

TEST REPORT

Test report no.: 1-8662/19-02-02-A

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01

Applicant

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Phone: -/-

Contact: Nicolas Jacquemont

e-mail: <u>nicolas.jacquemont@ingenico.com</u>

Phone: +33475842123

Manufacturer

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

RSS - Gen Issue 5 Spectrum Management and Telecommunications Radio Standards Specification

- General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Android Point of sales Terminal Model name: Lane/5000 CL/Eth/WiFi/BTv3

FCC ID: 2586D-L5KCLWBTV3 IC: XKB-L5KCLWBTV3

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: WLAN

Radio Communications & EMC

Antenna: Integrated antenna

Power supply: 115 V AC & 5 V DC by mains adapter / battery

Temperature range: 0°C to +45°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
p.o.		
Marco Bertolino	Mihail Dorongovskij	
Lab Manager	Lab Manager	

Radio Communications & EMC

Table of contents

1	Table	of contents	
2		al information	
_		Notes and disclaimer	
		Application details	
		Test laboratories sub-contracted	
3	Tost s	tandard/s and references	
		nvironment	
4			
5	Test it	em	
	5.1	General description	
	5.2	Additional information	
6	Seque	nce of testing	6
	6.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	6
		Sequence of testing radiated spurious 30 MHz to 1 GHz	
		Sequence of testing radiated spurious 1 GHz to 18 GHz	
	6.4	Sequence of testing radiated spurious above 18 GHz	9
7	Descri	ption of the test setup	10
		· Shielded semi anechoic chamber	
		Shielded fully anechoic chamber	
		Radiated measurements > 18 GHz	
		Conducted measurements with peak power meter & spectrum analyzer	
8	Measu	rement uncertainty	15
9		ary of measurement results	
10		dditional comments	
. •			
11		dditional EUT parameter	
12	M	easurement results	
	12.1	Antenna gain	
	12.2	Identify worst case data rate	
	12.3	Maximum output power	
	12.4 12.5	Duty cyclePeak power spectral density	
	12.5	6 dB DTS bandwidth	
	12.7	Occupied bandwidth – 99% emission bandwidth	
	12.8	Occupied bandwidth – 20 dB bandwidth	
	12.9	Band edge compliance conducted	
	12.10	Spurious emissions conducted	
	12.11	Spurious emissions radiated below 30 MHz	
	12.12	Spurious emissions radiated 30 MHz to 1 GHz	
	12.13 12.14	Spurious emissions radiated above 1 GHz	
_		Spurious emissions conducted below 30 MHz (AC conducted)	
Anr	nex A	Glossary	
Anr	nex B	Document history	
Anr	nex C	Accreditation Certificate - D-PL-12076-01-04	
Δnr	nex D	Accreditation Certificate - D-PL-12076-01-05	68

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-8662/19-02-02 and dated 2019-07-05.

2.2 Application details

Date of receipt of order: 2019-06-11
Date of receipt of test item: 2019-06-12
Start of test: 2019-06-13
End of test: 2019-07-04

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 68

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

© CTC advanced GmbH Page 4 of 68

4 Test environment

Temperature : T			+22 °C during room temperature tests No tests under extreme temperature conditions required. No tests under extreme temperature conditions required.				
Relative humidity content	:		50 %				
Barometric pressure	:		1021 hpa				
Power supply	:	V _{nom} V _{max} V _{min}	115 V AC & 5 V DC by mains adapter / battery No tests under extreme voltage conditions required. No tests under extreme voltage conditions required.				

5 Test item

5.1 General description

Kind of test item :	Android Point of sales Terminal
Type identification :	Lane/5000 CL/Eth/WiFi/BTv3
HMN :	-/-
PMN :	Lane/5000
HVIN :	Lane/5000 CL/Eth/WiFi/BTv3
FVIN :	-/-
S/N serial number :	Rad. 181957303261086002890317 (30 MHz to 1 GHz spurious emissions) 181947303261086002883234 (All other radiated tests) Cond. 182017303261086002912316
Hardware status :	02
Software status :	OS_045400 HTB_0104
Firmware status :	OS_045400 HTB_0104
Frequency band :	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission: Use of frequency spectrum:	DSSS, OFDM
Type of modulation :	BPSK, QPSK, 16 – QAM
Number of channels :	20 MHz: 11 40 MHz: 9
Antenna :	Integrated antenna
Power supply :	115 V AC & 5 V DC by mains adapter / battery
Temperature range :	0°C to +45°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-8662/19-02-01_AnnexA 1-8662/19-02-01_AnnexD

© CTC advanced GmbH Page 5 of 68

6 Sequence of testing

6.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 6 of 68

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

6.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 7 of 68

6.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 8 of 68

6.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 9 of 68

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 10 of 68

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation.

