

CSC3100 Data Structures Lecture 5: Complexity analysis with recursion and divide-and-conquer

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

Counting Basic Operations

Sum_LinearSearch(A, searchnum, sumestimation)

Input: array A, a search number, and a sumestimation Output: return 1 if the searchnumber exists in A and the sumestimation is exactly the sum of the array, otherwise return 0

1 2	tempsum = 0 for i = 0 to n-1	O(n) by further counting its number of basic	O(1) $O(n)$
3		operations /	O(n)
4	<pre>findmatch = linear_search(A, search(A)</pre>	earchnum) *	
5	<pre>return findmatch!=-1 and temps</pre>	um == sumestimation	0(1)

How to Count Basic Operations in Recursion?

BinarySearch(arr, searchnum, left, right)

1	if left == right	0(1)
2	<pre>if arr[left]= searchnum</pre>	0(1)
3	return left	0(1)
4	else	0(1)
5	return -1	0(1)
6	middle = (left + right)/2	0(1)
7	<pre>if arr[middle] = searchnum</pre>	0(1)
8	return middle	0(1)
9	elseif arr[middle] < searchnum	0(1)
10	return BinarySearch(arr, searchnum, middle+1, right)	O(2)
11	else	
12	return BinarySearch(arr, searchnum, left, middle -1)	0(?)

Counting Basic Operations in Recursion

• Given input size n, let g(n) be the total # of basic operations executed in BinarySearch in the worst case

BinarySearch(arr, searchnum, left, right)

```
if left == right
                                      We can still count the number of
        if arr[left]= searchnum
                                      basic operations for this part
           return left
       else
                                     The total number of basic
           return -1
                                     operations executed is a constant
   middle =(left + right)/2
6
                                     independent of the input size n,
   if arr[middle] = searchnum
                                     we can use a to denote this
        return middle
   elseif arr[middle] < searchnum</pre>
10
        return BinarySearch(arr, searchnum, middle+1, right)
11
   else
12
        return BinarySearch(arr, searchnum, left, middle -1)
```

We either run line 10 or line 12, but not both. What is the number of basic operations that are executed by Line 10 or 12?

Analysis for Recursive Binary Search (i)

- ightharpoonup g(n) can be also defined recursively
 - \circ At the beginning, the input size is n
 - $^{\circ}$ After executing a basic operations, we reduce the input size by half
 - Then, we run the recursive binary search with input size n/2
 - What is the number of basic operations executed in the worst case by recursive binary search with input size n/2?
 - We do not know, but we know it is $g(\frac{n}{2})$ according to our definition

$$g(n) = a + g\left(\frac{n}{2}\right)$$

Analysis for Recursive Binary Search (ii)

- Given $g(n) = a + g(\frac{n}{2}), g(1) = b$
 - What is g(4) by using a and b to represent?

$$g(4) = g(2) + a$$

= $g(1) + a + a$
= $2a + b$

• What is g(n) by using a and b to represent if $n = 2^x$?

$$g(n) = g\left(\frac{n}{2}\right) + a$$

$$= g\left(\frac{n}{2^2}\right) + a + a$$

$$= g\left(\frac{n}{2^3}\right) + a + a + a$$

$$= g\left(\frac{n}{2^4}\right) + a + a + a + a$$

$$= \cdots \qquad x \text{ of them}$$

$$= g(1) + a + a + \cdots + a + a = x \cdot a + b = a \cdot \log_2 n + b$$

Analysis for Recursive Binary Search (iii)

- How to analyze if $n \neq 2^x$?
 - We can simulate searching on an array of size 2^x , where x is the smallest integer such that $2^x \ge n$

- In this case, $g(n) \le g(2^x)$, and we have that:
 - g(n) ≤ g(2^x) ≤ a · x + b
 ≤ a · log₂ (2n) + b = a · log₂ n + (a + b)
 g(n) = O(log n)
- We will only discuss the big-Oh complexity in the coming lectures

