

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

OTTE FILE COPY

TECHNICAL REPORT ATC-86-4

RED RIVER U-FRAME LOCK STRUCTURE ANALYSES COMPARISON

by

Sankar C. Das

Tulane University
New Orleans, Louisiana 70118

and

Robert L. Hall, Kevin Abraham, Chris A. Merrill

Automation Technology Center

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631

May 1986 Final Report

Approved for Public Release, Distribution Unlimited

Prepared for

US Army Engineer District, Vicksburg PO Box 60, Vicksburg, Mississippi 39180-0060

86 8 27 033

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ADA171491

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report ATC-86-4	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERED
RED RIVER U-FRAME LOCK STRUCTURE ANALYSES COMPARISON		Final report
AVALIBLE COM AKISON		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(#)
Sankar C. Das Kevin Abraham Robert L. Hall Chris A. Merr	-	
PERFORMING ORGANIZATION NAME AND ADDRESS Tulane University, New Orleans, Lo and US Army Engineer Waterways Exp Automation Technology Center, PO B Vicksburg, Mississippi 39180-0631	eriment Station, ox 631,	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Engineer District, Vicksbu	rg	12. REPORT DATE May 1986
PO Box 60 Vicksburg, Mississippi 39180-0060		13. NUMBER OF PAGES 121
14. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 15s. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

GTSTRUDL (Computer program) (LC)
Red River Lock (La.) (LC)
U-frame locks (WES)

20. ABSTRACT (Continue on reverse side H necessary and identify by block number)

This report presents a comparative investigation involving the results of the structural analyses of a simplified frame model with beam elements and a detailed plane-strain finite-element model of a U-frame lock on the Red River. The GTSTRUDL computer program was utilized for this investigation. The study was scheduled on request of the US Army Engineer District, Vicksburg, and the structural dimensions and various loading cases were provided by this

(Continued)

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

Corps office. To aid with the study, the District made available the program runs of the planar rigid frame model of the U-frame for these load cases.

These comparisons reveal the points in each analysis that have not been considered, those that are and are not in agreement, those that may not be justified, and facts that do not appear to be correct.

The importance of further investigations involving analysis of the linearly elastic U-frame structure on elastic foundation has stemmed from this study. Research into elasto-plastic foundation and dynamic soil-structure interaction effects are other related areas open for the authors' expertise.

PREFACE

This report presents a comparative investigation of a U-frame structure using the results of a planar rigid-frame analysis and a detailed plane-strain finite-element model. The U-frame structure used for this comparison is Lock No. 3 on the Red River, presently being designed by the US Army Engineer District, Vicksburg. The structural analysis package GTSTRUDL was used to perform the finite-element analysis and the initial frame analysis. The program CUFRAM, developed by Dr. William Dawkins under the Computer-Aided Structural Engineering (CASE) project, was used to provide a further comparison. The structural dimensions and load cases were provided by the US Army Engineer District, Vicksburg.

The planar rigid-frame analysis using GTSTRUDL was performed by structural engineers at the Vicksburg District. The finite-element grid used in this study was prepared by Messrs. Kevin Abraham and Chris Merrill, Computer-Aided Design (CAD) group, Automation Technology Center (ATC), US Army Engineer Waterways Experiment Station (WES), Vicksburg, Miss. Moment and shear calculations were performed by Mr. Abraham using the computer program CSMT. The finite-element run was accomplished and the initial report was prepared by Sankar C. Das, Associate Professor of Civil Engineering, Tulane University. The report was revised by Dr. Robert L. Hall, formerly with the Research Group, Scientific and Engineering Applications Division (SEAD), ATC, WES, under the general supervision of Mr. P. K. Senter, Chief, SEAD, ATC, WES. Dr. Hall managed and coordinated the work with Mr. C. C. Hamby being the point of contact with the Vicksburg District. Working closely with Dr. Hall during the period of report preparation and publication were Mses. Gilda Shurden and Frances Williams, editor and editorial assistant, Publications and Graphic Arts Division, WES. Dr. N. Radhakrishnan was Chief of the ATC, WES.

COL Allen F. Grum, USA, and Dr. Robert W. Whalin were Director and Technical Director, respectively, of WES during the finalization and publication of this technical report.

CONTENTS

																												Page
PREFA	CE .			•		•	•		•	•	•	•			•		•	•	•	•	•	•		•		•	•	1
		FACTORS																										
UNI	TS OF	MEASURE	MENT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	3
PART	I:	INTRODU	CTION	•	•		•	•	•		•						•					•			•		•	4
		se																										4
	Simpl	lified F	rame	Mod	le 1		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		iled Pla																										7
	Analy	ses Per	forme	d b	У	GT	ST	RU	DL		•	٠	•		•	•	•	•	•	•	•	•	•	•	•	•	•	7
PART	II:	RESULTS		•		•	•				•	•												•	•	•	•	13
	Joint	Displa	cemen	ts																								13
		s Plot																										13
		nal For																										13
PART		CONCLUS																										22
REFER	ENCES			•		•	•																	•				24
TABLE	S 1-12	2																										
APPEN	DIX A:	STRES																					•	•	•		•	A1

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	Ву	To Obtain
feet	0.3048	metres
inches	2.54	centimetres
kips	4.448222	kilonewtons
kip-feet	138.255	kip-newtons
kips per square foot	47.88026	kilopascals
pounds per cubic foot	16.01846	kilograms per cubic metre
pounds per square foot	4.882428	kilograms per square metre

RED RIVER U-FRAME LOCK STRUCTURE ANALYSES COMPARISON

PART I: INTRODUCTION

1. Plans are underway for the Red River Lock, a reinforced concrete U-frame structure, to be located about 150 miles north of Baton Rouge. Contrary to the conventional lock, the U-frame lock is constructed as a monolithic unit, and may be founded directly on the subsoil without piles. The structure will be a reinforced concrete U-frame having a useable chamber, 84 by 685 ft,* with a wall height of 59 ft, and a base slab, 12 ft thick. The half section of the would-be structure is shown in Figure 1.

Purpose

2. The purpose of this investigation is to compare the results of the structural analysis of the simplified frame model involving beam elements with that of the detailed plane-strain finite-element model (FEM) of the U-frame using GTSTRUDL computer program. The US Army Engineer District, Vicksburg, requested this study and has provided the structural dimensions, various loading cases involving base soil-pressure, side soil-pressure, and water-pressure diagrams. The District has also made available the GTSTRUDL computer program runs of the planar rigid frame model of the U-frame for the various load cases.

