#### LECTURES

5,6

*C*Y11001 Spring 2018

- Joule-Thompson Effect
- Second Law of Thermodynamics



## Variation of enthalpy with T and p

$$H = f(p,T)$$

$$dH = \left(\frac{\partial H}{\partial p}\right)_T dp + \left(\frac{\partial H}{\partial T}\right)_p dT$$

$$= \left(\frac{\partial H}{\partial p}\right)_T dp + C_p dT$$

Constant *p* process

$$dH_p = C_p dT$$

Constant *T* process

$$dH_T = \left(\frac{\partial H}{\partial p}\right)_T dp$$

#### Special case: Ideal gas

For ideal gas

$$\left(\frac{\partial H}{\partial p}\right)_T = 0 \qquad \left(\frac{\partial H}{\partial V}\right)_T = 0$$

$$dH = C_p dT$$
 for ideal gas

### **Joule-Thompson Experiment:**

Purpose is to determine

 $\left(\frac{\partial H}{\partial p}\right)_T$ 





Figure 2-28
Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

#### In this experiment

$$q = 0$$
  $w = -p_f(V_f - 0) - p_i(0 - V_i) = p_i V_i - p_f V_f$ 

$$\Delta U = U_f - U_i = q + w = -p_f V_f + p_i V_i$$

$$U_f + p_f V_f = U_i + p_i V_i$$
 Isenthalpic process

Isenthalpic process (Constant H)

$$H_f = H_{i,} \Delta H = 0$$

## $H = f(p,T); dH = \left(\frac{\partial H}{\partial p}\right)_T dp + \left(\frac{\partial H}{\partial T}\right)_P dT$

$$\left(\frac{\partial H}{\partial p}\right)_{T} = -\left(\frac{\partial H}{\partial T}\right)_{p} \left(\frac{\partial T}{\partial p}\right)_{H} = -C_{p} \times \mu_{JT}$$

$$dH = -\mu_{\rm JT} C_p dp + C_p dT$$

#### Joule-Thompson Coefficient,

$$\mu_{\mathrm{JT}} = \left(\frac{\partial T}{\partial p}\right)_{H} \approx \left(\frac{\Delta T}{\Delta p}\right)$$

Ratio of change in T to the p when a gas expands under constant H.

## Inversion Temperature and Cooling of gases with JT expansion:

$$\mu_{\rm J} = \left(\frac{\partial T}{\partial V}\right)_{\!U} \quad \mu_{\rm JT} = \left(\frac{\partial T}{\partial p}\right)_{\!H} \quad \mu_{\!T} = \left(\frac{\partial H}{\partial p}\right)_{\!T} = -C_p \mu_{\rm JT}$$

Isothermal Joule-Thomson Coefficient Sign of  $\mu_{\text{IT}}$ For ideal gas  $\mu_{\text{IT}} = 0$ For real gas  $\mu_{\text{IT}} \neq 0$ 



Some inversion temperatures are (at 1 atm):

He 40 K Ne 231 K N<sub>2</sub> 621 K O<sub>2</sub> 764 K

At room temperature and 1 atmp,  $N_2$  and  $O_2$  will cool upon expansion while He and Ne will warm upon expansion.

## Calculation of thermodynamic functions for various processes

|    | reversible <i>phase change</i> at const. <i>T, p</i> | const <i>p</i> heating, no phase change | const $V$ heating, no phase change |
|----|------------------------------------------------------|-----------------------------------------|------------------------------------|
| w  | $-\int p \ dV = -p\Delta V$                          | $-\int p \ dV = -p\Delta V$             | 0                                  |
| q  | latent heat                                          | $q_p = \Delta H$                        | $q_{_{V}}=\Delta U$                |
| ΔU | q+w                                                  | q+w                                     | $= \int C_V(T) dT$                 |
| ΔH | $q (=q_p)$                                           | $= \int C_p(T) dT$                      | $\Delta U + V \Delta p$            |

