

MEMS digital output motion sensor

low-power high performance 3-axes "DSC-XYZ" accelerometer

Key Features

- Supply voltage, 1.62V to 3.6V
- For 2x2x1.1 mm LGA-12 package
- User selectable range, ±2g, ±4g, ±8g, ±16g
- User selectable data output rate
- Digital I²C/SPI output interface
- 14 bit resolution
- Low power consumption
- 2 Programmable interrupt generators with independent function for motion detection
- Free-fall detection
- Embedded self-test function
- Factory programmable offset and sensitivity
- RoHS compliant

Applications

- User interface for mobile phone and PMP
- Display orientation
- Gesture recognition
- Active/inactive monitoring
- Free-fall detection
- Double/ Click recognition
- Power management
- Vibration monitoring
- Inclination and tilt sensing
- Pedometer

Product Overview

The da213 sensor is a low power high performance capacitive three-axis linear accelerometer developed by micro-machined technology. The device is available in a 2x2x1.1mm land grid array (LGA) and it is guaranteed to operate over an extended temperature range from -40°C to +85°C. The sensor element is fabricated by single crystal silicon with DRIE process and is protected by hermetically sealed silicon cap from the environment. The device features user selectable full scale of $\pm 2g/\pm 4g/\pm 8g/\pm 16g$ measurement range with data output rate from 1Hz to 1 kHz with signal condition, temperature compensation, self-test, motion detection imbedded. The da213 has a self-test mode for user to check the functioning of the sensor and a power-down mode that makes it good for handset power management. Two independent and flexible interrupts provided greatly simplify the algorithm for various motion status detections. Standard 1^2 C and SPI interfaces are used to communicate with the chip.

Content

1	Block o	liagram	n and pin description	9	
	1.1	Bloc	ck diagram	9	
	1.2	Pin	description	9	
2	Mecha	nical a	nd electrical specifications	11	
	2.1	Me	chanical characteristics	11	
	2.2	Elec	ctrical characteristics	12	
	2.3	Abs	olute maximum ratings	13	
3	Comm	unicati	on interface	14	
	3.1	Con	nmunication interface Electrical specification	14	
	3.	1.1	SPI Electrical specification	14	
	3.	1.2	I2C Electrical specification	15	
	3.2	Digi	ital interface operation	16	
	3.	2.1	SPI Operation	16	
	3.	2.2	I2C Operation	18	
4	Termin	ology a	and functionality	20	
	4.1	Terr	minology	20	
	4.	1.1	Sensitivity	20	
	4.	1.2	Zero-g level	20	
	4.2 Functionality		21		
	4.	2.1	Power mode	21	
	4.	2.2	Sensor data	21	
	4.	2.3	Self-test	21	
	4.	2.4	Factory calibration	22	
	4.3	Inte	errupt controller	22	
	4.	3.1	General features	22	
	4.	3.2	Mapping	23	
	4.	3.3	Electrical behavior (INT1/INT2 to open-drive or push-pull)	24	
	4.	3.4	New data interrupt	24	
	4.	3.5	Active detection	24	
	4.	3.6	Tap detection	24	
	4.	3.7	Orientation recognition	26	
	4.	3.8	Freefall interrupt	27	
5	Applica	ation hi	ints	29	
6	Registe	er mapp	ping	30	
7	Registe	ers desc	cription	32	
	7.1 SOFT_RESET (00H)		32		
	7.2	32			
	7.3	7.3 ACC_X_LSB (02H), ACC_X_MSB (03H)			
	7.4	32			
	7.5	ACC	C_Z_LSB (06H), ACC_Z_MSB (07H)	33	
	7.6	МО	TION_FLAG (09H)	33	

7.7	NEWDATA_FLAG (0AH)	34
7.8	TAP_ACTIVE_STATUS (0BH)	34
7.9	ORIENT_STATUS (0CH)	35
7.10	RESOLUTION_RANGE (0FH)	35
7.11	ODR_AXIS (10H)	35
7.12	MODE_BW (11H)	36
7.13	SWAP_POLARITY (12H)	37
7.14	INT_SET1 (16H)	37
7.15	INT_SET2 (17H)	38
7.16	INT_MAP1 (19H)	38
7.17	INT_MAP2 (1AH)	38
7.18	INT_MAP3 (1BH)	39
7.19	INT_CONFIG (20H)	39
7.20	INT_LTACH (21H)	40
7.21	FREEFALL_DUR (22H)	40
7.22	FREEFALL_THS (23H)	41
7.23	FREEFALL_HYST (24H)	41
7.24	ACTIVE_DUR (27H)	41
7.25	ACTIVE_THS (28H)	42
7.26	TAP_DUR (2AH)	42
7.27	TAP_THS (2BH)	42
7.28	ORIENT_HYST (2CH)	43
7.29	Z_BLOCK (2DH)	43
7.30	SELF_TEST (32H)	44
7.31	CUSTOM_OFF_X (38H)	44
7.32	CUSTOM_OFF_Y (39H)	44
7.33	CUSTOM_OFF_Z (39H)	45
7.34	CUSTOM_FLAG (4EH)	45
7.35	CUSTOM_CODE (4FH)	45
7.36	Z_ROT_HODE_TM (51H)	45
7.37	Z_ROT_DUR (52H)	46
7.38	ROT_TH_H (53H)	46
7.39	ROT_TH_L (54H)	46
Packag	ge information	
8.1	Outline dimensions	
8.2	Tape and reel specification	
	n history	40

8

9

List of tables

Table 1.Pin description	10
Table 2.Mechanical characteristic	11
Table 3.Electrical characteristics	12
Table 4.Absolute maximum ratings	13
Table 5.Electrical specification of the SPI interface pins	14
Table 6.Electrical specification of the I2C interface pins	15
Table 7.Mapping of the interface pins	16
Table 8.W1 and W0 settings	17
Table 9.I2C Address	18
Table 10.SAD+Read/Write patterns	18
Table 11.Transfer when master is writing one byte to slave	18
Table 12.Transfer when master is writing multiple bytes to slave	18
Table 13.Transfer when master is receiving (reading) one byte of data from slave	19
Table 14.Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 15.Self-test difference values	22
Table 16.Interrupt mode selection	22
Table 17.meaning of 'orient' bits in symmetric mode	26
Table 18.meaning of 'orient' bits in high-asymmetric mode	26
Table 19.meaning of 'orient' bits in low-asymmetric mode	27
Table 20.blocking conditions for orientation recognition	27
Table 21.Register address map	30
Table 22. SOFT_RESET register	32
Table 23. I2C Configuration description	32
Table 24. CHIPID register	32
Table 25.ACC_X_LSB register	32
Table 26.ACC_X_MSB register	32
Table 27.ACC_Y_LSB register	33
Table 28.ACC_Y_MSB register	33
Table 29.ACC_Z_LSB register	33
Table 30.ACC_Z_MSB register	33
Table 31.MOTION_FLAG register	33
Table 32.MOTION_FLAG register description	33
Table 33.NEWDATA_FLAG register	34
Table 34.NEWDATA_FLAG register description	34
Table 35.TAP_ACTIVE_STATUS register	34
Table 36.TAP_ACTIVE_STATUS register description	34
Table 37.ORIENT_STATUS register	35
Table 38.ORIENT_STATUS register description	35
Table 39.RESOLUTION_RANGE register	35
Table 40.RESOLUTION_RANGE register description	35
Table 41.ODR_AXIS register	35
Table 42.ODR_AXIS register description	36

