UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS

Informe Dataset (Entrenamiento y predicción)

ASIGNATURA: INTELIGENCIA ARTIFICIAL

DOCENTE: ESPETIA HUAMANGA HUGO

QUISPE CCOPA EVELYN

ESTUDIANTES:

CUSI RONCO JHOEL

HUARACHI PUMACHAPI JUAN ALBERTO

MENDOZA CHOQUEHUILLCA ULISES VALENTY

CUSCO - PERÚ

1. Limpieza del DataSet

Variables innecesarias

Invoice ID: Es simplemente un identificador único de las facturas y no tiene influencia en la predicción.

cogs (Cost of Goods Sold): Este valor está relacionado con los costos internos de la empresa, pero no influye directamente en la demanda. Dado que ya se incluye el precio unitario (Unit price) y el total.

gross margin percentage: Este porcentaje refleja la relación entre el costo de los productos vendidos y los ingresos totales. Como el objetivo es predecir la demanda, este dato no influye directamente en cuántos productos se venderán.

gross income: El ingreso bruto está directamente relacionado con el precio y la cantidad vendida, pero no aporta más información que ya no esté en otras variables como Total o Quantity.

Variable dependiente::

Total de ventas o Cantidad de productos vendidos (Quantity):

Variables independientes::

Sucursal: Diferentes sucursales pueden tener diferentes patrones de demanda.

Tipo de producto (Productline): La categoría o tipo de producto afectará la demanda.

Método de pago (Payment): Los métodos de pago pueden influir en las compras (algunos métodos podrían ser preferidos en días específicos).

Fecha (Date): La demanda puede variar según la fecha (estacionalidad, días de la semana, festivos, etc.).

Tiempo de compra (Time): La hora del día puede afectar las ventas (por ejemplo, más ventas en horas pico).

Impuestos (Tax 5%): Podrías incluir el impuesto como un factor para ver si tiene influencia en la compra de productos.

DATASET ORIGINAL

```
Información del dataset original:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 13 columns):
 # Column
                    Non-Null Count Dtype
 0 Branch 1000 non-null object
1 City 1000 non-null object
    Customer type 1000 non-null object
     Gender 1000 non-null object
Product line 1000 non-null object
Unit price 1000 non-null float64
    Gender
     Unit price
     Quantity
 6
                      1000 non-null int64
     Tax 5%
                     1000 non-null float64
 8
     Total
                     1000 non-null float64
8 Total
9 Date 1000 non-
10 Time 1000 non-null
11 Payment 1000 non-null
Pating 1000 non-null
                     1000 non-null object
                                         object
                                         object
                                          float64
dtypes: float64(4), int64(1), object(8)
memory usage: 101.7+ KB
```

DATASET LIMPIADA

2. Análisis del DataSet

Propósito: Comprender las características y la estructura del dataset para informar el desarrollo de los modelos de predicción.

Descripción:

- Exploración de datos: Investigar la distribución de variables, estadísticas descriptivas y posibles correlaciones.
- **Visualización:** Utilizar gráficos para explorar relaciones entre variables, como histogramas para la distribución de precios y ventas, y diagramas de dispersión para observar correlaciones.

Estadísticas descriptivas del dataset limpio:					
	Unit price	Quantity	Tax 5%	Total	Rating
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	55.672130	5.510000	15.379369	322.966749	6.97270
std	26.494628	2.923431	11.708825	245.885335	1.71858
min	10.080000	1.000000	0.508500	10.678500	4.00000
25%	32.875000	3.000000	5.924875	124.422375	5.50000
50%	55.230000	5.000000	12.088000	253.848000	7.00000
75%	77.935000	8.000000	22.445250	471.350250	8.50000
max	99.960000	10.000000	49.650000	1042.650000	10.00000

3. Implementación de Modelos de Aprendizaje Automático

Propósito: Utilizar técnicas de aprendizaje automático para construir modelos predictivos que estimen la demanda de productos.

Descripción:

• Modelo de Regresión Lineal (RL): Ajustar un modelo de regresión lineal para predecir la demanda basada en características como el precio unitario.

MSE Regresión Lineal: 6228.045510688692

 Modelo de Regresión Logística (RLog): Si la variable objetivo es categórica (por ejemplo, alta/ baja demanda), aplicar un modelo de regresión logística.

Accuracy Regresión Logística: 0.925

• Árboles de Decisión: Implementar un modelo de árboles de decisión para capturar relaciones no lineales entre las características y la demanda.

MSE Árbol de Decisión: 43.20293764500004

4. Implementación de Modelos de Aprendizaje Automático

Propósito: implementa y entrena los modelos de Regresión Lineal y Árboles de Decisión, y realiza predicciones.

Descripción:

- Regresión Lineal (RL): Idealmente, debería tener un MSE bajo y un R2 alto. Si obtienes MSE de 0 y R2 de 1.0, puede indicar un problema con el conjunto de datos (por ejemplo, falta de variabilidad o datos demasiado simples).
- Árboles de Decisión: También deberías buscar un MSE bajo y un R2 alto. Los árboles de decisión pueden manejar relaciones no lineales y complejas mejor que la regresión lineal en algunos casos.

Comparativa de Modelos: MSE Regresión Lineal: 6228.045510688692 MSE Árbol de Decisión: 43.20293764500004 Accuracy Regresión Logística: 0.925

El mejor modelo es: Árbol de Decisión

Un repositorio para los modelos y un PDF para el informe

Conclusión

- 1. **Regresión Lineal:** Suele ser adecuada si hay una relación lineal entre las características y la variable objetivo. Puede ser sensible a valores atípicos y no manejar bien relaciones no lineales.
- 2. Árboles de Decisión: Pueden capturar relaciones no lineales y son más flexibles. Sin embargo, pueden ser propensos a sobreajustarse (overfitting) si no se ajustan adecuadamente.