Exceptions

Class 8: Phonotactic probability

Adam Albright

CreteLing 2024

creteling2024.phonology.party

Taking stock

- So far: examined predictability of specific features/properties, and distribution of exceptions
 - · Morphological regularity
 - Phonological feature values
- Although final segments show expected frequency distribution (exceptional = higher token frequency), properties elsewhere show a tendency in the opposite direction
- Tentative suggestion: phonotactically improbably items are avoided
- A more powerful test: low global phonotactic probability

Bigram probability and acceptability

- We're interested in the distribution of words that speakers treat as exceptional
 - · Exist, but disallowed/penalized by the grammar
- Such words should be phonotactically unacceptable
- It's hard to ask speakers about the acceptability of existing words, but we can estimate it using existing models
- First step: a holistic measure of phonotactic probability
 - Transitional bigram probability in the English lexicon

Modeling phonotactic acceptability

- Transitional bigram probability $P([abc...x_n]_{Wd}) = P(a|[w_d)P(b|a)P(c|b)...P(x_n|x_{n-1})P(]_{Wd}|x_n)$
- Calculated over segments, or featurally defined natural classes (Albright, 2009)

Transitional bigram probability models acceptability

Phonotactic acceptability judgments (Albright & Hayes, 2003)

- Transitional bigram probability from CELEX
- Not a perfect estimate of acceptability, but one of the best available for attested combinations
- For similar results, see Hayes & Wilson (2008), Albright (2009)

4

Testing this for two languages

- English
- Korean
 - Nouns
 - Verbs

English: restricting to monosyllables

- Transitional probability decreases rapidly with the length of the string
 - Hard to compare predictions for words with different numbers of syllables
- A restricted test: monosyllables
- · Various choice points
 - Bigram probabilities calculated over monosyllables, or all words
 - Sensitive to syllabic role or not
 - Segments or features (natural classes)
- Report here on segmental bigrams, calculated on syllabified monosyllables

Approximating the English lexicon

- Frequency data: Open American National Corpus (OANC), second release¹
- Combined inflected forms of lemmas, single entry with sum of counts
 - 23,451 distinct lemmas

- Spoken portion: 3.8M tokens, mostly from SWITCHBOARD Godfrey & Holliman (1993)
- Automated tagging and lemmatization
- 41,463 distinct wordforms

¹http://www.anc.org/data/anc-second-release

Phonetic transcriptions

- American English transcriptions from CMU pronouncing dictionary
 - First ('primary') CMU pronunciation, converted to IPA
 - First pass: no POS or homophone differentiation
 - 19,367 transcribed entries, of which 4,657 are monosyllables
- · Automated syllabification
 - Goal: distinguish onset vs. rhyme/coda consonants
 - Coda consonants given diacritic
- I will largely ignore stress here, except as reflected indirectly through vowel reduction

Probable and improbable monosyllables ($\underline{C} = coda$)

you	ju	-6.417	frisked	fıı <u>skt</u>	-15.205
for	to ī	-6.669	swooshed	swu <u>∫t</u>	-15.224
see	si	-6.720	valve	væ <u>lv</u>	-15.278
hoe	hoʊ	-6.790	garbed	ga <u>rpq</u>	-15.290
rue	JU	-6.809	briefs	bui <u>fs</u>	-15.320
core	kɔī	-6.850	oomph	u <u>mf</u>	-15.364
do	du	-6.881	dweeb	dwi <u>b</u>	-15.428
why	waı	-6.907	tongs	ta <u>ŋz</u>	-15.453
be	bi	-6.934	glimpse	glɪmps	-16.002
<i>coo</i>	ku	-6.946	sixth	sī <u>ksθ</u>	-16.195
co.	koʊ	-6.953	midst	mɪ <u>dst</u>	-16.352
we	wi	-6.967	length	lε <u>ŋ</u> kθ	-17.103
too	tu	-7.010	depths	dεpθs	-17.834
ray	ıeı	-7.012	strength	stuεŋkθ	-18.187

The general strategy

- Now we have an estimate of how probable (phonotactically ordinary) vs. improbable (phonotactically 'exceptional') each word is
- Next step: examine frequency distribution
 - Do improbable (\sim exceptional) words tend to have higher token frequency?
 - Conversely, do more high frequency words tend to be more probable (~regular)?

