

Priority Queues

Dr. Aiman Hanna Department of Computer Science & Software Engineering Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of:
Data Structures and Algorithms in Java, 5th edition. John Wiley& Sons, 2010. ISBN 978-0-470-38326-1.
Data Structures and the Java Collections Framework by William J. Collins, 3rdedition, ISBN 978-0-470-48267-4.
Both books are published by Wiley.

Copyright © 2010-2011 Wiley
Copyright © 2010 Michael T. Goodrich, Roberto Tamassia
Copyright © 2011 William J. Collins
Copyright © 2011-2021 Aiman Hanna
All rights reserved

Coverage

- □ The Priority Queue ADT
- Priority Queue List ImplementationSorting with Priority Queue
- Insertion Sort
- Selection Sort

- A priority queue (P.Q.) is an ADT for storing a collection of prioritized elements; the elements are referred to as values.
- P.Q. supports arbitrary insertion of elements, however the removal of the elements is made in order of priorities.
- Consequently, a P.Q. is fundamentally different from other position-based ADTs (such as stacks, queues, D.Qs, etc.), where operations are conducted on specific positions.
- P.Q. ADT stores elements according to their priorities and exposes no notion of positions to the user.

- A key can be used to indicate the priority of a value (p.s. value means an element here).
- □ Each entry in the P.Q. is hence a pair of (key, value)
- Main methods of the Priority Queue ADT
 - insert(k, x): insert an entry with key k and value x into PQ, and return the entry storing them
 - removeMin(): remove and returns the entry with smallest key (smallest key indicates first priority).

- Additional methods
 - min(): return the entry with smallest key, but do not remove it
 - size(), isEmpty()
- Applications:
 - Auctions
 - Stock market
 - ...

- Example of a P.Q.
 - Notice that the "Priority Queue" column is somewhat deceiving since it shows that the entries are sorted by keys, which is more than required of a P.Q.

Opei	ations	Output	Priority Queue
inse	t(5, A)	$e_1 [= (5, A)]$	{(5, A)}
inse	t(9, C)	$e_2 = (9, C)$	{(5, A), (9, C)}
inse	t(3, B)	$e_3 [= (3, B)]$	{(3, B), (5, A), (9, C)}
inse	t(7, D)	$e_4 [= (7, D)]$	{(3, B), (5, A), (7, D), (9, C)}
m	nin()	e_3	{(3, B), (5, A), (7, D), (9, C)}
remo	veMin()	e_3	{(5, A), (7, D), (9, C)}
si	ze()	3	{(5, A), (7, D), (9, C)}
remo	veMin()	e_1	{(7, D), (9, C)}
remo	veMin()	e_4	{(9, C)}
		P	Priority Queues

Total Order Relations

- Keys in a priority queue can be arbitrary objects on which an order is defined.
- Two distinct entries in a priority queue can have the same key.
- P.Q. needs a comparison rule that will never contradict itself.
- In order for a comparison rule, which we denote by ≤, to be robust, it must define a total order relation.

Total Order Relations

- The comparison rule must be defined for each pair of keys and must satisfy the following properties:
 - Reflexive property:

$$k \leq k$$

Antisymmetric property:

$$k_1 \leq k_2 \land k_2 \leq k_1 \Rightarrow k_1 = k_2$$

Transitive property:

$$k_1 \leq k_2 \wedge k_2 \leq k_3 \Rightarrow k_1 \leq k_3$$

 A comparison rule that satisfies these three properties will never lead to a comparison contradiction.

Entries & Comparators

- Two important questions must be asked:
 - How do we keep track of the associations between keys and values?
 - How do we compare keys so as to determine the smallest key?
- The definition of a P.Q. implicitly makes use of two special kinds of objects, which answer the above questions:
 - The *entry* object
 - The *comparator* object

Entry ADT

- An entry in a priority queue is simply a key-value pair
- That is, an entry object is actually composed of a key and a value objects
- Priority queues store entries to allow for efficient insertion and removal based on keys
- Methods of Entry ADT:
 - getKey: returns the key for this entry
 - getValue: returns the value associated with this entry

Entry ADT

As a Java interface:

```
/**
 * Interface for a key-value
 * pair entry
 **/
public interface Entry<K,V> {
   public K getKey();
   public V getValue();
}
```

- It is important to define a way for specifying the total order relation for comparing keys.
- One possibility is to use a particular key type that the P.Q. can compare.
- The problem with such approach is that the utilization of different keys would require the creation of different/multiple P.Qs.
- An alternative strategy is to require the keys to be able to compare themselves to one another.
- This solution allows us to write a general P.Q. that can store instances of a key class that has a well-established natural ordering.
 Priority Queues

- It is possible to have comparable objects by implementing the java.lang.Comparable interface.
- The problem with such approach however is that there are cases where the keys will be required to provide more information than they should/expected to, such as their comparison rules.
- For instance, there are two natural ways to compare "7" and "21". "7" is < "21" if the rule is integer comparison, where "21" is < "7" if the rule is lexicographic ordering.
- Such cases would require the keys themselves to provide their comparison rules.

- Instead, we can use special comparator objects that are external to the keys to supply the comparison rules.
- A comparator encapsulates the action of comparing two objects according to a given total order relation.
- A generic priority queue uses an auxiliary comparator.
- We assume that a priority queue is given a comparator object when it is constructed. The P.Q. uses its comparator for keys comparisons.

14

- Primary method of the Comparator ADT:
 - compare(a, b): returns an integer i such that
 - i < 0 if a < b,
 - i = 0 if a = b
 - i > 0 if a > b
 - An error occurs if a and b cannot be compared.
- The <u>java.util.Comparator</u> interface correspond to the above comparator ADT.

