PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 97/17448
C12N 15/55, 9/16, 5/10, C07K 16/40, A61K 38/46, 39/395	A2	(43) International Publication Date: 15 May 1997 (15.05.97)
(21) International Application Number: PCT/US	96/177	94 (81) Designated States: AU, CA, JP, MX, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
(22) International Filing Date: 7 November 1996 (07.11.9	06) NL, PT, SE).
(30) Priority Data: 08/555,568 8 November 1995 (08.11.95	5) T	Published US Without international search report and to be republished upon receipt of that report.
(71) Applicant: GENETICS INSTITUTE, INC. [US/US]; bridgePark Drive, Cambridge, MA 02140 (US).	87 Car	m-
(72) Inventors: JONES, Simon; 26 Berkeley Street, Somer 02143 (US). TANG, Jin; 308 Pleasant Street, Car 02021 (US).		4
(74) Agent: BROWN, Scott, A.; Genetics Institute, CambridgePark Drive, Cambridge, MA 02140 (US		37
(54) Title: CALCIUM INDEPENDENT CYTOSOLIC PH	HOSPH	OLIPASE A2/B ENZYMES

(57) Abstract

The invention provides a novel calcium-independent cytosolic phospholipase A₂/B enzyme, polynucleotides encoding such enzyme and methods for screening unknown compounds for anti-inflammatory activity mediated by the arachidonic acid cascade.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
\mathbf{AU}	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
ВJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

CALCIUM INDEPENDENT CYTOSOLIC PHOSPHOLIPASE A2/B ENZYMES

This application is a continuation-in-part of application Ser. No. 08/281,193, filed July 27, 1994.

5

10

15

20

25

30

The present invention relates to a purified calcium independent cytosolic phospholipase A_2/B enzymes which are useful for assaying chemical agents for anti-inflammatory activity.

BACKGROUND OF THE INVENTION

The phospholipase A₂ enzymes comprise a widely distributed family of enzymes which catalyze the hydrolysis of the acyl ester bond of glycerophospholipids at the sn-2 position. One kind of phospholipase A₂ enzymes, secreted phospholipase A₂ or sPLA₂, are involved in a number of biological functions, including phospholipid digestion, the toxic activities of numerous venoms, and potential antibacterial activities. A second kind of phospholipase A₂ enzymes, the intracellular phospholipase A₂ enzymes, also known as cytosolic phospholipase A₂ or cPLA₂, are active in membrane phospholipid turnover and in regulation of intracellular signalling mediated by the multiple components of the well-known arachidonic acid cascade. One or more cPLA₂ enzymes are believed to be responsible for the rate limiting step in the arachidonic acid cascade, namely, release of arachidonic acid from membrane glycerophospholipids. The action of cPLA₂ also results in biosynthesis of platelet activating factor (PAF).

The phospholipase B enzymes are a family of enzymes which catalyze the hydrolysis of the acyl ester bond of glycerophospholipids at the sn-1 and sn-2 positions. The mechanism of hydrolysis is unclear but may consist of initial hydrolysis of the sn-2 fatty acid followed by rapid cleavage of the sn-1 substituent, i.e., functionally equivalent to the combination of phospholipase A₂ and lysophospholipase (Saito et al., Methods of Enzymol., 1991, 197, 446; Gassama-Diagne et al., J. Biol. Chem., 1989, 264, 9470). Whether these two events occur at the same or two distinct active sites has not been resolved. It is also unknown

if these enzymes have a preference for the removal of unsaturated fatty acids, in particular arachidonic acid, at the sn-2 position and accordingly contribute to the arachidonic acid cascade.

Upon release from the membrane, arachidonic acid may be metabolized via the cyclooxygenase pathway to produce the various prostaglandins and thromboxanes, or via the lipoxygenase pathway to produce the various leukotrienes and related compounds. The prostaglandins, leukotrienes and platelet activating factor are well known mediators of various inflammatory states, and numerous anti-inflammatory drugs have been developed which function by inhibiting one or more steps in the arachidonic acid cascade. Use of the present anti-inflammatory drugs which act through inhibition of arachidonic acid cascade steps has been limited by the existence of side effects which may be harmful to various individuals.

5

10

15

20

25

30

A very large industrial effort has been made to identify additional antiinflammatory drugs which inhibit the arachidonic acid cascade. In general, this
industrial effort has employed the secreted phospholipase A₂ enzymes in inhibitor
screening assays, for example, as disclosed in U.S. 4,917,826. However, because
the secreted phospholipase A₂ enzymes are extracellular proteins (i.e., not
cytosolic) and are not specific for hydrolysis of arachidonic acid, they are
presently not believed to participate directly in the arachidonic acid cascade.
While some inhibitors of the small secreted phospholipase A₂ enzymes have antiinflammatory action, such as indomethacin, bromphenacyl bromide, mepacrine,
and certain butyrophenones as disclosed in U.S. 4,239,780, it is presently believed
that inhibitor screening assays should employ cytosolic phospholipase A₂ enzymes
which directly participate in the arachidonic acid cascade.

An improvement in the search for anti-inflammatory drugs which inhibit the arachidonic acid cascade was developed in commonly assigned U.S. Patent No. 5,322,776, incorporated herein by reference. In that application, a cytosolic form of phospholipase A_2 was identified, isolated, and cloned. Use of the cytosolic form of phospholipase A_2 to screen for anti-inflammatory drugs provides a significant improvement in identifying inhibitors of the arachidonic acid cascade. The cytosolic phospholipase A_2 disclosed in U.S. Patent No. 5,322,776 is a 110

kD protein which depends on the presence of elevated levels of calcium inside the cell for its activity. The cPLA₂ of U.S. Patent No. 5,322,776 plays a pivotal role in the production of leukotrienes and prostaglandins initiated by the action of proinflammatory cytokines and calcium mobilizing agents. The cPLA₂ of U.S. Patent No. 5,322,776 is activated by phosphorylation on serine residues and increasing levels of intracellular calcium, resulting in translocation of the enzyme from the cytosol to the membrane where arachidonic acid is selectively hydrolyzed from membrane phospholipids.

In addition to the cPLA₂ of U.S. Patent No. 5,322,776, some cells contain 10 calcium independent phospholipase A₂/B enzymes. For example, such enzymes have been identified in rat, rabbit, canine and human heart tissue (Gross, TCM, 1991, 2, 115; Zupan et al., J. Med. Chem., 1993, 36, 95; Hazen et al., J. Clin. Invest., 1993, 91, 2513; Lehman et al., J. Biol. Chem., 1993, 268, 20713; Zupan et al., J. Biol. Chem., 1992, 267, 8707; Hazen et al., J. Biol. Chem., 1991, 266, 14526; Loeb et al., J. Biol. Chem., 1986, 261, 10467; Wolf et al., J. Biol. 15 Chem., 1985, 260, 7295; Hazen et al., Meth. Enzymol., 1991, 197, 400; Hazen et al., J. Biol. Chem., 1990, 265, 10622; Hazen et al., J. Biol. Chem., 1993, 268, 9892; Ford et al., J. Clin. Invest., 1991, <u>88</u>, 331; Hazen et al., J. Biol. Chem., 1991, 266, 5629; Hazen et al., Circulation Res., 1992, 70, 486; Hazen et al., J. Biol. Chem., 1991, 266, 7227; Zupan et al., FEBS, 1991, 284, 27), as well as rat 20 and human pancreatic islet cells (Ramanadham et al., Biochemistry, 1993, 32, 337; Gross et al., Biochemistry, 1993, 32, 327), in the macrophage-like cell line, P388D₁ (Ulevitch et al., J. Biol. Chem., 1988, 263, 3079; Ackermann et al., J. Biol. Chem., 1994, 269, 9227; Ross et al., Arch. Biochem. Biophys., 1985, 238, 247; Ackermann et al., FASEB Journal, 1993, 7(7), 1237), in various rat tissue 25 cytosols (Nijssen et al., Biochim. Biophys. Acta, 1986, 876, 611; Pierik et al., Biochim. Biophys. Acta, 1988, 962, 345; Aarsman et al., J. Biol. Chem., 1989, 264, 10008), bovine brain (Ueda et al., Biochem. Biophys, Res. Comm., 1993, 195, 1272; Hirashima et al., J. Neurochem., 1992, 59, 708), in yeast 30 (Saccharomyces cerevisiae) mitochondria (Yost et al., Biochem. International, 1991, 24, 199), hamster heart cytosol (Cao et al., J. Biol. Chem., 1987, 262, 16027), rabbit lung microsomes (Angle et al., Biochim. Biophys. Acta, 1988, 962,

234) and guinea pig intestinal brush-border membrane (Gassama-Diagne et al., J. Biol. Chem., 1989, 264, 9470).

It is believed that the calcium independent phospholipase A₂/B enzymes may perform important functions in release of arachidonic acid in specific tissues which are characterized by unique membrane phospholipids, by generating lysophospholipid species which are deleterious to membrane integrity or by remodeling of unsaturated species of membrane phospholipids through deacylation/reacylation mechanisms. The activity of such a phospholipase may well be regulated by mechanisms that are different from that of the cPLA₂ of U.S. Patent No. 5,322,776. In addition the activity may be more predominant in certain inflamed tissues over others. Although the enzymatic activity is not dependent on calcium this does not preclude a requirement for calcium *in vivo*, where the activity may be regulated by the interaction of other protein(s) whose function is dependent upon a calcium flux.

15

20

25

30

10

5

SUMMARY OF THE INVENTION

In certain embodiments, the present invention provides compositions comprising a purified phospholipase enzyme characterized by (a) activity in the absence of calcium; (b) a molecular weight of 86 kD on SDS-PAGE; and (c) the presence of one or more amino acid sequences selected from the group consisting of NPHSGFR (SEQ ID NO:3), XASXGLNQVNK (SEQ ID NO:4) (X is preferably N or A), YGASPLHXAK (SEQ ID NO:5) (X is preferably W), DNMEMIK (SEQ ID NO:6), GVYFR (SEQ ID NO:7), MKDEVFR (SEQ ID NO:8), EFGEHTK (SEQ ID NO:9), VMLTGTLSDR (SEQ ID NO:10), XYDAPEVIR (SEQ ID NO:11) (X is preferably N), FNQNINLKPPTQPA (SEQ ID NO:12), XXGAAPTYFRP (SEQ ID NO:13) (X is preferably S), TVFGAK (SEQ ID NO:14), and XWSEMVGIQYFR (SEQ ID NO:15) (X is preferably A), wherein X represents any amino acid residue.

In other embodiments, the invention provides compositions comprising a purified phospholipase enzyme characterized by (a) activity in the absence of calcium; (b) a molecular weight of 86 kD on SDS-PAGE; and (c) the presence of one or more amino acid sequences selected from the group consisting of

YGASPLHXAK, MKDEVFR, EFGEHTK, VMLTGTLSDR, XXGAAPTYFRP and TVFGAK, wherein X represents any amino acid residue.

Certain embodiments provide compositions comprising a purified mammalian calcium independent phospholipase A₂/B enzyme.

5

10

15

20

25

30

In other embodiments, the enzyme is further characterized by activity in a mixed micelle assay with 1-palmitoyl-2-[14 C]-arachidonyl-phosphatidylcholine (preferably a specific activity of about 1 μ mol to about 20 μ mol per minute per milligram, more preferably a specific activity of about 1 μ mol to about 5 μ mol per minute per milligram); by a pH optimum of 6; and/or by the absence of stimulation by adenosine triphosphate in the liposome assay.

In other embodiments, the invention provides isolated polynucleotides comprising a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence of SEQ ID NO:1; (b) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:2; (c) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:2 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (d) a nucleotide sequence capable of hybridizing with the sequence of (a), (b) or (c) which encodes a peptide having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; and (e) allelic variants of the sequence of (a). Other embodiments provide an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence of SEQ ID NO:16; (b) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:17; (c) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:17 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (d) the nucleotide sequence of SEQ ID NO:18; (e) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:19; (f) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:19 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (g) the nucleotide sequence of SEQ ID NO:20; (h) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:21; (i) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:21 having activity in a mixed micelle assay

with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (j) the nucleotide sequence of SEQ ID NO:22; (k) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:23; (l) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:23 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (m) a nucleotide sequence capable of hybridizing with the sequence of any of (a)-(l) which encodes a peptide having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; and (n) allelic variants of the sequence of (a), (d), (g) or (j). Expression vectors comprising such polynucleotides and host cells transformed with such vectors are also provided by the present invention. Compositions comprising peptides encoded by such polynucleotides are also provided.

5

10

15

20

25

30

The present invention also provides processes for producing a phospholipase enzyme, said process comprising: (a) establishing a culture of the host cell transformed with a cPLA₂/B encoding polynucleotide in a suitable culture medium; and (b) isolating said enzyme from said culture. Compositions comprising a peptide made according to such processes are also provided.

Certain embodiments of the present invention provide compositions comprising a peptide comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequence of SEQ ID NO:2; and (b) a fragment of the amino acid sequence of SEQ ID NO:2 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine.

Other embodiments provide compositions comprising a peptide comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequence of SEQ ID NO:17; (b) a fragment of the amino acid sequence of SEQ ID NO:17 having activity in a mixed micelle assay with 1-palmitoyl-2-[\frac{14}{C}]-arachidonyl-phosphatidylcholine; (c) the amino acid sequence of SEQ ID NO:19 having activity in a mixed micelle assay with 1-palmitoyl-2-[\frac{14}{C}]-arachidonyl-phosphatidylcholine; (e) the amino acid sequence of SEQ ID NO:21; (f) a fragment of the amino acid sequence of SEQ ID NO:21 having activity in a mixed micelle assay with 1-palmitoyl-2-[\frac{14}{C}]-arachidonyl-phosphatidylcholine; (g) the amino acid sequence of

SEQ ID NO:23; and (h) a fragment of the amino acid sequence of SEQ ID NO:23 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine.

The present invention also provides methods for identifying an inhibitor of phospholipase activity, said method comprising: (a) combining a phospholipid, a candidate inhibitor compound, and a composition comprising a phospholipase enzyme peptide; and (b) observing whether said phospholipase enzyme peptide cleaves said phospholipid and releases fatty acid thereby, wherein the peptide composition is one of those described above. Inhibitor of phospholipase activity identified by such methods, pharmaceutical compositions comprising a therapeutically effective amount of such inhibitors and a pharmaceutically acceptable carrier, and methods of reducing inflammation by administering such pharmaceutical compositions to a mammalian subject are also provided.

10

20

25

30

Polyclonal and monoclonal antibodies to the peptides of the invention are also provided.

BRIEF DESCRIPTION OF THE FIGURES

- Fig. 1: Fractions containing activity eluted from a Mono P column were examined by reducing SDS-PAGE on a 4-20% gradient gel. Activity of each fraction is show above the gel and the 86 kD band is indicated on the silver stained gel. Molecular weight markers are indicated.
- Fig. 2: Active fractions from a Mono p/Heparin column were combined and further purified on a size exclusion column. Activity eluted in the 250-350 kD size range. Examination of the fractions by SDS-PAGE under reducing conditions on 4-20% gel indicated only one protein band correlated with activity at 86 kD. Molecular weight markers are indicated.
- Fig. 3: Active fractions from Mono P eluate and cPLA₂ (0.1-1.0 μ g) were analyzed on two 4-20% SDS gels under reducing conditions run in parallel. One gel was silver stained (A) and in the other gel the proteins were transferred to nitrocellulose. the blot was than probed with an anti-cPLA₂ polyclonal antibody and reactive proteins were visualized with the ECL system (Amersham) (B). Molecular weight markers are indicated.

Fig. 4: The activity of the calcium-independent phospholipase eluted from a Mono P/Heparin column and cPLA₂ were compared under conditions which favor each enzyme; pH 7, 10% glycerol in the absence of calcium and pH 9, 70% glycerol in the presence of calcium, respectively.

- Fig. 5: Activity in the cytosolic extracts of COS cells transfected with: no DNA; plasmid (pED) containing no inserted gene; clone 9 in the antisense orientation; and clones 49, 31 and 9 expressed in pED. The extracts were analyzed under two different assay conditions described for the data presented in Fig. 4.
- Fig. 6: A comparison of sn-2 fatty acid hydrolysis by activity eluted from a Mono P/Heparin column as a function of the fatty acid substituent at either the sn-1 or sn-2 position and the head group. HAPC, SAPC, PLPC, POPC, PPPC, LYSO and PAPC indicate 1-hexadecyl-2-arachidonyl-, 1-stearoyl-2-arachidonyl-, 1-palmitoyl-2-linoleyl-, 1-palmitoyl-2-oleyl-, 1-palmitoyl-2-palmitoyl-, 1-palmitoyl-, 1-palmitoyl-2-arachidonyl- phosphatidylcholine, respectively. PAPE and SAPI indicate 1-palmitoyl-2-arachidonyl-phosphotidylethanolamine and 1-stearoyl-2-arachidonyl-phosphoinositol, respectively. In all cases the ¹⁴C-labelled fatty acid is in the sn-2 position.
- Fig. 7: A 4-20% SDS-PAGE of lysates (5x10¹⁰ cpm/lane) of ³⁵S20 methionine labelled COS cells transfected with, no DNA, pED (no insert), clone
 9 reverse orientation, clones 9, 31 and 49; lanes 1-6, respectively. Molecular weight markers are indicated.

DETAILED DESCRIPTION OF THE INVENTION

The present inventors have found surprisingly a calcium independent cytosolic phospholipase enzyme, designated calcium independent cytosolic phospholipase A₂/B or calcium independent cPLA₂/B, purified from the cytosol of Chinese hamster ovary (CHO) cells. The activity was also present in the cytosol of tissues and cell extracts listed in Table I.

Table I

tissue/cell	mixed micelle pH 7 (pmol/min/mg)	liposome pH 7 (pmol/min/mg)				
rat brain		1-2				
rat heart		0.3-0.5				
bovine brain		0.4				
pig heart	0.8					
CHO-Dukx	10-20	2-5				
U937 (ATCC CRL1593)	2					
FBHE (ATCC CRL1395)	2					
H9c2 (ATCC Ccl 108)	15					

5

10

25

The enzyme was originally purified by more than 8,000-fold from CHO

cells by sequential chromatography on diethylaminoethane (DEAE), phenyl and
heparin-toyopearl, followed by chromatofocussing on Mono P (as described further
in Example 1). In addition the activity could be further purified by size exclusion
chromatography after the Mono P column. The enzyme eluted from the size
exclusion chromatography column in the 250-350 kD range, indicating the active
enzyme may consist of a multimeric complex, or may possibly be associated with
phospholipids.

The calcium independent phospholipase activity correlated with a single major protein band of 86 kD on denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of active fractions from the Mono P and size exclusion chromatographic steps; in the latter no protein bands were observed in the 250-350 kD range. The specific activity of the enzyme is about 1 μ mol to about 20 μ mol per minute per milligram based on the abundance of the 86 kD band in the most active fractions eluted from the Mono P and size exclusion

columns in the mixed micelle assay (Example 3B). The protein band was not recognized by a polyclonal antibody directed against the calcium dependent cPLA₂ of U.S. Patent No. 5,322,776.

5

10

15

20

The calcium independent phospholipase of the present invention has a pH optimum of 6; its activity is suppressed by calcium (in all assays) and by triton X-100 (in the assay of Example 3A); and is not stimulated by adenosine triphosphate (ATP) (in the assay of Example 3A). The enzyme is inactivated by high concentration denaturants, e.g. urea above 3M, and by detergents, e.g. CHAPS and octyl glucoside. The calcium-independent phospholipase favors hydrolysis by several fold of unsaturated fatty acids, e.g. linoleyl, oleyl and arachidonyl, at the sn-2 position of a phospholipid compared with palmitoyl. In addition there is a preference for palmitoyl at the sn-1 position over hexadecyl or stearoyl for arachidonyl hydrolysis at the sn-2 position. In terms of head group substituents there is a clear preference for inositol over choline or ethanolamine when arachidonyl is being hydrolyzed at the sn-2 position. Further, as with cPLA2 of U.S. Patent No. 5,322,776, there is a significant lysophospholipase activity, i.e. hydrolysis of palmitoyl at the sn-1 position when there is no fatty acid substituent at the sn-2 position. Finally, hydrolysis of fatty acid substituents in the sn-1 or sn-2 in PAPC were compared where either palmitoyl or arachidonyl were labelled with ¹⁴C. Fatty acids were removed at both positions with the sn-2 position having a higher initial rate of hydrolysis by 2-3 fold. This result may indicate sequential hydrolysis of the arachidonyl substituent followed by rapid cleavage of palmitoyl in the lysophospholipid species, which is suggested by the hydrolysis of the individual lipid species. The similar rates of hydrolysis of fatty acid substituents

at the sn-1 (palmitoyl) or sn-2 (arachidonyl) positions, where the radioactive label is in either position, is indicative of a phospholipase B activity. However, the fatty acid substituent at the sn-2 position clearly influences the PLB activity, not the sn-1 fatty acid, since hydrolysis of 1,2-dipalmitoyl substituted phospholipids is substantially less than for the 1-palmitoyl-2-arachidonyl species. These results can be clarified by studying the hydrolysis rates at each position of isotopically dual labelled phospholipids, e.g. ³H and ¹⁴C containing fatty acids at the sn-1 and sn-2 positions, respectively. Therefore, it is prudent to designate the enzyme as a phospholipase A₂/B.

A cDNA encoding the calcium independent cPLA₂/B of the present invention was isolated as described in Example 4. The sequence of the cDNA is reported as SEQ ID NO:1. The amino acid sequence encoded by such cDNA is SEQ ID NO:2. The invention also encompasses allelic variations of the cDNA sequence as set forth in SEQ ID NO:1, that is, naturally-occurring alternative forms of the cDNA of SEQ ID NO:1 which also encode phospholipase enzymes of the present invention.

Other cDNAs encoding a calcium independent cPLA₂/B of the present invention were isolated from human cDNA sources. Two clones identified as "19a" and "19b" were isolated from a Raij cell DNA library derived from Burkitt's lymphoma (ATCC CCL86, commercially available from Clonetech) using a probe derived from the CHO sequence (a 2.1kb SalI-SmaI fragment). Clones 19a and 19b were deposited with the American Type Culture Collection on November 7, 1995 as accession numbers ATCC 69948 and ATCC 69949. The nucleotide sequences of clones 19a and 19b are reported in SEQ ID NO:16 and

20

SEQ ID NO:18, respectively. SEQ ID NO:17 and SEQ ID NO:18 report the corresponding amino acid sequences encoded by the coding regions of clones 19a and 19b, respectively. Clones 19a and 19b are both partial clones of the full-length human enzyme.

SEQ ID NO:20 and SEQ ID NO:22 report the nucleotide sequences of alternative ways in which clones 19a and 19b can be spliced to encode a longer partial clone for the full-length human enzyme. The splice occurs after nucleotide 1225 in SEQ ID NO:20 and after nucleotide 1228 in SEQ ID NO:22. The corresponding spliced amino acid sequences are reported in SEQ ID NO:21 and SEQ ID NO:23. Spliced cDNA clones can be made from clones 19a and 19b in accordance with methods known to those skilled in the art.

5

10

Full-length clones encoding the human enzyme can be isolated by probing human cDNA libraries containing full-length clones using probes derived from SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20 or SEQ ID NO:22.

Also included in the invention are isolated DNAs which hybridize to the DNA sequence set forth in SEQ ID NO:1, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20 or SEQ ID NO:22 under stringent (e.g. 4xSSC at 65°C or 50% formamide and 4xSSC at 42°C), or relaxed (4xSSC at 50°C or 30-40% formamide at 42°C) conditions.

The isolated polynucleotides of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman *et al.*, Nucleic Acids Res. <u>19</u>, 4485-4490 (1991), in order to produce the phospholipase enzyme peptides recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing

recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means enzymatically or chemically ligated to form a covalent bond between the isolated polynucleotide of the invention and the expression control sequence, in such a way that the phospholipase enzyme peptide is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

5

10

15

20

A number of types of cells may act as suitable host cells for expression of the phospholipase enzyme peptide. Suitable host cells are capable of attaching carbohydrate side chains characteristic of functional phospholipase enzyme peptide. Such capability may arise by virtue of the presence of a suitable glycosylating enzyme within the host cell, whether naturally occurring, induced by chemical mutagenesis, or through transfection of the host cell with a suitable expression plasmid containing a polynucleotide encoding the glycosylating enzyme. Host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells. cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, or HaK cells.

The phospholipase enzyme peptide may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, California,

U.S.A. (the MaxBac® kit), and such methods are well known in the art, as described in Summers and Smith, <u>Texas Agricultural Experiment Station Bulletin</u>

No. 1555 (1987), incorporated herein by reference.

5

10

15

20

Alternatively, it may be possible to produce the phospholipase enzyme peptide in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae. Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the phospholipase enzyme peptide is made in yeast or bacteria, it is necessary to attach the appropriate carbohydrates to the appropriate sites on the protein moiety covalently, in order to obtain the glycosylated phospholipase enzyme peptide. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

The phospholipase enzyme peptide of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a polynucleotide encoding the phospholipase enzyme peptide.

The phospholipase enzyme peptide of the invention may be prepared by culturing transformed host cells under culture conditions necessary to express a phospholipase enzyme peptide of the present invention. The resulting expressed protein may then be purified from culture medium or cell extracts as described in the examples below.

14

Alternatively, the phospholipase enzyme peptide of the invention is concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate can be applied to a purification matrix such as a gel filtration medium. Alternatively, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups. The matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification. Alternatively, a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are preferred (e.g., S-Sepharose® columns). The purification of the phospholipase enzyme peptide from culture supernatant may also include one or more column steps over such affinity resins as concanavalin A-agarose, heparintoyopearl® or Cibacrom blue 3GA Sepharose®; or by hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or by immunoaffinity chromatography.

10

15

20

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media. e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the phospholipase enzyme peptide. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The phospholipase enzyme peptide thus purified is substantially free of other mammalian proteins and

is defined in accordance with the present invention as "isolated phospholipase enzyme peptide".

The calcium independent cPLA₂/B of the present invention is distinct from the cPLA₂ of U.S. Patent No. 5,322,776 and from previously-described calcium independent phospholipase A₂ enzymes (such as those described by Gross et al., supra; and Ackermann et al., supra). The enzyme of the present invention differs from the cPLA₂ of the '776 patent in the following ways:

(1) its activity is not calcium dependent;

5

10

15

- (2) it is more active in 10% glycerol than in 70% glycerol;
- (3) it has a molecular weight of 86 kD, not 110 kD as for cPLA₂;
- (4) it has a pH optimum of 6, not greater than 8 as for cPLA₂;
- (5) it hydrolyzes fatty acids at sn-1 as well as sn-2;
 - (6) it binds to heparin, while cPLA₂ does not;
 - it elutes from an anion exchange column at 0.1-0.2M NaCl, while cPLA₂ elutes at 0.3-0.4 M NaCl; and
 - (8) it does not bind to anti-cPLA₂ polyclonal antibody.
- The enzyme of the present invention differs from the calcium independent enzyme of Gross et al. in the following characteristics:
 - (1) it has a molecular weight of 86 kD, not 40 kD as for the Gross enzyme:

(2) it is not homologous at the protein level to rabbit skeletal muscle phosphofructokinase in contrast to the 85 kD putative regulatory protein associated with the 40 kD Gross enzyme; (3) 5 hydrolysis at the sn-2 position is favored by an acyllinked fatty acid at the sn-1 position in contrast to ether-linked fatty acids with the Gross enzyme; **(4)** its does not bind to an ATP column and was not activated by ATP in a liposome assay compared to 10 the Gross enzyme; and (5) it was active in a mixed micelle assay containing Triton X-100. The enzyme of the present invention differs from the calcium independent enzyme of Ackermann et al. (the "Dennis enzyme")in the following characteristics: **(1)** it does not bind to an ATP column; 15 **(2)** it binds to an anion exchange column (mono Q), while the Dennis enzyme remains in the unbound fraction; (3) it has a molecular weight of 86 kD, not 74 kD as for 20 the Dennis enzyme; **(4)** it has substantial lysophospholipase activity and is relatively inactive on phospholipids containing ether-

assay; and

linked fatty acids at the sn-1 position in a liposome

(5) it appears to hydrolyze fatty acid substituents at the sn-1 and sn-2 positions of a phospholipid, whereas the Dennis enzyme favors hydrolysis at the sn-2 position.

The calcium independent cPLA₂/B of the present invention may be used to screen unknown compounds having anti-inflammatory activity mediated by the various components of the arachidonic acid cascade. Many assays for phospholipase activity are known and may be used with the calcium independent phospholipase A₂/B on the present invention to screen unknown compounds. For example, such an assay may be a mixed micelle assay as described in Example 3. Other known phospholipase activity assays include, without limitation, those disclosed in U.S. Patent No. 5,322,776. These assays may be performed manually or may be automated or robotized for faster screening. Methods of automation and robotization are known to those skilled in the art.

5

10

15

20

In one possible screening assay, a first mixture is formed by combining a phospholipase enzyme peptide of the present invention with a phospholipid cleavable by such peptide, and the amount of hydrolysis in the first mixture (B₀) is measured. A second mixture is also formed by combining the peptide, the phospholipid and the compound or agent to be screened, and the amount of hydrolysis in the second mixture (B) is measured. The amounts of hydrolysis in the first and second mixtures are compared, for example, by performing a B/B₀ calculation. A compound or agent is considered to be capable of inhibiting phospholipase activity (i.e., providing anti-inflammatory activity) if a decrease in hydrolysis in the second mixture as compared to the first mixture is observed. The

formulation and optimization of mixtures is within the level of skill in the art, such mixtures may also contain buffers and salts necessary to enhance or to optimize the assay, and additional control assays may be included in the screening assay of the invention.

5

10

15

20

Other uses for the calcium independent cPLA₂/B of the present invention are in the development of monoclonal and polyclonal antibodies. Such antibodies may be generated by employing purified forms of the calcium independent cPLA₂ or immunogenic fragments thereof as an antigen using standard methods for the development of polyclonal and monoclonal antibodies as are known to those skilled in the art. Such polyclonal or monoclonal antibodies are useful as research or diagnostic tools, and further may be used to study phospholipase A₂ activity and inflammatory conditions.

Pharmaceutical compositions containing anti-inflammatory agents (i.e., inhibitors) identified by the screening method of the present invention may be employed to treat, for example, a number of inflammatory conditions such as rheumatoid arthritis, psoriasis, asthma, inflammatory bowel disease and other diseases mediated by increased levels of prostaglandins, leukotriene, or platelet activating factor. Pharmaceutical compositions of the invention comprise a therapeutically effective amount of a calcium independent cPLA₂ inhibitor compound first identified according to the present invention in a mixture with an optional pharmaceutically acceptable carrier. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The term "therapeutically effective amount" means the total amount of each active

19

component of the method or composition that is sufficient to show a meaningful patient benefit, i.e., healing or amelioration of chronic conditions or increase in rate of healing or amelioration. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously. A therapeutically effective dose of the inhibitor of this invention is contemplated to be in the range of about 0.1 μ g to about 100 mg per kg body weight per application. It is contemplated that the duration of each application of the inhibitor will be in the range of 12 to 24 hours of continuous administration. The characteristics of the carrier or other material will depend on the route of administration.

5

10

15

20

The amount of inhibitor in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of inhibitor with which to treat each individual patient. Initially, the attending physician will administer low doses of inhibitor and observe the patient's response. Larger doses of inhibitor may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further.

Administration is preferably intravenous, but other known methods of administration for anti-inflammatory agents may be used. Administration of the anti-inflammatory compounds identified by the method of the invention can be carried out in a variety of conventional ways. For example, for topical

5

10

15

20

administration, the anti-inflammatory compound of the invention will be in the form of a pyrogen-free, dermatologically acceptable liquid or semi-solid formulation such as an ointment, cream, lotion, foam or gel. The preparation of such topically applied formulations is within the skill in the art. Gel formulation should contain, in addition to the anti-inflammatory compound, about 2 to about 5% W/W of a gelling agent. The gelling agent may also function to stabilize the active ingredient and preferably should be water soluble. The formulation should also contain about 2% W/V of a bactericidal agent and a buffering agent. Exemplary gels include ethyl, methyl, and propyl celluloses. Preferred gels include carboxypolymethylene such as Carbopol (934P; B.F. Goodrich), hydroxypropyl methylcellulose phthalates such as Methocel (K100M premium; Merril Dow), cellulose gums such as Blanose (7HF; Aqualon, U.K.), xanthan gums such as Keltrol (TF; Kelko International), hydroxyethyl cellulose oxides such as Polyox (WSR 303; Union Carbide), propylene glycols, polyethylene glycols and mixtures thereof. If Carbopol is used, a neutralizing agent, such as NaOH, is also required in order to maintain pH in the desired range of about 7 to about 8 and most desirably at about 7.5. Exemplary preferred bactericidal agents include steryl alcohols, especially benzyl alcohol. The buffering agent can be any of those already known in the art as useful in preparing medicinal formulations, for example 20 mM phosphate buffer, pH 7.5.

Cutaneous or subcutaneous injection may also be employed and in that case the anti-inflammatory compound of the invention will be in the form of pyrogen-free, parenterally acceptable aqueous solutions. The preparation of such

parenterally acceptable solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art.

Intravenous injection may be employed, wherein the anti-inflammatory compound of the invention will be in the form of pyrogen-free, parenterally acceptable aqueous solutions. A preferred pharmaceutical composition for intravenous injection should contain, in addition to the anti-inflammatory compound, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection. Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition according to the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additive known to those of skill in the art.

