Chương 2: BIẾN ĐỔI Z VÀ ỨNG DỤNG VÀO HỆ THỐNG LTI RỜI RẠC

- Bài 1 BIẾN ĐỔI Z
- Bài 2 CÁC TÍNH CHẤT BIẾN ĐỔI Z
- Bài 3 BIẾN ĐỔI Z NGƯỢC
- Bài 4 HÀM TRUYỀN ĐẠT CỦA HỆ LTI RỜI RẠC
- Bài 5 GIẢI PTSP DÙNG BIẾN ĐỔI Z 1 PHÍA

BAL1 BIẾN ĐỐI Z

1. ĐỊNH NGHĨA BIẾN ĐỔI Z:

■ Biến đổi Z của dãy x(n):

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} \qquad (*)$$

Trong đó Z – biến số phức

Biểu thức (*) còn gọi là biến đổi Z hai phía

Biến đổi Z 1 phía dãy x(n):
$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$
 (**)

- Nếu x(n) nhân quả thì : (*) \equiv (**)
- Ký hiệu:

$$\mathbf{x}(\mathbf{n}) \leftarrow \frac{Z}{\mathbf{x}(\mathbf{n})} \quad \mathbf{x}(\mathbf{z}) = \mathbf{x}(\mathbf{x}(\mathbf{n}))$$

$$\mathbf{X}(\mathbf{z}) \xleftarrow{\mathbf{Z}^{-1}} \mathbf{x}(\mathbf{n}) \quad \text{hay} \quad \mathbf{x}(\mathbf{n}) = \mathbf{Z}^{-1}\{\mathbf{X}(\mathbf{z})\}$$

2. MIỀN HỘI TỤ CỦA BIẾN ĐỔI Z (ROC)

• **Miền hội tụ của biến đổi Z -** ROC (Region Of Convergence) là tập hợp tất cả các giá trị Z nằm trong mặt phẳng phức sao cho X(z) hội tụ.

- Đế tìm ROC của X(z) ta áp dụng tiêu chuẩn Cauchy
- Tiêu chuẩn Cauchy:

$$\sum_{n=0}^{\infty} x(n) = x(0) + x(1) + x(2) + \cdots$$

Re(z)

$$\lim_{n\to\infty} |x(n)|^{\frac{1}{n}} < 1$$

Ví dụ 1: Tìm biến đổi Z & ROC của:

 $x(n) = a^n u(n)$

Giải:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-\infty}^{\infty} \left[a^n u(n) \right] z^{-n} = \sum_{n=0}^{\infty} a^n \cdot z^{-n} = \sum_{n=0}^{\infty} \left(az^{-1} \right)^n$$

Theo tiêu chuẩn Cauchy,

X(z) sẽ hội tụ:

$$X(z) = \frac{1}{1 - az^{-1}}$$

Nếu:
$$\lim_{n\to\infty} \left(\left| az^{-1} \right|^n \right)^{1/n} < 1 \Leftrightarrow |z| > |a|$$

Vây:
$$X(z) = \frac{1}{1 - az^{-1}}; ROC: |Z| > |a|$$

Ví dụ 2: Tìm biến đổi Z & ROC của:

 $x(n) = -a^n u(-n-1)$

Giải:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-\infty}^{\infty} \left[-a^n u(-n-1) \right] z^{-n} = -\sum_{n=-\infty}^{-1} a^n z^{-n}$$

$$=-\sum_{\mathbf{m}=1}^{\infty} \left(\mathbf{a}^{-1}\mathbf{z}\right)^{\mathbf{m}} = -\sum_{\mathbf{m}=0}^{\infty} \left(\mathbf{a}^{-1}\mathbf{z}\right)^{\mathbf{m}} + 1$$

Theo tiêu chuẩn Cauchy,

X(z) sẽ hội tụ:

$$X(z) = -\sum_{m=0}^{\infty} \left(a^{-1}z\right)^{n} + 1 = \frac{1}{1 - az^{-1}}$$

Nếu:
$$\lim_{n\to\infty} \left(\left| a^{-1}z \right|^n \right)^{1/n} < 1 \Leftrightarrow \left| z \right| < \left| a \right|$$

BÀI 2 CÁC TÍNH CHẤT BIẾN ĐỔI Z

1) Tuyến tính

Nếu:
$$\begin{cases} x_1(n) \stackrel{Z}{\longleftrightarrow} X_1(z) : ROC = R_1 \\ x_2(n) \stackrel{Z}{\longleftrightarrow} X_2(z) : ROC = R_2 \end{cases}$$

Thi:
$$a_1 x_1(n) + a_2 x_2(n) \xleftarrow{Z} a_1 X_1(z) + a_2 X_2(z)$$

ROC chứa $R_1 \cap R_2$

Ví dụ 1: Tìm biến đổi Z & ROC của:

$$x(n) = a^{n}u(n) - b^{n}u(-n-1)$$
 với $|a| < |b|$

Giải:

Theo ví dụ 1 và 2, ta có:

$$a^n u(n) \stackrel{Z}{\longleftrightarrow} \frac{1}{1 - az^{-1}}$$

$$R_1:|z|>|a|$$

$$R_2:|z|<|b|$$

Áp dụng tính chất tuyến tính, ta được:

$$a^{n}u(n)-b^{n}u(-n-1) \longleftrightarrow \frac{1}{1-az^{-1}} + \frac{1}{1-bz^{-1}}$$

$$R = R_1 \cap R_2 : |a| < |z| < |b|$$

2) Dịch theo thời gian

Nếu:
$$x(n) \stackrel{Z}{\longleftrightarrow} X(z)$$
 : ROC = R

Thi:
$$x(n-n_0) \stackrel{Z}{\longleftrightarrow} Z^{-n_0} X(z)$$
 : ROC = R'

