

หน้า 1 / 13

ภาควิชาวิศ	_{ชวกรรมไฟฟ้าและ}	ะคอมพิวเต	ภาคการศึกษาที่	ปีการศึกษา	
รหัสวิชา	010113026	ชื่อวิชา	Digital Laboratory	ตอนเรียน	หมายเลขโต๊ะ
รหัสนักศึก	ษา		ชื่อ-นามสกุล		
อาจารย์ผัส	า อน		เวลาที่ทำการทดลอ	۹	วันที่

การทดลองที่ 7

Registers and Counters

<u>วัตถุประสงค์</u>

- 1. เพื่อให้สามารถใช้โปรแกรมคอมพิวเตอร์จำลองการทำงานของวงจรลอจิกเกทได้
- 2. เพื่อให้เข้าใจพื้นฐานของอุปกรณ์ประเภท shift-register
- 3. เพื่อให้เข้าใจพื้นฐานของอุปกรณ์ประเภท counter
- 4. เพื่อให้สามารถใช้งานบอร์ดทดลอง Cyclone3-Lab01 ได้

<u>อุปกรณ์</u>

- ้ 1. ระบบคอมพิวเตอร์ 1 เครื่อง พร้อมติดตั้งโปรแกรม Quartus II เวอร์ชั่น 8.0 (Student Edition) ขึ้นไป
- 2. บอร์ดทดลอง Cyclone3-Lab01 1 บอร์ดพร้อมคู่มือการใช้งาน
- 3. สาย J-TAG 1 เส้น ใช้รุ่น USB-Blaster (สำหรับเครื่อง Notebook) หรือรุ่น Byte-Blaster (สำหรับเครื่อง PC)

การทดลองตอนที่ 1 วงจร Shift-Register

คำสั่งการทดลอง

1. ให้สร้างโฟลเดอร์สำหรับเก็บงานการทดลองนี้ชื่อ "Lab07_Counter" ให้สร้างโปรเจคชื่อ "ShiftRegister" ใช้ชิพ FPGA เบอร์ EP3C10E144C8

- 2. เขียนวงจร**ชิฟรีจิสเตอร์ (Shift-Register)** ในรูปที่ 1 ด้วยฟลิปฟลอปชนิด D-FF คอมไพล์ และสร้าง **symbol file** ของวงจรขึ้นมาเตรียมไว้ใช้งานในขั้นถัดไป
- 3. สร้างไฟล์แผนภาพทางเวลา ตั้งค่าจำลองการทำงานโดยให้ End Time = 1.0 us, Grid Size = 1 ns กำหนดอินพุท clk ให้เป็นแบบสัญญาณนาฬิกามีคาบ (period) = 100 ns

 Shift_In ให้เป็นลอจิก '1' ในช่วง 220 580 ns นอกนั้นให้เป็น '0'

จำลองการทำงานโหมด Functional mode บันทึกผลที่ได้ลงในรูปที่ 2

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 2 / 13

หน้า 3 / 13

ทำการจำลองการทำงานโหมด Functional mode บันทึกผลที่ได้ลงในรูปที่ 4

ผลการทดลอง

เพราะเหตุใดค่าของ Q3,Q2,Q1,Q0 จึงเป็นเช่นนั้น......

