

nformation Eng<mark>i</mark>neering

LAB - 03

陳培殷

國立成功大學 資訊工程系

Digital Integrated Circuit

Outline

- Video preview for 布林代數+全及項
- Mid Exam
- Lab I -- Comparator
- Lab II -- Constant Multiplier
- Lab III(practice) -- Constant Comparator

Mid Exam

- 考試日期:
 - □ 10/08(四) 09:00-12:00
- 考試方式:以個人為單位
- 考試時間:50 min

Three representations for a circuit

1. Boolean Algebra

$$F_1 = x + y'z$$

3. Circuit Diagram

2. Truth Table

真值表

n input variables \rightarrow 2ⁿ combinations Inputs

Χ	У	Z	y'	y'z	F_1
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

Function Table

Y = AB

Cin	Output	
JOA	В	Y
	T	L
L	Н	L
H	L	L
Hoos	HTW	Н

H = HIGH Logic Level L = LOW Logic Level

Boolean Algebra

F=xy

Function Table

Y = A + B

lnı	Output		
A	В	Y	
007	TW	L	
L C	Н	Н	
10/H	L	Н	
H.V.	Н	Н	

H = HIGH Logic Level L = LOW Logic Level

Boolean Algebra

F=x+y

Function Table

V	^
T	A

Input	Output		
A			
1007-1	H		
HCO/A	TOWN L W		

H = HIGH Logic Level L = LOW Logic Level

Boolean Algebra

F=x'

Function Table

$$Y = \overline{AB}$$

OV.CY	Output	
A C	В	Y
1001	T	Н
L. (О Н	Н
10H 7.	L	Н
Н	H	L

H = HIGH Logic Level

L = LOW Logic Level

Boolean Algebra

F=(xy)'

Top View of the Solderless Breadboard

Example: Connection with 74LS00 Chip

TTL mode

Lab I – Comparator (1/2)

- There are two inputs denoted as A and B. Both A and B are 1-bit value. A comparator is designed to determine whether A is equal to B or not. The output results are represented with E.
- The function and truth table of the comparator is described as follows.

$$\mathsf{E} = \begin{cases} 1 & \text{, if } A \text{ is equal to } B \\ 0 & \text{, else} \end{cases}$$

A	В	E
0	0	
0	1	0 用全及項的概念去
1	0	0 推導布林表示式
_ 1	1	

Lab I – Comparator (2/2)

Please

- (a) write Boolean algebra of the comparator.
- (b) implement the circuit on the breadboard.

Components needed for LAB I

Names	Amount
Solerless Breadboard	×1
74LS04	×1
74LS08	×1
74LS32	×1

Notice for LAB I

Input

Output

Lab II -- Constant Multiplier (1/4)

There is a 2-bit input X (represented as X1 and X0). A constant multiplier is designed to multiply the input by 3. Finally, show the result with decimal format (0, 1, 2,,9) on Digital Display in the breadboard.

Hint-1:

The output digital number is 0, 3, 6 or 9, respectively, for four different inputs (0, 1, 2, 3).

Lab II -- Constant Multiplier (3/4)

Hint-3:

Write Boolean Algebra. (D = ? C = ? B = ? A = ?) 用全及項的概念去推導布林表示式

X1	X 0	Decimal	D	С	В	A	Decimal
0	0	0	0	0	0	0	0
0	1	1	0	0	1	1	3
1	0	2	0	1	1	0	6
1	1	3	1	0	0	1	9

Lab II -- Constant Multiplier(4/4)

Please

- (a) draw the circuit diagram of the constant multiplier.
- (b) implement the circuit on the breadboard, and show the result with decimal format (0, 1, 2,,9) on Digital Display in the breadboard.

Components needed for LAB II

Names	Amount
Solerless Breadboard	×1
74LS04	×1
74LS08	×1
74LS32	×1

Lab III – Constant Comparator(practice) (1/2)

■ There are a 3-bit input X (represented as X2, X1 and X0) and two 1-bit outputs A and B. The comparator is designed to let output A be 1 if X>3 and output B be 1 if X>4.

LSB

■ The function of the comparator is described as follows.

$$A = \begin{cases} 1 & \text{, if } X \text{ is greater than 3} \\ 0 & \text{, else} \end{cases}$$

$$B = \begin{cases} 1 & \text{, if } X \text{ is greater than 4} \\ 0 & \text{, else} \end{cases}$$

Lab III— Constant Comparator (practice) (2/2)

Please

- (a) draw the truth table of the comparator where three input bits are X2, X1 and X0, and two output bits are A and B, respectively.
- (b) implement the circuit on the breadboard.

Components needed for LAB II

Names	Amount
Solerless Breadboard	×1
74LS04	×1
74LS08	×1
74LS32	×1

Notice for LAB III

Input

Output

