Generalizations of The Chung-Feller Theorem II

Jun Ma a,* Yeong-Nan Yeh b,†

 a,b Institute of Mathematics, Academia Sinica, Taipei, Taiwan

Abstract

The classical Chung-Feller theorem [2] tells us that the number of Dyck paths of length n with m flaws is the n-th Catalan number and independent on m. L. Shapiro [9] found the Chung-Feller properties for the Motzkin paths. Mohanty's book [5] devotes an entire section to exploring Chung-Feller theorem. Many Chung-Feller theorems are consequences of the results in [5]. In this paper, we consider the (n,m)-lattice paths. We study two parameters for an (n,m)-lattice path: the non-positive length and the rightmost minimum length. We obtain the Chung-Feller theorems of the (n,m)-lattice path on these two parameters by bijection methods. We are more interested in the pointed (n,m)-lattice paths. We investigate two parameters for an pointed (n,m)-lattice path: the pointed non-positive length and the pointed rightmost minimum length. We generalize the results in [5]. Using the main results in this paper, we may find the Chung-Feller theorems of many different lattice paths.

Keywords: Chung-Feller Theorem; Dyck path; Motzkin path

1 Introduction

Let \mathbb{Z} denote the set of the integers and $[n] := \{1, 2, ..., n\}$. We consider n-Dyck paths in the plane $\mathbb{Z} \times \mathbb{Z}$ using up (1,1) and down (1,-1) steps that go from the origin to the point (2n,0). We say n the semilength because there are 2n steps. An n-flawed path is an n-Dyck path that contains some steps under the x-axis. The number of n-Dyck path that never pass below the x-axis is the n-th Catalan number $c_n = \frac{1}{n+1} \binom{2n}{n}$. Such paths are called the Catalan paths of length n. A Dyck path is called a (n,r)-flawed path if it contains r up steps under the x-axis and its semilength is n. Clearly, $0 \le r \le n$. The classical Chung-Feller theorem [2] says that the number of the (n,r)-flawed paths is equal to c_n and independent on r.

The classical Chung-Feller Theorem were proved by MacMahon [7]. Chung and Feller reproved this theorem by using analytic method in [2]. T.V.Narayana [8] showed the Chung-Feller Theorem

^{*}Email address of the corresponding author: majun@math.sinica.edu.tw

[†]Partially supported by NSC 96-2115-M-001-005

by combinatorial methods. S. P. Eu et al. [3] proved the Chung-Feller Theorem by using the Taylor expansions of generating functions and gave a refinement of this theorem. In [4], they gave a strengthening of the Chung-Feller Theorem and a weighted version for Schröder paths. Y.M. Chen [1] revisited the Chung-Feller Theorem by establishing a bijection.

Mohanty's book [5] devotes an entire section to exploring Chung-Feller theorem. We state the result from [5] as the following lemma.

Lemma 1.1 [5] Given a positive integer n, let $Y = (y_1, \ldots, y_{n+1})$ be a sequence of integers with $1 - n \le y_i \le 1$ for all $i \in [n+1]$ such that $\sum_{i=1}^{n+1} y_i = 1$. Furthermore, let $E(Y) = |\{i \mid \sum_{j=1}^{i} y_j \le 0\}|$. Let Y_i be the i-th cyclic permutation of Y (i.e., $Y_i = (y_i, y_{i+1}, \ldots, y_{n+i+1})$ with $y_{n+r+1} = y_r$). Then there exists a permutation i_1, \ldots, i_{n+1} on the set [n+1] such that $E(Y_{i_1}) > E(Y_{i_2}) > \cdots > E(Y_{i_{n+1}})$.

Many Chung-Feller theorems are consequences of lemma 1.1. First, let ϕ be a mapping from \mathbb{Z} to \mathbb{P} , where \mathbb{P} is a set of all the positive integers. Let the sequence $Y = (y_1, \ldots, y_{n+1})$ satisfy the conditions in Lemma 1.1. Using $(\phi(y_i), y_i)$ steps, we can obtain a lattice path $P(Y) = (\phi(y_1), y_1)(\phi(y_2), y_2) \dots (\phi(y_{n+1}), y_{n+1})$ in the plane $\mathbb{Z} \times \mathbb{Z}$ that go from the origin to the point $(\sum_{i=1}^{n+1} \phi(y_i), 1)$. Using Lemma 1.1, we will derive the classical Chung-Feller theorem for Dyck paths if we let $y_i \in \{1, -1\}$ and set $\phi(y) = 1$ for all $y \in \mathbb{Z}$; we will derive the Chung-Feller theorem for Schröder paths if we let $y_i \in \{1, 0, -1\}$ and set $\phi(0) = 2$ and $\phi(y) = 1$ for $y \neq 0$; we will derive the Chung-Feller theorem for Motzkin paths if we let $y_i \in \{1, 0, -1\}$ and set $\phi(0) = 1$ and $\phi(y) = 1$ for $y \neq 0$ and so on.

