CNN in practice

l 고려대학교 산업경영공학과 l 서덕성

INDEX

- Making the most of your data
 - Data augmentation
 - Transfer learning
- All about convolutions
 - How to arrange them
 - How to compute them fast
- Implementation details
 - GPU / CPU
 - Bottleneck
 - Floating procedure

Making the most of your data

Original CNN

04

■ 1개의 image와 1개의 label이 모델 학습시 input으로 들어감

■ 많은 image는 없지만, 많은 척 하고싶다 -> Data augmentation

Transform image

01

02

03

04

0

Of

U,

Concept

- Label 변화 없이 픽셀값(독립변수)만 변화를 주자
- 변화 준 데이터까지도 학습에 사용하자
- 매우 많이 활용되고 있음

o1 ❖ Horizontal flips

02

03

04

0

06

07

01

02

03

04

05

Of

0

Random crops/scales

- ResNet 에서 사용한 방법
 - Training: sample random crops / scales
 - 1. Pick random L in range [256, 480]
 - 2. Resize training image, short side = L
 - 3. Sample random 224 x 224 patch

01

04

Random crops/scales

- ResNet 에서 사용한 방법
 - Training: sample random crops / scales
 - 1. Pick random L in range [256, 480]
 - 2. Resize training image, short side = L
 - 3. Sample random 224 x 224 patch

Test: average a fixed set of crops

- 1. Resize image at 5 scales : {224, 256, 384, 480, 640}
- 2. For each size, use 10 224x224 crops: 4 corners + center, + flips

1000

224

224

Q 224

ImageNet Classification with Deep Convolutional Neural Networks

01

04

Color jittering

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca

Ilya Sutskever University of Toronto ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto

■ 가장 쉬운 방법 : 명도, 채도 등을 랜덤하게 변화시킴

- 상대적으로 복잡한 방법 : PCA를 이용
 - 1. [R, G, B] 3층을 가진 모든 training set의 pixel에 대해 PCA 적용
 - 2. PCA로부터 "color offset"을 추출
 - 3. 모든 픽셀에 대해 offset을 더함

ImageNet Classification with Deep Convolutional Neural Networks

01

Color jittering

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

- 상대적으로 복잡한 방법: PCA를 이용
 - 1. [R, G, B] 3층을 가진 모든 training set의 pixel에 대해 PCA 적용
 - 2. PCA로부터 "color offset"을 추출
 - 3. 모든 픽셀에 대해 offset을 더해줌

I_{xy}^R		I_{xy}^R		$\left[\alpha_1\lambda_1\right]$	
I_{xy}^G	=	$I_{\chi y}^G$	$+ [p_1 \ p_2 \ p_3]$	$\alpha_2\lambda_2$	ı
I_{xy}^B		$I_{\chi\gamma}^B$		$\left[\alpha_3\lambda_3\right]$	

 p_i : i-th 고유벡터

 λ_i : i-th 고유값

 α_i : i-th random variable (image마다 뽑음) $\alpha_i \sim N(0, 0.1^2)$

01

02

03

04

05

Ut

0

Get creative

- Random mix/combinations of
 - Translation
 - Rotation
 - Stretching
 - Shearing
 - Lens distortions ...(go crazy)

Data Augmentation

General theme

Dropout

- Training: Add random noise (regularizor로써 overfitting 막기 좋음)
 - Data augmentation
 - Dropout
 - DropConnect
 - Batch normalization
 - Model ensembles
- Test: Marginalize over the noise (종합)

DropConnect

- Data augmentation summary
 - Simple to implement, use it
 - Especially useful for small datasets
 - Fits into framework of noise / marginalization

02

03

04

U

Πſ

0

02

04

- 충분한 데이터가 없음
- 학습이 너무 오래 걸림 (VGGNet의 경우 2~3주)
- 최고 성능의 model을 internet에서 얻을 수 있음 -> 이를 활용하자!
- ❖ 상황별 Transfer learning 적용
 - 데이터의 양
 - 모델 학습시 사용한 데이터와
 내가 가진 데이터의 유사성