Table 43.MODE_BW register	36
Table 44.MODE_BW register description	36
Table 45.SWAP_POLARITY register	37
Table 46.SWAP_POLARITY register description	37
Table 47.INT_SET1 register	37
Table 48.INT_SET1 register description	37
Table 49.INT_SET2 register	38
Table 50.INT_SET2 register description	38
Table 51.INT_MAP1 register	38
Table 52.INT_MAP1 register description	38
Table 53.INT_MAP2 register	38
Table 54.INT_MAP2 register description	39
Table 55.INT_MAP3 register	39
Table 56.INT_MAP3 register description	39
Table 57.INT_CONFIG register	39
Table 58.INT_CONFIG register description	39
Table 59.INT_LTACH register	40
Table 60.INT_LTACH register description	40
Table 61.FREEFALL_DUR register	40
Table 62.FREEFALL_DUR register description	40
Table 63.FREEFALL_THS register	41
Table 64.FREEFALL_THS register description	41
Table 65.FREEFALL_HYST register	41
Table 66.FREEFALL_HYST register description	41
Table 67.ACTIVE_DUR register	41
Table 68.ACTIVE_DUR register description	
Table 69.ACTIVE_THS register	42
Table 70.ACTIVE_THS register description	42
Table 71.TAP_DUR register	42
Table 72.TAP_DUR register description	42
Table 73.TAP_THS register	42
Table 74.TAP_THS register description	43
Table 75.ORIENT_HYST register	43
Table 76.ORIENT_HYST register description	43
Table 77.Z_BLOCK register	
Table 78.Z_BLOCK register description	43
Table 79.SELF_TEST register	44
Table 80.SELF_TEST register description	
Table 81.CUSTOM_OFF_X register	
Table 82.CUSTOM_OFF_X register description	
Table 83.CUSTOM_OFF_Y register	
Table 84.CUSTOM_OFF_Y register description	
Table 85.CUSTOM_OFF_Z register	45
Table 96 CUSTOM OFF 7 register description	15

Table 87.CUSTOM_FLAG register	45
Table 88.CUSTOM_FLAG register description	45
Table 89.CUSTOM_CODE register	45
Table 90.CUSTOM_CODE register description	45
Table 91.Z_ROT_HODE_TM register	45
Table 92.Z_ROT_HODE_TM register description	46
Table 93.Z_ROT_DUR register	46
Table 94.Z_ROT_DUR register description	46
Table 95.ROT_TH_H register	46
Table 96.ROT_TH_H register description	46
Table 97.ROT_TH_L register	46
Table 98.ROT_TH_L register description	46
Table 99 Document revision history	40

List of figures

Figure 1 Block Diagram	9
Figure 2 Pin description	9
Figure 3 SPI slave timing diagram	14
Figure 4 I2C Slave timing diagram	15
Figure 5 Instruction Phase Bit Field	16
Figure 6 MSB First and LSB First Instruction and Data Phases	
Figure 7 I2C Protocol	18
Figure 8 power mode	21
Figure 9 Interrupt mode	23
Figure 10 Timing of tap detection	
Figure 11 Definition of vector components	
Figure 12 da213 I2C electrical connection	
Figure 13 12 Pin LGA Mechanical data and package dimensions	
Figure 14 Tape and reel dimension in mm	48

1 Block diagram and pin description

1.1 Block diagram

Figure 1 Block Diagram

1.2 Pin description

Figure 2 Pin description

Table 1.Pin description

Pin#	Name	Function
1	SDO	SPI(4-wire mode) serial data output (SDO)
1	SA0	I2C less significant bit of the device address (SA0)
	SDA	I2C serial data input/output(SDA)
2	SDI	SPI(4-wire mode) serial data input (SDI)
	SDO	3-wire interface serial data input/output (SDO)
3	VDD_IO	Power supply for I/O pins
4	NC	Not connected
5	INT1	Interrupt pin1
6	INT2	Interrupt pin2
7	VDD	Power supply
8	GND_IO	Ground supply for I/O pins
9	GND	Ground supply
10	CSB	Chip select for SPI
11	PS	0: SPI mode;
11	61	1: I2C mode
12	SCL	I2C serial clock (SCL)
12	SCLK	SPI serial clock (SCLK)

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

Vdd = 2.5 V, T = 25 °C unless otherwise noted (a)

a. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.62V to 3.6 V.

Table 2.Mechanical characteristic

Symbol	Parameter	Test conditions	Min	Type	Max	Unit
		FS bit set to 00		±2		g
FS	Maaguramant van ga	FS bit set to 01		±4		g
L2	Measurement range	FS bit set to 10		±8		g
		FS bit set to 11		±16		g
		FS bit set to 00		4096		LSB/g
So	Sensitivity	FS bit set to 01		2048		LSB/g
30	Schsilivity	FS bit set to 10		1024		LSB/g
		FS bit set to 11		512		LSB/g
TCSo	Sensitivity change vs. temperature	FS bit set to 00		0.01		%/°C
Tyoff	Typical zero-g level offset accuracy			70		mg
Tcoff	Zero-g level change vs. temperature	Max delta from 25°C		±0.6		mg/°C
An	Acceleration noise density	FS bit set to 00, Normal Mode, ODR = 1000Hz		150	200	ug/sqrt(Hz)
		X: FS bit set to 00		400		mg
Vst	Self-test output change	Y: FS bit set to 00		400		mg
		Z: FS bit set to 00		400		mg
Тор	Operation temperature range		-40		85	°C

2.2 Electrical characteristics

Vdd = 2.5 V, T = 25 °C unless otherwise noted

Table 3. Electrical characteristics

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
Vdd	Supply voltage		1.62	2.5	3.6	V
Vdd_IO	I/O Pins supply voltage		1.62		3.6	V
Idd	current consumption in normal mode	Top=25℃, ODR=1kHz		180		uA
Idd_lp	current consumption in low power mode	Top=25℃, ODR=62.5Hz, BW=500Hz		40		uA
Idd_sm	current consumption in suspend mode	Top=25°C		1		uA
VIH	Digital high level input voltage	SPI&I2C	0.7*Vdd_IO			V
VIL	Digital low level input voltage	SPI&I2C			0.3*Vdd_IO	V
VOH	high level output voltage		0.9*Vdd_IO			V
VOL	Low level output voltage				0.1*Vdd_IO	V
BW	System bandwidth		1.95		500	Hz
ODR	Output data rate		1		1000	Hz
Wake-up time	twu	From stand-by		1		ms
Start-up time	tsu	From power off		3		ms
PSRR	Power Supply Rejection Rate	Top=25℃			20	mg/V

DS_da213

2.3 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 4.Absolute maximum ratings

Parameter	Test conditions	Min	Max	Unit
Storage Temperature		-45	125	${\mathbb C}$
Supply Voltage	Supply pins	-0.3	4.25	V
Supply Voltage	Logic pins	-0.3	Vdd_IO+0.3	V
ESD Rating	HMB,R=1.5k,C=100pF		<u>+2</u>	kV
Mechanical Shock	Duration<200us		10,000	g

Note: Supply voltage on any pin should never exceed 4.25V

This is a mechanical shock sensitive device, improper handling can cause permanent damages to the part.

