then by expanding according to the first row, we have

$$D(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix},$$

that is,

$$D(A) = a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22}),$$

which gives the explicit formula

$$D(A) = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33} - a_{31}a_{22}a_{13}.$$

We now show that each $D \in \mathcal{D}_n$ is a determinant (map).

Lemma 7.5. For every $n \geq 1$, for every $D \in \mathcal{D}_n$ as defined in Definition 7.6, D is an alternating multilinear map such that $D(I_n) = 1$.

Proof. By induction on n, it is obvious that $D(I_n) = 1$. Let us now prove that D is multilinear. Let us show that D is linear in each column. Consider any Column k. Since

$$D(A) = (-1)^{i+1} a_{i1} D(A_{i1}) + \dots + (-1)^{i+j} a_{ij} D(A_{ij}) + \dots + (-1)^{i+n} a_{in} D(A_{in}),$$

if $j \neq k$, then by induction, $D(A_{ij})$ is linear in Column k, and a_{ij} does not belong to Column k, so $(-1)^{i+j}a_{ij}D(A_{ij})$ is linear in Column k. If j=k, then $D(A_{ij})$ does not depend on Column k=j, since A_{ij} is obtained from A by deleting Row i and Column j=k, and a_{ij} belongs to Column j=k. Thus, $(-1)^{i+j}a_{ij}D(A_{ij})$ is linear in Column k. Consequently, in all cases, $(-1)^{i+j}a_{ij}D(A_{ij})$ is linear in Column k, and thus, D(A) is linear in Column k.

Let us now prove that D is alternating. Assume that two adjacent columns of A are equal, say $A^k = A^{k+1}$. Assume that $j \neq k$ and $j \neq k+1$. Then the matrix A_{ij} has two identical adjacent columns, and by the induction hypothesis, $D(A_{ij}) = 0$. The remaining terms of D(A) are

$$(-1)^{i+k}a_{ik}D(A_{ik}) + (-1)^{i+k+1}a_{ik+1}D(A_{ik+1}).$$

However, the two matrices A_{ik} and A_{ik+1} are equal, since we are assuming that Columns k and k+1 of A are identical and A_{ik} is obtained from A by deleting Row i and Column k while A_{ik+1} is obtained from A by deleting Row i and Column k+1. Similarly, $a_{ik}=a_{ik+1}$, since Columns k and k+1 of A are equal. But then,

$$(-1)^{i+k}a_{ik}D(A_{ik}) + (-1)^{i+k+1}a_{ik+1}D(A_{ik+1}) = (-1)^{i+k}a_{ik}D(A_{ik}) - (-1)^{i+k}a_{ik}D(A_{ik}) = 0.$$

This shows that D is alternating and completes the proof.

Lemma 7.5 shows the existence of determinants. We now prove their uniqueness.