	Similar	Difference
Very little data		
Quite a lot of data		

With VGGNet 01 02 **VGGNet** image (train on conv-64 imagenet) conv-64 maxpool 04 conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

01

02

04

- ❖ 상황별 Transfer learning 적용
 - 데이터의 양
 - 모델 학습에 사용한 데이터와 내가 가진 데이터의 유사성

	Similar	Difference	
Very little data	Use Linear classifier on top layer	In trouble	
Quite a lot of data	Finetune a few layers	Finetune a larger number of layers	

02

CNN Features off-the-shelf: an Astounding Baseline for Recognition

[Razavian et al, 2014]

using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks.

□ 🔷 사용 예

02

04

■ Object detection, Image captioning 등 CNN layer에서 활용 가능

Image Captioning: CNN + RNN regression loss "straw" "hat" **END** Classification loss **CNN** pretrained proposals on ImageNet W_{oh} Region Proposal Network CNN_{θ_c} W_{hx} **Object Detection** (Faster R-CNN) START "straw"

02

- Summary (have some dataset < ~ 1M)</p>
 - Find a very large dataset that has similar data,
 train a big ConvNet there
 - Transfer learn to your dataset
 - Caffe ConvNet library has a "Model Zoo" of pretrained models:
 https://github.com/BVLC/caffe/wiki/Model-Zoo

All about convolutions

01

Intro

02

■ 3 x 3 filter를 2번 적용하면 1개 node는 몇 개의 pixel 정보를 포함할까?

03

04

0!

ΠF

U.

03

04

■ 3 x 3 filter를 3번 적용하면 1개 node는 몇 개의 pixel 정보를 포함할까?

			X	
		X		

03

04

- The power of small filters
 - Condition
 - Input: HxWxC
 - C개의 filter를 사용해서 conv 지나도 다시 depth = C
 - Stride = 1, padding 사용해서 H, W 유지

- One CONV with 7x7 filters
 - Number of weights= C x (7 x 7 x C)
 - $=49C^{2}$

- Three CONV with 3x3 filters
 - Number of weights
 = 3 x [C x (3 x 3 x C)]
 = 27C²

03

The power of small filters

Condition

Input: HxWxC

• C개의 filter를 사용해서 1층 지나도 다시 depth = C

Stride = 1, padding 사용

- One CONV with 7x7 filters
 - Number of multiply-adds
 = (H x W) x C x (7 x 7 x C)
- Three CONV with 3x3 filters
 - Number of multiply-adds
 = (H x W) x 3 x [C x (3 x 3 x C)]
 = 27HWC²

01

02

03

04

0

06

0

The power of small filters

- Condition
 - Input: HxWxC
 - C개의 filter를 사용해서 1층 지나도 다시 depth = C
 - Stride = 1, padding 사용

- One CONV with 7x7 filters
 - Number of multiply-adds = $(H \times W) \times C \times (7 \times 7 \times C)$ = $49HWC^2$
- Three CONV with 3x3 filters
 - Number of multiply-adds
 = (H x W) x 3 x [C x (3 x 3 x C)]
 = 27HWC²

Less compute, more nonlinearity = GOOD!

03

04

- ❖ Why not try 1 x 1 filters?
 - Receptive 영역이 없어서 다른 pixel(input)까지 포괄하여 정보 저장 불가
 - 1 x 1 filter 단독으로는 절대 앞의 효과를 볼 수 없음
- ❖ 1 x 1을 활용하여 parameter 수를 줄이자 (Bottleneck sandwich)

http://cs231n.stanford.edu/slides/winter1516_lecture11.pd

03

- Still using 3 x 3 filters ... can we break it up?
 - 정사각형 모양을 탈피하자
 - 1 x 3 filter, 3 x 1 filter를 조합해서 3 x 3을 만듦