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 4 / 13

ข)	เมื่อ clk เปลี่ยนขอบขาขึ้น ' 1 ' ครั้งที่ 4 ค่าของ Q3=ค่าที่ปรากฏที่ Q3 เป็นค่าที่ได้มาจาก ค่าที่ปรากฏที่ Q2 เป็นค่าที่ได้มาจาก ค่าที่ปรากฏที่ Q1 เป็นค่าที่ได้มาจาก							
ค)	ค่าที่ปรากฏที่ Q0 เป็นค่าที่ได้มาจาก เมื่อ clk เปลี่ยนขอบขาขึ้น '1' ครั้งที่ 5 ค่าของ Q3=ค่าที่ปรากฏที่ Q3 เป็นค่าที่ได้มาจาก ค่าที่ปรากฏที่ Q2 เป็นค่าที่ได้มาจาก ค่าที่ปรากฏที่ Q1 เป็นค่าที่ได้มาจาก ค่าที่ปรากฏที่ Q0 เป็นค่าที่ได้มาจาก	Q2=	Q1=	Q0=				
۹)	เมื่อ clk เปลี่ยนขอบขาขึ้น '†' ครั้งที่ 7 ค่าของ Q3= เพราะเหตุใดค่าของ Q3,Q2,Q1,Q0 จึงเป็นเช่นนั้น	Q2=	Q1=	Q0=				
จ)	เมื่อ clk เปลี่ยนขอบขาขึ้น '🕇' ครั้งที่ 8 ค่าของ Q3= เพราะเหตุใดค่าของ Q3,Q2,Q1,Q0 จึงเป็นเช่นนั้น							
ฉ)	a) ความสัมพันธ์กันระหว่างอินพุท (ขา Serial_In, Parallel_In3,,0) กับขาเอ้าท์พุท Q3,,Q0 จะขึ้นอยู่กับ การทำงานของขาควบคุมที่ชื่อ nShift_Load ดังนั้นจากผลการทดลองในข้อ ก) ถึง ง) น.ศ. ควรจะสรุปหรือ ให้คำจำกัดความเกี่ยวกับหน้าที่ของขาควบคุมที่ชื่อ nShift_Load ว่าอย่างไร							
	ลายเซ็นอาจารย์ผู้ควบคุม////							

การทดลองตอนที่ 2 วงจร Asynchronous Counter และวงจร Synchronous Counter

- 6. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 4-5 ก่อนที่จะทำการทดลองต่อไป
 - a) ให้สร้างโปรเจคขึ้นใหม่ชื่อ "AsynchronousCounter" ให้เก็บไว้ในโฟลเดอร์เดิม
 - b) ให้เปิดไฟล์ขึ้นใหม่สำหรับเขียนวงจรทดลองในรูปที่ 5 ใช้ชิพ EP3C10E144C8 ทำการคอมไพล์และสร้าง symbol file

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 5 / 13

7. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) กำหนดค่าแสดงผลจำลองการทำงานโดยให้

End Time = 1.5 us

Grid Size = 1 ns

อินพุท clk ให้เป็นแบบสัญญาณนาฬิกา period 80 ns, offset 0

จำลองการทำงานโหมด Functional mode บันทึกผลที่ได้ลงในรูปที่ 6

หมายเหตุ ให้จัดสัญญาณเอ้าท์พุท Q3 Q2 Q1 Q0 เข้าเป็นกลุ่ม แสดงผลเป็น 4 ปิดจะเห็นการเปลี่ยนแปลงค่าที่เอ้าท์พุทได้ดียิ่งขึ้น

จำลองการทำงานโหมด Timing mode บันทึกผลที่ได้ลงในรูปที่ 7

สังเกตผลการทดลอง

ก)	จากรูปที่ 6	ให้สังเกตก	ารเปลี่ยนแป	ไลงค่าของ	เอ้าท์พุท	Q	เปรียบเร	<i>ท</i> ียบกัเ	บ <u>ขอบขาขึ้น</u>	'†'	ของ	clk
	1 -	9/ 1										

$$Q = Q_3Q_2Q_1Q_0 =$$
 (Hex.)

$$Q = Q_3Q_2Q_1Q_0 =$$
 (Hex.)

$$Q = Q_3Q_2Q_1Q_0 =$$
 (Hex.)

$$Q = Q_3Q_2Q_1Q_0 = ...$$
 (Hex.)

ข) จากรูปที่ 7 ค่าของเอ้าท์พุท (ผลลัพธ์ที่ถูกต้อง) โดย

ใช้เวลาน้อยที่สุด	าเมื่อ clk= '	'ื†' ครั้งที่	โดย Q	เปลี่ยนจาก	าเลข	้ไปเป็นเลข	ใช้เวลา	. ns
ใช้เวลามากที่สุด	เมื่อ clk= '	่า ครั้งที่	โดย Q	เปลี่ยนจาก	าเลข	ไปเป็นเลข	ใช้เวลา	ns
ให้ซูมขยายภาพ	ดูในช่วงที่ (ว เปลี่ยนระหว	ว่าง 7↔8 เ	และ 0↔F	เอ้าท์พุทบิต	ใดที่มี delay tim	e มากที่สุด	
เพราะเหตใด								

			ารทดลองในรู					
กับ clk=	'†')	มากที่สุดที่เ	กิดขึ้นในวงจ	ร จะมีค	ค่าเป็นอย่างไ	ร อธิบาย	 	