How to derive the Chung-Feller theorem for lattice paths in the plane $\mathbb{Z} \times \mathbb{Z}$ using (1, -1), (1, 1), (1, 0), (2, 0) steps? For answering this problem, the authors of this paper [6] proved the Chung-Feller theorems for three classes of lattice paths by using the method of the generating functions. It is interesting that these Chung-Feller theorems can't be derivable as a special case from lemma 1.1. This implies that we may generalize the results of Lemma 1.1.

In this paper, first we give the definition of the (n,m)-lattice paths. We consider two parameters for an (n,m)-lattice path: the non-positive length and the rightmost minimum length. Using bijection methods, we obtain the Chung-Feller theorems of the (n,m)-lattice path on these two parameters. Then we study the pointed (n,m)-lattice paths. We investigate two parameters for an pointed (n,m)-lattice path: the pointed non-positive length and the pointed rightmost minimum length. We give generalizations of the results in [5] and prove the Chung-Feller theorems of the pointed (n,m)-lattice path on these two parameters. Finally, using the main theorems of this paper, we may find the Chung-Feller theorems of many different (n,m)-lattice paths.

This paper is organized as follows. In Section 2, we focus on the (n, m)-lattice paths. Using bijection methods, we obtain the Chung-Feller theorems of the (n, m)-lattice path. In Section 3,

we study the pointed (n, m)-lattice paths and give generalizations of the results in [5]. In Section 4, using the main theorems of this paper, we find the Chung-Feller theorems of many different (n, m)-lattice paths.

2 The (n, m)-lattice paths

Throughout the paper, we always let n and m be two positive integers with $m \ge n+1$. In this section, we will consider the (n,m)-lattice paths. We will define two parameters for an (n,m)-lattice path: the non-positive length and the rightmost minimum length. Using bijection methods, we will obtain the Chung-Feller theorems of the (n,m)-lattice path on these two parameters. First, we give the definition of the (n,m)-lattice paths as follows.

Definition 2.1 An (n, m)-lattice paths P is a sequence of the vectors $(x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1})$ in \mathbb{Z}^2 such that:

(1)
$$1 - n \le y_i \le 1$$
 and $\sum_{i=1}^{n+1} y_i = 1$

(2)
$$1 \le x_i \le m-1$$
 and $\sum_{i=1}^{n+1} x_i = m$.

 (x_i, y_i) is called the steps of P for any $i \in [n+1]$. Since P can be viewed as a path from the origin to (m, 1) in the plane $\mathbb{Z} \times \mathbb{Z}$ and has n + 1 steps, we say that P is of order n + 1 and length m.

2.1 The non-positive length of an (n, m)-lattice paths

Given an (n, m)-lattice path $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1})$, we let $NP(P) = \{i \mid \sum_{j=1}^{i} y_j \leq 0\}$ and $NPL(P) = \sum_{i \in NP(P)} x_i$. Clearly, $0 \leq NPL(P) \leq m - x_{n+1} \leq m - 1$ since $n + 1 \neq NP(P)$.

We say that NPL(P) is the non-positive length of the (n, m)-lattice path P. Moreover, we define a linear order $<_P$ on the set [n+1] by the following rules:

for any
$$i, j \in [n+1]$$
, $i <_P j$ if either (1) $\sum_{k=1}^i y_k < \sum_{k=1}^j y_k$ or (2) $\sum_{k=1}^i y_k = \sum_{k=1}^j y_k$ and $i > j$.
The sequence formed by writing $[n+1]$ in the increasing order with respect to $<_P$ is denoted

The sequence formed by writing [n+1] in the increasing order with respect to $<_P$ is denoted by $\pi_P = (\pi_P(1), \pi_P(2), \dots, \pi_P(n+1))$.

Example 2.2 Let n = 8 and m = 11. We draw an (8, 11)-lattice path

$$P = (1,1)(1,-2)(2,1)(1,1)(1,-1)(1,-1)(1,1)(1,1)(2,0)$$

as follows.

Then
$$NP(P) = \{2, 3, 5, 6, 7\}$$
, $NPL(P) = 6$ and $\pi_P = (6, 2, 7, 5, 3, 9, 8, 4, 1)$.

