Voice Presentation Attack Detection through Text-Converted Voice Command Analysis

Il-Youp Kwak, Jun Ho Huh, Seung Taek Han, Iljoo Kim and Jiwon Yoon

Slides: bit.ly/2IWOPGC

email: ilyoup.kwak@gmail.com

Motivation

Emergence of Voice assistants:

Samsung Bixby, Apple Siri, Amazon Alexa, etc

Security Critical Commands

Voice assistants now support security-critical commands, making them attractive target for adversaries to exploit

"Open Samsung Pay and show me the registered credit card"

"Take a picture with the front camera"

"Open Facebook and post a recent picture"

"Change unlock password"

Threat Model

TV anchor says live on-air 'Alexa, order me a dollhouse' – guess what happens next

Story on accidental order begets story on accidental order begets accidental order

By Shaun Nichols in San Francisco 7 Jan 2017 at 00:58

244 🖵

SHARE ▼

A San Diego TV station sparked complaints this week – after an on-air report about a girl who ordered a dollhouse via her parents' Amazon Echo caused Echoes in viewers' homes to also attempt to order dollhouses.

Mitigation Strategies

- Voice Biometric Authentication

- Voice Liveness Detection

- Voice-Command based Attack Detection

Bixby Dataset

English voice commands that were processed from a voice assistant, Bixby.

Attained 34.8 million voice commands collected from 2.6 million users in Nov and Dec, 2017

Security Critical Commands

Security critical command:

command that can be used in a voice presentation attack to exploit one of the threats mentioned in "I've Got 99 Problems" (Porter et al. 2012)

Synthetic attack set:

security-critical commands selected from existing set of Bixby commands

Voice-Command based Attack Detection

Starts from global model that detects security critical commands

And switches to user-tailored model that also considers users' genuine commands

System Overview

Voice Assistant Server

Modeling

We used BoW (Back of Words) feature, and logistic regression model with LASSO penalty

Global model trained from randomly selected commands from 700 users vs security critical commands

User-tailored model trained from user-specific commands vs security critical commands

Evaluation

Starts with the global model for new users (available immediately), and switches to the user-tailored models when users use about 500 commands

Accuracy against Unseen Data (FAR)

Global model achieves low average FAR at 4.3%

For those who have used 100 or more commands, the user-tailored models achieve lower FARs between 1.7–4.3%

	Global model	User-tailored model					
# Commands		20-30	30-50	50-100	100-500	500-1,000	>1,000
FAR	4.3% (0.03)	$10.1\% \ (0.10)$	8.34% (0.08)	5.9% (0.06)	4.3% (0.04)	2.3% (0.02)	1.7% (0.02)

Accuracy against Unseen Data (FRR)

Global model should be used initially to maintain consistent FRRs below 10%, and eventually the user-tailored models would have to be used to achieve FRRs below 5%

Security-Critical Command Users

Twice will maintain average EERs below 5% even for those who frequently use security-critical commands.

Conclusion & Future Work

Can be used as an effective complementary technology to further enhance voice attack detection accuracy

Combined use of the global model and user-tailored models are integral in maintaining low and consistent EERs at around 3.4% for all users

Even for those users who frequently use security-critical commands, we achieve EERs below 5%.

Working toward an adaptive model based solution: user-tailored models are updated periodically

SAMSUNG Research

Thank you

Slides: bit.ly/2IWOPGC

email: ilyoup.kwak@gmail.com