

Data Analysis

DIME Analytics RA Onboarding February 27, 2020

Development Impact Evaluation (DIME) The World Bank

Introduction

Inputs

Constructed dataset

- Include only variables needed for analysis
- Accompanying codebook with description and definition of variables
- Custom-made to answer your analysis questions
 - Sample
 - Unit of observation

Inputs

Constructed datasets

- Include only variables needed for analysis
- Accompanying codebook with description and definition of variables
- Custom-made to answer your analysis questions
 - Sample
 - Unit of observation

Outputs

- Results are exported to files that can be used as inputs for papers and reports
- Self-standing tables and graphs
- Accessible formats

Outputs

- Final outputs such as papers, brief and even reports created to discuss results should be updated automatically when the raw outputs are updated
- LATEX is an extremely useful tool for doing this
- If you don't know how to use it, check our LATEX training

Documentation

- Another important analysis output is a map of how outputs were created
- The master script is the best way to do this: it should track what are the inputs and outputs of each script that it runs
- A README file is also a good way to do this, particularly when using languages and software

```
234
           if 'mainresults'
235
236
237
238
230
240
241
                    REQUIRES: $\(\)(dt rider fin)\/\)pooled rider audit constructed.dta
242
                    CREATES: $(out graphs)/takeup fe.png
243
                              S(out graphs)/takeup person.png
244
245
246
               do "Sido analysis)/Rider audits/Plots/takeup.do"
249
250
                    REQUIRES: S(dt platform fin)/platform survey constructed.dta
252
                    CREATES: $ (out graphs)/IAT safety.png
                              $(out graphs)/IAT advances.png
                              S(out graphs)/IAT men.png
255
                              S(out graphs)/IAT women.png
256
258
               do "$(do analysis)/Platform survey/Plots/iatscores.do"
259
260
261
262
263
               * Sample description
264
265
                    REQUIRES: $(dt rider fin)/pooled rider audit constructed.dta
266
                              S(dt platform fin)/platform survey constructed.dta
267
                   CREATES: $(out tables)/balance table.tex
268
269
               do "$(do analysis)/Descriptives/balance table.do"
```


The analysis process

The analysis process

- Data analysis can be divided into two stages
- During exploratory data analysis, the research team will typically look for patterns in the data, in a more descriptive fashion
- The process then progresses into **final analysis** when the team starts to decide what are the main result, that will be part of the research output
- For projects that have pre-analysis plans, the main specifications will be pre-defined, so the exploratory phase has less implications for final outputs

Data work during analysis

- The way you deal with code and outputs for exploratory and final analysis is different
- During exploratory data analysis, you will be tempted to write lots of analysis into one big script, or even directly into the console
- This subtly encourages risky practices such as not clearing the workspace and not reloading the relevant data
- To avoid mistakes, it's important to take the time to organize the code that you want to use again in a clean manner

Dynamic documents during exploratory analysis

- One way to avoid falling into bad practices during exploratory data analysis is to create dynamic documents
- They allow you to write code, make notes about your observations, and visualize results in one single document
- Stata options include markstat, which uses a syntax similar to markdown, and texdoc, that combines LATEX and Stata code
- In R, RMarkdown is widely adopted
- The main constraint of this type of dynamic documents is the limited formatting options offered, and the difficulty of handling code and text at the same time

Dynamic documents for final analysis

- Given the limitations of creating dynamic documents in statistical software, team tend to prefer moving to text editor or document preparation systems to write final research outputs
- When setting up this workflow, it's important to think of the integration between code outputs and text
- Code is typically still evolving as papers and reports are written, and it's important to keep code outputs up to date in the final documents
- LATEX is the most popular way to do this
- It allows you to write references to the files containing analysis results, so that they are updated every time the LATEX document is compiled

An automated workflow for outputs

Exporting outputs

- It's okay to not export each and every table and graph created during exploratory analysis
- Final outputs should be exported so they are ready to be included to a paper or report
- No manual edits, including formatting, should be necessary after exporting final outputs
- Don't create a workflow that involves copying and pasting across different software

