Causal inference for complex observational data

Jianxuan Liu¹

July 30, 2021

¹Assistant Professor, Department of Mathematics, Syracuse University

Outline

- Causal inference
- ▶ Dimension reduction in Causal inference
- ▶ Measurement error issue in Causal inference

Causal questions: An action/treatment/intervention \rightarrow an outcome. e.g. obesity \rightarrow mortality

Notation: $A \rightarrow Y$

► Randomized experiments

Average treatment effect of treatment A on outcome Y

$$ATE = E(Y \mid A = 1) - E(Y \mid A = 0)$$

Observational studies

$$ATE \neq E(Y \mid A = 1) - E(Y \mid A = 0)$$

Control variables \mathbf{X} may have caused both Y and A, confounding the cause and effect relation between Y and A

The crux of establishing a causal relationship: ceteris paribus, i.e. holding all other factors fixed

Observational studies

- the ceteris paribus condition does not hold
- ▶ no guarantee that the change in Y is solely due to A

Potential outcomes framework (Neyman et al. 1990 and Rubin 1974)

A common assumption: no unmeasured confounding or ignobility (Rosenbaum & Rubin, 1983)

$$Y \perp A \mid \mathbf{X}$$

Propensity score

- conditional probability of A given the observed covariates
- a balancing score
- conditional on the propensity score, the distributions of the measured covariates are the same between treated and untreated subjects.
- adjust for propensity score can remove the confounding bias from the difference in covariates (Rosenbaum and Rubin, 1983)

Assumptions:

- 1. Positivity
- $ightharpoonup Pr(A \mid X)$ is bounded between 0 and 1
- ensure every subject has a nonzero probability to receive either treatment
- 2. Consistency
- ▶ Observed outcome Y = AY(1) + (1 A)Y(0) for $A \in \{0, 1\}$
- Y(1) = Y(A = 1), Y(0) = Y(A = 0) are the potential outcomes

Estimation of the average causal effect

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{A_i Y_i}{\pi_i} - \frac{(1 - A_i) Y_i}{1 - \pi_i} \right\}$$

where $\pi_i = \Pr(A_i \mid \mathbf{X_i})$ is the propensity score function.

High-Dimensional Data

One aspect of data complexity: large number of covariates, hard to interpret and visualize

Sparsity

- Only a few of the covariates have explanatory power, all the rest are redundant.
- Variable selection, often via penalization

Reducibility

- Only a few linear combinations of many covariates are useful
- (Sufficient) Dimension reduction

A dimension reduction $R(\mathbf{x})$ is said to be sufficient if the distribution of $y \mid R(\mathbf{x})$ is the same as that of $y \mid \mathbf{x}$

Dimension reduction

The distribution of Y relates to covariates \mathbf{x} only through $\boldsymbol{\beta}^T \mathbf{x}$, i.e.

$$Y \perp \mathbf{x} \mid \boldsymbol{\beta}^T \mathbf{x}$$

Equivalently

$$\Pr(Y \leq y \mid \mathbf{x}) = \Pr(Y \leq y \mid \beta^T \mathbf{x}) \text{ for all } y$$

- ▶ Central space $S_{Y|x}$: span of the columns in β
- ▶ Goal: estimate S_{Y|x}

Estimation in Dimension Reduction Models

Target: find the column space of $\beta_{p\times d}$ with the smallest dThe smallest space exists and is uniquely defined (Cook, 2004)

Three classes of estimation approaches

- Inverse regression based methods: Sliced inverse regression, SIR (Li, 1991), Sliced average variance estimation, SAVE (Cook and Weisberg, 1991), direction regression DR (Li and Wang, 2007)
- Nonparametric methods: Density based minimum average variance estimation, dMAVE (Xia, 2007), Sliced regression, SR (Wang and Xia, 2008)
- 3. Semiparametric methods (Ma and Zhu, 2012, Liu et al, 2018)

A New Robust estimator

- Not rely on the parametric specification of the propensity score model or the outcome regression model
- Data adaptive
- ► Handle many covariates simultaneously
- Covariates can be both continuous and discrete

