Probabilistic Machine Learning

Tutorial 2

Start: 10.15

Keep your solution open in the background

Alexandra Gessner 27 April 2020

Faculty of Science
Department of Computer Science
Chair for the Methods of Machine Learning

Tutorials over Zoom

quick reminde

New: Co-tutor present to assist tutor (chat etc.)

Communication & interaction within the zoom tutorial (controlled by tutors)

+ Speak: Participants → raise hand → unmute

Exercise submissions

- + Stick to the naming scheme, please: 02_<YourSurname>_<YourMatrikelnummer>.pdf
- + Make sure figures are visible in your submission

Shifting the tutorial?

+ There will be a poll: Monday vs. Thursday

Given:

N binary observations $X:=[x_1,\ldots,x_N]$ iid. from Bernoulli distribution (likelihood of f)

$$p(x_i | f) = f^{x_i} \cdot (1 - f)^{1 - x_i}$$
 for $i = 1, ..., N$

Beta prior on f

$$p(f\,|\,a,b) = \mathcal{B}(f;a,b) := \frac{1}{B(a,b)} f^{\,a-1} \cdot (1-f)^{b-1} \qquad \text{with } a,b>0, \quad f \in [0,1].$$

Question: What is the posterior p(f | X)?

Side note on the likelihood:

Never say "the likelihood of the data". Always say "the likelihood of the parameters". The likelihood function is not a probability distribution [in the parameters]. (David J. C. MacKay: Information Theory, Inference, and Learning Algorithms)

$$p(x_i | f) = f^{x_i} \cdot (1 - f)^{1 - x_i}$$

(L)

$$p(f | a, b) \propto f^{a-1} \cdot (1-f)^{b-1}$$
 (P)

$$p(f \mid X) = \frac{p(X \mid f)p(f)}{p(X)} \propto p(X \mid f)p(f)$$

$$\stackrel{\text{iid.}}{=} p(f) \prod_{i=1}^{N} p(x_i \mid f)$$

$$\propto f^{a-1} \cdot (1-f)^{b-1} \prod_{i=1}^{N} f^{x_i} \cdot (1-f)^{1-x_i}$$

$$= f^{a-1} (1-f)^{b-1} \cdot f^{\sum_{i=1}^{N} x_i} (1-f)^{\sum_{i=1}^{N} 1-x_i}$$

$$= f^{a+\sum_{i=1}^{N} x_i-1} (1-f)^{b+N-\sum_{i=1}^{N} x_i-1}$$

$$= f^{\tilde{a}-1} (1-f)^{\tilde{b}-1}$$

$$\propto \mathcal{B}(f; \tilde{a}, \tilde{b})$$

Bayes' theorem

plug in (L),(P)

,

The Gamma distribution

Task: Given $X \sim \mathcal{G}(a,1)$ and $Y \sim \mathcal{G}(b,1)$, show that $Z = \frac{X}{X+Y} \sim \mathcal{B}(a,b)$

$$\mathcal{G}(\xi; \alpha, \beta) = \frac{\beta^{\alpha} \cdot \xi^{\alpha - 1} e^{-\beta \xi}}{\Gamma(\alpha)}$$

Watch out: Two definitions of the Gamma distribution out there: $\beta = \frac{1}{\theta}$ (cf. lecture 4, slide 15)

Task: Given $X \sim \mathcal{G}(a,1)$ and $Y \sim \mathcal{G}(b,1)$, show that $Z = \frac{X}{X+Y} \sim \mathcal{B}(a,b)$

Reminder from lecture:

Theorem (Transformation Law, general)

Let $X=(X_1,\ldots,X_d)$ have a joint density p_X . Let $g:\mathbb{R}^d\to\mathbb{R}^d$ be continously differentiable and injective, with non-vanishing Jacobian J_g . Then Y=g(X) has density

$$p_Y(y) = \begin{cases} p_X(g^{-1}(y)) \cdot |J_{g^{-1}}(y)| & \text{if } y \text{ is in the range of } g, \\ 0 & \text{otherwise.} \end{cases}$$

$$g(x,y)=rac{x}{x+y}$$
 maps from $\mathbb{R}^2_+\mapsto [0,1]$, so we need a dummy variable to avoid a singular Jacobian, e.g. $g(x,y)=\left(x,rac{x}{x+y}
ight)$ for $x
eq 0$, or $g(x,y)=\left(x+y,rac{x}{x+y}
ight)$

Solution: The function $g: \mathbb{R}^2_+ \mapsto \mathbb{R}_+ \times [0,1]$ as

$$g(x,y) = \left(x+y, \frac{x}{x+y}\right)$$

is injective. Thus, define the auxiliary variable W=X+Y. Then X=ZW and Y=W-ZW.

