Analysis 1 Skript

Dominic Zimmer

30. November 2015

Inhaltsverzeichnis

1	Bew	eisprinzipien (
	1.1	Logik
	1.2	Axiome
	1.3	Direkter Beweis
		1.3.1 Beispiel
	1.4	Kontraposition
	1.5	Widerspruch
	1.6	Induktion
	1.7	Summennotation
	1.8	Gaußformel
	1.9	Fakultät
		1.9.1 Notation
		1.9.2 Binomailkoeffizient
	1.10	Lemma: Binomialkoeffizient
	1.11	Binomischer Lehrsatz
2	Men	gen
	2.1	Mengen nach Cantor
		2.1.1 Schreibweisen
	2.2	Mengenoperatoren
	2.3	Wichtige Mengen
	2.4	Quantoren
	2.5	Verneinung von Quantoren
	2.6	Vereinigung und Schnitt
	2.7	De Morgan
	2.8	Abbildungen
		2.8.1 Definition
		2.8.2 Eigenschaften
	2.9	Komposition
	2.10	Identitätsabbildung
		Umkehrabbildung
		Kardinalitäten
		2.12.1 Definition
		2.12.2 Abzählbar
		2.12.3 Überabzählbar
	2.13	Kardinalität von ℝ

3	Folg	en	14
	3.1	Folgen reeller Zahlen	14
		3.1.1 Definition	14
		3.1.2 Beispiele von Folgen	14
	3.2	Konvergenz	14
		3.2.1 Definition	14
		3.2.2 Bemerkung	14
	3.3	TODO: Buggy	14
	3.4	Anordnung	15
	3.5	Notation	15
	3.6	Beispiele	15
	3.7	Anordnungsgesetze	16
	3.8	Einbettung	16
		3.8.1 Notation	16
	3.9	Bernoulli'sche Ungleichung	16
	3.10	Betrag	16
	3.11	Eigenschaften Betrag	17
	3.12	Archimedisch	17
	3.13	Folgerungen Archimedes	17
	3.14	Behauptung	17
	3.15	Weiterführung	17
4		• 10	10
4	_	en in R	18
	4.1	Definition	18
	4.2	Beispiele	18
	4.3	Konvergenz	18
	4.4	Inverse Ungleichung	18
	4.5	Beispiele	18 18
	4.6	Eindeutigkeit	18 19
	4.7	Sprechweise	
	4.8	Bemerkung	19
	4.9	Formel	19 19
		Beispiele	19 19
			19 19
		Einschachtelung	19 19
		Rechenregeln für Grenzwerte	20
		Lineartität	
		Beispiel	21
		Quotienten von Folgen	21
		Rechenbeispiel	21
		Ordnung von Grenzwerten	21
		Ordnung im Grenzübergang	21
	4.21	Beispiel	21

	4.22	Bestimmte Divergenz	22
	4.23	Beispiele	22
	4.24	Kehrwert von Grenzwerten	22
	4.25	Definition: Reihe	23
			23
5	Volls	ständigkeitsaxiom 2	24
•	5.1	Motivation	
	5.2	Cauchy-Folge	
	5.3	v G	24
	5.4	Vollständigkeitsaxiom für \mathbb{R}	
	$5.4 \\ 5.5$	Bemerkung	
		_	
	5.6		24
	5.7		25
	5.8		25
	5.9	0	26
			26
		0	26
			26
		8	26
			26
			26
	5.16		27
	5.17	Bemerkung	27
	5.18	Satz	27
	5.19	Korrolar	27
	5.20	Bemerkung	27
6	Konv	vergenz für Reihen 2	28
	6.1	Satz: Cauchy-Kriterium	28
	6.2	Satz	
	6.3	Bemerkung	
	6.4	Satz	
	6.5		29
	6.6		29
	6.7		29
	6.8	8	29
	6.9		29
		8	30
		·	30
			30
			90 31
		<u> </u>	
			31 99
	0.15	Beispiel	32

Inhaltsverzeichnis	Inhaltsverzeichnis

	6.16	Definition	32
7		ordnung von Reihen 3	_
	7.1	Motivation	33
	7.2	Beispiel	33
	7.3	Bemerkung	33
	7.4	Bezeichnung	33
	7.5	Definition	33
	7.6	Bemerkung	33
	7.7	Definition	34

1 Beweisprinzipien

1.1 Logik

Die Aussagenlogik befasst sich mit Aussagen, welche (w)ahr oder (f)alsch sein können. Aus den Operatoren

• Negation:

$$\neg a = \begin{cases} w & \text{falls } a \equiv f. \\ f & \text{falls } a \equiv w. \end{cases}$$

• Konjunktion:

$$a \vee b = \begin{cases} w & \text{falls } a \equiv w \text{ oder } b \equiv w \text{ (oder beide)}. \\ f & \text{sonst.} \end{cases}$$

• Disjunktion:

$$a \wedge b = \begin{cases} w & \text{falls } a \equiv w \text{ und } b \equiv w. \\ f & \text{sonst.} \end{cases}$$

• Implikation:

$$a \to b = \begin{cases} f & \text{falls } a \equiv w \text{ und } b \equiv f. \\ w & \text{sonst.} \end{cases}$$

• Äquivalenz:

$$a \leftrightarrow b = \begin{cases} w & \text{falls } a \equiv b. \\ f & \text{sonst.} \end{cases}$$

lassen sich aus bereits bestehenden aussagelogischen Ausdrücken Weitere bilden. Auch lassen sich einfach aus den Definitionen Gesetzmäßigkeiten ableiten.