- Small but highly significant effect: phonotactically less probable words tend to have *lower* token frequency
- Holds even when differences in segment count are taken in account

ullet Model: Bigram trans. prob. \sim segment count + log lemma freq

	Est	Std Err	t val	P(> t)
Intercept	-5.691	0.071	-80.69	<2e-16
segment count	-1.129	0.0187	-60.53	<2e-16
log lemma freq	0.047	0.007	6.66	3.05e-11

Constructing a comparable test for Korean

- As with English, desirable to restrict comparisons to words of comparable length
- Ideally, test with a lexicon of comparable size, with comparable frequency distribution
- Significant phonotactic differences between nouns and verbs/adjectives in Korean, and also frequency differences
 - Potential confound: if there are many more nouns than verbs, but verbs tend to have higher token frequency, high frequency words could look phonotactically 'unusual' just because they are verbs
 - Approach: model nouns and verbs separately

A Korean lexicon

- Started with the 90,257 lemmas in the Sejong corpus
 - Removed symbols, letter names, suffixes, entries in Hanja, etc.
- Nouns
 - Small number of monosyllables compared to English OANC corpus (only 587), so took 15,386 mono- and disyllables
- Verbs
 - Small number of verbs compared to English OANC corpus, so took all 3,750 verbs
- Within each set, calculated bigram transitional probability

Phonetic transcriptions

- Converted Sejong entries to phonetic transcription
 - Transliterated and applied regular phonological processes
- Phonotactics of morphemes, or surface forms?
 - In principle, also curious whether morphemes ending in clusters are 'exceptional' and require high frequency
 - Retained coda clusters in phonetic transcription

Nouns: probable and improbable monosyllables

01	i	-4.929	룸	ru <u>m</u>	-12.720
八	ſi	-5.024	삯	sagd	-13.077
八	ji	-5.197	렛	re <u>d</u>	-13.353
연	yə <u>n</u>	-5.423	램	rε <u>m</u>	-13.357
부	bu	-5.542	삶	sa <u>lm</u>	-13.803
전	jə <u>n</u>	-5.546	몫	mogd	-13.840
도	do	-5.562	흜	hɨ <u>lg</u>	-13.865
구	gu	-5.575	뺩	Bya <u>m</u>	-13.908
ュ	go	-5.577	굄	Gwe <u>m</u>	-13.997
영	yə <u>ŋ</u>	-5.602	샷	sya <u>d</u>	-14.173
사	sa	-5.641	랩	rε <u>b</u>	-14.206
기	gi	-5.646	슛	syu <u>d</u>	-14.432
수	su	-5.689	양	a <u>lm</u>	-14.458
정	jə <u>ŋ</u>	-5.724	넋	nəgd	-16.132

Nouns: probable and improbable disyllables

사이	sai	-10.132	뒤꼍	dwiGyə <u>d</u>	-22.830
연시	yə <u>n</u> ʃi	-10.259	흙밭	hɨlgBa <u>d</u>	-22.966
이지	iji	-10.283	흙물	h <u>ɨlŋ</u> mu <u>l</u>	-23.005
도시	do∫i	-10.322	칼슘	ka <u>l</u> syu <u>m</u>	-23.076
구이	gui	-10.331	링겔	ri <u>n</u> ge <u>l</u>	-23.219
부시	bu∫i	-10.335	벨벳	be <u>l</u> be <u>d</u>	-23.257
고시	go∫i	-10.337	캡프	kε <u>b</u> pɨ	-23.462
이리	iri	-10.373	뒷켠	dwi <u>d</u> kyə <u>n</u>	-23.507
지시	ji∫i	-10.375	튜브	tyubɨ	-23.783
전시	jə <u>n</u> ∫i	-10.381	룸펜	ru <u>m</u> pe <u>n</u>	-24.001
연지	yə <u>n</u> ji	-10.385	귀띔	gwiDyi <u>m</u>	-24.346
영시	yə <u>ŋ</u> ∫i	-10.431	헬멧	he <u>l</u> me <u>d</u>	-24.474
바이	bai	-10.446	뜀틀	Dwi <u>m</u> tɨ <u>l</u>	-24.581
사시	sa∫i	-10.454	캡슐	kε <u>b</u> syu <u>l</u>	-24.978

Same strategy as for English

- Examine relation between n-gram probability and token frequency
 - Do improbable (~exceptional) words tend to have higher token frequency?
 - Conversely, do more high frequency words tend to be more probable (~regular)?

- As for English, phonotactically less probable words tend to have lower token frequency
- Holds even when differences in segment count are taken in account

ullet Model: Bigram trans. prob. \sim segment count + log lemma freq

	Est	Std Err	t val	P(> t)
Intercept	-9.275	0.0788	-117.7	<2e-16
segment count	-0.940	0.0136	-69.1	<2e-16
log lemma freq	0.228	0.009	24.8	<2e-16

(Comparison with English)

Phonetic transcriptions for verbs

- A perennial problem for calculating well-formedness in highly inflected languages: what form to use?
- Interest here is really on the 'stem', but not pronounceable in isolation
 - · Stem-final simplifications and irregular allomorphy
- Abstraction: stem+"V"
 - That is, a faithful surface form of the stem, as it would occur before a vowel
 - Ignores allomorphy due to irregularity, hiatus resolution, glide formation etc.