This is an ESD sensitive device, improper handling can cause permanent damages to the part.

www.miramems.com 13/49

3 Communication interface

3.1 Communication interface Electrical specification

3.1.1 SPI Electrical specification

Table 5. Electrical specification of the SPI interface pins

Symbol	Parameter	Condition	Min	Max	Unit
fsclk	Clock frequency	Max load on SDIO or SDO = 25pF		10	MHz
tsclk_l	SLCK low pulse		20		
tsclk_h	SLCK high pulse		20		
Tsdi_setup	SDI setup time		20		ns
Tsdi_hold	SDI hold time		20		ns
Todo od	SDO/SDI output delay	Load = 25pF		30	ns
Tsdo_od		Load = 250pF		40	ns
Tcsb_setup	CSB setup time		20		ns
Tcsb_hold	CSB hold time		40		ns

The figure below shows the definition of the SPI timing given in Table5:

Figure 3 SPI slave timing diagram

3.1.2 I2C Electrical specification

Table 6.Electrical specification of the I2C interface pins

Symbol	Parameter	Min	Max	Unit
fscl Clock frequency			400	kHz
tscl_l	SCL low pulse	1.3		us
tscl_h	SCL high pulse	0.6		us
Tsda_setup	SDA setup time	0.1		us
Tsda_hold	SDA hold time	0.0		us
tsusta	Setup Time for a repeated start condition	0.6		us
thdsta	Hold time for a start condition	0.6		us
tsusto	Setup Time for a stop condition	0.6		us
tbuf	Time before a new transmission can start	1.3		us

The figure below shows the definition of the I2C timing given in Table 6:

Figure 4 I2C Slave timing diagram

3.2 Digital interface operation

The da213 supports two serial digital interface protocols for communications as slave with a host device: SPI and I2C. The active interface is selected by the state of the pin PS, 0 selects SPI and 1 selects I2C. By default, SPI operates in 3-wire mode and it can be re-configured by writing 1 to bit 'SDO_active' to work in 4-wire mode. Both interfaces share the same pins. The mapping for each interface is given in the following table:

PIN name	I2C	SPI
SCL/SCLK	Serial clock	Serial clock
SDA/SDI	Serial Data	Data input (4-wire mode).
		Data input/output (3-wire mode)
SDO	Used to set LSB of I2C address	Data output (4-wire mode)
CSB	Unused	Chip select

Table 7. Mapping of the interface pins

3.2.1 SPI Operation

The falling edge of CSB, in conjunction with the rising edge of SCLK, determines the start of framing. Once the beginning of the frame has been determined, timing is straightforward. The first phase of the transfer is the instruction phase, which consists of 16 bits followed by data that can be of variable lengths in multiples of 8 bits. If the device is configured with CSB tied low, framing begins with the first rising edge of SCLK.

The instruction phase is the first 16 bits transmitted. As shown in Figure 5, the instruction phase is divided into a number of bit fields.

Figure 5 Instruction Phase Bit Field

The first bit in the stream is the read/write indicator bit (R/W). When this bit is high, a read is being requested, otherwise indicates it is a write operation.

W1 and W0 represent the number of data bytes to transfer for either read or write (Table8). If the number of bytes to transfer is three or less (00, 01, or 10), CSB can stall high on byte boundaries. Stalling on a non-byte boundary terminates the communications cycle. If these bits are 11, data can be transferred until CSB transitions high. CSB is not allowed to stall during the streaming process.

The remaining 13 bits represent the starting address of the data sent. If more than one word is being sent, sequential addressing is used, starting with the one specified, and it either increments (LSB first) or decrements (MSB first) based

on the mode setting.

Table 8.W1 and W0 settings

W1:W0	Action	CSB stalling
00	1 byte of data can be transferred.	Optional
01	2 bytes of data can be transferred.	Optional
10	3 bytes of data can be transferred.	Optional
11	4 or more bytes of data can be transferred. CSB must be held	No
	low for entire sequence; otherwise, the cycle is terminated.	

Data follows the instruction phase. The amount of data sent is determined by the word length (Bit W0 and Bit W1). This can be one or more bytes of data. All data is composed of 8-bit words.

Data can be sent in either MSB-first mode or LSB-first mode (by setting 'LSB_first' bit). On power up, MSB-first mode is the default. This can be changed by programming the configuration register. In MSB-first mode, the serial exchange starts with the highest-order bit and ends with the LSB. In LSB-first mode, the order is reversed. (Figure 6)

Figure 6 MSB First and LSB First Instruction and Data Phases

Register bit 'SDO_active' is responsible for activating SDO on devices. If this bit is cleared, then SDO is inactive and read data is routed to the SDIO pin. If this bit is set, read data is placed on the SDO pin. The default for this bit is low, making SDO inactive.

3.2.2 I2C Operation

I2C bus uses SCL and SDA as signal lines. Both lines are connected to VDDIO externally via pull-up resistors so that they are pulled high when the bus is free. The I2C device address of da213 is shown below. The LSB bit of the 7bits device address is configured via SA0pin.

Table 9.12C Address

SAD6	SAD5	SAD4	SAD3	SAD ₂	SAD1	SAD ₀	W/R
0	1	0	0	1	1	SAO	0/1

Table 10.SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0]=SA0	R/W	SAD+R/W
Read	010011	0	1	01001101(4dh)
Write	010011	0	0	01001100(4ch)
Read	010011	1	1	01001111(4fh)
Write	010011	1	0	01001110(4eh)

The I2C interface protocol has special bus signal conditions. Start (S), stop (P) and binary data conditions are shown below. At start condition, SCL is high and SDA has a falling edge. Then the slave address is sent. After the 7 address bits, the direction control bit R/W selects the read or write operation. When a slave device recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle.

At stop condition, SCL is also high, but SDA has a rising edge. Data must be held stable at SDA when SCL is high. Data can change value at SDA only when SCL is low.

Figure 7 I2C Protocol

Table 11.Transfer when master is writing one byte to slave

Master	S	SAD+W		SUB		DATA		P
Slave			SAK		SAK		SAK	

Table 12. Transfer when master is writing multiple bytes to slave

Master	S	SAD+W		SUB		DATA		DATA		P
Slave			SAK		SAK		SAK		SAK	

Table 13.Transfer when master is receiving (reading) one byte of data from slave

	Master	S	SAD+W		SUB		SR	SAD+R			NMASK	P
Ī	Slave			SAK		SAK			SAK	DATA		

Table 14.Transfer when master is receiving (reading) multiple bytes of data from slave

							•								
Master	S	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMASK	P
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

4 Terminology and functionality

4.1 Terminology

4.1.1 Sensitivity

Sensitivity describes the gain of the sensor and can be determined e.g. by applying 1 g acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtract the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors.

4.1.2 Zero-*g* level

Zero-*g* level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface measure 0 *g* in X axis and 0 *g* in Y axis whereas the Z axis measure 1 *g*. The output is ideally in the middle of the dynamic range of the sensor (content of output data registers are 00h, data expressed as 2's complement number). A deviation from ideal value in this case is called Zero-*g* offset. Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature; see "Zero-*g* level change vs. temperature". The Zero-*g* level tolerance (TyOff) describes the standard deviation of the range of Zero-*g* levels of a population of sensors.

4.2 Functionality

4.2.1 Power mode

The da213 has three different power modes. Besides normal mode, which represents the fully operational state of the device, there are two special energy saving modes: low-power mode and suspend mode.

Figure 8 power mode

In normal mode, all parts of the electronic circuit are held powered-up and data acquisition is performed continuously. In suspend mode, the whole analog part, including the oscillator, Ana LDO, Dig LDO and Drive Buffer are all powered down, no data acquisition is performed and the only supported operation is to read/write the registers. Suspend mode is entered by writing '11' or '10' to the (0x11) 'pwr_mode' bits.

In low power mode, the device is periodically switching between a sleep phase and a wake-up phase. The wake-up phase essentially corresponding to operation in normal mode with complete power-up of the circuitry. During the sleep phase the analog part except the oscillator is powered down.

During the wake-up phase, if a enabled interrupt is detected, the device stays in the wake-up phase as long as the interrupt condition endures (non-latched interrupt), or until the latch time expires (temporary interrupt), or until the interrupt is reset (latched interrupt). If no interrupt detected, the device enters the sleep phase.

4.2.2 Sensor data

The width of acceleration data is 14bits given in two's complement representation. The 14bits for each axis are split into an MSB part (one byte containing bits 13 to 6) and an LSB lower part (one byte containing bits 5 to 0)

4.2.3 Self-test

This feature permits to check the sensor functionality by applying electrostatic forces to the sensor core instead of external accelerations. By actually deflecting the seismic mass, the entire signal path of the sensor can be tested. Activating the self-test results in a static offset of the acceleration data; any external acceleration or gravitational force

applied to the sensor during active self-test will be observed in the output as a superposition of both acceleration and self-test signal.