1.2 Axiome

Axiome sind grundliegende Aussagen, die nicht weiter zurückgeführt werden (können). Wir beweisen, indem wir Aussagen auf Axiome zurückführen.

1.3 Direkter Beweis

Ein *Direkter Beweis* wird geführt, indem man eine Aussage A annimmt und ausgehend von dieser eine weitere Aussage B beweist.

1.3.1 Beispiel

Wir wollen zeigen, dass folgende Aussage korrekt ist:

Das Quadrat einer geraden Zahl ist wiederum gerade.

Beweis. Sei $a \in \mathbb{N}$ eine gerade Zahl, welche sich also auch als $a = 2 \cdot k$ darstellen lässt. Betrachten wir nun das Quadrat von a, so gilt:

$$a^2 = (2 \cdot k)^2 = 2^2 \cdot k^2 = 4k^2 = 2 \cdot (2k^2)$$

Somit hat also $a^2 = 2 \cdot (2k^2)$ eine Zwei als Teiler und ist somit gerade.

1.4 Kontraposition

Statt die Implikation $A \to B$ zu beweisen, können wir auch $\neg B \to \neg A$ beweisen. Wir nehmen also an, dass das zu zeigende nicht gilt und folgern daraus, dass unsere Annahme nicht gilt.

1.5 Widerspruch

Wir können eine Aussage A auch beweisen, indem wir $\neg A$ annehmen und daraus einen Widerspruch folgern.

1.6 Induktion

Das Prinzip der vollständigen Induktion besagt:

Ist A(n) eine Aussage mit $n \in \mathbb{N}$, so können wir diese Gültigkeit dieser Aussage für alle $n > n_0$ zeigen, indem wir

- Die Gültigkeit der Aussage $A(n_0)$ zeigen und
- Aus der Annahme, dass die Aussage A(n) für ein festes $n \in \mathbb{N}$ bereits gilt, darauf schließen, dass auch A(n+1) gilt.

1.7 Summennotation

Seien a_i $(i \in \mathbb{N})$ eine Familie von Zahlen. Wir führen folgende Kurzschreibweise ein:

$$\sum_{k=m}^{n} a_i = a_m + \dots + a_n$$

1.8 Gaußformel

Für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$$

Beweis. Der Beweis erfolg einfach durch Induktion oder alternativ durch geschicktes, zweifaches Summieren obiger Summe.

1.9 Fakultät

1.9.1 Notation

Wir definieren

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{k=1}^{n} k$$

als die Fakultät von $n \in \mathbb{N}$.

1.9.2 Binomailkoeffizient

Wir verwenden die Fakultät zur Definition des Binomialkoeffizientens, den wir als n über k oder k aus n lesen:

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

1.10 Lemma: Binomialkoeffizient

Für alle $1 \le k \le n$ gilt:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Beweis. Nachrechnen. Eine Intuition für die Korrektheit erhält man leicht durch das Pascal'sche Dreieck.

1.11 Binomischer Lehrsatz

Für alle $x, y \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \cdot b^{n-k}$$

Beweis. Der Beweis erfolgt leicht durch Induktion über n.

2 Mengen

2.1 Mengen nach Cantor

Cantos naive Mengendefinition besagte:

Eine Menge ist eine Zusammenfassung wohlbestimmter und wohlunterscheidbarer Objekte unserer Anschauung oder unseres Denkens zu einem Ganzen.

Diese naive Definition birgt einige Widersprüche; zum Beispiel erlaubt sie die Menge aller Mengen.

2.1.1 Schreibweisen

Wir benutzen folgende Schreibweisen im Umgang mit Mengen:

- $M = \{x_1, x_2, \dots, x_n\}$: Die Menge mit den Elementen x_1, x_2, \dots, x_n und Kardinalität #M = |M| = n
- $x \in M : x$ ist Element der Menge M
- $N \subset M$: N ist eine Teilmenge der Menge M

2.2 Mengenoperatoren

Außerdem definieren wir für Zwei Mengen M und N

i) die Vereinigung von M und N:

$$M \cup N = \{x \mid x \in M \lor x \in N\}$$

ii) den Schnitt von M und N.

$$M \cap N = \{x \mid x \in M \land x \in N\}$$

iii) das Komplement von M in N.

$$M \setminus N = \{x \mid x \in M \land x \notin N\}$$

2.3 Wichtige Mengen

Einige wichtige Mengen sind:

- $\emptyset = \{\}$, die *Leere Menge*, welche keine Elemente hat.
- $\mathbb{N} = \{1, 2, 3, \dots\}$, die Natürlichen Zahlen
- $\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\}$, die Ganzen Zahlen
- $\mathbb{Q} = \{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \}$, die Rationalen Zahlen
- R, die Menge der Reellen Zahlen
- $\mathbb{C} = \{(a, b \cdot i) \mid a, b \in \mathbb{R}\}\$

2.4 Quantoren

Quantoren sind Kurzschreibweisen für in der Mathematik häufig benutzte Flosskeln. ∃ nennt man Existensquantor und \forall Allquantor. Sei nun X eine Menge und P(x) eine Aussage über x.

