Homework Assignment 5

Matthew Tiger

March 21, 2016

Problem 1. a. Explain in a specific example why, when A and b have integer components, a general integer programming problem

$$\begin{array}{ll} (GILP) & \text{Minimize (Maximize)} & f(\boldsymbol{x}) = \boldsymbol{c}^\mathsf{T}\boldsymbol{x} \\ & \text{subject to} & A\boldsymbol{x} & \leq (\geq, =) \boldsymbol{b} \\ & \boldsymbol{x} \geq (\leq) \boldsymbol{0}, \boldsymbol{x} \in \mathbb{Z}^n \end{array}$$

can be reduced (or is equivalent) to a standard integer programming problem

$$\begin{array}{ll} (ILP) & \text{Minimize (Maximize)} & f(\boldsymbol{X}) = \boldsymbol{C}^\mathsf{T} \boldsymbol{X} \\ & \text{subject to} & \mathscr{A} \boldsymbol{X} &= \boldsymbol{B} \\ & \boldsymbol{X} \geq \boldsymbol{0}, \boldsymbol{X} \in \mathbb{Z}^n \end{array}$$

by adding variables or any of the transformations discussed in class that change \boldsymbol{x} into \boldsymbol{X} .

More precisely, explain why (GILP) has a solution $\boldsymbol{x} \in \mathbb{Z}^n$ if and only if (ILP) has a solution $\boldsymbol{X} \in \mathbb{Z}^n$.

b. How do we solve (GILP) when A or \boldsymbol{b} do not have integer components?

 \square

Problem 2. Solve the shipping problem studied in MATH 111 with the replaced constraints over integers using the Gomory Cutting-Plane Method.

More precisely, solve:

$$\begin{array}{lll} \text{Maximize} & 9x_1 + 13x_2 \\ \text{subject to} & 4x_1 + 3x_2 & \leq 300 \\ & x_1 + 2x_2 & \leq 625/6 \\ & -2x_1 + x_2 & \leq 0 \\ & x_1, x_2 \geq 0 \\ & x_1, x_2 \in \mathbb{Z} \end{array}$$

 \square

Problem 3	3. Let	$f: \mathbb{R}^n$ -	$\rightarrow \mathbb{R}^m$	and Ω	$2 \subset \mathbb{R}^n$	be an	open	subset	. Explain	the meaning	ng of
$f \in C^1(\Omega)$.	More	precisely	, give	all the	e defini	itions 1	needed	and p	resent som	e examples	and
results conc	erning	$C^1(\Omega)$ f	unctio	ons.							

 \Box