Sparseness and NMF: An Overview

Hao Xu, Bingfeng Shu, Shane Deiley

- 1. Sparseness
- 2. Insufficient Data Reduction Methods
- 3. Two Successful Approaches
 - a. Sparseness-Constrained NMF
 - b. Group Sparse Coding

Introduction to Sparseness

Sparseness

Naturally Sparse Data

- Text Matrices
- Disease Pattern in Patients

Natural Intrinsic Sparsity

- Data with few 'active' components
 - Also called latent factors
- Object or face detection
- Textual topic analysis

Implications of Sparse Decompositions

- Basis ~ Concise Summaries
- Coefficient ~ Low Term Linear Combination
- Parts-based representations

Data Reduction Methods and Sparsity Shortcomings

Sparsity in Data Reduction

Holistic Representations - Not Sparse

NMF

 $\min_{W\geq 0, H\geq 0}\left\|X-WH\right\|_F^2.$

Cannot Control Sparseness

ORL

Non-Negative Sparse Coding

Constraint term induces sparseness

$$\frac{1}{2}\|\mathbf{X} - \mathbf{A}\mathbf{S}\|^2 + \lambda \sum_{ij} S_{ij}$$

Low Rank Reduction (LRR)

Low-rank naturally related to sparsity

$$\min_{Z} rank(Z), s.t., X = DZ.$$

Data Reduction Methods and Sparsity Success

Sparseness Constraints

Objective Function:

$$E(\mathbf{W}, \mathbf{H}) = \|\mathbf{V} - \mathbf{W}\mathbf{H}\|^2$$

Sparseness Constraints:

$$sparseness(\mathbf{w}_i) = S_w, \forall i$$

 $sparseness(\mathbf{h}_i) = S_h, \forall i,$

Sparseness Measure

Hoyer Measure: sparseness(
$$\mathbf{x}$$
) = $\frac{\sqrt{n} - (\sum |x_i|) / \sqrt{\sum x_i^2}}{\sqrt{n} - 1}$

- a normalized version of the I2 / I1 measure
 - It's some kind of weighted sum of the coefficients
 - Normalization

Sparseness Measure

Illustration of various degrees of sparseness.

How to control?

- Fix L2 norm
- Set L1 norm to achieve desired sparseness
- For H matrix, fix the L2 norm to unity

Projected Gradient Descent

Gradient descent Method

• Find a local minimum of a function using gradient descent

minimize
$$f(x)$$
 over $x \in \mathcal{X}$

• Take a step in the direction of the negative gradient

$$x_{t+1} = x_t - \eta \nabla f(x_t), \qquad t \in \mathbb{N}.$$

Unconstrained!

Projected Gradient Descent

points need not belong to X

$$x_{t+1} = P_{\mathcal{X}}(x_t - \eta_t \nabla f(x_t)), \qquad t \in \mathbb{N}$$

- Projection operator Px
 - Given any vector x, find the closest non-negative vector with a given constraints.

Note!

- After projecting it need not be true that f
 (x_t+1) < f(x_t)
- Thus we need to adjust the step-size $\mu W > 0$ and $\mu H > 0$ for convergence.

Projection operator

• L1 norm constraint

$$\Sigma |si| = L_1$$

Set
$$s_i := x_i + (L_1 - \sum x_i) / \text{dim}(\mathbf{x}), \ \forall i$$

Projection operator

• L2 norm constraint

$$\sqrt{s_i^2} = L2$$

$$\mathbf{s} := \mathbf{m} + \alpha(\mathbf{s} - \mathbf{m})$$
, where $\alpha \ge 0$

Projection operator

Non-negative

$$si >= 0$$

Convergence of the Projection Step

- Worst-case
 - Desired sparseness 0.9,
 initial sparseness 0.1
- Iterations grow slowly with dimensionality

Experiment with Sparseness Constraints

- Features learned from the ORL face image database
- Sparseness level
 of the basis
 images were set
 0.75.

Using NMF in document clustering

Data matrix

news	paper	
news	paper	
news	paper	

Basis matrix

policy	algorithm
president	improved
peace	technical

Coefficient matrix

>10	0	0
2	>15	>8

A different approach

Group Sparsity in NMF

• Input data is group-structured. (Prior information)

What's group sparsity?

Group sparsity:

Share same sparsity pattern in factor matrix.

Ex:

Reconstruct X(1): only 1st, 3rd, and 4th basis components are used.

Benefit:

Better understanding.

More intuitive.

