Movie Analysis

Our goal is to identify:

- · top genre combinations
- · top producers
- · directors
- actors
- actresses

We will focus on two metrics:

- · average Return on Investment
- · average profit

```
import sqlite3
import numpy as np
import pandas as pd
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
import recordlinkage
from recordlinkage.preprocessing import clean
```

IMDb database

Lets connect to the database and explore the data

```
imdb_df[imdb_df['type'] == 'table']
```

		type	name	tbl_name	rootpage	sql
	0	table	movie_basics	movie_basics	2	CREATE TABLE "movie_basics" (\n"movie_id" TEXT
	1	table	directors	directors	3	CREATE TABLE "directors" (\n"movie_id" TEXT,\n
	2	table	known_for	known_for	4	$\label{lem:created} \textbf{CREATE TABLE "known_for" (} \textbf{'} \textbf{'} \textbf{'} \textbf{'} \textbf{'} \textbf{'} \textbf{'} '$
	3 table movie_akas		movie_akas	movie_akas	5	CREATE TABLE "movie_akas" (\n"movie_id" TEXT,\
	4	table	movie_ratings	movie_ratings	6	CREATE TABLE "movie_ratings" (\n"movie_id" TEX
	5	table	persons	persons	7	CREATE TABLE "persons" (\n"person_id" TEXT,\n
	6	table	principals	principals	8	CREATE TABLE "principals" (\n"movie_id" TEXT,\
	7	table	writers	writers	9	CREATE TABLE "writers" (\n"movie_id" TEXT,\n

```
query1 = """ SELECT * FROM movie_basics ORDER BY -start_year LIMIT 10"""
pd.read_sql(query1, conn)
```

₹ movie_id primary_title original_title start_year runtime_minutes genres tt5174640 100 Years 100 Years 2115 None Drama tt5637536 Avatar 5 Avatar 5 2027 None Action, Adventure, Fantasy 2 tt10300398 Untitled Star Wars Film Untitled Star Wars Film 2026 None Fantasy Action, Adventure, Fantasy tt3095356 Avatar 4 Avatar 4 2025 None tt10300396 Untitled Star Wars Film Untitled Star Wars Film 2024 None None Fantastic Beasts and Where to Find Fantastic Beasts and Where to Find tt6149054 2024 None Adventure, Family, Fantasy Them 5 6 tt10255736 Untitled Marvel Project Untitled Marvel Project 2023 None Action tt10298848 Untitled Disney Live-Action Project Untitled Disney Live-Action Project 2023 None None tt1757678 Avatar 3 Avatar 3 2023 None Action, Adventure, Drama tt6258542 Wraith of the Umbra and Eidolon II Wraith of the Umbra and Eidolon II 2023 None Adventure, Drama, Fantasy

get column info
cursor.execute("PRAGMA table_info(movie_basics)")
cursor.fetchall()

```
[(0, 'movie_id', 'TEXT', 0, None, 0),
    (1, 'primary_title', 'TEXT', 0, None, 0),
    (2, 'original_title', 'TEXT', 0, None, 0),
    (3, 'start_year', 'INTEGER', 0, None, 0),
    (4, 'runtime_minutes', 'REAL', 0, None, 0),
    (5, 'genres', 'TEXT', 0, None, 0)]
```

query4 = """ SELECT COUNT(*) FROM movie_basics"""
pd.read_sql(query4, conn)

COUNT(*)

0 146144

query2 = """ SELECT * FROM movie_ratings LIMIT 5"""
pd.read_sql(query2, conn)

₹		movie_id	averagerating	numvotes
	0	tt10356526	8.3	31
	1	tt10384606	8.9	559
	2	tt1042974	6.4	20
	3	tt1043726	4.2	50352
	4	tt1060240	6.5	21

query11 = """ SELECT * FROM directors LIMIT 5"""
pd.read_sql(query11, conn)

nm0089502

movie_id person_id

tt0285252 nm0899854

tt0462036 nm1940585

tt0835418 nm0151540

tt0835418 nm0151540

tt0878654

Let's combine the tables to include movie data, ratings, as well as the producers, directors, and actors who worked on the movie

```
query201 = """
WITH ranked_directors AS (
SELECT
    d.movie_id,
    p.primary_name AS director_name,
    ROW_NUMBER() OVER (PARTITION BY d.movie_id ORDER BY d.person_id) AS director_rank
```

```
FROM directors d
    JOIN persons p ON d.person_id = p.person_id
    GROUP BY d.movie_id, p.primary_name, d.person_id
ranked principals AS (
    SELECT
        p.movie_id,
        per.primary_name AS person_name,
        p.category,
        ROW_NUMBER() OVER (PARTITION BY p.movie_id, p.category ORDER BY p.person_id) AS person_rank
    FROM principals p
    JOIN persons per ON p.person_id = per.person_id
    WHERE p.category IN ('actor', 'actress', 'producer')
    mr.movie_id AS imdb_movie_id,
    mb.primary_title,
    mr.averagerating AS average_rating,
    mr.numvotes,
    mb.start_year,
    mb.runtime_minutes,
   MAX(CASE WHEN rd.director_rank = 1 THEN rd.director_name END) AS director1,
    MAX(CASE WHEN rd.director_rank = 2 THEN rd.director_name END) AS director2,
   MAX(CASE WHEN rp.category = 'actress' AND rp.person_rank = 1 THEN rp.person_name END) AS actress1,
   MAX(CASE WHEN rp.category = 'actress' AND rp.person_rank = 2 THEN rp.person_name END) AS actress2,
   MAX(CASE WHEN rp.category = 'actress' AND rp.person_rank = 3 THEN rp.person_name END) AS actress3,
   MAX(CASE WHEN rp.category = 'actor' AND rp.person_rank = 1 THEN rp.person_name END) AS actor1,
    MAX(CASE WHEN rp.category = 'actor' AND rp.person_rank = 2 THEN rp.person_name END) AS actor2,
   MAX(CASE WHEN rp.category = 'actor' AND rp.person rank = 3 THEN rp.person name END) AS actor3,
   MAX(CASE WHEN rp.category = 'actor' AND rp.person_rank = 4 THEN rp.person_name END) AS actor4,
   MAX(CASE WHEN rp.category = 'producer' AND rp.person_rank = 1 THEN rp.person_name END) AS producer1,
   MAX(CASE WHEN rp.category = 'producer' AND rp.person_rank = 2 THEN rp.person_name END) AS producer2
FROM movie_ratings mr
JOIN movie_basics mb ON mr.movie_id = mb.movie_id
LEFT JOIN ranked_directors rd ON mr.movie_id = rd.movie_id
LEFT JOIN ranked_principals rp ON mr.movie_id = rp.movie_id
WHERE mr.numvotes >= 30
GROUP BY
    mr.movie_id,
    mb.primary_title,
    mr.averagerating,
    mr.numvotes,
    mb.start year,
    mb.runtime_minutes,
    mb.genres
ORDER BY -mr.numvotes
pd.read_sql(query201, conn)
```

₹		imdb_movie_id	primary_title	average_rating	numvotes	start_year	runtime_minutes	genres	directorl	dir
	0	tt1375666	Inception	8.8	1841066	2010	148.0	Action,Adventure,Sci- Fi	Christopher Nolan	
	1	tt1345836	The Dark Knight Rises	8.4	1387769	2012	164.0	Action,Thriller	Christopher Nolan	
	2	tt0816692	Interstellar	8.6	1299334	2014	169.0	Adventure,Drama,Sci- Fi	Christopher Nolan	
	3	tt1853728	Django Unchained	8.4	1211405	2012	165.0	Drama,Western	Quentin Tarantino	
	4	tt0848228	The Avengers	8.1	1183655	2012	143.0	Action,Adventure,Sci- Fi	Joss Whedon	
	43735	tt9378760	Sarah Millican: Control Enthusiast Live	6.9	30	2018	82.0	Comedy	Brian Klein	
	43736	tt9442146	Hüddam 2	5.3	30	2019	92.0	Drama,Horror,Thriller	Utku Uçar	
	43737	tt9598566	Ave Maria	7.3	30	2018	74.0	Drama	Vipin Radhakrishnan	
	43738	tt9613316	Frances Ferguson	6.8	30	2019	74.0	Comedy	Bob Byington	
	43739	tt9647980	Patria	7.5	30	2019	89.0	Documentary	Matías Gueilburt	

