50 CGCCCAGCCGCCCCCCAAGCCCCTGAGGTTTCCGGGGACCACAATGAACAAGTTGCTG MNKLL 110 90 TGCTGCGCGCTCGTGTTTCTGGACATCTCCATTAAGTGGACCACCCAGGAAACGTTTCCT L D I S I K W T T O E T F P 170 150 130 CCAAAGTACCTTCATTATGACGAAGAAACCTCTCATCAGCTGTTGTGTGACAAATGTCCT K Y L H Y D E E T S H Q L L C D K C P 230 210 190 CCTGGTACCTACCTAAAACAACACTGTACAGCAAAGTGGAAGACCGTGTGCGCCCCTTGC 290 270 CCTGACCACTACTACACAGACAGCTGGCACACCAGTGACGAGTGTCTATACTGCAGCCCC D H Y Y T D S W H T S D E C L Y C S P 330 310 GTGTGCAAGGAGCTGCAGTACGTCAAGCAGGAGTGCAATCGCACCCACAACCGCGTGTGC C K E L Q Y V K Q E C N R T H N R V C 410 390 GAATGCAAGGAAGGCCCTACCTTGAGATAGAGTTCTGCTTGAAACATAGGAGCTGCCCT C K E G R Y L E I E F C L K H R S C P 470 450 430 CCTGGATTTGGAGTGGTGCAAGCTGGAACCCCAGAGCGAAATACAGTTTGCAAAAGATGT P G F G V V Q A G T P E R N T V C K R C 530 510 CCAGATGGGTTCTCCAAATGAGACGTCATCTAAAGCACCCTGTAGAAAAACACACAAAT D G F F S N E T S S K A P C R K H T N 570 590 S'V F G L L T Q K G N A T H D N I C 630 650 TCCGGAAACAGTGAATCAACTCAAAAATGTGGAATAGATGTTACCCTGTGTGAGGAGGCA G N S E S T Q K C G I D V T L C E E A 710 690 670 TTCTTCAGGTTTGCTGTTCCTACAAAGTTTACGCCTAACTGGCTTAGTGTCTTGGTAGAC FRFAVPTKFTPNWLSVLVD 770 750 730 AATTTGCCTGGCACCAAAGTAAACGCAGAGAGTGTAGAGAGGATAAAACGGCAACACAGC L P G T K V N A E S V E R I K R Q H S 810 830 790 TCACAAGAACAGACTTTCCAGCTGCTGAAGTTATGGAAACATCAAAACAAAGACCAAGAT Q E Q T F Q L L K L W K H Q N K D Q D 890 870 850 ATAGTCAAGAAGATCATCCAAGATATTGACCTCTGTGAAAACAGCGTGCAGCGGCACATT V K K I I Q D I D L C E N S V Q R H I 930 950 GGACATGCTAACCTCACCTTCGAGCAGCTTCGTAGCTTGATGGAAAGCTTACCGGGAAAG HANLTFEQLRSLMESLPGK 990 -1010 970 AAAGTGGGAGCAGAAGACATTGAAAAAACAATAAAGGCATGCAAACCCAGTGACCAGATC K V G A E D I E K T I K A C K P S D Q I 1070 1050 1030 CTGAAGCTGCTCAGTTTGTGGCGAATAAAAAATGGCGACCAAGACACCTTGAAGGGCCTA K L L S L W R I K N G D Q D T L K G L 1110 ATGCACGCACTAAAGCACTCAAAGACGTACCACTTTCCCAAAACTGTCACTCAGAGTCTA

