

Capstone Project - 3 Credit Card Default Prediction ML Supervised Classification

Individual Project: Soumya Ranjan Mishra

Contents

- Problem Statement
- Data Summary
- Data Analysis
- Analysis Details
- Outlier Treatment
- Feature Selection
- Data Preparation
- Implementing Various Classification Algorithms
- Challenges
- Conclusions

Problem Statements

- Predict that customers will default on their credit card payments or not.
- Create K-S Chart to evaluate which customers will default on their credit card payments.

Data Summary

- Dependent Variable: default payment (Yes = 1, No = 0), as the response variable.
- X1: Amount of the given credit (NT dollar): it includes both the individual consumer credit and his/her family (supplementary) credit.
- X2: Gender (1 = male; 2 = female).
- X3: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).
- X4: Marital status (1 = married; 2 = single; 3 = others).
- X5: Age (year).
- X6 X11: History of past payment. We tracked the past monthly payment records (from April to September, 2005) as follows: X6 = the repayment status in September, 2005; X7 = the repayment status in August, 2005; . . .;X11 = the repayment status in April, 2005. The measurement scale for the repayment status is: -1 = pay duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above.
- X12-X17: Amount of bill statement (NT dollar). X12 = amount of bill statement in September, 2005; X13 = amount of bill statement in August, 2005; . . .; X17 = amount of bill statement in April, 2005.
- X18-X23: Amount of previous payment (NT dollar). X18 = amount paid in September, 2005;
 X19 = amount paid in August, 2005; . . .; X23 = amount paid in April, 2005.

Basic Data Exploration

- The dataset has 30000 rows and 25 features(columns).
- No categorical features as encoding done before.
- Outliers present
- No Missing Values.
- No Duplicated values.
- No null values.

6636 as 22.12% of the whole dataset.

Outliers in the features

Mean Distribution of Various Features

Distribution of Gender, Education, Marital Status

Distribution of PAY_X

 $PAY_april = -1$

Correlation Matrix

Analysis Details

- Defaults have a higher proportion of Lower LIMIT_BAL values
- NonDefaults have a higher proportion of Females (Sex=2)
- NonDefaults have a higher proportion of More Educated (EDUCATION=1 or 2).
- NonDefaults have a higher proportion of Singles (MARRIAGE=2)
- NonDefaults have a higher proportion of people 30-40years
- NonDefaults have a MUCH higher proportion of zero or negative PAY_X variables (this means that being current or ahead of payments is associated with not defaulting in the following month).

Outlier Treatment

• For Skewed Features using IQR

• For Quite Symmetric Features using Standard Deviation.

Feature Selection

• Dropping Constant Feature Using Variance Threshold

Feature Selection with Pearson Correlation

Data Preparation

Handling Imbalance set by Synthetic Minority Oversampling
 Technique (SMOTE)

• Train Test Split (test_size=0.3, random_state=0)

Train Set Metrics

[[9321 [5002 1	-				
	precision	recall	f1-score	support	
0	0.50	0.65	0.56	14323	
1	0.73	0.59	0.65	23059	
accuracy			0.61	37382	
macro avg	0.61	0.62	0.61	37382	
weighted avg	0.64	0.61	0.62	37382	

roc_auc_score 0.6528013916798787

Test Set Metrics

[[2274	2339]
[1266	3467]]

	precision	recall	f1-score	support
0 1	0.49 0.73	0.64 0.60	0.56 0.66	3540 5806
accuracy macro avg weighted avg	0.61 0.64	0.62 0.61	0.61 0.61 0.62	9346 9346 9346

roc_auc_score 0.6518238469268705

Logistic Regression Model

Happy

Decision Tree

Train Set Metrics

[[17884,	4816]. 13815]		precision	recall	f1-score	support
[00.,		0	0.95	0.79	0.86	22529
		1	0.75	0.94	0.83	14853
	accu macro	avg	0.85	0.86	0.85 0.85	37382 37382
	weighted	avg	0.87	0.85	0.85	37382

