Linear Control and Estimation

Matrix Inverses

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

- references
- ► S Boyd, Applied Linear Algebra: Chapters 11.
- ► G Strang, Linear Algebra: Chapters 1.

▶ Consider the vector space \mathbb{R}^n with basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$. Any vector in $\mathbf{b} \in \mathbb{R}^n$ can be representated as a linear combination of \mathbf{v}_i s.

$$\mathbf{b} = \sum_{i=1}^{n} \mathbf{v}_i \mathbf{a}_i = \mathbf{V} \mathbf{a}; \ \mathbf{a} \in \mathbb{R}^n, \ \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

 $\{\mathbf{v}_1, \mathbf{v}_2\}, \{\mathbf{u}_1, \mathbf{u}_2\}$ and $\{\mathbf{e}_1, \mathbf{e}_2\}$ are valid basis for \mathbb{R}^2 , and the presentation for \mathbf{b} in each one of them is different.

Finding out a is easiest when we are dealing with an orthonormal basis, in which case a is given by,

$$\mathbf{a} = egin{bmatrix} \mathbf{u}_1^T b \ \mathbf{u}_2^T b \ dots \ \mathbf{b} \end{bmatrix} = \mathbf{U}^T \mathbf{b} \implies \mathbf{b}_U = \sum_{i=1}^n \left(\mathbf{u}_i^T b
ight) \mathbf{u}_i = \mathbf{U} \mathbf{U}^T \mathbf{b}$$

Consider a vector \mathbf{b} whose representation in the standard basis is $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

• Consider a basis
$$V = \left\{ \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$$
. Find out \mathbf{b}_V .

Consider a vector \mathbf{b} whose representation in the standard basis is $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

- Consider a basis $V = \left\{ \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$. Find out \mathbf{b}_V .
- $U = \left\{ \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \right\}$. Find out \mathbf{b}_U .

Consider a vector **b** whose representation in the standard basis is $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

- Consider a basis $V = \left\{ \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$. Find out \mathbf{b}_V .
- $U = \left\{ \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \right\}$. Find out \mathbf{b}_U .
- $W = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ \frac{1}{2} \end{bmatrix} \right\}$. Find out \mathbf{b}_W .

- ▶ Consider the equation Ax = y, where $A \in \mathbb{R}^{n \times n}$ and $x, y \in \mathbb{R}^n$.
- ▶ Let us assume A is non-singular \implies columns of A represent a basis for \mathbb{R}^n .
- lacktriangle What does x represent? It is the representation of y in the basis consisitng of the columns of A.

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n \mathbf{a}_i x_i \implies \mathbf{x} = \mathbf{A}^{-1}\mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^T \\ \tilde{\mathbf{b}}_2^T \\ \vdots \\ \tilde{\mathbf{b}}_n^T \end{bmatrix} \mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^T \mathbf{y} \\ \tilde{\mathbf{b}}_2^T \mathbf{y} \\ \vdots \\ \tilde{\mathbf{b}}_n^T \mathbf{y} \end{bmatrix}$$

 $ightharpoonup A^{-1}$ is a matrix that allows change of basis to the columns of A from the standard basis!

- ▶ Consider the equation Ax = y, where $A \in \mathbb{R}^{n \times n}$ and $x, y \in \mathbb{R}^n$.
- lackbox Let us assume **A** is non-singular \Longrightarrow columns of **A** represent a basis for \mathbb{R}^n .
- \triangleright What does x represent? It is the representation of y in the basis consisiting of the columns of A.

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n \mathbf{a}_i x_i \implies \mathbf{x} = \mathbf{A}^{-1}\mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^T \\ \tilde{\mathbf{b}}_2^T \\ \vdots \\ \tilde{\mathbf{b}}_n^T \end{bmatrix} \mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^T \mathbf{y} \\ \tilde{\mathbf{b}}_2^T \mathbf{y} \\ \vdots \\ \tilde{\mathbf{b}}_n^T \mathbf{y} \end{bmatrix}$$

- $ightharpoonup A^{-1}$ is a matrix that allows change of basis to the columns of A from the standard basis!
- $W = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ \frac{1}{2} \end{bmatrix} \right\}$. Find \mathbf{b}_W by calculating the inverse of the matrix $\mathbf{W} = \begin{bmatrix} 1 & -1 \\ 1 & \frac{1}{2} \end{bmatrix}$. Does your answer match that of the previous approach?
- What about $V = \left\{ \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$. What is \mathbf{b}_V ?