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ ปรับปรุง มิ.ย. 2559 โดย

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ ปรับปรุง มิ.ย. 2559 โดย อ.วัชระ ภัคมาตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ 010113026 Digital Laboratory

หน้า 6 / 13

8. ทำการดัดแปลงวงจรในรูปที่ 5 ด้วยการปลด NOT gate ออกจากวงจรทั้งหมดจะได้วงจรดังรูปที่ 8

9. ทำการ<u>บันทึกไฟล์และคอมไพล์</u>วงจรใหม่ที่ดัดแปลงให้เรียบร้อย จำลองการทำงานโหมด Functional mode โดยไม่ต้องเปลี่ยนพารามิเตอร์ในแผนภาพทางเวลา บันทึกผลที่ได้ลงในรูปที่ 9

- 10. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 6-9 ก่อนที่จะทำการทดลองต่อไป
 - a) ให้สร้างโปรเจคขึ้นใหม่ชื่อ "SynchronousCounter" ให้เก็บไว้ในโฟลเดอร์เดิม
 - b) ให้เปิดไฟล์ขึ้นใหม่สำหรับเขียนวงจรทดลองในรูปที่ 10 และทำการคอมไพล์ให้เรียบร้อย

11. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) ให้ค่าของพารามิเตอร์สำหรับแสดงผลจำลองการทำงาน

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 7 / 13

มีค่า End Time = 1.5 us Grid Size ให้มีค่า period 60 ns, offset 0 สัญญาณ clk Enable = '1' ตั้งแต่เวลา 60 ns ไปจนสุดกราฟ จำลองการทำงานโหมด Functional mode บันทึกผลที่ได้ลงในรูปที่ 11

จำลองการทำงานโหมด Timing mode บันทึกผลที่ได้ลงในรูปที่ 12

รูปที่ 11

รูปที่ 12

ก) จากรูปที่ 11 ให้สังเกตการเปลี่ยนแปลงค่าของเอ้าท์พุท Q เปรียบเทียบกับขอบขาขึ้น '🕇' ของ clk

เมื่อ clk '↑' ครั้งที่ 1 ค่า Q3=..... Q2=..... Q1=.... Q0=..... Q= Q₃Q₂Q₁Q₀ =......... (Hex.)

เมื่อ clk **'†'** ครั้งที่ 2 ค่า Q3=..... Q2=..... Q1=.... Q0=..... Q= Q₃Q₂Q₁Q₀ =...... (Hex.)

เมื่อ clk **'†'** ครั้งที่ 3 ค่า Q3=..... Q2=..... Q1=..... Q0=..... Q= Q₃Q₂Q₁Q₀ =...... (Hex.)

เมื่อ clk '↑' ครั้งที่ 8 ค่า Q3=..... Q2=..... Q1=.... Q0=..... Q= Q₃Q₂Q₁Q₀ =.......... (Hex.)

ข) จากรูปที่ 12 ค่าของเอ้าท์พุท (ผลลัพธ์ที่ถูกต้อง) โดย

ใช้เวลามากที่สุดเมื่อ clk= **'↑'** ครั้งที่ โดย Q เปลี่ยนจากเลข........ไปเป็นเลข.........ใช้เวลา...... ns ให้ชุมขยายภาพดูในช่วงที่ Q เปลี่ยนระหว่าง 7↔8 หรือ 0↔F เอ้าท์พุทบิตใดเปลี่ยนแปลงช้าที่สุด...... เหตุการณ์นี้เหมือนหรือแตกต่างจากวงจรนับแบบ Asynchronous Counter ในรูปที่ 7 อย่างไร...........

ลายเซ็นอาจารย์ผู้ควบคุม.....

