.54607	1.80642
n _F 0.48613	1.81718
n _F ′ 0.47999	1.81856
n He-Cd 0.44157	1.82879
n _g 0.435835	1.83061
n _h 0.404656	1.84236
n i 0.365015	1.86391

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0148	
$\Delta heta_{C,A'}$	0.0035	
$arDelta heta_{ extsf{g,d}}$	0.0007	
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0015	
$\Delta heta_{i,g}$	0.0212	

Constants of Dispersion Formula		
A_1	1.92094221	
A_2	2.19901208•10 ⁻¹	
A_3	1.72705231	
B ₁	1.15075241•10 ⁻²	
B ₂	5.47993543•10 ⁻²	
B ₃	1.20133674•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.55	
Remarks			

Partial Dispersions		
n _C –n _t	0.016620	
n _C –n _A ′	0.007369	
n _d –n _C	0.006724	
n _e –n _C	0.012148	
n _g –n _d	0.029615	
n _g –n _F	0.013432	
n _h –n _g	0.011747	
n _i –n _g	0.033294	
n _C '-n _t	0.017674	
n _e –n _C ′	0.011094	
n _F ′–n _e	0.012133	
n _i –n _F ′	0.045352	

Thermal Properties			
Strain Point	StP	(℃)	514
Annealing Point	AP	(℃)	544
TiansformationTemperati	ne Tg	(℃)	554
Yield Point	At	(℃)	586
Softening Point	SP	(℃)	629
Expansion Coefficients	(-30~	+70°C)	79
α (10 ⁻⁷ /°C)	(+100~	+300°C)	95
Thermal Conducti	vity k (W /m•K)	1.062

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	1210		
Rigidity Modulus G	$(10^8 N/m^2)$	473		
Poisson's Ratio	σ	0.280		
Knoop Hardness	Hk	660[7]		
Abrasion	Aa	92		
Photoelastic Constant (nm/cm/10 ⁵ Pa		1.92		

Chemical Properties			
Water Resistance (Powder) Group $RW(P)$	2		
Acid Resistance (Powder) Group RA(P)	3		
Weathering Resistance (Surface) Group $W(s)$	1~2		
Acid Resistance (Surface) Group SR	4.0		
Phosphate Resistance PR	1.0		

Temperature Coefficients of Refractive Index							
Range of Temperate	ure	dn / dt relative $(10^{-6} / ^{\circ}C)$					
(℃)	t	C´	He-Ne	D	е	F	g
−40 ~ −20	2.2	3.0	3.1	3.3	3.7	4.5	5.5
−20 ~	2.2	3.1	3.1	3.4	3.8	4.7	5.7
0 ~ 20	2.2	3.2	3.2	3.5	3.9	4.9	5.9
20 ~ 40	2.3	3.2	3.3	3.6	4.0	5.0	6.1
40 ~ 60	2.3	3.3	3.4	3.7	4.1	5.2	6.4
60 ~ 80	2.4	3.4	3.5	3.8	4.3	5.4	6.6

Relative Partial Dispersions				
$\theta_{C,t}$	0.7255			
$ heta_{C,A'}$	0.3217			
$ heta_{\sf d,C}$	0.2935			
$ heta_{ extsf{e}, extsf{C}}$	0.5303			
$ heta_{ extsf{g,d}}$	1.2928			
$ heta_{ extsf{g}, extsf{F}}$	0.5864			
$ heta_{h,g}$	0.5128			
$ heta_{i,g}$	1.4534			
θ´c′,t	0.7609			
$\theta'_{e,C'}$	0.4776			
$ heta^{'}$ F $^{'}$,e	0.5224			
$\theta'_{i,F'}$	1.9526			

Coloring				
λ 80/λ 5	43/35			

Internal Transmittance		
280 290 300 310 310 320 330 340 350 0.03 360 0.28 370 0.57 380 0.73 390 0.82 400 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 650 0.994 700 0.997 800 0.998 1000 0.998 1200 0.998 1200 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998		l .
290 300 310 320 330 340 350 0.03 360 0.28 370 0.57 380 0.73 390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	7. ()	τ 10mm
300 310 320 330 340 350 0.03 360 0.28 370 0.57 380 0.73 390 0.82 400 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 1000 0.998 1200 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998		
310 320 330 340 350 0.03 360 0.28 370 0.57 380 0.73 390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937		
320 330 340 350 0.03 360 0.28 370 0.57 380 0.73 390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 1000 0.998 1200 0.998 1200 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998		
330 340 350 0.03 360 0.28 370 0.57 380 0.73 390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.937		
340 350 0.03 360 0.28 370 0.57 380 0.73 390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937		
350 0.03 360 0.28 370 0.57 380 0.73 390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	330	
360 0.28 370 0.57 380 0.73 390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937		
370 0.57 380 0.73 390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	350	0.03
380 0.73 390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.998 1200 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.998	360	0.28
390 0.82 400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	370	0.57
400 0.87 420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	380	0.73
420 0.932 440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	390	0.82
440 0.954 460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1200 0.998 1400 0.998 1600 0.997 1800 0.997 2000 0.976 2200 0.937	400	0.87
460 0.968 480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	420	0.932
480 0.977 500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	440	0.954
500 0.985 550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	460	0.968
550 0.994 600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	480	0.977
600 0.994 650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.999 1400 0.997 1800 0.992 2000 0.976 2200 0.937	500	0.985
650 0.994 700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.937	550	0.994
700 0.997 800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	600	0.994
800 0.998 900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.937	650	0.994
900 0.998 1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	700	0.997
1000 0.998 1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	800	0.998
1200 0.999 1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	900	0.998
1400 0.998 1600 0.997 1800 0.992 2000 0.976 2200 0.937	1000	0.998
1600 0.997 1800 0.992 2000 0.976 2200 0.937	1200	0.999
1800 0.992 2000 0.976 2200 0.937	1400	0.998
2000 0.976 2200 0.937	1600	0.997
2200 0.937	1800	0.992
2200 0.937	2000	0.976
2400 0 .77	2200	
	2400	0.77

Refractive Index	n _d	1.78590 1.785896	Abbe Number νd	44.2 44.20	Dispersion NF-NC	0.01778 0.017780
Refractive Index	n_{e}	1.790123	Abbe Number ν_{e}	43.95	Dispersion $n_{F'} - n_{C'}$	0.017979

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.74265		
n 1970	1.97009	1.74972		
n 1530	1.52958	1.75740		
n 1129	1.12864	1.76452		
n _t	1.01398	1.76700		
n _s	0.85211	1.77150		
n _A ′	0.76819	1.77466		
n _r	0.70652	1.77761		
n _C	0.65627	1.78058		
n _C ′	0.64385	1.78142		
n _{He-Ne}	0.6328	1.78221		
n_D	0.58929	1.78574		
n _d	0.58756	1.78590		
n _e	0.54607	1.79012		
n _F	0.48613	1.79836		
n _F ′	0.47999	1.79940		
n _{He-Cd}	0.44157	1.80704		
n _g	0.435835	1.80838		
n _h	0.404656	1.81687		
n _i	0.365015	1.83175		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0097		
$\Delta heta_{C,A'}$	0.0037		
$arDelta heta_{ extsf{g,d}}$	-0.0086		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0069		
$\Delta heta_{i,g}$	-0.0402		

Constants of Dispersion Formula		
A ₁	1.82586991	
A_2	2.83023349•10 ⁻¹	
A ₃	1.35964319	
B ₁	9.35297152•10 ⁻³	
B ₂	3.73803057•10 ⁻²	
B ₃	1.00655798•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	4.40		
Remarks				

Partial Dispersions			
n _C –n _t	0.013580		
n _C –n _A ′	0.005923		
n _d –n _C	0.005312		
n _e –n _C	0.009539		
n _g –n _d	0.022480		
n _g –n _F	0.010012		
n _h –n _g	0.008492		
n _i –n _g	0.023375		
n _C '-n _t	0.014419		
n _e –n _C ′	0.008700		
n _F ′–n _e	0.009279		
n _i –n _F ′	0.032349		

Thermal Properties				
Strain Point	StP	(\mathcal{C})	568	
Annealing Point	AP	(\mathcal{C})	598	
Transformation Temperatu	ne Tg	(\mathcal{C})	617	
Yield Point	At	(\mathcal{C})	641	
Softening Point	SP	(\mathcal{C})	677	
Expansion Coefficients	(-30~	+70°C)	59	
α (10 ⁻⁷ /°C)	(+100~	+300°C)	72	
Thermal Conductiv	vity k (W/m∙K)	0.826	

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1129
Rigidity Modulus G	$(10^8 N/m^2)$	435
Poisson's Ratio	σ	0.297
Knoop Hardness	Hk	660[7]
Abrasion	Aa	79
Photoelastic Constant (nm/cm/10 ⁵ Pa)		1.88

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	4	
Weathering Resistance (Surface) Group $W(s)$	1~2	
Acid Resistance (Surface) Group SR	4.0	
Phosphate Resistance PR	2.0	

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	/ dt rela	itive (1	0^{-6} / $^{\circ}$ C)	
(℃)	t	t C' He-Ne D e F' g				g	
−40 ~ −20		6.0		6.3	6.6	7.3	7.8
−20 ~ 0		6.0		6.3	6.6	7.3	7.9
0 ~ 20		6.1		6.4	6.7	7.4	8.1
20 ~ 40		6.2		6.5	6.8	7.6	8.3
40 ~ 60		6.4		6.7	7.0	7.8	8.6
60 ~ 80		6.6		6.9	7.2	8.1	8.9

Relative Partial Dispersions			
$\theta_{C,t}$	0.7638		
$ heta_{C,A'}$	0.3331		
$ heta_{\sf d,C}$	0.2988		
$ heta_{e,C}$	0.5365		
$ heta_{ extsf{g,d}}$	1.2643		
$ heta_{ extsf{g}, extsf{F}}$	0.5631		
$ heta_{h,g}$	0.4776		
$ heta_{i,g}$	1.3147		
$\theta_{i,g}$ $\theta'_{C',t}$	0.8020		
$ heta^{'}_{ ext{e,C}'}$	0.4839		
$ heta^{'}$ $_{F^{'}}$,e	0.5161		
θ' Ε'	1 7993		

Coloring			
λ 80/λ 5	39/34		

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	0.01
340	0.17
350	0.51
360	0.73
370	0.84
380	0.910
390	0.942
400	0.961
420	0.977
440	0.984
460	0.989
480	0.993
500	0.995
550	0.998
600	0.997
650	0.997
700	0.998
800	0.998
900	0.997
1000	0.996
1200	0.996
1400	0.991
1600	0.989
1800	0.981
2000	0.957
2200	0.89
2400	0.68

Refractive Index	n _d	1.79952 1.799516	Abbe Number ν _d	42.2 42.22	Dispersion NF-NC	0.01893 0.018935
Refractive Index	n _e	1.804015	Abbe Number ν_{e}	41.97	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.019157

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.75495		
n 1970	1.97009	1.76202		
n 1530	1.52958	1.76976		
n 1129	1.12864	1.77703		
n _t	1.01398	1.77961		
n _s	0.85211	1.78430		
n _A ′	0.76819	1.78762		
n _r	0.70652	1.79073		
nc	0.65627	1.79388		
n _C ′	0.64385	1.79477		
n _{He-Ne}	0.6328	1.79560		
n_D	0.58929	1.79935		
n_d	0.58756	1.79952		
n _e	0.54607	1.80401		
n _F	0.48613	1.81281		
n _F ′	0.47999	1.81393		
n _{He-Cd}	0.44157	1.82211		
ng	0.435835	1.82355		
n _h	0.404656	1.83271		
n _i	0.365015	1.84885		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0090		
$arDelta heta_{C,A'}$	0.0035		
$arDelta heta_{ extsf{g,d}}$	-0.0075		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0060		
$arDelta heta_{i,g}$	-0.0358		

Constants of Dispersion Formula		
A ₁	1.85390925	
A_2	2.97925555•10 ⁻¹	
A_3	1.39382086	
B ₁	9.55320687•10 ⁻³	
B ₂	3.93816850•10 ⁻²	
B ₃	1.02706848•10 ²	

Other Properties			
Bubble Quality Group	В		
Specific Gravity d 4.41			
Remarks			

Partial Dispersions				
n _C –n _t	0.014274			
n _C -n _A ′	0.006258			
n _d –n _C	0.005637			
n _e –n _C	0.010136			
n _g –n _d	0.024038			
n _g –n _F	0.010740			
n _h –n _g	0.009152			
n _i –n _g	0.025292			
n _C '-n _t	0.015163			
n _e –n _C ′	0.009247			
n _F ′–n _e	0.009910			
n _i –n _F ′	0.034921			

Thermal Properties				
Strain Point	StP	(℃)	565	
Annealing Point	AP	(℃)	596	
TiansformationTemperati	ue Tg	(℃)	618	
Yield Point	At	(℃)	636	
Softening Point	SP	(℃)	679	
Expansion Coefficients	(-30~	+70°C)	60	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	73	
Thermal Conducti	vity k	(W /m•K)	0.828	

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1119
Rigidity Modulus G	$(10^8 N/m^2)$	431
Poisson's Ratio	σ	0.297
Knoop Hardness	Hk	640[6]
Abrasion	Aa	82
Photoelastic Constan (nm/cm/10 ⁵ Pa)		1.92

Chemical Properti	es
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	1
Acid Resistance (Surface) Group SR	51.2
Phosphate Resistance PR	2.0

Temperature Coefficients of Refractive Index								
Range of Tem	perature		dr	n / dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)		t	t C' He-Ne D e F' g				g	
−40 ~	-20	5.1	6.1	6.2	6.4	6.6	7.3	8.0
−20 ~	0	5.2	6.1	6.2	6.4	6.6	7.3	8.1
0 ~	20	5.2	6.1	6.1	6.4	6.7	7.5	8.3
20 ~	40	5.3	6.2	6.2	6.5	6.9	7.7	8.5
40 ~	60	5.5	6.4	6.5	6.7	7.1	7.9	8.8
60 ~	80	5.8	6.6	6.6	6.9	7.3	8.2	9.1

Relative Partial Dispersions			
$\theta_{C,t}$	0.7538		
$ heta_{C,A'}$	0.3305		
$ heta_{\sf d,C}$	0.2977		
$ heta_{ extsf{e}, extsf{C}}$	0.5353		
$ heta_{ extsf{g,d}}$	1.2695		
$ heta_{ extsf{g}, extsf{F}}$	0.5672		
$ heta_{h,g}$	0.4833		
$ heta_{i,g}$	1.3357		
θ´c′,t	0.7915		
θ'e,C'	0.4827		
$ heta^{'}$ F $^{'}$,e	0.5173		
$ heta^{'}_{i,F^{'}}$	1.8229		

Colo	ring
λ 80/λ 5	40/34

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	0.02
340	0.23
350	0.52
360	0.72
370	0.83
380	0.89
390	0.931
400	0.951
420	0.971
440	0.979
460	0.985
480	0.990
500	0.993
550	0.997
600	0.997
650	0.998
700	0.998
800	0.998
900	0.998
1000	0.998
1200	0.997
1400	0.994
1600	0.993
1800	0.986
2000	0.965
2200	0.910
2400	0.71

Refractive Index	n _d	1.80610 1.806098	Abbe Number ν _d	40.9 40.92	Dispersion NF-NC	0.01969 0.019697
Refractive	ne	1.810775	Abbe Number ν_{e}	40.67	Dispersion n F′ - n C′	0.019935

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.76051			
n 1970	1.97009	1.76764			
n 1530	1.52958	1.77546			
n 1129	1.12864	1.78287			
n _t	1.01398	1.78551			
ns	0.85211	1.79034			
n _A ′	0.76819	1.79377			
n _r	0.70652	1.79699			
n _C	0.65627	1.80025			
n _C ′	0.64385	1.80117			
n _{He-Ne}	0.6328	1.80203			
n_D	0.58929	1.80592			
n_d	0.58756	1.80610			
n _e	0.54607	1.81078			
n _F	0.48613	1.81994			
n _F ′	0.47999	1.82110			
n _{He-Cd}	0.44157	1.82967			
ng	0.435835	1.83117			
n _h	0.404656	1.84078			
n _i	0.365015	1.85782			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0096	
$arDelta heta_{C,A'}$	0.0034	
$arDelta heta_{ extsf{g,d}}$	-0.0066	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0052	
$arDelta heta_{i,g}$	-0.0294	

Constants of Dispersion Formula		
A_1	1.91811619	
A_2	2.53724399•10 ⁻¹	
A_3	1.39473885	
B ₁	1.02147684•10 ⁻²	
B ₂	4.33176011•10 ⁻²	
B ₃	1.01938021•10 ²	

Other P	roper	ties
Bubble Quality Group	В	
Specific Gravity	d	4.43
Remarks		

Partial Dispersions				
n _C –n _t	0.014740			
n _C –n _A ′	0.006479			
n _d –n _C	0.005850			
n _e –n _C	0.010527			
n _g –n _d	0.025076			
n _g –n _F	0.011229			
n _h –n _g	0.009607			
n _i –n _g	0.026650			
n _C '-n _t	0.015661			
n _e –n _C ′	0.009606			
n _F ′–n _e	0.010329			
n _i –n _F ′	0.036720			

Therr	nal P	roperti	es
Strain Point	StP	(℃)	
Annealing Point	AP	(℃)	
TiansformationTemperatu	re Tg	(℃)	610
Yield Point	At	(℃)	637
Softening Point	SP	(℃)	687
Expansion Coefficients	(-30~	+70°C)	59
α (10 ⁻⁷ /°C)	(+100~	+300°C)	70
Thermal Conductiv	vity k (W/m•K)	0.860

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1127
Rigidity Modulus G	$(10^8 N/m^2)$	434
Poisson's Ratio	σ	0.299
Knoop Hardness	Hk	640[6]
Abrasion	Aa	78
Photoelastic Constar (nm/cm/10 ⁵ Pa		1.96

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	3			
Weathering Resistance (Surface) Group $W(s)$	1			
Acid Resistance (Surface) Group SR	4.2			
Phosphate Resistance PR	2.0			

	Temperature Coefficients of Refractive Index							
Range of Temp	erature		dn / dt relative $(10^{-6} / ^{\circ}C)$					
(\mathcal{C})		t	C´	He-Ne	D	е	F	g
-40 ~ ·	-20	5.1	6.2	6.2	6.5	6.8	7.6	8.3
−20 ~	0	5.2	6.3	6.3	6.6	6.9	7.7	8.5
0 ~	20	5.3	6.4	6.4	6.7	7.1	7.9	8.7
20 ~	40	5.6	6.6	6.7	6.9	7.3	8.1	9.0
40 ~	60	5.8	6.8	6.9	7.2	7.6	8.4	9.4
60 ~	80	6.2	7.1	7.2	7.5	7.8	8.7	9.8

Relative Partia	l Dispersions
$ heta_{C,t}$	0.7483
$ heta_{C,A'}$	0.3289
$ heta_{\sf d,C}$	0.2970
$ heta_{ extsf{e}, extsf{C}}$	0.5344
$ heta_{ extsf{g,d}}$	1.2731
$ heta_{ extsf{g}, extsf{F}}$	0.5701
$ heta_{h,g}$	0.4877
$ heta_{i,g}$	1.3530
θ´c΄,t	0.7856
θ' _{e,C'}	0.4819
$ heta^{'}$ F $'$,e	0.5181
θ'_{i} F'	1.8420

Coloring		
λ 80/λ 5	41/34	

λ (nm) 7 10mm 280 290 300 310 320 330 340 0.06 350 0.38 360 0.65 370 0.80 380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.998 500 0.993 550 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	Internal Trai	nsmittance
290 300 310 320 330 340 0.06 350 0.38 360 0.65 370 0.80 380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	λ (nm)	τ 10mm
300 310 320 330 340 0.06 350 0.38 360 0.65 370 0.80 380 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 650 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1200 0.999 1400 0.996	280	
310 320 330 340 0.06 350 0.38 360 0.65 370 0.80 380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	290	
320 330 340 0.06 350 0.38 360 0.65 370 0.80 380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	300	
330 340 0.06 350 0.38 360 0.65 370 0.80 380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	310	
340 0.06 350 0.38 360 0.65 370 0.80 380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	320	
350 0.38 360 0.65 370 0.80 380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	330	
360 0.65 370 0.80 380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	340	0.06
370 0.80 380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	350	0.38
380 0.88 390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1200 0.999 1400 0.996	360	0.65
390 0.925 400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1200 0.999 1400 0.997 1600 0.996	370	0.80
400 0.947 420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	380	0.88
420 0.969 440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	390	0.925
440 0.979 460 0.985 480 0.989 500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.996	400	0.947
460 0.985 480 0.989 500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	420	0.969
480 0.989 500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	440	0.979
500 0.993 550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	460	0.985
550 0.996 600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	480	0.989
600 0.996 650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	500	
650 0.997 700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	550	
700 0.998 800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	600	0.996
800 0.998 900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	650	0.997
900 0.999 1000 0.999 1200 0.999 1400 0.997 1600 0.996	700	0.998
1000 0.999 1200 0.999 1400 0.997 1600 0.996	800	0.998
1200 0.999 1400 0.997 1600 0.996	900	0.999
1400 0.997 1600 0.996	1000	0.999
1600 0.996	1200	0.999
	1400	
1000	1600	
	1800	0.989
2000 0.969	2000	0.969
2200 0.915	2200	
2400 0.72	2400	0.72

Refractive Index	n_{d}	1.83481 1.834807	Abbe Number ν_d	42.7 42.71	Dispersion NF-NC	0.01954 0.019545
Refractive Index	n_{e}	1.839453	Abbe Number ν_{e}	42.47	Dispersion $n_{F'} - n_{C'}$	0.019767

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.78803			
n 1970	1.97009	1.79558			
n 1530	1.52958	1.80378			
n 1129	1.12864	1.81144			
n _t	1.01398	1.81413			
n _s	0.85211	1.81903			
n _A ′	0.76819	1.82248			
n _r	0.70652	1.82571			
n _C	0.65627	1.82898			
n _C ′	0.64385	1.82990			
n _{He-Ne}	0.6328	1.83076			
n_D	0.58929	1.83464			
n_d	0.58756	1.83481			
n _e	0.54607	1.83945			
n _F	0.48613	1.84852			
n _F ′	0.47999	1.84966			
n _{He-Cd}	0.44157	1.85807			
ng	0.435835	1.85955			
n _h	0.404656	1.86891			
n _i	0.365015	1.88534			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0122			
$\Delta heta_{C,A'}$	0.0045			
$arDelta heta_{ extsf{g,d}}$	-0.0102			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0082			
$\Delta heta_{i,g}$	-0.0479			

Constants of Dispersion Formula				
A ₁	1.95615766			
A_2	3.19216215•10 ⁻¹			
A ₃	1.39173189			
B ₁	9.79338965•10 ⁻³			
B ₂	3.76836296•10 ⁻²			
B ₃	9.48775271•10 ¹			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	4.73		
Remarks				

Partial Dispersions				
n _C –n _t	0.014841			
n _C –n _A ′	0.006490			
n _d –n _C	0.005832			
n _e –n _C	0.010478			
n _g –n _d	0.024741			
n _g –n _F	0.011028			
n _h –n _g	0.009363			
n _i –n _g	0.025790			
n _C '-n _t	0.015762			
n _e –n _C ′	0.009557			
n _F ′–n _e	0.010210			
n _i –n _F ′	0.035675			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	642		
Annealing Point	AP	(\mathcal{C})	664		
TiansformationTemperati	ue Tg	(\mathcal{C})	684		
Yield Point	At	(\mathcal{C})	711		
Softening Point	SP	(\mathcal{C})	734		
Expansion Coefficients	(−30~-	+70°C)	62		
α (10 ⁻⁷ /°C)	(+100~	+300°C)	76		
Thermal Conducti	vity k (W/m⋅K)	0.846		

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	1249			
Rigidity Modulus G	$(10^8 N/m^2)$	482			
Poisson's Ratio	σ	0.296			
Knoop Hardness	Hk	750[7]			
Abrasion	Aa	59			
Photoelastic Consta (nm/cm/10 ⁵ Pa		1.31			

Chemical Properties			
Water Resistance (Powder) Group $RW(P)$	1		
Acid Resistance (Powder) Group RA(P)	3		
Weathering Resistance (Surface) Group $W(s)$	1		
Acid Resistance (Surface) Group SR	4.0		
Phosphate Resistance PR	1.0		

	Temperature Coefficients of Refractive Index							
Range of Temp	perature		dr	n / dt rela	ative (1	0 ⁻⁶ / ℃)	
(℃)		t	C´	He-Ne	D	е	F	g
-40 ~	-20	3.3	4.0	4.0	4.2	4.5	5.1	5.7
−20 ~	0	3.4	4.1	4.1	4.4	4.6	5.3	6.0
0 ~	20	3.5	4.2	4.3	4.5	4.8	5.5	6.2
20 ~	40	3.6	4.4	4.5	4.7	5.0	5.7	6.4
40 ~	60	3.7	4.5	4.6	4.9	5.2	5.9	6.7
60 ~	80	3.8	4.7	4.8	5.0	5.4	6.1	6.9

Relative Partial Dispersions				
$\theta_{C,t}$	0.7593			
$ heta_{C,A'}$	0.3321			
$ heta_{\sf d,C}$	0.2984			
$ heta_{e,C}$	0.5361			
$ heta_{ extsf{g,d}}$	1.2658			
$ heta_{ extsf{g}, extsf{F}}$	0.5642			
$ heta_{h,g}$	0.4790			
$ heta_{i,g}$	1.3195			
$\theta'_{C',t}$	0.7974			
θ' _{e,C'}	0.4835			
$ heta^{'}$ F $^{'}$,e	0.5165			
$\theta'_{i,F'}$	1.8048			

Colo	ring
λ 80/λ 5	40/32

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 0.01 330 0.18 340 0.44 350 0.65 360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.985 2000 0.985 2000 0.896 2200 0.899		
280 290 300 310 320 0.01 330 0.18 340 0.44 350 0.65 360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	Internal Trar	nsmittance
290 300 310 320 0.01 330 0.18 340 0.44 350 0.65 360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	λ (nm)	au 10mm
300 310 320 0.01 330 0.18 340 0.44 350 0.65 360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	280	
310 320 0.01 330 0.18 340 0.44 350 0.65 360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.985 2000 0.985 2000 0.962 2200 0.89		
320 0.01 330 0.18 340 0.44 350 0.65 360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	300	
330 0.18 340 0.44 350 0.65 360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 1000 0.999 1400 0.999 1400 0.996 1600 0.985 2000 0.985 2000 0.962 2200 0.89	310	
340 0.44 350 0.65 360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.985 2000 0.962 2200 0.89	320	
350 0.65 360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.985 2000 0.962 2200 0.89	330	
360 0.78 370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.985 2000 0.962 2200 0.89	340	0.44
370 0.86 380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.985 2000 0.962 2200 0.89	350	0.65
380 0.913 390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	360	0.78
390 0.941 400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	370	0.86
400 0.958 420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.985 2000 0.962 2200 0.89	380	0.913
420 0.974 440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.985 2000 0.962 2200 0.89	390	0.941
440 0.982 460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	400	0.958
460 0.988 480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	420	0.974
480 0.991 500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	440	0.982
500 0.994 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	460	0.988
550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	480	0.991
600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	500	0.994
650 0.998 700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	550	0.998
700 0.998 800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	600	0.998
800 0.998 900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	650	0.998
900 0.998 1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	700	0.998
1000 0.999 1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	800	0.998
1200 0.999 1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	900	0.998
1400 0.996 1600 0.994 1800 0.985 2000 0.962 2200 0.89	1000	0.999
1600 0.994 1800 0.985 2000 0.962 2200 0.89	1200	0.999
1800 0.985 2000 0.962 2200 0.89	1400	
2000 0.962 2200 0.89	1600	0.994
2200 0.89	1800	0.985
	2000	0.962
2400 0.68	2200	0.89
	2400	0.68

888405

Refractive Index	n _d	1.88300 1.882997	Abbe Number νd	40.8 40.76	Dispersion NF-NC	0.02166 0.021661
Refractive	ne	1.888146	Abbe Number ν_{e}	40 52	Dispersion n F' - n C'	0 021919

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.83590			
n 1970	1.97009	1.84264			
n 1530	1.52958	1.85023			
n 1129	1.12864	1.85776			
n _t	1.01398	1.86054			
n _s	0.85211	1.86572			
n _A ′	0.76819	1.86946			
n _r	0.70652	1.87298			
n _C	0.65627	1.87656			
n _C ′	0.64385	1.87757			
n _{He-Ne}	0.6328	1.87852			
n_D	0.58929	1.88281			
n _d	0.58756	1.88300			
n _e	0.54607	1.88815			
n _F	0.48613	1.89822			
n _F ′	0.47999	1.89949			
n _{He-Cd}	0.44157	1.90885			
n _g	0.435835	1.91050			
n _h	0.404656	1.92092			
ni	0.365015	1.93917			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$ 0.0018				
$\Delta\theta_{\text{C,A'}}$ 0.0026				
$\Delta \theta_{ m g,d}$ -0.0105				
$\Delta heta_{ exttt{g,F}}$ -0.0088				
$\Delta\theta_{\rm i,g}$ -0.0598				

Constants of Dispersion Formula					
A ₁ 1.78764964					
A_2	6.52635600•10 ⁻¹				
A_3	1.79914564				
B ₁	8.47378536•10 ⁻³				
B ₂	3.13126408•10 ⁻²				
B ₃	1.32788001•10 ²				

Other Properties					
Bubble Quality Group	В				
Specific Gravity	5.52				
Remarks					

Partial Dispersions					
n _C –n _t	0.016022				
n _C –n _A ′	0.007103				
n _d –n _C	0.006437				
n _e –n _C	0.011586				
n _g –n _d	0.027500				
n _g –n _F	0.012276				
n _h –n _g	0.010422				
n _i –n _g	0.028677				
n _C '-n _t	0.017035				
n _e –n _C ′	0.010573				
n _F ′–n _e	0.011346				
n _i –n _F ′	0.039682				

Therr	nal P	roperti	es
Strain Point	StP	(\mathcal{C})	666
Annealing Point	AP	(\mathcal{C})	714
Transformation Temperatu	re Tg	(℃)	738
Yield Point	At	(℃)	765
Softening Point	SP	(℃)	803
Expansion Coefficients	(-30~	·+70℃)	66
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	78
Thermal Conductiv	vity k ((W /m•K)	0.827

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1268
Rigidity Modulus G	$(10^8 N/m^2)$	487
Poisson's Ratio	σ	0.301
Knoop Hardness	Hk	710[7]
Abrasion	Aa	61
Photoelastic Constant (nm/cm/10 ⁵ Pa		1.30

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	2			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	2.2			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index								
Range of Tempe	rature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)		t	C	He-Ne	D	е	F	g
-40 ~ −2	20	3.3	4.1	4.1	4.4	4.7	5.4	6.2
−20 ~	0	3.4	4.2	4.3	4.6	4.9	5.6	6.4
0 ~ 2	20	3.6	4.3	4.4	4.7	5.0	5.8	6.6
20 ~ 4	40	3.7	4.5	4.5	4.9	5.2	6.0	6.8
40 ~	60	3.9	4.6	4.6	5.0	5.3	6.2	7.1
60 ~ 8	80	4.0	4.7	4.8	5.2	5.5	6.4	7.3

Relative Partial Dispersions					
$\theta_{C,t}$	0.7397				
$ heta_{C,A'}$	0.3279				
$ heta_{\sf d,C}$	0.2972				
$ heta_{e,C}$	0.5349				
$ heta_{ extsf{g,d}}$	1.2696				
$ heta_{ extsf{g}, extsf{F}}$	0.5667				
$ heta_{h,g}$	0.4811				
$ heta_{i,g}$	1.3239				
θ´c′,t	0.7772				
θ'e,C'	0.4824				
$ heta^{'}$ F $^{'}$,e	0.5176				
$ heta^{'}_{i,F^{'}}$	1.8104				

Coloring				
λ 80/λ 5	45/32			

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	0.05
330	0.17
340	0.34
350	0.51
360	0.66
370	0.77
380	0.84
390	0.89
400	0.924
420	0.951
440	0.965
460	0.974
480	0.982
500	0.988
550	0.995
600	0.995
650	0.995
700	0.995
800	0.995
900	0.995
1000	0.995
1200	0.996
1400	0.996
1600	0.996
1800	0.992
2000	0.980
2200	0.956
2400	0.84

Refractive Index	n _d	1.81600 1.816000	Abbe Number νd	46.6 46.62	Dispersion NF-NC	0.01750 0.017503
Refractive	n _e	1.820167	Abbe Number ν_{e}	46.37	Dispersion n F' - n C'	0.017688

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.77345		
n 1970	1.97009	1.78033		
n 1530	1.52958	1.78784		
n 1129	1.12864	1.79483		
n _t	1.01398	1.79729		
n _s	0.85211	1.80174		
n _A ′	0.76819	1.80488		
n _r	0.70652	1.80780		
n _C	0.65627	1.81075		
n _C ′	0.64385	1.81158		
n _{He-Ne}	0.6328	1.81236		
n_D	0.58929	1.81585		
n _d	0.58756	1.81600		
n _e	0.54607	1.82017		
n _F	0.48613	1.82825		
n _F ′	0.47999	1.82927		
n _{He-Cd}	0.44157	1.83670		
n _g	0.435835	1.83800		
n _h	0.404656	1.84619		
n _i	0.365015	1.86034		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0036	
$\Delta heta_{C,A'}$	0.0030	
$arDelta heta_{ extsf{g,d}}$	-0.0111	
$\Delta heta$ g,F	-0.0092	
$arDelta heta_{i,g}$	-0.0582	

Constants of Dispersion Formula		
A ₁	1.51372967	
A_2	7.02462343•10 ⁻¹	
A ₃	1.33600982	
B ₁	7.05246901•10 ⁻³	
B ₂	2.49488689•10 ⁻²	
B ₃	1.00085908•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	5.07		
Remarks				

Partial Dispersions		
n _C –n _t	0.013459	
n _C –n _A ′	0.005870	
n _d –n _C	0.005251	
n _e –n _C	0.009418	
n _g –n _d	0.021997	
n _g –n _F	0.009745	
n _h –n _g	0.008188	
n _i –n _g	0.022341	
n _C '-n _t	0.014289	
n _e –n _C ′	0.008588	
n _F ′–n _e	0.009100	
n _i –n _F ′	0.031071	

Thermal Properties				
Strain Point	StP	(℃)	644	
Annealing Point	AP	(℃)	690	
Transformation Temperatu	ne Tg	(℃)	714	
Yield Point	At	(℃)	737	
Softening Point	SP	(℃)	773	
Expansion Coefficients	(-30~	·+70°C)	63	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	76	
Thermal Conductiv	vity k ((W /m•K)	0.816	

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	1250		
Rigidity Modulus G	$(10^8 N/m^2)$	482		
Poisson's Ratio	σ	0.298		
Knoop Hardness	Hk	750[7]		
Abrasion	Aa	57		
Photoelastic Constant (nm/cm/10 ⁵ Pa		1.37		

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	2	
Weathering Resistance (Surface) Group $\mathbf{W}(s)$	1	
Acid Resistance (Surface) Group SR	3.0	
Phosphate Resistance PR	1.0	

Т	Temperature Coefficients of Refractive Index						
Range of Temperature		dr	ı / dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20	4.1	4.6	4.6	4.9	5.1	5.6	6.2
−20 ~ 0	4.1	4.7	4.7	5.0	5.2	5.8	6.4
0 ~ 20	4.2	4.8	4.8	5.1	5.3	5.9	6.5
20 ~ 40	4.3	4.9	4.9	5.2	5.4	6.1	6.7
40 ~ 60	4.3	5.0	5.0	5.3	5.6	6.2	6.9
60 ~ 80	4.4	5.1	5.1	5.4	5.7	6.4	7.0

Relative Partial Dispersions			
$\theta_{C,t}$	0.7690		
$ heta_{C,A'}$	0.3354		
$ heta_{\sf d,C}$	0.3000		
$ heta_{e,C}$	0.5381		
$ heta_{ extsf{g,d}}$	1.2568		
$ heta_{ extsf{g}, extsf{F}}$	0.5568		
$ heta_{h,g}$	0.4678		
$ heta_{i,g}$	1.2764		
θ´c′,t	0.8078		
θ'e,C'	0.4855		
$ heta^{'}$ F $^{'}$,e	0.5145		
$ heta^{'}_{i,F^{'}}$	1.7566		

