Réseaux de neurones artificiels

Amin Fehri¹

09/01/2017

¹Centre de Morphologie Mathématique Mines ParisTech

Plan

Introduction

Réseaux de neurones profonds

Optimisation et régularisation

Optimisation

Régularisation

Conclusion

Introduction

Objectif: régression ou classification

Classification

- Imagerie médicale : malade ou pas ?
- Reconnaissance de caractères ?

Régression

- Conduite automatique : position optimale de la roue
- Kinect : où sont les membres ?

Cela est aussi valable pour des sorties structurées.

Objectif: régression ou classification

Classification

- Imagerie médicale : malade ou pas ?
- Reconnaissance de caractères ?

Régression

- Conduite automatique : position optimale de la roue
- Kinect : où sont les membres ?

Cela est aussi valable pour des sorties structurées.

Reconnaissance d'objets

Reconnaissance d'objets

Réseaux de neurones profonds

Classifieur linéaire

- Base de données : paires $(X^{(i)}, Y^{(i)}), i = 1, ..., N$.
- $X^{(i)} \in \mathbb{R}^n$, $Y^{(i)} \in \{-1, 1\}$
- Objectif: trouver w et b tels que $signe(w^TX^{(i)} + b) = Y^{(i)}$.

1

1. Figures : N. Leroux [2015]

Classifieur linéaire

- Base de données : paires $(X^{(i)}, Y^{(i)})$, i = 1, ..., N.
- $X^{(i)} \in \mathbb{R}^n$, $Y^{(i)} \in \{-1, 1\}$
- Objectif: trouver w et b tels que $signe(w^TX^{(i)} + b) = Y^{(i)}$.

1. Figures: N. Leroux [2015]

Algorithme du perceptron (Rosenblatt, 1957)

- $w_0 = 0, b_0 = 0$
- $\hat{Y}^{(i)} = signe(w^T X^{(i)} + b)$
- $w_{t+1} \leftarrow w_t + \sum_i (Y^{(i)} \hat{Y}^{(i)}) X^{(i)}$
- $b_{t+1} \leftarrow b_t + \sum_i (Y^{(i)} \hat{Y}^{(i)})$

Demo linéairement séparable.

Certaines données ne sont pas linéairement séparables

L'algorithme du perceptron ne converge pas pour des données non linéairement séparables.

Non convergence de l'algorithme du perceptron

Perceptron non-linéairement séparable

 On a besoin d'un algorithme qui marche à la fois sur des données séparables et non séparables.

Erreur de classification

Un bon classifieur minimise:

$$\ell(w) = \sum_{i} \ell_{i}$$

$$= \sum_{i} \ell(\hat{Y}^{(i)}, Y^{(i)})$$

$$= \sum_{i} \mathbb{1}_{signe(w^{T}X^{(i)} + b) \neq Y_{i}}$$

Importance de la convexité

a) Fonction convexe, b) Fonction non convexe mais adaptée à un problème d'optimisation

- L'erreur de classification n'est pas lisse.
- La sigmoïde est lisse mais pas convexe.
- La perte logistique est une borne supérieure convexe
- La hinge loss ressemble beaucoup à la logistique.

- L'erreur de classification n'est pas lisse.
- La sigmoïde est lisse mais pas convexe.
- La perte logistique est une borne supérieure convexe.
- La hinge loss ressemble beaucoup à la logistique.

- L'erreur de classification n'est pas lisse.
- La sigmoïde est lisse mais pas convexe.
- La perte logistique est une borne supérieure convexe.
- La hinge loss ressemble beaucoup à la logistique.

- L'erreur de classification n'est pas lisse.
- La sigmoïde est lisse mais pas convexe.
- La perte logistique est une borne supérieure convexe.
- La hinge loss ressemble beaucoup à la logistique.

Résoudre des problèmes séparables ET non séparables

- Fonction logistique non-linéairement séparable
- Fonction logistique linéairement séparable

Classification non linéaire

Polynôme non-linéairement séparable

Classification non linéaire

• Features : $X_1, X_2 \rightarrow$ classifieur linéaire

• Features : $X_1, X_2, X_1 X_2, X_1^2, ... \rightarrow$ classifieur non-linéaire

Choisir les features

- Pour que ça fonctionne, on crée de nouveaux features :
- $X_1^i X_2^j$ pour $(i,j) \in [0,4]$ (p = 18)
- Est-ce que ça fonctionnerait avec moins de features?
- Test avec $X_1^i X_2^j$ pour $(i,j) \in [0,3]$

