# Algorytmy Ewolucyjne Projekt 1 - sprawozdanie

Tomasz Indeka, 293457

| Wstęp                    | 2  |
|--------------------------|----|
| Wyniki                   | 3  |
| Liczba przedmiotów: 32   | 3  |
| Wpływ metody selekcji    | 4  |
| Wpływ metody krzyżowania | 6  |
| Wpływ metody mutacji     | 8  |
| Liczba przedmiotów: 64   | 10 |
| Wpływ metody selekcji    | 12 |
| Wpływ metody krzyżowania | 14 |
| Wpływ metody mutacji     | 16 |
| Wnioski                  | 18 |

#### 1. Wstęp

Do rozwiązania zadany był standardowy problem plecakowy, który cechuje się następującymi równaniami:

$$f_{celu} = \max \sum_{i=1}^{N} p_i x_i,$$
  
$$\sum_{i=1}^{N} w_i x_i \leq W,$$

gdzie:

$$\begin{aligned} p_i & \in <0,1; \ 1>, \\ w_i & \in <1; \ 100>, \\ x_i & \in \ \{0; \ 1\}, \\ W & =0,3*\sum_{i=1}^N w_i, \end{aligned}$$

N = 32 lub N = 64 (zależnie od rozpatrywanego przypadku).

Same wektory p i w ze względu na swój rozmiar znajdują się w tabelach w dalszej części sprawozdania i zostały wygenerowane losowo na podstawie nr albumu. Wektor p odpowiada wartościom przedmiotów, a wektor w wadze przedmiotów w problemie plecakowym.

Do rozwiązania zadania użyłem funkcji *ga* (algorytm genetyczny) programu MATLAB z ustaleniem populacji na wartości bitowe.

W zadaniu skupiłem się na przeanalizowaniu wpływu parametrów algorytmu genetycznego (metody selekcji, mutacji i krzyżowania) na szybkość obliczenia maximum dla podanych danych. Obliczenia dokonywane przez algorytm genetyczny były w dużej mierze oparte na losowości dlatego przedstawione wyniki są uśrednieniem otrzymanych wyników z 25 wywołań.

Parametry takie jak warunek zatrzymania algorytmu były dobrane odpowiednio daleko, tak aby nie ograniczać algorytmu ewolucyjnego w obliczeniach, ale jednocześnie skrócić obliczenia o złym uwarunkowaniu. Mimo dobrania zadowalającej maksymalnej ilości iteracji nie wszystkie wywołania znalazły optimum w ograniczonej iteracji.

We wszystkich przypadkach przybrałem liczność populacji 100, liczba elitarnych jednostek populacji 1, maksymalna liczba generacji 200, tolerancja końcowa funkcji 1e-6.

Najlepsze znalezione rozwiązanie jest przestawione jest w poszczególnych tabelach, a wybrane przedmioty zaznaczone są na niebiesko.

# 2. Wyniki

## 2.1. Liczba przedmiotów: 32

| i  | $p_i$ | $w_i$    | $x_i$ | wartość | waga |
|----|-------|----------|-------|---------|------|
| 1  | 44    | 0,2      | 1     | 44      | 0,2  |
| 2  | 88    | 0,7      | 1     | 88      | 0,7  |
| 3  | 84    | 0,5      | 1     | 84      | 0,5  |
| 4  | 58    | 0,5      | 0     | 0       | 0    |
| 5  | 49    | 0,7      | 0     | 0       | 0    |
| 6  | 48    | 0,4      | 0     | 0       | 0    |
| 7  | 32    | 0,2      | 1     | 32      | 0,2  |
| 8  | 97    | 0,5      | 1     | 97      | 0,5  |
| 9  | 16    | 0,6      | 0     | 0       | 0    |
| 10 | 30    | 0,9      | 0     | 0       | 0    |
| 11 | 86    | 0,2      | 1     | 86      | 0,2  |
| 12 | 61    | 1        | 0     | 0       | 0    |
| 13 | 22    | 0,6      | 0     | 0       | 0    |
| 14 | 74    | 0,4      | 1     | 74      | 0,4  |
| 15 | 18    | 0,3      | 0     | 0       | 0    |
| 16 | 86    | 0,5      | 1     | 86      | 0,5  |
| 17 | 8     | 0,1      | 1     | 8       | 0,1  |
| 18 | 35    | 0,4      | 0     | 0       | 0    |
| 19 | 99    | 0,3      | 1     | 99      | 0,3  |
| 20 | 59    | 0,9      | 0     | 0       | 0    |
| 21 | 44    | 0,3      | 1     | 44      | 0,3  |
| 22 | 12    | 0,3      | 0     | 0       | 0    |
| 23 | 46    | 0,4      | 0     | 0       | 0    |
| 24 | 73    | 0,2      | 1     | 73      | 0,2  |
| 25 |       | 0,8      | 0     | 0       | 0    |
| 26 | 49    | 0,9      | 0     | 0       | 0    |
| 27 | 58    | 0,5      | 0     | 0       | 0    |
| 28 | 9     | 0,7      | 0     | 0       | 0    |
| 29 | 40    | 0,9      | 0     | 0       | 0    |
| 30 | 99    | 0,2      | 1     | 99      | 0,2  |
| 31 | 69    | 0,6      | 1     | 69      | 0,6  |
| 32 | 40    | 0,8      | 0     | 0       | 0    |
|    |       | W = 4,95 |       | 983     | 4,9  |

