Week 4

Design of Full adder

Carry Propagate Adder (CPA)

- Full adder is an arithmetic logic unit or circuit to add two single digit numbers with Carry-in.
- It is still combinational circuit with inputs Ax and Bx.
- S = Sum (1bit); C-in = Carry in; C-out = Carry Out.
- Adder is also called Ripple Carry Adder (RCA)
- Simplest circuit for an adder and has longest propagation delay that is proportional to the number of the carry bits
- Equation to estimate the propagation delay of an n-bit CPA. ΔFAC and ΔFAS stand for delta time for carry bit and delta time for sum signal propagation delay of a Full Adder (FA)

$$\Delta CPA(n) = [(n-1) * \Delta FA_C] + \Delta FA_S Eq(2.8)$$

- Using AND/OR/EOR gate, Δ for AND/OR gate is = 0.1 ns and Δ for EOR = 0.3ns, Δ FAC = 0.2ns and Δ FAS = 0.3ns, as per Eq(2.8)
 - For 8 bit CPA (n=8), the equation to calculate propagation delay is as follows:

$$\Delta CPA(n) = (n - 1)(0.2ns) + 0.3ns$$

Block Diagram of Full adder

- With three inputs and 2 outputs
- Full adder Truth Table

Inputs			Outputs	
A	В	C-IN	Sum	C - Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Schematic of a 4 bit Cary Propagate Adder (CPA)

4-bit binary addition

	A(3) B(3)	A(2) B(2)	A(1) B(1)	A(0) B(0)	+
Carry-Out	Sum(3)	Sum(2)	Sum(1)	Sum(0)	

Binary Addition review:

$$0 + 0 = 0;$$
 $0 + 1 = 1;$ $1 + 0 = 1;$ $1 + 1 = 10$

Α	В	S	Cout
0	0	0	
0	1	1	
1	0	1	
1	1	0	1

Inputs				Output	
A[i}	B[i}	C-in	S	C out	
1	1	0	0	1	
1	1	1	1	1	
1	1	1	1	1	
0	1	1	0	1	

Week 5

Multiplexer (Mux)

- Selecting of data or information is a critical function in a digital systems and computers
- A Multiplexer (Mux for short) is a digital switch; Mux is a circuit used to select and route any of the several inputs to a output signal
- Mux is a combinational circuit. it has the following:
 - o 2ⁿ inputs
 - N control inputs
 - One set of outputs
- For a multiplexer, the value of the control inputs (selector signals) determines the data input that is selected
- Multiplexer means many into one. a simple example of a non-digital circuit of a mux is a single pole multi-position switch. Multi-position switches are widely used in many electronics circuit, however, circuits that operate at high speed require the multiplexer to be automatically selected.
- Example: 1 bit, 2 to 1 Mux
 - o X and Y are the inputs
 - o S is the selector signal
 - o r is the output

Week 5

Design of a 1 bit, 2 to 1 mux

1. Block diagram of 1 bit, 2 to 1 mux