Coloring				
λ 80/λ 5	39/30			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
280 290 0.02 300 0.06 310 0.09 320 0.28 330 0.43 340 0.58 350 0.71 360 0.81 370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.995 1000 0.995 1400 0.995 1600 0.989 2000 0.973 2200 0.938	Internal Trar	nsmittance
290 0.02 300 0.06 310 0.09 320 0.28 330 0.43 340 0.58 350 0.71 360 0.81 370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.989 2000 0.973 2200 0.938	λ (nm)	au 10mm
300 0.06 310 0.09 320 0.28 330 0.43 340 0.58 350 0.71 360 0.81 370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.995 1000 0.995 1400 0.995 1600 0.989 2000 0.973 2200 0.938	280	
310 0.09 320 0.28 330 0.43 340 0.58 350 0.71 360 0.81 370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.989 2000 0.973 2200 0.938	290	0.02
320 0.28 330 0.43 340 0.58 350 0.71 360 0.81 370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.989 2000 0.973 2200 0.938	300	0.06
330 0.43 340 0.58 350 0.71 360 0.81 370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	310	0.09
340 0.58 350 0.71 360 0.81 370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.989 2000 0.973 2200 0.938	320	
350 0.71 360 0.81 370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	330	
360 0.81 370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	340	
370 0.88 380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	350	0.71
380 0.921 390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	360	0.81
390 0.943 400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.995 1000 0.995 1200 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	370	0.88
400 0.958 420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.995 1000 0.995 1200 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	380	0.921
420 0.973 440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	390	0.943
440 0.979 460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	400	0.958
460 0.984 480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	420	
480 0.989 500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	440	
500 0.994 550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	460	
550 0.997 600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	480	
600 0.996 650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	500	
650 0.996 700 0.996 800 0.996 900 0.995 1000 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	550	0.997
700 0.996 800 0.996 900 0.995 1000 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	600	0.996
800 0.996 900 0.995 1000 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	650	0.996
900 0.995 1000 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	700	
1000 0.995 1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	800	
1200 0.995 1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	900	
1400 0.995 1600 0.994 1800 0.989 2000 0.973 2200 0.938	1000	
1600 0.994 1800 0.989 2000 0.973 2200 0.938	1200	
1800 0.989 2000 0.973 2200 0.938	1400	
2000 0.973 2200 0.938	1600	
2200 0.938	1800	0.989
	2000	
2400 0.76	2200	0.938
	2400	0.76

839369

Refractive Index	n _d	1.83400 1.834000	Abbe Number νd	37.2 37.16	Dispersion NF-NC	0.02244 0.022443
Refractive	ne	1 839323	Abbe Number ν_{e}	36.92	Dispersion n F' - n C'	0.022736

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.78473			
n 1970	1.97009	1.79205			
n 1530	1.52958	1.80018			
n 1129	1.12864	1.80807			
n _t	1.01398	1.81094			
n _s	0.85211	1.81627			
n _A ′	0.76819	1.82009			
n _r	0.70652	1.82370			
nc	0.65627	1.82738			
n _C ′	0.64385	1.82842			
n _{He-Ne}	0.6328	1.82939			
n_D	0.58929	1.83380			
n_d	0.58756	1.83400			
n _e	0.54607	1.83932			
n _F	0.48613	1.84982			
n _F ′	0.47999	1.85115			
n _{He-Cd}	0.44157	1.86103			
ng	0.435835	1.86278			
n _h	0.404656	1.87396			
n _i	0.365015	1.89403			

Deviation of Rel	Deviation of Relative Partial Dispersions $\Delta \theta$ from "Normal"					
$\Delta\theta_{\mathrm{C,t}}$ 0.0114						
$\Delta heta_{ extsf{C}, extsf{A}'}$	0.0036					
$arDelta heta_{ extsf{g,d}}$	-0.0051					
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0037					
$arDelta heta_{i,g}$	-0.0215					

Constants of Dispersion Formula					
A ₁	1.95243469				
A_2	3.07100210•10 ⁻¹				
A ₃	1.56578094				
B ₁	1.06442437•10 ⁻²				
B ₂	4.56735302•10 ⁻²				
B ₃	1.10281410•10 ²				

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	4.43			
Remarks					

Partial Dispersions					
n _C –n _t	0.016437				
n _C –n _A ′	0.007283				
n _d –n _C	0.006624				
n _e –n _C	0.011947				
n _g –n _d	0.028781				
n _g –n _F	0.012962				
n _h –n _g	0.011183				
n _i –n _g	0.031249				
n _C '-n _t	0.017477				
n _e –n _C ′	0.010907				
n _F ′–n _e	0.011829				
n _i –n _F ′	0.042878				

Thermal Properties					
Strain Point	StP	(\mathcal{C})			
Annealing Point	AP	(℃)			
TiansformationTemperatu	ne Tg	(\mathcal{C})	612		
Yield Point	At	(\mathcal{C})	632		
Softening Point	SP	(\mathcal{C})	676		
Expansion Coefficients	(-30~	+70°C)	56		
α (10 ⁻⁷ /°C)	(+100~	+300°C)	71		
Thermal Conductiv	vity k (W /m•K)	0.872		

Mechanica	al Proper	ties
Young's Modulus E	10 ⁸ N/m ²)	1248
Rigidity Modulus G	10 ⁸ N/m ²)	481
Poisson's Ratio	σ	0.296
Knoop Hardness	Hk	670[7]
Abrasion	Aa	78
Photoelastic Constant (nm/cm/10 ⁵ Pa)	β	2.15

Chemical Properti	es
Water Resistance (Powder) Group RW(P)	1
Acid Resistance (Powder) Group RA(P)	3
Weathering Resistance (Surface) Group $W(s)$	1
Acid Resistance (Surface) Group SR	4.2
Phosphate Resistance PR	1.0

	Temperature Coefficients of Refractive Index								
Range of Temperature			dn / dt relative (10 ⁻⁶ / °C)						
(℃)		t	C	He-Ne	D	е	F	g	
-40 ~ -2	20	6.0	6.9	6.9	7.3	7.6	8.4	9.3	
−20 ~	0	6.3	7.0	7.1	7.4	7.7	8.6	9.6	
0 ~ 2	20	6.3	7.1	7.2	7.6	7.9	8.8	9.8	
20 ~ 4	40	6.4	7.3	7.3	7.7	8.1	9.0	10.1	
40 ~ 6	60	6.6	7.4	7.5	7.9	8.3	9.3	10.3	
60 ~ 8	30	6.7	7.5	7.6	8.0	8.4	9.5	10.6	

Relative Partial Dispersions					
$ heta_{C,t}$	0.7324				
$ heta_{C,A'}$	0.3245				
$ heta_{\sf d,C}$	0.2951				
$ heta_{e,C}$	0.5323				
$ heta_{ extsf{g,d}}$	1.2824				
$ heta_{ extsf{g}, extsf{F}}$	0.5776				
$ heta_{h,g}$	0.4983				
$ heta_{i,g}$	1.3924				
θ´c′,t	0.7687				
θ'e,C'	0.4797				
$ heta^{'}$ F $^{'}$,e	0.5203				
$\theta'_{i,F'}$	1.8859				

Coloring						
λ 80/λ 5	42/34					

Internal Tra	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	0.03
350	0.27
360	0.54
370	0.72
380	0.83
390	0.88
400	0.924
420	0.957
440	0.972
460	0.980
480	0.986
500	0.990
550	0.996
600	0.997
650	0.997
700	0.998
800	0.999
900	0.998
1000	0.997
1200	0.996
1400	0.993
1600	0.992
1800	0.984
2000	0.964
2200	0.906
2400	0.72

Refractive Index	n _d	1.80440 1.804398	Abbe Number νd	39.6 39.59	Dispersion NF-NC	0.02032 0.020320
Refractive Index	n _e	1.809221	Abbe Number $ u_{ m e}$	39.33	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.020573

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.75781			
n 1970	1.97009	1.76505			
n 1530	1.52958	1.77300			
N 1129	1.12864	1.78056			
n _t	1.01398	1.78325			
n _s	0.85211	1.78820			
n _A ′	0.76819	1.79172			
n _r	0.70652	1.79502			
n _C	0.65627	1.79838			
n _C ′	0.64385	1.79932			
n _{He-Ne}	0.6328	1.80021			
n_D	0.58929	1.80422			
n _d	0.58756	1.80440			
n _e	0.54607	1.80922			
n _F	0.48613	1.81870			
n _F ′	0.47999	1.81990			
n _{He-Cd}	0.44157	1.82877			
n _g	0.435835	1.83034			
n_h	0.404656	1.84033			
n _i	0.365015	1.85815			

Deviation of Rel	Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0119				
$\Delta heta_{C,A'}$	0.0039				
$arDelta heta_{ extsf{g,d}}$	-0.0059				
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0045				
$arDelta heta_{i,g}$	-0.0249				

Constants of Dispersion Formula				
A_1	1.89458276			
A_2	2.68702978•10 ⁻¹			
A_3	1.45705526			
B ₁	1.02277048•10 ⁻²			
B ₂	4.42801243•10 ⁻²			
B ₃	1.04874927•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	4.34			
Remarks					

Partial Dispersions				
n _C -n _t	0.015124			
n _C –n _A ′	0.006658			
n _d –n _C	0.006022			
n _e –n _C	0.010845			
n _g –n _d	0.025940			
n _g –n _F	0.011642			
n _h –n _g	0.009994			
n _i –n _g	0.027810			
n _C '-n _t	0.016071			
n _e –n _C ′	0.009898			
n _F ′–n _e	0.010675			
n _i –n _F ′	0.038252			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	558		
Annealing Point	AP	(℃)	588		
TiansformationTemperati	ne Tg	(℃)	607		
Yield Point	At	(℃)	630		
Softening Point	SP	(\mathcal{C})	675		
Expansion Coefficients	(-30~	+70°C)	58		
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	70		
Thermal Conducti	vity k ((W /m•K)	0.849		

Mechanic	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1121
Rigidity Modulus G	$(10^8 N/m^2)$	433
Poisson's Ratio	σ	0.295
Knoop Hardness	Hk	640[6]
Abrasion	Aa	82
Photoelastic Constar (nm/cm/10 ⁵ Pa	. ()	2.18

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $\mathbf{W}(s)$	1			
Acid Resistance (Surface) Group SR	4.2			
Phosphate Resistance PR	1.0			

	Temperature Coefficients of Refractive Index							
Range of Terr	perature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃))	t	t C' He-Ne D e F' g					g
-40 ~	-20	5.5	6.6	6.6	6.8	7.3	8.0	8.7
-20 ~	0	5.7	6.7	6.7	6.9	7.3	8.1	8.9
0 ~	20	5.8	6.8	6.8	7.0	7.5	8.3	9.1
20 ~	40	5.9	6.9	6.9	7.2	7.6	8.5	9.4
40 ~	60	6.2	7.1	7.2	7.5	7.8	8.8	9.7
60 ~	80	6.4	7.3	7.4	7.7	8.1	9.1	10.1

Relative Partial Dispersions					
$\theta_{C,t}$	0.7443				
$ heta_{C,A'}$	0.3277				
$ heta_{\sf d,C}$	0.2964				
$ heta_{e,C}$	0.5337				
$ heta_{ extsf{g,d}}$	1.2766				
$ heta_{ extsf{g}, extsf{F}}$	0.5729				
$ heta_{h,g}$	0.4918				
$ heta_{i,g}$	1.3686				
θ´c′,t	0.7812				
θ'e,C'	0.4811				
$ heta^{'}$ F $^{'}$,e	0.5189				
$\theta'_{i,F'}$	1.8593				

Coloring			
λ 80/λ 5	41/34		

Internal T	ransmittance
λ (nm)	au 10mm
280	
290	
300	
310	
320	
330	
340	0.06
350	0.31
360	0.59
370	0.76
380	0.86
390	0.909
400	0.937
420	0.965
440	0.976
460	0.983
480	0.988
500	0.992
550	0.997
600	0.998
650	0.998
700	0.998
800	0.999
900	0.998
1000	0.997
1200	0.997
1400	0.993
1600	0.992
1800	0.984
2000	0.963
2200	0.89
2400	0.70

Refractive Index	n _d	1.78800 1.788001	Abbe Number νd	47.4 47.37	Dispersion NF-NC	0.01663 0.016636
Refractive Index	ne	1.791961	Abbe Number ν_{e}	47.12	Dispersion $n_{F'} - n_{C'}$	0.016806

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.74466				
n 1970	1.97009	1.75220				
n 1530	1.52958	1.76026				
N 1129	1.12864	1.76750				
n _t	1.01398	1.76996				
n _s	0.85211	1.77433				
n _A ′	0.76819	1.77737				
n _r	0.70652	1.78018				
n _C	0.65627	1.78300				
n _C ′	0.64385	1.78379				
n _{He-Ne}	0.6328	1.78453				
n_D	0.58929	1.78785				
n _d	0.58756	1.78800				
n _e	0.54607	1.79196				
n _F	0.48613	1.79963				
n _F ′	0.47999	1.80060				
n _{He-Cd}	0.44157	1.80765				
n _g	0.435835	1.80888				
n_h	0.404656	1.81666				
n _i	0.365015	1.83016				

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0148		
$\Delta heta_{C,A'}$	0.0050		
$arDelta heta_{ extsf{g,d}}$	$A\theta_{g,d}$ -0.0111		
$\Delta \theta_{ exttt{g,F}}$ -0.0089			
$\Delta heta_{i,g}$	-0.0493		

Constants of Dispersion Formula			
A ₁	1.83021453		
A_2	2.91563590•10 ⁻¹		
A ₃	1.28544024		
B ₁	9.04823290•10 ⁻³		
B ₂	3.30756689•10 ⁻²		
B ₃	8.93675501•10 ¹		

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	4.30	
Remarks			

40 ~

60 ~

60

80

3.8

3.9

4.3

4.4

ı									
	Temperature Coefficients of Refractive Index								
	Range of Tem	perature		dr	ı / dt rela	ative (1	0 ^{−6} / °C)	
	(\mathcal{C})		t	C´	He-Ne	D	е	F	g
	−40 ~	-20	3.5	3.9	3.9	4.1	4.3	4.8	5.3
	−20 ~	0	3.5	4.0	4.0	4.2	4.4	5.0	5.5
	0 ~	20	3.6	4.1	4.1	4.3	4.6	5.1	5.7
	20 ~	40	3.7	4.2	4.2	4.4	4.7	5.3	5.8

4.3

4.4

Partial Dispersions			
n _C –n _t	0.013038		
n _C -n _A ′	0.005628		
n _d –n _C	0.005003		
n _e –n _C	0.008963		
n _g –n _d	0.020881		
n _g –n _F	0.009248		
n _h –n _g	0.007782		
n _i –n _g	0.021279		
n _C '-n _t	0.013830		
n _e –n _C ′	0.008171		
n _F ′–n _e	0.008635		
n _i –n _F ′	0.029565		

Thermal Properties				
Strain Point	StP	(℃)	644	
Annealing Point	AP	(℃)	660	
TiansformationTemperati	ue Tg	(℃)	685	
Yield Point	At	(℃)	705	
Softening Point	SP	(℃)	732	
Expansion Coefficients	(-30~	+70°C)	61	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	74	
Thermal Conducti	vity k	(W /m•K)	0.856	

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	1224			
Rigidity Modulus G	$(10^8 N/m^2)$	473			
Poisson's Ratio	σ	0.294			
Knoop Hardness	Hk	750[7]			
Abrasion	Aa	61			
Photoelastic Constant (nm/cm/10 ⁵ Pa	. 1.)	1.40			

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	2			
Acid Resistance (Surface) Group SR	4.0			
Phosphate Resistance PR	1.0			

4.8

4.9

5.4

5.5

6.0

6.2

4.5

4.6

Relative Partial Dispersions		
$ heta_{C,t}$	0.7837	
$ heta_{C,A'}$	0.3383	
$ heta_{\sf d,C}$	0.3007	
$ heta_{ extsf{e}, extsf{C}}$	0.5388	
$ heta_{ extsf{g,d}}$	1.2552	
$ heta_{ extsf{g}, extsf{F}}$	0.5559	
$ heta_{h,g}$	0.4678	
$ heta_{i,g}$	1.2791	
θ'C',t	0.8229	
$ heta'_{e,C'}$	0.4862	
$ heta^{'}$ F $^{'}$,e	0.5138	
$ heta^{\prime}_{i,F^{\prime}}$	1.7592	

Coloring		
λ 80/λ 5	38/32	

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	0.13
330	0.40
340	0.63
350	0.77
360	0.85
370	0.912
380	0.943
390	0.961
400	0.972
420	0.981
440	0.986
460	0.990
480	0.993
500	0.996
550	0.998
600	0.998
650	0.998
700	0.998
800	0.999
900	0.998
1000	0.997
1200	0.996
1400	0.995
1600	0.993
1800	0.987
2000	0.966
2200	0.915
2400	0.68

Refractive Index	n _d	1.80400 1.804000	Abbe Number νd	46.6 46.57	Dispersion NF-NC	0.01726 0.017265
Refractive	ne	1.808109	Abbe Number ν_{e}	46.33	Dispersion n F' - n C'	0.017444

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.75978	
n 1970	1.97009	1.76734	
n 1530	1.52958	1.77547	
n 1129	1.12864	1.78284	
n _t	1.01398	1.78536	
n _s	0.85211	1.78986	
n _A ′	0.76819	1.79299	
n _r	0.70652	1.79590	
n _C	0.65627	1.79882	
n _C ′	0.64385	1.79964	
n _{He-Ne}	0.6328	1.80040	
n_D	0.58929	1.80385	
n _d	0.58756	1.80400	
n _e	0.54607	1.80811	
n _F	0.48613	1.81608	
n _F ′	0.47999	1.81708	
n _{He-Cd}	0.44157	1.82442	
ng	0.435835	1.82570	
n _h	0.404656	1.83380	
n _i	0.365015	1.84786	

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0139	
$arDelta heta_{C,A'}$	0.0048	
$arDelta heta_{ extsf{g,d}}$	-0.0112	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0090	
$\Delta heta_{i,g}$	-0.0518	

Constants of Dispersion Formula		
A_1	1.68191258	
A_2	4.93779818•10 ⁻¹	
A_3	1.45682822	
B ₁	7.76684250•10 ⁻³	
B ₂	2.88916181•10 ⁻²	
B ₃	9.92574356•10 ¹	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	4.76
Remarks		

Partial Dispersions		
n _C –n _t	0.013452	
n _C -n _A ′	0.005820	
n _d –n _C	0.005185	
n _e –n _C	0.009294	
n _g –n _d	0.021699	
n _g –n _F	0.009619	
n _h –n _g	0.008101	
n _i –n _g	0.022157	
n _C '-n _t	0.014273	
n _e –n _C ′	0.008473	
n _F ′–n _e	0.008971	
n _i –n _F ′	0.030776	

Thermal Properties			
Strain Point	StP	(\mathcal{C})	622
Annealing Point	AP	(℃)	670
TiansformationTemperatu	ne Tg	(\mathcal{C})	700
Yield Point	At	(℃)	723
Softening Point	SP	(℃)	743
Expansion Coefficients	(-30~	+70°C)	60
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	73
Thermal Conductiv	vity k ((W /m•K)	0.833

Mechanic	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1258
Rigidity Modulus G	$(10^8 N/m^2)$	486
Poisson's Ratio	σ	0.295
Knoop Hardness	Hk	730[7]
Abrasion	Aa	56
Photoelastic Constar (nm/cm/10 ⁵ Pa	· //	1.42

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	3	
Weathering Resistance (Surface) Group $W(s)$	1~2	
Acid Resistance (Surface) Group SR	4.1	
Phosphate Resistance PR	1.0	

Temperature Coefficients of Refractive Index								
Range of Tempo	erature		dr	n / dt rela	ative (1	0 ⁻⁶ / °C)	
(℃)		t	C	He-Ne	D	е	F	g
−40 ~ −	-20	3.6	4.0	4.0	4.2	4.4	5.0	5.5
–20 ~	0	3.7	4.1	4.1	4.4	4.6	5.1	5.7
0 ~	20	3.8	4.2	4.3	4.5	4.7	5.3	5.9
20 ~	40	3.9	4.4	4.4	4.7	4.9	5.5	6.1
40 ~	60	4.0	4.5	4.5	4.8	5.0	5.7	6.3
60 ~	80	4.0	4.6	4.7	5.0	5.2	5.8	6.5

Relative Partial Dispersions				
$\theta_{C,t}$	0.7791			
$\theta_{C,A'}$	0.3371			
$ heta_{\sf d,C}$	0.3003			
$ heta_{e,C}$	0.5383			
$ heta_{ extsf{g,d}}$	1.2568			
$ heta_{ extsf{g}, extsf{F}}$	0.5571			
$ heta_{h,g}$	0.4692			
$ heta_{i,g}$	1.2833			
θ΄C΄,t	0.8182			
θ' _{e,C'}	0.4857			
$ heta^{'}$ F $^{'}$,e	0.5143			
$\theta'_{i,F'}$	1.7643			

Coloring				
λ 80/λ 5	39/32			

Internal Trar	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	0.08
330	0.28
340	0.50
350	0.66
360	0.78
370	0.86
380	0.916
390	0.947
400	0.964
420	0.980
440	0.988
460	0.992
480	0.995
500	0.996
550	0.998
600	0.998
650	0.998
700	0.998
800	0.998
900	0.997
1000	0.997
1200	0.997
1400	0.994
1600	0.993
1800	0.983
2000	0.959
2200	0.89
2400	0.66

Refractive Index	n _d	1.77250 1.772499	Abbe Number νd	49.6 49.60	Dispersion NF-NC	0.01557 0.015576
Refractive Index	n _e	1.776208	Abbe Number ν_{e}	49.36	Dispersion $n_{F'} - n_{C'}$	0.015727

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.73031			
n 1970	1.97009	1.73786			
n 1530	1.52958	1.74590			
n 1129	1.12864	1.75303			
n _t	1.01398	1.75541			
ns	0.85211	1.75960			
n _A ′	0.76819	1.76248			
n _r	0.70652	1.76514			
n _C	0.65627	1.76780			
n _C ′	0.64385	1.76854			
n _{He-Ne}	0.6328	1.76924			
n_D	0.58929	1.77236			
n _d	0.58756	1.77250			
n _e	0.54607	1.77621			
n _F	0.48613	1.78337			
n _F ′	0.47999	1.78427			
n _{He-Cd}	0.44157	1.79083			
n _g	0.435835	1.79197			
n _h	0.404656	1.79917			
n _i	0.365015	1.81158			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0161		
$\Delta heta_{ extsf{C,A'}}$	0.0052		
$arDelta heta_{ extsf{g,d}}$	-0.0115		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0092		
$arDelta heta_{i,g}$	-0.0507		

Constants of Dispersion Formula				
A_1	1.39280586			
A_2	6.79577094•10 ⁻¹			
A_3	1.38702069			
B ₁	6.08475118•10 ⁻³			
B ₂	2.33925351•10 ⁻²			
B ₃	9.58354094•10 ¹			

Other Properties				
Bubble Quality Group	В			
Specific Gravity d 4.23				
Remarks				

Partial Dispersions			
n _C –n _t	0.012391		
n _C –n _A ′	0.005314		
n _d –n _C	0.004701		
n _e –n _C	0.008410		
n _g –n _d	0.019473		
n _g –n _F	0.008598		
n _h –n _g	0.007202		
n _i –n _g	0.019610		
n _C '-n _t	0.013137		
n _e –n _C ′	0.007664		
n _F ′–n _e	0.008063		
n _i –n _F ′	0.027311		

Thermal Properties				
Strain Point	StP	(℃)	641	
Annealing Point	AP	(℃)	660	
TiansformationTemperatu	ne Tg	(℃)	686	
Yield Point	At	(℃)	706	
Softening Point	SP	(℃)	726	
Expansion Coefficients	(-30~	+70°C)	62	
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	74	
Thermal Conductiv	vity k ((W /m•K)	0.845	

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	1219			
Rigidity Modulus G	$(10^8 N/m^2)$	472			
Poisson's Ratio	σ	0.291			
Knoop Hardness	Hk	700[7]			
Abrasion	Aa	65			
Photoelastic Constant (nm/cm/10 ⁵ Pa		1.43			

Chemical Properties					
Water Resistance (Powder) Group $RW(P)$	1				
Acid Resistance (Powder) Group RA(P)	4				
Weathering Resistance (Surface) Group $W(s)$	1				
Acid Resistance (Surface) Group SR	51.2				
Phosphate Resistance PR	1.0				

Temperature Coefficients of Refractive Index								
Range of Tempera	ature		dr	/ dt rela	ative (1	0 ⁻⁶ / ℃)	
(℃)		t	C	He-Ne	D	е	F	g
−40 ~ −2	20	3.4	3.8	3.8	4.0	4.2	4.7	5.1
−20 ~	0	3.5	3.9	4.0	4.2	4.4	4.8	5.3
0 ~ 2	20	3.6	4.1	4.1	4.3	4.5	5.0	5.5
20 ~ 4	0	3.7	4.2	4.3	4.5	4.7	5.2	5.7
40 ~ 6	0	3.8	4.4	4.4	4.7	4.9	5.4	5.9
60 ~ 8	0	3.9	4.5	4.6	4.8	5.0	5.6	6.1

Relative Partia	l Dispersions
$\theta_{C,t}$	0.7955
$ heta_{C,A'}$	0.3412
$ heta_{\sf d,C}$	0.3018
$ heta_{ extsf{e}, extsf{C}}$	0.5399
$ heta_{ extsf{g,d}}$	1.2502
$ heta_{ extsf{g}, extsf{F}}$	0.5520
$ heta_{h,g}$	0.4624
$ heta_{i,g}$	1.2590
θ΄C΄,t	0.8353
θ' _{e,C'}	0.4873
$ heta^{'}$ F $^{'}$,e	0.5127
$\theta'_{i,F'}$	1.7366

Coloring					
λ 80/λ 5	38/31				

λ (nm) 7 10mm 280 290 300 310 0.10 320 0.33 330 330 0.55 340 0.71 350 0.81 360 0.88 370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 650 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958 2200 0.88 0.88	Internal Trar	nsmittance
290 300 310 0.10 320 0.33 330 0.55 340 0.71 350 0.81 360 0.88 370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	λ (nm)	au 10mm
300 310 0.10 320 0.33 330 0.55 340 0.71 350 0.81 360 0.88 370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	280	
310 0.10 320 0.33 330 0.55 340 0.71 350 0.81 360 0.88 370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	290	
320 0.33 330 0.55 340 0.71 350 0.81 360 0.88 370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 700 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	300	
330 0.55 340 0.71 350 0.81 360 0.88 370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	310	
340 0.71 350 0.81 360 0.88 370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	320	0.33
350 0.81 360 0.88 370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	330	0.55
360 0.88 370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	340	0.71
370 0.930 380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	350	0.81
380 0.956 390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	360	0.88
390 0.971 400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	370	0.930
400 0.979 420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 700 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	380	0.956
420 0.987 440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	390	
440 0.991 460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	400	0.979
460 0.994 480 0.996 500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	420	0.987
480 0.996 500 0.997 550 0.999 600 0.998 650 0.998 700 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	440	0.991
500 0.997 550 0.999 600 0.998 650 0.998 700 0.999 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	460	0.994
550 0.999 600 0.998 650 0.998 700 0.999 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	480	
600 0.998 650 0.998 700 0.999 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	500	
650 0.998 700 0.999 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	550	
700 0.999 800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	600	0.998
800 0.998 900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	650	0.998
900 0.998 1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	700	0.999
1000 0.998 1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	800	0.998
1200 0.997 1400 0.993 1600 0.993 1800 0.983 2000 0.958	900	0.998
1400 0.993 1600 0.993 1800 0.983 2000 0.958	1000	0.998
1600 0.993 1800 0.983 2000 0.958	1200	0.997
1800 0.983 2000 0.958	1400	
2000 0.958	1600	
	1800	
2200 0.88	2000	0.958
	2200	0.88
2400 0.64	2400	0.64

Refractive Index	n_{d}	2.00330 2.003300	Abbe Number Vd	28.3 28.27	Dispersion NF-NC	0.03549 0.035486
Refractive Index	n _e	2.011689	Abbe Number $ u_{ m e}$	28.07	Dispersion $n_{F'} - n_{C'}$	0.036041

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.93904				
n 1970	1.97009	1.94642				
n 1530	1.52958	1.95518				
n 1129	1.12864	1.96486				
n _t	1.01398	1.96873				
n _s	0.85211	1.97630				
n _A ′	0.76819	1.98195				
n _r	0.70652	1.98739				
n _C	0.65627	1.99301				
n _C ′	0.64385	1.99461				
n _{He-Ne}	0.6328	1.99613				
n_D	0.58929	2.00299				
n _d	0.58756	2.00330				
n _e	0.54607	2.01169				
n _F	0.48613	2.02850				
n _F ′	0.47999	2.03066				
n _{He-Cd}	0.44157	2.04682				
n _g	0.435835	2.04972				
n _h	0.404656	2.06844				
n _i	0.365015	_				

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"					
$\Delta heta$ C,t	0.0049				
$\Delta heta_{C,A'}$	0.0015				
$arDelta heta_{ extsf{g,d}}$	0.0020				
$arDelta heta_{ extsf{g,F}}$	0.0023				
$arDelta heta_{i,g}$	<u> </u>				

Constants of Dispersion Formula					
A ₁	2.32557148				
A_2	5.07967133•10 ⁻¹				
A_3	2.43087198				
B ₁	1.32895208•10 ⁻²				
B ₂	5.28335449•10 ⁻²				
B ₃	1.61122408•10 ²				

Other Properties						
Bubble Quality Group	В					
Specific Gravity	d	5.23				
Remarks						

		Tempe	rature Co	efficients o	of Refract	ive Index		
Range of Tem	perature		dr	ı / dt rela	itive (1	10 ^{−6} / °C)	
(℃)		t	C	He-Ne	D	е	F	g
−40 ~	-20	6.5	8.0	8.1	8.6	9.2	10.7	12.4
–20 ~	0	6.7	8.2	8.3	8.9	9.5	11.1	12.9
0 ~	20	6.9	8.5	8.6	9.2	9.8	11.5	13.4
20 ~	40	7.0	8.7	8.9	9.4	10.1	11.9	13.8
40 ~	60	7.2	9.0	9.1	9.7	10.4	12.2	14.3

60 ~ 80 7.4 9.2 9.4 10.0 10.7 12.6 14.8

Partial Dispersions						
n _C –n _t	0.024281					
n _C –n _A ′	0.011059					
n _d –n _C	0.010289					
n _e –n _C	0.018678					
n _g –n _d	0.046416					
n _g –n _F	0.021219					
n _h –n _g	0.018725					
n _i –n _g						
n _C ′–n _t	0.025885					
n _e –n _C ′	0.017074					
n _F ′–n _e	0.018967					
n _i –n _F ′	_					

Thermal Properties			5
Strain Point	StP	(\mathcal{C})	
Annealing Point	ΑP	(\mathcal{C})	
Transformation Temperature	Tg	(\mathcal{C})	699
Yield Point	At	(\mathcal{C})	731
Softening Point	SP	(\mathcal{C})	
Expansion Coefficients (-30~+70°C)			60
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+	300℃)	71
Thermal Conductivity	(W/	m•K)	0.957

Mechanical Properties			
Young's Modulus E	$(10^8 N/m^2)$	1255	
Rigidity Modulus G	$(10^8 N/m^2)$	484	
Poisson's Ratio	σ	0.297	
Knoop Hardness	Hk	700[7]	
Abrasion	Aa	61	
Photoelastic Constar (nm/cm/10 ⁵ Pa		1.89	

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

Relative Partial Dispersions		
$ heta_{C,t}$	0.6842	
$ heta_{C,A'}$	0.3116	
$ heta_{\sf d,C}$	0.2899	
$ heta_{ extsf{e}, extsf{C}}$	0.5263	
$ heta_{ extsf{g,d}}$	1.3080	
$ heta_{ extsf{g}, extsf{F}}$	0.5980	
$ heta_{h,g}$	0.5277	
$ heta_{i,g}$		
$\theta'_{C',t}$	0.7182	
$\theta'_{e,C'}$	0.4737	
$ heta^{'}$ F $^{'}$,e	0.5263	
$\theta'_{i,F'}$		

Coloring		
λ 70/ λ 5	46/37	

Internal Trar	amittanaa
λ (nm)	T 10mm
280	C TOTTITI
290	
300	
310	
320	
330	
340	
350	
360	
370	0.03
380	0.16
390	0.33
400	0.50
420	0.72
440	0.83
460	0.88
480	0.921
500	0.945
550	0.979
600	0.988
650	0.991
700	0.993
800	0.996
900	0.997
1000	0.997
1200	0.998
1400	0.998
1600	0.997
1800	0.994
2000	0.986
2200	0.966
2400	0.89
_	

S-YGH51

Refractive Index	n _d	1.75500 1.754999	Abbe Number νd	52.3 52.32	Dispersion NF-NC	0.01443 0.014431
Refractive Index	ne	1.758437	Abbe Number ν_{e}	52.08	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.014562

Refractive Indices		
	λ (μ m)	
n 2325	2.32542	1.71387
n 1970	1.97009	1.72153
n 1530	1.52958	1.72961
n 1129	1.12864	1.73662
n _t	1.01398	1.73893
n _s	0.85211	1.74292
n _A ′	0.76819	1.74565
n _r	0.70652	1.74814
nc	0.65627	1.75062
n _C ′	0.64385	1.75132
n _{He-Ne}	0.6328	1.75197
n_D	0.58929	1.75487
n _d	0.58756	1.75500
n _e	0.54607	1.75844
n _F	0.48613	1.76505
n _F ′	0.47999	1.76588
n _{He-Cd}	0.44157	1.77191
ng	0.435835	1.77296
n _h	0.404656	1.77954
n _i	0.365015	1.79083

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0185	
$\Delta heta_{C,A'}$	0.0055	
$arDelta heta_{ extsf{g,d}}$	-0.0118	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0093	
$arDelta heta_{i,g}$	-0.0485	

Constants of Dispersion Formula		
A ₁	1.08280170	
A_2	9.33988681•10 ⁻¹	
A ₃	1.32367286	
B ₁	1.81156360•10 ⁻²	
B ₂	3.04157575•10 ⁻³	
B ₃	9.10353195•10 ¹	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	4.40
Remarks		

Partial Dispersions		
n _C –n _t	0.011699	
n _C –n _A ′	0.004976	
n _d –n _C	0.004375	
n _e –n _C	0.007813	
n _g –n _d	0.017957	
n _g –n _F	0.007901	
n _h –n _g	0.006588	
n _i –n _g	0.017871	
n _C '-n _t	0.012394	
n _e –n _C ′	0.007118	
n _F ′–n _e	0.007444	
n _i –n _F ′	0.024946	

Thermal Properties			
Strain Point	StP	(\mathcal{C})	651
Annealing Point	AP	(℃)	670
TiansformationTemperati	ne Tg	(℃)	700
Yield Point	At	(℃)	712
Softening Point	SP	(℃)	738
Expansion Coefficients	(-30~	+70°C)	58
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	70
Thermal Conducti	vity k ((W /m•K)	0.842

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	1222
Rigidity Modulus G	$(10^8 N/m^2)$	473
Poisson's Ratio	σ	0.291
Knoop Hardness	Hk	720[7]
Abrasion	Aa	61
Photoelastic Constan (nm/cm/10 ⁵ Pa)	. (.)	1.48

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	4	
Weathering Resistance (Surface) Group $W(s)$	1	
Acid Resistance (Surface) Group SR	51.0	
Phosphate Resistance PR	2.0	

Temperature Coefficients of Refractive Index							
Range of Temperature		dr	/ dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20		4.5		4.6	4.8	5.3	5.6
−20 ~ 0		4.5		4.7	4.9	5.3	5.7
0 ~ 20		4.6		4.8	5.0	5.4	5.9
20 ~ 40		4.7		4.9	5.1	5.6	6.1
40 ~ 60		4.9		5.1	5.4	5.8	6.3
60 ~ 80		5.1		5.4	5.6	6.0	6.6

Relative Partial Dispersions				
$ heta_{C,t}$	0.8107			
$ heta_{C,A'}$	0.3448			
$ heta_{\sf d,C}$	0.3032			
$ heta_{ extsf{e}, extsf{C}}$	0.5414			
$ heta_{ extsf{g,d}}$	1.2443			
$ heta_{ extsf{g}, extsf{F}}$	0.5475			
$ heta_{h,g}$	0.4565			
$ heta_{i,g}$	1.2384			
θ´C΄,t	0.8511			
θ' _{e,C'}	0.4888			
θ´F΄,e	0.5112			
$\theta'_{i,F'}$	1.7131			