The Sorting Problem

- Input: a set S of n integers
- Problem: store 5 in an array such that the elements are arranged in ascending order

4	2	3	6	9	5		2	3	4	5	6	9	
---	---	---	---	---	---	--	---	---	---	---	---	---	--

Selection Sort

> Step 1: Scan all the n elements in the array to find the position i_{max} of the largest element maxnum

$$i_{max} = 4$$
, $maxnum = 9$

4	2	3	6	9	5
---	---	---	---	---	---

Step 2: swap the position of the last one and maxnum

4 2 3 6 5	5 9
-----------	-----

 Step 3: We have a smaller problem: sorting the first n-1 elements

4	2	3	6	5	sorted
---	---	---	---	---	--------

Selection Sort

SelectionSort(arr, n)

```
if n \leq 1
     return arr
3
   maxnum = arr[0]
   maxIndex = 0
   for i = 1 to n - 1
        if maxnum < arr[i]</pre>
6
          maxnum = arr[i]
8
          maxIndex = i
9
   arr[maxIndex] = arr[n-1]
10
   arr[n-1] = maxnum
11
   SelectionSort(arr, n-1)
```


Selection Sort: Complexity Analysis

SelectionSort(arr, n)

```
if n < 1
     return arr
3
   maxnum = arr[0]
4
   maxIndex = 0
5
   for i = 1 to n - 1
6
       if maxnum < arr[i]</pre>
          maxnum = arr[i]
8
          maxIndex = i
9
   arr[maxIndex] = arr[n-1]
10
   arr[n-1] = maxnum
11
   SelectionSort(arr, n-1)
```

```
# of basic operations
```

```
O(1)
 O(1)
 O(1)
 O(1)
 O(n)
O(n)
O(n)
O(n)
O(1)
O(1)
O(?)
```

What is the total # of basic operations from Lines 1-10?

• O(n)

Analysis for Selection Sort (i)

- Let g(n) be the total number of basic operations in the worst case. Let g(1) = b
 - We have that:
 - g(n) = g(n-1) + O(n)
 - We can find constant c such that
 - $g(n) \le g(n-1) + c \cdot n$

We have that:

•
$$g(n) \le g(n-1) + c \cdot n \le g(n-2) + c \cdot n + c \cdot (n-1)$$

 $\le g(n-3) + c \cdot n + c \cdot (n-1) + c \cdot (n-2)$
 $\le g(1) + c \cdot n + c \cdot (n-1) \cdots + c \cdot 2$
 $\le c \cdot \frac{n(n+1)}{2} + b$

 $g(n) = O(n^2)$

In many cases, we only want to have the upper bound of the worst case running time. Deriving its Big-Oh is sufficient.

Analyze the time complexity of maxInArray1 algorithm

- Denote g(n) as the number of basic operations executed by maxInArray1 in the worst case when the input size is n
 - For Line 4, it is invoking maxInArray1 itself with an input size of n-1
 - Then the number of basic operations executed by Line 4 is: g(n-1) according to the definition
 - We have that: g(n) = g(n-1) + O(1)
 - Then, there exists some constant c such that $g(n) \le g(n-1) + c$. Let g(1) = a
 - $g(n) \le g(n-1) + c \le g(n-2) + 2c \dots \le (n-1)c + a \le cn + a$
 - g(n) = O(n)

Practice (Cont.)

Analyze the time complexity of maxInArray2 algorithm

- Define g(n) as the number of basic operations executed by maxInArray2 in the worst case when the input size is n
 - $g(n) = 2g(\frac{n}{2}) + O(1)$. Let g(1) = b
 - When $n = 2^x$, we have that: $g(n) \le 2g\left(\frac{n}{2}\right) + c \le 4g\left(\frac{n}{4}\right) + c + 2c \le 8g\left(\frac{n}{8}\right) + c + 2c + 4c \dots \le 2^x \cdot g(1) + c + 2c + 4c + \dots + 2^{x-1}c \le bn + cn c$
 - When $n \neq 2^x$, we can follow similar analysis as Page 7 and show that $g(n) \leq g(n') \leq bn' + n' c \leq 2bn + 2cn c$. Thus, g(n) = O(n)

- Can we implement the selection sort without using recursion? or in an easier method?
 - If so, how to do it?