The innovation

- ▶ only assume the treatment probability depends on the p-dimensional covariate vector \mathbf{X} through several linear combinations $\boldsymbol{\beta}^T \mathbf{X}$, $\boldsymbol{\beta} \in \mathcal{R}^{p \times d}$, d < p
- Employ a nonparametric link function for the conditional probability

Flexible Estimation of the Propensity Score

Let $\pi(X) = P(A = 1 \mid X)$ be the propensity score function

$$Pr(A = a \mid \mathbf{X} = \mathbf{x}) = \frac{\exp\{a\eta(\boldsymbol{\beta}^T\mathbf{x})\}}{1 + \exp\{\eta(\boldsymbol{\beta}^T\mathbf{x})\}}$$

- $\mathbf{X} \in \mathcal{R}^p$
- $m{\beta} \in {}^{p imes d}$, $m{\beta} = (m{I}_d, m{\beta}_l^T)^T$, $m{\beta}_l$ is an arbitrary (p-d) imes d matrix
- $ightharpoonup \eta$ is an arbitrary unspecified function

Derivation of the efficient score function

The efficient score function: the residual after projecting the score vector w.r.t β onto the nuisance tangent space (Tsiatis 2006)

The estimating equation for eta

$$\sum_{i=1}^{n} \textit{vecl}\{\mathbf{x}_{i} - E(\mathbf{X}_{i} \mid \boldsymbol{\beta}^{T}\mathbf{X}_{i})\} \left[A_{i} - \frac{\exp\{\eta(\boldsymbol{\beta}^{T}\mathbf{X}_{i})\}}{1 + \exp\{\eta(\boldsymbol{\beta}^{T}\mathbf{X}_{i})\}}\right] \boldsymbol{\eta}'(\boldsymbol{\beta}^{T}\mathbf{X}_{i})^{T} = \mathbf{0}$$

Estimation of $E(\mathbf{X}_i \mid \boldsymbol{\beta}^T \mathbf{X}_i)$

Nadaraya-Watson kernel estimator

$$\widehat{E}(\mathbf{X} \mid \beta^T \mathbf{X}) = \frac{\sum_{i=1}^{n} \mathbf{x}_i K_h(\beta^T \mathbf{X}_i - \beta^T \mathbf{X})}{\sum_{i=1}^{n} K_h(\beta^T \mathbf{X}_i - \beta^T \mathbf{X})}$$

- K: a multivariate kernel function, i.e. $K_h(\cdot) = K(\cdot/h)/h^d$.
- ▶ h: a bandwidth

Estimation of $\eta(\boldsymbol{\beta}^T \mathbf{X}_i)$ and $\boldsymbol{\eta}'(\boldsymbol{\beta}^T \mathbf{X}_i)$

Nonparametric kernel method

$$\sum_{i=1}^{n} \left[A_i - \frac{\exp\{b_0 + \mathbf{b}_1^T (\boldsymbol{\beta}^T \mathbf{X}_i - \boldsymbol{\beta}^T \mathbf{X}_0)\}}{1 + \exp\{b_0 + \mathbf{b}_1^T (\boldsymbol{\beta}^T \mathbf{X}_i - \boldsymbol{\beta}^T \mathbf{X}_0)\}} \right] K_h(\boldsymbol{\beta}^T \mathbf{X}_i - \boldsymbol{\beta}^T \mathbf{X}_0) = 0$$

$$\sum_{i=1}^{n} \left[a_i - \frac{\exp\{b_0 + \mathbf{b}_1^T (\boldsymbol{\beta}^T \mathbf{X}_i - \boldsymbol{\beta}^T \mathbf{X}_0)\}}{1 + \exp\{b_0 + \mathbf{b}_1^T (\boldsymbol{\beta}^T \mathbf{X}_i - \boldsymbol{\beta}^T \mathbf{X}_0)\}} \right] (\boldsymbol{\beta}^T \mathbf{X}_i - \boldsymbol{\beta}^T \mathbf{X}_0) K_h(\boldsymbol{\beta}^T \mathbf{X}_i - \boldsymbol{\beta}^T \mathbf{X}_0) = \mathbf{0}$$

