Queueing Theory and Simulation, lecture 14

Nicky van Foreest

June 22, 2021

Contents

L	Status and Plan	1
2	Open network of $M/M/c$ stations	1
3	On $\lambda = \gamma + \lambda P$.	3
1	Summary of the course	5
1	Status and Plan	
L.	1 Plan	

- Past: Exact models and N policies
- Now:
 - An open network of M/M/c queues
 - Fixed points of the (vector) equation $\gamma = \lambda + \gamma P$ and v = c + Pv.
- Next: you are going to work for the exam

Open network of M/M/c stations $\mathbf{2}$

Model 2.1

- New jobs arrive from the 'outside world' to station i as a Poisson process with rate γ_i .
- Job service times are $\text{Exp}(\mu)$.
- After service jobs are routed from station i to station j with probability P_{ij} , or leave the network with probability P_{i0} .
- The matrix P is known as a routing matrix.
- \bullet There are M stations
- Assumption (we address this later in more detail) the system is stable, i.e., all new jobs eventually leave.

2.2 What we like to know

- The expected total sojourn time E[J].
- The stationary distribution of the jobs over the stations.

$$p(n) = P[L_1 = n_1, \dots, L_M = n_M]$$

2.3 Traffic equations

- What arrives at station *i* eventually leaves: $\delta_i = \lambda_i$.
- Outflow: Let $\lambda_i, i = 1, ..., M$ be the out-flows of stations i, 1, ..., M.
- In-flows at station i: $\gamma_i + \sum_j \lambda_j P_{ji}$
- Inflow equals outflow station *i*:

$$\lambda_i = \gamma_i + \sum_{j=0}^{M} \lambda_j P_{ji}. \tag{1}$$

- Total outflow of network: $|\gamma| = \sum_i \gamma_i$.
- Solve for λ in $\lambda = \gamma + \lambda P \implies \lambda = \gamma (I P)^{-1}$.
- $\rho_i = \lambda_i \, \mathsf{E}[S_i], \, \rho_i < 1 \text{ for stability.}$

2.4 Sojourn times and visit ratios

• $E[L_i] = \lambda_i E[J_i].$

•

$$|\gamma| \operatorname{E}[J] = \operatorname{E}[L] = \sum_{i} \operatorname{E}[L_{i}] = \sum_{i} \lambda_{i} \operatorname{E}[J_{i}]$$
(2)

$$\mathsf{E}\left[J\right] = \sum_{i} \frac{\lambda_{i}}{|\gamma|} \, \mathsf{E}\left[J_{i}\right]. \tag{3}$$

- $\lambda_i/|\gamma|$ is the visit ratio of Station i.
- Little's law applied twice!

2.5 All stations are M/M/c queues

- For the M/M/c queue, interdeparture times are $\text{Exp}(\lambda)$, see the exercises in the book.
- Take any station j. Assume its departure process is Poisson λ_i .
- What moves to station i is the thinned Poisson process $\lambda_j P_{ji}$.
- The inflow at station i is the *merged* stream of external arrivals (Poisson γ_i) and the departures of the other stations (Poisson with rates $\lambda_j, j = 1, \ldots, M$.
- \bullet Merging Poisson streams results in a Poisson stream, hence station i receives a Poisson stream

2.6 Sojourn time for nework with M/M/1 queues

•

$$\mathsf{E}[J] = \sum_{i} \frac{\lambda i}{|\gamma|} \, \mathsf{E}[J_i] = \sum_{i} \frac{\lambda i}{|\gamma|} \frac{\mathsf{E}[S_i]}{1 - \rho_i}. \tag{4}$$

- Think again about why we like to know E[J].
 - $\mathsf{E}\left[J\right]$ is average time between investment in raw materials and receiving a payment from a customer.
 - E[J] is time a customer likes to know when placing an order.

