Cálculo Numérico Lista de prática de programação em MATLAB Prof. Dr. Rogério Galante Negri

- 1. Faça um programa que, dado $n \in \mathbb{Z}$, apresente os n primeiros elementos de Sequência de Fibonacci. Use a função input para leitura de n.
- 2. Faça um programa que calcule as raízes da equação $ax^2 + bx + c = 0$ através da fórmula de Báskara. Os coeficientes a, b e c devem ser inseridos pelo usuário (use a função input).
- 3. Implemente funções que calcule o fatorial de $n \in \mathbb{Z}$:
 - a) Sem uso de recursividade. Denomine-a por fat_sr.
 - b) Com uso de recursividade. Denomine-a por fat_cr.
 - c) Compare os tempos de execução (use a função clock).
- 4. Calcule a média, desvio padrão e coeficiente de variação de uma série de dados inserida pelo usuário. Para isso, primeiramente defina o número n de entradas que será lida, e em seguida, efetue a leitura dos n valores. Faça uso da função input.
- 5. Implemente uma função, denominada primo, para verificar se um dado $n \in \mathbb{Z}$ é primo.
- 6. Implemente um programa que, dado um número $n \in \mathbb{Z}$, apresente todos os números primos menores ou iguais a n. Faça uso da função primo implementada no item anterior.
- 7. Implemente um programa que, dado um número x, apresente sua fatoração em números primos. Use a função criada anteriormente para verificar se um número é primo.
- 8. Implemente a função far2cels que, dado um valor em graus Farenheights, retorne o valor em Celsius. Crie a documentação desta função, composta por descrição de sua funcionalidade, argumento de entrada e retorno, de modo que a mesma seja corretamente exibida no caso efetuada a consulta help far2cels.
- 9. Dado um número $z\in\mathbb{Z}_+^*$, exiba todos os valores $x,y\in\mathbb{Z}_+^*$, caso existam, tais que $x^2+y^2=z^2$.

- 10. Faça uma função que calcule o produto interno entre dois vetores fornecidos pelo usuário. Denomine-a por prod_interno e crie a documentação de tal função.
- 11. Escreva um programa que verifica se um dado número é triangular. $x \in \mathbb{Z}$ é triangular se $x = a \cdot (a+1) \cdot (a+2)$ para algum $a \in \mathbb{Z}$ e a < x.
- 12. Implemente a função soma_matriz que efetue a soma matricial. Além de efetuar a operação, tal função deve verificar a compatibilidade entre as matrizes antes de efetuar a operação. Inclua a documentação desta função.
- 13. Implemente a função mult_matriz que efetue a multiplicação matricial. Além de efetuar a operação, tal função deve verificar a compatibilidade entre as matrizes antes de efetuar a operação. Inclua a documentação desta função. Use a função size para verificar a dimensão das matrizes e a função implementada anteriormente para o cálculo do produto interno.
- 14. Implemente a função mult_ee_matriz que efetue a multiplicação matricial elemento-a-elemento. Além de efetuar a operação, tal função deve verificar a compatibilidade entre as matrizes antes de efetuar a operação. Inclua a documentação desta função.
- 15. Implemente a função check_orto que verifica se dois vetores são ortogonais, tal que, é retornado 1 em caso positivo e 0 caso contrário. Inclua a documentação desta função.
- 16. Implemente a função transposta que retorna a transposição de uma dada matriz qualquer. Inclua a documentação desta função.
- 17. Calcule o ângulo, em graus, entre dois vetores com base em conceitos de norma e produto interno, como definidos pela Geometria Analítica. Lembre que a $||(a,b)|| = \sqrt{\langle (a,b),(a,b)\rangle}$, sendo $\langle \cdot, \cdot \rangle$ o operador produto interno
- 18. Escreva um programa que plote o gráfico de $f(x) = x^2 2x 3$ em um dado intervalo definido (a, b).

 Plote também o gráfico de $g(x) = \frac{f(x) f(x h)}{h}$, sendo h a diferença entre dois valores consecutivos, também definido pelo usuário.

- 19. A distribuição discreta de Poisson é dada por: $f(k;\lambda) = \frac{e^{-\lambda}\lambda^k}{k!}$, onde $\lambda \in \mathbb{R}$ é um parâmetro que representa o número de ocorrências de determinado fenômeno, modelado pela variável aleatória \mathcal{X} , e k é o número de ocorrências observadas. Assim, se \mathcal{X} é modelada por tal distribuição, denotamos $\mathcal{X} \sim \mathcal{P}_o(\lambda)$. A função $f(k;\lambda)$ fornece a probabilidade de haver k ocorrências segundo o parâmetro λ . Nestas condições:
 - a) Implemente uma função que computa $f(k; \lambda)$. Inclua a documentação da mesma.
 - b) Para um dado λ , plote a função de distribuição $f(k;\lambda)$ para $k=0,1,\ldots,z$ tal que $f(z;\lambda)\leq 10^{-5}$. Lembre-se que Poisson é uma distribuição discreta!
 - c) Sendo $\mathcal{X} \sim \mathcal{P}_o(\lambda)$, compute $P(\mathcal{X} \leq p)$ com λ e p dados pelo usuário.
- 20. Implemente uma função que, a partir de um vetor dado qualquer, retorne um vetor de mesma dimensão, porém apresentando os valores do vetor original de forma crescente.
- 21. Implemente um programa que faça a leitura de dados de um arquivo (gravar dados da Tabela 1 em um arquivo e usar no exercício) e compute as seguintes estatísticas:
 - a) Média e desvio padrão de cada variável (coluna), separadamente;
 - b) Média e desvio padrão de todos os dados;
 - c) Coeficiente de Correlação de Pearson entre cada par de variáveis. Tal coeficiente determina o nível de relação entre dois conjuntos de observações, onde +1 indica relação positiva perfeita (o aumento do valor de uma variável também provoca o aumento da outra), -1 indica relação negativa perfeita (o aumento do valor de uma variável provoca a diminuição da outra). Valor 0 indica que não há relação entre as variáveis. Valores intermediários indicam relações intermediárias. O valor deste coeficiente é computado por: $\rho = \frac{\sum_{i=1}^n (x_i \bar{x}) \cdot (y_i \bar{y})}{\sqrt{\sum_{i=1}^n (x_i \bar{x})^2} \cdot \sqrt{\sum_{i=1}^n (y_i \bar{y})^2}}.$
 - d) Faça um programa que escreva as estatísticas computadas nos itens (a), (b) e (c) em um arquivo de texto.

Procure pela documentação das funções, seja através da bibliografia ou pelo help do MATLAB, que realizam a leitura/escrita de dados em arquivos de texto.

Atenção, para realização desta lista de exercícios não é permitido o uso das função disponíveis no MATLAB para cálculo de média, desvio padrão, somas/multiplicações vetoriais e matriciais.

Caso necessário, é permitido o uso das funções input, length, clock, zeros, eye, sqrt, abs, round, floor, size e demais funções de controle de fluxo de execução, como if, for e while, e a modularização de funções através de function.

O uso das funções de plotagem de gráficos é incentivada.

Tab. 1: Dados observados sobre variáveis X, Y e Z. Adaptado de http://www.itl.nist.gov/div898/handbook/eda/section1/eda16.htm

X	Y	Z
9.14	7.46	6.58
8.14	6.77	5.76
8.74	12.74	7.71
8.77	7.11	8.84
9.26	7.81	8.47
8.1	8.84	7.04
6.13	6.08	5.25
3.1	5.39	12.5
9.13	8.15	5.56
7.26	6.42	7.91
4.74	5.73	6.89