Linear Models for Classification and Regression

Leonardo Maglanoc

TUM

June 6, 2021

Table of Contents

Introduction

Multiple Linear Regression

Binary Logistic Regression for Classification

Summary and Outlook

Why use Linear Models?

Figure: adapted from https://www.kaggle.com/kaggle-survey-2020

Regression vs Classification

Figure: left: Classification, right: Regression (adapted from [1])

Idea of Linear Models:

$$a_1v_1 + a_2v_2 + \cdots + a_nv_n$$

Table of Contents

Introduction

Multiple Linear Regression

Binary Logistic Regression for Classification

Summary and Outlook

Table of Contents

Introduction

Multiple Linear Regression

Binary Logistic Regression for Classification

Summary and Outlook

Model

Figure: geometric representation of a regression plane (adapted from [2])

Mathematical Description

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_0 \\ \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

minimize error via Least Squares

$$\underset{\boldsymbol{\beta}}{\operatorname{arg min}} \left[\left(\boldsymbol{y} - X \boldsymbol{\beta} \right)^T \left(\boldsymbol{y} - X \boldsymbol{\beta} \right) \right]$$

Assumptions and Goodness of Fit

Assumption:

- input parameters are (linearly) independent from each other [3]
- errors ϵ_i have **Normal Distribution** with zero mean and constant variance

Goodness of Fit:

- Mean Squared Error
- $\blacksquare R^2$
- F-Test (Hypothesis Test)

show Python-Notebook!
Library: Statsmodels with Python
https://worldhappiness.report/faq/

	Country name	Ladder score	Logged GDP per capita	Social support	Healthy life expectancy
0	Finland	7.842	10.775	0.954	72.0
1	Denmark	7.620	10.933	0.954	72.7
2	Switzerland	7.571	11.117	0.942	74.4
3	Iceland	7.554	10.878	0.983	73.0
4	Netherlands	7.464	10.932	0.942	72.4

Figure: excerpt of happines-dataset

	OLS Regress	==========	========	========	===	
Dep. Variable:	Ladder score	R-squared:		0.	756	
Model:	OLS	Adj. R-squar	ed:	0.	746	
Method:	Least Squares	F-statistic:		73	. 27	
Date: 1	hu, 03 Jun 2021	Prob (F-stat:	istic):	5.06e	-41	
Time:	12:31:21	Log-Likeliho	od:	-116	.50	
No. Observations:	149	AIC:		24	7.0	
Df Residuals:	142	BIC:		26	8.0	
Df Model:	6					
Covariance Type:	nonrobust					
	coef	std err	t		[0.025	
const	-2.2372	0.630				
Logged GDP per capita	0.2795	0.087	3.219	0.002	0.108	0.45
Social support	2.4762	0.668	3.706	0.000	1.155	3.79
Healthy life expectanc	y 0.0303	0.013	2.274	0.024	0.004	0.05
Freedom to make life o	hoices 2.0105	0.495	4.063	0.000	1.032	2.98
Generosity	0.3644	0.321	1.134	0.259	-0.271	0.99
Perceptions of corrupt	ion -0.6051	0.291	-2.083	0.039	-1.179	-0.03
======================================	12.908	Durbin-Watso	======= n :	1.	614	
Prob(Omnibus):	0.002					
Skew:	-0.667		/-	0.00		
Kurtosis:	3.650	Cond. No.		1.15e		

Table of Contents

Introduction

Multiple Linear Regression

Binary Logistic Regression for Classification

Summary and Outlook

Reuse

- Can we somehow reuse/reframe previously presented Linear Regression Methods to solve a Classification problem?
- Reason why it's called Logistic **Regression**