2.7 Product form solution

• It can be proven that for an open network of M/M/c queues that

$$p(n) = P[L_1 = n_1, \dots, L_M = n_M] = \prod_{i=1}^M p(n_i).$$
 (5)

- That is: the queues are independent M/M/c queues!
- In case station i is an M/M/1 queue

$$p(n_i) = P[L_i = n_i] = (1 - \rho_i)\rho_i^{n_i}.$$
 (6)

• See the book (exercises) for a proof for two M/M/1 in tandem.

3 On $\lambda = \gamma + \lambda P$.

3.1 Motivation

- $\lambda = \gamma + \lambda P$ are the traffic equations for queueing networks
- \bullet For N-policies, the recursion for T has the form

$$T(q) = c + \alpha T(q+1) + \beta T(q-1) \tag{7}$$

$$\implies T = c + PT,\tag{8}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & \dots \\ \beta & 0 & \alpha & 0 & \dots \\ 0 & \beta & 0 & \alpha & 0 \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}, \tag{9}$$

• Similar recursion for V.

3.2 Solving $\lambda = \gamma + \lambda P$.

• Use recursion:

$$\lambda = \gamma + \lambda P \tag{10}$$

$$= \gamma + (\gamma + \lambda P)P = \gamma + \gamma P + \lambda P^{2}$$
(11)

$$= \gamma \sum_{m=0}^{n} P^m + \lambda P^{n+1} \tag{12}$$

$$\to \gamma \sum_{m=0}^{\infty} P^m \text{ as } n \to \infty, \tag{13}$$

if $P^n \to 0$ as $n \to \infty$.

3.3 Powers of P

ullet Suppose that P is diagolizable. Then there exist eigenvectors assembled in a matrix V such that

$$-VP = \Lambda V,$$

- $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_M).$

• Hence,

$$P^{2} = V^{-1}\Lambda V \cdot V^{-1}\Lambda V = V^{-1}\Lambda^{2}V, \tag{14}$$

$$P^n = V^{-1}\Lambda^n V \tag{15}$$

$$\Lambda^n = \operatorname{diag}(\lambda_1^n, \dots, \lambda_M^n). \tag{16}$$

3.4 Eigenvalues of P

- Assume that the network is transient: $P_{i0}^{M} > 0$. This means that after at most M jumbs from any station to another, it is possible to leave the network.
- What is the longest network you can make? A tandem network: a job has to visit all M stations before being able to leave the network.
- Under the condition of transience, we use Gershgorin's theorem (see book, really neat and simple theorem) to show that $|\lambda_i| < 1$ for all i.
- Hence, $\Lambda^n \to 0$ as $n \to \infty$.

3.5 Sum of P^n

• Hence:

$$\sum_{i=0}^{\infty} P^n = V^{-1} \sum_{i=0}^{\infty} \Lambda^i V \tag{17}$$

$$= V^{-1} \operatorname{diag}(1/(1-\lambda_1), \dots, 1/(1-\lambda_M))V.$$
(18)

• Note that this is numerically not the most efficient way to solve $(I-P)^{-1}$.

4 Summary of the course

4.1 Topics and most important concepts

- Simulation(construction) of QS, recursions
- Approximation for G/G/c, Sakasegawa's formula
- Sample path (simulation) analysis:
 - Renewal reward
 - Level crossing
 - PASTA
 - Little's law
- Analysis of exact models M/M/1, $M^X/M/1$, M/G/1: Polaczek-Khinchine formula
- Queuing control: recursion
- Open networks: stationary distribution of Markov chains.

4.2 One journey finishes, but another takes off

- Queueing systems are examples of stochastic processes and Markov chains
- The analysis N policies is an example of optimal stopping theory.
- Optimal stopping theory has applications to electrical networks, medicine, partial differential equations. In particular:
 - Finance, option theory.
 - Multi-armed bandits, web site optimization
 - Reinforcement learning (Automatic driving cars, games, and so on)
- So study hard on QTS to get on board for the extended ride.