Với: R' =
$$\begin{cases} R & \text{trừ giá trị } z=0, \text{ khi } n_0>0 \\ R & \text{trừ giá trị } z=\infty, \text{ khi } n_0<0 \end{cases} \qquad x(n) = a^n u(n-1)$$

Giải Ví dụ 3: Tìm biến đổi Z & ROC
$$a^n u(n) \longleftrightarrow \frac{1}{1 - az^{-1}}; ROC: |z| > |a|$$
 của:

i: Vậy:
$$x(n) = a^n u(n-1) = a.a^{n-1} u(n-1)$$
 $\longleftrightarrow \frac{z}{1 - az^{-1}} : |z| > |a|$ Theo ví dụ 1:

3) Nhân với hàm mũ aⁿ

Nếu:
$$x(n) \stackrel{Z}{\longleftrightarrow} X(z) : ROC = R$$

Thi:
$$a^n x(n) \stackrel{Z}{\longleftrightarrow} X(a^{-1}z)$$
 : ROC = $|a|$ R

Ví dụ 4: Xét biến đổi Z & ROC của:

$$x_1(n) = a^n u(n)$$
 và $x_2(n) = u(n)$

Giải:

$$x(n) = u(n) \stackrel{Z}{\longleftrightarrow} X(z) = \sum_{n=-\infty}^{\infty} u(n)z^{-1} = \frac{1}{1-z^{-1}}; R: |z| > 1$$

$$a^{n}x(n) = a^{n}u(n) \xleftarrow{Z} X(a^{-1}z) = \frac{1}{1 - az^{-1}}; R': |z| > |a|$$

4) Đạo hàm X(z) theo z

Nếu:
$$x(n) \stackrel{Z}{\longleftrightarrow} X(z)$$
 : ROC = R

Thi:
$$nx(n) \leftarrow Z \rightarrow -z \frac{dX(z)}{dz} : ROC = R$$

Ví dụ 5: Tìm biến đổi Z & ROC của:

$$g(n) = na^n u(n)$$

Giải:

Theo ví dụ 1:

$$x(n) = a^n u(n) \stackrel{Z}{\longleftrightarrow} X(z) = \frac{1}{1 - az^{-1}}; ROC: |z| > |a|$$

5) Đảo biến số

Nếu:
$$x(n) \stackrel{Z}{\longleftrightarrow} X(z)$$
 : ROC = R

Thi:
$$x(-n) \leftarrow Z \rightarrow X(z^{-1}) : ROC = 1/R$$

- Ví dụ 6: Tìm biến đổi Z & ROC của: $y(n) = (1/a)^n u(-n)$
- Giải: Theo ví dụ 1:

$$x(n) = a^n u(n) \stackrel{Z}{\longleftrightarrow} X(z) = \frac{1}{1 - az^{-1}}; ROC: |z| > |a|$$

$$\Rightarrow y(n) = (1/a)^n u(-n) = a^{-n} u(-n) = x(-n)$$

Áp dụng tính chất đảo biến số:

$$Y(z) = X(z^{-1}) = \frac{1}{1 - a(z^{-1})^{-1}} = \frac{1}{1 - az}; ROC: |z| < 1/|a|$$

6) Liên hiệp phức

Nếu: $x(n) \stackrel{Z}{\longleftrightarrow} X(z) : ROC = R$

Thi: $x*(n) \stackrel{Z}{\longleftrightarrow} X*(z*) : ROC = R$

7) <u>Tích 2 dãy</u>

Nếu:
$$\begin{cases} x_1(n) \stackrel{Z}{\longleftrightarrow} X_1(z) : ROC = R_1 \\ x_2(n) \stackrel{Z}{\longleftrightarrow} X_2(z) : ROC = R_2 \end{cases}$$

Thi:
$$x_1(n)x_2(n) \stackrel{Z}{\longleftrightarrow} \frac{1}{2\pi} \oint_c X_1(v)X_2\left(\frac{z}{v}\right)v^{-1} dv : ROC = R_1 \cap R_2$$

8) Định lý giá trị đầu

Nếu x(n) nhân quả thì:
$$x(0) = \lim_{Z \to \infty} X(z)$$

Ví dụ 7: Tìm x(0), biết $X(z)=e^{1/z}$ và x(n) nhân quả

• Giải:

Theo định lý giá trị đầu:

$$x(0) = \lim_{Z \to \infty} X(z) = \lim_{Z \to \infty} e^{1/z} = 1$$

9) <u>Tích chập 2 dãy</u>

Nếu:
$$\begin{cases} x_1(n) \stackrel{Z}{\longleftrightarrow} X_1(z) : ROC = R_1 \\ x_2(n) \stackrel{Z}{\longleftrightarrow} X_2(z) : ROC = R_2 \end{cases}$$