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020

© CTC advanced GmbH Page 11 of 68

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab /	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of	Last	Next
1	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	Calibration ev	Calibration -/-	Calibration -/-
2	A, B	Switch / Control Unit	3488A	HP	*	300000390	ne	-/-	-/-
3	A	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vIKI!	07.07.2017	06.07.2019
4	A, B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
5	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
6	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
7	Α	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
8	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	A, B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	A, B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
11	A, B	PC	ExOne	F+W		300004703	ne	-/-	-/-
12	Α	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
13	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	07.07.2017	06.07.2019

© CTC advanced GmbH Page 12 of 68

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 \text{ [dB}\mu\text{V/m]} + (-60.1) \text{ [dB]} + 36.74 \text{ [dB/m]} = 16.64 \text{ [dB}\mu\text{V/m]} (6.79 \ \mu\text{V/m})$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	Α	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	-/-	300000486	vIKI!	13.12.2017	12.12.2019
3	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2018	16.12.2019
4	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

© CTC advanced GmbH Page 13 of 68

7.4 Conducted measurements with peak power meter & spectrum analyzer

WLAN tester version: 1.1.13; LabView2015

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
2	A, B	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000108	ev	11.05.2018	10.05.2020
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2018	16.12.2019
4	A, B	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
5	A, B	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	-/-	300004590	ne	-/-	-/-
6	A, B	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
7	A, B	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-
8	В	Wideband Power Sensor, 50 MHz to 18 GHz	NRP-Z81	Rohde & Schwarz	102585	300004863	vlKI!	11.12.2018	10.12.2020
9	A, B	DC-Blocker	WA7046	Weinschel Associates	-/-	400001310	ev	-/-	-/-

© CTC advanced GmbH Page 14 of 68

8 Measurement uncertainty

Measurement uncertainty							
Test case	Unce	rtainty					
Antenna gain	± 3	3 dB					
Power spectral density	± 1.1	15 dB					
DTS bandwidth	± 100 kHz (depend	s on the used RBW)					
Occupied bandwidth	± 100 kHz (depend	s on the used RBW)					
Maximum output power conducted	± 1.1	15 dB					
Detailed spurious emissions @ the band edge - conducted	ous emissions @ the band edge - conducted ± 1.15 dB						
Band edge compliance radiated	± 3	3 dB					
	> 3.6 GHz	± 1.15 dB					
Spurious emissions conducted	> 7 GHz	± 1.15 dB					
Spurious erriissions conducted	> 18 GHz	± 1.89 dB					
	≥ 40 GHz	± 3.12 dB					
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz ± 3 dB							
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	ons radiated above 12.75 GHz ± 4.5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB						

© CTC advanced GmbH Page 15 of 68

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2019-08-01	-/-

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (f)(ii)	Antenna gain	-/-	Nominal	Nominal	DSSS		-,	/-		*1
§15.35	Duty cycle	-/-	Nominal	Nominal	DSSS OFDM		-,	/-		-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 8.4	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth	KDB 558074 DTS clause: 8.2	Nominal	Nominal	DSSS OFDM	×				-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	KDB 558074 DTS clause: 8.3.1.3	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge – cond.	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance cond. & rad.	KDB 558074 DTS clause: 8.7.3	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions cond.	KDB 558074 DTS clause: 8.5	Nominal	Nominal	DSSS OFDM	×				-/-
§15.209(a) RSS-Gen	TX spurious emissions rad. below 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.109 RSS-Gen	RX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	RX / idle	×				-/-
§15.109 RSS-Gen	RX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	RX / idle	×				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	X				*1

1*: Extracted from test report no. 1-5253_17-01-02

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

© CTC advanced GmbH Page 16 of 68

10 Additional comments

Reference documents: Test report no. 1-5253_17-01-02

ICO-OPE-03994 Wifi_labtool_Radio_agreement_procedure.pdf

Special test descriptions: None

Configuration descriptions: Used power settings for all measurements:

b-mode: Power setting 14 for all channels

g-mode: Power setting 8 for all channels

n HT20-mode: Power setting 8 for all channels

n HT40-mode: Power setting 7 for all channels

Provided channels:

Channels with 20 MHz channel bandwidth:

channel number & center frequency													
channel	1	2	3	4	5	6	7	8	9	10	11	12	13
f _c / MHz	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472

Channels with 40 MHz channel bandwidth:

channel number & center frequency													
channel	-/-	-/-	3	4	5	6	7	8	9	10	11	-/-	-/-
f _c / MHz	-/-	-/-	2422	2427	2432	2437	2442	2447	2452	2457	2462	-/-	-/-

Note: The channels used for the tests are marked in bold in the list.

