

The Class Responsibility Assignment Case

Martin Fleck, Javier Troya, and <u>Manuel Wimmer</u>

Motivation

ARTIST Project: http://www.artist-project.eu

- Models are human-oriented artefacts
 - Maintainability
 - Testability
 - Readability
 - Understandability
 - ...
- How to improve the quality?
- What is a good solution?

Motivation

Class Responsibility Assignment (CRA) Problem

- CRA deals with the creation of high-quality object-oriented models
- For solving a particular CRA problem, one needs to decide where responsibilities, i.e., class operations and attributes, belong
- When do we have to deal with CRA problems?
 - Generating class diagrams: When migrating an application from a procedural language to an object-oriented language
 - Optimizing class diagrams: During the refactoring of an existing objectoriented model
- CRA is a computationally challenging problem
 - Huge search space!
 - Considered as an optimization problem

Motivation

Solving Complex Optimization Problems

- Class Responsibility Assignment Problem
 - Modularization of features into classes -> partitioning problem

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

$$B_0 = 1$$
4

Input/Output Structures: RDG -> CD

- Responsibility Dependency Graph (RDG) Language (without green-colored elements)
 - One ClassModel contains all Features
 - Features have dependencies: functional and data
- Class Diagram (CD) Language (black-colored and green-colored elements)
 - ClassModel contains Classes
 - Classes encapsulate Features
 - No empty Classes/no unassigned Features

Fitness Function

$$\begin{split} CRA\text{-}Index &= CohesionRation - CouplingRatio \\ CohesionRatio &= \sum_{c_i \in Classes} \frac{MAI(c_i, c_i)}{|M(c_i)| \times |A(c_i)|} + \frac{MMI(c_i, c_i)}{|M(c_i)| \times |M(c_i) - 1|} \\ CouplingRatio &= \sum_{\substack{c_i, c_j \in Classes \\ c_i \neq c_j}} \frac{MAI(c_i, c_j)}{|M(c_i)| \times |A(c_j)|} + \frac{MMI(c_i, c_j)}{|M(c_i)| \times |M(c_j) - 1|} \\ MMI(c_i, c_j) &= \sum_{\substack{m_i \in M(c_i) \\ m_j \in M(c_j)}} DMM(m_i, m_j) \\ MAI(c_i, c_j) &= \sum_{\substack{m_i \in M(c_i) \\ a_j \in A(c_j)}} DMA(m_i, a_j) \\ DMA(m_i, a_j) &= \begin{cases} 1 & \text{if there is a dependency between method } m_i \text{ and attribute } a_j \\ 0 & \text{otherwise} \end{cases} \\ DMM(m_i, m_j) &= \begin{cases} 1 & \text{if there is a dependency between method } m_i \text{ and } m_j \\ \text{otherwise} \end{cases} \end{split}$$

Example

itemTotal()

print()

	Cart	Item		
$MAI(c_i, c_i)$	3	5		
$MMI(c_i, c_i)$	1	0		
CohesionRatio	1.1667	0.8333		
$MAI(c_i, c_j)$	1	0		
$MMI(c_i, c_j)$	1	0		
CouplingRatio	0.4444	0		
∑ CohesionRatio	2			
Σ CouplingRatio	0.4444			
CRA-Index	1.5556			

checkout()

MyShop

Producing Solutions with Transformations: RDG 2 CD

Example rules

- Shown in Henshin syntax
- Many other possibilities to solve CRA

Solving the CRA Problem

Going beyond Random Search

Main challenge: Finding the best output model —> finding the best rule application sequence

Optimization methods to orchestrate transformation rules?

Evaluation

Input Models and Evaluation Schema

Example Models

	Input A	Input B	Input C	Input D	Input E
Attributes	5	10	20	40	80
Methods	4	8	15	40	80
Data Dep.	8	15	50	150	300
Functional Dep.	6	15	50	150	300

Evaluation Schema

Criteria	Weight	MaxPoints	Total
Completeness & Correctness	1	10	10
Optimality	3	10	30
Complexity	2	10	20
Flexibility	2	10	20
Performance	2	10	20
Total			100

Solutions

http://www.transformation-tool-contest.eu/solutions_cra.html

- **NMF** by Georg Hinkel
- VIATRA by András Szabolcs Nagy et al.
- **UML-RSDS** by Kevin Lano et al.
- ATL/Java by Leif Arne Johnsen et al.
- **Excel** by Maximiliano Vela et al.
- **SDMLib** by Christoph Eickhoff et al.
- MDEOptimiser by Alexandru Burdusel et al.
- Henshin by Kristopher Born et al.
- **SIGMA** by Filip Krikava