We use $\mathcal{L}_{n,m,r}$ to denote the set of all the (n,m)-lattice paths P such that NPL(P) = r. In particularly, we use $\tilde{\mathcal{L}}_{n,m,0}$ to denote the set of all the lattice paths $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1})$ in the set $\mathcal{L}_{n,m,0}$ such that $x_{n+1} = 1$. Clearly, $\tilde{\mathcal{L}}_{n,m,0} \subset \mathcal{L}_{n,m,0}$.

Lemma 2.3

- (1) The number of the (n,m)-lattice paths P such that NPL(P) = 0 is equal to $\binom{m-1}{n}c_n$;
- (2) The number of the (n,m)-lattice paths $P = (x_1,y_1)(x_2,y_2)\dots(x_{n+1},y_{n+1})$ such that NPL(P) = 0 and $x_{n+1} = 1$ is equal to $\binom{m-2}{n-1}c_n$.

Proof. (1) It is well known that the number of the solutions of the equation $\sum_{i=1}^{n+1} y_i = 1$ such that $1 - n \le y_i \le 1$ and $NP(P) = \emptyset$ is c_n and the number of the solutions of the equation $\sum_{i=1}^{n+1} x_i = m$ in positive integers is $\binom{m-1}{n}$. Hence, The number of the (n,m)-lattice paths P such that NPL(P) = 0 is equal to $\binom{m-1}{n}c_n$.

(2) Note that the number of the solutions of the equation $\sum_{i=1}^{n} x_i = m-1$ in positive integers is $\binom{m-2}{n-1}$. We immediately obtain that the number of the (n,m)-lattice paths P such that NPL(P) = 0 and x_{n+1} is equal to $\binom{m-2}{n-1}c_n$.

Lemma 2.4 There is a bijection Φ from $\mathcal{L}_{n,m,r}$ to $\mathcal{L}_{n,m,r+1}$ for any $1 \leq r \leq m-2$.

Proof. Let $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1}) \in \mathcal{L}_{n,m,r}$. Consider the sequence π_P . Suppose $\pi_P(k) = n+1$ for some k. Since $r \geq 1$, we have $k \geq 2$. We discuss the following two cases.

Case I. $k \leq n$

If $x_{n+1} = 1$, then let $i = \pi_P(k+1)$ and

$$\Phi(P) = (x_{i+1}, y_{i+1}) \dots (x_{n+1}, y_{n+1}) (x_1, y_1) \dots (x_i, y_i).$$

If $x_{n+1} \geq 2$, then let $i = \pi_P(k-1)$ and

$$\Phi(P) = (x_1, y_1) \dots (x_i + 1, y_i) \dots (x_{n+1} - 1, y_{n+1}).$$

Case II. k = n + 1

Note that $x_{n+1} \geq 2$ since $r \leq m-2$. We let $i = \pi_P(n)$ and

$$\Phi(P) = (x_1, y_1) \dots (x_i + 1, y_i) \dots (x_{n+1} - 1, y_{n+1}).$$

It is easy to see that $\Phi(P) \in \mathcal{L}_{n,m,r+1}$ for Cases I and II.

For proving that Φ is a bijection, we describe the inverse of Φ as follows.

Let $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1}) \in \mathcal{L}_{n,m,r+1}$, where $1 \le r \le m-2$. Suppose $\pi_P(k) = n+1$ for some k. Let $i = \pi_P(k-1)$. If $x_i = 1$, then let

$$\Phi^{-1}(P) = (x_{i+1}, y_{i+1}) \dots (x_{n+1}, y_{n+1})(x_1, y_1) \dots (x_i, y_i);$$

otherwise, let

$$\Phi^{-1}(P) = (x_1, y_1) \dots (x_i - 1, y_i) \dots (x_{n+1} + 1, y_{n+1}).$$

This complete the proof.

Example 2.5 Let n = 3 and m = 5. We draw (3, 5)-lattice paths

$$P_1 = (1,1)(1,1)(1,-2)(2,1)$$
 $P_2 = (1,1)(1,1)(2,-2)(1,1)$

$$P_3 = (1,1)(2,-2)(1,1)(1,1)$$
 $P_4 = (2,-2)(1,1)(1,1)(1,1)$

as follows.

We have $\Phi(P_i) = P_{i+1}$ and $NPL(P_i) = i$.

Lemma 2.6 There is a bijection from $\tilde{\mathcal{L}}_{n,m,0}$ to $\mathcal{L}_{n,m,1}$.

