Hierarchical Machine Translation

Wilker Aziz

Universiteit van Amsterdam w.aziz@uva.nl

April 11, 2016

Content

- 1 Motivation
- 2 Hierarchical models of translation Hiero Syntactic constraints
- 3 Decoding

Figure: Koehn [2010]

Why hierarchical structure?

Better generalisation

- compositionality
- reordering

Monotone translation is unrealistic

languages differ wrt word-order

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure e.g. rich morphology

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure e.g. rich morphology

Reordering is arguably one of the hardest problems in MT

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure e.g. rich morphology

Reordering is arguably one of the hardest problems in MT

 part of the model of translational equivalences the part that determines the space of translations

Key aspects

Expressiveness

how much can two languages differ wrt word order?

Key aspects

Expressiveness

how much can two languages differ wrt word order?

Modelling

• how many parameters do we have to estimate?

Content

- 1 Motivation
- 2 Hierarchical models of translation Hiero Syntactic constraints
- 3 Decoding

Local Reordering

Hierarchical phrase-based - Motivation

Local Reordering

Monotone
 J'₁ ai₂ → I₁ have₂

Local Reordering

 Swap les yeux₄ noirs₅ → black₃ eyes₄

Local Reordering

Discontinuous $ai_2 X_{3-4} noirs_5 \rightarrow have_2 black_3$ X_4

Discontiguous Phrases

Discontiguous Phrases

 $\begin{tabular}{ll} \blacksquare & {\sf Gappy phrase} \\ & {\sf ne \ vais \ pas} \to {\sf do \ not \ go} \\ & {\sf ne \ } X_{vais \ pas} \to {\sf do \ not \ } X_{go} \\ \end{tabular}$

Long Distance Reordering

	lch	werde	lhnen	die	entsprechenden	Anmerkungen	aushändigen
I							
shall							
be							
passing							
on							
to							
you							
some							
comments							

Long Distance Reordering

How can we extract a biphrase for shall be passing on?

Long Distance Reordering

- How can we extract a biphrase for shall be passing on?
- We cannot, we need to extract to you some comments along

Hierarchical phrase-based - Motivation

Long Distance Reordering

- How can we extract a biphrase for shall be passing on?
- We cannot, we need to extract to you some comments along
- Unless we replace all those words by a variable

Long Distance Reordering

shall be passing on to you some comments

werde Ihnen die entsprechenden Anmerkungen aushändigen

Hierarchical phrase-based - Motivation

Long Distance Reordering

shall be passing on the state of the state o

Long Distance Reordering

shall be passing on X \updownarrow werde X aushändigen

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

conditions on word alignment

- conditions on word alignment
- heuristic rule extraction

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

Motivation

long-distance reordering

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

Motivation

- long-distance reordering
- lexicalised reordering

Heuristic rule extraction

shall be passing on to you some comments

werde Ihnen die entsprechenden Anmerkungen aushändigen

Heuristic rule extraction

werde //////die entsprechenden Anmerkungen aushändigen

Heuristic rule extraction

shall be passing on X_1 some comments

\$

werde X_1 die entsprechenden Anmerkungen aushändigen

Hiero

Heuristic rule extraction

werde X_1 (Ne/e/h/t\$)//e/\$////t\$ Hiero

Heuristic rule extraction

shall be passing on X_1 X_2 \updownarrow werde X_1 X_2 aushändigen

Heuristic rule extraction

- $[X] \rightarrow \mathsf{shall}$ be passing on $X_1 \ X_2 \mid \mathsf{werde} \ X_1 \ X_2$ aushändigen
- $[X] \rightarrow \text{shall be passing on } X_3 \mid \text{werde } X_3 \text{ aushändigen}$
- $[X] \rightarrow \mathsf{to} \mathsf{you} \mid \mathsf{Ihnen}$
- $[X] \rightarrow$ some comments | die entsprechenden Anmerkungen
- [X] o to you some comments | Ihnen die entsprechenden Anmerkungen

Hiero

Hiero - Constraints

Practical Limitations [Chiang, 2005]

at most two nonterminal symbols

- at most two nonterminal symbols
- lacksquare X spans at least 1 and at most 15 source words

- at most two nonterminal symbols
- X spans at least 1 and at most 15 source words
- no nonterminals next to each other in the source side

