Содержание

1	Дис		я математика
	1.1	Что та	акое множество?
		1.1.1	Способы задания множеств
		1.1.2	Подмножества и другие понятия
		1.1.3	Мощность множества
		1.1.4	Замечания
		1.1.5	Источники
	1.2	Диагр	аммы Венна
		1.2.1	Определение и назначение
		1.2.2	2.2. Основные операции
		1.2.3	2.3. Примеры диаграмм
		1.2.4	2.4. Свойства
	1.3	3. Oth	ющения и их свойства
		1.3.1	3.1. Что такое отношение
		1.3.2	3.2. Примеры
		1.3.3	3.3. Область и область значений
		1.3.4	3.4. Свойства бинарных отношений (на $A \times A$)
		1.3.5	3.5. Особые классы отношений
		1.3.6	3.6. Графическое представление
		1.3.7	3.7. Табличное представление
		1.3.8	Источники
	1.4	4. Oth	ношение эквивалентности и классификация множеств
		1.4.1	4.1. Что такое отношение эквивалентности?
		1.4.2	4.2. Классы эквивалентности: интуитивный смысл 8
		1.4.3	4.3. Фактор-множество и фактор-отображение
		1.4.4	4.4. Развёрнутые примеры
		1.4.5	4.5. Геометрическая иллюстрация
		1.4.6	4.6. Зачем это нужно?
		1.4.7	Источники и литература
	1.5		нарные графы
		1.5.1	5.1. Определение
		1.5.2	5.2. Примеры
		1.5.3	5.3. Формула Эйлера
		1.5.4	5.4. Критерии планарности
		1.5.5	5.5. Свойства и ограничения
		1.5.6	5.6. Применения
		1.5.7	Источники
	1.6	6. Ma	грицы смежности и инцидентности
		1.6.1	6.1. Граф и его представления
		1.6.2	6.2. Матрица смежности
		1.6.3	6.3. Матрица инцидентности
		1.6.4	6.4. Сравнение представлений

	1.6.5	6.5. Визуальный пример	14
	1.6.6	6.6. Применения	14
	1.6.7	Источники	14
1.7	7. Пут	ти и контуры в графе	14
	1.7.1	7.1. Основные определения	14
	1.7.2	7.2. Простые пути и контуры	15
	1.7.3	7.3. Специальные виды путей	15
	1.7.4	7.4. Примеры и иллюстрации	15
	1.7.5	7.5. Свойства путей и контуров	16
	1.7.6	7.6. Матрица смежности и подсчёт путей	16
	1.7.7	7.7. Заключение	16
	1.7.8	Источники	17
1.8	8. Сим	иметрия графа и его дополнения	17
	1.8.1	8.1. Автоморфизмы графа и группа симметрий	17
	1.8.2	8.2. Примеры симметрий	17
	1.8.3	8.3. Граф-дополнение	18
	1.8.4	8.4. Иллюстрация: граф и его дополнение	18
	1.8.5	8.5. Свойства и применения	18
	1.8.6	Источники	19
1.9	9. Дво	оччные алгебры	19
	1.9.1	9.1. Понятие двоичной (бинарной) операции	19
	1.9.2	9.2. Свойства двоичной операции	19
	1.9.3	9.3. Классификация двоичных алгебр	20
	1.9.4	9.4. Примеры	20
	1.9.5	9.5. Таблица Кэли	20
	1.9.6	9.6. Связь с булевыми алгебрами	20
	1.9.7	9.7. Зачем нужны двоичные алгебры?	21
	198	Источники	21

1 Дискретная математика

1.1 Что такое множество?

Множество — это совокупность объектов, которые рассматриваются как единое целое. Эти объекты называются элементами множества.

Примеры множеств:

$$A = \{1, 2, 3\}, \quad B = \{$$
красный, зелёный, синий $\}$

Обозначение: если x принадлежит множеству A, пишем $x \in A$. Если не принадлежит — $x \notin A$.

1.1.1 Способы задания множеств

Существует два основных способа задания множеств:

 Перечислением элементов — когда мы явно указываем все элементы множества:

$$A = \{2, 4, 6, 8\}$$

Такой способ подходит, когда множество конечное и небольшое.

