4EK211 Základy ekonometrie

Odhad klasického lineárního regresního modelu II

Cvičení 3

Klasický lineární regresní model - zadání příkladu

Soubor: CV3_PR1.xls

Data: y = maloobchodn i obrat potřeb pro domácnost v mld. CZK

 x_1 = disponibilní příjem v mld. CZK

 $x_2 = \text{cenov} \dot{y} \text{ index}$

Zadání: Odhadněte závislost maloobchodního obratu (*y*) na disponibilním příjmu (*x*₁) a cenovém indexu (*x*₂). Proveďte specifikaci, kvantifikaci, verifikaci a aplikaci EM.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, i = 1, 2,...,8$$

Specifikace EM

určení proměnných

y = endogenní (vysvětlovaná) proměnná

 x_1 = exogenní (vysvětlující) proměnná

x₂ = exogenní (vysvětlující) proměnná

určení vzájemných vazeb mezi proměnnými (forma závislosti) + formulace hypotéz

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, \quad i = 1, 2, ..., 8$$

 předpokládané znaménka, očekávané hodnoty odhadnutých parametrů

 β_1 = v intervalu (0,1) pokud nepracujeme s úsporami nebo > 0 s úsporami

$$\beta_2$$
 = by mělo být < 0

Kvantifikace EM

odhad modelu MNČ, MS Excel nebo GiveWin (PcGive)

```
EQ( 1) Modelling y by OLS (using CV3_PR1.xls)
The estimation sample is: 1966 to 1973
```

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
Constant	3.01620	1.032	2.92	0.033	0.6308
x 1	0.103550	0.004550	22.8	0.000	0.9904
x 2	-0.0979638	0.01583	-6.19	0.002	0.8845
sigma	0.120682	RSS	0.0	07282020	076
R^2	0.997094	F(2,5) =	857.8	[0.000]]**
log-likelihood	7.44531	DW		1.	.95
no. of observation	ns 8	no. of par	ameters		3
mean(v)	10.5	var(v)		3.13	325

Kvantifikace EM

zápis odhadnutého regresního modelu (regresní nadroviny)

Coefficient
3.01620
x1 0.103550
x2 -0.0979638

napozorované hodnoty:

$$Y_i = 3,016 + 0,104X_{1i} - 0,098X_{2i} + e_i$$

vyrovnané hodnoty:

$$\hat{Y}_{i} = 3.016 + 0.104 X_{1i} - 0.098 X_{2i}$$

je to tzv. bodový odhad

Verifikace ekonomická

 předpokládaná znaménka, očekávané hodnoty odhadnutých parametrů

 β_1 = v intervalu (0,1) pokud nepracujeme s úsporami nebo > 0 s úsporami $\rightarrow b_1$ splňuje předpoklad

 β_2 = by mělo být < 0 \rightarrow b_2 splňuje předpoklad

ekonomická interpretace

 b_0 – bez interpretace

$$b_1$$
 – absolutní (příjmová) pružnost $b_1 = \frac{\partial Y}{\partial X_1}$

 $b_1 = 0.104 \rightarrow \text{vzroste-li disponibilní příjem } x_1 \text{ o 1 jednotku (tj. o 1 mld. CZK)}$ a $\underline{x_2}$ se nezmění, vzroste maloobchodní obrat potřeb pro domácnost v průměru o 0.104 mld. CZK

Verifikace ekonomická

$$b_2$$
 – absolutní (cenová) pružnost $b_2 = \frac{\partial Y}{\partial X_2}$

 b_2 = -0,098 \rightarrow vzroste-li cenový index x_2 o jeden procentní bod a x_1 se nezmění, klesne maloobchodní obrat potřeb pro domácnost <u>v průměru</u> o 0,098 mld. CZK

