Navigazione

Fare il punto: non si può essere persi.

L'areo si muove velocemente ed ha comunque un'autonomia temporale limitata.

Come raggiungere il punto successivo.

Honeywell

Precision Terrain Aided Navigation (PTAN)

Precision Navigation Without GPS...

Features an Interferometric Synthetic Aperture Radar Sensor with Integrated Map Correlation

- · Continuous upgrade of platform navigation solution
 - * 100-ft. accuracy at altitudes up to 30,000 ft.
 - + 10-ft. accuracy at altitudes up to 5,000 ft.
- · Honeywell PTAN selected for Tactical Tomahawk Cruise Missile!
- Low risk and available for C-130 AMP!

Abbiamo bisogno di informazioni che vengano dall'esterno

A vista con il riconoscimento di eminenze esterne

Con radioaiuti che forniscono segnali dall'esterno

Satellitare, etc

Navigazione stimata

Dead Reckoning:

Integrazione dell'equazione del moto:

$$\dot{\overline{s}} = \overline{v}$$

- orologio
- anemometro
- bussola magnetica
- posizione di partenza

Navigazione stimata

Navigazione stimata con anemometro, bussola e cronometro: in assenza di qualunque scarrocciamento o deriva, supponendo nota la prua vera, nel caso di velocità al suolo (**GS**) costante si ha che lo spostamento è:

 $\Delta \mathbf{S} = \mathbf{G}\mathbf{S} \cdot \Delta \mathbf{T}$

nella direzione della prua.

In questo modo è possibile sapere il punto successivo. Supponendo di ripetere il calcolo per ogni ΔT in cui cambi **GS** in modulo o direzione, che devono essere noti, è possibile ricostruire la traiettoria mano a mano che essa si sviluppa.

In presenza di deriva causata dal vento

TH True HeadingTT True TrackWS Wind SpeedWD Wind DirectionGS Ground SpeedTAS True Air Speed

Navigatore con dati aria

 v_T è la velocità all'aria $v_H = v_T \cos \gamma$ dove γ è l'angolo di rampa.

Detto ψ l'angolo di track

se v_W è la velocità del vento e ψ_W la sua direzione si ha:

$$\begin{cases} v_N = v_H \cos \psi + v_W \cos \psi_w \\ v_E = v_H \sin \psi + v_W \sin \psi_w \end{cases}$$

Navigazione autonoma

Self Contained senza aiuti esterni

Integrazione dell'equazione del moto

$$\ddot{\bar{s}} = \bar{a}$$

conoscendo le condizioni iniziali.

Accelerometro

Accelerometro

Navigazione su terra piatta

Flat Land Navigation

$$\begin{cases} F_{x} = m\ddot{x} \\ F_{y} = m\ddot{y} \end{cases}$$

al tempo
$$\mathbf{t} = \mathbf{t}_0 = 0$$

$$\begin{cases} \mathbf{x} = \mathbf{x}_0 \\ \mathbf{y} = \mathbf{y}_0 \end{cases}$$
;
$$\begin{cases} \dot{\mathbf{x}} = \mathbf{K}_1 \\ \dot{\mathbf{y}} = \mathbf{K}_2 \end{cases}$$

da cui
$$\theta' = \operatorname{arctg} \frac{\dot{\mathbf{y}}}{\dot{\mathbf{x}}} = \operatorname{arctg} \frac{\mathbf{K}_2}{\mathbf{K}_1}$$

al tempo $\mathbf{t} = \mathbf{t}_1$ viene applicata una forza diretta secondo y che porta $\dot{\mathbf{y}} = \mathbf{K}_3$

cioè
$$\mathbf{K}_3 = \mathbf{K}_2 + \Delta(\dot{\mathbf{y}}) = \mathbf{K}_2 + \int_{\mathbf{t}_1}^{\mathbf{t}_2} \ddot{\mathbf{y}} d\mathbf{t}$$

da cui
$$\theta'' = \operatorname{arctg} \frac{\dot{y}}{\dot{x}} = \operatorname{arctg} \frac{K_3}{K_1}$$

praticamente $\mathbf{t}_1 \equiv \mathbf{t}_2$

Coordinate cartesiane

Coordinate polari

$$\begin{cases} \mathbf{A}_{\mathbf{x}} = \ddot{\mathbf{x}} \\ \mathbf{A}_{\mathbf{y}} = \ddot{\mathbf{y}} \end{cases} \Rightarrow \begin{cases} \mathbf{x} = \mathbf{x}_{0} + \dot{\mathbf{x}}_{0}\mathbf{t} + \int_{0}^{t} \int_{0}^{\tau} \mathbf{A}_{\mathbf{x}} d\tau d\mathbf{t} \\ \mathbf{y} = \mathbf{y}_{0} + \dot{\mathbf{y}}_{0}\mathbf{t} + \int_{0}^{t} \int_{0}^{\tau} \mathbf{A}_{\mathbf{y}} d\tau d\mathbf{t} \end{cases}$$

$$\begin{cases} \mathbf{A}_{R} = \ddot{\mathbf{R}} - \dot{\theta}^{2}\mathbf{R} \\ \mathbf{A}_{\theta} = \mathbf{R}\ddot{\theta} + 2\dot{\theta}\dot{\mathbf{R}} = \frac{1}{\mathbf{R}}\frac{d}{dt}(\mathbf{R}^{2}\dot{\theta}) \end{cases}$$

$$\begin{cases} \mathbf{R} = \mathbf{R}_0 + \dot{\mathbf{R}}_0 \mathbf{t} + \int_0^t \int_0^\tau \left(\mathbf{A}_{\mathbf{R}} + \dot{\theta}^2 \mathbf{R} \right) d\tau d\mathbf{t} \\ \theta = \theta_0 + \dot{\theta}_0 \mathbf{t} + \int_0^t \int_0^\tau \left(\frac{\mathbf{A}_{\theta} - 2\dot{\theta}\dot{\mathbf{R}}}{\mathbf{R}} \right) d\tau d\mathbf{t} \end{cases}$$

Coordinate cartesiane

Caso tridimensionale

$$\dot{ heta}_{y} = rac{V_{x}}{R}$$

$$\Delta \lambda = \int_{0}^{\tau} \frac{\mathbf{V_x}}{\mathbf{R}} d\mathbf{t}$$

$$\Delta \Lambda = \int_{0}^{t} \frac{V_{y}}{R \cos \lambda} dt$$

