BASIC ELECTRONIC CIRCUITS

INSTITUTE CORE

PN junction with open-circuit terminals

• pn junction is a practical semiconductor structure.

- Typically, p and n regions are part of the same silicon crystal, by creating regions of different doping (p and n regions)
- External contacts are made to the p and n regions through metal.
- Terminals of the pn junction are labeled as anode and cathode.

We create a p-n junction by joining together two pieces of semiconductor, one doped n-type, the other p-type.

Diodes

- A simple and fundamental nonlinear circuit element
- has nonlinear i-v characteristics
- Application of the nonlinear elements in generating:
 - DC voltage from AC voltage, rectifier circuits.
 - Signals of various waveforms
 - Digital logic and memory circuits

The Ideal Diode

- The most fundamental nonlinear circuit element.
- For -ve voltage, no current flows and the diode behaves as open circuit, then the diode operation mode is said to be reverse biased.
- It has '0' current in the reverse operation, and said to be "cut-off" or "off".
- If a +ve current is applied, 0 voltage drop appears, it behaves as a short circuit in forward direction.
- A forward-biased circuit is said to be "turned on" or "on".

Terminal characteristics of a junction diodes

- The most common implementation of the diode utilizes a pn junction.
- PN junction can conduct substantial amount of current in forward direction and almost no current reverse direction.
- i-v char. of pn junction has three regions:
 Forward V > 0

 - Reverse V < 0
 - Breakdown V < -V_{zk}

The forward region $I = I_s \left(e_{\sqrt{nV}} - 1 \right)$

- n varies between 1 and 2, depending on material and physical construction.
- I $_{\rm s}$ is constant for given diode for given temp., Saturation current, scale current-> due to directly proportional to the cross-sectional area of the diode.
- I_s is very strong funct ion of temp., of the order of 10^{-15} A, it gets double for each 5 °c rise in temperature.
- The voltage (V_T) is a thermal voltage = kT/q. • At room temp. (20 °C), V_T = 25.3 mV. $V = V_T \ln \frac{I}{I}$
- the exponential relation of the current i to the voltage V holds over many decades of the current (107), remarkable property of junction diodes.

The reverse bias region

- In the RB region, the diode voltage is made negative.
- For V negative and few times grater than thermal voltage, leads to corresponding exponential function becomes much less than unity.
- $i = -I_s$.
- Real diodes exhibit reverse currents that though quite small, and much larger than $\mathbf{I}_{\rm s}$.
- Large part of the reverse current due to leakage effects, and they are proportional to junction area, the reverse current gets double for every 10 deg. Rise in temp.

The Breakdown region

- The magnitude of the reverse voltage exceeds a threshold value that is specific to the particular diode breakdown voltage.
- This is the voltage at the 'knee' of the i-v curve, and is denoted by V_{zk} .
- In the breakdown region the reverse current increases rapidly with the associated increase in voltage drop being very small.

DC Power Supply:

Block diagram of a dc power supply.

- Power supply is fed from the $V_{\rm s}$ volts ac line, and it delivers a dc voltage $V_{\rm o}$ to an electronic circuit called load.
- Vo required to be as constant as possible in spite of variations in the ac line voltage and current drawn by the load.

Thank You