

Presentación del equipo

Jacobo
Zuluaga
Implementación
del algoritmo

Santiago
Henao
Implementación
del algoritmo

Facundo
Villa
Implementación
del algoritmo

Andrea
Serna
Revisión de
la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

Tres caminos que reducen tanto el riesgo de acoso como la distancia

Algoritmo de solución

Explicación del algoritmo

Dijkstra

Busca el camino con menos peso entre aristas que llegue desde el origen al destino, este peso entre aristas en nuestro caso es la distancia*acoso con el fin de encontrar la ruta más segura y más corta

Complejidad del algoritmo

	Complejidad temporal	Complejida d de la memoria
Dijkstra	O(LogV (V+E))	O(V)

La complejidad en tiempo y memoria Dijkstra. V son los vértices y E son las aristas de la misma.

Primer camino que minimiza d = distancia * riesgo

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	9700.925m	0.375

Distancia y riesgo de acoso para el camino que minimiza d = distancia * riesgo. Tiempo de ejecución de 0.103 segundos.

Segundo camino que minimiza d = distancia

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	7474.98m	0.342

Distancia y riesgo de acoso para el camino que minimiza d = distancia. Tiempo de ejecución de 0.070 segundos.

Tercer camino que minimiza d = Riesgo

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	10128.88m	0.153

Distancia y riesgo de acoso para el camino que minimiza d = Riesgo. Tiempo de ejecución de 0.047 segundos.

Comparación visual de los tres caminos

Direcciones de trabajo futuras

Bases de datos

• •Oŧras• • variables

desde bases de datos podremos tener en cuenta más variables como, tránsito, accidentes, entre otros, para obtener un resultado más completo, con una base de datos aún mayor

Proyecto 1

Aplicación web

podemos hacer la implementación del proyecto en una aplicación web para que el usuario pueda calcular sus rutas según sus requisitos, optimizando el código para un resultado rápido

Ing. Software

•Aplicación• móvil

con el uso de una aplicación móvil, la cual tenga en cuenta la ubicación actual del usuario, generar indicaciones en camino para que a la medida de que el usuario se vaya movilizando la aplicación le vaya quiando

Proyecto 2

Incluir ML o VR

se puede implementar Machine Learning para que a medida de que los usuarios utilicen la aplicación se pueda dar cuenta de nuevas calles, desvíos, cambios de señalización, etc, y no depender únicamente de la base de datos inicial

