Generalized Fixed Effects Model for Panel Data

Minsheng Liu

May 21, 2017

Consider the following model:

$$y_{t,i} = \vec{x}_{t,i} \cdot \vec{\beta} + \vec{\phi}_t \cdot \vec{\alpha}_i + \vec{\psi}_i \cdot \vec{\gamma}_t + \epsilon_{i,t}$$

where *i* ranges from 1 to *n*, *t* ranges from 1 to *t*, and $\vec{\beta} \in \mathbb{R}^m$. Equivalently, the model can be expressed as

$$\mathbf{Y} = \sum_{i=1}^{m} \beta i \cdot \mathbf{X}_i + \mathbf{\Phi} \mathbf{A} + (\mathbf{\Psi} \mathbf{\Gamma})^{\top} + \mathbf{E},$$

where

- 1. $\mathbf{Y}, \mathbf{X}_i, \mathbf{E} \in \mathcal{M}_{i,t}(\mathbb{R});$
- 2. $\Phi \in \mathcal{M}_{t,p}(\mathbb{R})$ is given, $\mathbf{A} \in \mathcal{M}_{p,i}(\mathbb{R})$ is unknown. They are called as time-observable individual-specific effects (tois);
- 3. $\Psi \in \mathcal{M}_{i,q}(\mathbb{R})$ is given, $\Gamma \in \mathcal{M}_{q,t}(\mathbb{R})$ is unknown. They are called as individual-observable time-specific effects (iots).

Note that time and individual fixed effects can be expressed by adding a column of 1s in Φ and Ψ , respectively.

We will apply the method of alternate projections. Let

$$\begin{split} \mathbf{P}_{\mathsf{tois}} &= \boldsymbol{\Phi}(\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}\boldsymbol{\Phi}^{\top} \text{,} \\ \mathbf{P}_{\mathsf{iots}} &= \boldsymbol{\Psi}(\boldsymbol{\Psi}^{\top}\boldsymbol{\Psi})^{-1}\boldsymbol{\Psi}^{\top} \text{,} \end{split}$$

be the projection matrices for Φ and Ψ respectively. Define tois : $\{1,\ldots,n\} \to (\mathcal{M}_{t,i}(\mathbb{R}) \to \mathcal{M}_{t,i}(\mathbb{R}))$ and iots : $\{1,\ldots,t\} \to (\mathcal{M}_{t,i}(\mathbb{R}) \to \mathcal{M}_{t,i}(\mathbb{R}))$ as follows¹:

$$tois(i)(\mathbf{M}) = \mathbf{M}[\mathbf{M}_{,i} \mapsto \mathbf{M}_{,i} - \mathbf{P}_{tois}\mathbf{M}_{,i}],$$
$$iots(t)(\mathbf{M}) = \mathbf{M}[\mathbf{M}_{t,} \mapsto \mathbf{M}_{t,} - \mathbf{M}_{t,}\mathbf{P}_{iots}^{\top}].$$

Essentially, $tois(i, \mathbf{M})$ "demeans" the *i*-th column of \mathbf{M} —namely the individual i; $iots(t, \mathbf{M})$ "demeans" the *t*-th row of \mathbf{M} —namely the time t.

For each iteration, let **M** range from $Y, X_1, ..., Y$. we have

$$\hat{\mathbf{M}} = ((\mathsf{iots}(t) \circ \cdots \circ \mathsf{iots}(1)) \circ (\mathsf{tois}(n) \circ \cdots \circ \mathsf{tois}(1)))(\mathbf{M}).$$

The algorithm stops after all M stablizes.

¹ As in R, we use $\mathbf{M}_{,i}$ to denote the i-th column and \mathbf{M}_{t} , to denote the t-th row. The notation $\mathbf{M}[X \mapsto Y]$ means the matrix M, with its row or column as specified by X replaced by Y.

Both tois and iots are so-called *higher* order functions. Namely, it produces a function $\mathcal{M}_{t,i}(\mathbb{R}) \to \mathcal{M}_{t,i}(\mathbb{R})$ with a given i or t.