The self-test is activated individually for each axis by writing 1 to the (0x32) 'self_test_en' bit. It is possible to control the direction of the deflection though bit 'self_test_sign' for each axis. The excitation occurs in positive (negative) direction if 'self_test_sign' = '0b' ('1b').

In order to ensure a proper interpretation of the self-test signal it is recommended to perform the self-test for both directions and then to calculate the difference of the resulting acceleration values. Table 15 show the difference for each axis.

Table 15.Self-test difference values

	X-axis signal	Y-axis signal	Z-axis signal
Resulting difference value	+0.4g	+0.4g	+0.4g

4.2.4 Factory calibration

The IC is factory calibrated for sensitivity (So) and Zero-g level (TyOff). The trimming values are stored inside the chip's nonvolatile memory. The trimming parameters are loaded to registers while da213 reset (POR or software reset). This allows using the device without further calibration.

4.3 Interrupt controller

Interrupt engines are integrated in the da213. Each interrupt can be independently enabled and configured. If the condition of an enabled interrupt is fulfilled, the corresponding status bit is set to 1 and the selected interrupt pin is activated. There are two interrupt pins, INT1 and INT2; interrupts can be freely mapped to any of these two pins. The pin state is a logic 'or' combination of all mapped interrupts.

4.3.1 General features

An interrupt is cleared depending on the selected interrupt mode, which is common to all interrupts. There are three different interrupt modes: non-latched, latched and temporary. The mode is selected by the 'latch_int' bits according to table 16.

Table 16.Interrupt mode selection

latch_int	Interrupt mode
0000	non-latched
0001	temporary latched 250ms
0010	temporary latched 500ms
0011	temporary latched 1s
0100	temporary latched 2s
0101	temporary latched 4s

0110	temporary latched 8s
0111	latched
1000	non-latched
1001	temporary latched 1ms
1010	temporary latched 1ms
1011	temporary latched 2ms
1100	temporary latched 25ms
1101	temporary latched 50ms
1110	temporary latched 100ms
1111	latched

An interrupt is generated if its activation condition is met. It can't be cleared as long as the activation condition is fulfilled. In the non-latched mode the interrupt status bit and the selected pin (INT1 or INT2) are cleared as soon as the activation condition is no more valid. Exceptions to this behavior are the new data and orientation, which are automatically reset after a fixed time.

In the latched mode an asserted interrupt status and the selected pin are cleared by writing 1 to (0x21) 'reset_int' bit. If the activation condition still holds when it is cleared, the interrupt status is asserted again with the next change of the acceleration registers.

In the temporary mode an asserted interrupt and selected pin are cleared after a defined period of time. The behavior of the different interrupt modes is shown in figure 9.

Figure 9 Interrupt mode

4.3.2 Mapping

The mapping of interrupts to the interrupt pins is done by registers 'INT_MAP_x' (0x19 0x1a and 0x1b), setting *int1_inttype* (e.g. int1_freefall) to 1 can map this type of interrupt to INT1 pin and setting int2_inttyp to 1 can map this type interrupt to INT2 pin.

4.3.3 Electrical behavior (INT1/INT2 to open-drive or push-pull)

Both interrupt pins can be configured to show desired electrical behavior. The active level for each pin is set by register bit int1_lvl (int2_lvl), if int1_lvl (int2_lvl) = 0 (1), then the pin INT1 (INT2) is 0 (1) active.

Also the electric type of the interrupt pin can be selected. By setting $int1_od$ ($int2_od$) = 1 (0), the interrupt pin output type can be set to be open-drive (push-pull).

4.3.4 New data interrupt

This interrupt serves for synchronous reading of acceleration data. It is generated after an acceleration data was calculated. The interrupt is cleared automatically before the next acceleration data is ready.

4.3.5 Active detection

Active detection uses the slope between successive acceleration signals to detect changes in motion. An interrupt is generated when the slope (absolute value of acceleration difference) exceeds a preset threshold. The threshold is set with the value of register 'active_th' with the LSB corresponding to 16 LSB of acceleration data, that is 3.9mg in 2g-range, 7.8mg in 4g-range, 15.6mg in 8g-range and 31.3mg in 16g-range. And the maximum value is 1g in 2g-range, 2g in 4g-range, 4g in 8g-range and 8g in 16g-range.

The time difference between the successive acceleration signals depends is fixed to 1ms.

Active detection can be enabled (disabled) for each axis separately by writing '1' to bits 'active_int_en_x/y/z'. The active interrupt is generated if the slope of any of the enabled axes exceeds the threshold for ['active_dur'+1] consecutive times. As soon as the slopes of all enabled axes fall below this threshold for ['active_dur'+1] consecutive times, the interrupt is cleared unless the interrupt signal is latched.

The interrupt status is stored in the (0x09) 'active_int' bit. The (0x0b) bit 'active_first_x/y/z' records which axis triggered the active interrupt first and the sign of this acceleration data that triggered the interrupt is recorded in the (0x0b) bit 'active_sign'.

4.3.6 Tap detection

Tap detection has a functional similarity with a common laptop touch-pad or clicking keys of a computer mouse. A tap event is detected if a pre-defined pattern of the acceleration slope is fulfilled at least for one axis. Two different tap events are distinguished: A single tap is a single event within a certain time, followed by a certain quiet time. A double tap consist a first such event followed by a second event within a defined time.

Single tap interrupt is enabled by writing 1 to the (0x16) 's_tap_int_en' bit and double tap interrupt is enabled by writing 1 to the (0x16) 'd_tap_int_en' bit. The status of the single tap interrupt is stored in the (0x09) 's_tap_int' bit and the status of the double tap interrupt is stored in the (0x09) 'd_tap_int' bit.

The slope threshold for detecting a tap event is set by the (0x2b) "tap_th" bits with the LSB corresponding to 256LSB

of acceleration data that is 62.5mg in 2g-range, 125mg in 4g-range, 250mg in 8g-range, 500mg in 16g-range. And the maximum value equals to the full scale in each range.

In figure 10 the meaning of different timing parameter is visualized.

Figure 10 Timing of tap detection

The parameter 'tap_shock' and 'tap_quiet' apply to both single and double tap detection, while 'tap_dur' applies to double detection only. Within the duration of 'tap_shock' any slope exceeding 'tap_th' after the first event is ignored, within the duration of 'tap_quiet' there must be no slope exceeding 'tap_th', otherwise the first event will be cancelled. A single tap is detected and the single tap interrupt is generated after the combination durations of 'tap_shock' and 'tap_quiet', if the corresponding slope conditions are fulfilled. The interrupt is cleared after a delay of 12.5ms in non-latched mode.

A double tap is detected and the double tap interrupt is generated if an event fulfilling the conditions for a single tap occurs within the set duration in 'tap_dur' after the completion of the first tap event. The interrupt is cleared after a delay in non-latched mode.

The sign of the slope of the first tap which triggered the interrupt is stored in the (0x0b) 'tap_sign' bit (0 means positive, 1 means negative). The axis which triggered the interrupt is indicated by the (0x0b) 'tap_first_x/y/z' bit.

Note: 'tap_shock' 'tap_quiet' 'tap_dur' 'tap_th' can be set by modifying register 0x2a and 0x2b

4.3.7 Orientation recognition

The orientation recognition feature informs on an orientation change of sensor with respect to the gravitation field vector 'g'. The measured acceleration vector components with respect to the gravitation field are defined as shown in figure 11.

Figure 11 Definition of vector components

Therefore, the magnitudes of the acceleration vectors are calculated as follows:

$$acc_x = 1g.\sin\theta \cdot \cos\varphi$$

 $acc_y = -1g.\sin\theta \cdot \sin\varphi$
 $acc_z = 1g.\cos\theta$

Depending on the magnitudes of the acceleration vectors the orientation of the device in the space is determined and stored in the (0x09) 'orient_int' bit. There are three orientation calculation modes with different thresholds for switching between different orientations: symmetrical, high-asymmetrical and low-asymmetrical. The mode is selected by setting the (0x2c) 'orient_mode' bit. For each orientation mode, the 'orient' bits have a different meaning as show in table 17 to table 18.

