

CLAIMS

What is claimed is:

1. An organophotoreceptor comprising an electrically conductive substrate
2 and a photoconductive element on the electrically conductive substrate, the
3 photoconductive element comprising:

- 4 (a) a charge transport compound having the formula

6 R₁ is an aromatic group, an alkyl group, an alkenyl group, or a
7 heterocyclic group;

8 R₂ comprises an (N,N-disubstituted)arylamine group;

9 R₃ comprises an epoxy group;

10 R₄ is H, an aromatic group, an alkyl group, an alkenyl group, or a
11 heterocyclic group; and

12 X is a first linking group; and

- 13 (b) a charge generating compound.

- 1 2. An organophotoreceptor according to claim 1 wherein the (N,N-
2 disubstituted)arylamine group is selected from the group consisting of a p-(N,N-
3 disubstituted)aryl amine group, a carbazole, and a julolidine group.

- 1 3. An organophotoreceptor according to claim 1 wherein X is a -(CH₂)_m-
2 group, where m is an integer between 1 and 30, inclusive, and one or more of the
3 methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
5 CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
6 hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
7 heterocyclic group, an aromatic group, or part of a ring group.

4. An organophotoreceptor according to claim 1 wherein R_2 has the formula

where R₁' is an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic group;

R₂' is selected from the group consisting of a carbazole group or a p-(N,N-disubstituted)arylamine group;

R_3' comprises an epoxy, a hydroxyl, a thiol, a carboxyl or an amine group;

8 R_{4'} is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
9 group; and

10 X' is a second linking group.

5. An organophotoreceptor according to claim 4 wherein X' is a -(CH₂)_n-
group, where n is an integer between 1 and 30, inclusive, and one or more of the
methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
heterocyclic group, an aromatic group, or part of a ring group.

1 6. An organophotoreceptor according to claim 5 wherein the charge transport
2 compound is selected from the group consisting of:

5 where R is hydrogen, an alkyl group, an aromatic group, or a heterocyclic group,
6 and

7

1 7. An organophotoreceptor according to claim 1 further comprising
2 an electron transport compound.

1 8. An organophotoreceptor according to claim 1 wherein the
2 organophotoreceptor is in the form of a drum or a belt.

1 9. An organophotoreceptor according to claim 1 comprising:
2 (a) a charge transport layer comprising the charge transport compound
3 and a polymeric binder; and
4 (b) a charge generating layer comprising the charge generating compound and a
5 polymeric binder.

1 10. An electrophotographic imaging apparatus comprising:
2 (a) a light imaging component; and
3 (b) an organophotoreceptor oriented to receive light from the light
4 imaging component, the organophotoreceptor comprising an electrically
5 conductive substrate and a photoconductive element on the electrically conductive
6 substrate, the photoconductive element comprising:
7 (i) a charge transport compound having the formula

8
9 R₁ is an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic group;

10 R₂ comprises an (N,N-disubstituted)arylamine group;
11 R₃ comprises an epoxy group;
12 R₄ is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
13 group; and
14 X is a first linking group; and
15 (ii) a charge generating compound.

1 11. An electrophotographic imaging apparatus of claim 10 wherein the (N,N-
2 disubstituted)arylamine group is selected from the group consisting of a p-(N,N-
3 disubstituted)aryl amine group, a carbazole, and a julolidine group.

1 12. An electrophotographic imaging apparatus of claim 10 wherein X is
2 a -(CH₂)_m- group, where m is an integer between 1 and 30, inclusive, and one or more of
3 the methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
5 CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
6 hydroxyl, thiol, carboxyl, an amino group; an alkyl group, an alkenyl group, a
7 heterocyclic group, an aromatic group, or part of a ring group.

1 13. An electrophotographic imaging apparatus of claim 10 further comprising a
2 toner dispenser.

1 14. An electrophotographic imaging apparatus of claim 10 wherein the
2 organophotoreceptor further comprises an electron transport compound.

1 15. An electrophotographic imaging apparatus of claim 10 wherein R₂ has the
2 formula

4 where R_1' is an aromatic group, an alkyl group, an alkenyl group, or a
 5 heterocyclic group;

6 R_2' is selected from the group consisting of a carbazole group or a p-(N,N-
 7 disubstituted)arylamine group;

8 R_3' comprises an epoxy group, a hydroxyl group, a thiol group, a carboxyl group,
 9 or an amine group;

10 R_4' is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
 11 group; and

12 X' is a second linking group.

1 16. An electrophotographic imaging apparatus of claim 15 wherein X' is
 2 a $-(CH_2)_n-$ group, where n is an integer between 1 and 30, inclusive, and one or more of
 3 the methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
 4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR_6 group, a
 5 CR_7 , or a CR_8R_9 group where R_6 , R_7 , R_8 , and R_9 are, each independently, a bond, H,
 6 hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
 7 heterocyclic group, an aromatic group, or part of a ring group.

