Quiz 1

* Required

1	Fmail	laddress	k
н.	LITIGII	i addi Coo	

Interval of convergence of the power Series * 4.

$$\sum_{n=1}^{\infty} \frac{1}{n} x^n = x + \frac{1}{2} x^2 + \frac{1}{3} x^3 + \frac{1}{4} x^4 + \dots$$

- [-1,1]
- [-1,1) (-1,1)
- (-1,1]

5. The numerical value of limit of the following series using Ratio test is *

$$\sum_{n=1}^{\infty}\frac{9^n}{\left(-2\right)^{n+1}n}$$

Mark only one oval.

- 2/9
- 2/9/2
- 6. The infinite series *

$$\sum_{n=1}^{\infty}\frac{9^n}{\left(-2\right)^{n+1}n}$$

Mark only one oval.

- Converges
- Diverges
- 7. The numerical value of the limit of the following series using root test is *

$$\sum_{n=0}^{\infty} \left(rac{5n-3n^3}{7n^3+2}
ight)^n$$

- 7/3
- <u> 5/2</u>
- 3/7
- 2/5

8. The infinite series *

$$\sum_{n=0}^{\infty} \left(\frac{5n-3n^3}{7n^3+2}\right)^n$$

Mark only one oval.

Diverges

This content is neither created nor endorsed by Google.

Quiz 2

* Required

1.	Email address *	
2.	Roll number *	
3.	Name *	
4.	Which of the following is not true? * Mark only one oval. Non point wise convergence imply non to the convergence implies und the convergence implies und the convergence implies point wise convergence implies under the convergence i	form convergence
5.	Point wise convergence need not imply For point wise convergence the value of	
	Mark only one oval. only epsilon both epsilon and x only x none of the above	

6.	The value of N for uniform convergence depends on *
	Mark only one oval.
	only x
	only epsilon
	both epsilon and x
	neither of x and epsilon
	Option 5
7.	The sequence of functions: 1/(n+x) is on any interval [a,b], b>0. *
	Mark only one oval.
	Uniformly and point wise convergent
	only uniformly convergent
	only point wise convergent
	ont convergent
8.	The sequence of functions x^n is point wise convergent to zero function in the interval *
	Mark only one oval.
	[0,1]
	(0,1)
	(0,1)
	(0,1]

This content is neither created nor endorsed by Google.

	•	•	
()	UI	17	3

* Required

1.	Email address *

2.	Roll No. *		

4.	The	series	of	fur	nctions	*
т.	•		•			

;
$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$$

Uniformly Convergent
Point wise convergent
Both uniform and point wis

Every dominating series *

Mark only one oval.

need not converge uniformly

converges uniformly

always diverges

onverges point wise

6. Weierstrass- M test is used to check the *

Mark only one oval.

- point wise convergence of a sequence of functions
- uniform convergence of a sequence of functions
- point wise convergence of a series of functions
- uniform convergence of a series of functions
- 7. sufficient condition for the following series to converge uniformly in any interval [a,b] and q>=0 *

$$\sum \frac{x}{n^p + x^2 n^q}$$

- ____ p+q > 1
- $\sqrt{p} > 1$
- ____ p< 1
- ____ p+q < 1

8. The series of functions *

$$\frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots, -\frac{1}{2} \le x \le \frac{1}{2}$$

Mark only one oval.

- Opes not converge uniformly
- **C**onverges uniformly
- diverges
- converges only point wise

This content is neither created nor endorsed by Google.

18/09/2020 Class Quiz A

Class Quiz A

Completeness Axiom and infinite sequences

* Required

Email address *	
Name *	
Roll No. *	
Supremum of the set $\{n \mid m \mid m, n \in \mathbb{N} \text{ and } m+n \leq 10\}$. (just enter the number/value in the space provided. Any other answer will be invalid) *	1 point
For a subset A of R, define $-A = \{-x : x \in A\}$. Suppose that S is a nonempty bounded above subset of R. Then -S is *	1 point
Mark only one oval.	
Bounded above Bounded below	
Both bounded above and below	
Not bounded	

6. The sequence *

-			٠		
1	n	0	ı	r	١Ť
	u	u			ш

$$x_n := -n + \sqrt{n^2 + 3n}.$$

Mark only one oval.