Automating outputs

- Manual edits are difficult to replicate, and you will inevitably need to make changes to the outputs
- The amount of work needed in a copy-paste workflow increases rapidly with the number of outputs, and so do the chances of having the wrong version a result in your paper or report.
- Automating the creation of outputs will save you time by the end of the process
- Polishing final outputs can be time-consuming
- Don't spend too much time on formatting until your team has agreed on final outputs

In case this is not clear

Don't ever set up a workflow that requires copying and pasting results

Automating outputs

- Copying results from Excel to Word is error-prone and inefficient
- Copying results from a software console is risk-prone even more inefficient, and completely unnecessary
- There are numerous commands to export outputs from both R and Stata to a myriad of formats
- Our preferred Stata command to export tables are esttab, outreg2, and outwrite
- Our preferred R package to export tables is stargazer
- There are many more out there!

Automating outputs

- Copying results from Excel to Word is error-prone and inefficient
- Copying results from a software console is risk-prone even more inefficient, and completely unnecessary
- There are numerous commands to export outputs from both R and Stata to a myriad of formats
- Our preferred Stata command to export tables are estout, outreg2, and outwrite
- Our preferred R package to export tables is stargazer
- There are many more out there!

- estout can solve most of your problems
- It can export both summary statistics and regression tables easily
- It also supports a lot of customization, and exports both to Excel and LATEX

You can find a lot of example do files in https://github.com/bbdaniels/stata-tables

If you need to create a table with a very particular format, consider writing it manually using file write:

```
224
           PART 4: Export table
225
226
           capture file close descTable
               file open descTable using "$(out github)/sample table.tex", write replace
               file write descTable ///
230
               "\begin(tabular)(lccC(2.5cm)C(3.2cm))"
                                                                                                                                                                           n ///
               "\\[-1.8ex]\hline \hline \\[-1.8ex]"
                                                                                                                                                                           n ///
232
               "\multicolumn(5)(c)(\textit(Panel A: Rider reports))
                                                                                                                                                             \\\\[-1.8ex]" n ///
                                                                                                        4 Total number of rides 4 Average number of rides per rider \\hline \\f-1.8exl" n ///
                                                     & Number of riders
                                                                              & \% of riders
234
                                                                                                                                                             \\\\[-1.8ex]" n ///
               "Demographic survey answered
                                                     5 " $8.2gg (n demo) "
                                                                              4 " $8.1f (not demo) "
               "\multicolumn(5)(1)(Rides phase started)
                                                                                                                                                                      \\" n ///
236
               "1. Revealed preference
                                                     6 " $8.2gg (n r phase2) " 6 " $8.1f (ppt r phase2) " 6 " $8.2gg (n phase2) " 6 " $8.0f (mean phase2) "
                                                                                                                                                                      \\" n ///
                                                                                                                                                             \\\\[-1.8ex]" n ///
237
               "2. Random assignment to reserved space 4 " %8.2gc (n r phase3) " 4 " %8.1f (pct r phase3) " 4 " %8.2gc (n phase3) " 4 " %8.0f (mean phase3) "
238
               "Ewit survey answered
                                                     4 " 88.2gg (n exit) "
                                                                             6 " %8.1f (pct_exit) "
               "\\[-1.8ex|\hline \hline \\[-1.8ex]"
                                                                                                                                                                           n ///
240
               "\multicolumn(5)(c)(\textit(Panel B: Platform survey and IAT))
                                                                                                                                                             \\\\[-1.8ex]" n ///
241
                                                                                                                                                     \\\hline \\[-1.8ex]" n ///
                                                                              & Response rate (\%)
                                                                                                                               4 Response rate (\%)
242
               "\multicolumn(5)(1)(Platform survey)
                                                                                                                                                                      \\" n ///
                                                                                                                                                                      \\" n ///
               "\ouad Approached
                                                     6 " $8,2gc (n ap women) " 6
                                                                                                        4 " $8,2gc (n ap men) " 4
                                                                                                                                                                      \\" _n ///
244
               "\quad Accepted
                                                     6 " 88.2gc (n ac women) " 6 " 88.1f (pct ac women) "\$^(1)\$ 6 " 88.2gc (n ac men) " 6 " 88.1f (pct ac men) "
245
               "\quad Finished
                                                     4 " $8,2gc (n fi women) " 4 " $8,1f (nct fi women) "($^(2)\8 4 " $8,2gc (n fi men) " 4 " $8.1f (nct fi men) "\\\[ [-1.8ex]" n ///
246
               "\multicolumn(5)(1)(IAT)
                                                                                                                                                                      \\" n ///
                                                                                                                                                                      \\" n ///
               "\quad Approached
                                                     6 " %8.2gc (n ii women) " 6 " %8.1f (pct ii women) " 6 " %8.2gc (n ii men) " 6 " %8.1f (pct ii men) "
248
               "\quad Accepted
                                                     5 " $8.2gc (n ia women) " 5 " $8.1f (pct ia women) "\$^(1)\$ 5 " $8.2gc (n ia men) " 5 " $8.1f (pct ia men) "
                                                                                                                                                                      \\" n ///
249
               "\quad Finished
                                                     6 " $8.2gc (n if women) " 6 " $8.1f (not if women) "\$^(2)\$ 6 " $8.2gc (n if men) " 6 " $8.1f (not if men) "
                                                                                                                                                                      \\" n ///
250
               "\hline \hline \\[-1.8ex]"
                                                                                                                                                                          n ///
               "\end(tabular)"
252
               file close descTable
253
254
           copy "$(out_github)/sample_table.tex" "$(out_tables)/sample_table.tex", replace
```

