

MACHINE LEARNING DAY 2

DEEP LEARNING

Session II: Linear regression

Isaac Ye, HPTC @ York University

Isaac@sharcnet.ca

Session II

- Categories of ML problems
- Linear regression (single variable)
- Cost function / gradient decent algorithm / learning rate
- Lab 2A: linear regression (single variable)
- Linear regression (multi-variables)
- PyTorch model/cost function/optimizer
- Lab 2B: linear regression

Categories of ML problems

Supervised Unsupervised Reinforcement Discrete **Action space** Classification Clustering agent Continuous **Dimensionality Action space** Regression reduction agent

Categories of ML problems

	Supervised	Unsupervised	Reinforcement
Discrete	Classification	Clustering	Action space agent
Continuous	Regression	Dimensionality reduction	Action space agent

Reinforcement learning

Discrete

Action space agent

Continuous

Action space agent

Reinforcement

Goal Train an agent to achieve a goal through

state/action/reward

Examples Path finder, decision making problem

Reinforcement learning

Reinforcement

Goal Train an agent to achieve a

goal through

state/action/reward

Examples Path finder, decision making

problem

Categories of ML problems

	Supervised	Unsupervised	Reinforcement
Discrete	Classification	Clustering	Action space agent
Continuous	Regression	Dimensionality reduction	Action space agent

Unsupervised learning

Discrete

Continuous

Clustering

Dimensionality reduction

Unsupervised

Input Data x

Goal learn some underlying hidden structure of

the data

Examples Clustering, dimensionality reduction,

feature learning, density estimation

Unsupervised learning

Unsupervised

Input Data x

Goal learn some underlying hidden

structure of the data

Examples Clustering, dimensionality

reduction, feature learning,

density estimation

Categories of ML problems

	Supervised	Unsupervised	Reinforcement
Discrete	Classification	Clustering	Action space agent
Continuous	Regression	Dimensionality reduction	Action space agent

Supervised learning

Discrete

Continuous

Classification

Regression

Supervised

Input Data (x, y) x: data, y: label

Goal learn a function to map x to y

Examples classification, regression, object detection

semantic segmentation, image captioning

Supervised learning

Frontage

Supervised

Input Data (x, y) x: data, y: label

Goal learn a function to map x to y

Examples classification, regression,

object detection

semantic segmentation, image

captioning

Label: Red(> \$1M), Blue(< \$1M) **Decision line** Square feet

Categories of ML problems

Regression problem

Fit the prediction function f(x) to the training data to predict continuous real value

Linear regression

Linear regression: single variable

X	у
0	1
1	1
2	2
3	4
4	5
5	7
6	8
7	9
8	10
9	9

Data preparation: Input (x, y)

Х	у
0	1
1	1
2	2
3	4
4	5
5	7
6	8
7	9
8	10
9	9

Model (Hypothesis)

$$H(x) = Wx + b$$

Which model is better?

How well fit the line to data?

$$H(x) - y$$
Predicted True

Cost function

<u>Model</u>

$$H(x) = Wx + b$$

Mean Square Error

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x_i) - y_i)^2$$

m is the number of data.

Now we can see the <u>cost function</u> as a function of W and b.

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} ((Wx_i + b) - y_i)^2$$

Cost function: what we want?

We want to minimize the cost!

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} ((Wx_i + b) - y_i)^2$$

Gradient decent algorithm

Let's consider a simple case with W only.

$$cost(W) = \frac{1}{2m} \sum_{i=1}^{m} (Wx_i - y_i)^2$$

$$\frac{d}{dW}cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx_i - y_i)x_i$$

$$W \coloneqq W - \alpha \frac{d}{dW} cost(W)$$
Learning rate

Learning rate
$$W := W - \omega \frac{d}{dW} cost(W)$$
Learning rate

The optimal learning rate (possibly adaptive value)

Too large learning rate causes divergence

W

A small learning rate requires many steps

Cost (loss) function

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} ((Wx_i + b) - y_i)^2$$

http://www.holehouse.org/mlclass

Lab 2A: Linear regression (single variable)

Х	у
0	1
1	1
2	2
3	4
4	5
5	7
6	8
7	9
8	10
9	9

Layout

Input features = 1
Output features = 1
of feature = 1

Input layer
Output layer

$$H(x_i) = Wx_i$$

Let's consider a simple case with W only.