5

10

15

20

The amount of anti-inflammatory compound in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of anti-inflammatory compound with which to treat each individual patient.

Anti-inflammatory compounds identified using the method of the present invention may be administered alone or in combination with other anti-inflammation agents and therapies.

22

Example 1

PURIFICATION OF CALCIUM INDEPENDENT cPLA

A) Preparation of CHO-Dukx cytosolic fraction:

CHO cells, approximately $5x10^{11}$ cells from a 250L culture, were concentrated by centrifugation and rinsed once with phosphate-buffered saline and reconcentrated, the cell slurry was frozen in liquid nitrogen and stored at -80°C at $4x10^{11}$ cells/kg of pellet. The CHO pellets were processed in 0.5kg batches by thawing the cells in 1.2L of 20mM imidazol pH 7.5, 0.25M sucrose, 2mM EDTA, 2mM EGTA, 1μ g/ml leupeptin, 5μ g/ml aprotinin, 5mM DTT and 1mM PMSF ("Extraction Buffer"). The cells were transferred to a Parr bomb at 4°C and pressurized at 600psi for 5 minutes and lysed by releasing the pressure. The supernatant was centrifuged at 10,000 x g for 30 minutes and subsequently at 100,000 x g for 60 minutes.

15

20

10

5

B) DEAE anion exchange chromatography:

The cytosolic fraction (10gm protein) was diluted to 5mg/ml with 20mM imidazol pH 7.5, 5mM DTT, 1mM EDTA and 1mM EGTA (Buffer A) and applied to a 1L column of DEAE toyopearl equilibrated in buffer A at 16ml/min. The column was washed to background absorbance (A₂₈₀) with buffer A and developed with a gradient of 0-0.5M NaCl in buffer A over 240 minutes with one minute fractions. The first activity peak at 100-150mM NaCl was collected.

C) Hydrophobic interaction and heparin toyopearl chromatography:

The DEAE fractions (4gm of protein at 3mg/ml) were made 0.5M in ammonium sulfate and applied at 10ml/min to a 300ml phenyl toyopearl column equilibrated in buffer A containing 0.5M ammonium sulfate. The column was washed to background absorbance (A₂₈₀). The column was then developed with a gradient of 0.5-0.2M (15 minutes) then 0.2-0.0 M ammonium sulfate (85 minutes). The column was then connected in tandem to a 10ml heparin column equilibrated in buffer A and elution was continued for 18 hours at 1.5ml/min with buffer A. The phenyl column was disconnected and the activity was eluted from the heparin column by applying 0.5M NaCl in buffer A at 2ml/min.

10

15

5

D) Chromatofocussing Chromatography:

A portion of the above active fractions (16mg) was dialyzed exhaustively against 20mM Bis-Tris pH 7, 10% glycerol, 1M urea and 5mM DTT and applied at 0.5ml/min to a Mono P 5/20 column equilibrated with the same buffer. The column was washed with the same buffer to background absorbance (A₂₈₀) and a pH gradient was established by applying 10% polybuffer 74 pH 5, 10% glycerol, 1M urea and 5mM DTT.

The relative purification of the enzyme of the present invention at each step of the foregoing purification scheme is summarized in Table II.

Table II

Step	Protein (mg)	Activity (u**)	Specific Activity (u/mg)	Fold Purifi- cation	Yield (%)	
cytosolic extract 126,000		2050	0.016			
DEAE	16,000	1264	0.079	5	60	
phenyl/ heparin	193	90	0.46	30	4.5	
Mono P	0.1-0.2	14	140	8,000	0.7	

10

20

25

5

The phospholipase can be further purified by the following steps:

E) Heparin chromatography:

The sample from (D) above is applied at 0.5ml/min onto a heparin column (maximum capacity 10mg protein/ml of resin) equilibrated in buffer A. The activity is eluted by 0.4M NaCl in buffer A.

F) Size exclusion chromatography:

The active fractions from the heparin column are applied to two TSK $G3000SW_{XL}$ columns (7.8mm x 30cm) linked in tandem equilibrated with 150mM NaCl in buffer A at 0.3ml/min. Phospholipase activity elutes in the 250-350 kD size range.

Recombinant enzyme may also be purified in accordance with this example.

Extract from 3.5 kg of frozen CHO cell pellet

[&]quot;I unit is defined as the amount of activity that releases 1 nmol of arachidonic acid per minute

Example 2

AMINO ACID SEQUENCING

5

10

15

20

A portion (63 μ g total protein) of the Mono P active fractions was concentrated on a heparin column, as described above. The sample, 0.36ml was mixed with an equal volume of buffer A and 10% SDS, 10µl and concentrated to 40μ l on an Amicon-30 microconcentrator. The sample was diluted with buffer A, 100 μ l, concentrated to 60μ l and diluted with Laemmli buffer (2x), 40μ l. The solution was boiled for 5 minutes and loaded in three aliquots on a 4-20% gradient SDS-PAGE mini gel. The sample was electophoresed for two hours at 120v, stained for 20 minutes in 0.2% Blue R-250, 20% methanol and 0.5% acetic acid and destained in 30% methanol (Rosenfeld et. al. Anal. Biochem. 203, pp. 173-179, 1992). Briefly, the protein bands corresponding to the phospholipase were excised from the gel with a razor blade and washed with 4 150 μ l aliquots of 200 mM NH₄HCO₃, 50% acetonitrile, for a total of 2 hours. The gel pieces were allowed to air dry for approximately 5 minutes, then partially rehydrated with 1 μ l of 200 mM NH₄HCO₃, 0.02% Tween 20 (Pierce) and 2 μ l of 0.25 μ g/ μ l trypsin (Promega). Gel slices were placed into the bottom of 500 μ l mini-Eppendorf tubes, covered with 30 µl 200

mM NH₄HCO₃, and incubated at 37 C for 15 hours. After 1-2 minutes of centrifugation in an Eppendorf microfuge, the supernatants were removed and saved. Peptides in the gel slices were extracted by agitation for a total of 40 minutes with 2 100 μ l aliquots of 60% acetonitrile, 0.1% TFA. The extracts were combined with the previous supernatant. The volume was reduced by lyophilization to about 150 μ l, and then the sample was diluted with 750 μ l 0.1% TFA. Peptide

maps were run on an ABI 130A Separation System HPLC and an ABI 30 X 2.1 mm RP-300 column. The gradient used was as follows: 0-13.5 minutes 0% B, 13.5-63.5 minutes 0-100% B and 63.5-68.5 minutes 100% B, where A is 0.1% TFA and B is 0.085% TFA, 70% acetonitrile. Peptides were then sequenced on an ABI 470A gas-phase sequencer.

Example 3

PHOPHOLIPASE ASSAYS

1. sn-2 Hydrolysis Assays

5

10

15

20

A) Liposome: The lipid, e.g. 1-palmitoyl-2-[¹⁴C]arachidonyl-sn-glycero-3-phosphocholine (PAPC), 55 mCi/mmol, was dried under a stream of nitrogen and solubilized in ethanol. The assay buffer contained 100mM Tris-HCl pH 7, 4mM EDTA, 4mM EGTA, 10% glycerol and 25μM of labelled PAPC, where the volume of ethanol added was no more than 10% of the final assay volume. The reaction was incubated for 30 minutes at 37°C and quenched by the addition of two volumes of heptane:isopropanol:0.5M sulfuric acid (105:20:1 v/v). Half of the organic was applied to a disposable silica gel column in a vacuum manifold positioned over a scintillation vial, and the free arachidonic was eluted by the addition of ethyl ether (1ml). The level of radioactivity was measured by liquid scintillation.

Variations on this assay replace EDTA and EGTA with 10mM CaCl₂.

B) Mixed Micelle Basic: The lipid was dried down as in (A) and to this was added the assay buffer consisting of 80mM glycine pH 9, 5mM CaCl₂ or

5mM EDTA. 10% or 70% glycerol and 200 μ M triton X-100. The mixture was then sonicated for 30-60 seconds at 4°C to form mixed micelles.

C) Mixed Micelle Neutral: As for (B) except 100mM Tris-HCl pH 7 was used instead of glycine as the buffer.

5

2. sn-1 Hydrolysis Assays

Sn-1 hydrolysis assays are performed as described above for sn-1 hydrolysis, but using phospholipids labelled at the sn-1 substituent, e.g. 1-[14C]-palmitoyl-2-arachidonyl-sn-glycero-3-phophocholine.

10

15

20

Example 4

CLONING OF CALCIUM INDEPENDENT cPLA₂/B

A) cDNA Library Construction

Total RNA was first prepared from 2 x 10⁸ CHO-DUX cells using the RNAgents total RNA kit (Promega, Madison, Wisconsin) and further purified using the PolyATract mRNA Isolation System (Promega) to yield 13.2 μg polyA+ mRNA. Double stranded cDNA was prepared by the Superscript Choice System (Gibco/BRL, Gaithersburg, Maryland) starting with 2 μg of CHO-DUX mRNA and using oligo dT primer. The cDNA was modified at both ends by addition of an EcoRI adapter/linker provided by the kit. These fragments were then ligated into the predigested lambda ZAPII/EcoRI vector, and packaged into phage particles with Gigapack Gold packaging extracts (Stratagene, La Jolla, California).

B) Oligonucleotide Probe Design

Several of the peptide sequences determined for the purified calcium independent PLA₂/B were selected to design oligonucleotide probes. The amino acid sequence from amino acid 361 to 367 of SEQ ID NO:2 was used to design two degenerate oligonucleotide pools of 17 residues each. Pool 1 is 8-fold degenerate representing the sense strand for amino acids 361 to 366 of SEQ ID NO:2, and pool 2 is 12-fold degenerate representing the antisense strand for amino acids 362-367 of SEQ ID NO:2. Two other degenerate pools were also made from other sequences. Pool 3 is 32-fold degenerate and represents the sense strand for amino acids 490 to 495 of SEQ ID NO:2, and pool 4 is 64-fold degenerate representing the antisense strand for amino acids 513 to 518 of SEQ ID NO:2.

C) Library Screening

5

10

15

20

Approximately 400,000 recombinant bacteriophage from the CHO-DUX cDNA library were plated and duplicate nitrocellulose filters were prepared. One set of filters was hybridized with pool 1 and the other with pool 2 using tetramethylammonium chloride buffer conditions (Jacobs et al., Nature, 1985, 313, 806). Twelve positive bacteriophages were identified and plated for further analysis. Three sets of nitrocellulose filters were prepared from this plating and hybridized with pools 2, 3 and 4, to represent the three peptide sequences from which probes were designed. Several clones were positive for all three pools. Individual bacteriophage plaques were eluted and ampicillin resistant plasmid colonies were prepared following the manufacturer's protocols (Stratagene). Plasmid DNA was prepared for clones 9, 17, 31 and 49, and restriction digests

revealed 3.0 kb inserts. Analysis of a portion of the DNA sequence in these clones confirmed that they contained several cPLA₂/B peptide sequences and represented the complete coding region of the gene. Clone 9 was selected for complete DNA sequence determination. The sequence of clone 9 is reported as SEQ ID NO:1.

Clone 9 was deposited with ATCC on July 27, 1994 as accession number 69669.

Example 5

EXPRESSION OF RECOMBINANT cPLA₂/B

A) Expression in COS Cells

5

10

15

20

Clone 9 from Example 4 was excised inserted into a SalI site that was engineered into the EcoRI site of the COS expression vector, PMT-2, a beta lactamase derivative of p91023 (Wong et al., Science, 1985, 228, 810). 8 µg of plasmid DNA was then transfected into 1 x 106 COS cells in a 10 cm dish by the DEAE dextran protocol (Sompayrac et al., Proc. Natl. Acad. Sci. USA, 1981, 78, 7575) with the addition of a 0.1 mM chloroquine to the transfection medium, followed by incubation for 3 hours at 37°C. The cells were grown in conventional media (DME, 10% fetal calf serum). At 40-48 hours post-transfection the cells were washed twice and then incubated at 37°C in PBS, 1 mM EDTA (5 ml). The cells were then collected by centrifugation, resuspended in Extraction Buffer (0.5 ml), and lysed by 20 strokes in a Dounce at 4°C. The lysate was clarified by centrifugation and 10-50 µl of the cytosolic fraction was assayed in the neutral and pH 9 mixed micelle assays.

In a further experiment, COS cells were transiently transfected according to established procedures (Kaufman et al.). After 40-48 hours post-tranmsfection the cells wer labelled with 35 S-methionine, 200 μ Ci per 10 cm plate, for one hour and the cells were lysed in NP-40 lysis buffer (Kaufman et al.). The cell lysates were analyzed by SDS-PAGE on a 4-20% reducing gel where equal counts were loaded per lane. There was an additional protein band at 84-86 kD in the lysates from cells transfected with clones 9, 31 and 49, but not in controls (see Fig. 7).

B) Expression in CHO Cells

5

10

15

20

A single plasmid bearing both the cPLA₂/B encoding sequence and a DHFR gene. or two separate plasmids bearing such sequences, are introduced into DHFR-deficient CHO cells (such as Dukx-BII) by calcium phosphate coprecipitation and transfection. DHFR expressing transformants are selected for growth in alpha media with dialyzed fetal calf serum. Transformants are checked for expression of recombinant enzyme by bioassay, immunoassay or RNA blotting and positive pools are subsequently selected for amplification by growth in increasing concentrations of methotrexate (MTX) (sequential steps in 0.02, 0.2, 1.0 and 5 μ M MTX) as described in Kaufman et al., Mol. Cell Biol., 1983, $\underline{5}$, 1750. The amplified lines are cloned and recombinant enzyme expression is monitored by the mixed micelle assay. Recombinant enzyme expression is expected to increase with increasing levels of MTX resistance.

Example 6

MUTAGENESIS OF SERINE RESIDUES

Ser252 and Ser465 of the murine cPLA₂/B amino acid sequence were mutated to alanine residues using the Chamelon Mutagenesis kit (Stratagene) using oligonucleotides CATGGGACCCGCTGGCTTTCC (SEQ ID NO:24) and GGCAGGAACCGCCACTGGGGGC (SEQ ID NO:25), respectively. PLA₂ activity was abrogated by changing Ser465 to Ala in the lipase consensus sequence (GXSXGG) surrounding that residue. Although Ser252 is found in a partial lipase motif, mutagenesis did not result in loss of activity. Moreover, Ser465, and the lipase consensus sequence surrounding this residue, are conserved in the human sequence (see amino acids 462-467 of SEQ ID NO:21 and 463-468 of SEQ ID NO:23), while Ser252 is not. On this basis, it is believed that this conserved serine residue is required for activity.

Patent and literature references cited herein are incorporated by reference as if fully set forth.

SEQUENCE LISTING

(1) GENERAL	INFORMATION:
-------------	--------------

- (i) APPLICANT: Jones, Simon Tang, Jim
- (ii) TITLE OF INVENTION: Calcium Independent Phospholipase A2/B
- (iii) NUMBER OF SEQUENCES: 25
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2935 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS

75

- (B) LOCATION: 96..2352
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GCG	GCCG	CGT	CGAC	GAAG	TA A	.GCGG	GCGG	A GA	AGTG	CTGA	GTA	AGCC	GAG	AGTA	AGGGG	G	60
CAG	GCTG	TCC	cccc	cccc	CA C	CTGC	CCCA	C GG.			_		TTC Phe				113
CTT Leu	GTC Val	AAC Asn	ACC Thr 10	Leu	AGT Ser	AGT Ser	GTC Val	ACC Thr 15	AAC Asn	TTG Leu	TTC Phe	TCA Ser	AAC Asn 20	CCA Pro	TTC Phe		161
CGG Arg	GTG Val	AAG Lys 25	GAG Glu	ATA Ile	TCT Ser	GTG Val	GCT Ala 30	GAC Asp	TAT Tyr	ACC Thr	TCA Ser	CAT His	GAA Glu	CGT Arg	GTT Val		209
CGA Arg	GAG Glu 40	GAA Glu	GGG Gly	CAG Gln	CTG Leu	ATC Ile 45	CTG Leu	TTC Phe	CAG Gln	AAT Asn	GCT Ala 50	TCC Ser	AAT Asn	CGC Arg	ACC Thr		257
TGG Trp 55	GAC Asp	TGC Cys	ATC Ile	CTG Leu	GTC Val 60	AGC Ser	CCT Pro	AGG Arg	AAC Asn	CCA Pro 65	CAT His	AGT Ser	GGC Gly	TTC Phe	CGA Arg 70		305
CTC Leu	TTC Phe	CAG Gln	CTG Leu	GAG Glu	TCA Ser	GAG Glu	GCA Ala	GAT Asp	GCC Ala	CTG Leu	GTG Val	AAC Asn	TTC Phe	CAG Gln	CAG Gln		353

80

85

TTC Phe	TCC Ser	TCC Ser	CAG Gln 90	Leu	CCA Pro	CCC Pro	TTC Phe	TAC Tyr 95	Glu	AGC Ser	TCT Ser	GTG Val	CAG Gln 100	Val	CTG Leu	401
CAT His	' GTG Val	GAG Glu 105	Val	CTG Leu	CAG Gln	CAC	CTG Leu 110	TCT Ser	GAC Asp	CTG Leu	ATC Ile	CGA Arg 115	AGC Ser	CAC	CCC Pro	449
AGC Ser	TGG Trp 120	Thr	GTG Val	ACA Thr	CAC His	CTG Leu 125	GCG Ala	GTG Val	GAG Glu	CTT Leu	GGC Gly 130	Ile	CGG Arg	GAG Glu	TGC Cys	497
TTC Phe 135	His	CAC	AGC Ser	CGC Arg	ATC Ile 140	ATC Ile	AGC Ser	TGC Cys	GCC Ala	AAC Asn 145	AGC Ser	ACA Thr	GAG Glu	AAT Asn	GAG Glu 150	545
GAG Glu	GGC Gly	TGC Cys	ACC Thr	CCA Pro 155	CTG Leu	CAT His	TTG Leu	GCA Ala	TGC Cys 160	CGC Arg	AAG Lys	GGT Gly	GAC Asp	AGT Ser 165	GAG Glu	593
ATC Ile	CTG Leu	GTG Val	GAG Glu 170	TTG Leu	GTA Val	CAG Gln	TAC Tyr	TGC Cys 175	CAT His	GCC Ala	CAA Gln	ATG Met	GAT Asp 180	GTC Val	ACT Thr	641
GAC Asp	AAC Asn	AAA Lys 185	GGA Gly	GAG Glu	ACG Thr	GCC Ala	TTC Phe 190	CAT His	TAC Tyr	GCT Ala	GTA Val	CAA Gln 195	GGG Gly	GAC Asp	AAT Asn	689
TCC Ser	CAG Gln 200	GTG Val	CTG Leu	CAG Gln	CTC Leu	CTA Leu 205	GGA Gly	AAG Lys	AAC Asn	GCC Ala	TCA Ser 210	GCT Ala	GGC Gly	CTG Leu	AAC Asn	737
CAG Gln 215	GTG Val	AAC Asn	AAA Lys	CAA Gln	GGG Gly 220	CTA Leu	ACT Thr	CCA Pro	CTG Leu	CAC His 225	CTG Leu	GCC Ala	TGC Cys	CAG Gln	ATG Met 230	785
GGG Gly	AAG Lys	CAG Gln	GAG Glu	ATG Met 235	GTA Val	CGC Arg	GTC Val	CTG Leu	CTG Leu 240	CTT Leu	TGC Cys	AAT Asn	GCC Ala	CGC Arg 245	TGC Cys	833
AAC Asn	GTC Val	ATG Met	GGA Gly 250	CCC Pro	AGT Ser	GGC Gly	TTT Phe	CCC Pro 255	ATC Ile	CAC His	ACA Thr	GCC Ala	ATG Met 260	AAG Lys	TTC Phe	881
TCC Ser	CAG Gln	AAG Lys 265	GGG Gly	TGT Cys	GCT Ala	GAA Glu	ATG Met 270	ATT Ile	ATC Ile	AGC Ser	ATG Met	GAC Asp 275	AGC Ser	AGC Ser	CAG Gln	929
ATC Ile	CAC His 280	AGC Ser	AAG Lys	GAT Asp	CCT Pro	CGC Arg 285	TAT Tyr	GGA Gly	GCC Ala	AGC Ser	CCG Pro 290	CTC Leu	CAC His	TGG Trp	GCC Ala	977
AAG Lys 295	AAT Asn	GCC Ala	GAG Glu	ATG Met	GCC Ala 300	CGG Arg	ATG Met	CTG Leu	CTG Leu	AAG Lys 305	CGG Arg	GGA Gly	TGT Cys	GAT Asp	GTG Val 310	1025
GAC Asp	AGC Ser	ACA Thr	AGC Ser	GCT Ala 315	GCG Ala	GGG Gly	AAC Asn	ACA Thr	GCC Ala 320	CTG Leu	CAT His	GTG Val	GCA Ala	GTG Val 325	ATG Met	1073
CGG Arg	AAC Asn	CGC Arg	TTT Phe 330	GAC Asp	TGC Cys	GTC Val	Met	GTG Val 335	CTG Leu	CTG Leu	ACC Thr	TAC Tyr	GGG Gly 340	GCC Ala	AAC Asn	1121
GCA Ala	Gly	ACC Thr 345	CCA Pro	GGG Gly	GAG Glu	His	GGG Gly 350	AAC Asn	ACG Thr	CCG Pro	CTG Leu	CAC His 355	CTG Leu	GCC Ala	ATC Ile	1169

		Asp					Ile					Val			GCA Ala	1217
	ı Val					Asp					Pro				GCC Ala 390	1265
					Gln										GCC Ala	1313
				Phe					Met						ATC Ile	1361
			Leu												GTC Val	1409
															ACC Thr	1457
AAG Lys 455	GAC Asp	CTC Leu	TTC Phe	GAC Asp	TGG Trp 460	GTG Val	GCA Ala	GGA Gly	ACC Thr	AGC Ser 465	ACT Thr	GGG Gly	GGC Gly	ATC Ile	CTG Leu 470	1505
GCC Ala	CTG Leu	GCC Ala	ATT Ile	CTG Leu 475	CAC His	AGT Ser	AAG Lys	TCC Ser	ATG Met 480	GCC Ala	TAT Tyr	ATG Met	CGT Arg	GGT Gly 485	GTG Val	1553
TAC Tyr	TTC Phe	CGT Arg	ATG Met 490	AAA Lys	GAT Asp	GAG Glu	GTG Val	TTT Phe 495	CGG Arg	GGC Gly	TCA Ser	CGG Arg	CCC Pro 500	TAT Tyr	GAG Glu	1601
TCT Ser	GGA Gly	CCC Pro 505	CTG Leu	GAG Glu	GAG Glu	TTC Phe	CTG Leu 510	AAG Lys	CGG Arg	GAG Glu	TTT Phe	GGG Gly 515	GAG Glu	CAC His	ACC Thr	1649
AAG Lys	ATG Met 520	ACA Thr	GAT Asp	GTC Val	AAA Lys	AAA Lys 525	CCC Pro	AAG Lys	GTG Val	ATG Met	CTC Leu 530	ACA Thr	GGG Gly	ACA Thr	CTG Leu	1697
TCT Ser 535	GAC Asp	CGG Arg	CAG Gln	CCA Pro	GCA Ala 540	GAG Glu	CTC Leu	CAC His	CTG Leu	TTC Phe 545	CGC Arg	AAT Asn	TAC Tyr	GAT Asp	GCT Ala 550	1745
CCA Pro	GAG Glu	GTC Val	ATT Ile	CGG Arg 555	GAA Glu	CCT Pro	CGC Arg	TTC Phe	AAC Asn 560	CAA Gln	AAC Asn	ATT Ile	AAC Asn	CTG Leu 565	AAG Lys	1793
CCG Pro	CCA Pro	ACT Thr	CAG Gln 570	CCT Pro	GCA Ala	GAC Asp	CAA Gln	CTG Leu 575	GTA Val	TGG Trp	CGA Arg	GCA Ala	GCC Ala 580	CGG Arg	AGC Ser	1841
AGT Ser	GGG Gly	GCA Ala 585	GCC Ala	CCA Pro	ACC Thr	TAC Tyr	TTC Phe 590	CGG Arg	CCC Pro	AAT Asn	GGA Gly	CGT Arg 595	TTC Phe	CTG Leu	GAT Asp	1889
GGT Gly	GGG Gly 600	CTG Leu	CTG Leu	GCC Ala	AAC Asn	AAC Asn 605	CCC Pro	ACA Thr	CTA Leu	Asp	GCC Ala 610	ATG Met	ACT Thr	GAA Glu	ATC Ile	1937
CAT His 615	GAA Glu	TAC Tyr	AAT Asn	CAG Gln	GAC Asp 620	ATG Met	ATC Ile	CGC Arg	Lys	GGC Gly 625	CAA Gln	GGC Gly	AAC Asn	AAG Lys	GTG Val 630	1985

AAG Lys	AAA Lys	CTC Leu	TCC Ser	ATA Ile 635	GTC Val	GTC Val	TCT Ser	CTG Leu	GGG Gly 640	ACA Thr	GGA Gly	AGG Arg	TCC Ser	CCT Pro 645	CAA Gln		2033
GTG Val	CCC Pro	GTA Val	ACC Thr 650	TGT Cys	GTA Val	GAT Asp	GTC Val	TTC Phe 655	CGC Arg	CCC Pro	AGC Ser	AAC Asn	CCC Pro 660	TGG Trp	GAA Glu		2081
CTG Leu	GCT Ala	AAG Lys 665	ACT Thr	GTT Val	TTT Phe	GGA Gly	GCC Ala 670	AAG Lys	GAA Glu	CTG Leu	GGC Gly	AAG Lys 675	ATG Met	GTG Val	GTA Val		2129
GAC Asp	TGT Cys 680	TGC Cys	ACA Thr	GAT Asp	CCA Pro	GAT Asp 685	GGT Gly	CGG Arg	GCT Ala	GTG Val	GAC Asp 690	CGG Arg	GCC Ala	CGG Arg	GCC Ala		2177
TGG Trp 695	AGC Ser	GAG Glu	ATG Met	GTT Val	GGC Gly 700	ATC Ile	CAG Gln	TAC Tyr	TTC Phe	AGA Arg 705	CTG Leu	AAC Asn	CCC Pro	CAA Gln	CTA Leu 710		2225
GGA Gly	TCA Ser	GAC Asp	ATC Ile	ATG Met 715	CTG Leu	GAT Asp	GAG Glu	GTC Val	AAT Asn 720	GAT Asp	GCA Ala	GTG Val	CTG Leu	GTT Val 725	AAT Asn		2273
GCC Ala	CTC Leu	TGG Trp	GAG Glu 730	ACA Thr	GAA Glu	GTC Val	TAC Tyr	ATC Ile 735	TAT Tyr	GAG Glu	CAC His	CGG Arg	GAG Glu 740	GAG Glu	TTC Phe		2321
CAG Gln	AAG Lys	CTT Leu 745	GTC Val	CAA Gln	ATG Met	CTG Leu	CTG Leu 750	TCG Ser	CCC Pro	T GA	GCTC	CAGG	CCC	TGCI	'GGC		2372
AGGG	GTGC	GC C	CAGGC	TACC	C AG	CACA	.CTGG	GGG	CCAA	GCT	GGGC	CAGG	CG G	CTGT	GTCTA		2432
CCTG	AGGA	CT G	GGGC	TCAG	A GC	ACAA	ACAG	GTT	'CCCA	CAA	GGCA	CCTC	TC C	TGAC	CCATC	;	2492
TGCA	CTTT.	GC C	CACTO	TAGG	C TG	AAAG	CCCA	GAG	TTCC	CCT	CAGC	CCCT	TT A	TGTG	ACTGT	:	2552
GAAG	GACA	AC I	GGCT	CCAT	C AA	.CTGC	CCTA	LAAT	'ATCA	GTG	AGAT	CAAC	AC I	'AAGG	TGTCC	:	2612
AGTG	TACC	CA G	AGGG	TTCT	T CC	AGGG	TCCA	TGG	CCAC	CAA	AGCC	CACC	CC I	TCTT	TCCAC	:	2672
TTCC	TGAA	GT C	AGTG	TCTA	.C AG	AAAT	GGAG	TTC	CACC	CCA	TCAT	CAGG	TG A	AATC	CAGGC	7	2732
TATT	GAAA	TC C	AGTC	TGTT	C GA	CTTT	GCCC	CTC	TGCA	CCT	GCCA	ATCA	.CC C	CACC	CCTGC	3	2 79 2
AGCC.	ACCC	CA C	CTTA	AGAG	T CC	TCCC	AGCT	CTC	AAAG	GTC	AATC	CTGT	GC A	TGTA	CTCTT	2	2852
CTCT	GGAA	GG A	GAGT	GGGG	A GG	GGTT	CAAG	GCC	ACCT	CAA	CTGT	GAAA	TA A	ATGG	GTCTA	7	2912
GACT	CAAA	A AA	AAAA	AGTC	G AC	G										2	2935

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 752 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Gln Phe Phe Gly Arg Leu Val Asn Thr Leu Ser Ser Val Thr Asn 1 5 10 15

Leu Phe Ser Asn Pro Phe Arg Val Lys Glu Ile Ser Val Ala Asp Tyr Thr Ser His Glu Arg Val Arg Glu Glu Gly Gln Leu Ile Leu Phe Gln Asn Ala Ser Asn Arg Thr Trp Asp Cys Ile Leu Val Ser Pro Arg Asn Pro His Ser Gly Phe Arg Leu Phe Gln Leu Glu Ser Glu Ala Asp Ala Leu Val Asn Phe Gln Gln Phe Ser Ser Gln Leu Pro Pro Phe Tyr Glu Ser Ser Val Gln Val Leu His Val Glu Val Leu Gln His Leu Ser Asp Leu Ile Arg Ser His Pro Ser Trp Thr Val Thr His Leu Ala Val Glu Leu Gly Ile Arg Glu Cys Phe His His Ser Arg Ile Ile Ser Cys Ala Asn Ser Thr Glu Asn Glu Glu Gly Cys Thr Pro Leu His Leu Ala Cys Arg Lys Gly Asp Ser Glu Ile Leu Val Glu Leu Val Gln Tyr Cys His Ala Gln Met Asp Val Thr Asp Asn Lys Gly Glu Thr Ala Phe His Tyr Ala Val Gln Gly Asp Asn Ser Gln Val Leu Gln Leu Leu Gly Lys Asn Ala Ser Ala Gly Leu Asn Gln Val Asn Lys Gln Gly Leu Thr Pro Leu His Leu Ala Cys Gln Met Gly Lys Gln Glu Met Val Arg Val Leu Leu Leu Cys Asn Ala Arg Cys Asn Val Met Gly Pro Ser Gly Phe Pro Ile His Thr Ala Met Lys Phe Ser Gln Lys Gly Cys Ala Glu Met Ile Ile Ser Met Asp Ser Ser Gln Ile His Ser Lys Asp Pro Arg Tyr Gly Ala Ser Pro Leu His Trp Ala Lys Asn Ala Glu Met Ala Arg Met Leu Leu Lys Arg Gly Cys Asp Val Asp Ser Thr Ser Ala Ala Gly Asn Thr Ala Leu His Val Ala Val Met Arg Asn Arg Phe Asp Cys Val Met Val Leu Leu Thr Tyr Gly Ala Asn Ala Gly Thr Pro Gly Glu His Gly Asn Thr Pro Leu His Leu Ala Ile Ser Lys Asp Asn Met Glu Met Ile Lys Ala

Leu Ile Val Phe Gly Ala Glu Val Asp Thr Pro Asn Asp Phe Gly Glu Thr Pro Ala Phe Met Ala Ser Lys Ile Ser Lys Gln Leu Gln Asp Leu Met Pro Ile Ser Arg Ala Arg Lys Pro Ala Phe Ile Leu Ser Ser Met Arg Asp Glu Lys Arg Ile His Asp His Leu Leu Cys Leu Asp Gly Gly Gly Val Lys Gly Leu Val Ile Ile Gln Leu Leu Ile Ala Ile Glu Lys Ala Ser Gly Val Ala Thr Lys Asp Leu Phe Asp Trp Val Ala Gly Thr Ser Thr Gly Gly Ile Leu Ala Leu Ala Ile Leu His Ser Lys Ser Met Ala Tyr Met Arg Gly Val Tyr Phe Arg Met Lys Asp Glu Val Phe Arg Gly Ser Arg Pro Tyr Glu Ser Gly Pro Leu Glu Glu Phe Leu Lys Arg Glu Phe Gly Glu His Thr Lys Met Thr Asp Val Lys Lys Pro Lys Val Met Leu Thr Gly Thr Leu Ser Asp Arg Gln Pro Ala Glu Leu His Leu Phe Arg Asn Tyr Asp Ala Pro Glu Val Ile Arg Glu Pro Arg Phe Asn Gln Asn Ile Asn Leu Lys Pro Pro Thr Gln Pro Ala Asp Gln Leu Val Trp Arg Ala Ala Arg Ser Ser Gly Ala Ala Pro Thr Tyr Phe Arg Pro Asn Gly Arg Phe Leu Asp Gly Gly Leu Leu Ala Asn Asn Pro Thr Leu Asp Ala Met Thr Glu Ile His Glu Tyr Asn Gln Asp Met Ile Arg Lys Gly Gln Gly Asn Lys Val Lys Lys Leu Ser Ile Val Val Ser Leu Gly Thr Gly Arg Ser Pro Gln Val Pro Val Thr Cys Val Asp Val Phe Arg Pro Ser Asn Pro Trp Glu Leu Ala Lys Thr Val Phe Gly Ala Lys Glu Leu Gly Lys Met Val Val Asp Cys Cys Thr Asp Pro Asp Gly Arg Ala Val Asp Arg Ala Arg Ala Trp Ser Glu Met Val Gly Ile Gln Tyr Phe Arg Leu Asn Pro Gln Leu Gly Ser Asp Ile Met Leu Asp Glu Val Asn