43740 rows × 18 columns

imdb_df = pd.read_sql(query201, conn)
imdb_df.head()

₹		imdb_movie_id	primary_title	average_rating	numvotes	start_year	runtime_minutes	genres	director1	director2
	0	tt1375666	Inception	8.8	1841066	2010	148.0	Action,Adventure,Sci- Fi	Christopher Nolan	None
	1	tt1345836	The Dark Knight Rises	8.4	1387769	2012	164.0	Action,Thriller	Christopher Nolan	None
	2	tt0816692	Interstellar	8.6	1299334	2014	169.0	Adventure,Drama,Sci- Fi	Christopher Nolan	None
	3	tt1853728	Django Unchained	8.4	1211405	2012	165.0	Drama,Western	Quentin Tarantino	None
	4	tt0848228	The Avengers	8.1	1183655	2012	143.0	Action,Adventure,Sci- Fi	Joss Whedon	None

imdb_df.info()

→ <class 'pandas.core.frame.DataFrame'> RangeIndex: 43740 entries, 0 to 43739 Data columns (total 18 columns): Column Non-Null Count Dtype # imdb_movie_id 43740 non-null object primary_title 43740 non-null object float64 average_rating 43740 non-null numvotes 43740 non-null int64 43740 non-null start_year runtime_minutes 41466 non-null float64 genres 43619 non-null object director1 43528 non-null object 4352 non-null 8 director2 object 33042 non-null actress1 object 10 actress2 19261 non-null object 6159 non-null 37258 non-null actress3 object 11 12 actor1 object 13 actor2 32216 non-null object 14 actor3 19403 non-null object

```
15 actor4 6332 non-null object
16 producer1 31705 non-null object
17 producer2 16412 non-null object
dtypes: float64(2), int64(2), object(14)
memory usage: 6.0+ MB
```

Movie Budgets dataset

Let's explore the dataset containing movie budgets and revenue data

```
# Read the CSV file
budgets_df = pd.read_csv('zippedData/tn.movie_budgets.csv.gz')
# Display the first few rows of the DataFrame
print(budgets_df.tail(20))
           id
              release_date
                                                         movie production_budget \
     5762
           63
               Apr 11, 1997
                                               Pink Flamingos
                                                                          $12,000
     5763
                                     Grip: A Criminal's Story
           64
               Apr 28, 2006
                                                                          $12,000
     5764 65
               Dec 31, 2007
                                                   Tin Can Man
                                                                          $12,000
     5765
                Mar 9,
                       2001
                                                       Dayereh
                                                                          $10,000
           66
               Apr 28, 2006
     5766
           67
                                                         Clean
                                                                          $10,000
                                                                         $10,000
     5767
           68
                Jul 6, 2001
                                                          Cure
     5768
           69
               May 28, 2004
                                               On the Downlow
                                                                          $10,000
     5769
           70
                Apr 1, 1996
                                                          Bang
                                                                          $10,000
                                                                         $10,000
     5770
           71
               Aug 14, 2008
                              The Rise and Fall of Miss Thang
     5771
           72
               May 19, 2015
                                             Family Motocross
                                                                          $10,000
     5772
          73
               Jan 13, 2012
                                                     Newlyweds
                                                                           $9,000
                                                                           $7,000
     5773
           74
               Feb 26, 1993
                                                   El Mariachi
                Oct 8, 2004
                                                                           $7,000
     5774
           75
                                                        Primer
     5775 76
              May 26, 2006
                                                        Cavite
                                                                           $7,000
     5776
               Dec 31, 2004
           77
                                              The Mongol King
                                                                           $7,000
           78
               Dec 31, 2018
                                                                           $7,000
     5777
                                                        Red 11
     5778
          79
                Apr 2, 1999
                                                     Following
                                                                           $6,000
     5779
           80
               Jul 13, 2005
                                Return to the Land of Wonders
                                                                           $5,000
     5780
           81
               Sep 29, 2015
                                         A Plague So Pleasant
                                                                           $1,400
                                            My Date With Drew
     5781
                Aug 5, 2005
                                                                           $1,100
          domestic_gross worldwide_gross
     5762
                $413,802
                                 $413,802
     5763
                  $1,336
                                   $1,336
     5764
                      $0
                                       $0
     5765
                $673,780
                                 $673,780
     5766
                $138,711
                                 $138,711
     5767
                 $94,596
                                  $94,596
     5768
                  $1,987
                                   $1,987
     5769
                    $527
                                     $527
     5770
                    $401
                                     $401
     5771
                      $0
                                       $0
     5772
                  $4,584
                                   $4,584
              $2,040,920
                               $2,041,928
     5773
     5774
                $424,760
                                 $841,926
     5775
                 $70,071
                                  $71,644
     5776
                    $900
                                     $900
     5777
                      $0
                                       $0
     5778
                 $48,482
                                 $240,495
     5779
                  $1,338
                                   $1,338
     5780
                      $0
                                       $0
                $181,041
                                 $181,041
     5781
```

budgets_df.info()

<<re><class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):

memory usage: 271.2+ KB

#	Column	Non-Null Count	Dtype
0	id	5782 non-null	int64
1	release_date	5782 non-null	object
2	movie	5782 non-null	object
3	production_budget	5782 non-null	object
4	domestic_gross	5782 non-null	object
5	worldwide_gross	5782 non-null	object
dt vn	es: int64(1), objec	+(5)	

```
# convert release_dat column to datetime
budgets_df['release_date'] = pd.to_datetime(budgets_df['release_date'], format='%b %d, %Y')
```

```
# add a new column with just the year
budgets_df['release_year'] = budgets_df['release_date'].dt.year
budgets_df.head()
```

₹		id	release_date	movie	production_budget	domestic_gross	worldwide_gross	release_year
	0	1	2009-12-18	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279	2009
	1	2	2011-05-20	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875	2011
	2	3	2019-06-07	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350	2019
	3	4	2015-05-01	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963	2015
	4	5	2017-12-15	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747	2017

budgets_df.info()

```
<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype
0	id	5782 non-null	int64
1	release_date	5782 non-null	datetime64[ns]
2	movie	5782 non-null	object
3	production_budget	5782 non-null	object
4	domestic_gross	5782 non-null	object
5	worldwide_gross	5782 non-null	object
6	release_year	5782 non-null	int32
dtyp	es: datetime64[ns](1), int32(1), in	t64(1), object(4

dtypes: datetime64[ns](1), int32(1), int64(1), object(4)
memory usage: 293.7+ KB

imdb_df.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 43740 entries, 0 to 43739
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	imdb_movie_id	43740 non-null	object
1	primary_title	43740 non-null	object
2	average_rating	43740 non-null	float64
3	numvotes	43740 non-null	int64
4	start_year	43740 non-null	int64
5	runtime_minutes	41466 non-null	float64
6	genres	43619 non-null	object
7	director1	43528 non-null	object
8	director2	4352 non-null	object
9	actress1	33042 non-null	object
10	actress2	19261 non-null	object
11	actress3	6159 non-null	object
12	actor1	37258 non-null	object
13	actor2	32216 non-null	object
14	actor3	19403 non-null	object
15	actor4	6332 non-null	object
16	producer1	31705 non-null	object
17	producer2	16412 non-null	object
dtype	es: float64(2), i	nt64(2) , object(14)
memo	ry usage: 6.0+ MB		

budgets_df['release_year'] = budgets_df['release_year'].astype('int64')

Check for missing values in each column budgets_df.isnull().sum()

```
₹
    id
                         0
    release_date
                         0
    movie
                         0
    production_budget
                         0
    domestic_gross
                         0
    worldwide_gross
                         0
    release_year
                         0
    dtype: int64
```

```
imdb df.isnull().sum()
→ imdb_movie_id
    primary_title
                            0
    average_rating
    numvotes
                            0
    start year
                            0
    runtime_minutes
                         2274
    genres
                          121
    director1
                          212
    director2
                        39388
                        10698
    actress1
    actress2
                        24479
    actress3
                        37581
                         6482
    actor1
    actor2
                        11524
    actor3
                        24337
                        37408
    actor4
    producer1
                        12035
    producer2
                        27328
    dtype: int64
```

Start coding or generate with AI.

Combining IMDb and Movie Budgets datasets

Normalize titles by converting to lowercase and stripping spaces

```
budgets_df['movie'] = budgets_df['movie'].str.lower().str.strip()
imdb_df['primary_title'] = imdb_df['primary_title'].str.lower().str.strip()
Years have to match exactly but not movie titles
# Create an indexer and define the comparison criteria
indexer = recordlinkage.Index()
indexer.block(left_on='release_year', right_on='start_year')
candidate_links = indexer.index(budgets_df, imdb_df)
compare = recordlinkage.Compare()
compare.exact('release_year', 'start_year', label='year')
compare.string('movie', 'primary_title', method='jarowinkler', threshold=0.95, label='title')
features = compare.compute(candidate_links, budgets_df, imdb_df)
# Filter matches based on a threshold
matches = features[features.sum(axis=1) > 1.5]
Now Let's merge the data frames based on the matches
budgets_df['index'] = budgets_df.index
imdb_df['index'] = imdb_df.index
matches.reset_index(inplace=True)
merged_df = pd.merge(budgets_df, matches, left_on='index', right_on='level_0')
merged_df = pd.merge(merged_df, imdb_df, left_on='level_1', right_on='index')
# Drop unnecessary columns and duplicates
merged_df.drop(columns=['index_x', 'index_y', 'level_0', 'level_1'], inplace=True)
merged_df.drop_duplicates(inplace=True)
merged_df
```

∓ id release_date movie production_budget domestic_gross worldwide_gross release_year year title imdb_movie_ic pirates of the 2 0 2011-05-20 caribbean: \$410,600,000 \$241,063,875 \$1,045,663,875 2011 1.0 tt129865(1 on stranger tides dark 3 \$350,000,000 1 2019-06-07 \$42,762,350 \$149,762,350 2019 1.0 tt6565702 1 phoenix avengers: 2015-05-01 2 4 \$330,600,000 \$459,005,868 \$1,403,013,963 2015 1.0 tt2395427 1 age of ultron avengers: 3 7 2018-04-27 \$300,000,000 \$678,815,482 \$2,048,134,200 2018 1 1.0 tt4154756 infinity war justice 4 9 2017-11-17 \$300,000,000 \$229,024,295 \$655,945,209 2017 1.0 tt0974015 league her cry: la 35 2013-10-25 2013 tt2469216 1595 \$35,000 \$0 \$0 1 1.0 llorona investigation 1596 49 2015-09-01 exeter \$25,000 \$0 \$489,792 2015 1 1.0 tt1945044 1597 52 2015-12-01 dutch kills \$25,000 \$0 \$0 2015 1 1.0 tt2759066 1598 59 2011-11-25 the ridges \$17,300 \$0 \$0 2011 1 1.0 tt178193{ stories of

\$0

\$0

2014

1.0

1

tt3973612

1600 rows × 27 columns

1599 62

2014-12-31

our lives

\$15,000

[#] rearrange columns
columns = list(merged_df.columns)

[#] Move 'primary_title' next to 'movie'
columns.insert(columns.index('movie') + 1, columns.pop(columns.index('primary_title')))
merged_df = merged_df[columns]
merged_df

₹	id	release_date	movie	<pre>primary_title</pre>	production_budget	domestic_gross	worldwide_gross	release_year	year	title
0	2	2011-05-20	pirates of the caribbean: on stranger tides	pirates of the caribbean: on stranger tides	\$410,600,000	\$241,063,875	\$1,045,663,875	2011	1	1.(
1	3	2019-06-07	dark phoenix	dark phoenix	\$350,000,000	\$42,762,350	\$149,762,350	2019	1	1.(
2	4	2015-05-01	avengers: age of ultron	avengers: age of ultron	\$330,600,000	\$459,005,868	\$1,403,013,963	2015	1	1.(
3	7	2018-04-27	avengers: infinity war	avengers: infinity war	\$300,000,000	\$678,815,482	\$2,048,134,200	2018	1	1.(
4	9	2017-11-17	justice league	justice league	\$300,000,000	\$229,024,295	\$655,945,209	2017	1	1.(

1595	5 35	2013-10-25	her cry: la llorona investigation	her cry: la llorona investigation	\$35,000	\$0	\$0	2013	1	1.(
1596	3 49	2015-09-01	exeter	exeter	\$25,000	\$0	\$489,792	2015	1	1.(
1597	7 52	2015-12-01	dutch kills	dutch kills	\$25,000	\$0	\$0	2015	1	1.(
1598	3 59	2011-11-25	the ridges	the ridges	\$17,300	\$0	\$0	2011	1	1.(
1599	9 62	2014-12-31	stories of our lives	stories of our lives	\$15,000	\$0	\$0	2014	1	1.(

Filter rows where 'movie' does not equal 'primary_title' to manually explore the data

