Codierungstheorie endliche Körper

Reinhold Hübl

Herbst 2022 / 3. Vorlesung

Definition

Ein **Körper** ist eine nicht-leere Menge K mit zwei ausgezeichneten Elementen 0 und 1, wobei $0 \neq 1$, und mit zwei inneren Verknüpfungen (also Abbildungen) + und \cdot

$$+ : K \times K \longrightarrow K, \quad (a,b) \longmapsto a+b$$

 $\cdot : K \times K \longrightarrow K, \quad (a,b) \longmapsto a \cdot b$

so dass gilt

- \bullet (K, +) ist eine kommutative Gruppe mit neutralem Element 0.
- **2** $(K \setminus \{0\}, \cdot)$ ist eine kommutative Gruppe mit neutralem Element 1.
- **3** Es gilt das Distributivgesetz, dh. für alle $a, b, c \in K$ gilt

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Beispiel

 \mathbb{R} , \mathbb{Q} und \mathbb{C} sind Körper

Beispiel

Die Menge $\mathbb{F}=\{0,1\}$ mit

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$\begin{array}{c|cccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

ist ein Körper. Dieser Körper wird auch mit \mathbb{F}_2 bezeichnet.

Definition

Ein endlicher Körper K ist ein Körper $(K, +, \cdot)$ mit $|K| < \infty$.

Beispiel

Die Menge \mathbb{Z}_n oder $\mathbb{Z}/n\mathbb{Z}$ ist der Menge der Aquivalenzklassen ganzer Zahlen modulo n. Er kann beschrieben werden durch die Repräsentanten $0,1,\ldots,n-1$. Auf diesen Repräsentanten definieren wir eine Addition + und eine Multiplikation \cdot explizit wie folgt:

$$x + y = (x + y) \mod n$$

 $x \cdot y = x \cdot y \mod n$

dh. wir addieren bzw. multiplizieren die Repräsentanten zunächst in \mathbb{Z} , dividieren das Ergebnis mit Rest durch n und nehmen diesen Rest als Ergebnis der Addition bzw. der Multiplikation.

Dadurch wir $\mathbb{Z}/n\mathbb{Z}$ zum (kommutativen) Ring.

Beispiel

In $\mathbb{Z}/12\mathbb{Z}$ gilt

- 3+4=7.
- 9 + 10 = 7.
- 4+8=0, dh. 8=-4.
- $2 \cdot 3 = 6$.
- $5 \cdot 6 = 6$.
- $3 \cdot 4 = 0$.

Folgerung

 $\mathbb{Z}/12\mathbb{Z}$ ist kein Körper.

Beispiel

Es ist $\mathbb{Z}/2\mathbb{Z} = \mathbb{F}_2$ der Körper von oben mit zwei Elementen.

Übung

Ist auch $\mathbb{Z}/15\mathbb{Z}$ ein Körper?

Primkörper

Der Ring $\mathbb{Z}/n\mathbb{Z}$ kann also ein Körper sein, muss aber nicht.

Satz

Genau dann ist $\mathbb{Z}/n\mathbb{Z}$ ein Körper, wenn n eine Primzahl ist.

Bezeichnung

Ist p eine Primzahl, so schreiben wir \mathbb{F}_p für $\mathbb{Z}/p\mathbb{Z}$ und nennen \mathbb{F}_p den **Primkörper** mit p Elementen.

Beispiel

 \mathbb{F}_2 , \mathbb{F}_3 und \mathbb{F}_5 sind Körper.

Arithmetik in Primkörpern

Addition, Subtraktion und Multiplikation in den Körpern \mathbb{F}_p sind einfach, da wir hier zunächst in \mathbb{Z} , addieren, subtrahieren oder multiplizieren können und dann Restklassen mod p bilden.

Beispiel

In F₇ gilt

$$5+6 = 11 \mod 7 = 4$$

 $5-6 = -1 \mod 7 = 6$
 $5 \cdot 6 = 30 \mod 7 = 2$

Schwieriger ist die Division bzw. die Bestimmung eines inversen Elements.

Der euklidische Algorithmus

- Vorbereitungsschritt: Ordne m und n so, dass $m \ge n$. (Vertausche m und n, falls nötig, denn ggT(m,n) = ggT(n,m)). Setzen i=0 und $r_0=m$, $r_1=n$.
- **Verarbeitungsschritt:** Wir dividieren r_i durch r_{i+1} mit Rest:

$$r_i = a \cdot r_{i+1} + b$$

mit einer natürlichen Zahl a und einem Rest $b \in \{0, 1, \dots, r_{i+1} - 1\}$.

