Vertex of the Quadratic

Given a quadratic $s(h) = a h^2 + b h + c$ compute its value at $h_1 = -\frac{b}{2a}$ namely $s(h_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{h}_{1^+}\mathsf{h}$, namely $s(h_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = s(h_1 + h) - s(h_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $s(h) = h^2 - 4h - 39$

