Image Processing INT3404 1/ INT3404E 21

Giảng viên: TS. Nguyễn Thị Ngọc Diệp Email: ngocdiep@vnu.edu.vn

1

Schedule

Nội dung	Yêu cầu đối với sinh viên (ngoài việc đọc tài liệu tham khảo)
Giới thiệu môn học	Cài đặt môi trường: Python 3, OpenCV 3, Numpy, Jupyter Notebook
2 Ånh số (Digital image) – Phép toán điểm (Point operations) Làm quen với OpenCV + Python	
Điều chỉnh độ tương phản (Contrast adjust)– Ghép ảnh (Combining images)	Làm bài tập 1: điều chỉnh gamma tìm contrast hợp lý
4 Histogram - Histogram equalization	Thực hành ở nhà
5 Phép lọc trong không gian điểm ảnh (linear processing filtering)	Thực hành ở nhà
6 Phép lọc trong không gian điểm ảnh cont. (linear processing filtering) Thực hành: Ứng dụng của histogram; Tìm ảnh mẫu (Template matching)	Bài tập mid-term
7 Trích rút đặc trưng của ảnh Cạnh (Edge) và đường (Line) và texture	Thực hành ở nhà
8 Các phép biến đổi hình thái (Morphological operations)	Làm bài tập 2: tìm barcode
9 Chuyển đổi không gian – Miền tần số – Phép lọc trên miền tần số Thông báo liên quan đồ án môn học	Đăng ký thực hiện đồ án môn học
10 Xử lý ảnh màu (Color digital image)	Làm bài tập 3: Chuyển đổi mô hình màu và thực hiện phân vùng
Các phép biến đổi hình học (Geometric transformations)	Thực hành ở nhà
12 Nhiễu – Mô hình nhiễu – Khôi phục ảnh (Noise and restoration)	Thực hành ở nhà
Nén ảnh (Compression)	Thực hành ở nhà
14 Hướng dẫn thực hiện đồ án môn học	Trình bày đồ án môn học
15 Hướng dẫn thực hiện đồ án môn học Tổng kết cuối kỳ	Trình bày đồ án môn học

Recall week 10: Color image processing

- Color phenomenon
- Color matching/creation: additive vs substractive
- Attributes of colors:
 - Hue
 - Saturation, Chroma, Colorfulness
 - Brightness, Lightness, Value, Intensity
- Color space: RGB, HSV, CYMK, YCbCr
- Image segmentation using color information

3

Frequency: Highpass ~ edge

$$F[k,l] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-j2\pi \left(\frac{k}{M}m + \frac{l}{N}n\right)}$$

- "Frequency":
 - Frequency of changing
 - Frequency of events

: | [.u.\\\\\] fat change edge

Geometric transformation

7

What is Geometric transformation?

- So far, image processing operations → modify the color values of pixels in a given image
- Geometric transformation → modify the positions of pixels in an image, but keep the color unchanged
- Purpose:

- To create special effects
- To register two images taken of the same scene at different times
- To morph one image to another

Two basic operations of geometric transformation

1. Spatial transformation of coordinates

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

2. Intensity interpolation that assigns intensity values to the spatially transformed pixels

Transforming coordinate

• Each point (x, y) is mapped to a point (x', y') in a new coordinate system

13

Interpolating values

- To find the values on the grid points
- Finding the closest projected points to a given grid point can be computationally expensive
- → Inverse projection

Inverse mapping

- Projecting the grid of B into the coordinate system of A
 - Known image values on a regular grid
 - Simple to find the nearest points for each interpolation calculation

15

Intensity interpolation

Use the distance-weighted average of nearest values to estimate new value

Nearest neighbor

Assigns to the new location the intensity of its nearest neighbor

Bilinear

Use <u>four</u> nearest neighbors to estimate the intensity at a given location

$$v(x,y) = ax + by + cxy + d$$

-> solve for a, b, c, d

Bicubic

Use sixteen nearest neighbors to estimate the intensity at a given location

$$v(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$

-> solve for a_{ij}

Image mapping A to B

- If the projection from B to A is known then we can
 - 1. Project the coordinates of the B pixels onto the A pixel grid
 - 2. Find the nearest A grid points for each projected B grid point
 - 3. Compute the value for the B pixels by interpolation of the A image

