Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- $(1) \dots$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

 \rightarrow Def. 10.1

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- $(2) \ldots$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

→ Def. 10.1

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- $(3) \dots$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

 \rightarrow Def. 10.1

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- $(4) \dots$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

 \rightarrow Def. 10.1

Jede Bilinearform β auf K^n liefert eine Matrix	Jede Bilinearform β auf K^n liefert eine Matrix $M(\beta) \in \mathrm{Mat}_K(n \times n)$ der Gestalt
	$M(eta) := eta(\mathbf{e}_i, \mathbf{e}_j)_{ij}$
	→ Satz 10.2

Jede Matrix $A \in Mat_K(n \times n)$ liefert eine ... wie folgt:

Jede Matrix $A \in \text{Mat}_K(n \times n)$ liefert eine Bilinearform auf K^n wie folgt:

 $\beta_A: K^n \times K^n \longrightarrow K$ $(\mathbf{v}, \mathbf{w}) \mapsto \mathbf{v}^T A \mathbf{w}$

 \rightarrow Satz 10.2

Die Menge der Bilinearformen auf \mathbb{K}^n und die Menge $\mathrm{der}\ n\times n\ \mathrm{Matrizen}\ \mathrm{\ddot{u}ber}\ K\ \mathrm{sind}\ \ldots$

Die Menge der Bilinearformen auf \mathbb{K}^n und die Menge der $n \times n$ Matrizen über K sind isomorph.

 \rightarrow Satz 10.2

Die darstellende Matrix einer Bilinearform β bezüglich einer Basis $B = (\mathbf{b}_i)_i$ ist gegeben durch ...

Die darstellende Matrix einer Bilinearform β bezüglich einer Basis $B = (\mathbf{b}_i)_i$ ist gegeben durch

$$M_B(\beta) := \beta(\mathbf{b}_i, \mathbf{b}_j)_{ij}$$

 \rightarrow Def. 10.3

Zwei Matrizen A, A' sind kongruent , falls es	Zwei quadratische Matrizen A,A' sind kongruent , falls es eine invertierbare Matrix S gibt mit $A' = S^T A S$ \to Def. 10.5
Eine Bilinearform β auf V ist symmetrisch , falls	Eine Bilinearform β auf V ist symmetrisch , falls für alle $\mathbf{v}, \mathbf{w} \in V$ $\beta(\mathbf{v}, \mathbf{w}) = \beta(\mathbf{w}, \mathbf{v})$
	\rightarrow Def. 10.7
Def LinA-II-10-Skalarprodukte 57381bea-bbe3-11ec-8422-0242ac120002	
Eine Bilinearform β auf V ist schiefsymmetrisch , falls	Eine Bilinearform β auf V ist schiefsymmetrisch , falls für alle $\mathbf{v}, \mathbf{w} \in V$
	$\beta(\mathbf{v}, \mathbf{w}) = -\beta(\mathbf{w}, \mathbf{v})$
	\rightarrow Def. 10.7
Def LinA-II-10-Skalarprodukte 57381bea-bbe3-11ec-8422-0242ac120002	
Eine Bilinearform β auf V ist alternierend , falls	Eine Bilinearform β auf V ist alternierend , falls für alle $\mathbf{v} \in V$ $\beta(\mathbf{v}, \mathbf{v}) = 0$

Def LinA-II-10-Skalarprodukte

57381bea-bbe3-11ec-8422-0242ac120002

→ Def. 10.7

Eine Bilinearforn (darstellende	 metrisch g	genau dann	, wenn

Eine Bilinearform β ist **symmetrisch** genau dann, wenn ihre darstellende Matrix $M(\beta)$ symmetrisch ist:

$$M(\beta)^T = M(\beta)$$

→ Satz 10.9

LinA-II-10-Skalarprodukte

Eine Bilinearform β ist schiefsymmetrisch genau dann, wenn ... (darstellende Matrix)

Eine Bilinearform β ist schiefsymmetrisch genau dann, wenn ihre darstellende Matrix $M(\beta)$ schiefsymmetrisch ist:

$$M(\beta)^T = -M(\beta)$$

→ Satz 10.9

LinA-II-10-Skalarprodukte

fb0e2cdc-bbf2-11ec-8422-0242ac120002

Eine Bilinearform β ist **alternierend** genau dann, wenn ... (darstellende Matrix)

Eine Bilinearform β ist **alternierend** genau dann, wenn für ihre darstellende Matrix $M(\beta)$ gilt:

$$M(\beta)^T = -M(\beta)$$

und

$$M(\beta)_{ii} = 0$$
 für alle i

→ Satz 10.9

LinA-II-10-Skalarprodukte

fb0e2cdc-bbf2-11ec-8422-0242ac120002

Eine **Sesquilinearform** η auf einem \mathbb{C} -Vektorraum Vist eine Abbildung $\eta \colon V \times V \longrightarrow \mathbb{C}$ mit folgenden Eigenschaften:

- η ist semilinear in der zweiten Koordinate: $\eta(\mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2) = \eta(\mathbf{v}, \mathbf{w}_1) + \eta(\mathbf{v}, \mathbf{w}_2)$ $\eta(\mathbf{v}, s\mathbf{w}) = \bar{s} \cdot \eta(\mathbf{v}, \mathbf{w})$ für alle $\mathbf{v}, \mathbf{w}, \mathbf{w_1}, \mathbf{w_2} \in V$ und alle $s \in \mathbb{C}$

Eine **Sesquilinearform** η auf einem \mathbb{C} -Vektorraum Vist eine Abbildung $\eta \colon V \times V \longrightarrow \mathbb{C}$ mit folgenden Eigenschaften:

- η ist linear in der ersten Koordinate: $\eta(\mathbf{v}_1 + s\mathbf{v}_2, \mathbf{w}) = \eta(\mathbf{v}_1, \mathbf{w}) + s \cdot \eta(\mathbf{v}_2, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$ und alle $s \in \mathbb{C}$
- η ist semilinear in der zweiten Koordinate: $\eta(\mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2) = \eta(\mathbf{v}, \mathbf{w}_1) + \eta(\mathbf{v}, \mathbf{w}_2)$ $eta(\mathbf{v}, s\mathbf{w}) = \bar{s} \cdot \eta(\mathbf{v}, \mathbf{w})$ für alle $\mathbf{v}, \mathbf{w}, \mathbf{w_1}, \mathbf{w_2} \in V$ und alle $s \in \mathbb{C}$

Eine **Sesquilinearform** η auf einem \mathbb{C} -Vektorraum Vist eine Abbildung $\eta \colon V \times V \longrightarrow \mathbb{C}$ mit folgenden Eigenschaften:

• η ist linear in der ersten Koordinate: $\eta(\mathbf{v}_1 + s\mathbf{v}_2, \mathbf{w}) = \eta(\mathbf{v}_1, \mathbf{w}) + s \cdot \eta(\mathbf{v}_2, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$ und alle $s \in \mathbb{C}$

Eine **Sesquilinearform** η auf einem \mathbb{C} -Vektorraum Vist eine Abbildung $\eta \colon V \times V \longrightarrow \mathbb{C}$ mit folgenden Eigenschaften:

- η ist linear in der ersten Koordinate: $\eta(\mathbf{v}_1 + s\mathbf{v}_2, \mathbf{w}) = \eta(\mathbf{v}_1, \mathbf{w}) + s \cdot \eta(\mathbf{v}_2, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$ und alle $s \in \mathbb{C}$
- η ist semilinear in der zweiten Koordinate: $\eta(\mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2) = \eta(\mathbf{v}, \mathbf{w}_1) + \eta(\mathbf{v}, \mathbf{w}_2)$ $\eta(\mathbf{v}, s\mathbf{w}) = \bar{s} \cdot \eta(\mathbf{v}, \mathbf{w})$ für alle $\mathbf{v}, \mathbf{w}, \mathbf{w_1}, \mathbf{w_2} \in V$ und alle $s \in \mathbb{C}$

 \rightarrow Def. 10.10

Eine Sesquilinearform η ist **hermitesch**, falls ...

Eine Sesquilinearform η ist **hermitesch**, falls gilt

$$\eta(\mathbf{v}, \mathbf{w}) = \overline{\eta(\mathbf{w}, \mathbf{v})}$$

für alle $\mathbf{v}, \mathbf{w} \in V$

→ Def 10.10

LinA-II-10-Skalarprodukte

Jede Sesquilinearform η liefert eine Matrix der Form

Jede Sesquilinearform η liefert eine Matrix $M(\eta) \in$ $\mathrm{Mat}_{\mathbb{C}}(n \times n)$ der Form

$$M(\eta) := \eta(\mathbf{e}_i, \mathbf{e}_j)_{ij}$$

→ Satz 10.11

LinA-II-10-Skalarprodukte

bd8dcf48-bc10-11ec-8422-0242ac120002

Zu einer gegebenen komplexen Matrix A existiert eine Sesquilinearform η wie folgt:

A existiert eine Sesquilinearform
$$\eta$$
 wie folgt:
$$\eta_A(\mathbf{v}, \mathbf{w}) := \mathbf{v}^T A \overline{\mathbf{w}}$$

Zu einer gegebenen komplexen quadratischen Matrix

→ Satz 10.11

LinA-II-10-Skalarprodukte

bd8dcf48-bc10-11ec-8422-0242ac120002

Eine symmetrische Bilinearform β auf einem \mathbb{R} -Vektorraum ist positiv definit , falls	Eine symmetrische Bilinearform β auf einem \mathbb{R} -Vektorraum ist positiv definit , falls
	$\beta(\mathbf{v}, \mathbf{v}) > 0$ für alle $\mathbf{v} \in V \setminus \{0\}$
	\rightarrow Def. 10.14
Def LinA-II-10-Skalarprodukte ca81504e-bc10-11ec-8422-0242ac120002	
Eine hermitesche Bilinearform β auf einem \mathbb{C} -Vektorraum ist positiv definit , falls	Eine hermitesche Bilinearform β auf einem \mathbb{C} -Vektorraum ist positiv definit , falls
200 P 200 200 200 100 100 100 100 100 100 100	$eta(\mathbf{v},\mathbf{v})>0$ für alle $\mathbf{v}\in V\setminus\{0\}$
	\rightarrow Def. 10.14
Def LinA-II-10-Skalarprodukte ca81504e-bc10-11ec-8422-0242ac120002	
Lim II IV Dadiaprodukte Cdoloote BCIO IIeC 0422 02722C120002	
Ein Skalarprodukt auf einem \mathbb{R} -Vektorraum ist	Ein Skalarprodukt auf einem R-Vektorraum ist eine positiv definite symmetrische Bilinearform.
	ightarrow Def. 10.15
Def LinA-II-10-Skalarprodukte d1b1125a-bc10-11ec-8422-0242ac120002	
Lina-11-10-Saalai piodukte distillasa-beto-11ec-0422-0242act20002	
Ein Skalarprodukt auf einem \mathbb{C} -Vektorraum ist \dots	Ein Skalarprodukt auf einem C-Vektorraum ist eine positiv definite hermitesche Bilinearform.
	\rightarrow Def. 10.15
Def LinA-II-10-Skalarprodukte d1b1125a-bc10-11ec-8422-0242ac120002	

Ein euklidischer Vektorraum ist		

Ein euklidischer Vektorraum $(V, \langle \cdot, \cdot \rangle)$ ist ein $\mathbb{R}\text{-Vektorraum }V$ zusammen mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$. \rightarrow Def. 10.15

LinA-II-10-Skalarprodukte

LinA-II-10-Skalarprodukte

Ein unitärer Vektorraum ist ...

Ein unitärer Vektorraum $(V, \langle \cdot, \cdot \rangle)$ ist ein \mathbb{C} -Vektorraum V zusammen mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$.

