Algorytmy i Struktury Danych A

Egzamin, 28 stycznia 2008 (max 40p.)

1	2	3	4	5	6	suma

- 1. (2+1+2+2) Dany jest graf niezorientowany G (rysunek poniżej).
- (a) Przedstaw kolejne stany lasu rozpinającego, tworzonego w czasie działania algorytmu Kruskala zastosowanego do tego grafu.
- (b) Wylicz koszt otrzymanego drzewa
- (c) Jaki jest koszt algorytmu Kruskala, jeśli kolejka priorytetowa została zrealizowana jako kopiec, a podział zaimplementowano na drzewach z balansowaniem i kompresją ścieżek?

(d) Czy dla dowolnego grafu koszt drzewa rozpinającego uzyskanego metodą Kruskala nie jest zawsze taki sam jak koszt drzewa najkrótszych ścieżek z ustalonego źródła, otrzymanego metodą Dijkstry? (odpowiedź uzasadnij)

.....

.....

2. (2+2+2) Dany jest plik tekstowy T, w którym występują jedynie znaki a, b, c, d, e, f, g.

ilość wystąpień	A 200	B 210	C 290	D 20	E 40	F 80	G 160	rozmiar pliku po zakodowaniu (w bitach)
kod stałej dł.								·
kod zmiennej dł.								

- (a) Zaproponuj kodowanie tekstu T optymalnym kodem stałej długości, wylicz rozmiar pliku po zakodowaniu i wpisz do tabelki.
- (b) Narysuj drzewo kodowe Huffmana oraz wpisz do tabelki odpowiadające znakom kody i rozmiar pliku po zakodowaniu.

	pliku po zakodowalilu.
(c)) Wytłumacz pojęcie kod prefiksowy.

- 4. (2+1+2+3) Utwórz drzewo-kopiec (typu min), przez kolejne wstawianie liczb 5, 7, 2, 9, 1, 8, 6, 0.
- (a) Narysuj kolejne etapy tworzenia tego drzewa.
- (b) Narysuj drzewo otrzymane po usunięciu elementu minimalnego.
- (c) Stosując algorytm budowy kopca w tablicy, utwórz kopiec (typu *min*) w tablicy, w której początkowo znajdują się elementy 5, 7, 2, 9, 1, 8, 6, 0.
- (d) Przedstaw ideę algorytmu sortowania z użyciem kopca i oszacuj jego koszt.

- 5. (2+1+2+2) Drzewo BST utworzono przez kolejne wstawianie elementów 5, 3, 7, 4, 9, 6, 10, 2, 8, 1.
- (a) Narysuj to drzewo.
- (b) Usuń korzeń utworzonego w punkcie (a) drzewa.
- (c) Wylicz wagi wierzchołków. Czy otrzymane drzewo jest drzewem wyważonym? Jeśli nie to napisz, jaką rotację (i względem którego wierzchołka) trzeba zastosować, aby uzyskać drzewo AVL?
- (d) Narysuj otrzymane po jej zastosowaniu drzewo.

- 6. (2+2+2) Dane są dwa n elementowe podzbiory zbioru liczb rzeczywistych X i Y oraz liczba rzeczywista z. Zaproponuj algorytm o koszcie O(n lg n), który bada, czy istnieją takie wartości x i y, że x należy do X i y należy do Y oraz x + y = z.
- (a) Przedstaw słowami ideę algorytmu.
- (b) Napisz pseudokod realizujący opisaną ideę.
- (c) Uzasadnij, że koszt podanego algorytmu jest zgodny z wymaganiami.