#### 2.1.1. Wpływ metody selekcji









#### 2.1.2. Wpływ metody krzyżowania









#### 2.1.3. Wpływ metody mutacji









### 2.2. Liczba przedmiotów: 64

| i  | $p_i$ | $w_i$ | $x_i$ | wartość | waga |
|----|-------|-------|-------|---------|------|
| 1  | 26    | 0,2   | 1     | 26      | 0,2  |
| 2  | 46    | 0,7   | 0     | 0       | 0    |
| 3  | 79    | 0,5   | 1     | 79      | 0,5  |
| 4  | 55    | 0,5   | 0     | 0       | 0    |
| 5  | 16    | 0,7   | 0     | 0       | 0    |
| 6  | 68    | 0,4   | 1     | 68      | 0,4  |
| 7  | 39    | 0,2   | 1     | 39      | 0,2  |
| 8  | 51    | 0,5   | 0     | 0       | 0    |
| 9  | 84    | 0,6   | 1     | 84      | 0,6  |
| 10 | 74    | 0,9   | 0     | 0       | 0    |
| 11 | 69    | 0,2   | 1     | 69      | 0,2  |
| 12 | 40    | 1     | 0     | 0       | 0    |
| 13 | 19    | 0,6   | 0     | 0       | 0    |
| 14 | 4     | 0,4   | 0     | 0       | 0    |
| 15 | 39    | 0,3   | 1     | 39      | 0,3  |
| 16 | 66    | 0,5   | 1     | 66      | 0,5  |
| 17 | 80    | 0,1   | 1     | 80      | 0,1  |
| 18 | 6     | 0,4   | 0     | 0       | 0    |
| 19 | 58    | 0,3   | 1     | 58      | 0,3  |
| 20 | 38    | 0,9   | 0     | 0       | 0    |
| 21 | 47    | 0,3   | 1     | 47      | 0,3  |
| 22 | 89    | 0,3   | 1     | 89      | 0,3  |
| 23 | 99    | 0,4   | 1     | 99      | 0,4  |
| 24 | 84    | 0,2   | 1     | 84      | 0,2  |
| 25 | 53    | 0,8   | 0     | 0       | 0    |
| 26 | 37    | 0,9   | 0     | 0       | 0    |
| 27 | 72    | 0,5   | 1     | 72      | 0,5  |
| 28 | 25    | 0,7   | 0     | 0       | 0    |
| 29 | 64    | 0,9   | 0     | 0       | 0    |
| 30 | 43    | 0,2   | 0     | 0       | 0    |
| 31 | 52    | 0,6   | 0     | 0       | 0    |
| 32 | 37    | 0,8   | 0     | 0       | 0    |
| 33 | 20    | 0,5   | 0     | 0       | 0    |
| 34 | 9     | 0,9   | 0     | 0       | 0    |
| 35 | 23    | 0,9   | 0     | 0       | 0    |

