Data Preprocessing on VQI TEVAR Dataset

Jennifer Ci, Thu Vu, Lily Hanyi Wang

merge the datasets

Compare the data from July 2021 and September 2021. Keep the most updated ones.

There are 6 rows from LTF July data missing in September dataset. And also 6 missing from the PROC dataset.

Only received info of PROC dataset variables? No info about LTF variables?

Variables that exists in both LTF and PROC datasets are: PATIENTID, PRIMPROCID, DEAD, PROC_SURVIVALDAYS, IDE_OTHER. Merge by these variables.

3327 participants have more than one records in this dataset.

data cleaning based on inclusion, exclusion criteria

Exclusion criteria:

- PRESENTATION exclude rupture patients
- PATHOLOGY exclude groups with pathology: 4=trauma, 8 = Aortic Thrombus,9 = Other (Retired) (retired since 09/30/2014),10 = Aorto-esophageal Fistula (Retired) (retired since 09/30/2014),11 = Aorto-bronchial Fistula (Retired) (retired since 09/30/2014)
- URGENCY: exclude rupture. (elective is same to asymptomatic)
- PROXZONE_DISEASE: exclude 0 and 1
- PROXZONE_DISEASE < DISTZONE_DISEASE: disease starting point should be earlier than ending point.

Wrong data points with distal zone < proximal zone:

##		PATIENTID	PROXZONE_DISEASE	DISTZONE_DISEASE
##	1	85423	5	4
##	2	184672	3	0
##	3	188991	8	7
##	4	192399	3	0
##	5	198402	4	3
##	6	199759	4	0
##	7	251502	2	1
##	8	287173	4	1
##	9	288150	5	2
##	10	288150	5	2
##	11	290463	5	3
##	12	307868	3	2
##	13	347630	4	3
##	14	349408	9	8
##	15	375257	8	6
##	16	376442	8	6
##	17	405193	5	4

##	18	420868	5	0
##	19	443562	4	3
##	20	445629	3	2
##	21	455349	8	4
##	22	599099	2	1
##	23	603976	4	2
##	24	603976	4	2
##	25	640888	4	3
##	26	666627	3	0
##	27	666627	3	0
##	28	689701	2	1
##	29	714961	3	1
##	30	760981	4	3
##	31	793532	4	2
##	32	793634	5	2
##	33	793704	5	4
##	34	794699	5	4
##	35	801346	5	4

After exclsion, there are in total 15424 objectives in the final TEVAR dataset. 1995 participants have more than one records in this dataset.

Data cleaning: comorbidities changed to No/Yes scale.

population of interest: the asymptomatic and symptomatics groups.

	Overall
	(N=15424)
PRESENTATION	
Asymptomatic	8915 (57.8%)
Symptomatic	6509 (42.2%)

Patient demographic and co-morbidities

R_CR_PRESENT: a lot of missing values, probably because Retired December 2014.

strange unit (normally 0.7 to 1.3 mg/dL)

```
## R_CR_PRESENT
## 1 2 3 6 11
## 58 22 8 6 3
```

Operative Variables

 $\label{eq:pathology_aneurysm_type: 1 = Degenerative, fusiform, 2 = Degenerative, saccular, 3 = Anastomotic, 4 = Prior trauma, 5 = Intercostal or visceral patch$

PATHOLOGY_DISSECT_TYPE: 1 = Acute, <= 30 days,2 = Chronic, >30 days

PATHOLOGY_DISSECT_ONSET_DAYS: Dissection Date minus Procedure Date (negative means prior to the procedure)

GENHIST, R_GENHIST: merge and change to 0/1 scale?

 $\begin{array}{l} {\tt DISTZONE_DISEASE: \ Distal \ Zone \ of \ Disease. \ 0=0,1=1,2=2,3=3,4=4,5=5,6=6,7=7,8=8,9=9,10}\\ =10{\rm R},11=10{\rm L},12=10{\rm B},13=11{\rm R},14=11{\rm L},15=11{\rm B} \ \textit{exclude?} \end{array}$

IVUSTEE: IVUS or TEE. 0 = No, 1 = IVUS, 2 = TEE, 3 = Both, 4 = No IVUS (retired since 04/20/2011), 5 = IVUS, but TEE unknown (retired since 04/20/2011) how to merge

DEV1_PROXZONE: exclude align with PROXZONE?

DEV1_GRAFTDET: shouldn't be included in operative variables? This field is required if Number of Aortic Devices has one of [1, 2, 3, 4, 5, 6]. To protect the identity of the device a random number is assigned.

 $deal\ with\ `conditional'\ variables$

Outcomes

long term outcomes vs procedure outcomes?

Primary (Long term) outcomes: DEAD and PROC_SURVIVALDAYS.

primary outcome: dead, survival days, or combine?

