Introduction to Audio Content Analysis

Module 3.7.1: Feature Post-Processing

alexander lerch

introduction overview

corresponding textbook section

Section 3.7.1-3.7.3

■ lecture content

- derived features
- feature aggregation
- feature normalization

learning objectives

- discuss the advantages of specific derived features
- summarize the principles of feature aggregation
- list two forms of feature normalization and explain their usefulness

introduction overview

corresponding textbook section

Section 3.7.1-3.7.3

lecture content

- derived features
- feature aggregation
- feature normalization

■ learning objectives

- discuss the advantages of specific derived features
- summarize the principles of feature aggregation
- list two forms of feature normalization and explain their usefulness

feature post-processing

- extracting multiple instantaneous features leads to
 - \rightarrow one feature vector per block, or
 - \rightarrow one feature matrix per audio file

$$m{V} = egin{bmatrix} m{v}(0) & m{v}(1) & \dots & m{v}(\mathcal{N}-1) \end{bmatrix} \ &= egin{bmatrix} v_0(0) & v_0(1) & \dots & v_0(\mathcal{N}-1) \ v_1(0) & v_1(1) & \dots & v_1(\mathcal{N}-1) \ dots & dots & \ddots & dots \ v_{\mathcal{F}-1}(0) & v_{\mathcal{F}-1}(1) & \dots & v_{\mathcal{F}-1}(\mathcal{N}-1) \end{bmatrix}$$

dimensions: $\mathcal{F} \times \mathcal{N}$ (number of features and number of blocks, resp.)

feature post-processing introduction 2/2

Georgia Center for Music Tech Technology

multiple options for feature matrix processing:

- derive additional features
- 2 aggregate existing features (e.g., one feature vector per file)
- 3 ensure similar scale and distribution

feature post-processing examples of derived features

■ diff: use the change in value

$$v_{j,\Delta}(n) = v_j(n) - v_j(n-1)$$

- smoothed: remove high frequency content by low-pass filtering
 - (anticausal) single-pole

$$v_{j,\text{LP}}(n) = (1-\alpha) \cdot v_j(n) - \alpha \cdot v_{j,\text{LP}}(n-1)$$

moving average

feature post-processing examples of derived features

■ diff: use the change in value

$$v_{j,\Delta}(n) = v_j(n) - v_j(n-1)$$

- smoothed: remove high frequency content by low-pass filtering
 - (anticausal) single-pole

$$v_{j,\text{LP}}(n) = (1 - \alpha) \cdot v_j(n) - \alpha \cdot v_{j,\text{LP}}(n-1)$$

moving average

feature post-processing feature normalization

reasons

- features have different ranges and distributions
- ensure that one feature does not have outsized impact
- **■** z-score normalization

$$v_{j,N}(n) = \frac{v_j(n) - \mu_{v_j}}{\sigma_{v_j}}.$$

■ min-max normalization

$$v_{j,N}(n) = \frac{v_j(n) - \min(v_j)}{\max(v_j) - \min(v_j)}.$$

Τ

he normalization constants μ_{v_j} , σ_{v_j} , $\max(v_j)$, $\min(v_j)$ have to be estimated from the *Training Set*. The same (training) constants are then applied during inference.

feature aggregation: 1 compute summary features from feature series \Rightarrow subfeatures

reasons

- only one feature vector required per file
- data reduction
- characteristics of distribution or change over time contain additional info

examples

- statistical descriptors
 - mean, median, max, standard deviation
- hand crafted
 - ▶ anything that might be meaningful periodicity, slope, . . .

¹also compare *pooling* operation in machine learning

feature post-processing feature aggregation

- could be for whole file or texture window: split feature series in overlapping blocks of a few seconds length
- could be hierarchical process:
 - 1 compute subfeatures per window
 - 2 compute subfeatures of subfeature series
 - 3 (go to 1.)

feature post-processing

- could be for whole file or texture window: split feature series in overlapping blocks of a few seconds length
- could be **hierarchical** process:
 - 1 compute subfeatures per window
 - 2 compute subfeatures of subfeature series
 - **3** (go to 1.)

summary lecture content

- feature matrix should be processed to adapt to task and classifier
 - derive additional features
 - aggregate features
 - normalize features
- derived features
 - take existing features and "create" new ones
- aggregate features: subfeatures
 - combine blocks of features by computing, e.g., statistical features from them (mean, standard deviation, ...)
 - subfeature vector is used as classifier input or as intermediate feature series

■ feature normalization

- avoid different value ranges might impacting classifier
- handle different feature distributions

