DIGITAL SIGNAL PROCESSING **EE** 512

Session 5

September 15, 1992

M. Azimi 800-525-4950, ext. 7956

Colorado State University

methods of Solution

1- Method of Undetermined Coefficients

The recursive method for finding the solution of difference equation does not provide a "closed form" solution.

Three Steps are needed for finding the general or closed form Solution for a Constant Coefficient linear difference equation

1-Obtain the homogeneous or Complementary solution, y, (n).

2- Obtain the portional Solution, yp(n).

3- Obtain the constants in y (n) by applying the initial

The Complete solution is then intel conditions $y(n) = y_n(n) + y_p(n) + then apply Ic's to find the constants in <math>y_n(n)$.

Step 1 (Homogeneous Solution)

Arrange the Characteristic equation

 $\alpha_0 \lambda^N + \alpha_1 \lambda^N + \cdots + \alpha_N = 0$

and find its roots. Use table 1 to obtain the homogeneous solution y(n) depending on the roots.

Step 2

As in the case of differential equations there are a set of rules that one must follow to form appropriate particular solutions while solving difference equation. These are summarized

in Table 2.

Step 3

Solve for Ci's using the initial conditions.

Example 1

Determine the Complete Solution for

$$y(n) - \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = 1 + \frac{3}{3}$$
 $n \ge 0$

with y(-2) =0 and y(-1) = 2.

$$g(n) = c_1 \lambda_1^n + c_2 \lambda_2^n$$

where I, and I are the roots of

$$\lambda^2 - \frac{3}{2}\lambda + \frac{1}{2} = 0 \implies \lambda_1 = \frac{1}{2}, \lambda_2 = 1$$

Thus $y(n) = c_1 z^n + c_2 i^n = c_1 z^n + c_2$

Step 2

From the table 2 the choice for yp(n) is

but since this solution and the homogeneous solution have a common term that is the constant, the modified choice is

Substituting yp(n) into the Diff. Eq. gives

$$(d_1 n + d_2 3^n) - \frac{3}{2} [d_1(n-1) + d_2 3^{-(n-1)}] + \frac{1}{2} [d_1(n-2) + d_2 3^{-(n-2)}]$$

$$= 1 + 3$$

$$\frac{1}{2}d_1 + d_2 = \frac{-n}{3} = 1 + \frac{-n}{3} \implies d_1 = 2$$
, $d_2 = 1$

$$y(n) = y_n(n) + y_p(n)$$

= $c_1 z^n + c_2 + 2n + 3^n$

Apply the initial conditions y(-1)=2, y(-2)=0

$$\begin{cases} 2C_1 + C_2 = 1 \\ 4C_1 + C_2 = -5 \end{cases} \Rightarrow C_1 = -3, C_2 = 7$$

$$y(n) = (-3)^{2n} + 7 + 2n + 3^{-n}$$
, $n > 0$

Example 2 Find the particular Solution for the 1st order difference equation $y(n) - \frac{1}{2}y(n-1) = Sin(n_{\frac{\pi}{2}})$

$$y(n) - \frac{1}{2}y(n-1) = Sm(n \frac{\pi}{2}) , n>0$$

$$y_p(n) = d_1 \operatorname{Sm}(n\underline{n}_2) + d_2 \operatorname{Cos}(n\underline{n}_2)$$

Substitute in the equation

$$d_{1} \sin (n \frac{\pi}{2}) + d_{2} \cos (n \frac{\pi}{2}) - \frac{1}{2} \left[d_{1} \sin ((n-1) \frac{\pi}{2}) + d_{2} \cos ((n-1) \frac{\pi}{2}) \right]$$

$$= \sin (n \frac{\pi}{2})$$

Recall the following trigonometric identities

$$\left(\operatorname{Sw} \left((n-1) \frac{\Pi}{2} \right) = \operatorname{Sw} \left(\frac{n\Pi}{2} - \frac{\Pi}{2} \right) = -\operatorname{Cos} \frac{n\Pi}{2}$$

$$\left(\operatorname{Cos} \left((n-1) \frac{\Pi}{2} \right) = \operatorname{Cos} \left(\frac{n\Pi}{2} - \frac{\Pi}{2} \right) = \operatorname{Sw} \frac{n\Pi}{2}$$

Thus we get

$$(d_1 - \frac{1}{2}d_2)$$
 Sim $(n\pi)$ + $(\frac{1}{2}d_1 + d_2)$ Cos $(n\pi)$ = Sim $(n\pi)$

