ScikitLearn 操作記錄單 2

組別: Team16 學號: 41071102H 姓名: 徐敏皓

Supervised Learning

1. 請根據以下教學資源操作: http://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial6/tutorial6.html

2. 請自行查詢了解下列 scikit-learn 模組的功能作用 https://scikit-learn.org/stable/

Classification	Module	Function	試寫程式,實驗該函式所提供功能及主要參數設定效果
K-Neighbors classification	sklearn.neighbors	KNighborsClassifier ()	果 功能: 基於 k 最近鄰 (k-Nearest Neighbors, KNN) 算法的分類模型。它的核心功能是根據 輸入的特徵,找出在訓練資料中最接近的 k 個鄰居,並根據這些鄰居的類別來預測新資料 的類別。 KNighborsClassifier (n_neighbors, weights, algorithm, leaf_size, p, metric, metric_params, n_jobs)
			n_neighbors: 指定使用多少個最近的鄰居。預
			設為5。

	weights: 預設為 'uniform'。
	• 'uniform': 所有鄰居的權重相等。
	• 'distance': 鄰居的權重與距離成反比。
	• callable: 自定義函數來計算權重。
	algorithm: 用於計算最近鄰的演算法。預設
	為'auto'。
	• 'auto': 根據數據自動選擇合適的演算法。
	• 'ball_tree': 使用 Ball Tree。
	• 'kd_tree': 使用 KD Tree。
	• 'brute': 強行計算距離。
	leaf_size: 用於 Ball Tree 或 KD Tree 的葉節
	點大小,影響查找速度與內存使用。預設為
	30 °

		p: 距離的冪次參數。當 p=1 使用曼哈頓距
		離,p=2 使用歐幾里得距離。預設為2。
		metric: 計算距離的方法。預設為'minkowski'
		• 'euclidean'
		• 'manhattan'
		• 'minkowski'
		metric_params: 用於距離計算的額外參數。預
		設為 None。
		n_jobs: 使用 CPU 的核心數。-1 代表使用所
		有可用的核心。預設為 None。
sklearn.neighbors	KNighborsRegressor ()	功能: 基於 k 最近鄰 (K-Nearest Neighbors,
		KNN) 演算法的回歸模型,通常用於解決回歸
		問題(預測數值型目標變數)。
		KNighborsRegressor (n_neighbors, weights,
		algorithm, leaf_size, p, metric, metric_params,
		n_jobs)

			参數設定效果與 KNighborsClassifier 一樣。
Naïve Bayes Classifiers	sklearn.naive_bayes	Gaussian Naive Bayes()	功能:基於高斯分佈的單純貝氏分類器,主要
			用於處理連續型數據。
			GaussianNB(priors, var_smoothing)
			priors: 類別的先驗機率。如果指定了該參數,
			模型將使用給定的先驗機率,而不從數據中估
			算。
			var_ smoothing: 用於數值穩定性的平滑參數,
			將最大特徵變異數的一小部分加入到每個特徵
			的變異數中,以避免出現零值導致的除零錯
			誤。預設為 1e-9。
	11 ' 1	M 14: INID()	
	sklearn.naive_bayes	MultinomialNB()	功能: 用於分類問題,特別適用於特徵呈現為
			計數或頻率數據的情況,例如文本分類。
			MultinomialNB(alpha, fit_prior, class_prior,

normalize_prior)
alpha: 平滑參數,用於防止零概率問題
(Laplace smoothing)。alpha 越小,平滑效應
越弱,越接近原始的最大似然估計。預設為1
fit_prior: 是否學習類別的先驗概率。如果設為
False,則每個類別的先驗概率將等同於類別在
訓練數據中的頻率。預設為 True。
class_prior: 如果不為 None,則它是一個長度
為 n_classes 的列表,表示每個類別的先驗概
率。預設為 None。
normalize_prior: 是否正規化先驗概率。若設為
False,則會使用 class_prior 直接作為先驗。
預設為 True。

Decision Trees Classification	sklearn.tree	DecisionTreeClassifier()	功能: 用於分類任務的機器學習模型,屬於決
			策樹(Decision Tree)算法的一種實現。
			DecisionTreeClassifier(criterion, max_depth, min_samples_split, min_samples_leaf, max_features, random_state, max_leaf_nodes, min_impurity_decrease, class_weight)
			criterion: 用來決定劃分的標準。預設為'gini'。
			• "gini": 使用 Gini impurity (基尼不純
			度)。
			• "entropy": 使用信息增益(information
			gain) •
			max_depth: 決定樹的最大深度。如果設為
			None,則樹會擴展直到所有葉子節點都是純粹
			的,或者包含少於 min_samples_split 的樣
			本。預設為 None。

min_samples_split: 每個內部節點再劃分所需的 最小樣本數。可以是整數(表示樣本數),也 可以是浮動數 (表示比例)。預設為2。 min samples leaf: 每個葉子節點所需的最小樣 本數。預設為1。 max_features: 在劃分時要考慮的最大特徵數。 可以是整數、浮動數(比例)、"auto"、"sqrt" 或 "log2"。預設為 None。 random state: 用來控制隨機性。如果為整數, 則控制隨機種子。預設為 None。 max leaf nodes: 設定葉子節點的最大數量。如 果為 None,則無限制。預設為 None。 min impurity decrease: 需要減少的最小不純

