The Lean 3 Mathematical Library (mathlib)

Mario Carneiro

Carnegie Mellon University

July 25, 2018

Lean

- An open source interactive theorem prover developed primarily by Leonardo de Moura (Microsoft Research)
- Focuses on software verification and formalized mathematics
- Based on Dependent Type Theory
 - Classical, non-HoTT
- ► Lean 3 includes a powerful metaprogramming infrastructure for Lean in Lean

A Short History of Lean and mathlib

Several major versions:

- Lean 1 (no public release)
- ► Lean 2 (2015) includes HoTT mode
- Lean 3 (2017)
- Lean 4 in development
- The Lean 2 math library was developed by Jeremy Avigad, Floris van Doorn et al.
- Lean 3 is not backwards compatible with Lean 2, and the decision was made to start again taking advantage of significant new features
- mathlib is the latest version of the Lean 3 math library, developed primarily by Mario Carneiro and Johannes Hölzl

Jul 16, 2017 – Jul 25, 2018

Contributions: Commits ▼

Contributions to master, excluding merge commits

Mathlib goals

Two main goals:

- (CS) To build a standard library for lean as a programming language
 - To support verified programming and proven-correct algorithms
 - To support and provide tactics and decision procedures for proof automation
- (Math) To build a library of formalized mathematics, and support users doing the same

These goals complement each other, it is not just two libraries in one

Mathlib vs the core library

- ► Lean itself has a library, which is even more geared towards CS applications and MS users
- Mathlib is developed on top of this library, and is fully compatible with it, but significantly expands on the mathematics, the (Lean) programming, and the tactics
- ► The core lean library is currently frozen while Lean 4 is under development, but mathlib is very active

Lean mathematical components library

⊕ 584 commits	₽ 3 branches			18 contributors		ஷ் Apache-2.0
Branch: master ▼ New pull request			Create new file	Upload files	Find file	Clone or download ▼
cipher1024 and johoelzl feat(category/traversable): basic classes for traversable collections Latest commit f9cf9d3 16 days ago						
algebra	feat(algebra/pi_inst	tances): more pi instances				a day ago
analysis	refactor(analysis/er	nnreal): split and move to data	.real			4 days ago
ategory category	feat(category/trave	ersable): basic classes for trave	rsable collections			19 hours ago
computability	fix(computability/tu	uring_machine): missed a spot				4 days ago
data	refactor(data/nat/g	cd): simplify proof of pow_dv	d_pow_iff			3 days ago
i docs docs	doc(wip): finite map	p (#215) [ci-skip]				a day ago
group_theory	fix(group_theory/g	roup_action): move is_group_a	action out of nam	espace		6 days ago
inear_algebra	refactor(data/polyr	nomial): move polynomials to	data; replace mor	nomial		7 days ago
■ logic	refactor(data/set/c	ountable): define countable in	terms of encoda	ble		8 days ago
meta meta	feat(tactic): add `wl	og` (without loss of generality), `tauto`, `auto			5 months ago
number_theory	refactor(data/set/fi	nite): use hypotheses for finty	pe assumptions			2 months ago
order order	feat(algebra/pi_inst	tances): more pi instances				a day ago
nending pending	feat(data/real): real	s from first principles				6 months ago
ring_theory	fix(*): fix build					7 days ago
set_theory	refactor(data/set/b	asic): rename set.set_eq_def -	> set.ext_iff			8 days ago
tactic tactic	chore(tactic/interac	ctive): change swap so it does	what it says			4 days ago
tests tests	feat(tactic/h_gener	alize): remove `cast` expressio	ns from goal (#19	18)		5 days ago
aitiqnore	refactor(*): import	content from lean/library/data	and library dev			a year ago

Datatypes: data

These are all computable where applicable, and so can be used in programming contexts

- ▶ \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} classical number types
- ▶ list α finite sequences on α , a.k.a linked lists
- ▶ multiset α lists up to permutation (quotient type)
- ▶ finset α multisets with no duplicates, used to define finiteness of types and sets
- ▶ array n α arrays of fixed length n (implemented efficiently in C++)
- vector α n lists of fixed length n (proven isomorphic to array n α)

Datatypes: data

- $\sim \alpha \simeq \beta$ (equiv) equivalence/isomorphism of types
- $\alpha \hookrightarrow \beta$ (embedding) injective functions
- encodable α a map from α to $\mathbb N$ with partial inverse (Gödel numbering)
- ▶ stream α , seq α , wseq α different kinds of coinductive lists
- pos_num, num, znum binary natural numbers (for kernel computation)
- ▶ option α optional values, nullable types
- ▶ roption α , pfun α β partial values, functions with precondition (noncomputably isomorphic to option α)

Algebraic typeclasses: algebra

- semigroup, monoid, group, semiring, ring, domain, euclidean_domain, field - algebraic structures
- ▶ add_zero : ∀ x, x + 0 = x theorems in the first order theory of these structures
- instances showing that the product of groups is a group, the product of rings is a ring, etc

Order structures, sets: order, data.set

- preorder, partial_order, linear_order, lattice, bounded_lattice, complete_lattice, conditionally_complete_lattice - order structures
- ▶ set α the collection of all subsets of α , encoded as functions α → Prop
- ▶ filter α the collection of all filters on α (which is a complete lattice and a monad)

Topology: analysis.topology

- topological_space α a type equipped with an is_open predicate
- ▶ nhds a the neighborhoods filter
- map, induced, coinduced topological constructions
- closed, compact, continuous topological definitions
- t1_space, t2_space, regular_space, separable_space, first/second_countable_topology topological properties
- topological_add_group, topological_semiring topological algebraic structures

```
instance [t<sub>1</sub> : top \alpha] [t<sub>2</sub> : top \beta] : top (\alpha \times \beta) := induced prod.fst t<sub>1</sub> \sqcup induced prod.snd t<sub>2</sub>
```

Theories

- uniform_space, metric_space
- measure_theory measure spaces, measurable functions, outer measures, measures, Lebesgue measure
- group_theory group actions, subgroups, quotient groups
- ring_theory ideals and local rings
 - much more work is currently happening in the community but not yet in mathlib; Kevin Buzzard is working on schemes and perfectoid spaces
- computability primitive and partial recursive functions,
 Turing machines, universality and the halting problem
- ▶ number_theory the Pell equation, Diophantine equations
- set_theory cardinal and ordinal numbers, computable ordinal notations, large cardinals, a model of ZFC

Tactics: tactic.interactive

Mostly minor improvements to the lean core tactic library

- rcases, rintro cases with a pattern
- finish (Jeremy Avigad), tauto (Simon Hudon) general purpose automation
- norm_num decision procedure for numeric calculation
- ring, ring2 decision procedure for rings

There are some more tactics available in the community:

- super superposition prover (Gabriel Ebner)
- cooper decision procedure for Presburger arithmetic (Seul Baek)

docs/tactics.md has a more complete listing

Future work

- Everything!
- Need more basic analysis derivatives and integrals
- Almost no number theory except what was needed for MDRP
- Geometry and trigonometry completely absent
- Many basic data structures are missing (binary search trees, association lists) because some techniques like memoized thunks are waiting for lean 4

Thank you!

https://github.com/leanprover/mathlib