- $\forall x \in X : P(x)$ für "Für alle $x \in X$ gilt die Aussage P(x)."
- $\exists x \in X : P(x)$ für "Es gibt (zumindest) ein $x \in X$ für welches die Aussage P(x)gilt."

2.5 Verneinung von Quantoren

Ausdrücke, welche Quantoren enthalten, werden Verneint, indem man den jeweiligen Existens- oder Allquantor mit dem Anderen ersetzt, und den Ausdruck dahinter verneint. Zum Beispiel:

$$\neg \forall x \in X : \exists y \in Y : P(x, y)$$
$$= \exists x \in X : \neg \exists y \in Y : P(x, y)$$
$$= \exists x \in X : \forall y \in Y : \neg P(x, y)$$

2.6 Vereinigung und Schnitt

Sei $I \subseteq \mathbb{N}$ eine Indexmenge und M_i eine Familie von Mengen. Wir notieren

- $\bullet \bigcup_{i \in I} M_i = M_{i_1} \cup M_{i_2} \cup \dots = \{x \mid \exists i \in I : x \in M_i\}$
- $\bullet \bigcap_{i \in I} M_i = M_{i_1} \cap M_{i_2} \cap \dots = \{x \mid \forall i \in I : x \in M_i\}$

2.7 De Morgan

Sei M_i eine Familie von Mengen, so ist

- $\bullet \ \overline{\bigcup_{i \in I} M_i} = \bigcap_{i \in I} \overline{M_i}$
- $\bullet \ \overline{\bigcap_{i \in I} M_i} = \bigcup_{i \in I} \overline{M_i}$

2.8 Abbildungen

2.8.1 Definition

Seien X und Y Mengen. Wir definieren eine Abbildung oder auch Funktion

$$f: x \longrightarrow Y$$

als eine Vorschrift, die jedem $x \in X$ genau ein $y \in Y$ zurodnet. Wir nennen dabei X den Definitionsbereich und Y den Wertebereich.

2.8.2 Eigenschaften

Wir nennen eine Abbildung $f: X \longrightarrow Y$

- injektiv, wenn $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \rightarrow x_1 = x_2$
- surjektiv, wenn $\forall y \in Y : \exists x \in X : f(x) = y$
- bijektiv, wenn f injektiv und surjektiv ist.

2.9 Komposition

Seien $f:x\longrightarrow Y$ und $g:Y\longrightarrow Z$ Abbildungen. Wir definieren die Komposition $g\circ f:X\longrightarrow Z$ definiert durch

$$g \circ f := g(f(x))$$
 für $x \in X$.

2.10 Identitätsabbildung

Wir nennen $id_x: X \to X$ die *Identitätsabbildung* auf X mit

$$id_X(x) = X, \forall x \in X$$

Sie fungier als das Neutrale Element der Komposition von Funktionen.

2.11 Umkehrabbildung

Sei $f: X \to Y$ eine Bijketion. Wir definieren die Umkehrabbildung f^{-1} von f durch

$$f^{-1}: Y \longrightarrow X, f^{-1}(y) = x \text{ mit } f(x) = y$$

Woraus offensichtlich folgt, dass $f \circ f^{-1} = id_X$

2.12 Kardinalitäten

2.12.1 Definition

Zwei Mengen N und M sind gleichmächtig, falls eine Bijektion $f: N \longrightarrow M$ existiert.

2.12.2 Abzählbar

Eine Menge M heißt $abz\ddot{a}hlbar$, falls sie entweder endlich oder $gleichm\ddot{a}chtig$ wie $\mathbb N$ ist.

2.12.3 Überabzählbar

Eine Menge M, die nicht abzählbar ist, nennen wir $\ddot{u}berabz\ddot{a}hlbar$.

2.13 Kardinalität von \mathbb{R}

 \mathbb{R} ist überabzählbar.

Beweis. Offensichtlich genügt es zu zeigen, dass eine Teilmenge von \mathbb{R} überabzählbar ist, um zu zeigen, dass \mathbb{R} überabzählbar ist. Betrachten wir also das Intervall [0,1]. Wir wollen einen Widerspruchsbeweis führen. Nehmen wir also an, \mathbb{R} sei abzählbar. So könnten wir also alle Zahlen aus \mathbb{R} abzählen.

```
\begin{array}{lll} 1 & 0.a_1a_2a_3a_4a_5 \dots \\ 2 & 0.b_1b_2b_3b_4b_5 \dots \\ 3 & 0.c_1c_2c_3c_4c_5 \dots \\ 4 & 0.d_1d_2d_3d_4d_5 \dots \\ \vdots & \ddots & & & \end{array}
```

Konstruieren wir nun eine Zahl z, welche stehts in der n-ten Nachkommastelle mit der n-ten Zahl der Liste nicht übereinstimmt. Also kann z nicht die erste Zahl der Liste sein, da sie in der ersten Nachkommastelle nicht mit ihr übereinstimmt. Dies läuft darauf hinaus, dass z mit jeder Zahl aus der Liste in der n-ten Nachkommastelle nicht übereinstimmt. Also ist z nicht in der Liste. Somit ist [0,1] nicht abzählbar und somit ist $\mathbb R$ nicht abzählbar.

