9.4 The Lebesgue Integrals versus Riemann Integrals

February 22, 2016

9-31

- 1. f Riemann intégrable sur tous les sous-intervals fermés de [a, b)
- 2. $b \in \mathbb{R} \cup \{\infty\}$
- 3. |f| Riemann impropre sur [a, b)
- 4. $f_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}$ définie par $f_{\mathbb{R}}(x) = f(x)$ si $x \in [a, b)$ et 0 sinon.

 \mathbf{a}

- 1. $a, b \in \mathbb{R}$
- 2. a < b
- 3. $M \ge 0$
- 4. s une fonction simple non négative tel que pour tout $n\in\mathbb{N}$ on a $\int_{\mathbb{R}}s\chi_{[a,b-\frac{1}{n}]}d\lambda\leq M$
- $\diamond \int_{\mathbb{R}} s d\lambda \le M$

Soit
$$s = \sum_{i=1}^{k} a_i \chi_{A_i}$$
. Alors $\int_{\mathbb{R}} s \chi_{[a,b-\frac{1}{n}]} = \sum_{i=1}^{k} a_i \lambda(A_i \cap [a,b-\frac{1}{n}])$.

En prenant la limite, on a $\sum_{i=1}^k a_i \lambda(A_i \cap [a,b)) \leq M$ (thm. 9.12).

On a donc $\int_{\mathbb{R}} s \chi_{[a,b)} d\lambda \leq M$.

TODO. J'ignore si l'on a des supposition ou des hypothèses implicites provenant du contexte de la démonstration du thm. 9.27. A-t-on que $s = s\chi_{[a,b)}$? Ce serait trop simple et alors l'indice du livre n'aurait aucun sens. D'un autre côté, je peux construire un contre exemple à l'aide des hypothèses de la question. a = 0, b = 2, M = 3, s = 1. On aura que l'intégrale de s sera infinie sur $\mathbb R$ bien qu'elle soit inférieure à M sur [0,2].

b)

 \diamond Prouvez le thm. 9.27 pour le cas où $b = \infty$.

On définit s_L^n à la manière de la preuve du **thm. 9.27** et l'on suppose $f \geq 0$. On a que $f\chi_{[a,a+n]}$ est Riemann intégrable pour tout $n \in \mathbb{N}$ (**par hypothèse**). Soit A_n l'ensemble des point de [a,a+n] tel que $f\chi_{[a,a+n]}$ est discontinue en $x \in A_n$.

Alors, par **thm. 8.12**, $f\chi_{[a,a+n]}$ est continue pp. pour tout n et donc A_n est de mesure nulle par définition. Soit alors A l'ensemble des x tel que f est discontinue. Alors je dis $\bigcup_{n=1}^{\infty} A_n = A$.

La direction \subseteq est évidente. Pour $x \in A$, on a que $x \in [a, a+n]$ pour un certain n, ce qui clot la preuve. Alors $\lambda(A) = \lambda \left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \lambda(A_n) = 0$ Donc $\lambda(A) = 0$.

Mais alors f est continue pp. et donc $s_L^n \to f$ pour presque tous les x.

On applique alors le même raisonnement que dans la preuve du **thm. 9.27** pour conclure que $f_{\mathbb{R}}$ est mesurable.

On peut alors supposer un $a < b < \infty$ et, en appliquant le même raisonnement que dans le **thm. 9.27** pour les fonctions $0 \le s \le |f|$, on a $\int_{\mathbb{R}} s d\lambda \le \int_a^b |f| dx$ pour tout b. En prenant la limite vers l'infinie, on a le résultat voulu et alors on peut conclure que $|f_{\mathbb{R}}|$ et donc $f_{\mathbb{R}}$ sont Lebesgue intégrable par **thm. 9.23**.

Soit $c \in (a, \infty)$ tel que $\int_c^\infty |f| dx \leq \frac{\epsilon}{2}$ (par extrapolation de **thm. 8.26**).

On peut alors faire exactement le même raisonnement que dans thm. 9.27.

9-32

1.
$$f(x) := \frac{1}{x}\chi_{(0,1]}$$

 $\diamond \sqrt{f}$ est Lebesgue intégrables mais f ne l'est pas

On a que $\sqrt{f} = |\sqrt{f}|$ et \sqrt{f} est Riemann impropre sur tout (0,1] (**exemple 8.24**). De plus, \sqrt{f} est intégrable sur tout [a,1] pour 0 < a < 1 (s.d.). Donc par **thm. 9.27**, \sqrt{f} est Lebesgue intégrable.

Sans démonstration, on a que, pour tout $0 , <math>(1-p)^{-1} \le \lim_{b\to 0} \int_b^1 x^{-1} dx$. En prenant la limite $p\to 1$, on a que $\lim_{b\to 0} \int_b^1 x^{-1} dx = \infty$.

