

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Minimization through Karnaugh maps

Instructor: Debanjan Bhowmik

Textbook: Moris Mano's 'Digital Design'

Chapter 3 (Gate-Level Minimization)

Multiple Expressions for One Truth Table

It is useful if the same logic can be implemented using lesser number of logic gates and logic levels.

Note: There is more than one way to implement the same logic

Simplification is not Simple

$$S = (x \oplus y) \oplus z$$

$$C = xy + yz + xz = xy + (x + y)z$$

= $xy + (x(y + y') + (x + x')y)z = xy + (xy + x \oplus y)z$
= $xy + xyz + (x \oplus y)z = xy + (x \oplus y)z$

Karnaugh Map

• Karnaugh Map: A graphical and systematic way to obtain simplest expression for a truth table

Some definitions:

$$C(x, y, z) = \begin{vmatrix} x'yz + xy'z \\ +xyz' + xyz \end{vmatrix}$$
$$= \boxed{xy + yz + xz}$$

Sum of Products (SOP) representation Derived from entries where the Output is 1 (TRUE)

$$C(x,y,z) = (x'+y+z)(x+y'+z)...$$

$$(x+y+z')(x+y+z)$$

$$= (x+y)(y+z)(x+z)$$

Product of Sums (POS) representation
Derived from entries where the Output is 0 (FALSE)

Some definitions:

$$C(x, y, z) = \begin{bmatrix} x'yz + xy'z \\ +xyz' + xyz \end{bmatrix}$$
$$= xy + yz + xz$$

$$C(x,y,z) = (x'+y+z)(x+y'+z)...$$
$$(x+y+z')(x+y+z)$$
$$= (x+y)(y+z)(x+z)$$

Canonical Sum of Products (SOP) representation. All inputs present in all terms

Canonical Product of Sums (POS) representation. All inputs present in all terms

Some definitions:

$$C(x, y, z) = x'yz + xy'z +xyz' + xyz = xy + yz + xz$$

Minimal Sum of Products (SOP) representation. Cannot have a shorter SOP form.

$$C(x,y,z) = (x'+y+z)(x+y'+z)...$$
$$(x+y+z')(x+y+z)$$
$$= (x+y)(y+z)(x+z)$$

Minimal Product of Sums (POS) representation. Cannot have a shorter POS form.

Some definitions:

$$C(x, y, z) = x'yz + xy'z$$

$$+xyz' + xyz$$

$$= xy + yz + xz$$

$$C(x, y, z) = (x' + y + z)(x + y' + z)...$$

$$(x + y + z')(x + y + z)$$

$$= (x + y)(y + z)(x + z)$$

Minterm: Each of the terms in a canonical SOP form

Maxterm: Each of the terms in a canonical POS form

Some definitions:

$$C(x,y,z) = x'yz + xy'z$$

$$+xyz' + xyz$$

$$= xy + yz + xz$$

$$= m_3 + m_5 + m_6 + m_7$$

If the inputs are ordered, then minterms can be indexed.

$$xy'z \to m_{101_2} \to m_5$$
 $(x+y'+z) \to M_{010_2} \to M_2$ $(x=1,y=0,z=1) \implies (C=1)$ $(x=0,y=1,z=0) \implies (C=0)$

$$C(x, y, z) = (x' + y + z)(x + y' + z)...$$
$$(x + y + z')(x + y + z)$$
$$= (x + y)(y + z)(x + z)$$
$$= M_4 M_2 M_1 M_0$$

If inputs are ordered, then maxterms can be indexed.

$$(x + y' + z) \to M_{010_2} \to M_2$$

 $(x = 0, y = 1, z = 0) \Longrightarrow (C = 0)$

Some definitions:

$$C(x,y,z) = x'yz + xy'z$$

$$+xyz' + xyz$$

$$= xy + yz + xz$$

$$= m_3 + m_5 + m_6 + m_7$$

If the inputs are ordered, then minterms can be indexed.

$$C(x, y, z) = \sum m(3, 5, 6, 7)$$

$$C(x, y, z) = (x' + y + z)(x + y' + z)...$$
$$(x + y + z')(x + y + z)$$
$$= (x + y)(y + z)(x + z)$$
$$= M_4 M_2 M_1 M_0$$

If inputs are ordered, then maxterms can be indexed.

$$C(x, y, z) = \prod M(0, 1, 2, 4)$$

Karnaugh Map

- Karnaugh Map: A graphical and systematic way to obtain simplest expression for a truth table (K-Map)
- The map is made up of squares, with each square representing one minterm of the function
- This produces a circuit diagram with a minimum number of gates and the minimum number of inputs to the gate
- It is sometimes possible to find two or more expressions that satisfy the minimization criteria

Two Variable Map

 Two-variable has four minterms, and consists of four squares.

•
$$m_1 + m_2 + m_3 = x'y + xy' + xy = x + y$$

• |

m_0	m_1
m_2	m_3

x^{y}	0 -	$\frac{y}{1}$		
0		1		
$x \begin{cases} 1 \end{cases}$	1	1		
· ·	(b)	x + y		

Three Variable Map

- Note that the minterms are not arranged in a binary sequence.
- For simplifying Boolean functions, we must recognize the basic property possessed by adjacent squares.