Colo	ring
λ 80/λ 5	38/28

λ (nm) 7 10mm 280 0.03 290 0.12 300 0.21 310 0.24 320 0.47 330 0.61 340 0.73 350 0.82 360 0.88 370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	Internal Trar	nsmittance
290 0.12 300 0.21 310 0.24 320 0.47 330 0.61 340 0.73 350 0.82 360 0.88 370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 700 0.998 800 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	λ (nm)	τ 10mm
300 0.21 310 0.24 320 0.47 330 0.61 340 0.73 350 0.82 360 0.88 370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 700 0.998 800 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	280	0.03
310 0.24 320 0.47 330 0.61 340 0.73 350 0.82 360 0.88 370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	290	0.12
320 0.47 330 0.61 340 0.73 350 0.82 360 0.88 370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	300	0.21
330 0.61 340 0.73 350 0.82 360 0.88 370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 700 0.998 800 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	310	0.24
340 0.73 350 0.82 360 0.88 370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 700 0.998 800 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	320	0.47
350 0.82 360 0.88 370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	330	0.61
360 0.88 370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 700 0.998 800 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	340	0.73
370 0.930 380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	350	0.82
380 0.956 390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	360	0.88
390 0.972 400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 800 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.994	370	0.930
400 0.980 420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	380	
420 0.988 440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	390	
440 0.991 460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	400	
460 0.994 480 0.996 500 0.997 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.993 1600 0.993 1800 0.984	420	
480 0.996 500 0.997 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.998	440	
500 0.997 550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	460	
550 0.998 600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	480	
600 0.998 650 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993	500	
650 0.998 700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	550	
700 0.998 800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	600	
800 0.998 900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	650	
900 0.998 1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	700	
1000 0.997 1200 0.997 1400 0.993 1600 0.993 1800 0.984	800	
1200 0.997 1400 0.993 1600 0.993 1800 0.984		
1400 0.993 1600 0.993 1800 0.984	1000	
1600 0.993 1800 0.984	1200	
1800 0.984	1400	
	1600	
0000	1800	
	2000	0.958
2200 0.88	2200	
2400 0.62	2400	0.62

S-FTM16

Refractive Index	n _d	1.59270 1.592701	Abbe Number νd	35.3 35.31	Dispersion NF-NC	0.01679 0.016785
Refractive Index	ne	1.596670	Abbe Number ν_{e}	35.03	Dispersion $n_{F'} - n_{C'}$	0.017031

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.55603			
n 1970	1.97009	1.56154			
n 1530	1.52958	1.56767			
N 1129	1.12864	1.57357			
n _t	1.01398	1.57569			
n _s	0.85211	1.57962			
n _A ′	0.76819	1.58243			
n _r	0.70652	1.58508			
n _C	0.65627	1.58779			
n _C ′	0.64385	1.58856			
n _{He-Ne}	0.6328	1.58929			
n_D	0.58929	1.59255			
n _d	0.58756	1.59270			
n _e	0.54607	1.59667			
n _F	0.48613	1.60458			
n _F ′	0.47999	1.60559			
n _{He-Cd}	0.44157	1.61318			
n _g	0.435835	1.61454			
n_h	0.404656	1.62334			
n _i	0.365015	1.63974			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0088		
$\Delta heta_{C,A'}$	0.0010		
$arDelta heta_{ extsf{g,d}}$	0.0096		
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0090		
$\Delta heta_{i,g}$	0.0721		

Constants of Dispersion Formula		
A ₁	1.32940907	
A_2	1.41512125•10 ⁻¹	
A ₃	1.44299068	
B ₁	1.02377287•10 ⁻²	
B ₂	5.78081956•10 ⁻²	
B ₃	1.50597139•10 ²	

Other P	roper	ties
Bubble Quality Group	В	
Specific Gravity	d	2.64
Remarks		

Partial Dis	persions
n _C –n _t	0.012104
n _C –n _A ′	0.005365
n _d –n _C	0.004906
n _e –n _C	0.008875
n _g –n _d	0.021838
n _g –n _F	0.009959
n _h –n _g	0.008800
n _i –n _g	0.025202
n _C '-n _t	0.012872
n _e –n _C ′	0.008107
n _F ′–n _e	0.008924
n _i –n _F ′	0.034147

Thermal Properties				
Strain Point	StP	(℃)		
Annealing Point	AP	(℃)		
Transformation Temperat.	ne Tg	(℃)	501	
Yield Point	At	(℃)	542	
Softening Point	SP	(℃)	_	
Expansion Coefficients	(-30~	+70°C)	90	
α (10 ⁻⁷ /°C)	(+100~	≻+300°C)	100	
Thermal Conducti	vity k ((W /m•K)	0.947	

Mechani	cal Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	653
Rigidity Modulus G	$(10^8 N/m^2)$	264
Poisson's Ratio	σ	0.238
Knoop Hardness	Hk	490[5]
Abrasion	Aa	172
Photoelastic Consta (nm/cm/10 ⁵ Pa	/)	3.33

Chemical Properties			
Water Resistance (Powder) Group $RW(P)$	1		
Acid Resistance (Powder) Group RA(P)	1		
Weathering Resistance (Surface) Group $W(s)$	1~2		
Acid Resistance (Surface) Group SR	1.0		
Phosphate Resistance PR	2.0		

	Temperature Coefficients of Refractive Index							
Range of Terr	nperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃))	t	t C' He-Ne D e F' g				g	
-40 ~	-20	-1.0	-0.5	-0.4	-0.2	0.0	0.7	1.4
-20 ~	0	-0.9	-0.4	-0.3	0.0	0.2	0.8	1.6
0 ~	20	-0.8	-0.2	-0.2	0.1	0.3	1.0	1.8
20 ~	40	-0.7	-0.1	-0.1	0.2	0.5	1.2	2.1
40 ~	60	-0.6	0.0	0.0	0.3	0.6	1.4	2.3
60 ~	80	-0.5	0.1	0.1	0.4	0.7	1.6	2.5

Relative Partial Dispersions		
$\theta_{\mathrm{C,t}}$	0.7211	
$ heta_{C,A'}$	0.3196	
$ heta_{\sf d,C}$	0.2923	
$ heta_{ extsf{e}, extsf{C}}$	0.5287	
$ heta_{ extsf{g,d}}$	1.3010	
$ heta_{ extsf{g}, extsf{F}}$	0.5933	
$ heta_{h,g}$	0.5243	
$ heta_{i,g}$	1.5015	
θ´c′,t	0.7558	
θ' _{e,C'}	0.4760	
$ heta^{'}$ F $^{'}$,e	0.5240	
$\theta'_{i,F'}$	2.0050	

Coloring		
λ 80/λ 5	38/35	

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	
340	
350	0.04
360	0.43
370	0.81
380	0.934
390	0.973
400	0.984
420	0.989
440	0.990
460	0.991
480	0.992
500	0.994
550	0.997
600	0.997
650	0.996
700	0.996
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.996
1600	0.994
1800	0.989
2000	0.987
2200	0.959
2400	0.953

S-NPH 1

816226

Refractive Index	n_{d}	1.80809 1.808095	Abbe Number ν _d	22.8 22.76	Dispersion NF-NC	0.03550 0.035504
Refractive Index	n_{e}	1.816434	Abbe Number $ u_{ m e}$	22.57	Dispersion $n_{F'} - n_{C'}$	0.036174

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.74455		
n 1970	1.97009	1.75226		
n 1530	1.52958	1.76125		
n 1129	1.12864	1.77084		
n _t	1.01398	1.77459		
n _s	0.85211	1.78187		
n _A ′	0.76819	1.78731		
n _r	0.70652	1.79256		
n _C	0.65627	1.79801		
n _C ′	0.64385	1.79957		
n _{He-Ne}	0.6328	1.80105		
n_D	0.58929	1.80779		
n _d	0.58756	1.80809		
n _e	0.54607	1.81643		
n _F	0.48613	1.83351		
n _F ′	0.47999	1.83575		
n _{He-Cd}	0.44157	1.85279		
ng	0.435835	1.85590		
n _h	0.404656	1.87658		
n _i	0.365015	_		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0061	
$\Delta heta_{C,A'}$	-0.0020	
$arDelta heta_{ extsf{g,d}}$	0.0292	
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0261	
$\Delta heta_{i,g}$		

Constants of Dispersion Formula		
A ₁	1.75156623	
A_2	3.64006304•10 ⁻¹	
A ₃	2.47874141	
B ₁	1.35004681•10 ⁻²	
B ₂	6.68245147•10 ⁻²	
B ₃	1.70756006•10 ²	

Other Properties			
Bubble Quality Group	В	В	
Specific Gravity	d	3.29	
Remarks			

Partial Dispersions				
n _C –n _t	0.023420			
n _C –n _A ′	0.010701			
n _d –n _C	0.010086			
n _e –n _C	0.018425			
n _g –n _d	0.047809			
n _g –n _F	0.022391			
n _h –n _g	0.020676			
n _i –n _g	—			
n _C '-n _t	0.024983			
n _e –n _C ′	0.016862			
n _F ′–n _e	0.019312			
n _i –n _F ′	_			

Therr	nal P	roperti	es
Strain Point	StP	(\mathcal{C})	516
Annealing Point	AP	(℃)	547
Transformation Temperatu	ne Tg	(℃)	552
Yield Point	At	(℃)	589
Softening Point	SP	(℃)	645
Expansion Coefficients	(-30~	·+70°C)	83
α (10 ⁻⁷ /°C)	(+100~	~+300°C)	104
Thermal Conductiv	vity k ((W /m•K)	0.882

Mechanic	al Proper	ties
Young's Modulus E	$(10^8 N/m^2)$	893
Rigidity Modulus G	$(10^8 N/m^2)$	357
Poisson's Ratio	σ	0.250
Knoop Hardness	Hk	460[5]
Abrasion	Aa	291
Photoelastic Constan (nm/cm/10 ⁵ Pa)	. (.)	3.23

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

Temperature Coefficients of Refractive Index								
Range of Tempe	erature		dr	n / dt rela	ative (1	0^{-6} / $^{\circ}$ C)	
(℃)		t	C'	He-Ne	D	е	F	g
-40 ~ -	-20	-1.9	-1.2	-1.1	-0.7	-0.2	1.2	3.0
−20 ~	0	-1.9	-1.1	-1.0	-0.6	0.0	1.5	3.4
0 ~	20	-1.8	-0.9	-0.8	-0.4	0.2	1.8	3.8
20 ~	40	-1.8	-0.8	-0.7	-0.3	0.4	2.1	4.3
40 ~	60	-1.8	-0.7	-0.6	-0.1	0.6	2.4	4.7
60 ~	80	-1.7	-0.5	-0.4	0.1	0.8	2.7	5.1

Relative Partial Dispersions				
$ heta_{C,t}$	0.6596			
$ heta_{C,A'}$	0.3014			
$ heta_{\sf d,C}$	0.2841			
$ heta_{e,C}$	0.5190			
$ heta_{ extsf{g,d}}$	1.3466			
$ heta_{ extsf{g}, extsf{F}}$	0.6307			
$ heta_{h,g}$	0.5824			
$ heta_{i,g}$	_			
$\theta'_{C',t}$	0.6906			
θ' _{e,C'}	0.4661			
$ heta^{'}$ $_{F^{'}}$ $_{e}$	0.5339			
$\theta'_{i,F'}$	_			

Coloring				
λ 80/λ 5	44/38			

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 320 330 340 350 360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973 2200 0.934		
280 290 300 310 320 330 340 350 360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.993		
290 300 310 320 330 340 350 360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	,, (,,,,,,	τ 10mm
300 310 320 330 340 350 360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.997 1000 0.997 1400 0.994 1600 0.994 1600 0.994		
310 320 330 340 350 360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	290	
320 330 340 350 360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.994 1600 0.994 1600 0.994	300	
330 340 350 360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.993		
340 350 360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973		
350 360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.994 1600 0.994	330	
360 370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973		
370 380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 1000 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.993	350	
380 0.14 390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	360	
390 0.53 400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973		
400 0.77 420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	380	0.14
420 0.917 440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	390	0.53
440 0.952 460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	400	
460 0.967 480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	420	
480 0.975 500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	440	
500 0.982 550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	460	
550 0.992 600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	480	
600 0.994 650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	500	
650 0.995 700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	550	
700 0.996 800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	600	
800 0.997 900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	650	0.995
900 0.997 1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	700	0.996
1000 0.996 1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	800	
1200 0.997 1400 0.994 1600 0.992 1800 0.984 2000 0.973	900	0.997
1400 0.994 1600 0.992 1800 0.984 2000 0.973	1000	
1600 0.992 1800 0.984 2000 0.973	1200	0.997
1800 0.984 2000 0.973	1400	0.994
2000 0.973	1600	
	1800	0.984
2200 0.934	2000	0.973
	2200	0.934
2400 0.88	2400	0.88

S-NPH2

934187

Refractive Index	n_{d}	1.92286 1.922860	Abbe Number Vd	18.9 18.90	Dispersion NF-NC	0.04884 0.048838
Refractive Index	n_{e}	1.934291	Abbe Number ν_{e}	18.74	Dispersion $n_{F'} - n_{C'}$	0.049853

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.84214			
n 1970	1.97009	1.85093			
n 1530	1.52958	1.86146			
N 1129	1.12864	1.87327			
n _t	1.01398	1.87807			
n _s	0.85211	1.88758			
n _A ′	0.76819	1.89479			
n _r	0.70652	1.90181			
n _C	0.65627	1.90916			
n _C ′	0.64385	1.91127			
n _{He-Ne}	0.6328	1.91327			
n_D	0.58929	1.92245			
n _d	0.58756	1.92286			
n _e	0.54607	1.93429			
n _F	0.48613	1.95800			
n _F ′	0.47999	1.96112			
n _{He-Cd}	0.44157	1.98526			
n _g	0.435835	1.98972			
n_h	0.404656	2.01976			
n _i	0.365015	_			

Deviation of Re	Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$ 0.0012				
$\Delta heta_{C,A'}$	-0.0045			
$arDelta heta_{ extsf{g,d}}$	0.0436			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0386			
$arDelta heta_{i,g}$	<u> </u>			

Constants of Dispersion Formula				
A_1	2.03869510			
A_2	4.37269641•10 ⁻¹			
A_3	2.96711461			
B ₁	1.70796224•10 ⁻²			
B ₂	7.49254813•10 ⁻²			
B ₃	1.74155354•10 ²			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.58		
Remarks				

	Temperature Coefficients of Refractive Index							
Range of Tem	perature		dn / dt relative (10 ⁻⁶ / °C)					
(℃))	t	C'	He-Ne	D	е	F [′]	g
−40 ~	-20	-0.6	0.4	0.5	1.2	1.8	3.8	6.6
-20 ~	0	-0.6	0.6	0.7	1.4	2.1	4.3	7.4
0 ~	20	-0.4	0.9	1.0	1.8	2.5	4.8	8.1
20 ~	40	-0.2	1.1	1.3	2.1	2.8	5.4	8.8
40 ~	60	0.0	1.4	1.5	2.3	3.2	5.9	9.6
60 ~	80	0.2	1.6	1.8	2.7	3.6	6.4	10.3

Partial Dispersions				
n _C –n _t	0.031086			
n _C –n _A ′	0.014367			
n _d –n _C	0.013702			
n _e –n _C	0.025133			
n _g –n _d	0.066857			
n _g –n _F	0.031721			
n _h –n _g	0.030046			
n _i –n _g				
n _C ′–n _t	0.033200			
n _e –n _C ′	0.023019			
n _F ′–n _e	0.026834			
n _i –n _F ′	_			

Thermal Propertie	s
Strain Point StP (°C)	604
Annealing Point AP (°C)	631
Transformation Temperature Tg (°C)	650
Yield Point At (°C)	676
Softening Point SP (°C)	716
Expansion Coefficients (-30~+70°C)	67
α (10 ⁻⁷ /°C) (+100∼+300°C)	83
Thermal Conductivity k(W/m·K)	0.969

Mechani	ical Propertie	es
Young's Modulus E	$(10^8 N/m^2)$	991
Rigidity Modulus G	$(10^8 N/m^2)$	397
Poisson's Ratio	σ	0.249
Knoop Hardness	Hk	450[5]
Abrasion	Aa	224
Photoelastic Consta (nm/cm/10 ⁵ Pa		3.31

Water Resistance (Powder) Group RW (P) 1 Acid Resistance (Powder) Group RA (P) 1 Weathering Resistance (Surface) Group W (S) 1 Acid Resistance (Surface) Group SR 1.0	Chemical Properties				
Weathering Resistance (Surface) Group $W(s)$ 1 Acid Resistance (Surface) Group SR 1.0	Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Surface) Group SR 1.0	Acid Resistance (Powder) Group RA(P)	1			
110	Weathering Resistance (Surface) Group $W(s)$	1			
Dhaankata Daaistanaa DD 1 0	Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR 1.0	Phosphate Resistance PR	1.0			

Relative Partial Dispersions				
$ heta_{C,t}$	0.6365			
$ heta_{C,A'}$	0.2942			
$ heta_{\sf d,C}$	0.2806			
$ heta_{ extsf{e}, extsf{C}}$	0.5146			
$ heta_{ extsf{g,d}}$	1.3690			
$ heta_{ extsf{g}, extsf{F}}$	0.6495			
$ heta_{h,g}$	0.6152			
$ heta_{i,g}$				
$\theta'_{C',t}$	0.6660			
θ'e,C'	0.4617			
$ heta^{'}$ F $^{'}$,e	0.5383			
$\theta'_{i,F'}$	_			

Coloring				
λ 70/λ 5	44/39			

Internal Transmittance				
λ (nm)	τ 10mm			
280				
290				
300				
310				
320				
330				
340				
350				
360				
370				
380				
390	0.02			
400	0.24			
420	0.70			
440	0.85			
460	0.910			
480	0.936			
500	0.953			
550	0.978			
600	0.988			
650	0.990			
700	0.993			
800	0.996			
900	0.996			
1000	0.996			
1200	0.997			
1400	0.997			
1600	0.996			
1800	0.992			
2000	0.988			
2200	0.977			
2400	0.961			

617440

S-NBM51

Refractive Index	n _d	1.61340 1.613397	Abbe Number ν _d	44.3 44.27	Dispersion NF-NC	0.01386 0.013857
Refractive	ne	1.616690	Abbe Number ν_{e}	44.02	Dispersion n F' - n C'	0.014008

Refractive Indices					
n 2325	2.32542	1.57660			
n 1970	1.97009	1.58313			
n 1530	1.52958	1.59012			
n 1129	1.12864	1.59633			
n _t	1.01398	1.59841			
n _s	0.85211	1.60206			
n _A ′	0.76819	1.60459			
n _r	0.70652	1.60691			
n _C	0.65627	1.60925			
n _C ′	0.64385	1.60990			
n _{He-Ne}	0.6328	1.61052			
n_D	0.58929	1.61328			
n _d	0.58756	1.61340			
n _e	0.54607	1.61669			
n _F	0.48613	1.62311			
n _F ′	0.47999	1.62391			
n _{He-Cd}	0.44157	1.62986			
n _g	0.435835	1.63091			
n _h	0.404656	1.63755			
n _i	0.365015	1.64927			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$ 0.0281			
$\Delta heta_{C,A'}$ 0.0070			
$\Delta heta_{ extsf{g,d}}$ -0.0089			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0065		
$\Delta heta_{i,g}$	-0.0294		

Constants of Dispersion Formula			
A ₁	1.37023101		
A_2	1.77665568•10 ⁻¹		
A ₃	1.30515471		
B ₁	8.71920342•10 ⁻³		
B ₂	4.05725552•10 ⁻²		
B ₃	1.12703058•10 ²		

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.93		
Remarks				

Temperature Coefficients of Refractive Index								
Range of Tem			dr	ı / <mark>dt</mark> rela	itive (1	0 ⁻⁶ / °C)	
(℃)		t	C'	He-Ne	D	е	F	g
–40 ~	-20	3.0	3.4	3.4	3.6	3.8	4.2	4.7
–20 ~	0	3.1	3.6	3.6	3.7	3.9	4.4	4.9
0 ~	20	3.2	3.7	3.7	3.9	4.1	4.6	5.1
20 ~	40	3.2	3.8	3.8	4.0	4.2	4.8	5.3
40 ~	60	3.4	3.9	4.0	4.2	4.4	4.9	5.5
60 ~	80	3.5	4 1	4 1	4.3	4.5	5 1	5.7

Partial Dispersions				
n _C –n _t	0.010843			
n _C -n _A ′	0.004663			
n _d –n _C	0.004149			
n _e –n _C	0.007442			
n _g –n _d	0.017514			
n _g –n _F	0.007806			
n _h –n _g	0.006644			
n _i –n _g	0.018359			
n _C ′–n _t	0.011500			
n _e –n _C ′	0.006785			
n _F ′–n _e	0.007223			
n _i –n _F ′	0.025357			

Thermal Prope	erties
Strain Point StP (℃) 509
Annealing Point AP (°C) 531
Transformation Temperature Tg (°C) 554
Yield Point At (℃) 611
Softening Point SP (°C) 693
Expansion Coefficients (-30~+7	o°c) 65
α (10 ⁻⁷ /°C) (+100∼+30	0℃) 78
Thermal Conductivity k(W/m-	·κ) 0.904

Mechanical Properti	es
Young's Modulus E (10 ⁸ N/m ²)	817
Rigidity Modulus G (108N/m²)	329
Poisson's Ratio σ	0.243
Knoop Hardness Hk	570[6]
Abrasion Aa	121
Photoelastic Constant (nm/cm/10 ⁵ Pa) β	3.47

Chemical Properties	s
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	1
Weathering Resistance (Surface) Group $W(s)$	2
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

Relative Partial Dispersions				
$ heta_{C,t}$	0.7825			
$ heta_{C,A'}$	0.3365			
$ heta_{\sf d,C}$	0.2994			
$ heta_{ extsf{e}, extsf{C}}$	0.5371			
$ heta_{ extsf{g,d}}$	1.2639			
$ heta_{ extsf{g}, extsf{F}}$	0.5633			
$ heta_{h,g}$	0.4795			
$ heta_{i,g}$	1.3249			
θ´c΄,t	0.8210			
θ'e,C'	0.4844			
θ F',e	0.5156			
$\theta'_{i,F'}$	1.8102			

Coloring				
λ 80/λ 5	36/32			

Internal Transmittense					
Internal Transmittance					
λ (nm)	τ 10mm				
280					
290					
300					
310	0.00				
320	0.08				
330	0.48				
340	0.75				
350	0.87				
360	0.925				
370	0.953				
380	0.968				
390	0.978				
400	0.984				
420	0.989				
440	0.992				
460	0.993				
480	0.995				
500	0.997				
550	0.999				
600	0.999				
650	0.999				
700	0.999				
800	0.999				
900	0.999				
1000	0.999				
1200	0.999				
1400	0.998				
1600	0.994				
1800	0.987				
2000	0.972				
2200	0.89				
2400	0.76				

S-NBH5

658395

Refractive Index	n_{d}	1.65412 1.654115	Abbe Number ν _d	39.7 39.68	Dispersion NF-NC	0.01648 0.016484
Refractive Index	n _e	1.658026	Abbe Number $ u_{ m e}$	39.43	Dispersion $n_{F'} - n_{C'}$	0.016687

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.61410		
n 1970	1.97009	1.62070		
n 1530	1.52958	1.62787		
N 1129	1.12864	1.63448		
n _t	1.01398	1.63677		
n _s	0.85211	1.64090		
n _A ′	0.76819	1.64379		
n _r	0.70652	1.64649		
n _C	0.65627	1.64923		
n _C ′	0.64385	1.65000		
n _{He-Ne}	0.6328	1.65072		
n_D	0.58929	1.65397		
n _d	0.58756	1.65412		
n _e	0.54607	1.65803		
n _F	0.48613	1.66571		
n _F ′	0.47999	1.66668		
n _{He-Cd}	0.44157	1.67389		
n _g	0.435835	1.67517		
n_h	0.404656	1.68331		
n _i	0.365015	1.69791		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta$ C,t	0.0226		
$\Delta heta_{C,A'}$	0.0056		
$arDelta heta_{ extsf{g,d}}$	-0.0052		
$arDelta heta_{ extsf{g,F}}$	-0.0036		
$\Delta heta_{i,g}$	-0.0132		

Constants of Dispersion Formula			
A ₁	1.47544521		
A_2	1.93060095•10 ⁻¹		
A_3	1.50939010		
B ₁	9.55836740•10 ⁻³		
B ₂	4.60430483•10 ⁻²		
B ₃	1.26422746•10 ²		

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.02	
Remarks			

Temperature Coefficients of Refractive Index							
Range of Temperature $\frac{dn}{dt} = \frac{10^{-6}}{C}$							
(℃)	t	C	He-Ne	D	е	F [′]	g
−40 ~ −20	3.5	4.1	4.1	4.3	4.6	5.1	5.8
−20 ~ 0	3.6	4.2	4.2	4.5	4.7	5.3	6.0
0 ~ 20	3.7	4.3	4.4	4.6	4.9	5.5	6.2
20 ~ 40	3.8	4.4	4.5	4.8	5.0	5.7	6.4
40 ~ 60	3.9	4.6	4.6	4.9	5.1	5.8	6.6
60 ~ 80	3.9	47	47	5.0	5.3	6.0	6.8

Partial Dispersions			
0.012452			
0.005432			
0.004890			
0.008801			
0.021051			
0.009457			
0.008144			
0.022741			
0.013223			
0.008030			
0.008657			
0.031224			

Thermal Properties			
Strain Point	StP	(\mathcal{C})	489
Annealing Point	ΑP	(\mathcal{C})	511
Transformation Temperature	Tg	(\mathcal{C})	524
Yield Point	At	(\mathcal{C})	575
Softening Point	SP	(\mathcal{C})	645
Expansion Coefficients (-30~	+70°C)	66
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+	300℃)	84
Thermal Conductivity	(W/	m•K)	0.965

Mechani	cal Propertion	es
Young's Modulus E	$(10^8 N/m^2)$	902
Rigidity Modulus G	$(10^8N/m^2)$	361
Poisson's Ratio	σ	0.248
Knoop Hardness	Hk	580[6]
Abrasion	Aa	130
Photoelastic Constar (nm/cm/10 ⁵ Pa		3.22

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	1.0	

Relative Partial Dispersions			
$ heta_{C,t}$	0.7554		
$ heta_{C,A'}$	0.3295		
$ heta_{\sf d,C}$	0.2967		
$ heta_{ extsf{e}, extsf{C}}$	0.5339		
$ heta_{ extsf{g,d}}$	1.2771		
$ heta_{ extsf{g}, extsf{F}}$	0.5737		
$ heta_{h,g}$	0.4941		
$ heta_{i,g}$	1.3796		
θ´c′,t	0.7924		
$\theta'_{e,C'}$	0.4812		
$ heta^{'}$ F $'$,e	0.5188		
$\theta'_{i,F'}$	1.8712		

Coloring				
λ 80/λ 5	37/33			

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	
330	0.12
340	0.47
350	0.71
360	0.83
370	0.902
380	0.936
390	0.957
400	0.969
420	0.980
440	0.985
460	0.988
480	0.991
500	0.994
550	0.997
600	0.997
650	0.997
700	0.998
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.991
1600	0.994
1800	0.989
2000	0.976
2200	0.919
2400	0.80

S-NBH8

Refractive Index	n _d	1.72047 1.720467	Abbe Number νd	34.7 34.71	Dispersion NF-NC	0.02075 0.020758
Refractive	n_{e}	1.725385	Abbe Number ν_{e}	34.47	Dispersion $n_{F'} - n_{C'}$	0.021042

N1970 1.97009 1.6 N1530 1.52958 1.6 N1129 1.12864 1.6 nt 1.01398 1.6	67534 68198 68941 69665 69928 70416
N2325 2.32542 1.6 N1970 1.97009 1.6 N1530 1.52958 1.6 N1129 1.12864 1.6 nt 1.01398 1.6	88198 88941 89665 89928
n1970 1.97009 1.6 n1530 1.52958 1.6 n1129 1.12864 1.6 nt 1.01398 1.6	88198 88941 89665 89928
n1530 1.52958 1.6 n1129 1.12864 1.6 nt 1.01398 1.6	88941 89665 89928
n1129 1.12864 1.6 nt 1.01398 1.6	69665 69928
n _t 1.01398 1.6	9928
· ·	
n s 0.85211 1.7	70/16
	0+10
n _A ′ 0.76819 1 .7	70767
n _r 0.70652 1 .7	71099
n _C 0.65627 1.7	71437
n c′ 0.64385 1 .7	71532
n _{He-Ne} 0.6328 1 .7	71622
n _D 0.58929 1 .7	72029
n d 0.58756 1.7	72047
n e 0.54607 1 .7	72538
n _F 0.48613 1.7	73512
n _F ′ 0.47999 1 .7	73636
n _{He-Cd} 0.44157 1 .7	74559
n _g 0.435835 1.7	74723
n _h 0.404656 1 .7	75777
n i 0.365015 1 .7	77689

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"					
$\Delta heta_{ extsf{C,t}}$	0.0172				
$\Delta heta_{C,A'}$	0.0044				
$arDelta heta_{ extsf{g,d}}$	-0.0031				
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0019				
$\Delta heta_{i,g}$	-0.0056				

Constants of Dispersion Formula					
A ₁	1.61344136				
A_2	2.57295888•10 ⁻¹				
A ₃	1.98364455				
B ₁	1.06386752•10 ⁻²				
B ₂	4.87071624•10 ⁻²				
B ₃	1.59784404•10 ²				

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.19			
Remarks					

Temperature Coefficients of Refractive Index								
Range of Tem		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)		t	C´	He-Ne	D	е	F	g
−40 ~	-20	2.2	3.0	3.0	3.3	3.6	4.3	5.2
-20 ~	0	2.2	3.0	3.1	3.4	3.7	4.5	5.4
0 ~	20	2.2	3.1	3.1	3.4	3.8	4.6	5.5
20 ~	40	2.2	3.1	3.2	3.5	3.9	4.7	5.7
40 ~	60	2.3	3.2	3.3	3.6	3.9	4.9	5.9
60 ~	80	2 /	3 3	2 2	3.6	4.0	5.0	6 1

Partial Dispersions				
n _C –n _t	0.015084			
n _C –n _A ′	0.006690			
n _d –n _C	0.006102			
n _e –n _C	0.011020			
n _g –n _d	0.026767			
n _g –n _F	0.012111			
n _h –n _g	0.010534			
n _i –n _g	0.029660			
n _C ′–n _t	0.016041			
n _e –n _C ′	0.010063			
n _F ′–n _e	0.010979			
n _i –n _F ′	0.040530			

Thermal Properties					
Strain Point	StP	(°C)	476		
Annealing Point	AP	(°C)	499		
Transformation Temperature	e Tg	(°C)	508		
Yield Point	At	(°C)	555		
Softening Point	SP	(\mathcal{C})	611		
Expansion Coefficients	(-30~	+70°C)	81		
$\alpha (10^{-7}/^{\circ}C)$ (+	100~+	-300℃)	100		
Thermal Conductivity	k(W/	m·K)	1.052		

Mechanical Properties						
Young's Modulus E	$(10^8N/m^2)$	1017				
Rigidity Modulus G	$(10^8N/m^2)$	407				
Poisson's Ratio	σ	0.250				
Knoop Hardness	Hk	590[6]				
Abrasion	Aa	155				
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.90				

Chemical Properties					
Water Resistance (Powder) Group $RW(P)$	1				
Acid Resistance (Powder) Group RA(P)	1				
Weathering Resistance (Surface) Group $W(s)$	2				
Acid Resistance (Surface) Group SR	1.0				
Phosphate Resistance PR	1.0				

Relative Partial Dispersions					
$ heta_{C,t}$	0.7267				
$ heta_{C,A'}$	0.3223				
$ heta_{\sf d,C}$	0.2940				
$ heta_{ extsf{e}, extsf{C}}$	0.5309				
$ heta_{ extsf{g,d}}$	1.2895				
$ heta_{ extsf{g}, extsf{F}}$	0.5834				
$ heta_{h,g}$	0.5075				
$ heta_{i,g}$	1.4288				
$\theta_{i,g}$ $\theta'_{C',t}$	0.7623				
θ'e,C'	0.4782				
$ heta^{'}$ F $^{'}$,e	0.5218				
θίε΄	1 9261				

Colo	ring
λ 80/λ 5	40/33

Internal Tran	
λ (nm)	7 10mm
280	
290	
300	
310	
320	0.00
330	0.03
340	0.24
350	0.49
360	0.67
370	0.79
380	0.86
390	0.908
400	0.936
420	0.962
440	0.972
460	0.979
480	0.984
500	0.989
550	0.996
600	0.997
650	0.997
700	0.998
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.997
1600	0.997
1800	0.992
2000	0.984
2200	0.955
2400	0.88

S-NBH51

Refractive Index	n _d	1.74950 1.749505	Abbe Number Vd	35.3 35.33	Dispersion NF-NC	0.02121 0.021214
Refractive Index	ne	1.754531	Abbe Number $ u_{e}$	35.10	Dispersion $n_{F'} - n_{C'}$	0.021498

Partial Dispersions

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.70260		
n 1970	1.97009	1.70965		
n 1530	1.52958	1.71748		
N 1129	1.12864	1.72503		
n _t	1.01398	1.72776		
n _s	0.85211	1.73279		
n _A ′	0.76819	1.73640		
n _r	0.70652	1.73980		
n _C	0.65627	1.74326		
n _C ′	0.64385	1.74424		
n _{He-Ne}	0.6328	1.74516		
n_D	0.58929	1.74932		
n _d	0.58756	1.74950		
n _e	0.54607	1.75453		
n _F	0.48613	1.76447		
n _F ′	0.47999	1.76574		
n _{He-Cd}	0.44157	1.77515		
n _g	0.435835	1.77681		
n_h	0.404656	1.78753		
n _i	0.365015 1.806			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0184			
$\Delta heta_{C,A'}$	0.0047			
$arDelta heta_{ extsf{g,d}}$	-0.0039			
$arDelta heta_{ extsf{g,F}}$	-0.0025			
$\Delta heta_{i,g}$	-0.0085			

Constants of Dispersion Formula			
A_1	1.71203689		
A_2	2.55989588•10 ⁻¹		
A_3	1.81456998		
B ₁	1.07724134•10 ⁻²		
B ₂	4.88593504•10 ⁻²		
B ₃	1.36359013•10 ²		

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.29		
Remarks				

r di tidi 2 lopoi di di lo			
n _C –n _t	0.015503		
n _C –n _A ′	0.006860		
n _d –n _C	0.006246		
n _e -n _C	0.011272		
n _g –n _d	0.027310		
n _g –n _F	0.012342		
n _h –n _g	0.010718		
n _i –n _g	0.030139		
n _C '-n _t	0.016484		
n _e -n _C ′	0.010291		
n _F ′–n _e	0.011207		
n _i –n _F ′	0.041216		
Thermal Properties			

500
521
535
578
631
73
92
1.124

Mechani	ical Propertie	es
Young's Modulus E	$(10^8N/m^2)$	1097
Rigidity Modulus G	$(10^8N/m^2)$	438
Poisson's Ratio	σ	0.253
Knoop Hardness	Hk	610[6]
Abrasion	Aa	115
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.66

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	3			
Acid Resistance (Surface) Group SR	1.0			
Phosphate Resistance PR	1.0			

	Temperature Coefficients of Refractive Index						
Range of Temperature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$					
(℃)	t	t C' He-Ne D e F' g			g		
−40 ~ −20	4.1	4.9	4.9	5.2	5.5	6.3	7.1
−20 ~ 0	4.1	4.9	5.0	5.2	5.6	6.4	7.3
0 ~ 20	4.1	4.9	5.0	5.3	5.6	6.5	7.5
20 ~ 40	4.1	5.0	5.0	5.3	5.7	6.6	7.6
40 ~ 60	4.1	5.0	5.1	5.4	5.8	6.7	7.8
60 ~ 80	4.1	5.1	5.1	5.4	5.9	6.9	8.0

Relative Partial Dispersions				
$ heta_{C,t}$	0.7308			
$ heta_{C,A'}$	0.3234			
$ heta_{\sf d,C}$	0.2944			
$ heta_{ extsf{e}, extsf{C}}$	0.5313			
$ heta_{ extsf{g,d}}$	1.2874			
$ heta_{ extsf{g}, extsf{F}}$	0.5818			
$ heta_{h,g}$	0.5052			
$ heta_{i,g}$	1.4207			
θ´c′,t	0.7668			
θ'e,C'	0.4787			
$ heta^{'}$ F $^{'}$,e	0.5213			
θ' i,F'	1.9172			

