BMI Calculator

```
BMI = \frac{weight(kg)}{height^2(m^2)}
```

```
//BMI Calcutor Function
function BMI(weight, height){
  bmi = Math.ceil(weight/(height*height));
  console.log("BMI = "+bmi+"kg/m^2");
}
//Function Call
BMI(weight, height);
BMI = 21kg/m^2
 > var weight = prompt("Enter weight in kg: ");
   var height = prompt("Enter height in metern(m): ");
   //BMI Calcutor Function
   function BMI(weight, height){
       bmi = Math.ceil(weight/(height*height));
       console.log("BMI = "+bmi+"kg/m^2");
   //Function Call
   BMI(weight, height);
   BMI = 21kg/m^2
 undefined
```

var weight = prompt("Enter weight in kg: ");

var height = prompt("Enter height in metern(m): ");

Method 2:

```
Use Power Function
var weight = prompt("Enter weight in kg: ");
var height = prompt("Enter height in metern(m): ");
//BMI Calcutor Function
function BMI(weight, height){
   bmi = Math.ceil(weight/Math.pow(height,2)); //Math.Pow(variable whose power is to be
calculate, how much pwer like sqare (2), cube (3))
   console.log("BMI = "+bmi+"kg/m^2");
}
//Function Call
BMI(weight, height);
BMI = 21kg/m^2
 > var weight = prompt("Enter weight in kg: ");
    var height = prompt("Enter height in metern(m): ");
    //BMI Calcutor Function
    function BMI(weight, height){
         bmi = Math.ceil(weight/Math.pow(height,2)); //Math.
         console.log("BMI = "+bmi+"kg/m^2");
    //Function Call
    BMI(weight, height);
    BMI = 21kg/m^2
 undefined
 >
> var weight = prompt("Enter weight in kg: ");
  var height = prompt("Enter height in metern(m): ");
  //BMI Calcutor Function
   function BMI(weight, height){
   bmi = Math.ceil(weight/Math.pow(height,2)); //Math.Pow(variable whose power is to be calculate, how much pwer like sqare (2), cube (3))
   console.log("BMI = "+bmi+"kg/m^2");
   //Function Call
   BMI(weight,height);
   BMI = 21kg/m^2
 undefined
```

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/pow

Math.pow()

The Math.pow() static method, given two arguments, base and exponent, returns base exponent. console.log(Math.pow(7, 3)); // expected output: 343 console.log(Math.pow(4, 0.5));// expected output: 2 console.log(Math.pow(7, -2)); // expected output: 0.02040816326530612 // (1/49)console.log(Math.pow(-7, 0.5)); // expected output: NaN **Syntax** Math.pow(base, exponent) **Parameters** base The base number.

The exponent used to raise the base.

Return value

exponent

A number representing the given base taken to the power of the given exponent.

Description

The Math.pow() function returns the base to the exponent power, as in base exponent, the base and the exponent are in decimal numeral system.

Because pow() is a static method of Math, use it as Math.pow(), rather than as a method of a Math object you created. (Math has no constructor.) If the base is negative and the exponent is not an integer, the result is NaN.

Examples

Using Math.pow()

```
// simple
Math.pow(7, 2); // 49
Math.pow(7, 3); // 343
Math.pow(2, 10); // 1024
// fractional exponents
Math.pow(4, 0.5); // 2 (square root of 4)
Math.pow(8, 1/3); // 2 (cube root of 8)
Math.pow(2, 0.5); // 1.4142135623730951 (square root of 2)
Math.pow(2, 1/3); // 1.2599210498948732 (cube root of 2)
// signed exponents
Math.pow(7, -2); // 0.02040816326530612 (1/49)
Math.pow(8, -1/3); // 0.5
// signed bases
Math.pow(-7, 2); // 49 (squares are positive)
Math.pow(-7, 3); // -343 (cubes can be negative)
Math.pow(-7, 0.5); // NaN (negative numbers don't have a real square root)
// due to "even" and "odd" roots laying close to each other,
// and limits in the floating number precision,
// negative bases with fractional exponents always return NaN
Math.pow(-7, 1/3); // NaN
```