Gradient Descent. Convergence rates

Daniil Merkulov

Optimization methods. MIPT

Gradient Descent

Figure 1: Steepest Descent

Open In Colab 🐥

Recap

- Gradient Descent
- Steepest descent

Figure 1: Steepest Descent

Open In Colab 🐥

- Gradient Descent
- Steepest descent
- Convergence rates (no proof)

Figure 1: Steepest Descent

Open In Colab ૈ

- Gradient Descent
- Steepest descent
- Convergence rates (no proof)
- If $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth then for all $x, y \in \mathbb{R}^d$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

Figure 1: Steepest Descent

Open In Colab 🐥

- Gradient Descent
- Steepest descent
- Convergence rates (no proof)
- If $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth then for all $x, y \in \mathbb{R}^d$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

• Let $f:\mathbb{R}^d\to\mathbb{R}$ be a twice differentiable L-smooth function. Then, for all $x\in\mathbb{R}^d$, for every eigenvalue λ of $\nabla^2 f(x)$, we have

$$|\lambda| \leq L$$
.

Figure 1: Steepest Descent

Open In Colab 🐥

Recap

Convergence rates

$$\min_{x \in \mathbb{R}^n} f(x) \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

smooth	convex	smooth & convex	smooth & strongly convex (or PL)
$\ \nabla f(x_k)\ ^2 \approx \mathcal{O}\left(\frac{1}{k}\right)$	$f(x_k) - f^* \approx \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$f(x_k) - f^* \approx \mathcal{O}\left(\frac{1}{k}\right)$	$ x_k - x^* ^2 \approx \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

 $f \to \min_{x,y,z}$ Convergence proofs

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

 \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- ullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

Convergence proofs

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$
$$= \frac{1}{2} \hat{x}^T Q^T A Q \hat{x} + (x^*)^T A Q \hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q \hat{x} - b^T x^*$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- ullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$

$$= \frac{1}{2} \hat{x}^T Q^T A Q \hat{x} + (x^*)^T A Q \hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q \hat{x} - b^T x^*$$

$$= \frac{1}{2} \hat{x}^T \Lambda \hat{x}$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For *i*-th coordinate

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For i-th coordinate} \end{split}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Let's use constant stepsize
$$\alpha^k=\alpha.$$
 Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$|1 - \alpha \mu| < 1$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

= $(I - \alpha^k \Lambda) x^k$
 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For i -th coordinate

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

$$\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$|1 - \alpha \mu| < 1$$

$$f \to \min_{x,y,z}$$

condition:

 $-1 < 1 - \alpha \mu < 1$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$|1 - \alpha \mu| < 1$$

$$-1 < 1 - \alpha \mu < 1$$

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For *i*-th coordinate

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})^kx_{(i)}^0$$
 Let's use constant stepsize $\alpha^k=\alpha$. Convergence

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$\begin{aligned} |1 - \alpha \mu| &< 1 & |1 - \alpha L| &< 1 \\ -1 &< 1 - \alpha \mu &< 1 \\ \alpha &< \frac{2}{\mu} & \alpha \mu &> 0 \end{aligned}$$

 $f \to \min_{x,y,z}$ Convergence proofs

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 \end{aligned}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For i -th coordinate

Let's use constant stepsize
$$\alpha^k=\alpha$$
. Convergence

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Remember, that
$$\lambda_{\mathsf{min}} = \mu > 0, \lambda_{\mathsf{max}} = L \geq \mu.$$

enterriber, that
$$\lambda_{\mathsf{min}} = \mu > 0, \lambda_{\mathsf{max}} = E \geq \mu$$
.