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 8 / 13

การทดลองตอนที่ 3 วงจร Synchronous Counter ที่สามารถตั้งค่าเริ่มต้นการนับได้

- 12. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 10-11 ก่อนที่จะทำการทดลองต่อไป
- 13. ให้สร้างอุปกรณ์ 2-to-1 multiplexer เพื่อที่จะใช้ในการทดลองโดย
 - a) ให้สร้างโปรเจคขึ้นใหม่ชื่อ "mux2to1" และให้เก็บไว้ในโฟลเดอร์เดิม
 - b) ให้เปิดไฟล์ใหม่สำหรับเขียนวงจรในรูปที่ 13 ใช้ชิพ EP3C10E144C8 และคอมไพล์ให้เรียบร้อย
 - c) สร้าง symbol file เพื่อเตรียมใช้งานในขั้นตอนที่ 14 จากนั้นให้ปิดโปรเจค

วงจร multiplexer 2-to-1 (น.ศ.เคยทำมาแล้วในการทดลองที่ 4 แต่มีขนาดเล็กกว่า)

รูปที่ 13

- 14. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 13 และให้ดำเนินการดังนี้
 - a) สร้างโปรเจคขึ้นใหม่ชื่อ "Counter_Parallel_Load" ให้เก็บไว้ในโฟลเดอร์เดิม
 - b) ให้เปิดไฟล์ใหม่สำหรับเขียนวงจรทดลองในรูปที่ 14 ใช้ชิพ EP3C10E144C8 ทำการคอมไพล์ และให้สร้าง symbol ไว้เพื่อใช้ในข้อถัดไป

คำเตือน : โปรดระวังการต่อขาของอุปกรณ์ mux2to1 ในวงจรสลับขากัน

รูปที่ 14

การทดลอง

การทดลองที่ 7 Registers and Counters

หน้า 9 / 13

15. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) ค่าของการจำลองแสดงผลดังนี้

End Time = 1.0 us Grid Size = 1 ns clk = period 50 ns, offset 0

Enable = '1' ที่ช่วงเวลา t= 100ns - 1.0 us Clear = '1' ตลอดเวลา

Load = '1' ที่ช่วงเวลา t= 246-255ns และ t= 270-280 ns นอกนั้นให้เป็น '0'

Data (กลุ่มของ D3,D2,D1,D0) = "0000" ช่วง t= 0-175 ns และ "1010" ช่วง t = 175-1000 ns จำลองการทำงานโหมด Functional mode บันทึกผลที่ได้ลงในรูปที่ 15

ก) การเปลี่ยนแปลงของเอ้าท์พุท Q ในช่วงที่ Enable = '0' เมื่อ clk **'†'** ครั้งที่ 1 ค่า Carry=...... Q3=...... Q2=..... Q1=..... Q0=..... Q =.....(Hex.) เมื่อ clk '**†**' ครั้งที่ 2 ค่า Carrv=..... O3=..... O2=.... O1=.... O0=.... O = (Hex.) ข) การเปลี่ยนแปลงของเอ้าท์พุท Q ในช่วงที่ Enable = '1' เมื่อ clk '↑' ครั้งที่ 3 ค่า Carry=..... Q3=..... Q1=.... Q0=..... Q =....... (Hex.) เมื่อ clk **'1'** ครั้งที่ 4 ค่า Carry=...... Q3=...... Q2=..... Q1=..... Q0=..... O =(Hex.) เมื่อ clk '†' ครั้งที่ 5 ค่า Carry=..... Q3=..... Q2=..... Q1=.... Q0=.... O = (Hex.) ค) การเปลี่ยนแปลงของเอ้าท์พุท Q ในช่วงที่ Enable = '1' และค่าของ Load = '1' เมื่อ clk '†' ครั้งที่ 6 ค่า Carry=..... O3=..... O2=.... O1=.... O0=....

Q =.....(Hex.) ง) ในช่วงเวลา t = 246-255 ns จะมีค่า Enable = '1' และค่าของ Load = '1'

เหตุการณ์นี้ส่งผลต่อเอ้าท์พุทเหมือนกับในข้อ ค) หรือไม่ เพราะเหตุใด

16. ให้เปลี่ยนค่าสัญญาณที่ขา Clear = '0' ในช่วง t=760-780 ns เกิดผลอย่างไรต่อเอ้าท์พุท

สัญญาณ Clear เมื่อเปรียบเทียบกับขอบ '↑' ของ clk สัญญาณใดมีความสำคัญต่อเอ้าท์พุทมากกว่ากัน

ลายเซ็นอาจารย์ผู้ควบคุม...../....../....../

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 10 / 13

การทดลองตอนที่ 4 วงจรนับแบบ BCD Counter สำหรับนับเลขได้ตั้งแต่ 0 ถึง 99 (2 digits)

