FOUNDATIONS OF REPRESENTATION THEORY

4. Exercise sheet

Jendrik Stelzner

November 8, 2013

Exercise 13:

A submodule $S \subseteq N(\lambda)$ is simple if and only if it is of the form

$$S = \left\langle \sum_{i=1}^{t} \mu_i e_{i1} \right\rangle$$

with $\mu_1, \ldots, \mu_t \in K$ and $\mu_j \neq 0$ for at least one $j \in \{1, \ldots, n\}$: Since

$$\phi\left(\sum_{i=1}^{t} \mu_{i} e_{i1}\right) = \sum_{i=1}^{t} \mu_{i} \phi(e_{i1}) = 0$$

and $\sum_{i=1}^t \mu_i e_{i1} \neq 0$ these subspaces are 1-dimensional submodules, which are always simple. If $S \subseteq N(\lambda)$ is simple then S is nonzero, and because ϕ is nilpotent there is $v \in S \setminus \{0\}$ with $\phi(v) = 0$. So the subspace $\langle v \rangle \subseteq S$ is a nonzero submodule of S, so $S = \langle v \rangle$. Thus we get

$$\operatorname{soc}(N(\lambda)) = \sum_{\substack{S \subseteq N(\lambda) \\ S \text{ semisimple}}} S = \sum_{\substack{S \subseteq N(\lambda) \\ S \text{ simple}}} S = \langle e_{11}, e_{21}, \dots, e_{t1} \rangle.$$

To determine $\operatorname{rad}(N(\lambda))$ we notice that for every $s \in \{1, \dots, t\}$ the subspace

$$M_s := \left\langle \left(\bigcup_{i=1}^t \bigcup_{j=1}^{\lambda_i} \{e_{ij}\} \right) \setminus \{e_{s\lambda_s}\} \right\rangle$$

is a maximal submodule of $N(\lambda)$:

It is clear that M_s is a submodule. To show that M_s is maximal in $N(\lambda)$ we notice that for a submodule M of $N(\lambda)$ with $M_s \subsetneq M \subseteq N(\lambda)$ there exists $v \in M$ and $\mu_{ij} \in K$ for $i=1,\ldots,t, j=1,\ldots,\lambda_i$ with $\mu_{s\lambda_s}=1$ such that

$$v = \sum_{i=1}^{t} \sum_{j=1}^{\lambda_i} \mu_{ij} e_{ij},$$

because otherwise $v \in M_s$ for all $v \in M$ and thus $M \subseteq M_s$. Together with $M_s \subsetneq M$ this implies that $e_{ij} \in M$ for $i = 1, \ldots, t$ and $j = 1, \ldots, \lambda_i$. So $M = N(\lambda)$.

Because M_s is maximal for s = 1, ..., t we find that

$$\mathrm{rad}(N(\lambda))\subseteq\bigcap_{s=1}^t M_s=\left\langle\bigcup_{i=1}^t\bigcup_{j=1}^{\lambda_i-1}\{e_{ij}\}\right\rangle=:r_0.$$

We also find that $r_0 \supseteq \operatorname{rad}(N(\lambda))$: If $W \subsetneq N(\lambda)$ is a maximal submodule with $r_0 \not\subseteq W$ then there is some $s \in \{1, \dots, t\}$ with $e_{s(\lambda_s - 2)} \not\in W$, which also means that $e_{s(\lambda_s - 1)} \not\in W$, because

$$\phi(e_{s(\lambda_s-1)}) = e_{s(\lambda_s-2)}.$$

Because W is maximal in $N(\lambda)$ the factor module $N(\lambda)/W$ is simple, and because $N(\lambda)/W \cong N(\lambda')$ for some $\lambda' = (\lambda'_1, \dots, \lambda'_t)$ with $\lambda'_i \leq \lambda_i$ for $i = 1, \dots, t$ this means that $N(\lambda)/W$ is one-dimensional. So W has dimension

$$\dim N(\lambda) - 1 = \left(\sum_{i=1}^{t} \lambda_i\right) - 1. \tag{1}$$

Because $e_{s(\lambda_s-2)} \not\in W$ we find that $\langle e_{s(\lambda_s-2)} \rangle \cap W = 0$ and that W is a proper subspace of $W + \langle e_{s(\lambda_s-2)} \rangle$. Therefore (1) implies that $W + \langle e_{s(\lambda_s-2)} \rangle = N(\lambda)$. So $N(\lambda) = W \oplus \langle e_{s(\lambda_s-2)} \rangle$ (as vector spaces). So there are $\mu \in K$ and $v \in W$, $v = \sum_{i=1}^t \sum_{j=1}^{\lambda_i} \mu_{ij} e_{ij}$ with $\mu_{ij} \in K$ and $\mu_{s(\lambda-2)} = 0$, such that

$$e_{s(\lambda-1)} = \mu e_{s(\lambda-2)} + v = \mu e_{s(\lambda-2)} + \sum_{i=1}^{t} \sum_{j=1}^{\lambda_i} \mu_{ij} e_{ij}.$$

Because the e_{ij} are linear independent we get $\mu=0$, so $e_{s(\lambda-1)}=v\in W$, which is a contradiction to $e_{s(\lambda-1)}\not\in W$. So for every maximal submodule $W\subsetneq N(\lambda)$ we have $r_0\subseteq W$, so $r_0\subseteq \mathrm{rad}(N(\lambda))$.

