Octave 操作簡介

Hung-Jui Chang

CYCU Applied Mathematics

April 20, 2022

Mathematical Software

- General programming language:
 - C/C++, Java, Python, ...
- Statistical language/software:
 - R, SAS, SPSS, ...
- Mathematical language/software
 - MATLAB, Maple, Mathematics, Octave

MATLAB and GNU Octave

- MATLAB is a commercial software
 - Developed by "The MathWorks"
 - Using C-like syntax
 - Can interface with programs written in other language.
 - C, C++, Java, Fortran, Python.
- GNU Octave is a open-source software
 - Implemented with C++ standard library
 - Compatible with MATLAB
- In this course, we will use GNU Octave.

GNU Octave

- GNU Octave Homepage: https://octave.org/
- GNU Octave Manual: https://octave.org/octave.pdf
- Install:
 - Windows: Downloads installer exe file and executes it
 - BSD: See the document
 - MacOS: See the documents
 - GNU/Linux:
 - sudo apt-get install octave
- Execution:
 - Double clicks the octave icon
 - CLI (Command Line Interface) version
 - GUI (Graphic User Interface) version
 - Or opens a terminal and types octave (in GNU/Linux)
 - Or Alt+F2 octave (in Ubuntu)

變數

- Octave的變數不用宣告就可直接使用
 - 實數(real): x = 1.0, y = 1
 - $\delta = 1 + 2i$, b = 1 + 2 * i, c + 2 * j
 - · i和j都可以當作虛數的符號
 - · 因爲i通常會被拿去當迴圈的index,所以用j代替
 - 矩陣(matrix): A = [1,2;3,4], B = zeros(5), C = magic(5)
 - 字串(string): s = "Thisisastring"
 - 結構(structure): z.a = 1, z.b = [1,2;3,4], z.c = "string"
- 和裝上述内容的陣列(array)
- 可以用clear把指定的變數清空。
 - 否則這個變數會一直存在
- 保存宣告的變數留到下次使用
 - save file_name %保留目前所有的變數
 - load file_name %讀取上次儲存的變數

象徵變數(Symbolic Variable)

- syms x,宣告x是一個數學上的變數
 - x+3,會得到多項式x+3
 - (x+3)*(x+2)會得到兩個多項式相乘
 - 可以用expand把它展開
 - 也可以用factor進行因式分解
- f(x) = (x+2)*(x+3)
 - f是一個以x爲變數的函數
 - f(10)可以取當x = 10時的f(x)的值。
- syms 屬於套件 symbolic
- 使用前需要先安裝/讀取套件:
 - pkg install -forge symbolic
 - pkg load symbolic
 - 意義上近似於C/C++的#include 和Python的import
- Ubuntu 16.04有套件支援問題,需要升及到18.04以上。

關於矩陣

- Matlab/Octave的矩陣index是從1開始算。
- 存取一個矩陣内的元素是使用小括號()而非中括號[]
 - 中括號用於定義矩陣
- 可以用函數size知道一個矩陣的Row和Col數
 - A=[1, 2, 3;4, 5, 6];
 - size(A) 會得到 [2, 3]
 - 在Octave中可以有多個回傳值。
 - 可以用[M, N] = size(A)來取得回傳值。
 - 或是用size(A, 1)和size(A, 2)分別得到row和column的數量
- 第一個column是A(:,1)
- 第一個row是A(1,:)
- •:表示全部的範圍
- 1:10表示從數字1到10的範圍
- x = [1:10]

新增矩陣

- 矩陣的初始化分成兩種:
 - 已知未來的大小,先開一個矩陣給它。
 - A = zeros(3);%一個3x3的0矩陣,也可以是zrtos(3,3)
 - A = ones(3);%一個3x3的1矩陣,也可以是onese(3,3)
 - A = eye(3);%一個3x3的單位矩陣/₃
 - 不知道未來的大小,一個一個新增。
 - clear B;
 - for i = 1:5
 - B(i) = i;
 - endfor
 - B 在執行完之後,會是一個1x5的矩陣。
- 當指定矩陣的一個元素(i,j)是x時
 - 如果矩陣的size (M, N)滿足 $1 \le i \le M$, $1 \le j \le N$, 會修改元素(i,j)的值。
 - 如果矩陣的size (M, N)不满足 $1 \le i \le M, 1 \le j \le N$, 會擴展 矩陣的範圍得到新的滿足條件的 $M \cap N$,新增的元素預設會 是0。

矩陣操作

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right]$$

- 當我們用A=[1, 2, 3; 4, 5, 6]可以得到如上的矩陣
- B = reshape(A, 1, 6)可以得到矩陣
 B = [1 4 2 5 3 6]
- 可以用B(x:y)存取B的第x到第y個元素
 - B(2:4)會得到[4 2 5]
 - B(1:2:5)會得到[1 2 3]%從1開始每2個一數取至第5個
 - B(6:-1:1)會得到 [6 3 5 2 4 1]%從6開始每1個一 數取至第1個,也就是取反序
 - fliplr(B)也可以得到一樣的結果。

矩陣翻轉

- fliplr(A) %矩陣左右翻轉
- flipud(A) %矩陣上下翻轉
- flip(A, dim) %矩陣翻轉,dim不加或1是上下,2是左右。
- rot90(A, K) %矩陣轉90度, K是轉幾次, 不加是1次。