Rows of ${\bf A}$ and columns of ${\bf A}^{-1}$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & \frac{1}{2} \end{bmatrix}$$

$$\mathbf{V}^{-1} = \begin{bmatrix} \tilde{\mathbf{u}}_1^T \\ \tilde{\mathbf{u}}_2^T \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2} & 1 \\ -1 & 2 \end{bmatrix}$$

$$\mathbf{v}_1^T \tilde{\mathbf{u}}_1 = \mathbf{v}_2^T \tilde{\mathbf{u}}_2 = \tilde{\mathbf{v}}_1^T \mathbf{u}_1 = \tilde{\mathbf{v}}_2^T \mathbf{u}_2 = 1$$

$$\mathbf{v}_1^T \tilde{\mathbf{u}}_2 = \mathbf{v}_2^T \tilde{\mathbf{u}}_1 = \tilde{\mathbf{v}}_1^T \mathbf{u}_2 = \tilde{\mathbf{v}}_2^T \mathbf{u}_1 = 0$$

Rows of ${\bf A}$ and columns of ${\bf A}^{-1}$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & \frac{1}{2} \end{bmatrix}$$

$$\mathbf{V}^{-1} = \begin{bmatrix} \tilde{\mathbf{u}}_1^T \\ \tilde{\mathbf{u}}_2^T \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2} & 1 \\ -1 & 2 \end{bmatrix}$$

$$\mathbf{v}_1^T \tilde{\mathbf{u}}_1 = \mathbf{v}_2^T \tilde{\mathbf{u}}_2 = \tilde{\mathbf{v}}_1^T \mathbf{u}_1 = \tilde{\mathbf{v}}_2^T \mathbf{u}_2 = 1$$

$$\mathbf{v}_1^T \tilde{\mathbf{u}}_2 = \mathbf{v}_2^T \tilde{\mathbf{u}}_1 = \tilde{\mathbf{v}}_1^T \mathbf{u}_2 = \tilde{\mathbf{v}}_2^T \mathbf{u}_1 = 0$$

Verify these for
$$\mathbf{W}=\begin{bmatrix}1 & -1\\1 & \frac{1}{2}\end{bmatrix}$$
 and
$$\begin{bmatrix}1/\sqrt{5} & -2/\sqrt{5}\end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix}.$$

- ▶ Consider a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. There exists no inverse \mathbf{A}^{-1} for this matrix.
- ▶ But, does there exist two matrices $\mathbf{B}, \mathbf{C} \in \mathbb{R}^{n \times m}$, such that,

$$\mathbf{C}\mathbf{A} = \mathbf{I}_n$$
 and $\mathbf{A}\mathbf{B} = \mathbf{I}_m$

- ▶ Both cannot be true for a rectangular matrix, only one can be true when the matrix is full rank.
- ▶ A rectangular matrix can only have either a left or a right inverse.

- ▶ Consider a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. There exists no inverse \mathbf{A}^{-1} for this matrix.
- But, does there exist two matrices $\mathbf{B}, \mathbf{C} \in \mathbb{R}^{n \times m}$, such that,

$$\mathbf{C}\mathbf{A} = \mathbf{I}_n$$
 and $\mathbf{A}\mathbf{B} = \mathbf{I}_m$

- ▶ Both cannot be true for a rectangular matrix, only one can be true when the matrix is full rank.
- ▶ A rectangular matrix can only have either a left or a right inverse.

Consider a matrix
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
. Let $\mathbf{B}, \mathbf{C} \in \mathbb{R}^{2 \times 3}$. Can you explain why only $\mathbf{C}\mathbf{A} = \mathbf{I}_2$ can be true and not $\mathbf{A}\mathbf{B} = \mathbf{I}_2$? Can you also explain why \mathbf{C} is not unique?

true and not $AB = I_3$? Can you also explain why C is not unique?

