2021-August Session-31-08-2021 shift 2

AI24BTECH11016

1 16-30(Math)

- 1) Let **A** be the set of all points (α, β) such that the area of triangle formed by the points (5,6)(3,2) and (α,β) is 12 square units. Then the least possible length of a line segment joining the origin to a point in **A**, is [August 2021]
 - a) $\frac{4}{\sqrt{5}}$
 - b) $\frac{16}{\sqrt{5}}$
 - c) $\frac{8}{\sqrt{3}}$
 - d) $\frac{12}{\sqrt{12}}$
- 2) The number of solutions of the equation $32^{\tan^2 x} + 32^{\sec^2 x} = 81$, $0 \le x \le \frac{\pi}{4}$ is: [August 2021]
 - a) 3
 - b) 1
 - c) 0
 - d) 2
- 3) Let f be any continuous function on [0,2] and twice differentiable on (0,2). If f(0) = 0, f(1) = 1 and f(2) = 2, then [August 2021]
 - a) f''(x) = 0 for all $x \in (0, 2)$
 - b) f''(x) = 0 for some $x \in (0, 2)$
 - c) f'(x) = 0 for some $x \in [0, 2]$
 - d) f''(x) > 0 for all $x \in (0, 2)$
- 4) If [x] is the greatest integer $\leq x$, then $\pi^2 \int_0^2 \sin \frac{\pi x}{2} (x [x])^{[x]} dx$ is equal to: [August 2021]
 - a) $2(\pi 1)$
 - b) $4(\pi 1)$
 - c) $4(\pi + 1)$
 - d) $2(\pi + 1)$
- 5) The mean and variance of 7 observations are 8 and 16 respectively. If two observations are 6 and 8, then the variance of the remaining 5 observations is: [August 2021]
 - a) $\frac{92}{5}$
 - b) $\frac{3}{134}$
 - c) $\frac{536}{25}$
 - d) 1112 112

- 6) If the coefficient of a^7b^8 in the expansion of $(a + 2b + 4ab)^{10}$ is $K.2^{16}$, then K is equal to [August 2021]
- 7) Suppose the line $\frac{x-2}{\alpha} = \frac{y-2}{-5} = \frac{z+2}{2}$ lies on the plane $x + 3y 2z + \beta = 0$. Then the value of $\alpha + \beta$ is equal to [August 2021]
- 8) The number of 4-digit numbers which are neither multiple of 7 nor multiple of 3 is [August 2021]
- 9) $\int_{is}^{\infty} \frac{\sin x}{\sin^3 x + \cos^3 x} dx = \text{when } C \text{ is a constant of integration, then the value of } 18\left(\alpha + \beta + \gamma^2\right)$ [August 2021]
- 10) A tangent line **L** is drawn at the point (2,4) on the parabola $y^2 = 8x$. If the line **L** is also tangent to the circle $x^2 + y^2 = a$, then 'a' is equal to [August 2021]
- 11) If $S = \frac{7}{5} + \frac{9}{5^2} + \frac{13}{5^3} + \frac{19}{5^4} + \dots$ then 160S is equal to [August 2021]
- 12) The number of elements in the set

$$\left\{ A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \{-1, 0, 1\} \text{ and } (I - A)^3 = I - A^3 \right\}$$
[August 2021]

- 13) If the line y = mx bisects the area enclosed by the lines x = 0, y = 0, $x = \frac{3}{2}$ and the curve $y = 1 + 4x x^2$, then 12m is equal to [August 2021]
- 14) Let **B** be the centre of the circle $x^2 + y^2 2x + 4y + 1 = 0$. Let the tangents at two points **P** and **Q** on the circle intersect at the point **A**(3,1). Then $\frac{Areaof\Delta APQ}{Areaof\Delta BPQ}$ is equal to [August 2021]
- 15) Let f(x) be a cubic polynomial with f(1) = -10, f(-1) = 6, and has a local minima at x = 1, and f'(x) has a local minima at x = -1. Then f(3) is equal to [August 2021]