- b_1 i b_2 jsou definovány v jednotkách pozorovaných proměnných.
- koeficienty relativní pružnosti q
- počítá se vždy vzhledem ke konkrétnímu pozorování
- Koeficient (výsledek přímo) interpretujeme v %.
- koeficient příjmové pružnosti $q_{x_1} = \frac{\partial Y}{\partial X_1} \frac{X_1}{Y} = b_1 \frac{X_1}{Y}$
- koeficient cenové pružnosti $q_{x_2} = \frac{\partial Y}{\partial X_2} \frac{X_2}{Y} = b_2 \frac{X_2}{Y}$

Verifikace ekonomická

relativní pružnost pro rok 1973

$$Y_{(73)} = 13,6$$
 $X_{1(73)} = 209$ $X_{2(73)} = 113$

- koeficient příjmové pružnosti $q_{x_1(73)} = b_1 \frac{x_1}{y} = 0.104 \frac{209}{13.6} = 1.60 \dots = 1.60 \%$
 - zvýší-li se v roce 1973 disponibilní příjem x₁ o 1 % a cenový index x₂ se nezmění, vzroste maloobchodní obrat potřeb pro domácnost y v průměru o 1,60 %
- koeficient cenové pružnosti $q_{x_2(73)} = b_2 \frac{x_2}{y} = -0.098 \frac{113}{13.6} = -0.81 \dots = -0.81\%$
 - zvýši-li se v roce 1973 cenový index x₂ o 1 % a disponibilní příjem x₁ se nezmění, klesne maloobchodní obrat potřeb pro domácnost y v průměru o 0,81 %

Verifikace statistická

8	Coefficient	Std.Error	t-value	t-prob	Part.R^2
Constant	3.01620	1.032	2.92	0.033	0.6308
x 1	0.103550	0.004550	22.8	0.000	0.9904
x 2	-0.0979638	0.01583	-6.19	0.002	0.8845
sigma	0.120682	RSS	0.0	07282020	76

Standard error

- standardní chyba regresního koeficientu
- slouží k určení významnosti parametrů, k intervalovým odhadům

$$\mathbf{s}_{b_i} = \mathbf{s} \sqrt{(\mathbf{X}^\mathsf{T} \mathbf{X})_{ii}^{-1}}$$

kde
$$\mathbf{s} = \sqrt{\frac{1}{(n-(k+1))}} \sum \mathbf{e}^{\mathsf{T}} \mathbf{e}^{\mathsf{$$

ii – prvek z diagonály momentové matice, pro náš příklad:

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} = \begin{pmatrix} 73,111 & 0,234 & -1,061 \\ 0,234 & 0,001 & -0,004 \\ -1,061 & -0,004 & 0,017 \end{pmatrix}$$
 $\mathbf{s}_{b_0} = \sqrt{\frac{1}{(8-3)}}0,073\sqrt{73,111} = 1,032$

Verifikace statistická

%	Coefficient	Std.Error	t-value	t-prob	Part.R^2
Constant	3.01620	1.032	2.92	0.033	0.6308
x 1	0.103550	0.004550	22.8	0.000	0.9904
/x2	-0.0979638	0.01583	-6.19	0.002	0.8845

t-value = *t*-statistika, t-poměr

- t-statistika slouží k určení významnosti jednotlivých parametrů v modelu
- testuje se hypotéza: $H_0: \beta_j = 0$ $H_1: \beta_j \neq 0$ $t_j = \frac{b_j - \beta_j}{s_{b_i}}$
- obecně pro *t*-statistiku platí $|t_j| = \left| \frac{b_j}{s_{b_i}} \right| = \frac{Koefcient}{Sm \cdot odchylka}$
- $|t_j| > t_{1-\alpha/2(n-k-1)}^* \rightarrow$ nezamítám hypotézu H_1 o významnosti proměnné v modelu: předpokládám, že proměnná je **významná**
- $|t_j| \le t_{1-\alpha/2}^* (n-k-1) \to \text{nezamítám hypotézu } H_0 \text{ o nevýznamnosti proměnné v modelu: předpokládám, že proměnná je$ **nevýznamná**

