Sommersemester 2015 Lösungsblatt 11 13. Juli 2015

Theoretische Informatik

Hausaufgabe 1 (5 Punkte)

Geben Sie für die Sprache

$$L = \{ww \, ; \, w \in \{0,1\}^*\}$$

einen linear beschränkten Automaten (LBA) M an, der L akzeptiert.

Lösung

Die Lösung ergibt sich durch Spezialisierung und Vereinfachung der Lösung der Tutoraufgabe 4 von Blatt 8 für $\Sigma = \{0, 1\}$. Wir setzen $\Gamma = \{0, 1, a, b, A, B, X, \square\}$.

$$\begin{array}{llll} \delta(q_0,\square) & = & \{(q_f,\square,N)\}\,, \\ \delta(q_0,0) & = & \{(q_1,a,R)\}\,, & \delta(q_0,1) & = & \{(q_1,b,R)\}\,, \\ \delta(q_1,0) & = & \{(q_1,0,R)\}\,, & \delta(q_1,1) & = & \{(q_1,1,R)\}\,, \\ \delta(q_1,A) & = & \{(q_2,A,L)\}\,, & \delta(q_1,B) & = & \{(q_2,B,L)\}\,, \\ \delta(q_1,\square) & = & \{(q_2,\square,L)\}\,, & \delta(q_2,1) & = & \{(q_3,B,L)\}\,, \\ \delta(q_3,0) & = & \{(q_4,0,L)\}\,, & \delta(q_3,1) & = & \{(q_4,1,L)\}\,, \\ \delta(q_3,a) & = & \{(q_5,a,N)\}\,, & \delta(q_3,b) & = & \{(q_5,b,N)\}\,, \\ \delta(q_4,0) & = & \{(q_4,0,L)\}\,, & \delta(q_4,1) & = & \{(q_4,1,L)\}\,, \\ \delta(q_4,a) & = & \{(q_0,a,N)\}\,, & \delta(q_4,b) & = & \{(q_5,b,N)\}\,. \end{array}$$

Mit Erreichen des Zustands q_5 gilt, dass das Eingabewort gerade Länge besitzt. Ausserdem besteht jetzt das erste Teilwort aus Kleinbuchstaben und das zweite Teilwort aus Großbuchstaben. Der Schreib-/Lesekopf steht auf dem letzten Buchstaben des ersten Teilworts.

$$\begin{array}{llll} \delta(q_{5},a) & = & \{(q_{a},X,R)\}\,, & \delta(q_{5},b) & = & \{(q_{b},X,R)\}\,, \\ \delta(q_{a},X) & = & \{(q_{a},X,R)\}\,, & \delta(q_{b},X) & = & \{(q_{b},X,R)\}\,, \\ \delta(q_{a},A) & = & \{(q_{a},A,R)\}\,, & \delta(q_{b},A) & = & \{(q_{b},A,R)\}\,, \\ \delta(q_{a},B) & = & \{(q_{a},B,R)\}\,, & \delta(q_{b},B) & = & \{(q_{b},B,R)\}\,, \\ \delta(q_{a},\Box) & = & \{(q_{a},\Box,L)\}\,, & \delta(q_{b},\Box) & = & \{(q_{b},B,R)\}\,, \\ \delta(q_{a},A) & = & \{(q_{6},\Box,L)\}\,, & \delta(q_{b},\Box) & = & \{(q_{6},\Box,L)\}\,, \\ \delta(q_{6},A) & = & \{(q_{6},A,L)\}\,, & \delta(q_{6},B) & = & \{(q_{6},B,L)\}\,, \\ \delta(q_{6},A) & = & \{(q_{5},a,N)\}\,, & \delta(q_{6},b) & = & \{(q_{5},b,N)\}\,, \\ \delta(q_{6},\Box) & = & \{(q_{5},C,D)\}\,. & \end{array}$$

Hausaufgabe 2 (5 Punkte)

Sei $P(k, \overline{x})$ ein primitiv-rekursives (n+1)-stelliges Prädikat, wobei $\overline{x} = (x_1, \dots, x_n)$ eine Abkürzung sei für die letzten n Stellen und n = 0 den einstelligen Fall P(k) bedeute. In den Beweisen dürfen erweiterte Komposition und erweiterte Schemata benützt werden.

1. Sei $\max \emptyset = 0$. Zeigen Sie, dass die folgende Funktion $q(m, \overline{x})$ primitiv-rekursiv ist.

$$q(m, \overline{x}) = \max\{k; k \leq m \land P(k, \overline{x})\}.$$

Die entsprechende Aussage aus der Vorlesung ist zum Beweis nicht verwendbar. Begründen Sie diesen Sachverhalt!