- 17. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 15 ก่อนที่จะทำการทดลองต่อไป
 - a) ให้สร้างโปรเจคขึ้นใหม่ชื่อ "BCD Counter2Digit" เก็บไว้ในโฟลเดอร์เดิม
 - b) ให้เปิดไฟล์ใหม่สำหรับเขียนวงจรทดลองในรูปที่ 16 ใช้ชิพ EP3C10E144C8 ทำการคอมไพล์ให้เรียบร้อย

18. สร้างไฟล์แสดงแผนภาพทางเวลา แสดงผลจำลองการทำงานดังนี้

End Time = 1.0 us Grid Size = 1 ns clk = period 25 ns, offset 0 Enable = '1' ตั้งแต่ 50 ns จนสุดกราฟ Clear = '1' เฉพาะที่เวลา t=705-720 ns ให้จัดกลุ่มสัญญาณ $AQ = AQ_3AQ_2AQ_1AQ_0$ และ $BQ = BQ_3BQ_2BQ_1BQ_0$

จำลองการทำงานโหมด Functional mode บันทึกผลที่ได้ลงในรูปที่ 17

สังเกตผลการทดลอง

ก) การเปลี่ยนแปลงของเอ้าท์พูท QB และ QA ในช่วงที่ Enable = '0'

ข) การเปลี่ยนแปลงของเอ้าท์พุท QB และ QA ในช่วงที่ Enable = '1'

เมื่อ clk **'1**' ครั้งที่ 3 ค่า QB=..... QA=.....

เมื่อ clk **'**†' ครั้งที่ 4 ค่า OB=..... OA=.....

เมื่อ clk '**†**' ครั้งที่ 5 ค่า

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 11 / 13

จากผลการทดลองในข้อ ก) และ ข) ขาควบคุมชื่อ enable มีหน้าที่อะไรในวงจร
ค) การเปลี่ยนแปลงของเอ้าท์พุท Q ในช่วงที่ Enable = '1' และค่าของ clear = '1' เมื่อ clk ขอบขาขึ้น '๋๋ ' ครั้งที่ 29 ค่า QB= QA=
จากผลการทดลองในข้อ ค) ขาควบคุมชื่อ clear มีหน้าที่อะไรในวงจร
ลายเซ็นอาจารย์ผู้ควบคุม

การทดลองตอนที่ 5 สร้างวงจรนับ Binary Counter 8 bits ลงบนบอร์ดทดลอง Cyclone3-Lab01

ขั้นเตรียมการ

เนื่องจากบอร์ดทดลอง Cyclone3-Lab01 มีสัญญาณ clock ให้มาบนบอร์ด 20 MHz (มีการเปลี่ยนแปลง สลับกันระหว่าง '1' และ '0' 20 ล้านครั้งใน 1 วินาที) หากเรานำสัญญาณนี้มาป้อนให้กับวงจร Binary Counter 8 bits โดยตรงจะทำให้เกิดการนับที่เร็วมากเกินกว่าที่สายตาของมนุษย์จะอ่านค่าของตัวเลขได้ทัน ดังนั้นเพื่อให้ สามารถสังเกตการณ์นับได้ จึงต้องลดค่าความถี่ของสัญญาณ clock นี้ให้ช้าลงเหลือประมาณ 1-16 Hz

การลดค่าความถี่ของ clock ทำได้โดยการประยุกต์ใช้วงจร asynchronous counter ในรูป ที่ 5 (ซึ่งเรา ได้สร้าง symbol file ไว้แล้วในขั้นตอนที่ 6) สาเหตุที่ใช้วงจร asynchronous counter ก็เพราะหากเราสังเกตผล การทดลองในรูปที่ 6 จะพบว่าคาบของสัญญาณ Q3 มีค่าเป็น 2 เท่าของ Q2 และเป็น 16 เท่าของ clk ที่ป้อนเข้า ไป เท่ากับว่าค่าความถี่ของ Q3 จะน้อยกว่า clk อยู่ 16 เท่า ดังนั้นหากเรานำวงจรนี้มาทำการต่อ cascade กันใน จำนวนที่มากพอ ก็จะสามารถลดความถี่ของ clock ให้มีค่าที่ต่ำลงได้ตามต้องการเช่นกัน

ขั้นที่ 1 สร้างวงจร clock divider ที่สามารถลดความถี่ clk ลงจาก 20MHz ให้เหลือ 1.2, 2.4, 4.8, 9.6 Hz