The estimators \widehat{b}_0 and $\widehat{\mathbf{b}}_1$ are the estimators of η and η' at $\beta^T \mathbf{X}_0$, respectively. The efficient estimator of β solves the estimating equation

$$\sum_{i=1}^{n} vecl\left(\left\{\mathbf{x}_{i} - \widehat{E}(\mathbf{X}_{i} \mid \boldsymbol{\beta}^{\mathsf{T}} \mathbf{X}_{i})\right\} \left[A_{i} - \frac{\exp\{\widehat{\eta}(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{X}_{i})\}}{1 + \exp\{\widehat{\eta}(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{X}_{i})\}}\right] \widehat{\boldsymbol{\eta}}'(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{X}_{i})^{\mathsf{T}}\right) = \mathbf{0}$$

Simulation Studies

Figure 1: Scenario 1: No dimension reduction is available, d = p.

Simulation Studies

Average Treatment Effect

Figure 2: Scenario 2: Dimension can be reduced to d=1.

Errors-in-variables

Propensity-score-based methods rely on the correct specification of propensity score modeling.

- have the correct model
- include all correctly measured covariates

Issue: some of the covariates are not measurable, or subject to measurement errors

Consequence: no unmeasured confounding assumption does not hold

Errors-in-variables

Data observed: $(Y_i, A_i, \mathbf{X}_i^*, \mathbf{Z}_i)$, iid $i = 1, \dots, n$

 \mathbf{X}_{i}^{*} is the surrogate of the true covariates \mathbf{X}_{i} ,

$$\boldsymbol{\mathsf{X}}^* = \boldsymbol{\mathsf{X}} + \boldsymbol{\mathsf{U}}, \boldsymbol{\mathsf{U}} \sim \textit{N}(\boldsymbol{\mathsf{0}}, \boldsymbol{\Omega})$$

Flexible propensity score model

$$Pr(A_i \mid \mathbf{X}_i, \mathbf{Z}_i) = H\{\beta^T \mathbf{X}_i + \theta(\tilde{\gamma}^T \mathbf{Z}_i)\}$$

- $ightharpoonup ilde{\gamma} = (1, \gamma)$
- \blacktriangleright $H(\cdot)$ is the logistic distribution function
- \bullet $\theta(\cdot)$ is a nonparametric function of $\tilde{\gamma}^T \mathbf{Z}$.

Errors-in-variables

Direct use of error-prone covariates X*

- will not yield covariates balance on the underlying true covariates
- will not provide accurate treatment effect estimates
- ► McCaffrey et al. (2013)

Biased correction

$$\Pr(A = a \mid \Delta, \mathbf{Z}) = \frac{\exp[a\{\theta(\tilde{\gamma}^T \mathbf{Z}) + (\Delta - \Omega\beta/2)^T \beta\}]}{1 + \exp\{\theta(\tilde{\gamma}^T \mathbf{Z}) + (\Delta - \Omega\beta/2)^T \beta\}}$$

where $\Delta = \Delta(\mathbf{X}^*, A) = \mathbf{X}^* + A\Omega\beta$, a complete sufficient statistic of **X** (Stefanski and Carroll, 1987)

Derive the efficient estimating equations for eta and γ

$$\sum_{i=1}^{n} [A_i - H\{(\Delta_i - \Omega \boldsymbol{\beta}^T/2)\boldsymbol{\beta} + \theta(\tilde{\boldsymbol{\gamma}}^T \mathbf{Z})\}] E(\mathbf{X}_i \mid \Delta_i, \mathbf{Z}_i) = \mathbf{0}$$

$$\sum_{i=1}^{n} [A_i - H\{(\Delta_i - \Omega \boldsymbol{\beta}^T/2)\boldsymbol{\beta} + \theta(\tilde{\boldsymbol{\gamma}}^T \mathbf{Z})\}] \mathbf{Z}_i^T \theta'(\tilde{\boldsymbol{\gamma}}^T \mathbf{Z}_i) = \mathbf{0}$$

Unknown $E(\mathbf{X}_i \mid \Delta_i, \mathbf{Z}_i)$, $\theta(\cdot)$, and $\theta'(\cdot)$?