13 Lecture on: 28.10.2015

3 Folgen

3.1 Folgen reeller Zahlen

3.1.1 Definition

Eine Folge reeller Zahlen ist eine Abbildung $\mathbb{N} \longrightarrow \mathbb{R}, n \mapsto a_n$. Schreibweise: $(a_n)n \in \mathbb{N}$ oder (a_1, a_2, a_3, \dots) Folgen müssen nicht mit dem Index 1 beginnen, auch Folgen der Form $(a_n)n \geq n_0$ sind unmöglich.

3.1.2 Beispiele von Folgen

- i) $a_n = 2, \forall n \in \mathbb{N} \text{ also } (2, 2, 2, ...)$
- ii) $a_n = n, \forall n \in \mathbb{N} \text{ also } (1, 2, 3, \dots)$
- iii) $a_n = \frac{1}{n}, \forall n \in \mathbb{N} \text{ also } (\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots)$
- iv) $a_n = (-1)^n, \forall n \in \mathbb{N} \text{ also } (-1, 1, -1, 1, \dots)$

3.2 Konvergenz

3.2.1 Definition

Eine Folge $(a_n)n \in \mathbb{N}$ reeller Zahlen heißt konvergent mit Grenzwert $a \in \mathbb{R}$ (oder "konvergent gegen a"), falls $\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \geq N : |a - a_n| < \varepsilon$. Schreibweise: $\lim_{n \to \infty} a_n$ $a_n \longrightarrow a$, $\lim n \longrightarrow \infty$

3.2.2 Bemerkung

Für $x,y\in\mathbb{R}$ gilt die inverse Dreiecksgleichung

$$||x| - |y|| \le |x - y|$$

3.3 TODO: Buggy

Lecture on: 02.11.2015

3.4 Anordnung

Ein Körper $(K, +, \cdot)$ heißt angeordnet, falls wir gewisse Elemente aus K als positiv auszeichen können. Schreibe $a \in K, a > 0$, falls gilt:

- i) Es gilt für a genau eine der drei Beziehungen:
 - *a* > 0
 - a = 0
 - -a > 0
- ii) Für $a, b \in K, a > 0, b > 0$ gilt: a + b > 0 und $a \cdot b > 0$

3.5 Notation

Wir benutzen folgende Notation:

- $a > b :\Leftrightarrow a b > 0$
- $a < b :\Leftrightarrow b > a$
- $a \ge b :\Leftrightarrow a > b \lor a = b$
- $a \le b :\Leftrightarrow b \ge a$
- $max(a,b) := \begin{cases} a \text{ falls } a > b \\ b \text{ sonst} \end{cases}$
- $min(a,b) := \begin{cases} a \text{ falls } a < b \\ b \text{ sonst} \end{cases}$

3.6 Beispiele

- \mathbb{Q} und \mathbb{R} sind angeordnete Körper.
- C ist kein angeordneter Körper.
- \mathbb{F}_p (zur Primzahl p) ist kein angeordneter Körper.

Insbesondere lassen sich \mathbb{C} und \mathbb{F}_p nicht (durch besondere Tricks) anordnen!

3.7 Anordnungsgesetze

Sei $(K, +, \cdot)$ ein angeordneter Körper und $a, b, c \in K$, so gilt:

- i) $a < b, b < c \Rightarrow a < c$
- ii) $a < b \Rightarrow a + c < b + c$
- iii) $a < b \land c > 0 \Rightarrow a \cdot c < b \cdot c$
- iv) $a < b \Leftrightarrow -a > -b$
- v) $0 \le a < b \text{ und } 0 \le c < d$ $\Rightarrow ac < bd$

3.8 Einbettung

Sei K ein angeordneter Körper. Dann können wir $\mathbb N$ in K einbetten.

$$n_k := \underbrace{1_K + \dots + 1_K}_{n-mal} \in K$$

Für $n \in \mathbb{N}$.

3.8.1 Notation

Wir werden im Folgenden intuitiv n mit n_k identifizieren.

3.9 Bernoulli'sche Ungleichung

Sei $n \in \mathbb{N}$ und $-1 < x \in K$, so gilt:

$$1 + nx \le (1+x)^n$$

3.10 Betrag

Sei K ein angeordneter Körper. Für $a \in K$ definieren wir:

$$|a| := \begin{cases} a & \text{falls } a \ge 0 \\ -a & \text{sonst} \end{cases}$$

Und nennen |a| den (Absolut-)Betrag von a.

3.11 Eigenschaften Betrag

Es gilt für $a, b \in K$:

- i) |-a| = |a|
- ii) |ab| = |a||b|
- iii) $|a+b| \le |a| + |b|$

Und nennen iii) die Dreiecksunleichung.

3.12 Archimedisch

Wir nennen einen angeordneten Körper archimedisch, falls für alle $x \in K$ ein $n \in \mathbb{N}$ existiert, so dass n > x ist.

3.13 Folgerungen Archimedes

Ist K ein archimedischer Körper, so folgt:

- i) Zu jedem $\varepsilon > 0$ existiert ein $N \in \mathbb{N}$, so dass $\frac{1}{n} < \varepsilon$ für alle $n \ge N$ gilt.
- ii) Ist $b=1+\varepsilon$ mit $\varepsilon>0$, so existiert für alle $R\in K$ ein $N\in\mathbb{N}$, so dass $b^n>R$ für alle $n\geq N$.
- iii) Ist 0 < q < 1, so gibt es ein $\varepsilon > 0$ und $n \in \mathbb{N}$, so dass $q^n < \varepsilon$ für alle $n \ge N$.