Master Theorem (Big-Oh Version)

- Let g(n) be the running cost depending on the input size n, and we have its recurrence:
 - g(1) = 0(1)
 - $g(n) \le a \cdot g\left(\left[\frac{n}{b}\right]\right) + O(n^{\lambda})$
 - With a, b, λ to be constants such that $a \ge 1, b > 1, \lambda \ge 0$. Then,
 - If $\log_b a < \lambda$, $g(n) = O(n^{\lambda})$
 - If $\log_b a = \lambda$, $g(n) = O(n^{\lambda} \cdot \log n)$
 - If $\log_b a > \lambda$, $g(n) = O(n^{\log_b a})$
 - Limitations: cannot be applied to cases like:
 - $g(n) \le a \cdot g(n-1) + c$

Master Theorem: Examples

- $g(n) \le a \cdot g\left(\left[\frac{n}{b}\right]\right) + O(n^{\lambda})$
 - If $\log_b a < \lambda$, $g(n) = O(n^{\lambda})$
 - If $\log_b a = \lambda$, $g(n) = O(n^{\lambda} \cdot \log n)$
 - If $\log_b a > \lambda$, $g(n) = O(n^{\log_b a})$
- $g(1) = c_0, g(n) \le g\left(\left\lceil \frac{n}{2}\right\rceil\right) + c$
 - We have that $a = 1, b = 2, \lambda = 0$
 - Since $\log_b a = \lambda$, we know $g(n) = O(n^0 \cdot \log n) = O(\log n)$
- $g(1) = c_0, g(n) \le g\left(\left\lceil \frac{n}{2}\right\rceil\right) + c_1 \cdot n$
 - We have that $a = 1, b = 2, \lambda = 1$
 - Since $\log_b a < \lambda$, $g(n) = O(n^{\lambda}) = O(n)$

Master Theorem: Examples

- $g(n) \le a \cdot g\left(\left[\frac{n}{b}\right]\right) + O(n^{\lambda})$
 - If $\log_b a < \lambda$, $g(n) = O(n^{\lambda})$
 - If $\log_b a = \lambda$, $g(n) = O(n^{\lambda} \cdot \log n)$
 - If $\log_b a > \lambda$, $g(n) = O(n^{\log_b a})$
- $g(1) = c_0, g(n) \le 2 \cdot g\left(\left[\frac{n}{2}\right]\right) + c_1 \cdot n^{0.5}$
 - We have that $a = 2, b = 2, \lambda = 0.5$
 - Since $\log_b a > \lambda$, we have that: $g(n) = O(n^{\log_b a}) = O(n)$
- $g(1) = c_0, g(n) \le 2 \cdot g\left(\left[\frac{n}{4}\right]\right) + c_1 \cdot \sqrt{n}$
 - We have $a = 2, b = 4, \lambda = 0.5$
 - Since $\log_b a = \lambda$, we have that: $g(n) = O(n^{\lambda} \cdot \log n) = O(\sqrt{n} \cdot \log n)$

Master Theorem: Practice

- $g(n) \le a \cdot g\left(\left[\frac{n}{b}\right]\right) + O(n^{\lambda})$
 - If $\log_b a < \lambda$, $g(n) = O(n^{\lambda})$
 - If $\log_b a = \lambda$, $g(n) = O(n^{\lambda} \cdot \log n)$
 - If $\log_b a > \lambda$, $g(n) = O(n^{\log_b a})$
- ▶ 1. $g(1) = c_0, g(n) \le 8 \cdot g\left(\left[\frac{n}{2}\right]\right) + c_1 \cdot n^2$
- ▶ 2. $g(1) = c_0, g(n) \le 2g\left(\left[\frac{n}{8}\right]\right) + c_1 \cdot n^{\frac{1}{3}}$
- ▶ 3. $g(1) = c_0, g(n) \le 2g\left(\left[\frac{n}{4}\right]\right) + c_1 \cdot n$
- 4. Previous practice of MaxInArray2: $g(n) = 2g(\frac{n}{2}) + O(1)$, g(1) = b.
 - Hint: use the fact that $g\left(\frac{n}{b}\right) \le g(\lceil \frac{n}{b} \rceil)$

