PQ-DPoL

: An Efficient Post-Quantum Blockchain Consensus Algorithm

Won-Woong Kim, Yea-Jun Kang, Hyun-Ji Kim, Kyung-Bae Jang, Hwa-Jeong Seo Hansung University

Contents

Introduction **Background Proposed Method Benchmark Conclusion**

Introduction

• The ECC-based signature scheme is commonly adopted in blockchains for transaction signing and verification. (e.g. secp256-k1 in Bitcoin/Ethereum)

- However, the following two factors prompt us to consider replacing ECC with PQC
 - 1. Shor's algorithm
 - 2. The emergence of quantum computer
- In this paper, We proposed "PQ-DPoL(Post-Quantum Delegated Poof of Luck)"

Introduction | Contribution

- Our main Contributions
- 1. Post-quantum blockchain with PQC scheme.
 - CRYSTALS-Dilithium

- 2. New consensus algorithm for an efficient blockchain.
 - Delegate + Proof-of-Luck
- 3. Diverse Configurations and Benchmarks.
 - The number of nodes
 - Security parameter of Dilithium

Background || Consensus Algorithm

 The consensus algorithm is used by nodes on the blockchain to ensure data integrity through specific procedures and to make the same decision.

- Representative consensus algorithms
 - Proof-of-Work (PoW)
 - Proof-of-Stake (PoS)
 - Delegated-Proof-of-Stake (DPoS)
 - Proof-of-Elapsed-Time (PoET)
 - Proof-of-Luck (PoL)

Background | TEE (Trusted Execution Environment)

The security area of the main processor.

- There are various unique techniques for security.
 - Trusted Time
 - Monotonic Counter
 - Attestation
 - Random Number Generator

Background || CRYSTALS-Dilithium

 Post-quantum cryptography selected by NIST as an algorithm to be standardized.

Lattice-based cipher based on the Shortest Vector Problem (SVP).

Scheme	NIST level	Public key	Private Key	Signature
Dilithium-2	2	1,312	2,528	2,420
Dilithium-3	3	1,952	4,000	3,293
Dilithium-5	5	2,592	4,864	4,595

Background || Evaluation Metric

TPS

- The number of transactions that can be confirmed in one second.
- Bitcoin 7TPS / Ethereum 20TPS / EOS 3000TPS

Latency

- The time it takes from the time a transaction appears on the network until it is verified.
- Bitcoin 10minutes / Ethereum 0.22 minutes / Ripple 4seconds

- In addition, there are other metrics
 - : verification time, decetralized level, and power consumpotion

Before Proposed Method

- There are 5 considerations
 - Key Size
 - Signature Size
 - Execution Speed
 - Computational Complexity
 - Power Consumption

Before Proposed Method

- Reasons for applying Dilithium
 - The Dilithium scheme faster than PQC signature schemes
 - The devices targeted for our blockchain are CPUs that support TEE
 - This indicates that our blockchain is capable of accommodating PQC with large key sizes.
- However, several problems exist...
 - We will present how to increase the lowered TPS using the proposed consensus algorithm, DPoL.

Before Proposed Method

- How to use TEE in our method
 - Trusted Time
 - Give the delay of schedule as much as round time
 - Monotonic Counter
 - Prevent concurrent invocation
 - Remote Attestation
 - Generate proof to verify with each other
 - Random Number Generation
 - Use as the luck value in the algorithm

Proposed Method | System Overview

PQ-DPoL is divided Delegation phase / Consensus phase

System Overview

Proposed Method | Delegation

Delegation phase

- Random Number Generation
- 2. Vote
- 3. Verification
- 4. Delegation
 - 1. Each node generates a random number

2. Vote: Broadcast a random number

3. Verifies the voting transaction (Dilithium)

4. Select delegated nodes (with the most votes).

Proposed Method | Consensus

- Consensus Phase
 - 1. Block Generation
 - 2. Block Verification
 - 3. Transaction Verification
 - Block Generation

: Generated by Luck and Nonce in block

3. Transaction Verification

Using Dilithium

Benchmark || Envrionment

• Target Processor: Intel i5-8295U CPU with 16GB RAM

Framework: Visual Studio Code

• Language: C++

• To build an environment close to a real blockchain network, we use NS-3, an open-source network simulator.

Benchmark || Performance

Execution speed comparison of ECDSA (P-256) and Dilithium

	Key Gen	Sig Gen	Sig Verify
ECDSA (P-256)	0.000400	0.000670	0.000350
Dilithium-2	0.000027	0.000100	0.000026
Dilithium-3	0.000047	0.000160	0.000043
Dilithium-5	0.000073	0.000200	0.000065

Benchmark || Performance

TPS of PQ-DPoL

n	1	2	3	4	5	6	7
ECDSA	713.5797	122.5398	29.8184	6.9522	0.9468	0.2341	0.1030
Dilithium-2	88.8721	21.0373	5.1244	1.2515	0.3302	0.0776	0.0171
Dilithium-3	48.4901	11.7897	2.8879	0.7128	0.1815	0.0446	0.0104
Dilithium-5	30.8097	7.4470	1.8600	0.4526	0.1203	0.0291	0.0066

Benchmark || Performance

Latency of PQ-DPoL

n	1	2	3	4	5	6	7
ECDSA	0.1401	0.8160	3.3536	14.3838	105.6131	427.1180	970.0098
Dilithium-2	0.0675	0.2852	1.1708	4.7940	18.1667	77.2573	350.8609
Dilithium-3	0.0824	0.3392	1.3850	5.6116	22.0333	89.5175	383.3946
Dilithium-5	0.0973	0.4028	1.1628	6.6277	24.9267	103.0436	454.1221

Conclusion

The TPS of DPoL applied with Dillithium is lower than that of ECDSA

- To improve the degraded performance, we propose DPoL, a new consensus algorithm that combines PoL and delegation approach.
- Certainly, when employing Dillithium as the signature scheme in DPoL, although its performance may be lower than that of ECDSA, it still provides reasonable performance.

Finding various methods to improve TPS can be considered for the future works.

Q&A