### Métodos Estatísticos Básicos

Aula 11 - Variáveis aleatórias de duas ou mais dimensões

Prof. Regis Augusto Ely

Departamento de Economia Universidade Federal de Pelotas (UFPel)

Maio de 2016

- Sejam X = X(s) e Y = Y(s) duas funções, cada uma associando um número real a cada resultado  $s \in \Omega$ . Demonstramos (x,y) uma variável aletória bidimensional.
- Se  $X_1 = X_1(s), X_2 = X_2(s), \dots$ ,  $X_n = X_n(s)$  forem n funções, denominamos  $(X_1, \dots, X_n)$  uma variável aletatória bidimensional ou vetor aleatório.

- Seja (X,Y) uma variável aleatória discreta bidimensional. A cada resultado possível  $(x_i, y_i)$  associaremos um número  $p(x_i, y_i)$  representando  $P(X = X_i, Y = Y_i)$  e satisfazendo:

  - $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} p(x_j, y_i) = 1$
- Onde p é a função de probabilidade de (X,Y)

- Seja (X,Y) uma variável aleatória contínua tomando todos os valores em alguma região R do plano euclidiano. A fdp conjunta f é uma função que satisfaz:
- Ver exemplos 6.1, 6.2 e 6.3 das págs. 113 a 115 do livro.

Seja (X,Y) uma variável aleatória bidimensional a <u>função de</u> <u>distribuição acumulada (fd)</u> F da variável aleatória bidimensional (X,Y) é:
F(X,Y) = P(X ≤ x, Y ≤ y)

#### Distribuição marginal discreta

• 
$$p(x_i) = P(X_i = x_i, Y = y_1 \text{ ou } X_i = x_i, Y = y_2, \text{ ou } ...)$$

- $p(x_i) = \sum_{j=1}^{\infty} p(x_i, y_j) = >$  distribuição de probabilidade marginal de X.
- $p(y_i) = \sum_{i=1}^{\infty} p(x_i, y_j) = >$  distribuição de probabilidade marginal de Y.

#### Distribuição marginal contínua

- $g(X) = \int_{-\infty}^{+\infty} f(x, y) dy =>$  função densidade de probabilidade marginal de X.
- $h(Y) = \int_{-\infty}^{+\infty} f(x, y) dx =>$  função densidade de probabilidade marginal de Y.
- Assim,  $P(c \le X \le d) = \int_{c}^{d} \int_{-\infty}^{+\infty} f(x, y) \, dy dx = \int_{c}^{d} g(X) \, dx$
- Ver exemplos 6.4 e 6.5 das págs. 116 e 117.



#### Distribuição condicional discreta

• 
$$P(x_i/y_j) = P(X = x_i/Y = y_j) = \frac{p(x_i, y_i)}{q(y_j)}$$
 se  $q(y_j) > 0$ 

• 
$$q(y_j/x_i) = P(Y = y_j/X = x_i) = \frac{p(x_i, y_j)}{p(x_i)}$$
 se  $p(x_i) > 0$ 

onde  $p(x_i)$ é a fdp marginal de X e  $q(y_j)$ a fdp marginal de Y.

#### Distribuição condicional contínua

• 
$$g(x/y) = \frac{f(x,y)}{h(y)}, h(y) > 0$$

• 
$$h(y/x) = \frac{f(x,y)}{g(x)}, g(x) > 0$$

- Ver exemplos 6.7 e 6.8 das págs. 119 e 120.
- Conceitos são generalizados para variáveis n-dimensionais

## Variáveis aleatórias independentes

- Dizemos que X e Y são variáveis aleatórias independentes discretas se e somente se  $p(x_i, y_j) = p(x_i) \cdot q(y_j) \forall i$  e j ou se e somente se  $p(x_i/y_j) = p(x_i) \forall i$  e j [ equivalentemente  $q(y_j/x_i) = q(y_j) \forall i$  e j ].
- Dizemos que X e Y são variáveis aleatórias independentes contínuas se e somente se  $f(x,y) = g(x)h(y)\forall(x,y)$  ou se e somente se  $g(x/y) = g(x)\forall(x,y)$ [ equivalentemente  $h(y/x) = h(y)\forall(x,y)$ ]