How to promote group sparsity?

Sparse coding

- Add constraint
- Penalty term induces sparsity

$$\frac{1}{2}\|\mathbf{X} - \mathbf{AS}\|^2 + \lambda \sum_{ij} S_{ij}$$

Lq-norm
$$||x||_p = \left(\sum_{i \in \mathbb{N}} |x_i|^p\right)^{1/p}$$
 L1-norm $||x||_1 := \sum_{i=1}^n |x_i|$.

$$\min_{\mathbf{W} \geq 0, \mathbf{H} \geq 0} f(\mathbf{W}, \mathbf{H}) + \alpha \sum_{j=1}^{N} \|\mathbf{h}_{.j}\|^2$$

How it works?

L_{1,q} norm

Definition:

$$\|\mathbf{Y}\|_{1,q} = \sum_{j=1}^{a} \|\mathbf{y}_{j\cdot}\|_{q} = \|\mathbf{y}_{1\cdot}\|_{q} + \dots + \|\mathbf{y}_{a\cdot}\|_{q}.$$

L₁,q - norm of a matrix is the sum of Lq -norms of its rows.

L1,q -norm promotes as many number of zero rows as possible to appear in Y

L_{1,q} mixed norm constraints

$$f(\mathbf{W}, \mathbf{H}) = \frac{1}{2} \sum_{b=1}^{B} \left\| \mathbf{X}^{(b)} - \mathbf{W} \mathbf{H}^{(b)} \right\|_{F}^{2}.$$

$$\min_{\mathbf{W} \geq 0, \mathbf{H} \geq 0} f(\mathbf{W}, \mathbf{H}) + \alpha \|\mathbf{W}\|_F^2 + \beta \sum_{b=1}^B \|\mathbf{H}^{(b)}\|_{1,q}.$$

Data matrix are divided into submatrix.

 $\|\mathbf{W}\|_F^2$ is used to prevent the elements of W from growing arbitrarily large.

 β : control the strength of constraint

Demonstration

- Comparison among 4 kinds of constraints.
- Factorize with group sparsity and see what W and H we get

$$\begin{split} & \min_{\mathbf{W} \geq 0, \mathbf{H} \geq 0} f(\mathbf{W}, \mathbf{H}) + \alpha \, \|\mathbf{W}\|_F^2 + \beta \, \|\mathbf{H}\|_F^2 \,, \quad \text{Frobenius norm} \\ & \min_{\mathbf{W} \geq 0, \mathbf{H} \geq 0} f(\mathbf{W}, \mathbf{H}) + \alpha \, \|\mathbf{W}\|_F^2 + \beta \sum_{j=1}^n \|\mathbf{h}_{\cdot j}\|_1^2 \,. \quad \text{L1 norm} \\ & \min_{\mathbf{W} \geq 0, \mathbf{H} \geq 0} f(\mathbf{W}, \mathbf{H}) + \alpha \, \|\mathbf{W}\|_F^2 + \beta \sum_{b=1}^B \left\|\mathbf{H}^{(b)}\right\|_{1_\infty} \, \text{Mixed norm with q=} \\ & \min_{\mathbf{W} \geq 0, \mathbf{H} \geq 0} f(\mathbf{W}, \mathbf{H}) + \alpha \, \|\mathbf{W}\|_F^2 + \beta \sum_{b=1}^B \left\|\mathbf{H}^{(b)}\right\|_{12} \, \quad \text{Mixed norm with q=2} \end{split}$$

Demonstration (2)

- Frobenius norm and L1 norm cannot successfully recover the group structure.
- Misinterpretation about the role of latent components.
- Sparsity destroyed.

Recovered coefficient matrices

Low-rank Data Recovery

Example of Group Sparse Error

Non-negative Low-Rank and Group Sparse Matrix Factorization

- Approximate rank with Nuclear Norm
- Assume Error Group Sparse

$$\min_{Z>0, D>0} \|Z\|_* + \lambda \|E\|_g, s.t., X = DZ + E.$$

Complexity

$$O(mnr + nr^2 + mnr^2 + 2n^2r + mn) + K \times O(mr^2 + m^2r).$$

- Algorithm solved with gradient descent
 - *K* is the number of iterations
- K < r & r << n,m

Experiment: Face Clustering

Experiment: Face Recognition

- 1. Sparsity is desirable in data reduction
- 2. Various methods fail
- 3. Two Improve Methods Presented
 - a. Constraining the decomposition
 - b. Group Sparse Coding