© CTC advanced GmbH Page 17 of 68

11 Additional EUT p	paramete	er en
Test mode:		No test mode available lperf was used to ping another device with the largest support packet size
		Test mode available Special software is used. EUT is transmitting pseudo random data by itself
Modulation types:	\boxtimes	Wide Band Modulation (None Hopping – e.g. DSSS, OFDM)
		Frequency Hopping Spread Spectrum (FHSS)
Antennas and transmit operating modes:		Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

© CTC advanced GmbH Page 18 of 68

12 Measurement results

12.1 Antenna gain

Limits:

FCC	IC				
6 dBi / > 6 dBi output power and power density reduction required					

Results: Extracted from test report no. 1-5253_17-01-02

	lowest channel	middle channel	highest channel
Gain [dBi] / Calculated	2.8	2.2	1.2

© CTC advanced GmbH Page 19 of 68

12.2 Identify worst case data rate

Description:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Measurement:

Measurement parameter						
Detector	Peak					
Sweep time	Auto					
Resolution bandwidth	3 MHz					
Video bandwidth	3 MHz					
Trace mode	Max hold					
Test setup	See chapter 7.4 A					
Measurement uncertainty	See chapter 8					

Results:

Modulation scheme / bandwidth							
DSSS / b – mode	1 Mbit/s						
OFDM / g – mode	6 Mbit/s						
OFDM / n HT20 – mode	MCS0						
OFDM / n HT40 – mode	MCS0						

© CTC advanced GmbH Page 20 of 68

12.3 Maximum output power

Description:

Measurement of the maximum conducted peak output power. The measurements are performed using the data rate identified in the previous chapter.

Measurement:

Measurement parameter						
According to DTS clause: 8.3.1.3						
External result file	1-8662_19-02-02_log1_conducted.pdf FCC Part 15.247 Maximum Peak Conducted Output Power Powermeter DTS					
Test setup	See chapter 7.4 B					
Measurement uncertainty	See chapter 8					

Limits:

FCC	IC
Conducted 1.0 W / 30 dBm with an antenna gain of max. 6 dBi	

Results:

	maximum output power / dBm		
	lowest channel	middle channel	highest channel
Output power conducted DSSS / b – mode	15.5	14.7	15.1
Output power conducted OFDM / g – mode	18.2	17.6	17.7
Output power conducted OFDM / n HT20 – mode	17.1	16.3	16.8
Output power conducted OFDM / n HT40 – mode	18.2	17.7	16.3

© CTC advanced GmbH Page 21 of 68

12.4 Duty cycle

Description:

Measurement of the timing behavior.

Measurement:

Measurement parameter		
Detector	Peak	
Resolution bandwidth	10 MHz	
Video bandwidth	10 MHz	
Trace mode	Max hold	
Test setup	See chapter 7.4 A	
Measurement uncertainty	See chapter 8	

Limits:

FCC	IC
No limitation!	

Results:

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel
DSSS/I	o – mode	100.00 % / 0.0 dB	100.00 % / 0.0 dB	100.00 % / 0.0 dB
OFDM /	g – mode	100.00 % / 0.0 dB	100.00 % / 0.0 dB	100.00 % / 0.0 dB
OFDM / n H	IT20 – mode	100.00 % / 0.0 dB	100.00 % / 0.0 dB	100.00 % / 0.0 dB
OFDM / n H	IT40 – mode	100.00 % / 0.0 dB	100.00 % / 0.0 dB	100.00 % / 0.0 dB

© CTC advanced GmbH Page 22 of 68

12.5 Peak power spectral density

Description:

Measurement of the peak power spectral density of a digital modulated system. The PSD shows the strength of the variations as a function of the frequency. The measurement is repeated for both modulations at the lowest, middle and highest channel.

Measurement:

Measurement parameter		
According to DTS clause: 8.4		
External result file	1-8662_19-02-02_log1_conducted.pdf FCC Part 15.247 Peak Power Spectral Density DTS	
Test setup	See chapter 7.4 A	
Measurement uncertainty	See chapter 8	

Limits:

FCC	IC
8 dBm / 3 kHz (conducted)	

Results:

calculated	peak power	r spectral density / dE	3m @ 3 kHz
	Lowest channel	Middle channel	Highest channel
DSSS / b – mode	-15.8	-16.4	-15.7
OFDM / g – mode	-21.7	-22.3	-21.2
OFDM / n HT20 – mode	-21.3	-21.7	-20.6
OFDM / n HT40 – mode	-23.0	-22.5	-22.7

© CTC advanced GmbH Page 23 of 68

12.6 6 dB DTS bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter		
According to DTS clause: 8.2		
External result file	1-8662_19-02-02_log1_conducted.pdf FCC Part 15.247 Bandwidth 6dB DTS	
Test setup	See chapter 7.4 A	
Measurement uncertainty	See chapter 8	

Limits:

FCC	IC
Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.	