 $|1 - \alpha \mu| < 1 \qquad \qquad |1 - \alpha L| < 1$

$$\begin{array}{ll} -1<1-\alpha\mu<1 & -1<1-\alpha L<1 \\ \alpha<\frac{2}{\mu} & \alpha\mu>0 & \alpha<\frac{2}{L} & \alpha L>0 \\ \alpha<\frac{2}{T} \text{ is needed for convergence.} \end{array}$$

condition:

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

 $= (I - \alpha^k \Lambda) x^k$

$$x_{(i)}^{k+1} = (1-\alpha^k\lambda_{(i)})^kx_{(i)}^0$$
 Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:
$$\rho(\alpha) = \max_i |1-\alpha\lambda_{(i)}| < 1$$
 Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For *i*-th coordinate

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha)$$

 $|1 - \alpha \mu| < 1$ $|1 - \alpha L| < 1$ - 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0 \qquad \alpha < \frac{2}{L} \qquad \alpha L > 0$$

 $\alpha < \frac{2}{L}$ is needed for convergence.

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

 $= (I - \alpha^k \Lambda) x^k$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})^kx_{(i)}^0$$
 Let's use constant stepsize $\alpha^k=\alpha$. Convergence

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

Remember that
$$\lambda = \mu > 0$$
 $\lambda = I > \mu$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$\begin{aligned} |1 - \alpha \mu| &< 1 & |1 - \alpha L| &< 1 \\ -1 &< 1 - \alpha \mu &< 1 & -1 &< 1 - \alpha L &< 1 \\ \alpha &< \frac{2}{\mu} & \alpha \mu &> 0 & \alpha &< \frac{2}{L} & \alpha L &> 0 \end{aligned}$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$

 $\alpha < \frac{2}{L}$ is needed for convergence.

condition:

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

condition:
$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

 $\alpha < \frac{2}{L}$ is needed for convergence. $f \to \min_{x,y,z}$ Convergence proofs

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \end{split}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

condition:
$$\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

Remember, that
$$\lambda_{\min}=\mu>0, \lambda_{\max}=L\geq\mu.$$

$$|1 - \alpha \mu| < 1 \qquad \qquad |1 - \alpha L| < 1$$

 $-1 < 1 - \alpha \mu < 1$ $-1 < 1 - \alpha L < 1$

$$\alpha<\frac{2}{\mu} \qquad \alpha\mu>0 \qquad \qquad \alpha<\frac{2}{L} \qquad \alpha L>0$$

$$\alpha<\frac{2}{L} \quad \text{is needed for convergence}.$$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$.

$$\begin{aligned} |1 - \alpha \mu| &< 1 & |1 - \alpha L| &< 1 \\ -1 &< 1 - \alpha \mu &< 1 & -1 &< 1 - \alpha L &< 1 \\ \alpha &< \frac{2}{\mu} & \alpha \mu &> 0 & \alpha &< \frac{2}{L} & \alpha L &> 0 \end{aligned}$$

 $\alpha < \frac{2}{L}$ is needed for convergence.

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L}$$

$$f \to \min_{x,y,z}$$
 Convergence proofs

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k=\alpha$. Convergence condition: $\rho(\alpha)=\max|1-\alpha\lambda_{(i)}|<1$

$$p(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\mathsf{min}} = \mu > 0, \lambda_{\mathsf{max}} = L \geq \mu.$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

 $\alpha<\frac{2}{\mu} \qquad \alpha\mu>0 \qquad \qquad \alpha<\frac{2}{L} \qquad \alpha L>0$ $\alpha<\frac{2}{T} \text{ is needed for convergence.}$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

$$\begin{split} \boldsymbol{x}^{k+1} &= \boldsymbol{x}^k - \boldsymbol{\alpha}^k \nabla f(\boldsymbol{x}^k) = \boldsymbol{x}^k - \boldsymbol{\alpha}^k \boldsymbol{\Lambda} \boldsymbol{x}^k \\ &= (I - \boldsymbol{\alpha}^k \boldsymbol{\Lambda}) \boldsymbol{x}^k \\ \boldsymbol{x}_{(i)}^{k+1} &= (1 - \boldsymbol{\alpha}^k \boldsymbol{\lambda}_{(i)}) \boldsymbol{x}_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

ndition:
$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
-1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

 $\alpha < \frac{2}{t}$ $\alpha \mu > 0$ $\alpha < \frac{2}{t}$ $\alpha L > 0$ $\alpha < \frac{2}{\tau}$ is needed for convergence.