3.14 Behauptung

 \mathbb{R} ist ein angeordneter Körper

3.15 Weiterführung

Momentan gilt noch $\mathbb{R} = \mathbb{Q}$. Bald werden wir untersuchen, worin sich diese beiden Mengen unterscheiden, sprich $\mathbb{R} \setminus \mathbb{Q}$ betrachten.

4 Folgen in $\mathbb R$

4.1 Definition

Eine Folge reeller Zahlen heißt ist eine Abbildung $\mathbb{N} \to \mathbb{R}$ mit $n \mapsto a_n$ Wir schreiben die Folge als $(a_n)_{n \in \mathbb{N}}$ oder (a_1, a_2, a_3, \dots) .

4.2 Beispiele

- i) $a_n = 2$ ist die Folge (2, 2, 2, 2, ...)
- ii) $a_n = n$ ist die Folge (1, 2, 3, 4, 5, ...)
- iii) $a_n=\frac{1}{n}$ ist die Folge $(\frac{1}{1},\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{6},\frac{1}{7},\dots)$

4.3 Konvergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt konvergent mit Grenzwert $a\in\mathbb{R}$, falls

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \ge N : |a - a_n| < \varepsilon$$

und schreiben $\lim_{n\to\infty} a_n = a$.

4.4 Inverse Ungleichung

Für $x, y \in \mathbb{R}$ gilt die inverse Dreiecksungleichung:

$$||x| - |y|| \le |x - y|$$

4.5 Beispiele

- i) $a_n = 2$ ist eine konvergente Folge mit Grenzwert 2.
- ii) $a_n = n$ konvergiert nicht.
- iii) $a_n = \frac{1}{n}$ konvergiert gegen 0.

4.6 Eindeutigkeit

Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt.

4.7 Sprechweise

Eine Folge die nicht konvergiert heißt divergent.

4.8 Bemerkung

Eine konvergente Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert auch, wenn man endlich viele Folgenglieder weglässt. Insbesondere konvergiert $(a_n)_{n\geq n_0}$ mit $n_0\in\mathbb{N}$ gegen den selben Grenzwert.

4.9 Formel

Sei $x \in \mathbb{R}$ mit |x| < 1 und $(s_n) = 1 + x + x^2 + \dots + x^n$. Dann konveriert (s_n) mit $\lim_{n \to \infty} (s_n) = \frac{1}{1 - n}$

4.10 Beispiele

Ausgelassen, da triviale Anwendungen obiger Formel.

4.11 Beschränktheit

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach oben (nach unten) beschränkt, falls ein $k\in\mathbb{R}$ existiert, so dass $a_n \leq k(a_n \geq k)$ für alle $n\in\mathbb{N}$ ist. Eine Folge heißt beschränkt, wenn sie nach oben oder nach unten beschränkt ist.

4.12 Satz

Jede konvergente Folge ist beschränkt.

4.13 Einschachtelung

Für alle $a, \varepsilon \in \mathbb{R}$ mit $\varepsilon > 0$ gilt:

$$a - \varepsilon < a < a + \varepsilon$$

4.14 Rechenregeln für Grenzwerte

Seien (a_n) und (b_n) konvergente Folgen in \mathbb{R} . Dann gilt:

$$\lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n \cdot b_n$$
$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n + b_n$$

4.15 Lineartität

Das Bilden der Grenzwerte konvergenter Folgen ist linear, also ergänzend zu 4.14 gilt:

$$\lim_{n \to \infty} \lambda a_n = \lambda \lim_{n \to \infty} a_n$$

20 Lecture on: 04.11.2015

4.16 Beispiel

Sei $a_n = \frac{n+1}{n} = \frac{n}{n} + \frac{1}{n} = 1 + \frac{1}{n}$. Dann gilt:

$$\lim_{n \to \infty} a_n = 1 + 0 = 1$$

4.17 Quotienten von Folgen

Seien (a_n) und (b_n) konvergente Folgen mit $\lim_{n\to\infty} b_n \neq 0$, dann gibt es ein $n_0 \in \mathbb{N}$, für alle $n \in \mathbb{N}_{\geq n_0}$ gilt:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

4.18 Rechenbeispiel

$$a_n = \frac{5n^2 + 2n + 1}{3n^2 + 10n}$$
$$= \frac{5 + \frac{2}{n} + \frac{1}{n^2}}{3 + \frac{10}{n}} \xrightarrow{n \to \infty} \frac{5}{3}$$

4.19 Ordnung von Grenzwerten

Seien (a_n) , (b_n) und (c_n) konvergente Folgen in \mathbb{R} .

- i) Ist $a_n \leq b_n \ \forall n \in \mathbb{N}$, so ist $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$
- ii) Ist $\lim_{n \to \infty} b_n = b = \lim_{n \to \infty}$ und $b_n < a_n < c_n$, so konvergiert (a_n) ebenfalls gegen b.

ii wird häufig auch als Sandwichlemma bezeichnet, da anschaulich a_n von b_n und c_n eingeengt - "gesandwicht" - wird.

