

3-Trifluormethylpicolinsäureanilide und ihre Verwendung als Fungizide

Beschreibung

- 5 Die vorliegende Erfindung betrifft 3-Trifluormethylpicolinsäureanilide mit fungizidér
Wirksamkeit und ihre Verwendung als Fungizide, d.h. zur Bekämpfung von Schadpil-
zen.

10 Hetarylanilide mit fungizider Wirksamkeit sind Gegenstand zahlreicher Patentanmel-
dungen (siehe beispielsweise WO 86/02641, JP 01313402, US 4,877,441, EP 371950,
WO 93/11117, EP 545099, DE 4204766, DE 4204768, EP 591699, EP 589301, JP
07145156, JP 08092223, WO 97/08148, WO 98/03500, EP 824099, EP 846416, WO
00/09482, WO 01/42223, EP 1110454, EP 1110956, WO 01/49664, JP 2001-302605,
WO 02/08195, WO 02/08197, WO 02/38542, WO 02/59086, WO 02/064562, WO
15 03/010149, WO 03/66609, WO 03/66610, WO 03/69995, WO 03/74491 und WO
03/70705). Die dort beschriebenen Hetarylanilide können jedoch, insbesondere bei
niedrigen Aufwandmengen, nicht in vollem Umfang zufrieden stellen.

Aus JP 58096069 sind fungizid wirksame Picolinsäureanilide der allgemeinen Formel

20

worin R für CH₃ oder CF₃ steht, bekannt. Die fungizide Wirksamkeit dieser Verbindun-
gen ist jedoch nicht zufriedenstellend.

25

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde weitere fungizid wirkende Verbindungen bereitzustellen, die die Nachteile der aus dem Stand der Technik bekannten Verbindungen überwinden und insbesondere eine verbesserte Wirkung bei niedrigen Aufwandmengen zeigen. Außerdem sollten diese Verbindungen eine gute Nutzpflanzenverträglichkeit aufweisen und möglichst keine oder nur eine geringe Schädlichkeit gegenüber tierischen Nützlingen zeigen.

30 Diese Aufgabe konnten gelöst werden durch die im Folgenden beschriebenen 3-
Trifluormethylpicolinsäureanilide der allgemeinen Formel I und durch ihre landwirt-
schaftlich verträglichen Salze.

Die vorliegende Erfindung betrifft daher 3-Trifluormethylpicolinsäureanilide der allgemeinen Formel I,

5

worin n für 0, 1, 2, 3 oder 4 steht und die Substituenten die folgende Bedeutung haben:

- X O, S oder direkte Bindung;
- 10 W O oder S;
- 10 R¹, R², R³ unabhängig voneinander Wasserstoff, Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, wobei die Wasserstoffatome in den 4 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
- 15 R⁴ Wasserstoff, OH, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, wobei die Wasserstoffatome in den 3 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
- 15 R⁵ unsubstituiertes C₄-C₁₂-Alkyl, C₃-C₁₂-Cycloalkyl, C₃-C₁₂-Alkenyl, C₅-C₁₂-Cycloalkenyl, C₃-C₁₂-Alkinyl, C₃-C₁₂-Cycloalkyl-C₁-C₄-alkyl, wobei die 5
- 20 letzten genannten Gruppen jeweils 1, 2 oder 3 Substituenten R⁹ aufweisen können, und wobei die Wasserstoffatome in den 5 letzten genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
- 20 C₁-C₁₂-Halogenalkyl, C₁-C₁₂-Alkyl, das 1, 2 oder 3 Substituenten R¹¹ aufweist,
- 25 eine Gruppe -C(R¹⁰)=NOR⁸, eine Gruppe -C(O)NR¹³R¹⁴;
- 25 Phenyl, Phenyl-C₁-C₆-alkyl, Phenyl-C₂-C₆-alkenyl, Phenyl-C₂-C₆-alkinyl, Phenoxy-C₁-C₆-alkyl, Phenoxy-C₂-C₆-alkenyl, Phenoxy-C₂-C₆-alkinyl, wobei der Alkyl-, Alkenyl- und der Alkinyl-Teil in den 6 zuletzt genannten Gruppen 1, 2, 3 oder 4 Substituenten R¹¹ aufweisen kann und der Phenylring in den 7 zuletzt genannten Gruppen 1, 2, 3 oder 4 Reste R⁷ tragen kann;
- 30 R⁶ die für R¹ genannten, von Wasserstoff verschiedenen Bedeutungen;
- 30 R⁷ C₁-C₄-Alkyl, C₃-C₆- Cycloalkyl, C₁-C₄-Alkoxy, C₂-C₄-Alkenyl, C₂-C₄-Alkenyloxy, C₂-C₄-Alkinyl, C₂-C₄-Alkinyloxy, wobei die Wasserstoffatome in diesen 7 Gruppen teilweise oder vollständig durch Halogen substituiert sein

- können, OH, Halogen, Nitro, CN, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl, –C(O)R¹², NR¹³R¹⁴, -C(O)NR¹³R¹⁴, -C(S)NR¹³R¹⁴, -C(R¹⁰)=NOR⁸, Phenyl, das 1, 2, 3 oder 4 der unter R⁸ genannten Gruppen aufweisen kann, Phenoxy, das 1, 2, 3 oder 4 der unter R⁸ genannten Gruppen aufweisen kann, C₁-C₆-Alkyl-Phenyl, wobei die Wasserstoffatome des Alkylteils teilweise oder vollständig durch Halogen substituiert sein können und der Phenylring 1, 2, 3 oder 4 der unter R⁸ genannten Gruppen aufweisen kann,
 wobei zwei an benachbarte Kohlenstoffatome gebundene Reste R⁷ auch für CH=CH-CH=CH oder eine Alkylenkette mit 3 bis 5 Gliedern stehen können, worin 1 oder 2 nicht benachbarte CH₂-Gruppen auch durch Sauerstoff oder Schwefel ersetzt sein können und worin ein Teil oder alle Wasserstoffe durch Halogen ersetzt sein können;
- R⁸**
 C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, wobei die Wasserstoffatome in diesen 4 Gruppen teilweise oder vollständig durch Halogen substituiert sein können,
- R⁹**
 Phenyl oder Phenyl-C₁-C₆-alkyl, wobei Phenyl in den zwei letztgenannten Resten 1, 2, 3 oder 4 der unter R⁶ genannten Gruppen aufweisen kann;
 C₁-C₄-Alkyl, C₁-C₈-Alkoxy, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₁-C₄-Alkoxy-C₁-C₈-alkoxy, C₁-C₁₂-Alkyl, C₃-C₁₂-Cycloalkyl, C₂-C₁₂-Alkenyl, C₅-C₁₂-Cycloalkenyl, C₃-C₁₂-Cycloalkyl-C₁-C₄-alkyl, wobei die Wasserstoffatome in den 9 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
- R¹⁰**
 Wasserstoff, Halogen, C₁-C₈-Alkoxy, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₁-C₄-Alkoxy-C₁-C₈-alkoxy, C₁-C₁₂-Alkyl, C₃-C₁₂-Cycloalkyl, C₂-C₁₂-Alkenyl, C₅-C₁₂-Cycloalkenyl, C₃-C₁₂-Cycloalkyl-C₁-C₄-alkyl, wobei die Wasserstoffatome in den 9 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
- R¹¹**
 Phenyl, das 1, 2, 3 oder 4 der unter R⁷ genannten Gruppen aufweisen kann,
 C₁-C₄-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkoxy-C₁-C₈-alkoxy, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₁-C₄-Alkoxy-C₁-C₈-alkoxy, wobei die Wasserstoffatome in diesen Gruppen teilweise oder vollständig durch Halogen substituiert sein können, oder Halogen;
- R¹²**
 Wasserstoff, OH, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₂-C₄-Alkenyloxy, C₂-C₄-Alkinyloxy, C₁-C₄-Alkoxy-C₁-C₄-alkoxy, wobei die Wasserstoffatome in den 7 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
- R¹³, R¹⁴**
 unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, wobei die Wasserstoffatome in diesen Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
- 40 und die landwirtschaftlich brauchbaren Salze von I.

Die vorliegende Erfindung betrifft außerdem die Verwendung der 3-Trifluormethylpicolinsäureanilide der allgemeinen Formel I und deren landwirtschaftlich verträgliche Salze als Fungizide sowie diese enthaltende Pflanzenschutzmittel.

5

Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Bekämpfung von pflanzenpathogenen Pilzen (Schadpilzen), das dadurch gekennzeichnet ist, dass man die Schadpilze, deren Lebensraum oder die von ihnen freizuhaltenden Pflanzen, Flächen, Materialien oder Räume mit einer fungizid wirksamen Menge eines 3-

10 Trifluormethylpicolinsäureanilids der allgemeinen Formel I und/oder einem landwirtschaftlich verträglichen Salz von I behandelt.

15

Die 3-Trifluormethylpicolinsäureanilide der Formel I können je nach Art der Substituenten ein oder mehrere Chiralitätszentren aufweisen und liegen dann als Enantiomeren oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomere oder Diastereomere als auch deren Gemische. Geeignete Verbindungen der Formel I umfassen auch alle möglichen Stereoisomere (cis/trans-Isomere) und Gemische davon.

20

Unter landwirtschaftlich brauchbaren Salzen kommen vor allem die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die fungizide Wirkung der Verbindungen I nicht negativ beeinträchtigen. So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesium und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammoniumion, das gewünschtenfalls ein bis vier C₁-C₄-Alkylsubstituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfoxonium, in Betracht.

25

Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat, sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat. Sie können durch Reaktion von I mit einer Säure des entsprechenden Anions, vorzugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.

30

35

40

Bei den in den vorstehenden Formeln angegebenen Definitionen der Variablen werden Sammelbegriffe verwendet, die allgemein repräsentativ für die jeweiligen Substituenten stehen. Die Bedeutung C_n-C_m gibt die jeweils mögliche Anzahl von Kohlenstoffatomen in dem jeweiligen Substituenten oder Substituententeil an. Sämtliche Kohlenstoffketten,

5 also alle Alkyl-, Halogenalkyl-, Phenylalkyl-, Alkenyl-, Halogenalkenyl-, Phenylalkenyl-, Alkinyl-, Halogenalkinyl- und Phenylalkinyl-Teile können geradkettig oder verzweigt sein. Halogenierte Substituenten tragen vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder Iod.

10

Ferner stehen beispielsweise:

- C_1-C_4 -Alkyl sowie die Alkylteile in Alkoxyalkyl, Alkylsulfonyl und Alkylothio für: CH_3 , C_2H_5 , $CH_2-C_2H_5$, $CH(CH_3)_2$, n-Butyl, $CH(CH_3)-C_2H_5$, $CH_2-CH(CH_3)_2$ oder $C(CH_3)_3$;

15

- C_1-C_4 -Halogenalkyl: für einen C_1-C_4 -Alkylrest wie vorstehend genannt, worin die Wasserstoffatome teilweise, z.B. 1, 2 oder 3, oder vollständig durch Halogen wie Fluor, Chlor, Brom und/oder Iod, insbesondere durch Chlor und/oder Fluor und speziell durch Fluor substituiert sind, also z.B. CH_2F , CHF_2 , CF_3 , CH_2Cl , $CH(Cl)I_2$, $C(Cl)_3$, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, C_2F_5 , 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, $CH_2-C_2F_5$, $CF_2-C_2F_5$, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl oder Nonafuorbutyl;

20

- C_1-C_{12} -Alkyl: für einen gesättigten Kohlenwasserstoffrest mit 1 bis 12 C-Atomen, z.B. für einen C_1-C_4 -Alkylrest wie vorstehend genannt, oder für z.B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl oder 1-Ethyl-2-methylpropyl, vorzugsweise für CH_3 , C_2H_5 , $CH_2-C_2H_5$, $CH(CH_3)_2$, n-Butyl, $C(CH_3)_3$, n-Pentyl, n-Hexyl, n-Heptyl oder n-Octyl;

