CMPT 379: Principles of Compiler Design

Syntax Analysis Worksheet (Answers)

1. Given language $\left\{wcw^R|w\in(a|b)*\right\}$ (w^R is w in reverse), write a CFG which produces this language.

Answer: $S \rightarrow aSa|bSb|c$

2. Given language $\Big\{a^nb^mc^md^n|n\geq 1, m\geq 1\Big\}$, write a CFG which produces this language.

Answer: $S \rightarrow aSd|aAd; A \rightarrow bAc|bc$

- 3. Does bottom-up parsing create a rightmost or leftmost derivation? Answer: Rightmost derivation (reversed).
- 4. Where is a handle located?

Answer: At the top of the stack (as a sequence of symbols).

5. Given the production rules in table 1, write out the parse tree for the string id + id * id.

Figure 1: Question 5: Production Rules

$$\begin{split} E &\to E + E \\ E &\to E * E \\ E &\to id \end{split}$$

Answer: See figure 2.

Figure 2: Question 5: Parse Tree

6. Given the production rules in table 3, write out the parse tree for the string int*int+int.

Figure 3: Question 6: Production Rules

$$\begin{split} E &\to T + E \\ E &\to T \\ T &\to int \\ T &\to int * T \\ T &\to (E) \end{split}$$

Answer: See figure 4.

Figure 4: Question 6: Parse Tree

7. Given the production rules and action/goto table in figure 5, write the trace of the LR(0) parse. Answer: See figure 6.

Figure 5: Question 7: Production Rules and Action/Goto Table

	Production Rules
1	$T \to F$
2	$T \to T * F$
3	$F \rightarrow id$
4	$F \to (T)$

States	Actions				Gotos		
States	*	()	id	\$	Т	F
0		S5		S8	2	1	
1	R1	R1	R1	R1	R1		
2	S3				ACC		
3		S5		S8		4	
4	R2	R2	R2	R2	R2		
5		S5		S8		6	1
6	S3		S7				
7	R4	R4	R4	R4	R4		
8	R3	R3	R3	R3	R3		
						•	

Figure 6: Question 7: Answer

Input	Action
(id)*id	Shift 5
id)*id	Shift 8
)*id	Reduce using production rule 3: $F o id$
	Pop 1 symbol from the stack (8)
	Push $goto[5, F] = 1$ onto the stack
)*id	R1: $T \rightarrow F$
	Pop 1
	goto[5,T] = 6
)*id	S7
*id	R4, $F \rightarrow (T)$
	Pop 6, 7, 5
	goto[0,T] = 1
*id	R1: $T \rightarrow F$
	Pop 1
	goto[0,T] = 2
*id	S3
id	S8
\$	R3: $F \rightarrow id$
	Pop 8
	[goto]3, F] = 4
\$	R2: $T \rightarrow T * F$
	Pop 4, 3, 2
	goto[0,T] = 2
\$	ACCEPT
	(id)*id id)*id)*id)*id)*id *id *id

8. Given the set of production rules and dotted rule in figure 7, find the configuration set resulting from the closure of the dotted rule.

Figure 7: Question 8: Closure

Production Rules	$T \to F$
	$T \to T * F$
	$F \to id$
	$F \to (T)$
Dotted Rule	$T \to T * \bullet F$
$closure(T \to T * \bullet F)$	$T \to T * \bullet F$
	$T \to T * \bullet F$ $F \to \bullet (T)$ $F \to \bullet id$
	$F \to \bullet id$

9. Given a set of production rules, a configuration set, and a successive character in figure 8, apply the successor function to create a new configuration set.

