

phuse PP17: Creation of Adverse Event (AE) Table using R Programming

Kamlesh Patel, Jigar Patel, Vaishali Patel - Rang Technologies Inc, Piscataway, NJ

BACKGROUND

GOAL

To Create Adverse Event (AE) table of clinical trial using R.

Steps to create AE Table in R

Step 1: - Setup

Step 2 - Selection of

records/variables

Step 3: Select Highest Toxicity Grade

AEs

Step 4: Get Freq and Calculate % -

ANY AE / SOC/ SOC-PT

Step 5: Data Arrangement

Step 6: Transpose Data

Step 7: Reporting Prep

Step 8: Reporting

PROGRAMMING STEPS

```
# Step: 1 - Setup
library("tidyverse")
library("kableExtra")
library("rtf")
adae <- read.csv(file = "F:/R/adae.csv",
    fileEncoding="UTF-8-BOM",
    blank.lines.skip = TRUE, header = TRUE)
Import Data. (Like PROC IMPORT in SAS)
```

Step 4: Get Freq and Calculate % - ANY AE

```
any ae1 <- any ae %>%
  group by (TRTA, TRTAN) %>%
  summarise(n=n(),.groups = "keep") %>%
  mutate( pct = if else(TRTAN == '1',
n*100/bign[1], n*100/bign[2] ),
    ORD1=0,
    ORD2=0,
    txt="Total Subjects with an Event",
    AEBODSYS="Total Subjects with an Event",
    AEDECOD = " "
```

Get stat for ANY SOC & ANY PT

```
# Step: 2 - Selection of records/variables
adae2 <- subset(adae, SAFFL=="Y",</pre>
     select = c(USUBJID, AEBODSYS, AEDECOD,
AETOXGR, TRTA, TRTAN))
```

#Sorting adae3 <- adae2[order(adae2\$AEBODSYS,</pre> adae2\$AEDECOD, -adae2\$AETOXGR),]

Select safety pop& keep variables # Sorting

Step: 5 - Data Arrangement

variable

```
all ae <- rbind(any ael, any bodsys1, any decod1)
all ae1 <- all ae[order(all ae$TRTA,
all_ae$ORD1,all_ae$AEBODSYS, -all_ae$ORD2, -
all_ae$ORD3),] #Ordering
#Create Freq (PCT) variable
all ae2 <- all ae1 %>%
 mutate(var1 = paste (n, "(", format(round(pct,
digits = 2), nsmall = 2), ")"),
 TRTA = ifelse(TRTA=="Active Drug A",
"DrugA", "Placebo"))
# Stacking all DS | Ordering | Creation of PCT
```

Step 3: Select Highest Toxicity Grade AEs any ae <- adae3 %>% group by (USUBJID, TRTA) %>% arrange(USUBJID, TRTA, -AETOXGR)%>% slice head(n=1) Same way for "Any SOC" and "Any SOC/PT" **Change only in** group by (USUBJID, TRTA, AEBODSYS) %>%

arrange(USUBJID, TRTA, AEBODSYS, -AETOXGR) %>%

```
# Step: 6 - Transpose Data
t_ae <- all_ae2 %>%
  ungroup()%>%
select(-TRTAN, -n, -pct, -AEDECOD, -ORD3)%>
spread(TRTA, var1) %>%
mutate(DrugA= ifelse(is.na(DrugA),0,
DrugA), Placebo =
ifelse(is.na(Placebo), 0, Placebo) )%>%
arrange(ORD1, AEBODSYS, ORD2)
t ae1 <- subset(t ae, select=c(-ORD1, -
ORD2, -AEBODSYS))
Transpose keeping AE in BY
```

COMPARISON OF R WITH SAS

1.read.csv > read ext file 2.subset > subset obs and variables in data 3.order > Sorting data 4.%>% (pipe) – for multiple action & one's ourput pass next 5.group_by > grouping of records 6.arrange > order obs 7.slice_head>take 1st ob. 8.summarise > get stats 9.mutate > creation of var and manipulations 10.rbind > stacking datasets 11.spread > transpose