 Указанием свойства (предиката) — когда множество задаётся условием:

$$B = \{x \in \mathbb{N} \mid x$$
 — чётное и $x \leq 10\}$

Здесь \mathbb{N} — множество натуральных чисел. Значит, B — это все чётные натуральные числа, не превосходящие 10.

1.1.2 Подмножества и другие понятия

Если все элементы множества A входят в множество B, то A называется **подмножеством** B:

$$A \subseteq B$$

Пример:

$$\{1,2\} \subseteq \{1,2,3\}$$

Пустое множество — это множество, не содержащее ни одного элемента:

Ø

1.1.3 Мощность множества

Мощность множества (или *кардинальное число*) — это количество элементов в нём. Обозначается |A|.

Пример:

$$A = \{a, b, c\} \Rightarrow |A| = 3$$

1.1.4 Замечания

• В математике порядок элементов и повторы не имеют значения:

$$\{1,2,3\}=\{3,1,2,2\}$$

• Главное — какие элементы входят в множество, а не как они записаны.

1.1.5 Источники

- Г.С. Михалев, Дискретная математика. Базовый курс для вузов.
- Р. Джонсонбауг, Дискретная математика, Pearson Education.
- Википедия: Множество

1.2 Диаграммы Венна

1.2.1 Определение и назначение

Диаграммы Венна (иногда называемые диаграммами Эйлера—Венна) служат для наглядного изображения отношений между множествами: объединений, пересечений, разностей и дополнений.

1.2.2 2.2. Основные операции

- 1) Объединение: $A \cup B$ все элементы, принадлежащие хотя бы одному из множеств.
- 2) **Пересечение**: $A \cap B$ элементы, общие для обоих множеств.
- 3) **Разность**: $A \setminus B$ элементы из A, не входящие в B.
- 4) Дополнение: \overline{A} все элементы универсального множества U, не входящие в A.

1.2.3 2.3. Примеры диаграмм

Объединение

Пересечение

Разность

Дополнение

1.2.4 2.4. Свойства

1) Ассоциативность:

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C).$$

2) Коммутативность:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$.

3) Дистрибутивность:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

4) Законы де Моргана:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \quad \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

1.3 3. Отношения и их свойства

1.3.1 3.1. Что такое отношение

Бинарное отношение R между двумя множествами A и B — это множество упорядоченных пар:

$$R \subseteq A \times B$$
,

где $A \times B$ — декартово произведение:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Если $(a,b) \in R$, то говорят, что a связано c b отношением R, и пишут a R b.

1.3.2 3.2. Примеры

- Отношение **«меньше»** на \mathbb{N} : $R = \{(a, b) \mid a < b\}$.
- Отношение «быть делителем» на \mathbb{N} : $R = \{(a, b) \mid a \mid b\}$.
- Отношение **«равенство по модулю»** на \mathbb{Z} : $a \equiv b \pmod{n}$.

1.3.3 3.3. Область и область значений

• Область определения (domain):

$$dom(R) = \{ a \in A \mid \exists b \in B \colon (a, b) \in R \}.$$

• Область значений (range):

$$\operatorname{ran}(R) = \{ b \in B \mid \exists a \in A \colon (a, b) \in R \}.$$

1.3.4 3.4. Свойства бинарных отношений (на $A \times A$)

Пусть $R\subseteq A\times A$. Тогда отношение может обладать следующими свойствами:

• Рефлексивность:

$$\forall a \in A : (a, a) \in R.$$

Пример: =, \leq .

• Антирефлексивность (иррефлексивность):

$$\forall a \in A \colon (a, a) \notin R.$$

Пример: <.

• Симметричность:

$$\forall a, b \in A \colon (a, b) \in R \Rightarrow (b, a) \in R.$$

Пример: «a и b живут в одном доме».

• Антисимметричность:

$$\forall a,b \in A \colon (a,b) \in R \land (b,a) \in R \Rightarrow a = b.$$

Пример: \leq .

• Транзитивность:

$$\forall a,b,c \in A \colon (a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R.$$

Пример: \leq , <.

1.3.5 3.5. Особые классы отношений

• Отношение эквивалентности — рефлексивное, симметричное и транзитивное. Пример: $a \equiv b \pmod{n}$.

Такое отношение разбивает множество A на *классы* эквивалентности.

• Отношение частичного порядка — рефлексивное, антисимметричное и транзитивное. Пример: \leq на \mathbb{N} .