Colo	ring
λ 80/λ 5	40/33

	•
Internal Tran	
λ (nm)	τ 10mm
280	
290	
300	
310	
320	0.00
330	0.02
340	0.22
350	0.49
360	0.68
370	0.80
380	0.87
390	0.918
400	0.943
420	0.967
440	0.976
460	0.982
480	0.987
500	0.991
550	0.997
600	0.997
650	0.998
700	0.998
800	0.999
900	0.998
1000	0.998
1200	0.998
1400	0.995
1600	0.994
1800	0.989
2000	0.980
2200	0.945
2400	0.87

		n _d			n _e			n _{a'}	n _c	n _{He-Ne}	n _F	n _a	n _h	n,	Powde	er Test	Su	ırface T	est			α()	X10 ⁷)	Knoop				Spe-		
GLASS TYPE	CODE	587.56	$ u_{\rm d}$	n _F -n _C	546.07	$ u_{\rm e} $	n _F -n _C	768.19	656.27	632.8	486.13	435.83	404.66	365.01	RW(P)	RA(P)	W(S)	SR	PR	Tg (°C)	At (°C)	-30∼ 70°C	100~ 300°C	Hard- ness Group	Abra- sion	Color- ing	Bub. Grp.	cific Grav- ity	Re- marks	GLASS TYPE
FSL3	465659	1.46450	66.0	0.00704	1.46618	65.8	0.00709	1.45978	1.46233	1.46300	1.46937	1.47312	1.47621	1.48142	6	6	3~4	52.0	2.0	363	447	79	93	340 3	131	34/29		2.25		FSL3
S-APL 1	517696	1.51728	69.6	0.00743	1.51905	69.3	0.00749	1.51232	1.51499	1.51570	1.52242	1.52638	1.52963	1.53515	3	3	2	1.0	1.0	465	511	96	115	380 4	264	35/31		2.59		S-APL 1
BSL 1	510636	1.51009	63.7	0.00801	1.51200	63.4	0.00808	1.50479	1.50764	1.50839	1.51565	1.51997	1.52353	1.52953	1	1	1	1.0	1.0	550	601	80	94	540 5	106	33/29		2.48		BSL1
BSL 3	498650	1.49831	65.1	0.00766	1.50014	64.8	0.00772	1.49318	1.49595	1.49668	1.50361	1.50769	1.51104	1.51670	3	4	2	3.0	2.0	538	590	58	65	470 5	90	33/29	В	2.36		BSL3
BSL21	504668	1.50378	66.8	0.00754	1.50558	66.6	0.00759	1.49873	1.50145	1.50217	1.50899	1.51299	1.51627	1.52182	1	1	1	1.0	1.0	573	648	62	70	540 5	95	32/29		2.46		BSL21
BSL22	518650	1.51821	65.0	0.00797	1.52011	64.9	0.00802	1.51285	1.51574	1.51651	1.52371	1.52795	1.53145	1.53736	3	1	1	1.0	1.0	580	622	71	82	570 6	98	34/29		2.52		BSL22
S-NSL2	516568	1.51602	56.8	0.00908	1.51818	56.6	0.00916	1.51012	1.51326	1.51411	1.52234	1.52731	1.53147	1.53860	3	1	1	1.0	1.0	481	530	88	108	510 5	101	35/32		2.47		S-NSL2
NSL7	511605	1.51112	60.5	0.00845	1.51314	60.2	0.00852	1.50560	1.50855	1.50934	1.51700	1.52159	1.52540	1.53189	3	1	2	1.0	1.0	515	567	90	102	510 5	111	33/30		2.49		NSL7
NSL33	515547	1.51454	54.7	0.00941	1.51678	54.4	0.00950	1.50847	1.51169	1.51257	1.52110	1.52628	1.53061	1.53810	3	2	2	1.0	1.0	450	504	91	107	420 4	102	33/30	В	2.60		NSL33
BAL 5	547536	1.54739	53.6	0.01022	1.54983	53.3	0.01032	1.54083	1.54431	1.54526	1.55453	1.56020	1.56496	1.57322	2	3	2	2.2	2.0	500	544	92	106	520 5	150	34/31		2.82		BAL 5
BAL 7	589512	1.58875	51.2	0.01151	1.59149	50.9	0.01162	1.58145	1.58530	1.58636	1.59681	1.60322	1.60862	1.61800	1	3	2	4.2	2.2	535	586	75	88	560 6	140	35/32		3.18		BAL7
BAL15	557587	1.55671	58.7	0.00948	1.55897	58.5	0.00956	1.55053	1.55383	1.55471	1.56331	1.56848	1.57277	1.58012	1	2	2	2.2	2.0	552	605	74	85	530 5	136	34/30		2.90		BAL15
S-BAL22	569631	1.56873	63.1	0.00901	1.57088	62.9	0.00908	1.56276	1.56597	1.56682	1.57498	1.57982	1.58382	1.59060	4	5	3~4	51.2	3.0	619	654	65	75	570 6	127	34/29		3.05		S-BAL22
S-BAL50	560612	1.55963	61.2	0.00915	1.56181	60.9	0.00922	1.55362	1.55683	1.55769	1.56598	1.57091	1.57499	1.58193	3	4	2	4.2	2.2	538	573	75	90	620 6	115	35/30		2.74		S-BAL50
S-PHM51	617628	1.61700	62.8	0.00982	1.61934	62.6	0.00990	1.61058	1.61401	1.61493	1.62383	1.62917	1.63359	1.64111	2	5	2	51.2	4.0	563	599	97	111	450 5	284	37/32		3.53		S-PHM51
BSM 6	614564	1.61375	56.4	0.01088	1.61634	56.1	0.01099	1.60673	1.61046	1.61147	1.62134	1.62731	1.63229	1.64083	1	4	2~3	51.2	2.0	655	682	66	77	520 5	141	36/30		3.60		BSM 6
BSM 7	607594	1.60729	59.4	0.01023	1.60973	59.1	0.01031	1.60064	1.60418	1.60514	1.61441	1.61997	1.62458	1.63246	2	4	3	51.2	2.2	667	699	65	76	540 5	131	35/29		3.51		BSM 7
BSM16C	620603	1.62041	60.3	0.01029	1.62287	59.9	0.01039	1.61369	1.61728	1.61824	1.62757	1.63316	1.63779	1.64568	3	5	3	52.2	3.2	651	683	63	74	530 5	132	35/29		3.57		BSM16C
S-BSM21	617540	1.61720	54.0	0.01142	1.61991	53.8	0.01153	1.60986	1.61375	1.61481	1.62517	1.63148	1.63677	1.64594	2	2	2~3	1.0	1.0	676	715	65	76	550 6	136	38/34		3.49		S-BSM21
BSM23	615512	1.61484	51.2	0.01201	1.61770	50.9	0.01214	1.60720	1.61124	1.61234	1.62325	1.62995	1.63559	1.64543	1	3	2	4.2	2.0	615	656	71	82	500 5	167	38/34		3.45		BSM23
BSM24	618551	1.61765	55.0	0.01122	1.62032	54.8	0.01133	1.61042	1.61425	1.61530	1.62547	1.63165	1.63681	1.64568	1	4	2	51.2	2.2	655	680	65	76	520 5	141	36/32		3.63		BSM24
S-BSM36	643584	1.64250	58.4	0.01101	1.64512	58.1	0.01110	1.63528	1.63914	1.64017	1.65015	1.65611	1.66104	1.66947	4	5	3	53.2	4.2	640	664	64	78	550 6	127	36/29		3.64		S-BSM36
S-BSM93	641569	1.64100	56.9	0.01126	1.64368	56.7	0.01136	1.63370	1.63759	1.63863	1.64885	1.65500	1.66013	1.66894	4	5	3	53.0	3.2	672	692	67	80	550 6	146	37/33		3.70		S-BSM93
PBL 1	548458	1.54814	45.8	0.01197	1.55099	45.5	0.01211	1.54058	1.54457	1.54566	1.55654	1.56331	1.56908	1.57927	2	1	1	1.0	1.0	442	485	84	97	430 4	106	33/31		2.93		PBL 1
PBL 2	541472	1.54072	47.2	0.01145	1.54344	47.0	0.01157	1.53347	1.53730	1.53834	1.54875	1.55519	1.56067	1.57032	2	1	1	1.0	1.0	435	480	88	104	420 4	113	33/30		2.86		PBL 2
PBL 6	532489	1.53172	48.9	0.01088	1.53430	48.6	0.01099	1.52480	1.52845	1.52945	1.53933	1.54541	1.55056	1.55959	2	1	2	1.0	1.0	414	463	84	99	430 4	115	33/31		2.80		PBL 6
PBL21	573426	1.57309	42.6	0.01346	1.57629	42.3	0.01363	1.56471	1.56911	1.57032	1.58257	1.59026	1.59685	1.60861	1	1	1	1.0	1.0	445	480	85	95	440 4	136	35/32		3.17		PBL21

		n _d			n _e			n _{a'}	n _c	n _{He-Ne}	n _F	n _q	n _h	n _i	Powde	er Test	Su	rface T	est			α()	X 10 ⁷)	Knoop				Spe-		
GLASS TYPE	CODE	587.56	$ u_{\rm d} $	n _F -n _C	546.07	$ u_{\rm e}$	n _F -n _C	768.19	656.27	632.8	486.13	435.83	404.66	365.01	RW(P)	RA(P)	W(S)	SR	PR	Tg (°C)	At (°C)	-30~ 70°C	100~ 300°C	Hard- ness Group	Abra- sion	Color- ing	Bub. Grp.	cific Grav- ity	Re- marks	GLASS TYPE
PBL22	589411	1.58921	41.1	0.01434	1.59261	40.8	0.01452	1.58028	1.58496	1.58625	1.59930	1.60754	1.61463	1.62729	1	1	1	1.0	1.0	445	480	91	100	460 5	148	35/32		3.30		PBL22
PBL25	581408	1.58144	40.7	0.01427	1.58482	40.5	0.01445	1.57258	1.57722	1.57851	1.59149	1.59969	1.60674	1.61936	2	1	1	1.0	2.0	440	468	87	98	460 5	130	34/31		3.23		PBL25
PBL26	567428	1.56732	42.8	0.01325	1.57047	42.5	0.01341	1.55904	1.56339	1.56459	1.57664	1.58420	1.59069	1.60222	2	1	1~2	1.0	1.0	432	466	89	104	420 4	135	34/31		3.10		PBL26
PBL27	575415	1.57501	41.5	0.01386	1.57830	41.2	0.01403	1.56637	1.57090	1.57215	1.58476	1.59270	1.59951	1.61169	1	1	1	1.0	1.0	445	501	76	90	440 4	137	34/31		3.20		PBL27
PBM 1	626357	1.62588	35.7	0.01754	1.63004	35.4	0.01778	1.61515	1.62074	1.62231	1.63828	1.64852	1.65741	1.67357	1	2	1~2	1.0	2.0	440	466	89	97	400 4	156	36/33		3.65		PBM 1
PBM 2	620363	1.62004	36.3	0.01710	1.62409	36.0	0.01734	1.60955	1.61502	1.61655	1.63212	1.64209	1.65073	1.66640	1	2	1	1.0	2.0	432	473	87	99	420 4	164	36/32		3.60		PBM 2
PBM 3	613370	1.61293	37.0	0.01657	1.61686	36.7	0.01679	1.60273	1.60806	1.60954	1.62463	1.63426	1.64261	1.65768	1	1~2	1	1.0	2.0	434	479	83	95	410 4	150	35/32		3.53		PBM 3
PBM 4	617366	1.61659	36.6	0.01683	1.62058	36.4	0.01707	1.60626	1.61165	1.61315	1.62848	1.63829	1.64679	1.66217	2	1	1	1.0	1.0	440	480	86	95	400 4	160	36/32		3.58		PBM 4
PBM 5	603380	1.60342	38.0	0.01587	1.60718	37.7	0.01609	1.59363	1.59875	1.60017	1.61462	1.62382	1.63177	1.64608	1	1	1	1.0	2.0	440	472	88	98	420 4	133	35/32		3.44		PBM 5
PBM 6	636354	1.63636	35.4	0.01798	1.64062	35.1	0.01824	1.62535	1.63109	1.63269	1.64907	1.65960	1.66875	1.68538	2	1	2	1.0	2.0	443	473	85	94	420 4	160	36/33		3.74		PBM 6
PBM 8	596392	1.59551	39.2	0.01518	1.59911	39.0	0.01538	1.58610	1.59103	1.59239	1.60621	1.61498	1.62253	1.63609	2	1	1	1.0	2.0	445	485	85	96	400 4	151	35/32		3.36		PBM 8
PBM 9	620381	1.62045	38.1	0.01628	1.62431	37.9	0.01649	1.61038	1.61565	1.61711	1.63193	1.64135	1.64949	1.66420	2	2	2	2.0	2.0	468	498	80	93	460 5	147	37/33		3.56		PBM 9
PBM22	648338	1.64769	33.8	0.01916	1.65223	33.6	0.01943	1.63602	1.64209	1.64379	1.66125	1.67253	1.68236	1.70031	1	1	2	2.2	2.0	430	465	88	98	400 4	160	36/33		3.85		PBM22
PBM25	673321	1.67270	32.1	0.02095	1.67766	31.9	0.02127	1.66001	1.66660	1.66845	1.68755	1.69996	1.71084	1.73081	1	2	1	2.2	2.0	442	469	86	95	390 4	152	37/34		4.07		PBM25
PBM27	640345	1.63980	34.5	0.01856	1.64419	34.2	0.01882	1.62847	1.63437	1.63602	1.65293	1.66383	1.67333	1.69062	2	1	2	1.0	2.0	455	488	88	98	400 4	174	36/33		3.78		PBM27
PBM28	689311	1.68893	31.1	0.02217	1.69417	30.9	0.02250	1.67553	1.68248	1.68444	1.70465	1.71782	1.72940	1.75073	2	2	2	2.2	2.0	443	470	86	94	370 4	167	39/34		4.22		PBM28
PBM28W	689311																									38/34				PBM28W
PBM35	699301	1.69895	30.1	0.02320	1.70443	29.9	0.02357	1.68502	1.69223	1.69426	1.71543	1.72933	1.74164	_	1	1	1	1.0	1.0	475	512	74	82	420 4	176	40/37		4.10		PBM35
PBM39	667331	1.66680	33.0	0.02018	1.67158	32.8	0.02047	1.65453	1.66091	1.66270	1.68109	1.69298	1.70337	1.72234	1	1	2	1.2	2.0	442	482	76	86	400 4	158	38/34		4.02		PBM39
S-TIM6	636354	1.63636	35.4	0.01798	1.64061	35.1	0.01824	1.62535	1.63110	1.63269	1.64908	1.65968	1.66899	_	2	1	1	1.0	1.0	597	627	83	102	530 5	148	39/36		2.79		S-TIM6
TIM11	621359	1.62096	35.9	0.01731	1.62505	35.6	0.01755	1.61032	1.61588	1.61743	1.63319	1.64339	1.65237	_	1	1	1	1.0	1.0	590	617	75	89	530 5	120	40/36		2.66		TIM11
PBH 1	717295	1.71736	29.5	0.02430	1.72311	29.3	0.02469	1.70275	1.71032	1.71245	1.73462	1.74917	1.76202	1.78585	1	3	1	3.2	2.0	431	470	80	89	390 4	176	39/34		4.47		PBH 1
PBH 3	740283	1.74000	28.3	0.02616	1.74618	28.1	0.02658	1.72435	1.73244	1.73473	1.75860	1.77437	1.78837	1.81450	2	3	2	3.2	3.0	433	468	83	92	360 4	182	41/35		4.66		PBH 3
PBH 3W	740283																									40/35				PBH 3W
PBH 4	755275	1.75520	27.5	0.02745	1.76168	27.3	0.02790	1.73883	1.74728	1.74967	1.77473	1.79132	1.80608	1.83371	1	3	2~3	4.2	1.0	453	477	79	89	350 4	183	41/35		4.78		PBH 4
PBH 4W	755275																									40/35				PBH 4W
PBH 6	805254	1.80518	25.4	0.03166	1.81265	25.2	0.03220	1.78647	1.79609	1.79883	1.82775	1.84706	1.86436	1.89714	1	3	3	51.2	3.2	455	476	81	90	340 3	212	42/36		5.19		PBH 6

		n _d			n _e			n _{A'}	n _c	n _{He-Ne}	n _F	n _a	n _h	n,	Powde	er Test	Sı	urface T	est			α()	X 10 ⁷)	Knoop				Spe-		
GLASS TYPE	CODE	587.56	$ u_{\rm d}$	n _F -n _C	546.07	$ u_{\rm e} $	n _F -n _C	768.19	656.27	632.8	486.13	435.83	404.66	365.01	RW(P)	RA(P)	W(S)	SR	PR	Tg (℃)	At (°C)	-30~ 70°C	100~ 300°C	Hard- ness Group	Abra- sion	Color- ing	Bub. Grp.	cific Grav- itv	Re- marks	GLASS TYPE
PBH 6W	805254	1.80518	25.4	0.03166	1.81265	25.2	0.03220	1.78647	1.79609	1.79883	1.82775	1.84706	1.86436	1.89714	1	3	3	51.2	3.2	455	476	81	90	340 3	212	41/36		5.19		PBH 6W
PBH10	728285	1.72825	28.5	0.02559	1.73429	28.2	0.02600	1.71295	1.72086	1.72309	1.74645	1.76191	1.77567	_	1	1	1	1.0	1.0	466	511	71	81	400 4	158	42/37		4.33		PBH10
PBH11	785257	1.78472	25.7	0.03052	1.79191	25.5	0.03105	1.76666	1.77596	1.77860	1.80648	1.82518	1.84202	_	1	2	1	1.2	1.2	467	503	74	84	390 4	202	43/38		4.79		PBH11
PBH11W	785257																									42/38				PBH11W
PBH13	741278	1.74077	27.8	0.02666	1.74706	27.6	0.02709	1.72487	1.73308	1.73541	1.75974	1.77590	1.79033	_	1	1	2	1.2	2.0	462	503	73	84	400 4	194	42/37		4.44		PBH13
PBH13W	741278																									41/37				PBH13W
PBH14	762266	1.76182	26.6	0.02869	1.76859	26.3	0.02918	1.74482	1.75358	1.75607	1.78227	1.79980	1.81556	_	1	1	1	1.2	2.0	485	526	71	82	390 4	185	43/38		4.55		PBH14
PBH14W	762266																									42/38				PBH14W
PBH18	722292	1.72151	29.2	0.02468	1.72734	29.0	0.02507	1.70671	1.71436	1.71652	1.73904	1.75381	1.76686	1.79110	1	2	2	3.2	2.2	440	466	83	94	360 4	168	40/35		4.50		PBH18
PBH23	785262	1.78470	26.2	0.02993	1.79177	26.0	0.03044	1.76696	1.77610	1.77869	1.80603	1.82424	1.84052	1.87136	1	2	2	3.2	3.0	456	476	75	87	350 4	184	42/37		4.99		PBH23
PBH23W	785262																									41/37				PBH23W
PBH25	762271	1.76180	27.1	0.02811	1.76843	26.9	0.02857	1.74508	1.75370	1.75615	1.78181	1.79884	1.81404	1.84272	1	3	2	3.2	2.2	465	488	75	85	370 4	200	42/37		4.79		PBH25
PBH53	847239	1.84666	23.9	0.03545	1.85501	23.7	0.03608	1.82583	1.83653	1.83958	1.87198	1.89382	1.91350	_	4	3	3	52.2	3.2	447	466	78	87	330 3	257	44/37		5.53		PBH53
PBH53W	847239																									43/37				PBH53W
PBH55	850241	1.84986	24.1	0.03533	1.85819	23.9	0.03595	1.82905	1.83975	1.84280	1.87508	1.89680	1.91635	_	1	4	2	53.2	4.0	409	440	80	92	330 3	287	41/36		5.51		PBH55
PBH56	841246	1.84139	24.6	0.03426	1.84947	24.4	0.03485	1.82116	1.83157	1.83453	1.86583	1.88682	1.90566	_	1	4				386	413	84	96	360 4	316	40/35		5.35		PBH56
PBH71	923213	1.92286	21.3	0.04335	1.93306	21.1	0.04418	1.89768	1.91057	1.91427	1.95392	1.98112	2.00599	_	1	4	2~3	53.4	4.0	389	408	89	101	300 3	445	41 38	В	6.05		PBH71
PBH72	915212	1.91536	21.2	0.04323	1.92552	21.0	0.04406	1.89028	1.90311	1.90679	1.94634	1.97354	1.99850	_	1	4	3	53.4	4.2	415	436	88	96	290 3	324	45 39		5.97		PBH72
S-TIH20	706302	1.70585	30.2	0.02334	1.71136	30.0	0.02371	1.69177	1.69908	1.70113	1.72242	1.73647	1.74899	_	1	1	1	1.0	1.0	625	660	81	95	580 6	147	41/36		3.00		S-TIH20
TIH53	847238	1.84666	23.8	0.03561	1.85504	23.6	0.03624	1.82571	1.83649	1.83956	1.87210	1.89421	1.91435	_	1	1	1	1.0	1.0	612	645	89	102	520 5	165	42 38	В	3.58		TIH53
TPH55	756251	1.75550	25.1	0.03014	1.76260	24.9	0.03068	1.73770	1.74688	1.74948	1.77702	1.79573	1.81279	1.84596	2	1	1~2	1.0	1.0	585	612	77	94	470 5	212	43/37		3.06		TPH55
BAM 5	607492	1.60729	49.2	0.01234	1.61023	48.9	0.01248	1.59947	1.60360	1.60473	1.61594	1.62287	1.62872	1.63896	1	4	2	52.2	2.2	540	588	81	91	500 5	173	36/32		3.39		BAM 5
BAM 8	624471	1.62374	47.1	0.01324	1.62689	46.8	0.01339	1.61538	1.61979	1.62099	1.63303	1.64049	1.64683	1.65800	1	4	3	52.2	2.2	570	608	63	74	490 5	142	36/33		3.62		BAM 8
BAM 9	643479	1.64328	47.9	0.01344	1.64648	47.5	0.01360	1.63481	1.63927	1.64049	1.65271	1.66029	1.66672	1.67801	1	4	3	52.2	3.2	615	643	69	80	490 5	174	37/33		3.85		BAM 9
BAM21	626392	1.62606	39.2	0.01597	1.62985	38.9	0.01618	1.61618	1.62135	1.62278	1.63732	1.64655	1.65451	1.66883	2	2	2	2.2	1.2	478	525	82	92	450 5	166	36/33		3.63		BAM21
BAM23	607403	1.60717	40.3	0.01508	1.61074	40.0	0.01527	1.59783	1.60272	1.60407	1.61780	1.62650	1.63399	1.64736	1	1	2	1.0	1.0	438	490	89	103	420 4	152	36/32		3.48		BAM23
BAH13	669450	1.66892	45.0	0.01487	1.67245	44.7	0.01505	1.65961	1.66450	1.66585	1.67937	1.68784	1.69507	1.70792	3	4	3	53.2	3.2	600	645	76	88	500 5	198	39/35		4.00		BAH13
BAH22	664358	1.66446	35.8	0.01856	1.66886	35.5	0.01882	1.65311	1.65902	1.66067	1.67758	1.68843	1.69786	1.71498	1	3	1~2	3.2	2.2	475	523	85	94	440 4	199	38/33		3.96		BAH22

		n _d			n,			n _a .	n _c	n _{He-Ne}	n _e	n,	n _h	n,	Powde	er Test	Su	ırface T	est			α()	X 10 ⁷)	Knoop				Spe-		
GLASS TYPE	CODE	587.56	$ u_{\rm d} $	n _F -n _C	546.07	$ u_{\rm e} $	n _F -n _C	768.19	656.27	632.8	486.13	435.83	404.66	365.01	RW(P)	RA(P)	W(s)	SR	PR	Tg (°C)	At (°C)	-30∼ 70°C	100~ 300°C	Hard- ness Group	Abra- sion	Color- ing	Bub. Grp.	cific Grav- ity	Re- marks	GLASS TYPE
BAH26	668419	1.66755	41.9	0.01593	1.67133	41.6	0.01613	1.65767	1.66284	1.66428	1.67877	1.68792	1.69579	1.70988	1	3	2	51.2	2.2	585	621	75	88	500 5	185	40/36		3.80		BAH26
BAH30	650394	1.65016	39.4	0.01651	1.65407	39.1	0.01673	1.64000	1.64530	1.64678	1.66181	1.67137	1.67962	1.69446	1	2	2~3	51.2	2.0	492	530	92	105	450 5	205	38/33		3.91		BAH30
S-BAH54	695422	1.69500	42.2	0.01648	1.69891	41.9	0.01668	1.68467	1.69010	1.69160	1.70658	1.71597	1.72398	1.73813	1	1	1	1.0	1.0	573	620	66	81	610 6	119	38/33		3.30		S-BAH54
BAH71	702401	1.70200	40.1	0.01751	1.70615	39.8	0.01774	1.69118	1.69683	1.69841	1.71434	1.72444	1.73314	1.74877	1	2	2	4.2	2.0	620	672	74	84	500 5	174	40/36		3.97		BAH71
BAH77	702412	1.70154	41.2	0.01703	1.70558	40.9	0.01724	1.69096	1.69650	1.69804	1.71353	1.72332	1.73174	1.74681	3	4	3	51.2	2.0	572	606	72	84	510 5	184	38/34		4.15		BAH77
BAH78	723380	1.72342	38.0	0.01902	1.72793	37.8	0.01928	1.71171	1.71782	1.71953	1.73684	1.74786	1.75738	1.77452	1	4	2~3	51.2	2.2	550	582	69	80	490 5	169	39/34		4.24		BAH78
S-LAL11	658573	1.65830	57.3	0.01148	1.66103	57.1	0.01158	1.65085	1.65481	1.65588	1.66629	1.67255	1.67775	1.68663	3	5	4	53.0	4.2	657	677	73	84	560 6	170	36/29		3.90		S-LAL11
S-LAL52	670573	1.67000	57.4	0.01168	1.67279	57.1	0.01179	1.66239	1.66645	1.66754	1.67813	1.68449	1.68976	1.69880	6	5	4	53.2	4.1	628	647	74	89	540 5	160	36/29		3.96		S-LAL52
S-LAL60	726536	1.72600	53.5	0.01356	1.72923	53.3	0.01367	1.71718	1.72188	1.72315	1.73544	1.74283	1.74898	1.75951	1	4	2	52.0	3.0	660	674	56	70	700 7	73	38/30		3.91		S-LAL60
S-LAH54	816443	1.81554	44.3	0.01839	1.81992	44.1	0.01859	1.80390	1.81004	1.81173	1.82843	1.83875	1.84748	1.86275	1	3	1	4.2	1.0	692	709	59	71	680 7	61	40/33		4.54		S-LAH54
S-LAH67	795453	1.79500	45.3	0.01755	1.79917	45.0	0.01774	1.78385	1.78974	1.79135	1.80729	1.81712	1.82542	1.83993	1	3	1	4.2	1.0	681	701	60	69	670 7	64	39/32		4.29		S-LAH67
LAH71	850323	1.85026	32.3	0.02634	1.85649	32.0	0.02673	1.83428	1.84258	1.84491	1.86892	1.88450	1.89819	_	1	4	2	51.2	1.0	598	633	74	83	460 5	151	48/36		4.81		LAH71
LAH78	901315	1.90135	31.5	0.02857	1.90811	31.3	0.02900	1.88401	1.89303	1.89556	1.92160	1.93859	1.95356	_	1	1	2	3.0	1.0	658	687	60	74	680 7	63	4036		4.48		LAH78
LAH80	885302	1.88500	30.2	0.02934	1.89193	29.9	0.02979	1.86725	1.87647	1.87906	1.90581	1.92336	1.93889	_	1	2	2	2.3	1.0	622	659	66	82	660 7	74	41 36		3.99		LAH80
S-YGH52	787500	1.78650	50.0	0.01573	1.79025	49.8	0.01588	1.77639	1.78175	1.78321	1.79748	1.80616	1.81340	1.82588	1	3	1	4.0	1.0	686	718	63	77	720 7	60	38/31	В	4.79		S-YGH52
SSL 2	529517	1.52944	51.7	0.01024	1.53188	51.5	0.01033	1.52280	1.52634	1.52729	1.53658	1.54222	1.54695	1.55516	4	3	1	1.0	1.0	473	523	54	60	470 5	114	35/30		2.57		SSL2
SSL 5	521526	1.52130	52.6	0.00992	1.52366	52.3	0.01001	1.51486	1.51829	1.51922	1.52821	1.53366	1.53822	1.54615	4	4	2	2.1	2.0	455	525	53	59	460 5	111	35/30		2.51		SSL 5
BPM 4	613438	1.61340	43.8	0.01399	1.61673	43.6	0.01414	1.60449	1.60921	1.61049	1.62320	1.63107	1.63776	1.64958	3	5	3~4	53.2	4.2	482	513	53	64	420 4	118	38/32		3.22		BPM 4
BPM51	613443	1.61340	44.3	0.01386	1.61669	44.0	0.01400	1.60454	1.60924	1.61051	1.62310	1.63088	1.63749	1.64914	4	6	1	53.2	4.2	483	508	52	62	420 4	120	38/31		3.24		BPM51
BPH 5	654397	1.65412	39.7	0.01648	1.65803	39.5	0.01667	1.64374	1.64921	1.65071	1.66569	1.67510	1.68318	1.69758	3	5	1~2	52.2	4.2	512	540	46	57	440 4	117	38/33		3.49		BPH 5
BPH 8	720347	1.72047	34.7	0.02075	1.72538	34.5	0.02103	1.70766	1.71436	1.71622	1.73511	1.74721	1.75771	1.77676	2	5	4	53.2	4.2	492	517	54	67	450 5	166	40/34		4.20		BPH 8
BPH35	645408	1.64450	40.8	0.01579	1.64825	40.6	0.01597	1.63455	1.63979	1.64123	1.65558	1.66456	1.67225	1.68590	3	5	3	52.1	4.2	485	519	48	62	470 5	111	39/33		3.46		BPH35
BPH40	677375	1.67650	37.5	0.01802	1.68077	37.3	0.01825	1.66529	1.67117	1.67280	1.68919	1.69958	1.70853	1.72459	2	5	3	52.1	4.1	484	508	53	64	460 5	116	40/33		3.76		BPH40
BPH45	719335	1.71850	33.5	0.02144	1.72358	33.3	0.02174	1.70536	1.71222	1.71413	1.73366	1.74623	1.75717	1.77703	2	4	3	52.0	4.3	457	482	57	69	460 5	131	42/35		4.16		BPH45
BPH50	740317	1.74000	31.7	0.02334	1.74552	31.5	0.02368	1.72580	1.73318	1.73525	1.75652	1.77030	1.78235	1.80447	1	5	2~3	52.2	4.2	477	506	56	65	430 4	142	42/35		4.48		BPH50
FTL8	511510	1.51118	51.0	0.01002	1.51356	50.7	0.01013	1.50481	1.50818	1.50910	1.51820	1.52386	1.52870	_	1	1	2	1.0	1.0	435	495	90	100	430 4	137	38/35		2.50		FTL8
S-FTL10	501564	1.50137	56.4	0.00889	1.50349	56.1	0.00898	1.49562	1.49868	1.49951	1.50757	1.51249	1.51663	1.52384	1	2	1	1.0	1.0	475	544	88	99	470 5	138	36/33		2.46		S-FTL10
FTM 8	533459	1.53256	45.9	0.01160	1.53532	45.6	0.01174	1.52528	1.52912	1.53017	1.54072	1.54739	1.55316	1.56366	1	1	1	1.0	1.0	470	528	85	97	450 5	147	38/35		2.53		FTM 8

L-BSL7

Refractive Index	n _d	1.51633 1.516330	Abbe Number νd	64.1 64.06	Dispersion NF-NC	0.00806 0.008060
Refractive Index	n_{e}	1.518253	Abbe Number ν_{e}	63.87	Dispersion $n_{F'} - n_{C'}$	0.008114

	Refractive Indi	ces
	λ (μ m)	
n 2325	2.32542	1.48810
n 1970	1.97009	1.49404
n 1530	1.52958	1.50020
n 1129	1.12864	1.50523
n _t	1.01398	1.50677
n _s	0.85211	1.50930
n _A ′	0.76819	1.51094
n _r	0.70652	1.51241
n _C	0.65627	1.51385
n _C ′	0.64385	1.51424
n _{He-Ne}	0.6328	1.51462
n_D	0.58929	1.51626
n _d	0.58756	1.51633
n _e	0.54607	1.51825
n _F	0.48613	1.52191
n _F ′	0.47999	1.52236
n _{He-Cd}	0.44157	1.52564
ng	0.435835	1.52620
n _h	0.404656	1.52975
n _i	0.365015	1.53574

Deviation of Re	elative Partial Dispersions $\Delta \theta$ from "Normal"
$\Delta heta_{C,t}$	0.0312
$\Delta heta_{C,A'}$	0.0068
$arDelta heta_{\sf g,d}$	-0.0066
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0045
$\Delta heta_{i,g}$	-0.0049

Consta	nts of Dispersion Formula
A ₁	9.17473918•10 ⁻¹
A_2	3.52687665•10 ⁻¹
A ₃	1.05579788
B ₁	5.27701411•10 ⁻³
B ₂	1.70809497•10 ⁻²
B ₃	1.04302583•10 ²

Other P	ropert	ies
Bubble Quality Group	В	
Specific Gravity	d	2.38
Remarks		

	Temperature Coefficients of Refractive Index														
Range of Temperature		dr	ı / dt rela	ative (1	0 ^{−6} / ℃)									
(℃)	t	C	He-Ne	D	е	F	g								
−40 ~ −20	4.0	4.3	4.3	4.4	4.5	4.7	4.9								
−20 ~ 0	4.1	4.4	4.4	4.5	4.6	4.8	5.1								
0 ~ 20	4.1	4.5	4.5	4.6	4.7	4.9	5.2								
20 ~ 40	4.2	4.6	4.6	4.7	4.8	5.1	5.3								
40 ~ 60	4.3	4.7	4.7	4.8	4.9	5.2	5.5								
60 ~ 80	4 4	4 7	4.8	4.9	5.0	5.3	5.6								

Partial Dispersions		
0.007081		
0.002904		
0.002484		
0.004407		
0.009874		
0.004298		
0.003544		
0.009541		
0.007479		
0.004009		
0.004105		
0.013387		

Thermal Properties			
Strain Point	StP	$(^{\circ}C)$	464
Annealing Point	ΑP	(\mathcal{C})	488
Transformation Temperature	Tg	(\mathcal{C})	498
Yield Point	At	(\mathcal{C})	549
Softening Point	SP	(\mathcal{C})	630
Expansion Coefficients	(- 30~	+70°C)	58
α (10 ⁻⁷ /°C) (+-	100~+	300℃)	71
Thermal Conductivity	k(W/	m•K)	1.169

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	793		
Rigidity Modulus G	$(10^8N/m^2)$	327		
Poisson's Ratio	σ	0.214		
Knoop Hardness	Hk	560[6]		
Abrasion	Aa	69		
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.93		

Chemical Properties		
2		
1		
3		
1.0		
1.2		

Relative Partial Dispersions				
$ heta_{C,t}$	0.8785			
$ heta_{C,A'}$	0.3603			
$ heta_{\sf d,C}$	0.3082			
$ heta_{ extsf{e}, extsf{C}}$	0.5468			
$ heta_{ extsf{g,d}}$	1.2251			
$ heta_{ extsf{g}, extsf{F}}$	0.5333			
$ heta_{h,g}$	0.4397			
$\theta_{i,g}$	1.1837			
θ´c′,t	0.9217			
θ'e,C'	0.4941			
$ heta^{'}$ F $^{'}$,e	0.5059			
$\theta'_{i,F'}$	1.6499			

Coloring		
λ 80/λ 5	33/30	

Internal Transmittance				
λ (nm)	τ 10mm			
280				
290				
300	0.08			
310	0.40			
320	0.71			
330	0.87			
340	0.942			
350	0.973			
360	0.986			
370	0.992			
380	0.994			
390	0.996			
400	0.997			
420	0.997			
440	0.997			
460	0.997			
480	0.998			
500	0.999			
550	0.999			
600	0.999			
650	0.999			
700	0.999			
800	0.999			
900	0.999			
1000	0.999			
1200	0.999			
1400	0.974			
1600	0.994			
1800	0.988			
2000	0.974			
2200	0.87			
2400	0.80			