Die assoziierte Norm zu einem euklidischen oder uni-

tären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ ist gegeben durch

 \rightarrow Def. 10.15

Die assoziierte Norm zu einem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ ist gegeben durch

d1b1125a-bc10-11ec-8422-0242ac120002

$$\left\| \cdot \right\| : V \longrightarrow \! \mathbb{R}$$

 $\mathbf{v}\mapsto$

 $\left\| \cdot \right\| :V\longrightarrow \mathbb{R}$ $\mathbf{v}\mapsto\sqrt{\langle\mathbf{v},\mathbf{v}
angle}$

(Die Norm wird durch das Skalarprodukt induziert.)

 \rightarrow Def. 10.15

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) (Verhältnis Norm und 0)...
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \leqslant \|\mathbf{v}\| + \|\mathbf{w}\|$
- (iv) Cauchy-Schwarz-Ungleichung: $|\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant ||\mathbf{v}|| \cdot ||\mathbf{w}||$

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \geqslant 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \leqslant \|\mathbf{v}\| + \|\mathbf{w}\|$
- (iv) Cauchy-Schwarz-Ungleichung: $|\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant ||\mathbf{v}|| \cdot ||\mathbf{w}||$

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = \dots$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$
- (iv) Cauchy-Schwarz-Ungleichung: $|\langle \mathbf{v}, \mathbf{w} \rangle| \leq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- $\begin{aligned} \text{(iii)} \quad & \textbf{Dreiecksungleichung:} \\ & \|\mathbf{v} + \mathbf{w}\| \leqslant \|\mathbf{v}\| + \|\mathbf{w}\| \end{aligned}$
- $\begin{array}{ll} \text{(iv)} & \textbf{Cauchy-Schwarz-Ungleichung:} \\ |\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant \|\mathbf{v}\| \cdot \|\mathbf{w}\| \end{array}$

 \rightarrow Satz 10.18

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) (Dreiecksungleichung:)
- $\begin{array}{ll} \text{(iv)} \;\; \textbf{Cauchy-Schwarz-Ungleichung:} \\ |\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant \|\mathbf{v}\| \cdot \|\mathbf{w}\| \\ \end{array}$

In jedem euklidischen oder unitären Vektorraum $(V,\langle\cdot,\cdot\rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- $\label{eq:constraints} \begin{array}{ll} \mbox{(iii)} & \mbox{Dreiecksungleichung:} \\ & \|\mathbf{v}+\mathbf{w}\| \leqslant \|\mathbf{v}\| + \|\mathbf{w}\| \end{array}$
- $\begin{array}{ll} \text{(iv)} & \textbf{Cauchy-Schwarz-Ungleichung:} \\ |\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant \|\mathbf{v}\| \cdot \|\mathbf{w}\| \end{array}$

→ Satz 10.18

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \leqslant \|\mathbf{v}\| + \|\mathbf{w}\|$
- (iv) (Cauchy-Schwarz-Ungleichung):

..

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|$
- $\begin{array}{ll} \text{(iv)} \;\; \textbf{Cauchy-Schwarz-Ungleichung:} \\ |\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant \|\mathbf{v}\| \cdot \|\mathbf{w}\| \end{array}$

→ Satz 10.18

Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer oder unitärer Vektorraum. $\mathbf{v} \in V$ heißt **normiert**, falls ...

 $\mathbf{v} \in V$ heißt **normiert**, falls $\|\mathbf{v}\| = 1$

Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer oder unitärer Vektorraum.

→ Def. 10.20

Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer oder unitärer Vektorraum. $\mathbf{v}, \mathbf{w} \in V$ sind zueinander orthogonal , falls	Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer oder unitärer Vektorraum. $\mathbf{v}, \mathbf{w} \in V$ sind zueinander orthogonal , falls $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ [Notation: $\mathbf{v} \perp \mathbf{w}$]
Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer oder unitärer Vektorraum. Eine Basis B von V heißt Orthonormalbasis von V , falls	Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer oder unitärer Vektorraum. Eine Basis $B = (\mathbf{b}_i)_i$ von V heißt Orthonormalbasis von V , falls • jedes $\mathbf{b}_i \in B$ normiert ist, und • jeweils $\mathbf{b}_i \perp \mathbf{b}_j$ für $i \neq j$
	ightarrow Def. 10.20
Sei $(V, \langle \cdot, \cdot \rangle)$ euklidisch oder unitär. Das orthogonale Komplement eines Untervektorraums $W \subseteq V$ ist $W^{\perp} :=$	Sei $(V, \langle \cdot, \cdot \rangle)$ euklidisch oder unitär. Das orthogonale Komplement eines Untervektorraums $W \subseteq V$ ist $W^{\perp} := \{ \mathbf{v} \in V \mid \mathbf{v} \perp \mathbf{w} \text{ für alle } \mathbf{w} \in W \}$

 \rightarrow Def. 10.23

Ein affiner Unterraum eines Vektorraums V ist \dots Ein affiner Unterraum eines Vektorraums V ist eine Teilmenge der Form

$$\mathbf{u}_0 + U = \{ \mathbf{v} \in V \mid \mathbf{v} - \mathbf{u}_0 \in U \}$$

für einen Untervektorraum $U\subseteq V.$

Def LinA-II-10-Skalarprodukte

Eine affine Hyperebene ist ...

Eine **affine Hyperebene** ist ein affiner Unterraum, dessen zugehöriger Untervektorraum U die Dimension $\dim U = \dim V - 1$ hat.

Def LinA-II-10-Skalarprodukte

od8678f8-bdc1-11ec-9d64-0242ac120002

Hessesche Normalform

Jede affine Hyperrebene in einem euklidischen oder unitären VR hat die Form

$$H =$$

Hessesche Normalform

Jede affine Hyperrebene in einem euklidischen oder unitären VR hat die Form

$$H = \{ \mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{n} \rangle = d \}$$

für einen normierten Vektor **n** und ein $d \in \mathbb{R}$ mit $d \geqslant 0$

 \rightarrow Satz 10.25

Für $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ gilt:

- 1. (Winkel zwischen Vektoren und ihrem Kreuzprodukt) ...
- 2. $\|\mathbf{x} \times \mathbf{y}\| = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \sin \sphericalangle(\mathbf{x}, \mathbf{y})$

Für $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ gilt:

- 1. $(\mathbf{x} \times \mathbf{y}) \perp \mathbf{x}$ und $(\mathbf{x} \times \mathbf{y}) \perp \mathbf{y}$
- 2. $\|\mathbf{x} \times \mathbf{y}\| = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \sin \sphericalangle(\mathbf{x}, \mathbf{y})$

→ Satz 10.28

Für $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ gilt:

- 1. $(\mathbf{x} \times \mathbf{y}) \perp \mathbf{x} \text{ und } (\mathbf{x} \times \mathbf{y}) \perp \mathbf{y}$
- 2. (Norm des Kreuzprodukts) ...

Für $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ gilt:

- 1. $(\mathbf{x} \times \mathbf{y}) \perp \mathbf{x}$ und $(\mathbf{x} \times \mathbf{y}) \perp \mathbf{y}$
- 2. $\|\mathbf{x} \times \mathbf{y}\| = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \sin \sphericalangle(\mathbf{x}, \mathbf{y})$

 \rightarrow Satz 10.28

Sei $(V, \langle \cdot, \cdot \rangle)$ euklidischer oder unitärer Vektorraum. Eine Isometrie ist eine lineare Abbildung $f: V \to V$,
für die gilt

Sei $(V,\langle\cdot,\cdot\rangle)$ euklidischer oder unitärer Vektorraum. Eine **Isometrie** ist eine lineare Abbildung $f\colon V\to V,$ für die gilt:

$$\langle f(\mathbf{v}), f(\mathbf{w}) \rangle = \langle \mathbf{v}, \mathbf{w} \rangle$$
 für alle $\mathbf{v} \in V$

→ Def. 11.1

Sei $(V, \langle \cdot, \cdot \rangle)$ euklidischer oder unitärer Vektorraum. Eine **Isometrie** ist ... für die gilt:

$$\langle f(\mathbf{v}), f(\mathbf{w}) \rangle = \langle \mathbf{v}, \mathbf{w} \rangle$$
 für alle $\mathbf{v} \in V$

Sei $(V, \langle \cdot, \cdot \rangle)$ euklidischer oder unitärer Vektorraum. Eine **Isometrie** ist eine lineare Abbildung $f: V \to V$, für die gilt:

$$\langle f(\mathbf{v}), f(\mathbf{w}) \rangle = \langle \mathbf{v}, \mathbf{w} \rangle$$
 für alle $\mathbf{v} \in V$

 \rightarrow Def. 11.1

Alle Eigenwerte einer Isometrie ...

Alle Eigenwerte einer Isometrie haben Betrag 1.

→ Satz 10.2

Satz LinA-II-11-Isometrien

raum haben die Form

21857eac-bf03-11ec-9d64-0242ac120002

Eigenwerte einer Isometrie in einem euklidischen Vektor-

Satz LinA-II-11-Isometrien

raum haben die Form

a =

Eigenwerte einer Isometrie in einem euklidischen Vektor-

$$a = \pm 1$$

 \rightarrow Satz 10.2

21857eac-bf03-11ec-9d64-0242ac120002

Eigenwerte einer Isometrie in einem unitären Vektorraum haben die Form

$$a =$$

Eigenwerte einer Isometrie in einem unitären Vektorraum haben die Form

$$a = x + iy \text{ mit } x^2 + y^2 = 1$$

→ Satz 10.2

Eigenvektoren zu verschiedenen Eigenwerten einer Isometrie ...

Eigenvektoren zu verschiedenen Eigenwerten einer Isometrie stehen senkrecht zueinander.

→ Satz 10.2

21857eac-bf03-11ec-9d64-0242ac120002

Satz LinA-II-11-Isometrien

21857eac-bf03-11ec-9d64-0242ac120002

Sei $K \in \{\mathbb{R}, \mathbb{C}\}$ und $V = K^n$ versehen mit dem entsprechenden Standardskalarprodukt.

Für $A \in \operatorname{Mat}_K(n \times n)$ sind äquivalent:

(i) f_A ist eine Isometrie auf V.

LinA-II-11-Isometrien

- (ii) A ist invertierbar und $A^{-1} = \overline{A}^T$
- (iii) Die Spalten von A bilden eine Orthonormalbasis von V.
- (iv) Die Zeilen von A bilden eine Orthonormalbasis von V.

 \rightarrow Satz 11.3

Sei $K \in \{\mathbb{R}, \mathbb{C}\}$ und $V = K^n$ versehen mit dem entsprechenden Standardskalarprodukt.

Für $A \in \operatorname{Mat}_K(n \times n)$ sind äquivalent:

- (i) ...
- (ii) A ist invertierbar und $A^{-1} = \overline{A}^T$
- (iii) Die Spalten von A bilden eine Orthonormalbasis von V.
- (iv) Die Zeilen von A bilden eine Orthonormalbasis von V.

Sei $K \in \{\mathbb{R}, \mathbb{C}\}$ und $V = K^n$ versehen mit dem entsprechenden Standardskalarprodukt.

Für $A \in \operatorname{Mat}_K(n \times n)$ sind äquivalent:

- (i) f_A ist eine Isometrie auf V.
- (ii) ...
- (iii) Die Spalten von A bilden eine Orthonormalbasis von V.
- (iv) Die Zeilen von A bilden eine Orthonormalbasis von V.

Sei $K \in \{\mathbb{R}, \mathbb{C}\}$ und $V = K^n$ versehen mit dem entsprechenden Standardskalarprodukt.

Für $A \in \operatorname{Mat}_K(n \times n)$ sind äquivalent:

- (i) f_A ist eine Isometrie auf V.
- (ii) A ist invertier bar und $A^{-1} = \overline{A}^T$
- (iii) Die Spalten von A bilden eine Orthonormalbasis von V.
- (iv) Die Zeilen von A bilden eine Orthonormalbasis von V.