Если дополнительно выполняется, что любые два элемента сравнимы, то это полный порядок.

1.3.6 3.6. Графическое представление

Бинарное отношение на множестве A можно представить в виде **ориентиро-**ванного графа:

- Вершины соответствуют элементам А.
- Направленное ребро $a \to b$ рисуется, если $(a, b) \in R$.

Пример: на множестве $A=\{1,2,3\}$ отношение $R=\{(1,2),(2,3),(1,3)\}$ — транзитивное.

1.3.7 3.7. Табличное представление

Отношение R на множестве $A=\{a_1,a_2,\ldots,a_n\}$ можно представить в виде **таблицы**, где в ячейке на пересечении строки i и столбца j стоит 1, если $(a_i,a_j)\in R$, и 0 — иначе. Это называется **матрицей смежности**.

1.3.8 Источники

- Г.С. Михалев, Дискретная математика.
- Р. Джонсонбауг, Дискретная математика, Pearson Education.
- Википедия: Бинарное отношение

1.4 4. Отношение эквивалентности и классификация множеств

1.4.1 4.1. Что такое отношение эквивалентности?

Отношение R на множестве A связывает между собой некоторые пары элементов. Мы называем его *отношением эквивалентности*, если оно позволяет считать связанные элементы «равными» по какому-то признаку.

Формально $R \subseteq A \times A$ удовлетворяет трём ключевым свойствам:

1) Рефлексивность. Каждый элемент эквивалентен сам себе:

$$\forall a \in A \quad (a, a) \in R.$$

Пояснение: это значит, что сравнивая элемент с самим собой, мы всегда получаем «да» — элемент всегда «равен» самому себе.

2) Симметричность. Если a эквивалентен b, то и b эквивалентен a:

$$\forall a, b \in A \ ((a, b) \in R \Rightarrow (b, a) \in R).$$

Пояснение: эквивалентность — взаимное отношение. Нельзя иметь «одностороннюю» равенство.

3) **Транзитивность.** Если a эквивалентен b, а b эквивалентен c, то a эквивалентен c:

$$\forall a, b, c \in A \ \big((a, b) \in R \land (b, c) \in R \big) \ \Rightarrow \ (a, c) \in R.$$

Пояснение: признак эквивалентности «передаётся» по цепочке.

Без одного из этих свойств отношение нельзя назвать «эквивалентностью», потому что нарушится идея «равности» как симметричной и непротиворечивой связи.

1.4.2 4.2. Классы эквивалентности: интуитивный смысл

Идея. Все элементы, которые попарно эквивалентны друг другу, можно «собрать в одну корзинку» — *класс эквивалентности*.

Для каждого $a \in A$ определим

$$[a] = \{ x \in A \mid (a, x) \in R \}.$$

- Если $b \in [a]$, то по симметричности и транзитивности получаем [b] = [a].
- Если два класса не совпадают, то они не имеют общих элементов:

$$[a] \neq [b] \implies [a] \cap [b] = \varnothing.$$

Таким образом, классы эквивалентности *разбивают* всё множество A на непересекающиеся «группы равных элементов».

1.4.3 4.3. Фактор-множество и фактор-отображение

Обозначим множество всех таких классов:

$$A/R = \{ [a] \mid a \in A \}.$$

Это называется фактор-множеством. С ним связано естественное отображение

$$\pi: A \ \longrightarrow \ A/R, \qquad \pi(a) = [a].$$

- π «сводит» каждый элемент в его класс.
- π является сюръекцией (покрывает все классы).
- Если aRb, то $\pi(a) = \pi(b)$, и наоборот.

1.4.4 4.4. Развёрнутые примеры

1) **Конгруэнция по модулю** n на \mathbb{Z} . Определение:

$$a \equiv b \pmod{n} \iff n \mid (a - b).$$

Проверим свойства:

- Рефлексивность: $n \mid (a a) = 0$ всегда.
- Симметричность: если $n \mid (a b)$, то $n \mid (b a)$.
- Транзитивность: $n \mid (a-b)$ и $n \mid (b-c)$ даёт $n \mid (a-c)$.

Класс $[a] = \{a + kn \mid k \in \mathbb{Z}\}$. Всего n различных классов: $[0], [1], \dots, [n-1]$.