Exercise 14:

Lemma 1. Let V and W be modules and $f:V\to W$ a module homomorphism. Then the following hold:

- i) For every submodule $U \subseteq W$ the preimage $f^{-1}(U)$ is a submodule of V.
- ii) If $U\subseteq V$ is a submodule, $\pi:V\twoheadrightarrow V/U$ the canonical projection and $W\subseteq V/U$ a maximal submodule, then the preimage $\pi^{-1}(W)$ is a maximal submodule of V.
- iii) If $W\subseteq V$ is maximal in V and $U\subseteq W$ is a submodule then W/U is maximal in V/U and $\pi^{-1}(W/U)=W$.

Proof. i)

We know from algebra that $f^{-1}(U)$ is an additive subgroup of V. $f^{-1}(U)$ is also a subspace of V, since for all $\lambda \in K$

$$v \in f^{-1}(U) \Rightarrow f(v) \in U \Rightarrow f(\lambda v) = \lambda f(v) \in U \Rightarrow \lambda v \in f^{-1}(U).$$

 $f^{-1}(U)$ is a submodule of V, since f is a module homomorphism and U a submodule and so for all $j \in J$ and $v \in f^{-1}(U)$

$$f(\phi_i(v)) = \psi_i(f(v)) \in U,$$

so $\phi_i(v) \in f^{-1}(U)$.

ii)

From i) it follows that $f^{-1}(W)$ is a submodule of V. Let $W'\subseteq V$ be a arbitrary submodule with

$$\pi^{-1}(W) \subseteq W' \subseteq V. \tag{2}$$

Then $W\subseteq W'/U\subseteq V/U$, so the maximality of W implies that W'/U=W or W'/U=V/U. If W'/U=W then

$$W' \subseteq \pi^{-1}(W'/U) = \pi^{-1}(W),$$

and with (2) we get $W'=\pi^{-1}(W)$. If W'/U=V/U then the isomorphism theorems imply that

$$V/W' \cong (V/U)/(W'/U) = 0,$$

so W' = V.

iii)

W/U is a proper submodule of V/U, because W is maximal in V and so

$$(V/U)/(W/U) \cong \underbrace{V/W}_{\text{simple}} \neq 0.$$

Let $W' \subseteq V/U$ be a submodule with

$$W/U \subseteq W' \subsetneq V/U$$
.

We know from i) that $\pi^{-1}(W')$ is a submodule of V, and obviously

$$W \subset \pi^{-1}(W/U) \subset \pi^{-1}(W') \subset V$$
.

So the maximality of W implies that $W = \pi^{-1}(W')$. So

$$W/U = \pi(W) = \pi(\pi^{-1}(W')) = W'.$$

This shows that W/U is maximal in V/U. Now 1 ii) implies that $\pi^{-1}(W/U)$ is maximal is V. Because $W \subseteq \pi^{-1}(W/U)$ it follows that $W = \pi^{-1}(W/U)$.

(ii)

If V/U does not have any maximal submodules we get rad(V/U) = V/U and

$$(U + \operatorname{rad}(V))/U \subseteq V/U = \operatorname{rad}(V/U)$$

If $V\!/U$ does have maximal submodules, then by definition we get

$$\begin{split} &(U+\operatorname{rad}(V))/U\subseteq\operatorname{rad}(V/U)\\ \Leftrightarrow &(U+\operatorname{rad}(V))/U\subseteq\bigcap_{\substack{W\subseteq V/U\\W\text{ maximal}}}W\\ \Leftrightarrow &(U+\operatorname{rad}(V))/U\subseteq W\text{ for all }W\subseteq V/U\text{ maximal}. \end{split}$$

Let $W\subseteq V/U$ be an arbitrary maximal submodule. Using Lemma 1 ii) we find that $\pi^{-1}(W)$ is a maximal submodule of V, where $\pi:V\twoheadrightarrow V/U$ is the canonical projection. Obviously we have $U\subseteq\pi^{-1}(W)$, and because $\pi^{-1}(W)$ is maximal in V we also get $\mathrm{rad}(V)\subseteq\pi^{-1}(W)$, so

$$U + \operatorname{rad}(V) \subseteq \pi^{-1}(W),$$

and thus

$$(U + \operatorname{rad}(V))/U = \pi(U + \operatorname{rad}(V)) \subseteq \pi(\pi^{-1}(W)) = W.$$

(i)

From part (ii) we get

$$rad(V)/U = (U + rad(V))/U \subseteq rad(V/U),$$

so all that's left to show is $\mathrm{rad}(V/U)\subseteq\mathrm{rad}(V)/U.$ If V has no maximal submodules, then $\mathrm{rad}(V)=V$ and

$$rad(V/U) \subseteq V/U = rad(V)/U$$
.