 \rightarrow Satz 11.3

Sei $K \in \{\mathbb{R}, \mathbb{C}\}$ und $V = K^n$ versehen mit dem entsprechenden Standardskalarprodukt.

Für $A \in \operatorname{Mat}_K(n \times n)$ sind äquivalent:

- (i) f_A ist eine Isometrie auf V.
- (ii) A ist invertierbar und $A^{-1} = \overline{A}^T$
- (iii) ...
- (iv) Die Zeilen von A bilden eine Orthonormalbasis von V.

Sei $K \in \{\mathbb{R}, \mathbb{C}\}$ und $V = K^n$ versehen mit dem entsprechenden Standardskalarprodukt.

Für $A \in \operatorname{Mat}_K(n \times n)$ sind äquivalent:

- (i) f_A ist eine Isometrie auf V.
- (ii) A ist invertierbar und $A^{-1} = \overline{A}^T$
- (iii) Die Spalten von A bilden eine Orthonormalbasis von V.
- (iv) Die Zeilen von A bilden eine Orthonormalbasis von V.

 \rightarrow Satz 11.3

Sei $K \in \{\mathbb{R}, \mathbb{C}\}$ und $V = K^n$ versehen mit dem entsprechenden Standardskalarprodukt.

Für $A \in \operatorname{Mat}_K(n \times n)$ sind äquivalent:

- (i) f_A ist eine Isometrie auf V.
- (ii) A ist invertierbar und $A^{-1} = \overline{A}^T$
- (iii) Die Spalten von A bilden eine Orthonormalbasis von V.
- (iv) ...

Sei $K \in \{\mathbb{R}, \mathbb{C}\}$ und $V = K^n$ versehen mit dem entsprechenden Standardskalarprodukt.

Für $A \in \operatorname{Mat}_K(n \times n)$ sind äquivalent:

- (i) f_A ist eine Isometrie auf V.
- (ii) A ist invertierbar und $A^{-1} = \overline{A}^T$
- (iii) Die Spalten von A bilden eine Orthonormalbasis von V.
- (iv) Die Zeilen von A bilden eine Orthonormalbasis von V.

 \rightarrow Satz 11.3

Die allgemeine lineare Gruppe über einem Körper K ist definiert als

$$GL_n(K) := \dots$$

= $(\{A \in Mat_K(n \times n) \mid det(A) \neq 0\}, \cdot)$

Die allgemeine lineare Gruppe über einem Körper K ist definiert als

$$GL_n(K) := (\{A \in Mat_K(n \times n) \mid f_A \text{ Isomorphismus}\}, \cdot)$$
$$= (\{A \in Mat_K(n \times n) \mid det(A) \neq 0\}, \cdot)$$

 \rightarrow Def/Satz 11.5

Die allgemeine lineare Gruppe über einem Körper K ist definiert als

$$\operatorname{GL}_n(K) := (\{A \in \operatorname{Mat}_K(n \times n) \mid f_A \operatorname{Isomorphismus}\}, \cdot)$$

= . . .

Die allgemeine lineare Gruppe über einem Körper K ist definiert als

$$GL_n(K) := (\{A \in Mat_K(n \times n) \mid f_A \text{ Isomorphismus}\}, \cdot)$$
$$= (\{A \in Mat_K(n \times n) \mid det(A) \neq 0\}, \cdot)$$

 \rightarrow Def/Satz 11.5

Die spezielle lineare Gruppe über einem Körper K ist definiert als
$\mathrm{SL}_n(K) :=$

Die **spezielle lineare Gruppe** über einem Körper K ist definiert als

$$\mathrm{SL}_n(K) := (\{A \in \mathrm{Mat}_K(n \times n) \mid \det(A) = 1\}, \cdot)$$

 \rightarrow Def/Satz 11.5

Die **orthogonale Gruppe** ist definiert als

$$O(n) := \dots$$
$$= (\{A \in \operatorname{GL}_n(\mathbb{R}) \mid A^{-1} = A^T\}, \cdot)$$

Die orthogonale Gruppe ist definiert als

$$O(n) := (\{A \in \operatorname{Mat}_{\mathbb{R}}(n \times n) \mid f_A \text{ Isometrie}\}, \cdot)$$
$$= (\{A \in \operatorname{GL}_n(\mathbb{R}) \mid A^{-1} = A^T\}, \cdot)$$

 \rightarrow Def/Satz 11.5

Die orthogonale Gruppe ist definiert als

$$O(n) := (\{A \in Mat_{\mathbb{R}}(n \times n) \mid f_A \text{ Isometrie}\}, \cdot)$$

= ...

Die **orthogonale Gruppe** ist definiert als

$$O(n) := (\{A \in \operatorname{Mat}_{\mathbb{R}}(n \times n) \mid f_A \text{ Isometrie}\}, \cdot)$$
$$= (\{A \in \operatorname{GL}_n(\mathbb{R}) \mid A^{-1} = A^T\}, \cdot)$$

 \rightarrow Def/Satz 11.5

Die spezielle orthogonale Gruppe ist definiert als

$$SO(n) :=$$

Die **spezielle orthogonale Gruppe** ist definiert als

$$SO(n) := O(n) \cap SL_n(\mathbb{R})$$

→ Def/Satz 11.5

Die unitäre Gruppe ist definiert als $U(n):=\ldots \\ = (\{A\in \operatorname{GL}_n(\mathbb{C})\mid A^{-1}=\overline{A}^T\},\cdot)$	Die unitäre Gruppe ist definiert als $U(n):=(\{A\in\operatorname{Mat}_{\mathbb{C}}(n\times n)\mid f_A \text{ Isometrie}\},\cdot)$ $=(\{A\in\operatorname{GL}_n(\mathbb{C})\mid A^{-1}=\overline{A}^T\},\cdot)$ \rightarrow Def/Satz 11.5
Die unitäre Gruppe ist definiert als $\mathrm{U}(n):=(\{A\in\mathrm{Mat}_{\mathbb{C}}(n\times n)\mid f_A \text{ Isometrie}\},\cdot)\\ =\ldots$	Die unitäre Gruppe ist definiert als $U(n):=(\{A\in\operatorname{Mat}_{\mathbb{C}}(n\times n)\mid f_A \text{ Isometrie}\},\cdot)$ $=(\{A\in\operatorname{GL}_n(\mathbb{C})\mid A^{-1}=\overline{A}^T\},\cdot)$ \to Def/Satz 11.5

Die spezielle unitäre Gruppe ist definiert als

$$SU(n) :=$$

 $\mathrm{SU}(n) := \mathrm{U}(n) \cap \mathrm{SL}_n(\mathbb{R})$

Die spezielle unitäre Gruppe ist definiert als

 $\rightarrow \, \mathrm{Def/Satz} \,\, 11.5$

Eine Isometrie auf \mathbb{R}^2 ist . . . oder eine Spiegelung an einer Ursprungsgeraden.

Eine Isometrie auf \mathbb{R}^2 ist eine Rotation um $\mathbf{0}$ oder eine Spiegelung an einer Ursprungsgeraden.

→ Lemma 11.6

Eine Isometrie auf \mathbb{R}^2 ist eine Rotation um $\mathbf{0}$ oder . . .

Eine Isometrie auf \mathbb{R}^2 ist eine Rotation um **0** oder eine Spiegelung an einer Ursprungsgeraden.

 \rightarrow Lemma 11.6

Die orthogonale Gruppe O(2) hat die Form

$$O(2) = \dots \left\{ \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \mid a, b \in \mathbb{R}, a^2 + b^2 = 1 \right\}$$

Die orthogonale Gruppe O(2) hat die Form

$$O(2) = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{R}, a^2 + b^2 = 1 \right\}$$
$$\dot{\cup} \left\{ \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \mid a, b \in \mathbb{R}, a^2 + b^2 = 1 \right\}$$

→ Lemma 11.6

Die orthogonale Gruppe O(2) hat die Form

$$O(2) = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{R}, a^2 + b^2 = 1 \right\}$$
...

Die orthogonale Gruppe O(2) hat die Form

$$O(2) = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{R}, a^2 + b^2 = 1 \right\}$$
$$\dot{\cup} \left\{ \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \mid a, b \in \mathbb{R}, a^2 + b^2 = 1 \right\}$$

→ Lemma 11.6

Struktursatz für euklidische Isometrien Jede Isometrie eines ... euklidischen Vektorraums hat bezüglich einer geeigneten Orthonor-

$$mal$$
basis eine darstellende Matrix der Form
$$\begin{pmatrix} +1 & & & & & \\ & \ddots & & & & \\ & +1 & & 0 & & \\ & & & -1 & & \\ & & & \ddots & & \\ & & & & -1 & \\ & & & & A_1 & \\ & & & & \ddots & \\ & & & & A_k \end{pmatrix}$$

mit A_i Rotationsmatrizen.

Struktursatz für euklidische Isometrien Jede Isometrie eines endlich-dimensionalen euklidischen Vektorraums hat bezüglich einer geeigneten Orthonormalbasis eine darstellende Matrix der Form

$$\begin{pmatrix} +1 & & & & & & \\ & \ddots & & & & & \\ & & +1 & & 0 & & \\ & & & -1 & & \\ & & & \ddots & & \\ & & & & A_1 & & \\ & & & & \ddots & \\ & & & & A_k / \end{pmatrix}$$

mit A_i Rotationsmatrizen.

→ satz 11.7

Struktursatz für euklidische Isometrien

Jede Isometrie eines endlich-dimensionalen euklidischen Vektorraums hat . . .

eine darstellende Matrix der Form

mit A_i Rotationsmatrizen.

Struktursatz für euklidische Isometrien

Jede Isometrie eines endlich-dimensionalen euklidischen Vektorraums hat bezüglich einer geeigneten *Orthonormal*basis eine darstellende Matrix der Form

mit A_i Rotationsmatrizen.

 \rightarrow satz 11.7

Struktursatz für euklidische Isometrien

Jede Isometrie eines endlich-dimensionalen euklidischen Vektorraums hat bezüglich einer geeigneten Orthonormalbasis eine darstellende Matrix der Form ...

Struktursatz für euklidische Isometrien

Jede Isometrie eines endlich-dimensionalen euklidischen Vektorraums hat bezüglich einer geeigneten *Orthonormal*basis eine darstellende Matrix der Form

mit A_i Rotationsmatrizen.

 \rightarrow satz 11.7

Sei K eine Körper, V ein K-Vektorraum, $f\colon V\to V$ ein Endomorphismus.

Ein Untervektorraum $W \subseteq V$ heißt **f-stabil**, falls ...

Sei K eine Körper, V ein K-Vektorraum, $f\colon V\to V$ ein Endomorphismus.

Ein Untervektorraum $W\subseteq V$ heißt **f-stabil**, falls $f(W)\subseteq W$.

 \rightarrow Satz 11.7

Jede Isometrie f eines endlich-dimensionalen euklidischen Vektorraums $V \neq \{0\}$ besitzt . . . (Untervektorraum)

Jede Isometrie f eines endlich-dimensionalen euklidischen Vektorraums $V \neq \{0\}$ besitzt einen f-stabilen Untervektorraum der Dimension 1 oder 2.

