

#### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии» (ИУ7)

## Разработка программного обеспечения для работы с базой данных нечетких экспертных систем

Курсовая работа

Выполнила: Серова Мария Николаевна,

студентка группы ИУ7-65Б

Руководитель: Строганов Юрий Владимирович

Консультант: Яковлева Ольга Викторовна

### Цель и задачи

**Цель:** Разработать базу данных нечетких экспертных систем и программное обеспечение для работы с ней.

#### Задачи:

- 1. Провести анализ существующих подходов к хранению нечетких экспертных систем в базе данных.
- 2. Спроектировать базу данных экспертных систем.
- 3. Разработать программное обеспечение для работы с базой данных.
- 4. Исследовать скорость обработки запросов к базе данных при кэшировании и без.

#### Нечеткая логика

Классические множества



Нечеткие множества



#### Правила вывода:

Мамдани:

 $if(x_1 is A_1^j) \dots and (x_n is A_n^j) then y is B_k^j$ 

Сугено:

 $if(x_1 \text{ is } A_1^j) \dots and (x_n \text{ is } A_n^j) \text{ then } y = f(x_1, x_2, ..., x_n) = p_0 + \sum_{i=1}^n p_i x_i.$ 

#### Экспертные системы:

- R1\XCON 2500 правил
- ССН 800 правил
- MYCIN 600 правил

## Подходы к хранению экспертных систем в БД

|                                                   |                                |               | <u> </u> |                                            | · · · · · · · · · · · · · · · · · · · |
|---------------------------------------------------|--------------------------------|---------------|----------|--------------------------------------------|---------------------------------------|
| Критерии                                          | Точечное<br>задание<br>функции | XML/JSON поля | Кортежи  | Отдельные<br>таблицы для<br>разных функций | Предлагаемое<br>решение               |
| Возможность задания лингвистической функции       | -                              | +             | -        | +                                          | +                                     |
| Отсутствие<br>дублирования<br>информации          | +                              | +             | -        | +                                          | +                                     |
| Небольшое количество<br>занимаемой памяти         | -                              | +             | +        | +                                          | +                                     |
| Хранение информации о правилах вывода             | -                              | -             | -        | -                                          | +                                     |
| Прямая связь функций принадлежности с переменными | +                              | +             | +        | -                                          | +                                     |
| Гарантия целостности<br>данных                    | +                              | -             | +        | +                                          | + 4                                   |



Представление в базе данных



## Алгоритм нечеткого вывода для БД



## Структура ПО



## Интерфейс приложения (1/2)



Информация о правилах вывода

# Информация лингвистических переменных



## Интерфейс приложения (2/2)



Интерфейс для пользователяэксперта

#### Интерфейс для пользователяадминистратора



# Исследование результатов работы системы (1/2)

$$S(x; \alpha, \beta, \gamma) = \begin{cases} 0, x \leqslant \alpha, \\ 2 \cdot \left(\frac{x - \alpha}{\gamma - \alpha}\right)^2, \alpha < x \leqslant \beta, \\ 1 - 2 \cdot \left(\frac{\gamma - x}{\gamma - \alpha}\right)^2, \beta < x \leqslant \gamma, \\ 1, \gamma < x; \end{cases}$$

Уравнение S-функции

#### Уравнение П-функции

$$\Pi(x; \beta, \gamma) = \begin{cases} S(x; \gamma - \beta, \gamma - \frac{\beta}{2}, \gamma), & x \leq \gamma, \\ 1 - S(x; \gamma, \gamma + \frac{\beta}{2}, \gamma + \beta), & \gamma < x; \end{cases}$$

# Исследование результатов работы системы (2/2)



Функции Гаусса, созданные средствами Matlab



П-функции с параметром  $\gamma = 3\sigma$ , хранящиеся в базе данных

|   | c = 1.5 | c = 2 | c = 2.5 | c = 3  | c = 3.5 | c=4    | Гаусс  | Ожидание |
|---|---------|-------|---------|--------|---------|--------|--------|----------|
| 1 | 0       | 0     | 0       | 4256.6 | 4579.4  | 4622.8 | 4921.3 | 4365.8   |
| 2 | 5571.7  | 0     | 7629.6  | 7802   | 4792.9  | 8196.3 | 6361.3 | 6924.4   |

### Исследование времени обработки запросов



Сравнение времени выполнения запросов с кэшированием и без при хранении в БД информации о 1000 системах



Зависимость времени выполнения запросов без кэширования от количества хранящихся в БД систем

#### Заключение

В процессе выполнения курсовой работы выполнены поставленные задачи:

- проведен анализ существующих подходов к хранению нечетких экспертных систем в базе данных;
- спроектирована база данных экспертных систем;
- разработано программное обеспечение для работы с базой данных;
- исследована скорость обработки запросов к базе данных при кэшировании и без.

Цель работы достигнута.