Results:

	6 dB DTS bandwidth / kHz		
	lowest channel	middle channel	highest channel
DSSS / b - mode	10040	10032	10040
OFDM / g – mode	16544	16548	16548
OFDM / n HT20 – mode	17804	17812	17612
OFDM / n HT40 – mode	36312	36512	36552

© CTC advanced GmbH Page 24 of 68

12.7 Occupied bandwidth - 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement:

Measurement parameter		
External result file	1-8662_19-02-02_log1_conducted.pdf FCC Part 15.247 Bandwidth 99PCT-20dB	
Test setup	See chapter 7.4 A	
Measurement uncertainty	See chapter 8	

Usage:

-/-	IC			
OBW is necessary for Emission Designator				

Results:

	99% emission bandwidth / kHz				
	lowest channel middle channel highest channe				
DSSS / b - mode	13583	13743	14215		
OFDM / g – mode	17474	17590	18218		
OFDM / n HT20 – mode	18282	18322	18706		
OFDM / n HT40 – mode	37132	37220	37252		

© CTC advanced GmbH Page 25 of 68

12.8 Occupied bandwidth - 20 dB bandwidth

Description:

Measurement of the 20 dB bandwidth of the modulated carrier.

Measurement:

Measurement parameter			
External result file	1-8662_19-02-02_log1_conducted.pdf FCC Part 15.247 Bandwidth 99PCT-20dB		
Test setup	See chapter 7.4 A		
Measurement uncertainty	See chapter 8		

Usage:

-/-	IC			
Within the used band!				

Results:

	20 dB bandwidth / MHz				
lowest channel middle channel highest channel					
DSSS / b - mode	15.516	15.872	16.380		
OFDM / g – mode	19.704	20.756	23.704		
OFDM / n HT20 – mode	20.136	20.164	22.500		
OFDM / n HT40 – mode	40.784	40.840	40.720		

© CTC advanced GmbH Page 26 of 68

12.9 Band edge compliance conducted

Description:

Measurement of the radiated band edge compliance with a conducted test setup.

Measurement:

Measurement parameter for measurements			
According to DTS clause: 8.7.3 and clause 12.2.2			
External result file	1-8662_19-02-02_log1_conducted.pdf FCC Part 15.247 Restricted Band Edge Conducted Avg DC corrected DTS		
Test setup	See chapter 7.4 A		
Measurement uncertainty	See chapter 8		

Limits:

FCC	IC			
-41.26 dBm				

© CTC advanced GmbH Page 27 of 68

Results:

	band edge compliance / dBm (gain calculation)			
Modulation:	DSSS / b – mode	OFDM / n HT20 – mode	OFDM / n HT40 – mode	
Max. lower band edge power conducted	-51.4	-51.4	-51.3	-49.1
Antenna gain / dBi	2.8			
Max. lower band edge power radiated	-48.6	-48.6	-48.5	-46.3
Max. upper band edge power conducted	-46.9	-43.9	-43.8	-43.6
Antenna gain / dBi	1.2			
Max. upper band edge power radiated	-45.7	-42.7	-42.6	-42.4

© CTC advanced GmbH Page 28 of 68

12.10 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The measurement is performed at the lowest; the middle and the highest channel. The measurement is repeated for all modulations.

Measurement:

Measurement parameter			
External result file	1-8662_19-02-02_log1_conducted.pdf FCC Part 15.247 TX Spurious Conducted		
Test setup	See chapter 7.4 A		
Measurement uncertainty	See chapter 8		

Limits:

|--|

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

© CTC advanced GmbH Page 29 of 68

Results: DSSS / b - mode

	TX spurious emissions conducted					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
Lowest channel		1.7	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant		
Middle channel		1.1	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant		
Highest channel		1.5	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant		

 $\underline{\textbf{Results:}} \ \mathsf{OFDM} \ / \ \mathsf{g-mode}$

TX spurious emissions conducted						
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
Lowest channel		-5.6	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant		
Middle channel		-8.2	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant		
Highest channel		-6.9	30 dBm		Operating frequency	
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant		

