

INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Industry 4.0 Cell (I4C): A Brief Overview

Roman Parak

Content

1.	Institute of A	Itomation and Computer Science
----	----------------	--------------------------------

- 2.1 Organization Structure
- 2.2 Industry 4.0 Cell (I4C) at the IACS
- 2.3 Educational Activities
- 2.4 Research Activities
- 3. Vision of the future
- 4. Contact

IACS

Institute of Automation and Computer Science

Research Activities

Artificial Intelligence Machine Learning

Advanced Robotics Industry 4.0

Computer Vision Image Processing

Augmented / Virtual Reality

Optimization Logistics

Cloud Computing and Cybersecurity

Educational Activities

The Institute of Automation and Computer Science provides fundamental university information technology, automation and regulation courses obligatory for students of all specialisations. The Institute also organizes and provides a three-year Bachelor's degree and a two-year Master's degree in Applied Computer Science and Automation.

The Institute also educates Ph.D. students in the fields of Technical Cybernetics, Design and Process Engineering, Engineering Mechanics, and Mathematical Engineering.

Our students are more than versatile soldiers who study in three areas of education: mechanical engineering, electrical engineering and computer science.

Partners & References

Industry 4.0 Cell

Organizational Structure

Assoc. Prof. Radomil Matousek, PhD.

Director of Department, Head of Laboratory

Contact:

matousek@fme.vutbr.cz

MSc. Roman Parak

Research and Development (R&D)

Contact:

Roman.Parak@vutbr.cz

Assoc. Prof. Branislav Lacko, PhD.

Industry 4.0 Consultant

Contact:

lacko@fme.vutbr.cz

Assistant Professor, Assoc. Prof. & Prof.:

≈ 5

Students (PhD., MSc. & BSc.):

≈ 20

7

Roadmap: Design & Construction of a Robotic Cell

2019

2020

2021

2022

7

7

ī

Industry 4.0 Cell (I4C) at the IACS

| Page 17/34

Industry 4.0 Cell (I4C) at the IACS

| Page 18/34

Educational Activities

Main Activities

- Lectured courses (Programmable Logic Controllers, Machine Vision, Industry 4.0, Al Algorithms, Neural Networks and Evolution Methods, Programming for robots and manipulators, etc.)
- O Doctoral and Bachelor's / Master's theses

Other Activities

- Workshops, Open Days, Robotics promotion (Science enjoys us, Night of Scientists, Summer University for secondary school students), Robotics Conferences, International Engineering Fair, etc.
- Brno University of Technology helps with COVID-19

T

Educational Activities

Technologies

The main technologies used to teach Robotics and Artificial Intelligence

Programming Languages

SOpenAI

♦OPEN3D

Research Activities

Main Activities

- Advanced System Integration, Artificial Intelligence Techniques (ML, DL, etc.), Trajectory optimization / Motion planning, Kinematics, Data Analysis and Processing
- Visual Inspection, Structured / Random Bin Picking, Human Machine Collaboration
- Virtual / Digital Twin (Simulation), Human-Machine Interface, Functional Safety

Other Activities

- Virtual / Augmented Reality
- 5G networks, IoT (Internet Of Things), Cybersecurity

Research Activities

Main Activities

- Advanced System Integration, Artificial Intelligence Techniques (ML, DL, etc.), Trajectory optimization / Motion planning, Kinematics, Data Analysis and Processing
- Visual Inspection, Structured / Random Bin Picking, Human Machine Collaboration
- Virtual / Digital Twin (Simulation), Human-Machine Interface, Functional Safety

Other Activities

- Virtual / Augmented Reality
- 5G networks, IoT (Internet Of Things), Cybersecurity

T

System Integration

POWERLINK

PROFINET

ETHERNET/IP

Digital/Analog I/O

OPC UA

| Page 24/34

Human – Machine Interface

Platform Independence

OPC Unified Architecture (UA)

Multi-client / Multi-user

Intuitive Operation

mapp View

Virtual / Digital Twin

Data Collection

Real / Simulation

Robot Web Services (RWS), EGM

XML, JSON and UDP

Joint / Cartesian

Industrial PC B&R

Data Collection

Real / Simulation

OPC UA

UDP (User Datagram Protocol)

TCP/IP Transmission Control Protocol (TCP) Internet Protocol (IP)

OPC Unified Architecture (UA)

Platform Independence

Intuitive Operation

Multi-Threading

NVIDIA PhysX

Easy compilation into Augmented reality (AR)

Data Collection

Real / Simulation

TCP/IP

Digital/Analog I/O

Axis Position

7

Unity3D Application Portfolio

Industry 4.0 Cell: Sorting Line

B&R Automation ACOPOStrak

Industrial Robot ABB IRB 120

Simple Linear Axis (B&R Automation, SMC)

Sorting Machine (B&R Automation, SMC)

Collaborative Robot Universal Robots UR3

Vision of the Future

7

Vision of the Future

Contact

Contact

Contact:

Radomil Matousek Roman Parak

Director of Department Research and Development

(R&D)

matousek@fme.vutbr.cz Roman.Parak@vutbr.cz

Room:

A1/0642 (Technicka 2896/2, Brno 616 69, Czech Republic)

Thank You!

Questions?

INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE