Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа 2.1.1	К работе допущен
Студент Батманов Даниил Евгеньевич	Работа выполнена
Преподаватель Горбенко А.П.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.01(A)

Цель работы.

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабо проводящей среде.

Объект исследования.

Ванночка с электролитом и подключенными к ней электродами.

Метод экспериментального исследования.

Эксперимент

Измерительные приборы.

Наименование средства измерения	Предел измерений	Цена деления	Δи
Линейка	28 см	1 см	0.5 см
Вольтметр	14 B	0.1 B	0.1B

Схема установки (перечень схем, которые составляют Приложение 1).

Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Вычисления.

Найдем величину напряженности

$$E_{ij} = \frac{\varphi_i - \varphi_j}{l_{ij}}$$

В середине ванны:

$$E_{\rm II} = \frac{7.5 - 5.5}{0.04} = 50 \frac{\rm B}{\rm M}$$

У первого электрода:

$$E_{\rm II} = \frac{1.5 - 0}{0.02} = 75 \frac{\rm B}{\rm M}$$

Найдем поверхностную плотность электрического заряда на электродах:

$$\sigma'\cong arepsilon_0 E_n$$
, где $arepsilon_0=8.85*10^{-12}$

На левом электроде:

$$\sigma' \cong 8.85 * 10^{-12} * \left(\frac{1.5 - 0}{0.02}\right) = 6.6375 * 10^{-10} \frac{\text{K}\pi}{\text{M}}$$

На правом электроде напряженность будет такой же, поскольку в плоском конденсаторе напряженность одинакова в каждой точке.

Найдем наибольшую и наименьшую напряженность в поле с проводящим кольцом.

Максимальная напряженность будет на самой внешней границе кольца, т.к. там эквипотенциальные линии идут ближе всего.

$$E_{\rm II} = \frac{5.9 - 4.9}{0.006} = 167 \frac{\rm B}{\rm M}$$

Наименьшая напряженность будет внутри кольца и будет равна 0, т.к. в нем разница между любыми двуми потенциалами равна 0.

Графики.График зависимости потенциала от расстояния от левого электрода:

Расчет погрешностей измерений (для прямых и косвенных измерений).

Погрешность напряженности в центре ванны:

$$E_{\Delta} = \sqrt{\left(\frac{0.1}{0.04}\right)^2 + \left(\frac{0.1}{0.04}\right)^2 + \left(\frac{2 * 0.0005}{0.0016}\right)^2} = 3.59 \frac{B}{M}$$

Погрешность напряженность у электрода:

$$E_{\Delta} = \sqrt{\left(\frac{0.1}{0.02}\right)^2 + \left(\frac{0.1}{0.02}\right)^2 + \left(\frac{2 * 0.0005}{0.0004}\right)^2} = 7.5 \frac{B}{M}$$

Разницы вызвана тем, что вблизи электродов больше сил, влияющих на напряженность.

Выводы и анализ результатов работы.

В ходе выполнения данной лабораторной работы было построено сечение эквипотенциальных линий в слабо проводящей среде.