I. Special Compound Propositions

- A. Tautology
 - 1. Definition: A compound proposition that is always *true*, regardless of the truth values of the component propositions is a tautology.
 - 2. Note: No atomic sentence P can be a tautology. A given interpretation can make P *true*, another make P *false*.
 - 3. Examples:
 - a. $P \vee \neg P$ Truth Table:

P	$\neg P$	$P \vee \neg P$
T	F	T
F	T	T

b. $P \to (P \lor Q)$

Truth Table:

P	Q	$P \lor Q$	$P \to (P \lor Q)$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

c.
$$\neg (P \land \neg P)$$

Truth Table:

P	$\neg P$	$P \wedge \neg P$	$\neg (P \land \neg P)$
T	F	F	T
F	T	F	T

Note that the above example is simply the negation of the contradiction presented on the next page.

The negation of a contradiction is a tautology.

- B. Contradiction
 - 1. Definition: A compound proposition that is always *false*, regardless of the truth values of the component propositions is a contradition.
 - 2. Examples:

a. $P \wedge \neg P$ Truth Table:

\overline{P}	$\neg P$	$P \wedge \neg P$
T	F	F
\overline{F}	T	F

b. $P \leftrightarrow \neg P$

Truth Table:

P	$\neg P$	$P \rightarrow \neg P$	$\neg P \rightarrow P$	$(P \to \neg P) \land (\neg P \to P)$	$P \leftrightarrow \neg P$
T	F	F	T	F	F
\overline{F}	T	T	F	F	F

- C. Paradox: "This sentence is false." is **NOT** a proposition.
 - 1. If you assume that the content of the sentence is true the conclusion is that the truth value is false.
 - 2. If you assume that the sentence is false the conclusion is that the truth value is true.
 - 3. This example is called a paradox and is not a proposition, because it is neither true nor false.

II. Logical Equivalence

A. Defintion:

Two compound propositions which have identical truth tables are logically equivalent.

If the compound propositions X and Y are logically equivalent we designate this status by writing: $X \equiv Y$

B. Examples:

1. Two compound propositions $X = P \rightarrow Q$ and $Y = \neg Q \rightarrow \neg P$ are logically equivalent if the compound proposition $X \leftrightarrow Y$ is a tautology.

Here $X \leftrightarrow Y = (P \to Q) \leftrightarrow (\neg Q \to \neg P)$

Truth Table:

P	Q	$\neg P$	$\neg Q$	$P \rightarrow Q$	$\neg Q \rightarrow \neg P$	$(P \to Q) \leftrightarrow (\neg Q \to \neg P)$
T	T	F	F	T	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	T	T

- 2. Two tautologies are logically equivalent.
- 3. Two contradictions are logically equivalent.

C. Truth Tables

- 1. A common method for demonstrating logical equivalence is the truth table.
- 2. Example:

The Associative Rule: $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$

P	Q	R	$P \lor Q$	$Q \vee R$	$(P \lor Q) \lor R$	$P \lor (Q \lor R)$
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	T	T	T
T	F	F	T	F	T	T
F	T	T	T	T	T	T
\overline{F}	T	F	T	T	T	T
\overline{F}	F	T	F	T	T	T
F	F	F	F	F	F	F

III. **Important Logical Equivalences**

Equivalences Involving the Usual Compound Statements

Equivalence Equivalence	Name
$P \wedge T \equiv P$	Identity Laws
$P \wedge F \equiv F$	
$P \lor T \equiv T$	Domination Laws
$P \lor \boldsymbol{F} \equiv P$	
$P \lor P \equiv P$	Idempotent Laws
$P \wedge P \equiv P$	
$\neg(\neg P) \equiv P$	Double Negation Law
D. C. C. D.	
$P \lor Q \equiv Q \lor P$ $P \land Q \equiv Q \land P$	Commutative Laws
$P \wedge Q \equiv Q \wedge P$	
$(D \setminus (O) \setminus (D - D \setminus (O \setminus (D)))$	Associative Laws
$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$ $(P \land Q) \land R \equiv P \land (Q \land R)$	Associative Laws
$\frac{(I \land Q) \land It \equiv I \land (Q \land It)}{}$	
$P \lor (Q \land R) \equiv (P \lor Q) \land (Q \lor R)$	Distributive Laws
$P \lor (Q \land R) \equiv (P \lor Q) \land (Q \lor R)$ $P \land (Q \lor R) \equiv (P \land Q) \lor (Q \land R)$	
$\neg (P \land Q) \equiv \neg P \lor \neg Q$	De Morgan's Laws
$\neg (P \land Q) \equiv \neg P \lor \neg Q$ $\neg (P \lor Q) \equiv \neg P \land \neg Q$	
$P \lor (P \land Q) \equiv P$ $P \land (P \lor Q) \equiv P$	Absorption Laws
$P \wedge (P \vee Q) \equiv P$	
$P \vee \neg P \equiv T$	Negation Laws
$P \land \neg P \equiv \mathbf{F}$	

