Su Chen, Assistant Teaching Professor, Rice D2K Lab

- What is Regression
- Simple Linear Regression
- Multiple Linear Regression
- 4 In Practice
- Code Demo

2 / 47

Week 11 COMP 680

Regression

What is Regression

- Regression is the general label for investigating relationship between (two) variables
 - the term first coined by Francis Galton (1822 1911)
 - study of human differences and inheritance of intelligence

- Regression is the general label for investigating relationship between (two) variables
 - the term first coined by Francis Galton (1822 1911)
 - study of human differences and inheritance of intelligence
- Start with two (numerical) variables:
 - dependent variable Y: outcome, response, label ...
 - independent variable X: covariate, predictor, feature ...
 - regress Y on X to understand how Y depends on X

A Regression Model

What is Regression

A pair of variables X and Y with multiple observations (data):

$$(X, Y) = (x_i, y_i), \quad i = 1, 2, \dots n$$

Week 11 **COMP 680** 4 / 47

regression model

A pair of variables X and Y with multiple observations (data):

$$(X,Y)=(x_i,y_i), \quad i=1,2,\cdots n$$

• Mathematical model and the regression function f(x):

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, 2, \dots n$$

- the regression function: quantifies the relationship between X and Y
- the error terms ϵ_i : captures measurement errors and other discrepancies

4D > 4@ > 4 E > 4 E > 9 Q (*)

Assumptions about the Errors

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, 2, \dots n$$

Captures measurement errors and other discrepancies:

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, 2, \cdots n$$

- Captures measurement errors and other discrepancies:
- Most common is Gaussian errors:

$$\epsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$$

- $oldsymbol{\epsilon}$ are independent of the regression function f
- ullet are independent of each other
- $\mathbb{E}[\epsilon] = 0$, $\mathbb{V}[\epsilon] = \sigma^2$

4 D > 4 P > 4 B > 4 B > B 9 9 P

Parametric vs. Nonparametric

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, 2, \cdots n$$

• Key assumptions about f(x): some trade-off

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, 2, \cdots n$$

- Key assumptions about f(x): some trade-off
- Parametric models: restrict f(x) to be "simple" form

□ ▶ ∢ □ ▶ ∢ □ ▶ ↓ □ ▼ ○ Q ○

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, 2, \cdots n$$

- Key assumptions about f(x): some trade-off
- Parametric models: restrict f(x) to be "simple" form
 - finite and fixed number of parameters
 - less flexible but more interpretable
 - what is the simplest f?
- Nonparametric models:

Parametric vs. Nonparametric

What is Regression

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, 2, \cdots n$$

- Key assumptions about f(x): some trade-off
- Parametric models: restrict f(x) to be "simple" form
 - finite and fixed number of parameters
 - less flexible but more interpretable
 - what is the simplest f?
- Nonparametric models:
 - no fixed number of parameters
 - more flexible but less interpretable
 - need more data to estimate

- What is Regression
- Simple Linear Regression
- Multiple Linear Regression
- In Practice
- Code Demo

• The regression function f(x) is linear!

- The regression function f(x) is linear!
 - $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $i = 1, 2, \dots n$
 - ullet a linear function is a straight line with slope eta_1 and intercept eta_0
 - β_1 and β_0 are the unknown parameters of the model

◆ロト ◆個 ▶ ◆ 重 ト ◆ 重 ・ か へ (で)

- The regression function f(x) is linear!
 - $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $i = 1, 2, \dots n$
 - a linear function is a straight line with slope β_1 and intercept β_0
 - β_1 and β_0 are the unknown parameters of the model
- The relationship between Y and X:
 - scatter around a straight line with slope β_1 and intercept β_0
 - the conditional distribution of Y conditioned on X is normal!!!