2. Zeigen Sie, dass der folgende beschränkte Existenzquantor primitiv-rekursiv ist.

$$Q(m, \overline{x}) := \exists k \leq m : P(k, \overline{x}).$$

<u>Hinweis</u>: Es ist von Vorteil, zunächst im Fall $\hat{P}(0, \overline{x}) = 0$ für alle $m \ge 0$ die folgende Gleichung zu beweisen:

$$\hat{Q}(m, \overline{x}) = 1 \div (1 \div q(m, \overline{x})).$$

Lösung

1. Wir benutzen die Erweiterungen der Komposition bzw. des rekursiven Schemas wie folgt:

$$q(0,\overline{x}) = 0,$$

$$q(m+1,\overline{x}) = q(m,\overline{x}) + \hat{P}(m+1,\overline{x}) \cdot ((m+1) - q(m,\overline{x})).$$

Die Funktion q(n) aus der Vorlesung betraf nur den Fall n=0, d.h. \overline{x} war leer.

(2P)

2. Wir betrachten den Fall $\hat{P}(0, \overline{x}) = 0$.

m = 0:

$$\hat{Q}(0,\overline{x}) = 0 = 1 \div (1 \div q(0,\overline{x})).$$

 $m \rightarrow m + 1$:

Es gilt $Q(m+1, \overline{x}) = Q(m, \overline{x}) \vee P(m+1, \overline{x})$.

Fall $\hat{Q}(m, \overline{x}) = 1$:

Wegen $1 = \hat{Q}(m, \overline{x}) = 1 \div (1 \div q(m, \overline{x}))$ gilt $q(m, \overline{x}) \ge 1$ und mithin $q(m+1, \overline{x}) \ge 1$. Daraus folgt die Rechnung:

$$\hat{Q}(m+1,\overline{x}) = \hat{Q}(m,\overline{x})
= 1 \div (1 \div q(m,\overline{x}))
= 1 \div (1 \div q(m+1,\overline{x})).$$

$$\begin{split} &\frac{\operatorname{Fall}\; \hat{Q}(m,\overline{x}) = 0\colon}{\operatorname{Zun\"{a}chst}\; \operatorname{folgt}\; \hat{Q}(m,\overline{x}) = \hat{P}(m,\overline{x}) = 0\:.} \\ &\operatorname{Aus}\; 0 = \hat{Q}(m,\overline{x}) = 1 \,\dot{-}\, (1 \,\dot{-}\, q(m,\overline{x})) \; \operatorname{folgt}\; \operatorname{des}\; \operatorname{Weiteren}\; q(m,\overline{x}) = 0\:: \\ &1 \,\dot{-}\, (1 \,\dot{-}\, q(m+1,\overline{x})) \\ &= 1 \,\dot{-}\, (1 \,\dot{-}\, (q(m,\overline{x}) + \hat{P}(m+1,\overline{x}) \,\cdot ((m+1) \,\dot{-}\, q(m,\overline{x}))) \\ &= 1 \,\dot{-}\, (1 \,\dot{-}\, \hat{P}(m+1,\overline{x}) \,\cdot (m+1)) \\ &= \hat{P}(m+1,\overline{x}) \\ &= \hat{Q}(m+1,\overline{x})\:. \end{split}$$

Wir betrachten den Fall $\hat{P}(0, \overline{x}) = 1$.

Dann ist klar, dass für alle m die folgende triviale Gleichung gilt:

$$\hat{Q}(m,\overline{x})=1$$
.

Zusammenfassend kann nun die Funktion $\hat{Q}(m, \overline{x})$ durch Komposition primitiv rekursiver Funktionen dargestellt werden. Dabei wird die Fallunterscheidung durch Komposition dargestellt wie folgt:

$$\hat{Q}(m,\overline{x}) = \hat{P}(0,\overline{x}) + (1 - \hat{P}(0,\overline{x}))(1 - (1 - q(m,\overline{x}))).$$
(3P)

Bemerkung: Mit dem genannten Vorteil ist hier gemeint, dass die Funktion $\hat{Q}(m, \overline{x})$ der Teilaufgabe 2 gestützt auf das Ergebnis von Teilaufgabe 1 durch Komposition und ohne neuerliche Verwendung des Rekursionschemas konstruiert wurde. Natürlich ist auch eine alternative Konstruktion mit Verwendung des Rekursionschemas möglich.

Hausaufgabe 3 (5 Punkte)

Ganzzahlige Division Div(m, n) von natürlichen Zahlen m und n ist definiert durch

$$Div(m,0) = 0$$
 und $Div(m,n) = \max\{k : k \cdot n \le m\}$ für $n \ne 0$.

Zeigen Sie, dass Div(m, n) primitiv-rekursiv ist.