Example

03

04

Latest version of GoogLeNet incorporates all these ideas

Szegedy et al, "Rethinking the Inception Architecture for Computer Vision"

^{□1} ❖ Summary

03

04

- Replace large conv (5 x 5, 7 x 7) with stacks of 3 x 3 conv
- 1 x 1 "bottleneck" conv are very efficient
- Can factor N x N conv into 1 x N and N x 1
- All of the above give

fewer parameters, less compute, more nonlinearity

im2col ■ 두 행렬의 원소단위 곱을 벡터단위 내적으로 접근 -> fast Feature map: H x W x C Conv weights: D filters, each K x K x C 04 K x K x C 크기의 벡터로 펼침 K x K x C 크기의 벡터로 펼침 Output으로 나오는 (벡터간 겹치는 부분이 많은 단점이 있음) feature map중 한 채널 (경험적으로, 무시해도 되는 단점) K^2C 행렬 곱 KxKxC 크기의 벡터 N개 KxKxC 크기의 벡터 D개 D x N의 행렬을 얻음 $D * (K^2C)$ matrix $(K^2C) * N$ matrix 재조합 -> Feature map

- FFT (Fast Fourier Transform)
 - 이산 푸리에 변환(Discrete Fourier transform)
 - 정의

$$-$$
 이산적인 복소수 값 $x_0, x_1, ..., x_{N-1}$ 을 복소수 값 $X_0, X_1, ..., X_{N-1}$ 로 변환하는 식

$$-X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$$
, (역연산) $x_k = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{-\frac{2\pi i}{N}kn}$, $k, n = 0, ..., N-1$

FFT

04

- 이산 푸리에 변환을 빠르게 수행하는 효율적인 알고리즘
- DFT는 $O(n^2)$ 의 연산이 필요. FFT는 O(nlogn)의 연산만으로도 가능
- Convolution
 - 정의

$$-$$
 두 함수 f, g에 대해, $f*g(t)=\int_{-\infty}^{\infty}f(\tau)g(t-\tau)d\tau=\int_{-\infty}^{\infty}f(t-\tau)g(\tau)d\tau$

• Fourier transform 적용

$$- F(f * g) = F(f) * F(g)$$

■ 기존 연산 : $O(n^2)$ 의 연산. 본 접근법 : O(nlogn)의 연산

- FFT (Fast Fourier Transform)
 - Implementing convolutions: FFT
 - Compute FFT of weights: F(W)
 - Compute FFT of image : F(X)
 - Compute elementwise product : F(W) * F(X)
 - Compute inverse FFT: $Y = F^{-1}(F(W) * F(X)) = F^{-1}(F(W * X)) = W * X$
 - Performance
 - Large filter에서만 좋은 성능

04

04

- Naive matrix multiplication : Computing product of two N x N matrices takes $O(N^3)$ operations
- Strassen's Algorithm : Use clever arithmetic to reduce complexity to $O(N^{log_27}) \sim O(N^{2.81})$

