Matroids in Lean: Status Update

Ivan Sergeev

ISTA

8 January 2025

Totally Unimodular Matrices

In Mathlib:

- Definition of TU matrices
- ► TUness is preserved under:
 - transposition
 - taking of submatrices, incl. adjoining parallel rows/columns
 - adjoining zero rows/columns
 - unit rows/columns

In repo:

Finite block-diagonal matrix with TU blocks is TU

Next up:

- TUness is preserved under pivoting
- Generalize to infinite matrices

Matroid API

Additions:

- ► Notions: circuit, loop, coloop, separator
- Constructors: circuit matroid, vector matroid
- ► Classes: representable matroids, graphic and cographic matroids

Changes:

- ▶ Binary matroid definition now uses vector matroid
- ▶ Different, more general approach to 1-, 2-, and 3-sums*

Next up:

Fill in blanks: sorry's and missing useful lemmas

Old Approach to k-Sums

[Truemper 1998]; binary matroids M_1 , M_2 , $M_1 \oplus_k M_2$ have standard matrix representation B_1 , B_2 , B_3

New Approach: 1-Sum

- $lackbox{ [Oxley 2011]: } M_1 \oplus_1 M_2 \text{ for general matroids } M_1 = (E_1, \mathcal{I}_1), \ M_2 = (E_2, \mathcal{I}_2)$
- ▶ Assumption: $E_1 \cap E_2 = \emptyset$
- ▶ Ground set: $E_1 \cup E_2$
- ▶ Independent sets: $\{I_1 \cup I_2 \mid I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2\}$
- ► In MathLib: Matroid.disjointSum

New Approach: 2-Sum

- $lackbox{ [Oxley 2011]: } M_1 \oplus_2 M_2 \text{ for general matroids } M_1 = (E_1, \mathcal{I}_1), M_2 = (E_2, \mathcal{I}_2)$
- ► Assumptions:
 - $|E_1|, |E_2| \ge 2$
 - ► $E_1 \cap E_2 = \{p\}$
 - ightharpoonup p is not a loop or a coloop in M_1 or M_2
- ▶ Ground set: $E_1 \cup E_2 \setminus \{p\}$
- Circuits:

$$\mathcal{C}\left(M_{1}\backslash\left\{p\right\}\right)\cup\mathcal{C}\left(M_{2}\backslash\left\{p\right\}\right)\cup\left\{C_{2}\cup\left.C_{2}\backslash\left\{p\right\}\mid p\in\mathcal{C}_{1}\in\mathcal{C}\left(M_{1}\right),\ p\in\mathcal{C}_{2}\in\mathcal{C}\left(M_{2}\right)\right\}$$

In repo: Matroid.TwoSum

New Approach: 3-Sum

- $lackbox{ [Oxley 2011]: } M_1 \oplus_3 M_2 \text{ is for binary matroids } M_1 = (E_1, \mathcal{I}_1), M_2 = (E_2, \mathcal{I}_2)$
- Assumptions:
 - $|E_1|, |E_2| \ge 7$
 - $ightharpoonup E_1 \cap E_2 = T$, T is a triangle in M_1 and M_2
 - Neither M_1 nor M_2 has cocircuit contained in T
- ▶ Ground set: $E = E_1 \Delta E_2$
- ▶ Circuits: $C(M_1 \setminus T) \cup C(M_2 \setminus T) \cup C_{\Delta}$ where C_{Δ} = minimal sets of form $C_1 \Delta C_2$ where C_i is a circuit of M_i , $C_1 \cap T = C_2 \cap T$, and $C_i \cap T$ has exactly one element
- ▶ Note: 1-sum and 2-sum are special cases
- In repo: BinaryMatroid.DeltaSum

Note on New 3-Sum

- \triangleright 3-sum in [Oxley] corresponds to \triangle -sum in [Truemper]
- ▶ Regularity results and decomposition theorem hold for both

New Approach: Regularity of k-Sum

- Matroid is regular iff it can be represented over any field
- ▶ If M_1 and M_2 are regular, they can be represented over any field
- lacktriangle After wlog conversion, can connect representations of M_1 and M_2 with $M_1\oplus_k M_2$
- ▶ Thus $M_1 \oplus_k M_2$ can be represented over any field, hence is regular
- ▶ Below: example for 2-sum (last matrix without column p represents $M_1 \oplus_2 M_2$)

Next Steps

For old approach:

- ► TUness is preserved under pivoting
- ► TUness of explicit matrix representations of 2-sum and 3-sum

For new approach:

- Characterization of regular matroids
- ▶ Matrix representations for 2-sum and 3-sum

Nice to have:

- Updated statement of hard direction of Seymour's theorem
 - Prove up to Kuratowsky's theorem?
- ► TUness properties for infinite matrices
- Circuit matroid construction for infinite case