© CTC advanced GmbH Page 30 of 68

Results: OFDM / n HT20 - mode

TX spurious emissions conducted					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
Lowest channel		-7.5	30 dBm		Operating frequency
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant	
Middle channel		-8.7	30 dBm		Operating frequency
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant	
Highest channel		-7.4	30 dBm		Operating frequency
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant	

Results: OFDM / n HT40 - mode

TX spurious emissions conducted					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
Lowest channel		-11.2	30 dBm		Operating frequency
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant	
			-50 dbc (average)		
Middle channel		-11.1	30 dBm		Operating frequency
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak)		compliant
			-30 dBc (average)		
Highest channel		-11.5	30 dBm		Operating frequency
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak)		compliant
			-30 dBc (average)		

© CTC advanced GmbH Page 31 of 68

12.11 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

Measurement parameter			
Detector	Peak / Quasi Peak		
Sweep time	Auto		
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span	9 kHz to 30 MHz		
Trace mode	Max Hold		
Measured modulation	 □ DSSS b – mode □ OFDM g – mode □ OFDM n HT20 – mode □ OFDM n HT40 – mode 		
Test setup	See chapter 7.2 A		
Measurement uncertainty	See chapter 8		

Limits:

FCC		IC		
Frequency / MHz	Field Strength / (dBµV / m)		Measurement distance / m	
0.009 - 0.490	2400/F(kHz)		300	
0.490 – 1.705	24000/F(kHz)		30	
1.705 – 30.0	3	0	30	

Results:

TX spurious emissions radiated < 30 MHz / (dBμV / m) @ 3 m				
Frequency / MHz	Detector	Level / (dBµV / m)		
All detected peaks are more than 20 dB below the limit.				

© CTC advanced GmbH Page 32 of 68

Plots: DSSS

Plot 1: 9 kHz to 30 MHz, lowest channel

Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 33 of 68

Plot 3: 9 kHz to 30 MHz, highest channel

© CTC advanced GmbH Page 34 of 68

Plots: OFDM (20 MHz nominal channel bandwidth)

Plot 1: 9 kHz to 30 MHz, lowest channel

Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 35 of 68

Plot 3: 9 kHz to 30 MHz, highest channel

© CTC advanced GmbH Page 36 of 68

Plots: OFDM (40 MHz nominal channel bandwidth)

Plot 1: 9 kHz to 30 MHz, lowest channel

Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 37 of 68

Plot 3: 9 kHz to 30 MHz, highest channel

© CTC advanced GmbH Page 38 of 68

12.12 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

Measurement parameter							
Detector	Peak / Quasi Peak						
Sweep time	Auto						
Resolution bandwidth	120 kHz						
Video bandwidth	3 x RBW						
Span	30 MHz to 1 GHz						
Trace mode	Max Hold						
Measured modulation	 ✓ DSSS b – mode ✓ OFDM g – mode ✓ OFDM n HT20 – mode ✓ OFDM n HT40 – mode ✓ RX / Idle – mode 						
Test setup	See chapter 7.1 A						
Measurement uncertainty	See chapter 8						

Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m
30 – 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10

© CTC advanced GmbH Page 39 of 68

Plot: DSSS

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.576	22.13	30.0	7.87	1000	120	101.0	٧	341.0	13
58.722	27.89	30.0	2.11	1000	120	170.0	٧	323.0	13
60.228	26.55	30.0	3.45	1000	120	101.0	٧	304.0	13
76.520	20.29	30.0	9.71	1000	120	170.0	٧	340.0	11
101.902	23.94	33.5	9.56	1000	120	170.0	٧	10.0	13
955.825	28.75	36.0	7.25	1000	120	170.0	٧	14.0	24

© CTC advanced GmbH Page 40 of 68

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.584	21.88	30.0	8.12	1000	120	101.0	٧	64.0	13
58.710	28.70	30.0	1.30	1000	120	170.0	٧	-10.0	13
60.226	26.97	30.0	3.03	1000	120	101.0	٧	59.0	13
74.571	21.80	30.0	8.20	1000	120	100.0	٧	337.0	11
101.897	24.48	33.5	9.02	1000	120	144.0	٧	351.0	13
904.482	29.06	36.0	6.94	1000	120	170.0	٧	142.0	24

© CTC advanced GmbH Page 41 of 68

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.603	22.55	30.0	7.45	1000	120	101.0	٧	336.0	13
58.707	28.53	30.0	1.47	1000	120	101.0	٧	324.0	13
60.232	27.32	30.0	2.68	1000	120	170.0	٧	1.0	13
74.530	21.39	30.0	8.61	1000	120	101.0	٧	1.0	11
101.871	24.97	33.5	8.53	1000	120	170.0	٧	358.0	13
956.734	28.78	36.0	7.22	1000	120	170.0	Н	157.0	24