- ▶ Any non-zero $\mathbf{a} \in \mathbb{R}^{n \times 1}$ is left invertible: $\mathbf{b}\mathbf{a} = 1, \ \mathbf{b} \in \mathbb{R}^{1 \times n}; \ \mathbf{b}^T = \frac{\mathbf{a}}{\|\mathbf{a}\|^2} + \alpha \mathbf{a}^{\perp}$
- ▶ This can be generalized to $\mathbf{A} \in \mathbb{R}^{m \times n}$, m > n.

$$\left(\mathbf{C}+\hat{\mathbf{C}}
ight)\mathbf{A}=\mathbf{I}_m \ \ ext{where} \ \mathbf{C},\hat{\mathbf{C}}\in\mathbb{R}^{n imes m}, \ \ \hat{\mathbf{C}}\mathbf{A}=\mathbf{0}$$

- Condition for left inverse of **A** to exist: *Colmuns of* **A** *must be independent.*
 - $\longrightarrow rank(\mathbf{A}) = n \longrightarrow \mathbf{A}\mathbf{x} = 0 \implies \mathbf{x} = 0.$
- ▶ Ax = b can be solved, if and only if A(Cb) = b, where $CA = I_n$.

- ▶ Any non-zero $\mathbf{a} \in \mathbb{R}^{n \times 1}$ is left invertible: $\mathbf{b}\mathbf{a} = 1, \ \mathbf{b} \in \mathbb{R}^{1 \times n}; \ \mathbf{b}^T = \frac{\mathbf{a}}{\|\mathbf{a}\|^2} + \alpha \mathbf{a}^{\perp}$
- ▶ This can be generalized to $\mathbf{A} \in \mathbb{R}^{m \times n}$, m > n.

$$\left(\mathbf{C}+\hat{\mathbf{C}}
ight)\mathbf{A}=\mathbf{I}_m \ \ \mathsf{where} \ \mathbf{C}, \hat{\mathbf{C}} \in \mathbb{R}^{n imes m}, \ \ \hat{\mathbf{C}}\mathbf{A}=\mathbf{0}$$

- Condition for left inverse of **A** to exist: Colmuns of **A** must be independent. A = A = A = A = A
- $\longrightarrow rank(\mathbf{A}) = n \longrightarrow \mathbf{A}\mathbf{x} = 0 \implies \mathbf{x} = 0.$
- ▶ Ax = b can be solved, if and only if A(Cb) = b, where $CA = I_n$.

• Let
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
. Find a complete solution for the left inverse of \mathbf{A} such that $\left(\mathbf{C} + \hat{\mathbf{C}}\right) = \mathbf{I}_n$.

- ▶ Any non-zero $\mathbf{a} \in \mathbb{R}^{n \times 1}$ is left invertible: $\mathbf{ba} = 1, \ \mathbf{b} \in \mathbb{R}^{1 \times n}; \ \mathbf{b}^T = \frac{\mathbf{a}}{\|\mathbf{a}\|^2} + \alpha \mathbf{a}^{\perp}$
- ▶ This can be generalized to $\mathbf{A} \in \mathbb{R}^{m \times n}$, m > n.

$$\left(\mathbf{C}+\hat{\mathbf{C}}
ight)\mathbf{A}=\mathbf{I}_m \ \ ext{where} \ \mathbf{C},\hat{\mathbf{C}}\in\mathbb{R}^{n imes m}, \ \ \hat{\mathbf{C}}\mathbf{A}=\mathbf{0}$$

- Condition for left inverse of **A** to exist: *Colmuns of* **A** *must be independent.* $\longrightarrow rank (\mathbf{A}) = n \longrightarrow \mathbf{A}\mathbf{x} = 0 \implies \mathbf{x} = 0.$
- $\longrightarrow rank\left(\mathbf{A}\right) = n \longrightarrow \mathbf{A}\mathbf{X} = 0 \implies \mathbf{X} = 0.$
- ▶ Ax = b can be solved, if and only if A(Cb) = b, where $CA = I_n$.
- Let $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$. Find a complete solution for the left inverse of \mathbf{A} such that $\left(\mathbf{C} + \hat{\mathbf{C}}\right) = \mathbf{I}_n$.
- Consider the system, $\mathbf{A}\mathbf{x} = \mathbf{b}$. $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find \mathbf{x} .

- Any non-zero $\mathbf{a} \in \mathbb{R}^{n \times 1}$ is left invertible: $\mathbf{ba} = 1, \ \mathbf{b} \in \mathbb{R}^{1 \times n}; \ \mathbf{b}^T = \frac{\mathbf{a}}{\|\mathbf{a}\|^2} + \alpha \mathbf{a}^{\perp}$
- ▶ This can be generalized to $\mathbf{A} \in \mathbb{R}^{m \times n}$, m > n.

$$\left(\mathbf{C}+\hat{\mathbf{C}}
ight)\mathbf{A}=\mathbf{I}_m$$
 where $\mathbf{C},\hat{\mathbf{C}}\in\mathbb{R}^{n imes m},~\hat{\mathbf{C}}\mathbf{A}=\mathbf{0}$

► Condition for left inverse of A to exist: Colmuns of A must be independent.

