

Figure 6.2: Let $f: E \to F$ be the injective linear map from \mathbb{R}^2 to \mathbb{R}^3 given by f(x,y) = (x,y,0). Then a surjective retraction is given by $r: \mathbb{R}^3 \to \mathbb{R}^2$ is given by r(x,y,z) = (x,y). Observe that $r(v_1) = u_1$, $r(v_2) = u_2$, and $r(v_3) = 0$.

6.2 Matrices of Linear Maps and Multiplication by Blocks

Direct sums yield a fairly easy justification of matrix block multiplication. The key idea is that the representation of a linear map $f: E \to F$ over a basis (u_1, \ldots, u_n) of E and a basis (v_1, \ldots, v_m) of F by a matrix $A = (a_{ij})$ of scalars (in K) can be generalized to the representation of f over a direct sum decomposition $E = E_1 \oplus \cdots \oplus E_n$ of E and a direct sum decomposition $F = F_1 \oplus \cdots \oplus F_m$ of F in terms of a matrix (f_{ij}) of linear maps $f_{ij}: E_j \to F_i$. Furthermore, matrix multiplication of scalar matrices extends naturally to matrix multiplication of matrices of linear maps. We simply have to replace multiplication of scalars in E by the composition of linear maps.

Let E and F be two vector spaces and assume that they are expressed as direct sums

$$E = \bigoplus_{j=1}^{n} E_j, \quad F = \bigoplus_{i=1}^{m} F_i.$$

Definition 6.6. Given any linear map $f: E \to F$, we define the linear maps $f_{ij}: E_j \to F_i$ as follows. Let $pr_i^F: F \to F_i$ be the projection of $F = F_1 \oplus \cdots \oplus F_m$ onto F_i . If $f_j: E_j \to F$ is the restriction of f to E_j , which means that for every vector $x_j \in E_j$,

$$f_j(x_j) = f(x_j),$$

then we define the map $f_{ij}: E_j \to F_i$ by

$$f_{ij} = pr_i^F \circ f_j,$$