4.20 Ordnung im Grenzübergang

Sind $a_n < b_n$ konvergente Folgen in \mathbb{R} mit gleichem Grenzwert, so gilt für deren Grenzwerte im Allgemeinen nur

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

4.21 Beispiel

Der Grenzwert von $(\frac{n}{2^n})_{n\in\mathbb{N}}$ ist 0.

Beweis. Der Beweis erfolgt durch Anwendung des Sandwichlemmas auf die Nullfolge und $(q^n \cdot \lambda)$

4.22 Bestimmte Divergenz

Eine divergente Folge $(a_n)_{n\in\mathbb{N}}$ nennen wir bestimmt divergent (oder uneigentlich konvergent) gegen $\pm\infty$, wenn gilt:

$$\forall K \in \mathbb{R} : \exists N \in \mathbb{N} : \forall n \ge N : a_n > K \text{ (bzw } a_n < K)$$

Wir notieren den Grenzwert als $\lim_{n\to\infty} a_n = \pm \infty$.

4.23 Beispiele

- i) $a_n = n$ konvergiert uneigentlich gegen ∞ .
- ii) $a_n = -n^2$ konvergiert uneigentlich gegen $-\infty$.
- iii) $a_n = (-1)^n$ divergiert.

4.24 Kehrwert von Grenzwerten

Sei (a_n) eine relle Folge mit $a_n > 0$. Dann gilt:

$$\lim_{n \to \infty} a_n = \infty \Leftrightarrow \lim_{n \to \infty} \frac{1}{a_n} = 0$$

4.25 Definition: Reihe

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge, so nennen wir

$$(s_n)_{n\in\mathbb{N}} := \sum_{k=1}^{\infty} a_k = \lim_{n\to\infty} \sum_{k=1}^{n} a_k$$

eine unendliche Reihe und notieren $\sum\limits_{k=1}^{\infty}a_k=s,$ falls s_n gegen skonvergiert.

4.26 Beispiele

- i) Geometrische Reihe: Ist $x \in \mathbb{R}$ mit |x| < 1, dann ist $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$
- $ii) \sum_{n=1}^{\infty} \frac{1}{k \cdot (k+1)} = 1$
- iii) $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$
- iv) $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$

5 Vollständigkeitsaxiom

5.1 Motivation

Wir wissen, dass \mathbb{Q} und \mathbb{R} angeordnete Körper sind. Aber offensichtlich unterscheiden sie sich noch in irgendwelchen Zahlen, welche wir noch nicht fassen können.

5.2 Cauchy-Folge

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge, genau dann, wenn

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall m, n \geq N : |a_n = a_m| < \varepsilon$$

5.3 Satz

Folgende Aussagen über die Folge $(a_n)_{n\in\mathbb{N}}$ sind äquivalent:

- (a_n) ist eine Cauchy-Folge.
- (a_n) ist eine konvergente Folge.

5.4 Vollständigkeitsaxiom für $\mathbb R$

Jede Cauchy-Folge reeller Zahlen konvergiert gegen einen Grenzwert in \mathbb{R} .

5.5 Bemerkung

- i) Das Vollständigkeitsaxiom ist unabhängig von den anderen (Körper-)Axiomen.
- Mit dem Cauchy-Kriterium lässt sich Konvergenz überprüfen, ohne den Grenzwert zu kennen.

5.6 Notation

Für $a, b \in \mathbb{R}$ mit a < b bezeichnen wir

```
[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\} \text{ als das } abgeschlossene \ Intervall \ \text{von } a \ \text{nach } b(a,b) := ]a,b[ := \{x \in \mathbb{R} \mid a < x < b\} \text{ als das } offene \ Intervall \ \text{von } a \ \text{nach } b[a,b) := [a,b] := \{x \in \mathbb{R} \mid a \le x < b\} \text{ als das } halboffene \ Intervall \ \text{von } a \ \text{nach } b
```

5.7 Intervallschachtelungsprinzip

Sei $I_1\supset\cdots\supset I_n\supset\ldots$ eine Folge abgeschlossener Intervalle mit $\lim_{n\to\infty}|I_n|=0$, dann ist

$$\bigcap_{n\in\mathbb{N}}I_n=\{a\}$$

eindeutig.

5.8 Satz

Das Vollständigkeitsaxiom und Intervallschachtelungsprinziip sind äquivalent.

25 Lecture on: 11.11.2015

5.9 Bemerkung

1. Beachte, adss wir im Intervallschachtelungsprinzip abgeschlossene Intervalle brauchen. Zum Beispiel:

$$\bigcap_{n \in \mathbb{N}} \left] 0, \frac{1}{n} \right] = \emptyset$$

2. Das Vollständigkeitsaxiom benutzt weniher die Struktur von \mathbb{R} als das Intervallschachtelungsprinzip und ist deshalb besser geeignet um den Begriff der Vollständigkeit in allgemeinen Situationen zu definieren.

5.10 Definition

Sei $(a_n)n \in \mathbb{N}$) eine Folge und $n_1 < n_2 < n_3 < \dots$ eine aufsteigende Folge natürlicher Zahlen. Dann heißt die Folge $(a_{n_k})_{k \in \mathbb{N}}$ Teilfolge der Folge $(a_n)_{n \in \mathbb{N}}$

5.11 Bemerkung

Sei (a_{n_k}) Eine Teilfolge von (a_n) . Impliziert die Konvergenz der Folge (a_n) die Konvergenz der Teilfolge (a_{n_k}) . Außerdem sind die beiden Grenzwerte gleich.

