Exercice 01 : La plongée sous-marine en fosse (10 points)

1 1.1

D'après la loi fondamentale de la statique des fluides : $P_B - P_A = \rho \times g \times (z_A - z_B)$

$$-P_A = \rho \times g \times (z_A - z_B) - P_B$$

$$P_A = -\rho \times g \times (z_A - z_B) + P_B$$

$$\begin{aligned} &\text{Or} \quad z_{\text{A}} \!\!<\! z_{\text{B}} \\ &\text{d'ou} \; (z_{\text{A}} - z_{\text{B}}) < 0 \\ &\rho \times g \times (z_{\text{A}} - z_{\text{B}}) < 0 \\ &- \rho \times g \times (z_{\text{A}} - z_{\text{B}}) > 0 \end{aligned}$$

d'ou
$$P_A > P_B$$

La pression augmente lorsque le plongeur descend dans la fosse de plongée

1.2

$$\begin{split} P_B - P_A &= \rho \times g \times (z_A - z_B) \\ P_A &= -\rho \times g \times (z_A - z_B) + P_B \\ P_A &= -1.0 \cdot 10^3 \times 9.81 \times (0 - 20) + 1.0 \cdot 10^5 \\ P_A &= 3.0 \cdot 10^5 \text{ Pa} \end{split}$$

Or
$$P_B = 1.0.10^5 \text{ Pa donc } P_A = 3P_B$$

1.3

$$\begin{array}{l} P \ = \ 9,771 \times 10^3 \times \ h \ + \ 101,3 \times 10^3 \\ P_0 \ = \ P_{(h=0)} \ = \ 9,771 \times 10^3 \times \ 0 \ + \ 101,3 \times 10^3 \\ P_0 \ = \ 101,3 \times 10^3 \ = \ 1,013.10^5 Pa \\ P_0 \ \text{représente la pression atmosphérique} \end{array}$$

1 4

Loi fondamentale de la statique des fluides :
$$P_B-P_A=\rho\times g\times (z_A-z_B)$$
 $P_B-P_A=\rho\times g\times h$

L'équation mathématique obtenue est compatible avec la loi fondamentale de la statique des fluides

1.5

Sources d'erreurs possibles dans ce protocole expérimental :

- Incertitude sur la mesure de P
- Incertitude sur la mesure de h
- Erreur de lecture de h ; il faut considérer la colonne d'air dans le tube sous le niveau de l'eau et non la longueur du tube immergé

2.

2.1

Loi de Mariotte :
$$P \times V = Constante$$

 $P_1 \times V_1 = P_2 \times V_2$

2.2

Lorsque la profondeur augmente, la pression augmente (voir question 1.1)

$$V_2 = \frac{P_1 \times V_1}{P_2}$$

V2 est inversement proportionnel à P2. Ainsi lorsque la pression augmente le volume V2 diminue.

On en déduit que l'autonomie du plongeur diminue avec la profondeur.

2.3

Soit:

 P_1 la pression dans la bouteille : $P_1 = 200 \text{ bar}$

 V_1 le volume de la bouteille : $V_1 = 12 L$

 P_2 la pression à 20m de profondeur : $P_2 = 3.0.10^5$ Pa (voir question 1.2)

$$\begin{split} &P_1 \times V_1 = P_2 \times V_2 \\ &V_2 = \frac{P_1 \times V_1}{P_2} \\ &V_2 = \frac{200 \times 1, 0.10^5 \times 12}{3, 0.10^5} = 800 \text{ L} \end{split}$$

Or il consomme 15L par minutes. Il dispose de :

$$t = \frac{800}{15} = 53 \text{ min}$$

2 4

Le temps de plongée est proportionnel au volume disponible. La prise en compte de la « réserve » diminue le volume disponible.

Ainsi, la prise en compte de cette réserve diminue la durée de la plongée.

3.

3.1

 $F = P \times S$

3.2

$$F = P \times S$$

 $F = 1.0.10^5 \times 70 \times (10^{-3})^2$
 $F = 7.0 \text{ N}$

3.3

Pas de question dans le sujet !!!

3.4

Échelle: 1 cm pour 7 N.

Pour $\overrightarrow{F_1}$, on représente la force par un vecteur de 1 cm Pour $\overrightarrow{F_2}$, on représente la force par un vecteur de 3 cm

Les forces exercées sur la paroi du tympan ne s'annulent pas.

C'est pourquoi le plongeur ressent une vive douleur lors de la descente.

3.5

« La manœuvre de Vasalva consiste à souffler par le nez, bouche fermée et nez pincé afin de faire pénétrer de l'air dans l'oreille moyenne. »

Cette manœuvre permet d'augmenter le nombre de molécule d'air pour un même volume et donc augmente la pression intérieure : $\overrightarrow{F_1}$ augmente.

La différence de force exercée sur la paroi diminue.

Ainsi, la manœuvre de Vasalva permet de compenser la pression de l'eau introduite dans le conduit auditif.

Exercice 02 : Étude de différents carburants – (10 points)

La combustion des carburants

1.