Proof. Let $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1}) \in \tilde{\mathcal{L}}_{n,m,0}$. Consider the sequence π_P . Note that $\pi_P(1) = n+1$ for any $P \in \mathcal{L}_{n,m,0}$. So, let $i = \pi_P(2)$. Let the mapping Φ be defined as that in Lemma 2.4, i.e., $\Phi(P) = (x_{i+1}, y_{i+1}) \dots (x_{n+1}, y_{n+1})(x_1, y_1) \dots (x_i, y_i)$. Then $\Phi(P) \in \mathcal{L}_{n,m,1}$. Conversely, for any $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1}) \in \mathcal{L}_{n,m,1}$, we have $\pi_P(2) = n+1$. Suppose $\pi_P(1) = i$, then $x_i = 1$. This tells us that Φ is a bijection from $\tilde{\mathcal{L}}_{n,m,0}$ to $\mathcal{L}_{n,m,1}$.

Theorem 2.7 For any $1 \leq r \leq m-1$, the number of the (n,m)-lattice paths P such that NPL(P) = r is equal to the number of the (n,m)-lattice paths $P = (x_1,y_1)(x_2,y_2)\dots(x_{n+1},y_{n+1})$ such that NPL(P) = 0 and $x_{n+1} = 1$ and independent on r.

Proof. Combining Lemmas 2.4 and 2.6, we immediately obtain the results as desired.

2.2 The rightmost minimum length of an (n, m)-lattice paths

Given a (n,m)-lattice path $P=(x_1,y_1)(x_2,y_2)\dots(x_{n+1},y_{n+1})$, we let $a_0=0,\ b_0=0,\ a_i=\sum_{j=1}^iy_j$

and $b_i = \sum_{j=1}^i x_j$ for $i \ge 1$. Then the (n, m)-lattice path P can be viewed as a sequence of the points in the plane $\mathbb{Z} \times \mathbb{Z}$

$$(b_0, a_0), (b_1, a_1), \dots, (b_{n+1}, a_{n+1}).$$

A minimum point of the path P is a point (b_i, a_i) such that $a_i \leq a_j$ for all $j \neq i$. A rightmost minimum point is a minimum point (b_i, a_i) such that the point is the rightmost one among all the minimum points. If (b_i, a_i) is the minimum point of the path P, we call b_i the rightmost minimum length of the (n, m)-lattice paths P, denoted by RML(P).

Example 2.8 We consider the path P in Example 2.2. The point (7, -1) is the rightmost minimum point and RML(P) = 7.

We use $\mathcal{M}_{n,m,r}$ to denote the set of all the (n,m)-lattice paths P such that RML(P) = r.

Lemma 2.9 There is a bijection Ψ from $\mathcal{M}_{n,m,r}$ to $\mathcal{M}_{n,m,r+1}$ for any $1 \leq r \leq m-2$.

Proof. Let $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1}) \in \mathcal{M}_{n,m,r}$. If $x_{n+1} = 1$, we let

$$\Psi(P) = (x_{n+1}, y_{n+1})(x_1, y_1) \dots (x_n, y_n);$$

otherwise let

$$\Psi(P) = (x_1 + 1, y_1)(x_2, y_2) \dots (x_n, y_n)(x_{n+1} - 1, y_{n+1}).$$

It is easy to see that $\Psi(P) \in \mathcal{M}_{n,m,r+1}$.

For proving that Φ is a bijection, we describe the inverse of Φ as follows.

If $x_1 = 1$, we let

$$\Psi(P) = (x_2, y_2)(x_3, y_3) \dots (x_{n+1}, y_{n+1})(x_1, y_1);$$

otherwise let

$$\Psi(P) = (x_1 - 1, y_1)(x_2, y_2) \dots (x_n, y_n)(x_{n+1} + 1, y_{n+1}).$$

This complete the proof.

Example 2.10 Let n = 3 and m = 5. We draw (3,5)-lattice paths

$$P_1 = (1, -2)(2, 1)(1, 1)(1, 1)$$
 $P_2 = (1, 1)(1, -2)(2, 1)(1, 1)$

$$P_3 = (1,1)(1,1)(1,-2)(2,1)$$
 $P_4 = (2,1)(1,1)(1,-2)(1,1)$

as follows.

We have $\Psi(P_i) = P_{i+1}$ and $RML(P_i) = i$.

Note that NPL(P) = 0 if and only if RML(P) = 0 for any (n, m)-lattice path. Recall that $\tilde{\mathcal{L}}_{n,m,0}$ is the set of all the lattice paths $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1})$ in the set $\mathcal{L}_{n,m,0}$ such that $x_{n+1} = 1$. Hence, also $\tilde{\mathcal{L}}_{n,m,0}$ is the set of all the lattice paths $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1})$ in the set $\mathcal{M}_{n,m,0}$ such that $x_{n+1} = 1$.

Lemma 2.11 There is a bijection from $\tilde{\mathcal{L}}_{n,m,0}$ to $\mathcal{M}_{n,m,1}$.