- Converges to 2/3
- diverges to infinity
- converges to 3/2
- diverges to infinity
- 7. Which of the following is true? *

1 point

Mark only one oval.

- Limit point of a sequence is unique
- Limit point of the sequence is also limit point of its range set
- Limit point is always limit for a given sequence
- Limit is always a limit point for a given sequence
- 8. The sequence *

2 points

$$a_n = \frac{1}{3n^3} + \frac{2^2}{3n^3} + \frac{3^2}{3n^3} + \dots + \frac{n^2}{3n^3}$$

- diverges
- converges to 1/9
- onverges to 1/3
- onverges to 2/3

9.	Every absolutely	convergent sequence	is necessarily
----	------------------	---------------------	----------------

1 point

Mark only one oval.

- divergent
- convergent
- Conditionally convergent
- None of the above
- 10. Which of the following is not true for sn=1/n *

2 points

- (a) The sequence converges to 0.
- (b) $\lim_{n\to\infty} \sum_{i=1}^n s_i = L$, for some finite L.
- (c) $\limsup s_n = 0$.
- (d) The series $\sum (-1)^n s_n$ converges.
- (e) The series $\sum s_n^2$ converges.

- a and d
- **⊘**b
- c and d
- \bigcirc ϵ

18/09/2020 Class Quiz A

11. The sequence * 1 point

$$\left\{\frac{4-n}{2n+3}\right\}_{n=1}^{\infty}$$

Mark only one oval.

- Monotonically increasing and bounded

 Monotonically decreasing and bounded

 Monotonically increasing and not bounded
- Monotonically decreasing and not bounded

This content is neither created nor endorsed by Google.

Class Quiz B

Infinite series and sequences and series of functions
* Required

- 1. Email address *
- 2. Name *
- 3. Roll No. *
- 4. The series converges if *

$$\sum^{\infty} \frac{k^3 x^k}{3^k}$$

Mark only one oval.

- |x|<3
- |x|<=3
- (|x|>3
- (|x|>=3

1 point

5. The series on interval R *

-			٠		
1	n	\cap	I	r	١Ť
	ν	v	ı	ш	ıι

$$\sum_{k=1}^{\infty} \left(\frac{\cos kx}{k^3} + 3 \frac{\sin kx}{k^2} \right)$$

Mark only one oval.

- Only point wise convergent
- Diverges
- Can not decide
- Uniformly converges
- 6. The series *

$$\sum_{n=1}^{\infty} \frac{3 + \cos n}{e^n}$$

Mark only one oval.

- Converges
- Diverges
- 7. The series *

$$\sum_{n=1}^{\infty} \frac{\left(\ln(n)\right)^2}{n^3 + n^4}$$

- converges
- diverges

8. Th interval of convergence for the following series *

1 point

$$\sum_{n=0}^{\infty} \frac{n(x-1)^{2n}}{3^n}$$

Mark only one oval.

- [1+root 3, 1- root 3)
- (1+root 3, 1-root 3)
- (1+root 3, 1- root 3]
- [1+root 3, 1- root 3]
- 9. The series * 1 point

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \left(1 + \frac{1}{n^2}\right).$$

- converges absolutely.
- onverges to +∞
- onverges to -∞
- converges conditionally, but not absolutely.

10. Which of the following series converges? *

2 points

- (a) $\sum \frac{x^n}{n!}$, $\forall x$
- (b) $\sum \frac{1}{n+\sin(n)}$
- (c) $\sum (-1)^n n$
- (d) $\sum \sin(n)$
- (e) $\sum \frac{2^n}{\sqrt{n!}}$

Mark only one oval.

- a and b
- b and d
- a and e
- c and e
- 11. The limit value for the following series using root test *

1 point

$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$$

- **1/e**
- _____ e
- () 1+e
- _____1-e

12. Assume summation an is a infinite series with partial sums given by following. What is a5? *

$$S_N = 4 + \frac{2}{N}.$$

Mark only one oval.

- 1/10
- 3/10
- -1/10
- -3/10

This content is neither created nor endorsed by Google.