Simplified Frame Model

3. The simplified mathematical model of the Red River U-frame involving beam elements and a few rigid links has been furnished by the Vicksburg District and is shown as the half section in Figure 2. The model involves 24 nodal points and 24 members. Members 1 through 22 are beam elements; members 23 and 24 are rigid links (Gamble 1977). Three different combinations for load conditions have been included in this study:

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

Figure 1. Half section of Red River U-frame

Figure 2. Simplified frame model of the half section for the U-frame

- a. Construction with backfill conditions--Case IB.
- b. Normal operating condition--Case 2B.
- c. Extreme maintenance condition--Case 5A.
- 4. The vertical base soil-pressure, horizontal side soil-pressure, and water-pressure diagrams for the above load cases are shown in Figures 3 through 5. The unit weight of water, compacted soil, and concrete used are 62.4 pcf, 130 pcf, and 150 pcf, respectively. The Young's Modulus of concrete used is $3.51 \times 10 \text{ psi}$.
- 5. The planar rigid-frame analyses using beam-column elements were completed by the US Army Engineer District, Vicksburg. The analyses provided nodal-point displacements, axial and shear forces, and bending moments at each member joint for the three load combinations. These analyses were performed using GTSTRUDL.

Detailed Plane-Strain Finite-Element Model

6. The detailed finite-element mathematical model of the Red River U-frame involving plane-strain isoparametric elements has been developed at the US Army Engineer Waterways Experiment Station (WES), Vicksburg, Miss., and is shown in Figure 6. The model uses 974 nodal points and 280 plane-strain isoparametric quadratic quadrilateral (IPQQ) elements (Georgia Institute of Technology 1983). The Young's Modulus of Concrete and Poisson's ratio used are 3.51 × 10 psi a... 0.2, respectively. Three computer runs for this plane-strain FEM were performed for the three different load cases as shown in Figures 3 through 5. At present, GTSTRUDL does not have the capability to apply the edge pressure on the IPQQ elements in the global projected direction. Because of this deficiency all the vertical base pressures, due to soil and water on the inclined surfaces, were transformed from a global direction into a local coordinate direction.

Analyses Performed by GTSTRUDL

7. The complete analyses, involving nodal-point displacements; stress components, σx , σy , and τxy , for the various elements at the nodal points for the three different load cases as mentioned before, have been performed using GTSTRUDL computer program. The above stress components at the

Figure 3. Load case 1B (without earthquake)--construction with backfill

Figure 4. Load case 2B--normal operating condition

Figure 5. Load case 5A--extreme maintenance

Figure 6. Detailed finite-element mathematical model of the Red River U-frame

various element nodes were used to calculate the average internal forces, axial and shear, and bending moments at the various sections of the U-frame using in-house developed computer program CSMT (Tracy, Hall, and Trahan 1983). The program CSMT calculates shear, moment, and axial forces for sections of a structure specified by the user, from stress results of a two-dimensional finite-element (FE) analysis. The bulk of the input is for geometry definition and the stress results from a FE analysis. The node and element data are read free field from one data file, and the stresses are read from another file. The remaining data are interactive commands to specify section information to obtain plots of grid, sections, and the results (shear, moment, and axial forces).

PART II: RESULTS

Joint Displacements

8. The joint displacements for the various nodal points (Figure 2) from the frame analysis using beam-column elements and the detailed planestrain FE analyses were compared for the three different load cases, are shown in Tables 1 through 3. The percent difference between the displacements predicted by these two models is less than 5 percent, except for the horizontal displacements along the base slab. These horizontal displacements are two orders of magnitudes less than the vertical displacement and, therefore, do not result in a misrepresentation of the structural behavior. The graphical representation of the base-slab deflection and the wall deflection are shown in Figures 7 through 9.

Stress Plot

9. The normal stress, thrust, bending-stress, and shearing-stress plots for the various sections 1 through 18 and 1A through 10A (Figure 10) are performed using the CSMT computer program and are shown in Appendix A. It is important to note that the actual stress concentration occurs at the various junctions and should be considered in the design analysis.

Internal Forces

10. The in-house developed computer program CSMT calculated axial and shear forces and bending moments for the various sections in Figure 10 using the graphical stress plots in Appendix A. The axial forces, shear forces, and bending moments at the various sections (Figure 10) due to the simplified frame analysis using beam-column elements and the detailed plane-strain FE analyses were compared for the three load cases and are shown in the Tables 4 through 12. The internal forces agree well except at the member junctions, where heavy stress concentrations occur, and as such adjacent sections (1A through 10A in Figure 10) were investigated, they agree with that of the frame analysis. The graphical plots of bending moments, shear forces, and the axial

Figure 7. Case 1B--deflection shown in construction with backfill condition

Figure 8. Case 2B--deflection in normal operating condition

Figure 9. Case 5A--deflection shown in extreme maintenance condition

Figure 10. Various sections with FE model

forces for the three different load combinations are shown in Figures 11 through 13. It is to be noted that internal forces at sections 1A through 10A in Figure 10 were taken as the junction internal forces for the plot.

11. During the conduct of this study, Dr. William P. Dawkins completed a preliminary version of the computer program, CUFRAME, for the Computer-Aided Structural Engineering (CASE) project's task group on U-frame structures. CUFRAME uses the same planar rigid-frame analysis that was used for the GTSTRUDL analyses. CUFRAME was designed solely for analysis of U-frame lock structures and requires geometry data, soil data, and water elevation data. CUFRAME discretizes the geometry and uses of the soil and water elevation data to determine the loads on each member. The use of CUFRAME allowed the results shown in Tables 4 through 12 to be calculated in less than one hour as compared to several months for the GTSTRUDL results.

Figure 11. Case 1B--internal forces acting on construction with backfill condition

BEAM-COLUMN ELEMENT ANALYSIS PLANE-STRAIN FE ANALYSIS BENDING MOMENT, SHEAR AND AXIAL FORCE IN FT K, K, AND K UNITS. SIGN CONVENTION: (6) - BM +BM + BM + SF - SF SF + AF - AF вм 21k 19k 36k 45k 4 4 BM ΑF 515'k 452'k 56k **\$**8 22'k 25'k 1617 1747 201 1589 1717 1230'k BM 1152'k 22k 21k 12k 8k BENDING MOMENT SF 27k 24k SHEAR FORCE 17k 18k 25k ΑF 0.02k **AXIAL FORCE**

NORMAL OPERATING CONDITION

Figure 12. Case 2B--internal forces acting on normal operating condition

MODEL COCCOSTS (SECTIONS) PROGRAMME (MARKET PROGRAMME)

