Statistical Learning, Tutorato #7

Veronica Vinciotti, Marco Chierici

April 26, 2021

Exercise 1

Here we explore the maximal margin classifier on a toy data set. We are given n = 7 observations in p = 2 dimensions. For each observation, there is an associated class label.

Obs.	X1	X2	Y
1	3	4	red
2	2	2	red
3	4	4	red
4	1	4	red
5	2	1	blue
6	4	3	blue
7	4	1	blue

- Sketch the optimal separating hyperplane, and provide the equation for this hyperplane (see equation 9.1 in the textbook).
- Describe the classification rule for the maximal margin classifier. It should be something along the lines of "Classify to Red if $\beta_0 + \beta_1 X 1 + \beta_2 X 2 > 0$, and classify to Blue otherwise." Provide the values for β_0 , β_1 , and β_2 .
- On your sketch, indicate the margin for the maximal margin hyperplane.
- Indicate the support vectors for the maximal margin classifier.
- Argue that a slight movement of the seventh observation would not affect the maximal margin hyperplane.
- Verify the solutions that you obtained by using the function 'svm()' in the e1071 library.
- Sketch a hyperplane that is *not* the optimal separating hyperplane, and provide the equation for this hyperplane.
- Draw an additional observation on the plot so that the two classes are no longer separable by a hyperplane.

Hints

In R, Support Vector Classifiers (SVC) are implemented in the library e1071, which we already used for Naive Bayes. Suppose you have your data stored in a dataframe dat, with y being the outcome variable. To fit a SVC you must first encode y as factor, and then you can call the function svm(y ~ ., data=dat, kernel="linear", cost=C), using the usual formula syntax and specifying a value C for the cost parameter. Note that the tuning parameter is the inverse of what was used at lectures, so a large C (say larger than 1) should get you close to the maximal marginal hyperplane (C=0 in the lecture notes).

Exercise 2

In this exercise, we evaluate a support vector classifier on simulated data. To this aim:

• Generate a data set with n = 500 observations and p = 2 variables, such that the observations belong to two classes with a linear decision boundary between them. For instance, you can do this by specifying the outcome variable to be derived from a linear combination of the independent variables (and add some error to allow for some overlapping):

```
n_obs <- 500
x1 <- runif(n_obs) - 0.5
x2 <- runif(n_obs) - 0.5
er <- rnorm(n_obs, 0, 0.01)
y <- 1 * (3 * x1 - 2 * x2 + er > 0)
```

- Plot the observations, colored according to their class labels. Your plot should display X_1 on the x-axis, and X_2 on the y-axis.
- Fit a support vector classifier to the data with X_1 and X_2 as predictors. Obtain a class prediction for each training observation. Plot the observations, colored according to the predicted class labels.
- Add the true decision surface on the plot. How did the method do?

Exercise 3

In this problem, you will use a support vector classifier to predict whether a given car gets a high or low gas mileage based on a number of predictors describing the vehicle. For the analysis we will use the Auto data set in the ISLR library.

- Create a binary variable that takes on a 1 for cars with gas mileage above the median, and a 0 for cars with gas mileage below the median.
- Fit a support vector classifier to the data with various values of cost, in order to predict whether a car gets high or low gas mileage. Report the cross-validation errors associated with different values of this parameter.
- Find ways of visualizing the results e.g. plotting pairs of predictors and colouring the two classes. Comment on your results.

Hints

The tune() function can be used for tuning the cost parameter in a cross-validation setting (by default it performs a 10-fold cross-validation). The syntax for SVC is the following:

```
tune(svm, y ~ ., data = dat, kernel = "linear", ranges = list(cost = vector_of_C_values))
```

The plot() sym function has a functionality also for p > 2. Check ?plot.sym for examples on how to do this.