Sistemas Operacionais 1

Escalonamento – parte 1

Prof. Leandro Marzulo

Características de processos

:

load store add store read from file

wait for I/O

store increment index write to file

wait for I/O

load store add store read from file

wait for I/O

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

Escalonadores

- De longo prazo (de jobs) spool de processos a serem carregados em memória
- De curto prazo (de CPU)
- De médio prazo Sistemas de tempo real remover processos da memória – reduzir grau de multiprogramação

Situações onde são necessárias decisões de escalonamento

- 1. Quando um processo passa do estado de execução para o estado de espera.
- 2. Quando um processo passa do estado de execução para o estado de pronto.
- 3. Quando um processo passa do estado de espera para o estado de pronto.
- 4. Quando um processador termina.

Preempção

- Sem preempção, o processo usa o processador até terminar ou até fazer entrada e saída
- 1 e 4 (no slide anterior) ocorrem sem PREMPÇÃO cooperativo.
- Preempção aumenta os custos de acesso a dados compartilhados (inconsistência).
- Afeta o projeto do kernel preempção durante chamadas de sistema – não fazer troca de contexto durante chamadas de sistemas.
- Desabilitar interrupções em certas seções de código.

Despachante

- Dá o controle do CPU ao processo selecionado pelo escalonador; isto envolve:
 - Troca de contexto
 - Mudança para o modo usuário
 - Desvio para a instrução correta no processo
- Deve ser o mais rápido possível (baixa latência de despacho)

Critérios de Escalonamento (Orientado ao Usuário e Desempenho)

- Uso do processador
 - Mede a percentagem de tempo em que a CPU está ocupada
 - Importante em tempo compartilhado
 - Não muito importante em sistemas monousuário e tempo-real
- Tempo de resposta
 - processos interativos
 - tempo entre uma requisição e o início da resposta do ponto de vista do usuário (o sistema "dá uma satisfação")
 - qual seria o tempo de resposta ideal?
- Deadlines (prazos)
 - quando o prazo de termino pode ser especificado
 - o sistema deveria fazer o melhor esforço para atender todos os prazos
- previsibilidade
 - um dado processo deveria executar sempre em um tempo médio previsível
 - a carga do sistema não deveria impor variações

Critérios de Escalonamento (Orientado ao Sistema e Desempenho)

- Throughput (vazão)
 - número de processos completados por unidade de tempo
 - depende do tamanho dos processos
 - depende das políticas de escalonamento
- Turnaround
 - intervalo de tempo entre a submissão de um processo e o seu término
 - inclui o tempo de execução, espera por recursos
 - medida para sistemas batch
- Waiting time
 - tempo que o processo aguardou na fila de prontos

Critérios de Escalonamento (Orientado ao Sistema)

- justiça
 - processos deveriam ser tratados igualmente a menos que especificado o contrário
 - processos não deveriam sofrer inanição
- impondo prioridades
 - processos mais prioritários deveriam efetivamente ser favorecidos
 - problema da inversão de prioridade
- balanceamento de recursos
 - recursos deveriam ficar ocupados o máximo possível
 - processos que não vão utilizar recursos sobrecarregados deveriam ser favorecidos

Critérios de Otimização

- Max utilização de CPU
- Max throughput
- Min tempo de turnaround
- Min waiting time
- Min tempo de resposta

Fisrt-Come, First Served (FCFS)

- FIFO
- Simples
- Tempo médio de espera é alto

Tempo médio de espera
$$\frac{O+2427}{3}$$
 $\frac{7}{3}$

Shortest Job First (SJF)

- Pico de CPU (ou tempo de turnaround) menor executa primeiro
- FCFS para desempatar
- Minimiza médio de espera

Tempo médio de espera
$$\frac{O+3+6}{3}$$
=3

Shortest Job First (SJF)

- Como saber a duração do pico de CPU?
- Previsão

Preempção – Tempo-restante mais curto primeiro

Tempo-restante mais curto primeiro

Processo:

A

B

C

Duração de Pico de CPU:

24

3

3

Tempo de Espera:

3+3=6

0

0

PREEMPÇÃO!!!

Tempo médio de espera
$$\frac{O+O+6}{3}$$
 = 2

Prioridade

- SJF é um caso especial do algoritmo de escalonamento por prioridades
- Cada processo tem uma prioridade associada
 - Número inteiro com intervalo fixo
 - Quanto menor o número, maior a prioridade (depende do SO)
 - Prioridade interna ou externa (ou ambos)
- Preempção
- Inanição Envelhecimento (Aging)

Prioridade

Processo: A

Duração de Pico de CPU: 24

Prioridade: 1

3 0 C 3 2

16

Prioridade – com preempção

Processo: A

Duração de Pico de CPU: 24

Prioridade: 1

3 0 **C**3
0

PREEMPÇÃO!!!

Prioridade - Aging

Processo: A

Duração de Pico de CPU: 9

Prioridade: 1

18