Thus
$$y_p(n) = 4/5 \text{ Sin}(n\pi) - \frac{2}{5} \cos(n\pi)$$
, $n \ge 0$

con choice of particular Solution I d, dis a constant d, dis are constants dis some constants froportional to din d, sim may de cos no		
ant 15 a Constant 20, dis a Constant 30, dis are Constants 40, dis are Constants Proportional to din 41, Sim nu dy 42, Cos nu 1, Sim nu de de Cos nu de de de de de Cos nu de	Terms in the foreing function	Chaice of particular Solution 1
and a me constants Proportional to And Proportional to And are constants are constants A, Sim now + Az Cos now in the constants in	1. A Constant	ا ا
and a me constants Proportional to a in a begand by de constants	2. b, h, is a constant	b + n, b
be and by de constants		tional to d
by and by are constants		
		t d2 60s m
	by multiplying it key n' before us	thur the
are woining it. It such a term appli- tion, the corresponding choice must	D TO THE TOTAL T	

	A COMMAND MAN OF THE STREET	•				-27-			37.5	times	rplied	
Particular Solutions	Choice of particular Solution T	d; dis a constant	do + d, n + d2n2+ + dkn K;	dis one constants	Proportional to atn		dism ne + d2 Cos ne		as in this column is or pr	it . It such a term appears "	preceptating choice must be mult	
Table 2: Rules for Choosing Ponts	Terms in the forcing function	1. A Constant	2. b, h, is a constant		3. b d i b and d me constants		4. 3 cos non por	5. by Sin NW] are constants	t: If a term in any of the particular solut	Complementary Solution, it is necessarily	3	by n.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+	Chase 2 $\lambda_{\overline{d}} = \text{root}$ of multiplicating in $\lambda_{\overline{d}} = \frac{H-m}{\lambda_{\overline{d}}} = \frac{H-m}{$	Chase 1 $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$ $\lambda_1 + \lambda_2 + \lambda_3 = - + + \lambda_N$	ao g(n) +a ₁ g(n-1) + a _N g(n-N) = 0 a ₀ λ ^N + a ₁ λ ^N - + a _N = 0	Solution to Homogeneous The Homogeneous
omtz Sin n o Sin n o Sin n o	r Cosno + dnr Cosno	3 2		3	

2- The 2- Transform

The role of 2-transform to discrete - time systems is similar to that of the Laplace transform to Continuous - time Systems. In recent years, the time domain approach using State-Space method has gained great significance in Studies of discrete - time systems due to its great versatility and unified treatment to analysis and design problems. However, the importance of 2 - transform and its role in classical analysis and design has its own place in the real world.

The 2-transform of Sequence {x(n)} is defined as

$$X(z) = Z\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n) z^n$$
 Two-sided z-transform

If x(n)=0 for Ando then

$$X(z) = Z\{x(n)\} = \sum_{n=0}^{\infty} x(n) z^n$$
 One-sided z-transform

Example 1

Find the 2-transforms of

$$x(n) = a^n u(n)$$
 and $x(n) = a^n u(-n)$

We have
$$\omega$$

$$X(z) = \sum_{n=0}^{\infty} a^n z^n = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n$$

Use
$$\sum_{r=0}^{\infty} r^n = \frac{1}{1-r} |r| \langle 1 \rangle \Rightarrow \chi(z) = \frac{1}{1-\sqrt[4]{z}}$$
 If $|\frac{\alpha}{z}| \langle 1 \rangle$

or
$$\chi(f) = \frac{f-\alpha}{f}$$

121>1a1 ROC: Region of

For scin) = a" ul-n) we have

$$X(z) = \sum_{n=-\infty}^{\infty} a^n z^n = \sum_{n=0}^{\infty} (\frac{z}{a})^n$$

$$= \frac{1}{1-\frac{2}{3}} = \frac{-\alpha}{2-\alpha} \quad \text{for } |\frac{2}{\alpha}| < 1 \text{ or } |\frac{2}{3}| < |\alpha|$$

Example 2

Find the 2-Transform of

$$x(n) = A Sim(\omega_0 n T)$$
, $\forall n > 0$

Then
$$X(z) = \sum_{n=0}^{\infty} A \operatorname{Sin}(\omega_{0}nT) z^{-n}$$

$$= A \sum_{n=0}^{\infty} \left(e^{\frac{1}{2}\omega_{0}nT} - e^{\frac{1}{2}n\omega_{0}} T \right) z^{-n}$$

$$= \frac{A}{2i} \left[\sum_{n=0}^{\infty} \left(e^{\frac{1}{2}\omega_{0}T} - e^{\frac{1}{2}n\omega_{0}} T \right) - \sum_{n=0}^{\infty} \left(e^{-\frac{1}{2}\omega_{0}T} - e^{\frac{1}{2}n\omega_{0}} T \right) \right]$$

$$= \frac{A}{2i} \left[\sum_{n=0}^{\infty} \left(e^{\frac{1}{2}\omega_{0}T} - e^{\frac{1}{2}n\omega_{0}} T \right) - \sum_{n=0}^{\infty} \left(e^{-\frac{1}{2}\omega_{0}T} - e^{\frac{1}{2}n\omega_{0}} T \right) \right]$$

$$= \frac{A}{2\dot{\partial}} \left[\frac{1}{1 - e^{\dot{\partial}\omega_0 T} z^{-1}} \right]$$

$$= 2A \frac{\bar{z}^1 \sin \omega_0 T}{1 - 2\bar{z}^1 \cos \omega_0 T + \bar{z}^2}$$

This exists when $\left|\frac{\dot{e}\dot{d}\omega_{o}T}{2}\right| \leq 1$ or |z| > 1

Remarks

- 1- For right sided sequences the ROC is outside a circle; and for all the left-sided sequences the Roc is inside a circle.
- 2- For right sided sequences the Roc is bounded on the inside by the pole with largest magnitude and on the outside by infinity (00).

