Simulare bacalaureat 2024-lanuarie Proba E. d) Proba scrisă la FIZICĂ- filieră teoretică BAREM DE EVALARE ȘI DE NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

A.MECANICĂ

A.Subiectul I

Nr.Item	Soluție, rezolvare	Punctaj
I.1.	c	3p
2.	d	3p
3.	a	3p
4.	b	3p
5.	b	3p
TOTAL I	pentru Subiectul I	15p

A. Subiectul al II-lea

II.a.	$a = \frac{F - \mu (m_1 + m_2 + m_3) g}{m_1 + m_2 + m_3}$	3р	4 p
	$m_1 + m_2 + m_3$		
	rezultat final $a = 2 \frac{\text{m}}{\text{s}^2}$	1p	
b.	$m_1 \cdot a = F - T - \mu m_1 g$	1p	4 p
	$T = F - m_1 \cdot a - \mu m_1 g$	1p	
	$T = F - m_1 \cdot (a + \mu g)$	1p	
	rezultat final : $T = 35N$	1p	
c.	$m_3 \cdot a = f - \mu m_3 g$	1p	4 p
	$f = m_3 \cdot a + \mu m_3 g$	1p	
	$f = m_3 \cdot (a + \mu g)$	1p	
	rezultat final : $f = 14N$	1p	
d.	$f = \frac{m_3 \cdot F - m_3 (F_{f1} + F_{f2}) + F_{f3} (m_1 + m_2)}{m_1 + m_2 + m_3}$	1p	3p
	$f' = \frac{0 - m_3(F_{f1} + F_{f2}) + F_{f3}(m_1 + m_2)}{m_1 + m_2 + m_3}$	1p	
	$m_1 + m_2 + m_3$		
	rezultat final : $f' = 0$	1p	
TOTAL	pentru Subiectul al II-lea		15p

A. Subiectul al III-lea

III.a.	$E = E_c + E_p$	1p	3 p
	$E = E_c + 0 = \frac{m \cdot v_0^2}{2}$	1p	

INSPECTORATUL ȘCOLAR JUDEȚEAN BRĂILA

	rezultat final: $E = E_c = 256J$	1p	
b.	$0 - \frac{m \cdot v_0^2}{2} = -G \cdot h_0 - F_r \cdot h_0$	1p	4 p
	$\frac{m \cdot v_0^2}{2} = h_0 (m \cdot g + 0, 6m \cdot g) = 1, 6m \cdot g \cdot h_0$	1p	
	$h_0 = \frac{m \cdot v_0^2}{3, 2 \cdot m \cdot g} = \frac{v_0^2}{3, 2 \cdot g}$	1p	
	rezultat final: $h_0 = 8m$	1p	
c.	$\frac{m \cdot v^2}{2} = +G \cdot h_0 - F_r \cdot h_0$	1p	4 p
	$\frac{2}{m \cdot v^2} = +m \cdot g \cdot h_0 - 0, 6m \cdot g \cdot h_0 = 0, 4m \cdot g \cdot h_0$	1p	
	$v = \sqrt{2 \cdot 0, 4 \cdot g \cdot h_0}$	1p	
	rezultat final: $v = 8 \frac{m}{s}$	1p	
d.	$-G - F_r = \frac{0 - m \cdot v_0}{t_U} = \frac{\Delta p_U}{t_U}$	1p	4 p
	Timpul de urcare $t_U = 1s$		
	$-G + F_r = \frac{\Delta p_C}{t_C} = \frac{\Delta p_C}{\Delta t - t_U}$	1p	
	$\Delta p = \Delta p_U + \Delta p_C$	1p	
	rezultat final: $\Delta p = -32N \cdot s + (-8N \cdot s) = -40N \cdot s$	1p	

B.TERMODINAMICĂ

B. Subiectul I

Nr.Item	Soluție,rezolvare	Punctaj
1.	b	3p
2.	a	3p
3.	b	3p
4.	b	3p
5.	b	3p
	Total subjectul I	15p

INSPECTORATUL ŞCOLAR JUDEŢEAN BRĂILA

B. Subiectul al II-lea

II.a.	Pentru:	3р
	$v = \frac{m_1}{\mu_1}$ 2p	
	rezultat final $v = 2$ mol 1p	
b.	Pentru:	4 p
	$p = \frac{vRT}{V}$	
	rezultat final $p = 1,5 \cdot 10^5$ Pa	
c.	Pentru:	4p
	$\mu = \frac{m_1 + m_2}{\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}}$ 3p	
	rezultat final $\mu = 10 \cdot 10^{-3} \frac{\text{kg}}{\text{mol}}$	
d.	Pentru:	4p
	$U = U_1 + U_2 $ 1p	
	$U_1 = v_1 C_{v_1} T $	
	$U = U_1 + U_2$ 1p $U_1 = v_1 C_{v_1} T$ 1p $U_2 = v_2 (C_{p2} - R) T$ 1p	
	rezultat final $U \cong 35 \text{ kJ}$	
TOTAL	pentru Subiectul al II-lea	15p

