Porovnávanie reťazcov

Úvod

 Porovnávanie reťazcov, presnejšie hľadanie výskytov reťazca v reťazci (string-matching) je pomerne dôležitou súčasťou širokej domény zaoberajúcej sa spracovaním textu. Algoritmy na porovnávanie textov sa využívajú pri implementácií softvérových systémov, ktoré sú reálne nasadené v praxi. Takisto však hrajú dôležitú rolu v teoretickej informatike, kde môžu byť výzvou pre navrhovanie efektívnejších algoritmov.

Základné pojmy

- Uvažujme 2 reťazce:
- Vzor P[I...m], ktorý má dĺžku m
- Text T[I...n], ktorý má dĺžku n
- Vzor P sa nachádza v texte T s posunutím s ak platí:
 - T[s+1...s+m] = P[1...m]
- Príklad: T = abcabaabcabac, P = abaa
 - m=4, n=13, s=3

Základné pojmy

- Predpona (prefix): reťazec w je predponou reťazca x, ak x = wy, kde y je akýkoľvek reťazec z použitej abecedy Σ
- Napr: pre(ab, abcca)
- Prípona (suffix): reťazec w je príponou reťazca x, ak x = yw, kde y je akýkoľvek reťazec z použitej abecedy Σ
 - Napr: suf(cca, abcca)

Lema • Predpokladajme, že "x", "y" a "z" sú reťazce, pre ktoré platí suf(x, z) a suf(y, z), potom: • ak |x| ≤ |y|, tak suf(x,y) • ak |x| ≥ |y|, tak suf(y,x) • ak |x| = |y|, tak x = y

Najznámejšie algoritmy Algoritmus Predspracovanie Vyhľadávanie Naivný O((n-m+1)m)Rabin-Karp $\Theta(m)$ O((n-m+1)m)Konečný automat $O(m|\Sigma|)$ $\Theta(m)$ Knuth-Morris- $\Theta(m)$ $\Theta(m)$ Pratt Ďaľšie algoritmy, ich popisy, vizulaliácie a zdrojové kódy môžete nájsť napr. na : http://www-igm.univ-mlv.fr/-lecroq/string/

Naivné hľadanie výskytu reťazca v reťazci

- Nemá fázu predspracovania
- · Vždy sa posúva len o I pozíciu doprava
- Porovnávanie môže prebiehať v akomkoľvek poradí
- Veľká časová zložitosť
- Vykoná sa 2n porovnávaní textu

Naivné hľadanie výskytu reťazca v reťazci

 Samotný algoritmus pozostáva z porovnávania znakov na všetkých pozíciach medzi 0 a n-m. Pri každom kroku sa posúva iba o 1 pozíciu doprava.

```
Naivne porovnavanie (T, P)

n \leftarrow length[T]

m \leftarrow length[P]

for s \leftarrow 0 to n - m

do if P[I \dots m] = T[s+I \dots s+m]

then

print "vyskytuje sa s posunutim"s
```

Naivné hľadanie výskytu reťazca v reťazci

Naivné hľadanie výskytu reťazca v reťazci

```
• C++:
void BF(char *x, int m, char *y, int n)
{
int i, j;
/* Searching */
for (j = 0; j <= n - m; ++j)
{
    for (i = 0; i < m && x[i] == y[i + j]; ++i);
        if (i >= m)
            OUTPUT(j);
} }
```

Rabinov-Karpov algoritmus

 Namiesto priameho porovnávania reťazca so vzorom sa porovnavajú výstupy hešovacích funkcií. Porovnáva sa heš vzoru s hešom vybraného podreťazca (vyberá sa podreťazec taký dlhý ako je dĺžka vzoru). Pokiaľ sa heše zhodujú, uskutočnuje sa porovnávanie jednotlivých znakov.