矩陣運算

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right]$$

- sum(A) or sum(A, 1)
 - ans $= \begin{bmatrix} 5 & 7 & 9 \end{bmatrix}$
- sum(A, 2)
 - ans $= \begin{bmatrix} 6 \\ 15 \end{bmatrix}$
- [ans1, ans2] = max(A) or max(A, [], 1)
 - $\bullet \ \ \mathsf{ans1} = \left[\begin{array}{ccc} \mathsf{4} & \mathsf{5} & \mathsf{6} \end{array} \right] \text{, } \mathsf{ans2} = \left[\begin{array}{ccc} \mathsf{2} & \mathsf{2} & \mathsf{2} \end{array} \right]$
- [ans1, ans2] = max(A, [], 2)
 - $ans1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix} ans2 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

數字轉字串

- A = [1:6] % [1, 2, 3, 4, 5, 6]
- int2str(A) 會生成一個長度16的字串。
 - "1 2 3 4 5 6" 每個數字間有兩個空白。
- 用ASCII的觀念轉換。
- strvcat(X)%把X裡面的數字用ASCII轉換成文字。
 - 97: a, 65:A, 48:0
 - strvcat(A+48)會得到"123456"

基本運算

- 加減乘除: +,-,*,/
 - Element-wise calculator
 - .+,.-,.*,./
 - A*B ⇒ 矩陣乘法
 - A.*B ⇒ 同位置的元素相乘
 - $A. * B = C, C_{i,j} = A_{i,j} * B_{i,j}$
- 取餘數是用mod()
 - mod(5, 3) 會得到 2
 - %在 Matlab/Octave中是註解符號
- 次方符號A: aAb,a的b次方,也可以用a**b

常用數學函數(1/2)

- 三角函數: sin(), cos(), tan()
- 反三角函數: asin(), acos(), atan()
- 對數: log(), ln(), log10(), log2()
- 自然數: exp(), e
- 圓周率: pi, pi(N, M)
- 取絕對值: abs()
- 取下高斯: floor()%無條件捨去取整數部分
- 取上高斯: ceil() %無條件進位取整數部分

常用數學函數(2/2)

- 相加一個向量X, sum(X)
- 乘一個向量X中的所有元素: prod(X)
 - 5的階乘: factorial(5), prod(1:5)
- 最小公倍數 lcm, 最大公因數 gcd
- 確認是否是質數 isprime(), 質因數分解factor(), N以下的所有質數primes(N)
- 可以用help command查詢一個指令或函數的用法

流程控制

- if statement
 - if (condition)
 - statements;
 - endif
- if-else statement
 - if (condition)
 - statement1;
 - else
 - statement2;
 - endif
- if-elseif statement
 - if (condition1)
 - statement1;
 - elseif (condition2)
 - statement2:
 - endif

- while statements
 - while (condition)
 - statements
 - endwhile
- do statements
 - do
 - statements:
 - until(condition)
- for statements
 - for var = expression
 - statements;
 - endfor

邏輯判斷符號

- a = y, eq(x, y)
- 不相等x! = y, x ~= y
- 大於等於: x >= y , ge(x,y)
- 大於: x > y, gt(x,y)
- 小於等於: x <= y, le(x,y)
- 小於: x < y, lt(x,y)

自訂義函式(function)

- function return_values = function_name(parameters)
- %函式的内容
- endfunction
- 一個算出輸入的兩個數的加減乘的函數
 - function [A, B, C] = cal(X, Y)
 - A = X + Y;
 - B = X Y:
 - C = X * Y;
 - endfunction

M-file

- 可以把寫好的函式放在.m檔中
- 放在和目前的工作目錄(working directory)同一個地方
 - 可以用pwd檢查目前的工作目錄
- 把函數的名字和檔名取成同一個名字
 - e.g. myfun.m
 - 和java的命名法相似。
- 之後就可以呼叫自己寫的函數

繪圖: plot(x, y)

- 一般數學軟體中是以描點內差的方式畫圖。
- Example:
 - X = −1:0.1:1; %X是從-1到1每隔0.1取一點的向量
 - Y = sin(X); %Y是每一個取樣點X對應的sin函數值
 - plot(X, Y); %畫出X向量和Y向量表示的圖,其中每個點是由(X(i), Y(i))所組成。

3D-繪圖

- plot3(X,Y,Z)和 plot的使用法相似,可以把X,Y,Z向量中的點 描繪出來。
- surf(X,Y,Z): 根據X,Y,Z向量,畫出描繪的點形成的曲面
- 決定X, Y的取樣點:
 - X = linspace(-1, 1, 25); %從-1到1取樣25點。
 - Y = linspace(-1, 1, 25); %從-1到1取樣25點。
 - [XX, YY] = meshgrid(X, Y) % XX和YY是 25 by 25的矩陣, 相當於:
 - XX = [X;X;X;X;X;X;X;...;X] % 把X複製25次
 - YY = [Y;Y;Y;Y;Y;Y;Y;...;Y]'% 把Y複製25次然後轉置
 - ZZ = sqrt(3 XX.**2 YY.**2) %假設要畫的是球面 $z^2 = 3 x^2 y^2$
 - surf(XX, YY, ZZ);

輸入輸出

- C-style input/output function
 - From stdin: printf("...",)
 - To stdout: scanf("....",)
 - open file:
 - file_name = "Test File.txt"
 - fid = fopen(file_name, option)
 - option可能是寫入"w"或讀取"r"等。
 - input_file = fopen("TestIn.txt", "r")
 - 注意檔案開啓需要有正確的路徑。
 - Windows 和 Linux系的目錄分隔符號一個是"\"一個是"/"
 - From file: fscanf(fid, "...",)
 - To file: fprintf(fid, "...",);
 - close file: fclose(fid) % 檔案用完後記得關起來。
 - 三個預設可以直接用的fid: stdin, stdout, stderr