Cox model for estimation of hazard ratios. Secondary (Procedure) outcomes: others

Volume Variables

Volume Variables: REGIONID, CENTERID, PHYSICIANID

19 regions, 182 centers, 923 physicians.

Quantiles of centers' volume: 1, 11, 33, 115.75, 803

Quantiles of physicians' volume: 1, 2, 5, 14, 466

how to do cluster on centers and physicians? Dr. Dansey's instructions

Report mean or median: based on outliners?

Code Appendix

```
knitr::opts_chunk$set(echo = FALSE,message = FALSE,warning = FALSE)
library(tidyverse)
library(table1)
library(Hmisc)
library(ggplot2)
## ----- working directories for Lily -----
wd_lily = '/Users/hanyiwang/Desktop/Comparative-analysis-of-treatments-of-CAA'
path_lily = c(
 "../data/TEVAR_International_20210712/TEVAR_International_LTF_r12_2_14_20210701.csv",
 "../data/TEVAR_International_20210712/TEVAR_International_PROC_r12_2_14_20210701.csv",
 "../data/TEVAR_International_20210901/TEVAR_International_LTF_r12_2_14_20210901.csv",
 "../data/TEVAR International 20210901/TEVAR International PROC r12 2 14 20210901.csv",
 "../data/FBVAR.csv")
## ----- working directories for Jenn ------
#wd_jenn = '/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA'
#path_jenn = c(
\# "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210712/TE
# "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210712/TE
# "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210901/TE
# "/Users/jenniferci/Desktop/Comparative-analysis-of-treatments-of-CAA/TEVAR_International_20210901/TE
## ----- read data -----
setwd(wd_lily)
TEVAR_LTF_07 = read.csv(path_lily[1])
TEVAR_PROC_07 = read.csv(path_lily[2])
TEVAR_LTF_09 = read.csv(path_lily[3])
TEVAR_PROC_09 = read.csv(path_lily[4])
#setwd(wd_jenn)
\#TEVAR\_LTF\_07 = read.csv(path\_jenn[1])
\#TEVAR\_PROC\_07 = read.csv(path\_jenn[2])
\#TEVAR\_LTF\_09 = read.csv(path\_jenn[3])
#TEVAR_PROC_09 = read.csv(path_jenn[4])
## ----- merge July and September data -----
# find data in LTF July data but not in LTF September data by `PATIENTID`
# add these data points to the September data
TEVAR_LTF <- rbind(TEVAR_LTF_07[! TEVAR_LTF_07$PATIENTID %in% TEVAR_LTF_09$PATIENTID,],
                  TEVAR_LTF_09)
# Similar for PROC data
TEVAR_PROC <-rbind(TEVAR_PROC_07[! TEVAR_PROC_07$PATIENTID %in% TEVAR_PROC_09$PATIENTID,],
                  TEVAR_PROC_09)
## ----- merge LTF and PROC data-----
# same variables in LTF and PROC data
#colnames(TEVAR_PROC) [colnames(TEVAR_PROC) %in% colnames(TEVAR_LTF)]
TEVAR <- merge(TEVAR_LTF, TEVAR_PROC, all = TRUE,
              by=c("PATIENTID", "PRIMPROCID", "DEAD", "PROC SURVIVALDAYS", "IDE OTHER"))
```

```
# FBVAR
# 0"0.None" 1"1.Scallop/Fen/Branch" 2"2.Occluded/Covered" 3"3.Chimney"
TEVAR <- TEVAR %>% mutate(lrenal = ifelse(BRANCH LRENAL TRT %in% c(0,6,7), 0,
                                  ifelse(BRANCH_LRENAL_TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH_LRENAL_TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_LRENAL_TRT == 8, 3,NA)))),
                              rrenal = ifelse(BRANCH RRENAL TRT %in% c(0,6,7), 0,
                                  ifelse(BRANCH_LRENAL_TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH_LRENAL_TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_LRENAL_TRT == 8, 3,NA)))),
                              sma = ifelse(BRANCH_SMA_TRT %in% c(0,6,7), 0,
                                  ifelse(BRANCH_SMA_TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH_SMA_TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_SMA_TRT == 8,3,NA)))),
                              celiac = ifelse(BRANCH_CELIAC_TRT %in% c(0,6,7), 0,
                                  ifelse(BRANCH_CELIAC_TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH_CELIAC_TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_CELIAC_TRT == 8,3,NA)))),
                              lsub = ifelse(BRANCH_LSUB_TRT %in% c(0,6,7), 0,
                                  ifelse(BRANCH_LSUB_TRT %in% c(9,10,11,12,13,14), 1,
                                        ifelse(BRANCH_LSUB_TRT %in% c(1,2,3,4), 2,
