Designing Online Contests

Andrew Tulloch

Contents

Chapter 1. Introduction	4
1. Rank order allocation of prizes	5
2. Optimal Auction Design	5
Bibliography	6

Introduction

We'll look at a few problems in contest design:

- Standard all-pay contest
- Rank-order allocation of prizes
- Smooth allocation of prizes
- Simultaneous contest
- Sequential contests
- Credits for contributions and production

Definition 1.1. (i) $N = \{1, ..., n\}, n \ge 2 \text{ set of players.}$

- (ii) b_i is the effort invested by player $i \in N$.
- (iii) $b = (b_1, b_2, \dots, b_n)$.
- (iv) $X = (X_1(b), \dots, X_n(b)).$
- (v) $X_i(b) \ge 0$.
- (vi) $\sum_{i=1}^{n} X_i(b) = 1$.
- (vii) $N(b) = \{i \in N : b_i \ge b_i \forall j \in N\}.$
- (viii)

$$X_i(b) = \begin{cases} \frac{1}{|N(b)|} & i \in N(b) \\ 0 & \text{otherwise} \end{cases}$$
 (1.1)

(ix) Payoff for player i is $s_i(b) = v_i X_i(b) - b_i$.

Any pure Nash equilibrium b satisfies

$$\forall i \in N, s_i(b) \ge s_i((b_{i'}, b_{-i})), \forall b_{i'} \in R \tag{1.2}$$

A mixed Nash equilibrium b satisfies

$$\forall i \in N, \mathbb{E}(s_i(b)) \ge \mathbb{E}(s_i((b_{i'}, b_{-i}))), \forall b_{i'} \in R$$

$$\tag{1.3}$$

Consider the two player case, with $v_1 \ge v_2 > 0$. There exists a unique mixed Nash equilibrium such that $B_1(b) = \frac{b}{v_2}$, $B_2(b) = 1 - \frac{v_2}{v_1} + \frac{b}{v_1}$.

Fill in rest of notes from lecture material

Fill in missing

1. Rank order allocation of prizes

Consider

(i)
$$N = \{1, 2, \dots, n\}, n \ge 2.$$

(ii)
$$w_1 \ge w_2 \ge \cdots \ge w_n \ge 0$$
.

(iii) Valuations
$$v_1, \ldots, v_n$$
 IID F

(iv)
$$s_i(b) = v_i \sum_{j=1}^n w_j X_{i,j}(b) - b_i , i \in N$$

(v) Symmetric Bayes Nash equilibrium
(vi)
$$X_j(v) = \binom{n-1}{j-1} F(v)^{n-j} (1 - F(v))^{j-1}$$

$$F(v) = \mathbb{P}(v_i \le v)$$

2. Optimal Auction Design

Bibliography