Graphs

Thota Naveen Babu

Follow me on Linkedin: https://www.linkedin.com/in/naveen-babu-thota-45894b243/ (https://www.linkedin.com/in/naveen-babu-thota-45894b243/)

Follow me on GitHub :- https://github.com/naveen23049?tab=repositories (https://github.com/naveen23049?tab=repositories)

```
In []: import cufflinks as cf
import numpy as np
import pandas as pd
import seaborn as sns

In [2]: cf.go_offline()

In [3]: df =pd.DataFrame(np.random.randn(100,3) , columns=["A" , "B" ,"C"])
```

In [4]: df

Out[4]:

	Α	В	С
0	-1.584950	1.008447	-0.134143
1	-0.947177	1.006018	1.550452
2	2.026504	0.302720	-1.792775
3	0.924137	-0.538951	-0.244098
4	-0.444107	1.808399	-0.117070
95	0.583358	-0.311901	0.214027
96	-1.459669	0.588080	0.091587
97	0.759547	-1.643115	-0.480081
98	-0.578149	-1.886409	0.336736
99	3.032333	1.193231	-0.448493

100 rows × 3 columns

In [5]: df[["A"]].iplot()

In [6]: df.iplot()

In [7]:
$$df.iplot(x = "A", y = "B", mode = "markers", size = 10)$$

6/45

In [8]: df

Out[8]:

	Α	В	С
0	-1.584950	1.008447	-0.134143
1	-0.947177	1.006018	1.550452
2	2.026504	0.302720	-1.792775
3	0.924137	-0.538951	-0.244098
4	-0.444107	1.808399	-0.117070
95	0.583358	-0.311901	0.214027
96	-1.459669	0.588080	0.091587
97	0.759547	-1.643115	-0.480081
98	-0.578149	-1.886409	0.336736
99	3.032333	1.193231	-0.448493

100 rows × 3 columns

```
In [9]: df.iplot(kind = 'bubble' , x = "A" , y = "B" ,size = "C")
```



```
In [10]: df1 = sns.load_dataset("titanic")
```

In [11]: df1.head()

Out[11]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

localhost:8888/notebooks/Graphs.ipynb

8/45

```
In [12]: # can you please show me the male,female vs survived column
# simply, we can ask how many male & female are survived ?

df1.iplot(x = "sex", y = "survived", kind = "bar", xTitle = "sex", yTitle = "survived")
```


In [13]: df1[["age","fare"]]

Out[13]:

	age	fare
0	22.0	7.2500
1	38.0	71.2833
2	26.0	7.9250
3	35.0	53.1000
4	35.0	8.0500
886	27.0	13.0000
887	19.0	30.0000
888	NaN	23.4500
889	26.0	30.0000
890	32.0	7.7500

891 rows × 2 columns

In [14]: df1[["age","fare"]].iplot()

In [16]: # In the above graph we are not finding any relation between the age & fare column.

In [16]: tip = sns.load_dataset("tips")

In [17]: tip

Out[17]:

		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4
2	39	29.03	5.92	Male	No	Sat	Dinner	3
2	40	27.18	2.00	Female	Yes	Sat	Dinner	2
2	41	22.67	2.00	Male	Yes	Sat	Dinner	2
2	42	17.82	1.75	Male	No	Sat	Dinner	2
2	43	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [22]: tip.iplot(kind = 'scatter3d' , x = 'total_bill',y ='tip',z = "size" )
```


In [23]: tip.iplot(kind = 'scatter3d' , x = 'total_bill',y ='tip' , z ='size',xTitle="Total_bill",yTitle="tip",zTitle="size")


```
In [24]: tip.iplot(kind = 'bubble3d' , x = 'total_bill',y ='tip' , z ='size' , size = 'tip' )
```



```
In [25]: tip[['total_bill' , 'tip']].iplot(x = "total_bill" , y = "tip" ,mode = "markers",size = 5)
```


In [26]: tip

Out[26]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [27]: # style gives a
sns.relplot(x = "total_bill", y = "tip", data = tip)
```

Out[27]: <seaborn.axisgrid.FacetGrid at 0x1727233f5e0>


```
In [28]: # hue parameter shows a difference based on dataset
sns.relplot(x = "total_bill", y = "tip", data = tip, hue = "smoker")
```

Out[28]: <seaborn.axisgrid.FacetGrid at 0x172726f9190>


```
In [30]: # style shows the shape of the every size
sns.relplot(x = "total_bill", y = "tip", data = tip, style = "size")
```