Polynôme non-linéairement séparable de degré 2

Une vue graphique des classifieurs

$$f(X) = w_1 X_1 + w_2 X_2 + b$$

Une vue graphique des classifieurs

$$f(X) = w_1 X_1 + w_2 X_2 + w_3 X_1^2 + w_4 X_2^2 + w_5 X_1 X_2 + \dots$$

- Un classifieur linéaire appliqué à des transformations non-linéaires est non-linéaire
- Un classifieur non-linéaire repose sur des features non-linéaires
- Lesquels choisir?
- $\bullet \ \ H_j = X_1^{p_j} X_2^{q_j}$
- SVM : $H_j = K(X, X^{(j)})$ avec K fonction noyau
- Est-ce que les features doivent être prédéfinis ?
- Un réseau de neurones va apprendre les H_j

- Un classifieur linéaire appliqué à des transformations non-linéaires est non-linéaire
- Un classifieur non-linéaire repose sur des features non-linéaires
- · Lesquels choisir?
- $\bullet \ \ H_j = X_1^{p_j} X_2^{q_j}$
- SVM : $H_j = K(X, X^{(j)})$ avec K fonction noyau
- Est-ce que les features doivent être prédéfinis?
- Un réseau de neurones va apprendre les H_i

- Un classifieur linéaire appliqué à des transformations non-linéaires est non-linéaire
- Un classifieur non-linéaire repose sur des features non-linéaires
- Lesquels choisir?
- $\bullet \ \ H_j = X_1^{p_j} X_2^{q_j}$
- SVM : $H_j = K(X, X^{(j)})$ avec K fonction noyau
- Est-ce que les features doivent être prédéfinis?
- ullet Un réseau de neurones va apprendre les H_j

- Un classifieur linéaire appliqué à des transformations non-linéaires est non-linéaire
- Un classifieur non-linéaire repose sur des features non-linéaires
- · Lesquels choisir?
- $\bullet \ \ H_j = X_1^{p_j} X_2^{q_j}$
- SVM : $H_j = K(X, X^{(j)})$ avec K fonction noyau
- Est-ce que les features doivent être prédéfinis?
- Un réseau de neurones va apprendre les H_j

- Un classifieur linéaire appliqué à des transformations non-linéaires est non-linéaire
- Un classifieur non-linéaire repose sur des features non-linéaires
- · Lesquels choisir?
- $\bullet \ \ H_j = X_1^{p_j} X_2^{q_j}$
- SVM : $H_j = K(X, X^{(j)})$ avec K fonction noyau
- Est-ce que les features doivent être prédéfinis?
- Un réseau de neurones va apprendre les H_j

- Choisir un exemple x
- Le transformer en $\hat{x} = Vx$ avec une matrice V
- Appliquer une transformation non-linéaire g à tous les éléments de x̂
- Calculer $w^T \hat{x} + b$
- Calculer $w^T \hat{x} + b = w^T V x + b = \hat{w} x + b$
- Calculer $w^T \hat{x} + b = w^T g(Vx) + b \neq \hat{w}x + b$

- Choisir un exemple x
- Le transformer en $\hat{x} = Vx$ avec une matrice V
- Appliquer une transformation non-linéaire g à tous les éléments de x̂
- Calculer $w^T \hat{x} + b$
- Calculer $w^T \hat{x} + b = w^T V x + b = \hat{w} x + b$
- Calculer $w^T \hat{x} + b = w^T g(Vx) + b \neq \hat{w}x + b$

- Choisir un exemple x
- Le transformer en $\hat{x} = Vx$ avec une matrice V
- Appliquer une transformation non-linéaire g à tous les éléments de x̂
- Calculer $w^T \hat{x} + b$
- Calculer $w^T \hat{x} + b = w^T V x + b = \hat{w} x + b$
- Calculer $w^T \hat{x} + b = w^T g(Vx) + b \neq \hat{w}x + b$

- Choisir un exemple x
- Le transformer en $\hat{x} = Vx$ avec une matrice V
- Appliquer une transformation non-linéaire g à tous les éléments de x̂
- Calculer $w^T \hat{x} + b$
- Calculer $w^T \hat{x} + b = w^T V x + b = \hat{w} x + b$
- Calculer $w^T \hat{x} + b = w^T g(Vx) + b \neq \hat{w}x + b$

Réseaux de neurones

- Généralement, on utilise $H_j = g(v_i^T X)$
- H_i : Unité cachée
- v_j : Poids d'entrée
- g : Fonction de transfert

Réseaux de neurones

- Généralement, on utilise $H_j = g(v_j^T X)$
- H_i: Unité cachée
- v_j : Poids d'entrée
- *g* : Fonction de transfert

Fonctions de transfert

$$f(X) = \sum_{j} w_{j}H_{j}(X) + b = \sum_{j} w_{j}g(v_{j}^{T}X)$$

- g est la fonction de transfert.
- g était auparavant une sigmoïde ou tanh

 Si g est une sigmoïde, chaque unité cachée est un soft classifier.

Fonctions de transfert

$$f(X) = \sum_{j} w_{j}H_{j}(X) + b = \sum_{j} w_{j}g(v_{j}^{T}X)$$

- g est la fonction de transfert.
- g est désormais souvent la partie positive.

• On appelle cela une rectified linear unit (ReLU).

Réseaux de neurones

$$f(X) = \sum_{j} w_{j}H_{j}(X) + b = \sum_{j} w_{j}g(v_{j}^{T}X)$$

Exemple sur le problème non-séparable

Réseau de neurones non-linéairement séparable 3

Entraîner un réseau de neurones

$$f(X) = \sum_{j} w_{j}g(v_{j}^{T}X)$$

$$f(X) = \sum_{j} Wg(VX)$$

- Base de données : paires $(X^{(i)}, Y^{(i)}), i = 1, ..., N$
- Objectif : trouver V et W pour minimiser $\sum_{i} \ell(f(X^{(i)}), Y^{(i)}) = \sum_{i} \ell(Wg(VX^{(i)}), Y^{(i)})$
- On peut le faire avec une descente de gradient.

Entraîner un réseau de neurones

$$f(X) = \sum_{j} w_{j}g(v_{j}^{T}X)$$

$$f(X) = \sum_{j} Wg(VX)$$

- Base de données : paires $(X^{(i)}, Y^{(i)})$, i = 1, ..., N
- Objectif: trouver V et W pour minimiser

$$\sum_{i} \ell(f(X^{(i)}), Y^{(i)}) = \sum_{i} \ell(Wg(VX^{(i)}), Y^{(i)})$$

• On peut le faire avec une descente de gradient.

Entraîner un réseau de neurones

$$f(X) = \sum_{j} w_{j}g(v_{j}^{T}X)$$

$$f(X) = \sum_{j} Wg(VX)$$

- Base de données : paires $(X^{(i)}, Y^{(i)})$, i = 1, ..., N
- Objectif: trouver V et W pour minimiser

$$\sum_{i} \ell(f(X^{(i)}), Y^{(i)}) = \sum_{i} \ell(Wg(VX^{(i)}), Y^{(i)})$$

On peut le faire avec une descente de gradient.

Rétropropagation du gradient - trouver W

- Objectif: trouver V et W pour minimiser $\sum_{i} \ell(Wg(VX^{(i)}), Y^{(i)})$
- On doit calculer le gradient de ℓ_i(W, V) = ℓ(Wg(VX⁽ⁱ⁾), Y⁽ⁱ⁾)
- Dérivation de fonctions composées :

$$\frac{\partial \ell_i(W, V)}{\partial W} = \frac{\partial \ell_i(W, V)}{\partial f(X)} \frac{\partial f(X)}{\partial W}$$
$$= \frac{\partial \ell_i(W, V)}{\partial f(X)} g(VX)^{T}$$

Rétropropagation du gradient - trouver W

Objectif : trouver V et W pour minimiser

$$\sum_{i} \ell(Wg(VX^{(i)}), Y^{(i)})$$

- On doit calculer le gradient de ℓ_i(W, V) = ℓ(Wg(VX⁽ⁱ⁾), Y⁽ⁱ⁾)
- Dérivation de fonctions composées :

$$\frac{\partial \ell_i(W, V)}{\partial W} = \frac{\partial \ell_i(W, V)}{\partial f(X)} \frac{\partial f(X)}{\partial W}$$
$$= \frac{\partial \ell_i(W, V)}{\partial f(X)} g(VX)^{T}$$

Rétropropagation du gradient - trouver W

Objectif: trouver V et W pour minimiser

$$\sum_{i} \ell(Wg(VX^{(i)}), Y^{(i)})$$

- On doit calculer le gradient de ℓ_i(W, V) = ℓ(Wg(VX⁽ⁱ⁾), Y⁽ⁱ⁾)
- Dérivation de fonctions composées :

$$\frac{\partial \ell_i(W, V)}{\partial W} = \frac{\partial \ell_i(W, V)}{\partial f(X)} \frac{\partial f(X)}{\partial W}$$
$$= \frac{\partial \ell_i(W, V)}{\partial f(X)} g(VX)^T$$

Rétropropagation du gradient - trouver V

- On réécrit Wg(VX) = WH avec H = g(VX).
- Dérivation de fonctions composées :

$$\begin{split} \frac{\partial \ell_i(W,V)}{\partial V} &= \frac{\partial \ell_i(W,V)}{\partial f(X)} \frac{\partial f(X)}{\partial V} \\ &= \frac{\partial \ell_i(W,V)}{\partial f(X)} \frac{\partial f(X)}{\partial H} \frac{\partial H}{\partial V} \\ &= W \frac{\partial \ell_i(W,V)}{\partial f(X)} g'(VX) X^T \end{split}$$

Rétropropagation du gradient - trouver V

- On réécrit Wg(VX) = WH avec H = g(VX).
- Dérivation de fonctions composées :

$$\frac{\partial \ell_i(W, V)}{\partial V} = \frac{\partial \ell_i(W, V)}{\partial f(X)} \frac{\partial f(X)}{\partial V}$$
$$= \frac{\partial \ell_i(W, V)}{\partial f(X)} \frac{\partial f(X)}{\partial H} \frac{\partial H}{\partial V}$$
$$= W \frac{\partial \ell_i(W, V)}{\partial f(X)} g'(VX) X^T$$

Trouver une bonne transformation de *x*

- $H_j(x) = g(v_j^T x)$
- Est-ce que ce sont les bons H_i ? Que sait-on sur cela ?
- Théoriquement, un nombre fini de H_j est suffisant (théorème d'approximation universelle).
- Cela ne veut pas dire qu'il faut l'utiliser → le nombre de H_j nécessaire peut être excessivement grand.

Trouver une bonne transformation de *x*

- $H_j(x) = g(v_j^T x)$
- Est-ce que ce sont les bons H_i? Que sait-on sur cela?
- Théoriquement, un nombre fini de H_j est suffisant (théorème d'approximation universelle).
- Cela ne veut pas dire qu'il faut l'utiliser → le nombre de H_j nécessaire peut être excessivement grand.

Trouver une bonne transformation de *x*

- $H_j(x) = g(v_i^T x)$
- Est-ce que ce sont les bons H_i? Que sait-on sur cela?
- Théoriquement, un nombre fini de H_j est suffisant (théorème d'approximation universelle).
- Cela ne veut pas dire qu'il faut l'utiliser → le nombre de H_j nécessaire peut être excessivement grand.

Approfondir le réseau

$$\bullet \ \ H_j(x) = g(v_j^T x)$$

- $\bullet \ \hat{x}_j = g(v_j^T x)$
- On peut aussi transformer \hat{x}

Approfondir le réseau

$$\bullet \ \ H_j(x) = g(v_j^T x)$$

- $\hat{x}_j = g(v_j^T x)$
- On peut aussi transformer \hat{x}

De 2 à 3 couches

- On peut avoir autant de couches qu'on veut.
- Mais cela rend le problème d'optimisation plus dur.

De 2 à 3 couches

- On peut avoir autant de couches qu'on veut.
- Mais cela rend le problème d'optimisation plus dur.

De 2 à 3 couches

- On peut avoir autant de couches qu'on veut.
- Mais cela rend le problème d'optimisation plus dur.

Optimisation et régularisation

Plan

Introduction

Réseaux de neurones profonds

Optimisation et régularisation

Optimisation

Régularisation

Conclusion

Nécessité d'un apprentissage rapide

- Les réseaux de neurones ont besoin de beaucoup d'exemples (quelques millions ou plus).
- On doit pouvoir les utiliser rapidement.

Descente de gradient : méthode batch

$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$

$$\theta_{t+1} \to \theta_{t} - \frac{\alpha_{t}}{N} \sum_{i} \frac{\partial \ell(\theta, X^{(i)}, Y^{(i)})}{\partial \theta}$$

- Pour calculer tous les paramètres, on a besoin de parcourir toutes les données.
- Cela peut être très coûteux.
- Que se passe-t'il si on a un nombre de données infini?

Descente de gradient : méthode batch

$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$

$$\theta_{t+1} \to \theta_{t} - \frac{\alpha_{t}}{N} \sum_{i} \frac{\partial \ell(\theta, X^{(i)}, Y^{(i)})}{\partial \theta}$$

- Pour calculer tous les paramètres, on a besoin de parcourir toutes les données.
- Cela peut être très coûteux.
- Que se passe-t'il si on a un nombre de données infini?