Maximum-subarray problem

Consider to buy a stock given the prediction curve - buy low and sell high

Maximum-subarray problem

- First: choose highest price and go left to find the lowest price
- Second: choose lowest price and go right to find the highest price
- Optimal solution: neither of them

Day	0	1	2	3	4
Price	10	11	7	10	6
Change		1	-4	3	-4

A brute force solution

- Try every possible pair of buy and sell dates
 - Question: what is the running time of this algorithm for n dates?

Can we do better? Answer is YES!

A transformation

Find a sequence of days over which the net change is maximum

- Find the nonempty, contiguous subarray of A whose values have the largest sum
- Call this contiguous subarray the maximum subarray

A divide-and-conquer solution

- Suppose we want to find a maximum subarray of A[low,...,high]
- ▶ The middle point, mid=(low+high)/2
- Suppose A[i,...,j] is the maximum subarray of A[low,...,high]
- Three situations:
 - A[i,...,j] in A[i,...,mid]
 - A[i,...,j] in A[mid+1,...,j]
 - A[i,...,j] cross mid

A divide-and-conquer solution

- Solve the subarrays A[low,...,mid] and A[mid+1,...,high] (two sub-problems) recursively
- Then the third case low<=i<=mid<j<=high</p>
- Then take the largest of these three
- How to solve the third case?
 - Seems not a sub-problem
 - But the added restriction crossing the midpoint helps

A divide-and-conquer solution

- Any subarray crossing the midpoint is itself made of two subarrays A[i,...,mid] and A[mid+1,...,j]
- The restriction fixes one ending point for the first array and one starting point for the second array
- Therefore, we just need to find maximum subarrays of the form A[i,...,mid] and A[mid+1,...,j] and then combine them which is easy to solve!

Find max subarray crossing midpoint

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

```
left-sum = -\infty
   sum = 0
  for i = mid downto low
        sum = sum + A[i]
        if sum > left-sum
            left-sum = sum
            max-left = i
   right-sum = -\infty
    sum = 0
    for j = mid + 1 to high
        sum = sum + A[j]
11
12
        if sum > right-sum
            right-sum = sum
13
            max-right = j
14
    return (max-left, max-right, left-sum + right-sum)
15
                                        Running time \Theta(n)
```


Analyze running time

- The base case, when n = 1, is easy, $T(1) = \Theta(1)$
- Solve two subarrays 2T(n/2), solve the subarray crossing midpoint $\Theta(n)$, thus the running time $T(n)=2T(n/2)+\Theta(n)$
- Same as merge sort Θ(nlogn)
- Faster than brute-force, divide and conquer is very powerful
- Question: is there a better solution?
 - Answer: Yes. See Ex.4.1-5

Recommended reading

- Reading this week
 - Chapter 4, textbook
- Next week
 - Linked List, Stack, and Queue

Backup slides

Preparation:

$$\circ \log_b n^x = x \cdot \log_b n$$

$$\circ a^{\log_b n} = n^{\log_b a}$$

$$b^{\log_b n} = n$$

• For
$$x > 1$$
, $\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}$

• For
$$0 < x < 1$$
,

- We first consider the case when $n = b^x$.
 - Since $g(n) \le a \cdot g\left(\left\lceil \frac{n}{b}\right\rceil\right) + O(n^{\lambda})$
 - \circ We can find a constant c such that

•
$$g(n) \le a \cdot g\left(\left\lceil \frac{n}{b}\right\rceil\right) + c \cdot n^{\lambda}$$

How many g(1)?

