THE STANDARD DEVIATION IS A MEASURE OF DEVIATION FROM THE MEAN

THE IDEA IS TO MEASURE HOW FAR AWAY EACH POINT IS FROM THE MEAN VALUE

HERE IS A PATASET

IF YOU CALCULATED ALL SUCH DEVIATIONS

DEVIATIONS FROM THE MEAN

-1.1 -1.1 -1 -0.8 -0.8 -0.7 -0.6 -0.2 -0.1 -0.1 0.1 0.2 0.3 0.3 0.4 0.8 0.8 0.9 1 1

THESE NUMBERS REPRESENT HOW FAR THE DATASET VARIES FROM THE MEAN

DEVIATIONS FROM THE MEAN

-1.1 -1.1 -1 -0.8 -0.8 -0.7 -0.6 -0.2 -0.1 -0.1 0.1 0.2 0.3 0.3 0.4 0.8 0.8 0.9 1 1

IF WE CAN FIND 1 NUMBER TO SUMMARIZE THEM, THAT WOULD DESCRIBE THE "SPREAD"

DEVIATIONS FROM THE MEAN

OPTION 1: MEAN OF THE PEVIATIONS

THIS ISN'T REALLY A GREAT OPTION AS THE DEVIATIONS WILL CANCEL EACH OTHER OUT WHEN THEY ARE ADDED

DEVIATIONS FROM THE MEAN

OPTION 2: MEAN OF ABSOLUTE VALUE OF THE DEVIATIONS

DEVIATIONS FROM THE MEAN

OPTION 2: MEAN OF ABSOLUTE VALUE OF THE DEVIATIONS

THIS CAN WORK BUT THERE IS AN EVEN BETTER OPTION

DEVIATIONS FROM THE MEAN

OPTION 3: MEAN OF SQUARES OF THE PEVIATIONS

DEVIATIONS FROM THE MEAN

OPTION 3: MEAN OF SQUARES OF THE PEVIATIONS

THIS IS A STANDARD MEASURE OF THE "SPREAD"

VARIANCE

DEVIATIONS FROM THE MEAN

VARIANCE

WHY IS THE VARIANCE BETTER THAN JUST THE MEAN OF ABSOLUTE VALUES?

WHY IS THE VARIANCE BETTER THAN JUST THE MEAN OF ABSOLUTE VALUES?

1. VARIANCE IS MORE SENSITIVE

IF THE PEVIATIONS WERE

MEAN OF ABSOLUTE VALUES

VARIANCE

$$(2+4)/2 = 3 \qquad (2^2+4^2)/2 = 10$$

$$(3+3)/2 = 3 \qquad ((-3)^2+3^2)/2 = 9$$

$$(1-3)^2 + 3^2)/2$$

WHY IS THE VARIANCE BETTER THAN JUST THE MEAN OF ABSOLUTE VALUES?

2. VARIANCE DOES NOT RELY ON CONDITIONAL FUNCTIONS

WHY IS THE VARIANCE BETTER THAN JUST THE MEAN OF ABSOLUTE VALUES?

3. VARIANCE HAS MANY COOL MATHEMATICAL PROPERTIES EX: NORMAL DISTRIBUTIONS HEAVILY RELY ON THE VARIANCE

WHY IS THE VARIANCE BETTER THAN JUST THE MEAN OF ABSOLUTE VALUES?

4. UNLIKE IQR VARIANCE IS SENSITIVE TO OUTLIERS

SIMILAR TO HOW THE MEAN IS MORE SENSITIVE TO OUTLIERS THAN MEDIAN

VARIANCE IS A VERY GOOD MEASURE OF THE SPREAD

BUT IT'S NOT OF THE SAME ORDER AS THE DATASET OR THE MEAN

YOU CANNOT USE IT TO SAY

THE DATA VARIES MOSTLY BETWEEN

MEAN - X, MEAN + X

STANDARD DEVIATION = SQRT(VARIANCE)

$$SD = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} MEAN$$

$$SD = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} \frac{\text{PEVIATION}}{n}$$

$$SD = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$

AVERAGE OF SQUARES OF PEVIATIONS

$$SD = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$

VARIANCE

$$SD = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} \frac{\text{SQRT(VARIA}}{\text{NCE)}}$$

STANDARD DEVIATION = SQRT(VARIANCE)

$$SD = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$