Problem 1. Let C be a category. Prove that for any finite diagram $D: \mathcal{I} \to C$ there exists $\lim_{\leftarrow I} \mathcal{D}$ iff category C has a Terminal object and for any two morphisms with the same domain and codomain, there exists an Equalizer and also for any $A, B \in C_0$, $A \times B \in C_0$.

- (\Rightarrow) Suppose for any finite diagram limit exists.
- (i) let $\mathcal{I}_0 = \{\}$. since $X = \lim_{\leftarrow \mathcal{I}_0} \mathcal{D}_0$ exists, and the image of \mathcal{I} in \mathcal{C} is empty, therefore any object of \mathcal{C} like Y with any morphisms, commutes with this emtpy Image of \mathcal{I} . Which means that there exists a unique morphism $Y \stackrel{\varphi}{\to} X$. Therefore we can say that there exists a unique morphism from any object of \mathcal{C} to X. This shows that X is terminal object of the cateogry \mathcal{C} .
- (ii) Let $A, B \in \mathcal{C}_0$. Let \mathcal{I} be the category of 2 with only identity morphisms.

$$\begin{array}{ccc}
\operatorname{id} & & \operatorname{id} \\
\mathbb{Q} & & \mathbb{Q} \\
\vdots & & *
\end{array}$$

Where \mathcal{D} maps . to A and * to B. Let $X = \lim_{\leftarrow \mathcal{I}} \mathcal{D}$ with morphisms P_A and P_B be the limit of this diagram. Now for any f and g we know that there exists a unique morphism φ from Y to X such that the diagram commutes.

Since for any f and g, Y commutes with the image of \mathcal{I} , therefore we can say that for any f and g there exists a unique morphism from Y to X such that the diagram above commutes. With this description X is the product of A and B.

(iii) As for equalizer of two morphisms f and g from A to B, let \mathcal{I} be the cateogry of 2 with 2 non-trivial morphisms.

And let functor \mathcal{D} be in a way that maps . to A and * to B and two non-trivial morphisms to f and g. Let $X = \lim_{\leftarrow \mathcal{I}} \mathcal{D}$ and morphisms P_A and P_B be the limit of this diagram \mathcal{D} .

Since X commutes with image of \mathcal{I} we have $fP_A = gP_A = P_B$. Now let Y be in a way such that it commutes with Image of \mathcal{I} . Then we have: $f\sigma = g\sigma = \delta$. Now since X is the limit of this diagram we know that there exists a unique φ from Y to X such that it commutes. This shows that (X, P_A) is exactly the equalizer of f and g. Since we have $fP_A = gP_A$. And also for any other Y and σ such that $f\sigma = g\sigma$ there exists a unique morphism from Y to X such that $\sigma = P_A \varphi$.

(\Leftarrow) Now suppose we have all 3 properties in \mathcal{C} . We want to prove that for any arbitrary finite index category \mathcal{I} and diagram \mathcal{D} there exists a limit. Let all of the objects in image of \mathcal{I} be D_1, D_2, \ldots, D_n . Since product of any number of objects is available in \mathcal{C} consider $X = \prod_{i=1}^n D_i$. With morphisms π_i . But this diagram doesn't necessarily commute. For any (Z, f_1, \ldots, f_n) where $Z \xrightarrow{f_i} D_i$, that commutes with image of \mathcal{I} there exists a unique morphism from Z to X such that the diagram commutes.

Now suppose object Y with morphisms π_1, \ldots, π_n to D_1, \ldots, D_n where for the set U of morphisms in image of \mathcal{I} diagram commutes. in other words:

$$\forall k \in U \quad s.t \quad D_i \xrightarrow{k} D_j$$
$$\implies \pi_j = k\pi_i$$

Also for any $(Z, f_1, ..., f_n)$ that commutes with image of \mathcal{I} then there exists a unique morphism (φ) from Z to Y such that the diagram commutes or: $\forall i : f_i = \pi_i \varphi$. Let k be a morphism in image of \mathcal{I} where $k : D_i \to D_j \notin U$. This means that $\pi_j \neq k\pi_i$. Now let (Y', σ) be the equalizer of π_i and $k\pi_i$. Therefore $\pi_i \sigma = k\pi_i \sigma$. We will show that Y'

has all the properties of Y with a bigger U.