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$x^{k+1} = \left(\frac{L-\mu}{L+\mu}\right)^k x^0$$

 $f \to \min_{x,y,z}$ Convergence proofs

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

$$|a_{(i)}| < 1$$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$ $-1 < 1 - \alpha \mu < 1$ $-1 < 1 - \alpha L < 1$

 $\alpha < \frac{2}{r}$ $\alpha \mu > 0$ $\alpha < \frac{2}{r}$ $\alpha L > 0$

Now we would like to choose α in order to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

$$\alpha^*: \quad 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$x^{k+1} = \left(\frac{L-\mu}{L+\mu}\right)^k x^0 \quad f(x^{k+1}) = \left(\frac{L-\mu}{L+\mu}\right)^{2k} f(x^0)$$

 $\alpha < \frac{2}{\tau}$ is needed for convergence. $f \to \min_{x,y,z}$ Convergence proofs

Strongly convex quadratics

So, we have a linear convergence in domain with rate $\frac{\kappa-1}{\kappa+1}=1-\frac{2}{\kappa+1}$, where $\kappa=\frac{L}{\mu}$ is sometimes called *condition number* of the quadratic problem.

κ	ho	Iterations to decrease domain gap $10\ \mathrm{times}$	Iterations to decrease function gap $10\ \mathrm{times}$
1.1	0.05	1	1
2	0.33	3	2
5	0.67	6	3
10	0.82	12	6
50	0.96	58	29
100	0.98	116	58
500	0.996	576	288
1000	0.998	1152	576

Polyak- Lojasiewicz condition. Linear convergence of gradient descent without convexity

PL inequality holds if the following condition is satisfied for some $\mu>0$,

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - f^*) \quad \forall x$$

It is interesting, that Gradient Descent algorithm has

The following functions satisfy the PL-condition, but are not convex. **\display**Link to the code

$$f(x) = x^2 + 3\sin^2(x)$$

Polyak- Lojasiewicz condition. Linear convergence of gradient descent without convexity

PL inequality holds if the following condition is satisfied for some $\mu > 0$,

$$\|\nabla f(x)\|^2 > 2\mu(f(x) - f^*) \quad \forall x$$

It is interesting, that Gradient Descent algorithm has

The following functions satisfy the PL-condition, but are not convex. **\$\exists\$**Link to the code

$$f(x) = x^2 + 3\sin^2(x)$$

$$f(x,y) = \frac{(y - \sin x)^2}{2}$$

Gradient Descent convergence. Polyak-Lojasiewicz case

Theorem

Consider the Problem

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

and assume that f is $\mu\text{-Polyak-Łojasiewicz}$ and L-smooth, for some $L\geq \mu>0.$

Consider $(x^t)_{t\in\mathbb{N}}$ a sequence generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0<\alpha\leq \frac{1}{L}$. Then:

$$f(x^{t}) - f^{*} \le (1 - \alpha \mu)^{t} (f(x^{0}) - f^{*}).$$

Convergence proofs

Gradient Descent convergence. Polyak-Lojasiewicz case

We can use L-smoothness, together with the update rule of the algorithm, to write

$$\begin{split} f(x^{t+1}) &\leq f(x^t) + \langle \nabla f(x^t), x^{t+1} - x^t \rangle + \frac{L}{2} \|x^{t+1} - x^t\|^2 \\ &= f(x^t) - \alpha \|\nabla f(x^t)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^t)\|^2 \\ &= f(x^t) - \frac{\alpha}{2} (2 - L\alpha) \|\nabla f(x^t)\|^2 \\ &\leq f(x^t) - \frac{\alpha}{2} \|\nabla f(x^t)\|^2, \end{split}$$

where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.