| М                                                             | н                                                            | A       | L  | ĸ | н  | S    | K | $\mathbf{T}$ | Y   | H       | F    | P | K | T    | V | ${f T}$ | Q | S | L |
|---------------------------------------------------------------|--------------------------------------------------------------|---------|----|---|----|------|---|--------------|-----|---------|------|---|---|------|---|---------|---|---|---|
| 1150 117                                                      |                                                              |         |    |   |    |      |   | 0            |     |         |      |   | 1 | .190 | ) |         |   |   |   |
| AA                                                            | AAGAAGACCATCAGGTTCCTTCACAGCTTCACAATGTACAAATTGTATCAGAAGTTATTT |         |    |   |    |      |   |              |     |         |      |   |   |      |   |         |   |   |   |
| ĸ                                                             | ĸ                                                            | ${f T}$ | I  | R | F  | L    | H | S            | F   | ${f T}$ | M    | Y | K | L    | Y | Q       | K | L | F |
| 1210 1230                                                     |                                                              |         |    |   |    |      |   |              |     |         |      |   | _ | .250 |   |         |   |   |   |
| TTAGAAATGATAGGTAACCAGGTCCAATCAGTAAAAATAAGCTGCTTATAACTGGAAATG  |                                                              |         |    |   |    |      |   |              |     |         |      |   |   |      |   |         |   |   |   |
| L                                                             | E                                                            | M       | I  | G | N· | Q    | V | Q            | S   | V       | K    | I | S | С    | L | *       |   |   |   |
| 1270                                                          |                                                              |         |    |   |    |      |   |              |     | _       | .310 |   |   | •    |   |         |   |   |   |
| GCCATTGAGCTGTTTCCTCACAATTGGCGAGATCCCATGGATGAGTAAACTGTTTCTCAG  |                                                              |         |    |   |    |      |   |              |     |         |      |   |   |      |   |         |   |   |   |
| 1330                                                          |                                                              |         |    |   |    | 1350 |   |              |     |         | 1370 |   |   |      |   |         |   |   |   |
| GCACTTGAGGCTTTCAGTGATATCTTTCTCATTACCAGTGACTAATTTTGCCACAGGGTA  |                                                              |         |    |   |    |      |   |              |     |         |      |   |   |      |   |         |   |   |   |
|                                                               |                                                              |         | 90 |   |    |      |   |              | 141 | _       |      |   |   | •    | _ | .430    |   |   |   |
| CTAAAAGAAACTATGATGTGGAGAAAGGACTAACATCTCCTCCAATAAACCCCCAAATGGT |                                                              |         |    |   |    |      |   |              |     |         |      |   |   |      |   |         |   |   |   |
|                                                               |                                                              |         | 50 |   |    |      |   |              | 147 | _       |      |   |   |      | _ | 490     |   |   |   |
| TAATCCAACTGTCAGATCTGGATCGTTATCTACTGACTATATTTTCCCTTATTACTGCTT  |                                                              |         |    |   |    |      |   |              |     |         |      |   |   |      |   |         |   |   |   |
|                                                               |                                                              | 15      | 10 |   |    |      |   | -            |     |         |      |   |   |      |   |         |   |   |   |
| GCAGTAATTCAACTGGAAAAAAAAAA                                    |                                                              |         |    |   |    |      |   |              |     |         |      |   |   |      |   |         |   |   |   |

FIGURE 1(B)

30 10 ATGAACAAGTTGCTGTGCTGCGCGCTCGTGTTTCTGGACATCTCCATTAAGTGGACCACC N K L L C C A L V F L D I S I K W 90 CAGGAAACGTTTCCTCCAAAGTACCTTCATTATGACGAAGAAACCTCTCATCAGCTGTTG O E T F P P K Y L H Y D E E T S H Q L L 150 130 TGTGACAAATGTCCTCCTGGTACCTACCTAAAACAACACTGTACAGCAAAGTGGAAGACC CDKCPPGTYLKQHCTAKWKT 210 190 GTGTGCGCCCCTTGCCCTGACCACTACTACACAGACAGCTGGCACACCAGTGACGAGTGT V C A P C P D H Y Y T D S W H T S D E C 290 270 CTATACTGCAGCCCGTGTGCAAGGAGCTGCAGTACGTCAAGCAGGAGTGCAATCGCACC LYCSPVCKELQYVKQECNRT 350 330 310 CACAACCGCGTGTGCGAATGCAAGGAAGGGCGCTACCTTGAGATAGAGTTCTGCTTGAAA HNRVCECKEGRYLEIEFCLK 410 390 CATAGGAGCTGCCCTCCTGGATTTGGAGTGGTGCAAGCTGGAACCCCAGAGCGAAATACA HRSCPPGFGVVQAG TPERNT 470 450 GTTTGCAAAAGATGTCCAGATGGGTTCTTCTCAAATGAGACGTCATCTAAAGCACCCTGT V C K R C P D G F F S N E T S S K A P C 530 510 490 AGAAAACACAAAATTGCAGTGTCTTTGGTCTCCTGCTAACTCAGAAAGGAAATGCAACA RKHTNCSVFGLLLTQKGNAT 570 590 550 CACGACAACATATGTTCCGGAAACAGTGAATCAACTCAAAAATGTGGAATAGATGTTACC H D N I C S G N S E S T Q K C G I D V T 650 630 610 CTGTGTGAGGAGGCATTCTTCAGGTTTGCTGTTCCTACAAAGTTTACGCCTAACTGGCTT LCEEAFFRFAVPTKFTPNWL 710 690 670 AGTGTCTTGGTAGACAATTTGCCTGGCACCAAAGTAAACGCAGAGAGTGTAGAGAGGATA SVLVDNLPGTKVNAESVERI 750 730 AAACGGCAACACAGCTCACAAGAACAGACTTTCCAGCTGCTGAAGTTATGGAAACATCAA KRQHSSQEQTFQLLKLWKHQ 790 810 830 AACAAAGACCAAGATATAGTCAAGAAGATCATCCAAGATATTGACCTCTGTGAAAACAGC NKDQDIVKKIIQDIDLCENS 890 870 850 GTGCAGCGGCACATTGGACATGCTAACCTCACCTTCGAGCAGCTTCGTAGCTTGATGGAA V Q R H I G H A N L T F E Q L R S L M E 950 930 AGCTTACCGGGAAAGAAAGTGGGAGCAGAAGACATTGAAAAAAACAATAAAGGCATGCAAA S L P G K K V G A E D I E K T I K A C K 99.0 1010 970 CCCAGTGACCAGATCCTGAAGCTGCTCAGTTTGTGGCGAATAAAAAATGGCGACCAAGAC P S D Q I L K L L S L W R I K N G D Q D 1070 1050. 1030 ACCTTGAAGGGCCTAATGCACGCACTAAAGCACTCAAAGACGTACCACTTTCCCAAAACT TLKGLMHALKHSKTYHFPKT 1130 1110 1090 GTCACTCAGAGTCTAAAGAAGACCATCAGGTTCCTTCACAGCTTCACAATGTACAAATTG V T Q S L K K T I R F L H S F T M Y K L 1170 1150