30

35

40

- C₁-C₁₂-Halogenalkyl: für einen C₁-C₁₂-Alkylrest wie vorstehend genannt, worin die Wasserstoffatome teilweise, z.B. 1, 2 oder 3, oder vollständig durch Halogen, insbesondere durch Chlor und/oder Fluor und speziell durch Fluor substituiert sind, also z.B. für einen der unter C₁-C₄-Halogenalkyl genannten Reste oder für
5 5-Fluor-1-pentyl, 5-Chlor-1-pentyl, 5-Brom-1-pentyl, 5-Iod-1-pentyl,
5,5,5-Trichlor-1-pentyl, Undecafluorpentyl, 6-Fluor-1-hexyl, 6-Chlor-1-hexyl,
6-Brom-1-hexyl, 6-Iod-1-hexyl, 6,6,6-Trichlor-1-hexyl oder Tridecafluorhexyl;
- C₂-C₄-Alkenyl sowie die Alkenylteile in Alkenyloxy: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Buten-1-yl, 1-Buten-2-yl, 1-Buten-3-yl, 2-Buten-1-yl, 1-Methyl-prop-1-en-1-yl, 2-Methyl-prop-1-en-1-yl, 1-Methyl-prop-2-en-1-yl, 2-Methyl-prop-2-en-1-yl;
10
- C₂-C₁₂-Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 12 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. für C₂-C₄-Alkenyl wie vorstehend genannt sowie z. B. für:
15 n-Penten-1-yl, n-Penten-2-yl, n-Penten-3-yl, n-Penten-4-yl,
1-Methyl-but-1-en-1-yl, 2-Methyl-but-1-en-1-yl, 3-Methyl-but-1-en-1-yl,
20 1-Methyl-but-2-en-1-yl, 2-Methyl-but-2-en-1-yl, 3-Methyl-but-2-en-1-yl,
1-Methyl-but-3-en-1-yl, 2-Methyl-but-3-en-1-yl, 3-Methyl-but-3-en-1-yl,
1,1-Dimethyl-prop-2-en-1-yl, 1,2-Dimethyl-prop-1-en-1-yl,
1,2-Dimethyl-prop-2-en-1-yl, 1-Ethyl-prop-1-en-2-yl, 1-Ethyl-prop-2-en-1-yl,
25 n-Hex-1-en-1-yl, n-Hex-2-en-1-yl, n-Hex-3-en-1-yl, n-Hex-4-en-1-yl,
n-Hex-5-en-1-yl, 1-Methyl-pent-1-en-1-yl, 2-Methyl-pent-1-en-1-yl,
3-Methyl-pent-1-en-1-yl, 4-Methyl-pent-1-en-1-yl, 1-Methyl-pent-2-en-1-yl,
2-Methyl-pent-2-en-1-yl, 3-Methyl-pent-2-en-1-yl, 4-Methyl-pent-2-en-1-yl,
30 1-Methyl-pent-3-en-1-yl, 2-Methyl-pent-3-en-1-yl, 3-Methyl-pent-3-en-1-yl,
4-Methyl-pent-3-en-1-yl, 1-Methyl-pent-4-en-1-yl, 2-Methyl-pent-4-en-1-yl,
3-Methyl-pent-4-en-1-yl, 4-Methyl-pent-4-en-1-yl, 1,1-Dimethyl-but-2-en-1-yl,
1,1-Dimethyl-but-3-en-1-yl, 1,2-Dimethyl-but-1-en-1-yl,
35 1,2-Dimethyl-but-2-en-1-yl, 1,2-Dimethyl-but-3-en-1-yl,
1,3-Dimethyl-but-1-en-1-yl, 1,3-Dimethyl-but-2-en-1-yl,
1,3-Dimethyl-but-3-en-1-yl, 2,2-Dimethyl-but-3-en-1-yl,
2,3-Dimethyl-but-1-en-1-yl, 2,3-Dimethyl-but-2-en-1-yl,
2,3-Dimethyl-but-3-en-1-yl, 3,3-Dimethyl-but-1-en-1-yl,
3,3-Dimethyl-but-2-en-1-yl, 1-Ethyl-but-1-en-1-yl, 1-Ethyl-but-2-en-1-yl,
40 1-Ethyl-but-3-en-1-yl, 2-Ethyl-but-1-en-1-yl, 2-Ethyl-but-2-en-1-yl,
2-Ethyl-but-3-en-1-yl, 1,1,2-Trimethyl-prop-2-en-1-yl,

- 1-Ethyl-1-methyl-prop-2-en-1-yl, 1-Ethyl-2-methyl-prop-1-en-1-yl oder
1-Ethyl-2-methyl-prop-2-en-1-yl;
- 5 - C₂-C₄-Alkinyl sowie die Alkinylteile in Alkinyloxy: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. Ethinyl, 1-Propinyl, 2-Propinyl (=Propargyl), 1-Butinyl, 2-Butinyl, 3-Butinyl und 1-Methyl-2-propinyl;
- 10 - C₂-C₁₂-Alkinyl: für geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 12 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. Ethinyl, Prop-1-in-1-yl, Prop-2-in-1-yl, n-But-1-in-1-yl, n-But-1-in-3-yl, n-But-1-in-4-yl, n-But-2-in-1-yl, n-Pent-1-in-1-yl, n-Pent-1-in-3-yl, n-Pent-1-in-4-yl, n-Pent-1-in-5-yl, n-Pent-2-in-1-yl, n-Pent-2-in-4-yl, n-Pent-2-in-5-yl, 3-Methyl-but-1-in-3-yl, 3-Methyl-but-1-in-4-yl, n-Hex-1-in-1-yl, n-Hex-1-in-3-yl, n-Hex-1-in-4-yl, n-Hex-1-in-5-yl, n-Hex-1-in-6-yl, n-Hex-2-in-1-yl, n-Hex-2-in-4-yl,
15 - n-Hex-2-in-5-yl, n-Hex-2-in-6-yl, n-Hex-3-in-1-yl, n-Hex-3-in-2-yl, 3-Methyl-pent-1-in-1-yl, 3-Methyl-pent-1-in-3-yl, 3-Methyl-pent-1-in-4-yl, 3-Methyl-pent-1-in-5-yl, 4-Methyl-pent-1-in-1-yl, 4-Methyl-pent-2-in-4-yl und 4-Methyl-pent-2-in-5-yl;
- 20 - C₁-C₄-Alkoxy: für OCH₃, OC₂H₅, OCH₂-C₂H₅, OCH(CH₃)₂, n-Butoxy, OCH(CH₃)-C₂H₅, OCH₂-CH(CH₃)₂ oder OC(CH₃)₃;
- 25 - C₁-C₄-Halogenalkoxy: für einen C₁-C₄-Alkoxyrest wie vorstehend genannt, worin ein Teil, z.B. 1, 2 oder 3 oder alle Wasserstoffatome durch Halogen, insbesondere durch Chlor und/oder Fluor und speziell durch Fluor substituiert sind, also z.B. OCH₂F, OCHF₂, OCF₃, OCH₂Cl, OCH(Cl)₂, OC(Cl)₃, Chlorfluormethoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Bromethoxy, 2-Iodethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, OC₂F₅, 2-Fluorpropoxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2,3-Dichlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Trichlorpropoxy, OCH₂-C₂F₅, OCF₂-C₂F₅, 1-(CH₂F)-2-fluorethoxy, 1-(CH₂Cl)-2-chlorethoxy, 1-(CH₂Br)-2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy, vorzugsweise für OCHF₂, OCF₃, Dichlorfluormethoxy, Chlordifluormethoxy oder 2,2,2-Trifluorethoxy;
- 30 - C₃-C₆-Cycloalkyl: für Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl;
- 35 -

- C₃-C₁₂-Cycloalkyl: für einen mono-, bi- oder tricyclischen Kohlenwasserstoffrest, z.B. für einen C₃-C₆-Cycloalkylrest wie vorstehend genannt oder für Cycloheptyl, Cyclooctyl, Bicyclo[2.2.1]heptyl, Bicyclo[2.2.2]octyl, Bicyclo[3.2.1]octyl, Bicyclo[3.3.0]octyl, Bicyclo[4.3.0]nonyl, Bicyclo[4.4.0]decyl oder Adamantyl;
- 5 - C₃-C₁₂-Cycloalkyl-C₁-C₄-alkyl: für C₁-C₄-Alkyl, welches mit C₃-C₁₂-Cycloalkyl substituiert ist, z.B. Cyclopropylmethyl, Cyclobutylmethyl, Cyclopentylmethyl, Cyclohexylmethyl, Cycloheptylmethyl, Cyclooctylmethyl, 2-(Cyclopropyl)ethyl, 2-(Cyclobutyl)ethyl, 2-(Cyclopentyl)ethyl, 2-(Cyclohexyl)ethyl, 2-(Cycloheptyl)ethyl, 2-(Cyclooctyl)ethyl, 3-(Cyclopropyl)propyl, 3-(Cyclobutyl)propyl, 3-(Cyclopentyl)propyl, 3-(Cyclohexyl)propyl, 3-(Cycloheptyl)propyl, 3-(Cyclooctyl)propyl, 4-(Cyclopropyl)butyl, 4-(Cyclobutyl)butyl, 4-(Cyclopentyl)butyl, 4-(Cyclohexyl)butyl, 4-(Cycloheptyl)butyl, 4-(Cyclooctyl)butyl;
- 10 - C₁-C₄-Alkoxy-C₁-C₄-alkyl: für C₁-C₄-Alkyl, welches mit C₁-C₄-Alkoxy substituiert ist, z.B. für Methoxymethyl, Ethoxymethyl, 1- oder 2-Methoxyethyl, 1- oder 2-Ethoxyethyl, 1-, 2- oder 3-Methoxypropyl;
- 15 - C₁-C₄-Alkoxy-C₁-C₄-alkoxy: für C₁-C₄-Alkoxy, welches mit C₁-C₄-Alkoxy substituiert ist, z.B. für Methoxymethoxy, Ethoxymethoxy, 1- oder 2-Methoxyethoxy, 1- oder 2-Ethoxyethoxy, 1-, 2- oder 3-Methoxypropoxy;
- 20 - Phenyl-C₁-C₆-alkyl: für C₁-C₆-Alkyl, welches mit Phenyl substituiert ist, z.B. für Benzyl, 1- oder 2-Phenylethyl, 1-, 2- oder 3-Phenylpropyl;
- 25 - Phenoxy-C₁-C₆-alkyl: für C₁-C₆-Alkyl, welches mit Phenoxy, substituiert ist, z.B. für Phenoxyethyl, 1- oder 2-Phenoxyethyl, 1-, 2- oder 3-Phenoxypropyl;
- 30 - Phenyl-C₂-C₆-alkenyl: für C₂-C₆-Alkenyl, welches mit Phenyl, substituiert ist, z.B. für 1- oder 2-Phenylethenyl, 1-Phenylprop-2-en-1-yl, 3-Phenyl-1-propen-1-yl, 3-Phenyl-2-propen-1-yl, 4-Phenyl-1-buten-1-yl oder 4-Phenyl-2-buten-1-yl;
- 35 - Phenoxy-C₂-C₆-alkenyl: für C₂-C₆-Alkenyl, welches mit Phenoxy, substituiert ist, z.B. für 1- oder 2-Phenoxyethenyl, 1-Phenoxyprop-2-en-1-yl, 3-Phenoxy-1-propen-1-yl, 3-Phenoxy-2-propen-1-yl, 4-Phenoxy-1-buten-1-yl oder 4-Phenoxy-2-buten-1-yl;
- 40 - Phenyl-C₂-C₆-alkinyl: für C₂-C₆-Alkinyl, welches mit Phenyl, substituiert ist, z.B. für 1-Phenylprop-2-in-1-yl, 3-Phenyl-1-propin-1-yl, 3-Phenyl-2-propin-1-yl, 4-

Phenyl-1-butin-1-yl oder 4-Phenyl-2-buten-1-yl;

- Phenoxy-C₂-C₆-alkinyl: für C₂-C₆-Alkinyl, welches mit Phenoxy, substituiert ist, z.B. für 1-Phenoxyprop-2-in-1-yl, 3-Phenoxy-1-propin-1-yl, 3-Phenoxy-2-propin-1-yl, 4-Phenoxy-1-buten-1-yl oder 4-Phenoxy-2-buten-1-yl.
- 5

Im Hinblick auf die fungizide Wirksamkeit sind Anilide der allgemeinen Formel I bevorzugt, worin die Variablen R¹ bis R⁶ unabhängig voneinander und insbesondere in
10 Kombination die folgenden Bedeutungen aufweisen:

R¹, R², R³ unabhängig voneinander Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl. Insbesondere stehen 1, 2 oder bevorzugt alle Reste R¹, R² und R³ für Wasserstoff;

- 15 R⁴ Wasserstoff, Methyl, OH oder Methoxy, insbesondere Wasserstoff;
- R⁵ eine der folgenden Bedeutungen:
- 20 - unsubstituiertes C₄-C₁₂-Alkyl, C₃-C₁₂-Cycloalkyl, C₂-C₁₂-Alkenyl, C₅-C₁₂-Cycloalkenyl, C₂-C₁₂-Alkinyl, wobei die Wasserstoffatome in den 4 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können und die Wasserstoffatome in C₃-C₁₂-Cycloalkyl teilweise oder vollständig durch C₁-C₄-Alkyl substituiert sein
25 können;
- C₁-C₁₂-Halogenalkyl, insbesondere C₁-C₄-Fluoralkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Halogenalkoxy-C₁-C₄-alkyl, insbesondere C₁-C₄-Fluoralkoxy-C₁-C₄-alkyl;
- 30 - Phenyl, Phenyl-C₁-C₆-alkyl, wobei der Phenylring mit 1, 2, 3 oder 4 Resten R⁷ substituiert sein kann und insbesondere 0, 1, 2 oder 3 Reste R⁷ aufweist; oder
- 35 - -C(C₁-C₄-Alkyl)=NO-R⁸, wobei die Wasserstoffatome der C₁-C₄-Alkylgruppe teilweise, z.B. 1-, 2- oder 3-fach oder vollständig durch Halogen substituiert sein können; und

R⁶ unabhängig voneinander: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, oder Halogen, speziell Fluor, Chlor, Methyl, Trifluormethyl, Methoxy, Trifluormethoxy oder Difluormethyl.

5 Die Variable R⁷ ist insbesondere ausgewählt unter C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro, CN oder Halogen, speziell Fluor, Chlor, Methyl, Trifluormethyl, Methoxy, Trifluormethoxy oder Difluormethyl.

Die Variable R⁸ ist vorzugsweise ausgewählt unter C₁-C₄-Alkyl, C₃-C₆- Cycloalkyl, C₁-C₄-Alkoxy, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, wobei die Wasserstoffatome in diesen 5 Gruppen teilweise oder vollständig durch Halogen substituiert sein können, Halogen, Nitro, CN, Phenyl, das 1, 2, 3 oder 4 der unter R⁶ genannten Gruppen aufweisen kann, Phenoxy, das 1, 2, 3 oder 4 der unter R⁶ genannten Gruppen aufweisen kann, C₁-C₆-Alkylphenyl, wobei die Wasserstoffatome des Alkylteils teilweise oder vollständig durch Halogen substituiert sein können und der Phenylring 1, 2, 3 oder 4 der unter R⁶ genannten Gruppen aufweisen kann, insbesondere unter C₁-C₄-Alkyl, C₃-C₆- Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, wobei die Wasserstoffatome in diesen 4 Gruppen teilweise oder vollständig durch Halogen substituiert sein können, Phenyl oder Benzyl, wobei Phenyl in den zwei letztgenannten Resten 1, 2 oder 3 der unter R⁶ genannten Gruppen aufweisen kann.

Im Hinblick auf ihre fungizide Wirksamkeit sind solche Anilide der Formel I bevorzugt, worin n = 0 ist.

25 Die Variable W steht insbesondere für Sauerstoff.

Im Hinblick auf die fungizide Wirksamkeit der Anilide I, steht X in Formel I für eine direkte Bindung oder Sauerstoff. In einer ersten besonders bevorzugten Ausführungsform der Erfindung steht X für Sauerstoff. In einer anderen besonders bevorzugten Ausführungsform steht X für eine direkte Bindung. Sofern R⁵ für unsubstituiertes Alkyl steht, ist X insbesondere eine direkte Bindung.

30 Im Hinblick auf ihre fungizide Wirksamkeit sind solche Anilide der Formel I bevorzugt, in denen die Gruppe X-R⁵ in ortho- oder meta-Position und insbesondere in ortho-Position zum Amidstickstoff gebunden ist. Hierunter sind besonders diejenigen Anilide der Formel I bevorzugt, in denen R¹, R² und R³ jeweils für Wasserstoff stehen, und speziell solche mit n = 0. Hierunter sind solche Anilide besonders bevorzugt, in denen R⁵ eine der folgenden Bedeutungen aufweist.

- unsubstituiertes C₄-C₁₂-Alkyl, C₃-C₁₂-Cycloalkyl, C₂-C₁₂-Alkenyl, C₅-C₁₂-Cycloalkenyl, C₂-C₁₂-Alkinyl, wobei die Wasserstoffatome in den 4 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können und die Wasserstoffatome in C₃-C₁₂-Cycloalkyl teilweise oder vollständig durch C₁-C₄-Alkyl substituiert sein können;
- C₁-C₁₂-Halogenalkyl, insbesondere C₁-C₄-Fluoralkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Halogenalkoxy-C₁-C₄-alkyl, insbesondere C₁-C₄-Fluoralkoxy-C₁-C₄-alkyl;
- 10 - Phenyl, Phenyl-C₁-C₆-alkyl, wobei der Phenylring mit 1, 2, 3 oder 4 Resten R⁷ substituiert sein kann und insbesondere 0, 1, 2 oder 3 Reste R⁷ aufweist; oder
- -C(C₁-C₄-Alkyl)=NO-R⁸, wobei die Wasserstoffatome der C₁-C₄-Alkylgruppe teilweise oder vollständig durch Halogen substituiert sein können.

15 Hierbei haben R⁷ und R⁸ insbesondere die als bevorzugt angegebenen Bedeutungen, W steht insbesondere für Sauerstoff.

20 Insbesondere sind im Hinblick auf ihre Verwendung als Fungizide und Wirkstoffe zur Bekämpfung von Schädlingen die in den folgenden Tabelle 1 bis 6 zusammengestellten Einzelverbindungen bevorzugt, die unter die allgemeinen Formeln Ia, Ib und Ic fallen, wobei Verbindungen der allgemeinen Formel Ia besonders bevorzugt sind.

Tabelle A

25

Nr.	R ⁵
1.	Cyclopropyl
2.	n-C ₄ H ₉
3.	s-C ₄ H ₉
4.	i-C ₄ H ₉
5.	t-C ₄ H ₉
6.	n-C ₅ H ₁₁
7.	i-C ₅ H ₁₁
8.	neo-C ₅ H ₁₁
9.	Cyclopentyl
10.	n-C ₆ H ₁₃
11.	Cyclohexyl
12.	Cyclobutyl
13.	CH ₂ CH ₂ Cl

Nr.	R ⁵
14.	(CH ₂) ₄ Cl
15.	2-Methoxyeth-1-yl
16.	2-Ethoxyeth-1-yl
17.	2-Isopropoxyeth-1-yl
18.	2-Vinyloxyeth-1-yl
19.	Allyloxyeth-1-yl
20.	2-Trifluormethoxyeth-1-yl
21.	Prop-2-in-1-yl
22.	But-2-in-1-yl
23.	But-3-in-1-yl
24.	3-Chlorprop-2-in-1-yl
25.	Benzyl
26.	1-Naphthyl-CH ₂
27.	2-Naphthyl-CH ₂
28.	2-Phenoxyeth-1-yl
29.	2-(2'-Chlorphenoxy)eth-1-yl
30.	2-(3'-Chlorphenoxy)eth-1-yl
31.	2-(4'-Chlorphenoxy)eth-1-yl
32.	2-(3',5'-Dichlorphenoxy)eth-1-yl
33.	2-(2'-Cyanophenoxy)eth-1-yl
34.	2-(3'-Cyanophenoxy)eth-1-yl
35.	2-(4'-Cyanophenoxy)eth-1-yl
36.	2-(2'-Methylphenoxy)eth-1-yl
37.	2-(3'-Methylphenoxy)eth-1-yl
38.	2-(4'-Methylphenoxy)eth-1-yl
39.	2-(3'-t-Butylphenoxy)eth-1-yl
40.	2-(4'-t-Butylphenoxy)eth-1-yl
41.	2-(2'-Nitrophenoxy)eth-1-yl
42.	2-(3'-Nitrophenoxy)eth-1-yl
43.	2-(4'-Nitrophenoxy)eth-1-yl
44.	2-(2'-Methoxyphenoxy)eth-1-yl
45.	2-(3'-Methoxyphenoxy)eth-1-yl
46.	2-(4'-Methoxyphenoxy)eth-1-yl
47.	2-(2'-Trifluormethylphenoxy)eth-1-yl
48.	2-(3'-Trifluormethylphenoxy)eth-1-yl
49.	2-(4'-Trifluormethylphenoxy)eth-1-yl
50.	2-Phenyleth-1-yl

Nr.	R ⁵
51.	2-(2'-Chlorphenyl)eth-1-yl
52.	2-(3'-Chlorphenyl)eth-1-yl
53.	2-(4'-Chlorphenyl)eth-1-yl
54.	2-(3',5'-Dichlorphenyl)eth-1-yl
55.	2-(2'-Cyanophenyl)eth-1-yl
56.	2-(3'-Cyanophenyl)eth-1-yl
57.	2-(4'-Cyanophenyl)eth-1-yl
58.	2-(2'-Methylphenyl)eth-1-yl
59.	2-(3'-Methylphenyl)eth-1-yl
60.	2-(4'-Methylphenyl)eth-1-yl
61.	2-(2'-Methoxyphenyl)eth-1-yl
62.	2-(3'-Methoxyphenyl)eth-1-yl
63.	2-(4'-Methoxyphenyl)eth-1-yl
64.	2-(2'-Trifluormethylphenyl)eth-1-yl
65.	2-(3'-Trifluormethylphenyl)eth-1-yl
66.	2-(4'-Trifluormethylphenyl)eth-1-yl
67.	C ₆ H ₅
68.	2-F-C ₆ H ₄
69.	3-F-C ₆ H ₄
70.	4-F-C ₆ H ₄
71.	2,3-F ₂ -C ₆ H ₃
72.	2,4-F ₂ -C ₆ H ₃
73.	2,5-F ₂ -C ₆ H ₃
74.	2,6-F ₂ -C ₆ H ₃
75.	3,4-F ₂ -C ₆ H ₃
76.	3,5-F ₂ -C ₆ H ₃
77.	2-Cl-C ₆ H ₄
78.	3-Cl-C ₆ H ₄
79.	4-Cl-C ₆ H ₄
80.	2,3-Cl ₂ -C ₆ H ₃
81.	2,4-Cl ₂ -C ₆ H ₃
82.	2,5-Cl ₂ -C ₆ H ₃
83.	2,6-Cl ₂ -C ₆ H ₃
84.	3,4-Cl ₂ -C ₆ H ₃
85.	3,5-Cl ₂ -C ₆ H ₃
86.	2,3,4-Cl ₃ -C ₆ H ₂
87.	2,3,5-Cl ₃ -C ₆ H ₂

Nr.	R ⁵
88.	2,3,6-Cl ₃ -C ₆ H ₂
89.	2,4,5-Cl ₃ -C ₆ H ₂
90.	2,4,6-Cl ₃ -C ₆ H ₂
91.	3,4,5-Cl ₃ -C ₆ H ₂
92.	2-Br-C ₆ H ₄
93.	3-Br-C ₆ H ₄
94.	4-Br-C ₆ H ₄
95.	2,3-Br ₂ -C ₆ H ₃
96.	2,4-Br ₂ -C ₆ H ₃
97.	2,5-Br ₂ -C ₆ H ₃
98.	2,6-Br ₂ -C ₆ H ₃
99.	3,4-Br ₂ -C ₆ H ₃
100.	3,5-Br ₂ -C ₆ H ₃
101.	2-F, 3-Cl-C ₆ H ₃
102.	2-F, 4-Cl-C ₆ H ₃
103.	2-F, 5-Cl-C ₆ H ₃
104.	2-F, 3-Br-C ₆ H ₃
105.	2-F, 4-Br-C ₆ H ₃
106.	2-F, 5-Br-C ₆ H ₃
107.	2-Cl, 3-Br-C ₆ H ₃
108.	2-Cl, 4-Br-C ₆ H ₃
109.	2-Cl, 5-Br-C ₆ H ₃
110.	3-F, 4-Cl-C ₆ H ₃
111.	3-F, 5-Cl-C ₆ H ₃
112.	3-F, 6-Cl-C ₆ H ₃
113.	3-F, 4-Br-C ₆ H ₃
114.	3-F, 5-Br-C ₆ H ₃
115.	3-F, 6-Br-C ₆ H ₃
116.	3-Cl, 4-Br-C ₆ H ₃
117.	3-Cl, 5-Br-C ₆ H ₃
118.	3-Cl, 6-Br-C ₆ H ₃
119.	4-F, 5-Cl-C ₆ H ₃
120.	4-F, 6-Cl-C ₆ H ₃
121.	4-F, 5-Br-C ₆ H ₃
122.	4-F, 6-Br-C ₆ H ₃
123.	4-Cl, 5-Br-C ₆ H ₃
124.	5-F, 6-Cl-C ₆ H ₃