1 17. An electrophotographic imaging apparatus of claim 16 wherein the charge
 2 transport compound is selected from the group consisting of:

3
 4 where R is hydrogen, an alkyl group, an aromatic group, or a heterocyclic group, and

1 18. An electrophotographic imaging process comprising:

2 (a) applying an electrical charge to a surface of an organophotoreceptor
3 comprising an electrically conductive substrate and a photoconductive element on the
4 electrically conductive substrate, the photoconductive element comprising:

5 (i) a charge transport compound having the formula

7 R_1 is an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic group;

8 R_2 comprises an (N,N-disubstituted)arylamine group;

9 R_3 comprises an epoxy group;

10 R_4 is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
11 group; and

12 X is a first linking group; and

13 (ii) a charge generating compound;

14 (b) imagewise exposing the surface of the organophotoreceptor to
15 radiation to dissipate charge in selected areas and thereby form a pattern of
16 charged and uncharged areas on the surface;

17 (c) contacting the surface with a toner to create a toned image; and

18 (d) transferring the toned image to a substrate.

1 19. An electrophotographic imaging process of claim 18 wherein the (N,N-
2 disubstituted)arylamine group is selected from the group consisting of a p-(N,N-
3 disubstituted)aryl amine group, a carbazole, and a julolidine group.

1 20. An electrophotographic imaging process of claim 18 wherein X is
2 a -(CH₂)_m- group, where m is an integer between 1 and 30, inclusive, and one or more of
3 the methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
5 CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
6 hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
7 heterocyclic group, an aromatic group, or part of a ring group.

1 21. An electrophotographic imaging process of claim 18 wherein the
2 organophotoreceptor further comprises an electron transport compound.

1 22. An electrophotographic imaging process of claim 18 wherein R₂ has the
2 formula

4 where R₁' is an aromatic group, an alkyl group, an alkenyl group, or a
5 heterocyclic group;

6 R₂' is selected from the group consisting of a carbazole group or a p-(N,N-
7 disubstituted)arylamine group;

8 R₃' comprises an epoxy group, a hydroxyl group, a thiol group, a carboxyl group,
9 or an amine group;

10 R₄' is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
11 group; and

12 X' is a second linking group.

1 23. An organophotoreceptor according to claim 22 wherein X' is a -(CH₂)_n-
 2 group, where n is an integer between 1 and 30, inclusive, and one or more of the
 3 methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
 4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
 5 CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
 6 hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
 7 heterocyclic group, an aromatic group, or part of a ring group.

1 24. An electrophotographic imaging process of claim 23 wherein the charge
 2 transport compound is selected from the group consisting of:

3
 4 where R is hydrogen, an alkyl group, an aromatic group, or a heterocyclic group, and

5
 1 25. A charge transport compound having the formula

2
 3 where R₁ is an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
 4 group;

5 R₂ comprises an (N,N-disubstituted)arylamine group;

6 R₃ comprises an epoxy group;

7 R₄ is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
8 group; and

9 X is a first linking group.

1 26. A charge transport compound of claim 25 wherein the (N,N-disubstituted)
2 arylamine group is selected from the group consisting of a p-(N,N-disubstituted)aryl
3 amine group, a carbazole, and a julolidine group.

1 27. An electrophotographic imaging process of claim 25 wherein X is
2 a -(CH₂)_m- group, where m is an integer between 1 and 30, inclusive, and one or more of
3 the methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
5 CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
6 hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
7 heterocyclic group, an aromatic group, or part of a ring group.

1 28. A charge transport compound of claim 25 wherein R₂ has the formula

3 where R₁' is an aromatic group, an alkyl group, an alkenyl group, or a
4 heterocyclic group;

5 R₂' is selected from the group consisting of a carbazole group or a p-(N,N-
6 disubstituted)arylamine group;

7 R₃' comprises an epoxy group, a hydroxyl group, a thiol group, a carboxyl group,
8 or an amine group;

9 R₄' is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
10 group; and

11 X' is a second linking group.

1 29. A charge transport compound of claim 28 wherein X' is a -(CH₂)_n- group,
 2 where n is an integer between 1 and 30, inclusive, and one or more of the methylene
 3 groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a heterocyclic group, an
 4 aromatic group, urethane, urea, an ester group, an NR₆ group, a CR₇, or a CR₈R₉ group
 5 where R₆, R₇, R₈, and R₉ are, each independently, a bond, H, hydroxyl, thiol, carboxyl, an
 6 amino group, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group,
 7 or part of a ring group.