Verbs: probable and improbable monosyllables

八	ji-	-3.981	꺾	GəG-	-12.887
01	i-	-4.435	골	go <u>l</u> .m-	-12.909
기	gi-	-4.479	삶	sa <u>l</u> .m-	-12.919
川	∫i-	-4.578	깎	GaG-	-12.925
하	ha-	-4.705	뱉	bɛt-	-12.997
치	ci-	-4.731	젊	jə <u>l</u> .m-	-13.033
가	ga-	-5.024	짧	Ja <u>l</u> .b-	-13.050
닿	da-	-5.070	섞	səG-	-13.101
나	na-	-5.129	10	ya <u>l</u> .b-	-13.503
마	ma-	-5.171	솎	soG-	-13.560
	d i -	-5.280	좇	joc-	-13.766
Ш	bi-	-5.375	<u>==</u>	ŧ <u>l</u> .p−	-13.902
자	ja-	-5.667	<u></u>	hu <u>l</u> .t-	-13.944
山	pi-	-5.771	쫓	Joc-	-14.092

Verbs: probable and improbable disyllables

들이	dɨri-	-6.321	벗삼	$b = (\underline{t}).sam$ -	-20.418
어리	əri-	-6.999	헛짚	hə(<u>t</u>).jip-	-20.459
거리	gəri-	-7.034	점찍	jə <u>m</u> .Jig-	-20.519
그리	gɨri-	-7.059	맴돌	mε <u>m</u> .dol-	-20.562
부리	buri-	-7.540	객적	gε <u>g</u> .jəg-	-20.670
여리	yəri-	-7.556	뒤쫓	dwi.Joc-	-20.796
우리	uri-	-7.574	끝맺	Gɨṯ.mεj-	-20.855
꺼리	Gəri-	-7.574	흉보	hyu <u>ŋ</u> .bo-	-21.080
가리	gari-	-7.778	짱박	Ja <u>n</u> .bag-	-21.126
서리	səri-	-7.787	설삶	sə <u>l</u> .sa <u>l</u> .m-	-21.279
달이	dari-	-7.824	손쉽	so <u>n</u> .swib-	-21.635
쓰리	Sɨri-	-7.923	샘솟	sε <u>m</u> .sos-	-22.389
벌이	bəri-	-7.947	있쟎	i <u>t</u> .jyan-	-22.828
오리	ori-	-7.952	폭넓	po <u>ŋ</u> .nə <u>l</u> .b-	-23.671

- A consistent result: phonotactically less probable words tend to have lower token frequency
- Similar trends for both verbs and adjectives

 \sim Model: Bigram trans. prob. \sim segment count + log lemma freq

	Est	Std Err	t val	P(> t)
Intercept	-3.302	0.193	-17.10	<2e-16
segment count	-1.963	0.020	-95.85	<2e-16
log lemma freq	0.278	0.026	10.73	<2e-16

Summary of whole-word probability

- Contrary to predictions, low frequency words are not phonotactically more probable, at least as measured holistically by transitional bigram probability
- This runs contrary to the expectation that low frequency words should be more 'regular'
- In fact, low frequency words tend to be phonotactically more unusual/improbable
 - Similar effect seen for English, and Korean (nouns, verbs/adjs)
- Cannot be reduced to independent effect of high frequency words having fewer segments
- May still be consistent with other types of 'reduction' among high frequency words

From acceptability to grammaticality

- Result in this section focuses on bigram probability as a proxy for phonotactic acceptability
- · Indirectly linked to grammatical exceptionality
 - Unacceptable \Rightarrow improbable \Rightarrow grammatically dispreferred

References

- Albright, Adam. 2009. Feature-based generalization as a source of gradient acceptability. *Phonology* 26.9–41.
- Albright, Adam, and Bruce Hayes. 2003. Rules vs. analogy in English past tenses: A computational/experimental study. *Cognition* 90.119–161.
- GODFREY, JOHN, and EDWARD HOLLIMAN. 1993. Switchboard-1 release 2 Idc97s62. web download. Philadelphia: Linguistic Data Consortium.
- HAYES, BRUCE, and COLIN WILSON. 2008. A maximum entropy model of phonotactics and phonotactic learning. *Linguistic Inquiry* 39.379–440.