- 19. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 17- 18 ก่อนที่จะทำต่อไป
 - a) ให้สร้างโปรเจคขึ้นใหม่ใช้ชื่อ "ClockDivider" เก็บไว้ในโฟลเดอร์เดิม
 - b) เปิดไฟล์ขึ้นมาสำหรับเขียนวงจร "หารสัญญาณนาฬิกา" (clock divider) ในรูปที่ 18 โดยอุปกรณ์ที่ใช้คือ ตัว Asynchronous Counter (จากขั้นตอนที่ 6) ให้คอมไพล์และ**สร้าง symbol file** ไว้ในขั้นตอนถัดไป

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 12 / 13

ขั้นที่ 2 สร้างวงจร Binary Counter 8 bits มีขาควบคุมการนับด้วย เพื่อให้เหมาะสมกับบอร์ดทดลอง

- 20. ให้**ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 19 ก่อนที่จะดำเนินการต่อไป
 - a) ให้สร้างโปรเจคชื่อ "BinaryCounter8bit" เก็บไว้ในโฟลเดอร์เดิม
 - b) เปิดไฟล์ใหม่สำหรับเขียนวงจรในรูปที่ 19 ใช้ชิพ EP3C10E144C8 และทำการคอมไพล์วงจร

ขั้นที่ 3 นำชิ้นงาน (Designed) ที่ออกแบบมาทำ configuration ลงบอร์ดทดลอง

21. เตรียมนำชิ้นงานที่ได้จากขั้นตอนที่ 20 ลงบอร์ดทดลอง Cyclone3-Lab01 โดยทำขั้นตอนดังนี้

ข) ทีเมนู Assignment >> Pins เมื่อเลือก Pins จะปรากฏหน้าต่างรายละเอียด ของขา input และ output ขาต่างๆ ขึ้นมาดัง รูปที่ 21

22. ใช้เม้าส์ดับเบิลคลิ๊กที่ช่อง Location ของขาที่ต้องการ จะปรากฏขาของชิฟ Cyclone III ขึ้นมาให้เลือก ให้กำหนดขาอุปกรณ์ทั้งหมดตามรูปที่ 22 **จากนั้นปิดหน้าต่าง Pins Assignment และทำการคอมไพล์วงจรซ้ำ**

รูปที่ 21

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 13 / 13

×	Filter: Pins: all								
	Node Name	Direction	Location	I/O Bank	Vref Group	I/O Standard	Re		
<u> </u>	clk	Input	PIN_22	1	B1_N0	3.3-V LVTTL (default)			
•	F_LCD_E	Output	PIN_54	4	B4_N0	3.3-V LVTTL (default)			
•	Q0	Output	PIN_38	3	B3_N0	3.3-V LVTTL (default)			
• 🗇	Q1	Output	PIN_39	3	B3_N0	3.3-V LVTTL (default)			
•	Q2	Output	PIN_42	3	B3_N0	3.3-V LVTTL (default)			
•	Q3	Output	PIN_43	3	B3_N0	3.3-V LVTTL (default)			
•	Q4	Output	PIN_44	3	B3_N0	3.3-V LVTTL (default)			
•	Q5	Output	PIN_46	3	B3_N0	3.3-V LVTTL (default)			
•	Q6	Output	PIN_49	3	B3_N0	3.3-V LVTTL (default)			
•	Q7	Output	PIN_50	3	B3_N0	3.3-V LVTTL (default)			
₽	SW7	Input	PIN_33	2	B2_N0	3.3-V LVTTL (default)			

รูปที่ 22

หมายเหตุ การต่อพอร์ทอุปกรณ์ สามารถดูรายละเอียดของการต่อขาพอร์ทต่างๆ ได้จากคู่มือบอร์ด ชื่อเอกสารคือ 4.WARRIOR CYCLONE3 Education Board User's Mamual.pdf วงจรหลอด LED ในรูปที่ 12 (หน้า16), ตารางที่ 3 (หน้า17) วงจรสวิทซ์เลื่อน F_SL_SW7 ในรูปที่ 16 (หน้า19), ตารางที่ 7 (หน้า20) วงจรสัญญาณนาฬิกา clk, clock ในหน้าที่ 31 ข้อที่ 9

