NOEKEON, The Return

Guido Bertoni¹ <u>Joan Daemen¹</u> Michaël Peeters² Vincent RIJMEN³ Gilles Van Assche¹

¹STMicroelectronics

²NXP

³COSIC and IAIK

January 11, 2010 — ESC Seminar, Remich

Noekeon

- Block cipher
 - 128-bit blocks
 - 128-bit keys
 - Bit-slice cipher, similar to Serpent
 - Descendent of 3-Way and BaseKing
- Submitted to Nessie in 2000
- Not selected due to related-key distinguishers
- Why dig up again? Unique combination of advantages:
 - Lower bounds on trail weights
 - Lightweight: hardened implementations at low cost
 - Simplicity: interesting object for (crypt)analysis
- See http://gro.noekeon.org/

NOEKEON design criteria

- Security
 - Resistance against known types of cryptanalysis
 - Suitability for building hardened implementations
 - (differential) power analysis, electromagnetic analysis,
 - timing attacks, . . .
- Efficiency
 - Both speed-optimized and hardened implementations
 - Software: wide range of platforms
 - Hardware: compact and fast

NOEKEON architecture: maximize symmetry

- Operations:
 - Bit-wise Boolean operations
 - Cyclic shifts
- 16 equal rounds
- 17 equal round keys
- Inverse cipher equal to cipher itself
- Asymmetry provided by round constants only

The NOEKEON state

- Two-dimensional $4 \times \ell$ array
 - 4 words
 - ℓ boxes
- Additional partitioning of the state: columns
 - ℓ/4 columns
- *ℓ* = 32

Round transformation

- $ightharpoonup \gamma$: nonlinear step
 - 4-bit S-box operating on boxes
 - Involution
- \blacksquare θ : combines mixing layer and round key addition
 - Linear 16-bit mixing layer operating on columns
 - Involution
- \blacksquare π : dispersion between columns
 - Rotation of bits within ℓ -bit words
 - Two instances that are each others inverse
- ι: round constant addition for asymmetry

The round and its inverse

- Round: $\pi_2 \circ \gamma \circ \pi_1 \circ \theta[k]$
- Inverse round:
 - $\theta[k]^{-1} \circ \pi_1^{-1} \circ \gamma^{-1} \circ \pi_2^{-1}$
 - $\bullet \theta[k] \circ \pi_2 \circ \gamma \circ \pi_1$
- \bullet $\theta[k]$ as final transformation:
 - Regrouping: round of inverse cipher = cipher round
 - round constants prevent involution
- NOEKEON: 16 rounds and a final transformation

- Two identical nonlinear steps with a linear step in between
- Simple algebraic expression

 θ

- High average diffusion
- Small number of operations thanks to symmetry

θ cont'd

- lacksquare Branch number $\mathcal B$ only 4 due to symmetry
- Invariant sparse states, e.g.:

 π

 \blacksquare π_1 and π_2 are each others inverses

Differential and linear cryptanalysis

- Bounds on 4-round trails (for block length 128)
 - Differential trails: $EDP \le 2^{-48}$
 - Linear trails: $ELP \le 2^{-48}$
- 12 rounds: no trails with ELP/EDP above 2⁻¹⁴⁴
- Powerful bounds thanks to
 - \blacksquare High average diffusion in θ and π
 - Invariant sparse states addressed in γ S-box
- Determining bounds:
 - Non-trivial exercise
 - See http://gro.noekeon.org/Noekeon-spec.pdf

Other aspects

- Non-aligned structure:
 - Truncated DC: no clustering of trails along (byte) boundaries
- Lightweight rounds
 - More rounds are required for achieving similar bounds
- Square attacks AKA integral cryptanalysis
 - [Z'aba, Raddum, Henricksen, Dawson, FSE 2008]
 - Best attack: 5 rounds
- Algebraic cryptanalysis
 - interesting subject thanks to simple algebraic equations
 - Vulnerable? To be seen . . .
- Symmetry: round constants
 - Protect against slide attacks
 - Prevent symmetric properties

Efficiency

- Cipher and inverse are equal: re-use of circuit and code
- Hardware: compact and fast
 - number of gates: 1050 XOR, 64 AND, 64 NOR, 128 MUX
 - Gate delay: 7 XOR, 1 AND, 1 MUX
 - Coprocessor architecture: speed/area trade-off
- Software: ideal for embedded, e.g. ARM7:
 - Code size 332 bytes, 44.5 cycles/byte
 - Code size 3688 bytes, 30 cycles/byte
 - RAM usage: everything in registers