```
non_exact_matches = merged_df[merged_df['movie'] != merged_df['primary_title']]
# Set display options to show all rows
pd.set_option('display.max_rows', None)
```

non_exact_matches

1600 rows × 27 columns

						iliai.ipyilo - Co	140			
₹		id	release_date	movie	primary_title	production_budget	domestic_gross	worldwide_gross	release_year	yea
	33	49	2017-05-05	guardians of the galaxy vol 2	guardians of the galaxy vol. 2	\$200,000,000	\$389,813,101	\$862,316,233	2017	
	65	92	2018-07-27	mission: impossible†fallout	mission: impossible - fallout	\$178,000,000	\$220,159,104	\$787,456,552	2018	
	97	32	2014-11-05	interstellar	interstelar	\$165,000,000	\$188,017,894	\$666,379,375	2014	
	103	40	2013-05-24	fast and furious 6	fast & furious 6	\$160,000,000	\$238,679,850	\$789,300,444	2013	
	110	49	2015-07-01	terminator: genisys	terminator genisys	\$155,000,000	\$89,760,956	\$432,150,894	2015	
	122	76	2019-05-10	pokã©mon: detective pikachu	pokémon detective pikachu	\$150,000,000	\$139,507,806	\$411,258,433	2019	
	142	25	2012-11-16	the twilight saga: breaking dawn, part 2	the twilight saga: breaking dawn - part 2	\$136,200,000	\$292,324,737	\$829,724,737	2012	
	145	27	2015-12-25	the revenant	the event	\$135,000,000	\$183,637,894	\$532,938,302	2015	
	166	57	2011-11-18	the twilight saga: breaking dawn, part 1	the twilight saga: breaking dawn - part 1	\$127,500,000	\$281,287,133	\$689,420,051	2011	
	169	61	2011-07-15	harry potter and the deathly hallows: part ii	harry potter and the deathly hallows: part 2	\$125,000,000	\$381,193,157	\$1,341,693,157	2011	
	171	64	2010-11-19	harry potter and the deathly hallows: part i	harry potter and the deathly hallows: part 1	\$125,000,000	\$296,131,568	\$960,431,568	2010	
	182	80	2016-12-21	assassin†s creed	assassin's creed	\$125,000,000	\$54,647,948	\$240,759,682	2016	
	191	1	2010-12-17	how do you know?	how do you know	\$120,000,000	\$30,212,620	\$49,628,177	2010	
	193	2	2010-06-23	knight and day	night and day	\$117,000,000	\$76,423,035	\$258,751,370	2010	
	196	10	2016-04-22	the huntsman: winter†s war	the huntsman: winter's war	\$115,000,000	\$48,003,015	\$165,149,302	2016	
	206	30	2016-09-30	miss peregrine†s home for peculiar children	miss peregrine's home for peculiar children	\$110,000,000	\$87,242,834	\$295,986,876	2016	
	231	96	2014-08-15	the expendables 3	the extendables	\$100,000,000	\$39,322,544	\$209,461,378	2014	
	253	44	2018-12-14	spider-man: into the spider-verse 3d	spider-man: into the spider-verse	\$90,000,000	\$190,173,195	\$375,381,768	2018	
	296	93	2013-12-20	walking with dinosaurs	walking with dinosaurs 3d	\$80,000,000	\$36,076,121	\$123,368,842	2013	
	311	45	2011-11-11	immortals	immortalitas	\$75,000,000	\$83,504,017	\$211,562,435	2011	
	320	10	2011-03-11	battle: los angeles	battle los angeles	\$70,000,000	\$83,552,429	\$213,463,976	2011	
	324	19	2012-01-20	underworld: awakening	underworld awakening	\$70,000,000	\$62,321,039	\$160,379,930	2012	
	364	41	2019-01-11	a dog†s way home	a dog's way home	\$61,000,000	\$41,952,715	\$81,149,689	2019	
	432	100	2018-12-14	the mule	the mute	\$50,000,000	\$103,804,407	\$170,857,676	2018	
	435	8	2011-07-29	crazy, stupid, love	crazy, stupid, love.	\$50,000,000	\$84,351,197	\$147,142,328	2011	
	439	24	2014-07-18	planes: fire and rescue	planes: fire & rescue	\$50,000,000	\$59,157,732	\$156,399,644	2014	

10/4/24, 12:15 P	M 41	2014-10-10	the judge	the judgment	final.ipynb - Cola \$50,000,000	b \$47,119,388	\$76,119,388	2014
464	4	2013-03-15	upside down	upsidedown	\$50,000,000	\$102,118	\$26,387,039	2013
473	42	2016-12-23	silence	silenced	\$46,500,000	\$7,100,177	\$23,726,626	2016
495	35	2013-06-28	the heat	the east	\$43,000,000	\$159,581,587	\$229,727,774	2013
496	40	2018-11-09	the girl in the spider†s web	the girl in the spider's web	\$43,000,000	\$14,828,555	\$34,983,342	2018
511	81	2019-05-17	john wick: chapter 3 †parabellum	john wick: chapter 3 - parabellum	\$40,000,000	\$141,744,320	\$256,498,033	2019
515	94	2017-02-10	john wick: chapter two	john wick: chapter 2	\$40,000,000	\$92,029,184	\$171,350,009	2017
544	70	2011-12-25	extremely loud and incredibly close	extremely loud & incredibly close	\$40,000,000	\$31,847,881	\$55,247,881	2011
560	30	2016-11-11	billy lynn†s long halftime walk	billy lynn's long halftime walk	\$40,000,000	\$1,738,477	\$30,230,402	2016
562	41	2014-12-31	dragon nest warriors' dawn	dragon nest: warriors' dawn	\$40,000,000	\$0	\$734,423	2014
563	42	2018-12-31	the crow	the row	\$40,000,000	\$0	\$0	2018
588	6	2011-02-11	gnomeo and juliet	gnomeo & juliet	\$36,000,000	\$99,967,670	\$193,737,977	2011
619	3	2016-09-16	bridget jones†s baby	bridget jones's baby	\$35,000,000	\$24,139,805	\$205,822,688	2016
668	65	2017-08-18	the hitman†s bodyguard	the hitman's bodyguard	\$30,000,000	\$75,468,583	\$172,778,667	2017
708	79	2011-04-29	hoodwinked too: hood vs. evil	hoodwinked too! hood vs. evil	\$30,000,000	\$10,143,779	\$23,353,111	2011
710	84	2017-02-03	the space between us	the space between	\$30,000,000	\$7,885,294	\$16,481,405	2017
742	19	2016-11-23	rules don†t apply	rules don't apply	\$26,700,000	\$3,652,206	\$3,871,448	2016
758	86	2017-01-27	a dog†s purpose	a dog's purpose	\$25,000,000	\$64,321,890	\$203,671,625	2017
853	39	2017-11-17	the star	the stray	\$20,000,000	\$40,847,995	\$62,758,010	2017
861	61	2013-04-12	scary movie v	scary movie 5	\$20,000,000	\$32,015,787	\$78,613,981	2013
865	80	2010-09-17	alpha and omega 3d	alpha and omega	\$20,000,000	\$25,107,267	\$48,958,353	2010
871	5	2012-10-26	silent hill: revelation 3d	silent hill: revelation	\$20,000,000	\$17,530,219	\$55,975,672	2012
872	7	2017-03-31	the zookeeper†s wife	the zookeeper's wife	\$20,000,000	\$17,445,186	\$26,308,749	2017
902	11	2015-05-29	survivor	survivors	\$20,000,000	\$0	\$1,703,281	2015
921	64	2014-05-09	neighbors	neighbours	\$18,000,000	\$150,086,800	\$270,944,428	2014
940	40	2017-03-17	t2: trainspotting	t2 trainspotting	\$18,000,000	\$2,402,004	\$42,091,262	2017
946	53	2014-08-22	the prince	the principle	\$18,000,000	\$0	\$0	2014
974	97	2010-11-26	the king†s speech	the king's speech	\$15,000,000	\$138,797,449	\$430,821,168	2010
988	39	2018-11-23	the favourite	the favorite	\$15,000,000	\$34,366,783	\$94,113,929	2018

1001	13	2013-01-04	promised land	promise land	\$15,000,000	\$7,597,898	\$12,394,562	2013
1065	77	2016-08-12	hell or high water	hell or high waters	\$12,000,000	\$27,007,844	\$37,584,304	2016
1085	55	2015-10-30	dancin' it's on	dancin': it's on!	\$12,000,000	\$0	\$0	2015
1105	51	2015-06-05	insidious chapter 3	insidious: chapter 3	\$10,000,000	\$52,218,558	\$120,453,155	2015
1144	69	2016-03-30	everybody wants some	everybody wants some!!	\$10,000,000	\$3,400,278	\$5,437,126	2016
1160	33	2010-12-31	the reef	the tree	\$10,000,000	\$0	\$15,037,867	2010
1240	99	2013-05-31	the east	the heat	\$6,500,000	\$2,274,649	\$3,027,956	2013
1242	99	2013-05-31	the east	the past	\$6,500,000	\$2,274,649	\$3,027,956	2013
1266	53	2013-09-13	insidious chapter 2	insidious: chapter 2	\$5,000,000	\$83,586,447	\$161,921,515	2013
1270	56	2015-09-11	the visit	the visitor	\$5,000,000	\$65,206,105	\$98,677,816	2015
1273	59	2012-10-19	paranormal activity 4	paranormal captivity	\$5,000,000	\$53,900,335	\$142,817,992	2012
1291	8	2016-07-15	hillary†s america: the secret history of the	hillary's america: the secret history of the d	\$5,000,000	\$13,099,931	\$13,099,931	2016
1294	20	2014-05-09	moms†night out	moms' night out	\$5,000,000	\$10,429,707	\$10,537,341	2014
1319	18	2012-09-14	barfi	barfi!	\$4,600,000	\$2,804,874	\$36,751,984	2012
1325	56	2014-11-07	fugly	fugly!	\$4,500,000	\$0	\$0	2014
1349	94	2016-02-19	the witch	the witching	\$3,500,000	\$25,138,705	\$40,454,520	2016
1385	72	2015-08-14	amnesiac	amnesia	\$3,000,000	\$0	\$0	2015
1392	13	2012-07-13	2016: obama†s america	2016: obama's america	\$2,500,000	\$33,349,941	\$33,349,941	2012
1401	44	2013-06-21	alien uprising	alien rising	\$2,500,000	\$0	\$0	2013
1432	79	2013-04-01	stitches	stitch	\$2,000,000	\$0	\$63,555	2013
1476	77	2018-02-06	blood feast	blood fest	\$1,200,000	\$8,708	\$8,708	2018
1479	87	2015-02-03	bleeding hearts	bleeding heart	\$1,200,000	\$0	\$0	2015
1516	48	2012-08-31	for a good time, call	for a good time, call	\$850,000	\$1,251,749	\$1,386,088	2012
1518	54	2012-08-03	celeste and jesse forever	celeste & jesse forever	\$840,000	\$3,103,407	\$3,787,689	2012
1565	33	2014-03-14	the word	the m word	\$200,000	\$3,648	\$3,648	2014
1568	43	2011-09-23	weekend	weekender	\$190,000	\$484,592	\$1,577,585	2011
1572	60	2015-04-17	antarctic edge: 70â° south	antarctic edge: 70° south	\$150,000	\$7,193	\$7,193	2015
1581	93	2014-12-31	dude, where's my dog	dude, where's my dog?!	\$100,000	\$0	\$0	2014
1585	6	2011-12-31	absentia	absent	\$70,000	\$0	\$8,555	2011

84 rows × 27 columns