Nr.	R ⁵
125.	5-F, 6-Br-C ₆ H ₃
126.	5-Cl, 6-Br-C ₆ H ₃
127.	3-Br, 4-Cl, 5-Br-C ₆ H ₂
128.	2-CN-C ₆ H ₄
129.	3-CN-C ₆ H ₄
130.	4-CN-C ₆ H ₄
131.	2-NO ₂ -C ₆ H ₄
132.	3-NO ₂ -C ₆ H ₄
133.	4-NO ₂ -C ₆ H ₄
134.	2-CH ₃ -C ₆ H ₄
135.	3-CH ₃ -C ₆ H ₄
136.	4-CH ₃ -C ₆ H ₄
137.	2,3-(CH ₃) ₂ -C ₆ H ₃
138.	2,4-(CH ₃) ₂ -C ₆ H ₃
139.	2,5-(CH ₃) ₂ -C ₆ H ₃
140.	2,6-(CH ₃) ₂ -C ₆ H ₃
141.	3,4-(CH ₃) ₂ -C ₆ H ₃
142.	3,5-(CH ₃) ₂ -C ₆ H ₃
143.	2-C ₂ H ₅ -C ₆ H ₄
144.	3-C ₂ H ₅ -C ₆ H ₄
145.	4-C ₂ H ₅ -C ₆ H ₄
146.	2-i-C ₃ H ₇ -C ₆ H ₄
147.	3-i-C ₃ H ₇ -C ₆ H ₄
148.	4-i-C ₃ H ₇ -C ₆ H ₄
149.	3-tert.-C ₄ H ₉ -C ₆ H ₄
150.	4-tert.-C ₄ H ₉ -C ₆ H ₄
151.	2-Vinyl-C ₆ H ₄
152.	3-Vinyl-C ₆ H ₄
153.	4-Vinyl-C ₆ H ₄
154.	2-Allyl-C ₆ H ₄
155.	3-Allyl-C ₆ H ₄
156.	4-Allyl-C ₆ H ₄
157.	2-C ₆ H ₅ -C ₆ H ₄
158.	3-C ₆ H ₅ -C ₆ H ₄
159.	4-C ₆ H ₅ -C ₆ H ₄
160.	3-CH ₃ , 5-tert.-C ₄ H ₉ -C ₆ H ₃
161.	2-OH-C ₆ H ₄

Nr.	R ⁵
162.	3-OH-C ₆ H ₄
163.	4-OH-C ₆ H ₄
164.	2-OCH ₃ -C ₆ H ₄
165.	3-OCH ₃ -C ₆ H ₄
166.	4-OCH ₃ -C ₆ H ₄
167.	2,3-(OCH ₃) ₂ -C ₆ H ₃
168.	2,4-(OCH ₃) ₂ -C ₆ H ₃
169.	2,5-(OCH ₃) ₂ -C ₆ H ₃
170.	3,4-(OCH ₃) ₂ -C ₆ H ₃
171.	3,5-(OCH ₃) ₂ -C ₆ H ₃
172.	3,4,5-(OCH ₃) ₃ -C ₆ H ₂
173.	2-OC ₂ H ₅ -C ₆ H ₄
174.	3-OC ₂ H ₅ -C ₆ H ₄
175.	4-OC ₂ H ₅ -C ₆ H ₄
176.	2-O-(n-C ₃ H ₇)-C ₆ H ₄
177.	3-O-(n-C ₃ H ₇)-C ₆ H ₄
178.	4-O-(n-C ₃ H ₇)-C ₆ H ₄
179.	2-O-(i-C ₃ H ₇)-C ₆ H ₄
180.	3-O-(i-C ₃ H ₇)-C ₆ H ₄
181.	4-O-(i-C ₃ H ₇)-C ₆ H ₄
182.	4-O-(n-C ₄ H ₉)-C ₆ H ₄
183.	3-O-(t-C ₄ H ₉)-C ₆ H ₄
184.	4-O-(t-C ₄ H ₉)-C ₆ H ₄
185.	2-O-Allyl-C ₆ H ₄
186.	3-O-Allyl-C ₆ H ₄
187.	4-O-Allyl-C ₆ H ₄
188.	2-CF ₃ -C ₆ H ₄
189.	3-CF ₃ -C ₆ H ₄
190.	4-CF ₃ -C ₆ H ₄
191.	2-Acetyl-C ₆ H ₄
192.	3-Acetyl-C ₆ H ₄
193.	4-Acetyl-C ₆ H ₄
194.	2-Methoxycarbonyl-C ₆ H ₄
195.	3-Methoxycarbonyl-C ₆ H ₄
196.	4-Methoxycarbonyl-C ₆ H ₄
197.	2-Aminocarbonyl-C ₆ H ₄
198.	3-Aminocarbonyl-C ₆ H ₄

Nr.	R ⁵
199.	4-Aminocarbonyl-C ₆ H ₄
200.	2-Dimethylaminocarbonyl-C ₆ H ₄
201.	3-Dimethylaminocarbonyl-C ₆ H ₄
202.	4-Dimethylaminocarbonyl-C ₆ H ₄
203.	2-(N-Methylaminocarbonyl)-C ₆ H ₄
204.	3-(N-Methylaminocarbonyl)-C ₆ H ₄
205.	4-(N-Methylaminocarbonyl)-C ₆ H ₄
206.	2-H ₂ N-C ₆ H ₄
207.	3-H ₂ N-C ₆ H ₄
208.	4-H ₂ N-C ₆ H ₄
209.	2-Aminothiocarbonyl-C ₆ H ₄
210.	3-Aminothiocarbonyl-C ₆ H ₄
211.	4-Aminothiocarbonyl-C ₆ H ₄
212.	2-Methoxyiminomethyl-C ₆ H ₄
213.	3-Methoxyiminomethyl-C ₆ H ₄
214.	4-Methoxyiminomethyl-C ₆ H ₄
215.	3,4-Methylendioxy-C ₆ H ₃
216.	3,4-Difluormethylendioxy-C ₆ H ₃
217.	2,3-Methylendioxy-C ₆ H ₃
218.	2-(1'-Methoxyiminoeth-1'-yl)-C ₆ H ₄
219.	3-(1'-Methoxyiminoeth-1'-yl)-C ₆ H ₄
220.	4-(1'-Methoxyiminoeth-1'-yl)-C ₆ H ₄
221.	2-SCH ₃ -C ₆ H ₄
222.	3-SCH ₃ -C ₆ H ₄
223.	4-SCH ₃ -C ₆ H ₄
224.	2-SO ₂ CH ₃ -C ₆ H ₄
225.	3-SO ₂ CH ₃ -C ₆ H ₄
226.	4-SO ₂ CH ₃ -C ₆ H ₄
227.	2-OCF ₃ -C ₆ H ₄
228.	3-OCF ₃ -C ₆ H ₄
229.	4-OCF ₃ -C ₆ H ₄
230.	2-OCHF ₂ -C ₆ H ₄
231.	3-OCHF ₂ -C ₆ H ₄
232.	4-OCHF ₂ -C ₆ H ₄
233.	3-CF ₃ , 4-OCF ₃ -C ₆ H ₃
234.	2-NHCH ₃ -C ₆ H ₄
235.	3-NHCH ₃ -C ₆ H ₄

Nr.	R ⁵
236.	4-NHCH ₃ -C ₆ H ₄
237.	2-N(CH ₃) ₂ -C ₆ H ₄
238.	3-N(CH ₃) ₂ -C ₆ H ₄
239.	4-N(CH ₃) ₂ -C ₆ H ₄
240.	2-Ethoxycarbonyl-C ₆ H ₄
241.	3-Ethoxycarbonyl-C ₆ H ₄
242.	4-Ethoxycarbonyl-C ₆ H ₄
243.	2-CH ₂ CH ₂ F-C ₆ H ₄
244.	3-CH ₂ CH ₂ F-C ₆ H ₄
245.	4-CH ₂ CH ₂ F-C ₆ H ₄
246.	2-CH ₂ CF ₃ -C ₆ H ₄
247.	3-CH ₂ CF ₃ -C ₆ H ₄
248.	4-CH ₂ CF ₃ -C ₆ H ₄
249.	2-CF ₂ CHF ₂ -C ₆ H ₄
250.	3-CF ₂ CHF ₂ -C ₆ H ₄
251.	4-CF ₂ CHF ₂ -C ₆ H ₄
252.	2-CHF ₂ -C ₆ H ₄
253.	3-CHF ₂ -C ₆ H ₄
254.	4-CHF ₂ -C ₆ H ₄
255.	2-(1'-Oxo-n-prop-1-yl)-C ₆ H ₄
256.	3-(1'-Oxo-n-prop-1-yl)-C ₆ H ₄
257.	4-(1'-Oxo-n-prop-1-yl)-C ₆ H ₄
258.	2-(1'-Oxo-iso-prop-1-yl)-C ₆ H ₄
259.	3-(1'-Oxo-iso-prop-1-yl)-C ₆ H ₄
260.	4-(1'-Oxo-iso-prop-1-yl)-C ₆ H ₄
261.	3-Cyclopropyl-C ₆ H ₄
262.	4-Cyclopropyl-C ₆ H ₄
263.	4-Cyclohexyl-C ₆ H ₄
264.	-C≡CH
265.	-C≡C-Cl
266.	-C≡C-Br
267.	-C≡C-CH ₃
268.	-C≡C-C ₆ H ₅
269.	-C≡C-[2-Cl-C ₆ H ₄]
270.	-C≡C-[4-Cl-C ₆ H ₄]
271.	-C≡C-[2,4-Cl ₂ -C ₆ H ₃]
272.	-C≡C-[2-CH ₃ -C ₆ H ₄]
273.	-C≡C-[4-CH ₃ -C ₆ H ₄]

Nr.	R ⁵
274.	-C≡C-[2,4-(CH ₃) ₂ -C ₆ H ₃]
275.	-C≡C-[2-Cl, 4-CH ₃ -C ₆ H ₃]
276.	-C≡C-[2-CH ₃ , 4-Cl-C ₆ H ₃]
277.	-C≡C-[3-CF ₃ -C ₆ H ₄]
278.	-C≡C-[3-Cl, 5-CF ₃ -C ₆ H ₃]
279.	-C≡C-[2-OCH ₃ -C ₆ H ₄]
280.	-C≡C-[4-OCH ₃ -C ₆ H ₄]
281.	-C≡C-[2,4-(OCH ₃) ₂ -C ₆ H ₃]
282.	-C≡C-[2-Cl, 4-OCH ₃ -C ₆ H ₃]
283.	-C≡C-[2-OCH ₃ , 4-Cl-C ₆ H ₃]
284.	-C≡C-[3-OCHF ₂ -C ₆ H ₄]
285.	-C≡C-[3-Cl, 5-OCHF ₂ -C ₆ H ₃]
286.	Cyclopentyl
287.	1-CH ₃ -cyclopentyl
288.	2-CH ₃ -cyclopentyl
289.	3-CH ₃ -cyclopentyl
290.	2,3-(CH ₃) ₂ -cyclopentyl
291.	1-Cl-cyclopentyl
292.	2-Cl-cyclopentyl
293.	3-Cl-cyclopentyl
294.	2-CH ₃ , 3-Cl-cyclopentyl
295.	2,3-Cl ₂ -cyclopentyl
296.	cyclohexyl
297.	1-CH ₃ -cyclohexyl
298.	2-CH ₃ -cyclohexyl
299.	3-CH ₃ -cyclohexyl
300.	2,3-(CH ₃) ₂ -cyclohexyl
301.	3,3-(CH ₃) ₂ -cyclohexyl
302.	1-Cl-cyclohexyl
303.	2-Cl-cyclohexyl
304.	3-Cl-cyclohexyl
305.	2-CH ₃ , 3-Cl-cyclohexyl
306.	2,3-Cl ₂ -cyclohexyl
307.	CH ₂ -C≡C-H
308.	CH ₂ -C≡C-Cl
309.	CH ₂ -C≡C-Br
310.	CH ₂ -C≡C-J
311.	CH ₂ -C≡C-CH ₃

Nr.	R ⁵
312.	CH ₂ -C≡C-CH ₂ CH ₃
313.	CH ₂ CH ₂ -C≡C-H
314.	CH ₂ CH ₂ -C≡C-Cl
315.	CH ₂ CH ₂ -C≡C-Br
316.	CH ₂ CH ₂ -C≡C-J
317.	CH ₂ CH ₂ -C≡C-CH ₃
318.	CH ₂ CH ₂ CH ₂ -C≡C-H
319.	CH ₂ CH ₂ CH ₂ -C≡C-Cl
320.	CH ₂ CH ₂ CH ₂ -C≡C-Br
321.	CH ₂ CH ₂ CH ₂ -C≡C-J
322.	CH ₂ CH ₂ CH ₂ -C≡C-CH ₃
323.	CH(CH ₃)-C≡C-H
324.	CH(CH ₃)-C≡C-Cl
325.	CH(CH ₃)-C≡C-Br
326.	CH(CH ₃)-C≡C-J
327.	CH(CH ₃)-C≡C-CH ₃
328.	-C≡C-[4-F-C ₆ H ₄]
329.	n-Heptyl
330.	n-Octyl
331.	Vinyl
332.	1-Methylvinyl
333.	2-Methylvinyl
334.	Allyl
335.	2-Methylallyl
336.	2-Ethylallyl
337.	1-Methylallyl
338.	1-Ethylallyl,
339.	1-Methyl-2-butenyl
340.	1-Ethyl-2-butenyl
341.	1-Isopropyl-2-butenyl
342.	1-n-Butyl-2-butenyl
343.	1-Methyl-2-pentyl
344.	1,4-Dimethyl-2-pentenyl
345.	Propargyl
346.	2-Butinyl
347.	3-Butinyl
348.	2-Cyclopentenyl
349.	1-Cyclopentenyl

Nr.	R ⁵
350.	1-Cyclohexenyl
351.	2-Cyclohexenyl
352.	-CH ₂ F
353.	-CHF ₂
354.	-CF ₃
355.	-CH ₂ -CHF ₂
356.	-CH ₂ -CF ₃
357.	-CHF-CF ₃
358.	-CF ₂ -CHF ₂
359.	-CF ₂ -CF ₃
360.	CH ₂ -CF ₂ -CHF ₂
361.	CH ₂ -CF ₂ -CF ₃
362.	CF ₂ -CF ₂ -CF ₃
363.	-CF ₂ -CHF-CF ₃
364.	-CH ₂ (CF ₂) ₂ -CF ₃
365.	-CF ₂ (CF ₂) ₂ -CF ₃
366.	-CH ₂ (CF ₂) ₃ -CF ₃
367.	-CF ₂ (CF ₂) ₃ -CF ₃
368.	-CF ₂ -CF ₂ OMethyl
369.	-CF ₂ -CF ₂ OEt _h yl
370.	CF ₂ -CF ₂ O-n-Propyl
371.	CF ₂ -CF ₂ O-n-Butyl
372.	-CF ₂ -(CF ₂) ₂ OMethyl
373.	-CF ₂ -(CF ₂) ₂ OEt _h yl
374.	-CF ₂ -(CF ₂) ₂ O-n-Propyl
375.	-CF ₂ -(CF ₂) ₂ O-n-Butyl
376.	-(CF ₂) ₂ O-(CF ₂) ₂ OMethyl
377.	-(CF ₂) ₂ O-(CF ₂) ₂ OEt _h yl
378.	-(CF ₂) ₂ O-(CF ₂) ₂ O-n-Propyl
379.	-(CF ₂) ₂ O-(CF ₂) ₂ O-n-Butyl
380.	-CH ₂ -CHCl ₂
381.	-CH ₂ -CCl ₃
382.	-CCl ₂ -CHCl ₂
383.	-CH ₂ CFCI ₂
384.	-CH ₂ -CCIF ₂
385.	-CH ₂ -CCl ₂ -CCl ₃
386.	-CH ₂ -CF ₂ -CHF-CF ₂ -CCIF ₂
387.	Methoxyiminomethyl

Nr.	R ⁵
388.	Ethoxyiminomethyl
389.	iso-Propyloxyiminomethyl
390.	Allyloxyiminomethyl
391.	Phenoxyiminomethyl
392.	Benzyl oxyiminomethyl
393.	1-Methoxyimino-eth-1-yl
394.	1-Ethoxyimino-eth-1-yl
395.	1-iso-Propyloxyimino-eth-1-yl
396.	1-Allyloxyimino-eth-1-yl
397.	1-Phenoxyimino-eth-1-yl
398.	1-Benzyl oxyiminomethyl-phenyl
399.	2-Ethoxyiminomethyl-phenyl
400.	3-Ethoxyiminomethyl-phenyl
401.	4-Ethoxyiminomethyl-phenyl
402.	2-(1-Ethoxyimino-eth-1-yl)-phenyl
403.	3-(1-Ethoxyimino-eth-1-yl)-phenyl
404.	4-(1-Ethoxyimino-eth-1-yl)-phenyl
405.	2-(1-Ethoxyimino-n-prop-1-yl)-phenyl
406.	3-(1-Ethoxyimino-n-prop-1-yl)-phenyl
407.	4-(1-Ethoxyimino-n-prop-1-yl)-phenyl
408.	2-(iso-Propyloxyiminomethyl)-phenyl
409.	3-(iso-Propyloxyiminomethyl)-phenyl
410.	4-(iso-Propyloxyiminomethyl)-phenyl
411.	2-(1-iso-Propyloxyimino-eth-1-yl)-phenyl
412.	3-(1-iso-Propyloxyimino-eth-1-yl)-phenyl
413.	4-(1-iso-Propyloxyimino-eth-1-yl)-phenyl
414.	2-(1-Ethoxyimino-n-prop-1-yl)-phenyl
415.	3-(1-Ethoxyimino-n-prop-1-yl)-phenyl
416.	4-(1-Ethoxyimino-n-prop-1-yl)-phenyl
417.	2-(Allyloxyiminomethyl)-phenyl
418.	3-(Allyloxyiminomethyl)-phenyl
419.	4-(Allyloxyiminomethyl)-phenyl
420.	2-(1-Allyloxyimino-eth-1-yl)-phenyl
421.	3-(1-Allyloxyimino-eth-1-yl)-phenyl
422.	4-(1-Allyloxyimino-eth-1-yl)-phenyl
423.	2-(1-Allyloxyimino-n-prop-1-yl)-phenyl
424.	3-(1-Allyloxyimino-n-prop-1-yl)-phenyl
425.	4-(1-Allyloxyimino-n-prop-1-yl)-phenyl

Tabelle 1:

Verbindungen der allgemeinen Formel Ia;

(Ia)

5

worin X eine direkte Bindung ist und R^5 eine in Tabelle A angegebene Bedeutung aufweist.

Tabelle 2:

10

Verbindungen der allgemeinen Formel Ia, worin X für O steht und R^5 eine in der Tabelle A angegebene Bedeutung aufweist.

Tabelle 3:

15

Verbindungen der allgemeinen Formel Ib,

(Ib)

20

worin X eine direkte Bindung ist und R^5 eine in der Tabelle A angegebene Bedeutung aufweist.

Tabelle 4:

25

Verbindungen der allgemeinen Formel Ib, worin X für O steht und R^5 eine in der Tabelle A angegebene Bedeutung aufweist.

Tabelle 5:

Verbindungen der allgemeinen Formel Ic,

worin X eine direkte Bindung ist und R⁵ eine in der Tabelle A angegebene Bedeutung aufweist.

5

Tabelle 6:

Verbindungen der allgemeinen Formel Ic, worin X für O steht und R⁵ eine in der Tabelle A angegebene Bedeutung aufweist.

10

Die 3-Trifluormethylpicolinsäureanilide der allgemeinen Formel I mit W = O und R⁴ = H können gemäß der in Schema 1 gezeigten Synthese nach literaturbekannten Verfahren durch Umsetzung aktiverter 3-Trifluormethylpicolinsäurederivate der allgemeinen Formel II mit einem Anilin III hergestellt werden [Houben-Weyl: „Methoden der organ. Chemie“, Georg-Thieme-Verlag, Stuttgart, New York 1985, Band E5, S. 941-1045.]. Aktivierte Carbonsäurederivate sind beispielsweise Halogenide, Aktivester, Anhydride, Azide, z.B. Chloride, Fluoride, Bromide, para-Nitrophenylester, Pentafluorphenylester, N-Hydroxysuccinimidester und Hydroxybenzotriazol-1-yl-ester.

20

Schema 1:

In Schema 1 steht L für eine geeignete nucleophil verdrängbare Abgangsgruppe, beispielsweise für Halogenid, Aktivester-Rest, einen Anhydrid-Rest, Azid, z.B. Chlorid, Fluorid, Bromid, para-Nitrophenyloxy, Pentafluorphenyloxy, einen von N-Hydroxysuccinimid oder von Hydroxybenzotriazol-1-yl abgeleiteten Rest.

Die 3-Trifluormethylpicolinsäureanilide der allgemeinen Formel I können außerdem durch Umsetzung der freien Säuren IIa mit einem gegebenenfalls N-substituierten Anilin IIIa in Gegenwart eines Kupplungsreagenzes hergestellt werden (Schema 2).

5 Schema 2:

Kupplungsreagenzien können beispielsweise sein:

- Kupplungsreagenzien auf Carbodiimid-Basis, z.B. N,N'-Dicyclohexylcarbodiimid [J.C. Sheehan, G.P. Hess, J. Am. Chem. Soc. 1955, 77, 1067], N-(3-Dimethylaminopropyl)-N'-ethyl-carbodiimid;
 - Kupplungsreagenzien, die gemischte Anhydride mit Kohlensäureestern bilden, z.B. 2-Ethoxy-1-ethoxycarbonyl-1,2-dihydrochinolin [B. Belleau, G. Malek, J. Amer. Chem. Soc. 1968, 90, 1651.], 2-iso-Butyloxy-1-iso-butyloxycarbonyl-1,2-dihydrochinolin [Y. Kiso, H. Yajima, J. Chem. Soc., Chem. Commun. 1972, 942.];
 - Kupplungsreagenzien aus Phosphonium-Basis, z.B. (Benzotriazol-1-yloxy)-tris-(dimethylamino)-phosphonium-hexafluorophosphat [B. Castro, J.R. Domoy; G. Evin, C. Selve, Tetrahedron Lett. 1975, 14, 1219.], (Benzotriazol-1-yl-oxy)-tritypyrrolidinophosphonium-hexafluorophosphat [J. Coste et.al., Tetrahedron Lett. 1990, 31, 205.];
 - Kupplungsreagenzien auf Uronumbasis bzw. mit Guanidinium-N-oxid-Struktur, z.B. N,N,N',N'-Tetramethyl-O-(1H-benzotriazol-1-yl)-uronium-hexafluorophosphat [R. Knorr, A. Trzeciak, W. Bannwarth, D. Gillessen, Tetrahedron Lett. 1989, 30, 1927.], N,N,N',N'-Tetramethyl-O-(benzotriazol-1-yl)-uronium-tetrafluoroborat, (Benzotriazol-1-yloxy)-dipiperidinocarbenium-hexafluorophosphat [S. Chen, J. Xu, Tetrahedron Lett. 1992, 33, 647.];
 - Kupplungsreagenzien, die Säurechloride bilden, z.B. Phosphorsäure-bis-(2-oxo-oxazolidid)-chlorid [J. Diago-Mesequer, Synthesis 1980, 547.].
- 30 Die 3-Trifluormethylpicolinsäureanilide der allgemeinen Formel I mit R⁴ = ggf. mit Halogen substituiertem Alkyl oder ggf. mit Halogen substituiertem Cycloalkyl können durch Alkylierung der Amide I (worin R⁴ = Wasserstoff ist und die gemäß Schema 1 oder 2 zugänglich sind) mit geeigneten Alkylierungsreagenzien in Gegenwart von Basen her-

gestellt werden. Verfahren hierzu sind bekannt, z.B. aus J. Am. Chem. Soc. 1952, 74, S.3121, Helv. Chim. Acta, 1974, 57, S 281, Synth. Commun. 1988, 18, S. 2011.

