Particle spectrograph

Wave operator and propagator

α				$\frac{-2t_3)}{-2k^2r_5(t_1+t_3))}$	$\frac{5+t_1+4t_3)}{-2k^2r_5(t_1+t_3))}$		$\frac{+t_1+4t_3)}{-2k^2r_5(t_1+t_3)}$
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2k^2(6k^2r_5\!+\!t_1\!+\!4t_3)}{(1\!+\!2k^2)^2(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_3}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{(1 + 2 k^2) (3t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	0	$\frac{2ik(t_1\!-\!2t_3)}{(1\!+\!2k^2)(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1^-}^{\#1} +^\alpha$	$t_1^{#2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1^{-}\ lpha}^{$ #2}	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1} \dagger^{lphaeta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\sharp 1}$ † lpha	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$\frac{1}{3} i k (t_1 - 2t_3)$
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3} \bar{l} \sqrt{2} k (t_1 + t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ik(t_1-2t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$

Quadratic (free) action	St == $\iint \int \partial \int \partial $	$3t_1 \partial_k f_{\beta}^{\ \lambda} \partial^k f_{\lambda}^{\ \beta} + 3t_1 \partial_k f^{\lambda}_{\ \beta} \partial^k f_{\lambda}^{\ \beta} - 2t_1 \partial^\alpha f^{\lambda}_{\ \alpha} \partial^k f_{\lambda k} + 4t_3 \partial^\alpha f^{\lambda}_{\ \alpha} \partial^k f_{\lambda k} + 6t_5 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta k}_{\ k}) [t, x, y, z] dz dy dx dt$
Quadrat	S _F == $\iiint \int_{6}^{1} \frac{1}{6} (-\frac{1}{6}) \int_{6}^{1} \int_{6}^{1} (-\frac{1}{6}) \int_{6}^{1} \int_{6$	$3t_1\partial_{\kappa}f_{\epsilon}$ $6r_5\partial_{\alpha}\omega$

(No massless particles)

							•																					
							$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0																		
_	$\omega_0^{\#}$	$\omega_0^{\#1}$		$\omega_{0+}^{\#1}$ $f_{0+}^{\#1}$		#1 +	$f_{0}^{#2}$	$f_{0+}^{#2} \omega_{0-}^{#1}$		<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0																
$\omega_{0^{+}}^{#1}$ †	t_3	t_3		$-i\sqrt{2}kt_3$		$-i \sqrt{2} kt_3$		$-i \sqrt{2} kt_3$		0	$\omega_{2}^{\#1}{}_{lphaeta}$	αβ	αβ	β_X														
$f_{0}^{#1} +$	i √2	kt_3	$2 k^2 t_3$		$2 k^2 t_3$		0	0		$\omega_2^{\#1} +^{\alpha\beta}$	$f_2^{\#1} \dagger^{\alpha\beta}$	$\omega_{2^{-}}^{\#1} +^{lphaeta\chi}$																
$f_{0}^{#2}$ †	0		0		0	0		3	f																			
$\omega_{0}^{\#1}$ †	0		0		0	$-t_1$				$\sigma_{2^{+}lphaeta}^{\!$		$ au_2^{\#1}_{lphaeta}$																
٦ ا			1					$\sigma_{2}^{\#1}$	$t^{\alpha\beta}$	$\frac{2}{1+2k^2)^2}$		$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t}$	1															
rerato	מורואווכורופא							$\sigma_{2}^{\#1}$	$t^{\alpha\beta}$	$2i\sqrt{2}k$ $1+2k^2)^2$	$\frac{t_1}{t_1}$	$\frac{4k^2}{(1+2k^2)^2t}$	 - 1															
Source constraints/gauge generators SO(3) irreps Multiplicities																								$\sigma_2^{\#1}$ †		0		0
	-1	1	0	3	0 3	== 0 5	16			$\sigma_{0}^{\#1}$		$ au_{0}^{\#1}$	τ															
aints/		0 ==	$\sigma_{1}^{\#2}\alpha$ == ($\frac{1}{2}\alpha\beta$ == 0	$^{\sharp 1}_{,+}\alpha\beta==$	nts:	$\sigma_{0}^{\#1}$	† (1+	$\frac{1}{2k^2)^2t_3}$		$i\sqrt{2} k$ $(1+2k^2)^2 t_3$																
Source constr SO(3) irreps	2	$-2ik\sigma_{0}^{\#1}=$	2ik of	0	$+ik \sigma_{1}^{#2\alpha\beta}$ =	$-2ik \ \sigma_2^{\#1}\alpha\beta =$	Fotal constraints:	$ au_{0}^{\#1}$	†	$\frac{\sqrt{2} k}{2 k^2}$	(:	$\frac{2k^2}{1+2k^2)^2t_3}$																
rce 3) ir	0 ==	- 2 i k	ζ+ _χ	-	+ _{β¤}	αβ	al co	$\tau_{0}^{\#2}$	†	0		0																
Sou	τ ^{#2} ₀ +	$t_{0}^{\#1}$.	$\tau_{1}^{\#2\alpha}$	$\tau_{1^{\bar{-}}}^{\#1\alpha}$	$t_1^{\#1}\alpha\beta$ -	$t_2^{\#1}\alpha\beta$	Tota	$\sigma_0^{\#1}$	†	0		0																

 $\sigma_2^{\#1}{}_{\alpha\beta\chi}$

 $\tau_{0}^{\#2}$ $\sigma_{0}^{\#1}$

0

Massive and massless spectra

Massive particle

Pole residue:
$$\frac{6t_{1}t_{3}(t_{1}+t_{3})-3r_{5}(t_{1}^{2}+2t_{3}^{2})}{2r_{5}(t_{1}+t_{3})(-3t_{1}t_{3}+r_{5}(t_{1}+t_{3}))} > 0$$
Polarisations:
$$3$$
Square mass:
$$-\frac{3t_{1}t_{3}}{2r_{5}t_{1}+2r_{5}t_{3}} > 0$$
Spin:
$$1$$
Parity: Odd

Unitarity conditions

 $r_5 < 0 \&\& (t_1 < 0 \&\& 0 < t_3 < -t_1) || (t_1 > 0 \&\& (t_3 < -t_1) || t_3 > 0))$