```
# Reset display options to default
pd.reset_option('display.max_rows')
Let's remove movies with poorly matched titles by index
poor_match = [97, 145, 447, 495, 563, 853, 946, 1160, 1240, 1242]
merged_df = merged_df.drop(poor_match)
merged df.columns
'runtime_minutes', 'genres', 'director1', 'director2', 'actress1',
'actress2', 'actress3', 'actor1', 'actor2', 'actor3', 'actor4',
'producer1', 'producer2'],
          dtype='object')
We can remove redundunt columns
col_to_remove = ['id', 'movie', 'release_year', 'year', 'title', 'start_year', 'runtime_minutes']
merged_df = merged_df.drop(col_to_remove, axis=1)
merged_df.info()
Index: 1590 entries, 0 to 1599
    Data columns (total 20 columns):
     #
        Column
                            Non-Null Count
                                            Dtype
                            1590 non-null
     0
         release_date
                                            datetime64[ns]
         primary_title
                            1590 non-null
                                            object
     2
         production_budget 1590 non-null
                                            object
         domestic_gross
                            1590 non-null
                                            object
         worldwide_gross
                            1590 non-null
                                            object
         imdb_movie_id
                            1590 non-null
                                            object
         average_rating
                            1590 non-null
                                            float64
         numvotes
                            1590 non-null
                                            int64
     8
                            1590 non-null
         genres
                                            object
         director1
                            1589 non-null
                                            object
     10 director2
                            139 non-null
                                            object
     11 actress1
                            1383 non-null
                                            object
     12 actress2
                            730 non-null
                                            object
                            177 non-null
     13 actress3
                                            object
                            1534 non-null
     14 actor1
                                            object
     15 actor2
                            1379 non-null
                                            object
     16 actor3
                            825 non-null
                                            object
     17
         actor4
                            179 non-null
                                            object
                            1380 non-null
     18 producer1
                                            object
     19 producer2
                            997 non-null
                                            object
    dtypes: datetime64[ns](1), float64(1), int64(1), object(17)
    memory usage: 260.9+ KB
# convert string columns to numeric
for col in ['production_budget', 'domestic_gross', 'worldwide_gross']:
    merged_df[col] = merged_df[col].str.replace('$', '', regex=False)
    merged_df[col] = merged_df[col].str.replace(',', '', regex=False)
    merged_df[col] = pd.to_numeric(merged_df[col])
# Calculate profit
merged_df['profit'] = merged_df['worldwide_gross'] - merged_df['production_budget']
# Calculate ROI
merged_df['roi'] = ((merged_df['profit']-merged_df['production_budget']) / merged_df['production_budget']) * 100
merged_df.head()
```

₹		release_date	<pre>primary_title</pre>	production_budget	domestic_gross	worldwide_gross	imdb_movie_id	average_rating	numvotes	
	0	2011-05-20	pirates of the caribbean: on stranger tides	410600000	241063875	1045663875	tt1298650	6.6	447624	Α
	1	2019-06-07	dark phoenix	350000000	42762350	149762350	tt6565702	6.0	24451	
	2	2015-05-01	avengers: age of ultron	330600000	459005868	1403013963	tt2395427	7.3	665594	
	3	2018-04-27	avengers: infinity war	300000000	678815482	2048134200	tt4154756	8.5	670926	
	4	2017-11-17	justice league	300000000	229024295	655945209	tt0974015	6.5	329135	Α
	5 row	s × 22 columns								

Split the genres column into multiple columns

merged_df[['genre1', 'genre2', 'genre3']] = merged_df['genres'].str.split(',', expand=True)# expand=True: Ensures that the resul
merged_df.info()

```
Index: 1590 entries, 0 to 1599
Data columns (total 25 columns):
    Column
                        Non-Null Count
                                        Dtype
0
    release_date
                        1590 non-null
                                        datetime64[ns]
    primary_title
                        1590 non-null
                                        object
    production_budget 1590 non-null
                                        int64
                        1590 non-null
                                        int64
    domestic_gross
                        1590 non-null
    worldwide_gross
                                        int64
    imdb_movie_id
                        1590 non-null
                                        object
    average_rating
                        1590 non-null
                                        float64
                        1590 non-null
    numvotes
                                        int64
8
    genres
                        1590 non-null
                                        object
    director1
                        1589 non-null
                                        object
                        139 non-null
10 director2
                                        object
                        1383 non-null
11
    actress1
                                        object
12
    actress2
                        730 non-null
                                        object
                        177 non-null
13
    actress3
                                        object
14
                        1534 non-null
    actor1
                                        object
15
    actor2
                        1379 non-null
                                        object
                        825 non-null
    actor3
                                        object
                        179 non-null
17
                                        object
    actor4
18
    producer1
                        1380 non-null
                                        object
    producer2
                        997 non-null
                                        object
    profit
                        1590 non-null
20
                                        int64
                        1590 non-null
                                        float64
21
    roi
22
    genre1
                        1590 non-null
                                        object
23
    genre2
                        1408 non-null
                                        object
                        1046 non-null
    genre3
                                        object
dtypes: datetime64[ns](1), float64(2), int64(5), object(17)
memory usage: 323.0+ KB
```

Genre Analisys

```
We can set the float format to display up to a specific number of decimal places
```

 $\overline{\Rightarrow}$

```
# Group by genre and calculate metrics
genre_analysis = melted_genres_df.groupby('genre').agg(
    avg_budget=('production_budget', 'mean'),
    avg_profit=('profit', 'mean'),
    avg_roi=('roi', 'mean'),
    avg_rating=('average_rating', 'mean'),
    total_votes=('numvotes', 'sum')
).reset_index()

genre_analysis = genre_analysis.sort_values(by=['avg_roi', 'avg_rating'], ascending=[False, False])

genre_analysis
```

_							
		genre	avg_budget	avg_profit	avg_roi	avg_rating	total_votes
	14	Mystery	25125550.38	71788590.80	782.92	6.10	16594459
	11	Horror	18517602.59	53785183.95	701.17	5.45	12523815
	18	Thriller	33116149.45	85528899.22	432.83	6.00	32491608
	12	Music	17200754.72	61393441.79	182.88	6.33	3572520
	3	Biography	25500143.88	56630786.06	158.11	7.01	15425091
	2	Animation	93888392.86	262007659.49	157.61	6.49	13066701
	16	Sci-Fi	92910000.00	243146307.59	156.71	6.41	37240239
	15	Romance	22858128.08	46024403.09	148.43	6.30	16168782
	7	Drama	27205330.64	49728696.69	119.25	6.53	75170946
	9	Fantasy	85167537.31	168263427.75	118.22	6.11	21040550
	1	Adventure	105360923.48	245259640.20	109.90	6.44	74095851
	10	History	33772727.27	58648039.41	108.04	6.86	4561316
	4	Comedy	40577748.64	92092923.88	106.71	6.19	50991232
	6	Documentary	5360756.76	11935614.24	82.96	6.62	341119
	8	Family	65006000.00	120873862.53	67.79	6.05	7224888
	0	Action	79215253.16	160527513.80	62.33	6.25	83036951
	5	Crime	33050000.00	51401423.40	17.89	6.31	27679957
	13	Musical	40035000.00	144864392.90	12.86	5.48	615712
	17	Sport	24084558.82	27435814.06	9.99	6.89	2395967
	20	Western	55983333.33	47182244.17	-41.26	6.30	2158691
	19	War	27416666.67	27183357.72	-66.51	6.45	1290577

Now let's group by genre combinations and sort by the highest ROI