Hardened implementations

- Timing: fixed sequence of operations and no table-lookups
- Differential power/electromagnetic analysis: state splitting
 - Solid protection against 1st order DPA
 - Thanks to very limited non-linearity
 - Provably secure based on weak assumptions
 - Software
 - Two shares [Daemen, Peeters, Van Assche, FSE 2000]
 - Roughly doubles execution time, state and code size
 - Hardware (in presence of glitches)
 - Three shares [Nikova, Rijmen, Schläffer, ICISC 2008]
 - number of gates ×4 and slight increase in gate delay

Extension: block length 64

- Addressing low footprint
- Take \(\ell = 16 \)
- Data path:
 - lacksquare θ and γ : not impacted by the value of ℓ
 - \blacksquare π_1 and π_2 : keep same shift offsets
 - **ι**: new round constants
- Computation of rounds keys from 128-bit working key:
 - Odd-indexed round keys: first part of working key
 - Even-indexed round keys: second part of working key

Extension: addition of hermetic key mode

- Originally two modes:
 - Direct: round key = cipher key
 - Indirect: round key = NOEKEON[0](cipher key)
- Related-key distinguisher for indirect mode
 - Non-ideal behaviour
 - [Knudsen, Raddum, NESSIE 2001]
- Addition of hermetic mode:
 - Goal: ideal cipher

NOEKEON, The Return

2010 extensions to NOEKEON

Related-key differential trails

Related-key differential trails

Related-key differential trails

Related-key differential trails

Related-key differential trails

Related-key trails in direct mode of NOEKEON

 $K^* = K + \delta$

Related-key differential trails

Related-key trails in indirect mode of NOEKEON

$$K^* = F^{-1}(F(K) + \frac{\delta}{\delta})$$

First attempt at the hermetic key schedule

- Working key containing two round keys
 - $k_{2i} = K$
 - $k_{2i+1} = F(K)$ with F(x) = NOEKEON[0](x)
- Now:
 - Simple relation in k_{2i} gives complicated relation in k_{2i+1}
 - Simple relation in k_{2i+1} gives complicated relation in k_{2i}
- But:
 - There exist weak key pairs with overwhelming probability

. . .

The Hermetic mode key schedule

Related-key distinguishers for the first attempt

$$K + K^* = \delta$$
$$F(K) + F(K^*) = \delta'$$

Second attempt

- Working key containing three round keys
 - $k_{3i} = K$
 - $k_{3i+1} = F(K)$
 - $k_{3i+2} = F(F(K))$
- ...plausible that this is sufficient for our goal

Related-key trail picture

$$K + K^* = \mathbf{\delta}$$

$$F(K) + F(K^*) = \mathbf{\delta}'$$

$$F(F(K)) + F(F(K^*)) = \mathbf{\delta}''$$

Related-key distinguishers: some quantitative arguments

- Numbers:
 - **2** 2³ⁿ difference patterns $(\delta, \delta', \delta'')$ exist
 - 2^{2n-1} of them actually occur: one for each K, K^*
 - Say 2^z of all patterns $(\delta, \delta', \delta'')$ are threatening
 - Expected number of threatening pairs K, K^* : $2^{z-(n+1)}$
- Three cases are possible:
 - 0 < z < n: non-existence
 - Probability no threatening pairs exist: 2^{z-n-1}
 - $n \le z < 2n$: hard to exploit
 - **Expected** number of threatening pairs: 2^{z-n-1}
 - **Expected** number of pairs K, K^* to try: $2^{3n-z} > 2^n$
 - $2n \le z < 3n$: insufficient protection
 - Expected number of pairs K, K^* to try: $2^{3n-z} < 2^n$

Convenience of the hermetic key schedule

- Re-use of data path: software, hardware and hardened
- Implementation cost: 2 calls to NOEKEON
- Expanded key is three times as long as the cipher key
 - Can be pre-computed and stored

Key mode summary

- Direct mode
 - Goal: secure if no related-key attacks can be mounted
 - Covers all use cases with sound key management
 - Should offer Pseudorandom Permutation (PRP) security
- Indirect mode
 - Goal: secure against practical related-key attacks
 - Covers also use cases with lousy key management
- Hermetic mode
 - Goal: absence of structural distinguishers
 - Not inspired by practical use cases, of philosophical interest
 - Should offer *Ideal Cipher* security

Questions?

Thanks for your attention!

Any questions?