 \rightarrow Lemma 11.11

Struktursatz für unitäre Isometrien

Jede Isometrie eines . . . unitären Vektor raums wird bezüglich einer geeigneten *Orthonormal*basis dargestellt von einer Diagonalmatrix

$$\begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}$$

mit $a_i \in \mathbb{C}, |a_i| = 1.$

Struktursatz für unitäre Isometrien

Jede Isometrie eines endlich-dimensionalen unitären Vektorraums wird bezüglich einer geeigneten *Orthonormal*basis dargestellt von einer Diagonalmatrix

$$\begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}$$

 $mit \ a_i \in \mathbb{C}, |a_i| = 1.$

→ Satz 11.12

Struktursatz für unitäre Isometrien

Jede Isometrie eines endlich-dimensionalen unitären Vektorraums wird \dots

dargestellt von einer Diagonalmatrix

$$\begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}$$

 $mit \ a_i \in \mathbb{C}, |a_i| = 1.$

Struktursatz für unitäre Isometrien

Jede Isometrie eines endlich-dimensionalen unitären Vektorraums wird bezüglich einer geeigneten Orthonormalbasis dargestellt von einer Diagonalmatrix

$$\begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}$$

 $mit \ a_i \in \mathbb{C}, |a_i| = 1.$

→ Satz 11.12

Struktursatz für unitäre Isometrien

Jede Isometrie eines endlich-dimensionalen unitären Vektorraums wird bezüglich einer geeigneten Orthonormalbasis dargestellt von ...

Struktursatz für unitäre Isometrien

Jede Isometrie eines endlich-dimensionalen unitären Vektorraums wird bezüglich einer geeigneten *Orthonormal*basis dargestellt von einer Diagonalmatrix

$$\begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}$$

 $mit \ a_i \in \mathbb{C}, |a_i| = 1.$

→ Satz 11.12

Ein Endomorphismus f eines euklidischen oder unitären Vektorraums $(V, \langle \cdot, \cdot \rangle)$ ist selbstadjungiert, falls ...

Ein Endomorphismus f eines euklidischen oder unitären Vektorraums $(V, \langle \cdot, \cdot \rangle)$ ist selbstadjungiert, falls

$$\langle f(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, f(\mathbf{w}) \rangle \quad \forall \mathbf{v}, \mathbf{w} \in V$$

 \rightarrow Def. 12.1

Spektralsatz

Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlich-dimensionaler euklidischer oder unitärer Vektorraum.

Zu ... f auf V existiert eine Orthonormalbasis von V aus Eigenvektoren von f.

Spektralsatz

(Hauptachsentransformation für selbstadj. Abb.)

Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlich-dimensionaler euklidischer oder unitärer Vektorraum.

Zu jedem selbstadjungierten Endomorphismus f auf V existiert eine Orthonormalbasis von V aus Eigenvektoren von f.

 \rightarrow Satz 12.4

Spektralsatz

(Hauptachsentransformation für selbstadj. Abb.)

Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlich-dimensionaler euklidischer oder unitärer Vektorraum.

Zu jedem selbstadjungierten Endomorphismus f auf V existiert \dots

Spektralsatz

(Hauptachsentransformation für selbstadj. Abb.)

Sei $(V, \langle \cdot, \cdot \rangle)$ ein endlich-dimensionaler euklidischer oder unitärer Vektorraum.

Zu jedem selbstadjungierten Endomorphismus f auf V existiert eine Orthonormalbasis von V aus Eigenvektoren von f.

→ Satz 12.4

Hauptachsentransformation für Matrizen

Zu jeder . . . Matrix A existiert eine Matrix $S \in \mathcal{O}(n)$ mit

$$S^{-1}AS = S^TAS = \begin{pmatrix} a_1 & & 0 \\ & \ddots & \\ 0 & & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

Hauptachsentransformation für Matrizen

Zu jeder reellen symmetrischen Matrix

 $A \in \operatorname{Mat}_{\mathbb{R}}(n \times n)$ existiert eine Matrix $S \in O(n)$ mit

$$S^{-1}AS = S^TAS = \begin{pmatrix} a_1 & & 0 \\ & \ddots & \\ 0 & & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

→ Satz 12.5

Hauptachsentransformation für Matrizen

Zu jeder reellen symmetrischen Matrix

 $A \in \operatorname{Mat}_{\mathbb{R}}(n \times n)$ existiert eine Matrix ... mit

$$S^{-1}AS = S^{T}AS = \begin{pmatrix} a_1 & 0 \\ & \ddots & \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

Hauptachsentransformation für Matrizen

Zu jeder reellen symmetrischen Matrix

 $A \in \operatorname{Mat}_{\mathbb{R}}(n \times n)$ existiert eine Matrix $S \in O(n)$ mit

$$S^{-1}AS = S^{T}AS = \begin{pmatrix} a_1 & 0 \\ & \ddots & \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

Hauptachsentransformation für Matrizen

Zu jeder reellen symmetrischen Matrix

 $A \in \operatorname{Mat}_{\mathbb{R}}(n \times n)$ existiert eine Matrix $S \in \operatorname{O}(n)$ mit

. . .

Hauptachsentransformation für Matrizen

Zu jeder reellen symmetrischen Matrix

 $A \in \operatorname{Mat}_{\mathbb{R}}(n \times n)$ existiert eine Matrix $S \in O(n)$ mit

$$S^{-1}AS = S^TAS = \begin{pmatrix} a_1 & 0 \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

 \rightarrow Satz 12.5

Hauptachsentransformation für Matrizen

Zu jeder ... Matrix $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$ existiert eine Matrix $S \in \operatorname{U}(n)$ mit

$$S^{-1}AS = \bar{S}^T AS = \begin{pmatrix} a_1 & 0 \\ \ddots & \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

Hauptachsentransformation für Matrizen

Zu jeder hermiteschen Matrix $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$ existiert eine Matrix $S \in \operatorname{U}(n)$ mit

$$S^{-1}AS = \overline{S}^T AS = \begin{pmatrix} a_1 & & 0 \\ & \ddots & \\ 0 & & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

 \rightarrow Satz 12.5

Hauptachsentransformation für Matrizen

Zu jeder hermiteschen Matrix $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$ existiert eine Matrix . . . mit

$$S^{-1}AS = \bar{S}^TAS = \begin{pmatrix} a_1 & & 0 \\ & \ddots & \\ 0 & & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

Hauptachsentransformation für Matrizen

Zu jeder hermiteschen Matrix $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$ existiert eine Matrix $S \in \operatorname{U}(n)$ mit

$$S^{-1}AS = \overline{S}^T AS = \begin{pmatrix} a_1 & 0 \\ & \ddots \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

→ Satz 12.5

Hauptachsentransformation für Matrizen

Zu jeder hermiteschen Matrix $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$ existiert eine Matrix $S \in \operatorname{U}(n)$ mit . . .

Hauptachsentransformation für Matrizen

Zu jeder hermiteschen Matrix $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$ existiert eine Matrix $S \in \operatorname{U}(n)$ mit

$$S^{-1}AS = \overline{S}^T AS = \begin{pmatrix} a_1 & 0 \\ & \ddots \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

 \rightarrow Satz 12.5

Hauptachsentransformation für Formen

Zu jeder symmetrischen Bilinearform β auf einem endlichdimensionalen euklidischen Vektorraum $(V,\langle\cdot,\cdot\rangle)$ existiert ... B mit

$$M_B(\beta) = \begin{pmatrix} a_1 & 0 \\ & \ddots & \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

Hauptachsentransformation für Formen

Zu jeder symmetrischen Bilinearform β auf einem endlichdimensionalen euklidischen Vektorraum $(V, \langle \cdot, \cdot \rangle)$ existiert eine Orthonormalbasis B, in der gilt:

$$M_B(\beta) = \begin{pmatrix} a_1 & & 0 \\ & \ddots & \\ 0 & & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

→ Satz 12.6

Hauptachsentransformation für Formen

Zu jeder symmetrischen Bilinearform β auf einem endlichdimensionalen euklidischen Vektorraum $(V, \langle \cdot, \cdot \rangle)$ existiert eine Orthonormalbasis B, in der gilt: . . .

Hauptachsentransformation für Formen

Zu jeder symmetrischen Bilinearform β auf einem endlichdimensionalen euklidischen Vektorraum $(V, \langle \cdot, \cdot \rangle)$ existiert eine Orthonormalbasis B, in der gilt:

$$M_B(\beta) = \begin{pmatrix} a_1 & & 0 \\ & \ddots & \\ 0 & & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

→ Satz 12.6

Hauptachsentransformation für Formen

Zu jeder hermiteschen Sesquilinearform β auf einem endlich-dimensionalen unitären Vektorraum $(V,\langle\cdot,\cdot\rangle)$ existiert ... mit:

$$M_B(\beta) = \begin{pmatrix} a_1 & 0 \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

Hauptachsentransformation für Formen

Zu jeder hermiteschen Sesquilinearform β auf einem endlich-dimensionalen unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ existiert eine Orthonormalbasis B, in der gilt:

$$M_B(\beta) = \begin{pmatrix} a_1 & 0 \\ \ddots & \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

→ Satz 12.6

Hauptachsentransformation für Formen

Zu jeder hermiteschen Sesquilinearform β auf einem endlich-dimensionalen unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ existiert eine Orthonormalbasis B, in der gilt: ...

Hauptachsentransformation für Formen

Zu jeder hermiteschen Sesquilinearform β auf einem endlich-dimensionalen unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ existiert eine Orthonormalbasis B, in der gilt:

$$M_B(\beta) = \begin{pmatrix} a_1 & 0 \\ 0 & a_n \end{pmatrix}$$

für gewisse $a_i \in \mathbb{R}$.

 $\rightarrow \ \mathrm{Satz} \ 12.6$

Sei V ein endlich-dimensionaler reeller Vektorraum und β eine Bilinearform auf V.

Die assoziierte quadratische Abbildung ist ...

Sei V ein endlich-dimensionaler reeller Vektorraum und β eine Bilinearform auf V.

Die assoziierte quadratische Abbildung ist

$$q_{\beta}: V \longrightarrow \mathbb{R}$$

 $\mathbf{v} \mapsto \beta(\mathbf{v}, \mathbf{v})$

 \rightarrow Def 12.7

Sei V ein endlich-dimensionaler reeller Vektorraum und β eine Bilinearform auf V.

Die assoziierte reelle affine Quadrik ist ...

Sei V ein endlich-dimensionaler reeller Vektorraum und β eine Bilinearform auf V.

Die assoziierte reelle affine Quadrik ist die Menge

$$Q_{\beta} := \{ \mathbf{v} \in V \mid \beta(\mathbf{v}, \mathbf{v}) = 1 \}$$

 \rightarrow Def 12.7

Hauptachsentransformation für Quadriken

Jede reelle affine Quadrik in einem euklidischen Vektorraum $(V, \langle \cdot, \cdot \rangle)$ hat bezüglich einer geeigneten Orthonormalbasis $(\mathbf{b_1}, \dots, \mathbf{b_n})$ von V die Form ...

Hauptachsentransformation für Quadriken

Jede reelle affine Quadrik in einem **euklidischen** Vektorraum $(V, \langle \cdot, \cdot \rangle)$ hat bezüglich einer geeigneten Orthonormalbasis $(\mathbf{b_1}, \dots, \mathbf{b_n})$ von V die Form

$$Q = \{ \sum_{i=1}^{n} x_i \mathbf{b_i} \in V \mid \sum a_i x_i^2 = 1 \}$$

für gewisse $a_i \in \mathbb{R}$.

→ Satz 12.8

Trägheitssatz von Sylvester

Jede reelle symmetrische Matrix A ist kongruent zu einer Diagonalmatrix der Form ...

Trägheitssatz von Sylvester

Jede reelle symmetrische Matrix A ist kongruent zu einer Diagonalmatrix der Form

Die Anzahl der +1-, -1- und 0-Einträge ist dabei durch A eindeutig bestimmt.

 \rightarrow Satz 12.9

Ein Integritätsring ist ein dem für alle $a, b \in R$ gilt:	Ring R , in
$ab = 0 \Rightarrow [a = 0 \text{ oder } b = 0]$	

Ein **Integritätsring** ist ein kommutativer Ring R, in dem für alle $a,b\in R$ gilt:

$$ab = 0 \Rightarrow [a = 0 \text{ oder } b = 0]$$

→ Def. 13.1

Ein **Integritätsring** ist ein kommutativer Ring R, in dem gilt: ...

