LINEAR ALGEBRA. VASILY KRYLOV. RECITATION 7: SOLUTIONS.

1. Problem 1

If a 3 by 3 matrix has $\det A = -1$, find:

- $(a) \det(2A)$
- $(b) \det(-A)$
- $(c) \det(A^2)$
- (d) $\det(A^{-1})$.

Solution.

- (a) We have $2A = (2I) \cdot A$ so det(2A) = det(2I) det A = 8 det A = -8.
- (b) We have $(-A) = (-I) \cdot A$ so $\det(-A) = \det(-I) \det A = (-1) \cdot (-1) = 1$.
- (c) We have $det(A^2) = det A det A = 1$.
- (d) We have $1 = \det(I) = \det(A \cdot (A^{-1})) = \det A \det(A^{-1})$ so $\det(A^{-1}) = (\det A)^{-1} = \det(A \cdot (A^{-1}))$ -1.

2. Problem 2

Compute determinants and inverses of these matrices:

Compute determinar
$$(a) \ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$(b) \ A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$(c) \ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$
Solution

Solution (a) We have $\det A = 1$. We have $C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. It follows that

$$A^{-1} = \frac{C^T}{1} = \begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix}.$$

(b) We have
$$\det A = 1 + 1 - 1 = 1$$
. We have $C = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$. It follows that

$$A^{-1} = \frac{C^T}{1} = \begin{bmatrix} -1 & 1 & 0\\ 1 & -1 & 1\\ 0 & 1 & -1 \end{bmatrix}$$

(c) First and third columns of A are equal so A is not invertible, hence, $\det A = 0$.

3. Problem 3

Find the determinants of a rank one matrix A and a skew-symmetric matrix B.

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & -4 & 5 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 3 \\ -1 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix}.$$

Solution.

- (a) We have $A = \begin{bmatrix} 1 & -4 & 5 \\ 1 & -8 & 10 \\ 3 & -12 & 15 \end{bmatrix}$, it has linearly dependent columns so det A = 0.
- (b) We have $\det B = 12 12 = 0$.

4. Problem 4

If all the cofactors are zero, how do you know that A has no inverse? If none of the cofactors are zero, is A sure to be invertible?

Solution.

Recall that $\det A$ is a linear combination of cofactors so if all of them are zero then $\det A$ is also zero.

For a matrix
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 we have $C_{11} = C_{12} = C_{21} = C_{22} = 1 \neq 0$ but $\det A = 0$.

5. Problem 5*

Suppose $\det A = 1$ and you know all the cofactors of A. How can you find A?

Solution.

We have
$$A^{-1} = \frac{C^T}{\det A} = C^T$$
. It follows that

$$A = (C^T)^{-1} = (C^{-1})^T. (5.1)$$

Note now that $\det(C^T) = \det C = \det(A^{-1}) = 1$. We conclude from (5.1) (use that $C^{-1} = A^T$) that the matrix A is the matrix of cofactors of the matrix C.