Decision analysis of toy NAO

Daniel P. Rice

February 2023

Abstract

Abstract TK

Contents

L	Model	1
2	Expected losses	2
3	Optimal decision threshold	2
1	Discussion	2
	Model vpotheses: $H \in \{\text{threat}, \text{not-threat}\}$ Data stream: $\{X_1, X_2, \ldots\}$.	
	Likelihood function: $p(x h)$ Loss function:	
	$L_i = ext{flag} \qquad c \qquad 0$	(1)

$$L_i = \text{flag} \qquad c \qquad 0$$
wait
$$L_{i+1} \qquad d + L_{i+1}$$

Threshold posterior: $p_{\text{thresh}} = \operatorname{argmin}_{p_t} \mathbb{E} \{L_0(p_t)\}$

Prior: $p_0 = \mathbb{P} \{ H = \text{threat} \}$

Posterior: $P_i = \mathbb{P} \{ H = \text{threat} | X_1, X_2, \dots, X_i \}$

Updates:

$$P_{i+1} = \frac{P_i}{} \tag{2}$$

- 2 Expected losses
- 3 Optimal decision threshold
- 4 Discussion