GATE 2022 -AE 63

EE23BTECH11057 - Shakunaveti Sai Sri Ram Varun

Question: Which one of the following is the closed form for the generating function of the sequence $\{a\}_{n>0}$ defined below?

$$a_n = \begin{cases} n+1 & \text{, n is odd} \\ 1 & \text{otherwise} \end{cases}$$
 (1)

$$\therefore G(A; z^{-1}) = \frac{1}{1 - z^{-1}} + \frac{z^{-1}(1 + z^{-2})}{(1 - z^{-2})^2}$$
 (7)

(7) is the closed form of generating function required in the question.

Hence, option (A) is correct. Taking it into partial fractions

(A)
$$\frac{x(1+x)^2}{(1-x^2)^2} + \frac{1}{1-x}$$

(A)
$$\frac{x(1+x)^2}{(1-x^2)^2} + \frac{1}{1-x}$$
(B)
$$\frac{x(3-x^2)}{(1-x^2)^2} + \frac{1}{1-x}$$
(C)
$$\frac{2x}{(1-x^2)^2} + \frac{1}{1-x}$$

(C)
$$\frac{2x}{(1-x^2)^2} + \frac{1}{1-x}$$

(D)
$$\frac{x}{(1-x^2)^2} + \frac{1}{1-x}$$

(GATE CS 2022 QUESTION 36)

Solution:

For any given sequence $\{s_n\}$ generating function is

Parameter	Description	Value
$G(S;z^{-1})$	Generating function for a sequence $\{s_n\}$	$G(A;z^{-1})$
$G(A;z^{-1})$	Generating function for a sequence $\{a_n\}$?
a	n^{th} term of the sequence	(n+1)u(n) (when odd)
a_n		u(n) (when even)

TABLE I INPUT VALUES

defined as:

$$G\left(S;z^{-1}\right) = \sum_{n=0}^{\infty} s_n z^{-n} \tag{2}$$

For the given sequence:

$$G(A;z^{-1}) = \sum_{k=-\infty}^{\infty} u(2k)z^{-2k} + \sum_{k=-\infty}^{\infty} ((2k+2)u(2k+1))z^{-(2k+1)}$$

$$\implies G(A;z^{-1}) = (1+z^{-2}+z^{-4}+\dots) + (2z^{-1}+4z^{-3}+6z^{-5}+\dots)$$

$$\implies G(A;z^{-1}) = \frac{1}{1-z^{-2}} + (2z^{-1}+4z^{-3}+6z^{-5}\dots)$$

$$\implies G(A;z^{-1}) = \frac{1}{1-z^{-2}} + 2z^{-1}\left(\frac{1}{1-z^{-2}} + \frac{z^{-2}}{(1-z^{-2})^2}\right)$$