Équation de la réaction modélisant la combustion complète de l'essence SP95, qu'on assimile à de l'octane $C_8H_{18}(I)$, dans le dioxygène $O_2(g)$ de l'air :

$$C_8H_{18}(l) + \frac{25}{2}O_2(g) \rightarrow 8CO_2(g) + 9H_2O(g)$$

2.

Demi-équation électronique associée au couple : $CO_2(g) / C_2H_6O(I)$.

$$2CO_2(aq) + 12H^+(aq) + 12e^- = C_2H_6O(l) + 3H_2O(l)$$

3.

Le couple : $O_2(g) / H_2O(g)$, associé à la demi-équation électronique : $O_2(g) + 4H^+(aq) + 4e^- = 2H_2O(g)$

Équation de la réaction modélisant la combustion de l'éthanol $C_2H_6O(l)$ dans le dioxygène de l'air $O_2(g)$:

$$C_2H_6O(l) + 3H_2O(l) = 2CO_2(aq) + 12H^+(aq) + 12e^-$$

3 × $O_2(g) + 4H^+(aq) + 4e^- = 2H_2O(g)$

$$C_2H_6O(l) + 3H_2O(l) + 3O_2(g) + 12H^+(aq) \rightarrow 2CO_2(aq) + 12H^+(aq) + 6H_2O(g)$$

On simplifie les H^+ et $\mathrm{H}_2\mathrm{O}$ de part et d'autre de l'équation :

$$C_2H_6O(1) + 3O_2(g) \rightarrow 2CO_2(aq) + 3H_2O(g)$$

On retrouve bien l'équation de la réaction modélisant la combustion de l'éthanol dans le dioxygène.

4.

Un oxydant est une espèce capable de capter un ou plusieurs électrons. L'éthanol $C_2H_6O(l)$ cède des électrons : c'est le réducteur.

L'émission de CO₂ par le véhicule étudié

5.

Le E0 correspond à du SP95 contenant 0 % d'éthanol, donc du SP95 pur. On voit que sa surconsommation est naturellement de 0 %.

Le E85 correspond à du SP95 contenant 85 % d'éthanol. Graphiquement, sa surconsommation est de 40%.

Une consommation en carburants E0 : 8,28 L pour 100 km, calculons la consommation avec une surconsommation de 40% :

$$8,28 + \frac{40}{100} \times 8,28 = 11,6 L$$

Ainsi, les consommations données en carburants E0 (8,28 L pour 100 km) et E85 (11,6 L pour 100 km) sont cohérentes avec la surconsommation obtenue grâce au graphique.

Émission de CO₂ liée à l'essence SP95 contenue dans le carburant E85

6.

Pour que le véhicule étudié parcourt 100 km, il faut 11,6 L de E85.

$$\begin{split} P_{E85} &= \frac{V_{ethanol}}{V_{E85}} \\ \frac{V_{ethanol}}{V_{E85}} &= P_{E85} \\ V_{ethanol} &= P_{E85} \times V_{E85} \\ V_{ethanol} &= \frac{85}{100} \times 11,6 \\ V_{ethanol} &= 9,86 \ L \end{split}$$

Or
$$\begin{split} &V_{E85} = V_{ethanol} + V_{Essence SP95} \\ &V_{ethanol} + V_{Essence SP95} = V_{E85} \\ &V_{Essence SP95} = V_{E85} - V_{ethanol} \\ &V_{Essence SP95} = 11,6 - 9,86 \\ &V_{Essence SP95} = 1,74 \, L \end{split}$$

Un volume de 1,74 L d'essence SP95 est contenu dans le volume nécessaire de carburant E85 pour que le véhicule étudié parcourt 100 km.

7.

1 L d'essence SP95	2,09 kg de CO ₂
1,74 L d'essence SP95	m de CO ₂

$$m = \frac{1,74 \times 2,09}{1}$$

$$m = 3.64 \, ka$$

La combustion de l'essence SP95 contenu dans le carburant E85, pendant que le véhicule étudié parcourt 100 km produit 3,64 kg de CO₂.

Émission de CO2 liée à l'éthanol contenu dans le carburant E85

8.

Pour que le véhicule étudié parcourt 100 km, il faut 11,6 L de E85.

$$\begin{split} P_{E85} &= \frac{V_{ethanol}}{V_{E85}} \\ \frac{V_{ethanol}}{V_{E85}} &= P_{E85} \\ V_{ethanol} &= P_{E85} \times V_{E85} \\ V_{ethanol} &= \frac{85}{100} \times 11,6 \\ V_{ethanol} &= 9,86 \ L \end{split}$$

Lorsque le véhicule étudié parcourt 100 km avec le carburant E85, il consomme 9,86L d'éthanol.