<u>Hinweis</u>: Verwerten Sie die Erkenntnisse aus Hausaufgabe 2 und definieren Sie ein Prädikat $P(k,m,n):=(k\cdot n\leq m)\wedge (n\neq 0)$. Beweisen Sie zunächst, dass P(k,m,n) primitiv rekursiv ist.

Lösung

P ist primitiv-rekursiv wegen $\hat{P}(k, m, n) = (1 \div (k \cdot n \div m)) \cdot (1 \div (1 \div n))$. (1P) Nun folgt für $n \neq 0$:

$$Div(m,n) = \max\{k; k \cdot n \le m\}$$

$$= \max\{k; k \le m \land k \cdot n \le m \land n \ne 0\}$$

$$= \max\{k; k \le m \land P(k,m,n)\}$$

$$= q(m,m,n).$$

Die Gleichung gilt sogar für n = 0, denn für n = 0 gilt $\hat{P}(k, m, 0) = 0$. Mithin folgt q(m, m, 0) = 0.

Daraus folgt Div(m,0) = q(m,m,0) = 0.

Damit ist Div(m, n) primitiv rekursiv. (4P)

Hausaufgabe 4 (5 Punkte)

Wir betrachten die Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0$, die für alle $n \geq 3$ der linearen Rekursion f(n) = f(n-1) + f(n-3) genügt. Außerdem gelte f(0) = 1, f(1) = 2, f(2) = 3.

- 1. Zeigen Sie, dass f primitiv-rekursiv ist.
- 2. Sei W_f der Wertebereich von f, d.h. $W_f = \{f(n); n \in \mathbb{N}_0\}$. Zeigen Sie, dass W_f entscheidbar ist.
- 3. Sei $g: \mathbb{N}_0 \to \mathbb{N}_0$ die Umkehrfunktion von f auf dem Wertebereich W_f von f, d. h., dass für alle $n \in \mathbb{N}_0$ gilt n = g(f(n)) und für $y \notin W_f$ gilt, dass g(y) nicht definiert ist. Zeigen Sie, dass g WHILE-berechenbar ist.

Lösung

1. Dass f primitiv-rekursiv ist, folgt aus dem folgenden LOOP-Programm, das den Funktionswert von f für $n \geq 3$ in der Variablen x_2 berechnet.

$$x_0 := 1; \ x_1 := 2; \ x_2 := 3; \ x_3 := n - 2;$$

 $LOOP \ x_3 \ DO$
 $x_4 := x_0 + x_2; \ x_0 := x_1; \ x_1 := x_2; \ x_2 := x_4;$
 $END;$ (1P)

2. Offenbar ist f streng monoton wachsend, d. h., es gilt f(n-1) < f(n) für alle $n \in \mathbb{N}$. Außerdem gilt n < f(n) für alle $n \ge 0$.

Die charakteristische Funktion $\chi_{W_t}(m)$ ist damit wie folgt berechenbar.

$$\chi_{W_f}(m) = \begin{cases} 1 : (\exists n \le m)[f(n) = m], \\ 0 : \text{sonst.} \end{cases}$$
(2P)

(2P)

3. Wir betrachten folgendes Programm, das offenbar durch ein WHILE-Programm darstellbar ist.

$$n := 0; \ z := f(n);$$

while $z \neq y$ do
 $n := n + 1; \ z := f(n);$
end

g(y) wird in der Variablen n berechnet.

Zusatzaufgabe 9 (wird nicht korrigiert)

Ein 2-Kellerautomat $K = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, Z'_0, F)$ ist ein Kellerautomat, der über einen zweiten Keller verfügt. Der zweite Keller wird mit Z'_0 initialisiert. Die Übergangsfunktion $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \times \Gamma \to \mathcal{P}_e(Q \times \Gamma^* \times \Gamma^*)$ beschreibt die Vorgehensweise des 2-KA wie folgt $(\mathcal{P}_e$ bezeichnet die Menge aller endlichen Teilmengen): Liest der 2-KA im Zustand q die Eingabe b (auch $b = \epsilon$ ist möglich), sind Z_1, Z_2 die obersten Zeichen der beiden Keller und gilt $(q', \alpha_1, \alpha_2) \in \delta(q, b, Z_1, Z_2)$, dann kann der 2-KA in den Zustand q' übergehen und hierbei Z_1 durch α_1 und Z_2 durch α_2 ersetzen.

Zeigen Sie: Jede (deterministische) Turingmaschine $T=(Q,\Sigma,\Gamma,\delta,q_0,\Box,F)$ kann durch einen 2-Kellerautomaten $K=(Q',\Sigma,\Gamma',\delta',q_0',Z_0,Z_0',F')$ simuliert werden.

<u>Hinweis</u>: Bei einer Simulation müssen die Berechnungen bzw. Konfigurationsänderungen zweier Machinen einander zugeordnet werden können und die akzeptierten Sprachen müssen gleich sein.