                                               ifelse(BRANCH_LSUB_TRT == 8,3,NA)))),
                              )
# diagnosing duplicate id, decide which record to keep?
n_occur <- data.frame(table(TEVAR$PATIENTID))</pre>
#n_occur[n_occur$Freq > 1,]%>%n_distinct
#TEVAR[TEVAR$PATIENTID %in% n_occur$Var1[n_occur$Freq > 1],]%>%select(PATIENTID, lrenal, rrenal, celiac,
TEVAR %>% filter(DISTZONE_DISEASE < PROXZONE_DISEASE) %>%
  select(PATIENTID,PROXZONE_DISEASE,DISTZONE_DISEASE)
## ----- exclusion-----
TEVAR = TEVAR %>%
  filter(PRESENTATION !=2) %>%
  filter(PATHOLOGY %in% c(1,2,3,5,6,7)) %>%
 filter(URGENCY %in% c(1,2,3)) %>%
  filter(PROXZONE_DISEASE %in% c(2,3,4,5,6,7,8,9)) %>%
  filter(DISTZONE_DISEASE > PROXZONE_DISEASE)
n_occur <- data.frame(table(TEVAR$PATIENTID))</pre>
## ----- variables cleaning, patient demographic and co-morbidities------
TEVAR = TEVAR %>%
  mutate(SURGYEAR=factor(SURGYEAR)) %>%
  mutate(PRESENTATION = factor(PRESENTATION,levels = c(0,1),
                               labels = c('Asymptomatic','Symptomatic')))
TEVAR = TEVAR %>%
  mutate(R_PREOP_AMBUL = factor(R_PREOP_AMBUL,levels = c(1,2,3,4),
                                labels=c("Amb","Amb w/ Assistance","Wheelchair","Bedridden"))) %>%
```

```
mutate(AGECAT = factor(AGECAT,levels = c(1,2,3,4,5,6,7),
                         labels = c('<40','40-49','50-59','60-69','70-79','80-89','>89'))) %>%
  mutate(GENDER=factor(GENDER,levels=c(1,2),labels=c('male','female'))) %>%
  mutate(ETHNICITY = factor(ETHNICITY,levels=c(0,1),
                            labels = c('None Hispanic or Latino', 'Hispanic or Latino'))) %>%
  mutate(RACE=factor(RACE, levels = c(5,3,2,1,4,6,7),
                     labels = c('White','Black or African American','Asian',
                                'American Indian or Alaskan Native',
                                'Native Hawaiian or other Pacific Islander', 'More than 1 race',
                                'Unknown/Other'))) %>%
  mutate(TRANSFER=factor(TRANSFER,levels = c(0,1,2),labels = c('No','Hospital','Rehab Unit'))) %%
  mutate(PRIMARYINSURER=factor(PRIMARYINSURER,levels=c(1,2,3,4,5,6),
                               labels = c('Medicare','Medicaid','Commercial', 'Military/VA',
                                          'Non US Insurance', 'Self Pay'))) %>%
  mutate(LIVINGSTATUS=factor(LIVINGSTATUS,levels=c(1,2,3),
                             labels=c('Home','Nursing home','Homeless'))) %>%
  mutate(PREOP_FUNCSTATUS=factor(PREOP_FUNCSTATUS,levels = c(0,1,2,3,4),
                                 labels = c('Full','Light work','Self care','Assisted care',
                                            'Bed bound'))) %>%
  mutate(PRIOR_CVD = factor(PRIOR_CVD,levels =c(0,1,2,3),labels = c('No','Yes','Yes','Yes'))) %%
  mutate(PRIOR_CAD = factor(PRIOR_CAD, levels = c(0,1,2,3,4,5),
                            labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(PRIOR_CHF = factor(PRIOR_CHF,levels =c(0,1,2,3,4),
                            labels = c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(COPD = factor(COPD, levels = c(0,1,2,3), labels = c('No', 'Yes', 'Yes'))) %%
  mutate(DIABETES=factor(DIABETES,levels = c(0,1,2,3),labels = c('No','Yes','Yes'))) %%
  mutate(PREOP DIALYSIS=factor(PREOP DIALYSIS,levels=c(0,1,2),labels=c('No','Yes','Yes'))) %%
  mutate(HTN=factor(HTN,levels = c(0,1,2,3),labels = c('No','Yes','Yes'))) %>%
  mutate(PREOP_SMOKING=factor(PREOP_SMOKING,levels=c(0,1,2),labels=c('No','Yes','Yes'))) %>%
  mutate(PRIOR_CABG = factor(PRIOR_CABG,levels = c(0,1,2),labels = c('No','Yes','Yes'))) %%
  mutate(PRIOR_PCI = factor(PRIOR_PCI,levels = c(0,1,2),labels = c('No','Yes','Yes'))) %>%
  mutate(PRIOR_ANEURREP = factor(PRIOR_ANEURREP,levels =c(0,1,2,3,4,5),
                                 labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(STRESS = factor(STRESS,levels =c(0,1,2,3,4),
                         labels = c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(DC_ASA = factor(DC_ASA,levels = c(0,1,2,3),labels = c('No','Yes','No','No'))) %>%
