Kaggleでの取り組み

Ⅰ類 メディア情報学プログラム 松浦 史明

データサイエンス演習 2024 July 20, 2024

- ・導入
 - ・データ分析フロー
- ・方法
 - ・データの理解
 - ・特徴量の追加、削除
 - · Kfold法
- ・結果
 - ・スコア
 - ・試した手法ごとの、スコアの変化
- ・議論
- ・まとめ

- ・導入
 - ・データ分析フロー
- ・方法
 - ・データの理解
 - ・特徴量の追加、削除
 - · Kfold法
- ・結果
 - ・スコア
 - ・試した手法ごとの、スコアの変化
- ・議論
- ・まとめ

導入

【データ分析フロー】

・主に取り組んだ点

データ理解

- ・データの外観
- ・各種統計量
- ・可視化

データ加工

- ・欠損値処理
- ・外れ値処理
- ・特徴量作成

モデル

- ・モデルの作成
- ・モデル評価
- ・チューニング

- ・導入
 - ・データ分析フロー
- ・方法
 - ・データの理解
 - ・特徴量の追加、削除
 - ・Kfold法
- ・結果
 - ・スコア
 - ・試した手法ごとの、スコアの変化
- ・議論
- ・まとめ

方法 (1/3) : データの理解

データの理解:

- ・EDA(探索的データ解析)の実施
- Home Credit: Complete EDA + Feature Importance ??

(kaggle.com)を日本語に翻訳した<u>Home Credit : Complete EDA(日本</u>語訳) (kaggle.com)を参考

・最初の数行をcsvで出力し、どのようなカラムがあるのか眺めてみる

	А	В	С	D	E	F	G	Н	I	ј К	L	M	N	0	Р	Q
1 5	SK_ID_CU	TARGET	CODE_C	GEIFLAG_O	W FLAG_C	W CNT_CH	IL AMT_INC	AMT_CRE	AMT_ANN	AMT_GOO REGION	_FDAYS_BIR	DAYS_EM	DAYS_RE([DAYS_ID_	OWN_CAR	FLAG_PH((
2	100002	1		0	0	0	0 202500	406597.5	24700.5	351000 0.01880	-9461	-637	-3648	-2120		1
3	100003	()	1	0	1	0 270000	1293503	35698.5	1129500 0.00354	-16765	-1188	-1186	-291		1
4	100004	()	0	1	0	0 67500	135000	6750	135000 0.01003	-19046	-225	-4260	-2531	26	1
5	100006	()	1	0	0	0 135000	312682.5	29686.5	297000 0.00803	.9 -19005	-3039	-9833	-2437		0
6	100007	()	0	0	0	0 121500	513000	21865.5	513000 0.0286	-19932	-3038	-4311	-3458		0

方法 (1/3) : データの理解

・例:教育のタイプと、目的変数との関係

【特徴量の追加と削除】

- 1. 第13回講義のipynbファイルを参考
- 2. Kaggler上位が追加、削除している特徴量を選択
- 3. importance値による特徴量の選択
- 4. 相関の高い変数の削除

- 1, 2. 資料を参考にした、特徴量の追加・削除
- ・金利やローンの事については、正直初心者
- ・意味を持つ特徴量を作るために、資料を参照
- ・基本的に、ある程度までは特徴量を削除した方がスコアが上 昇した
 - ex)偏りが大きく(ほとんど 0 または 1)、情報量が少ないと考えられるような特徴量等

- 3. Importance値による特徴量の選択:
- ・importance値と呼ばれる、 特徴量の寄与度を示すグラフ

4. 相関の高い変数の削除:

- ・一般的に、相関の高い変数はどちらか片方を消すと良い(と されている)
- ・相関行列を作成し、指定した閾値以上の相関を持つ特徴量を 削除
 - ・うまくいくはずだった...

方法 (3/3) : Kfold法

【Kfold法を用いた、学習】

・訓練データと検証データを入れ替えつつそれぞれのモデルで 予測を行い、その平均値を予測値として使用

- ・導入
 - ・データ分析フロー
- ・方法
 - ・データの理解
 - ・特徴量の追加、削除
 - · Kfold法
- ・結果
 - ・スコア
 - ・試した手法ごとの、スコアの変化
- ・議論
- ・まとめ

結果 (1/2): スコア

【現状のスコア】

· 0.79136

0.79136

0.79168

168

・更なる向上を目指したい

結果 (2/2): 試した手法ごとの、 スコアの変化

・初期段階(授業資料そのまま)

submit_tree_20210829_1.csv

Complete (after deadline) · 12d ago · tree_model = DecisionTreeClassifier(criterion="gini", # Entropy基準の場合は"entropy...

0.66105

0.67113

・データはapplicationのみを使用し、Kfoldを使用

20240709_test.csv

Complete (after deadline) · 10d ago

0.76072

0.76536

・applicationとbureau and balanceを使用し、特徴量選択を実施

20240710 v1.csv

Complete (after deadline) \cdot 10d ago \cdot add bureau and balance to dataframe

0.77535

0.77500

結果 (2/2): 試した手法ごとの、 スコアの変化

・csvデータを全てデータフレームに導入

20240715_v5_0.792163.csv

Complete (after deadline) · 4d ago

0.79086

0.78970

・特徴量選択を繰り返した後の結果

20240715_v11_0.792182.csv

Complete (after deadline) · 4d ago

0.79136

0.79168

- ・導入
 - ・データ分析フロー
- ・方法
 - ・データの理解
 - ・特徴量の追加、削除
 - · Kfold法
- ・結果
 - ・スコア
 - ・試した手法ごとの、スコアの変化
- ・議論
- ・まとめ

議論

【うまくいった点】

- ・特徴量の追加による、スコア向上
- ・特徴量の削除(変数名決め打ち)でのスコア向上

【改善点】

- ・今のところ、特徴量の統合や相関によるフィルタリングでは、 スコアを改善させることができなかった
 - ・importance値による特徴量の選別を深めたい
 - ・Embedded Methodの変数選択を利用した特徴量選別も視野

- ・導入
 - ・データ分析フロー
- ・方法
 - ・データの理解
 - ・特徴量の追加、削除
 - · Kfold法
- ・結果
 - ・スコア
 - ・試した手法ごとの、スコアの変化
- ・議論
- ・まとめ

まとめ

背景:

・データ分析フロー

方法:

- ・EDAによる、データの理解
- ・様々な資料を参考にした、特徴量の追加と削除

主な達成点:

・特徴量選択・削除による、スコアの向上

今後:

・特徴量の選択手法を検討し、より重要なものの選別

ご清聴、ありがとうございました