RECEIVED CENTRAL FAX CENTER

-3-

CP 185B

LISTING OF THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. A composition comprising a fused pyrrolocarbazole with the formula:

wherein

R³ and R⁴ are selected from H, alkyl, Cl, Br, CH₂OH, CH₂SOCH₂CH₃, CH₂SO₂CH₂CH₃, NHCONHC₆H₅, CH₂SCH₂CH₃, CH₂SC₆H₅, NHCO₂CH₃, CH₂OC(=O)NHCH₂CH₃, N(CH₃)₂, CH=NNH, CH₂N(CH₃)₂, and CH₂OCH₂CH₃; R⁷ is selected from H and alkyl; and R¹⁵ and R¹⁶ are independently selected from H, alkyl, OH, CH₂OH, alkoxy, and CO₂alkyl; or a stereoisomer or pharmaceutically acceptable salt form thereof; at least 20% (w/w) of a poloxyl stearate; and at least one polyethylene glycol.

- 2. The composition of claim 1 wherein the fused pyrrolocarbazole is present at a concentration of about 1 to about 100 mg/mL.
- 3. The composition of claim 2 wherein the fused pyrrolocarbazole is present at a concentration of about 1 to about 50 mg/mL.
- 4. The composition of claim 1 wherein the fused pyrrolocarbazole has the formula:

5. The composition of claim 4 wherein the fused pyrrolocarbazole has the formula:

6. The composition of claim 1 wherein the polyethylene glycol has a molecular weight from about 300 to 8000 Daltons.

-5-

- 7. The composition of claim 6 wherein the polyethylene glycol has a molecular weight from about 400 to 3350 Daltons.
- 8. The composition of claim 7 wherein the polyethylene glycol has a molecular weight from about 400 to 1500 Daltons.
- 9. The composition of claim 5 wherein the polyethylene glycol is selected from PEG-400, PEG-600, PEG-1000, and PEG-1450.
 - 10. The composition of claim 9 wherein the polyoxyl stearate is Myrj[®] 52.
- 11. The composition of claim 10 wherein the ratio of polyethylene glycol:polyoxyl stearate ranges from 50:50 to 80:20.
- 12. The composition of claim 11 wherein the ratio of polyethylene glycol:polyoxyl stearate is 50:50.
- 13. The composition of claim 11 wherein the ratio of polyethylene glycol:polyoxyl stearate is 80:20.
- 14. The composition of claim 1 comprising a polyethylene glycol mixture selected from PEG-400/PEG-1000, PEG-400/PEG-1450, PEG-600/PEG-1000, and PEG-600/PEG-1450.
- 15. The composition of claim 14 wherein the ratio of the polyethylene glycol mixture:polyoxyl stearate is from 50:50 to 80:20.

-6- CP 185B

- 16. The composition of claim 15 wherein the ratio of the polyethylene glycol mixture:polyoxyl stearate is 50:50.
- 17. The composition of claim 15 wherein the ratio of the polyethylene glycol mixture:polyoxyl stearate is 80:20.
- 18. The composition of claim 16 wherein the composition comprises PEG-400:PEG-1000:polyoxyl stearate in a ratio of 25:25:50.
- 19. The composition of claim 16 wherein the composition comprises PEG-400:PEG-1450:polyoxyl stearate in a ratio of 25:25:50.
- The composition of claim 17 wherein the composition comprises PEG-400:PEG-1000:polyoxyl stearate in a ratio of 40:40:20.
- 21. The composition of claim 17 wherein the composition comprises PEG-400:PEG-1450:polyoxyl stearate in a ratio of 40:40:20.
- 22. A method of treating a disease or disorder in a mammal, comprising administering a composition of claims 1, 12, or 19 to a subject in need thereof.
 - 23. The method of claim 22 wherein the disorder is a neurological disorder.
 - 24. The method of claim 22 wherein the disorder is cancer.
 - 25. The method of claim 24 wherein the cancer is prostate cancer.
 - 26. The method of claim 24 wherein the cancer is acute myelogenous leukemia.

-7-

CP 185B

- 27. A method for preparing a composition of comprising a fused pyrrolocarbazole, at least one organic solvent, at least one surfactant, and optionally an antioxidant wherein the composition is non-aqueous and particle-forming comprising:
- (a) heating the organic solvent and optionally the antioxidant to about 50-90 °C to form a heated mixture;
- (b) mixing the fused pyrrolocarbazole in the heated mixture with a high shear homogenizer to form a homogenized mixture; and
 - (c) mixing the surfactant to the homogenized mixture.
- 28. The method of claim 27 wherein the composition includes at least one antioxidant.
 - 29. The method of claim 27 wherein the temperature is from about 50-80 °C.
 - 30. The method of claim 29 wherein the temperature is from about 50-70 °C.
 - 31. The method of claim 27 wherein the fused pyrrolocarbazole has the formula:

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein: ring B and ring F, are independently selected from:

- a) an unsaturated 6-membered carbocyclic aromatic ring in which from 1 to 3 carbon atoms may be replaced by nitrogen atoms;
- b) an unsaturated 5-membered carbocyclic aromatic ring; and
- c) an unsaturated 5-membered carbocyclic aromatic ring in which either:

-8-

CP 185B

- 1) one carbon atom is replaced with an oxygen, nitrogen, or sulfur;
- two carbon atoms are replaced with a sulfur and a nitrogen, an oxygen and a nitrogen, or two nitrogens; or
- 3) three carbon atoms are replaced with three nitrogens;

G-X-W is selected from:

- a) $-(Z^1Z^2)C-N(R^1)-C(Z^1Z^2)-$;
- b) -CH(R1)-C(=O)-N(R1)-; and
- c) -N(R1)-C(=O)-CH(R1)-;
- Z^1 and Z^2 , at each occurrence, are independently selected from H, H; H, OR; H, SR; H, N(R)₂; and a group wherein Z^1 and Z^2 together form a moiety selected from =0, =S, and =NR; with the proviso that at least one of the pairs Z^1 and Z^2 form =0;
- R is selected from H, substituted or unsubstituted alkyl

having from 1 to 6 carbons, OH, alkoxy having from 1 to 4 carbons, OC(=O)R^{1a}, OC(=O)NR^{1c}R^{1d}, O(CH₂)_pNR^{1c}R^{1d}, O(CH₂)_pOR^{1b}, substituted or unsubstituted arylalkyl having from 6 to 10 carbons, and substituted or unsubstituted heteroarylalkyl;

R¹ is selected independently from:

- a) H, substituted or unsubstituted alkyl having from 1 to 6 carbons, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heteroarylalkyl;
- b) $C(=O)R^{la}$;
- c) OR^{1b} ;
- d) $C(=O)NHR^{1b}$, $NR^{1c}R^{1d}$, $(CH_2)_pNR^{1c}R^{1d}$, $(CH_2)_pOR^{1b}$, $O(CH_2)_pOR^{1b}$ and $O(CH_2)_pNR^{1c}R^{1d}$;

R^{la} is selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl and heteroaryl;

R^{1b} is selected from H and substituted or unsubstituted alkyl

having from 1 to 6 carbons;

R^{1c} and R^{1d} are each independently selected from H, substituted or unsubstituted alkyl having from 1 to 4

0

CP 185B

carbons, and a linking group of the formula

X1 is selected from -O-, -S-, and -CH2-;

R² is selected from H, SO₂R^{2a}, CO₂R^{2a}, C(=O)R^{2a}, C(=O)NR^{2c}R^{2d},

and alkyl of 1-8 carbons, alkenyl of 2-8 carbons, alkynyl of 2-8 carbons, wherein:

- 1) each alkyl, alkenyl, and alkynyl is unsubstituted; or
- 2) each alkyl, alkenyl, and alkynyl is substituted with 1-3 R⁵;

R^{2a} is selected from alkyl of 1 to 6 carbons, aryl, OR^{2b},

CONH₂, NR²⁰R^{2d}, (CH₂)₀NR²⁰R^{2d}, and O(CH₂)₀NR²⁰R^{2d};

R^{2b} is selected from H and substituted or unsubstituted alkyl

having from 1 to 6 carbons;

R^{2t} and R^{2d} are each independently selected from H,

substituted or unsubstituted alkyl having from 1 to 6 carbons, and a linking group of the formula

R³ and R⁴, at each occurrence, are independently selected

from:

- a) H, aryl, heteroaryl, F, Cl, Br, I, CN, CF₃, NO₂, OH, OR⁹, O(CH₂)_pNR¹¹R¹², OC(=O)R⁹, OC(=O)NR¹¹R¹², O(CH₂)_pOR¹⁰, CH₂OR¹⁰, NR¹¹R¹², NR¹⁰S(=O)₂R⁹, and NR¹⁰C(=O)R⁹;
- b) CH₂OR¹⁴;
- c) $NR^{10}C(=0)NR^{11}R^{12}$, CO_2R^{10} , $C(=0)R^9$, $C(=0)NR^{11}R^{12}$, $CH=NOR^{10}$, $CH=NR^{10}$, $(CH_2)_pNR^{11}R^{12}$, $(CH_2)_pNHR^{14}$, and $CH=NNR^{11}R^{12}$;
- d) $S(O)_{x}R^{9}$, $(CH_{2})_{x}S(O)_{y}R^{9}$, $CH_{2}S(O)_{x}R^{14}$;
- alkyl having from 1 to 8 carbons, alkenyl having from 2 to 8 carbons, and alkynyl having 2 to 8 carbons, wherein
 - 1) each alkyl, alkenyl, or alkynyl group is unsubstituted; or
 - 2) each alkyl, alkenyl, or alkynyl group is substituted with 1 to 3 R⁵;