```
# Grouping by genre combinations and calculating metrics
genre_combinations_analysis = merged_df.groupby('genres').agg(
    count=('genres', 'size'), # Count the number of occurrences of each genre combination
   avg_budget=('production_budget', 'mean'),
   avg_profit=('profit', 'mean'),
   avg_roi=('roi', 'mean'),
   avg_rating=('average_rating', 'mean'),
   total_votes=('numvotes', 'sum')
).reset_index()
# Filter for genre combinations with at least 30 occurrences
genre_combinations_analysis_filtered = genre_combinations_analysis[genre_combinations_analysis['count'] >= 30]
# BY ROI
# Sort by average ROI to get the top ROI combinations
genre_combinations_analysis_filtered = genre_combinations_analysis_filtered.sort_values(by='avg_roi', ascending=False)
# Display the top 20 genre combinations based on average ROI
genre_combinations_analysis_filtered.head(20)
```


Grouping by genre combinations and calculating metrics
genre_combinations_analysis = merged_df.groupby('genres').agg(
 count=('genres', 'size'), # Count the number of occurrences of each genre combination
 avg_budget=('production_budget', 'mean'),
 avg_profit=('profit', 'mean'),
 avg_roi=('roi', 'mean'),
 avg_rating=('average_rating', 'mean'),
 total_votes=('numvotes', 'sum')
).reset_index()

Filter for genre combinations with at least 30 occurrences
genre_combinations_analysis_filtered = genre_combinations_analysis[genre_combinations_analysis['count'] >= 30]

BY ROI

 $\overline{\Rightarrow}$

Sort by average ROI to get the top ROI combinations
genre_combinations_analysis_filtered = genre_combinations_analysis_filtered.sort_values(by='avg_roi', ascending=False)

Display the top 20 genre combinations based on average ROI
genre_combinations_analysis_filtered.head(20)

	genres	count	avg_budget	avg_profit	avg_roi	avg_rating	total_votes
22	5 Horror, Mystery, Thriller	33	9721969.70	97892046.21	2614.19	5.53	2662668
203	3 Drama,Romance	35	22846857.14	54608913.46	270.25	6.82	3008082
63	Adventure, Animation, Comedy	72	100090277.78	292000004.51	192.66	6.41	8178889
12	Action,Adventure,Sci-Fi	55	169716363.64	467118871.35	166.97	6.73	22181507
13	2 Comedy, Drama, Romance	58	18023965.52	29467109.05	122.75	6.38	4758146
15	2 Comedy,Romance	44	25565909.09	56749376.34	119.30	5.85	3215413
17	2 Drama	61	11451672.13	14978908.18	113.12	6.70	2879926
124	4 Comedy,Drama	52	16168461.54	27646498.40	94.45	6.44	2985850
8	Action, Adventure, Fantasy	33	149109090.91	247778337.39	48.95	6.12	7794508
21	Action,Comedy,Crime	33	39930000.00	58148700.58	44.70	6.03	3794183
117	7 Comedy	63	29061190.48	41244930.44	24.59	5.54	3906958
32	Action,Crime,Drama	39	27548717.95	25689928.59	2.77	6.35	3922818
6	Action,Adventure,Drama	30	88153333.33	84898672.47	-17.70	5.96	3590583

Let's include some visualizations

import matplotlib.pyplot as plt
import seaborn as sns

Set modern and professional style

```
sns.set_style("whitegrid")
plt.figure(figsize=(12, 8))
# Sort by 'avg_roi' to get the top 10 genre combinations
top_10_genres_by_roi = genre_combinations_analysis_filtered.nlargest(10, 'avg_roi')
# Create the bar plot with dodgerblue color
barplot = sns.barplot(x='avg_roi', y='genres', data=top_10_genres_by_roi, color='dodgerblue', edgecolor='black')
# Customize title and labels for a professional look
barplot.set_title('Top 10 Genre Combinations by ROI', fontsize=18, weight='bold', color='navy', pad=20)
barplot.set_xlabel('Average ROI', fontsize=14, weight='bold')
barplot.set_ylabel('Genre Combinations', fontsize=14, weight='bold')
# Add grid for better readability
barplot.xaxis.grid(True, color='gray', linestyle='--', linewidth=0.5)
# Customize ticks
barplot.tick_params(labelsize=12)
# Add value labels for each bar, rounded to integer
for i in barplot.containers:
    barplot.bar_label(i, fmt='%.0f%%', fontsize=12) # Rounded to integer
# Show the plot
plt.tight_layout()
plt.show()
```


Top 10 Genre Combinations by ROI

Now we can sort by average profit

Sort by average profit to get the top profitable combinations
genre_combinations_analysis_filtered = genre_combinations_analysis_filtered.sort_values(by='avg_profit', ascending=False)

Display the top 20 genre combinations based on average profit
genre_combinations_analysis_filtered.head(20)

```
₹
                              genres count avg_budget avg_profit avg_roi avg_rating total_votes
      12
                Action, Adventure, Sci-Fi
                                          55 169716363.64 467118871.35
                                                                              166 97
                                                                                              6 73
                                                                                                        22181507
          Adventure, Animation, Comedy
                                           72 100090277.78 292000004.51
                                                                              192.66
                                                                                              6.41
                                                                                                         8178889
      63
      8
              Action, Adventure, Fantasy
                                          33 149109090.91
                                                             247778337.39
                                                                               48.95
                                                                                              6.12
                                                                                                         7794508
      225
                  Horror, Mystery, Thriller
                                          33
                                                 9721969.70
                                                              97892046.21
                                                                             2614.19
                                                                                              5.53
                                                                                                         2662668
      6
               Action, Adventure, Drama
                                          30
                                                88153333.33
                                                              84898672.47
                                                                              -17.70
                                                                                              5.96
                                                                                                         3590583
      21
                  Action, Comedy, Crime
                                          33
                                                39930000.00
                                                              58148700.58
                                                                               44.70
                                                                                              6.03
                                                                                                         3794183
                                                                              119.30
      152
                     Comedy,Romance
                                          44
                                                25565909.09
                                                              56749376.34
                                                                                              5.85
                                                                                                         3215413
                      Drama, Romance
                                                22846857.14
                                                                              270.25
      203
                                          35
                                                              54608913.46
                                                                                              6.82
                                                                                                         3008082
      117
                             Comedy
                                          63
                                                29061190.48
                                                              41244930.44
                                                                               24.59
                                                                                              5.54
                                                                                                         3906958
      132
              Comedy, Drama, Romance
                                                18023965.52
                                                              29467109.05
                                                                              122.75
                                                                                                         4758146
                                          58
                                                                                              6.38
      124
                       Comedy, Drama
                                          52
                                                16168461.54
                                                              27646498.40
                                                                               94.45
                                                                                              6.44
                                                                                                         2985850
      32
                   Action, Crime, Drama
                                          39
                                                27548717.95
                                                              25689928.59
                                                                                2.77
                                                                                              6.35
                                                                                                         3922818
      172
                                                              14978908.18
                                                                              113.12
                                                                                              6.70
                                                                                                         2879926
                                          61
                                                11451672.13
                               Drama
```

```
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.ticker as ticker
# Function to format numbers as currency with millions
def format_currency_millions(value):
    return f"${value / 1_000_000:.1f}M" # Format as millions with one decimal place
# Set modern and professional style
sns.set_style("whitegrid")
plt.figure(figsize=(12, 8))
# Sort by 'avg_profit' to get the top 10 genre combinations
top_10_genres_by_profit = genre_combinations_analysis_filtered.nlargest(10, 'avg_profit')
# Create the bar plot with dodgerblue color
barplot = sns.barplot(x='avg_profit', y='genres', data=top_10_genres_by_profit, color='dodgerblue', edgecolor='black')
# Customize title and labels for a professional look
barplot.set_title('Top 10 Genre Combinations by Average Profit', fontsize=18, weight='bold', color='navy', pad=20)
barplot.set_xlabel('Average Profit', fontsize=14, weight='bold') # Proper x-axis title
barplot.set_ylabel('Genre Combinations', fontsize=14, weight='bold')
# Add grid for better readability
barplot.xaxis.grid(True, color='gray', linestyle='--', linewidth=0.5)
# Remove x-axis tick values but keep the grid
barplot.xaxis.set_major_locator(ticker.MaxNLocator(integer=True)) # Ensures grid lines are integer values
barplot.set_xticklabels([]) # Remove x-tick labels
# Customize tick parameters
barplot.tick_params(labelsize=12)
# Add value labels for each bar formatted as currency in millions, with adjusted positioning
for p in barplot.patches:
    barplot.annotate(format_currency_millions(p.get_x() + p.get_width()), # Format the label
                     (p.get_x() + p.get_width(), p.get_y() + p.get_height() / 2), # Position the label
                     ha='left', va='center', fontsize=12, color='black',
                     xytext=(5, 0), textcoords='offset points') # Offset from the bar
# Show the plot
plt.tight_layout()
plt.show()
```


Top 10 Genre Combinations by Average Profit

Horror, Mystery, Thriller

→ Find the most successful producers

Find best producers for Horror, Mystery, or Thriller by the weighted score of (avg_roi * movie_count). We can include all movies tagged as either Horror, Mystery, or Thriller:

```
10/4/24, 12:15 PM
                                                                          final.ipynb - Colab
   producers = producers.dropna(subset=['producer_name'])
   # Group by producer name and calculate average profit and movie count
   producer_analysis = producers.groupby('producer_name').agg(
        avg_profit=('profit', 'mean'),
        avg_roi=('roi', 'mean'),
        movie_count=('roi', 'count')
   ).reset_index()
   # Calculate a weighted score
   producer_analysis['total_profit'] = producer_analysis['avg_profit'] * producer_analysis['movie_count']
   # Sort by score to find the best producers
   best_producers = producer_analysis.sort_values(by='total_profit', ascending=False)
   # Display the top producers
   best_producers.head(10)
    ₹
              producer_name
                             avg_profit avg_roi movie_count total_profit
         368
                Neal H. Moritz 862008239.75
                                            372.68
                                                                 3448032959.00
         211
                  Jason Blum
                              85844562.28
                                           2538.74
                                                             36
                                                                 3090404242.00
         340
               Michael Fottrell
                             939577505.00
                                            399.13
                                                              3
                                                                 2818732515.00
         125
                David Heyman 709565120.50
                                            499.49
                                                                 1419130241.00
         109
                 Dana Brunetti
                            255373029.25
                                            457.40
                                                                 1021492117.00
         334
                  Michael Bay 112803038.22
                                           1141.24
                                                              9
                                                                 1015227344.00
         338
              Michael De Luca 202912027.20
                                            344.20
                                                              5
                                                                 1014560136.00
                                                              5
         208
                  James Wan 190578607.60
                                           2169.43
                                                                  952893038.00
         44
              Barbara Broccoli 910526981.00
                                            355.26
                                                                  910526981.00
                 David Barron 453404490.00
                                                              2
                                                                  906808980.00
         119
                                            293.65
   # Include only specific genre category 'Horror, Mystery, Thriller'
   # Melt the producers into a single column
   producers = pd.melt(hmt_df, id_vars=['profit', 'roi'],
                        value_vars=['producer1', 'producer2'],
                        var_name='producer_type', value_name='producer_name')
   # Remove rows with NaN producers
   producers = producers.dropna(subset=['producer_name'])
   # Group by producer name and calculate average profit and movie count
   producer_analysis = producers.groupby('producer_name').agg(
        avg_profit=('profit', 'mean'),
        avg_roi=('roi', 'mean'),
        movie_count=('roi', 'count')
   ).reset_index()
   # Calculate a weighted score
   producer_analysis['total_profit'] = producer_analysis['avg_profit'] * producer_analysis['movie_count']
   # Sort by score to find the best producers
   best_producers = producer_analysis.sort_values(by='total_profit', ascending=False)
   # Display the top producers
   best_producers.head(10)
```

₹		producer_name	avg_profit	avg_roi	movie_count	total_profit
	8	Jason Blum	129855601.64	5012.65	14	1817978423.00
	7	James Wan	202271632.00	2017.76	4	809086528.00
	19	Peter Safran	270373892.50	2793.82	2	540747785.00
	26	Sean McKittrick	242289130.50	2989.21	2	484578261.00
	30	Tony DeRosa-Grund	298000141.00	1390.00	1	298000141.00
	20	Rob Cowan	298000141.00	1390.00	1	298000141.00
	28	Steven Schneider	202039844.00	3940.80	1	202039844.00
	18	Oren Peli	156921515.00	3038.43	1	156921515.00
	16	Michael Bay	98300632.00	1866.01	1	98300632.00
	14	Marc Bienstock	93677816.00	1773.56	1	93677816.00

Find the most successful directors

```
Find best directors for Horror, Mystery, or Thriller by the weighted score of (avg_roi * movie_count).
```

Include separate genres

```
# Melt the directors into a single column
directors = pd.melt(hmt_all_df, id_vars=['profit', 'roi'],
                     value_vars=['director1', 'director2'],
var_name='director_type', value_name='director_name')
# Remove rows with NaN producers
directors = directors.dropna(subset=['director_name'])
# Group by director name and calculate average roi and movie count
director_analysis = directors.groupby('director_name').agg(
    avg_profit=('profit', 'mean'),
    avg_roi=('roi', 'mean'),
    movie_count=('roi', 'count')
).reset_index()
# Calculate a weighted score
director_analysis['total_profit'] = director_analysis['avg_profit'] * director_analysis['movie_count']
# Sort by score to find the best director
best_directors = director_analysis.sort_values(by='total_profit', ascending=False)
# Display the top directors
best_directors.head(10)
```

<u>-</u>	director_name	avg_profit	avg_roi	movie_count	total_profit
150	James Wan	594548150.00	1675.92	3	1783644450.00
310	Sam Mendes	745073952.00	224.24	2	1490147904.00
188	3 Justin Lin	567231949.00	298.72	2	1134463898.00
111	F. Gary Gray	984846267.00	293.94	1	984846267.00
87	David Yates	835431568.00	568.35	1	835431568.00
53	Christopher Nolan	809439099.00	194.34	1	809439099.00
18	Andy Muschietti	397776767.50	1290.02	2	795553535.00
52	Christopher McQuarrie	383413644.00	202.34	2	766827288.00
304	Ruben Fleischer	737628605.00	535.89	1	737628605.00
253	Neil Boultby	623008101.00	256.00	1	623008101.00

Include only specific genre category 'Horror, Mystery, Thriller'

```
# Melt the producers into a single column
directors = pd.melt(hmt_df, id_vars=['profit', 'roi'],
```

```
value_vars=['director1', 'director2'],
                    var_name='director_type', value_name='director_name')
# Remove rows with NaN producers
directors = directors.dropna(subset=['director_name'])
# Group by director name and calculate average roi and movie count
director_analysis = directors.groupby('director_name').agg(
    avg_profit=('profit', 'mean'),
    avg_roi=('roi', 'mean'),
    movie_count=('roi', 'count')
).reset_index()
# Calculate a weighted score
director_analysis['total_profit'] = director_analysis['avg_profit'] * director_analysis['movie_count']
# Sort by score to find the best director
best_directors = director_analysis.sort_values(by='total_profit', ascending=False)
# Display the top directors
```

best directors.head(10)

→		director_name	avg_profit	avg_roi	movie_count	total_profit
	18	Jordan Peele	242289130.50	2989.21	2	484578261.00
	14	James Wan	227460828.00	2214.22	2	454921656.00
	2	Ariel Schulman	169928918.00	3298.58	2	339857836.00
	13	Henry Joost	169928918.00	3298.58	2	339857836.00
	9	David F. Sandberg	290384865.00	1835.90	1	290384865.00
	17	John R. Leonetti	250362920.00	3751.74	1	250362920.00
	6	Christopher Landon	102957557.00	1959.15	2	205915114.00
	0	Adam Robitel	157885588.00	1478.86	1	157885588.00
	25	Scott Derrickson	71342212.50	1408.72	2	142684425.00
	20	Leigh Whannell	110453155.00	1004.53	1	110453155.00

Find the most successful actresses

```
Find top 10 actresses based on score(total profit = avg_profit * movie_count).
```

Include separate genres

```
# Combine all actress columns into a single column for analysis
actresses_df = hmt_all_df.melt(id_vars=['profit', 'roi'], value_vars=['actress1', 'actress2', 'actress3'],
                                var_name='actress_rank', value_name='actress')
# Remove rows with missing actress values
actresses_df = actresses_df[actresses_df['actress'].notna()]
# Group by actress and calculate average profit, ROI, and total movies
best_actresses = actresses_df.groupby('actress').agg(
    avg_profit=('profit', 'mean'),
   avg_roi=('roi', 'mean'),
   movie_count=('actress', 'size') # Count how many movies each actress appeared in
).reset_index()
# Calculate a weighted score
best_actresses['total_profit'] = best_actresses['avg_profit'] * best_actresses['movie_count']
# Sort by avg_profit to find the best actresses
best_actresses = best_actresses.sort_values(by='total_profit', ascending=False)
best_actresses.head(10)
```