- Falls b = 0 (d.h. die Division geht ohne Rest auf) \longrightarrow **STOPP**.
- Falls $b \neq 0$ setze $r_{i+2} = b$ und i = i + 1. Wiederhole den Verarbeitungsschritt.
- **Ergebnisschritt:** Nach endlich vielen Verarbeitungsschritten (höchstens m vielen) geht die Division erstmals ohne Rest auf, d.h. $r_i = a \cdot r_{i+1} + 0$ mit $r_{i+1} \neq 0$, Das STOPP–Kriterium wird also immer erreicht und r_{i+1} ist der größte gemeinsame Teiler von m und n, $r_{i+1} = \operatorname{ggT}(m, n)$.

Der euklidische Algorithmus

Beispiel

Wir betrachten die Zahlen m=222 und n=156. Hier gilt bereits $m \ge n$, und wir setzen $r_0=222$ und $r_1=156$.

- i = 0: $222 = 1 \cdot 156 + 66$. Wir setzen $r_2 = 66$.
- i = 1: $156 = 2 \cdot 66 + 24$. Wir setzen $r_3 = 24$.
- i = 2: $66 = 2 \cdot 24 + 18$. Wir setzen $r_4 = 18$.
- i = 3: $24 = 1 \cdot 18 + 6$. Wir setzen $r_5 = 6$.
- i = 4: $18 = 3 \cdot 6 + 0$. \longrightarrow **STOPP**.

Ergebnis: ggT(222, 156) = 6.

Der euklidische Algorithmus

Übung

Bestimmen Sie den größten gemeinsamen Teiler von m=239 und n=144.

Der erweiterte euklidische Algorithmus

Satz

Sind $m,n\in\mathbb{N}\setminus\{0\}$ mit $\mathrm{ggT}(m,n)=g$, so gibt es ganze Zahlen a, b mit $a\cdot m+b\cdot n=g$

Das erhält man durch Rückwärtsrechnen aus dem euklidischen Algorithmus.

Der erweiterte euklidische Algorithmus

Beispiel

Wir wollen 6 mit 156 und 222 darstellen.

- **1** Aus Schritt i = 3 erhalte: $6 = 24 1 \cdot 18$.
- ② Aus Schritt i = 2 erhaltet $18 = 66 2 \cdot 24$. Eingesetzt in (1):

$$6 = 24 - 1 \cdot (66 - 2 \cdot 24) = 3 \cdot 24 - 1 \cdot 66$$

3 Aus Schritt i = 1 erhalte zunächst $24 = 156 - 2 \cdot 66$. Eingesetzt in (2):

$$6 = 3 \cdot (156 - 2 \cdot 66) - 1 \cdot 66 = 3 \cdot 156 - 7 \cdot 66$$

a aus Schritt i = 0 erhalte zunächst $66 = 222 - 1 \cdot 156$. Eingesetzt in (3):

Damit haben for each element of the parameter of the par

Der erweiterte euklidische Algorithmus

Übung

Schreiben Sie 1 = ggT(239, 144) in der Form

$$1 = a \cdot 239 + b \cdot 144$$

mit ganzen Zahlen a und b.

Division in Primkörpern

Der erweiterte euklidische Algorithmus kann benutzt werden, um die Division in einem endlichen Körper \mathbb{F}_p durchzuführen. ist notwendig

$$\operatorname{ggT}(n,p)=1$$

da p eine Primzahl.

Der erweiterte euklidische Algorithmus liefert dann ganze Zahlen a, b mit

$$1 = a \cdot n + b \cdot p$$

Rechnen wir dann modulo p, so gilt

$$1 = (a \cdot n + b \cdot p) \mod p = a \cdot n \mod p$$

und damit gilt (in \mathbb{F}_p)

$$\frac{1}{n} = a, \qquad \frac{1}{a} = n$$

Division in Primkörpern

Beispiel

Die Zahl p = 239 ist prim, und es gilt

$$1 = 47 \cdot 239 + (-78) \cdot 144$$

Damit gilt:

$$1 = (-78) \cdot 144 \mod 239 = 161 \cdot 144 \mod 239$$

also in \mathbb{F}_{239} :

$$\frac{1}{144} = 161$$

Damit gilt dann auch

$$\frac{67}{144} = 67 \cdot 161 = 32$$

Division in Primkörpern

Übung

Berechnen Sie die Elemente

$$a = \frac{1}{87}, \quad b = \frac{127}{90}$$

in \mathbb{F}_{179} .