For $E(\mathbf{X}_i \mid \Delta_i, \mathbf{Z}_i)$

- directly propose a working model
- $E(\mathbf{X}_{i}^{*} \mid \Delta_{i}, \mathbf{Z}_{i}) = \Delta_{i} E(A_{i} \mid \Delta_{i}, \mathbf{Z}_{i})\Omega\beta$
- ▶ the conditional moment of $A_i \mid (\Delta_i, \mathbf{Z}_i)$ can serve as a practical guide choosing a working model

For $\theta(\cdot)$, and $\theta'(\cdot)$

► Solve nonparametrically

$$\sum_{i=1}^{n} [A_{i} - H\{(\Delta_{i} - \Omega \boldsymbol{\beta}^{T}/2)\boldsymbol{\beta} + \theta_{0} + \theta_{1}\}][1 \ \tilde{\boldsymbol{\gamma}}^{T} \mathbf{Z}_{i} - \tilde{\boldsymbol{\gamma}}^{T} \mathbf{Z}_{j}]^{T} K_{h}(\tilde{\boldsymbol{\gamma}}^{T} \mathbf{Z}_{i} - \tilde{\boldsymbol{\gamma}}^{T} \mathbf{Z}_{j}) = \mathbf{0}$$

$$\widehat{\theta}_0, \widehat{\theta}_1$$
 are the estimator of θ and θ' at $\widetilde{\gamma}^T \mathbf{Z}_i, j = 1, \cdots, n$.

 $K_h(\cdot) = K(\cdot/h)/h$ is a multivariate kernel function with bandwidth h.

ATE estimation

$$\widehat{\tau} = \frac{1}{n} \sum_{i=1}^{n} \frac{A_{i} Y_{i}}{\widehat{\Pr}(A_{i} = 1 \mid \mathbf{X}_{i}^{*}, \mathbf{Z}_{i}, \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\gamma}}, \widehat{\boldsymbol{\theta}}, E^{*})} - \frac{(1 - A_{i}) Y_{i}}{\widehat{\Pr}(A_{i} = 0 \mid \mathbf{X}_{i}^{*}, \mathbf{Z}_{i}, \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\gamma}}, \widehat{\boldsymbol{\theta}}, E^{*})}$$

 $\widehat{\Pr}(A_i = 1 \mid \mathbf{X}_i^*, \mathbf{Z}_i, \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\gamma}}, \widehat{\boldsymbol{\theta}}, E^*)$ is the estimated propensity score.

Simulation studies

Setting 1:

- the true covariate **X** is univariate, $X \sim N(-1,1)$
- with both low ($\sigma_U = 0.3$) and high ($\sigma_U = 0.9$) degree of measurement error.
- error-free $Z_i \sim \text{Uniform}(0, \pi)$ for \$ j =1, 2, 3\$
- the true parameters: $\beta = 0.7$, $\tilde{\gamma} = (1.0, 0.3, 0.4)^T$

Simulation results - Setting 1

		Setting 1	$\sigma_U = 0.3$		
$\beta = 0.7$	Naive	RC-Norm	RC-Unif	semi-1	semi-2
bias	-0.0602	-0.0043	0.0260	-0.0093	0.0148
emp.se	0.1254	0.1371	0.1500	0.1113	0.0906
est.se	0.1263	0.1375	0.1470	0.1330	0.0975
mse	0.0194	0.0188	0.0232	0.0125	0.0084
95% CI	0.9220	0.9400	0.9360	0.9600	0.9540
		C 1			
		Setting 1	$\sigma_U = 0.9$		
$\beta = 0.7$	Naive	RC-Norm	$\frac{\sigma_{\mathcal{U}} = 0.9}{RC-Unif}$	semi-1	semi-2
$\beta = 0.7$ bias	Naive -0.3260			semi-1 -0.0868	semi-2 -0.1493
		RC-Norm	RC-Unif		
bias	-0.3260	RC-Norm -0.0352	RC-Unif -0.0425	-0.0868	-0.1493
bias emp.se	-0.3260 0.0954	RC-Norm -0.0352 0.1765	RC-Unif -0.0425 0.1796	-0.0868 0.1362	-0.1493 0.1474
bias emp.se est.se	-0.3260 0.0954 0.0927	RC-Norm -0.0352 0.1765 0.1676	RC-Unif -0.0425 0.1796 0.1692	-0.0868 0.1362 0.1514	-0.1493 0.1474 0.1960