- You may also edit the data set directly and export the data to Excel with export excel, to csv with export delimited or to Lagaranteed o
- If you feel fancy, you can create matrices and export them using mat2txt or outwrite
- Finally, you can export one and two-way tabulations using tabout

Automating outputs in R

- For R users, the stargazer package is the easiest way to export formatted regression and summary statistics tables to LATEX (and html)
- Creating custom tables is also much easier in R, since you can combine objects to data frames and matrices, and use stargazer or write.csv to export them
- You can find sample codes and examples in our DIME R training repository at https://github.com/worldbank/dime-r-training

Writing analysis scripts

Script organization

A well-organized analysis script

- Starts with a completely fresh workspace
- Loads the constructed dataset
- Makes research decisions explicitly (sampling, clustering, inclusion of controls)
- Has simple code that allows the user to focus on the econometrics
- Exports the results obtained
- Runs completely independently of all other code, except for the master script
- Can be linked to its output by name

```
☑ Do-file Editor - Irrigation.do*

 File Edit View Project Tools
               | X 🗈 🛍 🖛 🐠 🛨 👍 📮 🖺 .
  Irrigation.do* X
           use "${panel dt}/SLWRMP - HH-plot-season panel.dta", clear
 3
           collapse (sum) prodvalue prodvalue sl prodvalue s2 ///
                          areacult areacult sl areacult s2 ///
                    (max) d kitplot d irrigated ///
 8
                    . ///
                    by(hhid round d_kit_selected model)
           gen prodvalue ha = prodvalue/areacult
           gen prodvalue ha sl = prodvalue sl/areacult sl
13
           gen prodvalue ha s2 = prodvalue s2/areacult s2
           foreach var of varlist prodvalue* {
16
               winsor 'var' if 'var' > 0, p(.05) highonly gen('var' w)
17
18
19
           duplicates tag hhid, gen(d bothrounds)
           reg d irrigated d kitplot##model
                                                     if d bothrounds == 1 & round == 1
                                                     if d bothrounds == 1 & round == 1
           reg d irrigated d kit selected##model
23
           reg prodvalue ha w d irrigated##round
                                                     if prodvalue ha w > 0 & model == 1
25
           reg prodvalue ha w d irrigated##round
                                                     if prodvalue ha w > 0 & model == 2
26
27
```

```
☑ Do-file Editor - Irrigation.do*

 File Edit View Project Tools
              Irrigation.do* X
           use "${panel dt}/SLWRMP - HH-plot-season panel.dta", clear
           collarse (sum) prodvalue prodvalue sl prodvalue s2 ///
                          areacult areacult sl areacult s2 ///
                    (max) d kitplot d irrigated ///
 8
                    . ///
                    by(hhid round d kit selected model)
11
           gen prodvalue ha = prodvalue/areacult
           gen prodvalue ha sl = prodvalue sl/areacult sl
13
           gen prodvalue ha s2 = prodvalue s2/areacult s2
15
           foreach var of varlist prodvalue* {
16
               winsor 'var' if 'var' > 0, p(.05) highonly gen('var
17
18
19
           duplicates tag hhid, gen (d bothround
           reg d irrigated d kitplot##model
                                                    if d bothrounds == 1 & round == 1
           reg d irrigated d kit selected##model
                                                   if d bothrounds == 1 & round == 1
23
24
                                                    if prodvalue ha w > 0 & model == 1
           reg prodvalue ha w d irrigated##round
25
                                                    if prodvalue ha w > 0 & model == 2
           reg prodvalue ha w d irrigated##round
26
27
```

