קווים כלליים לפתרון תרגיל בית 5

תאריך הגשה: יום ראשון, 8/12/2013, עד שעה 22:00 (אחרי חופשת חנוכה)

<u>שאלה 1:</u>

תהי $\{a_n\}$ סדרה חסומה שאין לה איבר גדול ביותר ואין לה איבר קטן ביותר. הוכיחו כי $\{a_n\}$ מתכנסת. (רמז : תרגיל בית 4)

אם $\{a_n\}$ חסומה, אז מאקסיומת השלמות יש לה סופרמום ואינפימום. מכיון שלסדרה אין איבר גדול ביותר, הסופרמום אינו $\{a_n\}$ איבר בקבוצה. בתרגיל בית 4 הוכח כי אם $\{a_n\}$ אז $\{a_n\}$ או השלה. לכן, עבור הסדרה הנתונה, איבר בקבוצה. בתרגיל בית 4 הוכח כי אם $\{a_n\}$ השומה (עייי הסתכלות על $\{-a_n\}$) נקבל כי האינפימום של הסדרה אינו איבר בסדרה, ולכן הוא sup $a_n=\inf a_n$ אז מצאנו שני גייח שונים, ולכן הסדרה אינה מתכנסת. אבל אם $\{a_n\}$ אז מצאנו שני גייח שונים, ולכן הסדרה אינה מתכנסת. אבל אם $\{a_n\}$ אז הסדרה היא קבועה, אז הסדרה היא למעשה קבועה, כי לכל $\{a_n\}$ מתקיים: $\{a_n\}$ מתקיים: $\{a_n\}$ וואם הסדרה היא קבועה, אז בפרט יש לה איבר גדול ביותר וקטן ביותר – סתירה לנתון.

<u>: 2</u> שאלה

: הראו כי מתקיים אחד הראו הוו $\lim_{n \to \infty} (a_n + a_{n+1}) = 0$ הראו כי מתקיים אחד המקיים הוו הוו $\lim a_n > 0$ או $\lim a_n = 0$

<u>: 3 שאלה</u>

 $A \subset \mathbb{R}$ את אוסף נקודות ההצטברות של קבוצה A' -נסמן ב-

 $(A')' \subset A'$ א. הוכיחו כי

יהי $\varepsilon>0$. אם (A')' אז בכל סביבת $\frac{\varepsilon}{2}$ מנוקבת של x יש אינסוף נקודות של x, ובכל סביבת של הנקודות $x\in A'$ אז בכל סביבת ε של ε של אינסוף נקודות של ε , כלומר ε

. $A'=\emptyset$ (א) כך ש: (א) .a

$$A\cap A'=\emptyset$$
 גם $A'\neq\emptyset$ (ב) $A=\{rac{1}{n}:n\in\mathbb{N}\}$ $A=\{rac{1}{n}:n\in\mathbb{N}\}$ $A'\neq\emptyset$ (ג) $A'\neq\emptyset$ (ג) $A'\neq\emptyset$ (ג)

(ד) A קבוצה אינסופית שכל נקודותיה הן מבודדות.

$$A = \mathbb{N}$$

ב. הוכיחו / הפריכו : קיימת קבוצה A כך שקבוצת הנקודות הפנימיות שלה אינה ריקה, וכל הנקודות הפנימיות שלה הן רציונליות.

לא תיתכן קבוצה כזו, כי אם $x\in\mathbb{Q}$ נקודה פנימית, אז קיים $\varepsilon>0$ כך ש- $\varepsilon>0$ כך אם $x\in\mathbb{Q}$, לכן גם $(y-\frac{\varepsilon}{2},y+\frac{\varepsilon}{2})\subset A$ אבל בקטע זה קיימת נקודה $y\in\mathbb{R}\setminus\mathbb{Q}$ (מצפיפות) המקיימת גם היא $(x-\frac{\varepsilon}{2},x+\frac{\varepsilon}{2})\subset A$ לכן גם $(x-\frac{\varepsilon}{2},x+\frac{\varepsilon}{2})$ בסתירה לכך שכל הנקודות הפנימיות הן רציונליות.

:4 שאלה

. היא פתוחים פתוחים של קטעים של הוכיחו בי \mathbb{R} היא איחוד בן-מניה של קטעים פתוחים זרים

 $x \in A$ פתוחה, הגדירו לכל A פתוחה, הדרכה:

.
$$a_x=\sup\{\,(\mathbb{R}\backslash A)\cap(-\infty,x]\,\}$$
 , $b_x=\inf\{\,(\mathbb{R}\backslash A)\cap[x,\infty)\,\}$. $(a_x,b_x)\cap(a_y,b_y)=\emptyset$ או $(a_x,b_x)=(a_y,b_y)$ או $(a_x,b_x)=(a_y,b_y)$ או $(a_x,b_x)=(a_y,b_y)$ או הטענה.