| 36 | 44  | 0,6       | 0 | 0    | 0    |
|----|-----|-----------|---|------|------|
| 37 | 99  | 0,5       | 1 | 99   | 0,5  |
| 38 | 57  | 0,5       | 0 | 0    | 0    |
| 39 | 32  | 0,4       | 0 | 0    | 0    |
| 40 | 36  | 1         | 0 | 0    | 0    |
| 41 | 97  | 0,2       | 1 | 97   | 0,2  |
| 42 | 63  | 0,4       | 1 | 63   | 0,4  |
| 43 | 42  | 0,9       | 0 | 0    | 0    |
| 44 | 46  | 0,6       | 0 | 0    | 0    |
| 45 | 100 | 0,3       | 1 | 100  | 0,3  |
| 46 | 98  | 0,8       | 1 | 98   | 0,8  |
| 47 | 18  | 0,3       | 0 | 0    | 0    |
| 48 | 75  | 0,9       | 0 | 0    | 0    |
| 49 | 83  | 0,2       | 1 | 83   | 0,2  |
| 50 | 66  | 0,4       | 1 | 66   | 0,4  |
| 51 | 79  | 1         | 0 | 0    | 0    |
| 52 | 13  | 0,6       | 0 | 0    | 0    |
| 53 | 48  | 0,5       | 1 | 48   | 0,5  |
| 54 | 50  | 0,2       | 1 | 50   | 0,2  |
| 55 | 98  | 0,5       | 1 | 98   | 0,5  |
| 56 | 93  | 0,8       | 1 | 93   | 0,8  |
| 57 | 58  | 0,8       | 0 | 0    | 0    |
| 58 | 79  | 0,5       | 1 | 79   | 0,5  |
| 59 | 59  | 0,6       | 0 | 0    | 0    |
| 60 | 30  | 0,2       | 1 | 30   | 0,2  |
| 61 | 32  | 0,5       | 0 | 0    | 0    |
| 62 | 40  | 1         | 0 | 0    | 0    |
| 63 | 68  | 0,7       | 0 | 0    | 0    |
| 64 | 25  | 0,5       | 0 | 0    | 0    |
|    |     | W = 10,56 |   | 2003 | 10,5 |

#### 2.2.1. Wpływ metody selekcji









#### 2.2.2. Wpływ metody krzyżowania









#### 2.2.3. Wpływ metody mutacji









#### 3. Wnioski

Największa różnica pomiędzy 32 elementami, a 64 elementami jest zauważalna w ilości optimów lokalnych. Jest to zauważalne że na wykresach najlepsze rozwiązanie jest daleko od znalezionego optimum globalnego. W przypadku 64 elementów średnia z wywołań wynosi około 60–70% najlepszego znalezionego rozwiązania, a w przypadku 32 elementów średnia z wywołań wynosi około 90%. Dlatego aby znaleźć najlepsze rozwiązanie globalne należy uruchomić algorytm genetyczny wielokrotnie, tym więcej im więcej posiadamy zmiennych. W przypadku z 64 elementami zauważyłem też, że nawet wywoływanie kilkadziesiąt razy nie zawsze znajdowało najlepsze ze wszystkich znalezionych (we wszystkich testach - rozwiązanie podane jako globalne) rozwiązań.

Podczas wyboru najlepszej metody selekcji możemy zauważyć, że większość metod nie różni się znacząco między sobą wynikami. Wyjątkiem jest tylko selekcja równomierna, która w żaden sposób nie weryfikuje przydatności wybieranych jednostek do krzyżowania i mutacji. Ten rodzaj selekcji zapewnia znacznie gorsze wyniki i niejednokrotnie w trakcie testów nie był w stanie znaleźć optimum w wyznaczonej ilości generacji co świadczy o jego wolniejszej zbieżności. Do dalszych badań wybrałem selekcję stochastyczną równomierną.

Wybór najlepszej metody krzyżowania pokazał, że krzyżowanie jedno i dwu-punktowe daje bardzo podobne rezultaty, które zdają się różnić tylko ze względu na losowość algorytmu. Krzyżowanie rozproszone daje natomiast najlepsze rezultaty ze wszystkich testowanych metod. Znajduje statystycznie lepsze rozwiązania i szybciej znajduje lepsze wartości. Ponadto jego najgorsze dopasowanie wolniej zbiega do maksimum, a wariancja jest znacznie większa, co świadczy o szerszym przeszukiwaniu przed utworzeniem populacji homogenicznej. Do dalszych celów posługiwałem się metodą wielopunktowego krzyżowania.

Testowanie różnych metod mutacji w przypadku 32 elementów nie przyniosło żadnych wymiernych rezultatów. Wszystkie są w przybliżeniu takie same - z dokładnością do faktu iż algorytm genetyczny działał losowo. Natomiast w przypadku 64 elementów możemy zauważyć wyraźną przewagę mutacji o rozkładzie normalnym nad rozkładem równomiernym i adaptacyjnym. Mutacja gaussowska daje lepsze rezultaty pod każdym kątem: statystycznie lepsze rozwiązania, nieznacznie szybsze zbieganie i większa wariancja wśród populacji.

Jako najlepsze połączenie wybrałem selekcję stochastyczną równomierną, krzyżowanie wielopunktowe i mutację o rozkładzie gaussowskim. Warto zauważyć, że są to również domyślne wartości z jakimi uruchamiany jest w MATLABie algorytm genetyczny, jeśli nie podamy własnych preferencji.