Donc, pour tout $M \in \mathbb{R}$, on a qu'il existe un $b \in (0,1]$ tel que $\int_b^1 x^{-1} dx > M$.

Or, par **thm. 9.26**, pour tout $b \in (0,1]$, on a $\int_{\mathbb{R}} f\chi_{[b,1]} d\lambda = \int_b^1 x^{-1} dx$ car x^{-1} est continue sur [b,1] et donc le critère de Lebesgue pour l'intégration de Riemann s'applique.

Donc, par **def. 9.22**, il existe $0 \le s \le f\chi_{[b,1]}$ une fonction escalier telle que $\int_{\mathbb{R}} f\chi_{[b,1]} d\lambda - \int_{\mathbb{R}} s d\lambda = \int_b^1 x^{-1} dx - \int_{\mathbb{R}} s\lambda < \epsilon$.

Or, on a que s est également une fonction escalier pour f.

Soit alors $M \in \mathbb{R}$ et $b \in (0,1]$ tel que $\int_b^1 x^{-1} dx > M$. On pose $\epsilon := \int_b^1 x^{-1} dx - M$. Alors il existe une fonction escalier telle que $M \le \int_{\mathbb{R}} s d\lambda \le \int_b^1 x^{-1} dx$.

Donc, pour tout $M\in\mathbb{R}$, on a une fonction escalier $0\leq s\leq f$ tel que $\int_{\mathbb{R}} sd\lambda>M$. Donc le supremum est infini est l'intégral de Lebesgue de f n'existe pas.

9-33

1.
$$f = \frac{1}{x}\chi_{[1,\infty)}$$

 $\diamond f^2$ est Lebesgue intégrable mais f ne l'est pas

Premièrement, on a que $|f^2| = f^2$ est Riemann impropre par **exemple 8.21**.

De plus, f^2 est Riemann sur tout sous-interval $[1,b]\subseteq [1,\infty)$ (**critère de Lebesgue**).

Donc f^2 est Lebesgue intégrable.

Toujours par **exemple 8.21**, on a que $\lim_{b\to\infty} \int_1^b \frac{1}{x} dx = \infty$.

Or, par le **critère de Lebesgue**, on a que $\frac{1}{x}$ est Riemann sur tout [1,b]. On applique alors un raisonnement analogue à celui de 9-32.

9-34

1.
$$f(x) := \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \chi_{[n,n+1)}$$

 $\diamond \ f$ est Riemann impropre sur $[1,\infty)$ mais n'est pas Lebesgue intégrable.

Pour $k \in \mathbb{N}$, on a :

$$\int_{1}^{k+1} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \chi_{[n,n+1)} dx$$

$$= \sum_{n=1}^{k+1} \int_{n}^{n+1} (-1)^{n+1} \frac{1}{n} dx$$

$$= \sum_{n=1}^{k+1} (-1)^{n+1} \frac{1}{n}$$

Or, par thm. 6.11, cette série converge. Donc

$$\lim_{k \to \infty} \int_{1}^{k+1} f dx = \int_{1}^{\infty} f dx < \infty$$

et donc f est Riemann impropre.

Par thm. 9.23, on a que f est Lebesgue ssi |f| est Lebesgue.

Or
$$|f| = \sum_{n=1}^{\infty} \frac{1}{n} \chi_{[n,n+1)}$$
. On a que, pour tout $k \in \mathbb{N}$, $s_k := \sum_{n=1}^{k} \frac{1}{n} \chi_{[n,n+1)}$ est une fonction simple tel que $0 \le s_k \le f$.

Par thm. 9.23, on a

$$\int_{\mathbb{R}} s_k d\lambda \le \int_{\mathbb{R}} |f| d\lambda$$

$$= \sum_{n=1}^{k} \frac{1}{n} \le \int_{\mathbb{R}} |f| d\lambda$$

En prenant la limite vers $k \to \infty$, on peut conclure que |f|, et donc f, ne sont pas Lebesgue intégrables. (thm. 9.23, exemple 6.8.)

9-35

 \diamond Définir l'intégrable de Lebesgue impropre d'une fonction $f:[a,b)\to\mathbb{R}$ où $b\in\mathbb{R}\cup\{\infty\}$.

f est Lebesgue impropre si $f\chi_{[a,c]}$ est Lebesgue pour tout $c\in(a,b)$ et si $\lim_{c\to b}\int_{\mathbb{R}}|f|\chi_{[a,c]}d\lambda$ est finie. (Ou sinon on ne prend pas la valeur absolue. Je l'ignore.)