B. Subjectul al III-lea

III.a.	Pentru:	3p
	Reprezentare corectă 3p	
b.	Pentru:	4p
	$\Delta U_{\rm BC} = \nu C_{\rm V} (T_{\rm C} - T_{\rm B}) $ 1p	
	$p_A V_A = p_B V_B $ 1p	
	$\Delta U_{\rm BC} = C_{\rm V} \frac{p_{\rm C}(V_A - V_B)}{R} $ 1p	
	rezultat final: $\Delta U_{\rm BC} \cong -6.7 \text{ kJ}$	
c.	Pentru:	4p
	$L_{total} = L_{AB} + L_{BC} + L_{CA} $ 1p	
	$L_{total} = \nu R T_A \ln \frac{V_B}{V_A} + \rho_C (V_C - V_B) + 0$ 2p	
	rezultat final: $L_{total} \cong 1,7 \text{ kJ}$	
d.	Pentru:	4p
	$\eta = 1 - rac{\left Q_{cedat} ight }{Q_{primit}}$	
	$Q_{\text{primit}} = L + Q_{\text{cedat}} $ 1p	
	$Q_{\text{cedat}} = \nu C_p (T_C - T_B) $ 1p	
	rezultat final: $\eta \approx 15,7\%$	
TOTAL	pentru Subiectul al III-lea	15p

INSPECTORATUL ŞCOLAR JUDEŢEAN BRĂILA

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

C.Subiectul I

Nr. item	Soluție, rezolvare	Punctaj
1.	b	3p
2.	d	3p
3.	b	3р
4.	a	3р
5.	d	3р
TOTAL p	entru Subiectul I	15p

C.Subiectul al II-lea

	ublectul al II-lea		
II.a.	$R = \rho \cdot \frac{l}{s}$	2p	3 p
	rezultat final $R = 2\Omega$	1p	
b.	$R_{o} = \frac{R}{4}$ $R_{ext} = R_{p} = \frac{R_{0}}{4}$	1p	4 p
	$R_{\text{ext}} = R_{\text{p}} = \frac{R_{\text{0}}}{4}$	2p	
	rezultat final $R_{\text{ext}} = 0.125\Omega$	1p	
c.			4 p
	$I_{p} = \frac{E}{R_{ext} + \frac{r}{5}}$ $I_{p} = \frac{U}{R_{ext}}$	2p	
	$I_{p} = \frac{U}{R_{ext}}$	1p	
	rezultat final : U = 1,07V	1p	
d.	$\frac{1}{R'_{ext}} = \frac{3}{R_0} + \frac{1}{R_0 + R_A}$ $I' = \frac{E}{R'_{ext} + \frac{r}{5}}$	1p	4 p
	$I' = \frac{E}{R'_{ext} + \frac{r}{5}}$	1p	
	$E = I' \cdot r_p + I_A \cdot (R_0 + R_A)$	1p	
	Rezultat final: $I_A = 0.75A$		
TOTA	L pentru Subiectul al II-lea		15p

C. Subiectul al III-lea

C. Sublet	tui ai 111-lea		
III.a.	$I_1 = \frac{E}{R+r}$	1p	4 p
	$I_1 = \frac{1}{R+r}$ $I_2 = \frac{2E}{R+2r}$	1p	
	$P_1 = I_1^2 \cdot R , P_2 = I_2^2 \cdot R$	1p	
	Rezultat final: $R = 0.08\Omega$	1 p	
b.	$E^{2} = \frac{P_{1} (R+r)^{2}}{R}$	3p	4p
	rezultat final: E =12V	1p	
c.	$P = E \cdot I_1$	2p	3p
	rezultat final: $P = 600W$	1p	
d.	$\eta = \frac{R}{R+2r}$	3p	4p
	rezultat final: $\eta = 20\%$	1p	
TOTAL	pentru Subiectul al III-lea	1	15p

D. OPTICA

D.Subi	D.Subiectul I Punctaj		taj
1.	С		3p
2.	D		3 p
3.	D		3 p
4.	D		3p
5.	A		3p
Total			15 p
D Sub	iectul II		1
	Din prima formulă fundamentală $\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}$ şi $x_1 = -2x_2$	2	4.0
a.	$C = \frac{1}{f}$	1	— 4 р
	C = 20 δ	1	
b.	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}$	1	— 4 р
J.	$\beta = \frac{x_2}{x_1} = -\frac{1}{2}$	2	4 6
	x ₁ = -15 cm	1	
	$x_2 + x_1' = d$; $x_1' = 7.5$ cm	1	
c.	$\frac{1}{-} - \frac{1}{-} = \frac{1}{-}$	1	3 p
	x_2 , x_1 , f		
	$x_2' = 15 \text{ cm}$	1	
d.	Realizarea corectă a desenului	4	4 p
Total			15 p

D.Subiect	ul III		
	$i = \frac{D\lambda}{a}$	2	
a.	$D = \frac{2 \cdot 10^{-3} \cdot 1 \cdot 10^{-3}}{400 \cdot 10^{-9}} = 5 \text{m}$	1	3 p
	D' = 4 m; x = 1,6 mm	1	
b.	$\delta = \frac{ax}{D}$	2	4 p
	$\delta = 8 \cdot 10^{-7} \mathrm{m}$	1	
	Pentru maximul de ordinul 4, $x_{max} = \frac{Dk\lambda}{a}$, unde $k = 4$	2	
C.	$x_{max} = \frac{4 \cdot 4 \cdot 400 \cdot 10^{-9}}{2 \cdot 10^{-3}},$	1	4 p
	x_{max} =3,2 mm	1	
d.	$i_{apa} = \frac{D\lambda}{na}$, unde n = 4/3	1	

INSPECTORATUL ŞCOLAR JUDEŢEAN BRĂILA

	$i = \frac{D\lambda}{a}$, $i_{apa} = \frac{i}{n}$	2	4 p
	i _{apa} =0,75 mm	1	
Total			15 p