15

Example Comparator

/** Comparator for 2D points under the standard lexicographic order. */

public class Lexicographic implements Comparator {
 int xa, ya, xb, yb;
 public int compare(Object a, Object b) throws ClassCastException {
 xa = ((Point2D) a).getX();
 ya = ((Point2D) a).getY();
 xb = ((Point2D) b).getX();
 yb = ((Point2D) b).getY();
 if (xa != xb)
 return (xb - xa);

return (yb - ya);

Lexicographic comparison of 2-D

points:

else

Point objects:

```
/** Class representing a point in the plane with integer coordinates */
public class Point2D {
   protected int xc, yc; // coordinates
   public Point2D(int x, int y) {
     xc = x;
     VC = V;
   public int getX() {
           return xc;
   public int getY() {
           return yc;
```

Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements
 - 1. Insert the elements one by one with a series of insert operations
 - 2. Remove the elements in sorted order with a series of removeMin operations
- The running time of this sorting method depends on the priority queue implementation

Priority Queue Sorting

S.addLast(e)

```
Algorithm PQ-Sort(S, C)
    Input sequence S, comparator C for the elements of S
    Output sequence S sorted in increasing order according to C
    P \leftarrow priority queue with comparator C
    while ¬S.isEmpty ()
         e \leftarrow S.removeFirst()
         P.insert(e,\emptyset)
    while ¬P.isEmpty()
         e \leftarrow P.removeMin().getKey()
```

Notice that in the above code, the elements of the input sequence *S* serve as keys of the priority queue *P*.

Sequence-based Priority Queue

Implementation with an unsorted list

Performance:

- insert takes O(1) time
 since we can insert the
 item at the beginning or
 end of the sequence
- removeMin and min take
 O(n) time since we have
 to traverse the entire
 sequence to find the
 smallest key

Implementation with a sorted list

Performance:

- insert takes *O*(*n*) time since we have to find the place where to insert the item
- removeMin and min take
 O(1) time, since the
 smallest key is at the
 beginning

Selection-Sort

- Selection Sort algorithm works as follows:
 - Find the minimum value in the collection (list/sequence,
 P.Q., etc.)
 - Swap it with the value in the first position
 - Repeat the steps above for the remainder of the list (starting at the second position and advancing each time)
- Click here to view some illustrative animations
- What is the running time?

Selection-Sort

- Running time of the *PQ-Sort*(*S*, *C*) Selection-sort;
 that is when the P.Q. is implemented with unsorted sequence:
 - 1. (First loop): Inserting the elements into the priority queue with n insert operations takes O(n) time
 - 2. (Second loop) Removing the elements in sorted order (repeated seclection) from the priority queue with *n* removeMin operations takes time proportional to

$$n + n - 1 + n - 2 + ... + 3 + 2 + 1$$

Resulting in a total of $O(n + n^2) \rightarrow O(n^2)$

□ → Selection-sort runs in $O(n^2)$ time

Selection-Sort Example

Input:	Sequence S (7,4,8,2,5,3,9)	Priority Queue P
Phase 1 (firs (a) (b)	st loop) (4,8,2,5,3,9) (8,2,5,3,9)	(7) (7,4)
(g)	0 0	(7,4,8,2,5,3,9)
Phase 2 (see (a) (b) (c) (d) (e) (f) (g)	cond loop) (2) (2,3) (2,3,4) (2,3,4,5) (2,3,4,5,7) (2,3,4,5,7,8) (2,3,4,5,7,8,9)	(7,4,8,5,3,9) (7,4,8,5,9) (7,8,5,9) (7,8,9) (8,9) (9)

Insertion-Sort

- Insertion Sort algorithm is as follows:
 - Removes an element (possibly arbitrary) from the input data
 - Insert the element into the correct position in the already-sorted list
 - Repeat until no input elements remain.
- Click here to view some illustrative animations
- What is the running time? What is fastest case?

Insertion-Sort

- Running time of the *PQ-Sort*(*S*, *C*) Insertion-sort; that is when the P.Q. is implemented with sorted sequence (obtained after phase 1 (first loop) is finished):
 - 1. (First loop): Inserting the elements into the priority queue with *n* insert operations takes time proportional to

$$1 + 2 + \ldots + n$$

2. (Second loop): Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time

Resulting in a total of $O(n^2 + n) \rightarrow O(n^2)$

□ → Insertion-sort runs $\ln_{24} O(n^2)$ time

Insertion-Sort

- Special case:
 - If the sequence is already (by luck) sorted, then
 - 1. (First loop): Sorting the list will take O(n) time
 - 2. (Second loop): Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time

Resulting in a total of $O(n+n) \rightarrow O(n)$

Insertion-Sort Example

	Sequence S	Priority queue P
Input:	(7,4,8,2,5,3,9)	0
Phase 1 (f	' '	
• • •	(4,8,2,5,3,9)	(7)
(b)	(8,2,5,3,9)	(4,7)
(c)	(2,5,3,9)	(4,7,8)
(d)	(5,3,9)	(2,4,7,8)
(e)	(3,9)	(2,4,5,7,8)
(f)	(9)	(2,3,4,5,7,8)
(g)	0	(2,3,4,5,7,8,9)
Phase 2 (s	secondl oop)	
(a)	(2)	(3,4,5,7,8,9)
(b)	(2,3)	(4,5,7,8,9)
(g)	(2,3,4,5,7,8,9)	Ö

In-place Insertion-Sort

- Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place
- A portion of the input sequence itself serves as the priority queue
- For in-place insertion-sort
 - We keep sorted the initial portion of the sequence
 - We can use swaps instead of modifying the sequence