9.

$$n_{ethanol} = \frac{m_{ethanol}}{M_{ethanol}}$$

$$\begin{split} \rho_{ethanol} &= \frac{m_{ethanol}}{V_{ethanol}} \\ \frac{m_{ethanol}}{V_{ethanol}} &= \rho_{ethanol} \\ m_{ethanol} &= \rho_{ethanol} \times V_{ethanol} \end{split}$$

D'où

$$\begin{split} n_{ethanol} &= \frac{\rho_{ethanol} \times V_{ethanol}}{M_{ethanol}} \\ n_{ethanol} &= \frac{0.789 \times 10^3 \times 9.86}{2 \times 12.0 + 6 \times 1.0 + 16.0} \\ n_{ethanol} &= 169 \ mol \end{split}$$

10.

Équatio	n	С Ц О(1)	20 (a)	> 2CO (a)	1 24 0(1)
État	Avancement	$C_2H_6O(l)$	+ 30 ₂ (g)	\rightarrow 2CO ₂ (g)	$+$ $3H_2U(t)$
État initial	x = 0	169	Excès	0	0
État intermédiaire	x	169 – x	Excès	2x	3 <i>x</i>
État final	x_f	$169 - x_f$	Excès	$2x_{\rm f} = n_{CO_2}^{emis}$	$3x_f$

La réaction est totale, le dioxygène de l'air est en excès. A la fin de la réaction il ne reste plus d'éthanol :

$$169 - x_f = 0$$

 $-x_f = -169$
 $x_f = 169 \text{ mol}$

La quantité de CO₂ émis :

$$\begin{array}{l} 2 \mathbf{x_f} = n_{CO_2}^{emis} \\ n_{CO_2}^{emis} = 2 \mathbf{x_f} \\ n_{CO_2}^{emis} = 2 \times 169 \\ n_{CO_2}^{emis} = 338 \ mol \end{array}$$

Masse de CO₂ émise :

$$\begin{split} n_{CO_2} &= \frac{m_{CO_2}}{M_{CO_2}} \\ \frac{m_{CO_2}}{M_{CO_2}} &= n_{CO_2} \\ m_{CO_2} &= n_{CO_2} \times M_{CO_2} \\ m_{CO_2} &= 338 \times (12.0 + 2 \times 16.0) \\ m_{CO_2} &= 1.49 \times 10^4 \ g \\ m_{CO_2} &= 14.9 \times 10^3 \ g \\ m_{CO_2} &= 14.9 \ kg \end{split}$$

11.

Pour 100 km la masse totale de CO2 émis :

$$m_{CO_2}^{totale} = m_{CO_2}^{essence} + m_{CO_2}^{ethanol}$$
 $m_{CO_2}^{totale} = 3,64 + 14,9$
 $m_{CO_2}^{totale} = 18,5 \ kg$

100 km	18,5 kg de CO ₂
1 km	m de CO ₂

$$m = \frac{1 \times 18,5}{100}$$

$$m = 0,185 kg$$

$$m = 0,185 \times 10^{3} g$$

$$m = 185 g$$

Ainsi, la masse totale de CO₂ émis par la combustion du carburant E85 pour 1 km est de 185 g.

Calcul du malus écologique

12.

Un véhicule consommant de l'essence SP95 et émettant 173 g de CO_2 émis par km.

Cette masse est supérieure à 168 g/km et inférieure à 178 g/km.

D'après le tableau, la taxe sur un véhicule s'élève à 1901 €.

Taux d'émission de CO ₂	Montant
Inférieur à 138 g/km	0 €
Supérieur à 138 g/km	50 €
Supérieur à 148 g/km	260 €
Supérieur à 158 g/km	818 €
Supérieur à 168 g/km	1 901 €
Supérieur à 178 g/km	3 784 €
Supérieur à 188 g/km	6 724 €

13.

Le véhicule étudié, consommant du carburant E85 bénéficie d'un abattement de 40 % sur les taux d'émission de CO₂ :

$$\frac{40}{100} \times 173 = 69 \, g$$

Le taux retenu pour calculer le malus vaut : 173 - 69 = 104 g/km.

Cette masse est inférieure à 138 g/km.

D'après le tableau, la taxe sur un véhicule s'élève à 0 €.

Taux d'émission de CO ₂	Montant
Inférieur à 138 g/km	0 €
Supérieur à 138 g/km	50 €
Supérieur à 148 g/km	260 €
Supérieur à 158 g/km	818 €
Supérieur à 168 g/km	1 901 €
Supérieur à 178 g/km	3 784 €
Supérieur à 188 g/km	6 724 €

Ainsi, le véhicule étudié, consommant du carburant E85, n'est pas soumis au malus écologique.

14.

D'après l'énoncé : Un véhicule neuf roulant au carburant E85 émet 180 g de CO₂ par km.

D'après la question 12 : Un véhicule consommant de l'essence SP95 et émettant 173 g de CO₂ émis par km.

Le véhicule roulant au carburant E85 émet donc une masse de CO₂ plus importante que celui consommant de l'essence SP95.

L'abattement sur les émissions de dioxyde de carbone pour les véhicules roulant au carburant E85, constitué de 85 % de bioéthanol ne semble pas justifié avec le critère de l'émission de CO_2 .