Thì: $x_1(n) * x_2(n) \xleftarrow{Z} X_1(z) X_2(z)$; ROC có chứa $R_1 \cap R_2$

Ví dụ 8: Tìm y(n) = x(n)*h(n), biết:

$$x(n) = (0.5)^n u(n)$$
 $h(n) = -2^n u(-n-1)$

Giải:

$$x(n) = (0.5)^n u(n) \stackrel{Z}{\longleftrightarrow} X(z) = \frac{1}{1 - 0.5z^{-1}}; ROC: |z| > 0.5$$

$$h(n) = -2^{n} u(-n-1) \stackrel{Z}{\longleftrightarrow} H(z) = \frac{1}{1-2z^{-1}}; ROC: |z| < 2$$

$$Y(z) = X(z)H(z) = \frac{1}{(1-0.5z^{-1})} \cdot \frac{1}{(1-2z^{-1})}; ROC: 0,5 < |z| < 2$$

$$Z^{-1} = -\frac{1}{3} \cdot \frac{1}{(1-0.5z^{-1})} + \frac{4}{3} \cdot \frac{1}{(1-2z^{-1})}; ROC: 0, 5 < |z| < 2$$

$$y(n) = x(n) * h(n) = -\frac{1}{3} (0.5)^n u(n) - \frac{4}{3} 2^n u(-n-1)$$

TỔNG KẾT CÁC TÍNH CHẤT BIẾN ĐỔI Z

x(n)

X(z)

R

$$a_1 x_1(n) + a_2 x_2(n)$$

$$a_1X_1(z) + a_2X_2(z)$$

Chứa $\mathbf{R}_1 \cap \mathbf{R}_2$

$$x(n-n_0)$$

$$Z^{-n0}X(z)$$

R'

$$a^n x(n)$$

$$X(a^{-1}z)$$

R

$$-z dX(z)/dz$$

R

$$x(-n)$$

$$X(z^{-1})$$

1/R

$$x*(n)$$

$$X*(z*)$$

R

$$x_1(n)x_2(n)$$

$$\frac{1}{2\pi j} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$$

 $R_1\!\cap R_2$

$$x(0)=\lim X(z\to\infty)$$

$$x_1(n)*x_2(n)$$
 $X_1(z)X_2(z)$

Chứa $\mathbf{R_1} \cap \mathbf{R_2}$

BIÉN ĐỔI Z MỘT SỐ ĐÃY THÔNG DỤNG

x(n)	X(z)	ROC
$\delta(n)$	1	$\forall z$
u(n)	1	z > 1
-u(-n-1)	$1-z^{-1}$	z < 1
a ⁿ u(n)	1	z > a
-a ⁿ u(-n-1)	$\overline{1-az^{-1}}$	z < a
na ⁿ u(n)	az^{-1}	z > a
-na ⁿ u(-n-1)	$\overline{(1-az^{-1})^2}$	z < a
$\cos(\omega_{o}n)u(n)$	$(1-z^{-1}\cos\omega_{o})/(1-2z^{-1}\cos\omega_{o}+z^{-2})$	z > 1
$\sin(\omega_{o}n)u(n)$	$(z^{-1}\sin\omega_{o})/(1-2z^{-1}\cos\omega_{o}+z^{-2})$	z > 1

BÀI 3 BIẾN ĐỔI Z NGƯỢC

1. CÔNG THỰC BIẾN ĐỔI Z NGƯỢC

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$
 (*)

Với C - đường cong khép kín bao quanh gốc tọa độ trong mặt phẳng phức, nằm trong miền hội tụ của X(z), theo chiều (+) ngược chiều kim đồng hồ

- ✓ Trên thực tế, biểu thức (*) ít được sử dụng do tính chất phức tạp của phép lấy tích phân vòng
- Các phương pháp biến đổi Z ngược:
- Thặng dư
- Khai triển thành chuỗi luỹ thừa
- > Phân tích thành tổng các phân thức tối giản

2. PHƯƠNG PHÁP THẠNG DƯ

a) Khái niệm thặng dư của 1 hàm tại điểm cực:

- Khái niệm điểm cực, điểm không.
- \blacksquare Thặng dư tại điểm cực \mathbf{Z}_{ci} bội \mathbf{r} của $\mathbf{F}(\mathbf{z})$ được định nghĩa:

$$\operatorname{Res}[F(z)]_{Z=Z_{ci}} = \frac{1}{(r-1)!} \frac{d^{(r-1)}}{dz^{(r-1)}} [F(z)(z-z_{ci})^r]_{Z=Z_{ci}}$$

Thặng dư tại điểm cực đơn $\mathbf{Z_{ci}}$ của $\mathbf{F(z)}$ được định nghĩa:

Res
$$[F(z)]_{z=z_{ci}} = [F(z)(z-z_{ci})]_{z=z_{ci}}$$

b) Phương pháp:

• Theo lý thuyết thặng dư, biểu thức biến đổi Z ngược theo tích phân vòng (*) được xác định bằng tổng các thặng dư tại tất cả các điểm cực của hàm $\mathbf{X}(\mathbf{z})\mathbf{z}^{\mathbf{n}-1}$:

$$X(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz = \sum_i \text{Res} [X(z) z^{n-1}]_{z=Z_{ci}}$$

Trong đố:

- $\mathbf{Z_{ci}}$ các điểm cực của $X(z)z^{n-1}$ nằm trong đường cong C
- $Arr Res[X(z)z^{n-1}]_{z=zci}$ thặng dư của $X(z)z^{n-1}$ tại điểm cực z_{ci}
- > Tổng cộng các thặng dư tại tất cả các điểm cực, ta được x(n)

Ví dụ 1: Tìm biến đổi Z ngược của:
$$X(z) = \frac{z}{(z-2)}$$
 Giải:

Thay X(z) vào (*), ta được

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz = \frac{1}{2\pi j} \oint_C \frac{z}{(z-2)} z^{n-1} dz = \sum_{i=1}^{n} \text{Res} \left[\frac{z^n}{(z-2)} \right]$$

Chọn C là đường cong khép kín nằm bên ngoài vòng tròn có bán kính là 2

■ **n≥0:** $X(z)z^{n-1} = \frac{z^n}{(z-2)}$ có 1 điểm cực đơn $Z_{c1} = 2$

Thặng dư tại $Z_{c1}=2$:

Res
$$\left[\frac{z^n}{(z-2)}\right]_{z=2} = \left[\frac{z^n}{(z-2)}(z-2)\right]_{z=2} = 2^n$$

n<0:
$$X(z)z^{n-1} = \frac{1}{(z-2)z^{-n}} = \frac{1}{(z-2)z^m}$$
 $Z_{c1}=2 \text{ don,}$ $Z_{c2}=0 \text{ bội m}$

Với:
$$\mathbf{Z}_{e1} = 2$$
 Res $\left[\frac{1}{(z-2)z^m}\right]_{z=2} = \left[\frac{1}{(z-2)z^m}(z-2)\right]_{z=2} = \frac{1}{2^m}$

Với: $\mathbb{Z}_{c2}=0$ bội m:

$$\operatorname{Res}\left[\frac{1}{(z-2)z^{m}}\right]_{z=0} = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[\frac{1}{(z-2)z^{m}} z^{m}\right]_{z=0}$$

$$= \frac{1}{(m-1)!} \left[\frac{(m-1)!(-1)^{m-1}}{(-2)^m} \right] = -\frac{1}{2^m}$$

Vây, với **n<0:**
$$\sum \text{Res} \left| \frac{z^n}{(z-2)} \right| = \frac{1}{2^m} - \frac{1}{2^m} = 0$$

suy ra
$$x(n) = 2^n : n \ge 0$$
 hay $x(n) = 2^n u(n)$

3. PHƯƠNG PHÁP KHAI TRIỀN THÀNH CHUỐI LUỸ THỦA

Giả thiết $\mathbf{X}(\mathbf{z})$ có thể khai triển: $X(z) = \sum a_n z^{-n}$

$$X(z) = \sum_{n=-\infty}^{\infty} a_n z^{-n}$$

Theo định nghĩa biến đổi Z

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

Đồng nhất (*) & (**), rút ra:

$$x(n) = a_n$$

Ví dụ 2: Tìm x(n) biết:

$$X(z) = (z^{2} + 1)(1 - 2z^{-1} + 3z^{-2})$$

Giải:

$$ROC: 0 < |z| < \infty$$

Khai triển X(z) ta được:

$$X(z) = z^{2} - 2z + 4 - 2z^{-1} + 3z^{-2} = \sum_{n=2}^{2} x(n)z^{-n}$$

$$x(n) = \{1, -2, 4, -2, 3\}$$

Ví dụ 3: Tìm x(n) biết:
$$X(z) = \frac{1}{1 - 2z^{-1}} : |z| > 2$$

Giải:

Do ROC của X(z) là |z|>2, nên x(n) sẽ là dãy nhân quả và sẽ được khai triển thành chuỗi có dạng:

$$X(z) = \sum_{n=0}^{\infty} a_n z^{-n} = a_0 + a_1 z^{-1} + a_2 z^{-2} + \cdots$$
 (*)

Để có dạng (*), thực hiện phép chia đa thức dưới đây:

$$1 - 2z^{-1}$$

$$1-2z^{-1}$$

$$1 + 2z^{-1} + 2^2z^{-2} + \cdots$$

$$2z^{-1}$$

$$2z^{-1} - 2^2z^{-2}$$

$$\Rightarrow x(n)$$

$$\Rightarrow x(n) = 2^n : n \ge 0 \equiv 2^n u(n)$$

$$2^{2}z^{-2}$$

$$\Rightarrow X(z) = \sum_{n=0}^{\infty} 2^n z^{-n}$$

Ví dụ 4: Tìm x(n) biết:
$$X(z) = \frac{1}{1 - 2z^{-1}} : |z| < 2$$

Giải:

Do ROC của X(z) là |z| < 2, nên x(n) sẽ là dãy phản nhân quả và sẽ được khai triển thành chuỗi có dạng:

$$X(z) = \sum_{n=-1}^{-\infty} a_n z^{-n} = a_{-1} z^1 + a_{-2} z^2 + a_{-3} z^3 + \cdots$$
 (**)

Để có dạng (**), thực hiện phép chia đa thức dưới đây:

$$\begin{array}{ccc}
1 & -2^{1}z^{-1} + 1 \\
1 - 2^{-1}z^{1} & -2^{-1}z^{1} - 2^{-2}z^{2} - 2^{-3}z^{3} + \cdots \\
2^{-1}z^{1} & \Rightarrow X(z) = \sum_{n=-1}^{-\infty} -2^{n}z^{-n} \\
2^{-1}z^{1} - 2^{-2}z^{2} & \Rightarrow x(n) = -2^{n} : n < 0 \equiv -2^{n}u(-n-1)
\end{array}$$