Model

$$\log\left(\frac{1}{1-\rho}\right) = X\beta$$

$$\Rightarrow P(y=1|x) = \frac{1}{1+e^{-(\beta^T x)}}$$

Figure: logistic function

```
show Python-Notebook!
Library: Scikit-Learn with Python
https://archive.ics.uci.edu/ml/datasets/Breast+
Cancer+Wisconsin+%28Diagnostic%29
```

	diagnosis	texture_mean	perimeter_mean	smoothness_mean	compactness_mean	symmetry_mean
564	М	22.39	142.00	0.11100	0.11590	0.1726
565	М	28.25	131.20	0.09780	0.10340	0.1752
566	М	28.08	108.30	0.08455	0.10230	0.1590
567	М	29.33	140.10	0.11780	0.27700	0.2397
568	В	24.54	47.92	0.05263	0.04362	0.1587

Figure: excerpt of cancer-dataset

Metrics	Values
	91.2% 0.0877

Table: Metrics for Logistic Regression Model

Table of Contents

Introduction

Multiple Linear Regression

Binary Logistic Regression for Classification

Summary and Outlook

Drawback of Linear Models

Figure: left: Classification, right: Regression (adapted from [1])

Summary

- Linear Models are the most often used Data Analysis Algorithms (in Kaggle)
- should be used before applying more complex Algorithms

Questions

Any Questions? :)

- G. Y. Y. Q. Xianjin Fang, Fangchao Yu, "Regression analysis with differential privacy preserving," *IEEE Access*, vol. 7, pp. 129 353–129 361, 2019.
- J. Mandel, "Use of the singular value decomposition in regression analysis," *The American Statistician*, vol. 36 No.1, pp. 15–24, 1982.
- X. G. S. Xin Yan, *Linear Regression Analysis*. World Scientific, 2009.
- J. F. Trevor Hastie, Robert Tibshirani, *The Elements of Statistical Learning*. Springer, 2008.
- K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," *Neural Networks*, vol. 2, no. 5, pp. 359–366, 1989. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0893608089900208

- "Neural net blogpost," https://sebastianraschka.com/faq/docs/logisticregr-neuralnet.html, accessed: 2021-22-05.
- C. M. Bishop, *Pattern Recognition and Machine Learning*. Springer, 2006.
 - F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine learning in Python," *Journal of Machine Learning Research*, vol. 12, pp. 2825–2830, 2011.
- S. Seabold and J. Perktold, "statsmodels: Econometric and statistical modeling with python," in *9th Python in Science Conference*, 2010.
- J. H. M. Daniel Jurafsky, *Speech and Language Processing*. Third Edition Draft, 2020.

Everything below here are just extra slides

[4] [5] [3] [6] [7] [1] [8] [9] [10] [2]

Computation via Singular Value Decomposition

$$egin{aligned} oldsymbol{y} &= Xoldsymbol{eta} + oldsymbol{\epsilon} &= U\Sigma V^Toldsymbol{eta} + oldsymbol{\epsilon} \ &\Rightarrow oldsymbol{eta} &= V\Sigma^{-1}U^Ty \ O(n_{\mathsf{samples}} \cdot n_{\mathsf{features}}^2) \quad \mathsf{Scikit-Learn} \ [8] \end{aligned}$$

- analogon of Eigendecomposition
- U $(n \times n)$ and V $(p \times p)$ as orthogonal matrices
- Σ ($p \times p$) consists only of diagonal entries known as the singular values of X
- check colinearities with singular values

Problem Setting

Figure: left: Classification, right: Regression (adapted from [1])

Linear Regression

$$y = X\beta$$

Transformation Function

$$y = \log\left(\frac{1}{1-p}\right)$$

Figure: transformation function from (0,1) to $\mathbb R$

Computation

minimization problem:

$$\arg\min_{\boldsymbol{\beta}} \frac{1}{m} \sum_{i=1}^{m} e(f(\boldsymbol{x}^{(i)}; \boldsymbol{\beta}),$$

Figure: convex error function

Goodness of Fit

- split dataset into training and testing dataset
- Classification Accuracy

Figure: Logistic Regression

Polynomial Regression

$$X = \begin{pmatrix} 1 & x_1 & \cdots & x_1^p \\ 1 & x_2 & \cdots & x_2^p \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^p \end{pmatrix}$$

Logistic Regression as "Mini"-Neural-Network

Figure: Logistic Regression as a Neural Net (adapted from [6])