L-PHL1

Refractive Index	n _d	1.56455 1.564550	Abbe Number Vd	60.8 60.82	Dispersion NF-NC	0.00928 0.009283
Refractive Index	ne	1.566764	Abbe Number ν_{e}	60.51	Dispersion $n_{F'} - n_{C'}$	0.009366

Refractive Indices			
	λ (μ m)		
n 2325	2.32542	1.53937	
n 1970	1.97009	1.54382	
n 1530	1.52958	1.54859	
n 1129	1.12864	1.55285	
n _t	1.01398	1.55428	
ns	0.85211	1.55680	
n _A ′	0.76819	1.55854	
n _r	0.70652	1.56014	
n _C	0.65627	1.56174	
n _C ′	0.64385	1.56218	
n _{He-Ne}	0.6328	1.56260	
n_D	0.58929	1.56447	
n _d	0.58756	1.56455	
n _e	0.54607	1.56676	
n _F	0.48613	1.57102	
n _F ′	0.47999	1.57155	
n _{He-Cd}	0.44157	1.57541	
ng	0.435835	1.57608	
n _h	0.404656	1.58029	
n _i	0.365015	1.58747	

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$ -0.0289			
$\Delta heta_{C,A'}$	_{c,A} ′ -0.0056		
$\Delta heta_{ extsf{g,d}}$ 0.0041			
$\Delta heta_{ exttt{g,F}}$ 0.0026			
$\Delta \theta_{\rm i,g}$ 0.0111			

Constants of Dispersion Formula		
A ₁	1.07570798	
A_2	3.35020347•10 ⁻¹	
A ₃	8.10997558•10 ⁻¹	
B ₁	5.91654042•10 ⁻³	
B ₂	2.03432769•10 ⁻²	
B ₃	1.06182158•10 ²	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	3.18
Remarks		

		Tempe	rature Co	efficients o	of Refract	ive Index		
Range of Tem	perature		dr	ı / dt rela	ative (1	0 ^{−6} / ℃)	
(℃)		t	C	He-Ne	D	е	F	g
−40 ~	-20	-0.7	-0.4	-0.3	-0.2	0.0	0.3	0.7
−20 ~	0	-0.7	-0.4	-0.3	-0.2	0.0	0.3	0.7
0 ~	20	-0.8	-0.4	-0.3	-0.2	0.0	0.3	0.7
20 ~	40	-0.8	-0.4	-0.4	-0.2	-0.1	0.3	0.7
40 ~	60	-0.9	-0.4	-0.4	-0.2	-0.1	0.3	0.7
60 ~	80	-1.0	-0.5	-0.4	-0.3	-0.1	0.4	0.8

Partial Dispersions			
n _C –n _t	0.007455		
n _C -n _A ′	0.003193		
n _d –n _C	0.002815		
n _e –n _C	0.005029		
n _g –n _d	0.011534		
n _g –n _F	0.005066		
n _h –n _g	0.004209		
n _i –n _g	0.011388		
n _C ′–n _t	0.007903		
n _e –n _C ′	0.004581		
n _F ′–n _e	0.004785		
n _i –n _F ′	0.015923		

Thermal Properties				
Strain Point	StP	$(^{\circ}C)$	308	
Annealing Point	AP	(\mathcal{C})	331	
Transformation Temperatur	e Tg	(\mathcal{C})	347	
Yield Point	At	(\mathcal{C})	379	
Softening Point	SP	(\mathcal{C})	408	
Expansion Coefficients	(-30~	+70°C)	105	
$\alpha (10^{-7})^{\circ}C)$ (+	100~+	300℃)	140	
Thermal Conductivity $k(W/m \cdot K)$			0.627	

Mechanic	al Propertie	es
Young's Modulus E ($10^8 N/m^2$	589
Rigidity Modulus G ($10^8 N/m^2$	230
Poisson's Ratio	σ	0.280
Knoop Hardness	Hk	350[4]
Abrasion	Aa	547
Photoelastic Constant (nm/cm/10 ⁵ Pa)	β	3.29

Chemical Properties	s
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	5
Weathering Resistance (Surface) Group $W(s)$	3
Acid Resistance (Surface) Group SR	53.3
Phosphate Resistance PR	4.3

Relative Partial	Dispersions
$ heta_{C,t}$	0.8031
$ heta_{C,A'}$	0.3440
$ heta_{\sf d,C}$	0.3032
$ heta_{ extsf{e}, extsf{C}}$	0.5417
$ heta_{ extsf{g,d}}$	1.2425
$ heta_{ extsf{g}, extsf{F}}$	0.5457
$ heta_{h,g}$	0.4534
$ heta_{i,g}$	1.2268
$\theta'_{C',t}$	0.8438
$ heta'_{e,C'}$	0.4891
$ heta^{'}$ F $^{'}$,e	0.5109
$\theta'_{i,F'}$	1.7001

Colo	ring
λ 80/λ 5	34/31

Internal Transmittance λ (nm) τ 10mm 280 290 300 310 0.06 320 0.37 330 0.70 340 0.88 350 0.952 360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.996 460 0.997 480 0.997 500 0.998 550 0.999 600 0.999 700 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86 2400 0.83		
280 290 300 310 0.06 320 0.37 330 0.70 340 0.88 350 0.952 360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 440 0.996 460 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 1000 0.999 1200 0.999 1400 0.986 1800 0.955 2000 0.923 2200 0.86	Internal Tran	smittance
290 300 310 0.06 320 0.37 330 0.70 340 0.88 350 0.952 360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.986 1800 0.955 2000 0.923 2200 0.86	7. ()	τ 10mm
300 310 0.06 320 0.37 330 0.70 340 0.88 350 0.952 360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.986 1800 0.955 2000 0.923 2200 0.86		
310 0.06 320 0.37 330 0.70 340 0.88 350 0.952 360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.997 500 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 1000 0.999 1200 0.999 1400 0.986 1800 0.955 2000 0.923 2200 0.86		
320 0.37 330 0.70 340 0.88 350 0.952 360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 1000 0.999 1200 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86		
330 0.70 340 0.88 350 0.952 360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86		
340 0.88 350 0.952 360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.986 1800 0.955 2000 0.923 2200 0.86		0.37
350 0.952 360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.997 480 0.997 500 0.998 550 0.999 600 0.999 700 0.999 800 0.999 900 0.999 1000 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86		0.70
360 0.981 370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.996 460 0.997 480 0.997 500 0.998 550 0.999 600 0.999 700 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86		0.88
370 0.990 380 0.994 390 0.996 400 0.996 420 0.996 440 0.996 460 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	350	0.952
380 0.994 390 0.996 400 0.996 420 0.996 440 0.996 460 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	360	0.981
390 0.996 400 0.996 420 0.996 440 0.996 440 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 900 0.999 1200 0.999 1200 0.999 1400 0.998 1600 0.998 1600 0.998 1600 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	370	0.990
400 0.996 420 0.996 440 0.996 460 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	380	0.994
420 0.996 440 0.996 460 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	390	0.996
440 0.996 460 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	400	0.996
460 0.997 480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 900 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	420	0.996
480 0.997 500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 900 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	440	0.996
500 0.998 550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	460	0.997
550 0.999 600 0.999 650 0.999 700 0.999 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	480	0.997
600 0.999 650 0.999 700 0.999 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	500	0.998
650 0.999 700 0.999 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	550	0.999
700 0.999 800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	600	0.999
800 0.999 900 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	650	0.999
900 0.999 1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	700	0.999
1000 0.999 1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	800	0.999
1200 0.999 1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	900	0.999
1400 0.998 1600 0.986 1800 0.955 2000 0.923 2200 0.86	1000	0.999
1600 0.986 1800 0.955 2000 0.923 2200 0.86	1200	0.999
1800 0.955 2000 0.923 2200 0.86	1400	0.998
2000 0.923 2200 0.86	1600	0.986
2200 0.86	1800	0.955
	2000	0.923
2400 0.83	2200	0.86
2.00	2400	0.83

L-PHL2

Refractive Index	n _d	1.55880 1.558800	Abbe Number ν _d	62.5 62.55	Dispersion NF-NC	0.00894 0.008933
Refractive Index	ne	1.560931	Abbe Number $ u_{e}$	62.26	Dispersion $n_{F'} - n_{C'}$	0.009009

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.53345		
n 1970	1.97009	1.53809		
n 1530	1.52958	1.54303		
n 1129	1.12864	1.54736		
n _t	1.01398	1.54879		
n _s	0.85211	1.55129		
n _A ′	0.76819	1.55298		
n _r	0.70652	1.55454		
n _C	0.65627	1.55608		
n _C ′	0.64385	1.55652		
n _{He-Ne}	0.6328	1.55692		
n_D	0.58929	1.55872		
n _d	0.58756	1.55880		
n _e	0.54607	1.56093		
n _F	0.48613	1.56502		
n _F ′	0.47999	1.56552		
n _{He-Cd}	0.44157	1.56922		
ng	0.435835	1.56987		
n_h	0.404656	1.57389		
n _i	0.365015	1.58073		

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.0242			
$\Delta heta_{C,A'}$	-0.0048			
$arDelta heta_{ extsf{g,d}}$	0.0041			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0027			
$\Delta heta_{i,g}$	0.0154			

Constants of Dispersion Formula				
A_1	1.08137176			
A_2	3.13257660•10 ⁻¹			
A_3	8.79192863•10 ⁻¹			
B ₁	5.94210177•10 ⁻³			
B ₂	1.98011567•10 ⁻²			
B ₃	1.09893817•10 ²			

Other Properties			
Bubble Quality Group	В		
Specific Gravity	d	3.03	
Remarks			

60 ~ 80 -0.5 -0.1 -0.1 0.0

Remarks		I P	hosphate I	Resistance	PR	4.1		
		Tempe	rature Co	efficients o	of Refract	ive Index		
Range of Tem	perature	rempe		ı / dt rela		0 ⁻⁶ /°C)	
(\mathcal{C})		t	C´	He-Ne	D	е	F	g
−40 ~	-20	-0.3	0.0	0.0	0.1	0.3	0.6	0.9
−20 ~	0	-0.4	0.0	0.0	0.1	0.3	0.6	0.9
0 ~	20	-0.4	-0.1	0.0	0.1	0.2	0.6	0.9
20 ~	40	-0.4	-0.1	-0.1	0.1	0.2	0.6	0.9
40 ~	60	-0.5	-0.1	-0.1	0.1	0.2	0.6	0.9

Partial Dispersions			
n _C –n _t	0.007289		
n _C –n _A ′	0.003099		
n _d –n _C	0.002717		
n _e –n _C	0.004848		
n _g –n _d	0.011067		
n _g –n _F	0.004851		
n _h –n _g	0.004022		
n _i –n _g	0.010868		
n _C '-n _t	0.007721		
n _e –n _C ′	0.004416		
n _F ′–n _e	0.004593		
n _i –n _F ′	0.015211		

al Pro	perties	;
StP	(\mathcal{C})	337
ΑP	(\mathcal{C})	359
- Tg	(\mathcal{C})	381
At	(℃)	407
SP	(°C)	440
(-30~	+70°C)	99
100~+	-300℃)	130
k(W/	m·K)	0.683
	StP AP Tg At SP (-30~	AP (°C) a Tg (°C) At (°C)

Mechani	cal Propertie	es
Young's Modulus E	$(10^8 N/m^2)$	645
Rigidity Modulus G	$(10^8 N/m^2)$	253
Poisson's Ratio	σ	0.272
Knoop Hardness	Hk	370[4]
Abrasion	Aa	468
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.99

Chemical Properties	S
Water Resistance (Powder) Group $$ RW (P)	1
Acid Resistance (Powder) Group RA(P)	5
Weathering Resistance (Surface) Group $W(s)$	3 ~ 4
Acid Resistance (Surface) Group SR	51.1
Phosphate Resistance PR	4.1

0.2

0.6 1.0

Relative Partial Dispersions				
$ heta_{C,t}$	0.8160			
$ heta_{C,A'}$	0.3469			
$ heta_{\sf d,C}$	0.3042			
$ heta_{ extsf{e}, extsf{C}}$	0.5427			
$ heta_{ extsf{g,d}}$	1.2389			
$ heta_{ extsf{g}, extsf{F}}$	0.5430			
$ heta_{h,g}$	0.4502			
$ heta_{i,g}$	1.2166			
θ΄c΄,t	0.8570			
θ'e,C'	0.4902			
$ heta^{'}$ F $^{'}$,e	0.5098			
$\theta'_{i,F'}$	1.6884			

Colo	ring
λ 80/λ 5	34/30

Internal Trar	semittance
λ (nm)	T 10mm
280	c romm
290	
300	0.01
310	0.16
320	0.49
330	0.75
340	0.89
350	0.954
360	0.980
370	0.991
380	0.995
390	0.997
400	0.997
420	0.997
440	0.997
460	0.997
480	0.997
500	0.998
550	0.999
600	0.999
650	0.998
700	0.999
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.998
1600	0.989
1800	0.964
2000	0.939
2200	0.89
2400	0.86

L-BAL35

591609

Refractive Index	n _d	1.58913 1.589130	Abbe Number $ u_{ m d} $	61.2 61.15	Dispersion NF-NC	0.00963 0.009634
Refractive Index	ne	1.591428	Abbe Number ν_{e}	60.93	Dispersion $n_{F^{'}} - n_{C^{'}}$	0.009706

Partial Dispersions

0.008230

 n_{C} – n_{t}

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.55775		
n 1970	1.97009	1.56407		
n 1530	1.52958	1.57069		
n 1129	1.12864	1.57622		
n _t	1.01398	1.57795		
n _s	0.85211	1.58085		
n _A ′	0.76819	1.58276		
n _r	0.70652	1.58448		
n _C	0.65627	1.58618		
n _C ′	0.64385	1.58665		
n _{He-Ne}	0.6328	1.58709		
n_D	0.58929	1.58904		
n _d	0.58756	1.58913		
n _e	0.54607	1.59143		
n _F	0.48613	1.59581		
n _F ′	0.47999	1.59636		
n _{He-Cd}	0.44157	1.60031		
ng	0.435835	1.60100		
n _h	0.404656	1.60528		
n _i	0.365015	1.61256		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$			
$\Delta heta_{C,A'}$	0.0048		
$arDelta heta_{ extsf{g,d}}$	-0.0059		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0043		
$\Delta heta_{i,g}$	-0.0124		

Constants of Dispersion Formula				
A_1	1.16262630			
A_2	3.25661051•10 ⁻¹			
A_3	1.35132486			
B ₁	1.25957437•10 ⁻²			
B ₂	-3.26911050•10 ⁻³			
B ₃	1.19214596•10 ²			

Other P	ropert	ies
Bubble Quality Group	В	
Specific Gravity	d	2.82
Remarks		FG

n _C -n _A ′	0.003418
n _d –n _C	0.002952
n _e –n _C	0.005250
n _g –n _d	0.011867
n _g –n _F	0.005185
n _h –n _g	0.004288
n _i –n _g	0.011567
n _C ′–n _t	0.008702
n _e –n _C ′	0.004778
n _F ′–n _e	0.004928
n _i –n _F ′	0.016208

Thermal Properties				
Strain Point	StP	(\mathcal{C})	489	
Annealing Point	AP	(\mathcal{C})	520	
Transformation Temperature	g Tg	(\mathcal{C})	527	
Yield Point	At	(\mathcal{C})	567	
Softening Point	SP	(°C)	619	
Expansion Coefficients	(-30~	+70°C)	66	
α (10 ⁻⁷ /°C) (+	100~+	300℃)	81	
Thermal Conductivity	k(W/	m•K)	1.126	

Mechani	cal Propertie	es
Young's Modulus E	$(10^8 N/m^2)$	1008
Rigidity Modulus G	$(10^8 N/m^2)$	403
Poisson's Ratio	σ	0.252
Knoop Hardness	Hk	630[6]
Abrasion	Aa	100
Photoelastic Constar (nm/cm/10 ⁵ Pa		2.29

Chemical Properties	S
Water Resistance (Powder) Group $RW(P)$	2
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	3
Acid Resistance (Surface) Group SR	52.2
Phosphate Resistance PR	3.2

	Temperature Coefficients of Refractive Index							
Range of Temp	oerature		dr	n / dt rela	itive (1	0 ⁻⁶ / °C)	
(\mathcal{C})		t	C´	He-Ne	D	е	F	g
−40 ~	-20	3.9	4.3	4.3	4.4	4.5	4.8	5.1
−20 ~	0	3.9	4.3	4.3	4.5	4.6	4.9	5.2
0 ~	20	4.0	4.4	4.4	4.5	4.7	5.0	5.3
20 ~	40	4.0	4.4	4.5	4.6	4.7	5.1	5.4
40 ~	60	4.1	4.5	4.5	4.7	4.8	5.2	5.5
60 ~	80	4.1	4.5	4.6	4.8	4.9	5.2	5.6

Relative Partial Dispersions				
$ heta_{C,t}$	0.8543			
$ heta_{C,A'}$	0.3548			
$ heta_{\sf d,C}$	0.3064			
$ heta_{ extsf{e}, extsf{C}}$	0.5449			
$ heta_{ extsf{g,d}}$	1.2318			
$ heta_{ extsf{g}, extsf{F}}$	0.5382			
$ heta_{h,g}$	0.4451			
$ heta_{i,g}$	1.2006			
θ´C΄,t	0.8966			
θ'e,C'	0.4923			
$ heta^{'}$ F $^{'}$,e	0.5077			
$\theta'_{i,F'}$	1.6699			

Colo	ring
λ 80/λ 5	35/30

internal frai	smittance
λ (nm)	τ 10mm
280	
290	
300	0.06
310	0.27
320	0.53
330	0.73
340	0.85
350	0.922
360	0.956
370	0.975
380	0.984
390	0.989
400	0.992
420	0.993
440	0.993
460	0.995
480	0.996
500	0.998
550	0.999
600	0.998
650	0.998
700	0.998
800	0.999
900	0.998
1000	0.997
1200	0.997
1400	0.991
1600	0.994
1800	0.989
2000	0.978
2200	0.934
2400	0.81

585591

L-BAL42

Refractive Index	n _d	1.58313 1.583126	Abbe Number ν _d	59.4 59.38	Dispersion NF-NC	0.00982 0.009820
Refractive	n _e	1.585468	Abbe Number ν _e	59.13	Dispersion NF' -NC'	0.009901

Partial Dispersions

	fractive Indi $\lambda~(~\mu~{ m m})$	ces
n 2225	λ (μ m)	
n 2225 (
112323 2	2.32542	1.55402
n 1970	1.97009	1.55949
n 1530	1.52958	1.56533
n 1129	1.12864	1.57038
n _t	1.01398	1.57201
n _s (0.85211	1.57482
n _A ′ (0.76819	1.57671
n _r (0.70652	1.57843
n _C (0.65627	1.58013
n _C ′ (0.64385	1.58061
n _{He-Ne} (0.6328	1.58106
n_D ().58929	1.58304
n _d (0.58756	1.58313
n _e (0.54607	1.58547
n _F (0.48613	1.58995
n _F ′ ().47999	1.59051
n _{He-Cd} ().44157	1.59457
n _g (0.435835	1.59528
	0.404656	1.59969
n _i (0.365015	1.60719

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0018	
$\Delta heta_{C,A'}$	0.0010	
$arDelta heta_{ extsf{g,d}}$	-0.0038	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0031	
$\Delta heta_{i,g}$	-0.0150	

Constants of Dispersion Formula		
A ₁	1.39528097	
A_2	7.25519520•10 ⁻²	
A ₃	1.66335848	
B ₁	1.11862030•10 ⁻²	
B ₂	-2.46748575•10 ⁻²	
B ₃	1.67717958•10 ²	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.05		
Remarks		FG		

	-		
n _C –n _t	0.008122		
n _C –n _A ′	0.003426		
n _d –n _C	0.002992		
n _e –n _C	0.005334		
n _g –n _d	0.012153		
n _g –n _F	0.005325		
n _h –n _g	0.004412		
n _i –n _g	0.011910		
n _C '-n _t	0.008599		
n _e –n _C ′	0.004857		
n _F ′–n _e	0.005044		
n _i –n _F ′	0.016677		
T. 15 ()			

Thermal Properties			
Strain Point	StP	(\mathcal{C})	467
Annealing Point	AP	(\mathcal{C})	494
Transformation Temperature	g Tg	(\mathcal{C})	506
Yield Point	At	(\mathcal{C})	538
Softening Point	SP	(\mathcal{C})	607
Expansion Coefficients	(-30~	+70°C)	72
α (10 ⁻⁷ /°C) (+	100~+	-300℃)	88
Thermal Conductivity	k(W/	m·K)	1.028

Mechanic	al Propertie	es
Young's Modulus E	$(10^8 N/m^2)$	891
Rigidity Modulus G	$(10^8 N/m^2)$	357
Poisson's Ratio	σ	0.247
Knoop Hardness	Hk	590[6]
Abrasion	Aa	113
Photoelastic Constant (nm/cm/10 ⁵ Pa)	β	

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	2	
Acid Resistance (Powder) Group RA(P)	4	
Weathering Resistance (Surface) Group $W(s)$	1~2	
Acid Resistance (Surface) Group SR	5.2	
Phosphate Resistance PR	2.0	

	Temperature Coefficients of Refractive Index						
Range of Temperature	Range of Temperature $\frac{dn}{dt}$ relative $\frac{(10^{-6})^{\circ}C}{}$						
(℃)	t	C	He-Ne	D	е	F	g
−40 ~ −20		3.2	3.2	3.3	3.4	3.8	4.1
−20 ~ 0		3.2	3.2	3.3	3.5	3.8	4.1
0 ~ 20		3.2	3.2	3.3	3.5	3.8	4.2
20 ~ 40		3.2	3.2	3.3	3.5	3.8	4.2
40 ~ 60		3.2	3.2	3.3	3.5	3.9	4.2
60 ~ 80		3.2	3.2	3.3	3.5	3.9	4.3

Relative Partial Dispersions				
$ heta_{C,t}$	0.8271			
$ heta_{C,A'}$	0.3489			
$ heta_{\sf d,C}$	0.3047			
$ heta_{ extsf{e}, extsf{C}}$	0.5432			
$ heta_{ extsf{g,d}}$	1.2376			
$ heta_{ extsf{g}, extsf{F}}$	0.5423			
$ heta_{h,g}$	0.4493			
$ heta_{i,g}$	1.2128			
θ' c'.t	0.8685			
θ'e,C'	0.4906			
θ F',e	0.5094			
$\theta'_{i,F'}$	1.6844			

Coloring				
λ 80/λ 5	34/29			

Internal Tran	
λ (nm)	τ 10mm
280	
290	0.05
300	0.19
310	0.41
320	0.63
330	0.79
340	0.89
350	0.940
360	0.968
370	0.981
380	0.987
390	0.992
400	0.994
420	0.994
440	0.995
460	0.996
480	0.997
500	0.998
550	0.999
600	0.998
650	0.998
700	0.998
800	0.999
900	0.998
1000	
1200	
1400	
1600	
1800	
2000	
2200	
2400	

L-TIM28

694308

Refractive Index	n _d	1.68893 1.688931	Abbe Number $ u_{ m d} $	31.1 31.08	Dispersion NF-NC	0.02217 0.022168
Refractive Index	n_{e}	1.694169	Abbe Number ν_{e}	30.84	Dispersion $n_{F'} - n_{C'}$	0.022511

	Refractive Indi	000
		CCS
	λ (μ m)	
n 2325	2.32542	1.64569
n 1970	1.97009	1.65134
n 1530	1.52958	1.65780
n 1129	1.12864	1.66448
n _t	1.01398	1.66704
n _s	0.85211	1.67193
n _A ′	0.76819	1.67552
n _r	0.70652	1.67896
n _C	0.65627	1.68249
n _C ′	0.64385	1.68350
n _{He-Ne}	0.6328	1.68444
n_D	0.58929	1.68874
n _d	0.58756	1.68893
n _e	0.54607	1.69417
n _F	0.48613	1.70466
n _F ′	0.47999	1.70601
n _{He-Cd}	0.44157	1.71611
ng	0.435835	1.71793
n _h	0.404656	1.72970
ni	0.365015	1.75177

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0044			
$\Delta heta$ C,A $^{\prime}$	0.0007			
$arDelta heta_{ extsf{g,d}}$	0.0078			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0074			
$arDelta heta_{i,g}$	0.0619			

Constants of Dispersion Formula				
A_1	1.58039099			
A_2	1.78294323•10 ⁻¹			
A_3	1.14876204			
B ₁	1.25270147•10 ⁻²			
B ₂	6.02807505•10 ⁻²			
B ₃	1.16215055•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	2.88			
Remarks		FG			

-0.3

-0.3

-0.3

-0.3

-0.2

-0.2

-0.2

-0.3

0.1

0.1

0.1

0.1

0.5

0.5

0.5

0.6

1.5

1.5

1.6

1.7

2.6

2.7

2.9

3.0

Range of Temperature (\mathcal{C})

−40 ~ **−20**

0

20

40

60

80

-20 ~

0 ~

20 ~

40 ~

60 ~

829432	94323•10 ⁻¹		hotoelastic		β	
4876204		(nm/cm/1	0ºPa)		
2527014	7•10 ⁻	2				
280750	5•10 ⁻	2				
621505	5•10 ²	2	С	hemical P	roperties	
		W	ater Resistance	(Powder) Group	RW(P)	2
Properties		Ac	Acid Resistance (Powder) Group RA(P)			1
В		We	Weathering Resistance (Surface) Group W(S)			
d	2.88	B Ad	cid Resistance (Surface) Group	SR	1.0
	a P	hosphate l	Resistance	PR	1.0	
Temperature Coefficients of Refractive Index						
dn / dt relative $(10^{-6})^{\circ}$ C						
t	C′	He-Ne	D	е	F	g
- (0.3	-0.2	0.1	0.4	1.3	2.3
-(0.3	-0.2	0.1	0.5	1.4	2.5

Partial Dispersions				
n _C –n _t	0.015448			
n _C –n _A ′	0.006965			
n _d –n _C	0.006441			
n _e –n _C	0.011679			
n _g –n _d	0.028996			
n _g –n _F	0.013269			
n _h –n _g	0.011773			
n _i –n _g	0.033843			
n _C '-n _t	0.016453			
n _e -n _C ′	0.010674			
n _F ´–n _e	0.011837			
n _i –n _F ′	0.045764			

Thermal Properties					
Strain Point	StP (\mathbb{C}	453		
Annealing Point	AP (\mathbb{C}	484		
Transformation Temperatur	re Tg (\mathbb{C}	504		
Yield Point	At (\mathbb{C}	539		
Softening Point	SP (\mathbb{C}	582		
Expansion Coefficients	(-30~+7	(℃)	101		
α (10 ⁻⁷ /°C) (+	100~+30	0℃)	130		
Thermal Conductivity	k(W/m	·K)	1.020		

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	845			
Rigidity Modulus G	$(10^8N/m^2)$	337			
Poisson's Ratio	σ	0.254			
Knoop Hardness	Hk	530[5]			
Abrasion	Aa	197			
Photoelastic Constat (nm/cm/10 ⁵ Pa					

Relative Partial Dispersions				
$ heta_{C,t}$	0.6969			
$ heta_{C,A'}$	0.3142			
$ heta_{\sf d,C}$	0.2906			
$ heta_{ extsf{e}, extsf{C}}$	0.5268			
$ heta_{ extsf{g,d}}$	1.3080			
$ heta_{ extsf{g}, extsf{F}}$	0.5986			
$ heta_{h,g}$	0.5311			
$ heta_{i,g} heta_{C',t}$	1.5267			
θ c', t	0.7309			
$ heta'_{e,C'}$	0.4742			
$ heta^{'}$ F $^{'}$,e	0.5258			
$ heta^{\prime}_{i,F^{\prime}}$	2.0330			

Coloring				
λ 80/λ 5	40/36			

	_
Internal Tran	
λ (nm)	7 10mm
280	
290	
300	
310	
320	
330	
340	
350	
360	0.16
370	0.57
380	0.80
390	0.89
400	0.929
420	0.964
440	0.974
460	0.980
480	0.984
500	0.989
550	0.997
600	0.996
650	
700	
800	
900	
1000	
1200	
1400	
1600	
1800	
2000	
2200	
2400	

L-LAL12

Refractive Index	n _d	1.67790 1.677900	Abbe Number νd	54.9 54.89	Dispersion NF-NC	0.01235 0.012351
Refractive Index	ne	1.680844	Abbe Number ν_{e}	54.64	Dispersion NF' -NC'	0.012460

Partial Dispersions

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.64243			
n 1970	1.97009	1.64903			
n 1530	1.52958	1.65602			
n 1129	1.12864	1.66209			
n _t	1.01398	1.66408			
n_s	0.85211	1.66753			
n _A ′	0.76819	1.66987			
n _r	0.70652	1.67202			
n_{C}	0.65627	1.67415			
n _C ′	0.64385	1.67475			
n _{He-Ne}	0.6328	1.67530			
n_D	0.58929	1.67779			
n_d	0.58756	1.67790			
n _e	0.54607	1.68084			
n_F	0.48613	1.68650			
n _F ′	0.47999	1.68721			
n _{He-Cd}	0.44157	1.69235			
n _g	0.435835	1.69324			
n _h	0.404656	1.69885			
n _i	0.365015	1.70845			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{C,t}$	0.0110			
$\Delta heta_{C,A'}$	0.0038			
$arDelta heta_{ extsf{g,d}}$	-0.0085			
$arDelta heta_{ extsf{g,F}}$	-0.0069			
$arDelta heta_{i,g}$	-0.0345			

Constants of Dispersion Formula					
A_1	1.28516283				
A_2	4.78333797•10 ⁻¹				
A_3	1.21605301				
B ₁	6.41062082•10 ⁻³				
B ₂	2.14815099•10 ⁻²				
B ₃	1.00243378•10 ²				

Other Properties					
В					
d	3.48				
	FG				
	В				

	P 0. 0.0
n _C –n _t	0.010069
n _C -n _A ′	0.004276
n _d –n _C	0.003750
n _e –n _C	0.006694
n _g –n _d	0.015342
n _g –n _F	0.006741
n _h –n _g	0.005610
n _i –n _g	0.015203
n _C ′–n _t	0.010665
n _e –n _C ′	0.006098
n _F '–n _e	0.006362
n _i –n _F ′	0.021239

Thermal Properties				
Strain Point	StP	(\mathcal{C})	528	
Annealing Point	AP	(\mathcal{C})	546	
Transformation Temperature	Tg	(\mathcal{C})	562	
Yield Point	At	(\mathcal{C})	600	
Softening Point	SP	(℃)	633	
Expansion Coefficients (-30~	+70°C)	76	
α (10 ⁻⁷ /°C) (+1	100~+	-300℃)	90	
Thermal Conductivity	k(W/	m·K)	0.925	

Mechani	ical Propertic	es
Young's Modulus E	$(10^8 N/m^2)$	1096
Rigidity Modulus G	$(10^8 N/m^2)$	428
Poisson's Ratio	σ	0.280
Knoop Hardness	Hk	600[6]
Abrasion	Aa	112
Photoelastic Consta (nm/cm/10 ⁵ Pa		1.80

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	3~4			
Acid Resistance (Surface) Group SR	53.2			
Phosphate Resistance PR	4.0			

	Temperature Coefficients of Refractive Index							
Range of Temperatur	е	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)	t	C	He-Ne	D	е	F	g	
−40 ~ −20	2.0	2.4	2.4	2.6	2.7	3.1	3.4	
−20 ~ 0	2.0	2.4	2.4	2.6	2.8	3.1	3.5	
0 ~ 20	2.0	2.4	2.5	2.6	2.8	3.2	3.6	
20 ~ 40	1.9	2.4	2.5	2.6	2.8	3.2	3.6	
40 ~ 60	1.9	2.5	2.5	2.6	2.8	3.3	3.7	
60 ~ 80	1.9	2.5	2.5	2.6	2.9	3.3	3.8	

Relative Partial Dispersions				
$ heta_{C,t}$	0.8152			
$ heta_{C,A'}$	0.3462			
$ heta_{\sf d,C}$	0.3036			
$ heta_{ extsf{e}, extsf{C}}$	0.5420			
$ heta_{ extsf{g,d}}$	1.2422			
$ heta_{ extsf{g}, extsf{F}}$	0.5458			
$ heta_{h,g}$	0.4542			
$ heta_{i,g}$	1.2309			
θ΄C΄,t	0.8559			
θ'e,C'	0.4894			
$ heta^{'}$ F $^{'}$,e	0.5106			
θ i,F'	1.7046			

Coloring				
λ 80/λ 5	37/30			

λ (nm) τ 10mm 280 290 300 0.10 310 0.21 320 0.37 330 0.55 340 0.70 350 0.81 360 0.89 370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922 2400 0.736	Internal Transmittance				
280 290 300 0.10 310 0.21 320 0.37 330 0.55 340 0.70 350 0.81 360 0.89 370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922					
290 300 0.10 310 0.21 320 0.37 330 0.55 340 0.70 350 0.81 360 0.89 370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922					
300 0.10 310 0.21 320 0.37 330 0.55 340 0.70 350 0.81 360 0.89 370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.996 1800 0.989 2000 0.972 2200 0.922					
310 0.21 320 0.37 330 0.55 340 0.70 350 0.81 360 0.89 370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922		0.10			
320 0.37 330 0.55 340 0.70 350 0.81 360 0.89 370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.989 2000 0.989 2000 0.972 2200 0.922					
340 0.70 350 0.81 360 0.89 370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922		0.37			
340 0.70 350 0.81 360 0.89 370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.996 1800 0.989 2000 0.972 2200 0.922	330	0.55			
350 0.81 360 0.89 370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	340	0.70			
370 0.938 380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	350				
380 0.962 390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	360	0.89			
390 0.975 400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	370	0.938			
400 0.982 420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	380	0.962			
420 0.987 440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	390	0.975			
440 0.990 460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	400	0.982			
460 0.992 480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	420	0.987			
480 0.995 500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	440				
500 0.997 550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	460	0.992			
550 0.998 600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	480				
600 0.996 650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972					
650 0.997 700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	550				
700 0.998 800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922	600				
800 0.999 900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922					
900 0.998 1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922					
1000 0.998 1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922					
1200 0.999 1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922					
1400 0.997 1600 0.996 1800 0.989 2000 0.972 2200 0.922					
1600 0.996 1800 0.989 2000 0.972 2200 0.922					
1800 0.989 2000 0.972 2200 0.922					
2000 0.972 2200 0.922					
2200 0.922					
2400 0.736					
	2400	0.736			

L-LAL13

Refractive Index	n _d	1.69350 1.693500	Abbe Number νd	53.2 53.18	Dispersion NF-NC	0.01304 0.013040
Refractive Index	n_{e}	1.696607	Abbe Number ν_{e}	52.93	Dispersion $n_{F'} - n_{C'}$	0.013160

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.65737		
n 1970	1.97009	1.66392		
n 1530	1.52958	1.67089		
n 1129	1.12864	1.67702		
n _t	1.01398	1.67906		
ns	0.85211	1.68263		
n _A ′	0.76819	1.68507		
n _r	0.70652	1.68731		
n_{C}	0.65627	1.68955		
n _C ′	0.64385	1.69018		
n _{He-Ne}	0.6328	1.69076		
n_D	0.58929	1.69338		
n _d	0.58756	1.69350		
n _e	0.54607	1.69661		
n _F	0.48613	1.70259		
n _F ′	0.47999	1.70334		
n _{He-Cd}	0.44157	1.70879		
ng	0.435835	1.70974		
n _h	0.404656	1.71570		
n _i	0.365015	1.72592		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0082		
$\Delta heta_{C,A'}$	0.0033		
$arDelta heta_{ extsf{g,d}}$	-0.0090		
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0072		
$arDelta heta_{i,g}$	-0.0390		

Constants of Dispersion Formula			
A ₁	1.17776146		
A_2	6.34591345•10 ⁻¹		
A_3	1.20435649		
B ₁	5.57618243•10 ⁻³		
B ₂	2.06821469•10 ⁻²		
B ₃	9.96322776•10 ¹		

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.69		
Remarks		FG		

		Tempe	rature Co	efficients o	of Refract	ive Index		
Range of Tem	perature		dr	ı / <mark>dt</mark> rela	ıtive (1	0 ⁻⁶ / °C)	
(℃)		t	C	He-Ne	D	е	F	g
−40 ~	-20	2.5	3.0	3.0	3.1	3.3	3.8	4.2
−20 ~	0	2.5	3.0	3.0	3.2	3.4	3.8	4.3
0 ~	20	2.5	3.0	3.1	3.2	3.4	3.9	4.3
20 ~	40	2.5	3.1	3.1	3.3	3.5	4.0	4.4
40 ~	60	2.5	3.1	3.1	3.3	3.5	4.0	4.5
60 ~	80	2.5	3.1	3.2	3.3	3.6	4.1	4.6

