Camlin Page G. H. RAISONI COLLEGE OF ENGINEERING AND MANAGEMENT, WAGHOLL PUNE CAE - SUMMER 2021 Town Sution - I Department: FY BITECH Date of Examination: 22/06/21
Subject Name/Code: LINEAR ALGEBRA AND STATISTICS (UBSL 102). ROLINO .: CTO NAME - SWAYAM TERODE Registration No.: DO 20 AIFT 11010 47 addition 2 scalar multiplication. b.) Let 1, and 12 be two scalars. Consider linear combination 5= {(1,2), (2,4)} ign V=R2 is linearly dipende 1, mit Lang = 0. :. $\lambda_1(1,2) + \lambda_2(2,4) = 0$. we have. The matrin forms above eqn is Page - 1 | Sign - 21/06

	Camlin Page
	·. A. \ - D
	$A \cdot \lambda = B$
	The augmented matrin form (, is (Reducing to upper Priangular form).
_	(=[AiB] = [1 2 10] 24:0
•	
	$R_2 \rightarrow R_2 - 2R_1$.
	[1 2 · 0] [b b i 0]
C.	While is $\begin{bmatrix} 1 & 2 & \rightarrow \\ 0 & 0 & \Rightarrow \end{bmatrix}$ $\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
	$\lambda_1 + 2\lambda_2 = 0$
<i>(6</i>	$0\lambda_1 + 0\lambda_2 = 0$
	Thus $\lambda_1 = \lambda_2 = 0$ which is killial Solution.
	So given victors d, and 12 are linearly Edysendent.
Co 1 (c)	Let $\left(1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \left(3 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \left(3 \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \right)$
	So now we have.
	$1(_1 + 0(_2 + (-2)(_3 = \gamma).$ $2(_1 + (_2 + 0(_3 = 4).$
	2(1+1(2+0(3=4 3(1+2(2+1(3=4) PageN0:2) Sign - 22/16/21

VIIP	
	Camlin Page
	Somew we have eg. in take into materin form we have -
	1 0 - 2 x
	[2 1 0 9]
	So, aftermatring some transformations.
	$R_2 \rightarrow 2R_1 \rightarrow R_2$, $R_3 \rightarrow R_3 - 3R_1$.
	$\begin{bmatrix} 1 & 0 & -2 & 7 \\ 0 & 1 & 4 & 4 & -2n \end{bmatrix}$
	0273-32
	$R_3 - 2R_2 \longrightarrow R_3$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Sofrom the above matrin we can conclude that this system is consistent for every n, y and z So therefore Spane R3.
(01 d.)	(a) Every point on the line $n+2y=0$ has the form $(-2y,y)$. Let $u=(u_1,u_2)=(-2y,y_1)$ $v=(v_1,v_2)=(-2v_2,v_2)$. Le any two points on the line.
	Then $u+v=(-2u_2, u,)+(-2v, v_2)$ = $(-2(u_2+v_2), u_2+v_2)$. Page: $3 \sin v ^{\frac{3}{2}}$

9

	Camlin Page
(02 a)	A square matrin is equal to its transpose is known as symmetric matrin are symmetric because only equal matrices have equal dimensions. A = A T Enample: 1 2 0 - 1 0 5
(02h)	The Kaus por & A (AT) = 1 2 0 -1 0 5 · A = AT which is symmetric matrix. Start form forwing a new matrix by Substraiting 1 from the chagonal entries of the gion matrix: [2-2 3 1
	Now, Derminant: $ \begin{vmatrix} 0 & -\lambda - 1 & 3 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = \begin{vmatrix} 0 & (-1)^{3+1} & 3 & 1 & + \\ 0 & -\lambda - 1 & 2 & -\lambda - 1 & 2 \end{vmatrix} $ $ \begin{vmatrix} 0 & 0 & 3 - \lambda \end{vmatrix} = \begin{vmatrix} 0 & 3 - \lambda \end{vmatrix} = \begin{vmatrix} 0 & 3 - \lambda \end{vmatrix} = \begin{vmatrix} 0 & -\lambda - 1 \end{vmatrix} = \begin{vmatrix} 0 & -\lambda -1 \end{vmatrix} $
	Page: 5 Sign: 84

	Camlin Page
	= (3-1) (2-1) => (3-1) (1 ² -1-2)
- 1. i a	$= (\lambda - 3)(-\lambda^2 + \lambda + 2)$
	Now Solvingalron equation give.
	$(\lambda - 3)(-\lambda^2 + \lambda + 2) = 0$
	The sorte are 1=3, 1 == 2, 13=-1.
	Now, lits find eigen vertors.
	・ ス=3 「2-ス 3 1
	The nullspace of this malrin is 5.
-2	This is the eigenvitor.
Ke.	Page - 6 Syn: 22/06/21

Camlin Page
For $\lambda = 2$.
$ \begin{bmatrix} 2 - \lambda & 3 & 1 & 0 & 3 & 1 \\ 0 & -\lambda - 1 & 2 & = & 0 & -3 & 2 \\ 0 & 0 & 3 - \lambda & 0 & 0 & 1 \end{bmatrix} $
The mell space of the matrice is [1] This is the eigenvector
Fur 1=-1.
 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
The null Space of their matrim is [-1] This the eigenvector.
i. Eigenvalue: 3 A, Multiplicity: 1 A, eigenvalor: 5 5 7 2.5 A eigenvalor: 2 A Multiplicity: 1 A Eigenvalor: 1 A
Page - 7 Sign: 22/06/21

Camlin Page
Eign valu: -1A
Rutiplicity: 1A.
Eigenvilor: [-1]
 1 M.
15