



|     | UZUPEŁNIA ZDAJĄCY |                        |
|-----|-------------------|------------------------|
| KOD | PESEL             | miaigaa                |
|     |                   | miejsce<br>na naklejkę |
|     |                   |                        |

# EGZAMIN MATURALNY Z INFORMATYKI

# **POZIOM ROZSZERZONY**

Część I



MIN-R1\_1P-193

DATA: **7 czerwca 2019 r.**GODZINA ROZPOCZĘCIA: **14:00**CZAS PRACY: **60 minut** 

Liczba punktów do uzyskania: 15

| UZUPEŁNIA ZDAJĄCY | WYBRANE:            |  |
|-------------------|---------------------|--|
|                   | (system operacyjny) |  |
|                   | (program użytkowy)  |  |

(środowisko programistyczne)

# Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.





#### Zadanie 1. Rekurencja

Dana jest dodatnia liczba całkowita n oraz uporządkowana rosnąco tablica różnych liczb całkowitych T[1..n]. Przeanalizuj następującą funkcję rekurencyjnq, której parametrami są liczby całkowite x, p, k, przy czym  $1 \le p \le k \le n$ .

```
Rek(x, p, k)
jeżeli p < k
s \leftarrow (p + k) \text{ div 2}
jeżeli T[s] \ge x
wynikiem jest Rek(x, p, s)
w przeciwnym razie
wynikiem jest Rek(x, s + 1, k)
w przeciwnym razie
jeżeli T[p] = x
wynikiem jest p
w przeciwnym razie
wynikiem jest p
w przeciwnym razie
wynikiem jest p
```

Uwaga: div jest operatorem oznaczającym część całkowita z dzielenia.

#### Zadanie 1.1. (0-2)

Podaj największą i najmniejszą możliwą liczbę wywołań funkcji Rek w wyniku wywołania Rek(2019, 6, 14) dla n = 17 i pewnej, uporządkowanej rosnąco tablicy T[1..17] różnych liczb całkowitych.

Uwaga: Pierwsze wywołanie funkcji **Rek**(2019, 6, 14) włączamy do ogólnej liczby wywołań.

Miejsce na obliczenia



Odpowiedź:

# Zadanie 1.2. (0-2)

Podaj, jakie będą wartości parametrów przekazywanych do funkcji Rek w kolejnych jej wywołaniach dla n = 11, tablicy T = [1, 5, 8, 10, 12, 14, 19, 20, 23, 30, 38] oraz pierwszego wywołania Rek(37, 1, 11).



| Kolejne w | ywołania:                               |      |                                             |
|-----------|-----------------------------------------|------|---------------------------------------------|
|           |                                         | <br> | <br>                                        |
| •••••     |                                         | <br> | <br>                                        |
|           |                                         | <br> | <br>                                        |
|           |                                         |      |                                             |
|           | • • • • • • • • • • • • • • • • • • • • | <br> | <br>• • • • • • • • • • • • • • • • • • • • |

## Zadanie 1.3. (0-1)

Złożoność czasowa algorytmu opisanego funkcją Rek dla parametrów x = 1, p = 1, k = n jest

- A. sześcienna.
- **B.** kwadratowa.
- C. liniowa.
- D. logarytmiczna.

Wybierz właściwą odpowiedź.

#### Zadanie 2. Szyfr kolumnowy

Szyfrowanie kolumnowe jest jedną z metod szyfrowania przestawieniowego, polegającego na zmianie kolejności znaków w szyfrowanym tekście. W tej metodzie jest wykorzystywana tabela o dodatniej liczbie wierszy równej *k*. Liczba *k* jest nazywana *kluczem*. Wiersze i kolumny tabeli są numerowane liczbami naturalnymi, począwszy od 1. Znaki tekstu, który ma być zaszyfrowany, wpisujemy do kolejnych kolumn tabeli, zaczynając od jej lewego górnego rogu. W kolumnach nieparzystych znaki wpisujemy od góry do dołu, a w parzystych od dołu do góry. Puste miejsca w ostatniej rozpoczętej kolumnie wypełniamy znakiem "\_" oznaczającym spację. Następnie odczytujemy kolejne wiersze od góry do dołu (każdy z nich od lewej do prawej), w wyniku czego uzyskujemy szyfrogram.

Przykład: dla klucza *k*=3 i tekstu *MATURA Z INFORMATYKI* budujemy tabelę:

| M | A | - 1 | F | 0 | Y | K |
|---|---|-----|---|---|---|---|
| A | R | Z   | N | R | T | I |
| Т | U | _   | I | M | A | _ |

i otrzymujemy szyfrogram MA\_FOYKARZNRTITU\_IMA\_.

#### Zadanie 2.1. (0-2)

Do zaszyfrowania pewnego 40-znakowego cytatu z wypowiedzi Juliusza Cezara użyto metody szyfru kolumnowego o kluczu 10. Otrzymano szyfrogram:

NKI ATE USGACYOKZZ YYSJTCWEKI SAEMTRLE P

Rozszyfruj ten cytat.



Strona 4 z 8

# Zadanie 2.2. (0-4)

W wybranym przez siebie języku programowania, w pseudokodzie lub w postaci listy kroków, napisz algorytm deszyfrujący tekst, który został zakodowany szyfrem kolumnowym.