12.kbl > reporting

In SAS

1. PROC IMPORT 2. Keep/Drop AND

WHERE conditions 3. PROC SORT

4. Similar (not exactly) – multiple statements in

one Data Step 5. By statement > for grouping

6. PROC SORT

7. Like FIRST. and LAST. 8. Like PROC FREQ

9. Like DATA Step

10.SET statement>

stacking 11.PROC TRANSPOSE

Placebo

27 (100.00)

12.Proc REPORT

Drug A

AE Output

AE Mock Shell

Adverse Event Summary Safety Population

System Organ Class (%) Preferred Term (%)	Placebo N≔xxx	Treatment A N=xxx
TOTAL SUBJECTS WITH AN EVENT BLOOD AND LYMPHATIC SYSTEM DISORDERS ANAEMIA LEUKOPENIA EOSINOPHILIA LYMPHADENOPATHY LEUKOCYTOSIS THROMBOCYTOPENIA IRON DEFICIENCY ANAEMIA BONE MARROW TOXICITY ANAEMIA FOLATE DEFICIENCY ANAEMIA OF CHRONIC DISEASE	XXX (XX.X) XXX (XX.X) XX (X.X) XX (X.X) XX (X.X) X (X.X)	XXX (XX.X) XX (X.X) X (X.X)
CARDIAC DISORDERS PALPITATIONS TACHYCARDIA CARDIAC FAILURE CONGESTIVE BRADYCARDIA SINUS BRADYCARDIA ARRHYTHMIA ATRIAL FIBRILLATION UNASSIGNED UNASSIGNED	XXX (XX.X) XX (X.X) XX (X.X) XX (X.X) X (X.X)	XX (X.X) X (X.X)

```
# Step: 7 - Reporting Prep
t1<- paste(rep('&nbsp;',30,),collapse = "
t2<- paste(rep('&nbsp;',33,),collapse = "
title1 <- "Adverse Event Summary <br/>"
title2<- "Safety Population<br/>"
titleX <- paste(t1,title1,t2,title2,</pre>
collapse = '')
Preparing titles
```

```
# Step: 8 - Reporting
#Using KTable or kble
kbl(x = t ael,
  col.names = c(" ", "Drug A", "Placebo"),
  caption = titleX,
  escape = FALSE , longtable = T) %>%
 kable paper("striped", full width = F) %>%
add header above(c(" " = 3))%>%
footnote(general =c("AE is calculated at highest tox
grade.", "Subject is counted once in each PT.")) %>%
 column spec(1, width="12cm") %>%
 column spec(2, width = "3cm") %>%
 column spec(3, width = "3cm", popover = "Test" ) %>%
 save kable(file = "table1.html", self contained =
Preparing titles
Using Ktable > Generating output.
```

Drop vars

For any questions, Please contact -

		Total Subjects with an Event
		Blood and lymphatic system of
		Anaemia
	$\sqcup\setminus$	Cardiac disorders
Final outpu	ıt	Atrial fibrillation
	h	Palpitations
xicity		Pericardial effusion
00		Ear and labyrinth disorders
		Vertigo
		Endocrine disorders
0/0		Hyperthyroidism
T)		Hypothyroidism
		Skin and subcutaneous tissue
	J	Hyperhidrosis
		Night sweats
		Pruritus
		Deeb

Subject is counted once in each PT

3 (10.71) 5 (18.52) lymphatic system disorders 3 (10.71) 5 (18.52) 3 (11.11) isorders 1 (3.70) brillation 1 (3.70) dial effusion 1 (3.70) 1 (3.57) abyrinth disorders 1 (3.57) 1 (3.70) 3 (10.71) disorders 2 (7.14) nyroidism 1 (3.70) 2 (7.14) yroidism 6 (22.22) ubcutaneous tissue disorders 1 (3.57) 1 (3.70) 3 (10.71) 5 (18.52) 2 (7.14) 0 AE is calculated at highest toxicity grade.

Adverse Event Summary Safety Population

Kamlesh Patel, kamlesh.patel1@rangtech.com, Rang Technologies Inc, Piscataway, NJ