Week 11 **COMP 680** 8 / 47

- The regression function f(x) is linear!
 - $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $i = 1, 2, \dots n$
 - a linear function is a straight line with slope β_1 and intercept β_0
 - β_1 and β_0 are the unknown parameters of the model
- The relationship between Y and X:
 - scatter around a straight line with slope β_1 and intercept β_0
 - the conditional distribution of Y conditioned on X is normal!!!

$$\epsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2) \Rightarrow Y|X = x \stackrel{\text{i.i.d.}}{\sim} N(\beta_0 + \beta_1 x, \sigma^2)$$

Week 11 **COMP 680** 8 / 47

The Conditional Distribution

Simple Linear Regression

$$Y|X \stackrel{\text{i.i.d.}}{\sim} N(\beta_0 + \beta_1 X, \sigma^2)$$

Week 11 9 / 47 **COMP 680**

$$Y|X \stackrel{\text{i.i.d.}}{\sim} N(\beta_0 + \beta_1 X, \sigma^2)$$

- The regression function $\beta_0 + \beta_1 X$ is the **conditional mean!**
 - ullet the only randomness of the model comes from ϵ
 - ullet the error distribution of ϵ is important
 - X is usually considered deterministic

◆ロト ◆部 ▶ ◆ 恵 ▶ ◆ 恵 ◆ りへで

The Conditional Distribution

$$Y|X \stackrel{\text{i.i.d.}}{\sim} N(\beta_0 + \beta_1 X, \sigma^2)$$

- The regression function $\beta_0 + \beta_1 X$ is the **conditional mean!**
 - ullet the only randomness of the model comes from ϵ
 - the error distribution of ϵ is important
 - X is usually considered deterministic
- The "true" regression function $f(x) = \beta_0 + \beta_1 x$
 - aka population regression line
 - unknown population parameters β_0 and β_1

4 D > 4 D > 4 E > 4 E > E 990

The population regression line:

◆□▶◆圖▶◆臺▶◆臺▶ 臺 か900

- ullet Fitting the models means estimate eta_0 and eta_1 from the observed data
 - use $\hat{\beta}_0$ and $\hat{\beta}_1$ as notations of point estimates
 - $\hat{\beta}_0$ and $\hat{\beta}_1$ are statistics with sampling distribution!

- Fitting the models means estimate β_0 and β_1 from the observed data
 - use $\hat{\beta}_0$ and $\hat{\beta}_1$ as notations of point estimates
 - $\hat{\beta}_0$ and $\hat{\beta}_1$ are statistics with sampling distribution!
- What can a regression model do?
 - prediction: for a given value of $X: \hat{y}_i = \mathbb{E}[Y|X=x_i] = \hat{\beta}_0 + \hat{\beta}_1 x_i$
 - inference: sampling distributions and CI for β
 - interpretation: understand how Y depends on X
- Recall the 3 types of questions:

Week 11 **COMP 680** 11 / 47

- The notion of "the best" line:
 - the point estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ that best fit observed data

Week 11 **COMP 680** 12 / 47

The Ordinary Least Square Line

- The notion of "the best" line:
 - the point estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ that best fit observed data
- Idea: minimize difference between \hat{y}_i and y_i , i.e., the Residual Sum of Square (RSS):

$$\hat{\beta}_0^{\text{OLS}}, \hat{\beta}_1^{\text{OLS}} = \arg\min \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \arg\min \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i)^2$$

- The notion of "the best" line:
 - the point estimates \hat{eta}_0 and \hat{eta}_1 that best fit observed data
- Idea: minimize difference between \hat{y}_i and y_i , i.e., the Residual Sum of Square (RSS):

$$\hat{\beta}_0^{\text{OLS}}, \hat{\beta}_1^{\text{OLS}} = \arg\min \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \arg\min \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i)^2$$

- Residual $r_i = y_i \hat{y}_i$ represents the estimate of the error term ϵ_i
 - the OLS line minimize RSS

- OLS is an optimization problem:
 - minimize loss function in ML: mean square loss = RSS / n
 - the distribution of ϵ or Y|X is not important
 - however, no inference!

- OLS is an optimization problem:
 - minimize loss function in ML: mean square loss = RSS / n
 - the distribution of ϵ or Y|X is not important
 - however, no inference!
- Approach as a statistical problem:
 - maximum likelihood estimates

Week 11 **COMP 680** 13 / 47

- OLS is an optimization problem:
 - minimize loss function in ML: mean square loss = RSS / n
 - the distribution of ϵ or Y|X is not important
 - · however, no inference!
- Approach as a statistical problem:
 - maximum likelihood estimates
 - leads to equivalent solutions why?

$$\hat{\beta_0}^{\text{MLE}}, \hat{\beta_1}^{\text{MLE}} \iff \hat{\beta_0}^{\text{OLS}}, \hat{\beta_1}^{\text{OLS}}$$