For left-sided requences the Roc is bounded on the outside by the pole with Smallest magnitude and on the viside by

zero.

R-Sided Roc $a_{N}>a_{N-1}>--->a_{1}$

a, < a2 < - - - < a N

For a two-sided sequence Roc is bounded on the muide by the pole with the largest magnitude that Contributes for n>0 and on the outside by the pole with the smallest magnitude that Contributes for n < 0. $\downarrow \text{Im}$

Note: An Roc Should not enclose a pole.

Let
$$x(n) = \begin{cases} (1/2)^n & n > 0 \\ 3^n & n < -1 \end{cases}$$

Find X(2) and the region of convergence

$$X(\xi) = \sum_{n=-\infty}^{-1} x(n) \xi^{n} + \sum_{n=0}^{\infty} x(n) \xi^{n}$$

$$= \sum_{n=-\infty}^{-1} 3^{n} \xi^{n} + \sum_{n=0}^{\infty} (1/2)^{n} \xi^{n}$$

$$= \sum_{n=-\infty}^{\infty} (3/2)^{n} - 1 + \sum_{n=0}^{\infty} (1/2)^{n} \xi^{n}$$

$$= \sum_{n=-\infty}^{\infty} (3/2)^{n} - 1 + \sum_{n=0}^{\infty} (1/2)^{n} \xi^{n}$$

$$= \frac{1}{1 - \frac{2}{3}} - 1 + \frac{1}{1 - \frac{1}{2}} = \frac{3}{3 - 2} - 1 + \frac{2}{2 - \frac{1}{2}}$$

$$= \frac{-\frac{5}{2}}{(2 - 3)(2 - \frac{1}{2})}$$

Properties of 2-Transform

1) Limenty

Let
$$2\{x_1(n)\} = X_1(z)$$
 and $2\{x_2(n)\} = X_2(z)$

$$R_{1} < 121 < R_{2}$$
 $R_{3} < 121 < R_{4}$

Thun
$$\mathcal{Z}\left\{a \propto_{l}(n) + b \propto_{2}(n)\right\} = a \times_{l}(z) + b \times_{2}(z)$$

If poles of $\alpha X_1(z) + b X_2(z) = \text{poles of } X_1(z) \cup \text{poles of } X_2(z)$

then

If the linear combination is such that some zeros are introduced Which cancel poles, then the Roc may be larger. For example both an u(n) and an u(n-1) have Roc defined by 121 > 1a1 but sequence [anu(n)-anu(n-1)] = S(n) has a region of Convergence that is the entire 2-plane.

$$Z\left\{a^{n} u(n)\right\} = \frac{2}{2-\alpha}$$
 Roc |2|> |a|

$$Z\left\{a^{n}u(n-1)\right\} = \frac{2}{2-\alpha} - 1 = \frac{\alpha}{2-\alpha}$$
 Roc $|z| > |a|$

and
$$Z \left\{ a^{n}u(n) - a^{n}u(n-1) \right\} = Z \left\{ S(n) \right\} = \frac{2}{2-a} \frac{a}{2-a} = 1$$
2-Shifting in time - domain

entire 2-plane

2- Shifting in time - domain

Let
$$Z\left\{x(n)\right\} = X\left(2\right)$$

 $R, \langle | \geq | \langle R_2 \rangle$

then $Z\{x(n-n_0)\}=\frac{-n_0}{2}X(z)$ $R_1 < |z| < R_2$ (when Ec's or $Z\{x(n-n_0)\}=\frac{-n_0}{2}X(z)+\sum_{k=-n_0}^{\infty}X(k)z^k$], $x(-1),...,x(-n_0)$ one EcsRoc's of both are the same except may be at 2=0 and 2=0.

Z{S(n)}=1 is convergent anywhere in 2-plane but Z{S(n-1)} = 2 does not converge at 2=0 and the 2-housfarm of Z{S(n+1)} = 2 does not Converge at 2=0.

Additionally we have

$$\frac{2\left\{2\kappa(n+n_0)\right\}}{2} = \frac{2}{5} \left[\frac{\chi(\xi) - \sum_{k=0}^{\infty} \chi(k) \xi}{N^{o-1}}\right]$$