B. Logical Equivalences Involving Conditional Statements

1.
$$P \rightarrow Q \equiv \neg P \lor Q$$

2.
$$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$$

3.
$$P \lor Q \equiv \neg P \to Q$$

4.
$$P \wedge Q \equiv \neg (P \rightarrow \neg Q)$$

5.
$$\neg (P \to Q) \equiv P \lor \neg Q$$

6.
$$(P \to Q) \land (P \to R) \equiv P \to (Q \land R)$$

7.
$$(P \to R) \land (Q \to R) \equiv (P \lor Q) \to R$$

8.
$$(P \to Q) \lor (P \to R) \equiv P \to (Q \lor R)$$

9.
$$(P \to R) \lor (Q \to R) \equiv (P \land Q) \to R$$

C. Logical Equivalences Involving Biconditional Statements

1.
$$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$$

2.
$$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$$

3.
$$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

4.
$$\neg (P \leftrightarrow Q) \equiv P \leftrightarrow \neg Q$$

IV. Logical Equivalences and Truth Tables

A. Problem: Show that $(P \lor Q) \land (\neg P \lor R) \rightarrow (Q \lor R)$ is a tautology

B. Truth Table Solution:

To save space let: $Y = (P \lor Q) \land (\neg P \lor R) \rightarrow (Q \lor R)$

P	Q	$P \lor Q$	$\neg P$	R	$\neg P \lor R$	$(P \vee Q) \wedge (\neg P \vee R)$	$Q \vee R$	Y
T	T	T	F	T	T	T	T	T
T	T	T	F	F	F	F	T	T
T	F	T	F	T	T	T	T	T
T	F	T	F	F	F	F	F	T
F	T	T	T	T	T	T	T	T
F	T	T	T	F	T	T	T	T
\overline{F}	F	F	T	T	T	F	T	T
F	F	F	T	F	T	F	F	T

1. The above truth table shows that; for all combinations of truth values for P, Q, and R; the compound proposition

 $(P \lor Q) \land (\neg P \lor R) \to (Q \lor R)$

has truth value *True*.

2. Hence, the compound proposition

$$(P \lor Q) \land (\neg P \lor R) \rightarrow (Q \lor R)$$

is a tautology.

- 3. The truth table method is straight-forward:
 - a. Create all possible combinations of truth values for the atomic propositions involved.
 - b. Generate the truth value for each compound component proposition from the truth values of the atomic propositions used in the compound proposition.
 - c. Repeat step b. until a truth value for the final compound proposition is computed.

- 4. In this case:
 - a. All combinations of truth values for P, Q, and R are specified.
 - b. The truth values for $\neg P$ corresponding to each truth value for P are computed.
 - c. The truth values for $(P \lor Q)$, $(\neg P \lor R)$, and $(Q \lor R)$ corresponding to each truth value for P, Q, and R are computed.
 - d. The truth values for $(P \lor Q) \land (\neg P \lor R)$ corresponding to each truth value for P, Q, and R are computed.
 - e. The truth values for $(P \lor Q) \land (\neg P \lor R) \rightarrow (Q \lor R)$ corresponding to each truth value for P, Q, and R are computed.
 - f. The final truth values computed in step (e) are all *True*, demonstrating that $(P \lor Q) \land (\neg P \lor R) \rightarrow (Q \lor R)$ is a tautology.
- C. Solution Using Equivalences:
 - 1. Strategy:
 - a. We are seeking to show that $(P\vee Q)\wedge (\neg P\vee R)\to (Q\vee R)$ is a tautology.
 - b. Hence we want to reduce

$$(P \vee Q) \wedge (\neg P \vee R) \to (Q \vee R)$$

into a form such as:

i.
$$X \lor T \equiv T$$
 Identity Law

or

ii.
$$X \vee \neg X \equiv T$$
 Negation Law

2. Begin with the initial compound proposition:

Proposition	Equivalence
$(P \lor Q) \land (\neg P \lor R) \to (Q \lor R)$	Initial Premise

3. Convert the implication into a form that produces more negations in the compound proposition.

Proposition	Equivalence
$(P \lor Q) \land (\neg P \lor R) \to (Q \lor R)$	Initial Premise
	$P \to Q \equiv \neg P \lor Q$

4. Apply De Morgan's Law

Proposition	Equivalence
$(P \lor Q) \land (\neg P \lor R) \to (Q \lor R)$	Initial Premise
$\neg [(P \lor Q) \land (\neg P \lor R)] \lor (Q \lor R)$	$P \to Q \equiv \neg P \lor Q$
	De Morgan's Law

