Assignment 9

Jarpula Bhanu Prasad - Al21BTECH11015

May 26, 2022

Papoulis chap 5 Ex 5.1

TABLE OF CONTENTS

- Question
- Solution
- Graph
- Codes

Problem

Q)The distribution of x^2 .

Solution

Let $y = x^2$

- If $y \ge 0$, then $x^2 \le y$ for $-\sqrt{y} \le x \le \sqrt{y}$ (see fig(1)) . Hence $F_y(y) = P(-\sqrt{y} \le x \le \sqrt{y}) = F_x(\sqrt{y}) F_x(-\sqrt{y})$, y > 0
- If y < 0, then there are no values of x such that $x^2 < y$. Hence $F_y(y) = P(\phi) = 0$, y < 0
- By direct differentiation of $F_y(y)$, we get

$$f_{y}(y) = \begin{cases} \frac{f_{x}(\sqrt{y}) + f_{x}(-\sqrt{y})}{2\sqrt{y}} & y > 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

• If $f_x(x)$ represents an even function, then eqn(1) reduces to

$$f_{y}(y) = \frac{f_{x}(\sqrt{y})U(y)}{\sqrt{y}}$$
 (2)

• In particular if $x \sim N(0,1)$, so that

$$f_{x}(x) = \frac{e^{\frac{-x^2}{2}}}{\sqrt{2\pi}} \tag{3}$$

and substituting this into eqn(2), we obtain the p.d.f of $y = x^2$ to be

$$f_{y}(y) = \frac{e^{\frac{-y}{2}}U(y)}{\sqrt{2\pi y}} \tag{4}$$

On comparing this with **CHI-SQUARE DISTRIBUTION**, we notice that eqn(4) represent a chi-square random varaible with n=1, since $\Gamma(\frac{1}{2})=\sqrt{\pi}$. Thus, if x is a Guassian random varaible with $\mu=0$, then $y=x^2$ represents a chi-square random varaible with one degree of freedom.

$$y = x^2$$

Figure: $y = x^2$

CODES

Python

Download python code from - Python

Beamer

Download Beamer code from - Beamer