Asp Ala Val Leu Val Asn Ala Leu Trp Glu Thr Glu Val Tyr Ile Tyr
725 730 735

Glu His Arg Glu Glu Phe Gln Lys Leu Val Gln Met Leu Leu Ser Pro
740 745 750

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Asn Pro His Ser Gly Phe Arg

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Xaa Ala Ser Xaa Gly Leu Asn Gln Val Asn Lys 1 5 10

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Tyr Gly Ala Ser Pro Leu His Xaa Ala Lys
1 5 10

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Asp Asn Met Glu Met Ile Lys
1 5

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Gly Val Tyr Phe Arg

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Lys Asp Glu Val Phe Arg

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Glu Phe Gly Glu His Thr Lys
1 5

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Val Met Leu Thr Gly Thr Leu Ser Asp Arg
1 5 10

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Xaa Tyr Asp Ala Pro Glu Val Ile Arg

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Phe Asn Gln Asn Ile Asn Leu Lys Pro Pro Thr Gln Pro Ala

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 11 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Xaa Xaa Gly Ala Ala Pro Thr Tyr Phe Arg Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Thr Val Phe Gly Ala Lys
1 5

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Xaa Trp Ser Glu Met Val Gly Ile Gln Tyr Phe Arg

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2012 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO

PCT/US96/17794 WO 97/17448

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 43..1224

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GAA	TTCC	:GGG	ACGG	TGGG	GC C	TCCC	CACC	T GC	cccg	CAGA		ATG Met 1					54
_						Phe					Asn				AAC Asn 20		102
	_				Glu					Asp					GAC Asp		150
				Glu					Leu					Pro	AAC Asn		198
	_	TGG Trp 55													GGA Gly		246
		CTC Leu															294
		TAT Tyr															342
GTC Val	CTG Leu	CAC His	ACT Thr	GAG Glu 105	GTC Val	CTG Leu	CAG Gln	CAC His	CTG Leu 110	ACC Thr	GAC Asp	CTC Leu	ATC Ile	CGT Arg 115	AAC Asn		390
		AGC Ser													CGC Arg		438
GAG Glu	TGC Cys	TTC Phe 135	CAT His	CAC His	AGC Ser	CGT Arg	ATC Ile 140	ATC Ile	AGC Ser	TGT Cys	GCC Ala	AAT Asn 145	TGC Cys	GCG Ala	GAG Glu		486
AAC Asn	GAG Glu 150	GAG Glu	GGC Gly	TGC Cys	ACA Thr	CCC Pro 155	CTG Leu	CAC His	CTG Leu	GCC Ala	TGC Cys 160	CGC Arg	AAG Lys	GGT Gly	GAT Asp		534
GGG Gly 165	GAG Glu	ATC Ile	CTG Leu	GTG Val	GAG Glu 170	CTG Leu	GTG Val	CAG Gln	TAC Tyr	TGC Cys 175	CAC His	ACT Thr	CAG Gln	ATG Met	GAT Asp 180		582
GTC Val	ACC Thr	GAC Asp	TAC Tyr	AAG Lys 185	GGA Gly	GAG Glu	ACC Thr	GTC Val	TTC Phe 190	CAT His	TAT Tyr	GCT Ala	GTC Val	CAG Gln 195	GGT Gly		630
GAC Asp	AAT Asn	TCT Ser	CAG Gln 200	GTG Val	CTG Leu	CAG Gln	CTC Leu	CTT Leu 205	GGA Gly	AGG Arg	AAC Asn	GCA Ala	GTG Val 210	GCT Ala	GGC Gly	,	678
CTG Leu	AAC Asn	CAG Gln 215	GTG Val	AAT Asn	AAC Asn	CAA Gln	GGG Gly 220	CTG Leu	ACC Thr	CCG Pro	CTG Leu	CAC His 225	CTG Leu	GCC Ala	TGC Cys		726

CAG Gln	CTG Leu 230	Gly	AAG Lys	CAG Gln	GAG Glu	ATG Met 235	GTC Val	CGC Arg	GTG Val	CTG Leu	CTG Leu 240	CTG Leu	TGC Cys	AAT Asn	GCT Ala	774
CGG Arg 245	TGC Cys	AAC Asn	ATC Ile	ATG Met	GGC Gly 250	CCC Pro	AAC Asn	GGC Gly	TAC Tyr	CCC Pro 255	ATC Ile	CAC His	TCG Ser	GCC Ala	ATG Met 260	822
AAG Lys	TTC Phe	TCT Ser	CAG Gln	AAG Lys 265	GGG Gly	TGT Cys	GCG Ala	GAG Glu	ATG Met 270	ATC Ile	ATC Ile	AGC Ser	ATG Met	GAC Asp 275	AGC Ser	870
AGC Ser	CAG Gln	ATC Ile	CAC His 280	AGC Ser	AAA Lys	GAC Asp	CCC Pro	CGT Arg 285	TAC Tyr	GGA Gly	GCC Ala	AGC Ser	CCC Pro 290	CTC Leu	CAC His	918
TGG Trp	GCC Ala	AAG Lys 295	AAC Asn	GCA Ala	GAG Glu	ATG Met	GCC Ala 300	CGC Arg	ATG Met	CTG Leu	CTG Leu	AAA Lys 305	CGG Arg	GGC Gly	TGC Cys	966
AAC Asn	GTG Val 310	AAC Asn	AGC Ser	ACC Thr	AGC Ser	TCC Ser 315	GCG Ala	GGG Gly	AAC Asn	ACG Thr	GCC Ala 320	CTG Leu	CAC His	GTG Val	GGG Gly	1014
GTG Val 325	ATG Met	CGC Arg	AAC Asn	CGC Arg	TTC Phe 330	GAC Asp	TGT Cys	GCC Ala	ATA Ile	GTG Val 335	CTG Leu	CTG Leu	ACC Thr	CAC His	GGG Gly 340	1062
GCC Ala	AAC Asn	GCG Ala	GAT Asp	GCC Ala 345	CGC Arg	GGA Gly	GAG Glu	CAC His	GGC Gly 350	AAC Asn	ACC Thr	CCG Pro	CTG Leu	CAC His 355	CTG Leu	1110
GCC Ala	ATG Met	TCG Ser	AAA Lys 360	GAC Asp	AAC Asn	GTG Val	GAG Glu	ATG Met 365	ATC Ile	AAG Lys	GCC Ala	CTC Leu	ATC Ile 370	GTG Val	TTC Phe	1158
GGA Gly	GCA Ala	GAA Glu 375	GTG Val	GAC Asp	ACC Thr	CCG Pro	AAT Asn 380	GAC Asp	TTT Phe	GGG Gly	GAG Glu	ACT Thr 385	CCT Pro	ACA Thr	TTC Phe	1206
CTA Leu	GCC Ala 390	TCC Ser	AAA Lys	ATC Ile	GGC Gly	AGAC	TTGT	'CA C	'CAGG	AAGG	C GA	TCTT	GACT			1254
CTGC	TGAG	AA C	CGTG	GGGG	C CG	AATA	CTGC	TTC	CCAC	CCA	TCCA	CGGG	GT C	CCCG	CGGAG	1314
CAGG	GCTC	TG C	AGCG	CCAC	A TC	ATCC	CTTC	TCC	CTGG	AAA	GAGC	TCAG	cc c	CCAC	CGATC	1374
AGCC	TAAA	CA A	CCTA	GGCA	G TC	ACCC	AAGC	CAG	GCCG	GAT	GGTG	GGCC	TG G	GGTG	CGGCG	1434
TCAG	ATGG	GT A	ACGC	CCTG	G GC	CTGG	AGAG	GCC	ACCG	AGC	CTAG	CCAT	GC G	GCAT	TAGCT	1494
															TCCCC	
															CAGCC	
															CTTCT	
															CCAGG	
															CGGGC	
															AGGCC	
															CTTAA	
				~ ~ GW(1	GAC.	* \\	I GM	~~11(3GG 1 (JA A	LIAT	JUAUC	1974

2012

CTCTTAGAGC CTCACCTGTC AATAGGGAAT AAGAATTC

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 394 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Gln Phe Gly Arg Leu Val Asn Thr Phe Ser Gly Val Thr Asn 1 10 15 Leu Phe Ser Asn Pro Phe Arg Val Lys Glu Val Ala Val Ala Asp Tyr 20 25 Thr Ser Ser Asp Arg Val Arg Glu Glu Gly Gln Leu Ile Leu Phe Gln 35 Asn Thr Pro Asn Arg Thr Trp Asp Cys Val Leu Val Asn Pro Arg Asn 50 Ser Gln Ser Gly Phe Arg Leu Phe Gln Leu Glu Leu Glu Ala Asp Ala 65 70 75 Leu Val Asn Phe His Gln Tyr Ser Ser Gln Leu Leu Pro Phe Tyr Glu 85 95 Ser Ser Pro Gln Val Leu His Thr Glu Val Leu Gln His Leu Thr Asp 100 105 110 Leu Ile Arg Asn His Pro Ser Trp Ser Val Ala His Leu Ala Val Glu 115 120 125 Leu Gly Ile Arg Glu Cys Phe His His Ser Arg Ile Ile Ser Cys Ala 130 135 Asn Cys Ala Glu Asn Glu Glu Gly Cys Thr Pro Leu His Leu Ala Cys 145 160 Arg Lys Gly Asp Gly Glu Ile Leu Val Glu Leu Val Gln Tyr Cys His 165 Thr Gln Met Asp Val Thr Asp Tyr Lys Gly Glu Thr Val Phe His Tyr 180 185 Ala Val Gln Gly Asp Asn Ser Gln Val Leu Gln Leu Leu Gly Arg Asn 195 Ala Val Ala Gly Leu Asn Gln Val Asn Asn Gln Gly Leu Thr Pro Leu 210 215 220 His Leu Ala Cys Gln Leu Gly Lys Gln Glu Met Val Arg Val Leu Leu 225 230 235 Leu Cys Asn Ala Arg Cys Asn Ile Met Gly Pro Asn Gly Tyr Pro Ile 245 250 255 His Ser Ala Met Lys Phe Ser Gln Lys Gly Cys Ala Glu Met Ile Ile 260 265 270 Ser Met Asp Ser Ser Gln Ile His Ser Lys Asp Pro Arg Tyr Gly Ala 275 280

Ser	Pro	Leu	His	Trp	Ala	Lys	Asn	Ala	Glu	Met	Ala	Arg	Met	Leu	Leu
	290					295					300				

- Lys Arg Gly Cys Asn Val Asn Ser Thr Ser Ser Ala Gly Asn Thr Ala 305 310 315 320
- Leu His Val Gly Val Met Arg Asn Arg Phe Asp Cys Ala Ile Val Leu 325 330 335
- Leu Thr His Gly Ala Asn Ala Asp Ala Arg Gly Glu His Gly Asn Thr 340 345 350
- Pro Leu His Leu Ala Met Ser Lys Asp Asn Val Glu Met Ile Lys Ala 355 360 365
- Leu Ile Val Phe Gly Ala Glu Val Asp Thr Pro Asn Asp Phe Gly Glu 370 380
- Thr Pro Thr Phe Leu Ala Ser Lys Ile Gly 385
- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1277 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 396..1271
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GAATTCTTAG GCCCCAGGTG GTTATTGCAG CATCGGCTCC GATGCAAGAA GAAGCACTTT	60
GTCTGAAGAG GACACGCAAG GGTATTCATG CCTTGGGGTT TCAAGAGGAA GAGATTGAGG	120
GGAACCTGGG AGCTGGCTGG GCAGGGTGGG GAGCCCTTCC CAGAGCAGTG GGCCCCCCTT	180
TCCACTCCAG CCCATTTCTC TCCTGTGGCC TGTGGCTCAG CTTTCTCCTG GGACAGAGTC	240
CTTCCTGTGG GGAAGGGACA GATGACAGGG GGAGTGGGGG GATGAGGGCG TGGCCGTGGG	300
CGAGGCACAG CCCAGGTTTG ATCTAGGGAC CTCTGGGGTA GCAGGGCTTG GGGACCCACC	360
TGACCACAGC ATGCCCTGCT CTGTGCCTCA CAGAA CTA CAG GAT CTC ATG CAC Leu Gln Asp Leu Met His 1 5	413
ATC TCA CGG GCC CGG AAG CCA GCG TTC ATC CTG GGC TCC ATG AGG GAC Ile Ser Arg Ala Arg Lys Pro Ala Phe Ile Leu Gly Ser Met Arg Asp 10 15 20	461
GAG AAG CGG ACC CAC GAC CAC CTG CTG TGC CTG GAT GGA GGA GGA GTG Glu Lys Arg Thr His Asp His Leu Leu Cys Leu Asp Gly Gly Gly Val	509

	_	Leu										Glu			TCG Ser	557
_	Val					Leu									ACT Thr 70	605
	_				Leu				CAC His 80						TAC Tyr	653
									GAT Asp							701
			Glu						GAG Glu							749
									AGG Arg							797
ACA Thr 135	Gly	ACA Thr	CTG Leu	TCT Ser	GAC Asp 140	CGG Arg	CAG Gln	CCG Pro	GCT Ala	GAA Glu 145	CTC Leu	CAC His	CTC Leu	TTC Phe	CGG Arg 150	845
									GAG Glu 160							893
									TCA Ser							941
									ACT Thr							989
									AAC Asn							1037
ATG Met 215	ACC Thr	GAG Glu	ATC Ile	CAT His	GAG Glu 220	TAC Tyr	AAT Asn	CAG Gln	GAC Asp	CTG Leu 225	ATC Ile	CGC Arg	AAG Lys	GGT Gly	CAG Gln 230	1085
GCC Ala	AAC Asn	AAG Lys	GTG Val	AAG Lys 235	AAA Lys	CTC Leu	TCC Ser	ATC Ile	GTT Val 240	GTC Val	TCC Ser	CTG Leu	GGG Gly	ACA Thr 245	GGG Gly	1133
									GTG Val							1181
AAC Asn	CCC Pro	TGG Trp 265	GAG Glu	CTG Leu	GCC Ala	AAG Lys	ACT Thr 270	GTT Val	TTT Phe	GGG Gly	GCC Ala	AAG Lys 275	GAA Glu	CTG Leu	GGC Gly	1229
									CCA Pro	Asp						1271
GAAT	TC															1277

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 292 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Leu Gln Asp Leu Met His Ile Ser Arg Ala Arg Lys Pro Ala Phe Ile
1 10 15

Leu Gly Ser Met Arg Asp Glu Lys Arg Thr His Asp His Leu Leu Cys
20 25 30

Leu Asp Gly Gly Val Lys Gly Leu Ile Ile Ile Gln Leu Leu Ile 35 40 45

Ala Ile Glu Lys Ala Ser Gly Val Ala Thr Lys Asp Leu Phe Asp Trp
50 60

Val Ala Gly Thr Ser Thr Gly Gly Ile Leu Ala Leu Ala Ile Leu His
65 70 75 80

Ser Lys Ser Met Ala Tyr Met Arg Gly Met Tyr Phe Arg Met Lys Asp 85 90 95

Glu Val Phe Arg Gly Ser Arg Pro Tyr Glu Ser Gly Pro Leu Glu Glu 100 105 110

Phe Leu Lys Arg Glu Phe Gly Glu His Thr Lys Met Thr Asp Val Arg 115 120 125

Lys Pro Lys Val Met Leu Thr Gly Thr Leu Ser Asp Arg Gln Pro Ala 130 135 140

Glu Leu His Leu Phe Arg Asn Tyr Asp Ala Pro Glu Thr Val Arg Glu 145 150 155 160

Pro Arg Phe Asn Gln Asn Val Asn Leu Arg Pro Pro Ala Gln Pro Ser 165 170 175

Asp Gln Leu Val Trp Arg Ala Ala Arg Ser Ser Gly Ala Ala Pro Thr 180 185 190

Tyr Phe Arg Pro Asn Gly Arg Phe Leu Asp Gly Gly Leu Leu Ala Asn 195 200 205

Asn Pro Thr Leu Asp Ala Met Thr Glu Ile His Glu Tyr Asn Gln Asp 210 220

Leu Ile Arg Lys Gly Gln Ala Asn Lys Val Lys Lys Leu Ser Ile Val 225 230 235 240

Val Ser Leu Gly Thr Gly Arg Ser Pro Gln Val Pro Val Thr Cys Val 245 250 255

Asp Val Phe Arg Pro Ser Asn Pro Trp Glu Leu Ala Lys Thr Val Phe 260 265 270

Gly Ala Lys Glu Leu Gly Lys Met Val Val Asp Cys Cys Thr Asp Pro 275 280 285

Asp Gly Arg Pro 290

48

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2109 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 43..2103

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GAA	TTCC	GGG	ACGG	TGGG	GC C	TCCC	CACC	T GC	CCCG	CAGA		ATG Met				54
_															AAC Asn 20	102
															GAC Asp	150
															AAC Asn	198
															GGA Gly	246
					CTG Leu											294
CAT His 85	CAG Gln	TAT Tyr	TCT Ser	TCC Ser	CAG Gln 90	CTG Leu	CTA Leu	CCC Pro	TTC Phe	TAT Tyr 95	GAG Glu	AGC Ser	TCC Ser	CCT Pro	CAG Gln 100	342
GTC Val	CTG Leu	CAC His	ACT Thr	GAG Glu 105	GTC Val	CTG Leu	CAG Gln	CAC His	CTG Leu 110	ACC Thr	GAC Asp	CTC Leu	ATC Ile	CGT Arg 115	AAC Asn	390
CAC His	CCC Pro	AGC Ser	TGG Trp 120	TCA Ser	GTG Val	GCC Ala	CAC His	CTG Leu 125	GCT Ala	GTG Val	GAG Glu	CTA Leu	GGG Gly 130	ATC Ile	CGC Arg	438
GAG Glu	TGC Cys	TTC Phe 135	CAT His	CAC His	AGC Ser	CGT Arg	ATC Ile 140	ATC Ile	AGC Ser	TGT Cys	GCC Ala	AAT Asn 145	TGC Cys	GCG Ala	GAG Glu	486
AAC Asn	GAG Glu 150	GAG Glu	GGC Gly	TGC Cys	ACA Thr	CCC Pro 155	CTG Leu	CAC His	CTG Leu	GCC Ala	TGC Cys 160	CGC Arg	AAG Lys	GGT Gly	GAT Asp	534
GGG Gly 165	GAG Glu	ATC Ile	CTG Leu	GTG Val	GAG Glu 170	CTG Leu	GTG Val	CAG Gln	TAC Tyr	TGC Cys 175	CAC His	ACT Thr	CAG Gln	ATG Met	GAT Asp 180	582

GTC Val	ACC Thr	GAC Asp	TAC Tyr	AAG Lys 185	Gly	GAG Glu	ACC Thr	GTC Val	TTC Phe 190	His	TAT	GCT Ala	GTC Val	CAG Gln 195	GGT Gly	630
GAC Asp	AAT Asn	TCT Ser	CAG Gln 200	GTG Val	CTG Leu	CAG Gln	CTC Leu	CTT Leu 205	Gly	AGG Arg	AAC Asn	GCA Ala	GTG Val 210	GCT Ala	GGC Gly	678
CTG Leu	AAC Asn	CAG Gln 215	Val	AAT Asn	AAC Asn	CAA Gln	GGG Gly 220	CTG Leu	ACC Thr	CCG Pro	CTG Leu	CAC His 225	CTG Leu	GCC Ala	TGC Cys	726
		Gly	AAG Lys													774
CGG Arg 245	Cys	AAC Asn	ATC Ile	ATG Met	GGC Gly 250	CCC Pro	AAC Asn	GGC Gly	TAC Tyr	CCC Pro 255	ATC Ile	CAC His	TCG Ser	GCC Ala	ATG Met 260	822
AAG Lys	TTC Phe	TCT Ser	CAG Gln	AAG Lys 265	GGG Gly	TGT Cys	GCG Ala	GAG Glu	ATG Met 270	ATC Ile	ATC Ile	AGC Ser	ATG Met	GAC Asp 275	AGC Ser	870
AGC Ser	CAG Gln	ATC Ile	CAC His 280	AGC Ser	AAA Lys	GAC Asp	CCC Pro	CGT Arg 285	TAC Tyr	GGA Gly	GCC Ala	AGC Ser	CCC Pro 290	CTC Leu	CAC His	918
			AAC Asn													966
			AGC Ser													1014
GTG Val 325	ATG Met	CGC Arg	AAC Asn	CGC Arg	TTC Phe 330	GAC Asp	TGT Cys	GCC Ala	ATA Ile	GTG Val 335	CTG Leu	CTG Leu	ACC Thr	CAC His	GGG Gly 340	1062
GCC Ala	AAC Asn	GCG Ala	GAT Asp	GCC Ala 345	CGC Arg	GGA Gly	GAG Glu	CAC His	GGC Gly 350	AAC Asn	ACC Thr	CCG Pro	CTG Leu	CAC His 355	CTG Leu	1110
GCC Ala	ATG Met	TCG Ser	AAA Lys 360	GAC Asp	AAC Asn	GTG Val	GAG Glu	ATG Met 365	ATC Ile	AAG Lys	GCC Ala	CTC Leu	ATC Ile 370	GTG Val	TTC Phe	1158
GGA Gly	GCA Ala	GAA Glu 375	GTG Val	GAC Asp	ACC Thr	CCG Pro	AAT Asn 380	GAC Asp	TTT Phe	GGG Gly	GAG Glu	ACT Thr 385	CCT Pro	ACA Thr	TTC Phe	1206
			AAA Lys													1254
GCC Ala 405	CGG Arg	AAG Lys	CCA Pro	GCG Ala	TTC Phe 410	ATC Ile	CTG Leu	GGC Gly	TCC Ser	ATG Met 415	AGG Arg	GAC Asp	GAG Glu	AAG Lys	CGG Arg 420	1302
ACC Thr	CAC His	GAC Asp	CAC His	CTG Leu 425	CTG Leu	TGC Cys	CTG Leu	GAT Asp	GGA Gly 430	GGA Gly	GGA Gly	GTG Val	AAA Lys	GGC Gly 435	CTC Leu	1350
ATC Ile	ATC Ile	ATC Ile	CAG Gln 440	CTC Leu	CTC Leu	ATC Ile	GCC Ala	ATC Ile 445	GAG Glu	AAG Lys	GCC Ala	TCG Ser	GGT Gly 450	GTG Val	GCC Ala	1398

PCT/US96/17794 WO 97/17448

_															ATC Ile	1446
		Leu													GGC Gly	1494
	Tyr														TAC Tyr 500	1542
_	TCG Ser														CAC His	1590
															ACA Thr	1638
_	TCT Ser														GAT Asp	1686
	CCA Pro 550														CTC Leu	1734
	CCT Pro															1782
	AGC Ser															1830
	GGT Gly															1878
ATC Ile	CAT His	GAG Glu 615	TAC Tyr	AAT Asn	CAG Gln	GAC Asp	CTG Leu 620	ATC Ile	CGC Arg	AAG Lys	GGT Gly	CAG Gln 625	GCC Ala	AAC Asn	AAG Lys	1926
GTG Val	AAG Lys 630	AAA Lys	CTC Leu	TCC Ser	ATC Ile	GTT Val 635	GTC Val	TCC Ser	CTG Leu	GGG Gly	ACA Thr 640	GGG Gly	AGG Arg	TCC Ser	CCA Pro	1974
CAA Gln 645	GTG Val	CCT Pro	GTG Val	ACC Thr	TGT Cys 650	GTG Val	GAT Asp	GTC Val	TTC Phe	CGT Arg 655	CCC Pro	AGC Ser	AAC Asn	CCC Pro	TGG Trp 660	2022
GAG Glu	CTG Leu	GCC Ala	AAG Lys	ACT Thr 665	GTT Val	TTT Phe	GGG Gly	GCC Ala	AAG Lys 670	GAA Glu	CTG Leu	GGC Gly	AAG Lys	ATG Met 675	GTG Val	2070
	GAC Asp	Cys									GAAT	TC				2109

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 687 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Gln Phe Phe Gly Arg Leu Val Asn Thr Phe Ser Gly Val Thr Asn Leu Phe Ser Asn Pro Phe Arg Val Lys Glu Val Ala Val Ala Asp Tyr Thr Ser Ser Asp Arg Val Arg Glu Glu Gly Gln Leu Ile Leu Phe Gln Asn Thr Pro Asn Arg Thr Trp Asp Cys Val Leu Val Asn Pro Arg Asn Ser Gln Ser Gly Phe Arg Leu Phe Gln Leu Glu Leu Glu Ala Asp Ala Leu Val Asn Phe His Gln Tyr Ser Ser Gln Leu Leu Pro Phe Tyr Glu Ser Ser Pro Gln Val Leu His Thr Glu Val Leu Gln His Leu Thr Asp Leu Ile Arg Asn His Pro Ser Trp Ser Val Ala His Leu Ala Val Glu Leu Gly Ile Arg Glu Cys Phe His His Ser Arg Ile Ile Ser Cys Ala Asn Cys Ala Glu Asn Glu Glu Gly Cys Thr Pro Leu His Leu Ala Cys Arg Lys Gly Asp Gly Glu Ile Leu Val Glu Leu Val Gln Tyr Cys His Thr Gln Met Asp Val Thr Asp Tyr Lys Gly Glu Thr Val Phe His Tyr Ala Val Gln Gly Asp Asn Ser Gln Val Leu Gln Leu Leu Gly Arg Asn Ala Val Ala Gly Leu Asn Gln Val Asn Asn Gln Gly Leu Thr Pro Leu His Leu Ala Cys Gln Leu Gly Lys Gln Glu Met Val Arg Val Leu Leu Leu Cys Asn Ala Arg Cys Asn Ile Met Gly Pro Asn Gly Tyr Pro Ile His Ser Ala Met Lys Phe Ser Gln Lys Gly Cys Ala Glu Met Ile Ile Ser Met Asp Ser Ser Gln Ile His Ser Lys Asp Pro Arg Tyr Gly Ala Ser Pro Leu His Trp Ala Lys Asn Ala Glu Met Ala Arg Met Leu Leu

Lys Arg Gly Cys Asn Val Asn Ser Thr Ser Ser Ala Gly Asn Thr Ala Leu His Val Gly Val Met Arg Asn Arg Phe Asp Cys Ala Ile Val Leu

Leu	Thr	His	340		Asn	Ala	. Asp	Ala 345		r Gly	Glu	His	350		Thr
Pro	Leu	His 355		Ala	Met	Ser	Lys 360		Asn	Val	Glu	Met 365		Lys	Ala
Leu	Ile 370		Phe	Gly	Ala	Glu 375		Asp	Thr	Pro	Asn 380		Phe	Gly	Glu
Thr 385	Pro	Thr	Phe	Leu	Ala 390	Ser	Lys	Ile	Gly	Lys 395		Gln	Asp	Leu	Met 400
His	Ile	Ser	Arg	Ala 405		Lys	Pro	Ala	Phe 410		Leu	Gly	Ser	Met 415	Arg
Asp	Glu	Lys	Arg 420	Thr	His	Asp	His	Leu 425	Leu	Cys	Leu	Asp	Gly 430	_	Gly
Val	Lys	Gly 43 5		Ile	Ile	Ile	Gln 440		Leu	Ile	Ala	Ile 445		Lys	Ala
Ser	Gly 450	Val	Ala	Thr	Lys	Asp 455		Phe	Asp	Trp	Val 460	Ala	Gly	Thr	Ser
Thr 465	Gly	Gly	Ile	Leu	Ala 470	Leu	Ala	Ile	Leu	His 475	Ser	Lys	Ser	Met	Ala 480
Tyr	Met	Arg	Gly	Met 485	Tyr	Phe	Arg	Met	Lys 490	Asp	Glu	Val	Phe	Arg 495	Gly
Ser	Arg	Pro	Tyr 500	Glu	Ser	Gly	Pro	Leu 505	Glu	Glu	Phe	Leu	Lys 510	Arg	Glu
Phe	Gly	Glu 515	His	Thr	Lys	Met	Thr 520	Asp	Val	Arg	Lys	Pro 525	Lys	Val	Met
Leu	Thr 530	Gly	Thr	Leu	Ser	Asp 535	Arg	Gln	Pro	Ala	Glu 540	Leu	His	Leu	Phe
Arg 545	Asn	Tyr	Asp	Ala	Pro 550	Glu	Thr	Val	Arg	Glu 555	Pro	Arg	Phe	Asn	Gln 560
Asn	Val	Asn	Leu	Arg 565	Pro	Pro	Ala	Gln	Pro 570	Ser	Asp	Gln	Leu	Val 575	Trp
Arg	Ala	Ala	Arg 580	Ser	Ser	Gly	Ala	Ala 5 8 5	Pro	Thr	Tyr	Phe	Arg 590	Pro	Asn
Gly	Arg	Phe 595	Leu	Asp	Gly	Gly	Leu 600	Leu	Ala	Asn	Asn	Pro 605	Thr	Leu	Asp
Ala	Met 610	Thr	Glu	Ile	His	Glu 615	Tyr	Asn	Gln	Asp	Leu 620	Ile	Arg	Lys	Gly
Gln 625	Ala	Asn	Lys	Val	Lys 630	Lys	Leu	Ser	Ile	Val 635	Val	Ser	Leu	Gly	Thr 640
Gly	Arg	Ser	Pro	Gln 645	Val	Pro	Val	Thr	Cys 650	Val	Asp	Val	Phe	Arg 655	Pro
Ser	Asn	Pro	Trp 660	Glu	Leu	Ala	Lys	Thr 665	Val	Phe	Gly	Ala	Lys 670	Glu	Leu
Gly	Lys	Met 675	Val	Val	Asp	Cys	Cys 6 8 0	Thr	Asp	Pro	Asp	Gly 685	Arg	Pro	
(2)	717DA	~ · · · ·	T			_									

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2112 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 43..2106
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GAA	TTCC	GGG .	ACGG	TGGG	GC C'	TCCC	CACC'	T GC	CCCG	CAGA				TTC ' Phe		54
					ACC Thr 10											102
					GAG Glu											150
					GGG Gly											198
					GTC Val											246
					CTG Leu											294
CAT His 85	CAG Gln	TAT Tyr	TCT Ser	TCC Ser	CAG Gln 90	CTG Leu	CTA Leu	CCC Pro	TTC Phe	TAT Tyr 95	GAG Glu	AGC Ser	TCC Ser	CCT Pro	CAG Gln 100	342
GTC Val	CTG Leu	CAC His	ACT Thr	GAG Glu 105	GTC Val	CTG Leu	CAG Gln	CAC His	CTG Leu 110	ACC Thr	GAC Asp	CTC Leu	ATC Ile	CGT Arg 115	AAC Asn	390
CAC His	CCC Pro	AGC Ser	TGG Trp 120	TCA Ser	GTG Val	GCC Ala	CAC His	CTG Leu 125	GCT Ala	GTG Val	GAG Glu	CTA Leu	GGG Gly 130	ATC Ile	CGC Arg	438
GAG Glu	TGC Cys	TTC Phe 135	CAT His	CAC His	AGC Ser	CGT Arg	ATC Ile 140	ATC Ile	AGC Ser	TGT Cys	GCC Ala	AAT Asn 145	TGC Cys	GCG Ala	GAG Glu	486
					ACA Thr											534
GGG Gly 165	GAG Glu	ATC Ile	CTG Leu	GTG Val	GAG Glu 170	CTG Leu	GTG Val	CAG Gln	TAC Tyr	TGC Cys 175	CAC His	ACT Thr	CAG Gln	ATG Met	GAT Asp 180	582

_	_				Gly					His					GGT Gly	630
				Val					Gly					Ala	GGC Gly	678
			Val			CAA Gln							Leu		TGC Cys	726
_		Gly				ATG Met 235										774
	Cys					CCC Pro										822
	_					TGT Cys										870
AGC Ser	CAG Gln	ATC Ile	CAC His 280	Ser	AAA Lys	GAC Asp	CCC Pro	CGT Arg 285	TAC Tyr	GGA Gly	GCC Ala	AGC Ser	CCC Pro 290	CTC Leu	CAC His	918
	_					ATG Met										966
						TCC Ser 315										1014
						GAC Asp										1062
						GGA Gly										1110
						GTG Val										1158
						CCG Pro										1206
						AGA Arg 395										1254
						TTC Phe										1302
			Asp			CTG Leu										1350
						CTC Leu	Ile									1398