TATCAGAAGTTATTTTTAGAAATGATAGGTAATCTAGAAAAGATCTAA Y Q K L F L E M I G N L E K I

FIGURE 2(B)

| 1   | MNKLLCCALVFLDISIKWTTQETFPPKYLHYDEETS                                             | 36  |
|-----|----------------------------------------------------------------------------------|-----|
| 1   | :  :  ::. :   . .   :: . MAPVAVWAALAVGLELWAAAHALPAQVAFTPYAPEPGSTCRLREYYDQTA      | 50  |
| 37  | HOLLCDKCPPGTYLKOHCTAKWKTVCAPCPDHYYTDSWHTSDECLYCSPV                               | 86  |
| 51  | :                                                                                | 99  |
| 87  | CKELQYVKQECNRTHNRVCECKEGRYLEIEFCLKHRSCPPGFGV                                     | 130 |
| 100 | . .  :  :  :  :: :  . .       CSSDQVETQACTREQNRICTCRPGWYCALSKQEGCRLCAPLRKCRPGFGV | 149 |
| 131 | VQAGTPERNTVCKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTQKGNAT                               | 180 |
|     | .::  :  . :.   .  .  .  .  .                                                     |     |
| 181 | HDNIC                                                                            | 207 |
| 196 | MDAVCTSTSPTRSMAPGAVHLPQPVSTRSQHTQPTPEPSTAPSTSFLLPM                               | 245 |
| 208 |                                                                                  | 242 |
| 246 | GPSPPAEGSTGDFALPVGLIVGVTALGLLIIGVVNCVIMTQVKKKPLC                                 | 293 |
| 243 | .QHSSQEQTFQLLKLWKHONKDQDIVKKIIQDIDLCENSVQRHIG                                    | 286 |
|     | LQREAKVPHLPADKARGTQGPEQQHLLITAPSSSSSSLESSASALDRRAP                               |     |
| 287 | HANLTFEQLRSLMESLPGKKVGAEDIEKTIKACKPSDQILKLLSLWR                                  | 333 |
|     | TRNQPQAPGVEASGAGEARASTGSSDSSPGGHGTQVNVTCIVNVCSSS                                 |     |
| 334 | IKNGDQDTLKGLMHALKHSKTYHFPKTVTQSLKKTIRFLHSFTMY: . : :                             |     |
| 392 | DHSSQCSSQASSTMGDTDSSPSESPKDEQVPFSKEECAFRSQLETPETLL                               |     |
| 379 | KLYQKLFLEMIGNQVQSVKISCL. 401 :   . :                                             |     |
| 442 | GSTEEKPLPL.GVPDAGMKPS 461                                                        |     |



FIGURE 4





FIGURE 5

## HSABH13 does not bind to the mAb to sTNFR I or sTNFR II



ELISA Assay (plate coated with mAb to sTNFR I or STNFR II)

TNF-beta has higher affinty to HSAHAB13 than TNF-alpha, and HUVEO19 does not inhibit the binding



FIGURE 7

HSABH13 does not compete with sTNFR I to bind TNF-alpha, may compete with sTNFR II to bind TNF-alpha



Goat anti-human antibody to TNFR

## Titer of Rabbit #11509 Tested Against TNFr Batch HG02900-1-B



Serum Dilution

## Titer of Rabbit #11508 Tested Against TNFr Batch HG02900-1-B



2900.01 Graph 1

Serum Dilution

FIGURE 9