Lösung

Die Idee für die Simulation von $T=(Q,\Sigma,\Gamma,\delta,q_0,\Box,F)$ ist, eine Turing-Konfiguration (α,q,β) darzustellen durch die Konfiguration $(q,\epsilon,\alpha^R Z_0,\beta Z_0')$, wobei α^R gleich dem gespiegelten Wort α ist. Konfigurationsübergänge werden im Kellerautomaten stets mit leeren Eingaben ϵ modelliert.

Beim Start von T liegt das Wort x auf dem Band, der Kopf von T befindet sich über dem ersten Element von $x\square$. Dies bedeutet, dass wir diese Anfangskonfiguration nach dem Start von K erst herstellen müssen. Dazu dient die folgende Konstruktion.

Sei
$$K = (Q \cup \{q'_0, q'_1\}, \Sigma, \Gamma \cup \{Z_0, Z'_0\}, \delta', q'_0, Z_0, Z'_0, F).$$

Der 2-Kellerautomat legt zuerst die Eingabe auf den linken Keller. Danach wird der Inhalt des linken Kellers auf den rechten Keller gelegt, wobei der linke Keller fast, d. h. bis auf Z_0 , geleert wird. Die beiden Keller entsprechen dann dem Teil des Bandes der Turing-Maschine, der links bzw. rechts vom Lesekopf ist.

```
\begin{array}{ll} \delta'(q'_0,a,*,*) &= \{(q'_0,a*,*)\}\,, \text{ Eingabe auf linken Keller legen.} \\ \delta'(q'_0,\epsilon,*,*) &= \{(q'_1,*,*)\}\,, \text{ Eingabe fertig.} \\ \delta'(q'_1,\epsilon,A,*) &= \{(q'_1,\epsilon,A*)\}\,, \ A \neq Z_0, \text{ linken Keller} \rightarrow \text{rechten Keller.} \\ \delta'(q'_1,\epsilon,Z_0,*) &= \{(q_0,Z_0,*)\}\,. \end{array}
```

Nun beginnt die eigentliche Simulation der Turingmaschine T, wobei δ' definiert ist für $a \neq Z_0, b \neq Z_0'$ durch

$$\begin{array}{lll} \delta'(q,\epsilon,a,b) & = & \{(q',ca,\epsilon)\,;\, (q',c,R) \in \delta(q,b)\} \\ & \cup \{(q',\epsilon,ac)\,;\, (q',c,L) \in \delta(q,b)\} \\ & \cup \{(q',a,c)\,;\, (q',c,N) \in \delta(q,b)\}\,, \end{array}$$

für $a = Z_0, b \neq Z'_0$ durch

$$\delta'(q, \epsilon, Z_0, b) = \{(q', cZ_0, \epsilon) ; (q', c, R) \in \delta(q, b)\}$$

$$\cup \{(q', Z_0, \Box c) ; (q', c, L) \in \delta(q, b)\}$$

$$\cup \{(q', Z_0, c) ; (q', c, N) \in \delta(q, b)\},$$

für $a \neq Z_0, b = Z_0'$ durch

$$\begin{array}{lll} \delta'(q,\epsilon,a,Z_0') & = & \{(q',ca,Z_0')\,;\,(q',c,R)\in\delta(q,\square)\}\\ & \cup \{(q',\epsilon,acZ_0')\,;\,(q',c,L)\in\delta(q,\square)\}\\ & \cup \{(q',a,cZ_0')\,;\,(q',c,N)\in\delta(q,\square)\}\,, \end{array}$$

für
$$a=Z_0, b=Z_0'$$
 durch

$$\delta'(q, \epsilon, Z_0, Z_0') = \{(q', cZ_0, Z_0'); (q', c, R) \in \delta(q, \square)\} \\ \cup \{(q', Z_0, \square cZ_0'); (q', c, L) \in \delta(q, \square)\} \\ \cup \{(q', Z_0, cZ_0'); (q', c, N) \in \delta(q, \square)\}.$$

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

- 1. Im Folgenden bezeichne a(n, m) die Ackermann-Funktion. Berechnen Sie a(1, 6) und a(2, 1)!
- 2. Sei a die Ackermann-Funktion. Zeigen Sie, dass die folgenden Wertemengen entscheidbar sind.

(i)
$$W_a = \{a(n, m); n, m \in \mathbb{N}_0\}$$
. (ii) $W_a' = \{a(n, n); n \in \mathbb{N}_0\}$.

