Relaciones para flujos de efectivo discretos con capitalización al final del periodo

Tipo	Encontrar/ Dado	Notación con factor y su fórmula	Relación	Ejemplo de diagrama del flujo de efectivo
Cantidad única	F/P Cantidad capitalizada P/F Valor	$(F/P,i,n) = (1+i)^n$ $(P/F,i,n) = \frac{1}{(1+i)^n}$	F = P(F/P,i,n) $P = F(P/F,i,n)$ (Sec. 2.1)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Serie uniforme	P/A Valor presente	$(P/A,i,n) = \frac{(1+i)^n - 1}{i(1+i)^n}$	P = A(P/A, i, n)	
	A/P Recuperación del capital	$(A/P,i,n) = \frac{i(1+i)^n}{(1+i)^n - 1}$	A = P(A/P, i, n) (Sec. 2.2)	0
	F/A Valor capitalizado	$(F/A,i,n) = \frac{(1+i)^n - 1}{i}$	F = A(F/A, i, n)	0 1 2 n-1 n
	A/F Fondo de amortización	$(A/F,i,n) = \frac{i}{(1+i)^n - 1}$	A = F(A/F, i, n) (Sec. 2.3)	
Gradiente aritmético	P _G /G Valor presente	$(P/G,i,n) = \frac{(1+i)^n - in - 1}{i^2(1+i)^n}$	$P_G = G(P/G,i,n)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	A_G/G Series uniformes	$(A/G,i,n) = \frac{1}{i} - \frac{n}{(1+i)^n - 1}$ (Sólo gradiente)	$A_G = G(A/G, i, n)$ (Sec. 2.5)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Gradiente geométrico	P _g /A ₁ y g Valor presente	$P_g = \begin{cases} A_1 \left[1 - \left(\frac{1+g}{1+i} \right)^n \right] \\ i - g \\ A_1 \frac{n}{1+i} \end{cases}$	$g \neq i$ $g = i$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		(Gradiente y base A_1)	(Sec. 2.6)	$\stackrel{\mathbf{V}}{P_g}$