Partial Dispersions			
0.010490			
0.004481			
0.003949			
0.007056			
0.016239			
0.007148			
0.005962			
0.016179			
0.011117			
0.006429			
0.006731			
0.022580			

Therm	al Pro	perties	5
Strain Point	StP	(\mathcal{C})	503
Annealing Point	AP	(\mathcal{C})	522
Transformation Temperature	g Tg	(\mathcal{C})	534
Yield Point	At	(\mathcal{C})	575
Softening Point	SP	(\mathcal{C})	615
Expansion Coefficients	(-30~	+70°C)	76
α (10 ⁻⁷ /°C) (+	100~+	-300℃)	92
Thermal Conductivity	k(W/	m·K)	0.887

Mechanical Propertie	es
Young's Modulus E (108N/m²)	1078
Rigidity Modulus G (10 ⁸ N/m ²)	419
Poisson's Ratio σ	0.285
Knoop Hardness Hk	620[6]
Abrasion Aa	115
Photoelastic Constant (nm/cm/10 ⁵ Pa) β	

Chemical Properties			
Water Resistance (Powder) Group $RW(P)$	1		
Acid Resistance (Powder) Group RA(P)	4		
Weathering Resistance (Surface) Group $W(s)$	2		
Acid Resistance (Surface) Group SR	53.2		
Phosphate Resistance PR	4.0		

Relative Partial Dispersions				
$ heta_{C,t}$	0.8044			
$ heta_{C,A'}$	0.3436			
$ heta_{\sf d,C}$	0.3028			
$ heta_{ extsf{e}, extsf{C}}$	0.5411			
$ heta_{ extsf{g,d}}$	1.2453			
$ heta_{ extsf{g}, extsf{F}}$	0.5482			
$ heta_{h,g}$	0.4572			
$ heta_{i,g}$	1.2407			
θ´c′,t	0.8448			
$\theta'_{e,C'}$	0.4885			
$ heta$ \dot{F} ,e	0.5115			
θ' i,F'	1.7158			

Coloring				
λ 80/λ 5	36/29			

Internal Tran	smittance
λ (nm)	τ 10mm
280	0.01
290	0.06
300	0.15
310	0.28
320	0.45
330	0.61
340	0.74
350	0.84
360	0.913
370	0.949
380	0.969
390	0.979
400	0.984
420	0.989
440	0.991
460	0.993
480	0.995
500	0.997
550	0.998
600	0.997
650	0.997
700	0.998
800	0.999
900	0.999
1000	0.999
1200	0.999
1400	0.996
1600	0.995
1800	0.988
2000	0.969
2200	0.918
2400	0.72

L-LAM69

Refractive Index	n _d	1.73077 1.730770	Abbe Number ν _d	40.5 40.51	Dispersion NF-NC	0.01804 0.018040
Refractive Index	n_{e}	1.735051	Abbe Number $ u_{ m e}$	40.25	Dispersion $n_{F'} - n_{C'}$	0.018262

Refractive Indices				
	λ (μ m)			
n 2325	2.32542	1.68805		
n 1970	1.97009	1.69488		
n 1530	1.52958	1.70237		
n 1129	1.12864	1.70939		
n _t	1.01398	1.71185		
n _s	0.85211	1.71632		
n _A ′	0.76819	1.71948		
n _r	0.70652	1.72243		
nc	0.65627	1.72542		
n _C ′	0.64385	1.72626		
n _{He-Ne}	0.6328	1.72705		
n_D	0.58929	1.73061		
n _d	0.58756	1.73077		
n _e	0.54607	1.73505		
n _F	0.48613	1.74346		
n _F ′	0.47999	1.74452		
n _{He-Cd}	0.44157	1.75240		
ng	0.435835	1.75379		
n _h	0.404656	1.76267		
n _i	0.365015	1.77858		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$ 0.0154			
$\Delta heta_{C,A'}$	0.0042		
$\Delta heta_{ extsf{g,d}}$ -0.0046			
$arDelta heta_{ extsf{g,F}}$	-0.0031		
$arDelta heta_{i,g}$	-0.0117		

Constants of Dispersion Formula				
A ₁	1.74038960			
A_2	1.76996917•10 ⁻¹			
A_3	1.76775413			
B ₁	1.03398870•10 ⁻²			
B ₂	4.84822765•10 ⁻²			
B ₃	1.36671996•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.24			
Remarks		FG			

Partial Dispersions				
n _C –n _t	0.013567			
n _C –n _A ′	0.005939			
n _d –n _C	0.005354			
n _e –n _C	0.009635			
n _g –n _d	0.023019			
n _g –n _F	0.010333			
n _h –n _g	0.008885			
n _i –n _g	0.024789			
n _C '-n _t	0.014410			
n _e –n _C ′	0.008792			
n _F '-n _e	0.009470			
n _i –n _F ′	0.034057			

Therm	al Pro	perties	S
Strain Point	StP	(\mathcal{C})	461
Annealing Point	ΑP	(\mathcal{C})	489
Transformation Temperature	g Tg	(\mathcal{C})	497
Yield Point	At	(\mathcal{C})	529
Softening Point	SP	(\mathcal{C})	574
Expansion Coefficients	(-30~	+70°C)	86
α (10 ⁻⁷ /°C) (+	100~+	-300℃)	105
Thermal Conductivity	k(W/	m·K)	1.114

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	1133				
Rigidity Modulus G	$(10^8 N/m^2)$	445				
Poisson's Ratio	σ	0.273				
Knoop Hardness	Hk	630[6]				
Abrasion	Aa	118				
Photoelastic Consta (nm/cm/10 ⁵ Pa		2.03				

Chemical Properties	s
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	3
Weathering Resistance (Surface) Group $W(s)$	2
Acid Resistance (Surface) Group SR	52.2
Phosphate Resistance PR	3.1

Temperature Coefficients of Refractive Index							
Range of Temperature	Range of Temperature $\frac{dn}{dt} = \frac{10^{-6}}{C}$						
(℃)	t	C´	He-Ne	D	е	F [′]	g
−40 ~ −20	2.1	2.8	2.8	3.0	3.3	4.0	4.7
−20 ~ 0	2.1	2.8	2.8	3.1	3.4	4.0	4.8
0 ~ 20	2.1	2.8	2.8	3.1	3.4	4.1	4.9
20 ~ 40	2.0	2.8	2.9	3.1	3.4	4.2	5.0
40 ~ 60	2.0	2.8	2.9	3.1	3.5	4.3	5.1
60 ~ 80	2.0	2.8	2.9	3.1	3.5	4.3	5.3

Relative Partial Dispersions		
$ heta_{C,t}$	0.7521	
$ heta_{C,A'}$	0.3292	
$ heta_{\sf d,C}$	0.2968	
$ heta_{ extsf{e}, extsf{C}}$	0.5341	
$ heta_{ extsf{g,d}}$	1.2760	
$ heta_{ extsf{g}, extsf{F}}$	0.5728	
$ heta_{h,g}$	0.4925	
$ heta_{i,g}$	1.3741	
θ΄c′,t	0.7891	
θ'e,C'	0.4814	
$ heta^{'}$ F $'$,e	0.5186	
θίε	1 8649	

Colo	ring
λ 80/λ 5	41/34

Internal Transmittance			
λ (nm)	τ 10mm		
280			
290			
300			
310			
320			
330			
340	0.02		
350	0.22		
360	0.50		
370	0.70		
380	0.81		
390	0.87		
400	0.912		
420	0.950		
440	0.964		
460	0.974		
480	0.982		
500	0.989		
550	0.996		
600	0.994		
650	0.995		
700	0.998		
800	0.998		
900	0.998		
1000			
1200			
1400			
1600			
1800			
2000			
2200			
2400			

811406

L-LAH53

Refractive Index	n _d	1.80610 1.806098	Abbe Number νd	40.9 40.88	Dispersion NF-NC	0.01972 0.019718
Refractive	n _e	1.810782	Abbe Number ν_{e}	40.63	Dispersion n F' - n C'	0.019954

Refractive Indices		
	λ (μ m)	
n 2325	2.32542	1.76076
n 1970	1.97009	1.76780
n 1530	1.52958	1.77552
n 1129	1.12864	1.78286
n _t	1.01398	1.78549
n _s	0.85211	1.79031
n _A ′	0.76819	1.79375
n _r	0.70652	1.79697
nc	0.65627	1.80024
n _C ′	0.64385	1.80116
n _{He-Ne}	0.6328	1.80203
n_D	0.58929	1.80592
n _d	0.58756	1.80610
n _e	0.54607	1.81078
n _F	0.48613	1.81996
n _F ′	0.47999	1.82112
n _{He-Cd}	0.44157	1.82967
ng	0.435835	1.83117
n_h	0.404656	1.84075
n _i	0.365015	1.85768

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"		
$\Delta heta_{C,t}$	0.0094	
$\Delta heta_{C,A'}$	0.0037	
$arDelta heta_{\sf g,d}$	-0.0082	
$\Delta heta$ g,F	-0.0065	
$arDelta heta_{i,g}$	-0.0385	

Constants of Dispersion Formula		
A_1	1.90781372	
A_2	2.63500130•10 ⁻¹	
A_3	1.28144614	
B ₁	1.03413285•10 ⁻²	
B ₂	4.19041155•10 ⁻²	
B ₃	9.57068567•10 ¹	

Other Properties		
Bubble Quality Group	В	
Specific Gravity	d	4.49
Remarks		

Partial Dispersions		
n _C -n _t	0.014747	
n _C –n _A ′	0.006489	
n _d –n _C	0.005860	
n _e –n _C	0.010544	
n _g –n _d	0.025074	
n _g –n _F	0.011216	
n _h –n _g	0.009575	
n _i –n _g	0.026505	
n _C '-n _t	0.015670	
n _e –n _C ′	0.009621	
n _F ′–n _e	0.010333	
n _i –n _F ′	0.036562	

Thermal Properties			
Strain Point	StP	$(^{\circ}C)$	534
Annealing Point	AP	(°C)	558
Transformation Temperature	Tg	(℃)	574
Yield Point	At	(℃)	607
Softening Point	SP	(℃)	646
Expansion Coefficients (-30~	+70°C)	59
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+	300℃)	72
Thermal Conductivity	ς(W/	m•K)	0.862

Mechanical Properties			
Young's Modulus E	$(10^8N/m^2)$	1151	
Rigidity Modulus G	$(10^8 N/m^2)$	443	
Poisson's Ratio	σ	0.298	
Knoop Hardness	Hk	660[7]	
Abrasion	Aa	76	
Photoelastic Consta (nm/cm/10 ⁵ Pa			

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	4	
Weathering Resistance (Surface) Group $W(s)$	1	
Acid Resistance (Surface) Group SR	51.2	
Phosphate Resistance PR	2.0	

	Temperature Coefficients of Refractive Index								
Range of Temperature		dn / dt relative (10 ⁻⁶ / ℃)							
(℃)		t	C	He-Ne	D	е	F	g	
-40 ~ ·									
−20 ~	0								
0 ~	20								
20 ~	40								
40 ~	60								
60 ~	80								

Relative Partial Dispersions				
$ heta_{C,t}$	0.7479			
$ heta_{C,A'}$	0.3291			
$ heta_{\sf d,C}$	0.2972			
$ heta_{ extsf{e}, extsf{C}}$	0.5347			
$ heta_{ extsf{g,d}}$	1.2716			
$ heta_{ extsf{g}, extsf{F}}$	0.5688			
$ heta_{h,g}$	0.4856			
$ heta_{i,g}$	1.3442			
θ c'.t	0.7853			
$ heta'_{e,C'}$	0.4822			
$ heta^{'}$ F $^{'}$,e	0.5178			
$ heta$ $_{i,F^{'}}$	1.8323			

Coloring					
λ 80/λ 5	40/34				

Internal Transmittance					
λ (nm)	τ 10mm				
280					
290					
300					
310					
320					
330					
340	0.13				
350	0.48				
360	0.70				
370	0.84				
380	0.908				
390	0.940				
400	0.959				
420	0.976				
440	0.983				
460	0.988				
480	0.991				
500	0.995				
550	0.998				
600	0.998				
650	0.999				
700	0.999				
800					
900					
1000					
1200					
1400					
1600					
1800					
2000					
2200					
2400					

EXPLANATION FOR TABLE OF i-LINE GLASSES

1.INTERNAL TRANSMITTANCE (Ti)

Internal transmittance of the glass is indicated as guaranteed transmittance at 365nm through 10mm thickness. Please note this is internal transmittance, and reflection loss is not included.

2.SOLARIZATION

The degree of solarization is indicated as transmittance decrease caused by radiation from a super high pressure mercury-vapor lamp. The detailed measurement method is described in "Japanese Optical Glass Industrial Standard (JOGIS)"

3.OPTICAL HOMOGENEITY

Homogeneity (n) is guaranteed by our He-Ne laser interferometers. n specifications is indicated with three different sizes (\emptyset 120, \emptyset 150, and \emptyset 200) because n varies according to glass type, size, and shape.

If the ordered thickness is less than 25mm, we use a 25mm thick test piece for n measurement.

When better n is required, please consult us.

4.REFRACTIVE INDEX (ni) VARIATION IN ONE LOT (Sn STANDARD)

Indicated value is refractive index variation after annealing within a single batch.(Same melt, same anneal.)

5.REFRACTIVE INDEX TOLERANCE

The standard refractive index (ni) for i-Line glass is higher than our catalog nominal value because longer anneal times cause an increase in refractive index.

Example: +20+30(x10-5)

+20 means the increase against our catalog constants and tolerance of +30 is from the new nominal value. I.E. a glass has tolerance of +20+30 can vary from -10 to +50(x10-5) against normal catalog

List of i - Line Glasses

1998-6-1

Glass Type	Internal Transmittance τ 10mm	Solarization Resistance	Optical Homog	•	teed (X 10 ⁻⁶) Dia260 or less improvement type	Deviation of ni within a single lot	Tolerance of Refractive Index	REMARKS
	(365nm)				improvement type		(× 10 ⁻⁵)	
S-FPL51Y	0.997	Good	± 1.0	_	_	±2	$+20 \pm 20$	Please consult us about lot size
S-FSL 5Y	0.999	Good	± 0.5	± 0.8	± 1.0	±2	+ 15 ± 20	
BSL 7Y	0.998	Good	± 0.5	± 0.8	± 1.0	± 1	+ 20 ± 20	
BAL15Y	0.994	Good	± 0.5	± 0.8	± 1.0	± 1	+ 10 ± 20	
BAL35Y	0.996	Good	± 0.5	± 0.8	± 1.0	± 1	+ 20 ± 20	
BSM51Y	0.995	Good	± 0.5	± 0.8	± 1.0	± 1	+ 30 ± 20	
PBL 1Y	0.997	Good	± 0.5	± 0.8	± 1.0	± 1	+ 10 ± 20	
PBL 6Y	0.998	Good	± 0.5	± 0.8	± 1.0	± 1	+ 10 ± 20	
PBL25Y	0.995	Good	± 0.5	± 0.8	± 1.0	± 1	+ 10 ± 20	
PBL26Y	0.996	Good	± 0.5	± 0.8	± 1.0	± 1	+ 10 ± 20	
PBM 2Y	0.986	Good	± 0.5	± 0.8	± 1.0	± 1	+ 10 ± 20	
PBM 8Y	0.991	Good	± 0.5	± 0.8	±1.0	± 1	+ 10 ± 20	
PBM18Y	0.993	Good	± 0.5	± 0.8	± 1.0	± 1	+ 10 ± 20	improvement PBM8Y on Transmittance

(Notice)

Optical Homogeneity Guaranteed:

Please consult us if you need tighter specification. In case the thickness of the material is 25mm or less, we will guarantee the Optical Homogeneity by measurement using 25mm or more thick material.

Tolerance of Refractive Index:

Please consult us if you need tighter specification

497811 498808

S-FPL51Y

	Refractive n _d	1.49700 1.497003	Abbe Number νd	81.1 81.14	Dispersion NF-NC 0.00613 0.006125
ſ	Refractive n _e	1.498466	Abbe Number $\nu_{ m e}$	80.74	Dispersion NF'-NC'0.006174

Partial Dispersions

0.005027

 n_C-n_t

Refractive Indices				
λ (μ m)				
2.32542	1.47980			
1.97009	1.48286			
1.52958	1.48617			
1.12864	1.48913			
1.01398	1.49011			
0.85211	1.49182			
0.76819	1.49299			
0.70652	1.49407			
0.65627	1.49513			
0.64385	1.49543			
0.6328	1.49571			
0.58929	1.49695			
0.58756	1.49700			
0.54607	1.49847			
0.48613	1.50126			
0.47999	1.50160			
0.44157	1.50412			
0.435835	1.50455			
0.404656	1.50727			
0.365015	1.51185			
0.334148	1.51673			
0.326106	1.51826			
	λ (μm) 2.32542 1.97009 1.52958 1.12864 1.01398 0.85211 0.76819 0.70652 0.65627 0.64385 0.6328 0.58929 0.58756 0.54607 0.48613 0.47999 0.44157 0.435835 0.404656 0.365015 0.334148			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	-0.1067			
$\Delta heta_{C,A'}$	-0.0251			
$arDelta heta_{ extsf{g,d}}$	0.0366			
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0279			
$\Delta heta_{i,g}$	0.1462			

Constants of Dispersion Formula %1				
A_1	1.14031443			
A_2	7.71496272•10 ⁻²			
A_3	1.43721957			
B ₁	5.95466872•10 ⁻³			
B ₂	2.23953953•10 ⁻²			
B ₃	2.74290057•10 ²			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.66			
Remarks					

υ ·	0.000-		
n _C -n _A ′	0.002139		
n _d –n _C	0.001870		
n _e –n _C	0.003333		
n _g –n _d	0.007551		
n _g –n _F	0.003296		
n _h –n _g	0.002716		
n _i –n _g	0.007300		
n _C '-n _t	0.005325		
n _e -n _C ′	0.003035		
n _F ′–n _e	0.003139		
n _i –n _F ′	0.010249		
Thermal Properties			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	_		
Annealing Point	ΑP	(\mathcal{C})	_		
Transformation Temperature	Tg	(\mathcal{C})	448		
Yield Point	At	(\mathcal{C})	471		
Softening Point	SP	(\mathcal{C})	_		
Expansion Coefficients ((−30 ~ -	-70°C)	136		
$\alpha (10^{-7})^{\circ}C)$ (+1	100~+3	300°C)	161		
Thermal Conductivity	k(W/r)	n∙K)	0.780		

Mechanical Properties							
Young's Modulus E	$(10^8 N/m^2)$	716					
Rigidity Modulus G	$(10^8 N/m^2)$	275					
Poisson's Ratio	σ	0.302					
Knoop Hardness	Hk	380[4]					
Abrasion	Aa	476					
Photoelastic Constar	nt B						
(nm/cm/10 ⁵ Pa) '						

Chemical Properties	
Water Resistance (Powder) Group $RW(P)$	1
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	2~3
Acid Resistance (Surface) Group SR	51.0
Phosphate Resistance PR	4.2

	Temperature Coefficients of Refractive Index								
Range of Tem	nperature	dn / dt relative (10^{-6}) °C)							
(℃))	t	C´	He-Ne	D	е	F [′]	g	i
−40 ~	-20	-6.4	-6.3	-6.3	-6.3	-6.2	-6.0	-5.9	-5.5
−20 ~	0	-6.7	-6.6	-6.6	-6.5	-6.4	-6.3	-6.1	-5.7
0 ~	20	-6.9	-6.8	-6.8	-6.7	-6.7	-6.5	-6.4	-5.9
20 ~	40	-7.2	-7.0	-7.0	-7.0	-6.9	-6.7	-6.6	-6.1
40 ~	60	-7.4	-7.3	-7.3	-7.2	-7.1	-7.0	-6.8	-6.3
60 ~	80	-7.7	-7.5	-7.5	-7.4	-7.4	-7.2	-7.0	-6.6

Relative Partial Dispersions					
$\theta_{C,t}$	0.8207				
$ heta_{C,A'}$	0.3492				
$ heta_{\sf d,C}$	0.3053				
$ heta_{e,C}$	0.5442				
$ heta_{ extsf{g,d}}$	1.2328				
$ heta_{ extsf{g}, extsf{F}}$	0.5381				
$ heta_{h,g}$	0.4434				
$ heta_{i,g}$	1.1918				
θ´C΄,t	0.8625				
θ' _{e,C'}	0.4916				
$ heta^{'}$,e	0.5084				
$ heta_{i,F'}$	1.6600				

Colo	ring
λ 80/ λ 5	31/–

Inter	nal Transmitt	ance						
λ (nm)	τ 10mm	au 25mm						
240	0.04							
250	0.07							
260	0.21	0.02						
270	0.34	0.06						
280	0.51	0.19						
290	0.67	0.37						
300	0.80	0.58						
310	0.89	0.75						
320	0.943	0.86						
330	0.971	0.930						
340	0.986	0.966						
350	0.994	0.985						
360	0.996	0.991						
365	0.997	0.993						
370	0.998	0.995						
380	0.999	0.997						
390	0.999	0.998						
400	0.999	0.998						
420	0.999	0.998						
440	0.999	0.998						
460	0.999	0.998						
480	0.999	0.998						
500	0.999	0.999						
550	0.999	0.999						
600	0.999	0.999						
650	0.999	0.998						
700	0.999	0.999						
800	0.999	0.999						
900	0.999	0.998						
1000	0.998	0.996						
1200	0.998	0.996						
1400	0.999	0.998						
1600	0.999	0.997						
1800	0.998	0.995						
2000	0.998	0.995						
2200	0.996	0.991						
2400	0.995	0.987						
	OLIADA 00 00 074							

S-FSL 5Y

Refractive n d	1.48749 1.487490	Abbe Number ソd	70.3 70.36	Dispersion NF-NC 0.00693 0.006929
Refractive n _e	1.489145	Abbe Number $ u_{ m e}$	70.17	Dispersion NF'-NC' 0.006971

	Refractive Indi	ces
	λ (μ m)	
n 2325	2.32542	1.46218
n 1970	1.97009	1.46761
n 1530	1.52958	1.47323
N 1129	1.12864	1.47778
n _t	1.01398	1.47915
ns	0.85211	1.48138
n _A ′	0.76819	1.48282
n _r	0.70652	1.48410
nc	0.65627	1.48535
n _C ′	0.64385	1.48569
n _{He-Ne}	0.6328	1.48601
n_D	0.58929	1.48743
n _d	0.58756	1.48749
n _e	0.54607	1.48915
n _F	0.48613	1.49228
n _F ′	0.47999	1.49266
n _{He-Cd}	0.44157	1.49546
ng	0.435835	1.49594
n_h	0.404656	1.49896
n _i	0.365015	1.50404
n 334	0.334148	1.50946
n 326	0.326106	1.51116

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"					
$\Delta heta_{ extsf{C,t}}$	$\Delta heta_{ extsf{C,t}}$ 0.0181				
$\Delta heta_{C,A'}$	0.0029				
$\Delta heta_{ extsf{g,d}}$	0.0016				
$arDelta heta_{ extsf{g}, extsf{F}}$	0.0021				
$\Delta heta_{i,g}$	0.0331				

Constants of Dispersion Formula *1					
A_1	9.77409944•10 ⁻¹				
A_2	2.10950834•10 ⁻¹				
A_3	1.37142848				
B ₁	5.57649364•10 ⁻³				
B ₂	1.77000313•10 ⁻²				
B ₃	1.49211443•10 ²				

Other Properties						
Bubble Quality Group	В					
Specific Gravity	d	2.46				
Remarks						

Temperature Coefficients of Refractive Index									
Range of Ten	nperature		(dn / dt	relative	$(10^{-}$	6/℃)		
(℃)	t	C	He-Ne	D	е	F	g	i
-40 ~	-20	-1.2	-1.2	-1.2	-1.1	-1.1	-0.9	-0.7	-0.3
–20 ~	0	-1.2	-1.1	-1.1	-1.0	-1.0	-0.8	-0.6	-0.2
0 ~	20	-1.2	-1.0	-1.0	-0.9	-0.8	-0.7	-0.5	0.0
20 ~	40	-1.1	-0.9	-0.9	-0.8	-0.7	-0.6	-0.4	0.1
40 ~	60	-1.0	-0.8	-0.8	-0.7	-0.6	-0.5	-0.3	0.3
60 ~	80	-1.0	-0.7	-0.7	-0.6	-0.5	-0.3	-0.1	0.4

Partial Dispersions				
0.006201				
0.002523				
0.002144				
0.003799				
0.008455				
0.003670				
0.003015				
0.008099				
0.006546				
0.003454				
0.003517				
0.011382				

Thermal Properties				
Strain Point	StP	(\mathcal{C})	465	
Annealing Point	AP	(\mathcal{C})	502	
Transformation Temperature	Tg	(\mathcal{C})	500	
Yield Point	At	(\mathcal{C})	567	
Softening Point	SP	(\mathcal{C})	676	
Expansion Coefficients (89	
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+	300℃)	97	
Thermal Conductivity	κ(W/	m•K)	1.002	

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	622		
Rigidity Modulus G	$(10^8 N/m^2)$	253		
Poisson's Ratio	σ	0.229		
Knoop Hardness	Hk	530[5]		
Abrasion	Aa	113		
Photoelastic Constar	nt ß	2.87		
(nm/cm/10 ⁵ Pa)			

Chemical Properties		
Water Resistance (Powder) Group RW (P)	3	
Acid Resistance (Powder) Group RA(P)	4	
Weathering Resistance (Surface) Group $W(s)$	2	
Acid Resistance (Surface) Group SR	3.0	
Phosphate Resistance PR	2.0	
	_	

Relative Partial Dispersions				
$ heta_{C,t}$	0.8949			
$ heta_{C,A'}$	0.3641			
$ heta_{\sf d,C}$	0.3094			
$ heta_{ extsf{e}, extsf{C}}$	0.5483			
$ heta_{ extsf{g,d}}$	1.2202			
$ heta_{ extsf{g}, extsf{F}}$	0.5297			
$ heta_{h,g}$	0.4351			
$ heta_{i,g}$	1.1689			
θ´c´,t	0.9390			
$ heta'_{e,C'}$	0.4955			
$ heta^{'}$ F $^{'}$,e	0.5045			
$\theta'_{i,F'}$	1.6328			

Coloring		
λ 80/ λ 5	30/27	

Internal Transmittance					
λ (nm)	τ 10mm	au 25mm			
280	0.19	0.01			
290	0.61	0.29			
300	0.86	0.68			
310	0.954	0.89			
320	0.984	0.961			
330	0.993	0.983			
340	0.997	0.993			
350	0.998	0.995			
360	0.998	0.996			
365	0.999	0.997			
370	0.999	0.998			
380	0.999	0.998			
390	0.999	0.998			
400	0.999	0.999			
420	0.999	0.999			
440	0.999	0.999			
460	0.999	0.999			
480	0.999	0.999			
500	0.999	0.999			
550	0.999	0.999			
600	0.999	0.999			
650	0.999	0.998			
700	0.999	0.999			
800	0.999	0.999			
900	0.999	0.997			
1000	0.998	0.994			
1200	0.997	0.992			
1400	0.981	0.952			
1600	0.991	0.977			
1800	0.983	0.958			
2000	0.968	0.921			
2200	0.86	0.70			
2400	0.85	0.67			

BSL 7Y

	Refractive Index	n _d	1.51633 1.516330	Abbe Number ソd	64.3 64.24	Dispersion NF-NC 0.00803 0.008037
Г	Refractive	n _e	1.518248	Abbe Number ν_{e}	64.04	Dispersion $N_{F'} - N_{C'} 0.008092$

F		ces				
		Refractive Indices				
	$\lambda (\mu {\sf m})$					
n 2325	2.32542	1.48829				
n 1970	1.97009	1.49417				
n 1530	1.52958	1.50028				
N 1129	1.12864	1.50528				
n _t	1.01398	1.50681				
ns	0.85211	1.50933				
n _A ′	0.76819	1.51096				
n _r	0.70652	1.51242				
nc	0.65627	1.51386				
n _C ′	0.64385	1.51425				
n _{He-Ne}	0.6328	1.51462				
n_D	0.58929	1.51626				
n _d	0.58756	1.51633				
n _e	0.54607	1.51825				
n _F	0.48613	1.52189				
n _F ′	0.47999	1.52234				
n _{He-Cd}	0.44157	1.52562				
n _g	0.435835	1.52619				
n_h	0.404656	1.52973				
n _i	0.365015	1.53574				
n 334	0.334148	1.54218				
n 326	0.326106	1.54422				

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0286		
$arDelta heta_{C,A'}$	0.0059		
$arDelta heta_{ extsf{g,d}}$	-0.0048		
$arDelta heta_{ extsf{g,F}}$	-0.0031		
$\Delta heta_{i,g}$	0.0014		

Constants of Dispersion Formula *1			
A_1	1.13329383		
A_2	1.36897201•10 ⁻¹		
A_3	7.03456004•10 ⁻¹		
B ₁	6.69407868•10 ⁻³		
B ₂	2.37391760•10 ⁻²		
B ₃	7.07030316•10 ¹		

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.50		
Remarks				

								·	
	Temperature Coefficients of Refractive Index								
Range of Tem	perature			dn / dt i	relative	$(10^{-}$	6/℃)		
(C)		t	C	He-Ne	D	е	F	g	i
-40 ~	-20	2.3	2.6	2.6	2.7	2.8	3.0	3.2	3.8
–20 ~	0	2.4	2.7	2.7	2.8	2.9	3.2	3.4	4.0
0 ~	20	2.5	2.8	2.9	3.0	3.1	3.3	3.6	4.2
20 ~	40	2.6	3.0	3.0	3.1	3.2	3.5	3.7	4.4
40 ~	60	2.8	3.1	3.1	3.2	3.3	3.6	3.9	4.6
60 ~	80	2.9	3.2	3.2	3.3	3.4	3.7	4.0	4.8

Partial Dispersions			
n _C –n _t	0.007046		
n _C –n _A ′	0.002891		
n _d –n _C	0.002475		
n _e –n _C	0.004393		
n _g –n _d	0.009857		
n _g –n _F	0.004295		
n _h –n _g	0.003543		
n _i –n _g	0.009552		
n _C '-n _t	0.007443		
n _e –n _C ′	0.003996		
n _F ′–n _e	0.004096		
n _i –n _F ′	0.013395		

Thermal Properties				
Strain Point	StP	(\mathcal{C})	527	
Annealing Point	AP	(\mathcal{C})	559	
Transformation Temperature	Tg	(\mathcal{C})	577	
Yield Point	At	(\mathcal{C})	616	
Softening Point	SP	(\mathcal{C})	714	
Expansion Coefficients (-30~+70°C)			68	
α (10 ⁻⁷ /°C) (+1	00~+3	00°C)	81	
Thermal Conductivity $k(W/m \cdot K)$			1.182	

Mechani	cal Propertie	es
Young's Modulus E	$(10^8 N/m^2)$	811
Rigidity Modulus G	$(10^8 N/m^2)$	336
Poisson's Ratio	σ	0.207
Knoop Hardness	Hk	570[6]
Abrasion	Aa	87
Photoelastic Constar	nt B	
(nm/cm/10 ⁵ Pa) ,	

Chemical Properties	j
Water Resistance (Powder) Group $RW(P)$	2
Acid Resistance (Powder) Group RA(P)	2
Weathering Resistance (Surface) Group $W(s)$	1
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	1.0

Relative Partial	Relative Partial Dispersions				
$ heta_{C,t}$	0.8767				
$ heta_{C,A'}$	0.3597				
$ heta_{\sf d,C}$	0.3080				
$ heta_{ extsf{e}, extsf{C}}$	0.5466				
$ heta_{ extsf{g,d}}$	1.2265				
$ heta_{ extsf{g}, extsf{F}}$	0.5344				
$ heta_{h,g}$	0.4408				
$ heta_{i,g}$	1.1885				
θ c',t	0.9198				
$\theta'_{e,C'}$	0.4938				
θ´r΄,e	0.5062				
$\theta'_{i,F'}$	1.6553				

Coloring		
λ 80/ λ 5	32/29	

Internal Transmittance						
λ (nm)	τ 10mm	au 25mm				
280						
290	0.06					
300	0.43	0.12				
310	0.78	0.54				
320	0.932	0.83				
330	0.978	0.945				
340	0.991	0.978				
350	0.996	0.990				
360	0.997	0.992				
365	0.998	0.995				
370	0.998	0.996				
380	0.998	0.996				
390	0.999	0.997				
400	0.999	0.998				
420	0.999	0.998				
440	0.999	0.998				
460	0.999	0.998				
480	0.999	0.998				
500	0.999	0.999				
550	0.999	0.999				
600	0.999	0.998				
650	0.999	0.998				
700	0.999	0.999				
800	0.999	0.999				
900	0.999	0.997				
1000	0.997	0.993				
1200	0.997	0.993				
1400	0.969	0.924				
1600	0.990	0.975				
1800	0.981	0.952				
2000	0.962	0.908				
2200	0.86	0.68				
2400	0.80	0.58				

BAL15Y

Refractive Index	n _d	1.55671 1.556711	Abbe Number νd	58.7 58.68	Dispersion NF-NC 0.00948 0.009488
Refractive	n _e	1.558973	Abbe Number $ u_{ m e}$	58.41	Dispersion $n_{F'} - n_{C'} 0.009569$

Refractive Indices					
	λ (μ m)				
n 2325	2.32542	1.52907			
n 1970	1.97009	1.53423			
n 1530	1.52958	1.53972			
N 1129	1.12864	1.54449			
n _t	1.01398	1.54604			
ns	0.85211	1.54872			
n _A ′	0.76819	1.55053			
n _r	0.70652	1.55218			
n _C	0.65627	1.55383			
n _C ′	0.64385	1.55429			
n _{He-Ne}	0.6328	1.55471			
n_D	0.58929	1.55663			
n _d	0.58756	1.55671			
n _e	0.54607	1.55897			
n_F	0.48613	1.56331			
n _F ′	0.47999	1.56385			
n _{He-Cd}	0.44157	1.56779			
ng	0.435835	1.56848			
n_h	0.404656	1.57277			
n _i	0.365015	1.58012			
n 334	0.334148	1.58807			
n 326	0.326106	1.59060			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	-0.0015	
$arDelta heta_{C,A'}$	0.0004	
$arDelta heta_{ extsf{g,d}}$	-0.0026	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0021	
$\Delta heta_{i,g}$	-0.0073	

Constants of Dispersion Formula %1		
A_1	1.28348331	
A_2	1.02800765•10 ⁻¹	
A_3	4.04609885•10 ⁻¹	
B ₁	7.90900515•10 ⁻³	
B ₂	3.05971274•10 ⁻²	
B ₃	4.65268356•10 ¹	

Other P	roperl	ties
Bubble Quality Group	В	
Specific Gravity	d	2.90
Remarks		

		Temp	erature	Coefficie	nts of Re	fractive	Index		
Range of Tempera	ature			dn / dt	relative	$(10^{-}$	6/℃)		
(℃)		t	C	He-Ne	D	е	F	g	i
-40 ~ -20	0	2.2	2.5	2.5	2.6	2.8	3.0	3.3	4.2
-20 ~	0	2.2	2.5	2.6	2.7	2.8	3.1	3.5	4.3
0 ~ 20	0	2.3	2.6	2.6	2.8	2.9	3.2	3.6	4.5
20 ~ 4	0	2.4	2.7	2.7	2.8	3.0	3.3	3.7	4.6
40 ~ 60	0	2.4	2.8	2.8	2.9	3.1	3.4	3.8	4.8
60 ~ 80	0	2.4	2.8	2.9	3.0	3.1	3.5	3.9	4.9

Partial Dispersions				
n _C –n _t	0.007785			
n _C –n _A ′	0.003296			
n _d –n _C	0.002885			
n _e –n _C	0.005147			
n _g –n _d	0.011768			
n _g –n _F	0.005165			
n _h –n _g	0.004295			
n _i –n _g	0.011636			
n _C '-n _t	0.008244			
n _e –n _C ′	0.004688			
n _F ′–n _e	0.004881			
n _i –n _F ′	0.016261			

Therm	Thermal Properties				
Strain Point	StP	(\mathcal{C})	_		
Annealing Point	ΑP	(\mathcal{C})	_		
Transformation Temperature	Tg	(\mathcal{C})	507		
Yield Point	At	(\mathcal{C})	547		
Softening Point	SP	(\mathcal{C})	642		
Expansion Coefficients	(-30~	+70°C)	76		
$\alpha (10^{-7})^{\circ}C)$ (+-	100~+	300℃)	90		
Thermal Conductivity	k(W/	m•K)	1.000		

Mechani	Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	783			
Rigidity Modulus G	$(10^8 N/m^2)$	317			
Poisson's Ratio	σ	0.236			
Knoop Hardness	Hk	560[6]			
Abrasion	Aa	113			
Photoelastic Consta	nt B				
(nm/cm/10 ⁵ Pa	.)				

