

PROBLEM

The Discrete Logarithm Problem

- Let p be a (large) prime
- By the primitive root theorem, there is a primitive $g \in \mathbb{F}_p$ delement $g \in \mathbb{F}_p$ and the primitive $g \in \mathbb{F}_p$ delement $g \in$
- The list of elements

$$1100g_0g_0^{20}g_0^{300}$$

is a complete list of the elements in \mathbb{F}_p^*

The Discrete Logarithm Problem

Remark

• Fermat's little theorem tells us that

1011010 01011001 10110101 100
$$p$$
14100111001 11110010 n 1111011 0011101 11110010 11110010 n 11110010 01110000 11110010 01000001 n 11110010 01000001

- If x is a solution to $g^x = h$, then x + k(p 1) is also a solution for every value of k, because $g^{x+k(p-1)} = g^x \cdot (g^{p-1})^k \equiv h \cdot 1^k \equiv h \pmod{p}$
- $\log_g h$ is uniquely defined up to modulo p-1

The Discrete Logarithm Problem

<u>Definition</u>. (Discrete Logarithm Problem, DLP)

- The Discrete Logarithm Problem (DLP) is the problem of finding an exponent x such that $g^{x} \equiv h \pmod{p}$
 - The number x is called the *discrete logarithm* of h to the base g and is denoted by $\log_g h$

The Discrete Logarithm Problem

Example. g = 627, p = 941

Powers

Discrete logarithms

n	$g^n \bmod p$	
1	627	
2	732	
3	697	
4	395	
5	182	
6	253	
7	543	
8	760	
9	374	
10	189	

n	$g^n \bmod p$
11	878
12	21
13	934
14	316
15	522
16	767
17	58
18	608
19	111
20	904

.01 0011	.1001 00101010
h	$\log_g(h)$
1	0
2	183
3	469
4	366
5	356
6	652
7	483
8	549
9	938
10	539

h	$\log_g(h)$	'n
11	429	10
12	835	0.
13	279	.1
14	666	.0.
15	825	10
16	732	1
17	337	1
18	181	.0
19	43	.1
20	722	.1

The Discrete Logarithm Problem

Remark

- It is not strictly necessary to assume that the base g is a primitive root modulo p
 - The DLP is the determination of an exponent x satisfying $g^x \equiv h \pmod{p}$, assuming that such an x exists

The Discrete Logarithm Problem

Definition.

- The DLP for G is to determine, for any two given elements g and h in G, an integer x satisfying

$$g\star g\star g\star g\star \cdots\star g=h_{{}^{1100110}}^{{}^{11}00011}$$

HOW HARD IS THE DISCRETE LOGARITHM PROBLEM 20001111 01001010 0100110

- iHow can we quantify "hard"?!
- A natural measure of hardness is the approximate number of operations necessary to solve the problem using the most efficient method
- Order notation provides a handy way to get a grip on the magnitude of quantities 110011 01101100 00100100 11001111 01011100

• Let f(x) and g(x) be functions of x taking values that are positive. We say "f is big- \mathcal{O} of g" and

- if there are positive constants c and C such that
 - In particular, we write f(x) = O(1) if f(x) is bounded for all $x^{1} \ge C^{100}$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)}$$

0011110 00001110 10001011 10110000 $x \rightarrow \infty$ g(x) 00111110 1101011 0001010 011101 exists (and is finite), then f(x) = O(g(x))

• Let L be the limit. For any $\epsilon > 0$, there is a 1001 1 constant \mathcal{C}_{ϵ} such that 10000 10000101 11110000 11001010 0100

$$\left| rac{f(x)}{f(x)} \left| rac{f(x)}{g(x)} - L
ight| < \epsilon \qquad ext{for all } x > C_{\epsilon}$$

• In particular, taking $\epsilon = 1$, we find that

$$\frac{f(x)}{g(x)} < L+1$$
 for all $x > C_1$

Order Notation

• Example $2x^3 = 3x^2 + 7 = 0(x^3)$ since

$$\lim_{x \to \infty} \frac{2x^3 - 3x^2 + 7}{x^3} = 2$$

• Example – Exercise.

$$(a) x^2 + \sqrt{x} = \mathcal{O}(x^2)$$

(b)
$$5 + 6x^2 - 37x^5 = \mathcal{O}(x^5)$$

$$(c) k^{300} = \mathcal{O}\left(2^k\right)$$

(d)
$$(\ln k)^{375} = \mathcal{O}(k^{0.001})$$

$$k^2 2^k = \mathcal{O}\left(e^{2k}\right).$$

$$N^{10}2^N = \mathcal{O}(e^N).$$

Order Notation

Definition.