Lösung

1. (i) Die Rekursionsgleichungen liefern

$$a(1,6) = a(0, a(1,5)) = a(1,5) + 1$$

$$= a(1,4) + 2$$

$$= a(1,3) + 3$$

$$= a(1,2) + 4$$

$$= a(1,1) + 5$$

$$= a(1,0) + 6$$

$$= a(0,1) + 6 = 2 + 6 = 8.$$

(ii) Wir rechnen mit Rekursionsgleichungen in ausführlicher Notation

2. (i) Es gilt $W_a \subseteq \mathbb{N}_0$. Grundsätzlich kann man Entscheidbarkeitsfragen auf die Definition zurückführen. Danach ist W_a genau dann entscheidbar, wenn die charakteristische Funktion $\chi_{W_a} : \mathbb{N}_0 \to \{0,1\}$ berechenbar ist.

Bekanntlich ist a eine berechenbare Funktion. Leider (oder nicht leider) ist es so, dass nicht jede berechenbare Funktion einen entscheidbaren Wertebereich besitzt. Wir müssen also den konkreten Wertebereich von a analysieren bzw. zeigen, dass für χ_{W_a} ein Algorithmus existiert.

Nun liefert uns bereits die erste definierende Gleichung der Ackermann-Funktion a(0,n)=n+1 für alle $n\in\mathbb{N}_0$ den Beweis, dass $\mathbb{N}\subseteq W_a$ gilt. Tatsächlich gilt sogar $\mathbb{N}=W_a$, was aber nicht bewiesen werden muss, denn sicher gilt nun entweder $W_a=\mathbb{N}$ oder $W_a=\mathbb{N}_0$. In beiden Fällen ist χ_{W_a} total und berechenbar.

(ii) Wir berechnen $\chi_{W'_a}(x) = c$ mit dem folgenden WHILE-Programm, wobei wir uns auf ein WHILE-Programm zur Berechnung der Ackermann-Funktion a(n,n) stützen.

```
\begin{split} x_0 &:= x \; ; \; c_0 := 0 \; ; \\ n_0 &:= x_0 \; ; \\ \text{LOOP} \; n_0 \; \text{DO} \\ n_0 &:= n_0 - 1 \; ; \\ a_0 &:= a(n_0, n_0) \; ; \\ \text{IF} \; a_0 &= x_0 \; \text{THEN} \; c_0 := 1 \; \text{END} \; \text{END} \; ; \\ c &:= c_0 \end{split}
```

Die Korrektheit des Programms ergibt sich aus der strengen Monotonie von a(n,n) zusammen mit n < a(n,n).

Mit den Eigenschaften der Ackermann-Funktion nach Vorlesung folgt die strenge Monotonie von a', insbesondere

$$a'(n) = a(n, n) < a(n, n + 1) < a(n + 1, n) < a(n + 1, n + 1) = a'(n + 1)$$
.

Nach Vorlesung gilt auch

$$n < a(n,n)$$
.

Vorbereitung 2

Sei $a: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ die Ackermann-Funktion.

- 1. Zeigen Sie, dass $f(m,n) := (a(m,n))^2$ nicht primitiv-rekursiv ist.
- 2. Die Funktion $a': \mathbb{N}_0 \to \mathbb{N}_0$ sei gegeben durch a'(n) = a(n, n). Sei $W_{a'} = \{a'(n) ; n \in \mathbb{N}_0\}$.

Zeigen Sie, dass die Umkehrfunktion $b': W_{a'} \to \mathbb{N}_0$ von a' μ -rekursiv ist.

Lösung

1. Wir nehmen an, f sei primitiv-rekursiv, und geben eine primitiv-rekursive Definition von a an. Dazu benötigen wir die (ganzzahlige) Quadratwurzelfunktion, die man leicht mit Hilfe der beschränkten Maximierung als primitiv rekursiv nachweisen kann:

$$sqrt(n) = max \{i \le n ; i^2 - n = 0\}$$

Dann ist a(m, n) = sqrt(f(m, n)), und somit wäre a primitiv-rekursiv...ein Widerspruch.

2. Die Ackermann-Funktion ist nach Vorlesung total und berechenbar, und folglich auch μ -rekursiv. Wegen $a'(n) = a(\pi_1^1(n), \pi_1^1(n))$ ist a' ebenfalls μ -rekursiv.

Nach Aufgabenstellung können wir von der Existenz einer eindeutigen Umkehrfunktion $b':W_{a'}\to\mathbb{N}_0$ ausgehen. Die Existenz vob' folgt z.B. aus der strengen Monotonie der Ackermann-Funktion.

Wir verwenden den μ -Operator, um die Funktion b' zu definieren. Sei $h: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$, mit

$$h(n,m) = (m \div a'(n)) + (a'(n) \div m)$$
.

