AE 706

Assignment 5: Computation of Lid-Driven Cavity Flow Using Vorticity-Stream Function Formulation

Instructor
Prof. J.C Mandal
Department of Aerospace Engineering

Submitted by ROLL NO: 24M0006 PRAJAPATI AJAYKUMAR NANDUBHAI Department of Aerospace Engineering

Contents

1	Problem Statement	4
2	Governing Equations 2.1 Vorticity Transport Equation	
3	Boundary Conditions 3.1 Lid (Top Wall, $y = 1 \mathrm{m}$)	5 5
4	Convergence Criteria 4.1 Velocity Residuals (Time Iteration)	5
5	Time Step Calculation5.1 Convective Time Step5.2 Diffusive Time Step5.3 Final Time Step	6 6 6
6	Results	7
7	Conclusion	10
8	Flowchart	11

List of Figures

1	Lid driven cavity	4
2	C Stream Function Contours	7
3	Streamlines of the flow	7
4	Distribution of the x-component of velocity vector (u) along the mid ver-	
	tical line	8
5	Distribution of the y-component of velocity vector (v) along the mid hori-	
	zontal line	8
6	u-velocity along mid vertical line compared between CFD result and Ghia	9
7	v-velocity along mid horizontal line compared between CFD result and	
	Ghia	9
8	Convergence history for (RMS)u and (RMS)v with iterations	10

1 Problem Statement

The goal of this assignment is to numerically solve the steady-state lid-driven cavity (as shown in Figure 1) flow using the Vorticity-Stream Function formulation. The flow is incompressible and two-dimensional. The velocity field is derived from the stream function, and the vorticity transport equation governs the evolution of vorticity in the domain

Figure 1: Lid driven cavity

The problem involves computing the flow field for a Reynolds number of 100, where the flow is governed by the Navier-Stokes equations expressed in terms of vorticity and stream function.

2 Governing Equations

The Navier-Stokes equations in terms of vorticity (ω) and stream function (ψ) are given as:

2.1 Vorticity Transport Equation

The vorticity transport equation is given by:

$$\frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} = \nu \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right)$$
 (1)

where

$$\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \quad \text{(vorticity)} \tag{2}$$

and

$$u = \frac{\partial \psi}{\partial u}, \quad v = -\frac{\partial \psi}{\partial x}$$
 (velocity components) (3)

Here, ν is the kinematic viscosity.

2.2 Stream Function Equation (Poisson Equation)

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial x^2} = -\omega \tag{4}$$

This equation ensures that the velocity field satisfies the incompressibility condition

3 Boundary Conditions

3.1 Lid (Top Wall, $y = 1 \,\text{m}$)

Driven by the lid:

$$\hat{u} = 1 \,\mathrm{m/s}, \quad \hat{v} = 0 \,\mathrm{m/s}$$

Imposed via vorticity:

$$\omega_{i,J} = -\frac{2(\psi_{i,J-1} - \psi_{i,J})}{\Delta y^2} - \frac{2\hat{u}_{i,J}}{\Delta y}$$

where an $I \times J$ grid is used; i = 1, 2, ..., I and j = 1, 2, ..., J.

3.2 Bottom and Side Walls (y = 0 m, x = 0 m, x = 1 m)

No-slip condition:

$$\hat{u} = 0 \,\text{m/s}, \quad \hat{v} = 0 \,\text{m/s}$$

Imposed via vorticity:

Left wall
$$\omega_{1,j} = -\frac{2(\psi_{2,j} - \psi_{1,j})}{\Delta x^2}$$

Right wall $\omega_{I,j} = -\frac{2(\psi_{I-1,j} - \psi_{I,j})}{\Delta x^2}$
Bottom wall $\omega_{i,1} = -\frac{2(\psi_{i,2} - \psi_{i,1})}{\Delta y^2}$

4 Convergence Criteria

The residual $R_{i,j}$ at an internal grid point is the difference between the left-hand side (LHS) and the right-hand side (RHS) of the discretized streamfunction equation:

$$R_{i,j} = \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta x^2} + \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j-1}}{\Delta y^2} + \omega_{i,j}$$
 (5)

A global residual norm is used to check for convergence. The most common choice is the **Root Mean Square (RMS) Residual**, defined as:

$$R_2 = \sqrt{\frac{1}{N} \sum_{i=2}^{I-1} \sum_{j=2}^{J-1} R_{i,j}^2}, \quad \text{where} \quad N = (I-2) \times (J-2)$$
 (6)

Terminate the **Jacobi** or **Gauss-Seidel** iteration when $R_2 \leq 10^{-2}$, as this level of residual reduction is sufficient to obtain steady-state results.

4.1 Velocity Residuals (Time Iteration)

Terminate the **time iteration** when the **Root Mean Square (RMS) residuals** of the velocity components u and v fall below a threshold (i.e., 10^{-8}).

The RMS residual of a variable f (representing either u or v) is defined as:

$$RMS_f = \sqrt{\frac{1}{N} \sum_{i=2}^{I-1} \sum_{j=2}^{J-1} (f_{i,j}^{n+1} - f_{i,j}^n)^2}$$
 (7)

Here, the superscript n indicates the time level.

5 Time Step Calculation

The time step Δt is determined based on stability conditions:

5.1 Convective Time Step

$$\Delta t_c = \sigma_c \frac{\Delta x \Delta y}{\|u_{\text{max}}\|\Delta y + \|v_{\text{max}}\|\Delta x} \tag{8}$$

where $\sigma_c = 0.4$ is the Courant number.

5.2 Diffusive Time Step

$$\Delta t_d = \sigma_d \frac{1}{2\nu} \cdot \frac{\Delta x^2 \Delta y^2}{\Delta x^2 + \Delta y^2} \tag{9}$$

where $\sigma_d = 0.6$ is the diffusion number.

5.3 Final Time Step

$$\Delta t = \min(\Delta t_c, \Delta t_d) \tag{10}$$

6 Results

Figure 2: C Stream Function Contours

Figure 3: Streamlines of the flow

Figure 4: Distribution of the x-component of velocity vector (u) along the mid vertical line

Figure 5: Distribution of the y-component of velocity vector (\mathbf{v}) along the mid horizontal line

Figure 6: u-velocity along mid vertical line compared between CFD result and Ghia

Figure 7: v-velocity along mid horizontal line compared between CFD result and Ghia

Figure 8: Convergence history for (RMS)u and (RMS)v with iterations

7 Conclusion

The numerical simulation effectively captured the key characteristics of lid-driven cavity flow at a Reynolds number of 100. The results demonstrate strong agreement with established benchmark data, thereby validating the implementation. The vorticity–stream function formulation proved to be a robust and efficient approach for solving this two-dimensional incompressible flow problem.

References

- [1] Ghia, U., Ghia, K. N., & Shin, C. T., *High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method*, Journal of Computational Physics, 48(3), 387–411 (1982).
- [2] Hoffmann, K. A., & Chiang, S. T., Computational Fluid Dynamics for Engineers, Vol. I, 4th ed., Engineering Education Systems, 2000.
- [3] Pletcher, R. H., Tannehill, J. C., & Anderson, D. A., Computational Fluid Dynamics and Heat Transfer, 3rd ed., Taylor & Francis, 2011.

8 Flowchart