© CTC advanced GmbH Page 42 of 68

Plot: OFDM (20 MHz nominal channel bandwidth)

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.591	21.06	30.0	8.94	1000	120	145.0	٧	162.0	13
58.702	28.75	30.0	1.25	1000	120	170.0	٧	9.0	13
60.226	27.13	30.0	2.87	1000	120	101.0	٧	35.0	13
74.568	24.16	30.0	5.84	1000	120	170.0	٧	340.0	11
721.489	25.55	36.0	10.45	1000	120	170.0	٧	0.0	22
947.758	28.73	36.0	7.27	1000	120	170.0	Н	10.0	24

© CTC advanced GmbH Page 43 of 68

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.596	21.40	30.0	8.60	1000	120	144.0	٧	280.0	13
58.712	29.06	30.0	0.94	1000	120	170.0	٧	4.0	13
60.225	27.89	30.0	2.11	1000	120	170.0	٧	-9.0	13
73.932	20.21	30.0	9.79	1000	120	101.0	٧	344.0	11
101.875	24.27	33.5	9.23	1000	120	144.0	٧	350.0	13
923.210	28.92	36.0	7.08	1000	120	170.0	٧	50.0	24

© CTC advanced GmbH Page 44 of 68

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.584	22.04	30.0	7.96	1000	120	101.0	٧	0.0	13
58.712	28.77	30.0	1.23	1000	120	101.0	٧	-6.0	13
60.217	28.06	30.0	1.94	1000	120	170.0	٧	26.0	13
73.911	19.39	30.0	10.61	1000	120	101.0	٧	341.0	11
73.954	21.93	30.0	8.07	1000	120	170.0	٧	356.0	11
936.474	28.82	36.0	7.18	1000	120	170.0	٧	223.0	24

© CTC advanced GmbH Page 45 of 68

Plot: OFDM (40 MHz nominal channel bandwidth)

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.604	21.91	30.0	8.09	1000	120	100.0	٧	126.0	13
58.725	28.51	30.0	1.49	1000	120	101.0	٧	51.0	13
60.210	28.16	30.0	1.84	1000	120	170.0	٧	9.0	13
74.567	23.51	30.0	6.49	1000	120	101.0	٧	319.0	11
101.866	24.30	33.5	9.20	1000	120	101.0	٧	353.0	13
869.177	28.83	36.0	7.17	1000	120	170.0	Н	351.0	23

© CTC advanced GmbH Page 46 of 68

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.596	22.19	30.0	7.81	1000	120	101.0	٧	10.0	13
58.704	28.99	30.0	1.01	1000	120	170.0	V	-4.0	13
60.203	27.42	30.0	2.58	1000	120	100.0	٧	23.0	13
74.547	23.73	30.0	6.27	1000	120	170.0	٧	352.0	11
101.900	23.19	33.5	10.31	1000	120	170.0	٧	1.0	13
901.074	29.06	36.0	6.94	1000	120	170.0	Н	96.0	24

© CTC advanced GmbH Page 47 of 68

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.603	20.05	30.0	9.95	1000	120	101.0	٧	96.0	13
58.729	28.29	30.0	1.71	1000	120	170.0	٧	0.0	13
60.216	27.12	30.0	2.88	1000	120	101.0	٧	24.0	13
74.553	24.30	30.0	5.70	1000	120	170.0	٧	340.0	11
101.874	23.41	33.5	10.09	1000	120	101.0	٧	10.0	13
915.665	28.98	36.0	7.02	1000	120	98.0	Н	313.0	24

© CTC advanced GmbH Page 48 of 68

Plot: RX / Idle mode

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.617	20.16	30.0	9.84	1000	120	144.0	٧	74.0	13
58.741	22.28	30.0	7.72	1000	120	101.0	٧	173.0	13
86.045	22.51	30.0	7.49	1000	120	170.0	٧	-9.0	11
87.649	19.38	30.0	10.62	1000	120	170.0	٧	243.0	11
715.428	25.42	36.0	10.58	1000	120	98.0	Н	206.0	22
959.994	35.02	36.0	0.98	1000	120	98.0	Н	345.0	24

