

Mamba Arch

• Introduction

next slide

Models	Trainin g	Inference	Context	Memory limit	Selective reasoning
Transformers	Fast	Slow	Bounded	Proportional to the sequence	Yes
RNNs	Slow	Fast	Unbounded	Proportional to hidden state	~Yes
CNNs	Fast	Fast	Bounded	Proportional to the sequence	-No
S6 (Mamba)	Fast	Fast	Unbounded	Proportional to hidden state	~Yes

Mamba?

05

Mamba architecture

Structured
State Space
Sequence
Models

State Space
Models

Salective
S4

S4

S6

S4

06

SSM-But de papier

- Créer un mécanisme ayant les propriétés des RNNs et CNNs
- Créer un mécanisme ayant une mémoire à long terme

SSM

SSM 80 У_{t-1} X_{t-1}

20 SSM-Propriétés SMM est linéaire Stateful
parallélisable
LIT: linear Time-Invariant

S4- Résultats

Table 3: Benchmarks vs. efficient Transformers

	LENGT	н 1024	LENGT	н 4096	
	Speed	Mem.	Speed	Mem.	
Transformer	$1 \times$	$1 \times$ $1 \times$		$1 \times$	
Performer Linear Trans.	1.23× 1.58×	$\frac{0.43}{0.37} \times$	3.79× 5.35 ×	0.086× 0.067×	
S4	1.58×	$0.43 \times$	$5.19 \times$	$0.091 \times$	

Table 8: (WikiText-103 language modeling) S4 approaches the performance of Transformers with much faster generation. (*Top*) Transformer baseline which our implementation is based on, with attention replaced by S4. (*Bottom*) Attention-free models (RNNs and CNNs).

Model	Params	Test ppl.	Tokens / sec
Transformer	247M	20.51	0.8K (1×)
GLU CNN	229M	37.2	25
AWD-QRNN	151M	33.0	#
LSTM + Hebb.	=	29.2	21
TrellisNet	180M	29.19	==
Dynamic Conv.	255M	25.0	-
Talk Conv.	240M	23.3	<u> </u>
S4	249M	20.95	48K (60×)

13 S6-But de papier • Donner au S4 la capacité de raisonner en fonction de contexte

14 S6-Propriétés S6 est linéaire Stateful Structuré optimisable
parallélisable
Non-LIT: Context-Aware

S6- Résultats

		X					1			
Model	Token.	Pile ppl↓	LAMBADA ppl↓	LAMBADA acc↑	HellaSwag acc ↑	PIQA acc ↑	Arc-E acc †	Arc-C acc↑	WinoGrande acc ↑	Average acc ↑
Hybrid H3-130M	GPT2	-	89.48	25.77	31.7	64.2	44.4	24.2	50.6	40.1
Pythia-160M	NeoX	29.64	38.10	33.0	30.2	61.4	43.2	24.1	51.9	40.6
Mamba-130M	NeoX	10.56	16.07	44.3	35.3	64.5	48.0	24.3	51.9	44.7
Hybrid H3-360M	GPT2	25.54	12.58	48.0	41.5	68.1	51.4	24.7	54.1	48.0
Pythia-410M	NeoX	9.95	10.84	51.4	40.6	66.9	52.1	24.6	53.8	48.2
Mamba-370M	NeoX	8.28	8.14	55.6	46.5	69.5	55.1	28.0	55.3	50.0
Pythia-1B	NeoX	7.82	7.92	56.1	47.2	70.7	57.0	27.1	53.5	51.9
Mamba-790M	NeoX	7.33	6.02	62.7	55.1	72.1	61.2	29.5	56.1	57.1
GPT-Neo 1.3B	GPT2	_	7.50	57.2	48.9	71.1	56.2	25.9	54.9	52.4
Hybrid H3-1.3B	GPT2	-	11.25	49.6	52.6	71.3	59.2	28.1	56.9	53.0
OPT-1.3B	OPT		6.64	58.0	53.7	72.4	56.7	29.6	59.5	55.0
Pythia-1.4B	NeoX	7.51	6.08	61.7	52.1	71.0	60.5	28.5	57.2	55.2
RWKV-1.5B	NeoX	7.70	7.04	56.4	52.5	72.4	60.5	29.4	54.6	54.3
Mamba-1.4B	NeoX	6.80	5.04	64.9	59.1	74.2	65.5	32.8	61.5	59.7
GPT-Neo 2.7B	GPT2	_	5.63	62.2	55.8	72.1	61.1	30.2	57.6	56.5
Hybrid H3-2.7B	GPT2	_	7.92	55.7	59.7	73.3	65.6	32.3	61.4	58.0
OPT-2.7B	OPT		5.12	63.6	60.6	74.8	60.8	31.3	61.0	58.7
Pythia-2.8B	NeoX	6.73	5.04	64.7	59.3	74.0	64.1	32.9	59.7	59.1
RWKV-3B	NeoX	7.00	5.24	63.9	59.6	73.7	67.8	33.1	59.6	59.6
Mamba-2.8B	NeoX	6.22	4.23	69.2	66.1	75.2	69.7	36.3	63.5	63.3
GPT-J-6B	GPT2	==	4.10	68.3	66.3	75.4	67.0	36.6	64.1	63.0
OPT-6.7B	OPT		4.25	67.7	67.2	76.3	65.6	34.9	65.5	62.9
Pythia-6.9B	NeoX	6.51	4.45	67.1	64.0	75.2	67.3	35.5	61.3	61.7
RWKV-7.4B	NeoX	6.31	4.38	67.2	65.5	76.1	67.8	37.5	61.0	62.5

Fine-Tuning Mamba

Install Ans Import

16

Install

pip install -q datasets

pip install -q trl

pip install -q peft

Import

from peft import LoraConfig AutoTokenizer, AutoModelForCausalLM, TrainingArguments
from transformers import AutoTokenizer from datasets import load dataset from trl import SFTTrainer

Nothing New

```
tokenizer = AutoTokenizer.from pretrained("state-spaces/mamba-130m-hf")
model = AutoModelForCausalLM.from pretrained("state-spaces/mamba-130m-hf")
dataset = load dataset("Abirate/english quotes", split="train")
training_args = TrainingArguments(
    output dir="./results",
    num train epochs=3,
    per device train batch size=4,
    logging dir='./logs',
    logging_steps=10,
    learning_rate=2e-3
lora config = LoraConfig(
        r=8,
        target modules=["x_proj", "embeddings", "in proj", "out_proj"],
        task type="CAUSAL LM",
        bias="none"
                               warnings.warn(
                         [*]: trainer.train()
```

[33/1881 03:58 < 3:57:02, 0.13 it/s, Epoch 0.05/3]

Training Loss	Step
3.512000	10
3.188100	20
3.209900	30

17 Accuracy and performance metrics: Perplexity Accuracy • BLEU score • ROUGE score (ROUGE-N, ROUGE-L)

