- 1. The graph¹ of Europe $\mathcal{E} = \langle V, E \rangle$ is defined as follows: each vertex $v \in V$ is a Europe country; two vertices are adjacent $(\{u, v\} \in E)$ if corresponding countries share a border. Let \mathcal{E}^* be a maximum connected component of \mathcal{E} .
 - (a) Draw the Europe graph \mathcal{E} and prove that it is planar by showing that it is a plane map.
 - (b) Find |V|, |E|, $\delta(\mathcal{E}^*)$, $\Delta(\mathcal{E}^*)$, rad (\mathcal{E}^*) , diam (\mathcal{E}^*) , center (\mathcal{E}^*) .
 - (c) Find the minimum vertex coloring 2 Z of \mathcal{E} .
 - (d) Find the maximum stable set X of \mathcal{E} and prove that it is maximal.
 - (e) Find the maximum matching M of \mathcal{E} and prove that it is maximal.
 - (f) Find the minimum vertex cover R of \mathcal{E} and prove that it is minimal.
 - (g) Find the minimum edge cover F of \mathcal{E}^* and prove that it is minimal.
 - (h) Find the shortest closed path (or circuit) that visits every edge³ of \mathcal{E}^* .
 - (i) Add the weight function $w: E \to \mathbb{R}$ denoting the distance between the capitals. Find the minimum spanning tree T for the maximum connected component of the weighted Europe graph $\mathcal{E}_w = \langle V, E, w \rangle$.
- 2. Prove rigorously that every r-regular (r > 0) (n, m)-bipartite graph has n = m.
- 3. Prove rigorously that a connected graph $G = \langle V, E \rangle$ is a tree *iff*⁴ |E| = |V| 1.
- 4. Prove rigorously the Triangle Inequality for a connected graph $G = \langle V, E \rangle$:

$$\forall x, y, z \in V : dist(x, y) + dist(y, z) \ge dist(x, z)$$

Minor Cheatsheet

- * Graph G is a pair $\langle V, E \rangle$ of the set of vertices V and the set of edges E.
- * $S^k = S \times \cdots \times S = \{\langle s_1, \dots, s_k \rangle \mid s_1, \dots, s_k \in S\}$ set of k-tuples (Cartesian k-power of S).
- * $S^{(k)} = \{\{s_1, \dots, s_k\} \mid s_1 \neq \dots \neq s_k \in S\}$ set of all exactly-k-sized subsets of S.
- * Simple **directed** graph has $E \subseteq V^2$. Simple **undirected** graph has $E \subseteq V^{(2)}$.
- $* \ \delta(G) = \min_{v \in V} \deg(v) \mathbf{minimum \ degree}, \ \Delta(G) = \max_{v \in V} \deg(v) \mathbf{maximum \ degree}.$
- * A graph is *r*-regular if all its vertices have the same degree: $\forall v \in V : \deg(v) = r$.
- * The **distance** dist(v, w) between two vertices is the length or the shortest path $v \rightsquigarrow w$.
- * A **stable set**⁵ $X \subseteq V$ is a set of pairwise non-adjacent vertices.
- * A **matching** $M \subseteq E$ is a set of pairwise non-adjacent edges.
- * A **vertex cover** $R \subseteq V$ is a set of vertices that contains at least one endpoint of every edge: $\{u,v\} \in E \rightarrow u \in R \lor v \in R$.
- * An **edge cover** $F \subseteq E$ is a set of edges such that every vertex of the graph is an endpoint of some element of F.
- * Note the distinction between **maximum** ("globally") and **maximal** ("locally"):
 - Some thing A^* is **maximum** if there is no other thing A such that $|A| > |A^*|$.
 - Some thing A' is **maximal** is there is no other thing A such that $A \supset A'$ (or rather, A > A').
 - Similarly, **minimum** / **minimal**.

¹Hereinafter "graphs" are "simple undirected and unweighted", unless stated otherwise.

²Since \mathcal{E} is planar, there exists a 4-coloring, but it may be not the minimum!

³This is a Chinese Postman Problem.

⁴Recall that in order to prove $A \leftrightarrow B$ ("iff"), you must prove both $A \to B$ and $B \to A$.

⁵Also known as "independent set".