Coding modules

Data Preparation Model define

Cost function + optimizer

Model Test

$$H(x) = Wx + b$$

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (H(x_i) - y_i)^2$$

$$W \coloneqq W - \alpha \frac{d}{dW} cost(W)$$

Lab 2A: Linear regression - vanilla

Github:

https://github.com/isaacye/SS2020 ML Day2

What you may want to try:

- 1. Check the model define
- 2. Check the result by changing the starting point
- 3. Check the result by changing learning rate

Linear regression: multivariable

Data preparation: Input (x_1, x_2, y)

x ₁	x ₂	у
3.91870851	2.32626914	0.73817558
2.59194437	6.00656071	4.3940048
6.46991632	3.57514815	0.61488728
:	:	:
4.56486433	2.14296641	3.95964088
1.29483514	1.67730041	3.48018992

```
num_data = 2400
x1 = np.random.rand(num_data) *10
x2 = np.random.rand(num_data) *10
e = np.random.normal(0, 0.5, num_data)
X= np.array([x1,x2]).T # T for transpose from (2, 2400) to (2400, 2)
y=2*np.sin(x1) + np.log(0.5*x2**2)+e
```


Model (Hypothesis)

$$H(x_1, x_2) = w_1x_1 + w_2x_2 + b$$

For the data with n number of features, it is can be written as

$$H(x_1, x_2, x_3, \dots, x_n) = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n + b$$

Expression in matrix

$$H(x_{i1}, x_{i2}) = w_1 x_{i1} + w_2 x_{i2} + b$$
$$[x_1 \quad x_2] \cdot {w_1 \brack w_2} + b = w_1 x_1 + w_2 x_2 + b$$

$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + b = \begin{bmatrix} w_1 x_{11} + w_2 x_{12} + b \\ w_1 x_{21} + w_2 x_{22} + b \\ \vdots \\ w_1 x_{n1} + w_2 x_{n2} + b \end{bmatrix}$$

$$H(X) = XW + b$$

Layout

Input features = 2 Output features = 1

Input layer

of feature = 1

Output layer

$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{bmatrix}$$

 $H(x_{i1}, x_{i2}) = w_1 x_{i1} + w_2 x_{i2}$

Let's consider a simple case with W only.

Cost function

$$H(X) = XW + b$$

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x_{i1}, x_{i2}) - y_i)^2$$

We want to minimize the cost as well!

Coding modules

Data Preparation Model define

Cost function + optimizer

Model Test

Data Preparation

Data preparation

X ₁	X ₂	у
3.91870851	2.32626914	0.73817558
2.59194437	6.00656071	4.3940048
6.46991632	3.57514815	0.61488728
:	:	:
4.56486433	2.14296641	3.95964088
1.29483514	1.67730041	3.48018992

Input Data Set Distribution

Train set

Validation set

In the code

train_X, train_y = X[:1600, :], y[:1600]
val_X, val_y = X[1600:2000, :], y[1600:2000]
test_X, test_y = X[2000:, :], y[2000:]

Testing set

Model define

Model define

In the code

```
import torch
import torch.nn as nn

class LinearModel(nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = nn.Linear(in_features=2, out_features=1, bias=True)

def forward(self, x):
    return self.linear(x)
```

Linear model in PyTorch

Linear

CLASS torch.nn.Linear(in_features, out_features, bias=True)

[SOURCE]

Applies a linear transformation to the incoming data: $y = xA^T + b$

Parameters

- in_features size of each input sample
- out_features size of each output sample
- bias If set to False, the layer will not learn an additive bias. Default: True

Shape:

- Input: $(N,*,H_{in})$ where * means any number of additional dimensions and $H_{in}=$ in_features
- ullet Output: $(N,*,H_{out})$ where all but the last dimension are the same shape as the input and $H_{out}={
 m out_features}$.

Cost (loss) function + Optimizer

Loss function

In the code

reg_loss = nn.MSELoss()

MSELoss

CLASS torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')

[SOURCE]

Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input x and target y.

In the code

Optimizer

```
lr = 0.005
optimizer = optim.SGD(model.parameters(), lr =lr)
```

[SOURCE]

Implements stochastic gradient descent (optionally with momentum).

Model test

Lab 2B: Linear regression – Linear model

- 1. Check the model define (linear model)
- 2. Check the result by varying learning rate
- 3. Check the result w/ w/o bias
- 4. Check the result with different number of Epoch

Lab 2B: Linear regression – Linear model

Github:

https://github.com/isaacye/SS2020 ML Day2

What you may want to try:

- 1. Check the model define
- 2. Check the result by changing learning rate
- 3. Increase size of data and re-run it

Session break:

Please come back by 2 PM