Proof. Let $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1}) \in \tilde{\mathcal{L}}_{n,m,0}$. Then $x_{n+1} = 1$ and $y_{n+1} \leq 0$. We let

$$\Psi(P) = (x_{n+1}, y_{n+1})(x_1, y_1) \dots (x_n, y_n).$$

Clearly, $\Psi(P) \in \mathcal{M}_{n,m,1}$.

Conversely, let $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1}) \in \tilde{\mathcal{L}}_{n,m,1}$. Then $x_1 = 1$ and $y_1 \leq 0$. We let

$$\Psi(P) = (x_2, y_2)(x_3, y_3) \dots (x_{n+1}, y_{n+1})(x_1, y_1).$$

This complete the proof.

Theorem 2.12 For any $1 \le r \le m-1$, the number of the (n,m)-lattice paths P such that RML(P) = r is equal to the number of the (n,m)-lattice paths $P = (x_1,y_1)(x_2,y_2)\dots(x_{n+1},y_{n+1})$ such that RML(P) = 0 and $x_{n+1} = 1$ and independent on r.

Proof. Combining Lemmas 2.9 and 2.11, we immediately obtain the results as desired.

3 The pointed (n, m)-lattice path

In this section, we will consider the pointed (n, m)-lattice paths. We will define two parameters for an pointed (n, m)-lattice path: the pointed non-positive length and the pointed rightmost minimum length. We will give generalizations of the results in [5]. We will prove the Chung-Feller theorems of the pointed (n, m)-lattice path on these two parameters. First, we give the definition of the pointed (n, m)-lattice paths as follows.

Definition 3.1 A pointed (n,m)-lattice paths \dot{P} is a pair [P;j] such that:

- (1) $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1})$ is an (n, m)-lattice paths;
- (2) $0 \le j \le x_{n+1} 1$.

We call the point (m-j,0) the root of P. We use $\mathcal{L}_{n,m}$ to denote the set of the pointed (n,m)-lattice paths.

Lemma 3.2 The number of the pointed (n,m)-lattice paths is $\binom{2n}{n}\binom{m}{n+1}$.

Proof. Note that the number of the solutions of the equation $\sum_{i=1}^{n+1} y_i = 1$ such that $1 - n \le y_i \le 1$ is $\binom{2n}{n}$. On the other hand, we let $z_i = x_i$ for all $i \in [n]$, $z_{n+1} = x_{n+1} - j$ and $z_{n+2} = j$. Since $\sum_{i=1}^{n+1} x_i = m$, $x_i \ge 1$ and $0 \le j \le x_{n+1} - 1$, we have $\sum_{i=1}^{n+2} z_i = m$, $z_i \ge 1$ for all $i \in [n+1]$ and $z_{n+2} \ge 0$. It is easy to see that the number of the solutions of the equation $\sum_{i=1}^{n+2} z_i = m$ such that $z_i \ge 1$ for all $i \in [n+1]$ and $z_{n+2} \ge 0$ is $\binom{m}{n+1}$. Hence, the number of the pointed (n,m)-lattice paths is $\binom{2n}{n}\binom{m}{n+1}$.

3.1 The pointed non-positive length of an pointed (n, m)-lattice paths

Given a pointed (n,m)-lattice path $\dot{P}=[P;j]$, where $P=(x_1,y_1)(x_2,y_2)\dots(x_{n+1},y_{n+1})$ and $0 \le j \le x_{n+1}-1$, we let $PNPL(\dot{P})=NPL(P)+j$. Clearly, $0 \le PNPL(\dot{P}) \le m-1$. We say that $PNPL(\dot{P})$ is the pointed non-positive length of the path \dot{P} .

By Lemma 2.3 (1), we have the following lemma.

Lemma 3.3 The number of the pointed (n,m)-lattice paths with pointed non-positive length 0 is $\binom{m-1}{n}c_n$.

Given an (n, m)-lattice path $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1})$, we let

$$P_i = (x_{i+1}, y_{i+1}) \dots (x_{n+1}, y_{n+1})(x_1, y_1) \dots (x_i, y_i).$$

 P_i is call the *ith cyclic permutation* of P. Furthermore, setting the point (m-j,0) to be the root of P_i , where $0 \le j \le x_i - 1$, we get a pointed (n,m)-lattice paths $[P_i;j]$, denoted by $\dot{P}(i;j)$. Finally, we define a set $\mathcal{PL}(P)$ as follows:

$$\mathcal{PL}(P) = \{ \dot{P}(i; j) \mid i \in [n+1] \text{ and } 0 \le j \le x_i - 1 \}.$$

Clearly, we have the following lemma.