© CTC advanced GmbH Page 49 of 68

12.13 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measurement parameter				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 26 GHz			
Trace mode	Max Hold			
Measured modulation	 ✓ DSSS b – mode ✓ OFDM g – mode ✓ OFDM n HT20 – mode ✓ OFDM n HT40 – mode ✓ RX / Idle – mode 			
Test setup	See chapter 7.2 B			
Measurement uncertainty	See chapter 8			

Limits:

FCC	IC
-----	----

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m	
Above 960	54.0 (AVG)	- 3	
Above 960	74.0 (peak)		

© CTC advanced GmbH Page 50 of 68

Results: DSSS

TX spurious emissions radiated / dBμV/m @ 3 m								
lo	owest channe	el	m	niddle channe	el	hi	ghest chann	el
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m
1500	Peak	38.2	1500	Peak 38.2	1500	Peak	38.2	
1508	AVG	26.3	1508	AVG	26.3	1508	AVG	26.3
1921	Peak 57.3 4879 P	Peak	54.0	4020	Peak	56.0		
4824	AVG	53.5	40/9	AVG	47.7	4929	AVG	50.6

Results: OFDM (20 MHz nominal channel bandwidth)

TX spurious emissions radiated / dBμV/m @ 3 m									
lo	owest channe	el	m	niddle chann	el	h	ghest chann	el	
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	
1508	Peak	38.2	1500	Peak	38.2	1508	Peak	38.2	
1506	AVG	26.3	1508	AVG	26.3		AVG	26.3	
1005	Peak	58.8	4074	Peak	58.8	4727	Peak	49.4	
4825	AVG	46.2	4874	AVG	45.6		AVG	31.8	

Results: OFDM (40 MHz nominal channel bandwidth)

TX spurious emissions radiated / dBμV/m @ 3 m									
lo	owest channe	el	middle channel			highest channel			
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	
1508	Peak	38.2	1500	Peak	Peak 38.2	1500	Peak	38.2	
1506	AVG	26.3	1508	AVG	26.3	1508	AVG	26.3	
2373	Peak 63.	63.7	,	Peak	-/-	0.407	Peak	61.4	
23/3	AVG	46.8	-/-	AVG	-/-	2497	AVG	43.7	

© CTC advanced GmbH Page 51 of 68

Results: RX / idle - mode

TX spurious emissions radiated / dBμV/m @ 3 m						
f / MHz	Detector	Level / dBµV/m				
1508	Peak	38.2				
	AVG	26.3				

© CTC advanced GmbH Page 52 of 68

Plots: DSSS

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 27 JUN 2019 13:54:23

© CTC advanced GmbH Page 53 of 68

Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

© CTC advanced GmbH Page 54 of 68

Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 27 JUN 2019 13:54:46

© CTC advanced GmbH Page 55 of 68

Plots: OFDM (20 MHz bandwidth)

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 27 JUN 2019 13:55:03

© CTC advanced GmbH Page 56 of 68

Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

© CTC advanced GmbH Page 57 of 68

Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 27 JUN 2019 13:55:24

© CTC advanced GmbH Page 58 of 68

Plots: OFDM (40 MHz bandwidth)

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

© CTC advanced GmbH Page 59 of 68

Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 27 JUN 2019 13:55:47

© CTC advanced GmbH Page 60 of 68

Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 27 JUN 2019 13:55:55

© CTC advanced GmbH Page 61 of 68

Plots: RX / idle mode

Plot 1: 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 27 JUN 2019 13:56:03

© CTC advanced GmbH Page 62 of 68

12.14 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter						
Detector Peak - Quasi Peak / Average						
Sweep time	Auto					
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span	9 kHz to 30 MHz					
Trace mode	Max. hold					
Test setup	Results extracted from test report no. 1-5253_17-01-					
Measurement uncertainty	02					

Limits:

FCC			IC		
Frequency / MHz)	Quasi-Peak / (dBµV / m)		Average / (dBµV / m)		
0.15 – 0.5	66 to 56*		56 to 46*		
0.5 – 5	56		56		46
5 – 30.0	6	60	50		

^{*}Decreases with the logarithm of the frequency

Results:

TX spurious emissions conducted < 30 MHz / (dBμV / m) @ 3m						
f / MHz Detector Level / dBµV/m						
All detected peaks are more than 20 dB below the limit.						