4. PHƯƠNG PHÁP PHÂN TÍCH THÀNH TỔNG CÁC PHÂN THỰC TỐI GIẢN

Xét **X**(**z**) là phân thức hữu tỉ có dạng:

$$X(z) = \frac{D(z)}{B(z)} = \frac{d_K z^K + d_{K-1} z^{K-1} + \dots + d_1 z + d_0}{b_N z^N + b_{N-1} z^{N-1} + \dots + b_1 z + b_0}$$
 với: $K, N > 0$

■ Nếu **K>N**, thực hiện phép chia đa thức, ta được:

$$X(z) = \frac{D(z)}{B(z)} = C(z) + \frac{A(z)}{B(z)} = C(z) + \frac{a_M z^M + a_{M-1} z^{M-1} \dots + a_1 z + a_0}{b_N z^N + b_{N-1} z^{N-1} + \dots + b_1 z + b_0}$$

Ta được C(z) là đa thức và phân thức A(z)/B(z) có bậc **M≤N**

Nếu **K≤N**, thì X(z) có dạng giống phân thức A(z)/B(z)

Việc lấy biến đổi Z ngược đa thức C(z) là đơn giản, vấn đề phức tạp là tìm biến đổi Z ngược A(z)/B(z) có bậc $M \leq N$

Xét **X**(**z**)/**z** là phân thức hữu tỉ có bậc **M≤N**:

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{a_M z^M + a_{M-1} z^{M-1} \dots + a_1 z + a_0}{b_N z^N + b_{N-1} z^{N-1} + \dots + b_1 z + b_0}$$

Xét đén các điểm cực của $\mathbf{X}(\mathbf{z})/\mathbf{z}$, hay nghiệm của $\mathbf{B}(\mathbf{z})$ là đơn, bội và phức liên hiệp

a) Xét X(z)/z có các điểm cực đơn: $Z_{c1}, Z_{c2}, Z_{c3}, \dots Z_{cN}$,

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{A(z)}{b_N(z - z_{c1})(z - z_{c2})\cdots(z - z_{cN})}$$

Theo lý thuyết hàm hữu tỉ, X(z)/z phân tích thành:

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{K_1}{(z - z_{c1})} + \frac{K_2}{(z - z_{c2})} + \dots + \frac{K_N}{(z - z_{cN})} = \sum_{i=1}^{N} \frac{K_i}{(z - z_{ci})}$$

Với hệ số $\mathbf{K_i}$ xác định bởi:

$$K_{i} = \frac{X(z)}{z} (z - z_{ci}) \bigg|_{z = Z_{ci}}$$

Suy ra X(z) có biểu thức:

$$X(z) = \frac{K_1}{(1 - z_{c1}z^{-1})} + \frac{K_2}{(1 - z_{c2}z^{-1})} + \dots + \frac{K_N}{(1 - z_{cN}z^{-1})} = \sum_{i=1}^{N} \frac{K_i}{(1 - z_{ci}z^{-1})}$$

Xét:
$$X_i(z) = \frac{K_i}{(1 - z_{ci}z^{-1})}$$

- Nếu ROC: $|\mathbf{z}| > |\mathbf{z}_{ci}|$ $\Rightarrow x_i(n) = K_i(z_{ci})^n u(n)$
- Nếu ROC: $|\mathbf{z}| < |\mathbf{z}_{ci}|$ $\Rightarrow x_i(n) = -K_i(z_{ci})^n u(-n-1)$
- $Vay: x(n) = \sum_{i=1}^{N} x_i(n)$

Ví dụ 5.: Tìm x(n) biết:
$$X(z) = \frac{2z^2 - 5z}{z^2 - 5z + 6}$$

với các miền hội tụ: a) |z|>3, b) |z|<2, c) 2<|z|<3

Giải:

$$\frac{X(z)}{z} = \frac{2z-5}{z^2-5z+6} = \frac{2z-5}{(z-2)(z-3)} = \frac{K_1}{(z-2)} + \frac{K_2}{(z-3)}$$

Với các hệ số được tính bởi:

$$K_1 = \frac{X(z)}{z}(z-2)\Big|_{z=2} = \frac{2z-5}{(z-3)}\Big|_{z=2} = 1$$

$$K_2 = \frac{X(z)}{z}(z-3)\Big|_{z=3} = \frac{2z-5}{(z-2)}\Big|_{z=3} = 1$$

$$\frac{X(z)}{z} = \frac{1}{(z-2)} + \frac{1}{(z-3)} \Rightarrow X(z) = \frac{1}{(1-2z^{-1})} + \frac{1}{(1-3z^{-1})}$$

$$X(z) = \frac{1}{(1 - 2z^{-1})} + \frac{1}{(1 - 3z^{-1})}$$

Với các miền hội tụ:

a)
$$|\mathbf{z}| > 3$$
: $x(n) = 2^n u(n) + 3^n u(n)$

b)
$$|\mathbf{z}| < 2$$
: $x(n) = -2^n u(-n-1) - 3^n u(-n-1)$

c)
$$2 < |z| < 3$$
: $x(n) = 2^n u(n) - 3^n u(-n-1)$

b) Xét X(z)/z có điểm cực Z_{c1} bội r và các điểm cực đơn: $Z_{c(r+1)}$,

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{A(z)}{b_N(z - z_{c1})^r (z - z_{c(r+1)}) \cdots (z - z_{cN})}$$