- 2) Равенство длины слов над алфавитом Σ . Правило: $u \sim v \iff |u| = |v|$.
 - Все слова длины 3 формируют один класс [u].
 - В фактор-множестве $\Sigma^*/\!\!\sim$ каждый класс соответствует конкретной длине.
- 3) **Цвет точек на плоскости.** Определим отношение: две точки эквивалентны, если они имеют одинаковый цвет. Тогда каждый цвет это один класс; фактор-множество набор всех цветов.

1.4.5 4.5. Геометрическая иллюстрация

Здесь каждый круг — класс эквивалентности, внутри него лежат все «равные» элементы.

1.4.6 4.6. Зачем это нужно?

- Упрощает работу: вместо множества элементов оперируем множеством классов.
- В алгебре: фактор-группы, фактор-кольца.
- В теории языков: выделение всех слов одинаковой длины, одинакового суффикса и т. д.
- В анализе данных: кластеризация, когда каждый кластер класс эквивалентности по выбранному критерию.

1.4.7 Источники и литература

- Г.С. Михалев, Дискретная математика. Базовый курс для вузов.
- Р. Джонсонбауг, Дискретная математика, Pearson Education.
- В. Э. Пахомов, Введение в дискретную математику.
- Википедия: Класс эквивалентности
- Википедия: Фактор-множество

1.5 5. Планарные графы

1.5.1 5.1. Определение

Планарным называется неориентированный граф G (множество вершин V и ребёр E), который можно нарисовать на плоскости так, чтобы никакие два ребра не пересекались, кроме общих концов. Такое представление называется *планарным вложением* графа.

1.5.2 5.2. Примеры

- Граф K_4 (полный граф на четырёх вершинах) является планарным.
- Графы K_5 и $K_{3,3}$ не являются планарными (теорема Куратовского, см. ниже).
 - *5.2.1. Планарный пример: K_4

Рис. 1. Планарное вложение полного графа K_4 .

*5.2.2. Непланарный пример: K_5

Рис. 2. Попытка вложения полного графа K_5 с неизбежными пересечениями.

1.5.3 5.3. Формула Эйлера

Для связного планарного графа справедлива формула Эйлера:

$$V - E + F = 2$$
,

где V=|V(G)| — число вершин, E=|E(G)| — число ребер, а F — число граней (областей плоскости, включая внешнюю).

Пример. В графе K_4 имеем V = 4, E = 6. Рассчитаем F:

$$4-6+F=2 \implies F=4.$$

Действительно, при планарном вложении мы получаем три внутренних треугольника и одну внешнюю область.

1.5.4 5.4. Критерии планарности

- **Теорема Куратовского:** Граф планарен тогда и только тогда, когда он не содержит подграфа, гомоморфного K_5 или $K_{3,3}$.
- **Теорема Вагнера:** Упрощённый критерий: нет миноров K_5 и $K_{3,3}$.

1.5.5 5.5. Свойства и ограничения

1) Для простого планарного графа с $V \geq 3$ всегда выполняется

$$E \le 3V - 6$$
.

Если, кроме того, нет треугольников (циклов длины 3), то

$$E < 2V - 4.$$

2) Минимальный непланарный граф имеет $V=5,\,E=10$ (граф K_5) или $V=6,\,E=9$ (граф $K_{3,3}$).

1.5.6 5.6. Применения

- *Географические карты*: раскраска областей так, чтобы соседние области различались цветом (теорема о четырёх красках).
- Схемотехника: прокладка дорожек на печатных платах без пересечений.
- Графический дизайн: автоматическая укладка элементов схем и диаграмм.

1.5.7 Источники

- Д.Б. West, *Introduction to Graph Theory*, Prentice Hall.
- В. Д. Мазурин, Дискретная математика: графы и алгоритмы.
- Википедия: Планарный граф
- Википедия: Теорема Куратовского

1.6 6. Матрицы смежности и инцидентности

1.6.1 6.1. Граф и его представления

Пусть задан простой неориентированный граф G = (V, E), где:

- $V = \{v_1, v_2, \dots, v_n\}$ множество вершин (|V| = n),
- $E = \{e_1, e_2, \dots, e_m\}$ множество рёбер (|E| = m).