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	1			
Acid Resistance (Powder) Group RA(P)	1			
Weathering Resistance (Surface) Group $W(s)$	1~2			
Acid Resistance (Surface) Group SR	1.2			
Phosphate Resistance PR	1.0			

Relative Partial	Relative Partial Dispersions			
$ heta_{C,t}$	0.8205			
$ heta_{C,A'}$	0.3474			
$ heta_{\sf d,C}$	0.3041			
$ heta_{ extsf{e}, extsf{C}}$	0.5425			
$ heta_{ extsf{g,d}}$	1.2403			
$ heta_{ extsf{g}, extsf{F}}$	0.5444			
$ heta_{h,g}$	0.4527			
$ heta_{i,g}$	1.2264			
θ´c´,t	0.8615			
θ'e,C'	0.4899			
$ heta^{'}$ F $^{'}$,e	0.5101			
$\theta'_{i,F'}$	1.6993			

Coloring			
λ 80/ λ 5	32/30		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
280 290 300 0.17 0.01 310 0.59 0.27 320 0.84 0.65 330 0.937 0.85 340 0.971 0.929 350 0.985 0.963 360 0.992 0.979 365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.995 440 0.998 0.995 440 0.998 0.995 460 0.998 0.996 500 0.999 0.997 550 0.999 0.997 650 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995	Internal Transmittance						
290 300 0.17 0.01 310 0.59 0.27 320 0.84 0.65 330 0.937 0.85 340 0.971 0.929 350 0.985 0.963 360 0.992 0.979 365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.995 480 0.998 0.996 500 0.999 0.997 650 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 800 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972	,	au 10mm	au 25mm				
300 0.17 0.01 310 0.59 0.27 320 0.84 0.65 330 0.937 0.85 340 0.971 0.929 350 0.985 0.963 360 0.992 0.979 365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.995 480 0.998 0.996 500 0.999 0.997 650 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 800 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988<	280						
310 0.59 0.27 320 0.84 0.65 330 0.937 0.85 340 0.971 0.929 350 0.985 0.963 360 0.992 0.979 365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 480 0.998 0.996 500 0.999 0.997 550 0.999 0.997 650 0.999 0.997 800 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.	290						
320 0.84 0.65 330 0.937 0.85 340 0.971 0.929 350 0.985 0.963 360 0.992 0.979 365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 480 0.998 0.996 500 0.998 0.996 500 0.999 0.997 650 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.999 0.972 1600 0.992	300	0.17	0.01				
330 0.937 0.85 340 0.971 0.929 350 0.985 0.963 360 0.992 0.979 365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.996 500 0.998 0.996 500 0.999 0.997 650 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.999 0.972 1600 0.992 0.980 1800 0.984 <	310	0.59	0.27				
340 0.971 0.929 350 0.985 0.963 360 0.992 0.979 365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.996 500 0.998 0.996 500 0.999 0.997 650 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.999 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972	320	0.84	0.65				
350 0.985 0.963 360 0.992 0.979 365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.996 500 0.998 0.996 500 0.999 0.997 650 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927	330	0.937	0.85				
360 0.992 0.979 365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.996 500 0.998 0.996 500 0.999 0.997 650 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.927 0.82	340	0.971	0.929				
365 0.994 0.984 370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.996 500 0.999 0.997 550 0.999 0.997 650 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.927 0.82	350	0.985	0.963				
370 0.995 0.988 380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.996 500 0.999 0.997 550 0.999 0.997 650 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 1000 0.998 0.995 1200 0.998 0.995 1400 0.999 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.927 0.82	360	0.992	0.979				
380 0.996 0.990 390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.996 480 0.999 0.997 500 0.999 0.997 600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.927 0.82	365	0.994	0.984				
390 0.997 0.993 400 0.998 0.994 420 0.998 0.995 440 0.998 0.995 460 0.998 0.996 480 0.999 0.997 500 0.999 0.997 600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.927 0.82	370	0.995	0.988				
400 0.998 0.994 420 0.998 0.995 440 0.998 0.996 460 0.998 0.996 480 0.999 0.997 500 0.999 0.997 600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	380	0.996	0.990				
420 0.998 0.995 440 0.998 0.996 460 0.998 0.996 480 0.998 0.996 500 0.999 0.997 550 0.999 0.997 600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	390	0.997	0.993				
440 0.998 0.995 460 0.998 0.996 480 0.998 0.996 500 0.999 0.997 550 0.999 0.997 600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	400						
460 0.998 0.996 480 0.998 0.996 500 0.999 0.997 550 0.999 0.997 600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	420						
480 0.998 0.996 500 0.999 0.997 550 0.999 0.997 600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82							
500 0.999 0.997 550 0.999 0.997 600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	460	0.998					
550 0.999 0.997 600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	480						
600 0.999 0.997 650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	500		0.997				
650 0.998 0.996 700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.927 0.82	550						
700 0.999 0.997 800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.927 0.82	600						
800 0.999 0.997 900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	650						
900 0.998 0.995 1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	700	0.999	0.997				
1000 0.996 0.990 1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	800						
1200 0.995 0.988 1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	900						
1400 0.989 0.972 1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82		0.996					
1600 0.992 0.980 1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82							
1800 0.984 0.961 2000 0.972 0.932 2200 0.927 0.82	1400						
2000 0.972 0.932 2200 0.927 0.82							
2200 0.927 0.82							
2400 0.89 0.75							
	2400	0.89	0.75				

BAL35Y

	Refractive Index	n _d	1.58913 1.589130	Abbe Number ソd	61.2 61.23	Dispersion NF-NC 0.00962 0.009621
Г	Refractive	n _e	1.591426	Abbe Number ν_{e}	60.99	Dispersion $n_{F'} = n_{C'} 0.009697$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
N2325 2.32542 1.55937 N1970 1.97009 1.56517 N1530 1.52958 1.57128 N1129 1.12864 1.57646 Nt 1.01398 1.57811 Ns 0.85211 1.58093 NA' 0.76819 1.58280 Nr 0.70652 1.58451 Nc 0.65627 1.58619 NC' 0.64385 1.58666 NHe-Ne 0.6328 1.58710 ND 0.58929 1.58913 Ne 0.54607 1.58913 NF 0.48613 1.59581 NF' 0.47999 1.59636 NHe-Cd 0.44157 1.60032 Ng 0.435835 1.60100 Nh 0.404656 1.60530 Ni 0.335015 1.61261 N334 0.334148 1.62045	Refractive Indices				
N1970 1.97009 1.56517 N1530 1.52958 1.57128 N1129 1.12864 1.57646 Nt 1.01398 1.57811 Ns 0.85211 1.58093 Na' 0.76819 1.58280 Nr 0.70652 1.58451 Nc 0.65627 1.58619 Nc' 0.64385 1.58666 NHe-Ne 0.6328 1.58710 ND 0.58929 1.58913 Ne 0.54607 1.59143 NF 0.48613 1.59581 NF' 0.47999 1.59636 NHe-Cd 0.44157 1.60032 Ng 0.435835 1.60100 Nh 0.404656 1.60530 Ni 0.365015 1.61261 N334 0.334148 1.62045		λ (μ m)			
N1530 1.52958 1.57128 N1129 1.12864 1.57646 nt 1.01398 1.57811 ns 0.85211 1.58093 nA' 0.76819 1.58280 nr 0.70652 1.58451 nc 0.65627 1.58619 nc' 0.64385 1.58666 nHe-Ne 0.6328 1.58710 nD 0.58929 1.58913 ne 0.54607 1.59143 nF 0.48613 1.59581 nF' 0.47999 1.59636 nHe-Cd 0.44157 1.60032 ng 0.435835 1.60100 nh 0.404656 1.60530 ni 0.365015 1.61261 n334 0.334148 1.62045	n 2325	2.32542	1.55937		
Name Name Name 1.12864 1.57646 Nt 1.01398 1.57811 Ns 0.85211 1.58093 NA' 0.76819 1.58280 Nr 0.70652 1.58451 NC 0.65627 1.58619 NC' 0.64385 1.58666 NHe-Ne 0.6328 1.58710 ND 0.58929 1.58913 Ne 0.54607 1.59143 NF 0.48613 1.59581 NF' 0.47999 1.59636 NHe-Cd 0.44157 1.60032 Ng 0.435835 1.60100 Nh 0.404656 1.60530 Ni 0.365015 1.61261 N334 0.334148 1.62045	n 1970	1.97009	1.56517		
nt 1.01398 1.57811 ns 0.85211 1.58093 nA' 0.76819 1.58280 nr 0.70652 1.58451 nc 0.65627 1.58619 nc' 0.64385 1.58666 nHe-Ne 0.6328 1.58710 nD 0.58929 1.58913 ne 0.54607 1.59143 nF 0.48613 1.59581 nF' 0.47999 1.59636 nHe-Cd 0.44157 1.60032 ng 0.435835 1.60100 nh 0.404656 1.60530 ni 0.365015 1.61261 n334 0.334148 1.62045	n 1530	1.52958	1.57128		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N 1129	1.12864	1.57646		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n _t	1.01398	1.57811		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ns	0.85211	1.58093		
nc 0.65627 1.58619 nc' 0.64385 1.58666 nHe-Ne 0.6328 1.58710 nD 0.58929 1.58904 nd 0.58756 1.58913 ne 0.54607 1.59143 nF 0.48613 1.59581 nF' 0.47999 1.59636 nHe-Cd 0.44157 1.60032 ng 0.435835 1.60100 nh 0.404656 1.60530 ni 0.365015 1.61261 n334 0.334148 1.62045	n _A ′	0.76819	1.58280		
nc' 0.64385 1.58666 nHe-Ne 0.6328 1.58710 nD 0.58929 1.58904 nd 0.58756 1.58913 ne 0.54607 1.59143 nF 0.48613 1.59581 nF' 0.47999 1.59636 nHe-Cd 0.44157 1.60032 ng 0.435835 1.60100 nh 0.404656 1.60530 ni 0.365015 1.61261 n334 0.334148 1.62045	n _r	0.70652	1.58451		
nHe-Ne 0.6328 1.58710 nD 0.58929 1.58904 nd 0.58756 1.58913 ne 0.54607 1.59143 nF 0.48613 1.59581 nF' 0.47999 1.59636 nHe-Cd 0.44157 1.60032 ng 0.435835 1.60100 nh 0.404656 1.60530 ni 0.365015 1.61261 n334 0.334148 1.62045	n _C	0.65627	1.58619		
nD 0.58929 1.58904 nd 0.58756 1.58913 ne 0.54607 1.59143 nF 0.48613 1.59581 nF' 0.47999 1.59636 nHe-Cd 0.44157 1.60032 ng 0.435835 1.60100 nh 0.404656 1.60530 ni 0.365015 1.61261 n334 0.334148 1.62045	n _C ′	0.64385	1.58666		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n _{He-Ne}	0.6328	1.58710		
$\begin{array}{ccccc} \textbf{n}_{\textbf{e}} & 0.54607 & 1.59143 \\ \textbf{n}_{\textbf{F}} & 0.48613 & \textbf{1.59581} \\ \textbf{n}_{\textbf{F}'} & 0.47999 & 1.59636 \\ \textbf{n}_{\textbf{He-Cd}} & 0.44157 & 1.60032 \\ \textbf{n}_{\textbf{g}} & 0.435835 & \textbf{1.60100} \\ \textbf{n}_{\textbf{h}} & 0.404656 & 1.60530 \\ \textbf{n}_{\textbf{i}} & 0.365015 & 1.61261 \\ \textbf{n}_{\textbf{334}} & 0.334148 & 1.62045 \\ \end{array}$	n_D	0.58929	1.58904		
nF 0.48613 1.59581 nF' 0.47999 1.59636 nHe-Cd 0.44157 1.60032 ng 0.435835 1.60100 nh 0.404656 1.60530 ni 0.365015 1.61261 n334 0.334148 1.62045	n _d	0.58756	1.58913		
$\begin{array}{cccc} n_{F^{'}} & 0.47999 & 1.59636 \\ n_{He\text{-Cd}} & 0.44157 & 1.60032 \\ n_g & 0.435835 & \textbf{1.60100} \\ n_h & 0.404656 & 1.60530 \\ n_i & 0.365015 & 1.61261 \\ n_{334} & 0.334148 & 1.62045 \\ \end{array}$	n _e	0.54607	1.59143		
$\begin{array}{cccc} n_{He\text{-}Cd} & 0.44157 & 1.60032 \\ n_g & 0.435835 & \textbf{1.60100} \\ n_h & 0.404656 & 1.60530 \\ n_i & 0.365015 & 1.61261 \\ n_{334} & 0.334148 & 1.62045 \\ \end{array}$	n _F	0.48613	1.59581		
$\begin{array}{ccccc} n_g & 0.435835 & \textbf{1.60100} \\ n_h & 0.404656 & 1.60530 \\ n_i & 0.365015 & 1.61261 \\ n_{334} & 0.334148 & 1.62045 \end{array}$	n _F ′	0.47999	1.59636		
nh 0.404656 1.60530 ni 0.365015 1.61261 n334 0.334148 1.62045	n _{He-Cd}	0.44157	1.60032		
ni 0.365015 1.61261 n334 0.334148 1.62045	ng	0.435835	1.60100		
N334 0.334148 1.62045	n_h	0.404656	1.60530		
	n _i	0.365015	1.61261		
N326 0.326106 1.62293	n 334	0.334148	1.62045		
	n 326	0.326106	1.62293		

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0054			
$arDelta heta_{C,A'}$	0.0017			
$arDelta heta_{ extsf{g,d}}$	$1\theta_{ extsf{g,d}}$ -0.0034			
$\Delta heta_{ exttt{g,F}}$ -0.0026				
$\Delta heta_{i,g}$	-0.0064			

Constants	nstants of Dispersion Formula ※1				
A_1	1.26231429				
A_2	2.25154210•10 ⁻¹				
A_3	6.39119345•10 ⁻¹				
B ₁	6.95586355•10 ⁻³				
B ₂	2.21310699•10 ⁻²				
B ₃	6.31662736•10 ¹				

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.23		
Remarks				

	Temperature Coefficients of Refractive Index								
Range of Temperature			dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)		t	C	He-Ne	D	е	F [′]	g	i
-40 ~ -	-20	3.2	3.4	3.4	3.5	3.7	3.9	4.2	4.9
–20 ~	0	3.2	3.5	3.5	3.6	3.8	4.0	4.3	5.0
0 ~	20	3.3	3.6	3.6	3.7	3.9	4.2	4.4	5.2
20 ~	40	3.3	3.7	3.7	3.9	4.0	4.3	4.6	5.4
40 ~	60	3.4	3.8	3.8	4.0	4.1	4.4	4.7	5.6
60 ~	80	3.5	3.9	3.9	4.1	4.2	4.5	4.9	5.7

Partial Dispersions				
n _C –n _t	0.008076			
n _C -n _A ′	0.003385			
n _d –n _C	0.002940			
n _e –n _C	0.005236			
n _g –n _d	0.011874			
n _g –n _F	0.005193			
n _h –n _g	0.004298			
n _i –n _g	0.011602			
n _C '-n _t	0.008545			
n _e –n _C ′	0.004767			
n _F ′–n _e	0.004930			
n _i –n _F ′	0.016250			
	0.00.00			

Therma	;		
Strain Point	StP	(\mathcal{C})	_
Annealing Point	AP	(\mathcal{C})	_
Transformation Temperature	Tg	(\mathcal{C})	590
Yield Point	At	(\mathcal{C})	628
Softening Point	SP	(\mathcal{C})	697
Expansion Coefficients (57
α (10 ⁻⁷ /°C) (+1	00~+	300℃)	72
Thermal Conductivity	(W/ı	m·K)	0.991

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	881			
Rigidity Modulus G	$(10^8 N/m^2)$	354			
Poisson's Ratio	σ	0.244			
Knoop Hardness	Hk	550[6]			
Abrasion	Aa	118			
Photoelastic Consta	nt ß				
(nm/cm/10 ⁵ Pa	.)				

Chemical Properties				
2				
3				
2~3				
4.2				
1.0				

Relative Partial Dispersions			
$ heta_{C,t}$	0.8394		
$ heta_{C,A'}$	0.3518		
$ heta_{\sf d,C}$	0.3056		
$ heta_{ extsf{e}, extsf{C}}$	0.5442		
$ heta_{ extsf{g,d}}$	1.2342		
$ heta_{ extsf{g}, extsf{F}}$	0.5398		
$ heta_{h,g}$	0.4467		
$ heta_{i,g}$	1.2059		
θ' C',t	0.8812		
θ' _{e,C'}	0.4916		
θ' _{F',e}	0.5084		
$\theta'_{i,F'}$	1.6758		

Coloring			
λ 80/ λ 5	32/29		

Internal Transmittance					
λ (nm)	au 10mm	au 25mm			
280					
290	0.11				
300	0.50	0.17			
310	0.79	0.56			
320	0.920	0.81			
330	0.966	0.918			
340	0.984	0.960			
350	0.991	0.978			
360	0.994	0.986			
365	0.996	0.990			
370	0.996	0.991			
380	0.997	0.993			
390	0.998	0.995			
400	0.998	0.996			
420	0.999	0.997			
440	0.999	0.997			
460	0.999	0.997			
480	0.999	0.998			
500	0.999	0.998			
550	0.999	0.998			
600	0.999	0.998			
650	0.999	0.998			
700	0.999	0.998			
800	0.999	0.998			
900	0.999	0.997			
1000	0.997	0.993			
1200	0.997	0.993			
1400	0.985	0.963			
1600	0.993	0.982			
1800	0.986	0.966			
2000	0.973	0.934			
2200	0.904	0.77			
2400	0.82	0.61			

BSM 51Y

	Refractive Index	n _d	1.60311 1.603109	Abbe Number νd	60.6 60.65	Dispersion N _F -N _C 0.00995 0.009944
Г	Refractive	ne	1.605481	Abbe Number ν_{e}	60.40	Dispersion NF' -NC' 0.010024

	Refractive Indices					
	λ (μ m)					
n 2325	2.32542	1.57281				
n 1970	1.97009	1.57865				
n 1530	1.52958	1.58482				
N 1129	1.12864	1.59008				
n _t	1.01398	1.59177				
ns	0.85211	1.59465				
n _A ′	0.76819	1.59658				
n _r	0.70652	1.59834				
nc	0.65627	1.60007				
n _C ′	0.64385	1.60056				
n _{He-Ne}	0.6328	1.60101				
n_D	0.58929	1.60302				
n _d	0.58756	1.60311				
n _e	0.54607	1.60548				
n _F	0.48613	1.61002				
n _F ′	0.47999	1.61058				
n _{He-Cd}	0.44157	1.61468				
ng	0.435835	1.61539				
n _h	0.404656	1.61985				
n _i	0.365015	1.62743				
n 334	0.334148	1.63557				
n 326	0.326106	1.63815				

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"					
$\Delta heta_{ extsf{C,t}}$	0.0037				
$\Delta heta_{C,A'}$	0.0015				
$arDelta heta_{ extsf{g,d}}$	-0.0033				
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0026				
$\Delta heta_{i,g}$	-0.0073				

Constants of Dispersion Formula %1				
A_1	1.22393171			
A_2	3.06482383•10 ⁻¹			
A_3	8.23950901•10 ⁻¹			
B ₁	6.49521083•10 ⁻³			
B ₂	2.08194161•10 ⁻²			
B ₃	7.95168951•10 ¹			

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.36		
Remarks				

	Temperature Coefficients of Refractive Index								
Range of Temper	Range of Temperature $\frac{dn}{dt}$ relative $\frac{(10^{-6})^{\circ}C}{}$								
(℃)		t	C	He-Ne	D	е	F	g	i
−40 ~ −2	20	2.5	2.8	2.8	2.9	3.1	3.3	3.6	4.3
–20 ~	0	2.6	2.9	2.9	3.0	3.1	3.4	3.7	4.4
0 ~ 2	20	2.6	2.9	2.9	3.1	3.2	3.5	3.8	4.6
20 ~ 4	Ю	2.6	3.0	3.0	3.1	3.3	3.6	3.9	4.7
40 ~ 6	0	2.7	3.0	3.0	3.2	3.3	3.6	4.0	4.8
60 ~ 8	30	2.7	3.1	3.1	3.3	3.4	3.7	4.1	4.9

Partial Dispersions				
n _C –n _t	0.008303			
n _C -n _A ′	0.003489			
n _d –n _C	0.003035			
n _e –n _C	0.005407			
n _g –n _d	0.012286			
n _g –n _F	0.005377			
n _h –n _g	0.004454			
n _i –n _g	0.012031			
n _C '-n _t	0.008787			
n _e -n _C ′	0.004923			
n _F '-n _e	0.005101			
n _i —n _F ′	0.016844			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	538		
Annealing Point	AP	(\mathcal{C})	568		
Transformation Temperature	Tg	(\mathcal{C})	585		
Yield Point	At	(\mathcal{C})	617		
Softening Point	SP	(\mathcal{C})	684		
Expansion Coefficients	63				
$\alpha (10^{-7})^{\circ}C)$ (+1	100~+	300℃)	77		
Thermal Conductivity $k(W/m \cdot K)$			0.961		

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	901			
Rigidity Modulus G	$(10^8 N/m^2)$	359			
Poisson's Ratio	σ	0.256			
Knoop Hardness	Hk	570[6]			
Abrasion	Aa	117			
Photoelastic Consta	nt ß				
(nm/cm/10 ⁵ Pa	.)				

Chemical Properties				
Water Resistance (Powder) Group $RW(P)$	2			
Acid Resistance (Powder) Group RA(P)	4			
Weathering Resistance (Surface) Group $W(s)$	3			
Acid Resistance (Surface) Group SR	51.2			
Phosphate Resistance PR	2.2			

Relative Partial Dispersions					
$ heta_{C,t}$	0.8350				
$ heta_{C,A'}$	0.3509				
$ heta_{\sf d,C}$	0.3052				
$ heta_{e,C}$	0.5437				
$ heta_{ extsf{g,d}}$	1.2355				
$ heta_{ extsf{g}, extsf{F}}$	0.5407				
$ heta_{h,g}$	0.4479				
$ heta_{i,g}$	1.2099				
θ c',t	0.8766				
$\theta'_{e,C'}$	0.4911				
θ´r΄,e	0.5089				
$\theta'_{i,F'}$	1.6804				

Coloring			
λ 80/ λ 5	32/29		

Internal Transmittance						
λ (nm)	τ 10mm	au 25mm				
280						
290	0.03					
300	0.33	0.06				
310	0.69	0.40				
320	0.88	0.72				
330	0.950	0.87				
340	0.977	0.944				
350	0.988	0.970				
360	0.993	0.983				
365	0.995	0.987				
370	0.996	0.990				
380	0.997	0.993				
390	0.998	0.995				
400	0.998	0.996				
420	0.998	0.996				
440	0.998	0.996				
460	0.999	0.997				
480	0.999	0.998				
500	0.999	0.998				
550	0.999	0.998				
600	0.999	0.998				
650	0.999	0.998				
700	0.999	0.998				
800	0.999	0.998				
900	0.999	0.997				
1000	0.997	0.993				
1200	0.997	0.993				
1400	0.985	0.963				
1600	0.992	0.980				
1800	0.983	0.959				
2000	0.967	0.920				
2200	0.89	0.74				
2400	0.78	0.54				

PBL 1Y

Refractive Index	n_{d}	1.54814 1.548141	Abbe Number ν _d	45.7 45.73	Dispersion N _F —N _C 0.01199 0.011986
Refractive Index	ne	1.550989	Abbe Number $ u_{ m e}$	45.45	Dispersion NF' -NC' 0.012123

Refractive Indices				
λ (μ m)				
2.32542	1.51892			
1.97009	1.52371			
1.52958	1.52892			
1.12864	1.53374			
1.01398	1.53542			
0.85211	1.53845			
0.76819	1.54058			
0.70652	1.54256			
0.65627	1.54456			
0.64385	1.54513			
0.6328	1.54566			
0.58929	1.54804			
0.58756	1.54814			
0.54607	1.55099			
0.48613	1.55655			
0.47999	1.55725			
0.44157	1.56242			
0.435835	1.56333			
0.404656	1.56911			
0.365015	1.57931			
0.334148	1.59092			
0.326106	1.59476			
	λ (μ m) 2.32542 1.97009 1.52958 1.12864 1.01398 0.85211 0.76819 0.70652 0.65627 0.64385 0.6328 0.58929 0.58756 0.54607 0.48613 0.47999 0.44157 0.435835 0.404656 0.365015 0.334148			

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0014			
$\Delta heta$ C,A $^{\prime}$	0.0012			
$arDelta heta_{ extsf{g,d}}$	-0.0025			
$\varDelta heta$ g,F	-0.0019			
$\Delta heta_{i,g}$	-0.0092			

Constants of Dispersion Formula ※1			
A ₁	1.24772961		
A_2	1.01954909•10 ⁻¹		
A ₃	3.50479619•10 ⁻¹		
B ₁	9.26606623•10 ⁻³		
B ₂	4.51754311•10 ⁻²		
B ₃	4.50186705•10 ¹		

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	2.95		
Remarks				

	Temperature Coefficients of Refractive Index								
Range of Ten	nperature	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$							
(℃)		t	C	He-Ne	D	е	F	g	i
−40 ~	-20	1.2	1.6	1.7	1.8	2.0	2.5	3.0	4.5
–20 ~	0	1.2	1.7	1.7	1.9	2.1	2.6	3.1	4.7
0 ~	20	1.2	1.7	1.8	1.9	2.2	2.7	3.2	4.9
20 ~	40	1.3	1.8	1.8	2.0	2.2	2.8	3.3	5.0
40 ~	60	1.3	1.8	1.9	2.1	2.3	2.9	3.4	5.2
60 ~	80	1.3	1.9	1.9	2.1	2.4	2.9	3.5	5.4

Partial Dispersions			
n _C –n _t	0.009141		
n _C -n _A ′	0.003985		
n _d –n _C	0.003576		
n _e –n _C	0.006424		
n _g –n _d	0.015189		
n _g –n _F	0.006779		
n _h –n _g	0.005775		
n _i –n _g	0.015976		
n _C '-n _t	0.009705		
n _e –n _C ′	0.005860		
n _F ′–n _e	0.006263		
n _i –n _F ′	0.022054		

Thermal Properties				
Strain Point	StP (°C)	361		
Annealing Point	AP ($^{\circ}$ C)	396		
Transformation Temperature	e Tg (℃)	406		
Yield Point	At (°C)	453		
Softening Point	SP ($^{\circ}C$)	567		
Expansion Coefficients	(−30∼+70℃)	93		
$\alpha (10^{-7})^{\circ}C)$ (+	100∼+300℃)	106		
Thermal Conductivity	k(W/m·K)	0.951		

Mechanical Properties				
Young's Modulus E	$(10^8 N/m^2)$	613		
Rigidity Modulus G	$(10^8 N/m^2)$	252		
Poisson's Ratio	σ	0.217		
Knoop Hardness	Hk	420[4]		
Abrasion	Aa	124		
Photoelastic Constan	t ß	2.94		
(nm/cm/10 ⁵ Pa))			

Chemical Properties		
2		
1		
2		
1.0		
1.1		

Relative Partial Dispersions				
$ heta_{C,t}$	0.7626			
$ heta_{C,A'}$	0.3325			
$ heta_{\sf d,C}$	0.2983			
$ heta_{e,C}$	0.5360			
$ heta_{ extsf{g,d}}$	1.2672			
$ heta_{ extsf{g}, extsf{F}}$	0.5656			
$ heta_{h,g}$	0.4818			
$ heta_{i,g}$	1.3329			
θ´c΄,t	0.8005			
θ'e,C'	0.4834			
θ´r΄,e	0.5166			
$\theta'_{i,F'}$	1.8192			

Coloring		
λ 80/ λ 5	32/30	

Internal Transmittance				
λ (nm)	au 10mm	au 25mm		
280				
290				
300				
310	0.29	0.04		
320	0.80	0.57		
330	0.954	0.88		
340	0.988	0.970		
350	0.995	0.988		
360	0.997	0.993		
365	0.997	0.994		
370	0.998	0.995		
380	0.998	0.996		
390	0.999	0.997		
400	0.999	0.998		
420	0.999	0.998		
440	0.999	0.998		
460	0.999	0.998		
480	0.999	0.998		
500	0.999	0.999		
550	0.999	0.999		
600	0.999	0.999		
650	0.999	0.999		
700	0.999	0.999		
800	0.999	0.999		
900	0.999	0.999		
1000	0.999	0.999		
1200	0.999	0.999		
1400	0.998	0.996		
1600	0.996	0.991		
1800	0.983	0.958		
2000	0.960	0.903		
2200	0.919	0.81		
2400	0.88	0.73		

PBL 6Y

Refractive r Index	n _d	1.53172 1.531717	Abbe Number νd	49.0 48.95	Dispersion NF—NC 0.01086 0.010862
Refractive r	n _e	1.534301	Abbe Number $ u_{ m e}$	48.67	Dispersion $n_{F'} - n_{C'} 0.010977$

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.50343				
n 1970	1.97009	1.50833				
n 1530	1.52958	1.51361				
N 1129	1.12864	1.51837				
n _t	1.01398	1.51998				
ns	0.85211	1.52282				
n _A ′	0.76819	1.52480				
n _r	0.70652	1.52663				
n _C	0.65627	1.52846				
n _C ′	0.64385	1.52897				
n _{He-Ne}	0.6328	1.52946				
n_D	0.58929	1.53162				
n _d	0.58756	1.53172				
n _e	0.54607	1.53430				
n _F	0.48613	1.53932				
n _F ′	0.47999	1.53995				
n _{He-Cd}	0.44157	1.54459				
n_g	0.435835	1.54540				
n_h	0.404656	1.55056				
n _i	0.365015	1.55959				
n 334	0.334148	1.56978				
n 326	0.326106	1.57312				

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0046			
$\Delta heta_{C,A'}$	0.0018			
$arDelta heta_{ extsf{g,d}}$	-0.0031			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0024			
$\Delta heta_{i,g}$	-0.0087			

Constants of Dispersion Formula %1					
A_1	1.22310794				
A_2	8.11217929•10 ⁻²				
A_3	3.21400939•10 ⁻¹				
B ₁	8.97805333•10 ⁻³				
B ₂	4.45756957•10 ⁻²				
B ₃	4.05962247•10 ¹				

Other Properties					
Bubble Quality Group	В	В			
Specific Gravity	d	2.79			
Remarks					

	Temperature Coefficients of Refractive Index								
Range of Temperature			dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)		t	C'	He-Ne	D	е	F	g	i
-40 ~ ·	-20	1.9	2.3	2.3	2.4	2.6	3.0	3.4	4.7
-20 ~	0	1.9	2.4	2.4	2.5	2.7	3.1	3.6	4.9
0 ~	20	2.0	2.5	2.5	2.6	2.8	3.3	3.7	5.1
20 ~	40	2.1	2.6	2.6	2.7	2.9	3.4	3.9	5.3
40 ~	60	2.1	2.7	2.7	2.9	3.1	3.5	4.0	5.6
60 ~	80	2.2	2.8	2.8	3.0	3.2	3.7	4.2	5.8

Partial Dispersions				
n _C –n _t	0.008482			
n _C –n _A ′	0.003660			
n _d –n _C	0.003258			
n _e –n _C	0.005842			
n _g –n _d	0.013686			
n _g –n _F	0.006082			
n _h –n _g	0.005153			
n _i –n _g	0.014190			
n _C '-n _t	0.008998			
n _e –n _C ′	0.005326			
n _F ′–n _e	0.005651			
n _i –n _F ′	0.019641			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	398		
Annealing Point	ΑP	(\mathcal{C})	436		
Transformation Temperature	Tg	(\mathcal{C})	453		
Yield Point	At	(\mathcal{C})	501		
Softening Point	SP	(\mathcal{C})	637		
Expansion Coefficients (-30~-	+70°C)	83		
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+	300℃)	90		
Thermal Conductivity	1.016				

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	605				
Rigidity Modulus G	$(10^8 N/m^2)$	251				
Poisson's Ratio	σ	0.205				
Knoop Hardness	Hk	450[5]				
Abrasion	Aa	113				
Photoelastic Constar	nt ß	3.07				
(nm/cm/10 ⁵ Pa						

2
1
1
1.0
1.0

Relative Partial Dispersions					
$ heta_{C,t}$	0.7809				
$ heta_{C,A'}$	0.3370				
$ heta_{\sf d,C}$	0.2999				
$ heta_{e,C}$	0.5378				
$ heta_{ extsf{g,d}}$	1.2600				
$ heta_{ extsf{g}, extsf{F}}$	0.5599				
$ heta_{h,g}$	0.4744				
$ heta_{i,g}$	1.3064				
θ'C',t	0.8197				
$\theta'_{e,C'}$	0.4852				
$ heta^{'}$ F $^{'}$,e	0.5148				
$\theta'_{i,F'}$	1.7893				

Coloring		
λ 80/ λ 5	32/30	

Name						
280 290 300 310 0.33 0.06 320 0.79 0.55 330 0.947 0.87 340 0.985 0.963 350 0.994 0.986 360 0.997 0.993 365 0.998 0.994 370 0.998 0.995 380 0.998 0.996 400 0.999 0.998 440 0.999 0.998 440 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 700 0.999 0.998 700 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84	Internal Transmittance					
290 300 310 0.33 0.06 320 0.79 0.55 330 0.947 0.87 340 0.985 0.963 350 0.994 0.986 360 0.997 0.993 365 0.998 0.994 370 0.998 0.995 380 0.998 0.996 400 0.999 0.997 420 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 700 0.999 0.998 700 0.999 0.999 800 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 <td< td=""><td> ,</td><td>au 10mm</td><td>au 25mm</td></td<>	,	au 10mm	au 25mm			
300 310 0.33 0.06 320 0.79 0.55 330 0.947 0.87 340 0.985 0.963 350 0.994 0.986 360 0.997 0.993 365 0.998 0.994 370 0.998 0.995 380 0.998 0.996 390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 700 0.999 0.998 700 0.999 0.999 800 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934	280					
310 0.33 0.06 320 0.79 0.55 330 0.947 0.87 340 0.985 0.963 350 0.994 0.986 360 0.997 0.993 365 0.998 0.995 380 0.998 0.996 390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 440 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 700 0.999 0.998 700 0.999 0.999 800 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0	290					
320 0.79 0.55 330 0.947 0.87 340 0.985 0.963 350 0.994 0.986 360 0.997 0.993 365 0.998 0.994 370 0.998 0.995 380 0.998 0.996 390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 700 0.999 0.998 700 0.999 0.999 800 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 <td< td=""><td>300</td><td></td><td></td></td<>	300					
330 0.947 0.87 340 0.985 0.963 350 0.994 0.986 360 0.997 0.993 365 0.998 0.994 370 0.998 0.995 380 0.998 0.996 400 0.999 0.997 420 0.999 0.998 440 0.999 0.998 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	310	0.33	0.06			
340 0.985 0.963 350 0.994 0.986 360 0.997 0.993 365 0.998 0.994 370 0.998 0.995 380 0.998 0.996 390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	320	0.79	0.55			
350 0.994 0.986 360 0.997 0.993 365 0.998 0.995 380 0.998 0.996 390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 440 0.999 0.998 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 700 0.999 0.998 700 0.999 0.999 800 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	330	0.947				
360 0.997 0.993 365 0.998 0.994 370 0.998 0.995 380 0.998 0.996 390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 440 0.999 0.998 460 0.999 0.998 500 0.999 0.998 500 0.999 0.998 600 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	340		0.963			
365 0.998 0.994 370 0.998 0.995 380 0.998 0.996 390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 440 0.999 0.998 460 0.999 0.998 500 0.999 0.998 500 0.999 0.998 600 0.999 0.998 600 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	350	0.994	0.986			
370 0.998 0.995 380 0.998 0.996 390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 440 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 600 0.999 0.998 600 0.999 0.999 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	360	0.997	0.993			
380 0.998 0.996 390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 440 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.999 650 0.999 0.999 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69						
390 0.998 0.996 400 0.999 0.997 420 0.999 0.998 440 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.999 650 0.999 0.999 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	370	0.998	0.995			
400 0.999 0.997 420 0.999 0.998 440 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.999 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	380	0.998	0.996			
420 0.999 0.998 440 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.999 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	390					
440 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.999 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1200 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	400					
460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.999 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	420					
480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.999 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69						
500 0.999 0.998 550 0.999 0.998 600 0.999 0.999 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	460	0.999	0.998			
550 0.999 0.998 600 0.999 0.999 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	480					
600 0.999 0.999 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	500					
650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	550					
700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	600		0.999			
800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	650					
900 0.999 0.998 1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	700	0.999	0.999			
1000 0.998 0.996 1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	800					
1200 0.997 0.993 1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	900					
1400 0.996 0.990 1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69			0.996			
1600 0.993 0.983 1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69						
1800 0.973 0.934 2000 0.933 0.84 2200 0.86 0.69	1400					
2000 0.933 0.84 2200 0.86 0.69						
2200 0.86 0.69						
0.400						
2400 0.81 0.59	2400	0.81	0.59			

PBL25Y

	Refractive n d	1.58144 1.581439	Abbe Number νd	40.8 40.77	Dispersion NF-NC 0.01426 0.014263
Г	Refractive n _e	1.584824	Abbe Number $ u_{ m e}$	40.49	Dispersion $n_{F'} - n_{C'} 0.014442$

Refractive Indices					
n 2325	2.32542	1.54936			
N 1970	1.97009	1.55423			
n 1530	1.52958	1.55961			
N 1129	1.12864	1.56480			
n _t	1.01398	1.56667			
ns	0.85211	1.57011			
n _A ′	0.76819	1.57256			
n _r	0.70652	1.57487			
nc	0.65627	1.57722			
n _C ′	0.64385	1.57788			
n _{He-Ne}	0.6328	1.57850			
n_D	0.58929	1.58131			
n _d	0.58756	1.58144			
n _e	0.54607	1.58482			
n _F	0.48613	1.59148			
n _F ′	0.47999	1.59232			
n _{He-Cd}	0.44157	1.59856			
ng	0.435835	1.59967			
n_h	0.404656	1.60670			
n _i	0.365015	1.61928			
n 334	0.334148	1.63387			
n 326	0.326106	1.63876			

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"			
$\Delta heta_{ extsf{C,t}}$	0.0014		
$arDelta heta_{C,A'}$	0.0011		
$arDelta heta_{ extsf{g,d}}$	-0.0021		
$\Delta heta_{ exttt{g,F}}$ -0.0016			
$\Delta heta_{i,g}$	g -0.0081		

Constants of Dispersion Formula ※1				
A_1	1.31960626			
A_2	1.23752633•10 ⁻¹			
A_3	2.10055351•10 ⁻¹			
B ₁	1.01863415•10 ⁻²			
B ₂	4.83593508•10 ⁻²			
B ₃	2.73272029•10 ¹			

Other P	roperl	ties
Bubble Quality Group	В	
Specific Gravity	d	3.23
Remarks		

	Temperature Coefficients of Refractive Index								
Range of Terr	nperature			dn / dt	relative	$(10^{-}$	6/℃)		
(℃))	t	C	He-Ne	D	е	F	g	i
-40 ~	-20	1.8	2.4	2.5	2.7	2.9	3.5	4.2	6.3
-20 ~	0	1.9	2.5	2.6	2.8	3.1	3.7	4.4	6.5
0 ~	20	1.9	2.6	2.7	2.9	3.2	3.8	4.5	6.8
20 ~	40	2.0	2.7	2.8	3.0	3.3	4.0	4.7	7.0
40 ~	60	2.1	2.8	2.9	3.1	3.4	4.1	4.9	7.3
60 ~	80	2.1	2.9	3.0	3.2	3.5	4.3	5.1	7.5

Partial Dispersions			
n _C –n _t	0.010546		
n _C -n _A ′	0.004656		
n _d –n _C	0.004222		
n _e –n _C	0.007607		
n _g –n _d	0.018226		
n _g –n _F	0.008185		
n _h –n _g	0.007038		
n _i –n _g	0.019619		
n _C '-n _t	0.011210		
n _e –n _C ′	0.006943		
n _F '-n _e	0.007499		
n _i —n _F ′	0.026961		

Thermal Properties					
Strain Point	StP	(\mathcal{C})	381		
Annealing Point	ΑP	(\mathcal{C})	420		
Transformation Temperature	- Tg	(\mathcal{C})	440		
Yield Point	At	(\mathcal{C})	468		
Softening Point	SP	(\mathcal{C})	590		
Expansion Coefficients	87				
$\alpha (10^{-7}/^{\circ}C)$ (+	100~+	300℃)	98		
Thermal Conductivity $k(W/m \cdot K)$			0.899		

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	585			
Rigidity Modulus G	$(10^8 N/m^2)$	240			
Poisson's Ratio	σ	0.219			
Knoop Hardness	Hk	460[5]			
Abrasion	Aa	130			
Photoelastic Constar	nt B	2.99			
(nm/cm/10 ⁵ Pa	.)				