Theo lý thuyết hàm hữu tỉ, X(z)/z phân tích thành:

$$\frac{X(z)}{z} = \frac{K_1}{(z - z_{c1})} + \frac{K_2}{(z - z_{c1})^2} + \dots + \frac{K_r}{(z - z_{c1})^r} + \frac{K_{r+1}}{(z - z_{c(r+1)})} + \dots + \frac{K_N}{(z - z_{cN})} = \sum_{i=1}^r \frac{K_i}{(z - z_{c1})^i} + \sum_{l=r+1}^N \frac{K_l}{(z - z_{cl})^l}$$

Với hệ số **K**; xác định bởi:

$$K_{i} = \frac{1}{(r-i)!} \frac{d^{(r-i)}}{dz^{(r-i)}} \left[\frac{X(z)}{z} (z - z_{c1})^{r} \right]_{z=z_{c1}} \qquad K_{l} = \frac{X(z)}{z} (z - z_{cl}) \Big|_{z=z_{cl}}$$

$$K_{l} = \frac{X(z)}{z} (z - z_{cl}) \bigg|_{z = Z_{cl}}$$

Với giả thiết ROC của X(z): $|z| > max\{ |z_{ci}| \}$: i=1+N,

biến đổi Z ngược của thành phần $\mathbf{K_i}/(\mathbf{z}\mathbf{-z_{ci}})^{r}$ sẽ là:

$$\frac{z}{(z-a)^i} \stackrel{Z^{-1}}{\longleftrightarrow} \frac{n(n-1)...(n-i+2)a^{n-i+1}}{(i-1)!} u(n)$$

Vậy ta có biểu thức biến đổi Z ngược là:

$$x(n) = \sum_{i=1}^{r} K_i \frac{n(n-1)...(n-i+2)a^{n-i+1}}{(i-1)!} u(n) + \sum_{l=r+1}^{N} K_l (z_{cl})^n u(n)$$

$$X(z) = \frac{2z^3 - 5z^2 + 4z}{(z - 2)^2(z - 1)} |ROC: |z| > 2$$

Giải:

$$\frac{X(z)}{z} = \frac{2z^2 - 5z + 4}{(z - 2)^2(z - 1)} = \frac{K_1}{(z - 2)} + \frac{K_2}{(z - 2)^2} + \frac{K_3}{(z - 1)}$$

Với các hệ số được tính bởi:

$$K_{1} = \frac{1}{(2-1)!} \frac{d^{(2-1)}}{dz^{(2-1)}} \left[\frac{X(z)}{z} (z-2)^{2} \right]_{z=2} = \frac{d}{dz} \left[\frac{2z^{2} - 5z + 4}{(z-1)} \right]_{z=2} = 1$$

$$K_{2} = \frac{1}{(2-2)!} \frac{d^{(2-2)}}{dz^{(2-2)}} \left[\frac{X(z)}{z} (z-2)^{2} \right]_{z=2} = \frac{2z^{2} - 5z + 4}{(z-1)} \bigg|_{z=2} = 2$$

$$K_3 = \frac{X(z)}{z}(z-1)\Big|_{z=1} = \frac{2z^2 - 5z + 4}{(z-2)^2}\Big|_{z=1} = 1$$

Vậy **X(z)/z** có biểu thức là:

$$\frac{X(z)}{z} = \frac{1}{(z-2)} + \frac{2}{(z-2)^2} + \frac{1}{(z-1)} \qquad ROC: |z| > 2$$

$$\Rightarrow X(z) = \frac{1}{(1 - 2z^{-1})} + \frac{2z^{-1}}{(1 - 2z^{-1})^2} + \frac{1}{(1 - z^{-1})}$$

$$\Rightarrow x(n) = 2^n u(n) + n2^n u(n) + u(n)$$

c) Xét X(z) có cặp điểm cực Z_{c1} và Z^*_{c1} liên hợp phức, các điểm cực cờn lại đơn: $Z_{c3}, ..., Z_{cN}$,

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{A(z)}{b_N(z - z_{c1})(z - z_{c1}^*)(z - z_{c3}) \cdots (z - z_{cN})}$$

X(z)/z được phân tích thành:

$$\frac{X(z)}{z} = \frac{K_1}{(z - z_{c1})} + \frac{K_2}{(z - z_{c1})} + \frac{K_3}{(z - z_{c3})} + \dots + \frac{K_N}{(z - z_{cN})}$$

$$\frac{X(z)}{z} = \frac{K_1}{(z - z_{c1})} + \frac{K_2}{(z - z_{c1})} + \sum_{i=3}^{N} \frac{K_i}{(z - z_{ci})}$$

Với các hệ số $\mathbf{K_1}$, $\mathbf{K_i}$ được tính giống điểm cực đơn:

$$K_{i} = \frac{X(z)}{z}(z - z_{ci})\Big|_{z=z_{ci}} : i = 1 \div N$$

Do các hệ số A(z), B(z) là thực, nên $K_2=K_1^*$

Xét:
$$\frac{\mathbf{X}_{1}(\mathbf{z})}{\mathbf{z}} = \frac{\mathbf{K}_{1}}{(\mathbf{z} - \mathbf{z}_{c1})} + \frac{\mathbf{K}_{1}^{*}}{(\mathbf{z} - \mathbf{z}_{c1}^{*})}$$

$$\Rightarrow \mathbf{X}_{1}(\mathbf{z}) = \frac{\mathbf{K}_{1}}{(1 - \mathbf{z}_{c1}\mathbf{z}^{-1})} + \frac{\mathbf{K}_{1}^{*}}{(1 - \mathbf{z}_{c1}^{*}\mathbf{z}^{-1})} \quad \text{N\'eu gọi:} \begin{cases} K_{1} = |K_{1}|e^{j\beta} \\ z_{c1} = |z_{c1}|e^{j\alpha} \end{cases}$$