Out[30]: <seaborn.axisgrid.FacetGrid at 0x17272bf3eb0>


```
In [32]: # hue gives a different color based on different size of data.
sns.relplot(x = "total_bill", y = "tip", data = tip,hue = "size")
```

Out[32]: <seaborn.axisgrid.FacetGrid at 0x17272fc64f0>


```
In [33]: sns.relplot(x = "total_bill", y = "tip", data = tip,hue = "size",style = "size")
```

Out[33]: <seaborn.axisgrid.FacetGrid at 0x17272fd3250>


```
In [34]: sns.relplot(x = "total_bill", y = "tip", data = tip , hue ="smoker", style = "time")
```

Out[34]: <seaborn.axisgrid.FacetGrid at 0x17272780c70>

In [38]: iris

Out[38]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [41]: sns.scatterplot(x = "sepal_length",y="sepal_width",data = iris)
```

Out[41]: <AxesSubplot:xlabel='sepal_length', ylabel='sepal_width'>


```
In [42]: sns.scatterplot(x = "sepal_length",y = "petal_length",data = iris)
```

Out[42]: <AxesSubplot:xlabel='sepal_length', ylabel='petal_length'>

In [43]: # This is called pandas plot & iplot() is plotly plot iris.plot()

Out[43]: <AxesSubplot:>


```
In [45]: iris.plot(figsize = (20,10), title = "iris plot graph")
```

Out[45]: <AxesSubplot:title={'center':'iris plot graph'}>

In [46]: iris

Out[46]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [47]: iris.iloc[0].plot(kind = 'bar')
         TypeError
                                                   Traceback (most recent call last)
         Input In [47], in <cell line: 1>()
         ----> 1 iris.iloc[0].plot(kind = 'bar')
         File ~\anaconda3\lib\site-packages\pandas\plotting\ core.py:972, in PlotAccessor. call (self, *args, **kwargs)
                             label name = label kw or data.columns
             969
             970
                             data.columns = label name
         --> 972 return plot backend.plot(data, kind=kind, **kwargs)
         File ~\anaconda3\lib\site-packages\pandas\plotting\ matplotlib\ init .py:71, in plot(data, kind, **kwargs)
                         kwargs["ax"] = getattr(ax, "left ax", ax)
              69
              70 plot obj = PLOT CLASSES[kind](data, **kwargs)
         ---> 71 plot obj.generate()
              72 plot obj.draw()
              73 return plot obj.result
         File ~\anaconda3\lib\site-packages\pandas\plotting\ matplotlib\core.py:327, in MPLPlot.generate(self)
             325 def generate(self):
                     self. args adjust()
             326
                     self. compute plot data()
         --> 327
                     self. setup subplots()
             328
                     self. make plot()
             329
         File ~\anaconda3\lib\site-packages\pandas\plotting\ matplotlib\core.py:506, in MPLPlot. compute plot data(self)
             504 # no non-numeric frames or series allowed
             505 if is empty:
                     raise TypeError("no numeric data to plot")
         --> 506
             508 self.data = numeric data.apply(self. convert to ndarray)
         TypeError: no numeric data to plot
```

In [48]: # The above code is showing error because in the above dataset one column is having categorical data, so to avoid that iris.iloc[0,[0,1,2,3]].plot(kind = "bar")

Out[48]: <AxesSubplot:>


```
In [49]: iris["sepal_length"].hist()
```

Out[49]: <AxesSubplot:>


```
In [51]: data = iris.iloc[0,[0,1,2,3]]
```

In [52]: data

Out[52]: sepal_length 5.1 sepal_width 3.5

petal_length 1.4

petal_width 0.2

Name: 0, dtype: object

```
In [54]: data.plot.pie()
```

Out[54]: <AxesSubplot:ylabel='0'>

In [55]: # To save the graph and to use in any of the ppt's we can save the any the graph in this way.

```
a = data.plot.pie()
b= a.get_figure()
b.savefig('test.png')
```


