Statistics Ph.D. Qualifying Exam: Part II

November 3, 2001

Student Name:

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

1	2	3	4	5	6	7	8	9	10	11	12

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Let $\{X_1, \ldots, X_n\}$ be a random sample from the normal distribution with mean 0 and variance $\sigma^2 > 0$. Define the quadratic forms $s_i = \underset{\sim}{x'} A_i \underset{\sim}{x}, i = 1, 2$, where $\underset{\sim}{x} = (X_1, \ldots, X_n)'$ and the A_i 's are symmetric matrices of real numbers.
 - (a) Show that if $A_i^2 = A_i$, then s_i/σ^2 is distributed as a central chi-square variable with degrees of freedom $f_i = rank(A_i)$.
 - (b) Show that if $A_iA_j=0$, then s_1 and s_2 are independently distributed of one another.

2. Let X_1 and X_2 be independently and identically distributed from a geometric distribution with probability mass function given by

$$p(x) = P(X = x) = p(1 - p)^{x-1}$$
, where $x = 1, 2, 3, \dots$

- (a) Find the UMVUE for p^2 .
- (b) Find the UMVUE for $(p+1)^2/p$.

3. Let $\{X_1, \ldots, X_n\}$ be a random sample from the uniform distribution $U(\theta, \theta + 1)$. To test $H_0: \theta = 0$ versus $H_1: \theta > 0$, we use the test

reject
$$H_0$$
, if $\min_{1 \le i \le n} X_i \ge 1$ or $\max_{1 \le i \le n} X_i \ge c$,

where c is a constant to be determined.

- (a) Find c such that the test will have probability of type I error α .
- (b) Find the power function.
- (c) Is the test UMP test? Explain.
- (d) Find the values of n and c so that it will have level $\alpha = 0.1$ and power at least 0.8 if $\theta > 1$.

- 4. Let X_1, X_2, \ldots be a sequence of independent Exponential(λ) random variables. Let $N \sim \text{Geometric}(p)$ be a geometric random variable that is independent of the X's. Let $X_{(1)}, \ldots, X_{(N)}$ be the order statistics based on a sample of size N.
 - (a) Prove that

$$P\{X_{(1)} > a\} = \frac{pe^{-\lambda a}}{1 - (1 - p)e^{-\lambda a}}.$$

(b) Hence, otherwise, find $E(X_{(1)})$.

- 5. Suppose that diseased trees are distributed randomly and uniformly throughout a large forest with an average of λ per acre. Let X_1, X_2, \ldots, X_n be the numbers of diseased trees observed in n one-acre plots. Let θ be the probability that a random chosen one-acre plot has no tree.
 - (a) Find the UMVUE for θ .
 - (b) Find the UMVUE for $\lambda\theta$.

- 6. Let $\{X_1, \ldots, X_m\}$ be a random sample from the normal distribution with mean μ_1 and variance $\sigma^2 > 0$ and $\{Y_1, \ldots, Y_n\}$ a random sample from the normal distribution with mean μ_2 and variance $\sigma^2 > 0$. Assume that the X_i 's are independently distributed of the Y_j 's.
 - (a) Derive the likelihood ratio test procedure for testing $H_0: \mu_1 = \mu_2$ versus $H_1: \mu_1 \neq \mu_2$.
 - (b) What is the sampling distribution of your testing statistics under H_0 ?

7. Suppose that X_1 , X_2 , X_3 , and X_4 are independently distributed of each other. For i = 1, 2, 3, 4, let the probability density function X_i be

$$f_i(x) = \begin{cases} \lambda_i e^{-\lambda_i x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

- (a) Find $P(\min(X_1, X_2) < \min(X_3, X_4))$ and $P(X_1 < \min(X_2, X_3) < X_4)$.
- (b) Now suppose that $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 1/\theta$. Compare the following two estimators of θ : $\hat{\theta_1} = (X_1 + X_2 + X_3 + X_4)/4$ and $\hat{\theta_2} = 4 \min(X_1, X_2, X_3, X_4)$.

- 8. Let X follow a Poisson distribution with mean λ and given $X=k,\,Y|X=k$ follows a binomial distribution, B(k,p).
 - (a) Find the distribution of Y.
 - (b) Show that Y and X Y are independent.
 - (c) Find P(X = x | Y = y).

- 9. Let $\{X_1, \ldots, X_n\}$ be a random sample from the population with density $f(x; \theta), x \in S, \theta \in \Omega$. Denote by $L = L(\theta|X) = \prod_{i=1}^n f(X_i; \theta)$. Suppose that the following conditions hold:
 - (i) $s = \frac{1}{L} \frac{\partial}{\partial \theta} L$ exists for all $X_i \in S$ and all $\theta \in \Omega$.
 - (ii) $\lambda = E(s^2|\theta) > 0$ for all $\theta \in \Omega$.
 - (iii) It is permissible to interchange the operator E and $\frac{\partial}{\partial \theta}$. That is, $\frac{\partial}{\partial \theta}E = E\frac{\partial}{\partial \theta}$.
 - (a) Show that the statistic u is the UMVUE of θ if and only if the following condition holds:

$$\frac{1}{L} \frac{\partial}{\partial \theta} L(\theta | X) = C(\theta)(u - \theta),$$

where $C(\theta)$ is a function of θ but independent of X_i , i = 1, ..., n.

(b) Given that the condition in (a) holds, obtain the variance of u.

10. Let $X_1, X_2, ... X_n$ be a random sample from a population with probability function

$$f(x;\theta) = \theta(1-\theta)^x, x = 0, 1, 2, 3, \dots$$

where θ is an unknown parameter in (0,1), under the classical approach. One can also use a Bayesian approach by assuming θ has a prior distribution $\theta \sim U(0,1)$.

- (a) Compute the Cramer-Rao Lower Bound for unbiased estimators of θ .
- (b) Find the UMVUE for θ , if possible.
- (c) If the loss function $L(\theta, a) = (\theta a)^2$, find the Bayes estimator of θ .
- (d) If the loss function $L(\theta, a) = \frac{(\theta a)^2}{\theta(1 \theta)}$, find the Bayes estimator of θ .

11. Let Y_1, \ldots, Y_N be independent random variable such that $Y_i \sim \text{Binomial}(n_i, p_i)$, where

$$p_i = \frac{1}{1 + e^{\alpha + \beta x_i}},$$

and x_i is a fixed covariate, i = 1, ..., N.

- (a) Find a set of jointly sufficient statistics for (α, β) .
- (b) Suppose $\tilde{\alpha}, \tilde{\beta}$ are the estimates of α and β that minimize

$$Q = \sum_{i=1}^{N} n_i \hat{p}_i (1 - \hat{p}_i) (\alpha + \beta x_i - l_i)^2,$$

where $\hat{p}_i = Y_i/n_i$ and l_i is some function of Y_i/n_i , i = 1, ..., N. Find $\tilde{\alpha}$ and $\tilde{\beta}$.

(c) Let $\hat{\alpha}, \hat{\beta}$ be MLE's of α and β . Give an argument to show that

Mean Square $\operatorname{Error}(\hat{\alpha} + \hat{\beta}) \leq \operatorname{Mean Square Error}(\tilde{\alpha} + \tilde{\beta})$

- 12. Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent samples from Exponential(λ) and Exponential(μ) populations respectively.
 - (a) Construct a likelihood ratio test of

$$H_0: \lambda = \mu$$
 versus $H_1: \lambda \neq \mu$.

(b) Give the critical values of this test in terms of percentiles of one of the standard distributions.