Verifikace statistická

(A)	Coefficient	Std.Error	t-value	t-prob	Part.R^2
Constant	3.01620	1.032	2.92	0.033	0.6308
x 1	0.103550	0.004550	22.8	0.000	0.9904
x 2	-0.0979638	0.01583	-6.19	0.002	0.8845

t-prob (v Gretlu: p-value) t-pravděpodobnost, p-hodnota

- pravděpodobnost, že nulová hypotéza je pravdivá (tj. daná vysvětlující proměnná je v modelu nevýznamná)
- t-prob < 0,05 → proměnná je statisticky významná na 5% hladině
- t-prob < 0,01 → proměnná je statisticky významná na 1% hladině
- používáme místo práce s tabulkovými hodnotami t-statistiky

Part. R^2

- Parciální korelační koeficient: pro dané ostatní exogenní proměnné.
- pozor na odlišení od párového korelačního koeficientu typu: r_{XY} a vícenásobného koeficientu determinace R²
- Pro X, Y, a $Z = \{Z_1, Z_2, \dots, Z_k\}$: Part. $R^2_{X,Y,Z}$ je r_{e1e2} kde e1 a e2 jsou rezidua z regrese X na Z a Y na Z(X,Y) jako endog. proměnné LRM)
- viz Gujarati, D.: Basic Econometrics, 4th ed.: kap.
 7.3 THE MEANING OF PARTIAL REGRESSION COEFFICIENTS

Verifikace statistická

sigma	0.120682	RSS 0.	0728202076
R^2	0.997094	F(2,5) = 857.8	8 [0.000]**
log-likelihood	7.44531	DW	1.95
no. of observations	8	no. of parameters	3
mean(y)	10.5	var(y)	3.1325

sigma

- standardní chyba regrese [u~N(0,σ²)]
- charakteristika výběrového rozptylu, který dostaneme po kvantifikaci abstraktního modelu

• vzorec
$$\mathbf{s} = \sqrt{\frac{1}{(n-(k+1))} \sum \mathbf{e}^{\mathsf{T}} \mathbf{e}} = \sqrt{\frac{1}{(8-3)} 0,073} = 0,1206$$

užívá se při výpočtu standardní chyby regresního koeficientu

Verifikace statistická

sigma	0.120682	RSS C	.0728202076
R^2	0.997094	F(2,5) = 857.	8 [0.000]**
log-likelihood	7.44531	DW	1.95
no. of observations	8	no. of parameters	3
mean(y)	10.5	var(y)	3.1325

RSS

- součet čtverců reziduí = $\sum e_i^2 = \sum e^T e \rightarrow \min$
- užívá se při výpočtu sigma nebo R² (koeficientu vícenásobné determinace)

R² - koeficient vícenásobné determinace

hodnotí celkovou kvalitu modelu, určuje, jak se model shoduje s daty

$$R^{2} = \frac{VS\check{C}}{CS\check{C}} = 1 - \frac{NS\check{C}}{CS\check{C}} \qquad R^{2} \in \langle 0,1 \rangle$$

$$CS\check{C} = \sum (Y_{i} - \overline{Y})^{2} \quad VS\check{C} = \sum (\hat{Y}_{i} - \overline{Y})^{2} \quad NS\check{C} = \sum (Y_{i} - \hat{Y}_{i})^{2}$$

Verifikace statistická

R² - koeficient vícenásobné determinace

- je-li NSČ = 0, pak $R^2 = 1 \rightarrow$ dokonalá shoda modelu s daty
- v případě, že koeficient R² není statisticky významný (viz F-poměr), doporučují se úpravy:
 - přidání další vysvětlující proměnné
 - zvýšení počtu pozorování
 - změna funkčního tvaru regresní rovnice
- nezohledňuje počet vysvětlujících proměnných hodnota R² nikdy neklesne přidáním dalších vysvětlujících proměnných do modelu
- proto existuje korigovaný koeficient determinace (tj. R^2_{adj} nebo \overline{R}^2)

$$\overline{R}^2 = 1 - (1 - R^2) \frac{n-1}{n-(k+1)}$$

- rovnost jen pokud $R^2 = 1$ nebo k = 0
- R² "PLATÍ" JEN PRO LRM S ÚROVŇOVOU KONSTANTOU!