Figure 13. Case 5A--internal forces acting on extreme maintenance condition

PART III: CONCLUSIONS

- 12. Comparisons of the structural analysis of the Red River U-frame with a planar frame analysis using beam-column elements and that of detailed plane-strain finite-element model showed the following:
 - a. Real soil-structure interaction effects have not been taken into account in either of the model analyses since loads were determined without knowing the final displacements.
 - In the absence of real soil-structure interaction effects, the linearly elastic overall frame analysis of the U-frame structure agrees reasonably well with that of detailed plane-strain finite-element analysis, except at the juncture points. The displacements of the node points are also in agreement, while internal forces, except right at the juncture points, are similar. Stress concentration exists at the juncture as can be seen from the stress plots of Appendix A and elementary static's and strength of material's formulas may not be used to calculate the internal forces (bending moment, shear force, etc.). However, a little distance away from the juncture, the beam formula can be successfully applied. Therefore, in the absence of soil structure interaction effects, the frame model analysis and design of the overall U-frame structure is edequate except at the juncture, where detailed finite-element analysis is needed.
 - c. In finite-element analysis equations of equilibrium are satisfied only in the mean throughout the element and, in general, pointwise equilibrium may not be satisfied within the element or along element juncture lines. It should be anticipated that some difficulties may be confronted in the interpretation of finite-element stress output. The best location for definition of the stress state for design would be at the centroid of each element. One can also calculate the average of the various stress components at the nodes, where a number of elements join. In isoparametric finite-element formulation, the element displacements at any point are directly related with element nodal-point displacements through the use of interpolation functions involving natural coordinates (Gallagher 1975; Bathe and Wilson 1976; Segerlind 1976; and Zeinkiewicz 1971).
 - d. In view of the data analysis from the instrumentation program of Port Allen Lock (Sherman and Trahan 1968), Old River Lock (Sherman and Trahan 1972), and that the U-frame walls transfer the heavy load to the ground, the more or less uniform base soil-pressure distribution (Figures 3 through 5) may not be justified.
 - e. Errors have been detected in some application of horizontal and vertical pressure loads <u>locally</u> in the frame model U-frame analysis. Pressures could have been applied in the global direction on the projected length of members.

- f. The horizontal soil-pressure diagram (Figure 4) above the water line does not appear to be correct.
- g. It is important that further research study should be extended to the analysis of linearly elastic U-frame structure on elastic foundation (Hetenyi 1971, Timoshenko and Woinowsky-Krieger 1959, Timoshenko and Goodier 1970). A relatively simple and useful computer program could be developed in a reasonable time. This research might be extended into the elasto-plastic (Clough 1969, Pande and Zienkiewicz 1982, and Hoffman and Sachs 1953) foundation study. Dynamic soil-structure interaction effects due to seismic loading may also be included in future investigations.

REFERENCES

- Bathe, K. J., and Wilson, E. L. 1976. <u>Numerical Methods in Finite Element Analysis</u>, Prentice-Hall, Inc., New York.
- Clough, G. W. 1969. Finite Element Analysis of Soil-Structure Interaction in U-Frame, Ph.D. Dissertation, University of California, School of Civil Engineering, Berkeley, Calif.
- Gallagher, R. H. 1975. <u>Finite Element Analysis</u>, Prentice-Hall, Inc., New York.
- Gamble, W. L. 1977 (Apr). "Design of Thick-Walled Multiple Opening Conduits to Resist Large Distributed Loads," Report No. UILU-ENG-77-2005, University of Illinois, Urbana-Champaign, Urbana, Ill.
- Georgia Institute of Technology. 1983 (Apr). "GTSTRUDL User's Manual" (in 3 Vols), GTICES Systems Laboratory, School of Civil Engineering, Atlanta, Ga.
- Hetenyi, M. 1971. "Beams on Elastic Foundation," University of Michigan Press, Ann Arbor, Mich.
- Hoffman, O., and Sachs, G. 1953. <u>Introduction to the Theory of Plasticity for Engineers</u>, McGraw-Hill, New York.
- Pande, G. N., and Zienkiewicz, O. C. 1982. Soil Mechanics Transient and Cyclic Loads, Wiley, New York.
- Segerlind, L. J. 1976. Applied Finite Element Analysis, Wiley, New York.
- Sherman, W. C., Jr., and Trahan, C. C. 1968 (Sep). "Analysis of Data from Instrumentation Program, Port Allen Lock," Technical Report S-68-7, Plates 60 and 61, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- . 1972 (Jun). "Analysis of Data from Instrumentation Program, Old River Lock," Technical Report S-72-10, Plates 59, 60, and 61, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Timoshenko, S., and Woinowsky-Krieger, S. 1959. Theory of Plates and Shells, McGraw-Hill, New York.
- Timoshenko, S. P., and Goodier, J. N. 1970. Theory of Elasticity, McGraw-Hill, New York.
- Tracy, F. T., Hall, R. L., and Trahan, K. W. 1983 (Jul). "User's Guide: Computer Program to Calculate Shear, Moment and Thrust (CSMT) from Stress Results of a Two-Dimensional Finite Element Analysis," Instruction Report K-83-5, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Zienkiewicz, O. C. 1971. The Finite Element Method in Engineering Science, McGraw-Hill, New York.

Table 1
Case IB--Deflection in Construction with Backfill, Without Earthquake

Frame		EM	Fra	me
Mode1	X Displacement	Y Displacement	X Displacement	Y Displacement
Joint	in.	in.	<u>in.</u>	in
1	0.00	0.00	0.0	0.0
2	-0.0029271	-0.1765026	-0.00523	-0.17746
3			-0.00591	-0.21118
4	-0.0052825	-0.241266	-0.00642	-0.24483
5	0.0010996	-0.3188311	0.00002	-0.32570
6	0.0022717	-0.3316765	0.00107	-0.33909
7	0.0034090	-0.3443291	0.00236	-0.35243
8	0.0191137	-0.3319080	0.01895	-0.33955
9	0.097427	-0.3334830	0.09796	-0.34136
10	0.1136865	-0.3337401	0.11984	-0.34178
11	0.1120579	-0.3465438	0.11816	-0.35520
12	0.1153249	-0.3209987	0,12164	-0.32838
13	0.1253805	-0.2439175	0.13220	-0.24852
14	0.0208578	-0.2098095	0.02095	-0.21215
15	0.0334889	-0.2101092	0.03434	-0.21263
16	0.0944080	-0.2119734	0.09980	-0.21481
17	0.1253082	-0.2126774	0.13243	-0.21576
18	0.1562741	-0.2133097	0.16508	-0.21631
19	0.2828945	-0.1999945	0.30040	-0.20201
20	0.3449428	-0.2005635	0.36609	-0.20262
21	0.3704964	-0.2118484	0.39294	-0.21448
22	0.3960874	-0.2118926	0.41985	-0.21451
23	-0.0149750	-0.3314818	-0.016404	-0.337848
24	0.1345276	-0.3339089	0.135888	-0.340536

Table 2

Case 2B--Deflection in Normal Operating, with Upper Pool

Frame	F	EM	Frame				
Model Joint	X Displacement in.	Y Displacement in.	X Displacement in.	Y Displacement in.			
1	0.0	0.0	0.0	0.0			
2	0.0031655	-0.2329987	-0.00013	-0.23631			
3			-0.00014	-0.28960			
4	-0.0001865	-0.3455102	-0.00058	-0.34330			
5	0.0132501	-0.4927854	0.01148	-0.48038			
6	0.0156973	-0.5185946	0.01363	-0.50425			
7	0.0181065	-0.5442583	0.01592	-0.52808			
8	0.0501277	-0.5191073	0.04569	-0.50491			
9	0.1955552	-0.5214308	0.18128	-0.50757			
10	0.2333041	-0.5219483	0.21690	-0.50822			
11	0.2303994	-0.5451386	0.21416	-0.53017			
12	0.2361967	-0.4988702	0.21969	-0.48628			
13	0.2543915	-0.3550763	0.23688	-0.35069			
14	0.0439854	-0.2893636	0.04286	-0.29017			
15	0.0667432	-0.2899749	0.06447	-0.29044			
16	0.1906278	-0.2911323	0.17819	-0.29160			
17	0.2542107	-0.2916415	0.23695	-0.29205			
18	0.3182292	-0.2919328	0.29584	-0.29260			
19	0.6038447	-0.2596522	0.55297	-0.26329			
20	0.7462003	-0.2602082	0.68016	-0.26451			
21	0.8038702	-0.2855444	0.73165	-0.28715			
22	0.8615776	-0.2855885	0.78320	-0.28718			
23	-0.0187361	-0.5182546	-0.016668	-0.503640			
24	0.2712500	-0.5221949	0.244680	-0.507612			

Table 3

Case 5A--Deflection in Extreme Maintenance

Frame		'EM	Frame				
Model Joint	X Displacement in.	Y Displacement in.	X Displacement in.	Y Displacement in.			
1	0.0	0.0	0.0	0.0			
2	-0.0068868	-0.1284984	-0.00394	-0.13630			
3			-0.01011	-0.15935			
4	-0.0090617	-0.1663310	-0.01091	-0.18219			
5	-0.0068066	-0.2075054	-0.00773	-0.23422			
6	-0.0063740	-0.2136300	-0.00731	-0.24231			
7	-0.0059710	-0.2195485	-0.00653	-0.25033			
8	0.0013590	-0.2137364	0.00338	-0.24272			
9	0.0380905	-0.2149872	0.05379	-0.24432			
10	0.0501485	-0.2151258	0.06857	-0.24468			
11	0.0491539	-0.2224290	0.06744	-0.25370			
12	0.0511549	-0.2078797	0.06991	-0.23571			
13	0.0571094	-0.1663269	0.07738	-0.18435			
14	0.0069197	-0.1484623	0.00805	-0.16041			
15	0.0139670	-0.1486287	0.01703	-0.16093			
16	0.0426947	-0.1505764	0.05804	-0.16332			
17	0.0571434	-0.1512803	0.07780	-0.16438			
18	0.0717463	-0.1519859	0.09758	-0.16494			
19	0.1280442	-0.1470509	0.17810	-0.15717			
20	0.1566077	-0.1476200	0.21769	-0.15778			
21	0.1687674	-0.1530450	0.23409	-0.16508			
22	0.1809646	-0.1530892	0.25056	-0.16511			
23	-0.0147080	-0.2134902	-0.019908	-0.241788			
24	0.0619024	-0.2152614	0.077280	-0.244140			

Table 4
Case 1B--Construction Condition, Axial Force, kips

		Plane		Plane	
Section	Frame	Strain	Section	Strain	CUFRAM
1	28.96	30.17	1 A	28.17	28.43
2	-25.36	-25.01			
3	-21.76	-22.25	2A	-22.09	-21.23
4	-17.74	-17.68	3 A	-16.39	-16.30
5	-16.88	-17.84			
6	15.83	26.68	4 A	19.80	14.41
7	-84.13	-89.87	5 A	-87.28	-84.59
8	-91.62	-93.46			
9	99.12	105.97	6A	96.11	99.59
10	24.36	39.18	7 A	33.34	33.71
11	-25.71	-31.00			
12	-27.06	-31.99	8A	-28.44	-30.39
13	-62.92	-80.74	9 A	-64.37	-62.92
14	-62.92	-62.88			
15	-42.56	-43.56	10A	-35.37	-41.65
16	-16.56	-16.68			-16.53
17	-9.18	-9.88			9.15
18	62.92	62.88			62.92

Table 5
Case 1B--Construction Condition, Shear Force, kips

		Plane		Plane	
Section	Frame	Strain	Section	Strain	CUFRAM
1	-13.61	-14.52	1A	-12.64	-14.98
2	1.5200	2.22			
3	-8.23	-8.31	2A	-6.57	-6.86
4	7.65	10.85	3A	6.64	7.30
5	-10.48	-8.88			
6	28.75	31.75	4A	21.93	29.10
7	23.96	29.79	5 A	24.60	22.59
8	23.96	24.45			
9	-23.96	-32.67	6 A	-24.85	-22.59
10	-13.16	-14.27	7 A	-7.10	-14.67
11	-0.9163	-2.78			
12	-15.88	-22.67	8A	-16.01	-14.95
13	-70.14	-78.05	9A	-68.37	-70.09
14	-33.3744	-34.69			
15	4.68	3.41	10 A	2.28	9.67
16	-1.97	-0.0864			-1.97
17	-0.0000	-0.53			0.0
18	-0.0456	-0.0099			0.0

	7	Plane	Saatia.	Plane	CHEDAM
Section	Frame	Strain	Section	Strain	CUFRAM
1	-30.82	-3.37	1A	-18.76	-41.19
2	-14.5700	-15.58			
3	7.93	16.56	2A	4.06	1.77
4	-18.97	-0.2448	3A	-5.98	-9.06
5	-17.14	-17.35			
6	134.83	130.72	4A	79.16	129.1
7	-60.14	-2.89	5 A	-10.34	-63.44
8	59.69	56.87			
9	-179.49	-91.74	6A	-118.54	-162.4
10	-25.19	-17.52	7 A	-6.13	-20.82
11	-11.9604	-18.66			
12	37.48	31.20	8 A	19.70	39.63
13	6.57	84.53	9A	125.38	8.86
14	-1132.05	-1129.54			
15	64.32	58.95	10A	38.85	64.80
16	12.50	12.63			12.78
17	-12.50	-12.28			-12.77
18	1465.34	1460.16			1473.00

Table 7
Case 2B--Normal Operation, Axial Force, kips

		Plane		Plane		
Section	Frame	Strain	Section	Strain	CUFRAM	
1	40.9782	47.3328	1 A	40.0320	39.22	
2	-37.3782	-37.4112				
3	-33.7782	-39.0816	2 A	-34.0272	-32.02	
4	-6.2815	-9.7920	3A	-5.8464	-6.758	
5	-6.1133	-5.4864				
6	8.0583	4.8816	4 A	6.9696	8.814	
7	-41.2954	-42.3504	5 A	-42.8688	-43.06	
8	-48.7954	-46.0512				
9	56.2954	40.4208	6A	50.7168	58.06	
10	15.6427	12.4560	7 A	25.4880	25.32	
11	-16.2461	-20.4480				
12	-16.8495	-21.4992	8A	-17.7120	-18.38	
13	-1.5395	-60.5232	9A	-0.3456	-2.361	
14	-1.5395	-0.0432				
15	44.7414	37.8576	10A	35.6544	45.20	
16	-16.9027	-16.6464			-16.90	
17	-9.1500	-9.8784			-9.150	
18	1.5395	0.0288			2.361	

Table 8

Case 2B--Normal Operation, Shear Force, kips

Coopie		Plane		Plane	
Section	Frame	Strain	Section	Strain	CUFRAM
1	0.8917	1.9584	1A	1.3824	1.873
2	2.2058	0.7344			
3	6.5183	5.8032	2 A	4.0320	5.536
4	21.2028	21.5856	3A	21.4992	19.37
5	-18.3828	-19.0368			
6	-15.3270	-15.3216	4A	-17.4672	-13.46
7	-37.8563	-38.5488	5 A	-38.6496	-40.77
8	-37.8563	-39.1968			
9	37.8563	58.3200	6A	40.4064	40.77
10	8.3919	15.2496	7A	11.9808	5.581
11	-14.6088	-16.0992			
12	-21.3755	-24.0192	8A	-22.0032	-19.39
13	-26.9587	-1.5984	9A	-23.8176	-26.86
14	-12.8259	-13.4064			
15	21.4513	16.2864	10A	19.2240	20.15
16	1.1348	3.2400			1.135
17	0.0000	0.5184			0.0
18	-0.0221	-0.0720			0.0

		Plane		Plane	CURD A)
Section	Frame	Strain	Section	Strain	CUFRAM
I	-24.5916	-5.6736	1A	-22.3344	-20.12
2	20.0418	25.7904			
3	-4.3079	-11.8656	2A	-13.7088	-3.008
4	66.3829	34.9056	3A	67.2048	53.76
5	394.7964	170.6400			
6	-301.4196	-224.9280	4A	-231.8400	-264.5
7	-136.0537	-116.2368	5 A	-223.6320	-234.2
8	-325.3350	-347.4720			
9	514.6165	624.0960	6A	451.7280	641.9
10	195.4966	291.6000	7 A	201.0240	216.7
11	-126.4857	-149.7600			
12	-18.5451	-24.3648	8A	-52.0128	-39.99
13	-1151.5437	-1568.1600	9 A	-1230.0480	-1281.0
14	-1589.1734	-1617.1200			
15	-227.1848	-204.4800	10A	-160.1280	-245.5
16	22.8689	22.7664			23.19
17	-12.4522	-12.2400			-12.77
18	1717.2117	1746.7200			1845.0

Table 10

Case 5A--Extreme Maintenance, Axial Force, kips

		Plane		Plane	
Section	Frame	Strain	Section	Strain	CUFRAM
1	25.99	26.57	1A	24.39	26.07
2	-22.39	-20.97			
3	-18.79	-18.38	2 A	-18.26	-18.87
4	-30.71	-31.68	3 A	-28.97	-28.05
5	-30.52	-32.21			
6	30.52	45.65	4A	34.79	27.87
7	-93.12	-101.51	5 A	-96.57	-93.03
8	-100.62	-103.64			
9	108.12	124.76	6A	105.85	108.0
10	38.20	65.39	7A	51.74	53.81
11	-40.86	-49.02			
12	-40.86	-48.99	8A	-44.57	-46.79
13	-107.63	-153.50	9 A	-109.31	-107.7
14	-107.63	-107.65			
15	-43.58	-45.86	10A	-36.07	-41.92
16	-16.56	-16.68			-16.53
17	-9.18	-9.88			-9.15
18	107.63	107.65			107.7

Table 11
Case 5A--Extreme Maintenance, Shear Force, kips

		Plane		Plane	
Section	Frame	Strain	Section	Strain	CUFRAM
1	-20.43	-22.56	lA	-19.28	-23.18
2	0.65	2.28			
3	-15.66	-15.74	2 A	-12.23	-12.91
4	1.77	6.80	3A	1.54	2.202
5	-18.58	-15.02			
6	38.63	41.39	4A	29.38	38.20
7	46.54	53.63	5A	47.03	43.85
8	46.54	47.02			
9	-46.54	-64.02	6A	-47.85	-43.85
10	-16.34	-19.83	7 A	-10.11	-17.89
11	2.47	0.17			
12	-12.18	-20.69	8A	-12.77	-11.56
13	-76.38	-94.32	9A	-74.13	-76.35
14	-36.37	-36.48			
15	-11.46	-9.04	10A	-6.82	-16.53
16	-1.97	-0.09			-1.968
17	-0.00	-0.53			0.0
18	-0.00001	-1.27			0.0

Table 12 Case 5A--Extreme Maintenance, Moment, M , kip-feet $\frac{z}{z}$

		Plane		Plane	
Section	Frame	Strain	Section	Strain	CUFRAM
1	-31.55	-9.72	1 A	-14.82	-51.66
2	-29.965	-35.87			
3	16.84	12.90	2 A	9.98	3.848
4	-69.09	-23.56	3A	-44.02	-40.42
5	-91.04	-90.43			
6	264.99	234.72	4A	178.56	237.0
7	-44.50	-21.28	5A	-55.34	-29.21
8	188.21	190.51			
9	-420.91	-351.94	6A	-312.48	-409.3
10	-92.50	-109.86	7 A	-60.97	-78.27
11	36.69	36.36			
12	65.10	55.53	8A	53.94	71.75
13	399.43	658.66	9 A	283.96	388.3
14	-840.80	-783.94			
15	103.19	91.58	10A	56.30	103.5
16	12.50	12.63			-12.78
17	-12.50	-12.28			-12.78
18	1204.65	1120.18			-1215.0

APPENDIX A: STRESS-PLOT AND INTERNAL-FORCES CALCULATION FOR VARIOUS SECTIONS OF THREE LOAD COMBINATIONS

NOTE: THE INTERNAL FORCES AND MOMENTS ARE TO BE MULTIPLIED BY 144 TO GET INTO KIPS AND KIP-FT UNITS

(X1, V1) • (62.,10.) (X2, V2) • (70.,10.) NEUTRAL AXIS • (66.43,10.) SHEAR • .1008 MOMENT • -.0234 THRUST • -.2095

Figure Al. Load case 1B (section 1)

(XI, YI) = (52.,16.) (X2, Y2) = (70.,16.) HEUTRAL AXIS = (66.,16.) SHEAR = .0154 HOMENT = .1082 THRUST = -.1737

Figure A2. Load case 1B (section 2)

(X1, Y1) • (62.,22.) (X2, Y2) • (70.,22.) NEUTRAL AXIS • (63.63,22. SHEAR • -.0577 MOMENT • .115 THRUST • -.1546

Figure A3. Load case 1B (section 3)

(X1, V1) = (64.,20.) (X2, V2) = (64.,30.) NEUTRAL AXIS = (64.,23.68) SHEAR = .6754 NOMENT = -.0017 THRUST = -.1228

Figure A4. Load case 1B (section 4)

(X1, Y1) = (58.,20.) (X2, Y2) = (58.,32.) NEUTRAL AXIS = (58.,27.29) SHEAR = -.0617 MOMENT = -.1239

Figure A5. Load case 1B (section 5)

THE PROPERTY OF THE PROPERTY O

(X1, Y1) = (52.,20.) (X2, Y2) = (52.,33.) NEUTRAL AXIS = (52.,25.03) SHEAR = -.2205 MOMENT = -.9078 THRUST = -.1853

Figure A6. Load case 1B (section 6)

(X1, Y1) = (40.,22.) (X2, Y2) = (54.,22.) NEUTRAL AXIS = (52.74,23.) SHEAR = .2069 NOMENT = -.0201 THRUST = -.6241

Figure A7. Load case 1B (section 7)

Figure A8. Load case 1B (section 8)

(X1, Y1) = (40.,12.) (X2, Y2) = (54.,12.) NEUTRAL AXIS = (45.64,12.) SHEAR = .269 NOMENT = -.6371 THRUST = -.7359

Figure A9. Load case 1B (section 9)

(X1, Y1) • (52.,1.) (X2, Y2) • (52.,11.) NEUTRAL AXIS • (52.,8.483 SHEAR • .6991 NOMENT • .1217 THRUST • -.2721

Figure AlO. Load case IB (section 10)

(X1, Y1) = (58.,2.) (X2, Y2) = (58.,11.) NEUTRAL AXIS = (58.,6.821) SHEAR = -.0193 MOMENT = -.1296 THRUST = -.2153

Figure All. Load case 1B (section 11)

(X1, Y1) - (64.,3.) (X2, Y2) - (64.,11.) MEUTRAL AXIS - (64.,10.53) SHEAR - -.1574 MOMENT - .2167 THRUST - -.2222

Figure Al2. Load case 1B (section 12)

(X1, Y1) = (42.,-1.) (X2, Y2) = (42.,13.) NEUTRAL AXIS = (42.,10.79) SHEAR = -.54 MOMENT = .587 THRUST = -.5607

Figure Al3. Load case 1B (section 13)

(X1, Y1) = (20.,-1.) (X2, Y2) = (20.,13.) NEUTRAL AXIS = (20.,6.) SHEAR = -.2409 MONENT = -7.844 THRUST = -4367

Figure Al4. Load case 1B (section 14)

(X1, Y1) = (40.,32.) (X2, Y2) = (53.,32.) NEUTRAL AXIS = (47.85,32.) SHEAR = .0237 MOMENT = -.4094 THRUST = -.3025

Figure Al5. Load case 1B (section 15)

(X1, Y1) = (40.,53.) (X2, Y2) = (48.,53.) NEUTRAL AXIS = (44.67,53.) SHEAR = .006 MOMENT = .0877 THRUST = -.1158

Figure Al6. Load case 1B (section 16)

(X1, Y1) = (40.,63.) (X2, Y2) = (48.,63.) NEUTRAL AXIS = (44.65,63.) SHEAR = -.0037 HOMENT = -.0853 THRUST = -.0686

Figure Al7. Load case 1B (section 17)

CONTROL SECTION CONTROL CONTROL SECTION

(X1, V1) • (0.,-1.) (X2, V2) • (0.,13.) NEUTRAL AXIS • (0.,6.) SHEAR • .6885E-4 HOMENT • -10.14 THRUST • -.4367

Figure Al8. Load case 1B (section 18)

(X1, Y1) = (62.,11.) (X2, Y2) = (70.,11.) NEUTRAL AXIS = (65.81,11.) SHEAR = .0878 MOMENT = -.1303 THRUST = -.1956

Figure Al9. Load case 1B (section 1A)

(X1, V1) = (62.,21.) (X2, V2) = (70.,21.) NEUTRAL AXIS = (66.33,21. SHEAR = -.0456 HOHENT = .0282 THRUST = -.1534

Figure A20. Load case 1B (section 2A)

(X1, Y1) = (63.,20.) (X2, Y2) = (63.,30.) NEUTRAL AXIS = (63.,24.88) SHEAR = .0461 MOMENT = -.0415 THRUST = -.1138

Figure A21. Load case 1B (section 3A)

(X2, Y2) - (54.,28.) (X2, Y2) - (54.,33.) NEUTRAL AXIS - (54.,26.? SHEAR - -.1523 MOMENT - -.549? THRUST - -.1375

Figure A22. Load case 1B (section 4A)

(X1, Y1) = (40.,20.) (X2, Y2) = (54.,20.) NEUTRAL AXIS = (48.41,20.) SHEAR = 1.798 MOMENT = .0718 THRUST = -.6061

Figure A23. Load case 1B (section 5A)

(X1, Y1) = (40.,14.) (X2, Y2) = (54.,14.) NEUTRAL AXIS = (46.43,14.) SHEAR = .1726 MOMENT = -.8232 THRUST = -.6674

Figure A24. Load case 1B (section 6A)

(X1, Y1) = (\$4.,1.) (X2, Y2) = (\$4.,11.) NEUTRAL AXIS = (\$4.,8.308) SHEAR = .0493 MOMENT = -.0426 THRUST = -.2315

Figure A25. Load case 1B (section 7A)

(X1, Y1) = (63.,3.) (X2, Y2) = (63.,11.) NEUTRAL AXIS = (63.,7.685) SHEAR = -.1112 MOMENT = .1368 THRUST = -.1975

Figure A26. Load case 1B (section 8A)

(X1, Y1) = (40.,-1.) (X2, Y2) = (40.,13.) NEUTRAL AXIS = (40.,5.398) SHEAR = -.4748 HOMENT = -.8707 THRUST = -.447

Figure A27. Load case 1B (section 9A)

(X1, Y1) = (40.,36.) (X2, Y2) = (52.,36.) NEUTRAL AXIS = (46.58,36.) SHEAR = .0158 MOMENT = -.2698 THRUST = -.2456

Figure A28. Load case 1B (section 10A)

(X1, Y1) = (62 .10.) (X2, Y2) = (70 .10.) NEUTRAL AXIS = (66.4.10.) SHEAR = - 0136 MOMENT = .0394 THRUST = - 3287

Figure A29. Load case 2B (section 1)

(X1, Y1) • (62,16) (X2, Y2) • (70,16) NEUTRAL AXIS • (66,16) SHEAR • 0051 MOMENT • - 1791 THRUST • - 2598

Figure A30. Load case 2B (section 2)

