Nom: AFKIR Mohamed

Niveau: Première Année Cycle Préparatoire (CP1)

Sujet: 7

CNE: S135210617

Examen du Module AP21 : "Algèbre Linéaire"

Exercice 1:

1. $(\forall (\alpha, \beta) \in \mathbb{K}^2) (\forall ((x, y), (x', y')) \in (E_1 \times E_2)^2)$

$$\alpha(x, y) + \beta(x', y') = (\alpha x + \beta x', \alpha y + \beta y')$$

$$f(\alpha x + \beta x', \alpha y + \beta y') = \alpha x + \beta x' + \alpha y + \beta y'$$

= $\alpha . (x + y) + \beta . (x' + y')$
= $\alpha . f(x, y) + \beta . f(x', y')$

Alors f est une application linéaire de E₁ x E₂ dans E.

Le noyau de f:

$$Ker(f) = \{ (x, y) \in E_1 \times E_2 / f(x, y) = 0 \}$$

= \{ (x, y) \in E_1 \times E_2 / x + y = 0 \}.

2. On a $(x, y) \in Ker(f)$.

On a $x \in E_1$ et $y \in E_2$ et y = -x, alors $x \in E_2$, Donc $x \in E_1 \cap E_2$.

Réciproquement, si
$$x \in E_1 \cap E_2$$
 alors $(x, -x) \in Ker(f)$
Donc $Ker(f) = \{ (x, -x) / x \in E_1 \cap E_2 \}$.

Par l'application $x \to (x, -x)$, Ker(f) est isomorphe à $E_1 \cap E_2$.

3. $(\forall (x, y) \in E_1 \times E_2)$ (x, y) = x.(1, 0) + y.(0, 1)

On pose :
$$a = (1, 0)$$
 et $b = (0, 1)$

(a, b) est une famille génératrice de $E_1\,x\,E_2.$

Pour tout α et β dans \mathbb{K} , $\alpha \cdot a + \beta \cdot b = 0$

$$\alpha.a + \beta.b = \alpha.(1, 0) + \beta.(0, 1) = (\alpha, 0) + (0, \beta) = (\alpha, \beta)$$

 $(\alpha, \beta) = (0, 0)$

Alors $\alpha=0$ et $\beta=0$. Donc (a, b) est une famille libre et génératrice de $E_1\cap E_2$.

Donc $\{a, b\}$ est une base de $E_1 \times E_2$.

4. On a dim (E) = n et on pose dim (Ker(f)) = k.

Montrons que dim $(E) = \dim (Ker(f)) + \dim (Im(f))$:

Soit $\{u_1, u_2, ..., u_k\}$ est une base de Ker(f) et $\{v_1, v_2, ..., v_{n-k}\}$ une famille de vecteurs de E telle que $\{u_1, u_2, ..., u_k, v_1, v_2, ..., v_{n-k}\}$ est une base de E.

On pose $B = \{ f(u_1), f(u_2), ..., f(u_k) \}.$

• Montrons que B engendre Im(f) :

Soit $y = f(x) \in Im(f)$. x s'écrit de manière unique :

$$x = a_1.u_1 + a_2.u_2 + ... + a_k.u_k + b_1.v_1 + b_2.v_2 + ... + b_{n-k}.v_{n-k}$$

avec $(a_1, ..., a_k, b_1, ..., b_{n-k}) \in \mathbb{K}^n$.

$$y = f(x) = f(a_1.u_1 + a_2.u_2 + ... + a_k.u_k + b_1.v_1 + b_2.v_2 + ... + b_{n-k}.v_{n-k})$$

= $a_1.f(u_1) + ... + a_k.f(u_k) + b_1.f(v_1) + ... + b_{n-k}.f(v_{n-k})$

On a u_1 , u_2 , ..., u_k de Ker(f) alors :

$$y = b_1.f(v_1) + b_2.f(v_2) + ... + b_{n-k}.f(v_{n-k})$$

Alors y est une combinaison linéaire des $f(v_i)_{1 \le i \le n-k}$ donc B engendre Im(f).

• Montrons que B est une famille libre de F :

Soient
$$(\alpha_1, ..., \alpha_{n-k}) \in \mathbb{K}^{n-k}$$
 tels que $: \alpha_1.f(v_1) + ... + \alpha_{n-k}.f(v_{n-k}) = 0$

Par linéarité de f :

$$\alpha_1.f(v_1) + ... + \alpha_{n-k}.f(v_{n-k}) = f(\alpha_1.v_1 + ... + \alpha_{n-k}.v_{n-k}) = 0$$

Alors
$$\alpha_1.v_1 + ... + \alpha_{n-k}.v_{n-k} \in Ker(f)$$
. Donc $\exists (\beta_1, ..., \beta_k) \in \mathbb{K}^k$ tels que : $\alpha_1.v_1 + ... + \alpha_{n-k}.v_{n-k} = \beta_1.u_1 + \beta_2.u_2 + ... + \beta_k.u_k$

Alors la famille (v_1 , v_2 , ..., $v_{n\text{-}k}$) est libre. Donc on déduit que :

$$\alpha_1=\alpha_2=\alpha_3=...=\alpha_{n\text{-}k}=0$$

Donc B est libre.

Alors B est une base de Im(f). Donc dim(Im(f)) = n-k

$$\dim (Ker(f)) + \dim(Im(f)) = k + n - k = n = \dim (E)$$

$$\dim(E) = \dim(Im(f)) + \dim(Ker(f))$$

5. On a $f: E_1 \times E_2 \to E$, $(x, y) \to f(x, y) = x + y$

D'après la question (4) on a montré que :

$$\dim (E_1 \times E_2) = \dim (Ker(f)) + \dim (Im(f))$$

D'après la question (2), il y a un isomorphisme entre Ker(f) et $E_1 \cap E_2$, Alors : $dim (Ker(f)) = dim (E_1 \cap E_2)$

et on a:

$$\dim (E_1 \times E_2) = \dim (E_1) + \dim (E_2)$$

Donc:

$$\dim (E_1) + \dim (E_2) = \dim (E_1 \cap E_2) + \dim (\operatorname{Im}(f))$$

On a $u \in Im(f)$. u s'écrit de manière unique sous forme de u = f(x, y) = x + y tel que $x \in E_1$ et $y \in E_2$. Alors : $Im(f) = E_1 + E_2$, Donc :

$$\dim (Im(f)) = \dim (E_1 + E_2)$$

On en déduit que :

$$\dim (E_1) + \dim (E_2) = \dim (E_1 \cap E_2) + \dim (E_1 + E_2)$$

$$\dim (E_1 + E_2) = \dim (E_1) + \dim (E_2) - \dim (E_1 \cap E_2)$$