Teoria podzielności liczb całkowitych

Mariusz Strzelecki (szczeles@mat.umk.pl)

24 czerwca 2009

1 Teoria podzielności

Definicja 1.1. Jeśli $a, b \in \mathbb{Z}$, to mówimy, że a dzieli b (piszemy a|b), jeśli istnieje $c \in \mathbb{Z}$ takie, że b = ca.

Przykład 1.2 (Własności podzielności). • $\forall_{a \in \mathbb{Z}} a | a$.

- Jeśli a|b i b|c to a|c.
- Jeśli a|b i b|a to $a = \pm b$.
- $\forall_{a \in \mathbb{Z}} 1 | a$.
- $a|1 \iff a = \pm 1$.
- $\forall_{a \in \mathbb{Z}} a | 0$.
- $0|a \iff a = 0.$
- Jeśli a|b oraz $b \neq 0$, to $|a| \leq |b|$.
- Jeśli a|b i a|c to $a|b \pm c$ oraz $\forall_{k \in \mathbb{Z}} a|kc$. Ponadto, jeśli am|bm i $m \neq 0$ to a|b.

2 Największy wspólny dzielnik

Definicja 2.1. Jeśli $a, b \in \mathbb{Z}$, to liczbę $d \in \mathbb{Z}$ nazywamy największym wspólnym dzielnikiem liczb a i b (będziemy oznaczać d = (a, b)), jeśli spełnione są następujące trzy warunki:

- (1) $d \ge 0$,
- (2) d|a i d|b,
- (3) jeśli c|a i c|b, to c|d (czyli d jest największą liczbą dzielącą a i b)

Uwaga 2.2 (o jednoznaczności NWD). Jeśli d i d' są największymi wspólnymi dzielnikami liczb a i b to z warunków (2) i (3) wynika, że d|d' i d'|d, więc z własności podzielności i faktu, że NWD jest liczbą nieujemną mamy d = d'.

Przykład 2.3 (Własności NWD).

$$\forall_{a,b\in\mathbb{Z}}(a,b)=(b,a).$$

$$\forall_{a,b\in\mathbb{Z}}(a,b) = (|a|,|b|).$$

 $\forall_{a \in \mathbb{Z}}(a, a) = |a|.$

 $\forall_{a \in \mathbb{Z}}(a, 1) = 1.$

 $\forall_{a \in \mathbb{Z}}(a,0) = |a|.$

Definicja 2.4. Mówimy, że liczby a i b są względnie pierwsze, jeśli (a,b)=1.

Lemat 2.5 (Bardzo ważny lemat :-)). Jeśli a = qb + r dla $a, b, q, r \in \mathbb{Z}$ (zauważmy, że q i r nie muszą być wcale ilorazem i resztą z dzielenia, to dowolne liczby!), to (a, b) = (b, r).

Dowód. Wystarczy pokazać, że $c|a,b\iff c|b,r$ (ponieważ jeśli dowolny dzielnik tych dwóch liczb ma taką własność to w szczególności NWD też).

" \Longrightarrow ". Jeśli c|a,b to istnieją takie $k,l \in \mathbb{Z}$, że a=kc i b=lc. Wtedy mamy równość kc=lcq+r. Dzieląc obie strony przez c dostaniemy $k=lq+\frac{r}{c}$, a ponieważ $k\in\mathbb{Z}$ i $lq\in\mathbb{Z}$, więc też $\frac{r}{c}\in\mathbb{Z}$, skąd mamy, że c|r.

" \Leftarrow ". Jeśli c|b,r to istnieją takie $m,n\in\mathbb{Z}$, że m=cb i n=cr, czyli a=cbq+cr=c(bq+r), a ponieważ $bq+r\in\mathbb{Z}$, więc a|c.

Twierdzenie 2.6 (O dzieleniu z resztą). Jeśli $a, b \in \mathbb{Z}$ oraz $b \neq 0$, to istnieją jednoznacznie wyznaczone $q, r \in \mathbb{Z}$ takie, że a = qb + r i $0 \leq r < |b|$.

Definicja 2.7. Liczby q i r z powyższego twierdzenia nazywamy odpowiednio *ilorazem (całkowitym) i resztą z dzielenia a przez b*. Resztę z dzielenia a przez b ($a, b \in \mathbb{Z}, b \neq 0$) oznaczamy $a \mod b$.

Dowód. Takie liczby zawsze istnieją ponieważ q możemy wybrać tak, że

$$a = qb = \min\{a - q'b|q' \in \mathbb{Z}, a - q'b \geqslant 0\}$$

oraz kładąc r := a - qb.

