

Lecture 07

Dr. Colin Rundel

What is SciPy

Fundamental algorithms for scientific computing in Python

Subpackage	Description	Subpackage	Description
cluster	Clustering algorithms	odr	Orthogonal distance
			regression
constants	Physical and mathematical constants	optimize	Optimization and root-finding
			routines
fftpack	Fast Fourier Transform routines	signal	Signal processing
integrate	Integration and ordinary differential	sparse	Sparse matrices and
	equation solvers		associated routines
interpolate	Interpolation and smoothing splines	spatial	Spatial data structures and
			algorithms
io	Input and Output	special	Special functions
linalg	Linear algebra	stats	Statistical distributions and
			functions
ndimage	N-dimensional image processing		

Example 1 k-means clustering

Data

```
1 rng = np.random.default_rng(seed = 1234)
2
3 cl1 = rng.multivariate_normal([-2,-2], [[1,-0.5],[-0.5,1]], size=100)
4 cl2 = rng.multivariate_normal([1,0], [[1,0],[0,1]], size=150)
5 cl3 = rng.multivariate_normal([3,2], [[1,-0.7],[-0.7,1]], size=200)
6
7 pts = np.concatenate((cl1,cl2,cl3))
```


k-means clustering

```
1.2206927437557962
```

```
1 cl1.mean(axis=0)
array([-2.0047, -1.8728])

1 cl2.mean(axis=0)
array([1.0385, 0.0142])

1 cl3.mean(axis=0)
array([2.9464, 2.0251])
```


k-means distortion plot

The mean (non-squared) Euclidean distance between the observations passed and the centroids generated.

```
1 ks = range(1,8)
2 dists = [kmeans(pts, k)[1] for k in ks]
3
4 np.array(dists).reshape(-1)
```

```
array([2.547 , 1.5699, 1.2209, 1.046 , 0.9527, 0.8801, 0.818 ])
```


Example 2 Numerical integration

Basic functions

For general numeric integration in 1D we use scipy.integrate.quad(), which takes as arguments the function to be integrated and the lower and upper bounds of integration.

```
1 from scipy.integrate import quad
 1 quad(lambda x: x, 0, 1)
(0.5, 5.551115123125783e-15)
 1 quad(np.sin, 0, np.pi)
(2.0, 2.220446049250313e-14)
 1 quad(np.sin, 0, 2*np.pi)
(2.0329956258200796e-16, 4.3998892617845996e-14)
 1 quad(np.exp, 0, 1)
(1.7182818284590453, 1.9076760487502457e-14)
```

Normal PDF

0.0

The PDF for a normal distribution is given by,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$

```
1 def norm_pdf(x, μ, σ):
2    return (1/(σ * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((x - μ)/σ)**2)

1 norm_pdf(0,0,1)

0.3989422804014327

1 norm_pdf(np.Inf, 0, 1)

0.0

1 norm_pdf(-np.Inf, 0, 1)
```

Checking the PDF

We can check that we've implemented a valid pdf by integrating the pdf from – inf to inf,

```
1 quad(norm_pdf, -np.inf, np.inf)
Error: TypeError: norm_pdf() missing 2 required positional arguments: '\(\mu'\) and
'\(\sigm'\)

1 quad(lambda x: norm_pdf(x, 0, 1), -np.inf, np.inf)

(0.99999999999997, 1.0178191380347127e-08)

1 quad(lambda x: norm_pdf(x, 17, 12), -np.inf, np.inf)

(1.00000000000000002, 4.113136862574909e-09)
```

Truncated normal PDF

$$f(x) = \begin{cases} \frac{c}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right), & \text{for } a \le x \le b\\ 0, & \text{otherwise.} \end{cases}$$

```
def trunc_norm_pdf(x, μ=0, σ=1, a=-np.inf, b=np.inf):
    if (b < a):
        raise ValueError("b must be greater than a")

x = np.asarray(x).reshape(-1)
full_pdf = (1/(σ * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((x - μ)/σ)**2)
full_pdf[(x < a) | (x > b)] = 0
return full_pdf
```

Testing trunc_norm_pdf

```
1 trunc norm pdf(0, a=-1, b=1)
array([0.3989])
 1 trunc norm pdf(2, a=-1, b=1)
array([0.])
 1 trunc norm pdf(-2, a=-1, b=1)
array([0.])
 1 trunc norm pdf([-2,1,0,1,2], a=-1, b=1)
array([0. , 0.242 , 0.3989, 0.242 , 0. ])
 1 quad(lambda x: trunc_norm_pdf(x, a=-1, b=1), -np.inf, np.inf)
(0.682689492137086, 2.0147661317082566e-11)
 1 quad(lambda x: trunc norm pdf(x, a=-3, b=3), -np.inf, np.inf)
(0.9973002039367396, 7.451935936375609e-09)
```