יהי $X\in A$, ונגדיר, A_X בפי שמתואר בהדרכה. נעיר כי אם A_X ($\mathbb{R}\setminus A$), או A_X לא מוגדר, ולכן במצב כיזה A_X באופן דומה, אם A_X בחוחה, לכן A_X סגורה, לכן A_X סגורה בחיתוך סגורות, ולכן מכילה את מהגדרת A_X נובע כי A_X בתוחה, לכן A_X סגורה, לכן A_X סגורה, לכן A_X סגורה בחיתוך סגורות, ולכן מכילה את הסופרמום שלה, ולכן A_X בא A_X (A_X = A_X = A_X = A_X = A_X (A_X = A_X

, $\inf((\mathbb{R}\backslash A)\cap[t,\infty))\leq\inf((\mathbb{R}\backslash A)\cap[t,x])<\sup((\mathbb{R}\backslash A)\cap[t,x])\leq\sup((\mathbb{R}\backslash A)\cap(-\infty,x])$ בסהייכ קיבלנו: $(a_x$, b_x) \cap $(a_t$, b_t) = \emptyset : כלומר קיבלנו: b_t \in a_x : b_t , b_t \in a_t , a_t \in a_t , a_t ,

כעת נוכיח את הטענה כולה: תהי A קבוצה פתוחה, ולכל $x\in A$ יהי $x\in A$ יהי $x\in A$ הקטע הפתוח המתאים מטענת העזר. ברור $x\in A$ הולכל $x\in A$ לכן $x\in A$ לכן $x\in A$ לכן $x\in A$ הבטענת העזר הראינו כי כל קטע פתוח כזה מוכל ב- $x\in A$ ובטענת העזר הראינו כי כל קטע פתוח כזה מוכל ב- $x\in A$ לכן $x\in A$ לכן $x\in A$ לכן $x\in A$ הוא $x\in A$ בי $x\in A$ העזר מתקיים כי האיחוד הנ"ל הוא $x\in A$ היחוד של קטעים פתוחים זרים. בכל קטע כזה קיים מספר רציונלי, וע"י בחירה שרירותית של מספר רציונלי בכל קטע נקבל קבוצת מספרים רציונליים כמספר הקטעים השונים, ומכיוון שיש מספר בן-מניה של רציונליים, נקבל כי יש לכל היותר מספר בן-מניה של קטעים זרים כאלו.

<u>שאלה 5:</u>

בתרגיל זה יש להוכיח את הטענות הבאות, שהן הכללות למשפטים שראיתם בכיתה.

- א. בולצאנו-ויירשטראס: תהי $E \subset \mathbb{R}$ אם $E \subset \mathbb{R}$ אינסופית וחסומה, אז יש לה נקודת הצטברות. $E \subset [a,a_1], [a_1,b]$ אם $a_1 \in E \setminus \{a,b\}$ גבחר $E \subset [a,b]$ נבחר $E \subset [a,b]$ אם $E \subset [a,b]$ מסומה, אז קיימים $E \subset [a,b]$ כך ש- $E \subset [a,b]$ נבחר נקודה שהיא לא $E \subset [a,b]$ לפחות באחד מהקטעים האלו יש אינסוף נקודות של $E \subset [a,a_1]$ נניח ב- $E \subset [a,a_1]$ נבחר נקודה מקטע זה שהיא לא אחת מהקצוות, $E \subset [a,a_1]$ שבאחד מהם יש אינסוף נקודות של $E \subset [a,b]$ ונבחר נקודה מתוך קטע כזה שהיא לא אחת מנקודות הקצה, וכן הלאה. נקבל סדרה $E \subset [a,b]$ של נקודות שונות ב- $E \subset [a,b]$ ומכיוון ש- $E \subset [a,b]$ מכיוון שהסדרה נבנתה מקבל כי לסדרה זו קיימת תייס מתכנסת, והגבול של תייס זו הוא בהכרח נקי הצטברות של $E \subset [a,b]$ מכיוון שהסדרה נבנתה מנקודות שונות של $E \subset [a,b]$
 - ב. הלמה של היינה-בורל: אם $E \subset \mathbb{R}$ קבוצה סגורה וחסומה, אז לכל כיסוי שלה ע"י תת-ב. הלמה של היינה-בורל: אם $E \subset \mathbb{R}$

 $U_0=\mathbb{R}\backslash E$ רסומה, לכן קיים קטע [a,b] כך ש- [a,b] יהי $E\subset [a,b]$ יהי $E\subset [a,b]$ נגדיר [a,b] ונגדיר [a,b] סגורה, לכן קיים קטע [a,b] ש- [a,b] כיסוי של [a,b] כיסוי פתוח של [a,b] ולכן פתוחה, ומכיוון ש- [a,b] של [a,b] של [a,b] אם [a,b] לא נמצא באוסף הסופי, אז הכיסוי הנייל (מהיינה-בורל הרגיל) קיים תת-כיסוי סופי [a,b] של [a,b] של [a,b] של [a,b] של [a,b] מתוך האוסף המקורי, וסיימנו. אם [a,b] שייך לאוסף, נסתכל על האוסף ללא [a,b] מכיוון [a,b] הוא עדיין כיסוי של [a,b] וזהו תת-כיסוי סופי של האוסף המקורי.