Closed form solutions:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}_{n})(y_{i} - \bar{y}_{n})}{\sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2}} = r_{X,Y} \cdot \frac{s_{Y}}{s_{X}}$$
$$\hat{\beta}_{0} = \bar{y}_{n} - \hat{\beta}_{1}\bar{x}_{n}$$

Multiple Linear Regression

Week 11 **COMP 680** 14 / 47 Closed form solutions:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}_{n})(y_{i} - \bar{y}_{n})}{\sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2}} = r_{X,Y} \cdot \frac{s_{Y}}{s_{X}}$$

$$\hat{\beta}_{0} = \bar{y}_{n} - \hat{\beta}_{1}\bar{x}_{n}$$

Multiple Linear Regression

- slope $\hat{\beta}_1$ is rescaled Pearson correlation coefficient $r_{X,Y}$
 - describe the linear association between X and Y
 - depends on unit of X and Y

4 D > 4 D > 4 E > 4 E > E 990

• $\hat{\beta_0}$ and $\hat{\beta_1}$ are unbiased!

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased!
- The sampling distributions of them are normal, why?

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased!
- The sampling distributions of them are normal, why?

$$\hat{\beta}_1 \sim \mathsf{N}\left(\beta_1, \quad \sigma^2 \frac{1}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}\right)$$

$$\hat{\beta}_0 \sim \mathsf{N}\left(\beta_0, \quad \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}_n^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}\right]\right)$$

Week 11 **COMP 680** 15 / 47

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased!
- The sampling distributions of them are normal, why?

$$\hat{\beta}_1 \sim N\left(\beta_1, \quad \sigma^2 \frac{1}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}\right)$$

$$\hat{\beta}_0 \sim N\left(\beta_0, \quad \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}_n^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}\right]\right)$$

- What about σ^2 ? usually unknown...
 - nuisance parameter, can be estimated from data
 - replace σ^2 with $\hat{\sigma}^2 = \text{RSS}/(n-2)$: the above Normal \to t distribution!

- Confidence intervals for β_i and j = 0, 1
 - $[\hat{\beta}_j + t_{\alpha/2,df=n-2} \cdot SE(\hat{\beta}_j), \quad \hat{\beta}_j + t_{1-\alpha/2,df=n-2} \cdot SE(\hat{\beta}_j)]$ standard error estimated with $\hat{\sigma}^2$

Inference

- Confidence intervals for β_i and j = 0, 1
 - $[\hat{\beta}_j + t_{\alpha/2,df=n-2} \cdot SE(\hat{\beta}_j), \quad \hat{\beta}_j + t_{1-\alpha/2,df=n-2} \cdot SE(\hat{\beta}_j)]$
 - standard error estimated with $\hat{\sigma}^2$
- Hypothesis testing on regression slope is standard:
 - H_0 : $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$: one-sample t-test
 - reject H_0 means β_1 is significantly different from 0
 - which means X and Y are correlated!

Week 11 **COMP 680** 16 / 47

- Confidence intervals for β_i and j = 0, 1
 - $[\hat{\beta}_i + t_{\alpha/2,df=n-2} \cdot SE(\hat{\beta}_i), \quad \hat{\beta}_i + t_{1-\alpha/2,df=n-2} \cdot SE(\hat{\beta}_i)]$
 - standard error estimated with $\hat{\sigma}^2$
- Hypothesis testing on regression slope is standard:
 - H_0 : $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$: one-sample t-test
 - reject H_0 means β_1 is significantly different from 0
 - which means X and Y are correlated!
- for two-sided test, the following are equivalent:
 - reject H_0 : $\beta_1 = 0$ at α level
 - 1α CI for β_1 does NOT include 0

Week 11 **COMP 680** 16 / 47

Prediction

For any given value of x^* , how do we predict corresponding y^* ?

Week 11 17 / 47 **COMP 680**

For any given value of x^* , how do we predict corresponding y^* ?

- Point estimate: conditional mean!
 - $\hat{y}^* = \mathbb{E}[Y|X = x^*] = \hat{\beta}_0 + \hat{\beta}_1 x^*$

Week 11 **COMP 680** 17 / 47

For any given value of x^* , how do we predict corresponding y^* ?

Point estimate: conditional mean!