5.12 Satz von Bolzano-Weierstraß

Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.

5.13 Bemerkung

Jede Folge reeller Zahlen besitzt eine Teilfolge die entweder konvergiert oder bestimmt divergiert.

5.14 Definition

Eine Folge
$$(a_n)_{n \in \mathbb{N}}$$
 heißt
$$\begin{cases} \text{monoton wachsend} \\ \text{monoton fallend} \\ \text{strikt monoton wachsend} \\ \text{strikt monoton fallend} \end{cases}$$
, falls
$$\begin{cases} a_n \leq a_{n+1} \\ a_n \geq a_{n+1} \\ a_n < a_{n+1} \\ a_n > a_{n+1} \end{cases} \forall n \in \mathbb{N}$$
 gilt.

5.15 Satz

Jede beschränkte monotone Folge ist konvergent.

5.16 Satz

Seien $a, x_0 > 0$ reelle Zahlen. Definieren wir rekursiv

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{q}{x_n} \right) \quad \text{für } n \ge 0,$$

dann konvergiert $(x_n)_{n\in\mathbb{N}}$ gegen die eindeutig bestimmte positive Lösung der Gleichung

$$x^2 = a$$

5.17 Bemerkung

Allgemein kann man auch die k-te Wurzel für ein beliebiges k und $a \ge 0$ durch folgenden Algorithmus bestimmen:

$$x_{n+1} = \frac{1}{k} \left((k-1) \cdot x_n + \frac{a}{x_n^{k-1}} \right)$$

5.18 Satz

Die Folge ($\sqrt[n]{n}$) $_{n\in\mathbb{N}}$ ist konvergent mit $\lim_{n\to\infty}\sqrt[n]{n}=1$.

5.19 Korrolar

Sei a > 0. Dann konvergiert $(\sqrt[n]{a})_{n \in \mathbb{N}}$ gegen 1.

5.20 Bemerkung

Das Vollständigkeitsaxiom erlaubt die Darstelung reller Zahlen durch b-adische Brüche. Sei $b \in \mathbb{N}, b \ge 2$ die Basis. Ein b-adischer Bruch ist eine Reihe der Gestalt

$$\pm \sum_{n=-k}^{\infty} a_n b^{-n}$$

mit $(a_n)_{n\in\mathbb{N}}$ mit $k>0, 0\leq a_n\leq b$. Man schreibt üblicherweise (mit festem b):

$$a_{-k} \dots a_{-1} a_0 . a_1 a_2 a_3 \dots$$

Für b=10 nennt man diese Darstellung einen Dezimalbruch. Für b=2 einen dyadischen Bruch. Es gilt außerdem:

- 1. Jeder b-adische Bruch stellt eine Cauchy-Folge dar und konvergiert somit gegen eine reelle Zahl.
- 2. Sei $b > 2 \in \mathbb{N}$. Dann lässt sich jede reelle Zahl in einen b-adischen Bruch entwickeln.
- 3. Die Darstellung ist (bis auf Perioden) eindeutig.

6 Konvergenz für Reihen

6.1 Satz: Cauchy-Kriterium

$$\sum_{n=1}^{\infty} a_n \text{ konvergent} \Leftrightarrow \forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall m \geq n \in \mathbb{N}: \left| \sum_{k=n+1}^{m} \right| \leq \varepsilon$$

6.2 Satz

Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, so ist $\lim_{n\to\infty} a_n = 0$. Die Umkehrung gilt im Allgemeinen nicht.

6.3 Bemerkung

Wie $\sum\limits_{n=1}^{\infty}\frac{1}{n}=\infty$ zeigt, gilt die Umkehrung jedoch nicht. $\lim\limits_{n=1}^{\infty}a_n=0$ ist zwar notwendig, aber nicht hinreichend für die Konvergenz der Reihe.

6.4 Satz

Eine Reihe $\sum_{n=1}^{\infty} a_n$ mit $(a_n)_{n\in\mathbb{N}} \geq 0$ konvergiert genau dann, wenn die Folge $(s_n)_{n\in\mathbb{N}}$ der Partialsummen beschränkt ist.

6.5 Satz

- 1. $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert
- 2. $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert (gegen $\frac{\pi^2}{6}$)

6.6 Satz: Majorantenkriterium

Ist $|a_n| \leq |c_n|, \forall n$ und konvergiert $\sum_{n=1}^{\infty} |c_n|$, so konvergiert auch $\sum_{n=1}^{\infty} |a_n|$ und es gilt $\left|\sum_{n=1}^{\infty} a_n\right| \leq \sum_{n=1}^{\infty} |c_n|$

6.7 Bemerkung

Aus der inversen Dreiecksungleichung folgt, dass

$$\lim_{n \to \infty} a_n = a \Rightarrow |\lim_{n \to \infty} a_n| = |a|$$

6.8 Definition

Eine Reihe $\sum_{n=1}^{\infty} a_n$ heißt absolut konvergent, wenn $\sum_{n=1}^{\infty} |a_n|$ konvergiert.