- at most two nonterminal symbols
- X spans at least 1 and at most 15 source words
- no nonterminals next to each other in the source side

```
\begin{array}{c} \mathsf{les} \ \mathsf{grandes} \ \mathsf{maisons} \ \leftrightarrow \ \mathsf{the} \ \mathsf{big} \ \mathsf{houses} \\ \mathsf{les} \ X_1 \ \mathsf{maisons} \ \leftrightarrow \ \mathsf{the} \ X_1 \ \mathsf{houses} \\ \mathsf{les} \ X_1 \ X_2 \ \leftrightarrow \ \mathsf{the} \ X_1 \ X_2 \\ \mathsf{les} \ X \ \leftrightarrow \ \mathsf{the} \ X \end{array}
```

Practical Limitations [Chiang, 2005]

- at most two nonterminal symbols
- X spans at least 1 and at most 15 source words
- no nonterminals next to each other in the source side

```
\begin{array}{c} \mathsf{les} \ \mathsf{grandes} \ \mathsf{maisons} \ \leftrightarrow \ \mathsf{the} \ \mathsf{big} \ \mathsf{houses} \\ \mathsf{les} \ X_1 \ \mathsf{maisons} \ \leftrightarrow \ \mathsf{the} \ X_1 \ \mathsf{houses} \\ \mathsf{les} \ X_1 \ X_2 \ \leftrightarrow \ \mathsf{the} \ X_1 \ X_2 \\ \mathsf{les} \ X \ \leftrightarrow \ \mathsf{the} \ X \end{array}
```

Glue rules

• $S \rightarrow \langle S_1 X_2, S_1 X_2 \rangle$

Hiero

Hiero - Scoring

Relative frequency: assume all fragments have been "observed"

Relative frequency: assume all fragments have been "observed"

Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$

Hiero

Hiero - Scoring

Relative frequency: assume all fragments have been "observed"

■ Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$

 $p(X, \mathsf{la} \ \mathsf{maison} \ X_1, \mathsf{the} \ X_1 \ \mathsf{house})$

Relative frequency: assume all fragments have been "observed"

Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$

 $p(X, \text{la maison } X_1, \text{the } X_1 \text{ house})$

Rule application probability: $p(RHS_{source}, RHS_{target}|LHS)$

Relative frequency: assume all fragments have been "observed"

- Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$
 - $p(X, \text{la maison } X_1, \text{the } X_1 \text{ house})$
- Rule application probability: $p(RHS_{source}, RHS_{target}|LHS)$

 $p(\text{la maison } X_1, \text{the } X_1 \text{ house}|X)$

Relative frequency: assume all fragments have been "observed"

- Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$
 - $p(X, \text{la maison } X_1, \text{the } X_1 \text{ house})$
- Rule application probability: $p(RHS_{source}, RHS_{target}|LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1, \mathsf{the} \; X_1 \; \mathsf{house} | X)$$

Direct translation probability: $p(RHS_{target}|RHS_{source}, LHS)$

Relative frequency: assume all fragments have been "observed"

- Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$
 - $p(X, \text{la maison } X_1, \text{the } X_1 \text{ house})$
- Rule application probability: $p(RHS_{source}, RHS_{target} | LHS)$
 - $p(\mathsf{Ia} \; \mathsf{maison} \; X_1, \mathsf{the} \; X_1 \; \mathsf{house} | X)$
- Direct translation probability: $p(RHS_{target}|RHS_{source}, LHS)$
 - $p(\mathsf{the}\ X_1\ \mathsf{house}|\mathsf{la}\ \mathsf{maison}\ X_1,X)$

Relative frequency: assume all fragments have been "observed"

- Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$
 - $p(X, \text{la maison } X_1, \text{the } X_1 \text{ house})$
- Rule application probability: $p(RHS_{source}, RHS_{target}|LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1, \mathsf{the} \; X_1 \; \mathsf{house} | X)$$

■ Direct translation probability: $p(RHS_{target}|RHS_{source}, LHS)$

$$p(\mathsf{the}\ X_1\ \mathsf{house}|\mathsf{la}\ \mathsf{maison}\ X_1,X)$$

• Noisy-channel translation probability: $p(RHS_{source}|RHS_{target}, LHS)$

Relative frequency: assume all fragments have been "observed"

- Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$
 - $p(X, \text{la maison } X_1, \text{the } X_1 \text{ house})$
- Rule application probability: $p(RHS_{source}, RHS_{target}|LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1, \mathsf{the} \; X_1 \; \mathsf{house} | X)$$

■ Direct translation probability: $p(RHS_{target}|RHS_{source}, LHS)$

$$p(\mathsf{the}\ X_1\ \mathsf{house}|\mathsf{la}\ \mathsf{maison}\ X_1,X)$$

• Noisy-channel translation probability: $p(RHS_{source}|RHS_{target}, LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1 | \mathsf{the} \; X_1 \; \mathsf{house}, X)$$

Relative frequency: assume all fragments have been "observed"

- Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$
 - $p(X, \text{la maison } X_1, \text{the } X_1 \text{ house})$
- Rule application probability: $p(RHS_{source}, RHS_{target}|LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1, \mathsf{the} \; X_1 \; \mathsf{house} | X)$$

Direct translation probability: $p(RHS_{target}|RHS_{source}, LHS)$

$$p(\mathsf{the}\ X_1\ \mathsf{house}|\mathsf{la}\ \mathsf{maison}\ X_1,X)$$

Noisy-channel translation probability: $p(RHS_{source}|RHS_{taraet}, LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1 | \mathsf{the} \; X_1 \; \mathsf{house}, X)$$

Lexical translation probability

Relative frequency: assume all fragments have been "observed"

- Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$
 - $p(X, \text{la maison } X_1, \text{the } X_1 \text{ house})$
- Rule application probability: $p(RHS_{source}, RHS_{target}|LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1, \mathsf{the} \; X_1 \; \mathsf{house} | X)$$

■ Direct translation probability: $p(RHS_{target}|RHS_{source}, LHS)$

$$p(\mathsf{the}\ X_1\ \mathsf{house}|\mathsf{la}\ \mathsf{maison}\ X_1,X)$$

• Noisy-channel translation probability: $p(RHS_{source}|RHS_{target}, LHS)$

$$p(\mathsf{Ia}\ \mathsf{maison}\ X_1|\mathsf{the}\ X_1\ \mathsf{house},X)$$

Lexical translation probability

$$\prod_{t_i \in RHS_{target}} p(t_i | RHS_{source}, a) \qquad \prod_{s_i \in RHS_{source}} p(s_i | RHS_{target}, a)$$

Hiero

Hiero - Model

$$p(\mathbf{d}, \mathbf{x}) = \prod_i \phi_i(\mathbf{d}, \mathbf{x})^{\lambda_i}$$

$$p(\mathbf{d}, \mathbf{x}) = \prod_i \phi_i(\mathbf{d}, \mathbf{x})^{\lambda_i}$$

$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \log \phi_{i}(\mathbf{d}, \mathbf{x})$$

$$p(\mathbf{d}, \mathbf{x}) = \prod_{i} \phi_{i}(\mathbf{d}, \mathbf{x})^{\lambda_{i}}$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \log \phi_{i}(\mathbf{d}, \mathbf{x})$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \log \prod_{r \in \mathbf{d}} \phi_{i}(r, \mathbf{x})$$

$$p(\mathbf{d}, \mathbf{x}) = \prod_{i} \phi_{i}(\mathbf{d}, \mathbf{x})^{\lambda_{i}}$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \log \phi_{i}(\mathbf{d}, \mathbf{x})$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \log \prod_{r \in \mathbf{d}} \phi_{i}(r, \mathbf{x})$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \left(\sum_{r \in \mathbf{d}} \log \phi_{i}(r, \mathbf{x})\right)$$

$$p(\mathbf{d}, \mathbf{x}) = \prod_{i} \phi_{i}(\mathbf{d}, \mathbf{x})^{\lambda_{i}}$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \log \phi_{i}(\mathbf{d}, \mathbf{x})$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \log \prod_{r \in \mathbf{d}} \phi_{i}(r, \mathbf{x})$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \left(\sum_{r \in \mathbf{d}} \log \phi_{i}(r, \mathbf{x})\right)$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{r \in \mathbf{d}} \sum_{i} \lambda_{i} \log \phi_{i}(r, \mathbf{x})$$

Log-linear combination of features

$$p(\mathbf{d}, \mathbf{x}) = \prod_{i} \phi_{i}(\mathbf{d}, \mathbf{x})^{\lambda_{i}}$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \log \phi_{i}(\mathbf{d}, \mathbf{x})$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \log \prod_{r \in \mathbf{d}} \phi_{i}(r, \mathbf{x})$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} \left(\sum_{r \in \mathbf{d}} \log \phi_{i}(r, \mathbf{x})\right)$$
$$\log p(\mathbf{d}, \mathbf{x}) = \sum_{r \in \mathbf{d}} \sum_{i} \lambda_{i} \log \phi_{i}(r, \mathbf{x})$$

Linear model

$$f(\mathbf{d}, \mathbf{x}) = \sum_{i} \lambda_{i} h_{i}(\mathbf{d}, \mathbf{x}) = \sum_{r \in \mathbf{d}} \boldsymbol{\lambda}^{\top} \mathbf{h}(r, \mathbf{x})$$