Ein **Integritätsring** ist ein kommutativer Ring R, in dem für alle $a, b \in R$ gilt:

$$ab = 0 \Rightarrow [a = 0 \text{ oder } b = 0]$$

 \rightarrow Def. 13.1

Für jeden Integritätsring R ist (Polynomring über R) . . .

Für jeden Integritätsring R ist auch R[X] ein Integritätsring.

 \rightarrow Satz 13.2

Für jeden Integritätsring R gilt

$$(R[X])^{\times} =$$

Für jeden Integritätsring R gilt

$$(R[X])^{\times} = R^{\times}$$

 \rightarrow Satz 13.2

Sei R ein Integritätsring und $a, b \in R$. a ist ein **Teiler** von b und b ist ein **Vielfaches** von a (a|b) genau dann, wenn ...

Sei R ein Integritätsring und $a,b \in R$. a ist ein **Teiler** von b und b ist ein **Vielfaches** von a (a|b) genau dann, wenn

$$\exists c \in R \colon b = c \cdot a$$

→ Def. 13.4

Sei R ein Integritätsring und $a, b \in R$. a und b sind **assoziiert** $(a \sim b)$ genau dann, wenn ... Sei R ein Integritätsring und $a,b\in R$. a und b sind **assoziiert** $(a\sim b)$ genau dann, wenn

$$\exists c \in R^{\times} \colon b = c \cdot a$$

→ Def 13.4

Sei R ein Integritätsring und $a,b\in R$. c ist ein **größter gemeinsamer Teiler** von a und b $(c\sim \operatorname{ggT}(a,b))$ genau dann, wenn

• ...

und

• $\forall c' \in R : (c'|a) \text{ und } (c'|b) \Rightarrow c'|c$

Sei R ein Integritätsring und $a, b \in R$. c ist ein **größter gemeinsamer Teiler** von a und b $(c \sim ggT(a, b))$ genau dann, wenn

• c|a und c|b

und

• $\forall c' \in R : (c'|a) \text{ und } (c'|b) \Rightarrow c'|c$

→ Def. 13.7

Sei R ein Integritätsring und $a,b \in R$. c ist ein **größter gemeinsamer Teiler** von a und b $(c \sim \operatorname{ggT}(a,b))$ genau dann, wenn

• c|a und c|b

und

•

Sei R ein Integritätsring und $a, b \in R$. c ist ein **größter gemeinsamer Teiler** von a und b $(c \sim ggT(a, b))$ genau dann, wenn

• c|a und c|b

und

• $\forall c' \in R : (c'|a) \text{ und } (c'|b) \Rightarrow c'|c$

 \rightarrow Def. 13.7

Sei R ein Integritätsring und $a, b \in R$.
a und b sind teilerfremd , falls

Sei R ein Integritätsring und $a, b \in R$. a und b sind **teilerfremd**, falls $1 \sim ggT(a, b)$

 \rightarrow Def. 13.7

Sei R ein Integritätsring und $a,b \in R$. c ist ein **kleinstes gemeinsames Vielfaches** von a und b $(c \sim \text{kgV}(a,b))$ genau dann, wenn

• ..

und

• $\forall c' \in R : (a|c') \text{ und } (b|c') \Rightarrow c|c'|$

Sei R ein Integritätsring und $a, b \in R$. c ist ein **kleinstes gemeinsames Vielfaches** von a und b ($c \sim \text{kgV}(a, b)$) genau dann, wenn

• a|c und b|c

und

• $\forall c' \in R : (a|c') \text{ und } (b|c') \Rightarrow c|c'|$

 \rightarrow Def. 13.7

Sei R ein Integritätsring und $a,b \in R$. c ist ein **kleinstes gemeinsames Vielfaches** von a und b ($c \sim \text{kgV}(a,b)$) genau dann, wenn

• a|c und b|c

und

und

• ...

Sei R ein Integritätsring und $a,b \in R$. c ist ein **kleinstes gemeinsames Vielfaches** von a und b ($c \sim \text{kgV}(a,b)$) genau dann, wenn

• a|c und b|c

und

• $\forall c' \in R : (a|c') \text{ und } (b|c') \Rightarrow c|c'$

→ Def. 13.7

Ein Integritätsring R ist **euklidisch**, falls eine Abbildung

$$\delta: R \setminus \{0\} \longrightarrow \mathbb{N}_0$$

mit folgender Eigenschaft existiert: Für $a, b \in R$ mit $b \neq 0$ existieren q, r mit

. . .

 $r = 0 \text{ oder } \delta(r) < \delta(b)$

Ein Integritätsring R ist **euklidisch**, falls eine Abbildung

$$\delta: R \setminus \{0\} \longrightarrow \mathbb{N}_0$$

mit folgender Eigenschaft existiert: Für $a, b \in R$ mit $b \neq 0$ existieren q, r mit

$$a = q \cdot b + r$$

und

$$r = 0 \text{ oder } \delta(r) < \delta(b)$$

Ein Integritätsring R ist **euklidisch**, falls eine Abbildung

$$\delta: R \setminus \{0\} \longrightarrow \mathbb{N}_0$$

mit folgender Eigenschaft existiert: Für $a,b\in R$ mit $b\neq 0$ existieren q,r mit

$$a = q \cdot b + r$$

und

. . .

Ein Integritätsring R ist **euklidisch**, falls eine Abbildung

$$\delta: R \setminus \{0\} \longrightarrow \mathbb{N}_0$$

mit folgender Eigenschaft existiert: Für $a, b \in R$ mit $b \neq 0$ existieren q, r mit

$$a = q \cdot b + r$$

und

$$r = 0 \text{ oder } \delta(r) < \delta(b)$$

 \rightarrow Def. 13.9

Lemma von Bézout

In jedem euklidischen Ring gilt:

$$c \sim ggT(a, b) \Rightarrow$$

Lemma von Bézout

In jedem euklidischen Ring gilt:

$$c \sim ggT(a, b) \Rightarrow \exists x, y \colon c = xa + yb$$

 \rightarrow Lemma 13.13

In jedem euklidischen Ring gilt:

$$a, b$$
 teilerfremd \Leftrightarrow

In jedem euklidischen Ring gilt:

$$a, b$$
 teilerfremd $\Leftrightarrow \exists x, y \colon 1 = x \cdot a + y \cdot b$

 \rightarrow Korollar 13.14

In jedem euklidischen Ring gilt:

$$\Leftrightarrow \exists x, y \colon 1 = x \cdot a + y \cdot b$$

In jedem euklidischen Ring gilt:

$$a, b$$
 teilerfremd $\Leftrightarrow \exists x, y \colon 1 = x \cdot a + y \cdot b$

 \rightarrow Korollar 13.14

Sei R ein Integritätsring. Ein Element $p \in R \setminus (R^{\times} \cup \{0\})$ ist irreduzibel , falls	Sei R ein Integritätsring. Ein Element $p \in R \setminus (R^{\times} \cup \{0\})$ ist irreduzibel , falls für $a,b \in R$ gilt: $p = a \cdot b \Rightarrow (a \in R^{\times} \text{ oder } b \in R^{\times})$
Def LinA-II-13-Euklidische-Ringe 1a1b1607-0506-4438-b2a4-e0f89c3a2089	ightarrow Def. 13.15
Sei R ein Integritätsring. Ein Element $p \in R \setminus (R^{\times} \cup \{0\})$ ist prim , falls	Sei R ein Integritätsring. Ein Element $p\in R\setminus (R^\times\cup\{0\})$ ist prim , falls für $a,b\in R$ gilt: $p ab\Rightarrow p b \text{ oder }p a$ \to Def. 13.15
Def LinA-II-13-Euklidische-Ringe 1a1b1607-0506-4438-b2a4-e0f89c3a2089	
In einem Integritätsring R gilt: (Zusammenhang prim	In einem Integritätsring R gilt:

In einem Integritätsring R gilt: (Zusammenhang prim und irreduzibel)...

In einem Integritätsring R gilt:

 $p \in R$ prim $\Rightarrow p$ irreduzibel

→ Satz 13.16

In einem euklidischen Ring R gilt: (Zusammenhang prim und irreduzibel)

 \dots In einem euklidischen Ring R gilt: $p \in R \text{ prim } \Leftrightarrow p \text{ irreduzibel}$

 \rightarrow Satz 13.16

LinA-II-13-Euklidische-Ringe

Satz LinA-II-13-Euklidische-Ringe

53b1954d-e3f5-4cd5-aa5c-d8266a638202

53b1954d-e3f5-4cd5-aa5c-d8266a638202

Eine Primfaktorzerlegung von $a \in R$ ist	Eine Primfaktorzerlegung von $a\in R$ ist eine Darstellung von a als Produkt $a=p_1p_2\cdots p_r$ mit $r\in \mathbb{N}$ und $p_i\in R$ prim. $\to Def. 13.19$
Def LinA-II-13-Euklidische-Ringe e5c8519c-02d7-4561-8a22-6aba87daa2b3	
Ein Integritätsring R heißt faktoriell , wenn \dots	Ein Integritätsring R heißt faktoriell , wenn jedes $a \in R \setminus (R^{\times} \cup \{0\})$ eine Primfaktorzerlegung besitzt.
	→ Def. 13.19
Def LinA-II-13-Euklidische-Ringe e5c8519c-02d7-4561-8a22-6aba87daa2b3	
Falls eine $Primfaktorzerlegung$ von $a \in R$ existiert, so ist diese	Falls eine $Primfaktorzerlegung$ von $a \in R$ existiert, so ist diese $eindeutig$ bis auf Reihenfolge der Faktoren und Assoziiertheit.
	\rightarrow Satz 13.20
Satz LinA-II-13-Euklidische-Ringe 89327ded-c7e4-49f1-a10f-9199de4016be	
Für jeden Körper K ist \dots faktoriell.	Für jeden Körper K ist $K[X]$ faktoriell.
	→ Satz 13.22
Satz LinA-II-13-Euklidische-Ringe 8a2baefd-95e9-4ac4-91d6-96ab9a9a7d0c	

Das **Minimalpolynom** von f ist das eindeutige Polynom $\mu_f \in K[X] \setminus \{0\}$ für das gilt:

- $(1) \ldots$
- (2) Unter allen Polynomen $\neq 0$, die (1) erfüllen, hat μ_f minimalen Grad.
- (3) μ_f ist normiert (d.h. Leitkoeffizient = 1)

Das **Minimalpolynom** von f ist das eindeutige Polynom $\mu_f \in K[X] \setminus \{0\}$ für das gilt:

- (1) $\mu_f(f) = 0$ (Nullabbildung in $\operatorname{End}_K(V)$)
- (2) Unter allen Polynomen $\neq 0$, die (1) erfüllen, hat μ_f minimalen Grad.
- (3) μ_f ist normiert (d.h. Leitkoeffizient = 1)

 \rightarrow Def. 14.4

Das **Minimalpolynom** von f ist das eindeutige Polynom $\mu_f \in K[X] \setminus \{0\}$ für das gilt:

- (1) $\mu_f(f) = 0$ (Nullabbildung in $\operatorname{End}_K(V)$)
- $(2) \dots$
- (3) μ_f ist normiert (d.h. Leitkoeffizient = 1)

Das **Minimalpolynom** von f ist das eindeutige Polynom $\mu_f \in K[X] \setminus \{0\}$ für das gilt:

- (1) $\mu_f(f) = 0$ (Nullabbildung in $\operatorname{End}_K(V)$)
- (2) Unter allen Polynomen $\neq 0$, die (1) erfüllen, hat μ_f minimalen Grad.
- (3) μ_f ist normiert (d.h. Leitkoeffizient = 1)

 \rightarrow Def. 14.4

Das **Minimalpolynom** von f ist das eindeutige Polynom $\mu_f \in K[X] \setminus \{0\}$ für das gilt:

- (1) $\mu_f(f) = 0$ (Nullabbildung in $\operatorname{End}_K(V)$)
- (2) Unter allen Polynomen $\neq 0$, die (1) erfüllen, hat μ_f minimalen Grad.
- $(3) \dots$

Das **Minimalpolynom** von f ist das eindeutige Polynom $\mu_f \in K[X] \setminus \{0\}$ für das gilt:

- (1) $\mu_f(f) = 0$ (Nullabbildung in $\operatorname{End}_K(V)$)
- (2) Unter allen Polynomen $\neq 0$, die (1) erfüllen, hat μ_f minimalen Grad.
- (3) μ_f ist normiert (d.h. Leitkoeffizient = 1)

→ Def. 14.4

Satz von Caley-Hamilton

Für das charakteristische Polynom eines Endomorphismus f gilt . . .

