Host 16s rDNA specific gRNA design for Cas-16S-seq

Kabin Xie

2019.09.09

A. Required software and programs for gRNA design

EMBOSS package VSEARCH fun2bed.pl sam_summary.pl and couple lines of AWK and SED

- **B.** The data processing procedure
- 1. Download unaligned fasta files of 16S rDNA from RDP, release 11, http://rdp.cme.msu.edu/misc/resources.jsp.

Gene	Aligned FASTA	Unaligned	Coverage Chart
Bacteria 16S	<u>Aligned</u>	Fasta, Genbank	<u>Excel</u>
Archaea 16S	<u>Aligned</u>	Fasta, Genbank	<u>Excel</u>
Fungal 28S	Aligned	Fasta, Genbank	<u>Excel</u>

2. Merged the sequences.

\$grep -c ">" db/*fa db/current_Archaea_unaligned.fa:160767 db/current_Bacteria_unaligned.fa:3196041

#combined three files in one fasta file \$ cat *fa > current.microbe.16S.fa

3. Identify PAM positions in RDP-rRNA collections.

#EMBOSS fuzznuc program is used to search the fasta file

Get NGG sites from both strands.

\$ fuzznuc -sequence db/current.microbe.16S.fa -pattern GG -outfile 16S_NGG.fuzznuc

\$ fuzznuc -sequence db/current.microbe.16S.fa -pattern CC -outfile 16S_NCC.fuzznuc

#Get NAG site from both strands.

\$ fuzznuc -sequence db/current.microbe.16S.fa -pattern AG -outfile 16S_NAG.fuzznuc

\$ fuzznuc -sequence db/current.microbe.16S.fa -pattern CT -outfile 16S CT.fuzznuc

4. Extract the guide sequence from fuzznuc results and output to to bed formate files

#Using fun2bed as: fun2bed.pl fuzznuc.result output-bed-file 0/1

0 indicates reverse complementary strand, 1 indicates forward strand NGG-PAM

always examine the output files to make sure get correct results

\$./fun2bed.pl 16S_NCC.fuzznuc 16S_CC.bed 0 \$./fun2bed.pl 16S_NGG.fuzznuc 16S_GG.bed 1

- \$../fun2bed.pl 16S_NAG.fuzznuc 16S_AG.bed 1
- \$../fun2bed.pl 16S_CT.fuzznuc 16S_CT.bed 0

5. Extract guide sequences from RDP-rRNA fasta files

#Extract the sequences from fasta file using bedtools.

\$bedtools getfasta -fi ../db/current.microbe.16S.fa -bed 16S_AG.bed -fo 16S_AG.tab -tab \$bedtools getfasta -fi ../db/current.microbe.16S.fa -bed 16S_CT.bed -fo 16S_CT.tab -tab -s

merged the bed files (NAG and NGG sites)

remove redundant sequences and keep the frequency in sequence name.

example: >S001337072:1354-1374(-)#27, #27 indicate 27 records are merged.

6. Prepare host 16S rDNA guide sequence.

- # Extract the 16S rDNA from rice reference genome (IRGSP4).
- # Put the mt and cp rDNA sequence in Mito.fasta and chlo.fasta files, respectively
- # Upload the fasta file to CRISPR-P V2.0/design

Following is a screen shot of CRISPR-P 2.0 results.

♣ CRISPR-P 2.0					Contact Us	Help
Home Submit	Design Help News C	Contact CRISPR-P 1.	O CRISPR-Local			
seq_id	sgRNA_id	Score	Sequence	strand	pos	%GC
Chlo	Guide85	0.8858	GTAGTCCTAGCCGTAAACGA <mark>TGG</mark>	+	796	50%
Chlo	Guide30	0.8007	TGATCAGTAGCTGGTCCGAG	+	299	55%
Chlo	Guide133	0.7837	GTAATCGCCGGTCAGCCATA CGG	+	1342	55%
Chlo	Guide102	0.7827	CGAATCCTCTTGAAAGAGAG	+	999	45%
	Guide81	0.7650	ACACTGAGAGACGAAAGCTAGGG		749	458

7. Recognize the PAM and extract the 20bp guide sequences using CRISPR P2.0

#Store the CRISPR P2.0 results in txt file (e.g. Os_16S_spacer.txt for mitochondrial gRNA,).

Extract the guide sequence and ID rom CRISPR-P output

#Using awk to covert txt file to fasta sequence file.