 $\longrightarrow rank(\mathbf{A}) = n \longrightarrow \mathbf{A}\mathbf{x} = 0 \implies \mathbf{x} = 0.$

- $ightharpoonup \mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved, if and only if $\mathbf{A}(\mathbf{C}\mathbf{b}) = \mathbf{b}$, where $\mathbf{C}\mathbf{A} = \mathbf{I}_n$.
- Let $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$. Find a complete solution for the left inverse of \mathbf{A} such that $(\mathbf{C} + \hat{\mathbf{C}}) = \mathbf{I}_n$.
- Consider the system, $\mathbf{A}\mathbf{x} = \mathbf{b}$. $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find \mathbf{x} .
- What happens when $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. What is \mathbf{x} ?

- ▶ For $A \in \mathbb{R}^{m \times n}$, n > m with full rank, $AB = I_m \longrightarrow B$ is the right inverse.
- ▶ Right inverse of \mathbf{A} exists only if the rows of \mathbf{A} are independent, i.e. $rank(\mathbf{A}) = m$ $\longrightarrow \mathbf{A}^T \mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$
- $\ \ \, \mathbf{A}\mathbf{x} = \mathbf{b} \,\, \mathsf{can} \,\, \mathsf{be} \,\, \mathsf{solved} \,\, \mathsf{for} \,\, \mathsf{any} \,\, \mathsf{b.} \,\, \mathbf{x} = \mathbf{B}\mathbf{b} \,\, \Longrightarrow \,\, \mathbf{A} \, (\mathbf{B}\mathbf{b}) = \mathbf{b}.$
- ightharpoonup There are an infitnite number of $\mathbf{B}\mathbf{s} \implies$ an infinite number of solutions \mathbf{x} .

- ▶ For $A \in \mathbb{R}^{m \times n}$, n > m with full rank, $AB = I_m \longrightarrow B$ is the right inverse.
- ▶ Right inverse of \mathbf{A} exists only if the rows of \mathbf{A} are independent, i.e. $rank(\mathbf{A}) = m$ $\longrightarrow \mathbf{A}^T \mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$
- $ightharpoonup \mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved for any b. $\mathbf{x} = \mathbf{B}\mathbf{b} \implies \mathbf{A}\left(\mathbf{B}\mathbf{b}\right) = \mathbf{b}$.
- ightharpoonup There are an infitnite number of Bs \implies an infinite number of solutions ${f x}$.
- Let $\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$. Find a complete solution for the right inverse of \mathbf{A} .

- ▶ For $A \in \mathbb{R}^{m \times n}$, n > m with full rank, $AB = I_m \longrightarrow B$ is the right inverse.
- ▶ Right inverse of \mathbf{A} exists only if the rows of \mathbf{A} are independent, i.e. $rank(\mathbf{A}) = m$ $\longrightarrow \mathbf{A}^T \mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$
- $ightharpoonup \mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved for any b. $\mathbf{x} = \mathbf{B}\mathbf{b} \implies \mathbf{A}\left(\mathbf{B}\mathbf{b}\right) = \mathbf{b}$.
- ightharpoonup There are an infitnite number of Bs \implies an infinite number of solutions ${f x}$.
- Let $\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$. Find a complete solution for the right inverse of \mathbf{A} .
- Solve $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Compare the solutions from Gauss-Jordan method and the ones obtained using right-inverses.

- ▶ For $A \in \mathbb{R}^{m \times n}$, n > m with full rank, $AB = I_m \longrightarrow B$ is the right inverse.
- ▶ Ax = b can be solved for any b. $x = Bb \implies A(Bb) = b$.
- ightharpoonup There are an infitnite number of Bs \implies an infinite number of solutions ${f x}$.
- Let $\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$. Find a complete solution for the right inverse of \mathbf{A} .
- Solve $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Compare the solutions from Gauss-Jordan method and the ones obtained using right-inverses.
- Let $AB = I_m$. What about the relationship between A^T and B^T ?

Pseudo Inverse

▶ Consider a tall, skinny matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with independent columns. It turns out the Gram matrix $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible. If that is the case then,

$$\left(\mathbf{A}^T\mathbf{A}
ight)^{-1}\mathbf{A}^T\mathbf{A}=\mathbf{I}_n; \ \ \left(\mathbf{A}^T\mathbf{A}
ight)^{-1}\mathbf{A}^T$$
 is a left inverse.