 $f \to \min_{x,y,z}$ Convergence proofs

Gradient Descent convergence. Polyak-Lojasiewicz case

We can use L-smoothness, together with the update rule of the algorithm, to write

$$\begin{split} f(x^{t+1}) &\leq f(x^t) + \langle \nabla f(x^t), x^{t+1} - x^t \rangle + \frac{L}{2} \|x^{t+1} - x^t\|^2 \\ &= f(x^t) - \alpha \|\nabla f(x^t)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^t)\|^2 \\ &= f(x^t) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^t)\|^2 \\ &\leq f(x^t) - \frac{\alpha}{2} \|\nabla f(x^t)\|^2, \end{split}$$

where in the last inequality we used our hypothesis on the stepsize that $\alpha L \leq 1$.

We can now use the Polyak-Lojasiewicz property to write:

$$f(x^{t+1}) \le f(x^t) - \alpha \mu (f(x^t) - f^*).$$

The conclusion follows after subtracting f^* on both sides of this inequality, and using recursion.

∂ ດ **ø**

Gradient Descent convergence. Smooth convex case

Theorem

Consider the Problem

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

and assume that f is convex and L-smooth, for some L > 0.

Let $(x^t)_{t\in\mathbb{N}}$ be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0 < \alpha \leq \frac{1}{L}$. Then, for all $x^* \in \operatorname{argmin} f$, for all $t \in \mathbb{N}$ we have that

$$f(x^t) - f^* \le \frac{\|x^0 - x^*\|^2}{2\alpha t}.$$

େ ଚେଡ

Gradient Descent convergence. Smooth convex case

Convergence proofs

Gradient Descent convergence. Smooth μ -strongly convex case

Theorem

Consider the Problem

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

and assume that f is μ -strongly convex and L-smooth, for some $L \ge \mu > 0$. Let $(x^t)_{t \in \mathbb{N}}$ be the sequence of iterates generated by the gradient descent constant stepsize algorithm, with a stepsize satisfying $0 < \alpha \le \frac{1}{L}$. Then, for $x^* = \operatorname{argmin} f$ and for all $t \in \mathbb{N}$:

$$||x^{t+1} - x^*||^2 \le (1 - \alpha \mu)^{t+1} ||x^0 - x^*||^2.$$

 $f \rightarrow \min_{x,y,z}$

∂ ∩ **ø**

Gradient Descent convergence. Smooth μ -strongly convex case

Gradient Descent for Linear Least Squares aka Linear Regression

Figure 4: Illustration

In a least-squares, or linear regression, problem, we have measurements $X \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$ and seek a vector $\theta \in \mathbb{R}^n$ such that $X\theta$ is close to y. Closeness is defined as the sum of the squared differences:

$$\sum_{i=1}^{m} (x_i^{\top} \theta - y_i)^2 = ||X\theta - y||_2^2 \to \min_{\theta \in \mathbb{R}^n}$$

For example, we might have a dataset of m users, each represented by n features. Each row x_i^{\top} of X is the features for user i, while the corresponding entry y_i of y is the measurement we want to predict from x_i^{\top} , such as ad spending. The prediction is given by $x_i^{\top}\theta$.

Linear Least Squares aka Linear Regression ¹

1. Is this problem convex? Strongly convex?

Linear Least Squares aka Linear Regression ¹

- 1. Is this problem convex? Strongly convex?
- 2. What do you think about convergence of Gradient Descent for this problem?

¹Take a look at the **@**example of real-world data linear least squares problem

l_2 -regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore strong convexity of the objective function by adding an l_2 -penality, also known as Tikhonov regularization, l_2 -regularization, or weight decay.

$$||X\theta - y||_2^2 + \frac{\mu}{2}||\theta||_2^2 \to \min_{\theta \in \mathbb{R}^n}$$

Note: With this modification the objective is μ -strongly convex again.

Take a look at the \$\mathbb{e}\code

∌ດ ⊘