In level i, there are $a^i g\left(\frac{n}{b^i}\right)$

$$g(1)$$
 is in level i such that $\frac{n}{b^i} = 1$.

Therefore, there are $a^{\log_b n}$ g(1).

g(n)

 $c \cdot n^{\lambda}$

- Let $y = \log_b n 1$
- $g(n) \le c \cdot n^{\lambda} + c \cdot a \left(\frac{n}{b}\right)^{\lambda} + c \cdot a^2 \left(\frac{n}{b^2}\right)^{\lambda} + \dots + c \cdot a^y \left(\frac{n}{b^y}\right)^{\lambda} + c_2 \cdot n^{\log_b a}$
- $= c \cdot n^{\lambda} \left(1 + \frac{a}{b^{\lambda}} + \left(\frac{a}{b^{\lambda}} \right)^{2} + \cdots \left(\frac{a}{b^{\lambda}} \right)^{y} \right) + c_{2} \cdot n^{\log_{b} a}$
- Case 1: $\log_b a < \lambda \Leftrightarrow a < b^{\lambda}$
 - $g(n) \le c \cdot n^{\lambda} \cdot \frac{1}{1 \frac{a}{h^{\lambda}}} + c_2 \cdot n^{\log_b a}$.
 - $g(n) = O(n^{\lambda})$
- Case 2: $\log_b a = \lambda \Leftrightarrow a = b^{\lambda}$
 - $g(n) \le c \cdot n^{\lambda} \cdot \log_b n + c_2 \cdot n^{\log_b a} = c \cdot n^{\lambda} \cdot \log_b n + c_2 \cdot n^{\lambda}$
 - Therefore $g(n) = O(n^{\lambda} \cdot \log n)$

- $Let y = \log_b n 1$
- $g(n) \le c \cdot n^{\lambda} + c \cdot a \left(\frac{n}{b}\right)^{\lambda} + c \cdot a^{2} \left(\frac{n}{b^{2}}\right)^{\lambda} + \dots + c \cdot a^{y} \left(\frac{n}{b^{y}}\right)^{\lambda} + c_{2} \cdot n^{\log_{b} a}$
- $= c \cdot n^{\lambda} \left(1 + \frac{a}{b^{\lambda}} + \left(\frac{a}{b^{\lambda}} \right)^{2} + \cdots \left(\frac{a}{b^{\lambda}} \right)^{y} \right) + c_{2} \cdot n^{\log_{b} a}$
- Case 3: $\log_b a > \lambda \Leftrightarrow a > b^{\lambda}$

$$g(n) \le c \cdot n^{\lambda} \cdot \frac{\left(\frac{a}{b^{\lambda}}\right)^{y+1} - 1}{\frac{a}{b^{\lambda}} - 1} + c_2 \cdot n^{\log_b a} = c \cdot n^{\lambda} \cdot \frac{\left(\frac{a}{b^{\lambda}}\right)^{\log_b n} - 1}{\frac{a}{b^{\lambda}} - 1} + c_2 \cdot n^{\log_b a}$$

$$\circ = cn^{\lambda} \cdot \frac{\frac{a^{\log_b n}}{b^{\lambda \cdot \log_b n} - 1}}{\frac{a}{b^{\lambda} - 1}} + c_2 \cdot n^{\log_b a} = cn^{\lambda} \cdot \frac{\frac{n^{\log_b a}}{n^{\lambda}} - 1}{\frac{a}{b^{\lambda}} - 1} + c_2 \cdot n^{\log_b a}$$

$$= c \cdot \frac{n^{\log_b a} - n^{\lambda}}{\frac{a}{b^{\lambda}} - 1} + c_2 \cdot n^{\log_b a} \Rightarrow g(n) = O(n^{\log_b a})$$

- When $n \neq b^x$. Choose $n' = b^x$ such that x is the smallest integer that $b^x \geq n$.
 - $g(n) \leq g(n')$.
 - It can be verified that the Master Theorem still follows.