Mathematics 327 Final review, part II

1. Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

Form the matrix $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ and evalute $V^T V$.

Explain how you know that these vectors form an orthogonal basis \mathcal{B} for \mathbb{R}^3 .

Express the vector
$$\mathbf{b} = \begin{bmatrix} -5 \\ -3 \\ 1 \end{bmatrix}$$
 as a linear combination of \mathbf{v}_1 , \mathbf{v}_1 , and \mathbf{v}_3 .

Is $\mathcal B$ an orthonormal basis? If no, form an orthonormal basis from it.

Suppose that \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 are the orthonormal basis and that Q is the matrix having these vectors as columns. What is Q^TQ ?

What is QQ^T ?

2. Suppose that $A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \\ -3 & -1 \end{bmatrix}$.

Find an orthonormal basis for Col(A).

Let Q be the matrix whose columns are the orthonormal basis you found. What is Q^TQ ?

Find the matrix QQ^T . What does this matrix represent and what is its rank?

Use the work you have done here to write A=QR.

Use your QR factorization to find the least squares approximation solution $\hat{\mathbf{x}}$ to the equation $A\mathbf{x}=\begin{bmatrix}42\\70\\-28\end{bmatrix}$.

equation
$$A\mathbf{x} = \begin{bmatrix} 42 \\ 70 \\ -28 \end{bmatrix}$$
.