Gleichungssysteme über Primkörpern

Beispiel

Betrachte über \mathbb{F}_5 das lineare Gleichungssystem

$$\begin{array}{rclrcrcr}
2x & + & 3y & + & 2z & = & 1 \\
3x & + & y & + & z & = & 2 \\
x & + & 2y & + & 3z & = & 3
\end{array}$$

Augmentierte Matrix und Normalform:

$$\left(\begin{array}{ccc|c} 2 & 3 & 2 & 1 \\ 3 & 1 & 1 & 2 \\ 1 & 2 & 3 & 3 \end{array}\right), \qquad \left(\begin{array}{ccc|c} 1 & 4 & 1 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 4 \end{array}\right)$$

Lösung: x = 3, y = 4, z = 4.

Gleichungssysteme über Primkörpern

Übung

Betrachte über \mathbb{F}_3 das lineare Gleichungssystem

$$x + 2y + z = 0$$

 $2x + 2y + z = 0$

Untersuchen Sie, ob das Gleichungssystem Lösungen hat und bestimmen Sie diese gegebenenfalls.

Beispiel

Betrachte $M = \{0, 1, \alpha, \alpha + 1\}$ mit

+	0	1	α	$\alpha + 1$	0	1	α	$\alpha + 1$
0	0	1	α	$\alpha + 0$	0	0	0	0
1	1	0	$\alpha + 1$	α 1	0	1	α	$\alpha + 1$
α	α	$\alpha + 1$	0	1α	0	α	$\alpha + 1$	1
$\alpha + 1$	$\alpha + 1$	α	1	$0 \alpha + 1$	0	$\alpha + 1$	1	α

Dann ist $(M, +, \cdot)$ ein Körper.

Dabei ist $M \neq \mathbb{Z}/4\mathbb{Z}$, und es gilt auch nicht $M = \mathbb{F}_p$ für eine Primzahl p.

Dieser Körper wird mit \mathbb{F}_4 bezeichnet.

Es gibt also offensichtlich endliche Körper K, die **nicht** von der Form $K = \mathbb{F}_p$ sind.

Damit stellt sich die Frage, für welche $n \in \mathbb{N}$ es einen Körper mit n Elementen gibt und wie solche Körper aussehen.

Ist K ein Körper, so schreiben wir kurz

$$n = n \cdot 1 = \underbrace{1 + 1 + \dots + 1}_{n-\text{mal}}$$

und für $a \in K$ beliebig

$$n \cdot a = \underbrace{a + a + \dots + a}_{n-\text{mal}}$$

Bemerkung

Ist K ein endlicher Körper, so gibt es immer eine Zahl $n \in \mathbb{N}$, n > 0 mit

$$n = 0$$
 in K

Definition

Ist K ein endlicher Körper, so heißt die kleinste Zahl n>0 mit $n\cdot 1=0$ in K die **Charakteristik** von K, geschrieben $\operatorname{char}(K)$.

Beispiel

Für jede Primzahl p gilt $\operatorname{char}(\mathbb{F}_p) = p$.

Der Körper mit p Elementen hat also Charakteristik p.

Satz

Ist K ein endlicher Körper, so ist $\operatorname{char}(K) = p$ eine Primzahl und $\mathbb{F}_p \subseteq K$ als Unterkörper.

Beispiel

Der Körper \mathbb{F}_4 hat die Charakteristik 2 und $\mathbb{F}_2 \subseteq \mathbb{F}_4$

Satz (Frobenius-Formel)

Ist p = char(K), so gilt

$$(a+b)^p = a^p + b^p$$
 für alle $a, b \in K$

Satz

Ist K ein endlicher Körper der Charakteristik p mit q Elementen, so ist $q=p^l$ für ein $l\in\mathbb{N}$ und es gibt ein $\alpha\in K$, sodass $1,\alpha,\alpha^2,\ldots,\alpha^{l-1}$ eine Basis von K als \mathbb{F}_p -Vektorraum ist. Insbesondere haben wir also eine Relation

$$\alpha' = r_{l-1} \cdot \alpha^{l-1} + r_{l-2} \cdot \alpha^{l-2} + \dots + r_1 \cdot \alpha + r_0$$

Es gibt für jede Primzahl p und jedes $l \in \mathbb{N}$ genau einen Körper mit $q = p^l$ Elementen.

Definition

Eine solche Relation

$$\alpha' = r_{l-1} \cdot \alpha'^{l-1} + r_{l-2} \cdot \alpha'^{l-2} + \dots + r_1 \cdot \alpha + r_0$$

heißt definierende Relation des Körpers K.