$$\begin{array}{lll} \mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix} & \mathbf{M}_1 := (\mathbf{A}_{1,1} + \mathbf{A}_{2,2})(\mathbf{B}_{1,1} + \mathbf{B}_{2,2}) \\ & \mathbf{M}_2 := (\mathbf{A}_{2,1} + \mathbf{A}_{2,2})\mathbf{B}_{1,1} \\ & \mathbf{B}_2 := (\mathbf{A}_{2,1} + \mathbf{A}_{2,2})\mathbf{B}_{1,1} \\ & \mathbf{B}_3 := (\mathbf{A}_{1,1}(\mathbf{B}_{1,2} - \mathbf{B}_{2,2}) \\ & \mathbf{B}_4 := \mathbf{A}_{2,2}(\mathbf{B}_{2,1} - \mathbf{B}_{1,1}) \\ & \mathbf{B}_5 := (\mathbf{A}_{1,1} + \mathbf{A}_{1,2})\mathbf{B}_{2,2} \\ & \mathbf{C}_{2,1} & \mathbf{C}_{2,2} \end{bmatrix} & \mathbf{M}_4 := \mathbf{A}_{2,2}(\mathbf{B}_{2,1} - \mathbf{B}_{1,1}) \\ & \mathbf{M}_5 := (\mathbf{A}_{1,1} + \mathbf{A}_{1,2})\mathbf{B}_{2,2} \\ & \mathbf{M}_6 := (\mathbf{A}_{2,1} - \mathbf{A}_{1,1})(\mathbf{B}_{1,1} + \mathbf{B}_{1,2}) \\ & \mathbf{M}_7 := (\mathbf{A}_{1,2} - \mathbf{A}_{2,2})(\mathbf{B}_{2,1} + \mathbf{B}_{2,2}) \end{array} & \mathbf{C}_{1,1} = \mathbf{M}_1 + \mathbf{M}_4 - \mathbf{M}_5 + \mathbf{M}_7 \\ & \mathbf{C}_{1,2} = \mathbf{M}_3 + \mathbf{M}_5 \\ & \mathbf{C}_{2,1} = \mathbf{M}_2 + \mathbf{M}_4 \\ & \mathbf{C}_{2,1} = \mathbf{M}_2 + \mathbf{M}_4 \\ & \mathbf{C}_{2,2} = \mathbf{M}_1 - \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_6 \end{array}$$

- 덧셈이 많아졌는데?
 - 큰 행렬의 경우, 행렬의 곱셈이 덧셈보다 더 많은 시간을 필요로 하기 때문에 덧셈을 더 하는 대신 곱셈을 덜 하는 것이 전체적으로 더 효율적이다.

Fast algorithms

04

- 3 x 3 filter에 대해 fast algorithm을 적용
- 작은 filter에 대해 좋은 성능을 보임

N	cuDNN		F(2x2,3x3)		Charden
	msec	TFLOPS	msec	TFLOPS	Speedup
1	12.52	3.12	5.55	7.03	2.26X
2	20.36	3.83	9.89	7.89	2.06X
4	104.70	1.49	17.72	8.81	5.91X
8	241.21	1.29	33.11	9.43	7.28X
16	203.09	3.07	65.79	9.49	3.09X
32	237.05	5.27	132.36	9.43	1.79X
64	394.05	6.34	266.48	9.37	1.48X

Table 5. cuDNN versus $F(2\times 2, 3\times 3)$ performance on VGG Network E with fp32 data. Throughput is measured in Effective TFLOPS, the ratio of direct algorithm GFLOPs to run time.

123.12

242.98

Table 6. cuDNN versus $F(2 \times 2, 3 \times 3)$ performance on VGG Network E with fp16 data.

5.29

6.31

1.92X

1.63X

10.14

10.28

32

236.13

395.93

How to compute them (fast)

- ^{□1} ❖ Summary
 - Im2col: Easy to implement, but big memory overhead
 - FFT : Big speedups for small kernels
 - "Fast Algorithms" seem promising, not widely used yet

02

03

04

0

Ωſ

Implementation details

01

02

03

NΔ

05

06

0

❖ CPU / GPU

- CPU
 - Few, fast cores (1 16)
 - Good at sequential processing

- Many, slower cores (thousands)
- Originally for graphics
- Good at parallel computation

GPUs are really good at matrix multiplication

01	❖ GPU programming
02	CUDA (NVIDIA only)
03	 Write C code that runs directly on the GPU
04	 Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc
05	OpenCL
06	Similar to CUDA, but runs on anything
	• Usually slower :(
07	Udacity: Intro to Parallel Programming
	 https://www.udacity.com/course/cs344

40/47

• For deep learning just use existing libraries

□ ❖ 분산 학습

05

- 개념
 - 여러 개의 GPU(혹은 CPU)에 나눠서 학습시키자
- 다수의 GPU와 컴퓨터를 이용한 분산 학습을 지원한 프레임워크 출현
 - Google의 Tensorflow
 - Microsoft의 CNTK(Computational Network Toolkit)
- Multi-GPU training: More complex

41/47

□ ❖ 분산 학습

05

Google: Distributed CPU training

Data parallelism

Google: Synchronous vs Asynchronous

Bottleneck

♡ 분산 학습

04

- GPU CPU bottleneck
 - CPU data prefetch+augment thread running while GPU performs forward/backward pass
 - Allocate task efficiently
- CPU disk bottleneck
 - SSD >> HDD
- GPU memory bottleneck
 - More GPU(expensive...)