•
$$\hat{y^*} = \mathbb{E}[Y|X = x^*] = \hat{\beta_0} + \hat{\beta_1}x^*$$

Sampling distribution and CI:

•
$$\hat{y^*} \sim N\left(\beta_0 + \beta_1 x^*, \quad \sigma^2\left[\frac{1}{n} + \frac{(x^* - \bar{x_n})^2}{\sum_{i=1}^n (x_i - \bar{x_n})^2}\right]\right)$$

•
$$[\hat{y^*} + t_{\alpha/2,df=n-2} \cdot SE(\hat{y^*}), \quad \hat{y^*} + t_{1-\alpha/2,df=n-2} \cdot SE(\hat{y^*})]$$

• standard error estimated with $\hat{\sigma}^2$

Week 11 COMP 680 17 / 47

Multiple Linear Regression

Multiple Linear Regression

For any given value of x^* , how do we predict corresponding y^* ?

Point estimate: conditional mean!

•
$$\hat{y^*} = \mathbb{E}[Y|X = x^*] = \hat{\beta_0} + \hat{\beta_1}x^*$$

Sampling distribution and CI:

•
$$\hat{y^*} \sim N\left(\beta_0 + \beta_1 x^*, \quad \sigma^2\left[\frac{1}{n} + \frac{(x^* - \bar{x_n})^2}{\sum_{i=1}^n (x_i - \bar{x_n})^2}\right]\right)$$

•
$$[\hat{y^*} + t_{\alpha/2, df=n-2} \cdot SE(\hat{y^*}), \quad \hat{y^*} + t_{1-\alpha/2, df=n-2} \cdot SE(\hat{y^*})]$$

- standard error estimated with $\hat{\sigma}^2$
- Prediction interval: interval estimate for single data
 - add extra uncertainty from ε!
 - variance increased by $\Longrightarrow \sigma^2 \left[1 + \frac{1}{n} + \frac{(x^* \bar{x}_n)^2}{\sum_{i=1}^n (x_i \bar{x}_n)^2} \right]$

Week 11 **COMP 680** 17 / 47

Interpretation

- $\hat{\beta}_1$: the average change in Y when X increase by 1 unit
 - only if we reject H_0 : $\beta_1 = 0$!
 - the point estimate \hat{eta}_1 can be huge but still fail to reject, why?

Week 11 COMP 680 18 / 47

Interpretation

- $\hat{\beta}_1$: the average change in Y when X increase by 1 unit
 - only if we reject H_0 : $\beta_1 = 0$!
 - the point estimate $\hat{\beta}_1$ can be huge but still fail to reject, why?
 - $\hat{\beta}_1$ depends on the units!
 - the t-statistic is the "standardized" slope

Week 11 **COMP 680** 18 / 47

- $\hat{\beta}_1$: the average change in Y when X increase by 1 unit
 - only if we reject H_0 : $\beta_1 = 0$!
 - the point estimate $\hat{\beta}_1$ can be huge but still fail to reject, why?
 - $\hat{\beta_1}$ depends on the units!
 - the t-statistic is the "standardized" slope
- $\hat{\beta_0}$: the average value of Y when X is 0
 - not meaningful if X cannot be 0 extrapolate is dangerous!
 - can choose model with no intercept

Week 11 **COMP 680** 18 / 47

- What is Regression
- Simple Linear Regression
- Multiple Linear Regression
- In Practice
- Code Demo

Week 11 COMP 680 19 / 47

Multiple Covariates

• A set of p covariates $X_1, X_2, \cdots X_p$ and a response variable Y

Week 11 COMP 680 20 / 47

Multiple Covariates

• A set of p covariates $X_1, X_2, \dots X_p$ and a response variable Y

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_p x_{i,p} + \epsilon_i, \quad i = 1, 2, \dots n$$

- design matrix $X_{n,p}$ with n observations and p variables
- independent Gaussian error $\epsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト ・ 恵 ・ からぐ

Week 11 COMP 680 20 / 47

Multiple Covariates

A set of p covariates $X_1, X_2, \dots X_p$ and a response variable Y

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_p x_{i,p} + \epsilon_i, \quad i = 1, 2, \dots n$$

- design matrix $X_{n,p}$ with n observations and p variables
- independent Gaussian error $\epsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$
- The regression function is linear in the parameters β
 - for 2 covariates, the linear function is a plane
 - for more than 2 covariates, a hyperplane