1 30. A charge transport compound of claim 29 wherein the charge transport
 2 compound is selected from the group consisting of:

3
 4 where R is hydrogen, an alkyl group, an aromatic group, or a heterocyclic group, and

1 31. A charge transport composition prepared by the reaction of at least a
 2 reactive functionality of a functional binder with at least an epoxy ring in a compound
 3 having the formula

4
 5 where R₁ is an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
 6 group;

7 R₂ comprises an (N,N-disubstituted)arylamine group;
8 R₃ comprises an epoxy group;
9 R₄ is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
10 group; and
11 X is a first linking group.

1 32. A charge transport composition of claim 31 wherein the reactive
2 functionality is selected from the group consisting of hydroxyl, thiol, carboxyl, and an
3 amino group.

1 33. A charge transport composition of claim 31 wherein the (N,N-
2 disubstituted)arylamine group is selected from the group consisting of a p-(N,N-
3 disubstituted)aryl amine group, a carbazole, and a julolidine group.

1 34. A charge transport composition of claim 31 wherein X is a -(CH₂)_m-
2 group, where m is an integer between 1 and 30, inclusive, and one or more of the
3 methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
5 CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
6 hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
7 heterocyclic group, an aromatic group, or part of a ring group.

1 35. A charge transport composition of claim 31 wherein R₂ has the formula

2 where R₁' is an aromatic group, an alkyl group, an alkenyl group, or a
3 heterocyclic group;

5 R₂' is selected from the group consisting of a carbazole group or a p-(N,N-
6 disubstituted)arylamine group;

7 R₃' comprises an epoxy group, a hydroxyl group, a thiol group, a carboxyl group,
8 or an amine group;

9 R₄' is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
10 group; and

11 X' is a second linking group.

1 36. A charge transport composition of claim 35 wherein X' is a -(CH₂)_n-
2 group, where n is an integer between 1 and 30, inclusive, and one or more of the
3 methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
5 CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
6 hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
7 heterocyclic group, an aromatic group, or part of a ring group.

1 37. A charge transport composition of claim 36 wherein the charge transport
2 compound is selected from the group consisting of:

3
4 where R is hydrogen, an alkyl group, an aromatic group, or a heterocyclic group, and

5

1 38. An organophotoreceptor comprising an electrically conductive substrate
2 and a photoconductive element on the electrically conductive substrate, the
3 photoconductive element comprising:

4 (a) a polymeric charge transport compound prepared by the reaction of at
5 least a reactive functionality of a functional binder with at least an epoxy ring in a
6 compound having the formula

7 R₁ is an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic group;
8 R₂ comprises an (N,N-disubstituted)arylamine group;
9 R₃ comprises an epoxy group;
10 R₄ is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
11 group; and
12 X is a first linking group; and

13 (b) a charge generating compound.

1 39. An organophotoreceptor according to claim 38 wherein the
2 photoconductive element further comprises an electron transport compound.

1 40. An organophotoreceptor according to claim 38 wherein the reactive
2 functionality of the binder is selected from the group consisting of hydroxyl, carboxyl
3 group, thiol, and an amino group.

1 41. An organophotoreceptor according to claim 38 wherein the (N,N-
2 disubstituted)arylamine group is selected from the group consisting of a p-(N,N-
3 disubstituted)aryl amine group, a carbazole, and a julolidine group.

1 42. An organophotoreceptor according to claim 38 wherein X is a -(CH₂)_m-
2 group, where m is an integer between 1 and 30, inclusive, and one or more of the
3 methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a

4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
 5 CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
 6 hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
 7 heterocyclic group, an aromatic group, or part of a ring group.

1 43. An organophotoreceptor according to claim 38 wherein R₂ has the formula

2 where R₁' is an aromatic group, an alkyl group, an alkenyl group, or a
 3 heterocyclic group;

5 R₂' is selected from the group consisting of a carbazole group or a p-(N,N-
 6 disubstituted)arylamine group;

7 R₃' comprises an epoxy group, a hydroxyl group, a thiol group, a carboxyl group,
 8 or an amine group;

9 R₄' is H, an aromatic group, an alkyl group, an alkenyl group, or a heterocyclic
 10 group; and

11 X' is a second linking group.

1 44. An organophotoreceptor according to claim 43 wherein X' is a -(CH₂)_n-
 2 group, where n is an integer between 1 and 30, inclusive, and one or more of the
 3 methylene groups is optionally replaced by O, S, N, C, B, P, C=O, O=S=O, a
 4 heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₆ group, a
 5 CR₇, or a CR₈R₉ group where R₆, R₇, R₈, and R₉ are, each independently, a bond, H,
 6 hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a
 7 heterocyclic group, an aromatic group, or part of a ring group.

1 45. An organophotoreceptor according to claim 44 wherein the charge
 2 transport compound is selected from the group consisting of:

