Grafos Dirigidos (Digrafos)

Prof. Andrei Braga

Conteúdo

- Motivação
- Grafos dirigidos
- Conceitos básicos de grafos dirigidos
- Referências

Motivação

 Em várias situações que podemos modelar com grafos, faz sentido considerarmos que as arestas têm uma direção (ou orientação ou sentido)

Exemplo:

 Temos um mapa de vias (ruas ou rodovias)
 e estamos interessados nos caminhos que podemos percorrer neste mapa

 Uma via que conecta um ponto x a um ponto y pode ter apenas a mão de x para y, apenas a mão de y para x ou ambas as mãos

 Podemos representar este mapa como um grafo onde cada aresta tem uma direção e representa uma mão de uma via

Motivação

 Em várias situações que podemos modelar com grafos, faz sentido considerarmos que as arestas têm uma direção (ou orientação ou sentido)

- Temos um mapa de vias (ruas ou rodovias)
 e estamos interessados nos caminhos que podemos percorrer neste mapa
- Uma via que conecta um ponto x a um ponto y pode ter apenas a mão de x para y, apenas a mão de y para x ou ambas as mãos
- Podemos representar este mapa como um grafo onde cada aresta tem uma direção e representa uma mão de uma via

Motivação

- Em várias situações que podemos modelar com grafos, faz sentido considerarmos que as arestas têm uma direção (ou orientação ou sentido)
- Exemplo:
 - Temos um conjunto de páginas web e estamos interessados nos links que existem entre estas páginas web
 - Podemos representar esta situação como um grafo onde uma aresta de x para y representa que, na página web x, existe um link para a página web y

Grafo dirigido – Digrafo

- Um grafo dirigido ou digrafo G é um par ordenado (V, E) composto por
 - o um conjunto de **vértices** *V* e
 - \circ um conjunto de **arestas** E, sendo cada aresta um par ordenado (v_i , v_i) de vértices de G
 - note que $(v_i, v_i) \neq (v_i, v_i)$

- Exemplo:
 - \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$
 - $E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$

Grafo dirigido – Digrafo

- Um grafo dirigido ou digrafo G é um par ordenado (V, E) composto por
 - o um conjunto de **vértices** *V* e
 - o um conjunto de **arestas** E, sendo cada aresta um par ordenado (v_i , v_i) de vértices de G
 - note que $(v_i, v_i) \neq (v_i, v_i)$;
 - lacktriangle denominamos v_i a **cauda** da aresta e v_i a **cabeça** da aresta
- Exemplo:
 - \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$
 - $E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

$$G = (V, E), \text{ onde}$$

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

Exemplo:

 \circ G = (V, E), onde

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

 $E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), \\ (v_3, v_4), (v_3, v_5), (v_4, v_3), \\ (v_4, v_6), (v_5, v_0), (v_5, v_2), \\ (v_5, v_6), (v_6, v_1) \}$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

Exemplo:

 \circ G = (V, E), onde

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

 $E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1), (v_0, v_1) \}$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

$$\circ$$
 $G = (V, E)$, onde

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1), (v \vee v_1) \}$$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

Exemplo:

$$G = (V, E), \text{ onde}$$

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_6, v_6), (v_6, v_$$

 $(V_5, V_6), (V_6, V_1)$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

$$G = (V, E), \text{ onde}$$

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

$$G = (V, E), \text{ onde}$$

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1), (v_6, v_6) \}$$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

$$\circ$$
 $G = (V, E)$, onde

$$E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1), (v_6, v_6) \}$$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

$$E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1), (v_6, v_6) \}$$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

$$\circ$$
 $G = (V, E)$, onde

$$E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1), (v_6, v_6), (v_6, v_6) \}$$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo

$$G = (V, E), \text{ onde}$$

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1), (v_6, v_6), (v_8, v_6) \}$$

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - o não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo
- Para definir um digrafo simples, fazemos uma simplificação adicional: um digrafo é simples se não contém arestas paralelas nem laços

- Na definição que estamos usando para um digrafo, estamos fazendo duas simplificações:
 - não podem existir duas ou mais arestas com a mesma cauda e a mesma cabeça e,
 - o para cada vértice, pode existir no máximo uma aresta que conecta o vértice a ele mesmo
- Para definir um digrafo simples, fazemos uma simplificação adicional: um digrafo é simples se não contém arestas paralelas nem laços
- A não ser que seja dito o contrário, os digrafos que vamos considerar são simples

Exercícios

1. Um digrafo (simples) possui no máximo quantas arestas?

Exercícios

- Um digrafo (simples) possui no máximo quantas arestas?
 Resposta:
 - Para cada vértice, a quantidade máxima de arestas saindo do vértice é |V| 1.
 - O somatório de todas estas quantidades é |V| (|V| 1).
 - (Note que n\u00e3o estamos contando nenhuma aresta mais de uma vez.)
 - Portanto, G possui no máximo |V| (|V| 1) arestas. □

Ordem e tamanho

- Dado um digrafo G = (V, E), denotamos por
 - V(G) o conjunto de vértices de G, ou seja, V(G) = V e
 - E(G) o conjunto de arestas de G, ou seja, E(G) = E
- Dizemos que
 - o a **ordem** de G é o número de vértices de G, ou seja, |V(G)|, e
 - o **tamanho** de G é o número de arestas de G, ou seja |E(G)|
- Exemplo:
 - A ordem do digrafo ao lado é 7 e o seu tamanho é 11

- Por simplicidade, também denotamos uma aresta (v_i , v_j) como $v_i v_j$
- Dada uma aresta $v_i v_j$, os vértices v_i e v_j são os **extremos** desta aresta
- Se v_iv_j é uma aresta de um digrafo G, então
 - o a aresta $v_i v_i$ sai de v_i e entra em v_i ,
 - o v_i é **vizinho de entrada** de v_i em G e
 - \circ v_i é vizinho de saída de v_i em G

Exemplo:

No digrafo ao lado, v_1 é vizinho de saída de v_0 e v_0 é vizinho de entrada de v_1 . Os vizinhos de saída de v_5 são v_0 , v_2 e v_6 . A aresta v_1v_4 sai de v_1 e entra em v_4

- Dado um vértice v_i de um digrafo G,
 - a vizinhança de saída de v, em G é o conjunto dos vizinhos de saída de v, em G,
 - o a **vizinhança de entrada** de v_i em G é o conjunto dos vizinhos de entrada de v_i em G,
 - o grau de saída de v_i em G é o número de arestas de G que saem de v_i e
 - o grau de entrada de v_i em G é o número de arestas de G entram em v_i
- Denotamos por
 - \circ $N_G^+(v_i)$, ou simplesmente $N^+(v_i)$, a vizinhança de saída de v_i em G,
 - \circ $N_G^-(v_i)$, ou simplesmente $N^-(v_i)$, a vizinhança de entrada de v_i em G,
 - \circ $d_{G}^{+}(v_{i})$, ou simplesmente $d^{+}(v_{i})$, o grau de saída de v_{i} em G e
 - \circ $d_{G}^{-}(v_{i})$, ou simplesmente $d^{-}(v_{i})$, o grau de entrada de v_{i} em G
- Note que $d_G^+(v_i) = |N_G^+(v_i)| e d_G^-(v_i) = |N_G^-(v_i)|$

• Exemplo:

No grafo ao lado,

$$N^+(v_0) = \{ \} e N^-(v_1) = \{ \} e$$

$$d^{+}(v_{4}) = , d^{-}(v_{4}) = , d^{+}(v_{6}) = , d^{-}(v_{6}) = ,$$

$$d^{+}(v_{2}) = e d^{-}(v_{2}) =$$

- No grafo ao lado,

 - $d^{+}(v_{4}) = 2, \ d^{-}(v_{4}) = 2, \ d^{+}(v_{6}) = 1, \ d^{-}(v_{6}) = 2,$ $d^{+}(v_{2}) = 0 \ e \ d^{-}(v_{2}) = 1$

- Exemplo:
 - No grafo ao lado,

- Exemplo:
 - No grafo ao lado,

Chamamos de **fonte** um vértice v_i tal que $d(v_i) = 0$

- Exemplo:
 - No grafo ao lado,
 - = $d^+(v_7) =$

- Exemplo:
 - No grafo ao lado,
 - $d^+(v_7) = 0$

Chamamos de **sorvedouro** um vértice v_i tal que $d^+(v_i) = 0$

- Exemplo:
 - No grafo ao lado,
 - $d^+(v_7) = 0 e d^-(v_7) = 0$

Chamamos de vértice **isolado** um vértice v_i tal que $d^+(v_i) = 0$ e $d^-(v_i) = 0$

Grau de saída mínimo e máximo

- Dado um grafo G,
 - o **grau de saída mínimo** de G, denotado por $\delta^+(G)$, é o menor grau de saída de um vértice de G, ou seja, $\delta^+(G) = \min\{d^+(v_i) : v_i \in V(G)\}$
 - o **grau de saída máximo** de G, denotado por $\Delta^+(G)$, é o maior grau de saída um vértice de G, ou seja, $\Delta^+(G) = \max\{ d^+(v_i) : v_i \in V(G) \}$
- Exemplo:
 - o Para o grafo ao lado, $\delta^+(G) = e \Delta^+(G) =$

Grau de saída mínimo e máximo

- Dado um grafo G,
 - o **grau de saída mínimo** de G, denotado por $\delta^+(G)$, é o menor grau de saída de um vértice de G, ou seja, $\delta^+(G) = \min\{ d^+(v_i) : v_i \in V(G) \}$
 - o **grau de saída máximo** de G, denotado por $\Delta^+(G)$, é o maior grau de saída um vértice de G, ou seja, $\Delta^+(G) = \max\{ d^+(v_i) : v_i \in V(G) \}$
- Exemplo:
 - Para o grafo ao lado, $\delta^+(G) = 0$ e $\Delta^+(G) = 3$

Grau de entrada mínimo e máximo

- Dado um grafo G,
 - o **grau de entrada mínimo** de G, denotado por $\delta^-(G)$, é o menor grau de entrada de um vértice de G, ou seja, $\delta^-(G) = \min\{ \sigma^-(v_i) : v_i \in V(G) \}$
 - o **grau de entrada máximo** de G, denotado por $\Delta^-(G)$, é o maior grau de entrada um vértice de G, ou seja, $\Delta^-(G) = \max\{ \sigma(v_i) : v_i \in V(G) \}$
- Exemplo:
 - Para o grafo ao lado, $\delta^-(G) = e \Delta^-(G) =$

Grau de entrada mínimo e máximo

- Dado um grafo G,
 - o **grau de entrada mínimo** de G, denotado por $\delta^-(G)$, é o menor grau de entrada de um vértice de G, ou seja, $\delta^-(G) = \min\{ d^-(v_i) : v_i \in V(G) \}$
 - o **grau de entrada máximo** de G, denotado por $\Delta^-(G)$, é o maior grau de entrada um vértice de G, ou seja, $\Delta^-(G) = \max\{ d^-(v_i) : v_i \in V(G) \}$
- Exemplo:
 - Para o grafo ao lado, $\delta^-(G) = 1$ e $\Delta^-(G) = 2$

Exercícios

2. É possível construir um digrafo tal que $V(G) = \{v_0, v_1, v_2\}$ e $d^+(v_0) = 1$, $d^-(v_0) = 1$; $d^+(v_1) = 1$, $d^-(v_1) = 2$; e $d^+(v_2) = 2$, $d^-(v_2) = 2$?

Digrafo (simples)

• **Propriedade:** Para um digrafo (simples) G = (V, E), $\sum_{v \in V(G)} d^+(v) = \sum_{v \in V(G)} d^-(v) = |E|$.

Um passeio em um digrafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

Exemplo:

Um passeio em um digrafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

Exemplo:

Um passeio em um digrafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

Exemplo:

Um passeio em um digrafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

Exemplo:

Um passeio em um digrafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

Exemplo:

Um passeio em um digrafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

Exemplo:

Um passeio em um digrafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

Exemplo:

Um passeio em um digrafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor

Exemplo:

- Em um passeio, especificamos os vértices, mas as arestas envolvidas também estão implicitamente especificadas
- Por isso, podemos nos referir às arestas de um passeio

- Um passeio em um digrafo G é uma sequência de vértices v_{i0}v_{i1}...v_{ik} de G tal que, com exceção do primeiro vértice, cada vértice da sequência é vizinho de saída em G do seu antecessor
- Chamamos um passeio $v_{i0}v_{i1}...v_{ik-1}v_{ik}$ de um $v_{i0}v_{ik}$ -passeio e dizemos que
 - o v_{i0} e v_{ik} são os **extremos** do passeio;
 - v_{i0} é a **origem** do passeio e v_{ik} é o **destino** do passeio;
 - v_{i1}, ..., v_{ik-1} são os vértices internos do passeio;
 - o **comprimento** do passeio é *k*, ou seja, a quantidade de arestas percorridas;
 - o passeio é **par** se o seu comprimento é par e é **impar** caso contrário e
 - o passeio é **fechado** se $v_{i0} = v_{ik}$ e é **aberto** caso contrário

 Uma trilha em um digrafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um digrafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um digrafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um digrafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um digrafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

 Uma trilha em um digrafo G é um passeio em G onde não existem arestas repetidas

Exemplo:

- Um caminho em um digrafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência $v_0^{}v_1^{}v_4^{}v_3^{}$ é um caminho no digrafo ao lado

- Um caminho em um digrafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência v₀v₁v₄v₃ é um caminho no digrafo ao lado

- Um caminho em um digrafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência v₀v₁v₄v₃ é um caminho no digrafo ao lado

- Um caminho em um digrafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência $v_0^{}v_1^{}v_4^{}v_3^{}$ é um caminho no digrafo ao lado

- Um caminho em um digrafo G é um passeio em G onde não existem vértices repetidos
 - Podemos notar que todo caminho é uma trilha
- Exemplo:
 - A sequência v₀v₁v₆
 não é um caminho no digrafo ao lado

Ciclo

• Um **ciclo** em um digrafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 1 e onde não existem vértices internos repetidos

Exemplo:

Ciclo

• Um **ciclo** em um digrafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 1 e onde não existem vértices internos repetidos

Exemplo:

Ciclo

• Um **ciclo** em um digrafo *G* é um passeio fechado em *G*, com comprimento maior ou igual a 1 e onde não existem vértices internos repetidos

Exemplo:

A sequência v₁v₄v₃v₁
 não é um ciclo no digrafo ao lado

Distância

- A distância de um vértice v_i para um vértice v_j em um digrafo G, denotada por d(v_i, v_i), é
 - o menor comprimento de um $v_i v_i$ -caminho em G ou
 - ∞ (infinita) caso não exista um v_iv_i-caminho em G
- Note que, em geral, $d(v_i, v_j) \neq d(v_j, v_i)$
- Exemplo:
 - No digrafo ao lado,
 - $d(v_0, v_4) = e d(v_4, v_0) = ,$
 - $d(v_5, v_6) = d(v_6, v_5) =$,

 - $d(v_3, v_2) = d(v_2, v_3) =$

Distância

- A distância de um vértice v_i para um vértice v_j em um digrafo G, denotada por d(v_i, v_i), é
 - o menor comprimento de um $v_i v_i$ -caminho em G ou
 - ∞ (infinita) caso não exista um v_iv_i-caminho em G
- Note que, em geral, $d(v_i, v_j) \neq d(v_j, v_i)$
- Exemplo:
 - No digrafo ao lado,
 - $d(v_0, v_4) = 2 e d(v_4, v_0) = 3,$
 - $d(v_5, v_6) = 1 e d(v_6, v_5) = 3,$
 - $d(v_4, v_4) = 0 e$
 - $d(v_3, v_2) = 2 e d(v_2, v_3) = \infty$

Subgrafo

- Um **subgrafo** de um digrafo *G* é um digrafo *H* tal que
 - \circ $V(H) \subseteq V(G)$ e
 - \circ $E(H) \subseteq E(G)$

Exemplo:

$$V(G) = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E(G) = \{ (v_0, v_1), (v_1, v_3), (v_4, v_4), (v_4, v_5), (v_5, v_6) \} e$$

$$\begin{array}{c} L(G) = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), \\ (v_3, v_4), (v_3, v_5), (v_4, v_3), \\ (v_4, v_6), (v_5, v_0), (v_5, v_2), \\ (v_5, v_6), (v_6, v_1) \} \end{array}$$

$$\circ V(H) = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

Subgrafo

- Um **subgrafo** de um digrafo *G* é um digrafo *H* tal que
 - \circ $V(H) \subseteq V(G)$ e
 - \circ $E(H) \subseteq E(G)$

Exemplo:

$$O V(G) = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E(G) = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$$

$$V(H) = \{ v_0, v_1, v_3, v_4, v_6 \} e$$

$$E(H) = \{ (v_0, v_1), (v_1, v_4), (v_4, v_6), (v_6, v_1) \}$$

Subgrafo

- Um **subgrafo** de um digrafo *G* é um digrafo *H* tal que
 - \circ $V(H) \subseteq V(G)$ e
 - \circ $E(H) \subseteq E(G)$
- Usamos as seguintes expressões de forma equivalente:
 - *H* é um subgrafo de *G*
 - H está contido em G
 - \circ $H \subseteq G$
 - G é um supergrafo de H
 - G contém H
 - \circ $G \supseteq H$

Subgrafo gerador e induzido

- Um subgrafo H de um digrafo G é gerador se V(H) = V(G)
- Dado um subconjunto S de vértices de um digrafo G, o subgrafo de G induzido por S é o subgrafo G[S] tal que
 - $\circ V(G[S]) = S$
 - E(G[S]) consiste em todas as arestas de G cujos ambos os extremos estão em S