Satz von Caley-Hamilton

Für das charakteristische Polynom eines Endomorphismus f gilt

$$\chi_f(f) = 0$$

→ Satz 14.7

Satz von Caley-Hamilton im zyklischen Fall Ist $W\subseteq V$ f-zyklisch, so ist ... das Minimalpolynom für $f|_W$.

Satz von Caley-Hamilton im zyklischen Fall Ist $W \subseteq V$ f-zyklisch, so ist

$$(-1)^{\dim W} \chi_{f|_W}$$

das Minimalpolynom für $f|_W$.

 \rightarrow Satz 14.13

Satz LinA-II-14-Minimalpolynom

LinA-II-14-Minimalpolynom

LinA-II-14-Minimalpolynom

84bb58-b59c-4e97-953f-6d32f2a58dcf

6088f132-4411-44e9-aa19-9c0cfa13ab91

31141f5d-f74d-45d8-bd71-4577c54a1e2c

Ein Untervektorraum $W \subseteq V$ ist **f-zyklisch**, falls ...

Ein Untervektorraum $W \subseteq V$ ist **f-zyklisch**, falls

$$W = \langle \mathbf{w}, f(\mathbf{w}), f^2(\mathbf{w}), \dots \rangle$$
 für ein $\mathbf{w} \in V$

 \rightarrow Def. 14.8

Ist W ein f-zyklischer Untervektorraum der Dimension d, so ist (Basis) . . .

Ist W ein f-zyklischer Untervektorraum der Dimension d, so ist $(\mathbf{w}, f(\mathbf{w}), f^2(\mathbf{w}), \dots, f^{d-1}(\mathbf{w}))$ eine Basis von W.

 $\rightarrow \ \text{Lemma} \ 14.10$

Die **Begleitmatrix** zu einem normierten Polynom $A = X^d + \sum_{i=0}^{d-1} a_i X^i$ ist die Matrix ...

Die **Begleitmatrix** zu einem normierten Polynom $A = X^d + \sum_{i=0}^{d-1} a_i X^i$ ist die Matrix

$$\begin{pmatrix} 0 & & & -a_0 \\ 1 & 0 & & 0 & -a_1 \\ & 1 & \ddots & & \\ & & \ddots & 0 & -a_{d-2} \\ 0 & & 1 & -a_{d-1} \end{pmatrix}$$

 \rightarrow Def 14.11

Def LinA-II-14-Minimalpolynom

2e432a06-1654-4799-8785-7f9fe0a985e8

Sei f ein V-Endomorphismus.

Ein Untervektorraum $W\subseteq V$ ist genau dann . . . , wenn er f-stabil ist und eine Basis besitzt, in der $f|_W$ durch eine Begleitmatrix gegeben ist.

Sei f ein V-Endomorphismus.

Ein Untervektorraum $W \subseteq V$ ist genau dann f-zyklisch, wenn er f-stabil ist und eine Basis besitzt, in der $f|_W$ durch eine Begleitmatrix gegeben ist.

→ Satz 14 12

Satz LinA-II-14-Minimalpolynom

66558hcf=5640=4356=9392=437h27624h3d

Sei f ein V-Endomorphismus.

Ein Untervektorraum $W\subseteq V$ ist genau dann f-zyklisch, wenn . . .

Sei f ein V-Endomorphismus.

Ein Untervektorraum $W \subseteq V$ ist genau dann f-zyklisch, wenn er f-stabil ist und eine Basis besitzt, in der $f|_W$ durch eine Begleitmatrix gegeben ist.

→ Satz 14.12

Satz LinA-II-14-Minimalpolynom

66558bcf-5640-4356-9392-437b27624b3d

Spaltungssatz

Sei f ein Endomorphismus auf einem Vektorraum V. Ist $\mu_f = P \cdot Q$ für zwei teilerfremde normierte Polynome P und Q, so ist

$$V =$$

Spaltungssatz

Sei f ein Endomorphismus auf einem Vektorraum V. Ist $\mu_f = P \cdot Q$ für zwei teilerfremde normierte Polynome P und Q, so ist

$$V = W_P \oplus W_Q$$

für zwei f-stabile Untervektorräume W_P und W_Q .

→ Satz 14.17

Satz LinA-II-14-Minimalpolynom

707fad0f-485b-4dae-a099-bc9f6c2859b1

Spaltungssatz

Sei f ein Endomorphismus auf einem Vektorraum V. Ist $\mu_f = P \cdot Q$ für zwei teilerfremde normierte Polynome P und Q, so ist

$$V = W_P \oplus W_Q$$

für zwei f-stabile Untervektorräume W_P und $W_Q,$ für die gilt:

$$W_P =$$
 und $\mu_f|_{W_P} = P$

$$W_Q =$$
 und $\mu_f|_{W_Q} = Q$

Spaltungssatz

Sei f ein Endomorphismus auf einem Vektorraum V. Ist $\mu_f = P \cdot Q$ für zwei teilerfremde normierte Polynome P und Q, so ist

$$V = W_P \oplus W_Q$$

für zwei f-stabile Untervektorräume W_P und W_Q , für die gilt:

$$W_P = \ker(P(f)) = \operatorname{im}(Q(f))$$
 und $\mu_f|_{W_P} = P$

$$W_Q = \ker(Q(f)) = \operatorname{im}(P(f))$$
 und $\mu_f|_{W_Q} = Q$

 $\rightarrow \, \mathrm{Satz} \,\, 14.17$

Spaltungssatz

Sei f ein Endomorphismus auf einem Vektorraum V. Ist $\mu_f = P \cdot Q$ für zwei teilerfremde normierte Polynome P und Q, so ist

$$V = W_P \oplus W_Q$$

für zwei f-stabile Untervektorräume W_P und W_Q , für die gilt:

$$W_P = \ker(P(f)) = \operatorname{im}(Q(f)) \text{ und } \dots$$

$$W_Q = \ker(Q(f)) = \operatorname{im}(P(f)) \text{ und } \dots$$

Spaltungssatz

Sei f ein Endomorphismus auf einem Vektorraum V. Ist $\mu_f = P \cdot Q$ für zwei teilerfremde normierte Polynome P und Q, so ist

$$V = W_P \oplus W_Q$$

für zwei f-stabile Untervektorräume W_P und W_Q , für die gilt:

$$W_P = \ker(P(f)) = \operatorname{im}(Q(f))$$
 und $\mu_f|_{W_P} = P$

$$W_Q = \ker(Q(f)) = \operatorname{im}(P(f))$$
 und $\mu_f|_{W_Q} = Q$

→ Satz 14.17

Drittes Diagonalisierbarkeitskriterium

Ein Endomorphismus f ist diagonalisierbar genau dann, wenn (Minimalpolynom) . . .

Drittes Diagonalisierbarkeitskriterium

Ein Endomorphismus f ist diagonalisierbar genau dann, wenn μ_f in paarweise verschiedene Linearfaktoren zerfällt.

→ Korollar 14.19

LinA-II-14-Minimalpolynom

18d801db-b3d0-4036-bfb0-0472478225c4

Ein Jordanblock ist eine (Unter-)matrix der Form

$$J(m;a) := \begin{pmatrix} a & 1 & & & \\ & a & 1 & & 0 \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ 0 & & & & a \end{pmatrix} \in \operatorname{Mat}_K(m \times m)$$

 \rightarrow Def 15.1

Def LinA-II-15-Jordannormalform

2c897805-8ca5-4437-8781-b1ad98648537

Ein Hauptraumblock ist ...

Ein **Hauptraumblock** ist eine (Unter-)matrix der Form

$$H(m_1, \ldots, m_k; a) := \begin{pmatrix} \boxed{J(m_1; a)} & 0 \\ 0 & \ddots & \\ \boxed{J(m_2; a)} & 0 \end{pmatrix}$$

 \rightarrow Def 15.1

Def LinA-II-15-Jordannormalform

 ${\tt 2c897805-8ca5-4437-8781-b1ad98648537}$

Jordannormalform

Sei f ein Endomorphismus eines endlich-dimensionalen Vektorraums.

Zerfällt χ_f in Linearfaktoren, so hat f bezüglich einer geeigneten Basis folgende Gestalt:

. . .

Satz LinA-II-15-Jordannormalform

15f3d72f-70b5-495b-bb04-a3f157dbea7b

Jordannormalform

Sei f ein Endomorphismus eines endlich-dimensionalen Vektorraums.

Zerfällt χ_f in Linearfaktoren, so hat f bezüglich einer geeigneten Basis folgende Gestalt:

$${}_{B}M_{B}(f) = \begin{pmatrix} \boxed{H(\dots; a_{1})} & & & & \\ & \boxed{H(\dots; a_{2})} & & & \\ & & \ddots & & \\ & & & \boxed{H(\dots; a_{l})} \end{pmatrix}$$

Dabei sind die Hauptraumblöcke und die Jordanblöcke innerhalb dieser bis auf Reihenfolge eindeutig.

→ Theorem 15.2

Jordannormalform

Sei f ein Endomorphismus eines endlich-dimensionalen Vektorraums.

Wenn . . . , so hat f bezüglich einer geeigneten Basis folgende Gestalt:

$${}_{B}M_{B}(f) = \begin{pmatrix} \boxed{H(\dots; a_{1})} & & & & \\ & \boxed{H(\dots; a_{2})} & & & \\ & & \ddots & \\ & & & \boxed{H(\dots; a_{l})} \end{pmatrix}$$

Dabei sind die Hauptraumblöcke und die Jordanblöcke innerhalb dieser bis auf Reihenfolge eindeutig.

Jordannormalform

Sei f ein Endomorphismus eines endlich-dimensionalen Vektorraums.

Wenn χ_f in Linearfaktoren zerfällt, so hat f bezüglich einer geeigneten Basis folgende Gestalt:

$${}_{B}M_{B}(f) = \begin{pmatrix} \boxed{H(\dots; a_{1})} & & & & \\ & \boxed{H(\dots; a_{2})} & & & \\ & & \ddots & & \\ & & & \boxed{H(\dots; a_{l})} \end{pmatrix}$$

Dabei sind die Hauptraumblöcke und die Jordanblöcke innerhalb dieser bis auf Reihenfolge eindeutig.