Verifikace statistická

sigma	0.120682	RSS	0.0	728202076
R^2	0.997094	F(2,5) =	857.8	[0.000]**
log-likelihood	7.44531	DW		1.95
no. of observations	8	no. of paramet	ters	3
mean(y)	10.5	<pre>var(y)</pre>		3.1325

F(k, n-k-1), zde: F(2,5)

F-poměr – testuje statistickou významnost modelu

H₀: R² se statisticky významně neliší od nuly, altern.: LRM jako celek je statisticky nevýznamný, altern.: $\beta_1 = \dots \beta_k = 0$; LRM dán pouze úrovňovou konstantou β_0 .

H₁: R² se statisticky významně liší od nuly, alt.: LRM jako čelek je statisticky významný.

$$F = \frac{R^2}{1 - R^2} \frac{n - (k+1)}{k}$$

- F > F*_(k,n-k-1) ... zamítáme H₀ ve prospěch H₁
 F ≤ F*_(k,n-k-1) ... nezamítáme H₀
- [p-value]:
 - [p-value] ≤ α → zamítám hypotézu H_0 , model je tedy významný
 - [p-value] > α \rightarrow nezamítám H_0 , model je tedy nevýznamný

Verifikace statistická

```
      sigma
      0.120682
      RSS
      0.0728202076

      R^2
      0.997094
      F(2,5) =
      857.8 [0.000]**

      log-likelihood
      7.44531
      DW
      1.95

      no. of observations
      8 no. of parameters
      3

      mean(y)
      10.5 var(y)
      3.1325
```

log-likelihood

- hodnota věrohodnostní funkce (log-pravděpodobnost)
- Durbinova-Watsonova (DW) statistika d
- užívá se pro testování vlastností náhodných složek
- test autokorelace prvního řádu

Verifikace statistická

sigma	0.120682	RSS	0.0728202076
R^2	0.997094	F(2,5) = 8	57.8 [0.000]**
log-likelihood	7.44531	DW	1.95
no. of observations	8	no. of paramete	ers 3
mean(y)	10.5	<pre>var(y)</pre>	3.1325

no. of observations

počet pozorování

no. of parameters

počet regresních parametrů – tj. k+1 (vč. konstanty)
 (počet vysvětlujících proměnných = k)

mean (y)

průměr vysvětlované (tj. endogenní) proměnné

var (y)

rozptyl vysvětlované (tj. endogenní) proměnné

Verifikace ekonometrická

- ověřuje splnění podmínek pro použití MNČ
- testuje se:
- Základní ekonometrická verifikace:

HETEROSKEDASTICITA (náhodné složky)

AUTOKORELACE (náhodné složky)

MULTIKOLINEARITA (vysvětlujících proměnných)

Další možnosti ekonometrické verifikace:

Normalita reziduí (Jarque-Berra test)

Test chybné specifikace modelu (Ramseyho RESET test) atd. (množství testů, obecných i pro vybrané typy dat či odhadů)

<u>Aplikace</u>

- predikce apod., ukládání vyrovnaných hodnot, reziduí...
- predikce dosazení konkrétních hodnot do regresní funkce

Kvantifikace EM

intervalový odhad

$$P\left\{b_{i} - s_{b_{i}} t_{1-\alpha/2(n-k-1)}^{*} \leq \beta_{i} \leq b_{i} + s_{b_{i}} t_{1-\alpha/2(n-k-1)}^{*}\right\} = 1 - \alpha$$

$$t_{1-\alpha/2(n-k-1)}^{*} = t_{1-0.05/2(8-2-1)}^{*} = 2,571$$

$$s_{b_{1}} = 0,0046$$

$$b_{1} \pm s_{b_{1}} t_{1-\alpha/2(8-2-1)}^{*} = 0,104 \pm 0,0046 * 2,571$$

$$\beta_{1} \in \left\langle 0,0922;0,1158 \right\rangle$$

n = počet pozorování

k = počet vysvětlujících proměnných

 α = hladina významnosti, např. 5 % (oboustranný interval)