Bayesian Regression on Inverse Dynamics of SARCOS arm

Teguh Santoso Lembono

Bayesian Computation - June 17, 2019

Problem Definition: Inverse Dynamics

- SARCOS arm is a 7 Degree-of-Freedoms (DoFs) robot
- Given the current joint positions, velocities, and accelerations, the inverse dynamics problem is to predict the torques at each joint.
- Input $\mathbf{\textit{x}}:(m{ heta},\dot{m{ heta}},\ddot{m{ heta}})\in\mathbb{R}^{21}$, output $m{ au}\in\mathbb{R}^{7}$
- ullet In this presentation, I only consider the first torque, au_1

Methods Overview

- Linear Regression with GVA
- Linear Regression with Laplace Approximation
- Linear Regression with Polynomial Input Feature and Laplace Approximation
- Gaussian Mixture Regression with Bayesian EM

Validation Method

Standardized Mean Squared Error (sMSE)

$$MSE = \frac{1}{N} \sum_{i}^{N} (y_i - f(x_i))^2$$
 (1)

$$sMSE = \frac{MSE}{var(\mathbf{y})} \tag{2}$$

Mean Standardized Log Loss (MSLL)

$$LL_i = \frac{1}{2}\log(2\pi\sigma_i^2) + \frac{(y_i - f(\mathbf{x}_i))^2}{2\sigma_i^2}$$
 (3)

$$SLL_i = LL_i - LL_{i,mean} \tag{4}$$

$$MSLL = \frac{1}{N} \sum_{i}^{N} (SLL_{i})$$
 (5)

• y_i and $f(x_i)$ are the true and prediction value, respectively

Linear Regression with GVA

The likelihood is formulated as a linear model:

$$p(y|\mathbf{x}, \mathbf{w}, \lambda) = \mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}, \lambda^{-1} \mathcal{I}\right)$$
 (6)

 \bullet The prior of ${\it w}$ and λ is Gaussian and Gamma distribution, respectively

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \alpha \mathbf{I}) \tag{7}$$

$$p(\lambda) = Gamma(a, b) \tag{8}$$

The posterior is computed by minimizing the negative ELBO

Linear Regression with Laplace Approximation

- The likelihood and the prior are the same as the first method
- The posterior is computed by doing Laplace Approximation:

$$p(\mathbf{w}|\mathbf{X},\mathbf{Y}) = \mathcal{N}\left(\mathbf{w}_{MAP}, Hess(\mathbf{w}_{MAP})^{-1}\right)$$
(9)

Linear Regression with Polynomial Input Features and Laplace Approximation

 Similar to the previous method, but the input is modified by second order polynomial mapping

$$(x) \to (1, x, x^2) \tag{10}$$

$$(x_1, x_2) \to (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$
 (11)

for all input dimension

- The input dimension increases from 21 to 253
- The posterior is computed by Laplace Approximation

Gaussian Mixture Regression

- Gaussian Mixture Regression (GMR) is used a lot in robot learning
- Given the input x and the output y, the joint distribution is formulated as Gaussian Mixture Model:

$$p(\mathbf{x}, \mathbf{y}) = \sum_{k}^{K} \pi_{k} \mathcal{N}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$
 (12)

• Given a new input x^* , the predictive distribution is computed by conditioning on x^* . The method is commonly referred to as GMR

$$p(\mathbf{y}|\ \mathbf{x}^*, \boldsymbol{\theta}) = \sum_{k}^{K} p(k|\ \mathbf{x}^*, \boldsymbol{\theta}) p(\mathbf{y}|\ k, \mathbf{x}^*, \boldsymbol{\theta}), \tag{13}$$

where θ is the set of GMM parameters,

$$\boldsymbol{\theta} = \{ \boldsymbol{Z}, \pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k | k \in [0, K - 1] \}$$
 (14)

Gaussian Mixture Regression with Bayesian EM

- Here the posterior distribution of heta is computed using Variational Inference with Factorized Distribution
- The following priors are assigned to θ :

$$p(\pi) = Dirichlet(\alpha) \tag{15}$$

$$p(\mu) = \mathcal{N}\left(0, \beta^{-1}\mathcal{I}\right) \tag{16}$$

$$p(\Sigma) = InvWishart(\mathcal{W}_0, v) \tag{17}$$

• The posterior distribution of θ is approximated as a factorized distribution:

$$q(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = q(\mathbf{Z})q(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \tag{18}$$

• The posterior can then be computed using steps similar to Expectation-Maximization, iterating between computing $q(\mathbf{Z})$ and $q(\pi,\mu,\Sigma)$

Comparison Result: sMSE

Table: sMSE result for different methods

Method	Training	Test
LR with GVA	0.0741	0.0747
LR with LA	0.0741	0.0747
PolyLR with LA	0.0351	0.0343
GMR with Factorized GVA	0.0386	0.0383
GPR	-	0.011

Comparison Result: MSLL

Table: MSLL result for different methods

Method	Training	Test
LR with GVA	-1.301	-1.291
LR with LA	-1.301	-1.291
PolyLR with LA	-1.673	-1.678
GMR with Factorized GVA	-1.73	-1.73
GPR	-	-2.15

Conclusion

- Laplace Approximation is faster than GVA, but gives quite a good approximation
- Using polynomial expansion of the inputs result in better matching of the data, but the number of input features increases exponentially with the degree of polynomials
- Using multiple linear models (GMR) result in better matching of the data

Thank you!