4. Modélisation d'un problème de génération de code

(3 pts)

On considère l'ensemble suivant d'instructions (numérotées de 1 à 9) que l'on doit exécuter sur un seul et unique processeur.

- 1. read(a)
- 6. f := h + c / e
- 2. b := a + d
- 7. g:=d*h
- 3. c := 2 *a
- 8. h := e-5
- 4. d := e+1
- 9. i := h f

5. read(e)

Q1. Représentation sous forme de graphe.

- Quelle instruction doit immédiatement précéder l'instruction #8? → la #5
- Quelles instructions doivent immédiatement précéder l'instruction #7? → la #4 et la #8
- En ajoutant une instruction de début (*begin* de numéro 0) et une instruction de fin (*end* de numéro 10), représenter ce problème sous forme d'un graphe orienté G.

- Le sommet 0 doit précèder tous les autres sommets. Il suffit donc que 0 précède 1 et 5.
- Le sommet 10 doit être précédé par tous les autres sommets. Pour cela, il suffit que 9, 2 et 7 aient 10 comme successeur.
- Le graphe obtenu est un graphe orienté sans cycle.

Q2. Par la suite, les successeurs d'un sommet seront traités par ordre croissant de leurs numéros.

a. Indiquer l'ordre de visite des sommets pour un parcours en profondeur de G

$$0, 1, 2, 10, -3, 6, 9, -5, 4, 7, 8$$

b. Indiquer l'ordre de visite des sommets pour un parcours en largeur de G

$$0, 1, 5, -2, 3, -4, 6, 8, -7, 10, 9$$

c. Effectuer un tri topologique du graphe G (en indiquant l'algorithme utilisé)

Rappel Algorithme #1 du 4.3 du CM 04

- On étiquette les sommets lors du parcours en profondeur en utilisant l'algorithme du 4.1
- On constate que pour tout arc (u, v), on a : FIN[v] < FIN[u]
- Il suffit donc de trier les sommets par ordre de valeurs de FIN décroissantes.

Ci-dessous, l'application de cet algorithme à notre graphe.

- En rouge, et à gauche de chaque sommet i, sa date de début DEBUT[i]
- En bleu, et à droite de chaque sommet i, sa date de fin FIN[i]

Rq. Le graphe est parcouru est profondeur à partir du sommet 0. Les sommets sont donc visités dans le même ordre que pour la réponse à la question Q2 (a).

On obtient un ordre topologique en classant les sommets par valeurs de FIN décroissantes $\rightarrow 0$, 5, 8, 4, 7, 1, 3, 6, 9, 2, 10

Q3. En termes de graphes, à quoi correspond chaque solution de ce problème de génération de code ?

Toute solution correspond à un ordre topologique sur les sommets du graphe associé.