Fixing trunc_norm_pdf

```
1 def trunc norm pdf(x, \mu=0, \sigma=1, a=-np.inf, b=np.inf):
      if (b < a):
          raise ValueError("b must be greater than a")
 3
      x = np.asarray(x).reshape(-1)
 4
 5
 6
      nc = 1 / quad(lambda x: norm pdf(x, \mu, \sigma), a, b)[0]
 7
      full pdf = nc * (1/(\sigma * np.sqrt(2*np.pi))) * np.exp(-0.5 * ((x - \mu)/\sigma)**2)
 8
      full pdf[(x < a) \mid (x > b)] = 0
1.0
      return full pdf
11
 1 trunc norm pdf(0, a=-1, b=1)
                                                             1 quad(lambda x: trunc norm pdf(x, a=-1, b=1), -np
```

Multivariate normal

$$f(x) = \det (2\pi\Sigma)^{-1/2} \exp \left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

```
1 def mv norm(x, \mu, \Sigma):
     x = np.asarray(x)
     \mu = np.asarray(\mu)
     \Sigma = np.asarray(\Sigma)
     return ( np.linalg.det(2*np.pi*\Sigma)**(-0.5) *
6
                np.exp(-0.5 * (x - \mu).T @ np.linalg.solve(\(\Sigma, (x-\mu)\))))
7
```

```
1 norm pdf(0,0,1)
                                                          1 mv_norm([0,0], [0,0], [[1,0],[0,1]])
0.3989422804014327
                                                        0.15915494309189535
                                                          1 mv_norm([0,0,0], [0,0,0], [[1,0,0],[0,1,0],[0,0,
  1 mv_norm([0], [0], [[1]])
0.3989422804014327
```

0.06349363593424098

2d & 3d numerical integration

are supported by dblquad() and tplquad() respectively (see nquad() for higher dimensions)

```
from scipy.integrate import dblquad, tplquad

dblquad(lambda y, x: mv_norm([x,y], [0,0], np.identity(2)),

a=-np.inf, b=np.inf,

gfun=lambda x: -np.inf, hfun=lambda x: np.inf)

6
```

(1.000000000000322, 1.315012783660615e-08)

```
1 tplquad(lambda z, y, x: mv_norm([x,y,z], [0,0,0], np.identity(3)),
2     a=0, b=np.inf,
3     gfun=lambda x: 0, hfun=lambda x: np.inf,
4     qfun=lambda x,y: 0, rfun=lambda x,y: np.inf)
```

(0.1250000000036066, 1.4697203688867502e-08)

Example 3 (Very) Basic optimization

Scalar function minimization

```
1 def f(x):

2 return x**4 + 3*(x-2)**3 - 15*(x)**2 + 1
```

```
200 -
0 -
-200 -
-400 -
-800 -
-80 -
-8 -6 -4 -2 0 2 4
```

```
1 from scipy.optimize import minimize_scalar
2 minimize_scalar(f, method="Brent")
```

```
1 minimize_scalar(f, method="bounded", bounds=[0,6
```

```
message: Solution found.
success: True
status: 0
  fun: -54.21003937712762
    x: 2.668865104039653
  nit: 12
  nfev: 12
```

```
message: Solution found.
success: True
status: 0
  fun: -803.3955308825871
    x: -5.528801009134004
  nit: 12
  nfev: 12
```

minimize scalar(f, method="bounded", bounds=[-8,

Results

```
1 res = minimize_scalar(f)
2 type(res)

<class 'scipy.optimize._optimize.OptimizeResult'>

1 dir(res)

['fun', 'message', 'nfev', 'nit', 'success', 'x']

1 res.success

True

1 res.x
```

-5.528801125219663

More details

1 from scipy.optimize import show_options
2 show_options(solver="minimize_scalar")

```
brent
=====
Options
maxiter : int.
    Maximum number of iterations to perform.
xtol : float
    Relative error in solution `xopt` acceptable for convergence.
disp: int, optional
    If non-zero, print messages.
        0 : no message printing.
        1: non-convergence notification messages only.
        2 : print a message on convergence too.
        3 : print iteration results.
```

Local minima

```
1 def f(x):
2 return -np.sinc(x-5)
```



```
1 res = minimize_scalar(f); res
```

message:

Optimization terminated successfully; The returned value satisfies the

termination criteria

(using xtol = 1.48e-08)

success: True

fun: -0.049029624014074166

x: -1.4843871263953001

nit: 10 nfev: 14

Random starts

Back to Rosenbrock's function

njev: 24

$$f(x, y) = (1 - x)^2 + 100(y - x^2)^2$$

```
1 \text{ def } f(x):
     return (1-x[0])**2 + 100*(x[1]-x[0]**2)**2
 1 minimize(f, [0,0])
                                                         1 minimize(f, [-1,-1])
 message: Optimization terminated successfully.
                                                         message: Optimization terminated successfully.
 success: True
                                                         success: True
  status: 0
                                                          status: 0
     fun: 2.843987518235081e-11
                                                             fun: 1.9950032694539075e-11
      x: [ 1.000e+00 1.000e+00]
                                                               x: [ 1.000e+00 1.000e+00]
     nit: 19
                                                             nit: 31
     jac: [ 3.987e-06 -2.844e-06]
                                                             jac: [ 2.789e-07 -1.275e-07]
hess inv: [[ 4.948e-01 9.896e-01]
                                                        hess inv: [[ 5.085e-01 1.016e+00]
           [ 9.896e-01 1.984e+00]]
                                                                    [ 1.016e+00 2.037e+00]]
    nfev: 72
                                                             nfev: 120
```

njev: 40

Example 4 Spatial Tools

Nearest Neighbors

```
1 rng = np.random.default_rng(seed=12345)
2 pts = rng.multivariate_normal(
3     [0,0], [[1,.8],[.8,1]],
4     size=10
5 )
6 pts
```


KD Trees

Convex hulls

```
1 from scipy.spatial import ConvexHull
2 hull = ConvexHull(pts)
3 hull.vertices

array([3, 0, 9, 5, 4, 1], dtype=int32)

1 scipy.spatial.convex_hull_plot_2d(hull)
```


Delaunay triangulations

```
1 from scipy.spatial import Delaunay
2 tri = Delaunay(pts)
3 tri.simplices.T

array([[8, 4, 9, 8, 4, 6, 0, 6, 7, 7, 1, 7],
        [9, 8, 8, 4, 1, 1, 6, 0, 9, 6, 7, 1],
        [5, 5, 2, 2, 2, 3, 3, 9, 2, 9, 2, 6]], dtype=int32)

1 scipy.spatial.delaunay_plot_2d(tri)
```


Voronoi diagrams

Example 5 statistics

Distributions

Implements classes for 104 continuous and 19 discrete distributions,

- rvs Random Variates
- pdf Probability Density Function
- cdf Cumulative Distribution Function
- sf Survival Function (1-CDF)
- ppf Percent Point Function (Inverse of CDF)
- isf Inverse Survival Function (Inverse of SF)
- stats Return mean, variance, (Fisher's) skew, or (Fisher's) kurtosis
- moment non-central moments of the distribution

Basic usage

```
1 from scipy.stats import norm, gamma, binom, uniform
 2 norm().rvs(size=5)
array([-0.1844, -0.3056, -0.6316, 2.0088, 1.1439])
 1 uniform.pdf([0,0.5,1,2])
array([1., 1., 1., 0.])
 1 binom.mean(n=10, p=0.25)
2.5
 1 binom.median(n=10, p=0.25)
2.0
 1 gamma(a=1,scale=1).stats()
(1.0, 1.0)
 1 norm().stats(moments="mvsk")
(0.0, 1.0, 0.0, 0.0)
```

Freezing

Model parameters can be passed to any of the methods directory, or a distribution can be constructed using a specific set of parameters, which is known as freezing.

```
1 norm rv = norm(loc=-1, scale=3)
 2 norm rv.median()
-1.0
 1 unif rv = uniform(loc=-1, scale=2)
 2 unif rv.cdf([-2,-1,0,1,2])
array([0., 0., 0.5, 1., 1.])
 1 unif_rv.rvs(5)
array([ 0.8658, -0.2719, 0.9381,
0.8072, 0.69351)
```

```
1  g = gamma(a=2, loc=0, scale=1.2)
2
3  x = np.linspace(0, 10, 100)
4  plt.plot(x, g.pdf(x), "k-")
5  plt.axvline(x=g.mean(), c="r")
6  plt.axvline(x=g.median(), c="b")
```


MLE

Maximum likelihood estimation is possible via the fit() method,

```
1 x = norm.rvs(loc=2.5, scale=2, size=1000, random state=1234)
 2 norm.fit(x)
(2.5314811643075235, 1.946132398754459)
 1 norm.fit(x, loc=2.5) # provide a guess for the parameter
(2.5314811643075235, 1.946132398754459)
 1 x = \text{gamma.rvs}(a=2.5, \text{size}=1000)
 2 gamma.fit(x) # shape, loc, scale
(2.5245230212240415, 0.008858045832099148, 0.9936721955371237)
 1 y = \text{gamma.rvs}(a=2.5, loc=-1, scale=2, size=1000)
 2 gamma.fit(y) # shape, loc, scale
(2.5160565043659613, -1.0117741087741021, 1.9868071602806276)
```