Và giả thiết ROC: $|\mathbf{z}| > \max\{|\mathbf{z}_{ci}|\}$:

$$\Rightarrow x_{1}(n) = \left[K_{1}(z_{c1})^{n} + K_{1}^{*}(z_{c1}^{*})^{n} \right] \mu(n)$$
$$= 2 |K_{1}| |z_{c1}|^{n} \cos(n\alpha + \beta) \mu(n)$$

Vây:
$$x(n) = \left\{ 2|K_1||z_{c1}|^n \cos(n\alpha + \beta) + \sum_{i=3}^N K_i(z_{ci})^n \right\} u(n)$$

Ví dụ 7: Tìm x(n) biết:
$$X(z) = \frac{-z}{(z^2 - 2z + 2)(z - 1)} : |z| > \sqrt{2}$$

Giải:

$$\frac{X(z)}{z} = \frac{-1}{(z^2 - 2z + 2)(z - 1)} = \frac{-1}{[z - (1 + j)][z - (1 - j)](z - 1)}$$

$$= \frac{K_1}{[z - (1+j)]} + \frac{K_1^*}{[z - (1-j)]} + \frac{K_3}{(z-1)}$$

$$K_1 = \frac{-1}{[z - (1 - j)](z - 1)} \Big|_{z = 1 + j} = \frac{1}{2}$$
 $K_3 = \frac{-1}{(z^2 - 2z + 2)} \Big|_{z = 1} = -1$

$$\Rightarrow X(z) = \frac{1/2}{\left[1 - (1+j)z^{-1}\right]} + \frac{1/2}{\left[1 - (1-j)z^{-1}\right]} + \frac{-1}{(1-z^{-1})} \quad |z| > \sqrt{2}$$

$$\Rightarrow x(n) = (\sqrt{2})^n \cos(n\frac{\pi}{4})u(n) - u(n)$$

BÀI 4 HÀM TRUYỀN ĐẠT CỦA HỆ THỐNG TTBB

1. Định nghĩa hàm truyền đạt

Miền n:
$$x(n) \longrightarrow h(n) \longrightarrow y(n) = x(n) *h(n)$$

Miền Z: $X(z) \longrightarrow H(z) \longrightarrow Y(z) = X(z)H(z)$
 $h(n) \longrightarrow H(z)$: gọi là hàm truyền đạt $H(z) = Y(z)/X(z)$

2. Hàm truyền đạt được biểu diễn theo các hệ số PTSP

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r) \stackrel{\mathbf{Z}}{\longleftrightarrow} Y(z) \sum_{k=0}^{N} a_k z^{-k} = X(z) \sum_{r=0}^{M} b_r z^{-r}$$

$$\Rightarrow H(z) = \frac{Y(z)}{X(z)} = \sum_{r=0}^{M} \mathbf{b}_r \mathbf{z}^{-r} / \sum_{k=0}^{N} \mathbf{a}_k \mathbf{z}^{-k}$$

Ví dụ 1: Tìm H(z) và h(n) của hệ thống nhân quả cho bởi:

$$y(n) - 5y(n-1) + 6y(n-2) = 2x(n) - 5x(n-1)$$

Lấy biến đổi Z hai vế PTSP và áp dụng tính chất dịch theo t/g:

$$Y(z) \left[1 - 5z^{-1} + 6z^{-2} \right] = X(z) \left[2 - 5z^{-1} \right]$$

Giải:

$$\Rightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{2 - 5z^{-1}}{1 - 5z^{-1} + 6z^{-2}} = \frac{2z^2 - 5z}{z^2 - 5z + 6}$$

$$\frac{H(z)}{z} = \frac{2z-5}{(z-2)(z-3)} = \frac{K_1}{(z-2)} + \frac{K_2}{(z-3)}$$

$$K_1 = \frac{2z-5}{(z-3)} \Big|_{z=2} = 1$$
 $K_2 = \frac{2z-5}{(z-2)} \Big|_{z=3} = 1$

$$\Rightarrow H(z) = \frac{1}{(1 - 2z^{-1})} + \frac{1}{(1 - 3z^{-1})}$$

Do hệ thống nhân quả nên: $h(n) = (2^n + 3^n) u(n)$

3. Hàm truyền đạt của các hệ thống ghép nối

a. Ghép nối tiếp

Theo tính chất tích chập: $h_1(n)*h_2(n) \stackrel{Z}{\longleftrightarrow} H_1(z)H_2(z)$

