Chapter 1

n-Armed bandits

1.1 Notes

1.1.1 *n*-Armed Bandit Problem

We have n different options (actions) representing n different slot machines. Each action has a given reward, sampled from a stationary probability q(a) only dependent on the chosen action a. We want to maximize the (expected) total reward over a given (large) time T: $\sum t = 1^T R_t$. To do that, we estimate the value $Q_t(a)$ of each action given what we have seen so far. Let R_t the reward at time t and $N_t(a)$ the number of times the action a has been chosen so far.

1.1.2 Estimating value

We estimate the value with:

$$Q_t(a) = \frac{R_1 + \dots + R_{N_t(a)}}{N_t(a)}$$

with $Q_t(a) = Q_1(a)$ a default value. With $N_t(a) \to \infty$ we have $Q_t(a) \to q(a)$. Step-by-step, this can be calculated using incremental implementation to save computation time:

$$Q_{k+1} = \frac{1}{k} \sum_{i=1} k R_t$$

 $Q_{k+1} = Q_k + \frac{1}{k} \left(R_k - Q_k \right)$

This looks like $NewEstimate \leftarrow OldEstimate + StepSize$ (Target - OldEstimate), with $StepSize = \frac{1}{k}$ here.

For tasks that never stop this estimation diverges, plus we may be interested in tracking a nonstationary problem. To achieve this, we can introduce a constant step size, that effectively weights recent rewards more heavily:

$$Q_{k+1} = Q_k + \alpha \left(R_k - Q_k \right)$$

$$Q_{k+1} = (1 - \alpha)^k Q_1 + \alpha \sum_{i=1}^k (1 - \alpha)^{k-i} R_t$$

As it turns out, this defines a weighted average with weights $(1-\alpha)^k$, $\alpha(1-\alpha)^k$..., $\alpha(1-\alpha)^{k-i}$ (they sum to 1).

By denoting $\alpha_k(a)$ the weight (step-size) used for the k-th selection of action a, we need to have two conditions:

- 1. $\sum_{k=1}^{\infty} \alpha_k(a) = \infty$, to guarantee that we overcome initial estimate, and
- 2. $\sum_{k=1}^{\infty} \alpha_k^2(a) < \infty$, to guarantee convergence.

Chosing actions

To chose the action, the *greedy* way is to select the one with the highest value: $A_t = \operatorname{argmax}_a Q_t(a)$. Problem: this does not spend any time to sample other actions to refine the estimates $Q_t(a)$.

First solution: ϵ -greedy algorithms, where $A_t = \operatorname{argmax}_a Q_t(a) \ 1 - \epsilon$ of the times and $A_t = \operatorname{uniform}(a)$ the other ϵ of the times.

Second solution: optimistic initial values, to preferentially select unsampled actions.