Dla dowodu jednoznaczności przyjmijmy, że istnieją q' i $r' \in \mathbb{Z}$ takie, że a = a'b + r' oraz $0 \le r' < |b|$. Wtedy r - r' = a - qb - (a - q'b) = (q' - q)b, skąd b|r - r', a ponieważ r < |b| i r' < |b|, więc |r - r'| < |b|. Stąd r - r' = 0, a zatem także q - q' = 0.

3 Algorytm Euklidesa

Lemat 3.1. Dla dowolnych $a, b \in \mathbb{Z}$ istnieje ich największy wspólny dzielnik.

Dowód. Dowód będzie jednocześnie ukazaniem sposobu działania algorytmu Euklidesa.

Będzie on indukcyjny ze względu na n = min(|a|, |b|).

Jeśli n=0 to albo a=0 i (a,b)=|b| albo b=0 i wtedy (a,b)=|a|. Załóżmy więc, że n>0. Jeśli |a|=|b|=n to (a,b)=n. W przeciwnym wypadku bez straty ogólności możemy założyć, że |a|>|b|=n (w pseudokodzie jest to ten jeden if). Niech q i r będą ilorazem i resztą z dzielenia a przez b. Wiemy, że (a,b)=(b,r), a przecież min(|b|,|r|)=|r|<|b|=n, zatem (a,b) istnieje.

Uwaga 3.2 (O skomplikowaniu dowodu). Ten dowód wcale nie jest taki trudny, jak się wydaje, trzeba wyobrazić sobie wpierw działający algorytm. Dostaje on dwie liczby: a i b i sprawdza, czy są równe (bądź któraś z nich równa 0). Jeśli tak to kończy. Jeśli nie, to w kolejnym kroku rozważa **ostro mniejsze** liczby jako parametry (ale takie, że ich NWD jest taki sam jak poprzednich). Na pewno się kończy, bo jeśli któraś dojdzie do zera to algorytm się kończy.

Stwierdzenie 3.3. *Jeśli* $a, b \in \mathbb{Z}$, to istnieją $p, q \in \mathbb{Z}$ takie, że (a, b) = pa + qb.

Dowód. Dowód będzie bardzo podobny do poprzedniego, przestawia działania pewnego algorytmu, zwanego Rozszerzonym Algorytmem Euklidesa.

Indukcja ze względu na n = min(a, b)

Jeśli n=0 to albo a=0 i $(a,b)=|b|=0\cdot a+(sgn\,b)\cdot b$ albo b=0 i wtedy $(a,b)=|a|=(sgn\,a)\cdot a+0\cdot b$. Załóżmy, że n>0. Postępujemy dokładnie jak poprzednio: jeśli |a|=n=|b| to $(a,b)=(sgn\,a)\cdot a+0\cdot b$. W przeciwnym wypadku możemy założyć bez straty ogólności, że |a|>|b|=n. Niech q i r będą ilorazem i resztą z dzielenia a przez b. Wtedy min(|b|,|r|)=|r|< n, więc na mocy założenia indukcyjnego istnieją $x,y\in\mathbb{Z}$ takie, że (b,r)=xb+yr. Wiemy też, że (a,b)=(b,r)=ya+(x-yq)b, co kończy dowód.

Uwaga 3.4. Jeśli $a, b \in \mathbb{Z}$ to (a, b)|pa + qb dla dowolnych $p, q \in \mathbb{Z}$.

Uwaga 3.5. Jeśli dla $a, b \in \mathbb{Z}$ istnieją $p, q \in \mathbb{Z}$ takie, że 1 = pa + qb to (a, b) = 1.

4 Liczby pierwsze

Definicja 4.1. Liczbę całkowitą p nazywamy pierwszq, jeśli p>1 oraz $\not \exists_{a\in\mathbb{Z}\land a\neq 1\land a\neq p}a|p$. Oznaczymy zbiór liczb pierwszych jako $\mathbb{P}=\{p\in\mathbb{Z}\mid p\text{ jest pierwsza}\}$. Algorytm, który wykrywa wszystkie liczby pierwsze to znane wszystkim Sito Eratostenesa. Nie będę go przytaczał, bo wstyd :-)

Lemat 4.2 (O rozkładzie liczby całkowitej). *Jeśli* $n \in \mathbb{Z}, n > 1$ to istnieją $p_1, \ldots, p_k \in \mathbb{P}$ takie, że $n = p_1 \cdots p_k$.

Dowód. Dowód znów będzie indukcyjny ze względu na n, tym razem bardzo prosty. Jeśli $n \in \mathbb{P}$ to w ogóle nie ma o czym mówić. Załóżmy zatem, że $n \notin \mathbb{P}$. Wtedy istnieją $n_1, n_2 \in \mathbb{Z}$ takie, że $1 < n_1, n_2 < n$ oraz $n_1 = p_1 \cdots p_k$ i $n_2 = q_1 \cdots q_l$. Wtedy $n = p_1 \cdots p_k \cdot q_1 \cdots q_l$, co kończy dowód.