■ Miền Z:
$$X(z) \longrightarrow H_1(z) \longrightarrow H_2(z) \longrightarrow Y(z)$$

$$X(z) \longrightarrow H(z) = H_1(z)H_2(z) \longrightarrow Y(z)$$

3. Hàm truyền đạt của các hệ thống ghép nối (tiếp)

4. Tính nhân quả và ổn định của hệ TTBB rời rạc

a. Tính nhân quả

■ Miền n: Hệ thống TTBB là nhân quả \iff h(n) = 0 : n<0

• Miền Z:
$$H(z) = \frac{A(z)}{b_N(z - z_{c1})(z - z_{c2})\cdots(z - z_{cN})}$$

Do h(n) là tín hiệu nhân quả, nên miền hội tụ H(z) sẽ là:

$$|z| > |z_c|^{\max} = \max\{|z_{c1}|, |z_{c2}|, \dots, |z_{cN}|\}$$

Hệ thống TTBB là nhân quả

ROC của H(z) là:

$$|z| > |z_c|^{\text{Imax}} = \max\{|z_{c1}|, |z_{c2}|, \dots, |z_{cN}|\}$$

4. Tính nhân quả và ổn định của hệ TTBB rời rạc (tiếp)

b. Tính ổn định

- Miền n: Hệ thống TTBB là ổn định $\iff \sum_{n=1}^{\infty} |h(n)| < \infty$ (*)
- Miền Z:

$$H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n} \leq \left| \sum_{n=-\infty}^{\infty} h(n) \right| z^{-n} \right|$$

$$\Rightarrow |H(z)| \le \left| \sum_{n=-\infty}^{\infty} h(n) \right| \quad \mathbf{khi} \quad |z| = 1$$

Theo d/k ổn định (*), nhận thấy H(z) cũng sẽ hội tụ với |z|=1

Hệ thống TTBB
là ổn định
$$\longleftarrow$$
ROC của $H(z)$
có chứa $|z|=1$

c. Tính nhân quả và ổn định

Hệ thống TTBB là nhân quả

ROC của H(z) là:

$$|z| > |z_c|^{\max} = \max\{|z_{c1}|, |z_{c2}|, \dots, |z_{cN}|\}$$

Hệ thống TTBB là ổn định

ROC của H(z) có chứa |z|=1

Hệ thống TTBB là nhân quả và ổn định

ROC của H(z) là:

$$|z| > |z_c|^{\max}$$
 và $|z_c|^{\max} < 1$

Ví dụ: 1: Tìm h(n) của hệ thống, biết:
$$H(z) = \frac{4z^2 - 5z}{2z^2 - 5z + 2}$$

$$H(z) = \frac{1z^2 - 5z}{2z^2 - 5z + 2}$$

- a. Đế hệ thống là nhân quả
- b. Để hệ thống là ổn định
- c. Để hệ thống là nhân quả và ổn định

Giải:

$$\frac{H(z)}{z} = \frac{4z - 5}{2(z - 1/2)(z - 2)} = \frac{K_1}{(z - 1/2)} + \frac{K_2}{(z - 2)} = \frac{1}{(z - 1/2)} + \frac{1}{(z - 2)}$$

$$\Rightarrow H(z) = \frac{1}{1 - (1/2)z^{-1}} + \frac{1}{(1 - 2z^{-1})}$$

- a. Hệ thống nhân quả (|z|>2): $h(n)=[(1/2)^n + 2^n] u(n)$
- b. Hệ thống ốn định (1/2 < |z| < 2): $h(n) = (1/2)^n u(n) 2^n u(-n-1)$
- c. Hệ thống nhân quả và ốn định: ROC: |z|>2 không thể chứa $|z|=1 \Rightarrow$ không tồn tại h(n)

BÀI 5. GIẢI PTSP DÙNG BIẾN ĐỔI Z 1 PHÍA

$$y(n-1) \rightleftharpoons \sum_{n=0}^{\infty} y(n-1)z^{-n} = y(-1) + y(0)z^{-1} + y(1)z^{-2} + \cdots$$

$$= y(-1) + z^{-1} [y(0) + y(1)z^{-1} + \cdots]$$

$$= y(-1) + z^{-1}Y(z)$$

$$y(n-2) \rightleftharpoons \sum_{n=0}^{\infty} y(n-2)z^{-n} = y(-2) + y(-1)z^{-1} + y(0)z^{-2} + \cdots$$

$$= y(-2) + y(-1)z^{-1} + z^{-2} [y(0) + y(1)z^{-1} + \cdots]$$

$$= y(-2) + y(-1)z^{-1} + z^{-2}Y(z)$$

Tổng quát, biến đổi Z 1 phía của y(n-k):

$$y(n-k) \stackrel{\mathbf{Z}}{\rightleftharpoons} z^{-k}Y(z) + \sum_{r=1}^{k} y(-r)z^{r-k}$$
1 phía

Ví dụ 1: Hãy giải PTSP dùng biến đổi Z 1 phía

$$y(n) - 3y(n-1) + 2y(n-2) = x(n) : n \ge 0$$

biết:
$$x(n)=3^{n-2}u(n)$$
 và $y(-1)=-1/3$; $y(-2)=-4/9$

Giải:

Lấy biến đổi Z 1 phía hai vế PTSP:

$$Y(z) - 3[y(-1)+z^{-1}Y(z)] + 2[y(-2)+y(-1)z^{-1}+z^{-2}Y(z)] = X(z)$$
 (*)

Thay y(-1)=-1/3; y(-2)=-4/9 và $X(z)=3^{-2}/(1-3z^{-1})$ vào (*), rút ra:

$$\frac{Y(z)}{z} = \frac{1}{(z-1)(z-3)} = -\frac{1}{2} \cdot \frac{1}{(z-1)} + \frac{1}{2} \cdot \frac{1}{(z-3)}$$

$$\Rightarrow Y(z) = -\frac{1}{2} \cdot \frac{1}{(1-z^{-1})} + \frac{1}{2} \cdot \frac{1}{(1-3z^{-1})}$$

$$\Rightarrow y(n) = \frac{1}{2} \left[3^n - 1 \right] u(n)$$