EXAMEN Semestre: 1 X 2 Rattrapage X Session : Principale Module: Mathématiques de base 3 Enseignant(s): UP-Maths Classe(s): 2TIC,2EMA,2GC Documents autorisés: NON X Nombre de pages: 2 OUI X NON NON X Calculatrice autorisée: Internet autorisée: OUI Date: 17/06/2019 Heure: 13h00 Durée: 1h30min

Exercice 1:

On cherche la solution y de l'équation différentielle:

(E)
$$y^{''} - 3y^{'} + 2y = t^{2}e^{-t}$$

On désigne par (E_0) l'équation homogène associée à (E).

- 1) Résoudre l'équation différentielle homogène (E_0) associée à (E).
- 2) Trouver une solution particulière de (E) de la forme $y_p(t) = Q(t)e^{-t}$, avec Q(t) est un polynôme de degré 2.
- 3) Donner la forme générale des solutions de (E).

Exercice 2:

On considère la forme quadratique

$$q: \mathbb{R}^3 \longrightarrow \mathbb{R}$$

 $(x_1, x_2, x_3) \longmapsto 2x_1^2 + 2x_1x_2 + x_2^2 + x_3^2$

- 1) Déterminer l'expression de la forme polaire φ de q dans la base canonique de \mathbb{R}^3 .
- 2) Déterminer la matrice de q dans la base canonique de \mathbb{R}^3 .
- 3) Déterminer le rang de q.
- 4) q est-elle non dégénérée? Justifier votre réponse.
- 5) Décomposer q en somme de carrés de formes linéaires par la méthode de Gauss.
- 6) En déduire la signature de q.
- 7) Montrer que q est définie positive.
- 8) φ est-elle un produit scalaire? Justifier votre réponse.

Exercice 3:

Soit la matrice:

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{array} \right).$$

1) Montrer que le polynôme caractéristique de la matrice A est égal à

$$P_A(X) = (1 - X)^2 (2 - X)$$

.

- 2) Donner les valeurs propres de A et leurs ordres de multiplicités.
- 3) Montrer que $E_2 = Ker(A-2I_3) = vect\{V_1 = (1,0,1)\}$ et $E_1 = Ker(A-I_3) = vect\{V_2 = (1,1,0)\}$
- 4) On donne $V_3 = (0, 0, 1)$.
 - a) Montrer que (V_1, V_2, V_3) est une base de \mathbb{R}^3 .
 - b) Déterminer les scalaire α et β telle que $AV_3 = \alpha V_1 + \beta V_2 + V_3$.
 - c) Déduire une matrice P inversible et T triangulaire supérieur telle que $A=PTP^{-1}$.
- 5) On cherche à calculer les puissance de A^n pour tout $n \ge 0$.
 - a) Montrer que T peut s'écrire sous la forme T=D+N avec D une matrice diagonale et N matrice nilpotente.
 - b) Vérifier que ND=DN et déduire T^n pour tout $n\in\mathbb{N}$.
 - c) Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 4

On considére la fonction $f:\mathbb{R}^2 \to \mathbb{R}$ définie par:

$$f(x,y) = x^3 + y^3 - 3xy$$
.

- 1) Calculer les dérivées partielles premières de f.
- 2) Déterminer les points critiques de f.
- 3) Calculer la matrice Hessienne de f.
- 4) Donner la nature des points critiques.

Bon travail