Для хранения и анализа структуры графа удобно использовать его представление в виде матриц:

- 1) Матрица смежности (adjacency matrix),
- 2) Матрица инцидентности (incidence matrix).

1.6.2 6.2. Матрица смежности

Матрица смежности A — это квадратная матрица $n \times n$, где:

$$a_{ij} = egin{cases} 1, & ext{если вершины } v_i \text{ и } v_j \text{ соединены ребром,} \\ 0, & ext{иначе.} \end{cases}$$

Свойства:

- Для неориентированного графа A симметрична: $a_{ij}=a_{ji}.$
- Диагональные элементы a_{ii} равны 1, если в графе есть петли (в простом графе всегда 0).

• Сумма элементов i-й строки (или столбца) даёт степень вершины v_i .

Пример: граф с $V = \{v_1, v_2, v_3\}$ и рёбрами $E = \{(v_1, v_2), (v_2, v_3)\}$:

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

1.6.3 6.3. Матрица инцидентности

Матрица инцидентности B — это матрица $n \times m$, где:

$$b_{ij} = \begin{cases} 1, & \text{если вершина } v_i \text{ инцидентна ребру } e_j, \\ 0, & \text{иначе.} \end{cases}$$

Особенности:

- Каждое ребро соединяет две вершины, значит в столбце j ровно два значения 1 (если граф простой и без петель).
- В ориентированном графе обычно используют -1 и +1:

$$b_{ij} = egin{cases} -1, & \text{если } v_i$$
 — начало дуги $e_j, \\ +1, & \text{если } v_i$ — конец дуги $e_j, \\ 0, & \text{иначе.} \end{cases}$

Пример: тот же граф, где $e_1 = (v_1, v_2), e_2 = (v_2, v_3)$:

$$B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

1.6.4 6.4. Сравнение представлений

- Матрица смежности подходит для быстрого ответа на вопрос: «Есть ли ребро между v_i и v_j ?»
- Матрица инцидентности удобна для анализа структуры рёбер, особенно в ориентированных графах.
- Для разреженных графов (мало рёбер) матрица смежности неэффективна по памяти.

1.6.5 6.5. Визуальный пример

Рис. 1. Граф с вершинами v_1, v_2, v_3 и рёбрами e_1, e_2

1.6.6 6.6. Применения

- Алгоритмы поиска в графе (например, обход в глубину, поиск кратчайших путей).
- Сетевые задачи (анализ маршрутов, потоков, связности).
- Работа с графами в программировании, машинном обучении и обработке изображений.

1.6.7 Источники

- Гросс, Йелл: Теория графов и её приложения.
- Д.Б. Уэст, Введение в теорию графов.
- Википедия: Матрица смежности
- Википедия: Матрица инцидентности

1.7 7. Пути и контуры в графе

1.7.1 7.1. Основные определения

Пусть задан неориентированный простой граф G = (V, E).

• Путь (walk) в графе G — это последовательность вершин

$$P = (v_0, e_1, v_1, e_2, \dots, e_k, v_k),$$

где каждое ребро $e_i = \{v_{i-1}, v_i\} \in E$. Говорят, что путь ведёт из v_0 в v_k .

- Длина пути число ребер на пути, равное k.
- Начальная вершина v_0 , конечная вершина v_k .
- Открытый путь начальная и конечная вершины различны ($v_0 \neq v_k$).
- Замкнутый путь начальная и конечная вершины совпадают ($v_0 = v_k$).

1.7.2 7.2. Простые пути и контуры

1) Простой путь — путь, в котором все вершины различны:

$$v_i \neq v_j$$
 для $0 \leq i < j \leq k$.

Простота гарантирует отсутствие «заходов в тупик» и повторов.

2) Контур (cycle) или простой замкнутый путь — замкнутый простой путь длины $k \geq 3$, в котором кроме совпадения $v_0 = v_k$ все промежуточные вершины различны.

1.7.3 7.3. Специальные виды путей

- Trail путь, в котором рёбра не повторяются, но вершины могут.
- **Цепь** (trail) и **цепь без повторов** (simple trail) в ориентированных графах аналогично.
- Эйлеров путь путь, проходящий по каждому ребру ровно один раз. Если он замкнут, то это *цикл Эйлера*.
- Гамильтонов путь простой путь, проходящий через каждую вершину ровно один раз. Если он замкнут (возвращается в начальную вершину), то это цикл Гамильтона.