Rabinov-Karpov algoritmus

- Hešovacia funkcia by mala mať tieto vlastnosti:
 - o jednoducho vypočitateľná
 - o s malou pravdepodobnosťou kolízií
 - heš posunutého podreťazca by mal byť jednoducho odvoditeľný z predchádzajúceho hešu (táto vlastnosť výrazne uľahčí výpočet a algoritmus sa tým stáva omnoho efektívnejší ako naivný)

Rabinov-Karpov algoritmus

· Hešovacia funkcia:

Predpokladáme, že nahradíme reťazec m znakov určitým celým číslom. Keď použijeme konštantu d

- maximálny počet možných znakov, tak platí:

 $x = t[i]d^{m} + t[i+1]d^{m-1} + ... + t[i+m]$

Pokročme v texte o jeden znak dopredu a hodnota x' bude:

 $x' = t[i+1]d^m + t[i+2]d^{m-1}+...+t[i+m+1]$

Pokiaľ podrobne preskúmame x a x', tak zistíme, že:

 $x' = (x - t[i]d^m)b + t[i+m+1]$

Rabinov-Karpov algoritmus

Hešovacia funkcia:

- Tretej požiadavke vyhovuje napríklad hešovacia funkcia definovaná ako polynóm (m-l). stupňa, kde hodnoty znakov vystupujú ako koeficienty. Aby sme sa vyhli problémom s príliš veľkými číslami pri výpočtoch, používa sa modulo aritmetika:
- aritmetika: $pathash = (d^{m-1} \text{ ord}(pat_0) + d^{m-2} \text{ ord}(pat_1) + ... \\ + d \text{ ord}(pat_{m-1}) + \text{ ord}(pat_{m-1})) \text{ mod } q \\ \text{ texthash} = (d^{m-1} \text{ ord}(text_1) + d^{m-2} \text{ ord}(text_{i+1}) + ... \\ + d \text{ ord}(text_{i+m-2}) + \text{ ord}(text_{i+m-1})) \text{ mod } q \\ \text{ texthash}_{i+1} = (d^{m-1} \text{ ord}(text_{i+1}) + d^{m-2} \text{ ord}(text_{i+2}) + ... \\ + d \text{ ord}(text_{i+m-1}) + \text{ ord}(text_{i+m})) \text{ mod } q$
- = (d (texthash_i d^{m-1} ord(text_i)) + ord(text_{i+m})) mod p Hešovaciu funkciu ovplyvňujú parametre d a q.

Rabinov-Karpov algoritmus

Hešovacia funkcia:

 $\begin{array}{l} \operatorname{texthash}_{i+1} = (\ d\ (\ \operatorname{texthash}_i - \operatorname{d}^{m-1}\ \operatorname{ord}(\operatorname{text}_i)\) + \\ \operatorname{ord}(\operatorname{text}_{i+m})\) \ \operatorname{mod}\ p \end{array}$

- Voľba parametrov d a q:
 - d maximálny počet možných znakov
 q prvočíslo

Rabinov-Karpov algoritmus

- Zhrnutie
 - Vypočítame základný heš reťazca aj vzoru a postupne budeme pokračovať vo vzore pripočítame hodnoty ďalšieho znaku a odpočítame špecifickú hodnotu prvého znaku v pôvodnom kuse reťazca. Teda dve konštantné funkcie, ktoré zaberú minimálne množstvo času. Stále však pretrváva problém kolízií, preto dva texty s rovnakým hešom porovnávame po znakoch

Rabinov-Karpov algoritmus

```
RABIN-KARP POROVNANIE(T, P, d, q)
n \leftarrow \text{length}(T)

m \leftarrow \text{length}(P)

h \leftarrow d^{m-1} \mod q

p \leftarrow 0
t_0 \leftarrow 0

for i \leftarrow 1 to n
for i \leftarrow 1 to n //spracovanie
do p \leftarrow (dp + P[i]) mod q
t_0 \leftarrow (dt_0 + T[i]) mod q
for s \leftarrow 0 to n - m //parovanie
                    do if p = t,
then if P[1..m] = T[s+1..s+m]
then print "Vzor sa v retazci vyskytuje s posunom"s
                                          then t_{s+1} \leftarrow (d(t_s-T[s+1]h)+T[s+m+1]) \mod q
```