Twierdzenie 4.3 (Najkrótsze z możliwych twierdzień z najciekawszym dowodem). $|\mathbb{P}| = \infty$.

Dowód. (A oto dowód made by Euklides) Pokażemy, że dla każdego podzbioru $P \subset \mathbb{P}$ skończonego (czyli $|P| < \infty$) istnieje $p \in \mathbb{P} \setminus P$. Jeśli $P = \emptyset$ to teza jest oczywista. Przypuśćmy, że $P = \{p_1, \dots, p_n\}$. Jedynym wspólnym dzielnikiem liczb $p_1 \cdots p_n$ i $p_1 \cdots p_n + 1$ jest 1. Zatem żadna liczba pierwsza występująca w P nie jest dzielnikiem liczby $p_1 \cdots p_n + 1$. Ale $p_1 \cdots p_n + 1 > 1$, więc ma dzielnik p, który jest liczbą pierwszą. Oczywiście $p \notin \mathbb{P}$, co kończy dowód. □

Teraz udowodnimy kilka rzeczy w logicznej kolejności, które pozwolą nam sformułować Zasadnicze Twierdzenie Arytmetyki.

Lemat 4.4. *Jeśli* $p \in \mathbb{P}$ *i* p|ab *dla* $a, b \in \mathbb{Z}$ *to* p|a *lub* p|b.

Dowód. Przypuśćmy (bez straty ogólności), że $p \not| a$. Wtedy (a,p)=1, więc istnieją takie $m,n \in \mathbb{Z}$, że 1=ma+np. Ponadto, ponieważ p|ab, więc $\exists_k ab=pk$. Zatem mamy równość b=mab+npb=m(ab)+p(nb)=m(pk)+p(nb)=p(mk+nb), a stąd p|b, co kończy dowód. □

Wniosek 4.5. Jeśli $p \in \mathbb{P}$ oraz $p|a_1 \cdots a_n$ dla $a_1, \ldots, a_n \in \mathbb{Z}$ to istnieje $i \in \{1, \ldots, n\}$ takie, że $p|a_i$.

Lemat 4.6. Jeśli $p_1 \leqslant \cdots \leqslant p_k, q_1 \leqslant \cdots \leqslant q_l \in \mathbb{P}$ oraz $p_1 \cdots p_k = q_1 \cdots q_l$ to k = l oraz $\forall_{i \in \{1, \dots, k\}} p_i = q_i$

Dowód. Dowód będzie indukcyjny ze względu na k. Jeśli k=1 to teza jest oczywista. Załóżmy, że k>1. Z poprzedniego wniosku wiemy, że istnieje $j\in\{1\dots l\}$ takie, że $p_k|q_j$, a więc $p_k=q_j$. Wtedy $p_1\cdots p_{k-1}=q_1\cdots q_{j-1}q_{j+1}\cdots q_l$, więc z założenia indukcyjnego wynika, że k-1=l-1 $\Longrightarrow k=l$) oraz $p_i=q_i$ dla $i\in\{1,\dots,j-1\}$ i $p_i=q_{i+1}$ dla $i\in\{j,\dots,k-1\}$. Ponadto, jeśli j< k=l, to $p_k=q_j\Longrightarrow p_k^{k-j}=q_j^{k-j}\Longleftrightarrow p_k^{k-j}\geqslant p_{k-1}\cdots p_j=q_k\cdots q_{j+1}\geqslant q_j^{k-j}=p_k^{k-j}$, skąd $p_j=\cdots=p_k=q_j=\cdots=q_k$.

Wniosek 4.7 (Zasadnicze Twierdzenie Arytmetyki). Jeśli $n \in \mathbb{Z}, n > 1$, to istnieją jednoznacznie wyznaczone $p_1 < \cdots p_k \in \mathbb{P}$ oraz $\alpha_1, \cdots, \alpha_k \in \mathbb{N}_+$ takie, że

$$n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$$

Ktoś mógłby zadać sobie pytanie: ile jest liczb pierwszych? A my wiemy!

Twierdzenie 4.8. Niech $\pi: \mathbb{R}_+ \to \mathbb{N}$ będzie funkcją zdefiniowaną wzorem: $\pi(x) := |\{p \in \mathbb{P} | p \leq x\}|$. Wówczas mamy:

$$\lim_{n \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1.$$

5 Kongruencje!

Definicja 5.1. Niech $a, b, n \in \mathbb{Z}$ oraz $n \neq 0$. Mówimy, że a przystaje do b moduło n (piszemy $a \equiv b \pmod{n}$), jeśli n|a-b.