Um digrafo G é fortemente conexo se, para todo par de vértices v_i, v_j de G, existe em G um v_iv_j-caminho (um caminho cuja origem é v_i e cujo destino é v_j) e um v_iv_i-caminho (um caminho cuja origem é v_i e cujo destino é v_i)

Exemplo:

Um digrafo G é fortemente conexo se, para todo par de vértices v_i, v_j de G, existe em G um v_iv_j-caminho (um caminho cuja origem é v_i e cujo destino é v_j) e um v_iv_i-caminho (um caminho cuja origem é v_i e cujo destino é v_i)

Exemplo:

 Um subgrafo fortemente conexo de um digrafo G é um subgrafo de G que é fortemente conexo

Exemplo:

G

Subgrafo fortemente conexo

 Um subgrafo fortemente conexo de um digrafo G é um subgrafo de G que é fortemente conexo

Exemplo:

G

 Um subgrafo fortemente conexo de um digrafo G é um subgrafo de G que é fortemente conexo

Exemplo:

• Um subgrafo fortemente conexo maximal de um digrafo *G* é um subgrafo fortemente conexo de *G* que não está contido em outro subgrafo fortemente conexo de *G*

Exemplo:

G

Subgrafo fortemente conexo maximal

 As componentes fortemente conexas de um digrafo G são os subgrafos fortemente conexos maximais de G

Exemplo:

Componentes fortemente conexas de *G*

3 componentes fortemente conexas

• As **componentes fortemente conexas** de um digrafo *G* são os subgrafos fortemente conexos maximais de *G*

Exemplo:

Componentes fortemente conexas de *G*

1 componente fortemente conexa

- As **componentes fortemente conexas** de um digrafo *G* são os subgrafos fortemente conexos maximais de *G*
- Um grafo fortemente conexo (com pelo menos um vértice) tem exatamente uma componente fortemente conexa

- Vimos anteriormente um algoritmo para determinar as componentes conexas de um grafo não-dirigido G
- Como podemos fazer para determinar as componentes fortemente conexas de um digrafo G?

- Como podemos fazer para determinar as componentes fortemente conexas de um digrafo G?
- Ideia:
 - 1. Faça i = 0
 - 2. Enquanto houver vértices não visitados no digrafo G:
 - 3. Realize uma busca em profundidade no digrafo G começando por um vértice não visitado; quando um vértice v e seus vizinhos de saída tiverem sido visitados, faça fin(v) = i e i = i + 1
 - 4. Construa o digrafo G' dado pelo digrafo G com as direções das arestas de G invertidas
 - 5. Enquanto houver vértices não visitados no digrafo G':
 - 6. Realize uma busca em profundidade no digrafo G' começando por um vértice não visitado v para o qual fin(v) seja máximo
- Cada busca em profundidade realizada nos Passos 5-6 determina uma componente fortemente conexa do digrafo G

- Como podemos fazer para determinar as componentes fortemente conexas de um digrafo G?
- Ver
 - a Seção 22.5 do livro
 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
 3rd. ed. MIT Press, 2009.
 - a Seção 19.8 do livro
 Sedgewick, R. Algorithms in C++ Part 5. Graph Algorithms. 3rd. ed.
 Addison-Wesley, 2002.

Grafo subjacente

- O grafo subjacente de um digrafo G é o grafo obtido
 - o removendo os laços de G e
 - transformando cada aresta restante de G de um par ordenado para um conjunto de dois vértices
- Exemplo:

G

$$V(G) = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E(G) = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$$

$$V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$$

$$E = \{ \{ v_0, v_1 \}, \{ v_0, v_5 \}, \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_1, v_6 \}, \{ v_2, v_5 \}, \{ v_3, v_4 \}, \{ v_3, v_5 \}, \{ v_4, v_6 \}, \{ v_5, v_6 \} \}$$

Conexidade (fraca)

 Um digrafo G é (fracamente) conexo se o seu grafo subjacente é conexo; G é desconexo caso contrário

Exemplo:

Exercícios

3. Quais são as componentes fortemente conexas do digrafo abaixo?

Exercícios

- 4. Responda às seguintes questões:
 - a. O digrafo abaixo é fortemente conexo?
 - b. Caso o digrafo abaixo não seja fortemente conexo, quais são as suas componentes fortemente conexas?

Exercícios

5. Considere o Problema H da <u>Primeira Fase</u> da Maratona de Programação 2022. Como podemos usar o conceito de componentes fortemente conexas de um digrafo na resolução deste problema?

Referências

 Um tratamento mais detalhado dos conceitos básicos definidos nesta apresentação pode ser encontrado em qualquer uma das referências básicas e complementares da disciplina