5. Apply Associative Law to simplify:

Proposition	Equivalence
$(P \lor Q) \land (\neg P \lor R) \to (Q \lor R)$	Initial Premise
	$P \to Q \equiv \neg P \vee Q$
$\boxed{ \left[\neg (P \lor Q) \lor \neg (\neg P \lor R) \right] \lor (Q \lor R)}$	De Morgan's Law
$\neg (P \lor Q) \lor \neg (\neg P \lor R) \lor Q \lor R$	Associative Law

6. Apply De Morgan's and Double Negation Laws:

Proposition	Equivalence
$(P \lor Q) \land (\neg P \lor R) \to (Q \lor R)$	Initial Premise
	$P \to Q \equiv \neg P \lor Q$
$\left[\neg (P \lor Q) \lor \neg (\neg P \lor R)\right] \lor (Q \lor R)$	De Morgan's Law
$\neg (P \lor Q) \lor \neg (\neg P \lor R) \lor Q \lor R$	Associative Law
$(\neg P \land \neg Q) \lor (\neg \neg P \land \neg R) \lor Q \lor R$	De Morgan's Law
$(\neg P \land \neg Q) \lor (P \land \neg R) \lor Q \lor R$	Double Negation Law

Apply Associative Law to rearrange propositions. 7.

Proposition	Equivalence
$(P \lor Q) \land (\neg P \lor R) \to (Q \lor R)$	Initial Premise
$\neg [(P \lor Q) \land (\neg P \lor R)] \lor (Q \lor R)$	$P \to Q \equiv \neg P \lor Q$
	De Morgan's Law
$\neg (P \lor Q) \lor \neg (\neg P \lor R) \lor Q \lor R$	Associative Law
$(\neg P \land \neg Q) \lor (\neg \neg P \land \neg R) \lor Q \lor R$	De Morgan's Law
$(\neg P \land \neg Q) \lor (P \land \neg R) \lor Q \lor R$	Double Negation Law
$Q \vee (\neg P \wedge \neg Q) \vee R \vee (P \wedge \neg R)$	Associative Law

8. Apply Distributive Law to create instances of $(X \vee \neg X)$ and, then, the Negation and Domination Laws to simplify.

Proposition	Equivalence
$(P \lor Q) \land (\neg P \lor R) \to (Q \lor R)$	Initial Premise
$\neg \Big[(P \lor Q) \land (\neg P \lor R) \Big] \lor (Q \lor R)$	$P \to Q \equiv \neg P \lor Q$
$\left[\neg(P \lor Q) \lor \neg(\neg P \lor R)\right] \lor (Q \lor R)$	De Morgan's Law
$\neg (P \lor Q) \lor \neg (\neg P \lor R) \lor Q \lor R$	Associative Law
$(\neg P \land \neg Q) \lor (\neg \neg P \land \neg R) \lor Q \lor R$	De Morgan's Law
$(\neg P \land \neg Q) \lor (P \land \neg R) \lor Q \lor R$	Double Negation Law
$Q \vee (\neg P \wedge \neg Q) \vee R \vee (P \wedge \neg R)$	Associative Law
$\left[\left[(Q \vee \neg P) \wedge (Q \vee \neg Q) \right] \vee \left[(R \vee P) \wedge (R \vee \neg R) \right] \right]$	Distributive Law
$\left[(Q \vee \neg P) \wedge \boldsymbol{T} \right] \vee \left[(R \vee P) \wedge \boldsymbol{T} \right]$	Negation Law
$(Q \vee \neg P) \vee (R \vee P)$	Domination Law

9. Apply Associative Law three times to simplify and rearrange propositions.

Proposition	Equivalence
$(P \vee) \wedge (\neg P \vee R) \to (Q \vee R)$	Initial Premise
$\neg \Big[(P \lor Q) \land (\neg P \lor R) \Big] \lor (Q \lor R)$	$P \to Q \equiv \neg P \lor Q$
$\left[\neg(P\vee Q)\vee\neg(\neg P\vee R)\right]\vee(Q\vee R)$	De Morgan's Law
$\neg (P \lor Q) \lor \neg (\neg P \lor R) \lor Q \lor R$	Associative Law
$(\neg P \land \neg Q) \lor (\neg \neg P \land \neg R) \lor Q \lor R$	De Morgan's Law
$(\neg P \land \neg Q) \lor (P \land \neg R) \lor Q \lor R$	Double Negation Law
$Q \vee (\neg P \wedge \neg Q) \vee R \vee (P \wedge \neg R)$	Associative Law
$\left[\left(Q \vee \neg P \right) \wedge \left(Q \vee \neg Q \right) \right] \vee \left[\left(R \vee P \right) \wedge \left(R \vee \neg R \right) \right]$	Distributive Law
$\left[(Q \vee \neg P) \wedge \boldsymbol{T} \right] \vee \left[(R \vee P) \wedge \boldsymbol{T} \right]$	Negation Law
$(Q \vee \neg P) \vee (R \vee P)$	Domination Law
$Q \vee \neg P \vee R \vee P$	Associative Law
$R \lor Q \lor \neg P \lor P$	Associative Law
$(R \vee Q) \vee (\neg P \vee P)$	Associative Law