Lemat 5.2. (Własności operatora \equiv)

- (1) $Je\acute{s}li\ a \equiv b\ (mod\ n)\ oraz\ c \equiv d\ (mod\ n),\ to\ a \pm c \equiv b \pm d\ (mod\ n)\ oraz\ ac \equiv bd\ (mod\ n).$
- (2) $Je\acute{s}li\ ac \equiv bc\ (mod\ n)\ oraz\ (c,n) = 1,\ to\ a \equiv b\ (mod\ n).$
- (3) $ma \equiv mb \pmod{mn} \iff a \equiv b \pmod{n}$

Stwierdzenie 5.3. (Potrzebne do ChTwOR) Niech $a, b, n \in \mathbb{Z}, n \neq 0$ i niech d = (a, n). Wówczas:

- $(\exists_{x \in \mathbb{Z}} ax \equiv b \pmod{n}) \iff d|b.$
- Jeśli d|b oraz $ax \equiv b \pmod{n}$ i $ay \equiv b \pmod{n}$ dla $x, y \in \mathbb{Z}$ to wówczas $x \equiv y \pmod{\frac{n}{d}}$.

Dowód. Oczywiście, jeśli d /b to a=kd i n=md dla pewnych $k,l\in\mathbb{Z}$, więc nie istnieje $x\in\mathbb{Z}$ taki, że $ax\equiv b\pmod{n}$. Przypuśćmy zatem że d|b. Wtedy przyjmując $a'=\frac{a}{d},b'=\frac{b}{d},n'=\frac{n}{d}$ mamy równoważność: $ax\equiv b\pmod{n}\iff a'x\equiv b'\pmod{n'}$. Zauważmy, że (a',n')=1, więc istnieją $p,q\in\mathbb{Z}$ takie, że 1=pa'+qn' i wtedy dla x=pb' mamy $a'x\equiv b'\pmod{n'}$. Z drugiej zaś strony, jeśli $ay\equiv b\pmod{n}$ dla $y\in\mathbb{Z}$, to $a'y\equiv b'\pmod{n'}$ i $y\equiv (pa')y\equiv pb'\equiv x\pmod{n'}$

Twierdzenie 5.4. Niech $m_1, \ldots, m_k \in \mathbb{Z}$ będą parami względnie pierwsze i $b_1, \ldots, b_k \in \mathbb{Z}$.

(1) Istnieje $x \in \mathbb{Z}$ taki, że

$$x \equiv b_1 \pmod{m_1}, \dots, x \equiv b_k \pmod{m_k}$$

(2) $Dla \ x, y \in \mathbb{Z} \ zachodzi$

$$x \equiv b_1 \pmod{m_1}, \dots, x \equiv b_k \pmod{m_k}$$

oraz

$$y \equiv b_1 \pmod{m_1}, \dots, y \equiv b_k \pmod{m_k}$$

wtedy i tylko wtedy, gdy $x \equiv y \pmod{m_1 \cdots m_k}$

Dowód. Niech $n_i = \frac{m_1 \cdots m_k}{m_i}$ dla $i \in \{1, \dots, k\}$. Z założeń wynika, że $(m_i, n_i) = 1$ dla wszystkich $i \in \{1, \dots, k\}$, zatem dla każdego i istnieją $p_i, q_i \in \mathbb{Z}$ takie, że $1 = p_i m_i + q_i n_i$. Wtedy $x := b_1 q_1 n_1 + \dots + b_k q_k n_k$ ma żądane własności. Druga część twierdzenia jest oczywista (wynika z elementarnych własności kongruencji).

Uwaga 5.5. (Czyli jak używać ChTwOR?) Niech $a,b,m,n\in\mathbb{Z},m,n>1$. Niech $m=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ oraz $n=p_1^{\beta_1}\cdots p_k^{\beta_k}$ dla $p_1<\cdots< p_k$ oraz $\alpha_1,\ldots,\alpha_k,\beta_1,\ldots,\beta_k\in\mathbb{N}(\cup 0!)$. Istnieje $x\in\mathbb{Z}$ taki, że $x\equiv a\pmod m$ i $x\equiv b\pmod n$ wtedy i tylko wtedy, gdy $a\equiv b\pmod {p_i^{\min(\alpha_i,\beta_i)}}$ dla wszystkich $i\in\{1,\ldots,k\}$. Jeśli powyższy warunek jest spełniony, to powyższy układ kongruencji jest równoważny układowi:

$$x \equiv c_i \pmod{p_i^{\max(\alpha_i, \beta_i)}}, i \in \{1, \dots, k\},$$

$$\text{gdzie } c_i = \begin{cases} a & \alpha_i \geqslant \beta_i \\ b & \alpha_i < \beta_i \end{cases}$$