PRP	S	VP	
I	VB	N	P
	have	٦̈́Ĵ	NN
		 black	eyes

	J'	ai	les	yeux	noirs
I					
have					
black					
eyes					

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

Rules are learnt from the word-alignment And constrained by syntactic categories

PRP	S	VP	
	VB	N	P
•			
	have	ĴĴ	ΝN
		black	eyes

	J'	ai	les	yeux	noirs
Ι					
have					
black					
eyes					

 $JJ \rightarrow noirs \mid black$ is straightforward

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

PRP	S	VP	
I	VB	NI	P
	have	JJ 	NN
		black	eyes

	J'	ai	les	yeux	noirs
I					
have					
black					
eyes					

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

PRP	S	VP	
I	VB	N	P
	have	JJ black	NN eyes

		J'	ai	les	yeux	noirs
	I					
	have					
ĺ	black					
ĺ	eyes					

A single LHS \rightarrow subtree

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

PRP	S	VP	
I	VB	N	P
•			
	have	JJ_1	NN_2
		black	eyes

	J'	ai	les	yeux	noirs
I					
have					
black					
eyes					

Use NP0/NP

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

_	S	_	
PRP		VΡ	
		^	
i	VΒ	N	P
	have	JJ_1	NN
		black	eyes

	J'	ai	les	yeux	noirs
I					
have					
black					JJ
eyes					

$$\begin{array}{c} \mathsf{NP0/NP} \rightarrow \\ \stackrel{\mathit{DT}}{\mathit{les}} \ \stackrel{\mathit{NN}}{\mathit{yeux}} \ \mathsf{JJ_1} \ | \ \mathsf{JJ_1} \ \stackrel{\mathit{NN}}{\mathit{eyes}} \end{array}$$

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

	J'	ai	les	yeux	noirs
I					
have					
black					
eyes					

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

Rules are learnt from the word-alignment And constrained by syntactic categories

PRP	S	VP		
İ	VB	NP_3		
	 have	IJ	NN	
		black	eyes	

	J'	ai	les	yeux	noirs
I					
have					
black					NP
eyes			NP	NP	

 $egin{array}{l} \mathsf{/P0/VP}
ightarrow \ i & \mathsf{NP0}_3 \mid \stackrel{VB}{have} \ \mathsf{NP}_3 \end{array}$

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

Syntactic Constraints

Rules are learnt from the word-alignment And constrained by syntactic categories

PRP	S	VP	
 	VB	N	P
	have	ĴĴ 	NN
		black	eyes

	J'	ai	les	yeux	noirs
I					
have					
black					
eyes					

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

Syntactic Constraints

Rules are learnt from the word-alignment And constrained by syntactic categories

PRP	S	VP	
 	VB	N	P
	have	ĴĴ	ΝN
		 black	eyes

	J'	ai	les	yeux	noirs
I					
have					
black					
eyes					

 $PRP0/PRP \rightarrow J' \mid I$ is straightforward

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

Syntactic Constraints

Rules are learnt from the word-alignment And constrained by syntactic categories

PRP ₄	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/P ₅	
İ	VB	N	P
	have	JĴ 	ΝN
		black	eyes

		J'	ai	les	yeux	noirs
T		PRP				
h	ave		VP			
Ь	lack					VP
e	yes			VP	VP	

 $S \rightarrow PRP0_4 VP_5 \mid PRP_4 VP_5$

- A context-free rule requires a single LHS
- A rule must be consistent with word-alignment
- Nonterminals in the RHS must align one-to-one

Grammar

Grammar

PRP0/PRP
$$\rightarrow$$
 J' | I
JJ \rightarrow noirs | black
NP0/NP \rightarrow $\stackrel{DT}{les}$ $\stackrel{NN}{yeux}$ JJ | JJ
VP0/VP \rightarrow $\stackrel{VB}{ai}$ NP0 | $\stackrel{VB}{have}$ NP
S \rightarrow PRP0 VP0 | PRP VP

Syntax-based vs Hiero

More constraints on rules

000

Can we extract the discontiguous phrase ai X noirs?

 $\hbox{\bf Hiero:}\ X\to\hbox{\bf ai}\ X_1\ \hbox{\bf noirs}\ |\ \hbox{\bf have black}\ X_1$

Syntactic: No!

Syntax-based vs Hiero

More constraints on rules

000

Can we extract the discontiguous phrase ai X noirs?

 $\hbox{\bf Hiero:}\ X\to\hbox{\bf ai}\ X_1\ \hbox{\bf noirs}\ |\ \hbox{\bf have black}\ X_1$

Syntactic: No!