1.7.4 7.4. Примеры и иллюстрации

Пример 1. Простой путь длины 4 на графе:

Пример 2. Контур (цикл) длины 4:

1.7.5 7.5. Свойства путей и контуров

- *Комбинирование путей*: если существует путь из u в v и из v в w, то их конкатенация даёт путь из u в w.
- $\mathit{Cвязность}$: граф G называется связным, если для любых $u,v\in V$ существует путь из u в v.
- Минимальный путь: путь минимальной длины называют коротким путём или найдём его с помощью алгоритма Дейкстры.
- *Kycle Space*: множество всех циклов (контуров) образует векторное пространство над \mathbb{F}_2 (для ориентированных графов).

1.7.6 7.6. Матрица смежности и подсчёт путей

Если $A=(a_{ij})$ — матрица смежности графа G, то элемент матрицы A^k в позиции (i,j) равен числу различных путей длины k из вершины v_i в вершину v_j .

$$(A^k)_{ij} = \#\{\text{walks of length } k \text{ from } v_i \text{ to } v_j\}.$$

Это позволяет:

- Вычислить количество путей фиксированной длины.
- Определить достижимость: существует путь любой длины $k \le n-1$.

1.7.7 7.7. Заключение

Пути и контуры — фундаментальные понятия теории графов, лежащие в основе алгоритмов поиска (BFS, DFS), анализа связности, планарности и многих применений в сетевых и прикладных задачах.

1.7.8 Источники

- Д.Б. West, Introduction to Graph Theory, Prentice Hall.
- P. Diestel, Graph Theory.

• Википедия: Путь в графе

• Википедия: Цикл (граф)

1.8 8. Симметрия графа и его дополнения

1.8.1 8.1. Автоморфизмы графа и группа симметрий

Пусть G = (V, E) — простой граф. Автоморфизмом графа называется биекция

$$\varphi \colon V \to V$$

такая, что для любых двух вершин $u,v\in V$ выполняется

$$\{u,v\} \in E \iff \{\varphi(u),\varphi(v)\} \in E.$$

Другими словами, φ сохраняет структуру смежности.

- Множество всех автоморфизмов графа G образует группу при композиции отображений, называемую **группой автоморфизмов** $\mathrm{Aut}(G)$.
- Тривиальный автоморфизм тождественное отображение id : $v\mapsto v$.
- Если $\varphi \in \operatorname{Aut}(G)$ не является тождественным, говорят о *неявной* (или неполной) симметрии.

Пояснение: автоморфизмы — это «симметрии» графа, аналоги зеркальных и поворотных симметрий фигур. Они показывают, какие вершины и ребра можно «переставить», не меняя общей формы графа.

1.8.2 8.2. Примеры симметрий

Пример 1. Цикл C_4 (четырёхвершинный цикл). Вершины можно пронумеровать 1,2,3,4 по кругу. Автоморфизмы:

поворот на
$$90^{\circ}: 1 \to 2 \to 3 \to 4 \to 1$$
,

отражение:
$$1 \leftrightarrow 4, \ 2 \leftrightarrow 3,$$

и их композиции. Группа симметрий изоморфна диhedral group D_4 порядка 8.

Пример 2. Полный граф K_n . Любая перестановка вершин сохраняет все рёбра, поэтому

$$\operatorname{Aut}(K_n) \cong S_n$$
,

симметричная группа порядка n!.

1.8.3 8.3. Граф-дополнение

Дополнением графа G=(V,E) называется граф

$$\overline{G} = (V, \overline{E}), \quad \overline{E} = \big\{ \{u, v\} \mid u \neq v, \ \{u, v\} \notin E \big\}.$$

То есть в \overline{G} все отсутствующие в исходном G связи становятся рёбрами, а все прежние исчезают.

- $(\overline{G}) = G$.
- Если G простой, то и \overline{G} простой.
- $\deg_{\overline{G}}(v) = |V| 1 \deg_{G}(v)$.

*Группа автоморфизмов и дополнение

$$\operatorname{Aut}(\overline{G}) = \operatorname{Aut}(G).$$

Пояснение: перестановка вершин сохраняет и отсутствующие в G связи, значит сохраняет рёбра дополнения.