Table 17.meaning of 'orient' bits in symmetric mode

orient	Name	Angle	Condition		
X00	Portrait upright	$315^{\circ} < \varphi < 45^{\circ}$	$ acc_y < acc_x $ - 'hyst' &acc_x>= 0		
X01	Portrait upside down	$135^{\circ} < \varphi < 225^{\circ}$	$ acc_y < acc_x $ - 'hyst' &acc_x< 0		
X10	Landscape left	$45^{\circ} < \varphi < 135^{\circ}$	$ acc_y \ge acc_x + \text{'hyst'} \& acc_y < 0$		
X11	Landscape right	$225^{\circ} < \varphi < 315^{\circ}$	$ acc_y \ge acc_x + \text{'hyst' \& acc_y} \ge 0$		

Table 18.meaning of 'orient' bits in high-asymmetric mode

Orient	Name	Angle	Condition
X00	Portrait upright	$297^{\circ} < \varphi < 63^{\circ}$	$ acc_y < 2* acc_x $ - 'hyst' &acc_x>= 0
X01	Portrait upside down	$117^{\circ} < \varphi < 243^{\circ}$	$ acc_y < 2* acc_x $ - 'hyst' &acc_x< 0
X10	Landscape left	$63^{\circ} < \varphi < 117^{\circ}$	$ acc_y \ge 2* acc_x + 'hyst' & acc_y < 0$
X11	Landscape right	$243^{\circ} < \varphi < 297^{\circ}$	$ acc_y >= 2* acc_x + 'hyst' & acc_y >= 0$

Table 19.meaning of 'orient' bits in low-asymmetric mode
--

Orient	Name	Angle	Condition
X00	Portrait upright	$333^{\circ} < \varphi < 27^{\circ}$	$ acc_y < 0.5* acc_x $ - 'hyst' &acc_x>= 0
X01	Portrait upside down	$153^{\circ} < \varphi < 207^{\circ}$	$ acc_y < 0.5* acc_x $ - 'hyst' &acc_x< 0
X10	Landscape left	$27^{\circ} < \varphi < 153^{\circ}$	$ acc_y >= 0.5* acc_x + 'hyst' & acc_y < 0$
X11	Landscape right	$207^{\circ} < \varphi < 333^{\circ}$	$ acc_y >= 0.5* acc_x + 'hyst' & acc_y >= 0$

In the preceding tables, the parameter 'hyst' stands for a hysteresis which can be selected by the (0x2c) 'orient_hyst' bit. 1LSB of 'orient_hyst' always corresponds to 62.5mg in any g-range. The MSB of 'orient' bits contains information about the direction of the z-axis. It is set to 0(1) if $acc_z >= 0$ ($acc_z < 0$). The hysteresis for z axis is fixed to 0.2g.

The orient interrupt is enabled by writing the (0x16) 'orient_int_en' bit. The interrupt is generated if the value of 'orient' has changed. It is automatically cleared after one stable period of the orient value in non-latched mode. In temporary latched or latched mode, the orient value is kept fixed as long as the interrupt persists. After cleaning the interrupt, the 'orient' will updated with the next following value change.

The change of the 'orient' value and the generation of the interrupt can be blocked according to conditions selected by setting the value of the (0x2c) 'orient_block' bit as described by table20.

Table 20.blocking conditions for orientation recognition

orient_block	Conditions
00b	No blocking
01b	Z blocking
10b	Z blocking or acceleration slope in any axis > 0.2g
11b	No blocking

The Z blocking is defined by the following inequality:

$$|acc_z| > z_blocking$$

The parameter z_blocking of the above given equation stands for the contents of the (0x2d) 'z_blocking' bit. Hereby it is possible to define a blocking value between 0g and 0.9375g with an LSB = 0.0625g.

4.3.8 Freefall interrupt

This interrupt is based on the comparison of acceleration data against a low-g threshold. The interrupt is enabled by writing 1 to the (0x17) 'freefall_int_en' bit. There are two modes available: single mode and sum mode. In single mode the acceleration of each axis is compared with the threshold. In sum mode, the sum of absolute values of all accelerations $|acc_x| + |acc_y| + |acc_z|$ is compared with the threshold. The mode is selected by the (0x24) 'freefall_mode' bit. The free fall threshold is set through the (0x23) 'freefall_th' bits with 1 LSB corresponding to an acceleration of 7.81mg. A hysteresis can be selected by setting the (0x24) 'freefall_hy' bits with 1 LSB corresponding to 125mg.

The freefall interrupt is generated if the absolute values of the acceleration of all axes or their sum are lower than the threshold for at least the time defined by the (0x22) 'freefall_dur' bits. The interrupt is reset if the absolute value of at

least one axis or the sum is higher than the threshold plus the hysteresis for at least one data acquisition. The interrupt status is stored in the (0x09) 'freefall_int' bit.

5 Application hints

Figure 12 da213 I2C electrical connection

The device core is supplied through Vdd line while the I/O pads are supplied through Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic) should be placed as near as possible to the pin 7 and pin 3 of the device (common design practice).

The functionality of the device and the measured acceleration data is selectable and accessible through the I2C or SPI interfaces. When using the I2C, PS must be tied high. The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be completely programmed by the user through the I2C/SPI interface.

6 Register mapping

The table given below provides a listing of the 8 bit registers embedded in the device and the related addresses: **Table 21.Register address map**

Name	Туре	Register address	Default	Soft Reset
SOFT_RESET	RW	0x00	00Н	NO
CHIPID	R	0x01	13H	NO
ACC_X_LSB	R	0x02	00H	NO
ACC_X_MSB	R	0x03	00H	NO
ACC_Y_LSB	R	0x04	00H	NO
ACC_Y_MSB	R	0x05	00H	NO
ACC_Z_LSB	R	0x06	00H	NO
ACC_Z_MSB	R	0x07	00H	NO
MOTION_FLAG	R	0x09	00H	NO
NEWDATA_FLAG	R	0x0A	00H	NO
TAP_ACTIVE_STATUS	R	0x0B	00Н	NO
ORIENT_STATUS	R	0x0C	00H	NO
RESOLUTION_RANGE	RW	0x0F	00H	NO
ODR_AXIS	RW	0x10	0FH	YES
MODE_BW	RW	0x11	9EH	YES
SWAP_POLARITY	RW	0x12	00H	YES
INT_SET1	RW	0x16	10H	YES
INT_SET2	RW	0x17	00H	YES
INT_MAP1	RW	0x19	00H	YES
INT_MAP2	RW	0x1A	00H	YES
INT_MAP3	RW	0x1B	00H	YES
INT_CONFIG	RW	0x20	00H	YES
INT_LTACH	RW	0x21	00H	YES
FREEFALL_DUR	RW	0x22	09H	YES
FREEFALL_THS	RW	0x23	30H	YES
FREEFALL_HYST	RW	0x24	01H	YES
ACTIVE_DUR	RW	0x27	00H	YES
ACTIVE_THS	RW	0x28	14H	YES
TAP_DUR	RW	0x2A	04H	YES
TAP_THS	RW	0x2B	0AH	YES
ORIENT_HYST	RW	0x2C	18H	YES
Z_BLOCK	RW	0x2D	08H	YES
SELF_TEST	RW	0x32	00H	YES
CUSTOM_OFF_X	RW	0x38	00H	YES

CUSTOM_OFF_Y	RW	0x39	00H	YES
CUSTOM_OFF_Z	RW	0x3A	00H	YES
CUSTOM_FLAG	R	0x4E	00H	NO
CUSTOM_CODE	RW	0x4F	00H	YES
Z_CAL_EN	RW	0x50	00H	YES
Z_ROT_HODE_TM	RW	0x51	09H	YES
Z_ROT_DUR	RW	0x52	FFH	YES
ROT_TH_H	RW	0x53	45H	YES
ROT_TH_L	RW	0x54	35H	YES

7 Registers description

7.1 SOFT_RESET (00H)

Table 22. SOFT_RESET register

Default data: 0x00 Type: RW

SDO_Active LSB_First	Soft_Reset	Unused	Unused	Soft Reset	LSB_First	SDO_Active
----------------------	------------	--------	--------	------------	-----------	------------

Table 23. I2C Configuration description

Soft Reset	0: soft reset disable
Soit_Reset	1: soft reset enable

7.2 CHIPID (01h)

Table 24. CHIPID register

Default data: 0x13 Type: R

I	0	0	0	1	0	0	1	1
L								i

7.3 ACC_X_LSB (02H), ACC_X_MSB (03H)

X-axis acceleration data, the value is expressed in two complement byte and are left justified.