Die 3-Trifluormethylpicolinsäuren IIa können nach literaturbekannten Methoden hergestellt werden z.B. aus den entsprechenden Pyridin-2,3-dicarbonsäuren durch Umsetzung mit Schwefeltetrafluorid in Anlehnung an die in J. Fluorine Chem. 1993, 60, S. 233-237; JP 1980-5059135; US 4803205; oder Khim. Geterotsikl. Soedin 1994, S. 657-659; oder durch Einführung der Carboxylgruppe nach der in Eur. J. Org. Chem. 2002, S. 327-330.

Daraus sind die aktivierte Thiophencarbonsäurederivate II nach literaturbekannten Verfahren synthetisierbar [Houben-Weyl: „Methoden der organ. Chemie“, Georg-Thieme-Verlag, Stuttgart, New York 1985, Band E5, S. 587-614, 633-772.]

Die Aniline III und IIIa sind nach literaturbekannten Methoden synthetisierbar [Houben-Weyl: „Methoden der organ. Chemie“, Georg-Thieme-Verlag, Stuttgart, New York, Band XI, Teil 1, S. 9-1005.]

3-Trifluormethylpicolinthioanilide der allgemeinen Formel I mit W = S können durch allgemein bekannte Schwefelungsverfahren aus den entsprechenden Aniliden der Formel I mit X = O hergestellt werden, beispielsweise durch Schwefelung mit P₂S₅ nach J. Am. Chem. Soc. 1951, 73, S. 4988, durch Umsetzung mit Lawessons Reagenz nach Heterocycles 2002, 58, S. 203-212; oder Pharmazie 1999, 54 (9), S.645-650.

Die 3-Trifluormethylpicolinsäureanilide der allgemeinen Formel I und ihre landwirtschaftlich verträglichen, d.h. brauchbaren Salze eignen sich als Fungizide. Sie zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Phycomyceten und Basidiomyceten, aus. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

• *Alternaria*-Arten an Gemüse und Obst,

- *Botrytis cinerea* (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
- *Cercospora arachidicola* an Erdnüssen,
- *Erysiphe cichoracearum* und *Sphaerotheca fuliginea* an Kürbisgewächsen,
- 5 • *Erysiphe graminis* (echter Mehltau) an Getreide,
- Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
- *Helminthosporium*-Arten an Getreide,
- *Mycosphaerella*-Arten an Bananen und Erdnüssen,
- *Phytophthora infestans* an Kartoffeln und Tomaten,
- 10 • *Plasmopara viticola* an Reben,
- *Podosphaera leucotricha* an Äpfeln,
- *Pseudocercosporella herpotrichoides* an Weizen und Gerste,
- *Pseudoperonospora*-Arten an Hopfen und Gurken,
- *Puccinia*-Arten an Getreide,
- 15 • *Pyricularia oryzae* an Reis,
- *Rhizoctonia*-Arten an Baumwolle, Reis und Rasen,
- *Septoria nodorum* an Weizen,
- *Sphaerotheca fuliginea* (Gurkenmehltau) an Gurken,
- *Uncinula necator* an Reben,
- 20 • *Ustilago*-Arten an Getreide und Zuckerrohr, sowie
• *Venturia*-Arten (Schorf) an Äpfeln und Birnen.
- *Septoria Tritici*
- *Pyrenophora*-Arten
- *Leptosphaeria Nodorum*
- 25 • *Rhynchosporium*-Arten
- *Typhula*-Arten

Die Verbindungen der Formel I eignen sich außerdem zur Bekämpfung von Schadpilzen wie *Paecilomyces variotii* im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.

Die Verbindungen der Formel I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

- 5 Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 0,1 g, vorzugsweise 0,01 bis 0,05 g je Kilogramm Saatgut benötigt.

- 10 Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Qubikmeter behandelten Materials.

- 15 Die Verbindungen der Formel I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulaten. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

- 20 Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfatablauhen und Methylcellulose.

- 35 Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate und Fettsäuren sowie deren Alkali- und Erdalkalisalze, Salze von sulfatiertem Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphe-

nol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfatablaugen und
5 Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfaktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.
10

15 Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch
20 Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.
25

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in
30 einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind:

- 35 I. 5 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 95 Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 5 Gew.-% des Wirkstoffs enthält.
- II. 30 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit einer Mischung aus 40 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl,

das auf die Oberfläche dieses Kieselsäuregels gesprührt wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit (Wirkstoffgehalt 23 Gew.-%).

- 5 III. 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 90 Gew.-Teilen Xylol, 6 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 2 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 2 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 9 Gew.-%).
- 10 IV. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 60 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 5 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 5Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 16 Gew.-%).
- 15 V. 80 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-alpha-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen (Wirkstoffgehalt 80 Gew.-%).
- 20 VI. Man vermischt 90 Gew.-Teile einer erfindungsgemäßen Verbindung mit 10 Gew.-Teilen N-Methyl-a-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist (Wirkstoffgehalt 90 Gew.-%).
- 25 VII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gew.-Teilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- 30 VIII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin- α -sulfonsäure, 17 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gew.-Teilen Wasser
- 35
- 40

erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.

- IX. 10 Gew.-Teile der erfindungsgemäßen Verbindung werden in 63 Gew.-Teilen Cyclohexanon, 27 Gew.-Teilen Dispergiermittel (beispielsweise eine Mischung aus 50 Gew.-Teilen des Anlagerungsprodukts von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Ricinusöl) gelöst. Die Stammlösung wird anschließend durch Verteilen in Wasser auf die gewünschte Konzentration verdünnt, z.B. auf eine Konzentration im Bereich von 1 bis 100 ppm.

10 Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

20 Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

30 Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%. Häufig reichen bereits geringe Wirkstoffmengen an Verbindung I in der anwendungsfertigen Zubereitung aus, z.B. 2 bis 200 ppm. Ebenso sind anwendungsfertige Zubereitungen mit Wirkstoffkonzentrationen im Bereich von 0,01 bis 1 % bevorzugt.

35 Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

40 Zu den Wirkstoffen können Öle verschiedenen Typs, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungs-

gemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

- Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, 5 Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.
- 10 Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:
- Schwefel, Dithiocarbamate und deren Derivate, wie Ferridimethyldithiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylenbisdithiocarbamat, Manganethylenbis-dithiocarbamat, Mangan-Zink-ethylendiamin-bis-dithiocarbamat, Tetramethylthiuramdisulfide, Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat), Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat), Zink-(N,N'-propylen-bis-dithiocarbamat), N,N'-Polypropylen-bis-(thiocarbamoyl)disulfid;
 - Nitroderivate, wie Dinitro-(1-methylheptyl)-phenylcrotonat, 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat, 2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat, 5-Nitro-isophthalsäure-di-isopropylester;
 - heterocyclische Substanzen, wie 2-Heptadecyl-2-imidazolin-acetat, 2,4-Dichlor-6-(o-chloranilino)-s-triazin, O,O-Diethyl-phthalimidophosphonothioat, 5-Amino-1-[bis-(dimethylamino)-phosphinyl]-3-phenyl-1,2,4-triazol, 2,3-Dicyano-1,4-dithioanthrachinon, 2-Thio-1,3-dithiolo[4,5-b]chinoxalin, 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester, 2-Methoxycarbonylamino-benzimidazol, 2-(Furyl-(2))-benzimidazol, 2-(Thiazolyl-(4))-benzimidazol, N-(1,1,2,2-Tetrachlorethythio)-tetrahydropthalimid, N-Trichlormethylthio-tetrahydropthalimid, N-Trichlormethylthio-phthalimid,
 - N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäure-diamid, 5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol, 2-Rhodanmethylthiobenzthiazol, 1,4-Dichlor-2,5-dimethoxybenzol, 4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon, Pyridin-2-thio-1-oxid, 8-Hydroxychinolin bzw. dessen Kupfersalz, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid, 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid, 2-Methyl-furan-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäureanilid, 2,4,5-Trimethyl-furan-3-carbonsäureanilid, N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäurecyclohexylamid, N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid, 2-Methyl-benzoësäure-anilid, 2-Iod-benzoësäure-anilid, N-

- Formyl-N-morpholin-2,2,2-trichlorethylacetal, Piperazin-1,4-diylbis-1-(2,2,2-trichlorethyl)-formamid, 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan, 2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze, 2,6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethyl-morpholin, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin, 1-[2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol, 1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol, N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff, 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon, 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol, (2RS,3RS)-1-[3-(2-Chlorphenyl)-2-(4-fluorphenyl)-oxiran-2-ylmethyl]-1H-1,2,4-triazol, α -(2-Chlorphenyl)- α -(4-chlorphenyl)-5-pyrimidin-methanol, 5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin, Bis-(p-chlorphenyl)-3-pyridinmethanol, 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol,
- 15 • Strobilurine wie Methyl-E-methoxyimino-[α -(o-tolyloxy)-o-toly]acetat, Methyl-E-2-{2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxyacrylat, Methyl-E-{2-methoxyimino-[α -(2-phenoxyphenyl)]-acetamid, Methyl-E-methoxyimino-[α -(2,5-dimethylphenoxy)-o-toly]-acetamid,
- 20 • Anilinopyrimidine wie N-(4,6-Dimethylpyrimidin-2-yl)-anilin, N-[4-Methyl-6-(1-propinyl)-pyrimidin-2-yl]-anilin, N-[4-Methyl-6-cyclopropyl-pyrimidin-2-yl]-anilin,
- Phenylpyrrole wie 4-(2,2-Difluor-1,3-benzodioxol-4-yl)-pyrrol-3-carbonitril,
- Zimtsäureamide wie 3-(4-Chlorphenyl)-3-(3,4-dimethoxyphenyl)-acrylsäuremorpholid,
- 25 • sowie verschiedene Fungizide, wie Dodecylguanidinacetat, 3-[3-(3,5-Dimethyl-2-oxy cyclohexyl)-2-hydroxyethyl]-glutarimid, Hexachlorbenzol, DL-Methyl-N-(2,6-dimethyl-phenyl)-N-furoyl(2)-alaninat, DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyacetyl)-alanin-methyl-ester, N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyrolacton, DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alaninmethylester, 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin, 3-[3,5-Dichlorphenyl(-5-methyl-5-methoxymethyl]-1,3-oxazolidin- 2,4-dion, 3-(3,5-Dichlorphenyl)-1-isopropylcarbamoylhantoin,
- 30 • 2,4-Dioxo-1,3-oxazolidin-2,4-dion, 3-(3,5-Dichlorphenyl)-1-isopropylcarbamoylhantoin, 2-Cyano-N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid, 2-Cyano-[N-(ethylaminocarbonyl)-2-methoximino]-acetamid, 1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol, 2,4-Difluor- α -(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol, N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2-aminopyridin, 1-((bis-(4-Fluorphenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol.