Rabinov-Karpov algoritmus

- Zložitosť algoritmu:
 - predspracovanie má časovú zložitosť O(m)
 - · vyhľadávanie má časovú zložitosť O(mn)
 - Očakávaná doba výpočtu algoritmu je O(n+m)

Vyhľadávanie pomocou automatu

 Na základe vzoru sa vytvorí minimálny deterministický konečný automat, pomocou ktorého sa rozpoznáva vzor v zadanom reťazci.

Vyhľadávanie pomocou automatu Del: Konečny sustomat (linite automaton) je usporiadana 5-sica (Q. q. q. x. Z, δ), kide (Q. q. q. x. Z, δ), kide (Q. q. q. x. Z, δ), kide (Q. q. q. x. Z), kide (Q. q. q. x. Z) pomociina starov (akceptujuce), A je podamočinou Q (Q. z. z. Z) popudina abeceta (Z. Z) popudina abeceta (Z. Z) popudina abeceta (Z. Z) pomociina (Z. Z) popudina abeceta (Z.

```
Algoritmus vyhľadávania pomocou automatu

POROVNANIE KONEČNÝM AUTOMATOM(T, \delta,m)

n \leftarrow \text{length}(T)
q \leftarrow 0

for i \leftarrow 1 to n
do q \leftarrow \delta(q, T[q])
if q = m
then print "Vzor sa v retazci vyskytuje s posunom" i \cdot m

O(n), ale treba zostrojiť automat, t.j. v podstate prechodovú funkciu
```

```
príponová funkcia pre P, |P| = m je \sigma: \Sigma * \longrightarrow \{o, 1, \dots, m\} definovaná ako \sigma(x) = \max\{k: P_k \sqsupset x\}, kde u □ v znamena, že u je príponou v a P_k = P[1..k]. Po slovensky: \sigma(x) je dĺžka najdlhšej predpony vzoru P, ktorá je súčasne príponou x
```

Ako zostrojiť automat

Ako zostrojiť automat

Definujme automat hľadajúci výskyt vzoru P dĺžky m vo vstupnom reťazci taktó:

Množina stavov:

 $Q = \{0, 1, ..., m\},\$ Začiatočný stav:

 $q_0 = 0$,

Množina koncových stavov:

 $A = \{m\},\$

Prechodová funkcia:

 $\delta(q, a) = \sigma(P_q a).$

Prechodová funkcia

definujme prechodovú funkciu takto: $\delta(q, a) = \sigma(P_q a)$

prečo?

Invariant činnosti automatu:

 $\varphi(T_i) = \sigma\left(T_i\right)$

t.j. po prečítaní prvých i znakov je automat v stave $q = \varphi(T_i)$, pričom $q = \sigma(T_i)$ je dĺžka najdlhšej prípony reťazca T_i , ktorá je súčasne aj predponou vzoru P.

Ako zostrojiť automat

Vždy, keď sa počas simulacie vstupneho slova T na automate dostaneme do stavu m, našiel sa podvyraz P a jeho posun je rovny o m menej ako je aktualna pozicia v reťazci.