19

Scaling $\begin{array}{c} x \\ y' \\ y' \end{array} = \begin{bmatrix} c_x & 0 \\ 0 & c_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

22

Linear transformation

- Two types of linear transformation:
 - Affine transformation:
 - Preserve parallelism, length, and angle
 - Projective transformation:
 - Preserve collinearity, and incidence

Source image: https://www.graphicsmill.com/docs/gm5/Transformations.htm

31

General tranformation matrix

Translation vector

Rotation matrix

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \cong \begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a1 & a2 & b1 \\ a3 & a4 & b2 \\ c1 & c2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projection vector

Also referred to as "homography matrix"

More on projective transformation: https://mc.ai/part-ii-projective-transformations-in-2d/

General transformations

- Control points
- Projective transformation
- Image warp and image morphing

33

General transformations

- Till now: rotation, scaling, translation (shift), projective transformation are all linear in x and y
- More general transformations: polynormial transformations
 - Order is higher than 1
- Extract transformation is derived from control points
 - a point in the input image and its corresponding point in the output image

Ref: http://www.iup.uni-bremen.de/~melsheim/dip/dipSS17-L3.pdf

Polynomial transformation

 Assume a(x,y) and b(x, y) as polynomials of order N with unknown coefficients

$$x' = a(x,y) = \sum_{i=0}^{N} \sum_{j=0}^{N-i} a_{ij} x^{i} y^{j}$$

$$y' = b(x,y) = \sum_{i=0}^{N} \sum_{j=0}^{N-i} b_{ij} x^{i} y^{j}$$

Determining the coefficients requires at least as many control points as the polynomials have coefficients.

35

Polynomial transformation with order N=2

$$x' = a(x,y) = a_{00} + a_{10}x + a_{01}y + a_{11}xy + a_{20}x^2 + a_{02}y^2$$

$$y' = b(x,y) = b_{00} + b_{10}x + b_{01}y + b_{11}xy + b_{20}x^2 + b_{02}y^2$$

 a_{00} , b_{00} : Shift vector

 a_{10} , b_{01} : Linear scaling in x, y direction

 a_{01}, b_{10} : Shear in x, y direction¹

 a_{11} , b_{11} : y-dependent scale in x, x-dependent scale in y

 a_{20} , b_{02} : non-linear (quadratic) scale in x, y

 1 A rotation can be described as a combination of shear and linear scaling first in one, then the other coordinate: Any Rotation by angle $\theta \neq \pm 90^\circ$ can be decomposed in the following way:

$$\begin{bmatrix} a_{10} & a_{01} \\ b_{10} & b_{01} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1/\cos \theta & \sin \theta/\cos \theta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\sin \theta & \cos \theta \end{bmatrix}$$
(4.18)

The first (the rightmost one) is a 1D scale and shear in y, the second (the left one) is a 1D scale and shear in x.

Example of polynomial geometric warps

37

Applications of geometric transformation

- Geometric calibration/Image rectification
 - Remove camera-induced distortion, i.e., convert non-rectangular pixel coordinates to rectangular coordinates
- Image registration
 - Geometrically match two images or an image and a map; stationary objects should have same position in both images
- Map projections

Image registration example

Fig. 4.10: Image registration. (a) Map; (b) Landsat MSS image to be registered; (c) Landsat image registered to map using 2nd order polynomials (Fig. 2.16 from Richards, 1986)

39

Example of image rectification

Fig. 4.8: Geometric rectification of an image taken with a fish-eye lens: (a) test target, (b) fish-eye image of test target, (c) fish-eye image (d) rectified image (Fig 8.9 from Castleman, 1996)

References

- Gonzalez book
- (Chap 4) Geometric transformations
 - http://www.iup.uni-bremen.de/~melsheim/dip/dipSS17-L3.pdf
- Image warping/morphing
 - https://www.csie.ntu.edu.tw/~cyy/courses/vfx/18spring/lectures/handouts/lec05 morphing.pdf

41

Specify corresponding points Interpolate to a complete warping function Convert to mesh warping warp

Image morphing

• To synthesize a fluid transformation from one image to another