Let (Z, f_1, \ldots, f_n) be in such a way that it commutes with image of \mathcal{I} . Then we know there exists a unique morphism from Z to Y such that the diagram commutes.

$$\begin{cases}
f_j = kf_i \\
f_i = \pi_i \varphi \\
f_j = \pi_j \varphi
\end{cases} \implies \pi_j \varphi = k\pi_i \varphi$$

And since Y' is equalizer of π_j and $k\pi_i$ then there exists a unique morphism (δ) from Z to Y' such that $\varphi = \sigma \delta$. If we name $\pi'_i = \pi_i \sigma$ it is easy to see that $\pi'_j = k\pi'_i$. And also for any $r \in U$ that $D_x \xrightarrow{r} D_y$ then we know $\pi_y = r\pi_x$. therefore $\pi'_y = \pi_y \sigma = r\pi_x \sigma = r\pi'_x$. Therefore $(Y', \pi'_1, \ldots, \pi'_n)$ commutes with a bigger set of morphisms in image of \mathcal{I} . and also δ commutes with the diagram since:

$$\pi_i'\delta = \pi_i\sigma\delta = \pi_i\varphi = f_i$$

Also uniqueness of δ follows from uniqueness of φ . This shows that we can obtain the object with a U consisting of all of morphisms in image of \mathcal{I} . Which shows that $\lim_{\leftarrow \mathcal{I}} \mathcal{D}$ exists.

Problem 2. Let C be a category. Prove that for any finite diagram $D: \mathcal{I} \to C$ there exists $\lim_{\leftarrow \mathcal{I}} \mathcal{D}$ iff category C has terminal object and for any two morphisms with the same co-domain, there exists pull-back.

We just have to show that the set of pull-back and terminal is the same as the set of terminal, product and equalizer.

(i) Pull-back, Terminal \Rightarrow Product If $A, B \in \mathcal{C}_0$ we can obtain $A \times B$ with this pull-back:

Since for any f and g the diagram commutes since 1 is terminal object and there is only one morphism from Y to 1. And since X is the pull-back then there exists a unique morphism from Y to X such that it commutes with f and g. This shows that X is the product of A and B.

(ii) Pull-back \Rightarrow Equalizer

Consider the product $B \times B$. We want to find the equalizer of $f, g : A \to B$. Let X be the pull-back of $\langle f, g \rangle$ and $\langle id, id \rangle$.

$$X \xrightarrow{j} B$$

$$\downarrow \downarrow \langle id, id \rangle$$

$$A \xrightarrow{\langle f, g \rangle} B \times B$$

With $\langle f, g \rangle i = \langle id, id \rangle j$. Where $\langle f, g \rangle$ and $\langle id, id \rangle$ are defined below.

First we show that fi = gi. Since both of these diagrams commute then we know

that $j = P_1 \langle id, id \rangle j = P_2 \langle id, id \rangle j$. Now we can replace $\langle id, id \rangle j$ with $\langle f, g \rangle i$.

$$P_1 \langle f, g \rangle i = P_2 \langle f, g \rangle i$$

But we know $gi = P_1 \langle f, g \rangle i$ and $fi = P_2 \langle f, g \rangle i$. This shows that gi = fi. Now let (Z, φ) in a way that $Z \xrightarrow{\varphi} A$ and $f\varphi = g\varphi$ where $f\varphi$ is a morphism from Z to B. we want to show that $\langle id, id \rangle f\varphi = \langle f, g \rangle \varphi$. since both are morphisms from Z to $B \times B$ and they both commute with the diagram below, and since product is unique then they are equal.

Since they are the same diagram then $\langle id, id \rangle f \varphi = \langle f, g \rangle \varphi$. then Z commutes with pull-back diagram and therefore there exists a unique morphism (θ) from Z to X in a way that $i\theta = \varphi$.

this shows that (X, i) is the equalizer of f, g.

(iii) Product, Equalizer \Rightarrow Pull-back

This part is similar to the proof of limit, with equalizer and product. Suppose $f: A \to C$ and $g: B \to C$. Let $X = A \times B$. and let (E, i) be the equalizer of fP_A and gP_B .

E is the pull-back. it is easy to see that $gP_Bi=fP_Ai$ since E is the equalizer. this shows that the diagram commutes. Now for any Z such that commutes with this diagram, There exists a unique morphism (φ) from Z to $A \times B$ such that the diagram commutes.

$$g\delta = f\sigma$$

$$\implies gP_B\varphi = fP_A\varphi$$

this shows that φ also makes gP_B and fP_A equal. since E is the equalizer then there exists a unique morphism from Z to E such that the diagram commutes. Therefore E is the pull-back for f and g.