The gRNA were renamed according to the PAM position with prefix as Chlo and Os(For mitochondrion gRNAs)

\$awk '{print \$8 "\n" \$5}' Os_16S_spacer.txt > Os_16S_spacer.fasta

#extract the gRNA_ID and sequence to a tab separated file

\$awk '{ print \$8 "\t" \$5 }' Os_16S_spacer.txt | sed 's/>//' > Mito/Mito_spacer.tab

8. Perform global alignment using VSEARCH.

Align to RDP_rRNA NGG-sites and NAG sites separately.

#mt-gRNA vs RDP-rRNA

\$vsearch --usearch_global ./Os_16S_guide.fasta -db 16S_GG.all.uniq.fasta --id 0.6 --strand plus --samout Os_microbe.vs.alnGG.sam --iddef 4 --minseqlength 1 --minwordmatches 1 --maxrejects 0 --maxaccepts 0

\$vsearch --usearch_global ./Os_16S_guide.fasta -db 16S_AG.all.uniq.fasta --id 0.6 --strand plus --samout Os_microbe.vs.alnAG.sam --iddef 4 --minseqlength 1 --minwordmatches 1 --maxrejects 0 --maxaccepts 0

cp-gRNA vs microbial rDNA

\$vsearch --usearch_global ./chl_rRNA_guide.fa -db ../db/16S_GG.all.uniq.fasta --id 0.6 --strand plus --samout OsChl_microbe.vs.alnGG.sam --iddef 4 --minseqlength 1 --minwordmatches 1 --maxrejects 0 --maxaccepts 0

9. Summarize the off-target number for each gRNA from alignment file using perl script.

#Usage: sam_summary.pl seed_region unaln_threshold unaln_seed_threshold <in.sam> <out1_offtarget.tab> <out2_OT_no.tab>

#out1 extract align information from the input sam files, just for checking

#out2 file contains the gRNA_ID and total OT number. This is the data we need.

#for mt-gRNA

\$../sam_summary.pl 12 4 1 Os_microbe.vs.alnGG.sam Os_microbe.vs.alnGG.sam.tab Os_microbe.vs.alnGG.sam_ot_no.tab

\$../sam_summary.pl 12 2 1 Os_microbe.vs.alnAG.sam Os_microbe.vs.alnAG.sam.tab Os_microbe.vs.alnAG.sam_ot_no.tab

#For cp-gRNA

\$../sam_summary.pl 12 4 1 OsChl_microbe.vs.alnGG.sam OsChl.vs.alnGG.sam.tab OsChl.vs.alnGG.sam_ot_no.tab

\$../sam_summary.pl 12 2 1 OsChl_microbe.vs.alnAG.sam OsChl.vs.alnAG.sam.tab OsChl.vs.alnAG.sam ot no.tab

#We use following command to identify 100% matched GG sites.

\$../sam_summary.pl 12 0 0 OsChl_microbe.vs.alnGG.sam OsChl.vs.alnGG.sam.00.tab OsChl.vs.alnGG.sam_ot_no.00.tab

10. Combined the alnGG.sam_ot_no.tab, alnAG.sam_ot_no.tab and gRNA guide sequences using R or other table processing software.

11. Analyze the selected gRNA with 16S-seq results

\$makeblastdb -in all.otus100.fasta -input_type fasta -dbtype nucl -parse_seqids -out OTUdb -title OTUdb

 $\mbox{smakeblastdb -in otu} 100.bact.fasta -input_type fasta -dbtype nucl -parse_seqids -out OTU_bact_db -title OTU_bact_db$

blastn -query mt-gRNA.fasta -task blastn-short -db OTUdb -out mtvsOTU.out -num_threads 4 $\,$

blastn -query mt-gRNA.fasta -task blastn-short -db OTU_bact_db -out mtvsOTU_bact.out -num_threads 4 -word_size 7 -evalue 10

vsearch --usearch_global ./mt-gRNA.fasta -db ./all.otus100.fasta --id 0.6 --strand plus --samout ./off_target/mt_gRNA.vs.OTU100.sam --iddef 4 --minseqlength 1 --minwordmatches 1 --maxrejects 0 --maxaccepts 0

makeblastdb -in all.otus100.v4.fasta -input_type fasta -dbtype nucl -parse_seqids -out all.otu100.v4.db -title all.otu100.v4.db