_
2
1
1
1.0
2.0

Relative Partial Dispersions				
$\theta_{C,t}$	0.7394			
$ heta_{C,A'}$	0.3264			
$ heta_{\sf d,C}$	0.2960			
$ heta_{ extsf{e}, extsf{C}}$	0.5333			
$ heta_{ extsf{g,d}}$	1.2779			
$ heta_{ extsf{g}, extsf{F}}$	0.5739			
$ heta_{h,g}$	0.4934			
$ heta_{i,g}$	1.3755			
θ' C',t	0.7762			
θ'e,C'	0.4808			
$ heta^{'}$ F $^{'}$,e	0.5192			
$\theta'_{i,F'}$	1.8668			

Colo	ring
λ 80/ λ 5	34/31

Internal Transmittance λ (nm) τ 10mm τ 25mm 280 290 300 310 0.01 320 0.35 0.07 330 0.78 0.54 340 0.940 0.85 350 0.981 0.954 360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 400 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.998 550 0.999 0.998 550 0.999 0.998 650 0.999 0.998 700 0.999 0.998 700 0.999 0.998 1000 0.998 0.996 1200 0.998 0.996			
280 290 300 310 0.01 320 0.35 0.07 330 0.78 0.54 340 0.940 0.85 350 0.981 0.954 360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 650 0.999 0.998 700 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948	Inter	nal Transmitta	ance
290 300 310 0.01 320 0.35 0.07 330 0.78 0.54 340 0.940 0.85 350 0.981 0.954 360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 650 0.999 0.998 700 0.999 0.998 800 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.948 2000 0.953 0		au 10mm	au 25mm
300 310 0.01 320 0.35 0.07 330 0.78 0.54 340 0.940 0.85 350 0.981 0.954 360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 650 0.999 0.998 700 0.999 0.998 1000 0.998 0.996 1200 0.998 0.996 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 <td< td=""><td>280</td><td></td><td></td></td<>	280		
310 0.01 320 0.35 0.07 330 0.78 0.54 340 0.940 0.85 350 0.981 0.954 360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.995 420 0.998 0.996 440 0.998 0.996 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 700 0.999 0.998 700 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.994 1800 0.979 0.948 2000 0.993 0.88 <td>290</td> <td></td> <td></td>	290		
320 0.35 0.07 330 0.78 0.54 340 0.940 0.85 350 0.981 0.954 360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 550 0.999 0.998 650 0.999 0.998 650 0.999 0.998 700 0.999 0.998 1000 0.998 0.996 1200 0.998 0.996 1400 0.996 0.994 1800 0.979 0.948 1800 0.979 0.948 2000 0.993	300		
330 0.78 0.54 340 0.940 0.85 350 0.981 0.954 360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 650 0.999 0.998 700 0.999 0.998 900 0.999 0.998 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	310		
340 0.940 0.85 350 0.981 0.954 360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 650 0.999 0.998 650 0.999 0.998 700 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	320	0.35	0.07
350 0.981 0.954 360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 650 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.948 2000 0.953 0.88	330	0.78	0.54
360 0.993 0.982 365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 700 0.999 0.998 700 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	340	0.940	
365 0.995 0.986 370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 700 0.999 0.998 700 0.999 0.999 800 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	350		
370 0.996 0.990 380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.998 800 0.999 0.999 900 0.999 0.998 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	360	0.993	0.982
380 0.997 0.993 390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	365		
390 0.998 0.995 400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	370	0.996	0.990
400 0.998 0.996 420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 700 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	380	0.997	0.993
420 0.998 0.996 440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	390	0.998	0.995
440 0.998 0.996 460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	400		
460 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	420		
480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	440		
500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	460	0.999	0.997
550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	480		0.998
600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	500	0.999	0.998
650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	550		0.998
700 0.999 0.999 800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	600	0.999	0.998
800 0.999 0.999 900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	650		
900 0.999 0.998 1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	700		0.999
1000 0.998 0.996 1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	800		
1200 0.998 0.995 1400 0.996 0.990 1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	900	0.999	
14000.9960.99016000.9940.98418000.9790.94820000.9530.88	1000	0.998	
1600 0.994 0.984 1800 0.979 0.948 2000 0.953 0.88	1200		
1800 0.979 0.948 2000 0.953 0.88	1400		
2000 0.953 0.88	1600		
2200 0005 0 70			
	2200	0.905	0.78
2400 0.87 0.70	2400	0.87	0.70

PBL26Y

Γ	Refractive Index	n _d	1.56732 1.567322	Abbe Number νd	42.8 42.86	Dispersion NF-NC 0.01324 0.013238
	Refractive	n _e	1.570466	Abbe Number $ u_{ m e}$	42.58	Dispersion NF' -NC' 0.013399

Refractive Indi	ces
λ (μ m)	
2.32542	1.53658
1.97009	1.54138
1.52958	1.54668
1.12864	1.55170
1.01398	1.55348
0.85211	1.55673
0.76819	1.55904
0.70652	1.56120
0.65627	1.56339
0.64385	1.56401
0.6328	1.56459
0.58929	1.56721
0.58756	1.56732
0.54607	1.57047
0.48613	1.57663
0.47999	1.57741
0.44157	1.58317
0.435835	1.58418
0.404656	1.59065
0.365015	1.60217
0.334148	1.61543
0.326106	1.61986
	λ (μm) 2.32542 1.97009 1.52958 1.12864 1.01398 0.85211 0.76819 0.70652 0.65627 0.64385 0.6328 0.58929 0.58756 0.54607 0.48613 0.47999 0.44157 0.435835 0.404656 0.365015 0.334148

Deviation of Relative Partial Dispersions $\Delta\theta$ from "Normal"		
$\Delta heta_{ extsf{C,t}}$	0.0008	
$\Delta heta_{ extsf{C,A'}}$	0.0010	
$arDelta heta_{ extsf{g,d}}$	-0.0020	
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0015	
$\Delta heta_{i,g}$	-0.0074	

Constants of Dispersion Formula %1				
A_1	1.29471773			
A_2	1.08880981•10 ⁻¹			
A ₃	2.20322964•10 ⁻¹			
B ₁	9.86579479•10 ⁻³			
B ₂	4.77568828•10 ⁻²			
B ₃	2.88509863•10 ¹			

Other P	roperl	ies
Bubble Quality Group	В	
Specific Gravity	d	3.10
Remarks		

	Temperature Coefficients of Refractive Index								
Range of Tem	perature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)	·)	t	C	He-Ne	D	е	F [′]	g	i
-40 ~	-20	0.9	1.5	1.5	1.7	2.0	2.5	3.0	4.9
-20 ~	0	1.0	1.6	1.7	1.8	2.1	2.6	3.2	5.1
0 ~	20	1.1	1.7	1.8	2.0	2.2	2.8	3.4	5.4
20 ~	40	1.2	1.9	1.9	2.1	2.4	3.0	3.6	5.7
40 ~	60	1.3	2.0	2.0	2.2	2.5	3.1	3.8	5.9
60 ~	80	1.4	2.1	2.1	2.4	2.6	3.3	4.0	6.2

Partial Dis	persions
n _C –n _t	0.009910
n _C -n _A ′	0.004353
n _d –n _C	0.003931
n _e –n _C	0.007075
n _g –n _d	0.016861
n _g –n _F	0.007554
n _h –n _g	0.006471
n _i –n _g	0.017986
n _C '-n _t	0.010529
n _e -n _C ′	0.006456
n _F '-n _e	0.006943
n _i –n _F ′	0.024760

Thermal Properties					
Strain Point	StP	(\mathcal{C})	380		
Annealing Point	ΑP	(\mathcal{C})	418		
Transformation Temperature	Tg	(\mathcal{C})	432		
Yield Point	At	(\mathcal{C})	471		
Softening Point	SP	(\mathcal{C})	591		
Expansion Coefficients (−30 <i>~</i> ·	+70°C)	89		
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+	300℃)	100		
Thermal Conductivity k(W/m·K)			0.912		

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	589			
Rigidity Modulus G	$(10^8 N/m^2)$	242			
Poisson's Ratio	σ	0.220			
Knoop Hardness	Hk	420[4]			
Abrasion	Aa	136			
Photoelastic Consta	nt ß				
(nm/cm/10 ⁵ Pa	.)				

2
1
1
1.0
2.0

Relative Partial Dispersions				
$ heta_{ extsf{C,t}}$	0.7486			
$ heta_{C,A'}$	0.3288			
$ heta_{\sf d,C}$	0.2969			
$ heta_{e,C}$	0.5344			
$ heta_{\sf g,d}$	1.2737			
$ heta_{ extsf{g}, extsf{F}}$	0.5706			
$ heta_{h,g}$	0.4888			
$ heta_{i,g}$	1.3587			
θ´c´,t	0.7858			
$\theta'_{e,C'}$	0.4818			
$ heta^{'}$ F $^{'}$,e	0.5182			
$\theta'_{i,F'}$	1.8479			

Coloring				
λ 80/ λ 5	33/31			

λ (nm) τ 10mm τ 25mm 280 290 300 310 0.04 320 0.47 0.15 330 0.84 0.65 340 0.957 0.89 350 0.985 0.963 360 0.994 0.986 365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 650 0.999 0.999 800 0.999 0.999 900 0.999 0.999 1000 0.998 0.994 1200 0.997 0.993 <th colspan="7">Internal Transmittance</th>	Internal Transmittance						
290 300 310 0.04 320 0.47 0.15 330 0.84 0.65 340 0.957 0.89 350 0.985 0.963 360 0.994 0.986 365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.997 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.993 1200 0.997 0.993	7 7 7 10111111						
300 310 0.04 320 0.47 0.15 330 0.84 0.65 340 0.957 0.89 350 0.985 0.963 360 0.994 0.986 365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.993 1200 0.997 0.993	280						
310 0.04 320 0.47 0.15 330 0.84 0.65 340 0.957 0.89 350 0.985 0.963 360 0.994 0.986 365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.999 1000 0.998 0.994 1200 0.997 0.993	290						
320 0.47 0.15 330 0.84 0.65 340 0.957 0.89 350 0.985 0.963 360 0.994 0.986 365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	300						
330 0.84 0.65 340 0.957 0.89 350 0.985 0.963 360 0.994 0.986 365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.997 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	310						
340 0.957 0.89 350 0.985 0.963 360 0.994 0.986 365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.997 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 1000 0.998 0.994 1200 0.997 0.993							
350 0.985 0.963 360 0.994 0.986 365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	330						
360 0.994 0.986 365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.997 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	340	0.957					
365 0.996 0.989 370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.997 460 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	350						
370 0.997 0.992 380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.997 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	360						
380 0.998 0.995 390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.997 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	365						
390 0.998 0.996 400 0.998 0.996 420 0.999 0.997 440 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	370						
400 0.998 0.996 420 0.999 0.997 440 0.999 0.998 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	380						
420 0.999 0.997 440 0.999 0.997 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1200 0.997 0.993	390						
440 0.999 0.997 460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.997 0.993	400						
460 0.999 0.998 480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1200 0.997 0.993	420						
480 0.999 0.998 500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	440						
500 0.999 0.998 550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	460						
550 0.999 0.998 600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	480						
600 0.999 0.998 650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	500	0.999	0.998				
650 0.999 0.998 700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	550						
700 0.999 0.999 800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	600						
800 0.999 0.999 900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	650						
900 0.999 0.997 1000 0.998 0.994 1200 0.997 0.993	700						
1000 0.998 0.994 1200 0.997 0.993	800						
1200 0.997 0.993	900						
1400 0.996 0.990							
1600 0.994 0.984							
1800 0.979 0.948							
2000 0.950 0.87							
2200 0.89 0.76							
2400 0.85 0.67	2400	0.85	0.67				

PBM 2Y

	Refractive n _d	1.62004 1.620041	Abbe Number ソd	36.3 36.27	Dispersion NF—NC 0.01709 0.017095
ı	Refractive n _e	1.624093	Abbe Number $ u_{ m e}$	36.01	Dispersion NF' —NC' 0.017330

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.58471				
n 1970	1.97009	1.58959				
n 1530	1.52958	1.59510				
N 1129	1.12864	1.60067				
n _t	1.01398	1.60275				
ns	0.85211	1.60668				
n _A ′	0.76819	1.60953				
n _r	0.70652	1.61225				
n _C	0.65627	1.61502				
n _C ′	0.64385	1.61581				
n _{He-Ne}	0.6328	1.61655				
n_D	0.58929	1.61989				
n _d	0.58756	1.62004				
n _e	0.54607	1.62409				
n_F	0.48613	1.63211				
n _F ′	0.47999	1.63314				
n _{He-Cd}	0.44157	1.64072				
n _g	0.435835	1.64207				
n_h	0.404656	1.65071				
n _i	0.365015	1.66635				
n 334	0.334148	1.68482				
n 326	0.326106	1.69111				

Deviation of Relative Partial Dispersions $\varDelta\theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$ 0.0007				
$\Delta heta_{C,A'}$	0.0011			
$arDelta heta_{ extsf{g,d}}$	-0.0007			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0003			
$\Delta heta_{i,g}$	-0.0011			

Constants of Dispersion Formula *1				
A_1	1.39446503			
A_2	1.59230985•10 ⁻¹			
A ₃	2.45470216•10 ⁻¹			
B ₁	1.10571872•10 ⁻²			
B ₂	5.07194882•10 ⁻²			
B ₃	3.14440142•10 ¹			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.61			
Remarks					

	Temperature Coefficients of Refractive Index								
Range of Tem	perature		dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃))	t	C	He-Ne	D	е	F	g	i
-40 ~	-20	2.1	2.9	3.0	3.3	3.6	4.4	5.3	8.2
-20 ~	0	2.3	3.1	3.1	3.5	3.8	4.6	5.5	8.6
0 ~	20	2.5	3.3	3.3	3.6	4.0	4.8	5.8	8.9
20 ~	40	2.5	3.4	3.5	3.8	4.2	5.1	6.0	9.3
40 ~	60	2.7	3.6	3.7	4.0	4.4	5.3	6.3	9.6
60 ~	80	2.9	3.8	3.8	4.2	4.6	5.5	6.6	10.0

Partial Dispersions				
n _C -n _t	0.012265			
n _C -n _A ′	0.005485			
n _d –n _C	0.005022			
n _e –n _C	0.009074			
n _g –n _d	0.022030			
n _g –n _F	0.009957			
n _h –n _g	0.008640			
n _i –n _g	0.024279			
n _C '-n _t	0.013052			
n _e –n _C ′	0.008287			
n _F ′–n _e	0.009043			
n _i –n _F ′	0.033214			

Thermal Properties					
Strain Point	StP	(\mathcal{C})	385		
Annealing Point	AP	(°C)	418		
Transformation Temperature	Tg	(\mathcal{C})	436		
Yield Point	At	(\mathcal{C})	470		
Softening Point	SP	(\mathcal{C})	580		
Expansion Coefficients (86		
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+3	300°C)	97		
Thermal Conductivity	$\varsigma(W/r$	n•K)	0.814		

Mechanical Properties						
Young's Modulus E	$(10^8 N/m^2)$	571				
Rigidity Modulus G	$(10^8 N/m^2)$	234				
Poisson's Ratio	σ	0.223				
Knoop Hardness	Hk	420[4]				
Abrasion	Aa	140				
Photoelastic Consta	nt ß					
(nm/cm/10 ⁵ Pa	.)					

Chemical Properties				
2				
1				
1				
1.0				
2.0				

Relative Partial Dispersions						
$ heta_{C,t}$	0.7175					
$ heta_{C,A'}$	0.3209					
$ heta_{\sf d,C}$	0.2938					
$ heta_{e,C}$	0.5308					
$ heta_{ extsf{g,d}}$	1.2887					
$ heta_{ extsf{g}, extsf{F}}$	0.5825					
$ heta_{h,g}$	0.5054					
$ heta_{i,g}$	1.4202					
θ' C',t	0.7531					
θ' _{e,C'}	0.4782					
$ heta^{'}$,e	0.5218					
$\theta'_{i,F'}$	1.9166					

Colo	ring
λ 80/ λ 5	35/32

280 290	25mm
280 290	25mm
290	
300	
310	
320 0.04	
330 0.44 0).12
340 0.81 0).59
350 0.944 (0.86
360 0.980 0	0.951
	0.965
370 0.991 (0.978
	0.987
390 0.996 0	0.991
	0.993
	0.995
	0.995
460 0.998 0	0.996
	0.996
500 0.999 (0.997
	0.998
	0.998
	0.997
	0.998
	0.998
900 0.999 (0.998
1000 0.998 0	0.995
1200 0.998 0	0.995
	0.990
	0.985
	0.951
	0.908
	0.81
2400 0.89 0).75

PBM 8Y

	Refractive n _d	1.59551 1.595509	Abbe Number νd	39.3 39.26	Dispersion N _F -N _C 0.01517 0.015169
ſ	Refractive n _e	1.599108	Abbe Number $ u_{ m e}$	38.99	Dispersion NF' -NC' 0.015365

Refractive Indices						
	λ (μ m)					
n 2325	2.32542	1.56224				
n 1970	1.97009	1.56716				
n 1530	1.52958	1.57263				
N 1129	1.12864	1.57797				
n _t	1.01398	1.57992				
ns	0.85211	1.58352				
n _A ′	0.76819	1.58611				
n _r	0.70652	1.58855				
n _C	0.65627	1.59103				
n _C ′	0.64385	1.59173				
n _{He-Ne}	0.6328	1.59239				
n_D	0.58929	1.59538				
n _d	0.58756	1.59551				
n _e	0.54607	1.59911				
n _F	0.48613	1.60620				
n _F ′	0.47999	1.60710				
n _{He-Cd}	0.44157	1.61377				
n_g	0.435835	1.61495				
n_h	0.404656	1.62249				
n _i	0.365015	1.63604				
n 334	0.334148	1.65185				
n 326	0.326106	1.65718				

Deviation of Relative Partial Dispersions $\Delta \theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0014			
$arDelta heta_{C,A'}$	0.0011			
$arDelta heta_{ extsf{g,d}}$	-0.0018			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0012			
$\Delta heta_{i,g}$	-0.0060			

Constants of Dispersion Formula *1				
A_1	1.35351322			
A_2	1.30212912•10 ⁻¹			
A_3	1.58337266•10 ⁻¹			
B ₁	1.05624626•10 ⁻²			
B ₂	4.96606652•10 ⁻²			
B ₃	2.07965806•10 ¹			

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.36			
Remarks					

Temperature Coefficients of Refractive Index									
Range of Temp	erature			dn / dt	relative	(10 ⁻	6/℃)		
(℃)		t	C	He-Ne	D	е	F	g	i
-40 ~ -	-20	1.9	2.6	2.7	2.9	3.2	3.8	4.6	6.8
–20 ~	0	2.0	2.7	2.8	3.0	3.3	4.0	4.8	7.1
0 ~	20	2.1	2.9	2.9	3.2	3.5	4.2	5.0	7.4
20 ~	40	2.2	3.0	3.0	3.3	3.6	4.4	5.2	7.7
40 ~	60	2.3	3.1	3.2	3.4	3.8	4.5	5.4	8.0
60 ~	80	2.5	3.3	3.3	3.5	3.9	4.7	5.6	8.3

Partial Dispersions					
n _C –n _t	0.011109				
n _C –n _A ′	0.004923				
n _d –n _C	0.004479				
n _e –n _C	0.008078				
n _g –n _d	0.019438				
n _g –n _F	0.008748				
n _h –n _g	0.007545				
n _i –n _g	0.021090				
n _C '-n _t	0.011813				
n _e –n _C ′	0.007374				
n _F ′–n _e	0.007991				
n _i –n _F ′	0.028938				

Thermal Properties						
Strain Point	StP	(\mathcal{C})	390			
Annealing Point	AP	(\mathcal{C})	426			
Transformation Temperature	Tg	(\mathcal{C})	445			
Yield Point	At	(\mathcal{C})	485			
Softening Point	SP	(\mathcal{C})	590			
Expansion Coefficients (-30~+	·70℃)	85			
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+3	(℃)	96			
Thermal Conductivity	(W/n	n•K)	0.878			

Mechanical Properties					
Young's Modulus E	$(10^8 N/m^2)$	588			
Rigidity Modulus G	$(10^8 N/m^2)$	241			
Poisson's Ratio	σ	0.222			
Knoop Hardness	Hk	400[4]			
Abrasion	Aa	151			
Photoelastic Constar	nt B	2.87			
(nm/cm/10 ⁵ Pa)) '				

2
1
1
1.0
2.0

Relative Partial Dispersions					
$ heta_{C,t}$	0.7323				
$ heta_{C,A'}$	0.3245				
$ heta_{\sf d,C}$	0.2953				
$ heta_{e,C}$	0.5325				
$ heta_{ extsf{g,d}}$	1.2814				
$ heta_{ extsf{g}, extsf{F}}$	0.5767				
$ heta_{h,g}$	0.4974				
$ heta_{i,g}$	1.3903				
heta c',t	0.7688				
$\theta'_{e,C'}$	0.4799				
θ´r΄,e	0.5201				
$\theta'_{i,F'}$	1.8834				

Coloring				
λ 80/ λ 5	34/32			

Internal Transmittance					
λ (nm)	τ 10mm	au 25mm			
280					
290					
300					
310					
320	0.17	0.01			
330	0.65	0.34			
340	0.89	0.75			
350	0.966	0.918			
360	0.987	0.968			
365	0.991	0.977			
370	0.993	0.983			
380	0.996	0.990			
390	0.997	0.993			
400	0.998	0.995			
420	0.998	0.996			
440	0.998	0.996			
460	0.998	0.996			
480	0.999	0.997			
500	0.999	0.998			
550	0.999	0.998			
600	0.999	0.998			
650	0.999	0.998			
700	0.999	0.998			
800	0.999	0.998			
900	0.999	0.998			
1000	0.998	0.995			
1200	0.998	0.995			
1400	0.995	0.988			
1600	0.994	0.986			
1800	0.981	0.953			
2000	0.960	0.903			
2200	0.916	0.80			
2400	0.88	0.74			
	OLIADAO				

PBM 18Y

Refractive Index	n _d	1.59551 1.595509	Abbe Number Vd	38.7 38.77	Dispersion N _F -N _C 0.01537 0.015361
Refractive	n _e	1.599153	Abbe Number $ u_{\mathbf{e}}$	38.50	Dispersion NF' -NC' 0.015561

Refractive Indices					
λ (μ m)					
2.32542	1.56207				
1.97009	1.56696				
1.52958	1.57243				
1.12864	1.57779				
1.01398	1.57975				
0.85211	1.58338				
0.76819	1.58599				
0.70652	1.58846				
0.65627	1.59097				
0.64385	1.59169				
0.6328	1.59236				
0.58929	1.59537				
0.58756	1.59551				
0.54607	1.59915				
0.48613	1.60634				
0.47999	1.60725				
0.44157	1.61400				
0.435835	1.61520				
0.404656	1.62284				
0.365015	1.63656				
0.334148	1.65255				
0.326106	1.65795				
	λ (μm) 2.32542 1.97009 1.52958 1.12864 1.01398 0.85211 0.76819 0.70652 0.65627 0.64385 0.6328 0.58929 0.58756 0.54607 0.48613 0.47999 0.44157 0.435835 0.404656 0.365015 0.334148				

Deviation of Relative Partial Dispersions $\Delta \theta$ from "Normal"				
$\Delta heta_{ extsf{C,t}}$	0.0023			
$arDelta heta_{C,A'}$	0.0015			
$arDelta heta_{ extsf{g,d}}$	-0.0024			
$arDelta heta_{ extsf{g}, extsf{F}}$	-0.0018			
$arDelta heta_{i,g}$	-0.0099			

Constants	Constants of Dispersion Formula ※1					
A_1	1.34660215					
A_2	1.36322343•10 ⁻¹					
A_3	1.83371587•10 ⁻¹					
B ₁	1.06313733•10 ⁻²					
B ₂	4.91403013•10 ⁻²					
B ₃	2.39154655•10 ¹					

Other Properties					
Bubble Quality Group	В				
Specific Gravity	d	3.37			
Remarks					

Temperature Coefficients of Refractive Index								
Range of Temperature)	dn / dt relative $(10^{-6} / ^{\circ}\text{C})$						
(℃)	t	C'	He-Ne	D	е	F	g	i
−40 ~ −20	2.5	3.1	3.2	3.4	3.7	4.4	5.2	7.6
−20 ~ 0	2.5	3.3	3.3	3.5	3.9	4.6	5.4	7.9
0 ~ 20	2.6	3.4	3.4	3.7	4.0	4.7	5.5	8.1
20 ~ 40	2.7	3.5	3.5	3.8	4.1	4.9	5.7	8.4
40 ~ 60	2.8	3.6	3.6	3.9	4.2	5.0	5.9	8.7
60 ~ 80	2.8	3.7	3.7	4.0	4.3	5.2	6.1	8.9

Partial Dispersions				
n _C -n _t	0.011228			
n _C -n _A ′	0.004982			
n _d –n _C	0.004534			
n _e –n _C	0.008178			
n _g –n _d	0.019689			
n _g –n _F	0.008862			
n _h –n _g	0.007643			
n _i –n _g	0.021360			
n _C '-n _t	0.011940			
n _e –n _C ′	0.007466			
n _F ′–n _e	0.008095			
n _i –n _F ′	0.029310			

Thermal Properties			
Strain Point	StP	(\mathcal{C})	377
Annealing Point	ΑP	(\mathcal{C})	419
Transformation Temperature	Tg	(\mathcal{C})	441
Yield Point	At	(\mathcal{C})	478
Softening Point	SP	(\mathcal{C})	565
Expansion Coefficients (-30~-	+70°C)	88
$\alpha (10^{-7})^{\circ}C)$ (+1	00~+	300℃)	100
Thermal Conductivity	(W/i	m•K)	0.865

Mechanical Properties		
Young's Modulus E	$(10^8 N/m^2)$	598
Rigidity Modulus G	$(10^8 N/m^2)$	244
Poisson's Ratio	σ	0.223
Knoop Hardness	Hk	410[4]
Abrasion	Aa	132
Photoelastic Constar	nt ß	2.79
(nm/cm/10 ⁵ Pa) ,	

Chemical Properties		
Water Resistance (Powder) Group $RW(P)$	1	
Acid Resistance (Powder) Group RA(P)	1	
Weathering Resistance (Surface) Group $W(s)$	2~3	
Acid Resistance (Surface) Group SR	1.0	
Phosphate Resistance PR	2.0	

Relative Partial Dispersions		
$ heta_{C,t}$	0.7309	
$ heta_{C,A'}$	0.3243	
$ heta_{\sf d,C}$	0.2952	
$ heta_{e,C}$	0.5324	
$ heta_{ extsf{g,d}}$	1.2818	
$ heta_{ extsf{g}, extsf{F}}$	0.5769	
$ heta_{h,g}$	0.4976	
$ heta_{i,g}$	1.3905	
θ c′,t	0.7673	
$\theta'_{e,C'}$	0.4798	
θ´r΄,e	0.5202	
$\theta'_{i,F'}$	1.8836	

Coloring		
λ 80/ λ 5	34/31	

Internal Transmittance		
λ (nm)	τ 10mm	au 25mm
280		
290		
300		
310		
320	0.22	0.02
330	0.68	0.39
340	0.912	0.79
350	0.975	0.939
360	0.990	0.976
365	0.993	0.983
370	0.995	0.988
380	0.997	0.992
390	0.998	0.994
400	0.998	0.995
420	0.998	0.996
440	0.999	0.997
460	0.999	0.997
480	0.999	0.998
500	0.999	0.998
550	0.999	0.998
600	0.999	0.998
650	0.999	0.998
700	0.999	0.998
800	0.999	0.998
900	0.999	0.998
1000	0.998	0.996
1200	0.998	0.996
1400	0.996	0.990
1600	0.994	0.986
1800	0.979	0.948
2000	0.956	0.89
2200	0.907	0.78
2400	0.87	0.71
	OLIADA OO	00 00 10

The Constants of Dispersion

(1129nm~2325nm)

Glass Type	S-FPL51Y
A 1	7.65663766 · 10 - 1
A ₂	4.51879777 • 10 ⁻¹
A 3	1.13199134
B ₁	3.48152533 · 10 ⁻³
B ₂	1.28720516 · 10 ⁻²
Вз	2.14351131 · 10 ²

Glass Type	BSM51Y
A 1	1.12268320
A ₂	4.07804849 • 10 ⁻¹
A 3	1.16161178
B ₁	5.79521544 · 10 ⁻³
B ₂	1.91303182 · 10 ⁻²
B ₃	1.11113962 · 10 ²

Glass Type	PBM2Y
A 1	1.37920265
A ₂	1.74908080 • 10 ⁻¹
A 3	$9.72480533 \cdot 10^{-1}$
B ₁	1.06616552 · 10 ⁻²
B ₂	4.96089256 • 10 ⁻²
Вз	1.16926659 · 10 ²

Glass Type	S-FSL5Y
A ₁	8.79731455 • 10 ⁻¹
A ₂	3.08634219 · 10 ⁻¹
A 3	1.02136885
B ₁	4.90947559 · 10 ⁻³
B ₂	1.57419667 · 10 ⁻²
B ₃	1.11412218 · 10 ²

Glass Type	PBL1Y
A 1	1.23587282
A ₂	1.14028206 · 10 ⁻¹
A 3	9.21822183 · 10 ⁻¹
B ₁	8.98302029 · 10 ⁻³
B ₂	4.39009973 · 10 ⁻²
Вз	1.14338154 · 10 ²

Glass Type	PBM8Y
A ₁	1.33265695
A ₂	1.51642865 • 10 ⁻¹
A 3	1.00238959
B ₁	1.00208464 • 10 ⁻²
B ₂	4.78779669 · 10 - 2
B ₃	1.19439670 · 10 ²

Glass Type	BSL7Y
A ₁	1.01218580
A ₂	2.58122629 · 10 ⁻¹
A 3	1.13916089
B ₁	5.66358122 · 10 ⁻³
B ₂	1.96285352 · 10 ⁻²
B ₃	1.12904303 · 10 ²

Glass Type	PBL6Y
A 1	1.20208094
A ₂	1.02467101 · 10 ⁻¹
A 3	1.01797415
B ₁	8.49251346 · 10 ⁻³
B ₂	4.19306973 · 10 ⁻²
B ₃	1.22687120 · 10 ²

Glass Type	PBM18Y
A 1	1.32558993
A ₂	1.57859674 · 10 ⁻¹
A ₃	1.03396744
B ₁	1.01008566 · 10 ⁻²
B ₂	4.74276657 · 10 ⁻²
B ₃	1.23686168 · 10 ²

Glass Type	BAL15Y
A ₁	1.18261390
A ₂	$2.03921973 \cdot 10^{-1}$
A 3	1.11763340
B ₁	6.85280751 · 10 ⁻³
B ₂	2.50893634 · 10 ⁻²
B ₃	1.24101415 · 10 ²

Glass Type	PBL25Y
A ₁	1.29915001
A ₂	1.44676555 • 10 ⁻¹
A 3	1.00019303
B ₁	9.67218844 · 10 ⁻³
B ₂	4.65408008 • 10 - 2
B ₃	1.20780522 · 10 ²

Glass Type	BAL35Y
A 1	1.09972335
A ₂	3.87872537 · 10 - 1
A 3	1.11247378
B ₁	5.82303457 · 10 ⁻³
B ₂	1.88745144 · 10 ⁻²
Вз	1.08214962 · 10 ²

Glass Type	PBL26Y
A ₁	1.27520167
A ₂	1.28823528 · 10 ⁻¹
A 3	1.01138010
B ₁	9.37656096 · 10 ⁻³
B ₂	4.58001584 • 10 ⁻²
B ₃	1.23589724 · 10 ²

 $[\]boldsymbol{\ast}$ Notice : Please feel free to contact us if you have any questions and orders.