

L'anémie = une baisse du taux d'Hb de 2DS de la valeur moyenne de la population normale de même âge et même sexe.

- □ Nourrisson (1mois-2ans) :<11g/dl.
- \square Enfant (>2ans) : < 12g/dl.

Paramètre	Nouveau- né	3-6 mois	6-24 mois	26 ans	6-12 ans	12-1	8 ans
						Fille	Garçon
Hb moyenne (g/dL)	16,5	11,5	12,5	12	13,5	14	14,5
– 2 DS (g/dL) = anémie	13,5	9,5	10,5	11,5	11,5	12	13
VGM (fL)	90-120	72-82	75-85	78- 88	80-90	90	88
Réticulocytes (g/L)	200-400	40-80	40-80	40- 80	40-80	40- 80	40-80

Carentielle:

Anémie par carence en un des facteurs de l'

érythropoïèse : Fer – Acide folique – Vit B12

Intérêt

- Fréquence des anémies ferriprives+++
- Besoins importants, Nrss, puberté
- Prévention possible : Allaitement Maternelle, diversification précoce

LES ANÉMIES FERRIPRIVES

I-Introduction:

1- Définition:

• C'est une anémie hypochrome microcytaire, en rapport avec une diminution du fer disponible pour la synthèse de l'Hb, due à l'épuisement des réserves.

I-Introduction:

2- intérêt:

- Fréquence : les plus fréquentes des anémies dans le monde.
- Etiologies: multiples.
- Traitement : simple (supplémentation et traitement étiologique).
- Prévention : possible (régime alimentaire riche en fer)

II- Physiologie:

- 1. Métabolisme du fer :
- 1) Répartition dans l'organisme : il existe sous plusieurs formes :
 - Forme métaboliquement active : essentielle au fonctionnement des cellules : Hb (70%), myoglobine (3-4%), et des enzymes : cytochromes, peroxydases, catalases, déshydrogénases...
 - Forme de transport (0,08%): transferrine ou sidérophiline
 - Forme de réserve (25%) : foie, rate, MO, muscle :
 - Ferritine: plus importante, fraction soluble facilement mobilisable.
 - Hémosidérine : forme de réserve insoluble.

II- Physiologie:

2) Balance du fer dans l'organisme :

- a) Besoins: chez l'enfant liés surtout à la croissance:
 - PPN et prématuré : 2-15mg/kg/j.
- 01-03mois: 1-15mg/kg/j.
- 04-10 ans: 10 mg/j.
- Adolescence: 18 mg/j.

a) Apports:

- Fer inorganique (non héminique) sous forme ferrique ou fer ferreux : dans tous les aliments surtout végétaux, biodisponibilité faible et très influencée par les facteurs exogènes.
- Fer héminique : des hémoprotéines (Hb, myoglobine) : viande et poissons, bonne biodisponibilité, peu influencée par les facteurs exogènes.

II- Physiologie:

- c) Absorption : duodénum + iléon proximal (fer ferreux > fer ferrique) :
- Favorisée par : acide ascorbique, certains AA (viandes et poissons) et sucres.
- Inhibée par : certains sels minéraux (phytates), oxalates, thé, phosphates, certaines substances inertes (argile).

III- Physiopathologie

A l'état normal, le métabolisme du fer se fait en circuit fermé, et la carence est en rapport avec un déséquilibre de la balance de fer.

A. Mécanisme:

Défaut d'apport
Diminution des réserves
Augmentation des besoins
Spoliation sanguine

Apports Réserves

Besoins déperditions

III- Physiopathologie

B. Les étapes de l'anémie ferriprive

compartiment de réserve ferritine \(\).

compartiment plasmatique (fer sérique↓, ↑TIBC, ↓CS), ↑ protoporphyrine érythrocytaire.

Compartiment érythrocytaire \ Hb, \ VGM.

Evolution des paramètres hématologiques

	Carence Pré Latente	Carence Latente	Carence Manifeste
Ferritine			
Fer sérique			
Transferrine (sidérophyline)			
C.S.S.			
Protoporphyrine érythrocytaire			
VGM PUIS CCHM			Microcytaire PUIS Hypochrome

A/ Clinique:

Syndrome anémique

-Paleur cutaneomuqueuse
-Asthénie
-Tachycardie
-SS fonctionnel
-Cassure courbe de
croissance
-Hypotrophie

Signes d'hyposidérémie

-Perlèches
-Ongles cassants,
-Cheveux secs
-Peau seche,
-Glossite,
-Sd de Plummer-Winson

Autres:

-Pica syndrome
-Retard du
développement
psychomoteur
-Sensibilité au
infections

IV- diagnostic positif

B. Biologie:

- 1:Hémogramme et indices érythrocytaires:
- anémie hypochrome, microcytaire:
- Leucocytes normaux ou peu diminués
- ❖ Taux de plaquettes: normal ou légèrement ↑ ou↓
 - 2:RDW:index de distribution des GR:11.5-14.5%:

l'augmentation de cet index est un signe précoce de la carence martiale

3:frottis sanguin: GR hypochromiques, microcytaires, avec anisocytose et poikilocytose

