Estructuras Discretas

Práctica 2. Circuitos

Profesor: César Hernández.

Ayudantes: Gisselle Ibarra Moreno Alma Rocío Sánchez Salgado

Integrantes: José Camilo García Ponce

1. Circuito para sumar dos números de 3 bits.

El circuito se encuentra en el archivo: 1_suma_tres_bits.circ .

Hay dos circuitos "finales" uno solo siendo el circuito y otro acomodado algo bonito para poder hacer "pruebas".

2. Circuito del elevador.

• Tabla

M	F_1	F_2	F_3	Salida
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- Expresión FND $f(M, F_1, F_2, F_3) = (\overline{M} \cdot \overline{F_1} \cdot \overline{F_2} \cdot F_3) + (\overline{M} \cdot \overline{F_1} \cdot F_2 \cdot \overline{F_3}) + (\overline{M} \cdot F_1 \cdot \overline{F_2} \cdot \overline{F_3})$
- Mapa de Karnauhg

*Al poner los complementos se juntan, una disculpa, no se porque aparecen juntos.

	$F_1F_2F_3$	$F_1F_2\overline{F_3}$	$F_1\overline{F_2F_3}$	$F_1\overline{F_2}F_3$	$\overline{F_1F_2}F_3$	$\overline{F_1F_2F_3}$	$\overline{F_1}F_2\overline{F_3}$	$\overline{F_1}F_2F_3$
M								
\overline{M}			1		1		1	

Como podemos ver no hay ninguno adyacente de otro, por lo tanto no podemos minimizar.

• Circuito

El circuito se encuentra en el archivo: 2_elevador.circ .

3. Expresión del circuito dado

• Expresión FND

$$f(x, y, z) = (x \cdot y \cdot z) + (x \cdot y \cdot \overline{z}) + (x \cdot \overline{y} \cdot z) + (\overline{x} \cdot \overline{y} \cdot z)$$

• Mapa de Karnauhg

*Al poner los complementos se juntan, una disculpa, no se porque aparecen juntos.

	yz	$y\overline{z}$	\overline{yz}	$\overline{y}z$
\boldsymbol{x}	1	1		1
\overline{x}				1

• Álgebra

$$\begin{split} f(x,y,z) &= ((x\cdot y\cdot z) + (x\cdot y\cdot \overline{z})) + ((\overline{x}\cdot \overline{y}\cdot z) + (x\cdot \overline{y}\cdot z)) \\ f(x,y,z) &= (x\cdot y)(z+\overline{z}) + (\overline{y}\cdot z)(x+\overline{x}) \\ f(x,y,z) &= (x\cdot y)(1) + (\overline{y}\cdot z)(1) \\ f(x,y,z) &= (x\cdot y) + (\overline{y}\cdot z) \\ f(x,y,z) &= (xy) + (\overline{y}z) \end{split}$$

• Circuito

El circuito se encuentra en el archivo: 3_circuito_dado.circ .

4. Caja fuerte

• Tabla

La configuración inicial es que todo esta apagado (0,0,0)

Tenemos que cuando J = 1, cuando cambia de estado

Tenemos que cuando L = 1, cuando cambia de estado

Tenemos que cuando K = 1, esta prendido (cuando el banco esta abierto)

Switch J	Switch L	Time Lock K	$\operatorname{Com} \operatorname{Lock} X$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Por lo tanto solo se puede acceder a la caja fuerte, cuando J y L tienen el mismo estado y X esta prendido (el banco esta abierto).

• Expresión FND

$$f(J, L, K) = (J \cdot L \cdot K) + (\overline{J} \cdot \overline{L} \cdot K)$$

• Mapa de Karnaugh

*Al poner los complementos se juntan, una disculpa, no se porque aparecen juntos.

	LK	$L\overline{K}$	\overline{LK}	$\overline{L}K$
J	1			
\overline{J}				1

Como podemos ver no hay ninguno adyacente de otro, por lo tanto no podemos minimizar.

• Circuito

El circuito se encuentra en el archivo: 4-candado.circ .