❖ 실수 표현 정밀도

■ 컴퓨터는 bit 단위로 수를 표현함

• CNN에서는 32bit single을 많이 사용함

	Library	Class	Time (ms)	forward (ms)	backward (ms)		
	Nervana-fp16	ConvLayer	92	29	62		
CuDNN[R3]-fp16 (Torch)		cudnn.SpatialConvolution	96	30	66		
	CuDNN[R3]-fp32 (Torch)	cudnn.SpatialConvolution	96	32	64		
OxfordNet [Model-A] - Input 64x3x224x224							
	Library	Class	Time (ms)	forward (ms)	backward (ms)		
Nervana-fp16		ConvLayer	529	167	362		
	Nervana-fp32	ConvLayer	590	180	410		
(CuDNN[R3]-fp16 (Torch)	cudnn.SpatialConvolution	615	179	436		
GoogleNet V1 - Input 128x3x224x224							
	Library	Class	Time (ms)	forward (ms)	backward (ms)		
	Nervana-fp16	ConvLayer	283	85	197		
	Nervana-fp32	ConvLayer	322	90	232		
	CuDNN[R3]-fp32 (Torch)	cudnn.SpatialConvolution	431	117	313		

■ 추세

07

• 32bit -> 16bit

- 16bit로 바뀌면서 실수 정밀도를 잃지만, 성능 손실을 최대한 줄이는 방법을 개발함
 (Stochastic rounding, Gupta et al, "Deep Learning with Limited Numerical Precision", ICML 2015)
- 이미 cuDNN에서 지원 중
- Nervana fp16 kernels이 현재 가장 빠름

44/47

http://cs231n.stanford.edu/slides/winter1516_lecture11.pdf

- ❖ 실수 표현 정밀도
 - Stochastic rounding
 - 확률에 근거해 rounding
 - Unbiased rounding scheme
 - Expected rounding error is zero, E(Round(x, < IL, FL >)) = x

- 정수부 x 자릿수
 - **9**) $ab.c = abc.* 2^{-1}$, $a.bc = abc.* 2^{-2}$
- IL, FL: 정수부의 bit 수, 자릿수 담당 bit 수 (둘 다 설정해주는 값)
- ϵ : 매우 작은 양의 정수 2^{-FL}

$$Round\left(x, \left\langle \mathtt{IL}, \mathtt{FL} \right\rangle \right) = \begin{cases} \left\lfloor x \right\rfloor & \text{w.p. } 1 - \frac{x - \left\lfloor x \right\rfloor}{\epsilon} \\ \left\lfloor x \right\rfloor + \epsilon & \text{w.p. } \frac{x - \left\lfloor x \right\rfloor}{\epsilon} \end{cases} \end{cases}$$

- □ ❖ 실수 표현 정밀도
 - 도전
 - 10bit -> 1bit
 - Courbariaux and Bengio, February 9 2016:
 "BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1"
 - 속도 향상을 위해 극한의 상황까지 도달
 - Activation, weight = +1 or -1
 - 빠른 계산
 - Gradient를 구할 때는 조금 큰 bit를 사용

03

04

0

06

○1 ❖ Summary

04

- GPUs much faster than CPUs
- Distributed training is sometimes used
 - Not needed for small problems
- Be aware of bottlenecks: CPU / GPU, CPU / disk
- Low precision makes things faster and still works
 - 32 bit is standard now, 16 bit soon
 - In the future: binary nets?

Q & A

01

02

03

04

05

Ut