Script organization

- Analysis code should be clean and simple you may even create one script for each output
- If you have multiple analysis datasets, each of them should have a descriptive name about its sample and unit of observation, so it's clear which dataset should be used for each piece of analysis
- In both cases, naming should be intuitive so you can trace inputs and outputs of each script

Script organization

- When your team makes decisions about model specification, can create globals or objects in the master script to use across scripts
- This will ensure specifications are consistent throughout the analysis
- It will also make your code more dynamic, so it is easy to update specifications and results without changing every script
- Use pre-existing commands whenever possible: avoid cluttering your code with complicated commands to create and append intermediate matrices

Final outputs

Look at your output!

- Are the looks decent?
- Can someone else understand it?
- Check the number of observations
- Ask yourself if the results make sense
- Check the number of observations again
- Try to interpret the result
- · Check the scales

Sample includes all participants selected to receive treatment that were surveyed at follow-up. $\ \ \, = \ \, (1-1)^{-1} \, (1-1)^{-$

Graphs by Model of beneficiary selection

Graphs by Model of beneficiary selection

Beautifying

- Don't worry about making every exploratory table or graph the best-looking output your team has ever seen
- Getting outputs into publication-ready format is time consuming
- Focus on getting the content right, and only get into the nitty-gritty formatting once your team has agreed on a final version of the output (it won't be the final version)
- The goal is to reduce the number of times you will need to make very precise adjustments to the aesthetics of the output

Saving graphs

- saving graph in gph

Final outputs

- Should be self-standing: it should be easy to read and understand them with only the information they contain
 - Remember to add labels to variables and axes
 - Include in the notes all relevant information, such as sample used, model specification, units and variable definitions
- Should be saved in accessible formats (pdf, png, jpeg, xls), preferably ones that are lightweight can be version-controlled (tex, csv, eps)

```
Kit usage.do* X
 3
          Prepare data
 4
 6
          use "${hh ml dt}/Final/SWLRMP - Household Midline - Constructed.dta", clear
 q
          Community level usage
10
11
          * There are more households inside the kit in the Smallholder model
12
13
          gr bar d kitplots, ///
14
               by(model, ${plot options}) ///
15
               vtitle("")
16
17
          gr save "${analysis ml out}/beneficiaries com level", replace
18
19
```

```
Kit usage.do* X
           Prepare data
 4
 6
          use "${hh ml dt}/Final/SWLRMP - Household Midline - Constructed.dta", clear
          Community level usage
10
11
          * There are more households inside the kit in the Smallholder model
12
13
          gr bar d kitplots, ///
14
               by(model, ${plot options}) ///
15
               vtitle("")
16
          gr export "${analysis ml out}/beneficiaries com level.png", replace
17
18
19
```


What next?

What next?

- If you follow the steps outlined in this chapter, most of the data work involved in the last step of the research process publication will already be done.
- Your analysis code will be organized in a reproducible way, so all you will need to do release a replication package is a last round of code review.
- This will allow you to focus on what matters: writing up your results into a compelling story.

Appendix

Useful resources

- R Graphics Cookbook
- R Graph Gallery
- Stata Visual Library
- Checklist: Reviewing graphs
- Checklist: Reviewing tables