Specyfikacja:

Dane:

*k* – klucz, liczba całkowita większa od 0

n – liczba znaków w tekście zaszyfrowanym, n jest wielokrotnością k

S[1..n] – ciąg znaków (tekst do odszyfrowania)

Wynik:

*T*[1..*n*] – ciąg znaków (tekst odszyfrowany)

Algorytm:



#### Zadanie 3. Test

Oceń, czy poniższe zdania są prawdziwe. Zaznacz literę  $\mathbf{P}$ , jeśli zdanie jest prawdziwe, albo literę  $\mathbf{F}$  – jeśli zdanie jest fałszywe.

W każdym zadaniu uzyskasz punkt tylko za wszystkie poprawne odpowiedzi.

## Zadanie 3.1. (0-1)

Dane są tabele Uczniowie i Oceny. Przeanalizuj i oceń poniższe zapytanie w języku SQL.

SELECT Uczniowie.imie, Uczniowie.nazwisko, AVG(Oceny.ocena)
FROM Uczniowie INNER JOIN Oceny ON Uczniowie.id\_ucznia = Oceny.id\_ucznia
GROUP BY Uczniowie.id\_ucznia, Uczniowie.imie, Uczniowie. nazwisko
HAVING AVG(Oceny.ocena) >= 4

ORDER BY AVG(Oceny.ocena), Uczniowie.nazwisko;

| 1. | W wyniku zapytania, przy odpowiednich danych, mogą pojawić się następujące po sobie wiersze:  Jan Abacki 4.08  Jan Kowalski 4.85 | P | F |
|----|----------------------------------------------------------------------------------------------------------------------------------|---|---|
| 2. | W wyniku zapytania to samo imię i nazwisko może pojawić się tylko raz, nawet jeśli dwóch uczniów ma takie samo imię i nazwisko.  | P | F |
| 3. | W wyniku zapytania otrzymamy trzy kolumny z danymi.                                                                              |   | F |
| 4. | Jedynym kryterium określającym kolejność wierszy w odpowiedzi jest średnia ocena.                                                | P | F |

## Zadanie 3.2. (0-1)

|    | Α  | В    | С    | D    | Е    | F    | G    | Н    | 1    | J    | K    |
|----|----|------|------|------|------|------|------|------|------|------|------|
| 1  |    | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
| 2  | 10 | 100  | 121  | 144  | 169  | 196  | 225  | 256  | 289  | 324  | 361  |
| 3  | 20 | 400  | 441  | 484  | 529  | 576  | 625  | 676  | 729  | 784  | 841  |
| 4  | 30 | 900  | 961  | 1024 | 1089 | 1156 | 1225 | 1296 | 1369 | 1444 | 1521 |
| 5  | 40 | 1600 | 1681 | 1764 | 1849 | 1936 | 2025 | 2116 | 2209 | 2304 | 2401 |
| 6  | 50 | 2500 | 2601 | 2704 | 2809 | 2916 | 3025 | 3136 | 3249 | 3364 | 3481 |
| 7  | 60 | 3600 | 3721 | 3844 | 3969 | 4096 | 4225 | 4356 | 4489 | 4624 | 4761 |
| 8  | 70 | 4900 | 5041 | 5184 | 5329 | 5476 | 5625 | 5776 | 5929 | 6084 | 6241 |
| 9  | 80 | 6400 | 6561 | 6724 | 6889 | 7056 | 7225 | 7396 | 7569 | 7744 | 7921 |
| 10 | 90 | 8100 | 8281 | 8464 | 8649 | 8836 | 9025 | 9216 | 9409 | 9604 | 9801 |

Powyższą tablicę kwadratów w arkuszu kalkulacyjnym można otrzymać, jeżeli skopiuje się tylko jedną formułę z komórki B2 do pozostałych komórek z zakresu B2:K10. W tym celu do komórki B2 należy wpisać

| 1. | =(\$A2+B\$1)*(\$A2+B\$1) | P | F |
|----|--------------------------|---|---|
| 2. | =(A2+B1)*(A2+B1)         | P | F |
| 3. | =(\$A2+B\$1)^2           | P | F |
| 4. | =(\$A\$2+\$B\$1)^2       | P | F |

# Zadanie 3.3. (0-1)

# Protokół HTTPS

| 1. | jest protokołem pobierania poczty elektronicznej ze zdalnego serwera przez połączenie TCP/IP. | P | F |
|----|-----------------------------------------------------------------------------------------------|---|---|
| 2. | obsługuje system nazywania domen.                                                             | P | F |
| 3. | przydziela adresy IP poszczególnym komputerom.                                                | P | F |
| 4. | jest szyfrowaną wersją protokołu http.                                                        | P | F |

# Zadanie 3.4. (0-1)

Różnica 11001001<sub>2</sub> –1111111<sub>2</sub> jest równa

| 1. | 2A <sub>16</sub> | P | F |
|----|------------------|---|---|
| 2. | 1128             | P | F |
| 3. | 21104            | P | F |
| 4. | 10010102         | P | F |

# BRUDNOPIS (nie podlega ocenie)