Lemma 3.4 $|\mathcal{PL}(P)| = m$.

Recall that $<_P$ is the linear order on the set [n+1]. We define a linear order \prec_P on the set $\mathcal{PL}(P)$ by the following rules:

for any $\dot{P}(i_1; j_1), \dot{P}(i_2; j_2) \in \mathcal{PL}(P), \ \dot{P}(i_1; j_1) \prec_P \dot{P}(i_2; j_2)$ if either (1) $i_1 <_P i_2$ or (2) $i_1 = i_2$ and $j_1 < j_2$.

The sequence, which is formed by the elements in the set $\mathcal{PL}(P)$ in the increasing order with respect to \prec_P , reduce a bijection from the sets [m] to $\mathcal{PL}(P)$, denoted by $\Theta = \Theta_P$.

Example 3.5 Let n=3 and m=5. Let P=(1,1)(1,-2)(1,1)(2,1). We draw the pointed (3,5)-lattice path $\dot{P}=[P;1]$ as follows.

where the root is the point (4,0) denoted by \bullet . Then $PNPL(\dot{P}) = 3$. We write the bijection Θ_P as the following 2×5 matrix.

$$\Theta_P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ \dot{P}(2;0) & \dot{P}(3;0) & \dot{P}(4;0) & \dot{P}(4;1) & \dot{P}(1;0) \end{pmatrix}$$

Theorem 3.6 Let P be an (n,m)-lattice path, $\mathcal{PL}(P)$ and Θ_P defined as above. Then

$$PNPL(\Theta(r)) = r - 1$$

for any $r \in [m]$.

Proof. Note that $0 \leq PNPL(\Theta(r)) \leq m-1$ for any $r \in [m]$. It is sufficient to prove that $PNPL(\Theta(r+1)) = PNPL(\Theta(r)) + 1$ for any $r \in [m-2]$. Suppose

$$P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1})$$

and $\Theta(r) = \dot{P}(s;t) \in \mathcal{PL}(P)$. Let π_P be the sequence formed by writing [n+1] in the increasing order with respect to $<_P$ and $\pi_P^{-1}(s) = k$. Then $PNPL(\Theta(r)) = \sum_{j=1}^{k-1} x_{\pi_P(j)} + t$. Now, suppose $\Theta(r+1) = \dot{P}(\tilde{s};\tilde{t})$. We discuss the following two cases:

Case I. $s = \tilde{s}$

Then $\tilde{t} = t + 1$. This implies $PNPL(\Theta(r+1)) = PNPL(\Theta(r)) + 1$.

Case II. $s <_P \tilde{s}$

Then $\pi_P(k+1) = \tilde{s}$, $t = x_s - 1$ and $\tilde{t} = 0$. Thus,

$$PNPL(\Theta(r+1)) = \sum_{j=1}^{k} x_{\pi_P(j)} = \sum_{j=1}^{k-1} x_{\pi_P(j)} + x_s = PNPL(\Theta(r)) + 1.$$

This complete the proof.

Example 3.7 We consider the path P in Example 3.5. We draw the pointed lattice path $\Theta(r)$ as follows:

Remark 3.8 Let $\dot{P} = [P; j]$ be a pointed (n, m)-lattice path, where $P = (x_1, y_1) \dots (x_{n+1}, y_{n+1})$ and $0 \le j \le x_{n+1} - 1$. Setting m = n+1, we have $x_i = 1$ for all i and j = 0. Let $Y = (y_1, \dots, y_{n+1})$. Then $E(Y) = PNPL(\dot{P})$. This tells us that Lemma 1.1 can be viewed as a corollary of Theorem 3.6.

We use $\mathcal{L}_{n,m,r}$ to denote the set of the pointed (n,m)-lattice paths with pointed non-positive length r. Clearly, $\mathcal{L}_{n,m} = \bigcup_{r=0}^{m-1} \mathcal{L}_{n,m,r}$. Let $l_{n,m,r} = |\mathcal{L}_{n,m,r}|$.

Corollary 3.9 For any $0 \le r \le m-1$, the number of the pointed (n,m)-lattice paths with pointed non-positive length r is equal to the number of the pointed (n,m)-lattice paths with pointed non-positive length 0 and independent on r, i.e., $l_{n,m,r} = \frac{1}{m} \binom{2n}{n} \binom{m}{n+1}$.