  mutate(DC_P2Y = factor(DC_P2Y, levels = c(0,1,2,3,4,5,6,7),
                         labels = c('No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'No'))) %>%
  mutate(DC_STATIN = factor(DC_STATIN,levels = c(0,1,2,3),labels = c('No','Yes','No','No')))
## ----- variables cleaning, operative variables-----
TEVAR = TEVAR %>%
  mutate(PRIOR AORSURG=factor(PRIOR AORSURG,levels=c(0,1,2,3,4),
                              labels=c('None','Open','Endo','Both','Other'))) %>%
  mutate(PRIOR_AORSURG_OPENLOC1=factor(PRIOR_AORSURG_OPENLOC1,
                                      levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR_AORSURG_OPENLOC2=factor(PRIOR_AORSURG_OPENLOC2,
                                        levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR_AORSURG_OPENLOC3=factor(PRIOR_AORSURG_OPENLOC3,
                                        levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(PRIOR_AORSURG_OPENLOC4=factor(PRIOR_AORSURG_OPENLOC4,
```

```
levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(PRIOR_AORSURG_ENDOLOC1=factor(PRIOR_AORSURG_ENDOLOC1,
                                      levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(PRIOR AORSURG ENDOLOC2=factor(PRIOR AORSURG ENDOLOC2,
                                      levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(PRIOR AORSURG ENDOLOC3=factor(PRIOR AORSURG ENDOLOC3,
                                      levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(PRIOR AORSURG ENDOLOC4=factor(PRIOR AORSURG ENDOLOC4,
                                      levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(PATHOLOGY=factor(PATHOLOGY,levels=c(1,2,3,5,6,7),
                        labels = c('Aneurysm','Dissection','Aneurysm from dissection','PAU',
                                   'IMH', 'PAU with IMH'))) %>%
mutate(URGENCY=factor(URGENCY,levels = c(1,2,3),labels = c('Elective','Urgent','Emergent'))) %%
mutate(PATHOLOGY ANEURYSM TYPE=
         factor(PATHOLOGY_ANEURYSM_TYPE, levels = c(1,2,3,4,5),
                labels = c('Degenerative, fusiform','Degenerative, saccular','Anastomotic',
                            'Prior trauma', 'Intercostal or visceral patch'))) %>%
mutate(PATHOLOGY_DISSECT_TYPE=
         factor(PATHOLOGY_DISSECT_TYPE,levels = c(1,2),
                labels = c('Acute, <= 30 days','Chronic, >30 daysr'))) %>%
mutate(GENHIST = factor(GENHIST, levels = c(0,1,2,3,4,5),
                        labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
mutate(R_GENHIST = factor(R_GENHIST,levels = c(0,1,2,3),labels = c('No','Yes','Yes','Yes'))) %%
mutate(Genetic=GENHIST) %>% ############
mutate(PROXZONE DISEASE=factor(PROXZONE DISEASE)) %>%
mutate(DISTZONE DISEASE=
         factor(DISTZONE DISEASE, levels = c(0:15),
                labels = c(0,1,2,3,4,5,6,7,8,9,'10R','10L','10B','11R','11L','11B'))) %>%
mutate(ANESTHESIA=factor(ANESTHESIA,levels = c(1,2,3),labels = c('Local', 'Regional', 'General')))%%
mutate(IVUSTEE=factor(IVUSTEE,levels = c(0:5),labels = c('No','IVUS','TEE','Both','No','IVUS')))%%
mutate(ACCESS_R=factor(ACCESS_R,levels = c(0,1,2,3,4,5),
                       labels = c('None','Percutaneous femoral','Open femoral, transverse',
                                  'Open femoral, vertical', 'Open femoral, failed percutanous',
                                  'Iliac, via retroperitoneal'))) %>%
mutate(ACCESS_L=factor(ACCESS_L,levels = c(0,1,2,3,4,5),
                        labels = c('None', 'Percutaneous femoral', 'Open femoral, transverse',
                                  'Open femoral, vertical', 'Open femoral, failed percutanous',
                                  'Iliac, via retroperitoneal'))) %>%
mutate(ARMNECK_ACCESS=factor(ARMNECK_ACCESS,levels =c(0,1,2,3),
                              labels = c('No','For branch treatment',
                                        'For femoral-brachial wire', 'For both')))%>%
mutate(ARMNECK_ACCESS_LOC=factor(ARMNECK_ACCESS_LOC,levels =c(1:7),