Week 11 **COMP 680** 20 / 47

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} \beta_0 \\ \beta_0 \\ \dots \\ \beta_0 \end{pmatrix} + \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,p} \\ x_{2,1} & x_{2,2} & \dots & x_{2,p} \\ \dots & \dots & \dots \\ x_{n,1} & x_{n,2} & \dots & x_{n,p} \end{pmatrix} \times \begin{pmatrix} \beta_1 \\ \beta_2 \\ \dots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_n \end{pmatrix}$$

$$= \begin{pmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,p} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,p} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n,1} & x_{n,2} & \dots & x_{n,p} \end{pmatrix} \times \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \dots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_n \end{pmatrix}$$

Use p for number of parameters from now on.

 $\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times p} \boldsymbol{\beta}_{p\times 1} + \boldsymbol{\epsilon}_{n\times 1}$

Week 11 COMP 680 21 / 47

The Coefficients

• Closed form OLS/MLE solution for β when n > p:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Week 11 COMP 680 22 / 47

The Coefficients

• Closed form OLS/MLE solution for β when n > p:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

• Unbiased solution for σ^2 :

$$\hat{\sigma}^2 = \frac{\mathsf{RSS}}{\mathsf{n} - \mathsf{p}}$$

Week 11 COMP 680 22 / 47

The Coefficients

Week 11

• Closed form OLS/MLE solution for β when n > p:

$$\hat{oldsymbol{eta}} = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{y}$$

• Unbiased solution for σ^2 :

$$\hat{\sigma}^2 = \frac{\mathsf{RSS}}{\mathsf{n} - \mathsf{p}}$$

- Recall multivariate normal Gaussian distribution
 - p-dimensional random vector: mean vector and $p \times p$ covariate matrix

COMP 680

• marginal of Gaussian: each dimension is normal!

22 / 47

Inference

• Sampling distribution for $\hat{\beta}$ is Gaussian:

$$\hat{oldsymbol{eta}} \sim \mathsf{MVN}\left(oldsymbol{eta}, \quad (oldsymbol{X}^{\mathsf{T}}oldsymbol{X})^{-1}\sigma^2
ight)$$

Week 11 COMP 680 23 / 47

• Sampling distribution for $\hat{\beta}$ is Gaussian:

$$\hat{\boldsymbol{\beta}} \sim \mathsf{MVN}\left(\boldsymbol{\beta}, \quad (\boldsymbol{X}^T \boldsymbol{X})^{-1} \sigma^2\right)$$

- Hypothesis testing and CI for each \hat{eta}_{i}
 - use $\hat{\sigma}^2$
 - t-test
 - t-Cl

Week 11 COMP 680 23 / 47

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \Longrightarrow \hat{\boldsymbol{y}} = \boldsymbol{X} \hat{\boldsymbol{\beta}} = \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} = \boldsymbol{H} \boldsymbol{y}$$

Point estimate: conditional mean!

•
$$\hat{y}^* = \mathbb{E}[Y|X = x^*] = x^*\hat{\beta}$$

COMP 680 Week 11 24 / 47

Prediction

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} \Longrightarrow \hat{\boldsymbol{y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} = \boldsymbol{H}\boldsymbol{y}$$

Point estimate: conditional mean!

•
$$\hat{y}^* = \mathbb{E}[Y|X = x^*] = x^*\hat{\beta}$$

Sampling distribution and CI:

•
$$\hat{\mathbf{y}}^* \sim N(\mathbf{x}^*\boldsymbol{\beta}, \quad \sigma^2\mathbf{x}^*(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}^{*T})$$

•
$$[\hat{y^*} + t_{\alpha/2,df=n-p} \cdot SE(\hat{y^*}), \quad \hat{y^*} + t_{1-\alpha/2,df=n-p} \cdot SE(\hat{y^*})]$$

• standard error estimated with $\hat{\sigma}^2$

Week 11 **COMP 680** 24 / 47

Prediction

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{X}^{T}\boldsymbol{y} \Longrightarrow \hat{\boldsymbol{y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{X}(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{X}^{T}\boldsymbol{y} = \boldsymbol{H}\boldsymbol{y}$$

Point estimate: conditional mean!

