Linear Temporal Logic

1 Intuition

We have a Boolean state (or world), in which a number of atomic propositions (AP) are true or false

We'd like to reason about discrete linear time, which is an infinite sequence of states A_0 , A_1 ... with state A_0 at time 0 being the current state (thus any propositional formula over the AP talks about A_0)

We'd next line to add temporal modalities, such as:

- always A $\square A$
- eventually A $\diamond A$
- next A $\circ A$
- etc

These let us express other natural temporal properties such as infinitely often a - $\square \diamond a$

2 Syntax of LTL

We are given a finite set AP of atomic propositions (boolean variables), Boolean connectives plus two temporal modalities:

- o next
- *U* until

A formula in LTL is defined by the following grammar (in which brackets are omitted)

$$\varphi := \text{true } |a|\varphi_1 \wedge \varphi_2|\neg \varphi| \bigcirc \varphi|\varphi_1 U\varphi_2$$

where $a \in AP$ and φ_1, φ_2 are LTL formulae

Other modalities can be expressed, e.g.

$$\diamond a \stackrel{\text{def}}{=} \text{trueUa}$$

$$\Box a \stackrel{\text{def}}{=} \neg \diamond \neg a$$

3 Intuitive statements

4 Formal Semantics

A world is labelled by the AP that are true in it, so it is just a letter from the alphabet 2^{AP} (the set of all subsets of AP)

A word σ is an infinite sequence of worlds, i.e. $\sigma \in (2^{AP})^{\omega}$

The satisfaction relation, $\sigma \models \varphi$ where $\sigma = A_0 A_1$... is a word and φ is a formula, recursively defined by

$$\begin{array}{ll} \sigma \models \textit{true} \\ \sigma \models a & \textit{iff } a \in A_0 \\ \sigma \models \varphi_1 \land \varphi_2 & \textit{iff } \sigma \models \varphi_1 \textit{ and } \sigma \models \varphi_2 \\ \sigma \models \neg \varphi & \textit{iff } \sigma \nvDash \varphi \\ \sigma \models \bigcirc \varphi & \textit{iff } A_1 \ldots \models \varphi \\ \sigma \models \varphi_1 \textit{U} \varphi_2 & \textit{iff there is } i \geq 0 \textit{ s.t. } A_i \ldots \models \varphi_2 \textit{ and } A_j \ldots \models \varphi_2 \textit{ for all } 0 \leq j < i. \end{array}$$

The set of all words that satisfy a formula φ is called $Words(\varphi)$

5 Transition Systems

A transition system TS has:

- 1. A finite set of states S
- 2. A transition relation $\rightarrow \subseteq S \times S$, which is left-total (for every $s_1 \in S$, there is $s_2 \in S$ such that $s_1 \rightarrow s_2$)
- 3. A set of initial states $I \subseteq S$
- 4. A finite set of atomic propositions AP
- 5. A labelling function $L: S \to 2^{AP}$

The transitions may be labelled by a finite set of actions Act, in which case the transition relation becomes $\rightarrow \subseteq S \times Act \times S$

6 Execution of a TS

A run of TS is an infinite sequence of states

$$S_0 \rightarrow s_1 \rightarrow \dots$$

where $s_0 \in I$, which produces an infinite trace $\sigma \in (2^{AP})^{\omega}$, $\sigma = L(s_0)L(s_2...)$

The set of all possible traces of the TS is called *Traces*(*TS*)

Finally, TS satisfies φ , $TS \models \varphi$, if $Traces(TS) \subseteq Words(\varphi)$ i.e. if each trace of the TS satisfies the formula φ

Thus is is possible that $TS \not\models \varphi$ and $TS \not\models \neg \varphi$