Approach:

- 1. Find transformation $p_{X,Y}(x,y) \to p_{W,Z}(w,z)$
- 2. Marginalize $p_Z(z) = \int p_{W,Z}(w,z) dw$

First, compute Jacobian for the transform $p_{X,Y}(x,y) o p_{W,Z}(w,z)$

$$\left| \frac{dg^{-1}(z,w)}{d(z,w)} \right| = \left| \frac{\frac{dz}{dz}}{\frac{dy}{dz}} - \frac{\frac{dx}{dw}}{\frac{dy}{dw}} \right| = \left| w \quad z \\ -w \quad 1-z \right| = w(1-z) + wz = w$$

Memo:
$$X = ZW$$
 and $Y = W - ZW$; with Jacobian $\left| \frac{dg^{-1}(z,w)}{d(z,w)} \right| = w$

Next, compute the joint over Z and W is

$$\begin{aligned} p_{Z,W}(z,w) &= p_{X,Y}(x(z,w),y(z,w)) \cdot \left| \frac{dg^{-1}(z,w)}{d(z,w)} \right| \\ &= p_X(x(z,w)) \ p_Y(y(z,w)) \cdot w \\ &= \mathcal{G}(zw;a,1) \ \mathcal{G}(w-zw;b,1) \cdot w \\ &= \frac{1}{\Gamma(a)\Gamma(b)} (zw)^{a-1} e^{-zw} (w-zw)^{b-1} e^{-w+zw} w \\ &= \frac{1}{\Gamma(a)\Gamma(b)} w^{a+b-1} z^{a-1} (1-z)^{b-1} e^{-w} \\ &= p_Z(z) p_W(w) \end{aligned}$$

Joint over ${\cal Z}$ and ${\cal W}$ visualized

$$p_{Z,W}(z, w) = p_{Z}(z)p_{W}(w)$$

$$\propto z^{a-1}(1-z)^{b-1}w^{a+b-1}e^{-w}$$

Marginalize over W

$$p_{Z}(z) = \int_{0}^{\infty} dw \ p_{Z,W}(z,w)$$

$$= \frac{1}{\Gamma(a)\Gamma(b)} z^{a-1} (1-z)^{b-1} \int_{0}^{\infty} dw \ \underbrace{w^{a+b-1}e^{-w}}_{\propto \mathcal{G}(w;a+b,1)}$$

$$= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} z^{a-1} (1-z)^{b-1}$$

$$= \frac{1}{B(a,b)} z^{a-1} (1-z)^{b-1}$$

$$= \mathcal{B}(z;a,b)$$

A Python example

$$X \sim \mathcal{G}(a, 1); \quad Y \sim \mathcal{G}(b, 1)$$

$$\Rightarrow Z = \frac{X}{X + Y} \sim \mathcal{B}(a, b)$$

import numpy as np
from scipy.stats import gamma

```
n_param = 5
N = 1000
a = np.linspace(0.5, 1.5, n_param)
b = np.linspace(0.5, 1.5, n_param)
```

```
for i in range(n_param):
    for j in range(n_param):
        x = gamma.rvs(a[i], size=N)
        y = gamma.rvs(b[j], size=N)
        z = x/(x+y)
```

Theory Question: (b) Mean of the Beta distribution

$$\begin{split} \mathbb{E}_{\mathcal{B}(z;a,b)}[z] &= \int_0^1 z \; \mathcal{B}(z;a,b) \; dz \\ &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \underbrace{\int_0^1 z^a (1-z)^{b-1} \; dz}_{=B(a+1,b)} \\ &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} \quad \text{using } B(a+1,b) = \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} \\ &= \frac{\Gamma(a+b)}{\Gamma(a)} \cdot \frac{a\Gamma(a)}{(a+b)\Gamma(a+b)} \quad \text{using } \Gamma(x+1) = x\Gamma(x) \\ &= \frac{a}{a+b} \end{split}$$