                              labels = c('Right arm', 'Left arm', 'Right axillary',
                                         'Left axillary', 'Right carotid',
                                        'Left carotid', 'Multiple')))%>%
mutate(AORDEV NUM=factor(AORDEV NUM))%>%
mutate(AORDEV_CMOD=factor(AORDEV_CMOD,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(STAGEDAORTRT=factor(STAGEDAORTRT,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(DEV1_GTYPE=factor(DEV1_GTYPE,levels=c(1,2,3),
                         labels=c('Standard','Custom','Physician modified'))) %>%
mutate(DEV2_GTYPE=factor(DEV2_GTYPE,levels=c(1,2,3),
                         labels=c('Standard','Custom','Physician modified'))) %>%
mutate(DEV3_GTYPE=factor(DEV3_GTYPE,levels=c(1,2,3),
```

```
labels=c('Standard','Custom','Physician modified'))) %>%
mutate(DEV1_PROXZONE=factor(DEV1_PROXZONE))%>%
mutate(DEV2_PROXZONE=factor(DEV2_PROXZONE))%>%
mutate(DEV3 PROXZONE=factor(DEV3 PROXZONE))%>%
mutate(DEV4_PROXZONE=factor(DEV4_PROXZONE))%>%
mutate(DEV5 PROXZONE=factor(DEV5 PROXZONE))%>%
mutate(DEV6_PROXZONE=factor(DEV6_PROXZONE))%>%
mutate(DEV1 DISTZONE= factor(DEV1 DISTZONE, levels = c(0:15),
                             labels = c(0,1,2,3,4,5,6,7,8,9,'10R','10L',
                                        '10B','11R','11L','11B'))) %>%
mutate(DEV2_DISTZONE= factor(DEV2_DISTZONE, levels = c(0:15),
                             labels = c(0,1,2,3,4,5,6,7,8,9,'10R','10L',
                                        '10B','11R','11L','11B'))) %>%
mutate(DEV3_DISTZONE= factor(DEV3_DISTZONE, levels = c(0:15),
                             labels = c(0,1,2,3,4,5,6,7,8,9,'10R','10L',
                                        '10B','11R','11L','11B'))) %>%
mutate(DEV4_DISTZONE= factor(DEV4_DISTZONE, levels = c(0:15),
                             labels = c(0,1,2,3,4,5,6,7,8,9,'10R','10L',
                                        '10B','11R','11L','11B'))) %>%
mutate(DEV5_DISTZONE= factor(DEV5_DISTZONE, levels = c(0:15),
                             labels = c(0,1,2,3,4,5,6,7,8,9,'10R','10L',
                                        '10B','11R','11L','11B'))) %>%
mutate(DEV6 DISTZONE= factor(DEV6 DISTZONE, levels = c(0:15),
                             labels = c(0,1,2,3,4,5,6,7,8,9,'10R','10L',
                                        '10B','11R','11L','11B'))) %>%
mutate(ILIACDEV END R= factor(ILIACDEV END R, levels = c(0,1,2,3),
                             labels = c('None','Common',
                                        'External, Intended', 'External, Unintended'))) %>%
mutate(ILIACDEV_END_L= factor(ILIACDEV_END_L, levels = c(0,1,2,3),
                             labels = c('None','Common',
                                        'External, Intended', 'External, Unintended'))) %>%
mutate(BRANCH_STAGED=factor(BRANCH_STAGED,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_LSUB=factor(BRANCH_LSUB,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_CELIAC=factor(BRANCH_CELIAC,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_SMA=factor(BRANCH_SMA,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_RRENAL=factor(BRANCH_RRENAL,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_LRENAL=factor(BRANCH_LRENAL,levels=c(0,1),labels=c('No','Yes'))) %>%
mutate(BRANCH_INNO_POST=factor(BRANCH_INNO_POST,levels=c(1,2,3),
                               labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
mutate(BRANCH LSUB VERTPAT=
         factor(BRANCH_LSUB_VERTPAT,levels=c(1:7),
                labels=c('Patent bilat','Patent bilat, L dominant','Patent bilat, R dominant',
                         'Occluded L, patent R', 'Occluded R, patent L', 'Occluded bilat',
                         'Not imaged'))) %>%
mutate(ANESTHESIA_GEN_TIMEEXT=factor(ANESTHESIA_GEN_TIMEEXT,levels=c(1,2,4,5),
                                     labels=c('In OR','<12 hrs','12-24 hrs','>24 hrs'))) %>%
mutate(POSTOP_SPINALDRAIN=factor(POSTOP_SPINALDRAIN,levels=c(0,1,2,3),
                                 labels=c('None','Pre-op','Post-op, prophylactic',