Table 25.ACC_X_LSB register

Default data: 0x00 Type: R

D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Unused	Unused
------	------	------	------	------	------	--------	--------

Table 26.ACC_X_MSB register

Default data: 0x00 Type: R

D[13] D	D[12] I	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]
---------	---------	-------	-------	------	------	------	------

7.4 ACC_Y_LSB (04H), ACC_Y_MSB (05H)

Y-axis acceleration data, the value is expressed in two complement byte and are left justified.

Table 27.ACC_Y_LSB register

Default data: 0x00 Type: R

							1
D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Unused	Unused
							1

Table 28.ACC_Y_MSB register

Default data: 0x00 Type: R

D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]

7.5 ACC_Z_LSB (06H), ACC_Z_MSB (07H)

Z-axis acceleration data, the value is expressed in two complement byte and are left justified.

Table 29.ACC_Z_LSB register

Default data: 0x00 Type: R

D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Unused	Unused

Table 30.ACC_Z_MSB register

Default data: 0x00 Type: R

D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]

7.6 MOTION_FLAG (09H)

Table 31.MOTION_FLAG register

Default data: 0x00 Type: R

unused	orient_int	s_tap_int	d_tap_int	unused	active_int	unused	freefall_int
	_				_		_

Table 32.MOTION_FLAG register description

orient_int	0:no orient interrupt				
Offent_int	1:orient interrupt has occurred				
a ton int	0:no single tap interrupt				
s_tap_int	1: single tap interrupt has occurred				
d top int	0:no double tap interrupt				
d_tap_int	1: double tap interrupt has occurred				
active int	0:no active interrupt				
active_int	1: active interrupt has occurred				
fracfall int	0:no freefall interrupt				
freefall_int	1: freefall interrupt has occurred				

7.7 NEWDATA_FLAG (0AH)

Table 33.NEWDATA_FLAG register

Default data: 0x00 Type: R

Table 34.NEWDATA_FLAG register description

no	w dote int	0: no new_data interrupt
new_data_int	w_uata_iiit	1: new_data interrupt has occurred

7.8 TAP_ACTIVE_STATUS (0BH)

Table 35.TAP_ACTIVE_STATUS register

Default data: 0x00 Type: R

tap_sign t	tap_first_x	tap_first_y	tap_first_z	active_sign	active_first_x	active_first_y	active_first_z
------------	-------------	-------------	-------------	-------------	----------------	----------------	----------------

Table 36.TAP_ACTIVE_STATUS register description

tap_sign	Sign of the first tap that triggered interrupt				
tap_sign	0: positive 1: negative				
ton first v	0: X is not the triggering axis of the tap interrupt				
tap_first_x	1: indicate X is the triggering axis of the tap interrupt.				
	0: Y is not the triggering axis of the tap interrupt				
tap_first_y	1: indicate Y is the triggering axis of the tap interrupt.				
ton first z	0: Z is not the triggering axis of the tap interrupt				
tap_first_z	1: indicate Z is the triggering axis of the tap interrupt.				
active sign	active_sign: Sign of the 1st active interrupt.				
active_sign	0: positive, 1: negative				
active first v	0: X is not the triggering axis of the active interrupt				
active_first_x	1: indicate X is the triggering axis of the active interrupt.				
active first v	0: Y is not the triggering axis of the active interrupt				
active_first_y	1: indicate Y is the triggering axis of the active interrupt.				
active first z	0: Z is not the triggering axis of the active interrupt				
active_first_z	1: indicate Z is the triggering axis of the active interrupt.				

7.9 ORIENT_STATUS (OCH)

Table 37.ORIENT_STATUS register

Default data: 0x00 Type: R

			([0]			1	
unused	orient[2]	orient[1]	orient[0]	unused	unused	unused	unused

Table 38.ORIENT_STATUS register description

Orient[2]	orientation value of 'z' axis
Orient[2]	0: upward looking, 1: downward looking
	orientation value of 'x', 'y' axes
	00: portrait upright
Orient[1:0]	01: portrait upside down
	10: landscape left
	11:landscape right

7.10 RESOLUTION_RANGE (0FH)

Table 39.RESOLUTION_RANGE register

Default data: 0x00 Type: RW

unused	unused	unused	unused	resolution[1]	resolution[0]	fs[1]	fs[0]
--------	--------	--------	--------	---------------	---------------	-------	-------

Table 40.RESOLUTION_RANGE register description

	00:14bit
recolution[1:0]	01:12bit
resolution[1:0]	10:10bit
	11:8bit
	full scale
	00: +/-2g
fs[1:0]	01: +/-4g
	10:+/-8g
	11:+/-16g

7.11 ODR_AXIS (10H)

Table 41.ODR_AXIS register

Default data: 0x0F Type: RW

X-axis_disable	Y-axis disable	Z-axis disable	unused	ODR[3]	ODR[2]	ODR[1]	ODR[0]
11 41115_411541010	1 4.115_4154614			ODINE	021([-]	0211[1]	رکانازی

Table 42.ODR_AXIS register description

x-axis_disable	0: enable X axis					
	1: disable X axis					
v avia dicable	0: enable Y axis					
y-axis_disable	1: disable Y axis					
z avia disable	0: enable Z axis					
z-axis_disable	1: disable Z axis					
	0000: 1Hz (not available in normal mode)					
	0001: 1.95Hz (not available in normal mode)					
	0010: 3.9Hz					
	0011: 7.81Hz					
	0100: 15.63Hz					
ODR[3:0]	0101: 31.25Hz					
ODK[3.0]	0110: 62.5Hz					
	0111: 125Hz					
	1000: 250Hz					
	1001: 500Hz (not available in low power mode)					
	1010: 1000Hz (not available in low power mode)					
	1011-1111: 1000Hz					

7.12 MODE_BW (11H)

Table 43.MODE_BW register

Default data: 0x9E Type: RW

pwr_mode [1]	pwr_mode [0]	unused	low_power_bw [3]	low_power_bw [2]	low_power_bw[1]	low_power_bw[0]	unused
pwi_mode [1]	pwi_mode [o]	unuscu	iow_power_ow [5]	iow_power_ow [2]	iow_power_ow[1]	iow_power_bw[o]	anasca

Table 44.MODE_BW register description

	00: normal mode,			
pwr_mode[1:0]	01: low power mode,			
	1x: suspend mode.			
	0000-0010: 1.95Hz			
	0011: 3.9Hz			
	0100: 7.81Hz			
	0101: 15.63Hz			
low_power_bw [3:0]	0110: 31.25Hz			
l low_power_bw [3.0]	0111: 62.5Hz			
	1000: 125Hz			
	1001: 250Hz			
	1010: 500Hz			
	1011-1111: 500Hz			

7.13 SWAP_POLARITY (12H)

Table 45.SWAP_POLARITY register

Default data: 0x00 Type: RW

Swap & Polarity register is OTP register too, OTP address: 0x13

unused	unused	unused	unused	X_polarity	Y_polarity	Z_polarity	X Y swap	l
unuscu	unuscu	unuscu	unuscu	A_polarity	1_polarity	Z_polarity	M_1_swap	1

Table 46.SWAP_POLARITY register description

T	0: remain the polarity of X-axis.				
X_polarity	1: reverse the polarity of X-axis.				
V molomity	0: remain the polarity of Y-axis.				
Y_polarity	1: reverse the polarity of Y-axis.				
7 malamitus	0: remain the polarity of Z-axis.				
Z_polarity	1: reverse the polarity of Z-axis.				
V V awan	0: Don't need swap the output data for X/Y axis				
X_Y_swap	1: swap the output data for X/Y axis.				