(X1. Y1) * (62.22) (X2. Y2) * (70.22) NEUTRAL AXIS * (66 89.22. SHEAR * 0403 MOMENT * 0824 THRUST * - 2714

Figure A31. Load case 2B (section 3)

(X1, Y1) • (64, 20) (X2, Y2) • (64, 30) NEUTRAL AXIS • (64, 25, 91) SHEAR • 1499 MOMENT • 2424 THRUST • - 068

Figure A32. Load case 2B (section 4)

(X1, Y1) = (58 .20) (X2, Y2) = (58 .32) NEUTRAL AXIS = (58 .26 18) SHEAR = .1322 MOMENT = 1 185 THRUST = - 0381

Figure A33. Load case 2B (section 5)

(X1, Y1) * (52,20) (X2, Y2) * (52,33) NEUTRAL AXIS * (52,27,03) SHEAR * 1064 NOMENT * 1 562 THRUST * - 0339

Figure A34. Load case 2B (section 6)

(X1. Y1) • (40..22) (X2. Y2) • (54 .22) NEUTRAL AXIS • (52 63.22. SHEAR • - 2677 MOMENT • 8072 THRUST • - 2941

Figure A35. Load case 2B (section 7)


```
(X1, Y1) = (40,17)
(X2, Y2) = (54,17)
NEUTRAL AXIS = (47,29,17)
SHEAR = -2722
MOMENT = 2,413
THRUST = -3198
```

Figure A36. Load case 2B (section 8)

(X1, Y1) = (40 .12) (X2, Y2) = (54 .12) NEUTRAL AXIS = (45 01.12) SHEAR = - 405 HOMENT = 4 334 THRUST = - 2807

Figure A37. Load case 2B (section 9)

(X1. Y1) * (52.1) (X2. Y2) * (52.11) NEUTRAL AXIS * (52.6.438: SHEAR * - 1059 MOMENT * -2 025 THRUST * -0865

Figure A38. Load case 2B (section 10)

(X1, Y1) • (58,2) (X2, Y2) • (58,11) NEUTRAL AXIS • (58,6 557) SHEAR • - 118 MOMENT • -1 04 THRUST • -142

Figure A39. Load case 2B (section 11)

(X1, Y) (X2, Y2) MEUTRAL AXIS = SHEAR = ~ HOMENT = . THRUST =

Figure A40. Load case 2B (section 12)

(X1, Y1) = (42.,-1.) (X2, Y2) = (42.,13.) NEUTRAL AXIS = (42.,731.) SHEAR = -0111 MOMENT = -10.89 THRUST = .4203

Figure A41. Load case 2B (section 13)

(X1. Y1) - (20 .11) (X2. Y2) = (20 .13) NEUTPAL AXIS - (20). SHEAP - 2031 MOMENT = -11 23 THRUST + - 0003

Figure A42. Load case 2B (section 14)

(X1, Y1) = (40, 32.) (X2, Y2) = (53.,32.) MEUTRAL AXIS = (47.3.32.) SHEAR = -1131 MOMENT = 1.42 THRUST = -2629

Figure A43. Load case 2B (section 15)

Secret reserves execesso isomical marketic property that


```
(X1, Y1) = (40.,53.)
(X2, Y2) = (48.,53.)
NEUTRAL AXIS = (44.66.53.)
SHEAR = -.0225
MOMENT = .1581
THRUST = -.1156
```

Figure A44. Load case 2B (section 16)


```
(X1, Y1) = (40.63.)

(X2, Y2) = (48.63.)

NEUTRAL AXIS = (44.63.)

SHEAR = -.0636

NOMENT = .085

THRUST = -.0686
```

Figure A45. Load case 2B (section 17)

peed topological september september population

(X1, Y1) = (0.,-1. (X2, Y2) = (0.,13. NEUTRAL AXIS = (0.,6.) SHEAR = -.0005 PORENT = -12.13 THRUST = -.0002

Figure A46. Load case 2B (section 18)

(X1, Y1) = (62..11.) (X2, Y2) = (70..11.) NEUTRAL AXIS = (65.6.11.) SHEAR = -.0096 NOMENT = -.1551 THRUST = -.278

Figure A47. Load case 2B (section 1A)

をある。これでは、これではないと、これではないと、これではないとなって、できないできない。 これではないできない。 これではないないというできない。 これではないできない。 これできない。 これでもない。 これでもないでもない。 これでもないをもない。 これでもない。 これでもない。 これでもないをもないをもないをもないをもないをもないをもないをもないをもないをも

(X1, Y1) = (62..21.) (X2, Y2) = (70..21.) NEUTRAL AXIS = (65.84.21. SHEAR = .028 MOMENT = -.0952 THRUST = -.2363

Figure A48. Load case 2B (section 2A)

(X1, Y1) = (63..20.) (X2, Y2) = (63..30.) NEUTRAL AXIS = (63..25.77) SHEAR = .1493 MOMENT = .4667 THRUST = -.0406

Figure A49. Load case 2B (section 3A)

(X1, V1) = (54..20.) (X2, V2) = (54..33.) NEUTRAL AXIS = (54..26.69) SHEAR = .1213 MOMENT = 1.61 THRUST = -.0484

Figure A50. Load case 2B (section 4A)

(X1, Y1) = (40,20) (X2, Y2) = (54,20) NEUTRAL AXIS = (47,2,20) SHEAR = -2684 NOMENT = 1,553 THRUST = -2977

Figure A51. Load case 2B (section 5A)

(X1, Y1) = (40.,14.) (X2, Y2) = (54.,14.) NEUTRAL AXIS = (54.,75.14.) SHEAR = -.2806 MONENT = 3.137 THRUST = -.3522

Figure A52. Load case 2B (section 6A)

THE PROPERTY OF THE PROPERTY O

(X1, V1) = (54..1.) (X2, Y2) = (54..11.) NEUTRAL AXIS = (54..6.367) SHEAR = -.0832 MOMENT = -1.396 THRUST = -.177

Figure A53. Load case 2B (section 7A)

(X1, Y1) = (63..3.) (X2, Y2) = (63..11.) NEUTRAL AXIS = (63..6.816) SHEAR = -.1528 HOMENT = -.3612 THRUST = -.123

Figure A54. Load case 2B (section 8A)

(X1. Y1) = (40.,-1.) (X2. Y2) = (40.,13.) NEUTRAL AXIS = (40.,6.432) SHEAR = -.1654 MOMENT = -8.542 THRUST = -.0024

Figure A55. Load case 2B (section 9A)

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A


```
(X1, V1) = (40,36.)
(X2, V2) = (52.36.)
NEUTRAL AXIS = (4655.36.)
SHEAR = -1335
MOMENT = 1.112
THRUST = -.2476
```

Figure A56. Load case 2B (section 10A)

(X1, Y1) = (62.10.) (X2, Y2) = (70.10.) MEUTRAL AXIS = (1567 SHEAR = .1567 MOMENT = -.0675 THRUST = -.1845

Figure A57. Load case 5A (section 1)

