

Dashboard > Courses > School Of Engineering & Applied Sciences > B.Tech. > B.Tech. Cohort 2020-2024 > Semester-II Cohort 2020-24 > EMAT102L-Even2021 > 3 July - 9 July > Quiz 1_Differential Equations

Started on	Monday, 5 July 2021, 6:00 PM
State	Finished
Completed on	Monday, 5 July 2021, 6:30 PM
Time taken	29 mins 7 secs
Grade	8.0 out of 10.0 (80 %)

Question 1

Correct

2.0

Mark 2.0 out of

_

Consider the following differential equation:

$$2xydx + (x^2 - 1)dy = 0.$$

Identify the correct statement:

Select one:

- The differential equation is exact and the general solution is $ax^2y+bx^3y^2=C$, where C is an arbitrary constant and a, b are some specific constants that satisfy the relation a+b=2.
- The differential equation is not exact and y^2 is an integrating factor.
- igcup The differential equation is not exact and y^3 is an integrating factor.
- The differential equation is exact and the general solution is $x^ay-y^b=C$, where C is an arbitrary constant and a,b are some specific constants that satisfy the relation a+b=3.

The correct answer is: The differential equation is exact and the general solution is $x^ay-y^b=C$, where C is an arbitrary constant and a,b are some specific constants that satisfy the relation a+b=3.

Question 2

Incorrect

2.0

Mark 0.0 out of

Let $R:|x-0|\leq 2, |y-0|\leq 3$ be a rectangle. Consider the IVP

$$rac{dy}{dx}=xy^2,y(0)=0.$$

Which of the following statement is correct about this IVP?

Select one:

- This IVP has no solution. X
- \bigcirc This IVP has a unique solution on the interval $|x| \leq rac{1}{8}$.
- \bigcirc This IVP has two solutions on the interval $|x| \leq rac{1}{6}$.
- O This IVP has infinitely many solutions on the interval $|x| \leq rac{1}{6}.$

The correct answer is: This IVP has a unique solution on the interval $|x| \leq rac{1}{8}$.

Question 3

Correct

2.0

Mark 2.0 out of

Consider the following differential equation:

$$x^3rac{d^3y}{dx^3} + xrac{d^2y}{dx^2} + e^y = 0.$$

Let O and D denote the order and degree respectively of this differential equation. Identify the correct statement:

Select one:

- $\bigcirc O^2 + D^2 = 10$ and the equation is linear.
- $\bigcirc \hspace{0.5cm} O+D=5$ and the equation is non-linear.
- $\bigcirc \hspace{0.5cm} O-D=1$ and the equation is linear.
- $\hspace{.1in} \hspace{.1in} \hspace{.1in} \hspace{.1in} O-D=2$ and the equation is non-linear.

The correct answer is: O-D=2 and the equation is non-linear.

Question 4

Correct

2.0

Mark 2.0 out of

Find the Lipschitz constant for the following function

$$f(x,y) = x |\sin y| \ \text{ on domain } D = \{(x,y): |x| \leq 1, -\infty < y < \infty\}$$

Select one:

- 0 4
- 3
- 1
- O 2

The correct answer is: 1

Question **5**

Correct

Mark 2.0 out of 2.0

Consider the IVP $rac{dy}{dx}=y^2, y(0)=1.$

The iterate $y_2(x)$ obtained by using Picard's method of successive approximations on this IVP is given by $a+bx+cx^2+fx^3$, where a,b,c,f are some specific constants such that a+b+c+3f equals:

Select one:

- 0 1

- 4

The correct answer is: 4