4:Réticulocytes: anémie arégénérative : taux de réticulocytes bas

Anémie hypochrome microcytaire hyposidérémique

HB:4-5g/dl CCMH 24mg VGM 75fil FER 60mg/L

TRANS:3,4g/L

CS:fer/trans 16%

FERR 12ng/L

5.Les indicateurs d'évaluation du statut en fer:

- Compartiment de réserve: ferritinemie↓ :< 12 ng/ml
- Compartiment plasmatique: Fer sérique: (variations
- normales larges): \downarrow < 70µg/100ml(70-120µg/dl)
- TIBC ↑ (250-330µg/dl)
- **CSS** = Fer/TIBC ↓ :< 16% (30%)

Compartiment érythrocytaire:

protoporphyrine érythrocytaire libre ↑ (15.5+/-8.3mg/dl)

V- DIAGNOSTIC DIFFERENTIEL:

A. Anémie microcytaire hypochrome hyposidérémique :

- Anémie inflammatoire.
- Signes cliniques et biologiques évocateurs de maladies infectieuses ou inflammatoires.
- Fer sérique | TIBC | Ferritinémie N ou

B. Anémie microcytaire hypochrome hypersidérémiques :

- syndrome thalassémique.
- Consanguinité ATCD familiaux. Signes d'hémolyse : PCM SPM, ictère. Syndrome dysmorphique...
- FNS: AHM hypersidérémique, polyglobulie
- Diagnostic: EP Hb.
- Anémie sidéroblastique

VI. ETIOLOGIES:

A. Chez le nourrisson:

Carence d'apport	Régime lacto-farineux exclusif. Mauvaise diversification. Malabsorption : surtout APLV, gluten
Augmentation des besoins	Croissance rapide (prématuré, hypotrophe). CC cyanogènes avec polyglobulie.
Diminution des réserves	Prématuré, jumeaux. Nouveau né de mère carencée (multipare). Ligature précoce du cordon ombilical. Transfusion foeto-maternelle, foeto-foetale.
Spoliation sanguine	Syndrome hémorragique à la naissance. Prises de sang répétées. Saignement chronique : oesophagite peptique, APLV, diverticule de Meckel.

VI. ETIOLOGIES:

B. Chez l'enfant et l'adolescent

Carence d'apport	Bas NSE. Malabsorption: maladie coeliaque, pica syndrome, gastrectomie.
Augmentation des besoins	Période pubertaire.
Spoliation sanguine	Digestives : diverticule de Meckel, polype intestinal, gastrite, oesophagite Epistaxis récidivante : maladie de Rendu-Osler. Meno-métrorragie chez la fille. Anémie factice : anémie de l'asthénie de Ferjol : rare, adolescente avec profil psychologique particulier saignement chronique provoqués en se blessant la peau.

VII-TRAITEMENT:

But:

- Corriger **l'anémie** et la carence martiale.
- Reconstituer les réserves.
- Traiter l'étiologie.

Traitement curatif:

- Oral: fer ferreux sirop.
- **Posologie**: 5-10mg/kg/j en 2-3 prises à distance des repas (1prise si effets secondaires).
- **Durée**: 02 mois après la normalisation de l'Hb (total=4-6mois)
- Effets secondaires :
 - ✓ Coloration noirâtre des selles et des dents.
 - ✓ Intolérance digestive : douleur, nausée, vomissement...
- Traitement adjuvant :
 - ✓ Vitamine C : 500mg/j ou aliments riches en vit C.
 - ✓ Alimentation riche en fer.
- Réponse : Crise réticulocytaire : 1-2 semaine.

VII-TRAITEMENT:

Traitement curatif:

- ☐ Si pas de réponse :
- Mauvaise compliance.
- Dose incorrecte.
- Saignement occulte.
- Mauvaise absorption.
- Autres causes : maladie inflammatoire, affection maligne...
- ☐ Transfusion sanguine: Indications rares:
 - Anémie sévère (Hb<4g/dl).
- Intolérance hémodynamique.

Traitement préventif

Chez la femme enceinte :

- Régime riche en fer surtout héminique.
- Supplémentation systématique au 3ème trimestre.

Chez le nourrisson:

- L'allaitement maternel est suffisant jusqu'au 5-6ème mois.
- Diversification correcte.
- Eviction de l'alimentation lactée exclusive prolongée.
- Enrichir les préparations diététiques en fer.

Supplémentation systématique du prématuré et hypotrophe à partir du 1ier mois au 12mois (2mg/kg/j).

Chez l'adolescent :

• Encourager un régime riche en fer surtout héminique.