Platia nasledujuce vety:

- V (suffix-function inequality): Pre každy reťazec x a znak a plati: $\sigma(xa) \le \sigma(x) + 1$.
- V (suffix-function recursion lemma): Pre každy reťazec x a znak a, ak $q = \sigma(x)$, tak $\sigma(xa) = \sigma(Pqa)$

Vyhľadávanie pomocou automatu

VYPOČET PRECHODOVEJ FUNKCIE (P,Σ)

for q := 0 to m do for each symbol $a \in \Sigma\,do$

k := min(m+1, q+2)repeat k := k - I until Pk □ Pqa

 $\delta(q,\,a):=k$

return δ

- Zložitosť algoritmu:
 - predspracovanie: $O(m^3|\Sigma|)$, ale dá sa urobiť šikovnejšie a zlepšiť na $O(m|\Sigma|)$

 - vyhľadávanie: **O**(n)

Vyhľadávanie pomocou automatu

Vyhľadávanie pomocou automatu

Konečný automat z animovaného príkladu:

Knuthov-Morrisov-Prattov algoritmus

 KMP algoritmus vychádza z analýzy algoritmu naivného vyhľadávania. V určitých situáciách vie využiť informáciu získanú čiastočným porovnávaním vybraného podreťazca a vzoru a posunúť podreťazec o viac než jeden znak.

Knuthov-Morrisov-Prattov algoritmus

Porovnávanie vzoru s reťazcom začína na prvom znaku zľava (vzor je zarovnaný s reťazcom). Algoritmus postupuje, kým nenarazí na nezhodu na štvrtej pozícii medzi znakmi b a g (obr. a). Z predchádzajúcich znakov okamžite vieme, že posun vzoru o jeden alebo dva znaky nemá význam. Preto nastane posun o tri znaky. Tým sa vzor zarovná s textom nad znakom, kde nastala nezhoda. Od tohto miesta môže ďalej pokračovať porovnávane.

Knuthov-Morrisov-Prattov algoritmus

 V tomto príklade vidíme, že vzor je posunutý o s a nastáva nové porovnávanie. Pri ňom sa zistilo, že nezhoda nastala na 6. pozícii reťazca, čo indikuje posun o 5 znakov (q). V tomto prípade však takýto posun nie je možný. Posunúť sa môžeme iba o 2 znaky, pretože na 3. znaku sa nachádza zhoda medzi týmto znakom a prvým znakom vzoru (na tomto mieste môže začínať vzor)

Knuthov-Morrisov-Prattov algoritmus

- Posun pri prehľadávaní je nezávislý od prehľadávaného reťazca. Jeho veľkosť určuje tzv. predponová funkcia.
- predponová funkcia (Prefix function)

```
\begin{split} &\pi\,\text{pre}\;P,\;|P|=m;\\ &\pi:\{1,\,2,\,\ldots,m\}\longrightarrow\{0,\;1,\,\ldots,m-\;1\}\\ &\pi(q)=\max\{k:k\leq q,\;P_k\;\exists\;P_q\}.\\ &Po\;\text{slovensky}; \end{split}
```

 $\pi(q)$ je dĺžka najdlhšej predpony vzoru P, ktorá je súčasne pravou príponou P_a

i 1 2 3 4 5 6 7 8 9 10

[Fi] a b a b a b a b a b c a

[πi] 0 0 1 2 3 4 5 6 0 1

Jednotlivé posuny sa vypočítavajú vo fáze predspracovania.

Knuthov-Morrisov-Prattov algoritmus

```
\begin{split} \text{KMP POROVNANIE}(T,P) & n \leftarrow \text{length}(T) \\ n \leftarrow \text{length}(P) & \pi \leftarrow \text{pREDPONOVA FUNKCIA}(P) \\ q \leftarrow 0 & \text{for } i \leftarrow 1 \text{ to } n \quad \text{//prehľadávaj dalši zľava doprava} \\ & \text{do while } q > 0 \text{ and } P[q+1] \neq T[T] \\ & \text{do } q \leftarrow \pi[q] \quad \text{//nezhoduje sa ďalší znak} \\ & \text{if } P[q+1] = T[T] \\ & \text{then } q \leftarrow q+1 \quad \text{//zhoduje sa ďalší znak} \\ & \text{if } q = m \quad \text{//zhoduje sa celý vzor P?} \\ & \text{then print "Vzor sa v retazci vyskytuje s posunom "} \text{ i-m} \\ & q \leftarrow \pi[q] \qquad \text{//hladať ďalší možný vyskyt} \end{split}
```

