武汉大学 2018 -- 2019 学年第 二 学期

大学物理 A(上) 期末试卷 (A 卷)

学院学号		成绩
考试形式: _闭卷_	考试时间长度:	<u>120</u> 分钟
一、选择题(每小题3分,共10小	题、30分)	
1. 一质点沿直线运动,已知其速度与时	间成反比,则加速度的大	小 ()
(A) 与速度成正比 (B) 与速	度成反比	
(C) 与速度平方成正比 (D) 与速	度平方成反比	
2. 一只质量为 m 的猴子,开始时抓住了	一根吊在天花板上、质量	为 M 的竖直杆。 当悬挂
杆的钩子突然脱落时,猴子沿杆竖直向	上爬,以保持其离地面的高	高度不变。则此时杆下落
的加速度的大小为(
(A) g (B) $\frac{M+m}{M}g$ (C) $\frac{M-m}{M}g$ (D)	$\frac{M+m}{M-m}g$
3. 劲度系数为 k 、原长为 l_0 的弹簧,其弹力与形变的关系遵守胡克定律。在拉力 F 的作用		
下,当弹簧的长度由 l_1 缓慢地变为 l_2 (l_2	$> l_1 > l_0$)的过程中,拉力	力做的功为 ()。
(A) $\frac{1}{2}k(l_2-l_1)(l_2+l_1-2l_0)$ (B)	2	
(C) $\frac{1}{2}k l_2^2 - \frac{1}{2}k l_1^2$ (D)	$\frac{1}{2}k l_2^2 - \frac{1}{2}k l_1^2 - \frac{1}{2}k l_0^2$	
4. 一质点做简谐振动的简谐运动曲线如图		<i>x</i> ↑/cm
相位 φ 和频率 f 分别是()。	4.	.0
(A) $\frac{\pi}{3}$, $\frac{5}{6}$ Hz (B) $-\frac{\pi}{3}$	$\frac{1}{2}$ Hz	O = 0.5
(C) $-\frac{\pi}{3}$, $\frac{2}{3}$ Hz (D) $-\frac{\pi}{3}$,	$\frac{5}{6}$ Hz	
5. 有一质量为 m 的物体以振幅为 A 做简	谐运动,其最大加速度为成	a_m ,则下列说法正确的是
()		
(A) 振动周期为 $2\pi\sqrt{A/a_m}$	(B) 振动周期为 $\pi\sqrt{A/a}$	m
(C) 通过平衡位置的总能量为 $\frac{1}{2}m\sqrt{a_m A}$	(D) 通过平衡位置的总值	能量为 $m\sqrt{a_{_{m}}A}$
6. 如图所示,设 B 点发出的平面简谐波	沿 BP 方向传播,它在 B A	点的 B P
振动方程为 $y_1 = 2 \times 10^{-3} \cos 2\pi t$ [SI]; C 点	发出的平面简谐波沿 CP	方向
		\check{C}