Herstellungsbeispiele:

Beispiel 1: 3-Trifluormethyl-picolinsäure-(ortho-cyclohexyl)-anilid:

- 5 1.1 3-Trifluormethylpyridin-2-carbonsäuremethylester:
66,8 g (0,4 mol) Pyridin-2,3-dicarbonsäure wurden in einem 0,5 l Autoklaven
vorgelegt. Anschließend kondensierte man 120 g (6 mol) wasserfreien Fluorwas-
serstoff ein und presste 138,4 g (1,28 mol) Schwefeltetrafluorid auf. Man rührte
24 h bei 60 °C. Nach Entspannen gab man 150 ml Methanol in den Autoklaven
10 und rührte anschließend 3 h bei 80°C unter Eigendruck. Nach Entspannen gab
man den Autoklaveninhalt auf 1000 g Eiswasser, stellte mit 40 gew.-%iger wäss-
riger Kaliumhydroxid-Lösung alkalisch, wusch 3 mal mit 350 ml Methylenechlorid,
15 trennte die Methylenchloridphase ab, wusch einmal mit 300 ml Wasser und
trocknete anschließend die organische Phase mit Magnesiumsulfat. Nach Abdes-
tillieren des Lösungsmittels im Vakuum erhielt man einen Rückstand, der im Va-
kuum über eine 15 cm-Vigreuxkolonne destilliert wurde. Man erhielt 61,9 g der
Titelverbindung als eine Fraktion bei 98-99°C (10 mbar) mit einer GC-Reinheit
von 88,7%.
- 20 $^1\text{H-NMR}$ (DMSO-d₆): 3,05 ppm (s, 3H, OMe); 7,85 ppm (m, 1H , Pyridin-H); 8,40
ppm (d, 1H, Pyridin-H); 8,95 ppm (d, 1H, Pyridin-H).
- 1.2 3-Trifluormethylpyridin-2-carbonsäure Kaliumsalz:
25 20 g (0,086 mol) 88,7%iger 3-Trifluormethylpyridin-2-carbonsäuremethylester
und 300 ml 20 gew.-%ige wässrige Kaliumhydroxid-Lösung wurden 6 h zum
Rückfluss erhitzt. Anschließend stellte man mit wässriger Salzsäure auf pH=5
und engte zur Trockene ein. Der Rückstand wurde zweimal mit 400 ml Methanol
ausgekocht. Die Methanol extrakte wurde gesammelt und im Vakuum zur Trock-
30 ne eingeengt. Auf diese Weise erhielt man 20,2 g der Titelverbindung als Kali-
umsalz.
1H-NMR (DMSO-d₆): 7,3 ppm (m, 1H , Pyridin-H); 7,95 ppm (d, 1H, Pyridin-H);
8,6 ppm (d, 1H, Pyridin-H).
- 1.3 3-Trifluormethyl-picolinsäure-(ortho-cyclohexyl)-anilid:
35 In 20 ml Dichlormethan wurden 600 mg ortho-Cyclohexylanilin und 1,04 g
Triethylamin gelöst. Man gab 0,72 g 3-Trifluormethylpicolinsäurechlorid zu und
rührte 14 h bei Raumtemperatur. Anschließend wurde die Reaktionsmischung je
einmal mit wässrigem Natriumhydrogencarbonat und verdünnter Salzsäure und
40 zweimal mit Wasser gewaschen. Die organische Phase wurde über Natriumsulfat
getrocknet und im Vakuum eingeengt. Nach chromatographischer Reinigung des

Rückstandes an Kieselgel mit einer Mischung aus Cyclohexan und Methyl-tert-butylether erhält man 740 mg der Zielverbindung mit einem Festpunkt von 111-116°C.

- 5 Die Verbindungen der Beispiele 2 bis 22 (Verbindungen der Formel I') wurden in analoger Weise hergestellt. Ihre physikochemischen Daten sind in Tabelle 7 zusammengestellt:

Tabelle 7:

10

Bsp.	X-R ⁵	Position	Festpunkt	Spektroskopische Daten
1	cyclo-Hexyl	ortho	111-116°C	
2	-CH(CH ₃)-CH ₂ -CH ₃	ortho	Öl	IR [cm ⁻¹]: 1703, 1587, 1576, 1521, 1452, 1433, 1314, 1298, 1157, 1129, 1067, 1034, 816, 808, 757.
3	n-Pentyl	ortho	68-73°C	
4	4-Chlorphenyl	ortho	132-136°C	
5	4-Fluorphenyl	ortho	114-117°C	
6	1,1,2,2-Tetrafluorethoxy	ortho	83-86°C	
7	cyclo-Pentyl	ortho	117-122°C	
8	1,1,2,2-Tetrafluorethoxy	meta	89-90°C	
9	-OC(O)NH-tert-butyl	meta	129-131°C	
10	n-Hexyloxy	meta	59-60°C	
11	cyclo-Pentyloxy	meta	Öl	IR [cm ⁻¹]: 1697, 1607, 1590, 1577, 1531, 1493, 1448, 1434, 1418, 1315, 1188, 1165, 1127, 1034.
12	2-Methyl-phenyl	ortho	89-91°C	
13	4-Acetyl-phenyl	ortho	160-162°C	
14	4-(1-Methoxyiminoethyl)-phenyl	ortho	105-107°C	
15	4-(1-Ethoxyiminoethyl)-phenyl	ortho	105-107°C	
16	4-(1-iso-Propyloxyiminoethyl)-phenyl	ortho	101-103°C	
17	-CH ₂ -CH(CH ₃) ₂	ortho	73-75°C	
18	2,2,2-Trifluorethoxy	ortho	145-147°C	
19	2,2,3,3,3-Pentafluorpropyloxy	ortho	99-100°C	

Bsp.	X-R ⁵	Position	Festpunkt	Spektroskopische Daten
20	cyclo-Hexen-3-yl	ortho	87-89°C	
21	Phenyl	ortho	86-87°C	
22	4-iso-Propyl-phenyl	ortho	89-91°C	

Anwendungsbeispiele:

- 5 Die Wirkstoffe wurden als Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder Dimethylsulfoxid (DMSO). Dieser Lösung wurde 1 Gew.-% Emulgator Unipentrol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.
- 10 Wirksamkeit gegen Mehltau an Gurkenblättern verursacht durch Sphaerotheca fuliginea bei protektiver Anwendung
- 15 Blätter von in Töpfen gewachsenen Gurkenkeimlingen der Sorte "Chinesische Schlanke" wurden im Keimblattstadium mit wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. 20 h nach dem Antrocknen des Spritzbelags wurden die Pflanzen mit einer wässrigen Sporensuspension des Gurkenmehltaus (Sphaerotheca fuliginea) inkuliert. Danach wurden die Versuchspflanzen im Gewächshaus bei Temperaturen zwischen 20 und 24 °C und 60 bis 80 % relativer Luftfeuchtigkeit für 7 Tage kultiviert. Danach wurde das Ausmaß der Mehltauentwicklung visuell in %-Befall der Keimblattfläche ermittelt. Die Ergebnisse sind in Tabelle 8 zusammengestellt.

Tabelle 8:

Verbindung aus Beispiel	Befall der Blattfläche [%] bei 250 ppm Wirkstoffkonzentration
1	0
2	10
3	0
4	0
5	0
6	0
7	0
8	1
12	0
14	0

Verbindung aus Beispiel	Befall der Blattfläche [%] bei 250 ppm Wirkstoffkonzentration
15	0
16	0
17	0
20	1
21	0
22	0
unbehandelt	90

Protective activity against *Puccinia recondita* on wheat (Wheat brown rust)

- 5 Blätter von in Töpfen gewachsenen Weizensämlingen der Sorte "Kanzler" wurden mit einer wässrigen Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe bestäubt. Am nächsten Tag wurden die behandelten Pflanzen mit Sporen des Weizenbraunrostes (*Puccinia recondita*) bestäubt. Anschließend wurden die Pflanzen für 24 Stunden in eine Kammer mit hoher Luftfeuchtigkeit (90 bis 95 %) und 20 bis 10 22 °C gestellt. Während dieser Zeit keimten die Sporen aus und die Keimschläuche drangen in das Blattgewebe ein. Am folgenden Tag wurden die Versuchspflanzen ins Gewächshaus zurückgestellt und bei Temperaturen zwischen 20 und 22 °C und 65 bis 70 % relativer Luftfeuchtigkeit für weitere 7 Tage kultiviert. Danach wurde das Ausmaß 15 der Rostpilzentwicklung auf den Blättern visuell ermittelt. Die Ergebnisse sind in Tabelle 9 zusammengestellt.

Tabelle 9:

Verbindung aus Beispiel	Befall der Blattfläche [%] bei 250 ppm Wirkstoffkonzentration
4	15
10	15
11	10
14	15
16	10
unbehandelt	90

Patentansprüche

1. 3-Trifluormethylpicolinsäureanilide der allgemeinen Formel I,

5

worin n für 0, 1, 2, 3 oder 4 steht und die Substituenten die folgende Bedeutung haben:

10

X O, S oder direkte Bindung;

W O oder S;

R¹, R², R³ unabhängig voneinander Wasserstoff, Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, wobei die Wasserstoffatome in den 4 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;

15

R⁴ Wasserstoff, OH, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, wobei die Wasserstoffatome in den 3 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;

20

R⁵ unsubstituiertes C₄-C₁₂-Alkyl, C₃-C₁₂-Cycloalkyl, C₃-C₁₂-Alkenyl, C₅-C₁₂-Cycloalkenyl, C₃-C₁₂-Alkinyl, C₃-C₁₂-Cycloalkyl-C₁-C₄-alkyl, wobei die 5 letztgenannten Gruppen jeweils 1, 2 oder 3 Substituenten R⁹ aufweisen können, und wobei die Wasserstoffatome in den 5 letztgenannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;

25

C₁-C₁₂-Halogenalkyl, C₁-C₁₂-Alkyl, das 1, 2 oder 3 Substituenten R¹¹ aufweist,

eine Gruppe -C(R¹⁰)=NOR⁸, eine Gruppe -C(O)NR¹³R¹⁴;

Phenyl, Phenyl-C₁-C₆-alkyl, Phenyl-C₂-C₆-alkenyl, Phenyl-C₂-C₆-alkinyl, Phenoxy-C₁-C₆-alkyl, Phenoxy-C₂-C₆-alkenyl, Phenoxy-C₂-C₆-alkinyl, wobei der Alkyl-, Alkenyl- und der Alkinyl-Teil in den 6 zuletzt genannten Gruppen 1, 2, 3 oder 4 Substituenten R¹¹ aufweisen kann und der Phenylring in den 7 zuletzt genannten Gruppen 1, 2, 3 oder 4 Reste R⁷ tragen kann;

30

35 R⁶ die für R¹ genannten, von Wasserstoff verschiedenen Bedeutungen;

- 5 R⁷ C₁-C₄-Alkyl, C₃-C₆- Cycloalkyl, C₁-C₄-Alkoxy, C₂-C₄-Alkenyl, C₂-C₄-Alkenyloxy, C₂-C₄-Alkinyl, C₂-C₄-Alkinyloxy, wobei die Wasserstoffatome in diesen 7 Gruppen teilweise oder vollständig durch Halogen substituiert sein können, OH, Halogen, Nitro, CN, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfonyl, -C(O)R¹², NR¹³R¹⁴, -C(O)NR¹³R¹⁴, -C(S)NR¹³R¹⁴, -C(R¹⁰)=NOR⁸, Phenyl, das 1, 2, 3 oder 4 der unter R⁶ genannten Gruppen aufweisen kann, Phenoxy, das 1, 2, 3 oder 4 der unter R⁶ genannten Gruppen aufweisen kann, C₁-C₆-Alkyl-Phenyl, wobei die Wasserstoffatome des Alkylteils teilweise oder vollständig durch Halogen substituiert sein können und der Phenylring 1, 2, 3 oder 4 der unter R⁶ genannten Gruppen aufweisen kann,
10 wobei zwei an benachbarte Kohlenstoffatome gebundene Reste R⁷ auch für CH=CH-CH=CH oder eine Alkylenkette mit 3 bis 5 Gliedern stehen können, worin 1 oder 2 nicht benachbarte CH₂-Gruppen auch durch Sauerstoff oder Schwefel ersetzt sein können und worin ein Teil oder alle Wasserstoffe durch Halogen ersetzt sein können;
- 15 R⁸ C₁-C₄-Alkyl, C₃-C₆- Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, wobei die Wasserstoffatome in diesen 4 Gruppen teilweise oder vollständig durch Halogen substituiert sein können,
- 20 Phenyl oder Phenyl-C₁-C₆-alkyl, wobei Phenyl in den zwei letztgenannten Resten 1, 2, 3 oder 4 der unter R⁶ genannten Gruppen aufweisen kann;
- 25 R⁹ C₁-C₄-Alkyl, C₁-C₈-Alkoxy, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₁-C₄-Alkoxy-C₁-C₈-alkoxy, wobei die Wasserstoffatome in diesen Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
- 30 R¹⁰ Wasserstoff, Halogen, C₁-C₈-Alkoxy, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₁-C₄-Alkoxy-C₁-C₈-alkoxy, C₁-C₁₂-Alkyl, C₃-C₁₂-Cycloalkyl, C₂-C₁₂-Alkenyl, C₅-C₁₂-Cycloalkenyl, C₃-C₁₂-Cycloalkyl-C₁-C₄-alkyl, wobei die Wasserstoffatome in den 9 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
35 Phenyl, das 1, 2, 3 oder 4 der unter R⁷ genannten Gruppen aufweisen kann,
 Halogen, C₁-C₄-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkoxy-C₁-C₈-alkoxy, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₁-C₄-Alkoxy-C₁-C₈-alkoxy, wobei die Wasserstoffatome in diesen Gruppen teilweise oder vollständig durch Halogen substituiert sein können;
- 40 R¹¹ Wasserstoff, OH, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₂-C₄-Alkenyloxy, C₂-C₄-Alkinyloxy, C₁-C₄-Alkoxy-C₁-C₄-alkoxy, wobei die Wasserstoffatome in den 7 zuletzt genannten

Gruppen teilweise oder vollständig durch Halogen substituiert sein können;

5 R¹³, R¹⁴ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, wobei die Wasserstoffatome in diesen Gruppen teilweise oder vollständig durch Halogen substituiert sein können;

und die landwirtschaftlich brauchbaren Salze von I.

