Math 501 Homework (§2.3)

Problem 9. Show that if A and B are bounded subsets of \mathbb{R} , then $A \cup B$ is bounded and $sup(A \cup B) = sup\{sup\ A, sup\ B\}$.

Solution. For any $z \in A \cup B$ there are 2 cases: Since A is upper bounded by $\sup A$ for every $v < \sup A$, there exists $a' \in A$ such that v < a'. It is also the case that $a' \in A \cup B$, so for cases that $\sup A$ is an upper bound for $A \cup B$, $\sup A \cup B = \sup A$. Similarly for cases that $\sup B$ is an upper bound for $A \cup B$, $\sup A \cup B = \sup B$.

For all $z \in A \cup B$ two non exclusive cases exist:

1. $z \in A$:

Since A is bounded by $sup\ A$ and $inf\ A, inf\ A \le z \le sup\ A$. In other words, $A \cup B$ is **bounded** and $sup\ A \cup B = sup\ A$ (from above).

 $2. z \in B$:

Since B is bounded by $sup\ B$ and $inf\ B, inf\ B \le z \le sup\ B$. In other words, $A \cup B$ is **bounded** and $sup\ A \cup B = sup\ B$ (from above).

In any case, $A \cup B$ is **bounded** and has a supremum as $\sup A$ or $\sup B$. Since $\sup A, \sup B$ could be distinct, we'll need to pick the greater of the two:

$$sup \ A \cup B = sup \ \{sup \ A, sup \ B\}$$