6.9 Bemerkung

- 1) Jede absolut konvergente Reihe konvergiert, da $\sum_{n=1}^{\infty} |a_n|$ als Majorante dient.
- 2) Die Umkehrung gilt im Allgemeinen nicht. Zum Beispiel
 - $\bullet \sum_{n=1}^{\infty} \left| \frac{-1^n}{n} \right| = \infty$
 - $\bullet \sum_{n=1}^{\infty} \frac{-1^n}{n} = \ln(2)$

6.10 Quotientenkriterium

Betrachten wir $\sum_{n=1}^{\infty} a_n$:

1. Falls es ein $n_0 \in \mathbb{N}$ und ein θ mit $0 < \theta < 1$ gibt, so dass

$$\left| \frac{a_{n+1}}{a_n} \le \theta \right| \quad \forall n \ge n_0, \text{ dann konvergient } \sum_{n=1}^{\infty} a_n \text{ sogar absolut}$$

2. Falls es ein $n_0 \in \mathbb{N}$ und ein θ mit $\theta \geq 1$ gibt, so dass

$$\left| \frac{a_{n+1}}{a_n} \ge \theta \right| \quad \forall n \ge n_0, \text{ dann divergient } \sum_{n=1}^{\infty} a_n$$

6.11 Bemerkung

Aus 6.10 folgt: Sei $(a_n)_{n\in\mathbb{N}}$ so, dass $\alpha=\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|$ so gilt für

1.
$$\alpha < 1$$
, dass $\sum_{n=1}^{\infty} a_n$ absolut konvergiert

2.
$$\alpha < 1$$
, dass $\sum_{n=1}^{\infty} a_n$ divergiert

3.
$$\alpha = 1$$
, dass wir keine Aussage über die Reihe $\sum_{n=1}^{\infty} a_n$ treffen können.

6.12 Wurzelkriterium

Betrachten wir $\sum_{n=1}^{\infty} a_n$:

1. Falls ein $0 < \theta < 1$ und $n_0 \in \mathbb{N}$ existieren, so dass

$$\sqrt[n]{|a_n|} \le \theta \quad \forall n \ge n_0$$
, so konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.

2. Falls ein $\theta \geq 1$ und $n_0 \in \mathbb{N}$ existieren, so dass

$$\sqrt[n]{|a_n|} \ge \theta \ge 1 \quad \forall n \ge n_0, \text{ so divergient } \sum_{n=1}^{\infty} a_n.$$

6.13 Bemerkung

Sei $\sum_{n=1}^{\infty} a_n$ eine Reihe, so dass der Grenzwert $\beta := \lim_{n \to \infty} \sqrt[n]{|a_n|}$ existiert,

- Falls $\beta < 1$, so konvergiert die Reihe.
- Falls $\beta > 1$, so divergiert die Reihe.
- Falls $\beta = 1$, so können wir keine Aussage treffen.

6.14 Satz: Leibnitzkriterium

Sei $(a_n)_{n\in\mathbb{N}}$ eine positive, monoton fallende Nullfolge, dann konvergiert $\sum_{n=1}^{\infty} -1^n a_n$.

31 Lecture on: 23.11.2015

6.15 Beispiel

Die alternierende harmonische Reihe konvergiert; jedoch nicht absolut.

6.16 Definition

Eine Reihe, die konvergiert, jedoch nicht absolut konvergiert, nennen wir bedingt konvergent.

32 Lecture on: 25.11.2015

7 Umordnung von Reihen

7.1 Motivation

Für endliche Summen ist die Reihenfolge der Summierung bezüglich der Summe egal. Bei unendlichen Summen, also Reihen ist dies nicht immer der Fall.

7.2 Beispiel

Man kann zum Beispiel die alternierende Harmonische Reihe so umordnen, dass sie scheinbar jeden Grenzwert annimmt.

7.3 Bemerkung

Aufgrund dieser Eigenschaft bedingt konvergenter Reihen werden wir Summierbarkeit nun weiter untersuchen.

7.4 Bezeichnung

Sei I eine Indexmenge. Eine Abbildung $(a_i)_{i \in I} : I \to \mathbb{R}$ heißt eine Familie reeller Zahlen.

7.5 Definition

Sei (a_i) mit Indexmenge I eine Familie reller Zahlen. Wir nennen (a_i) summierbar, wenn die folgenden Äquivalenzen gelten:

i)
$$\forall \varepsilon > 0: \exists E \subset I: \sum_{i \in} |a_i| < \varepsilon \quad \forall \text{ endlichen } F \subset I \text{ mit } F \cap E = \emptyset$$

ii)
$$\exists k > 0 : \sum_{i \in} |a_i| \le k \quad \forall$$
 endlichen $G \subset I$

- iii) Für jede Abzählung von Iist $\sum\limits_{i_n \in I} a_{i_n}$ absolut konvergent.
- iv) Für mindestens eine Abzählung von iist $\sum_{i_n \in I} a_{i_n}$ absolut konvergent.

7.6 Bemerkung

Seien (a_i) und (b_i) summierbare Familien. Dann sind sie bezüglich Summierbarkeit linear.

7.7 Definition

Sei I abzählbar und $(a_i)_{i\in I}$ eine Familie reeller Zahlen. (a_i) heißt summierbar mit Summe s, wenn

$$\exists s \in \mathbb{R} : \forall \varepsilon > 0 : \exists \text{ endlich } F \subset I, E \subset I, F \subsetneq E : |s - \sum_{i \in} a_i| < \varepsilon$$

34 Lecture on: 25.11.2015