ساختمان داده ها

مروری بر نظریه احتمال

مدرس: غیاثیشیرازی دانشگاه فردوسی مشهد

آزمایش، برآمد، فضای نمونه ای، رخداد

- آزمایش(Experiment) فرآیندی است که
 - تکرار پذیر است
- نتیجه اجرای آن مجموعه ای مشخص از بر آمدها (Outcome) است.
- به مجموعه تمام بر آمدها فضای نمونهای (Sample Space) گفته می شود. در اینجا فضای نمونه ای را Ω نشان می دهیم.
 - به هر زیرمجموعه از فضای نمونهای یک رخداد (event) گفته می شود.

مثال: آزمایش پرتاب یک تاس

- اعداد ۱ تا ۶ برآمدهای این آزمایش هستند.
- فضای نمونه ای این آزمایش مجموعه {6, ..., 1,2} است.
- مجموعه {1,3,5} یک رخداد را نشان می دهد که معادل این است که نتیجه آزمایش عددی فرد باشد.

مثال: آزمایش پرتاب سه سکه

- سه تایی هایی مانند (شیر، شیر، خط) بر آمدهای این آزمایش هستند.
 - فضای نمونه ای این آزمایش شامل ۸ بر آمد است.
 - مجموعه {(خط، خط، خط) ,(شیر، شیر، شیر)} یک رخداد را نشان می دهد که معادل این است که هر سه سکه مثل هم بیایند.

تابع احتمال

- تابع احتمال به هر رخداد، احتمال آن را نسبت می دهد.
 - تابع احتمال در سه اصل زیر صدق می کند:
- احتمال هر رخداد نامنفی است. یعنی برای هر $A \subseteq \Omega$ داریم: $P(A) \geq 0$
 - احتمال فضای نمونه ای برابر یک است:

$$P(\Omega)=1$$

اگر A و B ناسازگار باشند، یعنی اشتراک آنها تهی باشد، آنگاه: $P(A \cup B) = P(A) + P(B)$

احتمال شرطی (Conditional Probability)

اگر A و B دو رخداد دلخواه باشند، آنگاه رخداد A به شرط
 B چنین تعریف می شود:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

 احتمال شرطی فوق، احتمال رخداد A را با فرض اینکه بدانیم رخداد B رخ داده است نشان می دهد.

قانون احتمال كل (Law of Total Probability)

• اگر مجموعه های $A_1,...,A_n$ دو به دو مجزا باشند و اجتماع Ω آنها Ω باشد (به عبارت دیگر فضای Ω را افراز کنند) آنگاه برای هر رخداد Ω داریم:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$$

قضیه بیز (Bayes' Theorem)

• فرم اول:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• فرم دوم: اگر مجموعه های $A_1,...,A_n$ دو به دو مجزا باشند و اجتماع آنها Ω باشد (به عبارت دیگر فضای Ω را افراز کنند) آنگاه برای هر رخداد B داریم:

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$

استقلال رخدادها (Independence of events)

هرگاه: B و B را مستقل گوییم هرگاه: $P(A \cap B) = P(A).P(B)$

• و یا به طور معادل:

$$P(A|B) = P(A)$$

• و یا باز هم به طور معادل:

$$P(B|A) = P(B)$$

متغیر تصادفی (Random Variable)

 یک متغیر تصادفی X تابعی است از فضای نمونه ای به اعداد حقیقی (یا مختلط). یعنی:

$X: \Omega \to \mathbb{R}$

- مثال: در آزمایشی که دو تاس همزمان پرتاب می شوند،
 مجموع مقادیر دو تاس یک متغیر تصادفی است.
- در آزمایش پرتاب سکه، تابعی که شیر را به 1+ و خط را به
 1- نگاشت می کند نمونه ای از یک متغیر تصادفی است.

امید ریاضی (Expected Value)

امید ریاضی یک متغیر تصادفی، مقدار متوسط آن را نشان
 می دهد و از رابطه زیر به دست می آید:

$$E(X) = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

متغیر تصادفی نشانگر

Indicator Random Variable

متغیری تصادفی است که اگر رخداد A رخ داده باشد I_A برابر I_B و در غیر این صورت برابر I_B است.

$$I_A(x) := \begin{cases} 1 & if & x \in A \\ 0 & if & x \notin A \end{cases}$$

• برای متغیرهای تصادفی نشانگر داریم:

$$E(I_A) = \sum_{\omega \in \Omega} P(w)I_A(w)$$

$$= \sum_{\omega \in \Omega} P(w).1 + \sum_{\omega \in \Omega} P(w).0 = P(A)$$

مثال:

- فرض کنید احتمال رو آمدن هر وجه تاس با مقدار آن
 متناسب باشد. فرض کنید متغیر تصادفی X به هر وجه تاس
 مربع مقدار آن را منتسب می کند.
 - امید ریاضی X را به دست آورید.

خطی بودن امید ریاضی

• امید ریاضی عملگری خطی است.

$$E\left(\sum_{i} X_{i}\right) = \sum_{i} E(X_{i})$$

• اثبات:

$$E\left(\sum_{i} X_{i}\right) = \sum_{\omega \in \Omega} P(\omega) \sum_{i} X_{i} (\omega)$$

$$= \sum_{i} \sum_{\omega \in \Omega} P(\omega) X_{i} (\omega) = \sum_{i} E(X_{i})$$

استقلال متغیرهای تصادفی (Independence of Random Variables)

 دو متغیر تصادفی X و Y را مستقل گوییم هر گاه برای هر دو عدد حقیقی X و Y داشته باشیم:

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

• توجه کنید که X=x و Y=y دو رخداد هستند.

مطالعه بيشتر

• فصل اول کتاب «نظریه احتمال و کاربرد آن» نوشته دکتر سید تقی اخوان نیاکی