GCC Ala	ACC Thr	AAG Lys 455	Asp	CTG Leu	TTT Phe	GAC Asp	TGG Trp 460	Val	GCG Ala	GGC Gly	ACC Thr	AGC Ser 465	ACT Thr	GGA Gly	GGC Gly	1446
ATC Ile	CTG Leu 470	Ala	CTG Leu	GCC Ala	ATT	CTG Leu 475	CAC His	AGT Ser	AAG Lys	TCC Ser	ATG Met 480	GCC Ala	TAC Tyr	ATG Met	CGC Arg	1494
GGC Gly 485	Met	TAC Tyr	TTT Phe	CGC Arg	ATG Met 490	AAG Lys	GAT Asp	GAG Glu	GTG Val	TTC Phe 495	CGG Arg	GGC Gly	TCC Ser	AGG Arg	CCC Pro 500	1542
TAC Tyr	GAG Glu	TCG Ser	GGG Gly	CCC Pro 505	CTG Leu	GAG Glu	GAG Glu	TTC Phe	CTG Leu 510	AAG Lys	CGG Arg	GAG Glu	TTT Phe	GGG Gly 515	GAG Glu	1590
CAC His	ACC Thr	AAG Lys	ATG Met 520	ACG Thr	GAC Asp	GTC Val	AGG Arg	AAA Lys 525	CCC Pro	AAG Lys	GTG Val	ATG Met	CTG Leu 530	ACA Thr	GGG Gly	1638
ACA Thr	CTG Leu	TCT Ser 535	GAC Asp	CGG Arg	CAG Gln	CCG Pro	GCT Ala 540	GAA Glu	CTC Leu	CAC His	CTC Leu	TTC Phe 545	CGG Arg	AAC Asn	TAC Tyr	1686
GAT Asp	GCT Ala 550	CCA Pro	GAA Glu	ACT Thr	GTC Val	CGG Arg 555	GAG Glu	CCT Pro	CGT Arg	TTC Phe	AAC Asn 560	CAG Gln	AAC Asn	GTT Val	AAC Asn	1734
CTC Leu 565	AGG Arg	CCT Pro	CCA Pro	GCT Ala	CAG Gln 570	CCC Pro	TCA Ser	GAC Asp	CAG Gln	CTG Leu 575	GTG Val	TGG Trp	CGG Arg	GCG Ala	GCC Ala 580	1782
CGA Arg	AGC Ser	AGC Ser	GGG Gly	GCA Ala 585	GCT Ala	CCT Pro	ACT Thr	TAC Tyr	TTC Phe 590	CGA Arg	CCC Pro	AAT Asn	GGG Gly	CGC Arg 595	TTC Phe	1830
CTG Leu	GAC Asp	GGT Gly	GGG Gly 600	CTG Leu	TTG Leu	GCC Ala	AAC Asn	AAC Asn 605	CCC Pro	ACG Thr	CTG Leu	GAT Asp	GCC Ala 610	ATG Met	ACC Thr	1878
GAG Glu	ATC Ile	CAT His 615	GAG Glu	TAC Tyr	AAT Asn	CAG Gln	GAC Asp 620	CTG Leu	ATC Ile	CGC Arg	AAG Lys	GGT Gly 625	CAG Gln	GCC Ala	AAC Asn	1926
AAG Lys	GTG Val 630	AAG Lys	AAA Lys	CTC Leu	TCC Ser	ATC Ile 635	GTT Val	GTC Val	TCC Ser	CTG Leu	GGG Gly 640	ACA Thr	GGG Gly	AGG Arg	TCC Ser	1974
CCA Pro 645	CAA Gln	GTG Val	CCT Pro	GTG Val	ACC Thr 650	TGT Cys	GTG Val	GAT Asp	GTC Val	TTC Phe 655	CGT Arg	CCC Pro	AGC Ser	AAC Asn	CCC Pro 660	2022
TGG Trp	GAG Glu	CTG Leu	GCC Ala	AAG Lys 665	ACT Thr	GTT Val	TTT Phe	GGG Gly	GCC Ala 670	AAG Lys	GAA Glu	CTG Leu	GGC Gly	AAG Lys 675	ATG Met	2070
GTG Val	GTG Val	GAC Asp	TGT Cys 680	TGC Cys	ACG Thr	GAT Asp	CCA Pro	GAC Asp 685	GGG Gly	CGG Arg	CCG Pro	GAAT	TC			2112

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 688 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Gln Phe Phe Gly Arg Leu Val Asn Thr Phe Ser Gly Val Thr Asn Leu Phe Ser Asn Pro Phe Arg Val Lys Glu Val Ala Val Ala Asp Tyr Thr Ser Ser Asp Arg Val Arg Glu Glu Gly Gln Leu Ile Leu Phe Gln Asn Thr Pro Asn Arg Thr Trp Asp Cys Val Leu Val Asn Pro Arg Asn Ser Gln Ser Gly Phe Arg Leu Phe Gln Leu Glu Leu Glu Ala Asp Ala Leu Val Asn Phe His Gln Tyr Ser Ser Gln Leu Leu Pro Phe Tyr Glu Ser Ser Pro Gln Val Leu His Thr Glu Val Leu Gln His Leu Thr Asp Leu Ile Arg Asn His Pro Ser Trp Ser Val Ala His Leu Ala Val Glu Leu Gly Ile Arg Glu Cys Phe His His Ser Arg Ile Ile Ser Cys Ala Asn Cys Ala Glu Asn Glu Glu Gly Cys Thr Pro Leu His Leu Ala Cys Arg Lys Gly Asp Gly Glu Ile Leu Val Glu Leu Val Gln Tyr Cys His Thr Gln Met Asp Val Thr Asp Tyr Lys Gly Glu Thr Val Phe His Tyr Ala Val Gln Gly Asp Asn Ser Gln Val Leu Gln Leu Leu Gly Arg Asn Ala Val Ala Gly Leu Asn Gln Val Asn Asn Gln Gly Leu Thr Pro Leu His Leu Ala Cys Gln Leu Gly Lys Gln Glu Met Val Arq Val Leu Leu Leu Cys Asn Ala Arg Cys Asn Ile Met Gly Pro Asn Gly Tyr Pro Ile His Ser Ala Met Lys Phe Ser Gln Lys Gly Cys Ala Glu Met Ile Ile Ser Met Asp Ser Ser Gln Ile His Ser Lys Asp Pro Arg Tyr Gly Ala Ser Pro Leu His Trp Ala Lys Asn Ala Glu Met Ala Arg Met Leu Leu Lys Arg Gly Cys Asn Val Asn Ser Thr Ser Ser Ala Gly Asn Thr Ala Leu His Val Gly Val Met Arg Asn Arg Phe Asp Cys Ala Ile Val Leu

Leu Thr His Gly Ala Asn Ala Asp Ala Arg Gly Glu His Gly Asn Thr Pro Leu His Leu Ala Met Ser Lys Asp Asn Val Glu Met Ile Lys Ala Leu Ile Val Phe Gly Ala Glu Val Asp Thr Pro Asn Asp Phe Gly Glu Thr Pro Thr Phe Leu Ala Ser Lys Ile Gly Arg Gln Leu Gln Asp Leu Met His Ile Ser Arg Ala Arg Lys Pro Ala Phe Ile Leu Gly Ser Met Arg Asp Glu Lys Arg Thr His Asp His Leu Leu Cys Leu Asp Gly Gly Gly Val Lys Gly Leu Ile Ile Ile Gln Leu Leu Ile Ala Ile Glu Lys Ala Ser Gly Val Ala Thr Lys Asp Leu Phe Asp Trp Val Ala Gly Thr Ser Thr Gly Gly Ile Leu Ala Leu Ala Ile Leu His Ser Lys Ser Met Ala Tyr Met Arg Gly Met Tyr Phe Arg Met Lys Asp Glu Val Phe Arg Gly Ser Arg Pro Tyr Glu Ser Gly Pro Leu Glu Glu Phe Leu Lys Arg Glu Phe Gly Glu His Thr Lys Met Thr Asp Val Arg Lys Pro Lys Val Met Leu Thr Gly Thr Leu Ser Asp Arg Gln Pro Ala Glu Leu His Leu Phe Arg Asn Tyr Asp Ala Pro Glu Thr Val Arg Glu Pro Arg Phe Asn Gln Asn Val Asn Leu Arg Pro Pro Ala Gln Pro Ser Asp Gln Leu Val Trp Arg Ala Ala Arg Ser Ser Gly Ala Ala Pro Thr Tyr Phe Arg Pro Asn Gly Arg Phe Leu Asp Gly Gly Leu Leu Ala Asn Asn Pro Thr Leu Asp Ala Met Thr Glu Ile His Glu Tyr Asn Gln Asp Leu Ile Arg Lys Gly Gln Ala Asn Lys Val Lys Lys Leu Ser Ile Val Val Ser Leu Gly Thr Gly Arg Ser Pro Gln Val Pro Val Thr Cys Val Asp Val Phe Arg Pro Ser Asn Pro Trp Glu Leu Ala Lys Thr Val Phe Gly Ala Lys Glu Leu Gly Lys Met Val Val Asp Cys Cys Thr Asp Pro Asp Gly Arg Pro

(2) INFORMATION FOR SEQ ID NO:24:

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear								
(ii)	MOLECULE TYPE: oligonucleotides								
(iii)	HYPOTHETICAL: NO								
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:24:								
CATGGGACC	CC GCTGGCTTTC C	2:							
(2) INFOR	RMATION FOR SEQ ID NO:25:								
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear								
(ii)	MOLECULE TYPE: oligonucleotides								
(iii)	HYPOTHETICAL: NO								
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:25:								
GGCAGGAAC	C GCCACTGGGG GC	22							

WHAT IS CLAIMED IS:

1. A composition comprising a purified phospholipase enzyme characterized by (a) activity in the absence of calcium; (b) a molecular weight of 86 kD on SDS-PAGE; and (c) the presence of one or more amino acid sequences selected from the group consisting of YGASPLHXAK, MKDEVFR, EFGEHTK, VMLTGTLSDR, XXGAAPTYFRP and TVFGAK, wherein X represents any amino acid residue.

- 2. The composition of claim 1 wherein said enzyme is further characterized by activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine.
- 3. The composition of claim 2 wherein said enzyme has a specific activity of about 1 μ mol to about 20 μ mol per minute per milligram.
- 4. The composition of claim 1 wherein said enzyme is further characterized by a pH optimum of 6.
- 5. The composition of claim 1 wherein said enzyme is further characterized by the absence of stimulation by adenosine triphosphate.
- 6. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of:
 - (a) the nucleotide sequence of SEQ ID NO:16;
 - (b) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:17;

(c) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:17 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;

- (d) the nucleotide sequence of SEQ ID NO:18;
- (e) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:19;
- (f) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:19 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
 - (g) the nucleotide sequence of SEQ ID NO:20;
 - (h) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:21;
- (i) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:21 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
 - (j) the nucleotide sequence of SEQ ID NO:22;
 - (k) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:23;
- (1) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:23 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
- (m) a nucleotide sequence capable of hybridizing with the sequence of any of (a)(l) which encodes a peptide having activity in a mixed micelle assay with 1-palmitoyl-2[14C]-arachidonyl-phosphatidylcholine; and
 - (n) allelic variants of the sequence of (a), (d), (g) or (j).

7. An expression vector comprising the polynucleotide of claim 6 and an expression control sequence.

- 8. A host cell transformed with the vector of claim 7.
- 9. A process for producing a phospholipase enzyme, said process comprising:
- (a) establishing a culture of the host cell of claim 8 in a suitable culture medium; and
 - (b) isolating said enzyme from said culture.
- 10. A composition comprising a peptide made according to the process of claim 9.
- 11. A composition comprising a peptide encoded by the polynucleotide of claim 6.
- 12. A composition comprising a peptide comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:17;
- (b) a fragment of the amino acid sequence of SEQ ID NO:17 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
 - (c) the amino acid sequence of SEQ ID NO:19;
- (d) a fragment of the amino acid sequence of SEQ ID NO:19 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
 - (e) the amino acid sequence of SEQ ID NO:21;

(f) a fragment of the amino acid sequence of SEQ ID NO:21 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;

- (g) the amino acid sequence of SEQ ID NO:23; and
- (h) a fragment of the amino acid sequence of SEQ ID NO:23 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine.
- 13. A method for identifying an inhibitor of phospholipase activity, said method comprising:
 - (a) combining a phospholipid, a candidate inhibitor compound, and a composition comprising a phospholipase enzyme peptide; and
 - (b) observing whether said phospholipase enzyme peptide cleaves said phospholipid and releases fatty acid thereby,

wherein said composition is the composition of claim 1.

- 14. An inhibitor of phospholipase activity identified according to the method of claim 13.
- 15. A pharmaceutical composition comprising a therapeutically effective amount of the inhibitor of claim 14 and a pharmaceutically acceptable carrier.
- 16. A method of reducing inflammation comprising administering a pharmaceutical composition of claim 15 to a mammalian subject.

17. A composition comprising an antibody which binds to the peptide of the composition of claim 1.

- 18. The composition of claim 17 wherein said antibody is polyclonal.
- 19. The composition of claim 17 wherein said antibody is monoclonal.
- 20. The polynucleotide of claim 6 comprising the nucleotide sequence of SEQ ID NO:16.
- 21. The polynucleotide of claim 6 comprising a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:17.
- The polynucleotide of claim 6 comprising the nucleotide sequence of SEQ ID NO:18.
- 23. The polynucleotide of claim 6 comprising a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:19.
- 24. The polynucleotide of claim 6 comprising the nucleotide sequence of SEQ ID NO:20.
- 25. The polynucleotide of claim 6 comprising a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:21.

26. The polynucleotide of claim 6 comprising the nucleotide sequence of SEQ ID NO:22.

- 27. The polynucleotide of claim 6 comprising a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:23.
- 28. A composition comprising a purified mammalian calcium independent phospholipase A_2/B enzyme.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

1 2 3 4 5 6

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 May 1997 (15.05.1997)

PCT

(10) International Publication Number WO 97/17448 A3

- (51) International Patent Classification⁶: C12N 15/55, 9/16, 5/10, C07K 16/40, A61K 38/46, 39/395
- (74) Agent: BROWN, Scott, A.: Genetics Institute, Inc., 87 CambridgePark Drive, Cambridge, MA 02140 (US).
- (21) International Application Number: PCT/US96/17794
- (81) Designated States (national): AU, CA, JP, MX.

(22) International Filing Date:

7 November 1996 (07.11.1996)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

08/555,568

8 November 1995 (08.11.1995) US

- (71) Applicant: GENETICS INSTITUTE, INC. [US/US]; 87 CambridgePark Drive, Cambridge, MA 02140 (US).
- (72) Inventors: JONES, Simon; 26 Berkeley Street, Somerville, MA 02143 (US). TANG, Jin; 308 Pleasant Street, Canton, MA 02021 (US).

(84) Designated States (regional): European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published:

with international search report

(88) Date of publication of the international search report:

6 December 2001

(15) Information about Correction:

Previous Correction:

see PCT Gazette No. 32/1997 of 24 July 1997, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

97/17448 A3

INTERNATIONAL SEARCH REPORT

onal Application No Inter PC:/US 96/17794

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/55 C12N9/16 A61K39/395

C12N5/10

C07K16/40

A61K38/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	EMBL SEQUENCE DATA LIBRARY, 2 July 1995, HEIDELBERG, GERMANY, XP002030401 HILLIER, L., ET AL.: "THE WashU-MERCK EST PROJECT" ACCESSION No.H10676 see the whole document		
X	THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 267, no. 19, 5 July 1992, pages 13418-13424, XP002030402 GASSAMA-DIAGNE, A., ET AL .: "SUBSTRATE SPECIFICITY OF PHOSPHOLIPASE B FROM GUINEA PIG INTESTINE" see the whole document	13,14,28	

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
29 April 1997	16. 05. 97
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Holtorf, S

INTERNATIONAL SEARCH REPORT

Intervional Application No
PUI/US 96/17794

ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
US 5 356 787 A (GROSS RICHARD) 18 October 1994 see the whole document	13,14
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 264, no. 16, 5 June 1989, pages 9470-9475, XP002030403 GASSAMA-DIAGNE, A., ET AL .: "PURIFICATION OF A NEW, CALCIUM-INDEPENDENT, HIGH MOLECULAR WEIGHT PHOSPHOLIPASE A2/LYSOPHOSPHOLIPASE (PHOSPHOLIPASE B) FROM GUINEA PIG INTESTINAL BRUSH-BORDER MEMBRANE" cited in the application see the whole document	28
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 306, no. 2, 1 November 1993, pages 534-540, XP000673197 DE CARVALHO, M.S., ET AL .: "THE 85-kDa, ARACHIDONIC ACID-SPECIFIC PHOSPHOLIPASE A2 IS EXPRESSED AS AN ACTIVATED PHOSPHOPROTEIN IN Sf9 CELLS" see the whole document	28
US 5 322 776 A (KNOPF JOHN L ET AL) 21 June 1994 see the whole document	13-16
US 5 466 595 A (JONES SIMON ET AL) 14 November 1995	1-5, 7-11, 13-19,28
US 5 554 511 A (JONES SIMON ET AL) 10 September 1996 see the whole document	1-5, 7-11, 13-19,28
US 5 589 170 A (JONES SIMON ET AL) 31 December 1996 see the whole document	1-5, 7-11, 13-19,28
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, no. 13, 28 March 1997, pages 8567-8575, XP000673203 TANG, J., ET AL .: "A NOVEL CYTOSOLIC CALCIUM-INDEPENDENT PHOSPHOLIPASE A2 CONTAINS EIGHT ANKYRIN MOTIFS" see the whole document	1-28
	US 5 356 787 A (GROSS RICHARD) 18 October 1994 see the whole document THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 264, no. 16, 5 June 1989, pages 9470-9475, XP002030403 GASSAMA-DIAGNE, A., ET AL .: "PURIFICATION OF A NEW, CALCIUM-INDEPENDENT, HIGH MOLECULAR WEIGHT PHOSPHOLIPASE A2/LYSOPHOSPHOLIPASE (PHOSPHOLIPASE B) FROM GUINEA PIG INTESTINAL BRUSH-BORDER MEMBRANE" cited in the application see the whole document ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 306, no. 2, 1 November 1993, pages 534-540, XP000673197 DE CARVALHO, M.S., ET AL .: "THE 85-kDa, ARACHIDONIC ACID-SPECIFIC PHOSPHOLIPASE A2 IS EXPRESSED AS AN ACTIVATED PHOSPHOPROTEIN IN S79 CELLS" see the whole document US 5 322 776 A (KNOPF JOHN L ET AL) 21 June 1994 see the whole document US 5 466 595 A (JONES SIMON ET AL) 14 November 1995 see the whole document US 5 589 170 A (JONES SIMON ET AL) 10 September 1996 see the whole document US 5 589 170 A (JONES SIMON ET AL) 31 December 1996 see the whole document THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, no. 13, 28 March 1997, pages 8567-8575, XP000673203 TANG, J., ET AL .: "A NOVEL CYTOSOLIC CALCIUM-INDEPENDENT PHOSPHOLIPASE A2 CONTAINS EIGHT ANKYRIN MOTIFS"

2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intrional Application No
PUI/US 96/17794

Publication date	Patent family member(s)	Publication date
18-10-94	WO 9425623 A	10-11-94
21-06-94	US 5354677 A US 5593878 A US 5527698 A	11-10-94 14-01-97 18-06-96
14-11-95	AU 2911295 A WO 9603512 A US 5589170 A US 5554511 A	22-02-96 08-02-96 31-12-96 10-09-96
10-09-96	US 5466595 A AU 2911295 A WO 9603512 A US 5589170 A	14-11-95 22-02-96 08-02-96 31-12-96
31-12-96	US 5466595 A AU 2911295 A WO 9603512 A US 5554511 A	14-11-95 22-02-96 08-02-96 10-09-96
	18-10-94 21-06-94 14-11-95	18-10-94 W0 9425623 A 21-06-94 US 5354677 A

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 97/17448
C12N 15/55, 9/16, 5/10, C07K 16/40, A61K 38/46, 39/395	A2	(43) International Publication Date: 15 May 1997 (15.05.97
(21) International Application Number: PCT/U (22) International Filing Date: 7 November 1996	S96/177 (07.11.9	BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC
(30) Priority Data: 08/555,568 8 November 1995 (08.11.9	95) l	US Without international search report and to be republished upon receipt of that report.
(71) Applicant: GENETICS INSTITUTE, INC. [US/US] bridgePark Drive, Cambridge, MA 02140 (US).	; 87 Ca	ım-
(72) Inventors: JONES, Simon; 26 Berkeley Street, Some 02143 (US). TANG, Jin; 308 Pleasant Street, Ca 02021 (US).		
(74) Agent: BROWN, Scott, A.; Genetics Institute, CambridgePark Drive, Cambridge, MA 02140 (U		87

(54) Title: CALCIUM INDEPENDENT CYTOSOLIC PHOSPHOLIPASE A2/B ENZYMES

(57) Abstract

The invention provides a novel calcium-independent cytosolic phospholipase A₂/B enzyme, polynucleotides encoding such enzyme and methods for screening unknown compounds for anti-inflammatory activity mediated by the arachidonic acid cascade.

^{* (}Referred to in PCT Gazette No. 32/1997, Section II)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	ΙE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

CALCIUM INDEPENDENT CYTOSOLIC PHOSPHOLIPASE A2/B ENZYMES

This application is a continuation-in-part of application Ser. No. 08/281,193, filed July 27, 1994.

5

10

15

20

25

30

The present invention relates to a purified calcium independent cytosolic phospholipase A₂/B enzymes which are useful for assaying chemical agents for anti-inflammatory activity.

BACKGROUND OF THE INVENTION

The phospholipase A₂ enzymes comprise a widely distributed family of enzymes which catalyze the hydrolysis of the acyl ester bond of glycerophospholipids at the sn-2 position. One kind of phospholipase A₂ enzymes, secreted phospholipase A₂ or sPLA₂, are involved in a number of biological functions, including phospholipid digestion, the toxic activities of numerous venoms, and potential antibacterial activities. A second kind of phospholipase A₂ enzymes, the intracellular phospholipase A₂ enzymes, also known as cytosolic phospholipase A₂ or cPLA₂, are active in membrane phospholipid turnover and in regulation of intracellular signalling mediated by the multiple components of the well-known arachidonic acid cascade. One or more cPLA₂ enzymes are believed to be responsible for the rate limiting step in the arachidonic acid cascade, namely, release of arachidonic acid from membrane glycerophospholipids. The action of cPLA₂ also results in biosynthesis of platelet activating factor (PAF).

The phospholipase B enzymes are a family of enzymes which catalyze the hydrolysis of the acyl ester bond of glycerophospholipids at the sn-1 and sn-2 positions. The mechanism of hydrolysis is unclear but may consist of initial hydrolysis of the sn-2 fatty acid followed by rapid cleavage of the sn-1 substituent, i.e., functionally equivalent to the combination of phospholipase A₂ and lysophospholipase (Saito et al., Methods of Enzymol., 1991, 197, 446; Gassama-Diagne et al., J. Biol. Chem., 1989, 264, 9470). Whether these two events occur at the same or two distinct active sites has not been resolved. It is also unknown

if these enzymes have a preference for the removal of unsaturated fatty acids, in particular arachidonic acid, at the sn-2 position and accordingly contribute to the arachidonic acid cascade.

Upon release from the membrane, arachidonic acid may be metabolized via the cyclooxygenase pathway to produce the various prostaglandins and thromboxanes, or via the lipoxygenase pathway to produce the various leukotrienes and related compounds. The prostaglandins, leukotrienes and platelet activating factor are well known mediators of various inflammatory states, and numerous anti-inflammatory drugs have been developed which function by inhibiting one or more steps in the arachidonic acid cascade. Use of the present anti-inflammatory drugs which act through inhibition of arachidonic acid cascade steps has been limited by the existence of side effects which may be harmful to various individuals.

5

10

15

20

25

30

A very large industrial effort has been made to identify additional antiinflammatory drugs which inhibit the arachidonic acid cascade. In general, this
industrial effort has employed the secreted phospholipase A₂ enzymes in inhibitor
screening assays, for example, as disclosed in U.S. 4,917,826. However, because
the secreted phospholipase A₂ enzymes are extracellular proteins (i.e., not
cytosolic) and are not specific for hydrolysis of arachidonic acid, they are
presently not believed to participate directly in the arachidonic acid cascade.
While some inhibitors of the small secreted phospholipase A₂ enzymes have antiinflammatory action, such as indomethacin, bromphenacyl bromide, mepacrine,
and certain butyrophenones as disclosed in U.S. 4,239,780, it is presently believed
that inhibitor screening assays should employ cytosolic phospholipase A₂ enzymes
which directly participate in the arachidonic acid cascade.

An improvement in the search for anti-inflammatory drugs which inhibit the arachidonic acid cascade was developed in commonly assigned U.S. Patent No. 5,322,776, incorporated herein by reference. In that application, a cytosolic form of phospholipase A_2 was identified, isolated, and cloned. Use of the cytosolic form of phospholipase A_2 to screen for anti-inflammatory drugs provides a significant improvement in identifying inhibitors of the arachidonic acid cascade. The cytosolic phospholipase A_2 disclosed in U.S. Patent No. 5,322,776 is a 110

kD protein which depends on the presence of elevated levels of calcium inside the cell for its activity. The cPLA₂ of U.S. Patent No. 5,322,776 plays a pivotal role in the production of leukotrienes and prostaglandins initiated by the action of proinflammatory cytokines and calcium mobilizing agents. The cPLA₂ of U.S. Patent No. 5,322,776 is activated by phosphorylation on serine residues and increasing levels of intracellular calcium, resulting in translocation of the enzyme from the cytosol to the membrane where arachidonic acid is selectively hydrolyzed from membrane phospholipids.

In addition to the cPLA₂ of U.S. Patent No. 5,322,776, some cells contain calcium independent phospholipase A₂/B enzymes. For example, such enzymes 10 have been identified in rat, rabbit, canine and human heart tissue (Gross, TCM, 1991, 2, 115; Zupan et al., J. Med. Chem., 1993, 36, 95; Hazen et al., J. Clin. Invest., 1993, 91, 2513; Lehman et al., J. Biol. Chem., 1993, 268, 20713; Zupan et al., J. Biol. Chem., 1992, 267, 8707; Hazen et al., J. Biol. Chem., 1991, 266, 14526; Loeb et al., J. Biol. Chem., 1986, 261, 10467; Wolf et al., J. Biol. 15 Chem., 1985, 260, 7295; Hazen et al., Meth. Enzymol., 1991, 197, 400; Hazen et al., J. Biol. Chem., 1990, 265, 10622; Hazen et al., J. Biol. Chem., 1993, 268, 9892; Ford et al., J. Clin. Invest., 1991, <u>88</u>, 331; Hazen et al., J. Biol. Chem., 1991, 266, 5629; Hazen et al., Circulation Res., 1992, 70, 486; Hazen et al., J. Biol. Chem., 1991, 266, 7227; Zupan et al., FEBS, 1991, 284, 27), as well as rat 20 and human pancreatic islet cells (Ramanadham et al., Biochemistry, 1993, 32, 337; Gross et al., Biochemistry, 1993, 32, 327), in the macrophage-like cell line, P388D₁ (Ulevitch et al., J. Biol. Chem., 1988, 263, 3079; Ackermann et al., J. Biol. Chem., 1994, 269, 9227; Ross et al., Arch. Biochem. Biophys., 1985, 238, 25 247; Ackermann et al., FASEB Journal, 1993, 7(7), 1237), in various rat tissue cytosols (Nijssen et al., Biochim. Biophys. Acta, 1986, 876, 611; Pierik et al., Biochim. Biophys. Acta, 1988, 962, 345; Aarsman et al., J. Biol. Chem., 1989, 264, 10008), bovine brain (Ueda et al., Biochem. Biophys, Res. Comm., 1993, 195, 1272; Hirashima et al., J. Neurochem., 1992, 59, 708), in yeast (Saccharomyces cerevisiae) mitochondria (Yost et al., Biochem. International, 30 1991, 24, 199), hamster heart cytosol (Cao et al., J. Biol. Chem., 1987, 262, 16027), rabbit lung microsomes (Angle et al., Biochim. Biophys. Acta, 1988, 962,

234) and guinea pig intestinal brush-border membrane (Gassama-Diagne et al., J. Biol. Chem., 1989, <u>264</u>, 9470).

It is believed that the calcium independent phospholipase A₂/B enzymes may perform important functions in release of arachidonic acid in specific tissues which are characterized by unique membrane phospholipids, by generating lysophospholipid species which are deleterious to membrane integrity or by remodeling of unsaturated species of membrane phospholipids through deacylation/reacylation mechanisms. The activity of such a phospholipase may well be regulated by mechanisms that are different from that of the cPLA₂ of U.S. Patent No. 5,322,776. In addition the activity may be more predominant in certain inflamed tissues over others. Although the enzymatic activity is not dependent on calcium this does not preclude a requirement for calcium *in vivo*, where the activity may be regulated by the interaction of other protein(s) whose function is dependent upon a calcium flux.

15

20

25

30

10

SUMMARY OF THE INVENTION

In certain embodiments, the present invention provides compositions comprising a purified phospholipase enzyme characterized by (a) activity in the absence of calcium; (b) a molecular weight of 86 kD on SDS-PAGE; and (c) the presence of one or more amino acid sequences selected from the group consisting of NPHSGFR (SEQ ID NO:3), XASXGLNQVNK (SEQ ID NO:4) (X is preferably N or A), YGASPLHXAK (SEQ ID NO:5) (X is preferably W), DNMEMIK (SEQ ID NO:6), GVYFR (SEQ ID NO:7), MKDEVFR (SEQ ID NO:8), EFGEHTK (SEQ ID NO:9), VMLTGTLSDR (SEQ ID NO:10), XYDAPEVIR (SEQ ID NO:11) (X is preferably N), FNQNINLKPPTQPA (SEQ ID NO:12), XXGAAPTYFRP (SEQ ID NO:13) (X is preferably S), TVFGAK (SEQ ID NO:14), and XWSEMVGIQYFR (SEQ ID NO:15) (X is preferably A), wherein X represents any amino acid residue.

In other embodiments, the invention provides compositions comprising a purified phospholipase enzyme characterized by (a) activity in the absence of calcium; (b) a molecular weight of 86 kD on SDS-PAGE; and (c) the presence of one or more amino acid sequences selected from the group consisting of

YGASPLHXAK, MKDEVFR, EFGEHTK, VMLTGTLSDR, XXGAAPTYFRP and TVFGAK, wherein X represents any amino acid residue.

Certain embodiments provide compositions comprising a purified mammalian calcium independent phospholipase A₂/B enzyme.

5

10

15

20

25

30

In other embodiments, the enzyme is further characterized by activity in a mixed micelle assay with 1-palmitoyl-2-[14 C]-arachidonyl-phosphatidylcholine (preferably a specific activity of about 1 μ mol to about 20 μ mol per minute per milligram, more preferably a specific activity of about 1 μ mol to about 5 μ mol per minute per milligram); by a pH optimum of 6; and/or by the absence of stimulation by adenosine triphosphate in the liposome assay.

In other embodiments, the invention provides isolated polynucleotides comprising a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence of SEQ ID NO:1; (b) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:2; (c) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:2 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (d) a nucleotide sequence capable of hybridizing with the sequence of (a), (b) or (c) which encodes a peptide having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; and (e) allelic variants of the sequence of (a). Other embodiments provide an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence of SEQ ID NO:16; (b) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:17; (c) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:17 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (d) the nucleotide sequence of SEQ ID NO:18; (e) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:19; (f) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:19 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (g) the nucleotide sequence of SEQ ID NO:20; (h) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:21; (i) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:21 having activity in a mixed micelle assay

with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (j) the nucleotide sequence of SEQ ID NO:22; (k) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:23; (l) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:23 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; (m) a nucleotide sequence capable of hybridizing with the sequence of any of (a)-(l) which encodes a peptide having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine; and (n) allelic variants of the sequence of (a), (d), (g) or (j). Expression vectors comprising such polynucleotides and host cells transformed with such vectors are also provided by the present invention. Compositions comprising peptides encoded by such polynucleotides are also provided.

10

15

20

25

30

The present invention also provides processes for producing a phospholipase enzyme, said process comprising: (a) establishing a culture of the host cell transformed with a cPLA₂/B encoding polynucleotide in a suitable culture medium; and (b) isolating said enzyme from said culture. Compositions comprising a peptide made according to such processes are also provided.

Certain embodiments of the present invention provide compositions comprising a peptide comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequence of SEQ ID NO:2; and (b) a fragment of the amino acid sequence of SEQ ID NO:2 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine.

Other embodiments provide compositions comprising a peptide comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequence of SEQ ID NO:17; (b) a fragment of the amino acid sequence of SEQ ID NO:17 having activity in a mixed micelle assay with 1-palmitoyl-2-[\frac{14}{C}]-arachidonyl-phosphatidylcholine; (c) the amino acid sequence of SEQ ID NO:19; (d) a fragment of the amino acid sequence of SEQ ID NO:19 having activity in a mixed micelle assay with 1-palmitoyl-2-[\frac{14}{C}]-arachidonyl-phosphatidylcholine; (e) the amino acid sequence of SEQ ID NO:21; (f) a fragment of the amino acid sequence of SEQ ID NO:21 having activity in a mixed micelle assay with 1-palmitoyl-2-[\frac{14}{C}]-arachidonyl-phosphatidylcholine; (g) the amino acid sequence of

SEQ ID NO:23; and (h) a fragment of the amino acid sequence of SEQ ID NO:23 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine.

The present invention also provides methods for identifying an inhibitor of phospholipase activity, said method comprising: (a) combining a phospholipid, a candidate inhibitor compound, and a composition comprising a phospholipase enzyme peptide; and (b) observing whether said phospholipase enzyme peptide cleaves said phospholipid and releases fatty acid thereby, wherein the peptide composition is one of those described above. Inhibitor of phospholipase activity identified by such methods, pharmaceutical compositions comprising a therapeutically effective amount of such inhibitors and a pharmaceutically acceptable carrier, and methods of reducing inflammation by administering such pharmaceutical compositions to a mammalian subject are also provided.

10

15

20

25

30

Polyclonal and monoclonal antibodies to the peptides of the invention are also provided.