- Suppose that there is a constant $A \ge 0$, independent of the size of the input, such that if the input is O(k) bits long, then it takes $O(k^A)$ steps to solve the problem. Then the problem is said to be solvable in *polynomial time*.
- Polynomial-time algorithms are considered to be fast algorithms

Order Notation

- On the other hand, if there is a constant c > 0 such that for inputs of size O(k) bits, there is an algorithm to solve the problem in $O(e^{ck})$ steps, then the problem is solvable in *exponential time*
- Exponential-time algorithms are considered to be slow algorithms

Order Notation

- Intermediate between polynomial-time algorithms and exponential-time algorithms are *subexponential-time* algorithms
- These have the property that for every $\epsilon > 0$, they solve the problem in $O_{\epsilon}(e^{\epsilon k})$ steps
 - The notation \mathcal{O}_{ϵ} means that the constants c and c appearing in the definition of order notation are allowed to depend on ϵ

Difficulty of DLP

- ullet Consider the discrete logarithm problem $g^{x}=h$
- Suppose p is chosen between 2^k and 2^{k+1} , then g, h, and p all require at most k bits, so the problem can be stated in $\mathcal{O}(k)$ -bits
- It takes $O(p) = O(2^k)$ steps to solve the DLP using the trial-and-error method
- This algorithm takes exponential time

Difficulty of DLP

- ullet There are faster ways to solve the DLP in \mathbb{F}_p^*
 - Collision Algorithm (Babystep-Giantstep Algorithm)
 - Pohlig–Hellman Algorithm
 - Index Calculus
- The index calculus solves the DLP in

$$\int_{1}^{\infty} \left(e^{c\sqrt{(\log p)(\log\log p)}} \right)$$

steps, so it is a subexponential algorithm

Difficulty of DLP

- The discrete logarithm problems in different groups may display different levels of difficulty for their solution
- The DLP in \mathbb{F}_p with addition has a linear-time solution in the solution of the solution
- The best known general algorithm to solve the DLP in \mathbb{F}_p^* with multiplication is subexponential

Difficulty of DLP

- The discrete logarithm problem for elliptic curves is believed to be even more difficult
- If the elliptic curve group is chosen carefully and has N elements, then the best known algorithm to solve the DLP requires $\mathcal{O}(\sqrt{N})$ steps
- Thus it currently takes exponential time to solve the elliptic curve discrete logarithm problem
 (ECDLP)

1100 0 0 0000 1100 0 0 0 10 1100 0 0 0 110 1100 0 0 0 110 1110 0 0 0 101 1100 0 110 101

Section 2.7

Trivial Bound for DLP

- If a solution to $g^x = h$ exists, then h will appear before we reach g^N

Trivial Bound for DLP

Proposition.

- Let G be a group and let $g \in G$ be an element of order $N^{(1)}$
- Then the discrete logarithm problem of the discrete logarithm problem of

Shanks's Babystep Giantstep

Proposition

- The following algorithm solves the DLP $g^x = h$ $\lim_{n \to \infty} \mathcal{O}(\sqrt{N} : \log N)$ steps and $\mathcal{O}(\sqrt{N})$ storage.

Shanks so Babystep - Giantstep

$$\mathbf{1}. \mathbf{100Let} \, n = \mathbf{1} \mathbf{1} + |\sqrt{N}|$$

2. Create two lists

List 1:
$$e, g, g^2, g^3, ..., g^n$$
,

List 2:
$$h, h \cdot g^{-n}, h \cdot g^{-2n}, h \cdot g^{-3n}, \dots, h \cdot g^{-n^2}$$

3.110 Find a match between the two lists, 0say 010101

$$h^{0011101}$$
 0111010 $g^{t_{01100}}$ 0 h^{0} 00111010 11001110 01011100 00111

4. Then x = i + jn is a solution to $g^x = h$

Shanks's Babystep—Giantstep Algorithm 11 1001001 0011110 0101001 1101101 11011111 Algorithm 11 1001001 0010101 11010101 11011010 11010101

Proof

- Assuming that a match exists, we can find a match in a small multiple of $n \log n$ steps using standard sorting and searching algorithms

- The total running time for the algorithm is $\mathcal{O}(n \log n) = \mathcal{O}(\sqrt{N} \cdot \log N)$
- The lists in Step (2) have length n, so require $\mathcal{O}(\sqrt{N})$ storage $\mathcal{O}(\sqrt{N})$ storage
- To prove that the algorithm works, we must show that Lists 1 and 2 always have a match

Shanks so Babystep Giantstep

• Let x be the unknown solution to $g^x = h$ and write x as

- Thus $g^r = hg^{-qn}$ with $0 \le r, q < n$, where g^r is in List 1 and hg^{-qn} is in List 2

