

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 5 – Cinématique du solide indéformable

EXERCICE D'APPLICATION

Etude d'une centrifugeuse à 2 degrés de liberté [1]

Centrifugeuse humaine développée par le CNRS / MEDES

 $\overrightarrow{j_0}$ $\overrightarrow{i_0}$ $\overrightarrow{i_0}$ $\overrightarrow{i_0}$ $\overrightarrow{i_0}$ $\overrightarrow{i_0}$ $\overrightarrow{i_0}$ $\overrightarrow{i_0}$ $\overrightarrow{i_0}$

Modélisation cinématique

Le paramétrage de la centrifugeuse est donnée ci dessous :

Question 1

Donner la trajectoire du point G dans le repère \mathcal{R}_0 .

Question 2

Calculer $\overrightarrow{V(O_0 \in S_1/S_0)}$.

Question 3

Calculer $\overrightarrow{V(O_1 \in S_2/S_1)}$.

Question 4

Calculer $\overrightarrow{V(O_1 \in S_1/S_0)}$ et $\overrightarrow{\Gamma(O_1 \in S_1/S_0)}$.

Question 5

Calculer $\overrightarrow{\Omega(S_1/S_0)}$, $\overrightarrow{\Omega(S_2/S_1)}$ et $\overrightarrow{\Omega(S_2/S_0)}$.

Question 6

Calculer $V(G \in S_2/S_0)$.

Question 7

Calculer $\Gamma(G \in S_2/S_0)$.

Les paramètres constants du système sont les suivants :

$$-\overrightarrow{O_0O_1} = a\overrightarrow{i_1};$$

$$-\overrightarrow{O_1G} = b\overrightarrow{i_2} + c\overrightarrow{k_2}.$$

Références

[1] Centrifugeuse humaine - CNRS Photothèque/Sébastien Godefroy et MEDES, Avio et Tiger, http://www.medes.fr/home_fr/fiche-centrifugeuse/mainColumnParagraphs/0/document/Presentation%20centrifugeuse%2018.12.07.pdf.