LES ANÉMIES MÉGALOBLASTIQUES

CARENCE EN ACIDE FOLIQUE CARENCE EN VIT B12

I- Définition:

- Anémies Macrocytaires liées à une carence en vitamine B12 ou en folates
- Secondaires à un asynchronisme de maturation nucléo-cytoplasmique
- Anémie souvent associée à une neutropénie et une thrombopénie
- Moelle osseuse riche, comporte des érythroblastes (anormaux appelés mégaloblastes)

II- Physiologie

Métabolisme des folates	Métabolisme de la vitamine B12 : cobalamines
Besoins : $60\mu g/j$: <1an. $100\mu g/j$: 1-12ans. $200\mu g/j$: 12-19ans.	Besoins quotidiens faibles : 1-2µg
Apports: - des dérivés réduits, exclusivement apportés par l'alimentation surtout les légumes et les feuilles verts, fruits secs et frais, laits, oeufs; Ils sont détruits par l'ébullition prolongée.	Apports: -synthétisée par les micro-organismes: présence en grande quantité dans les protéines animales (viandes, poissons), à moindre degré: lait, oeufs, presque absente dans les végétaux.
	Absorption: B12 est fixée facteur intrinsèque secrété par la muqueuse gastrique - le complexe facteur intrinsèque+vitamine B12 vient se fixer sur de récepteurs de la muqueuse de l'iléon où se fait l'absorption.
Réserve : foie+++ : suffisants pour 04mois : 10-15mg.	Réserve: 2-3mg (2-4ans)

IV- Physiopathologie:

Toute carence de ces vitamine entraine un défaut de synthèse de thymidilate et donc de l'ADN

- . Il existe
 - un avortement intra médullaire,
- mégaloblastose,
- pancytopénie périphérique et macrocytose.

V- Diagnostic positif:

A. Clinique:

1- Syndrome Anémique pâleur, asthénie, dyspnée d'effort ;tachycardie Subictère, SPM

2-Syndrome Digestif:

**glossite de Hunter: atteinte spécifique de la langue, évoluant en 2 phases: inflammatoire (lisse, algique) +atrophique

** épigastralgies, dyspepsie

** troubles du transit (nausées, vomissements, diarrhée) précèdent de quelques mois l'anémie

3- Syndrome Neurologique:

**<u>Sd cordonal postérieur</u>: troubles de la sensibilité profonde paresthésies, aréflexie, ataxie

**Sd pyramidal: parésies des 4 membres, paraplégie

V- Diagnostic positif:

B. Biologie:

- NFS: anémie normochrome, macrocytaire, arégénérative +/-leuconeutropénie, thrombopénie.
- Frottis sanguin: macrocytose, poïkilocytose, PN hyper segmentés, macro thrombocytes.
- Medullogramme : mégaloblastose, moelle riche, aspect "bleue"
- Diagnostic de la carence vitaminique :
- Dosage des folates (sériques+ érythrocytaires)
- Dosage de la vit B12 sérique(VN :200 à 500 pg/ml)

VI- Etiologies

Carence d'apport	Prématuré. mère carencée. lait pauvre en folates (lait de chèvre). Malnutrition protéino-calorique	Enfant né de mère végétarienne stricte. Malnutrition sévère
Malabsorptio n	Diarrhée chronique. Maladie coeliaque. Maladie inflammatoire intestinale. Mucoviscidose.	Maladie de Biermer: Absence de facteur intrinsèque Maladie d'Imerslund : défaut de transport trans-iléal de la vit B12 + protéinurie Pullulation microbienne. Résection iléale étendue. Iléite régionale (Crohn, RCUH)
Excès d'utilisation	Anémie hémolytique chronique (drépanocytose, thalassémie). Syndrome hémorragique. Leucémie aigue.	
Anomalies de transport	Anomalie de transport des folates.	Déficit en TC II
Causes iatrogènes	Méthotrexate, trimetoprine, phénobarbital	Peroxyde d'azote, colchicine, néomycine

VIII. Traitement

A. Folates:

- Acide folique : zanitra cp 5mg : 5-15mg/j pendant 3-4mois. :
- Crise réticulocytaire : 4-7ème j.
- Hb se normalise en 15j-1mois.
- NFS normale après 8semaines.
- Corriger le régime alimentaire.
- Traitement de la cause.
- Prévention :
- Supplémentation des femmes enceintes.
- AH chronique : acide folique en discontinu.
- Allaitement maternel et diversification adéquate.

VIII. Traitement

B. Vitamine B12:

- Vitamine B12 sous forme d'hydroxycobalamine amp : 100, 1000µg.
- <u>Traitement d'attaque</u> 1000 μg par jour pendant une semaine, puis de 1000 μg par semaine pendant un mois.
- Traitement d'entretien 1000 µg par mois jusqu'à correction de la cause. 1 inj/mois a vie si mal absorption.

CONCLUSION

- Anémie symptôme fréquent de consultation
- Savoir identifier le syndrome anémique et les signes accompagnateurs
- Hémogramme = clé du diagnostic
- Autres explorations sont nécessaires pour mettre en évidence l'étiologie en cause