# Calculation of thermodynamic function for various processes for <u>ideal gas</u>

|                | state 1 – state 2, no phase change                                                           | rev, isothermal            | rev, adiabatic     |
|----------------|----------------------------------------------------------------------------------------------|----------------------------|--------------------|
| $\overline{w}$ | rev rev, const irrev, const ext. $p$ final $p$ $-\int p dV - p_{ex} \Delta V - p_f \Delta V$ | $-nRT \ln \frac{V_2}{V_1}$ | $= \int C_V(T)dT$  |
| q              | $\Delta U$ - $w$                                                                             | $nRT \ln rac{V_2}{V_1}$   | 0                  |
| ΔU             | $= \int C_V(T) dT$                                                                           | 0                          | $= \int C_V(T) dT$ |
| ΔΗ             | $= \int C_p(T)dT$                                                                            | 0                          | $= \int C_p(T) dT$ |

Adiabatic expansion of a perfect gas into vacuum

$$q = 0$$
  $\Delta U = 0$   $w = 0$   $\Delta H = 0$ 

## Limitations of the First Law of Thermodynamics

The first law assures us that the total energy of system plus surroundings remains constant during the reaction. Energy can be transferred/transformed, keeping the total energy fixed.

$$dU_{\text{universe}} = dU_{\text{system +}} dU_{\text{surrounding}} = 0$$

### Does not say:

Whether energy will get transferred / transformed? If yes, in which direction? If yes, how long? If yes, how fast?



### **Spontaneity:**

A <u>spontaneous process</u> occurs naturally and needs no external source of work. A <u>non-spontaneous process</u>, although allowed by first law of TD, requires an external source of work to drive it.

Who drives, a spontaneous process?

## **Entropy**

- The thermodynamic property of a system that is related to its degree of randomness or disorder is called **entropy** (S).
- The entropy S and the entropy change  $\Delta S = S_2 S_1$  are state functions.
- The **entropy** S has a unique value, once the pressure p, the temperature T and the composition n of the system are specified, S=S(p,T,n).
- The **entropy is an extensive property**, i.e., increases with the amount of matter in the system.  $S_m = S/n$  (molar entropy).

## Thermodynamic definition of entropy

$$dS_{\text{syst}}$$
 = Change in entropy that occurs during a chemical or physical process

= 
$$dq_{rev}$$
 /  $T$  ( $q_{rev}$  is the heat supplied reversibly)

$$\Delta S_{\text{system}} = \int_{1}^{2} \frac{dq_{rev}}{T}$$



For surroundings,

$$dS_{\rm surr} = -dq/T_{\rm surr}$$

$$\Delta S_{surr} = \frac{-q}{T_{surr}}$$

Large change in entropy occurs when heat is dissipated to surrounding at low temperature.

## How do you calculate entropy change?

## For surrounding

$$dS_{surr} = -dq / T_{surr}$$

$$\Delta S_{surr} = \frac{-q}{T_{surr}}$$



Calculate the actual *q* for the process from state 1 to state 2 and apply the above formula

#### For system

- Find out state 1 and state 2
- Construct reversible pathway(s) from state 1 and state 2
- Apply the formula

$$\Delta S = \int_{1}^{2} \frac{dq_{rev}}{T}$$

•Calculate the entropy change in the surroundings when 1.0 mole of  $H_2O(l)$  is formed from its elements under standard conditions at 25° C (298.15 K).  $H_2(g) + 1/2 O_2(g) = H_2O(l) \Delta_t H = -286 \text{ kJ/mol}$ .

#### Calculation of Entropy Changes (A few special cases)

1. Cyclic Process 
$$\Delta S_{\text{syst}} = 0$$
 (*S* is a state function)

$$\Delta S_{\text{system}} = \int_{1}^{2} \frac{dq_{rev}}{T}$$

2. Reversible adiabatic process  $\Delta S_{\text{syst}} = 0 \ (dq_{\text{rev}} = 0)$ 

$$\Delta S_{\text{syst}} = 0 \ (dq_{\text{rev}} = 0)$$

3. Reversible phase-change at constant *p* and *T* 

$$\Delta S_{\text{syst}} = \int_{1}^{2} \frac{dq_{rev}}{T} = \frac{1}{T} \int_{1}^{2} dq_{rev} = \frac{q_{rev}}{T} = \frac{\Delta H}{T}$$

