Leçon 105. Groupe des permutations d'un ensemble fini. Applications.

1. Définition et première propriété

1.1. Le groupe symétrique

- 1. DÉFINITION. Le groupe symétrique d'un ensemble E est le groupe des bijections de E dans lui-même, noté $\mathfrak{S}(E)$. Lorsque E = [1, n], on notera $\mathfrak{S}_n = \mathfrak{S}(E)$.
- 2. Remarque. Le cardinal de \mathfrak{S}_n est n!.
- 3. NOTATION. Pour une permutation $\sigma \in \mathfrak{S}_n$, on la notera sous la forme

$$\sigma = \begin{pmatrix} 1 & \cdots & n \\ \sigma(1) & \cdots & \sigma(n) \end{pmatrix}.$$

4. Exemple. La matrice

$$\sigma_0 := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}$$

représente une permutation de l'ensemble [1,5]. On a $\sigma(1)=4$ et $\sigma(5)=5$.

5. Remarque. La groupe \mathfrak{S}_n agit naturellement sur l'ensemble [1, n] par l'action

$$(\sigma, x) \in \mathfrak{S}_n \times [\![1, n]\!] \longmapsto \sigma(x) \in [\![1, n]\!].$$

- 6. Proposition. L'action de \mathfrak{S}_n sur $[\![1,n]\!]$ est n-transitive.
- 7. DÉFINITION. Soit $k \in [1, n]$. Un k-cycle est une permutation $\sigma \in \mathfrak{S}_n$ telle qu'il existe des entiers $a_1, \ldots, a_k \in [1, n]$ vérifiant
 - $\sigma(a_1) = a_2, ..., \sigma(a_k) = a_1;$
 - $-\sigma(x) = x$ pour tout entier $x \in [1, n] \setminus \{a_1, \dots, a_k\}.$

On note alors $\sigma = (a_1 \cdots a_k)$. Le *support* de la permutation σ est l'ensemble $\{a_1, \ldots, a_k\}$. Une *transposition* est un 2-cycle.

- 8. EXEMPLE. La permutation σ_0 est le 3-cycle (1 4 2) = (4 2 1). Attention, dans la définition 7, l'écriture $(a_1 \cdots a_p)$ n'est unique qu'à permutation circulaire près.
- 9. PROPOSITION. Soit $\sigma \in \mathfrak{S}_n$ et $k \in [1, n]$. Alors σ est un k-cycle si et seulement si les orbites de σ sous [1, n] sont toutes réduites à un élément sauf une qui a k éléments.
- 10. Proposition. Deux permutations à support disjoints commutent.
- 11. Remarque. La réciproque est fausse : il suffit de prendre la même permutation.

1.2. Théorème de structures et conjugaison de permutations

- 12. Proposition. Deux k-cycles de \mathfrak{S}_n sont toujours conjugués dans \mathfrak{S}_n .
- 13. Proposition. Soient $\tau \in \mathfrak{S}_n$ et $(a_1 \cdots a_k) \in \mathfrak{S}_n$ un k-cycle. Alors

$$\tau(a_1 \ldots a_k)\tau^{-1} = (\tau(a_1) \cdots \tau(a_k)).$$

- 14. Théorème. Toute permutation appartenant à \mathfrak{S}_n est de la forme $\sigma_1 \cdots \sigma_r$ pour des cycles $\sigma_1, \ldots, \sigma_r \in \mathfrak{S}_p$ (respectivement transpositions) à supports disjoints.
- 15. Exemple. La permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 5 & 3 & 4 & 2 \end{pmatrix} \in \mathfrak{S}_6$$

se décompose en le produit (2 6)(3 5 4).

16. Remarque. La décomposition du théorème 14 est unique à l'ordre des facteurs près.

17. COROLLAIRE. Soit $\sigma := \sigma_1 \cdots \sigma_r \in \mathfrak{S}_n$ une permutation décomposée comme dans le théorème 14. Alors

$$o(\sigma) = ppcm(o(\sigma_1), \dots, o(\sigma_r)).$$

18. Remarque. Pour un groupe quelconque G, on a au mieux le résultat

$$\forall g, h \in G$$
, $o(gh) \mid ppcm(o(g), o(h))$.