Shanks's Babystep Giantstep

Example

- ullet Solve $ullet g^{x}$. High in $ullet p^{x}$ with $ullet g^{z}$. 123896, and $ullet g^{z}$ and $ullet g^{z}$. 123896, and $ullet g^{z}$. 12389 and $ullet g^{z}$. 12389 and $ullet g^{z}$.
- ullet The number 9704 has order 1242 in \mathbb{F}_p^* 00010101 01110111 11000001
- $\begin{array}{l} \overset{1}{\circ} \overset{1}{\circ$
- Construct List 1 and List 2 in the following table

Shanks's Babystep-Giantstep

C	\boldsymbol{k}	g^{k}	$h \cdot u^k$	\boldsymbol{k}	g^{k}	
1	17	10137	10230	25	4970	
C C	18	17264	3957	26	9183	
1	19	4230	9195	27	10596	
c	20	9880	13628	28	2427	
1	21	9963	10126	29	6902	
C	22	15501	5416	30	11969	
1	23	6854	13640	31	6045	
٥.	24	15680	5276	32	7583	

- From the table we find the collision $9704^7 = 14567 = 13896 \cdot 2494^{32}$
- Using the fact $2494 = 9704^{-36}$, we compute $13896 = 9704^{7}(9704^{36})^{32} = 9704^{1159}$. • Hence x = 1159 solves the problem
- Hence x = 1159 solves the problem $9704^x = 13896$ in \mathbb{F}_{17389}^*

Section 2.9

12260 6578

14567

Pohlig-Hellman Algorithm

Theorem

- Let G be a group, and suppose that we have an algorithm to solve the DLP in G for any element whose order is a power of a prime
- To be concrete, if $g \in G$ has order q^e , suppose that we can solve $g^x = h$ in $O(S_{q^e})$ steps

Pohlig-Hellman Algorithm

- Now let $g \in G$ be an element of order N, and suppose that N factors into a product of prime powers as $N = q_1^{e_1} q_2^{e_2} \cdots q_t^{e_t}$
- Then the DLP $g^{x} = h$ can be solved in

0011
$$i_{0}$$
 i_{0} i_{0}

steps

Pohlig–Hellman Algorithm

1. For each $1 \le i \le t$, let

- Notice that g_i has prime power order $q_i^{e_i}$
- Use the given algorithm to solve the DLP $g_i^y = h_i$ and let $y = y_i$ be such a solution
- 2. OutUse the Chinese remainder theorem to solve

$$x\equiv y_1\pmod{q_1^{e_1}},\;\;x\equiv y_2\pmod{q_2^{e_2}},{}_{\tiny{0001010}\atop{001010101}\atop{001010101}\atop{001010101}\atop{001010101}\atop{001010101}\atop{001010101}\atop{001011001}\atop{001011001}\atop{001011010}$$

Pohlig–Hellman Algorithm

Proof.

- The running time is clear

 - Step (2) takes $O(\log N)$ steps
- In practice, the Chinese remainder theorem computation is usually negligible compared to the discrete logarithm computations

- It remains to show that Steps (1) and (2) give a 100 0001010
- Let x be a solution to the system of congruences,

$$ext{for}_{0}$$
some z_{i} z_{i}

$$\begin{array}{c} \text{oliono} \quad \text{ince} \quad \text{the numbers} \\ \text{oliono} \quad \text{oliono$$

Pohlig—Hellman Algorithm

by repeating application of the extended Euclidean

111001. o1Therefore

$$\sum_{\stackrel{\substack{10110101\\011111000\\001011011\\00111010}}{t} \frac{t}{i=1} \frac{N}{q_i^{e_i}} \cdot c_i \cdot x \equiv \sum_{i=1}^t \frac{N}{q_i^{e_i}} \cdot c_i \cdot \log_g(h) \pmod{N}$$

Hence $x_0 = \log_g h_1 \pmod{N_1}^{\frac{1}{1001000} \log_g h_2} h_1 \pmod{N_1}^{\frac{1}{10010001} \log_g h_2}$

Pohlig-Hellman Algorithm

Proposition

- Let G be a group and q be a prime
- Suppose that we know an algorithm that takes S_q steps to solve the discrete logarithm problem S_q and S_q are S_q whenever S_q has order S_q
- Let $g \in G$ be an element of order q^e with $e \ge 1$
 - Then we can solve the DLP $g^{x_{10011}} = h \cdot \ln O(eS_q)$

00 11010000 00010011 01110111 10111110 01010100 01100110 11001111 00

$$h^{q^{e-1}} = (g^x)^{q^{e-1}}$$
 $= (g^x)^{q^{e-1}}$
 $= (g^x)^{q^{e-1}}$
 $= (g^x)^{q^{e-1}}$
 $= (g^x)^{q^{e-1}} \cdot (g^{q^e})^{x_1 + x_2 q + \dots + x_{e-1} q^{e-1}})^{q^{e-1}}$
 $= g^{x_0 q^{e-1}} \cdot (g^{q^e})^{x_1 + x_2 q + \dots + x_{e-1} q^{e-2}}$
 $= (g^{q^{e-1}})^{x_0}$

Pohlig–Hellman Algorithm

Proof.