BRIEF DESCRIPTION OF THE FIGURES

- Fig. 1: Fractions containing activity eluted from a Mono P column were examined by reducing SDS-PAGE on a 4-20% gradient gel. Activity of each fraction is show above the gel and the 86 kD band is indicated on the silver stained gel. Molecular weight markers are indicated.
- Fig. 2: Active fractions from a Mono p/Heparin column were combined and further purified on a size exclusion column. Activity eluted in the 250-350 kD size range. Examination of the fractions by SDS-PAGE under reducing conditions on 4-20% gel indicated only one protein band correlated with activity at 86 kD. Molecular weight markers are indicated.
- Fig. 3: Active fractions from Mono P eluate and cPLA₂ (0.1-1.0 μ g) were analyzed on two 4-20% SDS gels under reducing conditions run in parallel. One gel was silver stained (A) and in the other gel the proteins were transferred to nitrocellulose. the blot was than probed with an anti-cPLA₂ polyclonal antibody and reactive proteins were visualized with the ECL system (Amersham) (B). Molecular weight markers are indicated.

Fig. 4: The activity of the calcium-independent phospholipase eluted from a Mono P/Heparin column and cPLA₂ were compared under conditions which favor each enzyme; pH 7, 10% glycerol in the absence of calcium and pH 9, 70% glycerol in the presence of calcium, respectively.

- Fig. 5: Activity in the cytosolic extracts of COS cells transfected with: no DNA; plasmid (pED) containing no inserted gene; clone 9 in the antisense orientation; and clones 49, 31 and 9 expressed in pED. The extracts were analyzed under two different assay conditions described for the data presented in Fig. 4.
- Fig. 6: A comparison of sn-2 fatty acid hydrolysis by activity eluted from a Mono P/Heparin column as a function of the fatty acid substituent at either the sn-1 or sn-2 position and the head group. HAPC, SAPC, PLPC, POPC, PPPC, LYSO and PAPC indicate 1-hexadecyl-2-arachidonyl-, 1-stearoyl-2-arachidonyl-, 1-palmitoyl-2-linoleyl-, 1-palmitoyl-2-oleyl-, 1-palmitoyl-2-palmitoyl-15, 1-palmitoyl-, 1-palmitoyl-2-arachidonyl- phosphatidylcholine, respectively. PAPE and SAPI indicate 1-palmitoyl-2-arachidonyl-phosphotidylethanolamine and 1-stearoyl-2-arachidonyl-phosphoinositol, respectively. In all cases the ¹⁴C-labelled fatty acid is in the sn-2 position.
- Fig. 7: A 4-20% SDS-PAGE of lysates (5x10¹⁰ cpm/lane) of ³⁵S20 methionine labelled COS cells transfected with, no DNA, pED (no insert), clone
 9 reverse orientation, clones 9, 31 and 49; lanes 1-6, respectively. Molecular weight markers are indicated.

DETAILED DESCRIPTION OF THE INVENTION

The present inventors have found surprisingly a calcium independent cytosolic phospholipase enzyme, designated calcium independent cytosolic phospholipase A₂/B or calcium independent cPLA₂/B, purified from the cytosol of Chinese hamster ovary (CHO) cells. The activity was also present in the cytosol of tissues and cell extracts listed in Table I.

Table I

tissue/cell	mixed micelle pH 7 (pmol/min/mg)	liposome pH 7 (pmol/min/mg)
rat brain		1-2
rat heart		0.3-0.5
bovine brain		0.4
pig heart	0.8	
CHO-Dukx	10-20	2-5
U937 (ATCC CRL1593)	2	
FBHE (ATCC CRL1395)	2	
H9c2 (ATCC Ccl 108)	15	

5

10

15

20

25

The enzyme was originally purified by more than 8,000-fold from CHO cells by sequential chromatography on diethylaminoethane (DEAE), phenyl and heparin-toyopearl, followed by chromatofocussing on Mono P (as described further in Example 1). In addition the activity could be further purified by size exclusion chromatography after the Mono P column. The enzyme eluted from the size exclusion chromatography column in the 250-350 kD range, indicating the active enzyme may consist of a multimeric complex, or may possibly be associated with phospholipids.

The calcium independent phospholipase activity correlated with a single major protein band of 86 kD on denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of active fractions from the Mono P and size exclusion chromatographic steps; in the latter no protein bands were observed in the 250-350 kD range. The specific activity of the enzyme is about 1 μ mol to about 20 μ mol per minute per milligram based on the abundance of the 86 kD band in the most active fractions eluted from the Mono P and size exclusion

columns in the mixed micelle assay (Example 3B). The protein band was not recognized by a polyclonal antibody directed against the calcium dependent cPLA₂ of U.S. Patent No. 5,322,776.

5

10

15

20

The calcium independent phospholipase of the present invention has a pH optimum of 6; its activity is suppressed by calcium (in all assays) and by triton X-100 (in the assay of Example 3A); and is not stimulated by adenosine triphosphate (ATP) (in the assay of Example 3A). The enzyme is inactivated by high concentration denaturants, e.g. urea above 3M, and by detergents, e.g. CHAPS and octyl glucoside. The calcium-independent phospholipase favors hydrolysis by several fold of unsaturated fatty acids, e.g. linoleyl, oleyl and arachidonyl, at the sn-2 position of a phospholipid compared with palmitoyl. In addition there is a preference for palmitoyl at the sn-1 position over hexadecyl or stearoyl for arachidonyl hydrolysis at the sn-2 position. In terms of head group substituents there is a clear preference for inositol over choline or ethanolamine when arachidonyl is being hydrolyzed at the sn-2 position. Further, as with cPLA, of U.S. Patent No. 5,322,776, there is a significant lysophospholipase activity, i.e. hydrolysis of palmitoyl at the sn-1 position when there is no fatty acid substituent at the sn-2 position. Finally, hydrolysis of fatty acid substituents in the sn-1 or sn-2 in PAPC were compared where either palmitoyl or arachidonyl were labelled with ¹⁴C. Fatty acids were removed at both positions with the sn-2 position having a higher initial rate of hydrolysis by 2-3 fold. This result may indicate sequential hydrolysis of the arachidonyl substituent followed by rapid cleavage of palmitoyl in the lysophospholipid species, which is suggested by the hydrolysis of the individual lipid species. The similar rates of hydrolysis of fatty acid substituents

at the sn-1 (palmitoyl) or sn-2 (arachidonyl) positions, where the radioactive label is in either position, is indicative of a phospholipase B activity. However, the fatty acid substituent at the sn-2 position clearly influences the PLB activity, not the sn-1 fatty acid, since hydrolysis of 1,2-dipalmitoyl substituted phospholipids is substantially less than for the 1-palmitoyl-2-arachidonyl species. These results can be clarified by studying the hydrolysis rates at each position of isotopically dual labelled phospholipids, e.g. ³H and ¹⁴C containing fatty acids at the sn-1 and sn-2 positions, respectively. Therefore, it is prudent to designate the enzyme as a phospholipase A₂/B.

5

A cDNA encoding the calcium independent cPLA₂/B of the present invention was isolated as described in Example 4. The sequence of the cDNA is reported as SEQ ID NO:1. The amino acid sequence encoded by such cDNA is SEQ ID NO:2. The invention also encompasses allelic variations of the cDNA sequence as set forth in SEQ ID NO:1, that is, naturally-occurring alternative forms of the cDNA of SEQ ID NO: 1 which also encode phospholipase enzymes of the present invention.

Other cDNAs encoding a calcium independent cPLA₂/B of the present invention were isolated from human cDNA sources. Two clones identified as "19a" and "19b" were isolated from a Raij cell DNA library derived from Burkitt's lymphoma (ATCC CCL86, commercially available from Clonetech) using a probe derived from the CHO sequence (a 2.1kb SalI-SmaI fragment). Clones 19a and 19b were deposited with the American Type Culture Collection on November 7, 1995 as accession numbers ATCC 69948 and ATCC 69949. The nucleotide sequences of clones 19a and 19b are reported in SEQ ID NO:16 and

11

SEQ ID NO:18, respectively. SEQ ID NO:17 and SEQ ID NO:18 report the corresponding amino acid sequences encoded by the coding regions of clones 19a and 19b, respectively. Clones 19a and 19b are both partial clones of the full-length human enzyme.

SEQ ID NO:20 and SEQ ID NO:22 report the nucleotide sequences of alternative ways in which clones 19a and 19b can be spliced to encode a longer partial clone for the full-length human enzyme. The splice occurs after nucleotide 1225 in SEQ ID NO:20 and after nucleotide 1228 in SEQ ID NO:22. The corresponding spliced amino acid sequences are reported in SEQ ID NO:21 and SEQ ID NO:23. Spliced cDNA clones can be made from clones 19a and 19b in accordance with methods known to those skilled in the art.

5

10

15

20

Full-length clones encoding the human enzyme can be isolated by probing human cDNA libraries containing full-length clones using probes derived from SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20 or SEQ ID NO:22.

Also included in the invention are isolated DNAs which hybridize to the DNA sequence set forth in SEQ ID NO:1, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20 or SEQ ID NO:22 under stringent (e.g. 4xSSC at 65°C or 50% formamide and 4xSSC at 42°C), or relaxed (4xSSC at 50°C or 30-40% formamide at 42°C) conditions.

The isolated polynucleotides of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman *et al.*, Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the phospholipase enzyme peptides recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing

recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means enzymatically or chemically ligated to form a covalent bond between the isolated polynucleotide of the invention and the expression control sequence, in such a way that the phospholipase enzyme peptide is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

5

10

15

20

A number of types of cells may act as suitable host cells for expression of the phospholipase enzyme peptide. Suitable host cells are capable of attaching carbohydrate side chains characteristic of functional phospholipase enzyme peptide. Such capability may arise by virtue of the presence of a suitable glycosylating enzyme within the host cell, whether naturally occurring, induced by chemical mutagenesis, or through transfection of the host cell with a suitable expression plasmid containing a polynucleotide encoding the glycosylating enzyme. Host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, or HaK cells.

The phospholipase enzyme peptide may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, California,

U.S.A. (the MaxBac® kit), and such methods are well known in the art, as described in Summers and Smith, <u>Texas Agricultural Experiment Station Bulletin</u>
No. 1555 (1987), incorporated herein by reference.

5

10

15

Alternatively, it may be possible to produce the phospholipase enzyme peptide in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable strains yeast include Saccharomyces cerevisiae. Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the phospholipase enzyme peptide is made in yeast or bacteria, it is necessary to attach the appropriate carbohydrates to the appropriate sites on the protein moiety covalently, in order to obtain the glycosylated phospholipase enzyme peptide. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

The phospholipase enzyme peptide of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a polynucleotide encoding the phospholipase enzyme peptide.

The phospholipase enzyme peptide of the invention may be prepared by culturing transformed host cells under culture conditions necessary to express a phospholipase enzyme peptide of the present invention. The resulting expressed protein may then be purified from culture medium or cell extracts as described in the examples below.

Alternatively, the phospholipase enzyme peptide of the invention is concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate can be applied to a purification matrix such as a gel filtration medium. Alternatively, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups. The matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification. Alternatively, a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are preferred (e.g., S-Sepharose® columns). The purification of the phospholipase enzyme peptide from culture supernatant may also include one or more column steps over such affinity resins as concanavalin A-agarose, heparintoyopearl® or Cibacrom blue 3GA Sepharose®; or by hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or by immunoaffinity chromatography.

5

10

15

20

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media. e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the phospholipase enzyme peptide. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The phospholipase enzyme peptide thus purified is substantially free of other mammalian proteins and

is defined in accordance with the present invention as "isolated phospholipase enzyme peptide".

The calcium independent cPLA₂/B of the present invention is distinct from the cPLA₂ of U.S. Patent No. 5,322,776 and from previously-described calcium independent phospholipase A₂ enzymes (such as those described by Gross et al., supra; and Ackermann et al., supra). The enzyme of the present invention differs from the cPLA₂ of the '776 patent in the following ways:

(1) its activity is not calcium dependent;

10

15

- (2) it is more active in 10% glycerol than in 70% glycerol;
 - (3) it has a molecular weight of 86 kD, not 110 kD as for cPLA₂;
 - (4) it has a pH optimum of 6, not greater than 8 as for cPLA₂;
 - (5) it hydrolyzes fatty acids at sn-1 as well as sn-2;
 - (6) it binds to heparin, while cPLA₂ does not;
 - it elutes from an anion exchange column at 0.1-0.2M NaCl, while cPLA₂ elutes at 0.3-0.4 M NaCl; and
 - (8) it does not bind to anti-cPLA₂ polyclonal antibody.
- The enzyme of the present invention differs from the calcium independent enzyme of Gross et al. in the following characteristics:
 - (1) it has a molecular weight of 86 kD, not 40 kD as for the Gross enzyme:

it is not homologous at the protein level to rabbit (2) skeletal muscle phosphofructokinase in contrast to the 85 kD putative regulatory protein associated with the 40 kD Gross enzyme; 5 (3) hydrolysis at the sn-2 position is favored by an acyllinked fatty acid at the sn-1 position in contrast to ether-linked fatty acids with the Gross enzyme; its does not bind to an ATP column and was not **(4)** activated by ATP in a liposome assay compared to 10 the Gross enzyme; and **(5)** it was active in a mixed micelle assay containing Triton X-100. The enzyme of the present invention differs from the calcium independent enzyme of Ackermann et al. (the "Dennis enzyme")in the following characteristics: it does not bind to an ATP column; 15 (1) (2) it binds to an anion exchange column (mono Q), while the Dennis enzyme remains in the unbound fraction; (3) it has a molecular weight of 86 kD, not 74 kD as for 20 the Dennis enzyme; **(4)** it has substantial lysophospholipase activity and is relatively inactive on phospholipids containing etherlinked fatty acids at the sn-1 position in a liposome

assay; and

(5) it appears to hydrolyze fatty acid substituents at the sn-1 and sn-2 positions of a phospholipid, whereas the Dennis enzyme favors hydrolysis at the sn-2 position.

The calcium independent cPLA₂/B of the present invention may be used to screen unknown compounds having anti-inflammatory activity mediated by the various components of the arachidonic acid cascade. Many assays for phospholipase activity are known and may be used with the calcium independent phospholipase A₂/B on the present invention to screen unknown compounds. For example, such an assay may be a mixed micelle assay as described in Example 3. Other known phospholipase activity assays include, without limitation, those disclosed in U.S. Patent No. 5,322,776. These assays may be performed manually or may be automated or robotized for faster screening. Methods of automation and robotization are known to those skilled in the art.

5

10

15

20

In one possible screening assay, a first mixture is formed by combining a phospholipase enzyme peptide of the present invention with a phospholipid cleavable by such peptide, and the amount of hydrolysis in the first mixture (B_0) is measured. A second mixture is also formed by combining the peptide, the phospholipid and the compound or agent to be screened, and the amount of hydrolysis in the second mixture (B) is measured. The amounts of hydrolysis in the first and second mixtures are compared, for example, by performing a B/B_0 calculation. A compound or agent is considered to be capable of inhibiting phospholipase activity (i.e., providing anti-inflammatory activity) if a decrease in hydrolysis in the second mixture as compared to the first mixture is observed. The

formulation and optimization of mixtures is within the level of skill in the art, such mixtures may also contain buffers and salts necessary to enhance or to optimize the assay, and additional control assays may be included in the screening assay of the invention.

5

10

15

20

Other uses for the calcium independent cPLA₂/B of the present invention are in the development of monoclonal and polyclonal antibodies. Such antibodies may be generated by employing purified forms of the calcium independent cPLA₂ or immunogenic fragments thereof as an antigen using standard methods for the development of polyclonal and monoclonal antibodies as are known to those skilled in the art. Such polyclonal or monoclonal antibodies are useful as research or diagnostic tools, and further may be used to study phospholipase A₂ activity and inflammatory conditions.

Pharmaceutical compositions containing anti-inflammatory agents (i.e., inhibitors) identified by the screening method of the present invention may be employed to treat, for example, a number of inflammatory conditions such as rheumatoid arthritis, psoriasis, asthma, inflammatory bowel disease and other diseases mediated by increased levels of prostaglandins, leukotriene, or platelet activating factor. Pharmaceutical compositions of the invention comprise a therapeutically effective amount of a calcium independent cPLA₂ inhibitor compound first identified according to the present invention in a mixture with an optional pharmaceutically acceptable carrier. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The term "therapeutically effective amount" means the total amount of each active

19

component of the method or composition that is sufficient to show a meaningful patient benefit, i.e., healing or amelioration of chronic conditions or increase in rate of healing or amelioration. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously. A therapeutically effective dose of the inhibitor of this invention is contemplated to be in the range of about 0.1 μ g to about 100 mg per kg body weight per application. It is contemplated that the duration of each application of the inhibitor will be in the range of 12 to 24 hours of continuous administration. The characteristics of the carrier or other material will depend on the route of administration.

5

10

15

20

The amount of inhibitor in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of inhibitor with which to treat each individual patient. Initially, the attending physician will administer low doses of inhibitor and observe the patient's response. Larger doses of inhibitor may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further.

Administration is preferably intravenous, but other known methods of administration for anti-inflammatory agents may be used. Administration of the anti-inflammatory compounds identified by the method of the invention can be carried out in a variety of conventional ways. For example, for topical

20

administration, the anti-inflammatory compound of the invention will be in the form of a pyrogen-free, dermatologically acceptable liquid or semi-solid formulation such as an ointment, cream, lotion, foam or gel. The preparation of such topically applied formulations is within the skill in the art. Gel formulation should contain, in addition to the anti-inflammatory compound, about 2 to about 5% W/W of a gelling agent. The gelling agent may also function to stabilize the active ingredient and preferably should be water soluble. The formulation should also contain about 2% W/V of a bactericidal agent and a buffering agent. Exemplary gels include ethyl, methyl, and propyl celluloses. Preferred gels include carboxypolymethylene such as Carbopol (934P; B.F. Goodrich), hydroxypropyl methylcellulose phthalates such as Methocel (K100M premium; Merril Dow), cellulose gums such as Blanose (7HF; Aqualon, U.K.), xanthan gums such as Keltrol (TF; Kelko International), hydroxyethyl cellulose oxides such as Polyox (WSR 303; Union Carbide), propylene glycols, polyethylene glycols and mixtures thereof. If Carbopol is used, a neutralizing agent, such as NaOH, is also required in order to maintain pH in the desired range of about 7 to about 8 and most desirably at about 7.5. Exemplary preferred bactericidal agents include steryl alcohols, especially benzyl alcohol. The buffering agent can be any of those already known in the art as useful in preparing medicinal formulations, for example 20 mM phosphate buffer, pH 7.5.

5

10

15

20

Cutaneous or subcutaneous injection may also be employed and in that case the anti-inflammatory compound of the invention will be in the form of pyrogen-free, parenterally acceptable aqueous solutions. The preparation of such

parenterally acceptable solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art.

Intravenous injection may be employed, wherein the anti-inflammatory compound of the invention will be in the form of pyrogen-free, parenterally acceptable aqueous solutions. A preferred pharmaceutical composition for intravenous injection should contain, in addition to the anti-inflammatory compound, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition according to the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additive known to those of skill in the art.

10

15

20

The amount of anti-inflammatory compound in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of anti-inflammatory compound with which to treat each individual patient.

Anti-inflammatory compounds identified using the method of the present invention may be administered alone or in combination with other anti-inflammation agents and therapies.

Example 1

PURIFICATION OF CALCIUM INDEPENDENT cPLA₂

A) Preparation of CHO-Dukx cytosolic fraction:

CHO cells, approximately $5x10^{11}$ cells from a 250L culture, were concentrated by centrifugation and rinsed once with phosphate-buffered saline and reconcentrated, the cell slurry was frozen in liquid nitrogen and stored at -80°C at $4x10^{11}$ cells/kg of pellet. The CHO pellets were processed in 0.5kg batches by thawing the cells in 1.2L of 20mM imidazol pH 7.5, 0.25M sucrose, 2mM EDTA, 2mM EGTA, 1μ g/ml leupeptin, 5μ g/ml aprotinin. 5mM DTT and 1mM PMSF ("Extraction Buffer"). The cells were transferred to a Parr bomb at 4°C and pressurized at 600psi for 5 minutes and lysed by releasing the pressure. The supernatant was centrifuged at 10,000 x g for 30 minutes and subsequently at 100,000 x g for 60 minutes.

15

20

10

5

B) DEAE anion exchange chromatography:

The cytosolic fraction (10gm protein) was diluted to 5mg/ml with 20mM imidazol pH 7.5, 5mM DTT, 1mM EDTA and 1mM EGTA (Buffer A) and applied to a 1L column of DEAE toyopearl equilibrated in buffer A at 16ml/min. The column was washed to background absorbance (A_{280}) with buffer A and developed with a gradient of 0-0.5M NaCl in buffer A over 240 minutes with one minute fractions. The first activity peak at 100-150mM NaCl was collected.

C) Hydrophobic interaction and heparin toyopearl chromatography:

The DEAE fractions (4gm of protein at 3mg/ml) were made 0.5M in ammonium sulfate and applied at 10ml/min to a 300ml phenyl toyopearl column equilibrated in buffer A containing 0.5M ammonium sulfate. The column was washed to background absorbance (A₂₈₀). The column was then developed with a gradient of 0.5-0.2M (15 minutes) then 0.2-0.0 M ammonium sulfate (85 minutes). The column was then connected in tandem to a 10ml heparin column equilibrated in buffer A and elution was continued for 18 hours at 1.5ml/min with buffer A. The phenyl column was disconnected and the activity was eluted from the heparin column by applying 0.5M NaCl in buffer A at 2ml/min.

10

15

5

D) Chromatofocussing Chromatography:

A portion of the above active fractions (16mg) was dialyzed exhaustively against 20mM Bis-Tris pH 7, 10% glycerol, 1M urea and 5mM DTT and applied at 0.5ml/min to a Mono P 5/20 column equilibrated with the same buffer. The column was washed with the same buffer to background absorbance (A₂₈₀) and a pH gradient was established by applying 10% polybuffer 74 pH 5, 10% glycerol, 1M urea and 5mM DTT.

The relative purification of the enzyme of the present invention at each step of the foregoing purification scheme is summarized in Table II.

Table II

Step	Protein (mg)	Activity (u**)	Specific Activity (u/mg)	Fold Purifi- cation	Yield (%)
cytosolic extract	126,000	2050	0.016		
DEAE	16,000	1264	0.079	5	60
phenyl/ heparin	193	90	0.46	30	4.5
Mono P	0.1-0.2	14	140	8,000	0.7

10

20

25

5

The phospholipase can be further purified by the following steps:

E) Heparin chromatography:

The sample from (D) above is applied at 0.5ml/min onto a heparin column (maximum capacity 10mg protein/ml of resin) equilibrated in buffer A. The activity is eluted by 0.4M NaCl in buffer A.

F) Size exclusion chromatography:

The active fractions from the heparin column are applied to two TSK G3000SW_{XL} columns (7.8mm x 30cm) linked in tandem equilibrated with 150mM NaCl in buffer A at 0.3ml/min. Phospholipase activity elutes in the 250-350 kD size range.

Recombinant enzyme may also be purified in accordance with this example.

Extract from 3.5 kg of frozen CHO cell pellet

[&]quot;I unit is defined as the amount of activity that releases 1 nmol of arachidonic acid per minute

Example 2

AMINO ACID SEQUENCING

A portion $(63\mu g)$ total protein) of the Mono P active fractions was concentrated on a heparin column, as described above. The sample, 0.36ml was mixed with an equal volume of buffer A and 10% SDS, 10µl and concentrated to 40μ l on an Amicon-30 microconcentrator. The sample was diluted with buffer A, 100μ l, concentrated to 60μ l and diluted with Laemmli buffer (2x), 40μ l. The solution was boiled for 5 minutes and loaded in three aliquots on a 4-20% gradient SDS-PAGE mini gel. The sample was electophoresed for two hours at 120v, stained for 20 minutes in 0.2% Blue R-250, 20% methanol and 0.5% acetic acid and destained in 30% methanol (Rosenfeld et. al. Anal. Biochem. 203, pp. 173-179, 1992). Briefly, the protein bands corresponding to the phospholipase were excised from the gel with a razor blade and washed with 4 150 μ l aliquots of 200 mM NH₄HCO₃, 50% acetonitrile, for a total of 2 hours. The gel pieces were allowed to air dry for approximately 5 minutes, then partially rehydrated with 1 μ l of 200 mM NH₄HCO₃, 0.02% Tween 20 (Pierce) and 2 μ l of 0.25 μ g/ μ l trypsin (Promega). Gel slices were placed into the bottom of 500 μ l mini-Eppendorf tubes. covered with 30 μ l 200

10

15

20

mM NH₄HCO₃, and incubated at 37 C for 15 hours. After 1-2 minutes of centrifugation in an Eppendorf microfuge, the supernatants were removed and saved. Peptides in the gel slices were extracted by agitation for a total of 40 minutes with 2 100 μ l aliquots of 60% acetonitrile, 0.1% TFA. The extracts were combined with the previous supernatant. The volume was reduced by lyophilization to about 150 μ l, and then the sample was diluted with 750 μ l 0.1% TFA. Peptide

maps were run on an ABI 130A Separation System HPLC and an ABI 30 X 2.1 mm RP-300 column. The gradient used was as follows: 0-13.5 minutes 0% B, 13.5-63.5 minutes 0-100% B and 63.5-68.5 minutes 100% B, where A is 0.1% TFA and B is 0.085% TFA, 70% acetonitrile. Peptides were then sequenced on an ABI 470A gas-phase sequencer.

Example 3

PHOPHOLIPASE ASSAYS

1. sn-2 Hydrolysis Assays

5

10

15

20

A) <u>Liposome</u>: The lipid, e.g. 1-palmitoyl-2-[¹⁴C]arachidonyl-sn-glycero-3-phosphocholine (PAPC), 55 mCi/mmol, was dried under a stream of nitrogen and solubilized in ethanol. The assay buffer contained 100mM Tris-HCl pH 7, 4mM EDTA, 4mM EGTA, 10% glycerol and 25μM of labelled PAPC, where the volume of ethanol added was no more than 10% of the final assay volume. The reaction was incubated for 30 minutes at 37°C and quenched by the addition of two volumes of heptane:isopropanol:0.5M sulfuric acid (105:20:1 v/v). Half of the organic was applied to a disposable silica gel column in a vacuum manifold positioned over a scintillation vial, and the free arachidonic was eluted by the addition of ethyl ether (1ml). The level of radioactivity was measured by liquid scintillation.

Variations on this assay replace EDTA and EGTA with 10mM CaCl₂.

B) Mixed Micelle Basic: The lipid was dried down as in (A) and to this was added the assay buffer consisting of 80mM glycine pH 9, 5mM CaCl₂ or

5mM EDTA. 10% or 70% glycerol and 200μ M triton X-100. The mixture was then sonicated for 30-60 seconds at 4°C to form mixed micelles.

C) Mixed Micelle Neutral: As for (B) except 100mM Tris-HCl pH 7 was used instead of glycine as the buffer.

5

2. sn-1 Hydrolysis Assays

Sn-1 hydrolysis assays are performed as described above for sn-1 hydrolysis, but using phospholipids labelled at the sn-1 substituent, e.g. 1-[14C]-palmitoyl-2-arachidonyl-sn-glycero-3-phophocholine.

10

15

20

Example 4

CLONING OF CALCIUM INDEPENDENT cPLA₂/B

A) cDNA Library Construction

Total RNA was first prepared from 2 x 10⁸ CHO-DUX cells using the RNAgents total RNA kit (Promega, Madison, Wisconsin) and further purified using the PolyATract mRNA Isolation System (Promega) to yield 13.2 μg polyA+ mRNA. Double stranded cDNA was prepared by the Superscript Choice System (Gibco/BRL, Gaithersburg, Maryland) starting with 2 μg of CHO-DUX mRNA and using oligo dT primer. The cDNA was modified at both ends by addition of an EcoRI adapter/linker provided by the kit. These fragments were then ligated into the predigested lambda ZAPII/EcoRI vector, and packaged into phage particles with Gigapack Gold packaging extracts (Stratagene, La Jolla, California).

B) Oligonucleotide Probe Design

Several of the peptide sequences determined for the purified calcium independent PLA₂/B were selected to design oligonucleotide probes. The amino acid sequence from amino acid 361 to 367 of SEQ ID NO:2 was used to design two degenerate oligonucleotide pools of 17 residues each. Pool 1 is 8-fold degenerate representing the sense strand for amino acids 361 to 366 of SEQ ID NO:2, and pool 2 is 12-fold degenerate representing the antisense strand for amino acids 362-367 of SEQ ID NO:2. Two other degenerate pools were also made from other sequences. Pool 3 is 32-fold degenerate and represents the sense strand for amino acids 490 to 495 of SEQ ID NO:2, and pool 4 is 64-fold degenerate representing the antisense strand for amino acids 513 to 518 of SEQ ID NO:2.

C) Library Screening

5

10

15

20

Approximately 400,000 recombinant bacteriophage from the CHO-DUX cDNA library were plated and duplicate nitrocellulose filters were prepared. One set of filters was hybridized with pool 1 and the other with pool 2 using tetramethylammonium chloride buffer conditions (Jacobs et al., Nature, 1985, 313, 806). Twelve positive bacteriophages were identified and plated for further analysis. Three sets of nitrocellulose filters were prepared from this plating and hybridized with pools 2, 3 and 4, to represent the three peptide sequences from which probes were designed. Several clones were positive for all three pools. Individual bacteriophage plaques were eluted and ampicillin resistant plasmid colonies were prepared following the manufacturer's protocols (Stratagene). Plasmid DNA was prepared for clones 9, 17, 31 and 49, and restriction digests

revealed 3.0 kb inserts. Analysis of a portion of the DNA sequence in these clones confirmed that they contained several cPLA₂/B peptide sequences and represented the complete coding region of the gene. Clone 9 was selected for complete DNA sequence determination. The sequence of clone 9 is reported as SEQ ID NO:1.

Clone 9 was deposited with ATCC on July 27, 1994 as accession number 69669.

Example 5

EXPRESSION OF RECOMBINANT cPLA₂/B

A) Expression in COS Cells

5

10

15

20

Clone 9 from Example 4 was excised inserted into a SalI site that was engineered into the EcoRI site of the COS expression vector, PMT-2, a beta lactamase derivative of p91023 (Wong et al., Science, 1985, 228, 810). 8 μ g of plasmid DNA was then transfected into 1 x 106 COS cells in a 10 cm dish by the DEAE dextran protocol (Sompayrac et al., Proc. Natl. Acad. Sci. USA, 1981, 78, 7575) with the addition of a 0.1 mM chloroquine to the transfection medium, followed by incubation for 3 hours at 37°C. The cells were grown in conventional media (DME, 10% fetal calf serum). At 40-48 hours post-transfection the cells were washed twice and then incubated at 37°C in PBS, 1 mM EDTA (5 ml). The cells were then collected by centrifugation, resuspended in Extraction Buffer (0.5 ml), and lysed by 20 strokes in a Dounce at 4°C. The lysate was clarified by centrifugation and 10-50 μ l of the cytosolic fraction was assayed in the neutral and pH 9 mixed micelle assays.

In a further experiment. COS cells were transiently transfected according to established procedures (Kaufman et al.). After 40-48 hours post-tranmsfection the cells wer labelled with 35 S-methionine, 200 μ Ci per 10 cm plate, for one hour and the cells were lysed in NP-40 lysis buffer (Kaufman et al.). The cell lysates were analyzed by SDS-PAGE on a 4-20% reducing gel where equal counts were loaded per lane. There was an additional protein band at 84-86 kD in the lysates from cells transfected with clones 9, 31 and 49, but not in controls (see Fig. 7).

B) Expression in CHO Cells

5

10

15

20

A single plasmid bearing both the cPLA₂/B encoding sequence and a DHFR gene, or two separate plasmids bearing such sequences, are introduced into DHFR-deficient CHO cells (such as Dukx-BII) by calcium phosphate coprecipitation and transfection. DHFR expressing transformants are selected for growth in alpha media with dialyzed fetal calf serum. Transformants are checked for expression of recombinant enzyme by bioassay, immunoassay or RNA blotting and positive pools are subsequently selected for amplification by growth in increasing concentrations of methotrexate (MTX) (sequential steps in 0.02, 0.2, 1.0 and 5 μ M MTX) as described in Kaufman et al., Mol. Cell Biol., 1983, $\underline{5}$, 1750. The amplified lines are cloned and recombinant enzyme expression is monitored by the mixed micelle assay. Recombinant enzyme expression is expected to increase with increasing levels of MTX resistance.

Example 6

MUTAGENESIS OF SERINE RESIDUES

Ser252 and Ser465 of the murine cPLA₂/B amino acid sequence were mutated to alanine residues using the Chamelon Mutagenesis kit (Stratagene) using oligonucleotides CATGGGACCCGCTGGCTTTCC (SEQ ID NO:24) and GGCAGGAACCGCCACTGGGGGC (SEQ ID NO:25), respectively. PLA₂ activity was abrogated by changing Ser465 to Ala in the lipase consensus sequence (GXSXGG) surrounding that residue. Although Ser252 is found in a partial lipase motif, mutagenesis did not result in loss of activity. Moreover, Ser465, and the lipase consensus sequence surrounding this residue, are conserved in the human sequence (see amino acids 462-467 of SEQ ID NO:21 and 463-468 of SEQ ID NO:23), while Ser252 is not. On this basis, it is believed that this conserved serine residue is required for activity.

Patent and literature references cited herein are incorporated by reference as if fully set forth.