Content

- 1 Motivation
- 2 Hierarchical models of translation
- 3 Decoding

Phrase-based

 $\mathsf{Tree}\text{-}\mathsf{based}$

Decoding

Phrase-based

Left-to-Right

Tree-based

Bottom-Up

Phrase-based

- Left-to-Right
- Beam Search

Tree-based

- Bottom-Up
- Chart Parsing

Decoding

J' ai les yeux noirs

```
    PRPO/PRP → J' | I
    JJ → noirs | black
    NPO/NP → les yeux JJ | JJ VB VB VB VB VB VPO/VP → ai NPO | have NP
    S → PRPO VPO | PRP VP
```

 J'_1 ai les yeux noirs

 J'_1 ai les yeux noirs₂

J'₁ ai les yeux₃ noirs₂

J'₁ ai₄ les yeux₃ noirs₂

- ② JJ → noirs | black
- $\textbf{3} \hspace{0.1cm} \text{NPO/NP} \rightarrow \stackrel{DT}{les} \stackrel{NN}{yeux} \text{JJ} \hspace{0.1cm} | \hspace{0.1cm} \text{JJ} \hspace{0.1cm} |$

 $\{I_1, have_4 black_2 eyes_3\}$

J'₁ ai₄ les yeux₃ noirs₂

- $2 \quad \mathsf{JJ} \to \mathsf{noirs} \mid \mathsf{black}$

- $S \rightarrow PRP0 \ VP0 \mid PRP \ VP$

 $\{I_1 \text{ have}_4 \text{ black}_2 \text{ eyes}_3\}$

Conclusions and further reading

Hierarchical structure

reasonable accounts of languages with different word-order

Conclusions and further reading

Hierarchical structure

- reasonable accounts of languages with different word-order
 - however, rather strict/fixed word-order (simpler morphology)

Conclusions and further reading

Hierarchical structure

- reasonable accounts of languages with different word-order
 - however, rather strict/fixed word-order (simpler morphology)

Linguistically-informed labels

- constrain hiero grammar [Zollmann and Venugopal, 2006]
- tree-based grammars [DeNeefe and Knight, 2009]
- feature-rich models [Chiang et al., 2009]
- tree transducers and EM training [Galley et al., 2006]

Earley intersection

AXIOMS

$$\overline{[S' \to \bullet S, q, q]} \quad q \in I$$

GOAL

$$[S' \to S \bullet, q, r] \ q \in I \land r \in F$$

Scan

$$\frac{[X \to \alpha \bullet x\beta, q, s]}{[X \to \alpha x \bullet \beta]} \quad \langle s, x, r \rangle \in E$$

Predict

$$\frac{[X \to \alpha \bullet Y\beta, q, r]}{[Y \to \bullet \gamma, r, r]} \quad Y \to \gamma \in R$$

Complete

$$\frac{[X \to \alpha \bullet Y\beta, q, s] [Y \to \gamma \bullet, s, r]}{[X \to \alpha Y_{s,r} \bullet \beta, q, r]} \quad X \neq S'$$

ACCEPT

$$\frac{[S' \to \bullet S, q, q] [S \to \gamma \bullet, q, r]}{[S' \to S_{q,r} \bullet, q, r]} \quad r \in F$$

References I

David Chiang. A hierarchical phrase-based model for statistical machine translation. In *Proceedings of the 43rd Annual Meeting* of the Association for Computational Linguistics (ACL'05), pages 263–270, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. doi: 10.3115/1219840.1219873. URL http://www.aclweb.org/anthology/P05-1033.

David Chiang, Kevin Knight, and Wei Wang. 11,001 new features for statistical machine translation. In *Proceedings of Human* Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 218–226, Boulder, Colorado, June 2009. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/N/N09/N09-1025.

References II

Steve DeNeefe and Kevin Knight. Synchronous tree adjoining machine translation. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2 -Volume 2, EMNLP '09, pages 727–736, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-62-6 URL

http://dl.acm.org/citation.cfm?id=1699571.1699607.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and Ignacio Thayer. Scalable inference and training of context-rich syntactic translation models. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 961–968, Sydney, Australia, July 2006. Association for Computational

References III

Linguistics. doi: 10.3115/1220175.1220296. URL http://www.aclweb.org/anthology/P06-1121.

Philipp Koehn. Statistical Machine Translation. Cambridge University Press, New York, NY, USA, 1st edition, 2010. ISBN 0521874157, 9780521874151.

Andreas Zollmann and Ashish Venugopal. Syntax augmented machine translation via chart parsing. In *Proceedings of the* Workshop on Statistical Machine Translation, StatMT '06, pages 138-141, Stroudsburg, PA, USA, 2006. Association for Computational Linguistics. URL

http://dl.acm.org/citation.cfm?id=1654650.1654671.