Simulation studies

Setting 2:

- **X** are multivariate, $X_1 \sim \mathcal{N}(-1.1,1), X_2 \sim \mathcal{N}(1,1)$
- degrees of measurement errors $\sigma_{U_1} = 0.5, \sigma_{U_2} = 0.9$,
- error-free $Z_j \sim \mathsf{Uniform}(0,\pi)$ for $j=1,\cdots,8$
- ▶ the true parameters: $\beta = (1.2, -0.8)^T$, $\tilde{\gamma} = (1.0, 0.3, 0.4, 0.1, 0.2, -0.1, -0.2, 0.2)^T$.

Simulation results - Setting 2

$\beta_1 = 1.2$	Naive	RC-Norm	RC-Unif	semi-1	semi-2
bias	-0.2865	-0.0654	0.0014	-0.2542	-0.4613
emp.se	0.1732	0.2178	0.2589	0.3078	0.2942
est.se	0.1529	0.1947	0.2221	0.6939	0.8520
mse	0.1121	0.0517	0.0670	0.1594	0.2993
95% CI	0.5220	0.8900	0.8780	0.9620	0.9120
$\beta_2 = -0.8$	Naive	RC-Norm	RC-Unif	semi-1	semi-2
bias	0.3860	0.0680	0.0763	0.3765	0.3702
emp.se	0.1394	0.2616	0.2595	0.2595	0.3121
est.se	0.1155	0.2130	0.2216	0.6533	0.8072
mse	0.1684	0.0731	0.0731	0.2091	0.2344
95% CI	0.2120	0.8700	0.8520	0.9620	0.9480

Simulation studies

Setting 3:

- $lackbox{X}$ are multivariate, $X_1 \sim \mathit{N}(-0.9,1), X_2 \sim \mathit{N}(-1.0,1), X_3 \sim \mathit{N}(0.5,1)$
- degrees of measurement errors, i.e., $\sigma_{U_1} = 0.9, \sigma_{U_2} = 0.8, \sigma_{U_3} = 0.8$, respectively
- error-free $Z_j \sim \mathsf{Uniform}(0,\pi)$ for $j=1,\cdots,4$
- the true parameters are $\beta = (1.0, 0.8, -0.7)^T$, $\tilde{\gamma} = (1.0, 0.3, 0.4, 0.5)^T$.

Simulation results - Setting 3

$\beta_1 = 1.0$	Naive	RC-Norm	RC-Unif	semi-1	semi-2
bias	-0.4925	-0.0903	-0.0911	-0.2020	-0.1788
emp.se	0.1313	0.2405	0.2555	0.1825	0.1703
est.se	0.1131	0.2052	0.2141	0.2398	0.2108
mse	0.2598	0.0660	0.0736	0.0741	0.0610
95% CI	0.0980	0.8700	0.8540	0.9640	0.9380
$\beta_2 = 0.8$	Naive	RC-Norm	RC-Unif	semi-1	semi-2
bias	-0.3520	-0.0739	-0.0722	-0.4169	-0.4402
emp.se	0.1440	0.2410	0.2503	0.2632	0.2190
est.se	0.1186	0.1932	0.1993	0.6696	0.7629
mse	0.1447	0.0635	0.0679	0.2431	0.2418
95% CI	0.2780	0.8300	0.8260	0.9760	0.9920
$\beta_3 = -0.7$	Naive	RC-Norm	RC-Unif	semi-1	semi-2
bias	0.3174	0.0765	0.0819	0.5776	0.6283
emp.se	0.1301	0.2143	0.2209	0.1303	0.1400
est.se	0.1174	0.1915	0.1988	0.6648	0.8728
mse	0.1177	0.0518	0.0555	0.3506	0.4144
95% CI	0.3120	0.8820	0.8760	0.9440	0.9580