Knuthov-Morrisov-Prattov algoritmus

```
PREDPONOVA FUNKCIA (P) \begin{split} m &\leftarrow \operatorname{length}(P) \\ \pi[1] \leftarrow 0 \\ k \leftarrow 0 \\ \text{for } q \leftarrow 2 \text{ to } m \\ &\quad \text{do while } k > 0 \text{ and } P[k+1] \neq P[q] \\ &\quad \text{if } P[k+1] = P[q] \\ &\quad \text{then } k \leftarrow k+1 \\ &\quad \text{return } \Pi \end{split}
```

Knuthov-Morrisov-Prattov algoritmus

KMP algoritmus do určitej miery súvisí s konečnými automatmi. Predpokladejme, že máme vzor P dĺžky m. Definujeme si konečný automat, ktorý bude mať m+1 stavov. Prechody medzí jednotlivými stavmi budú postupne určené jednotlivými písmenami vzoru. Teda napr. prechod mezi nultým a prvným stavom bude podla písmena p,, prechod mezi prvným a druhým stavom podla p₂ atd. Ostatné prechody (teda akési chybové) bude určovať práve predponová funkcia. Vstupným stavom bude stav 0 a výstupným stav m. Samotné vyhľadávanie bude realizované ako práca takéhoto automatu so vstupom, ktorý odpovedá zadanému reťazcu. Rozdiel je iba v tom, že poklaľ sa pomocou predponovej funkcie vrátime do niektorého predchádzajúceho stavu, okamžite skúsime cez ten istý znak (ktorý spôsobil nezhodu) prejsť do nasledujúceho stavu.

Knuthov-Morrisov-Prattov algoritmus

 Príklad konečného automatu pre vzor perpetrate

Knuthov-Morrisov-Prattov algoritmus

- Zložitosť algoritmu:
 - Predspracovanie: O(m)
 - Vyhľadávanie: O(n)
 - · Celkovo KMP: O(m+n)

Knuthov-Morrisov-Prattov algoritmus

Hľadanie najdlhšej spoločnej podpostupnosti

- Longest common subsequence (LCS) problém
 - Dané sú dve postupnosti x[1..m] a y[1..n]; máme nájsť najdlhšiu podpostupnosť, ktorá sa vyskytuje v oboch postupnostiach
 - Podpostupnoť: prvky v pôvodnej postupnosti nemusia byť nevyhnutne vedľa seba, ale ich poradie ostáva nezmenené
- x = {A B C B D A B}, y = {B D C A B A}
 - {B B A} je podpostupnosť oboch postupností x a y
- Algoritmus hrubej sily
 - Pre každú podpostupnosť v x, zisti či nie je podpostupnosťou y. Vráť naidlhšiu.
 - Koľko podpostupností je v x?

 - Aká by bola časová náročnosť?
 - 2^m podpostupností **x** porovnať s **n** prvkami postupnosti **y**
 - O(n 2m)

Hľadanie najdlhšej spoločnej podpostupnosti

- Úloha: Porovnanie dvoch DNA reťazcov
- X = {A B C B D A B}, Y = {B D C A B A}
- Algoritmom hrubej sily porovnáme každú podpostupnosť X so znakmi v Y

- LCS problém má optimálnu subštruktúru: riešenie čiastkových problémov je časť konečného riešenia
- Čiastkový problém
 - Nájsť najdlhšiu spoločnú podpostupnosť párov prefixov X a Y
- Na vyriešenie tohto problému môžeme použiť dynamické programovanie!