→ Theorem 15.2

Für die Jordannormalform von f gilt:

- a_1, \ldots, a_l sind \ldots
- Größe von $H(m_1, \ldots, m_k; a)$ ist die algebraische Vielfachheit von a. (= $\max\{r \in \mathbb{N} \mid (X - a)^r \text{ teilt } \chi_f\}$)
- Größe m des größten Jordanblocks J(m; a) zu a ist der Exponent von (X a) in μ_f . $(= \max\{r \in \mathbb{N} \mid (X - a)^r \text{ teilt } \mu_f\})$

Für die Jordannormalform von f gilt:

- a_1, \ldots, a_l sind die verschiedenen Eigenwerte von f.
- Größe von $H(m_1, \ldots, m_k; a)$ ist die algebraische Vielfachheit von a. (= $\max\{r \in \mathbb{N} \mid (X - a)^r \text{ teilt } \chi_f\}$)
- Größe m des größten Jordanblocks J(m; a) zu a ist der Exponent von (X a) in μ_f . $(= \max\{r \in \mathbb{N} \mid (X - a)^r \text{ teilt } \mu_f\})$

 \rightarrow Notiz 15.3

Für die Jordannormalform von f gilt:

- a_1, \ldots, a_l sind die verschiedenen Eigenwerte von f.
- Größe von $H(m_1, \ldots, m_k; a) \ldots$
- Größe m des größten Jordanblocks J(m; a) zu a ist der Exponent von (X a) in μ_f . $(= \max\{r \in \mathbb{N} \mid (X a)^r \text{ teilt } \mu_f\})$

Für die Jordannormalform von f gilt:

- a_1, \ldots, a_l sind die verschiedenen Eigenwerte von f.
- Größe von $H(m_1, \ldots, m_k; a)$ ist die algebraische Vielfachheit von a. (= $\max\{r \in \mathbb{N} \mid (X - a)^r \text{ teilt } \chi_f\}$)
- Größe m des größten Jordanblocks J(m; a) zu a ist der Exponent von (X a) in μ_f . $(= \max\{r \in \mathbb{N} \mid (X a)^r \text{ teilt } \mu_f\})$

 \rightarrow Notiz 15.3

Für die Jordannormalform von f gilt:

- a_1, \ldots, a_l sind die verschiedenen Eigenwerte von f.
- Größe von $H(m_1, \ldots, m_k; a)$ ist die algebraische Vielfachheit von a. (= $\max\{r \in \mathbb{N} \mid (X - a)^r \text{ teilt } \chi_f\}$)
- Größe m des größten Jordanblocks J(m;a) zu a

Für die Jordannormalform von f gilt:

- a_1, \ldots, a_l sind die verschiedenen Eigenwerte von f.
- Größe von $H(m_1, \ldots, m_k; a)$ ist die algebraische Vielfachheit von a. (= $\max\{r \in \mathbb{N} \mid (X - a)^r \text{ teilt } \chi_f\}$)
- Größe m des größten Jordanblocks J(m; a) zu a ist der Exponent von (X a) in μ_f . $(= \max\{r \in \mathbb{N} \mid (X - a)^r \text{ teilt } \mu_f\})$

→ Notiz 15.3

Triagonalisierbarkeitskriterium

Ein Endomorphismus f ist triagonalisierbar, falls \dots

Triagonalisierbarkeitskriterium

Ein Endomorphismus f ist **triagonalisierbar**, falls eine Basis B existiert, in der ${}_BM_B(f)$ eine obere Dreiecksmatrix ist.

→ Def. 15.4

Def LinA-II-15-Jordannormalform

f0eae56c-7693-4b1b-b3bf-82466a1966bb

Sei a ein Eigenwert von f, sei $\mu_f = (X - a)^m \cdot P$ mit P teilerfremd zu (X - a).

Der **Hauptraum** von f zu a ist ...

Sei a ein Eigenwert von f, sei $\mu_f = (X - a)^m \cdot P$ mit P teilerfremd zu (X - a).

Der **Hauptraum** von f zu a ist

 $\operatorname{Hau}(f; a) := \ker((f - a \cdot \operatorname{id})^m)$

 \rightarrow Def. 15.7

24fdceea-c59b-4730-9a1d-506ef970bedf

Hauptraumzerlegung

LinA-II-15-Jordannormalform

Zerfällt χ_f in Linearfaktoren, so (Zerlegung von V)...

Hauptraumzerlegung

Zerfällt χ_f in Linearfaktoren, so zerfällt V in die Haupträu-

$$V = \bigoplus_{i=1}^{l} \operatorname{Hau}(f; a_i)$$

wobei a_1, \ldots, a_l die verschiedenen Eigenwerte von f sind.

 $\rightarrow \ \mathrm{Satz} \ 15.8$

Satz LinA-II-15-Jordannormalform

73273508-0f38-4c7e-ba80-bf591c7f3800

Eigenschaften der Haupträume

Sei a Eigenwert von f mit algebraischer Vielfachheit r, also $\chi_f = (X - a)^r \cdot P$ und $\mu_f = (X - a)^m \cdot \tilde{P}$ mit P und \tilde{P} jeweils teilerfremd zu (X - a).

- $(1) \ldots$
- (2) $\chi_f|_{\text{Hau}(f;a)} = (-1)^r (X-a)^r$
- (3) $\mu_f|_{\text{Hau}(f;a)} = (X-a)^m$
- (4) $\dim \operatorname{Hau}(f; a) = r$
- (5) $\operatorname{Hau}(f; a) = \ker((f a \cdot \operatorname{id})^i) \ \forall i \geqslant m.$

Eigenschaften der Haupträume

Sei a Eigenwert von f mit algebraischer Vielfachheit r, also $\chi_f = (X - a)^r \cdot P$ und $\mu_f = (X - a)^m \cdot \tilde{P}$ mit P und \tilde{P} jeweils teilerfremd zu (X - a).

- (1) $\operatorname{Hau}(f; a)$ ist f-stabil.
- (2) $\chi_f|_{\text{Hau}(f;a)} = (-1)^r (X-a)^r$
- (3) $\mu_f|_{\text{Hau}(f;a)} = (X-a)^m$
- (4) $\dim \operatorname{Hau}(f; a) = r$
- (5) $\operatorname{Hau}(f; a) = \ker((f a \cdot \operatorname{id})^i) \ \forall i \geqslant m.$

→ Satz 15.9

Eigenschaften der Haupträume

Sei a Eigenwert von f mit algebraischer Vielfachheit r, also $\chi_f = (X - a)^r \cdot P$ und $\mu_f = (X - a)^m \cdot \tilde{P}$ mit P und \tilde{P} jeweils teilerfremd zu (X - a).

- (1) $\operatorname{Hau}(f; a)$ ist f-stabil.
- (2) $\chi_f|_{\operatorname{Hau}(f;a)} =$
- (3) $\mu_f|_{\text{Hau}(f:a)} = (X-a)^m$
- (4) $\dim \operatorname{Hau}(f; a) = r$
- (5) $\operatorname{Hau}(f; a) = \ker((f a \cdot \operatorname{id})^i) \ \forall i \geqslant m.$

Eigenschaften der Haupträume

Sei a Eigenwert von f mit algebraischer Vielfachheit r, also $\chi_f = (X - a)^r \cdot P$ und $\mu_f = (X - a)^m \cdot \tilde{P}$ mit P und \tilde{P} jeweils teilerfremd zu (X - a).

- (1) $\operatorname{Hau}(f; a)$ ist f-stabil.
- (2) $\chi_f|_{\text{Hau}(f;a)} = (-1)^r (X-a)^r$
- (3) $\mu_f|_{\text{Hau}(f;a)} = (X-a)^m$
- (4) $\dim \operatorname{Hau}(f; a) = r$
- (5) $\operatorname{Hau}(f; a) = \ker((f a \cdot \operatorname{id})^i) \ \forall i \geqslant m.$

 \rightarrow Satz 15.9

Eigenschaften der Haupträume

Sei a Eigenwert von f mit algebraischer Vielfachheit r, also $\chi_f = (X - a)^r \cdot P$ und $\mu_f = (X - a)^m \cdot \tilde{P}$ mit P und \tilde{P} jeweils teilerfremd zu (X - a).

- (1) $\operatorname{Hau}(f; a)$ ist f-stabil.
- (2) $\chi_f|_{\text{Hau}(f;a)} = (-1)^r (X-a)^r$
- (3) $\mu_f|_{\text{Hau}(f;a)} =$
- (4) $\dim \operatorname{Hau}(f; a) = r$
- (5) $\operatorname{Hau}(f; a) = \ker((f a \cdot \operatorname{id})^i) \ \forall i \geqslant m.$

Eigenschaften der Haupträume

Sei a Eigenwert von f mit algebraischer Vielfachheit r, also $\chi_f = (X - a)^r \cdot P$ und $\mu_f = (X - a)^m \cdot \tilde{P}$ mit P und \tilde{P} jeweils teilerfremd zu (X - a).

- (1) $\operatorname{Hau}(f; a)$ ist f-stabil.
- (2) $\chi_f|_{\text{Hau}(f;a)} = (-1)^r (X-a)^r$
- (3) $\mu_f|_{\text{Hau}(f;a)} = (X-a)^m$
- (4) $\dim \operatorname{Hau}(f; a) = r$
- (5) $\operatorname{Hau}(f; a) = \ker((f a \cdot \operatorname{id})^i) \ \forall i \geqslant m.$

 \rightarrow Satz 15.9

Eigenschaften der Haupträume

Sei a Eigenwert von f mit algebraischer Vielfachheit r, also $\chi_f = (X - a)^r \cdot P$ und $\mu_f = (X - a)^m \cdot \tilde{P}$ mit P und \tilde{P} jeweils teilerfremd zu (X - a).

- (1) $\operatorname{Hau}(f; a)$ ist f-stabil.
- (2) $\chi_f|_{\text{Hau}(f;a)} = (-1)^r (X-a)^r$
- (3) $\mu_f|_{\text{Hau}(f;a)} = (X-a)^m$
- (4) $\dim \operatorname{Hau}(f; a) =$
- (5) $\operatorname{Hau}(f; a) = \ker((f a \cdot \operatorname{id})^i) \ \forall i \geqslant m.$

Eigenschaften der Haupträume

Sei a Eigenwert von f mit algebraischer Vielfachheit r, also $\chi_f = (X - a)^r \cdot P$ und $\mu_f = (X - a)^m \cdot \tilde{P}$ mit P und \tilde{P} jeweils teilerfremd zu (X - a).

- (1) $\operatorname{Hau}(f; a)$ ist f-stabil.
- (2) $\chi_f|_{\text{Hau}(f;a)} = (-1)^r (X-a)^r$
- (3) $\mu_f|_{\text{Hau}(f:a)} = (X-a)^m$
- (4) $\dim \operatorname{Hau}(f; a) = r$
- (5) $\operatorname{Hau}(f; a) = \ker((f a \cdot \operatorname{id})^i) \ \forall i \geqslant m.$

 \rightarrow Satz 15.9

Eigenschaften der Haupträume

Sei a Eigenwert von f mit algebraischer Vielfachheit r, also $\chi_f = (X - a)^r \cdot P$ und $\mu_f = (X - a)^m \cdot \tilde{P}$ mit P und P jeweils teilerfremd zu (X - a).

- (1) $\operatorname{Hau}(f; a)$ ist f-stabil.
- (2) $\chi_f|_{\text{Hau}(f;a)} = (-1)^r (X-a)^r$
- (3) $\mu_f|_{\text{Hau}(f:a)} = (X-a)^m$
- (4) $\dim \operatorname{Hau}(f; a) = r$
- (5) Hau(f; a) =

(4) $\dim \operatorname{Hau}(f; a) = r$

Sei a Eigenwert von f mit algebraischer Vielfachheit

r, also $\chi_f = (X-a)^r \cdot P$ und $\mu_f = (X-a)^m \cdot \tilde{P}$ mit

(1) $\operatorname{Hau}(f; a)$ ist f-stabil.

(3) $\mu_f|_{\text{Hau}(f;a)} = (X-a)^m$

Eigenschaften der Haupträume

(2) $\chi_f|_{\text{Hau}(f;a)} = (-1)^r (X-a)^r$

(5) $\operatorname{Hau}(f; a) = \ker((f - a \cdot \operatorname{id})^i) \ \forall i \geqslant m.$

P und P jeweils teilerfremd zu (X - a).

