SOLUTIONS TO SELECTED EXERCISES TMA4155, 2011

These solutions are meant as a reference for students to check their answers. The solutions lack the reasoning behind the answers. An exam submission should of course also contain the reasoning behind the answers.

Exercise 1

Task 1:

- a) "CKJOJOZ", b) "anytime"
- c) "SVRUQVJ", d) "affinity"

Task 2:

- a) "meet me at five"
- b) decrypts with $x = 9y + 3 \mod 26$

Task 3:

a)
$$\gcd(72,84)=12$$
,
b) $\gcd(364,742)=14$, $742-2\cdot 364=14$
c) $123456789 \mod 11=9-8+7-6+5-4+3-2+1 \mod 11$.

Exercise 2

Task 1:

$$\begin{pmatrix} 1 & 2 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}^{-1} \mod 10 = \begin{pmatrix} 3 & 0 & 4 \\ 7 & 1 & 5 \\ 7 & 9 & 8 \end{pmatrix}$$

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right)$$

no inverse mod 10, since $gcd(\det A, 10) \neq 1$.

Task 2:

1. $x \equiv 3 \mod 9$

2. $x \equiv 4 \mod 8$

3. $x \equiv 5 \mod 9$

4. no solution

 $5. \ x \equiv 23 \mod 40$

Task 4:

 $x \equiv 53 \mod 210$

Task 5:

 $z \equiv 2930 \mod 10403$

Exercise 3

Task 1:

Encrypting the word banana with initialization vector (11, 2) we get LBBAIPZW.

Decryption gives the word "fish".

Task 3:

 $A \equiv 35 \mod 101$ $B \equiv 47 \mod 101$ shared secret $K \equiv 36 \mod 101$

Task 4:

- a) $d \equiv 1031 \mod 1260$
- b) $c \equiv 1191 \mod 1333$
- c) $m \equiv 684 \mod 1333$

Task 5:

Encrypting twice with e_1 and e_2 is the same as encrypting once with e_1e_2 , so it provides no extra security.

Task 6:

Eve will recieve from Nelson $(2^e c)^d \equiv 2^{ed} c^d \equiv 2m \mod n$.

Exercise 4

Task 1:

 $(\pm 18)^2 \equiv 2 \mod 23$ 5 has no square roots $\mod 23$. 21 has no square roots $\mod 23$.

Task 2:

a)
$$x \equiv \pm 78 \pm 22 \mod 143$$
.
b) $x \equiv \pm 104 \mod 143$.
c) no solution.

Task 3:

$$(2389)(2381) = 5688209$$

 $(73)(137) = 10001.$

Task 4:

$$2733 \cdot 16007 \not\equiv 2^3 \cdot 3 \cdot 7 \cdot 11$$
$$(2733 \cdot 16007) \equiv (2^3 \cdot 3 \cdot 7 \cdot 11)^2$$
$$\Rightarrow \gcd(2733 \cdot 16007 - 2^3 \cdot 3 \cdot 7 \cdot 11, n)$$

Task 5:

$$a = 2, B = 5, \gcd(12 - 1, 253) = 11 \rightarrow 243 = 11 \cdot 13.$$

Exercise 5

Solutions to all the exam problems can be found on the webpage. Solutions to the exams in 2006 are posted in one file.