                                          'Post-op for spinal ischemia'))) %>%
mutate(R_CELIAC=factor(R_CELIAC,levels=c(0:9),
                       labels=c('Patent, no intervention','Chronically Occluded',
                                'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
                                'Fen/scallop Only', 'Stented-fen',
```

```
'Fenestrated Stentgraft Branch (Branched TEVAR)',
                                 'Side-arm Stent-graft Branch'))) %>%
mutate(R GRFTCONFIG=factor(R GRFTCONFIG,levels=c(1,2,3),
                       labels=c('Standard','Plus Bare Stent','Branched/fenestrated'))) %>%
mutate(R_LT_RENAL=factor(R_LT_RENAL,levels=c(0:9),
                         labels=c('Patent, no intervention','Chronically Occluded',
                                   'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
                                   'Fen/scallop Only', 'Stented-fen',
                                   'Fenestrated Stentgraft Branch (Branched TEVAR)',
                                   'Side-arm Stent-graft Branch'))) %>%
mutate(R_PRATTZONE=factor(R_PRATTZONE)) %>%
mutate(R_RT_RENAL=factor(R_RT_RENAL,levels=c(0:9),
                         labels=c('Patent, no intervention','Chronically Occluded',
                                   'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
                                   'Fen/scallop Only', 'Stented-fen',
                                   'Fenestrated Stentgraft Branch (Branched TEVAR)',
                                   'Side-arm Stent-graft Branch'))) %>%
mutate(R_SMA=factor(R_SMA,levels=c(0:9),
                         labels=c('Patent, no intervention','Chronically Occluded',
                                   'Purposely Occluded', 'De-branch', 'Stent Only', 'Chimney',
                                   'Fen/scallop Only', 'Stented-fen',
                                   'Fenestrated Stentgraft Branch (Branched TEVAR)',
                                   'Side-arm Stent-graft Branch'))) %>%
mutate(R SPINAL DRAIN=factor(R SPINAL DRAIN,levels=c(0,1,2),
                         labels=c('No Drain','Pre-op Drain','Post-op Drain'))) %>%
mutate(BRANCH_CELIAC_TRT=factor(BRANCH_CELIAC_TRT,levels=c(0:17),
                         labels=c('None','Purposely covered','Unintentionally covered',
                                   'Occluded - coil', 'Occluded - plug','
                                   Occluded - open','Stent','Stent-graft','Chimney',
                                   'Scallop', 'Stented Scallop', 'Fenestration', 'Stented-fen',
                                   'Fen branch', 'Side-arm branch',
                                   'Surgical bypass', 'Thromboembolectomy', 'Iliac Device'))) %>%
mutate(BRANCH_SMA_TRT=factor(BRANCH_SMA_TRT,levels=c(0:17),
                         labels=c('None','Purposely covered','Unintentionally covered',
                                   'Occluded - coil','Occluded - plug','
                                   Occluded - open', 'Stent', 'Stent-graft', 'Chimney',
                                   'Scallop', 'Stented Scallop', 'Fenestration', 'Stented-fen',
                                   'Fen branch', 'Side-arm branch',
                                   'Surgical bypass', 'Thromboembolectomy', 'Iliac Device'))) %>%
mutate(BRANCH_RRENAL_TRT=factor(BRANCH_RRENAL_TRT,levels=c(0:17),
                         labels=c('None','Purposely covered','Unintentionally covered',
                                   'Occluded - coil', 'Occluded - plug', '
                                   Occluded - open', 'Stent', 'Stent-graft', 'Chimney',
                                   'Scallop', 'Stented Scallop', 'Fenestration', 'Stented-fen',
                                   'Fen branch', 'Side-arm branch',
                                   'Surgical bypass', 'Thromboembolectomy', 'Iliac Device'))) %>%
mutate(BRANCH_LRENAL_TRT=factor(BRANCH_LRENAL_TRT,levels=c(0:17),
                         labels=c('None','Purposely covered','Unintentionally covered',