1.8.4 8.4. Иллюстрация: граф и его дополнение

Пример. Пусть G — треугольник K_3 (все три ребра). Тогда \overline{G} — три изолированные вершины (нет рёбер).

1.8.5 8.5. Свойства и применения

- Симметрия упрощает алгоритмы: при поиске путей, раскраске и проверке изоморфизма можно работать с представителем орбиты.
- Дополнение и свойства связности: G связен $\Rightarrow \overline{G}$ связен, но часто изучают одновременно пару (G, \overline{G}) , например в теореме Рамсея.
- Оптимизация: задачи клики в G переходят в задачи независимого множества в \overline{G} .

1.8.6 Источники

- Д.Б. West, Introduction to Graph Theory, Prentice Hall.
- P. Diestel, Graph Theory.

• Википедия: Автоморфизм графа

• Википедия: Дополнение графа

1.9 9. Двоичные алгебры

1.9.1 9.1. Понятие двоичной (бинарной) операции

Пусть A — непустое множество. Двоичной операцией на A называется отображение

$$*: A \times A \longrightarrow A, \quad (x,y) \mapsto x * y.$$

Интуцция: берём два элемента из A, «складываем» их по правилу * и получаем снова элемент из A.

1.9.2 9.2. Свойства двоичной операции

Пусть * — двоичная операция на A. Говорят, что * обладает свойствами:

- Замкнутость: по определению $x * y \in A$ для любых $x, y \in A$.
- Ассоциативность:

$$(x*y)*z = x*(y*z), \quad \forall x, y, z \in A.$$

Позволяет не ставить скобок при многократном применении.

• Коммутативность:

$$x*y=y*x, \quad \forall x,y\in A.$$

• Нейтральный (единичный) элемент: существует $e \in A$ такое, что

$$e * x = x * e = x, \quad \forall x \in A.$$

Его часто обозначают 0 или 1 в зависимости от контекста.

• Обратимые элементы: элемент $x \in A$ называется обратимым, если существует $y \in A$ такой, что

$$x * y = y * x = e$$
.

Тогда y называют *обратным* к x и обозначают x^{-1} .

1.9.3 9.3. Классификация двоичных алгебр

- 1) **Магма**: (A, *) любое множество с двоичной операцией (требуется лишь замкнутость).
- 2) Полугруппа: магма с ассоциативной операцией.
- 3) **Моноид**: полугруппа, в которой есть единица e.
- 4) Группа: моноид, в котором каждый элемент обратим.
- 5) Абелева (коммутативная) группа: группа с коммутативным *.

1.9.4 9.4. Примеры

- 1) $(\mathbb{Z}, +)$ абелева группа, где единица 0, обратный к x есть -x.
- 2) $(\mathbb{N}, +)$ моноид (нет обратных элементов, кроме 0).
- 3) $(\{0,1\}, \land)$ коммутативная монода, где $0 \land 1 = 0$, единица 1.
- 4) $(\{0,1\},\oplus)$ (сумма по модулю 2) абелева группа:

$$0 \oplus 0 = 0$$
, $0 \oplus 1 = 1$, $1 \oplus 1 = 0$; $e = 0$, $x^{-1} = x$.

5) $(M_n(\mathbb{R}), \cdot)$ — полугруппа матриц; моноид при наличии единичной матрицы.

1.9.5 9.5. Таблица Кэли

Для конечных алгебр удобно задавать операцию таблицей. *Пример*: группа $(\{0,1\},\oplus)$:

$$\begin{array}{c|cccc} \oplus & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

1.9.6 9.6. Связь с булевыми алгебрами

Булева алгебра — это *расширенная* коммутативная группа с дополнительными операциями «и», «или» и «не» на множестве $\{0,1\}$. В частности, структура $(\{0,1\},\wedge,\vee,\neg)$ удовлетворяет ряду аксиом идемпотентности и дистрибутивности.

1.9.7 9.7. Зачем нужны двоичные алгебры?

- Моделирование и анализ абстрактных операций (сложение, умножение, логические связки).
- Основа теории групп и её приложений: симметрии, криптография, теории кодирования.
- В информатике: операции над битами, булевы функции, конечные автоматы.

1.9.8 Источники

- C. Ланг, *Алгебра*.
- Д. С. Джонсонбауг, Дискретная математика, Pearson.
- Википедия: Бинарная операция.