MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2006 ROUND 7: TEAM QUESTIONS

ANSWERS

A) Suppose
$$f(x) = \frac{2x-1}{x-3}$$
 For what values of x does $2 \cdot f(x) \cdot f^{-1}(x) = 2$?

- B) Suppose *m* and *n* are twin primes (i.e. primes differing by 2) and suppose the digits used to form *m* and *n* are distinct. If the smallest such pair of numbers and the largest such pair of number are all added together, what is the sum?
- C) In $\triangle ABC$, $\angle B = \csc^{-1}(\frac{\sqrt{34}}{3})$ and $\angle A = \tan^{-1}(0.25)$. Find m $\angle C$ in degrees.
- D) I am half as old as my mother was when my brother was twelve years younger than I am now. My brother was born when my mother was 26. If the sum of my brother's and my own current ages is 36, how old was my mother when I was born?
- E) In the diagram at the right, $m\angle DCB = 30^{\circ}$, AC = 4, IC = 6 and BC = 18. The exact positive difference between the distances of the two chords from the center of the circle is $a b\sqrt{c}$ for integers a, b, and c. Evaluate $b^2c a$.
- F) $T_n = 3n + 2$. For some integers j and k, j > k > 6, T_k will be the geometric mean between T_6 and T_j . Find the smallest possible value of the sum j + k.

