查找算法

朱睿

June 13, 2019

大纲

- 1 无序表的查找
 - 顺序查找
- 2 有序表的查找
 - 顺序查找
 - 二分查找
 - 插值查找
 - 分块查找

- 1 无序表的查找
 - 顺序查找

- ② 有序表的查找
 - 顺序查找
 - 二分查找
 - 插值查找
 - 分块查找

顺序查找

- 遍历所有元素, 直到匹配为止
- 时间复杂度: O(N)。平均查找时间:

$$\sum_{i=0}^{N} \frac{1}{N+1}(N-i+1) = \frac{N}{2}$$

● 一个优化: 把待查元素放在 arr[0] 处, 在从后向前遍历, 每次检 查可以不用检查下标合法性

朱睿 查找算法 June 13, 2019 4/14

直接插入排序

朱睿 查找算法 June 13, 2019 5/14

- 1 无序表的查找
 - 顺序查找

- ② 有序表的查找
 - 顺序查找
 - 二分查找
 - 插值查找
 - 分块查找

顺序查找

• 同无序表的顺序查找

 朱容
 查找算法
 June 13, 2019
 7/14

- 1 无序表的查找
 - 顺序查找

- ② 有序表的查找
 - 顺序查找
 - 二分查找
 - 插值查找
 - 分块查找

二分查找

● 时间复杂度: O(log N)

E.g. 找 3

1	2	3	4	5	6	7	8
			m				r
ı	m	r					
		lmr					

二分查找

● 时间复杂度: O(log N)

E.g. 找不到 3

1	2	4	5	6	7	8	9
			m				r
ı	m	r					
		lmr					
	mr	I					

二分查找

```
int binarySearch(int arr[], int size, const int &x) {
  int l = 1, r = size, m;
  while (l <= r) {
    m = (l + r) / 2;
    if (x == arr[m])
      return m;
    if (x < arr[m])</pre>
    else
      l = m + 1;
  return 0;
```

- 1 无序表的查找
 - 顺序查找

- ② 有序表的查找
 - 顺序查找
 - 二分查找
 - 插值查找
 - 分块查找

插值查找

一个公式:

$$\texttt{next} = \texttt{low} + \left(\frac{\texttt{x} - \texttt{a[low]}}{\texttt{a[high]} - \texttt{a[low]}} \times (\texttt{high} - \texttt{low} - \texttt{1})\right)$$

- 适用条件:
 - 数据有序且分布均匀
 - 访问数据比计算费时的多

朱睿 查找算法 June 13, 2019 12 / 14

- 1 无序表的查找
 - 顺序查找

- ② 有序表的查找
 - 顺序查找
 - 二分查找
 - 插值查找
 - 分块查找

分块查找

分块查找表:

Source: 翁惠玉, 俞勇《数据结构:思想与实现》

ullet 平均查找时间(当索引表与块内都是顺序查找),表长为 n,块数为

$$m$$
:

$$\frac{m+1}{2} + \frac{n/m+1}{2} = \frac{1}{2} \left(m + \frac{n}{m} \right) + 1$$

当 $m=\sqrt{n}$ 时,平均查找时间取得最小值 $\sqrt{n}+1$