Die Definition ist gerade so gewählt, dass $h(n, m) = 0 \iff a'(n) = m$ gilt. Es gilt

$$(\mu h)(m) = \begin{cases} \min \{n \in \mathbb{N}_0 ; h(n,m) = 0\} & \text{falls ein solches } n \text{ existiert und} \\ \underline{h(k,m) \neq \bot \text{ für alle } k \leq n \text{ gilt}} \\ \underline{\bot} & \text{sonst} \end{cases}$$

$$= \begin{cases} \min \{n \in \mathbb{N}_0 ; a'(n) = m\} \\ \underline{\bot} & \text{sonst} \end{cases}$$

$$= \begin{cases} b'(m) & \text{falls } m \in W_{a'} \\ \underline{\bot} & \text{sonst} \end{cases}$$

$$= \begin{cases} b'(m) & \text{falls } m \in W_{a'} \\ \underline{\bot} & \text{sonst} \end{cases}$$

Vorbereitung 3

Wir betrachten die in der Vorlesung beschriebene Kodierung von Turingmaschinen durch Wörter über $\Sigma^* = \{0, 1\}^*$. Für ein $w \in \Sigma^*$ beschreibt $\varphi_w : \Sigma^* \to \Sigma^*$ dann die Funktion, die durch die Turingmaschine M_w berechnet wird. Finden Sie informelle Beschreibungen für die folgenden Mengen:

1.
$$A = \{w \in \Sigma^* ; \varphi_w = \Omega\}$$
.

$$2. \ B=\left\{w\in \Sigma^*\, ;\, \varphi_w(101)\neq \bot\right\}.$$

Bemerkung: Die Standard-Turingmaschine, die für ein ungeeignetes Kodewort w gewählt wird, terminiert nie und berechnet deshalb die nirgends definierte Funktion Ω .

Lösung

- 1. Die Menge aller (Codes der) Turingmaschinen, die die überall undefinierte Funktion Ω berechnen, die also auf keiner Eingabe halten.
- 2. Die Menge aller (Codes der) Turingmaschinen, die auf der Eingabe 101 anhalten.

Vorbereitung 4

Zeigen Sie die Unentscheidbarkeit der folgenden Mengen und wenden Sie zum Beweis Techniken der Reduzierbarkeit eines Problems A auf ein Problem B an.

- 1. $H_{\Sigma^*} = \{w ; M_w \text{ hält für mindestens eine Eingabe}\}.$
- 2. $C = \{w : M_w \text{ berechnet die Funktion } g \text{ mit } g(n) = 0 \text{ für alle n} \}$.

Lösung

Wir gehen davon aus, dass es eine universelle Turingmaschine U gibt, die die Berechnungen jeder Turingmaschine M_w auf deren Eingabe x simulieren kann, und deshalb insbesondere genau dann hält, wenn M_w hält. Außerdem wurde in der Vorlesung bewiesen, dass das Halteproblem auf leerem Band H_0 nicht entscheidbar ist.

1. Wir reduzieren das bekannte Halteproblem H_0 auf das Problem H_{Σ^*} durch Konstruktion einer totalen und berechenbaren Funktion f wie folgt.

Es sei w' = f(w) der Code einer Turingmaschine $M_{w'}$, die bei Eingabe eines Wortes y folgendes ausführt: Zunächst wird die Turingmaschine M_w bei leerer Eingabe simuliert (beispielsweise auf einem zweiten Band). Falls M_w hält, dann hält auch $M_{w'}$.

Offenbar gilt nun $w \in H_0 \Leftrightarrow f(w) \in H_{\Sigma^*}$, d.h. f reduziert H_0 auf H_{Σ^*} .

2. Wir verfahren analog zur Lösung der vorhergehenden Aufgabe und reduzieren mit Hilfe einer Funktion f das Problem H_0 auf C:

Es sei w' = f(w) der Code einer Turingmaschine $M_{w'}$, die bei Eingabe eines Wortes y folgendes ausführt: Zunächst wird die Turingmaschine M_w bei leerer Eingabe simuliert. Falls M_w hält, dann schreibt $M_{w'}$ eine 0 auf das Band und terminiert.

Offenbar gilt nun $w \in H_0 \Leftrightarrow f(w) \in C$, d.h. f reduziert H_0 auf C.

Tutoraufgabe 1

- 1. Falls A auf B mit Funktion f reduzierbar ist, dann gilt $f^{-1}(B) = A$, aber nicht notwendigerweise f(A) = B. Beweis!
- 2. Falls A reduzierbar auf B und B semi-entscheidbar ist, dann ist auch A semi-entscheidbar. Beweis!
- 3. Sei $B \subseteq \Sigma^*$ mit $B \neq \Sigma^*$ und $B \neq \emptyset$ entscheidbar. Zeigen Sie: B ist reduzierbar auf $\Sigma^* \setminus B$.