                                   'Occluded - coil', 'Occluded - plug', '
                                   Occluded - open', 'Stent', 'Stent-graft', 'Chimney',
                                   'Scallop', 'Stented Scallop', 'Fenestration', 'Stented-fen',
                                   'Fen branch', 'Side-arm branch',
```

```
'Surgical bypass', 'Thromboembolectomy', 'Iliac Device')))
## ----- variables cleaning, outcomes-----
TEVAR = TEVAR %>%
  mutate(DEAD=factor(DEAD)) %>%
  mutate(AORDEV_TECHSUCC=factor(AORDEV_TECHSUCC,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(CONVTOOPEN=factor(CONVTOOPEN,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(R ENDOLEAK AT COMPLETION=
           factor(R_ENDOLEAK_AT_COMPLETION,levels=c(0:4),
                  labels=c('No','Attachment Site (type I)','Branch (type II)',
                           'Mid Graft (type III)','Indeterminate'))) %>%
  mutate(BRANCH LSUB POST=factor(BRANCH LSUB POST,levels=c(1,2,3),
                                 labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
  mutate(BRANCH_CELIAC_POST=factor(BRANCH_CELIAC_POST,levels=c(1,2,3),
                                 labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
  mutate(BRANCH_SMA_POST=factor(BRANCH_SMA_POST,levels=c(1,2,3),
                                 labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
  mutate(BRANCH_RRENAL_POST=factor(BRANCH_RRENAL_POST,levels=c(1,2,3),
                                 labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
  mutate(BRANCH_LRENAL_POST=factor(BRANCH_LRENAL_POST,levels=c(1,2,3),
                                 labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
  mutate(BRANCH_RCOMILI_POST=factor(BRANCH_RCOMILI_POST,levels=c(1,2,3),
                                 labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
  mutate(BRANCH LCOMILI POST=factor(BRANCH LCOMILI POST, levels=c(1,2,3),
                                 labels=c('Patent','Stenosis/Partial Coverage > 50%','Occluded'))) %>%
  mutate(POSTOP_VASO=factor(POSTOP_VASO,levels=c(0,1,2,3),labels=c('No','Yes','Yes','Yes'))) %%
  mutate(POSTOP_COMPLICATIONS=factor(POSTOP_COMPLICATIONS,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(R_POSTOP_HEMATOMA=factor(R_POSTOP_HEMATOMA,levels=c(0,1,2,3,4),
                                  labels=c('No','Minor','Transfusion','Thrombin injection',
                                           'Surgical Rx'))) %>%
  mutate(R_POSTOP_SITEOCC=factor(R_POSTOP_SITEOCC,levels=c(0:5),
                                  labels=c('No','Medical Rx','Interventional Rx','Surgical Rx',
                                           'Stenosis', 'Occlusion'))) %>%
  mutate(POSTOP_MI=factor(POSTOP_MI,levels=c(0,1,2),
                                  labels=c('No','Troponin only','EKG or clinical'))) %>%
  mutate(POSTOP_DYSRHYTHMIA=factor(POSTOP_DYSRHYTHMIA,levels=c(0,1),labels=c('No','Yes'))) %%
  mutate(POSTOP_CHF=factor(POSTOP_CHF,levels=c(0,1),labels=c('No','Yes'))) %>%
  mutate(POSTOP_RESPIRATORY=factor(POSTOP_RESPIRATORY,levels = c(0:3),
                                   labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_DIALYSIS=factor(POSTOP_DIALYSIS,levels = c(0:2),
                                labels = c('No','Yes','Yes'))) %>%
  mutate(POSTOP_ARMEMBO=factor(POSTOP_ARMEMBO,levels = c(0:5),
                               labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_LEGEMBO=factor(POSTOP_LEGEMBO,levels = c(0:5),
                               labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(POSTOP_LEGCOMPART=factor(POSTOP_LEGCOMPART,levels = c(0:4),
                                  labels = c('No','Yes','Yes','Yes','Yes'))) %>%
  mutate(R_POSTOP_BOWELISCH=factor(R_POSTOP_BOWELISCH,levels = c(0:2),labels = c('No','Yes','Yes'))) %>
  mutate(POSTOP_RENALISCH=factor(POSTOP_RENALISCH,levels = c(0:3),
                                 labels = c('No','Yes','Yes','Yes'))) %>%
  mutate(R_POSTOP_SSI=factor(R_POSTOP_SSI,levels = c(0:4),labels = c('No','Yes','Yes','Yes','Yes'))) %>