If V has maximal submodules, then let W be an arbitrary maximal submodule of V. Since $U \subseteq \operatorname{rad}(V) \subseteq W$ we know from 1 iii) that W/U is maximal in V/U and $\pi^{-1}(W/U) = W$. So $\operatorname{rad}(V/U) \subseteq W/U$ and thus

$$\pi^{-1}(\operatorname{rad}(V/U)) \subseteq \pi^{-1}(W/U) = W.$$

Because W is arbitrary it follows that

$$\pi^{-1}(\operatorname{rad}(V/U)) \subseteq \operatorname{rad}(V)$$

and from this it follows that

$$\operatorname{rad}(V/U) = \pi(\pi^{-1}(\operatorname{rad}(V/U))) \subset \pi(\operatorname{rad}(V)) = \operatorname{rad}(V)/U.$$

Exercise 15:

$$\neg(ii) \Rightarrow \neg(i)$$

Assume that $V = U \oplus C$ is a direct sum decomposition with U simple.

Claim. C is maximal in V.

With this we find that

$$U \subseteq \operatorname{soc}(V)$$
 and $\operatorname{rad}(V) \subseteq C$

because U is simple and C is maximal in V. Because U nonzero with $U\cap C=0$, this implies that $\mathrm{soc}(V)\nsubseteq\mathrm{rad}(V)$.

Proof of the claim. Let $C'\subseteq V$ be a submodule with $C\subseteq C'\subseteq V$. Let $C'':=C'\cap U$. Because U is simple we know that C''=0 or C''=U. If C''=0 then by using modularity and $C\subseteq C'$ we find

$$C = C + C'' = C + (U \cap C') = (C + U) \cap C' = V \cap C' = C'.$$

If C'' = U we get

$$U = C'' = C' \cap U$$
, so $V = U \oplus C \subseteq U + C' = C'$, so $C' = V$.

$$(ii) \Rightarrow (i)$$

Assume that V does not have a simple direct summand. If V has no maximal submodule, then $soc(V) \subseteq rad(V) = V$.

If V does have at least one maximal submodule then by definition

```
\operatorname{soc}(V) \subseteq \operatorname{rad}(V) \Leftrightarrow S \subseteq U for all S \subseteq V simple and all U \subseteq V maximal.
```

Assume that $S\subseteq V$ is simple and $U\subseteq W$ is maximal with $S\nsubseteq U$. Then $S\cap U\neq S$ and $S\subsetneq S+U$. Because S is simple this implies $S\cap U=0$, and because U is maximal it implies S+U=V. So $V=S\oplus U$. This is a contradiction to the assumption that V does not have a simple direct summand. So $S\subseteq U$ for all for all $S\subseteq V$ simple and all $U\subseteq V$ maximal.

Exercise 16:

(i)

 $0\subseteq K[T]$ is the only small submodule of $(K[T],T\cdot)$: Let $0\subsetneq U\subseteq K[T]$ be a small submodule. We know that U=(a) for some $a\in K[T]$; because U has to be nonzero and proper we know that $\deg a\geq 1$. We find an irreducible polynomial $p\in K[T]$ with $p\nmid a$. So (a)+(p)=(1)=K[T]. Because (p) proper submodule of $(K[T],T\cdot)$ this shows that U is not small.

In $N(\infty)$ all nonzero submodules are small: For all nonzero submodules $V, V' \subseteq N(\infty)$ we have $N(1) \subseteq V, V'$ as a nonzero submodule, so $V \cap V' \supseteq N(1)$ is nonzero.

(ii)

Both modules are uniform:

Let $U, U' \subseteq K[T]$ be nonzero submodules. We know that U = (a) and U' = (b) for $a, b \in K[T] \setminus \{0\}$. Thus (ab) is a nonzero submodule of both U and U' (because K[T] has no zero divisors), so $U \cap U' \supseteq (ab)$ is nonzero.

Let $V, V' \subseteq N(\infty)$ be nonzero submodules. We know that V = N(i) and V' = N(j) for $i, j \in \mathbb{N} \setminus \{0\}$. So $V \cap V' \supseteq N(1)$ is nonzero.

(iii)

Let $V=N(\infty)$ and $U:=N(1)\subseteq V$. U is large in V: For every nonzero submodule $U'\subseteq V$ we have $N(1)\subseteq U'$, so $U\cap U'\supseteq N(1)$ is nonzero. U is also small: For every proper submodule $U''\subseteq V$ we have U''=N(i) for some $i\in\mathbb{N}$. So $U+U''=N(1)+N(i)=N(\max\{1,i\})$ is a proper submodule of V.