Complexidade de Algoritmos I – 2022 - ATIVIDADE 3

Nome:	RA:

- 1) Sejam $T1(n) = 3n + 3n \log_2 n + 25 \log_3 n$, $T2(n) = 15n + 3n^2 + 9n^2 \log_2 n + 8$ e $T3(n) = 5n^3 + 7n^2 + 2$, apresente as equações que descrevem a ordem de complexidade de tempo dos algoritmos Alg1, Alg2 e Alg3, respectivamente, para entradas de tamanho n.
- 2) Um método de ordenação de complexidade $O(\log n)$ gasta exatamente 2 milissegundos para ordenar 10000 elementos. Supondo que o tempo T(n) para ordenar n desses elementos é diretamente proporcional a $\log n$, ou seja, $T(n) = c \cdot \log n$:
 - a) Estime a constante c utilizando uma base conveniente para o logaritmo.
 - b) Estime o tempo consumido por esse algoritmo, em segundos, para ordenar 1000000 elementos.
- 3) Suponha que cada expressão abaixo represente o tempo T(n) consumido por um algoritmo para resolver um problema de tamanho n. Escreva os termos(s) dominante(s) para valores muito grandes de n e especifique o menor limite assintótico superior O(n) possível para cada algoritmo.

Expressão	Termo(s) Dominante(s)	0()
$5 + 0.01n^2 + 0.52n^4$		
$100n + 0.01n^3$		
$5n^2 + 10n^{1.5} + 5n$		
$13n + 4n^2$		
$0.3n + 5n^{1.5} + 2.5n^{1.75}$		
$n^3 \log_2(n) + 5n(\log_3(n))^2$		
$2n + n^{1.5} + 0.5n^2$		
$n^2\log_3(n) + n^2\log_2(n)$		
$5n^2\log_2(n) + 2n^3 + 10n$		
$5n^2 + n^3 \log n$		

4) Analise o algoritmo abaixo, escrito em C, que recebe dois vetores, a e b, de tamanhos iguais n e determine o menor limite assintótico superior para o pior caso em função do parâmetro n.

5) Encontre o menor limite assintótico superior para o algoritmo abaixo, escrito C:

```
int menor(int vetor[], int n){
  int menor = MAX_INT;
  para i=1 ate n faça
    se (vetor[i] < menor)
    menor = vetor[i];
  se menor < 0
    para i=1 ate n faca
    para j=1 ate n faca
    vetor[i] = vetor[i]^(i+j);
  retorna(menor);
}</pre>
```

- 6) Suponha que ofereçam a você dois pacotes de software, $\bf A$ e $\bf B$, para processamento dos dados da sua empresa, que contêm 10^6 registros. Sabendo que o tempo de processamento médio do pacote $\bf A$ é $T_A(n)=2n^2$ milissegundos, e o tempo médio de $\bf B$ é $T_B(n)=1000n$ milissegundos, responda:
 - a) Qual desses pacotes é o mais indicado para processar os dados da empresa?
 - b) A partir de quantos registros um dos pacotes passa a ser melhor que o outro?