Recurrent Neural Networks

CALIFICACIÓN DEL ÚLTIMO ENVÍO

100%

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

1 / 1 puntos

$$x^{< i > (j)}$$

$$(x^{(j)< i>})$$

$$\int x^{< j>(i)}$$

✓ Correcto

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN: 1/1 puntos

This specific type of architecture is appropriate when:

$$T_x = T_y$$

$$T_x < T_y$$

$$T_x > T_y$$

- $T_x = 1$
 - ✓ Correcto

It is appropriate when every input should be matched to an output.

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that 1 / 1 puntos apply).

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
 - ✓ Correcto

Correct!

- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
 - Correcto

1 / 1 puntos

4. You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \quad \text{Estimating } P(y^{< t>})$
- **Section 2** Estimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$
- Stimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

Correcto

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. 1 / 1 puntos

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<\ell>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{<\ell>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\mathcal{V}^{< l^{>}}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{<\ell>}$. (ii) Then pass this selected word to the next time-step.

✓ Correcto

Yes!

6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

1 / 1 puntos

- Vanishing gradient problem.
- Exploding gradient problem.
- ReLU activation function g(.) used to compute g(z), where z is too large.
- Sigmoid activation function g(.) used to compute g(z), where z is too large.

V COLLECTO

7. Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{<\!\!\!\!/\!\!\!\!\!/}$. What is the dimension of Γ_u at each time step?

1 / 1 puntos

- \bigcirc 1
- 100
- 300
- 10000
 - ✓ Correcto

 $a^{<t>} = c^{<t>}$

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

8. Here're the update equations for the GRU.

1 / 1 puntos

GRU

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Yes. For the signal to backpropagate without vanishing, we need $c^{<\!t^>}$ to be highly dependant on $c^{<\!t^-1^>}$.

9. Here are the equations for the GRU and the LSTM:

1 / 1 puntos

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[\ c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[\,c^{< t-1>},x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$$

$$a^{} = c^{}$$

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \ \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

- Γ_u and $1 \Gamma_u$
- \bigcap Γ_u and Γ_r
- $1 \Gamma_u$ and Γ_u
- \bigcap Γ_r and Γ_u

Correcto

Yes, correct!

untos

10.	You have a pet dog whose mood is heavily dependent on the current and past few days'	1 / 1 pt
	weather. You've collected data for the past 365 days on the weather, which you represent	•
	as a sequence as $x^{<1>}, \dots, x^{<365>}$. You've also collected data on your dog's mood, which	
	you represent as $y^{<1>}, \dots, y^{<365>}$. You'd like to build a model to map from $x \to y$.	
	Should you use a Unidirectional RNN or Bidirectional RNN for this problem?	
	Didirectional DNN because this allows the prediction of mond on down to take into	

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- O Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \dots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{< 365>}$
- Unidirectional RNN, because the value of $y^{<\!\!\!/\!\!\!>}$ depends only on $x^{<\!\!\!/\!\!\!>}$, and not other days' weather.

Correcto

Yes!