- 10. Finally, apply the Identity Law and the Domination Law to get the final table shown on the following page.
 - a. The final truth value is T, for True.
 - b. This value demonstates that the initial compound proposition, i.e., $(P \lor Q) \land (\neg P \lor R) \rightarrow (Q \lor R)$, has truth value *True* regardless of the truth values of the individual atomic propositions that compose it.
 - c. Therefore: $(P \lor Q) \land (\neg P \lor R) \rightarrow (Q \lor R) \equiv T$
 - d. Therefore:

$$(P \lor Q) \land (\neg P \lor R) \rightarrow (Q \lor R)$$
 is a tautology.

Proposition	Equivalence
$(P \lor Q) \land (\neg P \lor R) \to (Q \lor R)$	Initial Premise
$\neg \Big[(P \lor Q) \land (\neg P \lor R) \Big] \lor (Q \lor R)$	$P \to Q \equiv \neg P \lor Q$
$\left[\neg(P\vee Q)\vee\neg(\neg P\vee R)\right]\vee(Q\vee R)$	De Morgan's Law
$\neg (P \lor Q) \lor \neg (\neg P \lor R) \lor Q \lor R$	Associative Law
$(\neg P \land \neg Q) \lor (\neg \neg P \land \neg R) \lor Q \lor R$	De Morgan's Law
$(\neg P \land \neg Q) \lor (P \land \neg R) \lor Q \lor R$	Double Negation Law
$Q \vee (\neg P \wedge \neg Q) \vee R \vee (P \wedge \neg R)$	Associative Law
$\left[\left[(Q \vee \neg P) \wedge (Q \vee \neg Q) \right] \vee \left[(R \vee P) \wedge (R \vee \neg R) \right] \right]$	Distributive Law
$\left[(Q \vee \neg P) \wedge \mathbf{T} \right] \vee \left[(R \vee P) \wedge \mathbf{T} \right]$	Negation Law
$(Q \vee \neg P) \vee (R \vee P)$	Domination Law
$Q \vee \neg P \vee R \vee P$	Associative Law
$R \lor Q \lor \neg P \lor P$	Associative Law
$(R \vee Q) \vee (\neg P \vee P)$	Associative Law
$(R \lor Q) \lor T$	Identity Law
T	Domination Law

V. Comparison of Solution Methodologies:

- A. Truth Tables
 - 1. N propositions in a compound proposition requires 2^N rows in the truth table to represent all possible truth values for the compound proposition.
 - 2. $(P \to Q) \land (R \lor S) \land (T \oplus U)$ requires $2^8 = 64$ rows.
 - 3. Logic is straightforward Computers can be programmed to process truth tables.
- B. Equivalence Solutions
 - 1. Solution length variable.
 - 2. Number of statements equal to number of substitutions used.

VI. Satisfiability

- A. Definition: A compound proposition is *satisfiable* if there is at least one assignment of truth values to its atomic propositions that give the compound proposition a truth value of *True*.
- B. Example 1: $X \equiv (P \vee \neg Q) \wedge (\neg P \vee Q) \wedge (\neg P \vee \neg Q)$
 - 1. Truth Table:

P	$\neg P$	Q	$\neg Q$	$(P \vee \neg Q)$	$(\neg P \lor Q)$	$(\neg P \vee \neg Q)$	X
T	F	T	F	T	T	F	F
T	F	F	T	T	F	T	F
F	T	T	F	F	T	T	F
F	T	F	T	T	T	T	T

2. The interpretation: P = F and Q = F results is a truth value of T, or True, for the compound proposition

$$X \equiv (P \vee \neg Q) \wedge (\neg P \vee Q) \wedge (\neg P \vee \neg Q)$$

- C. Example 2: $(P \leftrightarrow Q) \land (\neg P \leftrightarrow Q)$
 - 1. Truth Table:

P	$\neg P$	Q	$(P \leftrightarrow Q)$	$(\neg P \leftrightarrow Q)$	$(P \leftrightarrow Q) \land (\neg P \leftrightarrow Q)$
T	F	T	T	F	F
T	F	F	F	T	F
\overline{F}	T	T	F	T	F
\overline{F}	T	F	T	F	F

- 2. No interpretation generates a truth value of *True* for the compound proposition $(P \leftrightarrow Q) \land (\neg P \leftrightarrow Q)$
- 3. Hence: $(P \leftrightarrow Q) \land (\neg P \leftrightarrow Q)$ is unsatisfiable.