Problem Set 2 MATH 27000

2 Power Series and Cauchy's Theorem

Set A: Graded for Completion

4/5: 1. Fischer and Lieb (2012), QI.3.2. Prove the Cauchy-Hadamard formula, which states that the radius of convergence r is equal to

$$r = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}}$$

2. Fischer and Lieb (2012), QI.4.4. Show that the function $\tan z$ never takes on the values $\pm i$ and that therefore,

$$\frac{\mathrm{d}}{\mathrm{d}z}(\tan z) \neq 0$$

everywhere. Show that the tangent function maps the strip $S_0 = \{z : -\pi/2 < \text{Re } z < \pi/2\}$ biholomorphically onto $\mathbb{C} \setminus \{it : t \in \mathbb{R}, t \geq 1\}$.

Also use level sets to illustrate the conformal mapping.

3. Fix $a, b, c \in \mathbb{C}$ so that c is not a negative integer or 0. Show that the **hypergeometric** function

$$F(a,b,c;z) := \sum_{k=0}^{\infty} \frac{a(a+1)\cdots(a+k-1)b(b+1)\cdots(b+k-1)}{c(c+1)\cdots(c+k-1)} \frac{z^k}{k!}$$

converges on the unit disk and satisfies the differential equation

$$z(1-z)F''(z) + [c - (a+b+1)z]F'(z) - abF(z) = 0$$

Set B: Graded for Content

1. Fischer and Lieb (2012), QII.2.3. Compute the Fresnel integrals

$$\int_0^\infty \cos(x^2) dx = \sqrt{\frac{\pi}{8}} = \int_0^\infty \sin(x^2) dx$$

Hint: Apply the Cauchy integral theorem to sectors with center 0 and corners given by R and $e^{i\pi/4}R$, where $R \to \infty$.

- 2. These problems illustrate the geometric intuition for the radius of convergence of a power series. Do the parts in order.
 - (a) For each nonzero natural number $n \in \mathbb{N}$, compute the power series expansion for the function 1/z around the point 1/n. What are their radii of convergence?
 - (b) Describe the set of points $w \in \mathbb{C}$ such that the power series expansion for 1/z about w has radius of convergence equal to 1.
 - (c) Suppose that

$$f(z) = \frac{1}{z(z-1)(z-i)(z-1-i)}$$

Find the unique point w in the unit square $\{\text{Re}(z), \text{Im}(z) \in [0, 1]\}$ such that the radius of convergence of the power series for w is maximal. Justify your answer.

- **3.** This problem is to hint at the general formulation of the Cauchy integral theorem. Please solve this problem only using things we have seen in class to this point.
 - (a) Show that the "L-shaped" domain

$$L = \{z : \text{Re}(z), \text{Im}(z) \in (0, 2) \text{ and not both } \text{Re}(z), \text{Im}(z) \in (0, 1] \}$$

is star-shaped (hence the Cauchy integral theorem applies).

Problem Set 2 MATH 27000

(b) Show that the "double L-shaped" domain

$$U = \{z: |\operatorname{Re}(z)|, \operatorname{Im}(z) \in (0,2) \text{ and not both } |\operatorname{Re}(z)|, \operatorname{Im}(z) \in (0,1] \}$$

is not star-shaped.

- (c) Nevertheless, by breaking up U into two copies of L and using the Cauchy integral theorem for the resultant star-shaped domains, show that for any closed curve γ in U and any $f \in \mathcal{O}(U)$, we have that $\int_{\gamma} f \, \mathrm{d}z = 0$.
- (d) Show that $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$ can be written as the union of two star-shaped domains.
- (e) Why doesn't your proof for part (c) show that $\int_{\gamma} f dz = 0$ for any $f \in \mathcal{O}(\mathbb{C}^*)$ and any closed curve γ in \mathbb{C}^* ?