Models for Digital Design

- Miller Capacitance
- The Digital MOSFET Model
- The MOSFET Pass Gate

Chap 10

Miller Capacitance

Figure 10.2 Determining the charge through a capacitor.

$$Q_{tot} = Q_{final} - Q_{init} = 2C \cdot VDD$$

Figure 10.3 Splitting the capacitor in Fig. 10.2 up into two equivalent capacitors for developing a model.

The Digital MOSFET Model

Effective Switching Resistance

Figure 10.5 IV plot for a 10/1 NMOS device to estimate average switching resistance.

$$R_n = R'_n \cdot \frac{L}{W} = \frac{VDD}{I_{D,sat}} = \frac{5}{3.3 \ mA} \rightarrow R'_n \approx 15 \ k\Omega$$

Figure 10.4 MOSFET switching circuit.

$$R_n = \frac{VDD}{\frac{KP_n W}{2} \cdot (VDD - V_{THN})^2} = R'_n \cdot \frac{L}{W}$$

Figure 10.6 Simple digital MOSFET model.

Capacitive Effects

» Depletion capacitances are neglected when doing hand calculations

Process Characteristic Time Constant

- Long-Channel Process
$$\tau_n = R_n C_{ox} = \frac{2L \cdot VDD}{KP_n W(VDD - V_{THN})^2} \cdot C'_{ox} WL \cdot (scale)^2 = \frac{2C'_{ox} \cdot VDD \cdot (L \cdot scale)^2}{KP_n \cdot (VDD - V_{THN})^2}$$

- Short-Channel Proces
$$\tau_n = R_n C_{ox} = \frac{2L \cdot VDD}{KP_n W (VDD - V_{THN})^2} \cdot C'_{ox} WL \cdot (scale)^2 = \frac{2C'_{ox} \cdot VDD \cdot (L \cdot scale)^2}{KP_n \cdot (VDD - V_{THN})^2}$$

Table 10.1 Digital model parameters used for hand calculations in the long- and short-channel CMOS processes used in this book. Note that the widths, W, and lengths, L, seen in this table are drawn lengths (minimum length is 1 while minimum width is 10).

Technology	R_n	R_p	Scale factor	$C_{ox} = C'_{ox}WL \cdot (scale)^2$
1 μm (long-channel)	$15k\frac{L}{W}$	$45k\frac{L}{W}$	1 μm	$(1.75fF)\cdot WL$
50 nm (short-channel)	34k W	68 <i>k</i> <i>W</i>	50 nm	$(62.5 aF) \cdot WL$

Delay and Transition Times

$$t_{PHL} \approx 0.7 \cdot R_n \cdot C_{tot}$$
 and $t_{PLH} \approx 0.7 \cdot R_p \cdot C_{tot}$

$$t_{HL} \approx 2.2 \cdot R_n \cdot C_{tot}$$
 and $t_{LH} \approx 2.2 \cdot R_p \cdot C_{tot}$

Ref. Book p 50

6

- Example

Models for Digital Design

7

General Digital Design

Table 10.2 Parameters for general digital design using the long-channel (scale factor is 1 μ m) or short-channel (scale factor of 50 nm) CMOS process used in this book.

Technology	Drawn	Actual size	$R_{n,p}$	$C_{ox,n,p}$
NMOS (long-channel)	10/1	10 μm by 1 μm	1.5k	17.5 fF
PMOS (long-channel)	30/1	30 μm by 1 μm	1.5k	52.5 fF
NMOS (short-channel)	10/1	0.5 μm by 50 nm	3.4k	625 aF
PMOS (short-channel)	20/1	1 μm by 50 nm	3.4k	1.25 fF

Models for Digital Design

8

The MOSFET Pass Gate

The NMOS Pass Gate

» An NMOS device is good at passing a "0" and bad at passing a "1"

The PMOS Pass Gate

» A PMOS device is good at passing a "1" and bad at passing a "0"

• Example

Delay through a Pass Gate

$$t_{delay} = 0.7 \cdot R_n C_{tot} = 0.7 \cdot R_n \cdot \left(C_L + \frac{C_{ox}}{2} \right)$$

The Transmission Gate (TG)

• Delay through Series-Connected PGs

$$t_{delay} \approx 0.35 \cdot R_n \cdot C_{ox} \cdot l^2$$
Ref. Book p 51