roc_auc_score 0.8489597682158649

Test Set Metrics

[[4351, 262,	1214], 3519]		precision	recall	f1-score	support
		0	0.94	0.78	0.85	5531
		1	0.75	0.93	0.83	3815
	accura	асу			0.84	9346
	macro a	avg	0.84	0.86	0.84	9346
	weighted a	avg	0.86	0.84	0.84	9346

roc_auc_score 0.8433068085952445

Hyper parameter

(ccp_alpha=0.0, class_weight=None, criterion='entropy'
max_depth=8, max_features=14, max_leaf_nodes=100,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort='deprecated',
random_state=0, splitter='best')

Random Forest

Train Set Metrics

			precision	recall	f1-score	support
[[18746,	5]. 18622]	0 1	1.00 1.00	1.00	1.00 1.00	18755 18627
[5,		accuracy macro avg weighted avg	1.00 1.00	1.00	1.00 1.00 1.00	37382 37382 37382
		roc_auc_score 0.999997933304	10048			

Test Set Metrics

[[4265,	348],		precision		f1-score	support
F 786	3947]]	0	0.92 0.83	0.84	0.88 0.87	5051 4295
[/00,	2247]]	1	0.03	0.92	0.07	4295
		accuracy			0.88	9346
		macro avg	0.88	0.88	0.88	9346
		weighted avg	0.88	0.88	0.88	9346

roc_auc_score 0.938280300727388

Hyper parameter

```
{'max_depth': 8,
  'min_samples_leaf': 40,
  'min_samples_split': 100,
  'n_estimators': 100}
```

Feature Importance

Gradient Boosting Machine

Train Set Metrics

[[17976,	775],
[3167,	15464]]

	precision	recall	f1-score	support
0 1	0.96 0.83	0.85 0.95	0.90 0.89	21143 16239
accuracy macro avg weighted avg	0.89 0.90	0.90 0.89	0.89 0.89 0.90	37382 37382 37382

roc_auc_score 0.9666025991862295

Test Set Metrics

[[4320,	293],
[891,	3842]]

support	f1-score	recall	precision	
5211	0.88	0.83	0.94	0
4135	0.87	0.93	0.81	1
9346	0.87			accuracy
9346	0.87	0.88	0.87	macro avg
9346	0.87	0.87	0.88	weighted avg

roc_auc_score 0.9328971775215772

Hyper parameter

```
max_depth=8,
min_samples_leaf= 40,
min_samples_split=80,
n_estimators=80
```

Feature Importance

XGBoost

Train Set Metrics

[[17716,	1035],
[3727,	14904]]

	precision	recall	T1-Score	Support
0 1	0.94 0.80	0.83 0.94	0.88 0.86	21443 15939
accuracy macro avg weighted avg	0.87 0.88	0.88 0.87	0.87 0.87 0.87	37382 37382 37382

roc_auc_score 0.9311800896248195

Test Set Metrics

([[4329,	284],
[955,	3778]]

	precision	recall	f1-score	support
0 1	0.94 0.80	0.82 0.93	0.87 0.86	5284 4062
accuracy macro avg weighted avg	0.87 0.88	0.87 0.87	0.87 0.87 0.87	9346 9346 9346

roc_auc_score 0.9252521225691237

Hyper parameter

```
{'max_depth': 8,
  'min_samples_leaf': 40,
  'min_samples_split': 50,
  'n_estimators': 100}
```

Feature Importance

K-Nearest Neighbour

Train Set Metrics

Test Set Metrics

[[15034,	3717]		precision	recall	f1-score	support
F 698	17933]	0	0.80	0.96	0.87	15732
[050,	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	0.96	0.83	0.89	21650
		accuracy macro avg weighted avg	0.88 0.89	0.89 0.88	0.88 0.88 0.88	37382 37382 37382

