$$\vec{x} \in \{0,1\}^{\lambda}$$

$$\vec{\theta} \in \{+, \times\}^{\lambda}$$

$$C_{i} = comm(\hat{\theta}_{i}, \hat{x}_{i})$$

$$T$$

$$Equivocation of c_{i} for $i \in T$

$$\vec{\theta}$$

$$Measure qubits in $T$$$

$$Measure remaining q Partition l_{0} and l_{1} at $m_{0} = Dec_{\vec{x}_{0}}(m_{0})$

$$a_{1} = Enc_{\vec{x}_{0}}(m_{0})$$

$$a_{2} = a_{0} + b_{0} + b_{0$$$$$$

 $\vec{x} \in \{0,1\}^{\lambda}$

 $\vec{\theta} \in \{+, \times\}^{\lambda}$

Measure remaining qubits using $\vec{\theta}$ (get \vec{x})

Partition I_0 and I_1 at random