© CTC advanced GmbH Page 63 of 68

Plots:

Plot 1: 150 kHz to 30 MHz, phase line

Final results:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.181970	48.32	16.08	64.395	33.92	21.17	55.087
0.212688	44.71	18.39	63.100	29.16	25.05	54.209
0.273207	40.20	20.82	61.020	28.32	24.16	52.480
0.357648	41.83	16.96	58.783	36.69	13.37	50.067
1.020806	31.88	24.12	56.000	25.38	20.62	46.000
1.830075	32.56	23.44	56.000	24.58	21.42	46.000
2.921459	33.59	22.41	56.000	26.24	19.76	46.000
4.080798	32.83	23.17	56.000	24.99	21.01	46.000
8.532974	34.73	25.27	60.000	26.76	23.24	50.000
10.313818	33.35	26.65	60.000	25.93	24.07	50.000
16.166091	36.34	23.66	60.000	31.23	18.77	50.000
16.228939	37.31	22.69	60.000	32.40	17.60	50.000

© CTC advanced GmbH Page 64 of 68

Plot 2: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.170648	49.61	15.32	64.929	35.05	20.36	55.410
0.232076	42.85	19.52	62.375	27.84	25.81	53.655
0.296348	39.10	21.24	60.345	28.66	23.15	51.819
0.364845	40.23	18.38	58.617	31.68	18.18	49.862
1.462499	32.98	23.02	56.000	25.89	20.11	46.000
2.957401	33.72	22.28	56.000	26.53	19.47	46.000
3.552671	27.95	28.05	56.000	20.97	25.03	46.000
4.003277	32.20	23.80	56.000	24.79	21.21	46.000
7.155819	34.48	25.52	60.000	26.21	23.79	50.000
9.459229	34.36	25.64	60.000	26.50	23.50	50.000
16.226526	37.62	22.38	60.000	32.27	17.73	50.000
16.473488	34.68	25.32	60.000	28.65	21.35	50.000

© CTC advanced GmbH Page 65 of 68

Annex A Glossary

EUT	Equipment under test					
DUT	Device under test					
UUT	Unit under test					
GUE	GNSS User Equipment					
ETSI	European Telecommunications Standards Institute					
EN	European Standard					
FCC	Federal Communications Commission					
FCC ID	Company Identifier at FCC					
IC	Industry Canada					
PMN	Product marketing name					
HMN	Host marketing name					
HVIN	Hardware version identification number					
FVIN	Firmware version identification number					
EMC	Electromagnetic Compatibility					
HW	Hardware					
SW	Software					
Inv. No.	Inventory number					
S/N or SN	Serial number					
С	Compliant					
NC	Not compliant					
NA	Not applicable					
NP	Not performed					
PP	Positive peak					
QP	Quasi peak					
AVG	Average					
ОС	Operating channel					
OCW	Operating channel bandwidth					
OBW	Occupied bandwidth					
ООВ	Out of band					
DFS	Dynamic frequency selection					
CAC	Channel availability check					
OP	Occupancy period					
NOP	Non occupancy period					
DC	Duty cycle					
PER	Packet error rate					
CW	Clean wave					
MC	Modulated carrier					
WLAN	Wireless local area network					
RLAN	Radio local area network					
DSSS	Dynamic sequence spread spectrum					
OFDM	Orthogonal frequency division multiplexing					
FHSS	Frequency hopping spread spectrum					
GNSS	Global Navigation Satellite System					
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz					

© CTC advanced GmbH Page 66 of 68

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-07-05
А	Editorial changes	2019-08-01

Annex C Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 38116 Braunschweig Braunschweig Bundesallee 200 38116 Braunschweig
Frankfurt am Main, 11.01.2019 Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Abkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkiStelleG) of 31 July 2009 (Federal Law Gazette 1p. 2625) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of 31 July 2009 (Federal Law Gazette 1p. 2625) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of 31 July 2009 (Federal Law Gazette) and the European Union 1.218 of 3 July 2009, p. 30). DAkkS is a signation, to the Nutrillateral Agreements for No European Union 1.218 of 3 July 2008, p. 30). DAkkS is a signation (EA), International Accreditation formul (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.lac.org IAAC: www.lac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

© CTC advanced GmbH Page 67 of 68

Annex D Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkrediterungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAKSS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I, D. 2625) and the Regulation (EC) No 756/2006 of the European Parliament and of the Council of 3-3h 2008 string out the requirements for accreditation and market surveillance relating the council of 3-3h 2008 string out the requirements for accreditation and market surveillance relating and a signatory to the Multilateral Agreements for Multilateral Regulation (EG) No 756/2006 of the European Position (PA) and the Parliament of
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages. Registration number of the certificate: D-PL-12076-01.05 Frankfurt am Main, 11.01.2019 Frankfurt am Main, 11.01.2019 The same property of the certificate in the coverage of the coverage of the coverage of the certificate in	The up-to-date state of membership can be retrieved from the following websites: EA: www.ueuropean-accreditation.org ILAC: www.llac.org IAF: www.llac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 68 of 68