- 19. COROLLAIRE. Deux permutations de \mathfrak{S}_n sont conjuguées dans \mathfrak{S}_n si et seulement si, dans leurs décompositions du théorème 14, elles ont le même nombre de k-cycles pour toute longueur $k \in [\![1,n]\!]$.
- 20. Exemple. Les permutations (1 2)(5 4 3) et (1 5)(4 2 3) sont conjuguées dans \mathfrak{S}_5 .
- 21. Théorème. Soit $n \ge 2$ un entier.
 - Les transpositions engendrent \mathfrak{S}_n .
 - Les transpositions de la forme (1 i) avec $i \in [2, n]$ engendrent \mathfrak{S}_n .
- 22. EXEMPLE. Pour $a, b \in [1, n]$, on a $(a \ b) = (1 \ a)(1 \ b)$.
- 23. COROLLAIRE. Un k-cycle peut s'écrire en un produit de k-1 transpositions.

2. Le groupe alterné

2.1. Le morphisme signature

24. DÉFINITION. La signature d'une permutation $\sigma \in \mathfrak{S}_n$ est l'entier

$$\varepsilon(\sigma) \coloneqq (-1)^{\sharp I(\sigma)} \quad \text{avec} \quad I(\sigma) \coloneqq \{(i,j) \in [\![1,n]\!]^2 \mid i < j, \sigma(i) > \sigma(j)\}.$$

- 25. Proposition. Soit $\sigma \in \mathfrak{S}_n$. Alors $\varepsilon(\sigma) = \prod_{i < j} \frac{\sigma(i) \sigma(j)}{i j}$.
- 26. PROPOSITION. L'application $\varepsilon \colon \mathfrak{S}_n \longrightarrow \{\pm 1\}$ est un morphisme de groupes. De plus, c'est l'unique morphisme de groupes $\mathfrak{S}_n \longrightarrow \{\pm 1\}$ valant -1 sur les transpositions.
- 27. COROLLAIRE. La signature d'un k-cycle vaut $(-1)^{k-1}$.
- 28. DÉFINITION. Le groupe alterné d'ordre n est le noyau $\mathfrak{A}_n \coloneqq \operatorname{Ker} \varepsilon$.

2.2. Structure du groupe alterné

- 29. Proposition. Si $n \ge 3$, les cycles d'ordre 3 engendre \mathfrak{A}_n .
- 30. Exemple. Si $a, b, c, d \in [1, n]$, on a $(a \ b)(c \ d) = (a \ c \ b)(a \ c \ d)$.
- 31. Proposition. L'action de \mathfrak{A}_n sur $[\![1,n]\!]$ est simplement n-2-transitive.
- 32. Proposition. Pour $n \ge 5$, les 3-cycles sont conjugués dans \mathfrak{A}_n .
- 33. Théorème. Pour $n \ge 5$, le groupe \mathfrak{A}_n est simple.

Dév. nº 1

- 34. COROLLAIRE. Les seuls sous-groupes distingués de \mathfrak{S}_n sont \mathfrak{S}_n , \mathfrak{A}_n et {Id}.
- 35. Exemple. Le groupe \mathfrak{A}_4 n'est pas distingué puisque

$$D(\mathfrak{A}_4) = \{ Id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \} =: V_4.$$

- 36. COROLLAIRE. Soit $H \leq \mathfrak{S}_n$ un sous-groupe d'indice n. Alors $H \simeq \mathfrak{S}_{n-1}$.
- 37. PROPOSITION. Si $n \ge 3$, alors $Z(\mathfrak{S}_n) = \{Id\}$. Si $n \ge 4$, alors $Z(\mathfrak{A}_n) = \{Id\}$.
- 38. PROPOSITION. On a $D(\mathfrak{S}_n) = \mathfrak{A}_n$. Si $n \ge 5$, alors $D(\mathfrak{A}_n) = \mathfrak{A}_n$.

3. Applications

3.1. Déterminant

39. Théorème. Soit \mathscr{B} une base d'un K-espace vectoriel E de dimension finie. Alors il existe un unique forme n-linéaire alternée $\det_{\mathscr{B}}$ sur E telle que $\det_{\mathscr{B}}(\mathscr{B}) = 1$. De plus, la forme $\det_{\mathscr{B}}$ engendre l'ensemble des formes n-linéaires alternées sur E.