SEQUENCE LISTING

(1)	GENERAL	INFORMATION:
-----	---------	--------------

- (i) APPLICANT: Jones, Simon Tang, Jim
- (ii) TITLE OF INVENTION: Calcium Independent Phospholipase A2/B
- (iii) NUMBER OF SEQUENCES: 25
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2935 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS

75

- (B) LOCATION: 96..2352
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GCGGCCGCGT CGACGAAGTA AGCGGGCGGA GAAGTGCTGA GTAAGCCGAG AGTAAGGGGG 60												
CAGGCTGTCC CCCCCCCCA CCTGCCCCAC GGAGG ATG CAG TTC TTC GGA CGC Met Gln Phe Phe Gly Arg 1 5	113											
CTT GTC AAC ACC CTC AGT AGT GTC ACC AAC TTG TTC TCA AAC CCA TTC Leu Val Asn Thr Leu Ser Ser Val Thr Asn Leu Phe Ser Asn Pro Phe 10 15 20	161											
CGG GTG AAG GAG ATA TCT GTG GCT GAC TAT ACC TCA CAT GAA CGT GTT Arg Val Lys Glu Ile Ser Val Ala Asp Tyr Thr Ser His Glu Arg Val 25 30 35	209											
CGA GAG GAA GGG CAG CTG ATC CTG TTC CAG AAT GCT TCC AAT CGC ACC Arg Glu Glu Gly Gln Leu Ile Leu Phe Gln Asn Ala Ser Asn Arg Thr	257											
TGG GAC TGC ATC CTG GTC AGC CCT AGG AAC CCA CAT AGT GGC TTC CGA Trp Asp Cys Ile Leu Val Ser Pro Arg Asn Pro His Ser Gly Phe Arg 60 65 70	305											
CTC TTC CAG CTG GAG TCA GAG GCA GAT GCC CTG GTG AAC TTC CAG CAG Leu Phe Gln Leu Glu Ser Glu Ala Asp Ala Leu Val Asn Phe Gln Gln	353											

80

85

WO 97/17448	PCT/US96/17794
-------------	----------------

TTC Phe	TCC Ser	TCC Ser	CAG Gln 90	Leu	CCA Pro	CCC Pro	TTC Phe	TAC Tyr 95	Glu	AGC Ser	TCI Ser	GTG Val	CAG Gln 100	Val	CTG Leu		401
CAT His	GTG Val	GAG Glu 105	Val	CTG Leu	CAG Gln	CAC His	CTG Leu 110	Ser	GAC Asp	CTG Leu	ATC Ile	CGA Arg 115	Ser	CAC	CCC Pro		449
AGC Ser	TGG Trp 120	Thr	GTG Val	ACA Thr	CAC His	CTG Leu 125	GCG Ala	GTG Val	GAG Glu	CTT Leu	GGC Gly 130	Ile	CGG Arg	GAG Glu	TGC Cys		497
TTC Phe 135	His	CAC His	AGC Ser	CGC Arg	ATC Ile 140	Ile	AGC Ser	TGC Cys	GCC Ala	AAC Asn 145	AGC Ser	ACA Thr	GAG Glu	AAT Asn	GAG Glu 150		545
GAG Glu	GGC Gly	TGC Cys	ACC Thr	CCA Pro 155	CTG Leu	CAT His	TTG Leu	GCA Ala	TGC Cys 160	CGC Arg	AAG Lys	GGT Gly	GAC Asp	AGT Ser 165	GAG Glu		593
ATC Ile	CTG Leu	GTG Val	GAG Glu 170	TTG Leu	GTA Val	CAG Gln	TAC Tyr	TGC Cys 175	CAT His	GCC Ala	CAA Gln	ATG Met	GAT Asp 180	GTC Val	ACT Thr		641
GAC Asp	AAC Asn	AAA Lys 185	GGA Gly	GAG Glu	ACG Thr	GCC Ala	TTC Phe 190	CAT His	TAC Tyr	GCT Ala	GTA Val	CAA Gln 195	GGG Gly	GAC Asp	AAT Asn		689
TCC Ser	CAG Gln 200	GTG Val	CTG Leu	CAG Gln	CTC Leu	CTA Leu 205	GGA Gly	AAG Lys	AAC Asn	GCC Ala	TCA Ser 210	GCT Ala	GGC Gly	CTG Leu	AAC Asn		737
CAG Gln 215	GTG Val	AAC Asn	AAA Lys	CAA Gln	GGG Gly 220	CTA Leu	ACT Thr	CCA Pro	CTG Leu	CAC His 225	CTG Leu	GCC Ala	TGC Cys	CAG Gln	ATG Met 230		785
GGG Gly	AAG Lys	CAG Gln	GAG Glu	ATG Met 235	GTA Val	CGC Arg	GTC Val	CTG Leu	CTG Leu 240	CTT Leu	TGC Cys	AAT Asn	GCC Ala	CGC Arg 245	TGC Cys		833
AAC Asn	GTC Val	ATG Met	GGA Gly 250	CCC Pro	AGT Ser	GGC Gly	TTT Phe	CCC Pro 255	ATC Ile	CAC His	ACA Thr	GCC Ala	ATG Met 260	AAG Lys	TTC Phe		881
TCC Ser	CAG Gln	AAG Lys 265	GGG Gly	TGT Cys	GCT Ala	GAA Glu	ATG Met 270	ATT Ile	ATC Ile	AGC Ser	ATG Met	GAC Asp 275	AGC Ser	AGC Ser	CAG Gln		929
ATC Ile	CAC His 280	AGC Ser	AAG Lys	GAT Asp	CCT Pro	CGC Arg 285	TAT Tyr	GGA Gly	GCC Ala	AGC Ser	CCG Pro 290	CTC Leu	CAC His	TGG Trp	GCC Ala		977
AAG Lys 295	AAT Asn	GCC Ala	GAG Glu	ATG Met	GCC Ala 300	CGG Arg	ATG Met	CTG Leu	CTG Leu	AAG Lys 305	CGG Arg	GGA Gly	TGT Cys	GAT Asp	GTG Val 310	1	L025
GAC Asp	AGC Ser	ACA Thr	AGC Ser	GCT Ala 315	GCG Ala	GGG Gly	AAC Asn	ACA Thr	GCC Ala 320	CTG Leu	CAT His	GTG Val	GCA Ala	GTG Val 325	ATG Met	1	.073
CGG Arg	AAC Asn	CGC Arg	TTT Phe 330	GAC Asp	TGC Cys	GTC Val	ATG Met	GTG Val 335	CTG Leu	CTG Leu	ACC Thr	TAC Tyr	GGG Gly 340	GCC Ala	AAC Asn	1	.121
GCA Ala	GGC Gly	ACC Thr 345	CCA Pro	GGG Gly	GAG Glu	CAT His	GGG Gly 350	AAC Asn	ACG Thr	CCG Pro	CTG Leu	CAC His 355	CTG Leu	GCC Ala	ATC Ile	1	.169

TC Se	G AA r Ly: 360	s As	T AA	C ATO	G GAG t Gli	G ATO u Met 365	: Il ϵ	C AAA E Lys	A GCO s Ala	C CTO	2 AT' 1 Ile 376	e Va	A TT	r GGG e Gl	G GCA y Ala	1217
GA: G1: 37:	u Va.	G GA' l Asj	T ACC	C CCI	AA A ISA C 188	ı Asp	TTT Phe	GG(Gl)	G GAC Y Glu	ACT Thr 385	Pro	r gce o Ala	C TTO	C ATO	G GCC E Ala 390	1265
TC: Se:	C AAC C Lys	F ATO	C AGO	C AAA C Lys 395	s Glr	G CTI 1 Leu	CAG Glr	GA(C CTC Leu 400	ı Met	CCC Pro	C ATO	C TC(C CGA	A GCC g Ala	1313
CG(Arg	G AAC J Lys	CCA Pro	A GCA A Ala 410	ı Phe	ATC Ile	CTG Leu	AGC Ser	TCC Ser 415	Met	AGG Arg	GAT Asp	GAC Glu	AAC Lys 420	Arg	A ATC	1361
CAT His	GAT Asp	CAC His 425	: Leu	CTC Lev	TGC Cys	CTG Leu	GAC Asp 430	Gly	GGG Gly	GGC Gly	GTO Val	AAA Lys 435	Gly	CTC Leu	GTC Val	1409
ATC Ile	ATC Ile 440	Glr	A CTC	CTC Lev	ATT	GCC Ala 445	Ile	GAG Glu	AAG Lys	GCC Ala	TCA Ser 450	Gly	GTG Val	GCC Ala	ACC Thr	1457
AAG Lys 455	Asp	CTC Leu	TTC Phe	GAC Asp	TGG Trp 460	GTG Val	GCA Ala	GGA Gly	ACC Thr	AGC Ser 465	ACT Thr	GGG Gly	GGC Gly	ATC Ile	CTG Leu 470	1505
GCC Ala	CTG Leu	GCC Ala	ATT Ile	CTG Leu 475	His	AGT Ser	AAG Lys	TCC Ser	ATG Met 480	Ala	TAT Tyr	ATG Met	CGT Arg	GGT Gly 485	GTG Val	1553
TAC Tyr	TTC Phe	CGT Arg	ATG Met 490	Lys	GAT Asp	GAG Glu	GTG Val	TTT Phe 495	CGG Arg	GGC Gly	TCA Ser	CGG Arg	CCC Pro 500	Tyr	GAG Glu	1601
TCT Ser	GGA Gly	CCC Pro 505	Leu	GAG Glu	GAG Glu	TTC Phe	CTG Leu 510	AAG Lys	CGG Arg	GAG Glu	TTT Phe	GGG Gly 515	GAG Glu	CAC His	ACC Thr	1649
AAG Lys	ATG Met 520	ACA Thr	GAT Asp	GTC Val	AAA Lys	AAA Lys 525	CCC Pro	AAG Lys	GTG Val	ATG Met	CTC Leu 530	ACA Thr	GGG Gly	ACA Thr	CTG Leu	1697
TCT Ser 535	GAC Asp	CGG Arg	CAG Gln	CCA Pro	GCA Ala 540	GAG Glu	CTC Leu	CAC His	CTG Leu	TTC Phe 545	CGC Arg	AAT Asn	TAC Tyr	GAT Asp	GCT Ala 550	1745
CCA Pro	GAG Glu	GTC Val	ATT Ile	CGG Arg 555	GAA Glu	CCT Pro	CGC Arg	TTC Phe	AAC Asn 560	CAA Gln	AAC Asn	ATT Ile	AAC Asn	CTG Leu 565	AAG Lys	1793
CCG Pro	CCA Pro	ACT Thr	CAG Gln 570	CCT Pro	GCA Ala	GAC Asp	CAA Gln	CTG Leu 575	GTA Val	TGG Trp	CGA Arg	GCA Ala	GCC Ala 580	CGG Arg	AGC Ser	1841
AGT Ser	GGG Gly	GCA Ala 585	GCC Ala	CCA Pro	ACC Thr	Tyr	TTC Phe 590	CGG Arg	CCC Pro	AAT Asn	GGA Gly	CGT Arg 595	TTC Phe	CTG Leu	GAT Asp	1889
GGT Gly	GGG Gly 600	CTG Leu	CTG Leu	GCC Ala	Asn	AAC Asn 605	CCC Pro	ACA Thr	CTA Leu	Asp	GCC Ala 610	ATG Met	ACT Thr	GAA Glu	ATC Ile	1937
CAT His 615	GAA Glu	TAC Tyr	AAT Asn	Gln	GAC Asp 620	ATG . Met	ATC Ile	CGC Arg	Lys	GGC Gly 625	CAA Gln	GGC Gly	AAC Asn	Lys	GTG Val 630	1985

	wo	97/17	448												PCT/U	JS96/17794
AAG Lys	AAA Lys	CTC Leu	TCC Ser	ATA Ile 635	GTC Val	GTC Val	TCT Ser	CTG Leu	GGG Gly 640	ACA Thr	GGA Gly	AGG Arg	TCC Ser	CCT Pro 645	CAA Gln	2033
GTG Val	CCC Pro	GTA Val	ACC Thr 650	TGT Cys	GTA Val	GAT Asp	GTC Val	TTC Phe 655	CGC Arg	CCC Pro	AGC Ser	AAC Asn	CCC Pro 660	TGG Trp	GAA Glu	2081
CTG Leu	GCT Ala	AAG Lys 665	ACT Thr	GTT Val	TTT Phe	GGA Gly	GCC Ala 670	AAG Lys	GAA Glu	CTG Leu	GGC	AAG Lys 675	ATG Met	GTG Val	GTA Val	2129
GAC Asp	TGT Cys 680	TGC Cys	ACA Thr	GAT Asp	CCA Pro	GAT Asp 685	GGT Gly	CGG Arg	GCT Ala	GTG Val	GAC Asp 690	CGG Arg	GCC Ala	CGG Arg	GCC Ala	2177
TGG Trp 695	AGC Ser	GAG Glu	ATG Met	GTT Val	GGC Gly 700	ATC Ile	CAG Gln	TAC Tyr	TTC Phe	AGA Arg 705	CTG Leu	AAC Asn	CCC Pro	CAA Gln	CTA Leu 710	2225
GGA Gly	TCA Ser	GAC Asp	ATC Ile	ATG Met 715	CTG Leu	GAT Asp	GAG Glu	GTC Val	AAT Asn 720	GAT Asp	GCA Ala	GTG Val	CTG Leu	GTT Val 725	AAT Asn	2273
GCC Ala	CTC Leu	Trp	GAG Glu 730	ACA Thr	GAA Glu	GTC Val	TAC Tyr	ATC Ile 735	TAT Tyr	GAG Glu	CAC His	CGG Arg	GAG Glu 740	GAG Glu	TTC Phe	2321
CAG . Gln	AAG Lys	CTT Leu 745	GTC Val	CAA Gln	ATG Met	CTG Leu	CTG Leu 750	TCG Ser	CCC Pro	T GA	GCTC	'CAGG	CCC	TGCT	GGC	2372
AGGG	GTGC	GC C	AGGC	TACC	C AG	CACA	CTGG	GGG	CCAA	GCT.	GGGC	CAGG	CG G	CTGT	GTCTA	2432
CCTG	AGGA	CT G	GGGC	TCAG	A GC	ACAA	ACAG	GTT	CCCA	CAA	GGCA	CCTC	TC C	TGAC	CCATC	2492
TGCA	CTTT	GC C	ACTC	TAGG	C TG	AAAG	CCCA	GAG	TTCC	CCT	CAGC	CCCT	TT A	TGTG	ACTGT	2552
GAAG	GACA	AC T	GGCT	CCAT	C AA	CTGC	CCTA	AAT	ATCA	GTG	AGAT	CAAC	AC T	AAGG	TGTCC	2612
AGTG'	TACC	CA G	AGGG	TTCT	T CC	AGGG	TCCA	TGG	CCAC	CAA	AGCC	CACC	CC T	TCTT	TCCAC	2672
TTCC	TGAA	GT C	AGTG	TCTA	C AG	AAAT	GGAG	TTC	CACC	CCA	TCAT	CAGG	TG A	AATC	CAGGC	2732
TATT	GAAA	TC C	AGTC	TGTT	C GA	CTTT	GCCC	CTC'	TGCA	CCT	GCCA	ATCA	CC C	CACC	CCTGC	2792
AGCC2	ACCC	CA C	CTTA	AGAG'	T CC	TCCC	AGCT	CTC	AAAG	GTC .	AATC	CTGT	GC A'	TGTA	CTCTT	2852
CTCT	GGAA(GG A	GAGT	GGGG.	A GG	GGTT	CAAG	GCC	ACCT	CAA	CTGT	GAAA'	TA A	ATGG	GTCTA	2912

(2) INFORMATION FOR SEQ ID NO: 2:

GACTCAAAAA AAAAAAGTCG ACG

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 752 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Gln Phe Phe Gly Arg Leu Val Asn Thr Leu Ser Ser Val Thr Asn 1 5 10 15

2935

Leu Phe Ser Asn Pro Phe Arg Val Lys Glu Ile Ser Val Ala Asp Tyr Thr Ser His Glu Arg Val Arg Glu Glu Gly Gln Leu Ile Leu Phe Gln Asn Ala Ser Asn Arg Thr Trp Asp Cys Ile Leu Val Ser Pro Arg Asn Pro His Ser Gly Phe Arg Leu Phe Gln Leu Glu Ser Glu Ala Asp Ala Leu Val Asn Phe Gln Gln Phe Ser Ser Gln Leu Pro Pro Phe Tyr Glu Ser Ser Val Gln Val Leu His Val Glu Val Leu Gln His Leu Ser Asp Leu Ile Arg Ser His Pro Ser Trp Thr Val Thr His Leu Ala Val Glu Leu Gly Ile Arg Glu Cys Phe His His Ser Arg Ile Ile Ser Cys Ala Asn Ser Thr Glu Asn Glu Glu Gly Cys Thr Pro Leu His Leu Ala Cys Arg Lys Gly Asp Ser Glu Ile Leu Val Glu Leu Val Gln Tyr Cys His Ala Gln Met Asp Val Thr Asp Asn Lys Gly Glu Thr Ala Phe His Tyr Ala Val Gln Gly Asp Asn Ser Gln Val Leu Gln Leu Leu Gly Lys Asn Ala Ser Ala Gly Leu Asn Gln Val Asn Lys Gln Gly Leu Thr Pro Leu His Leu Ala Cys Gln Met Gly Lys Gln Glu Met Val Arg Val Leu Leu Leu Cys Asn Ala Arg Cys Asn Val Met Gly Pro Ser Gly Phe Pro Ile His Thr Ala Met Lys Phe Ser Gln Lys Gly Cys Ala Glu Met Ile Ile Ser Met Asp Ser Ser Gln Ile His Ser Lys Asp Pro Arg Tyr Gly Ala Ser Pro Leu His Trp Ala Lys Asn Ala Glu Met Ala Arg Met Leu Leu Lys Arg Gly Cys Asp Val Asp Ser Thr Ser Ala Ala Gly Asn Thr Ala Leu His Val Ala Val Met Arg Asn Arg Phe Asp Cys Val Met Val Leu Leu Thr Tyr Gly Ala Asn Ala Gly Thr Pro Gly Glu His Gly Asn Thr Pro Leu His Leu Ala Ile Ser Lys Asp Asn Met Glu Met Ile Lys Ala

Leu Ile Val Phe Gly Ala Glu Val Asp Thr Pro Asn Asp Phe Gly Glu Thr Pro Ala Phe Met Ala Ser Lys Ile Ser Lys Gln Leu Gln Asp Leu Met Pro Ile Ser Arg Ala Arg Lys Pro Ala Phe Ile Leu Ser Ser Met Arg Asp Glu Lys Arg Ile His Asp His Leu Leu Cys Leu Asp Gly Gly Gly Val Lys Gly Leu Val Ile Ile Gln Leu Leu Ile Ala Ile Glu Lys Ala Ser Gly Val Ala Thr Lys Asp Leu Phe Asp Trp Val Ala Gly Thr Ser Thr Gly Gly Ile Leu Ala Leu Ala Ile Leu His Ser Lys Ser Met Ala Tyr Met Arg Gly Val Tyr Phe Arg Met Lys Asp Glu Val Phe Arg Gly Ser Arg Pro Tyr Glu Ser Gly Pro Leu Glu Glu Phe Leu Lys Arg Glu Phe Gly Glu His Thr Lys Met Thr Asp Val Lys Lys Pro Lys Val Met Leu Thr Gly Thr Leu Ser Asp Arg Gln Pro Ala Glu Leu His Leu Phe Arg Asn Tyr Asp Ala Pro Glu Val Ile Arg Glu Pro Arg Phe Asn Gln Asn Ile Asn Leu Lys Pro Pro Thr Gln Pro Ala Asp Gln Leu Val Trp Arg Ala Ala Arg Ser Ser Gly Ala Ala Pro Thr Tyr Phe Arg Pro Asn Gly Arg Phe Leu Asp Gly Gly Leu Leu Ala Asn Asn Pro Thr Leu Asp Ala Met Thr Glu Ile His Glu Tyr Asn Gln Asp Met Ile Arg Lys Gly Gln Gly Asn Lys Val Lys Lys Leu Ser Ile Val Val Ser Leu Gly Thr Gly Arg Ser Pro Gln Val Pro Val Thr Cys Val Asp Val Phe Arg Pro Ser Asn Pro Trp Glu Leu Ala Lys Thr Val Phe Gly Ala Lys Glu Leu Gly Lys Met Val Val Asp Cys Cys Thr Asp Pro Asp Gly Arg Ala Val Asp Arg Ala Arg Ala Trp Ser Glu Met Val Gly Ile Gln Tyr Phe Arg Leu Asn Pro Gln Leu Gly Ser Asp Ile Met Leu Asp Glu Val Asn

Asp Ala Val Leu Val Asn Ala Leu Trp Glu Thr Glu Val Tyr Ile Tyr 725 730 735

Glu His Arg Glu Glu Phe Gln Lys Leu Val Gln Met Leu Leu Ser Pro
740 745 750

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Asn Pro His Ser Gly Phe Arg

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Xaa Ala Ser Xaa Gly Leu Asn Gln Val Asn Lys

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Tyr Gly Ala Ser Pro Leu His Xaa Ala Lys
1 5 10

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Asp Asn Met Glu Met Ile Lys
- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
 - Gly Val Tyr Phe Arg
- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
 - Met Lys Asp Glu Val Phe Arg
- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
- Glu Phe Gly Glu His Thr Lys
- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
 - Val Met Leu Thr Gly Thr Leu Ser Asp Arg
 1 5 10
- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
 - Xaa Tyr Asp Ala Pro Glu Val Ile Arg
- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
 - Phe Asn Gln Asn Ile Asn Leu Lys Pro Pro Thr Gln Pro Ala 1 5 10
- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 11 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Xaa Xaa Gly Ala Ala Pro Thr Tyr Phe Arg Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Thr Val Phe Gly Ala Lys

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Xaa Trp Ser Glu Met Val Gly Ile Gln Tyr Phe Arg 1 5 10

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2012 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 43..1224

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GA.A	ATTC(CGGG	ACGO	STGGC	GC (CTCCC	CACC	T GC	CCCG	CAGA	AG			TTC Phe		54
GGC Gly 5	Arg	CTO Lev	GTC Val	AAT Asn	ACC Thr	Phe	AGT Ser	GGC Gly	GTC Val	ACC Thr	Asn	TTC Lev	TTC Phe	TCI Ser	AAC Asn 20	102
CCA Pro	TTC Phe	CGG Arg	GTG Val	AAG Lys 25	Glu	GTG Val	GCT Ala	GTG Val	GCC Ala 30	Asp	TAC	ACC Thr	TCG Ser	AGT Ser	GAC Asp	150
CGA Arg	GTT Val	CGG Arg	GAG Glu 40	Glu	GGG Gly	CAG Gln	CTG Leu	ATT Ile 45	CTG Leu	TTC Phe	CAG Gln	AAC Asn	ACT Thr	Pro	AAC Asn	198
CGC Arg	ACC Thr	TGG Trp 55	Asp	TGC Cys	GTC Val	CTG Leu	GTC Val 60	AAC Asn	CCC Pro	AGG Arg	AAC Asn	TCA Ser 65	Gln	AGT Ser	GGA Gly	246
TTC Phe	CGA Arg 70	Leu	TTC Phe	CAG Gln	CTG Leu	GAG Glu 75	TTG Leu	GAG Glu	GCT Ala	GAC Asp	GCC Ala 80	CTA Leu	GTG Val	AAT Asn	TTC Phe	294
CAT His 85	Gln	TAT Tyr	TCT Ser	TCC Ser	CAG Gln 90	CTG Leu	CTA Leu	CCC Pro	TTC Phe	TAT Tyr 95	GAG Glu	AGC Ser	TCC Ser	CCT Pro	CAG Gln 100	342
GTC Val	CTG Leu	CAC His	ACT Thr	GAG Glu 105	GTC Val	CTG Leu	CAG Gln	CAC His	CTG Leu 110	ACC Thr	GAC Asp	CTC Leu	ATC Ile	CGT Arg 115	AAC Asn	390
CAC His	CCC Pro	AGC Ser	TGG Trp 120	TCA Ser	GTG Val	GCC Ala	CAC His	CTG Leu 125	GCT Ala	GTG Val	GAG Glu	CTA Leu	GGG Gly 130	ATC Ile	CGC Arg	438
GAG Glu	TGC Cys	TTC Phe 135	CAT His	CAC His	AGC Ser	CGT Arg	ATC Ile 140	ATC Ile	AGC Ser	TGT Cys	GCC Ala	AAT Asn 145	TGC Cys	GCG Ala	GAG Glu	486
AAC Asn	GAG Glu 150	GAG Glu	GGC Gly	TGC Cys	ACA Thr	CCC Pro 155	CTG Leu	CAC His	CTG Leu	GCC Ala	TGC Cys 160	CGC Arg	AAG Lys	GGT Gly	GAT Asp	534
GGG Gly 165	GAG Glu	ATC Ile	CTG Leu	GTG Val	GAG Glu 170	CTG Leu	GTG Val	CAG Gln	TAC Tyr	TGC Cys 175	CAC His	ACT Thr	CAG Gln	ATG Met	GAT Asp 180	582
GTC Val	ACC Thr	GAC Asp	TAC Tyr	Lys	Gly	Glu	Thr	Val	TTC Phe 190	His	TAT Tyr	GCT Ala	GTC Val	CAG Gln 195	GGT Gly	630
GAC Asp	AAT Asn	TCT Ser	CAG Gln 200	GTG Val	CTG Leu	CAG Gln	Leu	CTT Leu 205	GGA Gly	AGG Arg	AAC Asn	GCA Ala	GTG Val 210	GCT Ala	GGC Gly	678
CTG Leu	ASN	CAG Gln 215	GTG Val	AAT Asn	AAC Asn	Gln	GGG Gly 220	CTG Leu	ACC Thr	CCG Pro	Leu	CAC His 225	CTG Leu	GCC Ala	TGC Cys	726