•
$$\hat{y}^* = \mathbb{E}[Y|X = x^*] = x^*\hat{\beta}$$

Sampling distribution and CI:

•
$$\hat{y}^* \sim N(x^*\beta, \sigma^2 x^*(X^TX)^{-1}x^{*T})$$

•
$$[\hat{y^*} + t_{\alpha/2, df=n-p} \cdot SE(\hat{y^*}), \quad \hat{y^*} + t_{1-\alpha/2, df=n-p} \cdot SE(\hat{y^*})]$$

- standard error estimated with $\hat{\sigma}^2$
- Prediction interval: interval estimate for single data
 - add extra uncertainty from $\epsilon!$
 - variance increased by $\Longrightarrow \sigma^2 \left(\sigma^2 (1 + \mathbf{x}^* (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}^{*T})\right)$

← □ ▶ ← □

Week 11 COMP 680 24 / 4

- The slopes:
 - $\hat{\beta}_j$: the average change in Y when X_j increase by 1 unit while **holding** all the other covariates constant

Week 11 COMP 680 25 / 47

Interpretation

- The slopes:
 - $\hat{\beta}_j$: the average change in Y when X_j increase by 1 unit while **holding** all the other covariates constant
 - if some covariates are highly correlated, this is problematic!

Week 11 COMP 680 25 / 47

• The slopes:

- $\hat{\beta}_j$: the average change in Y when X_j increase by 1 unit while **holding** all the other covariates constant
- if some covariates are highly correlated, this is problematic!
- The intercept:
 - the average value of Y when all covariates are 0
 - may not be interpretable if any covariate cannot be 0
- More covariates ⇒ more complex and less interpretable model
 - is the goal making inference or making prediction?
 - variable/model selection

Week 11 COMP 680 25 / 47

- Correlation vs. partial correlation
 - ullet slope in simple regression \propto correlation
 - slope in multiple regression \propto partial correlation

Week 11 COMP 680 26 / 47

- Correlation vs. partial correlation
 - slope in simple regression \propto correlation
 - \bullet slope in multiple regression \propto partial correlation
- The "correlation" between X_j and Y after taking out the effects of other covariates

Week 11 COMP 680 26 / 47

- Correlation vs. partial correlation
 - slope in simple regression \propto correlation
 - slope in multiple regression \propto partial correlation
- The "correlation" between X_j and Y after taking out the effects of other covariates
- It is possible that X_j and Y are positively correlated but $\hat{\beta}_j$ is negative and significant!
 - example?

Week 11 COMP 680 26 / 47

- The regression function is linear!
 - linear in parameters

Week 11 COMP 680 27 / 47

- The regression function is linear!
 - linear in parameters
- Covariates are not correlated: no perfect multicollinearity
 - interpretation!
 - X need to be full rank

Week 11 COMP 680 27 / 47

- The regression function is linear!linear in parameters
- inical in parameters
- Covariates are not correlated: no perfect multicollinearity
 - interpretation!
 - X need to be full rank
- Gaussian errors:
 - errors have 0 mean
 - errors are independent: no auto-correlation
 - errors have constant variance: homoscedasticity
 - implies the conditional distribution of Y given X is Gaussian!

Week 11 COMP 680 27 / 47

Under the previous assumptions, the OLS solution $\hat{\beta}$ is the Best Linear Unbiased Estimate (BLUE)!

- smallest variance among unbiased estimates
 - $SE(\hat{\beta}^{OLS}) \leq SE(\hat{\beta})$
 - in general MLE is efficient

Week 11 COMP 680 28 / 47

Gauss-Markov Theorem

Under the previous assumptions, the OLS solution $\hat{\beta}$ is the Best Linear Unbiased Estimate (BLUE)!

- smallest variance among unbiased estimates
 - $SE(\hat{\beta}^{OLS}) \leq SE(\hat{\beta})$
 - in general MLE is efficient
- OLS does not necessarily have the smallest MSE!
 - recall MSE = bias² + variance
 - Ridge and Lasso estimate are both biased

◆ロト ◆団ト ◆注ト ◆注ト 注 りへで

Week 11 COMP 680 28 / 47

- What is Regression
- Simple Linear Regression
- Multiple Linear Regression
- 4 In Practice
- Code Demo

Week 11 COMP 680 29 / 47

Categorical Covariates

- Design matrix X is numerical, what about categorical variables?
- Example: gender, ethnicity, education level...
- Common mistake: code categories with 1, 2, 3, ...
 - what is wrong with that?