Simulation studies

Setting 4:

- $m{X}$ are multivariate, $X_1 \sim N(-0.9,1), X_2 \sim N(-1.0,1), X_3 \sim N(0.5,1)$, and $(X_4,Z_4) \sim \mathrm{MVN} \ \left(egin{bmatrix} -0.5 \\ 0 \end{bmatrix}, egin{bmatrix} 1 & 0.2 \\ 0.2 & 1 \end{bmatrix}
 ight).$
- degrees of measurement errors: $\sigma_U = [0.9, 0.8, 0.8, 0.3]$.
- error-free $Z_j \sim \mathsf{Uniform}(0,\pi)$ for $j=1,\cdots,3$
- the true parameters are $\beta = (1.0, 0.8, -0.7, 0.7)^T$, $\tilde{\gamma} = (1.0, 0.3, 0.4, 0.5)^T$.

Simulation results - Setting 4

ı	ion icsu	165 56	CCIII B			
	$\beta_1 = 1.0$	Naive	RC-Norm	RC-Unif	semi-1	semi-2
	bias	-0.5028	-0.2221	-0.2428	0.1028	-0.5308
	emp.se	0.2387	0.4290	0.4453	0.6324	0.4247
	est.se	0.2111	0.3777	0.3975	0.5034	1.0862
_	mse	0.3098	0.2334	0.2572	0.4106	0.4621
	95% CI	0.4600	0.8486	0.8486	0.9714	0.9571
	$\beta_2 = 0.8$	Naive	RC-Norm	RC-Unif	semi-1	semi-2
	bias	-0.3758	-0.2123	-0.2420	-0.0241	-0.4183
_	emp.se	0.2502	0.4146	0.4149	0.6372	0.4164
_	est.se	0.2167	0.3630	0.3647	1.1909	1.4497
	mse	0.2308	0.2169	0.2307	0.4066	0.3484
	95% CI	0.5943	0.8629	0.8429	0.9886	0.9429
_	$\beta_3 = -0.7$	Naive	RC-Norm	RC-Unif	semi-1	semi-2
_	$\beta_3 = -0.7$ bias	Naive 0.3197	RC-Norm 0.1324	RC-Unif 0.1427	semi-1 0.6487	semi-2 0.7120
-						
-	bias	0.3197	0.1324	0.1427	0.6487	0.7120
	bias emp.se	0.3197 0.2508	0.1324 0.4104	0.1427 0.4227	0.6487 0.6209	0.7120 0.3711
	bias emp.se est.se	0.3197 0.2508 0.2184	0.1324 0.4104 0.3571	0.1427 0.4227 0.3678	0.6487 0.6209 1.6195	0.7120 0.3711 1.5186
	bias emp.se est.se mse	0.3197 0.2508 0.2184 0.1651	0.1324 0.4104 0.3571 0.1860	0.1427 0.4227 0.3678 0.1990	0.6487 0.6209 1.6195 0.8062	0.7120 0.3711 1.5186 0.6446
	bias emp.se est.se mse 95% CI	0.3197 0.2508 0.2184 0.1651 0.6743	0.1324 0.4104 0.3571 0.1860 0.8514	0.1427 0.4227 0.3678 0.1990 0.8429	0.6487 0.6209 1.6195 0.8062 0.9171	0.7120 0.3711 1.5186 0.6446 0.9314
- - - - -	bias emp.se est.se mse 95% CI $\beta_4 = 0.7$	0.3197 0.2508 0.2184 0.1651 0.6743	0.1324 0.4104 0.3571 0.1860 0.8514	0.1427 0.4227 0.3678 0.1990 0.8429	0.6487 0.6209 1.6195 0.8062 0.9171 semi-1	0.7120 0.3711 1.5186 0.6446 0.9314 semi-2
	bias emp.se est.se est.se 95% CI $\beta_4 = 0.7$ bias	0.3197 0.2508 0.2184 0.1651 0.6743 Naive -0.1254	0.1324 0.4104 0.3571 0.1860 0.8514 RC-Norm -0.0919	0.1427 0.4227 0.3678 0.1990 0.8429 RC-Unif -0.0558	0.6487 0.6209 1.6195 0.8062 0.9171 semi-1 0.6280	0.7120 0.3711 1.5186 0.6446 0.9314 semi-2 0.5324
	bias emp.se est.se mse 95% CI $\beta_4=0.7$ bias emp.se	0.3197 0.2508 0.2184 0.1651 0.6743 Naive -0.1254 0.2798	0.1324 0.4104 0.3571 0.1860 0.8514 RC-Norm -0.0919 0.2997	0.1427 0.4227 0.3678 0.1990 0.8429 RC-Unif -0.0558 0.3383	0.6487 0.6209 1.6195 0.8062 0.9171 semi-1 0.6280 0.8308	0.7120 0.3711 1.5186 0.6446 0.9314 semi-2 0.5324 1.2812
	bias emp.se est.se mse 95% CI $\beta_4=0.7$ bias emp.se est.se	0.3197 0.2508 0.2184 0.1651 0.6743 Naive -0.1254 0.2798 0.2773	0.1324 0.4104 0.3571 0.1860 0.8514 RC-Norm -0.0919 0.2997 0.2982	0.1427 0.4227 0.3678 0.1990 0.8429 RC-Unif -0.0558 0.3383 0.3357	0.6487 0.6209 1.6195 0.8062 0.9171 semi-1 0.6280 0.8308 1.1645	0.7120 0.3711 1.5186 0.6446 0.9314 semi-2 0.5324 1.2812 1.7563