- $oldsymbol{A}^{\dagger} = \left(oldsymbol{A}^T oldsymbol{A}
 ight)^{-1} oldsymbol{A}^T$ is called the *pseudo inverse* or the *Moore-Penrose inverse*.
- lacktriangle For the case of a fat, wide matrix, we have ${f A}^\dagger = {f A}^T \left({f A} {f A}^T
 ight)^{-1}.$
- When **A** is square and invertible, $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$.

Pseudo Inverse

▶ Consider a tall, skinny matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with independent columns. It turns out the Gram matrix $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible. If that is the case then,

$$\left(\mathbf{A}^T\mathbf{A}\right)^{-1}\mathbf{A}^T\mathbf{A}=\mathbf{I}_n; \ \left(\mathbf{A}^T\mathbf{A}\right)^{-1}\mathbf{A}^T$$
 is a left inverse.

- $ightharpoonup \mathbf{A}^{\dagger} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T$ is called the *pseudo inverse* or the *Moore-Penrose inverse*.
- For the case of a fat, wide matrix, we have $\mathbf{A}^{\dagger} = \mathbf{A}^T \left(\mathbf{A} \mathbf{A}^T \right)^{-1}$.
- ▶ When **A** is square and invertible, $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$.
- Solve Ax = b using the A^{\dagger} . $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $b = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find x.

Pseudo Inverse

▶ Consider a tall, skinny matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with independent columns. It turns out the Gram matrix $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible. If that is the case then,

$$(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{A} = \mathbf{I}_n; \quad (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$$
 is a left inverse.

- $lackbox{A}^{\dagger} = \left(\mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T$ is called the *pseudo inverse* or the *Moore-Penrose inverse*.
- For the case of a fat, wide matrix, we have $\mathbf{A}^{\dagger} = \mathbf{A}^T \left(\mathbf{A} \mathbf{A}^T \right)^{-1}$.
- ▶ When **A** is square and invertible, $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$.
- Solve Ax = b using the A^{\dagger} . $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $b = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find x.
- Compare \mathbf{A}^{\dagger} with that of the general left inverse \mathbf{C} . Calculate $\|\mathbf{C}\|^2$ and find out the $\min \|\mathbf{C}\|^2$. What is $\|\mathbf{A}^{\dagger}\|^2$?

Matrix Inverse and Pseudo Inverse through QR factorization

▶ Consider an invertible, square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.

$$\mathbf{A} = \mathbf{Q}\mathbf{R} \implies \mathbf{A}^{-1} = (\mathbf{Q}\mathbf{R})^{-1} = \mathbf{R}^{-1}\mathbf{Q}^{-1} = \mathbf{R}^{-1}\mathbf{Q}^{T}$$

where, $\mathbf{R},\mathbf{Q}\in\mathbb{R}^{n imes n}$. \mathbf{R} is upper triangular, and \mathbf{Q} is an orthogonal matrix.

▶ In the case of a left invertible rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we can factorize $\mathbf{A} = \mathbf{Q}\mathbf{R}$, with $\mathbf{Q} \in \mathbb{R}^{m \times n}$ and $\mathbf{R} \in \mathbb{R}^{m \times m}$.

$$\mathbf{A}^{\dagger} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T = \left(\mathbf{R}^T \mathbf{Q}^T \mathbf{Q} \mathbf{R}\right)^{-1} \mathbf{R}^T \mathbf{Q}^T = \left(\mathbf{R}^T \mathbf{R}\right)^{-1} \mathbf{R}^T \mathbf{Q}^T = \mathbf{R}^{-1} \mathbf{Q}^T$$

For a righ invertible wide, fat matrix, we can find out the pseudo-inverse of A^T , and then take the transpose of the pseudo-inverse.

$$\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{I} \implies \left(\mathbf{A}^{\dagger}\right)^{T}\mathbf{A}^{T} = \left(\mathbf{A}^{T}\right)^{\dagger}\mathbf{A}^{T} = \mathbf{I}$$

$$\mathbf{A}^T = \mathbf{Q}\mathbf{R} \implies \left(\mathbf{A}^T\right)^\dagger = \mathbf{R}^{-1}\mathbf{Q}^T = \left(\mathbf{A}^\dagger\right)^T \implies \mathbf{A}^\dagger = \mathbf{Q}\mathbf{R}^{-T}$$