R⁵ is selected from aryl having from 6 to 10 carbons,

-10-

CP 185B

heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxyalkoxy, alkyloxy-alkoxy, hydroxyalkylthio, alkoxy-alkylthio, F, Cl, Br, I, CN, NO₂, OH, OR⁹, X²(CH₂)_pNR¹¹R¹², X²(CH₂)_pC(=O)NR¹¹R¹², X²(CH₂)_pOC(=O)NR¹¹R¹², X²(CH₂)_pOC₂R⁹, X²(CH₂)_pS(O)_pR⁹, X²(CH₂)_pNR¹⁰C(=O)NR¹¹R¹², OC(=O)R⁹, OC(=O)NHR¹⁰, O-tetrahydropytanyl, NR¹¹R¹², NR¹⁰C(=O)R⁹, NR¹⁰CO₂R⁹, NR¹⁰CO₂R⁹, NR¹⁰C(=O)NR¹¹R¹², NHC(=NH)NH₂, NR¹⁰S(O)₂R⁹, S(O)_pR⁹, CO₂R¹⁰, C(=O)NR¹¹R¹², C(=O)R⁹, CH₂OR¹⁰, CH=NNR¹¹R¹², CH=NOR¹⁰, CH=NR⁹, CH=NNHCH(N=NH)NH₂, S(=O)₂NR¹¹R¹², P(=O)(OR¹⁰)₂, OR¹⁴, and a monosaccharide having from 5 to 7 carbons wherein each hydroxyl group of the monosaccharide is independently either unsubstituted or is replaced by H, alkyl having from 1 to 4 carbons, alkylcarbonyloxy having from 2 to 5 carbons, or alkoxy having from of 1 to 4 carbons;

 X^2 is O, S, or NR^{10} ;

Q is selected from:

- 1) NR^6 ;
- 2) an unsubstituted alkylene of 1-3 carbons;
- 3) a substituted alkylene of 1-3 carbons;
- 4) CH=CH, CH(OH)CH(OH), O, S, S(=O), S(=O)₂, C(=O), C(=NOR¹¹), C(OR¹¹)(R¹¹), C(=O)CH(R¹³), CH(R¹³)C(=O), C(R¹⁰)₂, C(=NOR¹¹)CH(R¹³), CH(R¹³)C(=NOR¹¹), CH₂Z, Z-CH₂, CH₂ZCH₂;

Z is selected from $C(R^{11})(OR^{11})$, O, S, C(=O), $C(=NOR^{11})$, and NR^{11} :

R⁶ is selected from H, SO₂R^{2a}, CO₂R^{2a}, C(=O)R^{2a}, C(=O)NR^{1c}R^{1d}, and alkyl of 1-8 carbons, alkenyl of 2-8 carbons, alkynyl of 2-8 carbons, wherein:

- 1) each alkyl, alkenyl, and alkynyl is unsubstituted;
- 2) each alkyl, alkenyl, and alkynyl is substituted with 1-3 R^5 ; or alternatively, when Q is NR^6 or $C(R^{10})_2$, R^6 or one R^{10} joins with R^2 to form:

-11-

CP 185B

$$R^7$$
 Y
 R^8
 $(CH_2)_m$
 $(CH_2)_n$

wherein R⁷ and R⁸ are each independently selected from H, OH, alkyl having from 1 to 6 carbons, alkoxy having from 1 to 6 carbons, substituted or unsubstituted arylalkyl having from 6 to 10 carbons, substituted or unsubstituted heteroarylalkyl, (CH₂)_pOR¹⁰, (CH₂)_pOC(=O)NR¹¹R¹², and (CH₂)_pNR¹¹R¹²; or

R⁷ and R⁸ together form a linking group of the formula CH₂₇X³-CH₂;

X³ is a bond, O, S, or NR¹⁰;

R⁹ is selected from alkyl having 1 to 6 carbons, (CH₂), aryl and (CH₂), heteroaryl;

R¹⁰ is selected from H, alkyl having from 1 to 6 carbons, (CH₂)_raryl and (CH₂)_rheteroaryl;

R¹¹ and R¹², at each occurrence, are independently selected from:

- 1) H and substituted or unsubstituted alkyl having from 1 to 6 carbons; or
- 2) R^{11} and R^{12} together form -(CH₂)₂-X¹-(CH₂)₂-;

Y is selected from O, S, $N(R^{10})$, $N^{+}(O)(R^{10})$, $N(OR^{10})$, and CH_2 ;