Lösung

1. Nach Definition gilt $x \in A \Leftrightarrow f(x) \in B$, und wir erinnern an die Definition $f^{-1}(B) = \{x : f(x) \in B\}.$

Nun ist $x \in A \Rightarrow f(x) \in B$ gleichbedeutend mit $f(A) \subseteq B$, woraus insbesondere auch $A \subseteq f^{-1}(B)$ folgt. Aus $x \in A \Leftarrow f(x) \in B$ folgt $A \supseteq f^{-1}(B)$. Damit hat man $A = f^{-1}(B)$ bewiesen.

Durch Angabe eines Beispiels zeigen wir nun, dass i. A. $f(A) \neq B$ gilt.

Sei
$$\Sigma^* = \{0, 1\}^*, B = \{0\}^* \subseteq \Sigma^* \text{ und } A = \{0x ; x \in \Sigma^*\}.$$

Die Abbildung $f: \Sigma^* \to \Sigma^*$ mit

$$f(w) = \begin{cases} 0 & \text{falls } w \in A \\ 1 & \text{falls } w \notin A \end{cases}$$

ist offenbar total, berechenbar und reduziert A auf B. Es gilt $00 \in B$, aber $00 \notin f(A)$. Man bemerkt, dass B beliebig vergrößert werden kann, solange $B \cap f(\overline{A}) = \emptyset$ erfüllt bleibt. Im Beispiel gilt $f(\overline{A}) = \{1\}$.

2. Sei f eine totale, berechenbare Funktion, die A auf B reduziert. Dann gilt für die charakteristische Funktion χ_B' von B

$$w \in A \Rightarrow f(w) \in B \Rightarrow \chi'_B(f(w)) = 1$$

und

$$w\not\in A\Rightarrow f(w)\not\in B\Rightarrow \chi_B'(f(w))=\bot$$

Daraus folgt $\chi'_A(w) = \chi'_B(f(w))$.

Offenbar ist χ_A berechenbar, mithin ist A semi-entscheidbar.

3. Seien $a \in \Sigma^* \setminus B$ und $b \in B$. Dann definieren wir die Abbildung $f: \Sigma^* \to \Sigma^*$ mit

11

$$f(w) = \begin{cases} a & \text{für } \chi_B(w) = 1\\ b & \text{für } \chi_B(w) = 0 \end{cases}$$

f ist offenbar total, berechenbar und reduziert B auf $\Sigma^* \setminus B$.

Tutoraufgabe 2

1. Seien L_1 und L_2 rekursiv auflistbare Mengen. Sind die folgenden Mengen L_a und L_b rekursiv auflistbar? Beweisen Sie Ihre Antwort!

(i)
$$L_a = L_1 \cup L_2$$
 (i) $L_b = \{x : x \in L_1 \Leftrightarrow x \in L_2\}$

2. Seien $L_n \subseteq A$ für alle $n \in \mathbb{N}_0$ rekursiv auflistbar. Zeigen Sie, dass dann

$$L = \bigcup_{i \in \mathbb{N}} L_i$$

abzählbar, aber nicht notwendigerweise rekursiv auflistbar ist.

Lösung

- 1. Seien $f_1: \mathbb{N}_0 \to L_1$ und $f_2: \mathbb{N}_0 \to L_2$ totale, berechenbare Funktionen, die beide surjektiv sind.
 - (i) Wir zeigen, dass L_a rekursiv auflistbar ist. Wir können ohne Einschränkung annehmen, dass L_1 und L_2 nicht leer sind, denn ansonsten ist L_a gleich einer der beiden Mengen, und somit rekursiv auflistbar. Es existieren also Aufzählungsfunktionen f_1 und f_2 . Wir definieren

$$f_a(n) = \begin{cases} f_1(m) & \text{falls } n = 2m \\ f_2(m) & \text{falls } n = 2m + 1 \end{cases}$$

 f_a ist surjektiv auf $\mathbb{N}_0 \to L_1 \cup L_2$, total und berechenbar.

(ii) Seien $L_1, L_2 \subseteq \Sigma^*$. Dann gilt $L_b = (L_1 \cap L_2) \cup (\overline{L_1} \cap \overline{L_2})$. Wir zeigen, dass L_b im Allgemeinen nicht rekursiv auflistbar ist. Wir benützen dabei die Äquivalenz, dass eine Menge genau dann rekursiv auflistbar ist, wenn sie semi-entscheidbar ist.

Es genügt $L_1=\emptyset$ zu setzen und L_2 so zu wählen, dass L_2 semi-entscheidbar und das Komplement $\overline{L_2}$ nicht semi-entscheidbar ist.

Sei $L_2 = K = \{w ; M_w[w] \downarrow \}$. Dann ist \overline{K} nicht semi-entscheidbar und mithin nicht rekursiv auflistbar. Die leere Menge ist nach Definition rekursiv auflistbar. Wegen $L_b = \overline{L_2}$ ist damit L_b nicht rekursiv auflistbar.