Bezeichnung

Der Körper K mit $q = p^I$ Elementen wir mit \mathbb{F}_q bezeichnet.

Beispiel

Der Körper \mathbb{F}_4 ist der (eindeutige) Körper mit 4 Elementen. Er wird definiert durch die Relation

$$\alpha^2 = \alpha + 1$$

Beispiel

Der Körper \mathbb{F}_8 mit 8 Elementen wird definiert durch die Relation

$$\alpha^3 = \alpha + 1$$

Er wird aber auch definiert durch die Relation

$$\alpha^3 = \alpha^2 + 1$$

Bemerkung

Ist \mathbb{F}_q der Körper mit $q = p^l$ Elementen und ist

$$\alpha' = r_{l-1} \cdot \alpha'^{l-1} + r_{l-2} \cdot \alpha'^{l-2} + \dots + r_1 \cdot \alpha + r_0$$

eine definierende Relation von \mathbb{F}_q , so sind dadurch Addition und Multiplikation schon eindeutig festgelegt.

Für $a = a_{l-1} \cdot \alpha^{l-1} + \cdots + a_1 \cdot \alpha + a_0$ und

$$b = b_{l-1} \cdot \alpha^{l-1} + \cdots + b_1 \cdot \alpha + b_0 \text{ (mit } a_i, b_i \in \mathbb{F}_p) \text{ ist}$$

$$a+b=(a_{l-1}+b_{l-1})\cdot\alpha^{l-1}+(a_{l-2}+b_{l-2}\cdot\alpha^{l-2}+\cdots+(a_1+b_1)\cdot\alpha+a_0+b_0$$

Die Multiplikation ist gegeben durch die Formel $\alpha^i \cdot \alpha^j = \alpha^{i+j}$ und die Relation.

Beispiel

Im Körper \mathbb{F}_8 mit 8 Elementen, gegeben durch die Relation $\alpha^3=\alpha+1$ gelten die folgenden Beziehungen

- $(\alpha + 1) + (\alpha^2 + 1) = \alpha^2 + \alpha + 1 + 1 = \alpha^2 + \alpha$.
- $(\alpha^2 + 1) + (\alpha^2 + \alpha + 1) = 2\alpha^2 + \alpha + 2 = \alpha$.
- $\alpha \cdot (\alpha + 1) = \alpha \cdot \alpha + \alpha \cdot 1 = \alpha^2 + \alpha$.
- $\alpha^2 \cdot \alpha^2 = \alpha^4 = \alpha \cdot \alpha^3 = \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha$.
- $\alpha^2 \cdot (\alpha^2 + \alpha) = \alpha^2 \cdot \alpha^2 + \alpha^2 \cdot \alpha = (\alpha^2 + \alpha) + (\alpha + 1) = \alpha^2 + 1$.

Übung

Der Körper \mathbb{F}_8 kann auch durch die Relation $\alpha^3=\alpha^2+1$ beschrieben werden.

Berechnen Sie bei dieser definierenden Relation das Element

$$x = \alpha^2 \cdot (\alpha^2 + \alpha)$$

Es kann mehrere Relationen geben, die den Körper \mathbb{F}_q beschreiben, aber nicht jede Relation

$$\alpha' = r_{l-1} \cdot \alpha^{l-1} + r_{l-2} \cdot \alpha^{l-2} + \dots + r_1 \cdot \alpha + r_0$$

ist eine definierende Relation.

Beispiel

Die Relation $\alpha^3 = \alpha^2 + \alpha + 1$ beschreibt den Körper \mathbb{F}_8 nicht.

Definition

Ist $\alpha^l = r_{l-1} \cdot \alpha^{l-1} + r_{l-2} \cdot \alpha^{l-2} + \cdots + r_1 \cdot \alpha + r_0$ eine definierende Relation von \mathbb{F}_q , so heißt

$$F(X) = X^{l} - r_{l-1} \cdot X^{l-1} - r_{l-2} \cdot X^{l-2} - \dots - r_1 \cdot X - r_0 \in \mathbb{F}_p[X]$$

Minimal polynom von \mathbb{F}_q .

Satz

Ein Polynom $F(X) = X^l + r_{l-1} \cdot X^{l-1} + \cdots + r_1 \cdot X + r_0 \in \mathbb{F}_p[X]$ ist genau dann ein Minimalpolyonom von \mathbb{F}_q (mit $q = p^l$) wenn es **keine** Polynome h(X) und g(X) vom Grad mindestens 1 gibt, sodass

$$F(X) = g(X) \cdot h(X)$$