Hľadanie najdlhšej spoločnej podpostupnosti

- V prvom rade nájdeme dĺžku LCS. Neskôr zmodifikujeme algoritmus pre nájdenie LCS samotnej.
- Definujeme X_i a Y_j ako prefixy X a Y dĺžky irespektíve i
- Definujeme c[i,j] ako dĺžku LCS X_i a Y_i
- Potom dĺžka LCS X a Y bude c[m,n]
- Rekurzívna definícia c[i,j]

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & ak \ x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & inak \end{cases}$$

Definícia dĺžky najdlhšej spoločnej podpostupnosti

- Začneme s i=j=0 (prázdna podpostupnosť x a y) Pretože X_0 a Y_0 sú prázdne reťazce, ich LCS je vždy prázdna (c[0,0]=0)
 - LCS prázdnej postupnosti a nejakej inej postupnosti je pre každé i a j: c[0,j]=c[i,0]=0
- Pre výpočet c[i,j] sa rozhodujeme medzi dvoma prípadmi:

x[i] = y[j]
 Pri zhode symbolu v postupnostiach X a Y je dĺžka LCS X, a Y rovnaká ako dĺžka LCS menšej postupnosti X_{i,i} a Y_{j-i}, plus

x[i] != y[j]

Ak sa symboly nezhodujú dĺžka ostáva nezmenená (max(c[i-1,j], c[i, j-1]))

Algoritmus na nájdenie dĺžky najdlhšej spoločnej podpostupnosti

LCS DĹŽKA(X, Y) m = length(X) n = length(Y) for i = 1 to m c[i,0] = 0 for i = 1 to m c[i,0] = 0 for i = 1 to m //pre c[i,j] = c[i-1,j-1]+1 c[i,j] = max(c[i-1,j], c[i,j-1])return c

- Príklad: X = ABCB; Y = BDCAB
 - LCS(X, Y) = BCB
 - X = A B C B
 - · Y = BDCAB

Najdlhšia spoločná podpostupnosť – príklad (inicializácia)

2 3 4 5 R D C Α В 0 X_{i} 1 Α 2 В 3 C В 4

ABCB **BDCAB**

X = ABCB; m = |X| = 4Y = BDCAB; n = |X| = 5 alokácia 2D poľa c[0..4, 0..5]

Analýza algoritmu pre nájdenie najdlhšej spoločnej podpostupnosti

- LCS algoritmus vypočíta hodnoty každého vstupu poľa c[m,n]. Aký je teda výpočtový čas?
 O(m*n)
- Každá hodnota c[i,j] je spočítaná v konštantnom čase, a v poli máme m*n prvkov
- Zatial' sme našli len dĺžku najdlhšej spoločenj podpostupnosti.
- Ďalej je potrebné nájsť najdlhšiu spoločnú podpostupnosť.
- Musíme modifikovať algoritmus aby nám dával výstup najdlhšej spoločnej podpostupnosti postupnosti X a Y

 V poli c[ij] máme všetko zaznamenané
 Každá hodnota c[i,i] závisí na c[i-l,j] alebo c[l,i-l]
- Pre každú hodnotu c[i,j] vieme určiť ako sme ju dosiahli

Hľadanie najdlhšej spoločnej podpostupnosti

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & ak \ x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & inak \end{cases}$$

V tomto pripade c[i,j] = c[i+1,j+1] + 1 = 2 + 1 = 3

V tomto pripade $c[i,j] = \max(c[i,j-1], c[i-1,j]) = \max(2, 1) = 2$

- Môžeme začať z c[m,n] a ísť späť
- Ak c[i,j] = c[i-1,j-1] + 1, zapamätáme si x[i]
- x[i] je časť z najdlhšej spoločnej podpostupnosti
 Ak i = 0 alebo j = 0 (dosiahneme začiatok), výstupom sú písmená odpamätané v X, usporiadané v opačnom poradí

Hľadanie najdlhšej spoločnej podpostupnosti

Hľadanie najdlhšej spoločnej podpostupnosti

spoločná postupnosť (odzadu): B C B Najdlhšia spoločná postupnosť: B C B