Übungsserie 8

Aufgabe 1: Potentialtopf und Zeitentwicklung (3+3+2+2 Punkte)

Ein Teilchen der Masse m sei durch unendliche Potentialwände auf den Bereich $0 \le x \le L$ eingeschränkt. Zur Zeit t=0 sei der Zustand des Teilchens gegeben durch die normierte Wellenfunktion

$$\psi_0(x) = \sqrt{\frac{8}{5L}} \left(1 + \cos\left(\frac{\pi x}{L}\right) \right) \sin\left(\frac{\pi x}{L}\right).$$

- a) Bestimmen Sie die normierten Energieeigenfunktionen und zugehörigen Energieeigenwerte für ein Teilchen im beschriebenen Potential.
- b) Bestimmen Sie die Wellenfunktion $\psi(x,t)$ für t>0 für den Anfangszustand $\psi_0(x)$.
- c) Berechnen Sie den Erwartungswert einer Energiemessung in Abhängigkeit von der Zeit.
- d) Berechnen Sie die Wahrscheinlichkeit, das Teilchen bei einer Ortsmessung zur Zeit t > 0 im Bereich $0 \le x \le \frac{L}{2}$ zu finden.

Aufgabe 2: Harmonischer Oszillator (3+1+2 Punkte)

Ein Physiker präpariert einzelne, isolierte Sauerstoffmoleküle mit Hilfe eines Lasers so, dass jedes in dem gleichen spezifischen Zustand $\psi(x)$ ist. Jedes Sauerstoffmolekül kann dabei als harmonischer Oszillator betrachtet werden.

- a) Der Physiker präpariert den Zustand $\psi(x)$ 10000 mal und führt anschließend eine Energiemessung durch. Dabei erhält er 6000 mal das Ergebnis $\frac{3}{2}\hbar\omega$ und 4000 mal das Ergebnis $\frac{1}{2}\hbar\omega$. Leiten Sie aus diesen Ergebnissen einen Ausdruck für den Zustand $\psi(x)$ ab.
- b) Berechnen Sie den Erwartungswert der Energiemessung.
- c) Begründen Sie, warum der Physiker den Zustand 10000 mal präparieren muss, obwohl es experimentell einfacher wäre, den Zustand einmal zu präparieren und anschließend 10000 Messungen durchzuführen.

Aufgabe 3: Unschärferelation (3+2 Punkte)

Ein Teilchen befinde sich im normierten Zustand

$$\psi(x) = \left(\frac{a}{\pi}\right)^{1/4} e^{-\frac{ax^2}{2}},$$

wobei a eine reelle Konstante ist.

- a) Berechnen Sie das Produkt der Unschärfen Δx und Δp für die obige Wellenfunktion.
- b) Leiten Sie aus der allgemeinen Form der Unschärferelation zweier Observablen \hat{A} und \hat{B} den Spezialfall $\hat{A} = \hat{x}$ und $\hat{B} = \hat{p}$ ab. Vergleichen Sie mit dem Ergebnis aus Teil a).