The key idea to proving the proposition is to write the unknown exponent x in the form

$$x = x_0 + x_1 q + x_2 q^2 + \dots + x_{e-1} q^{e-1}$$

 $\begin{array}{c} \text{11101000 00010100 01000000 01010101 11001010 00111001 0101010 00101010 10101011 00010000 11} \\ \text{1 with } 0 \\ \text{1 } \\ \text{2 } \\ \text{1 } \\ \text{2 }$

Pohlig-Hellman Algorithm

- By assumption, we can solve the DLP $(g^{q^{e-1}})^{x_0} = h^{q^{e-1}}$ in S_q steps and obtain x_0
 - We next do a similar computation

$$h^{q^{e-2}} = (g^x)^{q^{e-2}}$$

$$= (g^{x_0 + x_1 q + x_2 q^2 + \dots + x_{e-1} q^{e-1}})^{q^{e-2}}$$

$$= g^{x_0 q^{e-2}} \cdot g^{x_1 q^{e-1}} \cdot (g^{q^e})^{x_2 + x_3 q + \dots + x_{e-1} q^{e-3}}$$

$$= g^{x_0 q^{e-2}} \cdot g^{x_1 q^{e-1}}.$$

$$= g^{x_0 q^{e-2}} \cdot g^{x_1 q^{e-1}}.$$

$$= g^{x_0 q^{e-2}} \cdot g^{x_1 q^{e-1}}.$$

Pohlig-Hellman Algorithm

• In order to find x_1 , we must solve the DLP

$$\int_{000110}^{000111} \left(g^{q^{e-1}} \right)^{x_1} = \left(h \cdot g^{-x_0} \right)^{q^{e-2}}$$

- Keep in mind that x_0 is known
- In $\mathcal{O}(2S_a)$ steps, x_0 and x_1 are determined

Pohlig-Hellman Algorithm

- Each of these is a DLP whose base is of order q, so each of them can be solved in S_q steps
- Hence after $O(eS_q)$ steps, we obtain an exponent $x = x_0 + x_1q + \cdots + x_{e-1}q^{e-1}$ satisfying $g^x = h$, thus solving the original DLP

Pohlig-Hellman Algorithm

• Similarly, we find x_2 by solving the DLP

$$\left(g^{q^{e-1}}\right)^{x_2} = \left(h \cdot g^{-x_0 - x_1 q}\right)^{q^{e-3}}$$

• In general, after we have determined $x_0, x_1, ..., x_{i-1}$, the value of x_i is obtained by solving

$$\int_{0}^{0} \left(g^{q^{e-1}} \right)^{x_i} = \left(h \cdot g^{-x_0 - x_1 q - \dots - x_{i-1} q^{i-1}} \right)^{q^{e-i-1}}$$

Pohlig-Hellman Algorithm

Example. Solve $5448^x = 6909$ in \mathbb{F}_{11251}^*

- p = 11251 is a prime and $5^4 | (p = 1)^{10} |$
 - 15448 has order 540 01100000 10000101 11110000 11001010 0100
 - First, solve $(5448^{5^3})^{x_0} = 6909^{5^3}$, which is in fact $11089^{x_0} = 11089$, hence $x_0 = 1$
 - 10 1 The next step is to solve 00110001 11110110 11001110 01011100 00111110 00010110

$$\left(5448^{5^3}\right)^{x_1} = \left(6909 \cdot 5448^{-x_0}\right)^{5^2} = \left(6909 \cdot 5448^{-1}\right)^{5^2}$$

which reduces to $11089^{x_1} = 3742$

Pohlig-Hellman Algorithm

- - The first step is solve three subsidiary discrete

11 10	q	e	$g^{(p-1)/q^e}$	$h^{(p-1)/q^e}$	Solve $(g^{(p-1)/q^e})^x = h^{(p-1)/q^e}$ for x)]
10 10	2	1	11250	11250	1	10
10	3	2	5029	10724	4	1
11	5	4	5448	6909	511	10

Pohlig-Hellman Algorithm

- - Hence the final answer is

$$\overset{_{100}}{x}\overset{_{11}}{\circ}\overset{_{11}}{\overset{_{11}}{\circ}\overset{_{11}}{\circ}\overset{_{11}}{\circ}\overset{_{11}}{\circ}\overset{_{11}}{\circ}\overset{_{11}}{\overset$$

Pohlig-Hellman Algorithm

- - The smallest solution is x = 4261