Simulation results: ATE

Figure 3: $\widehat{\tau}$ in simulation setting 1 (upper left), 2 (upper right), 3 (lower left), and 4 (lower right). The dashed line is the true average treatment effect.

Conclusions

- ► A gentle introduction of causal inference
- Causal inference with sufficient dimension reduction
 - propose a new robust estimator
 - parametric models suffer from the risk of model misspecification, semiparametric models are more flexible
 - less prone to propensity score model misspecification
 - does not rely on the specification of the outcome regression model
 - attractive when a reliable outcome regression model is hard to obtain
 - capable to handle high dimension complex data
- ► Causal inference with errors-in-variables
 - propose a flexible semiparametric solution to evaluating the causal effects
 - errors-in-variables and subject to confounding
 - the dimension of the confounding variables can be large and correlated with the error-prone covariates.
 - the resulting estimators are locally efficient
 - estimators are efficient if the working model is correctly specified 33/36

References

- Liu, J. and Li, W. (2021) A Semiparametric Method for Evaluating Causal Effects in the Presence of Error-Prone Covariates. *Biometrical Journal*. In press
- Liu, J., Ma, Y. and Wang, L.(2018) An Alternative Robust Estimator of Average Treatment Effect in Causal Inference. *Biometrics*. Vol 74(3), 910-923
- Neyman, J., Dabrowska, D., & Speed, T. (1990). On the application of probability theory to agricultural experiments: Essay on principles. Statistical Science, 5, 465–480.
- Rosenbaum, P., & Rubin, D. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70, 41–55.
- Rubin, D. (1974). Estimating causal effects of treatments in randomized and non-randomized studies. *Journal of educational Psychology*, 66, 688–701.
- Stefanski, L., & Carroll, R. (1987). Conditional scores and optimal scores for generalized linear measurement-error models. *Biometrika*, 74, 703–716.
- 7. Tsiatis, A. (2006). *Semiparametric Theory and Missing Data*. New York: Springer.

Questions & comments?

Jianxuan Liu

jliu193@syr.edu

https://jliu193.expressions.syr.edu/home/

Շնորհակալություն Teşekkür ederim Terima kasih Merci
 Cam on Grazie

 Спасибо
 நன்றி Mulțumesc To-siā Danke u-quic Děkuji Ďakujem Dankie nanri Köszönöm Tak Gràcies Takk dhanyavaad Kiitos 谢谢 Faleminderit 감사합니다 Obrigado Bedankt Dziękujemy Mesi Obracios Obrigado Bedankt Obracios Obrigado Bedankt Obracios Obrigado Obri Gracias Lóo-lat Σας ευχαριστούμε