2. Anilide der allgemeinen Formel I nach Anspruch 1, worin R¹, R² und R³ unabhängig voneinander Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl bedeuten.
- 10 3. Anilide der allgemeinen Formel I nach Anspruch 1, worin R¹, R² und R³ jeweils für Wasserstoff stehen.
- 15 4. Anilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin R⁴ ausgewählt ist unter Wasserstoff, Methyl, OH oder Methoxy.
- 20 5. Anilide der allgemeinen Formel I nach Anspruch 4, worin R⁴ für Wasserstoff steht.
- 25 6. Anilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin R⁵ eine der folgenden Bedeutungen aufweist:
 - unsubstituiertes C₄-C₁₂-Alkyl, C₃-C₁₂-Cycloalkyl, C₂-C₁₂-Alkenyl, C₅-C₁₂-Cycloalkenyl, C₂-C₁₂-Alkinyl, wobei die Wasserstoffatome in den 4 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können und die Wasserstoffatome in C₃-C₁₂-Cycloalkyl teilweise oder vollständig durch C₁-C₄-Alkyl substituiert sein können,
 - 30 - C₁-C₁₂-Halogenalkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Halogenalkoxy-C₁-C₄-alkyl;
 - Phenyl, Phenyl-C₁-C₆-alkyl, wobei der Phenylring mit 1, 2, 3 oder 4 Resten R⁷ substituiert sein kann; oder
 - -C(C₁-C₄-Alkyl)=NO-R⁸, wobei die Wasserstoffatome der C₁-C₄-Alkylgruppe teilweise oder vollständig durch Halogen substituiert sein können.
- 35 7. Anilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, in denen R⁸ die folgenden Bedeutungen aufweist C₁-C₄-Alkyl, C₁-C₄-Alkoxy, wobei diese Gruppen durch Halogen substituiert sein können, oder Halogen.

8. Anilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, in denen n = 0 ist.
9. Anilide der allgemeinen Formel I nach Anspruch 9, worin R¹, R² und R³ jeweils für Wasserstoff stehen und die Gruppe X-R⁵ in ortho- oder meta-Position zum Amidstickstoff gebunden ist.
10. Anilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, in denen X eine direkte Bindung oder Sauerstoff bedeutet.
11. Anilide der allgemeinen Formel I nach Anspruch 10, in denen die Gruppe X für Sauerstoff oder eine direkte Bindung steht und R⁵ eine der folgenden Bedeutungen aufweist:
 - unsubstituiertes C₄-C₁₂-Alkyl, C₃-C₁₂-Cycloalkyl, C₂-C₁₂-Alkenyl, C₅-C₁₂-Cycloalkenyl, C₂-C₁₂-Alkinyl, wobei die Wasserstoffatome in den 4 zuletzt genannten Gruppen teilweise oder vollständig durch Halogen substituiert sein können und die Wasserstoffatome in C₃-C₁₂-Cycloalkyl teilweise oder vollständig durch C₁-C₄-Alkyl substituiert sein können;
 - C₁-C₁₂-Halogenalkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Halogenalkoxy-C₁-C₄-alkyl;
 - Phenyl, Phenyl-C₁-C₆-alkyl, wobei der Phenylring mit 1, 2, 3 oder 4 Resten R⁷ substituiert sein kann; oder
 - -C(C₁-C₄-Alkyl)=NO-R⁸, wobei die Wasserstoffatome der C₁-C₄-Alkylgruppe teilweise oder vollständig durch Halogen substituiert sein können.
12. Verwendung von 3-Trifluormethylpicolinsäureaniliden der allgemeinen Formel I und ihren landwirtschaftlich verträglichen Salzen gemäß einem der vorhergehenden Ansprüche zur Bekämpfung von Schadpilzen.
- 30 13. Fungizide Mittel, enthaltend eine fungizid wirksame Menge mindestens eines 3-Trifluormethylpicolinsäureanilids der allgemeinen Formel I oder eines landwirtschaftlich verträglichen Salzes von I gemäß einem der Ansprüche 1 bis 11.
- 35 14. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, dass man die Schadpilze, deren Lebensraum oder die von ihnen freizuhaltenden Pflanzen, Flächen, Materialien oder Räume mit mindestens einer fungizid wirksamen Menge eines 3-Trifluormethylpicolinsäureanilids der allgemeinen Formel I oder eines landwirtschaftlich verträglichen Salzes von I gemäß einem der Ansprüche 1 bis 11 behandelt.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/014621

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07D213/81 A01N43/40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C07D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 02/096882 A1 (NIHON NOHYAKU CO., LTD) 5 December 2002 (2002-12-05) claims 1-3,5-7; compounds 3-1 & EP 1 400 516 A (NIHON NOHYAKU CO., LTD) 24 March 2004 (2004-03-24) -----	1-14
X	PATENT ABSTRACTS OF JAPAN vol. 007, no. 195 (C-183), 25 August 1983 (1983-08-25) & JP 58 096069 A (ISHIHARA SANGYO KK), 7 June 1983 (1983-06-07) cited in the application the whole document -----	1-14
X	EP 0 545 099 A (BASF AKTIENGESELLSCHAFT) 9 June 1993 (1993-06-09) cited in the application claims 2,7; compounds 1.75, 1.76 -----	1-14

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but used to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

8 April 2005

15/04/2005

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Stroeter, T

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/014621

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	
X	WO 03/074491 A (SYNGENTA PARTICIPATIONS AG; EHRENFREUND, JOSEF; TOBLER, HANS; WALTER,) 12 September 2003 (2003-09-12) cited in the application Verbindungen mit R4 = CF3 page 10; table 5 -----	1-14

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/014621

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 02096882	A1	05-12-2002	BR	0209726 A	20-04-2004
			CA	2447640 A1	05-12-2002
			CN	1512986 A	14-07-2004
			EP	1400516 A1	24-03-2004
			JP	2003048878 A	21-02-2003
			US	2004116744 A1	17-06-2004
EP 1400516	A	24-03-2004	BR	0209726 A	20-04-2004
			CA	2447640 A1	05-12-2002
			EP	1400516 A1	24-03-2004
			US	2004116744 A1	17-06-2004
			CN	1512986 A	14-07-2004
			WO	02096882 A1	05-12-2002
			JP	2003048878 A	21-02-2003
JP 58096069	A	07-06-1983	NONE		
EP 0545099	A	09-06-1993	AT	149487 T	15-03-1997
			AU	656243 B2	27-01-1995
			AU	2855492 A	27-05-1993
			CA	2081935 A1	23-05-1993
			CZ	9203448 A3	13-10-1993
			CZ	289478 B6	16-01-2002
			DE	59208113 D1	10-04-1997
			DK	545099 T3	24-03-1997
			EP	0545099 A2	09-06-1993
			ES	2098421 T3	01-05-1997
			GR	3023336 T3	29-08-1997
			HU	62861 A2	28-06-1993
			IL	103614 A	24-09-1998
			JP	3202079 B2	27-08-2001
			JP	5221994 A	31-08-1993
			JP	2001253802 A	18-09-2001
			JP	2001316210 A	13-11-2001
			KR	267518 B1	16-10-2000
			NZ	245194 A	27-02-1996
			PL	296677 A1	18-10-1993
			SK	344892 A3	08-03-1995
			US	5480897 A	02-01-1996
			US	5556988 A	17-09-1996
			US	5589493 A	31-12-1996
			US	5330995 A	19-07-1994
			ZA	9208977 A	19-05-1994
WO 03074491	A	12-09-2003	AU	2003208490 A1	16-09-2003
			BR	0308230 A	28-12-2004
			CA	2477931 A1	12-09-2003
			EP	1480955 A1	01-12-2004
			WO	03074491 A1	12-09-2003

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/014621

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07D213/81 A01N43/40

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07D A01N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 02/096882 A1 (NIHON NOHYAKU CO., LTD) 5. Dezember 2002 (2002-12-05) Ansprüche 1-3,5-7; Verbindungen 3-1 & EP 1 400 516 A (NIHON NOHYAKU CO., LTD) 24. März 2004 (2004-03-24)	1-14
X	PATENT ABSTRACTS OF JAPAN Bd. 007, Nr. 195 (C-183), 25. August 1983 (1983-08-25) & JP 58 096069 A (ISHIHARA SANGYO KK), 7. Juni 1983 (1983-06-07) in der Anmeldung erwähnt das ganze Dokument	1-14
X	EP 0 545 099 A (BASF AKTIENGESELLSCHAFT) 9. Juni 1993 (1993-06-09) in der Anmeldung erwähnt Ansprüche 2,7; Verbindungen 1.75, 1.76	1-14

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- ° Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem Internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

8. April 2005

15/04/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Stroeter, T

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/014621

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 03/074491 A (SYNGENTA PARTICIPATIONS AG; EHRENFREUND, JOSEF; TOBLER, HANS; WALTER,) 12. September 2003 (2003-09-12) in der Anmeldung erwähnt Verbindungen mit R4 = CF3 Seite 10; Tabelle 5 -----	1-14
1		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/014621

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 02096882	A1	05-12-2002		BR 0209726 A CA 2447640 A1 CN 1512986 A EP 1400516 A1 JP 2003048878 A US 2004116744 A1		20-04-2004 05-12-2002 14-07-2004 24-03-2004 21-02-2003 17-06-2004
EP 1400516	A	24-03-2004		BR 0209726 A CA 2447640 A1 EP 1400516 A1 US 2004116744 A1 CN 1512986 A WO 02096882 A1 JP 2003048878 A		20-04-2004 05-12-2002 24-03-2004 17-06-2004 14-07-2004 05-12-2002 21-02-2003
JP 58096069	A	07-06-1983		KEINE		
EP 0545099	A	09-06-1993		AT 149487 T AU 656243 B2 AU 2855492 A CA 2081935 A1 CZ 9203448 A3 CZ 289478 B6 DE 59208113 D1 DK 545099 T3 EP 0545099 A2 ES 2098421 T3 GR 3023336 T3 HU 62861 A2 IL 103614 A JP 3202079 B2 JP 5221994 A JP 2001253802 A JP 2001316210 A KR 267518 B1 NZ 245194 A PL 296677 A1 SK 344892 A3 US 5480897 A US 5556988 A US 5589493 A US 5330995 A ZA 9208977 A		15-03-1997 27-01-1995 27-05-1993 23-05-1993 13-10-1993 16-01-2002 10-04-1997 24-03-1997 09-06-1993 01-05-1997 29-08-1997 28-06-1993 24-09-1998 27-08-2001 31-08-1993 18-09-2001 13-11-2001 16-10-2000 27-02-1996 18-10-1993 08-03-1995 02-01-1996 17-09-1996 31-12-1996 19-07-1994 19-05-1994
WO 03074491	A	12-09-2003		AU 2003208490 A1 BR 0308230 A CA 2477931 A1 EP 1480955 A1 WO 03074491 A1		16-09-2003 28-12-2004 12-09-2003 01-12-2004 12-09-2003

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.