Pandas:

Pandas is a popular open-source data manipulation and analysis library for Python.

It provides easy-to-use data structures and functions needed to work with structured data, such as spreadsheets or SQL tables, and time series data.

The primary data structures in pandas are:

DataFrame: A two-dimensional table of data with rows and columns. It can be thought of as a spreadsheet or SQL table. Each column can have a different data type (e.g., integers, strings, floating-point numbers).

```
Creating a Dataframe:
import pandas as pd
# Creating a DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['New York', 'San Francisco', 'Los Angeles']}
df = pd.DataFrame(data)
# Displaying the DataFrame
print(df)
  Name Age
                   City
0 Alice 25
               New York
1 Bob 30 San Francisco
2 Charlie 35 Los Angeles
Series: A one-dimensional labeled array capable of holding any data type. It can be thought of as a single
column in a DataFrame.
import pandas as pd
# Create a series from a list
data_list = [1, 2, 3, 4, 5]
series_from_list = pd.Series(data_list)
print("Series from list:")
print(series_from_list)
Loading data:
import pandas as pd
df = pd.read_csv('pokemon_data.csv')
Reading Data using Pandas:
# print(df.head())
# print(df.head(10))
# print(df.tail())
# print(df.tail(15))
#Specific value
```

```
print(df.columns)
Index(['#', 'Name', 'Type 1', 'Type 2', 'HP', 'Attack', 'Defense', 'Sp. Atk',
    'Sp. Def', 'Speed', 'Generation', 'Legendary'],
   dtype='object')
Specific columns data:
print(df[['Name', 'Type 1', 'HP']])
## Read Each Row
#print(df.iloc[0:4])#4 records
Filtering the data:
#df.loc[df['Type 1'] == "Grass"]
Sorting Values:
Ascending:
df.sort_values(by=['Type 1'])
Multiple columns
df.sort_values(by=['Type 1', 'HP'])
Descending:
df.sort_values(by='Type 1', ascending=False)
Putting NAs at first
df.sort_values(by='Type 2', ascending=False, na_position='first')
Making changes to the data:
df['Total'] = df['HP'] + df['Attack'] + df['Defense'] + df['Sp. Atk'] + df['Sp. Def'] + df['Speed']
or
df['Total'] = df.iloc[:, 4:10].sum(axis=1)
```

print(df.iloc[2,1])

df.head	(5)										
	Name	Type 1	Type 2	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Genera	tion
	Legendary	Total									
1	Bulbasaur False	Grass	Poison 318	45	49	49	65	65	45	1	
2	Ivysaur Grass	Poison 405	60	62	63	80	80	60	1	False	
3	Venusaur False	Grass	Poison 525	80	82	83	100	100	80	1	
3	VenusaurMega Venusaur False 625		Grass	Poison	80	100	123	122	120	80	1
4	Charmander False	Fire	NaN 309	39	52	43	60	50	65	1	
df.head()											
	Name	Type 1	Type 2	HP	Attack	Defense	Sn Atk	Sn Def	Speed	Genera	tion

	Name Legendary	Type 1 Total	Type 2	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generat	ion
1	Bulbasaur False	Grass	Poison 318	45	49	49	65	65	45	1	
2	Ivysaur Grass	Poison 405	60	62	63	80	80	60	1	False	
3	Venusaur False	Grass	Poison 525	80	82	83	100	100	80	1	
3	VenusaurMega V False	enusaur 625	Grass	Poison	80	100	123	122	120	80	1
4	Charmander False	Fire	NaN 309	39	52	43	60	50	65	1	

Advanced Filtering data:

 $new_df = df.loc[(df['Type 1'] == 'Grass') \& (df['Type 2'] == 'Poison') \& (df['HP'] > 70)]$

new_df

	Name Generation Legenda		Type 1 Type 2	HP	Attack	Defense Sp. Atk		Sp. Def	Speed		
			ary	Total				•		•	
3	Venusaur	Grass	Poison	80	82	83	100	100	80	1	
	False 525										
3	VenusaurMega \	/enusaur	Grass	Poison	80	100	123	122	120	80	1
	False 625										
45	Vileplume	Grass	Poison	75	80	85	110	90	50	1	
	False 490										
71	Victreebel	Grass	Poison	80	105	65	100	70	70	1	
	False 490										
591	Amoonguss	Grass	Poison	114	85	70	85	80	30	5	
	False 464										

```
Saving/Exporting the Data:

df.to_csv('modified.csv', index=False)

Conditinal Changes:

df.loc[df['Total'] > 500, ['Generation','Legendary']] = ['Test 1', 'Test 2']

Aggregate Statistics (Groupby):

df.groupby(['Type 1']).count()['count']
```

df.groupby(['Type 1', 'Type 2']).count()['count']