J is selected from the group consisting of a bond, O, CH=CH, S, C(=O), CH(OR¹⁰), N(R¹⁰), N(OR¹⁰), CH(NR¹¹R¹²), C(=O)N(R¹⁷), N(R¹⁷)C(=O), N(S(O)_yR⁹), N(S(O)_yNR¹¹R¹²), N(C(=O)R¹⁷), C(R¹⁵R¹⁶), N^{*}(O)(R¹⁰), CH(OH)CH(OH), and CH(O(C=O)R⁹)CH(OC(=O)R⁹);

R¹³ is selected from alkyl having from 1 to 4 carbons, aryl, and arylalkyl having from 7 to 14 carbons;

 ${\bf R}^{14}$ is the residue of an amino acid after the hydroxyl group of the carboxyl group is removed;

R¹⁵ and R¹⁶, at each occurrence is selected from H, OH,

-12-

CP 185B

C(=O)R¹⁰, O(C=O)R⁹, alkyl-OH, and CO₂R¹⁰;

R¹⁷ is selected from the group consisting of H, alkyl, aryl, and heteroaryl;

m and n are independently selected from 0, 1, and 2;

p is independently selected from 1, 2, 3, and 4;

r is independently selected from 0, 1, and 2; and

y is independently selected from 0, 1 and 2.

- 32. The method of claim 31 wherein ring B and ring F of the fused pyrrolocarbazole are phenyl, G-X-W is selected from CH₂NR¹C(=0), C(=0)NR¹CH₂, and C(=0)NR¹C(=0), and Q is NR⁶.
 - 33. The method of claim 32 wherein the fused pyrrolocarbazole has the formula:

- 34. The method of claim 33 wherein R³ and R⁴ of the fused pyrrolocarbazole are selected from H, alkyl, Cl, Br, CH₂OH, CH₂SOCH₂CH₃, CH₂SO₂CH₂CH₃, NHCONHC₆H₅, CH₂SCH₂CH₃, CH₂SC₆H₅, NHCO₂CH₃, CH₂OC(=O)NHCH₂CH₃, N(CH₃)₂, CH=NNH, CH₂N(CH₃)₂, and CH₂OCH₂CH₃; R⁷ is selected from H and alkyl; and R¹⁵ and R¹⁶ are independently selected from H, alkyl, OH, CH₂OH, alkoxy, and CO₂alkyl.
- 35. (currently amended) The method of claim 34 wherein the fused pyrrolocarbazole has the formula:

-13-

- 36. The method of claim 27 wherein the organic solvent is at least one polyethylene glycol has a molecular weight from about 300 to 8000 Daltons.
- 37. The method of claim 36 wherein the polyethylene glycol has a molecular weight from about 400 to 1500 Daltons.

-14-

- 38. The method of claim 37 wherein the polyethylene glycol is selected from PEG-400, PEG-600, PEG-1000, and PEG-1450.
- 39. The method of claim 27 wherein the surfactant is selected from a polyoxyethylene sorbitan fatty acid ester, a polyethylene glycol ether, a saturated polyglycolized glyceride, a fatty acid ester of polyethylene glycol, a hydroxylated lecithin, a medium chain monoglyceride, a medium chain fatty acid ester, d-α-tocopheryl polyethylene glycol succinate, a polyethylene/propylene glycol copolymer, a poloxyl stearate, a poloxyl castor oil, and polyethylene glycol hydroxy stearate.
- 40. The method of claim 39 wherein the surfactant is selected from a polyethylene glycol ether, a saturated polyglycolized glyceride, a fatty acid ester of polyethylene glycol, a hydroxylated lecithin, a medium chain monoglyceride, a medium chain fatty acid ester, d-α-tocopheryl polyethylene glycol succinate, a polyethylene/propylene glycol copolymer, a poloxyl stearate, a poloxyl castor oil, and polyethylene glycol hydroxy stearate.
 - 41. The method of claim 40 wherein the surfactant is a polyoxyl stearate.
- 42. The method of claim 28 wherein the antioxidant is selected from ascorbic acid, a fatty acid ester of ascorbic acid, butylated hydroxytoluene, propyl gallate, and butylated hydroxyanisole.
- 43. The method of claim 42 wherein the antioxidant is a mixture of butylated hydroxyanisole, propyl gallate and citric acid.
- 44. The method of claim 27 wherein the organic solvent is a polyethylene glycol with a molecular weight from about 400 to 1500 Daltons and the surfactant is a polyoxyl stearate.

-15-

- 45. The method of claim 44 wherein the polyethylene glycol is PEG-400, PEG-600, PEG-1000, or PEG-1450 and the polyoxyl stearate is Myrj[®] 52.
- 46. The method of claim 27 wherein the organic solvent is a polyethylene glycol mixture selected from PEG-400/PEG-1000, PEG-400/PEG-1450, PEG-600/PEG-1000, or PEG-600/PEG-1450 and the polyoxyl stearate is Myrj[®] 52.