[[3050, 3	1563].		precision	recall	f1-score	support
	4206]]	0 1	0.66 0.89	0.85 0.73	0.74 0.80	3577 5769
		accuracy macro avg weighted avg	0.77 0.80	0.79 0.78	0.78 0.77 0.78	9346 9346 9346

roc_auc_score 0.9737362197641626 roc_auc_score 0.9322817880864617

Support Vector Machine

Train Set Metrics

Test Set Metrics

[[10371 8380]		precision	recall	f1-score	support	[[2555	2058]		precision	recall	f1-score	support
[6427 12204]]	0 1	0.25 0.88	0.68 0.54	0.37 0.67	6889 30493	[1625	3108]]	0 1	0.55 0.66	0.61 0.60	0.58 0.63	4180 5166
	accuracy macro avg weighted avg	0.57 0.77	0.61 0.57	0.57 0.52 0.61	37382 37382 37382			accuracy macro avg weighted avg	0.61 0.61	0.61 0.61	0.61 0.60 0.61	9346 9346 9346

roc_auc_score 0.6702448010852479

roc_auc_score 0.6052677308164962

Naïve Bayes Classification

Train Set Metrics

3426], 4148]]		precision	recall	f1-score	support	
	0	0.25	0.68	0.37	6889	
	1	0.88	0.54	0.67	30493	
	accuracy			0.57	37382	
	macro avg	0.57	0.61	0.52	37382	
	weighted avg	0.77	0.57	0.61	37382	

[[1187, 3426], [585, 4148]]

	precision	recall	f1-score	support
0	0.26	0.67	0.37	1772
1	0.88	0.55	0.67	7574
accuracy			0.57	9346
macro avg	0.57	0.61	0.52	9346
weighted avg	0.76	0.57	0.62	9346

Test Set Metrics

roc_auc_score 0.6702448010852479

roc_auc_score 0.6732817748498179


```
min prob
                  max prob events nonevents event rate nonevent rate \
Decile
        0.796667
                      1.00
                              2879
                                                   43.38%
                                                                  0.00%
1
2
        0.650833
                      0.79
                              3081
                                            1
                                                  46.43%
                                                                  0.00%
3
        0.144000
                      0.65
                            676
                                         2320
                                                   10.19%
                                                                  9.93%
4
                                                   0.00%
                                                                 12.92%
        0.092500
                      0.14
                                         3018
5
        0.072000
                      0.09
                                         2323
                                                   0.00%
                                                                 9.94%
6
        0.052500
                      0.07
                                         3458
                                                   0.00%
                                                                 14.80%
7
        0.041667
                      0.05
                                         2191
                                                   0.00%
                                                                 9.38%
8
                                                   0.00%
                                                                 9.48%
        0.034000
                      0.04
                                         2216
9
                      0.03
                                         4748
                                                   0.00%
                                                                 20.32%
       0.016667
10
        0.000000
                      0.01
                                         3089
                                                   0.00%
                                                                 13.22%
       cum eventrate cum noneventrate
                                         KS
Decile
              43.38%
                                0.00%
                                       43.4
1
2
              89.81%
                                0.00%
                                       89.8
3
             100.00%
                                9.93%
                                       90.1
4
             100.00%
                               22.85% 77.1
5
             100.00%
                               32.79% 67.2
6
             100.00%
                               47.59% 52.4
7
             100.00%
                               56.97% 43.0
8
                               66.46% 33.5
             100.00%
9
             100.00%
                               86.78% 13.2
10
             100.00%
                              100.00%
                                       0.0
KS is 90.100000000000001% at decile 3
```


Challenges

- Large Dataset to handle.
- Needs to plot lot of Graphs to analyse.
- Carefully handled Feature selection part.
- Carefully tuned Hyper parameters.
- Handled the imbalanced Dataset carefully.

Conclusion

- No overfitting is seen.
- Random Forest gives the highest ROC_AUC score, Accuracy & F1
 Score of 99.9%,100% & 100% respectively for Train Set and 93.8%,
 88% & 88% respectively for Test set.
- Feature Importance value for Random Forest, Gradient Boost, and XGBoost are different.
- KS is 90.1% at decile 3.
- We can deploy this model.

THANK YOU

Q & A