9-36

1. $E \subseteq [a, b]$

- 2. \mathcal{I} une famille des sous-intervals fermés de [a, b]
- 3. $E \subseteq \bigcup \mathcal{I}$

 \diamond Il existe une sous-famille $\mathcal{F}\subseteq\mathcal{I}$ finie d'ensembles disjoints tel que $\sum_{I\in\mathcal{F}}|I|\geq\frac{1}{6}\lambda(E)$

a)

- 1. Pour tout I un interval fermé, on pose I^* un interval fermé ayant le même point milieu que I et tel que $5|I|=|I^*|$
- 2. $I, J \in \mathcal{I}$
- 3. $I \cap J \neq \emptyset$
- 4. $|I| \le 2|J|$
- $\diamond\; I\subseteq J^*$

On pose I := [a, b] et J := [c, d].

On a que $J^*=[c-\frac{5}{2}(d-c),d+\frac{5}{2}(d-c)]$ (on ajoute cinq moités d'interval de chaque coté). Soit $x\in I\cap J$ et soit |x-c|,|x-d|>|I|.

SPDG, on pose x < c. Alors c - x > b - a. Supposons alors $c \le b$. Puisque $a \le x$, on a $-x \le -a$. Alors $c - x \le b - a$. Or c - x > b - a. On a donc une contradiction et alors b < c. Mais alors a < b < c et alors $I \cap J = \emptyset$, une contradiction. Un raisonnement analogue s'applique si x > d. Donc, pour tout $x \in I$, on a |x - c| < |I| ou |x - d| < |I|.

Soit alors $x \in I - J$. SPDG x < c. Alors $c - x \le |I| \le 2|J| \le \frac{5}{2}|J| \Leftrightarrow -x \le -c\frac{5}{2}|J| \Leftrightarrow c - \frac{5}{2}|J| \le x$. Aussi, $x < c < d < d + \frac{5}{2}|J|$. Donc $x \in J^*$. Un raisonnement analogue s'applique si x > d. Si $x \in J$, alors $x \in J^*$ car $J \subseteq J^*$.

Donc $I \subseteq J^*$.

b)

- 1. $\delta_0 := \sup\{|I| : I \in \mathcal{I}\}$
- 2. $I_1 \in \mathcal{I}$ tel que $|I_1| > \frac{\delta_0}{2}$
- 3. $I_1\cdots I_n$ disjoints tel que pour $A_n:=\bigcup_{j=1}^nI_j$, pour tout $I\in\mathcal{I}$, on a $I\cap A_n=\emptyset$ ou $I\subseteq\bigcup_{j=1}^nI_j^*$
- \diamond S'il existe $I \in \mathcal{I}$ tel que $A_n \cap I = \emptyset$, on peut poursuivre la construction.

On suppose qu'il existe $I \in \mathcal{I}$ tel que $I \cap A_n = \emptyset$.

On pose alors $\delta_{n+1} := \sup\{|I| : I \in \mathcal{I} \text{ et } I \cap A_n = \emptyset\}$. Par les proppriétés du supremum, on a qu'il existe $I \in \mathcal{I}$ tel que $I \cap A_n = \emptyset$ et $\delta_{n+1} - |I| \leq \frac{\delta_{n+1}}{2}$ ce

qui est équivalent à $\frac{\delta_{n+1}}{2} \leq |I|$.

Ceci nous donne A_{n+1} .

c)

1. $\mathcal J$ la famille d'intervals construite à l'aide du processus 9-36b

$$\diamond \lambda(E) < 5 \sum_{I \in \mathcal{J}} |I|$$

Soit $A^* = \bigcup_{I \in \mathcal{J}} I^*$. Alors, par exercice 9-36b, on a que, pour tout $I \in \mathcal{I}$, $I \subseteq A^*$. Mais alors $E \subseteq \bigcup_{I \in \mathcal{I}} I \subseteq A^*$.

Donc
$$\lambda(E) \le \lambda(A^*) \le \sum_{I \in \mathcal{J}} |I^*| = 5 \sum_{I \in \mathcal{J}} |I|$$
.

d)

♦ Montrer que de 9-36c suit la conclusion de la proposition.

Prenant \mathcal{J} , on peut déduire $\frac{\lambda(E)}{6} < \sum_{I \in \mathcal{J}} |I|$. De plus, les I de \mathcal{J} sont disjoints. Si \mathcal{J} est finie, on a terminé.

Supposons alors $\mathcal J$ infinie. On a $\mathcal J=\{I_1,I_2,\cdots\}$. On a que, pour $\epsilon:=\sum_{i=1}^\infty |I_i|-\frac{\lambda(E)}{6}$, il existe N tel que $n\geq N$ implique $\sum_{i=1}^\infty |I_i|-\sum_{i=1}^n |I_i|<\epsilon$. Mais alors $-\sum_{i=1}^n |I_i|<-\frac{\lambda(E)}{6}$ ce qui est équivalent à $\frac{\lambda(E)}{6}<\sum_{i=1}^n |I_i|$.

On pose $\mathcal{F} := \{I_1, \cdots, I_n\}.$