Week 11 COMP 680 30 / 47

Categorical Covariates

- Design matrix X is numerical, what about categorical variables?
- Example: gender, ethnicity, education level...
- Common mistake: code categories with 1, 2, 3, ...
 - what is wrong with that?
- Correct way: dummy variable coding
 - K categories $\rightarrow K-1$ dummy variables
 - adds K-1 columns to X
 - why not K dummy variables?

Week 11 COMP 680 30 / 47

Example: investigate difference in credit card balance between males and females. We create 1 dummy variable:

$$x_i = \begin{cases} 1 & \text{if ith person is female} \\ 0 & \text{if ith person is male} \end{cases}$$

Week 11 COMP 680 31 / 47

Categorical Covariates

Example: investigate difference in credit card balance between males and females. We create 1 dummy variable:

$$x_i = \begin{cases} 1 & \text{if ith person is female} \\ 0 & \text{if ith person is male} \end{cases}$$

Resulting model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is female} \\ \beta_0 + \epsilon_i & \text{if ith person is male} \end{cases}$$

Interpretation?

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣りの

Week 11 COMP 680 31 / 47

Categorical Covariates

Results for gender model:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	509.80	33.13	15.389	< 0.0001
gender [female]	19.73	46.05	0.429	0.6690

Week 11 COMP 680 32 / 47

0

- For the ethnicity variable we create 2 dummy variables:
- The first one could be:

$$x_{i1} = \begin{cases} 1 & \text{if ith person is Asian} \\ 0 & \text{if ith person is not Asian} \end{cases}$$

• The second one could be:

$$x_{i2} = \begin{cases} 1 & \text{if ith person is Caucasian} \\ 0 & \text{if ith person is not Caucasian} \end{cases}$$

◆ロト ◆園 ト ◆夏 ト ◆夏 ト 夏 り へ ○

Week 11 COMP 680 33 / 47

• Then both of these variables can be used in the regression equation:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if ith person is African} \end{cases}$$

 The category with no dummy variable – African American in this example – is the baseline.

Week 11 COMP 680 34 / 47

In Practice

Categorical Covariates

	Coefficient	Std. Error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
Ethnicity [Asian]	-18.69	65.02	-0.287	0.7740
Ethnicity [Caucasian]	-12.50	56.68	-0.221	0.8260

Week 11 COMP 680 35 / 47

Interaction

- Relax the additive assumption: interactions and nonlinearity
- Example: predict credit card balance using income and student status (binary)
- Model without interaction:

$$\begin{aligned} \mathsf{balance}_i &= \beta_0 + \beta_1 \cdot \mathsf{income}_i + \begin{cases} \beta_2 & \text{if ith person is a student} \\ 0 & \text{if ith person is not a student} \end{cases} \\ &= \beta_1 \cdot \mathsf{income}_i + \begin{cases} \beta_0 + \beta_2 & \text{if ith person is a student} \\ \beta_0 & \text{if ith person is not a student} \end{cases} \end{aligned}$$

Different intercept, same slope!

Week 11 COMP 680 36 / 4

Interaction Term

Model with interaction:

$$\begin{split} \mathsf{balance}_i &= \beta_0 + \beta_1 \cdot \mathsf{income}_i + \beta_2 \cdot \mathsf{student}_i + \beta_3 \cdot \mathsf{income}_i \times \mathsf{student}_i \\ &= \beta_0 + \beta_1 \cdot \mathsf{income}_i + \begin{cases} \beta_2 + \beta_3 \cdot \mathsf{income}_i & \mathsf{if student} \\ 0 & \mathsf{if not student} \end{cases} \\ &= \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \cdot \mathsf{income}_i & \mathsf{if student} \\ \beta_0 + \beta_1 \cdot \mathsf{income}_i & \mathsf{if not student} \end{cases} \end{split}$$

Different intercept, different slope!

