Exam 1_A1-2: Cube and sphere

Objective: Data types and expressions

Consider a cube with each edge of length a (input) in meters that just perfectly fits a sphere with radius r (in meters) inside (with extreme points on sphere surface just touching middle points of cube sides). Write a Python code to accept the cube edge-length a, and print out the volume of the cube outside the sphere.

Volume of a sphere $=\frac{4}{3}\pi r^3$

INPUT

One floating-point value of the cube edge-length a in meters.

OUTPUT

The volume of the cube outside the sphere in cubic meters rounded with round(ans,2), where ans is your answer.

Examples			
<pre>Input (from keyboard)</pre>	Output (on screen)	The range of inputs for	
1.4	1.31	additional test cases: 40%< 3;	
3.01	12.99	80%< 7; the rest > 7.	
5.15	65.07		

Testcases (private)

Input	Output
(from keyboard)	(on screen)
0.57	0.09
2.51	7.53
4.25	36.57
6.13	109.74
7.21	178.56

Code solution

```
import math
a = float(input())
print(round(a**3-4/3*math.pi*((a/2)**3),2))
```