(X1, Y1) = (62,16.) (X2, Y2) = (70,16.) MEUTRAL AXIS = (66,16.) SHEAR = .0158 MOMENT = .2491 THRUST = -.1456

Figure A58. Load case 5A (section 2)

Control of the Contro

THE COLOR OF THE PROPERTY OF T

Figure A59. Load case 5A (section 3)

(X1, Y1) * (64,20.) (X2, Y2) * (64,30.) NEUTRAL AXIS * (64,25,28) SHEAR * .0472 HOMENT * - .1636 THRUST * - .22

Figure A60. Load case 5A (section 4)

(X1, Y1) = (58,20) (X2, Y2) = (58,32) NEUTRAL AXIS = (58,26,56) SHEAR = -1043 MOMENT = -628 THRUST = -2237

Figure A61. Load case 5A (section 5)

(X1, Y1) • (52 .20) (X2, Y2) • (52 .33) NEUTRAL AXIS • (52 .25.77) SHEAR • - .2874 NOMENT • -1.63 THRUST • -.317

Figure A62. Load case 5A (section 6)

(X1, Y1) = (40,22.) (X2, Y2) = (54,22.) NEUTRAL AXIS = (52,81.22.) SHEAR = .3724 NOMENT = -1478 THRUST = -7049

Figure A63. Load case 5A (section 7)

(X1, Y1) = (40 ,17) (X2, Y2) = (54 ,17) HEUTRAL AXIS = (47 26,17) SHEAR = .3265 MOMENT = -1.323 THRUST = -7197

Figure A64. Load case 5A (section 8)

(X1, Y1) = (40,12.) (X2, Y2) = (54,12.) NEUTRAL AXIS = (45,36.12.) SHEAR = .4446 MOMENT = -2,444 THRUST = -.8664

Figure A65. Load case 5A (section 9)

3433333

(X1, Y1) = (52 ,1) (X2, Y2) = (52 ,11) NEUTRAL AXIS = (52 ,6.518) SHEAR = .1377 NOMENT = .7629 THRUST = -.4541

Figure A66. Load case 5A (section 10)

のことは、「日本のでは、10mmのでは、「日本のでは、10mmのでは、1

(X1, Y1) = (58 .2) (X2, Y2) = (58 .11) NEUTRAL AXIS = (58 .6.486) SHEAR = .0012 NOMENT = .2525 THRUST = -.3404

Figure A67. Load case 5A (section 11)

(X1. Y1) = (64 .3) (X2, Y2) = (64 .11) NEUTRAL AXIS = (64 .10.5) SHEAR = - 1437 MOMENT = 3856 THRUST = - 3402

Figure A68. Load case 5A (section 12)


```
(X1, Y1) = (42,-1)
(X2, Y2) = (42,13)
MEUTRAL AXIS = (42,9,772)
SHEAR = -655
MOMENT = -1,066
```

Figure A69. Load case 5A (section 13)

(X1, Y1) • (20,-1) (X2, Y2) • (20,13) NEUTRAL AXIS • (20,6.001) SHEAR • - 2533 ROMENT • -5 444 THRUST • -.7476

Figure A70. Load case 5A (section 14)

(X1, Y1) = (40,32) (X2, Y2) = (53,32) NEUTRAL AXIS = (48,01,32) SHEAR = .0628 MOMENT = -.636 THRUST = -.3185

Figure A71. Load case 5A (section 15)

(X1. Y1) = (40 .53) (X2. Y2) = (48 .53) NEUTRAL AXIS = (44 67.53) SHEAR = .0006 MOMENT = .0877 THRUST = -.1158

Figure A72. Load case 5A (section 16)

THE PROPERTY OF THE PROPERTY O

(X1, Y1) * (40,63) (X2, Y2) * (48,63) NEUTRAL AXIS * (44,65,63.) SHEAR * -.0037 HOMENT * -.0686

Figure A73. Load case 5A (section 17)

(X1. Y1) = (0 .-1) (X2. Y2) = (0 .13) NEUTRAL AXIS = (0 .6 001) SHEAR = 0088 HOMENT = -7 779 THRUST = -.7476

Figure A74. Load case 5A (section 18)

PACTOCK RESERVED SERVED SON

(X1, Y1) * (62 .11) (X2, Y2) * (70 .11) NEUTRAL AXIS * (65 79.11) SHEAR * 1339 MOMENT * - 1029 THRUST * - 1694

Figure A75. Load case 5A (section 1A)

(X1. V1) • (62 .21) (X2. Y2) • (70 .21) NEUTRAL AXIS • (66 16.21) SHEAR • - 0849 MOMENT • 0693 THRUST • - 1268

Figure A76. Load case 5A (section 2A)

(X1, Y1) = (63 .20) (X2, Y2) = (63 .30) NEUTRAL AXIS = (63 .25 29) SHEAR = 0107 MOMENT = -3057 THRUST = -2012

Figure A77. Load case 5A (section 3A)

(X1, Y1) = (54 .20) (X2, Y2) = (54 .33) NEUTRAL AXIS = (54 .26 61 SHEAR = - 204 MOMENT = -1 24 THRUST = - 2416

Figure A78. Load case 5A (section 4A)

CONTRACTOR CONTRACTOR

(X1, Y1) • (40, 20) (X2, Y2) • (54, 20) NEUTRAL AXIS • (46, 49, 20) SHEAR • 3266 PROMENT • - 3843 THRUST • - 6796

Figure A79. Load case 5A (section 5A)

(X1. Y1) = (40 .14) (X2. Y2) = (54 .14) NEUTRAL AXIS = (46 62.14) SHEAR = 3323 MOMENT = -2 17 THRUST = -7351

Figure A80. Load case 5A (section 6A)

(X1, Y1) = (54 .1) (X2, Y2) = (54 .11) NEUTRAL AXIS = (54 .6 302) SHEAR = .0702 MOMENT = .4234 THRUST = .3593

Figure A81. Load case 5A (section 7A)

CONTRACTOR ACCEPTAGE AND ACCEPTAGE OF THE PROPERTY OF THE PROP

(X1, Y1) • (63 .3) (X2, Y2) • (63 .11) NEUTRAL AXIS • (63 .7 437: SHEAR • - 0887 MOMENT • 3746 THRUST • - 3095

Figure A82. Load case 5A (section 8A)

(X1. Y1) = (40 .-1) (X2. Y2) = (40 .13) NEUTRAL AXIS = (40 .7 544) SHEAR = - 5148 MOMENT = 1 972 THRUST = - 7591

Figure A83. Load case 5A (section 9A)

(X1, Y1) = (40,36) (X2, Y2) = (52,36) NEUTRAL AXIS = (46,6,36) SHEAR = 0474 MOMENT = -391 THRUST = -2505

Figure A84. Load case 5A (section 10A)