Descente de gradient : méthode batch

$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$

$$\theta_{t+1} \to \theta_{t} - \frac{\alpha_{t}}{N} \sum_{i} \frac{\partial \ell(\theta, X^{(i)}, Y^{(i)})}{\partial \theta}$$

- Pour calculer tous les paramètres, on a besoin de parcourir toutes les données.
- Cela peut être très coûteux.
- Que se passe-t'il si on a un nombre de données infini?

Que faire alors?

1. Supprimer des données?

- 2. Utiliser des méthodes d'approximation
 - Mise à jour des poids = moyenne des mises à jour pour tous les points.
 - Est-ce que ces mises à jour sont vraiment différentes ?
 - Si non, comment peut-on apprendre plus rapidement?

Que faire alors?

- 1. Supprimer des données?
- 2. Utiliser des méthodes d'approximation.
 - Mise à jour des poids = moyenne des mises à jour pour tous les points.
 - Est-ce que ces mises à jour sont vraiment différentes ?
 - Si non, comment peut-on apprendre plus rapidement?

Descente de gradient stochastique

•
$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$

•
$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{N} \sum_i \frac{\partial \ell(\theta, X^{(i)}, Y^{(i)})}{\partial \theta}$$

•
$$\theta_{t+1} \to \theta_t - \alpha_t \frac{\partial \ell(\theta, X^{(i_t)}, Y^{(i_t)})}{\partial \theta}$$

 Que perd-t'on lorsque on met à jour les paramètres pour satisfaire à un seul exemple?

Descente de gradient stochastique

•
$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$

•
$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{N} \sum_i \frac{\partial \ell(\theta, X^{(i)}, Y^{(i)})}{\partial \theta}$$

•
$$\theta_{t+1} \to \theta_t - \alpha_t \frac{\partial \ell(\theta, X^{(i_t)}, Y^{(i_t)})}{\partial \theta}$$

 Que perd-t'on lorsque on met à jour les paramètres pour satisfaire à un seul exemple?

Descente de gradient stochastique

•
$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$

•
$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{N} \sum_i \frac{\partial \ell(\theta, X^{(i)}, Y^{(i)})}{\partial \theta}$$

- $\theta_{t+1} \to \theta_t \alpha_t \frac{\partial \ell(\theta, X^{(i_t)}, Y^{(i_t)})}{\partial \theta}$
- Que perd-t'on lorsque on met à jour les paramètres pour satisfaire à un seul exemple?

Batch vs stochastique

 Pour les problèmes non-convexes, le stochastique marche le mieux.

Comprendre la fonction de perte des réseaux profonds

 Des études récentes disent que la plupart des minima locaux sont proches du minimum global.

Plan

Introduction

Réseaux de neurones profonds

Optimisation et régularisation

Optimisation

Régularisation

Conclusion

Régulariser les réseaux profonds

- Les réseaux profonds ont de nombreux paramètres.
- Comment éviter le surrapprentissage ?
 - En régularisant les paramètres?
 - En limitant le nombre d'unités
 - Dropout

Dropout

- Le surrapprentissage intervient quand chaque unité devient trop spécialisée.
- L'idée est d'empêcher chaque unité de trop s'appuyer sur les autres.
- Comment?

Dropout - illustration

Dropout : A Simple Way to Prevent Neural Networks from Overfitting

Dropout - conclusion

- En supprimant les unités au hasard, on force les autres à être moins spécialisées.
- Au moment du test, on utilise toutes les unités.
- Parfois présenté comme une méthode ensembliste.

Autres techniques utilisées

- Local response normalization
- Data augmentation
- Batch gradient normalization

Conclusion

Réseaux de neurones - Résumé

- Un classifieur linéaire dans un espace de features adapté peut modéliser des frontières non-linéaires.
- Trouver un bon espace de représentation (features space) est essentiel.
- On peut définir cet espace à la main.
- On peut apprendre cet espace en utilisant moins de features.
- Apprendre cet espace est potentiellement compliqué (non-convexité).

Conclusions

- Les réseaux de neurones sont des modèles non-linéaires complexes.
- Les optimiser est difficile.
- Il s'agit autant de théorie que d'ingénierie.
- Lorsqu'ils sont correctement paramétrés, ils peuvent donner de très bons résultats.

Bibliographie

- Deep Learning book http://www-labs.iro.umontreal.ca/bengioy/DLbook/
- Dropout: A Simple Way to Prevent Neural Networks from Overfitting, by Srivistave et al.
- Hugo Larochelle MOOC
 https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqqhAJ6NAPrNmUBH
- A Neural Network Playground http://playground.tensorflow.org/