Assignment 1

Logistic Regression and AdaBoost for Classification

Najrin Sultana

Student ID: 1605042

How to Run:

```
python 1605042.py <path_to_dataset_1>
<path_to_train_dataset_2> <path_to_test_dataset_2>
<path_to_dataset_3>
```

Inside the **main** function code for running experiments on three datasets are located in three different sections. Hence to run the experiment on a specific dataset, rest of the sections should be commented out.

The **train** function runs logistic regression on the given dataset and returns the hypothesis parameters. Given the features and hypothesis parameters, the **predict** function returns the predictions and given the original label and predictions, the **compute_metric** function computes the necessary metrics. For the sake of comfortable visualization, all the outputs are written to a file called "out.txt" in the same folder the script is being run.

Dataset 1:

<u>Logistic Regression</u>:

Performance measure	Training	Test
Accuracy	0.7965921	0.80908445
Sensitivity	0.5266272	0.56034482
Specificity	0.8964259	0.89066918
Precision	0.6528117	0.62700964
False discovery rate	0.3471882	0.37299035
F1 score	0.5829694	0.59180576

<u>Adaboost</u>:

Number of boosting rounds	Training	Test
5	0.7955271	0.81263307
10	0.7946396	0.81050390
15	0.7951721	0.81192334
20	0.7951721	0.81192334

Dataset 2:

<u>Logistic Regression</u>:

Performance measure	Training	Test
Accuracy	0.8245754	0.82666912
Sensitivity	0.5466139	0.54524180
Specificity	0.9127427	0.91371129
Precision	0.6652180	0.66151419
False discovery rate	0.3347819	0.33848580
F1 score	0.6001120	0.59777651

Adaboost:

Number of boosting rounds	Training	Test
5	0.8449986	0.8443584
10	0.8453364	0.8452797
15	0.8453364	0.8452797
20	0.8453364	0.8452797

Dataset 3:

<u>Logistic Regression</u>:

Performance measure	Training	Test
Accuracy	0.99581527	0.996413628
Sensitivity	0.84061696	0.854368932
Specificity	0.99888234	0.999389747
Precision	0.93696275	0.967032967
False discovery rate	0.06303724	0.032967032
F1 score	0.88617886	0.907216494

<u>Adaboost</u>:

Number of boosting rounds	Training	Test
5	0.99586509	0.996612871
10	0.99591491	0.996612871
15	0.99591491	0.996612871
20	0.99591491	0.996612871

Observation:

As the third dataset is highly unbalanced and the positive samples were very rare, as suggested I took all the positive samples and around 25k negative samples (50 times the positive samples) and then shuffled and splitted into train test sets. For this skewness in the dataset, the trained model will more likely predict a sample to be negative. Since the test dataset also has this skewness and has a very high proportion of negative samples, the accuracy is very high. If the negative samples are taken around 2500 (5 times the positive samples), the accuracy slightly decreases. All the metrics are given below:

Train Set:

Accuracy: 0.9699279966116052 **Sensitivity**: 0.8221649484536082 **Specificity**: 0.9989863152559554 **Precision**: 0.9937694704049844

False discovery rate: 0.006230529595015576

F1: 0.8998589562764457

Test Set:

Accuracy: 0.9763113367174281 **Sensitivity**: 0.8653846153846154

Specificity: 1.0 **Precision**: 1.0

False discovery rate: 0.0 **F1**: 0.9278350515463918