(סעיף זה לא להגשה) $E_1\supset E_2\supset E_3\supset \cdots -$ הלמה של קנטור: אם הלמה $E_i\subset \mathbb{R}$ קבוצות סגורות וחסומות כך ש $E_i\subset \mathbb{R}$ הלמה שז $\bigcap_{i=1}^\infty E_i\neq\emptyset$ אז ה

נניח בשלילה כי החיתוך ריק. נסתכל על הקבוצות הפתוחות $U_n=\mathbb{R}\setminus E_n$ מההכלה של ה- E_i , מתקיים כי $U_n=\mathbb{R}\setminus (\cap E_n)=\mathbb{R}$ כי \mathbb{R} , כי $U_1\subset U_2\subset U_3\subset \cdots$ ולכן בפרט $U_1\subset U_2\subset U_3\subset \cdots$ עלומר קבוצות פתוחות, המהוות כיסוי של $U_1\subset U_2\subset U_3\subset \cdots$ מהוות כיסוי פתוח של $U_1\subset U_1$, שהיא סגורה וחסומה, ולכן מסעיף קודם, קיים תת-כיסוי סופי של $U_1\subset U_1$, שהיא סגורה וחסומה, ולכן מסעיף קודם, קיים תת-כיסוי סופי של $U_1\subset U_1$, שהיא סגורה וחסומה, ולכן $U_1\subset U_1$ (דומר) ביסוי סופי של $U_1\subset U_1$ (דומר) ביסוי פתוח של $U_1\subset U_1$ (דומר) ביסוי פתוח של $U_1\subset U_1$ (דומר) בפתוח של

:6 שאלה

- א. הוכיחו כי התכונות הבאות הן שקולות:
 - A סגורה.
 - . $A=\bar{A}$.2
- $a \in A$ אז $a_n \to a$ וגם $n \in \mathbb{N}$ אז $a_n \in A$ אז $a_n \in A$ אז
- $A \subset A'$, ויחד עם ההכלה שמתיד מתקיימת, $A' \subset A$, ולכן $A' \subset A'$, ויחד עם ההכלה שמתיד מתקיימת, $A' \subset A'$. נקבל כי $A = \bar{A}$
- A, שכולם ב-A, שכולם מאיברי a ש אינסוף מאיברי a, שכולם ב-a. מהגדרת הגבול, בכל סביבה של a יש אינסוף מאיברי a, ולכן a נקודת מנוקבת של a קיים לפחות איבר אחד של a, ולכן a נקודת הצטברות של a, ומכיוון ש-a של a בa בa בa כובע כי a בa סתירה.
- זה ולפי (3), גבול המתכנסת ב- A המתכנסת אליה, ולפי (3), גבול הבות הבטברות של A נוכל לבנות סדרה של A שייכת ל- A, ולכן A סגורה.
 - ב. הוכיחו כי $X\in \bar A$ אם ורק אם בכל סביבת $x\in A$ של x יש לפחות נקודה אחת של $x\in A$. אם $x\in A$ אם $x\in A$ אם $x\in A$ אם $x\in A$ אם בכל סביבת $x\in A$ של $x\in A$ של יש אינסוף נקודות של $x\in A$, ובפרט יש לפחות אחת.
 - $x\in\overline{A\backslash\{x\}}$ אם ורק אם A אם ורק הצטברות ג נקודת הצטברות של x נקודת הצטברות, לכן בכל סביבה שלו יש אינסוף נקודות של x נקודת הצטברות, לכן בכל סביבת x מנוקבת שלו יש אינסוף נקודות של x נקודות של x ולכן מסעיף (ב) זה אומר כי $x\in\overline{A\backslash\{x\}}$.
 - ד. הוכיחו כי אם x נקודה מבודדת של A, אז x אינה נקודת הצטברות של A. אם x מבודדת אז קיימת סביבה מנוקבת של x שאין בה בכלל נקודות של x, ולכן x אינה נקודת הצטברות של x.

<u>שאלה 7: לא להגשה</u>

. $b_n=\sum_{k=1}^n a_k^2$ באופן הבא: $\{a_n\}$ סדרה חיובית. נגדיר באמצעותה סדרה חדשה באופן הבא סדרה חיובית. נגדיר באמצעותה סדרה הדרה $c_n=\sum_{k=1}^n \frac{a_k}{k}$ מתכנסת לגבול סופי. רמז: שימו לב כי יש להוכיח רק התכנסות של הסדרה c_n ולא לחשב את הגבול.