Document Analysis

Exercise 3: Keyword Spotting

Andreas Fischer andreas.fischer@unifr.ch

Keyword Spotting

- Historical manuscripts are being digitized by libraries all over the world for cultural heritage preservation.
- Textual content needs to be known for searching and browsing scanned page images in digital libraries.
 - Widely unsolved problem for historical handwriting; too many writing styles and languages.
 - Keyword spotting is a "shortcut" of great importance in current research: identify individual search terms.

of Flour, for the two Companies of Rangers; twelve hundred of which to be delivered Captain Ashby and Company, at the Plantation of Charles Sellars - the rest to Captain Cocked Countrary at Nicholas Reasoners. October 26.

Query-By-Example

- Also known as "one-shot learning".
- One example word image is provided.
- Goal: find similar word images within the scanned manuscript.
 - Usually constrained to a single-writer scenario, that is the example is taken from the same manuscript.

of Flour, for the two Companies of Rangers; twelve hundred of which to be delivered Captain Ashly and Company, at the Plantation of Charles Sellars - the rest to Ciptain Cocked Company, at Nicholas Reasmers. October 26.

Data Sets

- WashingtonDB
 - letters of George Washington
 - Library of Congeress
 - 18th century, longhand script
- ParzivalDB
 - Parzival by Wolfram von Eschenbach
 - Abbey Library of Saint Gall, Cod. 857
 - 13th century, Gothic script

divone

Image Preprocessing

- Binarization (Difference of Gaussians DoG / Sauvola)
- Line extraction (Dynamic Programming)
- Skew correction (baseline: linear regression)
- Slant correction (angular histogram analysis)
- Height normalization (x-height: linear regression)
- Width normalization (black/white transitions)

the measurement of temperatures. This,

Outline of the Exercise

- Week 1
 - Dissimilarity between preprocessed keyword images and preprocessed word images October October
 - Output: ordered list of words IDs
- Week 2
 - Dissimilarity between preprocessed keyword images and preprocessed text line images O tober 26.
 - Output: ordered list of text line IDs
- Week 3 (ambitious it is **optional**)
 - Dissimilarity between keyword images and automatically extracted text line images
 - Output:
 - List of text lines together with their bounding box
 - Ordered list of text line IDs

After Three Weeks

- May 5, 15:00
- Hand in a ZIP file via Ilias that contains:
 - Your source code
 - Report with descriptions and figures (PDF)
 - Output files (list of IDs and bounding boxes)
- Exercises will be accepted if at least tasks 1 and 2 (preprocessed images) have been carefully addressed.
- There will be an evaluation and discussion of your results.
 - Who can solve task 3?
 - Which method achieves the best results for tasks 1-3?

Week 1

- Data: available for download on Ilias
 - Two data sets: WashingtonDB and ParzivalDB
 - Preprocessed keyword images
 - Preprocessed word images
 - Transcription for each word image (ground truth)
- Tasks: for both data sets and each keyword image
 - Compute a dissimilarity to all word images and order the word images accordingly
 - Compute the Receiver Operating Characteristic (ROC)
 Curve and the Equal Error Rate (EER)

Exemplary Dissimilarity Approaches

- Global: extract global features, compute the Euclidean distance between the feature vectors
- Grid-based: extract features for each cell, compute the sum of Euclidean distances over all cells
- Window-based: extract features with a sliding window, compute the dynamic time warping (DTW) distance between two sequences of feature vectors

$$d(x,y) = IIx-yII$$

$$d(x,y) = \sum ||x_i - y_i||$$

$$d(x,y) = DTW(x,y)$$

Receiver Operating Characteristic (ROC)

- Consider all possible thresholds for keyword spotting. First, only the top result is returned as a keyword. Then, the top two results, the top three results, etc.
- For each threshold, compute the true positive rate (TPR) and the false positive rate (FPR)
 - TPR = correct results / keywords in the manuscript
 - FPR = incorrect results / non-keywords in the manuscript
- The Equal Error Rate (EER) is the point in the ROC curve where
 - 1 TPR = FPR

Output Week 1

Ordered list of word IDs for each database and keyword:

```
"WashingtonDB_O-c-t-o-b-e-r.txt" 271-11-04 304-29-04
```

. . .

UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

- The ROC curves together with their EER are part of the report.
- Hint: start by selecting a small subset of all words, it will speed up the development and testing of your method.