7.14 INT_SET1 (16H)

Table 47.INT_SET1 register

Default data: 0x00 Type: RW

Table 48.INT_SET1 register description

orient_int_en	0: disable the orient interrupt.					
	1: enable the orient interrupt. 0: disable the single tap interrupt.					
s_tap_int_en	1: enable the single tap interrupt.					
d_tap_int_en	0: disable the double tap interrupt.					
u_tap_mt_en	1: enable the double tap interrupt.					
active_int_en_z	0: disable the active interrupt for the z axis.					
active_int_cn_z	1: enable the active interrupt for the z axis.					
active_int_en_y	0: disable the active interrupt for the y axis.					
active_int_en_y	1: enable the active interrupt for the y axis.					
active_int_en_x	0: disable the active interrupt for the x axis.					
active_int_cli_x	1: enable the active interrupt for the x axis.					

7.15 INT_SET2 (17H)

Table 49.INT_SET2 register

Default data: 0x00 Type: RW

unused	unused	unused	new_data_int_en	freefall_int_en	unused	unused	unused
--------	--------	--------	-----------------	-----------------	--------	--------	--------

Table 50.INT_SET2 register description

novy data int on	0: disable the new data interrupt.
new_data_int_en	1: enable the new data interrupt.
function into	0: disable the freefall interrupt.
freefall_int_en	1: enable the freefall interrupt

7.16 INT_MAP1 (19H)

Table 51.INT_MAP1 register

Default data: 0x00 Type: RW

	unused	int1_orient	int1_s_tap	int1_d_tap	unused	int1_active	unused	int1_freefall
--	--------	-------------	------------	------------	--------	-------------	--------	---------------

Table 52.INT_MAP1 register description

int1 orient	0: doesn't mapping orient interrupt to INT1				
int1_orient	1: mapping orient interrupt to INT1				
intl a tan	0: doesn't mapping single tap interrupt to INT1				
int1_s_tap	1: mapping single tap interrupt to INT1				
int1 d ton	0: doesn't mapping double tap interrupt to INT1				
int1_d_tap	1: mapping double tap interrupt to INT1				
int1_active	0: doesn't mapping active interrupt to INT1				
Inti_active	1: mapping active interrupt to INT1				
int1_freefall	0: doesn't mapping freefall interrupt to INT1				
IIIt1_IICCIAII	1: mapping freefall interrupt to INT1				

7.17 INT_MAP2 (1AH)

Table 53.INT_MAP2 register

Default data: 0x00 Type: RW

int2_new_data	unused	int1_new_data						
---------------	--------	--------	--------	--------	--------	--------	--------	---------------

Table 54.INT_MAP2 register description

int? may data	0: doesn't mapping new data interrupt to INT2
int2_new_data	1: mapping new data interrupt to INT2
int1 may data	0: doesn't mapping new data interrupt to INT1
int1_new_data	1: mapping new data interrupt to INT1

7.18 INT_MAP3 (1BH)

Table 55.INT_MAP3 register

Default data: 0x00 Type: RW

unused	int2_orient	int2_s_tap	int2_d_tap	unused	int2_active	unused	int2_freefall
--------	-------------	------------	------------	--------	-------------	--------	---------------

Table 56.INT_MAP3 register description

int2_orient	
int2_s_tap	
int2_d_tap	int2_X: "1"mapping interrupt X to INT2
int2_active	
int2_freefall	

7.19 INT_CONFIG (20H)

Table 57.INT_CONFIG register

Default data: 0x00 Type: RW

unused unused unused unused int2_od int2_lvl int1_od int1_lvl

Table 58.INT_CONFIG register description

int od?	0: select push-pull output for INT2
int_od2	1: selects OD output for INT2
int_lvl2	0: selects active level low for pin INT2
IIIt_1V12	1: selects active level high for pin INT2
int1 od	0: select push-pull output for INT1
int1_od	1: selects OD output for INT1
:	0: selects active level low for pin INT1
int1_lvl	1: selects active level high for pin INT1

7.20 INT_LTACH (21H)

Table 59.INT_LTACH register

Default data: 0x00 Type: RW

	reset_int	unused	unused	unused	latch_int[3]	latch_int[2]	latch_int[1]	latch_int[0]	
--	-----------	--------	--------	--------	--------------	--------------	--------------	--------------	--

Table 60.INT_LTACH register description

	0: doesn't reset all latched int.			
reset_int				
_	1: reset all latched int.			
	0000: non-latched			
	0001: temporary latched 250ms			
	0010: temporary latched 500ms			
	0011: temporary latched 1s			
	0100: temporary latched 2s			
	0101: temporary latched 4s			
	0110: temporary latched 8s			
latch_int[3:0]	0111: latched			
Taten_int[5.0]	1000: non-latched			
	1001: temporary latched 1ms			
	1010: temporary latched 1ms			
	1011: temporary latched 2ms			
	1100: temporary latched 25ms			
	1101: temporary latched 50ms			
	1110: temporary latched 100ms			
	1111: latched			

7.21 FREEFALL_DUR (22H)

Table 61.FREEFALL_DUR register

Default data: 0x09 Type: RW

Table 62.FREEFALL_DUR register description

freefall_dur[7:0]	Delay time for freefall
	delay_time = (freefall_dur + 1) * 2ms
	range from 2ms to 512ms
	default: 20ms

7.22 FREEFALL_THS (23H)

Table 63.FREEFALL_THS register

Default data: 0x30 Type: RW

reefall_th[7]	freefall_th [6]	freefall_th [5]	freefall_th[4]	freefall_th [3]	freefall_th [2]	freefall_th [1]	freefall_th [0]
---------------	-----------------	-----------------	----------------	-----------------	-----------------	-----------------	-----------------

Table 64.FREEFALL_THS register description

	freefall threshold = freefall_th * 7.81mg
freefall_th[7:0]	LSB = 7.81mg
	default is 375mg

7.23 FREEFALL_HYST (24H)

Table 65.FREEFALL_HYST register

Default data: 0x01 Type: RW

unused	unused	unused	unused	unused	freefall_mode	freefall_hy[1]	freefall_hy[0]
					_	- 3 - 1	

Table 66.FREEFALL_HYST register description

function made	0: single mode.
freefall_mode	1: sum mode.
	Set the hysteresis for freefall detection.
freefall_hy[1:0]	Free fall hysteresis time = freefall_hy* 125ms
	LSB = 125mg

7.24 ACTIVE_DUR (27H)

Table 67.ACTIVE_DUR register

Default data: 0x00 Type: RW

unused unused unused unused unused unused active_dur[1] active_dur[0]

Table 68.ACTIVE_DUR register description

active_dur[1:0]	Active duration time = (active_dur + 1) ms
-----------------	--

7.25 ACTIVE_THS (28H)

Table 69.ACTIVE_THS register

Default data: 0x14 Type: RW

Table 70.ACTIVE_THS register description

	Threshold of active interrupt=active_th*mg/LSB
	LSB = 3.91mg (2g range)
active_th[7:0]	LSB = 7.81mg (4g range)
	LSB = 15.625 mg (8g range)
	LSB = 31.25mg (16g range)

