线性代数 A 大练习1

2024.2.24

本周内容: 多项式、带余除法、公因式、最大公因数、最小公倍式

例 8 证明:设d,n 都是正整数,则对任一不等于±1 的整数 a, f $a^d-1|a^n-1 \Longrightarrow d|n$ 。

证明:在K[x]中,如果f(x)与g(x)不全为0,那么

$$\left(\frac{f(x)}{(f(x),g(x))},\frac{g(x)}{(f(x),g(x))}\right)=1.$$

例1 求 f(x)与 g(x)的首一最大公因式,并且把它表示成 f(x)与 g(x)的倍式和: $f(x) = x^4 + 3x - 2$, $g(x) = 3x^3 - x^2 - 7x + 4$.

设 $f(x),g(x) \in K[x],a,b,c,d \in K$,使得 $ad-bc \neq 0$ 。证明:

$$(af(x) + bg(x), cf(x) + dg(x)) = (f(x), g(x)).$$

例7 设 $A \in M_n(K)$, $f_1(x)$, $f_2(x) \in K[x]$, 记 $f(x) = f_1(x)$ $f_2(x)$ 。证明: 如果 $(f_1(x), f_2(x)) = 1$,那么 f(A)X = 0 的任一个解可以唯一地表示成 $f_1(A)X = 0$ 的一个解与 $f_2(A)X = 0$ 的一个解的和。

例9 设 $m,n \in \mathbb{N}^*$,证明:在K[x]中,

$$(x^{m}-1,x^{n}-1)=x^{(m,n)}-1.$$