Week 11 **COMP 680** 37 / 47

Interaction Term

- no interaction between income and student
- with an interaction between income and student

Week 11 COMP 680 38 / 47

Polynomial Term

Polynomial regression on Auto data:

$$mpg = \beta_0 + \beta_1 \cdot horsepower + \beta_2 \cdot horsepower^2 + \epsilon$$

Week 11 COMP 680 39 / 47

Polynomial Term

Polynomial regression on Auto data:

$$mpg = \beta_0 + \beta_1 \cdot horsepower + \beta_2 \cdot horsepower^2 + \epsilon$$

Results may provide a better fit than just linear terms:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
horsepower ²	0.0012	0.0001	10.1	< 0.0001

Week 11 **COMP 680** 39 / 47

Polynomial Term

Polynomial regression on Auto data:

$$mpg = \beta_0 + \beta_1 \cdot horsepower + \beta_2 \cdot horsepower^2 + \epsilon$$

Results may provide a better fit than just linear terms:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
horsepower ²	0.0012	0.0001	10.1	< 0.0001

But coefficients lose interpretability - why?

Week 11 **COMP 680** 39 / 47 How do we check if the model fits the data well?

- RSS is unit dependent and minimized by definition of OLS
 - more for diagnostic

Week 11 COMP 680 40 / 47

Model Fit

How do we check if the model fits the data well?

- RSS is unit dependent and minimized by definition of OLS
 - more for diagnostic
- R^2 : percentage of variation in response Y that is explained by the model
 - in simple linear regression, $R^2 = r_X^2 r!$
 - always increase with more covariates, why?

Week 11 **COMP 680** 40 / 47

How do we check if the model fits the data well?

- RSS is unit dependent and minimized by definition of OLS
 - more for diagnostic
- R^2 : percentage of variation in response Y that is explained by the model
 - in simple linear regression, $R^2 = r_X^2 r!$
 - always increase with more covariates, why?
- F-statistic and F-test
 - is at least one covariate useful? (better than null model)

•
$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

Week 11 **COMP 680**

Model Fit

How do we check if the model fits the data well?

- RSS is unit dependent and minimized by definition of OLS
 - more for diagnostic
- R²: percentage of variation in response Y that is explained by the model
 - in simple linear regression, $R^2 = r_{XY}^2$!
 - always increase with more covariates, why?
- F-statistic and F-test
 - is at least one covariate useful? (better than null model)
 - $F = \frac{(TSS-RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$

Week 11 COMP 680 40 / 47

- Adjusted R²
 - $ightharpoonup R^2 + model complexity penalty (number of covariates)$
 - no longer blindly favor large model like R^2

Week 11 COMP 680 41 / 47

- Adjusted R²
 - $ightharpoonup R^2 + model complexity penalty (number of covariates)$
 - ullet no longer blindly favor large model like R^2
- Akaike information criterion (AIC)
 - -2 log likelihood + 2p

Week 11 COMP 680 41 / 47

- Adjusted R²
 - R^2 + model complexity penalty (number of covariates)
 - ullet no longer blindly favor large model like R^2
- Akaike information criterion (AIC)
 - -2 log likelihood + 2p
- Bayesian information criterion (BIC)
 - -2 log likelihood + $p(\log n)$
 - penalize large model more

Week 11 COMP 680 41 / 47

Model Diagnostic - Residual Plot

Always check residual plot!!!

Week 11 COMP 680 42 / 47

Always check residual plot!!!

Good:

- scattered around 0
- no clear pattern
- normal distribution

Bad:

- auto-correlation
- heteroscedasticity
- non-linearity

Week 11 COMP 680 42 / 47

Residual Plot

Week 11 **COMP 680** 43 / 47

Residual Plot

Week 11 **COMP 680** 44 / 47

Week 11 COMP 680 45 / 47

Model Diagnostic - Multicollinearity

- Refers to two or more covariates highly correlated
- Cause issues
 - numerical stability
 - coefficients SE inflated
 - interpretability
- Identify:
 - scatter plot, correlation matrix
 - condition number, variance inflation factor (VIF)

Week 11 COMP 680 46 / 47

Model Diagnostic - Multicollinearity

- Refers to two or more covariates highly correlated
- Cause issues
 - numerical stability
 - coefficients SE inflated
 - interpretability
- Identify:
 - scatter plot, correlation matrix
 - condition number, variance inflation factor (VIF)
- Solution:
 - variable selection
 - feature engineering

Week 11 COMP 680 46 / 47

- What is Regression
- Simple Linear Regression
- Multiple Linear Regression
- In Practice
- Code Demo

Week 11 COMP 680 47 / 47