Osnovi elektrotehnike 2 (1. Semestar) Veličine, konstante i formule

Petar Katić

1 Veličine

IME	OZNAKA	MJ. JED.	
Permeabilnost vakuuma	μ_0	Henri po metru($\frac{H}{m}$)	
Vektor magnetne indukcije	\vec{B}	Tesla (T)	
Podužna gustina zavojaka	N'	Jedan kroz metar $(\frac{1}{m})$	
Magnetni moment konture	\vec{m}	Amper metar na kvadrat (Am ²)	
Vektor magnetizacije	\vec{M}	Amper kroz metar $(\frac{A}{m})$	
Vektor jačine magnetnog polja	$ec{H}$	Amper kroz metar $(\frac{A}{m})$	
Magnetni fluks	φ	Tesla metar na kvadrat, veber ($Tm^2 = Wb$)	
(Fluks vektora magnetne indukcije)	$\mid \varphi \mid$		
Magnetna suscesibilnost	χ_m	Nema	
Relativna magnetna permeabilnost	μ_r	Nema	

2 Konstante

IME	VRIJEDNOST
Permeabilnost vakuuma	$\mu_0 = \frac{1}{\varepsilon_0 C_0^2} = 4\pi \cdot 10^{-7} \frac{H}{m}$

3 Formule

IME	FORMULA
Električna sila između nael. 1 i 2	$\vec{F_{e_{12}}} = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2} \vec{r_{012}}$
Električna sila između nael. 1 i 2 (koristeći \vec{E})	$\vec{F_{e_{12}}} = Q_2 \vec{E_1}$
Magnetna ² sila između nael. 1 i 2	$\vec{F_{m_{12}}} = \frac{1}{4\pi\varepsilon_0 C_0^2} \frac{Q_2 \vec{v_2} \times (Q_1 \vec{v_1} \times r_0 \vec{v_{12}})}{r^2}$
Magnetna sila između nael. 1 i 2 (koristeći \vec{B})	$\vec{F_{m_{12}}} = Q_2 \vec{v_2} \times \vec{B_1}$
Biosavrov zakon za tačkasto nael. u pokretu	$\vec{B} = \frac{\mu_0}{4\pi} \frac{Q\vec{v} \times \vec{r}}{r^2}$
Lorencova sila	$\vec{F}_2 = \vec{F}_e + \vec{F}_m = Q\vec{E} + Q\vec{v} \times \vec{B}$
Sila između dva strujna elementa	$d\vec{F}_{12} = \frac{\mu_0}{4\pi} \frac{I_2 d\vec{l}_2 \times (I_1 d\vec{l}_1 \times r_{012})}{r^2}$
Biosavrov zakon za strujne elemente	$\vec{dB} = \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \vec{r_0}}{r^2}$
Integralisanje \vec{dB}	$\vec{B} = \int d\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I d\vec{l} \times \vec{r_0}}{r^2}$

¹ Naelektrisanje

² Alternativno: Magnetska

IME	FORMULA
Magnetna indukcija na osi kružnog zavojka	$\vec{B} = \frac{\mu_0 N I a^2}{2(a^2 + z^2)^{3/2}} \vec{i}_z$
Podužna gustina zavojaka solenoida ³ dužine <i>b</i>	$N' = \frac{N}{b}$
Magnetna indukcija na osi solenoida	$\vec{B} = \frac{\mu_0 N' I}{2} (\cos \alpha_1 - \cos \alpha_2)$
Magnetna indukcija koplanarnog sistema	$dB = \frac{\mu_0 Idl}{4\pi r^2} \sin\alpha = \frac{\mu_0 I \sin\alpha}{4\pi r^2} dl$
Magnetna indukcija u okolini pravolinijskog provodnika konačne dužine	$B = \frac{\mu_0 I}{4\pi d} (\sin\Theta_1 - \sin\Theta_2)$
Magnetna indukcija u centru kružne konture	$B = \frac{\mu_0 I}{2a}$
Magnetna sila na konturu u magnetnom polju	$\vec{F_m} = \int I d\vec{l} \times \vec{B}$
Magnetni moment	$\vec{m} = I\vec{S}$ $\vec{M} = \vec{m} \times \vec{B}$
Vektor magnetizacije	$\vec{M} = \vec{m} \times \vec{B}$
Magnetni fluks (Fluks vektora magnetne indukcije)	$\phi = \int_{S} \vec{B} d\vec{S}$
ZAKON ODRŽANJA MAGNETNOG FLUKSA	$\oint_{S} \vec{B} d\vec{S} = 0$
Magnetni fluks kroz konturu	$\phi = \frac{\mu_0 Ib}{2\pi} \ln \frac{a+c}{c}$
(Površina: $a \cdot b$, udaljenost od I : c)	$U = V_{-} - V_{+}$
Holov efekat i napon	$U < 0 \Rightarrow Q > 0$ $U > 0 \Rightarrow Q < 0$ $U = E_H d = vBd$ $B = \frac{NQU}{Jd}$
AMPEROV ZAKON	$\oint_C \vec{B} \vec{dl} = \mu_0 \sum_{\text{kroz C}} I = \mu_0 \int_{\text{S na C}} \vec{J} \vec{dS}$
Vektor magnetizacije (po definiciji)	$\vec{M} = rac{\sum\limits_{dV} \vec{m}}{dV}$
Vektor magnetizacije (\vec{m} je isto za svaku konturu, N je koncentracija elementarnih kontura)	$\vec{M} = N\vec{m}$
VJMP ⁴	$ec{H}=rac{B}{\mu_0}-ec{M}$
Uopšteni Amperov zakon	$\oint_C \vec{H} \vec{dl} = \mu_0 \sum_{\text{kroz C}} I$
Relativna magnetna permeabilnost	$\mu_r = 1 + \chi_m$
Odnos \vec{M} , \vec{B} , \vec{H} u linearnim sredinama	$\vec{M} = k\vec{B} = \chi_m \vec{H}$ $\vec{M} = \mu \vec{H}$
Gustina površinske Amperove struje	$\vec{J_{SA}} = \vec{M} \times \vec{n}$
Granični uslov za normalne komponente vektora \vec{B}	$\vec{B_1}\vec{n} = \vec{B_2}\vec{n}$
Granični uslov za tangencijalne komp.vek. \vec{H} (Nema kondukcionih struja između razdvojnih površina)	$H_{1t} = H_{2t}$
Granični uslov za tangencijalne komp.vek. \vec{H} (Ima kondukcionih struja između razdvojnih površina)	$\vec{H_1} \vec{dl} - \vec{H_2} \vec{dl} = \vec{J_S} \vec{dl}$

 ³ Drugim riječima, spiralni namotaj
 ⁴ Vektor jačine magnetnog polja

IME	FORMULA
Izraz za prelamanje linija VJMP na razdvojnoj površini dva linearna i homogena dielektrika	$\frac{\mathrm{tg}\alpha_1}{\mathrm{tg}\alpha_2} = \frac{\mu_1}{\mu_2}$
Magnetna indukcija u prostom kolu građenom od linearnih materijala	$B = \mu H = \mu \frac{NI}{l}$
Reluktansa	$R_m = \frac{l}{\mu S}$
Magnetni napon	$U_m = \int\limits_{l} \vec{H} \vec{dl}$