```
∓
                    actress
                            avg_profit avg_roi movie_count total_profit
      341
            Michelle Rodriguez 371506279.60
                                             182.62
                                                                  1857531398.00
      239
                  Judi Dench 600724855.50
                                             392.11
                                                               2
                                                                  1201449711.00
      363
                Naomie Harris 910526981.00
                                             355.26
                                                                   910526981.00
                Emma Watson 284635935.33
      161
                                             157.77
                                                               3
                                                                   853907806.00
               Eloise Mumford 423674360.00
      154
                                            851.34
                                                               2
                                                                   847348720.00
              Dakota Johnson 281517699.67
                                                                   844553099.00
      124
                                             531.31
                                                               3
               Anne Hathaway 397903064.00
                                                                   795806128.00
      49
                                             19.90
                                                               2
      344
              Michelle Williams 737628605.00
                                             535 89
                                                                   737628605.00
                                                               1
      453
                  Sophia Lillis 662457969.00
                                            1792.74
                                                                   662457969.00
      364 Natalia Kaverznikova 623008101.00
                                             256.00
                                                                   623008101.00
# Find top 10 actresses based on score(total profit = avg_profit * movie_count)
# Don't Include separate genres
# Combine all actress columns into a single column for analysis
actresses_df = hmt_df.melt(id_vars=['profit', 'roi'], value_vars=['actress1', 'actress2', 'actress3'],
                                  var_name='actress_rank', value_name='actress')
# Remove rows with missing actress values
actresses_df = actresses_df[actresses_df['actress'].notna()]
```

Group by actress and calculate average profit, ROI, and total movies best_actresses = actresses_df.groupby('actress').agg(avg_profit=('profit', 'mean'), avg_roi=('roi', 'mean'), movie_count=('actress', 'size') # Count how many movies each actress appeared in).reset_index()

Calculate a weighted score best_actresses['total_profit'] = best_actresses['avg_profit'] * best_actresses['movie_count']

Sort by avg profit to find the best actresses best_actresses = best_actresses.sort_values(by='total_profit', ascending=False)

best_actresses.head(10)

₹		actress	avg_profit	avg_roi	movie_count	total_profit
	35	Lin Shaye	157403551.50	2258.64	2	314807103.00
	55	Vera Farmiga	298000141.00	1390.00	1	298000141.00
	34	Lili Taylor	298000141.00	1390.00	1	298000141.00
	50	Samara Lee	290384865.00	1835.90	1	290384865.00
	38	Miranda Otto	290384865.00	1835.90	1	290384865.00
	2	Allison Williams	250367951.00	4907.36	1	250367951.00
	14	Catherine Keener	250367951.00	4907.36	1	250367951.00
	0	Alfre Woodard	250362920.00	3751.74	1	250362920.00
	5	Annabelle Wallis	250362920.00	3751.74	1	250362920.00
	36	Lupita Nyong'o	234210310.00	1071.05	1	234210310.00

Find the most successful actors

Find top 10 actors based on score(total profit = avg_profit * movie_count).

Include separate genres

```
# Combine all actor columns into a single column for analysis
actors_df = hmt_all_df.melt(id_vars=['profit', 'roi'], value_vars=['actor1', 'actor2', 'actor3', 'actor4'],
                                var_name='actor_rank', value_name='actor')
```

```
# Remove rows with missing actor values
actors_df = actors_df[actors_df['actor'].notna()]
# Group by actress and calculate average profit, ROI, and total movies
best_actors = actors_df.groupby('actor').agg(
    avg_profit=('profit', 'mean'),
    avg_roi=('roi', 'mean'),
    movie_count=('actor', 'size') # Count how many movies each actor appeared in
).reset_index()
# Calculate a weighted score
best_actors['total_profit'] = best_actors['avg_profit'] * best_actors['movie_count']
# Sort by avg_profit to find the best actor
best_actors = best_actors.sort_values(by='total_profit', ascending=False)
best_actors.head(10)
\rightarrow
                  actor avg_profit avg_roi movie_count total_profit
     774
                Vin Diesel 741613263.60
                                                             3708066318.00
                                        339.33
     214 Dwayne Johnson 611676037.83
                                        286.68
                                                             3670056227.00
     336
            Jason Statham 282868960.91
                                         88.57
                                                             3111558570.00
     592
              Paul Walker 821062230.67
                                        398.92
                                                          3
                                                             2463186692.00
     156
              Daniel Craig 407791010.00
                                         99.43
                                                             1631164040.00
     748
               Tom Hardy 535840171.67
                                        306.03
                                                         3
                                                             1607520515.00
     256
             Gary Oldman 207737957.20
                                        123.45
                                                          5
                                                             1038689786.00
     339
            Javier Bardem 323022463.67
                                        127.02
                                                         3
                                                              969067391.00
     161
           Daniel Radcliffe 313503944.33
                                        368.62
                                                          3
                                                              940511833.00
     745
               Tom Cruise 288924592.33
                                        157.08
                                                          3
                                                              866773777.00
# Find top 10 actors based on score(total profit = avg_profit * movie_count)
# Don't Include separate genres
# Combine all actor columns into a single column for analysis
actors_df = hmt_df.melt(id_vars=['profit', 'roi'], value_vars=['actor1', 'actor2', 'actor3', 'actor4'],
                                 var_name='actor_rank', value_name='actor')
# Remove rows with missing actor values
actors_df = actors_df[actors_df['actor'].notna()]
# Group by actress and calculate average profit, ROI, and total movies
best_actors = actors_df.groupby('actor').agg(
    avg_profit=('profit', 'mean'),
    avg_roi=('roi', 'mean'),
    movie_count=('actor', 'size') # Count how many movies each actor appeared in
).reset_index()
# Calculate a weighted score
best_actors['total_profit'] = best_actors['avg_profit'] * best_actors['movie_count']
# Sort by avg_profit to find the best actor
best_actors = best_actors.sort_values(by='total_profit', ascending=False)
best_actors.head(10)
```

→ *		actor	avg_profit	avg_roi	movie_count	total_profit
	50	Patrick Wilson	227460828.00	2214.22	2	454921656.00
	55	Ron Livingston	298000141.00	1390.00	1	298000141.00
	2	Anthony LaPaglia	290384865.00	1835.90	1	290384865.00
	5	Brad Greenquist	290384865.00	1835.90	1	290384865.00
	1	Angus Sampson	134169371.50	1241.69	2	268338743.00
	43	Leigh Whannell	134169371.50	1241.69	2	268338743.00
	15	Daniel Kaluuya	250367951.00	4907.36	1	250367951.00
	6	Bradley Whitford	250367951.00	4907.36	1	250367951.00
	65	Ward Horton	250362920.00	3751.74	1	250362920.00
	63	Tony Amendola	250362920.00	3751.74	1	250362920.00

Start coding or generate with AI.

Action, Adventure, Sci-Fi (maximize profit)

Find the most successful producers

Find best producers for Action, Adventure, or Sci-Fi by the weighted score of (avg_profit * movie_count).

Include either genre

```
aasf_all_df = merged_df[
     (merged_df['genre1'].isin(['Action', 'Adventure', 'Sci-Fi'])) |
(merged_df['genre2'].isin(['Action', 'Adventure', 'Sci-Fi'])) |
(merged_df['genre3'].isin(['Action', 'Adventure', 'Sci-Fi']))
1
# To include only specific genre category 'Action, Adventure, Sci-Fi'
# Filter the DataFrame for the specified genres
aasf_df = merged_df[merged_df['genres'] == 'Action,Adventure,Sci-Fi']
# Include separate genres
# Melt the producers into a single column
producers = pd.melt(aasf_all_df, id_vars=['profit'],
                        value_vars=['producer1', 'producer2'],
var_name='producer_type', value_name='producer_name')
# Remove rows with NaN producers
producers = producers.dropna(subset=['producer_name'])
# Group by producer name and calculate average profit and movie count
producer_analysis = producers.groupby('producer_name').agg(
    avg_profit=('profit', 'mean'),
movie_count=('profit', 'count')
).reset_index()
# Calculate a weighted score
producer_analysis['total_profit'] = producer_analysis['avg_profit'] * producer_analysis['movie_count']
# Sort by score to find the best producers
best_producers = producer_analysis.sort_values(by='total_profit', ascending=False)
# Display the top producers
best_producers.head(10)
```