CS 684 - Embedded Systems Spring 2018

Smart Fault Monitoring Device

Guide

Prof. Kavi Arya Mr. Naveen Cherupally

Group Members

Abhishek Pal -173074015 Anil Kumar Garg -173074018

Problem Statement

Objective

- A Smart Fault Monitoring Device can be used for monitoring the trip/fault status across MCB in domestic and industrial safety application.
- This will log trip information and intimate to user using IoT device.

Product Impact

- All residential and commercial establishments.
- Be a part of **Smart City initiative**.

Smart Fault Monitoring Device

Power Status Monitoring

- Power OK: Voltages on Primary & Secondary side of MCB are OK.
- No Power: Mains supply is not coming.
- MCB Tripped: MCB got tripped due to overcurrent, short circuit etc.

Requirements

Hardware

- ESP8266 NodeMCU
- Tiva Series Launchpad
- AC Voltage Sensor (Step down Transformer)
- AC Current Sensor (ACS712)
- Signal Conditioning Board
- 5VDC Supply

Software

- CCS 6.1.2
- MOS (for IoT Device)
- AWS Platform (e-yantra)
- Serial Console

Challenges

Challenges

- Safety precaution to be followed, while working with live voltages.
- Hardware selection for Wireless communication.
- Sensor selection for AC current and voltage.
- Sensor calibration
- Real time DC offset calibration.
- Exploring web/email interface for user notification
- Acquiring the skills for the IoT device programming (MOS/mJS)

Deliverables

- Smart Fault Monitoring Unit
 - Microcontroller board with ADC/sensors
 - > IoT device
 - Analog signal conditioning hardware

Front-end interface(IoT platform)

Test Strategies

- Measurement Tests: To verify measured input current and voltage values
- Fault Monitoring and Test: To verify the detection of MCB trip contact status
- Communication Test: Send the fault/trip alert to the user via internet/AWS
- Front-end testing

Test Results ..1

 ACS712 - 30A Current Sensor

lp (Input), Amp (rms)	Sensor O/P Volt (Vpp)			
0.25	56.8mV			
0.5	101mV			
1	220 mV			
2	420 mV			
3	620 mV			
4	820 mV	n @ Stop	M Pos: 0.000s	MEASURE CH1
5	980 mV			Cyc RMS 2,43V?
6	1.18 V	$\sim\sim$	\sim	CH2 Off
7	1.38 V			Max CH1
8	1.58 V			Mean 2.49V
9	1.76 V			CH1
10	1.94 V			Max 2,60V
	1			CH1 Pk-Pk 220mV
	CHI		0.0ms CH1 / 1 Mar-18 18:48 <10Hz	V00.0

Voltage Sensor

Primary Volt	Secondary Volt
240 Vrms	+/-10.6 V

Test Results ..2

Tiva

Timer Interrupt Generation & Verification	Done
ADC SoC Generation & Data read Verify	Done
Volt/Current RMS calculation logic	Done
Fault status decoding logic	Done
Fault intimation on UART	Done

Tek __T__ Tris'd M Pos. 0,000s CURSOR Type Typ

• ESP

ESP8266	
Arduino IDE & library installation	Done
ESP programming procedure	Done
ESP UART communication with Tiva	Done
ESP Wifi Comm.	Done
ESP Notification Sending	Done
Web/Email	Done
IoT Platform (AWS) Interface	Done

Integrated Test Setup

Dashboard (Power OK - Normal State)

Dashboard (No Power State)

Dashboard (MCB Tripped State)

Alternate Dashboard (Time History – Normal State)

Email Notifications

Timeline

Activity	Timeline (EDC)
Project Discussion & Finalisation	2 nd Week – March'18
Component & Sensor Selection	3 rd Week – March'18
Component & Sensor Ordering & Receipt	3 rd - 4 th Week – March'18
Component/Sensor Testing	4-5 th Week – March'18
Coding & testing – Microcontroller (measurement & processing)	4-5 th Week – March'18
Communication with microcontroller & IoT device	1st Week – April'18
Front-end development & communication with IoT	2 nd Week – April'18
Integrated Testing	3 rd Week – April'18
Final Presentation	18 th April, 2018

Expected output & Status

- Real time data acquisitions of current and voltage : Done
- MCB contact monitoring : Trip or No trip : Done
- Data display on e-yantra IoT platform : Done
- Alert message to user : Done

Approach

- Real time data acquisitions of current and voltage :
 - Collected 16 samples/ cycle (20 millisecond time) and calculated RMS value
 - Buffered all samples of all channels for debugging purpose.
 - Calibration of all current and voltage channels.
 - Runtime DC offset removal logic from input AC signal
 - Latching data whenever fault occurs
- MCB contact monitoring :
 - Implemented logic to derive MCB tripped /power supply status

Approach..

- Data display on e-yantra IoT platform
 - Acquiring the skills for the IoT device programming (MOS/mJS)
 - Establishing internet communication of ESP8266 with e-yantra/AWS using MOS
 - Communication interface between ESP8266 and TIVA board
 - Massage frame formatting and parsing data into JSON string format.
 - Sending data from Tiva to ESP via UART.
- Alert message to user
 - E-yantra IoT platform (AWS SNS service)
 - Email notification

Issue Faced

- Synchronization issue of latched data with pre tripped input signal.
- Exploring options for programming the ESP (Arduino/Mongoose OS)
- String parsing in mJS & extracting the parameter values
- ESP UART0 is driven by USB & GPIO both. Only one can drive at a time.
- UARTO also used for system message logs. So 'SetDispatcher' API stops triggering, once ESP connects to WiFi. Otherwise in offline condition it was working
 - Resolution: Used polling method by a timer to read UART data & flush the UART buffer for next reception
- I2C in master mode tested, but had some issues of interrupt handling using Tiva as I2C slave.
- Some times IoT (e-yantra/AWS) server link was down (mostly in evening time). However it was restored later on.

Feature Enhancement

- Android application for easily accessibility
- Universal device for all rating of MCBs
- OTA (Remote firmware upgrade)
- Oscillography during tripping
- Data logging
- Higher precise power analyser for metering application
- Earth fault monitoring system

Thank You