7.26 TAP_DUR (2AH)

Table 71.TAP_DUR register

Default data: 0x04 Type: RW

tap	p_quiet	tap_shock	unused	unused	unused	tap_dur[2]	tap_dur[1]	tap_dur[0]	
-----	---------	-----------	--------	--------	--------	------------	------------	------------	--

Table 72.TAP_DUR register description

tap_quiet	0: tap quiet duration 30ms.				
tup_quiet	1: tap quiet duration 20ms.				
tan shock	0: tap shock duration 50ms.				
tap_shock	1: tap shock duration 70ms.				
	Tap duration selects the length of the time window for the second shock.				
	000: 50ms				
	001: 100ms				
	010: 150ms				
tap_dur[2:0]	011: 200ms				
	100: 250ms				
	101: 375ms				
	110: 500ms				
	111: 700ms				

7.27 TAP_THS (2BH)

Table 73.TAP_THS register

Default data: 0x0a Type: RW

|--|

Table 74.TAP_THS register description

	Threshold of tap interrupt=Tap_th*mg/LSB
	LSB = 62.5mg (2g range)
tap_th [4:0]	LSB = 125 mg(4g range)
	LSB = 250 mg(8g range)
	LSB = 500mg (16g range)

7.28 ORIENT_HYST (2CH)

Table 75.ORIENT_HYST register

Default data: 0x18 Type: RW

|--|

Table 76.ORIENT_HYST register description

orient hyst[2:0]	Set the hysteresis of the orientation interrupt
orient_hyst[2:0]	1LSB = 62.5mg.
	00: no blocking
orient_block[1:0] orient_mode [1:0]	01: z blocking
	10: z blocking or slope in any axis > 0.2g
	11: no blocking
	00: symmetrical
	01: high-asymmetrical
	10: low-asymmetrical
	11:synmmetrical

7.29 Z_BLOCK (2DH)

Table 77.Z_BLOCK register

Default data: 0x08 Type: RW

unu	sed unused	unused	unused	z_blocking[3]	z_blocking[2]	z_blocking[1]	z_blocking[0]
-----	------------	--------	--------	---------------	---------------	---------------	---------------

Table 78.Z_BLOCK register description

z blocking[3:0]	Defines the blocking acc_z between 0g to 0.9375g degree.
z_blocking[3:0]	1LSB=62.5mg

7.30 SELF_TEST (32H)

Table 79.SELF_TEST register

Default data: 0x00 Type: RW

unused	unused	unused	unused	unused	unused	self_test_sign	self_test_en
						_	

Table 80.SELF_TEST register description

self_test_sign	Set the sign of self test electrostatic excitation for each axis 0: positive 1: negative.
self_test_en	0: disable self-test, 1: self-test enabled.

7.31 CUSTOM_OFF_X (38H)

Table 81.CUSTOM_OFF_X register

Default data: 0x00 Type: RW

CUSTOM_OFF_X register is OTP register too, OTP address: 0x1D

Table 82.CUSTOM_OFF_X register description

011	st_off_X[7:0]	customer offset compensation value for X axis
Cui	St_011_A[7.0]	LSB=3.9mg

7.32 CUSTOM_OFF_Y (39H)

Table 83.CUSTOM_OFF_Y register

Default data: 0x00 Type: RW

CUSTOM_OFF_Y register is OTP register too, OTP address: 0x1E

cust_off_Y[7]	cust_off_Y[6]	cust_off_Y[5]	cust_off_Y[4]	cust_off_Y[3]	cust_off_Y[2]	cust_off_Y[1]	cust_off_Y[0]
---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------

Table 84.CUSTOM_OFF_Y register description

	•
oust off V[7,0]	customer offset compensation value for Y axis
cust_off_Y[7:0]	LSB=3.9mg

7.33 CUSTOM_OFF_Z (39H)

Table 85.CUSTOM_OFF_Z register

Default data: 0x00 Type: RW

CUSTOM_OFF_Z register is OTP register too, OTP address: 0x1F

								1
cust_off_Z[7]	cust_off_Z[6]	cust_off_Z[5]	cust_off_Z[4]	cust_off_Z[3]	cust_off_Z[2]	cust_off_Z[1]	cust_off_Z[0]	l
								1

Table 86.CUSTOM_OFF_Z register description

Custom offset 7[7:0]	customer offset compensation value for Z axis
Custom_offset_Z[7:0]	LSB=3.9mg

7.34 CUSTOM_FLAG (4EH)

Table 87.CUSTOM_FLAG register

Default data: 0x00 Type: R

unusad	unused	unusad	unused	unused	unused	unucod	custom_OTP_programmed
unused	unuseu	unused	unuseu	unuseu	unusea	unusea	custom_OTP_programmed

Table 88.CUSTOM_FLAG register description

	-
overte m. OTD. mas anoman ed	0: Custom OTP is not be programmed
custom_OTP_programmed	1: Indicate the custom OTP is already programmed and can't be programmed again

7.35 CUSTOM_CODE (4FH)

Table 89.CUSTOM_CODE register

Default data: 0x00 Type: RW

custom_OTP_	custom_OTP_	custom_OTP_	custom_OTP_	custom_OTP_	custom_OTP_	custom_Pre	unu
program[5]	program[4]	program[3]	program[2]	program[1]	program[0]	_program	sed

Table 90.CUSTOM_CODE register description

custom_OTP_program	Write 0x9a to the register start customer OTP program
--------------------	---

7.36 Z_ROT_HODE_TM (51H)

Table 91.Z_ROT_HODE_TM register

Default data: 0x09 Type: RW

| z_rot_hold_ |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| time[7] | time[6] | time[5] | time[4] | time[3] | time[2] | time[1] | time[0] |

Table 92.Z_ROT_HODE_TM register description

7.37 Z_ROT_DUR (52H)

Table 93.Z_ROT_DUR register

Default data: 0xff Type: RW

| z_rot_dur |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |

Table 94.Z_ROT_DUR register description

z_rot_hold_time[7:0] Set the duration time between twice z-axis rotating detecting. LSB = 4ms

7.38 ROT_TH_H (53H)

Table 95.ROT_TH_H register

Default data: 0x45 Type: RW

Rot_th_h [7]	th_h [2]
--------------	----------

Table 96.ROT_TH_H register description

Rot_th_h [7:0]	Set the higer threshold value for (X^2+Y^2) to indicate once Z-rotaion, LSB =
Kot_til_II [7.0]	15.6mg

7.39 ROT_TH_L (54H)

Table 97.ROT_TH_L register

Default data: 0x35 Type: RW

Rot_th_1 [7] Rot.	t_th_l[6] Rot_th_l[5]	th_l[6]	Rot_th_1 [3]	Rot_th_1 [2]	Rot_th_1 [1]	Rot_th_1 [0]
-------------------	-----------------------	---------	--------------	--------------	--------------	--------------

Table 98.ROT_TH_L register description

Rot_th_1 [7:0]	Set the lower threshold value for (X^2+Y^2) to indicate once Z-rotaion, LSB =
Kot_ui_i [7.0]	15.6mg

8 Package information

8.1 Outline dimensions

Figure 13 12 Pin LGA Mechanical data and package dimensions

Package outline dimensions (um)

(COMMON DIM	ENSIONS(LIM)		
PKG.	MAYORYVERY THE			
REF.	MIN.	NOM.	MAX	
Α	1000	1100	1200	
A٥	(4)	200 REF.		
D	1900	2000	2100	
Ε	1900	2000	2100	

8.2 Tape and reel specification

The da213 is shipped in a standard pizza box The box dimension for 1 reel is: $L \times W \times H = 35 \text{cm} \times 35 \text{cm} \times 5 \text{cm}$ da213 quantity: 5000pcs per reel, please handle with care.

Figure 14 Tape and reel dimension in mm

9 Revision history

Table 99. Document revision history

Date	Revision	Changes
10-Sep-2013	0.1	Initial release
10-Feb-2014	1.0	Update Electrical characteristics
23-May-2014	1.1	Add tap & reel info