Proof. First, we define an equivalent relation on the set $\mathcal{L}_{n,m}$. Let $\dot{P} = [P;i]$ and $\dot{Q} = [Q;j]$ be two pointed (n,m)-lattice paths. Suppose $P = (x_1,y_1) \dots (x_{n+1},y_{n+1})$. Recall P_k denote the kth cyclic permutation of P, i.e., $P_k = (x_{k+1},y_{k+1}) \dots (x_{n+1},y_{n+1})(x_1,y_1) \dots (x_k,y_k)$. We say \dot{Q} and \dot{P} is equivalent, denoted by $\dot{Q} \sim \dot{P}$, if $Q = P_k$ for some $k \in [n+1]$. Hence, given a pointed lattice path $\dot{P} \in \mathcal{L}_{n,m}$, we define a set $EQ(\dot{P})$ as $EQ(\dot{P}) = \{\dot{Q} \in \mathcal{L}_{n,m} \mid \dot{Q} \sim \dot{P}\}$. We say that the set $EQ(\dot{P})$ is an equivalent class of the set $\mathcal{L}_{n,m}$. Clearly, $|EQ(\dot{P})| = m$. Now, we may suppose that the set $\mathcal{L}_{n,m}$ has t equivalent class. Then $t = \frac{1}{m} \binom{2n}{n} \binom{m}{n+1}$. For any $0 \le r \le m-1$, from Theorem 3.6, every equivalent class contains exactly one element with pointed non-positive length r. Hence, $l_{n,m,r} = t = \frac{1}{m} \binom{2n}{n} \binom{m}{n+1}$.

3.2 The pointed rightmost minimum length of an pointed (n, m)-lattice paths

Let $\dot{P} = [P; j]$ be a pointed (n, m)-lattice path, where $P = (x_1, y_1)(x_2, y_2) \dots (x_{n+1}, y_{n+1})$ is a (n, m)-lattice path and $0 \le j \le x_{n+1} - 1$. Recall that RML(P) is the rightmost minimum length of P. We let $PRML(\dot{P}) = RML(P) + j$ and call $PRML(\dot{P})$ the pointed rightmost minimum length of \dot{P} .

Note that PNPL(P) = 0 if and only if PRML(P) = 0 for any pointed (n, m)-lattice path. We immediately obtain the following lemma.

Lemma 3.10 The number of the pointed (n,m)-lattice paths with pointed rightmost minimum length 0 is $\binom{m-1}{n}c_n$.

First, given a (n, m)-lattice path P, we recall that π_P is the sequence formed by writing [n+1] in the increasing order with respect to $<_P$. Suppose $\pi_P(1) = i$. Let $\sigma_P = (\sigma_P(1), \sigma_P(2), \dots, \sigma_P(n+1)) = (i, i-1, \dots, 1, n+1, n, \dots, i+1)$.

Using σ_P , we define a new linear order \prec_P^* on the set $\mathcal{PL}(P) = \{\dot{P}(i;j) \mid i \in [n+1] \text{ and } 0 \le j \le x_i - 1\}$ by the following rules:

for any $\dot{P}(i_1; j_1)$, $\dot{P}(i_2; j_2) \in \mathcal{PL}(P)$, $\dot{P}(i_1; j_1) \prec_P^* \dot{P}(i_2; j_2)$ if either (1) $\sigma_P^{-1}(i_1) < \sigma_P^{-1}(i_2)$ or (2) $i_1 = i_2$ and $j_1 < j_2$.

The sequence, which is formed by the elements in the set $\mathcal{PL}(P)$ in the increasing order with respect to \prec_P^* , reduce a bijection from the sets [m] to $\mathcal{PL}(P)$, denoted by $\Gamma = \Gamma_P$.

Example 3.11 Consider the path P and the pointed path \dot{P} in Example 3.5. we have $PRML(\dot{P}) = 3$. It is easy to see $\sigma_P = (2, 1, 4, 3)$. We write the bijection Γ_P as the following 2×5 matrix.

$$\Gamma_P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ \dot{P}(2;0) & \dot{P}(1;0) & \dot{P}(4;0) & \dot{P}(4;1) & \dot{P}(3;0) \end{pmatrix}$$

Theorem 3.12 Let P be an (n,m)-lattice path and Γ defined as above. Then

$$PRML(\Gamma(r)) = r - 1$$

for any $r \in [m]$.

Proof. It is sufficient to prove that $PRML(\Gamma(r+1)) = PRML(\Gamma(r)) + 1$. Suppose $\Gamma(r) = \dot{P}(i_1; j_1)$ and $\Gamma(r+1) = \dot{P}(i_2; j_2)$. If $i_1 = i_2$, then $j_1 + 1 = j_2$. Clearly, $PRML(\Gamma(r+1)) = PRML(\Gamma(r)) + 1$. We consider the case with $\sigma_P^{-1}(i_1) < \sigma_P^{-1}(i_2)$. Let $k = \sigma_P^{-1}(i_1)$. Then $\sigma_P^{-1}(i_2) = k + 1$, $j_1 = x_{i_1} - 1$ and $j_2 = 0$. We have $PRML(\dot{P}(i_2; j_2)) = \sum_{j=1}^k x_{\sigma_P(j)} = \sum_{j=1}^{k-1} x_{\sigma_P(j)} + x_{i_1} = PRML(\dot{P}(i_1; j_1)) + 1$.