		度,才會進行劃分。預設為0。
		class_weight: 類別權重,可以用來平衡不同類
		別的樣本數。預設為 None。
sklearn.tree	DecisionTreeRegressor()	功能: 通過決策樹來預測連續數值目標變量
		(即回歸問題)
		DecisionTreeRegressor(criterion, splitter, max_depth, min_samples_split, min_samples_leaf, max_features, random_state, max_leaf_nodes, min_impurity_decrease)
		criterion: 決定樹的分割標準。
		• 預設值:"squared_error"(均方誤差)
		• 可選值:"absolute_error"(絕對誤差)或
		其他根據任務適合的損失函數。
		splitter: 分割策略。
		• 預設值:"best" (選擇局部最佳分割)

			• 可選值:"random" (隨機分割) 其餘參數設定效果與 DecisionTreeClassifier 相
			月。 同。
SVM Classification	Sklearn.svm	LinearSVC()	功能: 用於解決二元或多類別分類問題。
			LinearSVC(penalty, loss, dual, tol, C, multi_class, max_iter, class_weight, random_state)
			penalty: 懲罰項類型,預設值為 '12'。可以設為
			'11' 或 '12'。
			loss: 損失函數,預設值為 'squared_hinge'。可
			以設為 'hinge' 或 'squared_hinge'。
			dual: 是否求解對偶問題,預設值為 True。如
			果樣本數量較大或特徵數量小,設為 False。
			tol: 收斂容忍度,預設值為 1e-4。
			C: 正則化參數,預設值為 1.0。較小的值會增

		1
		加正則化強度。
		multi_class: 多類別分類策略,預設值為 'ovr'
		(one-vs-rest)。可以設為 'crammer_singer'。
		max_iter: 最大迭代次數,預設值為 1000。
		class_weight: 類別權重,可設為 'balanced' 或
		字典形式。
		random_state: 隨機種子,影響模型穩定性。
Sklearn.svm	SVC()	功能:一個最佳的超平面,將不同類別的數據
		點分開。
		SVC(C, kernel, degree, gamma, coef0, probability, class_weight, max_iter, random_state)
		C: 正則化參數 (default=1.0)。控制錯誤的懲
		罰力度,值越小,模型越簡單。
		kernel: 核函數類型 (default='rbf')。常見選

	項:
	• 'linear':線性核
	• 'poly':多項式核
	• 'rbf':徑向基函數核(默認)
	• 'sigmoid':S 型核
	degree: 多項式核函數的次數(只在
	kernel='poly' 時有用)。
	gamma: 核係數 (default='scale')。影響 RBF、
	poly 和 sigmoid 核函數,值可以是:
	• 'scale': 1/(特徵數 * 標準差)
	• 'auto':1/ 特徵數
	coef0: 核函數中的獨立項(只對 poly 和
	sigmoid 核有用)。

			probability: 是否啟用概率估計
			(default=False) 。
			class_weight: 用於處理不平衡數據的類別權
			重。
			max_iter: 最大迭代次數 (default=-1,表示無
			限制)。
			random_state: 隨機數種子(用於概率估計)。
ANN Classification	Sklearn. neural_network	MLPClassifier()	功能: 基於前向傳播的神經網絡, 適合解決非
			線性分類問題。
			MLPClassifier(hidden_layer_sizes, activation, solver, alpha, learning_rate, learning_rate_init, max_iter, random_state, verbose, early_stopping)
			hidden_layer_sizes: 指定隱藏層的神經元數量,
			例如 (100,) 表示一層有 100 個神經元,(100,
			50) 表示兩層,分別有 100 和 50 個神經元。

activation: 激活函數,可選:
• 'identity': 線性函數
• 'logistic': Sigmoid 函數
• 'tanh': 雙曲正切
• 'relu': 修正線性單元 (預設)
solver: 權重優化算法:
• 'lbfgs': 梯度優化
• 'sgd': 隨機梯度下降
• 'adam': 自適應動量估計 (預設)
alpha: L2 正則化的懲罰項係數,默認為
0.0001 。
learning_rate: 學習率調整方法:
• 'constant': 固定學習率

