Yakeen NEET 2.0 2026

Physics By Saleem Sir

Units and Measurements

DPP: 2

- **Q1** If $x = at + bt^2$, where x is the distance travelled by the body in kilometers while t is the time in seconds, then the units of b are
 - (A) $\rm km/s$
 - (B) $\mathrm{km} \mathrm{s}$
 - (C) $\mathrm{km/s^2}$
 - (D) $\mathrm{km}-\mathrm{s}^2$
- **Q2** The dimensions $ML^{-1}T^{-2}$ may correspond to
 - (A) Work done by a force
 - (B) Linear momentum
 - (C) Pressure
 - (D) Energy per unit area
- Q3 Choose the wrong statement
 - (A) All quantities may be represented dimensionally in terms of the base quantities.
 - (B) A base quantity cannot be represented dimensionally in terms of the rest of the base quantities.
 - (C) The dimension of a base quantity in other base quantities maybe zero.
 - (D) The dimension of a derived quantity is never zero in any base quantity.
- **Q4** A force F is given by $F=at+bt^2$, where ${\bf t}$ is time. What are the dimensions of \boldsymbol{a} and \boldsymbol{b}
 - (A) MLT^{-3} and $ML^2\ T^{-4}$
 - (B) $m MLT^{-3}$ and $m MLT^{-4}$
 - (C) $m MLT^{-1}$ and $m MLT^{0}$
 - (D) $m MLT^{-4}$ and $m MLT^{1}$
- Q5 A wave is represented by $y = a \sin(At - Bx + C)$ where A, B, C are

constants and t is in seconds and x is in meter. The dimensions of A, B, C are

- (A) T^{-1} , L, $M^0 L^0 T^0$
- (B) T^{-1} , L^{-1} , $M^0 L^0 T^0$
- (C) T, L, M
- (D) T^{-1} , L^{-1} , M^{-1}
- Q6 Given that the displacement of an oscillating particle is given by $y = A \sin(Bx + Ct + D)$. The dimensional formula for (ABCD) is:
 - (A) $\left[\mathrm{M}^0 \ \mathrm{L}^{-1} \ \mathrm{T}^0\right]$
 - (B) $[M^0 L^0 T^{-1}]$
 - (C) $\left[\mathbf{M}^0 \ \mathbf{L}^{-1} \ \mathbf{T}^{-1} \right]$
 - (D) $[M^0 L^0 T^0]$
- **Q7** $lpha=rac{F}{v^2}{
 m sin}(eta t)$ (where v= velocity, F= Force).Find the dimension of α and β
 - (A) $M^1 L^{-1} T^0$, $M^1 L^{-1} T^0$
 - (B) $M^1L^1T^{-2}$, $M^1L^{-1}T^0$
 - (C) $M^{-1}L^{-1}T^{-2}$, $M^1L^1T^{-2}$
 - (D) $M^1L^{-1}T^0$, $M^0L^0T^{-1}$
- The equation for the position of a train starting at Q8 x=0 m is given by $x=\frac{1}{2}at^2+bt^3$. The dimensions of b are
 - (A) T^3
 - (B) LT^{-3}
 - (C) LT^{-2}
 - (D) LT^{-1}
- **Q9** The angular wave number is defined as $k = \frac{2\pi}{\lambda}$. What are dimensions of k ?(where λ is wavelength of light).
 - (A) $\left[\mathrm{M^OL^{-1}~T^O}\right]$

- $\begin{array}{l} \text{(B)} \left[\mathbf{M}^1 \ \mathbf{L}^1 \ \mathbf{T}^{\mathrm{O}} \right] \\ \text{(C)} \left[\mathbf{M} \mathbf{L}^{\mathrm{O}} \mathbf{T}^1 \right] \\ \text{(D)} \left[\mathbf{M} \mathbf{L}^{-2} \ \mathbf{T} \right] \end{array}$

Answer Key

Q1	(C)	Q6	(B)
Q2	(C)	Q7	
Q3	(D)	Q8	(B)
Q4	(B)	Q9	(A)
Q5	(B)		

Android App | iOS App | PW Website