Example 3.13 We consider the path P in Example 3.5. We draw the pointed lattice path $\Gamma(r)$ as follows:

We use $\mathcal{M}_{n,m,r}$ to denote the set of the pointed (n,m)-lattice paths with pointed rightmost minimum length r. Clearly, $\mathcal{L}_{n,m} = \bigcup_{r=0}^{m-1} \mathcal{M}_{n,m,r}$. Let $d_{n,m,r} = |\mathcal{M}_{n,m,r}|$.

Corollary 3.14 For any $0 \le r \le m-1$, the number of the pointed (n,m)-lattice paths with pointed rightmost minimum length r is equal to the number of the pointed (n,m)-lattice paths with pointed rightmost minimum length 0 and independent on r, i.e., $d_{n,m,r} = \frac{1}{m} \binom{2n}{n} \binom{m}{n+1}$.

Proof. Similar to the proof of Corollary 3.9, we can obtain the results as desired.

4 The application of the main theorem

In fact, by Theorems 3.6 and 3.12, we may find the Chung-Feller theorems of many different (n, m)lattice paths on the parameter: the pointed non-positive length and the pointed rightmost minimum
length. For example, we let A and B be two finite subsets of the set \mathbb{P} . Let $S = S_A \cup S_B \cup \{(1,1)\}$,
where $S_A = \{(2i-1,-1) \mid i \in A\}$ and $S_B = \{(2i,0) \mid i \in B\}$. In [6], we have proved the following
corollary by the generating function methods. Using Theorems 3.6 and 3.12, we can reobtain the
corollary.

Corollary 4.1 Let $\mathscr{P}_{n,m}$ be the set of the pointed lattice paths in the plane $\mathbb{Z} \times \mathbb{Z}$ which (1) only use steps in the set S; (2) have n+1 steps; (3) go from the origin to the point (m,1). Then in $\mathscr{P}_{n,m}$,

- (1) the number of the pointed lattice paths with pointed non-positive length r is equal to the number of the pointed lattice paths with pointed non-positive length 0 and independent on r;
- (2) the number of the pointed lattice paths with pointed rightmost minimum length r is equal to the number of the pointed lattice paths with pointed rightmost minimum length 0 and independent on r.
- **Proof.** (1) It is easy to see that a pointed lattice path P in $\mathcal{P}_{n,m}$ can be view as a pointed (n,m)lattice path $(x_1,y_1)\dots(x_{n+1},y_{n+1})$ such that $(x_i,y_i)\in\mathcal{S}$ for all $i\in[n+1]$. By Theorem 3.6, using a similar method as Corollary 3.9, we get the results as desired.
- (2) The proof is omitted.

Acknowledgements

The authors would like to thank Professor Christian Krattenthaler for his valuable suggestions.

References

- [1] Y.M. Chen, The Chung-Feller theorem revisited, Discrete Math. 308 (2008) 1328-1329
- [2] K.L. Chung, W. Feller, On fluctuations in-coin tossing, *Proc. Natl. Acad. Sci. USA 35 (1949)* 605-608
- [3] S. P. Eu, T.S.Fu, Y.N. Yeh, Taylor expansions for Catalan and Motzkin numbers, Adv. Appl. Math. 29 (2002) 345-357
- [4] S. P. Eu, T.S.Fu, Y.N. Yeh, Refined Chung-Feller theorems for lattice paths, J. Combin. Theory Ser. A 112 (2005) 143-162
- [5] Sri Gopal Mohanty, Lattice path counting and applications, New York: Academic Press, 1979
- [6] Jun Ma, Yeong-nan Yeh, Generalizations of The Chung-Feller Theorem, submitted.
- [7] P.A. MacMahon, Memoir on the theory of the partitions of numbers, Philos. Trans. Roy. Soc. London, Ser. A, 209 (1909), 153-175; Also G.E. Andrews (Ed.), Collected Works, vol. 1, MIT Press, Cambridge, MA, 1978, 1292-1314.
- [8] T.V.Narayana, Cyclic permutation of lattice paths and the Chung-Feller theorem, Skand. Aktuarietidskr. (1967) 23-30
- [9] L. Shapiro, Some open questions about random walks, involutions, limiting distributions, and generating functions, Advances in Applied Math. 27 (2001), 585-596.