		 'invscaling': 逐漸減小學習率 'adaptive': 當 loss 停止改善時減少學習
		• adaptive. 菌 loss 厅正以告时减少字百
		率
		learning_rate_init: 初始學習率,默認為
		0.001 °
		max_iter: 最大迭代次數,默認為 200。
		random_state: 隨機數種子,用於重現結果。
		verbose: 是否輸出訓練過程的日誌。
		early_stopping: 是否啟用早停,如果驗證集的
		效果停止改善,則提前停止。
Sklearn. neural_network	MLPRegressor()	功能: 通過前向傳播和反向傳播學習輸入特徵
		與目標變數之間的關係。用於解決非線性回歸
		問題。
		MLPRegressor (hidden_layer_sizes, activation,

			solver, alpha, learning_rate, learning_rate_init, max_iter, random_state, verbose, tol) tol: 停止訓練的容忍度,預設為 1e-4。 其餘參數設定效果與 MLPClassifier 相同。
Ensemble classifier	Sklearn.ensemble	RandomForestClassifier ()	其餘參數設定效果與 MLPClassifier 相同。 功能: 通過建立多棵決策樹,並將它們的預測 結果進行投票,來進行分類。 RandomForestClassifier(n_estimators, criterion, max_depth, min_samples_split, min_samples_leaf, max_features, random_state, n_jobs) n_estimators: 預設值: 100。隨機森林中樹的數量,增加樹的數量可以提高模型性能,但計算時間也會增加。
			criterion: 預設值: 'gini'。衡量分割質量的標準,選項包括 'gini'和 'entropy'。 max_depth: 預設值: None。樹的最大深度,設置此參數可以防止過擬合。

		min_samples_split: 預設值: 2。分割內部節點所
		需的最小樣本數。
		min_samples_leaf: 預設值: 1。葉子節點所需的
		最小樣本數。
		max_features: 預設值: 'sqrt'。用於最佳分割的
		特徵數目,可選值包括 'sqrt', 'log2', 或 None。
		random_state: 預設值: None。設置隨機種子以
		確保結果可重現。
		n_jobs: 預設值: None。使用多少個 CPU 核心
		並行運算。設為 -1 時使用所有可用的核心。
Sklearn.ensemble	GradientBoostingClassifier() GradientBoostingRegressor()	1. 功能: 通過將多個弱分類器 (通常是決策
	(樹)組合成一個強分類器,以提高預測的準確
		性。
		GradientBoostingClassifier(n_estimators,

	learning_rate, max_depth, min_samples_split, min_samples_leaf, subsample, max_features, loss)
	n_estimators: 設定弱學習器(決策樹)的數
	量,預設值是 100。
	learning_rate: 用於控制每棵樹對最終預測的貢
	獻,預設值是 0.1。較小的值通常會提高模型
	的穩定性,但需要更多的樹來達到相同的效
	果。
	max_depth: 決策樹的最大深度,預設值是 3。
	深度越大,模型的複雜度也越高。
	min_samples_split: 內部節點再分裂所需的最小
	樣本數,預設值是 2。
	min_samples_leaf: 葉子節點上最小的樣本數
	量,預設值是 1。

subsample: 用於控制每棵樹所用的樣本比例,
範圍是 (0.0, 1.0),預設是 1.0 (使用全部樣
本)。
max_features: 用來控制每棵樹隨機選擇的特徵
數量,預設是 None (每棵樹使用所有特徵)。
loss: 損失函數,常見的有 deviance (對應對數
損失)和 exponential (對應指數損失),預設
是 deviance。
2. 功能: 通過結合多個弱學習器(如迴歸
樹),逐步優化模型性能。
GradientBoostingRegressor(loss, learning_rate,
n_estimators, subsample, criterion, max_depth,
min_samples_split, min_samples_leaf, max_features, random_state, validation_fraction,
n_iter_no_change)

			loss: 指定損失函數,可選 "squared_error"(均
			方誤差), "absolute_error"(絕對值誤差),
			"huber", "quantile" .
			criterion: 分裂節點時的標準 (默認
			"friedman_mse")。
			random_state: 控制隨機性 (默認 None)。
			validation_fraction: 用於早停的驗證集比例。
			n_iter_no_change: 早停時容許的最長無改進迭
			代次數。
			其餘參數設定效果與 GradientBoostingClassifier
			相同。
Evaluation	Sklearn.model_selection	KFold()	功能: 評估機器學習模型在不同數據分割上的
			性能,提升結果的可靠性。
			性能,提升結本的可靠性。 KFold(n_splits, shuffle, random_state)

		n_splits: 指定將數據分成幾個折疊。必填參數,默認值為 5。 shuffle: 是否在分割前隨機打亂數據。默認值為 False。 random state: 如果 shuffle=True,用於設置隨
Sklearn.model_selection	ShuffleSplit()	機種子以確保可重現性。默認值為 None。 功能: 交叉驗證方法,用於將數據集隨機分割 成訓練集和測試集。 ShuffleSplit(n_splits, test_size, train_size, random_state) n_splits: 訓練/測試分割的次數,表示會生成多 少次不同的訓練集和測試集。 test_size: 測試集的比例(0.0 到 1.0 之間)或 測試集的數量(如果是 int)。如果為 None,

