Übungsblatt 19 zur Homologischen Algebra II

Aufgabe 1. Die kanonische Filtrierung eines Komplexes

Die gute Abschneidung eines Komplexes K^{\bullet} über einer abelschen Kategorie $\mathcal A$ ist der Komplex

$$(\tau_{\leq n} K^{\bullet})^{i} := \begin{cases} K^{\bullet}, & \text{für } i < n, \\ \ker(K^{n} \to K^{n+1}), & \text{für } i = n, \\ 0, & \text{für } i > n. \end{cases}$$

- a) Es gibt auch die dumme Abschneidung. Die gute Abschneidung hat ihr gegenüber den Vorteil, dass $H^i(\tau_{\leq n}K^{\bullet})$ noch für $i \leq n$ mit $H^i(K^{\bullet})$ übereinstimmt. Beweise diesen Sachverhalt.
- b) Bestimme den Kokern der kanonischen Inklusion $\tau_{\leq n-1}K^{\bullet} \hookrightarrow \tau_{\leq n}K^{\bullet}$.
- c) Finde einen Quasiisomorphismus vom Kokern in den im Grad n konzentrierten Komplex $H^n(K^{\bullet})[-n]$.
- d) Folgere: In $K(D(\mathrm{Kom}^b(\mathcal{A})))$ gilt die Rechnung $K^{\bullet} = \sum_n (-1)^n H^n(K^{\bullet})$.

 Die abgeleitete Kategorie $D(\mathrm{Kom}^b(\mathcal{A}))$ ist im Allgemeinen nicht abelsch. Ihre K-Theorie ist daher anders zu definieren: als die von den Objekten von $D(\mathrm{Kom}^b(\mathcal{A}))$ erzeugte abelsche Gruppe modulo den Relationen X = X' + X'' für jedes ausgezeichnete Dreieck $X' \to X \to X'' \to D$ as muss dich jetzt aber noch nicht kümmern. Bestätige die Rechnung einfach in $K(\mathrm{Kom}^b(\mathcal{A}))$, verwende aber die zusätzlichen Rechenregeln, dass quasiisomorphe Komplexe dieselbe Klasse in der K-Theorie haben und $L^{\bullet}[1] = -L^{\bullet}$ gilt.

Aufgabe 2. Komplexe mit vorgegebener Kohomologie

Sei \mathcal{B} eine Serresche Unterkategorie einer abelschen Kategorie \mathcal{A} . Sei $\mathrm{Kom}_{\mathcal{B}}(\mathcal{A})$ die volle Unterkategorie derjenigen Objekte K^{\bullet} von $\mathrm{Kom}(\mathcal{A})$, deren Kohomologien $H^n(K^{\bullet})$ alle in \mathcal{B} liegen. Dann definieren wir $D_{\mathcal{B}}(\mathcal{A}) := \mathrm{Kom}_{\mathcal{B}}(\mathcal{A})[\mathrm{qis}^{-1}]$.

- a) Zeige, dass $D_{\mathcal{B}}(\mathcal{A})$ auf kanonische Art und Weise eine volle Unterkategorie von $D(\mathcal{A})$ ist.
- b) Sei jedes Objekt aus \mathcal{B} ein Unterobjekt eines Objekts aus \mathcal{B} , welches als Objekt von \mathcal{A} injektiv ist. Zeige, dass der kanonische Funktor $D^+(\mathcal{B}) \to D^+_{\mathcal{B}}(\mathcal{A})$ eine Kategorienäquivalenz ist.

Aufgabe 3. Nullheit von Morphismen

- a) Zeige: Ein Morphismus f in D(A) ist genau dann Null, wenn ein Quasiisomorphismus s existiert, sodass sf nullhomotop ist.
- b) Zeige, dass die Implikationen

$$f=0$$
 in $\mathrm{Kom}(\mathcal{A})\Longrightarrow f=0$ in $\mathcal{K}(\mathcal{A})\Longrightarrow f=0$ in $\mathcal{D}(\mathcal{A})\Longrightarrow H^n(f)=0$ in \mathcal{A} für alle n

im Allgemeinen nicht umkehrbar sind.

Tipp: Folgt noch.

Aufgabe zu Ext-Gruppen auf Seite 184.