Introduction to Control

July 20, 2015

Outline

- Basics
- 2 Control Goals
- 3 Closed-loop system

An introduction to control

What is control?

- The goal is to find an input (control signal U(s)) such that the process produces the desired output
- Open loop control system: the actual output signal has no effect on the control action

A general set-up of a closed loop system

We will focus on closed loop control systems

Figure: Inverted Pendulum

Concrete Control

- On-off controller
 - Thermostate at home
- PID controllers, Lead and lag compensators (this course)
 - Cruise-control in your car
- More advanced controllers
 - STATE-space feedback controllers
 - Model Predictive Controller (MPC)
 - Fuzzy Control
 - Neuro-fuzzy Control
 - ..

Outline

- Basics
- 2 Control Goals
- Closed-loop system

What is good control?

- Before we will start to design control systems we will first focus on the question. What is good control?
- It depends on the application
 - Stability
 - Disturbance rejection
 - Reference tracking (speed)
 - Sensitivity to errors on model
 - Etc...

Examples: stability

Figure: Space shuttles are like inverted pendulums. How do you make sure they don't flip over.

Examples: Disturbance rejection

 Your body will try to keep the temperature in your body as constant as possible. No matter what the outside temperature is. Two people will have almost the same body temperature.

Figure: Flickr.com, tent86, Marathon Des Sables 046

Figure: <u>Jack Zalium</u>, Enduring, https://creativecommons.org/licenses/by-nd/2.0/

Examples: Reference tracking

Figure: Audi has a system for automatic driving in traffic jams. The audi will follow the car in front of him at an appropriate distance. youtube

Exercise: name the correct property

Outline

- Basics
- 2 Control Goals
- Closed-loop system

Transfer function of a closed-loop system

$$Y(s) - D(s) = P(s)U(s)$$
with $U(s) = C(s)E(s)$

$$Y(s) - D(s) = P(s)C(s)E(s)$$
with $E(s) = R(s) - Y(s)$

$$Y(s) - D(s) = P(s)C(s)(R(s) - Y(s))$$

$$Y(s) - D(s) = P(s)C(s)R(s) - P(s)C(s)Y(s)$$

$$\Rightarrow Y(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}R(s) + \frac{1}{1 + P(s)C(s)}D(s)$$

Transfer function from R(s) to Y(s)

We define S as the transfer functin from R(s) to Y(s)

$$S(s) \triangleq \frac{P(s)C(s)}{1 + P(s)C(s)}$$

This transfer function S(s) will help us to evaluate tracking Almost perfect tracking: the output Y(s) will follow R(s) very closely $\Rightarrow S(s) \approx 1$

Transfer function from D(s) to Y(s)

We define T(s) as the transfer function from D(s) to Y(s).

$$T(s) \triangleq \frac{1}{1 + P(s)C(s)}$$

If the disturbance rejection is very good the disturbances will have almost no effect on the output \Rightarrow $T\approx0$

$$\begin{cases} |S(j\omega)| \cong 1 \\ |T(j\omega)| \cong 0 \end{cases}$$

 $\Rightarrow |P(j\omega)C(j\omega)|$ (open loop gain) is very large.

! a large open loop amplification might lead to an unstable system

Model errors

- In practice, transfer function of P(s) might be unknown. It is important to know what the effect of the model errors will be. Sensitivity and robustness are key-concepts to evaluate these effects.
- Sensitivity
 - Quantifies the effect of a small perturbation on the model will be on the output.
- Robustness
 - This concept refers to bigger changes on the model. A controller is robust if it works properly over a given set of parameters.

Sensitivity

 Sensitivity is a measure for the effect of a (small) disturbance on the model (e.g. variations in the process parameters)

$$Y(s) + \Delta Y(s) = \frac{(P(s) + \Delta P(s))C(s)}{1 + (P(s) + \Delta P(s))C(s)}R(s) + \frac{1}{1 + (P(s) + \Delta P(s))C(s)}D(s)$$

• Look at the effect on the system without disturbances (D(s)=0)

$$\Delta Y = \frac{(P + \Delta P)C}{1 + (P + \Delta P)C}R - \frac{PC}{1 + PC}R$$

$$= \frac{(P + \Delta P)C(1 + PC) - PC - PC(P + \Delta P)C}{(1 + (P + \Delta P)C)(1 + PC)}R$$

$$= \frac{\Delta PC}{(1 + (P + \Delta P)C)(1 + PC)}R$$

$$= Y\frac{\Delta P}{P} \frac{1}{1 + (P + \Delta P)C}$$

Sensitivity

• Now take the relative change due to this disturbance of the model and take the limit for $\partial x \to 0$; this gives the following (measure of the) sensitivity:

$$S_P^Y(s) = \frac{\frac{\partial Y}{Y}(s)}{\frac{\partial P}{P}(s)} = \frac{1}{1 + P(s)C(s)}$$

• Again, a very large |P(s)C(s)| looks like a good choice, but again there is a risk for instability!