Simplification

- A larger number of adjacent squares are combined, we obtain a product term with fewer literals.
 - 1 square = 1 term with three literals
 - 2 adjacent squares = 1 term with two literals
 - 4 adjacent squares = 1 term with one literal
 - 8 adjacent squares encompass the entire map and produce a function that is always equal to 1
- The number of adjacent squares is combined in a power of two such as 1, 2, 4, and 8.

Example 1

$$F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$$

Example 2

Design the minimal product-of-sums expression for the function

$$f(x_1, x_2, x_3) = \sum m(0, 2, 4, 5, 6, 7)$$

$$f(x_1, x_2, x_3) = \sum m(0, 2, 4, 5, 6, 7)$$

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$egin{array}{c} m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_2 = \overline{x}_1 x_2 \overline{x}_3 \ m_3 = \overline{x}_1 x_2 \overline{x}_3 \ m_4 = x_1 \overline{x}_2 \overline{x}_3 \ m_5 = x_1 \overline{x}_2 \overline{x}_3 \ m_6 = x_1 \overline{x}_2 \overline{x}_3 \ m_7 = x_1 x_2 \overline{x}_3 \ \end{array}$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + \overline{x_3}$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

$$f(x_1, x_2, x_3) = \sum m(0, 2, 4, 5, 6, 7)$$

Row number	x_1	x_2	x_3	Minterm	Maxterm
0	0	0	0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$	$M_0 = x_1 + x_2 + x_3$
1	0	0	1 [$m_1 = \overline{x}_1 \overline{x}_2 x_3$	$M_1 = x_1 + x_2 + \overline{x}_3$
2	0	1	0	$m_2 = \overline{x}_1 x_2 \overline{x}_3$	$M_2 = x_1 + \overline{x}_2 + x_3$
3	0	1	1	$m_3 = \overline{x}_1 x_2 x_3$	$M_3 = x_1 + \overline{x}_2 + \overline{x}_3$
4	1	0	0	$m_4 = x_1 \overline{x}_2 \overline{x}_3$	$M_4 = \overline{x}_1 + x_2 + x_3$
5	1	0	1	$m_5 = x_1 \overline{x}_2 x_3$	$M_5 = \overline{x}_1 + x_2 + \overline{x}_3$
6	1	1	0	$m_6 = x_1 x_2 \overline{x}_3$	$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

The function is 1 for these rows

$$f(x_1, x_2, x_3) = \sum m(0, 2, 4, 5, 6, 7) = \prod M(1, 3)$$

Row number	x_1	x_2	x_3	Minterm	Maxterm
0	0	0	0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$	$M_0 = x_1 + x_2 + x_3$
1	0	0	1	$m_1 = \overline{x}_1 \overline{x}_2 x_3$	$M_1 = x_1 + x_2 + \overline{x}_3$
2	0	1	0	$m_2 = \overline{x}_1 x_2 \overline{x}_3$	$M_2 = x_1 + \overline{x}_2 + x_3$
3	0	1	1	$m_3 = \overline{x}_1 x_2 x_3$	$M_3 = x_1 + \overline{x}_2 + \overline{x}_3$
4	1	0	0	$m_4 = x_1 \overline{x}_2 \overline{x}_3$	$M_4 = \overline{x}_1 + x_2 + x_3$
5	1	0	1	$m_5 = x_1 \overline{x}_2 x_3$	$M_5 = \overline{x}_1 + x_2 + \overline{x}_3$
6	1	1	0	$m_6=x_1x_2\overline{x}_3$	$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

The function is 1 for these rows

The function is 0 for these rows

$$f(x_1, x_2, x_3) = \sum m(0, 2, 4, 5, 6, 7) = \prod M(1, 3)$$

Row number	x_1	x_2	x_3	Minterm	Maxterm
0 1 2 3 4 5	0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$
$\frac{6}{7}$	1	1	0	$m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

$$f(x_1, x_2, x_3) = \prod M(1,3) = (x_1 + x_2 + \bar{x}_3).(x_1 + \bar{x}_2 + \bar{x}_3)$$

The K-Map

The K-Map

The K-Map - Solution

F = 0 when x1=0 AND x3=1

F = 1 when x1=1 OR x3=0 (De Morgan's theorems)

4 Variable Map

1 square = 1 term with 4 literals

2 adjacent squares = 1 term with 3 literals

4 adjacent squares = 1 term with 2 literals

8 adjacent squares = 1 term with 1 literal

16 adjacent squares = 1

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	<i>m</i> 9	m_{11}	m_{10}

		yz		3	V	
1	wx\	0.0	01	11	10	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	$\left. \right _{x}$
141	11	wxy'z'	wxy'z	wxyz	wxyz'	
W	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	
					,	

4 Variable Map Example

$$F = \sum m(0, 1, 2, 6, 8, 9, 10)$$

4 Variable Map Example = $\sum m(0, 1, 2, 6, 8, 9, 10)$

Prime Implicant

- A prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.
- This shows all possible ways that the three minterms (m_3, m_9, m_{11}) can be covered with prime implicants.

```
F = BD+B'D'+CD+AD

= BD+B'D'+CD+AB'

= BD+B'D'+B'C+AD

= BD+B'D'+B'C+AB'
```


Note: A Prime implicant is never completely covered by another prime implicant.

Essential Prime Implicant

• If a minterm in a square is covered by only one prime implicant, then the prime implicant is said to be essential.

• F = BD + B'D'