In [56]: ls

Volume in drive C is OS Volume Serial Number is 445D-2ABB

Directory of C:\Users\navee

•
••
.anaconda
.astropy
.bash_history
.conda
.condarc
.continuum
.cufflinks
.gitconfig
.gnupg
<pre>.ipynb_checkpoints</pre>
.ipython
.jupyter
.lesshst
.matplotlib
.ssh
addresses.csv
airline.xls
airline1.xls
anaconda3
Assignment on 22nd feburary.ipynb
Assignment on 23rd feb.ipynb
Contacts
contacts.csv
Documents
Downloads
Favorites
Graphs.ipynb
holiday_schedules.csv
Links
locations.csv
mail_addresses.csv
Music
Numpy part -2.ipynb

```
26-02-2023 09:09 PM
                        <DTR>
                                       OneDrive
                                 2,281 organizations.csv
10-02-2023 06:04 PM
                               301,016 Pandas Part-2.ipynb
19-02-2023 10:33 AM
                               91,305 Pandas part-3.ipynb
20-02-2023 06:34 PM
22-02-2023 08:51 AM
                               86,906 Pandas practice.ipvnb
10-02-2023 06:04 PM
                                 2,092 phones.csv
                               81,552 players.csv
22-02-2023 08:48 AM
                                       Postman
20-08-2022 03:30 PM
                        <DIR>
                                    60 programs.csv
10-02-2023 06:04 PM
13-02-2023 02:28 PM
                        <DIR>
                                       PycharmProjects
23-02-2023 05:45 PM
                                16,513 Python Assignments.innomatics.ipynb
09-02-2023 11:37 PM
                                 3,210 python patterns practice.ipynb
                                 3,827 Python patterns.ipynb
20-02-2023 01:51 PM
                                   350 regular schedules.csv
10-02-2023 06:04 PM
05-10-2022 07:17 PM
                        <DIR>
                                       Saved Games
26-02-2023 10:43 PM
                        <DIR>
                                       seaborn-data
05-10-2022 07:17 PM
                        <DIR>
                                       Searches
10-02-2023 06:04 PM
                                19,128 services.csv
                                30,587 String practice linkedin.ipynb
13-02-2023 01:07 AM
                                1,278 Strings class.ipynb
10-02-2023 12:36 PM
                               14,618 taxonomy.csv
10-02-2023 06:04 PM
26-02-2023 11:19 PM
                                 8,602 test.png
10-02-2023 08:39 PM
                                   608 test1.csv
10-02-2023 08:41 PM
                                 6,087 test2.xlsx
17-10-2022 02:38 PM
                                 4,033 Untitled.ipvnb
                               19,208 Untitled1.ipynb
14-02-2023 02:47 PM
21-02-2023 01:29 PM
                                7,883 Untitled2.ipynb
24-02-2023 01:02 PM
                                21,617 Untitled3.ipvnb
                                 2,072 Untitled4.ipvnb
24-02-2023 01:09 AM
                            1,228,437 Untitled5.ipynb
26-02-2023 11:13 PM
                                57,330 Untitled6.ipynb
25-02-2023 05:23 PM
25-02-2023 05:03 PM
                             4,000,859 Untitled7.ipvnb
20-11-2022 08:41 AM
                        <DIR>
                                       Videos
              42 File(s)
                              6,224,443 bytes
              27 Dir(s) 146,494,144,512 bytes free
```

In [57]: iris

Out[57]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [58]: # hexbin means nothing but simply we can say shape of the plot
iris.plot.hexbin(x = 'sepal_length' , y ='sepal_width' ,gridsize=10)
```

Out[58]: <AxesSubplot:xlabel='sepal_length', ylabel='sepal_width'>


```
In [64]: # It is also same like hexbin but the difference is in the shape & size
iris.plot.scatter(x = 'sepal_length' , y = 'sepal_width' )
```

Out[64]: <AxesSubplot:xlabel='sepal_length', ylabel='sepal_width'>

In [63]: iris.plot.scatter(x = 'sepal_length' , y = 'sepal_width' , s = 300)

Out[63]: <AxesSubplot:xlabel='sepal_length', ylabel='sepal_width'>


```
In [67]: import pandas as pd
import plotly.express as px

df = pd.read_csv("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb509

fig = px.choropleth(
    df,
        geojson="https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a
    featureidkey='properties.ST_NM',
    locations='state',
    color='active cases',
    color_continuous_scale='Reds'
)

fig.update_geos(fitbounds="locations", visible=False)

fig.show()
```


acti

```
In [68]: import plotly.graph_objects as go
    import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_february_us_airport_traffic.csv')
    df['text'] = df['airport'] + '' + df['city'] + ', ' + df['state'] + '' + 'Arrivals: ' + df['cnt'].astype(str)

fig = go.Figure(data=go.Scattergeo(
    lon = df['long'],
    lat = df['lat'],
    text = df['text'],
    mode = 'markers',
    marker_color = df['cnt'],
    ))

fig.update_layout(
    title = 'Most trafficked US airports<br/>br>(Hover for airport names)',
    geo_scope='usa',
    )
fig.show()
```

Most trafficked US airports (Hover for airport names)