CGG TGC AAC ATC ATC GGC CCC AAC GGC TAC CCC ATC CAC TCC GCC ATC ATG CGS ATG ATG CGS ATG ATG ATG ATC ATC AGA ATG GGC TGC GGG GAG ATG ATC ATC AGC ATG GAC AGC LYS Phe Ser Gln Lys Gly Cys Ala Glu Met Ile Ile Ser Met Asp Ser 270 AGC CAG ATC CAC AGC AGA GAC CCC CGT TAC GGA GCC AGC CCC CAC CAC CGG TI Ile His Ser Lys App Pro Arg Tyr Gly Ala Ser Pro Leu His 280 TGG GCC AAG ACC CAC AGC CCC CGT TAC GGA GCC AGC CCC CAC CAC CAC CAC CAC C	CAG CTG GGG A Gln Leu Gly 1 230	AAG CAG GAG Lys Gln Glu	ATG GTC Met Val 235	CGC GT Arg Va	G CTG l Leu	CTG CTG Leu Lei 240	G TGC	AAT Asn	GCT Ala	774
AGC CAG ATC CAC AGC AAA GAC CCC CGT TAC GGA GCC CGC CTC CAC Ser Gln Ile His Ser Lys Asp Pro Arg Tyr Gly Ala Ser Pro Leu His 280 TGG GCC AAG AAC GCA GAG ATG GCC CGC ATG CTG CTG AAA CGG GGC TGC TTP Ala Lys Asn Ala Glu Met Ala Arg Met Leu Leu Lys Arg Gly Cys 300 AAC GTG AAC ACC ACC AGC TCC GCG GGG AAC ACG GCC CTG CAC GTG GGA AND ASP THA Ala Leu His Val Gly 310 AAC GTG AAC ACC ACC AGC TCC GCG GGG AAC ACG GCC CTG CAC GTG GGG AND AND ASP Ser Thr Ser Ser Ala Gly Asn Thr Ala Leu His Val Gly 310 GTC ATG CGC AAC CGC TTC GAC TGT GCC ATA GTG CTG CTG ACC CAC GGG Val Met Arg Asn Arg Phe Asp Cys Ala Ile Val Leu Leu Thr His Gly 325 GCC AAC GCG GAT GCC CGC GGA GAG CAC GGC AAC ACC CGC GTG CAC CTG Ala Asn Ala Asn Ala Arg Gly Glu His Gly Asn Thr Pro Leu His Leu 335 GCC AAC GCG GAT GCC CGC GGA GAG CAC GGC AAC ACC CCG CTG CAC CTG Ala Asn Ala Asn Ala Arg Gly Glu His Gly Asn Thr Pro Leu His Leu 335 GCC ATG TCG AAA GAC AAC GTC GAG ATG ATC AAG GCC CTC ATC GTG TTC Ala Met Ser Lys Asp Asn Val Glu Met Ile Lys Ala Leu Ile Val Phe 360 GGA GCA GAA GTG GAC CCC AAT GAC TTT GGG GAG ATC CTT ACA TTC GIG TTC Ala Met Ser Lys Asp Asn Val Glu Met Ile Lys Ala Leu Ile Val Phe 375 GGA GCA GAA GTG GAC ACC CCG AAT GAC TTT GGG GAG ACT CCT ACA TTC GIG TTC Ala GCC TC AAA ATC GGC AGACTTGTC ACC GAGAAGGC GATCTTGACT 1254 GCA GCC TCC AAA ATC GGC AGACTTGTCA CCAGGAAGGC GATCTTGACT 1254 CTA GCC TCC AAA ATC GGC AGACTTGTCA CCAGGAAGGC GATCTTGACT 1254 AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGAT GGTGGGCCT GAGCCACGATC AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAC CACCACGATC AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAC CACCACACG CCCCCCCCC	Arg Cys Asn	Ile Met Gly	Pro Asn	GGC TA Gly Ty	r Pro	Ile Hi	TCG S Ser	GCC Ala	Met	822
Ser Gin He His Ser Lys Asp Pro Arg Tyr Gly Ala Ser Pro Leu His 280 TGG GCC AAG AAC GCA GAG ATG GCC CGC ATG CTG CTG AAA CGG GGC TGC TYP Ala Lys Asn Ala Glu Met Ala Arg Met Leu Leu Lys Arg Gly Cys 305 AAC GTG AAC AGC ACC AGC TCC GCG GGG AAC ACG GCC CTG CAC GTG GGG Ann Val Asn Ser Thr Ser Ser Ala Gly Asn Thr Ala Leu His Val Gly 315 GTG ATG CGC AAC CGC TTC GAC TGT GCC ATA GTG CTG CTG ACC CAC GGG Val Met Arg Asn Arg Phe Asp Cys Ala He Val Leu Leu Thr His Gly 320 GCC AAC GCG GAT GCC CGC GGA GAC CAC GGC AAC ACC CCG CTG CAC CTG Ala Asn Ala Asp Ala Arg Gly Glu His Gly Asn Thr Pro Leu His Leu 355 GCC ATG TCG AAA GAC ACC GTG GAA GTG ATG ATC ACC CCG CTG CAC CTG Ala Asn Ala Asp Ala Arg Gly Glu His Gly Asn Thr Pro Leu His Leu 355 GCC ATG TCG AAA GAC AAC GTG GAA ATG ATC AAA GCC CTG CAC CTG Ala Asn Ala Asp Ala Arg Gly Glu His Gly Asn Thr Pro Leu His Leu 355 GCC ATG TCG AAA GAC AAC GTG GAA ATC ATC ATG GTG TTC Ala Met Ser Lys Asp Asn Val Glu Met He Lys Ala Leu He Val Phe 360 GGA GCA GAA GTG GAC ACC CCG AAT GAC TTT GGG GAG ACT CCT ACA TTC GLY Ala Glu Val Asp Thr Pro Asn Asp Phe Gly Glu Thr Pro Thr Phe 380 GCC ATG CTC AAA ATC GGC AGACTTGTCA CCAGGAGGC GATCTTGACT CTA GCC TCC AAA ATC GGC AGACTTGTCA CCAGGAGGC GATCTTGACT CTA GCC TCC AAA ATC GGC AGACTTGTCA CCAGGAGGC GATCTTGACT CTGCTGAGAA CCGTGGGGGC CGAATACTGC TTCCCACCCA TCCACGGGGT CCCCGCGGAG CTGCTGAGAA CCGTGGGGGC CGAATACTGC TTCCCTGGAAA GAGCTCAGCC CCCACCGATC 1374 AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAT GGTGGGCCT GGGTGCGGC 1434 CCAGGGCTCTG CAGCGCCACA TCATCCCTTC TCCCTGGAAA GAGCTCAGCC CCCACCGATC 1494 CCAGGGCTCTG CAGCGCCAC TCTCCACCCA TCTCTGCTT TCCCTTGTTCA CTGTGCAGCC 1654 GTGTGCCCTG GGAGGGGA GACACCGCTT CGCAGCCCTC GGTTCTGCTT TGCTGCTTCT 1674 AGACTCTCA CTCCCTAAC CTCCTTCTT AGCTGCGAC CTAGCCATGC CCCCCCCCCC	AAG TTC TCT (Lys Phe Ser (Gln Lys Gly	TGT GCG Cys Ala	Glu Me	t Ile	ATC AGG	C ATG Met	Asp	AGC Ser	870
ACC GTG AAC AGC ACC AGC TCC GCG GGG AAC ACG GCC CTG CAC GTG GGG ASS Val Ass Ser Thr Ser Ser Ala Gly Ass Thr Ala Leu His Val Gly 310 GTG ATG CGC AAC CGC TTC GAC TGT GCC ATA GTG CTG CTG ACC CAC GGG Val Met Arg Ass Arg Phe Asp Cys Ala Ile Val Leu Leu Thr His Gly 325 GCC AAC GCG GAT GCC CGC GGA GAG CAC GGC AAC ACC CCG CTG CAC CTG Ala Ass Ala Asp Ala Arg Gly Glu His Gly Ass Thr Pro Leu His Leu 345 GCC AAC GCG GAT GCC CGC GGA GAG CAC GGC AAC ACC CCG CTG CAC CTG Ala Ass Ala Asp Ala Arg Gly Glu His Gly Ass Thr Pro Leu His Leu 345 GCC ATG TCG AAA GAC ACC GCG GAG GAG CAC GGC AAC ACC CCG CTG CAC CTG Ala Met Ser Lys Asp Ass Val Glu Met Ile Lys Ala Leu Ile Val Phe 360 GGA GCA GCA GAC GTG GAC ACC CCG AAT GAC TTT GGG GAG ACT CCT ACA TTC Gly Ala Glu Val Asp Thr Pro Ass Asp Phe Gly Glu Thr Pro Thr Phe 375 GCT AGC TCC AAA ATC GGC AAT GAC TTT GGG GAG ACT CCT ACA TTC Gly Ala Ser Lys Ile Gly 390 CTGCTGGAGAA CCGTGGGGGC CGAATACTGC TTCCCACCCA TCCACGGGGT CCCCGCGGAG CAGGGCTCTG CAGCGCCACA TCATCCCTTC TCCCTGGAAA GAGCTCAGC CCCCACCGATC 1374 AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAT GGTGGGCCG 1434 TCAGATGGGT AACGCCTGG GCCTGGAGAG GCCACCGAGC CTAGCCTCCC 1554 TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTCTGCTTC CCTTGTTCA CTGTGCACC 1614 GTGTGCCCTG GGAGGGGGA GACACCCCC TCTCTCTT TCCCTGGCAC ACACCACAC CCCCCTCCCC 1554 GGACCCTGC CACGGCCAC TCTCCCTCT TCCCTGGAAC ACACCACAC CCCCCTCCCC 1654 GGCCTAACA ACCTAGGCAG GACACCCCCT TCTCTTCTT TCCTTGCTT CCCTTGTTCA CTGTGCACCC 1674 GCCCCTGCTCCC GGAGGGGGA GACACCCCCC TCTCTCTT TCCCTTGCTT CCCTTGTTT TGCTGCTTCT 1674 AGCCTAACA ACCTAGGCAG GACACCCCCTC TCTCTTCTT TAGCTGCTTC TCCCTTGTTT AGCTGCTCCC TCCTCCCC 1554 TCAGATGGGT AACGCCTGG GCCTGAGAGA GACACCACAC CCCCCTCCCC 1674 GGACCCTGC CCGGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTT TGCTGCTTCT 1674 AGACTCTGCA CAGTGGTGG GGCTGTCAG AGTTGGGTC ACGCGGGCT CTGCACCAGG 1734 AGCCTAGATGAACA ACCTAGGAGGAG GACACCACAG GGCCCTTCCCC 1654 AGACTCTGCA CAGTGGTGG GGCTGTCAGAGGGGGGGGAGCTAGT CAGTTGGGTG CCCCCCCCCC	Ser Gin Ile F	His Ser Lys	GAC CCC Asp Pro	Arg Ty	C GGA r Gly	GCC AGO Ala Ser	Pro	CTC Leu	CAC His	918
ASI VAI ASI SET THE SET SET ALA GLY ASI THE ALA LEU HIS VAI GLY 310 GTG ATG CGC AAC CGC TTC GAC TGT GCC ATA GTG CTG CTG ACC CAC GGG VAI MET ANY ASI ANY Phe ASP CYS ALA ILE VAI LEU LEU THE HIS GLY 330 GCC AAC GCG GAT GCC CGC GGA GAG CAC GGC AAC ACC CCG CTG CAC CTG ALA ASI ALA ANA ATC ASI ASI ALA ASI ALA ASI ALA ANA ATC ASI ASI ALA ANA ATC ASI ASI ALA ANA ATC ASI ASI ALA ASI ALA ANA ATC ASI ASI ANA ASI ASI ALA ANA ATC ASI ASI ANA ASI ANA ASI ANA ASI ANA ASI ASI ANA	Trp Ala Lys A	AAC GCA GAG Asn Ala Glu	Met Ala	CGC ATO	G CTG Leu	Leu Lys	Arg	GGC Gly	TGC Cys	966
Val Met Arg Asn Arg Phe Asp Cys Ala Ile Val Leu Leu Thr His Gly 330 GCC AAC GCG GAT GCC CGC GGA GAG CAC GGC AAC ACC CCG CTG CAC CTG Ala Asn Ala Asp Ala Arg Gly Glu His Gly Asn Thr Pro Leu His Leu 355 GCC ATG TCG AAA GAC ACC GTG GAG ATG ATC AAG GCC CTC ATC GTG TTC Ala Met Ser Lys Asp Asn Val Glu Met Ile Lys Ala Leu Ile Val Phe 360 GGA GCA GGA GTG GAC ACC CCG AAT GAC TTT GGG GAG ACT CCT ACA TTC GIY Ala Glu Val Asp Thr Pro Asn Asp Phe Gly Glu Thr Pro Thr Phe 375 CTA GCC TCC AAA ATC GGC AGACTTGTCA CCAGGAAGGC GATCTTGACT Leu Ala Ser Lys Ile Gly 380 CTGCTGAGAA CCGTGGGGGC CGAATACTGC TTCCCACCCA TCCACGGGGT CCCCGCGGAG 1314 CAGGGCTCTG CAGCGCCACA TCATCCCTTC TCCCTGGAAA GAGCTCAGCC CCCACCGATC 1374 AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAC GTAGCCATGC GGCATTAGCT 1494 TCAGATGGGT AACGCCCTGG GCCTGGAGAG GCCACCGAGC CTAGCCACCG CCCCCCCCC 1554 TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC 1614 GTGTGCCCTG GGGAGGGGG GACACCGCTT CGCACCGAT CCCTTCTT TCCCTTGCTT TCCCTTGCTT TCCCTTCTT TCCTTGCTT TCCCTTCTTCTT TCCTTGCTT TCCCTTCTTCTT TCCTTGCTT TCCTTGCTT TCCTTCTTCTT TCCTTGCTT TCCTTGCTT TCCTTGCTT TCCTTGCTT TCCTTCTTCT TCCTTGCTT TCCTTGCTT TCCTTGCTT TCCTTCTTCT TCCTTGCTT TCCTTCTTCTT TCCTTGCTT TCCTTGCTT TCCTTGCTT TCCTTCTTCTT TCCTTGCTT TCCTTGCTT TCCTTGCTT TCCTTGCTT TCCTTCTTCT TCCTTGCTT TCCTTGGGGG GAGGCTAGT CAGTTGGGT CAGGGGCC TCGCCCTGGGC TCGCCCTGGGC TCGCCTTGGGGT TCCCGGAGGC TCGGGGCT TCCCGGAGGCC TCGCCTTGGGT TCCCGGAGGCC TCGCCTTGGGT TCCCGGAGGCC TCGCCCTGGG TCCTTGCTT TGCTGGTT TCCCGGAGGCC TCGCCTTGGACCTG TCCCGGAGGCC TCGCCTTGGACCTG TCCCGGAGGCC T	Asn Val Asn S	AGC ACC AGC Ser Thr Ser	Ser Ala	GGG AAG	C ACG	Ala Leu	CAC His	GTG Val	GGG Gly	1014
Alla Ash Ala Asp Ala Arg Gly Glu His Gly Ash Thr Pro Leu His Leu 355 GCC ATG TCG AAA GAC AAC GTG GAG ATG ATC AAG GCC CTC ATC GTG TTC Ala Met Ser Lys Asp Ash Val Glu Met Ile Lys Ala Leu Ile Val Phe 360 GGA GCA GAA GTG GAC ACC CCG AAT GAC TTT GGG GAG ACT CCT ACA TTC GLY Ala Glu Val Asp Thr Pro Ash Asp Phe Gly Glu Thr Pro Thr Phe 377 CTA GCC TCC AAA ATC GGC AGACTTGTCA CCAGGAAGGC GATCTTGACT Leu Ala Ser Lys Ile Gly 390 CTGCTGAGAA CCGTGGGGGC CGAATACTGC TTCCCACCCA TCCACGGGGT CCCCGCGGAG 1314 CAGGGCTCTG CAGGGCCACA TCATCCCTTC TCCCTGGAAA GAGCTCAGCC CCCACCGATC 1374 AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAT GGTGGGCCTG GGGTGCGGCG 1434 TCAGATGGGT AACGCCCTGG GCCTGGAGAG GCCACCGAGC CTAGCCATGC GGCATTAGCT 1494 CTAGCTCTCA CTCCCTAATC CGTCCTTCTT AGCTGCGCAC ACACCACAC CCCCTCCCC 1554 TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC 1614 GTGTGCCCTG GGGAGGGGA GACACCGCTT CGCAGGCCTC GGTTCTGCTT TGCTGCTTCT 1674 AGACTCTGCA CAGTGGTGGG GGCTGTCAG AGTTGGGTC ACGCGGGCT CTGCACCAGG 1734 CACCTGGGA CAGGGGGGA GACACCGCTT CGCAGGCCTC GGTTCTGCTT TGCTGCTTCT 1674 AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGT CAGCGAGGC 1734 CACCTGGGA CTGGGCTGCT TGTCAGGAGG GCCAGCCTC CGTGCACCAGG 1734 AGGCCTTGGA CAGAAAGGAA GACATGGACA GGGAGCTGAT CAGTTGGGT GACGTCGGC 1734 AGGCCTTGGA CAGAAAGGAA GACATGGACA GGGAGCTAGT CAGTTGGGT GACGTCGGC 1734 AGGCCTTGGA CAGAAAGGAA GACATGGACA GGGAGGTGGT CAGTTGGGT GACGTCGGC 1734 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGGGATGT CAGTTGGGT GACGTCGGC 1734 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGGGATGTT CCCTTTCATCC ATGGACTTAA 1914	val Met Arg A	Asn Arg Phe	GAC TGT Asp Cys	GCC ATA	≥ Val	CTG CTG	ACC Thr	CAC His	Gly	1062
GGA GCA GAA GTG GAC ACC CCG AAT GAC TTT GGG GAG GAT CCT ACA TTC Gly Ala Glu Val Asp Thr Pro Ash Asp Phe Gly Glu Thr Pro Thr Phe 375 CTA GCC TCC AAA ATC GGC AGACTTGTCA CCAGGAAGGC GATCTTGACT Leu Ala Ser Lys Ile Gly 390 CTGCTGAGAA CCGTGGGGGC CGAATACTGC TTCCCACCCA TCCACGGGGT CCCCGCGGAG CAGGGCTCTG CAGCGCCACA TCATCCCTTC TCCCTGGAAA GAGCTCAGCC CCCACCGATC AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAT GGTGGGCCTG GGGTGCGGCG TCAGGATGGT AACGCCCTGG GCCTGGAGAG GCCACCGACC CTAGCCATGC GGCATTAGCT TCAGATGGGT AACGCCCTGG GCCTGGAGAG GCCACCGACC CTAGCCATGC GGCATTAGCT TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC TGCACCCTGT CCCCGGCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC TGCACCCTGG GGGAGGGGG GGCAGCCTAG ACGCGGGCT CTGCACCAGG AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGT ACGCGGGCT CTGCACCAGG CACCTGGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGT GACGTCGGGC AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATGT CAGTTGGGT GACGTCGGGC 1854 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGGGATGTC CCCTTTCATCC ATGGACTTAA ACTGGGATTT CCAGGACTGG GACCAGGAC AGGGATGTC CCCTTTCATCC ATGGACTTAA 1914	GCC AAC GCG G Ala Asn Ala A	Asp Ala Arg	GGA GAG Gly Glu	His Gly	/ Asn	ACC CCG	Leu	His	CTG Leu	1110
CTA GCC TCC AAA ATC GGC AGACTTGTCA CCAGGAAGGC GATCTTGACT CTA GCC TCC AAA ATC GGC AGACTTGTCA CCAGGAAGGC GATCTTGACT Leu Ala Ser Lys Ile Gly CTGCTGAGAA CCGTGGGGGC CGAATACTGC TTCCCACCCA TCCACGGGGT CCCCGCGGAG CAGGGCTCTG CAGCGCCACA TCATCCCTTC TCCCTGGAAA GAGCTCAGCC CCCACCGATC AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAT GGTGGGCCTG GGGTGCGGCG TCAGATGGGT AACGCCCTGG GCCTGGAGAG GCCACCGAGC CTAGCCATGC GGCATTAGCT CTAGCTCTCA CTCCCTAATC CGTCCTTCTT AGCTGCGAC ACACCACAGG CCCCCTCCCC TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC GGGTGCCCTG GGGAGGGGA GACACCGCTT CGCAGCCCTC GGTTCTGCTT TGCTGCTTCT AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG CACCTGGGA CTGGGCTGCT TGTCAGGAGA GACTGGGTC ACGCGGGCTG CTGCACCAGG AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG AGACCTTGGA CAGAAAGGAA GACATGGACA GAGTGGATG TGGGCCTGAT CCCGGAGGCC AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATG TGGGCCTGAT CCCGGAGGCC ACCTGGGATTT CCAGACCTGG GATCAGGACA AGGGGATGTCT CCTTTCTCATCC ATGGACTTAA ACCTGGGATTT CCAGACCTGG GATCAGGACA AGGGGATGTCT CCTTTCATCC ATGGACTTAA 1914	Ala Met Ser L	ys Asp Asn	GTG GAG Val Glu	Met Ile	AAG Lys	GCC CTC Ala Leu	Ile	GTG Val	TTC Phe	1158
Leu Ala Ser Lys Ile Gly CTGCTGAGAA CCGTGGGGGC CGAATACTGC TTCCCACCCA TCCACGGGGT CCCCGCGGAG CAGGGCTCTG CAGCGCCACA TCATCCCTTC TCCCTGGAAA GAGCTCAGCC CCCACCGATC AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAT GGTGGGCCTG GGGTGCGGCG TCAGATGGGT AACGCCCTGG GCCTGGAGAG GCCACCGAGC CTAGCCATGC GGCATTAGCT CTAGCTCTCA CTCCCTAATC CGTCCTTCTT AGCTGCGCAC ACACCACACG CCCCCTCCCC TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC GGGAGGGGGA GACACCGCTT CGCAGCCCTC GGTTCTGCTT TGCTGCTTCT AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG CACCTGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGTG GACGTCGGCC AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATGG TGGGCCTGAT CCCGGAGGCC ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914	GIY Ala Glu V	TG GAC ACC al Asp Thr	Pro Asn	GAC TTT Asp Phe	GGG Gly	Glu Thr	CCT Pro	ACA Thr	TTC Phe	1206
CAGGGCTCTG CAGCGCCACA TCATCCCTTC TCCCTGGAAA GAGCTCAGCC CCCACCGATC AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAT GGTGGGCCTG GGGTGCGGCG 1434 TCAGATGGGT AACGCCCTGG GCCTGGAGAG GCCACCGAGC CTAGCCATGC GGCATTAGCT 1494 CTAGCTCTCA CTCCCTAATC CGTCCTTCTT AGCTGCGCAC ACACCACACG CCCCCTCCCC 1554 TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC 1614 GTGTGCCCTG GGGAGGGGGA GACACCGCTT CGCAGCCCTC GGTTCTGCTT TGCTGCTTCT 1674 AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG 1734 CACCTGGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGTG GACGTCGGGC 1854 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATG TGGGCCTGAT CCCGGAGGCC 1854 ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914	Leu Ala Ser L	AA ATC GGC ys Ile Gly	AGACTTGI	CA CCAG	GAAGG	SC GATCT	TGACT			1254
AGCCTAAACA ACCTAGGCAG TCACCCAAGC CAGGCCGGAT GGTGGGCCTG GGGTGCGGCG 1434 TCAGATGGGT AACGCCCTGG GCCTGGAGAG GCCACCGAGC CTAGCCATGC GGCATTAGCT 1494 CTAGCTCTCA CTCCCTAATC CGTCCTTCTT AGCTGCGCAC ACACCACACG CCCCCTCCCC 1554 TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC 1614 GTGTGCCCTG GGGAGGGGGA GACACCGCTT CGCAGCCCTC GGTTCTGCTT TGCTGCTTCT 1674 AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG 1734 CACCTGGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGTG GACGTCGGGC 1794 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATGG TGGGCCTGAT CCCGGAGGCC 1854 ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914	CTGCTGAGAA CC	GTGGGGGC CG	AATACTGC	TTCCCA	CCCA	TCCACGG	GGT C	CCCG	CGGAG	1314
TCAGATGGGT AACGCCCTGG GCCTGGAGAG GCCACCGAGC CTAGCCATGC GGCATTAGCT 1494 CTAGCTCTCA CTCCCTAATC CGTCCTTCTT AGCTGCGCAC ACACCACACG CCCCCTCCCC 1554 TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC 1614 GTGTGCCCTG GGGAGGGGGA GACACCGCTT CGCAGCCCTC GGTTCTGCTT TGCTGCTTCT 1674 AGACTCTGCA CAGTGGTGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG 1734 CACCTGGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGTG GACGTCGGGC 1794 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATGG TGGGCCTGAT CCCGGAGGCC 1854 ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914	CAGGGCTCTG CA	GCGCCACA TC	ATCCCTTC	TCCCTG	GAAA	GAGCTCA	GCC C	CCAC	CGATC	1374
CTAGCTCTCA CTCCCTAATC CGTCCTTCTT AGCTGCGCAC ACACCACAG CCCCCTCCCC 1554 TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC 1614 GTGTGCCCTG GGGAGGGGGA GACACCGCTT CGCAGCCCTC GGTTCTGCTT TGCTGCTTCT 1674 AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG 1734 CACCTGGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGTG GACGTCGGGC 1794 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATGG TGGGCCTGAT CCCGGAGGCC 1854 ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914	AGCCTAAACA AC	CTAGGCAG TC	ACCCAAGC	CAGGCC	GGAT	GGTGGGC	CTG G	GGTG	CGGCG	1434
TGCACCCTGT CCCCGGCCTC TCTCAGCCAC TCTTCTGCTT CCCTTGTTCA CTGTGCAGCC 1614 GTGTGCCCTG GGGAGGGGA GACACCGCTT CGCAGCCCTC GGTTCTGCTT TGCTGCTTCT 1674 AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG 1734 CACCTGGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGTG GACGTCGGGC 1794 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATG TGGGCCTGAT CCCGGAGGCC 1854 ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914										1494
GTGTGCCCTG GGGAGGGGA GACACCGCTT CGCAGCCCTC GGTTCTGCTT TGCTGCTTCT 1674 AGACTCTGCA CAGTGGTGGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG 1734 CACCTGGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGTG GACGTCGGGC 1794 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATGG TGGGCCTGAT CCCGGAGGCC 1854 ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914						•				1554
AGACTCTGCA CAGTGGTGG GGGCTGTCAG AGTTGGGGTC ACGCGGGCTG CTGCACCAGG 1734 CACCTGGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGTG GACGTCGGGC 1794 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATGG TGGGCCTGAT CCCGGAGGCC 1854 ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914										1614
CACCTGGGGA CTGGGCTGCT TGTCAGGAGG GGCAGCTAGT CAGTTGGGTG GACGTCGGGC 1794 AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATGG TGGGCCTGAT CCCGGAGGCC 1854 ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914										1674
AGGCCTTGGA CACAAAGGAA GACATGGACA GAGTGGATGG TGGGCCTGAT CCCGGAGGCC 1854 ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914										1734
ACTGGGATTT CCAGACCTGG GATCAGGACG AGGGATGTCT CCTTTCATCC ATGGACTTAA 1914										1794
ACCCCGAGGA ACGTCCTGAC TCAGCCTTTT GACTAAATGA CCTTGGGTGA ATTATGGACC 1974										

2012

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 394 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Gln Phe Gly Arg Leu Val Asn Thr Phe Ser Gly Val Thr Asn
1 5 10 15

Leu Phe Ser Asn Pro Phe Arg Val Lys Glu Val Ala Val Ala Asp Tyr
20 25 30

Thr Ser Ser Asp Arg Val Arg Glu Glu Gly Gln Leu Ile Leu Phe Gln
35 40 45

Asn Thr Pro Asn Arg Thr Trp Asp Cys Val Leu Val Asn Pro Arg Asn 50 55 60

Ser Gln Ser Gly Phe Arg Leu Phe Gln Leu Glu Leu Glu Ala Asp Ala 65 70 75 80

Leu Val Asn Phe His Gln Tyr Ser Ser Gln Leu Leu Pro Phe Tyr Glu
85 90 95

Ser Ser Pro Gln Val Leu His Thr Glu Val Leu Gln His Leu Thr Asp 100 105 110

Leu Ile Arg Asn His Pro Ser Trp Ser Val Ala His Leu Ala Val Glu 115 120 125

Leu Gly Ile Arg Glu Cys Phe His His Ser Arg Ile Ile Ser Cys Ala 130 135 140

Asn Cys Ala Glu Asn Glu Glu Gly Cys Thr Pro Leu His Leu Ala Cys 150 155 160

Arg Lys Gly Asp Gly Glu Ile Leu Val Glu Leu Val Gln Tyr Cys His 165 170 175

Thr Gln Met Asp Val Thr Asp Tyr Lys Gly Glu Thr Val Phe His Tyr 180 185 190

Ala Val Gln Gly Asp Asn Ser Gln Val Leu Gln Leu Leu Gly Arg Asn 195 200 205

Ala Val Ala Gly Leu Asn Gln Val Asn Asn Gln Gly Leu Thr Pro Leu 210 220

His Leu Ala Cys Gln Leu Gly Lys Gln Glu Met Val Arg Val Leu Leu 225 230 235 240

Leu Cys Asn Ala Arg Cys Asn Ile Met Gly Pro Asn Gly Tyr Pro Ile 245 250 255

His Ser Ala Met Lys Phe Ser Gln Lys Gly Cys Ala Glu Met Ile Ile 260 265 270

Ser Met Asp Ser Ser Gln Ile His Ser Lys Asp Pro Arg Tyr Gly Ala 275 280 285

Ser	Pro	Leu	His	Trp	Ala	Lys	Asn	Ala	Glu	Met	Ala	Arg	Met	Leu	Leu
	290					295					300				

- Lys Arg Gly Cys Asn Val Asn Ser Thr Ser Ser Ala Gly Asn Thr Ala 305 310 315 320
- Leu His Val Gly Val Met Arg Asn Arg Phe Asp Cys Ala Ile Val Leu 325 330 335
- Leu Thr His Gly Ala Asn Ala Asp Ala Arg Gly Glu His Gly Asn Thr 340 345 350
- Pro Leu His Leu Ala Met Ser Lys Asp Asn Val Glu Met Ile Lys Ala 355
- Leu Ile Val Phe Gly Ala Glu Val Asp Thr Pro Asn Asp Phe Gly Glu 370 380
- Thr Pro Thr Phe Leu Ala Ser Lys Ile Gly 385
- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1277 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 396..1271
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GAATTCTTAG GCCCCAGGTG GTTATTGCAG CATCGGCTCC GATGCAAGAA GAAGCACTTT	60
GTCTGAAGAG GACACGCAAG GGTATTCATG CCTTGGGGTT TCAAGAGGAA GAGATTGAGG	120
GGAACCTGGG AGCTGGCTGG GCAGGGTGGG GAGCCCTTCC CAGAGCAGTG GGCCCCCCTT	180
TCCACTCCAG CCCATTTCTC TCCTGTGGCC TGTGGCTCAG CTTTCTCCTG GGACAGAGTC	240
CTTCCTGTGG GGAAGGGACA GATGACAGGG GGAGTGGGGG GATGAGGGCG TGGCCGTGGG	300
CGAGGCACAG CCCAGGTTTG ATCTAGGGAC CTCTGGGGTA GCAGGGCTTG GGGACCCACC	360
TGACCACAGC ATGCCCTGCT CTGTGCCTCA CAGAA CTA CAG GAT CTC ATG CAC Leu Gln Asp Leu Met His	413
ATC TCA CGG GCC CGG AAG CCA GCG TTC ATC CTG GGC TCC ATG AGG GAC Ile Ser Arg Ala Arg Lys Pro Ala Phe Ile Leu Gly Ser Met Arg Asp 10 15 20	461
GAG AAG CGG ACC CAC GAC CAC CTG CTG TGC CTG GAT GGA GGA GTG Glu Lys Arg Thr His Asp His Leu Leu Cys Leu Asp Gly Gly Gly Val	509

AA) Lys	A GGG S Gly 40	/ Lei	C ATO	C ATO	ATC	CAG Gln 45	Leu	CTC Lev	ATC	GCC Ala	ATO	: Glı	AAG Lys	GCC Ala	TCG Ser	5	557
GG: Gly 5:	/ Val	G GCC L Ala	C ACC	C AAG Lys	GAC Asp 60	Leu	TTT Phe	GAC Asp	TGG Trp	GTO Val 65	. Ala	GGC Gly	ACC Thr	AGC Ser	ACT Thr 70	6	05
GG <i>I</i> Gly	A GGC / Gly	TATO	CTC Lev	GCC Ala 75	Leu	GCC Ala	ATT	CTG Leu	CAC His 80	Ser	AAG Lys	TCC Ser	ATG Met	GCC Ala 85	TAC	6	553
ATC Met	G CGC : Arg	GGC Gly	ATO Met	Tyr	TTT Phe	CGC Arg	ATG Met	AAG Lys 95	Asp	GAG Glu	GTG Val	TTC	CGG Arg 100	Gly	TCC Ser	7	01
AGG Arg	CCC Pro	TAC Tyr 105	Glu	TCG Ser	GGG Gly	CCC	CTG Leu 110	GAG Glu	GAG Glu	TTC Phe	CTG Leu	AAG Lys 115	CGG Arg	GAG Glu	TTT	7	49
GGG Gly	GAG Glu 120	His	ACC Thr	AAG Lys	ATG Met	ACG Thr 125	GAC Asp	GTC Val	AGG Arg	AAA Lys	CCC Pro 130	AAG Lys	GTG Val	ATG Met	CTG Leu	7	97
ACA Thr 135	Gly	ACA Thr	. CTG Leu	TCT Ser	GAC Asp 140	CGG Arg	CAG Gln	CCG Pro	GCT Ala	GAA Glu 145	CTC Leu	CAC His	CTC Leu	TTC Phe	CGG Arg 150	8	45
AAC Asn	TAC Tyr	GAT Asp	GCT Ala	CCA Pro 155	GAA Glu	ACT Thr	GTC Val	CGG Arg	GAG Glu 160	CCT Pro	CGT Arg	TTC Phe	AAC Asn	CAG Gln 165	AAC Asn	8	93
GTT Val	AAC Asn	CTC Leu	AGG Arg 170	CCT Pro	CCA Pro	GCT Ala	CAG Gln	CCC Pro 175	TCA Ser	GAC Asp	CAG Gln	CTG Leu	GTG Val 180	TGG Trp	CGG Arg	94	41
GCG Ala	GCC Ala	CGA Arg 185	AGC Ser	AGC Ser	GGG Gly	GCA Ala	GCT Ala 190	CCT Pro	ACT Thr	TAC Tyr	TTC Phe	CGA Arg 195	CCC Pro	AAT Asn	GGG Gly	98	89
CGC Arg	TTC Phe 200	CTG Leu	GAC Asp	GGT Gly	GGG Gly	CTG Leu 205	TTG Leu	GCC Ala	AAC Asn	AAC Asn	CCC Pro 210	ACG Thr	CTG Leu	GAT Asp	GCC Ala	103	37
ATG Met 215	ACC Thr	GAG Glu	ATC Ile	CAT His	GAG Glu 220	TAC Tyr	AAT Asn	CAG Gln	GAC Asp	CTG Leu 225	ATC Ile	CGC Arg	AAG Lys	GGT Gly	CAG Gln 230	108	35
GCC Ala	AAC Asn	AAG Lys	GTG Val	AAG Lys 235	AAA Lys	CTC Leu	TCC Ser	ATC Ile	GTT Val 240	GTC Val	TCC Ser	CTG Leu	GGG Gly	ACA Thr 245	GGG Gly	113	33
AGG Arg	TCC Ser	CCA Pro	CAA Gln 250	GTG Val	CCT Pro	GTG Val	Thr	TGT Cys 255	GTG Val	GAT Asp	GTC Val	TTC Phe	CGT Arg 260	CCC Pro	AGC Ser	118	31
AAC Asn	CCC Pro	TGG Trp 265	GAG Glu	CTG Leu	GCC Ala	Lys	ACT Thr 270	GTT Val	TTT Phe	GGG Gly	Ala	AAG Lys 275	GAA Glu	CTG Leu	GGC Gly	122	:9
AAG Lys	ATG Met 280	GTG Val	GTG Val	GAC Asp	Cys	TGC Cys 285	ACG :	GAT Asp	CCA Pro	Asp	GGG Gly 290	CGG Arg	CCG Pro			127	'1
GAAT	TC															127	7

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 292 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Leu Gln Asp Leu Met His Ile Ser Arg Ala Arg Lys Pro Ala Phe Ile
1 10 15

Leu Gly Ser Met Arg Asp Glu Lys Arg Thr His Asp His Leu Leu Cys
20 25 30

Leu Asp Gly Gly Val Lys Gly Leu Ile Ile Ile Gln Leu Leu Ile 35

Ala Ile Glu Lys Ala Ser Gly Val Ala Thr Lys Asp Leu Phe Asp Trp
50 60

Val Ala Gly Thr Ser Thr Gly Gly Ile Leu Ala Leu Ala Ile Leu His
65 70 75 80

Ser Lys Ser Met Ala Tyr Met Arg Gly Met Tyr Phe Arg Met Lys Asp 85 90 95

Glu Val Phe Arg Gly Ser Arg Pro Tyr Glu Ser Gly Pro Leu Glu Glu 100 105 110

Phe Leu Lys Arg Glu Phe Gly Glu His Thr Lys Met Thr Asp Val Arg

Lys Pro Lys Val Met Leu Thr Gly Thr Leu Ser Asp Arg Gln Pro Ala 130 135 140

Glu Leu His Leu Phe Arg Asn Tyr Asp Ala Pro Glu Thr Val Arg Glu 145 150 155 160

Pro Arg Phe Asn Gln Asn Val Asn Leu Arg Pro Pro Ala Gln Pro Ser 165 170 175

Asp Gln Leu Val Trp Arg Ala Ala Arg Ser Ser Gly Ala Ala Pro Thr 180 185 190

Tyr Phe Arg Pro Asn Gly Arg Phe Leu Asp Gly Gly Leu Leu Ala Asn 195 200 205

Asn Pro Thr Leu Asp Ala Met Thr Glu Ile His Glu Tyr Asn Gln Asp 210 215 220

Leu Ile Arg Lys Gly Gln Ala Asn Lys Val Lys Lys Leu Ser Ile Val 225 230 235 240

Val Ser Leu Gly Thr Gly Arg Ser Pro Gln Val Pro Val Thr Cys Val 245 250 255

Asp Val Phe Arg Pro Ser Asn Pro Trp Glu Leu Ala Lys Thr Val Phe 260 265 270

Gly Ala Lys Glu Leu Gly Lys Met Val Val Asp Cys Cys Thr Asp Pro 275 280 285

Asp Gly Arg Pro 290

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2109 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 43..2103
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GAA	ATTCC	CGGG	ACGG	TGG	GC C	TCCC	CACC	T GC	CCCG	CAGA	AG			TTC Phe		54
GGC Gly 5	CGC Arg	CTG Leu	GTC Val	AAT Asn	ACC Thr	Phe	AGT Ser	GGC Gly	GTC Val	ACC Thr 15	Asn	TTG Leu	TTC Phe	TCT Ser	AAC Asn 20	102
CCA Pro	TTC Phe	CGG Arg	GTG Val	AAG Lys 25	Glu	GTG Val	GCT Ala	GTG Val	GCC Ala 30	Asp	TAC Tyr	ACC Thr	TCG Ser	AGT Ser 35	GAC Asp	150
CGA Arg	GTT Val	CGG Arg	GAG Glu 40	Glu	GGG Gly	CAG Gln	CTG Leu	ATT Ile 45	CTG Leu	TTC Phe	CAG Gln	AAC Asn	ACT Thr 50	Pro	AAC Asn	198
CGC Arg	ACC Thr	TGG Trp 55	GAC Asp	TGC Cys	GTC Val	CTG Leu	GTC Val 60	AAC Asn	CCC Pro	AGG Arg	AAC Asn	TCA Ser 65	CAG Gln	AGT Ser	GGA Gly	246
TTC Phe	CGA Arg 70	Leu	TTC Phe	CAG Gln	CTG Leu	GAG Glu 75	TTG Leu	GAG Glu	GCT Ala	GAC Asp	GCC Ala 80	CTA Leu	GTG Val	AAT Asn	TTC Phe	294
CAT His 85	CAG Gln	TAT Tyr	TCT Ser	TCC Ser	CAG Gln 90	CTG Leu	CTA Leu	CCC Pro	TTC Phe	TAT Tyr 95	GAG Glu	AGC Ser	TCC Ser	CCT Pro	CAG Gln 100	342
GTC Val	CTG Leu	CAC His	ACT Thr	GAG Glu 105	GTC Val	CTG Leu	CAG Gln	CAC His	CTG Leu 110	ACC Thr	GAC Asp	CTC Leu	ATC Ile	CGT Arg 115	AAC Asn	390
CAC His	CCC Pro	AGC Ser	TGG Trp 120	TCA Ser	GTG Val	GCC Ala	CAC His	CTG Leu 125	GCT Ala	GTG Val	GAG Glu	CTA Leu	GGG Gly 130	ATC Ile	CGC Arg	438
GAG Glu	TGC Cys	TTC Phe 135	CAT His	CAC His	AGC Ser	CGT Arg	ATC Ile 140	ATC Ile	AGC Ser	TGT Cys	GCC Ala	AAT Asn 145	TGC Cys	GCG Ala	GAG Glu	486
AAC Asn	GAG Glu 150	GAG Glu	GGC Gly	TGC Cys	ACA Thr	CCC Pro 155	CTG Leu	CAC His	CTG Leu	GCC Ala	TGC Cys 160	CGC Arg	AAG Lys	GGT Gly	GAT Asp	534
GGG Gly 165	GAG Glu	ATC Ile	CTG Leu	GTG Val	GAG Glu 170	CTG Leu	GTG Val	CAG Gln	Tyr	TGC Cys 175	CAC His	ACT Thr	CAG Gln	ATG Met	GAT Asp 180	582

	wo	97/17	448												PC	T/US96/17794
			TAC Tyr												GGT Gly	630
GAC Asp	AAT Asn	TCT Ser	CAG Gln 200	GTG Val	CTG Leu	CAG Gln	CTC Leu	CTT Leu 205	GGA Gly	AGG Arg	AAC Asn	GCA Ala	GTG Val 210	GCT Ala	GGC Gly	678
			GTG Val													726
			AAG Lys													774
			ATC Ile													822
			CAG Gln													870
		Ile	CAC His 280													918
			AAC Asn													966
			AGC Ser													1014
GTG Val 325	ATG Met	CGC Arg	AAC Asn	CGC Arg	TTC Phe 330	GAC Asp	TGT Cys	GCC Ala	ATA Ile	GTG Val 335	CTG Leu	CTG Leu	ACC Thr	CAC His	GGG Gly 340	1062
			GAT Asp													1110
			AAA Lys 360													1158