2. Natürlich ist jede nicht rekursiv auflistbare, aber abzählbare Menge eine abzählbare Vereinigung von einelementigen Mengen, von denen jede einzelne natürlich rekursiv auflistbar ist.

Tutoraufgabe 3

Zeigen Sie mit Hilfe des Satzes von Rice:

- 1. $L_1 = \{w \in \Sigma^* ; L(M_w) \text{ ist kontextfrei}\}\$ ist unentscheidbar.
- 2. $L_2 = \{w \in \Sigma^* ; \forall n \in \mathbb{N}_0. \varphi_w(n) = 3n + 5\}$ ist unentscheidbar.

Lösung

Der Satz von Rice vereinfacht die Reduktionsbeweise. Wir müssen lediglich prüfen, ob die Eigenschaften L_1 und L_2 nicht triviale Eigenschaften der berechneten Funktionen sind.

1. Es gibt mindestens eine Sprache $L \subseteq \Sigma^*$, die nicht kontextfrei ist, denn kontextfreie Sprachen sind entscheidbar, also kann das Halteproblem nicht kontextfrei sein. Daraus folgt $L_1 \neq \Sigma^*$.

Andererseits gibt es mindestens eine kontextfreie Sprache über Σ , d. h. $L_1 \neq \emptyset$.

L₂ ≠ ∅, weil es für die Berechnung von 3n + 5 eine Turingmaschine gibt.
 Andererseits ist klar, dass nicht jede Turingmaschine die Funktion 3n + 5 berechnet, d. h. L₂ ≠ Σ*.

Tutoraufgabe 4

1. Sei $g: \mathbb{N}_0 \to \mathbb{N}_0$ total und μ -rekursiv, und sei $f: \mathbb{N}_0 \to \mathbb{N}_0$ definiert durch die Startwerte f(0) = 1 und f(1) = 2 zusammen mit der Rekursion

$$f(n) = g(n) + f(n-1) \cdot f(n-2)$$
 für alle $n \in \mathbb{N} \setminus \{1\}$.

Zeigen Sie die μ -Rekursivität der Funktion f, indem Sie die Erzeugungsregeln für μ -rekursive Funktionen zusammen mit einer Paarfunktion $p: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ und deren Umkehrfunktionen c_1 und c_2 anwenden.

<u>Hinweis</u>: Sie dürfen zusätzlich zu den Basisfunktionen der primitiven Rekursion die folgenden Funktionen als primitiv-rekursiv annehmen: plus(m,n) (+), times(m,n) (·), pred(n), p(m,n), $c_1(n)$, $c_2(n)$ und die konstante k-stellige Funktion c_n^k . Sie dürfen die erweiterte Komposition und das erweiterte rekursive Definitionsschema benützen. LOOP- und WHILE-Programme sind nicht erlaubt.

2. Sei $f: \mathbb{N}_0 \to \mathbb{N}_0$ definiert durch die Startwerte f(0)=1 und f(1)=2 zusammen mit der Rekursion

$$f(n) = 1 + f(n-1) \cdot f(n-2)$$
 für alle $n \in \mathbb{N} \setminus \{1\}$.

Zeigen Sie, dass f primitiv-rekursiv ist, indem Sie f durch ein LOOP-Programm darstellen. $IF\ THEN\ ELSE$ Konstrukte sowie arithmetische Operationen dürfen verwendet werden.

Lösung

1. Sei k(n) = p(f(n), f(n+1)). Dann gilt

$$k(0) = p(1,2),$$

 $k(n+1) = p(c_2(k(n)), g(n+2) + c_2(k(n)) \cdot c_1(k(n))).$

Mithin ist k μ -rekursiv.

Wegen $f(n) = c_1(k(n))$ ist damit auch f μ -rekursiv.

2. Das folgende LOOP-Programm basiert auf den Variablen x_0, \ldots, x_5 . In x_0 wird das Ergebnis f(n) ausgegeben, x_1 enthält beim Start das Argument n.

```
\begin{array}{l} x_2 := x_1 - 1; \; x_3 := 1; \; x_4 := 2; \\ LOOP \; x_2 \; DO \\ x_5 := x_4 * x_3; \\ x_5 := x_5 + 1; \\ x_3 := x_4; \; x_4 := x_5; \\ END; \\ x_0 := x_5 \\ IF \; x_1 = 0 \; THEN \; x_0 := 1 \; END; \\ IF \; x_1 = 1 \; THEN \; x_0 := 2 \; END \end{array}
```

Wenn wir den Satz der Vorlesung benutzen, dann folgt aus der Existenz eines LOOP-Programms für die Funktion f die primitive Rekursivität von f.