  mutate(POSTOP_SPINAL_ISCHEMIA=factor(POSTOP_SPINAL_ISCHEMIA,levels = c(0:2),
```

```
labels = c('No','Yes','Yes'))) %>%
  mutate(RETX=factor(RETX,levels = c(0:2),labels = c('No','Yes','Yes'))) %>%
  mutate(DC_STATUS=factor(DC_STATUS,levels = c(1:6),
                          labels = c('Home', 'Rehab Unit', 'Nursing Home',
                                      'Dead','Other Hospital','Homeless'))) %>%
  mutate(R LE ISCH=factor(R LE ISCH,levels = c(0,1),labels = c('No','Yes'))) %%
  mutate(R_POSTOP_RENAL=factor(R_POSTOP_RENAL,levels = c(0:5),
                                labels = c('No','Yes','Yes','Yes','Yes','Yes'))) %>%
  mutate(R RTOR=factor(R RTOR,levels = c(0:5),labels = c('No','Yes','Yes','Yes','Yes','Yes')))
## ----- variables cleaning, volume variables-----
TEVAR = TEVAR %>%
  mutate(REGIONID=factor(REGIONID)) %>%
  mutate(CENTERID=factor(CENTERID)) %>%
  mutate(PHYSICIANID=factor(PHYSICIANID))
## ----- variables labels-----
#var.labels = c(AGE="Age (years)", AGECAT="Age (category)")
#label(FBVAR) = as.list(var.labels[match(names(FBVAR), names(var.labels))])
## ----- select related variables-----
FBVAR = TEVAR %>%
  select(PRESENTATION,
         R PREOP AMBUL, AGE, AGECAT, GENDER, ETHNICITY, RACE, TRANSFER, PRIMARYINSURER,
         LIVINGSTATUS, PREOP FUNCSTATUS, PRIOR CVD , PRIOR CAD, PRIOR CHF, COPD,
         DIABETES, PREOP DIALYSIS, HTN, PREOP SMOKING, PRIOR CABG, PRIOR PCI, PRIOR ANEURREP,
         STRESS, PREOP CREAT, DC ASA, DC P2Y, DC STATIN, R CR PRESENT,
         PRIOR AORSURG, PRIOR AORSURG OPENLOC1, PRIOR AORSURG OPENLOC2, PRIOR AORSURG OPENLOC3,
         PRIOR_AORSURG_OPENLOC4, PRIOR_AORSURG_ENDOLOC1, PRIOR_AORSURG_ENDOLOC2, PRIOR_AORSURG_ENDOLOC3,
         PRIOR_AORSURG_ENDOLOC4, PATHOLOGY, PREOP_MAXAAADIA, URGENCY, PATHOLOGY_ANEURYSM_TYPE,
         PATHOLOGY_DISSECT_TYPE, PATHOLOGY_DISSECT_ONSET_DAYS, GENHIST, R_GENHIST, PROXZONE_DISEASE,
         DISTZONE_DISEASE, ANESTHESIA, CONTRAST, EBL, FLUOROTIME, INTRAOP_PRBC, TOTALPROCTIME, IVUSTEE,
         ACCESS_R, ACCESS_L, LRGST_SHEATH_SIZE_R, LRGST_SHEATH_SIZE_L, ARMNECK_ACCESS, ARMNECK_ACCESS_LOC,
         AORDEV_NUM, AORDEV_CMOD, STAGEDAORTRT, DEV1_GTYPE, DEV2_GTYPE, DEV3_GTYPE,
         DEV1_PROXZONE,DEV2_PROXZONE,DEV3_PROXZONE,DEV4_PROXZONE,DEV5_PROXZONE,DEV6_PROXZONE,
         DEV1 DISTZONE, DEV2 DISTZONE, DEV3 DISTZONE, DEV4 DISTZONE, DEV5 DISTZONE, DEV6 DISTZONE,
         ILIACDEV_END_R, ILIACDEV_END_L, BRANCH_STAGED, BRANCH_LSUB, BRANCH_CELIAC, BRANCH_SMA,
         BRANCH_RRENAL, BRANCH_LRENAL, BRANCH_INNO_POST, BRANCH_LSUB_VERTPAT, ANESTHESIA_GEN_TIMEEXT,
         POSTOP_SPINALDRAIN,R_CELIAC,R_DISTATTZONE,R_GDPROXIMAL,R_GRFTCONFIG,
         R LT RENAL, R PRATTZONE, R RT RENAL, R SMA, R SPINAL DRAIN,
         BRANCH CELIAC TRT, BRANCH SMA TRT, BRANCH RRENAL TRT, BRANCH LRENAL TRT,
         DEAD, PROC SURVIVALDAYS, TOTAL LOS, POSTOP LOS, AORDEV TECHSUCC, CONVTOOPEN,
         R ENDOLEAK AT COMPLETION, BRANCH LSUB POST, BRANCH CELIAC POST, BRANCH SMA POST,
         BRANCH RRENAL POST, BRANCH LRENAL POST, BRANCH RCOMILI POST, BRANCH LCOMILI POST, ICUSTAY,
         POSTOP_PRBC,POSTOP_VASO,POSTOP_HIGHCREAT,POSTOP_COMPLICATIONS,R_POSTOP_HEMATOMA,
         R_POSTOP_SITEOCC, POSTOP_MI, POSTOP_DYSRHYTHMIA, POSTOP_CHF, POSTOP_CEREBROSX, POSTOP_RESPIRATORY,
         POSTOP DIALYSIS, POSTOP_ARMEMBO, POSTOP_LEGEMBO, POSTOP_LEGCOMPART, POSTOP_INTISCH,
         R_POSTOP_BOWELISCH, POSTOP_RENALISCH, R_POSTOP_SSI, POSTOP_SPINAL_ISCHEMIA, RETX,
         DC_STATUS, R_LE_ISCH, R_POSTOP_RENAL, R_RTOR,
         REGIONID, CENTERID, PHYSICIANID
```

```
## ------ store as new dataset 'FBVAR' to ensure easier access for modelling------
write.csv(FBVAR,path_lily[5])

## ------ population of interest -----
table1(~ PRESENTATION, data = TEVAR)

TEVAR %>%
  filter(! is.na(TEVAR$R_CR_PRESENT)) %>%
  select(R_CR_PRESENT) %>%table()
center_vol = as.data.frame(TEVAR %>% select(CENTERID) %>% table())
phys_vol = as.data.frame(TEVAR %>% select(PHYSICIANID) %>% table())
```