 \rightarrow Satz 15.9

Ein Endomorphismus g ist **nilpotent**, wenn ...

Ein Endomorphismus g ist **nilpotent**, wenn $g^k = 0$ für ein $k \in \mathbb{N}$.

 \rightarrow Def. 15.10

LinA-II-15-Jordannormalform

32fa39ce-09db-4219-a5c1-6c2e711728c6

Für einen (endlich-dimenionalen) Vektorraum V mit Untervektorräumen U_1, \ldots, U_k sind äquivalent:

- $(1) \ldots$
- (2) V hat eine Basis der Form

$$(\mathbf{u}_1^{(1)},\ldots,\mathbf{u}_{m_1}^{(1)},\mathbf{u}_1^{(2)},\ldots,\mathbf{u}_{m_2}^{(2)},\ldots,\mathbf{u}_1^{(k)},\ldots,\mathbf{u}_{m_k}^{(k)})$$

derart, dass $(\mathbf{u}_1^{(i)}, \dots, \mathbf{u}_{m_i}^{(i)})$ Basis von U_i ist.

(3) Für beliebige Basen $(\mathbf{u}_1^{(i)}, \dots, \mathbf{u}_{m_i}^{(i)})$ von U_i ist $(\mathbf{u}_1^{(1)}, \dots, \mathbf{u}_{m_1}^{(1)}, \mathbf{u}_1^{(2)}, \dots, \mathbf{u}_{m_2}^{(2)}, \dots, \mathbf{u}_1^{(k)}, \dots, \mathbf{u}_{m_k}^{(k)})$ eine Basis von V.

Für einen (endlich-dimenionalen) Vektorraum V mit Untervektorräumen U_1, \ldots, U_k sind äquivalent:

- (1) $V = \bigoplus_{i=1}^k U_i$
- (2) V hat eine Basis der Form $(\mathbf{u}_1^{(1)}, \dots, \mathbf{u}_{m_1}^{(1)}, \mathbf{u}_1^{(2)}, \dots, \mathbf{u}_{m_2}^{(2)}, \dots, \mathbf{u}_1^{(k)}, \dots, \mathbf{u}_{m_1}^{(k)})$ derart, dass $(\mathbf{u}_1^{(i)}, \dots, \mathbf{u}_{m_i}^{(i)})$ Basis von U_i ist.
- (3) Für beliebige Basen $(\mathbf{u}_1^{(i)}, \dots, \mathbf{u}_{m_i}^{(i)})$ von U_i ist $(\mathbf{u}_1^{(1)}, \dots, \mathbf{u}_{m_1}^{(1)}, \mathbf{u}_1^{(2)}, \dots, \mathbf{u}_{m_2}^{(2)}, \dots, \mathbf{u}_1^{(k)}, \dots, \mathbf{u}_{m_1}^{(k)})$ eine Basis von V.

→ Notiz 15.13

Für einen (endlich-dimenionalen) Vektorraum V mit Untervektorräumen U_1, \ldots, U_k sind äquivalent:

- $(1) V = \bigoplus_{i=1}^k U_i$
- $(2) \ldots$
- (3) Für beliebige Basen $(\mathbf{u}_1^{(i)}, \dots, \mathbf{u}_{m_i}^{(i)})$ von U_i ist $(\mathbf{u}_1^{(1)}, \dots, \mathbf{u}_{m_1}^{(1)}, \mathbf{u}_1^{(2)}, \dots, \mathbf{u}_{m_2}^{(2)}, \dots, \mathbf{u}_1^{(k)}, \dots, \mathbf{u}_{m_k}^{(k)})$ eine Basis von V.

Für einen (endlich-dimenionalen) Vektorraum V mit Untervektorräumen U_1, \ldots, U_k sind äquivalent:

- $(1) V = \bigoplus_{i=1}^k U_i$
- (2) V hat eine Basis der Form

$$(\mathbf{u}_1^{(1)}, \dots, \mathbf{u}_{m_1}^{(1)}, \mathbf{u}_1^{(2)}, \dots, \mathbf{u}_{m_2}^{(2)}, \dots, \mathbf{u}_1^{(k)}, \dots, \mathbf{u}_{m_k}^{(k)})$$

derart, dass $(\mathbf{u}_1^{(i)}, \ldots, \mathbf{u}_{m_i}^{(i)})$ Basis von U_i ist.

(3) Für beliebige Basen $(\mathbf{u}_1^{(i)}, \ldots, \mathbf{u}_{m_i}^{(i)})$ von U_i ist $(\mathbf{u}_1^{(1)}, \dots, \mathbf{u}_{m_1}^{(1)}, \mathbf{u}_1^{(2)}, \dots, \mathbf{u}_{m_2}^{(2)}, \dots, \mathbf{u}_1^{(k)}, \dots, \mathbf{u}_{m_1}^{(k)})$ eine Basis von V.

→ Notiz 15.13

Für einen (endlich-dimenionalen) Vektorraum V mit Untervektorräumen U_1, \ldots, U_k sind äquivalent:

- $(1) \ V = \bigoplus_{i=1}^k U_i$
- (2) V hat eine Basis der Form

$$(\mathbf{u}_1^{(1)}, \dots, \mathbf{u}_{m_1}^{(1)}, \mathbf{u}_1^{(2)}, \dots, \mathbf{u}_{m_2}^{(2)}, \dots, \mathbf{u}_1^{(k)}, \dots, \mathbf{u}_{m_k}^{(k)})$$

derart, dass $(\mathbf{u}_1^{(i)}, \dots, \mathbf{u}_{m_i}^{(i)})$ Basis von U_i ist.

 $(3) \ldots$

Für einen (endlich-dimenionalen) Vektorraum V mit Untervektorräumen U_1, \ldots, U_k sind äquivalent:

- $(1) V = \bigoplus_{i=1}^k U_i$
- (2) V hat eine Basis der Form

$$(\mathbf{u}_1^{(1)}, \dots, \mathbf{u}_{m_1}^{(1)}, \mathbf{u}_1^{(2)}, \dots, \mathbf{u}_{m_2}^{(2)}, \dots, \mathbf{u}_1^{(k)}, \dots, \mathbf{u}_{m_k}^{(k)})$$

derart, dass $(\mathbf{u}_1^{(i)}, \dots, \mathbf{u}_{m_i}^{(i)})$ Basis von U_i ist.

(3) Für beliebige Basen $(\mathbf{u}_{1}^{(i)}, \dots, \mathbf{u}_{m_{i}}^{(i)})$ von U_{i} ist $(\mathbf{u}_{1}^{(1)}, \dots, \mathbf{u}_{m_{1}}^{(1)}, \mathbf{u}_{1}^{(2)}, \dots, \mathbf{u}_{m_{2}}^{(2)}, \dots, \mathbf{u}_{1}^{(k)}, \dots, \mathbf{u}_{m_{k}}^{(k)})$

 \rightarrow Notiz 15.13

Ein komplementärer Untervektorraum zu einem Untervektorraum $W\subseteq V$ ist ein Untervektorraum $U\dots$

Ein komplementärer Untervektorraum zu einem Untervektorraum $W\subseteq V$ ist ein Untervektorraum $U\subseteq V$ mit

$$V=W\oplus U$$

→ Def. 14.15

Def LinA-II-15-Jordannormalform

0e4987e4-ed28-4005-83aa-1d66ccedb48b

Jordannormalform im nilpotenten Fall

Zu jedem nilpotenten Endomorphismus g existiert \dots

Jordannormalform im nilpotenten Fall

Zu jedem nilpotenten Endomorphismus g existiert eine Jordanbasis, also eine Basis B, in der $_BM_B(g)$ JNF hat

→ Satz 15.16

Eine Jordan-Chevalley-Zerlegung eines Endomorphis-

$$f =$$

für die gilt ...

LinA-II-15-Jordannormalform

mus f ist eine Zerlegung

Eine **Jordan-Chevalley-Zerlegung** eines Endomorphismus f ist eine Zerlegung

$$f = d + n$$

für die gilt

- d diagonalisierbar
- *n* nilpotent
- f, d, n kommutieren

Def LinA-II-15-Jordannormalform

82c3d9b0-77fe-4d2d-9e8f-786c5a7c2689

eba13948-a4e5-4157-ad25-ff5e44396703

Eine Jordan-Chevalley-Zerlegung einer Matrix $A \in \operatorname{Mat}_K(n \times n)$ ist eine Zerlegung

$$A =$$

für die gilt ...

Def
LinA-II-15-Jordannormalform

82c3d9b0-77fe-4d2d-9e8f-786c5a7c2689

Eine Jordan-Chevalley-Zerlegung einer Matrix $A \in \operatorname{Mat}_K(n \times n)$ ist eine Zerlegung

$$A = D + N$$

für die gilt

- ullet D diagonalisierbar
- \bullet N nilpotent
- A, D, N kommutieren

 \rightarrow Def. 15.18

Für eine Matrix $A \in \operatorname{Mat}_K(n \times n)$ gilt: Zerfällt χ_A in Linearfaktoren, dann (Zerlegung von A)... Für eine Matrix $A \in \operatorname{Mat}_K(n \times n)$ gilt: Zerfällt χ_A in Linearfaktoren, dann besitzt A eine Jordan-Chevalley-Zerlegung.

 \rightarrow Kor. 15.19

Satz LinA-II-15-Jordannormalform

1061827d-0c35-43f1-8234-67975bbb50a9

Die Jordan-Chevalley-Zerlegung einer Matrix A in Jordannormalform hat die Form

$$A = D + N$$

 $mit D := \dots$

und N := A - D

Die Jordan-Chevalley-Zerlegung einer Matrix A in Jordannormalform hat die Form

$$A = D + N$$

mit D:= Diagonalmatrix mit Einträgen der Hauptdiagonale von A und N:=A-D

→ Kor. 15.19

Die Jordan-Chevalley-Zerlegung einer Matrix A in Jordannormalform hat die Form

$$A = D + N$$

mit D:= Diagonalmatrix mit Einträgen der Hauptdiagonale von A und N:=

Die Jordan-Chevalley-Zerlegung einer Matrix A in Jordannormalform hat die Form

$$A = D + N$$

mit D:= Diagonalmatrix mit Einträgen der Hauptdiagonale von A und N:=A-D

→ Kor. 15.19

Sei J eine Jordanbasis, aufgefasst als Matrix, und \hat{A} die zugehörige Jordannormalform einer Matrix A, sodass gilt

$$A = J\hat{A}J^{-1}$$

Dann hat die Jordan-Chevalley-Zerlegung von A die Form

$$A =$$

Sei J eine Jordanbasis, aufgefasst als Matrix, und \hat{A} die zugehörige Jordannormalform einer Matrix A, sodass gilt

$$A = J\hat{A}J^{-1}$$

Dann hat die Jordan-Chevalley-Zerlegung von A die Form

$$A = J\hat{D}J^{-1} + J\hat{N}J^{-1}$$

mit $\hat{D} + \hat{N}$ Jordan-Chevalley-Zerlegung von \hat{A} .

 \rightarrow Kor. 15.19

Die Jordan-Chevalley-Zerlegung eines Endomorphismus f ist \dots

Die Jordan-Chevalley-Zerlegung eines Endomorphismus f ist eindeutig, falls sie existiert.

→ Satz 15.20

Satz LinA-II-15-Jordannormalform

febe77ae-0879-4a9d-a962-0459c8e49a26

Binomischer Lehrsatz

Für kommutierende Elemente a, b eines Rings gilt:

$$(a+b)^n = \dots$$

für alle $n \in \mathbb{N}$.

Binomischer Lehrsatz

Für kommutierende Elemente a, b eines Rings gilt:

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$$

für alle $n \in \mathbb{N}$.

→ Notiz 15.22

Satz LinA-II-15-Jordannormalform

8514298c-baac-4d09-9742-ae03641c1360