40. COROLLAIRE. Soit $u \in \mathcal{L}(E)$. Alors il existe un unique scalaire $\det_{\mathscr{B}}(u) \in K$ tel que $\det_{\mathscr{B}}(u(x_1), \dots, u(x_n)) = \det_{\mathscr{B}}(u) \times \det_{\mathscr{B}}(x_1, \dots, x_n)$.

De plus, ce scalaire $\det_{\mathscr{B}}(u)$ ne dépend pas de la base \mathscr{B} . On le note $\det(u)$ et on l'appelle le déterminant de l'endomorphisme u.

41. PROPOSITION. Un endomorphisme $u \in \mathcal{L}(E)$ est un isomorphisme si et seulement si son déterminant $\det(u)$ est non nul.

42. DÉFINITION. Le déterminant d'une matrice $A := (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(K)$ est le scalaire

$$\det(M) := \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) a_{1,\sigma(1)} \cdots a_{n,\sigma(n)} \in K.$$

43. Exemple. Pour $a, b, c, d \in K$, on a

$$\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - cb.$$

44. PROPOSITION. Soient $u \in \mathcal{L}(E)$ et \mathcal{B} une base de E. Alors $\det(u) = \det(\operatorname{Mat}_{\mathcal{B}}(u))$.

3.2. Matrices de permutation

45. DÉFINITION. Une matrice de permutation est la matrice $M_{\sigma} \in \mathcal{M}_n(\mathbf{R})$ dans la base canonique d'une application linéaire

$$f_{\sigma} : \left| \mathbf{R}^n \longrightarrow \mathbf{R}^n, (x_1, \dots, x_n) \longmapsto (x_{\sigma(1)}, \dots, x_{\sigma(n)}) \right|$$

pour une permutation $\sigma \in \mathfrak{S}_n$.

46. EXEMPLE. Avec $\sigma := (1\ 2)(6\ 4\ 3) \in \mathfrak{S}_6$, on a

$$M_{\sigma} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix} \in GL_{6}(\mathbf{R}).$$

47. Proposition. Toute matrice de permutation est stochastique.

48. Proposition. Pour deux permutations $\sigma, \tau \in \mathfrak{S}_n$, on a

$$M_{\sigma} M_{\tau} = M_{\sigma \tau}$$
 et $M_{\sigma}^{-1} = M_{\sigma^{-1}}$.

49. PROPOSITION. Soit $\sigma \in \mathfrak{S}_n$. Notons $k \in \mathbb{N}^*$ l'ordre de cette permutation. Alors le polynôme $X^k - 1$ annule la matrice M_{σ} . En particulier, son spectre complexe est inclus dans le groupe $\mathbf{U}_k \subset \mathbf{C}$ des racines k-ièmes de l'unité.

50. EXEMPLE. Avec $\sigma := (1 \ 3 \ 2) \in \mathfrak{S}_3$, la matrice

$$M_{\sigma} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

a pour polynôme caractéristique $1 - X^3$, donc $\operatorname{Sp}_{\mathbf{C}}(M_{\sigma}) = \{1, j, j^2\} = \mathbf{U}_3$.

3.3. Isométrie du cube [1]

51. DÉFINITION. Le groupe des isométries d'un sous-ensemble $X \subset \mathbf{R}^3$ est le groupe des isométries de l'espace euclidien \mathbf{R}^3 stabilisant l'ensemble X. On le note Isom(X). De plus, le groupe des telles isométries préservant les angles est noté Isom $^+(X)$.

52. EXEMPLE. En notant $S^2 \subset \mathbb{R}^3$ la sphère unité, l'endomorphisme $x \longmapsto -x$ de \mathbb{R}^3 appartient au groupe Isom(S^2).

53. Proposition. Soit $C \subset \mathbb{R}^3$ le cube. Alors

Dév. nº 2

 $\operatorname{Isom}^+(C) \simeq \mathfrak{S}_4$ et $\operatorname{Isom}(C) \simeq \mathfrak{S}_4 \times \mathbf{Z}/2\mathbf{Z}$.

Philippe Caldero et Jérôme Germoni. Histoires hédonistes de groupes et de géométries.
T. Tome premier. Calvage & Mounet, 2013.

^{2]} Serge Lang. Algebra. Springer, 2002.

^[3] Daniel Perrin. Cours d'algèbre. Ellipses, 1996.