23. นำบอร์ดทดลอง Cyclone3-Lab01 มาต่อแหล่งจ่ายไฟ 12 โวลท์ เปิดสวิทซ์ จากนั้นต่อสายสำหรับโหลดโปร แกรมจากคอมพิวเตอร์ลงในบอร์ด

ใช้สาย Byte Blaster สำหรับเครื่องคอมพิวเตอร์ PC ใช้สาย USB Blaster สำหรับเครื่องคอมพิวเตอร์โน๊ัตบค

24. ดาวน์โหลดลงบอร์ดโดยไปที่เมนู TOOLS >> Programmer จะปรากฏหน้าต่างดังรูปที่ 23 เมื่อกดปุ่ม Start ข้อมูลของวงจร ที่ออกแบบไว้จะถูกโหลดลงบอร์ดทันที

	🖺 Quartus II	- C:/altera/80/	quartus/LabD	igit/				
	File Edit Proces	ssing Tools Window						
All Hardware Setup USB-Blaster [USB-0]								
☐ Enable real-time ISP to allow background programming (for MAX II de								
	№ Start	File	Device	Check				
7	∎‰ Stop	BinaryCounter8bit.sof	EP3C10E144	00095				
	Auto Detect	₅ ,	ปที่ 23					

ผลการทดลอง หลอด LED ทั้ง 8 ดวงที่แทนค่าแต่ละบิตของ $Q_7...Q_0$ บนบอร์ดทดลอง (LED ดับ แสดงสถานะเป็นลอจิก '0')

- ก) ปรับ**สวิทซ์เลื่อน SW7** ไปที่ตำแหน่ง high สังเกตการณ์ติด/ดับของ LED (เสมือนเป็นเลขฐานสอง) ค่าเริ่มนับจากค่าต่ำสุดคือ Q₇...Q₀=.......(เขียนเป็นเลขไบนารี)
- ข) รอเวลาประมาณสิบวิ่นาทีจึงปรับสวิทซ์เลื่อน SW7 ไปที่ตำแหน่ง low ค่า Q₇...Q₀ = เกิดอะไรขึ้นกับ LED ปรับสวิทซ์กลับไปที่ตำแหน่ง high อีกครั้ง เกิดอะไรขึ้นกับ LED การทำงาน low หรือ high ของ SW7 ส่งผลอย่างไรต่อการนับ
- ค) ถ้าจะให้การปรับสวิทซ์เลื่อน SW7 โดยที่ค่าของ Q₇...Q₀ ยังคงค้างไว้เช่นเดิมแต่ LED ไม่ดับ จะต้องดัดแปลงวง จรอย่างไร (**ทำให้**ด)
- ง) ถ้าต้องการให้วงจรนับนี้ เพิ่มขาควบคุมที่สามารถเคลียร์ค่าให้ Q₇...Q₀ เป็นศูนย์ได้ ต้องดัดแปลงวงจรอย่างไร บ้าง (**ทำให้ดู**)

ಡ ೯೪			
2001 80 12222 80 120 120 120 120 120 120 120 120 120 12		/	/
ลายเซนอาจารยผควบคม	/	· /	,
01 10 0 0 20 1 0 1 0 0 2 2 1 1 0 0 1 2 0 0 1 1 1 1	,	,	

งานมอบหมายท้ายการทดลอง (ให้เขียนลงบนกระดาษ A4 ที่มีเส้นบรรทัดและรวมใส่ท้ายเอกสารการทดลอง)

1. ให้ออกแบบวงจรนับเลขฐานสิบขนาด 4 หลัก (Digit) ที่เริ่มนับจาก 0 ไปจนถึงเลข ที่ตรงกับเลขท้ายสี่ตัวของรหัสนักศึกษา แล้วให้หยุดนับค้างไว้ เช่นรหัส 560101163101-1 จะเริ่มนับจาก 0 ไปหยุดค้างที่ 1011 โดย น.ศ.ต้องส่งให้ตรวจก่อนเข้าเรียน ครั้งต่อไป (การทดลองครั้งต่อไปจะเริ่มจากงานที่แต่ละคนออกแบบมาเท่านั้น หากไม่มีส่งจะถือว่าไม่ได้เข้าเรียนในคาบนั้นด้วย)

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโบโลยีพระจอมเกล้าพระนครเหนือ