	Sklearn.metrics	confusion_matrix() classification_report() fl_score() precision_recall_curve()	則會自動選擇一個合理的比例。 train_size: 訓練集的比例(0.0 到 1.0 之間) 或訓練集的數量(如果是 int)。如果是 None,則會由 test_size 自動推算。 random_state: 用於隨機數生成的種子,這樣每次分割結果會一致。如果是 None,則會基於當前時間進行隨機分割。 1. 功能: 評估分類模型的性能,呈現實際值與預測值的對比,特別適用於二元或多類別分類問題。 confusion_matrix(y_true, y_pred, labels, sample_weight, normalize) y_true: 真實標籤(1D array-like) y_pred: 預測標籤(1D array-like)
--	-----------------	--	--

labels: 指定標籤順序 (list-like), 若未提供,將 自動推斷。 sample_weight: 樣本權重 (array-like) normalize: 是否將混淆矩陣標準化 ('true', 'pred', 'all' 或 None, 默認為 None) 2. 功能: 評估分類模型表現的函數。它會計算 並輸出多種常見的分類指標,包括 Precision, Recall, F1-score 等。 classification report(y true, y pred, labels, target names, sample weight, digits, output dict, zero division) y true: 真實的標籤,通常是測試集的標籤。 y pred: 預測的標籤,通常是模型對測試集的 預測結果。 labels: 需要計算報告的標籤類別。如果設置為

None,則會自動使用 y_true 和 y_pred 中的 所有標籤。預設為 None。 target names: 顯示每個類別的名稱。這是用來 代替類別的數字標籤來顯示的名稱。預設為 None • sample weight: 每個樣本的權重,會影響計算 指標的結果。預設為 None。 digits: 報告中顯示的小數位數。預設為2。 output dict: 是否以字典的形式返回結果。如果 為 True,將返回包含各項指標的字典,否則返 回字符串格式的報告。預設為 False。 zero_division: 預設為'warn'。用來處理除以零 的情況,通常出現在某個類別的預測完全為 0

	時。選項有:
	• 'warn':顯示警告
	• 0:返回 0
	• 1:返回 1
	3. 功能: 評估分類模型性能的指標,用於衡量
	模型對正類(Positive Class)的精確率
	(Precision)與召回率 (Recall) 之間的平衡。
	fl_score(y_true, y_pred, labels, pos_label, average, zero_division)
	y_true: 實際標籤 (Ground truth)。
	y_pred: 預測標籤 (Predicted labels)。
	labels (可選): 設定用來計算分數的標籤子集。
	pos_label (可選): 二元分類時,指定「正類」
	的標籤,默認為 1。

	average (可選):
	• 'binary': 用於二元分類(默認)。
	• 'micro': 計算全局的 TP、FP 和 FN。
	• 'macro': 計算每個類別的 F1 分數,然後
	取平均,不考慮類別不平衡。
	• 'weighted': 根據類別支持度(support)計
	算加權平均。
	• 'samples': 多標籤分類時使用。
	zero_division (可選): 當除以零時,返回 0 或
	1,或者拋出警告("warn",默認)。
	4. 功能: 用於計算 精確率 (Precision) 和 召回
	率 (Recall) 的函數,並生成一條以不同閾值劃
	分的 Precision-Recall 曲線。其功能主要是評

估 二元分類模型 的性能,尤其在 不平衡數 據集 中非常有用。 precision recall curve(y true, probas pred, pos label) y true: 真實標籤 (實際值), 為一維數組或列 表,數值為二元分類的類別標籤(通常為 0 或 1)。 probas pred: 預測的分數或機率,為模型輸出 的置信分數或概率值。 pos label: 指定正類的標籤,預設值為 1。

補充(regression model)

http://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial5/tutorial5.html

其他參考資源:

- machine learning 参考書: "Introduction to Machine Learning with Python" 之 github code

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb https://github.com/amueller/introduction_to_ml_with_python/blob/master/05-model-evaluation-and-improvement.ipynb Scikit Learn documentation(<u>http://scikit-learn.org/stable/index.html</u>)

- 尋搜尋其他可信網路資源