传播,它在C点的振动方程为 $y_2 = 2 \times 10^{-3} \cos(2\pi t + \pi)$ [SI]。设BP = 0.4 m, CP = 0.5 m, 波速 $u = 0.2 \,\mathrm{m \cdot s^{-1}}$,则两波传到 P 点时引起的两个振动的相位差为 ()。 (B) π (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{3}$ (A) 07. 一定量某种理想气体,其分子自由度为i,在等压过程中吸热O,对外做功A,内能增加 ΔE , $\bigcup \Delta E/Q = ($ (A) $\frac{i}{i+2}$ (B) $\frac{2}{i+2}$ (C) $\frac{3}{i+2}$ (D) $\frac{3}{i+3}$ 8. 在保持体积恒定不变的情况下,理想气体分子的平均碰撞频率 \bar{Z} 与气体温度T的关系为 () (A) 与T成正比 (B) 与 \sqrt{T} 成正比 (C) 与 \sqrt{T} 成反比 (D) 与T成反比 9. 1 mol 氧气分别经历如图所示的两个过程由状态a 变化到状态b。若L为绝热过程,且对外做功75J,在过程L,中对外做功100J,那么在过程 L,中氧气从外界吸收的热量为() (A) 25J (B) -25J (C) 175J (D) -175J 10. 如果某"孤立"带电导体球的带电量增大为原来的 2 倍,则其静电 场的能量变为原来的((A) $\frac{1}{2}$ 倍 (B) 2倍 (C) $\frac{1}{4}$ 倍 (D) 4倍 二、填空题(共6个小题、 23分) 11. (3 分) 一质点沿半径为R的圆周运动,已知初速度大小为 v_0 ,若加速度a与速度v的 方向的夹角 $\theta(\pi/2 < \theta < \pi)$ 保持不变,则质点的速率与时间的变化关系 12. (4 分) 质量为 0.25kg 的质点, 受力F = ti (SI)的作用, 式中t 为时间。t = 0 时刻该质 点以 $v_0 = 2j \text{ m} \cdot \text{s}^{-1}$ 的速度通过坐标原点,则该质点任意时刻的加速度矢量是_____ 位置矢量是 13. (4分)两个同方向、同频率的简谐振动,其合振动的振幅为 2m,合振动的位相与第一 个简谐振动的相位差为 $\pi/6$,若第一个简谐振动的振幅为 $\sqrt{3}$ m,则第二个简谐振动的振幅为 ,两个简谐振动的相位差为 14. (4 %)某理想气体的摩尔热容比为 $\gamma = 7/5$,则该气体的定容摩尔热容 $C_{v_m} = 1$ 当处于温度为T的平衡态时,一个分子的平均转动动能 $\bar{\varepsilon}_{\epsilon}$ =。

15. (4 分) 由绝热材料制作的容器被隔板隔成两半, 左边是理想气体, 右边是真空。现撤

三、计算题(共5题, 47分)

17. (本题 8 分) 如图所示,某星球半径为R,质量为M。在距离星球很遥远的地方有一艘飞船以速度 v_0 沿直线向星球方向飞行,其飞行的直线与星球中心的距离为r。当飞船靠近星球时,由于引力作用使飞船的飞行轨迹发生偏

转。试求, 当 r 为多少时, 飞船恰好以平行于星球表面的速度着陆, 并求着陆时的速度。

18 (本题 8 分) 质量为 m 、长为 L 的匀质细棒,可绕通过棒的一端、并与棒垂直的水平固定轴 O 无摩擦地自由转动,在棒的另一端固定一个质量为 m/2 的小球(可视为质点)。开始时,棒直立于转轴上方。由于受到某种扰动,棒从静止开始倒下,如图所示。试求棒倒下的时角速度 ω 和 θ 的函数关系。

- **19.** (本题 10 分)某种单原子分子的理想气体作卡诺循环,已知循环效率 $\eta = 20\%$,试问气体在绝热膨胀时,气体体积增大到原来的几倍?
- **20.** (本题 10 分) 一带电球壳的内外半径分别为a 和b,壳体中的电荷密度按 $\rho = \rho_0 r$ 的规律进行分布,式中 ρ_0 为大于 0 的常量,r 是球壳内部任一点到球心的距离。试求

- (1) 带电壳体内外的场强分布;
- (2) 球壳内外表面之间的电势差。
- **21.** (本题 11 分) 如图所示,三块平行金属板 A、B、C 面积均为 $10~{\rm cm}^2$,A、B 间相距 $d_1=0.50~{\rm mm}$,A、C 间相距 $d_2=1.0~{\rm mm}$,其中 AB 和 BC 之间分别填充了相对电容率为 $\varepsilon_{r1}=2.0~{\rm am}$ $\varepsilon_{r2}=4.0~{\rm om}$ 的均匀电介质。现假设 B、C 两板都接地,如果使 A 板带正电 3.0×10^{-8} C,忽略

电场的边缘效应, 试求: B、C 两板上感应电荷的电量。