Figure 8: Question 9: Successor

Production Rules	$S' \to T$
	$T \to F$
	$T \to T * F$
	$F \rightarrow id$
	$F \to (T)$
Configuration set I	$S' \to ullet T$
	$T \to ullet F$
	$T \to \bullet T * F$
	$F \rightarrow \bullet id$
	$F \to \bullet(T)$
$\overline{successor(I, "(")}$	F o (ullet T)
	$T \to ullet F$
	$T \to \bullet T * F$
	$F \rightarrow \bullet id$
	$F \to \bullet(T)$

10. Given a set of production rules in figure 9, find the First and Follow sets of the non-terminal symbols.

Figure 9: Question 10: First/Follow

Production Rules:	$A \rightarrow Bc d$
	$B \rightarrow e$
First sets	$FIRST(A) = \{d, e\}$ $FIRST(B) = \{e\}$
	$FIRST(B) = \{e\}$
Follow sets	$FOLLOW(A) = \{\$\}$ $FOLLOW(B) = \{c\}$
	$FOLLOW(B) = \{c\}$

11. Given the set of production rules in figure 10, find the First and Follow sets of the non-terminal symbols.

Figure 10: Question 11: First/Follow

Production Rules:	$A \rightarrow Bc$
	$B \rightarrow d BC Be$
	$C \to f$
First sets	$FIRST(A) = \{d\}$
	$FIRST(B) = \{d\}$
	$FIRST(C) = \{f\}$
Follow sets	$FOLLOW(A) = \{\$\}$
	$FOLLOW(B) = \{c, e, f\}$
	$FOLLOW(C) = \{c\}$

12. Given a set of production rules in figure 11, find the First and Follow sets of the non-terminal symbols.

Figure 11: Question 12: First/Follow

Production Rules	$S \rightarrow AB$
	$A \to c \epsilon$ $B \to cbB a$
	$B \to cbB a$
First sets	$FIRST(A) = \{c, \epsilon\}$
	$FIRST(B) = \{c, a\}$
	$FIRST(S) = FIRST(A) = \{c, \epsilon\}$
Follow sets	$FOLLOW(A) = FIRST(B) = \{c, a\}$
	$FOLLOW(B) = \{\$\}$
	$FOLLOW(S) = \{\$\}$

13. Given a set of production rules in figure 12, find the First and Follow sets of the non-terminal symbols.

Figure 12: Question 13: First/Follow

Production Rules	
	$A \rightarrow cB B$
	$B ightarrow bcB \epsilon$
First sets	$FIRST(A) = \{c, b, \epsilon\}$
	$FIRST(B) = \{b, \epsilon\}$
	$FIRST(S) = \{c\}$
Follow sets	$FOLLOW(A) = \{a\}$
	$FOLLOW(B) = FOLLOW(A) = \{a\}$
	$FOLLOW(S) = \{\$\}$

14. Given left-recursive grammar $A \to A*B|B;B \to a$, create an equivalent grammar which is no longer left-recursive.

Figure 13: Question 14: Answer

Production Rules
$$\begin{array}{c|c} X \to BA \\ A \to *BA | \epsilon \\ B \to a \end{array}$$

15. Given grammar $A \to Bc|D;B \to ef;D \to e$, left-factor this grammar.

Figure 14: Question 15: Answer

Production Rules
$$\begin{vmatrix} A \rightarrow eB \\ B \rightarrow fc | \epsilon \end{vmatrix}$$

16. Given the set of production rules in figure 15, remove left-recursion from the grammar.

Figure 15: Question 16: Production Rules

Production Rules
$$\left| \begin{array}{c} S \to Aa|b \\ A \to Ac|Sd|\epsilon \end{array} \right|$$

Figure 16: Question 16: Answer

Remove $A \to S$ recursion	$S \to Aa b$
	$A \to bdA' A'$
Remove $A \to S$ recursion	$A' \rightarrow A'c A'ad$
Remove A' left-recursion	$S \to Aa b$
Remove A^\prime left-recursion	$A \rightarrow bdA' A'$
	$A' \rightarrow cA' adA'$

17. Given the set of production rules in table 17) which form an LL(1) grammar, find the following symbols upon which the production rule $Y \to \epsilon$ is the valid option.

Figure 17: Question 17: LL(1) Conflict Resolution

$$\begin{array}{ll} \text{Production Rules} & E \rightarrow TX \\ & X \rightarrow \epsilon \\ & X \rightarrow +E \\ & T \rightarrow (E) \\ & T \rightarrow idY \\ & Y \rightarrow *T \\ & Y \rightarrow \epsilon \\ \hline \\ FOLLOW(Y) & = FOLLOW(T) \\ & = (FIRST(X) - \{\epsilon\}) + FOLLOW(E) \\ & = \{+,),\$\} \end{array}$$