ACC Thr	AAG Lys	GAC Asp 455) Let	TTI Phe	GAC Asp	TGG Trp	GTO Val	Ala	GGC Gly	ACC Thr	AGC Ser	ACT Thr 465	Gly	GGC Gly	ATC	1446
CTC Leu	GCC Ala 470	Leu	GCC Ala	ATI Ile	CTG Leu	CAC His	Ser	' AAG Lys	TCC Ser	ATC Met	GCC Ala 480	Tyr	ATG Met	CGC Arg	GGC Gly	1494
ATG Met 485	Tyr	TTI Phe	CGC Arg	ATG Met	AAG Lys 490	Asp	GAG Glu	GTG Val	TTC Phe	CGG Arg 495	Gly	TCC Ser	AGG Arg	CCC Pro	TAC Tyr 500	1542
GAG Glu	TCG Ser	GGG Gly	CCC Pro	CTG Leu 505	Glu	GAG Glu	TTC Phe	CTG Leu	AAG Lys 510	CGG Arg	GAG Glu	TTT Phe	GGG Gly	GAG Glu 515		1590
ACC Thr	AAG Lys	ATG Met	ACG Thr 520	Asp	GTC Val	AGG Arg	AAA Lys	Pro 525	Lys	GTG Val	ATG Met	CTG Leu	ACA Thr 530	GGG Gly	ACA Thr	1638
CTG Leu	TCT Ser	GAC Asp 535	Arg	CAG Gln	CCG Pro	GCT Ala	GAA Glu 540	Leu	CAC	CTC Leu	TTC Phe	CGG Arg 545	AAC Asn	TAC Tyr	GAT Asp	1686
GCT Ala	CCA Pro 550	Glu	ACT Thr	GTC Val	CGG Arg	GAG Glu 555	CCT Pro	CGT Arg	TTC Phe	AAC Asn	CAG Gln 560	AAC Asn	GTT Val	AAC Asn	CTC Leu	1734
AGG Arg 565	Pro	CCA Pro	GCT Ala	CAG Gln	CCC Pro 570	TCA Ser	GAC Asp	CAG Gln	CTG Leu	GTG Val 575	TGG Trp	CGG Arg	GCG Ala	GCC Ala	CGA Arg 580	1782
AGC Ser	AGC Ser	GGG Gly	GCA Ala	GCT Ala 585	CCT Pro	ACT Thr	TAC Tyr	TTC Phe	CGA Arg 590	CCC Pro	AAT Asn	GGG Gly	CGC Arg	TTC Phe 595	CTG Leu	1830
GAC Asp	GGT Gly	GGG Gly	CTG Leu 600	TTG Leu	GCC Ala	AAC Asn	AAC Asn	CCC Pro 605	ACG Thr	CTG Leu	GAT Asp	GCC Ala	ATG Met 610	ACC Thr	GAG Glu	1878
ATC Ile	CAT His	GAG Glu 615	TAC Tyr	AAT Asn	CAG Gln	GAC Asp	CTG Leu 620	ATC Ile	CGC Arg	AAG Lys	GGT Gly	CAG Gln 625	GCC Ala	AAC Asn	AAG Lys	1926
GTG Val	AAG Lys 630	AAA Lys	CTC Leu	TCC Ser	ATC Ile	GTT Val 635	GTC Val	TCC Ser	CTG Leu	GGG Gly	ACA Thr 640	GGG Gly	AGG Arg	TCC Ser	CCA Pro	1974
CAA Gln 645	GTG Val	CCT Pro	GTG Val	ACC Thr	TGT Cys 650	GTG Val	GAT Asp	GTC Val	TTC Phe	CGT Arg 655	CCC Pro	AGC Ser	AAC Asn	CCC Pro	TGG Trp 660	2022
GAG Glu	CTG Leu	GCC Ala	AAG Lys	ACT Thr 665	GTT Val	TTT Phe	GGG Gly	GCC Ala	AAG Lys 670	GAA Glu	CTG Leu	GGC Gly	AAG Lys	ATG Met 675	GTG Val	2070
GTG Val	GAC Asp	TGT Cys	TGC Cys 680	ACG Thr	GAT Asp	CCA Pro	Asp	GGG Gly 685	CGG Arg	CCG Pro	GAAT	TC.				2109

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 687 amino acids
- (B) TYPE: amino acid (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Gln Phe Phe Gly Arg Leu Val Asn Thr Phe Ser Gly Val Thr Asn 1 5 10 15

Leu Phe Ser Asn Pro Phe Arg Val Lys Glu Val Ala Val Ala Asp Tyr
20 25 30

Thr Ser Ser Asp Arg Val Arg Glu Glu Gly Gln Leu Ile Leu Phe Gln
35 40 45

Asn Thr Pro Asn Arg Thr Trp Asp Cys Val Leu Val Asn Pro Arg Asn 50 60

Ser Gln Ser Gly Phe Arg Leu Phe Gln Leu Glu Leu Glu Ala Asp Ala 65 70 75 80

Leu Val Asn Phe His Gln Tyr Ser Ser Gln Leu Leu Pro Phe Tyr Glu 85 90 95

Ser Ser Pro Gln Val Leu His Thr Glu Val Leu Gln His Leu Thr Asp 100 105 110

Leu Ile Arg Asn His Pro Ser Trp Ser Val Ala His Leu Ala Val Glu 115 120 125

Leu Gly Ile Arg Glu Cys Phe His His Ser Arg Ile Ile Ser Cys Ala 130 135 140

Asn Cys Ala Glu Asn Glu Glu Gly Cys Thr Pro Leu His Leu Ala Cys 145 150 155 160

Arg Lys Gly Asp Gly Glu Ile Leu Val Glu Leu Val Gln Tyr Cys His 165 170 175

Thr Gln Met Asp Val Thr Asp Tyr Lys Gly Glu Thr Val Phe His Tyr 180 185 190

Ala Val Gln Gly Asp Asn Ser Gln Val Leu Gln Leu Leu Gly Arg Asn 195 200 205

Ala Val Ala Gly Leu Asn Gln Val Asn Asn Gln Gly Leu Thr Pro Leu 210 215 220

His Leu Ala Cys Gln Leu Gly Lys Gln Glu Met Val Arg Val Leu Leu 225 230 235 240

Leu Cys Asn Ala Arg Cys Asn Ile Met Gly Pro Asn Gly Tyr Pro Ile 245 250 255

His Ser Ala Met Lys Phe Ser Gln Lys Gly Cys Ala Glu Met Ile Ile 260 265 270

Ser Met Asp Ser Ser Gln Ile His Ser Lys Asp Pro Arg Tyr Gly Ala 275 280 285

Ser Pro Leu His Trp Ala Lys Asn Ala Glu Met Ala Arg Met Leu Leu 290 295 300

Lys Arg Gly Cys Asn Val Asn Ser Thr Ser Ser Ala Gly Asn Thr Ala 305 310 315

Leu His Val Gly Val Met Arg Asn Arg Phe Asp Cys Ala Ile Val Leu 325 330 335

Leu Thr His Gly Ala Asn Ala Asp Ala Arg Gly Glu His Gly Asn Thr Pro Leu His Leu Ala Met Ser Lys Asp Asn Val Glu Met Ile Lys Ala Leu Ile Val Phe Gly Ala Glu Val Asp Thr Pro Asn Asp Phe Gly Glu Thr Pro Thr Phe Leu Ala Ser Lys Ile Gly Lys Leu Gln Asp Leu Met His Ile Ser Arg Ala Arg Lys Pro Ala Phe Ile Leu Gly Ser Met Arg Asp Glu Lys Arg Thr His Asp His Leu Leu Cys Leu Asp Gly Gly Gly Val Lys Gly Leu Ile Ile Ile Gln Leu Leu Ile Ala Ile Glu Lys Ala Ser Gly Val Ala Thr Lys Asp Leu Phe Asp Trp Val Ala Gly Thr Ser Thr Gly Gly Ile Leu Ala Leu Ala Ile Leu His Ser Lys Ser Met Ala Tyr Met Arg Gly Met Tyr Phe Arg Met Lys Asp Glu Val Phe Arg Gly Ser Arg Pro Tyr Glu Ser Gly Pro Leu Glu Glu Phe Leu Lys Arg Glu Phe Gly Glu His Thr Lys Met Thr Asp Val Arg Lys Pro Lys Val Met Leu Thr Gly Thr Leu Ser Asp Arg Gln Pro Ala Glu Leu His Leu Phe Arg Asn Tyr Asp Ala Pro Glu Thr Val Arg Glu Pro Arg Phe Asn Gln Asn Val Asn Leu Arg Pro Pro Ala Gln Pro Ser Asp Gln Leu Val Trp Arg Ala Ala Arg Ser Ser Gly Ala Ala Pro Thr Tyr Phe Arg Pro Asn Gly Arg Phe Leu Asp Gly Gly Leu Leu Ala Asn Asn Pro Thr Leu Asp Ala Met Thr Glu Ile His Glu Tyr Asn Gln Asp Leu Ile Arg Lys Gly Gln Ala Asn Lys Val Lys Lys Leu Ser Ile Val Val Ser Leu Gly Thr Gly Arg Ser Pro Gln Val Pro Val Thr Cys Val Asp Val Phe Arg Pro Ser Asn Pro Trp Glu Leu Ala Lys Thr Val Phe Gly Ala Lys Glu Leu Gly Lys Met Val Val Asp Cys Cys Thr Asp Pro Asp Gly Arg Pro

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2112 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 43..2106
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GAA	TTCC	GGG	ACGG	TGGG	GC C	TCCC	CACC	T GC	CCCG	CAGA	. AG	ATG Met				54
GGC Gly 5	CGC Arg	CTG Leu	GTC Val	AAT Asn	ACC Thr	TTC Phe	AGT Ser	GGC Gly	GTC Val	ACC Thr 15	Asn	TTG Leu	TTC Phe	TCT Ser	AAC Asn 20	102
CCA Pro	TTC Phe	CGG Arg	GTG Val	AAG Lys 25	Glu	GTG Val	GCT Ala	GTG Val	GCC Ala 30	GAC Asp	TAC	ACC Thr	TCG Ser	AGT Ser 35	GAC Asp	150
CGA Arg	GTT Val	CGG Arg	GAG Glu 40	GAA Glu	GGG Gly	CAG Gln	CTG Leu	ATT Ile 45	CTG Leu	TTC Phe	CAG Gln	AAC Asn	ACT Thr 50	Pro	AAC Asn	198
CGC Arg	ACC Thr	TGG Trp 55	GAC Asp	TGC Cys	GTC Val	CTG Leu	GTC Val 60	AAC Asn	CCC Pro	AGG Arg	AAC Asn	TCA Ser 65	CAG Gln	AGT Ser	GGA Gly	246
TTC Phe	CGA Arg 70	CTC Leu	TTC Phe	CAG Gln	CTG Leu	GAG Glu 75	TTG Leu	GAG Glu	GCT Ala	GAC Asp	GCC Ala 80	Leu	GTG Val	AAT Asn	TTC Phe	294
CAT His 85	CAG Gln	TAT Tyr	TCT Ser	TCC Ser	CAG Gln 90	CTG Leu	CTA Leu	CCC Pro	TTC Phe	TAT Tyr 95	GAG Glu	AGC Ser	TCC Ser	CCT Pro	CAG Gln 100	342
GTC Val	CTG Leu	CAC His	ACT Thr	GAG Glu 105	GTC Val	CTG Leu	CAG Gln	CAC His	CTG Leu 110	ACC Thr	GAC Asp	CTC Leu	ATC Ile	CGT Arg 115	AAC Asn	390
CAC His	CCC Pro	AGC Ser	TGG Trp 120	TCA Ser	GTG Val	GCC Ala	CAC His	CTG Leu 125	GCT Ala	GTG Val	GAG Glu	CTA Leu	GGG Gly 130	ATC Ile	CGC Arg	438
GAG Glu	TGC Cys	TTC Phe 135	CAT His	CAC His	AGC Ser	CGT Arg	ATC Ile 140	ATC Ile	AGC Ser	TGT Cys	GCC Ala	AAT Asn 145	TGC Cys	GCG Ala	GAG Glu	486
AAC Asn	GAG Glu 150	GAG Glu	GGC Gly	TGC Cys	ACA Thr	CCC Pro 155	CTG Leu	CAC His	CTG Leu	GCC Ala	TGC Cys 160	CGC Arg	AAG Lys	GGT Gly	GAT Asp	534
GGG Gly 165	GAG Glu	ATC Ile	CTG Leu	GTG Val	GAG Glu 170	CTG Leu	GTG Val	CAG Gln	TAC Tyr	TGC Cys 175	CAC His	ACT Thr	CAG Gln	ATG Met	GAT Asp 180	582

GT(Va	C AC	C GA r As	C TAC p Ty:	C AAC r Ly: 18:	s Gl	A GAC y Glu	ACO 1 Thi	C GT(C TTO l Pho 190	e Hi	T TA s Ty	T GC r Al	T GT a Va	C CA l Gl 19	G GGT n Gly 5	630
GA(As)	C AA' o Asi	T TC' n Se:	T CAC r Gli 200	ı Val	G CT(l Lei	G CAG	G CTO	C CT Let 205	ı Gly	A AG	g aa g as:	C GC. n Al	A GT a Va 21	l Al	T GGC a Gly	678
CT(Let	G AA(1 Asi	C CAG n Gli 21!	n Val	G AAT L Asr	AA(1 Asr	CAA Gln	GG0 Gly 220	/ Let	G ACC	C CCC	G CTO	G CAG u His 225	s Le	G GC u Al	C TGC a Cys	726
CA(Glr	G CTC 1 Let 230	ı GI	G AAC / Lys	G CAC	G GAG	ATG Met 235	Val	CGC Arg	GTC J Val	CTO Lev	G CT(1 Let 24(ı Lei	TG(L) Cy:	C AA' s Asi	r GCT n Ala	774
CGG Arg 245	Cys	AA(Asr	ATO	ATC Met	GGC Gly 250	Pro	AAC Asn	: GGC	TAC	Pro 255) Ile	C CAC	C TCC s Ser	G GCC	T ATG A Met 260	822
AAC Lys	TTC Phe	TCT Ser	CAG Gln	AAG Lys 265	Gly	TGT Cys	GCG Ala	GAG Glu	ATG Met 270	Ile	ATC	AGC Ser	ATC Met	GAG Asp 275	AGC Ser	870
AGC Ser	CAG Gln	ATC Ile	CAC His 280	Ser	AAA Lys	GAC Asp	CCC Pro	CGT Arg 285	Tyr	GGA Gly	GCC Ala	AGC Ser	Pro 290	Lei	CAC His	918
TGG Trp	GCC Ala	AAG Lys 295	Asn	GCA Ala	GAG Glu	ATG Met	GCC Ala 300	Arg	ATG Met	CTG Leu	CTG Leu	AAA Lys 305	Arg	GGC Gly	TGC Cys	966
AAC Asn	GTG Val 310	Asn	AGC Ser	ACC Thr	AGC Ser	TCC Ser 315	GCG Ala	GGG Gly	AAC Asn	ACG Thr	GCC Ala 320	Leu	CAC His	GTG Val	GGG Gly	1014
GTG Val 325	Mec	CGC Arg	AAC Asn	CGC Arg	TTC Phe 330	GAC Asp	TGT Cys	GCC Ala	ATA Ile	GTG Val 335	CTG Leu	CTG Leu	ACC Thr	CAC	GGG Gly 340	1062
GCC Ala	AAC Asn	GCG Ala	GAT Asp	GCC Ala 345	CGC Arg	GGA Gly	GAG Glu	CAC His	GGC Gly 350	AAC Asn	ACC Thr	CCG Pro	CTG Leu	CAC His 355	CTG Leu	1110
GCC Ala	ATG Met	TCG Ser	AAA Lys 360	GAC Asp	AAC Asn	GTG Val	GAG Glu	ATG Met 365	ATC Ile	AAG Lys	GCC Ala	CTC Leu	ATC Ile 370	GTG Val	TTC Phe	1158
GGA Gly	GCA Ala	GAA Glu 375	GTG Val	GAC Asp	ACC Thr	CCG Pro	AAT Asn 380	GAC Asp	TTT Phe	GGG Gly	GAG Glu	ACT Thr 385	CCT Pro	ACA Thr	TTC Phe	1206
CTA Leu	GCC Ala 390	TCC Ser	AAA Lys	ATC Ile	GGC Gly	AGA Arg 395	CAA Gln	CTA Leu	CAG Gln	GAT Asp	CTC Leu 400	ATG Met	CAC His	ATC Ile	TCA Ser	1254
CGG Arg 405	GCC Ala	CGG Arg	AAG Lys	CCA Pro	GCG Ala 410	TTC Phe	ATC Ile	CTG Leu	GGC Gly	TCC Ser 415	ATG Met	AGG Arg	GAC Asp	GAG Glu	AAG Lys 420	1302
CGG Arg	ACC Thr	CAC His	Asp	CAC His 425	CTG Leu	CTG Leu	TGC Cys	Leu	GAT Asp 430	GGA Gly	GGA Gly	GGA Gly	GTG Val	AAA Lys 435	GGC Gly	1350
CTC Leu	ATC Ile	тте	ATC Ile 440	CAG Gln	CTC Leu	CTC :	Ile .	GCC Ala 445	ATC Ile	GAG Glu	AAG Lys	GCC Ala	TCG Ser 450	GGT Gly	GTG Val	1398

	wo	97/174	448												PCT/US	96/17794
GCC Ala	ACC Thr	AAG Lys 455	Asp	CTG Leu	TTT Phe	GAC Asp	TGG Trp 460	GTG Val	GCG Ala	GGC Gly	ACC Thr	AGC Ser 465	ACT Thr	GGA Gly	GGC Gly	1446
ATC Ile	CTG Leu 470	Ala	CTG Leu	GCC Ala	ATT Ile	CTG Leu 475	CAC His	AGT Ser	AAG Lys	TCC Ser	ATG Met 480	GCC Ala	TAC Tyr	ATG Met	CGC Arg	1494
GGC Gly 485	Met	TAC Tyr	TTT Phe	CGC Arg	ATG Met 490	AAG Lys	GAT Asp	GAG Glu	GTG Val	TTC Phe 495	CGG Arg	GGC Gly	TCC Ser	AGG Arg	CCC Pro 500	1542
TAC Tyr	GAG Glu	TCG Ser	GGG Gly	CCC Pro 505	CTG Leu	GAG Glu	GAG Glu	TTC Phe	CTG Leu 510	AAG Lys	CGG Arg	GAG Glu	TTT Phe	GGG Gly 515	GAG Glu	1590
CAC His	ACC Thr	AAG Lys	ATG Met 520	ACG Thr	GAC Asp	GTC Val	AGG Arg	AAA Lys 525	CCC Pro	AAG Lys	GTG Val	ATG Met	CTG Leu 530	ACA Thr	GGG Gly	1638
ACA Thr	CTG Leu	TCT Ser 535	GAC Asp	CGG Arg	CAG Gln	CCG Pro	GCT Ala 540	Glu	CTC Leu	CAC His	CTC Leu	TTC Phe 545	Arg	AAC Asn	TAC Tyr	1686
GAT Asp	GCT Ala 550	Pro	GAA Glu	ACT Thr	GTC Val	CGG Arg 555	GAG Glu	CCT Pro	CGT Arg	TTC Phe	AAC Asn 560	CAG Gln	AAC Asn	GTT Val	AAC Asn	1734
CTC Leu 565	AGG Arg	CCT Pro	CCA Pro	GCT Ala	CAG Gln 570	CCC Pro	TCA Ser	GAC Asp	CAG Gln	CTG Leu 575	GTG Val	TGG Trp	CGG Arg	GCG Ala	GCC Ala 580	1782
CGA Arg	AGC Ser	AGC Ser	GGG Gly	GCA Ala 585	GCT Ala	CCT Pro	ACT Thr	TAC Tyr	TTC Phe 590	CGA Arg	CCC Pro	AAT Asn	GGG Gly	CGC Arg 595	TTC Phe	1830
CTG Leu	GAC Asp	GGT Gly	GGG Gly 600	CTG Leu	TTG Leu	GCC Ala	AAC Asn	AAC Asn 605	CCC Pro	ACG Thr	CTG Leu	GAT Asp	GCC Ala 610	ATG Met	ACC Thr	1878
GAG Glu	ATC Ile	CAT His 615	GAG Glu	TAC Tyr	AAT Asn	CAG Gln	GAC Asp 620	CTG Leu	ATC Ile	CGC Arg	AAG Lys	GGT Gly 625	CAG Gln	GCC Ala	AAC Asn	1926
AAG Lys	GTG Val 630	AAG Lys	AAA Lys	CTC Leu	TCC Ser	ATC Ile 635	GTT Val	GTC Val	TCC Ser	CTG Leu	GGG Gly 640	ACA Thr	GGG Gly	AGG Arg	TCC Ser	1974
CCA Pro 645	CAA Gln	GTG Val	CCT Pro	GTG Val	ACC Thr 650	TGT Cys	GTG Val	GAT Asp	GTC Val	TTC Phe 655	CGT Arg	CCC Pro	AGC Ser	Asn	CCC Pro 660	2022
TGG Trp	GAG Glu	CTG Leu	Ala	AAG Lys 665	ACT Thr	GTT Val	TTT Phe	GGG Gly	GCC Ala 670	AAG Lys	GAA Glu	CTG Leu	GGC Gly	AAG Lys 675	ATG Met	2070

(2) INFORMATION FOR SEQ ID NO:23:

680

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 688 amino acids

GTG GTG GAC TGT TGC ACG GAT CCA GAC GGG CGG CCG GAATTC

(B) TYPE: amino acid (D) TOPOLOGY: linear

Val Val Asp Cys Cys Thr Asp Pro Asp Gly Arg Pro

2112

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Gln Phe Gly Arg Leu Val Asn Thr Phe Ser Gly Val Thr Asn Leu Phe Ser Asn Pro Phe Arg Val Lys Glu Val Ala Val Ala Asp Tyr Thr Ser Ser Asp Arg Val Arg Glu Glu Gly Gln Leu Ile Leu Phe Gln Asn Thr Pro Asn Arg Thr Trp Asp Cys Val Leu Val Asn Pro Arg Asn Ser Gln Ser Gly Phe Arg Leu Phe Gln Leu Glu Leu Glu Ala Asp Ala Leu Val Asn Phe His Gln Tyr Ser Ser Gln Leu Leu Pro Phe Tyr Glu Ser Ser Pro Gln Val Leu His Thr Glu Val Leu Gln His Leu Thr Asp Leu Ile Arg Asn His Pro Ser Trp Ser Val Ala His Leu Ala Val Glu Leu Gly Ile Arg Glu Cys Phe His His Ser Arg Ile Ile Ser Cys Ala Asn Cys Ala Glu Asn Glu Glu Gly Cys Thr Pro Leu His Leu Ala Cys Arg Lys Gly Asp Gly Glu Ile Leu Val Glu Leu Val Gln Tyr Cys His Thr Gln Met Asp Val Thr Asp Tyr Lys Gly Glu Thr Val Phe His Tyr Ala Val Gln Gly Asp Asn Ser Gln Val Leu Gln Leu Leu Gly Arg Asn Ala Val Ala Gly Leu Asn Gln Val Asn Asn Gln Gly Leu Thr Pro Leu His Leu Ala Cys Gln Leu Gly Lys Gln Glu Met Val Arg Val Leu Leu Leu Cys Asn Ala Arg Cys Asn Ile Met Gly Pro Asn Gly Tyr Pro Ile His Ser Ala Met Lys Phe Ser Gln Lys Gly Cys Ala Glu Met Ile Ile Ser Met Asp Ser Ser Gln Ile His Ser Lys Asp Pro Arg Tyr Gly Ala Ser Pro Leu His Trp Ala Lys Asn Ala Glu Met Ala Arg Met Leu Leu Lys Arg Gly Cys Asn Val Asn Ser Thr Ser Ser Ala Gly Asn Thr Ala Leu His Val Gly Val Met Arg Asn Arg Phe Asp Cys Ala Ile Val Leu

Leu Thr His Gly Ala Asn Ala Asp Ala Arg Gly Glu His Gly Asn Thr Pro Leu His Leu Ala Met Ser Lys Asp Asn Val Glu Met Ile Lys Ala Leu Ile Val Phe Gly Ala Glu Val Asp Thr Pro Asn Asp Phe Gly Glu Thr Pro Thr Phe Leu Ala Ser Lys Ile Gly Arg Gln Leu Gln Asp Leu Met His Ile Ser Arg Ala Arg Lys Pro Ala Phe Ile Leu Gly Ser Met Arg Asp Glu Lys Arg Thr His Asp His Leu Leu Cys Leu Asp Gly Gly Gly Val Lys Gly Leu Ile Ile Ile Gln Leu Leu Ile Ala Ile Glu Lys Ala Ser Gly Val Ala Thr Lys Asp Leu Phe Asp Trp Val Ala Gly Thr Ser Thr Gly Gly Ile Leu Ala Leu Ala Ile Leu His Ser Lys Ser Met Ala Tyr Met Arg Gly Met Tyr Phe Arg Met Lys Asp Glu Val Phe Arg Gly Ser Arg Pro Tyr Glu Ser Gly Pro Leu Glu Glu Phe Leu Lys Arg Glu Phe Gly Glu His Thr Lys Met Thr Asp Val Arg Lys Pro Lys Val Met Leu Thr Gly Thr Leu Ser Asp Arg Gln Pro Ala Glu Leu His Leu Phe Arg Asn Tyr Asp Ala Pro Glu Thr Val Arg Glu Pro Arg Phe Asn Gln Asn Val Asn Leu Arg Pro Pro Ala Gln Pro Ser Asp Gln Leu Val Trp Arg Ala Ala Arg Ser Ser Gly Ala Ala Pro Thr Tyr Phe Arg Pro Asn Gly Arg Phe Leu Asp Gly Gly Leu Leu Ala Asn Asn Pro Thr Leu Asp Ala Met Thr Glu Ile His Glu Tyr Asn Gln Asp Leu Ile Arg Lys Gly Gln Ala Asn Lys Val Lys Lys Leu Ser Ile Val Val Ser Leu Gly Thr Gly Arg Ser Pro Gln Val Pro Val Thr Cys Val Asp Val Phe Arg Pro Ser Asn Pro Trp Glu Leu Ala Lys Thr Val Phe Gly Ala Lys Glu Leu Gly Lys Met Val Val Asp Cys Cys Thr Asp Pro Asp Gly Arg Pro

.

(2) INFOR	RMATION FOR SEQ ID NO:24:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: oligonucleotides	
(iii)	HYPOTHETICAL: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:24:	
CATGGGACC	CC GCTGGCTTTC C	21
(2) INFOR	RMATION FOR SEQ ID NO:25:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: oligonucleotides	
(iii)	HYPOTHETICAL: NO	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:25:	
GGCAGGAAC	C GCCACTGGGG GC	22

WHAT IS CLAIMED IS:

1. A composition comprising a purified phospholipase enzyme characterized by (a) activity in the absence of calcium; (b) a molecular weight of 86 kD on SDS-PAGE; and (c) the presence of one or more amino acid sequences selected from the group consisting of YGASPLHXAK, MKDEVFR, EFGEHTK, VMLTGTLSDR, XXGAAPTYFRP and TVFGAK, wherein X represents any amino acid residue.

- 2. The composition of claim 1 wherein said enzyme is further characterized by activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine.
- 3. The composition of claim 2 wherein said enzyme has a specific activity of about 1 μ mol to about 20 μ mol per minute per milligram.
- 4. The composition of claim 1 wherein said enzyme is further characterized by a pH optimum of 6.
- 5. The composition of claim 1 wherein said enzyme is further characterized by the absence of stimulation by adenosine triphosphate.
- 6. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of:
 - (a) the nucleotide sequence of SEQ ID NO:16;
 - (b) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:17;

(c) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:17 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;

- (d) the nucleotide sequence of SEQ ID NO:18;
- (e) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:19;
- (f) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:19 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
 - (g) the nucleotide sequence of SEQ ID NO:20;
 - (h) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:21;
- (i) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:21 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
 - (j) the nucleotide sequence of SEQ ID NO:22;
 - (k) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:23;
- (1) a nucleotide sequence encoding a fragment of the amino acid sequence of SEQ ID NO:23 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
- (m) a nucleotide sequence capable of hybridizing with the sequence of any of (a)(l) which encodes a peptide having activity in a mixed micelle assay with 1-palmitoyl-2[14C]-arachidonyl-phosphatidylcholine; and
 - (n) allelic variants of the sequence of (a), (d), (g) or (j).

7. An expression vector comprising the polynucleotide of claim 6 and an expression control sequence.

- 8. A host cell transformed with the vector of claim 7.
- 9. A process for producing a phospholipase enzyme, said process comprising:
- (a) establishing a culture of the host cell of claim 8 in a suitable culture medium; and
 - (b) isolating said enzyme from said culture.
- 10. A composition comprising a peptide made according to the process of claim 9.
- 11. A composition comprising a peptide encoded by the polynucleotide of claim 6.
- 12. A composition comprising a peptide comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:17;
- (b) a fragment of the amino acid sequence of SEQ ID NO:17 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
 - (c) the amino acid sequence of SEQ ID NO:19;
- (d) a fragment of the amino acid sequence of SEQ ID NO:19 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;
 - (e) the amino acid sequence of SEQ ID NO:21;

(f) a fragment of the amino acid sequence of SEQ ID NO:21 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine;

- (g) the amino acid sequence of SEQ ID NO:23; and
- (h) a fragment of the amino acid sequence of SEQ ID NO:23 having activity in a mixed micelle assay with 1-palmitoyl-2-[14C]-arachidonyl-phosphatidylcholine.
- 13. A method for identifying an inhibitor of phospholipase activity, said method comprising:
 - (a) combining a phospholipid, a candidate inhibitor compound, and a composition comprising a phospholipase enzyme peptide; and
 - (b) observing whether said phospholipase enzyme peptide cleaves said phospholipid and releases fatty acid thereby,

wherein said composition is the composition of claim 1.

- 14. An inhibitor of phospholipase activity identified according to the method of claim 13.
- 15. A pharmaceutical composition comprising a therapeutically effective amount of the inhibitor of claim 14 and a pharmaceutically acceptable carrier.
- 16. A method of reducing inflammation comprising administering a pharmaceutical composition of claim 15 to a mammalian subject.

17. A composition comprising an antibody which binds to the peptide of the composition of claim 1.

- 18. The composition of claim 17 wherein said antibody is polyclonal.
- 19. The composition of claim 17 wherein said antibody is monoclonal.
- 20. The polynucleotide of claim 6 comprising the nucleotide sequence of SEQ ID NO:16.
- 21. The polynucleotide of claim 6 comprising a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:17.
- 22. The polynucleotide of claim 6 comprising the nucleotide sequence of SEQ ID NO:18.
- 23. The polynucleotide of claim 6 comprising a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:19.
- 24. The polynucleotide of claim 6 comprising the nucleotide sequence of SEQ ID NO:20.
- 25. The polynucleotide of claim 6 comprising a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:21.

26. The polynucleotide of claim 6 comprising the nucleotide sequence of SEQ ID NO:22.

- 27. The polynucleotide of claim 6 comprising a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:23.
- 28. A composition comprising a purified mammalian calcium independent phospholipase A_2/B enzyme.

Fig. 1B

1/7
SUBSTITUTE SHEET (RULE 26)

2/7
SUBSTITUTE SHEET (RULE 26)

Fig. 3A

Activity cPLA2

Ed. 0000 000 00 01

Activity cPLA2

Ed. 0000 000 01

Ed. 000 01

Fig. 3A

Activity cPLA2

Fig. 3A

Activity cPLA2

Fig. 66

Fig. 3A

Activity cPLA2

Fig. 66

Fig. 3B

3/7
SUBSTITUTE SHEET (RULE 26)

Fig. 4

Fig. 5

Fig. 6

Fig. 7

1 2 3 4 5 6