4. Constant *p* heating (reversibly) with no phase change:

$$dq_{rev} = dq_p = C_p dT$$

$$\Delta S_{\text{syst}} = \int_{T_1}^{T_2} \frac{dq_{rev}}{T} = C_p \int_{T_1}^{T_2} \frac{dT}{T} = C_p \ln \left(\frac{T_2}{T_1}\right)$$

5. Reversible isothermal process:

$$\Delta S_{\text{syst}} = \int_{1}^{2} \frac{dq_{rev}}{T} = \frac{1}{T} \int_{1}^{2} dq_{rev} = \frac{q_{rev}}{T}$$

6. For ideal gas:

$$dS = \frac{dq_{rev}}{T} = \frac{dU - w_{rev}}{T} = \frac{C_V dT + pdV}{T} = C_V \frac{dT}{T} + nR \frac{dV}{V}$$

$$\Delta S = C_V \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$$

$$\Delta S = C_p \ln \frac{T_2}{T_1} + nR \ln \frac{p_1}{p_2}$$

#### Calculation of Entropy at any temperature

Heating at constant pressure/Volume

$$\Delta S_p = \int \frac{C_p}{T} dT = C_p \ln \frac{T_2}{T_1}$$

$$\Delta S_V = \int \frac{C_V}{T} dT = C_V \ln \frac{T_2}{T_1}$$

Debye approx:  $C_p \propto T^3$  at low T



Entropy at any temperature,

$$S(T) = S(0) + \int_{0}^{T_f} \frac{C_p(s)}{T} dT + \frac{\Delta H_{\text{fus}}}{T_{\text{fus}}} + \int_{T_f}^{T_b} \frac{C_p(1)}{T} dT + \frac{\Delta H_{\text{vap}}}{T_{\text{vap}}} + \int_{T_b}^{T} \frac{C_p(g)}{T} dT$$



#### Trouton's Rule

A wide range of liquid give approx. the same standard entropy of vaporization  $\sim 85$  J K<sup>-1</sup> mol<sup>-1</sup>. Exception: water, it is 109 J/K/mol

**Fig. 3.14** The calculation of entropy from heat capacity data. (a) The variation of  $C_p/T$  with the temperature for a sample. (b) The entropy, which is equal to the area beneath the upper curve up to the corresponding temperature, plus the entropy of each phase transition passed.

#### Construction of Reversible Steps to Describe an Irreversible Process:

#### Example 1:



Home work

Entropy is an extensive property.  $\Delta S = \Delta S_1 + \Delta S_2 + \Delta S_3$ 

### Construction of Reversible Steps to Describe an Irreversible Process:

#### Example 2: Entropy of Mixing of ideal gases





$$\Delta S_1 = n_1 R \ln \frac{V_1 + V_2}{V_1}$$



 $\Delta S_2 = n_2 R \ln \frac{V_1 + V_2}{V_2}$ 

Reversible, isothermal expansion

#### Construction of Reversible Steps to Describe an Irreversible Process:

#### Example 2: Entropy of Mixing of ideal gases



Irreversible mixing of gases

$$\Delta S_{\text{mix}} = \Delta S_1 + \Delta S_2$$

$$\Delta S_1 = n_1 R \ln \frac{V_1 + V_2}{V_1}, \Delta S_2 = n_2 R \ln \frac{V_1 + V_2}{V_2}$$

$$\frac{n_1 R T}{V_1 + V_2} = \frac{\frac{n_1 R T}{p}}{\frac{n_1 R T}{p} + \frac{n_2 R T}{p}} = \frac{n_1}{n_1 + n_2} = X_1$$

$$\Delta S_{\text{mix}} = -n_1 R \ln X_1 - n_2 R \ln X_2$$

$$= -n R (X_1 \ln X_1 + X_2 \ln X_2)$$

\*Find out  $X_1$  for which  $\Delta S_{mix}$  is maximum.

Home work